DEPARTMENT OF ELECTRICAL ENGINEERING FIRST YEAR E.T. LAB EXP. NO. – 2

VERIFICATION OF NETWORK THEOREMS OBJECTIVE:

Verification of

- i) Thevenin Theorem.
- ii) Superposition Theorem.

A) THEVENIN'S THEOREM

CIRCUIT DIAGRAM:

Fig-1. CIRCUIT DIAGRAM FOR VERIFICATION OF THEVENIN'S THEOREM

PROCEDURE:

- 1. Keep all the rheostats close to their maximum resistance values.
- 2. Close the switch S_1 to position 'aa' and S_2 to 'cc'. Observe the load (26 ohm rheostat) current (I_L) and terminal voltage (V_L) readings. Then the value of load resistance $R_L = V_I/I_L$.
- 3. Disconnect the load by opening the switch S_2 and read the open circuit voltage (or Thevenin equivalent voltage) V_{TH} .
- 4. Next, to compute the Thevenin equivalent resistance (R_{TH}) of the network as seen from the load terminals:
 - i) Replace the 220V source by a short by closing S1 to 'bb'.
 - ii) Apply 110V at the output terminals by closing S2 to 'dd'. Read the voltmeter (V) and ammeter (I) and get $R_{TH} = V/I$.
- 5. Now compute the load current applying Thevenin's theorem as $I_L = V_{TH}/(R_{TH} + R_L)$.
- 6. Compare the above computed load current with its observed value in step (2) and verify the Theorem.
- 7. Adjust all the rheostats to new settings and repeat from step (2) to step (6) for at least six sets of readings without exceeding rated current in any element.

Table – I Thevenin's Theorem

Sl.	Observed	$V_{\rm L}$	$R_{\rm L} =$	V_{TH}	V	I(A)	$R_{TH} =$	Computed load
No.	Load		$V_{\rm L}/I_{\rm L}$	(V)	(V)		V/I	Current (A)
	Current I _L						(Ω)	$V_{TH}/(R_{TH}+R_L)=I_L$

DISCUSSION:

- (i) Why are you applying 110 V instead of 220 V while finding R_{TH} ?
- (ii) Can you suggest an alternative procedure for the determination of R_{TH}?
- (iii) Is there any restriction for choice of circuit elements?
- (iv) What type of ammeter and voltmeter (MC or MI) will you use and why?

B) **SUPERPOSITION THEOREM**

CIRCUIT DIAGRAM

FIG:2 CIRCUIT DIAGRAM FOR VERIFICATION OF SUPERPOSITION THEOREM

PROCEDURE:

- i) Connect the circuit as shown in the diagram, keeping the switches open and resistances at their maximum positions.
- ii) Set S_1 to position 'aa' and S_2 to position 'cc' respectively which means both the sources are energized. Note down the currents I_1 , I_2 and I_3 from the ammeter. A_1 , A_2 and A_3 .
- iii) Set S_1 on position 'aa' and S_2 on position 'dd' respectively, i.e. only 220 V source is energized and the terminals of S_2 are shorted. Note down the current I_1 ', I_2 'and I_3 '
- iv) Set S_1 to position 'bb' and S_2 to position 'cc' respectively and note I_1'' , I_2'' and I_3'' . [Please note the polarity of the currents]
- v) Compare I_1 , I_2 and I_3 with $(I_1'+I_1'')$, $(I_2'+I_2'')$ and $(I_3'+I_3'')$ taking care of the signs properly to verify the theorem.
- vi) Repeat this from step (ii) to (v) for three different sets of resistance value of the three rheostats.
- vii) Tabulate the results as shown.

Table – II Superposition Theorem

Sl. No	Step 1	Step 2	Step 3	Computed currents	Error	% Error
1.	$I_1=$	I ₁ ' =	I ₁ " =	$I_1c=I_1'+I_1''=$	$\Delta I_1 = I_1 - I_{1c} =$	$(\Delta I_1 / I_1)100 =$
	I ₂ =	$I_2' =$	I ₂ " =	$I_2c = I_2' + I_2'' =$	$\Delta I_2 = I_2 - I_{2c} =$	$(\Delta I_2/I_2)100 =$
	$I_3=$	$I_3' =$	$I_3'' =$	$I_3c = I_3' + I_3'' =$	$\Delta I_3 = I_3 - I_{3c} =$	$(\Delta I_3 / I_3)100 =$
2.						

DISCUSSION:

- i) What type of ammeters (MI or MC) will you choose?
- ii) While considering the effect of a single source, the other source is short circuited why? How far is it justified?
- iii) Why are you noting the direction of the deflection of the meter?
- iv) If the rheostats are replaced by three incandescent lamps, can you verify the theorem?