5 (1. Halbtag) | Operationsverstärker

Angelo Brade, Jonas Wortmann August 26, 2024 1 CONTENTS

Contents

1	Einleitung	2
2	Theorie	3
3	Voraufgaben	4
	3.1 A	
	3.2 B	4
	3.3 C	
	3.4 D	
	3.5 E	6
4	Auswertung	7

1 Einleitung

2 Theorie

3 Voraufgaben

3.1 A

Es gilt die Formel

$$\frac{1}{v} = \frac{1}{v_0} + k \qquad \qquad v = \frac{1}{\frac{1}{v_0} + k}.$$
 (3.1)

Für die Werte $k=0.1,\,v_0=10^4$ und $v_0=10^5$ ergibt sich

$$v_1 \approx 9.990$$
 $v_2 \approx 9.999.$ (3.2)

Mit der Näherung von $v = \frac{1}{k}$ ergibt sich

$$v_{\text{N\ddot{a}h}} = 10. \tag{3.3}$$

Die Abweichung von v_1 und v_2 von $v_{\text{N\"{a}h}}$ liegen jeweils bei 0.001% und 0.0001%.

3.2 B

Es gilt

$$U_x = U_{\rm in} - kU_{\rm out} \tag{3.4}$$

$$\Leftrightarrow = U_{\rm in} - kv_0 U_x$$

$$\Leftrightarrow = \frac{U_{\rm in}}{1 + v_0 k}.$$
(3.5)

Für $k=0.1,\,v_0=10^5$ und $U_{\rm in}=1\,{\rm V}$ ist

$$U_x \approx 0.0001 \,\text{V}.\tag{3.6}$$

3.3 C

Sei ein Gleichtaktsignal mit $\Delta U_+ = \Delta U_- = + \Delta U_{\rm in}.$ Dann gilt

$$\Delta U_{+} = \Delta U_{E} + \Delta U_{1} \qquad \Delta U_{-} = \Delta U_{E} + \Delta U_{1}. \tag{3.7}$$

Daraus folgt, dass $\Delta U_{\rm in} = \Delta U_E + \Delta U_1$. Die Ausgangsspannung ist

$$\Delta U_{\text{out}} = R_C \cdot \Delta I_C. \tag{3.8}$$

An Punkt 1 gilt

$$I_1 = 2I_E. (3.9)$$

3.4

Es ist dann

$$\Delta U_{\rm in} = R_E \cdot \Delta I_E + R_1 \cdot 2\Delta I_E = \Delta I_E \left(R_E + 2R_1 \right) \approx \Delta I_E \cdot 2R_1. \tag{3.10}$$

Am Knoten bei U_{out} gilt

$$\Delta I_E = \Delta I_C \Rightarrow \Delta U_{\text{out}} = R_C \cdot \Delta I_E.$$
 (3.11)

Die Verstärkung ist dann

$$v_{CM} = \frac{\Delta U_{\text{out}}}{\Delta U_{\text{in}}} = \frac{R_C}{2R_1}.$$
(3.12)

Die Gleichtaktunterdrückung ist

$$10\log\left(\frac{R_E}{R_1}\right) = 10\log\left(\frac{1\,\mathrm{k}\Omega}{100\,\mathrm{k}\Omega}\right) = -20\,\mathrm{dB}.\tag{3.13}$$

3.4 D

Die Frequenzabhängigkeit der Impedanz eines Kondensators ist

$$Z_1 = \frac{1}{\mathrm{i}\omega C} = \frac{1}{\mathrm{i}2\pi fC} \tag{3.14}$$

$$|Z_1| = \left| \frac{1}{\mathrm{i}\omega C} \right| = \frac{1}{2\pi f C}.\tag{3.15}$$

Die Verstärkung in Abhängigkeit der Frequenz ist dann

$$v(f) = 1 + \frac{Z_2}{|Z_1|} = 1 + R2\pi fC.$$
 (3.16)

Die Limits sind

$$\lim_{f \to 0} [1 + R2\pi fC] = 1 \qquad \qquad \lim_{f \to \infty} [1 + R2\pi fC] = \infty. \tag{3.17}$$

Damit $|Z_1| = R$ ist muss gelten

$$\frac{1}{2\pi fC} = R \Leftrightarrow f = \frac{1}{2\pi RC}.\tag{3.18}$$

Für die konkreten Werte $Z_1=R=100\,\mathrm{k}\Omega$ und $Z_1=C=100\,\mathrm{nF}$ ist die Frequenz

$$f = \frac{1}{2\pi RC} \approx 15.92 \,\text{Hz} \Rightarrow v(f) \approx 2. \tag{3.19}$$

3.5 E

6

Figure 1: Frequenzabhängige Verstärkung eines nicht invertierbaren Verstärkers als Bode–Diagramm

3.5 E

Sei

$$v = \frac{U_{\text{out}}}{U_{\text{in}}} = -\frac{Z_2}{Z_1}.$$
 (3.20)

Das Minuszeichen kommt

4 Auswertung

List of Figures

1	Frequenzabhängige	Verstärkung eines	s nicht invertierbaren	Verstärkers als Bode–	
	Diagramm				6

List of Tables