

Olimpiada Națională de Fizică 1-6 aprilie 2012

Pagina 1 din 4

Subi	Subject		Punctaj	
1.	Barem subject 1		10p	
a1)	$\eta = 1 - \frac{v \cdot C \cdot (T_1 - T_2) + v \cdot R \cdot T_2 \cdot \ln \frac{V_3}{V_4}}{v \cdot C \cdot (T_1 - T_2) + v \cdot R \cdot T_1 \cdot \ln \frac{V_2}{V_1}}$	1,00p	•	
	$(2 \to 3) T_1 \cdot V_2^{n-1} = T_2 \cdot V_3^{n-1}; (1 \to 4) T_1 \cdot V_1^{n-1} = T_2 \cdot V_4^{n-1}; \frac{V_2}{V_1} = \frac{V_3}{V_4}$	0,50p	2р	
	$ \eta = \frac{T_1 - T_2}{T_1 + \frac{C \cdot (T_1 - T_2)}{R \cdot \ln \frac{V_2}{V_1}}} $ $ C = 0; \ \eta_{\text{max}} = \frac{T_1 - T_2}{T_1} $	0,50p		
a2)	$C = 0; \ \eta_{\text{max}} = \frac{T_1 - T_2}{T_1}$	1,00p	1p	
a3)	S S_2 S_2 S_1 T_2 T_1 T	1,00p	1р	
b1)	$n \to \infty; C = C_V; \eta = \frac{T_1 - T_2}{T_1 + \frac{3(T_1 - T_2)}{2 \ln \frac{V_2}{V_1}}}$	0,50p	0,5p	
b2)	ρ ρ_1 ρ_2 ρ_2 ρ_2 ρ_2 ρ_3 ρ_2 ρ_3 ρ_4 ρ_4 ρ_5 ρ_7	1,00p	1р	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada Națională de Fizică 1-6 aprilie 2012

Pagina 2 din 4

c1) $n = 0; C = C_p; \eta = \frac{T_1 - T_2}{T_1 + \frac{5(T_1 - T_2)}{2\ln\frac{p_1}{p_2}}}$	0,50p	0,5p
C2) V 3 1	1,00p	1p
d1) $n = -1; C = 2R; \eta = \frac{T_1 - T_2}{T_1 + \frac{2(T_1 - T_2)}{V_1}}$	1,00p	1р
$\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$	1,00p	1р
Oficiu		1p

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada Națională de Fizică 1-6 aprilie 2012

Pagina 3 din 4

Subject		Punctaj
2. Barem subject 2		10p
A.		
$\frac{\Delta Q}{\Delta t} = k \cdot \left(\frac{\pi d^2}{4}\right) \cdot \frac{T_N - T_M}{\ell}$	1,50	
$k = \frac{\frac{\Delta Q}{\Delta t}}{\left(\frac{\pi d^2}{4}\right) \cdot \frac{T_N - T_M}{\ell}}; \ k = 900 \frac{W}{m \cdot K}$	1,50	3р
B.		
a) $\frac{\Delta Q_1}{\Delta t} = k_1 \cdot S \cdot \frac{T - T_1}{L_1} \; ; \frac{\Delta Q_2}{\Delta t} = k_2 \cdot S \cdot \frac{T_2 - T}{L_2} \; ; \frac{\Delta Q_1}{\Delta t} = \frac{\Delta Q_2}{\Delta t}$	1,50p	- Зр
$T = \frac{k_2 \cdot T_2 \cdot L_1 + k_1 \cdot T_1 \cdot L_2}{k_1 \cdot L_2 + k_2 \cdot L_1}; T = 300 \text{ K}$	1,50p	Sp.
b) $\frac{\Delta Q_{AB}}{\Delta t} = \frac{\Delta Q}{\Delta t}; S \cdot \frac{T_2 - T_1}{\frac{L_1}{k_1} + \frac{L_2}{k_2}} = k \cdot S \cdot \frac{T_2 - T_1}{L_1 + L_2}$	1,50p	3n
$k = \frac{L_1 + L_2}{\frac{L_1}{k_1} + \frac{L_2}{k_2}}$ sau $k = 300 \frac{W}{m \cdot K}$	1,50p	3p
Oficiu		1p

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada Națională de Fizică 1-6 aprilie 2012

Pagina 4 din 4

Subject		Punctaj
3. Barem subject 3		10p
A.		
a) $\frac{1}{2}m_A \cdot v_{Ai}^2 = \frac{1}{2}m_A \cdot v_{Af}^2 + \frac{1}{2}m_B \cdot v_{Bf}^2 \; \; ; \; v_{Ai}^2 = v_{Af}^2 + v_{Bf}^2$	0,75p	
$m_A \cdot \vec{v}_{Ai} = m_A \cdot \vec{v}_{Af} + m_B \cdot \vec{v}_{Bf} \; ; \; v_{Ai}^2 = v_{Af}^2 + v_{Bf}^2 + 2v_{Af} \cdot v_{Bf} \cdot \cos(\alpha + \theta)$	0,75p	2 p
$\beta = 90^{\circ} - \alpha \; ; \; \beta = 30^{\circ}$	0,50p	
b) Pentru a se opri după ultima ciocnire, bila A lovită inițial cu tacul, trebuie să participe la o ciocnire cu o altă bilă, aflată în repaus. Astfel avem $n_1 = 2$ bile.	0,50p	
Între momentele anterioare, traiectoria bilei $\bf A$ trebuie să descrie minim un contur de forma unui pătrat. Astfel avem $n_{2 min} = 4$ bile.	1,00p	2,5p
Numărul minim de bile de biliard este: $N_{\min} = n_1 + n_{2\min}$; $N = 6$	1,00p	, 1
В.		
$F_r = \frac{\Delta p}{\Delta t} = \frac{\Delta m'}{\Delta t} \cdot v = Q_{m'} \cdot v$	1,00p	
$2H_2 + O_2 = 2H_2O; \ \frac{m_{H_2O}}{m_{H_2}} = \frac{\mu_{H_2O}}{\mu_{H_2}} = 9; Q_m \cdot t = 9Q_m \cdot t$	1,00p	
$Q_{m'} = \rho \cdot A \cdot v$	0,50p	4,5p
$\rho = \frac{m'}{V} = \frac{p \cdot \mu_{H_2O}}{R \cdot T}$	1,00p	
$\rho = \frac{m'}{V} = \frac{p \cdot \mu_{H_2O}}{R \cdot T}$ $F_r = 81 \frac{Q_m^2 \cdot R \cdot T}{p \cdot \mu_{H_2O} \cdot A}$	1,00p	
Oficiu		1p

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.