Statistical Early Warning Models with Applications: Supplementary Material

Lucas P. Harlaar,

Statistics Netherlands, Maastricht University, Vrije Universiteit Amsterdam Jacques J.F. Commandeur,

SWOV Institute for Road Safety Research, Vrije Universiteit Amsterdam Jan A. van den Brakel,

> Statistics Netherlands, Maastricht University Siem Jan Koopman,

Vrije Universiteit Amsterdam, Tinbergen Institute Niels Bos.

SWOV Institute for Road Safety Research Frits D. Bijleveld,

SWOV Institute for Road Safety Research, Vrije Universiteit Amsterdam

August 27, 2025

SASupplementary material Section 2

SA.1Statistical Early Warning Model

We start off from the state space approach for the analysis of time series data, see Harvey (1989), Durbin and Koopman (2012), and Commandeur and Koopman (2007). An important motivation for opting for this methodology is that it easily handles missing data in time series, and transparently generalizes to the analysis of multivariate time series. Let y_t denote the $N \times 1$ observation vector that contains the N observations at time t. The general linear Gaussian state space model for the T-dimensional observation sequence y_1, \ldots, y_T is given by

$$\mathbf{y}_t = \mathbf{Z}_t \boldsymbol{\alpha}_t + \boldsymbol{\varepsilon}_t,$$
 $\boldsymbol{\varepsilon}_t \sim \text{NID}(\mathbf{0}, \mathbf{H}_t),$ (SA.1)
 $\boldsymbol{\alpha}_{t+1} = \mathbf{T}_t \boldsymbol{\alpha}_t + \mathbf{R}_t \boldsymbol{\eta}_t,$ $\boldsymbol{\eta}_t \sim \text{NID}(\mathbf{0}, \mathbf{Q}_t),$ $t = 1, \dots, T,$ (SA.2)

$$\boldsymbol{\alpha}_{t+1} = \boldsymbol{T}_t \boldsymbol{\alpha}_t + \boldsymbol{R}_t \boldsymbol{\eta}_t, \qquad \boldsymbol{\eta}_t \sim \text{NID}(\boldsymbol{0}, \boldsymbol{Q}_t), \qquad t = 1, \dots, T,$$
 (SA.2)

where α_t is the state vector, ε_t and η_t are disturbance vectors and the system matrices \mathbf{Z}_t , \mathbf{T}_t , \mathbf{R}_t , \mathbf{H}_t and \mathbf{Q}_t are fixed and known but a selection of elements may depend on

^{*}Corresponding author: Department of Quantitative Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. E-mail: lucas.harlaar@maastrichtuniversity.nl

an unknown parameter vector. Equation (SA.1) is called the observation or measurement equation, while (SA.2) is called the state or transition equation. The $M \times 1$ state vector $\boldsymbol{\alpha}_t$ is unobserved. The $N \times 1$ irregular vector $\boldsymbol{\varepsilon}_t$ has zero mean and $N \times N$ variance matrix \boldsymbol{H}_t .

The $N \times M$ matrix \mathbf{Z}_t links the observation vector \mathbf{y}_t with the unobservable state vector α_t . Besides the state variables that define the trend, seasonal and cycle, α_t may also consist of regression variables. The $M \times M$ transition matrix T_t in (SA.2) determines the dynamic evolution of the state vector. The $R \times 1$ disturbance vector η_t for the state vector update has zero mean and $R \times R$ variance matrix Q_t . The observation and state disturbances ε_t and η_t are assumed to be serially independent and independent of each other at all time points. In many standard cases, R = M and matrix \mathbf{R}_t is the identity matrix I_M . In other cases, matrix \mathbf{R}_t is an $M \times R$ selection matrix with R < M. Although matrix \mathbf{R}_t can be specified freely, it is often composed of a selection from the first R columns of the identity matrix I_M .

By appropriate choices of the vectors α_t , ε_t and η_t , and of the matrices Z_t , T_t , H_t , R_t and Q_t , a wide range of different time series models can be derived from (SA.1) and (SA.2). In this paper we discuss the class of seemingly unrelated time series equations (SUTSE) models, which can be considered a multivariate extension of structural time series models:

$$y_t = \mu_t + \gamma_t + \varepsilon_t, \qquad \varepsilon_t \sim \text{NID}(0, \Sigma_{\varepsilon}),$$
 (SA.3)

where y_t is a $N \times 1$ vector of time series, μ_t is a $N \times 1$ vector of unobserved trends, γ_t is a $N \times 1$ vector of unobserved seasonal effects and ε_t is a $N \times 1$ vector of the irregular or noise component. The trend is defined as the local linear trend model, where the trend consists of a stochastic level and slope component,

$$\boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t + \boldsymbol{\nu}_t + \boldsymbol{\xi}_t, \qquad \boldsymbol{\xi}_t \sim \text{NID}(\mathbf{0}, \boldsymbol{\Sigma}_{\xi}), \tag{SA.4}$$

$$\nu_{t+1} = \nu_t + \zeta_t,$$
 $\zeta_t \sim \text{NID}(\mathbf{0}, \Sigma_\zeta).$ (SA.5)

More parsimonious trend models can be obtained straightforwardly by restricting the $N \times N$ covariance matrices Σ_{ξ} or Σ_{ζ} to be equal to 0. The seasonal process can be modelled as a dummy seasonal model,

$$\gamma_{t+1} = -\sum_{j=1}^{s-1} \gamma_{t+1-j} + \omega_t, \qquad \omega_t \sim \text{NID}(\mathbf{0}, \Sigma_\omega),$$
 (SA.6)

where s equals the number of months or quarters per year, depending on the frequency of the time series. Alternatively, a trigonometric seasonal model can be used,

$$\gamma_t = \sum_{j=1}^{(s/2)} \gamma_{j,t},\tag{SA.7}$$

where

$$\gamma_{j,t+1} = \cos\left(\frac{2\pi j}{s}\right) \gamma_{j,t} + \sin\left(\frac{2\pi j}{s}\right) \gamma_{j,t}^* + \omega_{j,t},
\gamma_{j,t+1}^* = -\sin\left(\frac{2\pi j}{s}\right) \gamma_{j,t} + \cos\left(\frac{2\pi j}{s}\right) \gamma_{j,t}^* + \omega_{j,t}^*, \qquad j = 1, \dots, (s/2),$$
(SA.8)

and where the trigonometric functions are scalars, $\gamma_{j,t}$ and $\gamma_{j,t}^*$ are $N \times 1$ vectors and $\omega_{j,t}$ and $\omega_{j,t}^*$ are independent NID($\mathbf{0}, \Sigma_{\omega}$) variables. The disturbance terms of the different components in (SA.3), (SA.4), (SA.5) and (SA.6) or (SA.8) are mutually independent. However, the model allows for cross-sectional correlations in the disturbances within these components. In other words, Σ_{ξ} , Σ_{ζ} and Σ_{ω} can be diagonal, full rank or rank deficient (i.e., a matrix with rank less than full).

In case of rank deficient covariance matrices, the SUTSE model from (SA.3) can be written as a common factor model, in which some or all of the components are driven by disturbance vectors with less than N elements:

$$y_t = \Theta_{\mu} \mu_t^{\dagger} + \Theta_{\nu} \mu_t^{\dagger\dagger} + \mu_{\theta,t} + \Theta_{\gamma} \gamma_t^{\dagger} + \gamma_{\theta,t} + \varepsilon_t, \qquad \varepsilon_t \sim \text{NID}(\mathbf{0}, \Sigma_{\varepsilon}), \qquad (\text{SA.9})$$

$$\boldsymbol{\mu}_{t+1}^{\dagger} = \boldsymbol{\mu}_{t}^{\dagger} + \boldsymbol{\xi}_{t}^{\dagger},$$
 (SA.10)

$$\boldsymbol{\mu}_{t+1}^{\dagger\dagger} = \boldsymbol{\mu}_{t}^{\dagger\dagger} + \boldsymbol{\nu}_{t}^{\dagger\dagger}, \tag{SA.11}$$

$$\boldsymbol{\nu}_{t+1}^{\dagger\dagger} = \boldsymbol{\nu}_t^{\dagger\dagger} + \boldsymbol{\zeta}_t^{\dagger\dagger}, \qquad \qquad \boldsymbol{\zeta}_t^{\dagger\dagger} \sim \text{NID}(\mathbf{0}, \boldsymbol{\Sigma}_{\zeta}^{\dagger\dagger}), \qquad (\text{SA}.12)$$

where μ_t^{\dagger} is a $K_{\mu} \times 1$ vector of common levels, modelled as in (SA.4) with ν_t^{\dagger} equal to $\mathbf{0}$ for all t and diagonal Σ_{ξ}^{\dagger} , $\mu_t^{\dagger\dagger}$ is a $K_{\nu} \times 1$ vector of common slopes, modelled as in (SA.4) and (SA.5) without a vector with level disturbance terms and diagonal $\Sigma_{\zeta}^{\dagger\dagger}$ and γ_t^{\dagger} is a $K_{\gamma} \times 1$ vector of common seasonals, modelled as in (SA.6) or (SA.7) and (SA.8) and diagonal $\Sigma_{\omega}^{\dagger}$. The $N \times 1$ vector $\boldsymbol{\mu}_{\theta,t}$ consists of $\min(K_{\mu}, K_{\nu})$ zeros as first elements followed by a $\max(K_{\mu}, K_{\nu}) - \min(K_{\mu}, K_{\nu})$ vector $\boldsymbol{\bar{\mu}}$ or $\boldsymbol{\bar{\nu}}t$, depending on the rank discrepancy between the level and slope, and a $N - \min(K_{\mu}, K_{\nu})$ vector $\boldsymbol{\bar{\mu}} + \boldsymbol{\bar{\nu}}t$ of fixed linear trends as remainder. The $N \times 1$ vector $\gamma_{\theta,t}$ consists of K_{γ} zeros as first elements followed by a $N - K_{\gamma}$ vector of fixed seasonal effects as remainder, i.e. $\bar{\gamma}_t = \bar{\gamma}_j$ if t corresponds to seasonal period j, for $j = 1, \ldots, s$. The $N \times K_{\mu}$ factor loading matrix Θ_{μ} has the ij-th element θ_{ij} equal to zero for j > i and θ_{ii} equal to one. Similar structures apply to Θ_{ν} and Θ_{γ} . Note that we can obtain the original SUTSE notation (SA.3) by writing $\boldsymbol{\mu}_t = \Theta_{\mu} \boldsymbol{\mu}_t^{\dagger} + \Theta_{\nu} \boldsymbol{\mu}_t^{\dagger\dagger} + \boldsymbol{\mu}_{\theta,t}$ and $\gamma_t = \Theta_{\gamma} \gamma_t^{\dagger} + \gamma_{\theta,t}$, while $\Sigma_{\xi} = \Theta_{\mu} \Sigma_{\xi}^{\dagger} \Theta_{\mu}'$, $\Sigma_{\zeta} = \Theta_{\nu} \Sigma_{\zeta}^{\dagger} \Theta_{\nu}'$ and $\Sigma_{\gamma} = \Theta_{\gamma} \Sigma_{\omega}^{\dagger} \Theta_{\gamma}'$ are singular matrices with rank K_{μ} , K_{ν} and K_{γ} respectively (Harvey and Koopman 1997; Koopman, Harvey, Doornik, and Shephard 2009).

SA.2 Labour Force model state space form

The Labour Force model can also be written in linear state space form from (SA.1)-(SA.2). The measurement equation can be written as:

$$\begin{pmatrix} y_t \\ x_{t,1} \\ x_{t,2} \\ x_{t,3} \end{pmatrix} = \begin{bmatrix} (1 & 0 & 1 & 0 & 0) \otimes \mathbf{I}_4 & \begin{pmatrix} 0 & 0 & 0 & 0 \\ k_{t,1} & 0 & 0 & 0 \\ 0 & k_{t,2} & 0 & 0 \\ 0 & 0 & k_{t,3} \end{pmatrix} \end{bmatrix} \boldsymbol{\alpha}_t + \begin{pmatrix} \varepsilon_{t,y} \\ \varepsilon_{t,1} \\ \varepsilon_{t,2} \\ \varepsilon_{t,3} \end{pmatrix}, \quad (SA.13)$$

where the state vector $\boldsymbol{\alpha}_t$ is specified as follows:

$$\boldsymbol{\alpha}_{t} = \begin{pmatrix} \boldsymbol{\mu}_{t}' & \boldsymbol{\nu}_{t}' & \boldsymbol{\gamma}_{t}' & \boldsymbol{u}_{t}' \end{pmatrix}', \quad \boldsymbol{\mu}_{t} = \begin{pmatrix} \mu_{t,y} & \mu_{t,x_{1}} & \mu_{t,x_{2}} & \mu_{t,x_{3}} \end{pmatrix}', \quad \boldsymbol{\nu}_{t} = \begin{pmatrix} \nu_{t,y} & \nu_{t,x_{1}} & \nu_{t,x_{2}} & \nu_{t,x_{3}} \end{pmatrix}',$$

$$\boldsymbol{\gamma}_{t} = \begin{pmatrix} \gamma_{t,y} & \gamma_{t,x_{1}} & \gamma_{t,x_{2}} & \gamma_{t,x_{3}} & \dots & \gamma_{t-2,y} & \gamma_{t-2,x_{1}} & \gamma_{t-2,x_{2}} & \gamma_{t-2,x_{3}} \end{pmatrix}', \quad \boldsymbol{u}_{t} = \begin{pmatrix} u_{t,1} & u_{t,2} & u_{t,3} \end{pmatrix}',$$

which contains the trend, dummy seasonal and sampling error terms. As discussed the idiosyncratic noise of the target and LFS auxiliary series are Gaussian i.i.d. sequences with the following diagonal irregular covariance matrix:

$$\Sigma_{\varepsilon} = \begin{bmatrix} \sigma_{\varepsilon_{y}}^{2} & 0 & 0 & 0\\ 0 & \sigma_{\varepsilon_{x}}^{2} & 0 & 0\\ 0 & 0 & \sigma_{\varepsilon_{x}}^{2} & 0\\ 0 & 0 & 0 & \sigma_{\varepsilon_{x}}^{2} \end{bmatrix}.$$
 (SA.14)

The state vector's dynamic transitioning can be described as follows:

$$oldsymbol{lpha}_{t+1} = \left[egin{array}{ccc} oldsymbol{T}_{\mu} & oldsymbol{0}_{8 imes 12} \ oldsymbol{0}_{12 imes 8} & oldsymbol{T}_{\gamma} \end{array}
ight) & oldsymbol{0}_{20 imes 3} \ oldsymbol{0}_{3 imes 20} & \left(egin{array}{ccc} \phi & 0 & 0 \ 0 & \phi & 0 \ 0 & 0 & \phi \end{array}
ight)
ight] oldsymbol{lpha}_{t} + oldsymbol{\eta}_{t}, & oldsymbol{\eta}_{t} \sim \mathbf{N}(\mathbf{0}, oldsymbol{\Sigma}_{\eta}), & (\mathrm{SA}.15) \end{array}$$

where ϕ is the monthly autoregressive coefficient of the sampling error, retrieved from van den Brakel and Michiels (2021) and treated as known. We opt for a local linear trend model and a stochastic seasonal dummy model, see Harvey (1989) and Durbin and Koopman (2012), by specifying:

$$egin{aligned} oldsymbol{T}_{\mu} &= egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} \otimes oldsymbol{I}_4, \quad oldsymbol{T}_{\gamma} &= egin{bmatrix} -1 & -1 & -1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix} \otimes oldsymbol{I}_4, \quad oldsymbol{\eta}_t &= ig(oldsymbol{\xi}_t' & oldsymbol{\zeta}_t' & oldsymbol{\omega}_t' & oldsymbol{0}_{1 imes 8} & oldsymbol{e}_t' ig)', \ oldsymbol{\xi}_t &= ig(egin{bmatrix} \xi_{t,y} \ \xi_{t,x_1} \ \xi_{t,x_2} \ \xi_{t,x_2} \ \xi_{t,x_2} \ \end{pmatrix}, \quad oldsymbol{\omega}_t &= ig(egin{bmatrix} \omega_{t,y} \ \omega_{t,x_1} \ \omega_{t,x_2} \ \omega_{t,x_2} \ \end{pmatrix}, \quad oldsymbol{e}_t &= ig(egin{bmatrix} e_{t,1} \ e_{t,2} \ e_{t,3} \ \end{pmatrix}. \end{aligned}$$

The covariance matrix of the disturbance terms is a blockdiagonal matrix of:

$$\Sigma_n = \operatorname{diag}(\Sigma_{\mathcal{E}}, \Sigma_{\mathcal{L}}, \Sigma_{\omega}, \mathbf{0}_{8\times 8}, \Sigma_e), \tag{SA.16}$$

where,

$$\Sigma_e = \begin{bmatrix} \sigma_e^2 & 0 & 0 \\ 0 & \sigma_e^2 & 0 \\ 0 & 0 & \sigma_e^2 \end{bmatrix},$$
 (SA.17)

and it is expected that $\sigma_e^2 = 1$ due to the scaling of the sampling error.

References

Commandeur, J. J. F. and S. J. Koopman (2007). An Introduction to State Space Time Series Analysis. Oxford: Oxford University Press.

Durbin, J. and S. J. Koopman (2012). *Time Series Analysis by State Space Methods* (2nd ed.). Oxford: Oxford University Press.

- Harvey, A. and S. Koopman (1997). *Multivariate structural time series models*, pp. 269–298. Series in Financial Economics and Quantitative Analysis. John Wiley & Sons. Pagination: 372.
- Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.
- Koopman, S. J., A. C. Harvey, J. A. Doornik, and N. Shephard (2009). Stamp 8.2: Structural Time Series Analyser, Modeller and Predictor. London: Timberlake Consultants.
- van den Brakel, J. and J. Michiels (2021). Nowcasting register labour force participation rates in municipal districts using survey data. *Journal of Official Statistics* 37(4), 1009–1045.

SB Supplementary material Section 3

SB.1 Tables

Table SB1: Parameter estimates.

Model	1	2	3	4	5	6
$\hat{\sigma}_{\xi}^{2}$	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
$\hat{\sigma}_{\xi}^2$ $\hat{\theta}_{\mu,2}$ $\hat{\theta}_{\mu,3}$ $\hat{\theta}_{\mu,4}$	1	1	1	1.2089	1.2747	1.2328
$\hat{ heta}_{\mu,3}$	1	1	1	0.9900	0.9861	1.0910
$\hat{ heta}_{\mu,4}$	1	1	1	0.9466	0.9358	0.9253
$\hat{\sigma}_{\zeta}^{2}$	-	2.574e-14	9.896e-13	-	1.754 e-08	1.586e-12
$\hat{\sigma}_{\zeta}^{2}$ $\hat{ heta}_{ u,2}$	-	1	-180.2032	-	1	90.7448
$\hat{\theta}_{\nu,3}$	-	1	57.4598	-	1	-151.8539
$\theta_{ u,4}$	-	1	74.5109	-	1	-10.3725
$\hat{\sigma}_{\omega}^{2}$	-	2.519e-06	0	-	2.570 e-06	2.822e-06
$\hat{\sigma}_{\omega}^{2} \ \hat{ heta}_{\gamma,2}$	-	1	94.9402	-	1	0.9037
$\hat{\theta}_{\sim 3}$	-	1	101.0762	-	1	0.9014
$\hat{\theta}_{\gamma,4}$	-	1	-38.0955	-	1	0.9857
$\hat{\sigma}_{\varepsilon_1}^2$	0.0199	0.0187	0.0198	0.0199	0.0189	0.0188
$\begin{array}{l} \hat{\sigma}^2_{\varepsilon_1} \\ \hat{\sigma}^2_{\varepsilon_2} \\ \hat{\sigma}^2_{\varepsilon_3} \\ \hat{\sigma}^2_{\varepsilon_4} \end{array}$	0.0239	0.0227	0.0233	0.0226	0.0216	0.0215
$\hat{\sigma}^2_{arepsilon_3}$	0.0220	0.0209	0.0220	0.0220	0.0211	0.0205
$\hat{\sigma}^2_{arepsilon_4}$	0.0216	0.0204	0.0215	0.0217	0.0209	0.0206
$\hat{ ho}_{arepsilon_{2,1}}$	0.9282	0.9244	0.9364	0.9349	0.9335	0.9345
$\hat{ ho}_{arepsilon_{3,1}}$	0.8651	0.8577	0.8660	0.8651	0.8592	0.8617
$\hat{ ho}_{arepsilon_{4,1}}$	0.9020	0.8963	0.9038	0.9038	0.8994	0.8991
$\hat{ ho}_{arepsilon_{3,2}}$	0.8145	0.8050	0.8294	0.8226	0.8166	0.8190
$\hat{ ho}_{arepsilon_{4,2}}$	0.8377	0.8292	0.8552	0.8512	0.8464	0.8479
$\hat{\rho}_{\varepsilon_{4,3}}$	0.9507	0.9480	0.9507	0.9510	0.9490	0.9509

Table SB2: Ljung-Box test statistics for different lag sizes. Test statistic is asymptotically chi-square distributed with df: lag size - (# parameters/N) - 1. Note that N=4 and at $\alpha=0.05$, none of the test statistics fall in the critical region (same holds at the 10% level).

Model				1	2	3	4	5	6
Series	lag size	lowest df	crit. value						
$y_{1,t}$	40	34	48.602	32.011	31.503	32.269	30.111	31.061	32.158
	60	54	72.153	51.385	50.097	51.222	50.741	49.761	51.674
	80	74	95.081	66.249	68.169	66.202	64.280	65.647	68.152
	100	94	117.632	82.223	83.624	82.387	79.641	80.169	83.859
	120	114	139.921	101.333	101.303	101.448	101.365	100.938	103.756
$y_{2,t}$	40	34	48.602	35.462	36.568	30.785	29.617	31.716	29.703
	60	54	72.153	47.955	48.162	43.374	43.035	44.219	42.180
	80	74	95.081	68.466	71.632	64.542	64.190	67.483	65.940
	100	94	117.632	85.215	86.953	81.537	82.119	83.791	82.998
	120	114	139.921	95.300	96.092	90.259	91.174	91.695	91.676
$y_{3,t}$	40	34	48.602	38.912	39.618	38.296	36.158	39.944	37.518
	60	54	72.153	52.676	51.860	52.310	49.401	51.199	50.681
	80	74	95.081	69.193	70.087	68.842	64.097	67.175	65.907
	100	94	117.632	85.640	87.547	85.443	78.052	81.823	82.163
	120	114	139.921	114.088	113.757	113.842	105.179	108.291	107.291
$y_{4,t}$	40	34	48.602	31.202	35.616	30.615	27.135	33.013	34.679
,	60	54	72.153	57.706	61.164	57.248	55.261	59.677	62.875
	80	74	95.081	72.031	76.367	71.755	67.363	72.496	75.598
	100	94	117.632	90.964	95.691	90.971	85.589	90.668	95.386
	120	114	139.921	108.716	111.944	108.741	104.074	107.436	112.104
# parameters				11	13	19	14	16	22

Table SB3: MSE forecasting performance based on the 1- to 12-step ahead forecasts per forecasting year and in total relative to the MSE of the univariate benchmark (DBSTS).

Scenario	Model	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Total
1	DBSTS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	SBSTS	1.033	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.003
2	1	0.963	0.911	1.178	1.045	0.846	0.931	0.930	0.993	1.074	0.942	1.090	0.970	0.998
	2	1.032	0.929	1.079	1.015	0.980	1.030	1.039	1.000	1.075	1.020	1.044	0.950	1.012
	3	1.004	0.880	0.969	1.113	0.916	1.086	1.333	1.018	1.149	0.968	1.063	0.950	1.015
	4	1.182	1.016	1.051	1.054	1.019	1.000	0.946	0.905	0.872	1.082	1.066	1.072	1.034
	5	1.046	1.039	1.028	1.024	0.963	1.106	1.028	0.771	0.785	1.564	1.255	0.848	1.015
	6	1.156	1.563	0.905	1.112	1.109	1.198	1.716	1.112	1.927	0.856	1.041	1.341	1.191
3	1	0.695	0.815	0.280	0.367	0.638	0.473	0.878	0.700	1.339	1.194	0.601	0.242	0.569
	2	0.774	0.829	0.245	0.483	0.598	0.473	0.926	0.677	1.278	1.283	0.599	0.223	0.574
	3	0.736	0.731	0.234	0.490	0.642	0.470	1.053	0.585	1.133	1.396	0.637	0.302	0.581
	4	0.745	0.662	0.293	0.294	0.796	0.534	0.955	0.654	1.154	1.370	0.648	0.244	0.588
	5	0.771	0.663	0.263	0.334	0.712	0.486	0.957	0.650	1.376	1.448	0.552	0.358	0.597
	6	0.876	0.886	0.228	0.443	0.775	0.433	1.029	0.494	1.131	1.893	0.682	0.422	0.643
4	1	0.538	0.422	0.194	0.366	0.308	0.210	0.554	0.248	1.308	1.166	0.454	0.090	0.364
	2	0.603	0.418	0.183	0.379	0.294	0.197	0.607	0.243	1.260	1.232	0.479	0.085	0.372
	3	2.400	3.143	0.344	0.410	0.579	0.544	0.604	0.796	1.752	2.131	1.572	0.163	1.003
	4	0.534	0.309	0.196	0.342	0.423	0.233	0.607	0.236	1.156	1.340	0.467	0.097	0.375
	5	0.636	0.330	0.179	0.370	0.398	0.219	0.677	0.237	1.085	1.639	0.471	0.048	0.388
	6	0.598	0.327	0.174	0.421	0.321	0.194	0.719	0.214	1.107	1.738	0.538	0.069	0.394
5	1	0.068	0.162	0.031	0.151	0.047	0.091	0.118	0.049	0.300	0.105	0.139	0.013	0.080
	2	0.070	0.160	0.030	0.150	0.045	0.090	0.118	0.049	0.301	0.106	0.140	0.013	0.079
	3	0.074	0.279	0.034	0.204	0.126	0.142	0.328	0.113	0.605	0.116	0.197	0.130	0.152
	4	0.029	0.150	0.030	0.144	0.090	0.145	0.191	0.099	0.586	0.327	0.117	0.143	0.131
	5	0.029	0.183	0.029	0.146	0.058	0.095	0.109	0.039	0.253	0.098	0.140	0.012	0.074
	6	0.070	0.197	0.023	0.154	0.041	0.084	0.171	0.046	0.259	0.133	0.165	0.019	0.086

Table SB4: MSE forecasting performance based on the 1- to 12-step ahead forecasts per month, averaged over the years 2011-2022.

Scenario	Model	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
		t+1	t+2	t+3	t+4	t+5	t+6	t+7	t+8	t+9	t+10	t+11	t+12
1	DBSTS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	SBSTS	0.998	0.997	0.997	1.008	0.999	1.004	0.999	1.001	1.011	0.999	0.996	1.025
2	1	1.213	1.006	0.909	0.933	1.055	1.015	0.969	0.942	1.057	0.951	1.035	0.883
	2	1.133	1.068	0.895	1.006	1.046	1.047	0.967	0.968	1.039	0.974	1.009	0.971
	3	1.044	1.074	1.001	0.990	1.100	1.054	0.994	0.985	1.026	0.940	1.158	0.960
	4	1.056	0.961	1.041	1.005	1.169	0.964	0.977	1.078	1.131	1.001	1.030	1.126
	5	1.215	1.181	0.970	1.030	0.942	0.824	0.863	1.007	0.926	1.079	0.829	1.018
	6	0.954	1.078	1.550	1.171	1.315	1.261	1.198	1.469	1.173	1.045	1.029	1.362
3	1	0.132	0.240	0.226	0.111	0.242	0.505	0.817	0.692	0.911	0.903	1.082	0.892
	2	0.117	0.245	0.225	0.113	0.228	0.510	0.803	0.689	0.898	0.909	1.139	0.962
	3	0.114	0.259	0.236	0.141	0.197	0.467	0.813	0.821	0.833	0.921	1.204	0.916
	4	0.106	0.271	0.231	0.173	0.288	0.445	0.816	0.779	0.886	0.930	1.002	1.015
	5	0.111	0.275	0.281	0.159	0.278	0.614	0.782	0.843	0.859	0.990	0.904	0.939
	6	0.107	0.281	0.273	0.243	0.237	0.509	0.784	1.088	0.846	1.000	1.132	1.158
4	1	0.135	0.246	0.223	0.112	0.234	0.506	0.153	0.200	0.112	0.767	1.219	0.783
	2	0.119	0.251	0.223	0.114	0.222	0.511	0.156	0.202	0.108	0.786	1.208	0.860
	3	0.233	0.318	0.522	0.403	1.679	1.273	0.861	0.787	1.906	1.175	2.936	1.744
	4	0.119	0.270	0.221	0.153	0.300	0.421	0.153	0.195	0.111	0.803	1.127	0.891
	5	0.121	0.281	0.233	0.136	0.248	0.448	0.170	0.223	0.095	0.930	0.992	0.883
	6	0.120	0.271	0.231	0.173	0.208	0.425	0.158	0.313	0.088	0.877	1.281	0.838
5	1	0.052	0.045	0.107	0.134	0.261	0.173	0.053	0.081	0.018	0.039	0.219	0.044
	2	0.049	0.045	0.109	0.134	0.258	0.173	0.054	0.081	0.018	0.039	0.216	0.045
	3	0.092	0.069	0.161	0.198	0.381	0.350	0.084	0.223	0.054	0.077	0.488	0.139
	4	0.040	0.079	0.125	0.158	0.472	0.316	0.072	0.161	0.117	0.069	0.337	0.105
	5	0.041	0.058	0.105	0.107	0.304	0.173	0.047	0.086	0.027	0.026	0.173	0.029
	6	0.046	0.055	0.116	0.125	0.308	0.223	0.053	0.090	0.025	0.039	0.218	0.042

Table SB5: MAPE forecasting performance based on the 1- to 12-step ahead forecasts per forecasting year and in total relative to the MAPE of the univariate benchmark (DBSTS).

Scenario	Model	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Total
1	DBSTS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	SBSTS	0.994	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	1	1.028	1.018	1.084	1.098	0.908	0.943	0.934	0.984	1.051	0.991	1.026	0.967	1.001
	2	1.015	0.996	1.047	1.007	1.008	0.984	1.023	0.993	1.035	1.016	1.015	0.975	1.008
	3	1.049	0.985	0.987	1.047	0.981	1.014	1.184	0.993	1.077	0.988	1.046	0.982	1.022
	4	1.051	0.994	1.009	1.041	1.020	0.980	0.946	0.943	0.963	1.068	1.028	1.039	1.006
	5	1.014	1.030	1.011	0.998	0.999	1.011	0.991	0.881	0.896	1.311	1.157	0.897	1.005
	6	1.021	1.223	0.951	0.993	1.072	1.123	1.253	1.041	1.396	1.101	0.995	1.214	1.102
3	1	0.666	0.960	0.454	0.729	0.679	0.733	0.874	0.715	1.173	1.219	0.782	0.387	0.726
	2	0.682	0.963	0.414	0.841	0.676	0.701	0.885	0.707	1.136	1.272	0.775	0.364	0.724
	3	0.751	0.893	0.379	0.826	0.720	0.676	0.932	0.649	1.066	1.417	0.802	0.408	0.730
	4	0.674	0.880	0.424	0.677	0.800	0.773	0.908	0.692	1.104	1.352	0.798	0.389	0.733
	5	0.714	0.858	0.417	0.723	0.747	0.725	0.887	0.706	1.165	1.289	0.781	0.439	0.732
	6	0.707	0.952	0.390	0.803	0.829	0.651	0.908	0.623	1.025	1.673	0.833	0.472	0.756
4	1	0.652	0.704	0.366	0.743	0.409	0.528	0.713	0.479	1.143	1.170	0.722	0.248	0.593
	2	0.658	0.700	0.340	0.758	0.392	0.487	0.721	0.477	1.111	1.215	0.727	0.248	0.588
	3	1.810	2.018	0.628	0.795	0.706	0.912	0.654	0.842	1.252	1.852	1.242	0.405	1.012
	4	0.638	0.493	0.335	0.690	0.498	0.576	0.749	0.463	1.109	1.341	0.727	0.258	0.592
	5	0.683	0.577	0.312	0.734	0.477	0.536	0.735	0.475	1.057	1.466	0.720	0.201	0.593
	6	0.709	0.530	0.308	0.758	0.447	0.447	0.751	0.450	1.048	1.557	0.768	0.248	0.596
5	1	0.306	0.419	0.161	0.452	0.181	0.385	0.310	0.197	0.503	0.374	0.400	0.117	0.290
	2	0.312	0.416	0.155	0.445	0.182	0.379	0.310	0.195	0.505	0.373	0.401	0.116	0.289
	3	0.289	0.548	0.175	0.521	0.335	0.451	0.552	0.322	0.750	0.447	0.492	0.355	0.409
	4	0.211	0.394	0.164	0.440	0.274	0.440	0.404	0.293	0.766	0.734	0.393	0.420	0.381
	5	0.215	0.446	0.154	0.448	0.214	0.401	0.319	0.193	0.494	0.347	0.401	0.111	0.286
	6	0.354	0.469	0.148	0.419	0.192	0.367	0.353	0.204	0.509	0.438	0.430	0.144	0.307

Table SB6: MAE forecasting performance based on the 1- to 12-step ahead forecasts per forecasting year and in total relative to the MAE of the univariate benchmark (DBSTS).

Scenario	Model	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Total
1	DBSTS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	SBSTS	0.996	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	1	1.020	1.012	1.079	1.089	0.910	0.943	0.934	0.986	1.052	0.994	1.022	0.969	0.998
	2	1.014	0.993	1.043	1.010	1.005	0.984	1.020	0.994	1.036	1.019	1.014	0.975	1.006
	3	1.042	0.981	0.986	1.052	0.975	1.014	1.180	0.993	1.078	0.990	1.048	0.981	1.020
	4	1.061	0.997	1.007	1.040	1.020	0.981	0.946	0.942	0.961	1.063	1.036	1.039	1.007
	5	1.014	1.030	1.009	1.003	0.996	1.012	0.986	0.875	0.887	1.304	1.138	0.899	0.999
	6	1.026	1.232	0.962	1.002	1.071	1.125	1.262	1.044	1.400	1.120	1.005	1.208	1.110
3	1	0.685	0.942	0.489	0.713	0.687	0.731	0.879	0.728	1.167	1.221	0.823	0.390	0.734
	2	0.702	0.946	0.447	0.823	0.682	0.700	0.889	0.719	1.130	1.275	0.816	0.367	0.732
	3	0.763	0.879	0.415	0.810	0.724	0.676	0.935	0.657	1.059	1.417	0.845	0.413	0.737
	4	0.692	0.876	0.462	0.664	0.806	0.773	0.915	0.704	1.095	1.351	0.842	0.391	0.742
	5	0.729	0.849	0.453	0.708	0.754	0.725	0.891	0.718	1.154	1.293	0.816	0.446	0.741
	6	0.726	0.956	0.424	0.790	0.831	0.649	0.908	0.625	1.009	1.676	0.877	0.480	0.764
4	1	0.659	0.694	0.391	0.730	0.413	0.517	0.706	0.473	1.135	1.171	0.751	0.236	0.591
	2	0.668	0.689	0.366	0.746	0.396	0.477	0.714	0.471	1.104	1.217	0.757	0.237	0.587
	3	1.818	1.979	0.648	0.785	0.710	0.874	0.645	0.853	1.251	1.859	1.330	0.405	1.016
	4	0.646	0.492	0.363	0.680	0.501	0.567	0.743	0.455	1.098	1.342	0.756	0.246	0.591
	5	0.688	0.572	0.340	0.723	0.480	0.527	0.727	0.468	1.044	1.466	0.746	0.196	0.591
	6	0.714	0.527	0.336	0.746	0.447	0.440	0.742	0.437	1.032	1.557	0.797	0.240	0.593
5	1	0.300	0.410	0.171	0.450	0.177	0.374	0.305	0.196	0.493	0.386	0.409	0.113	0.288
	2	0.306	0.407	0.165	0.444	0.178	0.369	0.305	0.194	0.495	0.385	0.410	0.113	0.287
	3	0.283	0.533	0.183	0.512	0.331	0.435	0.542	0.317	0.737	0.463	0.508	0.355	0.407
	4	0.201	0.387	0.174	0.438	0.270	0.431	0.407	0.290	0.765	0.759	0.406	0.410	0.381
	5	0.206	0.435	0.164	0.445	0.211	0.391	0.318	0.191	0.487	0.360	0.410	0.108	0.284
	6	0.345	0.457	0.155	0.419	0.187	0.358	0.346	0.203	0.502	0.453	0.443	0.141	0.305

Table SB7: Quantiles of forecast errors over the entire real time window relative to the error of the benchmark (DBSTS).

						(Quantile	S				
Scenario	Model	0.01	0.025	0.05	0.1	0.25	0.5	0.75	0.9	0.95	0.975	0.99
1	DBSTS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	SBSTS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.014	1.000	1.000	1.002
2	1	1.044	1.092	1.041	1.121	1.414	0.558	0.958	0.973	0.950	0.997	0.955
	2	1.026	1.069	1.052	1.029	1.162	0.845	0.987	0.998	0.936	1.003	1.013
	3	1.005	1.055	1.120	1.080	1.229	0.744	0.996	1.010	0.949	0.990	0.998
	4	1.033	0.979	1.008	0.855	1.156	0.912	0.947	1.132	0.991	0.999	1.020
	5	1.194	1.099	1.237	1.067	1.581	0.466	0.920	0.963	0.927	0.957	1.003
	6	0.907	0.864	0.730	0.741	0.324	1.865	1.254	1.226	1.050	1.066	1.082
3	1	0.515	0.686	0.759	0.812	1.078	0.335	0.604	0.742	0.825	0.825	0.771
	2	0.523	0.741	0.832	0.822	1.075	0.390	0.579	0.742	0.802	0.866	0.766
	3	0.542	0.712	0.891	0.808	1.442	0.092	0.666	0.731	0.789	0.872	0.793
	4	0.426	0.546	0.739	0.722	1.083	0.532	0.777	0.799	0.840	0.873	0.758
	5	0.495	0.634	0.830	0.768	0.863	0.446	0.606	0.799	0.808	0.845	0.813
	6	0.610	0.650	0.852	0.763	1.165	0.313	0.633	0.885	0.781	0.799	0.858
4	1	0.452	0.627	0.796	0.861	1.374	-0.129	0.401	0.528	0.507	0.611	0.602
	2	0.485	0.617	0.784	0.836	1.312	-0.111	0.368	0.525	0.503	0.608	0.630
	3	0.913	1.159	1.298	1.175	2.081	0.088	0.736	0.912	0.879	0.905	1.040
	4	0.439	0.624	0.785	0.789	1.242	0.046	0.419	0.548	0.489	0.611	0.639
	5	0.546	0.633	0.785	0.801	1.227	-0.051	0.401	0.514	0.491	0.610	0.615
	6	0.594	0.660	0.870	0.924	1.424	0.021	0.387	0.438	0.450	0.585	0.625
5	1	0.273	0.384	0.486	0.525	0.822	-0.097	0.150	0.233	0.218	0.209	0.193
	2	0.275	0.382	0.488	0.520	0.847	-0.098	0.151	0.232	0.223	0.211	0.190
	3	0.351	0.516	0.676	0.736	1.345	-0.374	0.170	0.269	0.228	0.247	0.295
	4	0.242	0.331	0.350	0.245	0.218	0.549	0.457	0.417	0.341	0.339	0.313
	5	0.272	0.395	0.509	0.392	0.697	-0.002	0.185	0.226	0.224	0.224	0.225
	6	0.286	0.425	0.548	0.501	0.668	0.072	0.224	0.229	0.217	0.217	0.197

Table SB8: Real-time hyperparameter estimates of model 4 in forecast scenario 3.

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
$\hat{\sigma}_{\xi}^{2}$	0.0002	0.0002	0.0002	0.0001	0.0001	0.0002	0.0002	0.0002	0.0003	0.0003	0.0003	0.0005
$\hat{ heta}_{\mu,2}$	1.2646	1.3993	1.4644	1.4910	1.4967	1.3865	1.2426	1.2558	1.2419	1.2379	1.2159	1.2073
$\hat{ heta}_{\mu,3}$	1.9184	2.1501	1.6638	1.6446	1.5516	1.2046	1.1237	0.9525	0.9069	0.8985	0.9137	0.9676
$\hat{ heta}_{\mu,4}$	1.0381	1.0632	0.9874	0.9513	0.9646	0.9343	0.9055	0.8808	0.8841	0.8700	0.8951	0.9429
$\hat{ heta}_{\mu,4} \ \hat{\sigma}_{arepsilon_1}^2$	0.0170	0.0177	0.0192	0.0198	0.0196	0.0194	0.0196	0.0196	0.0198	0.0194	0.0196	0.0199
$\hat{\sigma}_{\varepsilon_2}^2$ $\hat{\sigma}_{\varepsilon_3}^2$ $\hat{\sigma}_{\varepsilon_4}^2$	0.0197	0.0204	0.0215	0.0223	0.0217	0.0214	0.0223	0.0220	0.0224	0.0219	0.0225	0.0226
$\hat{\sigma}_{arepsilon_3}^{2^-}$	0.0165	0.0174	0.0205	0.0216	0.0211	0.0209	0.0205	0.0213	0.0216	0.0214	0.0219	0.0217
$\hat{\sigma}_{arepsilon_4}^2$	0.0197	0.0194	0.0216	0.0228	0.0225	0.0223	0.0219	0.0219	0.0218	0.0213	0.0217	0.0212
$\hat{ ho}_{arepsilon_{2,1}}$	0.9463	0.9468	0.9486	0.9484	0.9456	0.9437	0.9398	0.9391	0.9409	0.9373	0.9376	0.9347
$\hat{ ho}_{arepsilon_{3,1}}$	0.8674	0.8845	0.8925	0.9012	0.8848	0.8855	0.8809	0.8824	0.8798	0.8700	0.8678	0.8608
$\hat{ ho}_{arepsilon_{4,1}}$	0.9303	0.9292	0.9310	0.9320	0.9287	0.9196	0.9179	0.9121	0.9125	0.9063	0.9053	0.9027
$\hat{ ho}_{arepsilon_{3,2}}$	0.8232	0.8364	0.8492	0.8562	0.8404	0.8378	0.8395	0.8401	0.8424	0.8280	0.8258	0.8198
$\hat{ ho}_{arepsilon_{4,2}}$	0.8944	0.8907	0.8938	0.8943	0.8887	0.8771	0.8751	0.8691	0.8725	0.8624	0.8584	0.8507
$\hat{ ho}_{arepsilon_{4,3}}$	0.9330	0.9420	0.9506	0.9497	0.9494	0.9546	0.9538	0.9510	0.9497	0.9506	0.9524	0.9494

SB.2 Figures

Figure SB1: Available monthly observations of the time series on the number of road fatalities.

Figure SB2: Autocorrelation of road fatalities time series, in logs and after (seasonal) differencing.

Figure SB3: Innovations diagnostics of Model 2, obtained with Kalman smoother.

Figure SB4: Innovations diagnostics of Model 6, obtained with Kalman smoother.

Figure SB5: Additional residual diagnostics of Model 1 including QQ plot.

Figure SB6: Additional residual diagnostics of Model 1 including autocorrelation of absolute and squared residuals.

Figure SB7: Additional residual diagnostics of Model 4 including QQ plot.

Figure SB8: Additional residual diagnostics of Model 4 including autocorrelation of absolute and squared residuals.

Figure SB9: State vector estimates in Model 1, obtained with Kalman smoother.

Figure SB10: State vector estimates in Model 2, obtained with Kalman smoother.

Figure SB11: State vector estimates in Model 3, obtained with Kalman smoother.

Figure SB12: State vector estimates in model 4, obtained with Kalman smoother.

Figure SB13: State vector estimates in Model 5, obtained with Kalman smoother.

Figure SB14: State vector estimates in Model 6, obtained with Kalman smoother.

Figure SB15: 1- to 12-step ahead forecasts of the FINRF series of Model 1, in the different forecasting scenarios over the forecasting years 2011-2022.

Figure SB16: 1- to 12-step ahead forecasts of the FINRF series of Model 2, in the different forecasting scenarios over the forecasting years 2011-2022.

Figure SB17: 1- to 12-step ahead forecasts of the FINRF series of Model 3, in the different forecasting scenarios over the forecasting years 2011-2022.

Figure SB18: 1- to 12-step ahead forecasts of the FINRF series of Model 5, in the different forecasting scenarios over the forecasting years 2011-2022.

Figure SB19: 1- to 12-step ahead forecasts of the FINRF series of Model 6, in the different forecasting scenarios over the forecasting years 2011-2022.

Figure SB20: 1- to 12-step ahead forecast standard errors comparison from model 4 in the different scenarios and of the different models in scenario 3 respectively.

Figure SB21: 1- to 12-step ahead forecasts of the FINRF series of the different models in scenario 2, over the forecasting years 2011-2022.

Figure SB22: 1- to 12-step ahead forecasts of the FINRF series of the different models in scenario 4, over the forecasting years 2011-2022.

Figure SB23: 1- to 12-step ahead forecasts of the FINRF series of the different models in scenario 5, over the forecasting years 2011-2022.

SC Supplementary material Section 4

SC.1 Tables

Table SC1: Parameter estimates with constant (left) and time-varying (right) variances for trend disturbance terms.

Model	1	2	3	4	1	2	3	4
$\hat{\sigma}_{\xi_1}^2$	0.1235	1.133e-08	0.0897	0.0914	0.0542	0.0519	0.0347	0.0342
$ \hat{\sigma}_{\xi_1}^2 \\ \hat{\sigma}_{\xi_2}^2 \\ \hat{\theta}_{\mu_1,2} $	-	-	0.0475	0.0464	-	-	0.0324	0.0334
$\hat{\theta}_{\mu_1,2}$	0.3278	1926.0761	0.4350	0.4371	0.3807	0.3993	0.4139	0.3704
$\hat{ heta}_{\mu_1,3}$	0.3776	1784.4226	0.4788	0.4673	0.4218	0.4447	0.4717	0.4400
$\hat{ heta}_{\mu_1,4}$	0.4553	1675.4192	0.3776	0.4069	0.4727	0.4859	0.5060	0.5275
$\hat{ heta}_{\mu_2,3}$	-	-	0.7975	0.8017	-	-	0.7224	0.7313
$\theta_{\mu_2,4}$	-	-	-0.0140	-0.0359	-	-	-0.1390	-0.1174
$\hat{\sigma}_{\zeta_1}^2$	0.0072	0.0340	0.0179	0.0176	0.0052	0.0050	0.0087	0.0089
$\hat{\sigma}_{\zeta_1}^2$ $\hat{\sigma}_{\zeta_2}^2$ $\hat{\sigma}_{\zeta_2}^2$	-	-	0.0007	0.0007	-	-	0.0007	0.0007
$\theta_{\nu_1,2}$	1.1395	0.5876	0.6442	0.6461	1.1454	1.1593	0.7712	0.7627
$\hat{\theta}_{\nu_1,3}$	1.1814	0.6770	0.7726	0.7715	1.1845	1.1975	0.8793	0.8661
$\hat{ heta}_{ u_1,4}$	1.2859	0.7931	0.9999	0.9925	1.2848	1.2962	1.0588	1.0407
$\hat{ heta}_{ u_2,3}$	-	-	0.9542	0.9548	-	-	0.9882	0.9887
$\begin{array}{c} \hat{\theta}_{\nu_{2},4} \\ \hat{\sigma}^{2}_{\omega_{1}} \\ \hat{\sigma}^{2}_{\omega_{2}} \\ \hat{\sigma}^{2}_{\omega_{2}} \\ \hat{\sigma}^{2}_{\omega_{3}} \\ \hat{\sigma}^{2}_{\omega_{4}} \end{array}$	-	-	1.0569	1.0719	-	-	1.1712	1.1911
$\hat{\sigma}_{\omega_1}^2$	0.0029	0	0.0039	0.0041	0.0043	1.924e-08	0.0058	0.0049
$\hat{\sigma}_{\omega_2}^2$		0	-	3.393e-11	-	5.117e-10	-	1.818e-11
$\hat{\sigma}_{\omega_3}^2$	-	0	-	0.0002	-	0.0011	-	0.0006
$\hat{\sigma}_{\omega_4}^2$	-	0	-	4.369e-13	-	6.545 e-10	-	7.151e-12
$\hat{\theta}_{\gamma_1,2}$	0.0086	-	0.0909	-	-0.2016	-	-0.0983	-
$\theta_{\gamma_1,3}$	-0.4189	-	-0.2201	-	-0.6199	-	-0.4127	-
$\hat{\theta}_{\gamma_1,4}$	0.0714	-	0.0483	-	-0.0281	-	-0.0517	-
$\hat{\sigma}_e^2$	1.1865	0.9902	0.4702	0.4652	1.1567	1.1661	0.5213	0.5280
$\hat{\sigma}_{\varepsilon_{u}}^{2}$	2.933e-18	0.0535	4.697e-08	1.015e-19	3.173e-12	0.0268	3.213e-09	0.0029
$\hat{ heta}_{\gamma_1,4}^{\gamma_1,4} \ \hat{\sigma}_e^2 \ \hat{\sigma}_{arepsilon_y}^2 \ \hat{\sigma}_{arepsilon_x}^2$	1.243 e-07	0.0049	0.0151	0.0155	5.255 e-10	2.253 e-05	0.0134	0.0129

Table SC2: Ljung-Box test statistics for different lag sizes. Test statistic is asymptotically chi-square distributed with df: lag size - (# parameters/N) - 1.

				С	onstant tre	nd variance	е	tin	ne-varying to	end varian	ce
Model				1	2	3	4	1	2	3	4
Series	lag size	lowest df	crit. value								
y_t	20	14	23.685	9.429	21.158	9.392	9.372	15.910	35.065**	10.482	10.991
	30	24	36.415	11.678	26.849	13.710	14.374	18.788	46.087**	15.730	17.686
	40	34	48.602	16.259	35.787	22.546	23.265	21.572	56.679**	22.256	24.979
	50	44	60.481	32.293	54.417	38.613	38.723	37.997	76.769**	36.627	40.294
	60	54	72.153	50.925	63.059	47.504	47.512	61.435	93.235**	49.724	52.905
$x_{t,1}$	20	14	23.685	18.935	17.592	20.862	20.202	24.466*	23.942*	30.117**	29.522**
,	30	24	36.415	33.372	30.302	36.544*	36.290*	43.444**	41.790*	52.419**	50.221**
	40	34	48.602	40.963	39.016	44.656	43.299	48.517	49.737*	58.451**	58.203**
	50	44	60.481	63.366*	63.535*	64.573*	63.251*	68.646*	68.841**	71.478**	70.888**
	60	54	72.153	72.142	71.201	73.533*	72.057	76.437*	76.905*	79.728*	78.904*
$x_{t,2}$	20	14	23.685	12.577	10.971	11.201	11.402	16.883	12.892	15.186	11.295
	30	24	36.415	21.490	15.911	20.245	20.478	27.503	21.541	23.990	19.973
	40	34	48.602	24.604	19.825	23.514	24.916	32.395	26.884	27.913	27.166
	50	44	60.481	36.324	30.960	35.336	36.935	47.072	37.640	41.128	36.974
	60	54	72.153	53.921	47.549	52.598	52.823	65.384	52.317	60.302	50.637
$x_{t,3}$	20	14	23.685	60.199**	30.718**	32.893**	32.484**	64.063**	64.517**	35.344**	35.134**
-7-	30	24	36.415	76.011**	38.536*	44.108**	43.599**	81.061**	81.161**	47.819**	47.355**
	40	34	48.602	86.697**	46.628	48.675*	48.289	92.242**	92.372**	56.138**	55.635**
	50	44	60.481	106.486**	56.814	62.458*	62.202*	112.190**	112.902**	72.647**	72.635**
	60	54	72.153	120.576**	63.274	71.013	70.788	125.529**	126.574**	83.857**	83.608**
# paramete	ers			15	15	21	21	15	15	21	21

 $^{^{**}}p<0.01,\ ^*p<0.05$

Table SC3: MAPE forecasting performance based on the 5-step ahead forecasts per forecasting year and in total relative to the MAPE of the univariate benchmark model (BSTS), for models with time constant (Const.) and time-varying (TV) variances for trend disturbance terms.

Scenario	Model	2011	2012	2013	2014	2015	2016	2017	2018	2019	202	20	202	21	Tot	tal
											Const.	TV	Const.	TV	Const.	TV
1	BSTS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	1	1.092	0.599	0.578	1.763	0.747	1.441	0.981	0.713	1.263	0.643	1.013	0.331	0.778	0.695	0.903
	2	0.933	0.485	0.672	1.535	0.679	1.402	0.910	0.533	1.019	0.624	1.060	0.340	0.831	0.639	0.877
	3	0.660	0.540	0.407	1.696	0.742	1.651	1.244	1.028	1.580	0.626	1.045	0.309	0.380	0.640	0.727
	4	0.830	0.626	0.914	1.989	0.319	1.421	2.363	0.715	0.820	0.511	0.586	0.334	0.611	0.644	0.788
3	1	1.089	0.599	0.615	1.658	0.770	1.558	1.147	1.056	1.100	0.618	0.978	0.350	0.817	0.705	0.919
	2	0.955	0.486	0.649	1.433	0.698	1.513	1.143	0.868	0.864	0.606	1.009	0.352	0.867	0.651	0.892
	3	0.540	0.850	0.881	2.221	0.500	0.878	3.321	1.564	0.649	0.509	0.589	0.347	0.260	0.675	0.638
	4	0.838	1.008	1.289	2.142	0.302	0.762	2.874	1.348	0.660	0.492	0.557	0.358	0.634	0.709	0.802
4	1	1.069	0.482	0.238	1.090	0.679	1.403	1.501	1.446	1.360	0.586	0.807	0.348	0.735	0.654	0.838
	2	0.840	0.484	0.732	1.695	0.626	1.398	0.814	0.767	0.980	0.572	0.899	0.342	0.860	0.625	0.854
	3	0.677	0.604	0.660	1.798	0.398	1.056	2.852	1.547	1.438	0.511	0.502	0.338	0.596	0.643	0.691
	4	0.816	0.585	0.870	1.932	0.331	0.818	2.256	2.382	1.089	0.503	0.491	0.348	0.286	0.661	0.665

Table SC4: MAE forecasting performance based on the 5-step ahead forecasts per forecasting year and in total relative to the MAE of the univariate benchmark model (BSTS), for models with time constant (Const.) and time-varying (TV) variances for trend disturbance terms.

Scenario	Model	2011	2012	2013	2014	2015	2016	2017	2018	2019	202	20	202	21	Tot	al
											Const.	TV	Const.	TV	Const.	TV
1	BSTS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	1	1.089	0.597	0.578	1.760	0.747	1.444	0.979	0.715	1.261	0.644	1.014	0.327	0.776	0.688	0.901
	2	0.932	0.484	0.672	1.533	0.679	1.405	0.909	0.534	1.017	0.625	1.060	0.335	0.829	0.633	0.877
	3	0.659	0.538	0.406	1.692	0.741	1.655	1.242	1.030	1.577	0.627	1.045	0.305	0.374	0.636	0.722
	4	0.829	0.624	0.914	1.985	0.319	1.424	2.366	0.715	0.819	0.512	0.586	0.331	0.610	0.638	0.783
3	1	1.087	0.598	0.615	1.655	0.769	1.562	1.146	1.058	1.099	0.619	0.978	0.345	0.814	0.699	0.917
	2	0.954	0.485	0.649	1.431	0.698	1.517	1.142	0.871	0.863	0.607	1.009	0.348	0.864	0.645	0.891
	3	0.539	0.849	0.881	2.217	0.498	0.881	3.329	1.568	0.648	0.509	0.589	0.343	0.257	0.669	0.631
	4	0.837	1.007	1.289	2.138	0.302	0.765	2.881	1.350	0.660	0.492	0.557	0.355	0.633	0.701	0.797
4	1	1.067	0.482	0.238	1.089	0.679	1.405	1.501	1.448	1.361	0.585	0.807	0.344	0.734	0.650	0.838
	2	0.839	0.483	0.732	1.693	0.626	1.400	0.814	0.769	0.980	0.572	0.898	0.337	0.858	0.619	0.853
	3	0.676	0.603	0.659	1.793	0.398	1.056	2.851	1.551	1.436	0.511	0.501	0.333	0.594	0.639	0.690
	4	0.815	0.583	0.870	1.927	0.330	0.818	2.264	2.383	1.087	0.503	0.491	0.344	0.282	0.656	0.658

SC.2 Figures

Figure SC1: Available time series of quarterly labour force participation (LFP) rate in Amsterdam derived from the tax register and monthly LFP rate in the Netherlands obtained from the labour force survey.

Figure SC2: Autocorrelation of labour force time series, in levels and after (seasonal) differencing.

Figure SC3: Innovations diagnostics of Model 1, obtained with Kalman smoother.

Figure SC4: Innovations diagnostics of Model 1 including time-varying variances for the trend disturbance terms at the start of the COVID-19 outbreak.

Figure SC5: Innovations diagnostics of Model 2, obtained with Kalman smoother.

Figure SC6: Innovations diagnostics of Model 2 including time-varying variances for the trend disturbance terms at the start of the COVID-19 outbreak.

Figure SC7: Innovations diagnostics of Model 4, obtained with Kalman smoother.

Figure SC8: Innovations diagnostics of Model 4 including time-varying variances for the trend disturbance terms at the start of the COVID-19 outbreak.

Figure SC9: Additional residual diagnostics of Model 1 with constant trend disturbance variance including QQ plot.

Figure SC10: Additional residual diagnostics of Model 1 with constant trend disturbance variance including autocorrelation of absolute and squared residuals.

Figure SC11: Additional residual diagnostics of Model 1 with time-varying trend disturbance variance including QQ plot.

Figure SC12: Additional residual diagnostics of Model 1 with time-varying trend disturbance variance including autocorrelation of absolute and squared residuals.

Figure SC13: Additional residual diagnostics of Model 3 with constant trend disturbance variance including QQ plot.

Figure SC14: Additional residual diagnostics of Model 3 with constant trend disturbance variance including autocorrelation of absolute and squared residuals.

Figure SC15: Additional residual diagnostics of Model 3 with time-varying trend disturbance variance including QQ plot.

Figure SC16: Additional residual diagnostics of Model 3 with time-varying trend disturbance variance including autocorrelation of absolute and squared residuals.

Figure SC17: State vector estimates in Model 1, obtained with Kalman smoother.

Figure SC18: State vector estimates in Model 1 including time-varying variances for the trend disturbance terms at the start of the COVID-19 outbreak.

Figure SC19: State vector estimates in Model 2, obtained with Kalman smoother.

Figure SC20: State vector estimates in Model 2 including time-varying variances for the trend disturbance terms at the start of the COVID-19 outbreak.

Figure SC21: State vector estimates in model 3 with constant variances for the trend disturbance terms, obtained with Kalman smoother.

Figure SC22: State vector estimates in model 3 including time-varying variances for the trend disturbance terms at the start of the COVID-19 outbreak.

Figure SC23: State vector estimates in Model 4, obtained with Kalman smoother.

Figure SC24: State vector estimates in Model 4 including time-varying variances for the trend disturbance terms at the start of the COVID-19 outbreak.

Figure SC25: 5-step ahead forecasts of the register LPF rate series of Model 1, in the different forecast scenarios, constant (top) and time-varying (bottom) variances for trend disturbance terms.

Figure SC26: 5-step ahead forecasts of the register LPF rate series of Model 2, in the different forecast scenarios, constant (top) and time-varying (bottom) variances for trend disturbance terms.

Figure SC27: 5-step ahead forecasts of the register LPF rate series of Model 4, in the different forecast scenarios, constant (top) and time-varying (bottom) variances for trend disturbance terms.

Figure SC28: Forecast standard errors comparison from model 3 in the different scenarios and of the different models in scenario 3, with constant (left) and time-varying (right) variances for trend disturbance terms.

Figure SC29: 5-step ahead forecasts of the register LPF rate series of the different models, in forecasting scenario 2, constant (top) and time-varying (bottom) variances for trend disturbances.

Figure SC30: 5-step ahead forecasts of the register LPF rate series of the different models, in forecasting scenario 4, constant (top) and time-varying (bottom) variances for trend disturbances.