

2022

Parte A

- **1**. **Populações estelares.** Descreva as características das estrelas de População I e População II (idades, metalicidades, tipos espectrais, distribuição espacial na Galáxia).
- 2. Meio interestelar. Que tipo de observações (comprimentos de onda e mecanismos físicos) precisam ser feitas para se detectar hidrogênio neutro (HI), hidrogênio ionizado (HII), hidrogênio molecular (H₂) e poeira no meio interestelar?
- 3. **Supernovas.** Quais os progenitores de supernovas do tipo II e do tipo Ia? O Fe é produzido predominantemente em qual delas? E os elementos- α (como O)?

Parte B

- 4. Distâncias e magnitudes. Um aglomerado globular tem magnitude aparente V=+13.0 e magnitude absoluta $M_V=-4.2$. Sua distância é de 9.0 kpc da Terra.
 - a) Qual a extinção interestelar entre esse aglomerado e a Terra?
 - b) O aglomerado globular tem ascensão reta $09^{\rm h}25^{\rm m}23^{\rm s}$ e declinação $-54^{\circ}42'55''$. Qual sua distância Galactocêntrica?
- 5. Disco estelar. Considere que o disco estelar da Galáxia tenha densidade volumétrica dada por:

$$\rho(R, z) = \frac{M_{\rm d}}{4\pi R_0^2 z_0} \exp\left(-\frac{R}{R_0}\right) \operatorname{sech}^2\left(\frac{z}{z_0}\right)$$

onde R_0 =3.5 kpc e z_0 =0.5 kpc são os comprimentos de escala radial e vertical, e $M_{\rm d}$ = 5 × 10¹⁰ M $_{\odot}$ é a massa total do disco estelar.

- a) Faça um gráfico comparando a aparência das funções $e^{-|x|}$ e $\mathrm{sech}^2(x)$
- b) Obtenha a densidade superficial de massa $\Sigma(R)$
- c) Na posição do Sol, calcule o valor da densidade volumétrica
- d) Calcule o raio efetivo de um disco exponencial
- **6**. **Curva de rotação.** O pefil de densidade de Hernquist (1990) é conveniente para representar o halo de matéria escura:

$$\rho(r) = \frac{M_{\rm h}}{2\pi} \frac{a}{r} \frac{1}{(r+a)^3}$$

- a) Calcule a massa cumulativa M(r)
- b) Calcule a curva de rotação v(r) e faça um gráfico
- c) Encontre alguma combinação plausível de valores para $M_{\rm h}$ e a que faça a curva de rotação ser vagamente similar à da Via Láctea na vizinhança solar
- 7. **Centro Galáctico.** No centro Galáctico, a estrela S2 tem uma órbita aproximadamente kepleriana ao redor de Sgr A*. A massa do buraco negro pode ser estimada apenas com informações da figura 7 de Schödel et al. (2003), reproduzida a seguir:

- a) Meça o semi-eixo maior da órbira em arcsec e converta-o para AU
- b) Estime o período orbital usando as datas das observações
- c) Calcule a massa com a terceira lei de Kepler
- d) Meça a distância pericêntrica de S2 e expresse-a em AU
- e) Calcule o raio de Schwarzschild $r_s = 2GM/c^2$ de um buraco negro com tal massa, em AU

Parte C

8. Determinação das constantes de Oort usando dados do Gaia

Partindo de dados observacionais do Gaia, vamos determinar as constantes de Oort A e B usando as velocidades perpendiculares à linha de visada:

$$v_{t}(l) = Ad\cos 2l + Bd \tag{1}$$

onde d é a distância da estrela e l é sua longitude Galáctica. Os passos são os seguintes:

- (i) Selecione uma amostra de cerca de 300 000 estrelas no catálogo do Gaia. Plote 4 figuras para conferir a distribuição espacial das estrelas selecionadas: coordenadas equatoriais (α, δ) , coordenadas Galácticas (l, b) e coordenadas retangulares heliocêntricas (x, y) e (x, z).
- (ii) Transforme o movimento próprio de coordenadas equatoriais para coordenadas Galácticas.
- (iii) Plote um gráfico de $v_t(l)$ para as estrelas muito próximas do Sol. Ajuste uma função para obter a velocidade do Sol (u_0, v_0) relativa ao LSR.
- (iv) Plote os movimentos próprios em longitude, já corrigidos pela velocidade do Sol. Ajuste uma função para obter *A* e *B*.
- (v) Compare suas estimativas aproximadas de *A* e *B* com resultados recentes da literatura (e.g. Bovy, 2017; Li et al., 2019).
- (vi) Combine A e B para obter a velocidade angular do Sol. Supondo que $R_0 = 8$ kpc já é conhecido, calcule a velocidade circular do Sol e a massa interna ao círculo solar.

A seguir, algumas dicas adicionais:

(i) Seleção da amostra de estrelas

Os dados do Gaia são publicamente disponíveis e podem ser acessados pela página Gaia Archive Search. A busca pode ser feita clicando nos parâmetros desejados, ou pela linguagem Astronomical Data Query Language (ADQL). Um exemplo simples de query seria:

```
SELECT ra, dec, parallax
FROM gaiaedr3.gaia_source
WHERE parallax > 10 AND parallax < 15</pre>
```

Essa busca seleciona todas as estrelas do catálogo EDR3 que tenham $10 < \varpi < 15\,\mathrm{mas}$, retornando as colunas ascensão reta, declinação e paralaxe. A tabela resultante pode ser baixada em diferentes formatos. No link Gaia DR3 Documentation: Main Tables encontram-se os nomes e unidades de todas as colunas disponíveis.

Para selecionar a amostra de estrelas na vizinhança solar, aplique os seguintes critérios:

- distâncias menores que 500 pc
- latitudes Galácticas menores que 2° em módulo
- erros de paralaxe menores que 2%
- erros de movimento próprio menores que 2%

(ii) Transformação das coordenadas

Na aproximação adotada, idealmente todo o movimento próprio estaria no plano da Galáxia: isto é, ao longo da direção l. Então no lugar de v_t/d da equação 1 precisamos usar a componente μ_l :

$$\mu_l(l) = A\cos 2l + B \tag{2}$$

O movimento próprio nos dados do Gaia vem expresso em termos das componentes ao longo da ascensão reta α e da declinação δ , ou mais precisamente: μ_{α}^* e μ_{δ} , sendo $\mu_{\alpha}^* = \mu_{\alpha} \cos \delta$. Precisamos transformar essas coordenadas equatorias para coordenadas Galácticas μ_l^* e μ_b , sendo $\mu_l^* = \mu_l \cos b$. Essa transformação está expressa de uma forma conveniente em Poleski (2013). Para mais detalhes, ver notas do apêndice da tese de doutorado do J. Bovy.

(iii) Correção da velocidade do Sol com relação ao LSR

O gráfico de μ_l em função de l não exibe o comportamento esperado pela equação 2. Ocorre que as velocidades observadas são todas medidas em relação ao referencial do Sol, e não do LSR. E o Sol tem uma velocidade peculiar com relação ao LSR, cujas componentes são u_0, v_0, w_0 , respectivamente nas direções radial, tangencial e vertical. Vamos ignorar a componente vertical. No plano da Galáxia, desejamos obter as projeções de u_0 e de v_0 na direção perpendicular à linha de visada – é essa a direção que afeta μ_l . A velocidade peculiar do Sol com relação ao LSR resulta ser $u_0 \sin l + v_0 \cos l$ (confira). Os movimentos próprios observados na realidade são velocidades com relação a essa velocidade do Sol:

$$\mu_l^{\text{obs}} = \mu_l - \frac{1}{d} (u_0 \sin l + v_0 \cos l) \tag{3}$$

Portanto, para obter o μ_l real da equação 2, a correção consiste em somar esse termo aos μ_l observados:

$$\mu_l = \mu_l^{\text{obs}} + \frac{1}{d} (u_0 \sin l + v_0 \cos l) \tag{4}$$

Para determinar a velocidade peculiar do Sol diretamente a partir dos dados, vamos selecionar uma sub-amostra de estrelas muito próximas do Sol, digamos, $d < 100\,\mathrm{pc}$. Tais estrelas essencialmente acompanham o movimento do Sol, de modo que os efeitos da rotação diferencial devem ser bastante pequenos. Por isso, a média das velocidades dessas estrelas é um reflexo da velocidade do Sol com relação ao LSR (com o sinal oposto). Então as velocidades transversas das estrelas próximas são $\mu_l d$ (em km s⁻¹). Plotando essa grandeza em função de l podemos ajustar a função $-(u_0 \sin l + v_0 \cos l)$ obtendo os coeficientes u_0 e v_0 .

Finalmente, aplicando a correção da equação 4, podemos plotar μ_l em função de l e ajustar a equação 2 para obter os coeficientes A e B.

Referências

Bovy J., 2017, MNRAS, 468, L63

Li C., Zhao G., Yang C., 2019, ApJ, 872, 205

Poleski R., 2013, arXiv e-prints, p. arXiv:1306.2945

Schödel R., Ott T., Genzel R., Eckart A., Mouawad N., Alexander T., 2003, ApJ, 596, 1015