Delivery 2 of AADL Model of The Smart Home System

Milestone of our project

Delivery Date	Milestones
Mar 13, 2017	Project proposal
Mar 20, 2017	Accomplishing the subcomponents and connections of implementation of the smart home system
Apr 03, 2017	Accomplishing the definition and implementation of the main control router model
Apr 10, 2017	Accomplishing the definition and implementation of the remote server and clients model
Apr 17, 2017	Accomplishing the definition and implementation of the zigbee controller and devices module
Apr 24, 2017	Identifying and Adding related modes and flows, which include nominal and error flows
May 01, 2017	Adding error and nominal behavior for error model

The overview of our project

Figure 1. The Overview of Smart Home System

2017-04-03

Overview

In this delivery, according to our milestone, we accomplished the definition and implementation of the model main control router, which includes four processes: zigbee device controller, IP device controller, remote msg control, and main controller. The following gives the implementation and the code of each process:

The Main Control Router Model

Figure 2. Main control router implementation

```
system MainControlRouter
       features
              in_mcr_remote: in event port;
              out_mcr_remote: out event port;
              in_mcr_zd:
                               in event port;
              out_mcr_zd:
                               out event port;
              in_mcr_ipd:
                               in event port;
              out_mcr_ipd:
                               out event port;
end MainControlRouter;
system implementation MainControlRouter.impl
       subcomponents
              ZIGBEE_DEVICE_CONTROLLER: process Zigbee_Device_Controller;
              IP_DEVICE_CONTROLLER: process IP_Device_Controller;
              REMOTE_MSG_CONTROL: process Remote_Msg_Control;
              MAIN CONTROLLER: process Main Controller;
       connections
              c1: port in_mcr_zd -> ZIGBEE_DEVICE_CONTROLLER.dev_data_receiver;
              c2: port ZIGBEE_DEVICE_CONTROLLER.dev_data_sender -> out_mcr_zd;
              c3: port in mcr remote -> REMOTE MSG CONTROL.app data receiver;
              c4: port REMOTE_MSG_CONTROL.app_data_sender -> out_mcr_remote;
              c5: port in_mcr_ipd -> IP_DEVICE_CONTROLLER.dev_data_receiver;
              c6: port IP_DEVICE_CONTROLLER.dev_data_sender -> out_mcr_ipd;
              c7: port Main Controller.zdc data sender ->
Zigbee_Device_Controller.ctr_data_receiver;
              c8: port Main_Controller.ipdc_data_sender ->
IP_Device_Controller.ctr_data_receiver;
              c9: port Main Controller.remote data sender ->
Remote_Msg_Control.ctr_data_receiver;
              c10: port Zigbee_Device_Controller.ctr_data_sender ->
Main Controller.zdc data receiver;
              c11: port IP_Device_Controller.ctr_data_sender ->
Main_Controller.ipdc_data_receiver;
              c12: port Remote_Msg_Control.ctr_data_sender ->
Main Controller.remote data receiver;
```

end MainControlRouter.impl;

Figure 3. Zigbee Device controller implementation

```
process Zigbee_Device_Controller
       features
              dev_data_receiver: in event port;
              dev_data_sender:
                                  out event port;
              ctr_data_receiver: in event port;
              ctr_data_sender:
                                  out event port;
end Zigbee_Device_Controller;
process implementation Zigbee_Device_Controller.impl
       subcomponents
              DEV_ZDC : thread Dev_ZDC;
              CTR ZDC
                       : thread Ctr_ZDC;
       connections
              c1: port dev_data_receiver -> DEV_ZDC.dev_data_receiver;
              c2: port ctr_data_receiver -> CTR_ZDC.ctr_data_receiver;
              c3: port DEV_ZDC.dev_data_sender -> dev_data_sender;
              c4: port CTR_ZDC.ctr_data_sender -> ctr_data_sender;
end Zigbee_Device_Controller.impl;
thread Dev ZDC
       features
              dev_data_receiver: in event port;
              dev data sender: out event port;
end Dev_ZDC;
thread Ctr ZDC
       features
              ctr_data_receiver: in event port;
              ctr_data_sender: out event port;
end Ctr ZDC;
```


Figure 4. IP device controller implementation

```
process IP_Device_Controller
       features
              dev_data_receiver: in event port;
              dev_data_sender: out event port;
              ctr_data_receiver: in event port;
              ctr data sender: out event port;
end IP_Device_Controller;
process implementation IP_Device_Controller.impl
              subcomponents
              DEV_IPDC : thread Dev_IPDC;
                       : thread Ctr_IPDC;
              CTR_IPDC
       connections
              c1: port dev_data_receiver -> DEV_IPDC.dev_data_receiver;
              c2: port ctr_data_receiver -> CTR_IPDC.ctr_data_receiver;
              c3: port DEV_IPDC.dev_data_sender -> dev_data_sender;
              c4: port CTR_IPDC.ctr_data_sender -> ctr_data_sender;
end IP_Device_Controller.impl;
thread Dev_IPDC
       features
              dev_data_receiver: in event port;
              dev_data_sender: out event port;
end Dev IPDC;
thread Ctr IPDC
              ctr data receiver: in event port;
              ctr_data_sender: out event port;
end Ctr IPDC;
```


Figure 5. Remote Msg control implementation

```
process Remote_Msg_Control
       features
               app_data_receiver: in event port;
               app data sender:
                                  out event port;
               ctr_data_receiver: in event port;
               ctr_data_sender: out event port;
end Remote_Msg_Control;
process implementation Remote_Msg_Control.impl
       \dot{\text{subcomponents}}
              APP_RMC
CTL_RMC
                         : thread App_RMC;
                        : thread Ctr_RMC;
       connections
               c1: port app_data_receiver -> APP_RMC.app_data_receiver;
               c2: port ctr data receiver -> CTL RMC.ctr data receiver;
               c3: port APP_RMC.app_data_sender -> app_data_sender;
               c4: port CTL_RMC.ctr_data_sender -> ctr_data_sender;
end Remote_Msg_Control.impl;
thread App_RMC
       features
               app_data_receiver: in event port;
               app_data_sender: out event port;
end App_RMC;
thread Ctr_RMC
       features
               ctr_data_receiver: in event port;
               ctr_data_sender: out event port;
end Ctr_RMC;
```


Figure 6. Main controller implementation

```
process Main Controller
       features
              zdc_data_receiver: in event port;
              zdc_data_sender: out event port;
              ipdc_data_receiver: in event port;
              ipdc_data_sender: out event port;
              remote_data_receiver: in event port;
              remote_data_sender:
                                    out event port;
end Main_Controller;
process implementation Main_Controller.impl
       subcomponents
              MSG_RECEIVER :thread Msg_receiver;
              MSG_SENDER :thread Msg_Sender;
       connections
              c1: port zdc_data_receiver -> MSG_RECEIVER.zdc_data_receiver;
              c2: port ipdc data receiver -> MSG RECEIVER.ipdc data receiver;
              c3: port remote_data_receiver -> MSG_RECEIVER.remote_data_receiver;
              c4: port Msg_Sender.zdc_data_sender -> zdc_data_sender;
              c5: port Msg_Sender.ipdc_data_sender -> ipdc_data_sender;
              c6: port Msg_Sender.remote_data_sender -> remote_data_sender;
end Main_Controller.impl;
Thread Msg_Receiver
       features
              zdc_data_receiver: in event port;
              ipdc_data_receiver: in event port;
              remote_data_receiver: in event port;
end Msg_Receiver;
Thread Msg_Sender
       features
              zdc_data_sender:
                               out event port;
              ipdc_data_sender: out event port;
              remote_data_sender:
                                   out event port;
end Msg Sender;
```