Practice for Mastering Functions in Python

Instructions:

- Complete the following tasks to demonstrate your understanding of Python functions.
- Provide proper comments in your code for clarity.
- Test your functions with various inputs and include the test cases in your submission.

Task 1: Basic Function

Write a function named greet_user that takes a name as input and prints a personalized greeting message.

Example Input:

```
greet_user("Alice")
```

Expected Output:

```
Hello, Alice! Welcome to Python Programming.
```

Task 2: Default Parameters

Create a function calculate_area that calculates the area of a rectangle. Use default values for the width and height (e.g., width=10, height=5).

Example Input:

```
calculate_area()
calculate_area(7, 3)
```

Expected Output:

Default values: Area: 50Custom values: Area: 21

Task 3: Positional vs. Keyword Arguments

Define a function order_summary that takes three arguments: item, quantity, and price. Use both positional and keyword arguments to call the function.

Example Input:

```
order_summary("Apples", 5, 2.5)
order_summary(price=1.5, quantity=10, item="Bananas")
```

Expected Output:

- Positional: You ordered 5 Apples for a total of \$12.5
- Keyword: You ordered 10 Bananas for a total of \$15.0

Task 4: Using return

Write a function named find_maximum that accepts a list of numbers and returns the largest number in the list.

Example Input:

```
find_maximum([3, 7, 2, 9, 5])
```

Expected Output:

q

Task 5: Scope of Variables

Create a program that demonstrates the difference between local and global variables using a function.

Example:

Define a global variable x = 50, and a function that locally modifies x.

Task 6: Lambda Functions

Write a lambda function to calculate the square of a number and another lambda function to find the product of two numbers. Test both functions with multiple inputs.

Task 7: Recursive Function

Create a recursive function named factorial to calculate the factorial of a number.

Example Input:

```
factorial(5)
```

Expected Output:

120

Task 8: Practical Problem

Write a function named convert_temperature that converts a given Celsius temperature to Fahrenheit and vice versa based on a second argument ("CtoF" or "FtoC").

Example Input:

```
convert_temperature(25, "CtoF")
convert_temperature(77, "FtoC")
```

Expected Output:

Celsius to Fahrenheit: 77°F
Fahrenheit to Celsius: 25°C

Bonus Task: Advanced Usage

Implement a function named student_grades that accepts an arbitrary number of keyword arguments representing student names and their grades. The function should print each student's name and grade.

Example Input:

```
student_grades(Alice=90, Bob=85, Charlie=78)
```

Expected Output:

Alice: 90 Bob: 85 Charlie: 78