Практическое занятие 2_2022

Разработка и анализ параллельных алгоритмов

Задание

Часть 1

Представить процесс параллельного решения задачи (в соответствии с N своего варианта) в виде фрагментов последовательных и параллельных вычислений с включением необходимых обменных взаимодействий. Предложить схему распределения исходных массивов, указать какой тип обменных взаимодействий предлагается использовать.

Оценить построенные параллельные схемы:

- ✓ *ускорение* и эффективность с учетом обменных взаимодействий, полагая за единицу измерения $t_{\text{обм}}$ - время передачи одного элемента матрица, т.е. для передачи, например, подматрицы размером n*m потребуется время, равное n*m * t_{обм}
- ✓ ускорение с использованием закона Амдаля;

Указание 1. При выполнении задания использовать приведенные ниже методы, проверив самостоятельно выведенные в них формулы.

- 2. Полагать исходные размерности систем и матриц n*n.
- 3. Оформить соответствующий отчет по работе с необходимыми пояснениями.

Перечень вариантов заданий

N	Используемый метод	Заданное число
варианта		процессоров
1, 13, 25	Метод деления на клетки (группа формул I)	2
2, 14, 26	Метод деления на клетки (группа формул II)	2
3, 15, 27	Метод деления на клетки (группа формул III)	2
4, 16, 28	Метод деления на клетки (группа формул I)	4
5, 17, 29	Метод деления на клетки (группа формул II)	4
6, 18, 30	Метод деления на клетки (группа формул III)	4
7 и 19	Метод деления на клетки (группа формул I)	3
8 и 20	Метод деления на клетки (группа формул II)	3
9 и 21	Метод деления на клетки (группа формул III)	3
10 и 22	Метод разбиения на блоки	2
11 и23	Метод разбиения на блоки	3
12 и 24	Метод разбиения на блоки	4

Описание методов

Метод обращения матрицы при помощи разбиения на клетки

Пусть имеем матрицу S размерности n, которая разбита на 4 клетки. Будем искать обратную к ней S^{-1} также в виде клеточной матрицы: $S = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \qquad S^{-1} = \begin{bmatrix} K & L \\ M & N \end{bmatrix}$

$$S = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \qquad S^{-1} = \begin{bmatrix} K & L \\ M & N \end{bmatrix}$$

где A,K,D,N – квадратные подматрицы порядка р и q, p+q=n

Согласно требованию, $S*S^{-1}=E$ и правилу умножения клеточных матриц, должны иметь место следующие матричные равенства:

Решая эту систему относительно K,L,M,N, можно получить следующие наборы формул для вычисления искомых клеток:

$$\begin{array}{lll} & & & & & & & & & & \\ K = (A - B * D^{-1} * C)^{-1} & & & & & & & \\ M = - D^{-1} * C * K & & & & & & \\ N = (D - C * A^{-1} * B)^{-1} & & & & & & \\ N = (D - C * A^{-1} * B)^{-1} & & & & & & \\ M = - A^{-1} * B * N & & & & & \\ M = - N * C * A^{-1} & & & & & \\ M = - N * C * A^{-1} & & & & & \\ K = A^{-1} - A^{-1} * B * M & & & & \\ N = D^{-1} - D^{-1} * C * L & & & \\ \end{array}$$

Метод решения СЛАУ при помощи разбиения систем на блоки

Пусть имеем систему линейных алгебраических уравнений вида A*X=B, решение которой необходимо свести к последовательности решений подсистем более низкого порядка.

Представим СЛАУ в виде:
$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$

Где A_{11} , A_{22} – квадратные невырожденные подматрицы, X_1 , X_2 - вектора искомых неизвестных для подсистем, B_1 , B_2 - вектора свободных членов. Решая

$$\begin{cases} X_1 = &A_{11}^{-1}*(B_1 - A_{12}*X_2) \text{ систему относительно } X_1 \text{ ,} X_2 \text{ , получим} \\ \text{выражения для } X_1 \text{ ,} X_{2::} \\ X_2 = &A_{22} - A_{21}*A_{11}^{-1}*A_{12})^{-1}*(B_2 - A_{21}*A_{11}^{-1}*B_1) \end{cases}$$

Часть 2

Задание

- 1. Представить в таблице характеристики методов передачи данных для различных топологий.
- 2. Сделать выводы о том, какие топологии и для какой передачи данных предпочтительнее.