PATENT ABSTRACTS OF JAPAN

(11)Publication number: 10-136151

(43)Date of publication of application: 22.05.1998

(51)Int.CI 1 1/028 1 1/46

(22)Date of filing (21)Application number : **08-286454** 29.10.1996 (71)Applicant: RICOH CO LTD

(72)Inventor: HARADA MICHIYA

(54) 4-LINE IMAGE SENSOR AND IMAGE READER

(57)Abstract:

photoelectric conversion elements, red and blue filters. plurality of photoelectric conversion elements arranged on a line, a red filter, a plurality of 2nd and 3rd PROBLEM TO BE SOLVED: To exclude a read disable color by configuring the image sensor with a

SOLUTION: A photoelectric conversion element array 11 is made up of a CCD consisting of photo diodes A photoelectric conversion element array 12 is made up of a CCD consisting of photo diodes 2–1 to 2–n 1–1 to 1–n as a plurality (n) of picture elements arranged on a line and, e.g. a red filter covering the CCD

3-1 to 3-n as a plurality (n) of picture elements arranged on a line and, e.g. a blue filter covering the CCD Then a transparent plate 4 is used to cover the arrays. In the case of reading a color original in the Furthermore, a photoelectric conversion element array 13 is made up of a CCD consisting of photo diodes

as a plurality (n) of picture elements arranged on a line and, e.g. a green filter covering the CCD

monochromatic mode, production of a read disable color is excluded

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision

of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19) 日本国特許庁 (JP)

1/028

1/46

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-136151

(43)公開日 平成10年(1998) 5月22日

(51) Int.Cl.⁶ H 0 4 N 識別記号

FΙ

H 0 4 N 1/028

1/46

C C

審査請求 未請求 請求項の数2 OL (全 6 頁)

(21)出顧番号

特願平8-286454

(71)出題人 000006747

株式会社リコー

(22)出魔日

平成8年(1996)10月29日

東京都大田区中馬込1丁目3番6号

(72)発明者 原田 道也

愛知県名古屋市中区錦二丁目2番13号・リ

コーエレメックス株式会社内

(74)代理人 弁理士 樺山 亨 (外1名)

(54) 【発明の名称】 4ラインイメージセンサ及び画像読み取り装置

(57)【要約】

【課題】この発明は、原稿読み取り時間がかかりカラー 原稿のモノクロモード読み取りで読み取れない色が発生 するという課題を解決しようとするものである。

【解決手段】 複数個の光電変換素子の上を覆う赤色フィルタ1を有する光電変換素子列11と、この光電変換素子列11と、この光電変換素子列11と、この光電変換素子列12と、この光電変換素子列12と、この光電変換素子列12と平行で複数個の光電変換素子列13と、この光電変換素子列13と平行で複数個の光電変換素子の上を覆う、可視光全域を透過する透明板4を有する光電変換素子列14とを備えたもの。

【特許請求の範囲】

【請求項1】一直線上に配置された複数個の光電変換素子、及び該複数個の光電変換素子の上を覆う、赤色光を透過する赤色フィルタからなる第1の光電変換素子列と、この第1の光電変換素子列と平行に一直線上に配置された複数個の光電変換素子、及び該複数個の光電変換素子列と、この第2の光電変換素子列と、この第2の光電変換素子列と平行に一直線上に配置された複数個の光電変換素子列と平行に一直線上に配置された複数個の光電変換素子の上を覆う、青色光を透過する青色フィルタからなる第3の光電変換素子列と平行に一直線上に配置された複数個の光電変換素子列と平行に一直線上に配置された複数個の光電変換素子、及び該複数個の光電変換素子の上を覆う、可視光全域を透過する透明板からなる第4の光電変換素子列とを備えたことを特徴とする4ラインイメージセンサ。

【請求項2】請求項1記載の4ラインイメージセンサを 有する画像読み取り装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は4ラインイメージセンサ及び画像読み取り装置に関する。

[0002]

【従来の技術】カラー画像読み取り装置は、近年、種々のものが開発されており、公知の技術となっている。カラー画像読み取り装置の代表的なものとしては、赤色(R),緑色(G),青色(B)のそれぞれ異なった波長域を持つ複数の光源と、多数の光電変換素子からなる1ラインCCD(電荷結合素子)から構成される面順次読み取り方式のカラースキャナ(特公昭62ー6210301号公報参照)や、白色光源と、それぞれR,G,B3色の色分離フィルタが取り付けられた多数の光電変換素子からなる3本のCCDから構成される線順次読み取り方式のカラースキャナなどが挙げられる。

【0003】上記面順次読み取り方式のカラースキャナは、カラー原稿をカラーモードで読み取る場合には面順次で各光源を切り換えてカラー原稿を読み取り、カラー原稿又はモノクロ(単色)原稿をモノクロモードで読み取る場合には1つの光源、例えばGの波長域を持つ光源を使用して原稿を読み取る。

【0004】また、上記線順次読み取り方式のカラースキャナは、カラー原稿をカラーモードで読み取る場合にはR,G,B3色の色分離フィルタが取り付けられた3本のCCDにて線順次でカラー原稿を読み取り、カラー原稿又はモノクロ原稿をモノクロモードで読み取る場合にはR,G,B3色の色分離フィルタが取り付けられた3本のCCDのうちの1本のCCD、例えばGの色分離フィルタが取り付けられたCCDを使用して原稿を読み取る。

[0005]

2

【発明が解決しようとする課題】上記面順次読み取り方式のカラースキャナでは、カラー原稿をカラーモードで読み取る場合には面順次で各光源を切り換えてカラー原稿を読み取るので、1枚のカラー原稿に対して3回の読み取り動作が必要になり、読み取り速度が非常に遅くなるという不具合があった。

【0006】また、上記線順次読み取り方式のカラースキャナでは、カラー原稿をカラーモードで読み取る場合にはR,G,B3色の色分離フィルタが取り付けられた3本のCCDにて線順次でカラー原稿を読み取るので、面順次読み取り方式のカラースキャナに比べればはるかに速くカラー原稿を読み取ることができるが、カラー原稿をしたののうちの1本のCCDを使用して原稿を記み取るので、CCDの受光量はモノクロ専用のスキャベカラー原稿又はモノクロ原稿を読み取る場合と比でカラー原稿で、カラー原稿を読み取る場合という不具合があった。さらに、カラー原稿をモノクロモードで読み取る場合には読み取りに時間がかかるという不具合があった。

【0007】本発明は、カラー原稿をカラーモードで読み取る場合にカラー原稿を高速で読み取ることができ、原稿をモノクロモードで読み取る場合にモノクロ専用のスキャナと同等の読み取り速度で原稿を読み取ることができ、かつ、カラー原稿をモノクロモードで読み取る場合に読み取れない色が発生することがない4ラインイメージセンサ及び画像読み取り装置を提供することを目的とする。

[0008]

【課題を解決するための手段】上記目的を達成するた め、請求項1に係る発明は、一直線上に配置された複数 個の光電変換素子、及び該複数個の光電変換素子の上を 覆う、赤色光を透過する赤色フィルタからなる第1の光 電変換素子列と、この第1の光電変換素子列と平行に一 直線上に配置された複数個の光電変換素子、及び該複数 個の光電変換素子の上を覆う、緑色光を透過する緑色フ ィルタからなる第2の光電変換素子列と、この第2の光 電変換素子列と平行に一直線上に配置された複数個の光 電変換素子、及び該複数個の光電変換素子の上を覆う、 青色光を透過する青色フィルタからなる第3の光電変換 素子列と、この第3の光電変換素子列と平行に一直線上 に配置された複数個の光電変換素子、及び該複数個の光 電変換素子の上を覆う、可視光全域を透過する透明板か らなる第4の光電変換素子列とを備えた4ラインイメー ジセンサであり、カラー原稿をモノクロモードで読み取 る場合に読み取れない色が発生することがない。

【0009】請求項2に係る発明は、請求項1記載の4 ラインイメージセンサを有する画像読み取り装置であ

50 り、カラー原稿をカラーモードで読み取る場合には3本

3

の光電変換素子列を使用して線順次方式でカラー原稿を 高速で読み取ることができ、原稿をモノクロモードで読 み取る場合に第4の光電変換素子列を使用してモノクロ 専用のスキャナと同等の読み取り速度で原稿を読み取る ことができる。

[0010]

【発明の実施の形態】図1は請求項1に係る発明の一実施形態の外観を示す。この実施形態は4組のCCDからなるリニアイメージセンサを用いて構成した4ラインイメージセンサの実施形態であり、互いに平行に所定のピッチで配置された4つの光電変換素子列11~14を有する。光電変換素子列11は、一直線上に一列に配置された複数(n)個の光電変換素子としてのフォトダイオード1-1~1-nからなるCCDと、これらの光電変換素子1-1~1-nの上を覆う、例えば図4に示すRのような650nm付近の波長の光を良く透過する赤色フィルタ1とで構成される。

【0011】光電変換素子列12は、一直線上に一列に配置されたn個の光電変換素子としてのフォトダイオード2-1~2-nからなるCCDと、これらの光電変換素子2-1~2-nの上を覆う、例えば図4に示すGのような550nm付近の波長の光を良く透過する緑色フィルタ2とで構成される。光電変換素子列13は、一直線上に一列に配置されたn個の光電変換素子としてのフォトダイオード3-1~3-nからなるCCDと、これらの光電変換素子3-1~3-nの上を覆う、例えば図4に示すBのような450nm付近の波長の光を良く透過する青色フィルタ3とで構成される。

【0012】光電変換素子列14は、一直線上に一列に 配置されたn個の光電変換素子としてのフォトダイオー 30 ド4-1~4-nからなるCCDと、これらの光電変換 素子4-1~4-nの上を覆う、例えば図4に示すWの ような可視光全域に渡って光を良く透過するガラスから なる透明板4とで構成される。この透明板4は通常のモ ノクロCCDからなるリニアイメージセンサと同様なガ ラスからなる透明板である。

【0013】これらの光電変換素子列 $11\sim14$ は通常のCCDからなるリニアイメージセンサに使用されるセラミックパッケージを同じセラミックパッケージ5に収納され、このパッケージ5には電気的な信号を入出力す40るためのピン $6-1\sim6-26$ が設けられている。このピン $6-1\sim6-26$ は図3に示すように各信号が割り付けられている。

【0014】図2は本実施形態の回路構成を示す。本実施形態は4組の光電変換要素を有し、これらの光電変換要素は、それぞれフォトダイオード列1-1~1-n、2-1~2-n、3-1~3-n、4-1~4-n及びフィルタ1~3、透明板4からなる光電変換素子列11~14と、2つのシフトゲート15~22と、2つのCCDアナログレジスタ23~30とを有する。本実施形 50

ļ

態における上記光電変換要素以外の部分は周知のものと同様に構成されている。

【0015】フォトダイオード1ー1~1ーnは赤色フィルタ1を透過して入射した光を電荷に変換して蓄積し、シフトゲート15,16はピン6-16からのシフトバルスによりフォトダイオード $1-1\sim1-n$ の奇数番目のフォトダイオードの各蓄積電荷と偶数番目のフォトダイオードの各蓄積電荷とのアナログレジスタ23、24はピン6-14,6-15からの転送クロック1,2により電荷を直列に転送し、このCCDアナログレジスタ23、24からの電荷は出力段でアナログレジスタ23、24からの電荷は出力段でアナログルジスタ23、24からの電荷は出力段でアナログルジスタ23、24からの電荷は出力段でアナログ 画像信号としてピン6-2,6-1より出力される。また、フォトダイオード $1-1\sim1-n$ はピン20からのリセットバルスによりリセットされる。

【0016】同様に、フォトダイオード2ー1~2ーn は緑色フィルタ2を透過して入射した光を電荷に変換して蓄積し、シフトゲート17,18はピン6ー13からのシフトバルスによりフォトダイオード2ー1~2ーn の奇数番目のフォトダイオードの各蓄積電荷と偶数番目のフォトダイオードの各蓄積電荷とのアナログレジスタ25、26ペシフトする。CCDアナログレジスタ25、26はピン6ー17,6ー18からのCCDアナログレジスタ25、26からの電荷は出力段でアナログレジスタ25、26からの電荷は出力段でアナログ回像信号としてピン6ー4,6ー3より出力される。また、フォトダイオード2ー1~2ーnはピン20からのリセットバルスによりリセットされる。

【0017】フォトダイオード $3-1\sim3$ ーnは青色フィルタ3を透過して入射した光を電荷に変換して蓄積し、シフトゲート19, 20はピン6-10からのシフトバルスによりフォトダイオード $3-1\sim3$ ーnの奇数番目のフォトダイオードの各蓄積電荷と偶数番目のフォトダイオードの各蓄積電荷とのアナログレジスタ27、28へシフトする。CCDアナログレジスタ27、28はピン6-11, 6-12からの転送クロック1, 2により電荷を直列にアナログ画像信号として収入の電荷は出力段でアナログ回像信号としてピン6-23, 6-24より出力される。また、フォトダイオード $3-1\sim3$ ーnはピン20からのリセットバルスによりリセットされる。

【0018】フォトダイオード4-1~4-nはガラス 4を透過して入射した光を電荷に変換して蓄積し、シフトゲート21,22はピン6-25からのシフトバルス によりフォトダイオード4-1~4-nの奇数番目のフォトダイオードの各蓄積電荷と偶数番目のフォトダイオードの各蓄積電荷とを並列にCCDアナログレジスタ29、30ペシフトする。CCDアナログレジスタ29、30はピン6-8,6-9からの転送クロック1,2に

より電荷を直列に転送し、このCCDアナログレジスタ 29、30からの電荷は出力段でアナログ画像信号とし てピン6-21,6-22より出力される。また、フォ トダイオード4ー1~4ーnはピン20からのリセット パルスによりリセットされる。

【0019】カラー原稿をカラーモードで読み取る場合 には、R,G,Bの色分離フィルタ1~3を有する3本 のCCDからなるリニアイメージセンサ11~13を駆 動して通常の線順次方式のカラー画像読み取りを行うこ とができる。また、原稿をモノクロモードで読み取る場 10 合には、他の1本のCCDからなるリニアイメージセン サ14がカラー画像読み取り用の3本のリニアイメージ センサ11~13に比べて高い感度を得ることができる ので、リニアイメージセンサ14のみを使用してモノク ロモードでも高速の読み取りを実現することができる。 また、カラー画像をモノクロモードで読み取る場合に は、可視光全域に渡って光を良く透過するガラス4を用 いたリニアイメージセンサ14を使用するので、読み取 れない色が発生することはない。

【0020】このように、この請求項1に係る発明の一20 実施形態は、一直線上に配置された複数個の光電変換素 子1-1~1-n、及び該複数個の光電変換素子1-1 ~1-nの上を覆う、赤色光を透過する赤色フィルタ1 からなる第1の光電変換素子列11と、この第1の光電 変換素子列11と平行に一直線上に配置された複数個の 光電変換素子2-1~2-n、及び該複数個の光電変換 素子2-1~2-nの上を覆う、緑色光を透過する緑色 フィルタ2からなる第2の光電変換素子列12と、この 第2の光電変換素子列12と平行に一直線上に配置され た複数個の光電変換素子3-1~3-n、及び該複数個 30 の光電変換素子3-1~3-nの上を覆う、青色光を透 過する青色フィルタ3からなる第3の光電変換素子列1 3と、この第3の光電変換素子列13と平行に一直線上 に配置された複数個の光電変換素子4-1~4-n、及 び該複数個の光電変換素子4-1~4-nの上を覆う、 可視光全域を透過する透明板4からなる第4の光電変換 素子列14とを備えたので、カラー原稿をモノクロモー ドで読み取る場合に読み取れない色が発生することがな

【0021】図5は請求項2に係る発明の一実施形態を40 示す。この実施形態はイメージセンサ71として上記実 施形態の4ラインイメージセンサを用いた画像読み取り 装置の一実施形態であり、光源72、リフレクタ73及 び第1ミラー74からなる第1走行体と、2つのミラー 75,76からなる第2走行体と、レンズ77と、4ラ インイメージセンサ71が搭載されたプリント配線板7 8とを有する。

【0022】第1走行体と第2走行体は、2:1の速度 比で図示しないワイヤ若しくはタイミングベルトを介し て駆動源により駆動されて基準レール上を移動し、光路 50 ーモードで読み取る場合には3本の光電変換素子列を使

長を一定に保ちながら原稿台79上の原稿を走査する。 光源72、リフレクタ73は原稿台79上の原稿を照明

し、その反射光が第1ミラー74、2つのミラー75, 76及びレンズ77を介して4ラインイメージセンサ7 1上に結像されて原稿画像が読み取られる。

【0023】図6は請求項2に係る発明の他の実施形態 を示す。この実施形態は、上記請求項2に係る発明の一 実施形態において、縮小光学系が一体に構成された実施 形態であり、光源72、リフレクタ73、3つのミラー 74,75,76、レンズ77、4ラインイメージセン サ71が搭載されたプリント配線板78が1つの走行体 として一体に構成される。この走行体は、図示しないワ イヤ若しくはタイミングベルトを介して駆動源により駆 動されて基準レール上を移動し、原稿台79上の原稿を 走査する。光源72、リフレクタ73は原稿台79上の 原稿を照明し、その反射光が3つのミラー74,75, 76及びレンズ77を介して4ラインイメージセンサ7 1上に結像されて原稿画像が読み取られる。

【0024】このように、請求項2に係る発明の実施形 態は、請求項1記載の4ラインイメージセンサ71を有 するので、カラー原稿をカラーモードで読み取る場合に は3本の光電変換素子列を使用して線順次方式でカラー 原稿を高速で読み取ることができ、原稿をモノクロモー ドで読み取る場合には第4の光電変換素子列を使用して モノクロ専用のスキャナと同等の読み取り速度で原稿を 読み取ることができる。

【0025】なお、各請求項に係る発明は、上記実施形 態に限定されるものではなく、例えばカラー乾式普通紙 複写機、カラーファクシミリなどのカラー画像読み取り 部を有するあらゆる機器に応用することができる。

[0026]

【発明の効果】以上のように請求項1に係る発明によれ ば、一直線上に配置された複数個の光電変換素子、及び 該複数個の光電変換素子の上を覆う、赤色光を透過する 赤色フィルタからなる第1の光電変換素子列と、この第 1の光電変換素子列と平行に一直線上に配置された複数 個の光電変換素子、及び該複数個の光電変換素子の上を 覆う、緑色光を透過する緑色フィルタからなる第2の光 電変換素子列と、この第2の光電変換素子列と平行に一 直線上に配置された複数個の光電変換素子、及び該複数 個の光電変換素子の上を覆う、青色光を透過する青色フ ィルタからなる第3の光電変換素子列と、この第3の光 電変換素子列と平行に一直線上に配置された複数個の光 電変換素子、及び該複数個の光電変換素子の上を覆う、 可視光全域を透過する透明板からなる第4の光電変換素 子列とを備えたので、カラー原稿をモノクロモードで読 み取る場合に読み取れない色が発生することがない。

【0027】請求項2に係る発明は、請求項1記載の4 ラインイメージセンサを有するので、カラー原稿をカラ

用して線順次方式でカラー原稿を高速で読み取ることが でき、原稿をモノクロモードで読み取る場合に第4の光 電変換素子列を使用してモノクロ専用のスキャナと同等 の読み取り速度で原稿を読み取ることができる。

【図面の簡単な説明】

【図1】請求項1に係る発明の一実施形態を示す外観図 である。

【図2】同実施形態の回路構成を示すプロック図であ

【図3】同実施形態における各ピンの信号割り付けを示 10 す図である。

【図4】同実施形態における各フィルタの入射光波長と 相対感度との関係を示す特性図である。

*【図5】請求項2に係る発明の一実施形態を示す断面図 である。

【図6】請求項2に係る発明の他の実施形態を示す断面 図である。

【符号の説明】

赤色フィルタ

 $1-1\sim1-n$, $2-1\sim2-n$, $3-1\sim3-n$, 4 $-1\sim4-n$ 光電変換素子

緑色フィルタ 2

3 青色フィルタ

可視光全域を透過する透明板

7 1 4ラインイメージセンサ

【図1】

【図2】

【図3】

@@@@	転送クロックイ	0	因为 信号 1(G)
$\Theta\Theta\Theta$	転送クロック2	2	出力信号2(4)
@	量終段転送20~2	③	出力 信号3 (B)
2	リセットケート	④	出力信号4 (B)
ØØ	グラウンド	®	出力信号5(R)
@	電源	Ø	出力信号G(R)
@	シフトゲート	2	出力信号7(W)
3	クランプ基準電圧	20	出力信号8(W)
6	クランプパルス		

【図5】

【図4】

【図6】

