

- (1) GENERAL INFORMATI
 - (i) APPLICANT: KAUFMAN, RUSSEL E. SLENTZ-KESLER, KIMBERLY
 - (ii) TITLE OF INVENTION: GENE PRODUCT OVER EXPRESSED IN CANCER CELLS
 - (iii) NUMBER OF SEQUENCES: 2
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: NIXON & VANDERHYE P.C.
 - (B) STREET: 1100 NORTH GLEBE ROAD, 8TH FLOOR
 - (C) CITY: ARLINGTON
 - (D) STATE: VIRGINIA
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 22201-4714
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 10/080,522
 - (B) FILING DATE: 25-FEB-2002
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 09/539,774
 - (B) FILING DATE: 31-MAR-2000
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 09/210,474
 - (B) FILING DATE: 14-DEC-1998
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/755,559
 - (B) FILING DATE: 22-NOV-1996
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: WILSON, MARY J.
 - (B) REGISTRATION NUMBER: 32,955
 - (C) REFERENCE/DOCKET NUMBER: 1579-645
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (703) 816-4000
 - (B) TELEFAX: (703) 816-4100
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 248 amino acids
 - (B) TYPE: amino acid

 - (C) STRANDEDNESS:
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Gln Thr Cys Pro Leu Ala Phe Pro Gly His Val Ser Gln Ala Leu

Gly Thr Leu Leu Phe Leu Ala Ala Ser Leu Ser Ala Gln Asn Glu Gly

Trp Asp Ser Pro Ile Cys Thr Glu Gly Val Val Ser Val Ser Trp Gly

Glu Asn Thr Val Met Ser Cys Asn Ile Ser Asn Ala Phe Ser His Val

Asn Ile Lys Leu Arg Ala His Gly Gln Glu Ser Ala Ile Phe Asn Glu

Val Ala Pro Gly Tyr Phe Ser Arg Asp Gly Trp Gln Leu Gln Val Gln

Gly Gly Val Ala Gln Leu Val Ile Lys Gly Ala Arg Asp Ser His Ala

Gly Leu Tyr Met Trp His Leu Val Gly His Gln Arg Asn Asn Arg Gln

Val Thr Leu Glu Val Ser Gly Ala Glu Pro Gln Ser Ala Pro Asp Thr

Gly Phe Trp Pro Val Pro Ala Val Val Thr Ala Val Phe Ile Leu Leu

Val Ala Leu Val Met Phe Ala Trp Tyr Arg Cys Arg Cys Ser Gln Gln 170

Arg Arg Glu Lys Lys Phe Phe Leu Leu Glu Pro Gln Met Lys Val Ala

Ala Leu Arg Ala Gly Ala Gln Gln Gly Leu Ser Arg Ala Ser Ala Glu

Leu Trp Thr Pro Asp Ser Glu Pro Thr Pro Arg Pro Leu Ala Leu Val 220 215

Phe Lys Pro Ser Pro Leu Gly Ala Leu Glu Leu Leu Ser Pro Gln Pro

Leu Phe Pro Tyr Ala Ala Asp Pro 245

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2180 base pairs
- (B) TYPE: nucleic acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

60	ATAAATTCAC	CCGTGAAATA	GCGGTGCCTC	GAACGCGGGT	CCTTTAGCGT	ATTCCTGCTT
120	GTAAACCCAG	GAGGCTTCCC	CCGAAACTTG	CGGGTGGTTC	GTTGTGAACG	CGTCACGCTT
180	CTGGCCCCTC	CGCCTCCTCC	GCGGGTCCGC	TGGGTCCCGC	ATCTGGGAGG	CTCCTTCCTC
240	TCCCAGAGGA	AGAAGCTGCA	CGGGGCGCGG	CCTGGGGCTC	CTTTCATTTT	CCTCTCGTGT
300	CAGGGGCCCA	TGACAAGGAC	CAAGAGCCAG	GGGAGTGTTT	GAGCGGACCC	GCGCGTCCAG
360	CCCAGGCCCT	GGCCACGTTT	GGCATTCCCT	CCTGCCCCCT	GCCATGCAGA	AGTCCCACCA
420	GGGACAGCCC	AATGAAGGCT	GAGTGCTCAG	CTGCCTCCTT	CTGTTTTTGG	TGGGACCCTC
480	TGTCCTGCAA	AACACCGTCA	TTGGGGCGAG	TCTCTGTGTC	GAGGGGGTAG	CATCTGCACA
540	AGGAGAGCGC	GCCCACGGGC	CAAGCTGCGT	ATGTCAACAT	GCCTTCTCCC	CATCTCCAAC
600	TCCAGGTTCA	GGCTGGCAGC	CTCCCGGGAC	CAGGCTACTT	GAGGTGGCTC	CATCTTCAAT
660	GGCTGTACAT	TCCCATGCTG	CGCCCGGGAC	TGATCAAAGG	GCACAGCTGG	GGGAGGCGTG
720	TTTCAGGTGC	ACGCTGGAGG	CAGACAAGTC	AGAGAAATAA	GTGGGACACC	GTGGCACCTC
780	TCACTGCTGT	CCAGCGGTGG	CTGGCCTGTG	ACACTGGGTT	TCCGCCCCTG	AGAACCCCAG
840	GTTCCCAGCA	AGGTGCCGCT	CGCCTGGTAC	TGGTCATGTT	TTGGTCGCTC	CTTCATCCTC
900	CCCTCAGAGC	AAGGTCGCAG	ACCCCAGATG	TCCTCCTAGA	AAGAAGTTCT	ACGCCGGGAG
960	ACTCCGAGCC	TGGACCCCAG	CGCTGAACTG	GCAGAGCCTC	CAGGGCCTGA	GGGAGCCCAG
1020	TGGAGCTGCT	CTTGGAGCCC	ACCCTCACCA	TGGTGTTCAA	CCGCTGGCAC	CACCCCAAGG
1080	AGGCAGAGAG	GCCGCCTGCA	CAGACCCATA	CCATATGCCG	ACCCTTGTTT	GTCCCCCCA
1140	TCTCTCGTCC	GGGGCCTGGG	CTTGGGTGGC	GAGTGCCGAC	AGCCAGCCCT	GACACAGGAG
1200	CACCCACTCC	GCCTCTGTGT	GGCAGGCTGG	CGGCTTGCTT	GCACAGACAC	CACCCGGAGG
1260	CTTCCTCAGT	CCAAGCTCTG	CCCAGGTCTT	CCCTCCACCC	CAGACCCTTC	TGGGTGCGTG
1320	ATGCCCCTCC	ACCAGGACGC	CACCCGACTT	ACCTCCGCAG	GAACCACCTC	TTCCAAAATG
1380	GCTGGTCCGG	GCCACCCCAG	CTCCCTTTCT	CAGACCCGGA	ATCAAACCCA	CTCTGCCCTC
1440	GAGGGGCCC	GCGCCCAAGT	CCAGGGCTCC	CTCTCCACTC	GGGGTCCGCT	CCCCAGGTGT
1500	CATACCTGTC	GGCCTTGGCA	GGGCTGGGGG	CTGGAGTTCA	CTCAGACACA	CTGCCGGAGC
1560	CGAGGTAGGG	CCCCGGGGGC	TCCGCGGCAG	TGGGGGCCCT	GAGCAGGCTT	CCTTGGCTAT
1620	AGCGCAGGCC	CCAGGGGGCA	GGCCCCACCG.	GATGGCTCCT	TAGAGGCTGG	TCTGGGGGCT
1680	GCCTCCGGGG	GGTGGACGCT	TGGGGGGTCA	CGGCTCGGGC	GCGGCGGCGG	GGGCTGGGAG
1740	GCCCACCGCA	GCTCCCTCGT	CCCGGGGGTC	CCCTCGGCCA	ATCCCTCAGT	CTGGTCGCGC

						_
CCTGCCGAGC	CTCTTTGGAC		TCATGCTTTT	GTCTTCGTCA	CTGCGGCGGG	1800
GCCCTTTGAT	GTCTTCATCT	GTATGGGGTG	GAAAAATCAC	CGGGAATCCC	CCTTCAGTTC	1860
TTTGAAAAAG	TTCCATGACT	CGAATATCTG	AAATGAAGAA	AACAAACCGA	CTCACAAACC	1920
TCCAAGTAGC	TCCAAATGCA	ATTTTTAAAA	TGGAAAACAA	AAATCTGAAA	GAAACGTCTT	1980
TAGTGGCTTT	AAGCCCCAAA	ACGTCCCTAA	GGCGTCCTCG	AGATGAAGAC	GGGGGGAGC	2040
CCCAGCCAGG	TGGAGACCCC	GCAGGACGCG	GCGGCGCCCG	GTGACCGAGG	CCTCGCACAG	2100
CCGGCCGCCC	TGAGGGTCGG	GCCGAGCCAG	GGTCCAAGAG	GGGCGCGTTT	GTGTCTCGGG	2160
TTAAAATAAG	GTTCCGTCCG					2180

·

.

.

. .