

Data Collection and Preprocessing Phase

Date	15 October 2024
Team ID	739739
Project Title	Predicting Diamond Prices With ANN Using Deep Learning.
Maximum Marks	6 Marks

Preprocessing Template

To preprocess data for predicting diamond prices, start by loading and exploring the dataset to identify missing values and outliers. Handle missing data by dropping or imputing them. Convert categorical variables like cut, colour, and clarity into numeric values using label encoding or one-hot encoding. Scale numeric features like carat, depth, and table using standardization to ensure uniformity. Address outliers with techniques like IQR filtering. Finally, split the data into training and testing sets for model development and evaluation.

Section	Descri	iption							
	[] dat	ca.describe()							
	₹	id	carat	depth	table	price	x	у	z
	co	ount 53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000
_	m	ean 26970.500000	0.797940	61.749405	57.457184	3932.799722	5.731157	5.734526	3.538734
Data ·	S	std 15571.281097	0.474011	1.432621	2.234491	3989.439738	1.121761	1.142135	0.705699
Overview	n	nin 1.000000	0.200000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000
	2	5 % 13485.750000	0.400000	61.000000	56.000000	950.000000	4.710000	4.720000	2.910000
	50	0 % 26970.500000	0.700000	61.800000	57.000000	2401.000000	5.700000	5.710000	3.530000
	7	5 % 40455.250000	1.040000	62.500000	59.000000	5324.250000	6.540000	6.540000	4.040000
	m	1ax 53940.000000	5.010000	79.000000	95.000000	18823.000000	10.740000	58.900000	31.800000
Boxplot	50000 · 40000 · 30000 ·								
	20000 -					1			
	0 -	id	carat	depth	table	price	x	у	z

```
sns.boxplot(x="price",data=data)
                <Axes: xlabel='price'>
                                             10000
                   Ó
                         2500
                                5000
                                       7500
                                                    12500
                                                           15000
                                                                  17500
                                             price
             # Removing outliers from the specified numerical columns
             df_clean = remove_outliers(data, numerical_columns)
             # Display the cleaned data
             print(df clean)
Outliers
             plt.figure(figsize=(14, 8))
             sns.boxplot(data=df clean)
             plt.show()
```

```
₹
                id
                   carat
                                  cut color clarity depth table price
                                                                                       y \
                                                                                 X
                1
                     0.23
                                           Ε
                                                                        326
                                Ideal
                                                 SI2
                                                        61.5
                                                               55.0
                                                                             3.95
                                                                                    3.98
     1
                2
                     0.21
                              Premium
                                           Ε
                                                 SI1
                                                        59.8
                                                                61.0
                                                                        326
                                                                              3.89
                                                                                    3.84
     3
                4
                     0.29
                              Premium
                                           Ι
                                                 VS2
                                                        62.4
                                                                58.0
                                                                        334
                                                                             4.20
                                                                                    4.23
     4
                5
                     0.31
                                 Good
                                           J
                                                        63.3
                                                                58.0
                                                                        335
                                                                             4.34
                                                                                    4.35
                                                 SI<sub>2</sub>
     5
                                           J
                                                VVS2
                                                                57.0
                                                                        336
                                                                                    3.96
                     0.24
                           Very Good
                                                        62.8
                                                                             3.94
                      . . .
                                  . . .
                                                 . . .
                                                         . . .
                                                                        . . .
                     0.72
     53935
            53936
                                Ideal
                                           D
                                                 SI1
                                                        60.8
                                                                57.0
                                                                       2757
                                                                              5.75
                                                                                    5.76
     53936
            53937
                     0.72
                                 Good
                                           D
                                                 SI1
                                                        63.1
                                                               55.0
                                                                       2757
                                                                             5.69
                                                                                    5.75
     53937
            53938
                     0.70
                           Very Good
                                           D
                                                 SI1
                                                        62.8
                                                                60.0
                                                                       2757
                                                                             5.66
                                                                                    5.68
     53938
            53939
                     0.86
                              Premium
                                           Н
                                                 SI2
                                                        61.0
                                                                58.0
                                                                       2757
                                                                             6.15
                                                                                    6.12
     53939
            53940
                     0.75
                                Ideal
                                                 SI2
                                                                       2757 5.83 5.87
                                           D
                                                        62.2
                                                               55.0
                Z
     0
            2.43
     1
            2.31
     3
            2.63
     4
            2.75
     5
            2.48
             . . .
            3.50
     53935
     53936 3.61
     53937 3.56
     53938 3.74
     53939 3.64
[46532 rows x 11 columns]
```


Mat Plot	53 53 53 53 53 6 4 5 6 53 53	id 1 4 5 6 7 8934 53935 8935 53936 8936 53937 8938 53939 8939 53940 Z 2.43 2.63 2.75 2.48 2.47 8934 3.58 8935 3.50 8936 3.61 8938 3.74 8939 3.64 rows x 11	0.23 0.29 0.31 0.24 0.72 0.72 0.72 0.86 0.75	Ideal Premium Good Very Good Very Good Premium Ideal Good Premium Ideal	E	SI2 VVS2 VVS1 SI1 SI1 SI1 SI2	depth 61.5 62.4 63.3 62.8 62.7 60.8 63.1 61.0 62.2	table 55.0 58.0 57.0 57.0 57.0 55.0 55.0	326 334 335 336 336 2757 2757 2757	4.34 3.94 3.95 5.69 5.75 5.69	3.98 4.23 4.35 3.96 3.98 5.73 5.76 5.75 6.12	
	4 5 6	2.75 2.48 2.47										
	53	3935 3.50										
Mat Plot												
111111111111111111111111111111111111111	[29940	rows x 11	column	s]								
		_										
	50000 -											
	40000 -											
	30000 -											
	20000 -											
	10000 -											
						_						
	0 -	Ш_										_
		id	carat	depth	table	≥ p	rice	x		y	z	

Data Preprocessing Code Screenshots [] data=pd.read_csv('/content/diamonds.csv') [] data.head() $\overline{\mathbf{T}}$ cut color clarity depth table price id carat У Z 0.23 Е SI2 61.5 55.0 326 3.95 3.98 2.43 Ideal 2 0.21 Premium Ε SI1 59.8 61.0 326 3.89 3.84 2.31 1 3 0.23 Е VS1 56.9 65.0 327 4.05 4.07 2.31 2 Good 0.29 Premium VS2 334 4.20 4.23 2.63 3 4 62.4 58.0 0.31 Good SI2 63.3 58.0 335 4.34 4.35 2.75 Loading Data [] data.tail() _ cut color clarity depth table price id carat **53935** 53936 0.72 Ideal D SI1 60.8 57.0 2757 5.75 5.76 3.50 53936 53937 0.72 Good D SI1 63.1 55.0 2757 5.69 5.75 3.61 **53937** 53938 0.70 Very Good D SI1 62.8 60.0 2757 5.66 5.68 3.56 **53938** 53939 0.86 Premium Н SI2 61.0 58.0 2757 6.15 6.12 3.74 **53939** 53940 0.75 Ideal SI2 62.2 55.0 2757 5.83 5.87 3.64

[] data.isnull() ₹ cut color clarity depth table price id carat У False 1 False 2 False 3 False 53935 False 53936 False 53937 False 53938 False **53939** False Checking 53940 rows × 11 columns Missing Values data.info() <class 'pandas.core.frame.DataFrame'> ⋽₹ RangeIndex: 53940 entries, 0 to 53939 Data columns (total 11 columns): Column Non-Null Count Dtype 0 id 53940 non-null int64 1 carat 53940 non-null float64 2 cut 53940 non-null object color object 3 53940 non-null 4 clarity 53940 non-null object 5 depth float64 53940 non-null table float64 53940 non-null 6 price 53940 non-null int64 7 8 53940 non-null float64 Х 53940 non-null float64 9 У 53940 non-null 10 float64 dtypes: float64(6), int64(2), object(3) memory usage: 4.5+ MB

	[]	x.h	ead(10)									
	→		carat	cut	color	cla	rity	depth	table	x	у	z
		0	0.23	2	1		3	61.5	55.0	3.95	3.98	2.43
		3	0.29	3	5		5	62.4	58.0	4.20	4.23	2.63
		4	0.31	1	6		3	63.3	58.0	4.34	4.35	2.75
		5	0.24	4	6		7	62.8	57.0	3.94	3.96	2.48
		6	0.24	4	5		6	62.3	57.0	3.95	3.98	2.47
		7	0.26	4	4		2	61.9	55.0	4.07	4.11	2.53
		11	0.23	2	6		4	62.8	56.0	3.93	3.90	2.46
		15	0.32	3	1		0	60.9	58.0	4.38	4.42	2.68
		19	0.30	4	6		2	62.7	59.0	4.21	4.27	2.66
		20	0.30	1	5		3	63.3	56.0	4.26	4.30	2.71
Preprocessing	[*[] ×	'color' 'clarity	/']=le	e.fit_t	ransf	orm(x	['clari	ty'])			
		,					clari [.]		th tab			y 2
				0.23	3	1 5			1.5 55 2.4 58		95 3.9 20 4.2	
				0.31	1	6			3.3 58		34 4.3	
				0.24	4	6		7 62	2.8 57		94 3.9	
			6	0.24	4	5		6 62	2.3 57	.0 3.9	95 3.9	8 2.47
		5	3934	0.72	3	0		2 62	2.7 59	.0 5.6	5.7	3 3.58
				0.72	2	0					75 5.7	
				0.72	1	0					59 5.7	
				0.86	3	4					5 6.1	
			3 939 (0.75 × 9.cc	2 Jumns	0		3 62	2.2 55	.0 5.8	33 5.8	7 3.62
		28	1340 IOWS	^ 9 CC	numis							

Γ

```
from sklearn.model_selection import train_test_split
                    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
                     #why random state =42
                [ ] from sklearn.preprocessing import StandardScaler
                     scaler = StandardScaler()
                    x_train = scaler.fit_transform(x_train)
                    x_test = scaler.transform(x_test)
                [ ] x
                ₹
                                      color clarity depth table
                            carat
                       0
                             0.23
                                                             55.0 3.95
                                                                      3.98
                                                                            2.43
                                                       61.5
Data Splitting
                                    3
                                                  5
                       3
                             0.29
                                                       62.4
                                                             58.0
                                                                 4.20 4.23
                                                                            2.63
                                                      63.3
                       4
                             0.31
                                                             58.0 4.34 4.35 2.75
                       5
                             0.24
                                                  7
                                                       62.8
                                                             57.0 3.94
                                                                       3.96 2.48
                       6
                             0.24
                                                       62.3
                                                             57.0
                                                                  3.95
                                                                       3.98 2.47
                     53934
                             0.72
                                    3
                                          0
                                                  2
                                                       62.7
                                                                  5.69 5.73
                                                             59.0
                                                                            3.58
                     53935
                             0.72
                                                       60.8
                                                             57.0 5.75 5.76 3.50
                                          0
                     53936
                             0.72
                                                       63.1
                                                             55.0 5.69 5.75 3.61
                     53938
                             0.86
                                                       61.0
                                                                 6.15
                                                                      6.12 3.74
                     53939
                             0.75
                                          0
                                                       62.2
                                                             55.0 5.83 5.87 3.64
                 [ ] import pickle
                        import joblib
                        joblib.dump(model, 'model.joblib')
                        joblib.dump(scaler, 'scaler.joblib')
Save
                        joblib.dump(le, 'label_encoder.joblib')
Processed
Data
                 ['label_encoder.joblib']
```