Supplemental Materials

Accelerate global sensitivity analysis using Artificial Neural Network algorithm:

Case studies for combustion kinetic model

Shuang Li^{a,b}, Bin Yang^{b,*}, Fei Qi ^{a,c}

^a National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China

^b Center for Combustion Energy, Department of Thermal Engineering, Tsinghua University, Beijing, 100084, P. R. China

^c Key Laboratory for Power Machinery and Engineering of M. O. E., Shanghai Jiao Tong University, Shanghai 200240, P. R. China

*Corresponding author

E-mail: byang@tsinghua.edu.cn (Bin Yang).

Table S1. Parameter values of ANN-HDMR in different cases
Fig. S1. A screenshot of main interface of ANN_GSA_Tool
Fig. S2. The first order sensitivity indices of the twenty-two parameters and the sum of the first order
sensitivity indices of R1 and R2 versus the original sample sizes using Optimized-HDMR and ANN-
HDMR under $P = 0.001$ atm, 1 atm, high pressure limit (HPL), and $T = 800$ K, 1400 K, 2000 K4
Fig. S3. Important first and second order Sensitivity indices, and the sum of first and second order
Sensitivity indices for the ignition delay time of H ₂ /O ₂ system using Optimized-HDMR and ANN-
HDMR under (1) P = 1.07 bar, T = 1000 K, (2) P = 5.62 bar, T = 1000 K and stoichiometric mixtures
of H ₂ and O ₂ 10
Table S2. The reactions and the uncertainty factors (UFs) of methanol combustion kinetic model11
Table S3. The experimental condition of methanol flame for global sensitivity analysis
Fig. S4. The first order sensitivity indices and the sum of first and second order sensitivity indices of
OH, CH, CH ₂ (S), CH ₂ O14

Table S1Parameter values of ANN-HDMR in different cases.

Sobol' g-function scenario 1					
Original Sample	Number of hidden	Maximum number	Mean square	Minimum	
Size	layer nodes	of iteration	error	gradient	
1024	16	150	1.00E-08	1.00E-10	
2048	32	150	1.00E-08	1.00E-10	
4096	32	150	1.00E-08	1.00E-10	
8192	48	150	1.00E-08	1.00E-10	
	Sobol' g	-function scenario 2			
256	16	100	1.00E-10	1.00E-10	
512	16	100	1.00E-10	1.00E-10	
1024	16	100	1.00E-10	1.00E-10	
	Master e	quation kinetic model			
50	8	100	1.00E-08	1.00E-10	
100	16	100	1.00E-08	1.00E-10	
200	16	100	1.00E-08	1.00E-10	
400	32	100	1.00E-08	1.00E-10	
800	32	100	1.00E-08	1.00E-10	
1600	32	100	1.00E-08	1.00E-10	
3200	32	100	1.00E-08	1.00E-10	
6400	32	100	1.00E-08	1.00E-10	
12800	32	100	1.00E-08	1.00E-10	
Premixed H ₂ /O ₂ ignition model					
512	16	150	1.00E-08	1.00E-10	
1024	32	150	1.00E-08	1.00E-10	
2048	32	150	1.00E-08	1.00E-10	

Fig. S1. A screenshot of the main interface of ANN_GSA_Tool.

Global sensitivity analysis was conducted for the case of master equation kinetic model under nine conditions which cover the temperature and pressure ranges in the study [72].

Condition 1: T = 800 K, P = 0.001 atm

Condition 2: T = 800 K, P = 1 atm

Condition 3: T = 800 K, P = high pressure limit (HPL)

Condition 4: T = 1400 K, P = 0.001 atm

Condition 5: T = 1400 K, P = 1 atm

Condition 6: T = 1400 K, P = HPL

Condition 7: T = 2000 K, P = 0.001 atm

Condition 8: T = 2000 K, P = 1 atm

Condition 9: T = 2000 K, P = HPL

Fig. S2. Shows the first order sensitivity indices of the twenty-two parameters and the sum of the first order sensitivity indices of R1 and R2 versus the original sample sizes using Optimized-HDMR and ANN-HDMR.

Fig. S2. The first order sensitivity indices of the twenty-two parameters and the sum of the first order sensitivity indices of R1 and R2 versus the original sample sizes using Optimized-HDMR and ANN-HDMR under P = 0.001 atm, 1 atm, high pressure limit (HPL), and T = 800 K, 1400 K, 2000 K.

Global sensitivity analysis was conducted for the ignition delay time of H_2/O_2 system under other two conditions which have been studied in the [74].

Condition 1: T = 1000 K, P = 1.07 bar

Condition 2: T = 1000 K, P = 5.62 bar

Fig. S3. Illustrates the important first and second order Sensitivity indices, and the sum of first and second order Sensitivity indices for the ignition delay time of H₂/O₂ system using Optimized-HDMR and ANN-HDMR.

Fig. S3. Important first and second order Sensitivity indices, and the sum of first and second order Sensitivity indices for the ignition delay time of H_2/O_2 system using Optimized-HDMR and ANN-HDMR under (1) P = 1.07 bar, T = 1000 K, (2) P = 5.62 bar, T = 1000 K and stoichiometric mixtures of H_2 and O_2 .

 $\begin{tabular}{ll} \textbf{Table S2} \\ \textbf{The reactions and the uncertainty factors (UFs) of methanol combustion kinetic model.} \\ \end{tabular}$

ID	Reaction	UF
1	$H + O_2 \ll O + OH$	1.26
2	$O + H_2 \ll H + OH$	1.58
3	$H_2 + OH <=> H_2O + H$	2
4	$O + H_2O \ll OH + OH$	2.5
5	$H_2 + M \le H + H + M$	3
6	$H_2 + AR <=> H + H + AR$	3
7	$O + O + M \ll O_2 + M$	2
8	$O + O + AR <=> O_2 + AR$	2
9	$O + H + M \ll OH + M$	5
10	$H + OH + M \Longleftrightarrow H_2O + M$	2
11	$H + O_2 (+ M) \ll HO_2 (+ M) (k\infty)$	3.16
12	$H + O_2 (+ M) \ll HO_2 (+ M) (k0)$	3.16
13	$HO_2 + H \le H_2 + O_2$	2
14	$HO_2 + H \ll OH + OH$	2
15	$HO_2 + O \ll O_2 + OH$	3.16
16	$HO_2 + OH <=> H_2O + O_2$	3.16
17	$HO_2 + HO_2 <=> H_2O_2 + O_2$	5
18	$HO_2 + HO_2 <=> H_2O_2 + O_2$	5
19	$H_2O_2 (+ M) \le OH + OH (+ M) (k\infty)$	3.16
20	$H_2O_2 (+ M) \le OH + OH (+ M) (k0)$	2
21	$H_2O_2 + H \le H_2O + OH$	5
22	$H_2O_2 + H \le HO_2 + H_2$	5
23	$H_2O_2 + O \le OH + HO_2$	3
24	$H_2O_2 + OH \le HO_2 + H_2O$	1.26
25	$H_2O_2 + OH \le HO_2 + H_2O$	5
26	$CO + O (+ M) \ll CO_2 (+ M) (k\infty)$	2.5
27	$CO + O (+ M) \le CO_2 (+ M) (k0)$	2.5
28	$CO + O_2 <=> CO_2 + O$	2
29	$CO + HO_2 <=> CO_2 + OH$	5
30	$CO + OH <=> CO_2 + H$	3.16
31	$HCO + M \leq > H + CO + M$	3.16
32	$HCO + O_2 \ll CO + HO_2$	5
33	$HCO + H \leq > CO + H_2$	2
34	$HCO + O \le CO + OH$	2
35	$HCO + OH \ll CO + H_2O$	3
36	$HCO + O \iff CO_2 + H$	3
37	$HCO + HO_2 \ll CO_2 + OH + H$	5
38	$HCO + HCO \Longleftrightarrow H_2 + CO + CO$	2
39	$HCO + CH_3 \ll CO + CH_4$	5
40	$HCO + HCO \Longleftrightarrow CH_2O + CO$	2
41	$CH_2O + M \le HCO + H + M$	3.16
42	$CH_2O + M <=> CO + H_2 + M$	3.16
43	$CH_2O + H \ll HCO + H_2$	2

44	$CH_2O + O \iff HCO + OH$	2
45	$CH_2O + OH <=> HCO + H_2O$	5
46	$CH_2O + O_2 \le HCO + HO_2$	3.16
47	CH2O + HO2 <=> HCO + H2O2	3.16
48	$CH_2O + CH_3 \ll HCO + CH_4$	2
49	$CH_3 + O \ll CH_2O + H$	1.58
50	$CH_3 + O_2 <=> CH_3O + O$	3.16
51	$CH_3 + O_2 <=> CH_2O + OH$	5
52	$CH_3 + HO_2 \le CH_3O + OH$	3
53	$CH_3 + CH_3 (+ M) \le C_2H_6 (+ M) (k\infty)$	2
54	$CH_3 + CH_3 (+ M) \le C_2H_6 (+ M) (k0)$	2
55	$CH_3 + H (+ M) \le CH_4 (+ M)$	3.16
56	$CH_3 + H (+ M) \le CH_4 (+ M)$	3.16
57	$CH_4 + H \le CH_3 + H_2$	1.58
58	$CH_4 + O \ll CH_3 + OH$	2
59	$CH_4 + OH <=> CH_3 + H_2O$	1.41
60	$CH_3 + HO_2 \le CH_4 + O_2$	5
61	$CH_4 + HO_2 <=> CH_3 + H_2O_2$	5
62	$CH_2OH + M \leq > CH_2O + H + M$	5
63	$CH_2OH + H \leq > CH_2O + H_2$	2
64	$CH_2OH + H \leq > CH_3 + OH$	2
65	$CH_2OH + O \ll CH_2O + OH$	2
66	$CH_2OH + OH <=> CH_2O + H_2O$	2
67	$CH_2OH + O_2 <=> CH_2O + HO_2$	5
68	$CH_2OH + O_2 <=> CH_2O + HO_2$	5
69	$CH_2OH + HO_2 <=> CH_2O + H_2O_2$	2
70	$CH_2OH + HCO \ll CH_3OH + CO$	5
71	$CH_2OH + HCO \ll CH_2O + CH_2O$	5
72	$2 \text{ CH}_2\text{OH} \Longleftrightarrow \text{CH}_3\text{OH} + \text{CH}_2\text{O}$	2
73	$CH_2OH + CH_3O \Longleftrightarrow CH_3OH + CH_2O$	2
74	$CH_3O + M \Longleftrightarrow CH_2O + H + M$	2
75	$CH_3O + H <=> CH_3 + OH$	5
76	$CH_3O + O \iff CH_2O + OH$	5
77	$CH_3O + OH <=> CH_2O + H_2O$	5
78	$CH_3O + O_2 <=> CH_2O + HO_2$	5
79	$CH_3O + O_2 <=> CH_2O + HO_2$	5
80	$CH_3O + HO_2 <=> CH_2O + H_2O_2$	5
81	$CH_3O + CO <=> CH_3 + CO_2$	5
82	$CH_3O + HCO \Longleftrightarrow CH_3OH + CO$	3
83	$2 \text{ CH}_3\text{O} \iff \text{CH}_3\text{OH} + \text{CH}_2\text{O}$	5
84	$CH_3OH (+ M) \ll CH_3 + OH (+ M) (k\infty)$	2
85	$CH_3OH (+ M) <=> CH_3 + OH (+ M) (k0)$	2
86	$CH_3OH (+ M) \le CH_2(S) + H_2O (+ M) (k\infty)$	2
87	$CH_3OH (+ M) \le CH_2(S) + H_2O (+ M) (k0)$	2
88	$CH_3OH (+ M) \ll CH_2OH + H (+ M) (k\infty)$	5
89	$CH_3OH (+ M) <=> CH_2OH + H (+ M) (k0)$	5

$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	$H + CH_3O (+ M) \ll CH_3OH (+ M) (k\infty)$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	$H + CH_3O (+ M) \le CH_3OH (+ M) (k0)$	3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	92	$CH_2(S) + AR <=> CH_2 + AR$	1.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93	$CH_2(S) + H <=> CH + H_2$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94	$CH_2(S) + OH \ll CH_2O + H$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95	$CH_2(S) + H_2 <=> CH_3 + H$	3
$\begin{array}{llll} 98 & CH_2 + H_2 <=> H + CH_3 \\ 99 & CH_2 + CH_3 <=> H + C_2H_4 \\ 31 \\ 100 & CH_2 + H (+ M) <=> CH_3 (+ M) (k\infty) \\ 31 \\ 101 & CH_2 + H (+ M) <=> CH_3 (+ M) (k0) \\ 31 \\ 102 & CH_2 + OH <=> CH + H_2O \\ 31 \\ 103 & CH_2 + OH <=> CH_2O + H \\ 31 \\ 104 & CH_2 + CH_3OH <=> CH_2OH + CH_3 \\ 31 \\ 105 & CH_2 + CH_3OH <=> CH_3O + CH_3 \\ 31 \\ 106 & CH + H_2 <=> H + CH_2 \\ 31 \\ 107 & CH + H_2 (+ M) <=> CH_3 (+ M) (k\infty) \\ 31 \\ 108 & CH + H_2 (+ M) <=> CH_3 (+ M) (k0) \\ 31 \\ 109 & CH + OH <=> H + HCO \\ 31 \\ 110 & CH + CH_2 <=> H + C_2H_2 \\ 41 \\ 111 & CH_3OH + H <=> CH_2OH + H_2 \\ 41 \\ 112 & CH_3OH + CH_2 <=> CH_2OH + CH_2 \\ 41 \\ 113 & CH_3OH + OH <=> CH_2OH + OH \\ 51 \\ 114 & CH_3OH + OH <=> CH_2OH + H_2O \\ 51 \\ 115 & CH_3OH + OH <=> CH_2OH + H_2O \\ 51 \\ 116 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 117 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 118 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 119 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 110 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 111 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 112 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 113 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 114 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 115 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 116 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 117 & CH_3OH + COH_2 <=> CH_2OH + CH_2O \\ 51 \\ 118 & CH_3OH + CH_3 <=> CH_2OH + CH_4 \\ 31 \\ 120 & CH_3OH + CH_3 <=> CH_2OH + CH_4 \\ 31 \\ 130 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 31 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 32 \\ 140 & CH_2 + CH_3OH + CH_4 \\ 33 \\ 140 & CH_2 + CH_3OH + CH_4$	96	$CH_2(S) + CH_3 <=> H + C_2H_4$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	$CH_2 + CH_2 \iff 2 H + C_2H_2$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98	$CH_2 + H_2 <=> H + CH_3$	5
$\begin{array}{lllll} 101 & CH_2 + H (+ M) <=> CH_3 (+ M) (k0) & 3 \\ 102 & CH_2 + OH <=> CH + H_2O & 3 \\ 103 & CH_2 + OH <=> CH_2O + H & 3 \\ 104 & CH_2 + CH_3OH <=> CH_2OH + CH_3 & 3 \\ 105 & CH_2 + CH_3OH <=> CH_3O + CH_3 & 3 \\ 106 & CH + H_2 <=> H + CH_2 & 3 \\ 107 & CH + H_2 (+ M) <=> CH_3 (+ M) (k\infty) & 2 \\ 108 & CH + H_2 (+ M) <=> CH_3 (+ M) (k0) & 2 \\ 109 & CH + OH <=> H + HCO & 3 \\ 110 & CH + CH_2 <=> H + C_2H_2 & 6 \\ 111 & CH_3OH + H <=> CH_2OH + H_2 & 4 \\ 112 & CH_3OH + H <=> CH_2OH + OH & 5 \\ 114 & CH_3OH + OH <=> CH_2OH + OH & 5 \\ 115 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 115 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 116 & CH_3OH + OH <=> CH_2OH + HO_2 & 2 \\ 117 & CH_3OH + HC <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + OH <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + OH <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HCO <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HO_2 <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HO_2 <=> CH_2OH + CH_2O & 2 \\ 119 & CH_3OH + CH_3 <=> CH_2OH + CH_4 & 3 \\ \end{array}$	99	$CH_2 + CH_3 \iff H + C_2H_4$	3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	100	$CH_2 + H (+ M) <=> CH_3 (+ M) (k\infty)$	3
$\begin{array}{lllll} 103 & CH_2 + OH <=> CH_2O + H & 3 \\ 104 & CH_2 + CH_3OH <=> CH_2OH + CH_3 & 3 \\ 105 & CH_2 + CH_3OH <=> CH_3O + CH_3 & 3 \\ 106 & CH + H_2 <=> H + CH_2 & 3 \\ 107 & CH + H_2 (+ M) <=> CH_3 (+ M) (k\infty) & 2 \\ 108 & CH + H_2 (+ M) <=> CH_3 (+ M) (k0) & 2 \\ 109 & CH + OH <=> H + HCO & 3 \\ 110 & CH + CH_2 <=> H + C_2H_2 & 6 \\ 111 & CH_3OH + H <=> CH_2OH + H_2 & 4 \\ 112 & CH_3OH + H <=> CH_3O + H_2 & 4 \\ 113 & CH_3OH + OH <=> CH_2OH + OH & 5 \\ 114 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 115 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 116 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 116 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 116 & CH_3OH + OH <=> CH_2OH + CH_2O & 5 \\ 117 & CH_3OH + HCO <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HO_2 <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HO_2 <=> CH_2OH + CH_2O & 2 \\ 119 & CH_3OH + HO_2 <=> CH_2OH + H_2O_2 & 2 \\ 119 & CH_3OH + CH_3 <=> CH_2OH + CH_4 & 3 \\ \end{array}$	101	$CH_2 + H (+ M) <=> CH_3 (+ M) (k0)$	3
$\begin{array}{llll} 104 & CH_2 + CH_3OH <=> CH_2OH + CH_3 \\ 105 & CH_2 + CH_3OH <=> CH_3O + CH_3 \\ 106 & CH + H_2 <=> H + CH_2 \\ 107 & CH + H_2 (+ M) <=> CH_3 (+ M) (k\infty) \\ 108 & CH + H_2 (+ M) <=> CH_3 (+ M) (k0) \\ 109 & CH + OH <=> H + HCO \\ 110 & CH + CH_2 <=> H + C_2H_2 \\ 111 & CH_3OH + H <=> CH_2OH + H_2 \\ 112 & CH_3OH + H <=> CH_2OH + OH \\ 113 & CH_3OH + OH <=> CH_2OH + OH \\ 114 & CH_3OH + OH <=> CH_2OH + OH \\ 15 & CH_3OH + OH <=> CH_2OH + H_2O \\ 115 & CH_3OH + OH <=> CH_2OH + H_2O \\ 116 & CH_3OH + OH <=> CH_2OH + HO_2 \\ 117 & CH_3OH + HCO <=> CH_2OH + CH_2O \\ 118 & CH_3OH + HCO <=> CH_2OH + CH_2O \\ 119 & CH_3OH + HO_2 <=> CH_2OH + CH_2O \\ 119 & CH_3OH + HO_2 <=> CH_2OH + CH_2O \\ 119 & CH_3OH + HO_2 <=> CH_2OH + CH_2O \\ 120 & CH_3OH + CH_3 <=> CH_2OH + CH_4 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3$	102	$CH_2 + OH <=> CH + H_2O$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103	$CH_2 + OH <=> CH_2O + H$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104	$CH_2 + CH_3OH <=> CH_2OH + CH_3$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105	$CH_2 + CH_3OH <=> CH_3O + CH_3$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106	$CH + H_2 <=> H + CH_2$	3
$\begin{array}{llll} 109 & \text{CH} + \text{OH} <=> \text{H} + \text{HCO} & 3 \\ 110 & \text{CH} + \text{CH}_2 <=> \text{H} + \text{C}_2\text{H}_2 & 6 \\ 111 & \text{CH}_3\text{OH} + \text{H} <=> \text{CH}_2\text{OH} + \text{H}_2 & 4 \\ 112 & \text{CH}_3\text{OH} + \text{H} <=> \text{CH}_3\text{O} + \text{H}_2 & 4 \\ 113 & \text{CH}_3\text{OH} + \text{O} <=> \text{CH}_2\text{OH} + \text{OH} & 5 \\ 114 & \text{CH}_3\text{OH} + \text{OH} <=> \text{CH}_3\text{O} + \text{H}_2\text{O} & 5 \\ 115 & \text{CH}_3\text{OH} + \text{OH} <=> \text{CH}_2\text{OH} + \text{H}_2\text{O} & 5 \\ 116 & \text{CH}_3\text{OH} + \text{OH} <=> \text{CH}_2\text{OH} + \text{HO}_2 & 2 \\ 117 & \text{CH}_3\text{OH} + \text{HCO} <=> \text{CH}_2\text{OH} + \text{CH}_2\text{O} & 5 \\ 118 & \text{CH}_3\text{OH} + \text{HCO} <=> \text{CH}_2\text{OH} + \text{CH}_2\text{O} & 2 \\ 119 & \text{CH}_3\text{OH} + \text{HO}_2 <=> \text{CH}_2\text{OH} + \text{H}_2\text{O}_2 & 2 \\ 120 & \text{CH}_3\text{OH} + \text{CH}_3 <=> \text{CH}_2\text{OH} + \text{CH}_4 & 3 \\ \end{array}$	107	$CH + H_2 (+ M) <=> CH_3 (+ M) (k\infty)$	2
$\begin{array}{llll} 110 & CH + CH_2 <=> H + C_2H_2 & 6 \\ 111 & CH_3OH + H <=> CH_2OH + H_2 & 4 \\ 112 & CH_3OH + H <=> CH_3O + H_2 & 4 \\ 113 & CH_3OH + O <=> CH_2OH + OH & 5 \\ 114 & CH_3OH + OH <=> CH_3O + H_2O & 5 \\ 115 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 116 & CH_3OH + O_2 <=> CH_2OH + HO_2 & 2 \\ 117 & CH_3OH + HCO <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HO_2 <=> CH_2OH + CH_2O & 5 \\ 119 & CH_3OH + HO_2 <=> CH_2OH + H_2O_2 & 2 \\ 119 & CH_3OH + HO_2 <=> CH_3OH + H_2O_2 & 2 \\ 120 & CH_3OH + CH_3 <=> CH_2OH + CH_4 & 3 \\ \end{array}$	108	$CH + H_2 (+ M) <=> CH_3 (+ M) (k0)$	2
$\begin{array}{llll} 111 & CH_3OH + H <=> CH_2OH + H_2 & 4 \\ 112 & CH_3OH + H <=> CH_3O + H_2 & 4 \\ 113 & CH_3OH + O <=> CH_2OH + OH & 5 \\ 114 & CH_3OH + OH <=> CH_3O + H_2O & 5 \\ 115 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 116 & CH_3OH + O_2 <=> CH_2OH + HO_2 & 2 \\ 117 & CH_3OH + HCO <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HO_2 <=> CH_2OH + CH_2O & 5 \\ 119 & CH_3OH + HO_2 <=> CH_2OH + H_2O_2 & 2 \\ 119 & CH_3OH + HO_2 <=> CH_2OH + CH_2O & 2 \\ 120 & CH_3OH + CH_3 <=> CH_2OH + CH_4 & 3 \\ \end{array}$	109	$CH + OH \ll H + HCO$	3
$\begin{array}{llll} 112 & CH_3OH + H <=> CH_3O + H_2 & 4 \\ 113 & CH_3OH + O <=> CH_2OH + OH & 5 \\ 114 & CH_3OH + OH <=> CH_3O + H_2O & 5 \\ 115 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 116 & CH_3OH + O_2 <=> CH_2OH + HO_2 & 2 \\ 117 & CH_3OH + HCO <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HO_2 <=> CH_2OH + H_2O_2 & 2 \\ 119 & CH_3OH + HO_2 <=> CH_2OH + H_2O_2 & 2 \\ 120 & CH_3OH + CH_3 <=> CH_2OH + CH_4 & 3 \\ \end{array}$	110	$CH + CH_2 \ll H + C_2H_2$	6
$\begin{array}{llll} 113 & CH_3OH + O <=> CH_2OH + OH & 5 \\ 114 & CH_3OH + OH <=> CH_3O + H_2O & 5 \\ 115 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 116 & CH_3OH + O_2 <=> CH_2OH + HO_2 & 2 \\ 117 & CH_3OH + HCO <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HO_2 <=> CH_2OH + H_2O_2 & 2 \\ 119 & CH_3OH + HO_2 <=> CH_2OH + H_2O_2 & 2 \\ 120 & CH_3OH + CH_3 <=> CH_2OH + CH_4 & 3 \\ \end{array}$	111	$CH_3OH + H \Longleftrightarrow CH_2OH + H_2$	4
$\begin{array}{lll} 114 & CH_3OH + OH <=> CH_3O + H_2O & 5 \\ 115 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 116 & CH_3OH + O_2 <=> CH_2OH + HO_2 & 2 \\ 117 & CH_3OH + HCO <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HO_2 <=> CH_2OH + H_2O_2 & 2 \\ 119 & CH_3OH + HO_2 <=> CH_3O + H_2O_2 & 2 \\ 120 & CH_3OH + CH_3 <=> CH_2OH + CH_4 & 3 \\ \end{array}$	112	$CH_3OH + H \le CH_3O + H_2$	4
$\begin{array}{lll} 115 & CH_3OH + OH <=> CH_2OH + H_2O & 5 \\ 116 & CH_3OH + O_2 <=> CH_2OH + HO_2 & 2 \\ 117 & CH_3OH + HCO <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HO_2 <=> CH_2OH + H_2O_2 & 2 \\ 119 & CH_3OH + HO_2 <=> CH_3O + H_2O_2 & 2 \\ 120 & CH_3OH + CH_3 <=> CH_2OH + CH_4 & 3 \\ \end{array}$	113	$CH_3OH + O \iff CH_2OH + OH$	5
$ \begin{array}{llll} 116 & CH_3OH + O_2 <=> CH_2OH + HO_2 & 2 \\ 117 & CH_3OH + HCO <=> CH_2OH + CH_2O & 5 \\ 118 & CH_3OH + HO_2 <=> CH_2OH + H_2O_2 & 2 \\ 119 & CH_3OH + HO_2 <=> CH_3O + H_2O_2 & 2 \\ 120 & CH_3OH + CH_3 <=> CH_2OH + CH_4 & 3 \\ \end{array} $	114	$CH_3OH + OH <=> CH_3O + H_2O$	5
	115	$CH_3OH + OH <=> CH_2OH + H_2O$	5
	116	$CH_3OH + O_2 <=> CH_2OH + HO_2$	2
119 $CH_3OH + HO_2 \le CH_3O + H_2O_2$ 2 120 $CH_3OH + CH_3 \le CH_2OH + CH_4$ 3	117	$CH_3OH + HCO \iff CH_2OH + CH_2O$	5
120 $CH_3OH + CH_3 \le CH_2OH + CH_4$ 3	118	$CH_3OH + HO_2 <=> CH_2OH + H_2O_2$	2
	119	$CH_3OH + HO_2 <=> CH_3O + H_2O_2$	2
121 $CH_3O + CH_3OH <=> CH_3OH + CH_2OH$ 5	120	$CH_3OH + CH_3 \ll CH_2OH + CH_4$	3
	121	$CH_3O + CH_3OH <=> CH_3OH + CH_2OH$	5

 $\begin{tabular}{ll} \textbf{Table S3} \\ \textbf{The simulation condition of methanol flame for global sensitivity analysis.} \\ \end{tabular}$

Equivalance notic	Pressure	Flow rates (SLM)			
Equivalence ratio	(Torr)	CH ₃ O	O_2	Ar	Total
0.8	15	0.974	1.826	1.200	4.000

Fig. S4. The first order sensitivity indices and the sum of first and second order sensitivity indices of OH, CH, CH₂(S), CH₂O.