Examen FINAL de Física 19 de gener de 2022

Model A

Qüestions: 40% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) Donat el circuit de la figura, determineu el valor de R sabent que la resistència que connectada entre A i B dissipa la màxima potència és de valor $12\,\Omega$.

a)
$$R = 15 \Omega$$
.

b)
$$R = 50 \,\Omega$$
.

c)
$$R = 20 \Omega$$
.

d)
$$R = 12 \Omega$$
.

T2) Les tres resistències de la combinació de la figura són de $6 \,\mathrm{k}\Omega$. Quina intensitat circula per cadascuna si $V_A - V_B = 18 \,\mathrm{V}$?

a)
$$I_1 = 2 \text{ mA}$$
, $I_2 = 1 \text{ mA}$, $I_3 = 1 \text{ mA}$.

b)
$$I_1 = 3, \text{mA}, I_2 = 6 \text{ mA}, I_3 = 6 \text{ mA}.$$

c)
$$I_1 = 1 \text{ mA}$$
, $I_2 = 2 \text{ mA}$, $I_3 = 2 \text{ mA}$.

d)
$$I_1 = 6 \text{ mA}, I_2 = 3 \text{ mA}, I_3 = 3 \text{ mA}.$$

T3) Si el potencial de contacte del díode del circuit de la figura és de 0.7 V, digueu quina de les següents afirmacions és la correcta:

a)
$$V_{AB} = 20 \text{ V}.$$

b)
$$I_1 = I_2 = 100 \,\text{mA}$$
.

c)
$$I_2 = 150 \,\text{mA}$$
.

- d) Pel díode circula un corrent de 186 mA.
- **T4)** El transistor de la figura té els paràmetres $\beta = 0.2 \,\mathrm{mA/V^2}$ i $V_T = 1 \,\mathrm{V}$. Determineu el valor de la resistència R_D sabent que quan $V_G = V_{DD} = 5 \,\mathrm{V}$, el corrent de drenador és $I_D = 0.4 \,\mathrm{mA}$.

b)
$$4 k\Omega$$

c)
$$5 k\Omega$$

d)
$$10 \,\mathrm{k}\Omega$$

T5) Al circuit de la figura la capacitat del condensador és $C = 5 \mu F$ i el coeficient d'autoinducció de la bobina és $L = 0.2 \,\mathrm{H}$. Trobeu el valor de la resistència R que fa que el factor de potència sigui 0.5 sabent que la freqüència del senyal que hi circula és $f = 50 \,\mathrm{Hz}$.

- a) $R = 331.27 \,\Omega$.
- b) $R = 210.24 \,\Omega$.
- c) $R = 40.25 \,\Omega$.
- d) $R = 137.12 \Omega$.
- **T6**) En un circuit RC, el condensador es troba inicialment descarregat. Si τ és la constant de temps, podem dir que el temps que triga el condensador en carregar-se fins la quarta part de la càrrega final és:
 - a) $-RC \ln 0.75$.

- b) $\frac{1}{RC} \ln 0.75$. c) $\frac{1}{RC} \ln 0.25$. d) $-RC \ln 0.25$.
- T7) Un circuit RLC sèrie té la frequència angular de ressonància $\omega_0 = 200 \,\mathrm{rad/s}$. Si quan es treballa a una frequencia desconeguda els valors de la reactància inductiva i capacitiva són $X_L = 2 \Omega$ i $X_C = 50 \Omega$, podem afirmar que els valors de L i C del circuit són:
 - a) $L = 2 \,\mathrm{H}, C = 500 \,\mu\mathrm{F}.$
- b) $L = 0.02 \,\mathrm{H}, C = 500 \,\mu\mathrm{F}.$
- c) $L = 5 \,\mathrm{H}, C = 200 \,\mu\mathrm{F}.$
- d) $L = 0.05 \,\mathrm{H}, C = 500 \,\mu\mathrm{F}.$
- T8) Una antena de la xarxa de telefonia mòbil situada a 10 metres d'alçada emet uniformement en totes les direccions amb una potència d'emissió de 3 kW. L'amplitud del camp elèctric que arriba a un observador situat a 50 m del peu de l'antena és: (dades: $\epsilon_0 = 8.85 \cdot 10^{-12} \,\mathrm{C}^2/(\mathrm{N}\,\mathrm{m}^2)$)

- a) $E_0 = 6.7 \,\text{V/m}$.
- c) $E_0 = 8.3 \,\text{V/m}$.
- b) $E_0 = 4.2 \,\text{V/m}$. d) $E_0 = 12.9 \,\text{V/}$ d) $E_0 = 12.8 \,\text{V/m}$.

Examen FINAL de Física 19 de gener de 2022

Model B

Qüestions: 40% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) Les tres resistències de la combinació de la figura són de $6 \,\mathrm{k}\Omega$. Quina intensitat circula per cadascuna si $V_A - V_B = 18 \text{ V}$?

a)
$$I_1 = 3, \text{mA}, I_2 = 6 \text{ mA}, I_3 = 6 \text{ mA}.$$

b)
$$I_1 = 2 \text{ mA}$$
, $I_2 = 1 \text{ mA}$, $I_3 = 1 \text{ mA}$.

c)
$$I_1 = 1 \text{ mA}, I_2 = 2 \text{ mA}, I_3 = 2 \text{ mA}.$$

d)
$$I_1 = 6 \text{ mA}, I_2 = 3 \text{ mA}, I_3 = 3 \text{ mA}.$$

T2) Donat el circuit de la figura, determineu el valor de R sabent que la resistència que connectada entre A i B dissipa la màxima potència és de valor 12Ω .

a)
$$R = 12 \Omega$$
.

b)
$$R = 20 \Omega$$
.

c)
$$R = 50 \,\Omega$$
.

d)
$$R = 15 \Omega$$
.

T3) Un circuit RLC sèrie té la frequència angular de ressonància $\omega_0 = 200 \,\mathrm{rad/s}$. Si quan es treballa a una freqüència desconeguda els valors de la reactància inductiva i capacitiva són $X_L=2\,\Omega$ i $X_C=50\,\Omega$, podem afirmar que els valors de L i C del circuit són:

a)
$$L = 0.05 \,\mathrm{H}, \, C = 500 \,\mu\mathrm{F}.$$

b)
$$L = 0.02 \,\mathrm{H}, \, C = 500 \,\mu\mathrm{F}.$$

c)
$$L = 5 \,\mathrm{H}, C = 200 \,\mu\mathrm{F}.$$

d)
$$L = 2 H$$
, $C = 500 \,\mu\text{F}$.

T4) Al circuit de la figura la capacitat del condensador és $C = 5 \mu F$ i el coeficient d'autoinducció de la bobina és $L = 0.2 \,\mathrm{H}$. Trobeu el valor de la resistència R que fa que el factor de potència sigui 0.5 sabent que la freqüència del senyal que hi circula és $f = 50 \,\mathrm{Hz}$.

- a) $R = 210.24 \Omega$.
- b) $R = 40.25 \,\Omega$.
- c) $R = 137.12 \Omega$.
- d) $R = 331.27 \,\Omega$.
- **T5**) En un circuit RC, el condensador es troba inicialment descarregat. Si τ és la constant de temps, podem dir que el temps que triga el condensador en carregar-se fins la quarta part de la càrrega final és:
 - a) $\frac{1}{RC} \ln 0.25$. b) $\frac{1}{RC} \ln 0.75$. c) $-RC \ln 0.75$. d) $-RC \ln 0.25$.

T6) Una antena de la xarxa de telefonia mòbil situada a 10 metres d'alçada emet uniformement en totes les direccions amb una potència d'emissió de 3 kW. L'amplitud del camp elèctric que arriba a un observador situat a 50 m del peu de l'antena és: (dades: $\epsilon_0 = 8.85 \cdot 10^{-12} \, \text{C}^2/(\text{N m}^2)$)

- a) $E_0 = 8.3 \,\text{V/m}$.
- b) $E_0 = 12.8 \,\mathrm{V/m}$.
- c) $E_0 = 4.2 \,\text{V/m}$.
- d) $E_0 = 6.7 \,\text{V/m}$.
- **T7**) El transistor de la figura té els paràmetres $\beta = 0.2\,\mathrm{mA/V^2}$ i $V_T = 1\,\mathrm{V}$. Determineu el valor de la resistència R_D sabent que quan $V_G = V_{DD} = 5\,\mathrm{V}$, el corrent de drenador és $I_D = 0.4\,\mathrm{mA}$.

a) $10 \,\mathrm{k}\Omega$

b) $4 k\Omega$

c) $32 \,\mathrm{k}\Omega$

- d) $5 k\Omega$
- **T8)** Si el potencial de contacte del díode del circuit de la figura és de 0.7 V, digueu quina de les següents afirmacions és la correcta:

- a) $I_2 = 150 \,\text{mA}$.
- b) $V_{AB} = 20 \,\text{V}.$
- c) $I_1 = I_2 = 100 \,\text{mA}$.
- d) Pel díode circula un corrent de 186 mA.

Examen FINAL de Física

19 de gener de 2022

Problema 1 (20% de l'examen)

En el circuit de la figura mesurem $V_A - V_B$ en circuit obert i veiem que val 3.5 V. Trobeu:

- a) Els valors de I, I_1, I_2 i ϵ . (4p)
- b) El circuit equivalent Thévenin entre A i B. (4p)
- c) La càrrega al règim estacionari d'un condensador de $5\,\mu\mathrm{F}$ connectat entre A i B. (2p)

Problema 2 (20% de l'examen)

El circuit de la figura està format per dues resistències $(R_G=1~k\Omega~{\rm i}~R_D=100~\Omega)$, dos díodes amb un potencial de contacte $V_{\gamma}=0.7~{\rm V}$, i un transistor NMOS amb uns paràmetres característics $\beta=2~{\rm mA/V^2}$ i $V_T=1~{\rm V}$. Si la tensió a les entrades dels dos díodes és de 5 V, determineu:

- b) La intensitat que circula per la resistència R_D i la tensió a la sortida V_{OUT} . En quina zona treballa el transistor? (4p)
- c) Determineu per quin valor de la resistència R_D el transistor passa de treballar en règim de saturació a treballar en règim òhmic. (3p)

Problema 3 (20% de l'examen)

La tensió instantània del generador del circuit de la figura és: $\varepsilon(t) = 220\sqrt{2}\cos{(100\pi t)}$ V. Determineu:

- a) La impedància equivalent que mostra el circuit a la dreta dels punts C i D (3p).
- b) Les intensitats instantànies que circulen pels diferents elements (4p).

c) Quin element s'hauria de connectar en paral·lel entre els punts C i D per tal de corregir el factor de potència del conjunt? Quant val la seva reactància? Calculeu el coeficient d'autoinducció o la capacitat si es tracta respectivament d'una bobina o un condensador (3p).

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	С	b
T2)	a	b
T3)	b	a
T4)	c	b
T5)	c	c
T6)	a	a
T7)	d	d
T8)	c	c

Resolució del Model A

T1) La resistència que connectada entre A i B dissipa la màxima potència és de valor igual a la resistència de Thévenin del circuit entre aquests dos punts en circuit obert. La resistència de Thévenin del circuit és troba fent el paral·lel de R amb la resistència de $30\,\Omega$. Amb tot aixó obtenim la condició

$$\frac{1}{30} + \frac{1}{R} = \frac{1}{12}$$

d'on resulta $R = 20 \Omega$.

- T2) Les resistències R_3 i R_3 es troben connectades en paral·lel, i per tant la seva resistència equivalent és $3 \,\mathrm{k}\Omega$. Aquest conjunt es troba connectat en série amb R_1 , i aixó fa que la resistència total sigui $R_{eq} = 9 \,\mathrm{k}\Omega$. Per tant, amb $V_A V_B = 18 \,\mathrm{V}$, resulta $I_1 = (V_A V_B)/R_{eq} = 2 \,\mathrm{mA}$. Per altra banda al ser $R_2 = R_3$, resulta $I_2 = I_3 = I_1/2 = 1 \,\mathrm{mA}$.
- T3) El díode està en polarització inversa, per la qual cosa no condueix i per les dues resistències circula la mateixa intensitat: $I_1 = I_2 = 20/(100 + 100) = 0.1 \,\text{A} = 100 \,\text{mA}$. Així doncs, la diferència de potencial $V_{AB} = 100 \cdot 0.1 = 10 \,\text{V}$.
- T4) Com que $V_G = V_D = 5\,\mathrm{V}$, resulta $V_G V_T = 5 1 = 4 < 5 = V_D$ i per tant veiem que $0 < V_{GS} V_T < V_{DS}$, de forma que el transistor treballa en saturació per qualsevol valor de V_S entre $0\,\mathrm{V}$ i $5\,\mathrm{V}$. Sabent el valor del corrent $I_{DS} = 0.4\,\mathrm{mA}$ i el fet que $I_{DS} = \frac{1}{2}\beta(V_{GS} V_T)^2$ en saturació, trobem $V_S = V_G V_T \sqrt{\frac{2I_{DS}}{\beta}} = 5 1 \sqrt{\frac{2\cdot(4\cdot10^{-4})}{2\cdot10^{-4}}} = 2\,\mathrm{V}$. A partir d'aquest valor, apliquem la llei d'Ohm a la resistència i obtenim $R_D = V_S/I_{DS} = 2/(4\cdot10^{-4}) = 5\,\mathrm{k}\Omega$.
- **T5)** Amb un factor de potència $cos\varphi=0.5$ el desfasament entre intensitat i tensió és de 60°. El condensador i la bobina es troben connectats en paral.lel, i per tant la impedància $Z_{||}$ d'aquesta part del circuit és

$$\frac{1}{|Z_{||}} = \frac{1}{jL\omega} + \frac{1}{-j(1/C\omega)} \quad \rightarrow \quad Z_{||} = j\frac{1}{\frac{1}{L\omega} - C\omega} \; ,$$

que és imaginària pura. Al connectar-la en sèrie amb la resistència, obtenim una impedància equivalent $Z=R+j\frac{1}{\frac{1}{1-}-C\omega}$, d'on resulta

$$\tan \varphi = \frac{\left(\frac{1}{\frac{1}{L\omega} - C\omega}\right)}{R} \quad \to \quad R = \frac{\left(\frac{1}{\frac{1}{L\omega} - C\omega}\right)}{\tan \varphi}.$$

Substituint, amb $\omega = 2\pi \cdot 50$, resulta $R = 40.25 \Omega$.

- **T6)** La càrrega del condensador en funció del temps és $Q(t) = Q_{final}(1 e^{-t/\tau})$ amb $\tau = RC$ la constant de temps. En el nostre cas $Q_{final}(1 e^{-t/\tau}) = 0.25 Q_{final}$ i per tant $e^{-t/\tau} = 1 0.25 = 0.75$. D'aquí traiem el resultat final $t = -\tau \ln 0.75$.
- T7) La condició de ressonància al circuit RLC sèrie és $L\omega_0 = \frac{1}{C\omega_0}$ on $\omega_0 = 200 \,\mathrm{rad/s}$ és la freqüència a la que ressona el circuit. Al nostre cas i amb les dades de l'enunciat, això vol dir

$$LC = \frac{1}{\omega_0^2} = \frac{1}{40000}$$

Per altra banda, a la freqüència angular desconeguda ω les reactàncies són $X_L=L\omega=2\,\Omega$ i $X_C=1/C\omega=50\,\Omega,$ de forma que

$$X_L X_C = (L\omega) \left(\frac{1}{C\omega}\right) = \frac{L}{C} = 100 \,\Omega$$
.

Multiplicant els dos resultats anteriors obtenim

$$(LC)\left(\frac{L}{C}\right) = L^2 = \frac{100}{40000} \quad \to \quad L = \frac{1}{20} = 0.05 \,\mathrm{H}$$

i a partir de la primera relació

$$C = \frac{1}{L\omega_0^2} = \frac{1}{0.05 \cdot 200^2} = 500 \,\mu\text{F} \ .$$

T8) L'antena emet amb una potència P i la intensitat mitjana de l'ona que arriba a l'observador situat a una distància r és I=P/S on $S=4\pi r^2$ ja que l'ona és esfèrica i emet uniformement. D'altra banda, la intensitat que rep l'observador és $I=c\eta$ on $\eta=\epsilon_0 E_0^2/2$ és la densitat d'energia que transporta l'ona. Igualant termes resulta

$$I = \frac{P}{4\pi r^2} = c\eta = c\frac{1}{2}\epsilon_0 E_0^2 \quad \to \quad E_0 = \sqrt{\frac{P}{2\pi r^2 c\epsilon_0}} = 8.3 \,\text{V/m} .$$

Resolució del Problema 1

- a) Com veiem a la figura, $50I_1 = 3.5 = V_A V_B$, i per tant $I_1 = 70 \,\text{mA}$. A partir d'aquí resulta $V_C V_B = 150I_1 = 10.5 \, V = 50I_2$, i per tant obtenim $I_2 = 210 \,\text{mA}$. Sumant, obtindrem la intensitat total $I = I_1 + I_2 = 280 \,\text{mA}$. Com $V_C V_B = 10.5 \,\text{V} = \epsilon 25I$, resulta finalment $\epsilon = 17.5 \,\text{V}$.
- b) Al trobar-se el circuit obert, la tensió Thévenin és precisament la donada a l'enunciat, $V_{Th} = V_A V_B = 3.5 \,\text{V}.$
 - Pel que fa a la resistència de Thévenin, curt circuitem la font i combinem les resistències. La resistència de $25\,\Omega$ en paral.lel amb la inclinada de $50\,\Omega$ dóna $50/3\,\Omega$. Aquesta es troba en série amb la de $100\,\Omega$, donant $350/3\,\Omega$. Finalment, cal combinar-la en paral.lel amb la vertical de $50\,\Omega$, arribant al resultat final de $35\,\Omega$.
- c) Substituint el circuit pel seu equivalent de Thévenin, la diferència de potencial a extrems del condensador passa a ser la tensió de Thévenin, i la càrrega del condensador és $Q = C \cdot V = 5 \,\mu\text{F} \cdot 3.5 \,\text{V} = 17.5 \,\mu\text{C}$.

Resolució del Problema 2

- a) Com que $V_A = V_B = 5$ V, els dos díodes estan en polarització directa i la tensió als càtodes (part n) dels díodes, igual a la tensió a la porta del transistor, és: $V_G = 5 V_{\gamma} = 4.3$ V. La intensitat que circula per R_G és: $V_G/R_G = 4.3$ mA.
- b) Com que la font està connectada a terra, la tensió a la porta és igual a la diferència de potencial porta-font: $V_{GS}=4.3$ V. Si suposem que el transistor treballa en règim de saturació, tenim $I_D=\beta V_{GT}^2/2=2\cdot(4.3-1)^2/2=10.89$ mA. Per tant, la tensió a la sortida és $V_{OUT}=V_{DS}=V_{DD}-R_DI_D=5-100\cdot0.01089=3.91$ V. Com $V_{DS}=3.91>(4.3-1)=3.3=V_{GT}$, efectivament el transistor treballa en saturació. Per tant els valors anteriors són els correctes.
- c) A l'apartat anterior hem vist que la intensitat I_D en saturació és 0.01089 A. Per tant, la tensió drenador-font resulta ser $V_{DS} = V_{DD} R_D I_D = 5 0.01089 R_D$. Com la condició de saturació és $V_{DS} > V_{GT}$, obtenim $5 0.01089 R_D > (4.3 1) = 3.3$. Per tant $R_D > (5 3.3)/0.01089 = 156 \Omega$. Per tant, el valor de transició és $R_D = 156 \Omega$.

Resolució del Problema 3

- a) La impedància de la branca de la dreta dels punts A i B, formada pel condensador, la resistència R_3 i la bobina L_2 , val 10 Ω , ja que les reactàncies de la bobina i del condensador són iguals i s'anul·len al fer la suma. El circuit, per tant, és equivalent a la branca de l'esquerra (generador, bobina L_1 i resistència R_1) i les resistències R_2 i R_3 connectades en paral·lel. Justament com estan en paral·lel, la resistència equivalent R_{23} serà de 5 Ω . Per tant, la impedància total equivalent del conjunt a la dreta dels punts C i D serà la corresponent a l'associació en sèrie de dues resistències R_1 i R_{23} de 5 Ω i una bobina amb una reactància X_{L_1} de 10 Ω . És a dir $\bar{Z}_{eq} = (5+5) + 10j = 10 + 10j = 10\sqrt{2}_{|45}$.
- b) La intensitat I_1 que circula per R_1 i L_1 és la que circula per la impedància equivalent a la dreta dels punts C i D calculada a l'apartat anterior. És a dir: $\bar{I}_1 = \bar{\varepsilon}/\bar{Z}_{eq} = 220\sqrt{2}_{|0^{\circ}}/10\sqrt{2}_{|45^{\circ}} = 22_{|-45^{\circ}}$ A.

Per calcular les intensitats I_2 (que circula per R_2) i I_3 (que circula per R_3 , C i L_2) ens cal obtenir primer la tensió V_{AB} que cau entre A i B: $\bar{V}_{AB} = R_{23}\bar{I}_1 = 5 \cdot 22_{|\underline{-45^\circ}} = 110_{|\underline{-45^\circ}}$ V. Per tant, les intensitats són: $\bar{I}_2 = \bar{V}_{AB}/R_2 = 110/10_{|\underline{-45^\circ}} = 11_{|\underline{-45^\circ}}$ A i $\bar{I}_3 = \bar{V}_{AB}/R_3 = 110/10_{|\underline{-45^\circ}} = 11_{|\underline{-45^\circ}}$ A.

- c) Com $\bar{Z}_{eq}=10+10j$, la reactància és positiva, i per tant l'element que hem de connectar en paral·lel és un condensador de reactància: $X'=-Z_{eq}^2/X=-200/10=-20~\Omega$. La capacitat del condensador és: $C=1/\omega X'=1/(2\pi\cdot 50\cdot 20)=159.15\mu F$.
- d) L'equivalent de Thévenin entre A i B consta d'un generador de $fem \ \varepsilon_{Th} = \bar{V}_{AB} = 110_{|\underline{-45^{\circ}}}$ V en sèrie amb una impedància Z_{Th} , que resulta de fer l'associació en paral·lel de les tres branques del circuit connectades als nusos A i B un cop curtcircuitada la font de tensió. Així doncs, Z_{Th} s'obté associant la impedància formada per la unió en sèrie de R_1 i L_1 , la formada només per R_2 , i la que resulta de l'associació en sèrie de R_3 , L_2 i C. Per tant: $1/\bar{Z}_{Th} = 1/(5+10j)+1/10+1/(10+(5-5)j) = (6-2j)/25$. Finalment: $\bar{Z}_{Th} = 25(6+2j)/40 = 3.75+1.25j = 3.95_{|18.4^{\circ}} \Omega$.