CS201A: Endsem Examination

Soham Sammadar 200990 Akhil Agrawal 200076

Aditya Tanwar 200057

November 2021

Question 1. (10 marks) Consider the following arguement:

Let $\mathbb U$ be the set of all sets. Define a partial ordering on $\mathbb U$ by inclusion: $A \leq B$ iff $A \subseteq B$ for $A, B \in \mathbb U$. Consider a chain C of $\mathbb U$ under this partial ordering: $C: A_1 \leq A_2 \leq A_3 \leq \cdots$. Define $B = \bigcup_{i \geq 1} A_i$. Clearly, $B \in \mathbb U$ and it is an upper bound of the chain C. Hence, Zorn's Lemma implies that $\mathbb U$ has a maximal element, say M.

The argument is clearly wrong since M is not a maximal element: $M \subset \{M, \{M\}\}\} \in \mathbb{U}$. Identify which step in the argument is wrong and why.

Solution 1.

Let there be a set \mathbb{A} and R is partial order defined on \mathbb{A} . According to Zorn's Lemma, if every chain of (\mathbb{A}, R) has an upper bound, then (\mathbb{A}, R) has a maximal element.

Claim: The set of all sets, \mathbb{U} , does not exist.

Proof. Consider the power set of \mathbb{U} to be P. Let the cardinality of \mathbb{U} be \mathcal{N}_0 .

- We know the cardinality of power set > cardinality of the set itself. Let cardinality of P be \mathcal{N}_1 , therefore we have $\mathcal{N}_1 > \mathcal{N}_0$.
- Since every element of the power set P is also a set, it will be an element of \mathbb{U} which is the set of all sets. That is, $Y \in \mathbb{U} \ \forall \ Y \in P \Rightarrow P \subseteq \mathbb{U}$.
- But any subset of \mathbb{U} will have its cardinality $\leq \mathcal{N}_0$. Since $P \subseteq \mathbb{U}$, therefore $\mathcal{N}_1 \leq \mathcal{N}_0$.

We have obtained two inequalities:

$$\mathcal{N}_1 > \mathcal{N}_0$$

$$\mathcal{N}_1 \leq \mathcal{N}_0$$

Which is clearly a contradiction, hence such U cannot exist.

Therefore, the first step in the argument that is "Let $\mathbb U$ be the set of all sets" is incorrect, as such a $\mathbb U$ cannot exist.

Question 2. (20 marks) Let (G, \cdot) be a finite group with the property that there exists only one element, $a_2 \in G$ such that $a_2 \neq e$ and $a_2^2 = a_2 \cdot a_2 = e$. Define a bipartite graph H = (G, G, E) as follows.

Edge $(a, b) \in E$ if $a \neq e$ and $b = a^k$ for some $1 < k \le s$, or a = e and $b = a_2$.

Here, s is the smallest number greater than zero such that $a^s = e$. Prove that the graph H has a perfect matching.

<u>Solution 2.</u> We intend to find a bijective function $f: G \to G$, if it exists, and convert it into a perfect matching in H. This is possible for the following reasons-

- Any perfect matching in H = (G, G, E) can easily be converted to a bijective function f by assigning f(a) = b if (a, b) is an edge in the perfect matching. f will be bijective because each $a \in \mathbf{G}$ has exactly one edge in the perfect matching of $H = (\mathbf{G}, G, E)$, i.e., a has a unique image in f. Further, each $b \in \mathbf{G}$ also has exactly one edge in the perfect matching of $H = (G, \mathbf{G}, E)$, i.e., b has a unique pre-image in f.
- Any bijective f can be converted to a perfect matching by drawing an edge (a, f(a)), given the constraint that $(a, f(a)) \in E$.

Lemma 2.1: For every element $a \in G$, the set $S_a = \{a^r \mid r \in \mathbb{N}\}$ is finite.

Proof. We have $a \in G$, and by closure property over multiplication we obtain

$$a^r \in G \, \forall \, r \in \mathbb{N}$$

 \therefore Every element of S_a is an element of $G. \Rightarrow S_a \subseteq G$ Since G is finite, S_a has to be finite.

Lemma 2.2: For each $a \in G$, $\exists 1 < x \in \mathbb{N}$ such that $a^x = e$.

Proof. Consider the set $S_a = \{a^r \mid r \in \mathbb{N}\}$. By Lemma 2.1, we know S_a is finite. Let the cardinality of S_a be \mathcal{N} .

Consider any $\mathcal{N}+1$ distinct natural numbers. For each number n we obtain a^n . Clearly these will be $\mathcal{N}+1$ in number too. Taking these as pigeons, and elements of S_a as holes, by pigeon-hole principle, there are 2 distinct numbers, say i, j such that $a^i = a^j$. (Assume i > j without loss of generality)

Since G is a group, inverse of every element in G exists. Let the inverse of a^j be denoted by a^{-j} .

$$\therefore a^j \cdot a^{-j} = e$$

We have $a^i = a^j$

$$\Rightarrow a^{i} \cdot a^{-j} = a^{j} \cdot a^{-j}$$
 (Multiply by a^{-j} both sides)

$$\Rightarrow a^{i} \cdot a^{-j} = e$$

$$\Rightarrow (a^{i-j} \cdot a^{j}) \cdot a^{-j} = e$$

$$\Rightarrow a^{i-j} \cdot (a^{j} \cdot a^{-j}) = e$$

$$\Rightarrow a^{i-j} \cdot e = e$$

$$\Rightarrow a^{i-j} = e$$

$$0 < (i - j) \in \mathbb{N}$$
. We choose $x = i - j$, and we are done, as $a^x = e$.

We choose the minimum of these numbers x for a given a and denote it by $\mathcal{O}(a)$. It is easy to see that $\mathcal{O}(a)$ is equal to s mentioned in the question.

<u>Observation 2.1</u> No element, other than a_2 and e, is its own inverse. Follows from the uniqueness of e and a_2 , such that $a_2^2 = e$.

<u>Corollary 2.1</u> Each element a is distinct from its inverse a^{-1} , subject to the constraint that $a \notin \{a_2, e\}$. Or, in other words,

$$a \neq a^{-1} \ \forall \ a \in G \backslash \{e, a_2\}$$

Corollary 2.2 From Lemma 2.2 and Obs 2.1, we obtain that $\mathcal{O}(a) > 2 \,\forall a \in G \setminus \{e, a_2\}$, as only $\mathcal{O}(e) = 1$, and only $\mathcal{O}(a_2) = 2$, but $\mathcal{O}(a)$ exists and is finite $\forall a \in G$.

Lemma 2.3: $(g, g^{-1}) \in E \ \forall \ g \in G \setminus \{e, a_2\}$

Proof. By Lemma 2.2 and Cor 2.2, for each $g \in G \setminus \{e, a_2\} \subseteq G$, we have $2 < \mathcal{O}(g) \in \mathbb{N}$ such that $e = g^{\mathcal{O}(g)}$.

On multiplying both sides with g^{-1} , we get,

$$q^{\mathcal{O}(g)-1} = q^{-1}$$

... Choose $b \leftarrow g^{-1}, a \leftarrow g, k \leftarrow (\mathcal{O}(g) - 1)$. From Cor 2.2, it easy to see that,

$$1 < \mathcal{O}(g) - 1 = k < \mathcal{O}(g) = s$$

As all the conditions are satisfied, we get

$$(g, g^{-1}) = (a, b) \in E \ \forall \ g \in G \setminus \{e, a_2\}$$

Corollary 2.3 $(a^{-1}, a) \in E \ \forall \ a \in G \setminus \{e, a_2\}$. Follows from Lemma 2.3 on choosing $g \leftarrow a^{-1}$.

We define the intended bijective mapping f as follows:

$$f(a) = \begin{cases} a_2 & \text{If } a = e & \because (e, a_2) \in E \\ e & \text{If } a = a_2 & \because e = a_2^2 \\ a^{-1} & \text{Otherwise} & \text{Follows from } Lemma \ 2.3 \end{cases}$$

Onto: Let a be any element in the co-domain, G, of f. If a = e, then its pre-image is easily seen to be a_2 , while if $a = a_2$, then its pre-image is seen to be e. Otherwise, its pre-image is simply a^{-1} .

 \therefore Each element in the co-domain, G, has a pre-image, thus f is onto.

One-One: Let $a \in G \setminus \{e, a_2\}$. Then f maps a to its inverse a^{-1} which cannot be in $\{e, a_2\}$ as e, and a_2 are their own inverses, and we know that inverse of any element in a group is unique.

If a = e, then f maps it to $a_2 \neq e$ which is not in $G \setminus \{e, a_2\}$, else, if $a = a_2$, then f maps it to $e \neq a_2$ which is again, not in $G \setminus \{e, a_2\}$.

Hence, f is one-one.

So, there is at least one bijective mapping f from G to G which "respects" the edge set E. This bijective mapping can be converted to a perfect matching as shown <u>here</u>.

Alternate

Using Lemma 2.3 and uniqueness of inverses, and using the fact that $\{(e, a_2), (a_2, e)\} \subseteq E$, we can take any $U \subseteq G$, then we are guaranteed that $|N(U)| \ge |U|$, N(U) being the neighbor set of U, because each element in U will have an edge with at least its (unique) inverse, except for e and e2, for which, the candidate edges have been swapped.

Hence, we can invoke the theorem that

A bipartite graph $G = (V_1, V_2, E)$ has a perfect matching if and only if $|V_1| = |V_2|$, and for every $U \subseteq V_1$, $|N(U)| \ge |U|$.

By taking, $V_1 \leftarrow G$, $V_2 \leftarrow G$, so $|V_1| = |V_2|$ follows trivially, and $|N(U)| \ge |U|$ follows for reasons mentioned above.

Hence, H = (G, G, E) has a perfect matching.

Question 3. (5+5+5+10+5 marks) Let R be a ring and $a \in R$. Define $(a) = \{b \cdot a \mid b \in R\}$.

• Prove that (a) is an ideal of R.

Let polynomial $C(x, y) = (x^2 + y^2 - 1) \cdot x$. The curve C(x, y) = 0 is a unit circle plus y-axis on the plane. $(C) = \{Q(x, y) \cdot C(x, y) \mid Q(x, y) \in \mathbb{R}[x, y]\}$ is an ideal of the ring $\mathbb{R}[x, y]$, the ring of polynomials in two variables with coefficients in \mathbb{R} .

Define $R = \mathbb{R}[x, y]/(C)$. For any point $P \in \mathbb{R} \times \mathbb{R}$ on the plane, define $R_P = \{\frac{f}{g} \mid f, g \in R \text{ and } g(P) \neq 0\}$ and $I_P = \{\frac{f}{g} \mid f, g \in R \text{ and } g(P) \neq 0 \text{ and } f(P) = 0\}$. Prove that

- R_P is a ring.
- I_P is a maximal ideal of R_P .
- For point $P = (1, 0), I_P = (y).$
- For point $P = (0,1), (x) \subseteq I_P$.

It can be shown that $I_P \neq (x)$. Therefore, ring R_P contains information about whether curve C is degenerate at point P.

Solution 3.

- $(a) := \{b \cdot a \mid b \in R\}$ is an ideal of R. Let $(R, \cdot, +)$ be the ring with + as the addition operation and \cdot as the multiplication operation.
 - Let $a_0 \in (a)$. Then $a_0 = b \cdot a$ for some $b \in R$. As \cdot has closure in R, $a_0 = b \cdot a \in R$. Hence, $a_0 \in R \ \forall \ a_0 \in (a) \Rightarrow (a) \subseteq R$.
 - Let $a_1, a_2 \in (a)$. ∴ $a_1 = b_1 \cdot a$ and $a_2 = b_2 \cdot a$ for some $b_1, b_2 \in R$. $a_1 + a_2 \in R$ -

$$a_1 + a_2 = b_1 \cdot a + b_2 \cdot a$$

= $(b_1 + b_2) \cdot a$ {From Distributivity of \cdot over $+$ in R
= $(b) \cdot a$ {From Closure property of $+$ in R
= $b \cdot a \in (a)$

- Let $c \in R$ and $a_0 \in (a)$. $\therefore a_0 = d \cdot a$ for some $d \in R$. $c \cdot a_0 \in (a)$ -

$$c \cdot a_0 = c \cdot (d \cdot a)$$

 $= (c \cdot d) \cdot a$ {From Associativity of \cdot in R
 $= (b) \cdot a$ {From Closure of \cdot in R
 $= b \cdot a \in (a)$

Hence, (a) is an ideal of R.

Throughout the rest of the discussion, we restrict any point to be only from the set

$$S = \{ P \mid C(P) = 0 \}$$

We also use [f] to denote the equivalence class of $f \in \mathbb{R}[x, y]$ under R, + to denote the addition operation on R and \cdot to denote the multiplication operation on R.

Lemma 3.1 (Evaluating Equivalence Classes at Points). For a fixed $[f] \in \mathbb{R}[x, y]/(C)$, and any polynomial $f \in [f]$, the value of f(P) remains constant.

Proof. Any $f \in [f]$ can be represented as

$$f = f_0 + C \cdot h$$

where f_0 is the residue polynomial modulo C and h is any polynomial in $\mathbb{R}[x, y]$. For any point $P \in S$,

$$f(P) = f_0(P) + C(P) \cdot h(P)$$
$$= f_0(P) + Q(P) \cdot 0$$
$$= f_0(P)$$

Hence, we can define $[f](P) = f_0(P)$

<u>Note</u> This allows us to refer to any equivalence class [f] by its "residue" polynomial f_0 (residue with respect to C).

• $R_p := \{ \frac{f}{g} \mid f, g \in R \text{ and } g(P) \neq 0 \}$ is a ring, $P \in S$

Addition on R_P :

Closure: Let $r_1 = \frac{[f_1]}{[g_1]}, \ r_2 = \frac{[f_2]}{[g_2]} \in R_P$. Then,

$$r_1 + r_2 = \frac{[f_1]}{[g_1]} + \frac{[f_2]}{[g_2]} = \frac{[f_1] \cdot [g_2] + [f_2] \cdot [g_1]}{[g_1] \cdot [g_2]} = \frac{[f_1 \cdot g_2] + [f_2 \cdot g_1]}{[g_1 \cdot g_2]} = \frac{[f_1 \cdot g_2 + f_2 \cdot g_1]}{[g_1 \cdot g_2]}$$

Now, $[g_1](P) \neq 0$, and $[g_2](P) \neq 0 \Rightarrow [g_1 \cdot g_2](P) \neq 0$, and of course, $([f_1] \cdot [g_2] + [f_2] \cdot [g_1]) \in R$ and $[g_1 \cdot g_2] \in R$ by closure of addition and multiplication on R. Thus $r_1 + r_2 \in R_P$.

Associative: Let $r_1 = \frac{[f_1]}{[g_1]}$, $r_2 = \frac{[f_2]}{[g_2]}$, $r_3 = \frac{[f_3]}{[g_3]} \in R_P$. Then,

$$(r_1 + r_2) + r_3 = \left(\frac{[f_1]}{[g_1]} + \frac{[f_2]}{[g_2]}\right) + \frac{[f_3]}{[g_3]} = \frac{[f_1] \cdot [g_2] + [f_2] \cdot [g_1]}{[g_1] \cdot [g_2]} + \frac{[f_3]}{[g_3]}$$
$$= \frac{[f_1] \cdot [g_2] \cdot [g_3] + [f_2] \cdot [g_1] \cdot [g_3] + [f_3] \cdot [g_1] \cdot [g_2]}{[g_1] \cdot [g_2] \cdot [g_3]}$$

$$r_{1} + (r_{2} + r_{3}) = \frac{[f_{1}]}{[g_{1}]} + \left(\frac{[f_{2}]}{[g_{2}]} + \frac{[f_{3}]}{[g_{3}]}\right) = \frac{[f_{1}]}{[g_{1}]} + \frac{[f_{2}] \cdot [g_{3}] + [f_{3}] \cdot [g_{2}]}{[g_{2}] \cdot [g_{3}]}$$

$$= \frac{[f_{1}] \cdot [g_{2}] \cdot [g_{3}] + [f_{2}] \cdot [g_{3}] \cdot [g_{1}] + [f_{3}] \cdot [g_{2}] \cdot [g_{1}]}{[g_{1}] \cdot [g_{2}] \cdot [g_{3}]}$$

Thus, $(r_1 + r_2) + r_3 = r_1 + (r_2 + r_3)$ follows from commutativity of multiplication in R.

Commutative: Let $r_1 = \frac{[f_1]}{[g_1]}$, $r_2 = \frac{[f_2]}{[g_2]} \in R_P$. Then,

$$r_1 + r_2 = \frac{[f_1]}{[g_1]} + \frac{[f_2]}{[g_2]} = \frac{[f_1] \cdot [g_2] + [f_2] \cdot [g_1]}{[g_1] \cdot [g_2]} = \frac{[f_1 \cdot g_2] + [f_2 \cdot g_1]}{[g_1 \cdot g_2]} = \frac{[f_1 \cdot g_2 + f_2 \cdot g_1]}{[g_1 \cdot g_2]}$$

$$r_2 + r_1 = \frac{[f_2]}{[g_2]} + \frac{[f_1]}{[g_1]} = \frac{[f_2] \cdot [g_1] + [f_1] \cdot [g_2]}{[g_2] \cdot [g_1]} = \frac{[f_2 \cdot g_1] + [f_1 \cdot g_2]}{[g_2 \cdot g_1]} = \frac{[f_2 \cdot g_1 + f_1 \cdot g_2]}{[g_2 \cdot g_1]}$$

Thus, $r_1 + r_2 = r_2 + r_1$ follows from commutativity of addition and multiplication in R.

Identity: $\frac{[0]}{[1]}$ serves as the identity element of addition over R_P , as, for any $\frac{[f]}{[g]} \in R_P$, we have

$$\frac{[f]}{[g]} + \frac{[0]}{[1]} = \frac{[f] \cdot [1] + [g] \cdot [0]}{[g] \cdot [1]} = \frac{[f \cdot 1] + [g \cdot 0]}{[g \cdot 1]} = \frac{[f] + [0]}{[g]} = \frac{[f]}{[g]}$$

Most of the simplifications follow from [0] being the identity of addition and [1] being the identity of multiplication, except for $[g] \cdot [0] = [0]$, which follows from,

$$[g](P) \cdot [0](P) = g_0(P) \cdot 0(P) = g_0(P) \cdot 0 = 0 \in [0]$$

where $g_0 \in [g]$ and 0 is the zero polynomial.

Inverse: Let $a = \frac{[f]}{[g]} \in R_P$, then, it is easy to see that $b = \frac{[-f]}{[g]} \in R_P$, is the inverse of a. More formally, we evaluate,

$$a+b = \frac{[f]}{[g]} + \frac{[-f]}{[g]} = \frac{f_0}{g_0} + \frac{-f_0}{g_0} = \frac{f_0 - f_0}{g_0} = \frac{0}{g_0} = 0 = \frac{[0]}{[1]}$$

Hence, every element has a unique inverse associated to it in R_P .

Multiplication on R_P

Closure: Let $r_1 = \frac{[f_1]}{[g_1]}$, $r_2 = \frac{[f_2]}{[g_2]} \in R_P$. Then,

$$r_1 \cdot r_2 = \frac{[f_1]}{[g_1]} \cdot \frac{[f_2]}{[g_2]} = \frac{[f_1] \cdot [f_2]}{[g_1] \cdot [g_2]} = \frac{[f_1 \cdot f_2]}{[g_1 \cdot g_2]}$$

Again, $[f_1 \cdot f_2]$, $[g_1 \cdot g_2] \in R$ by closure of multiplication over R, and $[g_1](P) \neq 0$ and $[g_2](P) \neq 0 \Rightarrow [g_1 \cdot g_2](P) \neq 0$. Thus, $r_1 \cdot r_2 \in R_P$.

Associative: Let $r_1 = \frac{[f_1]}{[g_1]}$, $r_2 = \frac{[f_2]}{[g_2]}$, $r_3 = \frac{[f_3]}{[g_3]} \in R_P$. Then,

$$(r_1 \cdot r_2) \cdot r_3 = \left(\frac{[f_1]}{[g_1]} \cdot \frac{[f_2]}{[g_2]}\right) \cdot \frac{[f_3]}{[g_3]} = \left(\frac{[f_1] \cdot [f_2]}{[g_1] \cdot [g_2]}\right) \cdot \frac{[f_3]}{[g_3]} = \frac{[f_1] \cdot [f_2] \cdot [f_3]}{[g_1] \cdot [g_2] \cdot [g_3]}$$
$$r_1 \cdot (r_2 \cdot r_3) = \frac{[f_1]}{[g_1]} \cdot \left(\frac{[f_2]}{[g_2]} \cdot \frac{[f_3]}{[g_3]}\right) = \frac{[f_1]}{[g_1]} \cdot \left(\frac{[f_2] \cdot [f_3]}{[g_2] \cdot [g_3]}\right) = \frac{[f_1] \cdot [f_2] \cdot [f_3]}{[g_1] \cdot [g_2] \cdot [g_3]}$$

Thus, $(r_1 \cdot r_2) \cdot r_3 = r_1 \cdot (r_2 \cdot r_3)$ is a direct consequence of associativity of multiplication over R.

Identity: $\frac{[1]}{[1]}$ serves as the identity of multiplication over R_P , as for any $\frac{[f]}{[g]} \in R_P$, we have

$$\frac{[f]}{[g]} \cdot \frac{[1]}{[1]} = \frac{[f] \cdot [1]}{[g] \cdot [1]} = \frac{[f \cdot 1]}{[g \cdot 1]} = \frac{[f]}{[g]}$$

Follows from [1] being the identity of in R.

Distributive: Let $r_1 = \frac{[f_1]}{[g_1]}$, $r_2 = \frac{[f_2]}{[g_2]}$, $r_3 = \frac{[f_3]}{[g_3]} \in R_P$. Then,

$$r_{1} \cdot (r_{2} + r_{3}) = \frac{[f_{1}]}{[g_{1}]} \cdot \left(\frac{[f_{2}]}{[g_{2}]} + \frac{[f_{3}]}{[g_{3}]}\right) = \frac{[f_{1}]}{[g_{1}]} \cdot \left(\frac{[f_{2}] \cdot [g_{3}] + [f_{3}] \cdot [g_{2}]}{[g_{2}] \cdot [g_{3}]}\right)$$

$$= \frac{[f_{1}] \cdot ([f_{2}] \cdot [g_{3}] + [f_{3}] \cdot [g_{2}])}{[g_{1}] \cdot [g_{2}] \cdot [g_{3}]}$$

$$= \frac{[f_{1}] \cdot [f_{2}] \cdot [g_{3}] + [f_{1}] \cdot [f_{3}] \cdot [g_{2}]}{[g_{1}] \cdot [g_{2}] \cdot [g_{3}]}$$

$$r_{1} \cdot r_{2} + r_{1} \cdot r_{3} = \frac{[f_{1}]}{[g_{1}]} \cdot \frac{[f_{2}]}{[g_{2}]} + \frac{[f_{1}]}{[g_{1}]} \cdot \frac{[f_{3}]}{[g_{3}]} = \frac{[f_{1}] \cdot [f_{2}]}{[g_{1}] \cdot [g_{2}]} + \frac{[f_{1}] \cdot [f_{3}]}{[g_{1}] \cdot [g_{3}]}$$

$$= \frac{[f_{1}] \cdot [f_{2}] \cdot [g_{3}]}{[g_{1}] \cdot [g_{2}] \cdot [g_{3}]} + \frac{[f_{1}] \cdot [f_{3}] \cdot [g_{2}]}{[g_{1}] \cdot [g_{2}] \cdot [g_{3}]}$$

$$= \frac{[f_{1}] \cdot [f_{2}] \cdot [g_{3}] + [f_{1}] \cdot [f_{3}] \cdot [g_{2}]}{[g_{1}] \cdot [g_{2}] \cdot [g_{3}]}$$

Thus, $r_1 \cdot (r_2 + r_3) = r_1 \cdot r_2 + r_1 \cdot r_3$.

• $I_P = \{ \frac{f}{g} \mid f, g \in R \text{ and } g(P) \neq 0 \text{ and } f(P) = 0 \}$ is a maximal ideal of R_P . We first show that I_P is an ideal of R_P .

- Let
$$k = \frac{[f_1]}{[g_1]}$$
, $h = \frac{[f_2]}{[g_2]} \in I_P$, then,

$$k + h = \frac{[f_1]}{[g_1]} + \frac{[f_2]}{[g_2]} = \frac{[f_1] \cdot [g_2] + [f_2] \cdot [g_1]}{[g_1] \cdot [g_2]} = \frac{[f_1 \cdot g_2 + f_2 \cdot g_1]}{[g_1 \cdot g_2]} = \frac{[f]}{[g]} \in I_P$$

Clearly, $[g](P) \neq 0$. Further [f](P) = 0, because,

$$[f](P) = [f_1 \cdot g_2 + f_2 \cdot g_1](P) = [f_1](P) \cdot [g_2](P) + [f_2](P) \cdot [g_1](P)$$
$$= 0 \cdot [g_2](P) + 0 \cdot [g_1](P) = 0 + 0 = 0$$

Hence, for any $k, h \in I_P$, we have $k + h \in I_P$

- Let $a = \frac{[f_a]}{[g_a]} \in R_P$, and $h = \frac{[f_h]}{[g_h]} \in I_P$, then,

$$a \cdot h = \frac{[f_a]}{[g_a]} \cdot \frac{[f_h]}{[g_h]} = \frac{[f_a] \cdot [f_h]}{[g_a] \cdot [g_h]} = \frac{[f_a \cdot f_h]}{[g_a \cdot g_h]} = \frac{[f]}{[g]} \in I_P$$

Clearly, $[g](P) \neq 0$. Further [f](P) = 0, because,

$$[f](P) = [f_a \cdot f_h](P) = [f_a](P) \cdot [f_h](P) = [f_a](P) \cdot 0 = 0$$

Hence, for any $a \in R_P$ and $h \in I_P$, we obtain $a \cdot h \in I_P$.

Thus, I_P is an ideal of R_P . Further, to show that I_P is a maximal ideal of R_P , we assume towards contradiction that $\exists J$, an ideal of R_P , such that $I_P \subset J \subset R_P$. We intend to show that $\frac{[1]}{[1]} \in J$.

As $I_P \subset J$, and $[f](P) = 0 \ \forall \frac{[f]}{[g]} \in I_P$, there must be $\frac{[f_c]}{[g_c]} \in J$, such that $[f_c](P) \neq 0$. Also, $[g_c](P) \neq 0 :: \frac{[f_c]}{[g_c]} \in J \subset R_P$.

Clearly, $\frac{[g_c]}{[f_c]} \in R_P$: $[f_c](P) \neq 0$. We choose, $a_c = \frac{[g_c]}{[f_c]} \in R_P$, and $h_c = \frac{[f_c]}{[g_c]} \in J$, and observe their product,

$$a_c \cdot h_c = \frac{[g_c]}{[f_c]} \cdot \frac{[f_c]}{[g_c]} = \frac{g_{c_0}(P)}{f_{c_0}(P)} \cdot \frac{f_{c_0}(P)}{g_{c_0}(P)} = 1 = \frac{1}{1}$$

 $\therefore J$ is an ideal, $\therefore a_c \cdot h_c = \frac{[1]}{[1]} \in J$. But, the existence of identity of multiplication in $J \Rightarrow J = R_P$. A contradiction!

Thus, I_P is indeed, a maximal ideal of R_P .

• For P = (1,0), $I_p = (y)$.

Lemma 3.2. $(y) \subseteq I_p$

Proof. For any $a \in (y)$, let $a = \frac{[y] \cdot [f]}{[g]}$, where $\frac{[f]}{[g]} \in R_p$. Now, looking at the numerator, $[y \cdot f](P) = [y](P) \cdot [f](P) = 0$, as [y](P) is trivially 0. The denominator, $[g](P) \neq 0$, by definition of R_p .

$$\therefore a \in I_p$$
$$\Rightarrow (y) \subseteq I_p$$

Lemma 3.3. $[x-1] \in (y)$, where $[x-1] \in R$.

Proof. We need $[x-1] = [y] \cdot r$ for some $r \in R$. Let $r = \frac{[f]}{[q]}$

$$[x-1] \cdot [g] = [y] \cdot [f]$$

$$[(x-1) \cdot g] = [y \cdot f]$$

$$[(x-1) \cdot g] - [y \cdot f] = [(x-1) \cdot g - y \cdot f] = 0$$

$$\therefore (x-1) \cdot g - y \cdot f = a \in (C)$$

$$\Rightarrow (x-1) \cdot g - y \cdot f = a = C \cdot h \qquad \text{where } h \in \mathbb{R}[x, y]$$

$$(x-1)g - yf = h((x-1)x(x+1) + xy^2)$$

$$(x-1)(g+hx(x+1)) = y(f+xy)$$

We, rather arbitrarily, set h = 1. Now, inspecting the factors, we set:

$$f + xy = x - 1$$
$$f = x - xy - 1$$

$$g + x(x+1) = y$$
$$g = y - x^2 - x$$

Additionally, the only constraint we have is that $[g](P) \neq 0$. Indeed, [g](P) = -2 in our case.

$$\therefore [x-1] = [y] \cdot \frac{[x-xy-1]}{[y-x^2-x]} \Rightarrow [x-1] \qquad \in (y)$$

Hence proved.

Lemma 3.4. For any $f \in \mathbb{R}[x, y]$, if f(1, 0) = 0, then f can be expressed as a linear combination of (x - 1) and y.

Proof. We can separate out the terms in f into the two sets - one which only contains powers of x, and the other terms. Note that the constant term is also to be considered in the first set. A y can be factored out from the terms in the second set. We rewrite f as follows

$$f(x,y) = q(x) + yh(x,y)$$

Now,

$$f(1,0) = q(1) + 0 \cdot h(1,0)$$
$$q(1) = 0$$

By remainder theorem, (x-1) is a factor of q(x). We write q(x)=(x-1)q'(x).

$$\therefore f(x,y) = (x-1)q'(x) + yh(x,y)$$

Hence proved.

Finally, for any $r \in I_p$, let $r = \frac{[f]}{[g]}$

$$r = \frac{[(x-1)q' + yh]}{[g]}$$
 (From lemma 3.4)
$$r = \frac{[x-1][q']}{[g]} + \frac{[y][h]}{[g]}$$

Since, $[x-1] \in (y)$ (lemma 3.3) and $\frac{[q']}{[g]} \in R_p$, $\frac{[x-1][q']}{[g]} \in (y)$ as (y) is an ideal Let $y_1 = \frac{[x-1][q']}{[g]} \in (y)$ and $y_2 = \frac{[y][h]}{[g]} \in (y)$

$$r = y_1 + y_2$$
$$r \in (y)$$

(Since (y) is an ideal)

This implies $I_p \subseteq (y)$, but from lemma 3.2, we get

$$I_p = (y)$$

Hence proved.

• For point P = (0, 1), $(x) \subseteq I_P$. It is easy to see that (x)(P) = 0 simply because x(P) = 0. More formally, let $a = [x] \cdot \frac{[f]}{[g]} \in (x)$ where $\frac{[f]}{[g]} \in R_P$. We re-write [x] as $\frac{[x]}{[1]}$, since, [1] is the identity of multiplication. Then, we have,

$$a = \frac{[x]}{[1]} \cdot \frac{[f]}{[g]} = \frac{[x] \cdot [f]}{[1] \cdot [g]} = \frac{[x \cdot f]}{[g]}$$

We claim that $a \in I_P$ because, $[g](P) \neq 0$, as $\frac{[f]}{[g]} \in R_P$, and

$$[x \cdot f](P) = [x](P) \cdot [f](P) = 0 \cdot [f](P) = 0$$

Hence, $a \in I_P \ \forall \ a \in (x) \Rightarrow (x) \subseteq I_P$.

