How much memory is needed to win regular games? LMFI Master presentation

Nathanaël Fijalkow, advised by Florian Horn

LIAFA, Paris

September 13th, 2011

Introduction: regular games

Examples

$$L = a^+ \cdot b$$

Regular games need memory

$$L = a^+ \cdot b$$

Regular games need memory

$$L = a^+ \cdot b$$

Regular games need memory

A winning strategy for Eve uses two memory states.

Regular games need memory

A winning strategy for Eve uses two memory states.

$$\begin{array}{ccc}
 & \varepsilon & a & b \\
 & & a & b \\
 & & & a & memory structure
\end{array}$$
play a play b

Regular games need memory

A winning strategy for Eve uses two memory states.

$$\begin{array}{ccc}
 & \varepsilon & a & b \\
 & & b \\
 & & b \\
 & & a \text{ memory structure}
\end{array}$$

Introduction: how much memory is needed to win?

Question: given a regular language L, what is the memory required by winning strategies?

Playing reachability

Introduction: how much memory is needed to win?

Question: given a regular language L, what is the memory required by winning strategies?

Playing reachability

In other words, compute $m_L \in \mathbb{N}^*$ such that:

• in any arena, if Eve wins the regular game for L, then she has a winning strategy with m_L memory states,

Introduction: how much memory is needed to win?

Question: given a regular language L, what is the memory required by winning strategies?

Playing reachability

In other words, compute $m_L \in \mathbb{N}^*$ such that:

- in any arena, if Eve wins the regular game for L, then she has a winning strategy with m_L memory states,
- there is an arena where Eve wins but there are no winning strategies with less than m_L memory states.

Outline

- 1 Examples
- 2 Playing safety
- 3 Playing reachability
- 4 Playing optimally in the stochastic case

A first remark

Examples

arena

$$L = a^+ \cdot b$$

A first remark

Playing reachability

Any deterministic automaton that recognizes L is a good memory structure. Proof: the synchronized product is a reachability game.

Playing safety

We describe a good memory structure for L using left quotients: for $u \in \Sigma^*$.

$$u^{-1}L = \{ v \mid u \cdot v \in L \}.$$

- the initial memory state is $\varepsilon^{-1}L = L$,
- each time a letter a is read from $u^{-1}L$, the memory is updated to $(u \cdot a)^{-1}L$.

An upper bound for both players

We describe a good memory structure for L using left quotients: for $u \in \Sigma^*$,

$$u^{-1}L = \{ v \mid u \cdot v \in L \}.$$

- the initial memory state is $\varepsilon^{-1}L = L$,
- each time a letter a is read from $u^{-1}L$, the memory is updated to $(u \cdot a)^{-1}L$.

Lemma (An upper bound for both players)

For all regular games G = (A, Reach(L)), both players have winning strategies using this memory structure (denoted M_L).

"read at most ten consecutive b's, and then an a".

Playing reachability

$$L = a + b \cdot a + bb \cdot a + \dots + b^{10} \cdot a$$
.

"read at most ten consecutive b's, and then an a".

Playing reachability

$$L = a + b \cdot a + bb \cdot a + \dots + b^{10} \cdot a.$$

In every regular game for *L*, Eve wins without memory.

Another example

"read at most ten consecutive b's, and then an a".

$$L = a + b \cdot a + bb \cdot a + \dots + b^{10} \cdot a.$$

In every regular game for L, Eve wins without memory. This shows that the memory structure \mathcal{M}_L is not optimal.

Outline

- 1 Examples
- 2 Playing safety
- 3 Playing reachability
- 4 Playing optimally in the stochastic case

Outline

- 1 Examples
- 2 Playing safety
- 3 Playing reachability
- 4 Playing optimally in the stochastic case

Order left quotients inclusion-wise

If Adam wins in $\mathcal{G} \times \mathcal{M}_L$ from $(q, u^{-1}L)$ and $v^{-1}L \subseteq u^{-1}L$, then he wins from $(q, v^{-1}L)$

Playing reachability

Order left quotients inclusion-wise

If Adam wins in $\mathcal{G} \times \mathcal{M}_L$ from $(q, u^{-1}L)$ and $v^{-1}L \subseteq u^{-1}L$, then he wins from $(q, v^{-1}L)$ using the same strategy.

Playing reachability

Order left quotients inclusion-wise

If Adam wins in $\mathcal{G} \times \mathcal{M}_L$ from $(q, u^{-1}L)$ and $v^{-1}L \subseteq u^{-1}L$, then he wins from $(q, v^{-1}L)$ using the same strategy.

Playing reachability

Let k the maximal number of incomparable (with respect to inclusion) left quotients of L.

If Adam wins in $\mathcal{G} \times \mathcal{M}_L$ from $(q, u^{-1}L)$ and $v^{-1}L \subseteq u^{-1}L$, then he wins from $(q, v^{-1}L)$ using the same strategy.

Let k the maximal number of incomparable (with respect to inclusion) left quotients of L.

Lemma (A tighter upper bound for Adam)

For all regular games G = (A, Reach(L)), Adam has a winning strategy from his winning set that uses k memory states.

If Adam wins in $\mathcal{G} \times \mathcal{M}_L$ from $(q, u^{-1}L)$ and $v^{-1}L \subseteq u^{-1}L$, then he wins from $(q, v^{-1}L)$ using the same strategy.

Playing reachability

Let k the maximal number of incomparable (with respect to inclusion) left quotients of L.

Lemma (A tighter upper bound for Adam)

For all regular games G = (A, Reach(L)), Adam has a winning strategy from his winning set that uses k memory states.

Idea: whenever in $(q, v^{-1}L)$, play as from $(q, u^{-1}L)$, where $u^{-1}L$ is maximal winning from q.

Optimality

Lemma (Matching lower bound for Adam)

For all regular languages L, there exists an arena A such that Adam needs k memory states to win in $\mathcal{G} = (\mathcal{A}, \operatorname{Reach}(L))$.

Optimality

Lemma (Matching lower bound for Adam)

For all regular languages L, there exists an arena A such that Adam needs k memory states to win in G = (A, Reach(L)).

Exemplified: $L = (a+b)^* \cdot (aa+bb)$.

inclusion

arena

Outline

Examples

- Examples
- Playing reachability

A wrong intuition

If Eve wins in $\mathcal{G} \times \mathcal{M}_L$ from $(q, u^{-1}L)$ and $u^{-1}L \subseteq v^{-1}L$, then she wins from $(q, v^{-1}L)$

A wrong intuition

If Eve wins in $\mathcal{G} \times \mathcal{M}_L$ from $(q, u^{-1}L)$ and $u^{-1}L \subseteq v^{-1}L$, then she wins from $(q, v^{-1}L)$... however the same strategy might fail!

Playing reachability

winning condition $L=a^+\cdot b$

$$\varepsilon^{-1}L \subset a^{-1}L$$

Examples

$$L = (aab + baa) \cdot (a+b)^* \cdot c$$

$$L = (aab + baa) \cdot (a+b)^* \cdot c$$

Playing reachability

Eve can play from $(bb)^{-1}L$ as from $a^{-1}L$, hence merge the two memory states.

$$L = (aab + baa) \cdot (a+b)^* \cdot c$$

$$L = (aab + baa) \cdot (a+b)^* \cdot c$$

$$L = (aab + baa) \cdot (a+b)^* \cdot c$$

Playing reachability

$$L = (aab + baa) \cdot (a+b)^* \cdot c$$

$$L = (aab + baa) \cdot (a+b)^* \cdot c$$

$$L = (aab + baa) \cdot (a+b)^* \cdot c$$

$$L = (aab + baa) \cdot (a+b)^* \cdot c$$

Playing reachability

Outline

- 1 Examples
- 2 Playing safety
- 3 Playing reachability
- 4 Playing optimally in the stochastic case

Playing optimally in stochastic arenas

b

Upper bound for both players

Since stochastic reachability games enjoy memoryless determinacy:

Lemma (Upper bound for both players)

For all stochastic regular games G = (A, Reach(L)), both players have winning strategies using M_L as memory structure.

Lower bound for Eve

Lemma (Memory lower bound in stochastic games for Eve)

For all regular languages L, let n be the number of non-final left quotients of L, there exists an arena A such that Eve needs n memory states to play optimally in $\mathcal{G} = (\mathcal{A}, \operatorname{Reach}(L))$.

Playing reachability

Again, we order left quotients inclusion-wise.

The construction exemplified

We construct an arena for the condition $L = (a + b)^* \cdot (aa + bb)$.

The construction exemplified

We construct an arena for the condition $L = (a + b)^* \cdot (aa + bb)$.

Adam case

The same applies to Adam, using a very similar construction.

Adam case

The same applies to Adam, using a very similar construction. As opposed to the deterministic case, memory requirements are symmetric in stochastic regular games!

The end

Examples

Thank you for your attention!