Apellidos	Die Amongo
Nombre	Manuel

Preguntas sobre grupos:

1. (4 puntos) Sea $\mathbb{F}_3 = \mathbb{Z}/(3)$ el cuerpo con 3 elementos y $GL(2,\mathbb{F}_3)$ el grupo de matrices invertibles 2×2 con entradas en \mathbb{F}_3 .

(a) (½ punto) En el conjunto de vectores no nulos $X=(\mathbb{F}_3\times\mathbb{F}_3)\backslash\{(0,0)\}$ definimos una relación \sim de la siguiente manera: $\vec{v}\sim\vec{w}$ si y solo si $\vec{v}=\pm\vec{w}$. Prueba que \sim es una relación de equivalencia y da la lista de todos los elementos del conjunto cociente, que denotaremos $\mathbb{P}^2(\mathbb{F}_3)=X/\sim$, comprobando que hay exactamente cuatro.

(b) (½ punto) Dada $A \in \mathrm{GL}(2,\mathbb{F}_3)$, demuestra que la aplicación

$$\varphi_A: \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

(c) (½ punto) Enumera los elementos de $\mathbb{P}^2(\mathbb{F}_3)$ cuya lista has dado en el primer apartado, y que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$. Prueba que, para todo $A \in \mathrm{GL}(2, \mathbb{F}_3)$, la aplicación φ_A es biyectiva y deduce que existe una única permutación $\sigma_A \in S_4$ tal que $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$ para todo i.

(d) (½ punto) Demuestra que la aplicación

$$f: \operatorname{GL}(2,\mathbb{F}_3) \longrightarrow S_4$$
$$A \longmapsto \sigma_A$$

es un homomorfismo de grupos.

(e) (1 punto) Prueba que para cada trasposición $(ij) \in S_4$ existe $A \in GL(2, \mathbb{F}_3)$ tal que $\sigma_A = (ij)$ y deduce de aquí que f es sobreyectiva.

(f) (1 punto) Establece un isomorfismo entre S_4 y un cociente de $GL(2, \mathbb{F}_3)$, describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de $GL(2, \mathbb{F}_3)$.

Manuel Mirs Arrayo. a possible promoto que es une relection de equivalencia: Refairs: In is => is=±is (Franklika Superiguno) Simetrica: Tenne => Te = Te Supergunes que v=±n => n=±v=> nev v. Ofgennition; だいでんでいた => でんし Supergunu ()=> v=±n, n=±w Pa () v=±n (P²(1F₃)={(0,1), (1,0), (1,1)} = teo (2,1) (0,1), (1,0), (1,1)} Va que extenor en 1F₃. (b) Supergamon que $\overline{U}_1 = \overline{U}_Z$. 191-102 EI => A (U1-U2) Alfane que persences al I. Pero, sulemos ya ashar that = 7 A (U1-Uz) EI

Proportion por définición de ideal. Per lo : que A vi = A vi => Esté l'alen definida.

$$\begin{array}{ll}
\textcircled{0,1} = \{(0,0)\} \text{ wanter, Notes 3} \\
\hline
(0,1) = \{(0,1), (0,2), (0,2)\} \\
\hline
(1,0) = \{(1,1), (-2,1), (2,0)\} \\
\hline
(1,1) = \{(1,1), (-2,1), (2,-2), (2,2)$$

Supergunos que 7 A: for no rea biyedier, como el conjunto de llegado es el munno que el de partide en todo este implier que ll 2 A: legado Siende vir y vez distintos

A vi = A. vi = > (Sience A invertible por definición)

A'.A. vi = A'.A. vz => vi = vz !!!

Por lo que todor las moduier de GL (Z, 1Fz) extluen una aplicación biegodita.

- Schemer whomas que and vector vi, i=1,2,3,43,000 air a un vector vi, j=1,2,3,43, fyrque el vector

191 Nempre 100 a in a 101 A. (8) = (8)

Per le que estate pera cude matriz A, existe una permutación 64: fr([vi]) = vos (i) y riempre la aren de la forma (1234) poija)

Immilik che. 2.43

Munuel Dinz Anoge /(A1)=6,1 Veema que [A, [0]] = [0] = 7 [Az. A1. (0)] = [0] [6] [6] [6] $f(A_{z}) \circ f(A_{1}) = 6_{A_{z}} \circ 66_{A_{1}} = f(A_{z} \cdot A_{1})$ Salesmos per la aprentido anteriores que analquies permetrais de sectores es examenço al grup Eq por la que en reus Como (([Un]) = [Usali)), podemos nyverentes estate eth apliación como una permitación, ademá, comos los mádices representan movimientos en el espació y demetremos, que a ende matriz le pertere ce una permutación, en específico pademos realizar Transpolicioner den matrices 2x2. Se deduce ficilmente que f es sobre spective ya que y permitación debe existin una motion que que represente diche permitación.

Como existe el momentimo entre S_4 y $GL(2_1|F_3)$, el número de elementor CE $S_4 = 4! => |GL(2_1|F_3) = 4!$