Université de Nice - Sophia Antipolis

Polytech'Nice - CiP2 Contrôle d'Optique Ondulatoire

7 Juin 2013 - Durée: 1h30

Note:

Cette feuille doit être cachetée par vos soins. Afin de faciliter le décachetage, n'opérez de fixation qu'à l'intérieur des ellipses hachurées

Documents non autorisés.

1. Cinq fentes identiques de largeur a sont éclairées par une onde plane monochromatique progressive de longueur d'onde λ qui se propage perpendiculairement au plan des fentes. La distance entre les fentes est d (voir figure).

On veut étudier la figure de diffraction à une distance z du plan des fentes, $z \gg a, d$.

1.a A partir de la relation

$$\tilde{A}_z(x) = \frac{e^{ikz}}{i\lambda z} \int_{-\infty}^{+\infty} \tilde{A}_0(x') e^{-\frac{2i\pi xx'}{\lambda z}} dx'$$

démontrer que l'intensité lumineuse de cette figure peut s'écrire

$$I(x) = I(x = 0)\mathcal{F}(x)\mathcal{G}(x)$$

avec

$$\mathcal{F}(x) = \left(\frac{\sin[\pi x a/(\lambda z)]}{\pi x a/(\lambda z)}\right)^2$$

$$G(x) = \frac{1}{25} \left[4\cos^2(2\pi x d/(\lambda z)) + 2\cos(2\pi x d/(\lambda z)) - 1 \right]^2$$

 $(Rappel : \cos(2\alpha) = 2\cos(\alpha)^2 - 1.)$

1.b Etude de la fonction \mathcal{G} schéma. (Aide : $\cos(2\pi/5)$	$\frac{(x)}{(x)}$. Déterminer la pos $) \simeq \frac{-1+\sqrt{5}}{4}$; $\cos(4\pi/5) \simeq$	ition des franges som $\approx \frac{-1-\sqrt{5}}{4}$).	bres et des franges b	rillantes. Faire un

1.c <u>Etude de la fonction $\mathcal{F}(x)$.</u> Déterminer la largeur de la figure de diffraction Δ . Faire un schéma.
1.d Déterminer le nombre de franges brillantes observables dans la tache centrale de la figure de diffraction (ana-
lyser le cas $d=5a$.). Représenter I en fonction de x pour la tâche centrale.
2. Questions du cours : l'expérience de Michelson-Morley
On fait l'hypothèse que la vitesse de la lumière c depende de la vitesse d'entraı̂nement \vec{v} du repère par rapport au repère où l'éther est au repos. Considérons un interféromètre de Michelson où les bras IP et IM ont pour longueur D . On utilise une source monochromatique de longueur d'onde λ .

2.a Déterminer le temps t_1 employé par la lumière pour parcourir le trajet IP+PI.

2.b Déterminer le temps t_2 employé par la lumière pour parcourir le trajet IM + MI.

2.c Déterminer le déphasage de deux ondes en fonction de $D,\,v,\,c$ et $\lambda,\,$ dans la limite $v\ll c.$