Forward Error Correction for High-Capacity Transmission Systems

Safiya Dabwan, Nelson Castro, Stylianos Sygletos

Introduction

Goals:

- Exploring the interplay between FEC and DBP.
- Combing suitable coded-modulation configurations with nonlinearity compensation to optimize spectral efficiency.
- Characterize the trade-off between DBP complexity and FEC overhead.

Coded – Modulation Design Choices

Scheme: Trivial Bit Interleaved Coded Modulation T-BICM.

Staircase Outer Coding Scheme:

- The outer coding scheme in the code-concatenation.
- Staircase code improves the BER from 4.7 x 10⁻³ to 10⁻¹⁵ with <u>hard decoder</u>.
- The overhead OH is **6.25**% for a **4.7** x **10**⁻³ threshold and **33.3**% for **2.12** x **10**⁻²

LDPC Inner Encoder:

- Low Density Parity Check LDPC from DVB-S2 of various OH configurations.
- Examined OH% are 11.11%, 20% and 33.33%.

❖ LLR Soft Demodulator:

- Demodulates 256 QAM signals (8 bits/symbol).
- Soft demodulation based on the Logarithmic Likelihood Ratio LLR is used:

$$l_{b_j} = \log_{10} \frac{\sum_{i \in I_{b_j=0}} p_{Y|x}(y|x_i) P_{X|b_j}(x_i|0)}{\sum_{i \in I_{b_j=1}} p_{Y|x}(y|x_i) P_{X|b_j}(x_i|1)}$$

BP Inner Soft Decoder:

- Decodes based on soft belief propagation BP characterized with maximum number of iterations.
- *** Total Overhead OH%:** $OH_T\% = 100 \times (OH_{inner}OH_{outer} + OH_{inner} + OH_{outer})$

Results

Configuration Overhead OH% DBP Decoder Distance Inner Outer (N_{stps}) **Iterations** Total (km) Code Code 3 5 10 2 11.11% 18.06% 300 6.25% 20% 27.5% 400 33.33% 41.67%

Assessing Overhead Across System Configurations

Configurations with Identical Spectral Efficiency (256-QAM, 400km)

The Impact of Coding and DBP in 256-QAM Fibre Channel Over 300km

DBP Nonlinearity Compensation

Digital Backpropagation DBP: Single Channel DBP based on Symmetric SSFM

Simulation Setups

Parameter	Value
α (dB/km)	0.2
D (ps/nm/km)	17
γ (rad/W/km)	1.4
Noise figure (dB)	5
Oversampling (SpS)	8
Span Length (km)	100
Number of Spans	3, 4
Symbol Rate (Gbaud)	60
Pulse Shaping (filter, roll-off factor, span)	RRC, 25%, 256

Conclusions

- DBP integration increases the coded channel reach by 33% without compromising spectral efficiency.
- A 300km coded channel extends to 400km with consistent spectral efficiency, by either incorporating a 2 N_{stos} DBP with 5 decoding iterations or 3 with 10.
- Extending the channel reach from 300km to 400km is possible by either compromising the spectral efficiency by 14.17% or integrating DBP.

Future research:

- Comparative computational complexity estimation.
- Examine different equalization methods and multichannel scenarios.

