ANALISI

Autore: Gabriele Savino Data: 29/05/2025

1. Obiettivi

Obiettivo principale:

• Simulare l'allunaggio con i concetti imparati durante il corso.

Obiettivi secondari:

- Monitorare altitudine, velocità e carburante in tempo reale
- Verificare condizioni di atterraggio "sicuro" vs "crash"

2. Input Utente

Parametro	Descrizione	Range consentito
Massa navicella	Massa totale della navetta (kg)	1000 – 10000 kg
Potenza propulsori	Forza dei motori (N)	5000 – 20000 N
Carburante iniziale	Quantità di carburante disponibile (kg)	100 – 1000 kg

3. Mockup dell'Interfaccia

- Pannello di controllo (parametri + pulsanti)
- Canvas di simulazione con superficie lunare e navicella
- Indicatori di stato (altitudine, velocità, carburante)

4. Dati e Formule

· Gravità Lunare:

La gravità sulla superficie della Luna è costante e pari a:

$$g = 1,66 \text{ m/s}^2$$

• Costante di Gravitazione Universale:

Usata per calcoli teorici in ambienti più complessi, ma utile come riferimento:

$$G = 6,674 \times 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$$

Leggi del moto uniformemente accelerato:
 Utilizzate per aggiornare la velocità e la posizione della navicella nel tempo.

- v = v₀ + a·t
 (velocità finale = velocità iniziale + accelerazione × tempo)
- $s = s_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$ (spostamento = posizione iniziale + moto uniforme + moto accelerato)
- Equazione del tempo di discesa (senza resistenze): Questa formula permette di calcolare il tempo necessario alla navetta per atterrare da una certa altezza H, con velocità iniziale v_0 :

$$t = [-v_0 + \sqrt{(v_0^2 + 2 \cdot g \Box \cdot H)}] / g\Box$$

5. Lista dei Dati Necessari

- Massa navicella (kg)
- Potenza propulsori (N)
- Carburante disponibile (kg)
- Altitudine iniziale (m)
- Coordinate zona di atterraggio (px nel canvas)

6. Vincoli di Input

Variabile	Minimo	Massim
		0
Massa navicella	1000 kg	10000 kg
Potenza propulsori	5000 N	20000 N
Carburante iniziale	100 kg	1000 kg

7. Conclusioni dell'Analisi

- Principali sfide individuate
- Strategie di ottimizzazione (pre-calcoli, gradienti, ecc.)

Fine dell'analisi

Buona simulazione!