修士論文題目

Riemann 対称空間上における測地線の簡約部分 Lie 代数への射影に対する有界性 —低階数・低次元の場合—

氏名: 奥田 堯子

本修士論文では、小林俊行氏による \mathfrak{h} 射影の有界性に対する次の問題 1 について、G の実階数 や H の次元が低い場合に肯定的な結果を得た (\mathfrak{h} 射影の定義や記号は後述する).

問題 $\mathbf{1}$ (小林俊行氏による) $X \in \mathfrak{p}$ に対し $Y(\mathbf{R}X)$ が $\mathfrak{h} \cap \mathfrak{p}$ の有界な部分集合であることと $[X \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ もしくは $\mathbb{F}[X_1, X_2] \neq 0$ かつ $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かつ $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かつ $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かつ $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かつ $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かつ $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かつ $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かつ $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かつ $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かつ $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かり $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かり $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かり $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かり $\mathfrak{z}_{\mathfrak{s}(\mathfrak{h})}(X) = 0$ であること $\mathbb{F}[X_1, X_2] \neq 0$ かり $\mathbb{F}[X_1,$

ただし $X=X_1+X_2$ はベクトル空間としての分解 $\mathfrak{p}=(\mathfrak{p}\cap\mathfrak{h})\oplus(\mathfrak{p}\cap\mathfrak{h}^\perp)$ に対応する $X\in\mathfrak{p}$ の分解とする.

ここで G が実階数 1 のとき,「 $X \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ もしくは $\mathbb{F}[X_1, X_2] \neq 0$ かつ $\mathfrak{z}_{\mathfrak{z}(\mathfrak{h})}(X) = 0$ であること』」と $X \in \{0\} \cup \mathfrak{p} \setminus \mathfrak{h}$ は同値である.

この論文の基本設定は以下の通りである.

記号と定義 2

- G を非コンパクト実簡約 Lie 群,H は G の非コンパクトな閉部分群で,G の Cartan 対合 Θ に対して $H=\Theta H$ を満たすものとする.
- $\mathfrak{g} := \operatorname{Lie} G$, $\mathfrak{h} := \operatorname{Lie} H$ とし, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を $\theta := d\Theta$ による Cartan 分解とする.
- e を G の単位元とし, $o_K := eK \in G/K$ とする.
- B を $\mathfrak g$ の Killing 形式とし、 $\mathfrak h^{\perp} \coloneqq \{W \in \mathfrak p \mid B(W,\mathfrak h) = \{0\}\}$ とする.

本修士論文の主題である $X \in \mathfrak{p}$ の \mathfrak{h} 射影 $Y(X) \in \mathfrak{h} \cap \mathfrak{p}$ は,次の定理 3 により $(Y(X), Z(X)) \coloneqq \pi^{-1}(e^X \cdot o_K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義される.

定理 3 ([Kob89, Lemma 6.1]) π : $(\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^{Y} e^{Z} \cdot o_{K} \in G/K$ は上への 微分同相である.

 $e^{Y(X)} \cdot o_K$ は「 $e^X \cdot o_K$ から $e^{\mathfrak{h} \cap \mathfrak{p}} \cdot o_K$ に下ろした垂線の足」であり, $Y(\mathbf{R} X)$ が有界であるか否かという問いは,幾何的には「 $e^{tX} \cdot o_K$ から $e^{\mathfrak{h} \cap \mathfrak{p}} \cdot o_K$ に下ろした垂線の足全体の集合が有界であるか」という問いに対応する.

以下では (G, H) がどのような場合に、どのような証明方法でを示したかを具体的に述べる.

 $G=SU(1,2),\ H=SO(1,1)$ の場合がトイモデルとなって G が実階数 1 の場合の問題 1 に対する肯定的な結果が得られた.

 $G=SU(1,2),\ H=SO(1,1)$ の場合の証明は背理法による。例えば $X\in\mathfrak{p}\setminus\mathfrak{h}$ に対して $Y(\mathbf{R}\,X)$ が非有界,より具体的に Y(tX)=s(t)Y, $s(t)\to\infty$, $t\to\infty$ なるとする。 $G/K\simeq\{(z_1,z_2)\in\mathbf{C}^2\mid |z_1|^2+|z_2|^2<1\}$ であることを用いて $e^{Y(tX)}e^{Z(tX)}\cdot o_K$ を計算すると,任 意の $\varepsilon>0$ に対して,ある $t_\varepsilon\in\mathbf{R}$ が存在して「 $e^{Y(t_\varepsilon X)}e^{Z(t_\varepsilon X)}\cdot o_K$ と o_K を結ぶ測地線」が「 $e^{Y(t_\varepsilon X)}\cdot o_K$ と o_K を結ぶ測地線」がの o_K でなす角が o_K でなす角が o_K ま満となる。これは X と o_K を のなす角度の最小値が非零であることに矛盾し,問題 o_K と同値な「 o_K を o_K o_K を o_K を o_K o_K

これを踏まえて G が実階数 1 の実半単純 Lie 群, $\dim\mathfrak{h}\cap\mathfrak{p}=1$ の場合には次の命題を用いて問題 1 に対して肯定的な結果を得た.

命題 4G を実階数 1 の実半単純 Lie 群とする. 任意の $0 \neq Y \in \mathfrak{h} \cap \mathfrak{p}$ と任意の $X \in \mathfrak{p} \setminus \mathbf{R} Y$ を固定したとき, X,Y を含む部分 Lie 環 $\mathfrak{g}_0 \subset \mathfrak{g}$ で, $\mathfrak{g}_0 \simeq \mathfrak{su}(1,1)$ あるいは $\mathfrak{g}_0 \simeq \mathfrak{su}(2,1)$ なるものが存在する.

また, \mathfrak{g}_0 の G における解析的部分群 G_0 は G の閉部分群である.

命題 4 は SU(2,1)-reduction, [Hel01] と [Yos38] の定理を併せて示される.

G が実階数 1 の Lie 群の積であり, $\mathfrak{h} \cap \mathfrak{p}$ の各成分が 1 次元であるときも,成分ごとに見ることで G が実階数 1 の実半単純 Lie 群, $\dim \mathfrak{h} \cap \mathfrak{p} = 1$ の場合に帰着でき,問題 1 に対する肯定的な結果を得られる.

問題 1 の背景を説明するために [Ber88] の内容のごく一部を述べる.

まずいくつか用語を準備する. G を実簡約 Lie 群, H を G の閉部分群とし, G/H には左 Haar 測度 $\mu_{G/H}$ が存在すると仮定する. 局所有界関数 $r: G \to \mathbf{R}_{\geq 0}$ が proper な radial function であるとは、r が次の 4 条件を満たすことである.

- 1. $e \in G$ を単位元とするとき r(e) = 0 である. *1
- 2. 任意の $g \in G$ に対し $r(g) = r(g^{-1}) \ge 0$ である.
- 3. 任意の $g_1, g_2 \in G$ に対し $r(g_1g_2) \le r(g_1) + r(g_2)$ である.
- 4. 任意の $R \ge 0$ に対し, $B(R) := \{g \in G \mid r(g) \le R\}$ は G の相対コンパクト集合である.

proper な radial function $r: G \to \mathbf{R}_{\geq 0}$ から $r_{G/H}(gH) \coloneqq \inf_{h \in H} \{r(gh)\}$ により定まる $r_{G/H}: G/H \to \mathbf{R}_{\geq 0}$ を G/H 上の radial function という.

G/H には standard measure と呼ばれる,次を満たす非自明な Borel 測度 m_X が存在する. 単位元のコンパクトな近傍で $B=B^{-1}$ なる任意の $B\subset G$ と任意の $g\in B,\ x\in G/H$ に対し、ある定数 $C_B\geq 0$ が存在して $g\cdot m_X\leq C_Bm_X$ 、 $C_B^{-1}< m_X(Bx)< C_B$ である.

 $d=\inf\{d'\geq 0\mid$ ある C>0 が存在して $m_X(B(r))\leq C(1+r)^{d'}\}$ であるとき,G/H のランクは d であると言う.

G の既約ユニタリ表現 V が G の正則表現 $L^2(G/H)$ の既約分解に出現する必要条件は,非自明な G-絡作用素 $\alpha_V\colon (C_c(G/H))^\infty\to V$ が存在し,任意の $v\in V^\infty$,d'>d に対して $\int_{G/H}\left|\beta_V(v)(x)(1+r(x))^{-d/2}\right|^2dx<\infty$ なることである.ただし β_V は次の命題により α_V と対応する G-絡作用素 $\beta_V\colon V^\infty\to C(G/H)^\infty$ とする.

命題 5 ([Ber88, p. 678]) G/H の左 Haar 測度 $\mu_{G/H}$ を 1 つ固定する. このとき, $\operatorname{Hom}_G((C_c(G/H))^\infty, V) \to \operatorname{Hom}_G(V^\infty, C(G/H)^\infty)$, $\alpha_V \mapsto \beta_V$ s.t. $\langle v, \alpha_V(\varphi) \rangle_V = \int_{G/H} \beta_V(v) \varphi d\mu_X$, $v \in V$, $\varphi \in (C_c(G/H))^\infty$ は同型写像である.

ここで G, Θ が実半単純 Lie 群とその Cartan 対合, $H=\Theta H$ ならば G=KAH という Cartan 分解を持つときに, G/H がランク $d:=\dim A$ となる可能性がある条件の 1 つを $X\in\mathfrak{a}$ に対する \mathfrak{h} 射影 $Y(\mathbf{R}\ X)$ の有界性として定式化することができる.

以上が本修士論文の表現論的な背景である.

^{*1} これは [Ber88] には明示されていません.

参考文献

- [Ber88] J. N. Bernstein, On the support of Plancherel measure, J. Geom. Phys., Vol. 5, n. 4, 1988, pp. 663–710.
- [BH99] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der mathematischen Wissensschaften, Vol. 319, Springer, 1999.
- [**Ebe72a**] P. Eberlien, Geodesic Flows on Negatively Curved Manifolds I, Ann. of Math. (2), Vol. 95, 1972, pp. 492–510.
- [**Ebe72b**] P. Eberlien, Geodesic Flow in Certain Manifolds without Conjugate Points, Trans. Amer. Math. Soc., Vol. 167, 1972, pp. 151–70.
- [Hel01] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, GSM, Vol. 34, AMS, 2001.
- [Kob89] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann., Vol. 285, Issue. 2, 1989, pp. 249–263.
- [Kob97] T. Kobayashi, Invariant mesures on homogeneous manifolds of reductive type, J. Reine Angew. Math., Vol. 1997, No. 490-1, 1997, pp. 37-54.
- [Yos38] K. Yosida, A Theorem concerning the Semi-Simple Lie Groups, Tohoku Mathematical Journal, First Series, Vol. 44, 1938, pp. 81–84.