ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и кибербезопасности

Отчет о прохождении производственной (научно-исследовательской работы) практики

на тему: «Разработка инструмента для создания интерактивных карт с пользовательскими коллекциями меток».

Пахомов Александр Владимирович
(Ф.И.О. обучающегося)
4 курс, 5130903/10301
(номер курса обучения и учебной группы)
09.03.03 Прикладная информатика
(направление подготовки (код и наименование)
Место прохождения практики: ФГАОУ ВО «СПбПУ», ИКНК, ВШПИ.
(указывается наименование профильной организации или наименование структурного
подразделения
г. Санкт-Петербург, ул. Обручевых, д. 1, лит. В
ФГАОУ ВО «СПбПУ», фактический адрес)
Сроки практики: с <u>01.09.2024</u> по <u>25.01.2025</u> .
Руководитель практической подготовки от ФГАОУ ВО «СПбПУ»:
Комарова Елена Викторовна, Старший преподаватель ВШПИ
Оценка:
Руководитель практической подготовки
от ФГАОУ ВО «СПбПУ»: Комарова Е.В.
Обучающийся:
Пахомов А.В
Дата:

СОДЕРЖАНИЕ

Введение	7
Глава 1. АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ	9
1.1. Общие подходы к работе с интерактивными картами и пользовательскими метками	9
1.2. Сравнение существующих решений	10
Глава 2. АНАЛИЗ И ВЫБОР ИНСТРУМЕНТАЛЬНЫХ СРЕДСТВ	14
2.1. АРІ для карт	14
2.2. Визуализация карт	14
2.3. Фреймворки для бэкенда	15
2.4. Фреймворки для фронтенда	16
2.5. СУБД	16
Глава 3. ГИПОТЕЗЫ РЕШЕНИЯ ЗАДАЧ	19
Заключение	22
Список использованных источников	23

ВВЕДЕНИЕ

Современные картографические технологии активно развиваются, предлагая широкий спектр решений для визуализации геоданных. Тем не менее, большинство существующих инструментов, таких как Google Maps или OpenStreetMap, сосредоточены на создании карт реального мира и часто не предоставляют пользователям возможности гибкой кастомизации и работы с пользовательскими изображениями, такими как сканы бумажных карт или карты вымышленных миров.

Актуальность исследования. Существует значительная потребность в инструментах, которые позволяют не только добавлять пользовательские метки на карты, но и организовывать их в коллекции, делиться данными и встраивать карты в сторонние веб-ресурсы. Такие возможности особенно востребованы среди:

- команд, работающих с локальными данными, требующими гибкой визуализации;
- писателей, создающих карты вымышленных миров для литературных произведений;
- разработчиков настольных игр, нуждающихся в интерактивных картах для игровых сценариев.

Рынок интерактивных карт стремительно развивается, и создание решения, которое объединяет возможности кастомизации с высокой доступностью и простотой использования, является важной задачей.

Новизна. Работа направлена на разработку инструмента, который:

- поддерживает интеграцию пользовательских изображений, таких как сканы бумажных карт;
- позволяет добавлять мультимедийные описания и комментарии к меткам;
- реализует группировку меток в коллекции с возможностью совместного доступа и редактирования;
- предоставляет виджеты для встраивания карт на сторонние веб-сайты.

Таким образом, инструмент расширяет возможности работы с картами, предоставляя пользователям мощный инструмент для взаимодействия с географическими данными.

Цель. Для достижения цели необходимо выполнить следующие задачи:

1. Провести анализ существующих решений в области интерактивных карт и систем пользовательских меток.

- 2. Исследовать доступные технологии для парсинга геоданных и их интеграции.
- 3. Разработать архитектуру инструмента, учитывающую масштабируемость, удобство интеграции и пользовательский опыт.
- 4. Реализовать функциональность для добавления пользовательских меток, их группировки в коллекции и совместного использования.
- 5. Разработать систему описаний и комментариев к меткам, включая поддержку мультимедийного контента.
- 6. Интегрировать виджет для размещения карт на сторонних веб-сайтах.
- 7. Провести тестирование системы и оценить её удобство для конечных пользователей.

Таким образом, разработанная система предоставит пользователям мощный инструмент для создания и обмена интерактивными картами, который упростит процесс работы с картографическим контентом и откроет новые возможности для интеграции и взаимодействия. Это решение поспособствует развитию творческих и профессиональных проектов, связанных с визуализацией данных, и повысит общую доступность картографических технологий.

ГЛАВА 1. АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ

В рамках данной работы предметная область исследуется через призму актуальности, сформулированной во введении, с акцентом на анализ существующих решений для работы с интерактивными картами и пользовательскими метками. Рассматриваемая область включает изучение методов визуализации данных, организации пользовательских коллекций и интеграции мультимедийного контента.

Потребность в подобных исследованиях связана с ограничениями текущих решений, которые не всегда обеспечивают гибкость для работы с пользовательскими изображениями и совместного использования данных. В данном разделе будут рассмотрены ключевые технологии, подходы к работе с геоданными и особенности существующих платформ, что позволит определить направления для дальнейшей разработки.

1.1. Общие подходы к работе с интерактивными картами и пользовательскими метками

Интерактивные карты являются одним из ключевых инструментов для визуализации, анализа и обмена географическими данными. Платформы, такие как OpenStreetMap, WikiMapia и Народная карта, предоставляют пользователям возможности добавления данных, создания аннотаций и использования карт для широкого спектра приложений, включая образовательные, аналитические и творческие проекты [0].

Одним из основных преимуществ интерактивных карт является визуализация данных с использованием тайловых систем, которые обеспечивают эффективное отображение больших объёмов информации. Современные библиотеки, такие как Leaflet и Mapbox, предоставляют гибкость для работы с различными типами карт, включая растровые, векторные и 3D-тайлы. Например, Марbox активно используется в профессиональных приложениях, требующих кастомизации карт, а Leaflet выделяется своей простотой и минимальными системными требованиями [0].

Для улучшения восприятия данных интерактивные карты используют механизмы кластеризации, позволяющие группировать большое количество меток и облегчать их отображение. Такие подходы особенно востребованы в проектах,

связанных с анализом данных, как показано в исследованиях по краудсорсингу геоинформации [0].

Работа с пользовательскими метками является ключевым элементом интерактивных карт. Метки позволяют обозначать точки на карте, добавлять мультимедийные описания и делиться информацией с другими пользователями. Эти функции находят широкое применение в образовательных и исследовательских контекстах, где сложные пространственные данные необходимо представлять в удобной и доступной форме [0].

Современные платформы также внедряют механизмы коллективной работы. Например, WikiMapia предоставляет пользователям возможность совместного редактирования и аннотирования карт, что делает её особенно полезной для исторических исследований и культурных проектов [0]. Однако несмотря на эти преимущества, многие платформы ограничены в работе с уникальными пользовательскими изображениями, такими как сканы бумажных карт или карты вымышленных миров. Это создаёт сложности для пользователей, работающих с историческими данными, планами территорий и вымышленными пространствами [0].

Таким образом, дальнейшее развитие интерактивных карт должно быть направлено на преодоление указанных ограничений. Разработка инструментов, которые поддерживают интеграцию пользовательских изображений, мультимедийного контента и коллективную работу, откроет новые перспективы для интеграции картографических технологий в профессиональные и творческие проекты. Включение таких возможностей, как поддержка уникальных форматов данных и расширенная кастомизация, будет способствовать развитию более гибких и многофункциональных решений в области интерактивной картографии.

1.2. Сравнение существующих решений

Интерактивные карты являются универсальным инструментом для визуализации географических данных и управления пользовательскими метками. Однако существующие платформы существенно различаются по функциональности и требованиям к пользователям, включая необходимость навыков программирования. Для оценки текущих решений целесообразно провести сравнение по ключевым характеристикам, таким как поддержка геоданных, гибкость кастомизации, воз-

можности для коллективной работы, интеграция мультимедийного контента и доступность для пользователей без навыков программирования.

Одной из наиболее популярных платформ является OpenStreetMap, предоставляющая доступ к открытому набору геоданных. Благодаря краудсорсинговой модели, OpenStreetMap позволяет оперативно обновлять карты, обеспечивая их актуальность для широкого круга пользователей. Однако работа с OpenStreetMap API требует базовых навыков программирования для выполнения сложных запросов, что ограничивает его использование для технически неподготовленных пользователей [0].

WikiMapia ориентирована на работу с пользовательскими аннотациями и локальной информацией. Она предоставляет удобный веб-интерфейс, который не требует навыков программирования, что делает платформу доступной для широкого круга пользователей. Однако гибкость кастомизации в этом случае ограничена [0].

Google Maps и Mapbox представляют собой коммерческие решения с мощными API-инструментами. Google Maps требует навыков программирования для настройки и интеграции в приложения, но предоставляет обширную документацию и примеры. Марbox, напротив, ориентирован на разработчиков и профессионалов, обеспечивая высокую степень кастомизации, но при этом также требует глубоких технических знаний [0].

Для визуализации различий между платформами представлена таблица 1.1.

Таблица 1.1 Сравнение платформ для интерактивных карт

Критерий	OpenStreetMap	WikiMapia	Google Maps	Mapbox
Тип данных	Открытые	Открытые	Закрытые	Закрытые
Кастомизация	Ограниченная	Средняя	Высокая	Полная
Мультимедиа	Ограниченная	Полная	Средняя	Полная
Коллективная	Полная	Полная	Ограниченная	Ограниченная
работа				
Лицензия	Полная (Open)	Ограниченная	Ограниченная	Ограниченная
Применение	Образование,	Исторические	Коммерция	Профессиональные
	анализ	данные		приложения

Таблица 1.1 демонстрирует ключевые отличия популярных платформ для работы с интерактивными картами. OpenStreetMap требует от пользователей базовых навыков программирования, что делает его менее доступным для широкого круга пользователей. WikiMapia, напротив, предлагает удобный веб-интерфейс, ориентированный на непрофессионалов, но ограничивает возможности кастомизации.

Google Maps и Mapbox требуют значительных технических знаний для настройки и использования их мощных API, что делает их подходящими для разработчиков и профессионалов.

Анализ существующих решений показывает, что доступность платформ для пользователей без навыков программирования является важным аспектом. Это подчёркивает необходимость разработки инструментов, которые бы сочетали доступность, гибкость кастомизации и возможность работы с мультимедийным контентом. Такой подход значительно расширит аудиторию и обеспечит востребованность инструментов как в профессиональной, так и в любительской среде.

ГЛАВА 2. АНАЛИЗ И ВЫБОР ИНСТРУМЕНТАЛЬНЫХ СРЕДСТВ

Современные технологии работы с геоданными предоставляют обширные возможности для их обработки, визуализации и интеграции в разнообразные приложения. Эти технологии включают API, библиотеки JavaScript, а также специализированные платформы, которые позволяют разработчикам создавать высококастомизированные решения.

2.1. АРІ для карт

Таблица 2.1 Сравнение АРІ для картографических данных

Критерий	OpenStreetMap API	Nominatim API	Overpass API	Wikimapia API
Поддержка геокодинга	Ограниченная	Полная	Ограниченная	Полная
Гибкость запросов	Ограниченная	Средняя	Полная	Средняя
Производительность	Высокая	Средняя	Высокая	Средняя
Лицензия	Полная (Ореп)	Полная (Ореп)	Полная (Ореп)	Ограниченная

Среди картографических API наилучшим решением является OpenStreetMap API в сочетании с Nominatim API. OpenStreetMap предоставляет открытые данные с гибкой лицензией, что позволяет их свободно использовать и модифицировать[0]. Nominatim API, в свою очередь, является отличным инструментом для геокодинга, предоставляя подробную информацию о местоположениях[0]. Overpass API был рассмотрен, но из-за ограниченной поддержки сложных запросов и меньшей производительности он уступает Nominatim API. Wikimapia API предлагает мощные инструменты для работы с данными объектов, включая координаты, описание, фотографии и комментарии, но его лицензия ограничивает использование для коммерческих целей[0]. Использование бесплатных решений также соответствует требованиям вашего проекта, что делает OpenStreetMap и Nominatim оптимальным выбором.

2.2. Визуализация карт

Для визуализации карт был выбран Leaflet благодаря его простоте и гибкости. Leaflet легко интегрируется с любыми платформами, имеет минимальные системные требования и предоставляет богатый набор функций для работы с интерактивными

Таблица 2.2

Таблица 2.3

Сравнение библиотек для визуализации карт

Критерий	Leaflet	Mapbox GL JS	OpenLayers
Простота изучения	Высокая	Средняя	Средняя
Производительность	Средняя	Высокая	Высокая
Поддержка 3D	Отсутствует	Полная	Полная
Кастомизация	Полная	Полная	Полная
Лицензия	Полная (Ореп)	Ограниченная	Полная (Ореп)

картами[0][0]. В отличие от Mapbox GL JS, который обеспечивает поддержку 3D-карт, но ограничен лицензией и может требовать дополнительных затрат[0], Leaflet полностью открытый и предоставляет достаточную функциональность для большинства задач. OpenLayers также обладает хорошими возможностями, однако его сложность настройки и более высокий порог входа делают Leaflet более подходящим решением для реализации проекта в сжатые сроки[0][0].

2.3. Фреймворки для бэкенда

Сравнение фреймворков для бэкенда

_			
Критерий	FastAPI	Django	Flask
Производительность	Высокая	Средняя	Высокая
Асинхронность	Полная	Отсутствует	Полная
Простота изучения	Высокая	Средняя	Высокая
Интеграция с СУБД	Полная	Полная	Полная
Поддержка АРІ	Полная	Полная	Полная
Сообщество	Среднее	Высокое	Высокое

Для бэкенда был выбран FastAPI, несмотря на его схожесть с Flask по многим критериям. FastAPI предоставляет встроенную поддержку асинхронности на уровне ядра, что делает его отличным выбором для высоконагруженных приложений и систем, работающих с большим количеством одновременных запросов. Асинхронность особенно важна для работы с API, использующих медленные операции, такие как запросы к внешним базам данных или API-сервисам[0][0]. Кроме того, FastAPI автоматически генерирует документацию API в формате OpenAPI и Swagger, что значительно упрощает разработку и интеграцию. Хотя Flask предлагает высокую гибкость и обладает мощным сообществом, его недостатком является отсутствие встроенной асинхронности, что может усложнить работу

с современными требованиями к производительности. Таким образом, FastAPI был выбран за баланс между производительностью и удобством разработки.

2.4. Фреймворки для фронтенда

Таблица 2.4 Сравнение фреймворков для фронтенда

Критерий	Vue.js	React	Angular
Простота изучения	Высокая	Средняя	Низкая
Производительность	Высокая	Высокая	Высокая
Размер сообщества	Среднее	Высокое	Высокое
Интеграция с CSS	Полная	Полная	Полная
Поддержка SPA	Полная	Полная	Полная

Во фронтенде предпочтение отдано Vue.js благодаря его простоте в изучении и использовании, что особенно важно для небольших команд разработки. В отличие от Angular, который требует более глубокого понимания TypeScript и строгой архитектуры, или React, где акцент на модульности может привести к увеличению сложности настройки, Vue.js предлагает более быстрый порог вхождения. Это делает его отличным выбором для проектов с ограниченными сроками разработки. Также Vue.js поддерживает гибкую интеграцию с CSS и отличные возможности для построения SPA-приложений, что соответствует требованиям к созданию интерактивного пользовательского интерфейса.

2.5. СУБД

Таблица 2.5 Сравнение систем управления базами данных (СУБД)

Критерий	PostgreSQL	MySQL	MongoDB
Поддержка ACID	Полная	Полная	Ограниченная
Масштабируемость	Полная	Полная	Полная
Работа с геоданными	Полная (PostGIS)	Ограниченная	Ограниченная
Простота настройки	Средняя	Высокая	Высокая
Производительность	Высокая	Высокая	Высокая

Для работы с данными была выбрана PostgreSQL, поскольку она предоставляет превосходную поддержку пространственных данных через расширение PostGIS[0]. Это делает PostgreSQL лучшим выбором для приложений, связанных

с картографией и геоданными, таких как ваш проект. В отличие от MongoDB, которая ограничена в обработке геоданных, PostgreSQL поддерживает сложные запросы и транзакции на уровне ACID, обеспечивая надежность данных. Хотя MySQL также поддерживает ACID и обладает высокой производительностью, его интеграция с пространственными данными менее удобна по сравнению с PostGIS. Таким образом, PostgreSQL обеспечивает наиболее сбалансированное решение для работы с метками и геоориентированными запросами.

ГЛАВА З. ГИПОТЕЗЫ РЕШЕНИЯ ЗАДАЧ

На основе анализа предметной области были выделены следующие задачи:

- 1. Исследование существующих решений и технологий для работы с пользовательскими картами.
- 2. Разработка требований к инструменту, обеспечивающему кастомизацию карт и меток.
- 3. Создание архитектуры системы, обеспечивающей интеграцию с внешними платформами.
- 4. Реализация инструментов группировки, описания и совместного использования меток.
- 5. Тестирование разработанной системы и оценка её удобства для пользователей.

В свою очередь, для решения данных задач, выдвинуты следующие гипотезы:

- 1. Гипотеза 1: Интеграция возможностей добавления описаний, мультимедийного контента и комментариев к меткам улучшит пользовательский опыт и сделает инструмент более привлекательным.
 - Обоснование: Современные исследования показывают, что мультимедийный контент стимулирует взаимодействие пользователей и повышает информативность.
- 2. Гипотеза 2: Реализация функциональности группировки меток в коллекции позволит упорядочивать информацию, что упростит её восприятие и совместное использование.
 - Обоснование: Анализ существующих систем, таких как OpenStreetMap, показывает, что группировка данных улучшает их структурированность и удобство использования [0].
- 3. Гипотеза 3: Интеграция виджета для размещения карт на сторонних вебсайтах сделает систему востребованной среди владельцев веб-ресурсов, увеличив её популярность.
 - Обоснование: Технологии встраивания, например Nominatim API, успешно используются для геокодинга и визуализации.
- 4. Гипотеза 4: Использование современных API (например, OpenStreetMap API и Wikimapia API) обеспечит высокую производительность и возможность гибкой интеграции с другими платформами.

- Обоснование: OpenStreetMap API уже зарекомендовала себя как надёжное решение для работы с геоданными [0].
- 5. Гипотеза 5: Разработка инструмента, поддерживающего работу с пользовательскими изображениями (например, сканы карт, планов), повысит его востребованность среди писателей, разработчиков игр и представителей других творческих профессий.
 - Обоснование: Существующие системы, предоставляют ограниченные возможности для работы с пользовательскими картами. Создание платформы с фокусом на кастомизацию может помочь заполнить эту нишу.

Проверка гипотез будет осуществляться через разработку прототипа системы, его внедрение и тестирование на реальных пользователях. В процессе тестирования будут собраны количественные и качественные данные, включая обратную связь пользователей, что позволит выявить сильные и слабые стороны предложенных решений.

ЗАКЛЮЧЕНИЕ

В рамках данной работы проведён анализ предметной области, включающий изучение существующих решений, подходов и технологий для создания интерактивных карт с пользовательскими коллекциями меток. Были выявлены преимущества и ограничения существующих платформ, а также предложены направления для их улучшения.

На основе проведённого анализа сформулированы гипотезы, направленные на повышение удобства и функциональности интерактивных карт. Предложенные гипотезы обоснованы и будут проверены через разработку прототипа системы, тестирование на пользователях и анализ обратной связи.

Результаты исследования позволят создать инструмент, отвечающий современным требованиям, и предоставят рекомендации для дальнейшего развития технологий, обеспечивающих кастомизацию, взаимодействие и обогащение картографического контента.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 0. *Аникеева О. С.* Публикация карт в сети интернет: эволюция картографии // Наука. Инновации. Технологии. 2015. № 2. С. 78—85. URL: https://cyberleninka.ru/article/n/publikatsiya-kart-v-seti-internet-evolyutsiya-kartografii.
- 0. *Малышева Н. В.*, *Золина Т. А.*, *Владимирова Н. А.* Локальный картографический сервис для визуализации статистических данных о лесах России // Вестник Московского университета. Серия 5. География. 2014. № 6. С. 32—38. URL: https://cyberleninka.ru/article/n/lokalnyy-kartograficheskiy-servis-dlya-vizualizatsii-statisticheskih-dannyh-o-lesah-rossii.
- 0. Разработка интерактивной карты университета / Л. В. Селина [и др.] // Интеллектуальные технологии на транспорте. 2023. S1 (35—1). С. 36—41. URL: https://cyberleninka.ru/article/n/razrabotka-interaktivnoy-karty-universiteta.
- 0. *Татур Е. М.* Исследование городского пространства с помощью машинного обучения: от данных к карте // Геоинформационные системы. 2024. URL: https://elib.bsu.by/handle/123456789/310987.
- 0. *Bubalo M.*, *Van Zanten B. T.*, *Verburg P. H.* Crowdsourcing geo-information on landscape perceptions and preferences: A review // Landscape and Urban Planning. 2019. Vol. 184. P. 101–111. URL: https://www.sciencedirect.com/science/article/pii/S0169204619300143.
- 0. *Community O.* Deploying your own Slippy Map. 2025. URL: https://wiki.openstreetmap.org/wiki/Deploying_your_own_Slippy_Map.
- 0. *Costanza E.*, *Huang J.* Designable Visual Markers // Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2009. P. 1879–1888. URL: https://dl.acm.org/doi/abs/10.1145/1518701.1518990.
- 0. *Heipke C*. Crowdsourcing geospatial data // ISPRS Journal of Photogrammetry and Remote Sensing. 2010. Vol. 65, no. 6. P. 550–557. URL: https://www.sciencedirect.com/science/article/pii/S0924271610000602.
- 0. *Marcante A.*, *Provenza L. P.* Social Interaction through Map-based Wikis // PsychNology Journal. 2008. Vol. 6, no. 3. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=71b052267a5bad3fffa9003df22f3689b82ac4ea.
- 0. *Niu H.*, *Silva E. A.* Crowdsourced Data Mining for Urban Activity: Review of Data Sources, Applications, and Methods // Journal of Urban Planning and Development. 2020. Vol. 146, no. 2. P. 04020007. URL: https://ascelibrary.org/doi/abs/10. 1061/(ASCE)UP.1943-5444.0000566.

- 0. *Nominatim*. Nominatim API 4.5.0 Manual. 2025. URL: https://nominatim. org/release-docs/latest/api/Overview/; (4.5.0).
- 0. *OpenStreetMap*. OpenStreetMap API Documentation. 2025. URL: https://wiki.openstreetmap.org/wiki/API_v0.6; (API v0.6).
- 0. *OpenStreetMap*. OpenStreetMap Software Libraries. 2025. URL: https://wiki.openstreetmap.org/wiki/Software_libraries.
- 0. *Wikimapia*. Wikimapia API Documentation. 2025. URL: http://wikimapia. org/api/; (Beta).