Assignment #2 CIS 427/527

Group 2

January 20, 2016

1

Since two of the men are telling the truth, we have a proposition of the form $P = (A \wedge B) \vee (A \wedge C) \vee (B \wedge C)$.

- If Adams is telling the truth, then Brown is lying $(A \implies \neg B)$.
- If Brown is telling the truth, then both Adams and Clark are lying $(B \implies (\neg A \land \neg C))$.
- If Clark is telling the truth, then Brown is lying $(C \implies \neg B)$.

If Brown were telling the truth, then P could never be satisfied, therefore Brown is lying, which makes him the killer.

2

2. Show that $((\rightarrow \notin PROP)$

Suppose $((\rightarrow \in X \text{ and } X \text{ satisfies (i), (ii), (iii) of Definition 2.1.2.}$ We claim that $Y = X \setminus \{((\rightarrow) \text{ also satisfies (i), (ii), and (iii).}$

- (i) $\perp, p_i \in Y$,
- (ii) $\varphi, \psi \in Y$ and $(\varphi \Box \psi) \neq ((\rightarrow, \text{ it is clear that } (\varphi \Box \psi) \in Y)$
- (iii) Similarly, $\varphi \in Y$ and $(\neg \varphi) \neq ((\rightarrow, \text{ so } (\neg \varphi) \in Y))$

Therefore X is not the smallest set satisfying (i), (ii), and (iii), so ($(\rightarrow \text{ cannot belong to } PROP$.

7. (a) Determine the trees of the proposition in Exercise 1

$$(\neg p_2 \to (p_3 \lor (p_1 \leftrightarrow p_2))) \land \neg p_3$$

 $(p_7 \to \neg \bot) \leftrightarrow ((p_4 \land \neg p_2) \to p_1$

 $(((p_1 \rightarrow p_2) \rightarrow p_1) \rightarrow p_2 \rightarrow p_1)$

(b) Determine the propositions with the trees given $\neg\neg\neg\bot$

$$(p_0 \to \bot) \to ((p_0 \leftrightarrow p_1) \land p_5)$$
$$\neg((\neg p_1) \to (\neg p_1))$$

9. Show that a proposition with n connectives has at most 2n+1 subformulas

Base Case A proposition P with zero connectives has $\leq 2(0) + 1 = 1$ subforumla(s).

Inductive Case Inductive Hypothesis: A proposition φ with n connectives has at most 2n+1 subformulas, where $s(\varphi)$ gives the set of subformulas.

Assume propositions p,q with $n,m \le n$ connectives resp., both of which have the property above. $|s(p)| \le 2n+1$ and $|s(q)| \le 2m+1$. Consider the proposition $r=(p \square q)$. r must have n+m+1=n' connectives (for the unary connective $\neg, |s(q)|$ is assumed to be 0). From the definition of s:

$$\begin{split} s(r) &= s(p) \cup s(q) \cup \{r\} \\ |s(r)| &\leq |s(p)| + |s(q)| + |\{r\}| \\ |s(r)| &\leq 2n + 1 + 2m + 1 + 1 \\ |s(r)| &\leq 2(n + m + 1) + 1 \\ |s(r)| &\leq 2n' + 1 \end{split}$$

Since the desired property holds for r the inductive hypothesis holds $\forall n \in \mathbb{N}$.

3

(a)
$$\begin{array}{c|ccccc}
 & (\neg \varphi \lor \psi) & \iff (\psi \to \varphi) & \varphi & \psi \\
\hline
 & 1 & 0 & 0 \\
 & 0 & 0 & 1 & \text{Not a tautology.} \\
 & 1 & 1 & 0 \\
 & 1 & 1 & 1
\end{array}$$

(f) $\begin{array}{c|cccc}
 & (\varphi \lor \neg \varphi) & \varphi \\
\hline
 & 1 & 0 \\
\hline
 & 1 & 1
\end{array}$ Is a tautology.

(h) $\begin{array}{c|cccc}
(\bot \to \varphi) & \varphi \\
\hline
1 & 0 & \text{Is a tautology.} \\
1 & 1 & \end{array}$

4

(a) $\varphi \models \varphi$ By definition of semantic entailment, $\varphi \models \varphi$ iff for all $v : \llbracket \varphi \rrbracket v = 1 \implies \llbracket \varphi \rrbracket v = 1$. Since $\llbracket \varphi \rrbracket v = 1 \implies \llbracket \varphi \rrbracket v = 1$ is a tautology, $\varphi \models \varphi$ holds.

(b) $\varphi \models \psi$ and $\psi \models \sigma \Longrightarrow \varphi \models \sigma$ By definition of semantic entailment, we have $\llbracket \varphi \rrbracket_v = 1 \ \forall v \Longrightarrow \llbracket \psi \rrbracket_v = 1 \ \text{and} \ \llbracket \psi \rrbracket_v = 1 \ \forall v \Longrightarrow \llbracket \sigma \rrbracket_v = 1$, by the transitive property, $\llbracket \varphi \rrbracket_v = 1 \ \forall v \Longrightarrow \llbracket \sigma \rrbracket_v = 1$.

(c) $\models \varphi \to \psi \iff \varphi \models \psi$ Since $\models \varphi \to \psi$, we know that $\llbracket \psi \rrbracket v = 1 \ \forall v$ (because if $\llbracket \psi \rrbracket v = 0$ for some v, then $\varphi \to \psi$ is not a tautology). Therefore, we can conclude that $\llbracket \varphi \rrbracket v = 1 \to \llbracket \psi \rrbracket v = 1$, since anytime $\llbracket \varphi \rrbracket v = 1$, $\llbracket \psi \rrbracket v = 1$. 1. Show by algebraic means:

(i)
$$\models (\varphi \implies \psi) \iff (\neg \psi \implies \neg \varphi)$$
 contraposition
$$\varphi \implies \psi \approx \neg \varphi \lor \psi \text{ (Thm 2.3.4.b)}$$

$$\varphi \implies \psi \approx \psi \lor \neg \varphi \text{ (Commutativity)}$$

$$\varphi \implies \psi \approx \neg \psi \implies \neg \varphi \text{ (Thm 2.3.4.b)}$$

$$\begin{array}{l} (\mathbf{v}) \models \neg(\varphi \wedge \neg \varphi) \\ \\ \neg(\varphi \wedge \neg \varphi) \approx \neg \varphi \vee \neg(\neg \varphi) \text{ (deMorgan's)} \\ \\ \neg(\varphi \wedge \neg \varphi) \approx \neg \varphi \vee \varphi \text{ (Double Negation law)} \\ \\ \neg(\varphi \wedge \neg \varphi) \approx \varphi \implies \varphi \text{ (Thm 2.3.4.b)} \\ \\ \neg(\varphi \wedge \neg \varphi) \approx \top \text{ (Absurdum)} \end{array}$$

6

We can derive this using De Morgan's laws as follows:

$$\#(p,q) = (p \lor q) \land \neg (p \land q)$$

$$= (p \lor q) \land \neg (\neg (\neg p \lor \neg q))$$

$$= (p \lor q) \land (\neg p \lor \neg q)$$

$$= \neg (\neg (p \lor q) \lor \neg (\neg p \lor \neg q))$$

7

A conjunctive normal form is a tautology iff every clause is also a tautology.

8

Let $\Gamma = \{\#\}$ (as defined in problem 6). Then it is impossible for $\llbracket \phi \rrbracket v = \llbracket \psi \rrbracket v = 1$ (due to the nature of XOR). It is therefore not the always the case that $\llbracket \phi \rrbracket v = 1$ and it is not always the case that $\llbracket \psi \rrbracket v = 1$, providing the required counterexample.

9

 $P \to Q$: True when P is false; false when P is true and Q is false.

 $P \lor Q \to P \land Q$: True when $P \iff Q$; false otherwise.

 $\neg (P \lor Q \lor R)$: True when P, Q, R are all false; false when any P, Q, R are true.

 $\neg(P \land Q) \land \neg(Q \lor R) \land (P \lor R)$: True when P is true, Q is false, R is false; false when P is false and R is false.