Triangles

Lots of Triangles

Stanford Bunny 69,451 triangles

David (Digital Michelangelo Project) 56,230,343 triangles

Why Triangles?

- •Can focus on specializing/optimizing the geometry pipeline for only one geometric primitive
- Software and algorithms can be optimized for one geometric primitive
- •Hardware (e.g. GPUs) can be specialized to treat one geometric primitive
- Triangles have many inherent benefits:
 - Complex objects are well approximated (piecewise linear convergence) using enough triangles
 - Easy to break other polygons into triangles
 - Triangles are guaranteed to be planar (unlike quadrilaterals)
 - Transformations (from last lecture) only need be applied to the triangle vertices
 - Barycentric interpolation can be used to robustly interpolate information from the triangle's vertices to the triangle's interior
 - Etc.

OpenGL

- •Blender uses OpenGL for it's real-time scanline renderer
- OpenGL was started by SGI in 1991 (went into the public domain in 2006)
- •It's a drawing API for 2D/3D graphics
- Designed to be implemented mostly on hardware
- Many books and other documentation
- Main competitor is DirectX
- OpenGL is highly optimized for triangles:

GPUs and Gaming Consoles

- •GPUs and Consoles are highly optimized for the graphics geometry pipeline
 - They now support ray tracing, as does Blender

Rasterization

- Screen Space Projection transforms triangle vertices from 3D to screen space
- Find all the pixels inside the projected 2D triangle
- Color the pixels inside the triangle with the RGB-color of the triangle

Aside: Bounding Box Acceleration

- Checking every pixel against every triangle is computationally expensive
- Calculate a bounding box around the triangle, with diagonal corners: $(\min(x_o, x_1, x_2), \min(y_0, y_1, y_2))$ and $(\max(x_o, x_1, x_2), \max(y_0, y_1, y_2))$
- Then, round coordinates upward to the nearest integer to find all relative pixels

Implicit Equation for a 2D line

- Compute a directed edge vector $e = p_1 p_0 = (x_1 x_0, y_1 y_0)$
- Compute the 2D normal $n=(y_1-y_0,-(x_1-x_0))$, which doesn't need be unit length
- This 2D normal is "rightward" with respect to the 2D ray direction ("leftward" normal is -n)
- Points p lying exactly on the 2D line have: $(p-p_0)\cdot n=0$
 - This is the same equation used for planes in 3D

("Leftward") Interior Side of a 2D Ray

- ullet Points p on the interior side of the 2D ray have: $(p-p_0) \cdot n < 0$
- Points p exactly on the 2D line have: $(p p_0) \cdot n = 0$
- Points p on the exterior side of the 2D ray have: $(p-p_0)\cdot n>0$
- This same concept can be used for planes in 3D

2D Point Inside a 2D Triangle

Counter-Clockwise Vertex Ordering (Facing Camera)

Clockwise Vertex Ordering (Facing Away from Camera)

- A 2D point is considered inside a 2D triangle, when it is interior to (to the left of) all 3 rays
- <u>Vertex ordering matters</u>: backward facing triangles are not rendered, since no points are to the left of all three rays

Boundary Cases

- Pixels lying exactly on a triangle boundary with $(p-p_0)\cdot n=0$ for one of the edges won't be rendered
 - Causes gaps between adjacent (sharing an edge) triangles, when that shared edge overlaps a pixel
- Changing the inside test to $(p-p_0)\cdot n \leq 0$ instead of $(p-p_0)\cdot n < 0$ rectifies the problem, but both triangles attempt to color the same pixel
 - Inefficient, and can cause disagreements that lead to artifacts
- Instead, points on the shared edge can be consistently rendered with one triangle or the other:
 - The edge normals point in opposite directions for the two adjacent triangles
 - When $n_x > 0$ or $(n_x = 0 \text{ and } n_y > 0)$, rasterize pixels on that edge
 - When $n_x < 0$ or $(n_x = 0 \text{ and } n_y < 0)$, do not rasterize pixels on that edge
 - Note: n_x and n_y are never both zero for non-degenerate 2D triangles

Overlapping Triangles

- If one object is in front of another, two triangles may both try to color the same pixel
- Recall (last lecture): screen space projection computes $z' = n + f \frac{fn}{z}$ that can be used for occlusion/transparency (via the alpha channel)

- Color the pixel based on which triangle gives the smallest z' value (closest to the camera)
- This requires interpolating z' values from the vertices of the triangle to the pixel locations
- In order to do this, we use *proper* screen space barycentric weight interpolation

1D Linear Interpolation

• Given two points (x_1, y_1) and (x_2, y_2) in 1D, linearly interpolate between them via:

$$y(x) = \frac{y_2 - y_1}{x_2 - x_1} x - \frac{y_2 - y_1}{x_2 - x_1} x_1 + y_1$$
 or $y(x) = \left(1 - \frac{x - x_1}{x_2 - x_1}\right) y_1 + \frac{x - x_1}{x_2 - x_1} y_2$

• Alternatively, $y(t) = (1-t)y_1 + ty_2$ where $t = \frac{x-x_1}{x_2-x_1}$ ranges from 0 to 1 (and can be seen as the fraction of the way from x_1 to x_2)

2D/3D Line Segments

- This can be extended to line segments in both 2D and 3D
- Given endpoints p_0 and p_1 , intermediate points are defined based on the fraction of the distance that point is from p_0 to p_1 via $p(t)=(1-t)p_0+tp_1$
- $t=rac{\|p-p_0\|_2}{\|p_1-p_0\|_2}$, since p_0 and p_1 are multidimensional points
- <u>Barycentric weights</u> reformulate this using weights $\alpha_0, \alpha_1 \in [0,1]$ where $\alpha_0 + \alpha_1 = 1$ and $p = \alpha_0 p_0 + \alpha_1 p_1$, i.e. $\alpha_0 = \frac{\|p p_1\|_2}{\|p_1 p_0\|_2}$ and $\alpha_1 = \frac{\|p p_0\|_2}{\|p_1 p_0\|_2}$
- Barycentric weights express any point p on the segment as a linear combination of the endpoints of the segment

2D/3D Triangles

- Extend to triangles with 3 vertices by computing 3 barycentric weights $\alpha_0, \alpha_1, \alpha_2 \in [0,1]$ with $\alpha_0 + \alpha_1 + \alpha_2 = 1$ and $p = \alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2$
- The weights are computed via areas:

$$\alpha_0 = \frac{Area(p,p_1,p_2)}{Area(p_0,p_1,p_2)} \quad \text{and} \quad \alpha_1 = \frac{Area(p_0,p,p_2)}{Area(p_0,p_1,p_2)} \quad \text{and} \quad \alpha_2 = \frac{Area(p_0,p_1,p)}{Area(p_0,p_1,p_2)}$$
 Note the triangle area formula:
$$Area(p_0,p_1,p_2) = \frac{1}{2} \parallel \overrightarrow{p_0p_1} \times \overrightarrow{p_0p_2} \parallel_2$$

(Alternative) Algebraic Approach

• Rewrite
$$\alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2 = p$$
 as $\alpha_0 \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \alpha_1 \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + (1 - \alpha_0 - \alpha_1) \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

- In 2D, this is a 2x2 coefficient matrix, but in 3D one has to use the normal equations to reduce to a 2x2 system, i.e. convert $A \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = b$ to $A^T A \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = A^T b$
- The coefficient matrix is rank 1 when the two vectors are colinear, implying infinite solutions for triangles with zero area (one can still embed p on an appropriate edge)
- Otherwise, invert the 2x2 coefficient matrix to solve the system of 2 equations with 2 unknowns (for α_0 and α_1 , and set $\alpha_2=1-\alpha_0-\alpha_1$)

Triangle Basis Vectors

- Compute edge vectors $u = p_1 p_0$ and $v = p_2 p_0$
- Any point p interior to the triangle can be written as $p=p_0+\beta_1 u+\beta_2 v$ with $\beta_1,\beta_2\in[0,1]$ and $\beta_1+\beta_2\leq 1$
- Substitutions and collecting terms gives $p=(1-\beta_1-\beta_2)p_0+\beta_1p_1+\beta_2p_2$ implying the equivalence: $\alpha_0=1-\beta_1-\beta_2$, $\alpha_1=\beta_1$, $\alpha_2=\beta_2$

Perspective Projection

- Project a world space triangle (vertices p_0 , p_1 , p_2) into screen space, vertex by vertex, to obtain p_0' , p_1' , p_2' via $x' = \frac{hx}{z}$ and $y' = \frac{hy}{z}$ for each vertex (x, y, z)
- A point $p=\alpha_0p_0+\alpha_1p_1+\alpha_2p_2$ on the world space triangle is projected into screen space to a corresponding point p'
- Notably, $p' \neq \alpha_0 p'_0 + \alpha_1 p'_1 + \alpha_2 p'_2$ because the perspective projection is highly nonlinear
- The barycentric weights that describe the interior of the triangle in world space do not still hold after projecting the vertices into screen space
- Need a way of computing z' at a pixel from the z' values at the vertices of the screen space triangle
- The z' values are not linear with respect to the triangle vertices in screen space, only in world space (so can't use barycentric interpolation!)
- However, if we knew the location of the pixel on the world space triangle, we could use barycentric interpolation on the world space triangle to compute z and z' for the pixel

Screen Space Barycentric Weights

- Given a pixel at p', find valid screen space barycentric weights so that $p' = \alpha_0' p_0' + \alpha_1' p_1' + (1 \alpha_0' \alpha_1') p_2'$
- Define 2D triangle basis vectors (about p_2') as $u'=p_0'-p_2'$ and $v'=p_1'-p_2'$

• Then
$$p'=\alpha_0'u'+\alpha_1'v'+p_2'=\begin{pmatrix} u_1'&v_1'\\u_2'&v_2'\end{pmatrix}\begin{pmatrix} \alpha_0'\\\alpha_1'\end{pmatrix}+\begin{pmatrix} x_2'\\y_2'\end{pmatrix}$$

- The unknown point $p = \alpha_0 p_0 + \alpha_1 p_1 + (1 \alpha_0 \alpha_1) p_2 = \alpha_0 (p_0 p_2) + \alpha_1 (p_1 p_2) + p_2$ that projects to p' has unknown barycentric weights that need to be determined (once α_0 and α_1 are known, p is then known)
- The coordinates of p obey $x=\alpha_0(x_0-x_2)+\alpha_1(x_1-x_2)+x_2$, $y=\alpha_0(y_0-y_2)+\alpha_1(y_1-y_2)+y_2$, and $z=\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2$

$$\text{ Thus, } p' = \begin{pmatrix} \frac{hx}{z} \\ \frac{hy}{z} \end{pmatrix} = \begin{pmatrix} h \frac{\alpha_0(x_0 - x_2) + \alpha_1(x_1 - x_2) + x_2}{\alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2) + z_2} \\ h \frac{\alpha_0(y_0 - y_2) + \alpha_1(y_1 - y_2) + y_2}{\alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2) + z_2} \end{pmatrix} = \begin{pmatrix} \frac{\alpha_0(z_0 x_0' - z_2 x_2') + \alpha_1(z_1 x_1' - z_2 x_2') + z_2 x_2'}{\alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2) + z_2} \\ \frac{\alpha_0(z_0 y_0' - z_2 y_2') + \alpha_1(z_1 y_1' - z_2 y_2') + z_2 y_2'}{\alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2) + z_2} \end{pmatrix}$$

• or
$$p' = \frac{1}{\alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2) + z_2} \begin{bmatrix} z_0 x_0' - z_2 x_2' & z_1 x_1' - z_2 x_2' \\ z_0 y_0' - z_2 y_2' & z_1 y_1' - z_2 y_2' \end{bmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} + \begin{pmatrix} z_2 x_2' \\ z_2 y_2' \end{pmatrix}$$

Screen Space Barycentric Weights

These two definitions of p' can be equated to obtain:

$$\frac{1}{\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2} \left[\begin{pmatrix} z_0x_0'-z_2x_2' & z_1x_1'-z_2x_2' \\ z_0y_0'-z_2y_2' & z_1y_1'-z_2y_2' \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} + \begin{pmatrix} z_2x_2' \\ z_2y_2' \end{pmatrix} \right] = \begin{pmatrix} u_1' & v_1' \\ u_2' & v_2' \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1' \end{pmatrix} + \begin{pmatrix} x_2' \\ y_2' \end{pmatrix}$$
• Bringing $\begin{pmatrix} x_2' \\ y_2' \end{pmatrix}$ to the left hand side, and under the brackets as $-(\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2)\begin{pmatrix} x_2' \\ y_2' \end{pmatrix}$ or

Importantly, all the terms related to x and y coordinates vanished, leaving dependence only on the z coordinates

Screen Space Barycentric Weights

$$\bullet \quad \text{Starting from } \frac{1}{\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2} \binom{z_0\alpha_0}{z_1\alpha_1} = \binom{\alpha_0'}{\alpha_1'} \text{ or } \binom{z_0\alpha_0}{z_1\alpha_1} = (\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2) \binom{\alpha_0'}{\alpha_1'}$$

• Rewrite to
$$\begin{pmatrix} z_0 + (z_2 - z_0)\alpha'_0 & (z_2 - z_1)\alpha'_0 \\ (z_2 - z_0)\alpha'_1 & z_1 + (z_2 - z_1)\alpha'_1 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = z_2 \begin{pmatrix} \alpha'_0 \\ \alpha'_1 \end{pmatrix}$$

- The determinant of this 2x2 matrix is $z_0z_1 + z_1(z_2 z_0)\alpha_0' + z_0(z_2 z_1)\alpha_1'$
- Thus the inverse is $\frac{1}{z_0z_1+z_1(z_2-z_0)\alpha_0'+z_0(z_2-z_1)\alpha_1'}\begin{pmatrix} z_1+(z_2-z_1)\alpha_1' & (z_1-z_2)\alpha_0' \\ (z_0-z_2)\alpha_1' & z_0+(z_2-z_0)\alpha_0' \end{pmatrix}$
- Note that $\begin{pmatrix} z_1 + (z_2 z_1)\alpha_1' & (z_1 z_2)\alpha_0' \\ (z_0 z_2)\alpha_1' & z_0 + (z_2 z_0)\alpha_0' \end{pmatrix} \begin{pmatrix} \alpha_0' \\ \alpha_1' \end{pmatrix} = \begin{pmatrix} z_1\alpha_0' \\ z_0\alpha_1' \end{pmatrix}$
- Thus, $\binom{\alpha_0}{\alpha_1} = \frac{z_2}{z_0 z_1 + z_1 (z_2 z_0) \alpha'_0 + z_0 (z_2 z_1) \alpha'_1} \binom{z_1 \alpha'_0}{z_0 \alpha'_1}$
- So, given barycentric coordinates of the pixel, α'_0 and α'_1 , we can compute:

$$\alpha_0 = \frac{z_1 z_2 \alpha_0'}{z_0 z_1 + z_1 (z_2 - z_0) \alpha_0' + z_0 (z_2 - z_1) \alpha_1'} \quad \text{and} \quad \alpha_1 = \frac{z_0 z_2 \alpha_1'}{z_0 z_1 + z_1 (z_2 - z_0) \alpha_0' + z_0 (z_2 - z_1) \alpha_1'}$$

- Then α_0 and α_1 (and α_2) can be used to find the (unknown) corresponding point p on the world space triangle
- We use α_0 and α_1 to compute z (as well as $z'=n+f-\frac{fn}{z}$) for the pixel (not α_0' and α_1')

Ray Tracing

- •Ray Tracing works very differently than the Scanline Rendering just discussed
- •The ray tracer creates a ray going through the pixel in question, and subsequently intersects that ray with triangles in world space
- •Since the ray tracer intrinsically operates in world space, as opposed to screen space, it need not worry about dealing with screen space barycentric coordinates
- •Operating in world space is a huge advantage for the ray tracer when it comes to image quality, as it can thoroughly look around in world space to figure out what's going on
- •A scanline renderer operates in screen space and as such has much more limited information
- •On the other hand, the limited capabilities of a scanline renderer make it a fantastic candidate for real time implementation on hardware
- •Only recently have hardware implementations of some aspects of ray tracing become more feasible!

Lighting and Shading

- •After identifying that a pixel is inside a triangle, as discussed above, we set its color to the color of the triangle
- •This ignores all the nuances of how light works (and we'll discuss that more next week)
- •If you rendered a sphere based on this simplistic approach, it would look like this:

