Contents

0.1	Introduction to unconstrained optimisation		1
	0.1.1	Goals	1
	0.1.2	Optimising through limits	1
	0.1.3	Optimisation through stationary points	1
	0.1.4	Optimisation through algorithms	1
		Stationary points of strictly concave and convex functions	

0.1 Introduction to unconstrained optimisation

0.1.1 Goals

We want to identify either the maximum or the minimum.

There exist local minima and global minima.

0.1.2 Optimising through limits

If we are looking to minimise a function, and the limits are ∞ or $-\infty$ then we can optimise by taking large or small values.

We can examine this for each variable.

This also applies for maximising a function.

0.1.3 Optimisation through stationary points

Stationary points of a function are points where marginal changes do not have an impact on the value of the function. As a result they are either local maxima or minima.

0.1.4 Optimisation through algorithms

If we cannot identify stationary points easily, we can instead use algorithms to identify optima.

0.1.5 Stationary points of strictly concave and convex functions

If a function is strictly concave it will only have one stationary point, a local, and global, maxima.

If a function is strictly convex it will only have one stationary point, a local, and global, minima.