9. 주식과 주식시장

주식(Stoke)은 기업의 소유권을 나타낸다. 주식에는 여러 형태가 있지만, 이 책은 보통주를 공부한다.

주식을 구매하는 투자자는 주기적으로 배당을 받는다. 그러므로 투자자는 **주가의 상승과 배당금의 수령**이라는 두 방식으로 이익을 볼 수 있다.

기업은 때로는 주식을 주당 가격이 더 낮은 주식들로 **주식 분할** 하거나 역으로 주식 병합을 한다. 주식이 너무 싸면 투자자들에게 기업의 가치가 안 좋다는 인식을 심어줄 수 있고, 너무 비싸면 투자를 받기 어렵기 때문

주식 매매와 관련하여 여러 가지 형태의 위험이 있다. 부도, 환율, 이자 율, 시장 가격, 유동성, 정치 등이 있다.

■ 정액·정기 매입

헬렌 : 매월 10주를 구매

휴즈 : 같은 주식을 주식 수에 상관없이 매월 \$100를 구매

-> 휴즈의 투자를 정액·정기 매입이라고 한다.

주당 평균 매입 가격

헬렌 :
$$\frac{N \cdot S(1) + N \cdot S(2)}{2N} = \frac{1}{2} \sum_{t=1}^{2} S(t)$$
 휴조 :
$$\frac{2D}{\frac{D}{S(1)} + \frac{D}{S(2)}} = \frac{2}{\frac{1}{S(1)} + \frac{1}{S(2)}} = \frac{2}{\sum_{t=1}^{2} \frac{1}{S(t)}}$$

N=2 인 경우

$$\frac{S(1) + S(2)}{2} - \frac{2}{\frac{1}{S(1)} + \frac{1}{S(2)}} = \frac{S(1) + S(2)}{2} - \frac{2S(1)S(2)}{S(1) + S(2)} = \frac{(S(1) - S(2))^2 - 4S(1)S(2)}{2(S(1) + S(2))} = \frac{(S(1) - S(2))^2}{2(S(1) + S(2))}$$

만약, S(1)=S(2)이 아닌 경우라면 위의 값은 항상 양수이다. 즉, 주 당 평균 매입 가격은 휴즈가 더 낮다. 따라서 정액·정기 매입이 더

■ 신용매수

■ 건성배수 주식을 매수하는 또 다른 방법이다. 투자회사에 **증거금 계정**을 개설하고 투자회사로부터 돈을 빌려 투자한다. 투자자는 주식을 처음 매수할 때 선 급금을 예치해야 한다. 선급금은 총 주식 가격의 50%이다. 증거금계좌에 있는 증거금은 주식의 현재 시장가치와 주식 매수를 위해 중개인으로부터 빌린 돈인 **차변잔고**의 차액이다. 주식의 가치가 수시로 변하며, 증거금도 수시로 변하여 증거금은 **유지비율**을 충족시켜야한다.

[유지비율 = 25%]

주가	주식수	시장가치	차변잔액	차액	유지증거금	증거금
S	N	V=NS	D	E=V-D	mV	0.5V
20	500	10,000	5,000	5,000	2,500	5,000

■ 신용매수 - 주가 상승 -

[유지비율 = 25%]

주가	주식수	시장가치	차변잔액	차액	유지증거금	증거금
S	N	V=NS	D	E=V-D	mV	0.5V
20	500	10,000	5,000	5,000	2,500	5,000
30	500	15,000	5,000	10,000	3,750	7,500
30	666.6	20,000	10,000	10,000	5,000	10,000
40	666.6	26,666.6	10,000	16,666.6	6,666.6	13,333.3
40	833.3	33,333.3	16,666.6	16,666.6	8,333.3	16,666.6

■ 신용매수 - 주가 하락 -

[유지비율 = 25%]

주가	주식수	시장가치	차변잔액	차액	유지증거금	증거금
S	N	V=NS	D	E=V-D	mV	0.5V
20	500	10,000	5,000	5,000	2,500	5,000
15	500	7,500	5,000	2,500	1,875	3,750
10	500	5,000	5,000	0	1,250	2,500
10	500	5,000	3,750	1,250	1,250	2,500
5	500	2,500	3,750	-1,250	625	1,250
5	500	2,500	1,875	625	625	1,250

-> 이 경우 투자자는 3,125를 추가 지불했다. -> 하지만, 유지비용 총액은 결코 원래 차변잔액을 넘을 수 없다.

■ 유지 요청이 제기되는 주가

0.25 × 500S = 500S - 5,000 (유지증거금 = 시장가치 - 초기 차변잔액)

$$500 \times S = \frac{1}{1 - 0.25} (10,000 - 5,000)$$

 $\therefore S = 13.33$ (이 금액 이하로 하락하면 유지 요청이 제기된다.)

■ 현물 매매 유지수준 정리

초기 시장 매수가 : V_{o}

 $V^* = \frac{1}{1-m} (V_0 - E_0)$ 초기 증거금 : E

유지 비율 : m

■ 연습문제

초기시장가치가 10,000이고, 초기증거금이 5,000이고 유지수준이 10%인 주식 500주를 보유한 증거금계좌에서 유지 요청이 제기되는 최저 시장 가치와 그 때의 주당 가격은?

$$V^* = \frac{1}{1 - 0.1} (10,000 - 5,000) = 5,555$$

 $V^* = 500 \times S^*$ $S^* = 11.11$

■ 공매도

등 하다. 투자자가 **주식이 하락**할 것이라 생각하면, 투자자는 중개인으로부터 주식 을 빌려 매도할 수 있다. 이를 공매도라 한다. 이후 투자자는 하락한 주 식 가격으로 공매도를 청산하여 이익을 본다.

[유지비율 = 30%]

신용잔고	주당가격	주식수	시장가치	차액	유지증거금
С	S	N	V = NS	C - V	mV
7,500	50	100	5,000	2,500	1,500

■ 공매도 - 주가 하락 -

[유지비율 = 30%]

신용잔고	주당가격	주식수	시장가치	차액	유지증거금
С	S	N	V = NS	C - V	mV
7,500	50	100	5,000	2,500	1,500
7,500	40	100	4,000	3,000	1,200

■ 공매도 - 주가 상승 -

[유지비율 = 30%]

신용잔고	주당가격	주식수	시장가치	차액	유지증거금
С	S	N	V = NS	C - V	mV
7,500	50	100	5,000	2,500	1,500
7,500	60	100	6,000	1,500	1,800
7,800	60	100	6,000	1,800	1,800
7,800	70	100	7,000	800	2,100
9,100	70	100	7,000	2,100	2,100

-> 주가가 계속 상승할 때 투자자의 손실 금액에는 한계가 없다. -> 투자자는 유지증거금을 맞추기 위해 계속 증거금계좌에 추가 금액을 넣어야 한다.

■ 유지 요청이 제기 되는 주가

 $7,500 - 100S = 0.3 \times 100S$ (신용잔고 - 시장가치 = 유지증거금)

(이 금액 이상으로 상승하면 유지 요청이 제기된다.) $\therefore S = 57.69$

■ 공매도 유지수준 정리

초기 신용 잔고 : C_0

유지 비율 : m

 $V^* = \frac{1}{1+m}$

10. 주식시장 지수, 가격, 위험

주식시장 지수는 **지수라는 하나의 수**를 사용하여 그 지수가 대표하는 주식군의 실적을 반영하려는 것이다.

이런 주식시장 지수는 주가 **발행, 주식 수, 주식 분할, 배당** 등에 따라 변 한다.

■ 미국의 대표적인 주식시장 지수

- ▶ 다우존스 (Dow Jones)
- ▶ 스탠더드앤드푸어스 (STANDARD AND POOR'S)
- ▶ 나스닥 (NASDAQ)
- ▶ 벨류라인 (Value Line)

■ 다우존스 산업평균지수

- ▶ 가장 오래되고 가장 많이 인용되는 지수이다.
- 처음에는 12개의 주식으로 구성되었지만, 이후 주식들이 더해지고 빠지면서 현재는 30개로 유지되고 있다.
- 원래는 단순하게 주가를 같은 가중치로 평균한 것이었지만, 현재는 분할, 편입, 삭제 등을 반영하고 있다.

DJIA

[T회사가 DAY2에 2대1로 주식 분할]

DAY	S	Т	U	٧	Divisor	DIJA
1	15	20	20	25	4	20
2	15	10	20	25	3.5	20
3	16	11	21	26	3.5	21.14
4	15	10	20	25	3.5	20.00
5	16	10	19	26	3.5	20.29

만약 회사 T의 주가가 10% 상승하면...?

$$DIJA = \frac{15 + 11 + 20 + 25}{3.5} = 20.29$$

만약 회사 U의 주가가 10% 상승하면...?

$$DIJA = \frac{15 + 10 + 22 + 25}{3.5} = 20.57$$

-> 주식 분할을 한 주식의 영향력이 더 작아짐을 알 수 있다.

만약 회사 T가 5%의 주식 배당을 발행하면...?

$$DIJA = \frac{15 + 10 + \frac{20}{1.05} + 25}{3.5} = 19.73$$

-> **주식 배당으로 인해 인위적으로 평균이 낮아짐**을 알 수 있다.

■ 스탠더드앤드푸어스 500 지수 (S&P500)

- ▶ DIJA와는 다른 접근법을 사용한다.
- ▶ 500개의 회사를 포함한다.

- ▶ **기준시점의 시가총액 대비 현재의 시가총액**의 상태를 나타낸다.
- ▶ 기준시점은 1941년 ~ 1943년의 평균 주가이다.

■ S&P500 예제

$$\sum_{i=1}^{4} S_i(1)N_i(1) = 15(100) + 20(100) + 20(100) + 25(100) = 8,000$$

$$\sum_{i=1}^{i} S_i(2) N_i(2) = 15(100) + 10(200) + 20(100) + 25(100) = 8{,}000$$

$$S \& P500(1) = 10, \qquad S \& P500(2) = 10$$

■ S&P500

[T회사가 DAY2에 2대1로 주식 분할]

DAY	S	Т	U	٧	S&P500
1	15	20	20	25	10.00
2	15	10	20	25	10.00
3	16	11	21	26	10.63
4	15	10	20	25	10.00

■ 나스닥종합지수(NASDAQ)

- ▶ 1971년에 만들어져 현재 2,000개가 넘는 주식을 포함한다.
- ▶ S&P500과 같은 방식으로 계산된다.

■ DIJA, S&P500, NASDAQ

	DIJA	S&P500	NASDAQ
1980	963.99	135.76	202.34
1981	875.00	121.57	195.84
			•••
2005	10,717.50	1,248.29	2,205.32

DIJA의 IRRi;rr

$$i_{irr} = \left(\frac{10,717.50}{963.99}\right)^{\frac{1}{25}} - 1 = 10.114\%$$

S&P500의 *IRRi*_{irr}

$$i_{irr} = \left(\frac{1248.29}{135.76}\right)^{\frac{1}{25}} - 1 = 10.03\%$$

정기적으로 주식 시장은 1년에 약 10% 수익을 낸다는 흔히 말

■ 벨류라인지수

- ▶ 1961년에 시작한 벨류라인 기하 평균
- ▶ 1988년에 시작한 벨류라인 산술 평균
- ▶ 1.600개가 넘는 주식을 사용한다.

■ 주식과 주식 지수의 수익률

특정 주식에 대한 주어진 기간 동안의 수익률은 해당 기간 동안 주식의 가격의 변화와 그 기간 동안 받은 현금 배당금의 합을 기간 초의 주식가 격으로 나눈 것으로 정의된다.

$$R = \frac{S(1) - S(0) + D}{S(0)}, \quad 1 + R = \frac{S(1) + D}{S(0)}$$

S(0) > 0, S(1) > 0, $D \ge 0$ 이므로 **양수**임을 알 수 있다.

■ 분기별 수익률

	2005 / 3 / 31	2005 / 6 / 30	2005 / 9 / 30	2005 / 1/ 31
가격	52	54	53	56
배당금	0.5	0.5	0.5	0.5

1분기 수익률 : $\frac{(52-50)+0.5}{50}=5\%$

2분기 수익률 : $\frac{(54-52)+0.5}{52} = 4.81\%$ # 3분기 수익률 : $\frac{(53-54)+0.5}{54} = -0.93\%$ # 4분기 수익률 : $\frac{(56-53)+0.5}{53} = 6.6\%$

■ 평균 분기별 수익률

달리 : $1+4R=1+R_1+R_2+R_3+R_4$, $R=\frac{R_1+R_2+R_3+R_4}{4}$ 복리 : $(1+R)^4 = (1+R_1)(1+R_2)(1+R_3)(1+R_4)$

■ 프라이싱과 위험

일반적으로 주식은 **보유기간이 정해져 있지 않다.**

따라서 요구수익률이
$$k$$
일 때, 일반적인 주가 공식은 다음과 같다.
$$S(0) = \frac{D_1}{(1+k)^1} + \frac{D_2}{(1+k)^2} + \cdots + \frac{D_T}{(1+k)^T}$$

$$= \sum_{k=1}^\infty \frac{D_t}{(1+k)^t}$$

그러나 실제로는 **보유기간이 무한대인 것은 아니다.** 투자자는 적당한 T 시점에 S(T)라는 가격으로 주식을 매도하기 원한다.

$$S(0) = \frac{D_1}{(1+k)^1} + \frac{D_2}{(1+k)^2} + \dots + \frac{D_T + S(T)}{(1+k)^T}$$
$$= \sum_{t=1}^T \frac{D_t}{(1+k)^t} + \frac{D_T}{(1+k)^T}$$

■ 주가 공식 문제

$$T=8$$
, $D_1=D_2=D_3=D_4=1.5$, $D_5=D_6=D_7=D_8=1.75$

k = 0.025, S(T) = 94.5 일 때 S(0)의 값은?

$$S(0) = \sum_{t=1}^{4} \frac{1.5}{(1.025)^t} + \sum_{t=5}^{8} \frac{1.75}{(1.025)^t} + \frac{94.5}{(1.025)^8} = 89.168$$

■ 배당금의 유동성

배당금은 단기적으로는 비교적 안정적인 경향이 있다. 하지만 배당금의 연이은 흐름에는 보통 **변동성**이 있다. 이것이 일반 가격 공식을 적용하는 데 어려움을 초래한다.

■ 배당금이 고정 비율로 무한정 증가하는 경우

배당금이 g의 비율로 매번 무한이 증가한다고 가정하면...

$$D_0 = D_0$$

$$D_1 = D_0 (1+g)$$

$$D_2 = D_1(1+g) = D_0(1+g)^2$$

$$\therefore S(0) = \sum_{t=1}^{\infty} \frac{D_0 (1+g)^t}{(1+k)^t}$$

■ 일정 성장 정리

배당금이 q의 비율로 고정 증가하고, k > q 일 때,

$$S(0) = D_0 \frac{1+g}{k-q}$$

[증명]

$$\begin{split} \therefore S(0) &= \sum_{t=1}^{\infty} \frac{D_0 (1+g)^t}{(1+k)^t} = D_0 \bigg(\frac{1+g}{1+k}\bigg) \sum_{t=0}^{\infty} \bigg(\frac{1+g}{1+k}\bigg)^t \\ k &> g \text{ 이고, } \frac{1+g}{1+k} < 1 \text{ 이고, 무한 기하급수이므로,} \\ &= D_0 \bigg(\frac{1+g}{1+k}\bigg) \frac{1}{1-\frac{1+g}{1+k}} = D_0 \frac{1+g}{k-g} \end{split}$$

■ 일정 성장 정리 예제

$$D_0=2.25,\ g=0.01,\ k=0.02,\ S(0)=?$$

$$S(0)=D_0\frac{1+g}{k-g}=2.25\frac{1+0.01}{0.02-0.01}=2.25\frac{1.01}{0.01}=227.25$$

■ 주식의 위험

주식의 위험은 주식에 대한 수익의 불확실성과 관련되어 있다. 위험은 여 러 측도 중 하나로 추정할 수 있다. 이러한 측도에는 주식에 대한 **수익의** 범위(range), 평균절대편차(mean absolute deviation), 음 수익 확률 (probability of a negative return), 준분산(semivariance), 표준편차 (standard deviation)가 포함된다.

주식에 대한 수익 R_{s} 가 가능한 S개 이고, $1 \leq s \leq S$ 일 때, R_{s} 일 확률 은 P_s 라 하자. R 이 주식에 대한 수익을 나타내는 확률변수이면 R 이 가 능한 값은 $R_1,R_1,\ \cdots,R_S$ 이고, 주식에 대한 기대 수익은 $E(R)=\sum^{\circ}P_sR_s$

■ 범위(range)

범위는 **최대 수익과 최저 수익의 차**이다. 최대 수익이 $\max_{s\in\mathcal{S}}R_s$ 이고, 최 저 수익이 $\min_{s \in S} R_s$ 이면, 범위는 $\max_{s \in S} R_s - \min_{s \in S} R_s$ 이다.

■ 평균절대오차(mean absolute deviation)

평균절대오차는 주식의 수익과 기대 수익 E(R) 사이의 차의 절댓값에 대

한 기댓값으로서 $MAD = \sum_{s}^{\infty} P_{s} | R_{s} - E(R) |$ 로 계산된다. 이것이 적절한 측 도가 될 수 있지만 통계적으로 사용하기 어려운 점이 있다.

■ 음 수익 확률(probability of a negative return)

수익 확률은 **모든 음 수익 확률의 합**으로 $\sum\limits_{}^{\sim}P_s1_{R_{s<0}}$ 로 주어진다. 예 를 들어 음이 아닌 수익이나 음인 수익의 크기는 고려되지 않는다.

■ 준분산(semivariance)

준분산은 기대 수익 이하의 수익의 **변동성**을 재는 통계 측도로서 $\sum P_s(R_s-E(R))^2 1_{R_{s< E(R)}}$ 로 주어진다. 음 수익 확률에서와 같이 준분산은 . 기대 수익 이상의 수익의 불확실성은 고려하지 않는다.

■ 표준편차(Standard Deviation)

표준편차는 아주 많이 사용하는 위험 측도이다. 표준편차는 기**대수익이**

위아래 양쪽으로 흩어진 정도를 재며 $\sigma = \sqrt{\sum^S P_S (R_S - E(R))^2}$ 로 주어진 다. $\sigma^2 \in R$ 의 **분산(variance)**이다.

■ 위험 예제

R_i	P_i
0.10	0.50
0.15	0.30
-0.05	0.20

range = (0.15) - (-0.05) = 0.20

기대수익

E(R) = 0.5(0.10) + 0.3(0.15) + 0.2(-0.05) = 0.085

MAD = 0.5|0.1 - 0.085| + 0.3|0.15 - 0.085| + 0.2| - 0.05 - 0.085| = 0.054

음 수익 확률

 $P(R_i < 0) = 0.2$

준분산

 $S.V = 0.2(-0.05 - 0.085)^2 = 0.0036$

 $\sigma = \sqrt{0.5(0.10 - 0.085)^2 + 0.3(0.15 - 0.085)^2 + 0.2(-0.05 - 0.085)^2} = 0.0709$

■ 체계적 위험 vs 비체계적 위험 이러한 측도들은 두 형태의 위험, 즉 체계적 위험(systematic risk)과 비 에더는 그로들은 구 중에고 가능, 그 세계고 가음(Systematic Max)의 대 체계적 위험(unsystematic risk)을 잰다. 체계적 위험은 모든 위험한 주식 이 공통으로 가지는 위험이다. 베체계적 위험은 각 회사에 고유한 위험이

체계적 위험에는 인플레이션의 영향, 장기 경제 성장의 불확실성, 투자자 의 위험에 대한 태도의 변화, 이자율 변화 등이 있다.

체계적 위험은 분산투자(diversification)로 제거할 수 없다. 이러한 이유 로 체계적 위험을 종종 시장 위험(market risk) 또는 분산불가능 위험 (nondiversifiable risk)이라 부른다.

비체계적 위험은 각 회사에 고유한 것이다. 이러한 형태의 위험에는 소송, 파업, 경쟁, 소비자 시장 변화 등이 있다.

비체계적 위험은 잘 분산된 포르<mark>풀</mark>리오에 투자하여 제거할 수 있다. 한 주식에서 본 손실을 다른 주식에서 얻은 주식이 상쇄한다. 투자자는 체계 적 위하에서만 보상을 받는다. 주식의 수익 중 얼마나 많은 부분이 분산 될 수 없는지 결정하려면 그 주식의 수익과 다른 주식들의 수익 사이의 관계에 대한 측도가 필요하다.

■ 상관계수

상관계수(correlation coefficient)는 $\mathbf F$ 확률변수 사이의 관계를 잴 때 많이 사용하는 통계 측도이다. 주식 i 와 j 에 대한 수익 값으로 S 개가 가능하며 $1 \le s \le S$ 에 대하여 각각 R_{is} 와 R_{js} 일 확률이 P_s 로 동일하다고 하고, 주식 각각의 기대 수익을 $E(\overrightarrow{R_i})$ 와 $\overleftarrow{E}(R_i)$, 각각의 수익에 대한 표 준편차를 σ_i 과 σ_i 라 할 때 그러면 주식 i의 추식 j의 수익 사이의 상관

계수는
$$\rho_{ij}=rac{\displaystyle\sum_{s=1}^{S}P_{s}(R_{is}-E(R_{i}))(R_{js}-E(R_{j}))}{\sigma_{i}\sigma_{i}}$$
 로 주어진다.

■ 상관계수 예제

R_i	U_{i}	P_{i}
0.10	0.15	0.50
0.15	0.20	0.30
-0.05	-0.10	0.20

두 번째 수익의 기대 수익

E(U) = 0.5(0.15) + 0.3(0.20) + 0.2(-0.1) = 0.115

 $\sigma = \sqrt{0.5(0.15 - 0.115)^2 + 0.3(0.20 - 0.115)^2 + 0.2(-0.10 - 0.115)^2} = 0.1097$

상관계수

 $\rho = \frac{1}{0.0709(0.1097)}[0.5(0.10-0.085)(0.15-0.115) + 0.3(0.15-0.085)(0.20-0.115)$ +0.3(0.15-0.085)(0.20-0.115)+0.2(-0.05-0.085)(-0.10-0.115)

두 주식 사이의 상관계수가 -1 이며 위험은 적절한 분산 투자로 제 거된다. 두 주식 사이의 상관계수가 1이면 위험은 분산 투자로 제거 할 수 없다

■ 포트폴리오의 위험

- ▶ 두 자산 i,j에 x:y로 투자한 포트폴리오의 수익률은? $= xR_i + yR_i$ (단, x+y=1)
- ightharpoons 두 자산 i,j 에 x:y로 투자한 포트폴리오의 위험(표준편차)은? $Var(xR_i + yR_j) = Var(xR_j) + Var(yR_j) + 2COV(xR_j, yR_j)$ $= x^2 Var(R_i) + y^2 Var(R_i) + 2xy COV(R_i, R_i)$ $= x^2 \sigma_i^2 + y^2 \sigma_i^2 + 2xy \sigma_i \sigma_i \rho_{12}$
- lackbox 두 자산 i,j의 상관계수가 $ho_{12} = -1$ 이라면? $Var(xR_i, yR_j) = x^2\sigma_i^2 + y^2\sigma_j^2 - 2xy\sigma_i\sigma_j = (x\sigma_i - y\sigma_j)^2$ $x: y = \sigma_i : \sigma_i$ 의 비율로 구성한다.
- 만약 세자산 i,j,k 에 투자한다면? 시장 효율성 가정을 받아들인다면, 현재 시장에서 거래되는 자산의 비 율이 바로 그것이라 할 수 있다.

■ 시장 포트폴리오

주식 시장의 모든 주식을 주식 총액 비율로 구매한 것.

- R_i : 주식의 수익률, R_M : 시장의 수익률

- ho_{iM} : 주식과 시장 사이의 상관계수

$$-\beta = \frac{\sigma_i \times \rho_{iM}}{\sigma_{M}}$$

 $- \ E(R_i) = R_{\rm constant} + \beta_i (E(R_{\rm M}) - R_{\rm constant} + \beta_i (E(R_{\rm M}) - R_{\rm constant}))$

$$- \ \beta_i = \frac{E(R_i) - R_{\rm Al \, 중수익률}}{E(R_{\rm M}) - R_{\rm Al \, 중수익률}}$$