Introduction

A study of the low- p_T dimuon spectrum (background control sample). Normalized by cross-section except prompt J/ψ (factor of 2 too high, reduced by hand).

Baseline cuts:

- lacktriangle exactly two opposite-sign muons per event; mass $< 5~{
 m GeV}/c^2$
- lacktriangle one muon $p_T>12$ GeV/c, $|\eta|<1$ (for trigger)
- ▶ the other $p_T > 5 \text{ GeV}/c$, $|\eta| < 2.4$
- ▶ dimuon $p_T < 80 \text{ GeV}/c$ (where backgrounds $\gg 1 \text{ pb}$)

$$Iso = \sum_{\mathsf{non-}\mu \; \mathsf{tracks}} \left\{ egin{array}{ll} p_T & \mathsf{if} \; \Delta R < 0.5 \; \mathsf{and} \; p_T > 1.5 \; \mathsf{GeV}/c \\ 0 & \mathsf{otherwise} \end{array}
ight.$$

- "isolated:" Iso < 4.5 GeV/c (first three bins)
- "iso-sideband:" 4.5 < Iso < 10.5 GeV/c (next four bins)
- "non-isolated:" lso > 10.5 GeV/c (the rest of the distribution)

- Excess in isolated data across the mass spectrum $(1.1 < \text{mass} < 2.9 \text{ GeV}/c^2)$
- ► Special excess in mass < 0.5 GeV/c², wider than a resonance

- What if the low-mass part is due to smearing (not in the MC)?
- Quick mass resolution plots from pair-gun

I suppose this alone doesn't prove that such a thing isn't happening in the real data, but we know that the K_S mass peak is not significantly wider in data than MC

- ▶ Compare muon quality distributions in the mass $< 0.5~{\rm GeV}/c^2$ region (black) with the same distributions in the J/ψ peak (red)
- Normalized to equal area (all data)

► Residuals distributions in station 1 (of both barrel and endcap)

- Now check dimuon vector-sum p_T distribution of the 1.1 < mass < 2.9 GeV/ c^2 region (continuum)
- Isolated component (below) is not much different from the rest

▶ Same for mass $< 0.5 \text{ GeV}/c^2 \text{ region}$

- ► This is the 1.1 < mass < 2.9 GeV/ c^2 region (continuum) in P_{vertex} , ϕ , η
- Studying only the isolated component
- bb has poor P_{vertex} because the two muons sometimes come from different decays

- ► This is the mass $< 0.5 \text{ GeV}/c^2 \text{ region}$ in P_{vertex} , ϕ , η
- Studying only the isolated component
- These very small opening angles apparently have a bias toward high P_{vertex} (errors are underestimated) (same for continuum: see prev page)

- ▶ This is the $1.1 < \text{mass} < 2.9 \text{ GeV}/c^2$ (continuum) in $L_{xyz} = \vec{x} \cdot \vec{p}/|\vec{p}|$ where \vec{x} is the displacement between the dimuon vertex and the closest primary vertex in z
- ▶ Left edge (wrong-direction flights) is resolution; right tail is $\gamma c \tau$
- Beampipe is at 30 mm

- ▶ This is the mass $< 0.5 \text{ GeV}/c^2$ in L_{xvz}
- \blacktriangleright Left edge (wrong-direction flights) is resolution; right tail is $\gamma c\tau$
- ▶ Beampipe is at 30 mm ($\gamma \to \mu\mu$ conversions would happen primarily at the beampipe)

- ▶ Repeat for $L_{xy} = \vec{x}_{2D} \cdot \vec{p}_{2D} / |\vec{p}_{2D}|$ in case you think there's a bias in using z because the closest primary vertex was identified using closeness in z
- ► This is the $1.1 < mass < 2.9 \text{ GeV}/c^2$ continuum

- ▶ Repeat for $L_{xy} = \vec{x}_{2D} \cdot \vec{p}_{2D} / |\vec{p}_{2D}|$ in case you think there's a bias in using z because the closest primary vertex was identified using closeness in z
- ▶ This is the mass $< 0.5 \text{ GeV}/c^2 \text{ excess}$

Jim Pivarski 15/16

- ▶ There's a significant class of events in data, not in this set of MC, with the following properties:
 - isolated
 - real dimuons (not fake tracks or decays-in-flight or anything)
 - good vertex (not expected of all $b\bar{b}$)
 - appear at the origin (not expected of all $b\bar{b}$ or any $\gamma o \mu \mu$ conversions)
 - a continuum and a sharp excess at low mass (too wide to be a resonance)
- tried checking angular distribution of muons in the rest frame (check for vector versus uncorrelated), but this is highly sculpted by cuts

What is likely

▶ The continuum, at least, is Drell-Yan— there must be a problem with the Drell-Yan MC (privately generated, only change from official sample: $0 < \sqrt{s} < 5 \text{ GeV}/c^2$ instead of $20 < \sqrt{s} <$ 40 GeV/ c^2).

Found a CDF paper on this

Jim Pivarski

- ▶ Use the same binning, same cuts:
 - ▶ minimum p_T by applying $\Delta R < 0.5$ (but still $p_T < 80$ GeV/c!)
 - ask for one $p_T > 20 \text{ GeV}/c \text{ muon}$
 - lacktriangleright for this plot, I don't rescale prompt J/ψ by a factor of two

 $\verb|http://www-cdf.fnal.gov/publications/cdf10013_dimuon_lowmasshighpt.pdf|$

- ► Their Drell-Yan Monte Carlo looks like our missing piece
- Why is the yield similar??? (note difference in integrated luminosities: 2.2 fb⁻¹ vs. 0.035 fb⁻¹)