In [111	ДЗ-2. Матстат. Богоявленский Максим, БЭК211 import matplotlib.pyplot as plt
111 [111	<pre>import matptottls.pyptot as ptt import numpy as np import pandas as pd import math import seaborn as sns from scipy.stats import t from scipy.stats import norm</pre>
	<pre>from scipy.stats import ttest_ind from scipy import stats import warnings warnings.filterwarnings("ignore") sns.set_theme(style="whitegrid", palette="muted")</pre>
	Задача 1 Однажды в Самарканде турист заказывал Яндекс-такси. На десятом заказе впервые приехал таксист, который уже раньше приезжал к туристу. Для упрощения предположим, что все п таксистов Самарканда всегда на работе и приезжают равновероятно. а) [5] Постройте график функции правдоподобия как функции от общего количества такси п. Найдите оценку числа п методом максимального правдоподобия.
In [4]:	
In [10]:	<pre>l *= (i-j)/i l *= (k-1)/i ll.append(l) plt.figure(figsize = (15, 9)) plt.plot(list(range(1, 1001)), ll)</pre>
Out[10]:	plt.xlabel('кол-во n таксистов') plt.ylabel('значение функции') plt.title('оценка по ML:'+ str(np.argmax(ll)+1)) Техt(0.5, 1.0, 'оценка по ML:42') оценка по ML:42
	0.08
	0.06
	ф
	0.04
	0.02
	0.00
	0 200 400 600 800 1000 кол-во n таксистов б) [5] Постройте график математического ожидания номера заказа, на котором происходит первый повторный приезд, как функции от общего количества такси n. Найдите оценку числа n
In [12]:	<pre>for i in range(1, 1001): e = 0 for k in range(1, 1001):</pre>
	<pre>l = 1 if k == 1: l = 1 else: for j in range(1, k-1): l *= (i-j)/i l *= (k-1)/i</pre>
In [20]:	<pre>e+=(k*l) ee.append(e) plt.figure(figsize = (15, 9)) plt.plot(list(range(1, 1001)), ee) plt.xlabel('κοπ-во n таксистов')</pre>
Out[20]:	plt.ylabel('E') plt.title('оценка по MM:'+ str(np.argmin(abs(np.array(ee)-10))+1)) Техt(0.5, 1.0, 'оценка по MM:55') оценка по MM:55
	40
	35
	25
	ш ₂₀
	10
	5
	0 200 400 600 800 1000 кол-во n таксистов
In [145	
	innoe = stats.expon.rvs(scale=1, size=(10000, 20)) innot = t.rvs(df=3, size=(10000, 20)) а) [15]Для каждого способа с помощью 10000 симуляций оцените вероятность того,что номинально 95%-й доверительный интервал фактически накрывает математическое ожидание, если наблюдения распределены экспоненциально с интенсивностью 1.
In [146	<pre>c = 0 for i in range (10000): di = stats.norm.interval(105, loc=np.mean(innoe[i]), scale=np.std(innoe[i],ddof=1)/np.sqrt(20)) if di[0] <= 1 <= di[1]: c+=1 print('классический ассимтотический ДИ:', c/10000)</pre>
In [148	классический ассимтотический ДИ: 0.9029 np.random.seed(123435) c = 0 for i in innoe: boot = np.random.choice(i.flatten(), size=(10000, 20), replace=True)
	bm = np.mean(boot, axis = 1) di = np.percentile(bm, [2.5, 97.5]) if di[0] <= 1 <= di[1]:
In [149	<pre>np.random.seed(123435) c = 0 mm = np.mean(innoe) sstd = np.std(innoe) for i in innoe:</pre>
	<pre>boot = np.random.choice(i.flatten(), size=(10000, 20), replace=True) bm = np.mean(boot, axis = 1) bstd = np.std(boot, axis = 1, ddof = 1) ts = (bm - mm)/ (bstd/np.sqrt(20)) di = mm - np.percentile(ts, [97.5, 2.5]) * (sstd / np.sqrt(20)) if di[0] <= 1 <= di[1]:</pre>
T [450	print('бутстрап t-статистики:', c/10000) бутстрап t-статистики: 0.901 б) [5] Пересчитайте вероятности накрытия,если наблюдения имеют распределение Стьюдента с тремя степенями свободы.
In [150	<pre>for i in range (10000): di = stats.norm.interval(105, loc=np.mean(innot[i]), scale=np.std(innot[i],ddof=1)/np.sqrt(20)) if di[0] <= 0 <= di[1]:</pre>
In [151	классический ассимтотический ДИ: 0.9459 np.random.seed(123435) c = 0 for i in innot: boot = np.random.choice(i.flatten(), size=(10000, 20), replace=True) bm = np.mean(boot, axis = 1)
	di = np.percentile(bm, [2.5, 97.5]) if di[0] <= 0 <= di[1]:
In [152	<pre>c = 0 mm = np.mean(innot) sstd = np.std(innot) for i in innot: boot = np.random.choice(i.flatten(), size=(10000, 20), replace=True)</pre>
	bm = np.mean(boot, axis = 1) bstd = np.std(boot, axis = 1, ddof = 1) ts = (bm - mm)/ (bstd/np.sqrt(20)) di = mm - np.percentile(ts, [97.5, 2.5]) * (sstd / np.sqrt(20)) if di[0] <= 0 <= di[1]:
	бутстрап t-статистики: 0.9234 в) [5] Какой способ оказался лучше? Для обоих распределений - классический ассимпт дов интервал.
	Задача 4 Проверьте гипотезу о том, что ожидаемые результаты экзамена по теории вероятностей тех, у кого фамилия начинается с гласной буквы и с согласной буквы, равны. В качестве альтернатив- ной гипотезы возьмите гипотезу о неравенстве.
In [58]:	<pre>ex = pd.read_csv("/Users/a1111/Desktop/mst.csv", sep=',') df = ex[['Last name','Unnamed: 72']] df = df.dropna() df = df.reset_index() df = df[['Last name','Unnamed: 72']] df.columns = ['sur','res']</pre>
In [88]:	<pre>gla = ['A', 'E', 'Ë', 'N', '0', 'y', 'Ы', 'Э', 'Ю', 'Я'] ind = 0 a = [] b = [] for el in np.array(df['sur']): if el[0] in gla:</pre>
	<pre>a.append(ind) else: b.append(ind) ind+=1 gl = (df.loc[np.array(a)])['res'] so = (df.loc[np.array(b)])['res']</pre>
	a) [5] Используйте тест Уэлча НО не отвергается ttest_ind(gl,so,equal_var=False) Ttest_indResult(statistic=-0.8519661870595602, pvalue=0.3974027153843839)
In [153	б) [5] Используйте наивный бутстрэп НО не отвергается пр.random.seed(123435) mboot = [] mn = np.mean(gl) - np.mean(so) for i in range(10000);
	<pre>for i in range(10000): sgl = np.random.choice(gl, size=len(gl), replace=True) sso = np.random.choice(so, size=len(so), replace=True) mboot.append(np.mean(sgl) - np.mean(sso)) pv = (np.abs(mboot) >= np.abs(mn)).mean() pv</pre>
Out[153]: In [154…	в) [5] Используйте бутстрэп t-статистики HO не отвергается np.random.seed(123435) mn = np.mean(gl) - np.mean(so)
	<pre>mstd = np.std(gl) - np.std(so) ts = mn / np.sqrt(mstd**2 / len(gl) + mstd**2 / len(so)) tboot = [] for i in range(10000): sgl = np.random.choice(gl, size=len(gl), replace=True) sso = np.random.choice(so, size=len(so), replace=True) bm = np.mean(sgl) - np.mean(sso)</pre>
0 1 [454]	<pre>bs = np.std(sgl) - np.std(sso) bts = bm / np.sqrt(bs**2 / len(sgl) + bs**2 / len(sso)) tboot.append(bts) pv = (np.abs(tboot) >= np.abs(ts)).mean() pv</pre>
Out[154]: In [155	r) [5] Используйте перестановочный тест НО не отвергается np.random.seed(123435) mn = np.mean(gl) - np.mean(so)
	<pre>sogl = list(so) + list(gl) sr = [] for i in range(10000): np.random.shuffle(sogl) pgl = sogl[:len(gl)] pso = sogl[len(gl):] sr.append(np.mean(pgl) - np.mean(pso))</pre>
Out[155]:	<pre>pv = (np.abs(sr) >= np.abs(mn)).mean() pv 0.38 Задача 5</pre>
	Составьте таблицу сопряжённости, поделив студентов писавших экзамен на четыре группы по двум признакам: набрал ли больше медианы или нет, на согласную или гласную букву начинается фамилия. df['res'].median()
Out[105]: In [107	<pre>g1 = len(np.where(gl > 17.5)[0]) g2 = len(np.where(gl <= 17.5)[0]) g3 = len(np.where(so > 17.5)[0]) g4 = len(np.where(so <= 17.5)[0])</pre>
	g1,g2,g3,g4 (21, 28, 145, 138) а) [5]Постройте 95% асимптотический интервал для отношения шансов хорошо написать экзамен («несогласных» к «согласным»). Проверьте гипотезу о том, что отношение шансов равно
In [118	1 и укажите P-значение H0 не отвергается r = (g3 * g2) / (g4 * g1) lr = math.log(r) se = math.sqrt((1 / g3) + (1 / g4) + (1 / g1) + (1 / g3)) zs = (lr - 0) / se lf.ri = np.exp(np.log(r) - 1.96 * se).np.exp(lr + 1.96 * se)
	lf,ri = np.exp(np.log(r) - 1.96 * se),np.exp(lr + 1.96 * se) pv = 2 * (1 - norm.cdf(abs(zs))) print('95% ДИ', lf,ri) print("p-value", pv) 95% ДИ 0.8382723692551234 2.3413705610557036 p-value 0.19818415859808391
In [117	6) [5] Постройте 95% асимптотический интервал для отношения вероятностей хорошо напи- сать экзамен. Проверьте гипотезу о том, что отношение вероятностей равно 1 и укажите Р-значение H0 не отвергается
	se = math.sqrt((1 / (g3 + g4)) + (1 / (g1 + g2))) zs = (lr - 0) / se lf,ri = np.exp(np.log(r) - 1.96 * se),np.exp(lr + 1.96 * se) pv = 2 * (1 - norm.cdf(abs(zs))) print('95% ДИ', lf,ri) print("p-value", pv)
T~	95% ДИ 0.8827719576818895 1.619079504464307 p-value 0.24843407914401494 в) [5] Постройте 95% интервал для отношения шансов хорошо написать экзамен с помощью наивного бутстрэпа. Проверьте гипотезу о том, что отношение шансов равно 1 и укажите P-значение НО не отвергается
ın [156	<pre>np.random.seed(123435) rr = [] for i in range(10000): rdf = df.sample(frac=1, replace=True) ind = 0 a = [] b = []</pre>
	<pre>for el in np.array(rdf['sur']): if el[0] in gla: a.append(ind) else: b.append(ind) ind+=1</pre>
	<pre>gln = np.array(rdf['res'])[a] son = np.array(rdf['res'])[b] g1n = len(np.where(gln > 17.5)[0]) g2n = len(np.where(gln <= 17.5)[0]) g3n = len(np.where(son > 17.5)[0]) g4n = len(np.where(son <= 17.5)[0])</pre>
	rr.append((g3n / g4n) / (g1n / g2n)) di = np.percentile(rr, [2.5,97.5]) r = ((g1n / g2n) / (g3n / g4n)) pv = (np.abs(np.array(rr) - 1) >= np.abs(r - 1)).mean() print("95% ДИ", di) print("p-value", pv) 95% ДИ [0.75249172 2.6785856]
	95% ДИ [0.75249172 2.6785856] p-value 0.3468 Задача 6 Иноагент Иннокентий Вероятностно-Статистический считает,что длина фамилии положительно влияет на результат экзамена по теории вероятностей. А именно, он предполагает, что
In [132	ожи- даемый результат за экзамен прямо пропорционален длине фамилии, E(Yi) = βFi, где Yi — результат за экзамен по 30-балльной шкале, Fi — количество букв в фамилии. а) [10] Оцените β методом моментов. Рассчитайте выборочную корреляцию. lensp = [] for el in df['sur']:
	lensp.append(len(el)) print("оценка беты", df['res'].mean() / np.array(lensp).mean()) print("выборочная корреляция", np.corrcoef(df['res'],lensp)[0][1]) оценка беты 2.0613026819923372 выборочная корреляция 0.025328052669147665
In [157	б) [5] С помощью перестановочного теста найдите P-значение и формально протестируйте гипотезу о том, что корреляция равна нулю H0 отвергается, корр равна нулю np.random.seed(123435) cors = [] for i in range(3000): lensp = np.random.permutation(np.array(lensp)) cors = np.correcof(df[lenst], lensp) [0][1]
	<pre>cor = np.corrcoef(df['res'],lensp)[0][1] cors.append(cor) p_value = (np.abs(cors) >= np.abs(np.corrcoef(df['res'],lensp)[0][1])).mean() print("p-value", p_value) p-value 0.921</pre>
	Задача 7 11.11 из файла с задачами Пусть X1, , Xn — случайная выборка из нормального распределения с известным матема- тическим ожиданием μ = 1 и неизвестной дисперсией σ 2.
	Объем выборки n = 16. Тестируются основная гипотеза H0 : σ2 = 4 против альтернативной гипотезы Ha : σ2 = 9. С помощью леммы Неймана-Пирсона найдите наиболее мощный критерий, имеющий уровень значимости α = 0.05. ГПТ:
	Для нахождения наиболее мощного критерия с использованием леммы Неймана-Пирсона необходимо найти отношение правдоподобия и построить соответствующую статистику. Правдоподобие для данной выборки из нормального распределения с известным математическим ожиданием μ и неизвестной дисперсией σ^2 выглядит следующим образом: $L(\sigma^2) = (1/\sqrt{(2\pi\sigma^2))^n} * \exp[-(1/2\sigma^2) * \Sigma(xi - \mu)^2]$ где xi - значения выборки, n - объем выборки.
	где xi - значения выборки, n - объем выборки. Рассмотрим отношение правдоподобия: $\lambda = L(\sigma^2 = 4) / L(\sigma^2 = 9)$ $\lambda = \left[(1/\sqrt{(8\pi)})^16 * \exp[-(1/8) * \Sigma(xi - 1)^2] \right] / \left[(1/\sqrt{(18\pi)})^16 * \exp[-(1/18) * \Sigma(xi - 1)^2] \right]$
	$\lambda = [(1/\sqrt{(8\pi)})^16 * \exp[-(1/8) * \Sigma(xi-1)^2]] / [(1/\sqrt{(18\pi)})^16 * \exp[-(1/18) * \Sigma(xi-1)^2]]$ Упростим это выражение: $\lambda = (2/3)^16 * \exp[(1/72) * \Sigma(xi-1)^2]$ Теперь нам нужно построить статистику, основанную на отношении правдоподобия. В соответствии с леммой Неймана-Пирсона, статистика имеет вид:
	Теперь нам нужно построить статистику, основанную на отношении правдоподобия. В соответствии с леммой Неймана-Пирсона, статистика имеет вид: $T = \Sigma(xi-1)^2$ Теперь мы можем построить критическую область. Уровень значимости α = 0.05 соответствует значению критерия, при котором вероятность отклонения гипотезы H0 равна α. Пусть c - такое значение, что P(T > c H0) = α.
	Тогда критическая область имеет вид T > c. Чтобы найти это значение c, нам нужно использовать известное распределение хи-квадрат (χ^2) для выборки объемом n = 16 и заданного уровня значимости α = 0.05. Для этого найдем квантиль хи-квадрат распределения c (1 - α) процентным уровнем доверия:
	$\chi^2(1-\alpha, n-1)=\chi^2(0.95, 15)$ Находим значение $\chi^2(0.95, 15)$ в таблице или с помощью программы и получаем, что оно равно приблизительно 26.296. Таким образом, наш критерий имеет вид: $T>26.296$.
	Итак, наиболее мощным критерием, имеющим уровень значимости α = 0.05, будет отклонение основной гипотезы H0 в пользу альтернативной гипотезы Ha, если значение статистики T (сумма квадратов отклонений от среднего) превышает 26.296. Задача 8 В основном - семинары, и в целом курс, Фила Ульянкина. (https://github.com/hse-econ-data-science/andan_2023)
	В основном - семинары, и в целом курс, Фила Ульянкина. (https://github.com/hse-econ-data-science/andan_2023) Помогли осознать на практике и тервер, и матстат, как в жизни работают распределения, метрики, оценки и тд.