PR12와 함께 이해하는

Pixel Recurrent Neural Network

Jaejun Yoo Ph.D. Candidate @KAIST PR12

16[™] July, 2017

PR12와 함께 이해하는

Pixel Recurrent Neural Network

Jaejun Yoo Ph.D. Candidate @KAIST PR12

PR12와 함께 이해하는

Pixel Recurrent Neural Network

Jaejun Yoo

Ph.D. Candidate @KAIST

PR12

16[™] July, 2017

GENERATIVE MODEL!

NIPS 2016 Tutorial: GANs

Intuition ...(A customary CAT slide!)

How to include statistical dependencies over hundreds of pixels?

Intuition

$$p(\mathbf{x}) = p(x_1, x_2, ..., x_{n^2})$$

Bayes Theorem:

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i|x_1, ..., x_{i-1})$$

A sequential model!

Image Generation Models

-Three image generation approaches are dominating the field:

	<u>Au</u>	toı	reg	re	SSİ	ve	Мо	del	<u>5</u>	1
		x_1					3	¢ _{pp}		
					x_i					
							x	n2		
p((x)	=	\prod^{n^2}	p	(x_i)	x			i-1)
			<u>=</u> 1							

	VAE	GAN	Autoregressive Models
Pros.	- Efficient inference with approximate latent variables.	 generate sharp image. no need for any Markov chain or approx networks during sampling. 	 very simple and stable training process currently gives the best log likelihood. tractable likelihood
Cons.	 generated samples tend to be blurry. 	 difficult to optimize due to unstable training dynamics. 	- relatively inefficient during sampling

(cf. https://openai.com/blog/generative-models/)

MASK

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

MASK

Channel Masks

- Sequential order: R -> G -> B
- Used in input-to-state convolutions
- Two types of masks:

Mask B

Channels are connected to themselves

Used in all other subsequent layers

Mask A

- Channels are **not** connected to themselves
- Only used in the first layer

$$p(x_{i,R}|\mathbf{x}_{< i})p(x_{i,G}|\mathbf{x}_{< i}, x_{i,R})p(x_{i,B}|\mathbf{x}_{< i}, x_{i,R}, x_{i,G})$$

Receptive Fields

Figure 4. Visualization of the input-to-state and state-to-state mappings for the three proposed architectures.

Spatial LSTM

Adapted from: Generative image modeling using spatial LSTM. Theis & Bethge, 2015

Spatial LSTM

Adapted from: Generative image modeling using spatial LSTM. Theis & Bethge, 2015

Architecture

PixelCNN	Row LSTM	Diagonal BiLSTM				
	7 × 7 conv mask A					
Mul	tiple residual blocks:	(see fig 5)				
Conv 3 × 3 mask B	Row LSTM i-s: 3×1 mask B s-s: 3×1 no mask	Diagonal BiLSTM i-s: 1 × 1 mask B s-s: 1 × 2 no mask				
ReLU followed by 1×1 conv, mask B (2 layers)						
256-way Softmax for each RGB color (Natural images) or Sigmoid (MNIST)						

Architecture

Figure 5. Residual blocks for a PixelCNN (left) and PixelRNNs.

Row LSTM

Row LSTM

$$[\mathbf{o}_i, \mathbf{f}_i, \mathbf{i}_i, \mathbf{g}_i] = \sigma(\mathbf{K}^{ss} \circledast \mathbf{h}_{i-1} + \mathbf{K}^{is} \circledast \mathbf{x}_i)$$

$$\mathbf{c}_i = \mathbf{f}_i \odot \mathbf{c}_{i-1} + \mathbf{i}_i \odot \mathbf{g}_i$$

$$\mathbf{h}_i = \mathbf{o}_i \odot \tanh(\mathbf{c}_i)$$

Row LSTM: Receptive Field

Architecture

PixelCNN	Row LSTM	Diagonal BiLSTM				
	7 × 7 conv mask A					
Mul	tiple residual blocks:	(see fig 5)				
Conv 3 × 3 mask B	Row LSTM i-s: 3×1 mask B s-s: 3×1 no mask	Diagonal BiLSTM i-s: 1 × 1 mask B s-s: 1 × 2 no mask				
ReLU followed by 1×1 conv, mask B (2 layers)						
256-way Softmax for each RGB color (Natural images) or Sigmoid (MNIST)						

Diagonal LSTM

Diagonal BiLSTM

$$[\mathbf{o}_i, \mathbf{f}_i, \mathbf{i}_i, \mathbf{g}_i] = \sigma(\mathbf{K}^{ss} \circledast \mathbf{h}_{i-1} + \mathbf{K}^{is} \circledast \mathbf{x}_i)$$

$$\mathbf{c}_i = \mathbf{f}_i \odot \mathbf{c}_{i-1} + \mathbf{i}_i \odot \mathbf{g}_i$$

$$\mathbf{h}_i = \mathbf{o}_i \odot \tanh(\mathbf{c}_i)$$

Diagonal LSTM

• To optimize, we skew the feature maps so it can be parallelized

Diagonal LSTM

- Parallelized by skew operation
- To c
- $n \times n \longleftrightarrow n \times (2n-1)$
 - Convolutional kernel is 2 x 1

Diagonal BiLSTM: Receptive Field

PixelCNN

- 2D convolution on previous layer
- Apply masks so a pixel does not see future pixels (in sequential order)

PixelCNN

Comparison

PixelCNN	PixelRNN – Row LSTM	PixelRNN – Diagonal BiLSTM
Full dependency field	Triangular receptive field	Full dependency field
Fastest	Slow	Slowest
Worst log-likelihood	-	Best log-likelihood

Figure from: Oord et al.

- Dataset: MNIST, CIFAR-10, and ImageNet
- Method: log-likelihood

Details about Soft Max

- Treat pixels as discrete variables:
 - To estimate a pixel value, do classification in every channel (256 classes indicating pixel values 0-255)
 - Implemented with a final softmax layer

Figure: Example softmax outputs in the final layer, representing probability distribution over 256 classes.

Figure from: Oord et al.

Prerequisite: KL Divergence

WIKI: Information theory

Kullback-Leibler divergence (information gain) [edit]

The Kullback-Leibler divergence (or information divergence, information gain, or relative entropy) is a way of comparing two distributions: a "true" probability distribution p(X), and an arbitrary probability distribution q(X). If we compress data in a manner that assumes q(X) is the distribution underlying some data, when, in reality, p(X) is the correct distribution, the Kullback-Leibler divergence is the number of average additional bits per datum necessary for compression. It is thus defined

$$D_{\mathrm{KL}}(p(X)\|q(X)) = \sum_{x \in X} -p(x) \log q(x) \ - \ \sum_{x \in X} -p(x) \log p(x) = \sum_{x \in X} p(x) \log rac{p(x)}{q(x)}.$$

Prerequisite: MLE & KL Divergence

Let $P(x_i|\theta)$ be the distribution for generating each data point x_i . We can define the model parameter distribution and the "empirical data distribution" as:

$$P_D(x) = \sum_{i=1}^N rac{1}{N} \delta(x-x_i), \quad P_ heta(x) = P(x| heta)$$

where δ is the Dirac delta function. We can verify this is a valid distribution by summing over all $x:\sum_{j=1}^N P_D(x_j)=1$. By using this empirical data distribution, we wish to calculate the following KL distribution:

$$\begin{split} KL[P_D(x)||P_{\theta}(x)] &= \int P_D(x) \log \frac{P_D(x)}{P_{\theta}(x)} dx & \mathbb{E}_{P_D(x)}[\log P_{\theta}(x)] &= \sum_x P_D(x) \log P(x|\theta) \\ &= \int P_D(x) \log P_D(x) dx - \int P_D(x) \log P_{\theta}(x) dx & = \sum_x \left[\frac{1}{N} \sum_{i=1}^N \delta(x - x_i) \right] \log P(x|\theta) \\ &= -H[P_D(x)] - \int P_D(x) \log P_{\theta}(x) dx & = \frac{1}{N} \sum_{i=1}^N \log P(x_i|\theta) \\ &\propto -\mathbb{E}_{P_D(x)}[\log P_{\theta}(x)] & = \frac{1}{N} \sum_{i=1}^N \log P(x_i|\theta) \end{split}$$

	No skip	Skip
No residual:	3.22	3.09
Residual:	3.07	3.06

Table 2. Effect of residual and skip connections in the Row LSTM network evaluated on the Cifar-10 validation set in bits/dim.

# layers:	1	2	3	6	9	12
NLL:	3.30	3.20	3.17	3.09	3.08	3.06

Table 3. Effect of the number of layers on the negative log likelihood evaluated on the CIFAR-10 validation set (bits/dim).

Model	NLL Test
DBM 2hl [1]:	≈ 84.62
DBN 2hl [2]:	≈ 84.55
NADE [3]:	88.33
EoNADE 2hl (128 orderings) [3]:	85.10
EoNADE-5 2hl (128 orderings) [4]:	84.68
DLGM [5]:	≈ 86.60
DLGM 8 leapfrog steps [6]:	≈ 85.51
DARN 1hl [7]:	≈ 84.13
MADE 2hl (32 masks) [8]:	86.64
DRAW [9]:	≤ 80.97
PixelCNN:	81.30
Row LSTM:	80.54
Diagonal BiLSTM (1 layer, $h = 32$):	80.75
Diagonal BiLSTM (7 layers, $h = 16$):	79.20

Table 4. Test set performance of different models on MNIST in *nats* (negative log-likelihood). Prior results taken from [1] (Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov, 2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014), [8] (Germain et al., 2015), [9] (Gregor et al., 2015).

Model	NLL Test (Train)		
Uniform Distribution:	8.00		
Multivariate Gaussian:	4.70		
NICE [1]:	4.48		
Deep Diffusion [2]:	4.20		
Deep GMMs [3]:	4.00		
RIDE [4]:	3.47		
PixelCNN:	3.14 (3.08)		
Row LSTM:	3.07 (3.00)		
Diagonal BiLSTM:	3.00 (2.93)		

Table 5. Test set performance of different models on CIFAR-10 in bits/dim. For our models we give training performance in brackets. [1] (Dinh et al., 2014), [2] (Sohl-Dickstein et al., 2015), [3] (van den Oord & Schrauwen, 2014a), [4] personal communication (Theis & Bethge, 2015).

"Lower is better"

Figure 1. Image completions sampled from a PixelRNN.

SUMMARY

- Deep neural network that sequentially predicts the pixels in an image along the two spatial dimensions
- Suggests three novel architectures to achieve this goal
 - PixelRNN (Row LSTM, Diagonal BiLSTM), PixelCNN (All Convolutional Net)
- Combined with efficient convolution preprocessing, both PixelCNN and PixelRNN use this "product of conditionals" approach to great effect.
- The model provides a tractable P(x) with the best log-likelihood scores in its family.
- Image generation of good quality and diversity

Reference

- Slides: Hugo Larochelle, Google Brain: Autoregressive Generative Models with Deep Learning
- Slides: http://slazebni.cs.illinois.edu/spring17/lec13_advanced.pdf
- Slides: https://www.slideshare.net/neouyghur/pixel-recurrent-neural-networks-73970786
- Code: https://github.com/igul222/pixel_rnn/blob/master/pixel_rnn.py
- Related Paper "Generating images with recurrent adversarial networks"
- Related Paper "WaveNet"

GRAN

Figure 5. Cifar10 samples generated by GRAN

Figure 6. LSUN samples generated by GRAN