TANUSHREE BANERJEE

A Homepage | In LinkedIn | ➤ Google Scholar | ➤ Email | ♥ Princeton, NJ, USA

RESEARCH INTERESTS

I develop **explainable 3D perception methods via inverse generation**. I am excited about how leveraging priors learned in 2D generative models for computer vision and 3D spatial reasoning can offer a novel perspective on predictive computer vision, enabling alternatives to black-box feed-forward network-based approaches and paving the way toward a unified framework for perception.

EDUCATION

Princeton University, Princeton, NJ

August 2020 - May 2024

Bachelor of Science in Engineering (BSE), Computer Science.

Graduated magna cum laude. Received certificates in Statistics & Machine Learning, Optimization & Quantitative Decision Science.

RESEARCH EXPERIENCE

Princeton Computational Imaging Lab | Department of Computer Science, Princeton University Research Assistant: Inverse Generation for Explainable Computer Vision Advisor: Prof. Felix Heide

June 2023 - Present

- I conducted my senior thesis [3] in the lab on explainable 3D perception via inverse rendering, resulting in an arXiv preprint [1] currently under review at Nature Machine Intelligence, for which I received the Outstanding CS Senior Thesis Prize.
- Extending my thesis work, my current project, "OD-VAE1: Unlocking Analysis-by-Synthesis for Explainable 3D Object Detection" by Tanushree Banerjee*, Julian Ost*, Maolin Mao, Mario Bijelic, and Felix Heide, proposes a novel method for tackling 3D object detection using an analysis-by-synthesis paradigm to leverage strong learned priors in a Variational Auto-Encoder (VAE). * denotes equal contribution.

Princeton NLP Group | Department of Computer Science, Princeton University Research Assistant: Human-in-the-Loop Machine Learning, LLM Self-Refinement May 2022 - June 2023

Advisor: Prof. Karthik Narasimhan

 I investigated human-in-the-loop methods and LLM self-correction capabilities to improve LLMs' performance on nuanced tasks like lie detection. My work resulted in an arXiv preprint [2].

Princeton Visual AI Lab | Department of Computer Science, Princeton University Lab Assistant: Bias in Computer Vision, Video Action Recognition

May 2021 - May 2023

Advisor: Prof. Olga Russakovsky

- I conducted my junior and sophomore independent work in the lab, where I investigated hallucination in vision-language models [4] and bias in unbalanced image classification datasets [5].
- Worked on processing 20TB of police body-cam videos for a novel application-focused video action recognition dataset.

PUBLICATIONS AND INDEPENDENT WORK

ArXiv Preprints

* denotes equal contribution.

1. Inverse Neural Rendering for Explainable Multi-Object Tracking Under Review at Nature Machine Intelligence Julian Ost*, Tanushree Banerjee*, Mario Bijelic, Felix Heide Project Page | Paper | NMI Submission | arXiv:2404.12359

We recast 3D multi-object tracking from RGB cameras as an *Inverse Rendering* problem. Our method is not just an alternate take on tracking; it enables examining generated objects and reasoning about failure cases. A version of this paper titled "Towards Generalizable and Interpretable Vision with Inverse Neural Rendering" is under review at Nature Machine Intelligence.

2. LLMs are Superior Feedback Providers:

S Paper | arXiv:2408.13915

Bootstrapping Reasoning for Lie Detection with Self-Generated Feedback

Tanushree Banerjee, Richard Zhu, Runzhe Yang, Karthik Narasimhan

We investigated a bootstrapping framework that leverages LLM-generated feedback to detect deception in diplomacy games. Our approach achieved a 39% improvement over the zero-shot baseline in lying F1 without any training.

Undergraduate Thesis

3. Inverse Neural Rendering for Explainable 3D Perception

Tanushree Banerjee. Advisor: Prof. Felix Heide

Princeton University, 2024 **%** Thesis Report

This thesis explores unlocking explainable 3D perception via Inverse Neural Rendering. Part I proposes and evaluates a novel take on 3D multi-object tracking, while Part II proposes recasting 3D object detection as an inverse generation problem.

¹Object Detection-Variational Auto-Encoder

Independent Work Reports

4. Reducing Object Hallucination in Visual Question Answering

Tanushree Banerjee. Advisor: Prof. Olga Russakovsky

This paper proposes several approaches to identify questions not related to an image to prevent object hallucination in VQA models. The best approach achieved an improvement of 40% over the random baseline.

5. Bias in Skin Lesion Classification

Princeton University, Spring 2022

Tanushree Banerjee. Advisor: Prof. Olga Russakovsky

% Report

This paper analyzes the bias in a model against underrepresented skin tones in the training data set on skin lesion classification.

SELECTED AWARDS AND ACHIEVEMENTS

- Outstanding Computer Science Senior Thesis Prize for my senior thesis, *Inverse Neural Rendering for Explainable 3D Perception*, advised by Prof. Felix Heide. One of 6 in 216 in the graduating class of the CS Dept. to receive the award (2024).
- FitzRandolph Gate Award for Inverse Neural Rendering for Explainable Tracking at Princeton Research Day (2024).
- Nominated for the **CRA Outstanding Undergraduate Research Award** by the CS Department at Princeton for my research contributions to the paper *Bootstrapping Reasoning for Lie Detection with Self-Generated Feedback*, advised by Prof. Karthik Narasimhan (2023).

TEACHING AND ACADEMIC SERVICE

Undergraduate Course Assistant: Independent Work Seminar

Spring 2024

I held office hours for students in the seminar on AI for Engineering and Physics taught by Prof. Ryan Adams, helping them debug their code and advising them on their semester-long independent work projects.

Princeton AI4ALL Research Instructor

Summer 2022

Taught AI technology and policy to 11th grade students from underrepresented groups. Led NLP workshops and developed coding tutorials and lectures in preparation for an NLP-based capstone project. Organized guest lectures given by Princeton faculty.

CSML Undergraduate Student Ambassador

Fall 2023 - Spring 2024

Participated in CSML faculty recruitment interviews, helped organize CSML student social events.

SELECTED COURSE PROJECTS

• [Re] METRA: Scalable Unsupervised RL with Metric-Aware Abstraction Reinforcement Learning, Spring 2024

Tanushree Banerjee*, Tao Zhong*, Tyler Benson*. Advisors: Prof. Benjamin Eysenbach, Prof. Mengdi Wang

Report

In this reproduction study, we validate the claims of Park et al. 2024, who propose a novel unsupervised RL objective that learns

In this reproduction study, we validate the claims of Park et al., 2024, who propose a novel unsupervised RL objective that learns diverse, useful behaviors and a compact latent space that can zero-shot solve various downstream tasks.

• Counterfactual Analysis for Spoken Dialogue Summarization
Tanushree Banerjee*, Kiyosu Maeda*. Advisor: Prof. Sanjeev Arora

Fundamentals of Deep Learning, Fall 2023

% Report

We investigate the effect of errors in speaker diarization and speech recognition on an LLM's summarization performance via counterfactual analysis, *i.e.* automatically injecting speaker diarization or speech recognition errors into spoken dialogue.

• Towards Efficient Frame Sampling Strategies for Video Action Recognition

Computer Vision, Spring 2023

Tanushree Banerjee*, Ameya Vaidya*, Brian Lou*. Advisor: Prof. Olga Russakovsky

% Report

We propose and evaluate two dataset and model-agnostic frame sampling strategies for computationally efficient video action recognition: one based on the norm of the optical flow of frames and the other based on the number of objects in frames.

• What Makes In-Context Learning Work On Generative QA Tasks? Understanding Large Language Models, Fall 2022 Tanushree Banerjee*, Simon Park*, Beiqi Zou*. Advisor: Prof. Danqi Chen

We empirically analyze what aspects of the in-context demonstrations contribute to improvements in downstream task performance, extending the work of Min et al., 2022 to multiple choice and classification tasks.

• [Re] Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation

NLP, Spring 2022

Tanushree Banerjee*, Jessica Ereyi*, Kevin Castro*. Advisors: Prof. Danqi Chen, Prof. Karthik Narasimhan

% Report

We reproduce the results of Wang et al., 2020 to reduce the gender bias present in pre-trained word embeddings and evaluate generalization to non-English languages by evaluating their method on Spanish GloVe word embeddings.

OTHER WORK EXPERIENCE

Software Engineering Intern | Nautilus Software Technologies

December 2020 - January 2021

Recreated the classic code-breaking game *Mastermind* in chat-bot format on Facebook Messenger using JavaScript. Collaborated in a team to present progress in the project to other student interns. Advised by Prof. Chee Wei Tan.

REFERENCES

- Prof. Felix Heide, Assistant Professor, Princeton University
- Prof. Karthik Narasimhan, Associate Professor, Princeton University
- Prof. Olga Russakovsky, Associate Professor, Princeton University

fheide@cs.princeton.edu karthikn@cs.princeton.edu olgarus@cs.princeton.edu