- 1. Find the first five terms of the sequence defined by each of these recurrence relations with initial conditions.
 - a. $a_n = na_{n-1} + n^2 a_{n-2}$, $a_0 = a_1 = 1$.
 - b. $a_n = a_{n-1} + a_{n-3}$, $a_0 = 1$, $a_1 = 2$, $a_2 = 0$.
- 2. Let $a_n = 2^n + 5 \cdot 3^n$ for n = 0,1,2,3,...
 - a. Find a_0 , a_1 , a_2 , a_3 and a_4 .
 - b. Show that $a_n = 5a_{n-1} 6a_{n-2}$ for all integers $n \ge 2$.
- 3. Show that the sequence $\{a_n\}$ is a solution of recurrence relation $a_n=a_{n-1}+2a_{n-2}+2n-9$ if
 - a. $a_n = -n + 2$
 - b. $a_n = 5(-1)^n n + 2$
 - c. $a_n = 3(-1)^n + 2^n n + 2$
 - d. $a_n = 7 \cdot 2^n n + 2$
- 4. Find the solution to each of these recurrence relation with the given initial conditions.
 - a. $a_n = -a_{n-1}$, where $a_0 = 5$.
 - b. $a_n = a_{n-1} + n$, where $a_0 = 1$.
 - c. $a_n = na_{n-1}$, where $a_0 = 5$.
- 5. Suppose number of bacteria in a colony triples every hour.
 - a. Set up a recurrence relation for the number of bacteria after n hours have elapsed.
 - b. If 100 bacteria are used to begin new colony, how many bacteria will be in the colony after 10 hours.
- 6. Assume that the population of the world in 2002 was 6.2 billion and is growing at the rate 1.3% per year.
 - a. Set up a recurrence relation for the population of the world n years after 2002.
 - b. Find the explicit formula for the population of the world n year after 2002.
 - c. What will be the population of world in 2023?
- 7. A factory makes custom sports cars at an increasing rate. In the first month 1 car is made. In the second month 2 cars are made, and so on, in nth month n cars are made.
 - a. Set up a recurrence relation for the number of cars produced in the first n moth of a factory.
 - b. How many cars are produced in first year.
 - c. Find an explicit formula for the number of cars produced in the first n months by this factory.
- 8. (a) Find the recurrence relation for the balance B(k) owed at the end of k months on a loan at a rate r if a payment P is made on the loan each month. {Hint: Express B(k) in terms of B(k-1) and note that monthly rate of interest is $\frac{r}{12}$.
 - (b) Determine what monthly payment P should be so that the loan is paid off after T months.