Option Pricing with Monte Carlo Simulations

Andrew Stranberg, Robin Petry, Wisdom Voegborlo and Lara Krell

University of Trier

1. Motivation

- ► Options are a financial product that derive their value from another asset
- ► Given contracts can be esoteric, our research focuses on two forms of contracts, European Call options and Asian Call Options.
- ► While Monte Carlo Methods can be applied to pricing any option contracts, it is often inefficient to do so compared to other methods
- Our research investigates when/how to apply Monte Carlo pricing (Closed vs Open form solutions)
- ► Lastly, we carried out a simulation of model stability under increasing levels of Volatility for four Models pricing Arithmetic Mean Asian Call Options to test their robustness

2. Pricing European Options and Asian Options

- European options delivery is only dependent on the final price and has a closed formed solution
- ► The most the most utilized form of options pricing is the Black Scholes model
- ► The Black-Scholes equation is a partial differential equation (PDE) which captures the price of an option $\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + r S \frac{\partial V}{\partial S} - r V = 0$ [1]
- ► For a non-dividend paying European Call the equation can be derived as follows:

$$C(S_t, t) = N(d_1)S_t - N(d_2)Ke^{-r(T-t)}$$
 [2]
 $d_1 = \frac{1}{\sigma\sqrt{T-t}}[In(\frac{S_t}{K}) + (r + \frac{\sigma^2}{2})(T-t)]$
 $d_2 = d_1 - \sigma\sqrt{T-t}$

- ► Two methods of Pricing European Options are the Binomial Pricing Model and the Finite Difference Methods [3][4]
- ► The first builds on the Black-Scholes model via a Lattice or Tree based approach while the later uses PDE's
- ► An important takeaway is that the Binomial and PDE methods can actually be far more efficient compared to Monte Carlo methods for estimating European call option prices given they have a closed formed solution [5]
- ► Asian Options in contrast are dependent on the average underlying value of the asset over its lifetime rather than at expiration

► Arithmetic Asian Call Options and Geometric Asian Call Options can be expressed as follows:

Arithmetic Asian Option:

$$\Phi(S) = (\frac{1}{T} \int_0^T S(T) dt - K)^{+ [6]}$$
Geometric Asian Option:

$$\Phi(S) = (e^{\frac{1}{T} \int_0^T log S(t) dt} - K)^{+ [6]}$$

- ► Considering Arithmetic Asian Option's path dependent structure, no closed formed solution exists and the previous pricing methods grow exponentially in terms of complexity
- ► Thus, it is fruitful to explore the application of Monte Carlo methods for pricing the Arthemetic Mean Asian Options

3. Options Pricing Algorithm from our PAO package [7]

- ► When initializing the Monte Carlo algorithm for Options Pricing, we must provide 6 variables (7 for the Asian Options):
- **S** = Asset Value at time 0
- **K** = Strike Price of the Contract
- **V** = Volatility (Annualized volatility of return of the asset in percentage)
- **tt** = The time till expiration (fraction of the number of trading days in a year, 252)
- **r** = risk-free rate

numsim = Number of Monte Carlo Simulations to be run **m** = Number of mark to markets (Only for Asian Options)

Algorithm Implementation (In R Code)

- 1. z <- matrix(rnorm(m *numsim), numsim, m)
- 2. zcum <- t(apply(z,1,cumsum))
- 3. h <- tt/m (Only for Asian Options)
- **4.** $S \leftarrow matrix(1, nrow = numsim, ncol = m)$
- **5.** for (i in 1:m){S[,i]<-s*exp((r-0.5* v^2)*h*i+v* $\sqrt{(h)}$ *zcum[,
- 6. At this step, the code (Payoff Eval.) depends on the
- Option

4. Variance Reduction

- ► While increasing the number of simulations improves estimates, there are diminishing returns
- ► ECO(S=100,K=100,vol=0.25,tt=252/252,r=0.02)

numsim	Price	Standard Error
10 ³	10.513173	1.057449
10 ⁴	10.9807347	0.3507756
10 ⁵	10.8914305	0.1086549

- ► We considered two methods for variance reduction, antithetical variates and control variates
- ► Antithetical variates will reduce variance because the variates X and -X will be negatively correlated

$$\hat{\theta}_a = \frac{1}{n} \sum_{i=1}^n \frac{g(X_i) + g(-X_i)}{2}$$
, with $i.i.d.X_i \sim N(0, 1)$ [8]

- ► The control variates require a suitable variate choice to achieve good variance reduction
- ► The most obvious choice for a control variate is the European Call Option price, but there is a better option

5. Geometric Asian Options

- ► Surprisingly, while the Arithmetic Asian Option has no close formed solution, the Geometric Asian Option does
- $\blacktriangleright \Phi(S) = (e^{\frac{1}{T} \int_0^T log S(t) dt} K)^+$ can be transformed by applying a log transformation with the result:

$$\Phi(S) = \frac{(r - \frac{\sigma^2}{2})T}{2} + \frac{\sigma\sqrt{\frac{T}{m}}\sum_{i=1}^m iX_i}{m+1} [9]$$

▶ By the additive mean and variance property of independent normal random varaibles we obtain:

$$\sigma_{z} = \sigma \sqrt{\frac{2m+1}{6(m+1)}} \text{ and } \rho = \frac{(r-\frac{\sigma^{2}}{2})+\sigma_{z}^{2}}{2}$$
 [9]

- ► The result produces a new variance and risk-free interest rate which can be plugged into the Black-Scholes formula to produce an exact price for the geometric Asian option
- ▶ Under this framework, the Geometric Asian Option can serve as a control variate for the Arithmetic Asian Option

6. Experiment

- ► Traditionally, volatility has been the bane of the black-scholes model with tail risk often resulting in a
- ► We set up a test to investigate how our methods would perform in estimating the price of out the money call options, at the money call options and in the money call

- complete break down of the pricing model
- options for a period of 20 trading days or one month of time

8. Conclusion

- ► The Crude Monte Carlo method preformed worst while Geometric Mean Options remained relatively robust even in the case of extremely high levels of volatility.
- ► Geometric method produces higher option prices under low volatility and lower under high volatility compared to the other three methods
- ► Out the money options have very precise estimates intially but approach similar levels of Standard Error once volatility increases ► At higher levels of volatitly, the European Control Variate

starts to outpreform the estimates of antithetical variates

7. Simulation Results Strike of 90

Pricing Method Asian Call Option Antithetical Variable European Call Control Variate Geometic Control Variate

References

- [1] P. Glasserman (2003) Monte Carlo Methods in Financial Engineering, 53: 25. [2] P. Glasserman (2003) Monte Carlo Methods in Financial Engineering, 53: 8.
- [3] J. Cox, S. Ross, M. Rubinstein (1979). Option pricing: A simplified approach,
- Journal of Financial Economics, Vol 7(3): 232-241.
- [4] M. Brennan, E. Schwartz (1978). Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis, The Journal of Financial and Quantitative Analysis, Vol 13(3): 461-474
- [5] M. Broadie, P. Glasserman (1996). Estimating Security Price Derivatives Using Simulation, Management Science 42(2): 269-285
- [6] H. Zhang (2009). Pricing Asian Options using Monte Carlo Methods, 8. [7] https://github.com/strandrew19/MC_Options_CaseStudy/tree/main/PAO
- [8] H. Zhang (2009). Pricing Asian Options using Monte Carlo Methods, 21.
- [9] H. Zhang (2009). Pricing Asian Options using Monte Carlo Methods, 11-12.

Monte Carlo Methods

Andrew Stranberg, Robin Petry, Wisdom Voegborlo and Lara Krell

s4anstra@uni-trier.de, s4ropetr@uni-trier.de, s4wivoeg@uni-trier.de, s4lakrel@uni-trier.de

