```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load iris
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import seaborn as sns
from sklearn.linear_model import LogisticRegression
iris = load iris()
X, y = iris.data, iris.target
feature_names, target_names = iris.feature_names, iris.target_names
 X\_train, \ X\_test, \ y\_train, \ y\_test = train\_test\_split(X, \ y, \ test\_size=0.3, \ random\_state=42) 
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
X_scaled = scaler.fit_transform(X)
classifier = LogisticRegression(multi_class='multinomial', solver='lbfgs', max_iter=200)
classifier.fit(X_train_scaled, y_train)
y_pred = classifier.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
cv_scores = cross_val_score(classifier, X_scaled, y, cv=5)
print("Logistic Regression Performance:")
print(f"Test Accuracy: {accuracy:.4f}")
print(f"Cross-Validation\ Accuracy:\ \{cv\_scores.mean():.4f\}\ (\pm \{cv\_scores.std():.4f\})")
print("\nClassification Report:")
print(classification_report(y_test, y_pred, target_names=target_names))
plt.figure(figsize=(8, 6))
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=target_names, yticklabels=target_names)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix - Logistic Regression')
plt.tight_layout()
plt.show()
plt.figure(figsize=(12, 10))
plt.subplot(2, 3, 1)
x_{\min}, x_{\max} = X_{\text{scaled}}[:, 0].\min() - 1, X_{\text{scaled}}[:, 0].\max() + 1
y_{min}, y_{max} = X_{scaled[:, 1].min()} - 1, X_{scaled[:, 1].max()} + 1
xx,\ yy\ =\ np.meshgrid(np.arange(x\_min,\ x\_max,\ 0.02),\ np.arange(y\_min,\ y\_max,\ 0.02))
features = [0, 1]
classifier_2d = LogisticRegression(multi_class='multinomial', solver='lbfgs', max_iter=200)
classifier_2d.fit(X_scaled[:, features], y)
Z = classifier_2d.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.RdYlBu)
for i, color in zip(range(3), ['blue', 'red', 'green']):
    idx = np.where(y == i)
    plt.scatter(X\_scaled[idx, \ 0], \ X\_scaled[idx, \ 1], \ c=color, \ label=target\_names[i], \ edgecolor='k', \ alpha=0.7)
\verb|plt.xlabel(f'Scaled {feature\_names[0]}|')|
plt.ylabel(f'Scaled {feature_names[1]}')
plt.title(f'Decision Boundary (features 0 & 1)')
plt.legend()
plt.subplot(2, 3, 2)
features = [0, 2]
classifier_2d = LogisticRegression(multi_class='multinomial', solver='lbfgs', max_iter=200)
classifier_2d.fit(X_scaled[:, features], y)
x_{min}, \ x_{max} = X_{scaled[:, features[0]].min()} - 1, \ X_{scaled[:, features[0]].max()} + 1
y_{min}, y_{max} = X_{scaled}[:, features[1]].min() - 1, <math>X_{scaled}[:, features[1]].max() + 1
 xx, yy = np.meshgrid(np.arange(x\_min, x\_max, 0.02), np.arange(y\_min, y\_max, 0.02)) 
Z = classifier_2d.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.RdYlBu)
```

```
for i, color in zip(range(3), ['blue', 'red', 'green']):
              idx = np.where(y == i)
              plt.scatter(X\_scaled[idx, features[0]], X\_scaled[idx, features[1]], c=color, label=target\_names[i], edgecolor='k', label=target\_names[i], edgeco
alpha=0.7)
plt.xlabel(f'Scaled {feature_names[features[0]]}')
plt.ylabel(f'Scaled {feature_names[features[1]]}')
plt.title(f'Decision Boundary (features 0 & 2)')
plt.subplot(2, 3, 3)
features = [0, 3]
classifier\_2d = LogisticRegression(multi\_class='multinomial', solver='lbfgs', max\_iter=200)
classifier_2d.fit(X_scaled[:, features], y)
x_{min}, x_{max} = X_{scaled[:, features[0]].min()} - 1, X_{scaled[:, features[0]].max()} + 1
y_min, y_max = X_scaled[:, features[1]].min() - 1, X_scaled[:, features[1]].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
Z = classifier_2d.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.RdYlBu)
for i, color in zip(range(3), ['blue', 'red', 'green']):
              idx = np.where(y == i)
              plt.scatter(X\_scaled[idx, features[0]], X\_scaled[idx, features[1]], c=color, label=target\_names[i], edgecolor='k', label=target\_names[i], edgeco
alpha=0.7)
plt.xlabel(f'Scaled {feature_names[features[0]]}')
plt.ylabel(f'Scaled {feature_names[features[1]]}')
plt.title(f'Decision Boundary (features 0 & 3)')
plt.subplot(2, 3, 4)
features = [1, 2]
classifier_2d = LogisticRegression(multi_class='multinomial', solver='lbfgs', max_iter=200)
classifier_2d.fit(X_scaled[:, features], y)
 x\_min, \ x\_max = X\_scaled[:, \ features[0]]. \\  min() - 1, \ X\_scaled[:, \ features[0]]. \\  max() + 1 
y_{min}, y_{max} = X_{scaled}[:, features[1]].min() - 1, <math>X_{scaled}[:, features[1]].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
Z = classifier_2d.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.RdYlBu)
for i, color in zip(range(3), ['blue', 'red', 'green']):
              idx = np.where(y == i)
              plt.scatter(X\_scaled[idx, features[0]], X\_scaled[idx, features[1]], c=color, label=target\_names[i], edgecolor='k', label=target\_names[i], edgeco
alpha=0.7
\verb|plt.xlabel(f'Scaled {feature_names[features[0]]}')| \\
plt.ylabel(f'Scaled {feature_names[features[1]]}')
plt.title(f'Decision Boundary (features 1 & 2)')
plt.subplot(2, 3, 5)
features = [1, 3]
classifier_2d = LogisticRegression(multi_class='multinomial', solver='lbfgs', max_iter=200)
classifier_2d.fit(X_scaled[:, features], y)
x_{min}, x_{max} = X_{scaled[:, features[0]].min()} - 1, X_{scaled[:, features[0]].max()} + 1
y_min, y_max = X_scaled[:, features[1]].min() - 1, X_scaled[:, features[1]].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
Z = classifier_2d.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z. reshape(xx. shape)
plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.RdYlBu)
for i, color in zip(range(3), ['blue', 'red', 'green']):
              idx = np.where(v == i)
              plt.scatter(X\_scaled[idx, features[0]], X\_scaled[idx, features[1]], c=color, label=target\_names[i], edgecolor='k', features[n], c=color, label=target\_names[n], edgecolor='k', features[n], edgecolo
alpha=0.7)
\verb|plt.xlabel(f'Scaled {feature_names[features[0]]}')| \\
plt.ylabel(f'Scaled {feature_names[features[1]]}')
plt.title(f'Decision Boundary (features 1 & 3)')
plt.subplot(2, 3, 6)
 features = [2, 3]
```

```
classifier_2d = LogisticRegression(multi_class='multinomial', solver='lbfgs', max_iter=200)
classifier_2d.fit(X_scaled[:, features], y)
x\_min, \ x\_max = X\_scaled[:, \ features[\theta]].min() - 1, \ X\_scaled[:, \ features[\theta]].max() + 1
y_min, y_max = X_scaled[:, features[1]].min() - 1, X_scaled[:, features[1]].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
Z = classifier_2d.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.RdYlBu)
for i, color in zip(range(3), ['blue', 'red', 'green']):
         idx = np.where(y == i)
         plt.scatter(X\_scaled[idx, features[0]], X\_scaled[idx, features[1]], c=color, label=target\_names[i], edgecolor='k', label=target\_names[i], edgeco
\verb|plt.xlabel(f'Scaled {feature_names[features[0]]}')|\\
plt.ylabel(f'Scaled {feature_names[features[1]]}')
plt.title(f'Decision Boundary (features 2 & 3)')
plt.tight_layout()
plt.show()
plt.figure(figsize=(10, 6))
coef = classifier.coef_
feature\_importance = 100.0 * (feature\_importance / feature\_importance.sum())
indices = np.argsort(feature_importance)[::-1]
plt.bar(range(X.shape[1]), feature_importance[indices], align='center')
\verb|plt.xticks(range(X.shape[1]), [feature\_names[i] for i in indices])| \\
plt.xlabel('Features')
plt.ylabel('Relative Importance (%)')
plt.title('Logistic Regression Feature Importance')
plt.tight_layout()
plt.show()
```


Figure_1-1.png

Logistic Regression Performance: Test Accuracy: 1.0000					
Cross-Validation Accuracy: 0.9600 (±0.0389)					
Classification Report:					
	precision	recall	f1-score	support	
setosa	1.00	1.00	1.00	19	
versicolor	1.00	1.00	1.00	13	
virginica	1.00	1.00	1.00	13	
accuracy			1.00	45	
macro avg	1.00	1.00	1.00	45	
weighted avg	1.00	1.00	1.00	45	

image-3.png