Funkce více proměnných

Vázané extrémy

Nalezněte extrémy dané funkce vzhledem k vazbě

1.
$$xy$$
; $x + y = 1$

2.
$$\frac{x}{a} + \frac{y}{b}$$
; $x^2 + y^2 = 1$

3.
$$x^2 + y^2$$
; $\frac{x}{a} + \frac{y}{b} = 1$

4.
$$x^m y^n z^p$$
; $x + y + z = a$, $m, n, p, a > 0$

5.
$$\sin x \sin y \sin z$$
; $x + y + z = \frac{\pi}{2}$, $x, y, z > 0$

6.
$$\sum_{i=1}^{n} x_i^p$$
; $\sum_{i=1}^{n} x_i = a$, $p > 1$, $a \ge 0$.

Nalezněte největší a nejmenší hodnotu funkce na uvedené množině

7.
$$x - 2y - 3$$
; $0 \le x \le 1, 0 \le y \le 1, 0 \le x + y \le 1$

8.
$$x^2 - xy + y^2$$
; $|x| + |y| \le 1$

9.
$$x^2 + y^2 - 12x + 16y$$
; $x^2 + y^2 \le 25$

10.
$$x + y + z$$
; $x^2 + y^2 \le z \le 1$.

- 11. Při jakých rozměrech má kvádr daného objemu nejmenší povrch?
- 12. Do daného kužele vepište hranol o n-úhelníkové podstavě, který má maximální objem.
- 13. Najděte vzdálenost bodu (p, q, r) od roviny ax + by + cz + d = 0.
- 14. Najděte vzdálenost d dvou mimoběžek

$$x = X_1 + at$$
 $x = X_2 + pt$
 $y = Y_1 + bt$ $y = Y_2 + qt$
 $z = Z_1 + ct$ $z = Z_2 + rt$.

- 15. Pomocí hledání vázaných extrémů dokažte
 - a) AG nerovnost $\frac{a_1 + \ldots + a_n}{n} \ge \sqrt[n]{a_1 \cdot \ldots \cdot a_n}, a_i \ge 0$
 - b) Hölderovu nerovnost $\sum_{i=1}^{n} x_i y_i \leq (\sum_{i=1}^{n} x_i^p)^{\frac{1}{p}} (\sum_{i=1}^{n} y_i^q)^{\frac{1}{q}}, x_i, y_i \geq 0,$ $p > 1, \frac{1}{p} + \frac{1}{q} = 1.$
- 16. V počátku kartézských souřadnic je umístěn bodový náboj Q.
 - a) Jaké bodové náboje Q_A , Q_B , Q_C musíme umístit do bodů $A=(3,0,0),\ B=(0,3,0)\ C=(0,0,4),$ aby náboj q v bodě (1,1,1) byl v rovnováze.
 - b) Bude tato rovnováha stabilní?

Věta o regulárním zobrazení

- 17. Vyřešte rovnici $(z_y)^2 z_{xx} 2z_x z_y z_{xy} + (z_x)^2 z_{yy} = 0$ tím, že položíte x = u, y = v, z = w a přepíšete ji na rovnici pro funkci u proměnných v a w.
- 18. Vyjádřete první složku f_x vektoru $\nabla f = (f_x, f_y, f_z)$ ve sférických souřadnicích $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$.

Přepište do nových proměnných

19.
$$x^2 z_x + y^2 z_y = z^2$$
, $u = x$, $v = \frac{1}{y} - \frac{1}{x}$, $w = \frac{1}{z} - \frac{1}{x}$

20.
$$z_{xx} + z_{yy} = 0$$
, $u = \frac{x}{x^2 + y^2}$, $v = -\frac{y}{x^2 + y^2}$

21.
$$x^2 z_{xx} - (x^2 + y^2) z_{xy} + y^2 z_{yy} = 0, u = x + y, v = \frac{1}{x} + \frac{1}{y}$$