

Figura 2.2.14 (a) Una funci ón discontinua de dos variables. (b) Una función continua.

de f (véase la Figura 2.2.13, en la que se ilustra el caso $f: \mathbb{R} \to \mathbb{R}$). El caso de varias variables es más fácil de visualizar si tratamos con funciones de valores reales de la forma $f: \mathbb{R}^2 \to \mathbb{R}$. En este caso, podemos visualizar f dibujando su gráfica, que consiste en todos los puntos (x, y, z) en \mathbb{R}^3 con z = f(x, y). La continuidad de f significa, por tanto, que su gráfica no tiene "fracturas" (véase la Figura 2.2.14).

Definición Continuidad Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ una función dada con dominio A. Sea $\mathbf{x}_0 \in A$. Decimos que f es **continua** en \mathbf{x}_0 si y solo si

$$\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0).$$

Si decimos solamente que f es continua, queremos decir que f es continua en cada punto \mathbf{x}_0 de A. Si f no es continua en $\mathbf{x}_0,$ decimos que f es discontinua en \mathbf{x}_0 . Si f es discontinua en algún punto de su dominio, decimos que f es discontinua.

Ejemplo 7

Cualquier polinomio $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ es continuo de \mathbb{R} en $\mathbb{R}.$ De hecho, por el Teorema 3 y el Ejemplo 4,

$$\lim_{x \to x_0} (a_0 + a_1 x + \dots + a_n x^n) = \lim_{x \to x_0} a_0 + \lim_{x \to x_0} a_1 x + \dots + \lim_{x \to x_0} a_n x^n$$
$$= a_0 + a_1 x_0 + \dots + a_n x_0^n,$$

ya que el límite de un producto es el producto de los límites, lo que da

$$\lim_{x \to x_0} x^n = \left(\lim_{x \to x_0} x\right)^n = x_0^n.$$