Convex Optimization Algorithms An introduction

Wenxun Xing

Department of Mathematical Sciences Tsinghua University wxing@tsinghua.edu.cn Tel: 62787945 Office hour: 4:00-5:00pm, Thursday

Office: The New Science Building, A416

Part I Subgradient Methods

Subgradient methods

A convex optimization problem

$$\min \quad f(x) \\
\text{s.t.} \quad x \in \mathcal{X} \subseteq \mathbb{R}^n,$$

where f(x) is a given convex function and $\mathcal X$ is a convex closed set.

Iteration method.

$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$$

where g_k is a subgradient of f(x) at x_k , α_k is a step size, and $P_{\mathcal{X}}(z)$ denotes Euclidean projection of z on the set \mathcal{X} .

Examples

Example

- ▶ Optimization problem: $\min_{x>0} f(x) = (x-1)^2$.
- *Gradient:* g(x) = f'(x) = 2(x-1).
- Iteration and projection

$$x_{k+1} = \max\{x_k - \alpha_k f'(x_k), 0\}, P_{\{x \ge 0\}}(z) = \max\{z, 0\}.$$

Iterations with different step sizes

$$\alpha_k = \frac{1}{2}, \ x_0 = 0, x_1 = \max\{1, 0\} = 1, x_k = 1, \ k \ge 2.$$

$$\alpha_k = \frac{1}{3}, \ x_0 = 0, x_1 = \frac{2}{3}, x_2 = \frac{8}{9}, x_3 = \frac{26}{27}.$$

$$\alpha_k = 2, \ x_0 = 0, x_1 = 4, x_2 = \max\{-8, 0\} = 0, x_3 = 4.$$

Example

Optimization problem:

$$\min_{x \in \mathbb{R}} f(x) = \begin{cases} x, & x \ge 1\\ \frac{1}{2}(x+1), & -1 \le x \le 1\\ 0, & x \le -1 \end{cases}.$$

▶ Subgradient:
$$\partial f(x) = \begin{cases} 1, & x > 1 \\ \left[\frac{1}{2}, 1\right], & x = 1 \\ \frac{1}{2}, & -1 < x < 1, \\ \left[0, \frac{1}{2}\right] & x = -1 \\ 0, & x < -1. \end{cases}$$

Iteration and projection

$$x_{k+1} = x_k - \alpha_k \partial f(x_k), P_{\{x \in \mathbb{R}\}}(z) = z.$$

Iterations with different subgradients.

$$\alpha_k = \frac{1}{3}, \ x_0 = 2, x_1 = 2 - \frac{1}{3} = \frac{5}{3}, x_2 = \frac{5}{3} - \frac{1}{3} = \frac{4}{3}, x_3 = 1,$$
$$x_4 = \begin{cases} 1 - \frac{1}{3} = \frac{2}{3}, & \partial f(x_3) = 1\\ 1 - \frac{1}{3} \times \frac{1}{2} = \frac{5}{6}, & \partial f(x_3) = \frac{1}{2}. \end{cases}$$

Subgradient

Definition

For a given f(x) over \mathcal{X} , $g \in \mathbb{R}^n$ is called a subgradient of f(x) at x_0 if

$$f(x) \ge f(x_0) + g^T(x - x_0), \ \forall x \in \mathcal{X}.$$

The set of subgradients at x_0 is denoted as $\partial f(x_0)$.

Definition

Define a directional derivative of f(x) at x in a direction d as

$$f'(x;d) = \lim_{\delta \to 0^+} \frac{f(x+\delta d) - f(x)}{\delta},$$

if it exists.

Subgradient

Theorem

Let $f: \mathbb{R}^n (\mathcal{X}) \to \mathbb{R}$ be a convex function (and \mathcal{X} be a convex set). For every $x \in \mathbb{R}^n (\in ri(\mathcal{X}))$, the followings hold: (i) The $\partial f(x)$ is a nonempty, convex, and compact set, and we have

$$f'(x;d) = \max_{g \in \partial f(x)} g^T d.$$

(ii) If f(x) is differentiable at x with gradient $\nabla f(x)$, then we have $\nabla f(x) = \partial f(x)$.

The optimality condition

Theorem

An $x \in \mathcal{X}$ minimizes a convex function $f : \mathbb{R}^n \to \mathbb{R}$ over a convex set \mathcal{X} if and only if there exists a subgradient $g \in \partial f(x)$ such that

$$g^T(z-x) \ge 0, \ \forall z \in \mathcal{X}.$$

Main convergence results

Theorem

(Non-expansiveness of the projection) Let $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$, \mathcal{X} be a nonempty closed convex set. We have

$$||P_{\mathcal{X}}(x) - P_{\mathcal{X}}(y)|| \le ||x - y||, \forall x, y \in \mathbb{R}^n.$$

Theorem

Let $\{x_k\}$ be the sequence generated by $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$ and f(x) be a convex function over \mathcal{X} . Then for all $y \in \mathcal{X}$ and $k \geq 0$: (i) We have

$$||x_{k+1} - y||^2 \le ||x_k - y||^2 - 2\alpha_k [f(x_k) - f(y)] + \alpha_k^2 ||g_k||^2.$$

(ii) If $f(y) < f(x_k)$, we have $\|x_{k+1} - y\| < \|x_k - y\|$ for all step-sizes α_k such that

$$0 < \alpha_k < \frac{2[f(x_k) - f(y)]}{\|g_k\|^2}.$$

Discussion on convergence

(ii) If $f(x_k) > f(y)$, we have $||x_{k+1} - y|| < ||x_k - y||$ for all step-sizes α_k such that

$$0 < \alpha_k < \frac{2[f(x_k) - f(y)]}{\|g_k\|^2}.$$

- ▶ If x_k is not an optimal solution and x^* is an optimal solution, then we can get a point x_{k+1} much closer to the optimal x^* by selecting small enough α_k .
- ▶ Suppose $\sup_{g \in \cup_{x \in \mathcal{X}} \partial f(x)} \|g\| \le c$ and $\alpha_k = \alpha > 0, \ \forall k = 0, 1, \dots$.

$$x_k \notin \left\{ x \in \mathcal{X} | f(x) \le f(x^*) + \frac{\alpha c^2}{2} \right\},$$

then $||x_{k+1} - x^*|| < ||x_k - x^*||$.

For a given precision $\epsilon > 0$ and $\alpha = \frac{2\epsilon}{c^2}$, then we get an ϵ -optimization solution in

$$\{x \in \mathcal{X} | f(x) \le f(x^*) + \epsilon \}$$
.

Convergence analysis—constant step-size

Assumption A: $\sup_{g \in \cup_{x \in \mathcal{X}} \partial f(x)} \|g\| \le c$ and $\alpha_k = \alpha > 0, \ \forall k = 0, 1, \dots$ Denote \mathcal{X}^* be the set of optimal solutions,

$$f^* = \min_{x \in \mathcal{X}} f(x), \ f_{\infty} = \lim\inf_{k \to \infty} f(x_k), \ d(x) = \min_{x^* \in \mathcal{X}^*} \|x - x^*\|.$$

Theorem

(Convergence within a neighborhood) (i) If $f^* = -\infty$, then $f_\infty = f^*$. (ii) If $f^* > -\infty$, then

$$f_{\infty} \le f^* + \frac{\alpha c^2}{2}.$$

Note: No guarantee for the convergence of $\{x_k\}$.

Theorem

(Convergence rate) Suppose $\sup_{g \in \cup_{x \in \mathcal{X}} \partial f(x)} \|g\| \le c$, $\alpha_k = \alpha$ and $\mathcal{X}^* \ne \emptyset$. For any positive $\epsilon > 0$, we have

$$\min_{0 \le k \le K} f(x_k) \le f^* + \frac{\alpha c^2 + \epsilon}{2},$$

where $K = \lfloor \frac{(d(x_0))^2}{\alpha \epsilon} \rfloor$.

Theorem

(Linear convergence rate) Suppose $\sup_{g \in \cup_{x \in \mathcal{X}} \partial f(x)} \|g\| \le c$, $\alpha_k = \alpha$, $\mathcal{X}^* \ne \emptyset$ and

$$f(x) - f^* \ge \gamma(d(x))^2, \ \forall x \in \mathcal{X}, \text{strong convexity}$$

for some $\gamma > 0$ and $\alpha \leq \frac{1}{2\gamma}$. Then for all k

$$(d(x_{k+1}))^2 \le (1 - 2\alpha\gamma)^{k+1} (d(x_0))^2 + \frac{\alpha c^2}{2\gamma}.$$

Note: We have to check the strong convexity. For example, f is polyhedral, and $\mathcal X$ is polyhedral and compact.

Convergence analysis—nonconstant step-size

Theorem

Under the boundedness assumption of subgradients, if α_k satisfies

$$\lim_{k \to \infty} \alpha_k = 0, \ \sum_{k=0}^{\infty} \alpha_k = \infty,$$

then $f_{\infty}=f^*$. Moreover if $\sum_{k=0}^{\infty}\alpha_k^2<\infty$ and \mathcal{X}^* is nonempty, then $\{x_k\}$ converges to some optimal solution.

Theorem

Under the boundedness assumption of subgradients, if \mathcal{X}^* is nonempty and

$$\alpha_k = \frac{f(x_k) - f^*}{\|g_k\|^2}$$
, (Not easy to get f^* !)

then $\{x_k\}$ converges to some optimal solution.

Theorem

Under the boundedness assumption of subgradients and suppose

$$\alpha_k = \frac{f(x_k) - f_k}{\|g_k\|^2},$$

$$f_k = \min_{0 \leq j \leq k} f(x_j) - \delta_k,$$

$$\delta_{k+1} = \left\{\begin{array}{l} \theta \delta_k, & \text{if } f(x_{k+1}) \leq f(x_k), \\ \max\{\beta \delta_k, \delta\}, & \text{if } f(x_{k+1}) > f(x_k), \end{array}\right.$$
 where $0 < \beta < 1, \theta \geq 1$. If $f^* = -\infty$, then
$$\inf_{j \geq 0} f(x_j) = f^*,$$

and if $f^* > -\infty$, then

$$\inf_{j>0} f(x_j) \le f^* + \delta.$$

Comments on subgradient methods

- ▶ Use subgradients and projection $P_{\mathcal{X}}(z)$, suitable for problems with large variable size.
- **Easy** to get the subgradients and projection $P_{\mathcal{X}}(z)$?
- Some problems: convergent, objective value or iteration point convergent, speed?
- ► Some research topics: random algorithms like the random selection of directions for objective value decreasing.

Part II Proximal Algorithm

Method

For a given closed proper convex function f(x) over \mathbb{R}^n , the optimization problem is $\min_{x\in\mathbb{R}^n}f(x)$, and the proximal algorithm (PA) is

$$x_{k+1} \in \arg\min_{x \in \mathbb{R}^n} \left\{ f(x) + \frac{1}{2c_k} ||x - x_k||^2 \right\},$$

where c_k is a given control parameter.

Example

$$\min_{0 \le x \le 3} f(x) = x^2.$$

- ▶ Set $x_0 = 0$ and $c_k = c > 0$. $x_1 = \arg\min_{0 \le x \le 3} \{x^2 + \frac{x^2}{2c}\}$. By $(x^2 + \frac{x^2}{2c})' = 0$, we get $x_1 = 0$.
- ▶ Set $x_0 = 2$ and c > 0. $x_1 = \arg\min_{0 \le x \le 3} \{x^2 + \frac{(x-2)^2}{2c}\} = \frac{2}{2c+1}$, and $x_2 = \arg\min_{0 \le x \le 3} \{x^2 + \frac{1}{2c}(x \frac{2}{2c+1})^2\} = \frac{2}{(2c+1)^2}$.

Proximal function

Proximal function.

$$F(x,y) = f(x) + \frac{1}{2c_k}(x-y)^T(x-y).$$

▶ If f(x) is convex, then F(x,y) is strongly convex over x. Strongly convexity: there exists a $\mu > 0$, such that

$$G(z) \ge G(x) + g^{T}(z - x) + \mu(z - x)^{T}(z - x), \forall z \in \mathbb{R}^{n}, g \in \partial G(x).$$

- ▶ The minimizer of $F(x, x_k)$ is unique.
- ▶ F(x,y) is convex over (x,y).
- ▶ If x^* is a global minimizer of f(x), then (x^*, x^*) is a global minimizer of F(x, y).
- ▶ If x_k is not a (global or local) minimizer of f(x), then there exists a \bar{x} such that $F(\bar{x}, x_k) < F(x_k, x_k) = f(x_k)$.
- If x_k is not a (global or local) minimizer of f(x), then $f(x_{k+1}) < f(x_k)$.

Convergence

Theorem

If f(x) is convex, x_k and x_{k+1} are two successive iterates of the PA, then

$$\frac{x_k - x_{k+1}}{c_k} \in \partial f(x_{k+1}).$$

Theorem

(Three-term inequality) Consider a closed proper convex function f(x) and the PA for any $x_k \in \mathbb{R}^n$ and $c_k > 0$. Then for any $y \in \mathbb{R}^n$, we have

$$||x_{k+1} - y||^2 \le ||x_k - y||^2 - 2c_k(f(x_{k+1}) - f(y)) - ||x_k - x_{k+1}||^2.$$

Theorem

(Convergence) Let f(x) be convex and $\{x_k\}$ be a sequence generated by the PA. Then, if $\sum_{k=0}^{\infty} c_k = \infty$, we have $f(x_k) \to f^* = \inf_{x \in \mathbb{R}^n} f(x)$ and if the optimal solution set $\mathcal{X}^* = \arg\min_{x \in \mathbb{R}^n} f(x)$ is nonempty, $\{x_k\}$ converges to some point in \mathcal{X}^* .

Theorem

(Rate of convergence) Assume that f(x) is convex, \mathcal{X}^* is nonempty and that for some $\beta>0,\ \delta>0,\$ and $\gamma\geq 1,$ we have

$$f^* + \beta(d(x))^{\gamma} \le f(x), \ \forall x \in \mathbb{R}^n \text{ with } d(x) \le \delta,$$

where $d(x) = \min_{x^* \in \mathcal{X}^*} ||x - x^*||$. Suppose

$$\sum_{k=0}^{\infty} c_k = \infty.$$

Then (i) For all k sufficiently large, we have, if $\gamma > 1$,

$$d(x_{k+1}) + \beta c_k (d(x_{k+1}))^{\gamma - 1} \le d(x_k),$$

and, if $\gamma = 1$ and $x_{k+1} \notin \mathcal{X}^*$,

$$d(x_{k+1}) + \beta c_k \le d(x_k).$$

Convergence

(ii) (Superlinear convergence) If $1<\gamma<2,$ $x_k\notin\mathcal{X}^*$ for all k and $\inf_{k>0}c_k>0$, then

$$\lim \sup_{k \to \infty} \frac{d(x_{k+1})}{(d(x_k))^{\frac{1}{\gamma - 1}}} < \infty.$$

(iii) (Linear convergence) If $\gamma=2, x_k\notin\mathcal{X}^*$ for all k and $0<\lim_{k\to\infty}c_k=\bar{c}<\infty$, then

$$\lim \sup_{k \to \infty} \frac{d(x_{k+1})}{d(x_k)} \le \frac{1}{1 + \beta \bar{c}},$$

while if $\lim_{k\to\infty} c_k = \infty$, then

$$\lim_{k \to \infty} \frac{d(x_{k+1})}{d(x_k)} = 0.$$

(iv) (Sublinear convergence) If $\gamma > 2$, then

$$\lim \sup_{k \to \infty} \frac{d(x_{k+1})}{(d(x_k))^{\frac{2}{\gamma}}} = 0.$$

Comments on convergence

$$f^* + \beta(d(x))^{\gamma} \le f(x), \ \forall x \in \mathbb{R}^n \text{ with } d(x) \le \delta.$$

▶ When f(x) is differentiable and x^* be an optimal solution, we have $f'(x^*) = 0$, and by the Taylor formula, for any x near x^* ,

$$f(x) - f(x^*) = \frac{1}{2}(x - x^*)^T H(x - x^*) + o(d^2(x)).$$

- ▶ If f(x) is strictly convex at x^* , We know that $\gamma \geq 2$.
- c_k is large, the decreasing of $f(x_{k+1})$ may be slow by $f(x_{k+1}) + \frac{1}{2c_k} ||x_{k+1} x_k||^2 \le f(x_k)$.
- ▶ The larger c_k is, the weaker the power of the proximal term $\frac{1}{2c_k}||x-x_k||^2$ is.
- ▶ The larger c_k is, the smaller $d(x_{k+1})$ is by $d(x_{k+1}) + \beta c_k (d(x_{k+1}))^{\gamma-1} \le d(x_k)$, for $\gamma > 1$, which means x_{k+1} is more closed to the optimal than that of x_k .
- If $\gamma_1 > \gamma_2 \ge 1$, then $(d(x_{k+1}))^{\gamma_1} < (d(x_{k+1}))^{\gamma_2}$ when $d(x_{k+1}) < 1$. Then the convergent rate for the function with γ_2 is higher than that of γ_1 .

Further convergence results

Theorem

(Finite convergence) Assume f(x) is convex, \mathcal{X}^* is nonempty and that there exists a scalar $\beta>0$ such that

$$f^* + \beta d(x) \le f(x), \ \forall x \in \mathbb{R}^n.$$

If $\sum_{k=0}^{\infty} c_k = \infty$, then the PA converges to \mathcal{X}^* finitely. Furthermore, if $c_0 \geq d(x_0)/\beta$, the algorithm converges in a single step.

Theorem

(Sharp minimum condition for polyhedral functions) Let f(x) be a polyhedral (extended) functions and $\mathcal{X}^* \neq \emptyset$. Then there exists a scalar $\beta > 0$ such that

$$f^* + \beta d(x) \le f(x), \ \forall x \notin \mathcal{X}^*.$$

Gradient interpretation of PA

- ► PA: $\phi_c(x_k) = \min_{x \in \mathbb{R}^n} \{ f(x) + \frac{1}{2c} ||x x_k||^2 \}.$
- $x_{k+1} = \arg\min_{x \in \mathbb{R}^n} \{ f(x) + \frac{1}{2c} ||x x_k||^2 \}.$
- Gradient: $x_{k+1} = x_k cv$ where $v = \nabla \phi_c(x_k)$.

Theorem

The function $\phi_c(x_k)$ is convex and differentiable, and we have

$$\inf_{x \in \mathbb{R}^n} f(x) \le \phi_c(z) \le f(z), \ \forall z \in \mathbb{R}^n,$$

$$\nabla \phi_c(z) = \frac{z - x_c(z)}{c}, \ \forall z \in \mathbb{R}^n,$$

where $x_c(z)$ is the unique minimizer of the PA iteration. Moreover

$$\nabla \phi_c(z) \in \partial f(x_c(z)), \ \forall z \in \mathbb{R}^n.$$

Remarks

▶ The proximal point function

$$F_{c_k}(x, x_k) = f(x) + \frac{1}{2c_k} ||x - x_k||^2$$

is strongly convex. The next iterate point is unique.

$$x_{k+1} = \arg\min_{x \in \mathbb{R}^n} \{ f(x) + \frac{1}{2c_k} ||x - x_k||^2 \}.$$

- ▶ Stop criteria: (1) $x_k = x_{k+1}$, (2) $f(x_k) f(x_{k+1}) \le \epsilon$ for a given precision $\epsilon > 0$, (3) $||x_k x_{k+1}|| \le \epsilon$ for a given precision $\epsilon > 0$, (4) a finite K, etc..
- ▶ So the final iteration point of PPA depends on the initial point x_0 .
- ▶ An example: $f(x) = 0, x \in [0, 1]$. Any point in [0, 1] is an optimal solution.

$$x_{k+1} = \arg\min\{f(x) + \frac{1}{2c_k}(x - x_k)^2\} = \arg\min\{\frac{1}{2c_k}(x - x_k)^2\} = x_k.$$

So the final and the initial points are the same.

Fixed point interpretation of PA

In view of the fixed point concept. Define

$$P_{c,f}(z) = \arg\min_{x \in \mathbb{R}^n} \left\{ f(x) + \frac{1}{2c} ||x - z||^2 \right\}, \ z \in \mathbb{R}^n.$$

The fixed point is \bar{z} such that $z = P_{c,f}(z)$.

- We can use the fixed point theory to design algorithms to get optimal solutions.
- Variants

$$N_{c,f}(z) = 2P_{c,f}(z) - z, \ \forall z \in \mathbb{R}^n.$$

Theorem

For any c>0 and closed proper convex function f(x), the mapping $N_{c,f}(z)=2P_{c,f}(z)-z$ is nonexpansive, i.e.,

$$||N_{c,f}(z_1) - N_{c,f}(z_2)|| \le ||z_1 - z_2||, \ \forall z_1, z_2 \in \mathbb{R}^n.$$

Moreover, any interpolated mapping as following is nonexpansive

$$(1-\alpha)z + \alpha N_{c,f}(z), \quad \forall \ 0 \le \alpha \le 1.$$

Fixed point theory of PA

Theorem

(Krasnosel'skii-Mann theorem for nonexpansive iterations) Consider a mapping $T: \mathbb{R}^n \to \mathbb{R}^n$ that is nonexpansive with respect to the Euclidean norm, i.e.,

$$||T(x) - T(y)|| \le ||x - y||, \quad \forall x, y \in \mathbb{R}^n,$$

and has at least one fixed point. Then the iteration

$$x_{k+1} = (1 - \alpha_k)x_k + \alpha_k T(x_k), \ \ 0 \le \alpha_k \le 1$$

with $\sum_{k=0}^{\infty} \alpha_k (1 - \alpha_k) = \infty$, converges to a fixed point of T, starting from any $x_0 \in \mathbb{R}^n$.

Theorem

(Stepsize relaxation in the PA) The iteration $x_{k+1} = x_k + \gamma_k (P_{c,f}(x_k) - x_k)$, where $\gamma_k \in [\epsilon, 2 - \epsilon]$ for any $0 < \epsilon < 2$, converges to a minimum of f(x), assuming at least one minimum exists.

Dual proximal algorithm (DPA)

Equivalent reformulation. For

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) + \frac{1}{2c_k} ||x - x_k||^2 \right\},\,$$

let $f_1(x) = f(x), f_2(x) = \frac{1}{2c_k} \|x - x_k\|^2$. The equivalent reformulation is

min
$$f_1(x_1) + f_2(x_2)$$

s.t. $x_2 = x_1$
 $x_1, x_2 \in \mathbb{R}^n$.

Lagrangian dual

$$\max_{\lambda \in \mathbb{R}^n} \min_{x_1, x_2 \in \mathbb{R}^n} f_1(x_1) + f_2(x_2) + \lambda^T (x_2 - x_1)$$

$$= \max_{\lambda \in \mathbb{R}^n} \min_{x_1, x_2 \in \mathbb{R}^n} f_1(x_1) - \lambda^T x_1 + f_2(x_2) - (-\lambda)^T x_2$$

$$= \max_{\lambda \in \mathbb{R}^n} -f_1^*(\lambda) - f_2^*(-\lambda)$$

$$= -\min_{\lambda \in \mathbb{R}^n} f_1^*(\lambda) + f_2^*(-\lambda).$$

Dual proximal algorithms (DPA)

▶ Dual functions $f_1^*(\lambda)$ and $f_2^*(\lambda)$.

$$f_1^*(\lambda) = f^*(\lambda) = \sup_{x \in \mathbb{R}^n} \{x^T \lambda - f(x)\}.$$
 Depends on $f(x)$.

$$f_2^*(\lambda) = \sup_{x \in \mathbb{R}^n} \{ x^T \lambda - \frac{1}{2c_k} \|x - x_k\|^2 \} = x_k^T \lambda + \frac{c_k}{2} \|\lambda\|^2$$

Lagrangian dual

$$-\min \quad f_1^*(\lambda) - x_k^T \lambda + \frac{c_k}{2} ||\lambda||^2$$

s.t. $\lambda \in \mathbb{R}^n$.

If the primal is proper convex, then the conditions of Fenchel Theorem are satisfied $f_1(x_1), f_2(x_2)$ are proper convex (there exists a lower bound of minimal value), there exists a feasible relative point $x_1 = x_2$, and a cone $\{(x_1, x_2) | x_1 = x_2\}$. Suppose x_{k+1} and λ_{k+1} be optimal solutions of the above.

$$x_{k+1} \in \partial f_1^*(\lambda_{k+1}), x_{k+1} \in \partial f_2^*(-\lambda_{k+1}), (Comments)$$

$$\lambda_{k+1} \in \partial f_1(x_{k+1}), \quad -\lambda_{k+1} \in \partial f_2(x_{k+1}).$$

Dual proximal algorithms (DPA)

▶ $-\lambda_{k+1} \in \partial f_2(x_{k+1})$ is equivalent to

$$x_{k+1} = \arg \sup_{x \in \mathbb{R}^n} \{-\lambda_{k+1}^T x - f_2(x)\},\$$

from which, we get

$$\lambda_{k+1} = \frac{x_k - x_{k+1}}{c_k}.$$

Dual proximal algorithm. Find

$$\lambda_{k+1} = \arg\min_{\lambda \in \mathbb{R}^n} \left\{ f_1^*(\lambda) - x_k^T \lambda + \frac{c_k}{2} \|\lambda\|^2 \right\},\,$$

and then $x_{k+1} = x_k - c_k \lambda_{k+1}$.

▶ Computational complexity depends on $f_1^*(\lambda)$.

Part III Augmented Lagrangian Methods and Alternative Direction Methods of Multipliers

Augmented Lagrangian methods

Primal problem

$$\begin{array}{ll}
\min & f(x) \\
\text{s.t.} & Ax = b \\
& x \in \mathcal{X},
\end{array}$$

where f(x) is an extended convex function, \mathcal{X} is a convex set, $A \in M(m,n)$ and $b \in \mathbb{R}^m$.

▶ Reformulation: To solve the following p(0).

$$p(u) = \min$$
 $f(x)$
s.t. $Ax - b = u$
 $x \in \mathcal{X}$,

▶ Lagrangian relaxation for the primal problem at any $\lambda \in \mathbb{R}^m$

$$q(\lambda) = \min_{x \in \mathcal{X}} \left\{ f(x) + \lambda^T (Ax - b) \right\}.$$

Comments on augmented Lagrangian methods

Augmented and proximal.

$$\begin{split} x_{k+1} &= \arg\min_{x \in \mathcal{X}} \left\{ f(x) + \lambda_k^T (Ax - b) + \frac{c_k}{2} \|Ax - b\|^2 \right\}, \\ u_{k+1} &= Ax_{k+1} - b, \end{split}$$

$$\lambda_{k+1} = \arg\min_{\lambda \in \mathbb{R}^m} \{-q(\lambda) + \frac{1}{2c_k} \|\lambda - \lambda_k\|^2\}. \text{(Not solve this!)}$$

$$\lambda_{k+1} = \lambda_k + c_k (Ax_{k+1} - b).$$

- ▶ The bigger c_k is, a slower convergent rate of λ may be, and a more feasible solution of x will be.
- Augmented Lagrangian algorithm (ALA):

$$x_{k+1} = \arg\min_{x \in \mathcal{X}} \left\{ f(x) + \lambda_k^T (Ax - b) + \frac{c_k}{2} ||Ax - b||^2 \right\},$$

$$u_{k+1} = Ax_{k+1} - b,$$

$$\lambda_{k+1} = \lambda_k + c_k (Ax_{k+1} - b).$$

Convergence properties of augmented Lagrangian algorithm

Theorem

Suppose $\sum_{k=0}^{\infty} c_k = \infty$, $\inf\{c_k\} > 0$, p(u) be closed proper and p(0) be finite. For the sequence $\{x_k, \lambda_k\}$, the sequence $\{q(\lambda_k)\}$ converges to the augmented Lagrangian primal and dual optimal value. Moreover if the dual problem $\max_{\lambda \in \mathbb{R}^m} \min_{x \in \mathcal{X}} \{f(x) + \lambda^T (Ax - b)\}$ has at least one optimal solution, the following hold: (i) $\{\lambda_k\}$ converges to an optimal dual solution. Furthermore, convergence in a finite number of iterations is obtained if $q(\lambda)$ is polyhedral. (ii) Every limit point of $\{x_k\}$ is an optimal solution of the primal problem $\min_{x \in \mathcal{X}, Ax = b} f(x)$.

Comments

- ▶ $\{x_k\}$ may not be convergent. An example: the objective function is $f(x) = e^{x^1}$, and the constraints are $x^1 + x^2 = 0, x^2 \ge 0$. There is no primal optimal solution.
- ▶ The assumptions 'Suppose p(u) be closed proper and p(0) be finite' can be replaced by the primal problem is feasible and lower bounded.

$$min f(x)
s.t. Ax = b
 x \in \mathcal{X},$$

- ▶ The concavity of $q(\lambda)$ can be proved by the function analysis.
- ▶ If f(x) is a linear function and \mathcal{X} is a polyhedral or $\mathcal{X} = \mathbb{R}^n$, i.e., $\min_{Ax=b,x\geq 0} c^T x$ then $q(\lambda)$ is polyhedral. The APA gets its optimal solution in a finite number of steps.

$$q(\lambda) = \min_{x \in \mathbb{R}^n_+} \{ c^T x + \lambda^T (Ax - b) \}.$$

$$x_{k+1} = \arg \min_{x \in \mathbb{R}^n_+} \left\{ c^T x + \lambda_k^T (Ax - b) + \frac{c_k}{2} ||Ax - b||^2 \right\}.$$

Variants of ALA—inequality constraints

min
$$f(x)$$

s.t. $x \in \mathcal{X}, a_i^T x \leq b_i, i = 1, 2, \dots, r$.

Reformulation

min
$$f(x)$$

s.t. $x \in \mathcal{X}, z^i \ge 0, \ a_i^T x + z^i = b_i, i = 1, 2, \dots, r.$

The AL method

$$\bar{L}_c(x, z, \mu) = f(x) + \sum_{j=1}^r \left\{ \mu^j (a_j^T x - b_j + z_j) + \frac{c}{2} (a_j^T x - b_j + z^j)^2 \right\}.$$

$$\min_{x \in \mathcal{X}, z > 0} \bar{L}_c(x, z, \mu).$$

Two stages

$$L_c(x,\mu) = \min_{z \ge 0} \bar{L}_c(x,z,\mu),$$

$$\min_{x \in \mathcal{X}, z \ge 0} \bar{L}_c(x,z,\mu) = \min_{x \in \mathcal{X}} L_c(x,\mu).$$

Variants of ALA—the first-order method

Augmented Lagrangian method.

$$\begin{split} x_{k+1} &= \arg\min_{x \in \mathcal{X}} \left\{ f(x) + \lambda_k^T (Ax - b) + \frac{c_k}{2} \|Ax - b\|^2 \right\}, \\ u_{k+1} &= Ax_{k+1} - b, \\ \lambda_{k+1} &= \arg\min_{\lambda \in \mathbb{R}^m} \{ -q(\lambda) + \frac{1}{2c_k} \|\lambda - \lambda_k\|^2 \}. \\ \lambda_{k+1} &= \lambda_k + c_k (Ax_{k+1} - b). \end{split}$$

▶ Directly solve the following to get $\nabla q_{c_k}(\lambda)$

$$q_{c_k}(\lambda_k) = \min_{\lambda \in \mathbb{R}^m} \{-q(\lambda) + \frac{1}{2c_k} \|\lambda - \lambda_k\|^2\}.$$

Then we have

$$\nabla q_{c_k}(\lambda_k) = \frac{\lambda_{k+1} - \lambda_k}{c_k},$$

and $\lambda_{k+1} = \lambda_k + c_k \nabla q_{c_k}(\lambda_k)$.

Alternative direction methods of multipliers

An example

$$\min \sum_{i=1}^{m} f_i(x)
\text{s.t.} \quad x \in \bigcap_{i=1}^{m} \mathcal{X}_i,$$

where $f_i(x)$ are convex functions and \mathcal{X}_i are closed convex sets.

Reformulation

min
$$\sum_{i=1}^{m} f_i(z^i)$$

s.t. $x = z^i, i = 1, 2, ..., m$
 $z^i \in \mathcal{X}_i, i = 1, 2, ..., m$.

The augmented Lagrangian model

$$(x_{k+1}, z_{k+1}^1, \dots, z_{k+1}^m) = \arg\min \sum_{i=1}^m \left\{ f_i(z^i) + (\lambda_k^i)^T (x - z^i) + \frac{c_k}{2} ||x - z^i||^2 \right\}$$

s.t. $x \in \mathbb{R}^n, z^i \in \mathcal{X}_i, i = 1, 2, \dots, m,$

(parallel or not?)

$$\lambda_{k+1}^i = \lambda_k^i + c_k(x_{k+1} - z_{k+1}^i), i = 1, 2, \dots, m.$$

ADMM: Definition

Problem

$$\min_{s.t.} f_1(x) + f_2(Ax)$$
s.t. $x \in \mathbb{R}^n$,

where $f_1(x), f_2(y)$ are closed proper convex functions.

Reformulation

min
$$f_1(x) + f_2(z)$$

s.t. $Ax = z$
 $x \in \mathbb{R}^n, z \in \mathbb{R}^m$.

Augmented Lagrangian function

$$L_c(x, z, \lambda) = f_1(x) + f_2(z) + \lambda^T (Ax - z) + \frac{c}{2} ||Ax - z||^2.$$

The ADMM iterations

$$x_{k+1} \in \arg\min_{x \in \mathbb{R}^n} L_c(x, z_k, \lambda_k),$$

$$z_{k+1} \in \arg\min_{z \in \mathbb{R}^m} L_c(x_{k+1}, z, \lambda_k),$$

$$\lambda_{k+1} = \lambda_k + c(Ax_{k+1} - z_{k+1}).$$

ADMM: Convergence and applications

Theorem

Assume that there exists a primal and dual optimal solution pair, and either $\mathrm{dom}(f_1)$ is compact or A^TA is invertible. Then (i) The sequence $\{x_k, z_k, \lambda_k\}$ generated by ADMM is bounded, and every limit point of $\{x_k\}$ is an optimal solution of the primal problem. Furthermore $\{\lambda_k\}$ converges to an optimal dual solution. (ii) The residual sequence $\{Ax_k-z_k\}$ converges to 0, and if A^TA is invertible, then $\{x_k\}$ converges to an optimal primal solution.

Base pursuit.

$$\begin{array}{ll}
\min & ||x||_1\\
\text{s.t.} & Cx = b\\ & x \in \mathbb{R}^n.
\end{array}$$

Reformulation

where
$$f_1(x)=\left\{ egin{array}{ll} 0, & x\in\{x|Cx=b\} \\ \infty, & {\rm otherwise}, \end{array} \right.$$
 $f_2(z)=\|z\|_1.$

ADMM: Base pursuit

▶ The augmented Lagrangian function

$$L_c(x,z,\lambda) = \begin{cases} \|z\|_1 + \lambda^T(x-z) + \frac{c}{2}\|x-z\|^2, & \text{if } Cx = b\\ +\infty, & \text{otherwise,} \end{cases}$$

The ADMM iterations

$$x_{k+1} \in \arg\min_{Cx=b} \left\{ \lambda_k^T x + \frac{c}{2} \|x - z_k\|^2 \right\}, Oracle$$

$$z_{k+1} \in \arg\min_{z \in \mathbb{R}^n} \left\{ \|z\|_1 - \lambda_k^T z + \frac{c}{2} \|x_{k+1} - z\|^2 \right\}$$

$$= \arg\min_{z \in \mathbb{R}^n} \left\{ \|z\|_1 + \frac{c}{2} \|z - (x_{k+1} + \frac{\lambda_k}{c})\|^2 \right\}$$

$$\lambda_{k+1} = \lambda_k + c(Ax_{k+1} - z_{k+1}).(Easy)$$
(Easy)

▶ The *i*th component of z_{k+1} is calculated by

$$(z_{k+1})_i = \begin{cases} (x_{k+1} + \frac{\lambda_k}{c})_i - \frac{1}{c}, & \text{if } (x_{k+1} + \frac{\lambda_k}{c})_i > \frac{1}{c} \\ 0, & \text{if } |(x_{k+1} + \frac{\lambda_k}{c})_i| \le \frac{1}{c} \\ (x_{k+1} + \frac{\lambda_k}{c})_i + \frac{1}{c}, & \text{if } |(x_{k+1} + \frac{\lambda_k}{c})_i| < -\frac{1}{c} \end{cases}$$

ADMM: l_1 -regularization

$$\begin{aligned} & \min_{\text{s.t.}} \quad f(x) + \gamma \|x\|_1 \\ & \text{s.t.} \quad x \in \mathbb{R}^n. \end{aligned}, \quad & \min_{\text{s.t.}} \quad \begin{aligned} f_1(x) + f_2(z) \\ & \text{s.t.} \quad x = z \\ & x \in \mathbb{R}^n, \end{aligned}$$

where $f_1(x) = f(x)$ and $f_2(z) = \gamma ||z||_1$.

The augmented Lagrangian function

$$L_c(x, z, \lambda) = f(x) + \gamma ||z||_1 + \lambda^T (x - z) + \frac{c}{2} ||x - z||^2.$$

The ADMM iterations

$$x_{k+1} \in \arg\min_{x \in \mathbb{R}^n} \left\{ f(x) + \lambda_k^T x + \frac{c}{2} \|x - z_k\|^2 \right\},$$

$$z_{k+1} \in \arg\min_{z \in \mathbb{R}^n} \left\{ \gamma_k \|z\|_1 - \lambda_k^T z + \frac{c}{2} \|x_{k+1} - z\|^2 \right\},$$

$$\lambda_{k+1} = \lambda_k + c(x_{k+1} - z_{k+1}).$$

▶ The *i*th component of z_{k+1} is calculated by

$$(z_{k+1})_i = \begin{cases} (x_{k+1} + \frac{\lambda_k}{c})_i - \frac{\gamma}{c}, & \text{if } (x_{k+1} + \frac{\lambda_k}{c})_i > \frac{\gamma}{c} \\ 0, & \text{if } |(x_{k+1} + \frac{\lambda_k}{c})_i| \le \frac{\gamma}{c} \\ (x_{k+1} + \frac{\lambda_k}{c})_i + \frac{\gamma}{c}, & \text{if } (x_{k+1} + \frac{\lambda_k}{c})_i < -\frac{\gamma}{c} \end{cases}$$

ADMM: Least absolute deviation problems

where $C_{m\times n}$ is of rank n, $f_1(x)=0$ and $f_2(z)=\|z\|_1$.

▶ The augmented Lagrangian function

$$L_c(x, z, \lambda) = ||z||_1 + \lambda^T (Cx - z - b) + \frac{c_k}{2} ||Cx - z - b||^2.$$

The ADMM iterations

$$x_{k+1} = (C^T C)^{-1} C^T (z_k + b - \frac{\lambda_k}{c_k}),$$

$$z_{k+1} \in \arg\min_{z \in \mathbb{R}^m} \left\{ \|z\|_1 - \lambda_k^T z + \frac{c_k}{2} \|Cx_{k+1} - z - b\|^2 \right\},$$

$$\lambda_{k+1} = \lambda_k + c_k (Cx_{k+1} - z_{k+1} - b).$$

▶ The *i*th component of z_{k+1} is calculated by

$$(z_{k+1})_i = \begin{cases} (Cx_{k+1} - b + \frac{\lambda_k}{c_k})_i - \frac{1}{c_k}, & \text{if } (Cx_{k+1} - b + \frac{\lambda_k}{c})_i > \frac{1}{c}, \\ 0, & \text{if } |(Cx_{k+1} - b + \frac{\lambda_k}{c})_i| \le \frac{1}{c}, \\ (Cx_{k+1} - b + \frac{\lambda_k}{c})_i + \frac{1}{c}, & \text{if } (Cx_{k+1} - b + \frac{\lambda_k}{c})_i < -\frac{1}{c} \end{cases}$$

ADMM: Separate problems

min
$$\sum_{i=1}^{m} f_i(x^i)$$
s.t.
$$\sum_{i=1}^{m} A_i x^i = b$$

$$x^i \in \mathcal{X}_i,$$

where $f_i(x^i): \mathbb{R}^{n_i} \to \mathbb{R}$ are convex function, \mathcal{X}_i are closed convex sets.

The augmented Lagrangian function

$$L_c(x^1, x^2, \dots, x^m, \lambda) = \sum_{i=1}^m f_i(x^i) + \lambda^T (\sum_{i=1}^m A_i x^i - b) + \frac{c}{2} \| \sum_{i=1}^m A_i x^i - b \|^2.$$

The ADMM iterations

$$x_{k+1}^{i} \in \arg\min_{x^{i} \in \mathcal{X}_{i}} L_{c}(x_{k+1}^{1}, \dots, x_{k+1}^{i-1}, x^{i}, x_{k+1}^{i+1}, \dots, x_{k+1}^{m}, \lambda_{k}),$$

$$i = 1, 2, \dots, m,$$

$$\lambda_{k+1} = \lambda_{k} + c(\sum_{i=1}^{m} A_{i} x_{k+1}^{i} - b).$$

Separate problems: Reformulation

Reformulation

$$\begin{aligned} & \min & & \sum_{i=1}^m f_i(x^i) \\ & \text{s.t.} & & A_i x^i = z^i \\ & & \sum_{i=1}^m z^i = b \\ & & & x^i \in \mathcal{X}_i, z^i \in \mathbb{R}^r, \end{aligned}$$

where $b \in \mathbb{R}^r$ is given.

The augmented Lagrangian function

$$L_c(x, z, p) = \sum_{i=1}^m f_i(x^i) + (p^i)^T (A_i x^i - z^i) + \frac{c}{2} ||A_i x^i - z^i||^2, \ x \in \mathcal{X}, \ z \in \mathcal{Z},$$

where
$$\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_m$$
 and $\mathcal{Z} = \{z \mid \sum_{i=1}^m z^i = b\}$.

ADMM iteration

$$x_{k+1}^i \in \arg\min_{x^i \in \mathcal{X}_i} \left\{ f_i(x^i) + (A_i x^i - z_k^i)^T p_k^i + \frac{c}{2} ||A_i x^i - z_k^i||^2 \right\},$$

$$i = 1, 2, \dots, m.$$

Separate problems: Reformulation (cont'd-1)

▶ ADMM iterations: *z* and *p* iterations

$$z_{k+1} \in \arg\min_{\sum_{i=1}^{m} z^i = b} \left\{ \sum_{i=1}^{m} (A_i x_{k+1}^i - z^i)^T p_k^i + \frac{c}{2} ||A_i x_{k+1}^i - z^i||^2 \right\},$$

$$p_{k+1}^i = p_k^i + c(A_i x_{k+1}^i - z_{k+1}^i), i = 1, 2, \dots, m.$$

by the
$$z$$
 iteration to relay $\sum^m z^i - b$ and to colve

▶ To get z_{k+1} by the z iteration, to relax $\sum_{i=1}^{m} z^i = b$ and to solve

$$\min_{z^i \in \mathbb{R}^r} \left\{ (A_i x_{k+1}^i - z^i)^T p_k^i + \frac{c}{2} \|A_i x_{k+1}^i - z^i\|^2 + \lambda_{k+1}^T z^i \right\},\,$$

we get

$$z_{k+1}^i = A_i x_{k+1}^i + \frac{p_k^i - \lambda_{k+1}}{c}.$$

Then

$$\lambda_{k+1} = p_k^i + c(A_i x_{k+1}^i - z_{k+1}^i) = p_{k+1}^i, \ i = 1, 2, \dots, m.$$

Separate problems: Reformulation (cont'd-2)

lacksquare λ_{k+1} (using $\sum_{i=1}^m z_{k+1}^i = b, p_k^i = \lambda_k$)

$$\lambda_{k+1} = \lambda_k + \frac{c}{m} (\sum_{i=1}^m A_i x_{k+1}^i - b).$$

 $z_{k+1}^i, i=1,2,\ldots,m.$

$$z_{k+1}^{i} = A_{i}x_{k+1}^{i} + \frac{\lambda_{k} - \lambda_{k+1}}{c} = A_{i}x_{k+1}^{i} - \frac{1}{m}(\sum_{i=1}^{m} A_{i}x_{k+1}^{i} - b).$$

 $p_{k+1}^i, i=1,2,\ldots,m.$

$$p_{k+1}^{i} = p_{k}^{i} + c(A_{i}x_{k+1}^{i} - z_{k+1}^{i}).$$

An application: constrained ADMM

$$\min_{\text{s.t.}} f_1(x) + f_2(Ax) \\
\text{s.t.} Ex = d, x \in \mathcal{X}.$$

$$\min_{\text{s.t.}} f_1(x^1) + f_2(x^2) \\
\text{s.t.} \begin{pmatrix} A \\ E \end{pmatrix} x^1 + \begin{pmatrix} -I \\ 0 \end{pmatrix} x^2 = \begin{pmatrix} 0 \\ d \end{pmatrix}$$

$$x^1 \in \mathcal{X}, x^2 \in \mathbb{R}^n.$$

Comments on ADMM

- The convergence conditions.
- ▶ The complexity to solve the key optimization problem depends on the properties of $f_i(x^i)$ and \mathcal{X}_i . For example,

$$x_{k+1}^{i} \in \arg\min_{x^{i} \in \mathcal{X}_{i}} \left\{ f_{i}(x^{i}) + (A_{i}x^{i} - z_{k}^{i})^{T} p_{k}^{i} + \frac{c}{2} \|A_{i}x^{i} - z_{k}^{i}\|^{2} \right\}.$$

When \mathcal{X}_i is a polyhedral set, $f_i(x^i)$ is a convex quadratic function, then it is solved in polynomial time.