

$$N_i|\lambda_i \sim \mathcal{P}(\lambda_i)$$

Données de l'individu

 $\lambda_i|z_i=1 \sim \text{Gamma}(\alpha_1,\beta_1)$

 $\lambda_i|z_i=0 \sim \text{Gamma}(\alpha_0,\beta_0)$

 $z_i|p \sim \text{Bernoulli}(p)$

 $\mathbf{p} \sim \beta(a,b)$

$$\alpha_0, \alpha_1, \beta_0, \beta_1 \sim \text{Gamma}(\tau, \delta)$$

Paramètres individuels

Variables latentes (non-observées)

Hyper-paramètres (non aléatoires)

Paramètres collectifs

Modèle bayésien hiérarchique comme un PGM (Probabilistic graphical model)

On représente les dépendances entre variables aléatoires avec une flèche:

Question: trouver la loi a posteriori jointe de tous les paramètres $\{\{\lambda_i\}_{i=1}^n, \{z_i\}_{i=1}^n, p, \alpha_0, \alpha_1, \beta_0, \beta_1\} | \{N_i\}_{i=1}^n$.

Pourquoi Monte-Carlo?

Modèle bayésien hiérarchique

INSEA

Modèle bayésien hiérarchique comme un PGM (Probabilistic graphical model)

On représente les dépendances entre variables aléatoires avec une flèche:

Question: trouver la loi a posteriori jointe de tous les paramètres $(\{\lambda_i\}_{i=1}^n, \{z_i\}_{i=1}^n, p, \alpha_0, \alpha_1, \beta_0, \beta_1) | \{N_i\}_{i=1}^n$.

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

La loi jointe
$$\{\{\lambda_i\}_{i=1}^n, \{z_i\}_{i=1}^n, p, \alpha_0, \alpha_1, \beta_0, \beta_1\} | \{\{N_i\}_{i=1}^n \text{ est } \}$$

