MATEMATIKA ANGOL NYELVEN

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Instructions to examiners

Formal requirements:

- 1. Mark the paper in **ink, different in colour** from the one used by the candidate. Indicate the errors, incomplete solutions, etc. in the conventional way.
- 2. The first one of the rectangles under each problem shows the maximum attainable score on that problem. The **points** given by the examiner are to be entered **in the rectangle** next to that.
- 3. **If the solution is perfect,** it is enough to enter the maximum scores in the appropriate rectangles.
- 4. If the solution is incomplete or incorrect, please indicate the individual **partial scores** in the body of the paper, too.
- 5. Do not assess anything except diagrams that is written in pencil.

Assessment of content:

- 1. The markscheme may contain more than one solution for some of the problems. If the **solution by the candidate is different**, allocate the points by identifying the parts of the solution equivalent to those of the one given in the markscheme.
- 2. The subtotals in the markscheme can be **further divided**, but the scores awarded should always be whole numbers.
- 3. If there is a **calculation error** or inaccuracy in the solution, only take off the points for that part where the error occurs. If the reasoning remains correct and the error is carried forward, the points for the rest of the solution should be awarded.
- 4. **In the case of a principal error,** no points should be awarded at all for that section of the solution, not even for steps that are formally correct. (These logical sections of the solutions are separated by double lines in the markscheme.) However, if the wrong information obtained owing to the principal error is carried forward to the next section or in the next part of the problem and it is used correctly, the maximum score is due for the next part, provided that the error has not changed the nature of the task to be completed.
- 5. Where the markscheme shows a **unit** or a **remark** in brackets, the solution should be considered complete without that unit or remark as well.
- 6. If there are more than one different approaches to a problem, assess only the one indicated by the candidate.
- 7. **Do not give extra points** (i.e. more than the score due for the problem or part of problem).
- 8. **Do not take off points** for steps or calculations that contain errors but are not actually used by the candidate in the solution of the problem.
- 9. Assess only two out of the three problems in part B of Paper II. The candidate was requested to indicate in the appropriate square the number of the problem not to be assessed and counted in their total score. Should there be a solution to that problem, it does not need to be marked. However, if it is still not clear which problem the candidate does not want to be assessed, assume automatically that it is the last one in the question paper, and do not assess that problem.

I.

1.		
There are 15 boys in the class.	2 points	I point for knowing that
Total:	2 points	35 needs to be divided into seven equal parts.
2.		
x = 1	2 points	1 point for knowing that
Total:	2 points	$\sqrt{2} = 2^{\frac{1}{2}}.$
3.		
a) At the point $(0; 4)$ or at $(y =) 4$.	1 point	
b) $-2x+4=6$	1 point	These 2 points are also
x = -1	1 point	due if the result is read from a graph.
Total:	3 points	
The test was taken by $(3^3 =)27$ students.	2 points	Do not divide.
Total:	2 points	
5.		
The sum of the degrees is 14.	2 points	Do not divide.
Total:	2 points	
6.		
$5 - x \ge 0$	1 point	
$(0 \le) \ x \le 5, \ (x \in \mathbf{Z})$	1 point	
$A = \{0; 1; 2; 3; 4; 5\}$	1 point	
Total:	3 points	
7.		
270° is $\frac{3}{4}$ of 360° .	1 point	
The area of the circle is $3^2 \cdot \pi (\approx 28.27 \text{ cm}^2)$.	1 point	These 2 points are also due if the candidate uses
The area of the sector is $\frac{27}{4} \cdot \pi (\approx 21.2)$ cm ² .	1 point	a value of π rounded

Total:

3 points

correctly.

8.							
	1	1 0		T 4	T = 1		The 2 points are also due if the data are given in
grade	1	2	3	4	5		some other correct form
relative frequency	0	0.1	0.35	0.4	0.15	2 points	(fraction or percentage). 1 point for one wrong
							value, 0 points for more than one wrong value.
					Total:	2 points	

9.		
A) true	1 point	
B) false	1 point	
C) true	1 point	
Total:	3 points	

10.		
The radius of the sphere is the half of the diagonal of the cube.	1 point	The 1 point is also due if this idea is only reflected by the calculation.
The length of the diagonal of the cube: $7 \cdot \sqrt{3} \ (\approx 12.1)$	1 point	The 1 point is also due if an appropriate approximate value is used.
Thus the radius of the sphere is $\frac{7 \cdot \sqrt{3}}{2} \approx 6.1$	1 point	Do not award this point if rounding is wrong.
Total:	3 points	

11.		
B)	2 points	
Total:	2 points	

12.		
(Diagonal AC bisects angle BCD.) Angle ACD is 60°,	1 point	Award 1 point for a correct diagram drawn
and triangle ACD is isosceles, therefore equilateral.	1 point	according to the given information.
So the length of the diagonal in question is 6 cm.	1 point	
Total:	3 points	

II. A

13. a)		
Domain of definition: $x > 0$.	1 point	Award this point, too if the domain is not investigated but the answer is checked, e.g. by substitution.
Correct application of the appropriate logarithm identity.	1 point	
(The logarithm function is one-to one.) $\frac{7x+18}{x} = 9 \text{ (or } 7x+18=9x \text{)}$	1 point	
x = 9	1 point	
Checking by substitution, or, if $x > 0$ is stated, reference to the equivalence of the transformations.	1 point	
Total:	5 ponts	

13. b)		
Substituting $a = \cos x$ (where $-1 \le a \le 1$): $2a^2 - 7a - 4 = 0$.	1 point	The point for correct rearrangement is also due if the candidate does not introduce a new variable.
The roots of the equation are $a_1 = 4$,	1 point	
and $a_2 = -\frac{1}{2}$.	1 point	
$a = \cos x = 4$ is not a solution (since $\cos x \le 1$.)	1 point	
The solutions of the equation $\cos x = -\frac{1}{2}$ on the interval $[0; 2\pi]$ are $x_1 = \frac{2\pi}{3}$,	1 point*	Award 1 point if both roots are correct but expressed in degrees $(x_1 = 120^\circ)$ and
$x_2 = \frac{4\pi}{3}.$	1 point*	$x_2 = 240^{\circ}$).
Checking (e.g. by substitution).	1 point	
Total:	7 points	

Award only one out of the two points marked with * if the roots are expressed correctly but the given domain is disregarded (e.g. in the case of infinitely many roots or a negative root).

14. a)		
The mean of the data: $\frac{83 \cdot 2 + 76 \cdot 4 + 69 \cdot 2 + + 58 \cdot 4 + 56 \cdot 4 + 55}{28} =$	1 point	This point is also due if the correct reasoning is reflected by the solution.
$=\frac{1816}{28}\approx 64.86$.	1 point	
Since the number of data is even, the median is the arithmetic mean of the two data items in the middle of a descending order of data:	1 point	This point is also due if the correct reasoning is reflected by the solution.
$\frac{61+65}{2} = 63.$	1 point	
The answer is yes, the mean and the median differ by at least 1 point.	1 point	
Total:	5 points	

14. b)		
6 classes are rated "excellent", 13 are rated "very good", 9 are rated "good".	2 points	1 point for two correctly calculated answers, 0 points for less than that.
The bar chart: 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Excellent Very good Good	2 points	Accept any principally correct representation (e.g. axes interchanged, touching bars). The 2 points are due if (1) the scale on the vertical axis is correct; (2) the individual bars are clearly identified; (3) the correct data are shown.
T	otal: 4 points	

14. c) Solution 1		
The number of favourable cases: $2 \cdot 4 (= 8)$.	1 point	
The number of all cases: $6 \cdot 5 (= 30)$.	1 point	
The probability in question: $P = \frac{8}{30} (= 0.2\dot{6})$.	1 point	Accept the answer given as a percentage or in any correctly rounded form.
Total:	3 points	

14. c) Solution 2		
The probability of an 83-point paper lying on top: $\frac{2}{6}$.	1 point	
The probability of a 67-point paper lying directly below: $\frac{4}{5}$.	1 point	
The probability in question: $P = \left(\frac{2}{6} \cdot \frac{4}{5} = \right) \frac{8}{30} (= 0.2\dot{6}).$	1 point	Accept the answer given as a percentage or in any correctly rounded form.
Total:	3 points	

15. a)		
The distance in question: $d_{AB} = \sqrt{(8-12)^2 + (9-1)^2} =$	1 point	No point is due for the formula itself (without substitution). Do not
$=\sqrt{80} (\approx 8.944) \text{ (units)}.$	1 point	award the second point if the exact value is not stated and the rounding is wrong.
Total:	2 points	

15. b)		
Vector $\mathbf{n}_e(4;3)$ is a normal vector of the line.	1 point	
Thus the equation of the line is $4x + 3y = 4 \cdot 4 + 3 \cdot 3$,	1 point	
that is $4x + 3y = 25$.	1 point	
Total:	3 points	

15. c)		
Vector $\overrightarrow{AB}(4,-8)$ is a direction vector of line f .	1 point	
Thus the equation of the line is $-8x - 4y = (-8) \cdot 8 - 4 \cdot 9$.	1 point	
The equation of line f : $2x + y = 25$.	1 point	
(The coordinates of the intersection are obtained as the solution of the following simultaneous equations:) $4x + 3y = 25$ $2x + y = 25$	1 point	Award 1 point if the coordinates of the intersection are correctly read from a correct graph. Award all 4 points if the
The solution of the equations: $x = 25$ and $y = -25$.	2 points	intersection is also
The intersection: $M(25;-25)$.	1 point	checked by substitution into the equations of both lines.
Total:	7 points	

II. B

16. a)		
Diagram reflecting a correct understanding of the		
problem (the height of the cone is 6 metres):		
h _{cone} = 6 m h _{cylinder} = 4 m	1 point	This point is also due if there is no diagram but the candidate uses the correct data
The volume of the cylinder: $V_{cyl} = 18^2 \cdot 4 \cdot \pi \approx$	1 point	No point is due for the
$\approx 4071.5 \text{ (m}^3\text{)}.$	1 point	formulae (without substitution). Award the
The volume of the cone: $V_{cone} = \frac{1}{3} \cdot 18^2 \cdot 6 \cdot \pi \approx$	1 point	appropriate points for correct calculation with
$\approx 2035.8 \text{ (m}^3).$	1 point	3.14.
$\frac{V_{cyl} + V_{cone}}{6} \left(= \frac{4071.5 + 2035.8}{6} \approx 1017.9 \right)$	1 point*	
The maximum number of spectators allowed in this tent is 1017.	1 point*	This point is not due for a value rounded upwards.
Total:	7 points	

Award the two points marked with * if the volume of the cylinder is rounded to 4072 m^3 , the volume of the cone is rounded to 2036 m^3 , and the maximum number of spectators stated is 1018.

16. b) Solution 1		
Let x denote the number of children's tickets sold. Then the number of adult tickets is $1000 - x$.	1 point	This point is also due if the idea is only reflected by the solution.
A children's ticket costs $800 \cdot 0.75 = 600$ forints.	1 point	
$600x + 800 \cdot (1000 - x) = 665800$	1 point	
The solution of the equation: $x = 671$.	1 point	
671 children's tickets and 329 adult tickets were sold.	1 point	
Checking against the wording of the problem.	1 point	
Total:	6 points	

16. b) Solution 2		
The number of children's tickets sold is obtained by subtracting the actual income from the income that could be achieved by selling 1000 adult tickets, and dividing by the reduction per children's ticket.	2 points	These 2 points are also due if the idea is only reflected by the solution.
There is a reduction of $800 \cdot 0.25 = 200$ forints on a children's ticket.	1 point	
$\frac{800000 - 665800}{200} = 671$	2 points	
671 children's tickets and 329 adult tickets were sold.	1 point	
Total:	6 points	

16. c)		
The 4 acrobats on the lowermost level can stand up in $4!(=24)$ different ways in a line.	1 point	
The 3 acrobats standing on their shoulders can be ordered in 3!(= 6) ways,	1 point	
the 2 standing on the shoulders of these in 2 ways.	1 point	
The number of all cases is (the product of these results): $4! \cdot 3! \cdot 2! (= 288)$.	1 point	
Total:	4 points	

17. a)		
The numbers in question are terms of an arithmetic progression in which the first term is 2,	1 point	These points are also due if the idea is only
and the common difference is 3.	1 point	reflected by the solution.
The 25th term of the sequence: $a_{25} = 2 + 24 \cdot 3 = 74$.	1 point	
Total:	3 points	

The 3 points are also due if the correct answer is obtained by listing the terms of the sequence.

17. b)		
$S_n = \frac{2a_1 + (n-1)d}{2} \cdot n$	1 point	This point is also due if the idea is only reflected by the solution.
The task is to solve the equation		
$8475 = \frac{2 \cdot 2 + (n-1) \cdot 3}{2} \cdot n$	1 point	
(on the set of positive integers).		
Rearranged: $3n^2 + n - 16950 = 0$.	2 points	
The roots of this equation are $n_1 = 75$ and $n_2 = -75,\dot{3}$.	1 point	
The (positive integer) solution of the problem is $n = 75$.	1 point	
Total:	6 points	

The 6 points are also due if the correct answer is obtained by listing the terms of the sequence.

17. c)		
The positive integers divisible by 5 and leaving a remainder of 2 on division by 3 form an arithmetic progression	1 point	These points are also due if the idea is only
with a common difference of 15.	1 point	reflected by the solution.
The smallest such three-digit number is 110,	2 points	Do not divide.
and the largest such three-digit number is 995.	2 points	Do not divide.
$995 = 110 + (n-1) \cdot 15$	1 point	Do not award these 2
n = 60, the sequence has 60 terms that are three-digit numbers divisible by 5.	1 point	points if $\frac{995-110}{15} = 59$ is stated as answer.
Total:	8 points	

The 8 points are also due if the correct answer is obtained by listing the terms of the sequence.

18. a)		
7 of the 32 students chose two colours, thus the number of those voting for a single colour is 25.	1 point	
$P = \frac{\text{number of favourable cases}}{\text{number of all cases}}$	1 point	This point is also due if the idea is only reflected by the solution.
The probability in question: $P = \frac{25}{32} (= 0.78125)$.	1 point	This 1 point is also due for a correct answer expressed as a percentage or a correctly rounded decimal.
Total:	3 points	

18. b) Solution 1		
A Venn diagram correctly representing the number of elements in the appropriate intersections.	2 points	
(Let x denote the number of students selecting a particular colour.) S $x-4$ $y-7$ y	2 points	
3x - 7 = 32	2 points	
x = 13	1 point	
(White was chosen by 13 students altogether. Out of these, $13-7=$) 6 students chose white only.	1 point	
Total:	8 points	

18. b) Solution 2		
Venn-diagram, as with Solution 1.	2 points	
(Let y denote the number of those marking white only.) S $y+3$ $y+4$ B	2 points	
3y + 14 = 32	2 points	
y = 6	1 point	
6 students marked white only.	1 point	
Total:	8 points	

18. b) Solution 3		
Let Y denote the set of those selecting yellow, let W be the set of those selecting white, and let R be the set of those selecting wine red: $ Y \cap W = 4$ and $ R \cap W = 3$, furthermore $ Y \cap R = 0$ (and $ Y \cap R \cap W = 0$).	2 points	
Y = W = R = x	2 points	
(Applying the formula for the number of elements in a union, i.e. a logical sieve:) $32 = x + x + x - (4+3)$	2 points	
x = 13	1 point	
(White was chosen by 13 students altogether. Out of these, $13-7=$) 6 students chose white only.	1 point	
Total:	8 points	

18. c) Solution 1		
Two possible cases need to be investigated: 2 boys and 1 girl, or 1 boy and 2 girls will get the flowers.	1 point	This point is also due if the idea is only reflected by the solution.
There are $\binom{5}{2}$ (= 10), ways to select 2 out of 5 boys, and 2 ways to select one out of 2 girls,	1 point	
that is, there are $10 \cdot 2 = 20$ possibilities in the first case.	1 point	
There are 5 ways to select one out of 5 boys, and there is one way to select two out of 2 girls,	1 point	
that is, there are 5 possibilities in the second case.	1 point	
(The number of all possible ways is the sum of these), so there are $20 + 5 = 25$ selections altogether.	1 point	
Total:	6 points	

18. c) Solution 2		
The number of selections satisfying the conditions is obtained by subtracting the number of wrong	1 point	This point is also due if the idea is only reflected
selections from the number of all possible selections.		by the solution.
There are $\binom{7}{3}$ (= 35) ways to select 3 out of the 7	1 point	
friends.		
Selections that consist of boys only are wrong.	2 points	These 2 points are also due if the idea is only reflected by the solution. Do not divide.
The number of selections to be rejected is $\binom{5}{3}$ (= 10).	1 point	
Thus the number of suitable selections is $35-10=25$.	1 point	
Total:	6 points	

The 6 points are also due if the correct result is obtained by systematically listing the possible selections. In the case of a list of selections, take off 1 point for each wrong selection listed or each suitable selection missing. (Take off at most 6 points.)