```
clc; clear all; clf;
```

Avance 2: Entrenamiento, adecuación y evaluación de modelos

Para este avance se tomarán los diferentes datasets obtenidos en el avance 1 y se procederá a buscar el mejor/mejores modelos de clasificación para predecir la posibilidad de intento de suicidio recurrente.

En un primer momento se probarán diferentes modelos, haciendo uso de la herramienta "Classification Learner" de Matlab, debido a su facilidad y rapidez para probar múltiples modelos simultáneamente. Se tomarán los pares data set-modelo que mejores resultados den (preferiblemente por encima de 70% de acierto) para seguirlos desarrollando, en términos de selección de parámetros y optimización de hiperparámetros.

Para la selección de parámetros y ajuste de hiperparámetros, en donde sea posible se usarán herramientas las interactivas o automáticas que provee Matlab.

Como métodos de validación y calificación de los modelos se pretenden usar los dados a continuación *(To Do: añadir breve descripción de cada uno)*

- ¿Score?
- Matriz de confusión
- ROC curve

Al momento de realizar predicciones se generarán dos, una determinística y otra probabilística.

Data sets de entrada.

En el avance 1 se obtuvieron 4 datasets después del proceso de limpieza, los cuales se mencionan a continuación:

- cds_imputed: dataset con 33 características y 4146 registros
- cds: dataset con 28 características 4146 registros,
- cds_few: dataset 33 características y 655 registros
- cds_fem_minus_alcohol: dataset 32 características 1690 registros.

```
%cds = readtable('clean_datasets\cds.csv'); size_cds = size(cds)
cds_imputed = readtable('clean_datasets\cds_imputed.csv'); size_imputed = size(cds_imputed)
cds_imputed = movevars(cds_imputed, 'inten_prev', 'after', 'tipo_ss_S');
%cds_few = readtable('clean_datasets\cds_few.csv'); size_few = size (cds_few)
%cds_few_minus_alcohol = readtable('clean_datasets\cds_few_minus_alcohol.csv');
% size_few_minus_alcohol = size (cds_few_minus_alcohol)
```

Con estos dataset se procede realizar un entrenamiento exploratorio de modelos, para continuar con los más prometedores. Sin embargo, es necesario definir el concepto de "más prometedor". En este primer momento se tendrá en cuanta la exactitud de los modelos

Es de utilidad tener en cuenta que para el entrenamiento de los modelos fue usada validación cruzada con "k-folds" (k=5), así, el valor de la exactitud presentado corresponde a la exactitud de validación y esta sirve como un estimado del desempeño del modelo en nuevos datos comparados con el conjunto de entrenamiento.

Resultados cds

1.1 🏠 Tree Last change: Fine Tree	Accuracy: 63.8% 28/28 features	1.14 🏠 SVM Last change: Coarse Gaussian SVI	
1.2 🏠 Tree Last change: Medium Tree	Accuracy: 65.1% 28/28 features	1.15 🏠 KNN Last change: Fine KNN	Accuracy: 5 28/28 fea
1.3 🏠 Tree Last change: Coarse Tree		1.16 🏠 KNN Last change: Medium KNN	Accuracy: 6 28/28 fea
1.4 🖒 Linear Discriminant Last change: Linear Discriminant		1.17 🏠 KNN Last change: Coarse KNN	Accuracy: 6 28/28 fea
1.5 \(\triangle\) Quadratic Discriminant Last change: Quadratic Discriminar		1.18 A KNN Last change: Cosine KNN	Accuracy: 6 28/28 fea
1.6 \(\triangle\) Logistic Regression (Last change: Logistic Regression		1.19 🏠 KNN Last change: Cubic KNN	Accuracy: 6 28/28 fea
1.7 \(\triangle \) Naive Bayes Last change: Gaussian Naive Baye		1.20 🏠 KNN Last change: Weighted KNN	Accuracy: 6 28/28 fea
1.8 \(\triangle\) Naive Bayes Last change: Kernel Naive Bayes		1.21 🏠 Ensemble Last change: Boosted Trees	
1.9 🖒 SVM Last change: Linear SVM		1.22 🏠 Ensemble Last change: Bagged Trees	
1.10 🖒 SVM Last change: Quadratic SVM	Accuracy: 65.3% 28/28 features	1.23 🏠 Ensemble Last change: Subspace Discrimina	
1.11 🖒 SVM Last change: Cubic SVM	Accuracy: 63.8% 28/28 features	1.24 🏠 Ensemble Last change: Subspace KNN	
1.12 🏠 SVM Last change: Fine Gaussian SVM		1.25 🏠 Ensemble Last change: RUSBoosted Trees	
1.13 🏠 SVM Last change: Medium Gaussian SV		2 🖒 Quadratic Discriminant Last change: 'Covariance structure'	

Resultados cds_imputed

Last change: Medium Tree 33/33 features 1.3				
Last change: Medium Tree 33/33 features 1.3				
Last change: Coarse Tree 33/33 features Last change: Medium KNN 33/33 features 1.4	F 7		F 7	
Last change: Linear Discriminant 1.5				
Last change: Quadratic Discriminant 33/33 features 1.6				
Last change: Logistic Regression 33/33 features 1.7				
Last change: Gaussian Naive Bayes 33/33 features 1.8				
Last change: Kernel Naive Bayes 33/33 features 1.9				
Last change: Linear SVM33/33 featuresLast change: Bagged Trees33/33 features1.10 ☆ SVMAccuracy: 65.4%1.23 ☆ EnsembleAccuracy: 6Last change: Quadratic SVM33/33 featuresLast change: Subspace Discriminant33/33 features1.11 ☆ SVMAccuracy: 63.3%1.24 ☆ EnsembleAccuracy: 6Last change: Cubic SVM33/33 featuresLast change: Subspace KNN33/33 features1.12 ☆ SVMAccuracy: 61.8%1.25 ☆ EnsembleAccuracy: 6Last change: Fine Gaussian SVM33/33 featuresLast change: RUSBoosted Trees33/33 features1.13 ☆ SVMAccuracy: 65.5%2 ☆ Quadratic DiscriminantAccuracy: 6	F 4			
Last change: Quadratic SVM 33/33 features Last change: Subspace Discriminant 33/33 features 1.11 ☆ SVM Accuracy: 63.3% 1.24 ☆ Ensemble Accuracy: 6 Last change: Cubic SVM 33/33 features Last change: Subspace KNN 33/33 features 1.12 ☆ SVM Accuracy: 61.8% 1.25 ☆ Ensemble Accuracy: 6 Last change: Fine Gaussian SVM 33/33 features Last change: RUSBoosted Trees 33/33 features 1.13 ☆ SVM Accuracy: 65.5% 2 ☆ Quadratic Discriminant Accuracy: 6	F 7			
Last change: Cubic SVM33/33 featuresLast change: Subspace KNN33/33 features1.12 ☆ SVMAccuracy: 61.8%1.25 ☆ EnsembleAccuracy: 6Last change: Fine Gaussian SVM33/33 featuresLast change: RUSBoosted Trees33/33 features1.13 ☆ SVMAccuracy: 65.5%2 ☆ Quadratic DiscriminantAccuracy: 6	F 7			
Last change: Fine Gaussian SVM 33/33 features Last change: RUSBoosted Trees 33/33 features 1.13 \$\frac{1}{12}\$ SVM Accuracy: 65.5% 2 Quadratic Discriminant Accuracy: 6				
		-		

Resultados cds_few

Para este dataset algunos modelos se hicieron individualmente, porque presentaban problemas con las características 'antec_tran', 'tipo_ss_l', 'suici_fm_a' y 'tipo_SS_P ya que la mayoría o casi todos sus valores son iguales por lo que no aportan información o no presentan variación con respecto a una de las clases por hallar..

1.1 🏠 Tree	Accuracy: 53.9%	1.15 ANN Last change: Fine KNN	Accuracy: 53.6%
Last change: Fine Tree	33/33 features		33/33 features
1.2 🏠 Tree	Accuracy: 60.5%	1.16 🏠 KNN	Accuracy: 60.8% 33/33 features
Last change: Medium Tree	33/33 features	Last change: Medium KNN	
1.3 🏠 Tree Last change: Coarse Tree	Accuracy: 64.4%	1.17 🏠 KNN Last change: Coarse KNN	Accuracy: 60.8% 33/33 features
1.4 🏠 Linear Discriminant	Failed	1.18 🏠 KNN	Accuracy: 61.2%
Last change: Linear Discriminant	33/33 features	Last change: Cosine KNN	33/33 features
1.5 🏠 Quadratic Discriminant Last change: Quadratic Discrimina	Failed nt 33/33 features	1.19 A KNN Last change: Cubic KNN	Accuracy: 60.2% 33/33 features
1.6 🏠 Logistic Regression Last change: Logistic Regression	Accuracy: 61.8% 33/33 features	1.20 A KNN Last change: Weighted KNN	Accuracy: 57.7% 33/33 features
1.7 🏠 Naive Bayes	Failed	1.21 🖒 Ensemble Last change: Boosted Trees	Accuracy: 59.1%
Last change: Gaussian Naive Baye	s 33/33 features		33/33 features
1.8 🏠 Naive Bayes	Accuracy: 61.1%	1.22 🏠 Ensemble	Accuracy: 58.3% 33/33 features
Last change: Kernel Naive Bayes	33/33 features	Last change: Bagged Trees	
1.9 😭 SVM	Accuracy: 61.2%	1.23 🏠 Ensemble	Accuracy: 63.4%
Last change: Linear SVM	33/33 features	Last change: Subspace Discrimina	nt 33/33 features
1.10 🏠 SVM	Accuracy: 57.7%	1.24 🏠 Ensemble	Accuracy: 57.3% 33/33 features
Last change: Quadratic SVM	33/33 features	Last change: Subspace KNN	
1.11 🖒 SVM Last change: Cubic SVM	Accuracy: 57.3% 33/33 features	1.25 🏠 Ensemble Last change: RUSBoosted Trees	Accuracy: 58.3% 33/33 features
1.12 🖒 SVM	Accuracy: 58.9%	2 🖒 Linear Discriminant	
Last change: Fine Gaussian SVM	33/33 features	Last change: 'Covariance structure'	
1.13 🖒 SVM	Accuracy: 63.7%	3 🖒 Quadratic Discriminant	Accuracy: 60.6% 33/33 features
Last change: Medium Gaussian SV	/M 33/33 features	Last change: 'Covariance structure'	
1.14 🖒 SVM	Accuracy: 61.1%	4 \(\text{\text{Naive Bayes}} \) Last change: Removed 3 features	Accuracy: 53.6%
Last change: Coarse Gaussian SV	M 33/33 features		29/33 features

Resultados cds_few_minus_alcohol

1.1 Tree Last change: Fine Tree	Accuracy: 54.2%	1.15 A KNN	Accuracy: 53.7%
	32/32 features	Last change: Fine KNN	32/32 features
1.2 🏠 Tree	Accuracy: 55.6%	1.16 🔆 KNN	Accuracy: 55.1%
Last change: Medium Tree	32/32 features	Last change: Medium KNN	32/32 features
1.3 🏠 Tree Last change: Coarse Tree	Accuracy: 55.6%	1.17 🏠 KNN	Accuracy: 56.2%
	32/32 features	Last change: Coarse KNN	32/32 features
1.4 🏠 Linear Discriminant Last change: Linear Discriminant	Failed	1.18 🏠 KNN	Accuracy: 55.4%
	32/32 features	Last change: Cosine KNN	32/32 features
1.5 🖒 Quadratic Discriminant Last change: Quadratic Discrimina	Failed	1.19 🏠 KNN	Accuracy: 54.7%
	ant 32/32 features	Last change: Cubic KNN	32/32 features
1.6 🏠 Logistic Regression Last change: Logistic Regression	Accuracy: 59.0%	1.20 🏠 KNN	Accuracy: 55.0%
	32/32 features	Last change: Weighted KNN	32/32 features
1.7 \(\triangle \) Naive Bayes Last change: Gaussian Naive Baye	Failed	1.21 🏠 Ensemble	Accuracy: 59.2%
	es 32/32 features	Last change: Boosted Trees	32/32 features
1.8 A Naive Bayes Last change: Kernel Naive Bayes	Accuracy: 55.0%	1.22 🏠 Ensemble	Accuracy: 56.6%
	32/32 features	Last change: Bagged Trees	32/32 features
1.9 🖒 SVM	Accuracy: 58.5%	1.23 🏠 Ensemble	
Last change: Linear SVM	32/32 features	Last change: Subspace Discrimin	
1.10 🖒 SVM	Accuracy: 55.3%	1.24 🏠 Ensemble	Accuracy: 54.0%
Last change: Quadratic SVM	32/32 features	Last change: Subspace KNN	32/32 features
1.11 🟠 SVM	Accuracy: 53.3%	1.25 🏠 Ensemble	Accuracy: 57.3%
Last change: Cubic SVM	32/32 features	Last change: RUSBoosted Trees	32/32 features
1.12 🖒 SVM	Accuracy: 54.3%	2 🏠 Linear Discriminant	Accuracy: 60.2 % e' 32/32 features
Last change: Fine Gaussian SVM	32/32 features	Last change: 'Covariance structure	
1.13 🏠 SVM	Accuracy: 56.5%	3 🏠 Quadratic Discriminant	Accuracy: 55.0%
Last change: Medium Gaussian S	VM 32/32 features	Last change: 'Covariance structure	e' 32/32 features
1.14 🖒 SVM	Accuracy: 58.4%	4 🏠 Naive Bayes	Accuracy: 54.4%
Last change: Coarse Gaussian SV	/M 32/32 features	Last change: Removed 3 features	28/32 features

Por motivos exploratorios se realizaron pruebas aplicándole PCA a los datos, pero los resultados en general fueron inferiores a los obtenidos sin esta transformación, por lo que esta transformación de los datos no será utilizada. (¿Uno si debería hacer PCA en datos categóricos?)

Como se puede notar, ningún par dataset-modelo obtuvo una precisión mayor al 70% tal y como se había definido inicialmente para su aceptación. Por este motivo se tomará aquel dataset que produjo el modelo con la mayor precisión(cds_imputed) y los mejores modelos obtenidos a partir de este -Coarse Tree, Linear discriminant, Logistic regresion, SVM (linear y coarse) y Ensamble (BoostTrees)-

Feature selection

Buscando reducir la dimensionalidad y explorar diferentes opciones se pretende realizar un proceso de selección de características. Esto se hará filtrando aquellas características menos importantes para la respuesta 'inten_prev' mediante el algoritmo MRMR (Minimum Redundancy Maximun Relevance), del cual se puede obtener el "ranking" de importancia de los predictores teniendo en cuentas la respuesta.

Se entrenarán 2 modelos, uno con todas las características y adicionalmente otro con el conjunto de las 7 más importantes

```
idx = fscmrmr(cds_imputed, 'inten_prev');
most_signif_features = cds_imputed.Properties.VariableNames(idx(1:7)).'
less_signif_features =cds_imputed.Properties.VariableNames(idx(end-4:end)).'
```

Optimización de hiperparámetros

Para la optimización de hiperparámetros serán utilizados dos enfoques:

Para los modelos simples (arboles de decisión) se realizará mediante GridSearch, mientras que para los más complejos (Ensamble, SVM) será utilizado un método de optimización bayesiana, el cual, a través de 30 iteraciones se va redirigiendo hacia aquellos hiperparámetros del espacio de búsqueda que proveen mejores resultados para el modelo. Esta elección se hace debido a los costos computacionales elevados de realizar Grid o Random Search en modelos complejos.

Como parte del proceso de optimización se obtiene el gráfico de error de clasificación mínimo en el cual se encuentran principalmente:

- · Los resultados de la optimización
- El mínimo error de clasificación observado (puntos azules) hasta la iteración actual
- Bestpoint hyperparameters (cuadrado rojo), indica la iteración que corresponde a los valores de los hiperparámetros optimizados

Los resultados se presentarán a continuación para cada modelo:

Arboles de decisión:

En la anterior etapa mejores resultados fueron obtenidos con árboles de decisión gruesos (con poco número de splits), lo cual es confirmado con los resultados de este proceso

Arboles de decisión (7 características):

Para este caso los mejore resultados fueron con árboles finos

Discriminante:

Anteriormente se había hallado que el lineal era el que mejores resultados presentaba, esto se comprueba/ reafirma al realizar este paso.

Las combinaciones disponibles para este tipo de modelos son pocas por lo que con pocas iteraciones es suficiente

Discriminante (7 características):

Mejores resultados con diagonal linear

SVM:

Para SVM los mejores resultados se obtuvieron para gaussiano "course" por lo que este será optimizado

SVM (7 características):

Ensemble:

Ensemble (7 características):

Presentación de resultados de los modelos entrenados con el data set completo y el de características reducidas

El código para entrenar los modelos se encuentra en la carpeta "models".

Arboles de decisión:

Arboles de decisión (7 características):

Discriminante:

Discriminante (7 características):

Logistic regression:

Logistic regression (7 características):

SVM:

SVM (7 características):

Ensemble:

Ensemble (7 características):

Comparación de modelos

Para este punto se tendrán en cuenta varias cosas:

- La precisión y exactitud del modelo, mientras mayor mejor, sin llegar a un caso de sobreajuste.
- El número de parámetros en general es de interés obtener modelos que con un bajo número de parámetros sean capaces de cumplir con su objetivo a cabalidad, esto debido a que en un caso real es más difícil y costoso, en términos de dinero y tiempo obtener una cantidad grande de informaciones este caso no se les dará mayor importancia a unos parámetros sobre otros, solo será de interés el número de ellos.
- La complejidad del modelo, se preferirán modelos más simples
- Un último factor que se tendrá en cuenta para preferir un modelo sobre otro es la distribución de falsos negativos hacia cierta clase particular, i.e. en este contexto no sería nada bueno identificar erróneamente a aquellas personas con tendencia repetitiva al intento de suicidio, mientras que identificar erróneamente a aquellos que en realidad no (falso positivo), seria más aceptable.

Provisional:

Teniendo en cuenta lo anterior lo que se busca es maximizar la predicción correcta de la etiqueta 1 {si a intentos previos de suicidio}, en este sentido la mayoría de los modelos son deficientes. Pero en general los de 7 características se comportan mejor que los completos. Así, uno de los mejores sería el de discriminante linear con 7 características

ya que es el que más se acerca a lo requerido, tienen poco número de características y no hace parte de los modelos demasiado complejos

Pendiente Escobar:

- calcular score del modelo,
- poner análisis general de ROC y CM
- Hacer eso de la predicción probabilística y determinista

Conclusiones

El chorro:

- Hablar de porque nuestros modelos son tan malos (posibles razones: ¿se hicieron las cosas mal? xd. ¿Características comunes para aquellos que son reincidentes por lo que es difícil separarlos de aquello que no? Preferiblemente una mayor cantidad de datos (y también mejor calidad ya que había muchos datos faltantes))
- Hay que comentar que podría significar según el contexto esas 7 características más importantes
- Como seria excelente de acuerdo con la propuesta inicial poder conseguir datasets con información de personas que han intentado previamente el suicidio como de aquella que no

Referencias (arreglar)

https://www.mathworks.com/help/stats/feature-selection-and-feature-transformation.html

https://www.mathworks.com/help/stats/train-classification-models-in-classification-learner-app.html

https://www.mathworks.com/help/stats/assess-classifier-performance.html

https://towardsdatascience.com/intuitive-hyperparameter-optimization-grid-search-random-search-and-bayesian-search-2102dbfaf5b

https://towardsdatascience.com/automated-machine-learning-hyperparameter-tuning-in-python-dfda59b72f8a

https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94

https://www.mathworks.com/help/stats/feature-selection.html

https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

```
%test = readtable('suicidio_null.csv'); size_test = size(test) %Tes con el
%data set original sin procesar
```

Notas

<u>Modelos sugeridos por el profesor: Regresion logistica, SVM, Arboles de decision, Redes</u> <u>neuronales, LMP, Random Forest</u>

 $Intent_prev\{1 = SI; 2 = NO\}$

Para traducir graficas{Mínimo error de clasificación, Iteración, Mínimo error de clasificación observado, Hiperparámetros de error mínimo}