Mathématique

Série nº 3 — Séries de fonctions

Ex 3.1 – Étant donné un réel $\alpha \geqslant 1$, on considère la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ de $[0, +\infty[$ dans \mathbb{R} définie par $f_n(x) := x^{\alpha}e^{-nx}$.

Discuter de la convergence uniforme sur $[0, +\infty[$ de la série de fonctions $\sum_{n\geqslant 0} f_n$ suivant les valeurs du paramètre α .

Ex 3.2 – Pour $0 < a \le b$ réels fixés, calculer l'intégrale $I := \int_a^b \left(\sum_{n=1}^{+\infty} ne^{-nx}\right) dx$ après avoir justifié son existence.

Ex 3.3 – On considère la série de fonctions de terme général $u_n(x) = \frac{(-1)^n}{n^x}$, pour $n \ge 1$.

- 1. Déterminer le domaine de convergence simple de cette série de fonctions.
- 2. Déterminer sur quel domaine la convergence est absolue.
- 3. Montrer que la convergence est uniforme sur tout intervalle $[a, +\infty[$ pour tout a > 0.
- 4. Déduire de la question précédente que f est continue sur $]0, +\infty[$.
- 5. Étudier la convergence uniforme sur $]0, +\infty[$.

Ex 3.4 – Étudier la convergence de la série de fonctions $\sum u_n$ où $u_n(x) = \frac{x^2 e^{-nx}}{n^{\alpha}}$, $n \in \mathbb{N}^*$, $\alpha \in \mathbb{R}$.

Ex 3.5 – Étudier la série de fonctions définie par $u_n(x) = n(\sin x)^n \cos x$ sur $[0, \pi/2]$.

Ex 3.6 –Étudier la convergence de la série de fonctions de terme général $u_n(x) = e^{nx \ln n}$ sur $]-\infty, a], a < 0$ puis sur $]-\infty, 0].$

Ex 3.7 –Soit $\alpha \in \mathbb{R}$, $\alpha < 2$ et $x \in \mathbb{R}_+$. On pose pour $n \geqslant 1$, $u_n(x) = x^{2-\alpha}e^{-nx}$.

- 1. Montrer qu'il y a convergence simple sur \mathbf{R}_{+} .
- 2. Montrer qu'il y a convergence uniforme sur \mathbf{R}_+ si $\alpha < 1$.
- 3. Y-a-t-il convergence uniforme si $\alpha = 1$?

Ex 3.8 – Montrer que la série définie, pour $n \ge 1$, par $u_n(x) = (-1)^n \frac{x^2 + n}{n^2}$ est uniformément convergente sur tout intervalle [a, b] mais n'est absolument convergente pour aucune valeur de x.

Ex 3.9 – Soit la série de fonctions de terme général $u_n(x) = x(1-x)^n$.

- 1. Déterminer le domaine de convergence de cette série.
- 2. Calculer sa somme sur son domaine de convergence.
- 3. Etudier la convergence uniforme sur [0,1], sur [a,1] avec 0 < a < 1 puis sur [0,1].

Ex 3.10 – Soit $(a_n)_{n \in \mathbb{N}}$ une suite de nombres réels. Montrer que si la série de terme général na_n est absolument convergente alors la série définie par $a_n \cos nx$ (resp. $a_n \sin nx$) est uniformément convergente sur \mathbb{R} .

Ex 3.11 – Quel est le domaine de définition de f définie par $f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{e^{-nx}}{n^2 + 1}$. Montrer f est de classe C^1 sur son domaine de définition.

Ex 3.12 – Soit la série de fonctions de terme général $u_n(x) = \frac{2x}{n^2 + x^2}$, $n \ge 1$.

- 1. Montrer que cette série converge normalement sur [-1, 1]. On note f sa somme.
- 2. Exprimer sous forme d'une série de fonctions $\int_0^x f(t)dt$ pour $x \in [-1,1]$.
- 3. Etudier la convergence normale sur [-1, 1] de la série de fonctions de terme général $v_n(x) = \ln\left(1 + \frac{x^2}{n^2}\right)$.
- 4. Etudier la convergence normale sur [-1,1] de la série de fonctions de terme général $w_n(x)=\frac{2(n^2-x^2)}{(n^2+x^2)^2}$.
- 5. En déduire f' sous forme d'une série de fonctions et que f est croissante sur [-1,1].

Ex 3.13 -

- 1. Etudier la convergence simple et la convergence uniforme de la série de fonctions définie par $u_n(x) = \frac{(-1)^n}{x+n}$, $x \in \mathbf{R}_+^*$.
- 2. Montrer que la somme f de cette série est continue et dérivable sur \mathbf{R}_{+}^{*} .
- 3. Trouver une relation entre f(x) et f(x+1). En déduire $\lim_{x \to 0^+} f(x)$.