Лабораторная работа 1.1.3 Статистическая обработка результатов многократных измерений

Михаил Колтаков

7 сентября 2020 г.

Цель работы:

Применение методов обработки экспериментальных данных при измерении сопротивлений

В работе используются:

Набор резисторов (270 штук), универсальный цифровой вольтметр, работающий в режиме "Измерение сопротивлений постоянному току"

Теория к работе:

Обоснование пренебрежения погрешностью омметра

Поскольку наш цифровой вольтметр обеспечивает точность до сотых долей процента относительной погрешности, погрешностью измерений, связанных с ним можно пренебречь по сравнению с отклонениями от номинала, полученными в процессе изготовления резисторов.

Теория статистики

Посчитаем среднее сопротивление резисторов

$$\langle R \rangle = \frac{1}{N} \sum_{i=1}^N R_i$$
 — среднее значение сопротивления резистора

N - число резисторов

 R_i — значение сопротивления i — того резистора

Чтобы охарактеризовать случайные погрешности при изготовлении набора резисторов, необходимо построить гистограмму. Для этого выберем из результатов $R_{\text{макс}}$ и $R_{\text{мин}}$ и посчитаем интервал изменения сопротивления, разделив разность максимального и минимального значения на m=20 частей.

$$\Delta R = \frac{R_{\text{\tiny MAKC}} - R_{\text{\tiny MИH}}}{m}$$

Гистограмму будем строить следующим образом. По оси абсцисс откладываем сопротивление резистора и отмечаем интервалы изменения сопротивления. А по оси ординат над каждым интервалом можно откладывать число результатов Δn , которое попадает в данный интервал. Удобнее будет это число разделить на число всех измерений и на ширину используемого интервала ΔR .

$$y = \frac{\Delta n}{N\Delta R}$$

На том же графике отложим по оси абсцисс среднее значение сопротивления.

Для характеристики разброса случайной величины используется среднеквадратичное отклонение

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (R_i - \langle R \rangle)^2}$$

На оси абсцисс полезно будет отметить точки $\langle R \rangle - \sigma$ и $\langle R \rangle + \sigma$, чтобы посмотреть, как располагается гистограмма относительно этих точек.

Используя σ , можно построить функцию распределения Гаусса

$$y = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(R - \langle R \rangle)^2}{2\sigma^2}}$$

Эту зависимость нанесём на гистограмму.

Ход работы

Измерения сопротивлений

N	R, кОм	N	R, кОм	N	R, кОм	N	R, кОм	N	R, кОм
1	9,075	28	9,419	55	8,954	82	9,118	109	9,029
2	9,063	29	9,085	56	9,139	83	9,164	110	8,914
3	9,174	30	9,462	57	9,046	84	9,110	111	8,967
4	8,975	31	9,069	58	8,920	85	9,121	112	9,018
5	9,073	32	9,019	59	8,994	86	9,090	113	9,154
6	9,008	33	9,132	60	8,910	87	9,082	114	9,090
7	9,168	34	9,051	61	8,963	88	8,960	115	8,967
8	9,057	35	9,086	62	9,131	89	9,184	116	8,912
9	9,096	36	9,019	63	9,144	90	9,116	117	9,163
10	9,196	37	9,069	64	9,086	91	9,012	118	8,954
11	9,040	38	9,103	65	9,222	92	9,023	119	9,119
12	9,151	39	9,086	66	8,960	93	9,070	120	9,062
13	9,050	40	9,108	67	9,192	94	9,238	121	8,956
14	9,004	41	9,025	68	8,941	95	9,167	122	9,488
15	9,420	42	9,114	69	9,116	96	8,996	123	9,488
16	9,467	43	9,120	70	8,924	97	9,123	124	9,252
17	8,802	44	9,036	71	8,947	98	9,055	125	8,829
18	8,953	45	9,167	72	9,141	99	8,931	126	9,453
19	8,948	46	8,940	73	9,173	100	9,144	127	9,063
20	8,831	47	9,109	74	8,945	101	8,957	128	9,447
21	8,892	48	9,221	75	9,117	102	9,058	129	8,942
22	9,118	49	8,898	76	9,092	103	9,280	130	8,840
23	9,473	50	8,931	77	9,074	104	8,890	131	9,323
24	9,011	51	8,955	78	9,126	105	8,931	132	9,436
25	9,370	52	8,931	79	8,990	106	8,919	133	9,452
26	9,403	53	8,926	80	9,123	107	8,964	134	9,434
27	8,994	54	9,001	81	9,120	108	9,055	135	8,968

N	R, кОм								
136	8,950	163	9,172	190	9,200	217	8,985	244	8,999

137	9,030	164	9,174	191	8,973	218	8,961	245	8,977
138	9,187	165	9,172	192	9,078	219	8,943	246	8,942
139	9,164	166	9,081	193	8,958	220	9,017	247	9,255
140	8,975	167	8,917	194	9,156	221	9,017	248	9,101
141	9,069	168	9,079	195	8,885	222	8,967	249	9,140
142	8,906	169	9,111	196	9,139	223	9,040	250	9,125
143	8,974	170	8,961	197	8,961	224	8,974	251	8,936
144	9,123	171	8,913	198	9,042	225	9,000	252	8,893
145	9,165	172	9,132	199	9,008	226	8,959	253	8,930
146	8,864	173	8,978	200	8,931	227	9,048	254	9,287
147	8,967	174	9,073	201	8,939	228	9,076	255	9,058
148	9,037	175	9,286	202	9,213	229	9,068	256	9,085
149	9,218	176	9,165	203	9,005	230	9,034	257	8,975
150	8,990	177	9,116	204	8,997	231	9,021	258	9,067
151	9,114	178	9,162	205	8,896	232	9,160	259	9,072
152	9,162	179	9,206	206	8,934	233	8,946	260	8,991
153	8,890	180	9,442	207	8,942	234	9,050	261	9,065
154	9,908	181	9,243	208	9,002	235	9,115	262	8,981
155	9,079	182	8,907	209	9,117	236	9,135	263	9,042
156	8,994	183	9,011	210	9,049	237	8,975	264	9,147
157	9,007	184	8,972	211	9,080	238	9,133	265	9,137
158	8,919	185	8,951	212	9,077	239	9,045	266	9,012
159	9,022	186	8,996	213	8,946	240	9,142	267	9,072
160	9,084	187	9,122	214	9,026	241	9,079	268	8,964
161	9,004	188	8,962	215	9,009	242	9,009	269	9,039
162	8,986	189	9,200	216	8,979	243	9,018	270	9,024

Для мат. обработки данных и построения графиков будем использовать язык python и библиотеку matplotlib.

Наше число резисторов N = 270, $R_{\text{макс}} = 9,488\,\text{кOm}$, а $R_{\text{мин}} = 8,802\,\text{кOm}$. Мы также построим две гистограммы: для m=10 и для m=20.

Вычислим среднее сопротивление резисторов:

$$\langle R \rangle = 9.066 \text{ kOm}$$

Посчитаем ΔR_{10} и ΔR_{20} :

$$\Delta R_{10} = \frac{9,488-8,802}{10} = 0,0686$$
 кОм и $\Delta R_{20} = \frac{9,488-8,802}{20} = 0,0343$ кОм

Для построения гистограммы, высоту каждой колонки будем считать по формуле(где Δn - число попаданий в данный промежуток)

$$y = \frac{\Delta n}{N\Delta R}$$

Вычислим среднеквадратичное отклонение

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (R_i - \langle R \rangle)^2} \approx 0,132 \,\mathrm{кOm}$$

На гистограмму нанесём вертикальные линии в точках $\langle R \rangle$, $\langle R \rangle - \sigma$ и $\langle R \rangle + \sigma$

Также построим кривую, показывающую функцию распределения Гаусса по формуле

$$y = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(R - \langle R \rangle)^2}{2\sigma^2}}$$

Графики, построенные на основе данных из таблицы сопротивлений

Вывод:

Таким образом, в интервал от $\langle R \rangle - \sigma$ до $\langle R \rangle + \sigma$ укладывается 74% значений, в интервал от $\langle R \rangle - 2\sigma$ до $\langle R \rangle + 2\sigma$ укладывается 94% значений, а в интервал от $\langle R \rangle - 3\sigma$ до $\langle R \rangle + 3\sigma$ - 98%. Значит, почти все величины сопротивлений укладываются в 5-процентный интервал $\langle R \rangle \pm 3\sigma$.