简介

这是我个人用于复习的笔记,一本习题补注。由于我个人的复习特点,我把许多对我个人而言没什么复习价值的习题作了省略。为什么我没有用中文?因为我将来要学习的绝大多数数学课本都是全英的,国内目前的专业翻译速度慢、不全面,况且对于专业学习者来说,直接使用英文不会造成任何困扰,并且我不愿意花费额外的时间去翻译,所以我用英文。但我讨厌英文单词的冗长性,这会让我复习起来很不爽,所以我对许多常用词汇适当地作了简写。这份笔记的内容范围和标识说明,我已经在README中写得很清楚,不再赘述。这份笔记尚处于缓慢的编撰进度中。

Goto									
1	2	3	4	5	6	7	8	9	10
A	A	A	/	A	A	A	A	A	A
В	В	В	/	B^{I}	В	В	В	В	В
/	/	/	/	\mathbf{B}^{II}	/	/	/	/	/
C	C	C	/	C	C	C	C	/	/
/	/	D	/	/	D	D	D	/	/
/	/	E	/	E*	/	/	/	/	/
_/	/	F	/	/	/	F*	/	/	/

Abbreviation Table

Those viation tubic							
def	definition						
vec	vector						
vecsp	vector space						
subsp	subspace						
add	addition/additive						
multi	multiplication/multiplicative/multiple						
assoc	associative/associativity						
distr	distributive properties/property						
inv	inverse						
existns	existence						
uniqnes	uniqueness						
linely inde	linearly independent/independence						
linely dep	linearly dependent/dependence						
dim	dimension(al)						
inje	injective						
surj	surjective						
col	column						
with resp	with respect						
standard basis	std basis						
iso	isomorphism/isomorphic						
correspd	correspond(ing)						
poly	polynomial						
eigval	eigenvalue						
eigvec	eigenvector						
mini poly	minimal polynomial						
char poly	characteristic polynomial						

1.B

1 Prove that $\forall v \in V, -(-v) = v$.

SOLUTION:

$$-(-v) + (-v) = 0$$
 $v + (-v) = 0$ \Rightarrow By the uniques of add inv, we are done.

Or.
$$-(-v) = (-1)((-1)v) = ((-1)(-1))v = 1 \cdot v = v$$
.

2 Suppose $a \in \mathbf{F}, v \in V$, and av = 0. Prove that a = 0 or v = 0.

SOLUTION:

Suppose
$$a \neq 0$$
, $\exists a^{-1} \in \mathbf{F}$, $a^{-1}a = 1$, hence $v = 1 \cdot v = (a^{-1}a)v = a^{-1}(av) = a^{-1} \cdot 0 = 0$.

3 Suppose $v, w \in V$. Explain why $\exists ! x \in V, v + 3x = w$.

SOLUTION:

[Existns] Let
$$x = \frac{1}{3}(w - v)$$
.

[*Uniques*] Suppose
$$v + 3x_1 = w$$
,(I) $v + 3x_2 = w$ (II). Then (I) $-$ (II) $: 3(x_1 - x_2) = 0 \Rightarrow x_1 = x_2$.

Or.
$$v + 3x = w \Leftrightarrow 3x = w - v \Leftrightarrow x = \frac{1}{3}(w - v)$$
.

5 Show that in the def of a vecsp, the add inv condition can be replaced by [1.29].

Hint: Suppose V satisfies all conds in the def, except we've replaced the add inv cond with [1.29]. Prove that the add inv is true.

Using [1.31].
$$0v = 0$$
 for all $v \in V \iff (1 + (-1))v = 1 \cdot v + (-1)v = v + (-v) = 0$.

6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in R.

Define an add and scalar multi on $\mathbb{R} \cup \{\infty, -\infty\}$ *as you could guess.*

The operations of real numbers is as usual. While for $t \in \mathbb{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} -\infty & \text{if } t > 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t < 0, \end{cases}$$

(I)
$$t + \infty = \infty + t = \infty + \infty = \infty$$
,

(II)
$$t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty$$
,

(III)
$$\infty + (-\infty) = (-\infty) + \infty = 0.$$

With these operations of add and scalar multi, is $R \cup \{\infty, -\infty\}$ a vecsp over R? Explain.

SOLUTION:

Not a vecpsp, since the add and scalar mult is not assoc and distr.

By Assoc:
$$(a + \infty) + (-\infty) \neq a + (\infty + (-\infty))$$
.

Or. By Distr:
$$\infty = (2 + (-1))\infty \neq 2\infty + (-\infty) = \infty + (-\infty) = 0$$
.

• Tips: About the Field F: Many choices.

Example:
$$\mathbf{F} = \mathbf{Z}_m = \{K_0, K_1, \dots, K_{m-1}\}, \forall m - 1 \in \mathbf{N}^+.$$

1														
	l• C	7	8	11	12	13	15	16	17	18	21	22	23	2

7 Give a nonempty $U \subseteq \mathbb{R}^2$,

U is closed under taking add invs and under add, but is not a subsp of \mathbb{R}^2 .

SOLUTION: $(0 \in U; v \in U \Rightarrow -v \in U.)$ Let $U = \{0,1\}^2, \mathbb{Z}^2, \mathbb{Q}^2.$

8 Give a nonempty $U \subseteq \mathbb{R}^2$, U is closed under scalar multi, but is not a subsp of \mathbb{R}^2 .

SOLUTION: Let $U = \{(x, y) \in \mathbb{R}^2 : x = 0 \lor y = 0\}.$

9 A function $f: \mathbf{R} \to \mathbf{R}$ is called periodic if $\exists p \in \mathbf{N}^+$, f(x) = f(x+p) for all $x \in \mathbf{R}$. Is the set of periodic functions $\mathbf{R} \to \mathbf{R}$ a subsp of $\mathbf{R}^{\mathbf{R}}$? Explain.

SOLUTION: Denote the set by S.

Suppose $h(x) = \cos x + \sin \sqrt{2}x \in S$, since $\cos x$, $\sin \sqrt{2}x \in S$.

Assume $\exists p \in \mathbb{N}^+$ such that h(x) = h(x+p), $\forall x \in \mathbb{R}$. Let $x = 0 \Rightarrow h(0) = h(\pm p) = 1$.

Thus $1 = \cos p + \sin \sqrt{2}p = \cos p - \sin \sqrt{2}p$

 $\Rightarrow \sin \sqrt{2}p = 0, \cos p = 1 \Rightarrow p = 2k\pi, k \in \mathbb{Z}, \text{ while } p = \frac{m\pi}{\sqrt{2}}, m \in \mathbb{Z}.$

Hence $2k = \frac{m}{\sqrt{2}} \Rightarrow \sqrt{2} = \frac{m}{2k} \in \mathbb{Q}$. Contradiction!

OR. Because [I] : $\cos x + \sin \sqrt{2}x = \cos (x + p) + \sin (\sqrt{2}x + \sqrt{2}p)$. By differentiating twice, [II] : $\cos x + 2\sin \sqrt{2}x = \cos (x + p) + 2\sin (\sqrt{2}x + \sqrt{2}p)$.

$$[II] - [I] : \sin \sqrt{2}x = \sin \left(\sqrt{2}x + \sqrt{2}p\right)$$

$$2[I] - [II] : \cos x = \cos \left(x + p\right)$$

$$\Rightarrow \text{Let } x = 0, \ p = \frac{m\pi}{\sqrt{2}} = 2k\pi. \text{ Contradicts.}$$

• Suppose U, W, V_1, V_2, V_3 are subsps of V.

 $15 U + U \ni u + w \in U.$

$$16 U+W\ni u+w=w+u\in W+U. \Box$$

17
$$(V_1 + V_2) + V_3 \ni (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3) \in V_1 + (V_2 + V_3).$$

18 Does the add on the subsps of V have an add identity? Which subsps have add invs? **SOLUTION**: Suppose Ω is the additive identity.

- (a) For any subsp U of V. $\Omega \subseteq U + \Omega = U \Rightarrow \Omega \subseteq U$. Let $U = \{0\}$, then $\Omega = \{0\}$.
- (b) Now suppose *W* is an add inv of $U \Rightarrow U + W = \Omega$.

Note that $U + W \supseteq U, W \Rightarrow \Omega \supseteq U, W$. Thus $U = W = \Omega = \{0\}$.

11 *Prove that the intersection of every collection of subsps of* V *is a subsp of* V.

SOLUTION: Suppose $\{U_{\alpha}\}_{\alpha\in\Gamma}$ is a collection of subsps of V; here Γ is an arbitrary index set.

We show that $\bigcap_{\alpha \in \Gamma} U_{\alpha}$, which equals the set of vecs that are in U_{α} for each $\alpha \in \Gamma$, is a subsp of V.

- (-) $0 \in \bigcap_{\alpha \in \Gamma} U_{\alpha}$. Nonempty.
- $(\stackrel{\frown}{}) u, v \in \bigcap_{\alpha \in \Gamma} U_{\alpha} \Rightarrow u + v \in U_{\alpha}, \ \forall \alpha \in \Gamma \Rightarrow u + v \in \bigcap_{\alpha \in \Gamma} U_{\alpha}.$ Closed under add.
- $(\equiv) \ u \in \bigcap_{\alpha \in \Gamma} U_{\alpha}, \lambda \in F \Rightarrow \lambda u \in U_{\alpha}, \ \forall \alpha \in \Gamma \Rightarrow \lambda u \in \bigcap_{\alpha \in \Gamma} U_{\alpha}.$ Closed under scalar multi.

Thus $\bigcap_{\alpha \in \Gamma} U_{\alpha}$ is nonempty subset of V that is closed under add and scalar multi.

12 Suppose U, W are subsps of V. Prove that $U \cup W$ is a subsp of $V \iff U \subseteq W$ or $W \subseteq U$. Solution:

- (a) Suppose $U \subseteq W$. Then $U \cup W = W$ is a subsp of V.
- (b) Suppose $U \cup W$ is a subsp of V. Suppose $U \nsubseteq W$ and $U \not\supseteq W$ ($U \cup W \neq U$ and W). Then $\forall a \in U \land a \notin W, b \in W \land b \notin U$, $a + b \in U \cup W$.

If
$$a + b \in U \Rightarrow b = (a + b) + (-a) \in U$$
, contradicts!
If $a + b \in W \Rightarrow a = (a + b) + (-b) \in W$, contradicts! $\Rightarrow U \cup W = U$ or W . Contradicts!

Thus $U \subseteq W$ and $U \supseteq W$.

13 Prove that the union of three subsps of V is a subsp of V if and only if one of the subsps contains the other two.

This exercise is not true if we replace F with a field containing only two elements.

SOLUTION:

Suppose U_1, U_2, U_3 are subsps of V. Denote $U_1 \cup U_2 \cup U_3$ by \mathcal{U} .

- (a) Suppose that one of the subsps contains the other two. Then $\mathcal{U} = U_1, U_2$ or U_3 is a subsp of V.
- (b) Suppose that $U_1 \cup U_2 \cup U_3$ is a subsp of V.

Distinctively notice that $A \cup B \cup C = (A \cup B) \cup (B \cup C) = (A \cup C) \cup (B \cup C) = (A \cup B) \cup (A \cup C)$. Also note that, if $U \cup W = V$ is a vecsp, then in general U and W are not subsps of V. Hence this literal trick is invalid.

- (I) If any U_j is contained in the union of the other two, say $U_1 \subseteq U_2 \cup U_3$, then $\mathcal{U} = U_2 \cup U_3$. By applying Problem (12) we conclude that one U_j contains the other two. Thus we are done.
- (II) Assume that no U_j is contained in the union of the other two, and no U_i contains the union of the other two.

Say $U_1 \not\subseteq U_2 \cup U_3$ and $U_1 \not\supseteq U_2 \cup U_3$.

 $\exists u \in U_1 \land u \notin U_2 \cup U_3; \ v \in U_2 \cup U_3 \land v \notin U_1. \text{ Let } W = \{v + \lambda u : \lambda \in \mathbf{F}\} \subseteq \mathcal{U}.$

Note that $W \cap U_1 = \emptyset$, for if any $v + \lambda u \in W \cap U_1$ then $v + \lambda u - \lambda u = v \in U_1$.

Now $W \subseteq U_1 \cup U_2 \cup U_3 \Rightarrow W \subseteq U_2 \cup U_3$. $\forall v + \lambda u \in W, v + \lambda u \in U_i, i = 2, 3$.

If $U_2 \subseteq U_3$ or $U_2 \supseteq U_3$, then $\mathcal{U} = U_1 \cup U_i$, i = 2, 3. By Problem (12) we are done.

Otherwise, both U_2 , $U_3 \neq \{0\}$. Because $W \subseteq U_2 \cup U_3$ has at least three elements.

There must be some U_i that contains at least two elements of W.

 $\exists \text{ distinct } \lambda_1, \lambda_2 \in \mathbf{F}, v + \lambda_1 u, v + \lambda_2 u \in U_i, i \in \{2, 3\}.$

Then $u \in U_i$ while $u \notin U_2 \cup U_3$. Contradicts.

Example: Let $\mathbf{F} = \mathbf{Z}_2$, $B_V = (v_1, \dots, v_5)$. Then the proof *above* will not work.

• Example: Suppose $U = \{(x, x, y, y) \in \mathbf{F}^4\}, W = \{(x, x, x, y) \in \mathbf{F}^4\}.$ Prove that $U + W = \{(x, x, y, z) \in \mathbf{F}^4\}.$

Let T denote $\{(x, x, y, z) \in \mathbb{F}^4 : x, y, z \in \mathbb{F}\}$. By def, $U + W \subseteq T$.

And $T \ni (x, x, y, z) \Rightarrow (0, 0, y - x, y - x) + (x, x, x, -y + x + z) \in U + W$. Hence $T \subseteq U + W$.

21 Suppose $U = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5\}$. Find a W such that $\mathbb{F}^5 = U \oplus W$. **SOLUTION**: Let $W = \{(0,0,z,w,u) \in \mathbb{F}^5\}$. Then $U \cap W = \{0\}$. And $\mathbf{F}^5 \ni (x, y, z, w, u) \Rightarrow (x, y, x + y, x - y, 2x) + (0, 0, z - x - y, w - x - y, u - 2x) \in U + W$. **23** Give an example of vecsps V_1, V_2, U such that $V_1 \oplus U = V_2 \oplus U$, but $V_1 \neq V_2$. **SOLUTION:** $V = \mathbb{F}^2$, $U = \{(x, x) \in \mathbb{F}^2\}$, $V_1 = \{(x, 0) \in \mathbb{F}^2\}$, $V_2 = \{(0, x) \in \mathbb{F}^2\}$. • Tips: Suppose $V_1 \subseteq V_2$ in Exercise (23). Prove or give a counterexample: $V_1 = V_2$. **SOLUTION:** Because the subset V_1 of vecsp V_2 is closed under add and scalar multi, V_1 is a subspace of V_2 . Suppose W is such that $V_2 = V_1 \oplus W$. Now $V_2 \oplus U = (V_1 \oplus W) \oplus U = (V_1 \oplus U) \oplus W = V_1 \oplus U$. If $W \neq \{0\}$, then $V_1 \oplus U \subsetneq (V_1 \oplus U) \oplus W$, contradicts. Hence $W = \{0\}$, $V_1 = V_2$. Or. • Suppose V_1, V_2, U_1, U_2 are vecsps, $V_1 \oplus U_1 = V_2 \oplus U_2, V_1 \subseteq V_2, U_2 \subseteq U_1$. *Prove or give a counterexample:* $V_1 = V_2$, $U_1 = U_2$. **SOLUTION**: A counterexample: [Using notations in Chapter 2.] Let $V = \mathbb{F}^3$, $B_V = (e_1, e_2, e_3)$, $V_1 = \operatorname{span}(e_1)$, $U_1 = \operatorname{span}(e_2, e_3)$, $V_2 = \operatorname{span}(e_1, e_2)$, $U_2 = \operatorname{span}(e_3)$. Now $V_1 \subseteq V_2$, $U_2 \subseteq U_1$ and $V_1 \oplus U_1 = V_2 \oplus U_2$. But $V_1 \neq V_2$, $U_1 \neq U_2$. **24** Let $V_E = \{ f \in \mathbb{R}^R : f \text{ is even} \}, V_O = \{ f \in \mathbb{R}^R : f \text{ is odd} \}. Show that <math>V_E \oplus V_O = \mathbb{R}^R$. **SOLUTION:** (a) $V_E \cap V_O = \{ f \in \mathbb{R}^R : f(x) = f(-x) = -f(-x) \} = \{ 0 \}.$ (b) $\left| \begin{array}{l} \operatorname{Let} f_{e}(x) = \frac{1}{2} \big[g(x) + g(-x) \big] \Longrightarrow f_{e} \in V_{E} \\ \operatorname{Let} f_{o}(x) = \frac{1}{2} \big[g(x) - g(-x) \big] \Longrightarrow f_{o} \in V_{O} \end{array} \right| \Rightarrow \forall g \in \mathbb{R}^{R}, g(x) = f_{e}(x) + f_{o}(x).$ **ENDED** 2·A 1 2 6 10 11 14 16 17 | 4E: 3,14 A list (v) of length 1 in V is linely inde $\iff v \neq 0$. [Q](b) [P] A list (v, w) of length 2 in V is linely inde $\iff \forall \lambda, \mu \in \mathbf{F}, v \neq \lambda w, w \neq \mu v$. [Q]**SOLUTION:** (a) $Q \stackrel{1}{\Rightarrow} P : v \neq 0 \Rightarrow \text{if } av = 0 \text{ then } a = 0 \Rightarrow (v) \text{ linely inde.}$ $P \stackrel{?}{\Rightarrow} Q : (v)$ linely inde $\Rightarrow v \neq 0$, for if v = 0, then $av = 0 \Rightarrow a = 0$. OR. $\begin{vmatrix} \neg Q \stackrel{3}{\Rightarrow} \neg P : v = 0 \Rightarrow av = 0 \text{ while we can let } a \neq 0 \Rightarrow (v) \text{ is linely dep.} \\ \neg P \stackrel{4}{\Rightarrow} \neg Q : (v) \text{ linely dep} \Rightarrow av = 0 \text{ while } a \neq 0 \Rightarrow v = 0.$ **COMMENT:** (1) with (3) and (2) with (4) will do as well. (b) $P \stackrel{1}{\Rightarrow} Q : (v, w)$ linely inde \Rightarrow if av + bw = 0, then $a = b = 0 \Rightarrow$ no scalar multi. $Q \stackrel{?}{\Rightarrow} P$: no scalar multi \Rightarrow if av + bw = 0, then $a = b = 0 \Rightarrow (v, w)$ linely inde. OR. $\begin{vmatrix} \neg P \stackrel{3}{\Rightarrow} \neg Q : (v, w) \text{ linely dep} \Rightarrow \text{if } av + bw = 0, \text{ then } a \text{ or } b \neq 0 \Rightarrow \text{ scalar multi} \\ \neg Q \stackrel{4}{\Rightarrow} \neg P : \text{ scalar multi} \Rightarrow \text{if } av + bw = 0, \text{ then } a \text{ or } b \neq 0 \Rightarrow \text{ linely dep.}$

COMMENT: (1) with (3) and (2) with (4) will do as well.

1 Prove that [P] (v_1, v_2, v_3, v_4) spans $V \iff (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ also spans V[Q]. **SOLUTION:** Notice that $V = \text{span}(v_1, \dots, v_n) \iff \forall v \in V, \exists a_1, \dots, a_n \in F, v = a_1v_1 + \dots + a_nv_n$. Assume that $\forall v \in V, \exists a_1, \dots, a_4, b_1, \dots, b_4 \in F$, (that is, if $\exists a_i$, then we are to find b_i , vice versa) $v = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$ $= b_1(v_1 - v_2) + b_2(v_2 - v_3) + b_3(v_3 - v_4) + b_4v_4$ $= b_1v_1 + (b_2 - b_1)v_2 + (b_3 - b_2)v_3 + (b_4 - b_3)v_4.$ Now we can let $b_i = \sum_{r=1}^{i} a_r$ if we are to prove Q with P already assumed; or let $a_i = b_i - b_{i-1}$ with $b_0 = 0$, if we are to prove P with Q already assumed. **6** Prove that [P] (v_1, v_2, v_3, v_4) is linely inde \iff [Q] $(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ is linely inde. **SOLUTION:** $P \Rightarrow Q: a_1(v_1 - v_2) + a_2(v_2 - v_3) + a_3(v_3 - v_4) + a_4v_4 = 0$ $\Rightarrow a_1v_1 + (a_2 - a_1)v_2 + (a_3 - a_2)v_3 + (a_4 - a_3)v_4 = 0$ $\Rightarrow a_1 = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 0$ $Q \Rightarrow P : a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = 0$ $\Rightarrow a_1(v_1-v_2)+(a_1+a_2)(v_2-v_3)+(a_1+a_2+a_3)(v_3-v_4)+(a_1+\cdots+a_4)v_4=0$ $\Rightarrow a_1 = a_1 + a_2 = a_1 + a_2 + a_3 = a_1 + \dots + a_4 = 0.$ • Suppose $(v_1, ..., v_m)$ is a list of vecs in V. For each k, let $w_k = v_1 + \cdots + v_k$. (a) Show that span $(v_1, ..., v_m) = \text{span}(w_1, ..., w_m)$. (b) Show that $[P](v_1, ..., v_m)$ is linely inde $\iff (w_1, ..., w_m)$ is linely inde [Q]. **SOLUTION:** (a) $let a_k = \sum_{j=1}^k b_j \iff a_1 v_1 + \dots + a_m v_m = b_1 w_1 + \dots + b_m w_m \implies let b_1 = a_1, \ b_k = a_k - \sum_{j=1}^{k-1} b_j = \sum_{j=1}^k \left(-1\right)^{k-j} a_j.$ (b) $P \Rightarrow Q: b_1 w_1 + \dots + b_m w_m = 0 = a_1 v_1 + \dots + a_m v_m$, where $0 = a_k = \sum_{i=1}^k b_i$. $Q \Rightarrow P: a_1v_1 + \dots + a_mv_m = 0 = b_1w_1 + \dots + b_mw_m = 0$, where $0 = b_1 = a_1$, $0 = b_k = \sum_{i=1}^{k} (-1)^{k-j}a_j$ Or. Because $W = \operatorname{span}(v_1, \dots, v_m) = \operatorname{span}(w_1, \dots, w_m)$. By [2.21] (b), a list of length (m-1) spans W, then by [2.23], (w_1, \dots, w_m) linely dep $\Rightarrow (v_1, \dots, v_m)$ linely dep. Conversely it is true as well. **10** Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. Prove that if $(v_1 + w, ..., v_m + w)$ is linely depe, then $w \in \text{span}(v_1, ..., v_m)$. **SOLUTION:** Suppose $a_1(v_1 + w) + \cdots + a_m(v_m + w) = 0, \exists a_i \neq 0 \Rightarrow a_1v_1 + \cdots + a_mv_m = 0 = -(a_1 + \cdots + a_m)w$. Then $a_1 + \cdots + a_m \neq 0$, for if not, $a_1v_1 + \cdots + a_mv_m = 0$ while $a_i \neq 0$ for some i, contradicts. Or. By contrapositive, $w \notin \text{span}(v_1, ..., v_m)$, similarly. Or. $\exists j \in \{1, ..., m\}, v_j + w \in \text{span}(v_1 + w, ..., v_{j-1} + w)$. If j = 1 then $v_1 + w = 0$ and we are done. If $j \ge 2$, then $\exists a_i \in F$, $v_j + w = a_1(v_1 + w) + \dots + a_{j-1}(v_{j-1} + w) \iff v_j + \lambda w = a_1v_1 + \dots + a_{j-1}v_{j-1}$.

Where $\lambda = 1 - (a_1 + \dots + a_{i-1})$. Note that $\lambda \neq 0$, for if not, $v_i + \lambda w = v_i \in \text{span}(v_1, \dots, v_{i-1})$, contradicts.

Now $w = \lambda^{-1} (a_1 v_1 + \dots + a_{j-1} v_{j-1} - v_j) \Rightarrow w \in \text{span}(v_1, \dots, v_m).$

11 Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. Show that $[P](v_1, ..., v_m, w)$ is linely inde $\iff w \notin \text{span}(v_1, ..., v_m)[Q]$. **14** Prove that [P] V is infinite-dim $\iff [Q]$ there is a sequence (v_1, v_2, \dots) in V such that (v_1, \dots, v_m) is linely inde for each $m \in \mathbb{N}^+$. **SOLUTION:** $P \Rightarrow Q$: Suppose *V* is infinite-dim, so that no list spans *V*. Step 1 Pick a $v_1 \neq 0$, (v_1) linely inde. Step m Pick a $v_m \notin \text{span}(v_1, ..., v_{m-1})$, by Problem (10)(b), $(v_1, ..., v_m)$ is linely inde. This process recursively defines the desired sequence $(v_1, v_2, ...)$. $\neg P \Rightarrow \neg Q$: Suppose V is finite-dim and $V = \text{span}(w_1, ..., w_m)$. Let $(v_1, v_2, ...)$ be a sequence in V, then $(v_1, v_2, ..., v_{m+1})$ must be linely dep. Or. $Q \Rightarrow P$: Suppose there is such a sequence. Choose an m. Suppose a linely inde list (v_1, \dots, v_m) spans V. (Similar to [2.16]) Then $\exists v_{m+1} \in V \setminus \text{span}(v_1, \dots, v_m)$. Hence no list spans *V* . Thus *V* is infinite-dim. **16** Prove that the vecsp of all continuous functions in $\mathbb{R}^{[0,1]}$ is infinite-dim. **SOLUTION:** Denote the vecsp by U. Choose an $m \in \mathbb{N}^+$. Suppose $a_0, \dots, a_m \in \mathbb{R}$ are such that $a_0 + a_1x + \dots + a_mx^m = 0$, $\forall x \in [0,1]$. Then the poly has infinitely many roots and hence $a_0 = \cdots = a_m = 0$. Thus $(1, x, ..., x^m)$ is linely inde in $\mathbb{R}^{[0,1]}$. Similar to [2.16], U is infinite-dim. Or. Note that for $a_n = \frac{1}{n}$, $a_1 < a_2 < \dots < a_m$, $\forall m \in \mathbb{N}^+$. Suppose $f_n = \begin{cases} x - \frac{1}{n}, & x \in \left(\frac{1}{n}, 1\right) \\ 0, & x \in \left[0, -\frac{1}{n}\right] \end{cases}$ Then for any $m, f_1\left(\frac{1}{m}\right) = \dots = f_m\left(\frac{1}{m}\right)$, while $f_{m+1}\left(\frac{1}{m}\right) \neq 0$. Hence $f_{m+1} \notin \text{span}(f_1, \dots, f_m)$. Thus by Problem (14), U is infinite-dim. **17** Suppose $p_0, p_1, \dots, p_m \in \mathcal{P}_m(\mathbf{F})$ such that $p_k(2) = 0$ for each $k \in \{0, \dots, m\}$. *Prove that* $(p_0, p_1, ..., p_m)$ *is not linely inde in* $\mathcal{P}_m(\mathbf{F})$. **SOLUTION:** Suppose $(p_0, p_1, ..., p_m)$ is linely inde. Define $p \in \mathcal{P}_m(\mathbf{F})$ by $p(z) = z \ \forall z \in \mathbf{F}$. But $\forall a_i \in \mathbb{F}, z \neq a_0 p_0(z) + \dots + a_m p_m(z)$, for if not, let z = 2, contradicts. Thus $z \notin \text{span}(p_0, p_1, \dots, p_m)$. Then span $(p_0, p_1, ..., p_m) \subseteq \mathcal{P}_m(\mathbf{F})$ while the list $(p_0, p_1, ..., p_m)$ has length (m + 1). Hence (p_0, p_1, \dots, p_m) is linely depe in $\mathcal{P}_m(\mathbf{F})$. For if not, because $(1, z, ..., z^m)$ of length (m + 1) spans $\mathcal{P}_m(\mathbf{F})$, thus by [2.23] trivially, $(p_0, p_1, ..., p_m)$ spans $\mathcal{P}_m(\mathbf{F})$. Contradicts. OR. Note that $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(\underbrace{1, z, \dots, z^m}_{\text{of length }(m+1)}). (p_0, p_1, \dots, p_m, z)$ of length (m+2) is linely dep. (See the above) Now $z \notin \text{span}(p_0, p_1, \dots, p_m)$ and hence (p_0, p_1, \dots, p_m) is linely dep. **7** Prove or give a counterexample: If (v_1, v_2, v_3, v_4) is a basis of V and U is a subsp of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \notin U$, then (v_1, v_2) is a basis of U.

SOLUTION: A counterexample:

Let $V = \mathbb{R}^4$ and e_j be the j^{th} standard basis.

Let $v_1 = e_1, v_2 = e_2, v_3 = e_3 + e_4, v_4 = e_4$. Then (v_1, \dots, v_4) is a basis of \mathbb{R}^4 .

Let $U = \operatorname{span}(e_1, e_2, e_3) = \operatorname{span}(v_1, v_2, v_3 - v_4)$. Then $v_3 \notin U$ and (v_1, v_2) is not a basis of U.

• Note for " $\mathbf{C}_V U \cap \{0\}$ ":

" $C_V U \cap \{0\}$ " is supposed to be a subsp W such that $V = U \oplus W$.

But if we let $u \in U \setminus \{0\}$ and $w \in W \setminus \{0\}$, then $\begin{cases} w \in C_V U \cap \{0\} \\ u \pm w \in C_V U \cap \{0\} \end{cases} \Rightarrow u \in C_V U \cap \{0\}$. Contradicts.

To fix this, denote the set $\{W_1, W_2 \dots\}$ by $\mathcal{S}_V U$, where for each W_i , $V = U \oplus W_i$. See also in (1.C.23).

1 Find all vecsps that have exactly one basis.

SOLUTION: The trivial vecsp $\{0\}$ will do. Indeed, the only basis of $\{0\}$ is the empty list.

Now consider a field containing only the add identity 0 and the multi identity 1,

and we specify that 1 + 1 = 0. Hence the vecsp $\{0, 1\}$ will do, the list (1) will be the unique basis.

And more generally, consider $\mathbf{F} = \mathbf{Z}_m$, $\forall m - 1 \in \mathbf{N}^+$. For each $s, t \in \{1, ..., m\}$,

 $\mathbf{F} = \mathrm{span}(K_s) = \mathrm{span}(K_t)$. Hence we fail. Are there other vecsps? Suppose so.

(I) Consider F = R or C. Let (v_1, \dots, v_m) be a basis of $V \neq \{0\}$.

While there are infinitely many bases distinct from this one. Hence we fail.

(II) Consider other F. Note that a field contains at least 0 and 1

By some theories or facts given in the course of Elementary Abstract Algebra, we fail.

• Suppose $(v_1, ..., v_m)$ is a list of vecs in V. For $k \in \{1, ..., m\}$, let $w_k = v_1 + \cdots + v_k$. Show that $[P] B_V = (v_1, ..., v_m) \iff [Q] B_W = (w_1, ..., w_m)$.

SOLUTION: Notice that $B_U = (u_1, ..., u_n) \iff \forall u \in U, \exists ! a_i \in F, u = a_1u_1 + \cdots + a_nu_n$.

 $P \Rightarrow Q : \forall v \in V, \exists ! a_i \in F, \ v = a_1 v_1 + \dots + a_m v_m \Rightarrow v = b_1 w_1 + \dots + b_m v_m, \exists ! b_k = \sum_{j=1}^k (-1)^{k-j} a_j.$

 $Q \Rightarrow P : \forall v \in V, \exists ! b_i \in \mathbb{F}, \ v = b_1 w_1 + \dots + b_m w_m \Rightarrow v = a_1 v_1 + \dots + a_m v_m, \exists ! a_k = \sum_{j=1}^k b_j.$

• Suppose U, W are finite-dim and V = U + W. Let $B_U = (u_1, ..., u_m), B_W = (w_1, ..., w_n)$. Prove that $\exists B_V$ consisting of vecs in $U \cup W$.

SOLUTION: Because $V = \text{span}(u_1, ..., u_m) + \text{span}(w_1, ..., w_n) = \text{span}(u_1, ..., u_m, w_1, ..., w_n).$ By [2.10], V is finite-dim. By [2.31], $B_V = (u_1, ..., u_m, w_1, ..., w_n)$.

8 Suppose $V = U \oplus W$. Let $B_U = (u_1, ..., u_m)$, $B_W = (w_1, ..., w_n)$. Prove that $B_V = (u_1, ..., u_m, w_1, ..., w_n)$.

SOLUTION:

 $\forall v \in V, \exists ! u \in U, w \in W \Rightarrow \exists ! a_i, b_i \in F, v = u + w = (a_1u_1 + \dots + a_mu_m) + (b_1w_1 + \dots + b_nw_n). \quad \Box$

Or. $V = \operatorname{span}(u_1, \dots, u_m) \oplus \operatorname{span}(w_1, \dots, w_n) = \operatorname{span}(u_1, \dots, u_m, w_1, \dots, w_n)$.

Note that $\sum_{i=1}^{m} a_i u_i + \sum_{i=1}^{n} b_i w_i = 0 \Rightarrow \sum_{i=1}^{m} a_i u_i = -\sum_{i=1}^{n} b_i w_i \in U \cap W = \{0\}.$

• **Note For** *linely inde sequence and* [2.34]:

" $V = \text{span}(v_1, \dots, v_n, \dots)$ " is an invalid expression.

If we allow using "infinite list", then we must guarantee that $(v_1, ..., v_n, ...)$ is a spanning "list" such that for all $v \in V$, there exists a smallest positive integer n such that $v = a_1v_1 + \cdots + a_nv_n$, The key point is, how can we guarantee that such a "list" exists?

ENDED

2·C 1 7 9 10 14,16 15 17 | 4E: 10, 14, 15, 16

9 Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. Prove that $\dim \operatorname{span}(v_1 + w, ..., v_m + w) \ge m - 1$.

SOLUTION: Using the result of Problem (10) and (11) in 2.A.

Note that $v_i - v_1 = (v_i + w) - (v_1 + w) \in \text{span}(v_1 + w, \dots, v_n + w)$, for each $i = 1, \dots, m$. (v_1, \dots, v_m) linely inde $\Rightarrow (v_1, v_2 - v_1, \dots, v_m - v_1)$ linely inde $\Rightarrow \underbrace{(v_2 - v_1, \dots, v_m - v_1)}_{\text{of length}}$ linely inde.

 $\not \subseteq w \notin \operatorname{span}(v_1, \dots, v_m) \Rightarrow (v_1 + w, \dots, v_m + w)$ is linely inde.

Hence $m \ge \dim \operatorname{span}(v_1 + w, \dots, v_m + w) \ge m - 1$.

10 Suppose m is a positive integer and $p_0, p_1, \ldots, p_m \in \mathcal{P}(\mathbf{F})$ are such that each p_k has degree k. Prove that (p_0, p_1, \ldots, p_m) is a basis of $\mathcal{P}_m(\mathbf{F})$.

SOLUTION:

Using mathematical induction on *m*.

- (i) For p_0 , deg $p_0 = 0 \Rightarrow \operatorname{span}(p_0) = \operatorname{span}(1)$.
- (ii) Suppose for $i \ge 1$, span $(p_0, p_1, ..., p_i) = \text{span}(1, x, ..., x^i)$.

Then span $(p_0, p_1, ..., p_i, p_{i+1}) \subseteq \text{span}(1, x, ..., x^i, x^{i+1}).$

 $\mathbb{Z} \operatorname{deg} p_{i+1} = i + 1, \quad p_{i+1}(x) = a_{i+1}x^{i+1} + r_{i+1}(x); \quad a_{i+1} \neq 0, \quad \operatorname{deg} r_{i+1} \leqslant i.$

$$\Rightarrow x^{i+1} = \frac{1}{a_{i+1}} \Big(p_{i+1}(x) - r_{i+1}(x) \Big) \in \operatorname{span}(1, x, \dots, x^i, p_{i+1}) = \operatorname{span}(p_0, p_1, \dots, p_i, p_{i+1}).$$

 $x_i : x^{i+1} \in \text{span}(p_0, p_1, \dots, p_i, p_{i+1}) \Rightarrow \text{span}(1, x, \dots, x^i, x^{i+1}) \subseteq \text{span}(p_0, p_1, \dots, p_i, p_{i+1}).$

Thus
$$\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(1, x, \dots, x^m) = \operatorname{span}(p_0, p_1, \dots, p_m).$$

Or. 用比较系数法. Denote the coefficient of x^i in $p \in \mathcal{P}(\mathbf{F})$ by $\xi_i(p)$.

Suppose $L = a_m p_m(x) + \dots + a_1 p_1(x) + a_0 p_0(x) = 0 \cdot x^m + \dots + 0 \cdot x + 0 \cdot 1 = R$, $\forall x \in \mathbf{F}$. We use induction on m to show that $a_m = \dots = a_0 = 0$.

(i) k = m, $\xi_m(L) = a_m \xi_m(p_m) = \xi_m(R) = 0 \ \text{\mathbb{Z} deg } p_m = m$, $\xi_m(p_m) \neq 0 \Rightarrow a_m = 0$. Now $L = a_{m-1} p_{m-1}(x) + \dots + a_0 p_0(x)$.

(ii)
$$1 \le k \le m$$
, $\xi_k(L) = a_k \xi_k(p_k) = \xi_k(R) = 0 \ \ \ \ \ \deg p_k = k$, $\xi_k(p_k) \ne 0 \Rightarrow a_k = 0$.
Now $L = a_{k-1} p_{k-1}(x) + \dots + a_0 p_0(x)$.

• (4E 2.C.10) Suppose m is a positive integer. For $0 \le k \le m$, let $p_k(x) = x^k (1-x)^{m-k}$. Show that $(p_0, ..., p_m)$ is a basis of $\mathcal{P}(\mathbf{F})$.

The basis in this exercise leads to what are called Bernstein polys. You can do a web search to learn how Bernstein polys are used to approximate continuous functions on [0,1].

SOLUTION: Using mathematical induction.

(i)
$$k = 0, 1, 2, p_m(x) = x^m, p_{m-1}(x) = x^{m-1} - x^m, p_{m-2}(x) = x^{m-2} + x^m - 2x^{m-1}.$$

(ii)
$$k \ge 2$$
. Suppose for $p_{m-k}(x)$, $\exists ! a_i \in \mathbb{F}$, $x^{m-k} = p_{m-k}(x) + a_m x^m + \dots + a_{m-k+1} x^{m-k+1}$.

Then for
$$p_{m-k-1}(x)$$
, $\exists ! c_i \in \mathbf{F}$,

$$\begin{split} x^{m-k-1} &= p_{m-k-1}(x) + C_{k+1}^1(-1)^2 x^{m-k} + \dots + C_{k+1}^k(-1)^{k+1} x^{m-1} + (-1)^{k-2} x^m \\ \Rightarrow c_{m-i} &= C_{k+1}^{k+1-i} (-1)^{k-i}. \end{split}$$

Thus for each
$$x^i$$
, $\exists ! b_i \in \mathbf{F}, x^i = b_m p_m(x) + \dots + b_{m-i} p_{m-i}(x)$
 $\Rightarrow \operatorname{span}(x^m, \dots, x, 1) = \operatorname{span}(\underbrace{p_m, \dots, p_1, p_0}_{\text{Basis}}).$

Or. For any $m,k \in \mathbb{N}^+$ such that $k \leq m$. Define $p_{k,m}$ by $p_{k,m}(x) = x^k (1-x)^{m-k}$.

Define the statement S(m) by S(m): $(p_{0,m},...,p_{m,m})$ is linely inde (and therefore is a basis).

We use induction on to show that S(m) holds for all $m \in \mathbb{N}^+$.

(i)
$$m = 1$$
. Suppose $a_0(1 - x) + a_1 x = 0$, $\forall x \in \mathbf{F}$. Then $\begin{cases} x = 0 \Rightarrow a_0 = 0; \\ x = 1 \Rightarrow a_1. \end{cases}$

$$m = 2$$
. Suppose $a_0(1-x)^2 + a_1(1-x)x + a_2x^2$, $\forall x \in \mathbf{F}$. Then
$$\begin{cases} x = 0 \Rightarrow a_0 + a_1 = 0; \\ x = 1 \Rightarrow a_2 = 0; \\ x = 2 \Rightarrow a_0 + 2a_1 = 0. \end{cases}$$

(ii) $2 \le m$. Assume that S(m) holds.

Suppose
$$\sum_{k=0}^{m+2} a_k p_{k,m+2}(x) = \sum_{k=0}^{m+2} a_k x^k (1-x)^{m+2-k} = 0, \forall x \in \mathbf{F}.$$

While
$$x = 0 \Rightarrow a_0 = 0$$
; $x = 1 \Rightarrow a_{m+2} = 0$. Then $\sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k} = 0$;

And note that
$$\sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k}$$

$$= x(1-x) \sum_{k=1}^{m+1} a_k x^{k-1} (1-x)^{m+1-k}$$

= $x(1-x) \sum_{k=0}^{m} a_{k+1} x^k (1-x)^{m-k} = x(1-x) \sum_{k=0}^{m} a_{k+1} p_{k,m}(x).$

Hence
$$x(1-x) \sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = 0, \forall x \in \mathbb{F} \Rightarrow \sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = 0, \forall x \in \mathbb{F} \setminus \{0,1\}.$$

Because $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x)$ has infinitely many zeros. We have $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = 0$, $\forall x \in F$.

By assumption, $a_1 = \cdots = a_m = 0$, while $a_0 = a_{m+2} = 0$,

and also
$$a_{m+1} = 0$$
 (because $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = a_{m+1} p_{m,m}(x) = a_{m+1} x^m = 0, \forall x \in \mathbb{F}$.)

Thus $(p_{0,m+2},...,p_{m+2,m+2})$ is linely inde and S(m+2) holds.

Since
$$\forall m \in \mathbb{N}^+, S(m) \Rightarrow S(m+2)$$
. We have $\begin{cases} \forall k \in \mathbb{N}, S(2k+1) \text{ holds} \\ \forall k \in \mathbb{N}^+, S(2k) \text{ holds} \end{cases} \Rightarrow S(m) \text{ holds.}$

- **7** (a) Let $U = \{ p \in \mathcal{P}_4(\mathbf{F}) : p(2) = p(5) = p(6) \}$. Find a basis of U.
 - (b) Extend the basis in (b) to a basis of $\mathcal{P}_4(\mathbf{F})$.
 - (c) Find a subsp W of $\mathcal{P}_4(\mathbf{F})$ such that $\mathcal{P}_4(\mathbf{F}) = U \oplus W$.

SOLUTION: Suppose $p(z) = az^4 + bz^3 + cz^2 + dz + e$ such that p(2) = p(5) = p(6).

You don't have to compute to know that the dimension of the set of solutions is 3.

(Because $\nexists p \in \mathcal{P}_2(\mathbf{F})$ with $1 \leq \deg p \leq 2, p(2) = p(5) = p(6)$.)

- (a) A basis: 1, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6).
- (b) Extend to a basis of $\mathcal{P}_4(\mathbf{F})$ as $1, z, z^2, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6)$.
- (c) Let $W = \operatorname{span}(z, z^2) = \{az + bz^2 : a, b \in \mathbb{F}\}$, so that $\mathcal{P}_4(\mathbb{F}) = U \oplus W$.

• TIPS:

 $(1) \dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_2 + V_3) - \dim(V_1 + (V_2 \cap V_3)).$

- (2) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 \dim(V_1 + V_3) \dim(V_2 + (V_1 \cap V_3)).$
- (3) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 \dim(V_1 + V_2) \dim(V_3 + (V_1 \cap V_2)).$
- For (1). Because $\dim (V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim (V_2 \cap V_3) \dim (V_1 + (V_2 \cap V_3))$. And $\dim (V_2 \cap V_3) = \dim V_2 + \dim V_3 - \dim (V_2 + V_3)$.
- Suppose V is a 10-dim vecsp and V_1, V_2, V_3 are subsps of V with
 - (a) dim $V_1 = \dim V_2 = \dim V_3 = 7$. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$.
 - (b) dim V_1 + dim V_2 + dim V_3 > 2 dim V. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$.

SOLUTION:

- (a) By TIPS, $\dim(V_1 \cap V_2 \cap V_3) \ge \dim V_1 + \dim V_2 + \dim V_3 2\dim V > 0$.
- (b) By Tips, $\dim(V_1 \cap V_2 \cap V_3) > 2 \dim V \dim(V_2 + V_3) \dim(V_1 + (V_2 \cap V_3)) \ge 0.$

• (4E 2.C.16)

Suppose V is finite-dim and U is a subsp of V with $U \neq V$. Let $n = \dim V$, $m = \dim U$. Prove that $\exists (n-m)$ subsps U_1, \ldots, U_{n-m} , each of dim (n-1), such that $\bigcap_{i=1}^{n-m} U_i = U$.

SOLUTION:

Let $(v_1, ..., v_m)$ be a basis of U, extend to a basis of V as $(v_1, ..., v_m, u_1, ..., v_{n-m})$.

Define $U_i = \operatorname{span}(v_1, \dots, v_m, u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_{n-m})$ for each i. Then $U \subseteq U_i$ for each i.

And because $\forall v \in \bigcap_{i=1}^{n-m} U_i, v = v_0 + b_1 u_1 + \dots + b_{n-m} u_{n-m} \in U_i \Rightarrow b_i = 0$ for each $i \Rightarrow v \in U$.

Hence
$$\bigcap_{i=1}^{n-m} U_i \subseteq U$$
.

EXAMPLE: Suppose dim V = 6, dim U = 3.

$$(\underbrace{\frac{\text{Basis of V}}{v_1, v_2, v_3, v_4, v_5, v_6}}), \text{ define } \begin{vmatrix} U_1 = \text{span}(v_1, v_2, v_3) \oplus \text{span}(v_5, v_6) \\ U_2 = \text{span}(v_1, v_2, v_3) \oplus \text{span}(v_4, v_6) \\ U_3 = \text{span}(v_1, v_2, v_3) \oplus \text{span}(v_4, v_5) \end{vmatrix} \Rightarrow \dim U_i = 6 - 1, \ i = \underbrace{1, 2, 3}_{6 - 3 = 3}.$$

14 Suppose that V_1, \ldots, V_m are finite-dim subsps of V.

Prove that $V_1 + \cdots + V_m$ is finite-dim and $\dim(V_1 + \cdots + V_m) \leq \dim V_1 + \cdots + \dim V_m$.

SOLUTION:

Choose a basis \mathcal{E}_i of $V_i \Rightarrow V_1 + \dots + V_m = \operatorname{span}(\mathcal{E}_1 \cup \dots \cup \mathcal{E}_m)$; dim $V_i = \operatorname{card} \mathcal{E}_i$.

Then $\dim(V_1 + \cdots + V_m) = \dim \operatorname{span}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m)$.

 \mathbb{Z} dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}\mathcal{E}_1 + \cdots + \operatorname{card}\mathcal{E}_m$.

Thus $\dim(V_1 + \dots + V_m) \leq \dim V_1 + \dots + \dim V_m$.

Comment: $\dim(V_1 + \dots + V_m) = \dim V_1 + \dots + \dim V_m \iff V_1 + \dots + V_m$ is a direct sum.

For each i, $(V_1 + \cdots + V_i) \cap V_{i+1} = \{0\} \iff V_1 + \cdots + V_m$ is a direct sum

$$\iff$$
 $(\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{k-1}) \cap \mathcal{E}_k = \emptyset$ for each $i \setminus \mathbb{X}$ dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m)$

$$\iff$$
 dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \operatorname{card} \mathcal{E}_1 + \cdots + \operatorname{card} \mathcal{E}_m$

$$\iff \dim(V_1 + \dots + V_m) = \dim V_1 + \dots + \dim V_m.$$

17 Suppose V_1 , V_2 , V_3 are subsps of a finite-dim vecsp, then

$$\dim\bigl(V_1+V_2+V_3\bigr)=\dim V_1+\dim V_2+\dim V_3$$

$$-\dim(V_1 \cap V_2) - \dim(V_1 \cap V_3) - \dim(V_2 \cap V_3) + \dim(V_1 \cap V_2 \cap V_3).$$

Explain why you might think and prove the formula above or give a counterexample.

SOLUTION:

[Similar to] Given three sets *A*, *B* and *C*.

Because $|X + Y| = |X| + |Y| - |X \cap Y|$; $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$.

Now $|(A \cup B) \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C|$.

And $|(A \cup B) \cap C| = |(A \cap C) \cup (B \cap C)| = |A \cap C| + |B \cap C| - |A \cap B \cap C|$.

Hence $|(A \cup B) \cup C| = |A| + |B| + |C| + |A \cap B \cap C| - |A \cap B| - |A \cap C| - |B \cap C|$.

Because $(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3) = (V_1 + V_3) + V_2$.

$$\dim(V_1 + V_2 + V_3) = \dim(V_1 + V_2) + \dim(V_3) - \dim((V_1 + V_2) \cap V_3)$$
(1)
=
$$\dim(V_2 + V_3) + \dim(V_1) - \dim((V_2 + V_3) \cap V_1)$$
(2)

$$=\dim\bigl(V_1+V_3\bigr)+\dim\bigl(V_2\bigr)-\dim\bigl(\bigl(V_1+V_3\bigr)\cap V_2\bigr)\quad (3)$$

Notice that in general, $(X + Y) \cap Z \neq X \cap Z + Y \cap Z$.

For example, $X = \{(x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\}, Y = \{(0,y) \in \mathbb{R}^2 : y \in \mathbb{R}\}, Z = \{(z,z) \in \mathbb{R}^2 : z \in \mathbb{R}\}.$

• Corollary: Suppose V_1 , V_2 and V_3 are finite-dim vecsps, then $\frac{(1)+(2)+(3)}{3}$:

 $\dim\bigl(V_1+V_2+V_3\bigr)=\dim V_1+\dim V_2+\dim V_3$

$$-\frac{\dim(V_1 \cap V_2) + \dim(V_1 \cap V_3) + \dim(V_2 \cap V_3)}{3} - \frac{\dim((V_1 + V_2) \cap V_3) + \dim((V_1 + V_3) \cap V_2) + \dim((V_2 + V_3) \cap V_1)}{3}.$$

The formula above may seem strange because the right side does not look like an integer.

• TIPS: Suppose $v_1, ..., v_n \in V$, dim span $(v_1, ..., v_n) = n$. Then $(v_1, ..., v_n)$ is a basis of span $(v_1, ..., v_n)$. Notice that $(v_1, ..., v_n)$ is a spanning list of span $(v_1, ..., v_n)$ of length $n = \dim \text{span}(v_1, ..., v_n)$. **15** Suppose V is finite-dim and dim $V = n \ge 1$. Prove that \exists one-dim subsps V_1, \dots, V_n of V such that $V = V_1 \oplus \dots \oplus V_n$. **SOLUTION:** Suppose $B_V = (v_1, ..., v_n)$. Define V_i by $V_i = \text{span}(v_i)$ for each $i \in \{1, ..., n\}$. Then $\forall v \in V, \exists ! a_i \in F, v = a_1v_1 + \dots + a_nv_n$ $\Rightarrow \exists ! u_i \in V_i, v = u_1 + \dots + u_n \Rightarrow V = V_1 \oplus \dots \oplus V_n.$ • COROLLARY: Suppose W is finite-dim, dim W = m and $w \in W \setminus \{0\}$. Prove that $\exists B_W = (w_1, \dots, w_m)$ such that $w = w_1 + \dots + w_m$. [Proof] By Problem (15), \exists one-dim subsps W_1, \dots, W_m of W such that $W = W_1 \oplus \dots \oplus W_m$. Note that dim $W_i = \dim \operatorname{span}(w_i) = 1 \Rightarrow \forall x_i \in W_i, \exists ! c_i \in F, x_i = c_i w_i$. Suppose $w = x_1 + \dots + x_m$, where each $x_i = c_i w_i \in W_i$. Then (x_1, \dots, x_m) is also a basis of W. OR. Note that $w \neq 0 \Rightarrow m \geqslant 1$. If m = 1 then let $w_1 = w$ and we are done. Suppose m > 1. Extend (w) to a basis (w, w_1, \dots, w_{m-1}) of W. Let $w_m = w - w_1 - \dots - w_{m-1}$. \mathbb{X} span $(w, w_1, \dots, w_{m-1}) = \text{span}(w_1, \dots, w_m)$. Hence (w_1, \dots, w_m) is also a basis of W. • New Theorem: Suppose V is finite-dim with dim V = n and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, ..., v_n)$ such that each $v_k \notin U$. Note that $U \neq V \Rightarrow n \geqslant 1$. We will construct B_V via the following process. **Step 1.** $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop. **Step k.** Suppose $(v_1, ..., v_{k-1})$ is linely inde in V, each of which belongs to $V \setminus U$. Note that span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by (1.C.12), (because span $(v_1,\ldots,v_{k-1}) \not\subseteq U$, $U \subseteq \operatorname{span}(v_1,\ldots,v_{k-1}) \Rightarrow \operatorname{span}(v_1,\ldots,v_{k-1}) = V$. Hence because span $(v_1, ..., v_{k-1}) \neq V$, it must be case that span $(v_1, ..., v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \text{span}(v_1, \dots, v_{k-1})$. By (2.A.11), (v_1, \ldots, v_k) is linely inde in V. If span $(v_1, \ldots, v_k) = V$, then we stop. Because *V* is finite-dim, this process will stop after *n* steps. Or. If $U = \{0\}$ then we are done. Suppose dim $U \ge 1$. Let $(u_1, ..., u_m)$ be a basis of U, extend to a basis $(u_1, ..., u_n)$ of V. Then let $B_V = (u_1 - u_k, ..., u_m - u_k, u_{m+1}, ..., u_k, ..., u_n)$.

ENDED

3.A 3 4 5 7 8 10 11 12 13 | 4E: 10, 11, 16

• Tips: $T: V \to W$ is linear $\iff \begin{vmatrix} (-) \ \forall v, u \in V, T(v+u) = Tv + Tu; \\ (-) \ \forall v, u \in V, \lambda \in F, T(\lambda v) = \lambda(Tv). \end{vmatrix} \iff T(v + \lambda u) = Tv + \lambda Tu.$ $T \in \mathcal{L}(V, W) \iff T \in \mathcal{L}(V, \text{range } T). \text{ And } \{T \in \mathcal{L}(V, W) : \text{range } T \subseteq U\} = \mathcal{L}(V, U).$

• Suppose $T \in \mathcal{L}(V, W)$. Prove that $Tv \neq 0 \Rightarrow v \neq 0$.

SOLUTION: Assume that v = 0. Then $Tv = T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0$.

Or. $T(0) = T(0+0) = T(0) + T(0) \Rightarrow T(0) = 0$. Contradicts.

- (4E 1.B.7) Suppose $V \neq \emptyset$ and W is a vecsp. Let $W^V = \{f : V \rightarrow W\}$.
 - (a) Define a natural add and scalar multi on W^V .
 - (b) Prove that W^V is a vecsp with these definitions.

SOLUTION:

- (a) $W^V \ni f + g : x \to f(x) + g(y)$; where f(x) + g(y) is the vec add on W. $W^V \ni \lambda f : x \to \lambda f(x)$; where $\lambda f(x)$ is the scalar multi on W.
- (b) Commutativity: (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x). Associativity: ((f+g) + h)(x) = (f(x) + g(x)) + h(x)= f(x) + (g(x) + h(x)) = (f + (g + h))(x).

Additive Identity: (f + 0)(x) = f(x) + 0(x) = f(x) + 0 = f(x).

Additive Inverse: (f + g)(x) = f(x) + g(x) = f(x) + (-f(x)) = 0 = 0(x).

Distributive Properties:

$$(a(f+g))(x) = a(f+g)(x) = a(f(x) + g(x))$$

$$= af(x) + ag(x) = (af)(x) + (ag)(x) = (af + ag)(x).$$
Similarly, $((a+b)f)(x) = (af + bf)(x)$.

So far, we have used the same properties in W.

Which means that if W^V is a vecsp, then W must be a vecsp.

Multiplication Identity: (1f)(x) = 1f(x) = f(x). (NOTICE that the smallest F is $\{0,1\}$.)

5 Because $\mathcal{L}(V, W) = \{T : V \to W \mid T \text{ is linear}\}\$ is a subsp of W^V , $\mathcal{L}(V, W)$ is a vecsp.

• Given the fact that $\mathcal{L}(V,W)$ is a vecsp. Prove or give a counterexample: V,W are vecsps. We can guarantee that $\{0\} \subseteq \mathcal{L}(V,W), \{0\} \subseteq V, \{0\} \subseteq W$.

And by [3.2], the additivity and homogeneity imply that V is closed under add and scalar multi.

(We cannot even guarantee that W^V is a vecsp.)

SOLUTION:

(I) If $W^V = \{0\}$. Then $\mathcal{L}(V, W) = \{0\}$.

And $W = \{0\}$, for if not, $\exists w \in W \setminus \{0\}$, define a map f by f(x) = w, $\forall x \in V$.

And V might not be a vecsp. Example:

- (II) If W^V is a nonzero vecsp. Then W is a vecsp.
 - (a) If $\mathcal{L}(V, W) = \{0\}$, then we cannot guarantee that V is a vecsp. Example:
 - (b) If not, then $\exists T \in \mathcal{L}(V, W)$, $T \neq 0$. Which means $\exists v \in V, Tv \neq 0 \Rightarrow v \neq 0$.

Then both *W* and *V* have a nonzero element.

(i) If \exists inje $T \in \mathcal{L}(V, W)$, then $T(u + v) = (v + u) \Rightarrow u + v = v + u$. etc. Hence V is a vecsp.

- (ii) If not, then we cannot guarantee that V is a vecsp. Example:
- (III) If W^V is not a vecsp, then W is not a vecsp.

Example:

TODO

3 Suppose $T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$. Prove that $\exists A_{j,k} \in \mathbf{F}$ such that for any $(x_1, \dots, x_n) \in \mathbf{F}^n$ $T(x_1, \dots, x_n) = \begin{pmatrix} A_{1,1}x_1 + \dots + A_{1,n}x_n, \\ \vdots & \ddots & \vdots \\ A_{m,1}x_1 + \dots + A & \gamma \end{pmatrix}$ **SOLUTION:** Let $T(1,0,0,\ldots,0,0)=(A_{1,1},\ldots,A_{m,1})$, Note that $(1,0,\ldots,0,0),\cdots,(0,0,\ldots,0,1)$ is a basis of \mathbf{F}^n . $T\big(0,1,0,\dots,0,0\big)=\big(A_{1,2},\dots,A_{m,2}\big),$ Then by [3.5], we are done. $T(0,0,0,\ldots,0,1) = (A_{1,n},\ldots,A_{m,n}).$ **4** Suppose $T \in \mathcal{L}(V, W)$, and $v_1, \dots, v_m \in V$ such that (Tv_1, \dots, Tv_m) is linely inde in W. *Prove that* $(v_1, ..., v_m)$ *is linely inde.* **SOLUTION:** Suppose $a_1v_1 + \cdots + a_mv_m = 0$. Then $a_1Tv_1 + \cdots + a_mTv_m = 0$. Thus $a_1 = \cdots = a_m = 0$. \square **7** Show that every linear map from a one-dim vecsp to itself is a multi by some scalar. *More precisely, prove that if* dim V = 1 *and* $T \in \mathcal{L}(V)$ *, then* $\exists \lambda \in \mathbf{F}, Tv = \lambda v, \forall v \in V$. **SOLUTION:** Let *u* be a nonzero vec in $V \Rightarrow V = \operatorname{span}(u)$. Because $Tu \in V \Rightarrow Tu = \lambda u$ for some λ . Suppose $v \in V \Rightarrow v = au$, $\exists ! a \in F$. Then $Tv = T(au) = \lambda au = \lambda v$. **8** Give a function $\varphi: \mathbb{R}^2 \to \mathbb{R}$ such that $\forall a \in \mathbb{R}, v \in \mathbb{R}^2, \varphi(av) = a\varphi(v)$ but φ is not linear. SOLUTION: Define $T(x,y) = \begin{cases} x + y, & \text{if } (x,y) \in \text{span}(3,1), \\ 0, & \text{otherwise.} \end{cases}$ OR. Define $T(x,y) = \sqrt[3]{(x^3 + y^3)}$. **9** Give a function $\varphi: \mathbb{C} \to \mathbb{C}$ such that $\forall w, z \in \mathbb{C}$, $\varphi(w+z) = \varphi(w) + \varphi(z)$ but φ is not linear. (Here C is thought of as a complex vecsp.) **SOLUTION:** Suppose $V_{\rm C}$ is the complexification of a vecsp V. Suppose $\varphi:V_{\rm C}\to V_{\rm C}$. Define $\varphi(u + iv) = u = \text{Re}(u + iv)$ OR. Define $\varphi(u + iv) = v = \text{Im}(u + iv)$. • Prove that if $q \in \mathcal{P}(R)$ and $T : \mathcal{P}(R) \to \mathcal{P}(R)$ is defined by $Tp = q \circ p$, then T is not linear.

SOLUTION: Composition and product are not the same in $\mathcal{P}(\mathbf{F})$.

Because in general,
$$q \circ (p_1 + \lambda p_2)(x) = q(p_1(x) + \lambda p_2(x)) \neq (q \circ p_1)(x) + \lambda (q \circ p_2)(x)$$
.

EXAMPLE: Let *q* be defined by
$$q(x) = x^2$$
, then $q \circ (1 + (-1)) = 0 \neq q(1) + q(-1) = 2$.

10 Suppose U is a subsp of V with $U \neq V$. Suppose $S \in \mathcal{L}(U, W)$ with $S \neq 0$ (which means that $\exists u \in U, Su \neq 0$).

Define $T: V \to W$ by $Tv = \begin{cases} Sv, \text{ if } v \in U, \\ 0, \text{ if } v \in V \setminus U. \end{cases}$ Prove that T is not a linear map on V.

Suppose *T* is a linear map. And $v \in V \setminus U$, $u \in U$ such that $Su \neq 0$.

Then
$$v + u \in V \setminus U$$
, (for if not, $v = (v + u) - u \in U$) while $T(v + u) = 0 = Tv + Tu = 0 + Su \Rightarrow Su = 0$.

Hence we get a contradiction.

11 Suppose U is a subsp of V and $S \in \mathcal{L}(U, W)$. Prove that $\exists T \in \mathcal{L}(V, W), Tu = Su, \forall u \in U. (Or. \exists T \in \mathcal{L}(V, W), T|_{U} = S.)$ In other words, every linear map on a subsp of V can be extended to a linear map on the entire V. **SOLUTION:** Suppose W is such that $V = U \oplus W$. Then $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$. Define $T \in \mathcal{L}(V, W)$ by $T(u_v + w_v) = Su_v$. Or. [Finite-dim Req] Define by $T\left(\sum_{i=1}^{m} a_i u_i\right) = \sum_{i=1}^{n} a_i S u_i$. Let $B_V = \left(\overline{u_1, \dots, u_n}, \dots, u_m\right)$. \square **12** Suppose nonzero V is finite-dim and W is infinite-dim. Prove that $\mathcal{L}(V,W)$ is infinite-dim. **SOLUTION:** Let $(v_1, ..., v_n)$ be a basis of V. Let $(w_1, ..., w_m)$ be linely inde in W for any $m \in \mathbb{N}^+$. Define $T_{x,y}: V \to W$ by $T_{x,y}(v_z) = \delta_{z,x} w_y$, $\forall x \in \{1, ..., n\}, y \in \{1, ..., m\}$, where $\delta_{z,x} = \begin{cases} 0, & z \neq x, \\ 1, & z = x. \end{cases}$ $\forall v = \sum_{i=1}^{n} a_i v_i, \ u = \sum_{i=1}^{n} b_i v_i, \ \lambda \in \mathbf{F}, T_{x,y}(v + \lambda u) = (a_x + \lambda b_x) v_y = T_{x,y}(v) + \lambda T_{x,y}(u).$ Linearity checked. Now suppose $a_1T_{x,1} + \cdots + a_mT_{x,m} = 0$. Then $(a_1T_{x,1} + \dots + a_mT_{x,m})(v_x) = 0 = a_1w_1 + \dots + a_mw_m \Rightarrow a_1 = \dots = a_m = 0$. \mathbb{Z} *m* arbitrary. Thus $(T_{x,1},...,T_{x,m})$ is a linely inde list in $\mathcal{L}(V,W)$ for any x and length m. Hence by (2.A.14). **13** Suppose $(v_1, ..., v_m)$ is linely depe in V and W $\neq \{0\}$. Prove that $\exists w_1, \dots, w_m \in W, \nexists T \in \mathcal{L}(V, W)$ such that $Tv_k = w_k, \forall k = 1, \dots, m$. **SOLUTION:** We prove by contradiction. By linear dependence lemma, $\exists j \in \{1, ..., m\}, v_i \in \text{span}(v_1, ..., v_{i-1}).$ Fix *j*. Let $w_j \neq 0$, while $w_1 = \dots = w_{j-1} = w_{j+1} = w_m = 0$. Define *T* by $Tv_k = w_k$ for all *k*. Suppose $a_1v_1 + \cdots + a_mv_m = 0$ (where $a_i \neq 0$). Then $T(a_1v_1 + \cdots + a_mv_m) = 0 = a_1w_1 + \cdots + a_mw_m = a_iw_i$ while $a_i \neq 0$ and $w_i \neq 0$. Contradicts. \square OR. We prove the contrapositive: Suppose $\forall w_1, ..., w_m \in W, \exists T \in \mathcal{L}(V, W), Tv_k = w_k$ for each w_k . Now we show that $(v_1, ..., v_n)$ is linely inde. Suppose $\exists a_i \in F, a_1v_1 + \cdots + a_nv_n = 0$. Choose one $w \in W \setminus \{0\}$. By assumption, for $(\overline{a_1}w, ..., \overline{a_m}w)$, $\exists T \in \mathcal{L}(V, W)$, $Tv_k = \overline{a_k}w$ for each v_k . Now we have $0 = T\left(\sum_{k=1}^m a_k v_k\right) = \sum_{k=1}^m a_k T v_k = \sum_{k=1}^m a_k \overline{a_k} w = \left(\sum_{k=1}^m |a_k|^2\right) w$. Then $\sum_{k=1}^{m} |a_k|^2 = 0 \Rightarrow a_k = 0$ for each k. Hence (v_1, \dots, v_n) is linely inde. • (4E 3.A.17) Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}$, $ET \in \mathcal{E}$ **SOLUTION**: Let $(v_1, ..., v_n)$ be a basis of V. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$. Let $S \in \mathcal{E} \setminus \{0\}$. Suppose $Sv_i \neq 0$ and $Sv_i = a_1v_1 + \cdots + a_nv_n$, where $a_k \neq 0$. Define $R_{x,y} \in \mathcal{L}(V)$ by $R_{x,y}(v_x) = v_y$, $R_{x,y}(v_z) = 0$ ($z \neq x$). Or. $R_{x,y}v_z = \delta_{z,x}v_y$. Then $(R_{1,1} + \cdots + R_{n,n})v_i = v_i \Rightarrow \sum_{r=1}^n R_{r,r} = I$. Assume that each $R_{x,y} \in \mathcal{E}$. Hence $\forall T \in \mathcal{L}(V)$, $I \circ T = T \circ I = T \in \mathcal{E} \Rightarrow \mathcal{E} = \mathcal{L}(V)$. Now we prove the assumption. Notice that $\forall x, y \in \mathbb{N}^+$, $(R_{k,y}S)(v_i) = a_k v_y \Rightarrow ((R_{k,y}S) \circ R_{x,i})(v_z) = \delta_{z,x}(a_k v_y)$. Thus $R_{k,y}SR_{x,i} = a_kR_{x,y}$. Now $S \in \mathcal{E} \Rightarrow R_{k,y}S \in \mathcal{E} \Rightarrow R_{x,y} \in \mathcal{E}$.

• (4E 3.B.32) Suppose V is finite-dim with $n = \dim V > 1$. Show that if $\varphi : \mathcal{L}(V) \to \mathbf{F}$ is linear and $\forall S, T \in \mathcal{L}(V), \varphi(ST) = \varphi(S) \cdot \varphi(T)$, then $\varphi = 0$.

SOLUTION:

Using notations in (4E 3.A.16). Using the result in NOTE FOR [3.60].

Suppose
$$\varphi \neq 0 \Rightarrow \exists i, j \in \{1, ..., n\}, \ \varphi(R_{i,j}) \neq 0$$
. Because $R_{i,j} = R_{x,j} \circ R_{i,x}, \ \forall x = 1, ..., n$
 $\Rightarrow \varphi(R_{i,j}) = \varphi(R_{x,j}) \cdot \varphi(R_{i,x}) \neq 0 \Rightarrow \varphi(R_{x,j}) \neq 0$ and $\varphi(R_{i,x}) \neq 0$.

Again, because
$$R_{i,x} = R_{y,x} \circ R_{i,y}$$
, $\forall y = 1, ..., n$. Thus $\varphi(R_{y,x}) \neq 0$, $\forall x, y = 1, ..., n$.

Let
$$k \neq i, j \neq l$$
 and then $\varphi(R_{i,j} \circ R_{l,k}) = \varphi(R_{l,k} \circ R_{i,j}) = \varphi(0) = 0 = \varphi(R_{l,k}) \cdot \varphi(R_{i,j})$

$$\Rightarrow \varphi(R_{l,k}) = 0 \text{ or } \varphi(R_{i,j}) = 0.$$
 Contradicts.

Or. Note that by (4E 3.A.16), $\exists S, T \in \mathcal{L}(V), ST - TS \neq 0$.

Then
$$\varphi(ST - TS) = \varphi(S)\varphi(T) - \varphi(T)\varphi(S) = 0 \Rightarrow ST - TS \in \text{null } \varphi \neq \{0\}.$$

Note that
$$\forall E \in \text{null } \varphi, T \in \mathcal{L}(V), \varphi(ET) = \varphi(TE) = 0 \Rightarrow ET, TE \in \text{null } \varphi$$
.

Hence null
$$\varphi$$
 is a nonzero two-sided ideal of $\mathcal{L}(V)$.

• Suppose V is finite-dim. $T \in \mathcal{L}(V)$ is such that $\forall S \in \mathcal{L}(V)$, ST = TS. Prove that $\exists \lambda \in \mathbf{F}, T = \lambda I$.

SOLUTION:

If $V = \{0\}$, then we are done. Now suppose $V \neq \{0\}$.

Assume that (v, Tv) is linely depe for every $v \in V$, then by (2.A.2.(b)), $Tv = \lambda_v v$ for some $\lambda_v \in F$. To prove that λ_v is independent of v, we discuss in two cases:

$$(-) \text{ If } (v,w) \text{ is linely inde, } \lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \\ \Rightarrow (\lambda_{v+w} - \lambda_v)v + (\lambda_{v+w} - \lambda_w)w = 0 \\ (=) \text{ Otherwise, suppose } w = cv, \lambda_w w = Tw = cTv = c\lambda_v v = \lambda_v w \Rightarrow (\lambda_w - \lambda_v)w \end{cases} \Rightarrow \lambda_w = \lambda_v.$$

Now we show the assumption. Assume that (v, Tv) is linely inde for some v. Let $B_V = (v, Tv, u_1, \dots, u_n)$.

Define
$$S \in \mathcal{L}(V)$$
 by $S(av + bTv + c_1u_1 + \dots + c_nu_n) = bv \Rightarrow S(Tv) = v = T(Sv) = 0$. Contradicts. \square

OR. Let $(v_1, ..., v_m)$ be a basis of V.

Define
$$\varphi \in \mathcal{L}(V, \mathbf{F})$$
 by $\varphi(v_1) = \cdots = \varphi(v_m) = 1$. Let $\lambda = \varphi(Tv_1) \in \mathbf{F}$.

For any $v \in V$, define $S_v \in \mathcal{L}(V)$ by $S_v u = \varphi(u)v$.

Then
$$Tv = T(\varphi(v_1)v) = T(S_vv_1) = S_v(Tv_1) = \varphi(Tv_1)v = \lambda v$$
.

Or. For each
$$k \in \{1, \dots, n\}$$
, define $S_k \in \mathcal{L}(V)$ by $S_k v_j = \left\{ \begin{array}{l} v_k, j = k, \\ 0, j \neq k. \end{array} \right.$ Or. $S_k v_j = \delta_{j,k} v_k$

Note that
$$S_k\left(\sum_{i=1}^n a_i v_i\right) = a_k v_k$$
. Then $S_k v = v \iff \exists ! a_k \in \mathbf{F}, v = a_k v_k$.

Hence
$$S_k(Tv_k) = T(S_kv_k) = Tv_k \Rightarrow Tv_k = a_kv_k$$
.

Define
$$A^{(j,k)} \in \mathcal{L}(V)$$
 by $A^{(j,k)}v_i = v_k, A^{(j,k)}v_k = v_i, A^{(j,k)}v_x = 0, x \neq j, k$.

Then
$$A^{(j,k)}Tv_j = TA^{(j,k)}v_j = Tv_k = a_k v_k$$
; $A^{(j,k)}Tv_j = A^{(j,k)}a_j v_j = a_j A^{(j,k)}v_j = a_j v_k$.

Hence
$$a_k = a_j$$
. Thus a_k is independent of v_k .

3.B 3 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 4E: 24, 27, 31, 32, 33

• Suppose that V and W are real vecsps and $T \in \mathcal{L}(V, W)$. Define $T_C: V_C \to W_C$ by $T_C(u + iv) = Tu + iTv$ for all $u, v \in V$. Show that (a) T_C is linear, (b) T_C is inje $\iff T$ is inje, (c) T_C is surj $\iff T$ is surj.

SOLUTION:

- (a) $\forall u_1 + iv_1, u_2 + iv_2 \in V_C, \lambda \in \mathbb{F},$ $T((u_1 + iv_1) + \lambda(u_2 + iv_2)) = T((u_1 + \lambda u_2) + i(v_1 + \lambda v_2)) = T(u_1 + \lambda u_2) + iT(v_1 + \lambda v_2)$ $= Tu_1 + iTv_1 + \lambda Tu_2 + i\lambda Tv_2 = T(u_1 + iv_1) + \lambda T(u_2 + iv_2).$
- (b) Suppose $T_{\mathbf{C}}$ is inje. Let $T(u) = 0 \Rightarrow T_{\mathbf{C}}(u + \mathrm{i}0) = Tu = 0 \Rightarrow u = 0$. Suppose T is inje. Let $T_{\mathbf{C}}(u + \mathrm{i}v) = Tu + \mathrm{i}Tv = 0 \Rightarrow Tu = Tv = 0 \Rightarrow u + \mathrm{i}v = 0$.
- Suppose $T_{\mathbf{C}}$ is surj. $\forall w \in W, \exists u \in V, T(u+\mathrm{i}0) = Tu = w+\mathrm{i}0 = w \Rightarrow T$ is surj. Suppose T is surj. $\forall w, x \in W, \exists u, v \in V, Tu = w, Tv = x$ $\Rightarrow \forall w + \mathrm{i}x \in W_{\mathbf{C}}, \exists u + \mathrm{i}v \in V, T(u+\mathrm{i}v) = w+\mathrm{i}x \Rightarrow T_{\mathbf{C}}$ is surj.
- **3** Suppose (v_1, \ldots, v_m) in V. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $T(z_1, \ldots, z_m) = z_1v_1 + \cdots + z_mv_m$.
 - (a) The surj of T correspds to $(v_1, ..., v_m)$ spanning V.
 - (b) The inje of T correspds to $(v_1, ..., v_m)$ being linely inde.
- Comment: Let $(e_1, ..., e_m)$ be the standard basis of \mathbf{F}^m . Then $Te_k = v_k$.
 - (a) range $T = \text{span}(v_1, ..., v_m) = V$; (b) $(v_1, ..., v_m)$ is linely inde $\iff T$ is inje.
- **7** Suppose V is finite-dim with $2 \le \dim V$. And $\dim V \le \dim W = m$, if W is finite-dim. Show that $U = \{T \in \mathcal{L}(V, W) : \operatorname{null} T \neq \{0\}\}$ is not a subsp of $\mathcal{L}(V, W)$.
- **SOLUTION**: The set of all inje $T \in \mathcal{L}(V, W)$ is a not subsp either.

Let $(v_1, ..., v_n)$ be a basis of V, $(w_1, ..., w_m)$ be linely inde in W. $(2 \le n \le m)$

Define $T_1 \in \mathcal{L}(V, W)$ as $T_1: v_1 \mapsto 0$, $v_2 \mapsto w_2$, $v_i \mapsto w_i$.

Define $T_2 \in \mathcal{L}(V, W)$ as $T_2: v_1 \mapsto w_1$, $v_2 \mapsto 0$, $v_i \mapsto w_i$, $i = 3, \dots, n$.

Thus $T_1 + T_2 \notin U$.

Comment: If dim V=0, then $V=\left\{0\right\}=\mathrm{span}(\).\ \forall\ T\in\mathcal{L}(V,W)$, T is inje. Hence $U=\emptyset$. If dim V=1, then $V=\mathrm{span}(v_0)$. Thus $U=\mathrm{span}(T_0)$, where $T_0v_0=0$.

- **8** Suppose W is finite-dim with dim $W \ge 2$. And $n = \dim V \ge \dim W$, if V is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : \text{range } T \ne W \}$ is not a subsp of $\mathcal{L}(V, W)$.
- **SOLUTION**: The set of all surj $T \in \mathcal{L}(V, W)$ is not a subspace either.

Let $(v_1, ..., v_n)$ be linely inde in V, $(w_1, ..., w_m)$ be a basis of W. $(n \in \{m, m+1, ...\}; 2 \le m \le n.)$

 $\text{Define } T_1 \in \mathcal{L}\big(V,W\big) \text{ as } T_1: \quad v_1 \mapsto 0, \qquad v_2 \mapsto w_2, \qquad v_j \mapsto w_j, \qquad v_{m+i} \mapsto 0.$

Define $T_2 \in \mathcal{L}(V, W)$ as $T_2: v_1 \mapsto w_1, v_2 \mapsto 0, v_j \mapsto w_j, v_{m+i} \mapsto 0.$

(For each $j=2,\ldots,m;\ i=1,\ldots,n-m$, if V is finite, otherwise let $i\in\mathbb{N}^+$.) Thus $T_1+T_2\notin U$. \square

Comment: If dim W=0, then $W=\left\{0\right\}=\mathrm{span}(\).\ \forall\ T\in\mathcal{L}(V,W),T$ is surj. Hence $U=\emptyset.$ If dim W=1, then $W=\mathrm{span}(v_0).$ Thus $U=\mathrm{span}(T_0),$ where $T_0v_0=0.$

11 Suppose $S_1, ..., S_n$ are linear and inje. $S_1S_2...S_n$ makes sence. Prove that $S_1S_2...S_n$ is inje.

SOLUTION: $S_1S_2...S_n(v) = 0 \iff S_2S_3...S_n(v) = 0 \iff \cdots \iff S_n(v) = 0 \iff v = 0.$

9 Suppose $(v_1,, v_n)$ is linely inde. Prove that \forall inje $T, (Tv_1,, Tv_n)$ is linely inde.	
SOLUTION: $a_1Tv_1 + \dots + a_nTv_n = 0 = T(\sum_{i=1}^n a_iv_i) \iff \sum_{i=1}^n a_iv_i = 0 \iff a_1 = \dots = a_n = 0.$	
10 Suppose span $(v_1,, v_n) = V$. Show that span $(Tv_1,, Tv_n) = \text{range } T$.	
SOLUTION:	
(a) range $T = \{Tv : v \in V\} = \{Tv : v \in \operatorname{span}(v_1, \dots, v_n)\} \Rightarrow Tv_1, \dots, Tv_n \in \operatorname{range} T \Rightarrow \operatorname{By} [2.7].$	
Or. span $(Tv_1, \dots, Tv_n) \ni a_1Tv_1 + \dots + a_nTv_n = T(a_1v_1 + \dots + a_nv_n) \in \text{range } T$.	
(b) $\forall w \in \text{range } T, \exists v \in V, w = Tv. (\exists a_i \in F, v = a_1v_1 + \dots + a_nv_n) \Rightarrow w = a_1Tv_1 + \dots + a_nTv_n.$	
16 Suppose $\exists T \in \mathcal{L}(V)$ such that null T , range T are finite-dim. Prove that V is finite-d	lim.
SOLUTION: Let $B_{\text{range }T} = (Tv_1, \dots, Tv_n), B_{\text{null }T} = (u_1, \dots, u_m).$	
$\forall v \in V, T(v - a_1v_1 - \dots - a_nv_n) = 0, \text{ letting } Tv = a_1Tv_1 + \dots + a_nTv_n.$	
$\Rightarrow v - a_1 v_1 - \dots - a_n v_n = b_1 u_1 + \dots + b_m u_m. \text{ Hence } V \subseteq \text{span}(v_1, \dots, v_n, u_1, \dots, u_m).$	
17 Suppose V , W are finite-dim. Prove that \exists inje $T \in \mathcal{L}(V, W) \iff \dim V \leqslant \dim W$.	
Solution:	
(a) Suppose \exists inje T . Then dim $V = \dim \operatorname{range} T \leq \dim W$.	
(b) Suppose dim $V \leq$ dim W . Let $B_V = (v_1,, v_n)$, $B_W = (w_1,, w_m)$.	
Define $T \in \mathcal{L}(V, W)$ by $Tv_i = w_i$, $i = 1,, n$ ($= \dim V$).	
18 Suppose V , W are finite-dim. Prove that $\exists surj T \in \mathcal{L}(V, W) \iff \dim V \geqslant \dim W$.	
SOLUTION:	
(a) Suppose \exists surj T . Then dim $V = \dim W + \dim \operatorname{null} T \Rightarrow \dim W \leq \dim V$.	
(b) Suppose dim $V \geqslant$ dim W . Let $B_V = (v_1, \dots, v_n)$, $B_W = (w_1, \dots, w_m)$.	
Define $T \in \mathcal{L}(V, W)$ by $T(a_1v_1 + \dots + a_mv_m + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_m$.	
19 Suppose V, W are finite-dim, U is a subsp of V.	
, ,	
Prove that if $\dim U \geqslant \dim V - \dim W$, then $\exists T \in \mathcal{L}(V, W)$, null $T = U$. Solution:	
Let $B_U = (u_1,, u_m), B_V = (u_1,, u_m, v_1,, v_n), B_W = (w_1,, w_n).$	
Define $T \in \mathcal{L}(V, W)$ by $T(a_1v_1 + \dots + a_nv_n + b_1u_1 + \dots + b_mu_m) = a_1w_1 + \dots + a_nw_n$.	
- (,) , (1 1 · · · · · · · · · · · · · · · · ·	
• (4E 3.B.21)	>
Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, U is a subsp of W . Let $\mathcal{K}_U = \{v \in V : Tv \in V\}$	<i>U</i> }.
<i>Prove that</i> \mathcal{K}_U <i>is a subsp of</i> V <i>and</i> dim $\mathcal{K}_U = \dim \operatorname{null} T + \dim (U \cap \operatorname{range} T)$.	
SOLUTION:	
$\forall u, w \in \mathcal{K}_U, \lambda \in \mathbf{F}, T(u + \lambda w) = Tu + \lambda Tw \in U \Rightarrow \mathcal{K}_U \text{ is a subsp of } V.$	
Define $S \in \mathcal{L}(\mathcal{K}_U, U)$ as $Rv = Tv$ for all $v \in \mathcal{K}_U$. Hence range $R = U \cap \text{range } T$.	
Suppose $\exists v, Tv = 0. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
• Tips: Suppose U is a subsp of V . Prove that $\forall T \in \mathcal{L}(V,W), U \cap \text{null } T = \text{null } T _{U}$.	
SOLUTION: Note that $U \cap \text{null } T \subseteq \text{null } T _U$. On the other hand, suppose $u \in \text{null } T _U$.	
Then $T _{U}(u)$ makes sense $\Rightarrow u \in U$. And $T _{U}(u) = Tu = 0 \Rightarrow u \in \text{null } T$.	
$\prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i$	

SOLUTION:

By [2.34] (note that V can be infinite-dim), \exists subsp U of V such that $V = U \oplus \text{null } T$. $\forall v \in V, \exists ! w \in \text{null } T, u \in U, v = w + u$. Then $Tv = T(w + u) = Tu \in \{Tu : u \in U\}$.

• NEW NOTATION:

Suppose $T \in \mathcal{L}(V, W)$ and $R = (Tv_1, ..., Tv_n)$ is linely inde in range T.

Where $n = \dim \operatorname{range} T$ if finite-dim, otherwise $n \in \mathbb{N}^+$.

By (3.A.4), $L = (v_1, \dots, v_n)$ is linely inde in V.

Denote \mathcal{K}_R by span L, if range T is finite-dim, otherwise, denote it by a vecsp in \mathcal{S}_V null T.

Note that if range *T* is finite-dim, then $\mathcal{K}_R = \operatorname{range} T$ for any basis *R* of range *T*.

• COMMENT:

If range T is infinite-dim, we cannot write $\mathcal{K}_R = \operatorname{range} T$. For if we do so, we must guarantee that $\forall Tv \in \operatorname{range} T, \exists ! n \in \mathbb{N}^+, Tv \in \operatorname{span}(Tv_1, \dots, Tv_n)$, where $(Tv_k)_{k=1}^{\infty}$ is linely inde.

So that range $T \subseteq \text{span}(\underline{Tv_1, \cdots, Tv_n, \cdots})$. This would be invalid, as we have shown before.

- New Theorem: $\mathcal{K}_R \in \mathcal{S}_V$ null T. Comment: $\text{null } T \in \mathcal{S}_V \mathcal{K}_R$. Suppose range T is finite-dim. Otherwise, we are done immediately.
 - (a) $T\left(\sum_{i=1}^{n} a_i v_i\right) = 0 \Rightarrow \sum_{i=1}^{n} a_i T v_i = 0 \Rightarrow a_1 = \dots = a_n = 0 \Rightarrow \mathcal{K}_R \cap \text{null } T = \{0\}.$
 - (b) $\forall v \in V, Tv = \sum_{i=1}^{n} a_i Tv_i \Rightarrow Tv \sum_{i=1}^{n} a_i Tv_i = T(v \sum_{i=1}^{n} a_i v_i) = 0$ $\Rightarrow v - \sum_{i=1}^{n} a_i v_i \in \text{null } T \Rightarrow v = (v - \sum_{i=1}^{n} a_i v_i) + (\sum_{i=1}^{n} a_i v_i) \Rightarrow \mathcal{K}_R + \text{null } T = V.$
- Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, $B_{\text{range }T} = (Tv_1, \dots, Tv_n)$, $B_V = (v_1, \dots, v_n, u_1, \dots, u_m)$. Prove or give a counterexample: (u_1, \dots, u_m) is a basis of null T.

SOLUTION: A counterexample:

Suppose dim V = 3, $Tv_1 = Tv_2 = Tv_3 = w_1$. Then span $(Tv_1, Tv_2, Tv_3) = \text{span}(w_1)$.

Extend (v_i) to (v_1, v_2, v_3) for each i. But none of (v_1, v_2) , (v_1, v_3) , (v_2, v_3) is a basis of null T.

 $\begin{array}{l} \textbf{COMMENT:} \ \left(v_2-v_1,v_3-v_1\right), \left(v_1-v_2,v_3-v_2\right) \ \text{or} \ \left(v_1-v_3,v_2-v_3\right) \ \text{are all bases of null } T. \\ \text{Always notice that} \ \mathcal{S}_V \text{span} \left(v_1,\ldots,v_n\right) = \left\{U_1,\cdots,\text{null } T,\cdots,U_n,\cdots\right\}. \end{array}$

• Suppose V is finite-dim, X is a subsp of V, and Y is a finite-dim subsp of W. Prove that if dim X + dim Y = dim V, then $\exists T \in \mathcal{L}(V, W)$, null T = X, range T = Y.

SOLUTION:

Suppose dim X+dim Y = dim V. Let $B_X = (u_1, ..., u_n)$, $B_Y = (w_1, ..., w_m)$, $B_V = (u_1, ..., u_n, v_1, ..., v_m)$. Define $T \in \mathcal{L}(V, W)$ by $Tv_i = w_i$, $Tu_j = 0$. Notice that $\forall v \in V, \exists ! a_i, b_j \in F, v = \sum_{i=1}^m a_i v_i + \sum_{i=1}^n b_i u_i$. $v \in \text{null } T \iff Tv = 0 \iff a_1 = \cdots = a_m = 0 \iff v \in X$.

 $Y \ni w = a_1 w_1 + \dots + a_m w_m = a_1 T v_1 + \dots + a_m T v_m \in \operatorname{range} T.$

OR range $T = \operatorname{span}(Tv_1, \dots, Tv_m, Tu_1, \dots, Tu_n) = \operatorname{span}(Tv_1, \dots, Tv_m) = \operatorname{span}(w_1, \dots, w_m) = Y.$

• OR (5.B.4) Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus \text{range } P$. **SOLUTION:** (a) If $v \in \text{null } P \cap \text{range } P \Rightarrow Pv = 0 \text{ and } \exists u \in V, v = Pu. \text{ Then } v = Pu = P^2u = Pv = 0.$ (b) Note that $\forall v \in V, v = Pv + (v - Pv)$ and $P(v - Pv) = 0 \Rightarrow v - Pv \in \text{null } P$. OR. [Only in Finite-dim] Let $(P^2v_1, ..., P^2v_n)$ be a basis of range P^2 . Then $(Pv_1, ..., Pv_n)$ is linely inde. Let $\mathcal{K} = \operatorname{span}(Pv_1, \dots, Pv_n) \Rightarrow V = \mathcal{K} \oplus \operatorname{null} P^2$. While $\mathcal{K} = \operatorname{range} P = \operatorname{range} P^2$; $\operatorname{null} P = \operatorname{null} P^2$. \square **20** Suppose W is finite-dim. Prove that $T \in \mathcal{L}(V, W)$ is inje $\iff \exists S \in \mathcal{L}(W, V), ST = I_V$. **SOLUTION:** (a) Suppose $\exists S \in \mathcal{L}(W, V)$, ST = I. Then if $Tv = 0 \Rightarrow ST(v) = 0 = v$. Or. null $T \subseteq \text{null } ST = \{0\}$. (b) Suppose T is inje. Let $R = B_{\text{range }T} = (Tv_1, \dots, Tv_n)$. Then $\mathcal{K}_R \oplus \text{null } T = V$. Let $U \oplus \text{range } T = W$. Define $S \in \mathcal{L}(W, V)$ by $S(Tv_i) = v_i$ and Su = 0, where $i \in \{1, ..., n\}, u \in U$. Thus ST = I. OR. Define $S \in \mathcal{L}(\text{range } T, V)$ by $Sw = T^{-1}w$, where T^{-1} is the inv of $T \in \mathcal{L}(V, \text{range } T)$. Then extend it to $S \in \mathcal{L}(W, V)$ by (3.A.11). Now $\forall v \in V, STv = T^{-1}Tv = v$. **21** Suppose W is finite-dim. Prove that $T \in \mathcal{L}(V, W)$ is $surj \iff \exists S \in \mathcal{L}(W, V), TS = I_W$. **SOLUTION:** (a) Suppose $\exists S \in \mathcal{L}(W, V)$, TS = I. Then $\forall w \in W, TS(w) = w \in \text{range } T \Rightarrow \text{range } T = W$. (b) Suppose T is surj. Let $R = B_{\text{range }T} = B_W = (Tv_1, ..., Tv_n)$. Then $\mathcal{K}_R \oplus \text{null } T = V$. Define $S \in \mathcal{L}(W, V)$ by $S(Tv_i) = v_i$. Then TS = I. OR. By Problem (12), \exists subsp U of $V, V = U \oplus \text{null } T$, range $T = \{Tu : u \in U\}$. Note that $T|_U: U \to W$ is an iso. Define $S = (T|_U)^{-1}$, where $(T|_U)^{-1}: W \to U$. Then $TS = T \circ (T|_{U})^{-1} = T|_{U} \circ (T|_{U})^{-1}$. **24** Suppose $S, T \in \mathcal{L}(V, W)$. Prove that $\text{null } S \subseteq \text{null } T \iff \exists E \in \mathcal{L}(W)$ such that T = ES. **SOLUTION:** Suppose $\exists E \in \mathcal{L}(W)$ such that T = ES. Then null $T = \text{null } ES \supseteq \text{null } S$. Suppose null $S \subseteq \text{null } T$. Let $W = \text{range } S \oplus U$. Define $E \in \mathcal{L}(W)$ by E(Sv + w) = Tv for each Sv and each $w \in U$. Now we check that E is linear. Because $\forall w_1, w_2 \in W, \exists ! Sv_1, Sv_2 \in \text{range } S, u_1, u_2 \in U, w_1 = Sv_1 + u_1, w_2 = Sv_2 + u_2.$ Now $E(w_1 + \lambda w_2) = E((Sv_1 + \lambda Sv_2) + (u_1 + \lambda u_2)) = T(v_1 + \lambda v_2) = Tv_1 + \lambda Tv_2 = Ew_1 + \lambda Ew_2$. Or. Let $V = \mathcal{K} \oplus U$. Then $S|_{\mathcal{K}} : \mathcal{K} \to \operatorname{range} S$ is an iso. Now extend $T(S|_{\mathcal{K}})^{-1} \in \mathcal{L}(\text{range } S, W)$ to $E \in \mathcal{L}(W, W)$. OR. [Requires that range S is Finite-dim] Let $R = B_{\text{range }S} = (Sv_1, ..., Sv_n)$. Then $V = \mathcal{K}_R \oplus \text{null } S$. Define $E \in \mathcal{L}(W)$ by $E(Sv_i) = Tv_i$, Eu = 0; for each i = 1 ..., n and each $u \in \text{null } S$. Hence $\forall v \in V$, $(\exists ! a_i \in \mathbb{F}, u \in \text{null } S)$, $Tv = a_1 T v_1 + \dots + a_n T v_n = E(a_1 S v_1 + \dots + a_n S v_n) \Rightarrow T = ES$. OR. [Requires that W is Finite-dim] Extend R to a basis $(Sv_1, ..., Sv_n, w_1, ..., w_m)$ of W. Define $E \in \mathcal{L}(W)$ by $E(Sv_k) = Tv_k$, $Ew_i = 0$. Because $\forall v \in V, \exists a_i \in F, Sv = a_1Sv_1 + \cdots + a_nSv_n$. Now $v - (a_1v_1 + \dots + a_nv_n) \in \text{null } S \Rightarrow v - (a_1v_1 + \dots + a_nv_n) \in \text{null } T \Rightarrow T(v - (a_1v_1 + \dots + a_nv_n)) = 0.$ Thus $Tv = a_1v_1 + \dots + a_nv_n$. Hence $E(Sv) = a_1E(Sv_1) + \dots + a_nE(Sv_n) = a_1Tv_1 + \dots + a_nTv_n = Tv\square$

25 Suppose V is finite-dim and $S,T \in \mathcal{L}(V,W)$. *Prove that* range $S \subseteq \text{range } T \iff \exists E \in \mathcal{L}(V) \text{ such that } S = TE.$ **SOLUTION:** Suppose $\exists E \in \mathcal{L}(V)$ such that S = TE. Then range $S = \text{range } TE \subseteq \text{range } T$. Suppose range $S \subseteq \text{range } T$. Let (v_1, \dots, v_m) be a basis of V. Note that each $Sv_i \in \text{range } T$. Suppose $u_i \in V$ such that $Tu_i = Sv_i$. Thus defining $E \in \mathcal{L}(V)$ by $Ev_i = u_i$ for each $i \Rightarrow S = TE$. **22** Suppose U and V are finite-dim vecsps and $S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V)$. *Prove that* dim null $ST \leq \dim \text{null } S + \dim \text{null } T$. **SOLUTION:** Define $R \in \mathcal{L}(\text{null } ST, V)$ by Ru = Tu for all $u \in \text{null } ST \subseteq U$. $S(Tu) = 0 = S(Ru) \Rightarrow \operatorname{range} R \subseteq \operatorname{null} S \Rightarrow \operatorname{dim} \operatorname{range} R \leqslant \operatorname{dim} \operatorname{null} S$ $Tu = 0 = Ru \Rightarrow \operatorname{null} R \supseteq \operatorname{null} T \Rightarrow \operatorname{dim} \operatorname{null} R = \operatorname{dim} \operatorname{null} T$ \Rightarrow By [3.22], we are done. \square OR. For any $u \in U$, note that $u \in \text{null } ST \iff S(Tu) = 0 \iff Tu \in \text{null } S$. Thus null $ST = \mathcal{K}_{\text{null } S \cap \text{range } T} = \{ u \in U : Tu \in \text{null } S \}$. By Problem (4E 3B.21), $\dim \operatorname{null} ST = \dim \operatorname{null} T + \dim (\operatorname{null} S \cap \operatorname{range} T) \leq \dim \operatorname{null} T + \dim \operatorname{null} S.$ **COROLLARY:** (1) If *T* is inje, then dim null $T = 0 \Rightarrow \dim \text{null } ST \leqslant \dim \text{null } S$. (2) If T is surj, then range $R = \text{null } S \Rightarrow \dim \text{null } ST = \dim \text{null } S + \dim \text{null } T$. (3) If S is inje, then range $R = \{0\} \Rightarrow \dim \text{null } ST = \dim \text{null } R = \dim \text{null } T$. **23** Suppose U and V are finite-dim vecsps and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. *Prove that* dim range $ST \leq \min \{ \dim \text{ range } S, \dim \text{ range } T \}$. **SOLUTION:** $\operatorname{range} ST = \left\{ Sv : v \in \operatorname{range} T \right\} = \operatorname{span}(Su_1, \dots, Su_{\dim \operatorname{range} T}), \text{ where } B_{\operatorname{range} T} = (u_1, \dots, u_{\dim \operatorname{range} T}).$ $\dim \operatorname{range} ST \leq \dim \operatorname{range} T \setminus \dim \operatorname{range} ST \leq \dim \operatorname{range} S$. OR. Note that range $S|_{\text{range }T} = \text{range }ST$. Thus dim range $ST = \dim \operatorname{range} S|_{\operatorname{range} T} = \dim \operatorname{range} T - \dim \operatorname{null} S|_{\operatorname{range} T} \leqslant \operatorname{range} T$. **COROLLARY:** (1) If *S* is inje, then dim range $ST = \dim \operatorname{range} T$. (2) If T is surj, then dim range $ST = \dim \operatorname{range} S$. • (a) Suppose dim V = 5, S, $T \in \mathcal{L}(V)$ are such that ST = 0. Prove that dim range $TS \leq 2$. (b) Let dim V = n in (a). Prove that dim range $TS \leq \left\lfloor \frac{n}{2} \right\rfloor$. (c) Give an example of $S, T \in \mathcal{L}(\mathbf{F}^5)$ with ST = 0 and $\dim \operatorname{range} TS = 2$. **SOLUTION:** 5-dim null T 5-dim null S(a) By Problem (23), dim range $TS \leq \min \{ \dim \operatorname{range} S, \dim \operatorname{range} T \}$. We show that dim range $TS \leq 2$ by contradiction. Assume that dim range $TS \geq 3$. Then $\min\{5 - \dim \operatorname{null} T, 5 - \dim \operatorname{null} S\} \ge 3 \Rightarrow \max\{\dim \operatorname{null} T, \dim \operatorname{null} S\} \le 2.$ $\dim \operatorname{null} S = 5 - \dim \operatorname{range} S \\ \dim \operatorname{range} TS \leqslant \dim \operatorname{range} S \end{cases} \Rightarrow \dim \operatorname{null} S \leqslant 5 - \dim \operatorname{range} TS.$

And $ST = 0 \Rightarrow \operatorname{range} T \subseteq \operatorname{null} S \Rightarrow \operatorname{dim} \operatorname{range} TS \leqslant \operatorname{dim} \operatorname{range} T \leqslant \operatorname{dim} \operatorname{null} S$.

27 Suppose $p \in \mathcal{P}(\mathbf{R})$. Prove that $\exists q \in \mathcal{P}(\mathbf{R})$ such that 5q'' + 3q' = p.

OR. Let $Dx^0 = 0$, $Dx^k = p_k$ for all $k \in \mathbb{N}^+$. For any $m \in \mathbb{N}^+$, (p_1, \dots, p_m) is a basis of $\mathcal{P}_{m-1}(\mathbb{R})$.

Because $\forall p' \in \text{range } D, \exists ! m \in \mathbb{N}, \deg p = m-1 \Rightarrow \exists ! a_k \in \mathbb{R}, p' = a_m p_m + \dots + a_1 p_1.$ Now $Dp = p' = a_m p_m + \dots + a_1 p_1 = D(a_m x^m + \dots + a_1 x).$ Thus $\exists q \in \mathcal{P}_m(\mathbb{R}), Dq = p.$

SOLUTION:

Define $B \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ by $B = 5D^2 + 3D \Rightarrow B(q) = 5q'' + 3q'$.

Note that $\deg Bx^n = n - 1$. Similar to Problem (26), we conclude that B is surj.

28 Suppose $T \in \mathcal{L}(V, W)$, $B_{\text{range }T} = (w_1, \dots, w_m)$. Prove that $\exists \varphi_1, \dots, \varphi_m \in \mathcal{L}(V, \mathbf{F})$ such that $\forall v \in V, Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m$.

SOLUTION:

Suppose $v_1, \dots, v_m \in V$ such that $Tv_i = w_i$ for each v_i . Then (v_1, \dots, v_m) is linely inde.

Let $B_V = (v_1, ..., v_m, u_1, ..., u_n)$. Note that $\forall v \in V, v = \sum_{i=1}^m a_i v_i + \sum_{i=1}^n b_i u_i, \exists ! a_i, b_i \in \mathbf{F}$.

Define $\varphi_i : V \to \mathbf{F}$ by $\varphi_i(v) = a_i v_i$ for each i. We now check the linearity.

$$\forall v, u \in V (\exists ! a_i, b_i, c_i, d_i \in F), \lambda \in F, \varphi_i(v + \lambda u) = a_i + \lambda c_i = \varphi(v) + \lambda \varphi(u).$$

29 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F})$. Suppose $u \in V \setminus \text{null } \varphi$. Prove that $V = \text{null } \varphi \oplus \{au : a \in \mathbf{F}\}$. Solution: If $\varphi = 0$ then we are done. Suppose $\varphi \neq 0$.

(a) $\forall v = cu \in \text{null } \varphi \cap \{au : a \in \mathbf{F}\}, \varphi(v) = 0 = c\varphi(u) \Rightarrow c = 0. \text{ Hence null } \varphi \cap \{au : a \in \mathbf{F}\} = \{0\}.$

(b)
$$\forall v \in V, v = \left(v - \frac{\varphi(v)}{\varphi(u)}u\right) + \frac{\varphi(v)}{\varphi(u)}u.$$

$$\begin{vmatrix} v - \frac{\varphi(v)}{\varphi(u)}u \in \text{null } \varphi \\ \frac{\varphi(v)}{\varphi(u)}u \in \{au : a \in \mathbf{F}\} \end{vmatrix} \Rightarrow V = \text{null } \varphi \oplus \{au : a \in \mathbf{F}\}.$$

COMMENT: $\varphi \neq 0 \Rightarrow \varphi(v_i) = a_i \neq 0$ for each v_i , for some linely inde list (v_1, \dots, v_k) .

Fix one v_k . Then $\forall j \in \{1, ..., k-1, k+1, ..., n\}$, span $\{a_i v_k - a_k v_j\} \subseteq \text{null } \varphi$.

Hence every vecsp in S_V null φ is one-dim.

30 Suppose $\varphi_1, \varphi_2 \in \mathcal{L}(V, \mathbf{F})$ and $\text{null } \varphi_1 = \text{null } \varphi_2 = \text{null } \varphi$. Prove that $\exists c \in \mathbf{F}, \varphi_1 = c\varphi_2$ Solution:

If null $\varphi = V$, then $\varphi_1 = \varphi_2 = 0$, we are done. Suppose $u \in V \setminus \text{null } \varphi \Rightarrow \varphi_1(u), \varphi_2(u) \neq 0$.

By Problem (29), $V = \text{null } \varphi \oplus \text{span}(u)$. Hence for any $v \in V$, $v = w + a_v u$, $\exists ! w \in \text{null } \varphi$, $a_v \in F$.

$$\varphi_1(v) = a_v \varphi_1(u), \quad \varphi_2(v) = a_v \varphi_2(u) \Rightarrow a_v = \frac{\varphi_1(v)}{\varphi_1(u)} = \frac{\varphi_2(v)}{\varphi_2(u)} \Rightarrow \frac{\varphi_1(u)}{\varphi_2(u)} = \frac{\varphi_1(v)}{\varphi_2(v)} = c \in \mathbf{F}.$$

31 Prove that $\exists T_1, T_2 \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^2)$, $\text{null } T_1 = \text{null } T_2 \text{ and } T_1 \neq cT_2, \forall c \in \mathbb{F}$.

SOLUTION:

Let $(v_1, ..., v_5)$ be a basis of \mathbb{R}^5 , (w_1, w_2) be a basis of \mathbb{R}^2 . Define $T, S \in \mathcal{L}(V, W)$ by

$$Tv_1 = w_1$$
, $Tv_2 = w_2$, $Tv_3 = Tv_4 = Tv_5 = 0$
 $Sv_1 = w_1$, $Sv_2 = 2w_2$, $Sv_3 = Sv_4 = Sv_5 = 0$ \Rightarrow null $T = \text{null } S$.

Suppose $T = \lambda S$. Then $w_1 = Tv_1 = \lambda Sv_1 = \lambda w_1 \Rightarrow \lambda = 1$.

While
$$w_2 = Tv_2 = \lambda Sv_2 = 2\lambda w_2 \Rightarrow \lambda = \frac{1}{2}$$
. Contradicts.

• Tips: Suppose $T \in \mathcal{L}(V, W)$ and U is a subsp such that $V = U \oplus \text{null } T$.

Now $\forall v \in V, \exists ! u_v \in U, w_v \in \text{null } T, v = u_v + w_v.$

Then $T = T \circ i$, where $i : V \to U$ is defined by $i(v) = u_v$.

Because
$$\forall v \in V, T(v) = T(u_v + w_v) = T(u_v) = T(i(v)) = (T \circ i)(v)$$
.

• Note For [3.47]:
$$LHS = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,\cdot})_{1,r} (C_{\cdot,k})_{r,1} = (A_{j,\cdot}C_{\cdot,k})_{1,1} = A_{j,\cdot}C_{\cdot,k} = RHS.$$

• Note For [3.48]:

- [4E 3.51] Suppose $C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,p}$.
 - (a) For $k=1,\ldots,p$, $(CR)_{\cdot,k}=CR_{\cdot,k}=C_{\cdot,k}=\sum_{r=1}^{c}C_{\cdot,r}R_{r,k}=R_{1,k}C_{\cdot,1}+\cdots+R_{c,k}C_{\cdot,c}$ Which means that each cols CR is a linear combination of the cols of C.
 - (b) For $j=1,\ldots,m$, $(CR)_{j,\cdot}=C_{j,\cdot}R=C_{j,\cdot}R_{\cdot,\cdot}=\sum_{r=1}^{c}C_{j,r}R_{r,\cdot}=C_{j,1}R_{1,\cdot}+\cdots+C_{j,c}R_{c,\cdot}$ Which means that each rows CR is a linear combination of the rows of R.
- Column-Row Factorization (CR Factorization) Suppose $A \in \mathbb{F}^{m,n}$, $A \neq 0$.
 - (a) Let $S_c = \operatorname{span}(A_{\cdot,1}, \dots, A_{\cdot,n}) \subseteq \mathbf{F}^{m,1}$, dim $S_c = c$, the col rank. Prove that $\exists C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,n}$, A = CR.
 - (b) Let $S_r = \operatorname{span}(A_{1,r}, \dots, A_{m,r}) \subseteq \mathbf{F}^{1,n}$, dim $S_r = r$, the row rank. Prove that $\exists C \in \mathbf{F}^{m,r}$, $R \in \mathbf{F}^{r,n}$, A = CR.

SOLUTION: Notice that $A \neq 0 \Rightarrow c, r \geqslant 1$.

- (a) Let $(C_{\cdot,1},\ldots,C_{\cdot,c})$ be a basis of S_c , forming $C \in \mathbf{F}^{m,c}$. Then $\forall k \in \{1,\ldots,n\}$, $A_{\cdot,k} = R_{1,k}C_{\cdot,1} + \cdots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k'} \exists ! R_{1,k},\ldots,R_{c,k} \in \mathbf{F}$, forming $R \in \mathbf{F}^{c,n}$. Thus A = CR.
- (b) Let $(R_{1,\cdot},\ldots,R_{r,\cdot})$ be a basis of S_r , forming $R \in \mathbf{F}^{r,n}$. Then $\forall j \in \{1,\ldots,m\}$, $A_{j,\cdot} = C_{j,1}R_{1,\cdot} + \cdots + C_{j,r}R_{r,\cdot} = (CR)_{j,\cdot}, \exists ! C_{j,1},\ldots,C_{j,r} \in \mathbf{F}$, forming $C \in \mathbf{F}^{m,r}$. Thus A = CR. \square

EXAMPLE:

$$A = \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \\ 46 & 33 & 20 & 7 \end{pmatrix} \stackrel{(1)}{=} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \end{pmatrix} \stackrel{(2)}{=} \begin{pmatrix} 7 & 4 \\ 19 & 12 \\ 33 & 20 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix}$$

(I) $\begin{pmatrix} 46 & 33 & 20 & 7 \end{pmatrix} = 2 \begin{pmatrix} 10 & 7 & 4 & 1 \end{pmatrix} + \begin{pmatrix} 26 & 19 & 12 & 5 \end{pmatrix}$. $\begin{pmatrix} 46 & 33 & 20 & 7 \end{pmatrix}$ can be uniquely written as a linear combination of $(A_{1,\cdot}, A_{2,\cdot})$. Hence dim $S_r = 2$. $(A_{1,\cdot}, A_{2,\cdot})$ is a basis.

(II)
$$\begin{pmatrix} 10\\26\\46 \end{pmatrix} = 2 \begin{pmatrix} 7\\19\\33 \end{pmatrix} - \begin{pmatrix} 4\\12\\20 \end{pmatrix}; \quad \begin{pmatrix} 1\\5\\7 \end{pmatrix} = 2 \begin{pmatrix} 4\\12\\20 \end{pmatrix} - \begin{pmatrix} 7\\19\\33 \end{pmatrix}.$$
 Hence dim $S_c = 2$. $(A_{.,2}, A_{.,3})$ is a basis.

• COLUMN RANK EQUALS ROW RANK (Using the notation and result above)

For each
$$A_{j,\cdot} \in S_r$$
, $A_{j,\cdot} = (CR)_{j,\cdot} = C_{j,1}R = C_{j,1}R_{1,\cdot} + \dots + C_{j,c}R_{c,\cdot}$
For each $A_{\cdot,k} \in S_c$, $A_{\cdot,k} = (CR)_{\cdot,k} = R_{1,k}C_{\cdot,1} + \dots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k}$.
 $\Rightarrow \text{span}(A_{1,\cdot}, \dots, A_{n,\cdot}) = S_r = \text{span}(R_{1,\cdot}, \dots, R_{c,\cdot}) \Rightarrow \dim S_r = r \leqslant c = \dim S_c$.
 $\Rightarrow \text{span}(A_{\cdot,1}, \dots, A_{\cdot,m}) = S_r = \text{span}(C_{\cdot,1}, \dots, C_{\cdot,r}) \Rightarrow \dim S_c = c \leqslant r = \dim S_r$.
Or. Apply the result to $A^t \in \mathbf{F}^{n,m} \Rightarrow \dim S_r^t = \dim S_c = c \leqslant r = \dim S_r = \dim S_c$.

- [4E 3.C.17, OR 3.F.32] Suppose $T \in \mathcal{L}(V)$ and $(u_1, ..., u_n)$, $(v_1, ..., v_n)$ are bases of V. Prove that the following are equi. Here $A = \mathcal{M}(T)$ means $\mathcal{M}(T, (u_1, ..., u_n), (v_1, ..., v_n))$.
 - (a) *T* is inje.
 - (b) The cols of $\mathcal{M}(T)$ are linely inde in $\mathbf{F}^{n,1}$.
 - (c) The cols of $\mathcal{M}(T)$ span $\mathbf{F}^{n,1}$.
 - (d) The rows of $\mathcal{M}(T)$ span $\mathbf{F}^{1,n}$.
 - (e) The rows of $\mathcal{M}(T)$ are linely inde in $\mathbf{F}^{1,n}$.

SOLUTION: Using TIPS in 2.*C*.

T is inje \iff dim $V = \dim \operatorname{range} T + \dim \operatorname{null} T = \dim \operatorname{range} T$

Now we show (Δ) properly, that is T is inje \iff The cols of $\mathcal{M}(T)$ are linely inde.

$$(a) \Rightarrow (b):$$
Suppose $b_1 A_{\cdot,1} + \dots + b_n A_{\cdot,n} = \begin{pmatrix} b_1 A_{1,1} + \dots + b_n A_{1,n} \\ \vdots \\ b_1 A_{n,1} + \dots + b_n A_{n,n} \end{pmatrix} = 0.$ Let $u = b_1 u_1 + \dots + b_n u_n$.

Then
$$Tu = b_1 T u_1 + \dots + b_n T u_n$$

$$= b_1 (A_{1,1} v_1 + \dots + A_{n,1} v_n) + \dots + b_n (A_{1,n} v_1 + \dots + A_{n,n} v_n)$$

$$= (b_1 A_{1,1} + \dots + b_n A_{1,n}) v_1 + \dots + (b_1 A_{n,1} + \dots + b_n A_{n,n}) v_n$$

$$= 0 v_1 + \dots + 0 v_n = 0$$

$$\Rightarrow b_1 = \dots = b_n = 0.$$

Thus by (2.39), (b) holds.

 $(b) \Rightarrow (a)$:

Suppose $u = b_1 u_1 + \dots + b_n u_n \in \text{null } T$.

Then
$$Tu = 0 = (b_1 A_{1,1} + \dots + b_n A_{1,n}) v_1 + \dots + (b_1 A_{n,1} + \dots + b_n A_{n,n}) v_n$$
.

Thus
$$b_1 A_{1,1} + \dots + b_n A_{1,n} = \dots = b_1 A_{n,1} + \dots + b_n A_{n,n} = 0.$$

Which is equi to
$$\begin{pmatrix} b_1A_{1,1}+\cdots+b_nA_{1,n}\\ \vdots\\ b_1A_{n,1}+\cdots+b_nA_{n,n} \end{pmatrix}=b_1A_{\cdot,1}+\cdots+b_nA_{\cdot,n}=0 \Rightarrow b_1=\cdots=b_n=0.$$

Thus by (2.39), (a) holds.

• [4E 3.C.16, OR 3.E.11] Suppose A is an m-by-n matrix with $A \neq 0$. Prove that rank $A = 1 \iff \exists (c_1, ..., c_m) \in \mathbf{F}^m, (d_1, ..., d_n) \in \mathbf{F}^n$ such that $A_{j,k} = c_j \cdot d_k$ for every j = 1, ..., m and k = 1, ..., n.

SOLUTION:

Using the notation in CR Factorization.

(a) Suppose
$$A = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \begin{pmatrix} d_1 & \cdots & d_n \end{pmatrix} = \begin{pmatrix} c_1 d_1 & \cdots & c_1 d_n \\ \vdots & \ddots & \vdots \\ c_m d_1 & \cdots & c_m d_n \end{pmatrix}.$$
 $(\exists c_j, d_k \in \mathbf{F}, \forall j, k)$

Then $S_c = \left\{ \begin{pmatrix} c_1 d_1 \\ \vdots \\ c_m d_1 \end{pmatrix}, \begin{pmatrix} c_1 d_2 \\ \vdots \\ c_m d_2 \end{pmatrix}, \dots, \begin{pmatrix} c_1 d_n \\ \vdots \\ c_m d_n \end{pmatrix} \right\} = \operatorname{span} \left\{ \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \right\}.$

Or. $S_r = \operatorname{span} \left\{ \begin{pmatrix} c_1 d_1 & \cdots & c_1 d_n \\ \vdots \\ c_2 d_1 & \cdots & c_2 d_n \end{pmatrix}, \begin{pmatrix} c_2 d_1 & \cdots & c_2 d_n \\ \vdots \\ c_m d_1 & \cdots & c_m d_n \end{pmatrix} \right\} = \operatorname{span} \left\{ \begin{pmatrix} d_1 & \dots & d_n \end{pmatrix} \right\}.$ Hence $\operatorname{rank} A = 1$.

OR. Using also the result in [4E 3.51(a)].

Every col of *A* is a scalar multi of *C*. Then rank $A \le 1 \ \mathbb{Z}$ rank $A \ge 1$ ($A \ne 0$).

(b) By CR Factorization,
$$\exists C = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \in \mathbf{F}^{m,1}, R = \begin{pmatrix} d_1 & \cdots & d_n \end{pmatrix} \in \mathbf{F}^{1,n}$$
 such that $A = CR$.

OR. Not using CR Factorization. Suppose rank $A = \dim S_c = \dim S_r = 1$.

Let
$$c_j = \frac{A_{j,1}}{A_{1,1}} = \frac{A_{j,2}}{A_{1,2}} = \dots = \frac{A_{j,n}}{A_{1,n}}, \qquad d'_k = \frac{A_{1,k}}{A_{1,1}} = \frac{A_{2,k}}{A_{2,1}} = \dots = \frac{A_{m,k}}{A_{m,1}}. \quad (\forall j, k)$$

$$\Rightarrow A_{j,k} = d'_k A_{j,1} = c_j A_{1,k} = c_j d'_k A_{1,1} = c_j d_k. \text{ Letting } d_k = d'_k A_{1,1}.$$

1 Suppose $T \in \mathcal{L}(V, W)$. Show that with resp to each choice of bases of V and W, the matrix of T has at least dim range T nonzero entries.

SOLUTION:

Let
$$B_{\text{null }T} = (v_1, ..., v_p), B_V = (v_1, ..., v_n)$$
. Let $B_W = (w_1, ..., w_m)$. Denote $\mathcal{M}(T, B_V, B_W)$ by A .

Because at most p of the v_k 's can belong to null $T \iff$ at least n - p = q of the v_k 's do not.

For $v_k \notin \text{null } T$, $Tv_k = A_{1,k}w_1 + \cdots + A_{m,k}w_m \neq 0$. Thus col k has at least one nonzero entry.

Since there are (n - p) = q choices of such k, A has at least $q = \dim \operatorname{range} T$ nonzero entries.

OR. We prove by contradiction.

Suppose *A* has at most (dim range T - 1) nonzero entries.

Then by Pigeon Hole Principle, at least one of $A_{.,p+1},...,A_{.,n}$ equals 0.

Thus there are at most ($\dim \operatorname{range} T - 1$) nonzero vecs in Tv_{p+1}, \dots, Tv_n .

While range $T = \operatorname{span}(Tv_{p+1}, \dots, Tv_n) \Rightarrow \operatorname{dim}\operatorname{range} T = \operatorname{dim}\operatorname{span}(Tv_{p+1}, \dots, Tv_n)$. Contradicts. \square

3 Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. Prove that $\exists B_V, B_W$ such that [letting $A = \mathcal{M}(T, B_V, B_W)$] $A_{k,k} = 1, A_{i,j} = 0$, where $1 \le k \le \dim \operatorname{range} T, i \ne j$. **SOLUTION:** Let $R = (Tv_1, ..., Tv_n)$ be a basis of range T, extend to $B_W = (Tv_1, ..., Tv_n, w_1, ..., w_p)$. Let $\mathcal{K}_R = \operatorname{span}(v_1, \dots, v_n)$. Let (u_1, \dots, u_m) be a basis of null T. Then $B_V = (v_1, \dots, v_n, u_1, \dots, u_m)$. \square **4** Suppose $B_V = (v_1, ..., v_m)$ and W is finite-dim. Suppose $T \in \mathcal{L}(V, W)$. Prove that $\exists B_W = (w_1, \dots, w_n), \ \mathcal{M}(T, B_V, B_W)_{1,1}^t = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & \cdots & 0 \end{pmatrix}.$ **SOLUTION**: If $Tv_1 = 0$, then we are done. If not then extend (Tv_1) . **5** Suppose $B_W = (w_1, ..., w_n)$ and V is finite-dim. Suppose $T \in \mathcal{L}(V, W)$. Prove that $\exists B_V = (v_1, \dots, v_m), \ \mathcal{M}(T, B_V, B_W)_1 = \begin{pmatrix} 0 & \cdots & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}.$ **SOLUTION:** Let $(u_1, ..., u_n)$ be a basis of V. Denote $\mathcal{M}(T, (u_1, ..., u_n), B_W)$ by A. If $A_{1,\cdot} = 0$, then let $B_V = (u_1, \dots, u_n)$, we are done. Otherwise, $(A_{1,1} \cdots A_{1,m}) \neq 0$, choose one $A_{1,k} \neq 0$. $\text{Let } v_1 = \frac{u_k}{A_{1,k}}; \quad v_j = u_{j-1} - A_{1,j-1} v_1 \quad \text{for } j = 2, \dots, k; \\ v_i = u_i - A_{1,i} v_1 \qquad \text{for } i = k+1, \dots, n.$ Now because each $u_k \in \text{span}(v_1, \dots, v_n) \Rightarrow V = \text{span}(v_1, \dots, v_n), B_V = (v_1, \dots, v_n).$ And $Tv_1 = T(\frac{u_k}{A_{1,k}}) = \frac{1}{A_{1,k}}(A_{1,k}w_1 + \dots + A_{n,k}w_n) = 1w_1 + \dots + \frac{A_{n,k}}{A_{1,k}}w_n.$ $\forall j \in \{2, \dots, k, k+2, \dots, n+1\}, \ Tv_j = T(u_{j-1} - A_{1,j-1}v_1) = Tu_{j-1} - T(\frac{A_{1,j-1}u_k}{A_{1,k}})$ $i \in \{k+1,...,n\}$ $=A_{1,j-1}w_1+\cdots+A_{n,j-1}w_n-A_{1,j-1}(1w_1+\cdots+\frac{A_{n,k}}{A_{1,k}}w_n)=0w_1+\cdots+(A_{n,j-1}-\frac{A_{1,j-1}A_{n,k}}{A_{1,k}})w_n._{\square}$ **6** Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. *Prove that* dim range $T = 1 \iff \exists B_V, B_W$, all entries of $A = \mathcal{M}(T, B_V, B_W)$ equal 1. **SOLUTION:** (a) Suppose $B_V = (v_1, ..., v_n)$, $B_W = (w_1, ..., w_m)$ are the bases such that all entries of A equal 1. Then $Tv_i = w_1 + \dots + w_m$ for all $i = 1, \dots, n$. Because w_1, \dots, w_n is linely inde, $w_1 + \dots + w_n \neq 0$. (b) Suppose dim range T = 1. Then dim null $T = \dim V - 1$. Let $(u_2, ..., u_n)$ be a basis of null T. Extend it to a basis of V as $(u_1, u_2, ..., u_n)$. Let $w_1 = Tv_1 - w_2 - \cdots - w_m$. Extend to a basis of W and we have B_W . Let $v_1 = u_1, v_i = u_1 + u_i$. Extend to a basis of V and we have B_V . OR. Suppose range T has a basis (w). By (2.C.15 [COROLLARY]), $\exists B_W = (w_1, \dots, w_m)$ such that $w = w_1 + \dots + w_m$. By (2.C [New Theorem]), \exists a basis $(u_1, ..., u_n)$ of V such that each $u_k \notin \text{null } T$. $\forall k \in \{1, \dots, n\}, Tu_k \in \operatorname{range} T = \operatorname{span}(w) \Rightarrow Tu_k = \lambda_k w, \exists \lambda_k \in \mathbf{F} \setminus \{0\}.$ Let $v_k = \lambda_k^{-1} u_k \neq 0 \Rightarrow B_V = (v_1, \dots, v_n)$. Hence for each $v_k, Tv_k = w = w_1 + \dots + w_m$.

• Note For [3.49]: $: [(AC)_{\cdot,k}]_{j,1} = (AC)_{j,k} = \sum_{r=1}^n A_{j,r} C_{r,k} = \sum_{r=1}^n A_{j,r} (C_{\cdot,k})_{r,1} = (AC_{\cdot,k})_{j,1}$ $\therefore (AC)_{\cdot,k} = A_{\cdot,k} \cdot C_{\cdot,k} = AC_{\cdot,k}$ • Exercise 10: $:[(AC)_{j,\cdot}]_{1,k} = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,\cdot})_{1,r} C_{r,k} = (A_{j,\cdot}C)_{1,k}$ $:: (AC)_{i,\cdot} = A_{j,\cdot}C_{\cdot,\cdot} = A_{j,\cdot}C.$ • Note for [3.52]: $A \in \mathbf{F}^{m,n}, c \in \mathbf{F}^{n,1} \Rightarrow Ac \in \mathbf{F}^{m,1}$ $\therefore Ac = A_{.,c} \cdot c_{.,1} = \sum_{r=1}^{n} A_{.,r} c_{r,1} = c_1 A_{.,1} + \dots + c_n A_{.,n} \quad \text{Or. By } (Ac)_{.,1} = Ac_{.,1} \text{ Using (a) above.}$ • Exercise 11: $a \in \mathbf{F}^{1,n}, C \in \mathbf{F}^{n,p} \Rightarrow aC \in \mathbf{F}^{1,p}$ $(aC)_{1,k} = \sum_{r=1}^{n} a_{1,r} C_{r,k} = \left(\sum_{r=1}^{n} a_{1,r} (C_{r,\cdot}) \right)_{1,k} = \left(a_1 C_{1,\cdot} + \dots + a_n C_{n,\cdot} \right)_{1,k}$ $\therefore aC = a_{1,\cdot}C_{\cdot,\cdot} = \sum_{r=1}^{n} a_{1,r}C_{r,\cdot} = a_{1}C_{1,\cdot} + \dots + a_{n}C_{n,\cdot} \quad \text{Or. By } (aC)_{1,\cdot} = a_{1,\cdot}C. \text{ Using (b) above.}$ • Suppose p is a poly of n variables in **F**. Prove that $\mathcal{M}(p(T_1, ..., T_n)) = p(\mathcal{M}(T_1), ..., \mathcal{M}(T_n))$. Where the linear maps $T_1, ..., T_n$ are such that $p(T_1, ..., T_n)$ makes sense. See [5.B.16,17,20]. **SOLUTION:** Suppose the poly p is defined by $p(x_1, ..., x_n) = \sum_{k_1, ..., k_n} \alpha_{k_1, ..., k_n} \prod_{i=1}^n x_i^{k_i}$. Note that $\mathcal{M}(T^x S^y) = \mathcal{M}(T)^x \mathcal{M}(S)^y$; $\mathcal{M}(T^x + S^y) = \mathcal{M}(T)^x + \mathcal{M}(S)^y$. Then $\mathcal{M}(p(T_1,...,T_n)) = \mathcal{M}(\sum_{k_1,...,k_n} \alpha_{k_1,...,k_n} \prod_{i=1}^n T_i^{k_i})$ $= \sum_{k_1,\dots,k_n} \alpha_{k_1,\dots,k_n} \prod_{i=1}^n \mathcal{M}(T_i^{k_i}) = p(\mathcal{M}(T_1),\dots,\mathcal{M}(T_n)).$ **13** *Prove that the distr holds for matrix add and matrix multi.* Suppose A, B, C are matrices such that A(B+C) make sense, we prove the left distr. **SOLUTION:** Suppose $A \in \mathbf{F}^{m,n}$ and $B, C \in \mathbf{F}^{n,p}$. Note that $[A(B+C)]_{j,k} = \sum_{r=1}^{n} A_{j,r}(B+C)_{r,k} = \sum_{r=1}^{n} (A_{j,r}B_{r,k} + A_{j,r}C_{r,k}) = (AB+AC)_{j,k}$. OR. Define T, S, R such that $\mathcal{M}(T) = A, \mathcal{M}(S) = B, \mathcal{M}(R) = C$. $A(B+C) = \mathcal{M}(T(S+R)) \stackrel{[3.9]}{=} \mathcal{M}(TS+TR) = AB + AC.$ Or $T(S+R) = TS + TR \Rightarrow \mathcal{M}(T(S+R)) = \mathcal{M}(TS+TR) \Rightarrow A(B+C) = AB + AC$. **14** *Prove that matrix multi is associ.* Suppose A, B, C are matrices such that (AB)C makes sense, we prove that (AB)C = A(BC). **SOLUTION:** Suppose $A \in \mathbb{F}^{m,n}$ and $B, C \in \mathbb{F}^{n,p}$. We will show that $LHS = [(AB)C]_{i,k} = [A(BC)]_{i,k} = RHS$. $LHS = (AB)_{i,\cdot}C_{\cdot,k} = \sum_{s=1}^{n} (A_{j,s}B_{s,\cdot})C_{\cdot,k} = \sum_{s=1}^{n} A_{j,s}(B_{s,\cdot}C_{\cdot,k}) = \sum_{s=1}^{n} A_{j,s}(BC)_{s,k} = RHS.$ OR. Define T, S, R such that $\mathcal{M}(T) = A, \mathcal{M}(S) = B, \mathcal{M}(R) = C$. $(AB)C = \mathcal{M}(T(SR)) \stackrel{[3.9]}{=} \mathcal{M}(TSR) \stackrel{[3.9]}{=} \mathcal{M}((TS)R) = A(BC).$ OR. $(TS)R = T(SR) \Rightarrow \mathcal{M}((TS)R) = \mathcal{M}(T(SR)) \Rightarrow (AB)C = A(BC)$.

15 Suppose $A \in \mathbb{F}^{n,n}$, $j,k \in \{1,\ldots,n\}$. Show that $(A^3)_{i,k} = \sum_{n=1}^n \sum_{r=1}^n A_{j,r} A_{p,r} A_{r,k}$. **SOLUTION:** $(AAA)_{i,k} = (AA)_{i,k} = \sum_{p=1}^{n} (A_{j,p}A_{p,r})A_{\cdot,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p}A_{p,r}A_{r,k}$. Or. $(AAA)_{i,k} = \sum_{r=1}^{n} (AA)_{i,r} A_{r,k} = \sum_{r=1}^{n} (\sum_{p=1}^{n} A_{j,p} A_{p,r}) A_{r,k}$ $=\sum_{r=1}^{n} \left[A_{i,1}(A_{1,r}A_{r,k}) + \cdots + A_{i,n}(A_{n,r}A_{r,k}) \right]$ $= A_{j,1} \sum_{r=1}^{n} A_{1,r} A_{r,k} + \dots + A_{j,n} \sum_{r=1}^{n} A_{n,r} A_{r,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p} A_{p,r} A_{r,k}.$ • Prove that the commutativity does not hold in $\mathbf{F}^{m,n}$. **SOLUTION:** Suppose dim V = n, dim W = m and the commutativity holds in $\mathbf{F}^{n,m}$. $\forall T \in \mathcal{L}(V, W), S \in \mathcal{L}(W, V), \mathcal{M}(TS) = \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(S)\mathcal{M}(T) = \mathcal{M}(ST).$ Hence ST = TS. Which in general is not true. (See 3.D) • [10.A.3, OR 4E 3.D.19] Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that $\forall B_V \neq B_V'$, $\mathcal{M}(T, B_V) = \mathcal{M}(T, B_V') \iff T = \lambda \mathcal{M}(I), \exists \lambda \in \mathbf{F}$. **SOLUTION:** [Compare with the first solution of (3.D.16) in 3.A] Suppose $T = \lambda I$ for some $\lambda \in \mathbf{F}$. Then $T = \lambda \mathcal{M}(I)$. Suppose $\forall B_V \neq B_V'$, $\mathcal{M}(T, B_V) = \mathcal{M}(T, B_V')$. If T = 0, then we are done. Suppose $T \neq 0$, and $v \in V \setminus \{0\}$. Assume that (v, Tv) is linely inde. Extend (v, Tv) to $B_V = (v, Tv, u_3, ..., u_n)$. Let $B = \mathcal{M}()(T, B_V)$. $\Rightarrow Tv = B_{1,1}v + B_{2,1}(Tv) + B_{3,1}u_3 + \dots + B_{n,1}u_n \Rightarrow B_{2,1} = 1, B_{i,1} = 0, \forall i \neq 2.$ By assumption, $A = \mathcal{M}(T, B'_V) = B, \forall B'_V = (v, w_2, ..., w_n)$. Then $A_{2,1} = 1, A_{i,1} = 0, \forall i \neq 2$. \Rightarrow $Tv = w_2$, which is not true if we let $w_2 = u_3$, $w_3 = Tv$, $w_j = u_j$, $\forall j \in \{4, ..., n\}$. Contradicts. Hence (v, Tv) is linely depe $\Rightarrow \forall v \in V, \exists \lambda_v \in F, Tv = \lambda_v v$. Now we show that λ_v is independent of v, that is, to show that for all $v \neq w \in V \setminus 0$, $\lambda_v = \lambda_w$. $\begin{array}{l} (v,w) \text{ is linely inde} \Rightarrow T(v+w) = \lambda_{v+w}(v+w) = \lambda_v v + \lambda_w w = Tv + Tw \\ (v,w) \text{ is linely depe, } w = cv \Rightarrow Tw = \lambda_w w = \lambda_w cv = c\lambda_v v = T(cv) \end{array} \right\} \Rightarrow T = \lambda I, \exists \, \lambda \in \mathbf{F}.$ Or. Conversely, denote $\mathcal{M}(T, B_V)$ by A, where $B_V = (u_1, \dots, u_m)$ is arbitrary. Fix one $B_V = (v_1, \dots, v_m)$ and then $(v_1, \dots, \frac{1}{2}v_k, \dots, v_m)$ is also a basis for any given $k \in \{1, \dots, m\}$. Fix one *k*. Now we have $T(\frac{1}{2}v_k) = A_{1,k}v_1 + \dots + A_{k,k}(\frac{1}{2}v_k) + \dots + A_{m,k}v_m$ $\Rightarrow Tv_k = 2A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + 2A_{m,k}v_m = A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + A_{m,k}v_m.$ Then $A_{i,k} = 2A_{i,k} \Rightarrow A_{i,k} = 0$ for all $j \neq k$. Thus $Tv_k = A_{k,k}v_k$, $\forall k \in \{1, ..., m\}$. Now we show that $A_{k,k} = A_{j,j}$ for all $j \neq k$. Choose j,k such that $j \neq k$. Consider the basis $B'_V = (v'_1, \dots, v'_i, \dots, v'_k, \dots, v'_m)$, where $v'_{i} = v_{k}$, $v_{k}' = v_{i}$ and $v'_{i} = v_{i}$ for all $i \in \{1, ..., m\} \setminus \{j, k\}$. Remember that $\mathcal{M}(T, B'_V) = \mathcal{M}(T, B_V) = A$. Hence $T(v'_k) = A_{1,k}v'_1 + \dots + A_{k,k}v'_k + \dots + A_{m,k}v'_m = A_{k,k}v'_k = A_{k,k}v_j$, while $T(v'_k) = T(v_j) = A_{i,j}v_j$. Thus $A_{k,k} = A_{j,j}$.

• Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

 (Tv_1, \ldots, Tv_n) is a basis of V for some basis (v_1, \ldots, v_n) of $V \Leftrightarrow T$ is surj (Tv_1, \ldots, Tv_n) is a basis of V for every basis (v_1, \ldots, v_n) of $V \Leftrightarrow T$ is inje $T \Leftrightarrow T$ is inv.

• Suppose $T \in \mathcal{L}(V)$ and $V = \operatorname{span}(Tv_1, \dots, Tv_m)$. Prove that $V = \operatorname{span}(v_1, \dots, v_m)$.

SOLUTION:

Because $V = \operatorname{span}(Tv_1, \dots, Tv_m) \Rightarrow T$ is surj, X V is finite-dim $\Rightarrow T$ is inv.

$$\forall v \in V, \ \exists \ a_i \in \mathbf{F}, v = a_1 T v_1 + \dots + a_m T v_m \Rightarrow T^{-1} v = a_1 v_1 + \dots + a_m v_m \Rightarrow \mathrm{range} \ T^{-1} \subseteq \mathrm{span} \big(v_1, \dots, v_m \big).$$

OR. Reduce $(Tv_1, ..., Tv_m)$ to a basis of V as $(Tv_{\alpha_1}, ..., Tv_{\alpha_k})$, where $k = \dim V$ and $\alpha_i \in \{1, ..., k\}$.

Then $(v_{\alpha_1}, \dots, v_{\alpha_k})$ is linely inde of length k, hence is a basis of V, contained in the list (v_1, \dots, v_m) . \square

• OR (10.A.1) Suppose $T \in \mathcal{L}(V)$, $B_V = (v_1, ..., v_n)$. Prove that $\mathcal{M}(T, B_V)$ is inv $\iff T$ is inv.

SOLUTION: Notice that $\mathcal{M} \in \mathcal{L}(\mathcal{L}(V), \mathbf{F}^{n,n})$ is an iso.

(a)
$$T^{-1}T = TT^{-1} = I \Rightarrow \mathcal{M}(T^{-1})\mathcal{M}(T) = \mathcal{M}(T)\mathcal{M}(T^{-1}) = I \Rightarrow \mathcal{M}(T^{-1}) = \mathcal{M}(T)^{-1}$$
.

(b)
$$\mathcal{M}(T)\mathcal{M}(T)^{-1} = \mathcal{M}(T)^{-1}\mathcal{M}(T) = I$$
. $\exists ! S \in \mathcal{L}(V)$ such that $\mathcal{M}(T)^{-1} = \mathcal{M}(S)$

$$\Rightarrow \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(S)\mathcal{M}(T) = I = \mathcal{M}(TS) = \mathcal{M}(ST)$$

$$\Rightarrow \mathcal{M}^{-1}\mathcal{M}(TS) = \mathcal{M}^{-1}\mathcal{M}(ST) = I = TS = ST \Rightarrow S = T^{-1}.$$

• Suppose $T \in \mathcal{L}(V, W)$ is inv. Show that T^{-1} is inv and $(T^{-1})^{-1} = T$.

SOLUTION:
$$TT^{-1} = I \in \mathcal{L}(V)$$
 $T^{-1}T = I \in \mathcal{L}(W)$ $\Rightarrow T = (T^{-1})^{-1}$, by the uniques of inverse.

1 Suppose $T \in \mathcal{L}(U, V)$, $S \in \mathcal{L}(V, W)$ are inv. Prove that ST is inv and $(ST)^{-1} = T^{-1}S^{-1}$.

Solution:
$$(ST)(T^{-1}S^{-1}) = STT^{-1}S^{-1} = I \in \mathcal{L}(W) \ (T^{-1}S^{-1})(ST) = T^{-1}S^{-1}ST = I \in \mathcal{L}(V)$$
 $\Rightarrow (ST)^{-1} = T^{-1}S^{-1}$, by the uniques of inv.

2 Suppose V is finite-dim and dim V > 1.

Prove that the set of non-inv operators on V *is not a subsp of* $\mathcal{L}(V)$ *.*

The set of inv operators is not either, although multi identity/inv, and commutativity for vec multi holds.

SOLUTION:

Denote the set by U. Suppose dim V = n > 1. Let $(v_1, ..., v_n)$ be a basis of V. Define $S, T \in \mathcal{L}(V)$ by

$$S(a_1v_1 + \dots + a_nv_n) = a_1v_1, T(a_1v_1 + \dots + a_nv_n) = a_2v_1 + \dots + a_nv_n$$
. Hence $S + T = I$ is inv.

COMMENT: If dim V = 1, then $U = \{0\}$ is a subsp of $\mathcal{L}(V)$.

3 Suppose V is finite-dim, U is a subsp of V, and $S \in \mathcal{L}(U, V)$.

Prove that \exists *inv* $T \in \mathcal{L}(V)$, Tu = Su, $\forall u \in U \iff S$ *is inje.*[Compare this with (3.A.11).]

SOLUTION:

- (a) Tu = Su for every $u \in U \Rightarrow u = T^{-1}Su \Rightarrow S$ is inje. Or. $\text{null } S = \text{null } T \cap U = \{0\} \cap U = \{0\}$.
- (b) Suppose $(u_1, ..., u_m)$ be a basis of U and S is inje $\Rightarrow (Su_1, ..., Su_m)$ is linely inde in V. Extend these to bases of V as $(u_1, ..., u_m, v_1, ..., v_n)$ and $(Su_1, ..., Su_m, w_1, ..., w_n)$.

Define $T \in \mathcal{L}(V)$ by $T(u_i) = Su_i$; $Tv_j = w_j$, for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$.

4 Suppose that W is finite-dim and $S, T \in \mathcal{L}(V, W)$. *Prove that* null $S = \text{null } T(=U) \iff S = ET$, $\exists inv E \in \mathcal{L}(W)$. **SOLUTION:** Define $E \in \mathcal{L}(W)$ by $E(Tv_i) = Sv_i$, $E(w_i) = x_i$, for each $i \in \{1, ..., m\}$, $j \in \{1, ..., n\}$. Where: Let $B_{\text{range }T} = (Tv_1, \dots, Tv_m)$, extend to $B_W = (Tv_1, \dots, Tv_m, w_1, \dots, w_n)$. Let $\mathcal{K} = \operatorname{span}(v_1, \dots, v_m)$. \mathbb{X} null $S = \operatorname{null} T \Longrightarrow V = \mathcal{K} \oplus \operatorname{null} S \Leftrightarrow \mathcal{K} \in \mathcal{S}_V \operatorname{null} S$. $\therefore E$ is inv \Rightarrow span $(Sv_1, ..., Sv_m) = \text{range } S \times \text{dim range } T = \text{dim range } S = m.$ and S = ET. Hence $B_{\text{range }S} = (Sv_1, \dots, Sv_m)$. Thus we let $B'_W = (Sv_1, \dots, Sv_m, x_1, \dots, x_n)$. Conversely, $S = ET \Rightarrow \text{null } S = \text{null } ET$. Then $v \in \operatorname{null} ET \iff ET(v) = 0 \iff Tv = 0 \iff v \in \operatorname{null} T$. Hence $\operatorname{null} ET = \operatorname{null} T = \operatorname{null} S$. **5** Suppose that V is finite-dim and $S, T \in \mathcal{L}(V, W)$. *Prove that* range $S = \text{range } T(=R) \iff S = TE, \exists inv E \in \mathcal{L}(V).$ **SOLUTION:** Define $E \in \mathcal{L}(V)$ as $E: v_i \mapsto r_i$; $u_j \mapsto s_j$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Where: Let $B_R = (Tv_1, ..., Tv_m)$; $B'_R = (Sr_1, ..., Sr_m)$ such that $\forall i, Tv_i = Sr_i$. Let $B_{\text{null }T} = (u_1, ..., u_n); B_{\text{null }S} = (s_1, ..., s_n).$ \therefore *E* is inv and S = TE. Thus $B_V = (v_1, ..., v_m, u_1, ..., u_n); B'_V = (r_1, ..., r_m, s_1, ..., s_n).$ Conversely, $S = TE \Rightarrow \text{range } S = \text{range } TE$. Then $w \in \text{range } S \iff \exists v \in V, Sv = TE(v) = T(E(v)) = w \in \text{range } T$. Hence range S = range T. \square **6** Suppose V and W are finite-dim and $S, T \in \mathcal{L}(V, W)$. *Prove that* $S = E_2 T E_1$, $\exists inv E_1 \in \mathcal{L}(V)$, $E_2 \in \mathcal{L}(W) \iff \dim \text{null } S = \dim \text{null } T = n$. **SOLUTION:** Define $E_1: v_i \mapsto r_i$; $u_j \mapsto s_j$; for each $i \in \{1, \dots, m\}, j \in \{1, \dots, n\}$. Define $E_2: Tv_i \mapsto Sr_i$; $x_j \mapsto y_j$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Where: Let $B_{\text{range }T} = (Tv_1, \dots, Tv_m); B_{\text{range }S} = (Sr_1, \dots, Sr_m).$ Extend to $B_W = (Tv_1, ..., Tv_m, x_1, ..., x_p); \ B'_W = (Sr_1, ..., Sr_m, y_1, ..., y_p). \ | ::E_1, E_2 \text{ are inv}$ Let $B_{\text{null }T} = (u_1, ..., u_n); B_{\text{null }S} = (s_1, ..., s_n).$ Thus $B_V = (v_1, ..., v_m, u_1, ..., u_n); B'_V = (r_1, ..., r_m, s_1, ..., s_n).$ Conversely, $S = E_2 T E_1 \Rightarrow \dim \text{null } S = \dim \text{null } E_2 T E_1$. $v \in \operatorname{null} E_2 T E_1 \iff E_2 T E_1(v) = 0 \iff T E_1(v) = 0$. Hence $\operatorname{null} E_2 T E_1 = \operatorname{null} T E_1 = \operatorname{null} S$. $X \rightarrow By (3.B.22.COROLLARY)$, E is inv \Rightarrow dim null $TE_1 = \dim \text{null } T = \dim \text{null } S$. **8** Suppose V is finite-dim and $T:V\to W$ is a **surj** linear map of V onto W. *Prove that there is a subsp* U *of* V *such that* $T|_{U}$ *is an iso of* U *onto* W. **SOLUTION:** Let $B_{\text{range }T} = B_W = (w_1, \dots, w_m) \Rightarrow \forall w_i, \exists ! v_i \in V, Tv_i = w_i. \text{ Let } B_{\mathcal{K}} = (v_1, \dots, v_m).$ Then dim $\mathcal{K} = \dim W$. Thus $T|_{\mathcal{K}}$ is an iso of \mathcal{K} onto W. OR. By (3.B.12), there is a subsp U of V such that $U \cap \text{null } T = \{0\} = \text{null } T|_U$, range $T = \{Tu : u \in U\} = \text{range } T|_U$.

Thus $AB = I \Leftrightarrow A(Bx) = x \Leftrightarrow T(Sx) = x \Leftrightarrow TS = I \Leftrightarrow ST = I \Leftrightarrow \mathcal{M}(S)\mathcal{M}(T) = BA = I$.

• Note For [3.60]: Suppose $B_V = (v_1, ..., v_n), B_W = (w_1, ..., w_m).$

Define $E_{i,j} \in \mathcal{L}(V,W)$ by $E_{i,j}(v_x) = \delta_{i,x}w_j$; See (3.A.12). Corollary: $E_{l,k}E_{i,j} = \delta_{j,l}E_{i,k}$.

Denote
$$\mathcal{M}(E_{i,j})$$
 by $\mathcal{E}^{(j,i)}$. And $\left(\mathcal{E}^{(j,i)}\right)_{l,k} = \begin{cases} 0, & i \neq k \lor j \neq l \\ 1, & i = k \land j = l \end{cases}$

Because $\mathcal{L}(V, W)$ and $\mathbf{F}^{m,n}$ are iso. And $T = \mathcal{M}^{-1}\mathcal{M}(T)$; $E_{i,j} = \mathcal{M}^{-1}\mathcal{E}^{(j,i)}$

Hence
$$\forall T \in \mathcal{L}(V, W), \exists ! A_{i,j} \in \mathbf{F} \left(\forall i \in \{1, \dots, m\}, j \in \{1, \dots, n\} \right), \mathcal{M}(T) = A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}.$$

$$\text{Thus}\, A = \begin{pmatrix} A_{1,1}\mathcal{E}^{(1,1)} + & \cdots & +A_{1,n}\mathcal{E}^{(1,n)} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1}\mathcal{E}^{(m,1)} + & \cdots & +A_{m,n}\mathcal{E}^{(m,n)} \end{pmatrix} \\ \Longleftrightarrow \begin{pmatrix} A_{1,1}E_{1,1} + & \cdots & +A_{1,n}E_{n,1} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1}E_{1,m} + & \cdots & +A_{m,n}E_{n,m} \end{pmatrix} = T.$$

$$\therefore \mathcal{L}(V, W) = \operatorname{span}\left(\underbrace{\begin{bmatrix} E_{1,1}, & \cdots & E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{1,m}, & \cdots & E_{n,m} \end{bmatrix}}_{B}; \quad \mathbf{F}^{m,n} = \operatorname{span}\left(\underbrace{\begin{bmatrix} \mathcal{E}^{(1,1)}, & \cdots & \mathcal{E}^{(1,n)}, \\ \vdots & \ddots & \vdots \\ \mathcal{E}^{(m,1)}, & \cdots & \mathcal{E}^{(m,n)} \end{bmatrix}}_{B_{M}}.$$

Hence by [2.42] and [3.61], we conclude that B is a basis of $\mathcal{L}(V, W)$ and that $B_{\mathcal{M}}$ is a basis of $\mathbf{F}^{m,n}$.

• Suppose V, W are finite-dim, U is a subsp of V.

Let $\mathcal{E} = \{ T \in \mathcal{L}(V, W) : U \subseteq \text{null } T \} = \{ T \in \mathcal{L}(V, W) : T|_U = 0 \}.$

- (a) Show that \mathcal{E} is a subsp of $\mathcal{L}(V, W)$.
- (b) Find a formula for dim \mathcal{E} in terms of dim V, dim W and dim U.

Hint: Define $\Phi : \mathcal{L}(V, W) \to \mathcal{L}(U, W)$ by $\Phi(T) = T|_{U}$. What is null Φ ? What is range Φ ?

SOLUTION:

- (a) $\forall S, T \in \mathcal{E}, \lambda \in \mathbb{F}, \forall u \in U, Su = \lambda Tu = (S + \lambda T)u = 0 \Rightarrow (S + \lambda T) \in \mathcal{E}.$
- (b) Define Φ as in the hint.

Because $T \in \text{null } \Phi \Longleftrightarrow \Phi(T) = 0 \Longleftrightarrow \forall u \in U, Tu = 0 \Longleftrightarrow T \in \mathcal{E}$.

Hence null $\Phi = \mathcal{E}$.

Because $S \in \mathcal{L}(U, W) \Rightarrow \exists T \in \mathcal{L}(V, W), \Phi(T) = S$, by $(3.A.11) \Rightarrow S \in \text{range } T$.

Hence range $\Phi = \mathcal{L}(U, W)$.

Thus dim null $\Phi = \dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim \operatorname{range} \Phi = (\dim V - \dim U) \dim W$.

OR. Extend (u_1, \ldots, u_m) a basis of U to $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ a basis of V. Let $p = \dim W$.

$$(\text{ See Note For } [3.60]) \\ \forall \, T \in \mathcal{E}, k \in \{1, \dots, m\}, TE_{k,k} = 0 \Rightarrow \operatorname{span} \left\{ \begin{matrix} E_{1,1}, & \cdots & , E_{m,1}, \\ \vdots & \ddots & \vdots \\ E_{1,p}, & \cdots & , E_{m,p} \end{matrix} \right\} \cap \mathcal{E} = \{0\}$$

$$\forall T \in \mathcal{E}, k \in \{1, \dots, m\}, TE_{k,k} = 0 \Rightarrow \operatorname{span} \left\{ \begin{array}{c} E_{1,1}, & \cdots, E_{m,1}, \\ \vdots & \ddots & \vdots \\ E_{1,p}, & \cdots, E_{m,p} \end{array} \right\} \cap \mathcal{E} = \{0\}.$$

$$\forall W = \operatorname{span} \left\{ \begin{array}{c} E_{m+1,1}, & \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{m+1,p}, & \cdots, E_{n,p} \end{array} \right\} \subseteq \mathcal{E}. \text{ Where } \mathcal{L}(V, W) = R \oplus W \Rightarrow \mathcal{L}(V, W) = R + \mathcal{E}.$$

Then dim $\mathcal{E} = \dim \mathcal{L}(V, W) - \dim R - \dim(R \cap \mathcal{E}) = (\dim V - \dim U) \dim W$.

- Suppose V is finite-dim and $S \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(T) = ST$.
 - (a) Show that dim null $A = (\dim V)(\dim \operatorname{null} S)$.
 - (b) *Show that* dim range $A = (\dim V)(\dim \operatorname{range} S)$.

SOLUTION:

- (a) $\forall T \in \mathcal{L}(V)$, $ST = 0 \iff \text{range } T \subseteq \text{null } S$. Thus null $\mathcal{A} = \{ T \in \mathcal{L}(V) : \text{range } T \subseteq \text{null } S \} = \mathcal{L}(V, \text{null } S).$
- (b) $\forall R \in \mathcal{L}(V)$, range $R \subseteq \text{range } S \iff \exists T \in \mathcal{L}(V), R = ST$, by (3.B 25). Thus range $\mathcal{A} = \{R \in \mathcal{L}(V) : \text{range } R \subseteq \text{range } S\} = \mathcal{L}(V, \text{range } S).$

OR. Using Note For [3.60].

Let
$$B_{\text{range }S} = \left(\underbrace{w_1, \ldots, w_m}_{Sv_i = w_i}\right), B_{\mathcal{K}} = \left(v_1, \ldots, v_m\right); \left(w_1, \ldots, w_n\right), \left(v_1, \ldots, v_n\right) \text{ are bases of } V.$$

Define
$$E_{i,j} \in \mathcal{L}(V)$$
 by $E_{i,j}(v_x) = \delta_{i,x}w_i$.

Thus $S = E_{1,1} + \dots + E_{m,m}$; $\mathcal{M}(S, (v_1, \dots, v_n), (w_1, \dots, w_n)) = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}$.

Define $R_{i,j} \in \mathcal{L}(V)$ by $R_{i,j}(w_x) = \delta_{i,x}v_i$.

Let $E_{i,k}R_{i,j} = Q_{i,k}$, $R_{j,k}E_{i,j} = G_{i,k}$.

Because
$$\forall T \in \mathcal{L}(V), \ \exists \ ! \ A_{i,j} \in \mathbf{F}, \ T = \begin{pmatrix} A_{1,1}R_{1,1} + & \cdots & +A_{1,m}R_{m,1} + & \cdots & +A_{1,n}R_{n,1} \\ + & \cdots & + & \cdots & + \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ + & \cdots & + & \cdots & +A_{m,m}R_{m,m} + & \cdots & +A_{m,n}R_{n,m} \\ + & \cdots & + & \cdots & +A_{m,n}R_{n,m} \end{pmatrix}.$$

$$\Rightarrow \mathcal{A}(T) = ST = \bigg(\sum_{r=1}^m E_{r,r}\bigg)\bigg(\sum_{i=1}^n \sum_{j=1}^n A_{i,j}R_{j,i}\bigg)$$

$$=\sum_{i=1}^{m}\sum_{j=1}^{n}A_{i,j}Q_{j,i}=\begin{pmatrix}A_{1,1}Q_{1,1}+&\cdots&+A_{1,m}Q_{m,1}+&\cdots&+A_{1,n}Q_{n,1}\\+&\cdots&&+&\cdots&+\\\vdots&\ddots&\vdots&\ddots&\vdots\\+&\cdots&&+&\cdots&+\\A_{m,1}Q_{1,m}+&\cdots&+A_{m,m}Q_{m,m}+&\cdots&+A_{m,n}Q_{n,m}\end{pmatrix}.$$

Thus null
$$\mathcal{A} = \operatorname{span}\begin{pmatrix} R_{1,m+1}, & \cdots & R_{n,m+1}, \\ \vdots & \ddots & \vdots \\ R_{1,n}', & \cdots & R_{n,n}' \end{pmatrix}$$
, range $\mathcal{A} = \operatorname{span}\begin{pmatrix} Q_{1,1}, & \cdots & Q_{n,1}, \\ \vdots & \ddots & \vdots \\ Q_{1,m}', & \cdots & Q_{n,m}' \end{pmatrix}$.

Hence (a) dim null
$$A = n \times (n - m)$$
; (b) dim range $A = n \times m$.

- Comment: Define $\mathcal{B} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{B}(T) = TS$. Similarly to Problem (\circ) ,
 - (a) $\forall T \in \mathcal{L}(V), TS = 0 \iff \text{range } S \subseteq \text{null } T.$ Thus null $\mathcal{B} = \{ T \in \mathcal{L}(V) : \text{range } S \subseteq \text{null } T \} = \{ T \in \mathcal{L}(V) : T|_{\text{range } S} = 0 \}.$
 - (b) $\forall R \in \mathcal{L}(V)$, $\text{null } S \subseteq \text{null } R \iff \exists T \in \mathcal{L}(V)$, R = TS, by (3.B.24). Thus range $\mathcal{B} = \{ R \in \mathcal{L}(V) : \text{null } S \subseteq \text{null } R \} = \{ R \in \mathcal{L}(V) : R|_{\text{null } S} = 0 \}.$

Hence dim null $\mathcal{B} = (\dim V - \dim \operatorname{range} S)(\dim V)$; $\dim \operatorname{range} \mathcal{B} = (\dim V - \dim \operatorname{null} S)(\dim V).$

OR. Using Note For [3.60] and the notation in Problem (
$$\circ$$
).
$$\mathcal{B}(T) = TS = (\sum_{i=1}^n \sum_{j=1}^n A_{i,j} R_{j,i}) (\sum_{r=1}^m E_{r,r})$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,1} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} G_{1,m} + & \cdots & + A_{m,m} G_{m,m} \end{pmatrix}.$$
Thus null $\mathcal{B} = \operatorname{span}\begin{pmatrix} R_{m+1,1}, & \cdots & R_{n,1} \\ \vdots & \ddots & \vdots \\ R_{m+1,n}, & \cdots & R_{n,n} \end{pmatrix}$,
$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,m} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{n,1} G_{1,m} + & \cdots & + A_{n,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{n,1} G_{1,n} + & \cdots & + A_{n,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{n,1} G_{1,n} + & \cdots & + A_{n,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{n,1} G_{1,n} + & \cdots & + A_{n,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{n,1} G_{1,n} + & \cdots & + A_{n,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{n,1} G_{1,n} + & \cdots & + A_{n,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{n,1} G_{1,n} + & \cdots & + \\ A_{n,1}$$

- **17** Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}$, $ET \in \mathcal{E}$
- **SOLUTION:** Using Note For [3.60]. Let $(v_1, ..., v_n)$ be a basis of V. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$.

Then $\forall E_{i,j} \in \mathcal{E}$, ($\forall x,y=1,\ldots,n$), by assumption, $E_{j,x}E_{i,j}=E_{i,x} \in \mathcal{E}$, $E_{i,j}E_{y,i}=E_{y,j} \in \mathcal{E}$. $\text{Again, } E_{y,x\prime\prime}, E_{y\prime,x} \in \mathcal{E} \text{ for all } x\prime,y\prime,x,y=1,\ldots,n. \text{ Thus } \mathcal{E} = \mathcal{L}(V).$

• OR (10.A.4) Suppose that $(\beta_1, ..., \beta_n)$ and $(\alpha_1, ..., \alpha_n)$ are bases of V. Let $T \in \mathcal{L}(V)$ be such that $T\alpha_k = \beta_k$, $\forall k$. Prove that $\mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha)$ For ease of notation, let $\mathcal{M}(T, \alpha \to \beta) = \mathcal{M}(T, (\alpha_1, \dots, \alpha_n), (\beta_1, \dots, \beta_n)), \ \mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(T, (\alpha_1, \dots, \alpha_n)).$

SOLUTION:

Denote $\mathcal{M}(T, \alpha \to \alpha)$ by A and $\mathcal{M}(I, \beta \to \alpha)$ by B.

$$\forall k \in \{1, \dots, n\}, Iu_k = u_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n = Tv_k = A_{1,k}\alpha_1 + \dots + A_{n,k}\alpha_n \Rightarrow A = B.$$

Or. Note that
$$\mathcal{M}(T, \alpha \to \beta) = I$$
. Hence $\mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha) \underbrace{\mathcal{M}(T, \alpha \to \beta)}_{=\mathcal{M}(I, \beta \to \beta)} = \mathcal{M}(I, \beta \to \alpha)$.

Or. Note that $\mathcal{M}(T, \beta \to \beta)\mathcal{M}(I, \alpha \to \beta) = \mathcal{M}(T, \alpha \to \beta) = I$.

$$\mathcal{M}(T,\alpha \to \alpha) = \mathcal{M}(I,\alpha \to \beta)^{-1} \left(\underbrace{\mathcal{M}(T,\beta \to \beta)\mathcal{M}(I,\alpha \to \beta)}_{=\mathcal{M}(T,\alpha \to \beta)} \right) = \mathcal{M}(I,\beta \to \alpha).$$

COMMENT: Denote $\mathcal{M}(T, \beta \to \beta)$ by A'.

$$u_k = Iu_k = B_{1,k}\alpha_1 + \cdots + B_{n,k}\alpha_n, \ \forall \ k \in \left\{1, \ldots, n\right\}.$$

 $\nabla Tu_k = T(B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n) = B_{1,k}\beta_1 + \dots + B_{n,k}\beta_n = A'_{1,k}\beta_1 + \dots + A'_{n,k}\beta_n \Rightarrow A' = B.$

Or. $\mathcal{M}(T, \beta \to \beta) = \mathcal{M}(T, \alpha \to \beta)\mathcal{M}(I, \beta \to \alpha) = B$.

16 Suppose V is finite-dim and $S \in \mathcal{L}(V)$ such that $\forall T \in \mathcal{L}(V)$, ST = TS. *Prove that* $\exists \lambda \in \mathbf{F}, S = \lambda I$. **SOLUTION**: Using the notation and result in (•). Suppose ST = TS for every $T \in \mathcal{L}(V)$. If S = 0, we are done. Now suppose $S \neq 0$. Let $S = E_{1,1} + \cdots + E_{m,m} \Rightarrow \mathcal{M}(S, B_{\mathcal{K}}) = \mathcal{M}(I, B_{\text{range } S}, B_{\mathcal{K}}).$ Then $\forall k \in \{m+1,\ldots,n\}, 0 \neq SR_{k,1} = R_{k,1}S$. Hence $n = \dim V = \dim \operatorname{range} S = m$. Notice that $R_{i,j}S = SR_{i,j} \iff Q_{i,j} = G_{i,j}$. Thus $Q_{i,j}(w_i) = w_j = a_{i,i}v_j = G_{i,j}(a_{1,i}v_1 + \cdots + a_{n,i}v_n)$. Where $a_{i,j} = \mathcal{M}(I, (w_1, \dots, w_n), (v_1, \dots, v_n))_{i,j} \iff w_i = Iw_i = a_{1,i}v_1 + \dots + a_{n,i}v_n;$ And For each *j*, for all *i*. Thus $a_{i,i} = a_{k,k} = \lambda$, $\forall k \neq i$. Hence $w_i = \lambda v_i \Rightarrow \mathcal{M}(S) = \mathcal{M}(\lambda I, (v_1, ..., v_n)) \Rightarrow S = \mathcal{M}^{-1}(\mathcal{M}(\lambda I))\lambda I$. **18** *Show that V and* $\mathcal{L}(\mathbf{F}, V)$ *are iso vecsps.* **SOLUTION:** Define $\Psi \in \mathcal{L}(V, \mathcal{L}(F, V))$ by $\Psi(v) = \Psi_v$; where $\Psi_v \in \mathcal{L}(F, V)$ and $\Psi_v(\lambda) = \lambda v$. (a) $\Psi(v) = \Psi_v = 0 \Rightarrow \forall \lambda \in \mathbb{F}, \Psi_v(\lambda) = \lambda v = 0 \Rightarrow v = 0$. Hence Ψ is inje. (b) $\forall T \in \mathcal{L}(\mathbf{F}, V)$, let $v = T(1) \Rightarrow T(\lambda) = \lambda v = \Psi_v(\lambda)$, $\forall \lambda \in \mathbf{F} \Rightarrow T = \Psi(T(1))$. Hence Ψ is surj. \square Or. Define $\Phi \in \mathcal{L}(\mathcal{L}(\mathbf{F}, V), V)$ by $\Phi(T) = T(1)$. (a) Suppose $\Phi(T) = 0 = T(1) = \lambda T(1) = T(\lambda), \forall \lambda \in \mathbb{F} \Rightarrow T = 0$. Thus Φ is inje. (b) For any $v \in V$, define $T \in \mathcal{L}(\mathbf{F}, V)$ by $T(\lambda) = \lambda v$. Then $\Phi(T) = T(1) = v$. Thus Φ is surj. Comment: $\Phi = \Psi^{-1}$. • Suppose $q \in \mathcal{P}(R)$. Prove that $\exists p \in \mathcal{P}(R)$, $q(x) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$. **SOLUTION:** Note that $\deg [(x^2 + x)p''(x) + 2xp'(x) + p(3)] = \deg p$. Define $T_n: \mathcal{P}_n(\mathbf{R}) \to \mathcal{P}_n(\mathbf{R})$ by $T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$. Then $T_n \in \mathcal{L}(\mathcal{P}_n(\mathbf{R}))$. And note that $T_n(p) = 0 \Rightarrow \deg(T_n p) = -\infty = \deg p \Rightarrow p = 0$. Thus T_n is inv. $\forall q \in \mathcal{P}(\mathbf{R})$, if q = 0, let m = 0; if $q \neq 0$, let $m = \deg q$, we have $q \in \mathcal{P}_m(\mathbf{R})$. Hence $\exists p \in \mathcal{P}_m(\mathbf{R}), q(x) = T_m(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$ for all $x \in \mathbf{R}$. **19** Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ is inje. deg $Tp \leq \deg p$ for every nonzero $p \in \mathcal{P}(\mathbf{R})$. (a) Prove that T is surj; (b) Prove that for every nonzero p, $\deg Tp = \deg p$. **SOLUTION:** (a) T is inje $\iff \forall n \in \mathbb{N}^+, T|_{\mathcal{P}_n(\mathbb{R})} : \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ is inje and therefore is inv $\iff T$ is surj. (b) Using mathematical induction. (i) $\deg p = 0 \Rightarrow p = C \Rightarrow \deg Tp = \deg p = 0$; $\deg p = -\infty \Rightarrow p = 0 \Rightarrow \deg Tp = \deg p = -\infty.$ (ii) Assume that $\forall s \in \mathcal{P}_n(\mathbf{R})$, $\deg s = \deg Ts$. Suppose $\exists r \in \mathcal{P}_{n+1}(\mathbf{R}), \deg Tr \leq n < \deg r = n+1.$ Then by (a), $\exists s \in \mathcal{P}_n(\mathbf{R}), T(s) = (Tr).$ Contradicts. Thus $\forall p \in \mathcal{P}_{n+1}(\mathbf{R})$, $\deg Tp = \deg p$.

1 A function $T: V \to W$ is linear $\iff T$ is a subspace of $V \times W$.

2 Suppose $V_1 \times \cdots \times V_m$ is finite-dim. Prove that each V_i is finite-dim.

SOLUTION:

For any
$$k \in \{1, ..., m\}$$
, define $p_k : V_1 \times ... \times V_m \to V_k$ by $p_k(v_1, ..., v_m) = v_k$.

Then p_k is a surj linear map. By [3.22], range $p_k = V_k$ is finite-dim.

Or. Denote $V_1 \times \cdots \times V_m$ by U. Denote $\{0\} \times \cdots \{0\} \times V_i \times \{0\} \cdots \times \{0\}$ by U_i .

Let $(v_1, ..., v_M)$ be a basis of U. Note that $\forall u_i \in V_i, \in U_i \subseteq U$, for each i.

Define
$$R_i \in \mathcal{L}(V_i, U)$$
 by $R_i(u_i) = (0, \dots, 0, u_i, 0, \dots, 0)$
Define $S_i \in \mathcal{L}(U, V_i)$ by $S_i(u_1, \dots, u_i, \dots, u_m) = u_i$ $\} \Rightarrow S_i|_{U_i} = R_i^{-1}|_{U_i}.$

Thus U_i and V_i are iso. X U_i is a subsp of a finite-dim vecsp U.

3 Give an example of a vecsp V and its two subsps U_1 , U_2 such that $U_1 \times U_2$ and $U_1 + U_2$ are iso but $U_1 + U_2$ is not a direct sum.

SOLUTION: V must be infinite-dim. For if not, both U_1 and U_2 are finite-dim subsps. By [3.76, 3.78].

NOTE that at least one of U_1 , U_2 must be infinite-dim. And at least one must be infinite-dim??? TODO

For if not, $U_1 \times U_2$ is finite-dim and $\dim(U_1 \times U_2) = \dim(U_1 + U_2) = \dim U_1 + \dim U_2$.

Let
$$V = \mathbf{F}^{\infty} = U_1$$
, $U_2 = \{(x, 0, \dots) \in \mathbf{F}^{\infty} : x \in \mathbf{F}\}$.

Define
$$T \in \mathcal{L}(U_1 \times U_2, U_1 + U_2)$$
 by $T((x_1, x_2, \dots), (x, 0, \dots)) = (x, x_1, x_2, \dots)$
Define $S \in \mathcal{L}(U_1 + U_2, U_1 \times U_2)$ by $S(x, x_1, x_2, \dots) = ((x_1, x_2, \dots), (x, 0, \dots))$ $\Rightarrow S = T^{-1}$.

4 Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are iso.

SOLUTION: Using the notation in Problem (2).

Note that
$$T(u_1, ..., u_m) = T(u_1, 0, ..., 0) + ... + T(0, ..., u_m)$$
.

Define
$$\varphi: T \mapsto (T_1, \dots, T_m)$$
 by $\varphi(T) = (TR_1, \dots, TR_m)$.

Define
$$\varphi: T \mapsto (T_1, \dots, T_m)$$
 by $\varphi(T) = (TR_1, \dots, TR_m)$.
Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = T_1S_1 + \dots + T_mS_m$. $\} \Rightarrow \psi = \varphi^{-1}$.

5 Prove that $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ and $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$ are iso.

SOLUTION: Using the notation in Problem (2).

Note that $Tv = (w_1, ..., w_m)$. Define $T_i \in \mathcal{L}(V, W_i)$ by $T_i(v) = w_i$.

Define
$$\varphi: T \mapsto (T_1, \dots, T_m)$$
 by $\varphi(T) = (S_1 T, \dots, S_m T)$. $\Rightarrow \psi = \varphi$

Define
$$\varphi: T \mapsto (T_1, \dots, T_m)$$
 by $\varphi(T) = (S_1 T, \dots, S_m T)$.
Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = T_1 S_1 + \dots + T_m S_m$. $\} \Rightarrow \psi = \varphi^{-1}$.

6 For $m \in \mathbb{N}^+$, define V^m by $\underbrace{V \times \cdots \times V}_{m \text{ times}}$. Prove that V^m and $\mathcal{L}(\mathbf{F}^m, V)$ are iso.

SOLUTION:

Define
$$T:(v_1,\ldots,v_m)\to \varphi$$
, where $\varphi:(a_1,\ldots,a_m)\mapsto v$ is defined by $\varphi(a_1,\ldots,a_m)=a_1v_1+\cdots+a_mv_m$.

- (a) Suppose $T(v_1, ..., v_m) = 0$. Then $\forall (a_1, ..., a_n) \in \mathbb{F}^m$, $\varphi(a_1, ..., a_m) = a_1v_1 + ... + a_mv_m = 0$ \Rightarrow $(v_1, \dots, v_m) = 0 \Rightarrow T$ is inje.
- (b) Suppose $\psi \in \mathcal{L}(\mathbf{F}^m, V)$. Let (e_1, \dots, e_m) be the standard basis of \mathbf{F}^m . Then $\forall (b_1, \dots, b_n) \in \mathbf{F}^m$, $\left[T(\psi(e_1), \dots, \psi(e_m)) \right] (b_1, \dots, b_m) = b_1 \psi(e_1) + \dots + b_m \psi(e_m) = \psi(b_1 e_1 + \dots + b_m e_m) = \psi(b_1, \dots, b_m).$

Thus
$$T(\psi(e_1), \dots, \psi(e_m)) = \psi$$
. Hence T is surj.

- **14** Suppose $U = \{(x_1, x_2, \dots) \in \mathbb{F}^{\infty} : x_k \neq 0 \text{ for only finitely many } k\}.$
 - (a) Show that U is a subsp of \mathbf{F}^{∞} . [Do it in your mind]
 - (b) Prove that \mathbf{F}^{∞}/U is infinite-dim.

SOLUTION: For ease of notation, denote the p^{th} term of $u = (x_1, \dots, x_p, \dots) \in \mathbb{F}^{\infty}$ by u[p].

$$\text{For each } r \in \mathbb{N}^+, \text{let } e_r\big[p\big] = \left\{ \begin{array}{l} 1, (p-1) \equiv 0 \, \big(\text{mod} \, r \big) \\ 0, \text{otherwise} \end{array} \right| \quad \text{simply } e_r = \big(1, \underbrace{0, \ \cdots, \ 0}_{(p-1) \, \, times}, 1, \underbrace{0, \ \cdots, \ 0}_{(p-1) \, \, times}, 1, \cdots \big).$$

Choose one $m \in \mathbb{N}^+$. Let $a_1(e_1 + U) + \cdots + a_m(e_m + U) = 0 + U \Rightarrow \exists u \in U, a_1e_1 + \cdots + a_me_m = u$.

Suppose $u = (x_1, \dots, x_L, 0, \dots)$, where L is the largest such that $u[L] \neq 0$.

Let $s \in \mathbb{N}^+$ be such that $h = s \cdot m! + 1 > L$ and $e_1[h] = \cdots = e_m[h] = 1$.

Note that by definition, $e_r[s \cot m! + 1 + p] = e_r[p + 1] = 1 \iff p \equiv 0 \pmod{r} \iff r \mid p$.

Now for any
$$p \in \{1, ..., m\}$$
, $u[h+p] = \left(\sum_{r=1}^{m} a_r e_r\right)[p+1] = \sum_{k=1}^{\tau(p)} a_{p_k} = 0$ (Δ)

where $1 = p_1 \leqslant \cdots \leqslant p_{\tau(p)} = p$ are all the distinct factors of p.

Let $q = p_{\tau(p)-1}$. Notice that $\tau(q) = \tau(p) - 1$ and $q_k = p_k, \forall k \in \{1, \dots, \tau(q)\}$.

Again by (
$$\Delta$$
), $\left(\sum_{r=1}^{m} a_r e_r\right) [h+q] = \sum_{k=1}^{\tau(p)-1} a_{p_k} = 0$. Thus $a_{p_{\tau(p)}} = a_p = 0$ for any $p \in \{1, \dots, m\}$.

Hence $\forall m \in \mathbb{N}^+$, (e_1, \dots, e_m) is linely inde in \mathbb{F}^{∞} , so is $(e_1 + U, \dots, e_m + U)$ in \mathbb{F}^{∞}/U . By (2.A.14). \square

Or. For each
$$r \in \mathbb{N}^+$$
, let $e_r[p] = \begin{cases} 1, & \text{if } 2^r | p \\ 0, & \text{otherwise} \end{cases}$

Similarly, let $m \in \mathbb{N}^+$ and $a_1(e_1 + U) + \cdots + a_m(e_m + U) = 0 \Rightarrow a_1e_1 + \cdots + a_me_m = u \in U$.

Suppose *L* is the largest such that $u[L] \neq 0$. And *l* is such that $2^{ml} > L$.

Then
$$\forall k \in \{1, ..., m\}, u[2^{ml} + 2^k] = \left(\sum_{r=1}^m a_r e_r\right)[2^k] = a_1 + \dots + a_k = 0.$$

Thus $a_1 = \cdots = a_m = 0$ and (e_1, \dots, e_m) is linely inde. Similarly.

7 Suppose $v, x \in V$ and U and W are subsps of V. Prove that $v + U = x + W \Rightarrow U = W$.

SOLUTION:

- (a) $\forall u_1 \in U, \exists w_1 \in W, v + u_1 = x + w_1, \text{ let } u_1 = 0, \text{ now } v = x + w_1' \Rightarrow v x \in W.$

(b)
$$\forall w_2 \in W$$
, $\exists u_2 \in U, v + u_2 = x + w_2$, let $w_2 = 0$, now $x = v + u_2' \Rightarrow x - v \in U$.
Thus $\pm (v - x) \in U \cap W \Rightarrow \begin{cases} u_1 = (x - v) + w_1 \in W \Rightarrow U \subseteq W \\ w_2 = (v - x) + u_2 \in U \Rightarrow W \subseteq U \end{cases} \Rightarrow U = W$.

• Let $U = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 5z = 0\}$. Suppose $A \subseteq \mathbb{R}^3$.

Then *A* is a translate of $U \iff \exists c \in \mathbb{R}, A = \{(x,y,z) \in \mathbb{R}^3 : 2x + 3y + 5z = c\}.$

• Suppose $T \in \mathcal{L}(V, W)$ and $c \in W$. Prove that $U = \{x \in V : Tx = c\}$ is either \emptyset *or is a translate of* **null** *T*.

SOLUTION:

If $c \in W$ but $c \notin \text{range } T$, then $U = \emptyset$, we are done. Now suppose $c \in \text{range } T$ and $x \in U$.

$$\forall x + y \in x + \text{null } T \ (\forall y \in \text{null } T), x + y \in U. \text{ Hence } x + \text{null } T \subseteq U.$$

$$\forall u \in U, u - x \in \text{null } T \Rightarrow u = x + (u - x)x + \text{null } T. \text{ Hence } U \subseteq x + \text{null } T.$$

COROLLARY: The set of solutions to a system of linear equations such as [3.28] is either \emptyset or a translate.

8 Suppose A is a nonempty subset of V.

Prove that A is a translate of some subsp of $V \iff \lambda v + (1 - \lambda)w \in A$, $\forall v, w \in A, \lambda \in F$.

SOLUTION:

Suppose A = a + U. Then $\forall a + u_1, a + u_2 \in A, \lambda \in \mathbf{F}$,

$$\lambda(a + u_1) + (1 - \lambda)(a + u_2) = a + (\lambda(u_1 - u_2) + u_2) \in A.$$

Suppose $\lambda v + (1 - \lambda)w \in A$, $\forall v, w \in A$, $\lambda \in F$. Suppose $a \in A$ and let $A' = \{x - a : x \in A\}$.

Then $0 \in A'$ and $\forall x - a, y - a \in A'$, $(\forall x, y \in A)$, $\lambda \in \mathbb{F}$,

(I)
$$\lambda(x-a) = [\lambda x + (1-\lambda)a] - a \in A'$$
.

(II)
$$\lambda(x-a) + (1-\lambda)(y-a) = \frac{1}{2}(x-a) + \frac{1}{2}(y-a) = \frac{1}{2}x + (1-\frac{1}{2})y - a \in A'$$
.

Or. By (I),
$$2 \times \left[\frac{1}{2}(x-a) + \frac{1}{2}(y-a)\right] = (x-a) + (y-a) \in A'$$
.

Thus A' is a subsp of V. Hence $a + A' = \{(x - a) + a : x \in A\} = A$ is a translate.

OR. Suppose $x - a, y - a \in A', \lambda \in F$.

Note that $x, a \in A \Rightarrow \lambda x + (1 - \lambda)a = 2x - a \in A$. Similarly $2y - a \in A$.

(I)
$$\left(x - \frac{1}{2}a\right) + \left(y - \frac{1}{2}a\right) = x + y - a \in A \Rightarrow x + y - 2a = \left(x - a\right) + \left(y - a\right) \in A'$$
.

(II)
$$\lambda(x-a) = (\lambda x + (1-\lambda)a) - a \in A'$$
.

Thus -x + A is a subsp of V. Hence A = x + (-x + A) is a translate of the subsp (-x + A).

9 Suppose $A_1 = v + U_1$ and $A_2 = w + U_2$ for some $v, w \in V$ and some subsps U_1, U_2 of V. Prove that the intersection $A_1 \cap A_2$ is either a translate of some subsp of V or is \emptyset .

SOLUTION:

Suppose $v + u_1, w + u_2 \in A_1 \cap A_2 \neq \emptyset$. By Problem (8),

$$\forall \lambda \in \mathbf{F}, \lambda(v + u_1) + (1 - \lambda)(w + u_2) \in A_1 \cap A_2$$
. Thus $A_1 \cap A_2$ is a translate of some subsp of V . \square

Or. Let $A_1 = v + U_1, A_2 = w + U_2$. Suppose $x \in (v + U_1) \cap (w + U_2) \neq \emptyset$.

Then $\exists u_1 \in U_1, x = v + u_1 \Rightarrow x - v \in U_1, \ \exists u_2 \in U_2, x = w + u_2 \Rightarrow x - w \in U_2.$

Note that by [3.85], $A_1 = v + U_1 = x + U_1$, $A_2 = w + U_2 = x + U_2$. We show that $A_1 \cap A_2 = x + (U_1 \cap U_2)$.

(a)
$$y \in A_1 \cap A_2 \Rightarrow \exists u_1 \in U_1, u_2 \in U_2, y = x + u_1 = x + u_2 \Rightarrow u_1 = u_2 \in U_1 \cap U_2 \Rightarrow y \in x + (U_1 \cap U_2).$$

(b)
$$y = x + u \in x + (U_1 \cap U_2) = (x + U_1) \cap (x + U_2) \Rightarrow y \in A_1 \cap A_2.$$

10 Prove that the intersection of any collection of translates of subsps of V is either a translate of some subsp or \emptyset .

SOLUTION:

Suppose $\{A_{\alpha}\}_{\alpha\in\Gamma}$ is a collection of translates of subsps of *V*, where Γ is an arbitrary index set.

Suppose $x, y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \neq \emptyset$, then by Problem (8), $\forall \lambda \in F, \lambda x + (1 - \lambda)y \in A_{\alpha}$ for every $\alpha \in \Gamma$.

Thus $\bigcap_{\alpha \in \Gamma} A_{\alpha}$ is a translate of some subsp of V.

Or. Let $A_{\alpha} = w_{\alpha} + V_{\alpha}$ for each $\alpha \in \Gamma$. Suppose $x \in \bigcap_{\alpha \in \Gamma} (w_{\alpha} + V_{\alpha}) \neq \emptyset$.

Then for each A_{α} , $\exists v_{\alpha} \in V_{\alpha}$, $x = w_{\alpha} + v_{\alpha} \Rightarrow x - w_{\alpha} \in V_{\alpha} \Rightarrow A_{\alpha} = w_{\alpha} + V_{\alpha} = x + V_{\alpha}$.

(a)
$$y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \Rightarrow \forall \alpha \in \Gamma, \exists v_{\alpha}, y = x + v_{\alpha} \Rightarrow \forall \alpha, \beta \in \Gamma, v_{\alpha} = v_{\beta} \Rightarrow y \in x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$$
.

(b)
$$y = x + v \in x + \bigcap_{\alpha \in \Gamma} V_{\alpha} = \bigcap_{\alpha \in \Gamma} (x + V_{\alpha}) \Rightarrow y \in \bigcap_{\alpha \in \Gamma} A_{\alpha}$$
. Hence $\bigcap_{\alpha \in \Gamma} A_{\alpha} = x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$.

• Note For [3.79, 3.83]: If $U = \{0\}$, then $v + U = v + \{0\} = \{v\}$, $V/U = V/\{0\} = \{\{v\} : v \in V\}$.

- **11** Suppose $A = \{\lambda_1 v_1 + \dots + \lambda_m v_m : \sum_{i=1}^m \lambda_i = 1\}$, where each $v_i \in V, \lambda_i \in F$.
 - (a) Prove that A is a translate of some subsp of V
 - (b) Prove that if B is a translate of some subsp of V and $\{v_1, ..., v_m\} \subseteq B$, then $A \subseteq B$.
 - (c) Prove that A is a translate of some subsp of V of dim less than m.

SOLUTION:

(a) By Problem (8),
$$\forall u, w \in A, \lambda \in \mathbf{F}, \exists a_i, b_i \mathbf{F},$$

$$\lambda u + (1 - \lambda)w = \left(\lambda \sum_{i=1}^m a_i + (1 - \lambda) \sum_{i=1}^m b_i\right) v_i \in A.$$

(b) Suppose
$$B = v + U$$
, where $v \in V$ and U is a subsp of V . Suppose $\exists ! u_k \in U, v_k = v + u_k \in B$.
Then for all $v = \sum_{i=1}^m \lambda_i v_i \in A$, $v = \sum_{i=1}^m \lambda_i (v + u_i) = v + \sum_{i=1}^m \lambda_i u_i \in v + U = B$.

Or. Let $v = \lambda_1 v_1 + \dots + \lambda_m v_m \in A$. To show that $v \in B$, use induction on m by k.

(i)
$$k=1, v=\lambda_1v_1\Rightarrow \lambda_1=1$$
. $\not \subset v_1\in B$. Hence $v\in B$.
$$k=2, v=\lambda_1v_1+\lambda_2v_2\Rightarrow \lambda_2=1-\lambda_1. \not \subset v_1, v_2\in B. \text{ By Problem (8)}, v\in B.$$

(ii)
$$2 \le k \le m$$
, we assume that $v = \lambda_1 v_1 + \dots + \lambda_k v_k \in A \subseteq B$. $(\forall \lambda_i \text{ such that } \sum_{i=1}^k \lambda_i = 1)$

For $u = \mu_1 v_1 + \dots + \mu_k v_k + \mu_{k+1} v_{k+1} \in A$. $\forall i = 1, \dots, k, \exists \mu_i \neq 1$, fix one such i by i.

Then
$$\sum_{i=1}^{k+1} \mu_i - \mu_i = 1 - \mu_i \Rightarrow \left(\sum_{i=1}^{k+1} \frac{\mu_i}{1 - \mu_i}\right) - \frac{\mu_i}{1 - \mu_i} = 1.$$

Let
$$w = \underbrace{\frac{\mu_1}{1 - \mu_i} v_1 + \dots + \frac{\mu_{i-1}}{1 - \mu_i} v_{i-1} + \frac{\mu_{i+1}}{1 - \mu_i} v_{i+1} + \dots + \frac{\mu_{k+1}}{1 - \mu_i} v_{k+1}}_{k \ terms}.$$

Let
$$\lambda_i = \frac{\mu_i}{1 - \mu_i}$$
 for $i = 1, \dots, i - 1$; $\lambda_j = \frac{\mu_{j+1}}{1 - \mu_i}$ for $j = i, \dots, k$. Then,

$$\sum_{i=1}^{k} \lambda_i = 1 \Rightarrow w \in B$$

$$v_i \in B \Rightarrow u' = \lambda w + (1 - \lambda)v_i \in B$$
 \rightarrow Let \lambda = 1 - \mu_i. Thus $u' = u \in B \Rightarrow A \subseteq B$.

(c) If m = 1, then let $A = v_1 + \{0\}$ and we are done.

Choose one $k \in \{1, ..., m\}$. Given $\lambda_i \in \mathbb{F}$, where $i \in \{1, ..., k-1, k+1, ..., m\}$.

Let
$$\lambda_k = 1 - \lambda_1 - \dots - \lambda_{k-1} - \lambda_{k+1} - \dots - \lambda_m$$

Then
$$\lambda_1 v_1 + \dots + \lambda_k v_k + \dots + \lambda_m v_m = v_k + \sum_{i=1}^m \lambda_i (v_i - v_k)$$
.

Thus
$$A = v_k + \text{span}(v_1 - v_k, \dots, v_{k-1} - v_k, v_{k+1} - v_k, \dots, v_m - v_k).$$

18 Suppose $T \in \mathcal{L}(V, W)$ and U is a subsp of V. Let π denote the quotient map. Prove that $\exists S \in \mathcal{L}(V/U, W), T = S \circ \pi \iff U \subseteq \text{null } T$.

SOLUTION:

(a) Suppose $U \subseteq \text{null } T$. Define $S \in \mathcal{L}(V/U, W)$ by S(v + U) = Tv. Then $S \circ \pi = T$. Now we show that this map is *well-defined*.

$$v_1 + U = v_2 + U \Longleftrightarrow (v_1 - v_2) \in U \Longleftrightarrow S((v_1 - v_2) + U) = T(v_1 - v_2) = 0 \Longleftrightarrow Tv_1 = Tv_2.$$

(b) Suppose
$$\exists S, T = S \circ \pi$$
. Then $\forall u \in U, Tu = S \circ \pi(u) = S(0 + U) = 0 \Rightarrow U \subseteq \text{null } T$.

- **20** Define $\Gamma : \mathcal{L}(V/U, W) \to \mathcal{L}(V, W)$ by $\Gamma(S) = S \circ \pi$. Prove that:
 - (a) Γ *is linear*: By [3.9] distr and [3.6].

(b)
$$\Gamma$$
 is inje: $\Gamma(S) = 0 = S \circ \pi \iff \forall v \in V, S(\pi(v)) = 0 \iff \forall v + U \in V/U, S(v + U) = 0 \iff S = 0$.

(c) range
$$\Gamma = \{T \in \mathcal{L}(V, W) : U \subseteq \text{null } T\}$$
: By Problem (18).

```
For any W \in \mathcal{S}_V U, because V = U \oplus W, \forall v \in V, \exists ! u_v \in U, w_v \in W such that v = u_v + w_v.
  Define T \in \mathcal{L}(V, W) by T(v) = w_v. Hence null T = U, range T = W, range T \oplus \text{null } T = V.
  Then \tilde{T} \in \mathcal{L}(V/\text{null }T,W) is defined by \tilde{T}(v+U) = Tv = w_v.
  Now \pi \circ \tilde{T} = I_{V/U}, \tilde{T} \circ \pi = I_W = T|_W Hence \tilde{T} is an iso of V/U onto W.
• Comment: Note that v = u_v + w_v = (u_v - u') + (w'_v + u'), where w'_v \notin W \iff u' \neq 0.
  Define S \in \mathcal{L}(V/U, V) by S(v + U) = v. Hence null S = \{0\}, range S \in \mathcal{S}_V U, range S \oplus U = V.
  Let E = S \circ \pi. Now null E = \text{null } \pi = U. Because \pi is surj \mathbb{X} range (S \circ \pi) \subseteq \text{range } S. range E = \text{range } S.
  Then range E \oplus \text{null } E = V. Notice that E: V \to \text{range } S is a pure eraser. Now we explain why:
  EXAMPLE: Suppose B_V = (v_1, v_2, v_3), U = \text{span}(v_1). Then it is uniquely fixed that range S = \text{span}(v_2, v_3).
  While we might have range T = \text{span}(v_2 - 2v_1, v_3) = W, depending on the choice of W.
  Now E: v_2 \mapsto v_2; v_2 - 2v_1 \mapsto v_2. While T: v_2 \mapsto v_2 - 2v_1; v_2 - 2v_1 \mapsto v_2 - 2v_1.
12 Suppose U is a subsp of V such that V/U is finite-dim. Prove that is V is iso to U \times (V/U).
SOLUTION:
   Let (v_1 + U, ..., v_n + U) be a basis of V/U.
  Note that \forall v \in V, \exists ! a_i \in F, v + U = \sum_{i=1}^n a_i(v_i + U) = \left(\sum_{i=1}^n a_i v_i\right) + U
   \Rightarrow (v - a_1 v_1 - \dots - a_n v_n) \in U \Rightarrow \exists ! u \in U, v = \sum_{i=1}^n a_i v_i + u.
  Thus define \varphi \in \mathcal{L}(V, U \times (V/U)) by \varphi(v) = (u, v + U),
             and \psi \in \mathcal{L}(U \times (V/U), V) by \psi(u, v + U) = v + u, where \exists ! a_i \in F, v = \sum_{i=1}^n a_i v_i + U.
   OR. [V/U, U \text{ and } V \text{ can be infinite-dim}] Define S \in \mathcal{L}(V/U, V) by S(v + U) = v.
  By the Note For [3.88,3.90,3.91], range S \oplus U = V. Thus \forall v \in V, \exists ! u \in U, w \in \text{range } S, v = u + w.
  Define T \in \mathcal{L}(U \times (V/U), V) by T(u, v + U) = u + S(v + U) = u + w = v. Then T is surj.
  And T(u, v + U) = u + S(v + U) = 0 \Longrightarrow \pi(T(u, v + U)) = v + U = 0, and u = -S(v + U) = 0.
  Or. Define R \in \mathcal{L}(V, U \times (V/U)) by R(v) = (u, (w + U)). Now R \circ T = I_{U \times (V/U)}, T \circ R = I_V.
• (4E 3.E.14) Suppose V = U \oplus W, (w_1, ..., w_m) is a basis of W.
  Prove that (w_1 + U, ..., w_m + U) is a basis of V/U.
SOLUTION: \forall v \in V, \exists ! u \in U, w \in W, v = u + w. \ \exists ! c_i \in F, w = \sum_{i=1}^m c_i w_i \Rightarrow v = \sum_{i=1}^m c_i w_i + u.
               Hence \forall v + U \in V/U, \exists ! c_i \in \mathbb{F}, v + U = \sum_{i=1}^m c_i w_i + U.
                                                                                                                                    13 Suppose (v_1 + U, ..., v_m + U) is a basis of V/U and (u_1, ..., u_n) is a basis of U.
    Prove that (v_1, ..., v_m, u_1, ..., u_n) is a basis of V.
SOLUTION: Notice that (v_1, ..., v_m) is linely inde.
  By Problem (12), U and V/U are finite-dim \Longrightarrow U \times (V/U) is finite-dim, so is V.
  \dim V = \dim(U \times (V/U)) = m + n. \mathbb{Z} Each v_i = S(v_i + U), where we define S(v + U) = v.
  Note that \sum_{i=1}^{m} a_i v_i \in U \iff \left(\sum_{i=1}^{m} a_i v_i\right) + U = 0 + U \iff a_1 = \dots = a_m = 0.
  Hence span(v_1, ..., v_m) \cap U = \{0\} \Rightarrow \text{span}(v_1, ..., v_m) \oplus U = V. By (2.B.8), we are done.
                                                                                                                                    Or. Note that \forall v \in V, \exists ! a_i \in F, v + U = \sum_{i=1}^m a_i v_i + U \Rightarrow \exists ! b_i \in F, v - \sum_{i=1}^m a_i v_i = \sum_{i=1}^m b_i u_i \in U
                     \Rightarrow \forall v \in V, \exists ! a_i, b_j \in F, v = \sum_{i=1}^m a_i v_i + \sum_{j=1}^m b_j u_j.
```

• Note For [3.88, 3.90, 3.91]: Suppose $W \in \mathcal{S}_V U$. Then V/U and W are iso.

15 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F}) \setminus \{0\}$. Prove that dim $V/(\text{null }\varphi) = 1$. **SOLUTION:** By (3.B.29), $\exists u \in V, V = \text{null } \varphi \oplus \{au : a \in F\}$. By (4E 3.E.14), $(u + \text{null } \varphi)$ is a basis of $V/\text{null } \varphi$. Or. By [3.91] (d), dim range $\varphi = 1 = \dim V / (\operatorname{null} \varphi)$. **16** Suppose dim V/U=1. Prove that $\exists \varphi \in \mathcal{L}(V,\mathbf{F})$ such that null $\varphi=U$. **SOLUTION:** Suppose V_0 is a subsp of V such that $V = U \oplus V_0$. Then V_0 and V/U are iso. dim $V_0 = 1$. Define $\varphi \in \mathcal{L}(V, \mathbf{F})$ by $\varphi(v_0) = 1$, $\varphi(u) = 0$, where $v_0 \in V_0$, $u \in U$. Or. Let (w + U) be a basis of V/U. Then $\forall v \in V, \exists ! a \in F, v + U = aw + U$. Define $\varphi: V \to \mathbf{F}$ by $\varphi(v) = a$. Assume that φ is linear. Then $u \in U \iff u + U = 0w + U \iff \varphi(u) = 0 \iff u \in \text{null } \varphi$. Thus $U = \text{null } \varphi$. Now we prove the assumption. $\forall x, y \in V, \lambda \in \mathbf{F}, \exists ! a, b \in \mathbf{F}, x + U = aw + U, \lambda y + U = \lambda bw + U \Rightarrow (x + \lambda y) + U = (a + \lambda b)w + U.$ Then $\varphi(x + \lambda y) = a + \lambda b = \varphi(x) + \lambda \varphi(y)$. **17** Suppose V/U is finite-dim. W is a subsp of V. (a) Show that if V = U + W, then dim $W \ge \dim V/U$. (b) Find a W such that dim $W = \dim V/U$ and $V = U \oplus W$. **SOLUTION**: Let $(w_1, ..., w_n)$ be a basis of W(a) $\forall v \in V, \exists u \in U, w \in W \text{ such that } v = u + w \Rightarrow v + U = w + U$ And $\exists ! a_i \in F, v + U = (a_1 w_1 + \dots + a_n w_n) + U$. Then $V/U \subseteq \text{span}(w_1 + U, \dots, w_n + U)$. Hence dim $V/U = \dim \operatorname{span}(w_1 + U, \dots, w_n + U) \leq \dim W$. (b) Let $W \in \mathcal{S}_V U$. In other words, reduce $(w_1 + U, ..., w_n + U)$ to a basis $(w_1 + U, ..., w_m + U)$ of V/U and let $W = \text{span}(w_1, ..., w_m)$. Or. Let $(v_1 + U, \dots, v_m + U)$ be a basis of V/U and define $\tilde{T} \in \mathcal{L}(V/U, V)$ by $\tilde{T}(v_k + U) = v_k$. Note that $\pi \circ \tilde{T} = I$. By (3.B.20), \tilde{T} is inje. And (v_1, \dots, v_m) is linely inde. Let $W = \operatorname{range} \tilde{T} = \operatorname{span}(v_1, \dots, v_m)$. Then $\tilde{T} \in \mathcal{L}(V/U, W)$ is an iso. Thus dim $W = \dim V/U$. And $\forall v \in V, \exists ! a_i \in F, v + U = a_1v_1 + \dots + a_mv_m + U$ $\Rightarrow v - (a_1v_1 + \dots + a_mv_m) \in U \Rightarrow \exists ! w \in W, u \in U, v = w + u.$ ENDED

- **3.F**4 5 6 7 8 9 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 33 34 35 36 37 | 4E: 5, 6, 8, 17, 23, 24, 25
- **20, 21** Suppose U and W are subsets of V. Prove that $U \subseteq W \iff W^0 \subseteq U^0$.

SOLUTION:

- (a) Suppose $U \subseteq W$. Then $\forall \varphi \in W^0, u \in U \subseteq W, \varphi(w) = 0 \Rightarrow \varphi \in U^0$. Thus $W^0 \subseteq U^0$.
- (b) Suppose $W^0 \subseteq U^0$. Then $\varphi \in W^0 \Rightarrow \varphi \in U^0$. Hence $\text{null } \varphi \supseteq W \Rightarrow \text{null } \varphi \supseteq U$. Thus $W \supseteq U$.

OR. For a subsp U of V, let $A_U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\} = U$, by Problem (25). Suppose $W^0 \subseteq U^0$. Then $\forall \varphi \in W^0, v \in A_U, \varphi(v) = 0 \Rightarrow v \in A_W$. Thus $A_U \subseteq A_W$.

Corollary: $W^0 = U^0 \iff U = W$.

22 Suppose U and W are subsps of V . Prove that $(U+W)^0 = U^0 \cap W^0$. Solution: (a) $U \subseteq U+W \\ W \subseteq U+W$ $\Rightarrow (U+W)^0 \subseteq U^0 \\ (U+W)^0 \subseteq W^0$ $\Rightarrow (U+W)^0 \subseteq U^0 \cap W^0$.	
OR. Suppose $\varphi \in (U+W)^0$. Then $\forall u \in U, w \in W, \varphi(u) = \varphi(w) = 0 \Rightarrow \varphi \in U^0 \cap W^0$. (b) Suppose $\varphi \in U^0 \cap W^0 \subseteq V'$. Then $\forall u \in U, w \in W, \varphi(u+w) = 0 \Rightarrow \varphi \in (U+W)^0$.]
23 Suppose U and W are subsets of V. Prove that $(U \cap W)^0 = U^0 + W^0$.	
Solution: (a) $U \cap W \subseteq U \atop U \cap W \subseteq W$ $\Rightarrow (U \cap W)^0 \supseteq U^0 \atop (U \cap W)^0 \supseteq W^0$ $\Rightarrow (U \cap W)^0 \supseteq U^0 + W^0 \ [\supseteq U^0 \cap W^0 = (U + W)^0.\]$	
Or. Suppose $\varphi = \psi + \beta \in U^0 + W^0$. Then $\forall v \in U \cap W$, $\varphi(v) = (\psi + \beta)(v) = 0 \Rightarrow \varphi \in (U \cap W)^0$.	
(b) [Only in Finite-dim; Requires that U, W are subsps] Using Problem (22). $\dim(U^0 + W^0) = \dim U^0 + \dim W^0 - \dim(U^0 \cap W^0)$	
$= 2 \dim V - \dim U - \dim W - (\dim V - \dim(U + W)) = \dim V - \dim(U \cap W).$	
Or. Suppose $\varphi \in (U \cap W)^0$. Let X, Y be such that $V = U \oplus X = W \oplus Y$.	
Define $\psi \in U^0$, $\beta \in W^0$ by $\psi(u + x) = \frac{1}{2}\varphi(x)$, $\beta(w + y) = \frac{1}{2}\varphi(y)$.	
$\forall v = u + x = w + y \in V, \varphi(v) = \varphi(x) = \varphi(y). \text{ Now } \varphi(v) = \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(y) = \psi(v) + \beta(v).$ Hence $\varphi \in U^0 + W^0$. Now $(U \cap W)^0 \subseteq U^0 + W^0$.]
• COROLLARY:	
(a) Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsets of V . Then $\Big(\bigcap_{\alpha_i \in \Gamma} V_{\alpha_i}\Big)^0 = \sum_{\alpha_i \in \Gamma} (V_{\alpha_i}^0)$.	
(b) Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsps of V . Then $\Big(\sum_{\alpha_i \in \Gamma} V_{\alpha_i}\Big)^0 = \bigcap_{\alpha_i \in \Gamma} \Big(V_{\alpha_i}^0\Big)$.	
(c) Suppose $V=U\oplus W$. Then $V'=U^0\oplus W^0$. And $U'_V=W^0$, $W'_V=U^0$.	
Where $U_V' = \{ \varphi \in V' : \varphi = \varphi \circ \iota \}$. And $\iota \in \mathcal{L}(V, U)$ is defined by $\iota(u_v + w_v) = u_v$.	
• (4E 3.F.23) Suppose $\varphi_1, \ldots, \varphi_m \in V'$. Prove that the following sets are the same. (a) $\operatorname{span}(\varphi_1, \ldots, \varphi_m)$	
(b) $((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m))^0 \stackrel{(c)}{=} \{ \varphi \in V' : (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) \subseteq \operatorname{null} \varphi \}$	
SOLUTION: By Problem (17), (c) holds.	
By Problem (26) [May require finite-dim] and the COROLLARY in Problem (23), $ ((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m))^0 = (\operatorname{null} \varphi_1)^0 + \cdots + (\operatorname{null} \varphi_m)^0 \\ \operatorname{span}(\varphi_i) = \{v \in V : \forall \psi \in \operatorname{span}(\varphi_i), \psi(v) = 0\}^0 = (\operatorname{null} \varphi_i)^0 \} \Rightarrow (a) = (b). $]
OR. Note that by COROLLARY in Problem (4E 6), for each φ_i , we have $\forall c \in \mathbb{F} \setminus \{0\}, \psi = c\varphi_i \in \operatorname{span}(\varphi_i) \iff \operatorname{null} \psi = \operatorname{null} \varphi_i \iff \psi \in (\operatorname{null} \psi)^0 = (\operatorname{null} \varphi_i)^0$. And $0 \in \operatorname{span}(\varphi_i), 0 \in (\operatorname{null} \varphi_i)^0$. Hence $\operatorname{span}(\varphi_i) = (\operatorname{null} \varphi_i)^0$. Similarly.]
OR. [Only in Finite-dim] Suppose $\varphi \in V'$. Note that dim(null φ) ⁰ = dim range φ = dim span(φ). And because $\forall c \in F, v \in \text{null } \varphi, c\varphi(v) = 0 \Rightarrow \text{span}(\varphi) \subseteq (\text{null } \varphi)^0$. Similarly.]

COROLLARY: 30 Suppose V is finite-dim and $\varphi_1, \ldots, \varphi_m$ is a linely inde list in V'. Then $\dim \big((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) \big) = (\dim V) - m$.

31 Suppose V is finite-dim and $B_V = (\varphi_1, ..., \varphi_n)$. Show that the correspond $B_V = (\varphi_1, ..., \varphi_n)$. **SOLUTION:** Using (3.B.29). Let $\varphi_i(u_i) = 1$ and then $V = \text{null } \varphi_i \oplus \text{span}(u_i)$ for each φ_i . Suppose $a_1u_1 + \cdots + a_nu_n = 0$. Then $0 = \varphi_i(a_1u_1 + \cdots + a_nu_n) = a_i$ for each i. Thus $B_V = (\varphi_1, \dots, \varphi_n)$. And $\varphi_i(u_x) = \delta_{i,x}$. Or. For each $k \in \{1, ..., n\}$, define $\Gamma_k = \{1, ..., k-1, k+1, ..., n\}$ and $U_k = \bigcap_{j \in \Gamma_k} \operatorname{null} \varphi_j$. By Problem (30) OR (4E 2.C.16), dim $U_k = 1$. Thus $\exists u_k \in V, U_k = \operatorname{span}(u_k) \neq 0$. \mathbb{X} By Problem (30), (null φ_1) $\cap \cdots \cap$ (null φ_n) = $\{0\} = U \cap \text{null } \varphi_k$. Then if $\varphi_k(u_k) = 0 \Rightarrow u_k \in \text{null } \varphi_k \text{ while } u_k \in U \Rightarrow u_k \in \{0\}, \text{ contradicts.}$ Thus $\varphi_k(u_k) \neq 0$. Let $v_k = (\varphi_k(u_k))^{-1}u_k \Rightarrow \varphi_k(v_k) = 1$. Now for $j \neq k$, $u_k \in \text{null } \varphi_j \Rightarrow \varphi_j(v_k) = 0$. Similarly, suppose $a_1v_1 + \cdots + a_nv_n = 0 \Rightarrow a_1 = \cdots = a_n = 0$. $B_V = (v_1, \dots, v_n)$. And $\varphi_i(v_k) = \delta_{i,k}$. \square **25** Suppose U is a subsp of V. Explain why $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}$. **SOLUTION**: Note that $U = \{v \in V : v \in U\}$ is a subsp of V; And $v \in U \iff \varphi(v) = 0, \forall \varphi \in U^0$. COROLLARY: $U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}^0$. COMMENT: $\{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\} = ((\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m) \cap \cdots), \text{ where } \varphi_k \in U^0,$ always remains a subsp, whether the subset U is a subsp or not. **26** Suppose Ω is a subsp of V'. Prove that $\Omega = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. **SOLUTION:** Suppose $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}$, which is the set of vecs that each $\varphi \in \Omega$ sends to zero in common. Then $U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. $\chi U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}^0$. Immediately by the Corollary in Problem (20,21), we may conclude that $\Omega = U^0$. Or. [Requires Ω finite-dim] Let $(\varphi_1, \dots, \varphi_m)$ be a basis of Ω . Then by def, $U \subseteq (\text{null } \varphi_1) \cap \dots \cap (\text{null } \varphi_m)$. $\forall \varphi \in \Omega, \exists ! a_i \in F, \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m \Rightarrow \forall v \in (\text{null } \varphi_1) \cap \dots \cap (\text{null } \varphi_m), \varphi(v) = 0 \Rightarrow v \in U.$ Hence $(\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) = U$. $\mathbb{Z} \operatorname{span}(\varphi_1, \dots, \varphi_m) = \Omega$. By Problem (23), we are done. **Corollary:** For every subsp Ω of V', \exists ! subsp U of V such that $\Omega = U^0$. **COMMENT**: [Only in Finite-dim] Using Problem (31) and the COROLLARY(c) in Problem (22, 23). Let $B_{\Omega} = (\varphi_1, ..., \varphi_m), B_{V'} = (\varphi_1, ..., \varphi_m, ..., \varphi_n), B_{V} = (v_1, ..., v_m, ..., v_n).$ $V' = \operatorname{span}(\varphi_1, \dots, \varphi_m) \oplus \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) \stackrel{\text{(I)}}{=\!\!\!=} \operatorname{span}(v_{m+1}, \dots, v_n)^0 \oplus \operatorname{span}(v_1, \dots, v_m)^0.$ $\Omega = \operatorname{span}(\varphi_1, \dots, \varphi_m) \stackrel{\text{(II)}}{=} \operatorname{span}(v_{m+1}, \dots, v_n)^0 = U^0; \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) \stackrel{\text{(III)}}{=} \operatorname{span}(v_1, \dots, v_m)^0.$ \iff $U = \operatorname{span}(v_{m+1}, \dots, v_n) = (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m)$. [Another proof of [3.106] Or. Problem (24)] (I) Using the COROLLARY(c), immediately. $\text{(II) Notice that each null } \varphi_k = \operatorname{span} \left(v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_n \right) = U_k; \ \dim U_k = \dim V - 1.$ By (4E 2.C.16), $U = (\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m) = \bigcap_{k=1}^m U_k = \text{span}(v_{m+1}, \dots, v_n).$ Hence span $(v_{m+1}, \dots, v_n)^0 = U^0 = \Omega = \text{span}(\varphi_1, \dots, \varphi_m)$. (III) NOTICE that $V' = \Omega \oplus \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) = U^0 \oplus \operatorname{span}(v_1, \dots, v_m)^0$. And that span($\varphi_{m+1}, \dots, \varphi_n$) \subseteq span(v_1, \dots, v_m)⁰. By the TIPS in (1.C), $\operatorname{span}(\varphi_{m+1},\ldots,\varphi_n)=\operatorname{span}(v_1,\ldots,v_m).$ OR. Similar to (II), let $\Omega = \text{span}(\varphi_{m+1}, \dots, \varphi_n)$, immediately.

```
• Suppose T \in \mathcal{L}(V, W), \varphi_k \in V', \psi_k \in W'.
28 Prove that \operatorname{null} T' = \operatorname{span}(\psi_1, \dots, \psi_m) \iff \operatorname{range} T = (\operatorname{null} \psi_1) \cap \dots \cap (\operatorname{null} \psi_m).
29 Prove that range T' = \operatorname{span}(\varphi_1, \dots, \varphi_m) \iff \operatorname{null} T = (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m).
SOLUTION: Using [3.107], [3.109], Problem (23) and the COROLLARY in Problem (20, 21).
    (28) (range T)^0 = \operatorname{null} T' = \operatorname{span}(\psi_1, \dots, \psi_m) = ((\operatorname{null} \psi_1) \cap \dots \cap (\operatorname{null} \psi_m))^0.
    (29) (\operatorname{null} T)^0 = \operatorname{range} T' = \operatorname{span}(\varphi_1, \dots, \varphi_m) = ((\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m))^0.
                                                                                                                                                                                  COROLLARY: Using the COMMENT in Problem (26).
    \operatorname{null} T = \operatorname{span}(v_1, \dots, v_m) \iff \operatorname{null} T = (\operatorname{null} \varphi_{m+1}) \cap \dots \cap (\operatorname{null} \varphi_n) \iff \operatorname{range} T' = \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n).
          -Where B_V = (v_1, \dots, v_m, \dots, v_n) \iff B_{V'} = (\varphi_1, \dots, \varphi_m, \dots, \varphi_n).
    range T = \operatorname{span}(w_1, \dots, w_m) \iff \operatorname{range} T = (\operatorname{null} \psi_{m+1}) \cap \dots \cap (\operatorname{null} \psi_n) \iff \operatorname{null} T' = \operatorname{span}(\psi_{m+1}, \dots, \psi_n).
            Where B_W = (w_1, \dots, w_m, \dots, w_n) \iff B_{W_i} = (\psi_1, \dots, \psi_m, \dots, \psi_n).
9 Let B_V = (v_1, \dots, v_n), B_{V_i} = (\varphi_1, \dots, \varphi_n). Then \forall \psi \in V', \psi = \psi(v_1)\varphi_1 + \dots + \psi(v_n)\varphi_n.
    COROLLARY: For other B'_V = (u_1, \dots, u_n), B'_{V'} = (\rho_1, \dots, \rho_n), \forall \psi \in V', \psi = \psi(u_1)\rho_1 + \dots + \psi(u_n)\rho_n.
SOLUTION:
    \psi(v) = \psi\left(\sum_{i=1}^{n} a_{i} v_{i}\right) = \sum_{i=1}^{n} a_{i} \psi(v_{i}) = \sum_{i=1}^{n} \psi(v_{i}) \varphi_{i}(v) = \left[\psi(v_{1}) \varphi_{1} + \dots + \psi(v_{n}) \varphi_{n}\right](v).
    Or. \left[\psi(v_1)\varphi_1 + \dots + \psi(v_n)\varphi_n\right]\left(\sum_{i=1}^n a_i v_i\right) = \psi(v_1)\varphi_1\left(\sum_{i=1}^n a_i v_i\right) + \dots + \psi(v_n)\varphi_n\left(\sum_{i=1}^n a_i v_i\right).
13 Define T: \mathbb{R}^3 \to \mathbb{R}^2 by T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z).
      Let (\varphi_1, \varphi_2), (\psi_1, \psi_2, \psi_3) denote the dual basis of the standard basis of \mathbb{R}^2 and \mathbb{R}^3.
      (a) Describe the linear functionals T'(\varphi_1), T'(\varphi_2) \in \mathcal{L}(\mathbf{R}^3, \mathbf{R})
             For any (x, y, z) \in \mathbb{R}^3, (T'(\varphi_1))(x, y, z) = 4x + 5y + 6z, (T'(\varphi_2))(x, y, z) = 7x + 8y + 9z.
      (b) Write T'(\varphi_1) and T'(\varphi_2) as linear combinations of \psi_1, \psi_2, \psi_3.
             T'(\varphi_1) = 4\psi_1 + 5\psi_2 + 6\psi_3, \ T'(\varphi_2) = 7\psi_1 + 8\psi_2 + 9\psi_3.
      (c) What is null T'? What is range T'?
            T(x,y,z) = 0 \Longleftrightarrow \begin{cases} 4x + 5y + 6z = 0 \\ 7x + 8y + 9z = 0 \end{cases} \Longleftrightarrow \begin{cases} x + y + z = 0 \\ y = 2z = 0 \end{cases} \Longleftrightarrow (x,y,z) \in \operatorname{span}(e_1 - 2e_2 + e_3).
            Where (e_1, e_2, e_3) is standard basis of \mathbb{R}^3.
            Let (e_1 - 2e_2 + e_3, -2e_2, e_3) be a basis, with the correspd dual basis (\varepsilon_1, \varepsilon_2, \varepsilon_3).
            Thus span(e_1 - 2e_2 + e_3) = \text{null } T \Rightarrow \text{span}(e_1 - 2e_2 + e_3)^0 = \text{span}(\varepsilon_2, \varepsilon_3) = \text{range } T'.
            Note that \varepsilon_k = \varepsilon_k(e_1)\psi_1 + \varepsilon_k(e_2)\psi_2 + \varepsilon_k(e_3)\psi_3.
            And \begin{vmatrix} \varepsilon_2(e_2) = -\frac{1}{2}, \varepsilon_2(e_1) = \varepsilon_2(e_1 - 2e_2 + e_3) + \varepsilon_2(2e_2) - \varepsilon_2(e_3) = 1, \\ \varepsilon_3(e_2) = 0, \varepsilon_3(e_3) = \varepsilon_3(e_1 - 2e_2 + e_3) + \varepsilon_3(2e_2) - \varepsilon_3(e_3) = -1. \end{vmatrix}
            Hence \varepsilon_2 = \psi_1 - \frac{1}{2}\psi_2, \varepsilon_3 = -\psi_1 + \psi_3. Now range T' = \text{span}(\psi_1 - \frac{1}{2}\psi_2, -\psi_1 + \psi_3).
            OR. range T' = \text{span}(T'(\varphi_1), T'(\varphi_2)) = \text{span}(4\psi_1 + 5\psi_2 + 6\psi_3, 7\psi_1 + 8\psi_2 + 9\psi_3).
            Suppose T'(x\varphi_1 + y\varphi_2) = (4x + 7y)\varphi_1 + (5x + 8y)\varphi_2 + (6x + 9y)\varphi_3 = 0.
            Then x + y = 4x + 7y = x = y = 0. Hence null T' = \{0\}.
            Or. null T = \operatorname{span}(e_1 - 2e_2 + e_3) \Rightarrow V = \operatorname{span}(-2e_2, e_3) \oplus \operatorname{null} T.
            \Rightarrow range T = \{Tx : x \in \text{span}(-2e_2, e_3)\} = \text{span}(T(-2e_2), T(e_3))
             = span(-10f_1 - 16f_2, 6f_1 + 9f_2) = span(f_1, f_2) = \mathbb{R}^2. Now null T' = (\text{range } T)^0 = \{0\}.
```

24 Suppose V is finite-dim and U is a subsp of V . Prove, using the pattern of $[3.104]$, that dim U + dim U^0 = dim V .	
Solution: By Problem (31) and the Comment in Problem (26), $B_U = (v_1,, v_m) \iff B_{U^0} = (\varphi_{m+1},, \varphi_n)$.	
37 Suppose U is a subsp of V and π is the quotient map. Thus $\pi' \in \mathcal{L}((V/U)', V')$. (a) Show that π' is inje: Because π is surj. Use [3.108]. (b) Show that range $\pi' = U^0$: By [3.109](b), range $\pi' = (\text{null } \pi)^0 = U^0$. (c) Conclude that π' is an iso from $(V/U)'$ onto U^0 : Immediately. Solution: Or. Using (3.E.18), also see (3.E.20). (a) $\pi'(\varphi) = 0 \iff \forall v \in V \ (\forall v + U \in V), \varphi(\pi(v)) = \varphi(v + U) = 0 \iff \varphi = 0$.	
(b) $\psi \in \operatorname{range} \pi' \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi \iff \operatorname{null} \psi \supseteq U \iff \psi \in U^0$. Hence $\operatorname{range} \pi' = U^0$. 🗆
• Suppose U is a subsp of V . Prove that $(V/U)'$ and U^0 are iso. [Another proof of [3.106 SOLUTION: Define $\xi: U^0 \to (V/U)'$ by $\xi(\varphi) = \widetilde{\varphi}$, where $\widetilde{\varphi} \in (V/U)'$ is defined by $\widetilde{\varphi}(v+U) = \varphi(v)$. We show that ξ is inje and surj. Inje: $\xi(\varphi) = 0 = \widetilde{\varphi} \Rightarrow \forall v \in V \ (\forall v + U \in V/U), \widetilde{\varphi}(v+U) = \varphi(v) = 0 \Rightarrow \varphi = 0$. Surj: $\Phi \in (V/U)' \Rightarrow \forall u \in U, \Phi(u+U) = \Phi(0+U) = 0 \Rightarrow U \subseteq \text{null} \ (\Phi \circ \pi) \Rightarrow \xi(\Phi \circ \pi) = \Phi$.	6]]
OR. Define $\nu: (V/U)' \to U^0$ by $\nu(\Phi) = \Phi \circ \pi$. Now $\nu \circ \xi = I_{U^0}$, $\xi \circ \nu = I_{(V/U)'} \Rightarrow \xi = \nu^{-1}$.	
4 Suppose U is a subsp of V and $U \neq V$. Prove that $\exists \varphi \in V' \setminus \{0\}, \varphi(u) = 0$ for all $u \in SOLUTION$: $\Leftrightarrow U_V^0 \neq \{0\}$. Let X be such that $V = U \oplus X$. Then $X \neq \{0\}$. Suppose $s \in X$ and $x \neq 0$. Let Y be such that $X = \operatorname{span}(s) \oplus Y$. Now $V = U \oplus (\operatorname{span}(s) \oplus Y)$.	<u>U.</u>
Define $\varphi \in V'$ by $\varphi(u + \lambda s + y) = \lambda$. Hence $\varphi \neq 0$ and $\varphi(u) = 0$ for all $u \in U$. OR. [Requires that V is finite-dim] By [3.106], dim $U^0 = \dim V - \dim U > 0$. Then $U^0 \neq \{0\}$. OR. Let $B_V = (\underbrace{u_1, \dots, u_m}_{B_U}, v_1, \dots, v_n)$ with $n \geqslant 1$. Let $B_{V'} = (\psi_1, \dots, \psi_m, \varphi_1, \dots, \varphi_n)$. Let $\varphi = \varphi_i$.	
Or. Define $\varphi \in V'$ by $\varphi(u_1) = \cdots = \varphi(u_m) = 0$ and $\varphi(v_1) = \cdots = \varphi(v_n) = 1$.	
COMMENT: [Another proof of [3.108]]: T is surj \iff T' is inje. (a) Suppose T' is inje. Note that $T'(\psi) = 0 \Rightarrow \psi = 0$. Then $\nexists \psi \in W' \setminus \{0\}, (T'(\psi))(v) = \psi(Tv) = 0$ for all $w \in \operatorname{range} T \ (\forall v \in V)$. Thus if we assume that range $T \neq W$ then contradicts. Hence range $T = W$. (b) Suppose T is surj. Then $(\operatorname{range} T)^0 = W_W^0 = \{0\} = \operatorname{null} T'$.	
• Suppose V is a vecsp and U is a subsp of V . 17 $U^0 = \{ \varphi \in V' : U \subseteq null \varphi \}$. Noticing $\varphi \in V'$, $U \subseteq null \varphi \iff \forall u \in U, \varphi(u) = 0$. 18 $U^0 = V' \iff \forall \varphi \in V', U \subseteq null \varphi \iff U = \{0\}$. [Which means $\{0\}_V^0 = V'$.] Or. $U^0 = V' \iff \dim U^0 = \dim V' = \dim V \iff \dim U = 0 \iff U = \{0\}$.	

19 $U_V^0 = \{0\} = V_V^0 \iff U = V$. By the inverse and contrapositive of Problem (4). Or. By [3.106].

• Suppose $V = U \oplus W$. Define $\iota : V \to U$ by $\iota(u+w) = u$. Thus $\iota' \in \mathcal{L}(U',V')$. (a) Show that $\operatorname{null} \iota' = U_U^0 = \{0\}$: $\operatorname{null} \iota' = (\operatorname{range} \iota)_U^0 = U_U^0 = \{0\}$. (b) Prove that $\operatorname{range} \iota' = W_V^0$: $\operatorname{range} \iota' = (\operatorname{null} \iota)_V^0 = W_V^0$. (c) Prove that $\widetilde{\iota}'$ is an iso from $U'/\{0\}$ onto W^0 : By (a), (b) and [3.91](d). Solution: (a) $\iota'(\psi) = \psi \circ \iota = 0 \Leftrightarrow U \subseteq \operatorname{null} \psi$. (b) Note that $W = \operatorname{null} (\iota) \subseteq \operatorname{null} (\psi \circ \iota)$. Then $\psi \circ \iota \in W^0 \Rightarrow \operatorname{range} \iota' \in W^0$. Suppose $\varphi \in W^0$. Because $\operatorname{null} \iota = W \subseteq \operatorname{null} \varphi$. By Tips in (3.B), $\varphi = \varphi \circ \iota = \iota'(\varphi)$.	
36 Suppose U is a subsp of V . Define $i:U \to V$ by $i(u) = u$. Thus $i' \in \mathcal{L}(V', U')$. (a) Show that $\operatorname{null} i' = U^0$: $\operatorname{null} i' = (\operatorname{range} i)^0 = U^0 \leftarrow \operatorname{range} i = U$. (b) Prove that $\operatorname{range} i' = U'$: $\operatorname{range} i' = (\operatorname{null} i)^0_U = \{0\}^0_U = U'$. (c) Prove that $\widetilde{i'}$ is an iso from V'/U^0 onto U' : By (a), (b) and [3.91](d). Solution:	
(a) $\forall \varphi \in V', i'(\varphi) = \varphi \circ i = \varphi _U$. Thus $i'(\varphi) = 0 \iff \forall u \in U, \varphi(u) = 0 \iff \varphi \in U^0$. (b) Suppose $\psi \in U'$. By (3.A.11), $\exists \varphi \in V', \varphi _U = \psi$. Then $i'(\varphi) = \psi$.	
• Suppose $T \in \mathcal{L}(V,W)$. Prove that range $T' = (\operatorname{null} T)^0$. [Another proof of [3.109] Solution: Suppose $\Phi \in (\operatorname{null} T)^0$. Because by $(3.B.12)$, $T _U : U \to \operatorname{range} T$ is an iso; $V = U \oplus \operatorname{null} T$. And $\forall v \in V, \exists ! u_v \in U, w_v \in \operatorname{null} T, v = u_v + w_v$. Define $\iota \in \mathcal{L}(V,U)$ by $\iota(v) = u_v$. Let $\psi = \Phi \circ (T _{\operatorname{range} T}^{-1})$. Then $T'(\psi) = \psi \circ T = \Phi \circ (T^{-1} _{\operatorname{range} T} \circ T _V)$. Where $T^{-1} _{\operatorname{range} T} : \operatorname{range} T \to U$; $T : V \to \operatorname{range} T$. Note that $T^{-1} _{\operatorname{range} T} \circ T _V = \iota$. By Tips in $(3.B)$, $\Phi = \Phi \circ \iota$. Thus $T'(\psi) = \psi \circ T = \Phi \circ \iota = \Phi$. • Suppose $T \in \mathcal{L}(V,W)$. Using [3.108], [3.110]. Now T is $\operatorname{inv} \iff \operatorname{null} T = \{0\} \iff (\operatorname{null} T)^0 = V' = \operatorname{range} T' _{\operatorname{range} T} \Leftrightarrow T'$ is inv .	[b)]
15 Suppose $T \in \mathcal{L}(V, W)$. Prove that $T' = 0 \Longleftrightarrow T = 0$. Solution: Suppose $T = 0$. Then $\forall \varphi \in W', T'(\varphi) = \varphi \circ T = 0$. Hence $T' = 0$. Suppose $T' = 0$. Then null $T' = W' = (\operatorname{range} T)^0$, by $[3.107](a)$. [W can be infinite-dim] By Problem (25), range $T = \{w \in W : \varphi(w) = 0, \forall \varphi \in (\operatorname{range} T)^0\} = \{w \in W : \varphi(w) = 0, \forall \varphi \in W'\}$. Now we prove that if $\forall \varphi \in W', \varphi(w) = 0$, then $w = 0$. So that range $T = \{0\}$ and we are done. Assume that $w \neq 0$. Then let U be such that $W = U \oplus \operatorname{span}(w)$. Define $\psi \in W'$ by $\psi(u + \lambda w) = \lambda$. So that $\psi(w) = 1 \neq 0$. Or. [Only if W is finite-dim] By $[3.106]$, dim range $T = \dim W - \dim(\operatorname{range} T)^0 = 0$.	
12 Notice that $I_{V'}: V' \to V'$. Now $\forall \varphi \in V', I_{V'}(\varphi) = \varphi = \varphi \circ I_{V} = I_{V'}(\varphi)$. Thus $I_{V'} = I_{V'}(\varphi)$.	I_V' .

```
16 Suppose V, W are finite-dim. Define \Gamma by \Gamma(T) = T' for any T \in \mathcal{L}(V, W).
      Prove that \Gamma is an iso of \mathcal{L}(V, W) onto \mathcal{L}(W', V').
SOLUTION: By [3.101], \Gamma is linear.
    Suppose \Gamma(T) = T' = 0. By Problem (15), T = 0. Thus \Gamma is inje.
    Because V, W are finite-dim. dim \mathcal{L}(V,W) = \dim \mathcal{L}(W',V'). Now Γ inje \Rightarrow inv.
                                                                                                                                                                           COMMENT: Let X = \{T \in \mathcal{L}(V, W) : \text{range } T \text{ is finite-dim} \}.
                   Let Y = \{ \mathcal{T} \in \mathcal{L}(W', V') : \text{range } \mathcal{T} \text{ is finite-dim} \}.
                   Then \Gamma|_X is an iso of X onto Y, even if V and W are infinite-dim.
    The inje of \Gamma|_X is equiv to the inje of \Gamma, as shown before.
    Now we show that \Gamma|_X is surj without the cond that V or W is finite-dim.
   Suppose \mathcal{T} \in Y. Let B_{\text{range }\mathcal{T}} = (\varphi_1, \dots, \varphi_m), with the correspond (v_1, \dots, v_m). Let \varphi_k = \mathcal{T}(\psi_k).
   Let \mathcal{K} be such that W' = \mathcal{K} \oplus \text{null } \mathcal{T}. Let B_{\mathcal{K}} = (\psi_1, \dots, \psi_m), with the correspond (w_1, \dots, w_m).
   Define T \in \mathcal{L}(V, W) by Tv_k = w_k, Tu = 0; k \in \{1, ..., m\}, u \in U.
    \forall \psi \in \operatorname{null} \mathcal{T}, \left[ T'(\psi) \right](v) = \psi(Tv) = \psi(a_1 w_1 + \dots + a_n w_n) = 0 = \left[ \mathcal{T}(\psi) \right](v).
    \forall k \in \{1, \dots, m\}, \lceil T'(\psi_k) \rceil(v) = \psi_k(Tv) = \psi_k(a_1w_1 + \dots + a_mw_m) = a_k = \varphi_k(v) = \lceil \mathcal{T}(\psi) \rceil(v).
                                                                                                                                                                           COMMENT: This is another proof of [3.109(a)]: dim range T = \dim \operatorname{range} T'.
• (4E 3.F.6) Suppose \varphi, \beta \in V'. Prove that \text{null } \varphi \subseteq \text{null } \beta \Longleftrightarrow \beta = c\varphi, \exists c \in \mathbf{F}.
  COROLLARY: null \varphi = \text{null } \beta \iff \beta = c\varphi, \exists c \in F \setminus \{0\}.
SOLUTION:
    Using (3.B.29, 30).
    (a) Suppose \operatorname{null} \varphi \subseteq \operatorname{null} \beta. Suppose u \notin \operatorname{null} \beta, then u \notin \operatorname{null} \varphi.
          Now V = \text{null } \beta \oplus \text{span}(u) = \text{null } \varphi \oplus \text{span}(u). By TIPS in (1.C), \text{null } \beta = \text{null } \varphi. Let c = \frac{\beta(u)}{\varphi(u)}.
          OR. We discuss in two cases. If \operatorname{null} \varphi = \operatorname{null} \beta, then we are done.
          Otherwise, \operatorname{null} \beta \neq \operatorname{null} \varphi. Then \exists u' \in \operatorname{null} \beta \setminus \operatorname{null} \varphi.
          Now V = \text{null } \varphi \oplus \text{span}(u') = \text{null } \varphi \oplus \text{span}(u). \forall v \in V, v = w + au = w' + bu', \exists ! w, w' \in \text{null } \varphi.
          Thus \beta(v) = a\beta(u), \varphi(v) = b\varphi(u'). Let c = \frac{a\beta(u)}{b\varphi(u')}. We are done.
          Notice that by (b) below, we have null \beta \subseteq \text{null } \varphi, u = u'. Thus contradicts the assumption.
    (b) Suppose \beta = c\varphi for some c \in F. If c = 0, then null \beta = V \supseteq \text{null } \varphi, we are done.
          Otherwise,  \begin{cases} \forall v \in \operatorname{null} \varphi, \varphi(v) = 0 = \beta(v) \Rightarrow \operatorname{null} \varphi \subseteq \operatorname{null} \beta \\ \forall v \in \operatorname{null} \beta, \beta(v) = 0 = \varphi(v) \Rightarrow \operatorname{null} \beta \subseteq \operatorname{null} \varphi \end{cases} \Rightarrow \operatorname{null} \varphi = \operatorname{null} \beta. 
                                                                                                                                                                           OR. By (3.B.24), null \varphi \subseteq \text{null } \beta \iff \exists E \in \mathcal{L}(\mathbf{F}), \beta = E \circ \varphi. ( if E is inv, then null \varphi = \text{null } \beta)
    Now we show that [P] \exists E \in \mathcal{L}(F), \beta = E \circ \varphi \iff \exists c \in F, \beta = c\varphi. [Q].
   [P] \Rightarrow [Q]: Let c = E(1). Then \forall v \in V, \beta(v) = E(\varphi(v)) = \varphi(v)E(1) = c\varphi(v). (E(1) \neq 0)
    [Q] \Rightarrow [P]: Define E \in \mathcal{L}(\mathbf{F}) by E(x) = cx. Then \forall v \in V, \beta(v) = c\varphi(v) = E(\varphi(v)). (c \neq 0)
                                                                                                                                                                           5 Prove that (V_1 \times \cdots \times V_m)' and V'_1 \times \cdots \times V'_m are iso.
                                                                                                                             [Using notations in (3.E.2).]
  Define \varphi: (V_1 \times \cdots \times V_m)' \to V'_1 \times \cdots \times V'_m
          by \varphi(T) = (T \circ R_1, ..., T \circ R_m) = (R'_1(T), ..., R'_m(T)).
  Define \psi: V'_1 \times \cdots \times V'_m \to (V_1 \times \cdots \times V_m)'
          by \psi(T_1, \dots, T_m) = T_1 S_1 + \dots + T_m S_m = S'_1(T_1) + \dots + S'_m(T_m)
```

SOLUTION: $[P] \Rightarrow [Q]$: Notice that φ is inje and by (3.B.9). Or. Suppose $\theta \in \text{span}(\varphi(v_1), \dots, \varphi(v_m))$. Let $\theta = 0 = a_1 \varphi(v_1) + \dots + a_m \varphi(v_m)$. Then $\vartheta(1) = 0 = a_1 v_1 + \dots + a_m v_m \Rightarrow a_1 = \dots = a_m = 0.$ $[Q] \Rightarrow [P]$: Suppose $v \in \text{span}(v_1, \dots, v_m)$. Let $v = 0 = a_1v_1 + \dots + a_mv_m$. Then $\varphi(v) = 0 = a_1 \varphi(v_1) + \dots + a_m \varphi(v_m) \Rightarrow a_1 = \dots = a_m = 0.$ **32** Let $B_{\alpha} = (\alpha_1, ..., \alpha_m), B_{\alpha}' = (\varphi_1, ..., \varphi_m), B_{\beta} = (v_1, ..., v_m), B_{\beta}' = (\psi_1, ..., \psi_m).$ Prove that $\forall T \in \mathcal{L}(V)$, T is inv \iff the rows of $A = \mathcal{M}(T, B_{\alpha}, B_{\beta})$ form a basis of $\mathbf{F}^{1,n}$. **SOLUTION**: Note that T is invertible \iff T' is inv. And $A^t = \mathcal{M}(T', B_{\beta'}, B_{\alpha'})$. (a) Suppose T is inv, so is T'. Because $(T'(\varphi_1), ..., T'(\varphi_m))$ is linely inde. Notice that $T'(\varphi_i) = A_{1,i}^t \psi_1 + \dots + A_{m,i}^t \psi_m$. By the (Δ) part in (4E 3.C.17), the cols of A^t , namely the rows of A, are linely inde. (b) Suppose the rows of A are linely inde, so are the cols of A^t . NOTICE that A^t has dim V' cols. Then $B_{\text{range }T'} = B_{V'} = (T'(\varphi_1), \dots, T'(\varphi_m))$. Thus T' is surj. Hence T' is inv, so is T. **33** Suppose $A \in \mathbb{F}^{m,n}$. Define $T: A \to A^t$. Prove that T is an iso of $\mathbb{F}^{m,n}$ onto $\mathbb{F}^{n,m}$ **SOLUTION:** By [3.111], T is linear. Note that $(A^t)^t = A$, $T \circ T = I$. • Define $T \in \mathcal{L}(\mathbf{F}^{1,n})$ by Tx = xA, where $A \in \mathbf{F}^{n,n}$, for all $x \in \mathbf{F}^{1,n}$. Let $B_e = (e_1, \dots, e_n)$ be the standard basis of $\mathbb{F}^{1,n}$, with the dual basis $B_{\varphi} = (\varphi_1, \dots, \varphi_n)$. What is $\mathcal{M}(T)$? Because $Te_k = e_k A = \sum_{j=1}^n A_{k,j} e_j = \sum_{j=1}^n A_{j,k}^t e_j$. Now $\mathcal{M}(T) = A^t$. Note that $A = \mathcal{M}(A, B_e) \in \mathbf{F}^{n,n}$, $\mathcal{M}(Te_k) = \mathcal{M}(Te_k, B_e) \in \mathbf{F}^{n,1}$, $\mathcal{M}(e_k) = \mathcal{M}(e_k, B_e) \in \mathbf{F}^{n,1}, \ \mathcal{M}(e_k A) = \mathcal{M}(e_k A, B_e) \in \mathbf{F}^{n,1}.$ Now $\mathcal{M}(Te_k) = \mathcal{M}(T)_{\cdot,k} = \mathcal{M}(e_k A) = A^t_{\cdot,k} \Longrightarrow \mathcal{M}(T)\mathcal{M}(e_k) = \mathcal{M}(T)_{\cdot,k} = \mathcal{M}(e_k)\mathcal{M}(A).$ Then $\mathcal{M}(e_k)\mathcal{M}(A)$ does not make sense. And now??? FIXME: BASIS NOT AGREED • (4E 3.F.8) Suppose $B_V = (v_1, ..., v_n), B_{V_I} = (\varphi_1, ..., \varphi_n).$ $\begin{array}{l} \textit{Define } \Gamma: V \to \mathbf{F}^n \; \textit{by } \Gamma(v) = (\varphi_1(v), \ldots, \varphi_n(v)). \\ \textit{Define } \Lambda: \mathbf{F}^n \to V \; \textit{by } \Lambda(a_1, \ldots, a_n) = a_1 v_1 + \cdots + a_n v_n. \end{array} \right\} \Rightarrow \Lambda = \Gamma^{-1}.$ • (4E 3.F.5) Suppose $T \in \mathcal{L}(V, W)$. $B_{\text{range } T} = (w_1, \dots, w_m)$. Hence $\forall v \in V$, $Tv = \varphi_1(v)w_1 + \cdots + \varphi_m(v)w_m$, $\exists ! \varphi_1(v), \ldots, \varphi_m(v)$, thus defining $\varphi_i: V \to \mathbf{F}$ for each $i \in \{1, ..., m\}$. Show that each $\varphi_i \in V'$. **SOLUTION:** $\forall u, v \in V, \lambda \in \mathbb{F}, T(u + \lambda v) = \sum_{i=1}^{m} \varphi_i(u + \lambda v) w_i$ $= Tu + \lambda Tv = \left(\sum_{i=1}^{m} \varphi_i(u)w_i\right) + \lambda \left(\sum_{i=1}^{m} \varphi_i(v)w_i\right) = \sum_{i=1}^{m} \left(\varphi_i(u) + \lambda \varphi_i(v)\right)w_i.$ OR. For each w_i , $\exists v_i \in V$, $Tv_i = w_i$, then $(v_1, ..., v_m)$ is linely inde. Now we have $Tv = a_1 Tv_1 + \dots + a_m Tv_m$, $\forall v \in V$, $\exists ! a_i \in F$. Let $B_{(\text{range } T)} = (\psi_1, \dots, \psi_m)$. Then $(T'(\psi_i))(v) = \psi_i \circ T(v) = a_i$. Where $T: V \to \text{range } T$; $T': (\text{range } T)' \to V'$. Thus for each $i \in \{1, ..., m\}$, $\varphi_i = \psi_i \circ T = T'(\psi_i) \in V'$.

• In (3.D.18), $\varphi: V \to \mathcal{L}(\mathbf{F}, V)$ is an iso. Now we prove that

 $[P](v_1,\ldots,v_m)$ is linely inde $\iff (\varphi(v_1),\ldots,\varphi(v_m))$ is linely inde. [Q]

- **6** Define $\Gamma: V' \to \mathbf{F}^m$ by $\Gamma(\varphi) = (\varphi(v_1), \dots, \varphi(v_m))$, where $v_1, \dots, v_m \in V$. (a) Show that span $(v_1, ..., v_m) = V \iff \Gamma$ is inje. (b) Show that $(v_1, ..., v_m)$ is linely inde $\iff \Gamma$ is surj. **SOLUTION:** (a) Notice that $\Gamma(\varphi) = 0 \iff \varphi(v_1) = \dots = \varphi(v_m) = 0 \iff \text{null } \varphi = \text{span}(v_1, \dots, v_m).$ If Γ is inje, then $\Gamma(\varphi) = 0 \iff V = \text{null } \varphi = \text{span}(v_1, \dots, v_m)$.
 - If $V = \operatorname{span}(v_1, \dots, v_m)$, then $\Gamma(\varphi) = 0 \iff \operatorname{null} \varphi = \operatorname{span}(v_1, \dots, v_m)$, thus Γ is inje.
 - (b) Suppose Γ is surj. Then let $\Gamma(\varphi_i) = e_i$ for each i, where $(e_1, ..., e_m)$ is the standard basis of \mathbf{F}^m . Then by (3.A.4), $(\varphi_1, \dots, \varphi_m)$ is linely inde. Now $a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow 0 = \varphi_i(a_1v_1 + \cdots + a_mv_m) = a_i$ for each i. Suppose $(v_1, ..., v_m)$ is linely inde. Let $U = \text{span}(\varphi_1, ..., \varphi_m)$, $B_{U'} = (\varphi_1, ..., \varphi_m)$. Thus $\forall (a_1, \dots, a_m) \in \mathbb{F}^m, \exists ! \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m$. Let W be such that $V = U \oplus W$. Now $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$. Define $\iota \in \mathcal{L}(V, U)$ by $\iota(v) = u_v$. So that $\Gamma(\varphi \circ i -) = (a_1, \dots, a_m)$.

OR. Let $(e_1, ..., e_m)$ be the standard basis of \mathbf{F}^m and let $(\psi_1, ..., \psi_m)$ be the corresponding basis. Define $\Psi: \mathbf{F}^m \to (\mathbf{F}^m)'$ by $\Psi(e_k) = \psi_k$. Then Ψ is an iso.

Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $Te_k = v_k$. Now $T(x_1, \dots, x_m) = T(x_1e_1 + \dots + x_me_m) = x_1v_1 + \dots + x_mv_m$. $\forall \varphi \in V', k \in \{1, \dots, m\}, \lceil T'(\varphi) \rceil(e_k) = \varphi(Te_k) = \varphi(v_k) = \lceil \varphi(v_1) \circ \psi_1 + \dots + \varphi(v_m) \circ \psi_m \rceil(e_k)$ Now $T'(\varphi) = \varphi(v_1) \circ \psi_1 + \dots + \varphi(v_m) \circ \psi_m = \Psi(\varphi(v_1), \dots, \varphi(v_m)) = \Psi(\Gamma(\varphi))$. Hence $T' = \Psi \circ \Gamma$. By (3.B.3), (a) range $T = \operatorname{span}(v_1, \dots, v_m) = V \iff T' = \Psi \circ \Gamma$ inje $\iff \Gamma$ inje.

(b) $(v_1, ..., v_m)$ is linely inde $\iff T$ is inje $\iff T' = \Psi \circ \Gamma$ surj $\iff \Gamma$ surj.

- (4E 3.F.25) Define $\Gamma: V \to \mathbf{F}^m$ by $\Gamma(v) = (\varphi_1(v), \dots, \varphi_m(v))$, where $\varphi_1, \dots, \varphi_m \in V'$.
 - (c) Show that span($\varphi_1, ..., \varphi_m$) = $V' \iff \Gamma$ is inje.
 - (d) Show that $(\varphi_1, ..., \varphi_m)$ is linely inde $\iff \Gamma$ is surj.

SOLUTION:

- (c) Notice that $\Gamma(v) = 0 \Longleftrightarrow \varphi_1(v) = \cdots = \varphi_m(v) = 0 \Longleftrightarrow v \in (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)$. By Problem (4E 23) and (18), $\operatorname{span}(\varphi_1, \dots, \varphi_m) = V' \iff (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m) = \{0\}.$ And $\operatorname{null} \Gamma = (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)$. Hence Γ inje $\iff \operatorname{null} \Gamma = \{0\} \iff \operatorname{span}(\varphi_1, \dots, \varphi_m) = V'$.
- (d) Suppose $(\varphi_1, ..., \varphi_m)$ is linely inde. Then by Problem (31), $(v_1, ..., v_m)$ is linely inde. Thus $\forall (a_1, \dots, a_m) \in \mathbb{F}, \exists ! v = \sum_{i=1}^m a_i v_i \in V \Rightarrow \varphi_i(v) = a_i, \Gamma(v) = (a_1, \dots, a_m)$. Hence Γ is surj. Suppose Γ is surj. Let (e_1, \dots, e_m) be the standard basis of \mathbf{F}^m . Suppose $v_i \in V$ such that $\Gamma(v_i) = (\varphi_1(v_i), ..., \varphi_m(v_i)) = e_i$, for each i.

Then $(v_1, ..., v_m)$ is linely inde. And $\varphi_i(v_k) = \delta_{i,k}$.

Now $a_1 \varphi_1 + \cdots + a_m \varphi_m = 0 \Rightarrow 0(v_i) = a_i$ for each i. Hence $(\varphi_1, \dots, \varphi_m)$ is linely inde.

Or. Let $\operatorname{span}(v_1,\ldots,v_m)=U$. Then $B_{U'}=(\varphi_1|_U,\ldots,\varphi_m|_U)$. Hence $(\varphi_1,\ldots,\varphi_m)$ is linely inde. \square

OR. Similar to Problem (6), we get (e_1, \dots, e_m) , (ψ_1, \dots, ψ_m) and the iso Ψ .

 $\forall (x_1,\ldots,x_m) \in \mathbb{F}^m, \Gamma'\big(\Psi\big(x_1,\ldots,x_m\big)\big) = \Gamma'\big(\Psi\big(x_1e_1+\cdots+x_me_m\big)\big) = \big(x_1\psi_1+\cdots+x_m\psi_m\big) \circ \Gamma.$ $\forall v \in V, \left[\Gamma'\big(\Psi(x_1,\ldots,x_m)\big)\right](v) = \left[x_1\psi_1 + \cdots + x_m\psi_m\right]\big(\Gamma(v)\big) = \left[x_1\varphi_1 + \cdots + x_m\varphi_m\right](v).$

Now $\Gamma'(\Psi(x_1,\ldots,x_m)) = x_1\varphi_1 + \cdots + x_m\varphi_m$.

Define $\Phi: \mathbb{F}^m \to (\mathbb{F}^m)'$ by $\Phi = \Psi \circ \Gamma$. $\Phi(x_1, \dots, x_m) = x_1 \varphi_1 + \dots + x_m \varphi_m$. Thus by (4E 3.B.3),

- (c) the inje of Φ correspds to $(\varphi_1, \dots, \varphi_m)$ spanning V'; $\nabla \Phi = \Psi \circ \Gamma$ inje $\iff \Gamma$ inje.
- (d) the surj of Φ correspds to $(\varphi_1, ..., \varphi_m)$ being linely inde; $\nabla = \Psi \circ \Gamma$ surj $\iff \Gamma$ surj.

35 *Prove that* $(\mathcal{P}(\mathbf{F}))'$ *and* \mathbf{F}^{∞} *are iso.*

SOLUTION:

Define
$$\theta \in \mathcal{L}((\mathcal{P}(\mathbf{F}))', \mathbf{F}^{\infty})$$
 by $\theta(\varphi) = (\varphi(1), \varphi(z), \dots, \varphi(z^n), \dots)$.

Inje:
$$\theta(\varphi) = 0 \Rightarrow \forall z^k$$
 in the basis $(1, z, ..., z^n)$ of $\mathcal{P}_n(\mathbf{F})$ $(\forall n)$, $\varphi(z^k) = 0 \Rightarrow \varphi = 0$.

[Notice that
$$\forall p \in \mathcal{P}(\mathbf{R}), \exists ! a_i \in \mathbf{F}, m = \deg p, \ p = a_0 z + a_1 z + \dots + a_m z^m \in \mathcal{P}_m(\mathbf{F}).$$
]

Surj:
$$\forall (a_k)_{k=1}^{\infty} \in \mathbf{F}^{\infty}$$
, let ψ be such that $\forall k, \psi(z^k) = a_k$ [by [3.5]] and thus $\theta(\psi) = (a_k)_{k=1}^{\infty}$.

Comment: Notice that $\mathcal{P}(F)$ and F^{∞} are not iso, so are $\mathcal{P}(F)$ and $(\mathcal{P}(F))'$

But if we let
$$\mathbf{F}^{\infty} = \{(a_1, \dots, a_n, \underbrace{0, \dots, 0, \dots}_{\text{all zero}}) \in \mathbf{F}^{\infty} \mid \exists ! n \in \mathbf{N}^+ \}$$
. Then $\mathcal{P}(\mathbf{F})$ and \mathbf{F}^{∞} are iso.

7 Show that the dual basis of $(1, x, ..., x^m)$ of $\mathcal{P}_m(\mathbf{R})$ is $(\varphi_0, \varphi_1, ..., \varphi_m)$, where $\varphi_k(p) = \frac{p^{(k)}(0)}{k!}$. Here $p^{(k)}$ denotes the k^{th} derivative of p, with the understanding that the 0^{th} derivative of p is p.

SOLUTION:

$$\forall j, k \in \mathbf{N}, \ (x^{j})^{(k)} = \begin{cases} j(j-1) \dots (j-k+1) \cdot x^{(j-k)}, & j \ge k. \\ j(j-1) \dots (j-j+1) = j! & j = k. \\ 0, & j \le k. \end{cases}$$
Then $(x^{j})^{(k)}(0) = \begin{cases} 0, \ j \ne k. \\ k!, \ j = k. \end{cases}$

Or. Because
$$\forall j, k \in \{1, ..., m\}$$
 such that $j \neq k$, $\varphi_k(x^j) = \frac{(x^j)^{(k)}(0)}{k!} = \frac{0}{k!} = 0$; $\varphi_k(x^k) = \frac{(x^k)^{(k)}(0)}{k!} = 1$.

Thus $\frac{p^{(k)}(0)}{k!}$ act exactly the same as φ_k on the same basis $(1, ..., x^m)$, hence is just another def of $\varphi_k \square$

EXAMPLE: Suppose $m \in \mathbb{N}^+$. By [2.C.10], $B = (1, x - 5, ..., (x - 5)^m)$ is a basis of $\mathcal{P}_m(\mathbb{R})$.

Let
$$\varphi_k = \frac{p^{(k)}(5)}{k!}$$
 for each $k = 0, 1, ..., m$. Then $(\varphi_0, \varphi_1, ..., \varphi_m)$ is the dual basis of B .

- **34** The double dual space of V, denoted by V'', is defined to be the dual space of V'. In other words, $V'' = \mathcal{L}(V', \mathbf{F})$. Define $\Lambda : V \to V''$ by $(\Lambda v)(\varphi) = \varphi(v)$.
 - (a) Show that Λ is a linear map from V to V''.
 - (b) Show that if $T \in \mathcal{L}(V)$, then $T'' \circ \Lambda = \Lambda \circ T$, where T'' = (T')'.
 - (c) Show that if V is finite-dim, then Λ is an iso from V onto V''.

Suppose V is finite-dim. Then V and V' are iso, and finding an iso from V onto V' generally requires choosing a basis of V. In contrast, the iso Λ from V onto V'' does not require a choice of basis and thus is considered more natural.

SOLUTION:

(a)
$$\forall \varphi \in V', v, w \in V, a \in F, (\Lambda(v+aw))(\varphi) = \varphi(v+aw) = \varphi(v) + a\varphi(w) = (\Lambda v)(\varphi) + a(\Lambda w)(\varphi).$$

Thus $\Lambda(v+aw) = \Lambda v + a\Lambda w$. Hence Λ is linear.

(b)
$$(T''(\Lambda v))(\varphi) = ((\Lambda v) \circ T')(\varphi) = (\Lambda v)(T'(\varphi))$$

= $(T'(\varphi))(v) = (\varphi \circ T)(v) = \varphi(Tv) = (\Lambda(Tv))(\varphi).$

Hence
$$T''(\Lambda v) = (\Lambda(Tv)) \Rightarrow T'' \circ \Lambda = \Lambda \circ T$$
.

(c) Suppose
$$\Lambda v = 0$$
. Then $\forall \varphi \in V'$, $(\Lambda v)(\varphi) = \varphi(v) = 0 \Rightarrow v = 0$. Thus Λ is inje. \mathbb{X} Because V is finite-dim. dim $V = \dim V' = \dim V''$. Hence Λ is an iso.

• TIPS: Suppose $p \in \mathcal{P}(\mathbf{F})$, $\deg p \leqslant m$ and p has at least (m+1) distinct zeros. Then by the contrapositive of [4.12], $\mathbb{Z} \deg p = m$, we conclude that m < 0. Hence p = 0.

OR. We show that if p has at least m distinct zeros, then either p = 0 or $\deg p \ge m$.

If p = 0 then we are done. If not, then suppose p has exactly n distinct zeros $\lambda_1, \dots, \lambda_n$.

Because $\exists ! \alpha_i \ge 1, q \in \mathcal{P}(\mathbf{F})$, and $q \ne 0$, such that $p(z) = [(z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_n)^{\alpha_n}]q(z)$.

- **COMMENT**: Notice that by [4.17], some term of the poly factorization might not in the form $(x \lambda_k)^{\alpha_k}$.
- **NOTE FOR [4.7]:** the uniquess of coeffs of polys

[Another proof]

If a poly had two different sets of coeffs, then subtracting the two representations would give a poly with some nonzero coeffs but infinitely many zeros. By TIPS.

• **Note For [4.8]:** division algorithm for polys

[Another proof]

Suppose $\deg p \geqslant \deg s$. Then $\left(\underbrace{1,z,\ldots,z^{\deg s-1}}_{\text{of length deg }s},\underbrace{s,zs,\cdots,z^{\deg p-\deg s}}_{\text{of length deg }s}\right)$ is a basis of $\mathcal{P}_{\deg p}(\mathbf{F})$.

Because $q \in \mathcal{P}(\mathbf{F})$, $\exists ! a_i, b_i \in \mathbf{F}$,

$$q = a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1} + b_0 s + b_1 z s + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s} s$$

 $q = a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1} + b_0 s + b_1 z s + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s} s$ $= \underbrace{a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1}}_{r} + s \underbrace{\left(b_0 + b_1 z + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s}\right)}_{q}. \text{ Note that } r, q \text{ are unique.}$

• **Note For [4.11]:** each zero of a poly corresponds to a degree-one factor;

[Another proof]

First suppose $p(\lambda) = 0$. Write $p(z) = a_0 + a_1 z + \dots + a_m z^m$, $\exists ! a_0, a_1, \dots, a_m \in \mathbb{F}$ for all $z \in \mathbb{F}$.

Then $p(z) = p(z) - p(\lambda) = a_1(z - \lambda) + \dots + a_m(z^m - \lambda^m)$ for all $z \in \mathbb{F}$.

Hence
$$\forall k \in \{1, ..., m\}, z^k - \lambda^k = (z - \lambda)(z^{k-1}\lambda^0 + z^{k-2}\lambda^1 + ... + z^{k-(j+1)}\lambda^j + ... + z\lambda^{k-2} + z^0\lambda^{k-1}).$$

Thus $p(z) = \sum_{j=1}^{m} a_j(z-\lambda) \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z-\lambda) \sum_{j=1}^{m} a_j \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z-\lambda) q(z)$.

• **Note For [4.13]:** Every nonconst poly with complex coefficients has a zero in C. [Another proof]

For any $w \in C$, $k \in \mathbb{N}^+$, by polar coordinates, $\exists r \ge 0, \theta \in \mathbb{R}$, $r(\cos \theta + i \sin \theta) = w$.

By De Moivre' theorem, $w^k = [r(\cos \theta + i \sin \theta)]^k = r^k(\cos k\theta + i \sin k\theta)$.

Hence $\left(r^{1/k}\left(\cos\frac{\theta}{k} + i\sin\frac{\theta}{k}\right)\right)^k = w$. Thus every complex number has a k^{th} root.

Suppose a nonconst $p \in \mathcal{P}(\mathbf{C})$ with highest-order nonzero term $c_m z_m$.

Then
$$|p(z)| \to \infty$$
 as $|z| \to \infty$ (because $\frac{|p(z)|}{|z_m|} \to |c_m|$ as $|z| \to \infty$).

Thus the continuous function $z \to |p(z)|$ has a global minimum at some point $\zeta \in \mathbb{C}$.

To show that $p(\zeta) = 0$, assume $p(\zeta) \neq 0$. Define $q \in \mathcal{P}(C)$ by $q(z) = \frac{p(z + \zeta)}{n(\zeta)}$.

The function $z \to |q(z)|$ has a global minimum value of 1 at z = 0.

Write $q(z) = 1 + a_k z^k + \dots + a_m z^m$, where $k \in \mathbb{N}^+$ is the smallest such that $a_k \neq 0$.

Let $\beta \in \mathbb{C}$ be such that $\beta^k = -\frac{1}{a_k}$.

There is a const c > 1 so that if $t \in (0,1)$, then $|q(t\beta)| \leq |1 + a_k t^k \beta^k| + t^{k+1} c = 1 - t^k (1 - tc)$.

Now letting t = 1/(2c), we get $|q(t\beta)| < 1$. Contradicts. Hence $p(\zeta) = 0$, as desired.

• (4E 4 2) Prove that if $w, z \in \mathbb{C}$, then $||w| - |z|| \leq |w - z|$.

SOLUTION:

ORE HON:

$$|w-z|^2 = (w-z)(\overline{w}-\overline{z})$$

$$= |w|^2 + |z|^2 - (w\overline{z} + \overline{w}z)$$

$$= |w|^2 + |z|^2 - (\overline{w}z + \overline{w}z)$$

$$= |w|^2 + |z|^2 - 2Re(\overline{w}z)$$

$$\geq |w|^2 + |z|^2 - 2|w|$$

$$= |w|^2 + |z|^2 - 2|w||z| = |w| - z + z| \leq |w-z| + |z| \Rightarrow |w| - |z| \leq |w-z|$$

$$|z| = |z-w+w| \leq |z-w| + |w| \Rightarrow |z| - |w| \leq |w-z|$$

$$|z| = |z-w+w| \leq |z-w| + |w| \Rightarrow |z| - |w| \leq |w-z|$$
Geometric interpretation: The length of each side of a triangle is greater than or equal to the difference of the lengths of the two other sides.

• (4E 4 3) Suppose $\mathbf{F} = \mathbf{C}$, $\varphi \in V'$. Define $\sigma : V \to \mathbf{R}$ by $\sigma(v) = \mathrm{Re}\,\varphi(v)$ for each $v \in V$. Show that $\varphi(v) = \sigma(v) - \mathrm{i}\sigma(\mathrm{i}v)$ for all $v \in V$.

SOLUTION: Notice that $\varphi(v) = \operatorname{Re} \varphi(v) + i \operatorname{Im} \varphi(v) = \sigma(v) + i \operatorname{Im} \varphi(v)$. $\operatorname{\mathbb{Z}} \operatorname{Re} \varphi(\mathrm{i} v) = \operatorname{Re} (\mathrm{i} \varphi(v)) = -\operatorname{Im} \varphi(v) = \sigma(\mathrm{i} v)$. Hence $\varphi(v) = \sigma(v) - i \sigma(\mathrm{i} v)$.

4 Suppose $m, n \in \mathbb{N}^+$ with $m \leq n, \lambda_1, ..., \lambda_m \in \mathbb{F}$. Prove that $\exists p \in \mathcal{P}(\mathbb{F}), \deg p = n$, the zeros of p are $\lambda_1, ..., \lambda_m$.

SOLUTION: Let $p(z) = (z - \lambda_1)^{n - (m-1)} (z - \lambda_2) \cdots (z - \lambda_m)$.

5 Suppose $m \in \mathbb{N}$, and z_1, \dots, z_{m+1} are distinct in \mathbb{F} , and $w_1, \dots, w_{m+1} \in \mathbb{F}$. Prove that $\exists ! p \in \mathcal{P}_m(\mathbb{F}), p(z_k) = w_k$ for each $k \in \{1, \dots, m+1\}$.

SOLUTION:

Define $T:\mathcal{P}_m(\mathbf{F})\to\mathbf{F}^{m+1}$ by $Tq=\left(q(z_1),\ldots,q(z_m),q(z_{m+1})\right)$. Moreover, T is linear.

We now show that T is surj, so that such p exists; and that T is inje, so that such p is unique.

Inje: $Tq=0 \Longleftrightarrow q(z_1)=\cdots=q(z_m)=q(z_{m+1})=0 \Longleftrightarrow q=0$, by Tips .

Surj: $\dim \operatorname{range} T = \dim \mathcal{P}_m(\mathbf{F}) - \dim \operatorname{null} T = m+1 = \dim \mathbf{F}^{m+1} \not \subset \mathbf{F}^{m+1} \Rightarrow T \text{ is surj. } \square$

Or. Let $p_1 = 1$, $p_k(z) = \prod_{i=1}^{k-1} (z - z_i) = (z - z_1) \cdots (z - z_{k-1})$ for each $k \in \{2, \dots, m+1\}$.

By (2.C.10), $B_p = (p_1, \dots, p_{m+1})$ is a basis of $\mathcal{P}_m(\mathbf{F})$. Let $B_e = (e_1, \dots, e_{m+1})$ be the std basis of \mathbf{F}^{m+1} .

Notice that $Tp_1 = (1, ..., 1), Tp_k = \Big(\prod_{i=1}^{k-1} (z_1 - z_i), ..., \underbrace{\prod_{i=1}^{k-1} (z_j - z_i)}_{j^{th} \text{ entry}}, ..., \prod_{i=1}^{k-1} (z_{m+1} - z_i)\Big).$

And that $\prod_{i=1}^{k-1} (z_i - z_i) = 0 \iff j \leqslant k-1$, because z_1, \dots, z_{m+1} are distinct.

Thus
$$\mathcal{M}(T, B_P, B_E) = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & A_{2,2} & 0 & \cdots & 0 \\ 1 & A_{3,2} & A_{3,3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & A_{m+1,2} & A_{m+1,3} & \cdots & A_{m+1,m+1} \end{pmatrix}.$$

Where $A_{j,k} = \prod_{i=1}^{k-1} (z_j - z_i) \neq 0$ for all $j > k-1 \geq 1$. The rows of $\mathcal{M}(T)$ is linely inde.

By (4E 3.C.17) $\mathbb{Z} \dim \mathcal{P}_m(\mathbf{F}) = \dim \mathbf{F}^{m+1}$; Or By (3.F.32); T is inv.

2 Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbb{F}) : \deg p = m\}$ a subsp of $\mathcal{P}(\mathbb{F})$?

SOLUTION: $x^m, x^m + x^{m-1} \in U$ but $\deg[(x^m + x^{m-1}) - (x^m)] \neq m \Rightarrow (x^m + x^{m-1}) - (x^m) \notin U$.

6 Suppose nonzero $p \in \mathcal{P}_m(\mathbf{F})$ has degree m. Prove that [P] p has m distinct zeros \iff p and its derivative p' have no zeros in common [Q]. **SOLUTION:** (a) Suppose p has m distinct zeros. And deg p=m. By [4.14], $\exists ! c, \lambda_i \in \mathbb{R}, p(z)=c(z-\lambda_1)\cdots(z-\lambda_m)$. If m = 0, then $p = c \neq 0 \Rightarrow p$ has no zeros, and p' = 0, we are done. If m = 1, then $p(z) = c(z - \lambda_1)$, and p' = c has no zeros, we are done. For each $j \in \{1, ..., m\}$, let $q_i \in \mathcal{P}_{m-1}(\mathbf{F})$ be such that $p(z) = (z - \lambda_i)q_i \Rightarrow q_i(\lambda_i) \neq 0$. Now $p'(z) = (z - \lambda_i)q_i'(z) + q_i(z) \Rightarrow p'(\lambda_i) = q_i(\lambda_i) \neq 0$, as desired. Or. To prove $[P] \Rightarrow [Q]$, we prove $\neg [Q] \Rightarrow \neg [P]$: Suppose $p(z) = (z - \lambda)q(z)$, $p'(z) = (z - \lambda)r(z)$. $\not \subseteq p'(z) = (z - \lambda)q'(z) + q(z)$. Now $p'(\lambda) = q(\lambda) = 0 \Rightarrow p(z) = (z - \lambda)^2 s(z)$. Hence p has strictly less than m distinct zeros. (b) To prove $[Q] \Rightarrow [P]$, we prove $\neg [P] \Rightarrow \neg [Q]$: Because nonzero $p \in \mathcal{P}_m(\mathbf{F})$, we suppose $\lambda_1, \dots, \lambda_M$ are the distinct zeros of p, where M < m. By Pigeon Hole Principle, $\exists \lambda_k$ such that $p(z) = (z - \lambda_k)^2 q(z)$ for some $q \in \mathcal{P}(\mathbf{F})$. Hence $p'(z) = 2(z - \lambda_k)q(z) + (z - \lambda_k)^2q'(z) \Rightarrow p'(\lambda_k) = 0 = p(\lambda_k)$. **7** Prove that every $p \in \mathcal{P}(\mathbf{R})$ of odd degree has a zero. **SOLUTION:** Using the notation and proof of [4.17]. $\deg p = 2M + m$ is odd $\Rightarrow m$ is odd. Hence λ_1 exists. OR. Using calculus only. Suppose $p \in \mathcal{P}_m(\mathbf{F})$, $\deg p = m, m$ is odd. Let $p(x) = a_0 + a_1 x + \dots + a_m x^m$. Then $a_m \neq 0$. Denote $|a_m|^{-1} a_m$ by δ Write $p(x) = x^m \left(\frac{a_0}{x^m} + \frac{a_1}{x^{m-1}} + \dots + \frac{a_{m-1}}{x} + a_m \right)$. Thus p(x) is continuous, and $\lim_{x \to -\infty} p(x) = -\delta \infty$; $\lim_{x \to \infty} p(x) = \delta \infty.$ Hence we conclude that p has at least one real zero. **9** Suppose $p \in \mathcal{P}(\mathbf{C})$. Define $q : \mathbf{C} \to \mathbf{C}$ by $q(z) = p(z)p(\overline{z})$. Prove that $q \in \mathcal{P}(\mathbf{R})$. **SOLUTION:** Notice that by [4.5], $\overline{z}^n = \overline{z^n}$. Suppose $q(z) = a_n z^n + \dots + a_1 z + a_0 \Rightarrow q(\overline{z}) = a_n \overline{z}^n + \dots + a_1 \overline{z} + a_0 \Rightarrow \overline{q(\overline{z})} = \overline{a_n} z^n + \dots + \overline{a_1} z + \overline{a_0}.$ Note that $q(z) = p(z)\overline{p(\overline{z})} = \overline{p(\overline{z})}p(z) = \overline{p(\overline{z})}\overline{p(\overline{z})} = \overline{q(\overline{z})}$. Hence for each a_k , $\overline{a_k} = a_k \Rightarrow a_k \in \mathbb{R}$. Or. Suppose $p(z) = a_m z^m + \dots + a_1 z + a_0$. Now $\overline{p(\overline{z})} = \overline{a_m} z^m + \dots + \overline{a_1} z + \overline{a_0}$. Notice that $q(z) = p(z)\overline{p(\overline{z})} = \sum_{k=0}^{2} m \left(\sum_{i+j=k} a_i \overline{a_j}\right) z^k$. Notice that by [4.5], $z - \overline{z} = 2(\operatorname{Im} z) \Rightarrow z = \overline{z} + 2(\operatorname{Im} z)$. So that $z = \overline{z} \iff \operatorname{Im} z = 0 \iff z \in \mathbb{R}$. Now for each $k \in \{0, ..., 2m\}$, $\overline{\sum_{i+j=k} a_i \overline{a_j}} = \sum_{i+j=k} \overline{a_i \overline{a_j}} = \sum_{i+j=k} a_j \overline{a_i} = \sum_{i+j=k} a_i \overline{a_j} \in \mathbb{R}$.

3 Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbb{F}) : 2 \mid \deg p\}$ a subsp of $\mathcal{P}(\mathbb{F})$?

SOLUTION: $x^2, x^2 + x \in U$ but $deg[(x^2 + x) - (x^2)]$ is odd and hence $(x^2 + x) - (x^2) \notin U$.

8 For
$$p \in \mathcal{P}(\mathbf{R})$$
, define $Tp : \mathbf{R} \to \mathbf{R}$ by $(Tp)(x) = \begin{cases} \frac{p(x) - p(3)}{x - 3} & \text{if } x \neq 3, \\ p'(3) & \text{if } x = 3. \end{cases}$

Show that (a) $Tp \in \mathcal{P}(\mathbf{R})$ for all $p \in \mathcal{P}(\mathbf{R})$ and that (b) $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ is linear.

SOLUTION:

(a) For
$$x \neq 3$$
, $T(x^n) = \frac{x^n - 3^n}{x - 3} = \sum_{i=1}^n 3^{i-1} x^{n-i}$. For $x = 3$, $T(x^n) = 3^{n-1} \cdot n$.

Note that if x = 3, then $\sum_{i=1}^{n} 3^{i-1} x^{n-i} = \sum_{i=1}^{n} 3^{n-1} = 3^{n-1} \cdot n$.

Hence
$$T(x^n) = \sum_{i=1}^n 3^{i-1} x^{n-i} \Rightarrow T(x^n) \in \mathcal{P}(\mathbf{R}).$$

(b) Now we show that *T* is linear: $\forall p, q \in \mathcal{P}(\mathbf{R}), \lambda \in \mathbf{R}$,

$$T(p+\lambda q)(x) = \begin{cases} \frac{(p+\lambda q)(x) - (p+\lambda q)(3)}{x-3}, & \text{if } x \neq 3, \\ (p+\lambda q)'(3), & \text{if } x = 3 \end{cases} = [T(p) + \lambda T(q)](x) \text{ for all } x \in \mathbb{R}.$$

OR. (a) Note that
$$\exists ! q \in \mathcal{P}(\mathbf{R}), p(x) - p(3) = (x - 3)q(z) \Rightarrow q(x) = \frac{p(x) - p(3)}{x - 3}.$$

 $p'(x) = (p(x) - p(3))' = ((x - 3)q(x))' = q(x) + (x - 3)q'(x).$
Hence $p'(3) = q(3)$. Now $Tp = q \in \mathcal{P}(\mathbf{R})$.

(b)
$$\forall p_1, p_2 \in \mathcal{P}(\mathbf{R}), \lambda \in \mathbf{R}, \exists ! q_1, q_2 \in \mathcal{P}(\mathbf{R}),$$

$$p_1(x) - p_1(3) = (x-3)q_1(x)$$
 and $p_2(x) - p_2(3) = (x-3)q_2(x)$.

By (a),
$$Tp_1 = q_1$$
, $Tp_2 = q_2$. Note that $(p_1 + \lambda p_2)(x) - (p_1 + \lambda p_2)(3) = (x - 3)(q_1 + \lambda q_2)(x)$.

Hence by the uniques of $q_1 + \lambda q_2$ for $p_1 + \lambda p_2$, we must have $T(p_1 + \lambda p_2) = q_1 + \lambda q_2$.

11 Suppose $p \in \mathcal{P}(\mathbf{F})$ with $p \neq 0$. Let $U = \{pq : q \in \mathcal{P}(\mathbf{F})\}$.

- (a) Show that dim $\mathcal{P}(\mathbf{F})/U = \deg p$.
- (b) Find a basis of $\mathcal{P}(\mathbf{F})/U$.

SOLUTION: NOTICE that $pq \neq p \circ q$, see (4E 3.A.10).

U is a subsp of $\mathcal{P}(\mathbf{F})$ because $\forall s_1, s_2 \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, ps_1 + \lambda ps_2 = p(s_1 + \lambda s_2) \in U$.

If deg p = 0, then $U = \mathcal{P}(\mathbf{F})$, $\mathcal{P}(\mathbf{F})/U = \{0\}$, with the unique basis (). Suppose deg $p \ge 1$.

(a) By [4.8],
$$\forall s \in \mathcal{P}(\mathbf{F}), \exists ! r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), q \in \mathcal{P}(\mathbf{F}) \ [\exists ! pq \in U \], s = (p)q + (r).$$

Thus $\mathcal{P}(\mathbf{F}) = U \oplus \mathcal{P}_{\deg p-1}(\mathbf{F})$. By the Note For [3.91] in (3.E), $\mathcal{P}(\mathbf{F})/U$ and $\mathcal{P}_{\deg p-1}(\mathbf{F})$ are iso.

OR. Define $R: \mathcal{P}(\mathbf{F}) \to \mathcal{P}_{\deg p-1}(\mathbf{F})$ by R(s) = r for all $s \in \mathcal{P}_{\cdot}(\mathbf{F})$ We show that R is linear.

$$\forall s_1, s_2 \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, \exists ! \, r_1, r_2 \in \mathcal{P}_{\deg p - 1}(\mathbf{F}), q_1, q_2 \in \mathcal{P}(\mathbf{F}), s_1 = (p)q_1 + (r_1); \, s_2 = (p)q_2 + (r_2).$$

$$\mathbb{X} \exists ! r \in \mathcal{P}_{\deg p - 1}(\mathbf{F}), q \in \mathcal{P}(\mathbf{F}), (s_1 + \lambda s_2) = (p)q + (r) = (p)(q_1 + \lambda q_2) + (r_1 + \lambda r_2).$$

Note that $r_1, r_2 \in \mathcal{P}_{\deg p-1}(\mathbf{F}) \Rightarrow r_1 + \lambda r_2 \in \mathcal{P}_{\deg p-1}(\mathbf{F})$.

OR Note that $\deg(r_1 + \lambda r_2) \leq \max\{\deg r_1, \deg(\lambda r_2)\} \leq \max\{\deg r_1, \deg r_2\} < \deg p$.

By the uniques part of [4.8], $s = s_1 + \lambda s_2$; $r = r_1 + \lambda r_2$. Thus $R(s_1 + \lambda s_2) = R(s_1) + \lambda R(s_2)$.

Because $Rs = 0 \iff s = pq, \exists ! q \in \mathcal{P}(\mathbf{F}) \iff s \in U$. And $\forall r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), Rr = r$.

Now null R = U, range $R = \mathcal{P}_{\text{deg } p-1}(\mathbf{F})$.

Hence $\tilde{R}: \mathcal{P}(\mathbf{F})/U \to \mathcal{P}_{\deg p-1}(\mathbf{F})$ is defined by $\tilde{R}(s+U) = Rs$. By [3.91(d)], \tilde{R} is an iso.

(b) For each
$$k \in \{0, 1, ..., \deg p - 1\}$$
, $\tilde{R}(z^k + U) = R(z^k) = z^k \Rightarrow \tilde{R}^{-1}(z^k) = z^k + U$.
Thus $(1 + U, z + U, ..., z^{\deg p - 1} + U)$ can be a basis of $\mathcal{P}(\mathbf{F})/U$.

10 Suppose $m \in \mathbb{N}$, $p \in \mathcal{P}_m(\mathbb{C})$ is such that $p(x_k) \in \mathbb{R}$ for each of distinct $x_0, x_1, ..., x_m \in \mathbb{R}$. Prove that $p \in \mathcal{P}(\mathbb{R})$.

SOLUTION:

By Tips and Problem (5),
$$\exists ! q \in \mathcal{P}_m(\mathbf{R})$$
 such that $q(x_k) = p(x_k)$. Hence $p = q$.

OR. Using the Lagrange Interpolating Polynomial.

Define
$$q(x) = \sum_{j=0}^{m} \frac{(x-x_0)(x-x_1)\cdots(x-x_{j-1})(x-x_{j+1})\cdots(x-x_m)}{(x_j-x_0)(x_j-x_1)\cdots(x_j-x_{j-1})(x_j-x_{j+1})\cdots(x_j-x_m)} p(x_j).$$

$$\mathbb{Z}$$
 Each x_j , $p(x_j) \in \mathbb{R} \Rightarrow q \in \mathcal{P}_m(\mathbb{R})$. Notice that $q(x_k) = 1 \cdot p(x_k) \Rightarrow (q - p)(x_k) = 0$ for each x_k .
Then $(q - p)$ has $(m + 1)$ zeros, while $(q - p) \in \mathcal{P}_m(\mathbb{C})$. By TIPS , $q - p = 0 \Rightarrow p = q \in \mathcal{P}(\mathbb{R})$.

• (4E 4 13) Suppose nonconst $p, q \in \mathcal{P}(\mathbf{C})$ have no zeros in common. Let $m = \deg p, n = \deg q$. Define $T: \mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C}) \to \mathcal{P}_{m+n-1}(\mathbf{C})$ by T(r,s) = rp + sq. Prove that T is an iso. Corollary: $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C}), s \in \mathcal{P}_{m-1}(\mathbf{C})$ such that rp + sq = 1.

SOLUTION:

T is linear because $\forall r_1, r_2 \in \mathcal{P}_{n-1}(\mathbf{C}), s_1, s_2 \in \mathcal{P}_{m-1}(\mathbf{C}), \lambda \in \mathbf{F}$,

$$T((r_1, s_1) + \lambda(r_2, s_2)) = T(r_1 + \lambda r_2, s_1 + \lambda s_2) = (r_1 + \lambda r_2)p + (s_1 + \lambda s_2)q = T(r_1, s_1) + \lambda T(r_2, s_2).$$

Let $\lambda_1, \dots, \lambda_M$ and μ_1, \dots, μ_N be the distinct zeros of p and q respectively. Notice that $M \leq m, N \leq n$.

Note that the contrapositive of [4.13], $M = 0 \iff m = 0 \implies s = 0 \iff r = 0 \iff n = 0 \iff N = 0$.

Now suppose $M, N \ge 1$. We show that s = 0. Showing r = 0 is almost the same.

Write
$$p(z) = a(z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_M)^{\alpha_M}$$
. $(\exists! \alpha_i \ge 1, a \in \mathbf{F}.)$ Let $\max\{\alpha_1, \dots, \alpha_M\} = A$.

For each
$$D \in \{0,1,\ldots,A-1\}$$
, let $I_{D,\alpha} = \{\gamma_{D,1},\ldots,\gamma_{D,J}\}$ be such that each $\alpha_{\gamma_{D,j}} \geqslant D+1$.

Note that $I_{A-1,\alpha} \subseteq \cdots \subseteq I_{0,\alpha} = \{1,\ldots,M\}$. Because $rp + sq = 0 \Rightarrow (rp + sq)^{(k)} = 0$ for all $k \in \mathbb{N}^+$.

We use induction by D to show that $s^{(D)}(\lambda_{\gamma_{D,i}})=0$ for each $D\in\{0,\dots,A-1\}$.

NOTICE that
$$p^{(D)}(\lambda_{\gamma}) = 0$$
 for each $D \in \{0, ..., A - 1\}$ and each $\lambda_{\gamma} \in I_{D,\alpha}$. (Δ)

(i)
$$D = 0$$
. $(rp + sq)(\lambda_{\gamma_{0,i}}) = (sq)(\lambda_{\gamma_{0,i}}) = s(\lambda_{\gamma_{0,i}}) = 0$.

$$D = 1. \; (rp + sq)'(\lambda_{\gamma_{1,j}}) = (r'p + rp')(\lambda_{\gamma_{1,j}}) + (s'q + sq')(\lambda_{\gamma_{1,j}}) = (s'q)(\lambda_{\gamma_{1,j}}) = s'(\lambda_{\gamma_{1,j}}) = 0.$$

(ii)
$$2 \leqslant D \leqslant A-1$$
. Assume that $s^{(d)}(\lambda_{\gamma_{d,i}})=0$ for each $d \in \{1,\ldots,D-1\}$ and each $\lambda_{\gamma_{d,i}} \in I_{d,\alpha}$.

$$\left(\text{ Because } \forall p,q \in \mathcal{P}(\mathbf{F}), k \in \mathbf{N}^+, (pq)^{(k)} = C_k^k p^{(k)} q^{(0)} + \dots + C_k^j p^{(j)} q^{(k-j)} + \dots + C_k^0 p^{(0)} q^{(k)}. \right) \ (\Delta)$$

$$\begin{split} \text{Now} \ \big[rp + sq \big]^{(D)} \big(\lambda_{\gamma_{D,j}} \big) &= \big[C_D^D r^{(D)} p^{(0)} + \dots + C_D^d r^{(d)} p^{(D-d)} + \dots + C_D^0 r^{(0)} p^{(D)} \big] \big(\lambda_{\gamma_{D,j}} \big) \\ &+ \big[C_D^D s^{(D)} q^{(0)} + \dots + C_D^d s^{(d)} q^{(D-d)} + \dots + C_D^0 s^{(0)} q^{(D)} \big] \big(\lambda_{\gamma_{D,j}} \big) \\ &= \big[C_D^D s^{(D)} q^{(0)} \big] \big(\lambda_{\gamma_{D,j}} \big). \ \ \text{Where each} \ \lambda_{\gamma_{D,j}} \in I_{D,\alpha} \subseteq I_{D-1,\alpha}. \end{split}$$

Hence $s^{(D)}(\lambda_{\gamma_{D,i}}) = 0$. The assumption holds for all $D \in \{0, \dots, A-1\}$.

Notice that $\forall k = \{0,\ldots,A-2\}, s^{(k)} \text{ and } s^{(k+1)} \text{ have zeros } \{\lambda_{\gamma_{k+1,I}},\ldots,\lambda_{\gamma_{k+1,I}}\} \text{ in common.}$

Now $\forall D \in \{1, A-1\}, s = s^{(0)}, \dots, s^{(D)}$ have zeros $\{\lambda_{\gamma_{D,1}}, \dots, \lambda_{\gamma_{D,J}}\}$ in common.

Thus
$$\forall D \in \{0, A-1\}$$
, $s(z)$ is divisible by $(z-\lambda_{\gamma_{D,1}})^{\alpha_{\gamma_{D,1}}} \cdots (z-\lambda_{\gamma_{D,J}})^{\alpha_{\gamma_{D,J}}}$.

Hence we write $s(z) = \left((z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_M)^{\alpha_M} \right) s_0(z)$, while $\deg s \leq m - 1 < m = \alpha_1 + \cdots + \alpha_M$.

Thus by Tips , s=0. Following the same pattern, we conclude that r=0.

Hence
$$T$$
 is inje. And $\dim(\mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C})) = \dim \mathcal{P}_{m+n-1}(\mathbf{C}) \Rightarrow T$ is surj. Thus T is an iso. \square

COMMENT: We now prove the statement that marked by (Δ) above.

L1: Prove that $\forall p, q \in \mathcal{P}(\mathbf{F}), k \in \mathbf{N}^+, (pq)^{(k)} = C_k^k p^{(k)} q^{(0)} + \dots + C_k^j p^{(j)} q^{(k-j)} + \dots + C_k^0 p^{(0)} q^{(k)}.$ Solution:

We use induction by $k \in \mathbb{N}^+$.

(i)
$$k = 1$$
. $(pq)^{(1)} = pq = C_1^1 p^{(1)} q^{(0)} + C_1^0 p^{(0)} q^{(1)}$.

(ii)
$$k \ge 2$$
. Assume that for $(pq)^{(k-1)} = C_{k-1}^{k-1} p^{(k-1)} q^{(0)} + \dots + C_{k-1}^{j} p^{(j)} q^{(k-1-j)} + \dots + C_{k-1}^{0} p^{(0)} q^{(k-1)}$.
Now $(pq)^{(k)} = ((pq)^{(k-1)})' = \left(\sum_{j=0}^{k-1} C_{k-1}^{j} p^{(j)} q^{(k-j-1)}\right)' = \sum_{j=0}^{k-1} \left[C_{k-1}^{j} \left(p^{(j+1)} q^{(k-j-1)} + p^{(j)} q^{(k-j)}\right)\right]$

$$= \left[C_{k-1}^{0} \left(p^{(1)} q^{(k-1)} + p^{(0)} q^{(k)}\right)\right] + \left[C_{k-1}^{1} \left(p^{(2)} q^{(k-2)} + p^{(1)} q^{(k-1)}\right)\right]$$

$$+ \dots + \left[C_{k-1}^{j-2} \left(p^{(j-1)} q^{(k-j+1)} + p^{(j-2)} q^{(k-j+2)}\right)\right] + \left[C_{k-1}^{j-1} \left(p^{(j)} q^{(k-j)} + p^{(j-1)} q^{(k-j+1)}\right)\right]$$

$$+ \left[C_{k-1}^{j} \left(p^{(j+1)} q^{(k-j-1)} + p^{(j)} q^{(k-j)}\right)\right] + \left[C_{k-1}^{j+1} \left(p^{(j+2)} q^{(k-j-2)} + p^{(j+1)} q^{(k-j-1)}\right)\right]$$

$$+ \dots + \left[C_{k-1}^{k-2} \left(p^{(k-1)} q^{(1)} + p^{(k-2)} q^{(2)}\right)\right] + \left[C_{k-1}^{k-1} \left(p^{(k)} q^{(0)} + p^{(k-1)} q^{(1)}\right)\right].$$
Hence $(pq)^{(k)} = C_{k}^{0} p^{(0)} q^{(k)} + \dots + \left[C_{k-1}^{j} + C_{k-1}^{j-1}\right] \left(p^{(j)} q^{(k-j)}\right) + \dots + C_{k}^{k} p^{(k)} q^{(0)}.$

L2: Suppose $p(z) = (z - \lambda)^{\alpha} q(z)$ and $\alpha \in \mathbb{N}^+$. Prove that $p^{(\alpha - 1)}(\lambda) = 0$.

SOLUTION:

Suppose $p \in \mathcal{P}(\mathbf{F})$. Write $p(z) = (z - \lambda)^A q(z)$, where $A \in \mathbf{N}^+$, $q(\lambda) \neq 0$.

We use induction to show that for all $\alpha \in \{1, ..., A\}$, $p^{(\alpha-1)}(\lambda) = 0$.

(i)
$$\alpha = 1. p^{(0)}(\lambda) = 0.$$

(ii) $2 \le \alpha \le A$. Assume that $p^{(a-2)}(\lambda) = 0$ for all $a \in \{1, ..., \alpha\}$.

Notice that
$$p(z) = (z - \lambda)^{\alpha - 1} q_{\alpha - 1}(z) = (z - \lambda)^{\alpha} q_{\alpha}(z)$$
, where $q_{\alpha}(z) = (z - \lambda) q_{\alpha - 1}(z)$.

Because
$$p^{(\alpha-1)}(z) = \left[C_{\alpha-1}^{\alpha-1}(z-\lambda)^0 q_{\alpha-1}(z) + \dots + C_{\alpha-1}^k(z-\lambda)^{\alpha-1-k} q_{\alpha-1-k}(z) + \dots + C_{\alpha-1}^0(z-\lambda)^{\alpha-1} q_{\alpha-1}^{(\alpha-1)}(z) \right]$$
. Now $p^{(\alpha-1)}(\lambda) = C_{\alpha-1}^{\alpha-1} q_{\alpha-1}(\lambda) = 0$. \square

ENDED

5.A1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | 2E: Ch5.20 | 4E: 8, 11, 15, 16, 17, 36, 37, 38, 39

• Note For [5.6]:

More generally, suppose we do not know whether V is finite-dim. We show that $(a) \iff (b)$.

Suppose (a) λ is an eigval of T with an eigvec v. Then $(T - \lambda I)v = 0$.

Hence we get (b), $(T - \lambda I)$ is not inje. And then (d), $(T - \lambda I)$ is not inv.

But $(d) \Rightarrow (b)$ fails, because *S* is not inv \iff *S* is not inje Or *S* is not surj.

- TIPS: For $T_1, \ldots, T_m \in \mathcal{L}(V)$:
 - (a) Suppose $T_1, ..., T_m$ are all inje. Then $(T_1 \circ \cdots \circ T_m)$ is inje.
 - (b) Suppose $(T_1 \circ \cdots \circ T_m)$ is not inje. Then at least one of T_1, \ldots, T_m is not inje.
 - (c) At least one of $T_1, ..., T_m$ is not inje $\Rightarrow (T_1 \circ \cdots \circ T_m)$ is not inje.

EXAMPLE: In infinite-dim only. Let $V = \mathbf{F}^{\infty}$.

Let S be the backward shift (surj but not inje) Let T be the forward shift (inje but not surj) \Rightarrow Then ST = I.

- Note For [5.2]: Suppose $T \in \mathcal{L}(V)$. Then U is an invar subsp of V under $T \iff \operatorname{range} T|_U \subseteq U$.
- Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is an invar subsp of V under T. Prove that there exists an invar subsp W of dimension $\dim V \dim U$.

SOLUTION:

Using the Note For [3.88,90,91]. Define the eraser *S*. Now $V = \text{range } S \oplus U$.

Define E_1 by $E_1(u+w)=u$. Define E_2 by $E_2(u+w)=w$. ($E_2=S\circ\pi$.)

Note that $T - TE_1 = T(I - E_1) = TE_2$. And null $TE_2 = \text{null } T \oplus U$, range $T = \text{range } TE_2 \oplus U$.

Because dim null $TE_2 \geqslant \dim U \iff \dim \operatorname{range} TE_2 \leqslant \dim V - \dim U$.

Let $B_U = (u_1, ..., u_n)$, $B_{\text{range } TE_2} = (v_1, ..., v_m) \Rightarrow B_V = (v_1, ..., v_m, u_1, ..., u_n, ..., u_p)$.

Let $X = \operatorname{span}(v_1, \dots, v_m, u_{\alpha_1}, \dots, u_{\alpha_{p-\dim U}})$. Where $\alpha_1, \dots, \alpha_{p-\dim U} \in \{1, \dots, p\}$ are distinct.

Then dim $X = \dim V - \dim U$. [range $TE_2 \subseteq X$] X is invar under TE_2 , by Problem (1)(b).

We have $x \in X \Rightarrow TE_2(x) \in X \Rightarrow Tx - TE_1(x) \in X \Rightarrow Tx \in X$. Hence X is invar under T.

(Note that $E_1(x) \in \text{span}(u_{\beta_1}, \dots, u_{\beta_t})$, where $\beta_1, \dots, \beta_t \in \{\alpha_1, \dots, \alpha_{p-\dim U}\}$ and each $u_{\beta_t} \in U$.)

COMMENT: Conversely, by reversing the roles of *U* and *W*, we conclude that it is true as well.

- Suppose $T \in \mathcal{L}(V)$ and U is an invar subsp of V under T. Suppose $\lambda_1, ..., \lambda_m$ are the distinct eigenst of T correspt eigens $v_1, ..., v_m$.
- Tips 1: Prove that $v_1 + \cdots + v_m \in U \iff each \ v_k \in U$.

SOLUTION:

Suppose each $v_k \in U$. Then because U is a subsp, $v_1 + \cdots + v_m \in U$.

Define the statement P(k): if $v_1 + \cdots + v_k \in U$, then each $v_i \in U$. We use induction on m.

- (i) For $k = 1, v_1 \in U$.
- (ii) For $2 \le k \le m$. Assume that P(k-1) holds. Suppose $v=v_1+\dots+v_k \in U$. Then $Tv=\lambda_1v_1+\dots+\lambda_kv_k \in U \Longrightarrow Tv-\lambda_kv=(\lambda_1-\lambda_k)v_1+\dots+(\lambda_{k-1}-\lambda_k)v_{k-1} \in U$. For each $j \in \{1,\dots,k-1\}, \lambda_j-\lambda_k\neq 0 \Rightarrow (\lambda_j-\lambda_k)v_j=v_j'$ is an eigerc of T correspond t_j . By assumption, each $t_j' \in U$. Thus $t_j' \in U$. So that $t_j' \in U$. So that $t_j' \in U$.
- Tips 2: If dim V = m. Prove that $U = (U \cap E_1) \oplus \cdots \oplus (U \cap E_m)$, where $E_k = \operatorname{span}(v_k)$.

SOLUTION:

Because $V = E_1 \oplus \cdots \oplus E_m$. $\forall u \in U, \exists ! e_j \in E_j, u = e_1 + \cdots + e_m$.

If $e_j \neq 0$, then e_j is an eigvec correspond λ_j . Otherwise $e_j = 0 \in U$. By (TIPS 1), each nonzero $e_j \in U$.

Thus $u \in (U \cap E_1) + \cdots + (U \cap E_m) = U$. Because each $(U \cap E_i) \subseteq E_i$.

For each $k \in \{2, ..., n\}$, $((U \cap E_1) + ... + (U \cap E_{k-1})) \cap (U \cap E_k) \subseteq (E_1 + ... + E_{k-1}) \cap E_k = \{0\} \square$

• Tips 3: Suppose W is a nonzero invar subsp of V under T. If $\dim V = m \geqslant 1$. Prove that $W = \operatorname{span}(v_{\alpha_1}, \dots, v_{\alpha_A})$ for some distinct $\alpha_1, \dots, \alpha_A \in \{1, \dots, m\}$.

SOLUTION:

Each span $(v_{\alpha_1}, \dots, v_{\alpha_A})$ is invar under T.

By (Tips 2), $U = (U \cap E_1) \oplus \cdots \oplus (U \cap E_m)$. Because each dim $E_k = 1$, $U \cap E_k = \{0\}$ or E_k .

There must be at least one k such that $E_k = U \cap E_k$, for if not, $U = \{0\}$ since $V = E_1 \oplus \cdots \oplus E_m$.

Let $\alpha_1, \dots, \alpha_A \in \{1, \dots, m\}$ be all the distinct indices for which $E_k = U \cap E_k$.

Thus $U = (U \cap E_1) \oplus \cdots \oplus (U \cap E_m) = E_{\alpha_1} \oplus \cdots E_{\alpha_A} = \operatorname{span}(v_{\alpha_1}, \dots, v_{\alpha_A}).$

1 Suppose $T \in \mathcal{L}(V)$ and U is a subsp of V . (a) If $U \subseteq \operatorname{null} T$, then U is invar under T . $\forall u \in U \subseteq \operatorname{null} T$, $Tu = 0 \in U$. (b) If range $T \subseteq U$, then U is invar under T . $\forall u \in U$, $Tu \in \operatorname{range} T \subseteq U$.	
• Suppose $S, T \in \mathcal{L}(V)$ are such that $ST = TS$. (a) Prove that $\operatorname{null}(T - \lambda I)$ is invar under S for any $\lambda \in \mathbf{F}$. (b) Prove that $\operatorname{range}(T - \lambda I)$ is invar under S for any $\lambda \in \mathbf{F}$.	
Solution: Note that $ST = TS \Rightarrow (T - \lambda I)S = S(T - \lambda I)$. (a) $(T - \lambda I)(v) = 0 \Rightarrow (T - \lambda I)(Sv) = (S(T - \lambda I))(v) = 0$. (b) $(T - \lambda I)(u) = v \in \text{range}(T - \lambda I) \Rightarrow Sv = (S(T - \lambda I))(u) = (T - \lambda I)(Su) \in \text{range}(T - \lambda I)$	ſ). □
• Suppose $S, T \in \mathcal{L}(V)$ are such that $ST = TS$.	
2 Show that $W = \text{null } T$ is invar under S . $\forall u \in W, Tu = 0 \Rightarrow STu = 0 = TSu \Rightarrow Su \in W$. 3 Show that $U = \text{range } T$ is invar under S . $\forall w \in U, \exists v \in V, Tv = w, TSv = STv = Sw \in U$.	
• Suppose $T \in \mathcal{L}(V)$ and V_1, \dots, V_m are invar subsps of V under T . 4 $\forall v_i \in V_i, Tv_i \in V_i \Rightarrow \forall v = v_1 + \dots + v_m \in V_1 + \dots + V_m, Tv = Tv_1 + \dots + Tv_m \in V_1 + \dots + V_m$. 5 $\forall v \in \bigcap_{i=1}^m V_i, Tv \in V_i, \forall i \in \{1, \dots, m\} \Rightarrow Tv \in \bigcap_{i=1}^m V_i$. Thus $\bigcap_{i=1}^m V_i$ is invar under T .	
6 Suppose U is an invar subsp of V under each $T \in \mathcal{L}(V)$. Show that $U = \{0\}$ or $U = \{0\}$ Solution: If $V = \{0\}$. Then we are done. Suppose $V \neq \{0\}$. We show the contrapositive: Suppose $U \neq \{0\}$ and $U \neq V$. Prove that $\exists T \in \mathcal{L}(V)$ such that U is not invar under T . Let W be such that $V = U \oplus W$. Define $T \in \mathcal{L}(V)$ by $T(u + w) = w$.	V.
• TIPS: Suppose $T \in \mathcal{L}(\mathbf{R}^2)$ is the counterclockwise rotation by the angle $\theta \in \mathbf{R}$. Define $\mathcal{C} \in \mathcal{L}(\mathbf{R}^2, \mathbf{C})$ by $\mathcal{C}(a, b) = a + \mathrm{i}b = r(\cos \alpha + \mathrm{i}\sin \alpha) \Rightarrow a = r\cos \alpha, b = r\sin \alpha$, where $r = a^2$ Then $(\cos \theta + \mathrm{i}\sin \theta)(a + \mathrm{i}b) = r(\cos(\alpha + \theta) + \mathrm{i}\sin(\alpha + \theta)) = \mathcal{C}^{-1}T(a, b)$. Hence $T(a, b) = (a\cos \theta - b\sin \theta, a\sin \theta + b\cos \theta)$. Now $\mathcal{M}(T) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.	$+b^{2}$.
EXAMPLE: OR 7 Suppose $T \in \mathcal{L}(\mathbb{R}^2)$ is defined by $T(x,y) = (-3y,x)$. Find all eigvals of T . Notice that $\mathcal{M}(T) = \begin{pmatrix} \cos 90^\circ & -3\sin 90^\circ \\ \sin 90^\circ & \cos 90^\circ \end{pmatrix}$. By $[5.8](a)$, we conclude that T has no eigvals.	
OR. Suppose λ is an eigval with an eigvec (x,y) . Then $(\lambda x, \lambda y) = (-3y, x) \Rightarrow -3y = \lambda^2 y \Rightarrow \lambda^2 = [$ Ignoring the possibility of $y = 0$, because $x = 0 \iff y = 0$. $]$	= −3. □
8 Define $T \in \mathcal{L}(\mathbf{F}^2)$ by $T(w,z) = (z,w)$. Find all eigenst and eigenst.	
SOLUTION: Suppose λ is an eigval with an eigvec (w,z) . Then $z=\lambda w$ and $w=\lambda z$. Thus $z=\lambda^2 z\Rightarrow \lambda^2=1$, ignoring the possibility of $z=0$ ($z=0 \Longleftrightarrow w=0$). Hence $\lambda_1=-1$ and $\lambda_2=1$ are all the eigvals of T . And $T(z,z)=(z,z)$, $T(z,-z)=(-z,z)$ \mathbb{Z} dim $\mathbb{F}^2=2$. Thus the set of all eigvecs is $\{(z,z),(z,-z):z\neq 0\}$.	z,z).

9 Define $T \in \mathcal{L}(\mathbf{F}^3)$ by $T(z_1, z_2, z_3) = (2z_2, 0, 5z_3)$. Find all eigens and eigens. **SOLUTION**: Suppose λ is an eigval with an eigvec (z_1, z_2, z_3) . Then $(2z_2, 0, 5z_3) = \lambda(z_1, z_2, z_3)$. We discuss in two cases: For $\lambda = 0$, $z_2 = z_3 = 0$ and z_1 can be arbitrary ($z_1 \neq 0$). For $\lambda \neq 0$, $z_2 = 0 = z_1$, and z_3 can be arbitrary ($z_3 \neq 0$), then $\lambda = 5$. The set of all eigvecs is $\{(0,0,w), (w,0,0) : w \neq 0\}$. **10** Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, x_2, x_3, ..., x_n) = (x_1, 2x_2, 3x_3, ..., nx_n)$ (a) Find all eigvals and eigvecs; (b) Find all invar subsps of V under T. **SOLUTION:** (a) Suppose $x = (x_1, x_2, x_3, ..., x_n)$ is an eigeve with an eigeval λ . Then $Tx = \lambda v = (x_1, 2x_2, 3x_3, ..., nx_n) = (\lambda x_1, \lambda x_2, \lambda x_3, ..., \lambda x_n).$ Hence 1, ..., n of length dim \mathbf{F}^n are all the eigvals. And $\{(0, ..., 0, x_k, 0, ..., 0) \in \mathbf{F}^n : x_k \neq 0, k = 1, ..., n\}$ is the set of all eigences. (b) Let $(e_1, ..., e_n)$ be the standard basis of \mathbf{F}^n . Let $V_k = \operatorname{span}(e_k)$. Then $V_1, ..., V_n$ are invar under T. Hence by (TIPS 3), every sum of V_1, \dots, V_n is a invar subsp of V under T. **18** Define the forward shift operator $T \in \mathcal{L}(\mathbf{F}^{\infty})$ by $T(z_1, z_2, \dots) = (0, z_1, z_2, \dots)$. Show that T has no eigvals. **SOLUTION**: Suppose λ is an eigval of T with an eigvec $(z_1, z_2, ...)$. Then $T(z_1, z_2, ...) = (\lambda z_1, \lambda z_2, ...) = (0, z_1, z_2, ...)$. Thus $\lambda z_1 = 0, \lambda z_k = z_{k-1}$. If $\lambda = 0$, then $\lambda z_2 = z_1 = 0 = \dots = z_k \Rightarrow (z_1, z_2, \dots) = 0 \Longrightarrow 0$ is not an eigval. If $\lambda \neq 0$, then $\lambda z_1 = 0 \Rightarrow z_1 = \dots = z_k = 0 \Longrightarrow \lambda$ is not an eigval. Now no $\lambda \in \mathbf{F}$ is an eigval **19** Suppose $n \in \mathbb{N}^+$. Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, ..., x_n) = (x_1 + ... + x_n, ..., x_1 + ... + x_n)$. *In other words, the entries of* $\mathcal{M}(T)$ *with resp to the standard basis are all* 1's. Find all eigvals and eigvecs of T. **SOLUTION:** Suppose λ is an eigval of T with an eigvec $(x_1, ..., x_n)$. Then $T(x_1,...,x_n) = (\lambda x_1,...,\lambda x_n) = (x_1 + ... + x_n,...,x_1 + ... + x_n).$ Thus $\lambda x_1 = \dots = \lambda x_n = x_1 + \dots + x_n$. For $\lambda = 0$, $x_1 + \dots + x_n = 0$ For $\lambda \neq 0$, $x_1 = \dots = x_n \Longrightarrow \lambda x_k = nx_k$ $\} \Rightarrow 0$, n are the eigvals of T. And the set of all eigens of T is $\{(x_1, \dots, x_n) \in \mathbb{F}^n \setminus \{0\} : x_1 + \dots + x_n = 0 \lor x_1 = \dots = x_n\}$. **20** Define the backward shift operator $S \in \mathcal{L}(\mathbf{F}^{\infty})$ by $S(z_1, z_2, z_3, \dots) = (z_2, z_3, \dots)$. (a) Show that every element of F is an eigval of S; (b) Find all eigvecs of S. **SOLUTION:** Suppose λ is an eigval of S with an eigvec $(z_1, z_2, ...)$. Then $S(z_1, z_2, ...) = (\lambda z_1, \lambda z_2, ...) = (z_2, z_3, ...)$. Thus for each $k \in \mathbb{N}^+, \lambda z_k = z_{k+1}$. If $\lambda=0$, then $\lambda z_1=z_2=\cdots=z_k=0$ for all k, while z_1 can be nonzero. Thus 0 is an eigval.

If $\lambda \neq 0$, then $\lambda^k z_1 = \lambda^{k-1} z_2 = \dots = \lambda z_k = z_{k+1}$, let $z_1 \neq 0 \Longrightarrow (1, \lambda, \lambda^2, \dots, \lambda^k, \dots)$ is an eigvec. Now each $\lambda \in \mathbf{F}$ is an eigval of T, with the corresponding eigenstain span $(1, \lambda, \lambda^2, \dots, \lambda^k, \dots)$.

11 Define $T: \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by $Tp = p'$. Find all eigenstand eigenstances.
SOLUTION:
Note that $\forall p \in \mathcal{P}(R) \setminus \{0\}$, $\deg p' < \deg p$. And $\deg 0 = -\infty$. Suppose λ is an eigval with an eigvec p . Assume that $\lambda \neq 0$. Then $\deg \lambda p > \deg p'$ while $\lambda p = p'$. Contradicts. Thus $\lambda = 0$.
Therefore $\deg \lambda p = -\infty = \deg p' \Rightarrow p \in \mathcal{P}_0(\mathbf{R})$. Hence the eigences are all the nonzero consts. \square
12 Define $T \in \mathcal{L}(\mathcal{P}_n(\mathbf{R}))$ by $(Tp)(x) = xp'(x)$ for all $x \in \mathbf{R}$. Find all eigenstand eigenstances.
SOLUTION:
Suppose λ is an eigval of T with an eigvec p , then $(Tp)(x) = xp'(x) = \lambda p(x)$. Let $p = a_0 + a_1x + \dots + a_nx^n$. Then $xp'(x) = a_1x + 2a_2x^2 + \dots + na_nx^n = \lambda a_0 + \lambda a_1x + \lambda a_2x^2 + \dots + \lambda a_nx^n$.
Define $S \in \mathcal{L}(\mathbf{F}^{n+1}, \mathcal{P}_n(\mathbf{R}))$ by $S(a_0, a_1,, a_n) = a_0 + a_1 x + \cdots + a_n x^n$.
Then $(S^{-1}TS)(a_0, a_1,, a_n) = (0 \cdot a_0, 1 \cdot a_1, 2 \cdot a_2,, n \cdot a_n)$. Thus $0, 1,, n$ are the eigvals of $S^{-1}TS$.
By Problem (15), 0, 1,, n are the eigvals of T . The set of all eigvecs is $\{cx^{\lambda}: c \neq 0, \lambda = 0, 1,, n\}$.
• Suppose V is finite-dim, $T \in \mathcal{L}(V), \lambda \in \mathbf{F}$.
13 Prove that $\forall \lambda \in \mathbf{F}, \exists \alpha \in \mathbf{F}, \alpha - \lambda < \frac{1}{1000}, (T - \alpha I)$ is inv.
Solution: Let $\alpha_k \in \mathbf{F}$ be such that $ \alpha_k - \lambda = \frac{1}{1000 + k}$ for each $k = 1,, \dim V + 1$.
Note that each $T \in \mathcal{L}(V)$ has at most dim V distinct eigvals.
Hence $\exists k = 1,, \dim V + 1$ such that α_k is not an eigval of T and therefore $(T - \alpha_k I)$ is inv.
• (4E 5.A.11) Prove that $\exists \ \delta > 0$ such that $(T - \alpha I)$ is inv for all $\alpha \in \mathbf{F}$ such that $0 < \alpha - \lambda < \delta$.
Solution:
If T has no eigvals, then $(T - \alpha I)$ is inje for all $\alpha \in \mathbf{F}$ and we are done.
Suppose $\lambda_1, \dots, \lambda_m$ are all the distinct eigvals of T . Let $\delta > 0$ be such that, for each eigval $\lambda_k, \lambda_k \notin (\lambda - \delta, \lambda) \cup (\lambda, \lambda + \delta)$.
So that for all $\alpha \in \mathbf{F}$ such that $0 < \alpha - \lambda < \delta$, $(T - \alpha I)$ is not inje.
Or. Let $\delta = \min\{ \lambda - \lambda_k : k \in \{1,, m\}, \lambda_k \neq \lambda\}.$
Then $\delta > 0$ and each $\lambda_k \neq \alpha$ [\iff $(T - \alpha I)$ is inv] for all $\alpha \in \mathbf{F}$ such that $0 < \alpha - \lambda < \delta$.
• (5.B.4 Or 4E 3.B.27) Suppose λ is an eigral of $P \in \mathcal{L}(V)$, $P^2 = P$. Prove that $\lambda = 0$ or $\lambda = 1$.
S OLUTION: Suppose λ is an eigval with an eigvec v . Then $P(Pv) = Pv \Rightarrow \lambda^2 v = \lambda v$. Thus $\lambda = 1$ or 0 . \square
14 Suppose $V = U \oplus W$, where U and W are nonzero subsps of V . Define $P \in \mathcal{L}(V)$ by $P(u + w) = u$ for each $u \in U$ and each $w \in W$. Find all eigvals and eigvecs of P .
SOLUTION:
Suppose λ is an eigval of P with an eigvec $(u + w)$.
Then $P(u+w) = u = \lambda u + \lambda w \Rightarrow (\lambda - 1)u + \lambda w = 0.$
Or. Note that $P _{\text{range }P} = I _{\text{range }P} \iff P^2 = P$. By (4E 5.A.8), 1 and 0 are the eigends.
By $[1.44]$, $(\lambda - 1)u = \lambda w = 0$, hence $\lambda = 0 \Leftrightarrow u = 0$, and $\lambda = 1 \Leftrightarrow w = 0$.
Thus $Pu = u$, $Pw = 0$. Hence the eigvals are 0 and 1, the set of all eigvecs of P is $U \cup W$.

15 Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is inv.

- (a) Prove that T and $S^{-1}TS$ have the same eigvals.
- (b) What is the relationship between the eigvecs of T and the eigvecs of $S^{-1}TS$?

SOLUTION:

(a) λ is an eigval of T with an eigvec $v \Rightarrow S^{-1}TS(\underline{S^{-1}v}) = S^{-1}Tv = S^{-1}(\lambda v) = \underline{\lambda S^{-1}v}$. λ is an eigval of $S^{-1}TS$ with an eigvec $v \Rightarrow S(S^{-1}TS)v = TSv = \lambda Sv$.

OR. Note that $S(S^{-1}TS)S^{-1} = T$. Hence every eigval of $S^{-1}TS$ is an eigval of $S(S^{-1}TS)S^{-1} = T$.

Or.
$$Tv = \lambda v \iff (TS)(u) = \lambda Su \iff (S^{-1}TS)(u) = \lambda u$$
. Where $v = Su$.
$$(S^{-1}TS)(u) = \lambda u \iff (S^{-1}T)(v) = \lambda S^{-1}v \iff Tv = \lambda v$$
. Where $u = S^{-1}v$.

(b) Because λ is an eigval of $T \iff \lambda$ is an eigval of $S^{-1}TS$.

(See [5.36].) Now
$$E(\lambda, T) = \{Su : u \in E(\lambda, S^{-1}TS)\}; E(\lambda, S^{-1}TS) = \{S^{-1}v : v \in E(\lambda, T)\}.$$

17 Give an example of an operator on \mathbb{R}^4 that has no real eigenls.

SOLUTION:

Let (e_1, e_2, e_3, e_4) be the standard basis of \mathbb{R}^4

Let
$$(e_1,e_2,e_3,e_4)$$
 be the standard basis of \mathbb{R}^4 . Define $T\in\mathcal{L}(\mathbb{R}^4)$ by $\mathcal{M}\big(T,\big(e_1,e_2,e_3,e_4\big)\big)=\begin{pmatrix}1&1&1&1\\-1&1&-1&-1\\3&8&11&5\\3&-8&-11&5\end{pmatrix}$. Suppose λ is an eigval of T with an eigvec (x,y,z,w) . Then we get
$$\begin{cases} (1-\lambda)x+y+z+w=0,\\-x+\big(1-\lambda\big)y-z-w=0,\\3x+8y+\big(11-\lambda\big)z+5w=0,\\3x-8y-11z+\big(5-\lambda\big)w=0. \end{cases}$$

$$(1 - \lambda)x + y + z + w = 0,$$

$$-x + (1 - \lambda)y - z - w = 0,$$

$$3x + 8y + (11 - \lambda)z + 5w = 0,$$

$$3x - 8y - 11z + (5 - \lambda)w = 0.$$

This set of linear equations has no solutions.

You can type it on https://zh.numberempire.com/equationsolver.php to check.

OR. Define
$$T \in \mathcal{L}(\mathbb{R}^4)$$
 by $T(x_1, x_2, x_3, x_4) = (-x_2, x_1, -x_4, x_3)$.

Suppose λ is an eigval of T with an eigvec (x, y, z, w).

Then
$$T(x, y, z, w) = (\lambda x, \lambda y, \lambda z, \lambda w) = (-y, x, -w, z) \implies \begin{cases} -y = \lambda x, x = \lambda y \Longrightarrow -xy = \lambda^2 xy \\ -w = \lambda z, z = \lambda w \Longrightarrow -zw = \lambda^2 zw \end{cases}$$

If $xy \neq 0$ or $zw \neq 0$, then $\lambda^2 = -1$, we fail.

Otherwise, $xy = 0 \Rightarrow x = y = 0$, for if $x \neq 0$, then $\lambda = 0 \Rightarrow x = 0$, contradicts.

Similarly,
$$y = z = w = 0$$
. Then we fail. Thus T has no eigvals.

• (4E 5.A.16) Suppose $B_V = (v_1, ..., v_n), T \in \mathcal{L}(V), \mathcal{M}(T, (v_1, ..., v_n)) = A.$ *Prove that if* λ *is an eigval of* T*, then* $|\lambda| \leq n \max\{|A_{j,k}| : 1 \leq j, k \leq n\}$.

SOLUTION:

Suppose v is an eigval of T correspond to λ . Let $v = c_1 v_1 + \cdots + c_n v_n$.

Because
$$\lambda c_1 v_1 + \dots + \lambda c_n v_n = c_1 T v_1 + \dots + c_n T v_n = \sum_{k=1}^n c_k \left(\sum_{j=1}^n A_{j,k} v_j \right)$$
.

We have
$$\lambda c_j = \sum_{k=1}^n c_k A_{j,k} \Longrightarrow |\lambda| |c_j| = \sum_{k=1}^n |c_k| |A_{j,k}|$$
 for each $j \in \{1, \dots, n\}$

Let
$$|c_1| = \max\{|c_1|, \dots, |c_n|\}$$
. Note that $|c_1| \neq 0$, for if not, $c_1 = \dots = c_n = 0 \Rightarrow v = 0$, contradicts.

Let
$$M = \max\{|A_{j,k}| : 1 \le j, k \le n\}$$
. Note that for each j , $\sum_{k=1}^{n} |A_{j,k}| \le \sum_{k=1}^{n} M = nM$.

Thus
$$|\lambda||c_j| = \sum_{k=1}^n |c_k||A_{j,k}| \Longrightarrow |\lambda| \leqslant \sum_{k=1}^n |A_{j,k}| \frac{|c_k|}{|c_j|} \leqslant \sum_{k=1}^n |A_{j,k}| \leqslant nM.$$

• (4E 5.A.15) Suppose $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$. Show that λ is an eigval of $T \iff \lambda$ is an eigval of the dual operator $T' \in \mathcal{L}(V')$.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec v.

Let *U* be invar such that $V = \text{span}(v) \oplus U$ [by (4E 5.A.39)].

Define $\psi \in V'$ by $\psi(cv + u) = c$.

Now $[T'(\psi)](cv + u) = \psi(cv + Tu) = \lambda cv = \lambda \psi(cv + u)$. Hence $T'(\psi) = \lambda \psi$.

(b) Suppose λ is an eigval T' with an eigvec ψ . Then $T'(\psi) = \psi \circ T = \lambda \psi$.

Note that
$$\psi \neq 0$$
, $\psi(Tv) = \lambda \psi(v)$ Thus $\exists v \in V \setminus \{0\}$, $Tv = \frac{\psi(Tv)}{\psi(v)}v = \lambda v$.

OR. [Only in Finite-dim] Using [5.6], (4E 3.F.17), [3.101] and (3.F.12).

 λ is an eigval of $T \iff (T - \lambda I_V)$ is not inv

$$\iff$$
 $(T - \lambda I_V)' = T' - \lambda I_{V'}$ is not inv $\iff \lambda$ is an eigval of T' .

24 Suppose $A \in \mathbb{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbb{F}^{n,1})$ by Tx = Ax.

- (a) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.
- (b) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.

SOLUTION:

Suppose
$$\lambda$$
 is an eigval of T with an eigvec x . Then $Tx = Ax = \begin{pmatrix} \sum_{k=1}^{n} A_{1,k} x_k \\ \vdots \\ \sum_{k=1}^{n} A_{n,k} x_k \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

(a) Suppose $\sum_{r=1}^{n} A_{R,c} = 1$ for each $R \in \{1, ..., n\}$.

Then if we let $x_1 = \cdots = x_n$, then $\lambda = 1$, and hence is an eigval of T.

(b) Suppose $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C \in \{1, ..., n\}$.

Then
$$\sum_{r=1}^{n} (Ax)_{r,r} = \sum_{r=1}^{n} (Ax)_{r,1} = \sum_{c=1}^{n} (A_{1,c} + \dots + A_{n,c}) x_c = \sum_{c=1}^{n} x_c = \lambda (x_1 + \dots + x_n).$$
Hence $\lambda = 1$ for all $x \in \mathbb{F}^{n,1}$ such that $\sum_{c=1}^{n} x_{c,1} \neq 0$.

OR. We show that (T - I) is not inv, so that $\lambda = 1$ is an eigval.

Because
$$(T - I)x = (A - I)x = \begin{pmatrix} \sum_{r=1}^{n} A_{1,r} x_r - x_1 \\ \vdots \\ \sum_{r=1}^{n} A_{n,r} x_r - x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Then
$$y_1 + \dots + y_n = \sum_{r=1}^n \sum_{c=1}^n (A_{r,c} x_c - x_r) = \sum_{c=1}^n x_c \sum_{r=1}^n A_{r,c} - \sum_{r=1}^n x_r = 0.$$

Thus range
$$(T-I)\subseteq \left\{ \begin{pmatrix} y_1 & \cdots & y_n \end{pmatrix}^t \in \mathbb{F}^{n,1}: y_1+\cdots+y_n=0 \right\}$$
. Hence $(T-I)$ is not surj. \square

Or. Let (e_1, \dots, e_n) be the standard basis of $\mathbf{F}^{n,1}$. Define $\psi \in (\mathbf{F}^{n,1})'$ by $\psi(e_k) = 1$.

Thus
$$(\psi \circ (T-I))(e_k) = \psi((\sum_{j=1}^n A_{j,k}e_j) - e_k) = (\sum_{j=1}^n A_{j,k}) - 1 = 0.$$

Which means that
$$\psi \circ (T - I) = 0$$
. $\mathbb{X} \psi \neq 0$. Hence $(T - I)$ is not inje.

OR. Define $S \in \mathcal{L}(\mathbf{F}^{n,1})$ by $Sx = A^tx$. Because the rows of A^t are the cols of A.

Now by (a), 1 is an eigval of *S*. Let $(\varphi_1, \dots, \varphi_n)$ be the dual basis of (e_1, \dots, e_n) .

Define
$$\Phi \in \mathcal{L}(\mathbf{F}^{n,1}, (\mathbf{F}^{1,n})')$$
 by $\Phi(e_k) = \varphi_k$. Note that $\mathcal{M}(T') = A^t$.

Now
$$(\Phi^{-1}T'\Phi)(e_k) = (\Phi^{-1}T')(\varphi_k) = \Phi^{-1}(\sum_{j=1}^n A_{k,j}\varphi_j) = \sum_{j=1}^n A_{k,j}e_j = A^te_k = Se_k.$$

Thus 1 is an eigval of $S = \Phi^{-1}T'\Phi$, so of T', [by Problem (15)], so of T, [by (4E 5.A.15)].

- Suppose $A \in \mathbb{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbb{F}^{1,n})$ by Tx = xA.
 - (a) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.
 - (b) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.

SOLUTION:

Suppose λ is an eigval with an eigvec x. Then $\left(\sum_{r=1}^n x_r A_{r,1} \cdots \sum_{r=1}^n x_r A_{r,n}\right) = \lambda \left(x_1 \cdots x_n\right)$.

(a) Suppose $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C \in \{1, ..., n\}$.

Thus if $x_1 = \cdots = x_n$, then $\lambda = 1$, hence is an eigval of T.

(b) Suppose $\sum_{c=1}^{n} A_{R,c} = 1$ for each $R \in \{1, ..., n\}$.

Thus
$$\sum_{c=1}^{n} (xA)_{\cdot,c} = \sum_{c=1}^{n} (A_{c,1} + \dots + A_{c,n}) x_c = \sum_{c=1}^{n} x_c = \lambda (x_1 + \dots + x_n).$$

Hence $\lambda = 1$, for all x such that $\sum_{r=1}^{n} x_{1,r} \neq 0$.

OR. We show that (T - I) is not inv, so that $\lambda = 1$ is an eigval.

Because
$$(T-I)x = x(A-\mathcal{M}(I)) = (\sum_{c=1}^{n} x_c A_{c,1} - x_1 \cdots \sum_{c=1}^{n} x_c A_{c,n} - x_n) = (y_1 \cdots y_n).$$

Then
$$y_1 + \dots + y_n = \sum_{c=1}^n \sum_{r=1}^n (x_r A_{r,c} - x_c) = \sum_{r=1}^n x_r \sum_{c=1}^n A_{r,c} - \sum_{c=1}^n x_c = 0.$$

Thus range
$$(T-I) \subseteq \{ (y_1 \quad \cdots \quad y_n) \in \mathbb{F}^{1,n} : y_1 + \cdots + y_n = 0 \}$$
. Hence $(T-I)$ is not surj. \square

OR. Let (e_1, \dots, e_n) be the standard basis of $\mathbf{F}^{1,n}$. Define $\psi \in (\mathbf{F}^{n,1})'$ by $\psi(e_k) = 1$.

Because
$$Te_k = e_k A = \begin{pmatrix} A_{k,1} & \cdots & A_{k,n} \end{pmatrix} = \sum_{i=1}^n A_{k,i} e_i$$
. Corollary: $\mathcal{M}(T) = A^t$.

$$(\psi \circ (T-I))(e_k) = (\sum_{i=1}^n A_{k,i}) - 1 = 0$$
. Then $\psi \circ (T-I) = 0$. $\not \subset \psi \neq 0$. $(T-I)$ is not inje. \Box

OR. Define $S \in \mathcal{L}(\mathbf{F}^{1,n})$ by $Sx = xA^t$. Because the rows of A are the cols of A^t .

Now by (a), 1 is an eigval of *S*. Let $(\varphi_1, ..., \varphi_n)$ be the dual basis of $(e_1, ..., e_n)$.

Define
$$\Phi \in \mathcal{L}\left(\mathbf{F}^{1,n}, (\mathbf{F}^{1,n})'\right)$$
 by $\Phi(e_k) = \varphi_k$. Because $\left[T'(\varphi_k)\right](e_j) = \varphi_k\left(\sum_{i=1}^n A_{j,i}e_i\right) = A_{j,k}$.

By (3.F.9),
$$T'(\varphi_k) = \sum_{j=1}^n A_{j,k} \varphi_j$$
. Corollary: $\mathcal{M}(T') = A = \mathcal{M}(T)^t$. FIXME: $\mathcal{M}(T)e_k = A^t e_k = e_k A$

Now
$$(\Phi^{-1}T'\Phi)(e_k) = (\Phi^{-1}T')(\varphi_k) = \Phi^{-1}(\sum_{j=1}^n A_{j,k}\varphi_j) = \sum_{j=1}^n A_{j,k}e_j = e_kA^t = Se_k.$$

Thus 1 is an eigval of $S = \Phi^{-1}T'\Phi$, so of T', [by Problem (15)], so of T, [by (4E 5.A.15)]. \square

- Suppose F = R, $T \in \mathcal{L}(V)$.
 - (a) [OR (9.11)] $\lambda \in \mathbf{R}$. Prove that λ is an eigval of $T \iff \lambda$ is an eigval of $T_{\mathbf{C}}$.
 - (b) [Or **16** Or [9.16]] $\lambda \in \mathbb{C}$. Prove that λ is an eigend of $T_{\mathbb{C}} \iff \overline{\lambda}$ is an eigend of $T_{\mathbb{C}}$.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec v.

Then
$$Tv = \lambda v \Longrightarrow T_{\mathbf{C}}(v + i0) = Tv + iT0 = \lambda v$$
. Thus λ is an eigval of $T_{\mathbf{C}}$.

Suppose λ is an eigval of $T_{\mathbf{C}}$ with an eigvec $v + \mathrm{i}u$.

Then
$$T_{\mathbf{C}}(v + \mathrm{i}u) = \lambda v + \mathrm{i}\lambda u \Longrightarrow Tv = \lambda v, Tu = \lambda u$$
. Thus λ is an eigval of T .

(Note that v + iu is nonzero \iff at least one of v, u is nonzero).

(b) Suppose λ is an eigval of $T_{\rm C}$ with an eigvec $v+{\rm i}u$. Then $T_{\rm C}(v+{\rm i}u)=Tv+{\rm i}Tu=\lambda(v+{\rm i}u)$.

Note that
$$\overline{T_{\mathbf{C}}(v+\mathrm{i}u)} = \overline{Tv+\mathrm{i}Tu} = Tv-\mathrm{i}Tu = T_{\mathbf{C}}(v-\mathrm{i}u) = T_{\mathbf{C}}(\overline{v+\mathrm{i}u}).$$

And that
$$\overline{\lambda(v+iu)} = \overline{\lambda}v - i\overline{\lambda}u = \overline{\lambda}(v-iu) = \overline{\lambda}(\overline{v+iu}).$$

Hence
$$\overline{\lambda}$$
 is an eigval of $T_{\rm C}$. To prove the other direction, notice that $\overline{\overline{\lambda}} = \lambda$.

Or. Suppose $\lambda = a + ib$ is an eigval of $T_{\mathbf{C}}$ with an eigvec v + iu.

Because
$$T_{\mathbf{C}}(v+\mathrm{i}u) = \lambda(v+\mathrm{i}u) = (av-bu)+\mathrm{i}(au+bv) = Tv+\mathrm{i}Tu \Longrightarrow Tv = av-bu$$
, $Tu = au+bv$.

Now
$$T_{\mathbf{C}}(\overline{v+\mathrm{i}u})=Tv-\mathrm{i}Tu=(av-bu)-\mathrm{i}(au+bv)=(a-\mathrm{i}b)(v-\mathrm{i}u)=\overline{\lambda}(\overline{v-\mathrm{i}u}).$$
 Similarly

(a) <i>Su</i>	ose $T \in \mathcal{L}(V)$ is inv. uppose $\lambda \in \mathbf{F}$ with $\lambda \neq 0$. Prove that λ is an eigval of $T \iff \lambda^{-1}$ is an eigval of T^{-1} pove that T and T^{-1} have the same eigvecs.	•
SOLUTION:	(a) $Tv = \lambda v \iff v = \lambda T^{-1}v \iff \lambda^{-1}v = T^{-1}v$. Where $v \neq 0$. (b) Notice that T is inv $\implies 0$ is not an eigval of T or T^{-1} . By (a), immediately.	
	ose $T \in \mathcal{L}(V)$ and \exists nonzero vecs u, w in V such that $Tu = 3w$, $Tw = 3u$. that 3 or -3 is an eigval of T .	
SOLUTION:	$T(u+w) = 3(u+w), \ T(u-w) = 3(w-u) = -3(u-w).$ Note that $u-w \ne 0$ or $u+w\ne 0$ OR. $T(Tu) = 9u \Rightarrow T^2 - 9 = (T-3I)(T+3I)$ is not injective $\Rightarrow 3$ or -3 is an eigval.	0.
23 Suppo	se $S,T \in \mathcal{L}(V)$. Prove that ST and TS have the same eigvals.	
SOLUTION:	Suppose λ is an eigval of ST with an eigvec v . Then $T(STv) = \lambda Tv = TS(Tv)$. If $Tv = 0$ (while $v \neq 0$), then T is not inje $\Rightarrow (TS - 0I)$ and $(ST - 0I)$ are not inje. Thus $\lambda = 0$ is an eigval of ST and TS with the same eigvec v . Otherwise, $Tv \neq 0$, then λ is an eigval of TS . Reversing the roles of T and S .	
,	Suppose $T \in \mathcal{L}(V)$ has dim V distinct eigvals and $S \in \mathcal{L}(V)$ has the same eigvecs ight not with the same eigvals). Prove that $ST = TS$.	
SOLUTION:	Let $n = \dim V$. For each $j \in \{1,, n\}$, let v_j be an eigence with eigenal λ_j of T and α_j of S . Then $B_V = (v_1,, v_n)$. Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$.	
Define .	Suppose V is finite-dim and $T \in \mathcal{L}(V)$. $A \in \mathcal{L}(\mathcal{L}(V)) \text{ by } \mathcal{A}(S) = TS \text{ for each } S \in \mathcal{L}(V).$ nat the set of eigvals of A .	
SOLUTION:		
Note Or. 1	pose λ is an eigval of T with an eigvec $v=v_1$. Let $B_V=(v_1,\ldots,v_m,\ldots,v_n)$. Let that span $(v)\subseteq \operatorname{null}(T-\lambda I)$. Define $S\in\mathcal{L}(V)$ by $S(v_j)=v$ for each $j\in\{1,\ldots,n\}$. Define $S\in\mathcal{L}(V)$ by $Sv_1=v_1$, $Sv_j=0$ for $j\geqslant 2$. Then $(T-\lambda I)Sv_1=0=(T-\lambda I)Sv_k=0$. In $(T-\lambda I)S=0$. Thus $\mathcal{A}(S)=TS=\lambda S$ while $S\neq 0$. Hence λ is an eigval of \mathcal{A} .	
The	pose λ is an eigval of \mathcal{A} with an eigvec S . In $\exists v \in V, 0 \neq u = S(v) \in V \Rightarrow Tu = (TS)v = (\lambda S)v = \lambda u$. Thus λ is an eigval T . Because $TS - \lambda S = (T - \lambda I)S = 0 \Rightarrow \{0\} \subsetneq \text{range } S \subseteq \text{null } (T - \lambda I)$. $(T - \lambda I)$ is not inje.	
COMMENT:	: If $\mathcal{A}(S) = ST$, $\forall S \in \mathcal{L}(V)$. Then the eigvals of \mathcal{A} are not the eigvals of T .	
	se $T \in \mathcal{L}(V)$ and u, w are eigvecs of T such that $u + w$ is also an eigvec of T . that u and w correspd to the same eigval.	
SOLUTION:	Suppose $\lambda_1, \lambda_2, \lambda_0$ are eigvals of T with eigvecs to $u, w, u + w$ respectively. Then $T(u+w) = \lambda_0(u+w) = Tu + Tw = \lambda_1 u + \lambda_2 w \Rightarrow (\lambda_0 - \lambda_1)u = (\lambda_2 - \lambda_0)w$. If (u,w) is linely depe, then let $w = cu$, therefore $\lambda_2 cu = Tw = cTu = \lambda_1 cu \Rightarrow \lambda_2 = \lambda_1$. Otherwise, (u,w) is linely inde. Then $\lambda_0 - \lambda_1 = \lambda_2 - \lambda_0 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_0$.	П

26 Suppose $T \in \mathcal{L}(V)$ is such that every nonzero vec in V is an eigvec of T. *Prove that T is a scalar multi of the identity operator.* **SOLUTION**: If dim V = 0, 1 then we are done. Suppose dim $V \ge 2$. Because $\forall v \in V, \exists ! \lambda_v \in F, Tv = \lambda_v v$. For any two distinct nonzero vecs $v, w \in V$, $T(v+w) = \lambda_{v+w}(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \Rightarrow (\lambda_{v+w} - \lambda_v)v = (\lambda_w - \lambda_{v+w})w.$ Or. For any two nonzero vecs $u, v \in V$, u, v are eigvecs. If $u + v \neq 0$, then u + v is also an eigvec. Otherwise, u + v = 0, then $Tu = -Tv = \lambda u = -\lambda v$. Thus by Problem (25), $\forall u, v \in V$, $Tu = \lambda u$, $Tv = \lambda v \Rightarrow \forall v \in V$, $Tv = \lambda v$. **27, 28** *Suppose V is finite-dim and* $k \in \{1, ..., \dim V - 1\}$. Suppose $T \in \mathcal{L}(V)$ is such that every subsp of V of dim k is invar under T. *Prove that T is a scalar multi of the identity operator.* **SOLUTION**: If dim $V \le 1$ then we are done. Suppose dim $V \ge 2$. We prove the contrapositive: If T is not a scalar multi of I. Then \exists subsp U of dim k not invar under T. By Problem (26), $\exists v \in V$ and $v \neq 0$ such that v is not an eigeec of T. Thus (v, Tv) is linely inde. Extend to $B_V = (v, Tv, u_1, ..., u_n)$. Let $U = \operatorname{span}(v, u_1, \dots, u_{k-1}) \Rightarrow U$ is not an invar subsp of V under T. Or. Suppose $0 \neq v = v_1 \in V$. Extend to $B_V = (v_1, \dots, v_n)$. Suppose $Tv_1 = c_1v_1 + \dots + c_nv_n, \exists ! c_i \in F$. Consider a k-dim subsp $U = \operatorname{span}(v_1, v_{\alpha_1}, \dots, v_{\alpha_{k-1}})$. Where $\alpha_1, \dots, \alpha_{k-1} \in \{2, \dots, n\}$ are distinct. Because every subsp such U is invar. $Tv_1 = c_1v_1 + \cdots + c_nv_n \in U \Longrightarrow c_2 = \cdots = c_n = 0$. For if not, $\exists c_i \neq 0$, let $W = \operatorname{span}(v_1, v_{\beta_1}, \dots, v_{\beta_{k-1}})$, where each $\beta_j \in \{2, \dots, i-1, i+1, \dots, n\}$. Hence $Tv_1 = c_1v_1$. Because $v_1 = v \in V$ is arbitrary. We conclude that $T = \lambda I$ for some $\lambda \in F$. Or. For each $k \in \{1, ..., \dim V - 1\}$, define P(k): if every subsp of dim k is invar, then $T = \lambda I$. (i) If every subsp of dim 1 is invar, then by Problem (26), $T = \lambda I$. Thus P(1) holds. (ii) Assume that P(k) holds for $k \in \{1, ..., \dim V - 1\}$. And every subsp of dim k + 1 is invar. Let *U* be a subsp of dim *k*. If dim $U = \dim V - 1$ then extend B_U to B_V and we are done. Suppose dim *U* ∈ $\{1, ..., \dim V - 2\}$. Choose two linely inde vecs $v, w \notin U$. Because $U \oplus \text{span}(v)$ and $U \oplus \text{span}(w)$ of dim k + 1 are invar. Suppose $u \in U$. Let $Tu = a_1u_1 + bv = a_2u_2 + cw$, $\exists ! u_1, u_2 \in U$, $a_1, a_2, b, c \in F$. Now $a_1u_1 - a_2u_2 = cw - bv \in U \cap \text{span}(v) = \{0\} \Rightarrow b = c = 0$. Thus $Tu \in U$. Because P(k) holds, we conclude that $T = \lambda I$. Thus P(k + 1) holds. **29** Suppose $T \in \mathcal{L}(V)$ and range T is finite-dim. *Prove that T has at most* $1 + \dim range T$ *distinct eigvals.* **SOLUTION:** Let $\lambda_1, \dots, \lambda_m$ be the distinct eigvals of T with corresponding eigens v_1, \dots, v_m . (Because range *T* is finite-dim. The correspd eigvals are finite.) Then $(v_1, ..., v_m)$ linely inde $\Longrightarrow (\lambda_1 v_1, ..., \lambda_m v_m)$ linely inde, if each $\lambda_k \neq 0$. Otherwise, $\exists ! \lambda_k = 0$. Now $(\lambda_1 v_1, \dots, \lambda_{k-1} v_{k-1}, \lambda_{k+1} v_{k+1}, \dots, \lambda_m v_m)$ is linely inde. Hence, by [2.23], $m-1 \leq \dim \operatorname{range} T$. **30** Suppose $T \in \mathcal{L}(\mathbb{R}^3)$ and $-4, 5, \sqrt{7}$ are eigvals. Prove that $\exists x, Tx - 9x = (-4, 5, \sqrt{7})$.

SOLUTION: T has dim \mathbb{R}^3 eigvals not including $9 \Rightarrow (T - 9I)$ is inv. $x = (T - 9I)^{-1}(-4, 5, \sqrt{7})$.

31 Suppose V is finite-dim, and $v_1, \ldots, v_m \in V$. Prove that (v_1, \dots, v_m) is linely inde $\iff v_1, \dots, v_m$ are eigences of some T correspond to distinct eigends. **SOLUTION:** Suppose $(v_1, ..., v_m)$ is linely inde. Let $B_V = (v_1, ..., v_m, ..., v_n)$. Define $T \in \mathcal{L}(V)$ by $Tv_k = k \cdot v_k$ for each $k \in \{1, ..., m, ..., n\}$. Conversely by [5.10]. • Suppose $\lambda_1, ..., \lambda_n \in \mathbb{R}$ are distinct. (a) **32** Prove that $(e^{\lambda_1 x}, \dots, e^{\lambda_n x})$ is linely inde in \mathbb{R}^R . **HINT**: Let $V = \text{span}(e^{\lambda_1 x}, \dots, e^{\lambda_n x})$. Define $D \in \mathcal{L}(V)$ by Df = f'. Find eigenstand eigenstands of D. (b) [4E 36] Show that $(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$ is linely inde in \mathbb{R}^R . **SOLUTION:** (a) Define V and $D \in \mathcal{L}(V)$ as in HINT. Then because for each k, $D(e^{\lambda_k x}) = \lambda_k e^{\lambda_k x}$. Thus $\lambda_1, \dots, \lambda_n$ are distinct eigens of D. By [5.10], $(e^{\lambda_1 x}, \dots, e^{\lambda_n x})$ is linely inde in \mathbb{R}^R . (b) Let $V = \text{span}(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$. Define $D \in \mathcal{L}(V)$ by Df = f'. Then because $D(\cos(\lambda_k x)) = -\lambda_k \sin(\lambda_k x)$. $\mathbb{Z} D(\sin(\lambda_k x)) = \lambda_k \cos(\lambda_k x)$. Thus $D^2(\cos(\lambda_k x)) = -\lambda_k^2 \cos(\lambda_k x)$. Notice that $\lambda_1, \dots, \lambda_n$ are distinct $\Longrightarrow -\lambda_1^2, \dots, -\lambda_n^2$ are distinct. And dim V = n. Hence $-\lambda_1^2, \dots, -\lambda_n^2$ are all the eigvals of D^2 with correspd eigvecs $\cos(\lambda_1 x), \dots, \cos(\lambda_n x)$. And then $(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$ is linely inde in $\mathbb{R}^{\mathbb{R}}$. **33** Suppose $T \in \mathcal{L}(V)$. Prove that T/(range T) = 0. **SOLUTION**: $v + \text{range } T \in V/\text{range } T \Longrightarrow v + \text{range } T \in \text{null } (T/(\text{range } T))$. Hence T/(range T) = 0. \square **34** Suppose $T \in \mathcal{L}(V)$. Prove that T/(null T) is inje \iff $(\text{null } T) \cap (\text{range } T) = \{0\}$. **SOLUTION:** NOTICE that $(T/(\text{null }T))(u + \text{null }T) = Tu + \text{null }T = 0 \iff Tu \in (\text{null }T) \cap (\text{range }T)$. Now $T/(\operatorname{null} T)$ is inje $\iff u + \operatorname{null} T = 0 \iff Tu = 0 \iff (\operatorname{null} T) \cap (\operatorname{range} T) = \{0\}.$ • Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is an invar subsp of V under T. Define $T/U: V/U \rightarrow V/U$ by (T/U)(v+U) = Tv + U for each $v \in V$. (a) Show that T/U is well-defined and is linear. Requires that U is invarunder T. (b) [Or **35**] Show that each eigral of T/U is an eigral of T. **SOLUTION:** (a) $v + U = w + U \iff v - w \in U \implies T(v - w) \in U \iff Tv + U = Tw + U$. Hence T/U is well-defined. Now we show that T/U is linear. $(T/U)((v+U) + \lambda(w+U)) = T(v+\lambda w) + U = (T/U)(v+U) + \lambda(T/U)(w)$. Checked. (b) Suppose λ is an eigval of T/U with an eigvec v+U. Then $Tv+U=\lambda v+U\Rightarrow (T-\lambda I)v=u\in U$. If $u = 0 \Rightarrow Tv = \lambda v$, then we are done. Otherwise, we discuss in two cases. If $(T - \lambda I)|_{II}$ is inv. Then $\exists ! w \in U$, $(T - \lambda I)(w) = u = (T - \lambda I)v \Rightarrow T(v + w) = \lambda(v + w)$. Note that $v + w \neq 0$, for if not, $v \in U \Rightarrow v + U = 0$, contradicts. Thus λ is an eigval of T. If $(T - \lambda I)|_{II}$ is not inv. Then because V is finite-dim, $(T - \lambda I)|_{II}$ is not inje, so that $\exists w \in \text{null } (T - \lambda I)|_{U}, w \neq 0, (T - \lambda I)w = 0 \Rightarrow Tw = \lambda w.$ Or. Let $B_U = (u_1, \dots, u_m)$. Then $((T - \lambda I)v, (T - \lambda I)u_1, \dots, (T - \lambda I)u_m)$ is linely inde in U. So that $a_0(T - \lambda I)v + a_1(T - \lambda I)u_1 + \dots + a_m(T - \lambda I)u_m = 0, \exists a_0, a_1, \dots, a_m \in \mathbf{F}$ with some $a_i \neq 0$. Let $w = a_0v + a_1u_1 + \cdots + a_mu_m \Longrightarrow Tw = \lambda w$. Note that $w \neq 0$, for if not, $a_0v \in U$, each $a_i = 0$. \square

Consider $V = \{ f \in \mathbb{R}^{\mathbb{R}} : \exists ! m \in \mathbb{N}, f \in \text{span}(1, e^x,, e^{mx}) \}$. Note that V is infinite-dim. And a subsp $U = \{ f \in \mathbb{R}^{\mathbb{R}} : \exists ! m \in \mathbb{N}^+, f \in \text{span}(e^x,, e^{mx}) \}$. Define $T \in \mathcal{L}(V)$ by $Tf = e^x f$. Then range $T = U$ is invar under T . Consider $(T/U)(1+U) = e^x + U = 0 \Longrightarrow 0$ is an eigval of T/U but is not an eigval of T . $[\text{null } T = \{0\}, \text{ for if not, } \exists f \in V \setminus \{0\}, (Tf)(x) = e^x f(x) = 0, \forall x \in \mathbb{R} \Rightarrow f = 0, \text{ contradicts. }]$	
(4E 5.A.39) Suppose V is finite-dim and $T \in \mathcal{L}(V)$.	
Prove that T has an eigval $\iff \exists$ an invar subsp U under T of dimension dim $V-1$.	
SOLUTION: (a) Suppose λ is an eigval of T with an eigvec v . (If dim $V=1$, then $U=\{0\}$ and we are done.)
Extend $v_1 = v$ to $B_V = (v_1, v_2 \dots, v_n)$.	,
Step 1. If $\exists w_1 \in \text{span}(v_2,, v_n)$ such that $0 \neq Tw_1 \in \text{span}(v_1)$.	
Then extend $w_1 = \alpha_{1,2}$ to a basis of span (v_2, \dots, v_n) as $(\alpha_{1,2}, \dots, \alpha_{1,n})$.	
Otherwise, we stop at step 1.	
Step 2. If $\exists w_2 \in \text{span}(\alpha_{1,3}, \dots, \alpha_{1,n})$ such that $0 \neq Tw_2 \in \text{span}(v_1, w_1)$.	
Then extend $w_2 = \alpha_{2,3}$ to a basis of span $(\alpha_{1,3}, \dots, \alpha_{1,n})$ as $(\alpha_{2,3}, \dots, \alpha_{2,n})$.	
Otherwise, we stop at step 2.	
Step k. If $\exists w_k \in \text{span}(\alpha_{k-1,k+1},,\alpha_{k-1,n})$ such that $0 \neq Tw_k \in \text{span}(v_1,w_1,,w_{k-1})$,	
Then extend $w_k = \alpha_{k,k+1}$ to a basis of span $(\alpha_{k-1,k+1}, \dots, \alpha_{k-1,n})$ as $(\alpha_{k,k+1}, \dots, \alpha_{k,n})$. Otherwise, we stop at step k .	
Finally, we stop at step m , thus we get $(v_1, w_1, \dots, w_{m-1})$ and $(\alpha_{m-1,m}, \dots, \alpha_{m-1,n})$, range $T _{\text{span}(w_1, \dots, w_{m-1})} = \text{span}(v_1, w_1, \dots, w_{m-2}) \Rightarrow \dim \text{null } T _{\text{span}(w_1, \dots, w_{m-1})} = 0$, $\underbrace{\text{span}(v_1, w_1, \dots, w_{m-1})}_{\dim m}$ and $\underbrace{\text{span}(\alpha_{m-1,m}, \dots, \alpha_{m-1,n})}_{\dim (n-m)}$ are invar under T .	
Let $U = \operatorname{span}(\alpha_{m-1,m}, \dots, \alpha_{m-1,n}) \oplus \operatorname{span}(v_1, w_1, \dots, w_{m-2})$ and we are done.	
COMMENT: Both span $(v_2,,v_n)$ and $U \oplus \text{span}(w_{m-1})$ are in $S_V \text{span}(v_1)$.	
If $T _U$ is inv, then by the similar algorithm, we can extend U to an invar subsp.	
Or. Note that dim null $(T - \lambda I) \ge 1$. And dim range $(T - \lambda I) \le \dim V - 1$.	
Let $B_{\text{range}}(T-\lambda I) = (w_1,, w_m), B_V = (w_1,, w_m, u_1,, u_n).$	
If $m = \dim V - 1$. $[\iff n = 0.]$ Then range $(T - \lambda I)$ is an invar subsp of dim dim $V - 1$. Otherwise, choose $k \in \{1,, n\}$ and then let $U = \operatorname{span}(w_1,, w_m, u_1,, u_{k-1}, u_{k+1},, u_n)$ By Problem (1)(b), U is invar under $(T - \lambda I)$. Now $u \in U \Rightarrow (T - \lambda I)(u) \in U \Rightarrow Tu \in U$.	١.
(b) Suppose U is an invar subsp under T of dim $m = \dim V - 1$. (If $m = 0$, then we are done.) Let $B_U = (u_1, \dots, u_m)$, $B_V = (u_0, u_1, \dots, u_m)$. We discuss in cases: (I) If $Tu_0 \in U$, then range $T = U$ so that T is not surj \iff null $T \neq \{0\} \iff 0$ is an eigval of T (II) If $Tu_0 \notin U$, then $Tu_0 = a_0u_0 + a_1u_1 + \dots + a_mu_m$. If range $T _U = U \iff a_1 = \dots = a_m = 0 \iff Tu_0 \in \operatorname{span}(u_0)$ then we are done.	
Otherwise, $T _U : U \to U$ is not surj, so is not inje. Thus 0 is an eigval of $T _U$, so of T .	
Or. Consider $T/U \in \mathcal{L}(V/U)$. Because dim $V/U = 1$. $\exists \lambda \in \mathbf{F}, T/U = \lambda I$. By Problem (35).	П
$\sum_{i=1}^{n} Constact 1/\alpha \subset \sum_{i=1}^{n} C_i \cap \alpha_i$	Ш

36 Prove or give a counterexample: The result in Exercise 35 is still true if V is infinite-dim.

5.B: I [See 5.B: II below.]

COMMENT: 下面,为了照顾原书 5.B 节两版过大的差距,特别将此节补注分成 I 和 II 两部分。 又考虑到第 4 版中 5.B 节的「本征值与极小多项式」与「奇维度实向量空间的本征值」 (相当一部分是从原第 3 版 8.C 节挪过来的)是对原第 3 版「多项式作用于算子」与 「本征值的存在性」(也即第 3 版 5.B 前半部分)的极大扩充,这一扩充也大大改变了 原第 3 版后半部分的「上三角矩阵」这一小节,故而将第 4 版 5.B 节放在第 3 版前面。

I 部分除了覆盖第 4 版 5.B 节全部和第 3 版 5.B 节前半部分与之相关的所有习题,还会覆盖第 4 版 5.A 节末。

II 部分除了覆盖第 3 版 5.B 节后半部分 [上三角矩阵] 这一小节,还会覆盖第 4 版 5.C 节;并且,下面 5.C 还会覆盖第 4 版 5.D 节。

```
[注:[8.40] OR (4E 5.22) — mini poly;

[8.44,8.45] OR (4E 5.25,5.26) — how to find the mini poly;

[8.49] OR (4E 5.27) — eigvals are the zeros of the mini poly;

[8.46] OR (4E 5.29) — q(T) = 0 \Leftrightarrow q is a poly multi of the mini poly.]
```

1 2 3 5 6 7 8 10 11 12 13 18 19 | 2E Ch5.24 4E: 5.A.32, 5.A.33; 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29.

- (4E 5.A.33) Suppose $T \in \mathcal{L}(V)$ and m is a positive integer.
 - (a) Prove that T is inje \iff T^m is inje.
 - (b) Prove that T is surj \iff T^m is surj.

SOLUTION:

- (a) Suppose T^m is inje. Then $Tv=0 \Rightarrow T^{m-1}Tv=T^mv=0 \Rightarrow v=0$. Suppose T is inje. Then $T^mv=T^{m-1}v=\cdots=T^2v=Tv=v=0$.
- (b) Suppose T^m is surj. $\forall u \in V, \exists v \in V, T^m v = u = Tw$, let $w = T^{m-1}v$. Suppose T is surj. Then $\forall u \in V, \exists v_1, \dots, v_m \in V, T(v_1) = T^2v_2 = \dots = T^mv_m = u$.

• Note For [5.17]:

Suppose $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(\mathbf{F})$. Prove that $\operatorname{null} p(T)$ and $\operatorname{range} p(T)$ are invar under T. Solution: Using the commutativity in [5.10].

(a) Suppose $u \in \text{null } p(T)$. Then p(T)u = 0.

Thus
$$p(T)(Tu) = (p(T)T)u(Tp(T))u = T(p(T)u) = 0$$
. Hence $Tu \in \text{null } p(T)$.

(b) Suppose $u \in \text{range } p(T)$. Then $\exists v \in V \text{ such that } u = p(T)v$.

Thus
$$Tu = T(p(T)v) = p(T)(Tv) \in \text{range } p(T)$$
.

• Note For [5.21]: Every operator on a finite-dim nonzero complex vecsp has an eigval.

Suppose *V* is a finite-dim complex vecsp of dim n > 0 and $T \in \mathcal{L}(V)$.

Choose a nonzero $v \in V$. $(v, Tv, T^2v, ..., T^nv)$ of length n+1 is linely depe.

Suppose $a_0I + a_1T + \cdots + a_nT^n = 0$. Then $\exists a_i \neq 0$.

Thus \exists nonconst p of smallest degree ($\deg p > 0$) such that p(T)v = 0.

Because $\exists \lambda \in \mathbb{C}$ such that $p(\lambda) = 0 \Rightarrow \exists q \in \mathcal{P}(\mathbb{C}), p(z) = (z - \lambda)q(z), \forall z \in \mathbb{C}$.

Thus $0 = p(T)v = (T - \lambda I)(q(T)v)$. By the minimality of deg p and deg $q < \deg p$, $q(T)v \neq 0$.

Then $(T - \lambda I)$ is not inje. Thus λ is an eigval of T with eigvec q(T)v.

• **EXAMPLE**: an operator on a complex vecsp with no eigvals Define $T \in \mathcal{L}(\mathcal{P}(\mathbf{C}))$ by (Tp)(z) = zp(z).

Suppose $p \in \mathcal{P}(\mathbf{C})$ is a nonzero poly. Then $\deg Tp = \deg p + 1$, and thus $Tp \neq \lambda p$, $\forall \lambda \in \mathbf{C}$. Hence T has no eigvals.	
13 Suppose V is a complex vecsp and $T \in \mathcal{L}(V)$ has no eigvals. Prove that every subsp of V invar under T is either $\{0\}$ or infinite-dim. Solution: Suppose U is a finite-dim nonzero invar subsp on C . Then by $[5.21]$, $T _U$ has an eigval. \Box	
16 Suppose $0 \neq v \in V$. Define $S \in \mathcal{L}\big(\mathcal{P}_{\dim V}(\mathbf{C}), V\big)$ by $S(p) = p(T)v$. Prove $[5.21]$. Solution: Because $\dim \mathcal{P}_{\dim V}(\mathbf{C}) = \dim V + 1$. Then S is not inje. Hence $\exists 0 \neq p \in \mathcal{P}_{\dim V}(\mathbf{C}), p(T)v = 0$. Using $[4.14]$, write $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$. Apply T to both sides: $p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$. Thus at least one of $(T - \lambda_j I)$ is not inje $(D = C(T) \cap D)$ by $D = D$ by $D = D$ is not inje $(D = C(T) \cap D)$.	
17 Suppose $0 \neq v \in V$. Define $S \in \mathcal{L}\big(\mathcal{P}_{(\dim V)^2}(\mathbf{C}), \mathcal{L}(V)\big)$ by $S(p) = p(T)$. Prove [5.21]. Solution: Because $\dim \mathcal{P}_{(\dim V)^2}(\mathbf{C}) = (\dim V)^2 + 1$. Then S is not inje. Hence $\exists p \in \mathcal{P}_{(\dim V)^2}(\mathbf{C}) \setminus \{0\}, 0 = S(p) = p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$, where $c \neq 0$.	
Thus $(T - \lambda_1 I) \cdots (T - \lambda_m I) = 0 \Longrightarrow \exists j, (T - \lambda_j)$ is not inje. Comment: \exists monic $q \in \text{null } S \neq \{0\}$ of smallest degree, $S(q) = q(T) = 0$, then q is the <i>mini poly</i> .	
NOTE FOR [8.40]: def for mini poly $ \begin{aligned} & \text{Suppose } V \text{ is finite-dim } \text{ and } T \in \mathcal{L}(V). \\ & \text{Suppose } M_T^0 = \left\{p_j\right\}_{j \in \Gamma} \text{ is the set of all monic poly that give } 0 \text{ whenever } T \text{ is applied.} \\ & Prove \text{ that } \exists ! p_k \in M_T^0, \deg p_k = \min \{ \deg p_j \}_{j \in \Gamma} \leqslant \dim V. \\ & \text{SOLUTION: OR. Another Proof:} \\ & [\text{Existns Part}] \text{ We use induction on } \dim V. \\ & \text{(i) If } \dim V = 0, \operatorname{then } I = 0 \in \mathcal{L}(V) \text{ and } \operatorname{let } p = 1, \text{ we are done.} \\ & \text{(ii) Suppose } \dim V \geqslant 1. \\ & \text{Assume that } \dim V > 0 \text{ and that the desired result is true for all operators on all vecsps of smaller dim.} \\ & \text{Let } u \in V, u \neq 0. \text{ The list } (u, Tu, \dots, T^{\dim V}u) \text{ of length } (1 + \dim V) \text{ is linely depe.} \\ & \text{Then } \exists ! T^m \text{ of smallest degree such that } T^m u \in \operatorname{span}(u, Tu, \dots, T^{m-1}u). \\ & \text{Thus } \exists c_j \in F, c_0 u + c_1 T u + \dots + c_{m-1} T^{m-1} u + T^m u = 0. \\ & \text{Define } q \text{ by } q(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m. \\ & \text{Then } 0 = T^k(q(T)u) = q(T)(T^ku), \forall k \in \{1, \dots, m-1\} \subseteq N. \\ & \text{Because } (u, Tu, \dots, T^{m-1}u) \text{ is linely inde.} \\ & \text{Thus } \dim \operatorname{null} q(T) \geq m \Rightarrow \dim \operatorname{range} q(T) = \dim V - \dim \operatorname{null} q(T) \leqslant \dim V - m. \\ & \text{Let } W = \operatorname{range} q(T). \\ & \text{By assumption, } \exists s \in M_T^0 \text{ of smallest degree (and } \deg s \leqslant \dim W,) \text{ so } \operatorname{that } s(T _W) = 0. \\ & \text{Thus } sq \in M_T^0 \text{ and } \deg sq \leqslant \dim V. \end{aligned}$	
Suppose $p, q \in M_T^0$ are of the smallest degree. Then $(p-q)(T) = 0$. $\mathbb{Z} \deg (p-q) = m < \min \{ \deg p_j \}_{j \in \Gamma}$. Hence $p-q=0$, for if not, $\exists ! c \in \mathbb{F}, c(p-q) \in M_T^0$. Contradicts.	

• (4E 5.31, 4E 5.B.25 and 26) mini poly of restriction operator and mini poly of quotient operator Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is an invar subsp of V under T .	
Let p be the mini poly of T .	
(a) Prove that p is a poly multi of the mini poly of $T _{U}$.	
(b) Prove that p is a poly multi of the mini poly of T/U .	
(c) Prove that (mini poly of $T _U$) × (mini poly of T/U) is a poly multi of p.	
(d) Prove that the set of eigvals of T equals	
the union of the set of eigvals of $T _{U}$ and the set of eigvals of T/U .	
SOLUTION:	
(a) $p(T) = 0 \Rightarrow \forall u \in U, p(T)u = 0 \Rightarrow p(T _U) = 0 \Rightarrow \text{By } [8.46].$	
(b) $p(T) = 0 \Rightarrow \forall v \in V, p(T)v = 0 \Rightarrow p(T/U)(v + U) = p(T)v + U = 0.$	П
(c) Suppose r is the mini poly of $T _{U}$, s is the mini poly of T/U .	_
Because $\forall v \in V, s(T/U)(v+U) = s(T)v + U = 0$. So that $\forall v \in V$ but $v \notin U, s(T)v \in U$.	
$\forall u \in U, r(T _{U})u = r(T)u = 0.$	
Thus $\forall v \in V$ but $v \notin U$, $(rs)(T)v = r(s(T)v) = 0$.	
And $\forall u \in U, (rs)(T)u = r(s(T)u) = 0$ (because $s(T)u = s(T _U)u \in U$).	_
Hence $\forall v \in V, (rs)(T)v = 0 \Rightarrow (rs)(T) = 0.$	
(d) By [8.49], immediately.	
Prove that the mini poly p of $T_{\mathbf{C}}$ equals the mini poly q of T . Solution: (a) $\forall u + \mathrm{i}0 \in V_{\mathbf{C}}, p(T_{\mathbf{C}})(u) = p(T)u = 0 \Rightarrow \forall u \in V, p(T)u = 0 \Rightarrow p$ is a poly multi of q . (b) $q(T) = 0 \Rightarrow \forall u + \mathrm{i}v \in V_{\mathbf{C}}, q(T_{\mathbf{C}})(u + \mathrm{i}v) = q(T)u + \mathrm{i}q(T)v = 0 \Rightarrow q$ is a poly multi of p .	
• (4E 5.B.28) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that the mini poly p of $T' \in \mathcal{L}(V')$ equals the mini poly q of T .	
SOLUTION:	
(a) $\forall \varphi \in V', p(T')\varphi = \varphi \circ (p(T)) = 0 \Rightarrow \forall \varphi \in V', p(T) \in \text{null } \varphi \Rightarrow p(T) = 0, p \text{ is a poly multi-} \varphi$	of q.
(b) $q(T) = 0 \Rightarrow \forall \varphi \in V', \varphi \circ (q(T)) = q(T')\varphi = 0 \Rightarrow q(T) = 0, q \text{ is a poly multi of } p.$,
• (4E 5.32) Suppose $T \in \mathcal{L}(V)$ and p is the mini poly. Prove that T is not inje \iff the const term of p is 0 .	
Solution:	
<i>T</i> is not inje \iff 0 is an eigval of $T \iff$ 0 is a zero of $p \iff$ the const term of p is 0.	
Or. Because $p(0) = (z - 0)(z - \lambda_1) \cdots (z - \lambda_m) = 0 \Rightarrow T(T - \lambda_1 I) \cdots (T - \lambda_m I) = 0$	
$\not Z$ p is the mini poly $\Rightarrow q$ define by $q(z) = (z - \lambda_1) \cdots (z - \lambda_m)$ is such that $q(T) \neq 0$.	
Hence $0 = p(T) = Tq(T) \Rightarrow T$ is not inje.	
Conversely, suppose $(T - 0I)$ is not inje, then 0 is a zero of p , so that the const term is 0.	
• (4E 5.B.22) Suppose V is finite-dim, $T \in \mathcal{L}(V)$. Prove that T is inv $\iff I \in \operatorname{span}(T, T^2,, T^{\dim V})$	´).

Solution: Denote the mini poly by p, where for all $z \in \mathbb{F}$, $p(z) = a_0 + a_1 z + \cdots + z^m$.

Notice that V is finite-dim. T is inv \iff T is inje \iff $p(0) \neq 0$.

Hence $p(T) = 0 = a_0I + a_1T + \dots + T^m$, where $a_0 \neq 0$ and $m \leq \dim V$.	
6 Suppose $T \in \mathcal{L}(V)$ and U is a subsp of V invar under T . Prove that U is invar under $p(T)$ for every poly $p \in \mathcal{P}(\mathbf{F})$. Solution:	
$\forall u \in U, Tu \in U \Rightarrow Iu, Tu, T(Tu), \dots, T^m u \in U \Longrightarrow \forall a_k \in \mathbb{F}, (a_0 I + a_1 T + \dots + a_m T^m) u \in U.$	
• (4E 5.B.10, 23) Suppose V is finite-dim, $T\in\mathcal{L}(V)$ and p is the mini poly with degree Suppose $v\in V$.	? m.
(a) Prove that $\operatorname{span}(v, Tv, \dots, T^{m-1}v) = \operatorname{span}(v, Tv, \dots, T^{j-1}v)$ for some $j \leq m$. (b) Prove that $\operatorname{span}(v, Tv, \dots, T^{m-1}v) = \operatorname{span}(v, Tv, \dots, T^{m-1}v, \dots, T^nv)$.	
SOLUTION:	
COMMENT: By Note For [8.40], j has an upper bound $m-1$, m has an upper bound dim V .	
Write $p(z) = a_0 + a_1 z + \dots + z^m$ ($m \le \dim V$). If $v = 0$, then we are done. Suppose $v \ne 0$.	
(a) Suppose $j \in \mathbb{N}^+$ is the smallest such that $T^j v \in \text{span}(v, Tv,, T^{j-1}v) = U_0$. Then $j \leq m$.	
Write $T^jv = c_0v + c_1Tv + \cdots + c_{j-1}T^{j-1}v$. And because $T(T^kv) = T^{k+1} \in U_0$. U_0 is invar under By Problem (6), $\forall k \in \mathbb{N}$, $T^{j+k}v = T^k(T^jv) \in U_0$.	er T.
Thus $U_0 = \text{span}(v, Tv,, T^{j-1}v,, T^nv)$ for all $n \ge j-1$. Let $n = m-1$ and we are done.	
(b) Let $U = \text{span}(v, Tv,, T^{m-1}v)$.	
By (a), $U = U_0 = \text{span}(v, Tv,, T^{j-1},, T^{m-1},, T^n)$ for all $n \ge m-1$.	
• (4E 5.B.21) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that the mini poly p has degree at most $1 + \dim \operatorname{range} T$. If $\dim \operatorname{range} T < \dim V - 1$, then this result gives a better upper bound for the degree of mini poly.	
SOLUTION:	
If T is inje, then range $T = V$ and we are done. Now choose $0 \neq v \in \operatorname{null} T$, then $Tv + 0 \cdot v = 0$.	
1 is the smallest positive integer such that $T^1v \in \operatorname{span}(v, \dots, T^0v)$. Define q by $q(z) = z \Rightarrow q(T)v$	
Let $W = \operatorname{range} q(T) = \operatorname{range} T$. $\exists \operatorname{monic} s \in \mathcal{P}(\mathbf{F})$ of smallest degree ($\deg s \leqslant \dim W$), $s(T _W)$	
Hence sq is the mini poly (see Note For[8.40]) and deg (sq) = deg s + deg $q \le$ dim range T + 1	L. 🗆
19 Suppose V is finite-dim, dim $V > 1$, $T \in \mathcal{L}(V)$. Prove that $\{p(T) : p \in \mathcal{P}(F)\} \neq \mathcal{L}(V)$	(V).
SOLUTION: If $\forall S \in \mathcal{L}(V), \exists p \in \mathcal{P}(F), S = p(T)$. Then by [5.20], $\forall S_1, S_2 \in \mathcal{L}(V), S_1S_2 = S_2S_1$.	
Note that dim \geqslant 2. By (3.A.14), $\exists S_1, S_2 \in \mathcal{L}(V), S_1S_2 \neq S_2S_1$. Contradicts.	
Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Let $\mathcal{E} = \{q(T) : q \in \mathcal{P}(F)\}$. Prove that $\dim \mathcal{E}$ equals the degree of the mini poly of T .	
Solution:	
Because the list $(I, T,, T^{\left(\dim V\right)^2})$ of length $\dim \mathcal{L}(V) + 1$ is linely depe in $\dim \mathcal{L}(V)$.	
Suppose $m \in \mathbb{N}^+$ is the smallest such that $T^m = a_0 I + \dots + a_{m-1} T^{m-1}$.	
Then q defined by $q(z) = z^m - a_{m-1}z^{m-1} - \cdots - a_0$ is the mini poly (see [8.40]).	
For any $k \in \mathbb{N}^+$, $T^{m+k} = T^k(T^m) \in \text{span}(I, T,, T^{m-1}) = U$.	
Hence span $(I, T, \dots, T^{\left(\dim V\right)^2}) = \operatorname{span}(I, T, \dots, T^{\left(\dim V\right)^2 - 1}) = U.$	
Note that by the minimality of m , $(I, T,, T^{m-1})$ is linely inde.	

Define $\varphi \in \mathcal{L}(\mathcal{P}_{m-1}(\mathbf{F}), \mathcal{E})$ by $\varphi(p) = p(T)$. (a) Suppose p(T) = 0. $\mathbb{Z} \deg p \leq m - 1 \Rightarrow p = 0$. Then φ is inje. (b) $\forall S = a_0 I + a_1 T + \dots + a_{m-1} T^{m-1} \in \mathcal{E}$, define $p \in \mathcal{P}_{m-1}(F)$ by $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} \Rightarrow \varphi(p) = S$. Then φ is surj. Hence \mathcal{E} and $\mathcal{P}_{m-1}(\mathbf{F})$ are iso. \mathbf{X} dim $\mathcal{P}_{m-1}(\mathbf{F}) = m = \dim U$. • (4E 5.B.13) Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbf{F})$ is defined by $q(z) = a_0 + a_1 z + \dots + a_n z^n$, where $a_n \neq 0$, for all $z \in \mathbb{F}$. Denote the mini poly of T by p defined by $p(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m \text{ for all } z \in \mathbf{F}.$ *Prove that* $\exists ! r \in \mathcal{P}(\mathbf{F})$ *such that* q(T) = r(T), $\deg r < \deg p$. **SOLUTION:** If $\deg q < \deg p$, then we are done. If deg $q = \deg p$, notice that $p(T) = 0 = c_0 I + c_1 T + \dots + c_{m-1} T^{m-1} + T^m$ $\Rightarrow T^m = -c_0 I - c_1 T - \dots - c_{m-1} T^{m-1},$ define r by $r(z) = q(z) + \left[-a_m z^m + a_m \left(-c_0 - c_1 z - \dots - c_{m-1} z^{m-1} \right) \right]$ $= (a_0 - a_m c_0) + (a_1 - a_m c_1)z + \dots + (a_{m-1} - a_m c_{m-1})z^{m-1},$ hence r(T) = 0, deg r < m and we are done. Now suppose $\deg q \geqslant \deg p$. We use induction on $\deg q$. (i) $\deg q = \deg p$, then the desired result is true, as shown above. (ii) $\deg q > \deg p$, assume that the desired result is true for $\deg q = n$. Suppose $f \in \mathcal{P}(\mathbf{F})$ such that $f(z) = b_0 + b_1 z + \dots + b_n z^n + b_{n+1} z^{n+1}$. Apply the assumption to g defined by $g(z) = b_0 + b_1 z + \dots + b_n z^n$, getting *s* defined by $s(z) = d_0 + d_1 z + \cdots + d_{m-1} z^{m-1}$. Thus $g(T) = s(T) \Rightarrow f(T) = g(T) + b_{n+1}T^{n+1} = s(T) + b_{n+1}T^{n+1}$. Apply the assumption to t defined by $t(z) = z^n$, getting δ defined by $\delta(z) = c_0' + c_1'z + \dots + c_{m-1}'z^{m-1}$. Thus $t(T) = T^n = c_0' + c_1'z + \dots + c_{m-1}'z^{m-1} = \delta(T)$. \mathbb{X} span $(v, Tv, ..., T^{m-1}v)$ is invar under T. Hence $\exists ! k_j \in \mathbb{F}$, $T^{n+1} = T(T^n) = k_0 + k_1 z + \dots + k_{m-1} z^{m-1}$.

Thus dim $U = m = \dim \operatorname{span}(I, T, \dots, T^{\left(\dim V\right)^2 - 1}) = \dim \operatorname{span}(I, T, \dots, T^n)$ for all $m < n \in \mathbb{N}^+$.

• (4E 5.B.14) Suppose V is finite-dim, $T \in \mathcal{L}(V)$ has mini poly p defined by $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} + z^m$, $a_0 \neq 0$.

Find the mini poly of T^{-1} .

SOLUTION:

Notice that *V* is finite-dim. Then $p(0) = a_0 \neq 0 \Rightarrow 0$ is not a zero of $p \Rightarrow T - 0I = T$ is inv. Then $p(T) = a_0 I + a_1 T + \dots + T^m = 0$. Apply T^{-m} to both sides,

 $\Rightarrow f(T) = (d_0 + k_0) + (d_1 + k_1)z + \dots + (d_{m-1} + k_{m-1})z^{m-1} = h(T)$, thus defining h.

$$a_0(T^{-1})^m + a_1(T^{-1})^{m-1} + \dots + a_{m-1}T^{-1} + I = 0.$$

Define
$$q$$
 by $q(z) = z^m + \frac{a_1}{a_0} z^{m-1} + \dots + \frac{a_{m-1}}{a_0} z + \frac{1}{a_0}$ for all $z \in \mathbf{F}$.

And $f(T) = s(T) + b_{n+1}(k_0 + k_1T + \dots + k_{m-1}T^{m-1})$

We now show that $(T^{-1})^k \notin \text{span}(I, T^{-1}, ..., (T^{-1})^{k-1})$

```
for every k \in \{1, ..., m-1\} by contradiction, so that q is exactly the mini poly of T^{-1}.
  Suppose (T^{-1})^k \in \text{span}(I, T^{-1}, \dots, (T^{-1})^{k-1}).
  Then let (T^{-1})^k = b_0 I + b_1 T^{-1} + \dots + b_{k-1} T^{k-1}. Apply T^k to both sides,
           getting I = b_0 T^k + b_1 T^{k-1} + \dots + b_{k-1} T, hence T^k \in \text{span}(I, T, \dots, T^{k-1}).
  Thus f defined by f(z) = z^k + \frac{b_1}{b_0} z^{k-1} + \dots + \frac{b_{k-1}}{b_0} z - \frac{1}{b_0} is a poly multi of p.
  While \deg f < \deg p. Contradicts.
                                                                                                                                  • Note For [8.49]:
  Suppose V is a finite-dim complex vecsp and T \in \mathcal{L}(V).
  By [4.14], the mini poly has the form (z - \lambda_1) \cdots (z - \lambda_m),
  where \lambda_1, \dots, \lambda_m are all the eigends of T, possibly with repetitions.
• COMMENT:
  A nonzero poly has at most as many distinct zeros as its degree (see [4.12]).
  Thus by the upper bound for the deg of mini poly given in Note For [8.40], and by [8.49,]
  we can give an alternative proof of [5.13].
• NOTICE ( See also 4E 5.B.20,24 )
  Suppose \alpha_1, \dots, \alpha_n are all the distinct eigvals of T,
  and therefore are all the distinct zeros of the mini poly.
  Also, the mini poly of T is a poly multi of, but not equal to, (z - \alpha_1) \cdots (z - \alpha_n).
  If we define q by q(z) = (z - \alpha_1)^{\dim V - (n-1)} \cdots (z - \alpha_n)^{\dim V - (n-1)},
  then q is a poly multi of the char poly (see [8.34] and [8.26])
  (Because dim V > n and n - 1 > 0, n \lceil \dim V - (n - 1) \rceil > \dim V.)
  The char poly has the form (z - \alpha_1)^{\gamma_1} \cdots (z - \alpha_n)^{\gamma_n}, where \gamma_1 + \cdots + \gamma_n = \dim V.
  The mini poly has the form (z - \alpha_1)^{\delta_1} \cdots (z - \alpha_n)^{\delta_n}, where 0 \le \delta_1 + \cdots + \delta_n \le \dim V.
10 Suppose T \in \mathcal{L}(V), \lambda is an eigval of T with an eigvec v.
    Prove that for any p \in \mathcal{P}(\mathbf{F}), p(T)v = p(\lambda)v.
SOLUTION:
  Suppose p is defined by p(z) = a_0 + a_1 z + \dots + a_m z^m for all z \in F. Because for any n \in \mathbb{N}^+, T^n v = \lambda^n v.
  Thus p(T)v = a_0v + a_1Tv + \dots + a_mT^mv = a_0v + a_1\lambda v + \dots + a_m\lambda^mv = p(\lambda)v.
                                                                                                                                  COMMENT: For any p \in \mathcal{P}(\mathbf{F}) such that p(z) = (z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_m)^{\alpha_m}, the result is true as well.
  Now we prove that (T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v = (\lambda - \lambda_1)^{\alpha_1} \cdots (\lambda - \lambda_m)^{\alpha_m} v.
  Define q_i by q_i(z) = (z - \lambda_i)^{\alpha_i} for all z \in \mathbf{F}.
  Because (a + b)^n = a^n + C_n^1 a^{n-1} b + \dots + C_n^k a^{n-k} b^k + \dots + C_n^n b^n.
  Let a = z, b = \lambda_i, n = \alpha_i, so we can write q_i(z) in the form a_0 + a_1 z + \cdots + a_m z^m.
  Hence q_i(T)v = q_i(\lambda)v \Rightarrow (T - \lambda_i I)^{\alpha_i}v = (\lambda - \lambda_i)^{\alpha_i}v.
  Then for each k \in \{2, ..., m\}, (T - \lambda_{k-1}I)^{\alpha_{k-1}} (T - \lambda_k I)^{\alpha_k} v
                                    = q_{k-1}(T)(q_k(T)v)
                                    = q_{k-1}(T)(q_k(\lambda)v)
                                    = q_{k-1}(\lambda)(q_k(\lambda)v)
```

 $= (\lambda - \lambda_{k-1})^{\alpha_{k-1}} (\lambda - \lambda_k)^{\alpha_k} v.$

So that $(T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v$

$$= q_1(T) \left(q_2(T) \left(\dots \left(q_m(T) v \right) \dots \right) \right)$$

$$= q_1(\lambda) \left(q_2(\lambda) \left(\dots \left(q_m(\lambda) v \right) \dots \right) \right)$$

$$= (\lambda - \lambda_1)^{\alpha_1} \dots \left(\lambda - \lambda_m \right)^{\alpha_m} v.$$

1 Suppose $T \in \mathcal{L}(V)$ and $\exists n \in \mathbb{N}^+$ such that $T^n = 0$. Prove that $(I - T)$ is inv and $(I - T)^{-1} = I + T + \dots + T^{n-1}$. SOLUTION: Note that $1 - x^n = (1 - x)(1 + x + \dots + x^{n-1})$.	
$ (I-T)(1+T+\dots+T^{n-1}) = I-T^n = I (1+T+\dots+T^{n-1})(I-T) = I-T^n = I \Rightarrow (I-T)^{-1} = 1+T+\dots+T^{n-1}. $	
2 Suppose $T \in \mathcal{L}(V)$ and $(T-2I)(T-3I)(T-4I)=0$. Suppose λ is an eigval of T . Prove that $\lambda=2$ or $\lambda=3$ or $\lambda=4$.	
SOLUTION:	
Suppose v is an eigvec correspd to λ . Then for any $p \in \mathcal{P}(\mathbf{F})$, $p(T)v = p(\lambda)v$. Hence $0 = (T - 2I)(T - 3I)(T - 4I)v = (\lambda - 2)(\lambda - 3)(\lambda - 4)v$ while $v \neq 0 \Rightarrow \lambda = 2,3$ or 4.	
Comment: Note that $(T-2I)(T-3I)(T-4I) = 0$ is not inje, so that 2, 3, 4 are eigvals of T .	
But it doesn't mean that all the eigvals of T are exactly 2,3,4.	
7 [See 5.A.22] Suppose $T \in \mathcal{L}(V)$. Prove that 9 is an eigend of $T^2 \iff 3$ or -3 is an eigend of Solution:	fT.
(a) Suppose λ is an eigval of T with an eigvec v .	
Then $(T-3I)(T+3I)v = (\lambda -3)(\lambda +3)v = 0 \Rightarrow \lambda = \pm 3$.	
(b) Suppose 3 or -3 is an eigval of T with an eigvec v . Then $Tv = \pm 3v \Rightarrow T^2v = T(Tv) = 9v$	
OR. 9 is an eigval of $T^2 \Leftrightarrow (T^2 - 9I) = (T - 3I)(T + 3I)$ is not inje $\Leftrightarrow \pm 3$ is an eigval.	
3 Suppose $T \in \mathcal{L}(V)$, $T^2 = I$ and -1 is not an eigend of T . Prove that $T = I$.	
SOLUTION:	
$T^2 - I = (T + I)(T - I)$ is not inje, \mathbb{Z} –1 is not an eigval of $T \Longrightarrow \operatorname{By}$ TIPS.	
Or. Note that $\forall v \in V, v = [\frac{1}{2}(I-T)v] + [\frac{1}{2}(I+T)v].$	
$(I+T)((I-T)v) = 0 \Longrightarrow (I-T)v \in \text{null}(I+T) (I-T)((I+T)v) = 0 \Longrightarrow (I+T)v \in \text{null}(I-T) $ $\Rightarrow V = \text{null}(I+T) + \text{null}(I-T).$	
\mathbb{X} -1 is not an eigval of $T \iff (I + T)$ is inje \iff null $(I + T) = \{0\}$.	
Hence $V = \text{null } (I - T) \Rightarrow \text{range } (I - T) = \{0\}$. Thus $I - T = 0 \in \mathcal{L}(V) \Rightarrow T = I$.	
• (4E 5.A.32) Suppose $T \in \mathcal{L}(V)$ has no eigenst and $T^4 = I$. Prove that $T^2 = -I$.	
SOLUTION: Because $T^4 - I = (T^2 - I)(T^2 + I) = 0$ is not inje $\Rightarrow (T^2 - I)$ or $(T^2 + I)$ is not inje.	
$X = T$ has no eigvals $\Rightarrow (T^2 - I) = (T - I)(T + I)$ is inje. Hence $T^2 + I = 0 \in \mathcal{L}(V)$, for if not,	
$\exists v \in V, (T^2 + I)v \neq 0$ while $(T^2 - I)((T^2 + I)v) = 0$ but $(T^2 - I)$ is inje. Contradicts.	
Or. $\forall v \in V, 0 = (T^2 - I)(T^2 + I)v \iff 0 = (T^2 + I)v$. Hence $T^2 + I = 0$.	
Or. Note that $\forall v \in V, v = \left[\frac{1}{2}(I - T^2)v\right] + \left[\frac{1}{2}(I + T^2)v\right]$.	
$ (I+T^2)((I-T^2)v) = 0 \Longrightarrow (I-T^2)v \in \text{null}(I+T^2) $ $ (I-T^2)((I+T^2)v) = 0 \Longrightarrow (I+T^2)v \in \text{null}(I-T^2) $ $ \Rightarrow V = \text{null}(I+T^2) + \text{null}(I-T^2). $	
$\not \subset T$ has no eigvals \iff $(I-T^2)$ is inje \iff null $(I-T^2)=\{0\}$.	
Hence $V = \text{null}(I + T^2) \Rightarrow \text{range}(I + T^2) = \{0\}$. Thus $I + T^2 = 0 \in \mathcal{L}(V) \Rightarrow T^2 = -I$.	

8 [OR (4E 5.A.31)] Give an example of $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 = -I$.

SOLUTION:

Define $i \in \mathcal{L}(\mathbb{R}^2)$ by i(x,y) = (-y,x). Just like $i : \mathbb{C} \to \mathbb{C}$ defined by i(x+iy) = -y + ix.

Define
$$i^n \in \mathcal{L}(\mathbb{R}^2)$$
 by $i(x,y) = (\operatorname{Re}(i^n x + i^{n+1} y), \operatorname{Im}(i^n x + i^{n+1} y))$.

$$T^4 + I = (T^2 + iI)(T^2 - iI) = (T + i^{1/2}I)(T - i^{1/2}I)(T - (-i)^{1/2}I)(T + (-i)^{1/2}I).$$

Note that
$$i^{1/2} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$
, $(-i)^{1/2} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$. Hence $T = \pm (\pm i)^{1/2}I$.

Let
$$T = i^{1/2}I$$
 defined by $i^{1/2}(x,y) = \left(\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y, \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)$.

Or. Because
$$\mathcal{M}\left(T^4\right) = \begin{pmatrix} \cos\left(-\pi\right) & \sin\left(-\pi\right) \\ -\sin\left(-\pi\right) & \cos\left(-\pi\right) \end{pmatrix}$$
. Using $\begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix}^n = \begin{pmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{pmatrix}$.

We define
$$T \in \mathcal{L}(\mathbb{R}^2)$$
 such that $\mathcal{M}(T) = \begin{pmatrix} \cos(-\pi/4) & \sin(-\pi/4) \\ -\sin(-\pi/4) & \cos(-\pi/4) \end{pmatrix}$.

• (4E 5.B.12) Find the mini poly of T defined in (5.A.10).

SOLUTION: By (5.A.9) and [8.40, 8.49], 1, 2, ..., n are all the zeros of the mini poly of T.

• (4E 5.B.3) Find the mini poly of T defined in (5.A.19).

SOLUTION:

If n = 1 then 1 is the only eigval of T, and (z - 1) is the mini poly.

Because n and 0 are all the eigvals of T, X $\forall k \in \{1, ..., n\}$, $Te_k = e_1 + \cdots + e_n$; $T^2e_k = n(e_1 + \cdots + e_n)$.

Hence
$$T^2e_k = n(Te_k) \Rightarrow T^2 = nT \Rightarrow T^2 - nT = T(T-n) = 0$$
. Thus $(z(z-n))$ is the mini poly. \Box

• (4E 5.B.8) Find the mini poly of T. Where $T \in \mathcal{L}(\mathbb{R}^2)$ is the operator of counterclockwise rotation by θ , where $\theta \in \mathbb{R}^+$.

SOLUTION:

If $\theta = \pi + 2k\pi$, then T(w,z) = (-w,-z), $T^2 = I$ and the mini poly is z + 1.

If $\theta = 2k\pi$, then T = I and the mini poly is z - 1.

Otherwise (v, Tv) is linely inde. Then span $(v, Tv) = \mathbb{R}^2$. Note that $\nexists b \in \mathbb{F}, T - bI = 0$.

Thus suppose the mini poly p is defined by $p(z) = z^2 + bz + c$ for all $z \in \mathbb{R}$.

Because

$$L = |OD|$$

$$T^2 \overrightarrow{v} = \overrightarrow{OA}$$

$$T \overrightarrow{v} = \overrightarrow{OC}$$

$$\overrightarrow{v} = \overrightarrow{OB}$$

$$O$$

$$\begin{array}{c|c}
L = |OD| \\
T^{2} \overrightarrow{v} = \overrightarrow{OA} \\
T \overrightarrow{v} = \overrightarrow{OB} \\
\overrightarrow{v} = \overrightarrow{OB}
\end{array}$$

$$\begin{array}{c|c}
Tv = \frac{|\overrightarrow{v}|}{2L}(T^{2}v + v) \Rightarrow T = \frac{|\overrightarrow{v}|}{2L}(T^{2} + I) \\
L = |\overrightarrow{v}|\cos\theta \Rightarrow \frac{|\overrightarrow{v}|}{2L} = \frac{1}{2\cos\theta}$$

Hence $p(T) = T^2 - 2\cos\theta T + I = 0$ and $z^2 - 2\cos\theta z + 1$ is the mini poly of T.

OR. Let (e_1, e_2) be the standard basis of \mathbb{R}^2 . We use the pattern shown in [8.44].

Because $Te_1 = \cos\theta \ e_1 + \sin\theta \ e_2$, $T^2e_1 = \cos2\theta \ e_1 + \sin2\theta \ e_2$.

Thus
$$ce_1 + bTe_1 = -T^2e_1 \iff \begin{pmatrix} 1 & \cos\theta \\ 0 & \sin\theta \end{pmatrix} \begin{pmatrix} c \\ b \end{pmatrix} = \begin{pmatrix} -\cos 2\theta \\ -\sin 2\theta \end{pmatrix}$$
. Now det $=\sin\theta \neq 0, c=1, b=2\cos\theta$. \square

Or.
$$\mathcal{M}(T, (e_1, e_2)) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
. By (4E 5.B.11), the mini poly is $(z \pm 1)$ or $(z^2 - 2\cos \theta z + 1)$.

- (4E 5.B.11) Suppose V is a two-dim vecsp, $T \in \mathcal{L}(V)$, and the matrix of T with resp to some basis of V is $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$.
 - (a) Show that $T^2 (a + d)T + (ad bc)I = 0$.
 - (b) Show that the mini poly of T equals

$$\begin{cases} z - a & \text{if } b = c = 0 \text{ and } a = d, \\ z^2 - (a+d)z + (ad-bc) & \text{otherwise.} \end{cases}$$

SOLUTION:

(a) Suppose the basis is (v, w). Because $\begin{cases} Tv = av + bw \Rightarrow (T - aI)v = bw, \text{ then apply } (T - dI) \text{ to both sides} \\ Tw = cv + dw \Rightarrow (T - dI)w = cv, \text{ then apply } (T - aI) \text{ to both sides} \end{cases}$

Hence $(T - aI)(T - dI) = bcI \Rightarrow T^2 - (a + d)T + (ad - bc)I = 0$

(b) If b = c = 0 and a = d. Then $\mathcal{M}(T) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = a\mathcal{M}(I)$. Thus T = aI. Hence the mini poly is z - a.

Otherwise, by (a), $z^2 - (a + d)z + (ad - bc)$ is a poly multi of the mini poly.

Now we prove that $T \notin \text{span}(I)$, so that then the mini poly of T has exactly degree 2.

(At least one of the assumption of (I),(II) below is true.)

- (I) Suppose a = d, then $Tv = av + bw \notin \text{span}(v)$, $Tw = cv + aw \notin \text{span}(w)$.
- (II) Suppose at most one of b, c is not 0. If b = 0, then $Tw \notin \text{span}(w)$; If c = 0, then $Tv \notin \text{span}(v)$

• Suppose $S, T \in \mathcal{L}(V)$, S is inv, and $p \in \mathcal{P}(\mathbf{F})$. Prove that Sp(TS) = p(ST)S.

SOLUTION:

We prove $S(TS)^m = (ST)^m S$ for each $m \in \mathbb{N}$ by induction.

- (i) If m = 0, 1. Then $S(TS)^0 = I = (ST)^0 S$; $S(TS)^1 = (ST) S$.
- (ii) If m > 1. Assume that $S(TS)^m = (ST)^m S$.

Then $S(TS)^{m+1} = S(TS)^m(TS) = (ST)^m STS = (ST)^{m+1} S$.

Hence
$$\forall p \in \mathcal{P}(\mathbf{F}), Sp(TS) = \sum_{k=1}^{m} a_k S(TS)^k = \sum_{k=1}^{m} a_k p(ST)^k S = \left[\sum_{k=1}^{m} a_k (TS)^k\right] S.$$

COMMENT: $p(TS) = S^{-1}p(ST)S$, $p(ST) = Sp(TS)S^{-1}$.

COROLLARY: 5 Because *S* is inv, $T \in \mathcal{L}(V)$ is arbitrary $\iff R = ST$ is arbitrary.

Hence $\forall R \in \mathcal{L}(V)$, inv $S \in \mathcal{L}(V)$, $p(S^{-1}RS) = S^{-1}p(R)S$.

- (4E 5.B.7) Suppose $S, T \in \mathcal{L}(V)$. Let p, q be the mini polys of ST, TS respectively.
 - (a) If $V = \mathbf{F}^2$. Give an example such that $p \neq q$; (b) If S or T is inv. Prove that p = q.

SOLUTION:

- (a) Define S by S(x,y) = (x,x). Define T by T(x,y) = (0,y). Then ST(x,y) = 0, TS(x,y) = (0,x) for all $(x,y) \in F^2$. Thus $ST = 0 \neq TS$ and $(TS)^2 = 0$. Hence the mini poly of ST does not equal to the mini poly of TS.
- (b) Suppose S is inv. Because p,q are monic.

$$p(ST) = 0 = Sp(TS)S^{-1} \Rightarrow p(TS) = 0, p \text{ is a poly multi of } q$$

$$q(TS) = 0 = S^{-1}q(ST)S \Rightarrow q(ST) = 0, q \text{ is a poly multi of } p$$

$$\Rightarrow p = q.$$

Reversing the roles of *S* and *T*, we conclude that if *T* is inv, then p = q as well.

11 Suppose $\mathbf{F} = \mathbf{C}$, $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(\mathbf{C})$, and $\alpha \in \mathbf{C}$.

Prove that α *is an eigval of* $p(T) \iff \alpha = p(\lambda)$ *for some eigval* λ *of* T.

SOLUTION:

(a) Suppose α is an eigval of $p(T) \Leftrightarrow (p(T) - \alpha I)$ is not inje.

```
Write p(z) - \alpha = c(z - \lambda_1) \cdots (z - \lambda_m) \Rightarrow p(T) - \alpha I = c(T - \lambda_1 I) \cdots (T - \lambda_m I).
        By Tips, \exists (T - \lambda_i I) not inje. Thus p(\lambda_i) - \alpha = 0.
   (b) Suppose \alpha = p(\lambda) and \lambda is an eigval of T with an eigvec v. Then p(T)v = p(\lambda)v = \alpha v.
                                                                                                                                      Or. Define q by q(z) = p(z) - \alpha. \lambda is a zero of q.
        Because q(T)v = (p(T) - \alpha I)v = q(\lambda)v = (p(\lambda) - \alpha)v = 0.
        Hence q(T) is not inje \Rightarrow (p(T) - \alpha I) is not inje.
                                                                                                                                       12 [OR (4E.5.B.6)] Give an example of an operator on \mathbb{R}^2
    that shows the result above does not hold if C is replaced with R.
SOLUTION:
   Define T \in \mathcal{L}(\mathbb{R}^2) by T(w,z) = (-z,w).
   By Problem (4E 5.B.11), \mathcal{M}(T,((1,0),(0,1))) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow the mini poly of T is z^2 + 1.
   Define p by p(z) = z^2. Then p(T) = T^2 = -I. Thus p(T) has eigval -1.
   While \nexists \lambda \in \mathbf{R} such that -1 = p(\lambda) = \lambda^2.
                                                                                                                                       • (4E 5.B.17) Suppose V is finite-dim, T \in \mathcal{L}(V), \lambda \in \mathbf{F}, and p is the mini poly of T.
  Show that the mini poly of (T - \lambda I) is the poly q defined by q(z) = p(z + \lambda).
SOLUTION:
   q(T - \lambda I) = 0 \Rightarrow q is poly multi of the mini poly of (T - \lambda I).
   Suppose the degree of the mini poly of (T - \lambda I) is n, and the degree of the mini poly of T is m.
   By definition of mini poly,
   n is the smallest such that (T - \lambda I)^n \in \text{span}(I, (T - \lambda I), ..., (T - \lambda I)^{n-1});
   m is the smallest such that T^m \in \text{span}(I, T, ..., T^{m-1}).
   \not \subset T^k \in \operatorname{span}(I, T, \dots, T^{k-1}) \iff (T - \lambda)^k \in \operatorname{span}(I, (T - \lambda I), \dots, (T - \lambda I)^{k-1}).
   Thus n = m. \mathbb{X} q is monic. By the uniques of mini poly.
                                                                                                                                      • (4E 5.B.18) Suppose V is finite-dim, T \in \mathcal{L}(V), \lambda \in \mathbb{F} \setminus \{0\}, and p is the mini poly of T.
  Show that the mini poly of \lambda T is the poly q defined by q(z) = \lambda^{\deg p} p(\frac{z}{\lambda}).
SOLUTION:
   q(\lambda T) = \lambda^{\deg p} p(T) = 0 \Rightarrow q is a poly multi of the mini poly of \lambda T.
   Suppose the degree of the mini poly of \lambda T is n, and the degree of the mini poly of T is m.
   By definition of mini poly,
   n is the smallest such that (\lambda T)^n \in \text{span}(\lambda I, \lambda T, ..., (\lambda T)^{n-1});
   m is the smallest such that T^m \in \text{span}(I, T, ..., T^{m-1}).
   \mathbb{Z}(\lambda T)^k \in \operatorname{span}(\lambda I, \lambda T, \dots, (\lambda T)^{k-1}) \iff T^k \in \operatorname{span}(I, T, \dots, T^{k-1}).
   Thus n = m. \chi q is monic. By the uniques of mini poly.
                                                                                                                                       18 [OR (4E 5.B.15)] Suppose V is a finite-dim complex vecsp with dim V > 0 and T \in \mathcal{L}(V).
    Define f: \mathbb{C} \to \mathbb{R} by f(\lambda) = \dim \operatorname{range} (T - \lambda I).
    Prove that f is not a continuous function.
```

Let λ_0 be an eigval of T. Then $(T - \lambda_0 I)$ is not surj. Hence dim range $(T - \lambda_0 I) < \dim V$. Because T has finitely many eigvals. There exist a sequence of number $\{\lambda_n\}$ such that $\lim_{n \to \infty} \lambda_n = \lambda_0$.

SOLUTION: Note that V is finite-dim.

And λ_n is not an eigval of T for each $n \Rightarrow \dim \operatorname{range}(T - \lambda_n I) = \dim V \neq \dim \operatorname{range}(T - \lambda_0 I)$. Thus $f(\lambda_0) \neq \lim_{n \to \infty} f(\lambda_n)$.

• (4E 5.B.9) Suppose $T \in \mathcal{L}(V)$ is such that with resp to some basis of V, all entries of the matrix of T are rational numbers. Explain why all coefficients of the mini poly of T are rational numbers.

SOLUTION:

Let (v_1, \dots, v_n) denote the basis such that $\mathcal{M}(T, (v_1, \dots, v_n))_{j,k} = A_{j,k} \in \mathbb{Q}$ for all $j, k = 1, \dots, n$. Denote $\mathcal{M}(v_i, (v_1, ..., v_n))$ by x_i for each v_i .

Suppose p is the mini poly of T and $p(z) = z^m + \cdots + c_1 z + c_0$. Now we show that each $c_j \in \mathbb{Q}$. Note that $\forall s \in \mathbf{N}^+, \mathcal{M}(T^s) = \mathcal{M}(T)^s = A^s \in \mathbf{Q}^{n,n}$ and $T^s v_k = A^s_{1,k} v_1 + \dots + A^s_{n,k} v_n$ for all $k \in \mathbf{Q}^n$ $\{1, \dots, n\}.$

Thus
$$\begin{cases} \mathcal{M}(p(T)v_1) = (A^m + \dots + c_1 A + c_0 I)x_1 = \sum_{j=1}^n \left(A^m + \dots + c_1 A + c_0 I\right)_{j,1} x_j = 0; \\ \vdots \\ \mathcal{M}(p(T)v_n) = (A^m + \dots + c_1 A + c_0 I)x_n = \sum_{j=1}^n \left(A^m + \dots + c_1 A + c_0 I\right)_{j,n} x_j = 0; \\ \text{More clearly,} \\ \begin{cases} (A^m + \dots + c_1 A + c_0 I)_{1,1} = \dots = \left(A^m + \dots + c_1 A + c_0 I\right)_{n,1} = 0; \\ \vdots & \ddots & \vdots \\ (A^m + \dots + c_1 A + c_0 I)_{1,n} = \dots = \left(A^m + \dots + c_1 A + c_0 I\right)_{n,n} = 0; \\ \text{Hence we get a system of } n^2 \text{ linear equations in } m \text{ unknowns } c_0, c_1, \dots, c_{m-1}. \end{cases}$$

We conclude that $c_0, c_1, \dots, c_{m-1} \in \mathbb{Q}$.

• [OR (4E 5.B.16), OR (8.C.18)] Suppose $a_0, \ldots, a_{n-1} \in \mathbf{F}$. Let T be the operator on \mathbf{F}^n such that

$$\mathcal{M}(T) = \begin{pmatrix} 0 & & & -a_0 \\ 1 & 0 & & & -a_1 \\ & 1 & \ddots & & \vdots \\ & & \ddots & 0 & -a_{n-2} \\ 0 & & & 1 & -a_{n-1} \end{pmatrix}, \text{ with resp to the standard basis } (e_1, \dots, e_n).$$

Show that the mini poly of T is p defined by $p(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + z^n$.

 $\mathcal{M}(T)$ is called the **companion matrix** of the poly above. This exercise shows that every monic poly is the mini poly of some operator. Hence a formula or an algorithm that could produce exact eigvals for each operator on each \mathbf{F}^n could then produce exact zeros for each poly [by 8.36(b)]. Thus there is no such formula or algorithm. However, efficient numeric methods exist for obtaining very good approximations for the eigvals of an operator.

SOLUTION: Note that $(e_1, Te_1, ..., T^{n-1}e_1)$ is linely inde. $\mathbb X$ The deg of mini poly is at most n.

$$T^{n}e_{1} = \dots = T^{n-k}e_{1+k} = \dots = Te_{n} = -a_{0}e_{1} - a_{1}e_{2} - a_{2}e_{3} - \dots - a_{n-1}e_{n}$$

$$= (-a_{0}I - a_{1}T - a_{2}T^{2} - \dots - a_{n-1}T^{n-1})e_{1}. \text{ Thus } p(T)e_{1} = 0 = p(T)e_{j} \text{ for each } e_{j} = T^{j-1}e_{1}.$$

- EIGENVALUES ON ODD-DIMENSIONAL REAL VECTOR SPACES
- Even-Dimensional Null Space Suppose F = R, V is finite-dim, $T \in \mathcal{L}(V)$ and $b, c \in R$ with $b^2 < 4c$. *Prove that* dim null $(T^2 + bT + cI)$ *is an even number.*

SOLUTION:

Denote null $(T^2 + bT + cI)$ by R. Then $T|_R + bT|_R + cI_R = (T + bT + cI)|_R = 0 \in \mathcal{L}(R)$. Suppose λ is an eigval of T_R with an eigvec $v \in R$.

Then $0 = (T|_R^2 + bT|_R + cI_R)(v) = (\lambda^2 + \lambda b + c)v = ((\lambda + b)^2 + c - \frac{b^2}{4})v$. Because $c - \frac{b^2}{4} > 0$ and we have v = 0. Thus T_R has no eigvals. Let *U* be an invar subsp of *R* that has the largest, even dim among all invar subsps. Assume that $U \neq R$. Then $\exists w \in R$ but $w \notin U$. Let W be such that $(w, T|_R w)$ is a basis of W. Because $T|_R^2 w = -bT|_R w - cw \in W$. Hence W is an invar subsp of dim 2. Thus dim $(U + W) = \dim U + 2 - \dim(U \cap W)$, where $U \cap W = \{0\}$, for if not, because $w \notin U, T|_R w \in U$, $U \cap W$ is invar under $T|_R$ of one dim (impossible because $T|_R$ has no eigvecs). Hence U + W is even-dim invar subsp under $T|_{R}$, contradicting the maximality of dim U. Thus the assumption was incorrect. Hence $R = \text{null}(T^2 + bT + cI) = U$ has even dim. • OPERATORS ON ODD-DIMENSIONAL VECTOR SPACES HAVE EIGENVALUES (a) Suppose $\mathbf{F} = \mathbf{C}$. Then by [5.21], we are done. (b) Suppose F = R, V is finite-dim, and dim V = n is an odd number. Let $T \in \mathcal{L}(V)$ and the mini poly is p. Prove that T has an eigval.

SOLUTION:

- (i) If n = 1, then we are done.
- (ii) Suppose $n \ge 3$. Assume that every operator, on odd-dim vecsps of dim less than n, has an eigval. If p is a poly multi of $(x - \lambda)$ for some $\lambda \in \mathbb{R}$, then by [8.49] λ is an eigval of T and we are done. Now suppose $b, c \in \mathbb{R}$ such that $b^2 < 4c$ and p is a poly multi of $x^2 + bx + c$ (see [4.17]).

Then $\exists q \in \mathcal{P}(\mathbf{R})$ such that $p(x) = q(x)(x^2 + bx + c)$ for all $x \in \mathbf{R}$.

Now
$$0 = p(T) = (q(T))(T^2 + bT + cI)$$
, which means that $q(T)|_{\text{range}(T^2 + bT + cI)} = 0$.

Because deg $q < \deg p$ and p is the mini poly of T, hence range $(T^2 + bT + cI) \neq V$.

 \mathbb{Z} dim V is odd and dim null $(T^2 + bT + cI)$ is even (by our previous result).

Thus dim V – dim null $(T^2 + bT + cI)$ = dim range $(T^2 + bT + cI)$ is odd.

By [5.18], range $(T^2 + bT + cI)$ is an invar subsp of V under T that has odd dim less than n.

Our induction hypothesis now implies that $T|_{\text{range }(T^2+bT+cI)}$ has an eigval.

By mathematical induction.

• (2E Ch5.24) Suppose $\mathbf{F} = \mathbf{R}, T \in \mathcal{L}(V)$ has no eigvals. *Prove that every invar subsp of V under T is even-dim.*

SOLUTION:

Suppose *U* is such a subsp. Then $T|_{U} \in \mathcal{L}(U)$. We prove by contradiction.

If dim *U* is odd, then $T|_U$ has an eigval and so is *T*, so that \exists invar subsp of 1 dim, contradicts.

• (4E 5.B.29) Show that every operator on a finite-dim vecsp of dim ≥ 2 has a 2-dim invar subsp.

SOLUTION:

Using induction on dim *V*.

- (i) dim V = 2, we are done.
- (ii) dim V > 2. Assume that the desired result is true for vecsp of smaller dim.

Suppose *p* is the mini poly of degree *m* and $p(z) = (z - \lambda_1) \cdots (z - \lambda_m)$.

If $T = \lambda I$ ($\Leftrightarrow m = 1 \lor m = -\infty$), then we are done. ($m \ne 0$ because dim $V \ne 0$.)

Now define a *q* by $q(z) = (z - \lambda_1)(z - \lambda_2)$.

ENDED

5.B: II 9 14 15 20 | 4E: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14

• (4E 5.C.1) Prove or give a counterexample: If $T \in \mathcal{L}(V)$ and T^2 has an upper-trig matrix, then T has an upper-trig matrix.

SOLUTION:

- (4E 5.C.2) Suppose A and B are upper-trig matrices of the same size, with $\alpha_1, \ldots, \alpha_n$ on the diag of A and β_1, \ldots, β_n on the diag of B.
 - (a) Show that A + B is an upper-trig matrix with $\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n$ on the diag.
 - (b) Show that AB is an upper-trig matrix with $\alpha_1\beta_1, ..., \alpha_n\beta_n$ on the diag.

SOLUTION:

• (4E 5.C.3)

Suppose $T \in \mathcal{L}(V)$ is inv and $B = (v_1, \dots, v_n)$ is a basis of V such that $\mathcal{M}(T,B) = A$ is upper trig, with $\lambda_1, \dots, \lambda_n$ on the diag. Show that the matrix of $\mathcal{M}(T^{-1},B) = A^{-1}$ is also upper trig, with $\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}$ on the diag.

SOLUTION:

- **9** [4E 5.C.7] Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $v \in V$.
 - (a) Prove that \exists ! monic poly p_v of smallest degree such that $p_v(T)v = 0$.
 - (b) Prove that the mini poly of T is a poly multi of p_v .

SOLUTION:

14 [OR (4E 5.C.4)] Give an operator T such that with resp to some basis, $\mathcal{M}(T)_{k,k} = 0$ for each k, while T is inv.

SOLUTION:

15 [OR (4E 5.C.5)] Give an operator T such that with resp to some basis, $\mathcal{M}(T)_{k,k} \neq 0$ for each k, while T is not inv.

SOLUTION:

20 [OR (OR 4E 5.C.6)]

Suppose $\mathbf{F} = \mathbf{C}$, V is finite-dim, and $T \in \mathcal{L}(V)$.

Prove that if $k \in \{1, ..., \dim V\}$, then V has a k dim subsp invar under T.

SOLUTION:

- (4E 5.C.8) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\exists v \in V \setminus \{0\}$ such that $T^2v + 2Tv = -2v$.
 - (a) Prove that if F = R, then $\not\exists$ a basis of V with resp to which T has an upper-trig matrix.
 - (b) Prove that if $\mathbf{F} = \mathbf{C}$ and A is an upper-trig matrix that equals the matrix of T with resp to some basis of V, then $-1 + \mathrm{i}$ or $-1 \mathrm{i}$ appears on the diag of A.

SOLUTION:

• (4E 5.C.9) Suppose $B \in \mathbf{F}^{n,n}$ with complex entries. Prove that \exists inv $A \in \mathbf{F}^{n,n}$ with complex entries such that $A^{-1}BA$ is an upper-trig matrix. Solution:

- (4E 5.C.10) Suppose $T \in \mathcal{L}(V)$ and $(v_1, ..., v_n)$ is a basis of V. Show that the following are equi.
 - (a) The matrix of T with resp to $(v_1, ..., v_n)$ is lower trig.
 - (b) $\operatorname{span}(v_k, \dots, v_n)$ is invar under T for each $k = 1, \dots, n$.
 - (c) $Tv_k \in \text{span}(v_k, \dots, v_n)$ for each $k = 1, \dots, n$.

SOLUTION:

• (4E 5.C.11) Suppose $\mathbf{F} = \mathbf{C}$ and V is finite-dim. Prove that if $T \in \mathcal{L}(V)$, then T has a lower-trig matrix with resp to some basis.

SOLUTION:

- (4E 5.C.12) Suppose V is finite-dim, $T \in \mathcal{L}(V)$ has an upper-trig matrix with resp to some basis, and U is a subsp of V that is invar under T.
 - (a) Prove that $T|_{U}$ has an upper-trig matrix with resp to some basis of U.
 - (b) Prove that T/U has an upper-trig matrix with resp to some basis of V/U.

SOLUTION:

• (4E 5.C.13) Suppose V is finite-dim, $T \in \mathcal{L}(V)$. Suppose U is an invar subsp of V under T such that $T|_{U}$ has an upper-trig matrix and also T/U has an upper-trig matrix. Prove that T has an upper-trig matrix.

SOLUTION:

• (4E 5.C.14) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that T has an upper-trig matrix $\iff T'$ has an upper-trig matrix.

SOLUTION:

ENDED

5.C

XXXX

ENDED

5.E* (4E) 1 2 3 4 5 6 7 8 9 10

1 Give an example of two commuting operators $S, T \in \mathbf{F}^4$ such that there is an invar subsp of \mathbf{F}^4 under S but not under T and an invar subsp of \mathbf{F}^4 under T but not under S.

SOLUTION:

2 Suppose \mathcal{E} is a subset of $\mathcal{L}(V)$ and every element of \mathcal{E} is diagable. Prove that \exists a basis of V with resp to which every element of \mathcal{E} has a diag matrix \iff every pair of elements of \mathcal{E} commutes. This exercise extends [5.76], which considers the case in which \mathcal{E} contains only two elements.

For this exercise, \mathcal{E} may contain any number of elements, and \mathcal{E} may even be an infinite set.

SOLUTION:

- **3** Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Suppose $p \in \mathcal{P}(\mathbf{F})$.
 - (a) Prove that $\operatorname{null} p(S)$ is invar under T.
 - (b) Prove that range p(S) is invar under T.

See Note For [5.17] for the special case S = T.

SOLUTION:

4 Prove or give a counterexample:

A diag matrix A and an upper-trig matrix B of the same size commute.

SOLUTION:

5 *Prove that a pair of operators on a finite-dim vecsp commute* \iff *their dual operators commute.*

SOLUTION:

6 Suppose V is a finite-dim complex vecsp and $S, T \in \mathcal{L}(V)$ commute. Prove that $\exists \alpha, \lambda \in \mathbb{C}$ such that range $(S - \alpha I) + \text{range}(T - \lambda I) \neq V$.

SOLUTION:

7 Suppose V is a complex vecsp, $S \in \mathcal{L}(V)$ is diagable, and T commutes with S. Prove that \exists basis B of V such that S has a diag matrix with resp to B and T has an upper-trig matrix with resp to B.

SOLUTION:

8 Suppose m=3 in Example [5.72] and D_x , D_y are the commuting partial differentiation operators on $\mathcal{P}_3(\mathbf{R}^2)$ from that example. Find a basis of $\mathcal{P}_3(\mathbf{R}^2)$ with resp to which D_x and D_y each have an upper-trig matrix.

SOLUTION:

9 Suppose V is a finite-dim nonzero complex vecsp.

Suppose that $\mathcal{E} \subseteq \mathcal{L}(V)$ is such that S and T commute for all $S, T \in \mathcal{E}$.

- (a) Prove that $\exists v \in V$ is an eigrec for every element of \mathcal{E} .
- (b) Prove that \exists a basis of V with resp to which every element of \mathcal{E} has an upper-trig matrix.

SOLUTION:

10 Give an example of two commuting operators S, T on a finite-dim real vecsp such that S+T has a eigval that does not equal an eigval of S plus an eigval of T and ST has a eigval that does not equal an eigval of S times an eigval of S.

SOLUTION:

ENDED