计算物理 HW2 Problem4

付大为

学号: 1800011105

邮 箱: fudw@pku.edu.cn

2021年12月1日

题目 4: 样条函数在计算机绘图中的运用

解答: (a) 数据表如下表 1

表 1: 节点处的位置坐标

t	$\phi = t\pi/4$	x_t	y_t
0	0	0.000000	0.000000
1	$\frac{\pi}{4}$	0.248376	0.386822
2	$\frac{\pi}{2}$	-0.589325	1.287699
3	$\frac{3\pi}{4}$	-1.970078	0.280828
4	π	-1.080894	-1.251482
5	$\frac{5\pi}{4}$	0.203198	-0.686914
6	$\frac{3\pi}{2}$	0.038243	-0.011129
7	$\frac{7\pi}{4}$	0.185534	0.161683
8	2π	-0.166670	1.133310

(b) 过这 8 个点(t=0 和 t=8 两点重合)的两个三次样条函数分别为(选取 $S_{\Delta}(X;t)$ 和 $S_{\Delta}(Y;t)$ 两端二阶导数都为 0,即 $M_0=M_8=0$)

```
S_{\Delta}(X;t) = \begin{cases} -0.000000(t-1)^3 - 0.038495(t-0)^3 + 0.245602(t-0) + 0.000000, & t \in [0,1] \\ 0.038495(t-2)^3 - 0.260233(t-1)^3 + 0.014632(t-1) + 0.245602, & t \in [1,2] \\ 0.260233(t-3)^3 + 0.079429(t-2)^3 - 1.546769(t-2) + 0.260233, & t \in [2,3] \\ -0.079429(t-4)^3 + 0.356732(t-3)^3 - 1.070197(t-3) - 1.286535, & t \in [3,4] \\ -0.356732(t-5)^3 + 0.079429(t-4)^3 + 1.070197(t-4) - 2.356732, & t \in [4,5] \\ -0.079429(t-6)^3 - 0.260233(t-5)^3 + 1.546769(t-5) - 1.286535, & t \in [5,6] \\ 0.260233(t-7)^3 - 0.038495(t-6)^3 - 0.014632(t-6) + 0.260233, & t \in [6,7] \\ 0.038495(t-8)^3 + 0.0000000(t-7)^3 - 0.245602(t-7) + 0.245602, & t \in [7,8] \end{cases}
```

$$S_{\Delta}(Y;t) = \begin{cases} -0.000000(t-1)^3 + 0.173495(t-0)^3 + 0.033612(t-0) + 0.000000, & t \in [0,1] \\ -0.173495(t-2)^3 - 0.108194(t-1)^3 + 1.074583(t-1) + 0.033612, & t \in [1,2] \\ 0.108194(t-3)^3 - 0.326505(t-2)^3 + 0.425417(t-2) + 1.108194, & t \in [2,3] \\ 0.326505(t-4)^3 - 0.000000(t-3)^3 - 1.533612(t-3) + 1.533612, & t \in [3,4] \\ 0.000000(t-5)^3 + 0.326505(t-4)^3 - 1.533612(t-4) + 0.000000, & t \in [4,5] \\ -0.326505(t-6)^3 + 0.108194(t-5)^3 + 0.425417(t-5) - 1.533612, & t \in [5,6] \\ -0.108194(t-7)^3 - 0.173495(t-6)^3 + 1.074583(t-6) - 1.108194, & t \in [6,7] \\ 0.173495(t-8)^3 + 0.0000000(t-7)^3 + 0.033612(t-7) - 0.033612, & t \in [7,8] \end{cases}$$

(c) 三次样条函数内插及原函数作图如下图1. (选取 $S_{\Delta}(X;t)$ 和 $S_{\Delta}(Y;t)$ 两端二阶导数都为 0,即 $M_0=M_8=0$)

(d) 我们知道函数 f(x) 曲率为 $R(x) = \frac{f''(x)}{[1+f'(x)^2]^{3/2}} \approx f''(x)$ (当 |f'(x)| << 1 时) . 而 $\forall f \in K^2[a,b]$,我们可以定义一个函数的模为 $||f|| = \int_a^b |f''(x)|^2 dx$,我们可以证明三次样条函数是使得模 ||f|| 最小的函数,即"最光滑"的内插函数。而三次样条函数在节点处具有连续性以及一阶连续导数和二阶连续导数,也进一步保证了节点内插得到的函数的光滑性以及和真实函数符合较好。