MCAL22 Artificial Intelligence and Machine Learning Lab INDEX

Sr.	Artificial Intelligence Section	Date	CO	Sign
No				
1.	Implementation of Logic programming using PROLOG DFS for water jug problem		CO1	
2.	Implementation of Logic programming using PROLOG BFS for tic-tac-toe problem		CO1	
3.	Implementation of Logic programming using PROLOG Hill-climbing to solve 8- Puzzle Problem.		CO1	
4.	Introduction to Python Programming: Learn the different libraries - NumPy, Pandas, SciPy, Matplotlib, Scikit Learn.		CO2	
5.	Implement Perceptron algorithm for OR operation		CO2	
6.	Improve the prediction accuracy by estimating the weight values for the training data using stochastic gradient descent. (Perceptron)		CO2	
7.	Implement Adaline algorithm for AND operation		CO2	

Sr. No	Machine Learning Section	Date	СО	Sign
1.	Implementation of Features Extraction and Selection, Normalization, Transformation, Principal Components Analysis.		CO3	
2.	Implementation of Logistic regression		CO4	
3.	Implementation of Classifying data using Support Vector Machine (SVM)- Linear and Non-Linear SVM Classification		CO4	
4.	Implement Elbow method for K means Clustering		CO4	
5.	Implementation of Bagging Algorithm: Random Forest		CO4	
6.	Implementation of Boosting Algorithms: AdaBoost, Stochastic Gradient Boosting, Voting Ensemble		CO4	

Artificial Intelligence Section

Practical 1: Implementation of Logic programming using PROLOG DFS for water jug problem

CODE:

```
start(2,0):-write(' 4lit Jug: 2 | 3lit Jug: 0 | \n'),
write('~~~~~
write('Goal Reached! Congrats!!\n'),
write('~
start(X,Y):-write(' Water Jug Game \n'),
write('Intial State: 4lit Jug-Olit\n'),
write(' 3lit Jug- 0lit\n'),
write('Final State: 4lit Jug-2lit\n'),
write(' 3lit Jug- 0lit\n'),
write('Follow the Rules: \n'),
write('Rule 1: Fill 4lit Jug\n'),
write('Rule 2: Fill 3lit Jug\n'),
write('Rule 3: Empty 4lit Jug\n'),
write('Rule 4: Empty 3lit Jug\n'),
write('Rule 5: Pour water from 3lit Jug to fill 4lit Jug\n'),
write('Rule 6: Pour water from 4lit Jug to fill 3lit Jug\n'),
write('Rule 7: Pour all of water from 3lit Jug to 4lit Jug\n'),
write('Rule 8: Pour all of water from 4lit Jug to 3lit Jug\n'),
write(' 4lit Jug: 0 | 3lit Jug: 0'),nl,
write(' Current Quantity:'),
write(' 4lit Jug: '), write(X), write(' | 3lit Jug: '),
write(Y), write('|\n'),
write(' Enter the move::'),
read(N),
contains(X,Y,N).
contains(_,Y,1):-start(4,Y).
contains(X,_,2):-start(X,3).
contains( ,Y,3):-start(0,Y).
contains(X,_,4):-start(X,0).
contains(X,Y,5):-N is Y-4+X, start(4,N).
contains(X,Y,6):-N is X-3+Y, start(N,3).
contains(X,Y,7):-N is X+Y, start(N,0).
contains(X,Y,8):-N is X+Y, start(0,N).
```

MCA SEM-2 C24011

OUTPUT:

```
?- start(0,0).
Water Jug Game
Intial State: 4lit Jug- Olit
3lit Jug- Olit
Final State: 4lit Jug- 2lit
3lit Jug- Olit
Follow the Rules:
Rule 1: Fill 4lit Jug
Rule 2: Fill 3lit Jug
Rule 3: Empty 4lit Jug
Rule 4: Empty 3lit Jug
Rule 5: Pour water from 3lit Jug to fill 4lit Jug
Rule 6: Pour water from 4lit Jug to fill 3lit Jug
Rule 7: Pour all of water from 3lit Jug to 4lit Jug
Rule 8: Pour all of water from 4lit Jug to 3lit Jug
4lit Jug: 0 | 3lit Jug: 0
Current Quantity: 4lit Jug: 0| 3lit Jug: 0|
```

```
Enter the move::1.
Water Jug Game
Intial State: 4lit Jug- Olit
3lit Jug- Olit
Final State: 4lit Jug- 2lit
3lit Jug- Olit
Follow the Rules:
Rule 1: Fill 4lit Jug
Rule 2: Fill 3lit Jug
Rule 3: Empty 4lit Jug
Rule 4: Empty 3lit Jug
Rule 5: Pour water from 3lit Jug to fill 4lit Jug
Rule 6: Pour water from 4lit Jug to fill 3lit Jug
Rule 7: Pour all of water from 3lit Jug to 4lit Jug
Rule 8: Pour all of water from 4lit Jug to 3lit Jug
4lit Jug: 0 | 3lit Jug: 0
Current Quantity: 4lit Jug: 4| 3lit Jug: 0|
```

```
Enter the move:: |: 6.
Water Jug Game
Intial State: 4lit Jug- 0lit
3lit Jug- Olit
Final State: 4lit Jug- 2lit
3lit Jug- Olit
Follow the Rules:
Rule 1: Fill 4lit Jug
Rule 2: Fill 3lit Jug
Rule 3: Empty 4lit Jug
Rule 4: Empty 3lit Jug
Rule 5: Pour water from 3lit Jug to fill 4lit Jug
Rule 6: Pour water from 4lit Jug to fill 3lit Jug
Rule 7: Pour all of water from 3lit Jug to 4lit Jug
Rule 8: Pour all of water from 4lit Jug to 3lit Jug
4lit Jug: 0 | 3lit Jug: 0
Current Quantity: 4lit Jug: 1| 3lit Jug: 3|
```

```
Enter the move:: |: 4.
Water Jug Game
Intial State: 4lit Jug- Olit
3lit Jug- Olit
Final State: 4lit Jug- 2lit
3lit Jug- Olit
Follow the Rules:
Rule 1: Fill 4lit Jug
Rule 2: Fill 3lit Jug
Rule 3: Empty 4lit Jug
Rule 4: Empty 3lit Jug
Rule 5: Pour water from 3lit Jug to fill 4lit Jug
Rule 6: Pour water from 4lit Jug to fill 3lit Jug
Rule 7: Pour all of water from 3lit Jug to 4lit Jug
Rule 8: Pour all of water from 4lit Jug to 3lit Jug
4lit Jug: 0 | 3lit Jug: 0
Current Quantity: 4lit Jug: 1| 3lit Jug: 0|
```

```
Enter the move:: |: 8.
Water Jug Game
Intial State: 4lit Jug- Olit
3lit Jug- Olit
Final State: 4lit Jug- 2lit
3lit Jug- Olit
Follow the Rules:
Rule 1: Fill 4lit Jug
Rule 2: Fill 3lit Jug
Rule 3: Empty 4lit Jug
Rule 4: Empty 3lit Jug
Rule 5: Pour water from 3lit Jug to fill 4lit Jug
Rule 6: Pour water from 4lit Jug to fill 3lit Jug
Rule 7: Pour all of water from 3lit Jug to 4lit Jug
Rule 8: Pour all of water from 4lit Jug to 3lit Jug
4lit Jug: 0 | 3lit Jug: 0
Current Quantity: 4lit Jug: 0| 3lit Jug: 1|
```

```
Enter the move::|: 1.
Water Jug Game
Intial State: 4lit Jug- Olit
3lit Jug- Olit
Final State: 4lit Jug- 2lit
3lit Jug- Olit
Follow the Rules:
Rule 1: Fill 4lit Jug
Rule 2: Fill 3lit Jug
Rule 3: Empty 4lit Jug
Rule 4: Empty 3lit Jug
Rule 5: Pour water from 3lit Jug to fill 4lit Jug
Rule 6: Pour water from 4lit Jug to fill 3lit Jug
Rule 7: Pour all of water from 3lit Jug to 4lit Jug
Rule 8: Pour all of water from 4lit Jug to 3lit Jug
4lit Jug: 0 | 3lit Jug: 0
Current Quantity: 4lit Jug: 4| 3lit Jug: 1|
```

DES'S NMITD
MCA SEM-2 AIML Lab C24011

```
Enter the move:: |: 6.
Water Jug Game
Intial State: 4lit Jug- 0lit
3lit Jug- Olit
Final State: 4lit Jug- 2lit
3lit Jug- Olit
Follow the Rules:
Rule 1: Fill 4lit Jug
Rule 2: Fill 3lit Jug
Rule 3: Empty 4lit Jug
Rule 4: Empty 3lit Jug
Rule 5: Pour water from 3lit Jug to fill 4lit Jug
Rule 6: Pour water from 4lit Jug to fill 3lit Jug
Rule 7: Pour all of water from 3lit Jug to 4lit Jug
Rule 8: Pour all of water from 4lit Jug to 3lit Jug
4lit Jug: 0 | 3lit Jug: 0
Current Quantity: 4lit Jug: 2| 3lit Jug: 3|
Enter the move:: |: 4.
4lit Jug: 2 | 3lit Jug: 0|
Goal Reached! Congrats!!
true .
```

Practical 2: Implementation of Logic programming using PROLOG BFS for tictac-toe problem

CODE:

```
% To play a game with the computer, type
% Predicates that define the winning conditions:
win(Board, Player):-rowwin(Board, Player).
win(Board, Player):- colwin(Board, Player).
win(Board, Player): - diagwin(Board, Player).
rowwin(Board, Player) :- Board = [Player,Player,Player,_____].
rowwin(Board, Player) :- Board = [_,__,Player,Player,Player,___].
rowwin(Board, Player) :- Board = [_____,Player,Player,Player].
colwin(Board, Player) :- Board = [Player, , ,Player, , ,Player, , ].
colwin(Board, Player) :- Board = [_,Player,__,Player,__,Player,_].
colwin(Board, Player) :- Board = [___,Player,___,Player,___,Player].
diagwin(Board, Player) :- Board = [Player,__,__,Player,__,__,Player].
diagwin(Board, Player) :- Board = [___,Player,_,Player,_,Player,_,].
move([b,B,C,D,E,F,G,H,I], Player, [Player,B,C,D,E,F,G,H,I]).
move([A,b,C,D,E,F,G,H,I], Player, [A,Player,C,D,E,F,G,H,I]).
move([A,B,b,D,E,F,G,H,I], Player, [A,B,Player,D,E,F,G,H,I]).
move([A,B,C,b,E,F,G,H,I], Player, [A,B,C,Player,E,F,G,H,I]).
move([A,B,C,D,b,F,G,H,I], Player, [A,B,C,D,Player,F,G,H,I]).
move([A,B,C,D,E,b,G,H,I], Player, [A,B,C,D,E,Player,G,H,I]).
move([A,B,C,D,E,F,b,H,I], Player, [A,B,C,D,E,F,Player,H,I]).
move([A,B,C,D,E,F,G,b,I], Player, [A,B,C,D,E,F,G,Player,I]).
move([A,B,C,D,E,F,G,H,b], Player, [A,B,C,D,E,F,G,H,Player]).
display([A,B,C,D,E,F,G,H,I]) :- write([A,B,C]),nl,write([D,E,F]),nl,
write([G,H,I]),nl,nl.
% Predicates to support playing a game with the user:
x_can_win_in_one(Board) :- move(Board, x, Newboard), win(Newboard, x).
% The predicate validategenerates the computer's (playing o) reponse
% from the current Board.
validate(Board, Newboard):-
move(Board, o, Newboard),
win(Newboard, o),
 !.
validate(Board, Newboard):-
move(Board, o, Newboard),
not(x can win in one(Newboard)).
validate(Board, Newboard) :-
move(Board, o, Newboard).
% The following translates from an integer description
```

% of x's move to a board transformation.

```
xmove([b,B,C,D,E,F,G,H,I], 1, [x,B,C,D,E,F,G,H,I]).
xmove([A,b,C,D,E,F,G,H,I], 2, [A,x,C,D,E,F,G,H,I]).
xmove([A,B,b,D,E,F,G,H,I], 3, [A,B,x,D,E,F,G,H,I]).
xmove([A,B,C,b,E,F,G,H,I], 4, [A,B,C,x,E,F,G,H,I]).
xmove([A,B,C,D,b,F,G,H,I], 5, [A,B,C,D,x,F,G,H,I]).
xmove([A,B,C,D,E,b,G,H,I], 6, [A,B,C,D,E,x,G,H,I]).
xmove([A,B,C,D,E,F,b,H,I], 7, [A,B,C,D,E,F,x,H,I]).
xmove([A,B,C,D,E,F,G,b,I], 8, [A,B,C,D,E,F,G,x,I]).
xmove([A,B,C,D,E,F,G,H,b], 9, [A,B,C,D,E,F,G,H,x]).
xmove(Board, _, Board) :- write('Illegal move.'), nl.
% The 0-place predicate playo starts a game with the user.
play :- explain, playfrom([b,b,b,b,b,b,b,b,b]).
explain :-
 write('You play X by entering integer positions followed by a period.'),
 display([1,2,3,4,5,6,7,8,9]).
playfrom(Board) :- win(Board, x), write('You win!').
playfrom(Board) :- win(Board, o), write('I win!').
playfrom(Board) :- read(N),
xmove(Board, N, Newboard),
display(Newboard),
validate(Newboard, Newnewboard),
display(Newnewboard),
playfrom(Newnewboard).
```

OUTPUT:

```
?- play.
You play X by entering integer positions followed by a period.
[1,2,3]
[4,5,6]
[7,8,9]
]: 1.
[x,b,b]
[b,b,b]
[b,b,b]
[b,b,b]
[i,b,b]
[i,c,b,b]
[i,c,b,b]
[i,c,b,b]
[i,c,b,b]
[i,c,c,c]
[i,c,c]
[i,
```

Practical 3: Implementation of Logic programming using PROLOG Hillclimbing to solve 8- Puzzle Problem.

CODE:

```
ids:-
 start(State),
length(Moves, N),
 hill([State], Moves, Path), !,
 show([start|Moves], Path),
format('\simnmoves = \simw\simn', [N]).
hill([State|States], [], Path):-
goal(State), !,
 reverse([State|States], Path).
hill([State|States], [Move|Moves], Path):-
move(State, Next, Move),
not(memberchk(Next, [State|States])),
 hill([Next,State|States], Moves, Path).
show([], _).
show([Move|Moves], [State|States]):-
 State = state(A,B,C,D,E,F,G,H,J),
format('~n~w~n~n', [Move]),
format('~w ~w ~w~n',[A,B,C]),
format('~w ~w ~w~n',[D,E,F]),
format('~w ~w ~w~n',[G,H,J]),
show(Moves, States).
% Empty position is marked with '*'
start( state(0,1,*,2,3,4,5,6,7) ).
goal( state(*,0,1,2,3,4,5,6,7) ).
move( state(A,*,C,D,E,F,G,H,J), state(*,A,C,D,E,F,G,H,J), left ).
move( state(A,B,*,D,E,F,G,H,J), state(A,*,B,D,E,F,G,H,J), left ).
move( state(A,B,C,D,*,F,G,H,J), state(A,B,C,*,D,F,G,H,J), left ).
move( state(A,B,C,D,E,*,G,H,J), state(A,B,C,D,*,E,G,H,J), left ).
move( state(A,B,C,D,E,F,G,*,J), state(A,B,C,D,E,F,*,G,J), left ).
move( state(A,B,C,D,E,F,G,H,*), state(A,B,C,D,E,F,G,*,H), left ).
move( state(*,B,C,D,E,F,G,H,J), state(B,*,C,D,E,F,G,H,J), right).
move( state(A,*,C,D,E,F,G,H,J), state(A,C,*,D,E,F,G,H,J), right).
move( state(A,B,C,*,E,F,G,H,J), state(A,B,C,E,*,F,G,H,J), right).
move( state(A,B,C,D,*,F,G,H,J), state(A,B,C,D,F,*,G,H,J), right).
move( state(A,B,C,D,E,F,*,H,J), state(A,B,C,D,E,F,H,*,J), right).
move( state(A,B,C,D,E,F,G,*,J), state(A,B,C,D,E,F,G,J,*), right).
move( state(A,B,C,*,E,F,G,H,J), state(*,B,C,A,E,F,G,H,J), up).
move( state(A,B,C,D,*,F,G,H,J), state(A,*,C,D,B,F,G,H,J), up).
```

```
move( state(A,B,C,D,E,*,G,H,J), state(A,B,*,D,E,C,G,H,J), up). move( state(A,B,C,D,E,F,*,H,J), state(A,B,C,D,*,F,G,E,J), up). move( state(A,B,C,D,E,F,G,*,J), state(A,B,C,D,*,F,G,E,J), up). move( state(A,B,C,D,E,F,G,H,*), state(A,B,C,D,E,*,G,H,F), up). move( state(*,B,C,D,E,F,G,H,J), state(D,B,C,*,E,F,G,H,J), down ). move( state(A,*,C,D,E,F,G,H,J), state(A,E,C,D,*,F,G,H,J), down ). move( state(A,B,*,D,E,F,G,H,J), state(A,B,F,D,E,*,G,H,J), down ). move( state(A,B,C,D,*,F,G,H,J), state(A,B,C,G,E,F,*,H,J), down ). move( state(A,B,C,D,E,F,G,H,J), state(A,B,C,D,H,F,G,*,J), down ). move( state(A,B,C,D,E,*,G,H,J), state(A,B,C,D,E,J,G,H,*), down ).
```

OUTPUT:

```
?- ids.
start

0 1 *
2 3 4
5 6 7

left

0 * 1
2 3 4
5 6 7

left

* 0 1
2 3 4
5 6 7

moves = 2
true.
```

Practical 4: Introduction to Python Programming: Learn the different libraries - NumPy, Pandas, SciPy, Matplotlib, Scikit Learn.

> NumPy

Pandas

```
[26]: import pandas as pd

[28]: #Creating Dataframe
data={
    'India': [7,4,9],
    'Austria': [1,5,8]}
    num=pd.DataFrame(data)
num

[28]: India Austria

0 7 1

1 4 5

2 9 8

[30]: num=pd.DataFrame(data,index=['Food','Education','People'])
num

[30]: India Austria

Food 7 1

Education 4 5

People 9 8
```

> SciPy

```
import numpy as np

[35]:
A=np.array([[3,2],[6,3]])

#To find determinant
from scipy import linalg
linalg.det(A)

[35]:
-3.0
```

> Matplotlib


```
[48]: #Scatter Plot
x=[3,6,1,2,9]
y=[1,6,3,18,5]
plt.scatter(x,y)
plt.title("Scatter Diagram")
#LobeLs
plt.xlabel("Time(hr)")
plt.ylabel("Distance(km)")

Scatter Diagram

10 -

8 -

10 -

1 2 3 4 5 6 7 8 9

Time(hr)
```

> Scikit

```
[53]: import pandas as pd
from sklearn.datasets import load_wine
     wine_data=load_wine()
     #Conversion to pandas DataFrame
     wine_df=pd.DataFrame(wine_data.data,columns=wine_data.feature_names)
     #Add target Label
wine_df["target"]=wine_data.target
     #Preview
wine_df.head()
       alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue od280/od315_of_dilute
     0 14.23
                    1.71 2.43
                                        15.6
                                                                  2.80
                                                                            3.06
                                                                                                0.28
                                                                                                                2.29
                                                                                                                              5.64 1.04
                                                   127.0
                 1.78 2.14
                                       11.2
                                                                 2.65
                                                                         2.76
                                                                                                0.26
                                                                                                                1.28
                                                                                                                             4.38 1.05
     1 13.20
                                                100.0
        13.16
                    2.36 2.67
                                         18.6
                                                    101.0
                                                                  2.80
                                                                                                 0.30
                                                                                                                2.81
                                                                                                                               5.68 1.03
         14.37
                 1.95 2.50
                                      16.8
                                                113.0
                                                               3.85
                                                                        3.49
                                                                                                0.24
                                                                                                                2.18
                                                                                                                           7.80 0.86
     4 13.24
                    2.59 2.87
                                         21.0
                                                   118.0
                                                                  2.80
                                                                           2.69
                                                                                                0.39
                                                                                                                1.82
                                                                                                                              4.32 1.04
```

Practical 5: Implement Perceptron algorithm for OR operation

```
4]: import numpy as np
    class Perceptron:
        def __init__(self, learning_rate=0.01, n_iterations=1):
            self.learning_rate = learning_rate
            self.n_iterations = n_iterations
            self.weights = None
            self.bias = None
        def fit(self, X, y):
            n_samples, n_features = X.shape
            self.weights = np.zeros(n_features)
            y_ = np.array([1 if i > 0 else 0 for i in y])
            for _ in range(self.n_iterations):
                for idx, x_i in enumerate(X):
                   linear_output = np.dot(x_i, self.weights) + self.bias
                    y_predicted = self.activation_function(linear_output)
                    update = self.learning_rate * (y_[idx] - y_predicted)
                    self.weights += update * x_i
                    self.bias += update
        def activation_function(self, x):
            return np.where(x >= 0, 1, 0)
        def predict(self, X):
            linear_output = np.dot(X, self.weights) + self.bias
            y_predicted = self.activation_function(linear_output)
            return y_predicted
    # OR gate inputs and outputs
    X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
    y = np.array([0, 1, 1, 1])
    # Initialize and train the perceptron
    perceptron = Perceptron(learning_rate=0.1, n_iterations=6)
    perceptron.fit(X, y)
    # Test the perceptron
    predictions = perceptron.predict(X)
    print(predictions)
    [0 1 1 1]
```

Practical 6: Improve the prediction accuracy by estimating the weight values for the training data using stochastic gradient descent. (Perceptron)

```
import numpy as np
import matplotlib.pyplot as plt
# Generate synthetic data
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
def sgd(X, y, learning_rate=0.1, epochs=1000, batch_size=1):
    m = len(X)
   theta = np.random.randn(2, 1) # Initialize parameters randomly
    # Add a bias term to X(X_0 = 1)
    X_{bias} = np.c_{np.ones((m, 1)), X]
    cost_history = []
    for epoch in range(epochs):
        # Shuffle the data at the beginning of each epoch
       indices = np.random.permutation(m)
       X_shuffled = X_bias[indices]
        y_shuffled = y[indices]
        for i in range(0, m, batch_size):
            # Select a mini-batch or a single sample
            X_batch = X_shuffled[i:i+batch_size]
           y_batch = y_shuffled[i:i+batch_size]
```

```
# Compute the gradient
            gradients = 2 / batch_size * X_batch.T.dot(X_batch.dot(theta) - y_batch)
            # Update the parameters (theta)
           theta -= learning_rate * gradients
       # Calculate and record the cost (Mean Squared Error) after each epoch
       predictions = X_bias.dot(theta)
       cost = np.mean((predictions - y) ** 2)
       cost_history.append(cost)
       # Print progress every 100 epochs
        if epoch % 100 == 0:
           print(f"Epoch {epoch}, Cost: {cost:.4f}")
    return theta, cost_history
# Train the model using SGD
theta_final, cost_history = sgd(X, y, learning_rate=0.1, epochs=1000, batch_size=1)
# Plot the cost history
plt.plot(cost_history)
plt.xlabel('Epochs')
plt.ylabel('Cost (MSE)')
plt.title('Cost Function during Training')
plt.grid(True)
plt.show()
```

```
# Plot the data and the regression line
plt.scatter(X, y, color='blue', label='Data points')
X_plot = np.c_[np.ones((X.shape[0], 1)), X]
plt.plot(X, X_plot.dot(theta_final), color='red', label='SGD fit line')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression using Stochastic Gradient Descent')
plt.legend()
plt.grid(True)
plt.show()
Epoch 0, Cost: 1.5818
Epoch 100, Cost: 1.5665
Epoch 200, Cost: 1.4445
Epoch 300, Cost: 1.7038
Epoch 400, Cost: 0.9102
Epoch 500, Cost: 0.8184
Epoch 600, Cost: 0.8352
Epoch 700, Cost: 0.8543
Epoch 800, Cost: 1.0508
Epoch 900, Cost: 0.8262
```


Practical 7: Implement Adaline algorithm for AND operation

```
[1]: import numpy as np
     class Adaline:
         def __init__(self, input_size, learning_rate=0.1, epochs=100):
             self.weights = np.zeros(input_size)
             self.bias = 0
             self.learning_rate = learning_rate
             self.epochs = epochs
         def activation(self, X): # X is input
             return X
         def predict(self, X):
             return self.activation(np.dot(X, self.weights) + self.bias)
         def train(self, X, y):
             for epoch in range(self.epochs):
                 for i in range(len(X)):
                     prediction = self.predict(X[i])
                     error = y[i] - prediction
self.weights += self.learning_rate * error * X[i]
                      self.bias += self.learning_rate * error
         def evaluate(self, X):
             return np.where(self.predict(X) >= 0.5, 1, 0)
     # Training data for AND gate
     X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
     y = np.array([0, 0, 0, 1])
     adaline = Adaline(input_size=2, learning_rate=0.1, epochs=100)
     adaline.train(X, y)
     predictions = adaline.evaluate(X)
     for i, prediction in enumerate(predictions):
         print(f"Input: \ \{X[i]\} \Rightarrow Predicted: \ \{prediction\} \Rightarrow Actual: \ \{y[i]\}")
     Input: [0 0] => Predicted: 0 => Actual: 0
     Input: [0\ 1] \Rightarrow Predicted: 0 \Rightarrow Actual: 0
     Input: [1 0] => Predicted: 0 => Actual: 0
     Input: [1 1] => Predicted: 1 => Actual: 1
```

Machine Learning Section

Practical 1: Implementation of Features Extraction and Selection, Normalization, Transformation, Principal Components Analysis.

1. Feature Extraction

```
[1]: from sklearn.feature_extraction.text import TfidfVectorizer

documents = ["machine learning is amazing", "deep learning is a part of machine learning"]
vectorizer = TfidfVectorizer()
X_tfidf = vectorizer.fit_transform(documents)

print("TF-IDF shape:", X_tfidf.shape)

TF-IDF shape: (2, 7)
```

2. Feature Selection

```
[2]: from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest, chi2

data = load_iris()
X, y = data.data, data.target

# Select top 2 features based on chi-square test
X_selected = SelectKBest(chi2, k=2).fit_transform(X, y)

print("Selected Features shape:", X_selected.shape)

Selected Features shape: (150, 2)
```

3. Normalization

```
[3]: from sklearn.preprocessing import Normalizer

normalizer = Normalizer()
X_normalized = normalizer.fit_transform(X)

print("Normalized data (first sample):", X_normalized[0])

Normalized data (first sample): [0.80377277 0.55160877 0.22064351 0.0315205 ]
```

4. Transformation

```
[4]: from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

print("Standardized data (first sample):", X_scaled[0])

Standardized data (first sample): [-0.90068117 1.01900435 -1.34022653 -1.3154443 ]
```

5. Principal Component Analysis

```
[5]: from sklearn.decomposition import PCA

# Reduce to 2 principal components
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
print("PCA transformed shape:", X_pca.shape)
PCA transformed shape: (150, 2)
```

Practical 2: Implementation of Logistic regression

```
| Problem Statement 1: Build and train a Logistic Regression Model to do binary classification of iris flowers using the iris dataset.

import numpy as np
from sklearn import datasets

iris = datasets.load_iris()
    print(type(iris))
    print(tjst(iris, keys()))
    X = iris["data"][:,3:] # petal width
    y = (iris["target"] == 2).astype(np.int64) # I if Iris-Virginica, else 0

    <class 'sklearn.utils_bunch.Bunch'>
    ['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module']

[5]: from sklearn.linear_model import LogisticRegression
    log_reg = LogisticRegression(solver="lbfgs", random_state=42)
    log_reg.fit(X,y)

[5]: LogisticRegression(colver="lbfgs", random_state=42)

import matplotlib.pyplot as plt
    X_new = np.linspace(0,3,1000).reshape(-1,1)
    y_proba = log_reg.predict_proba(X_new)
    plt.plot(X_new, y_proba(:,3,1000).reshape(-1,1)
    y_proba = log_reg.predict_proba(X_new)
    plt.plot(X_new, y_proba(:,3,1000).reshape(-1,2)
    plt.ylabel('Probability')
    plt.xlabel('Probability')
    plt.xlabel('Probability')
    plt.xlabel('Probability')
    plt.xlabel('Probability')
    plt.legend(['Iris-Virginica', 'Not Iris-Virginica'])
```


Practical 3: Implementation of Classifying data using Support Vector Machine (SVM)- Linear and Non-Linear SVM Classification

Linear SVM

```
[1]: %matplotlib inline
      import matplotlib
     import matplotlib.pyplot as plt
      def plot_svc_decision_boundary(svm_clf, xmin, xmax):
          w = svm_clf.coef_[0]
          b = svm_clf.intercept_[0]
         # At the decision boundary, w0*x0 + w1*x1 + b = 0
          \# \Rightarrow \times 1 = -w\theta/w1 * \times \theta - b/w1
          x0 = np.linspace(xmin, xmax, 200)
          decision_boundary = -w[\theta]/w[1] * x\theta - b/w[1]
         margin = 1/w[1]
          gutter_up = decision_boundary + margin
          gutter_down = decision_boundary - margin
          svs = svm_clf.support_vectors_
          plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#FFAAAA')
          plt.plot(x0, decision_boundary, "k-", linewidth=2)
          plt.plot(x0, gutter_up, "k--", linewidth=2)
          plt.plot(x0, gutter_down, "k--", linewidth=2)
```

```
2]: from sklearn.svm import SVC
    from sklearn import datasets
    import numpy as np
    # Load Tris dataset
    iris = datasets.load_iris()
    X = iris["data"][:, (2, 3)] # Select petal length and petal width
    y = iris["target"]
    # Select only Setosa and Versicolor classes
    setosa_or_versicolor = (y == 0) | (y == 1)
    X = X[setosa_or_versicolor]
    y = y[setosa_or_versicolor]
    # SVM Classifier model with a large but finite C value
    svm_clf = SVC(kernel="linear", C=1e10) # Large C approximates a hard margin
    svm_clf.fit(X, y)
    # Make a prediction
    prediction = svm_clf.predict([[2.4, 3.1]])
    print("Predicted class:", prediction[0])
    Predicted class: 1
```

```
[3]: #plot the decision boundaries
import numpy as np

plt.figure(figsize=(12,3.2))

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
svm_clf.fit(X_scaled, y)

plt.plot(X_scaled[:, 0][y==1], X_scaled[:, 1][y==1], "bo")
plt.plot(X_scaled[:, 0][y==0], X_scaled[:, 1][y==0], "ms")
plot_svc_decision_boundary(svm_clf, -2, 2)
plt.xlabel("Petal Width normalized", fontsize=12)
plt.ylabel("Petal Length normalized", fontsize=12)
plt.title("Scaled", fontsize=16)
plt.axis([-2, 2, -2, 2])
[3]: (-2.0, 2.0, -2.0, 2.0)
```


Non-Linear SVM

```
from sklearn.datasets import make_moons
      from sklearn.pipeline import Pipeline
      from sklearn.preprocessing import PolynomialFeatures
      from sklearn.preprocessing import StandardScaler
       from sklearn.svm import SVC
      %matplotlib inline
import matplotlib
      import matplotlib.pyplot as plt
[4]: from sklearn.datasets import make_moons
      X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
       #define a function to plot the dataset
      def plot_dataset(X, y, axes):
           plt.plot(X[:, 0][y==0], X[:, 1][y==0], "cs")
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "m^")
           plt.axis(axes)
           plt.grid(True, which='both')
           plt.xlabel(r"$x_1$", fontsize=20)
plt.ylabel(r"$x_2$", fontsize=20, rotation=0)
      #Let's have a look at the data we have generated plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
```



```
[7]: #define a function plot the decision boundaries
     def plot_predictions(clf, axes):
         #create data in continous linear space
         x0s = np.linspace(axes[0], axes[1], 100)
         x1s = np.linspace(axes[2], axes[3], 100)
         x0, x1 = np.meshgrid(x0s, x1s)
         X = np.c_[x0.ravel(), x1.ravel()]
         y_pred = clf.predict(X).reshape(x0.shape)
         y_decision = clf.decision_function(X).reshape(x0.shape)
         plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)
         plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)
[9]: #C controls the width of the street
     #Degree of data
     #create a pipeline to create features, scale data and fit the model
     ("scalar", StandardScaler()),
("svm_clf", SVC(kernel="poly", degree=10, coef0=1, C=5))
     ))
     #call the pipeline
     polynomial\_svm\_clf.fit(X,y)
```


Practical 4: Implement Elbow method for K means Clustering

```
[1]: !pip install --user threadpoolctl==3.1.0

Collecting threadpoolctl==3.1.0

Downloading threadpoolctl-3.1.0-py3-none-any.whl.metadata (9.2 kB)

Downloading threadpoolctl-3.1.0-py3-none-any.whl (14 kB)

Installing collected packages: threadpoolctl

Successfully installed threadpoolctl-3.1.0
```

C24011

```
[3]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.cluster import KMeans

# Load the dataset
    df = pd.read_csv("clustering.csv")

# Display first few rows of the dataset
    print(df.head())

# Drop missing values
    df_cleaned = df.dropna()

# Selecting numerical columns for clustering
    numerical_cols = df_cleaned.select_dtypes(include=[np.number]).columns
    print("Numerical columns used for clustering:", numerical_cols.tolist())

# Feature selection for clustering (Modify as needed)
    X = df_cleaned[numerical_cols]
```

```
wcss = [] # Within-cluster sum of squares
for i in range(1, 11): # Trying different cluster numbers from 1 to 10
    kmeans = KMeans(n_clusters=i, random_state=42, n_init=10)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)
# Plot the Elbow Method
plt.plot(range(1, 11), wcss, marker='o', linestyle='--')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.title('Elbow Method for Optimal k')
plt.show()
\# Choose optimal k (Modify based on the elbow plot observation)
k_optimal = 3 # Example choice, change based on your dataset
# Apply K-Means with the optimal number of clusters
kmeans = KMeans(n_clusters=k_optimal, random_state=42, n_init=10)
df_cleaned['Cluster'] = kmeans.fit_predict(X)
# Display clustered data
print(df_cleaned.head())
# Plot the clusters (for 2D visualization, choose two relevant features)
plt.scatter(df_cleaned[numerical_cols[0]], df_cleaned[numerical_cols[1]], c=df_cleaned['Cluster'], cmap='viridis')
plt.ylabel(numerical_cols[1])
plt.title(f'K-Means\ Clustering\ (k=\{k\_optimal\})')
plt.colorbar(label='Cluster')
```

```
Loan_ID Gender Married Dependents
                                      Education Self_Employed
0 LP001003 Male
                               1
                    Yes
                                        Graduate
   LP001005
             Male
                                  0
                                        Graduate
2 LP001006
                                  0 Not Graduate
             Male
                     Yes
                                                           No
3 LP001008
                                 0
                                        Graduate
             Male
                     No
                                                           No
4 LP001013
             Male
                     Yes
                                 0 Not Graduate
                                                           No
   ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term \
0
             4583
                             1508.0
                                         128.0
                                                          360.0
             3000
                                                          360.0
1
                               0.0
                                          66.0
2
             2583
                             2358.0
                                         120.0
                                                          360.0
3
             6000
                               0.0
                                         141.0
                                                          360.0
4
             2333
                             1516.0
                                          95.0
                                                          360.0
```


				Num	per of Cluste	rs	
	Loan_ID	Gender	Married	Dependents	Educatio	n Self_Employed	1
0	LP001003	Male	Yes	1	Graduat	e No	
1	LP001005	Male	Yes	0	Graduat	e Yes	
2	LP001006	Male	Yes	0	Not Graduat	e No	
3	LP001008	Male	No	0	Graduat	e No	
4	LP001013	Male	Yes	0	Not Graduat	e No	
	Applicant	Income	Coappl:	icantIncome	LoanAmount	Loan_Amount_Term	\
0		4583		1508.0	128.0	360.0	
1		3000		0.0	66.0	360.0	
2		2583		2358.0	120.0	360.0	
3		6000		0.0	141.0	360.0	
4		2333		1516.0	95.0	360.0	

- (Credit_History	Property_Area	Loan_Status	Cluster
0	1.0	Rural	N	2
1	1.0	Urban	Υ	2
2	1.0	Urban	Υ	0
3	1.0	Urban	Υ	2
4	1.0	Urban	Υ	0

Practical 5: Implementation of Bagging Algorithm: Random Forest

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     from sklearn.datasets import load_iris
     from sklearn.model_selection import train_test_split
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.metrics import accuracy_score
     from sklearn.decomposition import PCA
     # Load dataset
     iris = load_iris()
     X = iris.data
     y = iris.target
     # Split data into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
     # Initialize and train the Random Forest Classifier
     rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
     rf_classifier.fit(X_train, y_train)
     # Make predictions
     y_pred = rf_classifier.predict(X_test)
     # Evaluate the model
     accuracy = accuracy_score(y_test, y_pred)
     print(f'Accuracy of Random Forest Classifier: {accuracy * 100:.2f}%')
     Accuracy of Random Forest Classifier: 100.00%
```

Practical 6: Implementation of Boosting Algorithms: AdaBoost, Stochastic Gradient Boosting, Voting Ensemble

```
[1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
     from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, VotingClassifier
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy score
    from sklearn.decomposition import PCA
     # Load dataset
    iris = load_iris()
    X = iris.data
    y = iris.target
     # Split data into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
     # Random Forest Classifier
     rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
    rf_classifier.fit(X_train, y_train)
    y_pred_rf = rf_classifier.predict(X_test)
    accuracy_rf = accuracy_score(y_test, y_pred_rf)
    print(f'Accuracy of Random Forest Classifier: {accuracy_rf * 100:.2f}%')
```

```
# AdaBoost Classifier
adaboost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=1), n_estimators=50, random_state=42)
adaboost.fit(X_train, y_train)
y_pred_adaboost = adaboost.predict(X_test)
accuracy_adaboost = accuracy_score(y_test, y_pred_adaboost)
print(f'Accuracy of AdaBoost Classifier: {accuracy_adaboost * 100:.2f}%')
# Gradient Boosting Classifier
gb_classifier = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, random_state=42)
gb_classifier.fit(X_train, y_train)
y_pred_gb = gb_classifier.predict(X_test)
accuracy_gb = accuracy_score(y_test, y_pred_gb)
print(f'Accuracy of Gradient Boosting Classifier: {accuracy_gb * 100:.2f}%')
# Voting Classifier (Ensemble of Logistic Regression, Decision Tree, and Random Forest)
voting_classifier = VotingClassifier(estimators=[
    ('lr', LogisticRegression()),
    ('dt', DecisionTreeClassifier()),
    ('rf', RandomForestClassifier(n_estimators=100))
], voting='hard')
voting_classifier.fit(X_train, y_train)
y_pred_voting = voting_classifier.predict(X_test)
accuracy_voting = accuracy_score(y_test, y_pred_voting)
print(f'Accuracy of Voting Classifier: {accuracy_voting * 100:.2f}%')
```

```
# Reduce dimensions for visualization
pca = PCA(n_components=2)
X_reduced = pca.fit_transform(X)

# Scatter plot of the dataset
plt.figure(figsize=(8, 6))
plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, cmap='viridis', edgecolor='k', alpha=0.7)
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('Iris Dataset Visualization with PCA')
plt.colorbar(label='Class Labels')
plt.show()
```

Accuracy of Random Forest Classifier: 100.00% Accuracy of AdaBoost Classifier: 100.00%

Accuracy of Gradient Boosting Classifier: 100.00%

