Fish growth changes in a nuclear power plant cooling reservoir show that not all fish know about the temperature size rule

Vytautas Rakauskas, Max Lindmark, Andrius Steponenas, Vytautas Kesminas & **Asta Audzijonyte (presenting)**

Nature Research Centre, Lithuania

2014-2020 Operational Programme for the European Union Funds Investments in Lithuania

As climate warms, fish will become smaller. Or will they?

Sound physiological knowledge and principles in modeling shrinking of fishes under climate change

Daniel Pauly | William W. L. Cheung

Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes

ALAN R. BAUDRON 1 , COBY L. NEEDLE 2 , ADRIAAN D. RIJNSDORP 3 and C. TARA MARSHALL 1

¹Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland UK, ²Marine Laboratory, Marine Scotland - Science, PO Box 101 375 Victoria Road, Aberdeen, AB11 9DB, Scotland UK,

TSR is an experimental finding. Are these experimental results relevant?

- Controlled feeding
- No predation
- No environmental stochasticity
- Reduced competition?..

We need field data on climate change experiments!

To understand and predict natural ecosystem responses to temperature changes through time we need:

Long-term empirical observations that account for

- a) Acclimation
- b) Inter-generational plasticity or acclimation or adaptation
- c) Ecosystem level temperature responses (changes in food availability, predation, etc)
- d) Potentially different responses in different species

Druksiai Lake: a unique "experimental" system

- large lake
- area of 45km²
- maximum depth of 33 m
- oligotrophic

Nuclear power plant started in 1983

1983-1987 +0.6 C

1988-2004 +2.5 C

2004-2009 +1C

2009 onward ambient

Data:

Regular gillnetting surveys: 1979-2020

Lots of digging into old journals...

Ageing based on scales
Species, total or standard length, age, year,
month

Length at age (at capture) in five common species

Vendace (*Coregonus albula*)

Max age – **5**

N - 799

Roach (Rutilus rutilus)

Max age - **18**

N - 3874

Pike (Esox lucius)
Max age – 10

N - 540

Max age - **16**

N - 1179

Bream (Abramis brama)

Max age – **17**

N - 2001

$$L_a \sim age*T + age^2 + (1|month) + (1|year)$$

fixed effects random effects

Temperature size rule occurs when:

- Intercept of temperature on age is positive (juveniles grow faster)
- Temperature-age interaction is negative (adults are smaller)

Temperature-age slope

Take home & significance

- Temperature affects fish growth and size
- In real ecosystems temperature affects many processes and we probably cannot expect temperature-size rule consistent growth changes
- Different temperature responses of different species may have profound food web consequences
- We need inter-generational long term empirical data
- Please keep all old records and journals safe. Someone will need them

2014-2020 Operational Programme for the European Union Funds Investments in Lithuania

www.sif.lt

This project has received funding from European Regional Development Fund (project No 01.2.2-LMT-K-718-02-0006) under grant agreement with the Research Council of Lithuania (LMTLT).