CS6462 Probabilistic and Explainable AI

Lesson 5 Random Variables and Probability Distribution

Random Variables and Probability

Definition: Random variables are represented by:

- a function that can take on either a finite number of values, each with an associated probability, or an infinite number of values, whose probabilities are summarized by a density function
- a function that assigns a numerical value to each outcome in S, i.e., a real-valued function defined on S

Example:

 If a coin is tossed three times, the sample space might be described by a list of 8 three-letter words,

 $S = \{TTT, TTH, THT, HTT, HHT, HTH, THH, HHH\}$

• possible random variables:

 $F_X(S) = (#H's in the word) = \{0, 1, 2, 3\}, X = #H's in the word$

 $F_{Y}(S) = (\#T's \text{ in the word}) = \{0, 1, 2, 3\}, Y = \#T's \text{ in the word}\}$

Discrete Random Variable

Definition:

- a random variable X is said to be discrete if it can assume only a finite or countable infinite number of distinct values
- a discrete random variable can be defined on both a countable or uncountable sample space

Example:

```
S = \{TTT, TTH, THT, HTT, HHT, HTH, THH, HHH\}

X = \#H's in the word, X = \{0, 1, 2, 3\}

X = \#H's in the word, X = \{0, 1, 2, 3\}

X = \#H's in the word, X = \{0, 1, 2, 3\}
```

Probability:

- the probability that X takes on the value x, P(X=x), is defined as the sum of the probabilities of all sample points in S that are assigned the value X
- P(X=x) = p(x) function that assigns probabilities to each possible value x p(x) the probability function for X

Definition:

- The probability distribution for a random variable describes how the probabilities are distributed over the values of the random variable.
- For a discrete random variable X the probability distribution is defined by a <u>probability mass function</u>, denoted by $F_X(X)$.
- $F_X(x)$ provides the probability for each value of the random variable $F_X(x) = p(x) = P(X=x)$ for each x within the range of X

Rules for mass function $F_x(x)$ for a discrete random variable X:

- (1) $F_x(x) \ge 0$ must be nonnegative for each value of the random variable X
- (2) $\sum_{x} F_{x}(x) = 1$, sum of probabilities for each value of the random variable must = 1

Probability Distribution - Example

Example:

Find a formula for the probability distribution of the total number of heads obtained in four tosses of a balanced coin.

S = see table

X= #H's in the word

P(X=x):

•
$$P(X = 0) = 1/16$$

•
$$P(X = 1) = 4/16$$

•
$$P(X = 2) = 6/16$$

•
$$P(X = 3) = 4/16$$

•
$$P(X = 4) = 1/16$$

sample space, probabilities and random variable

Floment of sample space | Probability | Value of random variable V (v

Element of sample space	Probability	Value of random variable $X(x)$
НННН	1/16	4
HHHT	1/16	3
HHTH	1/16	3
HTHH	1/16	3
THHH	1/16	3
HHTT	1/16	2
HTHT	1/16	2
HTTH	1/16	2
THHT	1/16	2
THTH	1/16	2
TTHH	1/16	2
HTTT	1/16	1
THTT	1/16	1
TTHT	1/16	1
TTTH	1/16	1
TTTT	1/16	0

Probability Distribution – Example (cont.)

$$P(X=0) = \frac{1}{16}, \ P(X=1) = \frac{4}{16}, \ P(X=2) = \frac{6}{16}, \ P(X=3) = \frac{4}{16}, \ P(X=4) = \frac{1}{16}$$

- denominators of the five fractions are the same and the numerators of the five fractions are 1,4,6,4,1
- the numbers in the numerators form a set of <u>binomial coefficients</u> $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$ n = 4, k = x

$$\frac{1}{16} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \quad \frac{4}{16} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \quad \frac{6}{16} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \quad \frac{4}{16} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \quad \frac{1}{16} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

• $F_{x}(x)$ – the probability mass function can be written as:

$$f(x) = \frac{\binom{4}{x}}{16} for x = 0, 1, 2, 3, 4$$

Cumulative Distribution Function

Definition: cumulative distribution function of **X**

If **X** is a discrete random variable, the function given by:

 $F_X(x) = P(x \le X) = \Sigma_{t \le x} f(t)$, for all $t \in R$, $t \le x$, $x \in X$ $x = \{x_1, x_2, x_3, x_4, x_5\}$

where **f(t)** is the value of the probability distribution of **X** at **t**

Rules for cumulative distribution function $F_{x}(x)$ of a discrete random variable X:

- 1) $f(-\infty) = 0$ and $f(\infty) = 1$
- 2) if a < b, then $f(a) \le f(b)$ for any real numbers a and b within the range of X

Cumulative Distribution Function - Example

Example: tossing a coin four times

determine the cumulative distribution function

$$F_{\mathsf{x}}(x) = P(x \le X) = \Sigma_{t < x} f(t)$$
, for all $t \in R$

cumulative distribution function:

• Cumulative distribution function:
$$F(0) = f(0) = \frac{1}{16}$$

$$F(1) = f(0) + f(1) = \frac{1}{16} + \frac{4}{16} = \frac{5}{16}$$

$$F(2) = f(0) + f(1) + f(2) = \frac{1}{16} + \frac{4}{16} + \frac{6}{16} = \frac{11}{16}$$

$$F(3) = f(0) + f(1) + f(2) + f(3) = \frac{1}{16} + \frac{4}{16} + \frac{6}{16} + \frac{4}{6} = \frac{15}{16}$$

$$F(4) = f(0) + f(1) + f(2) + f(3) + f(4) = \frac{1}{16} + \frac{4}{16} + \frac{6}{16} + \frac{4}{6} + \frac{1}{16} = \frac{16}{16}$$

$$\begin{cases} 0 & \text{for } x < 0 \end{cases}$$

$$F(x) = \begin{cases} 0 & for \ x < 0 \\ \frac{1}{16} & for \ 0 \le x < 1 \\ \frac{5}{16} & for \ 1 \le x < 2 \\ \frac{11}{16} & for \ 2 \le x < 3 \\ \frac{15}{16} & for \ 3 \le x < 4 \\ 1 & for \ x \ge 4 \end{cases}$$

sample space, probabilities and random variable

Element of sample space	Probability	Value of random variable X (x)
НННН	1/16	4
HHHT	1/16	3
HHTH	1/16	3
HTHH	1/16	3
THHH	1/16	3
HHTT	1/16	2
HTHT	1/16	2
HTTH	1/16	2
THHT	1/16	2
THTH	1/16	2
TTHH	1/16	2
HTTT	1/16	1
THTT	1/16	1
TTHT	1/16	1
TTTH	1/16	1
TTTT	1/16	0

Binomial Distribution

Definition:

- a finite discrete distribution of the discrete random variable X
- arises in situations where a sequence of what is known as Bernoulli trials is observed
- a Bernoulli trial is an experiment which has exactly two possible outcomes: success and failure
- probability of success is a fixed number θ which does not change with the number of experiments n

The probability mass function for a binomial distribution:

$$b(x; n, \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x} \quad \text{for } x = 0, 1, 2, \dots, n$$

$$\left(egin{array}{c} n \ x \end{array}
ight) = rac{n!}{x!(n-x)!}$$

Binomial Distribution - Example

Example: tossing a coin twice

What is the probability of getting one or more heads?

X= #H's in the word

The probability mass function for a binomial distribution:

The binomial distribution consists of the probabilities of each of the possible numbers of successes on n trials for independent events that each have a probability of θ of occurring.

$$b(x; n, \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x} \quad \text{for } x = 0, 1, 2, \dots, n$$

For the coin flip example, n = 2:

$$X=0, \theta = \frac{1}{4}, b(x; n, \theta) = 0.25$$

$$X=1$$
, $\theta = \frac{1}{2}$, $b(x; n, \theta) = 0.5$

$$X=2$$
, $\theta = \frac{1}{2}$, $b(x; n, \theta) = 0.25$

probabilities		
Number of Heads	Probability	
0	1/4	
1	1/2	
2	1/4	

The probability of getting one or more heads is 0.5 + 0.25 = 0.75

Poisson Distribution

Definition:

- used to model a number of events **x** occurring within a given time interval of an experiment.
- the formula for the Poisson *probability mass function* is:

$$P(x; \lambda) = \frac{e^{-\lambda} * \lambda^{x}}{\lambda!}$$
, for $x = 0, 1, 2, \dots; \lambda$ does not have to be an integer

 λ is a shape parameter that indicates the average number of events in the given time interval

Poisson cumulative probability distribution function:

$$F(x; \lambda) = \sum_{i}^{x} \frac{e^{-\lambda} * \lambda^{i}}{i!}$$

Example:

Radioactivity example with an average of 2 decays/sec.

- a) What's the probability of zero decays in one second?
- b) What's the probability of more than one decay in one second?

Solution a):

$$p(0,2) = \frac{e^{-2}2^0}{0!} = \frac{e^{-2} \cdot 1}{1} = e^{-2} = 0.135 \rightarrow 13.5\%$$

Solution b):

$$p(>1,2) = 1 - p(0,2) - p(1,2) = 1 - \frac{e^{-2}2^0}{0!} - \frac{e^{-2}2^1}{1!} = 1 - e^{-2} - 2e^{-2} = 0.594 \rightarrow 59.4\%$$

Radioactive decay is the process by which an unstable atomic nucleus loses energy by radiation.

$$P(x;\lambda) = \frac{e^{-\lambda} * \lambda^{x}}{x!}$$

Summary

Random Variable:

- a function that assigns a numerical value to each outcome in S
- discrete random variable

Probability Distribution for Random Variables

- probability mass function
- cumulative distribution function
- Binomial distribution
- Poisson distribution

Next Lesson – Bayes' Theorem

Thank You!

Questions?