Text Normalization Using Lexical and Contextual Features

M.S. Thesis
by
Cağıl Uluşahin Sönmez
Advisor : Arzucan Özgür

Jan 14, 2014

Motivation

Its a btf nite, lukin for smth fun to do, I think I wanna be w ma frnds.

Its a beautiful night, looking for something fun to do, I think I want to be with my friends.

Text Normalization cont.

- In Vocabulary(IV) words:
- Out Of Vocabulary(OOV) words
- III-formed words

Imgine a world wer googling smt about html or related stuff does not send u to w3schools.

Imagine a world where googling something about html or related stuff does not send you to w3schools.

rozis r red
vilitz r blu
sunflowurs r yelo
u wer probly ekspektin sumthin
romentik but deez r jus gardenin fakts

rozes are red
violets are blue
sunflowers are yellow
you were probably expecting something
romantic but these are just gardening

Text Normalization

Two steps: • Detection • Normalization

Its a btf nite, lukin for smth fun to do, I think I wanna be w ma frnds.

It's a beautiful night, looking for something fun to do, I think I wanna be with my friends.

Dnt always follow da crowd, stand 4 wat u blv in.

Don't always follow the crowd, stand for what you believe in.

Work f a cos, not for applause. Live life to exprss, not to imprss:)

Work <u>for</u> a <u>cause</u>, not for applause. Live life to <u>express</u>, not to <u>impress</u>:)

There r sm songs u dont want 2 listen 2 yl walking cos when u start dancing ppl won't knw y.

There <u>are some</u> songs <u>you</u> don't want <u>to</u> listen <u>to while</u> walking <u>because</u> when <u>you</u> start dancing <u>people</u> won't <u>know why</u>.

Related Work

- Brill and Moore, 2000 proposed a novel noisy channel model for spell checking based on string to string edits
- Toutanova et al., 2002 extended this error model with phonetic similarities over words
- Aw et al., 2006 proposed a phrase-based statistical machine translation (MT) model
- Choudhury et al., 2007 proposed a supervised Hidden Markov Model based approach

Related Work cont.

- More recent approaches handled the text normalization task by building normalization lexicons
- Han et al., 2011 presents a normalization lexicon using lexical features and contextual features of OOV words
- Gouws et al., 2011 highly dependent on user centric information such as the geological location of the users and the twitter client that the tweet is received from
- Pennel and Liu, 2011 used a character level MT system
- Liu et al., 2012 integrates human perspective modelling (an extended noisy channel model)

Related Work cont.

- Yang and Eisenstein, 2013 introduced an unsupervised log linear model for text normalization
- Their joint statistical approach uses local context based on language modeling and surface similarity
- Hassan and Menezes, 2013 generated a normalization lexicon using Markov random walks on a contextual similarity lattice

A Graph Based Approach for Contextual Text Normalization

- A Text normalisation system based on Word Association Graph
- Unsupervised, no need for labeled data
- Uses input context & corpus based contextual information

Imgine a world wer googling smt	Imagine a world where googling something
u wer probly ekspektin sumthin	you were probably expecting something

Best precision and f-measure with good recall

Our Methodology

- graph based approach
- social text (twitter)
- contextual and lexical similarity features
- A slang dictionary used as an external resource

Noisy Text

Preprocessing

- Preprocessing:
 - i) Tokenization
 - ii) Part of Speech(POS) tagging

Preprocessing cont.

Dnt always follow da crowd,stand 4 wat u blv in.

Dnt	Verb	.91
always	Adverb	.98
follow	Verb	.99
da	Determiner	.98
crowd	Noun	.99
,	Punctuation	.99
stand	Verb	.84
4	Preposition	.61
wat	Pronoun	.93
u	Pronoun	.99
blv	Verb	.97
in	Preposition	.92
	Punctuation	.98

Extracting Candidates

 find normalisation candidates for each OOV word in the input text

Extracting Candidates

Extract Candidates

Extract Candidates with Contextual Similarity Features

Extract Candidates from Slang Dictionary

Extract Candidates with Lexical Similarity Features

Extracting Candidates with Contextual Similarity Features

- Contextual Word Association Graph (CWA-graph)
- directed weighted multigraph
- models contextual information
- relative positions of the POS tag

Contextual Word Association Graph

- Edges are created, if the contextually associ
 - requires a word d
 - requires both words threshold

with a beautiful smile

air are

- directionality: based on the sequence of words
- The direction and the distance: a unique triplet

Distance and Edge Weight

Extracting Candidates with Lexical Similarity Features

- 1. find new candidates (lexically similar)
- 2. filter the candidates (edit-d and phonetic-d thresholds)
 - edit distance
 - double metaphone (phonetic edit distance)

Lexically Similar Candidates

OOV	Candidate	Edit Distance	Phonetic Distance
missin (MSN)	missing (MSNK)	1	1
missin (MSN)	missed (MST)	2	1
confrims (KNFR)	confirms (KNFR)	2	O
confrims (KNFR)	confirm (KNFR)	3	0
soemthing (SM0N,SMTN)	something (SM0N,SMTN)	2	0
soemthing (SMTN)	sorting (SRTN)	3	1
smt (SMT,XMT)	something (SMTN)	6	1

Ranking Candidates

Preprocessing

Extract Candidates

Extract Candidates with Contextual Similarity Features

Extract Candidates from Slang Dictionary

Extract Candidates with Lexical Similarity Features

Rank Candidates

Contextual Similarity
Metrics

Slang Score

Lexical Similarity
Metrics

Contextual Similarity Metrics

- Edge Weight Score
 - 1. related to many neighbours
 - 2. have a high association score with each neighbour
- Frequency Score
 - a real number between 0 and 1
 - proportional to the frequency of the candidate within the corpus

Candidates with Edge Weight Score and Frequency Score

Lexical Similarity Metrics & Slang Score

OOV	Candidate	LCSR Score	Edit-Dist Score	Slang Score
missin (MSN)	missing (MSNK)	0.8571	0.8572	0
missin (MSN)	missed (MST)	0.6667	0.6666	0
confrims (KNFR)	confirms (KNFR)	0.8750	0.75	0
confrims (KNFR)	confirm (KNFR)	0.7500	0.6240	0
soemthing (SMTN)	something (SMTN)	0.8889	0.7778	0
soemthing (SMTN)	sorting (SRTN)	0.6666	0.6666	0
smt (SMT)	something (SMTN)	0.3333	0.3333	1

Final Ranking of Candidates

OOV	Candidate	edgeWeight Score	freq Score	LCSR Score	Edit-Dist Score	Slang Score	Final Score
follwers	followers	0.0505	1	0.8888	0.8888	0	1.8839
follwers	follower	0.0481	1	0.8750	0.7500	0	1.7981
follwers	flowers	0.0182	1	0.7500	0.7500	0	1.6432
follwers	follower's	0.1799	0.2	0.8000	0.8000	0	1.4799
follwers	flower	0.0248	1	0.6250	0.6250	0	1.4623
follwers	dollars	0.0084	1	0.6250	0.6250	0	1.4459

Experiments

- Graph Generation: We extracted 1 GB of English tweets from Stanford's 476 million Twitter Dataset
- POS tagger: **CMU Ark Tagger**, which is a social media specific POS tagger achieving an accuracy of 95% over social media text.
- We only kept the nodes with a minimum frequency of 9.
- The resulting graph contains 105428 nodes and 46609603 edges.
- While extending the candidate set with lexical features we use threshold_{edit} ≤ 2 ∨ threshold_{phonetic} ≤ 1 to keep up with the settings in Han et al.

Experiments cont.

- First Dataset: LexNorm1.1
 - 549 tweets with 1184 manually annotated ill-formed OOV tokens
- Second Dataset: Pennell Trigram dataset
 - 985 trigrams from 1925 sentences and 985 manually annotated ill-formed OOV tokens
 - SMS-like Corpus: collected using only messages sent via SMS

Window Size

- The window size is chosen as 7, with 3 neighbours in each side of the OOV token. (when available)
- Ex: "I just <u>happend</u> 2 stroll on <u>ur</u> name saw a twit <u>pic</u> I liked so <u>w</u> not <u>u</u> know keep it beautiful:)?? thank <u>u</u>!"

Results Using Different Window Sizes

Window Size	Precision	Recall	F-measure
3	85.30	79.00	82.00
5	85.60	79.10	82.20
7	85.50	79.20	82.20
9	85.20	79.00	82.00
n	85.20	79.00	82.00

System Tuning

Threshold	Precision	Recall	F-measure
≤ 1	81.2	80.8	81
1.1	81.5	80.8	81.2
1.2	82.2	80.7	81.4
1.3	83.7	80.2	81.9
1.4	84.2	80.0	82.0
1.5	85.5	79.2	82.2
1.6	88.8	75.1	81.4
1.7	91.1	72.8	80.9
1.8	92.3	67.6	78
2	94.1	56.4	70.5

Results on LexNorm1.1

Method	Precision	Recall	F-measure
Han & Baldwin,2011	75.30	75.30	75.30
Liu et al., 2011	84.13	78.38	81.15
Hassan et al., 2013	85.37	56.40	69.93
Yang et al., 2013	82.09	82.09	82.09
CWA-Graph	85.50	79.20	82.20

Results on Trigram Dataset

Method	Precision	Recall	F-measure
Pennell and Liu,2011	69.70	69.70	69.70
CWA-Graph	78.20	68.5	73.10

Future Work

- OOV Detection
- Turkish Text Normalization
- Analysing different graph sizes

Summary of Contributions

- an unsupervised text normalization approach
- utilizes lexical, contextual and grammatical features of social text
- a novel graph based system
- state of the art precision and f-score
- can be tuned to achieve very high precisions without sacrificing much from recall