PROJECT DEADLINE: 5/31/24

Goal/Plan	Status	Deadline
Gather equations and finalize calculation approaches	In progress •	5/17/24
Code functions for minimizing cost	Not started •	5/24/24
Write report and finalize results	Not started •	5/29/24
Turn in	Not started •	5/30/24

OBJECTIVE:

You are an engineer working in a company that plans to manufacture $\underline{100\text{-mm by}}$ $\underline{50\text{-mm thin rectangular}}$ (*surface area of bare surface*) electronic devices. The top surface of the electronic device is to be made of $\underline{\text{aluminum}}$ and attached with an array of $\underline{\text{aluminum pin fins}}$. The electronic device generates $\underline{50\text{ W}}$ ($\underline{\mathbf{q}}$) of heat that has to be dissipated through the fins. To prevent the electronic device from overheating the $\underline{\text{top surface temperature should be kept below 85 °C}}$ ($\underline{\mathbf{T_0}}$) in an ambient $\underline{\text{surrounding of } \underline{30}$ °C ($\underline{\mathbf{T_{\infty}}}$) with film heat transfer coefficients of 15 W/m^2 °C ($\underline{\mathbf{h}}$). Assuming a $\underline{\text{square array}}$ (even distribution; not staggered), determine suitable combinations of fins, fin spacing and fin dimension (diameter and length) to accomplish this cooling at minimum weight/cost of aluminum. Assume a uniform value of h for both the fin and wall surface.

GOAL:

Minimize the cost while maintaining the temperature at 85 $^{\circ}$ C (Done by minimizing the dimensions and/or the number of fins needed)