Impinj Inc.

TEST REPORT FOR

Speedway Revolution Model: IPJ-R420

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.207, 15.247 and RSS 210 Issue 8

Report No.: 94448-4

Date of issue: May 16, 2013

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	
Report Authorization	
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	7
15.207 AC Conducted Emissions	7
15.247 (b)(2) RF Power Output	14
-20dBc Occupied Bandwidth	17
Bandedge	20
15.247(d) Conducted Spurious Emissions / RSS 210	25
15.247(d) Radiated Spurious Emissions	29
Supplemental Information	44
Measurement Uncertainty	44
Emissions Test Details	1/

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Impinj Inc.Dianne Dudley701 N. 34th StreetCKC Laboratories, Inc.Seattle, WA 981035046 Sierra Pines DriveMariposa, CA 95338

Representative: Mike Thomas Project Number: 94448

Customer Reference Number: 112623-1

DATE OF EQUIPMENT RECEIPT: May 9, 2013 **DATE(S) OF TESTING:** May 9-10, 2013

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve 7 Be

Page 3 of 45 Report No.: 94448-4

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14
Immunity	5.00.07

Site Registration & Accreditation Information

Location	CB#	TAIWAN	CANADA	FCC	JAPAN
Bothell	US0081	SL2-IN-E-1145R	3082C-1	318736	A-0148

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.207, 15.247 and RSS 210 Issue 8

Description	Test Procedure/Method	Results
Conducted Emissions	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003) / DA 00-705	Pass
RF Power Output	FCC Part 15 Subpart C Section 15.247 (b)(2) / DA 00-705	Pass
-20dBc Occupied Bandwidth	FCC Part 15 Subpart C Section 15.247 / DA 00-705	Pass
Bandedge	FCC Part 15 Subpart C / DA 00-705	Pass
Conducted Spurious Emissions	FCC Part 15 Subpart C Section 15.249(d) / RSS 210 Issue 8 / DA 00-705	Pass
Radiated Spurious Emissions	FCC Part 15 Subpart C Section 15.249(d) / DA 00-705	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summ	ary of Conditions
None	

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Speedway Revolution POE

Manuf: Impinj Inc. Manuf: Netgear Model: IPJ-R420 Model: FS726TP

Serial: 37012340460 Serial: 1DA5895Y0031B

Antenna 6dBi Composite Gain with Integrated 8 Foot Mini-Guardrail Antenna with SMA Female

Pigtail to RP-TNC Male ConnectorConnector -15dBi gainManuf: Laird TechnologiesManuf: Impinj Inc.Model: S9028PCLJModel: IPJ-A0303-000

Serial: NA Serial: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

<u>Firewall Router</u> <u>Laptop</u>

Manuf: Linksys Manuf: Dell

Model: BEFSX41 Model: Latitude D-610

Serial: CB900E900020 Serial: NA

POE <u>Coaxial Cable</u>

Manuf: Netgear Manuf: Generic

Model: FS726TP Model: RG-58 (2.62meters, 1.5dB Loss)

Serial: 1DA5895Y0031B Serial: NA

Page 6 of 45 Report No.: 94448-4

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 94448 Date: 5/9/2013
Test Type: Conducted Emissions
Equipment: Speedway Revolution Sequence#: 1

Manufacturer: Impinj Inc. Tested By: Steven Pittsford Model: IPJ-R420 120V 60Hz

S/N: 37012340460

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	10/5/2012	10/5/2014
T2	ANP05965	Cable	Various	8/26/2011	8/26/2013
	AN02872	Spectrum Analyzer	E4440A	7/23/2011	7/23/2013
Т3	AN01311	5uH LISN-Line	3816/2	12/9/2011	12/9/2013
	AN01311	5uH LISN-Neutral	3816/2	12/9/2011	12/9/2013
T4	AN03227	Cable	32026-29080-	3/29/2013	3/29/2015
			29080-84		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Speedway Revolution*	Impinj Inc.	IPJ-R420	37012340460
POE	Netgear	FS726TP	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Dell	Latitude D-610	NA
Coaxial Cable	Generic	RG-58 (2.62meters, 1.5dB Loss)	NA

Page 7 of 45 Report No.: 94448-4

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is in normal operation.

The EUT is powered by a Netgear POE Model FS726TP.

The EUT is transmitting into a 50 Ohm Load.

Freq: 902.75MHz, 915.25MHz, 927.25MHz Firmware setting = 31.5dBm, 31.5dBm, 31.5dBm

Measured Power= 29.42dBm, 29.53dBm, 29.57dBm

Frequency range of measurement = 150k-30MHz

CISPR Bandwidths used

Test method in accordance with FCC document: DA 00-705.

Temperature: 23°C Pressure: 102.8kPa Humidity: 38%

Ext Attn: 0 dB

Measui	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lead	l: Line		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	496.877k	33.0	+9.0	+0.0	+0.1	+0.0	+0.0	42.1	46.1	-4.0	Line
2	482.333k	33.1	+9.0	+0.0	+0.1	+0.0	+0.0	42.2	46.3	-4.1	Line
3	479.424k	32.9	+9.0	+0.0	+0.1	+0.0	+0.0	42.0	46.3	-4.3	Line
4	456.154k	33.0	+9.0	+0.0	+0.1	+0.0	+0.0	42.1	46.8	-4.7	Line
5	471.425k	32.6	+9.0	+0.0	+0.1	+0.0	+0.0	41.7	46.5	-4.8	Line
6	461.971k	32.6	+9.0	+0.0	+0.1	+0.0	+0.0	41.7	46.7	-5.0	Line
7	452.518k	32.7	+9.0	+0.0	+0.1	+0.0	+0.0	41.8	46.8	-5.0	Line
8	465.607k	32.4	+9.0	+0.0	+0.1	+0.0	+0.0	41.5	46.6	-5.1	Line
9	475.061k	32.1	+9.0	+0.0	+0.1	+0.0	+0.0	41.2	46.4	-5.2	Line
10	450.336k	32.5	+9.0	+0.0	+0.1	+0.0	+0.0	41.6	46.9	-5.3	Line
11	2.671M	30.2	+9.0	+0.0	+0.1	+0.1	+0.0	39.4	46.0	-6.6	Line
12	1.479M	29.4	+9.0	+0.0	+0.1	+0.1	+0.0	38.6	46.0	-7.4	Line
13	247.200k	35.1	+9.0	+0.0	+0.1	+0.0	+0.0	44.2	51.9	-7.7	Line
14	8.580M	30.9	+9.0	+0.1	+0.3	+0.1	+0.0	40.4	50.0	-9.6	Line

15	491.787k	14.9	+9.0	+0.0	+0.1	+0.0	+0.0	24.0	46.1	-22.1	Line
A	Ave										
^	491.787k	33.8	+9.0	+0.0	+0.1	+0.0	+0.0	42.9	46.1	-3.2	Line
^	490.332k	33.7	+9.0	+0.0	+0.1	+0.0	+0.0	42.8	46.2	-3.4	Line
٨	494.696k	33.2	+9.0	+0.0	+0.1	+0.0	+0.0	42.3	46.1	-3.8	Line
^	493.241k	32.6	+9.0	+0.0	+0.1	+0.0	+0.0	41.7	46.1	-4.4	Line
20	987.776k	12.0	+9.0	+0.0	+0.1	+0.0	+0.0	21.1	46.0	-24.9	Line
I	Ave										
^	987.776k	32.0	+9.0	+0.0	+0.1	+0.0	+0.0	41.1	46.0	-4.9	Line

CKC Laboratories, Inc. Date: 5/9/2013 Time: 10:51:33 Impinj Inc. WO#: 94448 Test Lead: Line 120V 60Hz Sequence#: 1 Line Impinj Inc. Speedway Revolution P/N: IPJ-R420

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.207 AC Mains - Average

 Work Order #:
 94448
 Date:
 5/9/2013

 Test Type:
 Conducted Emissions
 Time:
 11:06:19

Equipment: Speedway Revolution Sequence#: 2

Manufacturer: Impinj Inc. Tested By: Steven Pittsford Model: IPJ-R420 120V 60Hz

S/N: 37012340460

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	10/5/2012	10/5/2014
T2	ANP05965	Cable	Various	8/26/2011	8/26/2013
	AN02872	Spectrum Analyzer	E4440A	7/23/2011	7/23/2013
	AN01311	5uH LISN-Line	3816/2	12/9/2011	12/9/2013
T3	AN01311	5uH LISN-Neutral	3816/2	12/9/2011	12/9/2013
T4	AN03227	Cable	32026-29080-	3/29/2013	3/29/2015
			29080-84		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Speedway Revolution*	Impinj Inc.	IPJ-R420	37012340460
POE	Netgear	FS726TP	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Dell	Latitude D-610	NA
Coaxial Cable	Generic	RG-58 (2.62meters, 1.5dB Loss)	NA

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is in normal operation.

The EUT is powered by a Netgear POE Model FS726TP.

The EUT is transmitting into a 50 Ohm Load.

Freq: 902.75MHz, 915.25MHz, 927.25MHz Firmware setting = 31.5dBm, 31.5dBm, 31.5dBm

Measured Power= 29.42dBm, 29.53dBm, 29.57dBm

Frequency range of measurement = 150k-30MHz

CISPR Bandwidths used

Test method in accordance with FCC document: DA 00-705

Temperature: 23°C Pressure: 102.8kPa Humidity: 38%

> Page 10 of 45 Report No.: 94448-4

Ext Attn: 0 dB

Measur	rement Data:		ading list	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	483.059k	32.9	+9.0	+0.0	+0.1	+0.0	+0.0	42.0	46.3	-4.3	Neutr
2	474.333k	32.9	+9.0	+0.0	+0.1	+0.0	+0.0	42.0	46.4	-4.4	Neutr
3	485.968k	32.7	+9.0	+0.0	+0.1	+0.0	+0.0	41.8	46.2	-4.4	Neutr
4	477.242k	32.5	+9.0	+0.0	+0.1	+0.0	+0.0	41.6	46.4	-4.8	Neutr
5	479.423k	32.4	+9.0	+0.0	+0.1	+0.0	+0.0	41.5	46.3	-4.8	Neutr
6	451.062k	32.6	+9.0	+0.0	+0.1	+0.0	+0.0	41.7	46.9	-5.2	Neutr
7	456.880k	32.4	+9.0	+0.0	+0.1	+0.0	+0.0	41.5	46.7	-5.2	Neutr
8	465.606k	32.2	+9.0	+0.0	+0.1	+0.0	+0.0	41.3	46.6	-5.3	Neutr
9	469.242k	32.1	+9.0	+0.0	+0.1	+0.0	+0.0	41.2	46.5	-5.3	Neutr
10	445.972k	32.4	+9.0	+0.0	+0.1	+0.0	+0.0	41.5	46.9	-5.4	Neutr
11	2.500M	31.2	+9.0	+0.0	+0.1	+0.1	+0.0	40.4	46.0	-5.6	Neutr
12	242.900k	35.0	+9.0	+0.0	+0.1	+0.0	+0.0	44.1	52.0	-7.9	Neutr
13	8.580M	30.6	+9.0	+0.1	+0.3	+0.1	+0.0	40.1	50.0	-9.9	Neutr
14	494.695k Ave	14.1	+9.0	+0.0	+0.1	+0.0	+0.0	23.2	46.1	-22.9	Neutr
۸	494.695k	33.9	+9.0	+0.0	+0.1	+0.0	+0.0	43.0	46.1	-3.1	Neutr
۸	493.240k	33.2	+9.0	+0.0	+0.1	+0.0	+0.0	42.3	46.1	-3.8	Neutr
۸	496.876k	33.1	+9.0	+0.0	+0.1	+0.0	+0.0	42.2	46.1	-3.9	Neutr
۸	499.058k	32.3	+9.0	+0.0	+0.1	+0.0	+0.0	41.4	46.0	-4.6	Neutr
19	915.480k Ave	11.7	+9.0	+0.0	+0.1	+0.0	+0.0	20.8	46.0	-25.2	Neutr
٨	915.480k	31.8	+9.0	+0.0	+0.1	+0.0	+0.0	40.9	46.0	-5.1	Neutr

CKC Laboratories, Inc. Date: 5/9/2013 Time: 11:06:19 Impinj Inc. WO#: 94448 Test Lead: Neutral 120V 60Hz Sequence#: 2 Neutral Impinj Inc. Speedway Revolution P/N: IPJ-R420

Test Setup Photos

15.247(b)(2) RF Power Output

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.247(b)(2) RF Output power

 Work Order #:
 94448
 Date:
 5/9/2013

 Test Type:
 Conducted Emissions
 Time:
 09:02:21

Tested by: Steven Pittsford

EUT Information:

Manufacturer: Impinj Inc.Model #: IPJ-R420Equipment: Speedway RevolutionSerial #: 37012340460Operating voltage/frequency:Number of channels:Design Phase: Production ModelInstallation: Mobile

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN05759	Attenuator-Facto	PE7010-20	2/6/2012	2/6/2014
	AN02872	Spectrum Analyzer	E4440A	7/23/2011	7/23/2013

Customer Support Equipment:

Equipment	Manufacturer	Model Number	Serial Number
POE	NetGear	FS726TP	1DA5895Y0031B
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Dell	Latitude D-610	NA
Coaxial Cable	Generic	RG-58 (2.62meters, 1.5dB Loss)	NA

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is set in constant transmit mode.

The EUT is powered by a NetGear POE Model FS726TP.

The EUT is transmitting through a 2.62meter long RG-58 antenna cable with a stated loss of 1.5dB.

Frequency: 902-928MHz

Freq: 902.75MHz, 915.25MHz, 927.25MHz Firmware setting = 31.5dBm, 31.5dBm, 31.5dBm

Attenuator insertion loss applied for in the Spectrum Analyzer screen capture.

Measured Power= 29.42dBm, 29.53dBm, 29.57dBm 30MHz-1000 MHz; RBW=120 kHz, VBW=120kHz

Test method in accordance with FCC document: DA 00-705

Temperature: 22°C Pressure: 102.8kPa Humidity: 38%

> Page 14 of 45 Report No.: 94448-4

Test Data

Low Channel

Mid Channel

High Channel

Test Setup Photo

-20dBc Occupied Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: FCC15.247 -20dB Bandwidth

 Work Order #:
 94448
 Date:
 5/9/2013

 Test Type:
 Conducted Emissions
 Time:
 09:02:21

Tested By: Steven Pittsford

EUT Information:

Manufacturer: Impinj Inc.

Equipment: Speedway Revolution

Operating voltage/frequency:

Design Phase: Production Model

Model #: IPJ-R420

Serial #: 37012340460

Number of channels:

Installation: Mobile

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN05759	Attenuator-Facto	PE7010-20	2/6/2012	2/6/2014
	AN02872	Spectrum Analyzer	E4440A	7/23/2011	7/23/2013

Customer Support Equipment:

Equipment	Manufacturer	Model Number	Serial Number
POE	NetGear	FS726TP	1DA5895Y0031B
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Dell	Latitude D-610	NA
Coaxial Cable	Generic	RG-58 (2.62meters, 1.5dB Loss)	NA

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is powered by a NetGear POE Model FS726TP. The EUT is transmitting through a 2.62meter long RG-58 antenna cable with a stated loss of 1.5dB.

Frequency: 902-928MHz

Freq: 902.75MHz, 915.25MHz, 927.25MHz Firmware setting = 31.5dBm, 31.5dBm, 31.5dBm

Attenuator insertion loss applied for in the Spectrum Analyzer screen capture.

Measured Power= 29.42dBm, 29.53dBm, 29.57dBm 30MHz-1000 MHz; RBW=120 kHz, VBW=120kHz

Test method in accordance with FCC document: DA 00-705.

Temperature: 22°C Pressure: 102.8kPa Humidity: 38%

-20dB OBW	Low Channel	Mid Channel	High Channel	
	460 kHz	452 kHz	442kHz	

Page 17 of 45 Report No.: 94448-4

Test Plots

Test Setup Photos

Bandedge

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Impinj Inc.**

Specification: Band Edge Compliance FCC Part 15.247 & RSS-210

 Work Order #:
 94448
 Date:
 5/9/2013

 Test Type:
 Radiated Scan
 Time:
 11:08:26

Tested By: Steven Pittsford

EUT Information:

Manufacturer: Impinj Inc.

Equipment: Speedway Revolution

Operating voltage/frequency:

Design Phase: Production Model

Model #: IPJ-R420

Serial #: 37012340460

Number of channels:

Installation: Mobile

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN03227	Cable	32026-29080-	3/29/2013	3/29/2015
			29080-84		
	AN02872	Spectrum Analyzer	E4440A	7/23/2011	7/23/2013
	ANP05360	Cable	RG214	12/3/2012	12/3/2014
	ANP05366	Cable	RG-214	10/14/2011	10/14/2013
	AN02308	Preamp	8447D	4/3/2012	4/3/2014
	AN01996	Biconilog Antenna	CBL6111C	3/2/2012	3/2/2014

Customer Support Equipment:

Equipment	Manufacturer	Model Number		Serial Number
POE	NetGear	FS726TP		1DA5895Y0031B
Firewall Router	Linksys	BEFSX41		CB900E900020
Laptop	Dell	Latitude D-610		NA
Coaxial Cable	Generic	RG-58 (2.62meter	rs, 1.5dB Loss)	NA
Antennas Tested				
Antenna 6dBi composite		Laird Technologies	S9028PCLJ	NA
integrated 8 foot pigtail	to RP-TNC male			
connector				
Mini-Guardrail Antenna with SMA		Impinj Inc.	IPJ-A0303-000	NA
Female Connector -15d	Bi gain			

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is powered by a NetGear POE Model FS726TP. The EUT is transmitting through a 2.62meter long RG-58 antenna cable with a stated loss of 1.5dB into the Laird Technologies 6dBi Antenna & Impinj Mini-Guardrail Antenna. EUT is placed in the center of the turntable on a Styrofoam table 80cm above the ground plane. Freq: 902.75MHz, 915.25MHz, 927.25MHz Firmware setting = 31.5dBm, 31.5dBm, 31.5dBm. Measured Power= 29.42dBm, 29.53dBm, 29.57dBm CISPR Bandwidths used. Test method in accordance with FCC document: DA 00-705.

Temperature: 23°C, Pressure: 102.8kPa, Humidity: 38%

Test Data

Laird Technologies 6dBi Antenna

Laird Technologies 6dBi Antenna

Mini-Guardrail Antenna

Mini-Guardrail Antenna

Test Setup Photos

Laird Technologies 6dBi Antenna, View #1

Laird Technologies 6dBi Antenna, View #2

Mini-Guardrail Antenna, View #1

Mini-Guardrail Antenna, View #2

15.247(d) Conducted Spurious Emissions / RSS 210

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: FCC Part 15.247(d) & RSS-210 Conducted Spurious emission.

Work Order #: Date: 5/9/2013

Test Type: Conducted Emissions
Tested By: Steven Pittsford

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN01706	Attenuator-Facto	8495B	1/11/2012	1/11/2014
	AN02872	Spectrum Analyzer	E4440A	7/23/2011	7/23/2013

Customer Support Equipment:

Equipment	Manufacturer	Model Number	Serial Number
POE	NetGear	FS726TP	1DA5895Y0031B
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Dell	Latitude D-610	NA

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is set in constant transmit mode.

The EUT is powered by a NetGear POE Model FS726TP.

The EUT is transmitting through a 2.62meter long RG-58 antenna cable with a stated loss of 1.5dB.

Frequency: 902-928MHz

Freq: 902.75MHz, 915.25MHz, 927.25MHz Firmware setting = 31.5dBm, 31.5dBm, 31.5dBm

Measured Power= 29.42dBm, 29.53dBm, 29.57dBm

Frequency range of measurement = 9 kHz- 10 GHz.

9 kHz-10GHz; RBW=120 kHz, VBW=120 kHz. No emission was detected with slightly larger RBW.

Limit line set at -20dBc.

Test method in accordance with FCC document: DA 00-705

Temperature: 22°C Pressure: 102.8kPa Humidity: 38%

> Page 25 of 45 Report No.: 94448-4

Test Data

Test Setup Photo

15.247(d) Radiated Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 94448 Date: 5/10/2013
Test Type: Maximized Emissions Time: 10:32:56
Equipment: Speedway Revolution Sequence#: 3

Manufacturer: Impinj Inc. Tested By: Steven Pittsford

Model: IPJ-R420 S/N: 37012340460

Test Equipment:

Test Equip					
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03227	Cable	32026-29080-	3/29/2013	3/29/2015
			29080-84		
T2	AN02872	Spectrum Analyzer	E4440A	7/23/2011	7/23/2013
Т3	ANP05360	Cable	RG214	12/3/2012	12/3/2014
T4	ANP05366	Cable	RG-214	10/14/2011	10/14/2013
T5	AN02308	Preamp	8447D	4/3/2012	4/3/2014
T6	AN01996	Biconilog Antenna	CBL6111C	3/2/2012	3/2/2014
	AN00052	Loop Antenna	6502	5/16/2012	5/16/2014
T7	ANP05965	Cable	Various	8/26/2011	8/26/2013
Т8	AN01271	Preamp	83017A	8/18/2011	8/18/2013
Т9	AN03123	Cable	32026-2-29801-	10/14/2011	10/14/2013
			12		
T10	AN01467	Horn Antenna-ANSI	3115	10/19/2011	10/19/2013
		C63.5 Calibration			
T11	AN03181	Attenuator	PE7015-20	1/4/2012	1/4/2014
T12	AN03170	High Pass Filter	HM1155-11SS	9/6/2011	9/6/2013

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
Speedway Revolution*	Impinj Inc.	IPJ-R420	37012340460
Antenna 6dBi composite gain with	Laird Technologies	S9028PCLJ	NA
integrated 8 foot pigtail to RP-TNC male			
connector			

Support Devices:

Function	Manufacturer	Model #	S/N
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Dell	Latitude D-610	NA
POE	Netgear	FS726TP	NA
Coaxial Cable	Generic	RG-58 (2.62meters, 1.5dB Loss)	NA

Page 29 of 45 Report No.: 94448-4

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is set to Low mid and High Channels. The EUT is powered by a Netgear POE Model FS726TP. The EUT is transmitting through a 2.62meter long RG-58 antenna cable with a stated loss of 1.5dB into the Laird Technologies Antenna 6dBi composite gain with integrated 8 foot pigtail to RP-TNC male connector.

Freq: 902.75MHz, 915.25MHz, 927.25MHz Firmware setting = 31.5dBm, 31.5dBm, 31.5dBm

Measured Power= 29.42dBm, 29.53dBm, 29.57dBm

Frequency range of measurement = 9k-10GHz

CISPR Bandwidths used

Test method in accordance with FCC document: DA 00-705

Temperature: 23°C Pressure: 102.8kPa Humidity: 38%

No Emissions observed 9k-30MHz

Ext Attn: 0 dB

	rement Data:	D,	eading lis	tad by me		T	act Dictore	e: 3 Meters			
#			T1	T2	T3	T4	Dist				Polar
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MI	1D 17	T9	T10	T11	T12	T 11	1D 37/	1D X//	1D	
	MHz	dBμV	dB	dB	dB	dB	Table	•	dBμV/m	dB	Ant
1	940.100M	23.5	+1.1	+0.0	+2.1	+2.3	+0.0	44.6	46.0	-1.4	Horiz
			-27.3	+23.2	+0.0	+0.0			Low		129
			+0.0	+0.0	+19.7	+0.0					
2	556.300M	29.3	+0.8	+0.0	+1.6	+1.7	+0.0	44.0	46.0	-2.0	Horiz
			-28.3	+19.2	+0.0	+0.0	360		Mid		138
			+0.0	+0.0	+19.7	+0.0					
3	103.700M	38.2	+0.3	+0.0	+0.6	+0.5	+0.0	41.4	43.5	-2.1	Vert
			-27.9	+10.1	+0.0	+0.0	43		Mid		100
			+0.0	+0.0	+19.6	+0.0					
4	986.370M	26.5	+1.1	+0.0	+2.2	+2.5	+0.0	48.9	54.0	-5.1	Vert
			-27.2	+24.1	+0.0	+0.0	360		High		101
			+0.0	+0.0	+19.7	+0.0					
5	9027.466M	37.8	+3.4	+0.0	+0.0	+0.0	+0.0	48.9	54.0	-5.1	Vert
			+0.0	+0.0	+3.9	-34.2	152		Low		119
			+0.8	+37.0	+0.0	+0.2					
6	9027.453M	37.7	+3.4	+0.0	+0.0	+0.0	+0.0	48.8	54.0	-5.2	Horiz
			+0.0	+0.0	+3.9	-34.2	162		Low		104
			+0.8	+37.0	+0.0	+0.2					
7	9272.530M	37.6	+3.5	+0.0	+0.0	+0.0	+0.0	47.8	54.0	-6.2	Vert
			+0.0	+0.0	+4.0	-34.1	175		High		126
			+0.8	+35.8	+0.0	+0.2			6		-
8	7221.965M	37.9	+3.0	+0.0	+0.0	+0.0	+0.0	46.7	54.0	-7.3	Horiz
			+0.0	+0.0	+3.6	-34.4	247		Low		110
			+0.6	+35.7	+0.0	+0.3					

0	250.000M	31.1	+0.5	+0.0	+1.0	+1.0	+0.0	29.7	46.0	-7.3	Vert
,	230.000WI	31.1	-27.1	+12.5	+0.0	$^{+1.0}$	+0.0	36.7	High	-7.3	101
			+0.0	+0.0	+19.7	+0.0			Iligii		101
10	9272.473M	35.9	+3.5	+0.0	+0.0	+0.0	+0.0	46.1	54.0	-7.9	Horiz
10)212. 4 13 111	33.7	+0.0	+0.0	+4.0	-34.1	287	40.1	High	1.5	107
			+0.8	+35.8	+0.0	+0.2	207		111611		107
11	7418.016M	36.9	+3.2	+0.0	+0.0	+0.0	+0.0	46.0	54.0	-8.0	Vert
- 11	7 110.0101	30.7	+0.0	+0.0	+3.6	-34.5	248	10.0	High	0.0	121
			+0.6	+36.0	+0.0	+0.2	2.0		111911		121
12.	7418.016M	36.9	+3.2	+0.0	+0.0	+0.0	+0.0	46.0	54.0	-8.0	Horiz
12	, 110.010111	50.7	+0.0	+0.0	+3.6	-34.5	258	10.0	High	0.0	99
			+0.6	+36.0	+0.0	+0.2	250		111611		,,,
13	249.980M	30.0	+0.5	+0.0	+1.0	+1.0	+0.0	37.6	46.0	-8.4	Horiz
13	217.700141	30.0	-27.1	+12.5	+0.0	+0.0	10.0	37.0	Mid	0.1	138
			+0.0	+0.0	+19.7	+0.0			11114		150
14	7222.002M	36.2	+3.0	+0.0	+0.0	+0.0	+0.0	45.0	54.0	-9.0	Vert
1.	7222.002111	30.2	+0.0	+0.0	+3.6	-34.4	245	13.0	Low	7.0	99
			+0.6	+35.7	+0.0	+0.3			20		
15	435.500M	24.7	+0.7	+0.0	+1.4	+1.4	+0.0	36.8	46.0	-9.2	Vert
10			-28.0	+16.9	+0.0	+0.0	. 0.0	20.0	Mid	, . <u> </u>	100
			+0.0	+0.0	+19.7	+0.0					
16	5491.498M	38.2	+3.0	+0.0	+0.0	+0.0	+0.0	44.6	54.0	-9.4	Horiz
10	0 1711170111	20.2	+0.0	+0.0	+2.9	-33.5	159		Mid	· · ·	99
			+0.4	+33.3	+0.0	+0.3					
17	250.200M	28.7	+0.5	+0.0	+1.0	+1.0	+0.0	36.3	46.0	-9.7	Horiz
	200.2001.1		-27.1	+12.5	+0.0	+0.0	. 0.0	20.2	Low	, , , , , , , , , , , , , , , , , , ,	129
			+0.0	+0.0	+19.7	+0.0					
18	7322.003M	35.6	+3.1	+0.0	+0.0	+0.0	+0.0	44.3	54.0	-9.7	Horiz
			+0.0	+0.0	+3.6	-34.6	266		Mid		107
			+0.5	+35.9	+0.0	+0.2					
19	53.900M	30.8	+0.2	+0.0	+0.4	+0.3	+0.0	30.3	40.0	-9.7	Vert
			-28.0	+6.9	+0.0	+0.0	-16		High		99
			+0.0	+0.0	+19.7	+0.0			•		
20	9152.503M	33.5	+3.4	+0.0	+0.0	+0.0	+0.0	44.1	54.0	-9.9	Horiz
			+0.0	+0.0	+3.9	-34.1	232		Mid		122
			+0.8	+36.4	+0.0	+0.2					
21	7322.003M	34.9	+3.1	+0.0	+0.0	+0.0	+0.0	43.6	54.0	-10.4	Vert
			+0.0	+0.0	+3.6	-34.6	229		Mid		115
			+0.5	+35.9	+0.0	+0.2					
22	6490.781M	35.9	+3.0	+0.0	+0.0	+0.0	+0.0	43.5	54.0	-10.5	Vert
			+0.0	+0.0	+3.4	-34.0	53		High		113
			+0.5	+34.4	+0.0	+0.3					
23	6406.733M	35.9	+3.0	+0.0	+0.0	+0.0	+0.0	43.5	54.0	-10.5	Vert
			+0.0	+0.0	+3.3	-34.0	3		Mid		99
			+0.5	+34.4	+0.0	+0.4					
24	352.000M	25.3	+0.6	+0.0	+1.2	+1.2	+0.0	35.4	46.0	-10.6	Horiz
			-27.4	+14.8	+0.0	+0.0	360		Mid		138
			+0.0	+0.0	+19.7	+0.0					
25	250.200M	27.7	+0.5	+0.0	+1.0	+1.0	+0.0	35.3		-10.7	Horiz
			-27.1	+12.5	+0.0	+0.0	360		Mid		138
			+0.0	+0.0	+19.7	+0.0					

26	5491.514M	36.8	+3.0	+0.0	+0.0	+0.0	+0.0	43.2	54.0	-10.8	Vert
			+0.0	+0.0	+2.9	-33.5	270		Mid		110
			+0.4	+33.3	+0.0	+0.3					
27	6319.250M	35.5	+3.0	+0.0	+0.0	+0.0	+0.0	43.2	54.0	-10.8	Horiz
			+0.0	+0.0	+3.3	-33.9	310		Low		121
			+0.5	+34.5	+0.0	+0.3					
28	5563.509M	36.4	+3.0	+0.0	+0.0	+0.0	+0.0	42.9	54.0	-11.1	Horiz
			+0.0	+0.0	+2.9	-33.6	246		High		99
			+0.4	+33.5	+0.0	+0.3					
29	6490.751M	35.1	+3.0	+0.0	+0.0	+0.0	+0.0	42.7	54.0	-11.3	Horiz
			+0.0	+0.0	+3.4	-34.0	225		High		107
			+0.5	+34.4	+0.0	+0.3					
30	322.000M	24.6	+0.6	+0.0	+1.1	+1.2	+0.0	33.9	46.0	-12.1	Horiz
			-27.2	+13.9	+0.0	+0.0			Low		129
			+0.0	+0.0	+19.7	+0.0					
31	5563.509M	35.4	+3.0	+0.0	+0.0	+0.0	+0.0	41.9	54.0	-12.1	Vert
			+0.0	+0.0	+2.9	-33.6			High		105
			+0.4	+33.5	+0.0	+0.3					
32	152.200M	26.5	+0.4	+0.0	+0.8	+0.7	+0.0	31.3	43.5	-12.2	Vert
			-27.6	+10.8	+0.0	+0.0			Mid		100
			+0.0	+0.0	+19.7	+0.0					
33	59.600M	29.5	+0.3	+0.0	+0.5	+0.4	+0.0	27.8	40.0	-12.2	Vert
			-28.0	+5.4	+0.0	+0.0	-16		High		99
			+0.0	+0.0	+19.7	+0.0					
34	5416.502M	34.9	+3.1	+0.0	+0.0	+0.0	+0.0	41.4	54.0	-12.6	Vert
			+0.0	+0.0	+2.9	-33.5	271		Low		106
			+0.5	+33.2	+0.0	+0.3					
35	6406.748M	33.3	+3.0	+0.0	+0.0	+0.0	+0.0	40.9	54.0	-13.1	Horiz
			+0.0	+0.0	+3.3	-34.0	360		Mid		138
			+0.5	+34.4	+0.0	+0.4					
36	152.200M	25.5	+0.4	+0.0	+0.8	+0.7	+0.0	30.3	43.5	-13.2	Vert
			-27.6	+10.8	+0.0	+0.0	360		Low		100
			+0.0	+0.0	+19.7	+0.0					
37	4576.299M	37.0	+2.8	+0.0	+0.0	+0.0	+0.0	40.7	54.0	-13.3	Horiz
			+0.0	+0.0	+2.6	-33.5	239		Mid		107
			+0.1	+31.4	+0.0	+0.3					
38	6319.252M	32.7	+3.0	+0.0	+0.0	+0.0	+0.0	40.4	54.0	-13.6	Vert
				+0.0	+3.3						104
			+0.5	+34.5	+0.0	+0.3					
39	3709.009M	39.0	+2.4	+0.0	+0.0	+0.0	+0.0	40.3	54.0	-13.7	Vert
			+0.0	+0.0	+2.1	-33.6	61		High		107
			+0.4	+29.6	+0.0	+0.4			J		
40	3660.957M	39.3	+2.4	+0.0	+0.0	+0.0	+0.0	40.3	54.0	-13.7	Vert
			+0.0	+0.0	+2.1	-33.6	245		Mid		108
			+0.4	+29.4	+0.0	+0.3					
41	115.400M	25.1	+0.4	+0.0	+0.7	+0.6	+0.0	29.8	43.5	-13.7	Horiz
1			-27.8	+11.2	+0.0	+0.0	360		Mid		138
			+0.0	+0.0	+19.6	+0.0					
42	3661.028M	39.3	+2.4	+0.0	+0.0	+0.0	+0.0	40.3	54.0	-13.7	Horiz
			+0.0	+0.0	+2.1	-33.6	360		Mid		108
			+0.4	+29.4	+0.0	+0.3			<u></u> -		
L				/ • •	. 0.0						

43	3610.973M	39.2	+2.3	+0.0	+0.0	+0.0	+0.0	40.1	54.0	-13.9	
			+0.0	+0.0	+2.2	-33.6			Low		107
			+0.4	+29.3	+0.0	+0.3					
44	5416.502M	32.8	+3.1	+0.0	+0.0	+0.0	+0.0		54.0	-14.7	
			+0.0	+0.0	+2.9	-33.5	190		Low		99
			+0.5	+33.2	+0.0	+0.3					
45	3611.001M	38.1	+2.3	+0.0	+0.0	+0.0	+0.0	39.0	54.0	-15.0	Vert
			+0.0	+0.0	+2.2	-33.6	219		Low		120
			+0.4	+29.3	+0.0	+0.3					
46	198.800M	24.3	+0.5	+0.0	+0.9	+0.9	+0.0	28.0	43.5	-15.5	Vert
			-27.3	+9.0	+0.0	+0.0	360		Low		100
			+0.0	+0.0	+19.7	+0.0					
47	2745.721M	40.2	+1.9	+0.0	+0.0	+0.0	+0.0	38.4	54.0	-15.6	Horiz
			+0.0	+0.0	+2.1	-33.9	360		Mid		103
			+0.5	+27.3	+0.0	+0.3					
48	3709.000M	36.5	+2.4	+0.0	+0.0	+0.0	+0.0	37.8	54.0	-16.2	Horiz
			+0.0	+0.0	+2.1	-33.6	8		High		107
			+0.4	+29.6	+0.0	+0.4					
49	2745.748M	39.4	+1.9	+0.0	+0.0	+0.0	+0.0	37.6	54.0	-16.4	Vert
			+0.0	+0.0	+2.1	-33.9			Mid		116
			+0.5	+27.3	+0.0	+0.3					
50	2781.750M	38.1	+1.9	+0.0	+0.0	+0.0	+0.0	36.4	54.0	-17.6	Horiz
			+0.0	+0.0	+2.1	-33.9	329		High		99
			+0.5	+27.4	+0.0	+0.3			C		
51	1830.531M	42.0	+1.5	+0.0	+0.0	+0.0	+0.0	36.1	54.0	-17.9	Vert
			+0.0	+0.0	+1.6	-34.6	320		Mid		135
			+0.3	+24.9	+0.0	+0.4					
52	1805.501M	42.1	+1.4	+0.0	+0.0	+0.0	+0.0	36.0	54.0	-18.0	Horiz
			+0.0	+0.0	+1.6	-34.6	33		Low		123
			+0.3	+24.7	+0.0	+0.5					
53	2708.251M	37.6	+1.9	+0.0	+0.0	+0.0	+0.0	35.6	54.0	-18.4	Horiz
	2,00.2011.1	27.0	+0.0	+0.0	+2.1	-33.9	297	00.0	Low	10	103
			+0.5	+27.1	+0.0	+0.3	•				-00
54	1830.499M	41.1	+1.5	+0.0	+0.0	+0.0	+0.0	35.2	54.0	-18.8	Horiz
	_000.1991.1		+0.0	+0.0	+1.6	-34.6	. 3.0	22.2	Mid	20.0	101
			+0.3	+24.9	+0.0	+0.4					101
55	2708.251M	37.1	+1.9	+0.0	+0.0	+0.0	+0.0	35 1	54.0	-18.9	Vert
	2700.231111	57.1		+0.0					Low		129
			+0.5	+27.1	+0.0	+0.3	200		2011		127
56	2781.750M	36.2	+1.9	+0.0	+0.0	+0.0	+0.0	34.5	54.0	-19.5	Vert
	2/01./30IVI	30.2	+0.0	+0.0	+2.1	-33.9	360	ال. ٦٠.٥	High	17.5	115
			+0.5	+27.4	+0.0	+0.3	200		111511		113
57	1805.501M	39.6	+1.4	+0.0	+0.0	+0.0	+0.0	33.5	54.0	-20.5	Vert
	1005.501111	37.0	+0.0	+0.0	+0.0	-34.6	+0.0 317	33.3	Low	-20.5	99
			+0.0	+24.7	+0.0	+0.5	517		LOW		77
50	016 500M	20 6					+0.0	49.0	125.2	76.0	Vont
58	916.500M	28.6	+1.0	+0.0	+2.1	+2.3	+0.0	49.0		-76.2	Vert 101
			-27.4	+22.7	+0.0	+0.0	360		High		101
			+0.0	+0.0	+19.7	+0.0					

CKC Laboratories, Inc. Date: 5/10/2013 Time: 10:32:56 Impinj Inc. WO#: 94448

Test Distance: 3 Meters Sequence#: 3 Vert Impinj Inc. Speedway Revolution P/N: IPJ-R420

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 94448 Date: 5/10/2013
Test Type: Maximized Emissions Time: 09:15:21
Equipment: Speedway Revolution Sequence#: 4

Manufacturer: Impinj Inc. Tested By: Steven Pittsford

Model: IPJ-R420 S/N: 37012340460

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03227	Cable	32026-29080-	3/29/2013	3/29/2015
			29080-84		
	AN02872	Spectrum Analyzer	E4440A	7/23/2011	7/23/2013
T2	ANP05360	Cable	RG214	12/3/2012	12/3/2014
Т3	ANP05366	Cable	RG-214	10/14/2011	10/14/2013
T4	AN02308	Preamp	8447D	4/3/2012	4/3/2014
T5	AN01996	Biconilog Antenna	CBL6111C	3/2/2012	3/2/2014
	AN00052	Loop Antenna	6502	5/16/2012	5/16/2014
Т6	ANP05965	Cable	Various	8/26/2011	8/26/2013
T7	AN01271	Preamp	83017A	8/18/2011	8/18/2013
Т8	AN03123	Cable	32026-2-29801-	10/14/2011	10/14/2013
			12		
Т9	AN01467	Horn Antenna-ANSI	3115	10/19/2011	10/19/2013
		C63.5 Calibration			
T10	AN03170	High Pass Filter	HM1155-11SS	9/6/2011	9/6/2013

Equipment Under Test (* = EUT):

Equipment church rest (201).		
Function	Manufacturer	Model #	S/N
Speedway Revolution*	Impinj Inc.	IPJ-R420	37012340460
Mini-Guardrail Antenna	Impinj Inc.	IPJ-A0303-000	NA
with SMA Female			
Connector -15dBi gain			

Support Devices:

Function	Manufacturer	Model #	S/N
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Dell	Latitude D-610	NA
POE	Netgear	FS726TP	NA
Coaxial Cable	Generic	RG-58 (2.62meters, 1.5dB Loss)	NA

Page 35 of 45 Report No.: 94448-4

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is set to Low mid and High Channels The EUT is powered by a Netgear POE Model FS726TP. The EUT is transmitting through a 2.62meter long RG-58 antenna cable with a stated loss of 1.5dB into the Impinj Mini-Guardrail Antenna with SMA Female Connector - 15dBi gain

Freq: 902.75MHz, 915.25MHz, 927.25MHz Firmware setting = 31.5dBm, 31.5dBm, 31.5dBm

Measured Power= 29.42dBm, 29.53dBm, 29.57dBm

Frequency range of measurement = 9k-10GHz

CISPR Bandwidths used

Test method in accordance with FCC document: DA 00-705

Temperature: 23°C Pressure: 102.8kPa Humidity: 38%

No Emissions observed 9k-30MHz

Ext Attn: 0 dB

LXL	ALLII. U UB										
	rement Data:		eading lis					est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	31.900M	45.8	+0.2	+0.3	+0.2	-28.0	+0.0	36.0	40.0	-4.0	Vert
			+17.5	+0.0	+0.0	+0.0			Mid		100
			+0.0	+0.0							
2	31.900M	45.4	+0.2	+0.3	+0.2	-28.0	+0.0	35.6	40.0	-4.4	Vert
			+17.5	+0.0	+0.0	+0.0	360		Low		100
			+0.0	+0.0							
3	9272.480M	31.2	+3.5	+0.0	+0.0	+0.0	+0.0	41.4	54.0	-12.6	Horiz
			+0.0	+4.0	-34.1	+0.8	190		High		121
			+35.8	+0.2							
4	250.200M	44.0	+0.5	+1.0	+1.0	-27.1	+0.0	31.9	46.0	-14.1	Vert
			+12.5	+0.0	+0.0	+0.0	360		High		99
			+0.0	+0.0							
5	31.900M	35.7	+0.2	+0.3	+0.2	-28.0	+0.0	25.9	40.0	-14.1	Horiz
			+17.5	+0.0	+0.0	+0.0			High		99
			+0.0	+0.0							
6	9152.521M	29.2	+3.4	+0.0	+0.0	+0.0	+0.0	39.8	54.0	-14.2	Vert
			+0.0	+3.9	-34.1	+0.8			Mid		99
			+36.4	+0.2							
7	250.200M	43.7	+0.5	+1.0	+1.0	-27.1	+0.0	31.6	46.0	-14.4	Horiz
			+12.5	+0.0	+0.0	+0.0			High		99
			+0.0	+0.0							
8	335.600M	41.5	+0.6	+1.1	+1.2	-27.3	+0.0	31.4	46.0	-14.6	Horiz
			+14.3	+0.0	+0.0	+0.0			High		99
			+0.0	+0.0							

9	250.200M	43.5	+0.5	+1.0	+1.0	-27.1	+0.0	31.4	46.0	-14.6	Vert
			+12.5	+0.0	+0.0	+0.0	360		Low		100
			+0.0	+0.0							
10	858.400M	31.1	+1.0	+2.0	+2.2	-27.6	+0.0	30.9	46.0	-15.1	Horiz
			+22.2	+0.0	+0.0	+0.0	360		Mid		194
			+0.0	+0.0							
11	31.900M	34.6	+0.2	+0.3	+0.2	-28.0	+0.0	24.8	40.0	-15.2	Horiz
			+17.5	+0.0	+0.0	+0.0	360		Mid		194
			+0.0	+0.0							-, .
12	31.900M	34.4	+0.2	+0.3	+0.2	-28.0	+0.0	24.6	40.0	-15.4	Horiz
12	31.700111	31.1	+17.5	+0.0	+0.0	+0.0	10.0		Low	13.1	200
			+0.0	+0.0	10.0	10.0			LOW		200
12	9152.514M	28.0	+3.4		+ O O	ι Ο Ο	+0.0	29.6	54.0	-15.4	Horiz
13	9132.314WI	28.0		+0.0	+0.0	+0.0		36.0		-13.4	
			+0.0	+3.9	-34.1	+0.8	312		Mid		132
	0050 5001	20.4	+36.4	+0.2	0.0	0.0	0.0	20.2		1.5.5	**
14	9272.506M	28.1	+3.5	+0.0	+0.0	+0.0	+0.0	38.3	54.0	-15.7	Vert
			+0.0	+4.0	-34.1	+0.8	281		High		119
			+35.8	+0.2							
15	250.200M	42.3	+0.5	+1.0	+1.0	-27.1	+0.0	30.2	46.0	-15.8	Vert
			+12.5	+0.0	+0.0	+0.0			Mid		100
			+0.0	+0.0							
16	714.800M	32.5	+0.9	+1.8	+2.0	-28.1	+0.0		46.0	-16.0	Vert
			+20.9	+0.0	+0.0	+0.0	360		High		99
			+0.0	+0.0							
17	7418.002M	28.8	+3.2	+0.0	+0.0	+0.0	+0.0	37.9	54.0	-16.1	Vert
			+0.0	+3.6	-34.5	+0.6	244		High		106
			+36.0	+0.2					8		
18	250.200M	41.9	+0.5	+1.0	+1.0	-27.1	+0.0	29.8	46.0	-16.2	Horiz
10	250.2001	11.7	+12.5	+0.0	+0.0	+0.0	10.0	27.0	Low	10.2	200
			+0.0	+0.0	10.0	10.0			Low		200
10	5563.479M	31.3	+3.0	+0.0	+0.0	+0.0	+0.0	37.8	54.0	-16.2	Vert
19	3303.479W	31.3	+0.0	+2.9	-33.6	+0.0	217	37.0	High	-10.2	109
			+33.5	+0.3	-33.0	⊤0. 4	217		mgn		109
20	7001.06014	20.6			. 0. 0	. 0. 0	. 0. 0	27.4	540	16.6	TT
20	7221.960M	28.6	+3.0	+0.0	+0.0	+0.0	+0.0		54.0	-16.6	
			+0.0	+3.6	-34.4	+0.6	280		Low		99
- 21	= 11= 0 c0 \ f	20.0	+35.7	+0.3	0.0	0.0	0.0	27.2		1.5	** .
21	7417.968M	28.2	+3.2	+0.0	+0.0		+0.0		54.0	-16.7	
			+0.0	+3.6	-34.5	+0.6	200		High		115
			+36.0	+0.2							
22	786.600M	30.4	+0.9	+1.9	+2.1	-27.9	+0.0	29.2	46.0	-16.8	Horiz
			+21.8	+0.0	+0.0	+0.0			Low		200
			+0.0	+0.0							
23	335.600M	39.3	+0.6	+1.1	+1.2	-27.3	+0.0	29.2	46.0	-16.8	Horiz
			+14.3	+0.0	+0.0	+0.0			Low		200
			+0.0	+0.0							
24	304.500M	39.9	+0.6	+1.1	+1.2	-27.1	+0.0	29.0	46.0	-17.0	Horiz
			+13.3	+0.0	+0.0	+0.0			High		99
			+0.0	+0.0					J		-
25	465.500M	36.2	+0.7	+1.4	+1.5	-28.2	+0.0	29.0	46.0	-17.0	Horiz
23	102.20011	50.2	+17.4	+0.0	+0.0	+0.0	10.0	27.0	Low	17.0	200
			+0.0	+0.0	10.0	10.0			2011		200
			10.0	10.0							

26	250.200M	41.1	+0.5	+1.0	+1.0	-27.1	+0.0	29.0	46.0	-17.0	
			+12.5	+0.0	+0.0	+0.0	360		Mid		194
			+0.0	+0.0							
27 8	8345.252M	26.6	+3.4	+0.0	+0.0	+0.0	+0.0		54.0	-17.2	Vert
			+0.0	+3.8	-34.5	+0.9			High		99
			+36.4	+0.2							
28	375.300M	37.4	+0.7	+1.2	+1.3	-27.6	+0.0		46.0	-17.5	Vert
			+15.5	+0.0	+0.0	+0.0	360		High		99
			+0.0	+0.0							
29	407.300M	36.6	+0.7	+1.3	+1.4	-27.9	+0.0	28.4	46.0	-17.6	Vert
			+16.3	+0.0	+0.0	+0.0	360		Low		100
			+0.0	+0.0							
30 ′	7322.005M	27.7	+3.1	+0.0	+0.0	+0.0	+0.0	36.4	54.0	-17.6	Horiz
			+0.0	+3.6	-34.6	+0.5	180		Mid		99
			+35.9	+0.2							
31	373.400M	37.2	+0.7	+1.2	+1.3	-27.6	+0.0	28.3	46.0	-17.7	Horiz
			+15.5	+0.0	+0.0	+0.0	360		Mid		194
			+0.0	+0.0							
32	802.100M	29.3	+0.9	+1.9	+2.1	-27.9	+0.0	28.3	46.0	-17.7	Horiz
			+22.0	+0.0	+0.0	+0.0			High		99
			+0.0	+0.0					0		
33	374.400M	37.2	+0.7	+1.2	+1.3	-27.6	+0.0	28.3	46.0	-17.7	Horiz
33	3711100111	37.2	+15.5	+0.0	+0.0	+0.0	10.0	20.5	High	17.7	99
			+0.0	+0.0	. 0.0						
34	299.700M	39.4	+0.6	+1.1	+1.1	-27.1	+0.0	28.2	46.0	-17.8	Horiz
34	277.700111	37.4	+13.1	+0.0	+0.0	+0.0	10.0	20.2	Low	17.0	200
			+0.0	+0.0	10.0	10.0			Low		200
35	375.300M	36.9	+0.7	+1.2	+1.3	-27.6	+0.0	28.0	46.0	-18.0	Horiz
33	373.30011	30.7	+15.5	+0.0	+0.0	+0.0	10.0	20.0	Low	10.0	200
			+0.0	+0.0	10.0	10.0			LOW		200
36	5416.522M	29.4	+3.1	+0.0	+0.0	+0.0	+0.0	35.0	54.0	-18.1	Vert
50 .	3+10.322IVI	27.4	+0.0	+2.9	-33.5	+0.5	280	33.7	Low	-10.1	109
			+33.2	+0.3	33.3	10.5	200		Low		10)
37 ′	7222.004M	27.0	+3.0	+0.0	+0.0	+0.0	+0.0	25 Q	54.0	-18.2	Vort
37	7222.004W	27.0	+0.0	+3.6	-34.4	+0.6	270		Low	-10.2	99
					-34.4	+0.0	270		LOW		77
20	328.800M	37.8	+35.7	+0.3	+1.2	27.2	+0.0	27.6	46.0	-18.4	Horiz
38	340.0UUNI		+0.6 +14.1	$^{+1.1}$		-27.2 +0.0			46.0 Mid	-10.4	нопz 194
					+0.0	+0.0	300		IVIIU		174
20	200 600 4	20.0	+0.0	+0.0	, 1 1	27.1	ι Λ Λ	27.6	16 D	10 4	Цот!-
39	300.600M	38.8	+0.6	+1.1	+1.1	-27.1	+0.0	27.6	46.0	-18.4	Horiz
			+13.1	+0.0	+0.0	+0.0	360		Mid		194
40	EE(2 E0134	20.1	+0.0	+0.0	.00	.0.0	.00	25.6	£4.0	10.4	II.
40 3	5563.501M	29.1	+3.0	+0.0	+0.0	+0.0	+0.0	35.6	54.0	-18.4	Horiz
			+0.0	+2.9	-33.6	+0.4	312		High		99
44 4	7222 0053 5	24.0	+33.5	+0.3	.0.0	. 0. 0	.0.0	25.5	£4.0	10.5	
41	7322.005M	26.8	+3.1	+0.0	+0.0	+0.0	+0.0	35.5		-18.5	Horiz
			+0.0	+3.6	-34.6	+0.5	322		Mid		118
			+35.9	+0.2		200		2= -		400	**
1 42				. 1 /	1 5	707	+0.0	777	16 ()	100	Vant
72	465.500M	34.4	+0.7	+1.4	+1.5	-28.2	+0.0	27.2	46.0	-18.8	Vert
72	465.500M	34.4	+0.7 +17.4 +0.0	+1.4 +0.0 +0.0	+0.0	-28.2 +0.0	360	21.2	High	-10.0	99

43 797.300M	28.2	+0.9	+1.9	+2.1	-27.9		27.2	46.0	-18.8	Horiz
		+22.0	+0.0	+0.0	+0.0	360		Mid		194
		+0.0	+0.0							
44 5491.502M	28.6	+3.0	+0.0	+0.0	+0.0	+0.0	35.0	54.0	-19.0	Vert
		+0.0	+2.9	-33.5	+0.4	188		Mid		104
		+33.3	+0.3							
45 5416.512M	28.5	+3.1	+0.0	+0.0	+0.0	+0.0		54.0	-19.0	Horiz
		+0.0	+2.9	-33.5	+0.5	264		Low		99
		+33.2	+0.3							
46 5491.482M	28.2	+3.0	+0.0	+0.0	+0.0	+0.0	34.6	54.0	-19.4	Horiz
		+0.0	+2.9	-33.5	+0.4	305		Mid		99
		+33.3	+0.3							
47 6490.702M	25.6	+3.0	+0.0	+0.0	+0.0	+0.0		54.0	-20.8	Horiz
		+0.0	+3.4	-34.0	+0.5	226		High		134
		+34.4	+0.3							
48 6406.729M	25.5	+3.0	+0.0	+0.0	+0.0	+0.0	33.1	54.0	-20.9	Vert
		+0.0	+3.3	-34.0	+0.5	254		Mid		99
		+34.4	+0.4							
49 376.300M	33.8	+0.7	+1.2	+1.3	-27.6	+0.0	24.9	46.0	-21.1	Vert
		+15.5	+0.0	+0.0	+0.0			Mid		100
		+0.0	+0.0							
50 6490.736M	25.0		+0.0	+0.0		+0.0	32.6	54.0	-21.4	Vert
		+0.0	+3.4	-34.0	+0.5			High		99
		+34.4	+0.3							
51 3610.965M	31.6	+2.3	+0.0	+0.0	+0.0	+0.0	32.5	54.0	-21.5	Horiz
		+0.0	+2.2	-33.6	+0.4	183		Low		115
		+29.3	+0.3							
52 373.400M	33.3	+0.7	+1.2	+1.3	-27.6	+0.0	24.4	46.0	-21.6	Vert
		+15.5	+0.0	+0.0	+0.0	360		Low		100
		+0.0	+0.0							
53 3610.971M	31.1	+2.3	+0.0	+0.0	+0.0	+0.0	32.0	54.0	-22.0	Vert
		+0.0	+2.2	-33.6	+0.4	185		Low		125
		+29.3	+0.3							
54 139.600M	35.4	+0.4	+0.7	+0.7	-27.7	+0.0		43.5	-22.4	
		+11.6	+0.0	+0.0	+0.0	360		High		99
		+0.0	+0.0							
55 4576.253M	27.3	+2.8	+0.0	+0.0		+0.0		54.0	-23.0	Vert
		+0.0	+2.6	-33.5	+0.1	254		Mid		100
		+31.4	+0.3							
56 214.300M	35.2	+0.5	+0.9	+0.9	-27.2	+0.0	20.4	43.5	-23.1	Horiz
		+10.1	+0.0	+0.0	+0.0			High		99
		+0.0	+0.0							
57 4576.253M	26.9	+2.8	+0.0	+0.0	+0.0	+0.0	30.6	54.0	-23.4	Horiz
		+0.0	+2.6	-33.5	+0.1	237		Mid		111
		+31.4	+0.3							
58 1830.526M	36.2	+1.5	+0.0	+0.0	+0.0	+0.0	30.3	54.0	-23.7	Vert
		+0.0	+1.6	-34.6	+0.3	360		Mid		99
		+24.9	+0.4							
59 179.400M	36.2	+0.4	+0.8	+0.8	-27.4	+0.0	19.7	43.5	-23.8	Vert
		+8.9	+0.0	+0.0	+0.0	360		High		99
		+0.0	+0.0							
								-		

60	139.600M	33.9	+0.4	+0.7	+0.7	-27.7		19.6	43.5	-23.9	Vert
			+11.6	+0.0	+0.0	+0.0	360		Low		100
			+0.0	+0.0							
61	215.300M	34.1	+0.5	+0.9	+0.9	-27.2	+0.0	19.4	43.5	-24.1	Horiz
			+10.2	+0.0	+0.0	+0.0	360		Mid		194
			+0.0	+0.0							
62.	3709.002M	28.6	+2.4	+0.0	+0.0	+0.0	+0.0	29 9	54.0	-24.1	Vert
	2,03100211	20.0	+0.0	+2.1	-33.6	+0.4	360	_,,,			103
			+29.6	+0.4	22.0		200		111811		100
63	215.300M	33.6	+0.5	+0.9	+0.9	-27.2	±0.0	18.0	43.5	-24.6	Horiz
0.5	213.300W	33.0	+10.2	+0.0	+0.0	+0.0	10.0	10.7	Low	-24.0	200
			+0.0	+0.0	+0.0	+0.0			LOW		200
<i>C</i> 1	2661 00214	20.0			. 0. 0	. 0. 0	. 0. 0	20.0	540	25.0	TT
64	3661.002M	28.0	+2.4	+0.0	+0.0	+0.0	+0.0	29.0	54.0	-25.0	Horiz
			+0.0	+2.1	-33.6	+0.4			Mid		112
			+29.4	+0.3							
65	179.400M	34.8	+0.4	+0.8	+0.8	-27.4	+0.0	18.3	43.5	-25.2	Horiz
			+8.9	+0.0	+0.0	+0.0			High		99
			+0.0	+0.0							
66	1854.534M	34.0	+1.5	+0.0	+0.0	+0.0	+0.0	28.5	54.0	-25.5	Vert
			+0.0	+1.6	-34.5	+0.3	360		High		100
			+25.2	+0.4					C		
67	3709.002M	27.0	+2.4	+0.0	+0.0	+0.0	+0.0	28.3	54.0	-25.7	Horiz
,	2,03100211	27.10	+0.0	+2.1	-33.6	+0.4	42		High	20	118
			+29.6	+0.4	00.0				111811		110
68	2745.773M	29.6	+1.9	+0.0	+0.0	+0.0	+0.0	27.8	54.0	-26.2	Horiz
00	2143.113W	29.0	+0.0	+2.1	-33.9	+0.5	360	27.0	Mid	-20.2	99
			+27.3	+0.3	-33.9	+0.5	300		WIIG		22
	2745 75414	20.5			.00	+ O O	.00	27.7	510	26.2	X 74
09	2745.754M	29.5	+1.9	+0.0	+0.0	+0.0	+0.0	21.1	54.0	-26.3	Vert
			+0.0	+2.1	-33.9	+0.5			Mid		125
			+27.3	+0.3							
70	2781.784M	29.3	+1.9	+0.0	+0.0	+0.0	+0.0	27.6	54.0	-26.4	Horiz
			+0.0	+2.1	-33.9	+0.5	360		High		99
			+27.4	+0.3							
71	2781.752M	28.9	+1.9	+0.0	+0.0	+0.0	+0.0	27.2	54.0	-26.8	Vert
			+0.0	+2.1	-33.9	+0.5			High		110
			+27.4	+0.3							
72	180.400M	33.0		+0.8	+0.8	-27.4	+0.0	16.5	43.5	-27.0	Horiz
			+8.9	+0.0		+0.0			Mid		194
			+0.0	+0.0							
73	1830.498M	32.3	+1.5	+0.0	+0.0	+0.0	+0.0	26.4	54.0	-27.6	Horiz
'3	1000.170141	32.3	+0.0	+1.6	-34.6	+0.3	136	20. 1	Mid	27.0	136
			+24.9	+0.4	5 7.0	10.5	150		11114		150
7.1	1805.476M	32.4	+1.4	+0.4	+0.0	+0.0	+0.0	26.3	54.0	-27.7	Vert
'4	1003.4/0101	3∠.4	+1.4 +0.0	+0.0 +1.6	+0.0 -34.6	+0.0	+0.0 183	20.3		-21.1	115
					-54.0	+0.5	103		Low		113
7.	2700 2153 4	27.0	+24.7	+0.5			.00	25.0	F 4 O	20.1	X 7 .
1/5	2708.215M	27.9	+1.9	+0.0	+0.0	+0.0	+0.0	25.9		-28.1	Vert
			+0.0	+2.1	-33.9	+0.5	183		Low		115
			+27.1	+0.3							
76	56.200M	32.5	+0.2	+0.4	+0.3	-28.0	+0.0	11.7		-28.3	Horiz
			+6.3	+0.0	+0.0	+0.0			High		99
			+0.0	+0.0							
•											

77 2708.250M	27.3	+1.9	+0.0	+0.0	+0.0	+0.0	25.3	54.0	-28.7	Horiz
		+0.0	+2.1	-33.9	+0.5	256		Low		106
		+27.1	+0.3							
78 1805.501M	30.5	+1.4	+0.0	+0.0	+0.0	+0.0	24.4	54.0	-29.6	Horiz
		+0.0	+1.6	-34.6	+0.3	256		Low		106
		+24.7	+0.5							
79 1854.534M	29.8	+1.5	+0.0	+0.0	+0.0	+0.0	24.3	54.0	-29.7	Horiz
		+0.0	+1.6	-34.5	+0.3			High		114
		+25.2	+0.4							
80 3661.003M	21.9	+2.4	+0.0	+0.0	+0.0	+0.0	22.9	54.0	-31.1	Vert
		+0.0	+2.1	-33.6	+0.4	360		Mid		99
		+29.4	+0.3							

CKC Laboratories, Inc. Date: 5/10/2013 Time: 09:15:21 Impinj Inc. WO#: 94448 Test Distance: 3 Meters Sequence#: 4 Vert Impinj Inc. Speedway Revolution P/N: IPJ-R420

Test Setup Photos

Laird Technologies 6dBi Antenna, View #1

Laird Technologies 6dBi Antenna, View #2

Mini-Guardrail Antenna, View #1

Mini-Guardrail Antenna, View #2

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 44 of 45 Report No.: 94448-4

SAMPLE CALCULATIONS					
	Meter reading	(dBμV)			
+	Antenna Factor	(dB)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBμV/m)			

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 45 of 45 Report No.: 94448-4