Introduction to rstanarm

Bayesian Inference - Lab Sessions (1/3)

Marika D'Agostini marika.dagostini2@unibo.it

University of Bologna

November-December 2023

References

Basic Textbook:

Peter D. Hoff - A First Course in Bayesian Statistical Methods (2009)

https://pdhoff.github.io/book/

Advanced Textbook:

Andrew Gelman et al. - Bayesian Data Analysis (3rd Ed.) (2020)

http://www.stat.columbia.edu/~gelman/book/

Bayesian Statistics: definition

Suppose we observe data $\mathbf{y} = (y_1, ..., y_n)$ which we model as a realisation of random variable $\mathbf{Y} = (Y_1, ..., Y_n)|\theta \sim f(\mathbf{Y}|\theta), \theta \in \Theta$

- 1) Before using any information from data \mathbf{y} , we assume there is a distribution over θ called the **prior distribution** with pdf $p(\theta)$
- 2) The parametric family of distributions with pdf $f(\mathbf{y}|\theta)$ we assume for data can be viewed as a **conditional distribution** of data \mathbf{y} given θ
- 3) Can update our knowledge about θ using observed data \mathbf{Y} from $p(\theta)$ to the conditional distribution of θ given observed data \mathbf{Y} , called posterior distribution of θ , using Bayes theorem

$$p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)p(\theta)}{\int_{\Theta} f(\mathbf{y}|\theta)p(\theta)d\theta} = \frac{f(\mathbf{y}|\theta)p(\theta)}{f(\mathbf{y})}$$

which is $\propto f(\mathbf{y}|\theta)p(\theta)$ as a function of θ . Thus,

likelihood \times prior pdf \propto posterior pdf

Bayesian vs classical (frequentist) approach

- 1) Unknown parameter θ :
 - Frequentist: a fixed number
 - Bayesian: a random variable
- 2) Inference about θ :
 - Frequentist: ad hoc (different types of estimators/tests are "best" for different problems, no unique algorithm)
 - Bayesian: given 3 choices (likelihood, prior, loss), there is a unique inferential procedure
- 3) Interval estimation of θ :
 - Frequentist: $(1-\alpha)100\%$ confidence interval of θ : among all such data sets y, in $(1-\alpha)100\%$ of them, θ belongs to this interval
 - Bayesian: $(1-\alpha)100\%$ credible interval of θ : for given data \mathbf{y} , θ belongs to this interval with probability $(1-\alpha)$

Steps of Bayesian Inference

- 1) Identify/Collect the data (general recommendation: data visualization)
- 2) Choose a statistical **model for the data** $\rightarrow f(\mathbf{y}|\theta)$
- 3) **Specify prior distributions** for the model parameters o p(heta)
- 4) Obtain the **posterior distributions** for the model parameters $\rightarrow p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta)p(\theta)$
 - 4.1) For mathematical approximations, check the algorithms for convergence (Post-run diagnostics)
- 5) Conduct a **posterior predictive check** to examine if the fitted model is compatible with the observed data
 - 5.1) If the model does not fit the data, one should go back to step 2 to specify a different model
- 6) Summarizing the Posterior Distribution
 - Posterior Mean, Median, and Mode
 - Uncertainty Estimates
 - Credible Intervals

Bayesian computation (I)

4) Obtain the posterior distributions for the model parameters

$$ightarrow p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta)p(\theta)$$

Making inference in the Bayesian framework implies to deal with multidimensional integrals:

- Normalizing constants
- Marginal posterior distributions for the parameters of interest
- Expected values
- Posterior predictive distribution

Bayesian computation (II)

Different approaches might be distinguished:

- Conjugate Priors
- *Numerical integration*: feasible only with a regular function with a low-dimensional parameter space
- Analytical approximation: Normal or Laplace approximation (e.g. INLA) with Maximum A Posteriori (MAP) Estimation
- **Simulation methods**: numerical values obtained through random generator algorithms \rightarrow Markov Chain Monte Carlo (**MCMC**)

Monte Carlo (MC) approximation: why does it work? (I)

Reference: Hoff, 2009; chapter 4 [Gelman, 2020; chapter 11]

Suppose we are interested in estimating the parameter θ , once the sample \mathbf{y} is observed and the likelihood $f(\mathbf{y}|\theta)$ is assumed for data.

Since we are Bayesian statisticians, we are interested in the **posterior distribution** of θ : $p(\theta|\mathbf{y})$.

Let us suppose the analytic properties of $p(\theta|\mathbf{y})$ to be unknown but we are able to generate a random sample of size S from it:

$$\theta^{(1)},...,\theta^{(S)} \stackrel{\textit{iid}}{\sim} p(\theta|\mathbf{y}).$$

Thanks to rigorous mathematical results based on the *law of large numbers* it is possible to state that the empirical distribution of the generated sample $\{\theta^{(1)},...,\theta^{(S)}\}$ is an approximation of the true posterior distribution $p(\theta|\mathbf{y})$.

 $\rightarrow \{\theta^{(1)},...,\theta^{(S)}\}$ is known as a MC approximation of $p(\theta|\mathbf{y})$.

MC approximation: why does it work? (II)

More formally:

$$\frac{1}{S}\sum_{s=1}^{S}f(\theta_{s}^{*})\to \mathbb{E}\left[f(\theta)|\mathbf{y}\right]=\int_{\Theta}f(\theta)p(\theta|\mathbf{y})\mathrm{d}\theta, \text{ as } S\to +\infty.$$

MC approximation: why does it work? (III)

As a consequence all the empirical evaluations of the following useful characteristics of the distribution can be considered as reliable approximation of the true values:

- Mean and variance,
- Quantiles,
- Probabilities.

Since we are dealing with approximations, it is possible to provide a measure of the **accuracy**:

$$SE_{MC} = \sqrt{\frac{\hat{\sigma}^2}{S}},$$

and it is named Monte Carlo Standard Error.

MC approximation: example

Let us consider the simple **Beta-Binomial model**.

Beta prior for the proportion parameter θ :

$$\theta | a, b \sim \mathcal{B}(a, b)$$

Binomial data model & likelihood function:

$$\mathbf{y}|\theta \sim Bin(n,\theta)$$

Then, given that r successes are observed in n trials (i.e. $\mathbf{y} = r$),

$$\theta | (\mathbf{y} = r) \sim \mathcal{B}(a + r, n - r + b)$$

ightarrow To describe the posterior it is possible to use Monte Carlo simulations.

See R script: example_MC.R

Markov Chains (I)

Simple MC simulation alone is not enough in case of **high dimensional parameters** problems

 \rightarrow It is required to support it with the concept of **Markov chain**, in order to generate the desired sample $\{\theta^{(1)},...,\theta^{(S)}\}$ from $p(\theta|\mathbf{y})$.

A discrete-time Markov chain (or Markov process) is a discrete-time stochastic process such that the **Markovian property** holds

$$\mathbb{P}\left[\theta_t^*|\theta_0^*,...,\theta_{t-1}^*\right] = \mathbb{P}\left[\theta_t^*|\theta_{t-1}^*\right]$$

i.e.,

it is a discrete-time stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event

Markov Chains (II)

If a Markov Chain possesses all these three properties

- **Irreducibility**: each set of states can be reached staring from each state with a finite number of steps
- **Positively recurrent (or persistent)**: the probability of returning to the current state in a finite number of steps is 1.
- **Aperiodic**: there is no periodic oscillation among the states then the **ergodic theorem** holds and

$$rac{1}{S}\sum_{b=1}^B f(heta_s^*) o \mathbb{E}\left[f(heta)|\mathbf{y}
ight], \;\; ext{as } S o +\infty.$$

It is a parallel result of the one for the Monte Carlo integration. These chains converges to the **stationary distribution**, that is unique, independently from the initial value θ_0^* .

Why is this useful in Bayesian inference?

Reference: Hoff, 2009; chapter 6 [Gelman, 2020; chapter 13]

Markov Chains Monte Carlo (MCMC) algorithm is mostly used to sample from the posterior $p(\theta|\mathbf{y})$ if we are dealing with a multidimensional estimation problem.

Main steps:

- ullet Define Markov chains with the same parameter space of $oldsymbol{ heta}$.
- Choose a Proposal Distribution: select a simple distribution that can be easily sampled from (e.g. univariate distributions). This distribution is used to propose new candidate points in the parameter space.
- Gradually move in the chain converging towards stationary distribution.
 - \rightarrow The stationary distribution is $p(\theta|\mathbf{y})$.

Once the conditions for the validity of the ergodic theorem are verified, a sequence of **dependent** realizations from $p(\theta|\mathbf{y})$ is obtained.

Thus, on reaching stationary distribution we have approximated posterior probability distribution.

Examples of MCMC algorithms

- Metropolis-Hastings algorithm: general framework which includes
 - \bullet Gibbs Sampler \to special case of Metropolis–Hastings algorithm with acceptance rate uniformly equal to 1
 - \bullet Metropolis algorithm \to special case of Metropolis–Hastings algorithm with symmetric proposal distribution.
- Hamiltonian Monte Carlo (HMC) → it allows to sample from the posterior of the target parameters more efficiently than basic MCMC algorithms.

The Gibbs sampler (I)

- The Gibbs sampler is the easiest MCMC algorithm and it is based on the full conditionals distributions.
- Gibbs sampling is attractive because it can sample from high-dimensional posteriors
- The main idea is to break the problem of sampling from the high-dimensional joint distribution into a series of samples from low-dimensional conditional distributions
- Updates can also be done in blocks (groups of parameters)
- \bullet Because the low-dimensional updates are done in a loop, samples are not independent \to the dependence turns out to be a Markov distribution \to MCMC

The Gibbs sampler (II)

If a m-dimensional estimation problem is faced: $\theta = (\theta_1, ..., \theta_m)$, the m full conditionals posterior distributions are:

$$p(\theta_j|\boldsymbol{\theta}_{-j},y), \quad j=1,...,m.$$

The algorithm is constituted by the following steps:

- \bullet Fixing the initial state at $(\theta_{1,(0)}^*,...,\theta_{m,(0)}^*)$
- For each step *b* generate:

$$\begin{aligned} \theta_{1,(b)}^* &\sim p(\theta_1 | \theta_{2,(b-1)}^*, ..., \theta_{m,(b-1)}^*, y), \\ \theta_{2,(b)}^* &\sim p(\theta_2 | \theta_{1,(b)}^*, \theta_{3,(b-1)}^*, ..., \theta_{m,(b-1)}^*, y), \\ & ... \\ \theta_{m,(b)}^* &\sim p(\theta_m | \theta_{1,(b)}^*, ..., \theta_{m-1,(b)}^*, y). \end{aligned}$$

Repeat B times.

The Gibbs sampler (III)

$$\mathbb{P}(\boldsymbol{\theta}^{(b)} \in A)
ightarrow \int_{A} p(\boldsymbol{\theta}) d\boldsymbol{\theta}$$
 as $b
ightarrow \infty$

In words, the sampling distribution of $\theta^{(b)}$ approaches the target distribution as $b\to\infty$, no matter what the starting value $\theta^{(0)}$ is (although some starting values will get you to the target sooner than others).

More importantly, for most functions g of interest,

$$rac{1}{B}\sum_{b=1}^B g(heta^{(b)}) o \mathbb{E}\left[g(heta)
ight] = \int g(heta) p(heta) d heta \quad ext{as} \quad B o \infty$$

This means we can approximate $\mathbb{E}\left[g(\theta)\right]$ with the sample average of $g(\theta^{(1)}),...,g(\theta^{(B)})$, just as in Monte Carlo approximation. \to That's why we call such approximations Markov Chain Monte Carlo (MCMC) approximations, and the procedure an MCMC algorithm.

Introduction to rstanarm

The Gibbs sampler: an example

Normal model $y_i|\theta,\phi \sim \mathcal{N}(\theta,\phi) \forall i$, with the semi-conjugate prior distributions:

$$\theta|\theta_0, \phi_0 \sim \mathcal{N}(\theta_0, \phi_0), \quad \phi|\nu_0, S_0 \sim \mathcal{IG}(\nu_0/2, S_0/2).$$

If a sample \mathbf{y} is observed, the full conditionals of the model parameters are:

$$\theta | \phi, \mathbf{y} \sim \mathcal{N}(\theta_1, \phi_1), \quad \phi | \theta, \mathbf{y} \sim \mathcal{IG}(a_1, b_1);$$

where

$$\theta_1 = \frac{\frac{\theta_0}{\phi_0} + \frac{n\bar{y}}{\phi}}{\frac{1}{\phi_0} + \frac{n}{\phi}}, \quad \phi_1 = \frac{1}{\frac{1}{\phi_0} + \frac{n}{\phi}};$$

and

$$a_1 = \frac{\nu_0}{2} + \frac{n}{2}, \quad b_1 = \frac{S_0}{2} + \frac{\sum_{i=1}^{n} (y_i - \theta)^2}{2}.$$

The posterior distributions can be easily obtained by MCMC methods.

See R script: example_MCMC.R

