CONSUMER THEORY

Intermediate Microeconomics — Javier Tasso

Cobb Douglas

$$u(x_1, x_2) = x_1 x_2$$

Utility Maximization:

Expenditure Minimization:

$$v(p_1, p_2, m) = \frac{m^2}{4p_1p_2}$$
$$x_1(p_1, p_2, m) = \frac{m}{2p_1}$$
$$x_2(p_1, p_2, m) = \frac{m}{2p_2}$$

$$e(p_1, p_2, u) = 2\sqrt{p_1 p_2 u}$$

$$h_1(p_1, p_2, u) = \frac{\sqrt{p_1 p_2 u}}{p_1}$$

$$h_2(p_1, p_2, u) = \frac{\sqrt{p_1 p_2 u}}{p_2}$$

Leontief

$$u(x_1, x_2) = \min\{x_1, x_2\}$$

Utility Maximization:

Expenditure Minimization:

$$v(p_1, p_2, m) = \frac{m}{p_1 + p_2}$$
$$x_1(p_1, p_2, m) = \frac{m}{p_1 + p_2}$$
$$x_2(p_1, p_2, m) = \frac{m}{p_1 + p_2}$$

$$e(p_1, p_2, u) = (p_1 + p_2)u$$

 $h_1(p_1, p_2, u) = u$
 $h_2(p_1, p_2, u) = u$

Perfect Substitutes

$$u(x_1, x_2) = x_1 + x_2$$

Utility Maximization a:

Expenditure Minimization^b:

$$v(p_1, p_2, m) = \frac{m}{\min\{p_1, p_2\}}$$

$$x_1(p_1, p_2, m) = \begin{cases} \frac{m}{p_1} & \text{if } p_1 < p_2 \\ 0 & \text{if } p_1 > p_2 \end{cases}$$

$$x_2(p_1, p_2, m) = \begin{cases} 0 & \text{if } p_1 < p_2 \\ \frac{m}{p_2} & \text{if } p_1 > p_2 \end{cases}$$

$$e(p_1, p_2, u) = \min\{p_1, p_2\}u$$

$$h_1(p_1, p_2, u) = \begin{cases} u & \text{if } p_1 < p_2 \\ 0 & \text{if } p_1 > p_2 \end{cases}$$

$$h_2(p_1, p_2, u) = \begin{cases} 0 & \text{if } p_1 < p_2 \\ u & \text{if } p_1 > p_2 \end{cases}$$

Quasi-Linear

$$u(x_1, x_2) = \ln(x_1) + x_2$$

Utility Maximization^a:

Expenditure Minimization b :

$$v(p_{1}, p_{2}, m) = \begin{cases} \ln\left(\frac{p_{2}}{p_{1}}\right) + \frac{m - p_{2}}{p_{2}} & \text{if } m > p_{2} \\ \ln\left(\frac{m}{p_{1}}\right) & \text{if } m \leq p_{2} \end{cases}$$

$$x_{1}(p_{1}, p_{2}, m) = \begin{cases} \frac{p_{2}}{p_{1}} & \text{if } m > p_{2} \\ \frac{m}{p_{1}} & \text{if } m \leq p_{2} \end{cases}$$

$$x_{2}(p_{1}, p_{2}, m) = \begin{cases} \frac{m - p_{2}}{p_{2}} & \text{if } m > p_{2} \\ 0 & \text{if } m \leq p_{2} \end{cases}$$

$$h_{2}(p_{1}, p_{2}, u) = \begin{cases} \frac{p_{2}}{p_{1}} & \text{if } u > \ln\left(\frac{p_{2}}{p_{1}}\right) \\ e^{u} & \text{if } u \leq \ln\left(\frac{p_{2}}{p_{1}}\right) \end{cases}$$

$$h_{2}(p_{1}, p_{2}, u) = \begin{cases} u - \ln\left(\frac{p_{2}}{p_{1}}\right) & \text{if } u > \ln\left(\frac{p_{2}}{p_{1}}\right) \\ 0 & \text{if } u \leq \ln\left(\frac{p_{2}}{p_{1}}\right) \end{cases}$$

^aIf $p_1 = p_2$ any bundle on the budget constraint is a solution.

 $^{{}^{}b}$ If $p_1 = p_2$ any bundle on the target indifference curve is a solution.

 $^{{}^{}a} \text{Alternatively: } x_{1}(p_{1}, p_{2}, m) = \min \left\{ \frac{p_{2}}{p_{1}}, \frac{m}{p_{1}} \right\} \text{ and } x_{2}(p_{1}, p_{2}, m) = \max \left\{ \frac{m - p_{2}}{p_{2}}, 0 \right\}.$ ${}^{b} \text{Alternatively: } h_{1}(p_{1}, p_{2}, u) = \min \left\{ \frac{p_{2}}{p_{1}}, e^{u} \right\} \text{ and } h_{2}(p_{1}, p_{2}, u) = \max \left\{ u - \ln \left(\frac{p_{2}}{p_{1}} \right), 0 \right\}.$