Tarea 3

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Instrucciones. Resuelve los siguientes ejercicios. Esta tarea es individual y deberá ser entregada presencialmente, durante la clase del **viernes 4 de julio**.

Ej. 1 (1 pt) Se dice que una función $h: X \to Y$ es **constante** si y sólo si para cualesquiera $x, y \in X$ se tiene que h(x) = h(y).

- i) Demuestra que la composición de funciones constantes es una función constante.
- ii) Encuentra dos funciones *no* constantes; $f : \mathbb{N} \to \mathbb{Z}$ y $g : \mathbb{Z} \to \mathbb{N}$, cuya composición (la función $g \circ f : \mathbb{N} \to \mathbb{N}$) sea constante.

Ej. 2 (1.5 pts) En cada inciso, determina si la correspondiente función es inyectiva, sobreyectiva, o biyectiva. Demuestra la conclusión a la que llegaste (es decir, prueba si la función tiene o no la propiedad que se afrima).

- i) $h: \{0,1,2\} \to \{x,y\}$ definida por $h=\{(0,x),(1,x),(2,y)\}$, aquí $x \neq y$.
- ii) $A : \mathbb{R} \to \mathbb{R}$ dada para cada $x \in \mathbb{R}$ por A(x) = 4x + 55.
- iii) $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ dada para cada $n \in \mathbb{N}$ como $f(n) = \{0, n\}$.

Ej. 3 (2.5 pts) Sean A y B conjuntos arbitrarios y $f: A \to B$ cualquier función. Demuestra que las siguientes proposiciones son equivalentes:

- i) $\forall X \subseteq A \ \forall Y \subseteq A \ (f[X \setminus Y] \subseteq f[X] \setminus f[Y]).$
- ii) $\forall U \subseteq A \ \forall V \subseteq A \ (f[U] \cap f[V] \subseteq f[U \cap V]).$

Ej. 4 (2.5 pts) Sean X, Y y A conjuntos tales que $A \subseteq X$ y sea $f: X \to Y$ cualquier función. Definamos $i: A \to X$ para cada $a \in A$ como i(a) = a. Demuestra que para cualquier subconjunto $B \subseteq Y$ se da la igualdad $(f \circ i)^{-1}[B] = A \cap f^{-1}[B]$.

Ej. 5 (2.5 pts) Sean X un conjunto y $\phi: X \to X$ cualquier biyección. Demuestre que, para toda función $f: X \to X$ se da la equivalencia:

f es biyectiva si y sólo si $\phi^{-1} \circ f \circ \varphi$ es biyectiva.