C. Bear and Prime Numbers

time limit per test: 2 seconds memory limit per test: 512 megabytes input: standard input

output: standard output

Recently, the bear started studying data structures and faced the following problem.

You are given a sequence of integers $x_1, x_2, ..., x_n$ of length n and m queries, each of them is characterized by two integers l_i, r_i . Let's introduce f(p) to represent the number of such indexes k, that x_k is divisible by p. The answer to the query l_i, r_i is the sum: $\sum_{p \in S(l_i, r_i)} f(p), \text{ where } S(l_i, r_i) \text{ is a set of prime numbers from segment}$ $[l_i, r_i]$ (both borders are included in the segment).

Help the bear cope with the problem.

Input

The first line contains integer n ($1 \le n \le 10^6$). The second line contains n integers $x_1, x_2, ..., x_n$ ($2 \le x_i \le 10^7$). The numbers are not necessarily distinct.

The third line contains integer m ($1 \le m \le 50000$). Each of the following m lines contains a pair of space-separated integers, l_i and r_i ($2 \le l_i \le r_i \le 2 \cdot 10^9$) — the numbers that characterize the current query.

Output

Print *m* integers — the answers to the gueries on the order the gueries appear in the input.

Examples

```
input

6
5 5 7 10 14 15
3
2 11
3 12
4 4

output

Copy

9
7
0
```

```
input

7
2 3 5 7 11 4 8
2
8 10
2 123

output

Copy

7
```

Note

Consider the first sample. Overall, the first sample has 3 queries.

- 1. The first query l = 2, r = 11 comes. You need to count f(2) + f(3) + f(5) + f(7) + f(11) = 2 + 1 + 4 + 2 + 0 = 9.
- 2. The second query comes l = 3, r = 12. You need to count f(3) + f(5) + f(7) + f(11) = 1 + 4 + 2 + 0 = 7.
- 3. The third query comes l=4, r=4. As this interval has no prime numbers, then the sum equals 0.