NGS Analysis

learn.gencore.bio.nyu.edu

tidyverse

tidyverse

David Gresham

Novermber 15, 2017

- Outline
- · Load packages
- · Tidy data
- · Is this table tidy?
- · Is this table tidy?
- Is this table tidy?
- · Is this table tidy?
- Is this table tidy?
- · what are tidy data?
- gather()
- gather()
- spread()
- spread()
- Exercise 1
- Exercise 2
- data importPeak at data
- Look at data structure with str()
- Look at the data the tidyverse way
 - using glimpse()
- · Assign meaningful names to columns
- Dataframe now has meaningful names
- assign columns proper datatypes
- Select columns using select()
- Add a column with mutate()
- Sort tibble by column with arrange()
- Sort by feature size with arrange()
- Analyze with summarize()
- Analyze with summarize()
- using the pipe: %>%

Code ▼

- using the pipe: %>%
 - subset data with group_by()
- Filter rows with filter()
- · Pass dataframe to ggplot for plotting
 - NOTE: ggplot uses + not the pipe %>%
- · Exercise 3
- Exercise 3
- String manipulation with stringr()
 - · How do we get the gene names?
- Separate values in column with separate()
- Combine columns with unite()
- Save to a new variable
- Clean up strings with stringr()
- · Write file
- · How do we combine tables?
 - Mutating joins
 - Filtering joins
- Dataset must contain common values (gene names)
- · File to join with
- · Joining data
- Excercise4
- · tidy data don't allow correlation plots
- Rearrange the data
- Plot correlation between t0 and t1
- Excercise5
- example
- Resources

Outline

- · tidy data
- · reading data
- · verbs in dplyr()
 - o select()
 - o mutate()
 - arrange()
 - summarise()
 - filter()
- the pipe %>%
- · joining files

Load packages

Hide

library(tidyverse)

Loading tidyverse: ggplot2

```
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
Conflicts with tidy packages

filter(): dplyr, stats
lag(): dplyr, stats
```

Hide

library(stringr)

Tidy data

- each variable is saved in its on column
- each observation is saved in its own row
- each value must have its own cell

Is this table tidy?

table2

	woor two	count
country	year type	count
<chr></chr>	<int> <chr></chr></int>	<int></int>
Afghanistan	1999 cases	745
Afghanistan	1999 population	19987071
Afghanistan	2000 cases	2666
	0000	00505000
Afghanistan	2000 population	20595360
Brazil	1999 cases	37737
Dil	1000 manulation	17000000
Brazil	1999 population	172006362
Brazil	2000 cases	80488
Rrazil	2000 nonulation	17/15/1/1909

טומבוו	2000 μομαίατιοι ι	114504050
China	1999 cases	212258
China	1999 population	1272915272
1-10 of 12 rows		Previous 1 2 Next

Is this table tidy?

Hide

table3

country	year rate	
<chr></chr>	<int> <chr></chr></int>	
1 Afghanistan	1999 745/19987071	
2 Afghanistan	2000 2666/20595360	
3 Brazil	1999 37737/172006362	
4 Brazil	2000 80488/174504898	
5 China	1999 212258/1272915272	
6 China	2000 213766/1280428583	
rows		

Is this table tidy?

Hide

table1

country	year	cases	population
<chr></chr>	<int></int>	<int></int>	<int></int>
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583
6 rows			

Is this table tidy?

Hide

gene_expression

Gene <chr></chr>	t0 <dbl></dbl>	t1 <dbl></dbl>	t2 <dbl></dbl>
ACT1	2.2	3.2	4.5
GAP1	4.3	2.1	1.6
MEP2	1.6	0.8	0.4
DUR3	-1.2	-1.8	-1.8
MSN2	-2.0	-0.8	-0.1
DAL80	0.2	0.6	0.9
6 rows			

Is this table tidy?

Hide

facs_data

Sample <chr></chr>	Measure <chr></chr>	Value <dbl></dbl>
A1	FSC	3.6
A1	FL1	4.5
A2	FSC	3.5
A2	FL1	3.2
A3	FSC	3.8
A3	FL1	4.2
6 rows		

what are tidy data?

Jeff Leek in his book **The Elements of Data Analytic Style** summarizes the characteristics of tidy data as the points:

- Each variable you measure should be in one column.
- Each different observation of that variable should be in a different row.
- There should be one table for each "kind" of variable.
- If you have multiple tables, they should include a column in the table that allows them to be linked.

gather()

used when column names are not names of variables, but *values* of a variable (e.g. time). makes tables *longer* and *skinny* (previously known as melting)

Hide

gene_expression

Gene <chr></chr>	t0 <dbl></dbl>	t1 <dbl></dbl>	t2 <dbl></dbl>
ACT1	2.2	3.2	4.5
GAP1	4.3	2.1	1.6
MEP2	1.6	0.8	0.4
DUR3	-1.2	-1.8	-1.8
MSN2	-2.0	-0.8	-0.1
DAL80	0.2	0.6	0.9
6 rows			

gather()

used when column names are not names of variables, but *values* of a variable (e.g. time). makes tables *longer* and *skinny* (previously known as melting)

Hide

gather(gene_expression, t0:t2, key = "timepoint", value = "expression")

Gene <chr></chr>	timepoint <chr></chr>	expression <dbl></dbl>
ACT1	t0	2.2
GAP1	t0	4.3
MEP2	t0	1.6
DUR3	t0	-1.2
MSN2	t0	-2.0
DAL80	t0	0.2
ACT1	t1	3.2
GAP1	t1	2.1
MEP2	t1	0.8

DUR3	t1				-1.8
1-10 of 18 rows		Previous	1	2	Next

spread()

Spreading is the opposite of gathering. Used when an observation is scattered across multiple rows. spread() makes tables *shorter* and *wider*

Hide

facs_data

Sample <chr></chr>	Measure <chr></chr>	Value <dbl></dbl>
A1	FSC	3.6
A1	FL1	4.5
A2	FSC	3.5
A2	FL1	3.2
A3	FSC	3.8
A3	FL1	4.2
6 rows		

spread()

Spreading is the opposite of gathering. Used when an observation is scattered across multiple rows. spread() makes tables *shorter* and *wider*

Hide

spread(facs_data, key = Measure, value = Value)

	Sample <chr></chr>	FL1 <dbl></dbl>	FSC <dbl></dbl>
1	A1	4.5	3.6
2	A2	3.2	3.5
3	A3	4.2	3.8
3 row	'S		

Exercise 1

put table2 in tidy format

table2[1:6,]

country	year type	count
<chr></chr>	<int> <chr></chr></int>	<int></int>
Afghanistan	1999 cases	745
Afghanistan	1999 population	19987071
Afghanistan	2000 cases	2666
Afghanistan	2000 population	20595360
Brazil	1999 cases	37737
Brazil	1999 population	172006362
6 rows		

country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>
1 Afghanistan	1999	745	19987071
2 Afghanistan	2000	2666	20595360
3 Brazil	1999	37737	172006362
4 Brazil	2000	80488	174504898
5 China	1999	212258	1272915272
6 China	2000	213766	1280428583
6 rows			

Exercise 2

convert table1 to table2

Hide

table1

country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272

China	2000	213766	1280428583
6 rows			

data import

readr() has numerous functions for reading in files as tibbles

- 'read_csv()` for comma-delimited
- read_tsv() for tab-delimited

Hide

```
gff <- read_delim("Saccharomyces_cerevisiae.R64-1-1.34.gff3",
    "\t", escape_double = FALSE, col_names = FALSE,
    comment = "#", trim_ws = TRUE, skip = 24)</pre>
```

```
Parsed with column specification:
cols(
    X1 = col_character(),
    X2 = col_character(),
    X3 = col_character(),
    X4 = col_integer(),
    X5 = col_integer(),
    X6 = col_character(),
    X7 = col_character(),
    X8 = col_character(),
    X9 = col_character()
)
```

Peak at data

a tibble is a dataframe

Hide

head(gff)

X1 <chr></chr>	X2 <chr></chr>	X3 <chr></chr>	X4 <int></int>		X6 <chr></chr>	X7 <chr></chr>	X8 <chr></chr>	•
I	SGD	CDS	10091	10399		+	0	
I	SGD	gene	11565	11951		-		
1	SGD	mRNA	11565	11951		-		
I	SGD	exon	11565	11951		-		
I	SGD	CDS	11565	11951		-	0	
I	SGD	gene	12046	12426		+		
	-							

Look at data structure with str()

Hide

```
str(gff)
```

```
Classes 'tbl_df', 'tbl' and 'data.frame':
                                            28848 obs. of 9 variables:
 $ X1: chr "I" "I" "I" "I" ...
 $ X2: chr "SGD" "SGD" "SGD" "SGD" ...
 $ X3: chr "CDS" "gene" "mRNA" "exon" ...
 $ X4: int 10091 11565 11565 11565 11565 12046 12046 12046 12046 13363
 $ X5: int 10399 11951 11951 11951 11951 12426 12426 12426 12426 13743
 $ X6: chr "." "." "." "." ...
 $ X7: chr "+" "-" "-" "-" ...
 $ X8: chr "0" "." "." "." ...
            "ID=CDS:YAL066W;Parent=transcript:YAL066W;protein_id=YAL066W"
 $ X9: chr
"ID=gene:YAL065C;biotype=protein_coding;description=Putative protein of u
nknown function%3B has homology to FLO1%3B possible pse" | __truncated__
"ID=transcript:YAL065C;Parent=gene:YAL065C;biotype=protein_coding;transcr
ipt id=YAL065C" "Parent=transcript:YAL065C;Name=YAL065C.1;constitutive=1;
ensembl_end_phase=0;ensembl_phase=0;exon_id=YAL065C.1;rank=1" ...
 - attr(*, "spec")=List of 2
  ..$ cols
           :List of 9
  .. ..$ X1: list()
  .. .. ..- attr(*, "class")= chr "collector_character" "collector"
  .. ..$ X2: list()
  .. .. ..- attr(*, "class")= chr "collector_character" "collector"
  .. ..$ X3: list()
    .. ..- attr(*, "class")= chr "collector_character" "collector"
  .. ..$ X4: list()
  .. .. ..- attr(*, "class")= chr "collector_integer" "collector"
  .. ..$ X5: list()
                                   "collector_integer" "collector"
  .. .. ..- attr(*, "class")= chr
  .. ..$ X6: list()
  .. .. ..- attr(*, "class")= chr
                                   "collector_character" "collector"
  .. ..$ X7: list()
  .. .. ..- attr(*, "class")= chr "collector_character" "collector"
  .. ..$ X8: list()
  .. .. ..- attr(*, "class")= chr "collector_character" "collector"
  .. ..$ X9: list()
  ..... attr(*, "class")= chr "collector_character" "collector"
  ..$ default: list()
  ....- attr(*, "class")= chr "collector_guess" "collector"
  ... attr(*, "class")= chr "col_spec"
```

Look at the data the tidyverse way

.

```
Hide
```

```
glimpse(gff)
```

```
Observations: 28,848
Variables: 9
"I", "I", "I", "I", "I", "I", "I...
$ X2 <chr> "SGD", "SGD", "SGD", "SGD", "SGD", "SGD", "SGD", "SGD", "SGD",
"SGD", "SGD", "SGD", "SGD"...
$ X3 <chr> "CDS", "gene", "mRNA", "exon", "CDS", "gene", "mRNA", "exon",
"CDS", "gene", "mRNA", "exon", "CD...
$ X4 <int> 10091, 11565, 11565, 11565, 11565, 12046, 12046, 12046, 12046,
13363, 13363, 13363, 21566...
$ X5 <int> 10399, 11951, 11951, 11951, 11951, 12426, 12426, 12426, 12426,
13743, 13743, 13743, 13743, 21850...
", "+", "+", "+", "-", "-", "...
"0", ".", ".", ".", "0", ".", ".", "...
$ X9 <chr> "ID=CDS:YAL066W;Parent=transcript:YAL066W;protein id=YAL066W",
"ID=gene:YAL065C;biotype=protein_...
```

Assign meaningful names to columns

same approach as naming dataframe columns in base R

Dataframe now has meaningful names

note that tidyverse tries to guess data type

```
glimpse(gff)
```

```
Observations: 28,848
Variables: 9
"I", "I", "I", "I", "I", "I", "I"...
                                  <chr> "SGD", "SGD"
$ source
D", "SGD", "SGD", "SGD", "SGD...
$ feature <chr>> "CDS", "gene", "mRNA", "exon", "CDS", "gene", "mRNA",
"exon", "CDS", "gene", "mRNA", "ex...
$ start
                               <int> 10091, 11565, 11565, 11565, 11565, 12046, 12046, 1204
6, 12046, 13363, 13363, 13363, 1336...
                                 <int> 10399, 11951, 11951, 11951, 11951, 12426, 12426, 1242
$ stop
6, 12426, 13743, 13743, 13743, 1374...
$ strand
"-", "-", "+", "+", "+", "+", "-"...
$ unknown2 <chr> "0", ".", ".", "0", ".", ".", ".", "0", ".".
".", "0", ".", ".", ".", "0", "."...
$ info
                                  <chr> "ID=CDS:YAL066W;Parent=transcript:YAL066W;protein id=Y
AL066W", "ID=gene:YAL065C;biotype=...
```

assign columns proper datatypes

assigning correct data type is critical for anlayses and plotting with ggplot()

```
gff$feature = as.factor(gff$feature)
gff$chromosome = as.factor(gff$chromosome)
gff$strand = as.factor(gff$strand)
glimpse(gff)
```

```
Observations: 28,848
Variables: 9
I, ...
                                  <chr> "SGD", "SGD"
$ source
D", "SGD", "SGD", "SGD", "SGD...
$ feature <fctr> CDS, gene, mRNA, exon, CDS, gene, mRNA, exon, CDS, ge
ne, mRNA, exon, CDS, gene, mRNA, e...
$ start
                                  <int> 10091, 11565, 11565, 11565, 11565, 12046, 12046, 1204
6, 12046, 13363, 13363, 13363, 1336...
                                 <int> 10399, 11951, 11951, 11951, 11951, 12426, 12426, 1242
6, 12426, 13743, 13743, 13743, 1374...
<fctr> +, -, -, -, +, +, +, -, -, -, -, +, +, +, -,
$ strand
-, -, -, -, -, -, +, +, +, +, ...
".", "0", ".", ".", ".", "0", "."...
                                 <chr> "ID=CDS:YAL066W;Parent=transcript:YAL066W;protein id=Y
$ info
AL066W", "ID=gene:YAL065C;biotype=...
```

Select columns using select()

Hide

gff <- select(gff, c("chromosome", "feature", "start", "stop", "strand"))
head(gff)</pre>

chromosome <fctr></fctr>	feature <fctr></fctr>	start <int></int>	stop strand <int> <fctr></fctr></int>
I	CDS	10091	10399 +
1	gene	11565	11951 -
1	mRNA	11565	11951 -
1	exon	11565	11951 -
1	CDS	11565	11951 -
1	gene	12046	12426 +
6 rows			

Add a column with mutate()

Hide

gff <- mutate(gff, length = abs(start - stop))
head(gff)</pre>

chromosome	feature	start	stop s	strand	length
<fctr></fctr>	<fctr></fctr>	<int></int>	<int> <</int>	fctr>	<int></int>
I	CDS	10091	10399 +	-	308
I	gene	11565	11951 -		386
I	mRNA	11565	11951 -		386
I	exon	11565	11951 -		386
I	CDS	11565	11951 -		386
I	gene	12046	12426 +	-	380

Sort tibble by column with arrange()

writing dplyr::arrange specifies the package and function

dplyr::arrange(gff,length)

chromosome <fctr></fctr>	feature <fctr></fctr>	start <int></int>	-	strand <fctr></fctr>	length <int></int>
IX	exon	155222	155222	+	0
IX	CDS	155222	155222	+	0
Χ	exon	365784	365784	+	0
Χ	CDS	365784	365784	+	0
XIII	exon	754220	754220	-	0
XIII	CDS	754220	754220	-	0
XV	exon	901194	901194	-	0
XV	CDS	901194	901194	-	0
II	exon	168423	168424	+	1
II	CDS	168423	168424	+	1
1-10 of 28,848 row	/S	Previous 1	2 3	4 5	6 100 Next

Sort by feature size with arrange()

sort largest to smallest using -

Hide

dplyr::arrange(gff,-length)

chromosome <fctr></fctr>	feature <fctr></fctr>	start <int></int>	-	strand <fctr></fctr>	length <int></int>
IV	chromosome	1	1531933		1531932
XV	chromosome	1	1091291		1091290
VII	chromosome	1	1090940		1090939
XII	chromosome	1	1078177		1078176
XVI	chromosome	1	948066		948065
XIII	chromosome	1	924431		924430
II	chromosome	1	813184		813183
XIV	chromosome	1	784333		784332
X	chromosome	1	745751		745750
ΧI	chromosome	1	666816		666815
I-10 of 28 848 ro	NS	Previous 1	2 3	4 5 6	100 Nex

Analyze with summarize()

this creates a new tibble/dataframe

Hide

```
summarise(gff, mean = mean(length), sd = sd(length), min = min(length), max = max(length), n = n())
```

	mean <dbl></dbl>	sd <dbl></dbl>	min <dbl></dbl>	max <dbl></dbl>	n <int></int>
	1685.739	19480.2	0	1531932	28848
1 row					

Analyze with summarize()

the function n() counts how many observations their are

Hide

using the pipe: %>%

- the pipe is from the magittr package
- same as | in unix
- allows you to perform multiple sequential functions
- · pronounced then
- · unleashes the true power of tidyverse functions

using the pipe: %>%

subset data with group_by()

```
gff %>%
mutate(length = abs(start - stop)) %>%
group_by(feature) %>%
summarise(mean = mean(length), sd = sd(length), min = min(length), max =
max(length), n = n())
```

feature	mean	sd	min	max	n
<fctr></fctr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
CDS	1283 28403	1117 68987	0	14732	7045

<u> </u>	1200.20100	±±±1.00001	<u> </u>	17102	
chromosome	745429.43750	370024.12096	85778	1531932	16
exon	1211.49954	1120.83137	0	14732	7547
gene	1368.93539	1157.35142	50	14732	6686
mRNA	1368.93539	1157.35142	50	14732	6686
ncRNA_gene	761.53333	727.81757	168	3198	15
pseudogene	1254.66667	1503.47151	185	5250	42
rRNA	1837.00000	2141.45001	118	5946	16
rRNA_gene	1837.00000	2141.45001	118	5946	16
snoRNA	181.19481	145.38479	77	1003	77
1-10 of 15 rows			Previous	1 2	Next

Filter rows with filter()

```
gff %>%
filter(feature != "mRNA" & feature != "rRNA_gene" & feature != "snoRNA_ge
ne"& feature != "snRNA_gene") %>%
mutate(length = abs(start - stop)) %>%
group_by(feature) %>%
summarise(mean = mean(length), sd = sd(length), min = min(length), max =
max(length), n = n())
```

feature <fctr></fctr>	mean <dbl></dbl>	sd <dbl></dbl>	min <dbl></dbl>	max <dbl></dbl>	n <int></int>
CDS	1283.28403	1117.68987	0	14732	7045
chromosome	745429.43750	370024.12096	85778	1531932	16
exon	1211.49954	1120.83137	0	14732	7547
gene	1368.93539	1157.35142	50	14732	6686
ncRNA_gene	761.53333	727.81757	168	3198	15
pseudogene	1254.66667	1503.47151	185	5250	42
rRNA	1837.00000	2141.45001	118	5946	16
snoRNA	181.19481	145.38479	77	1003	77
snRNA	400.33333	412.99379	111	1174	6
transcript	111.15287	212.43146	70	3198	314
1-10 of 11 rows			Previous	s 1 2	Next

Pass dataframe to ggplot for plotting

NOTE: ggplot uses + not the pipe %>%

Hide

Exercise 3

plot the population of each country in 1999 using %>% and ggplot()`

Hide

+ =	b	2 ا	1
LC	ı	rc	_

country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583
6 rows			

Exercise 3

String manipulation with stringr()

How do we get the gene names?

Hide select(gff, info) info <chr> ID=CDS:YAL066W;Parent=transcript:YAL066W;protein_id=YAL066W ID=gene:YAL065C;biotype=protein coding;description=Putative protein of unknown function% homology to FLO1%3B possible pseudogene [Source:SGD%3BAcc:S000001817];gene_id=YAL065C;logic_name=sgd ID=transcript:YAL065C;Parent=gene:YAL065C;biotype=protein coding;transcript id=YAL065C Parent=transcript:YAL065C;Name=YAL065C.1;constitutive=1;ensembl end phase=0;ensembl ID=CDS:YAL065C;Parent=transcript:YAL065C;protein_id=YAL065C ID=gene:YAL064W-B;biotype=protein_coding;description=Fungal-specific protein of unknown [Source:SGD%3BAcc:S000002141];gene_id=YAL064W-B;logic_name=sgd ID=transcript:YAL064W-B;Parent=gene:YAL064W-B;biotype=protein coding;transcript id=YAL Parent=transcript:YAL064W-B;Name=YAL064W-B.1;constitutive=1;ensembl_end_phase=0;ensembl_phase=0;exon_id=YAL064W-B.1;rank=1 ID=CDS:YAL064W-B;Parent=transcript:YAL064W-B;protein id=YAL064W-B ID=gene:YAL064C-A;Name=TDA8;biotype=protein coding;description=Putative protein of unk function%3B null mutant is sensitive to expression of the top1-T722A allele%3B not an essent [Source:SGD%3BAcc:S000002140];gene_id=YAL064C-A;logic_name=sgd Previous 6 ... 100 Next 1-10 of 28,848 rows 1 2 3 5

Separate values in column with separate()

```
gff %>%
mutate(length = abs(start - stop)) %>%
filter(feature == "gene") %>%
separate(col = "info", into = c("info1", "info2", "info3", "info4", "info
5"), sep = ";", extra = "merge") %>%
separate(col = "info1", into = c("junk", "Systematic_name"), sep = ":") %
>%
separate(col = "info2", into = c("junk2", "Gene"), sep = "Name=") %>%
separate(col = "info3", into = c("junk3", "Description1"), sep = "description=") %>%
separate(col = "info4", into = c("junk4", "Description2"), sep = "description=") %>%
select(c(Description1, Description2))
```

Combine columns with unite()

```
gff %>%
mutate(length = abs(start - stop)) %>%
filter(feature == "gene") %>%
separate(col = "info", into = c("info1", "info2", "info3", "info4", "info
5"), sep = ";", extra = "merge") %>%
separate(col = "info1", into = c("junk", "Systematic_name"), sep = ":") %
>%
separate(col = "info2", into = c("junk2", "Gene"), sep = "Name=") %>%
separate(col = "info3", into = c("junk3", "Description1"), sep = "description=") %>%
separate(col = "info4", into = c("junk4", "Description2"), sep = "description=") %>%
```

unite(Description, Description1, Description2, sep = "") %>%
select(c(Description))

```
1
2
3
4
5
6
7
8
9
10
1-10 of 6,686 rows | 1-1 of 1 columns | Previous | 1 | 2 | 3 | 4 | 5 | 6 | ... 100 | Next
```

Save to a new variable

A general rule is if you are piping more than 10 steps save as a new variable

```
gff_clean <- gff %>%
mutate(length = abs(start - stop)) %>%
filter(feature == "gene") %>%
separate(col = "info", into = c("infol", "info2", "info3", "info4", "info5"), sep = ";", extra = "merge") %>%
separate(col = "info1", into = c("junk", "Systematic_name"), sep = ":") %
>%
separate(col = "info2", into = c("junk2", "Gene"), sep = "Name=") %>%
separate(col = "info3", into = c("junk3", "Description1"), sep = "description=") %>%
separate(col = "info4", into = c("junk4", "Description2"), sep = "description=") %>%
unite(Description, Description1, Description2, sep = "") %>%
select(c(Systematic_name, Gene, Description))
```

Clean up strings with stringr()

```
gff_clean$Description <- str_replace_all(gff_clean$Description, "%3B", ""
)</pre>
```

```
gff_clean$Description <- str_replace_all(gff_clean$Description, "%2C", ""
)
gff_clean$Description <- str_replace_all(gff_clean$Description, "^NA", ""
)

gff_clean %>%
select(c(Description))
```

Write file

Hide

```
write_tsv(gff_clean, "Yeast_genes.txt", na = "NA")
```

How do we combine tables?

Mutating joins

A mutating join allows you combine variables from two tables by matchiung observations by their keys

1. Inner Join

matches pairs of observation from two tables whenever their keys are equal

2. Outer join

keeps observations that appear in at least one of the tables

- left join keeps all the observations in x (should be the default)
- right join keeps all the observations in y
- full join keeps all observations in x and y

Filtering joins

affects (filters) the observations not the variables

- semi_join(x, y) keeps all observations in x that have a match in y
- anti join(x, y) drops all observations in x that have a match in y

Dataset must contain common values (gene names)

Hide

```
str(data)
```

File to join with

```
str(gff_clean)
```

Joining data

```
dplyr::left_join(a, b, by = "x1") Join matching rows from b to a.
```

Hide

```
left_join(gff_clean, data, by = c("Systematic_name" = "Syst")) %>%
    str()
```

Excercise4

tidy data don't allow correlation plots

Hide

```
tidy_gene_expression <- gene_expression %>%
        gather(t0:t2, key = "timepoint", value = "expression")
tidy_gene_expression
```

Gene <chr></chr>	timepoint <chr></chr>	expression <dbl></dbl>
ACT1	tO	2.2
GAP1	t0	4.3
MEP2	t0	1.6
DUR3	t0	-1.2
MSN2	t0	-2.0
DAL80	t0	0.2
ACT1	t1	3.2
GAP1	t1	2.1
MEP2	t1	0.8
DUR3	t1	-1.8
1-10 of 18 rows		Previous 1 2 Next

Rearrange the data

Plot correlation between t0 and t1

Excercise5

, 、 _ . _ . _ . _ _

- · Get the gff file for your favorite organism from the SGR
- Tidy the gff
- plot distribution of features per chromosome

example

Hide

☐ April 11, 2018 👗 mkhalfan