

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Student's Name: AKSHAR SINGH Mobile No: 7428357700

Roll Number: B20147 Branch: Computer Science

1 a.

	Prediction	o Outcome
Label	93	25
True	19	200

Figure 1 KNN Confusion Matrix for K = 1

	Prediction	Outcome
Label	92	26
True	9	210

Figure 2 KNN Confusion Matrix for K = 3

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	Prediction	Outcome
Label	92	26
True	10	209

Figure 3 KNN Confusion Matrix for K = 5

b.

Table 1 KNN Classification Accuracy for K = 1, 3 and 5

К	Classification Accuracy (in %)
1	86.944
3	89.614
5	89.318

Inferences:

- 1. The highest classification accuracy is obtained with K = 5.
- 2. The increasing value of K increases the prediction accuracy.
- 3. As the value of K increases as we take in account more number of neighbors hence its accuracy increasing.
- 4. As there is an increase in the value of K, the number of diagonal elements increases.
- 5. There is an increase in the diagonal elements because they represent the number of true values.
- 6. The number of off-diagonal elements decrease as the classification accuracy decreases.
- 7. There is a decrease in the off-diagonal elements because they represent the number of false values.

2 a.

Prediction Outcome

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Label	111	7
True Label	6	213

Figure 4 KNN Confusion Matrix for K = 1 post data normalization

	Prediction	Outcome
Label	112	6
True	4	215

Figure 5 KNN Confusion Matrix for K = 3 post data normalization

	Prediction	Outcome
Label	112	6
True	3	216

Figure 6 KNN Confusion Matrix for K = 5 post data normalization

b.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Table 2 KNN Classification Accuracy for K = 1, 3 and 5 post data normalization

К	Classification Accuracy (in %)
1	96.142
3	97.033
5	97.330

Inferences:

- 1. The data normalization increases the classification accuracy
- 2. There is increase in accuracy because through normalization ,no attribute outweighs the other in the calculation of Euclidean distance.
- 3. The highest classification accuracy is obtained with K = 5.
- 4. The increasing value of K increases the prediction accuracy.
- 5. As the value of K increases as we take in account more number of neighbors hence its accuracy increasing.
- 6. As there is an increase in the value of K, the number of diagonal elements increases.
- 7. There is an increase in the diagonal elements because they represent the number of true values.
- 8. As the classification accuracy increases/decreases with the increase in value of K infer does the number of off-diagonal elements increase/decrease.
- 9. The number of off-diagonal elements decrease as the classification accuracy decreases.
- 10. There is a decrease in the off-diagonal elements because they represent the number of false values.

3

	Prediction	Outcome
Label	109	9
True	9	210

Figure 7 Confusion Matrix obtained from Bayes Classifier

The classification accuracy obtained from Bayes Classifier is 94.659%.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Table 3 Mean for class 0 and class 1

S. No.	Attribute Name	Me	ean
		Class 0	Class 1
1.	X_Minimum	-	-
2.	X_Maximum	273.418	723.656
3.	Y_Minimum	-	-
4.	Y_Maximum	1583169.659	1431588.690
5.	Pixels_Areas	7779.663	585.967
6.	X_Perimeter	393.835	54.491
7.	Y_Perimeter	273.183	45.658
8.	Sum_of_Luminosity	843350.275	62191.126
9.	Minimum_of_Luminosity	53.326	96.236
10.	Maximum_of_Luminosity	135.762	130.452
11.	Length_of_Conveyer	1382.762	1480.018
12.	TypeOfSteel_A300	-	-
13.	TypeOfSteel_A400	-	-
14.	Steel_Plate_Thickness	40.073	104.214
15.	Edges_Index	0.123	0.385
16.	Empty_Index	0.459	0.427
17.	Square_Index	0.592	0.513
18.	Outside_X_Index	0.108	0.020
19.	Edges_X_Index	0.550	0.608
20.	Edges_Y_Index	0.523	0.831
21.	Outside_Global_Index	0.288	0.608
22.	LogOfAreas	3.623	2.287
23.	Log_X_Index	2.057	1.227
24.	Log_Y_Index	1.848	1.318
25.	Orientation_Index	-0.314	0.136
26.	Luminosity_Index	-0.115	-0.116
27.	SigmoidOfAreas	0.925	0.543

In Fig. 8 and 9 representing covariance matrices for class 0 and class 1 respectively the column numbers and row numbers correspond to attribute with serial number as in Table 3.

Covariance matrix for class0

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	L Marine	V Movies	Divale are	Y Perimet	V Serimet				CT ALL		100					Frienc V I		- 101	las V loc				SigmoidOfAr
X Maxim.									1237.64							22.5046			-	11111111111			
Y Maxim	-6.1E+07	1.8E+12	1E+09	B.3E+07	1.6E+08	4.9E+10	-5669890	-6007837	-7505510	-114611	47711.4	21948.3	-59251.3	4294,74	-19165.6	-35306.A	-86404.1	168070	111448	73014.4	-82046.9	-50711.2	73811.6
Pixels Are	-320672	1E+09	1E+08	6692649	1E+07	9E+09	-154934	6294.46	10070.2	547.01	-492.113	585,231	200.195	223,056	-1121.19	-354.573	556.075	3456.88	1427,03	2840.74	980.333	-300.211	575.04
X Perimet	-15750.5	8.3E+07	6692649	442771	706257	5.6E+08	-7764,05	769.586	771.604	31.9239	-24.0928	38.1611	10.5958	10.9942	-67.8237	-13.284	45.3417	183,057	68.4117	169.129	72.4357	-15.7026	28.5211
Y Perinet	-12943.8	1.6E+08	1E+07	706257	1206391	8.1E+08	-6894,47	1492.07	-1364.2	10,2071	-17.5711	44.1824	-16.5502	6.49598	-65,4173	13.4106	63,2505	176.64	44.0548	207.792	105.12	-21.062	19.5057
Sum of b	-3.3E+07	4.9E+10	9E+09	5.6E+08	8.1E+08	8.2E+11	-1.6E+07	777671	2214134	49759.9	-53267.3	58474.6	44601.8	25470.5	-123181	-50984.9	60033.1	361545	157341	278177	96509.5	-22290.5	62063.3
Minimum	3686.07	-5669890	-154934	-7764.05	-6894.47	-1.6E+07	1458.21	439.236	-153,834	-19725	3.93151	-1.75004	1,07774	-1.45529	3.73884	4,62332	4.75885	-22.1867	-12.8607	-10.7472	3.81665	4,44827	-6.55741
Maximum	2040.9	-6007837	6294.46	769.586	1492.07	777671	439,236	333.381	2.28501	-0.79132	1,76868	-0.22159	2.0577	-0.35296	-0.14245	1.57515	4,20658	-5.85939	-4.35841	-1.52924	4.13638	2.71617	-2.7371
Length_of	1237.64	-7505510	10070.2	771.604	-1364.2	2214134	-153.834	2.28501	2521.56	-1.82073	1.32196	0.80637	3,92598	-0.19247	-2.69665	-0.53421	4,53563	2.03005	-0.00187	2.64493	4.36984	-0.4847	0.21099
Steel_Plat	16.734	-114511	547.01	31,9239	10.2071	49759.9	-1.9725	-0.79132	-1.82073	0.72991	-0.00874	0.0147	-0.01549	0.01905	0.00318	-0.01538	-0.02114	0.0411	0.04137	0.01927	-0.02246	-0.0077	0.00548
Edges_Inc	25.3602	-47711.4	492.113	-24,0928	-175711	-53267.3	3.93151	1.76868	1.32196	-0.00874	0.02932	-0.00928	0.00715	-0.00605	0.01469	0.02242	0.02636	-0.08402	-0.05352	-0.03759	0.0243	0.01598	-0.02755
Empty_Inc	-6.9293	21948.3	585.231	38.1611	44.1824	58474.6	-1.75004	-0.22159	0.80637	0.0147	-0.00928	0.0153	0.00472	0.00494	-0.01766	-0.0116	0.00302	0.05167	0.03041	0.03616	0.00516	-0.00347	0.01527
Square_In	4,69619	-59251,3	200.195	10.5958	-16.5502	44501.8	107774	2.0577	3.92598	-0.01549	0.00715	0.00472	0.06449	-0.00411	-0.03633	-0.00065	0.0703	0.00133	-0.01967	0.02319	0.06865	0.01634	-0.0097
Outside_)	-151587	4294,74	223.056	10.9942	6,49598	25470.5	-1,45529	-0.35296	-0.19247	0.01905	-0.00605	0.00494	-0.00411	0.00474	-0.00222	-0.00731	-0.00975	0.02915	0.02089	0.01388	-0.00952	-0.00376	0.00748
Edges_X_I	16,6535	-19165.6	-1121.19	-67.8237	-65.4173	-123181	3,73884	-0.14245	-2,69665	0.00318	0.01469	-0.01766	-0.03633	-0.00222	0.05691	0.02285	-0.03856	-0.09841	-0.03926	-0.07308	-0.04451	0.00278	-0.02567
Edges_Y_	22.5046	-35306.4	-354.573	-13.284	13.4106	-50984.9	4.62332	1.57515	-0.53421	-0.01538	0.02242	-0.0116	-0.00065	-0.00731	0.02285	0.03068	0.02494	-0.09928	-0.0626	-0.04465	0.02302	0.01438	-0.0311
Outside_(30,839	-86404.1	556.075	45,3417	63.2505	60033.1	4.75885	4.20658	453563	-0.02114	0.02636	0.00302	0.0708	-0.00975	-0.03856	0.02494	0.20286	-0.05783	-0.07275	0.01926	0.13807	0.03302	-0.03252
LogOfArea	-76.3196	168070	3456.88	183.057	176.64	361545	-22.1867	-5.85939	2,03005	0.0411	-0.08402	0.05167	0.00133	0.02915	-0.09841	-0.09928	-0.05783	0.47146	0.2669	0.2469	-0.04394	-0.06701	0.13522
Log_X_Inc	47.7816	111448	1427.03	68.4117	44.0548	157341	-12.8607	-4,35841	-0.00187	0.04137	-0.05352	0.03041	-0.01967	0.02089	-0.03926	-0.0626	-0.07275	0,2669	0.16787	0.12411	-0.06631	-0.04408	0.08164
Log_Y_Inc	-31.1473	73014.4	2840.74	169.129	207.792	278177	-10.7472	-1.52924	2,64493	0.01927	-0.03759	0.03616	0.02319	0.01388	-0.07308	-0.04465	0.01926	0.2469	0.12411	0.15685	0.02918	-0.02546	0.06457
Orientatio	27,6788	-82046.9	980.333	72,4357	105.12	96509.5	3.81665	4.13638	4.36984	-0.02246	0.0243	0.00516	0.06865	-0.00952	-0.04451	0.02302	0.13807	-0.04394	-0.06631	0.02918	0,13317	0.0309	-0.02766
Luminosit	18,0829	-50711.2	-300.211	-15.7026	-21.062	-22290.5	4,44827	2.71617	-0.4847	-0.0077	0.01598	-0.00347	0.01634	-0.00376	0.00278	0.01438	0.03302	-0.06701	-0.04408	-0.02546	0.0309	0.02744	-0.02644
SigmoidOf	-30.0931	73811.6	575.04	28.5211	19,5057	62063.3	-6.55741	-2,7371	0.21099	0.00548	-0.02755	0.01527	-0.0097	0.00748	-0.02567	-0.0311	-0.03252	0.13522	0.08164	0.06457	-0.02766	-0.02644	0.04932

Covariance matrix for class1

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Inferences:

- 1. The accuracy of Bayes Classifier is 94.362 and it is lesser than previous classification approach because it assumes normal distribution.
- 2. The nature of values along the diagonal is high for some attributes and low for some other attributes mainly because some attributes follow standard normal distribution.
- 3. The off-diagonal elements have varied values. The 2 pair of attribute with maximum covariance is (Sum_of_Luminosity,Y_Maximum) and (Pixels_Area,Sum_of_Luminosity) , the 2 pair of attribute with minimum covariance is (Outside_X, Empty_Index) and (Outside_X,Edges_X).

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

4

Table 4 Comparison between classifiers based upon classification accuracy

S. No.	Classifier	Accuracy (in %)
1.	KNN	89.318
2.	KNN on normalized data	97.330
3.	Bayes	94.362

Inferences:

- 1. The classifier with highest accuracy is KNN on normalized data and lowest accuracy is KNN.
- 2. The classifiers in ascending order of classification accuracy. Classifier 1 < Classifier 3 < Classifier 2.
- 3. The reason for low accuracy in KNN classifier is due to the calculation of Euclidian distance and because of that one attribute outweighs the other. The reason for low accuracy of Bayes classifier than KNN on normalized data is because it assumes normal distribution.