In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
%matplotlib inline
```

Взятые данные были предоставлены в качестве исходных данных для одного из существующих соревнований на сайте Kagge

Работа выполнена на основе базы данных португальских вин

"Vinho Verde".

```
In [2]:
```

```
df = pd.read_csv('./wine/winequality-red.csv')
df
```

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66
1599 rows x 12 columns										

1599 rows × 12 columns

Утверждение:

Степень зрелости винограда зависит от температуры воздуха и количества получаемого солнечного света. Уровень алкоголя в вине зависит от концентрации сахара в вызревших ягодах, соответственно, в процессе созревания винограда кислотность в нем снижается. Это объясняет почему сладкие вина имеют более высокий уровень алкоголя и низкую кислотность, а вина невысокой крепости часто бывают высококислотными. Вино с низким уровнем кислотности будет казаться вялым и безжизненным.

Проверим утверждение:

сладкие вина имеют более высокий уровень алкоголя и низкую кислотность, а вина невысокой крепости часто бывают высококислотными. (сладкое вино, выше кислотность -> меньше крепкость, ниже кислотность -> выше крепкость)

In [31:

```
correlation_matrix = df.corr()
correlation_matrix
```

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	dens
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.6680
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.0220
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.3649
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.3552
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.2006
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.0219
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.0712
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.0000
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.3416
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.1485
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.4961
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.1749
4								>

In [4]:

```
# оставляем только сладкие вина. Это вина у которых содержание сахара >= 5 \Gamma/\pi. df_sweet_wine = df[df['residual sugar'] >= 5.0] df_sweet_wine
```

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates
9	7.5	0.500	0.36	6.1	0.071	17.0	102.0	0.99780	3.35	0.80
11	7.5	0.500	0.36	6.1	0.071	17.0	102.0	0.99780	3.35	0.80
33	6.9	0.605	0.12	10.7	0.073	40.0	83.0	0.99930	3.45	0.52
35	7.8	0.645	0.00	5.5	0.086	5.0	18.0	0.99860	3.40	0.55
39	7.3	0.450	0.36	5.9	0.074	12.0	87.0	0.99780	3.33	0.83
1478	7.1	0.875	0.05	5.7	0.082	3.0	14.0	0.99808	3.40	0.52
1558	6.9	0.630	0.33	6.7	0.235	66.0	115.0	0.99787	3.22	0.56
1574	5.6	0.310	0.78	13.9	0.074	23.0	92.0	0.99677	3.39	0.48
1577	6.2	0.700	0.15	5.1	0.076	13.0	27.0	0.99622	3.54	0.60
1589	6.6	0.725	0.20	7.8	0.073	29.0	79.0	0.99770	3.29	0.54
85 rows × 12 columns										
1										>

Получим характеристики распределений величин, построим график и гистограму.

In [5]:

```
sweet_sorted = df_sweet_wine[['pH', 'alcohol']]
sweet_sorted.set_index('alcohol').sort_index().plot(figsize=(8, 6), grid=True)
print(sweet_sorted.corr())
sweet_sorted.hist()
sweet_sorted.describe()
```

pH alcohol pH 1.00000 -0.14275 alcohol -0.14275 1.00000

Out[5]:

	рН	alcohol
count	85.000000	85.000000
mean	3.287647	10.584314
std	0.124534	1.203254
min	2.980000	8.800000
25%	3.200000	9.500000
50%	3.290000	10.500000
75%	3.380000	11.200000
max	3.580000	14.900000

Распределение сложно назвать хорошо сбалансированным, но в целом разумное соотношение сохраняется поэтому значениям можно доверять. Коэффициент корреляции довольно мал и равен -0.14

Проверим его значимость.

• Формулировка гипотез:

```
H0: r = 0; H1: r != 0;
```

- Критические значения для распределения Стьюдента с n-2 = 85-2 = 83.. это больше 30 -> к нормальному распределени. Как итог, значение равно ta/2 = 1.95996. Следовательно, критическая область |t| > 1.95996
- Принятие решения будет основано на спец. критерии, рассчитываемом по коэффициенту корреляции r и длине выборки n:

In [6]:

```
r = -0.14275
n = 85
from math import sqrt

t = r * sqrt((n-2)/(1-r**2))
print('t = ', round(t, 3))
```

```
t = -1.314
```

Расчетное значение не превышает критическое значение: t > ta/2, |1.314| > 1.95996; Отклоняем альтернативную гипотезу.

Строим регрессионную модель:

In [7]:

```
x = np.array(sweet_sorted['alcohol'].to_list()).reshape((-1,1))
y = np.array(sweet_sorted['pH'].to_list())

print(sweet_sorted.corr())
print()

slr = LinearRegression()
slr.fit(x, y)

y_pred = slr.predict(x)

print('Slope: {:.2f}'.format(slr.coef_[0]))
print('Intercept: {:.2f}'.format(slr.intercept_))

# VISUALISATION
sweet_sorted.set_index('alcohol').sort_index().plot(figsize=(8, 6), grid=True)
plt.scatter(x, y)
plt.plot(x, slr.predict(x), color='red', linewidth=2)
```

```
pH alcohol
pH 1.00000 -0.14275
alcohol -0.14275 1.00000
```

Slope: -0.01 Intercept: 3.44

Out[7]:

[<matplotlib.lines.Line2D at 0x7f7a0d19cf10>]

Уавнение прямой регрессии: pH = -0.01*alcohol + 3.44

Вывод: исходя из значений коэффициентов можно утверждать о слабом увеличении процента алкоголя в вине с уменьшением его кислотности

In [8]:

```
a, b = -0.01, 3.44
```

Расположение отклонений истинных значений от предсказанных. Судя по данному графику можно положить что данная зависимость может подвергаться линейному регрессионному анализу

In [9]:

```
plt.plot(figsize=(8, 6), grid=True)
plt.scatter(x,[(y_pred[i]-y[i]) for i in range(len(x))])
plt.plot(x,[0 for i in range(len(x))],color='red', linewidth=2)
```

Out[9]:

[<matplotlib.lines.Line2D at 0x7f7a0d25cc50>]

In [10]:

```
# comparing = pd.DataFrame(y,columns=['y'])
# comparing['y_pred'] = y_pred
# comparing
```

In [11]:

```
from sklearn.metrics import r2_score
print('R^2 (coefficient of determination):', round(r2_score(y, y_pred),4))
```

R^2 (coefficient of determination): 0.0204

Проверим его значимость.

• Формулировка гипотез:

```
H0: r2 = 0; H1: r2 != 0;
```

- Критические значения для распределения F с n-2 = 85-2 = 83. Как итог, значение равно Fa = 1.31. Следовательно, критическая область |F| > 1.31
- Принятие решения будет основано на спец. критерии, рассчитываемом по коэффициенту корреляции r и длине выборки n:

In [12]:

```
r2 = 0.0204

F = r2 / ((1-r2)/(n-2))

print(round(F, 3))
```

1.728

Расчетное значение превышает критическое значение: F > Fa, |1.728| > 1.31; Отклоняем нулевую гипотезу.

In [13]:

```
n = 6
Se = 1/n * sum([ (y[i]-y_pred[i])**2 for i in range(n)])
print(f"Se = {round(Se,3)}")

Ser_a = Se / (n-2)**0.5
print(f"Ser_a = {round(Ser_a,4)}")

xavg = sum(x)/len(x)
Sx = 1/n * sum([(x[i] - xavg)**2 for i in range(n)])
Ser_b = Ser_a / Sx
print(f"Ser_b = {round(Ser_b[0], 4)}")
```

```
Se = 0.007

Ser_a = 0.0034

Ser_b = 0.0086
```

На основании имеющихся наблюдений построена зависимость оценки качества акоголя от его крепкости. В дейсвтительности зависимым параметром выбрано качесто, но в целом сути дела это не меняет и зависимость описывается следующим уравнением прямой.

$$y' = -0.01 \cdot x + 3.44$$

Ser(a) = 0.0034

Ser(b) = 0.0086

Проверим гипотезы о значимости коэффициентов на уровне значимости 5%:

• Формулировка гипотез:

```
H0: a = 0; H1: a = 0; H0: b = 0; H1: b = 0;
```

- Критические значения для распределения Стьюдента с n-2 = 85-2 = 83.. это больше 30 -> к нормальному распределени. Как итог, значение равно ta/2 = 1.95996. Следовательно, критическая область |t| > 1.95996
- Определяем расчетные значения критерия t(b)

In [14]:

```
tb = b/Ser_b
print('t(b) = ', tb[0])
ta = a/Ser_a
print('t(a) = ', ta)
```

```
t(b) = 398.8463450886177

t(a) = -2.8987040699448716
```

• Принятие решения.

Расчетные значения критерия для обоих коэффициентов превышают критическое значение:

```
t(b)> ta/2, 399 > 1.95996;
t(a)> ta/2, |-2,898| > 1.95996;
```

- -> основные гипотезы отклоняются
 - Вьвод. Оба коэффициента регрессионной модели значимо (не случайно) отличаются от нуля.

Заключение: кислотность вина действительно влияет на его крепкость. Чем выше кислотность - тем менее крепким является напиток. Исторически южные вина с меньшей кислотностью -> они исторически более крепкие чем вина сделаные в более холодных странах.

По предсказаниям модели можно примерно охарактеризовать кислотность зная градус напитка.

In []: