

Presentación

Esta PEC profundiza en los conceptos básicos de la teoría de grafos que cubren los contenidos estudiados en los módulos 4 y 5 de la asignatura. Los ejercicios trabajan tanto los conceptos previos sobre grafos, como una de las clases más importantes de grafos, los árboles , así como dos de los problemas más notables de recorridos de grafos, los grafos eulerianos y los grafos hamiltonianos.

Competencias

En esta PEC se trabajan las siguientes competencias del Grado de Ingeniería Informática:

- Capacidad para utilizar los fundamentos matemáticos, estadísticos y físicos para comprender los sistemas TIC.
- Capacidad para analizar un problema en el nivel de abstracción adecuada en cada situación y aplicar las habilidades y conocimientos adquiridos para resolverlos.

Objetivos

Los objetivos concretos de esta PEC son:

- Saber caracterizar los árboles y, específicamente, los árboles con raíz.
- Saber aplicar los algoritmos de determinación de un ábol generador minimal.
- Identificar los grafos eulerianos y hamiltonianos y caracterizarlos.
- Entender el problema del viajante de comercio (TSP). Conocer y saber aplicar el algoritmo de resolución aproximada de este problema.

Descripción de la PEC a realizar

1. (Valoración de un 20 %=10 %+5 %+5 %) Actualmente con Internet, las cadenas de mensajes son muy frecuentes, a pesar de que existen desde la Edad Media. Contienen mensajes emocionalmente manipuladores, o bien usan la superstición o el humor para asegurar que la cadena continúa. Aquí tenemos un ejemplo.

¡Esto es alucinante!

Envía este mensaje a un máximo de 5 personas y, en el plazo de 2 minutos, verás como no pasa nada. Conozco a varias personas que lo han hecho y a todos les ha funcionado: ¡no les ha pasado nada de nada! Funciona de verdad. Si no te lo crees, haz la prueba, pásalo lo antes posible.

Si rompes la cadena, suspenderás Grafos y Complejidad y se te caerá el pelo y las orejas.

Si suponemos que el mensaje nunca vuelve a una persona que ya lo ha enviado, entonces la cadena de personas que envían y reciben el mensaje se puede representar con un árbol con raíz. La raíz es, de hecho, la persona que ha creado el mensaje o bien que inicia esta cadena. Cada persona que recibe el mensaje es un nodo y los hijos de este nodo son las personas a quienes reenvía el mensaje. Inicialmente, el creador de la cadena envía el mensaje a 5 personas. Suponemos que 5 minutos después de recibir el mensaje, éste se vuelve a reenviar. Todo el mundo que lo ha recibido, por si acaso, lo reenvía como mínimo a 1 persona.

- a) Después de 20 minutos de empezar la cadena, ¿a cuántas personas ha llegado como mínimo el mensaje? ¿Y como máximo?
- b) Suponemos ahora que todo el mundo que recibe el mensaje lo reenvía al máximo número de personas. El mensaje acaba de llegar a exactamente 15625 personas, que todavía no han reenviado el mensaje. Considerad el árbol correspondiente en este momento.
 - ¿Cuál es la altura del árbol? ¿Cuánto tiempo ha pasado desde que se inició la cadena?
 - 2) ¿Cuántas hojas y vértices internos tiene el árbol? ¿Cuántas aristas?

Solución:

- a) Cada 5 minutos, cada persona que ha recibido el mensaje lo reenvía a 1 persona como mínimo y a 5 como máximo. Sabemos que la raíz lo reenvía exactamente a 5 personas. Además, después de 20 minutos el árbol tiene altura 4. El número mínimo se da cuando cada persona, excepto la raíz, lo envía a 1 persona. En este caso tenemos 5+5+5+5=20 personas que han recibido el mensaje. Por otro lado, el número máximo se da cuando cada persona envía el mensaje a 5 personas. Entonces hay $5+5^2+5^3+5^4=780$ personas que reciben el mensaje.
- b) Sabemos que el mensaje acaba de llegar a exactamente 15625 personas y que el árbol es completo 5-ario.
 - 1) Tenemos que 15625 = 5^6 y, por lo tanto, el árbol tiene altura 6. Así, tenemos que han pasado $6 \cdot 5 = 30$ minutos.
 - 2) Se trata de un árbol de altura 6 con t=15625 hojas. Entonces, si i es el número de vértices internos, sabemos que t=4i+1, y, por lo tanto, $i=\frac{15624}{4}=3906$. El número total de vértices es $\mid V \mid = 15625+3906=19531$ y el número de aristas $\mid A \mid = 19530$.
- 2. (Valoración de un 20 %=10 %+10 %) Considerad el árbol binario tal que el recorrido aplicando el algoritmo DFS es [A,B,C,F,E,G,I,D,H,J] y el recorrido aplicando el algoritmo BFS es [A,B,D,C,E,H,F,G,I,J].
 - a) Dibujad el árbol y rellenad la siguiente tabla:

Altura	
Raíz	
Vértices internos	
Vértices terminales	
¿Es completo?	
¿Es equilibrado?	

b) Dad el recorrido en inorden, preorden y postorden de este árbol.

Solución:

a) Un árbol binario con los recorridos aplicando los algoritmos DFS y BFS dados en el enunciado es el siguiente:

y la tabla rellenada es:

Altura	3
Raíz	A
Vértices internos	A,B,C,E,D,H
Vértices terminales	F,G,I,J
És completo?	NO
És equilibrado?	SÍ

- b) Los recorridos del árbol son:
 - 1) Preorden: A, B, C, F, E, G, I, D, H, J.
 - 2) Inorden: $F, C, B, G, E, I, A, H, J, D^{(*)}$.
 - 3) Postorden: F, C, G, I, E, B, J, H, D, A.
 - $^{(*)}$ Según el dibujo del árbol, podría ser "
 $^{(*)}$ en vez de "F,C" y "D,H,J", "
 D,J,H", o "J,H,D" en vez de "H,J,D".
- 3. (Valoración de un 20 %=5 %+5 %+5 %+5 %) Sea G el siguiente grafo:

- a) Justificad cuál tiene que ser la medida, el orden y la secuencia de grados de su grafo complementario G^c a partir de la medida, el orden y la secuencia de grados de G. A continuación, dibujad G^c .
- b) Justificad si G o G^c son grafos bipartitos. Para cada grafo, en caso afirmativo, dad los dos conjuntos de la bipartición.
- c) Justificad si G o G^c son hamiltonianos. Para cada grafo, en caso de que exista, dad un ciclo hamiltoniano.
- d) Justificad si G o G^c tienen un circuito o un recorrido euleriano. Para cada grafo, en caso de que exista, dad un circuito o un recorrido euleriano, usando el algoritmo de Hierholzer.

Solución:

a) El grafo G tiene medida m=8, orden n=6 y secuencia de grados $s:d_1,d_2,\ldots,d_6=3,2,3,3,2,3$. Por lo tanto, G^c tiene medida $\binom{n}{2}-m=\binom{6}{2}-8=\frac{6\cdot 5}{2}-8=7$, el orden es el mismo, 6, y la secuencia de grados es $n-1-d_1,n-1-d_2,\cdots,n-1-d_6=2,3,2,2,3,2$. El grafo G^c es

- b) El grafo G es bipartito. Los dos conjuntos que dan la bipartición son $\{0,2,4\}$ y $\{1,3,5\}$. En cambio, G^c no es bipartito porque tiene ciclos de longitud impar; por ejemplo $\{0,2,4\}$.
- c) El grafo G sí que es hamiltoniano; un ciclo sería $\{0, 1, 2, 5, 4, 3, 0\}$. El grafo G^c no es hamiltoniano puesto que si eliminamos la arista $\{1, 4\}$, entonces quedan 2 componentes conexas.
- d) El grafo G no tiene ningún circuito ni ningún recorrido euleriano puesto que tiene más de 2 vértices de grado impar: $\{0,2,3,5\}$. El grafo G^c tiene exactamente 2 vértices de grado impar, $\{1,4\}$ y, por lo tanto, no tiene ningún circuito euleriano pero sí que tiene un recorrido euleriano. Aplicamos el algoritmo de Hierholzer añadiendo otra arista $\{1,4\}$.

Iteració	v	C'	С
0	1		{1}
1	1	$\{1, 4, 1\}$	$\{1, 4, 1\}$
2	1	$\{1, 3, 5, 1\}$	$\{1, 3, 5, 1, 4, 1\}$
3	4	$\{4, 2, 0, 4\}$	$\{1, 3, 5, 1, 4, 2, 0, 4, 1\}$

Por lo tanto, después de eliminar una arista $\{1,4\}$, un recorrido euleriano del grafo es $\{1,3,5,1,4,2,0,4\}$.

4. (Valoración de un 25 %=5 %+5 %+5 %+5 %+5 %) Considerad el grafo G con vértices $\{A,B,C,D,E,F,G\}$ y con pesos en las aristas dados por la siguiente tabla:

			_		0		
	A	$\mid B \mid$	C	D	$\mid E \mid$	F	G
\overline{A}		10	10	10			15
\overline{B}	10		5		30		
\overline{C}	10	5				5	
\overline{D}	10				15	20	5
\overline{E}		30		15		40	
\overline{F}			5	20	40		10
\overline{G}	15			5		10	

Para el grafo G, en cada apartado, determinad qué algoritmo utilizaríais y dad todos los pasos hasta obtener el resultado final.

- a) ¿Cuál es el coste mínimo para conectar todos los vértices?
- b) ¿Existe un árbol generador minimal que contenga la arista $\{A,C\}$? En caso afirmativo, dad el árbol y justificad si es único.
- c) ¿Existe un árbol generador minimal que contenga el camino mínimo de A a E? En caso afirmativo, dad el árbol.
- d) ¿Existe un árbol generador minimal que cumpla las condiciones de los apartados b) y c) a la vez?
- e) Dad el árbol que contenga todos los caminos de peso mínimo de A al resto de vértices. ¿Es un árbol generador minimal? ¿Cumple las condiciones de los apartados b) y c) a la vez?

Solución:

a) Usamos el algoritmo de Kruskal. Consideramos las aristas ordenadas de menos a más peso. Elegimos y marcamos con un asterisco las 6 primeras aristas que no forman ningún ciclo, y marcamos con negrita las descartadas porque forman un ciclo.

Arista	Pesos
$\{B,C\}^*$	5
$\{C, F\}^*$	5
$\{D,G\}^*$	5
${A,B}^*$	10
$\{\mathbf{A},\mathbf{C}\}$	10
$\{A, D\}^*$	10
$\{\mathbf{F},\mathbf{G}\}$	10
$\{\mathbf{A},\mathbf{G}\}$	15
$\{\mathbf{D},\mathbf{E}\}$	15
$\{\mathbf{D},\mathbf{F}\}$	20
$\{B,E\}$	30
$\{E,F\}$	40

El árbol generador minimal tiene peso 50 y contiene las aristas $\{B,C\},\{C,F\},\{D,G\},\{A,B\},\{A,D\}$ y $\{D,E\}.$

Nota: Este apartado también se puede resolver usando el algoritmo de Prim.

- b) Sí, a la hora de escoger las aristas del árbol generador minimal usando Kruskal, podríamos haber escogido la arista $\{A,C\}$ en vez de la arista $\{A,B\}$ que tiene el mismo peso. En este caso, las aristas son $\{B,C\},\{C,F\},\{D,G\},\{A,C\},\{A,D\}$ y $\{D,E\}$. Este árbol no es único; ya que en vez de la arista $\{A,D\}$ que tiene peso 10, podríamos haber escogido la arista $\{F,G\}$ que tiene el mismo peso.
- c) Usando el algoritmo de Dijkstra, obtenemos:

A	B	C	D	E	F	G
$(0,A)^*$	(10,A)	(10,A)	(10,A)	(∞,A)	(∞,A)	(15,A)
	$(10,A)^*$	(10,A)	(10,A)	(40,B)	(∞,A)	(15,A)
		$(10,A)^*$	(10,A)	(40,B)	(15,C)	(15,A)
			$(10,A)^*$	(25,D)	(15,C)	(15,A)
				(25,D)	$(15,C)^*$	(15,A)
				(25,D)		$(15,A)^*$
				$(25,D)^*$		

El camino mínimo de A a E es $\{A, D, E\}$ con un peso de 25. La arista $\{D, E\}$ se encuentra en todos los árboles generadores de peso mínimo y, como hemos visto en el apartado a), podemos escoger la arista $\{A, D\}$ en el árbol generador; por lo tanto, sí que es posible.

- d) El árbol dado en el apartado (a) es un árbol generador minimal y contiene el camino mínimo de A a E.
- e) A partir de la tabla del algoritmo de Dijkstra del apartado c), las aristas del árbol generador de distancias mínimas que empiezan por el vértice A son $\{A,B\},\{A,C\},\{A,D\},\{B,E\},\{C,F\}$ y $\{A,G\}$. El peso del árbol es 65 y, por lo tanto, no es un árbol generador minimal. En este caso sí que cumplen las condiciones de los apartados b) y c) a la vez.
- 5. (Valoración de un 15 %=5 %+5 %+5 %) Considerad el grafo G con vértices $\{A, B, C, D, E, F\}$ y con pesos asignados a las aristas dados por la siguiente tabla:

	В	C	D	E	F
A	15	20	15	20	15
B		25	25	35	30
C			25	30	30
D				30	25
E					25

- a) Fijaos que el grafo verifica la desigualdad triangular. Encontrad un ciclo H que pase por todos los vértices una única vez aplicando el algoritmo TSP-aproximado. (Indicad todos los pasos realizados hasta llegar a la solución). Dad también el coste del ciclo.
- b) Dad una cota inferior teniendo la cuenta el coste de un árbol generador minimal del grafo. Dad también la cota inferior obtenida a partir del algoritmo del TSP-aproximado. ¿Cuál de las dos es mejor?

c) ¿Es única la solución del TSP-aproximado? Si no lo es, dad si es posible otra solución que contenga el camino $\{A, C, E\}$. ¿Es mejor que la obtenida en el apartado a)?

Solución:

- a) Podemos utilizar el TSP-aproximado puesto que el grafo verifica la desigualdad triangular. Aplicando el algoritmo de Kruskal obtenemos las siguientes aristas: $\{A,B\},\{A,C\},\{A,D\},\{A,E\},\{A,F\}$. Un recorrido del árbol en preordre es $\{A,B,C,D,E,F\}$ y el ciclo sería $\{A,B,C,D,E,F,A\}$ con coste 15+25+25+30+25+15=135.
- b) Tenemos que el árbol generador minimal tiene las siguientes aristas $\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{A, F\},$ por lo tanto una cota inferior es 85. Del algoritmo TSP-aproximado obtenemos otra cota inferior $\frac{135}{2} = 67.5$, o sea 68. La mejor cota inferior es la más elevada, o sea 85.
- c) En el algoritmo del TSP-aproximado podemos elegir otro recorrido también en preorden que contenga el camino $\{A,C,E\}$, por ejemplo $\{A,C,E,B,D,F\}$. En este caso, el ciclo sería $\{A,C,E,B,D,F,A\}$ con coste 20+30+35+25+25+15=150, y por lo tanto esta solución es peor a la obtenida en el apartado a).

EIMT.UOC.EDU

Recursos

Recursos Básicos

- Módulo didáctico 4. Árboles.
- Módulo didáctico 5. Grafos eulerianos y grafos hamiltonianos.
- Colección de problemas.

Recursos Complementarios

- PECs y exámenes de semestres anteriores.
- Programario para el estudio de algoritmos sobre grafos.
- Enlaces: Applets interactivos sobre algoritmos de grafos.

Criterios de valoración

- La PEC se tiene que resolver de forma individual.
- Es necesario justificar la respuesta de cada apartado. Se valorará tanto el resultado final como la justificación dada.
- En los apartados donde sea necesario aplicar algún algoritmo, se valorará la elección del algoritmo apropiado, los pasos intermedios, el resultado final y las conclusiones que se deriven.

Formato y fecha de entrega

Hay que entregar **un único documento** PDF con las respuestas de todos los ejercicios. El nombre del fichero tiene que ser: **PEC2_Apellido1Apellido2Nombre.pdf**.

Este documento se tiene que entregar en el espacio Entrega y Registro de EC del aula antes de las 23:59 del día 22/11/2018. No se aceptarán entregas fuera de término.