Contents

1 Ripassino Laplacino

1.1 Definizione

$$\mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt$$

con s variabile complessa generica, di forma $\sigma + j\omega$ con σ e $\omega \in \mathbb{R}$ e si usa F(s) per indicare $\mathcal{L}\{f(t)\}$, convenzione ripresa dal caro vecchio $F = \int f$.

1.2 Cosi notevoli

I cosi notevoli si ricavano con due componenti

- Trasformata del gradino unitario
- Abuso di varie proprietà del cazzo

Le trasformate che vogliamo ricavare sono le seguenti

- Gradino (tutto è causale, tutto viene dal gradino)
- Esponenziale (è una trasformata, che t'aspetti?)
- Seni e coseni (hai l'esponenziale, che t'aspetti?)
- Polinomii
- Funzioni razionali

L'esponenziale & Co. sarà ricavato con i soliti teoremi da esponenziale (mi spiace)

Per i polinomii & Co.

1.2.1 Gradino unitario

 $\frac{1}{s}$

e ora, a chi volesse un flashback dell'Argenti

1.2.2 Linearità

Grazialcazzo

1.2.3 Traslazione in frequenza

da questa si ricava

1.2.4 Esponenziale

abbiamo un esponenziale complesso, abbiamo la linearità, indovina un po'? Abbiamo

1.2.5 Seni e coseni

1.2.6 Derivazione in frequenza

Con questa si può iniziare a scazzare con polinomii, si ricavano intanto i monomii in Laplace, poi linearità \rightarrow grazialcazzo

- 1.2.7 Rampa unitaria
- 1.2.8 Rampa non unitaria
- 1.2.9 Derivazione nel tempo
- 1.2.10 Integrazione

E ora, al fine di massimizzare il flashback argentialno

1.2.11 Convoluzione nel tempo

1.2.12 Impulso di Dirac