© WPI / DERWENT

TI- Magnetic micro-support for eucaryotic cells cultivation - is obtd. by mixing specified oxide with gelatin pretreated with glutaraldehyde, grinding, and treatment with proteolytic ferment

PR - SU19874313664 19871006

PN - SU1567623 A 19900530 DW199105 000pp

PA-(ASBI-R) AS USSR BIOORG CHEM

- (BIOL-R) BIOLAR IND RES COMPLEX

IC - C12N5/00 ;C12N11/02

IN - LUKIN Y U V; MARKVICHEV E A; TURKIN S I

AB - SU1567623 Magnetic microsupport for cultivating the eucaryotic cells are obtd. more efficiently as follows. Fe, Co or Ni oxide is used as magnetic filler. The oxide is ground to 0.005-0.05 microns particle size, and mixed with gelatin pretreated with glutaraldehyde. The mixt. is then ground and treated with a proteolytic ferment until the particle surfaces become smooth. The ratio filler:gelatin is 1:0.5-10.

- USE/ADVANTAGE - In veterinary and medical field, esp. in prodn. of vaccines, prodn. of interferon, growth hormone etc. Simpler method and higher quality product. Bul.20/30.5.90 (4pp Dwg.No. 0/0)

OPD - 1987-10-06

AN - 1991-035151 [05]

СОЮЗ СОВЕТСНИХ СОЦИАЛИСТИЧЕСНИХ РЕСПУБЛИН

(19) SU(11) 1567623 A 1

(51)5 C 12 N 5/00, 11/02

ГОСУДАРСТВЕННЫЙ НОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4313664/31-13

(22) 06.10.87

(46) 30.05.90. Бюл. № 20

(71) Институт биоорганической химии им.М.М.Шемякина АН СССР и Научно-производственное объединение "Биолар" (72) С.И.Туркин, Ю.В.Лукин, Е.А.Маркичева, Р.А.Али-Заде. В.П.Зубов, М.А.Завальный, А.Г.Скуиньш, И.К.Калявиньш и А.Х.Зицманис

(53) 577.15 (088.8)

(56) Международная заявка, PCT/SU. 86/00083, кл. С 12 N 5/00, 1986. Международная заявка, PCT/US

Международная заявка, PCT/US 81/01098, кл. С 12 N 11/10, 1982.

(54) СПОСОБ ПОЛУЧЕНИЯ МАГНИТНЫХ МИК-РОНОСИТЕЛЕЙ ДЛЯ КУЛЬТИВИРОВАНИЯ КЛЕ-ТОК ЭУКАРНОТ

(57) Изобретение относится к биотехнологии, в частности к усовершенствованному способу получения магнитных микроносителей для культивирования клеток зукариот. Цель изобрете-

ния - упрощение способа и улучшение качества целевого продукта за счет увеличения прироста клеток на микроносителях. Способ заключается в обработке раствора желатина поперечносшивающим агентом - глутаровым альдегидом, размельчении блок-полимера с целью получения частиц определенного размера и обработке полученных протеолитическим ферментом. При этом предварительно проводят введение в раствор желатина частиц магнитного наполнителя размером 0,005-0,05 мкм (оксидов металлов переменной валентности) в соотношении магнитного наполнителя и желатина 1:(0,5-10). На полученных таким способом микроносителях прирост клеток перевиваемой линии RH повышается в 1,6-2,5 раза по сравнению с микроносителями, полученными по известному способу. Упрощение способа достигается за счет исключения стадии дисперсионной конденсации. 2 з.п. ф-лы, 1 табл.

Изобретение относится к биотехнологии, в частности к усовершенствованному способу получения магнитных микроносителей (ММН) для культивирования поверхностно-зависимых клеток эукариот, и может найти широкое применение в ветеринарной и медицинской промышленности для выращивания клеток и размножения вирусов на них с целью создания вакцин и сывороток, а также для получения секретируемых клетками зукариот важных биологи-чески активных веществ, таких как β - и γ -интерфероны, активатор плазминогена, гормон роста и др.

Цель изобретения - упрощение способа и улучшение качества целевого продукта за счет увеличения прироста клеток на микроносителях.

Способ заключается в диспергировании магнитного накопителя (МН) на основе оксидов металлов переменной валентности с размером частиц 0,005-0,05 мкм в растворе желатина, обработке полученной суспензии глутаровым альдегидом и размельчении образующегося геля для получения частиц микроносителя. Последние обрабатывают про- 10 теолитическими ферментами до исчезновения шероховатости поверхности. В качестве оксидов металлов используют оксиды железа, кобальта и никеля, а соотношение магнитного носителя и желатина устанавливают равным 1:0,5 - 1:10. Использование предлагаемого способа позволяет значительно упростить процесс получения микроносителей за счет исключения стадии дисперсионной конденсации, на которой применяют специальную аппаратуру и органические растворители, а также улучшить качество целевого продукта за счет увеличения прироста клеток в 1,6-2,5 раза.

Пример 1. Соли, FeSO₄ 7H₀O (35 г) и FeCl₄ 6H₂O (50 г), растворяют ≈ 110 мл H_2^{*0} каждую, растворы объединяют и при перемешивании постепен- 30 но приливают 100 мл 25%-ной гидроскиси эммония. Выпадает тонкодисперсный осадок магнетита $Fe_3\theta_4$, который трижды промывают подкисленной дистиллированной водой. К промытому осадку (25 г) добавляют 400 мл 25%-ного раствора желатина при 50° С в воде (весовое соотношение МН и желатина 1:4) и при перемешивании до однородной суспензии нагревают в течение 20 мин при 50° С. Средний размер частиц магнитного наполнителя 0,005 мкм. К образованшейся суспензии добавляют 35 мл 25%-ного водного раствора глутарового альдегида и интенсивно перемешивают в течение 15 мин. После выдерживания в течение 15 мин при 20°C блок геля продавливают через сито с диаметром отверстий 200 мкм. Полученные частицы отмывают водой от глутарового альдегида, затем обрабатывают 200 мл 0,25%-ного раствора трипсина в 0,01 М фосфатном буфере (рН 7,6) в течение 3 мин при комнатной температуре и постоянном перемешивании. Для удаления остатков фермента частицы микроносителя промывают 0,01%-ным раствором этилендиаминтетрауксусной кислоты, суспендируют

в 0,15 М растворе NaCl, стерилизуют при 120°С и 0,7 ати в течение 20 мин. Получают 300 г ММН с содержанием 8,5% Fe₃O₄. В процессе обработки ММН протеиназами осуществляют визуальный контроль под микроскопом и обработку ферментами ведут до исчезновения шероховатости частиц.

П р и м е р 2. ММН получают по примеру 1, но на 5,0 г осадка $\mathrm{Fe}_3\mathrm{O}_4$ добавляют 200 мл 25%-ного раствора желатина (весовое соотношение МН и желатина 1:10). Получают 250 г ММН с содержанием 2% $\mathrm{Fe}_3\mathrm{O}_4$.

П р и м е р 3. ММН получают по примеру 1, но на 25 г осадка $\mathrm{Fe_3O_4}$ добавляют 50 мп 25%-ного раствора желатина (весовое соотношение МН и желатина 1:0,5). Получают 125 г ММН с содержанием 25% $\mathrm{Fe_2O_3}$.

Пример 4, ММН получают по примеру 1, но к 4,1 г осадка Fe_3O_4 добавляют 200 мл 25%-ного раствора желатина (весовое соотношение ИН и желатина 1:12). Получают 240 г ММН с содержанием 0,9% Fe_3O_4 .

Пример 5. К 25 госадка Рез 64, который получен и промыт по примеру 1, при перемешивании и 50°С добавляют 200 мл 25% ного раствора желатина в воде (соотношение МН и желатина 1:2). Полученную суспензию, содержащую частицы МН - Гез 04 - с размером 0,005 мкм, подвергают дальнейшей обработке, добавляя 35 мл 25% ного водного раствора глутарового альдегида. Далее весы процесс проводят по примеру 1. Получают 350 г ММН с содержанием 16,2% Fes 04.

Пример 6. Соли, 54 г FeCl, x **★** 6H₂O и 24 г CoCl₂ 6H₂O₄ растворяют в 50 мл воды каждую, растворы объединяют, нагревают до 90° С и при перемешивании приливают 150 мл 25%-ного раствора гидроокиси натрия. Перемешивают в течение 10 мин. Образовавшийся осадок Со $Fe_{
ho}0_4$ с размером частиц 0,03 мкм промывают раствором соляной кислоты (0,05 M) до pH 6-8. К промытому осадку добавляют 400 мл 20%-ного раствора желатина в воде (соотношение МН и желатина 1:3), перемешивают до образования однородной суспензии и нагревают в течение 30 мин при 90°C. Все дальнейшие операции, начиная с добавления 35 мл 25%-ного раствора глутарового альдегида, осуществляют по примеру 1. Получают

400 г ММН с содержанием 6,4% феррита

Пример 7. Соли, 54 г FeCl. 1 3 6H₂D и 2D г NiCl₂, растворяют в 50 мл воды каждую, растворы объединяют и нагревают до 90°C. При перемешивании добавляют 150 мл 25%-ного раствора гидроскиси натрия и продолжают перемешивание в течение 40 мин при той же температуре. Образовавшийся осадок (NiFe,O4 с размером частиц 0,05 мкм) промывают раствором 0,05 М соляной кислоты до рН 6-8. К промытому осадку добавляют 400 мл 20%-ного раствора желатина (соотношение МН и желатина 1:3), перемешивают до образования однородной суспензии и нагревают в течение 30 мин при 90° С. Все дальнейшие операции, начиная с добавления 35 мл 25%-ного раствора глутарового альдегида, осуществляют по примеру 1. Получают 410 г микроносителя с содержанием 6,8% феррита никеля.

Пример 8. Процесс осуществляют по примеру 1, но полученные частицы после отмывки ведей от глутарового альдегида обрабать зают 20 мл 1,20%-ного раствора 🕉 - жимотрыпсина в 0,01 М зо де 199, содержащей 3-10% бычьей сыфосфатном буфере, оН 7,6. Получают 295 г ММН с содержанием 8,5% № 404.

Пример Э. Гранулы микроносителя, полученные по примеру 1, помещают в 0,25%-ный раствор коллагеназы в 0,15 М фосфатном буфере с рН 7,6 (из расчета 200 мл раствора фермента н∋ 250 г гранул микроносителя) и выдерживают, перемешивая при комнатной температуре до образования гладкой поверхности гранул, ксторое фиксируют визуальным наблюдением под микроскопом. Время обработки 3,5 мин. Затем остатки фермента удаляют, а продукт промывают по примару 1.

Оптимальное весовое соотношение МН и желатина 1:(0,5-10). Получение ММН при весовом соотношении ченее 1: :0,5 затруднительно из-за возрастания вязкости растворя, а при соотношении более 1:10 нешелесообразно, так как приводит к получению частиц с низким содержанием МН (менее 2%), а также к снижению прироста клеток.

Использование частиц МП менее 0,005 мкм невозможно, так как этот размер имеет однодоменная частица МН, . а более 0.05 мкм нежелательно, так как уменьшается прирост клеток.

С целью получения гладкой поверхности магнитного микроносителя, которая необходина для эффективного прикрепления клеток, частицы микроносителя обрабатывают протеолитическими ферментами. Используют трипсин, &химотрипсин и коллагеназу при концентрации 0,2-0,25%. В процессе прото вешения обработки осуществляют визуальный контроль под микроскопом за поверхностью гранул и обработку ферментом ведут до исчезновения шероховатости поверхности. Это время 15 составляет обычно 2,5-3,5 мин. Более плительная обработка нежелательна. так как при этом разрушаются гранулы микроносителя. Нежелательно также использования более высоких концентраций ферментов ввиду того, что сокращается влемя обработки, что создает спожность в установлении момента окончаения этой стадии.

25 На микроносителях, полученных согласно примерам 1-9, выращивают поверхностно-зависимые клетки почек эмбриона человека перевиваемой линии RH. Культивирование проводят на среворотки, во флаконах объемом 250 мл с магнитной мешалкой. Клетки высевают, используя на начальном этапе 20% объема (30 мл) питательной среды от конечного. Госле засева клеток суспечаию периодически перемешивают по 1-2 мин с интервалом 30 мин в течение 3-4 ч. По окончании процесса прикрепления клеток к микроносителям 40 объем среды доводят до конечного (150 мл), концентрация клеток при этом составляет $4.0\cdot10^4$ кл/мл, и устачалливают постоянный режим работы мешалки - 40 об/мин. Концентрация 45 микроносителей в конечном объеме среды составляет : см³ плотного осадка на 19 мл питательной среды, что обеспечивает площадь около 15 см2 на 1 мл среды. Процесс культивирования 50 осуществляют при 37°С в течение 7 сут. На 3 сут культивирования среду заменяют на 70%. По окончании процесса клетки снимают, обрабатывая их 20 мл раствора, содержащего 0,025% трипси-55 на и 0,02% ЭДТА. Количество выросших клетск определяют, подсчитывая их в гемоцитометре после окрашивания три- " пановым синим. Коэффициент прироста клеток рассчитывают по отношению

концентрации выросших клеток к их посевной концентрации.

В таблице приведены сравнительные данные по культивированию перевиваемой линии RH-клеток почек эмбриона человека.

Таким образом, предлагаемый способ позволяет упростить технологию получения магнитных микроносителей для культивирования клеток эукариот благодаря исключению стадий дисперсионной поликонденсации и улучшить качество микроносителей за счет увеличения коэффициента прироста клеток на предлагаемых магнитных микроносителях в 1,6-2,5 раза по сравнению с чосителями, полученными по известному способу. Кроме того, магнитные микроносители, получаемые предлагаемым способом, содержат заданное количество магнитного носителя, что позволяет использовать их в процессе магнитоуправляемого культивирования.

Формула изобретения

1. Способ получения магнитных микроносителей для культивирования клеток эукариот, включающий смешивание. раствора желатина с магнитным напол- 30 нителем из оксидов металлов переменной валентности, получение частиц микроносителя с проведением обработки желатина глутаровым альдегидом, о т личающийся тем, что, с целые упрощения способа и улучшения качества целевого продукта за счет увеличения прироста клеток на микроносителях, в качестве магнитного наполнителя используют частицы оксидов не- 40 таллов переменной валентности размером 0,005-0,05 мкм, обработку желатина глутаровым альдегидом проводят пепед получением частиц микроносителя, а частицы микроносителя получают размельчением геля с последующей обработкой их протеолитическими ферментами до исчезновения шероховатости поверхности.

2. Способ по п.1, о т л и ч а ю - щ и й с я тем, что соотношение маг- нитный наполнитель и желатин устанав-ливают равным 1:0,5-1:10.

3. Способ по п.1, о т л и ч а ю - 15 щ и й с я тем, что в качестве оксидов металлов переменной валентности используют оксиды железа, кобальта или никеля.

20	****			
2U	Микроноси- тели по примеру	Концентрация выросших кле- ток, кл/мл	Коэффици- ент при- роста клеток	
25			AJIC TOR	
30	По из- вестному способу По пред- лагаемо- мо спо-	1,6:10 ⁵	4,0	
15	собу 1 2 3 4 5	3,8·10 ⁵ 2,5·10 ⁵ 2,6·10 ⁵ 1,8·10 ⁵ 4,1·10 ⁵	9,5 6,3 6,5 4,5 10,2	
10	6 7 8 9	2,9·10 ⁵ 3,2·10 ⁵ 3,8·10 ⁵ 3,6·10 ⁵	7,2 8,0 9,5 9,0	
		=		

Редактор М.Петрова	Составитель В.Муронец Техред М.Дидык	Корректор В.Кабаций
	Тираж 495 ого комитета по изобрете 35, Москва, Ж-35, Раушска	Подписное ниям и открытиям при ГКНТ СССР эя наб., д. 4/5
Производственно-изда	тельский комбинат 'Патен	г", г.Ужгород, ул.Гагарина, 101