Name and Student ID:

Machine Learning BLG527E, January 9, 2018, 120mins, Final Exam

Signature:

Duration: 120 minutes.

Closed books and notes. Write your answers neatly in the space provided for them. Write

your name on each sheet. Good Luck!

Q1 (25)	Q2 (25)	Q3(25)	Q4(25)	TOTAL (100)	ANTWER
					TIM WERE

QUESTIONS

Q1) [25pts]

Given an HMM $\lambda = (\pi, A, B)$ with state transition probability matrix A, emission probabilities B, initial state probabilities π , and two states and two symbols red and green,

$$\pi = [0.2 \ 0.8]^{T}$$
 A= $\begin{vmatrix} 0.8 & 0.2 \\ 0.9 & 0.1 \end{vmatrix}$ B= $\begin{vmatrix} red & green \\ 0.7 & 0.3 & | State 1 \\ 0.4 & 0.6 & | State 2 \end{vmatrix}$

What is the $Pr(O|\lambda)$ where $O = \{red, red \}$

Hint: The forward variables in an HMM are calculated as follows:

$$\alpha_t(i) \equiv P(O_1 \cdots O_t, q_t = S_i \mid \lambda)$$

Initializa tion:

$$\alpha_1(i) = \pi_i b_i(O_1)$$

Recursion:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i)a_{ij}\right]b_{j}(O_{t+1})$$

 $\begin{array}{c|c}
(1) & 0.8 & (1) \\
(1) & 0.2 & 0.2 \\
(2) & 0.9 & (2)
\end{array}$

$$d_{1}(2) = 0,32$$
 $d_{2}(2) = 0,32$ "red"

$$\frac{d_{1}(1) = \pi_{1} b_{1}(red) = 0,2 \times 0,7 = 0,14}{d_{1}(2) = \pi_{2} b_{2}(red) = 0,8 \times 0,4 = 0,32}$$

$$\frac{d_{2}(1) = (d_{1}(1)a_{11} + d_{1}(2)a_{21}) b_{1}(red)}{d_{2}(1) + d_{1}(2)a_{21}} b_{2}(red)$$

$$= (0,14 \times 0,8 + 0,32 \times 0,9) \times 0,7 = 0,28$$

$$\frac{d_{2}(1) = (d_{1}(1)a_{12} + d_{1}(2),a_{22}) b_{2}(red)}{d_{2}(1) + d_{1}(2),a_{22}} b_{2}(red)$$

$$= (0,14 \times 0,2 + 0,32 \times 0,1) \times 0,4 = 0,024$$

$$= (0,14 \times 0,2 + 0,32 \times 0,1) \times 0,4 = 0,024$$

$$= (0,14 \times 0,2 + 0,32 \times 0,1) \times 0,4 = 0,024$$

$$= (0,14 \times 0,2 + 0,32 \times 0,1) \times 0,4 = 0,024$$

P(B)=0,8

(W) P(W)=0,5

Name and Student ID:

Q2) [25pts]

You are given the following probabilities:

P(B) = 0.8, P(W) = 0.5,

P(C|W,B) = 0.9, P(C|W,B) = 0.5,

P(C|W, B) = 0.4, P(C|W, B) = 0.1.

P(C(NW,B)=0,5 P (C/W,NB)=014 P(C|NW,NB)=0,1

Given that the coffee you drink is good (C), compute the probability that the beans are good

 $P(B|C) = \frac{P(C,B)}{P(C)} = \frac{P(C,B,W) + P(C,B,NW)}{P(C)}$

P(C)=P(C,B,W)+P(C,B,NW)+P(C,NB,NW)+P(C,NB,NW)

P(C/B,W)=P(B),P(W),P(C/W/B)=0,8x0,5x0,9=0,36 P(C,B,NW)=P(B),P(NW),P(C/NW,B)=0,8x0,5x0,5=0,2

P(C, NBW)=P(NB), P(W), P(C/W, NB) =0.2x0,5x0,4=0.04

P(C,NB,NW)=P(NB)P(NW), P(C/NW,NB)=0,2x0,5x0,1=0,0)

 $P(B|C) = \frac{0.36 + 0.2}{0.36 + 0.2 + 0.04 + 0.01} = \frac{0.56}{0.61}, 0.92$

Name and Student ID:

Q3)[25pts]

In the table below, x_1 , x_2 and $x_i \in \{0,1\}$, i = 1,2 x_i represent the *i* feature vector and $y \in \{+,-\}$ represents the class label. Generate a decision tree for this dataset using Entropy as the impurity measure.

Id	\mathbf{x}_{1}	X2	у
1	0	0	-
2	0	1	+
3	1	0	+
4	1	1	***

	- ×	~~
Н	I N	
LI.	LIV.	ı.

For node m, N_m instances reach m, N_m^i belong to C_i

$$\hat{P}(C_i \mid \mathbf{x}, m) = p_m^i = \frac{N_m^i}{N_m}$$

Node m is pure if p'_m is 0 or 1 Measure of impurity is entropy

	4 1 1	+ NA	N
	1,2,3, Pot=2	Jo=1	
1,2	X1=0	N 3.4	
P= 2	m 2)	P=====================================	D? N
17=0 17=0	12 + 12 0 H ₂ 20	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 Rt=0 I6=0
			(LL-

317

Measure of impurity is entropy

$$I_{m} = -\sum_{i=1}^{K} p_{m}^{i} \log_{2} p_{m}^{i}$$

When $Pm = P_{m}^{+} = \frac{1}{2}$

$$I_{m} = -\frac{1}{2} \log_{2} \frac{1}{2} - \frac{1}{2} \log_{2} \frac{1}{2} = 1$$

When $Pm = 0$, $Pm = 1$ or

$$Pm = 1$$
, $Pm = 0$

$$I_{m} = -0 \log_{0} + 1 \log_{1} 1 = 0$$

Since there are only 2 classes we'll only show Pm at the decision then nodes

At node O (root)
we can split according to

X=0?

YZ=0

Name and Student ID:

Q4) [25pts] Q4a). Given a dataset with N=2million instances and a neural network to classify it, which cross validation methods would you use to determine the number of hidden units in the neural network? K fold, 5x2 Noodstapping OR Divide whole Lata into Train, val, Test Lets. Take a subject of Frain, train, classify the renaming framing Lata. Pal some mis classified instances to train set from training determined while validation error belos decreasing. Q4b) Give two examples of kernels that are used with SVM (Support Vector Machine) classifiers. Linear, Jug Latalic, Polynamial, PSF (baussian)
Q4c) What are the differences between MLE (Maximum Likelihood Estimation) and Bayesian Estimation. Give an example. MLE: part estimator for the parameter computed based on the data to maximum the log livelihood placed on the data to maximum the log livelihood. Bayesian: The postere his tribution for the parameter computed given the property between logistic regression, mean $P(D X) = P(X D) P(X)$. Q4d) What are the i) differences and ii) similarities between logistic regression, multilayer perceptron and deep neural networks? Le: classification melonis? Le: classification melonis. Le
Q4e) Describe two methods that you could use to regularize a neural network so that you could
weight decay (LL or LZ regularitation)
weight elimination
Dropout Harly stopping based on validation set.