UNIT 1

History of Pharmacopoeia

Definition of Pharmacopoeia:

A pharmacopoeia is an official compilation of drug standards—it contains monographs of drugs that describe their identity, purity, strength, quality, tests, and assay methods. It serves as a legal and scientific reference for the manufacture and quality control of pharmaceutical substances and formulations.

Historical Development of Pharmacopoeia:

1. Ancient Beginnings:

- The concept of documenting medicinal substances dates back to **ancient civilizations** like **Egypt, China, India**, and **Greece**.
- Charaka Samhita and Sushruta Samhita in India (around 1000 BC) described several medicinal preparations.
- **Hippocrates** (460–377 BC) and **Galen** (130–200 AD) of Greece were early contributors to systematic drug preparation.

2. First Pharmacopoeia (Middle Ages):

- The earliest recognized pharmacopoeia was "Antidotarium Nicolai" (circa 1100 AD), written by Nicolaus Myrepsus, a court physician in Constantinople.
- The **first official pharmacopoeia** is considered to be the **"Nuovo Receptario"** (1498), published in Florence, Italy, authorized by the city government and prepared by the Medical College.

3. British Pharmacopoeia (BP):

- The **first edition** of the **British Pharmacopoeia** was published in **1864**, combining the pharmacopoeias of London, Edinburgh, and Dublin.
- It is regularly revised and updated by the **British Pharmacopoeia Commission** under the UK Medicines and Healthcare products Regulatory Agency (MHRA).
- BP serves as a standard in many Commonwealth nations and is widely respected internationally.

4. United States Pharmacopoeia (USP):

- First published in 1820 by a group of physicians in Washington, D.C.
- It became legally enforceable in the USA under the **Federal Food, Drug, and Cosmetic Act of 1938**.
- Published by the **United States Pharmacopeial Convention**, the USP sets standards not only for drugs but also for dietary supplements and food ingredients.

5. Indian Pharmacopoeia (IP):

- India's first official pharmacopoeia, The Indian Pharmacopoeia, was published in 1955 by the Indian Pharmacopoeia Committee under the Ministry of Health and Family Welfare.
- It sets the standards for drugs manufactured and marketed in India.
- Revised editions were published in 1966, 1985, 1996, 2007, 2010, 2014, 2018, and the latest version in 2022.
- The **Indian Pharmacopoeia Commission (IPC)**, Ghaziabad, is responsible for its publication and maintenance.

6. International Pharmacopoeia (Ph. Int.):

- Published by the World Health Organization (WHO) since 1951.
- Aims to provide **global standards** for quality control of medicines, especially for use in countries that do not have their own national pharmacopoeia.

Other Notable Pharmacopoeias:

- European Pharmacopoeia (Ph. Eur.): First published in 1969, applicable in EU member states.
- Japanese Pharmacopoeia (JP): First edition in 1886, revised every five years.
- Chinese Pharmacopoeia (ChP): Covers both modern and traditional Chinese medicines.

Sources and types of impurities

Impurities:

An **impurity** is any component present in a pharmaceutical substance other than the desired **active pharmaceutical ingredient (API)** or **excipients**, that arises during **manufacture**, **storage**, **or handling**, and may affect the **safety**, **efficacy**, **or quality** of the product.

According to the Indian Pharmacopoeia and ICH guidelines, impurities can be organic, inorganic, or residual solvents.

Sources of Impurities:

1. Raw Materials Used in Manufacturing:

- o Impurities in **chemicals or solvents** used for synthesis.
- o Impurities in water (e.g., calcium, magnesium, chlorides).

2. Manufacturing Process:

- o **Incomplete reactions** leading to unreacted starting materials.
- By-products from side reactions.
- Decomposition products due to heat, pH, or light.

3. Reagents and Catalysts:

- o Traces of acids, bases, metal catalysts (e.g., palladium, copper).
- Use of impure intermediate compounds.

4. Atmospheric Contaminants:

- o **Dust**, carbon dioxide, and microorganisms.
- o Vapors from acids, alkalis, solvents in the production environment.

5. Storage Conditions:

- Oxidation, hydrolysis, polymerization during storage.
- Reaction with container materials (glass, plastic).

6. Cross-Contamination:

 Contamination from other products or inadequate cleaning of manufacturing equipment.

7. Solvents Used in Crystallization or Purification:

Residual solvents may remain in the final product.

8. Packaging Materials:

 Leaching of plasticizers, lubricants, or stabilizers into the drug from packaging.

Types of Impurities:

1. Organic Impurities:

- **Process-related impurities**: starting materials, by-products, intermediates.
- **Degradation products**: formed during storage (e.g., oxidation, hydrolysis).
- Examples: aldehydes, ketones, acids, esters, amines.

2. Inorganic Impurities:

- Arise from the manufacturing process or raw materials.
- Examples:
 - o **Reagents**: acids, bases, drying agents.
 - Catalysts: heavy metals.
 - o **Filter aids**: silicates, carbon.

3. Residual Solvents:

- Volatile organic compounds used during synthesis or purification.
- Classified based on toxicity (ICH Q3C):
 - o Class I: to be avoided (e.g., benzene, carbon tetrachloride).
 - o Class II: limited use (e.g., methanol, acetonitrile).
 - o Class III: low toxic potential (e.g., ethanol, acetone).

4. Foreign Particulate Matter:

• Physical contaminants like **fibers**, **glass particles**, **dust**, etc.

5. Enantiomeric Impurities:

Undesired optical isomers in chiral drugs.

Impact of Impurities:

- May alter therapeutic efficacy.
- Can cause toxicity, allergic reactions, or adverse effects.
- May affect **stability**, **solubility**, or **appearance** of the drug.

Control of Impurities:

- Good Manufacturing Practices (GMP).
- Use of validated processes and analytical methods.
- **Limit tests** (e.g., for lead, arsenic, iron).

Principle involved in the limit test for Chloride, Sulphate, Iron, Arsenic, Lead and Heavy metals, modified limit test for Chloride and Sulphate

1. Limit Test for Chloride

Principle:

The test is based on the **precipitation reaction** between chloride ions (Cl⁻) and **silver nitrate** (AgNO₃) in the presence of **dilute nitric acid** (HNO₃), forming **silver chloride** (AgCl) as a **white turbidity**. The acid prevents precipitation of other interfering silver salts such as carbonates or phosphates.

This turbidity is visually compared with a **standard chloride solution** that contains a known amount of chloride, usually from **sodium chloride (NaCl)**. The comparison is done in **Nessler cylinders** under similar conditions.

Reaction:

Cl-+AgNO3→AgCl↓+NO3-

Inference:

If the test solution produces **less or equal turbidity** compared to the standard, it passes the limit test.

2. Modified Limit Test for Chloride

Principle:

The modified method improves sensitivity by **conducting the test in a white porcelain dish** instead of a Nessler cylinder, ensuring **uniform background and better light reflection**, making visual comparison of turbidity more accurate.

The chemistry remains the same, but the **visual clarity** and **reproducibility** are improved. This is especially useful when dealing with very low chloride levels.

3. Limit Test for Sulphate

Principle:

This test is based on the precipitation of sulphate ions (SO₄²⁻) with barium chloride (BaCl₂) in the presence of acetic acid (CH₃COOH), forming barium sulphate (BaSO₄) as a white turbidity. Acetic acid is used to maintain a slightly acidic pH, preventing interference by other ions.

The turbidity produced is compared with that of a **standard sulphate solution** (usually potassium sulphate, K₂SO₄).

Reaction:

4. Modified Limit Test for Sulphate

Principle:

In the modified method, **ethanol** is included along with **barium chloride and dilute hydrochloric acid** to enhance precipitation. The reaction is performed in a **white porcelain dish** to improve visualization.

Ethanol reduces the solubility of barium sulphate, promoting finer and more uniform turbidity. This makes comparison against the standard more sensitive and precise.

5. Limit Test for Iron

Principle:

This test detects traces of **ferric iron (Fe³⁺)**, which forms a **purple-colored complex** with **thioglycolic acid** in the presence of **ammonia buffer** at alkaline pH. Thioglycolic acid acts both as a **reducing agent** and **complexing agent**.

At alkaline pH, ferrous ions (Fe²⁺) formed from the reduction of ferric ions react with thioglycolic acid to give a colored complex. The color intensity is compared with a standard solution of **ferric ammonium sulphate**.

Reaction:

Fe3+ + Thioglycolic acid undergoes reduction gives

Fe2+→Purple complex

6. Limit Test for Arsenic

Principle:

The test is based on the conversion of arsenic (As³+) in the sample into arsine gas (AsH₃) by reaction with zinc and hydrochloric acid in a specially designed apparatus. The arsine gas reacts with mercuric chloride paper, producing a yellow to brown stain due to the formation of mixed arsenic–mercury halides.

The intensity of the stain is compared with that of a standard arsenic solution prepared from arsenic trioxide (As_2O_3).

Reactions:

1. Formation of arsine:

As3++3Zn+6H+→AsH3↑+3Zn2+

2. Arsine reacting with mercuric chloride:

AsH3+3HgCl2→Brown stain (Hg-As compounds)

This is a **highly sensitive test** and must be conducted in a **closed apparatus** to prevent toxicity.

7. Limit Test for Lead

Principle:

Lead is detected by **precipitating it as lead sulfide (PbS)** in the presence of **alkaline tartrate solution and hydrogen sulfide (H₂S)**. This forms a **brown to black color**, which is compared with a standard lead solution of known concentration.

The test is performed in **slightly alkaline medium** using **ammonium citrate buffer**, which helps to dissolve interfering metal ions by forming soluble complexes.

Reaction:

 $Pb2++H2S\rightarrow PbS\downarrow +2H+$

The intensity of color or precipitate is observed and compared visually.

8. Limit Test for Heavy Metals

Principle:

This test is designed to detect a group of heavy metals like lead, mercury, cadmium, arsenic, antimony, etc. The metal ions are precipitated as their sulfides in the presence of hydrogen sulfide (H₂S) under acidic conditions (using acetic acid).

The test is done using **thioacetamide** as a sulfur source in some IP versions. The resulting **colored sulfide precipitates or turbidity** is compared with a standard solution prepared using **lead nitrate**, which serves as a reference for total heavy metal content.

Reaction:

 $Mn^++H_2S\rightarrow MS\downarrow +nH^+$

Where M = metal ion (e.g., Pb^{2+} , Hg^{2+} , Bi^{3+})

This is a **semi-quantitative test**, and different pharmacopoeias may specify limits in **parts per million (ppm)**.

1. Sodium Chloride (NaCl)*

1. General Method of Preparation:

Sodium chloride occurs naturally in large quantities as rock salt and in sea water. It can be obtained by:

- **Evaporation of sea water**, a process widely used in coastal regions. Seawater is allowed to stand in shallow ponds and evaporate under sunlight.
- Mining of rock salt (halite) deposits underground.
- **Synthetic method** (rare in practice): By neutralization of **hydrochloric acid** with **sodium hydroxide**.

NaOH+HCl→NaCl+H2O

2. Assay Method: (As per IP)

Volhard's method – an indirect titration (residual silver nitrate is back-titrated).

- Sodium chloride is reacted with excess **standard silver nitrate (AgNO₃)** to form a white **silver chloride precipitate**.
- Unreacted AgNO₃ is titrated with ammonium thiocyanate (NH₄SCN) using ferric ammonium sulfate as indicator.
- Endpoint: Formation of a red ferric thiocyanate complex.

Ag⁺+Cl⁻→AgCl
$$\downarrow$$
 Fe³⁺+SCN⁻→[FeSCN]²⁺(red)

3. Properties:

- Physical:
 - White crystalline powder or colorless crystals
 - Soluble in water, insoluble in alcohol
 - Neutral pH

Chemical:

- Stable under normal conditions
- Decomposes only at very high temperatures

- Used in preparation of **normal saline (0.9%)** for IV fluid replacement
- Maintains osmotic balance and electrolyte level in the body
- Used in oral rehydration salts (ORS)

- Component of various eye and nasal drops
- Flavor enhancer in pharmaceutical formulations

2. Calcium Gluconate (C₁₂H₂₂CaO₁₄)

1. General Method of Preparation:

- Prepared by neutralizing gluconic acid or gluconolactone with calcium carbonate (CaCO₃) or calcium hydroxide (Ca(OH)₂).
- The reaction is done in aqueous medium and followed by crystallization.

CaCO3+2C6H12O7→Ca(C6H11O7)₂+CO2+H2O

2. Assay Method: (As per IP)

- Complexometric titration with disodium EDTA.
- Medium: Alkaline buffer (pH ~12), indicator: Murexide
- Endpoint: Color change from pink to purple

Ca²⁺+EDTA4−→Ca⁻EDTA complex

3. Properties:

- Physical:
 - White crystalline powder or granules
 - Sparingly soluble in water
 - o Odorless, tasteless

Chemical:

- Slightly hygroscopic
- Compatible with most drugs and fluids

- Used in treatment of hypocalcemia and calcium deficiency
- Used in **tetany** caused by vitamin D deficiency
- Given orally or parenterally (10% injection)
- Also used in cardiac resuscitation to counteract magnesium toxicity

3. Ammonium Chloride (NH₄Cl)*

1. General Method of Preparation:

Ammonium chloride is typically prepared by the direct neutralization reaction between ammonia (NH₃) and hydrogen chloride (HCl):

NH3+HCl→NH4Cl

Alternatively, it can be obtained as a **byproduct** in the **Solvay process** during the manufacture of sodium carbonate (Na₂CO₃).

In laboratory-scale preparations, **aqueous ammonia** is reacted with **hydrochloric acid**, and the solution is then evaporated to yield crystals of ammonium chloride.

2. Assay Method: (As per Indian Pharmacopoeia)

Ammonium chloride is assayed by an **indirect acid-base titration** method. Here's how it works:

- Ammonium ions (NH₄⁺) do not act as bases directly.
- To make them titratable, **formaldehyde (HCHO)** is added to the solution to **fix ammonia** by forming hexamethylenetetramine.
- This reaction liberates equivalent **hydrochloric acid**, which is then titrated with standard **sodium hydroxide (NaOH)**.

 $NH4^++HCHO\rightarrow (CH2)_6N4+4H^+$

The liberated acid is titrated with NaOH using **methyl red** as an indicator.

Endpoint: Color change from red to yellow

3. Properties:

Physical Properties:

- White, crystalline powder or colorless crystals
- Slightly hygroscopic
- o Readily soluble in water
- Slightly cooling and salty taste
- pH of solution: slightly acidic

Chemical Properties:

- On heating, it **sublimes** without melting (NH₄Cl \rightarrow NH₃ + HCl)
- In aqueous solution, acts as a weak acid due to hydrolysis

4. Medicinal Uses:

- Systemic Acidifier: Used in conditions like metabolic alkalosis to acidify the body.
- **Expectorant:** Promotes the secretion or expulsion of respiratory mucus by mildly irritating the gastric mucosa, which in turn stimulates bronchial secretions via a vagal reflex.
- **Diuretic action:** Occasionally used in **edema** or **urinary alkalosis**.
- **Electrolyte replenishment:** Sometimes included in **oral rehydration** or **electrolyte replacement therapies**.

4. Sodium Bicarbonate (NaHCO₃)*

1. General Method of Preparation:

Sodium bicarbonate is prepared industrially by the **Solvay process**, involving the following steps:

NH3+CO2+NaCl+H2O→NaHCO3+NH4Cl

In the lab, it can also be prepared by bubbling CO_2 gas through a cold solution of sodium carbonate (Na_2CO_3):

Na2CO3+CO2+H2O→2NaHCO3

2. Assay Method: (As per IP)

Acid-base titration:

Sodium bicarbonate reacts with sulfuric acid or hydrochloric acid, and the liberated
 CO₂ is an indicator of the reaction.

NaHCO3+HCl→NaCl+CO2↑+H2O

- The titration is done using **methyl orange** as the indicator.
- Endpoint: Color change from yellow to pink/red

3. Properties:

Physical:

- White crystalline powder
- Slightly alkaline in aqueous solution
- o Soluble in water but insoluble in alcohol

• Chemical:

Decomposes on heating to give sodium carbonate, CO₂, and water

Reacts with acids to release carbon dioxide (effervescence)

4. Medicinal Uses:

- Used as a systemic antacid to neutralize stomach acid in hyperacidity and GERD
- Alkalizer in metabolic acidosis
- Used in effervescent granules
- Component of toothpastes and mouthwashes
- Used in alkaline urine therapy and to treat uric acid kidney stones

5. Aluminum Hydroxide Gel [Al(OH)₃]

1. General Method of Preparation:

Prepared by **precipitating** aluminum ions from **aluminum salts** (such as aluminum chloride or sulfate) using an alkali like **ammonium hydroxide**:

 $Al3^++3NH4OH \rightarrow Al(OH)_3 \downarrow +3NH4^+$

The precipitate is washed and suspended in water to prepare the gel.

2. Assay Method: (As per IP)

- Assayed indirectly by acid-base back titration.
- A known excess of standard HCl is added to dissolve Al(OH)3.
- The unreacted HCl is then titrated with NaOH using methyl orange.

AI(OH)3+3HCI→AICI3+3H2O

3. Properties:

- Physical:
 - White viscous gel
 - Tasteless and odorless
 - Insoluble in water and alcohol
 - o Amorphous in nature

Chemical:

- o Reacts with acids to form soluble aluminum salts
- Acts as a weak base

4. Medicinal Uses:

• Used as an **antacid** to relieve hyperacidity, gastritis, peptic ulcers

- Slow-acting, but provides long-lasting effect
- Also used to bind phosphate in chronic kidney disease to prevent hyperphosphatemia
- Component of **antidiarrheal** combinations
- May cause constipation with long-term use

6. Magnesium Hydroxide Mixture

1. General Method of Preparation:

Magnesium hydroxide mixture is prepared by the **precipitation reaction** of **magnesium salt** (usually magnesium sulfate or chloride) with sodium hydroxide:

 $MgCl2+2NaOH \rightarrow Mg(OH)_2 \downarrow +2NaCl$

The precipitated **magnesium hydroxide** is washed and **suspended in purified water** to form a uniform mixture.

2. Assay Method: (As per IP)

- It is assayed indirectly by acid-base back titration.
- A known excess of standard hydrochloric acid is added to react with Mg(OH)₂, forming MgCl₂.
- The unreacted acid is back titrated with **sodium hydroxide** using **methyl orange** indicator.

 $Mg(OH)_2+2HCI \rightarrow MgCl2+2H_2O$

3. Properties:

- Physical:
 - White, odorless, tasteless thick suspension
 - Practically insoluble in water
 - Settles on standing, requires shaking before use

Chemical:

- Acts as a weak base
- Reacts with acids to form magnesium salts

- Used as a **fast-acting antacid** to relieve heartburn and acid indigestion
- Also used as a saline laxative in higher doses due to osmotic water retention in intestines

- Provides synergistic effect when combined with aluminum hydroxide
- Used in dyspepsia and gastritis

7. Magnesium Sulphate (MgSO₄·7H₂O)

1. General Method of Preparation:

Prepared by neutralizing magnesium oxide (MgO) or magnesium carbonate (MgCO₃) with dilute sulfuric acid (H₂SO₄):

MgO+H2SO4→MgSO4+H2O

The solution is crystallized to obtain **heptahydrate** (MgSO₄·7H₂O), known as **Epsom salt**.

2. Assay Method: (As per IP)

- Complexometric titration using EDTA.
- The magnesium ions form a complex with EDTA.
- Eriochrome Black T is used as the indicator.
- Endpoint: Color changes from wine red to blue.

3. Properties:

- Physical:
 - o Colorless or white crystalline powder
 - o Odorless, with a cool, saline, bitter taste
 - Freely soluble in water
 - Slightly soluble in alcohol

Chemical:

- Neutral salt
- Loses water of crystallization on heating

- Used as a saline cathartic (laxative) in constipation
- Administered intravenously in eclampsia and preeclampsia as a CNS depressant
- Also used to correct magnesium deficiency
- Externally used in **baths and compresses** for muscle relaxation
- Used as an anticonvulsant, antiarrhythmic, and tocolytic agent in specific clinical settings

8. Sodium Orthophosphate (Na₃PO₄)

1. General Method of Preparation:

Sodium orthophosphate is prepared by neutralizing phosphoric acid (H₃PO₄) with sodium carbonate (Na₂CO₃) or sodium hydroxide (NaOH):

 $\label{lem:hapou} $$H3PO4+3NaOH \to Na3PO4+3H2O\text{H}_3\text{PO}_4 + 3\text{NaOH} \rightarrow Na3PO4+3H2O\text{Na}_3\text{PO}_4 + 3\text{H}_2\text{O}H3PO4+3NaOH \to Na3PO4+3H2O$

 $2Na2CO3+2H3PO4 \rightarrow 2Na3PO4+3CO2+3H2O2 \setminus \{Na\}_2 \setminus \{CO\}_3 + 2 \setminus \{H\}_3 \setminus \{PO\}_4 \setminus \{Na\}_3 \setminus \{PO\}_4 + 3 \setminus \{CO\}_2 + 3 \setminus \{H\}_2 \setminus \{O\}_2 \setminus \{PO\}_4 + 3 \setminus \{PO\}_$

The product is purified by crystallization.

2. Assay Method:

OR

- It is assayed **gravimetrically** or by **complexometric titration**.
- One method involves precipitation of magnesium ammonium phosphate and weighing the residue after ignition.
- Alternative titration method involves acid-base titration after hydrolysis.

3. Properties:

- White, crystalline powder
- Hygroscopic in nature
- Freely soluble in water, insoluble in alcohol
- Alkaline in nature due to hydrolysis in water

- Used as a saline cathartic
- Employed in **enemas** and **bowel cleansing** before diagnostic procedures
- Sometimes used as a **buffering agent** in pharmaceutical formulations
- In combination with sodium biphosphate in oral phosphates for colon cleansing

9. Kaolin

1. General Method of Preparation:

Kaolin is a **naturally occurring hydrated aluminum silicate** clay. It is obtained from natural deposits and purified by washing with water to remove impurities like sand, iron oxide, and other soluble salts.

2. Assay Method:

Kaolin is **not assayed by conventional titration methods** due to its **insolubility** and **inorganic nature**. However, it is standardized for **fineness**, **adsorptive power**, and **purity** as per pharmacopoeial specifications.

3. Properties:

- Fine, white to greyish-white powder
- Odorless and tasteless
- Insoluble in water and organic solvents
- Chemically inert and non-toxic

4. Medicinal Uses:

- Acts as an adsorbent and protective agent in gastrointestinal disturbances like diarrhea
- Formerly used in **anti-diarrheal mixtures** (now less common due to more effective alternatives)
- Used externally in **dusting powders** for skin protection and to absorb moisture
- Used as a diluent or base in pharmaceutical preparations such as calamine lotion

10. Bentonite

1. General Method of Preparation:

Bentonite is a **naturally occurring colloidal hydrated aluminum silicate** derived from **volcanic ash**. It is purified by suspending it in water, decanting off impurities, drying, and milling the remaining sediment into a fine powder.

2. Assay Method:

- Bentonite is not assayed by conventional titrimetric methods.
- It is evaluated based on swelling index, viscosity, adsorptive power, and pH.
- Quality parameters such as **grittiness**, **fineness**, and **gel-forming ability** are important as per pharmacopoeial standards.

3. Properties:

- Greyish-white or cream-colored, odorless fine powder
- Swells significantly in water to form a gel-like mass
- Insoluble in water and organic solvents
- pH is slightly alkaline

4. Medicinal Uses:

- Acts as a **suspending agent** and **emulsifying agent** in pharmaceutical formulations
- Used as a bulk-forming laxative
- Applied externally as **protective** and **absorbent** in pastes and poultices
- Has adsorbent properties and can absorb toxins and bacteria in the GIT

11. Potassium Permanganate (KMnO₄)

1. General Method of Preparation:

Prepared by oxidation of manganese dioxide (MnO₂) in an alkaline medium (KOH) with air or potassium nitrate, forming potassium manganate (K₂MnO₄), which is then disproportionated upon boiling or acidification:

 $3K2MnO4+2H2O \rightarrow 2KMnO4+MnO2 \downarrow +4KOH$

2. Assay Method:

- Assayed by redox titration.
- A known amount is titrated with a standard solution of **oxalic acid** or **sodium thiosulphate** under acidic conditions.
- Acts as a **self-indicator** (deep purple color disappears upon reduction).

3. Properties:

- Dark purple, crystalline powder
- Odorless, has a metallic, sweetish taste
- Freely soluble in water forming a deep purple solution
- Powerful oxidizing agent, especially in acidic medium

4. Medicinal Uses:

- Used as a **topical antiseptic** and disinfectant (0.01% to 0.1% solution)
- Employed in treatment of wounds, ulcers, and fungal infections
- Used in gargles and douches at low concentrations
- Acts by oxidizing bacterial cell components

12. Boric Acid (H₃BO₃)

1. General Method of Preparation:

Prepared by acidifying borax (sodium tetraborate) with hydrochloric acid or sulfuric acid:

Na2B4O7+2HCl+5H2O→4H3BO3+2NaCl

The solution is filtered and cooled to crystallize **boric acid**.

2. Assay Method:

- Assayed by acid-base titration using mannitol as a complexing agent to enhance the
 acidity of boric acid.
- The titration is carried out with standard NaOH using phenolphthalein as the indicator.

3. Properties:

- White, crystalline, or granular powder
- Odorless with a slightly bitter taste
- Slightly soluble in cold water, more soluble in hot water and glycerin
- Weak monobasic acid (acts as a Lewis acid)
- pH ~ 5.0 in aqueous solution

4. Medicinal Uses:

- Used as a mild antiseptic and antifungal agent in eye washes, mouth rinses, and skin lotions
- Used in **dusting powders**, **ointments**, and **creams**
- Employed in **buffering** ophthalmic and otic solutions
- Overdose or prolonged use may cause **toxicity**, especially in infants

13. Hydrogen Peroxide (H₂O₂)

1. General Method of Preparation:

Industrially prepared by the **anthraquinone process** or by **acidifying barium peroxide** with sulfuric acid:

 $BaO2+H2SO4 \rightarrow BaSO4 \downarrow +H2O2$

2. Assay Method:

- Assayed by **permanganate titration** in acidic medium.
- KMnO₄ acts as an oxidizing agent and oxidizes H₂O₂ to oxygen.
- Endpoint: Pink color persists due to unreacted KMnO₄.

5H2O2+2KMnO4+3H2SO4→2MnSO4+K2SO4+8H2O+5O25

3. Properties:

- Colorless, clear liquid with a slightly acidic taste
- Miscible with water in all proportions
- Decomposes on exposure to light or heat, releasing oxygen
- Stabilizers (e.g., sodium stannate) are added to prevent decomposition

4. Medicinal Uses:

- Used as a mild antiseptic and disinfectant (3% solution)
- Applied to clean wounds, ulcers, and mouth infections
- Used in ear drops and tooth whitening preparations
- Higher concentrations used in laboratory or industrial disinfection

14. Chlorinated Lime (Ca(OCI)CI · H₂O)

Also known as **Bleaching Powder**

1. General Method of Preparation:

Chlorinated lime is prepared by passing chlorine gas over dry slaked lime (Ca(OH)₂):

Ca(OH)2+Cl2→Ca(OCl)Cl+H2O

This reaction yields a **mixture of calcium hypochlorite and calcium chloride** with water of hydration.

2. Assay Method:

- Assayed by iodometric titration.
- The available chlorine content is determined by reaction with **potassium iodide** in acidic medium, liberating iodine, which is titrated against **standard sodium thiosulphate**:

 $Cl2+2Kl\rightarrow 2KCl+l2$

 $I_2+2Na_2S_2O_3\rightarrow 2NaI+Na_2S_4O_6$

3. Properties:

- White or grayish-white powder with a chlorine-like odor
- Decomposes on exposure to air and light
- Slightly soluble in water
- Strong oxidizing and bleaching agent

4. Medicinal Uses:

- Used as a disinfectant for water, hospital floors, and equipment
- Employed in **sanitation** during epidemics
- Acts by liberating nascent oxygen and chlorine
- Useful in sterilizing surfaces, wounds, and treating infections

15. Iodine and Its Preparations

1. General Method of Preparation:

lodine is extracted from **natural brine** or **seaweed ashes**. It is liberated by oxidation of iodide salts (e.g., sodium iodide) using oxidizing agents like chlorine:

 $2NaI+Cl2\rightarrow 2NaCl+l2\downarrow$

2. Assay Method:

- Assayed by iodometric titration.
- Iodine is titrated with **standard sodium thiosulphate** using **starch** as the indicator.

• The endpoint is the disappearance of blue color.

3. Properties:

- Shiny, violet-black crystals with a characteristic pungent odor
- Slightly soluble in water, more soluble in alcohol and potassium iodide solution
- Volatile and sublimes easily

4. Medicinal Uses:

- Used as a **topical antiseptic** in tincture or povidone-iodine forms
- Effective against bacteria, fungi, viruses, and spores
- Iodine preparations:
 - o Tincture of Iodine (Iodine in alcohol)
 - Lugol's Iodine (Aqueous solution with potassium iodide)
 - o **Povidone-Iodine** (Iodine complexed with povidone for sustained release)

16. Potassium Iodide (KI)

1. General Method of Preparation:

Prepared by **reacting iodine with hot concentrated potassium hydroxide**, followed by crystallization:

3I2+6KOH→5KI+KIO3+3H2O

Then, potassium iodide is purified by recrystallization.

2. Assay Method:

- Assayed iodometrically by titrating with standard potassium iodate (KIO₃) in presence of acid, which liberates iodine.
- The liberated iodine is titrated with **sodium thiosulphate** using **starch** as indicator.

3. Properties:

- White crystalline powder, odorless and salty in taste
- Freely soluble in water and glycerin
- Sensitive to air and light (may oxidize to iodine)
- Has good **stability in dry air**, but not in moist conditions

4. Medicinal Uses:

Acts as an expectorant (enhances respiratory secretion)

- Used as an iodine supplement to prevent goiter
- Component of **Lugol's solution** for thyroid conditions
- Also used in radioactive iodine prophylaxis during nuclear exposure

17. Ammonium Chloride (NH₄Cl)

1. General Method of Preparation:

Prepared by **neutralizing ammonia** with **hydrochloric acid**:

NH3+HCl→NH4Cl

The solution is crystallized and dried to obtain ammonium chloride.

2. Assay Method:

- Assayed by acid-base titration:
- Sample is dissolved in water and titrated with **standard NaOH** using **methyl red** as an indicator.
- Ammonia is liberated and titrated:

NH4++OH-→NH3↑+H2O

3. Properties:

- White crystalline powder or granules
- Odorless, cooling saline taste
- Soluble in water, slightly soluble in alcohol
- Slightly acidic solution in water

4. Medicinal Uses:

- Used as an **expectorant** (lowers surface tension of respiratory secretions)
- Acts as a systemic acidifier and diuretic
- Occasionally used as a component in cough syrups
- Also used in urinary acidification

18. Copper Sulphate (CuSO₄·5H₂O)

Also known as **Blue Vitriol**

1. General Method of Preparation:

Prepared by **dissolving copper metal** in **dilute sulfuric acid** with the help of an oxidizing agent like nitric acid or air:

 $\label{lem:cu+2H2SO4} $$ CuSO4+SO2+2H2O\text{Cu} + 2\text{H}_2\text{SO}_4 \rightarrow CuSO4+SO2+2H2O $$ \text{Lext}(G)Cu+2H2SO4 \rightarrow CuSO4+SO2+2H2O $$ CuSO4+SO2+2H2O $$ CuSO4+SO2+2H2O $$ CuSO4+SO2+2H2O $$ $$ CuSO4+SO2+2H2O $$ CuSO4+SO2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2H2O2+2$

Alternatively:

 $\label{lem:cuO+H2SO4} $$ CuO+H2SO4+H2O\times\{CuO\} + \text{Lext}(H)_2\text{Lext}(SO)_4 \Rightarrow \text{Lext}(H)_2\text{Lext}(O)CuO+H2SO4+H2O $$$

The solution is concentrated and allowed to crystallize to obtain CuSO₄·5H₂O.

2. Assay Method:

- Assayed by iodometric titration.
- Copper(II) ions oxidize iodide to iodine, which is then titrated with **sodium thiosulphate**:

 $2Cu2++4I-\rightarrow 2CuI\downarrow +I2$

 $6I_2+2Na_2S_2O_3\rightarrow 2NaI+Na_2S-O_6$

3. Properties:

- Blue crystalline powder
- Efflorescent in dry air
- Soluble in water, slightly soluble in alcohol
- Turns white on heating (due to loss of water of crystallization)

4. Medicinal Uses:

- Used as an emetic (induces vomiting, though rarely used now)
- Also used externally as an astringent and antiseptic
- Employed in **veterinary medicine** for parasitic infections

19. Sodium Potassium Tartrate (KNaC₄H₄O₆·4H₂O)

Also known as Rochelle Salt

1. General Method of Preparation:

Prepared by **neutralizing tartaric acid** with equimolar quantities of **sodium carbonate** and **potassium carbonate**, then crystallizing:

C4H6O6+Na2CO3+K2CO3→KNaC4H4O6+2CO2+2H2O

2. Assay Method:

- Assayed by **complexometric titration** with **EDTA**, where calcium or magnesium is displaced from the tartrate complex.
- Endpoint detected using **Eriochrome Black T**.

3. Properties:

- Colorless or white, efflorescent crystals
- Slightly alkaline in nature
- Soluble in water, insoluble in alcohol
- Forms a complexing agent with metal ions

4. Medicinal Uses:

- Used as a mild saline cathartic (laxative)
- Acts as a **sequestering agent** in complexometric titrations
- Sometimes used in **buffered solutions** for chemical reactions

20. Ferrous Sulphate (FeSO₄·7H₂O)

Also known as Green Vitriol

1. General Method of Preparation:

Prepared by **dissolving iron filings or granules** in **dilute sulfuric acid**, followed by crystallization:

Fe+H2SO4→FeSO4+H2↑

The solution is cooled and allowed to crystallize to obtain **ferrous sulphate heptahydrate**.

2. Assay Method:

- Assayed by redox titration using potassium permanganate (KMnO₄) as the titrant in acidic medium.
- Reaction:

 $5Fe^{2+}+MnO4-+8H+\rightarrow 5Fe^{3+}+Mn2++4H2O5$

The pink color of KMnO₄ disappears at the endpoint.

3. Properties:

- Pale green crystalline powder with metallic astringent taste
- Efflorescent in air, oxidizes slowly to ferric sulphate
- Soluble in water; aqueous solution turns brown on exposure to air

4. Medicinal Uses:

- Used as a haematinic to treat iron-deficiency anemia
- Also acts as a tonic and general iron supplement
- Commonly used in combination with folic acid or multivitamins

21. Ferrous Gluconate (C₁₂H₂₂FeO₁₄·2H₂O)

1. General Method of Preparation:

Prepared by reacting gluconic acid or sodium gluconate with ferrous carbonate or ferrous sulphate, followed by purification and crystallization.

FeCO3+2C6H11O7Na→C12H22FeO14+Na2CO3

2. Assay Method:

- Assayed by complexometric titration using EDTA in the presence of ascorbic acid to prevent oxidation of Fe²⁺ to Fe³⁺.
- Endpoint is determined using a suitable metal indicator like sulphosalicylic acid or phenanthroline.

3. Properties:

- Yellowish to grey-green powder
- Slightly soluble in water, with mild metallic taste
- Less irritating to the gastrointestinal tract compared to ferrous sulphate

4. Medicinal Uses:

- Used as an **oral iron supplement** in iron-deficiency anemia
- Preferred over ferrous sulphate in patients with gastric sensitivity
- Also used in **pediatric formulations** and **iron tonics**

22. Sodium Thiosulphate (Na₂S₂O₃·5H₂O)

Also known as Hypo

1. General Method of Preparation:

Prepared by boiling a solution of sodium sulphite (Na₂SO₃) with sulphur:

Na2SO3+S→Na2S2O3

Crystallization yields the **pentahydrate form**, Na₂S₂O₃·5H₂O.

2. Assay Method:

- Assayed iodometrically by titrating with iodine solution.
- Reaction:

2Na2S2O3+I2→Na2S4O6+2NaI

Endpoint is detected using **starch indicator** which forms a blue complex with excess iodine.

3. Properties:

- Colorless crystalline powder with cooling, saline taste
- Soluble in water, efflorescent in dry air
- Decomposes on heating and in acidic medium
- Acts as a reducing agent

4. Medicinal Uses:

- Used as an **antidote** in **cyanide poisoning** (converts cyanide to thiocyanate)
- Acts as an antioxidant and detoxifying agent
- Employed in **iodometric titrations** as a standard reducing agent

23. Activated Charcoal (Activated Carbon)

1. General Method of Preparation:

Prepared by **carbonizing organic substances** like coconut shells or wood at high temperature, followed by **activation** using steam or carbon dioxide at ~900°C to increase surface area and porosity.

2. Assay Method:

- No standard pharmacopoeial assay.
- Quality is assessed by adsorptive capacity tests, such as:
 - Decolorizing power
 - o Adsorption of iodine or methylene blue

3. Properties:

• Black, odorless, tasteless, fine powder

- Insoluble in water and most solvents
- Extremely high surface area and porosity
- Adsorbs a wide variety of substances

4. Medicinal Uses:

- Used as a universal antidote in poisoning by adsorbing toxic substances in the GIT
- Used to reduce flatulence and bloating
- Employed in **filtering and purification** processes in pharmaceutical and chemical industries

24. Sodium Nitrite (NaNO₂)

1. General Method of Preparation:

Prepared industrially by **reducing sodium nitrate (NaNO₃)** using heat in the presence of **lead or other reducing agents**, or by absorption of **nitrogen oxides** in alkaline solution:

NaNO3→heatNaNO2+12O2

2. Assay Method:

- Assayed by redox titration.
- Sodium nitrite is oxidized by **potassium permanganate (KMnO₄)** in acidic medium:

5NaNO2+2KMnO4+6H2SO4→5NaNO3+2MnSO4+K2SO4+3H2O

• Endpoint is the **permanent pink color** of KMnO₄.

3. Properties:

- White to slightly yellow crystalline powder
- Hygroscopic and soluble in water
- Mildly toxic and should be handled with care
- Acts as a reducing agent

4. Medicinal Uses:

- Used as an antidote in cyanide poisoning, often with sodium thiosulphate
- Converts hemoglobin to **methemoglobin**, which binds cyanide
- Also used as a vasodilator and preservative in some formulations (with restrictions)

25. Zinc Sulphate (ZnSO₄·7H₂O)

1. General Method of Preparation:

Prepared by **dissolving zinc metal** or **zinc oxide** in **dilute sulfuric acid**, followed by crystallization:

Zn+H2SO4→ZnSO4+H2↑

Or

ZnO+H2SO4→ZnSO4+H2O

2. Assay Method:

 Assayed by complexometric titration with EDTA, using Eriochrome Black T as indicator in a buffered solution:

 $Zn^{2+}+EDTA4-\rightarrow [Zn-EDTA]2^{-}$

3. Properties:

- Colorless or white crystalline powder
- Soluble in water, insoluble in alcohol
- Astringent and metallic taste
- Efflorescent on exposure to air

- Used as an astringent and antiseptic
- Commonly used in eye drops and lotions
- Also used as a **nutritional supplement** in zinc deficiency