Equação do Transporte com Velocidade Variável - Guilherme O.

Equação do Transporte com Velocidade Variável:

$$u_x + c(x)u_t = 0$$
 $(x,t) \in (-9,9) \times (0,1),$
 $u(x,0) = f(x)$ $x \in (-9,9),$

onde
$$u = u(x, t)$$
, $c(x) = 1/5 + \sin^2(x - 1)$ e $f(x) = e^{-100(x - 1)^2}$.

Fisicamente, essa equação modela a dinâmica de uma onda, cujo perfil inicial é dado por f(x) e que se propaga com velocidade c(x) que varia conforme a posição no espaço.

Equação do Transporte com Velocidade Variável

Figura: Solução analítica da Equação do Transporte com Velocidade Variável.

Equação do Transporte com Velocidade Variável

$$u_x + c(x)u_t = 0,$$
 $(x,t) \in (-9,9) \times (0,1),$
 $u(x,0) = f(x),$ $x \in (-9,9),$
 $u(\pm 9,t) = 0,$ $t \in (0,2P),$

Prob. 1: $\min |u_t + c(x)u_x|, \quad (x,t) \in (-9,9) \times (0,1),$

Prob. 2: $\min |u(x,0) - f(x)|, x \in (-9,9),$

Prob. 3: $\min |u(\pm 9, t)|, t \in (0, 2P),$

$$\min_{W,b} EQM$$

$$EQM = EQM_{\mathcal{D}} + EQM_0 + EQM_B$$

$$EQM_{\mathcal{D}} = \frac{1}{N_{\mathcal{D}}} \sum_{i=1}^{N_{\mathcal{D}}} |\hat{u}t(x_{\mathcal{D}}^{i}, t_{\mathcal{D}}^{i}) + c(x_{\mathcal{D}}^{i})\hat{u}x(x_{\mathcal{D}}^{i}, t_{\mathcal{D}}^{i})|^{2}$$

$$EQM_0 = \frac{1}{N_0} \sum_{i=1}^{N_0} |\hat{u}(x_0^i, 0) - F(x_0^i)|^2$$

$$EQM_b = \frac{1}{N_b} \sum_{i=1}^{N_b} |\hat{u}(\pm \bar{x}, t_b^i)|^2$$

Equação do Transporte com Velocidade Variável

Arquitetura e Parâmetros da Rede Neural:

Parâmetro	Valor
Domínio espacial (x)	[-9, 9]
Domínio temporal (t)	[0, 2P]
Pontos de colocação no domínio (N_D)	16000
Pontos de colocação na fronteira (N_b)	400
Pontos de colocação no valor inicial (N_0)	1 000
Função de Ativação	tanh
Neurônios por camada	40
Camadas intermediárias	10
Iterações do otimizador	10 000

Domínio de Previsão: $(-9,9) \times (0,2P)$ Erro Relativo: 5.6×10^{-3}

Figura: Solução numérica e solução analítica.

Domínio de Previsão: $(-12, 12) \times (0, 3P)$ Erro Relativo: 1.23

Figura: Solução numérica e solução analítica

Exemplos Equação de Burgers Viscosa - Larry

Equação de Burgers Viscosa

A Equação Diferencial Parcial que trataremos consiste em determinar u=u(x,t) solução de:

$$u_t + u u_x - \nu u_{xx} = 0,$$
 $(x, t) \in (-1, 1) \times (0, 1)$
 $u(x, 0) = u_0(x),$ $x \in (-1, 1),$
 $u(-1, t) = u(1, t) = 0,$ $t \in (0, 1),$

onde ν é a viscosidade.

No nosso estudo, consideramos
$$\nu = \frac{0.01}{\pi}$$
 e $u_0(x) = -\sin(\pi x)$.

Essa EDP foi inicialmente proposta como um modelo matemático para turbulências.

Equação de Burgers Viscosa

 $N_{\mathcal{D}}$ (Vermelho), N_0 (X Preto) e N_b (X Azul).

Equação de Burgers Viscosa

Figura: Oscilação do EMQ.

Figura: Não convergência do EMQ.

Figura: Efeitos da Taxa de Aprendizado.

Equação de Burgers Viscosa

Utilizando a técnica de PINNs com os seguintes parâmetros:

Parâmetro	Valor
Domínio espacial (x)	[-1, 1]
Domínio temporal (t)	[0, 1]
Pontos de colocação no domínio (N_D)	10 000
Pontos de colocação na fronteira (N_b)	100
Pontos de colocação no valor inicial (N_0)	100
Função de Ativação	tanh
Neurônios por camada	40
Camadas intermediárias	9
Iterações do otimizador	50 000

Arquivo.gif

Exemplos KdV e mKdv - Guilherme F. e Larry

As equações de Korteweg-de-Vries (KdV) e Korteweg-de-Vries modificada (mKdV) modelam a evolução de uma onda não-linear unidimensional dispersiva e não-dissipativa ao longo do tempo. Essas equações podem ser escritas como:

$$u_t + u^p u_x + u_{xxx} = 0, \quad x \in \mathbb{R}, t \in [0, \infty), \tag{1a}$$

$$u(x,0) = u_0(x,a), \qquad x \in \mathbb{R},$$
 (1b)

A única diferença entre as duas equações é a potência p da função u, sendo a KdV a equação com p=1 e mKdV a equação com p=2.

As soluções exatas das equações são:

$$u(x,t) = \begin{cases} a \operatorname{sech}^{2}(k(x-ct)), & k = \sqrt{a/12}, c = a/3, \text{ se } p = 1, \\ a \operatorname{sech}(k(x-ct)), & k = a/\sqrt{6}, c = a^{2}/6, \text{ se } p = 2. \end{cases}$$
 (2)

KdV e mKdV

Resolvemos a equação de Korteweg-de-Vries modificada com amplitude de onda variando de 1 a 2, nos seguintes parâmetros.

Parâmetro	Valor
Domínio espacial (x)	[-10, 10]
Domínio temporal (t)	[0, 15]
Pontos de colocação no domínio $(N_{\mathcal{D}})$	10 000
Pontos de colocação na fronteira (N_b)	4000
Pontos de colocação no valor inicial (N_0)	4 000
Função de Ativação	tanh
Neurônios por camada	60
Camadas intermediárias	5
Iterações do otimizador	100 000

Exemplos KdV e mKdV

Exemplos KdV e mKdV

Figura: Erro Relativo L2 ao longo do tempo com amplitude variável.

Exemplos Benjamin-Bona-Mahony (BBM) - Samuel

A Equação de Benjamin-Bona-Mahony (BBM) estudada é dada por:

$$u_{t} + u_{x} + uu_{x} - u_{xxt} = 0, (x, t) \in (-10, 20) \times (0, 4),$$

$$u(x, 0) = u_{0}(x), x \in (-10, 20),$$

$$u(-10, t) = g_{1}(t), t \in (0, 4),$$

$$u(20, t) = g_{2}(t), t \in (0, 4),$$

$$ightharpoonup u = u(x,t);$$

- u_0 é a condição inicial em t=0:
- $ightharpoonup g_1, g_2$ são **condições de contorno** que nos dizem como u atua na fronteira de x

A Equação de Benjamin-Bona-Mahony (BBM) estudada é dada por:

$$u_{t} + u_{x} + uu_{x} - u_{xxt} = 0, (x, t) \in (-10, 20) \times (0, 4),$$

$$u(x, 0) = u_{0}(x), x \in (-10, 20),$$

$$u(-10, t) = g_{1}(t), t \in (0, 4),$$

$$u(20, t) = g_{2}(t), t \in (0, 4),$$

$$ightharpoonup u = u(x,t);$$

- $ightharpoonup u_0$ é a condição inicial em t=0;
- $> g_1, g_2$ são **condições de contorno** que nos dizem como u atua na fronteira de x.

A Equação de Benjamin-Bona-Mahony (BBM) estudada é dada por:

$$u_t + u_x + uu_x - u_{xxt} = 0, (x,t) \in (-10,20) \times (0,4),$$

$$u(x,0) = u_0(x), x \in (-10,20),$$

$$u(-10,t) = g_1(t), t \in (0,4),$$

$$u(20,t) = g_2(t), t \in (0,4),$$

- ightharpoonup u = u(x,t);
- $ightharpoonup u_0$ é a condição inicial em t=0;
- $ightharpoonup g_1, g_2$ são condições de contorno que nos dizem como u atua na fronteira de x.

A BBM é utilizada como uma alternativa ao modelo de KdV (apresentado anteriormente) e possui solução viajante da forma:

$$u(x,t) = A \operatorname{sech}^{2}(k(x-ct)),$$

- ightharpoonup A > 0 é dado e chamado de **amplitude**;
- $\blacktriangleright k = \sqrt{\frac{A}{12+4A}}$, chamado de **frequência**
- $ightharpoonup c = 1 + \frac{A}{3}$, chamado de **velocidade**.

A BBM é utilizada como uma alternativa ao modelo de KdV (apresentado anteriormente) e possui solução viajante da forma:

$$u(x,t) = A \operatorname{sech}^{2}(k(x-ct)),$$

- ightharpoonup A > 0 é dado e chamado de **amplitude**;
- $k = \sqrt{\frac{A}{12+4A}}$, chamado de **frequência**;
- $ightharpoonup c = 1 + \frac{A}{2}$, chamado de **velocidade**.

A BBM é utilizada como uma alternativa ao modelo de KdV (apresentado anteriormente) e possui solução viajante da forma:

$$u(x,t) = A \operatorname{sech}^{2}(k(x-ct)),$$

- ightharpoonup A > 0 é dado e chamado de **amplitude**;
- $k = \sqrt{\frac{A}{12+4A}}$, chamado de **frequência**;
- $ightharpoonup c = 1 + \frac{A}{2}$, chamado de **velocidade**.

Substituindo na própria equação da BBM anterior, obtemos o nosso problema

$$u_{t} + u_{x} + uu_{x} - u_{xxt} = 0, (x, t) \in (-10, 20) \times (0, 4),$$

$$u(x, 0) = A \operatorname{sech}^{2}(kx), x \in (-10, 20),$$

$$u(-10, t) = A \operatorname{sech}^{2}(k(-10 - ct)), t \in (0, 4),$$

$$u(20, t) = A \operatorname{sech}^{2}(k(20 - ct)), t \in (0, 4),$$

onde
$$A > 0$$
, $k = \sqrt{\frac{A}{12 + 4A}}$ e $c = 1 + \frac{A}{3}$.

Benjamin-Bona-Mahony (BBM)

Utilizando a técnica de PINNs com os seguintes parâmetros:

Parâmetro	Valor
Amplitude inicial (A)	5
Domínio espacial (x)	[-10, 20]
Domínio temporal (t)	[0, 4]
Pontos de colocação no domínio (N_f)	15000
Pontos de colocação na fronteira (N_b)	100
Pontos de colocação no valor inicial (N_0)	100
Neurônios por camada	50
Camadas intermediárias	3
Iterações do otimizador	15 000
Função de ativação	tanh

PINNvsEXATO.gif para ADAM.

Benjamin-Bona-Mahony (BBM)

Utilizamos o otimizador conhecido como ADAM (Adaptive Moment Estimation), que não é o único disponível pelo DeepXDE.

Assim, decidimos testar os seguintes otimizadores:

- ► **ADAM** (Adaptive Moment Estimation)
- ► NADAM (ADAM com Nesterov Momentum)
- ► SGD (Stochastic Gradient Descent)
- ▶ **L-BFGS** (Limited memory *Broyden–Fletcher–Goldfarb–Shanno*)

Benjamin-Bona-Mahony (BBM)

Benjamin-Bona-Mahony (BBM)

- ▶ Pouca dificuldade para chegar em aproximações satisfatórias em relação às outras equações;
- Diferente de outras equações, o L-BFGS foi o otimizador campeão
- Dentro do domínio temporal escolhido, a PINN tem erro satisfatório
- Possibilidade de existir uma conexão entre otimizadores de PINNs e a EDP escolhida

Benjamin-Bona-Mahony (BBM)

- ▶ Pouca dificuldade para chegar em aproximações satisfatórias em relação às outras equações;
- ▶ Diferente de outras equações, o **L-BFGS** foi o otimizador campeão;
- Dentro do domínio temporal escolhido, a PINN tem erro satisfatório
- Possibilidade de existir uma conexão entre otimizadores de PINNs e a EDP escolhida

Benjamin-Bona-Mahony (BBM)

- ▶ Pouca dificuldade para chegar em aproximações satisfatórias em relação às outras equações;
- ▶ Diferente de outras equações, o **L-BFGS** foi o otimizador campeão;
- ▶ Dentro do domínio temporal escolhido, a PINN tem erro satisfatório;
- Possibilidade de existir uma conexão entre otimizadores de PINNs e a EDP escolhida

Benjamin-Bona-Mahony (BBM)

- Pouca dificuldade para chegar em aproximações satisfatórias em relação às outras equações;
- ▶ Diferente de outras equações, o **L-BFGS** foi o otimizador campeão;
- ▶ Dentro do domínio temporal escolhido, a PINN tem erro satisfatório;
- ▶ Possibilidade de existir uma conexão entre otimizadores de PINNs e a EDP escolhida.

Exemplos Sine-Gordon - Lucas

Equação de Sine-Gordon: A equação de Sine-Gordon é expressa por:

$$u_{tt} - u_{xx} + sen(u) = 0$$
 $(x, t) \in (-10, 10) \times (0, 15),$
 $u(x, 0) = f(x)$ $x \in (-10, 10),$

Onde
$$f(x) = 4\arctan\left(\exp\left(\frac{x}{\sqrt{1-a^2}}\right)\right)$$
, e a representa a velocidade de propagação da onda ao longo do eixo x .

Estruturação

Diferente dos outros trabalhos, foram utilizados **algoritmos evolucionários** na minha rede. Tais algoritmos otimizaram:

- ► A função de ativação;
- A arquitetura da rede:
- O balaço entre a importância das condições da borda e do domínio.

Estruturação

Diferente dos outros trabalhos, foram utilizados **algoritmos evolucionários** na minha rede. Tais algoritmos otimizaram:

- ► A função de ativação;
- ► A arquitetura da rede;
- O balaço entre a importância das condições da borda e do domínio.

Estruturação

Diferente dos outros trabalhos, foram utilizados **algoritmos evolucionários** na minha rede. Tais algoritmos otimizaram:

- ► A função de ativação;
- ► A arquitetura da rede;
- O balaço entre a importância das condições da borda e do domínio.

Parâmetros e Resultados

Parâmetro	Valor
Amplitude inicial (a)	0.9
Domínio espacial (x)	[-10, 10]
Domínio temporal (t)	[0, 15]
Pontos de colocação no domínio (N_f)	5000
Pontos de colocação na fronteira (N_b)	10 000
Pontos de colocação no valor inicial (N_0)	10 000
Iterações do otimizador	100
Neurônios por camada (escolha da rede)	33
Camadas intermediárias(escolha da rede)	3
Função de Ativação(escolha da rede)	tanh
População por geração	20
Número de gerações	5

Melhor Função de Perda: 4.8e-08.