МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный технический университет»

Факультет информационных технологий и компьютерных систем Кафедра «Прикладная математика и фундаментальная информатика»

Расчетно-графическая работа

по дисциплине	Математический анализ	
на тему	Дифференциальное исчисление функций одной переменной	
	Студента	<u>Курпенова Куата Ибраимовича</u> фамилия, имя, отчество полностью
	Курс	1 Группа ФИТ-212
	Направление	02.03.02 Фундаментальная информатика и
		<u>информационные технологии</u> код, наименование
	Руморолитоли	ассистент кафедры
	т уководитель	должность, ученая степень, звание
		Казаков С. Г.
		фамилия, инициалы
	Выполнил	
		дата, подпись студента
	баллы	дата, подпись руководителя

$$\mathcal{I} = \operatorname{arctos} \ln \frac{\sqrt{x}}{\sqrt{x}}$$

PUT-212 Kyprerio & K.U. Bapuaum I

$$y' = 3axd9^2 \left(lm \left(\frac{\sqrt{x}}{x+2} \right) \right) \cdot \left(axcd9 \left(lm \left(\frac{\sqrt{x}}{x+2} \right) \right) \right) =$$

$$= \frac{3 \operatorname{arcto}^{2}\left(\operatorname{ln}\left(\frac{\sqrt{X}}{X+2}\right)\right)}{\operatorname{ln}^{2}\left(\frac{\sqrt{X}}{X+2}\right)+2} \cdot \left(\operatorname{ln}\left(\frac{\sqrt{X}}{X+2}\right)\right) =$$

$$= \frac{3(x+2) \operatorname{arctg}^{2}\left(\ln\left(\frac{\sqrt{x}}{x+2}\right)\right)}{\sqrt{x}\left(\ln^{2}\left(\frac{\sqrt{x}}{x+2}\right)+1\right)} \cdot \left(\frac{\sqrt{x}}{x+2}\right)^{1} =$$

$$= \frac{3(x+2) \operatorname{arcto}^{2}(\ln \frac{\sqrt{x}}{x+2})}{\sqrt{x} \left(\ln^{2}(\frac{\sqrt{x}}{x+2}) + 1\right)} \cdot (\sqrt{x})^{1} \cdot (x+2)^{2} \cdot \sqrt{x}$$

$$= \frac{3(x+2) \operatorname{arcto}^{2}(\ln \frac{\sqrt{x}}{x+2})}{\sqrt{x} \cdot (x+2)^{2}} \cdot \sqrt{x}$$

$$= \frac{3(x+2) \operatorname{arctg}^{2}(\ln(\frac{\sqrt{x}}{x+2}))}{\sqrt{x}(\ln^{2}(\frac{\sqrt{x}}{x+2}+1))} \cdot \frac{x+2}{2\sqrt{x}} - ((x)^{1} + (2^{1})^{1}) \cdot \sqrt{x}}{(x+2)^{2}}$$

$$= \frac{3(x+2) \operatorname{arctg}^{2}(\ln(\frac{\sqrt{x}}{x+2}))}{(x+2)^{2}} \cdot \frac{x+2}{2\sqrt{x}} - \sqrt{x} \operatorname{arctg}^{2}(\ln(\frac{\sqrt{x}}{x+2}))$$

$$= \frac{3\left(\frac{X+2}{2\sqrt{X}} - \sqrt{X}\right) \operatorname{arctg}^{2}\left(\ln\left(\frac{\sqrt{X}}{X+2}\right)\right)}{\sqrt{X}\left(X+2\right)\left(\ln^{2}\left(\frac{\sqrt{X}}{X+2}+1\right)\right)}$$

$$9 = (\sqrt{x})^{av csinx}$$

$$y' = \left(e^{\frac{\operatorname{avcsin}(x)\ln(x)}{2}}\right)' = e^{\frac{\operatorname{avcsin}(x)\ln(x)}{2}} \cdot \left(\frac{\operatorname{avcsin}(x)\ln(x)}{2}\right) =$$

=
$$e^{\frac{\operatorname{avcsin}(x)\ln(x)}{2}}$$
 $(\operatorname{avcsin}(x)\ln(x))^{1}$

=
$$e^{\frac{\alpha \operatorname{vesin}(x) \ln(x)}{2}} \cdot ((\alpha \operatorname{vesin}(x))^{1} \ln(x) + (\ln x)^{1} \operatorname{ansin}(x) =$$

$$z = x \frac{a_{resinx}}{2} \left(\frac{\ln x}{\sqrt{1-x^2}} + \frac{a_{resin}(x)}{x} \right)$$

DUT-282 sin (x-sh) + h = #x Kypnerob K.U. Baquart 1 $(s! \wedge (x-sa) + \frac{a}{x/s})_{i} = (\pm x)_{i}$ (Sin (x-sh)), + + + (x)) = 4x, - Concerno G cos (x-2y) (x-24)/+ 3x2 = 7 $\cos(x-2y)((x)'-(2y)')+\frac{3x^2}{4}=4$ $\cos(x-2y)/+\frac{3x^2}{4}=4$ $x = e^{+} \cdot \cos t$, $y = e^{+} \cos t$ una namy ?? dy = dy dt $\frac{d}{dx}$ (e^tcost) = $\frac{d}{dx}$ (e^{-t}cost) (- sin t+ cost)et (-sint-cost)e-t = sint-cost er Mabrino $\lim_{x \to +\infty} \frac{x^2}{e^x} \to \frac{\left(x^2\right)^2}{e^x} = \left(\frac{2xe^x - x^2e^x}{e^{2x}}\right) = \frac{x(2-x)}{e^x}$ $\left(\frac{x(2-x)}{e^{x}}\right)' = (2-x)' \cdot xe^{-x} + (xe^{-x})' \cdot (2-x) =$ = $(-(x)' + (2)') \cdot x e^{-x} + (x) e^{-x} + (e^{-x}) x) \cdot (2-x) =$ = (-1) xe-x+(e-x+xe-x.(-x)1).(2-x) = z ly flo = $(-1) \cdot xe^{-x} + (e^{-x} - xe^{-x} \cdot (x)) (2-x) =$ x 200 9(= $(2-x)(e^{-x}-xe^{-x})-xe^{-x}$ lim (2-x)(e-x-xe-x)-xe-x =0

$$f(x) = x^{2} + \frac{1}{x^{2}}$$

$$f(0) = 0 + \frac{1}{0} \Rightarrow proserval not$$

$$x' + \frac{1}{x^{2}} = 0$$

$$x'' + \frac{1}{x^{2}} = 0$$

$$x'' + \frac{1}{x^{2}} = 0$$

$$x'' + \frac{1}{x^{2}} = 0$$

$$2(x'' - \frac{1}{x^{2}}) = 0$$

$$x'' = \frac{1}{x^{2}} \Rightarrow 0$$

$$2(x'' - \frac{1}{x^{2}}) = 0$$

$$x'' = \frac{1}{x^{2}} \Rightarrow 0$$

$$2(x'' - \frac{1}{x^{2}}) = 0$$

$$x'' = \frac{1}{x^{2}} \Rightarrow 0$$

$$2(x'' - \frac{1}{x^{2}}) = 0$$

$$x'' = \frac{1}{x^{2}} \Rightarrow 0$$

DUT-212 Kupunish K.U. Bapuana I