CI165 — QuickSort

André Vignatti

O algoritmo QUICKSORT segue o paradigma de divisão-e-conquista.

Divisão: divida o vetor em dois subvetores $A[p \dots q - 1]$ e $A[q + 1 \dots r]$ tais que

$$A \quad \frac{p}{\leq x} \quad \frac{q}{|x|} > x$$

$$A[p \dots q-1] \leq A[q] < A[q+1 \dots r]$$

Conquista: ordene os dois subvetores recursivamente usando o QUICKSORT;

Combinação: nada a fazer, o vetor está ordenado.

O passo de divisão é feito pelo procedimento PARTICIONE, que devolve um índice q que marca a posição de divisão dos subvetores.

Rearranja um vetor $A[p \dots r]$ em ordem crescente.

```
QUICKSORT(A, p, r)

1 se p < r

2 então q \leftarrow PARTICIONE(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)
```

A chamada inicial é QUICKSORT(A, 1, n).

Antes de tentar entender o QUICKSORT, temos que entender o PARTICIONE.

Partição

Problema: Rearranjar um dado vetor $A[p \dots r]$ e devolver um índice $q, p \le q \le r$, tais que

$$A[p \dots q-1] \le A[q] < A[q+1 \dots r]$$

Entrada:

Saída:

Particione

Particione

		i				j				X
Α	33	11	55	77	99	22	88	66	33	44
			i				j			X
Α	33	11	22	77	99	55	88	66	33	44
			i					j		X
Α	33	11	22	77	99	55	88	66	33	44
			i						j	Χ
Α	33	11	<i>i</i> 22	77	99	55	88	66	<i>j</i>	<i>x</i> 44
Α	33	11	<i>i</i> 22	77 i	99	55	88	66	<i>j</i> 33	
A A	33	11	<i>i</i> 22 22	77 <i>i</i> 33	99	55 55	88	66	<i>j</i> 33 77	
		11		77 <i>i</i> 33						44 <i>j</i>

Particione

```
Rearranja A[p \dots r] de modo que p \le q \le r e
A[\mathbf{p} \dots \mathbf{q}-1] \leq A[\mathbf{q}] < A[\mathbf{q}+1 \dots r]
PARTICIONE (A, p, r)
  x \leftarrow A[r] > x \text{ \'e o "piv\^o"}
2 i \leftarrow p-1
3 para j \leftarrow p até r-1 faça
4
          se A[i] < x
5
              então i \leftarrow i + 1
                       A[i] \leftrightarrow A[i]
7 A[i+1] \leftrightarrow A[r]
   devolva i+1
```

Invariantes:

No começo de cada iteração da linha 3 vale que:

(1)
$$A[p \dots i] \le x$$
 (2) $A[i+1 \dots j-1] > x$ (3) $A[r] = x$

Complexidade de Particione

PA	RTICIONE(A, p, r)	Tempo
1	$x \leftarrow A[r] > x \text{ \'e o "piv\^o"}$?
2	<i>i</i> ← <i>p</i> −1	?
3	para $j \leftarrow p$ até $r-1$ faça	?
4	se $A[j] \leq x$?
5	então $i \leftarrow i + 1$?
6	$A[\underline{i}] \leftrightarrow A[j]$?
7	$A[i+1] \leftrightarrow A[r]$?
8	devolva i + 1	?

$$T(n) =$$
complexidade de tempo no pior caso sendo $n := r - p + 1$

Complexidade de Particione

PA	RRTICIONE(A, p, r)	Tempo
1	$x \leftarrow A[r] > x \text{ \'e o "piv\^o"}$	Θ(1)
2	<i>i</i> ← <i>p</i> −1	$\Theta(1)$
3	para $j \leftarrow p$ até $r-1$ faça	$\Theta(n)$
4	se $A[j] \leq x$	$\Theta(n)$
5	então <i>i</i> ← <i>i</i> + 1	O(n)
6	$\mathcal{A}[{}^{m{i}}] \leftrightarrow \mathcal{A}[{}^{m{j}}]$	O(n)
7	$A[i+1] \leftrightarrow A[r]$	$\Theta(1)$
8	devolva i + 1	Θ(1)

$$T(n) = \Theta(2n+4) + O(2n) = \Theta(n)$$

Conclusão:

A complexidade de Particione é $\Theta(n)$.

Rearranja um vetor $A[p \dots r]$ em ordem crescente.

```
QUICKSORT(A, p, r)

1 se p < r

2 então q \leftarrow PARTICIONE(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)

p

r

A 99 33 55 77 11 22 88 66 33 44
```

Rearranja um vetor $A[p \dots r]$ em ordem crescente.

QUICKSORT(
$$A, p, r$$
)

1 se $p < r$

2 então $q \leftarrow PARTICIONE(A, p, r)$

3 QUICKSORT($A, p, q - 1$)

4 QUICKSORT($A, q + 1, r$)

p q r

A 33 11 22 33 44 55 88 66 77 99

No começo da linha 3,

$$A[p \dots q-1] \le A[q] < A[q+1 \dots r]$$

Rearranja um vetor $A[p \dots r]$ em ordem crescente.

```
QUICKSORT(A, p, r)

1 se p < r

2 então q \leftarrow PARTICIONE(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)

p q r

A 11 22 33 33 44 55 88 66 77 99
```

Rearranja um vetor $A[p \dots r]$ em ordem crescente.

Complexidade de QUICKSORT

Q١	Tempo	
1	se <i>p</i> < <i>r</i>	?
2	então $q \leftarrow PARTICIONE(A, p, r)$?
3	QUICKSORT $(A, p, q - 1)$?
4	QUICKSORT $(A, q + 1, r)$?

$$T(n) :=$$
complexidade de tempo no pior caso sendo $n := r - p + 1$

Complexidade de QUICKSORT

Q١	JICKSORT(A, p, r)	Tempo
1	se <i>p</i> < <i>r</i>	Θ(1)
2	então $q \leftarrow PARTICIONE(A, p, r)$	$\Theta(n)$
3	QUICKSORT $(A, p, q - 1)$	T(k)
4	QUICKSORT $(A, q + 1, r)$	T(n-k-1)

$$T(n) = T(k) + T(n-k-1) + \Theta(n+1)$$

$$0 \le k := q - p \le n - 1$$

Recorrência

T(n) := consumo de tempo do QUICKSORT.

$$T(0) = \Theta(1)$$

 $T(1) = \Theta(1)$
 $T(n) = T(k) + T(n - k - 1) + \Theta(n)$ para $n = 2, 3, 4, ...$

Um caso ruim: Quando os subvetores ficam desbalanceados: um com n-1 elementos e outro com 0 elementos.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

- Ocorre quando o vetor já está ordenado (Porquê?)
- E quando o vetor está ordenado ao inverso? [Exercício]

$$T(n) \in \Theta(n^2)$$
.

Recorrência de pior caso

Vamos provar que o **caso ruim**, do slide anterior, é de fato o pior caso. T(n) :=complexidade de tempo no pior caso.

$$T(0) = \Theta(1)$$

$$T(1) = \Theta(1)$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + \Theta(n) \text{ para } n = 2, 3, 4, \dots$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + bn$$

Quero mostrar que $T(n) = \Theta(n^2)$.

Demonstração – $T(n) = O(n^2)$

Usando o método da substituição, vou provar que $T(n) \le cn^2$ para n grande.

$$T(n) = \max_{0 \le k \le n-1} \left\{ T(k) + T(n-k-1) \right\} + bn$$

$$\leq \max_{0 \le k \le n-1} \left\{ ck^2 + c(n-k-1)^2 \right\} + bn$$

$$= c \max_{0 \le k \le n-1} \left\{ k^2 + (n-k-1)^2 \right\} + bn$$

A expressão $k^2 + (n - k - 1)^2$ atinge valor máximo quando k = 0 ou k = n - 1 [Exercício CLRS], provando que a divisão em subvetores de tamanhos 0 e n - 1 é de fato o **pior caso**.

Demonstração – $T(n) = O(n^2)$ (cont.)

Então (fazendo k = 0 ou k = n - 1 na expressão $k^2 + (n - k - 1)^2$),

$$T(n) \le c(n-1)^2 + bn$$

= $cn^2 - 2cn + c + bn$
 $\le cn^2$,

se c > b/2 e $n \ge c/(2c - b)$.

• A prova que $T(n) = \Omega(n^2)$ é essencialmente a mesma, usando substituição, mas provando que $T(n) \ge dn^2$. [Exercício]

Conclusão

$$T(n) \in \Theta(n^2)$$
.

A complexidade de tempo do QUICKSORT no pior caso é $\Theta(n^2)$.

A complexidade de tempo do QUICKSORT é $O(n^2)$.

QuickSort no melhor caso

Não seremos rigorosos na análise de melhor caso (só daremos a ideia).

O melhor caso ocorre quando os subvetores são bem balanceados em toda execução do PARTICIONE.

- Neste caso, cada subvetor tem ≤ n/2 elementos. (Em uma análise cuidadosa, seriam tamanhos |n/2| e [n/2] - 1)
- Obtemos a recorrência:

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \log n)$.

Que implica que o QUICKSORT é $\Omega(n \log n)$.

Mais algumas conclusões

A complexidade de tempo do QUICKSORT no melhor caso é $\Theta(n \log n)$.

A complexidade de tempo do QUICKSORT é $\Omega(n \log n)$.