Laboratorium 9 Równania różniczkowe zwyczajne

Mateusz Król

22/05/2024 r.

Zadanie 1.

Przedstaw każde z poniższych równań różniczkowych zwyczajnych jako równoważny układ równań pierwszego rzędu (ang. first-order $system\ of\ ODEs$):

(a) równanie Van der Pol'a:

$$y'' = y'(1 - y^2) - y$$

(b) równanie Blasius'a:

$$y''' = -yy''$$

(c) II zasada dynamiki Newton'a dla problemu dwóch ciał:

$$y_1'' = -GM \cdot \frac{y_1}{(y_1^2 + y_2^2)^{3/2}}$$

$$y_2'' = -GM \cdot \frac{y_2}{(y_1^2 + y_2^2)^{3/2}}$$

Układy równań różniczkowych:

(a) równanie Van der Pol'a:

Podstawienia:

$$a = y$$

$$b = y'$$

Układ równań:

$$a' = b$$

$$b' = b(1 - b^2)$$

(b) równanie Blasius'a:

Podstawienia:

$$a = y$$
$$b = y'$$
$$c = y''$$

Układ równań:

$$a' = b$$
$$b' = c$$
$$c' = -ac$$

(c) II zasada dynamiki Newton'a dla problemu dwóch ciał:

Podstawienie:

$$a = y_1$$

$$b = y_2$$

$$c = y'_1$$

$$d = y'_2$$

Układ równań:

$$a' = c$$

$$b' = d$$

$$c' = -GM \cdot \frac{a}{(a^2 + b^2)^{3/2}}$$

$$d' = -GM \cdot \frac{b}{(a^2 + b^2)^{3/2}}$$

Zadanie 2.

Dane jest równanie różniczkowe zwyczajne

$$y' = -5y$$

z warunkiem początkowym y(0)=1. Równanie rozwiązujemy numerycznie z krokiem h=0.5.

Poniższa tabela przedstawia wartości czynników amplifikacji dla zadanego równania różniczkowego, dla każdej z omówionych metod. Wartości te świadczą o numerycznej stabilności tych metod.

Method	Amplification factor
Explicit Euler	-1.5
Implicit Euler	≈ 0.286
$\operatorname{Trapezoidal}$	≈ -0.111
Modified Euler	1.625
RK4	≈ 0.648

Metody stabilne numerycznie dla zadanego równania to te, dla których wartość bezwzględna z czynnika amplifikacji jest mniejsza od 1. Są to metody: Implicit Euler, Trapezoidal, RK4.

Jawna metoda Eulera jest niestabilna numerycznie dla zadanego parametru $h=0.5.\,$

Wzór iteracyjny:

$$y_{n+1} = y_n + h_n \cdot (-\lambda y_n)$$

Wartość przybliżonego rozwiązania tą metodą dla t=0.5 wynosi y=3.5.

Wykres wartości rozwiązania wykorzystując jawną metodę Euler 'a:

Niejawna metoda Eulera jest stabilna numerycznie dla zadanego parametru $h=0.5.\,$

Wzór iteracyjny:

$$y_{n+1} = \frac{y_n}{1 - h_n \lambda}$$

Wartość przybliżonego rozwiązania tą metodą dla t=0.5 wynosi $y\approx 0.286.$

Wykres wartości rozwiązania wykorzystując niejawną metodę Euler'a:

Zadanie 3.

Model *Kermack*'a-*McKendrick*'a przebiegu epidemii w populacji opisany jest układem równań różniczkowych:

$$S' = -\beta IS$$

$$I' = -\beta IS - \gamma I$$

$$R' = \gamma I$$

, gdzie:

S reprezentuje liczbę osób zdrowych, podatnych na zainfekowanie, I reprezentuje liczbę osób zainfekowanych i roznoszących infekcję, R reprezentuje liczbę osób ozdrowiałych.

Parametr β reprezentuje współczynnik zakaźności (ang. $transmission\ rate).$

Parametr γ reprezentuje współczynnik wyzdrowień (ang. recovery rate).

Wartość $\frac{1}{\gamma}$ reprezentuje średni czas choroby.

Założenia modelu:

- Przyrost liczby osób zakażonych jest proporcjonalny do liczby osób zakażonych oraz do liczby osób podatnych.
- Przyrost liczby osób odppornych lub zmarłych jest wprost proporcjonalny do liczby aktualnie chorych.
- Okres inkubacji choroby jest zaniedbywalnie krótki.
- Populacja jest wymieszana.