Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИУК «Информатика и Управление»</u>

КАФЕДРА <u>ИУК4 «Программное обеспечение ЭВМ, информационные мехнологии»</u>

ЛАБОРАТОРНАЯ РАБОТА №2

ДИСЦИПЛИНА: «Методы обработки информации»

Выполнил: студент гр. ИУК4-72Б	(Подпись)	(<u>Калашников А. С.</u>) (Ф.И.О.)					
Проверил:	(Подпись)	_ (<u>Никитенко У. В.</u> (Ф.И.О.)					
Дата сдачи (защиты):							
Результаты сдачи (защиты):							
- Балльная оценка:							
- Оценка:							

Цель: Овладение приемами первичной обработки большой выборки. Выдвижение гипотезы о законе распределения генеральной совокупности.

Вариант №6 Необходимо разбить выборку на k равных частей. Коэффициент k находим по формуле Стеджерсса k=1+[log₂n].

№ промежутка	Границы п	ромежутков	Ni	Средняя точка	
	A_{i-1}	A_{i}		промежутка	
1	-34	8	105	-13	
2	8	50	8	29	
3	50	92	1	71	
4	92	134	0	113	
5	134	176	0	155	
6	176	218	0	197	
7	218	260	1	239	

Графическая обработка выборки. Исходный код программы представлен в Приложении 1. Построим гистограмму и полигон частот

Рис.1 Графическая обработка выборки

Нахождение выборочных характеристик положения и рассеивания:

Характеристики положения:

Среднее: -0.3089

Медиана: -3.1474

Мода: -2.6766

Характеристики рассеивания:

Размах выборки: 291.6210

Дисперсия: 26.0704

Усреднённая оценка ядерной плотности вероятности

Рис.2 Усредненная оценка

Оценка плотности вероятности в средних точках промежутков статистического ряда

Z_{i}	-13	29	71	113	155	197	239	\sum
N_{i}	105	8	1	0	0	0	1	115

fr(x)	-	-	-	0.0	0.0	0.0	-	
	0.0269	0.0020	0.0003				0.0003	
fyя(x)	0.0224	0.0011	0.0002	0	0	0	0	
fn(x)	0.0136	0.0081	0.0004	0	0	0	0	
(fуя-fг) ²	0.0024	0	0	0	0	0	0	0.0024
(fn-fr) ²	0.0016	0.0001	0	0	0	0	0	0.0017

Анализ близости оценок по среднеквадратичным отклонениям

Исходя из таблицы можно сделать вывод что усреднённая ядерная оценка плотности более близка к логнормальному, а значит предположение о характере распределения выборки (нормальное распределение) можно считать верным.

Выводы: в результате выполнения лабораторной работы овладел приемами первичной обработки большой выборки. Выдвижение гипотезы о законе распределения генеральной совокупности.

Листинг программы:

```
import matplotlib.pyplot as plt
import numpy as np
import statistics as st
from scipy.stats import gaussian kde
def normal(x):
    return 1 / np.sqrt(2*np.pi) / np.sqrt(np.var(data)) * np.e**(-1/2 * ((x -
np.mean(data)) / np.sqrt(np.var(data)))**2)
data = list()
with open("Test6.csv", "r+") as input:
    data = [float(item) for item in input.readlines()]
centers = [-13, 29, 71, 113, 155, 197, 239]
buckets = [0] * 7
for i in range(len(data)):
    if -34<data[i]<8:
        buckets[0] += 1
    elif 8<data[i]<50:</pre>
       buckets[1] += 1
    elif 50<data[i]<92:</pre>
       buckets[2] += 1
    elif 92<data[i]<134:
       buckets[3] += 1
    elif 134<data[i]<176:
       buckets[4] += 1
    elif 176<data[i]<218:
        buckets[5] += 1
    elif 218<data[i]<260:
        buckets[6] += 1
print(buckets[0])
plt.hist(data, bins=7, edgecolor= "black", range=(-34, 260))
# Нормализованный полигон
plt.plot(centers, [buckets[i] for i in range(len(buckets))],color= "red",
label= "Polygon sample")
# Полигон приведённых частот
plt.plot(centers, [buckets[i] for i in range(len(buckets))], color= "red",
label= "Polygon sample")
print(f"Mean: {np.mean(data)}")
print(f"Median: {np.median(data)}")
print(f"Mode: {st.mode(data)}")
print(f"R: {max(data) - min(data)}")
print(f"s^2: {np.var(data)}")
print(f"s: {np.sqrt(np.var(data))}")
print(f"V: {np.sqrt(np.var(data)) / np.mean(data) * 100}%")
x = np.linspace(-34, 260, 700)
y = [(normal(item)) for item in x]
plt.plot(x, y, color= "orange", label= "Parametric normal")
kde = gaussian kde(data)
plt.plot(x, [(kde(item)) for item in x], color= "black", label= "KDE")
plt.legend()
plt.show()
fg = [round(buckets[i] / len(data) / -34, 260) for i in
range(len(centers))]
fya = [round(float(kde(i)), 260) for i in centers]
fp = [round(normal(i), 260) for i in centers]
```

```
fyag = [round((fya[i] - fg[i])**2, 260) for i in range(len(fg))]
fpg = [round((fp[i] - fg[i])**2, 260) for i in range(len(fg))]
print(fg)
print(fya)
print(fp)
print(fyag)
print(fpg)
```