Hybrid 4

Solving Ordinary Differential equations using Euler's Method

Answers included

Use Euler's method to find y-values of the solution for the given values of x and Δx , if the curve of the solution passes through the given point.

1.

$$\frac{dy}{dx} = x + 1;$$
 $x = 0 \text{ to } x = 1; \quad \Delta x = 0.2;$ (0, 1)

Answer:

X	0.0	0.2	0.4	0.0	0.0	1.0
<i>y</i> 1	1.00	1.20	1.44	1.72	2.04	2.40

2.

$$\frac{dy}{dx} = y(0.4 x + 1);$$

$$x = -0.2 \text{ to } x = 0.3; \Delta x = 0.1; \quad (-0.2, 2)$$

Answer:

X	-0.2	-0.1	0.0	0.1	0.2	0.3
y	2.0000	2.1840	2.3937	2.6330	2.9069	3.2208

3. The differential equation of Exercise 1 with $\Delta x = 0.1$

Answer:

,	X	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7
J	Y	1.00	1.10	1.21	1.33	1.46	1.60	1.75	1.91
_									

X	8.0	0.9	1.0	
y	2.08	2.26	2.45	