

Ion Implantation

Lecturer: Mengyuan Hua

Outline

- Introduction
- Energy Loss
- Ion Distribution Profiles
- Channelling
- Damage
- Annealing

Ion Implantation

Dopants in Semiconductors

- Alternative to thermal diffusion
- Small penetration depth
- Maximum concentration peak beneath surface
- # injected ions proportional to current and time

Example of Pre-Deposition

Pre-Dep

After Drive-In

"Things of Interest"

- Which atoms? (Selection of ions)
- How many? (Beam current, implant time)
- How deep? (Acc. voltage → energy)
- Which precision? (Depth spread Straggle)
- Lattice position? (Substitutional/Interstitial)
- Implant induced defects (Restoring lattice annealing)

Terminology of Ion Implantation

Applications

- 1. Dopant source replace pre-deposition
- 2. Creation of getter damage
- 3. Change composition
 - e.g. Ge in Si to form Si_{1-x}Ge_x
- 4. Introduce known amounts of some atom for physical studies (e.g. standards for SIMS)
 e.g. Au in Si
- 5. Introduce buried defect layer
 - e.g. "Smart-Cut" technique for SOI fabrication: formation of microcavities by H-implant

Ion Implantation - Advantages

- Low temperature process
- Excellent dose control
- Even very small doses are controllable
- Buried profile e.g. through-oxide implants
- Extremely shallow profiles possible
- Any material usable as a mask
- Any ion in any substrate
- Ion concentrations > C_{sol} possible
- Purity of source materials less important

Equipment

Pre-acceleration & mass separation

$$B = \frac{1}{r} \sqrt{\frac{2mU}{q}}$$

Acceleration & beam transport

- typical 30 – 300 keV

Ion source: Convert molecules into ions

$$Q = \frac{1}{A} \int \frac{I}{q} dt$$

Energy Loss

Energetic ions incident on a target lose energy by collisions with target particles:

- Inelastic collisions with bound electrons lonization, Excitation
 - 2. Elastic collisions with bound or free electrons
- 3. Elastic collisions with nuclei Partial transfer of kinetic energy
 - 4. Inelastic collisions with nuclei Bremsstrahlung, nuclear excitation or reaction

Ion Stopping

Elastic collisions with nuclei:

$$S_n(E) = \left(\frac{dE}{dx}\right)_n$$

Inelastic collisions with electrons:

$$S_e(E) = \left(\frac{dE}{dx}\right)_e$$

Energy loss:

$$\frac{dE}{dx} = S_n(E) + S_e(E)$$

Range (before rest):

$$R = \int_{0}^{R} dx = \int_{0}^{E_{0}} \frac{dE}{S_{n}(E) + S_{e}(E)}$$

Nuclear Stopping Process

Screened Coulomb scattering potential

Energy transfer and scattering angle calculated by integrating potential along ion-trajectory (function of impact parameter)

Nuclear Stopping Process

Fig. 20 Collision of hard spheres.

$$E_{2\max} = \frac{1}{2}M_2v_2^2 = \frac{4M_1M_2}{(M_1 + M_2)^2}E_0$$

Electronic Stopping

Non-local:

Drag force caused by charged ion in "sea" of electrons

- resembles transport in viscous medium

Local:

Momentum transfer by collisions with electrons around atoms

Both contributions scale with ion velocity

Dielectric Medium

Retarding E-field

Energy Losses - Summarized

Total energy loss per unit distance:

$$\frac{dE}{dx} = S_n(E) + S_e(E)$$

Comprises of:

Electronic Stopping Power:

$$S_e(E) = \left(\frac{dE}{dx}\right)_e$$
 and energy
$$S_e(E) \propto K\sqrt{E}$$

Depend on target and energy

$$S_e(E) \propto K\sqrt{E}$$

Nuclear Stopping Power:

$$S_n(E) = \left(\frac{dE}{dx}\right)_n$$

Depend on target, projectile, and energy

$$R = \int_{0}^{R} dx = \int_{0}^{E_{0}} \frac{dE}{S_{n}(E) + S_{e}(E)}$$

High energy Light projectiles

} Electronic stopping

Low energy Heavy projectiles

Ion Distribution - Profiles

Gaussian Distribution Function

$$C(x) = \frac{Q}{\sqrt{2\pi}\Delta R_p} \exp\left[-\frac{(x - R_p)^2}{2\Delta R_p^2}\right]$$

Peak concentration:

$$C_p = \frac{Q}{\sqrt{2\pi}\Delta R_p}$$

Projected Range

Straggle (Range Dispersion)

Implanted Diffused Profile

Implanted profile:

$$C(x) = \frac{Q}{\sqrt{2\pi}\Delta R_p} \exp\left[-\frac{(x - R_p)^2}{2\Delta R_p^2}\right]$$

Diffused profile:

$$C(x) = \frac{Q}{2\sqrt{\pi}\sqrt{Dt}} \exp\left[-\frac{x^2}{4Dt}\right]$$

$$\Delta R_p^2 \Leftrightarrow 2Dt$$

Implanted & diffused profile:

$$C(x) = \frac{Q}{\sqrt{2\pi(\Delta R_p^2 + 2Dt)}} \exp \left[-\frac{(x - R_p)^2}{2(\Delta R_p^2 + 2Dt)} \right]$$

Implantation with mask

To shield the implantation ions:

$$C^*(x_m) = C_p^* \left[\exp{-\frac{(x_m - R_p^*)^2}{2\Delta R_p^{*2}}} \right] \le C_B$$

Mask thickness:

$$C^*(\mathbf{x_m})$$
 $x_m = R_P^* + \Delta R_P^* \sqrt{2 \ln \left(\frac{C_P^*}{C_B}\right)} = R_P^* + m\Delta R_P^*$

Penetrated dose:

$$Q_P = \frac{Q}{2} \operatorname{erfc} \left(\frac{x_m - R_P^*}{\sqrt{2} \Delta R_p^*} \right)$$
Depth

Channelling – Silicon crystalline

Channelling

Fig. 27 Model for a diamond structure, viewed along a <110>-axis.²⁰

- Low-loss crystal directions

Critical angle:

$$\psi \propto \frac{1}{\sqrt{E}}$$

Typical values:

$$\Psi$$
 ~ 2° - 7°

$$E \sim 300 - 30 \text{ keV}$$

Implantation into amorphous layer

Damage Generation

Amorphization

Damage by the implanted ions may cause the amorphization of the crystalline structure.

More severe with higher dose;
Critical dose for amorphization;
Critical dose is related to the ion mass;

Figure 5.13 Critical implant dose required to amorphize a silicon substrate as a function of substrate temperature for several common silicon dopants (after Morehead and Crowder).

Annealing of Ion Implants

Purpose: - Activation of dopants

- Removal of damage

Low-dose implants

High temperature needed for full activation

Temperature increasing with the dose

High-dose implants

Solid phase epitaxial regrowth (low temperature) - SPE

Substantial activation even at low temperature

Rapid thermal annealing - RTA

Activation and damage removal almost without diffusion

Annealing of Ion Implants

$$C(x,t) = \frac{Q}{\sqrt{2\pi(\Delta R_p^2 + 2Dt)}} \exp\left[-\frac{(x - R_p)^2}{2(\Delta R_p^2 + 2Dt)}\right]$$

- Restore lattice (>600° C, ~hours)
- Activation of dopants (650~900 ° C, 10~30 min)
- Diffusion-broadened profile

Short-Time Annealing Techniques

