Iperbolicità di Gromov in più variabili complesse

* Maggio 2022

Scuola Normale Superiore di Pisa

Candidato: Marco Vergamini Relatore: Prof. Marco Abate

Setting: fissiamo $\Omega \subseteq \mathbb{C}^n, n \geq 2$ un dominio limitato con bordo C^2 , cioè esiste $\rho \in C^2(\mathbb{C}^n)$ tale che $\Omega = \{\rho(z) < 0\}$ e d $\rho \neq 0$ in ogni punto di $\partial \Omega$. Come ρ si può prendere $-\delta(x)$ per $x \in \Omega$ e $\delta(x)$ per $x \in \mathbb{C}^n \setminus \Omega$, dove $\delta(x) = \operatorname{dist}(x, \partial \Omega)$.

Definizione

Dato $p \in \partial\Omega$, lo spazio tangente complesso a $\partial\Omega$ in p è $H_p\partial\Omega = \{Z \in \mathbb{C}^n \mid \langle \bar{\partial}\rho(p), Z \rangle = 0\}$. Diciamo che Ω è strettamente pseudoconvesso se la forma di Levi

$$L_{\rho}(p;Z) = \sum_{\nu,\mu=1}^{n} \frac{\partial^{2} \rho}{\partial z_{\nu} \partial \bar{z}_{\mu}}(p) Z_{\nu} \bar{Z}_{\mu}, \quad Z = (Z_{1}, \dots, Z_{n}) \in \mathbb{C}^{n}$$

è definita positiva in $H_p\partial\Omega$ per ogni $p\in\partial\Omega$.

Definizione

Dato $p \in \partial\Omega$, lo spazio tangente complesso a $\partial\Omega$ in p è $H_p\partial\Omega = \{Z \in \mathbb{C}^n \mid \langle \bar{\partial}\rho(p), Z \rangle = 0\}$. Diciamo che Ω è strettamente pseudoconvesso se la forma di Levi

$$L_{\rho}(p;Z) = \sum_{\nu,\mu=1}^{n} \frac{\partial^{2} \rho}{\partial z_{\nu} \partial \bar{z}_{\mu}}(p) Z_{\nu} \bar{Z}_{\mu}, \quad Z = (Z_{1}, \dots, Z_{n}) \in \mathbb{C}^{n}$$

è definita positiva in $H_p\partial\Omega$ per ogni $p\in\partial\Omega$.

Nel seguito, lavoriamo sempre sotto l'ipotesi che Ω sia limitato e strettamente pseudoconvesso.

Definizione

Sia $\mathbb D$ il disco unitario in $\mathbb C$, data $f:\mathbb D\longrightarrow\mathbb C^n$ olomorfa indichiamo con Df(z) il differenziale di f in $z\in\mathbb D$. La metrica di Kobayashi su Ω limitato è

$$K(x; Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f : \mathbb{D} \longrightarrow \Omega$$

olomorfa con $f(0) = x, Df(0)v = Z\},$

che induce la distanza di Kobayashi d_K .

Domini strettamente pseudoconvessi e iperbolicità di Gromov

Definizione

Sia (X, d) uno spazio metrico. Dati $x, y \in X$ il prodotto di Gromov con punto base $w \in (x, y)_w = \frac{1}{2} (d(x, w) + d(y, w) - d(x, y))$. Dato $\delta \geq 0$, diciamo che $X \in \delta$ -iperbolico se

$$(x,y)_w \ge \min\{(x,z)_w, (y,z)_w\} - \delta \text{ per ogni } x,y,z,w \in X.$$

Domini strettamente pseudoconvessi e iperbolicità di Gromov

Definizione

Sia (X,d) uno spazio metrico. Dati $x,y\in X$ il prodotto di Gromov con punto base w è $(x,y)_w=\frac{1}{2}\big(d(x,w)+d(y,w)-d(x,y)\big)$. Dato $\delta\geq 0$, diciamo che X è δ -iperbolico se

$$(x,y)_w \geq \min\{(x,z)_w, (y,z)_w\} - \delta \text{ per ogni } x,y,z,w \in X.$$

Fissato $w \in X$, il bordo iperbolico $\partial_G X$ è costruito come classe di equivalenza delle successioni (x_i) che convergono a infinito, cioè tali che $\lim_{i,j\to\infty}(x_i,x_j)_w=\infty$; due tali successioni $(x_i),(y_i)$ sono equivalenti se $\lim_{i\to\infty}(x_i,y_i)_w=\infty$.

Domini strettamente pseudoconvessi e iperbolicità di Gromov

Definizione

Sia (X,d) uno spazio metrico. Dati $x,y\in X$ il prodotto di Gromov con punto base w è $(x,y)_w=\frac{1}{2}\big(d(x,w)+d(y,w)-d(x,y)\big)$. Dato $\delta\geq 0$, diciamo che X è δ -iperbolico se

$$(x,y)_w \ge \min\{(x,z)_w,(y,z)_w\} - \delta$$
 per ogni $x,y,z,w \in X$.

Se $x, y \in \partial_G X$ e $z \in X$, poniamo

$$(x,y)_w = \sup \left\{ \liminf_{i \to +\infty} (x_i, y_i)_w \mid (x_i) \in x, (y_i) \in y \right\},$$
$$(x,z)_w = \sup \left\{ \liminf_{i \to +\infty} (x_i, z)_w \mid (x_i) \in x \right\}.$$

Domini strettamente pseudoconvessi e iperbolicità di Gromov

Teorema (Balogh-Bonk, 2001)

Sia Ω un dominio limitato e strettamente pseudoconvesso, e sia d_K la distanza di Kobayashi su Ω . Allora (Ω, d_K) è Gromov-iperbolico, e il bordo iperbolico $\partial_G \Omega$ può essere identificato con il bordo euclideo $\partial \Omega$. Inoltre, la distanza di Carnot-Carathéodory d_H su $\partial \Omega$ (quella indotta dalla forma di Levi) sta nella classe canonica di distanze su $\partial_G \Omega$, cioè esiste $\varepsilon > 0$ tale che $d_H(a,b) \simeq \exp\left(-\varepsilon(a,b)_w\right)$ per ogni $a,b \in \partial_G \Omega$.

Conseguenze: estensioni al bordo di funzioni olomorfe

Corollario

Siano $\Omega_1, \Omega_2 \subseteq \mathbb{C}^n$ domini limitati e strettamente pseudoconvessi, e sia $f: \Omega_1 \longrightarrow \Omega_2$ una funzione olomorfa propria. Allora f si estende con continuità a $\bar{f}: \overline{\Omega}_1 \longrightarrow \overline{\Omega}_2$ tale che $\bar{f}(\partial \Omega_1) \subseteq \partial \Omega_2$ e la restrizione al bordo è lipschitziana rispetto alle distanze di Carnot-Carathéodory sui bordi.

Teorema (Wolff-Denjoy, 1926)

(Wolff-Denjoy) Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ olomorfa e senza punti fissi. Allora esiste un unico $\tau \in \partial \mathbb{D}$ tale che $f^k \longrightarrow \tau$ uniformemente sui compatti.

Teorema (Wolff-Denjoy, 1926)

(Wolff-Denjoy) Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ olomorfa e senza punti fissi. Allora esiste un unico $\tau \in \partial \mathbb{D}$ tale che $f^k \longrightarrow \tau$ uniformemente sui compatti.

Karlsson, 2001: sotto opportune ipotesi, che sono soddisfatte dagli spazi Gromov-iperbolici, valgono dei risultati simili per funzioni 1-lipschitziane dallo spazio in sé.

Teorema (Wolff-Denjoy, 1926)

(Wolff-Denjoy) Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ olomorfa e senza punti fissi. Allora esiste un unico $\tau \in \partial \mathbb{D}$ tale che $f^k \longrightarrow \tau$ uniformemente sui compatti.

Karlsson, 2001: sotto opportune ipotesi, che sono soddisfatte dagli spazi Gromov-iperbolici, valgono dei risultati simili per funzioni 1-lipschitziane dallo spazio in sé.

Usando il teorema di Balogh-Bonk e il fatto che le funzioni olomorfe sono delle semicontrazioni rispetto a d_K , si ottiene una generalizzazione di Wolff-Denjoy per domini Ω limitati e strettamente pseudoconvessi.

Teorema (Wolff-Denjoy, 1926)

(Wolff-Denjoy) Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ olomorfa e senza punti fissi. Allora esiste un unico $\tau \in \partial \mathbb{D}$ tale che $f^k \longrightarrow \tau$ uniformemente sui compatti.

Karlsson, 2001: sotto opportune ipotesi, che sono soddisfatte dagli spazi Gromov-iperbolici, valgono dei risultati simili per funzioni 1-lipschitziane dallo spazio in sé.

Usando il teorema di Balogh-Bonk e il fatto che le funzioni olomorfe sono delle semicontrazioni rispetto a d_K , si ottiene una generalizzazione di Wolff-Denjoy per domini Ω limitati e strettamente pseudoconvessi.

Corollario (Abate, 1991)

Sia $f:\Omega\longrightarrow\Omega$ una funzione olomorfa. Allora vale una delle seguenti:

- 1. le orbite di f sono limitate;
- 2. le orbite di f convergono a un punto del bordo.

L'iperbolicità di Gromov per domini Ω segue anche da ipotesi diverse da quelle che abbiamo usato.

L'iperbolicità di Gromov per domini Ω segue anche da ipotesi diverse da quelle che abbiamo usato.

Zimmer, 2022: i domini convessi limitati (non necessariamente con bordo liscio) sono iperbolici con la distanza indotta dalla metrica di Kähler.

L'iperbolicità di Gromov per domini Ω segue anche da ipotesi diverse da quelle che abbiamo usato.

Zimmer, 2022: i domini convessi limitati (non necessariamente con bordo liscio) sono iperbolici con la distanza indotta dalla metrica di Kähler.

Seguono risultati, analoghi a quelli visti, di estensione al bordo e dinamica olomorfa.

L'iperbolicità di Gromov per domini Ω segue anche da ipotesi diverse da quelle che abbiamo usato.

Zimmer, 2022: i domini convessi limitati (non necessariamente con bordo liscio) sono iperbolici con la distanza indotta dalla metrica di Kähler.

Seguono risultati, analoghi a quelli visti, di estensione al bordo e dinamica olomorfa. Valgono anche delle stime subellittiche per le soluzioni del problema $\bar{\partial}$ -Neumann, già estensivamente studiate per i domini strettamente pseudoconvessi (quindi con bordo liscio).

Strada per la dimostrazione del teorema di BB

• Dato (Z, d) spazio metrico completo e limitato, si può costruire uno spazio iperbolico (Con(Z), r) tale che Z è identificato con il bordo.

Strada per la dimostrazione del teorema di BB

- Dato (Z, d) spazio metrico completo e limitato, si può costruire uno spazio iperbolico (Con(Z), r) tale che Z è identificato con il bordo.
- Per una metrica che soddisfa certe ipotesi, la distanza indotta differisce per una costante da una funzione g simile alla r della suddetta costruzione; questo ci permette di dire che Ω con tale distanza è iperbolico.

Strada per la dimostrazione del teorema di BB

- Dato (Z,d) spazio metrico completo e limitato, si può costruire uno spazio iperbolico (Con(Z), r) tale che Z è identificato con il bordo.
- Per una metrica che soddisfa certe ipotesi, la distanza indotta differisce per una costante da una funzione q simile alla r della suddetta costruzione; questo ci permette di dire che Ω con tale distanza è iperbolico.
- La metrica di Kobayashi soddisfa le suddette ipotesi.

Teorema

Sia (Z,d) uno spazio metrico completo e limitato, e sia $Con(Z) = Z \times (0,D(Z)]$, dove D(Z) è il diametro di Z. La funzione $r: Con(Z) \times Con(Z) \longrightarrow [0,+\infty)$ data da

$$r((z,h),(z',h')) = 2\log\left(\frac{d(z,z') + \max\{h,h'\}}{\sqrt{hh'}}\right)$$

è una distanza su Con(Z) che lo rende uno spazio iperbolico, il cui bordo può essere identificato con Z. Inoltre, per ogni $x, y \in Z$ si ha

$$d(x,y) \simeq \exp(-(x,y)_w).$$

Teorema

Sia (Z,d) uno spazio metrico completo e limitato, e sia $Con(Z) = Z \times (0, D(Z)]$, dove D(Z) è il diametro di Z. La funzione $r: Con(Z) \times Con(Z) \longrightarrow [0, +\infty)$ data da

$$r((z,h),(z',h')) = 2\log\left(\frac{d(z,z') + \max\{h,h'\}}{\sqrt{hh'}}\right)$$

è una distanza su Con(Z) che lo rende uno spazio iperbolico, il cui bordo può essere identificato con Z. Inoltre, per ogni $x, y \in Z$ si ha

$$d(x,y) \simeq \exp(-(x,y)_w).$$

Traccia della dimostrazione: è facile verificare che r è una distanza.

Teorema

Sia (Z,d) uno spazio metrico completo e limitato, e sia $Con(Z) = Z \times (0,D(Z)]$, dove D(Z) è il diametro di Z. La funzione $r: Con(Z) \times Con(Z) \longrightarrow [0,+\infty)$ data da

$$r((z,h),(z',h')) = 2\log\left(\frac{d(z,z') + \max\{h,h'\}}{\sqrt{hh'}}\right)$$

è una distanza su Con(Z) che lo rende uno spazio iperbolico, il cui bordo può essere identificato con Z. Inoltre, per ogni $x, y \in Z$ si ha

$$d(x,y) \simeq \exp(-(x,y)_w).$$

Traccia della dimostrazione: è facile verificare che r è una distanza. Dati $r_{ij} \geq 0$ per $i, j \in \{1, 2, 3, 4\}$ tali che $r_{ij} = r_{ji}$ e $r_{ij} \leq r_{ik} + r_{kj}$, allora $r_{12}r_{34} \leq 4 \left(\max\{(r_{13}r_{24}), (r_{14}r_{23})\} \right)$.

Siano $x_i = (z_i, h_i) \in \text{Con}(Z)$ per $i \in \{1, 2, 3, 4\}$, poniamo $d_{ij} = d(z_i, z_j)$ e $r_{ij} = d_{ij} + \max\{h_i, h_j\}$.

Siano
$$x_i = (z_i, h_i) \in \text{Con}(Z)$$
 per $i \in \{1, 2, 3, 4\}$, poniamo $d_{ij} = d(z_i, z_j)$ e $r_{ij} = d_{ij} + \max\{h_i, h_j\}$. Segue che
$$(d_{12} + \max\{h_1, h_2\})(d_{34} + \max\{h_3, h_4\})$$
$$\leq 4\Big(\big((d_{13} + \max\{h_1, h_3\})(d_{24} + \max\{h_2, h_4\})\big)$$
$$\times \big((d_{14} + \max\{h_1, h_4\})(d_{23} + \max\{h_2, h_3\})\big)\Big),$$

Siano
$$x_i=(z_i,h_i)\in \text{Con}(Z)$$
 per $i\in\{1,2,3,4\}$, poniamo $d_{ij}=d(z_i,z_j)$ e $r_{ij}=d_{ij}+\max\{h_i,h_j\}$. Segue che

$$(d_{12} + \max\{h_1, h_2\})(d_{34} + \max\{h_3, h_4\})$$

$$\leq 4\Big(\big((d_{13} + \max\{h_1, h_3\})(d_{24} + \max\{h_2, h_4\})\big)$$

$$\times \big((d_{14} + \max\{h_1, h_4\})(d_{23} + \max\{h_2, h_3\})\big)\Big),$$

che ci dà

$$r(x_1, x_2) + r(x_3, x_4) \le (r(x_1, x_3) + r(x_2, x_4))(r(x_1, x_4) + r(x_2, x_3)) + C,$$

da cui segue l'iperbolicità di (Con(Z), r).

Fissiamo $w = (z_0, D(Z)) \in \text{Con}(Z)$; usando le definizioni, troviamo che dati $x = (z, h), x' = (z', h') \in \text{Con}(Z)$ vale

$$(x, x')_w = -\log(d(z, z') + \max\{h, h'\}) + O_{D(Z)}(1).$$

Fissiamo $w = (z_0, D(Z)) \in \text{Con}(Z)$; usando le definizioni, troviamo che dati $x = (z, h), x' = (z', h') \in \text{Con}(Z)$ vale

$$(x, x')_w = -\log(d(z, z') + \max\{h, h'\}) + O_{D(Z)}(1).$$

Segue che una sequenza (x_i) in $(\operatorname{Con}(Z), r)$ converge a infinito se e solo se la sequenza (z_i) è di Cauchy e $h_i \longrightarrow 0$; inoltre, due successioni convergenti a infinito sono equivalenti se e solo se il loro limite è lo stesso, e ogni punto del bordo è limite di una successione che converge a infinito.

Fissiamo $w = (z_0, D(Z)) \in \text{Con}(Z)$; usando le definizioni, troviamo che dati $x = (z, h), x' = (z', h') \in \text{Con}(Z)$ vale

$$(x, x')_w = -\log(d(z, z') + \max\{h, h'\}) + O_{D(Z)}(1).$$

Segue che una sequenza (x_i) in $(\operatorname{Con}(Z), r)$ converge a infinito se e solo se la sequenza (z_i) è di Cauchy e $h_i \longrightarrow 0$; inoltre, due successioni convergenti a infinito sono equivalenti se e solo se il loro limite è lo stesso, e ogni punto del bordo è limite di una successione che converge a infinito. Essendo Z completo, questo ci dà un'identificazione, come insiemi, di Z e $\partial_G \operatorname{Con}(Z)$.

Fissiamo $w = (z_0, D(Z)) \in \text{Con}(Z)$; usando le definizioni, troviamo che dati $x = (z, h), x' = (z', h') \in \text{Con}(Z)$ vale

$$(x, x')_w = -\log(d(z, z') + \max\{h, h'\}) + O_{D(Z)}(1).$$

Segue che una sequenza (x_i) in $(\operatorname{Con}(Z), r)$ converge a infinito se e solo se la sequenza (z_i) è di Cauchy e $h_i \longrightarrow 0$; inoltre, due successioni convergenti a infinito sono equivalenti se e solo se il loro limite è lo stesso, e ogni punto del bordo è limite di una successione che converge a infinito. Essendo Z completo, questo ci dà un'identificazione, come insiemi, di Z e $\partial_G \operatorname{Con}(Z)$.

La disuguaglianza finale non è difficile, ma richiede un po' di passaggi che non vedremo.

Fissiamo $w = (z_0, D(Z)) \in \text{Con}(Z)$; usando le definizioni, troviamo che dati $x = (z, h), x' = (z', h') \in \text{Con}(Z)$ vale

$$(x, x')_w = -\log(d(z, z') + \max\{h, h'\}) + O_{D(Z)}(1).$$

Segue che una sequenza (x_i) in $(\operatorname{Con}(Z), r)$ converge a infinito se e solo se la sequenza (z_i) è di Cauchy e $h_i \longrightarrow 0$; inoltre, due successioni convergenti a infinito sono equivalenti se e solo se il loro limite è lo stesso, e ogni punto del bordo è limite di una successione che converge a infinito. Essendo Z completo, questo ci dà un'identificazione, come insiemi, di Z e $\partial_G \operatorname{Con}(Z)$.

La disuguaglianza finale non è difficile, ma richiede un po' di passaggi che non vedremo. Mettendo su $\operatorname{Con}(Z) \cup \partial_G \operatorname{Con}(Z)$ un'opportuna topologia (di compattificazione), dalla disuguaglianza segue anche che Z e $\partial_G \operatorname{Con}(Z)$ sono identificati come spazi topologici.

Definizione

Una metrica di Finsler su Ω è una funzione continua

$$F:\Omega\times\mathbb{C}^n\longrightarrow [0,+\infty)$$
tale che $F(x;tZ)=|t|F(x;Z)$ per ogni $x\in\Omega,Z\in\mathbb{C}^n,t\in\mathbb{C}.$

Definizione

Una metrica di Finsler su Ω è una funzione continua

$$F: \Omega \times \mathbb{C}^n \longrightarrow [0, +\infty)$$
 tale che $F(x; tZ) = |t| F(x; Z)$ per ogni $x \in \Omega, Z \in \mathbb{C}^n, t \in \mathbb{C}$.

Poniamo anche

$$g(x,y) = 2\log\left(\frac{d_H(\pi(x),\pi(y)) + \max\{\delta(x)^{1/2}, \delta(y)^{1/2}\}}{\sqrt{\delta(x)^{1/2}\delta(y)^{1/2}}}\right).$$

Teorema

Sia F una metrica di Finsler su Ω tale che esistono delle costanti $\varepsilon_0 > 0, s > 0, C_1 > 0, C_2 \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e $Z \in \mathbb{C}^n$ si ha

$$\left(1 - C_1 \delta^s(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1/C_2) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2} \le F(x; Z)
\le \left(1 + C_1 \delta^s(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + C_2 \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2}.$$
(1)

Teorema

Sia F una metrica di Finsler su Ω tale che esistono delle costanti $\varepsilon_0 > 0, s > 0, C_1 > 0, C_2 \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e $Z \in \mathbb{C}^n$ si ha

$$\left(1 - C_1 \delta^s(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1/C_2) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2} \le F(x; Z)
\le \left(1 + C_1 \delta^s(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + C_2 \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2}.$$
(1)

Allora esiste $C \geq 0$ tale che per ogni $x, y \in \Omega$ vale

$$g(x,y) - C \le d_F(x,y) \le g(x,y) + C. \tag{2}$$

Disuguaglianze per metriche di Finsler

<u>Teorema</u>

Allora esiste $C \geq 0$ tale che per ogni $x, y \in \Omega$ vale

$$g(x,y) - C \le d_F(x,y) \le g(x,y) + C. \tag{2}$$

Disuguaglianze per metriche di Finsler

Teorema

Allora esiste $C \geq 0$ tale che per ogni $x, y \in \Omega$ vale

$$g(x,y) - C \le d_F(x,y) \le g(x,y) + C. \tag{2}$$

Idea della dimostrazione: per la maggiorazione, si cercano delle curve che siano quasi geodetiche, cioè che realizzano la distanza a meno di una costante additiva, e si integra lungo quelle curve.

Disuguaglianze per metriche di Finsler

Teorema

Allora esiste $C \geq 0$ tale che per ogni $x, y \in \Omega$ vale

$$g(x,y) - C \le d_F(x,y) \le g(x,y) + C. \tag{2}$$

Idea della dimostrazione: per la maggiorazione, si cercano delle curve che siano quasi geodetiche, cioè che realizzano la distanza a meno di una costante additiva, e si integra lungo quelle curve.

Per la minorazione, bisogna mostrare che la stima trovata dall'alto è ottimale, cioè che vale la stima dal basso per tutte le curve.

Proposizione

Per ogni $\varepsilon > 0$ esistono $\varepsilon_0 > 0$ e $C \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e per ogni $Z \in \mathbb{C}^n$ si ha

$$(1 - C\delta^{1/2}(x)) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left(1 + C\delta^{1/2}(x) \right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

Proposizione

Per ogni $\varepsilon > 0$ esistono $\varepsilon_0 > 0$ e $C \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e per ogni $Z \in \mathbb{C}^n$ si ha

$$(1 - C\delta^{1/2}(x)) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left(1 + C\delta^{1/2}(x) \right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

Traccia della dimostrazione: si localizza a un intorno di un punto del bordo.

Proposizione

Per ogni $\varepsilon > 0$ esistono $\varepsilon_0 > 0$ e $C \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e per ogni $Z \in \mathbb{C}^n$ si ha

$$(1 - C\delta^{1/2}(x)) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left(1 + C\delta^{1/2}(x) \right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

Traccia della dimostrazione: si localizza a un intorno di un punto del bordo. Con un opportuno biolomorfismo, ci si sposta in un insieme che può essere stretto fra due ellissoidi complessi, uno contenuto e uno che lo contiene.

Proposizione

Per ogni $\varepsilon > 0$ esistono $\varepsilon_0 > 0$ e $C \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e per ogni $Z \in \mathbb{C}^n$ si ha

$$(1 - C\delta^{1/2}(x)) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left(1 + C\delta^{1/2}(x) \right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

Traccia della dimostrazione: si localizza a un intorno di un punto del bordo. Con un opportuno biolomorfismo, ci si sposta in un insieme che può essere stretto fra due ellissoidi complessi, uno contenuto e uno che lo contiene. Per gli ellissoidi complessi, la metrica di Kobayashi può essere calcolata esplicitamente.

Proposizione

Per ogni $\varepsilon > 0$ esistono $\varepsilon_0 > 0$ e $C \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e per ogni $Z \in \mathbb{C}^n$ si ha

$$\left(1 - C\delta^{1/2}(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2} \le K(x; Z)
\le \left(1 + C\delta^{1/2}(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2}.$$

Corollario

Esiste $C \geq 0$ tale che per ogni $x, y \in \Omega$ si ha

$$g(x,y) - C \le d_K(x,y) \le g(x,y) + C. \tag{3}$$

Traccia della dimostrazione: siano d_1,d_2 le metriche di Kobayashi su Ω_1,Ω_2 , allora per ogni $x,y\in\Omega_1$ si ha

$$d_2(f(x), f(y)) \le d_1(x, y);$$

Traccia della dimostrazione: siano d_1,d_2 le metriche di Kobayashi su Ω_1,Ω_2 , allora per ogni $x,y\in\Omega_1$ si ha

$$d_2(f(x), f(y)) \le d_1(x, y);$$

inoltre, poiché f è propria esiste $C_1 \geq 1$ tale che per ogni $x \in \Omega_1$ abbiamo

$$\delta_1(x)/C_1 \le \delta_2(f(x)) \le C_1\delta_1(x),$$

dove δ_j è la distanza dal bordo in Ω_j .

Traccia della dimostrazione: siano d_1,d_2 le metriche di Kobayashi su Ω_1,Ω_2 , allora per ogni $x,y\in\Omega_1$ si ha

$$d_2(f(x), f(y)) \le d_1(x, y);$$

inoltre, poiché f è propria esiste $C_1 \ge 1$ tale che per ogni $x \in \Omega_1$ abbiamo

$$\delta_1(x)/C_1 \le \delta_2(f(x)) \le C_1\delta_1(x),$$

dove δ_j è la distanza dal bordo in Ω_j . Mettendo assieme queste due disuguaglianze e il Corollario, dette d_H^j le rispettive distanze di Carnot-Carathéodory, troviamo che esiste $C_2 \geq 0$ tale che per ogni $x,y \in \Omega_1$ si ha

$$d_H^2\Big(\pi\big(f(x)\big),\pi\big(f(y)\big)\Big) \leq C_2\Big(d_H^1\big(\pi(x),\pi(y)\big) + \max\{\delta_1^{1/2}(x),\delta_1^{1/2}(y)\}\Big).$$

Traccia della dimostrazione: siano d_1,d_2 le metriche di Kobayashi su Ω_1,Ω_2 , allora per ogni $x,y\in\Omega_1$ si ha

$$d_2(f(x), f(y)) \le d_1(x, y);$$

inoltre, poiché f è propria esiste $C_1 \geq 1$ tale che per ogni $x \in \Omega_1$ abbiamo

$$\delta_1(x)/C_1 \le \delta_2(f(x)) \le C_1\delta_1(x),$$

dove δ_j è la distanza dal bordo in Ω_j . Mettendo assieme queste due disuguaglianze e il Corollario, dette d_H^j le rispettive distanze di Carnot-Carathéodory, troviamo che esiste $C_2 \geq 0$ tale che per ogni $x,y \in \Omega_1$ si ha

$$d_H^2\Big(\pi\big(f(x)\big),\pi\big(f(y)\big)\Big) \le C_2\Big(d_H^1\big(\pi(x),\pi(y)\big) + \max\{\delta_1^{1/2}(x),\delta_1^{1/2}(y)\}\Big).$$

Da queste disuguaglianze è facile concludere.

Fine

Grazie per l'attenzione!