Neural Nets and the Perceptron

Daniel Lawson — University of Bristol

Lecture 07.1 (v2.1.0)

Signposting

- ► This Block is split into two Lectures:
 - ▶ 07.1 (this lecture) on the basics
 - ▶ 07.2 on architecture and implementation
- ► This is Part 1, which covers:
 - ► Introduction
 - Neurons
 - Single layer perceptron
 - Learning algorithms

Questions

- ► What makes a neural network deep?
- ▶ Does deep matter?
- How can we learn parameters for a neural net?

Neurons

- ► Dendrites take inputs
- ► Axons fire on activation
- ► Form a dynamical system

Artificial Neurons

- ► Take a number of input signals
- Activation function transforms to output
- Output sent as input to downstream neurons
- (Typically) constructed to form a directed system for learning

Activation functions

- ► Neuron *i* is modelled as:
 - ► A nonlinear activation function *f*:
 - ightharpoonup a base rate $W_{0,i}$,
 - lacktriangle and weights $W_{j,i}$ for each input neuron a_j with output x_{a_j} :

$$f\left(W_{0,i} + \sum_{j=1} W_{j,i} x_{a_j}\right),\,$$

- $lackbox{}{} f$ is a mapping $\mathbb{R}
 ightarrow [r_{min}, r_{max}]$ (which may not be bounded).
- ► There are many common choices, e.g.:
 - ► tanh: $f(y) = (1 + \tanh(y))/2$
 - logistic: $f(y) = 1/(1 + e^{-y})$
 - ▶ Step function: $f(y) = \mathbb{I}(y > 0)$
 - ▶ Rectified linear unit (ReLU): $f(y) = \mathbb{I}(y > 0)y$

Activation functions

Activation functions

- ▶ The important features of activation functions are:
 - ▶ Non-linearity. A deep neural network can be trivially replicated by a one layer neural network if the activations are linear.
 - ▶ **Derivatives**. Learning requires evaluating derivatives, which should be *cheap*, and *informative*.
 - ► Smoothness. Simple discontinuities can be handled, complex ones make learning slow.

Activation functions in practice

- ► ReLU contains the important complexity whilst being very fast to learn;
- ▶ It may exhibit convergence problems when y << 0;
- ► For small networks, complex activation helps.
- ► A notable modern alternative is **Swish**¹:
 - ► $f(y) = y/(1 + \exp(-\beta y))$
 - ▶ ReLU-like: Converges to zero for $x \to -\infty$ and to x for $x \to \infty$
 - ightharpoonup Has unbounded derivative for x < 0 so learning still works
 - ► Strangely, monotonicity seems not to be important?

¹Ramachandran, Zoph and Le Searching for Activation Functions

Logical functions

- Every boolean function can be implemented by a neural network².
- For simplicity $f(x \le 0) = 0$, and f(x > 0) = 1, i.e. the neuron "fires" on activation. Then, the following can be implemented on a single node:
 - ► AND: $f(x_1, x_2) = -1.5 + x_1 + x_2$
 - ightharpoonup OR: $f(x_1, x_2) = -0.5 + x_1 + x_2$
 - ► NOT: $f(x_1) = 0.5 x_1$
- ► Neural networks with more general activation functions can still implement these functions.

²McCulloch and Pitts (1943) A logical calculus of the ideas immanent in nervous activity

Logical function problems

- But not every function can be implemented in a single layer perceptron³:
 - ightharpoonup XOR: only x_1 or x_2 can be active

³Minsky and Papert 1969 Perceptrons

Single Layer perceptron (SLP)

- ► Has just two layers:
 - data layer (e.g. features)
 - output layer (e.g. classes)
- ► No hidden layers!
- ► Weights learned
- Making a linear classification rule

Mathematical description of SLP

- ightharpoonup N Inputs x_i and M outputs y_i
- \blacktriangleright Activation function f and with weights W_{ij} :

$$f(\mathbf{x}) = f\left(W_{0j} + \sum_{i=1}^{N} W_{ij} x_i\right)$$

- $ightharpoonup W_{0j}$ allows for an offset (mean) in the activation, just like in linear regression
- \blacktriangleright Loss is the square error over all output variables j:

$$L(W) = \sum_{j=1}^{M} L_j = \sum_{j=1}^{M} \left[y_j - f \left(W_{0j} + \sum_{i=1}^{N} W_{ij} x_i \right) \right]^2$$
$$= \sum_{j=1}^{M} \delta_{ij}^2(\mathbf{w}_j)$$

 $ightharpoonup \delta_{ij}(\mathbf{w}_i)$ is the error for input i output j.

Learning through Gradient Descent

- ► Learn through Gradient Descent:
 - i.e. Differentiate the loss with respect to the weights for $i=0,\ldots,N$:

$$abla_W L = \left(\frac{\partial L}{\partial W_{10}}, \dots, \frac{\partial L}{\partial W_{ij}}, \dots, \frac{\partial L}{\partial W_{NM}}\right)^T$$

where:

$$\frac{\partial L}{\partial W_{ij}} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial W_{ij}} = -2\delta_{ij} \frac{\partial f}{\partial W_{ij}},$$

► Leading to the update rule:

$$W_{ij} \leftarrow W_{ij} + \alpha \frac{\partial f}{\partial W_{ij}} \delta_{ij}$$

- We are taking a step of size α in a direction towards the multivariate minima of the loss
- ightharpoonup Choose step size α to take steps that move *fast enough* whilst not *overshooting*.
- ightharpoonup In practice α is learned adaptively.

Multilayer Perceptrons / Feed Forward Neural Networks

Multilayer Perceptrons / Feed Forward Neural Networks

- A Neural Network's power is in hidden layers
 - Hidden layers can be treated exactly as the layers we have observed
 - Maths allowing modularly that is transformative
- ► Architecture choices include the number of layers and the connectedness:
 - Completely connected layers?
 - ► Locality towards data?
 - ► Number of neurons in each layer?
- ► These choices are somewhat manual and define your model
- ► Architecture is robust, i.e. many choices will lead to similar predictions. . .
- ► But they are **not** arbitrary!

Universal Approximation Theorem

- ightharpoonup Any⁴ function of n inputs can be approximated
- By using non-linear activation functions (e.g. ReLU)
- Using a single hidden layer, with an exponential width (number of nodes, scale with n)
- ightharpoonup Or a (linear in n) deep network with finite width

⁴continuous, compact function on \mathbb{R}^n

Back Propagation

- ► Learning Neural networks was an art until back propagation was discovered⁵.
- ► This is a method to compute all derivatives of all weights, exactly and efficiently.
- ► Notation:
 - ▶ Index the current layer as k (of K) with node labels i, the next layer with labels j.
 - Activation function $x_i^k = f(a_i^k)$
 - $a_j^k = W_{0j}^k + \sum_{i=1}^{n_k} W_{ij}^k x_i^k$
- lackbox Output layer: W_{ij}^K is learned as a Single Layer Perceptron
- ► Work backwards from there...

⁵Hecht-Nielsen, Robert. "Theory of the backpropagation neural network." Neural networks for perception. Academic Press, 1992. 65-93.

Backpropagation network

Back Propagation

► Hidden layers: back-propagate the error from the **next layer** to the **current**, using the chain rule:

$$\frac{\partial L}{\partial W_{ij}^k} = \sum_{j=1}^{n_{(k+1)}} \frac{\partial L}{\partial x_j^{(k+1)}} \frac{\partial x_j^{(k+1)}}{\partial a_{ij}^{(k+1)}} \frac{\partial a_j^{(k+1)}}{\partial W_{ij}^k}$$

i.e. we compute the activation function for one layer as a (sum over) two components:

$$ightharpoonup$$
 error : $\delta_j^{k+1} = \frac{\partial L}{\partial x_j^{(k+1)}}$

response :
$$\frac{\partial x_j^{(k+1)}}{\partial a_{ij}^{(k+1)}} = \frac{\partial f(a)}{\partial a}$$

response rate :
$$\frac{\partial a_j^{(k+1)}}{\partial W_{ij}^k}$$

► The last two are often combined, but this representation separates the activation function from the weights.

Stochastic Gradient Descent

- ► **Gradient Descent** is just the beginning. It is appropriate for:
 - 1. **Smooth** or **convex** error functions, so that we do not become trapped in a local optima;
 - 2. **Small data regimes**, where we can afford to compute the entire gradient every update.
- Stochastic Gradient Descent addresses local minima and computational cost together.
 - lt uses mini-batches of data for a gradient update.
 - ► This makes each update random, creating a type of annealing in the algorithm:
 - We can take large random steps when we are far from the optima (large step size),
 - And much shorter and hence on average reliable steps when we are closer (small step size).

Interpreting classifier output

- Neural networks output a set of activations
- ▶ It is standard to apply softmax $p(\mathbf{z}) : \mathcal{R}^n \to [0, 1]$ s.t. $\sum_{i=1}^n z_i = 1$:

$$p(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

- This interprets the activation as a log-likelihood
- This is almost always wrong

Interpreting classifier output

- ► Various sophisticated approaches are available:
 - e.g. Mixture Density Networks⁶
 - ► Calibrate probabilities in a "post processing" layer⁷
- Neural Networks are **not** (normally) approximating probabilities. They are predicting data, or equivalently, predicting decisions.
 - e.g. A NN driving a car doesn't care about the probability of a person being in the screen.
 - ► It cares about the Loss function, which in this case would be expressed in terms of actions.

⁶Bishop 1994 Mixture Density Networks

⁷Kull et al 2019 NeurIPS Beyond temperature scaling: Obtaining ell-calibrated multiclass probabilities with Dirichlet calibration

References (1)

- ► Chapter 11 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- ► Russell and Norvig Artificial Intelligence: A Modern Approach
 - ► Chapter 20 Section 5: Neural Networks
- Swish: Ramachandran, Zoph and Le Searching for Activation Functions
- ► Important historical papers:
 - McCulloch and Pitts (1943) A logical calculus of the ideas immanent in nervous activity
 - ► Minsky and Papert 1969 Perceptrons
- ► Theoretical practicalities:
 - ► Practical advice from Bengio 2012 Practical Recommendations for Gradient-Based Training of Deep Architectures
 - ► Kull et al 2019 NeurIPS Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration

References (2)

- Important historical papers:
 - ► Hecht-Nielsen, Robert. "Theory of the backpropagation neural network." Neural networks for perception. Academic Press, 1992. 65-93.
 - ► Bishop 1994 Mixture Density Networks
- ► Likelihood and modelling applications of Neural Networks:
 - Chilinski and Silva Neural Likelihoods via Cumulative Distribution Functions
 - Albawi, Mohammed and Al-Zawi Understanding of a convolutional neural network
 - Omi, Ueda and Aihara Fully Neural Network based Model for General Temporal Point Processes