cpbunker.github.io

EDUCATION

Ph.D. in Physics, University of Florida, Gainesville, FL

08/2020-Present

Email: cpbunker@ufl.edu

Phone: +1~904~613~5287

B.S. in Physics, University of Notre Dame, Notre Dame, IN

08/2016 - 01/2020

• Honors: Magna cum laude, Outstanding Undergraduate Research Award.

Publications & Presentations

- C. Bunker, S. Hoffman, J.-X. Yu, X.-G. Zhang, and H.-P. Cheng. "Discretized scattering solution for electron mediated entanglement." Paper in preparation.
- C. Bunker, S. Hoffman, J.-X. Yu, X.-G. Zhang, and H.-P. Cheng. "Scattering for entangled state switching in molecular dimers." Sanibel Symposium (2022).
- L. Riney, C. Bunker, S.-K. Bac, J. Wang, D. Battaglia, Y. C. Park, M. Dobrowolska, J.K. Furdyna, X. Liu, B.A. Assaf. "Introduction of Sr into Bi₂Se₃ thin films by molecular beam epitaxy." J. Appl. Phys. 129, 085107 (2021).
- J. Wang, X. Liu, **C. Bunker**, L. Riney, B. Qing, S.K. Bac, M. Zhukovskyi, T. Orlova, S. Rouvimov, M. Dobrowolska, J.K. Furdyna, B.A. Assaf. "Weak antilocalization beyond the fully diffusive regime in $Pb_{1-x}Sn_xSe$ topological quantum wells." Phys. Rev. B 102, 155307 (2020).

RESEARCH

Research Assistant, University of Florida, Gainesville, FL

08/2020-Present

- Created Python code that simulates how an electron scatters from magnetic molecules using Green's function techniques.
- Used my code to demonstrate how to control the entanglement state of molecular magnetic dimers for quantum information science applications, and prepared a paper on the results.

Research Assistant, University of Notre Dame, Notre Dame, IN 01/2020-05/2020

- \circ Calculated the bound states of band gap inverted IV-VI quantum wells using a $\mathbf{k} \cdot \mathbf{p}$ perturbative method implemented with independently written Python code.
- Investigated SrBiSe and CuBiSe using x-ray diffraction, Raman spectroscopy, and Fourier-transform infrared spectroscopy.
- \circ Performed low temperature magnetotransport experiments on α -Sn thin films to investigate evidence for superconductivity.
- Developed a simple numerical model for accounting for the exchange effects of introducing paramagnetic ions into lead salts and calculating subsequent band levels.

Research Assistant, CERN, Geneva, Switzerland

01/2019 - 05/2019

 Analyzed lepton data from millions of Monte Carlo simulated W decay events with independently written Python and ROOT code.

Research Assistant, University of North Florida, Jacksonville, FL 05/2018-08/2018

• Investigated potential improvements to superconducting nanowire single photon detectors (SNSPDs) using AWR Design Environment circuit design software.