Faculdade Presidente Antônio Carlos Engenharia de Computação

Projeto de Automação de Operações e Entrega Contínua para Empresa de Desenvolvimento de Software

Ivan de Moura Miranda

Faculdade Presidente Antônio Carlos Engenharia de Computação

21 de novembro de 2016, v1

Sumário

- 1 Introdução
- 2 Situação da empresa no início do projeto
- 3 Trabalho realizado
- 4 Resultados obtidos

Introdução

Maiores desafios encontrados por desenvolvedores em seu ambiente de trabalho (STACK OVERFLOW, 2016):

- Expectativas irrealistas
- Documentação ruim
- Requisitos mal especificados
- Processo de desenvolvimento ineficiente

Introdução

Soluções existentes:

- Modelos e frameworks de boas práticas:
 - ITIL
 - COBIT
 - CMMI
- Metodologias ágeis:
 - SCRUM
 - XP
 - DevOps

Introdução Objetivos

- Modificar o ambiente de desenvolvimento de uma empresa baseando-se no estudo de boas práticas e ferramentas gratuitas buscando a automação das tarefas de operações e o aumento da qualidade dos softwares desenvolvidos
- Validar os benefícios da automação e entrega contínua em um cenário real
- Avaliar os métodos propostos

DevelOP

Associação de Desenvolvimento de *Software*, Produtos e Pessoas da Região dos Inconfidentes Mineiros

- Associação de direito privado, constituída na forma de sociedade civil de fins não lucrativos, com autonomia administrativa e financeira, fundada em 2016
- Tem por finalidade central realizar ações sociais de utilidade pública na área de desenvolvimento de software, produtos de software e pessoas (DEVELOP, 2016)
- Situada no centro de Ouro Preto

DevelOPEstrutura organizacional

- Divisão de equipes por projeto
- Comunicação informal
- Setores pequenos formados por especialistas

O processo de desenvolvimento

- Aplicadas algumas práticas do SCRUM como product backlog, divisão do projeto em Sprints e reuniões diárias
- Ciclo baseado em definição de requisitos, implementação e testes manuais
- Compilação de código fonte no computador do desenvolvedor
- Processo de implantação de novas versões totalmente manual
- Espera acumular muitas alterações para realizar a entrega

Dados coletados

Tabela 1: Dados do repositório de código fonte no início do projeto

Métrica	Quantidade
Número de <i>commits</i> realizados	125
Número de artefatos gerados	65
Número de mesclagem de código realizados	6
Número de bugs reportados pelo cliente	20
Número de atividades desenvolvidas pelo	70
time que foram registradas no sistema de	
controle de atividades	

Dados coletados

Tabela 2: Características das entregas no início do projeto

Data da entrega	Tempo necessário	Número de tentativas má suce- didas até a conclusão da en- trega
16/08/2016	2 horas	0
23/08/2016	6 horas	3
30/08/2016	3 horas	1
07/09/2016	6 horas	5
14/09/2016	8 horas	7
19/09/2016	4 horas	2

Problemas do cotidiano

- Esquecer de apagar diretórios de locais indevidos
- Executar a versão de produção em diretórios incorretos
- Permissões indevidas
- Dificuldade em gerenciar configurações
- Execução de scripts em produção sem os devidos testes anteriormente

Automação das tarefas de entrega

- O updload de novas versões de forma manual é comprometido pela velocidade e estabilidade da conexão de internet no escritório
- Decidido compilar o código em um servidor remoto, sem problemas relacionados a conexão de internet
- Necessário garantir a estabilidade da base de código antes de automatizar este processo

Garatindo estabilidade a base de código

- Testes automatizados
- Refatoração constante
- Code review
- Integração contínua

Entrega contínua

- Entrega de software antes:
 - Acumulava várias atualizações para realizar entregas com baixa frequência.
 - Picos de esforço relacionados a entrega
 - Muitos alterações para investigar a causa de bugs
 - Alto risco

- Entrega de software depois:
 - Consegue entregar pequenas atualizações com alta frequência
 - Pouco esforço relacionado a cada entrega
 - Poucas alterações para investigar a causa de bugs
 - Baixo risco

Ferramentas utilizadas

- Docker
- Gitlab
- Jenkins
- Zabbix

Resultados

Dados coletados

Tabela 3: Dados do repositório de código fonte no fim do projeto

Métrica	Quantidade
Número de <i>commits</i> realizados	434
Número de artefatos gerados	115
Número de mesclagem de código realizados	19
Número de mesclagem de código rejeitadas	3
Número de bugs reportados pelo cliente	6
Número de atividades desenvolvidas pelo	34
time que foram registradas no sistema de	
controle de atividades	
Tempo médio de execução da build pipeline	5 minutos

Resultados

Dados coletados

Tabela 4: Características das entregas no fim do projeto

Data da entrega	Tempo necessário	Número de tentativas má su- cedidas até a conclusão da entrega
14/10/2016	13 segundos	0
18/10/2016	17 segundos	0
23/10/2016	1 minuto e 21 segundos	0
25/10/2016	1 minuto e 17 segundos	0
26/10/2016	16 segundos	0
28/10/2016	12 segundos	0
31/10/2016	14 segundos	0

Tabela 5: Comparativo baseado em uma média mensal dos dados coletados antes e depois da conclusão do projeto.

	Antes	Depois
Tempo médio necessário para realizar a en-	5 horas	33 segundos
trega de uma nova versão		
Média de tentativas má sucedidas até a con-	3	0
clusão de uma entrega		
Número de commits realizados	62	434
Número de artefatos gerados	32	115
Número de mesclagem de código realizadas	3	19
Número de mesclagem de código rejeitadas	1	3
Número de bugs reportados pelo cliente	10	6

Resultados

Feedback da equipe de desenvolvimento

- Realizando alterações pequenas e constantes é mais fácil identificar e corrigir bugs
- Não precisa dedicar um dia para fazer a entrega pois é totalmente automatizada
- Maior satisfação do cliente com a redução do tempo de resposta para correção de bugs
- O code review se mostra burocrático em situações de urgência, mas colabora com o compartilhamento do conhecimento sobre a base de códigos.

Trabalhos futuros

- Centralização de logs
- Uso de orquestradores para contêineres
- Implantação contínua
- Provisionamento de hardware

Conclusão

- Metodologias ágeis são extremamente vantajosas quando aplicadas corretamente
- A automação de tarefas manuais economiza muito tempo investido no projeto
- Existem muitas ferramentas gratuitas eficientes para alcançar os objetivos desejados
- O principal fator para o estabelecimento de um ambiente de desenvolvimento eficaz é a colaboração de todos os membros do time e a busca constante por automação e melhoria do processo

Referências I

DEVELOP. Estatuto da Associação DevelOP. Ouro Preto: [s.n.], 2016.

STACK OVERFLOW. Stack overflow developer survey 2016 results. 2016.

Disponível em: https://stackoverflow.com/research/developer-survey-2016>.

Acesso em: 10 out. 2016.