- $3.1(a) \ 3|100 = \mathbf{F}$. There is no $k \in \mathbb{Z}$ such that 100 = 3k.
- $3.1(b) \ 3|99 = T$. Notice that 99 = 3k where k = 33.
- $3.1(c) \ 3|-3 = \mathbf{T}$. Notice that -3 = 3k where k = -1.
- 3.1(d) -5| -5 = T. Notice that -5 = -5k where k = 1.
- 3.1(e) $-2|-7 = \mathbf{F}$. There is no $k \in \mathbb{Z}$ such that -7 = -2k.
- 3.1f) $0|4 = \mathbf{F}$. There is no $k \in \mathbb{Z}$ such that 4 = 0k.
- 3.1(g) -4|-0 = T. Notice that 0 = 4k where k = 0.
- 3.1(h) -0|-0 = T. Notice that 0 = 0k where $k \in \mathbb{Z}$.

3.5

Prove: Every integer is a rational number

Assume $(a \in \mathbb{Z})$

NTS a = kb where $(b \in \mathbb{Z}) \land (b \neq 0)$

Let b = 1 such that $(b \in \mathbb{Z})$

Notice that a = ab where b = 1

Disprove: All rational numbers are integers Counterexample: $a = 2, b = 3, a/b \in \mathbb{Z} = \mathbf{F}$

- 3.12(e) 100 has 9 positive divisors: 1,2,4,5,10,20,25,50,100.
- $3.12(\mathrm{f})$ 1000000 has 49 positive divisors.
- $3.12(k)~1\times2\times3\times4\times5\times6\times7\times8$ has 96 positive divisors.
- 3.12(l) 0 has infinite positive divisors.

7.10(c)

X	У	$x \vee y$	-X	-у	x ∧ (-y)	(-x) ∧ y	$x \wedge (-y) \vee (-x) \wedge y$
Т	Т	Т	F	F	F	F	F
T	F	Т	F	Т	Т	F	Т
F	Т	Т	Т	F	F	Т	Т
F	F	F	Т	Т	F	F	F

The truth table of $x \vee y$ and $x \wedge (-y) \vee (-x) \wedge y$ is not the same $x \vee y$ is not logically equivalent to $x \wedge (-y) \vee (-x) \wedge y$

7.5

X	у	$x \leftrightarrow y$	-X	-y	$(-x) \leftrightarrow (-y)$
Т	Т	Т	F	F	Т
Т	F	F	F	Т	F
F	Т	F	Т	F	F
F	F	Т	Т	Т	Т

7.8

X	У	\mathbf{Z}	$x \lor y$	$x \lor y \rightarrow z$	$x \rightarrow z$	$y \rightarrow z$	$(x \to z) \land (y \to z)$
T	Т	Т	Т	T	Τ	Τ	Τ
Т	F	F	Т	F	F	Т	F
F	Т	F	Т	F	Т	F	F
F	F	Т	F	Т	Т	Т	Т
F	Т	Т	F	Т	Т	Т	Τ
Т	F	Т	Т	Т	Т	Т	Т
Т	Τ	F	Т	F	F	F	F
F	F	F	F	Т	Т	Т	Т

$$(x \lor y) \lor (x \lor (-y))$$

$$= (x \lor x) \lor (y \lor (-y))$$

$$= T \lor T$$

$$= T$$

$$(x \wedge (x \rightarrow y)) \rightarrow y = (x \wedge ((-x) \vee y)) \rightarrow y$$

$$= (((-x) \wedge x) \vee (y \wedge x)) \rightarrow y$$

$$= (F \vee (y \wedge x)) \rightarrow y$$

$$= (y \wedge x) \rightarrow y$$

$$= -(y \wedge x) \vee y$$

$$= (-x) \vee ((-y) \vee y)$$

$$= (-x) \vee T$$

$$= T$$

7.11(h)

Let
$$A = (x \rightarrow y)$$
 and $B = (x \rightarrow -y)$

$$(A \land B) \rightarrow (-x) = -(A \land B) \lor (-x)$$

$$= ((-A) \lor (-B)) \lor (-x)$$

$$= (-A) \lor ((-B) \lor (-x))$$

$$= (-A) \lor (-(-x) \lor (-x)) \lor (-x)$$

$$= (-A) \lor (-(x \land y) \lor (-x))$$

$$= (-A) \lor (-x \lor x) \land (-x \lor y)$$

$$= (-A) \lor (T \land (-x \lor y)$$

$$= (-A) \lor A$$

$$= T$$

7.13(a)

$$(x \lor y) \land (x \lor -y) \land -x$$

$$= (x \lor y) \land ((x \land -x) \lor (-x \land -y))$$

$$= (x \lor y) \land (F \lor (-x \land -y))$$

$$= (x \lor y) \land (-x \land -y)$$

$$= (x \land (-x \land -y)) \lor (y \land (-x \land -y))$$

$$= (F \land y) \lor (F \land -x)$$

$$= F \lor F$$

$$= F$$

7.13(c)

$$((x \to y) \land (-x \to -y)) \land -y = ((x \to y) \land ((x \lor y) \land -y)$$

$$= ((x \to y) \land ((x \land -y) \lor (y \land -y))$$

$$= ((x \to y) \land ((x \land -y) \lor F)$$

$$= ((x \to y) \land (x \land -y)$$

$$= ((-x \lor y) \land x) \land -y$$

$$= ((-x \land x) \lor (y \land x)) \land -y$$

$$= (F \lor (y \land x)) \land -y$$

$$= (y \land -y) \land x$$

$$= F \land x$$

$$= F$$