Quiz 16

Name: Key

You must show your work to get full credit.

1. Let n be a positive integer and $a, b \in \mathbb{Z}$. Define $a \equiv b \pmod{n}$.

2. If a and b have the opposite parity, then $b \equiv a + 1 \pmod{2}$.

$$74-94 = (x-1)(x^3+x^2y+xy^2+y^3)$$

= $94(x^3+x^2y+xy^2+y^3)$
= 84
where $12 = 9(x^3+x^2y+xy^2+y^3) \in 22$, 50
 $12 \times 12 = 12$