

SCSR1013 DIGITAL LOGIC Module 4b

FACULTY OF COMPUTING

(Page: 104)

1	A + 0 = A
2	A + 1 = 1
3	$A \bullet 0 = 0$
4	A • 1 = A
5	A + A = A
6	$A + \overline{A} = 1$
7	$A \cdot A = A$
8	$A \bullet \overline{A} = 0$
9	$\overline{\overline{A}} = A$
10	A + AB = A
11	$A + \overline{A}B = A + B$
12	(A+B)(A+C)=A+BC

Simplify using Rules of Boolean Algebra

Simplify this expression

$$AB + A(B + C) + B(B + C)$$

$$AB + A(B + C) + B(B + C)$$

Step 1: Apply distributive law to the red terms

$$AB + AB + AC + BB + BC$$

Step 2: Apply rule 7 (BB = B) to the green term

$$AB + AB + AC + B + BC$$

Step 3: Apply rule 5 (AB + AB = AB) to the red terms

$$AB + AC + B + BC$$

Step 4: Apply rule 10 (B + BC = B) to the green terms

$$AB + AC + B$$

Step 5: Apply rule 10 (B + AB = B) to the red terms

$$AC + B$$

(Page: 104)

1	A + 0 = A
2	A + 1 = 1
3	A• 0 = 0
4	A• 1 = A
5	A + A = A
6	$A + \overline{A} = 1$
7	$A \cdot A = A$
8	$A \cdot \overline{A} = 0$
9	$\overline{\overline{A}} = A$
10	A + AB = A
11	$A + \overline{A}B = A + B$
12	(A+B)(A+C)=A+BC

Simplify this expression

$$\overline{ABC} + A\overline{BC} + \overline{ABC} + A\overline{BC} + ABC$$

$$\overline{ABC} + A\overline{BC} + \overline{ABC} + A\overline{BC} + ABC$$

Step 1: Factor BC for the red terms

$$BC(\bar{A} + A) + A\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C} + A\bar{B}C$$

Step 2: Apply rule 6 to the green term and factor the blue term

$$BC \cdot 1 + AB(\overline{C} + C) + \overline{A}B\overline{C}$$

Step 3: Apply rule 4 to the red term and rule 6 to the blue term

$$BC + A\overline{B} \cdot 1 + \overline{A}\overline{B}\overline{C}$$

Step 4: Apply rule 4 to the green term

$$BC + AB + \overline{ABC}$$

Step 5: Factor the red terms

$$BC + \overline{B}(A + \overline{A}\overline{C})$$

Step 6: Apply rule 11 to the blue term

$$BC + \overline{B}(A + \overline{C})$$

Step 7: Use the distributive and commutative laws to get the following expression

$$BC + A\overline{B} + \overline{B}\overline{C}$$

Exercise 4b.2: According the the example, draw the logic circuit for the original expression and the last expression simplified.

Original expression:

$$\overline{ABC} + A\overline{BC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + ABC$$

Simplified expression:
$$BC + A\overline{B} + \overline{B}\overline{C}$$

Forms of Boolean expressions

Boolean expression can be converted into one of 2 forms.

Product term = a term
with the product (Boolean
multiplication) of literals

Sum term = a term with the sum (Boolean addition) of literals

Standard form

- SOP
$$ABC + \overline{A}B\overline{C} + \overline{A}\overline{B}C$$

- POS $(A+B+\overline{C})(\overline{A}+B+\overline{C})(A+\overline{B}+\overline{C})$

 A standard SOP / POS form is when ALL the variables appear in each product term / sum term

Non standard

- SOP
$$AB + \overline{C} + \overline{A}\overline{B}C$$

- POS $(B + \overline{C})(\overline{A} + \overline{C})(A + \overline{B})$

Sum-of-Product (SOP)

www.utm.my

- The bit 0 is A and 1 is A
- Product term → multiplication '.'
- The operator is summation +
- The output truth table / K-Map is 1
- The symbol is \sum_{ABC}
- **SOP** = when 2 or more product terms are summed.
- e.g $AB_{P1} + ABC_{P2}$ $ABC_{P1} + CDE_{P2} + BCD_{P3}$
- A good writing ĀBC

 \[
 \bar{ABC} \]

• Implementation of the SOP expression

$$AB + BCD + AC$$

Exercise

www.utm.my

Convert each of the following Boolean expressions to SOP form:

(i)
$$AB + B(CD + EF)$$

(ii)
$$(A + B)(B + C + D)$$

(iii)
$$\overline{(\overline{A+B})+C}$$

Exercise Solution

www.utm.my

(i)
$$AB + B(CD + EF) = AB + BCD + BEF$$

(ii)
$$(A + B)(B + C + D)$$

= $(A + B)B + (A + B)C + (A + B)D$
= $AB + BB + AC + BC + AD + BD$

(iii)
$$\overline{(\overline{A}+B)}+C$$

$$= (\overline{\overline{A}+B})\overline{C} \qquad \text{(DeMorgan's Theorem II)}$$

$$= (\overline{A}+B)\overline{C} \qquad \text{(Apply rule 9)}$$

$$= A\overline{C}+B\overline{C}$$

Product-of-Sum (SOP)

www.utm.my

- The bit 1 is A and 0 is A
- Sum term → addition '+'
- The operator is multiplication.
- The output truth table / K-Map is 0
- The symbol is \prod_{ABC}
- **POS** = when 2 or more sum terms are multiplied.

$$- (A + B)_{S1}(A + B + C)_{S2}$$

$$-(A+B+C)_{S1}(C+D+E)_{S2}(B+C+D)_{S3}$$

• A good writing
$$\overline{A} + \overline{B} + \overline{C}$$
 \square $\overline{A + B + C}$ \square

Implementation of the POS expression

$$(A + B)(B + C + D)(A + C)$$

Standard for Boolean Expressions (BE)

www.utm.my

• Standardization makes the evaluation, simplification, and implementation of Boolean expressions more systematic and

easier.

- A standard SOP / POS
 form is when ALL the
 variables appear in each
 product term / sum term
 of the expression.
- There are two method for each SOP/POS to solve the BE.

(a) Sum-of-Product (SOP) Method 1

- A logic expression can be changed to SOP form using Boolean algebra techniques.
 - A(B + CD) = AB + ACD
 - \circ AB + B(CD + EF) = AB + BCD + BEF
- Standard SOP form is when all the variables appear in each product term in the expression.

$$A\overline{B}CD + \overline{AB}C\overline{D} + AB\overline{C}\overline{D}$$

- To convert product terms to standard SOP
 - Multiply each of the nonstandard term with the missing term using Boolean algebra Rule 6: $(A + \bar{A})=1$
 - Repeat until all variables appear in each product term.

(a) Sum-of-Product (SOP) Method 1

www.utm.my

• Convert this Boolean expression to standard SOP form:

$$A\overline{B}C + \overline{AB} + AB\overline{C}D$$

Term 1 Term 2 Term 3

Solution:

- Variables = A, B, C, D.
- What is missing?
 - Term 1: missing D
 - Term 2: missing C and D
- Complete these terms by applying Boolean rule 6

(a) Sum-of-Product (SOP) Method 1

$$\overrightarrow{ABC} + \overrightarrow{AB} + \overrightarrow{ABCD}$$

Term 1 Term 2

Rule 6: $(A + \bar{A})=1$

Term 1:
$$ABC = ABC(D + D) = ABCD + ABCD$$

Term 2: $\overline{AB} = AB(C + \overline{C}) = \overline{ABC} + \overline{ABC}$

$$=\overline{A}\overline{B}C(D+\overline{D})+\overline{A}\overline{B}\overline{C}(D+\overline{D})=\overline{A}\overline{B}CD+\overline{A}\overline{B}C\overline{D}+\overline{A}\overline{B}\overline{C}D+\overline{A}\overline{B}\overline{C}D$$

• Now we have the standard of SOP expression:

$$\begin{split} & A\overline{B}C + \overline{AB} + AB\overline{C}D \\ &= A\overline{B}CD + A\overline{B}C\overline{D} + \overline{AB}CD + \overline{AB}C\overline{D} + \overline{AB}CD + \overline{AB}CD + \overline{AB}CD + \overline{AB}CD \end{split}$$

Exercise

www.utm.my

Define the variables of SOP expression $A\overline{C} + B\overline{C}$ and convert the expression to standard SOP form.

Solution:

$$A\overline{C} + B\overline{C} = A\overline{C}(B + \overline{B}) + B\overline{C}(A + \overline{A})$$
 (Apply rule 6)

$$= \overline{ABC} + A\overline{BC} + \overline{ABC} + \overline{ABC}$$
 (Apply rule 5)

$$= AB\overline{C} + A\overline{BC} + \overline{ABC}$$

(a) Sum-of-Product (SOP) Method 2 – Binary Representation

$$A\overline{B}C + \overline{AB} + AB\overline{C}D$$
Term 1 Term 2

- The bit 0 is \overline{A} and 1 is A
- Identify a variable that is missing in each term using binary

$$A\bar{B}C$$
 Term 1 – missing D \rightarrow it can be 0 $A\bar{B}C\bar{D}$ 1 $A\bar{B}CD$

$$\overline{A}\overline{B}$$
 Term 2 – missing C, D \rightarrow 00 $A\overline{B}$ $\overline{C}\overline{D}$ 01 $A\overline{B}$ $\overline{C}D$ 10 $A\overline{B}$ $C\overline{D}$ 11 $A\overline{B}$ CD

From the standard SOP it is easy to generate the truth table.

ABCD + ABCD + ABCD

	OUTPUT			
Α	В	С	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

(b) Product-of-Sum (POS) Method 1

www.utm.my

- Standard POS form = where all the variables appear in each sum term in the expression.
- To convert product terms to standard POS
 - Multiply each of the nonstandard term with the missing term using Boolean algebra Rule 8: $(A \cdot \bar{A}) = 0$
 - Apply Rule 12: (A + BC) = (A + B)(A + C)
 - Repeat until all variables appear in each sum term.

(b) Product-of-Sum (POS) Method 1

www.utm.my

Convert this Boolean expression to standard POS form

$$(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$
Term 1 Term 2 Term 3

Solution:

- Variables = A, B, C, D.
- What is missing?
 - Term 1: missing D
 - Term 2: missing A -----

$$(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$
Term 1 Term 2

Apply rules 8 and 12

Rule 8:
$$(A . \bar{A}) = 0$$
 Rule 12: $(A + BC) = (A + B)(A + C)$

Term 1:
$$A + \overline{B} + C = A + \overline{B} + C + D\overline{D} = (A + \overline{B} + C + D)(A + \overline{B} + C + \overline{D})$$

Term 2:
$$\overline{B} + C + \overline{D} = \overline{B} + C + \overline{D} + A\overline{A}$$
$$= (A + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + C + \overline{D})$$

Now we have the standard of POS expression:

$$=(A+\overline{B}+C+D)(A+\overline{B}+C+\overline{D})(A+\overline{B}+C+\overline{D})(\overline{A}+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)$$

Exercise

www.utm.my

• Convert the following Boolean expressions to standard POS form: $(A + B)(\overline{B} + C)$

Rule 8:
$$(A . \bar{A}) = 0$$

Rule 12:
$$(A + BC) = (A + B)(A + C)$$

Solution

$$(A+B)(\overline{B}+C)$$

$$= (A+B+C\cdot\overline{C})(A\cdot\overline{A}+\overline{B}+C)$$

$$= (A+B+C)(A+B+\overline{C})(A+B+C)(\overline{A}+\overline{B}+C)$$

(b) Product-of-Sum (POS) Method 2 – Binary Representation

$$(A+B)(\overline{B}+C)$$

Term 1 Term 2

- The bit 1 is \overline{A} and 0 is A
- Identify a variable that is missing in each term using binary

$$(A+B+\Box)$$
 Term 1 – missing C \Rightarrow it can be \bigcirc $A+B+C$
1 $A+B+\bar{C}$

$$(\Box + B + C) \text{ Term 2 - missing A} \rightarrow 0$$

$$1$$

$$A + B + C$$

$$1$$

Exercise

Example: Determine the binary value for which following standard POS expression is equal to 0

$$(A+B+C+D)(A+\overline{B}+\overline{C}+D)(\overline{A}+\overline{B}+\overline{C}+\overline{D})$$

Solution:

$$(A + B + C + D) = (0 + 0 + 0 + 0) = 0;$$
 $A=0$, $B=0$, $C=0$, $D=0$
 $(A + \overline{B} + \overline{C} + D) = (0 + 1 + 1 + 0) = 0;$ $A=0$, $B=1$, $C=1$, $D=0$
 $(\overline{A} + \overline{B} + \overline{C} + \overline{D}) = (1 + 1 + 1 + 1) = 0;$ $A=1$, $B=1$, $C=1$, $D=1$

The POS expression equal 0 when ALL of the terms are 0.

From the standard POS, $(A+B+C+D)(A+\bar{B}+\bar{C}+D)(\bar{A}+\bar{B}+\bar{C}+\bar{D})$ it is easy to generate the truth table.

		INPUT				OUTPUT
(A+B+C+D)		Α	В	С	D	F
		0	0	0	0	0
0 0 0 0	_	0	0	0	1	1
		0	0	1	0	1
		0	0	1	1	1
<u> </u>		0	1	0	0	1
$(A + \overline{B} + \overline{C} + D)$		0	1	0	1	1
$(H \mid B \mid C \mid B)$	-	0	1	1	0	0
0 1 1 0		0	1	1	1	1
0 1 1 0		1	0	0	0	1
		1	0	0	1	1
		1	0	1	0	1
		1	0	1	1	1
		1	1	0	0	1
$(\overline{A} + \overline{B} + \overline{C} + \overline{D})$		1	1	0	1	1
(A + D + C + D)		1	1	1	0	1
1 1 1 1		1	1	1	1	0

Represent the following Boolean expression:

- (i) $AB\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C}$ as a sigma notation
- (ii) $(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+C)$ as a PI notation.

Solution 4b.6(i):

Expression: $AB\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C}$

110 100 010

Sigma notation: $\sum_{ABC} (6,4,2)$

Solution 4b.6(ii):

Expression: $(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+C)$

000 001 010 100

PI notation: $\prod_{ABC} (0,1,2,4)$

Exercise 4b.7:

A Boolean expression is written in sigma notation as $X = \sum_{ABC} (7,4,3)$. Determine the logic level (binary value) for each product term and write whole expression.

Solution 4b.7:

$$\sum_{ABC} (7,4,3)$$

Logic level: 111 100 011

Expression: A (SOP)

A Boolean expression is written in PI notation as $X = \prod_{ABC} (7,4,3)$. Determine the logic level (binary value) for each sum term and write whole expression.

Solution 4b.8:

$$\prod_{ABC} (7,4,3)$$

Logic level:

111

100

011

$$(\overline{A} + \overline{B} + \overline{C})(\overline{A} + B + C)(A + \overline{B} + \overline{C})$$

Converting Standard (SOP → POS)

Example: Convert the following SOP expression to an equivalent POS expression.

$$\overline{ABC}$$
 + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}

Solution:

• Variables = (A, B, C) = 3. So, $2^3 = 8$ possible combinations.

$$\overline{A}\overline{B}\overline{C}$$
 + $\overline{A}B\overline{C}$ + $\overline{A}BC$ + ABC + ABC 000 010 011 101 111

- The SOP have 5 of 8, so POS have the other 3 (001, 100, 110)
 - → These 3 make

$$sum term = 0$$

A	В	C	Output
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$(A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

0 0 1 1 0 0 1 1 0

Exercise 4b.9: Convert the following SOP expressions to an equivalent POS expression: $A\overline{C} + B\overline{C}$

Solution 4b.9:

 Step 1: Need to convert the expression into standard SOP (refer Exercise 4b.7)

$$AB\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C}$$

 Step 2: Binary number for each SOP term. Variables = 3 (A, B, C); 2^3 = 8 possible combinations.

Boolean Expressions and Truth Tables

Standard SOP → truth tables

Develop a truth table for the standard SOP expression

$$\bar{A}\bar{B}C + A\bar{B}\bar{C} + ABC$$

- **Solution** Domain = A, B, C. combinations = $2^3 = 8$
 - What binary value makes the product term = 1?

Fill the truth table

IPU [°]	TS	OUTPUT	PRODUCT
В	С	X	TERM
0	0	0	
0	1	1	ĀĒC
1	0	0	
1	1	0	
0	0	1	ABC
0	1	0	
1	0	0	
1	1	1	ABC
	0 0 1 1	0 0 0 1 1 0 1 1 0 0 0 1 1 1	B C X 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 0

Standard POS → truth tables

Develop a truth table for the standard POS expression

$$(A + B + C)(A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + \overline{C})(A + \overline{B} + C)$$

- Domain = A, B, C. combinations = $2^3 = 8$
- What binary value makes the sum term = 0?

Solution

Fill the truth table

INPUTS			OUTPUT	PRODUCT
Α	В	C	X	TERM
0	0	0	0	(A+B+C)
0	0	1	1	
0	1	0	0	$(A + \overline{B} + C)$
0	1	1	0	$(A + \overline{B} + \overline{C})$
1	0	0	1	
1	0	1	0	$(\overline{A} + B + \overline{C})$
1	1	0	0	$(\overline{A} + \overline{B} + C)$
1	1	1	1	,

Exercise

www.utm.my

Produce the truth table for the following expression:

- a) $A\overline{B}+BC+\overline{A}D$
- b) $(A+\overline{B})(B+C)(\overline{A}+D)$