

## Università degli Studi dell'Aquila

## Seconda Prova Parziale di **Algoritmi e Strutture Dati con Laboratorio**

Mercoledì 27 Gennaio 2016 – Prof. Guido Proietti (Modulo di Teoria)

| Scrivi i tuoi dati $\Longrightarrow$ | Cognome:         | Nome:            | Matricola:       | PUNTI |
|--------------------------------------|------------------|------------------|------------------|-------|
| ESERCIZIO 1                          | Risposte Esatte: | Risposte Omesse: | Risposte Errate: |       |

## ESERCIZIO 1: Domande a risposta multipla

Premessa: Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una x la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la × erroneamente apposta (ovvero, in questo modo ⊗) e rifare la × sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto finale è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. In un albero AVL di n elementi, la cancellazione della radice comporta nel caso migliore un numero di rotazioni pari a: c)  $\Theta(\log n)$ d) 1
- 2. Sia dato un AVL di n elementi nel quale si eseguono in successione O(1) cancellazioni e  $\Theta(\log n)$  inserimenti. Nel caso peggiore, quante rotazioni subirà l'AVL?

a)  $\Theta(1)$ b)  $\Theta(n)$ c)  $\Theta(\log^2 n)$ \*d)  $\Theta(\log n)$ 

3. Si supponga di inserire la sequenza di chiavi 26,14,6 (in quest'ordine) in una tavola hash di lunghezza m=3 (ovvero con indici 0, 1, 2) utilizzando l'indirizzamento aperto con funzione hash  $h(k) = k \mod 3$ , e risolvendo le collisioni con il metodo della scansione quadratica con  $c_1 = c_2 = 1$ . Quale sarà la tavola hash finale?

a) A = [14, 6, 26]b) A = [26, 6, 14]c) A = [6, 26, 14]\*d) A = [6, 14, 26]

- 4. In un grafo con n vertici ed  $m = \Theta(n^2)$  archi rappresentato con liste di adiacenza, la verifica di completezza costa: \*a)  $\Theta(n^2)$ b)  $\omega(n^2)$ c)  $\Theta(n)$  d)  $o(n^2)$
- 5. Si consideri il grafo G = (V, E) con  $V = \{1, 2, 3, 4, 5\}$  ed  $E = \{(1, 2), (1, 5), (2, 4), (2, 5), (3, 5)\}$ . Quali delle seguenti affermazioni è falsa:
  - b) il BFS di G radicato in 2 ha altezza 2 \*c) il diametro di G, ovvero la distanza massima tra \*a) G è bipartito due nodi in G, è pari a 2 d) G ha grado 3
- 6. Sia dato un grafo connesso G con n vertici, numerati da 1 ad n, ed  $m = \Theta(n \log n)$  archi orientati, disposti in modo arbitrario, ma in modo tale da garantire l'aciclicità. Si applichi ora l'algoritmo di ordinamento topologico rispetto al nodo sorgente etichettato 1. La complessità risultante è pari a:

a)  $\Theta(n^2)$ b)  $\Theta(n)$ \*c)  $\Theta(n \log n)$ d) indefinita (non è detto che l'algoritmo possa essere applicato)

7. Quale tra i seguenti rappresenta lo pseudocodice dell'algoritmo di Bellman&Ford: \*a)  $B\&F(G = (V, A, w), s \in V)$  $D_{sv} = +\infty \text{ per } v \neq s, D_{ss} = 0$ for i = 1 to n - 1 do for each  $(u, v) \in A$  do if  $D_{su} + w(u, v) < D_{sv}$  then  $D_{sv} = D_{su} + w(u, v)$ 

 $B\&F(G = (V, A, w), s \in V)$  $D_{sv} = +\infty \text{ per } v \neq s, D_{ss} = 0$ for i = 1 to n - 1 do for each  $(u, v) \in A$  do if  $D_{su} + w(u, v) < D_{sv}$  then  $D_{su} = D_{sv} + w(u, v)$ 

 $B\&F(G = (V, A, w), s \in V)$  $D_{sv} = +\infty \text{ per } v \neq s, D_{ss} = 0$ for i = 1 to n - 1 do for each  $(u, v) \in A$  do if  $D_{su} + w(u, v) > D_{sv}$  then  $D_{sv} = D_{su} + w(u, v)$ 

 $B\&F(G = (V, A, w), s \in V)$  $D_{sv} = +\infty \text{ per } v \neq s, D_{ss} = 0$ for i = 1 to n - 1 do for each  $(u, v) \in A$  do if  $D_{su} + w(u,v) = D_{sv}$  then  $D_{sv} = D_{su} + w(u, v)$ 

8. Sia dato un grafo pesato G = (V, E) con n nodi ed m archi, senza cicli negativi, e si consideri il problema di trovare i cammini minimi in G tra tutte le coppie di nodi. Quando è conveniente (asintoticamente) applicare l'algoritmo di Floyd&Warshall rispetto ad un'applicazione ripetuta dell'algoritmo di Dijkstra con heap binari?

\*a)  $m = \omega(n^2/\log n)$ b)  $m = \Theta(n)$ c) per ogni valore di md) per nessun valore di m

9. Sia dato un grafo pesato G = (V, E) con n nodi ed m archi, e si consideri il problema di trovare il minimo albero ricoprente di G. Quando è equivalente (asintoticamente) applicare l'algoritmo di Kruskal con alberi QuickFind senza euristica di bilanciamento e l'algoritmo di Prim con heap binari?

a)  $m = o(n^2)$ \*b)  $m = \Omega(n^2/\log n)$ c) per ogni valore di md) per nessun valore di m

10. Sia dato un grafo pesato G = (V, E) con n nodi ed m archi, e si consideri il problema di trovare il minimo albero ricoprente di G. Quando è strettamente conveniente (asintoticamente) l'implementazione di Prim con heap di Fibonacci rispetto all'algoritmo di Borůvka?

b)  $m = \Theta(n)$ c) per ogni valore di m\*a)  $m = \omega(n)$ d) per nessun valore di m

## Griglia Risposte

|          | Domanda |   |   |   |   |   |   |   |   |    |
|----------|---------|---|---|---|---|---|---|---|---|----|
| Risposta | 1       | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| a        |         |   |   |   |   |   |   |   |   |    |
| b        |         |   |   |   |   |   |   |   |   |    |
| С        |         |   |   |   |   |   |   |   |   |    |
| d        |         |   |   |   |   |   |   |   |   |    |