

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Мезенцева Екатерина Михайловна

Постановка задачи

__1

Цель исследования: решение актуальной производственной задачи по прогнозированию свойств получаемых композиционных материалов.

2

Объект исследования: композиционные материалы, которые означают искусственно созданные материалы, состоящие из нескольких других с четкой границей между ними.

3

Предмет исследования: прогнозные данные трех свойств композитов: соотношение матрицанаполнитель, модуль упругости при растяжении, прочность при растяжении.

Актуальность

Возможность использования цифрового подхода к процессу создания композиционных материалов для снижения количества реально проводимых испытаний.

Задачи:

- 1. Изучить теоретические основы и методы решения поставленной задачи;
- 2. Провести разведочный анализ предложенных данных. Необходимо нарисовать гистограммы распределения каждой из переменной, диаграммы ящика с усами, попарные графики рассеяния точек. Необходимо также для каждой колонке получить среднее, медианное значение, провести анализ и исключение выбросов, проверить наличие пропусков;
- 3. Провести предобработку данных (удаление шумов, нормализация и т.д.);
- 4. Обучить нескольких моделей для прогноза модуля упругости при растяжении и прочности при растяжении. При построении модели необходимо 30% данных оставить на тестирование модели, на остальных происходит обучение моделей. При построении моделей провести поиск гиперпараметров модели с помощью поиска по сетке с перекрестной проверкой, количество блоков равно 10;
- 5. Написать нейронную сеть, которая будет рекомендовать соотношение матрица-наполнитель;
- 6. Разработать приложение с графическим интерфейсом или интерфейсом командной строки, которое будет выдавать прогноз, полученный в задании 4 или 5 (один или два прогноза, на выбор учащегося);
- 7. Оценить точность модели на тренировочном и тестовом датасете;
- $8.\;\;$ Создать репозиторий в GitHub / GitLab и разместить там код исследования. Оформить файл README.

Преобразования и характеристики датасета

Датасеты объединены, тип объединения INNER.

Пропуски отсутствуют. Элементы массива соответствуют типу float64.

За исключением признака «Угол нашивки», все признаки в датасете являются непрерывными, количественными.

Признак «Угол нашивки» принимает только два значения и потому будет рассматриваться как категориальный признак.

Для каждой колонки получены среднее, стандартное отклонение, минимальное, максимальное, первый квартиль, медианное значение, третий квартиль.

	count	mean	std	min	25%	50%	75%	max
Соотношение матрица-наполнитель	1023.0	2.930	0.913	0.389	2.318	2.907	3.553	5.592
Плотность, кг/м3	1023.0	1975.735	73.729	1731.765	1924.155	1977.622	2021.374	2207.773
модуль упругости, ГПа	1023.0	739.923	330.232	2.437	500.047	739.664	961.813	1911.536
Количество отвердителя, м.%	1023.0	110.571	28.296	17.740	92.443	110.565	129.730	198.953
Содержание эпоксидных групп,%_2	1023.0	22.244	2.406	14.255	20.608	22.231	23.962	33.000
Температура вспышки, С_2	1023.0	285.882	40.943	100.000	259.067	285.897	313.002	413.273
Поверхностная плотность, г/м2	1023.0	482.732	281.315	0.604	266.817	451.864	693.225	1399.542
Модуль упругости при растяжении, ГПа	1023.0	73.329	3.119	64.054	71.245	73.269	75.357	82.682
Прочность при растяжении, МПа	1023.0	2466.923	485.628	1036.857	2135.850	2459.525	2767.193	3848.437
Потребление смолы, г/м2	1023.0	218.423	59.736	33.803	179.628	219.199	257.482	414.591
Угол нашивки, град	1023.0	0.492	0.500	0.000	0.000	0.000	1.000	1.000
Шаг нашивки	1023.0	6.899	2.563	0.000	5.080	6.916	8.586	14.441
Плотность нашивки	1023.0	57.154	12.351	0.000	49.799	57.342	64.945	103.989

Рисунок 1 – среднее, стандартное отклонение, минимальное, максимальное, первый квартиль, медианное значение, третий квартиль

Рисунок 3 – гистограммы распределения и ящики с усами до нормализации данных, исключая угол нашивки как категориальный признак

Рисунок 5 – попарные графики рассеяния точек до нормализации

Рисунок 5 – попарные графики рассеяния точек после нормализации

Рисунок 6 – гистограммы распределения и ящики с усами после нормализации данных и удаления выбросов, исключая угол нашивки как категориальный признак

Рисунок 7 – тепловая карта коэффициентов корреляции

Рисунок 8 — визуализированные данные после нормализации

Разработка и обучение модели

Прогнозирование модуля упругости при растяжении

	R2	RMSE	MAE	MAPE	max_error						
DummyRegressor	-0.025801	-3.013795	-2.408483	-0.032937	-7.702150						
LinearRegression	-0.040280	-3.033795	-2.419878	-0.033087	-7.785673						
Ridge	-0.040201	-3.033684	-2.419806	-0.033087	-7.785518						
Lasso	-0.025801	-3.013795	-2.408483	-0.032937	-7.702150						
SVR	-0.064043	-3.067918	-2.446795	-0.033437	-7.896264						
KNeighborsRegressor	-0.218550	-3.279741	-2.632233	-0.035947	-8.352322						
Decision TreeRegressor	-1.228511	-4.423601	-3.583321	-0.048992	-11.451281						
RandomForestRegressor	-0.087091	-3.100472	-2.472667	-0.033824	-8.005775						
GradientBoostingRegressor	-0.155287	-3.197943	-2.524645	-0.034507	-8.531914		R2	RMSE	MAE		max_erro
Duay (Lov O Lot		-6 · ·	655			Ridge(alpha=410, positive=True, solver='lbfgs')				-0.032854	-7.73942
Рисунок 9 – мет			•			Lasso(alpha=0.1)				-0.032891 -0.032754	-7.73894 -7.73881
моделей с гиперпа	арамет	рами п	о умол	чанию		SVR(C=0.05, kernel='poly') KNeighborsRegressor(n_neighbors=53)		-3.030675			
					DecisionTreeF	tegressor(max depth=2, max features=5, random state=0, splitter='random')		-2.991498			
				RandomForest						-0.032948	
						gRegressor(max_depth=1, max_features=1, n_estimators=50, random_state=0)				-0.033099	
						gg	2.0.0004				

Рисунок 10 – метрики работы выбранных моделей с настроенными гиперпараметрами

Разработка и обучение модели

Прогнозирование прочности при растяжении

	R2	RMSE	MAE	MAPE	max_error
DummyRegressor	-0.026342	-484.807293	-380.185919	-0.167277	-1253.431489
LinearRegression	-0.033167	-486.474961	-385.238945	-0.168730	-1258.639354
Ridge	-0.033108	-486.460907	-385.220677	-0.168723	-1258.607692
Lasso	-0.032865	-486.404296	-384.988615	-0.168664	-1258.645065
SVR	-0.026718	-484.947303	-380.218028	-0.166329	-1262.072451
Decision TreeRegressor	-1.069986	-682.369273	-545.666323	-0.234120	-1773.372125
RandomForestRegressor	-0.078820	-496.382732	-399.731376	-0.174450	-1243.269911
GradientBoostingRegressor	-0.148984	-511.332319	-409.803025	-0.178062	-1291.511611

Рисунок 11 – метрики работы выбран	ІНЫХ
моделей с гиперпараметрами по умолч	ианию

		R2	RMSE	MAE	MAPE	max_error
	Ridge(alpha=990, positive=True, solver='lbfgs')	-0.023267	-484.113037	-380.018387	-0.167120	-1257.022616
анных	Lasso(alpha=50)	-0.026342	-484.807293	-380.185919	-0.167277	-1253.431489
лчаник	SVR(C=0.001, kernel='sigmoid')	-0.026311	-484.853433	-379.936358	-0.166191	-1261.977540
	DecisionTreeRegressor(criterion='absolute_error', max_depth=1, max_features=5, random_state=0)	-0.026397	-484.768578	-378.716225	-0.166234	-1255.193290
RandomForestReg	ressor(bootstrap=False, criterion='absolute_error', max_depth=2, max_features=1, n_estimators=50, random_state=0)	-0.020263	-483.477346	-380.126241	-0.166222	-1248.234411
	GradientBoostingRegressor(max_depth=1, max_features=1, n_estimators=50, random_state=0)	-0.032345	-486.308546	-382.902477	-0.168049	-1244.425207

Визуализация работы нейросетей

Рисунок 13 – визуализация работы модели MLPRegressor

Рисунок 14 – визуализация работы переобученной модели

Рисунок 15 – визуализация работы модели с ранней остановкой

Рисунок 16 – визуализация работы нейросети Dropout

Скриншоты приложения

Прогнозирование модуля упругости при ра	Прогнозирование моду	оование свойств базальтопл ля упругости при растяжении и прочнос рование соотношения матрица-наполни	ти при растяжении	
Прогнозирование модуля упругости при ра	2771331			
Плотность, кг/м3	2030.0			
Модуль упругости, ГПа	753.0			
Количество отвердителя, м.%	111.86			
Содержание эпоксидных групп,%_2	22 267857			
Температура вспышки, С_2	284 615385			
Поверхностная плотность, г/м2	210.0			
Потребление смолы, г/м2	220.0		Прогнозирование соотног	шения матрица-наполнитель
Угол нашивки, град	0.0			
Шаг нашиеки	5.0		Плотность, кг/м3	2030.0
Плотность нашивки	57.0		Модуль упругости, ГПа	753.0
			Количество отвердителя, м.%	111.36
Предсказа			Содержание эпоксидных групп,%_2	22 267857 [284 615385
			Температура вспышки, С_2	284 615385
Результат прогноз			Поверхностная плотность, г/м2 Модуль упругости при растяжении, ГПа	70.0
Модуль упругости при растяжении, ГПа 72.9901765268755	Прочность при растяжении, МПа 2437.196271717282		модуль упругости при растяжении, ГТIа Прочность при растяжении, МПа	3000.0
72.0001100200700	AND LOVE THE LANGE		Потребление смолы, r/м2	220.0
			Угол нашивки, град	0.0
			Шаг нашивки	5.0
			Плотность нашивки	57.0
			The	одсказать
		Ų.	Результат пр	рогнозирования:
			Соотношение ма	атрица-наполнитель
			2.803551	16539318635

do.bmstu.ru

