

智能小车车灯实验

目录

→,	实验概述		 	.2
二、	实验器材		 	.2
三、	知识要点		 	.2
四、	实验原理			.2
五、	代码编写	<i>~</i> ``		.3
六、	硬件连接及运行效果		 	.5
七、	思维发散及课后作业		 	.6
官网	: www.xiao-r.com		 	.6
论坛	: www.wifi-robots.com			6
官方	商城: wifi-robots.taobao.com	a distance in the second		6
微信	公众号:			.6

一、实验概述

本文主要介绍小车电机实验。包括前进调试、前后左右综合实验、花式动作。

二、实验器材

三、知识要点

- 1、智能小车转向方式 PWM 调速
- 2、PWM 调速
- 3、Arduino 模拟输出

四、实验原理

Arduino 智能小车有四个电机马达,我们将左侧的俩个电机并联起来就形成了一组电机,那么左侧的俩个电机运动就是一致的,这样就可以把左侧的俩个电机看作是上图中的 M1,同理右侧的俩个也是一样,看作是 M2

运动状态分析

上节我们讲到主芯片通过 4 个数字输出 IO 引脚 IN1、IN2、IN3、IN4, 2 个模拟输出 IO 引脚 ENA、ENB 连接 74HC244 隔离后输出对应信号 I1、I2、I3、I4, EA、EB 再连接

至 TB6612 电机驱动芯片并让电机驱动芯片输出对应的电机驱动电压 OUT1、OUT2、OUT3、OUT4,以及俩组电机输出端的电压(即转速)。下面我们就分析各运动状态这些引脚对应的状态。

转向 状态	IN1	IN2	IN3	IN4	E NA	EN B	I1	12	13	I4	EA	ЕВ	OU T1	OU T2	OU T3	OU T4
前进	1	0	1	0	1	1	1	0	1	0	1	1 "	1	0	1	0

注:1代表高电平,0代表低电平

前进

转向	IN1	IN2	IN3	IN4	E	EN	I1	I2	13	I4	EA	E B	OU	OU	OU	ΟU
状态					NA	В							T1	T2	Т3	T4
前进	0	1	0	1	1	1	0	1	0	1	1	1	0	1	0	1

注:1代表高电平,0代表低电平

后退

转向	IN1	IN2	IN3	IN4	E	EN	I1	I2	I3	I4	EA	E B	ΟU	OU	OU	ΟU
状态			1 5 5 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5		NA	В	0.00				200		Т1	T2	T3	T4
75/11		100 a		0		500 T		1		0				3000	-	
前进	0	1	1	0	1	1	0	1)		0	1	1	0	1	1	0

注:1代表高电平,0代表低电平

	11653								1921			1/65)					
转向	IN1	IN2	IN3	IN4	E	EN	I1	I2	I3	I4	EA	ΕB	OU	OU	OU	OU	
状态					NA	В							Т1	T2	T3	T4	
前进	1	0	0	1	1	1	1	0	0	1	1	1	1	0	0	1	

注:1代表高电平,0代表低电平

左转右转原理

很多人不理解,为什么小车都是固定方向的,也没有方向盘可以转动,那怎么可以让小车转向呢,其实这个可以参考坦克的转向方式,利用俩边轮子的速度差,当一遍轮子速度比另一边轮子速度小的时候,车子在前进过程中就会向速度小的一边偏转,因此我们通过控制俩个使能引脚电压输出 ENA、ENB 来控制小车的转速及方向。

上图我们转向方式更为简单,我们固定了小车俩边的转速,只改变俩边的电机轮子的转动方向,当需要左转或右转的时候,只需要将左转或右转那边的轮子的转动方向设置为往后转即可,这样的话小车就可以原地转向。

五、代码编写 #coding:utf-8 import os import time import RPi.GPIO as GPIO

ENA = 13 #//L298 使能 A

ENB = 20 #//L298 使能 B

IN1 = 19#//电机接口 1

IN2 = 16#//电机接口 2

IN3 = 21#//电机接口 3

IN4 = 26#//电机接口 4

#######电机初始化为 LOW#########

GPIO.setup(ENA,GPIO.OUT,initial=GPIO.LOW)

GPIO.setup(ENB,GPIO.OUT,initial=GPIO.LOW)

GPIO.setup(IN1,GPIO.OUT,initial=GPIO.LOW)

GPIO.setup(IN2,GPIO.OUT,initial=GPIO.LOW)

GPIO.setup(IN3,GPIO.OUT,initial=GPIO.LOW)

GPIO.setup(IN4,GPIO.OUT,initial=GPIO.LOW)

#######电机电机前进函数######### def Motor_Forward():

print 'motor forward' GPIO.output(ENA,True) GPIO.output(ENB,True) GPIO.output(IN1,True) GPIO.output(IN2,False) GPIO.output(IN3,True) GPIO.output(IN4,False) ########电机电机后退函数######### def Motor Backward(): print 'motor_backward' GPIO.output(ENA,True) GPIO.output(ENB,True) GPIO.output(IN1,False) GPIO.output(IN2,True) GPIO.output(IN3,False) GPIO.output(IN4,True) #######电机电机左转函数######### def Motor TurnLeft(): print 'motor turnleft' GPIO.output(ENA,True) GPIO.output(ENB,True) GPIO.output(IN1,True) GPIO.output(IN2,False) GPIO.output(IN3,False) GPIO.output(IN4,True) #######电机电机右转函数######### def Motor TurnRight(): print 'motor_turnright' GPIO.output(ENA,True) GPIO.output(ENB,True) GPIO.output(IN1,False) GPIO.output(IN2,True) GPIO.output(IN3,True) GPIO.output(IN4,False)

#######电机电机停止函数#########

def Motor_Stop():

print 'motor stop'

GPIO.output(ENA,True)

GPIO.output(ENB,True)

GPIO.output(IN1,False)

GPIO.output(IN2,False)

GPIO.output(IN3,False)

GPIO.output(IN4,False)

while True:

Motor Forward() ##前进

time.sleep(1) ##等待 1 秒

Motor_Backward() ##后退

time.sleep(1) ##等待 1 秒

Motor_TurnLeft() ##左转

time.sleep(1) ##等待 1 秒

Motor_TurnRight() ##右转

time.sleep(1) ##等待 1 秒

Motor_Stop() ##停止

time.sleep(1) ##等待 1 秒

六、硬件连接及运行效果

七、思维发散及课后作业

整个实验中我们没有对小车进行调速处理,只是简单的给与电机最大速度运转或不转,我们可以使用 RPI. GPIO 模块的脉宽调制 (PWM) 功能对小车进行调速

创建一个 PWM 实例:

p = GPIO.PWM(channel, frequency)

启用 PWM:

p.start(dc) # dc 代表占空比(范围: 0.0 <= dc >= 100.0)

更改频率:

p.ChangeFrequency(freq) # freq 为设置的新频率,单位为 Hz

更改占空比:

p.ChangeDutyCycle(dc) # 范围: 0.0 <= dc >= 100.0

停止 PWM:

p.stop()

以下为使 LED 每两秒钟闪烁一次的示例:

import RPi.GPIO as GPIO GPIO.setmode(GPIO.BOARD) GPIO.setup(12, GPIO.OUT)

p = GPIO.PWM(12, 0.5)

p.start(1)

input('点击回车停止: ') # 在 Python 2 中需要使用 raw input

p.stop()

GPIO.cleanup()

官网: www.xiao-r.com

论坛: www.wifi-robots.com

官方商城: wifi-robots.taobao.com

微信公众号:

