

Machine Learning

Reinforcement Learning (1)

Dr. Harry Goldingay goldihj1@aston.ac.uk

Learning Outcomes

- At the end of this lecture you should:
 - Know what a sequential decision making problem is and how to formulate it as a Markov Decision Process (MDP).
 - Understand solution policies for MDPs and know a simple algorithm for generating an optimal policy given sufficient information.
 - Understand the characteristics of problems addressed by reinforcement learning and know an algorithm for policy evaluation on these problems well enough to implement it.

Motivation

Game Playing

Some of the biggest machine learning media stories in recent years concern "game playing".

How would you apply machine learning to playing chess?

Learning Chess

Firstly, what do we need to learn?

Learning Chess using Supervised Learning

- We want to learn a mapping from chess positions to best moves.
 - Chess positions could be seen as a feature vector.
 - Single, categorical output needed.
- Should remind you of classification.
 - We could apply supervised learning...
 - …to a database of games from top players…
 - …to try to predict how they would move in the position.
- Issues:

Aston University

- How can we improve on top players by copying them?
- Do we have enough (of the right) data?

Sequential Decision Making

Sequential Decision Making

- A more useful way to think of this problem is as one of sequential decision making:
 - an agent takes an action,
 - it observes the effect of the action...
 - ...and then chooses a subsequent action.
- This generates a sequence of actions and effects.
- ► The aim is to take actions which lead to the "best" sequence of effects.

Grid World

"Best" Sequence

- On each square in grid world, the agent will receive a reward:
 - ▶ +1 on square (4,3)
 - ▶ -1 on square (4,2)
 - -0.04 on any other square.
- It the agent reaches either of squares (4,3) or (4,2) (**terminal** states), the game ends.
- The best sequence will be the one which maximises utility: the sum of rewards.
 - Note: there are other ways of defining utility.

Solving Grid World

- A "solution" is just a sequence of actions.
- The rewards an agent receives in grid world...
 - +1 or -1 for a transition to an exit (terminal state),
 - -0.04 for a transition to any other square,
- ...mean that it should find its way to the terminal at (4,3) as quickly as possible.
- The optimal solution is the sequence which achieves the above.

Grid World: Optimal Solution(s)

Decision Making with Uncertainty

- That was easy but, unfortunately, unrealistic.
 - Many interesting decision problems involve uncertainty.
 - Our actions effect outcomes, NOT determine them.
- We can incorporate uncertainty into our problem, by making transitions probabilistic:
 - Make the intended move with probability 0.8,
 - Make a perpendicular move with probability 0.2 (each direction equally likely),
 - If the agent hits a wall, it stays where it is.
- How does this affect our solutions?

Stochastic Grid World: Optimal Solutions?

Policies

- In a stochastic setting, we prefer the path **Up**, **Up**, **Right**, **Right**, **Right** to the other optimal deterministic path.
- Is this a good solution to the problem?
 - ► No!
 - What if one of the steps fails (e.g. we go Right instead of Up) at step 1?

Stochastic Grid World: Optimal Solutions?

Policies

- In a stochastic setting, we prefer the path **Up**, **Up**, **Right**, **Right**, **Right** to the other optimal deterministic path.
- Is this a good solution to the problem?
 - ► No!

Aston University

- What if one of the steps fails (e.g. we go Right instead of Up) at step 1?
- A sequence of actions is not a good solution if we don't know the results of the actions.
 - Better to view each location as a state...
 - ...and formulate a solution by choosing an action per state.
 - Such a solution is called a policy.

Stochastic Grid World: Optimal Policy

Markov Decision Processes

- Sequential decision problems are often formalised as Markov Decision Processes (MDPs) which require:
 - \blacktriangleright A set of **states**, S, including a start state, s_0
 - For each state, a set of actions, A_s
 - ▶ A transition model, P(s'|s,a)
 - Gives the probability of reaching state s' from state s if taking action a.
 - ightharpoonup A reward function, R(s)

Aston University

- ▶ Sometimes also dependent on action and outcome: R(s, a, s')
- The goal is to find an optimal policy, π^* , which maximises expected utility.

Rewards and Optimal Policy

$$R(s) < -1.6284$$

$$-0.4278 < R(s) < -0.0850$$

MDPs: Expected Utility

Playing an MDP (1)

Playing an MDP (2)

Playing an MDP (3)

Utilities Over Time

So far, we have been assigning utility on the basis of additive rewards:

$$U([s_0, s_1, s_2, \dots]) = R(s_0) + R(s_1) + R(s_2) + \dots$$

It is common to use discounted rewards:

$$U([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

- Where $0 < \gamma < 1$ is called a **discount factor**. Advantages:
 - Utility converges even for an infinite sequence of actions,
 - Seems to be a good model for human preferences.

Utilities of States

• We can define the utility of a state under policy π as:

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t})\right]$$

- where $S_0 = s$.
- ► The optimal policy for a given state is:

$$\pi_S^* = \operatorname*{argmax}_{\pi} U^{\pi}(S)$$

We can show that, for any state, $\pi_s^* = \pi^*$. Therefore, we can denote the (expected) utility of a state as:

$$U(s) = U^{\pi^*}(s)$$

Grid World: Utilities of States

For $\gamma = 1$

Policies and Utilities of States

- If we know U(s) for each state, we can use it to infer the optimal policy.
 - ► Choose the action which results in the highest expected utility of the next state.
- What action should an agent take in state (3,1) in the previous example?

Grid World: Utilities of States

For $\gamma = 1$

Policies and Utilities of States

- If we know U(s) for each state, we can use it to infer the optimal policy.
 - Choose the action which results in the highest expected utility of the next state.
- What action should an agent take in state (3,1) in the previous example?
 - ▶ Up: $0.8 \times 0.66 + 0.1 \times (0.655 + 0.388) \approx 0.63$
 - ► Left: $0.8 \times 0.655 + 0.1 \times (0.66 + 0.611) \approx 0.65$
- The agent should choose Left.
- **Key takeaway**: π^* can be inferred directly from utility.

Calculating Expected Utility

- Does this give us a solution methodology for MDPs?
- Not yet...
 - We can calculate π^* from U(s)
 - ▶ ...but recall that $U(s) = U^{\pi^*}(s)$
- ...but there iterative are algorithms for doing so:
 - Value iteration
 - Policy iteration

Value Iteration

A consequence of our definition of utility is that the utility of states can be expressed as follows (Bellman equation):

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a)U(s')$$

- ► This gives us a system of equations to solve (one for each state) but the max component makes this problematic.
- Try an iterative approach.

Value Iteration

We can turn the Bellman equations into update equations:

$$U_{i+1}(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U_i(s')$$

- If $\gamma < 1$, then this is guaranteed to converge to the (unique) solution to the Bellman equations.
- In practice:
 - \blacktriangleright Pick arbitrary initial values for the $U_0(s)$
 - Run until the difference between estimates at different timesteps become small

Value Iteration Illustrated

Value Iteration Illustrated

Transition Model

$$P(s_0|s_0, a_0) = 0.5$$

 $P(s_2|s_0, a_0) = 0.5$
 $P(s_1|s_0, a_1) = 1.0$
 $P(s_0|s_1, a_0) = 1.0$
 $P(s_1|s_1, a_1) = 0.1$
 $P(s_2|s_1, a_1) = 0.9$

Reward Function

$$R(s_0) = -0.50$$

 $R(s_1) = -0.75$
 $R(s_2) = -0.10$

Utility Estimates (i = 0)

$$U_i(s_0) = 0$$

 $U_i(s_1) = 0$
 $U_i(s_2) = 0$

Update

Initial choice of action unimportant. All states have estimated utility 0.

$$U_{i+1}(s_0) = R(s_0) + 0 = -0.50$$

 $U_{i+1}(s_1) = R(s_1) + 0 = -0.75$
 $U_{i+1}(s_2) = R(s_2) + 0 = -0.10$

Value Iteration Illustrated

Transition Model

$$P(s_0|s_0, a_0) = 0.5$$

 $P(s_2|s_0, a_0) = 0.5$
 $P(s_1|s_0, a_1) = 1.0$
 $P(s_0|s_1, a_0) = 1.0$
 $P(s_1|s_1, a_1) = 0.1$
 $P(s_2|s_1, a_1) = 0.9$

Reward Function

$$R(s_0) = -0.50$$

 $R(s_1) = -0.75$
 $R(s_2) = -0.10$

Utility Estimates (i = 1)

$$U_i(s_0) = -0.50$$

 $U_i(s_1) = -0.75$
 $U_i(s_2) = -0.10$

Update Example

Expected value of next state from s_0 given a.

$$a_0$$
: $0.5 \times -0.5 + 0.5 \times -0.1 = -0.3$

$$a_1$$
: $1.0 \times -0.75 = -0.75$

Best action: a_0 .

$$U_{i+1}(s_0) = R(s_0) - 0.3 = -0.8$$

Value Iteration Illustrated

Transition Model

$$P(s_0|s_0, a_0) = 0.5$$

 $P(s_2|s_0, a_0) = 0.5$
 $P(s_1|s_0, a_1) = 1.0$
 $P(s_0|s_1, a_0) = 1.0$
 $P(s_1|s_1, a_1) = 0.1$
 $P(s_2|s_1, a_1) = 0.9$

Reward Function

$$R(s_0) = -0.50$$

 $R(s_1) = -0.75$
 $R(s_2) = -0.10$

Utility Estimates (i = 2)

$$U_i(s_0) = -0.8$$

 $U_i(s_1) = -0.915$
 $U_i(s_2) = -0.10$

Update Example

Expected value of next state from s_0 given a.

$$a_0$$
: $0.5 \times -0.8 + 0.5 \times -0.1 = -0.45$

$$a_1$$
: $1.0 \times -0.915 = -0.915$

Best action: a_0 .

$$U_{i+1}(s_0) = R(s_0) - 0.45 = -0.95$$

Value Iteration Illustrated

Transition Model

$$P(s_0|s_0, a_0) = 0.5$$

$$P(s_2|s_0, a_0) = 0.5$$

$$P(s_1|s_0, a_1) = 1.0$$

$$P(s_0|s_1, a_0) = 1.0$$

$$P(s_1|s_1, a_1) = 0.1$$

$$P(s_2|s_1, a_1) = 0.9$$

Reward Function

$$R(s_0) = -0.50$$

 $R(s_1) = -0.75$
 $R(s_2) = -0.10$

Utility Estimates

$$(i = 3)$$

$$U_i(s_0) \approx -0.95$$

 $U_i(s_1) \approx -0.93$
 $U_i(s_2) \approx -0.10$

Utility Estimates (i = 4)

$$U_i(s_0) \approx -1.03$$

 $U_i(s_1) \approx -0.93$
 $U_i(s_2) \approx -0.10$

Utility Estimates (i = 5)

$$U_i(s_0) \approx -1.06$$

 $U_i(s_1) \approx -0.93$
 $U_i(s_2) \approx -0.10$

Introduction to Reinforcement Learning

Planning and Reinforcement Learning

- So far, the problems we have seen can be solved through offline planning:
 - Consider the information available...
 - ...and infer the optimal policy.
 - No need to take any actions!
- A reinforcement learning problem is an MDP in which we don't know:
 - the transition model,
 - ▶ The reward function.
- Not enough information to solve offline. Need to experiment!

Naïve Approach

- We know how to solve MDPs when we do know the transition model and reward function.
 - Try to learn them from the environment!
 - Pick policy/policies.
 - Count state transitions that we observe and average to infer transition probabilities.
 - Observe rewards directly.
- Assume that our model is correct, and solve using value iteration.
- How does this scale with the number of actions/states?

Types of Reinforcement Learning

- Solving an MDP without prior knowledge of transitions and rewards is challenging.
- We will leave it to one side for now and look at approaches to policy evaluation.
 - Given a policy, what are the expected utilities of the states?
- This type of approach, with a fixed policy, is called passive learning.
- This is in contrast to **active learning**, in which an agent must also decide which actions to take.

Direct Evaluation

- We can take a similar approach to policy evaluation to our initial suggestion for solving RL problems:
- Repeatedly run trials of a policy from random starting states.
- Whenever we encounter a state, record the utility which follows in the trial.
- Average these records, to estimate the utility of the state under the policy.

Direct Evaluation Illustrated

Direct Evaluation Illustrated

- Running four random trials with the optimal policy gives me:
- $ightharpoonup s_2(-0.1)$
- $s_0(-0.5) \rightarrow s_2(-0.1)$
- $s_1(-0.75) \rightarrow s_2(-0.1)$
- $s_0(-0.5) \rightarrow s_0(-0.5) \rightarrow s_0(-0.5) \rightarrow s_2(-0.1)$
- ▶ We have seen s_0 four times, with an average utility of -0.975:

$$\frac{-0.6-1.6-1.1-0.6}{4}$$

- We have seen s_1 once, with a total utility of -0.85
- \blacktriangleright We have seen s_2 four times, with an average utility of -0.1

Direct Evaluation

- Direct evaluation will eventually converge to the correct utility values.
- We don't need to learn the full transition model and reward function
 - don't have the same problem with number of state-action pairs as we saw before.
- However, the Bellman equations give us relationships between states.
 - Direct evaluation doesn't make use of these relationships...
 - ...so is very inefficient.

Temporal Difference Learning

Temporal Difference Learning

- Rather than trying to build a model of transitions directly, temporal difference learning operates directly on relationships between states.
- Whenever an agent transitions from state s to state s' (in which it received rewards R(s) and R(s') respectively), it updates its estimate of utility as follows:

$$U(s') = R(s')$$
 if s'has not been visited previously

$$U(s) = U(s) + \alpha (N_s(s))(R(s) + \gamma U(s') - U(s))$$

where $\alpha(N_s(s))$ is a "step-size", decreasing in the number of times the state s is encountered (e.g. $\frac{1}{1+N_s(s)}$).

TDL Breakdown

Breaking down the equation:

- This difference $(R(s) + \gamma U(s') U(s))$ will be positive if the estimate of utility based on the current episode is higher than our previous estimate.
- A positive difference would be evidence that our estimate of utility (U(s)) was too low and should be increased.
- $\alpha(N_s(s))$ decreases as we encounter state s more. Each new observation is a smaller fraction of our total observations.

▶ Imagine that the previous MDP was encountered twice by an agent whose policy was to play a_1 in both states, generating the following sequences of states and rewards:

$$s_0(-0.5) \rightarrow s_1(-0.75) \rightarrow s_2(-0.1)$$

$$s_1(-0.75) \rightarrow s_1(-0.75) \rightarrow s_2(-0.1)$$

► How to apply TDL?

Transitions

$$s_0(-0.5)$$

 $s_0(-0.5) \rightarrow s_1(-0.75)$
 $s_1(-0.75) \rightarrow s_2(-0.1)$

$$s_1(-0.75)$$

 $s_1(-0.75) \rightarrow s_1(-0.75)$
 $s_1(-0.75) \rightarrow s_2(-0.1)$

Counts

$$N_S(s_0) = 0$$

 $N_S(s_1) = 0$
 $N_S(s_2) = 0$

Utility Estimates

$$U(s_0) = ?$$

 $U(s_1) = ?$
 $U(s_2) = ?$

Update

State s_0 encountered for the first time.

$$U(s_0) = -0.5$$

Transitions

$$s_0(-0.5)$$

 $s_0(-0.5) \rightarrow s_1(-0.75)$
 $s_1(-0.75) \rightarrow s_2(-0.1)$

$$s_1(-0.75)$$

 $s_1(-0.75) \rightarrow s_1(-0.75)$
 $s_1(-0.75) \rightarrow s_2(-0.1)$

Counts

$$N_S(s_0) = 0$$

 $N_S(s_1) = 0$
 $N_S(s_2) = 0$

Utility Estimates

$$U(s_0) = -0.5$$

 $U(s_1) = ?$
 $U(s_2) = ?$

Update

State s_1 encountered for the first time.

$$U(s_1) = -0.75$$

State s_0 updated based on observed transition to s_1 .

$$U(s)$$
 $U(s')$ $U(s')$ $U(s')$ $U(s_0) = -0.5 + \frac{1}{1+1}(-0.5 - 0.75 + 0.5) = -0.875$ $N_s(s)$ $R(s)$ $U(s)$

Transitions

$$s_0(-0.5)$$

 $s_0(-0.5) \rightarrow s_1(-0.75)$
 $\rightarrow s_1(-0.75) \rightarrow s_2(-0.1)$

$$s_1(-0.75)$$

 $s_1(-0.75) \rightarrow s_1(-0.75)$
 $s_1(-0.75) \rightarrow s_2(-0.1)$

Counts

$$N_S(s_0) = 1$$

 $N_S(s_1) = 0$
 $N_S(s_2) = 0$

Utility Estimates

$$U(s_0) = -0.875$$

 $U(s_1) = -0.75$
 $U(s_2) = ?$

Update

State s_2 encountered for the first time.

$$U(s_2) = -0.1$$

State s_1 updated based on observed transition to s_2 .

$$U(s)$$
 $U(s')$ $U(s')$ $U(s')$ $U(s_1) = -0.75 + \frac{1}{1+1}(-0.75 - 0.1 + 0.75) = -0.8$ $N_s(s)$ $R(s)$ $U(s)$

Transitions

$$s_0(-0.5)$$

 $s_0(-0.5) \rightarrow s_1(-0.75)$
 $s_1(-0.75) \rightarrow s_2(-0.1)$

$$s_1(-0.75)$$

 $s_1(-0.75) \rightarrow s_1(-0.75)$
 $s_1(-0.75) \rightarrow s_2(-0.1)$

Counts

$$N_S(s_0) = 1$$

 $N_S(s_1) = 1$
 $N_S(s_2) = 0$

Utility Estimates

$$U(s_0) = -0.875$$

 $U(s_1) = -0.8$
 $U(s_2) = -0.1$

Update

State s_1 encountered previously. No change.

Transitions

$$s_0(-0.5)$$

 $s_0(-0.5) \rightarrow s_1(-0.75)$
 $s_1(-0.75) \rightarrow s_2(-0.1)$
 $s_1(-0.75)$

 $\longrightarrow s_1(-0.75) \to s_1(-0.75)$

 $s_1(-0.75) \rightarrow s_2(-0.1)$

Counts

$$N_S(s_0) = 1$$

 $N_S(s_1) = 1$
 $N_S(s_2) = 0$

Utility Estimates

$$U(s_0) = -0.875$$

 $U(s_1) = -0.8$
 $U(s_2) = -0.1$

Update

State s_1 encountered previously. No change.

State s_1 updated based on observed transition to s_1 .

$$U(s)$$
 $U(s')$

$$U(s_1) = -0.8 + \frac{1}{1+2}(-0.75 - 0.8 + 0.8) = -1.05$$

$$N_s(s) \quad R(s) \quad U(s)$$

Transitions

$$s_0(-0.5)$$

 $s_0(-0.5) \rightarrow s_1(-0.75)$
 $s_1(-0.75) \rightarrow s_2(-0.1)$

$$s_1(-0.75)$$

 $s_1(-0.75) \rightarrow s_1(-0.75)$
 $\rightarrow s_1(-0.75) \rightarrow s_2(-0.1)$

Counts

$$N_S(s_0) = 1$$

 $N_S(s_1) = 2$
 $N_S(s_2) = 0$

Utility Estimates

$$U(s_0) = -0.875$$

 $U(s_1) = -1.05$
 $U(s_2) = -0.1$

Update

State s_1 encountered previously. No change.

State s_1 updated based on observed transition to s_2 .

$$U(s)$$
 $U(s')$

$$U(s_1) = -1.05 + \frac{1}{1+3}(-0.75 - 0.1 + 1.05) = -1$$

$$N_s(s) \quad R(s) \quad U(s')$$

Conclusion

- You should know:
 - Know what a sequential decision making problem is and how to formulate it as a Markov Decision Process (MDP).
 - Understand solution policies for MDPs and know a simple algorithm for generating an optimal policy given sufficient information.
 - Understand the characteristics of problems addressed by reinforcement learning and know an algorithm for policy evaluation on these problems well enough to implement it.

