

- 1. RDD concepts and operations
- 2. SPARK application scheme and execution
- 3. Basic programming examples
- 4. Basic examples on pair RDDs
- 5. PageRank with Spark
- 6. Partitioning & co-partitioning

POLYTECH PARIS-SUD

RDD concepts and operations

A RDD (Resilient Distributed Dataset) is:

- an immutable (read only) dataset
- a partitioned dataset
- usually stored in a distributed file system (like HDFS)

When stored in HDFS:

- One RDD → One HDFS file
- One RDD partition block ightarrow One HDFS file block and
- Each RDD partition block is replicated by HDFS

rdd1 = sc.parallelize(« myFile.txt »)

- Read each HDFS block
- Spread the blocks in memory of different Spark Executor processes (on different nodes)
- → Get a RDD

POLYTECH PARIS-SUD

RDD concepts and operations

Initial input RDDs:

- · are usually created from distributed files (like HDFS files),
- Spark processes read the file blocks that become in-memory RDD

Operations on RDDs:

- Transformations: read RDDs, compute, and generate a new RDD
- · Actions: read RDDs and generate results out of the RDD world

Map and Reduce are parts of the operations

POLYTECH'

RDD concepts and operations

Exemple of Transformations and Actions

	$map(f: T \Rightarrow U)$:	$RDD[T] \Rightarrow RDD[U]$
	$filter(f: T \Rightarrow Bool)$:	$RDD[T] \Rightarrow RDD[T]$
	$flatMap(f : T \Rightarrow Seq[U])$:	$RDD[T] \Rightarrow RDD[U]$
	sample(fraction: Float):	$RDD[T] \Rightarrow RDD[T]$ (Deterministic sampling)
	groupByKey() :	$RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]$
	$reduceByKey(f:(V,V) \Rightarrow V)$:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
Transformations	union() :	$(RDD[T], RDD[T]) \Rightarrow RDD[T]$
	join() :	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]$
	cogroup() :	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]$
	crossProduct() :	$(RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]$
	$mapValues(f : V \Rightarrow W)$:	$RDD[(K, V)] \Rightarrow RDD[(K, W)]$ (Preserves partitioning)
	sort(c : Comparator[K]):	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
	partitionBy(p : Partitioner[K]):	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
	count() :	$RDD[T] \Rightarrow Long$
	collect() :	$RDD[T] \Rightarrow Seq[T]$
Actions	$reduce(f : (T,T) \Rightarrow T)$:	$RDD[T] \Rightarrow T$
	lookup(k: K) :	$RDD[(K, V)] \Rightarrow Seq[V]$ (On hash/range partitioned RDDs)
	save(path: String):	Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Source: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. Matei Zaharia et al. Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. San Jose, CA, USA, 2012

RDD concepts and operations

Fault tolerance:

- Transformations are coarse grained op: they apply on all data of the source RDD
- · RDD are read-only, input RDD are not modified
- A sequence of transformations (a *lineage*) can be easily stored
- → In case of failure: Spark has *just* to re-apply the lineage of the missing RDD partition blocks.

POLYTECH'

RDD concepts and operations

5 main internal properties of a RDD:

- A list of partition blocks getPartitions()
- A function for computing each partition block compute (...)
- A list of dependencies on other RDDs: parent RDDs and transformations to apply getDependencies()

Optionally:

- A Partitioner for key-value RDDs: metadata specifying the RDD partitioning partitioner()
- A list of nodes where each partition block can be accessed faster due to data locality getPreferredLocations (...)

To compute and re-compute the RDD when failure happens

To control the RDD partitioning, to achieve copartitioning...

To improve data locality with HDFS & YARN...

POLYTECH'

RDD concepts and operations

Narrow transformations

- Local computations applied to each partition block
 - → no communication between processes/nodes
 - → only local dependencies (between parent & son RDDs)
 - Map()Filter()

- In case of sequence of Narrow transformations:
 - → possible pipelining inside one step

Map(); Filter(

RDD concepts and operations

Narrow transformations

- Local computations applied to each partition block
 - → no communication between processes/nodes
 - → only local dependencies (between parent & son RDDs)

- · In case of failure:
 - → recompute only the damaged partition blocks
 - → recompute/reload only its parent blocks

POLYTECH'

RDD concepts and operations

Wide transformations

- · Computations requiring data from all parent RDD blocks
 - → many communication between processes/nodes (shuffle & sort)
 - → non-local dependencies (between parent & son RDDs)

- In case of sequence of transformations:
 - → no pipelining of transformations
 - → wide transformation must be totally achieved before to enter next transformation _____ reduceBVKey _____ filter

POLYTECH'

RDD concepts and operations

Wide transformations

- Computations requiring data from all parent RDD blocks
 - → many communication between processes/nodes (shuffle & sort)
 - → non-local dependencies (between parent & son RDDs)
 - groupByKey()reduceByKey()
- In case of sequence of failure:
 - → recompute the damaged partition blocks
 - → recompute/reload all blocks of the parent RDDs

RDD concepts and operations Avoiding wide transformations with co-partitioning • With identical partitioning of inputs: wide transformation → narrow transformation Join with inputs not co-partitioned • less expensive communications • possible pipelining • less expensive fault tolerance Control RDD partitioning Force co-partitioning (using the same partition map)

POLYTECH PARIS-SUD

RDD concepts and operations

Persistence of the RDD

RDD are stored:

- in the memory space of the Spark Executors
- or on disk (of the node) when memory space of the Executor is full

By default: an old RDD is removed when memory space is required (Least Recently Used policy)

- → An old RDD has to be re-computed (using its *lineage*) when needed again
- → Spark allows to make a « persistent » RDD to avoid to recompute it

POLYTECH'

RDD concepts and operations

Persistence of the RDD to improve Spark application performances

Spark application developper has to add instructions to force RDD storage, and to force RDD forgetting:

```
myRDD.persist(StorageLevel)  // or myRDD.cache()
... // Transformations and Actions
myRDD.unpersist()
```

Available *storage levels*:

• MEMORY_ONLY : in Spark Executor memory space

• MEMORY_ONLY_SER : + serializing the RDD data

MEMORY_AND_DISK : on local disk when no memory space

MEMORY_AND_DISK_SER: + serializing the RDD data in memory

• DISK ONLY : always on disk (and serialized)

RDD is saved in the Spark executor memory/disk space

→ limited to the Spark session

RDD concepts and operations

Persistence of the RDD to improve fault tolerance

To face *short term failures*: Spark application developper can force RDD storage with replication in the local memory/disk of several Spark Executors

```
myRDD.persist(storageLevel.MEMORY_AND_DISK_SER_2)
... // Transformations and Actions
myRDD.unpersist()
```

To face *serious failures*: Spark application developper can checkpoint the RDD outside of the Spark data space, on HDFS or S3 or...

```
myRDD.sparkContext.setCheckpointDir(directory)
myRDD.checkpoint()
... // Transformations and Actions
```

→ Longer, but secure!

- 1. RDD concepts and operations
- 2. SPARK application scheme and execution
- 3. Basic programming examples
- 4. Basic examples on pair RDDs
- 5. PageRank with Spark
- 6. Partitioning & co-partitioning

SPARK application scheme and execution

Transformations are **lazy** operations: saved and executed further *Actions* **trigger** the execution of the sequence of transformations

A *job* is a sequence of RDD transformations, ended by an action

A *Spark application* is a set of jobs to run sequentially or in parallel

SPARK application scheme and execution

The Spark application driver controls the application run

- · It creates the Spark context
- · It analyses the Spark program

- It creates a DAG of tasks for each job
- It optimizes the DAG
 - pipelining narrow transformations
 - identifying the tasks that can be run in parallel

• It schedules the DAG of tasks on the available worker nodes (the Spark Executors) in order to maximize parallelism (and to reduce the execution time)

SPARK application scheme and execution

The Spark application driver controls the application run

- It attempts to keep in-memory the intermediate RDDs
 - → in order the input RDDs of a transformation are already in-memory (ready to be used)

But developers can use persist() to obligate Spark to keep the RDD in memory (see previous section)

- 1. RDD concepts and operations
- 2. SPARK application scheme and execution
- 3. Basic programming examples
- 4. Basic examples on pair RDDs
- 5. PageRank with Spark
- 6. Partitioning & co-partitioning

Basic programming examples

```
Ex. of transformations on one RDD:
                                                           rdd: {1, 2, 3, 3}
   Python: rdd.map(lambda x: x+1)
                                                \rightarrow rdd: \{2, 3, 4, 4\}
                                                \rightarrow rdd: \{2, 3, 4, 4\}
   Scala : rdd.map(x => x+1)
   Scala : rdd.map(x => x.to(3)) \rightarrow rdd: {(1,2,3), (2,3), (3)}
                                                → rdd: {1, 2, 3, 2, 3, 3, 3}
   Scala : rdd.flatMap(x \Rightarrow x.to(3))
   Scala : rdd.filter(x => x != 1)
                                                \rightarrow rdd: {2, 3, 3}
                                                \rightarrow rdd: \{1, 2, 3\}
   Scala : rdd.distinct()
   Some sampling functions exist:
                                                → rdd: {1} or {2,3} or ...
   Scala : rdd.sample(false, 0.5)
              with replacement = false
Sequence of transformations:
   Scala: rdd. filter (x => x != 1) \cdot map (x => x+1) \rightarrow rdd: {3, 4, 4}
```

Basic programming examples

rdd2: {3, 4, 5} Scala : rdd.union(rdd2) → rdd: {1, 2, 3, 3, 4, 5}

rdd: {1, 2, 3}

Scala : rdd.intersection(rdd2) → rdd: {3}

Ex. of transformations on two RDDs:

Scala : rdd.subtract(rdd2) → rdd: {1, 2}

Scala : rdd. cartesian (rdd2) → rdd: {(1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,3), (3,4), (3,5)}

Basic programming examples

Ex. of actions on a RDD:

Examples of « aggregations »: computing a sum

rdd: {1, 2, 3, 3}

Computing the sum of the RDD values:

Python: rdd.reduce(lambda x,y: x+y) $\rightarrow 9$ Scala: rdd.reduce((x,y) => x+y) $\rightarrow 9$ Results are NOT RDD

The reduce fonction is applied on 2 operands: 2 input data OR 1 input data and 1 reduce result

- → Must be an **associative** operation
- → Input and output data types must be identical

Basic programming examples

Ex. of actions on a RDD:

Examples of « aggregations »: computing a sum

rdd: {1, 2, 3, 3}

Computing the sum of the RDD values:

Python: rdd.reduce(lambda x,y: x+y) $\rightarrow 9$ Scala: rdd.reduce((x,y) => x+y) $\rightarrow 9$ Results are NOT RDD

Specifying the initial value of the accumulator:

Scala : rdd.fold(0) ((accu,value) => accu+value) \rightarrow 9

Specifying to start to accumulate from Left or from Right:

Scala : rdd.foldLeft(0) ((accu,value) => accu+value) \rightarrow 9 Scala : rdd.foldRight(0) ((accu,value) => accu+value) \rightarrow 9

Basic programming examples

Ex. of actions on a RDD:

Examples of « aggregations »:

computing an average value using aggregate(...)(...,...)

Scala:

- Specifying the initial value of the accumulator (0 = sum, 0 = nb)
- Specifying a function to add a value to an accumulator (in a rdd partition block)
- Specifying a function to add two accumulators (from two rdd partition blocks)

```
val SumNb = rdd.aggregate((0,0))(
                  (acc, v) => (acc._1+v, acc._2+1),
Type inference!
                  (acc1,acc2) => (acc1._1+acc2._1,
                                   acc1. 2+acc2. 2))
```

Division of the sum by the nb of values

```
val avg = SumNb. 1/SumNb. 2.toDouble
```

Basic programming examples

Ex. of actions on a RDD:

```
rdd: {1, 2, 3, 3}
```

```
\rightarrow {1, 2, 3, 3}
Scala : rdd.collect()
                                       \rightarrow 4
Scala : rdd.count()
                                       \rightarrow {(1,1), (2,1), (3,2)}
Scala :rdd.countByValue()
                                       \rightarrow {1, 2}
Scala : rdd.take(2)
                                       \rightarrow {3, 3}
Scala : rdd.top(2)
Scala :rdd.takeOrdered(3,Ordering[Int].reverse) → {3,3,2}
Scala : rdd.takeSample(false,2) \rightarrow {?,?}
          takeSample(withReplacement, NbEltToGet, [seed])
Scala : var sum = 0
         rdd.foreach (sum += ) \rightarrow does not return any value
         println(sum)
```

POLYTECH'

- 1. RDD concepts and operations
- 2. SPARK application scheme and execution
- 3. Basic programming examples
- 4. Basic examples on pair RDDs
- 5. PageRank with Spark
- 6. Partitioning & co-partitioning


```
Ex. of transformations on one RDD:

Scala : rdd.groupByKey() → rdd: {(1, [2]), (3, [3, 4])}

Group values associated to the same key

Move almost all input data → Huge trafic in shuffle step!!

Scala : rdd.reduceByKey((x,y) => x+y) → rdd: {(1, 2), (3, 7)}

Reduce values associated to the same key

Scala : rdd.combineByKey(
..., // createCombiner function
..., // mergeValue function
..., // mergeCombiners fct
)

When input data type and reduced data type are different
```

Ex. of transformations on one RDD:

rdd: {(1, 2), (3, 3), (3, 4)}

Scala : $rdd.keys() \rightarrow rdd: \{1, 3, 3\}$ Return an RDD of just the keys

Scala : rdd.values() \rightarrow rdd: {2, 3, 4} Return an RDD of just the values

Scala : $rdd.sortByKeys() \rightarrow rdd: \{(1, 2), (3, 3), (3, 4)\}$

Return a pair RDD sorted by the keys

Basic examples on pair RDDs

Ex. of transformations on two pair RDDs

rdd: {(1, 2), (3, 4), (3, 6)} rdd2: {(3, 9)}

Scala : rdd.subtractByKey(rdd2) \rightarrow rdd: {(1, 2)}

Remove pairs with key present in the 2^{nd} pairRDD

Scala : rdd.join(rdd2) $\rightarrow rdd: \{(3, (4, 9)), (3, (6, 9))\}$

Inner Join between the two pair RDDs

Scala : rdd. cogroup (rdd2) → rdd: {(1, ([2], [])), (3, ([4, 6], [9]))}

Group data from both RDDs sharing the same key

Ex. of classic transformations applied on a pair RDD

rdd: {(1, 2), (3, 4), (3, 6)}

A pair RDD remains a RDD of tuples (key, values)

→ Classic transformations can be applied

```
Scala : rdd.filter{case (k,v) \Rightarrow v < 5} \rightarrow rdd: {(1, 2), (3, 4)}
```

Scala : rdd.map{case
$$(k,v) \Rightarrow (k,v*10)$$
} $\rightarrow rdd: \{(1,20), (3,40), (3,60)\}$

Basic examples on pair RDDs

Ex. of actions on pair RDDs

rdd: {(1, 2), (3, 4), (3, 6)}

Scala : rdd.countByKey() \rightarrow {(1, 1), (3, 2)}

Return a tuple of couple, counting the number of pairs per key

Scala : rdd.collectAsMap() \rightarrow Map{(1, 2), (3, 4), (3, 6)}

Return a 'Map' datastructure

containing the RDD

Scala: rdd.lookup(3) \rightarrow [4, 6]

Return an array containing all

values associated with the provided key

Ex. of transformation: Computing an average value per key

```
theMarks: {("julie", 12), ("marc", 10), ("albert", 19), ("julie", 15), ("albert", 15),...}
```

Solution 1: mapValues + reduceByKey + collectAsMap + foreach

kvc. 2. 1/kvc. 2. 2.toDouble))

Basic examples on pair RDDs

Ex. of transformation: Computing an average value per key

theMarks: {("julie", 12), ("marc", 10), ("albert", 19), ("julie", 15), ("albert", 15),...}

Solution 2: combineByKey + collectAsMap + foreach

```
val theSums = theMarks
        .combineByKey(
          // createCombiner function
Type
          (valueWithNewKey) => (valueWithNewKey, 1),
inference
          // mergeValue function (inside a partition block)
needs
          (acc: (Int, Int), v) => (acc._1 + v, acc._2 + 1),
some
          // mergeCombiners function (after shuffle comm.)
help!
          (acc1: (Int, Int), acc2: (Int, Int)) =>
            (acc1._1 + acc2._1, acc1._2 + acc2._2))
        . collectAsMap () Still bad performances! Break parallelism!
      theSums.foreach(
            kvc => println(kvc._1 + " has average:" +
                            kvc. 2. 1/kvc. 2. 2.toDouble))
```

Ex. of transformation: Computing an average value per key

```
theMarks: {("julie", 12), ("marc", 10), ("albert", 19), ("julie", 15), ("albert", 15),...}
```

Solution 2: combineByKey + map + collectAsMap + foreach

```
val theSums = theMarks
  .combineByKey(
    // createCombiner function
    (valueWithNewKey)
                      => (valueWithNewKey, 1),
    // mergeValue function (inside a partition block)
    (acc: (Int, Int), v) =>(acc. 1 + v, acc. 2 + 1),
    // mergeCombiners function (after shuffle comm.)
    (acc1:(Int, Int), acc2:(Int, Int)) =>
      (acc1._1 + acc2._1, acc1._2 + acc2._2))
  .map{case (k,vc) \Rightarrow (k, vc. 1/vc. 2.toDouble)}
theSums.collectAsMap().foreach(
```

```
kv => println(kv._1 + " has average:" + kv._2))
```

Basic examples on pair RDDs

Tuning the level of parallelism

- · By default: level of paralelism set by the nb of partition blocks of the input RDD
- When the input is a in-memory collection (list, array...), it needs to be parallelized:

```
val theData = List(("a",1), ("b",2), ("c",3),.....)
   sc.parallelize(theData).theTransformation(...)
Or:
   val theData = List(1,2,3,.....).par
   theData.theTransformation(...)
```

→ Spark adopts a distribution adapted to the cluster... ... but it can be tuned

Tuning the level of parallelism

- Most of transformations support an extra parameter to control the distribution (and the parallelism)
- Example:

```
Default parallelism:

val theData = List(("a",1), ("b",2), ("c",3),.....)

sc.parallelize(theData).reduceByKey((x,y) => x+y)

Tuned parallelism:

val theData = List(("a",1), ("b",2), ("c",3),.....)

sc.parallelize(theData).reduceByKey((x,y) => x+y,8)

8 partition blocks imposed for the result of the reduceByKey
```


- 1. RDD concepts and operations
- 2. SPARK application scheme and execution
- 3. Basic programming examples
- 4. Basic examples on pair RDDs
- 5. PageRank with Spark
- 6. Partitioning & co-partitioning

POLYTECH' PageRank with Spark **PageRank objectives** Important URL (referenced by Compute the probability to many pages) Rank increases arrive at a web page when url 1 (referenced by an randomly clicking on web important URL) links... url 4 url 2 url 3

- If a URL is referenced by many other URLs then its rank increases (because being referenced means that it is important ex: URL 1)
- If an important URL (like URL 1) references other URLs (like URL 4) this will increase the destination's ranking

PageRank with Spark

PageRank principles

• Simplified algorithm: $PR(u) = \sum_{v \in B(u)} \underbrace{\frac{PR(v)}{L(v)}}_{PR(v)} - \underbrace{\frac{PR(v)}{L(v)}}_{PR(x): \text{ PageRank of page } x}_{PR(x): \text{ the number of outbound links of page } v}$

- Initialize the PR of each page with an equi-probablity
- Iterate *k* times: compute PR of each page

PageRank with Spark

PageRank principles

• The damping factor:

the probability a user continues to click is a damping factor: d

$$PR(u) = \frac{1-d}{N_{pages}} + d. \sum_{v \in B(u)} \frac{PR(v)}{L(v)} \qquad \qquad \begin{cases} N_{pages} \text{: Nb of documents} \\ \text{in the collection} \\ \text{Usually : } \textit{d} = 0.85 \end{cases}$$

Sum of all PR is 1

Variant:

$$PR(u) = (1 - d) + d. \sum_{v \in B(u)} \frac{PR(v)}{L(v)}$$
 Usually : $d = 0.85$

Sum of all PR is N_{pages}

PageRank with Spark

PageRank first step in Spark (Scala)

"url 1 url 4"

"url 3 url 2"

"url 3 utl 1"

```
// read text file into Dataset[String] -> RDD1
val lines = spark.read.textFile(args(0)).rdd
val pairs = lines.map{ s =>
                         // Splits a line into an array of
                         // 2 elements according space(s)
                         val parts = s.split("\\s+")
                         // create the parts<url, url>
// for each line in the file
                         (parts(0), parts(1))
// RDD1 <string, string> -> RDD2<string, iterable>
val links = pairs.distinct().groupByKey().cache()
          "url 4 url 3"
          "url 4 url 1"
                                     url 4 [url 3, url 1]
                            links RDD
         "url 2 url 1"
```


PageRank with Spark

PageRank third step in Spark (Scala)

- Spark & Scala allow a short/compact implementation of the PageRank algorithm
- Each RDD remains in-memory from one iteration to the next one

- 1. RDD concepts and operations
- 2. SPARK application scheme and execution
- 3. Basic programming examples
- 4. Basic examples on pair RDDs
- 5. PageRank with Spark
- 6. Partitioning & co-partitioning

