사물인터넷 (Internet of Things)

김태운

목차

- IP 기반의 WPAN, WLAN 기술
 - 6LoWPAN
 - Thread

- Non-IP 기반의 WPAN 기술
 - 많은 WPAN 네트워크 기술은 TCP/IP 기술과 공통점이 있지만, TCP/IP 프로토콜을 직접 구현하여 사용하고 있지 않음 (예: Bluetooth, Zigbee, Z-Wave 등)
 - 단, Zigbee-IP, IP over Bluetooth 등, IP 프로토콜에 기반한 버전이 개발된 경우가 있음
- IP (Internet Protocol)을 WPAN 기술에 적용
 - IP 프로토콜을 사용하는 경우, IP 프로토콜의 기능을 실행하기 위해 CPU/MEM 자원을 소모해야 함
 - 하지만, TCP/IP 를 통한 통신이 가능한 IoT 서비스를 구축할 수 있다는 장점이 있음
 - TCP/IP 통신 기술을 사용하는 기기와의 호환 가능
 - 사물인터넷 기기간 통신은 다양한 WPAN 기술을 사용하지만, WPAN 영역을 제외하면 TCP/IP 통신에 기반한 인터넷을 경유하여 목적지(예: 데이터 센터, 사설 서버 등)에 전달됨
 - 즉, WPAN 게이트웨이 이후로는 TCP/IP 통신 기술이 사용됨
 - IP 프로토콜은 전세계적으로 사용하는 네트워킹 표준 기술이며, IP 기술을 사용하면 다양한 장점을 얻을 수 있음 (다음 페이지...)

■ IP 프로토콜의 장점

- Ubiquity:
 - 대부분은 네트워크 및 대부분의 운영체제는 IP 프로토콜을 지원하므로, 대부분의 운영 환경에서 사용할 수 있음
- Longevity, Standard-based :
 - IP 프로토콜은 IETF 기관에 의해 표준으로 관리되며, 오랜 기간동안 사용 및 개선되어 왔음 => 프로토콜의 정확성 및 안정성이 검증되었음.
 - 또한, 다양한 IP 네트워크 모니터링 및 관리 도구가 개발되어 사용 가능함. => 다양한 도구를 사용할 수 있음.
- Scalability (확장성):
 - IP 프로토콜은 대규모의 네트워크 환경에서도 잘 동작하며, IPv6 버전을 사용하면 거의 무한대에 가까운 단말을 수용할 수 있는 네트워크를 구성할 수 있음
 - IPv4: 32비트 주소 공간을 사용하는 주소체계
 - IPv6 : v4의 제한된 주소 공간 문제를 해결하기 위해, 128비트 주소 공간으로 확장함. 또한, 헤더 구조를 단순화 하여 라우터의 오버헤드를 줄임 (참고: 다음페이지)
- Reliable Transmission (안정적 메시지 전송):
 - IP 프로토콜은 connection-less 통신 기반의 안정적인 패킷 전송을 위한 프로토콜임. 게다가, 상위 Transport Layer 의 도움으로 안정적인 데이터 전송 매커니즘 구현이 가능함(예: TCP 계층의 ACK 매커니즘 등)

■ 참고: IPv4 Header 와 IPv6 Header 구조 비교

헤더 구조가 단순해짐 => IP 계층의 기능이 간소화됨

IPv4 Header

IPv6 Header

Version	IHL	Type of Service	Total Length		Version	Traffic Class	Flow Label	
Identification			Flags	Fragment Offset	Payload Length Next Hop		Hop Limit	
Timte to Live	e F	Protocol	Heade	er Checksum				
Source Address					Source Address			
Destination Address								
Options				Padding				
Legend								
Field's name kept from IPv4 to IPv6					Destination Address			
Field not kept in IPv6								
Name and	d position	changed	in IPv6					
New field								

- 참고: IP 의 상위 계층인 전송 계층(Transport Layer)
 - 대표적인 4계층 프로토콜은 TCP, UDP 이며, 4계층 프로토콜은 원격 단말간 데이터 전송(end-to-end transmission) 을 담당함
 - TCP: connection-oriented transmission
 - 3-way handshake 를 기반으로 connection 을 수립함
 - Re-transmission, sequence number, flow control (sliding window), congestion avoidance 등의 기능을 제공하여, 안정적인 데이터 전송이 필요한 응용 분야에 적합함
 - UDP: connection-less transmission
 - 기능 및 데이터 프레임 구조가 단순함
 - 단, 안정적인 데이터 전송을 보장하지 않음

- 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Network)
 - IEEE 802.15 기반 WPAN 네트워크에서 IPv6 기반의 주소를 사용하고 IP 프로토콜로 통신을 하기 위한 기술
 - 6LoWPAN 은 IEEE 802.15.4 MAC 계층과 IPv6 계층 사이에 위치하며, 주요 기능은 헤더 압축, 패킷 단편화, 계층2 포워딩 등이 있음

■ 6LoWPAN 특징

- 저전력 및 250kbps 의 적은 대역폭 사용
- star, mesh 토폴로지 지원
- 센서 노드가 능동적으로 외부 IP 네트워크와 통신 가능
- IEEE 802.15.4 WPAN 네트워크와 외부의 IP 네트워크 인프라 연동
 - 단, 6LoWPAN 과 외부 IP 네트워크와의 상호운영을 위해서는 게이트웨이(edge router)가 필요
- IPv6 패킷의 라우팅, 단편화/재조립 가능
- IEEE 802.15.4의 16/64 비트 주소를 이용한 IPv6 주소 자동 생성

■ 6LoWPAN 프로토콜 스택

6LoWPAN Protocol Stack

HTTP, CoAP, MQTT, Etc. UDP, TCP Security: TLS/DTLS IPV6, RPL 6LoWPAN IEEE 802.15.4 MAC Layer IEEE 802.15.4 PHY

Simplified OSI Model

5. Application Layer
4. Transport Layer
3. Network Layer
2. Data Link Layer
1. Physical Layer

■ 6LoWPAN 네트워크 구성

네트워크를 구성하는 디바이스 종류

- Router:
 - 데이터를 중개하는 역할 수행
- Host:
 - 데이터를 중개하지 못하고, 생성 또는 소비하는 노드(단말).
 - Host 단말은 배터리 절약을 위해 sleep 상태로 전환할 수 있으며, sleep 하는 동안 수신할 데이 터는 parent 인 router 노드가 임시로 보관하고, 추후에 전달함
- Edge router:
 - 게이트웨이 역할을 담당하며, 외부 네트워크와 WPAN 네트워크 간의 데이터 중개를 담당

참고:

• Mesh 토폴로지에서는 edge router 가 네트워크 관리 기능을 수행. 단, edge router 가 없는 ad hoc 네트워크 환경에서는 router node 가 네트워크 관리 기능을 수행

Thread

- 스마트 홈을 타겟으로, IPv6 에 기반하여 개발된 IoT 네트워킹 기술
- 2014년 Alphabet, Qualcomm, Samsung, ARM, Silicon Labs 등으로 구성된 Thread Group Alliance 에 의해 출시됨
- IP 프로토콜을 기반으로 동작하고, 저전력 통신을 지원하는 메시 네트워크 토폴로지를 지원함
 - 최대 250대의 기기를 하나의 mesh 네트워크로 구성 / 관리 가능
- IEEE 802.15.4 표준(MAC/PHY) 및 6LoWPAN 에 기반하여 동작함
 - 2.4GHz 대역에서 동작하며, 250 kbps 전송속도 지원

- Thread : 디바이스 종류(Device types)
 - Thread 는 FTD 와 MTD 두 개의 device type 을 정의함
 - FTD(Full Thread Device): 상대적으로 고 성능의 단말이며, Thread 네트워크 내에서 다양한 역할 수행 가능
 - MTD(Minimal Thread Device): 저 전력 및 저 사양 단말로, 데이터를 생성/소비하는 역할만 수행

- Thread : Device 의 역할 (roles)
 - Border router: 게이트웨이에 해당하며, Thread 네트워크와 외부 인터넷을 연결
 - Thread router : mesh 네트워크에서 메시지 라우팅을 처리하며, 항상 active 상태를 유지 (sleep state 로 전환하지 않으며, 배터리 소모량이 큼)
 - Lead device: thread router 는 추가로 lead device 의 역할을 담당하며, REED device 를 router 로 역할을 upgrade 하는 등의 결정을 내림
 - REED (router-eligible end device) : 단말(end device) 중에서 router 의 역할을 수행할 수 있는 device (REED 단말은 라우팅을 수행하지 않음)
 - End device (단말): 데이터를 생성 또는 소비하는 단말
 - Sleepy end device : 주기적으로 on/off 상태를 전환하는 단말로, on 상태가 되면 parent 단말 하고만 통신을 수행함 (배터리 사용량 최소화)

■ Thread: Protocol Stack

Thread Protocol Stack

HTTP, CoAP, MQTT, Etc. Mesh Link Establishment (MLE) & TLS/DTLS UDP Distance Vector Routing IPV6 6LoWPAN IEEE 802.15.4 MAC Layer IEEE 802.15.4 PHY

Simplified OSI Model

5. Application Layer
4. Transport Layer
3. Network Layer
2. Data Link Layer
1. Physical Layer

