CS 230 – Introduction to Computers and Computer Systems

Module 1 – Arithmetic, Hardware, Data

Overview

- number representation
- boolean algebra and gate logic
- integer arithmetic
- non-numerical data types
- floating point

Number Representation

- radix representation
 - radix also know as base
- writing natural numbers using a finite alphabet
- given an n-digit word in base r

descending, zero-indexed positioning

$$d_{n-1}d_{n-2}d_{n-3}...d_3d_2d_1d_0$$

a collection of symbols, e.g. in decimal system, 0-9 is the alphabet and 1 is a symbol

• integer value is $\sum_{i=0}^{n-1} d_i r^i$

Radix Representation

- humans: base-10, decimal
 - why? because humans have 10 fingers/digits on their hands
- computers: base-2, binary
 - why? electrical simplicity

allows for logical operations to be performed by electrical switching circuits

- analog/digital conversion (high vs. low voltage)
- low-level decimal conversion? Only if necessary
 - storage expansion / waste

Examples

135_{dec}

$$5.*10^{0} + 3.*10^{1} + 1*10^{2} = 135$$

not too surprising...

 1440_{sep}

$$0.*7^{0} + 4.*7^{1} + 4.*7^{2} + 1.*7^{3} = 567$$

 $A32_{hex}$

$$2 \cdot *16^{0} + 3 \cdot *16^{1} + 10 \cdot *16^{2} = 2610$$

- use letters A...F to express digits > 9 i.e. double-digit numbers
- A-10, B-11, C-12, D-13, E-14, F-15

Conversion from Decimal

- repeatedly divide by target base
- remainders generate digits
 - from right to left...
- example: 3219_{dec}

```
3219/16 = 201 R 3

201/16 = 12 R 9

12/16 = 0 R 12
```

```
= C93_{hex}
```

```
def convert_frm_dec(base, num):
    quo = num
    digits = []
    while quo != 0:
        digits.append(quo mod base)
        quo = quo // base
    final = 0
    for i in range(len(digits)):
        final += digits[i] * (10 ** i) #unless hex
    return final
```

Binary Numbers

- only 0 and 1 as digits represent low and high voltage
- example

11101100_{bin}

$$2^2 + 2^3 + 2^5 + 2^6 + 2^7 = 236$$

Equivalent to: $0(2^0) + 0(2^1) + 1(2^2) + ...$ Since 0 and 1, we can skip digits that are 0

permits simple binary operations

Easy way to convert to dec for binary for small binary values: write the value of 2ⁱ above the i-th digit, and add the products of the digits and values together

Binary / Hex Conversion

$$0000_{\text{bin}} = 0_{\text{hex}}$$

$$0001_{bin} = 1_{hex}$$

$$0010_{bin} = 2_{hex}$$

$$0011_{bin} = 3_{hex}$$

. . .

$$1111_{\text{bin}} = F_{\text{hex}}$$

Keep shifting and adding 1 from the rightmost position to get all hex symbols, e.g.

Boolean Algebra

- algebra to express binary logic
- basic operators: OR, AND, NOT
- OR operators: V
 - A V B
- AND operators: A
 - A ∧ B
- NOT operators: ¬ -
 - \bullet \neg A \overline{A}

AND

Truth Table

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

- Logic Gates: Digital systems are constructed using logic gates that implement functions like AND, OR, NOT.
 - Logic gates are implemented using electronic circuits

Truth Tables and Gates

OR	Χ	Υ	Result	Logic Gate Symbols
$X \vee Y$	0	0	0	A—T
X + Y	0	1	1	B—) —out
	1	0	1	
	1	1	1	
AND	X	Υ	Result	
$X \wedge Y$	0	0	0	
X * Y	0	1	0	A)—out
	1	0	0	B
	1	1	1	
NOT	Χ	Result		
¬X	0	1		A— >O—out
	1	0		
				1-11

Other Rules

Let A be a logic result, i.e. A is in [True, False]

Identities

$$A \vee 0 = A$$

$$A \wedge 1 = A$$

$$A \lor A = A$$

$$A \wedge A = A$$

Involution

$$\neg(\neg A) = A$$

Annihilators

$$A \land 0 = 0$$
 In an AND stmt, if at least one component is 0, the entire stmt results in 0

In an OR stmt, if at least one

Complements

$$A \lor \neg A = 1$$
 One of [A, not A] is 1

$$A \land \neg A = 0$$
 One of [A, not A] is 0

Other Rules - 2

Commutative Law

$$A + B = B + A$$
 and $A * B = B * A$

$$A \lor B = B \lor A$$
 and $A \land B = B \land A$

Associative Law

$$A + (B + C) = (A + B) + C$$
 and $A * (B * C) = (A * B) * C$

$$A \lor (B \lor C) = (A \lor B) \lor C$$
 and

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$

Other Rules - 3

Distributive Law

$$A * (B + C) = A * B + A * C$$

 $A \wedge (B \vee C) = A \wedge B \vee A \wedge C$

De Morgan's Law

$$\neg (A \lor B) = \neg A \land \neg B$$

$$\neg (A \land B) = \neg A \lor \neg B$$

EXCLUSIVE OR

ONLY ONE of X,Y can be true for the statement to be true

	VO	
lacktriangle	XO	\sqcap

X	Υ	Result
0	0	0
0	1	1
1	0	1
1	1	0

EXCLUSIVE OR

VO	
XO	R

 $X \oplus Y$

X	Υ	Result
0	0	0
0	1	1
1	0	1
1	1	0

$$X \oplus Y = (\neg X \wedge Y) \vee (X \wedge \neg Y)$$

$$X \oplus Y = \neg(X \land Y) \land (X \lor Y)$$

$$X \oplus Y = (\neg X \vee \neg Y) \wedge (X \vee Y)$$

NOT AND

 $A \mid B = not(A AND B)$

•	NAND
X	Y

Χ	Υ	Result
0	0	1
0	1	1
1	0	1
1	1	0

Whereas AND only produces FALSE unless both X,Y true, NAND only produces FALSE iff both X,Y true

NAND is functionally complete (as is NOR)

$$\neg X = X \mid X$$

FC set of operators: any Boolean expression can be reexpressed by some combination of the operators in the set

$$X \wedge Y = (X \mid Y) \mid (X \mid Y)$$

$$X \vee Y = (X \mid X) \mid (Y \mid Y)$$

- = NOT(NOT(X AND Y) AND NOT(X AND Y))
- = (X AND Y) OR (X AND Y) by DeMorgan's Law
- = (X AND Y)
- = NOT(NOT(X AND X) AND NOT(Y AND Y))
- = (X AND X) OR (Y AND Y) by DeMorgan's Law
- = X OR Y

Bytes

1 byte (B)	8 bit
1 kilobyte (K/Kb)	2 ¹⁰ byte = 1024 byte
1 megabyte (M/Mb)	2 ²⁰ byte = 1024 Kb
1 gigabyte (G/Gb)	2 ³⁰ byte = 1024 Mb
1 terabyte (T/Tb)	2 ⁴⁰ byte = 1024 Gb
1 petabyte (P/Pb)	2 ⁵⁰ byte = 1024 Tb
1 exabyte (E/Eb)	2 ⁶⁰ byte = 1024 Pb
1 zettabyte (Z/Zb)	2 ⁷⁰ byte = 1024 Eb
1 yottabyte (Y/Yb)	280 byte = 1024 Zb

Binary Addition

- textbook procedure
- add digits right to left (least significant bit to most significant bit)
 - include carry-over

Carry-over: similar to how we carry-over the 1 in decimal addition when the sum >= 10, we carry over the 1 in binary addition when the sum >= 2

e.g. 011 + 010 = 101

2-Bit Addition

Truth Table

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Sum = ____
- Carry = ____

Half Adder

combine XOR and AND gate

- Sum and Carry
- Carry-in?

Full Adder

2-Bit Addition with Carry

- multiple bits: need to include carry
- Truth Table

Α	В	Carry _{in}	Sum	Carry _o
0	0	0	0	out O
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

2-Bit Addition with Carry

Sum: 1 or 3 bits set

 $A \oplus B \oplus C_{in}$

Carryout: if at least 2 of A,B,C is 1, the carryout will always be 1 (as the sum >= 2)

• C_{out} : 2 or 3 bits set Using truth tables, we see that A v B = (A ^ B) v (A XOR B) (A A B) V (A A C_{in}) V (B A C_{in}) = (A*B) + (A*C_in) + (B*C_in) = (A*B) + ((A + B)*C_in) = (A*B) + ((A * B) + (A XOR B))*C_in) = (A*B) + ((A * B) + (A XOR B))*C_in) = (A*B) + (A*B) + (A*B) + (A XOR B)*C_in = (A*B) + (A*B) + (A XOR B)*C_in = (A*B) + (

Full Adder

comprised of two half adders and OR

