COMBINATORICA (III PARTE)

DISPOSITION CON RIPETIZIONE

$$\mathcal{D}_{h,K}^{l}$$

(n,KEIN)

Sequente di K elementi (eventualmente ripetuti) presi in un insieme di n elementi.

$$D_{n,K}^{l} = n \cdot n \cdot \dots \cdot n = n^{K}$$

1055: Questo valore corrisponde de numero di funcioni

In generale, dati A e B insiem finiti: $f_{A,B} = \{f_{untioni} A \longrightarrow B\}$ $|f_{A,B}| = |B|$

$$D_{3,13}^{1} = 3^{13}$$

 E_{5} Totocolcio $A = \{partite\}$ $B = \{1, x, 2\}$ |A| = 13 |B| = 3 $D_{3.13}^{1} = 3^{13}$ Rivisitazione di P(A): A insieme fissato, D={V,F}, S=A Possiano costruire $\chi_s: A \longrightarrow \Omega$ $\chi_s(a) = \begin{cases} V & a.e.s & fundame correctoristica \\ F & a \notin S \end{cases}$ dis

$$C_{S}(a) = \begin{cases} V & C \\ F & C \end{cases}$$

Le funzioni A -> 12 sons in biezione coi sottoinsemi di A.

 $\Rightarrow |\mathcal{O}(A)| = |\mathcal{F}_{A...}| = |\Omega|^{|A|} = 2^{|A|}$

DISPOSIZIONI SEMPLICI DA,K

Sequente di k element distrati presi in un insieme di n element.

055: Questo valore corrisponde al numero di funzioni iniettive IK - In

2) Se
$$K \leq n$$
, allora: $D_{h,K} = h \cdot (n-1) \cdot ... \cdot (n-k+1) = \frac{n!}{(n-k)!}$ (dum per esurcino)

In generale, dahi A,B Jp,B= { fumioni intettive A → B} |JA,B|=D|B|,IAI

Es: 1 podis della finale dei 100m. A={aro, argento, bronzo} B={atleti} |A|=3 |B|=8

Allora ogni funzione intettiva $I_k o I_n$ è andre biettiva. In quisto caso la segumza prende tutti i valori possibili.

So no tutt i possibili riordinamenti di un insieme oli n elementi. $P_n = D_{n,n} = n \cdot (n-1) \cdot \dots \cdot (n-1) = n!$

Possians affermare che n! è il numero dei riordinamenti di In.

In generale, dato A $B_{A,A} = \{funtioni biettive A \rightarrow A\}$ $|B_{A,A}| = |A|!$ Domanda: 0! = ?

Esempio: Scegliere l'ordine d'arrive complete della finale dei 100 m. Ci sono Pg = 8! = 40320 scette possibili.

ANAGRAMMI

Es. Quant sons gli anagrammi (anthe senze senso) della perole AMORE? Sons $P_5 = 5! = 120$

Es: Quanti sono gli anagrammi olella perola ELENA?

ELENA = ELENA gli anogrammi possibili sono $\frac{P_5}{2} = \frac{51}{2} = 60$ LENEA = LENEA

Es: Quanti sons gli anagrammi di MATEMATICA?

Devo tener conto delle permutazioni delle 2 M 2! $\frac{P_{10}}{P_2 \cdot P_2 \cdot P_3} = \frac{10!}{2!2!3!} = 151200$

In generale, κ ci sono k lettere ripetute rispettivamente $r_1, r_2, ..., r_k$ volte n^o di anagrammi = $\frac{n!}{r_1! r_2! \cdots r_k!}$

Se invece le scutte non sons successive...

COMBINAZIONI SEMPLICI Ch,K

Raccolte di Kelementi distinti pren da un insieme di n elementi. In sostanza, sono tulti i possibili soltainsiemi di cardinalità k del nostro insiemi con n elementi.

- 1) Se K>n allora Cn, K = 0
- 2) se $k \le n$ basta prendere le disposizioni $D_{n,k}$ e identificare quelle che contengono gli stessi elementi . $C_{n,k} = \frac{D_{n,k}}{k!} = \frac{n!}{k! (n-k)!}$
- Es: 1) Quanti sono gli abbinamenti di colori dell'avoobaleno? n = n°di colori dispenibili = 7 K = Scelte da fore = 2

$$C_{7,2} = \frac{7!}{2! \cdot 5!} = \frac{7 \cdot 6}{2} = 21$$

2) Quante sono le giocate passibili del superenalatto?

$$n=90$$
 $k=6$ $C_{90,6}=\frac{90!}{6!84!}=622614630$

COEFFICIENTI BINOMIALI

Notatione:
$$\binom{n}{k} = C_{n,k} = \frac{n!}{k! (n-k)!}$$

Ricordando che sono i sottoinsiemi d' cardinalità k di un insieme di cardinalità n...

$$\binom{n}{o} = 1$$
 $5 \subseteq I_n$ $|s| = 0 \iff S = \emptyset$

$$\binom{n}{1} = n$$
 $5 \le I_n$ $|5| = 1 \iff 5 = \{x\}$ per qualche $x \in I_n$

$$\binom{n}{k} = \binom{n}{n-k}$$
 $f: P(I_n) \longrightarrow P(I_n)$ \bar{e} una biezione e manda insiemi di k elementi in insiemi di $n-k$ elementi.

Tutte queste proprietà si deducoro dalla formula (esercizio). Ulteriare rivisitatione di $P(I_n)$: $|P(I_n)| = \sum_{k=0}^{n} \binom{n}{k} = 2^n$ (esercizio: dimostrare per induzione)

Per dimostrarlo, serve:

$$|\mathcal{O}(I_n)| = \sum_{k=0}^{n} {n \choose k} = 2^n$$

Formula de Stiefel:
$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$
 $(1 \le k \le n)$

$$(1 \le k \le n)$$

(ci può ricavare dalla olef.) di coeff. binomiale

Triangelo di
$$n=0$$
 $\binom{0}{0}$

Pascal-Tartaglia

 $n=1$ $\binom{1}{0}$ $\binom{1}{1}$
 $n=2$ $\binom{2}{0}$ $\binom{2}{1}$ $\binom{2}{2}$
 $n=3$ $\binom{3}{0}$ $\binom{3}{1}$ $\binom{3}{2}$ $\binom{3}{3}$ $\binom{3}{3}$ $\binom{3}{3}$

Perché si chiamano coefficienti biromiali?

Formula del binomio du Newton: per nEN
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$
 $\binom{\text{verificarlo per}}{n=3,4,5}$

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{h} {n \choose k} 1^{n-k} 1^{k} = \sum_{k=0}^{h} {n \choose k}$$