Nuclear Physics

Hertzberg, Joakim D. April 9, 2024

Contents

1	Par	ticles and their properties	4	
	1.1	The atomic mass unit		
	1.2	The electron		
	1.3	The proton		
	1.4	The neutron		
	1.5	The positron		
2	Types of radiation			
	2.1	α -radiation		
	2.2	$oldsymbol{eta}$ -radiation		
		γ -radiation		
3	Nuclear Reactions			
	3.1	Transmutation		
	3.2	Energy released		

1 Particles and their properties

1.1 The atomic mass unit

The atomic mass unit (also AMU) is defined as $1.6605390710^{-27} Kg$. It has the unit u. It was defined such that the mass of a proton (and a neutron, which has the same mass) is 1u.

1.2 The electron

The electron is an elementary particle, which is a particle that has no building blocks, but is itself among the smallest possible building blocks. The mass of an electron is 0.000548579909~u, and it has a charge of $1.60217663 \times 10^{-19}~C$, which is equal to the elementary charge e.

1.3 The proton

The proton is a non-elementary particle, which consists of quarks which are elementary particles. It has a mass of 1 u, and is positively charged by +1 e.

1.4 The neutron

The neutron is, as it's name implies, neutrally charged, meaning it has a charge of 0, it does however have the same mass as a proton, i.e. 1 u.

1.5 The positron

The *positron* is something which may also be encountered, and can easily be confused with the proton. It is significant to note that the positron is an *elementary particle*, and is the anti-matter form of the *electron*, so it has the same mass $(0.000548579909 \ u)$, and a charge of $+1 \ e$.

2 Types of radiation

2.1 α -radiation

Alpha Radiation or Alpha Decay is when a particle releases another particle, a so-called α -particle as it decays.

$${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}X' + {}_{2}^{4}\alpha$$

What is an α -particle?

An alpha-particle looks exactly like a He-nucleus, that is, two protons & 2 neutrons. Ignoring the amount of electrons, following is true:

$${}^4_2\alpha = {}^4_2He$$

2.2 β -radiation

Beta Radiation or Beta Decay is when a particle releases an electron and a neutrino as it decays, by a neutron splitting into an electron and a proton.

$${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}X' + {}_{-1}^{0}e + \bar{v}$$

Sidenote:

Since elements release electrons as they decay, and gain a proton, the element itself changes to the next element over in the periodic table.

2.3 γ -radiation

3 Nuclear Reactions

3.1 Transmutation

It is possible to transmute one particle into the other by fusion. For example:

$$^{14}_{7}N + ^{4}_{2}He \rightarrow ^{17}_{8}O + ^{1}_{1}H$$

3.2 Energy released

In nuclear reactions, there is often a mass deficit (Δm) , which is then related to a certain energy which that mass converts into, ΔE . Said energy is provided by Albert Einstein's famos equation:

$$E = mc^2$$

Which can be translated into:

$$\Delta E = \Delta mc^2$$

Example: