Energiankeruu mikro- ja nanoskaalassa

Energiankeruu

- Ympäristön energian hyödyntäminen
- Ei akkujen vaihtotarvetta → pidempi huoltoväli
- Vaikeapääsyiset käyttökohteet, sensoriverkot
- Avaruus

Rakenteiden värähtely

- Kolme keräimien päähaaraa
 - Elektromagneettinen
 - Elektrostaattinen
 - Piezosähköinen
- Amplitudit > 200nm
- Eri amplitudeille ja taajuuksille eri konstruktioita
- Liikkuvat osat kuluvat

Lämpö

- Seebeck-ilmiö
- Lämpötilaero > 5 K
- Jännitteet pieniä

Electrical power output

Radiosäteily

- Etäisyys lähettimestä
- Taajuussovitus
- Energian määrä pieni
- RFID

Valo

- Aurinkokenno
- Optimointi: potentiaalikuopan suuruus
- Hyötysuhteen parantaminen
- Hukkaenergia lämmöksi

Energiankeruu - miniatyrisointi

- MEMS-teknologia
- Materiaalit
- Rajoitteet: seinämänpaksuudet, kvantti-ilmiöt
- Vaikutukset huomioitava mm. ohjauselektroniikassa

Energiankeruu – miniatyrisointi

	Tehotiheys (µW/cm³) 2 vuoden huoltoväli	Tehotiheys (µW/cm³) 10 vuoden huoltoväli
Aurinkokenno (päiväntasaajalla)	28000	28000
Aurinkokenno (Helsingissä)	11000	11000
Aurinkokenno (sisätiloissa)	1000	1000
Värähtelykeräin (sähkömagneettinen)	800 – 500000	800 – 500000
Värähtelykeräin (sähköstaattinen)	500 – 2500	500 – 2500
Värähtelykeräin (piezosähköinen)	1000 – 2000	1000 – 2000
TEG-keräin ΔT = 10 K	15 – 40	15 – 40
RF-keräin 20m etäisyydellä		
1W lähteestä Litiumparisto	0,2	0,2 1,5
Litiumakku	3,5	0

Tutkimuskohde

- Telos-moduuli tehdasympäristössä
 - Erittäin vähän energiaa kuluttava, pieni
 - Integroitu sensori
 - Ympäristössä monia eri energianlähteitä

Tulokset

- Värinä koko toimintaympäristön yhteinen tekijä
- Sähköstaattisen keräimen esivaraaminen
- Superkondensaattori
- Ohjauselektroniikka
- Hinta, robustisuus

Yhteenveto

- Tekniikan kehitys nopeaa, tutkimus laajaa
- Monia tasaväkisiä energianlähteitä
- Mahdollistavat uusia sovelluksia
- Miniatyrisoinnilla rajansa, nanosovelluksia ei vielä tehty
- Tulevaisuudessa olemassaolevien menetelmien parantaminen ja täysin uusien kehittäminen
- Kvantti-ilmiöt