Introduction to CMOS VLSI Design

Lecture 5: Logical Effort

Outline

- ☐ Introduction
- Delay in a Logic Gate
- Multistage Logic Networks
- Choosing the Best Number of Stages
- Example
- Summary

Introduction

- ☐ Chip designers face a bewildering array of choices
 - What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?

- Uses a simple model of delay
- Allows back-of-the-envelope calculations
- Helps make rapid comparisons between alternatives
- Emphasizes remarkable symmetries

Example

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- ☐ Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Register File

Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

- $\tau = 3RC$ 延遲參數
 - 12 ps in 180 nm process40 ps in 0.6 μm process

☐ Express delays in process-independent unit

$$\frac{d}{d} = \frac{d_{abs}}{\tau}$$

$$d = f + p$$

☐ Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

$$d = f + p$$

- \Box Effort delay f = gh (a.k.a. stage effort)
 - Again has two components

☐ Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

$$d = f + p$$
 g 和邏輯夾 的種類有關

- \Box Effort delay f = gh (a.k.a. stage effort)
 - Again has two components
- ☐ g: logical effort
 - Measures relative ability of gate to deliver current
 - $-g \equiv 1$ for inverter

☐ Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

$$d = f + p$$

- \Box Effort delay f = gh (a.k.a. stage effort)
 - Again has two components
- \square h: electrical effort = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout

☐ Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

Delay has two components

$$d = f + p$$

Parasitic delay p

這裡要講p

- Represents delay of gate driving no load
- Set by internal parasitic capacitance

由 寄生電容 來定的

Delay Plots

$$d = f + p$$
$$= gh + p$$

這裡的線從這公式得到的

Delay Plots

$$d = f + p$$
$$= gh + p$$

■ What about NOR2?

Computing Logical Effort

- □ DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- ☐ Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

5: Logical Effort

串連幾個 放大幾倍

寄生電容 並聯 的 都要算 串連 的 只算一個

																		_	
																		_	
																		_	
																		_	
																		_	
																		_	
																		_	
																		_	
																		_	
																		_	
																		+	
																		+	
								-										+	
																		+	
																		+	
																		+	
																		+	
																		+	
						-		+										+	
																		+	

Catalog of Gates

■ Logical effort of common gates

Gate type	Number of inputs										
	1	2	3	4	n						
Inverter	1										
NAND		4/3	5/3	6/3	(n+2)/3						
NOR		5/3	7/3	9/3	(2n+1)/3						
Tristate / mux	2	2	2	2	2						
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8							

Catalog of Gates

□ Parasitic delay of common gates
– In multiples of p_{inv} (≈1)

Gate type	Number of inputs									
	1	2	3	4	n					
Inverter	1									
NAND		2	3	4	n					
NOR		2	3	4	n					
Tristate / mux	2	4	6	8	2n					
XOR, XNOR		4	6	8						

Example: Ring Oscillator

Estimate the frequency of an N-stage ring oscillator

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Frequency: $f_{osc} =$

Example: Ring Oscillator

☐ Estimate the frequency of an N-stage ring oscillator

Logical Effort: g = 1

Electrical Effort: h = 1

Parasitic Delay: p = 1

Stage Delay: d = 2

Frequency: $f_{osc} = 1/(2*N*d) = 1/4N$

31 stage ring oscillator in

frequency of ~ 200 MHz

0.6 μm process has

Example: FO4 Inverter

☐ Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Example: FO4 Inverter

☐ Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g = 1

Electrical Effort: h = 4

Parasitic Delay: p = 1

Stage Delay: (d = 5

The FO4 delay is about

200 ps in 0.6 μm process

60 ps in a 180 nm process

f/3 ns in an $f \mu m$ process

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort

$$G = \prod g_i$$

☐ Path Electrical Effort

$$H = \frac{C_{\text{out-path}}}{C_{\text{out-path}}}$$

Path Effort

$$F \neq \prod_{i = 1}^{in-path} f_i = \prod_{k \in PA} g_i h_i$$

$$g_1 = 1$$

 $h_1 = x/10$

$$g_2 = 5/3$$

 $h_2 = y/x$

$$g_3 = 4/3$$

$$g_3 = 4/3$$

$$g_4 = 1$$

h. = 20/z

$$\frac{1}{4} = 1$$
 $\frac{1}{4} = 20$ /z

→ 30 × × 10 20

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- \Box Path Logical Effort $G = \prod g_i$
- □ Path Electrical Effort $H = \frac{C_{out-path}}{C_{out-path}}$
- \square Path Effort $F = \prod f_i = \prod g_i h_i$
- \Box Can we write F = GH?

不可這樣算

Paths that Branch

■ No! Consider paths that branch:

Paths that Branch

■ No! Consider paths that branch:

$$H = \frac{c_{out}}{c_{in}}$$

$$G = 1$$

$$H = 90 / 5 = 18$$

$$GH = 18$$

$$h_1 = (15 + 15) / 5 = 6$$

$$h_2 = 90 / 15 = 6$$

Branching Effort

- ☐ Introduce *branching effort*
 - Accounts for branching between stages in path

$$B = \prod b_i$$

Note:

$$\prod h_i = BH$$

■ Now we compute the path effort

Multistage Delays

□ Path Effort Delay

$$D_F = \sum f_i$$

□ Path Parasitic Delay

$$P = \sum p_i$$

Path Delay

$$D = \sum_{i} d_{i} = D_{F} + P$$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

☐ Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

☐ Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

- ☐ This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

A-B-C

F=SA-F6-FC

=\$3 F=F

Gate Sizes

☐ How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$

$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

- □ Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- ☐ Check work by verifying input cap spec is met.

Example: 3-stage path

□ Select gate sizes x and y for least delay from A to B 要得到最小的延遲 從a到b x和y要多大

H =

Logical Effort

Electrical Effort

Branching Effort

Path Effort F

Best Stage Effort $\hat{f} =$

Parasitic Delay P =

Delay D =

Logical Effort

Electrical Effort

Branching Effort

Path Effort

Best Stage Effort

Parasitic Delay

Delay

$$G = (4/3)*(5/3)*(5/3) = 100/27$$

$$H = 45/8$$

$$B = 3 * 2 = 6$$

$$\hat{f} = \sqrt[3]{F} = 5$$

$$P = 2 + 3 + 2 = 7$$

$$D = 3*5 + 7 = 22 = 4.4 FO4$$

■ Work backward for sizes

$$\chi =$$

Work backward for sizes

$$y = 45 * (5/3) / 5 = 15$$

 $x = (15*2) * (5/3) / 5 = 10$

$$\frac{1}{3} = \frac{1}{2} = \frac{1}$$

Best Number of Stages

- ☐ How many stages should a path use?
 - Minimizing number of stages is not always fastest
- ☐ Example: drive 64-bit datapath with unit inverter

D =

Best Number of Stages

- ☐ How many stages should a path use?
 - Minimizing number of stages is not always fastest
- ☐ Example: drive 64-bit datapath with unit inverter

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

Derivation

Consider adding inverters to end of path

– How many give least delay?

$$D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$$
Logic Block: n₁ Stages Path Effort F

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

 $lue{}$ Define best stage effort $ho = F^{\frac{1}{N}}$

$$p_{inv} + \rho (1 - \ln \rho) = 0$$

N - n₁ ExtraInverters

Best Stage Effort

- $\Box p_{inv} + \rho(1 \ln \rho) = 0$ has no closed-form solution
- \square Neglecting parasitics (p_{inv} = 0), we find ρ = 2.718 (e)
- \Box For $p_{inv} = 1$, solve numerically for $\rho = 3.59$

Sensitivity Analysis

How sensitive is delay to using exactly the best number of stages?
1.6 1 151

- \square 2.4 < ρ < 6 gives delay within 15% of optimal
 - We can be sloppy!
 - I like $\rho = 4$

Example, Revisited

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- ☐ Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Register File

Number of Stages

Decoder effort is mainly electrical and branching

Electrical Effort: H =

Branching Effort: B =

☐ If we neglect logical effort (assume G = 1)

Path Effort: F =

Number of Stages: N =

Number of Stages

Decoder effort is mainly electrical and branching

Electrical Effort: H = (32*3) / 10 = 9.6

Branching Effort: B = 8

 \Box If we neglect logical effort (assume G = 1)

Path Effort: F = GBH = 76.8

Number of Stages: $N = log_4F = 3.1$

☐ Try a 3-stage design

Gate Sizes & Delay

Logical Effort: G =

Path Effort: F =

Stage Effort: $\hat{f} =$

Path Delay: D =

Gate sizes: z = y = y = y

Gate Sizes & Delay

Logical Effort: G = 1 * 6/3 * 1 = 2

Path Effort: F = GBH = 154

Stage Effort: $\hat{f} = F^{1/3} = 5.36$

Path Delay: $D = 3\hat{f} + 1 + 4 + 1 = 22.1$

Gate sizes: z = 96*1/5.36 = 18 y = 18*2/5.36 = 6.7

74154 Decoder

5: Logical Effort

CMOS VLSI Design

Slide 43

Comparison

☐ Compare many alternatives with a spreadsheet

Design	N	G	Р	D
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV	6	16/9	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G = \prod g_i$
electrical effort	$h = \frac{C_{\text{out}}}{C_{\text{in}}}$	$H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	p	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

Method of Logical Effort

1) Compute path effort

F = GBH

2) Estimate best number of stages

 $N = \log_4 F$

- 3) Sketch path with N stages
- 4) Estimate least delay

 $D = NF^{\frac{1}{N}} + P$

5) Determine best stage effort

 $\hat{f} = F^{\frac{1}{N}}$

6) Find gate sizes

 $C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$

Limits of Logical Effort

- Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- □ Simplistic delay model
 - Neglects input rise time effects
- □ Interconnect
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay

Summary

- ☐ Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS
 - Paths are fastest when effort delays are ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about log₄F FO4 inverter delays
 - Inverters and NAND2 best for driving large caps
- □ Provides language for discussing fast circuits
 - But requires practice to master

Decoder with one polarity of input

5: Logical Effort

CMOS VLSI Design

Slide 49

A path with different logical and electrical efforts

mate of the path effort by assuming the logical effort is unity. The electrical effort is $32 \times 3/10 = 9.6$. The branching effort is 8 because the true and complement address inputs each control half of the outputs. Path effort is $9.6 \times 8 = 76.8$. Hence, we should use about $\log_4 76.8 = 3.1$ stages. Because we neglected logical effort, the actual number of stages will be slightly higher than the number we have estimated. Figure 2.2 shows a three-stage circuit, while Exercise 2.3 considers a four-stage circuit.

The three-stage circuit uses 16 four-input NAND gates. Because each address input must drive eight of the NAND gates, yet can handle only a relatively small input capacitance, we use an inverter to power up the signal. How do we size the decoder, and what is its delay?

Because the logical effort is $1 \times 2 \times 1 = 2$, the actual path effort is 154 and the stage effort is $f = (154)^{1/3} = 5.36$. Working from the output, the final inverter must have input capacitance $z = (32 \times 3) \times 1/5.36 = 18$, and the NAND gate must have input capacitance $y = 18 \times 2/5.36 = 6.7$. The delay is 3f + P =