Protokol č.2

Vypracovala: Katarína Nalevanková

Odbor: 3BCHb2

Dátum: 18.10.2022

Téma: Stanovenie pH chinhydrónovou elektródou

Úlohy:

1. Stanovenie pH roztokov silnej a slabej kyseliny

2. Stanovenie koncentrácie vzoriek silnej a slabej kyseliny

Teoretický úvod:

Chinhydrónová elektróda patrí medzi oxidačno-redukčné elektródy, sú tvorené ušľachtilým kovom ponoreným do roztoku dvoch foriem jednej látky v rôznych oxidačných stupňoch. Chinhydrón je adičná ekvimólová zlúčenina chinónu a hydrochinónu, ktorá sa vo vodnom prostredí rozpadá na svoje zložky.

Poskytuje reverzibilný redox potenciál, pričom udáva hodnoty pH s presnosťou vodíkovej elektródy.

Povrch inertného kovu sprostredkováva výmenu elektrónov medzi oxidovanou a redukovanou formou tejto sústavy.

$$E_{Chh} = E_{Chh} - 2,303*\frac{RT}{F}* pH$$

Hodnota štandardného chinhydonového potenciálu je závislá od teploty:

$$E_{Chh} = 0.699 - 0.0007 (t - 25).$$

Chinhydrónová elektróda sa nepoužíva v pH roztokoch nad pH 8,5, pretože v alkalickom prostredí dochádza k rozkladu chinhydrónu, čo spôsobuje nepresné meranie pH a chybné výsledky.

Elektromotorické napätie galavnického článku,

ktorý pozostáva z chinhydrónovej elektródy a z kalomelovej elektródy ako referenčnej je

$$EMN = E_{Chh} - E_{SKE}$$

Pomôcky:

Platinová elektróda, nasýtená kalomelová elelktróda, digitálny voltmeter, 0,1 M CH₃COOH, chinhydrón, odmerné sklo, kadičky, špachtľa, elektromagnetická miešačka, miešadielko, vzorky roztokov kyselín neznámej koncentrácie

Postup práce:

- 1. Zriedením základného roztoku 0,1 mol*dm⁻³ CH₃COOH a HCl si pripravíme v 25 ml odmerných bankách roztoky s koncentráciou 0,05, 0,01, 0,001 mol*dm⁻³
- 2. Do roztoku, ktorého pH ideme stanoviť, vysypeme malé množstvo chinhydrónu, aby po premiešaní vznikol žltkastý nasýtený roztok
- 3. Ponoríme platinovú a referenčnú elektródu a vytvoríme galvanický článok
- 4. Meriame elektromotorické napätie
- 5. Opakujeme pri všetkých známych koncentráciách oboch kyselín
- 6. Zmeriame elektromotorické napätie roztokov s neznámou koncentráciou

Tabuľka č.1: Namerané hodnoty roztokov CH₃COOH o rôznych koncentráciách

			рН		
Roztok CH₃COOH	c (M)	EMN (V)	(prakt.)	pH (teor.)	Chyba merania
1.	0,05	0,247	3,55	3,03	0,17
2.	0,01	0,226	3,9	3,38	0,15
3.	0,005	0,226	3,9	3,53	0,1
4.	0,001	0,206	4,24	3,88	0,09
Vzorka		0,327	2,2		

 $\overline{\delta} = 0, 13$

Graf č.1: Kalibračný graf závislosti elektromotorického napätia a pH v roztokoch CH₃COOH

Tabuľka č.2: Namerané hodnoty roztokov HCl o rôznych koncentráciách

			рН		
Roztok HCl	c (M)	EMN (V)	(prakt.)	pH (teor.)	Chyba merania
1.	0,05	0,317	2,37	1,38	0,71
2.	0,01	0,283	2,94	2,04	0,44
3.	0,005	0,27	3,16	2,33	0,36
4.	0,001	0,235	3,75	3,02	0,24
Vzorka		0,242	3,63		

 $\overline{\delta} = 0.44$

Graf č.2: Kalibračný graf závislosti elektromotorického napätia a pH v roztokoch HCl

Výpočty:

Z nameraných elektromotorických napätí jednotlivých roztokov, sme vypočítali pH podľa vzťahu

$$pH = \frac{E_{Chh}^0 - EMN - E_{SKE}}{2,303*\frac{R*T}{E}} \ , zhotovili jednotlivé grafy a vypočítali pH neznámych vzoriek:$$

Vzorka č.1 (CH₃COOH):

$$y = -0.0594x + 0.4576$$

$$x = \frac{y - 0.4576}{(-0.0594)} = \frac{0.327 - 0.4576}{(-0.0594)} = 2.2$$

Vzorka č.2 (HCl):

$$y = -0.0594x + 0.4578$$

$$x = \frac{y - 0.4578}{(-0.0594)} = \frac{0.242 - 0.4578}{(-0.0594)} = 3,63$$

Použitý vzťah na výpočet relatívnej chyby merania:

$$\delta = \frac{pH_{praktick\acute{e}} - pH_{teoretick\acute{e}}}{pH_{teoretick\acute{e}}}$$

Záver:

Cieľom tohto praktického cvičenia bolo stanoviť pH neznámych vzoriek pomocou chinhydrónovej elektródy. Pracovali sme s dvomi vzorkami, ktorej pH (vzorky č.1) = 2,2 a pH (vzorky č.2) = 3,63. Vyšla pomerne vysoká relatívna chyba merania, ktorá mohla byť spôsobená pravdepodobne nepresnou prípravou roztokov alebo nedbalým oplachovaním elektród po každom meraní, čo mohlo spôsobiť skreslenie výsledkov.