Counting pattern-avoiding integer partitions

Nathan McNew Towson University

Based on joint work with Jonathan Bloom Lafayette College

PAlmetto Number Theory Series Clemson University December 14th, 2019

$$5 =$$

$$5 = 4+1 =$$

Identify partitions of an integer n with rows of boxes:

Such configuration are called Ferrers boards.

Partition Patterns

Definition

A partition α contains a partition μ if there exist some set of rows and columns that can be deleted from the ferrers board of α to obtain μ .

Partition Patterns

Definition

A partition α **contains** a partition μ if there exist some set of rows and columns that can be deleted from the ferrers board of α to obtain μ .

Example: $\alpha = (6, 5, 5, 5, 4, 4, 2, 2)$ contains $\mu = (4, 3, 3, 2, 2)$ since we can delete the rows and columns in red and get μ .

Partition Patterns

Definition

A partition α **contains** a partition μ if there exist some set of rows and columns that can be deleted from the ferrers board of α to obtain μ .

Example: $\alpha = (6, 5, 5, 5, 4, 4, 2, 2)$ contains $\mu = (4, 3, 3, 2, 2)$ since we can delete the rows and columns in red and get μ .

We will refer to a fixed partition μ as a **pattern**.

Pattern Avoidance

Definition

We say a partition α avoids a partition μ if it does not contain it.

Pattern Avoidance

Definition

We say a partition α avoids a partition μ if it does not contain it.

Example: $\alpha = (4, 2, 2, 2)$ avoids $\mu = (3, 2, 1)$ since there is no way to obtain μ by deleting rows/columns.

$$\mu = \square$$

Pattern Avoidance

Definition

We say a partition α avoids a partition μ if it does not contain it.

Example: $\alpha = (4, 2, 2, 2)$ avoids $\mu = (3, 2, 1)$ since there is no way to obtain μ by deleting rows/columns.

$$\mu =$$

We define $\operatorname{Av}_n(\mu)$ to be the set of all μ -avoiding partitions of $n \geq 0$ and set

$$Av(\mu) = \bigcup_{n \geq 0} Av_n(\mu).$$

Sequences

Motivating Question: For a fixed pattern μ , what can we say about the sequence

$$|Av_1(\mu)|, |Av_2(\mu)|, |Av_3(\mu)|, \dots ?$$

Sequences

Motivating Question: For a fixed pattern μ , what can we say about the sequence

$$|Av_1(\mu)|, |Av_2(\mu)|, |Av_3(\mu)|, \dots$$
?

We investigate the generating function

$$A_{\mu}(z) = \sum_{n \geq 0} |\mathsf{Av}_n(\mu)| z^n,$$

Sequences

Motivating Question: For a fixed pattern μ , what can we say about the sequence

$$|Av_1(\mu)|, |Av_2(\mu)|, |Av_3(\mu)|, \dots$$
?

We investigate the generating function

$$A_{\mu}(z) = \sum_{n \geq 0} |\mathsf{Av}_n(\mu)| z^n,$$

as well as the asymptotic growth rate of $|Av_n(\mu)|$.

Start with a few trivial cases:

• $\mu = (1)$.

Start with a few trivial cases:

• $\mu=$ (1). Every partition contains μ (Delete all rows after the first and all columns after the first. So $\operatorname{Av}_n(\mu)=0$ for all n.

- $\mu = (1)$. Every partition contains μ (Delete all rows after the first and all columns after the first. So $Av_n(\mu) = 0$ for all n.
- $\mu = (2) = \Box$

- $\mu = (1)$. Every partition contains μ (Delete all rows after the first and all columns after the first. So $Av_n(\mu) = 0$ for all n.
- $\mu = (2) = \square$. Any partition λ with $\lambda_1 > 1$ contains μ .

- $\mu = (1)$. Every partition contains μ (Delete all rows after the first and all columns after the first. So $\operatorname{Av}_n(\mu) = 0$ for all n.
- $\mu = (2) = \square$. Any partition λ with $\lambda_1 > 1$ contains μ . The only partition of size n avoiding μ is $n = 1 + 1 + \cdots 1$.

- $\mu = (1)$. Every partition contains μ (Delete all rows after the first and all columns after the first. So $\operatorname{Av}_n(\mu) = 0$ for all n.
- $\mu = (2) = \square$. Any partition λ with $\lambda_1 > 1$ contains μ . The only partition of size n avoiding μ is $n = 1 + 1 + \cdots 1$.

- $\mu = (1)$. Every partition contains μ (Delete all rows after the first and all columns after the first. So $\operatorname{Av}_n(\mu) = 0$ for all n.
- $\mu = (2) = \square$. Any partition λ with $\lambda_1 > 1$ contains μ . The only partition of size n avoiding μ is $n = 1 + 1 + \cdots 1$.

So
$$Av_n(\mu) = 1$$
, $A_{\mu}(z) = \frac{1}{1-z}$.

- $\mu = (1)$. Every partition contains μ (Delete all rows after the first and all columns after the first. So $Av_n(\mu) = 0$ for all n.
- $\mu = (2) = \square$. Any partition λ with $\lambda_1 > 1$ contains μ . The only partition of size *n* avoiding μ is $n = 1 + 1 + \cdots 1$.

So
$$Av_n(\mu) = 1$$
, $A_{\mu}(z) = \frac{1}{1-z}$.
• $\mu = (1,1) = \Box$.

•
$$\mu = (1,1) =$$

Start with a few trivial cases:

- $\mu = (1)$. Every partition contains μ (Delete all rows after the first and all columns after the first. So $Av_n(\mu) = 0$ for all n.
- $\mu = (2) = \square$. Any partition λ with $\lambda_1 > 1$ contains μ . The only partition of size *n* avoiding μ is $n = 1 + 1 + \cdots 1$.

So
$$Av_n(\mu) = 1$$
, $A_{\mu}(z) = \frac{1}{1-z}$

So $Av_n(\mu)=1$, $A_{\mu}(z)=\frac{1}{1-z}$. • $\mu=(1,1)=\square$. Any partition λ at least 2 parts contains μ .

Start with a few trivial cases:

- $\mu=$ (1). Every partition contains μ (Delete all rows after the first and all columns after the first. So $\operatorname{Av}_n(\mu)=0$ for all n.
- $\mu = (2) = \square$. Any partition λ with $\lambda_1 > 1$ contains μ . The only partition of size n avoiding μ is $n = 1 + 1 + \cdots 1$.

So
$$Av_n(\mu) = 1$$
, $A_{\mu}(z) = \frac{1}{1-z}$.

• $\mu = (1,1) = \square$. Any partition λ at least 2 parts contains μ . The only partition of size n avoiding μ is n = n.

Start with a few trivial cases:

- $\mu=$ (1). Every partition contains μ (Delete all rows after the first and all columns after the first. So $\operatorname{Av}_n(\mu)=0$ for all n.
- $\mu = (2) = \square$. Any partition λ with $\lambda_1 > 1$ contains μ . The only partition of size n avoiding μ is $n = 1 + 1 + \cdots 1$.

So
$$Av_n(\mu) = 1$$
, $A_{\mu}(z) = \frac{1}{1-z}$.

• $\mu = (1,1) = \square$. Any partition λ at least 2 parts contains μ . The only partition of size n avoiding μ is n = n.

Start with a few trivial cases:

- $\mu = (1)$. Every partition contains μ (Delete all rows after the first and all columns after the first. So $\operatorname{Av}_n(\mu) = 0$ for all n.
- $\mu = (2) = \square$. Any partition λ with $\lambda_1 > 1$ contains μ . The only partition of size n avoiding μ is $n = 1 + 1 + \cdots 1$.

So
$$Av_n(\mu) = 1$$
, $A_{\mu}(z) = \frac{1}{1-z}$.

• $\mu = (1,1) = \square$. Any partition λ at least 2 parts contains μ . The only partition of size n avoiding μ is n = n.

So
$$Av_n(\mu) = 1$$
, $A_{\mu}(z) = \frac{1}{1-z}$.

$$\mu = (2,1) = \square$$

$$\mu = (2,1) =$$
_____.

Any partition having two distinct part sizes will contain μ .

$$\mu = (2,1) =$$
_____.

Any partition having two distinct part sizes will contain μ .

 $\mathsf{Av}_nig((2,1)ig)$ contains all of the partitions of n having at most one part size.

$$\mu = (2,1) =$$
_____.

Any partition having two distinct part sizes will contain $\mu.$

 $Av_n((2,1))$ contains all of the partitions of n having at most one part size.

Rectangles!

$$\mu = (2,1) =$$
_____.

Any partition having two distinct part sizes will contain μ .

 $\mathsf{Av}_nig((2,1)ig)$ contains all of the partitions of n having at most one part size.

Rectangles!

How many rectangles have size n?

$$\mu = (2,1) =$$
_____.

Any partition having two distinct part sizes will contain μ .

 $\mathsf{Av}_nig((2,1)ig)$ contains all of the partitions of n having at most one part size.

Rectangles!

How many rectangles have size n? One for each divisor... Let $\sigma_0(n)$ be the number of divisors of n, then

$$\mathsf{Av}_n\big((2,1)\big) = \sigma_0(n)$$

$$1, 2, 2, 3, 2, 4, 2, 4, 3, 4, \dots$$

Wilf Equivalence

Notice that
$$|Av_n(2)| = |Av_n(1,1)| = 1$$
 for all $n \ge 1$.

Notice that $|Av_n(2)| = |Av_n(1,1)| = 1$ for all $n \ge 1$.

Definition

Patterns μ and τ are **Wilf equivalent** if $|Av_n(\mu)| = |Av_n(\tau)|$ for all $n \ge 1$.

Notice that $|Av_n(2)| = |Av_n(1,1)| = 1$ for all $n \ge 1$.

Definition

Patterns μ and τ are **Wilf equivalent** if $|Av_n(\mu)| = |Av_n(\tau)|$ for all $n \ge 1$.

(2) and (1,1) are Wilf equivalent.

Notice that $|Av_n(2)| = |Av_n(1,1)| = 1$ for all $n \ge 1$.

Definition

Patterns μ and τ are **Wilf equivalent** if $|Av_n(\mu)| = |Av_n(\tau)|$ for all $n \ge 1$.

(2) and (1,1) are Wilf equivalent.

No other pattern is Wilf equivalent to (2,1).

Wilf classes for n = 6:

Question: How many configurations of k non-attacking rooks can be placed on a Ferrers board?

Question: How many configurations of k non-attacking rooks can be placed on a Ferrers board?

Question: How many configurations of k non-attacking rooks can be placed on a Ferrers board?

Ï		
	Ï	

Definition

For any partition $\mu \in \mathbb{P}$ we define its **rook polynomial** to be

$$R_{\mu}(q) = \sum_{k \geq 0} (\# \text{ of } k \text{ rook-configurations on } \mu) q^k$$

Question: How many configurations of k non-attacking rooks can be placed on a Ferrers board?

Definition

For any partition $\mu \in \mathbb{P}$ we define its **rook polynomial** to be

$$R_{\mu}(q) = \sum_{k \geq 0} (\# ext{ of } k ext{ rook-configurations on } \mu) q^k$$

For example:

$$R_{(4,2)}(q) = 1 +$$

Question: How many configurations of k non-attacking rooks can be placed on a Ferrers board?

Ï		
	Ï	

Definition

For any partition $\mu \in \mathbb{P}$ we define its **rook polynomial** to be

$$R_{\mu}(q) = \sum_{k \geq 0} (\# \text{ of } k \text{ rook-configurations on } \mu) q^k$$

For example:

$$R_{(4,2)}(q) = 1 + 6q +$$

Question: How many configurations of k non-attacking rooks can be placed on a Ferrers board?

Definition

For any partition $\mu \in \mathbb{P}$ we define its **rook polynomial** to be

$$R_{\mu}(q) = \sum_{k \geq 0} (\# ext{ of } k ext{ rook-configurations on } \mu) q^k$$

For example:

$$R_{(4,2)}(q) = 1 + 6q + 6q^2$$

Definition

Two partitions $\mu, \tau \in \mathbb{P}$ are **rook equivalent** if

$$R_{\mu}(q) = R_{\tau}(q)$$

i.e., they admit the same number of k-configurations.

Rook classes for n = 6:

Rook classes for n = 6:

$$1+6q+4q^2$$

Rook classes for n = 6:

$$1+6q+4q^2$$

$$1+6q+7q^2+q^3$$

Exactly the same as the Wilf classes!

Theorem (Bloom & Saracino (2018))

$$R_{\mu}(q) = R_{\tau}(q)$$
 \iff $|Av_n(\mu)| = |Av_n(\tau)|$ for all n .

Will equivalence

Theorem (Bloom & Saracino (2018))

$$R_{\mu}(q) = R_{\tau}(q) \iff \underbrace{|Av_n(\mu)| = |Av_n(\tau)|}_{Wilf\ equivalence}$$
 for all n .

Definition

A partition is called **strict** if it has distinct parts.

Theorem (Bloom & Saracino (2018))

$$R_{\mu}(q) = R_{\tau}(q) \iff \underbrace{|Av_n(\mu)| = |Av_n(\tau)| \text{ for all n.}}_{Wilf \text{ equivalence}}$$

Definition

A partition is called **strict** if it has distinct parts.

Theorem (Foata & Schützenberger)

Every rook class contains exactly one strict partition.

Theorem (Bloom & Saracino (2018))

$$\underbrace{R_{\mu}(q) = R_{\tau}(q)}_{rook \ equivalence} \iff \underbrace{|Av_n(\mu)| = |Av_n(\tau)| \ for \ all \ n.}_{Wilf \ equivalence}$$

Definition

A partition is called **strict** if it has distinct parts.

Theorem (Foata & Schützenberger)

Every rook class contains exactly one strict partition.

We can restrict our attention (without loss of generality) to *strict* patterns.

Lets consider the partitions avoiding $\mu = (3, 1)$.

Lets consider the partitions avoiding $\mu=(3,1)$.

Lets consider the partitions avoiding $\mu = (3,1)$.

• All partitions having only one distinct size (rectangles) avoid μ .

Lets consider the partitions avoiding $\mu = (3,1)$.

• All partitions having only one distinct size (rectangles) avoid μ .

Lets consider the partitions avoiding $\mu = (3,1)$.

 \bullet A partition avoiding μ can have two distinct part sizes, so long as those parts differ by at most one.

Lets consider the partitions avoiding $\mu = (3,1)$.

• All partitions having only one distinct size (rectangles) avoid μ .

• A partition avoiding μ can have two distinct part sizes, so long as those parts differ by at most one.

Fix $n \ge 1$.

Fix $n \ge 1$. Count representations of this shape.

Fix $n \ge 1$. Count representations of this shape.

Pick a height $1 \le h \le n$.

Fix $n \ge 1$. Count representations of this shape.

Pick a height $1 \le h \le n$. Using the division algorithm write

$$n = hq + r$$
 $0 \le r < h$

Fix $n \ge 1$. Count representations of this shape.

Pick a height $1 \le h \le n$. Using the division algorithm write

$$n = hq + r$$
 $0 \le r < h$

The values h, q and r uniquely describe the height and width of the large rectangle, and height of the last column, respectively.

Fix $n \ge 1$. Count representations of this shape.

Pick a height $1 \le h \le n$. Using the division algorithm write

$$n = hq + r$$
 $0 \le r < h$

The values h, q and r uniquely describe the height and width of the large rectangle, and height of the last column, respectively.

A choice of h uniquely determines the shape, one for each value of h,

Fix $n \ge 1$. Count representations of this shape.

Pick a height $1 \le h \le n$. Using the division algorithm write

$$n = hq + r$$
 $0 \le r < h$

The values h, q and r uniquely describe the height and width of the large rectangle, and height of the last column, respectively.

A choice of h uniquely determines the shape, one for each value of h, so

$$|\mathsf{Av}_n((3,1))| = n$$

Fix $n \ge 1$. Count representations of this shape.

Pick a height $1 \le h \le n$. Using the division algorithm write

$$n = hq + r$$
 $0 \le r < h$

The values h, q and r uniquely describe the height and width of the large rectangle, and height of the last column, respectively.

A choice of h uniquely determines the shape, one for each value of h, so

$$|Av_n((3,1))| = n$$
 $A_{(3,1)}(z) = \frac{z}{(1-z)^2}.$

Notice $|Av_n((3,1))| = n$ is well behaved, while $|Av_n((2,1))| = \sigma_0(n)$ is not.

Notice $|Av_n((3,1))| = n$ is well behaved, while $|Av_n((2,1))| = \sigma_0(n)$ is not.

Definition

A partition μ is **super-strict**, if any two parts differ by at least 2.

Notice $|Av_n((3,1))| = n$ is well behaved, while $|Av_n((2,1))| = \sigma_0(n)$ is not.

Definition

A partition μ is **super-strict**, if any two parts differ by at least 2.

New results

Notice $|Av_n((3,1))| = n$ is well behaved, while $|Av_n((2,1))| = \sigma_0(n)$ is not.

Definition

A partition μ is **super-strict**, if any two parts differ by at least 2.

Theorem (Bloom & McNew (2019))

Let μ be super-strict. Then $A_{\mu}(z)$ is rational

New results

Notice $|Av_n((3,1))| = n$ is well behaved, while $|Av_n((2,1))| = \sigma_0(n)$ is not.

Definition

A partition μ is **super-strict**, if any two parts differ by at least 2.

Theorem (Bloom & McNew (2019))

Let μ be **super-strict**. Then $A_{\mu}(z)$ is rational and there exists a recursive algorithm to compute this GF.

μ	$A_{\mu}(z)$	OEIS
(2)	$\frac{1}{1-z}$	A000012
(3)	$\frac{1}{(1-z)(1-z^2)}$	A004526
(3,1)	$\frac{1}{(1-z)^2}$	A000027
(4)	$\frac{1}{(1-z)(1-z^2)(1-z^3)}$	A001399
(4,1)	$\frac{z(z^2-z-1)}{(z-1)^3(z+1)^2}$	A117142
(4,2)	$\frac{1-z+z^3}{(1-z)^2(1-z^2)}$	A033638
(5)	$\frac{1}{(1-z)(1-z^2)(1-z^3)(1-z^4)}$	A001400
(5,1)	$\frac{z(z^5-z^4-z^3+z+1)}{(z-1)^4(z+1)(z^2+z+1)^2}$	A117143
(5,2)	$\frac{-z(z^7-2z^5+z^3+z^2-z-1)}{(z-1)^4(z+1)^2(z^2+z+1)}$	A136185

The pattern $\mu = (5,2)$ has a surprising connection to group theory.

The pattern $\mu = (5,2)$ has a surprising connection to group theory.

A group G is said to be a **metacyclic** if there exists a cyclic normal subgroup N such that G/N is cyclic.

The pattern $\mu = (5,2)$ has a surprising connection to group theory.

A group G is said to be a **metacyclic** if there exists a cyclic normal subgroup N such that G/N is cyclic.

Liedahl enumerates metacyclic p-groups and finds that for an odd prime p the number of such groups of order p^n is given by the generating function

$$G(z) = \frac{-z(z^7 - 2z^5 + z^3 + z^2 - z - 1)}{(z - 1)^4(z + 1)^2(z^2 + z + 1)}.$$

The pattern $\mu = (5,2)$ has a surprising connection to group theory.

A group G is said to be a **metacyclic** if there exists a cyclic normal subgroup N such that G/N is cyclic.

Liedahl enumerates metacyclic p-groups and finds that for an odd prime p the number of such groups of order p^n is given by the generating function

$$G(z) = \frac{-z(z^7 - 2z^5 + z^3 + z^2 - z - 1)}{(z-1)^4(z+1)^2(z^2 + z + 1)}.$$

Note $A_{(5,2)}(z) = G(z)$.

The pattern $\mu = (5,2)$ has a surprising connection to group theory.

A group G is said to be a **metacyclic** if there exists a cyclic normal subgroup N such that G/N is cyclic.

Liedahl enumerates metacyclic p-groups and finds that for an odd prime p the number of such groups of order p^n is given by the generating function

$$G(z) = \frac{-z(z^7 - 2z^5 + z^3 + z^2 - z - 1)}{(z-1)^4(z+1)^2(z^2 + z + 1)}.$$

Note $A_{(5,2)}(z) = G(z)$. A coincidence?

Asymptotics

We have

$$\begin{aligned} |\mathsf{Av}_n\big((1)\big)| &= 0, & |\mathsf{Av}_n\big((2)\big)| &= 1, \\ |\mathsf{Av}_n\big((2,1)\big)| &= \sigma_0(n), & |\mathsf{Av}_n\big((3)\big)| &= \left\lfloor \frac{n}{2} \right\rfloor &= \frac{n}{2} + O(1), \\ |\mathsf{Av}_n\big((3,1)\big)| &= n, & |\mathsf{Av}_n\big((3,2)\big)| &= n \log n + (2\gamma - 2)n + O\left(n^{\frac{131}{416}}\right). \end{aligned}$$

Theorem (Bloom & McNew (2019))

Fix $k \ge 1$ and let $\mu = (k+1, k, \dots, 1)$ be a staircase.

Theorem (Bloom & McNew (2019))

Fix $k \ge 1$ and let $\mu = (k+1, k, ..., 1)$ be a staircase.

Theorem (Bloom & McNew (2019))

Fix $k \ge 1$ and let $\mu = (k+1, k, \dots, 1)$ be a staircase.

$$|Av_n(\mu)| \sim \begin{cases} \sigma_0(n) & k = 1\\ \frac{1}{k!(k-1)!\zeta(k)} \sigma_{k-1}(n) \log^k n & k \ge 2 \end{cases}$$

where $\sigma_k(n) = \sum_{d|n} d^k$.

Theorem (Bloom & McNew (2019))

Fix $k \ge 1$ and let $\mu = (k + 1, k, ..., 1)$ be a staircase.

$$|Av_n(\mu)| \sim \begin{cases} \sigma_0(n) & k = 1\\ \frac{1}{k!(k-1)!\zeta(k)}\sigma_{k-1}(n)\log^k n & k \geq 2 \end{cases}$$

where $\sigma_k(n) = \sum_{d|n} d^k$.

Proof Idea: Use results of Andrews, Estermann, and Johnson for representations of n as the sum of k products

$$n = \sum_{i=1}^{k} x_i y_i.$$

Theorem (Bloom & McNew (2019))

Suppose μ is a strict partition of the form

$$\mu = (\underbrace{k+1, k, \dots, k-\ell+1}_{\textit{staircase shape}}, a_0, a_1, \dots)$$

Theorem (Bloom & McNew (2019))

Suppose μ is a strict partition of the form

$$\mu = (\underbrace{k+1, k, \dots, k-\ell+1}_{staircase\ shape}, a_0, a_1, \dots)$$

with $k-\ell > a_0$. So $k-\ell$ is the largest part size omitted.

Theorem (Bloom & McNew (2019))

Suppose μ is a strict partition of the form

$$\mu = (\underbrace{k+1, k, \dots, k-\ell+1}_{\textit{staircase shape}}, a_0, a_1, \dots)$$

with $k-\ell > a_0$. So $k-\ell$ is the largest part size omitted.

Theorem (Bloom & McNew (2019))

Suppose μ is a strict partition of the form

$$\mu = (\underbrace{k+1, k, \dots, k-\ell+1}_{\textit{staircase shape}}, a_0, a_1, \dots)$$

with $k-\ell > a_0$. So $k-\ell$ is the largest part size omitted.

Then

$$|Av_n(\mu)| \sim \frac{n^{k-1} \log^{\ell} n}{\ell!(k-1)! \prod_{j=0}^{k-\ell-1} (k-\ell-a_j-j)}.$$

Theorem (Bloom & McNew (2019))

Suppose $\mu = (k+1, a_0, a_1, \ldots)$ strict with $k > a_0$. (k > 3) Then

Theorem (Bloom & McNew (2019))

Suppose $\mu = (k+1, a_0, a_1, \ldots)$ strict with $k > a_0$. (k > 3) Then

$$|Av_n(\mu)| = \frac{n^{k-1}}{(k-1)! \prod_{j=0}^{k-1} (k-(a_j+j))} + O\left(n^{k-2} \log^{k-1} n\right).$$

Theorem (Bloom & McNew (2019))

Suppose $\mu=(k+1,a_0,a_1,\ldots)$ strict with $k>a_0$. (k>3) Then

$$|Av_n(\mu)| = \frac{n^{k-1}}{(k-1)! \prod_{j=0}^{k-1} (k-(a_j+j))} + O\left(n^{k-2} \log^{k-1} n\right).$$

Note: If $\mu = (k+1)$ then $Av(\mu)$ contains all partitions into parts of size $\leq k$.

Theorem (Bloom & McNew (2019))

Suppose $\mu = (k+1, a_0, a_1, \ldots)$ strict with $k > a_0$. (k > 3) Then

$$|Av_n(\mu)| = \frac{n^{k-1}}{(k-1)! \prod_{j=0}^{k-1} (k-(a_j+j))} + O\left(n^{k-2} \log^{k-1} n\right).$$

Note: If $\mu = (k+1)$ then $Av(\mu)$ contains all partitions into parts of size $\leq k$.

$$|Av_n(\mu)| = \frac{n^{k-1}}{(k-1)!k!} + O(n^{k-2})$$

is well known, going back to at least Sylvester (1882).

A Corollary

Corollary (Bloom & McNew (2019))

If μ is strict with $\mu_1-\mu_2=1$ and $\mu_2>0$ then $A_{\mu}(z)$ is not algebraic.

A Corollary

Corollary (Bloom & McNew (2019))

If μ is strict with $\mu_1 - \mu_2 = 1$ and $\mu_2 > 0$ then $A_{\mu}(z)$ is not algebraic.

Conjecture

If μ is strict but not super-strict then $A_{\mu}(z)$ is not algebraic.

Definition

The southeast border of μ is the lattice path consisting of the "east" and "north+east" steps tracing along the bottom/right of μ .

Definition

The **southeast border** of μ is the lattice path consisting of the "east" and "north+east" steps tracing along the bottom/right of μ .

Note: We **ignore** the the initial "east" and final "north" steps when writing down the border.

Definition

The **southeast border** of μ is the lattice path consisting of the "east" and "north+east" steps tracing along the bottom/right of μ .

Note: We **ignore** the the initial "east" and final "north" steps when writing down the border.

For example:

$$\mu =$$
 \mapsto (e, e, ne, ne, e, e)

Definition

The **southeast border** of μ is the lattice path consisting of the "east" and "north+east" steps tracing along the bottom/right of μ .

Note: We **ignore** the the initial "east" and final "north" steps when writing down the border.

For example:

$$u = \square \square \mapsto (e, e, ne, ne, e, e)$$

★ A super-strict partition has no consecutive "north+east" steps.

Observation: The southeast border of μ determines $Av(\mu)$.

Observation: The southeast border of μ determines $Av(\mu)$.

• The partitions avoiding look like:

Observation: The southeast border of μ determines $Av(\mu)$.

• The partitions avoiding look like:

Observation: The southeast border of μ determines $Av(\mu)$.

• The partitions avoiding look like:

Here border is (ne, e).

Observation: The southeast border of μ determines $Av(\mu)$.

• The partitions avoiding look like:

Here border is (ne, e).

• The partitions avoiding

」look like:

Observation: The southeast border of μ determines $Av(\mu)$.

• The partitions avoiding look like:

Here border is (ne, e).

• The partitions avoiding

Observation: The southeast border of μ determines $Av(\mu)$.

• The partitions avoiding look like:

Here border is (ne, e).

• The partitions avoiding

Here border is (e, e, ne, ne, e, e).

Define the bivariate generating function

$$A_{\mu}(z,t) = \sum_{lpha \in \mathsf{Av}(\mu)} z^{|lpha|} t^{m{m}(lpha)},$$

Define the bivariate generating function

$$A_{\mu}(z,t) = \sum_{\alpha \in \mathsf{Av}(\mu)} z^{|\alpha|} t^{m(\alpha)},$$

where t marks the height of the rightmost column of α .

Define the bivariate generating function

$$A_{\mu}(z,t) = \sum_{lpha \in \mathsf{Av}(\mu)} z^{|lpha|} t^{m{m}(lpha)},$$

where t marks the height of the rightmost column of α . So

$$A_{\mu}(z)=A_{\mu}(z,1).$$

Define the bivariate generating function

$$A_{\mu}(z,t) = \sum_{lpha \in \mathsf{Av}(\mu)} z^{|lpha|} t^{m{m}(lpha)},$$

where t marks the height of the rightmost column of α . So

$$A_{\mu}(z)=A_{\mu}(z,1).$$

Theorem (Bloom & McNew (2019))

Let μ be super-strict with southeast border (b_1, \ldots, b_k) .

Define the bivariate generating function

$$A_{\mu}(z,t) = \sum_{\alpha \in \mathsf{Av}(\mu)} z^{|\alpha|} t^{m(\alpha)},$$

where t marks the height of the rightmost column of α . So

$$A_{\mu}(z)=A_{\mu}(z,1).$$

Theorem (Bloom & McNew (2019))

Let μ be super-strict with southeast border (b_1, \ldots, b_k) . Then there exists operators \mathcal{E} and \mathcal{N} so that if

$$\Theta_i = egin{cases} \mathcal{E} & \textit{if } b_i = e \\ \mathcal{N} & \textit{if } b_i = \textit{ne}, \end{cases}$$

Define the bivariate generating function

$$A_{\mu}(z,t) = \sum_{lpha \in \mathsf{Av}(\mu)} z^{|lpha|} t^{m{m}(lpha)},$$

where t marks the height of the rightmost column of α . So

$$A_{\mu}(z)=A_{\mu}(z,1).$$

Theorem (Bloom & McNew (2019))

Let μ be super-strict with southeast border (b_1, \ldots, b_k) . Then there exists operators \mathcal{E} and \mathcal{N} so that if

$$\Theta_i = \begin{cases} \mathcal{E} & \text{if } b_i = e \\ \mathcal{N} & \text{if } b_i = ne, \end{cases}$$

then $A_{\mu}(z,t) = \Theta_k \circ \cdots \circ \Theta_2 \circ \Theta_1\left(\frac{zt}{1-zt}\right)$.

For any bivariate GF
$$G(z,t) = \sum_{n\geq 1} \sum_{m\geq 0} a_{n,m} z^n t^m$$
 we define:

For any bivariate GF
$$G(z,t) = \sum_{n\geq 1} \sum_{m\geq 0} a_{n,m} z^n t^m$$
 we define:

$$\mathcal{E}G(z,t) = \frac{G(z,1) - ztG(z,zt)}{1 - zt}$$

For any bivariate GF $G(z,t) = \sum_{n\geq 1} \sum_{m\geq 0} a_{n,m} z^n t^m$ we define:

$$\mathcal{E}G(z,t) = \frac{G(z,1) - ztG(z,zt)}{1 - zt}$$

and

$$\mathcal{N}G(z,t)=G(z,0)+\sum_{n\geq 1}\sum_{m\geq 1}a_{n,m}\left(\frac{1}{1-z^m}\right)\left(\frac{1-(tz)^m}{1-tz}\right)z^n.$$

For any bivariate GF $G(z,t) = \sum_{n\geq 1} \sum_{m\geq 0} a_{n,m} z^n t^m$ we define:

$$\mathcal{E}G(z,t) = \frac{G(z,1) - ztG(z,zt)}{1 - zt}$$

and

$$\mathcal{N}G(z,t)=G(z,0)+\sum_{n\geq 1}\sum_{m\geq 1}a_{n,m}\left(\frac{1}{1-z^m}\right)\left(\frac{1-(tz)^m}{1-tz}\right)z^n.$$

"Proof":

For any bivariate GF $G(z,t) = \sum_{n\geq 1} \sum_{m\geq 0} a_{n,m} z^n t^m$ we define:

$$\mathcal{E}G(z,t) = \frac{G(z,1) - ztG(z,zt)}{1 - zt}$$

and

$$\mathcal{N}G(z,t)=G(z,0)+\sum_{n\geq 1}\sum_{m\geq 1}a_{n,m}\left(\frac{1}{1-z^m}\right)\left(\frac{1-(tz)^m}{1-tz}\right)z^n.$$

"Proof":

ullet is "natural" and preserves rationality.

For any bivariate GF $G(z,t) = \sum_{n\geq 1} \sum_{m\geq 0} a_{n,m} z^n t^m$ we define:

$$\mathcal{E}G(z,t) = \frac{G(z,1) - ztG(z,zt)}{1 - zt}$$

and

$$\mathcal{N}G(z,t)=G(z,0)+\sum_{n\geq 1}\sum_{m\geq 1}a_{n,m}\left(\frac{1}{1-z^m}\right)\left(\frac{1-(tz)^m}{1-tz}\right)z^n.$$

"Proof":

- ullet is "natural" and preserves rationality.
- \bullet $\mathcal N$ is NOT natural, but...

For any bivariate GF $G(z,t) = \sum_{n\geq 1} \sum_{m\geq 0} a_{n,m} z^n t^m$ we define:

$$\mathcal{E}G(z,t) = \frac{G(z,1) - ztG(z,zt)}{1 - zt}$$

and

$$\mathcal{N}G(z,t)=G(z,0)+\sum_{n\geq 1}\sum_{m\geq 1}a_{n,m}\left(\frac{1}{1-z^m}\right)\left(\frac{1-(tz)^m}{1-tz}\right)z^n.$$

"Proof":

- ullet is "natural" and preserves rationality.
- N is NOT natural, but...
 - \bigstar if μ is super-strict, (no consecutive \mathcal{N} 's) then rationality preserved

Thank You!