연구과제 경력기술서

서울과학기술대학교 로봇나노제어실 | 2년 (2020.03 - 2022.02)

프로젝트명	실내 자율주행 청소로봇 시스템 개발
설명	기존의 실내 청소 로봇의 한계를 극복하기 위해 자율주행 및 청소, 보행자 인식, GUI 인터페이스 등을 탑재한 지능형 자율 청소 로봇 시스템을 개발함.
주관업체	제우스로보틱스
기간	2021.06 ~ 2021.12 (7개월)
주요업무	 Project Management (시스템 구상, 주관업체 응대, 인계자료 작성 등) ROS2 Workspace 구성 및 배포 IMU, 모터 엔코더, Intel T265 등 각종 센서를 결합하여 매카넘 휠 로봇의 Localization 구현 T265(VIO) 추정 결과를 활용한 속도 추종 제어 기술 구현 Nav 2 기반 자율주행 및 자율청소 기술 구현 이미지 객체 인식과 군집화 알고리즘을 결합한 3D 객체 인식 기술 구현 통합 GUI 인터페이스 구현 로봇 팔과 3D 객체 인식 기술을 이용한 엘리베이터 버튼 조작 기능 구현 3D 객체 인식 기술을 활용한 보행자 인식 및 대응 기술 구현 시나리오 별 흐름도 구상 및 구현
주요성과	
개선사항	자율청소 기능을 좀 더 사용자 친화적으로 수정할 필요가 있음

설명 기존의 상용 차량 시뮬레이터의 가격이 부담되는 중소기업을 대상으로

오픈소스 기반의 차량 시뮬레이터를 개발함.

주관업체 한국기계연구원

기간 2021.04 ~ 2021.06 (3개월)

주요업무 • Project Management (시스템 구상, 주관업체 응대, 인계자료 작성 등)

· FMI 기반 차량 동적 해석 소프트웨어(C#) 개발

· Unity를 활용한 차량 3D 시각화 기능 구현

주요성과 차량 모델링 해석 경험, 주관업체 응대 요령 습득

개선사항 FMI 생성 과정을 좀 더 사용자 편의적으로 수정하여야 함.

프로젝트명 ROS 기반 실내 자율주행 AGV 개발

설명 학사 캡스톤 디자인으로 진행했던 프로젝트로 물류 센터 무인화를 위해

상자 분류, 목표 설정, 자율주행 기능을 수행하는 AGV를 개발함.

주관업체 -

기간 2019.03 ~ 2019.12 (10개월)

주요업무 · MCU 펌웨어 개발 및 IMU, 엔코더 센서를 결합하여 Localization 구현

· Navigation 기반 자율 주행 기술 구현

· ROS 기반 통합 시스템 및 전체 시퀀스 동작 구현

주요성과 로봇 시스템 통합 경험, ROS 사용 경험

개선사항 ROS, Linux를 처음 접한 상황이다 보니 개발 환경에서 Dependency에 대한 고

려가 부족했음.

프로젝트명 태양광발전 설비 유지보수용 고장 진단 청소 복합 임무 로봇 개발

설명 태양광 발전 효율성을 증대하기 위해 태양광 발전 패널 청소 업무를 수행하는

로봇 시스템을 개발함.

주관업체 (주)에코센스

기간 2020.03 ~ 2020.12 (10개월)

주요업무 · 로봇 관제 소프트웨어(C#) 개발

· 태양광 패널 내에서의 자세 추정 알고리즘 개발

주요성과 자세 추정 및 센서 퓨전 경험

개선사항 소프트웨어가 성능적인 면에서 최적화가 필요함.

프로젝트명 건설현장 안전보호구 스마트 관리 시스템 개발

설명 건설현장 내에서 작업자들의 현장 출입 관리 및 위험지역 노출 여부를

모니터링하기 위해 관제 시스템을 개발함.

주관업체 (주)그인토탈

기간 2020.11 ~ 2021.11 (12개월)

주요업무 · RFID 게이트 기반 안전보호구 운용 관리 소프트웨어(C#) 개발

· Zigbee를 활용한 RFID 리더기 데이터 스트리밍 장치 개발

주요성과 무선 통신망 구축 경험 습득, DB 관련 지식 습득

개선사항 Ziqbee의 통신망 관리 방식을 좀 더 사용자 편의적으로 수정하여야 함.

프로젝트명 호흡기 및 기체분석 장비 모니터링 시스템 개발

호흡기체 검사장치 및 기능결함 감지 장치 시제품 제작

설명 스쿠버 다이버의 장비 결함으로 인한 사고가 빈번하게 발생함에 따라 스쿠버

장비의 결함을 진단하고 대응할 수 있는 검사 시스템을 개발함

주관업체 스쿠버엔지니어링

기간 2020.07 ~ 2021.02 (8개월) / 2021.04 ~ 2021.11 (8개월)

주요업무 · 공기통 내부 기체 검사장치 소프트웨어(C#) 개발

・스쿠버 호흡기 안전 검사 장치 소프트웨어(C#) 개발 및 추가 보완

• Project Management(2021.04 ~ 2021.11) 업무 수행

주요성과	업체 응대 및 프로젝트 관리 요령 습득
개선사항	처음 PM 역할을 수행하다 보니 인적자원 활용이 다소 효율적이지 못했음.

개신사양	서음 PM 역할을 구행하다 모니 인식사원 활용이 나소 요율식이지 못했음.
프로젝트명	loT 기술 기반 휴대용 및 이동형 컨베이어 벨트 고장진단 디바이스 개발
설명	최근 한국서부발전 내에서 작업자의 사망 사고가 발생하면서 안전하고 효율적인 고장 진단 시스템을 개발함
주관업체	한국서부발전(주)
기간	2021.08 ~ 2021.11 (4개월)
주요업무	·휴대용 및 이동형 컨베이어 벨트 고장진단 디바이스 시스템 구상 ·정부 R&D 과제 사업 제안서 작성
주요성과	시스템 구상 경험 및 제안서 작성 요령 습득
개선사항	이동형 고장 진단 디바이스의 기구 메커니즘에 대해 좀 더 고려가 필요함.