## Московский физико-технический институт

### ЛАБОРАТОРНАЯ РАБОТА № 11A ПО КУРСУ ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА

# Фотоэлектрический способ преобразования энергии солнечного излучения

выполнили студенты Б04-004 группы Семёнова Наталия Атласов Владислав Плюскова Наталия Богатова Екатерина **В работе:** Исследование темновой и световой вольтамперной характеристики фотоэлемента. Изучение влияния мощности падающего излучения на характеристики образца с помощью фильтров.

#### 1 Теоретическое введение

Электронно-дырочный переход

Прямое преобразование лучистой энергии Солнца в электрическую осуществляется с помощью фотоэффекта на потенциальном барьере или так называемого вентильного фотоэффекта, суть которого — возникновение фото-ЭДС при освещении контактов металл-полупроводник и p-n переходов. Однако, вследствие сложной микроструктуры контактов полупроводника с металлом, мы ограничимся в дальнейшем наиболее ясным случаем p-n переходов.

Рассмотрим более подробно, что представляет собой p-n переход. Пусть два полупроводника, один из которых имеет проводимость p-типа, а другой n-типа приводятся в хороший контакт по плоскости aa, как показано на изображении а (Puc. 1). Тогда под действием градиента концентрации дырки из приконтактного слоя p-области будут диффундировать в n-область, а электроны из приконтактного слоя n-области в p-область.



Рис. 1: р-п переход

В результате такой диффузии в приконтактном слое р-области создается отрицательный объемный заряд нескомпенсированных ионов акцепторной примеси, а в приконтактном слое n-области — положительный объемный заряд нескомпенсированных ионов донорной примеси. Порожденное объемными зарядами электрическое

поле (направление которого показано на изображении а (Рис. 1)), будет препятствовать дальнейшей диффузии основных носителей зарядов (основными называются носители, знак которых соотвествует типу проводимости полупроводника). При этом напряженность электрического поля  $\epsilon$  и толщины слоев объемных зарядов в n и робластях будут возрастать до тех пор, пока не достигнут своих равновесных значений  $\epsilon_0$ ,  $d_p$  и  $d_n$ , при которых диффузионные потоки основных носителей зарядов полностью скомпенсированы дрейфовыми потоками, вызванными электрическим полем объемных зарядов. Переходная область толщины  $d = d_n + d_p$ , объединённая свободными носителями зарядов, и в которой локализовано электрическое поле с напряженностью  $\epsilon_0$  получила название электронно-дырочного или p-n перехода. Толщина p-n-n-перехода d для различных полупроводниковых систем может изменяться от единицы и до сотых долей микрометров, а величина  $\epsilon_0$  достигать значений  $\sim 10^7 B*cm^{-1}$ .

Состояние p-n-перехода в термодинамическом равновесии легко понять, обращаясь к его энергетической диаграмме, приведенной на схеме б (Рис. 1). Здесь  $E_c$  дно зоны проводимости,  $E_{\nu}$  – потолок валентной зоны, F – уровень Ферми. В самом деле, электроны из n-области не могут проникнуть в p-область, так как для этого им необходимо преодолеть потенциальный барьер, высота  $u_k$  которого равна контактной разности потенциалов, а энергия электронов меньше высоты этого барьера. По аналогичной причине дырки из p-области не могут попасть в n-область.

На практике p-n-переходы реализуются не механическим соединением двух полупроводников, а внутри единого кристалла, в котором создают подходящее распределение донорной  $N_d$  и акцепторной  $N_a$  примесей, например, показанной на схеме в (Рисунок 1).

#### 2 Экспериментальная установка

Вольтамперная характеристики фотопреобразователя могут быть измерены с помощью схемы, представленной на схеме (Рис. 2). Когда преобразователь работает как генератор электроэнергии, то в качестве источника излучения используется лампа марки 3H7 или 3H8 с встроенным зеркальным отражателем и мощностью 500 Вт. Спектр ее излучения с помощью водяного фильтра приближен к спектру солнечного излучения и к спектральной чувствительности кремниевого преобразователя.

Перед началом и после измерений тумблеры на пульте управления и переключатели других приборов должны быть установлены в следующих положениях:

- Тумблер 1: подачи напряжения от батареи аккумуляторов в положении «выкл».
- Тумблер 2 переключение полярности микроамперметра М 95 в положении «обр».
- Тумблер 3 переключение с микроамперметра на миллиамперметр в положении «мА».
- Тумблер 4 изменение полярности напряжения подаваемого на фотопреобразователь в положении «обр.».

Потенциометры «грубо» и «точно» должны быть выведены против часовой стрелки до упора.

Переключатель шкалы микроамперметра М 95 должен стоять в положении «арретир», а наружный шунт к М 95 в положении « $\infty$ ».



Рис. 2: Схема установки для экспериментальных исследований световой и темновой  $\mathbf{b}/\mathbf{a}$  характеристик фотоэлементов

#### 3 Ход работы

Проведём измерение темновых вольтамперных харакстерстик исследуемого кремниевого фотоэлемента.

Начнём с прямой ветви темновой в/а характеристики. Будем снимать точки до  $300~{\rm mB}$  с шагом в  $20~{\rm mB}$ , а затем до  $700~{\rm mB}$  с шагом  $50~{\rm mB}$ . Предварительно не забудем учесть, что ноль напряжений смещён на 0.9 делений (на  $9~{\rm mB}$ ) вправо.

| U, мВ  | 21   | 41  | 61  | 81   | 101  | 121  | 141  | 161   | 181   | 201 | 221   |
|--------|------|-----|-----|------|------|------|------|-------|-------|-----|-------|
| І, мкА | 4,9  | 9   | 13  | 17   | 21   | 24   | 28   | 32,5  | 36    | 40  | 44    |
| U, мВ  | 241  | 261 | 281 | 331  | 381  | 431  | 481  | 531   | 581   | 631 | 681   |
| І, мкА | 48,3 | 50  | 54  | 62,5 | 72,5 | 82,5 | 92,5 | 102,5 | 111,5 | 121 | 130,5 |

Таблица 1: Зависимость значений прямого темнового тока от напряжения на фотоэлементе

Основываясь на данных из таблицы 1 построим график зависимости тока от напряжения (вольт-амперную характеристику) — рис 3 — и фиттируем её линейной зависимость, проходящей через ноль.



Рис. 3: Вольт-амперная характеристика темнового тока (прямая ветвь)

Здесь в качестве погрешностей использовали цену деления прибора:  $10~\mathrm{mB}$  для напряжения и  $5~\mathrm{mkA}$  для тока.

Теперь аналогично снимем обратную ветвь темновой в/а характеристики. Будем снимать точки с шагом в  $10~\rm mB$  до значения напряжения в  $100~\rm mB$ . Также учтём, что напряжения сдвинуто вправо на  $9~\rm mB$ .

| U, мВ  |   |   |   |     |     |      |      |      |    |    |      |
|--------|---|---|---|-----|-----|------|------|------|----|----|------|
| І, мкА | 0 | 2 | 4 | 6,3 | 8,2 | 10,1 | 12,5 | 14,7 | 17 | 19 | 20,5 |

Таблица 2: Зависимость значений обратного темнового тока от напряжения на фотоэлементе

Из таблицы 2 строим BAX уже для обратной ветви темнового тока – рис. 4



Рис. 4: Вольт-амперная характеристика темнового тока (обратная ветвь)

Здесь погрешность для напряжения -5 мB, для тока -1 мкA (цена деления для тока изменилась в случае обратной ветви).

Теперь оценим  $R_{\rm m}$  и  $R_{\rm n}$  как обратные угловые коэффициенты на рисунках 4 и 3 соответсвенно.

$$R_{\text{III}} = \left(\frac{dI}{dU}\right)_{\text{ofp}}^{-1}; \quad R_{\text{II}} = \left(\frac{dI}{dU}\right)_{\text{прям}}^{-1}.$$

Погрешности оценим по следующей формуле (как погрешность косвенной величины  $\sigma_y = \left| \frac{dy}{dx} \right| \sigma_x$ ):

$$\sigma_R = \frac{\sigma_{(dI/dU)}}{\frac{dI}{dU}}.$$

Таким образом, получаем следующий результат:

$$R_{\text{III}} = (4.75 \pm 0.01) \cdot 10^3 \,\text{OM}; \quad R_{\text{II}} = (5.25 \pm 0.02) \cdot 10^3 \,\text{OM}.$$

Теперь построим график зависимости  $ln(I)=f\left(U\right)$  для прямой ветви тока, чтобы найти коэффициенты A и  $I_s$ .



Рис. 5: График зависимости ln(I) = f(U) (для прямой ветви темнового тока)

Погрешность для ln(I) оценили по формуле для погрешности косвенного измерения:

$$\sigma_{ln(I)} = \frac{\sigma_I}{I}.$$

Коэффициенты A и  $I_s$  Найдём с помощью следующей формулы:

$$ln(I) = ln(I_s) + U \frac{e}{A \cdot kT}.$$
 (1)

Таким образом, отсюда и рис. 5 находим коэффициенты A и  $I_s$ :

$$I_s = e^b = (17 \pm 5) \,\mathrm{mkA}$$

$$A = \frac{1}{0.025 \cdot k} = (12 \pm 4)$$

#### 4 Вывод

В ходе данной лабораторной работы мы сняли вольт-амперные характеристики темнового тока для прямой и обратных ветвей для исследуемого кремниевого фотоэлемента (рис. 3, 4). С помощью этих вольт-амперных характеристик рассчитали значения для  $R_{\rm m}=(4.75\pm0.01)\cdot10^3$  Ом и  $R_{\rm n}=(5.25\pm0.02)\cdot10^3$  Ом. Также, с помощью графика зависимости ln(I)=f(U) (рис. 5) для прямой ветви темнового тока рассчитали коэффициенты A и  $I_s$ , фигурирующие в формуле 1:  $I_s=(17\pm5)\,{\rm mkA}$ ,  $A=(12\pm4)$ .

График зависимости ln(I) = f(U) (рис. 5) получился очень не точным (плохо фиттируется линейной зависимостью). Это может быть связано с проблемами, возникшими в ходе выполнения работы. Например, у нас мог сгореть фотоэлемент, из-за чего значения, полученные нами, оказались неточными.