Google Classroom Code: mhxgl24

Basics of Neural Networks

Deep Learning (DS-5006)

Dr. Adeel Mumtaz

Lecture 3

Fall, 2022

Contents

- Basics of Neural Networks
 - Deep Learning
 - BNN Vs ANN
 - An Intuitive example (housing price prediction)
 - Structured and Unstructured data
 - Shallow Vs Deep Neural Networks
 - Deep Learning architectures
- A Simple Regression Problem (Theory)
 - Network Architecture
 - MSE Loss Function
 - Gradient Descent Algorithm
 - Learning Rate Effect
 - Training/Inference Loop
 - Batch vs Stochastic vs Mini-Batch GD

- A Simple Regression Problem (Numpy Implementation)
 - Data Generation
 - Data Splitting
 - Visualizing Data
 - Parameter initialization
 - Training Loop
 - Loss Calculation
 - Gradient Calculations
 - Parameter Updates
 - Validation Loss / Stopping Criteria
 - Plots/Training Curves
- NN Summary
- Home Task

BASICS OF NEURAL NETWORKS

Deep Learning

Deep Learning

Artificial Intelligence

The theory and development of computer systems able to perform tasks normally requiring human intelligence

Machine Learning

Gives computers "the ability to learn without being explicitly programmed"

Deep Learning

Machine learning algorithms
with brain-like logical
structure of algorithms
called artificial neural
networks

 The term Deep Learning refers to training very large Neural Network

What is a Neural Network

- Biologically motivated approach to machine learning
- Artificial neural network (ANN) is a machine learning approach that models human brain and consists of a number of artificial neurons
- Can be used for
 - Classification
 - Regression
 - Clustering
 - Association
 - Optimization

Biological Neural Networks

- Fundamental processing element of a neural network is a neuron
 - Dendrites, accept inputs
 - Soma, process the inputs
 - Axon, turns the processed inputs into outputs
 - Synapses, the electrochemical contacts between neurons
- A human brain has 100 billion neurons
- An ant brain has 250,000 neurons

Artificial Neural Networks

- A single neuron (processing element PE)
 with inputs and outputs
 - Inputs
 - Weights
 - Summation S or V
 - Transfer function or Activation function, φ or f

Comparison between ANN & BNN

Biological	versus	Artificial NNs
Soma		Node
Dendrites		Input
Axon		Output
Synapse		Weight
Slow		Fast
Many neuron	(10^9)	Few neurons (~100s)

- Fit a function to predict the price of the house as a function of the size
 - linear regression?

House Size (X)	Price (Y)
500	5 Laks
600	8 Laks
700	9 Laks
800	13 Laks
900	12 Laks
1100	18 Laks
1200	20 Laks

Housing Price Prediction

Price can't be negative

ReLU Function

- a very simple neural network
- Neuron takes inputs the size, computes the linear function, and then outputs the estimated price.

Other features that can affect the Price

- A neural network with four inputs and one output
- One hidden layer with three hidden units
- Note that each of the hidden unit takes its inputs of all four features (Dense, Linear, Fully connected)

Structured Data

Size	#bedrooms	 Price (1000\$s)
1200	2	300
1500	3	400
2000	3	480
:	1	
3000	4	520

User Region	Ad Id	 Ad revenue(\$)
USA	1005	0.5
UK	1009	0.3
USA	998	0.5
:	i	:
CAN	2104	0.45

Unstructured Data

Unstructured Data

Deep Neural Networks are very good at processing these Unstructured data

Shallow Vs Deep Neural Networks

SHALLOW NEURAL NETWORK

Input layer Output layer Node

DEEP NEURAL NETWORK

Shallow Vs Deep Neural Networks

Factors	Shallow Neural Network (SNN)	Deep Neural Network (DNN)
Feature Engineering	 Individual feature extraction process is required. Various features cited in the literature are histogram oriented gradients, speeded up robust features, and local binary patterns. 	Replace the hand-crafted features and directly work on the entire input. Thus, more practical for complex datasets.
Data Size Dependency	2. Needs a lesser quantity of data.	2. Needs vast volumes of data.

- Universal Function Approximators
- The number of trainable parameters increases drastically with an increase in the size of the image

Artificial Neural Network (ANN or MLP)

- CNN learns the filters automatically
- CNN captures the spatial features from an image, identify object location accurately
- CNN follows the concept of parameter sharing

- RNN captures the sequential information present in the input data
- RNNs share the parameters across different time steps

	MLP	RNN	CNN
Data	Tabular data	Sequence data (Time Series,Text, Audio)	Image data
Recurrent connections	No	Yes	No
Parameter sharing	No	Yes	Yes
Spatial relationship	No	No	Yes
Vanishing & Exploding Gradient	Yes	Yes	Yes

Attention Based Neural Network (Transformer)

A SIMPLE REGRESSION PROBLEM (THEORY)

$$Cost(b, w) = \mathcal{L}(b, w) = \frac{1}{N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)^2$$

$$= \mathcal{L}(x, b, w) = \frac{1}{N} \sum_{i=1}^{N} (wx_i + b - y_i)^2$$

The Linear Unit: y = wx + b

- NN=Architecture + Parameters
- Training NN = Given data learn best Parameters which gives minimum loss (usually an iterative process/algorithm)

Gradient Descent Algorithm

$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

$$\mathcal{L}(x, b, w) = \frac{1}{N} \sum_{i=1}^{N} (wx_i + b - y_i)^2$$

$$\mathcal{L}(x,b,w) = \frac{1}{N} \sum_{i=1}^{N} (wx_i + b - y_i)^2 dw = \frac{\partial \mathcal{L}(x,b,w)}{\partial w} = 2 * \frac{1}{N} \sum_{i=1}^{N} (wx_i + b - y_i)(x_i)$$

$$= 2 * \frac{1}{N} \sum_{i=1}^{N} (error_i)(x_i) = 2 * mean(error * x)$$

$$db = \frac{\partial \mathcal{L}(x, b, w)}{\partial b} = 2 * \frac{1}{N} \sum_{i=1}^{N} (error_i) = 2 * mean(error)$$

$$w_{new} = w_{old} - \alpha * dw$$

$$b_{new} = b_{old} - \alpha * db$$

Effect of Learning Rate

Effect of Learning Rate

Training Loop

Save Model

w & b

YES

Load Training & Validation Data

 (x_i, y_i)

Randomly Initialize Parameters

(w,b)

Choose a learning rate: α

Forward Pass (using current w, b)

$$\widehat{y_i} = wx_i + b$$

Compute/Plot Loss Value

$$\mathcal{L}(x,b,w) = \frac{1}{N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)^2$$

NO Stopping Criteria Validation Loss?

Optimizer

Parameter Update

$$w = w_{old} - \alpha * dw$$
$$b = b_{old} - \alpha * db$$

Backward Pass (Gradients)

$$dw = 2 * mean(error * x)$$

 $db = 2 * mean(error)$ where,
 $error_i = \widehat{y}_i - y_i$

Inference/Testing

Load Test Data

 (x_i, y_i)

Load Saved Model

(w,b)

Forward Pass (using saved w, b)

$$\widehat{y_i} = wx_i + b$$

Compute/Plot Loss Value

$$\mathcal{L}(x,b,w) = \frac{1}{N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)^2$$

Batch Gradient Descent

- An epoch refers to one cycle through the full training dataset
- All the training data is taken into consideration to update parameters
- Uses mean of gradients to update parameters
- One step/iteration of gradient descent in one epoch
- Great for convex or relatively smooth error surfaces
- The graph of cost vs epochs is also quite smooth

Stochastic Gradient Descent

- If our dataset has 5 million examples, then just to take one step the model will calculate the gradients 5 million examples (inefficient)
- In Stochastic Gradient Descent (SGD), we consider just one example at a time to take a single step.
- Cost will fluctuate over the training examples
- N steps/iterations of gradient descent in one epoch

Mini Batch Gradient Descent

- We use a batch of a fixed number of training examples which is less than the actual dataset and call it a mini-batch
- Average cost over the epochs in mini-batch gradient descent fluctuates because we are averaging a small number of examples at a time.
- N/batch_size steps/iterations of gradient descent in one epoch

Batch vs Stochastic vs Mini-Batch

We can divide the dataset of 2000 examples into batches of 500 then it will take? iterations to complete 1 epoch.

A SIMPLE REGRESSION PROBLEM (NUMPY IMPLEMENTATION)

Dataset Generation

```
import numpy as np
     import matplotlib.pyplot as plt
 3
     #data generation
 4
     true w=2
     true b=1
 6
 7
     N=100
 8
     np.random.seed(100)
 9
     #get N uniformly distributed values
10
     x=np.random.rand(N,1)
11
     #get N noise values from standard normal distribution
12
     epsilon=0.1*np.random.randn(N,1)
13
     y=true w*x+true b+epsilon
14
```

Splitting Dataset into train/validation sets

```
#Splitting Data into train and validation
idx=np.arange(N)
np.random.shuffle(idx)
idx_train=idx[:int(0.8*N)]
idx_test=idx[int(0.8*N):]
x_train, y_train = x[idx_train],y[idx_train]
x_val, y_val = x[idx_test],y[idx_test]
```

Splitting Dataset into train/validation sets

```
#plotting tain and val data
25
     plt.figure('1')
26
     plt.scatter(x train,y train)
27
     plt.xlabel('x train')
28
     plt.ylabel('y train')
29
     plt.title(f'true_w={true_w}, true_b={true_b}')
30
     plt.figure('2')
31
     plt.scatter(x val,y val,color = 'm')
32
     plt.xlabel('x val')
33
     plt.ylabel('y val')
34
     plt.title(f'true_w={true_w}, true_b={true_b}')
35
     plt.show(block=True)
36
```

Visualizing Datasets

Visualizing Datasets

Training Loop

```
#training loop
39
     #initializing parameters
40
     trainLosses=[]
41
     valLosses=[]
     1r=0.1
43
44
     w=np.random.randn(1)
45
     b=np.random.randn(1)
46
     for i in range(100):
         #forward pass
47
48
         yhat=w*x train+b #note vectorized operation
         #MSE loss
49
50
          error=yhat-y train
          loss= (error**2).mean()
51
         trainLosses.append(loss)
52
53
         #computing gradients
          db=2*error.mean()
54
          dw=2*(x train*error).mean()
55
56
          #weight update
          b=b-lr*db
57
         w=w-lr*dw
58
```

Validation Loss

```
60
         #val MSE loss
61
         yhatVal=w*x val+b
         errorVal=yhatVal-y_val
62
63
         valLoss= (errorVal**2).mean()
         valLosses.append(valLoss)
64
65
66
         #stopping condition
         if(valLoss<0.0001):
67
68
              break
69
         print(f'train loss={loss}, val loss={valLoss}, w={w}, b={b}')
70
```

Plots (Regression Fitting)

```
#training data plot
72
         plt.figure('3')
73
74
         plt.cla()
75
         plt.scatter(x train,y train)
76
         plt.scatter(x train,yhat)
         plt.title(f'epoch={i}, loss={loss}, w={w}, b={b}')
77
         plt.show(block=False)
78
         plt.pause(1)
79
80
81
         #validation data plot
82
         plt.figure('4')
83
         plt.cla()
         plt.scatter(x_val,y_val)
84
         plt.scatter(x val,yhatVal)
85
86
         plt.title(f'epoch={i}, ValLoss={valLoss}, w={w}, b={b}')
         plt.show(block=False)
87
         plt.pause(1)
88
```

Plots (Loss vs Epoch)

```
#trainLoss vs Epoch
 90
 91
           plt.figure('5')
           plt.cla()
 92
           plt.plot(trainLosses)
 93
 94
           plt.xlabel('Epoch')
           plt.ylabel('trainLoss')
 95
 96
           plt.title(f'Training Loss Vs Epoch')
           plt.show(block=False)
 97
           plt.pause(1)
 98
 99
100
          #validationLoss vs Epoch
101
           plt.figure('6')
102
          plt.cla()
103
           plt.plot(valLosses,color='m')
104
           plt.xlabel('Epoch')
105
           plt.ylabel('valLoss')
106
           plt.title(f'Validation Loss Vs Epoch')
107
           plt.show(block=False)
108
           plt.pause(1)
```

Plots (Convergence of regression)

Plots (Convergence of regression)

Plots (Convergence of regression)

Plots (Performance on Validation Set)

Epoch vs Train Loss

Epoch vs Validation Loss

NN Summary

- Data Set, Training, Validation, Test
- Cost/Loss Function
 - MSE Loss for regression
- Training Loop
- Optimizer
- Parameters
- Learning Rate
- Epoch
- Batch
- Loading/Saving Model

Home Task

- Compare learning curves for different values of learning rate
- Convert code from Batch Gradient Descent to Stochastic Gradient Descent and compare learning curves