

Parts and assemblies engineering

Lab-2

The task

Design the overlap joint (rivet) between two stringers and the rib

The goals of task:

- Determine the number of rivets
- Calculate the diameter of rivet
- And determine the overlap joint position between two stringers and rib with pad
- Determine the thickness and dimensions of pad

1. Choose the task variant and obtain maximum tensile load for stringer:

$$P_{\text{max_str}} = A_{str} \cdot \sigma_{B_str} \text{ or } P_{\text{max_str}} = P \cdot 1.3$$

Type of stringer		Dimer	Cross-section area, $[mm^2]$		
710012	Н	В	S=S1	а	6E
	20	15	1.5	2	65

	Variants			
Variants	1	2	3	4
Type of stringers	710010	710003	710020	710012
P, N	13500	10000	190000	24000

2. Choose the materials of stringers, pad and skin

Table – Variants of Task

	Variants								
Variants	1	2	3	4	5	6	7		
Type of stringers	710010	710003	710020	710012	420069	420075	710017		
P, N	13500	10000	19000	24000	27000	38000	23000		

3. Preliminary diameter of rivet calculate by equation:

$$d_{\text{rivet}} = 2\sqrt{t_{total}}$$
, where $t_{total} = t_{str} + t_{skin} + t_{pad}$

 t_{str} = S or S1 - thickness of stringer, t_{skin} - thickness of skin, t_{pad} - thickness of pad

For preliminary calculation thickness of skin and pad equal 1.5 mm

4. Checking of tensile stress:

$$\sigma \leq [\sigma]$$
, where $\sigma = \frac{P_{\text{max_str}}}{A_{str} - d_{\text{rivet}} \cdot t_{str}}$

The value of $[\sigma]$ is equal to $[\sigma] = 0.8 \cdot \sigma_{B,srt}$;

5. Calculate the coefficient of safety η :

$$\eta = \frac{\lfloor \sigma \rfloor}{\sigma}$$
, ideally $\eta = [1...1.5]$

6. After assuming the material and diameter of the rivet we can calculate the requirable number of rivets :

$$n_{rivet} = \frac{P_{\text{max_str}}}{P_{rivet}};$$

where P_{rivet} - determine the cutting force of rivet with GOST 134104-80 data and the maximum number of rivets in a row along stringers axis a 5...6;

For different diameter of rivet find the minimum cutting force for rivet from the table (in the next slide)

Cutting force of rivet P_{rivet}, kN (1000*N)

Name of material

Мерке	Минимельные разрушающие нагрузки на одинарный сроз, $\frac{\kappa H}{\kappa rc}$ Диаметр заклепки d , мм														
чатериала		2	2	,6		3		,5		4	T	5		6	
-10	2,0	2,1	2,6	2,7	3,0	3,1	3,5	3,6	4,0	4,1	5,0	5,1	6,0	6,15	1
10	1,05	1,15	1,77 180,4	1,91 194,6	2,35	2,51 256,5	3,16	3,39 345,9	4.18	4,40	6,54 667,2	6,80 694,2	9,42	9,89 1009,5	
20Г2	-	-	-	-	-	-	4,65	4,98 508,7	6,15 628,0	6,47 659,8	9,62	10.00	13,85	14,55 1484,6	
2X18H9T	1,35	1,49	2,29	2,47 251,8	3,05	3,25	4,09	4,39	5,42 552,6	5,69 580,6	8,46 863,5	8,80	12,18	12,80 1306,4	
ХН78Т	-	-	-	-	3,12	3,33	4,19	4,49 457,8	5,54 565,2	5,82 593,8	883,1	9,00	-	-	
хнеовт	-	-	-	-	3,46	3,70	4,65	4,98 508.7	6,15 628,0	6,47 659,8	9,62	10,00	-	-	
B65	-	-	1,30	1,40	1,73	1,85	2,33	2,49 254,4	3,08	3,23	4,81	5,00 510,4	6,92 706,5	742,5	1
IRS-IMA	0,50	0,54 55,4	0,83	0.90	1,11	1,19	1,49 151,9	1,60 162,8	1,97	2,07	3,08	3,20	4,43	4,66 475,0	
дів	0,60	0,64	0,99	1,06 108,7	1,32	1,40	1,77 180,4	1,89	2,34 238,6	2,46 250,7	3,65	3,80	5,26 536,9	5,53 564,1	14.00
дзеп	-	-	1,46	1,57	1,94	2,07 211,2	2,60 265,8	2,79 284,9	3,45 351,7	3.62 369,5	5,38 549,5	<u>5,60</u> 571,7	7,75	8,15	
BT16	_	-	2,86	3,08	3,81	4,07	5,18	5,48 559,6	6,77 690,8	7,11	10.58 1079,4	11,00 1123,0	15,23 1554,3	16,00 1633,0	١١٥

Diameter of rivet d, mm

The cutting force P_{rivet}, [kN] for rivet with d=4 mm using 12X18H9T material

7. Check for crumbling of stringer under rivet:

$$\sigma_{crumbling} = \frac{P_{rivet}}{d_{rivet} \cdot t_{str}} \le 1.3 \dots 1.5 \cdot \sigma_{B,str};$$

8. And calculate the coefficient of safety η :

$$\eta = \frac{[\sigma]}{\sigma_{crumbling}}$$
, ideally $\eta = [1.2 \dots 1.6]$, $[\sigma] = 1.3 \cdot \sigma_{B,srt}$;

7. Check the coefficient of safety η for unevenly distributed force.

How we can see from last slide, the outer rivet has a maximum value from distributed force, so:

$$P_{rivet,outer} = 0.25 \cdot P_{\text{max_str}}$$

8. And calculate the coefficient of safety η :

$$\eta = \frac{P_{rivet}}{P_{rivet,outer}}$$
, ideally $\eta = [1.2 ... 1.6]$

9. Checking the edge distance m for cutting failure:

$$2 \cdot d_{\text{rivet}} \leq m \leq 2 \cdot d_{\text{rivet}} + 2$$
;

10. Calculate the actual shear stresses from cutting force:

$$\tau_{act} = \frac{P_{\text{max_riv}}}{2 \cdot m \cdot t_{str}} < \tau_B;$$

Where $\tau_B = (0.6 ... 065) \cdot \sigma_{B,str}$;

11. Analysis of pad:

Check the crumbling in A-A section, assuming the thickness and material of the pad:

$$\sigma_{crumbling,pad} = \frac{P_{\text{max_riv}}}{d_{\text{rivet}} \cdot t_{str}} \leq [\sigma]_{crumbling} = 1.3 \dots 1.5 \sigma_{B,pad};$$

One should use $\sigma_{B,riv}$ if $[\sigma]_{B,riv} \leq [\sigma]_{B,pad}$ in the upper expression;

12. Tension failure in A-A and B-B sections:

Calculating the stress:

$$\sigma_{A-A} = \frac{P_{\text{str}}}{A_{pad}}$$

$$\sigma_{A-A} = \frac{P_{\text{str}}}{t_{\text{pad}} \cdot (b_{min} - n_{rivet A-A} \cdot d_{rivet})} \le [\sigma]_{bear} = 1.3 \dots 1.5 \cdot \sigma_{B,pad};$$

where: k≈1,15...1,2 stress concentration factor

The minimum width b_{\min} of the pad in a section is obtained due to tension in section:

$$b_{\min A-A} = \frac{k \cdot P_{\max_riv}}{t_{\text{pad}} \cdot \sigma_{B_pad}} + n_{rivet\ A-A} \cdot d_{\text{rivet}}$$

where
$$n_{rivet A-A} = 1$$

 $n_{rivet\ A-A}$ -number of rivets in the section A-A (equal to 1) $\sigma_{B,pad}$ -strength of material of the pad

14. Calculate the length of the rivet:

For rivet joint the skin and stringers:

$$t_{stringer_skin} = t_{str} + t_{skin}$$

Check the length with GOST 1 10642-72

For rivet joint the skin, stringers and pad:

$$t_{total} = t_{str} + t_{skin} + t_{pad}$$

Check the length with GOST 1 10642-72

15. Sketch the joint and prepare the report of lab

Туре		Dime	Cross-section area, $[mm^2]$		
710010	Н	В	S=S1	а	37
710010	20	13	1.0	3	37

Туре		Dime	Cross-section area, $[mm^2]$		
710003	Н	В	S=S1	а	37
710003	15	18	1.0	3	37

Туре		Dime	Cross-section area, $[mm^2]$		
710020	Н	В	S=S1	а	52
710020	23	13	1.5	4	32

Туре		Dime	Cross-section area, $[mm^2]$		
710012	Н	В	S=S1	а	65
710012	20	15	1.5	2	03

Table – Variants-5

Туре		Din	Cross- section area, $[mm^2]$			
420060	Η	В	S	S1	R	82
420069	20	30	1.5	2.0	2.0	62

Table – Variants-6

Туре		Din	Cross- section area, $[mm^2]$			
420075	Н	В	S	S1	R	105
420075	20	38	2.0	1.5	2.0	105

Туре		Dime	Cross-section area, $[mm^2]$		
710017	Н	В	S=S1	а	98
710017	20	20	1.5	3.5	30

Table – Material Properties

Material	Ultimate tensile	Proof strength	Shear strength*	Modulus of	Shear modulus	Density,
	strength	σ_{02} , MPa	$\tau_{\rm B}, \tau_{\rm 02}$ (% of	elasticity	G,GPa	ρ g/cm^3
	$\sigma_{\rm B}$, MPa		tensile strength)	E, GPa		
			Sur Fingury			
30ХГСА	1100	850	63	210	78	7,85
Д16Т	450	300	50	72	28	2,8
BT20	1000	910	50	110	44	4,5

^{* -} ultimate shear strength and proof strength are approximated by taking the denoted percentage of tensile ultimate and proof strength respectively

Link for section data, variants and PPT

