

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift

® DE 199 55 550 A

A 43 B 7/32

Aktenzeichen: 199 55 550.8 18. 11. 1999 ② Anmeldetag: (3) Offenlegungstag: **.** 14. 12. 2000

(5) Int. Cl. 7: A 43 B 13/18

66 Innere Priorität:

199 25 936. 4

08.06.1999

(7) Anmelder:

Knapp, Friedrich, 38124 Braunschweig, DE; Czech, Andreas, 38102 Braunschweig, DE; Ahrens, Hans-Joachim, Dipl.-Phys., 38855 Wernigerode, DE; Schmitt, Franz, 38106 Braunschweig, DE

(74) Vertreter:

Spitz, Klinger & Partner GbR, 80336 München

② Erfinder: gleich Anmelder

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> DE 41 14 551 A1 40 35 416 A1 DE 85 08 599 U1 DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Schuh und Federdämpfungseinrichtung für einen Schuh

Die Erfindung betrifft einen Schuh, insbesondere einen Sport-, Wander- oder Straßenschuh, sowie eine Federdämpfungseinrichtung für einen Schuh. Bei dem erfindungsgemäßen Schuh (1) ist zwischen einer Sohle (8) und einem Fußbett (6) eine Blattfedereinrichtung (14) vorgesehen, deren Wirkrichtung vom Fußbett (6) zur Sohle (8) verläuft.

Beschreibung

Die Erfindung betrifft einen Schuh, insbesondere einen Sport-, Wander- oder Straßenschuh, sowie eine Federdämpfungseinrichtung für einen Schuh.

Hinsichtlich des Aufbaus von Schuhen wird das Hauptaugenmerk darauf gelegt, daß bei den unterschiedlichsten Laufbewegungen eines Menschen dessen Bewegungsorgane, wie Gelenke, Sehnen. Bänder, Knochen etc., vor orthopädischen Schäden geschützt werden. Konkret sollen 10 harte Stöße, bevor sie mit dem Aufsetzen des Fußes in den Körper eingeleitet und dort absorbiert werden, bereits durch das Schuhwerk zumindest teilweise abgefangen werden.

Hierfür gibt es eine Reihe von Dämpfungsmaßnahmen, wie z. B. das Bilden von geschäumten Kunststoffsohlen, das 15 Integrieren von Gel-Dämpfungs- oder Luft-Dämpfungseinrichtungen, bei denen ein in einer Kammer zwischen der Sohle und dem Fußbett des Schuhs eingeschlossenes Fluid einen Teil der Bewegungsenergie aufnimmt und dadurch Stöße mildert.

Jedoch geht bei diesen bekannten Schuh-Dämpfungseinrichtungen durch das Auffangen und Absorbieren der Stöße einer Laufbewegung ein gewisser, meist relativ hoher Anteil der Bewegungsenergie verloren, d. h. es wird vorrangig gedämpft und kaum gesedert. Gleiches gilt beim Abstoßen des Fußes vom Boden weg. Dieser Verlust an Bewegungsenergie und die damit verbundene erhöhte Anstrengung beim Laufen ist insbesondere bei Sportschuhen und bei Wanderschuhen nachteilig.

Es sind außerdem Arbeitsschuhe bekannt, die für Perso- 30 nen vorgesehen sind, die ihre Tätigkeit hauptsächlich im Stehen durchführen. Bei derartigen Schuhen wirkt zwischen einem Fußbett und einer Sohle eine Schraubenfeder, weswegen sie hinsichtlich der Auswahl des Schuhmaterials auf sehr feste Materialien (z. B. Holz) beschränkt sind. Zudem 35 müssen die Schraubenfedern ausreichend stark dimensioniert sein, was die Freiheit bei der Gestaltung der Schuhe sehr einschränkt. Ferner sind mit Schraubenfedern versehene Schuhe beim Laufen problematisch, da der Abstand zwischen Sohle und Fußbett durch den relativ langen Federweg und die daraus resultierende Instabilität des gefederten Schuhs ein hohes Verletzungsrisiko für den Schuhträger darstellt. Schließlich geben derartige Schuhe die beim Einfedern gespeicherte Stoßenergie praktisch ungemindert auf die Gelenke zurück. Eine solche Federung ohne Dämpfung 45 ist daher für Laufschuhe ungeeignet.

Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, einen verbesserten Schuh bzw. eine verbesserte Schuh-Federdämpfungseinrichtung zu schaffen, bei denen eine Dämpfung von Stoßbelastungen gewährleistet wird und gleichzeitig zumindest ein Teil der Energie der zu dämpfenden Stöße für eine ökonomischere Laufbewegung genutzt werden kann.

Diese Aufgabe wird durch einen Schuh nach Anspruch 1 bzw. eine Federdämpfungseinrichtung nach Anspruch 43 55 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.

Während einer Laufbewegung werden die beim Aufsetzen des Fußes entstehenden Kräfte in die zwischen der Sohle und dem Fußbett vorgesehene Blattsedereinrichtung 60 eingeleitet. Im Bereich der Blattsedereinrichtung kommt es hierbei zu einer mehr oder weniger elastischen Verformung, so daß ein Teil der Bewegungsenergie gespeichert wird. Das Sohlen- und Fußbettmaterial wirkt in Wirkrichtung der Blattsedereinrichtung als Dämpfer. Der von der Blattsedereinrichtung aufgenommene Teil der Bewegungsenergie wird beim Entlasten des Schuhs um eine definierte Größe vermindert (z. B. durch innere oder äußere Reibung) wieder

abgegeben. Diese so verminderte Federenergie (Dämpfung der Energiespitzen) wird von der Blattfedereinrichtung über die Sohle an den Boden bzw. über das Fußbett an den Fuß ahgegeben, wodurch die Laufbewegung aktiv unterstützt wird. Somit weist der erfindungsgemäße Schuh einerseits mit der elastischen Verformung im Bereich der Blattfedereinrichtung verbesserte Federungseigenschaften auf, andererseits werden Stöße gedämpft.

Gerade Blattfedereinrichtungen sind auf Grund ihres einfachen Aufbaus und der Möglichkeit, diese mit kleinem Federweg und damit geringen Abmessungen auszuführen, praktisch an jeder gewünschten Stelle in einem Schuh unterbringbar, ohne die äußere Abmessung des Schuhs abändern zu müssen. Gegenüber anderen Federmitteln besitzt die Blattfedereinrichtung vor allem den Vorteil, daß die Federkraft in einfacher Weise über relativ große Krafteinleitungsflächen gleichmäßig verteilt an die Sohle bzw. das Fußbett abgegeben werden kann, so daß geringere Anforderungen an das Sohlen- bzw. Fußbettmaterial gestellt werden.

Eine derartige Blattfedereinrichtung umfaßt vorzugsweise wenigstens ein Blattfederteil, das im Sinne der Erfindung als flächig ausgedehntes, elastisch deformierbares Teil anzusehen ist. Das Blattfederteil kann z. B. die Form eines Streifens besitzen, etwa mit flächig ausgedehnten Kraftübertragungsabschnitten, und kann vorteilhaßt aus einem thermoplastischen Elastomer gebildet sein. Der Streifen kann sich z. B. im wesentlichen horizontal, jedoch wenigstens abschnittsweise gekrümmt oder mit Knicken versehen erstrekken

Um die Dämpfungswirkung des Schuhs zu erhöhen, ist das Blattfederteil vorzugsweise mit wenigstens einem Reibabschnitt (Reibfläche) versehen, der bei einer Relativbewegung zwischen dem Fußbett und der Sohle reibt. Eine Reibung kann z. B. zwischen zwei einander zugeordneten Blattfederteilen oder auch zwischen einem Blattfederteil und einem Teil erfolgen, das mit der Sohle oder dem Fußbett verbunden ist oder Bestandteil dieser Komponenten ist. Eine weitere Verstärkung der Dämpfungseigenschaften der Blattfedereinrichtung kann dadurch realisiert werden, daß die Reibabschnitte zur Erhöhung des Reibungswiderstandes entsprechend beschichtet und/oder aufgerauht sind oder entsprechende Materialkombinationen zur Erhöhung des Reibungskoeffizienten vorgesehen werden. Derartige Maßnahmen erlauben praktisch jede gewünschte Einstellung des Verhältnisses zwischen Federungswirkung und Dämpfungs-

Eine besondere Ausführungsform des Blattfederteils besteht darin, daß es zwei Stützabschnitte (Kraftübertragungsabschnitte) aufweist, wobei einer der Stützabschnitte der Sohle und der andere dem Fußbett zugeordnet ist. Diese Stützabschnitte sind mit einem schräg verlaufenden Mittelteil verbunden. Das bevorzugte Blattfederteil weist kontinuierliche, bevorzugt abgerundete, Übergänge von den Stützabschnitten zum Mittelteil auf. Insbesondere kann das Blattfederteil in einer einzigen Richtung gekrümmt sein, wobei die bevorzugte Krümmungsrichtung die Längsrichtung des Schuhs ist.

Eine bevorzugte Ausführungsform der Blattfedereinrichtung wird durch zwei hintereinander angeordnete, miteinander verbundene Blattfederteile gebildet, die zusammen einen wellenartigen Verlauf mit wenigstens einem Wellenberg oder Wellental aufweisen. Als "miteinander verbundene" Blattfederteile im Sinne der Erfindung sind hierbei insbesondere einstückige Blattfederteile zu verstehen, die man sich funktional aus mehreren Blattfederteilen zusammengesetzt denken kann.

Eine weitere bevorzugte Ausführungsform der Blattsedereinrichtung wird durch eine Reihe aus hintereinander an20

45

geordneten und miteinander verbundenen Blattfederteilen gebildet. Die Blattfederteile können auch hier z. B. integral miteinander verbunden sein, d. h. die Blattfederteilreihe kann einstückig ausgehildet sein. Vorzugsweise können zwei derartige Blattfederteilreihen übereinander derart angeordnet sein, daß zwischen diesen wenigstens eine Kammer gebildet ist. Diese Kammer kann nach außen hermetisch abgedichtet sein und mit einem geeigneten Fluid gefüllt sein, womit die Dämpfungseigenschaft des Fluids mit der Federungseigenschaft der Blattfederteilreihen kombiniert wird.

Weitere Merkmale, Vorteile und Eigenschaften der Erfindung sind der nachfolgenden beispielhaften Beschreibung entnehmbar, in der anhand von Zeichnungen bevorzugte Ausführungsbeispiele des Erfindungsgegenstandes erläutert 15 werden. Es zeigen:

Fig. 1 eine Seitenansicht eines Schuhs mit einer Blattfedereinrichtung an dessen Fersenbereich;

Fig. 2 eine Detailansicht des Fersenschuhbereichs aus Fig. 1:

Fig. 3 eine Detailansicht einer Blattfedereinrichtung in einer weiteren Ausführungsform:

Fig. 4 und 5 jeweils eine perspektivische Ansicht von voneinander getrennten Bauteilen der Blattfedereinrichtung nach Fig. 3;

Fig. 6 eine Seitenansicht einer Weiterbildung der Blattfedereinrichtung nach Fig. 2;

Fig. 7 eine perspektivische Ansicht einer Blattfedereinrichtung in einer weiteren Ausführungsform;

Fig. 8, 9, 10 jeweils eine Seitenansicht eines Schuhs, wobei am Fersenbereich eine weitere Ausführungsform einer Blattfedereinrichtung schematisch dargestellt ist:

Fig. 11 und 12 jeweils eine Seitenansicht eines Schuhs, wobei am Fersenbereich und am Fußballenbereich eine weitere Ausführungsform einer Blattfedereinrichtung schematisch dargestellt ist:

Fig. 13 und 14 jeweils eine Seitenansicht mit einer weiteren bevorzugten, schematisch dargestellten Ausführungsform einer Blattfedereinrichtung, die sich im wesentlichen über die gesamte Länge des Schuhs erstreckt;

Fig. 15 eine Draufsicht auf eine weitere Ausführungsform einer Blattfedereinrichtung, die aus hintereinander gekoppelten Blattfederteilen besteht;

Fig. 16 eine Schnittansicht der Blattfedereinrichtung nach Fig. 15 entlang der Schnittlinie XVI-XVI;

Fig. 17 eine Vorderansicht der Blattfedereinrichtung nach den Fig. 15 und 16;

Fig. 18 eine perspektivische Ansicht der Blattfedereinrichtung nach den Fig. 15 bis 17;

Fig. 19 eine Draufsicht auf eine Blattfederteilreihe, die 50 aus mehreren hintereinander gekoppelten Blattfederteilen besteht:

Fig. 20 eine Schnittansicht der Blattfederteilreihe nach Fig. 19 entlang der Schnittlinie XX-XX;

Fig. 21 eine Ansicht auf die Blattfederteilreihe entlang 55 des Pfeiles XXI in Fig. 20;

Fig. 22 eine perspektivische Ansicht der Blattfedeneilreihe nach den Fig. 19 bis 21;

Fig. 23 eine perspektivische Ansicht einer weiteren Ausführungsform einer Blattfedereinrichtung aus transparentem 60 Elastomer-Material, wobei zwei übereinander angeordnete Blattfederteilreihen nach den Fig. 19 bis 22 vorgesehen sind:

Fig. 24 eine perspektivische Ansicht einer Blattfedereinrichtung, ähnlich der nach Fig. 23, aus opakem Material und 65 mit Seitenwänden;

Fig. 25 eine perspektivische Ansicht einer Blattfedereinrichtung nach Fig. 24, die in ein Gehäuse eingesetzt ist;

Fig. 26 eine Schnittansicht einer umhüllten Blattfedereinrichtung nach Fig. 24; und

Fig. 27 eine perspektivische Ansicht einer Federdämpfungseinrichtung.

Der in Fig. 1 gezeigte erfindungsgemäße Schuh 1 umfaßt einen Grundkörper 2 mit einer Fußöffnung 3 und eine Zunge In dem der Zunge 4 benachbarten Bereich des Grundkörpers 2 sind Ösen 5 vorgesehen, durch die ein nicht dargestellter Schnürsenkel gezogen wird. Der Grundkörper 2 ist mit einem Fußbett 6 verbunden. Das Fußbett 6, eine Kunststoff-Zwischenschicht 7 sowie eine Sohle 8 bilden einen bodenseitigen Schichtaufbau des Schühs 1. Die Sohle 8 läßt sich in einen fersenseitigen Teil 8a mit einem ersten Profil 11 und ein einen Teil 8b mit einem zweiten Profil 12 unterteilen. Im Fersenbereich des Schuhs 1 ist durch ein transparentes Seitenfenster 13 auf Höhe der Kunststoff-Zwischenschicht 7 eine erfindungsgemäße Blattfedereinrichtung 14 erkennbar, die in einem freien Innenraum 10 untergebracht ist. Mit dem Sichtfenster 13 wird die Funktionalität der Blattfedereinrichtung visualisiert, wobei optische Effekte mit einer farbigen Gestaltung (z. B. Pigmentierung) oder Leuchtwirkung der Blattfedereinrichtung verstärkt werden können.

In Verbindung mit Fig. 2 umfaßt die Blattfedereinrichtung 14 fußbettseitig eine Halteplatte 15, die entweder ein Teil des Fußbetts 6 bildet oder an letzteres gekoppelt ist, z. B. unbeweglich relativ zu dem Fußbett gehalten ist. In Längsrichtung im wesentlichen in der Mitte der Halteplatte 15 sind zwei streifenförmige, in Längsrichtung wellenartig geschwungene Blattfederteile 16a, 16b an der Halteplatte 15 einstückig angeformt. Die Blattfederteile 16a, 16b sind zueinander symmetrisch (Symmetrieebene E) und erstrecken sich in Längsrichtung des Schuhs 1. Ferner bilden beide Blattfederteile 16a, 16b einen wellenartigen Verlauf mit drei Wellenbergen 17a, 17b und 17c und zwei Wellentälern 18a, 18b. Die Wellenberge 17a, 17b liegen im dargestellten Zustand (bei entlastetem Schuh) frei, d. h. berühren weder die Halteplatte 15 noch sonstige Bestandteile der Blattfedereinrichtung 14. Unterhalb dieses ersten Blattfederteilpaares 16 ist ein zweites symmetrisches Blattfederteilpaar 21 angeordnet, dessen Symmetrieebene mit der des ersten Blattfederteilpaares 16 zusammenfällt. Lediglich die mittigen Wellenberge 17c und 20 der Blattfederteilpaare 16 und 21 liegen einander gegenüber.

Das Blattfederteilpaar 21 ist nicht an dem ersten Blattfederteilpaar 16 befestigt, sondern ist letzterem gegenüber schwimmend gelagert. Außerdem besitzt das Blattfederteilpaar 21 (insbesondere im mittleren Bereich) eine schwächere Krümmung als das Blattfederteilpaar 16, weswegen die Wellentäler 22a, 22b phasenverschoben zu denen (18a, 18b) des Blattfederteilpaares 16 sind. Aufgrund dieser unterschiedlichen Krümmungsstärken beider Blattfederteilpaare 16, 21 werden jeweils etwa in der Mitte der Blattfederteile 16a und 21a bzw. 16b und 21b Berührungslinien oder Berührungsflächen 23a und 23b gebildet.

Beim Zusammendrücken der Blattfedereinrichtung 14 – d. h. bei einer Relativbewegung des Fußbettes 6 bezüglich der Sohle 8a – werden die Blattfederteile 16a und 21a bzw. 16b und 21b elastisch gespreizt, wodurch die Berührungsflächen 23a, 23b Reibabschnitte R bilden. Weitere Reibabschnitte R umfaßt die Blattfedereinrichtung 14 an den Berührungsflächen 24a, 24b zwischen den Blattfederteilen 21a, 21b und einer Innenfläche 19 der Sohle 8a. Durch die Reibverluste an den Reibabschnitten R wird die Dämpfung der Blattfedereinrichtung erhöht. Damit besteht eine Möglichkeit, die Dämpfungswirkung je nach zu erwartendem Gewicht der den Schuh tragenden Person einzustellen. Mit einer Erhöhung der Anzahl von Reibabschnitten wird die

Dämpfungswirkung des Schuhs verstärkt. Umgekehrt führt eine Reduzierung der Anzahl von Reibabschnitten R zu einer Verringerung der Dämpfungswirkung.

Im folgenden werden weitere Ausführungsheispiele beschrieben. Dabei werden für analoge Komponenten vorwiegend die gleichen Bezugszahlen verwendet. Es wird im wesentlichen jeweils auf die Unterschiede zu der bzw. den zuvor bereits beschriebenen Ausführungsformen eingegangen.

Die in Fig. 3 bis 5 gezeigte Ausführungsform einer Blattfedereinrichtung 14' umfaßt wie die Ausführungsform nach
Fig. 1 und 2 eine Halteplatte 15' (Fig. 3 und 4) mit einem
daran im wesentlichen mittig und einstückig angeformten
Blattfederteilpaar 16'. Die streifenförmige Form der Blattfederteile 16a' und 16b' ist besonders gut in Fig. 4 erkennbar.
Mittig bezüglich der Quer- und Längsrichtung der Halteplatte 15', d. h. im Bereich der einstückigen Anformung des
Blattfederteilpaares 16' an der Halteplatte 15', ist eine senkrecht zu letzterer angeordnete Befestigungslasche 25 vorgesehen. Diese Befestigungslasche 25 ist einstückig mit der
Halteplatte 15' verbunden und erstreckt sich in einer Längsmittelebene des Schuhs. Auf beiden Seiten des unteren Randes der Befestigungslasche 25 ist jeweils ein vorstehender,
in Längsrichtung verlaufender Schnappwulst 26 vorgesehen

Wie Fig. 3 zeigt, ist wie bei der Ausführungsform nach den Fig. 1 und 2 ein zweites Blattfederteilpaar 21' unterhalb des ersten (16') angeordnet, wobei beide im Bereich des Wellenberges 17b' Abrundungen 27. 28 aufweisen. Beide Blattfederteilpaare 16' und 21' sind im Zwei-Komponenten-Spritzgießverfahren hergestellt. Dies erlaubt es, wie dargestellt, an den Oberflächen einander benachbarte, parallel zueinander verlaufende Längsstreifen 29a-e, die unterschiedliche Breiten aufweisen können, aus unterschiedlichen Materialien zu bilden. Für die Längsstreifen 29b und 29d sind Materialien mit einer hohen Dauerelastizität vorgesehen (z. B. PA, POM). Demgegenüber ist das Material der Streifen 29a, c und e derart gewählt, daß an den entsprechenden Reibabschnitten R' (Fig. 3) die Reibung erhöht ist (z. B. PUR, Softlack etc.).

In der Mitte der Blattfederteile 21a', 21b' ist ein Längsschlitz 32 vorgesehen, dessen Breite kleiner als die Breite der Befestigungslasche 25 im Bereich der Schnappwulste 26 ist. Zur Montage der beiden in Fig. 4 und 5 gezeigten Blattfederteilpaare 16' und 21' wird die Befestigungslasche 25 durch den Schlitz 32 des Blattfederteilpaares 21' hindurchgesteckt, wobei die Schnappwulste 26 ein selbständiges Lösen des Blattfederteilpaares 21' von der Befestigungslasche 25 verhindern. Die derart zusammengesetzte Blattfedereinrichtung 14' wird gemäß Fig. 3 im Bereich der fersenseitigen Sohle 8a angeordnet. Auch die Blattfedereinrichtung 14' 50 umfaßt vier Reibabschnitte R'.

In Fig. 6 ist eine Maßnahme gezeigt, mit der die Dämpfungswirkung der in Fig. 1 und 2 gezeigten Blattfedereinrichtung 14 zusätzlich erhöht wird. Hierbei sind Zusatzstifte 33 vorgesehen, wobei jeweils ein Zusatzstift 33 in einem 55 Wellental 18a, 18b des ersten Blattfederteilpaares 16 und zwei Zusatzstifte 33 in dem Wellenberg 20 des zweiten Blattfederteilpaares 21 liegen. Die Zusatzstifte 33 sind als Elastomerstifte oder -schrauben ausgeführt, und sind mittels einer (nicht dargestellten) Schnapp- bzw. Einschraubeinrichtung im Bereich der Blattfedereinrichtung gehalten. Zur Einstellung einer gewünschten Dämpfungswirkung ist der Zusatzstifte 33 vom Schuh 1 entnehmbar und kann gegen andere Zusatzstifte aus unterschiedlichen Materialien ausgebauscht werden

In der Ausführungsform nach Fig. 7 besitzt eine Blattfedereinrichtung 14", wie die beiden vorstehenden Ausführungsbeispiele, eine Halteplatte 15" mit einem daran ein-

stückig angebrachten Blattfederteilpaar 16". Zwei weitere kleinere Blattfederteile 35, 36 sind am Mittelteil 37a. 37b zwischen dem Wellenberg 17c" und dem Wellental 18a" hzw. 18h" einstückig an dem Blattfederteilpaar 16" angeformi. Diese kleineren Blattsederteile 35, 36 besitzen jeweils eine wellenartige Form mit einem Wellental 41 bzw. 42 und einem Wellenberg 43 bzw. 44. Der Wellenberg 43 bzw. 44 fällt jeweils mit dem Koppelungsabschnitt zwischen dem Blattfederteil 16a" bzw. 16b" einerseits und 35 bzw. 36 andererseits zusammen. Bei der Unterbringung der Blattfedereinrichtung 14" entsprechend der Ausführungsform nach Fig. 7 entstehen vier Reibabschnitte durch die Wellentäler 18a", 18b", 41, 42, die mit der Innenfläche 19 der Sohle 8a in Kontakt kommen. Weitere Reibabschnitte entstehen durch die Wellenberge des Blattfederteilpaars 16", die bei stärkerer Belastung des Schuhs mit der Unterseite der Halteplatte 15" in Kontakt kommen.

Der in den Fig. 6, 3, 2 und insbesondere in Fig. 1 ersichtliche, für die Blattfedereinrichtung 14, 14', 14" vorgesehene Innenraum 10 zwischen Fußbett 6 und Sohle 8 kann mit Luft oder einem Gel ausgefüllt, sein. Um die Dämpfungseigenschaften des Schuhs 1 zu verstärken, kann der Innenraum 10 auch mit einem Kunststoff-Schaummaterial wie PU-Schaum ausgeschäumt werden. Dadurch entstehen zwischen den Blattfederteilen und dem PU-Schaum weitere Reibbereiche bzw. Kompressionsbereiche für eine zusätzliche Dämpfung.

In den Fig. 8 bis 12 sind weitere bevorzugte Ausführungsbeispiele einer erfindungsgemäßen, in einem Schuh 1 untergebrachten Blattfedereinrichtung 48 gezeigt, wobei diese Ausführungsformen gemeinsam haben, daß die Blattfedereinrichtung 48 eine Reihe aus miteinander verbundenen Blattfederteilen umfaßt. Eine derartige Blattfederteilreihe 50 ist beispielhaft in den Fig. 15 bis 18 dargestellt. Diese Blattfederteilreihe 50 aus Blattfederteilen 51 besitzt eine Wellenform, z. B. eine Sinuswellenform. Die Blattfederteilreihe 50 bildet je nach Anzahl und Krümmungsverlauf der Blattfederteile 51 eine Vielzahl von Wellenbergen 53 und Wellentälern 54 aus.

In den Fig. 19 bis 22 umfaßt eine Blattfederteilreihe 50 mehrere Blattfederteilabschnitte 51. Die Enden der Blattfederteilreihe 50 sind abgerundet. Zur Verstärkung der Federwirkung ist die Blattfederteilreihe 50 mit einer zusätzlichen Wölbung 52 in Querrichtung gebildet, was aus Fig. 21 deutlich wird.

In der Ausführungsform der Blattfedereinrichtung 48' nach Fig. 8 sind zwei Blattfederteilreihen 50 übereinander in dem Fersenbereich des Schuhs 1 zwischen dem Fußbett 6 und der Sohle 8 angeordnet. Die wellenartigen Verläufe der Blattfederteilreihen 50 sind zueinander phasengleich - d. h. Wellenberge 53 bzw. Wellentäler 54 liegen sich paarweise gegenüber. Die beiden Blattfederteilreihen 50 sind derart ineinandergefügt, daß Berührungsflächen 55, also Reibabschnitte R. bei einer Verformung der Blattfedereinrichtung 48' gebildet sind. Diese Reibbereiche R befinden sich im Bereich des Mittelabschnittes zwischen einem Wellenberg 53 und einem dazu benachbarten Wellental 54. Durch die Berührungsflächen 55 und eine z. B. durch ein umgebendes Kunststoffschaummaterial gebildete Seitenwandung (nicht dargestellt) entstehen Kammern 56, die mit Luft oder einem Fluid gefüllt sein können. Die Kammern 56 kommunizieren untereinander über Überströmkanäle 57, die z. B. durch entsprechende Materialaussparungen gebildet sein können (siehe z. B. Fig. 15 bis 18 und 19 bis 22).

Für eine Blattsedereinrichtung 48' nach Fig. 8 wird für die obere Blattsedereilreihe 50 Polyamid (Nylon) und für die untere Blattsederteilreihe 50 PUR (Desmopan) verwendet.

Zwei dieser Überströmkanäle 57 sind jeweils an einem

Blattfederteil 51 vorgesehen. Die Position der Überströmkanäle 57 ist derart gewählt, daß sich beim Übereinanderlegen zweier Blattfederteilreihen 50 die Überströmkanäle 57 im Bereich der Berührungsflächen 55 befinden. Somit kann bei einem Druckunterschied zwischen zwei benachbarten Kammern 56 das Fluid durch den Überströmkanal 57 hindurchströmen. Falls ein solches Überströmen im Hinblick auf die gewünschten Federungs- und Dämpfungseigenschaften erschwert sein soll, kann auf derartige durch Aussparungen gebildete Kanäle auch verzichtet werden. In diesem Fall findet bei hinreichendem Druckunterschied ein Überströmen von Fluid mit erhöhten: Strömungswiderstand statt.

Bei der in Fig. 9 dargestellten Blattsedereinrichtung 48" sind die Längsenden der beiden übereinander angeordneten Blattfederteilreihen 50 miteinander verschweißt. Auf diese 15 Weise entsteht eine aus vielen Teilkammern 56 bestehende "Mehrfach-Kammer".

In Fig. 10 ist die selbe Ausführungsform der in Fig. 9 dargestellten Blattfedereinrichtung 48" durch ein transparentes Sichtfenster 13 visualisiert. Zur Visualisierung des Feder- 20 dämpfungsmechanismus ist es hier (wie auch bei anderen Ausführungsbeispielen) alternativ möglich, die Blattfederteilreihen in Querrichtung bis zum seitlichen Rand des Schuhs auszuführen, so daß der Mechanismus unmittelbar sichtbar wird.

Die in den Fig. 11 und 12 dargestellte Ausführungsform einer Blattfedereinrichtung 48" umfaßt zwei übereinander angeordnete Blattfederteilreihen 50. deren Wellenverläufe zueinander um ca. 180° phasenverschoben sind, so daß die die Wellenberge 53 der darunter liegenden Blattfederteilreihe 50 treffen. Somit entstehen gegenüber den Ausführungsbeispielen der Fig. 8 bis 10 größere Kammern 56", die miteinander über nicht näher dargestellte Überströmkanäle an den Berührungsflächen 55" kommunizieren können. Die 35 Kammern 56" sind mit einem Fluid gefüllt.

Eine derartige Blattfedereinrichtung 48" ist sowohl im Bereich des Fersenabschnitts als auch im Bereich des Fußballenabschnitts des Schuhs 1 untergebracht und mit einem PU-Schaum umschäumt. Zudem stehen die Kammern 56" der übereinander angeordneten Blattfederteilreihen 50 am Fersenabschnitt sowie am Fußballenabschnitt miteinander über eine Verbindungsleitung 60 in Fluidverbindung. Auf diese Weise kann (beim Laufen) das Fluid zwischen den Kammern 56" des Bereichs des Fußballenabschnittes unter Fluidreibungsdämpfung hin und her strömen.

Auch bei anderen der dargestellten Ausführungsformen, z. B. der Ausführungsform der Blattfedereinrichtung 48" nach der Fig. 11, ist eine Anordnung von Zusatzstiften 33 50 möglich, die jeweils in einer Kammer 56" untergebracht

In den Fig. 13 bzw. 14 ist eine bevorzugte Ausführungsform einer Blattfedereinrichtung 49' bzw. 49" gezeigt, die zwei übereinander liegende, sich im wesentlichen über die 55 gesamte Länge des Schuhs 1 erstreckende Blattfederteilreihen 50 umfaßt. In Fig. 13 sind die beiden Blattfedeneilreihen 50 zueinander um etwa 180° phasenverschoben angeordnet, wobei die Enden der Blattfederteilreihen 50 miteinander verbunden sind (z. B. durch eine formschlüssige Rast- 60 verbindung oder eine Verschweißung). Die einzelnen Kammern 56" sind durch Überströmkanäle 57 miteinander fluidal gekoppelt. In Fig. 14 sind die beiden übereinander liegenden Blattfederteilreihen 50 um weniger als 90° phasenverschoben, wodurch gegenüber einer Phasenverschiebung 65 um 180° einerseits kleinere Kammern 61 entstehen und andererseits großflächigere Reibabschnitte R gebildet sind.

Die Ausführungsform einer Blattfedereinrichtung 63

nach Fig. 23 umfaßt zwei streifenförmige, wellenartige, übereinanderliegende Blattfederteilreihen 50, die zueinander um weniger als 90° phasenverschoben sind. Die benachharten Enden der beiden Blattfederteilreihen 50 sind miteinander verschweißt. Die Berührungsflächen 55 zwischen den beiden Blattfederteilreihen 50 bilden bei einer Relativbewegung Reibabschnitte R. Benachbarte Kammern 61 sind durch die Überströmkanäle 57 miteinander verbunden. Wie aus Fig. 24 ersichtlich ist, können die offenen Seitenbereiche der beiden Blattfederteilreihen 50 durch eine Seitenwand 62 verschlossen werden, so daß die Kammern 61 nach außen hermetisch abgedichtet sind. Die so gebildete Federdämpfungseinrichtung kann z. B. bei der Herstellung eines Schuhs im Bereich zwischen Fußbett und Schuhsohle umschäumt werden. Alternativ (Fig. 25) kann die in den Fig. 23 bzw. 24 gezeigte Blattfedereinrichtung 63 zuvor in ein elastisches Kunststoffgehäuse 64 eingesetzt werden.

In Fig. 26 ist die Blattfedereinrichtung 63 nach Fig. 24 von einem PE-Schlauch 67 (z. B. Schrumpfschlauch) umhüllt. In Fig. 27 ist ein Teil einer erfindungsgemäßen Federdämpfungseinrichtung 68 gezeigt, die in einem Schuh 1 zwischen dem Fußbett 6 und der Sohle 8 unterzubringen ist. Diese Federdämpfungseinrichtung 68 umfaßt eine erste Blattfederteilreihe 50. An dem Seitenbereich der ersten Blattfederteilreihe 50 ist eine Seitenwand 58 einstückig angeformt. Nachdem eine zweite, nicht dargestellte Blattfederteilreihe auf die erste angeordnet ist und die Enden beider Blattfederteilreihen 50 miteinander verschweißt sind, wird schließlich die zweite Blattfederteilreihe mit der Seitenwand Wellentäler 54 der obenliegenden Blattfederteilreihe 50 auf 30 58 thermisch oder durch Ultrabeschallung verschweißt. Dadurch ist ein hermetisch nach außen abgedichteter Innenraum gebildet. An der ersten, unteren Blattfederteilreihe 50 sind im Bereich des Wellenberges 43, 44 zwei Einschnitte 71 vorgesehen, die als Überströmkanal 57 an den Berührungsflächen der Blattfederteilreihen 50 dienen.

Als Material für die Blattfederteile 16a, 16b, 21a, 21b, 35, 36, 51 sämtlicher Ausführungsformen einer Blattfedereinrichtung 14, 14', 14", 48,'63, 68 können weitgehend beliebige Kunststoffmaterialien, wie Polyformaldehyde, Polyoxymethylen (POM, z. B. Hostaform), Acetalharze, Polyamide (PA, z. B. Nylon), Polyurethane (PUR, z. B. Desmopan) oder ein ähnlicher elastischer Kunststoff wie ein TPE, verwendet werden. Auch metallische Werkstoffe oder Metall-Kunststoff-Verbundwerkstoffe sind verwendbar. Um die Kammern 56" im Bereich des Fersenabschnitts und den 45 Federungs- und Dämpfungseigenschaften der Blattfedereinrichtung 14, 14', 14'', 48, 63, 68 auf den jeweiligen Schuhbenutzer einstellen zu können, ist es besonders vorteilhaft, verschiedene Kunststoffe mit unterschiedlichem E-Modul bzw. Reibungskoeffizienten für eine Blattsedereinrichtung 14, 14', 14", 48, 63, 68 zu verwenden, die aus mehreren Blattfederteilen 16a, 16b, 21a, 21b, 35, 36, 51 besteht. Die Wahl des entsprechenden Materials hängt von der Form und Position des Blattfederteils innerhalb des Schuhs, dem zu erwartenden Gewicht der den Schuh tragenden Person sowie den gewünschten Dämpfungs- und Federungseigenschaften ab.

Bei der Verwendung der genannten Kunststoffmaterialien ist es vorteilhaft, die Blattfedereinrichtungen 14, 14', 14". 48, 63, 68 zu pressen, zu kleben oder in einem Zwei-Komponenten-Spritzgießverfahren herzustellen.

Als Material für die Zusatzstifte 33 ist Kunststoffschaum oder TPE zu nennen. Für das in den Kammern 56, 61 vorgesehene Fluid können Gele, Luft, Druckluft oder andere Fluide, insbesondere Fluide mit einer hohen Viskosität, eingesetzt werden.

Abschließend ist zu bemerken, daß im Rahmen der Erfindung Merkmale aus verschiedenen hier beschriebenen Ausführungsformen weitgehend beliebig miteinander kombiniert werden können. Insbesondere können bei der erfin9

dungsgemäßen Federdämpfungseinrichtung Maßnahmen vorgesehen werden, die nur in Verbindung mit Ausführungsformen des erfindungsgemäßen Schuhs detaillierter beschrieben wurden.

Patentansprüche

- 1. Schuh mit einer zwischen einer Sohle (8) und einem Fußbett (6) vorgesehenen Blaufedereinrichtung (14, 14', 14', 48, 63), deren Wirkrichtung vom Fußbett (6) 10 zur Sohle (8) verläuft.
- 2. Schuh nach Anspruch 1, wobei die Blattfedereinrichtung (14, 14', 14'', 48, 63) wenigstens ein Blattfederteil (16a, 16b, 21a, 21b, 35, 36, 51) umfaßt.
- 3. Schuh nach Anspruch 2, wobei ein Blattfederteil 15 (16a, 16b, 21a, 21b, 35, 36, 51) aus einem thermoplastischen Elastomer gebildet ist.
- 4. Schuh nach Anspruch 2 oder 3, wobei ein Blattfederteil (16a, 16b, 21a, 21b, 35, 36, 51) wenigstens einen Reibabschnitt (R) aufweist, der bei einer Relativbewegung zwischen dem Fußbett (6) und der Sohle (8) reibt
- 5. Schuh nach Anspruch 4, wobei der Reibabschnitt (R) eines ersten Blattfederteils (16a, 16b) bei der Relativbewegung an einem entsprechenden Reibabschnitt (R) eines weiteren, dem ersten Blattfederteil (16a, 16b) zugeordneten Blattfederteils (21a, 21b) reibt.
- 6. Schuh nach Anspruch 4 oder 5, wobei der Reibabschnitt (R) eines Blattfederteils (21a, 21b) bei der Relativbewegung an einem entsprechenden Reibabschnitt 30 (R) des Fußbetts (6) oder der Sohle (8a) reibt.
- Schuh nach einem der Ansprüche 4 bis 6, wobei ein Reibabschnitt (R) beschichtet oder/und aufgerauht ist.
 Schuh nach einem der Ansprüche 2 bis 7, wobei das Blattfederteil (16a, 16b, 21a, 21b, 35, 36, 51) im wessentlichen streifenförmig ausgebildet ist.
- 9. Schuh nach einem der Ansprüche 2 bis 8, wobei das Blattfederteil (16a, 16b, 21a, 21b, 35, 36, 51) einen zur Sohle (8) weisenden Stützabschnitt umd einen zum Fußbeit (6) weisenden Stützabschnitt umfaßt, wobei die Stützabschnitte über einen schräg verlaufenden Mittelabschnitt (37a, 37b) miteinander verbunden sind. 10. Schuh nach Anspruch 9, wobei am Mittelabschnitt (37a, 37b) des Blattfederteils (16a, 16) ein weiteres Blattfederteil (35, 36) angeordnet ist.
- 11. Schuh nach einem der Ansprüche 2 bis 10, wobei das Blattfederteil (16a, 16b, 21a, 21b, 35, 36, 51) in einer einzigen Richtung gekrümmt ist, insbesondere in Längsrichtung des Schuhs (1).
- 12. Schuh nach einem der Ansprüche 2 bis 11, wobei 50 zwei hintereinander angeordnete, miteinander verbundene Blattfederteile (16a, b, 21a, b, 51) einen wellenartigen Verlauf mit wenigstens einem Wellenberg (17a, b, c) oder Wellental (18a, 18b) aufweisen.
- 13. Schuh nach einem der Ansprüche 1 bis 12, wobei 55 die Blattfedereinrichtung (14, 14', 14") eine Halteplatte (15, 15', 15") aufweist, an der ein Paar (16, 16", 16") aus zwei miteinander verbundenen, 'insbesondere in Längsrichtung des Schuhs (1) sich erstreckenden. Blattfederteilen (16a, 16b) gehalten ist.
- 14. Schuh nach Anspruch 13, wobei ein weiteres Paar (17, 17') aus zwei miteinander verbundenen Blattfederteilen (17a. 17b) im wesentlichen parallel zum ersten Blattfederteilpaar (16, 16') angeordnet ist.
- 15. Schuh nach Anspruch 14, wobei beide Blattseder- 65 teilpaare (16, 16', 17, 17') einen wellenartigen Verlauf mit jeweils einem Wellenberg (17a, b. c. 20) oder Wellental (18a, b. 22c. b) aufweisen, wobei zumindest ein

Wellenberg (17c) bzw. Wellental des ersten Blattfederteilpaares (16) einem Wellenberg (20) bzw. Wellental des weiteren Blattfederteilpaares (17) gegenüberliegt.

16. Schuh nach Anspruch 14 oder 15, wobei zwischen den Blattfederteilpaaren (16, 16', 17, 17') zwei Reibbereiche (R) ausgebildet sind.

- 17. Schuh nach einem der Ansprüche 13 bis 16, wobei wenigstens eines der Blattfederteilpaare (16', 17') an der Halteplatte (15') lösbar befestigt ist.
- 18. Schuh nach einem der Ansprüche 13 bis 17, wobei die Halteplatte (15) unbeweglich relativ zu dem Fußbett (6) oder der Sohle (8) gehalten ist.
- 19. Schuh nach einem der Ansprüche 1 bis 11, wobei die Blattfedereinrichtung (14, 14', 14", 48, 63) eine Reihe (50) aus hintereinander angeordneten und miteinander verbundenen Blattfederteilen (51) umfaßt.
- 20. Schuh nach Anspruch 19, wobei wenigstens zwei übereinander angeordnete Blattfederteilreihen (50) vorgesehen sind.
- 21. Schuh nach Anspruch 19 oder 20, wobei zwei übereinander angeordnete Blattfederteilreihen (50) mit wellenartigem Verlauf zueinander phasengleich oder um 180° phasenverschoben sind.
- 22. Schuh nach einem der Ansprüche 19 bis 21, wobei zwei übereinander angeordnete Blausederteilreihen (50) mit wellenartigem Verlauf zueinander um weniger als 90° phasenverschoben sind.
- 23. Schuh nach einem der Ansprüche 20 bis 22, wobei zwei übereinander angeordnete Blattfederteilreihen (50) im Bereich des Fersen-Schuhabschnittes und/oder im Bereich des Fußballen-Schuhabschnittes vorgesehen sind.
- 24. Schuh nach einem der Ansprüche 20 bis 22, wobei sich zwei übereinander angeordnete Blattfederteilreihen (50) im wesentlichen über die gesamte Länge des Schuhs (1) erstrecken.
- 25. Schuh nach einem der Ansprüche 19 bis 24, wobei die Enden zweier übereinander angeordneter Blattfederteilreihen (50) miteinander verbunden sind, insbesondere miteinander verschweißt sind.
- 26. Schuh nach einem der Ansprüche 19 bis 25, wobei zwei Blattfederteilreihen (50) übereinander angeordnet sind und Berührungsbereiche (55, 55") aufweisen, derart, daß wenigstens eine Kammer (56, 56", 61) zwischen den zwei Blattfederteilreihen (50) gebildet wird. 27. Schuh nach Anspruch 26, wobei die Kammer (56, 56", 61) mit einem Fluid gefüllt ist.
- 28. Schuh nach Anspruch 26 oder 27, wobei wenigstens ein Überströmkanal (57) vorgesehen ist, der die Kammer (56, 56", 61) mit einer weiteren Kammer (56, 56", 61) verbindet.
- 29. Schuh nach Anspruch 26 oder 27, wobei mehrere zwischen zwei übereinander angeordneten Blattfederteilreihen (50) ausgebildete Kammern (56, 56th, 61) durch Überströmkanäle (57) miteinander verbunden sind.
- 30. Schuh nach einem der Ansprüche 26 bis 29, wobei die zwischen zwei übereinander angeordneten Blattfederteilreihen (50) ausgebildeten Kammern (56, 61) hermetisch nach außen abgedichtet sind.
- 31. Schuh nach einem der Ansprüche 19 bis 30, wobei zur hermetischen Abdichtung zweier übereinander angeordneter Blattfederteilreihen (50) eine mit den Blattfederteilreihen (50) verbundene Seitenwand (58) vorgeschen ist.
- 32. Schuh nach Anspruch 31, wobei die Seitenwand (58) an eine der Blattfederteilreihen (50) angeformt ist. 33. Schuh nach einem der Ansprüche 31 oder 32, wo-

bei die Seitenwand (58) aus einem elastischen Material an die Blattfederteilreihen (50) angeschweißt ist.

34. Schuh nach einem Ansprüche 19 bis 33, wobei zwei übereinander angeordnete Blattfederteilreihen (50) in einem elastischen Gehäuse angeordnet sind.

35. Schuh nach einem der Ansprüche 19 bis 33, wobei zwei übereinander angeordnete Blattfederteilreihen (50) in einer elastischen Umhüllung (67) angeordnet

sind.
36. Schuh nach einem der Ansprüche 2 bis 35, wobei 10
Blattfederteile (16a, 16b, 21a, 21b, 35, 36, 51) aus verschiedenen Materialien gebildet sind.

37. Schuh nach einem der vorangehenden Ansprüche, wobei zwischen der Sohle (8) und dem Fußbett (6) wenigstehs ein elastischer Zusatzstift (33) vorgesehen ist, 15 der sich in Querrichtung des Schuhs (1) erstreckt.

38. Schuh nach Anspruch 37, wobei wenigstens einer der Zusatzstifte (33) herausnehmbar ist.

39. Schuh nach einem der Ansprüche 37 oder 38, wobei wenigstens einer der Zusatzstifte (33) in einem 20 Wellental (54) oder Wellenberg (53) eines wellenartigen Verlaufs von einem oder mehreren miteinander verbundenen Blattfederteilen (51) angeordnet ist.

40. Schuh nach einem der Ansprüche 37 bis 39 und mit den Merkmalen wenigstens eines der Ansprüche 26 bis 34, wobei der Zusatzstift (33) in einer Kammer (56") angeordnet ist.

41. Schuh nach einem der vorangehenden Ansprüche, wobei die seitliche Außenfläche des Bereichs zwischen dem Fußbett (6) und der Sohle (8) wenigstens teilweise 30 von einem transparenten Material gebildet ist.

42. Schuh nach einem der vorangehenden Ansprüche, wobei der Raum (10) zwischen dem Fußbett (6) und der Sohle (8) wenigstens teilweise ausgeschäumt ist.

43. Schuh-Federdämpfungseinrichtung zur Anordnung zwischen einer Sohle und einem Fußbett eines Schuhs, umfassend eine Blattfedereinrichtung (14, 14',

14", 48, 63).

44. Federdämpfungseinrichtung nach Anspruch 43, wobei die Blattfedereinrichtung wenigstens eine Reihe 40 (50) aus jeweils hintereinander angeordneten und miteinander verbundenen Blattfederteilen (51) umfaßt.

45. Federdämpfungseinrichtung nach Anspruch 44, wobei die Blattfederteilreihen (50) wenigstens eine Kammer (56, 56''', 61) begrenzen.

Hierzu 11 Seite(n) Zeichnungen

50

55

60

Fig. 24

DE 199 55 550 A1 A 43 B 13/1814. Dezember 2000

Fig. 26

