SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

ACADEMIC YEAR 2019-2020 SEMESTER 1

DIGITAL SIGNAL PROCESSING

TUTORIAL 7

1. Determine the N-point DFTs of the following length-N sequences defined for $0 \le n \le N-1$.

(a)
$$x_a[n] = \sin(\frac{2\pi n}{N})$$
, (b) $x_b[n] = \sin^2(\frac{2\pi n}{N})$, (c) $x_c[n] = \sin^3(\frac{2\pi n}{N})$

2. Let x[n] be a length-N sequence with X[k] donating its N-point DFT. We represent the DFT operation as $X[k] = \mathcal{F}\{x[n]\}$. Determine the sequence y[n] obtained by applying the DFT operation 4 times to x[n], i.e.,

$$y[n] = \mathcal{F}\left\{\mathcal{F}\left\{\mathcal{F}\left\{x[n]\right\}\right\}\right\}$$

3. Let x[n], $0 \le n \le N-1$, be a length-N sequence with an N-point DFT given by X[k], $0 \le k \le N-1$. Determine the 2N-point DFT of each of the following length-2N sequence in terms of X[k].

(a)
$$g[n] = \begin{cases} x[n], & 0 \le n \le N - 1 \\ 0, & N < n \le N - 1 \end{cases}$$

(a)
$$g[n] = \begin{cases} x[n], \ 0 \le n \le N-1 \\ 0, \ N \le n \le 2N-1 \end{cases}$$
 (b) $h[n] = \begin{cases} 0, & 0 \le n \le N-1 \\ x[n-N], N \le n \le 2N-1 \end{cases}$

4. Let x[n], $0 \le n \le N-1$, be a length-N sequence with an N-point DFT given by X[k], $0 \le k \le N-1$. Define a length-3N sequence y[n] given by

$$y[n] = \begin{cases} x[n], & 0 \le n \le N - 1 \\ 0, & N \le n \le 3N - 1 \end{cases}$$

with Y[k], $0 \le k \le 3N - 1$, denoting its 3N-point DFT. Let W[l] = Y[3l + 2], $0 \le l \le N - 1$, with $w[n], 0 \le n \le N-1$, denoting its N-point IDFT. Express w[n] in terms of x[n].

5. Consider a rational discrete-time Fourier transform $X(e^{j\omega})$ with real coefficients of the form of

$$X(e^{j\omega}) = \frac{P(e^{j\omega})}{D(e^{j\omega})} = \frac{p_0 + p_1 e^{-j\omega} + \dots + p_{M-1} e^{-j\omega(M-1)}}{d_0 + d_1 e^{-j\omega} + \dots + d_{N-1} e^{-j\omega(N-1)}}$$

Let P[k] denote the M-point DFT of the numerator coefficients $\{p_i\}$ and D[k] denote the N-point DFT of the denominator coefficients $\{d_i\}$. Determine the exact expressions of the DTFT $X(e^{j\omega})$ for M=N=4, if the 4-point DFTs of its numerator and denominator coefficients are given by

$$P[k] = \{3.5, -0.5 - j9.5, 2.5, -0.5 + j9.5\}, D[k] = \{17, 7.4 + j12, 17.8, 7.4 - j12\}.$$

- 6. Let $X(e^{j\omega})$ denote the DTFT of the length-9 sequence $\{x[n]\} = \{1, -3, 4, -5, 7, -5, 4, -3, 1\}$.
- (a) For the DFT sequence $X_1[k]$, obtained by sampling $X(e^{j\omega})$ at uniform intervals of $\pi/6$ starting from $\omega = 0$, determine the IDFT $x_1[n]$ of $X_1[k]$ without computing $X(e^{j\omega})$ and $X_1[k]$. Can you recover x[n] from $x_1[n]$?
- (b) For the DFT sequence $X_2[k]$, obtained by sampling $X(e^{j\omega})$ at uniform intervals of $\pi/4$ starting from $\omega = 0$, determine the IDFT $x_2[n]$ of $X_2[k]$ without computing $X(e^{j\omega})$ and $X_2[k]$. Can you recover x[n] from $x_2[n]$?