

آموزش یادگیری ماشین (Machine Learning) (تئوری – عملی) – بخش دوم

درس هشتم: كاوش قوانين انجمني

مدرس: فرشید شیرافکن دانشجوی دکترای بیو انفورماتیک دانشگاه تهران

مقدمه

- کشف قوانین انجمنی از دسته روشهای بدون ناظر است.
- می خواهیم بدانیم که یک مجموعه اشیاء خاص بر وجود چه مجموعه اشیاء دیگر اثر گذار است.
 - هدف کاوش قوانین انجمنی: پیدا کردن نظم و قوانین حاکم بر دادهها میباشد.
 - کشف قوانین انجمنی، درباره علت وجود رابطه مجموعه اشیاء چیزی نمی گوید.

تحلیل سبد خرید (Market Basket Analysis)

"تحلیل سبد خرید" از کاربردهای متداول در رابطه با کشف قوانین انجمنی است.

با توجه به اقلام مختلفی که مشتریان در سبد خریدشان قرار میدهند، عادات و رفتار خرید مشتریان مورد تحلیل قرار گرفته و الگوهای موجود در اقلام خریداری شده کشف میشود.

مثال: شير ← پنير

(۱۰٪ = پشتیبانی و ۸۰٪ = اطمینان)

۱۰ ٪ مشتریها پنیر و شیر را با هم خریداری می کنند.

مشتریانی که پنیر میخرند در ۸۰٪ موارد شیر نیز خریداری میکنند.

بيان مساله كاوش قوانين انجمني

set of transactions called the database

$$D = \{t_1, t_2, \dots, t_m\}$$

$$X \Rightarrow Y$$
 $X, Y \subseteq I$

TID	items	
The state of	{11,13,14}	
2	{I2,I3,I5}	
3	{11,12,13,15}	
4	{12,15}	

$$I = \{i_1, i_2, i_3, i_4, i_5\}$$
 $n=5$
 $D = \{t_1, t_2, t_3, t_4\}$ $m=4$

• الگوهای مکرر (frequent pattern): الگوهایی که در یک بانک داده زیاد رخ میدهد.

پشتیبانی

$$AR: X \rightarrow Y$$

$$Support = \frac{frq(X,Y)}{N}$$

TID	items	
1	{I1,I3,I4}	
2	{12,13,15}	
3	{11,12,13,15}	
4	{I2,I5}	

$$S = \frac{2}{4} = 5 \circ /$$

اطمينان

 $AR: X \rightarrow Y$

$$Confidence = \frac{\mathit{frq}(X,Y)}{\mathit{frq}(X)}$$

TID	items	
1	{11,13,14}	
2	{12,13,15}	
3	{11,12,13,15}	
4	{12,15}	

$$conf(X --> Y) = \frac{supp(X \cup Y)}{supp(X)}$$

$$C = \frac{2}{2} = \frac{2}{3}$$

Tid	Items bought
1	I1, I2, I3
2	I1, I2, I4
3	I1, I2, I5
4	13, 15, 16
5	12, 13, 14, 15, 16

II
$$\rightarrow$$
 I2
$$5 = \frac{3}{5} = 6^{\circ} /$$

$$c = \frac{3}{3} = 1^{\circ} /$$
I2 \rightarrow I1
$$s = \frac{3}{5} = 6^{\circ} /$$

$$c = \frac{3}{4} = 75 /$$

Tid	Items bought
1	I1, I2
2	I1, I3, I4, I5
3	12, 13, 14, 16
4	I1, I2, I3, I4
5	I1, I2, I3, I6

$$\{I2, I3\} \rightarrow I4$$

$$S = \frac{2}{5} = 4 \frac{9}{10}$$

$$c = \frac{2}{3} = 0.67 \%$$

قانون قوی

TID	items	
1	{I1, I3, I4}	
2	{I2, I3, I5}	
3	{11, 12, 13, 15}	
4	{I2, I5}	

$$\{I2, I3\} \rightarrow I5$$

$$S = \frac{2}{4} = 50\%$$

$$C = \frac{2}{2} = 100\%$$

$$\{I2\} \rightarrow \{I3, I5\}$$

$$S = \frac{2}{4} = \frac{5}{6} = \frac{2}{75} = \frac{2}{66} = \frac{2}{3} = \frac{2}{66} = \frac{2}{3} =$$

الگوريتم Apriori

الگوریتم Apriori ، روشی برای کشف قوانین انجمنی است که شامل دو مرحله است:

مرحله اول:

تولید مجموعه اشیاء مکرر با روش تکراری

ر مرحله دوم:

تولید قانون (ساختن تمام زیرمجموعههای ممکن قوانین ، به جز مجموعههای تهی)

الگوريتم Apriori

- k=1 -
- ۲- ایجاد مجموعه اشیاء مکرر با طول یک.
- ۳- تکرار مراحل زیر تا زمانی که هیچ مجموعه شیء مکرر پیدا نشود:
 - k=k+1
- k-1 پیدا کردن مجموعه اشیاء کاندید با طول k از مجموعه اشیاء مکرر با طول
 - محاسبه ساپورت (s) هر کاندید با اسکن بانک داده.
 - هرس کاندیدهای نامکرر.

Tid	Items	
1	A,B,E	
2	B,D	
3	В,С	
4	A,B,D	
5	A,C	
6	В,С	
7	A,C	
8	A,B,C,E	
9	A,B,C	

minsup = 2

minconf = 70%

 $\{A,B,C\}$

 ${A,B,E}$

مرحله اول: توليد مجموعه اشياء مكرر

Tid	Items	
1	A,B,E	
2	B,D	
3	В,С	
4	A,B,D	
5	A,C	
6	В,С	
7	A,C	
8	A,B,C,E	
9	A,B,C	

Itemset	sup	Itemset
{A}	6	{A}
{B}	7	{B}
{C}	6	{C}
{D}	2	{D}
{E}	2	{E}

1/	4
K	 - (
1	١.

Itemset	sup
$\{A, B\}$	4
{A, C}	4
{A, D}	.1
$\{A, E\}$	2
{B,C}	4
{B,D}	2
{B,E}	2
{C,D}	0
{C,E}	1
{D,E}	0

Itemset	Itemset	sup
{A, B}	{A,B,C}	2
{A, C}	{A,B,D}	1 .
{A, E}	$\{A,B,E\}$	2 .
{B,C}	{A,C,D}	0
{B,D}	{A,C,E}	1
{B,E}	{A,D,E}	0
	{B,C,D}	0
	{B,C,E}	1
	{B,D,E}	0

مرحله دوم: توليد قانون

Tid	Items	${A,B,E}$:	
1	A,B,E		
2	B,D	$1 A \rightarrow \{B,E\} \longrightarrow C = \frac{2}{3}$	
3	В,С	Z B \rightarrow {A,E}	
4	A,B,D	2	
5	A,C	$3 \rightarrow \{A,B\}$	
6	В,С	$4 \{A,B\} \rightarrow E \qquad 2$	
7	A,C	$5(A,E) \rightarrow B$	
8	A,B,C,E		
9	A,B,C	$\begin{array}{c} 6 & \text{B,E} \rightarrow A \\ \end{array}$	
C	$C = \frac{2}{2}$ $C = \frac{2}{2}$		

$$\frac{3}{2} - 2 = 6$$

sup

3

Tid	Items
1	A, C,D
2	B, C, E
3	A, B, C, E
4	B, E

{B}
{C}
(D)
{E}

Itemset

{**A**}

I	temset
	{A}
	{B}
9	{C}
	{E}
	PH-H-V

	Itemset	sup
	[A, B]	91
	$\{A,C\}$	2
	(A, E)	1
5	∫ {B, C}	2
	{B, E}	3
	{C, E}	2

K=Z

Itemset
{A, C}
{B, C}
{B, E}
{C, E}

minsup = 2

Itemset	sup	
$\{B, C, E\}$	2	

Itemset	
$\{B, C, E\}$	

1,BJCE	4. CE > B
2, C→BE	5, cB→ €
3, E-> BC	6. BC→ C/

Tid	Items
1	M1,M2,M5
2	M2,M4
3	M2,M3
4	M1,M2,M4
5	M1,M3
6	M2,M3
7	M1,M3
8	M1,M2,M3,M5
9	M1,M2,M3

$$\{m_1, m_5\} \rightarrow m_2$$
 $\{m_2, m_5\} \rightarrow m_1$

تمرين

ti. Boot, Officially, Willi	t1:	Beef,	Chicken,	Milk
-----------------------------	-----	-------	----------	------

t2: Beef, Cheese

t3: Cheese, Boots

t4: Beef, Chicken, Cheese

t5: Beef, Chicken, Clothes, Cheese, Milk

t6: Chicken, Clothes, Milk

t7: Chicken, Milk, Clothes

Tid	Items
t1	A,C,E
t2	A,B
t3	B,F
t4	A,C,B
t5	A,C,D,B,E
t6	C,D,E
t7	C,E,D

minsup = 30 % minconf = 80%

هرس

• همه ابر مجموعههای مربوط به مجموعه شیء نامکرر (infrequent) از شبکه مجموعه اشیاء حذف می شوند.

هرس قانون

مزایا و معایب الگوریتم Apriori

مزیت:

ٔ پیادهسازی آن ساده است.

معایب:

- در هر دور اجرای الگوریتم، کل تراکنشها پیمایش می شود.
 - تراکنشها در حافظه اصلی ذخیره می شود.

تعداد کل قوانین انجمنی قابل استخراج

ارزيابي قوانين انجمني

گاهی معیار درصد پشتیبانی و اطمینان مناسب نیستند.

	Basketball	Not Basketball			JS	
Milk	2000	1750	3750		\ <u>C</u>	
Not Milk	1000	250	1250		$\rightarrow l: l+$	
	3000	2000	5000		3750	こ <i>万</i>
B → M	رن کاریک	ر ا	В	→ ~M	5-20	
/S=-	2000 =	40°/	\ 5 =	1000 5000	-= 20/	
	2000			7000	- = 33 /	22

معیار میزان وابستگی

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

- انتگی مثبت (رخداد یکی باعث رخداد دیگری است) Lift ≥ 1
- Lift < 1: وابستگی منفی (رخداد یکی باعث رخ ندادن دیگری است.)
 - Lift = 1: یعنی A و B از هم مستقل هستند.

2000

مثال

	Basketball	Not Basketball
Milk	2000	1750
Not Milk	1000	250

$$B \rightarrow M$$

$$p(B).p(M) = \frac{3000}{5000}$$

3750

$$\int S = \frac{40}{100} = 40\%$$

$$c = \frac{40}{60} = 66 \%$$

$$lift = \frac{40}{100}$$

ے حدید می بایت کاملی امہال وزیر ریٹری است

$$\frac{75}{1} = \frac{75}{}$$
انون A \Rightarrow B انون A

تعداد تراكنش: **100**

- (A): خرید بازی کامپیوتری: 60
 - B): خرید کارت گرافیک: **75**
 - شامل هر دو: **40**

minsup = 30%

minconf = 60%

مشاوره فرشید شیرافکن:

+91719YT+TA

این اسلایدها بر مبنای نکات مطرح شده در فرادرس «آموزش یادگیری ماشین (Machine Learning) (تئوری - عملی) – بخش دوم» تهیه شده است.

برای کسب اطلاعات بیشتر در مورد این آموزش به لینک زیر مراجعه نمایید.

faradars.org/fvdm94062