Self-Supervised Scene De-occlusion

CVPR20 oral

Scene de-occlusion

• Decomposes a real world scene into intact objects with invisible parts and the background

(a) original image

(b) scene de-occlusion

(c) manipulation on order and positions

(d) recomposed image

Application to scene recomposition

Framework

- · Given a scene and its corresponding modal masks of objects as inputs,
 - 1) Recover the underlying occlusion ordering
 - 2) Complete the invisible parts of occluded objects
 - Amodal completion / Content completion

Progressive inference scheme

Amodal completion

Human can easily predict the original shape of occluded objects while it is challenging for machines.

A novel self-supervised framework without manual annotations in this work.

Getting Ground truth of **occlusion orderings** and **amodal masks** is laborious and costly.

Approach

Self-supervised Partial Completion

- Amodal completion can be broken down into a sequence of partial completions.
 - Complete an occluded object progressively with one occluder involved at a time.

Consider one of the occluders, the gray circle at first

Perform partial completion to complete the occluded part

Self-supervised Partial Completion

- Amodal completion can be broken down into a sequence of partial completions.
 - Complete an occluded object progressively with one occluder involved at a time.

Consider the other occluder, the gray rectangle

Perform partial completion again

Self-supervised Partial Completion

- Ground-truth M₁,M₂ to train the partial completion process is unavailable.
- Self-supervised learning strategy
 - 1) Trim down M₀ with a other random modal mask chosen from dataset to obtain M₋₁
 - 2) Perform partial completion on M₋₁ to recover M₀

Trimming down and recovering strategy for self-supervised partial completion

PCNet-M for Mask Completion

- PCNet-M is trained to partially recover the invisible mask of the occludee corresponding to an occluder.
- Two different training input cases for
 - 1) partial completion
 - 2) regularization to prevent over-completion
- PCNet-M learns to determine whether to complete or retain, and recover the occluded shape correctly.

Ordering Recovery via Dual-Completion

- Infer the order between A_1 and A_2 by comparing their incremental area of predicted mask.
- Obtain ordering graph by performing dual-completion for all neighboring pairs.

(a) Regarding A1 as the target and A2 as the surrogate occluder, the incremental area of A1: $\Delta A_1' | A_2$ (b) Regarding A2 as the target and A1 as the surrogate occluder, the incremental area of A2: $\Delta A_2' | A_1$

Decision: $\Delta A_1'|A_2 < \Delta A_2'|A_1 \Rightarrow$ A1 is above A2

Ordering-Grounded Amodal Completion

- Find all ancestors of occludee in the graph as occluders via Breadth-First Search including higher-order!
 - May **indirectly occlude** the target instance.
 - Trained PCNet-M can perform amodal completion in one step conditioned on the union of all ancestors' model masks.

PCNet-C for Content Completion

• PCNet-C is trained to partially complete an object with RGB content given its occluders.

Difference between PCNet-C and image inpainting

- Image inpainting does not require the modal mask of the target object.
 - Not care about which object the missing region belongs to
- Content completion cannot be simply replaced by standard image inpainting!

Progressive inference scheme

Experiments

Ordering Recovery

method	gt order (train)	COCOA	KINS
Supervised			
OrderNet ^M [17]	✓	81.7	87.5
OrderNet ^{M+I} [17]	✓	88.3	94.1
Unsupervised			
Area	×	62.4	77.4
Y-axis	×	58.7	81.9
Convex	×	76.0	76.3
Ours	×	87.1	92.5

Comparable accuracy to the supervised counterparts.

Pair-wise ordering accuracy on occluded instance pairs.

Amodal Completion

- Ordering-grounded (OG) method shows better performance than Non-ordering-grounded (NOG).
 - Importance of ordering in amodal completion.

	amodal	COCOA	KINS
method	(train)	%mIoU	%mIoU
Supervised	V	82.53	94.81
Raw	×	65.47	87.03
Convex ^R	×	74.43	90.75
Ours (NOG)	×	76.91	93.42
Ours (OG)	×	81.35	94.76

Intersection Over Union on predicted amodal masks

More natural than GT, especially yellow objects

Label Conversation for Amodal instance segmentation

- Convert modal annotations into *pseudo amodal annotations*
- Amodal instance segmentation dataset without manual amodal annotations

Using manual	Ann. source	modal (train)	amodal (train)	%mAP	
annotations	GT [17]	×	~	29.3	
	Raw	~	×	22.7	
	Convex	~	×	22.2	
	Convex ^R	~	×	25.9	
Using our pseudo >	Ours	~	×	29.3	
annotations					
	Maybe in the future, we				ot need to
			annotate amodal masks anymore!		

Application on Scene Manipulation

• Controlling order and position is possible with an occlusion ordering graph.

Scene synthesis by chaning the ordering graph

Discussion

• For mutual occlusions, the ordering graph cannot be defined, therefore fine-grained boundary-level deocclusion is required.

Can it solve mutual occlusion? No.

Can it solve cyclic occlusion? Yes.

