Note On Quantum Field Theory

WEI YUAN

ABSTRACT. Enter abstract here

1. FIELD OPERATORS

1.1. Distributions.

Definition 1.1. Let $S(\mathbb{R}^n)$ be the Schwartz space of rapidly decreasing smooth functions, that is the complex vector space of all functions $f: \mathbb{R}^n \to \mathbb{C}$ with continuous partial derivatives of any order for which

(1)
$$|f|_{p,k} = \sup_{|\alpha| \le q} \sup_{x \in \mathbb{R}^n} |\partial^{\alpha} f(x)| (1+|x|^2)^k < \infty,$$

for all $p, k \in \mathbb{N}$ and $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{N}^n$.

Definition 1.2. A tempered distribution T is a linear functional $T: \mathcal{S} \to \mathbb{C}$ which is continuous with respect to all the seminorms $|.|_{p,k}$ defined in eq. (1), $p,k \in \mathbb{N}$.

Example 1.1. (1) Let $g \in L^{\infty}(\mathbb{R}^n)$.

$$T_g(f) = \int_{\mathbb{R}^n} g(x)f(x)dx, \quad f \in \mathcal{S}.$$

(2) The delta distribution given by

$$\delta_y: f \to f(y), \qquad f \in \mathcal{S}.$$

If T is a tempered distribution, then

$$\langle \partial^{\alpha} T, f \rangle = \langle T, (-1)^{|\alpha|} \partial^{\alpha} f \rangle,$$

i.e.,

$$\partial^{\alpha} T(f) = (-1)^{|\alpha|} T(\partial^{\alpha} f), \qquad f \in \mathcal{S}.$$

Example 1.2. Let \varkappa be the characteristic function of $[0, \infty)$. Then

$$\frac{d}{dt}T_{\varkappa}(f) = -\int_0^\infty f'(x)dx = f(0) = \delta_0(f).$$

Proposition 1.1. Every tempered distribution T has a representation as a finite sum of derivatives of continuous functions of polynomial growth, that is there exist $g_{alpha}: \mathbb{R}^n \to \mathbb{C}$ such that

$$T = \sum_{0 \le |\alpha| \le k} \partial^{\alpha} T_{g_{\alpha}}.$$

For a polynomial $P(x) = c_{\alpha}X^{\alpha} \in \mathbb{C}[x_1,...,x_n]$ in n variables with complex coefficients $c_{\alpha} \in \mathbb{C}$ on obtains the partial differential operator

$$P(i\partial) = c_{\alpha}(i\partial)^{\alpha} = \sum_{\alpha} (i)^{|\alpha|} c_{\alpha_1,\dots,\alpha_2} \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n}.$$

²⁰¹⁰ Mathematics Subject Classification. Primary 47L75; Secondary 15A30. Key words and phrases. Mobius function.

Example 1.3. (1) $P(x) = -(x_1^2 + \dots + x_n^2)$ gives the Laplace operator $\Delta = \partial_1^2 + \dots + \partial_n^2$.

(2)
$$P(x) = -x_0^2 + x_1^2 + \dots + x_n^2$$
 gives the Laplace-Beltrami operator
$$\Box = \partial_0^2 - (\partial_1^2 + \dots + \partial_n^2).$$

For any $f \in \mathcal{S}$, let

$$(\mathfrak{F}f)(x) = \hat{f}(p) = \int_{\mathbb{R}^n} f(x)e^{-i\langle x,p\rangle} dx$$

be the Fourier transform of f. The inverse Fourier transform of f is

$$(\mathfrak{F}^{-1}\hat{f})(x)=f(x)=\frac{1}{(2\pi)^n}\int_{\mathbb{R}^n}\hat{f}(p)e^{i\langle p,x\rangle}dp.$$

Note that

$$\mathfrak{F}(\partial_k f)(p) = \int_{\mathbb{R}^n} \partial_k f(x) e^{-i\langle x,p\rangle} dx = -\int_{\mathbb{R}^n} f(x) \partial_k e^{-i\langle x,p\rangle} dx = i p_k \mathfrak{F}(f)(p).$$

Similarly, we have

$$\mathfrak{F}^{-1}(\partial_k \hat{f})(x) = -ix_k \mathfrak{F}^{-1}(\hat{f})(x).$$

Definition 1.3. For any tampered distribution T, let

$$\mathfrak{F}(T)(f) = (T \circ \mathfrak{F})(f) = T(\mathfrak{F}(f)).$$

If P(p) is a polynomial, then

$$PT(f) = T(Pf).$$

Example 1.4. (1) $\mathfrak{F}(\delta_0)(f) = \mathfrak{F}(f)(0) = \int_{\mathbb{R}^n} f(x) dx$, therefore $\mathfrak{F}(\delta_0) = 1$.

(2)

$$\mathfrak{F}^{-1}(e^{i\langle p,y\rangle})=\delta_{x-y}.$$

Remark 1.1. *Let* T *be a tempered distribution and* $f \in S$.

$$\partial_k \circ \mathfrak{F}(T)(f) = T(\mathfrak{F}(\partial_k f)) = T(ip_k \mathfrak{F}(f)) = \mathfrak{F}(ip_k T)(f).$$

And

$$\mathfrak{F}(i\partial_k T)(f) = T(i\partial_k \mathfrak{F}(f)) = T(\mathfrak{F}(x_k f)) = (x_k \mathfrak{F}(T))(f)$$

1.2. **Klein-Gordon Equation.** Consider the Klein-Gordon Equation with mass m > 0:

$$(2) \qquad (\Box + m^2)T_1 = T_2,$$

where T_i , i = 1, 2 are tempered distribution.

If $T_2 = \delta_0$, then by applying the Fourier transform on both side of eq. (2), we only need to solve the division problem

$$(-\mathbf{p}^2+m^2)T=1,$$

where $\mathbf{p}^2 = p_0^2 - (p_1^2 + \dots + p_{n-1}^2)$.

Consider the homogeneous equation

$$(\Box - m^2)f = 0 \Longleftrightarrow (\mathbf{p}^2 - m^2)\hat{f} = 0.$$

1.3. Fields Operators.

Definition 1.4. *Let* A *be a closed operator. The spectrum of* A *is*

$$\sigma(A) = \{z \in \mathbb{C} : (zI - A)^{-1} \text{ is not a bounded operator.} \}$$

Definition 1.5. Let $\mathfrak{O}(\mathcal{H})$ be the set of all densely defined operators in \mathcal{H} . A field operator or quantum field is an operator-valued distribution (on \mathbb{R}^n), this is a map

$$\Phi: \mathcal{S}(\mathbb{R}^n) \to \mathfrak{O}(\mathcal{H})$$

such that there exists a dense subspace $\mathfrak{D} \subset \mathcal{H}$ satisfying

- (1) For each $f \in S$ the domain of $\Phi(f)$ contains \mathfrak{D} .
- (2) The induced map $f \to \Phi(f)|_{\mathfrak{D}}$ is linear.
- (3) For each $\xi \in \mathfrak{D}$ and $\beta \in \mathcal{H}$ the assignment $f \to \langle \Phi(f)\xi, \beta \rangle$ is a tempered distribution.
- 1.4. **Wightman Axioms.** Let $M = \mathbb{R}^{1,D-1}$ be the D-dimensional Minkowski space with the (Lorentz) metric

$$\langle x, x \rangle = (x^0)^2 - \sum_{j=1}^{D-1} (x^j)^2, \qquad x = (x^0, \dots, x^{D-1}) \in M.$$

Two subsets $X, Y \subset M$ are called to be space-like separated if for any $x \in X$ and $y \in Y$ we have

$$(x^0 - y^0) - \sum_{i=1}^{D-1} (x^j - y^j)^2 < 0.$$

The forward cone is

$$C_{+} = \{x \in M : \langle x, x \rangle \ge 0, x^{0} \ge 0\}$$

and the **causal order** is given by $x \ge y$ iff $x - y \in C_+$.

Let P = P(1, D - 1) be the *Poincaré* group and $L = SO_0(1, D - 1) \subset GL(D, \mathbb{R})$ be the identity component of the orthogonal group O(1, D - 1) preserving the metric. It is know that $P = \mathbb{R}^D \rtimes L$, where \mathbb{R}^D represents the translation group.

The *Poincaré* group acts on S by

$$g \cdot f(x) = f(g^{-1}x), \quad g \in P, \quad f \in S.$$

If $g = (q, \Lambda) \in \mathbb{R}^D \times L$, then

$$g \cdot f(x) = (q, \Lambda) f(x) = f(\Lambda^{-1}(x - q)).$$

Let $\widetilde{P} = \mathbb{R}^D \rtimes Spin(1, D-1)$ for D > 2 where $Spin(1, D-1) = \widetilde{L}$ is the spin group, the universal covering group of the Lorentz group L = SO(1, D-1).

Remark 1.2. The Lorentz group is six-dimensional. The following gives a basis of the Lie algebra:

The subgroup generated by J_{01} is

$$\begin{pmatrix} \cosh\theta & \sinh\theta & 0 & 0 \\ \sinh\theta & \cosh\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The subgroup generated by J_{12} is

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

We can identify \mathbb{R}^4 with the space of 2 by 2 complex self-adjoint matrices by

$$(p_0, p_1, p_2, p_3) \leftrightarrow \begin{pmatrix} p_0 + p_3 & p_1 - ip_2 \\ p_1 + ip_2 & p_0 - p_3 \end{pmatrix}$$

and observe that

$$\det\begin{pmatrix} p_0 + p_3 & p_1 - ip_2 \\ p_1 + ip_2 & p_0 - p_3 \end{pmatrix} = p_0^2 - p_1^2 - p_2^2 - p_3^2.$$

The for any $\Lambda \in SL_2(\mathbb{C})$, it is obviously that the following map preserves the determinant and self-adjointness:

$$\begin{pmatrix} p_0+p_3 & p_1-ip_2 \\ p_1+ip_2 & p_0-p_3 \end{pmatrix} \to \Lambda \begin{pmatrix} p_0+p_3 & p_1-ip_2 \\ p_1+ip_2 & p_0-p_3 \end{pmatrix} \Lambda^*$$

Note that both Λ and $-\Lambda$ give the same linear transformation. This implies that $SL_2(\mathbb{C})$ is a double covering of SO(1,3). Thus $spin(1,3) \simeq SL_2(\mathbb{C})$.

Now assume that we have a unitary representation of \widetilde{P} which will be denoted by

$$U: \widetilde{P} \to U(\mathcal{H}), \qquad (q, \Lambda) \to U(q, \Lambda), \qquad (q, \Lambda) \in \mathbb{R}^D \rtimes \widetilde{L}.$$

By Stone's Theorem, there exist D self-adjoint closed operator $P_0, P_1, \ldots, P_{D-1}$ such that

$$U(q,1) = e^{i(q^0 P_0 - q^1 P_1 - \dots - q^{D-1} P_{D-1})},$$

where $q_i \in \mathbb{R}$. P_0 is interpreted as the energy operators and P_j , j > 0 as the components of th momentum.

Wightmen Axioms. A Wightman quantum field theory in dimension D consists of the following data:

- the space of states, which is the projective space $P(\mathcal{H})$ of a separable complex Hilbert space \mathcal{H} ;
- the vacuum vector $\Omega \in \mathcal{H}$ of norm 1;
- a unitary representation $U : \widetilde{P} \to U(\mathcal{H})$ of \widetilde{P} ;
- a collection of field operator Φ_a , $a \in I$,

$$\Phi_a: \mathcal{S} \to \mathfrak{O}(\mathcal{H})$$
,

with a dense subspace $D \subset \mathcal{H}$ as their common domain (that is the domain $\mathfrak{D}(\Phi_a(f))$ contains \mathfrak{D} for all $a \in I$ and $f \in S$) such that $\Omega \in \mathfrak{D}$.

This data satisfy the following three axioms:

Axiom 1(Covariance)

(1) Ω is \widetilde{P} -invariant, i.e.,

$$U(q,\Lambda)\Omega = \Omega, \quad \forall (q,\Lambda) \in \widetilde{P},$$

and \mathfrak{D} is \widetilde{P} -invariant, i.e.,

$$U(q,\Lambda)\mathfrak{D}\subset\mathfrak{D}, \qquad \forall (q,\Lambda)\in\widetilde{P};$$

(2)

$$\Phi_a(f)\mathfrak{D}\subset\mathfrak{D}, \quad \forall f\in\mathcal{S}, \text{ and } a\in I;$$

(3)

$$U(q,\Lambda)\Phi_a(f)U(q,\Lambda)^* = \Phi_a((q,\Lambda)f), \quad \forall f \in \mathcal{S} \text{ and } (q,\Lambda) \in \widetilde{P}.$$

Axiom 2(Locality) $\Phi_a(f)$ and $\Phi_b(g)$ commute on $\mathfrak D$ if the supports of $f,g\in\mathcal S$ are space-like separated, that is on $\mathfrak D$

$$[\Phi_a(f), \Phi_b(f)] = 0.$$

Axiom 3(Spectrum Condition) The joint spectrum of the operators P_j is contained in the forward cone C_+ , i.e., the eigenvalues rector $(p_0, p_1, \dots, p_{D-1}) \in C_+$.

Remark 1.3. It is customary to require that the vacuum is cyclic in the sense that the subspace $\mathfrak{D}_0 \subset \mathfrak{D}$ spanned by all vectors

$$\Phi_{a_1}(f_1)\Phi_{a_2}(f_2)\cdots\Phi_{a_m}(f_m)\Omega$$

is dense in D.

As an additional axiom, one can require the vacuum Ω to be unique:

Axiom 4(Uniqueness of the Vacuum) The only vectors in \mathcal{H} left invariant by the translations U(q,1), $q \in \mathbb{R}^D$, are the scalar multiples of the vacuum Ω .

Example 1.5 (Free Bosonic QFT). Let

$$\Gamma_m = \{(p_0, p_1, p_2, p_3) \in \mathbb{R}^{(1,3)} : \langle p, p \rangle = p_0^2 - p_1^2 - p_2^2 - p_3^2 = m^2, p_0 > 0\}.$$

Then

$$\rho: \mathbb{R}^3 \to \Gamma_m, (p_1, p_2, p_3) \to (\sqrt{p_1^2 + p_2^2 + p_3^2 + m^2}, p_1, p_2, p_3),$$

is an isomorphism. In the sequel, denote $\sqrt{p_1^2 + p_2^2 + p_3^2 + m^2}$ with $\omega(p)$ for any $p = (p_1, p_2, p_3) \in \mathbb{R}^3$.

Let λ_m be the invariant measure on Γ_m given by

$$\int_{\Gamma_m} f(\rho(\mathbf{p})) d\lambda_m(\rho(\mathbf{p})) = \int_{\mathbb{R}^3} \frac{h(\mathbf{p})}{2\sqrt{\mathbf{p}^2 + m^2}} d\mathbf{p},$$

where $\mathbf{p}^2 = p_1^2 + p_2^2 + p_3^2$. Let

$$\Lambda = \begin{pmatrix} \cosh(x) & \sinh(x) & 0 & 0\\ \sinh(x) & \cosh(x) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The isometry

$$\begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{pmatrix} \rightarrow \begin{pmatrix} \cosh(x) & \sinh(x) & 0 & 0 \\ \sinh(x) & \cosh(x) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{pmatrix},$$

induced the map form \mathbb{R}^3 onto \mathbb{R}^3

$$\begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \rightarrow \begin{pmatrix} \sinh(x)\sqrt{m^2 + \mathbf{p}^2} + \cosh(x)p_1 \\ p_2 \\ p_3 \end{pmatrix}.$$

The Jacobi of this transformation is

$$\frac{\sinh(x)p_1+\cosh(x)p_0}{\sqrt{m^2+\mathbf{p}^2}}.$$

Therefore it is easy to see that the measure $d\lambda_m$ is invariant.

Let $\mathcal{H}_1 = L^2(\Gamma_m, d\lambda_m)$ and H_n be the space of rapidly decreasing functions on the n-fold product of the upper hyperboloid Γ_m which are symmetric in the variables $(\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n) \in \Gamma_m^m (H = \mathcal{S}(\Gamma_m))$. H_n has the inner product

$$\langle u,v\rangle=\int_{\Gamma_m^n}u(\mathbf{p}_1,\ldots,\mathbf{p}_n)\bar{v}(\mathbf{p}_1,\ldots,\mathbf{p}_n)d\lambda_m(\mathbf{p}_1)\ldots d\lambda_m(\mathbf{p}_n).$$

The Hilbert space completion of H_n well be denoted by \mathcal{H}_n . Let

$$\mathfrak{D} = \bigoplus_{n=0}^{\infty} H_n$$

 $(H_0 = \mathbb{C} \text{ with the vacuum } \Omega = 1 \in H_0)$ has a natural inner product given by

$$\langle f, g \rangle = f_0 \bar{g}_0 + \sum_{n \geq 1} \frac{1}{n!} \langle f_n, g_n \rangle,$$

where $f = (f_0, f_1, ...), (g_0, g_1, ...) \in \mathfrak{D}$. The completion of \mathfrak{D} w.r.t this inner product is the Fock space \mathcal{H} .

Let
$$f \in \mathcal{S}(\mathbb{R}^4)$$
 and $g = (g_0, g_1, \ldots) \in \mathfrak{D}$. Define $\Phi(f)$ by
$$(\Phi(f)g)_n(\mathbf{p_1}, \ldots, \mathbf{p_n}) = \int_{\Gamma_m} \hat{f}(\mathbf{p})g_{N+1}(\mathbf{p}, \mathbf{p_1}, \ldots, \mathbf{p_n})d\lambda_n(\mathbf{p}) + \sum_{i=1}^n \hat{f}(-\mathbf{p}_j)g_{n-1}(\mathbf{p_1}, \ldots, \hat{\mathbf{p}_j}, \ldots, \mathbf{p_n}).$$

Note that for any $f \in \mathcal{S}(\mathbb{R}^4)$, we have $\Phi(\Box f - m^2 f) = 0$ since

$$\mathfrak{F}(\Box f - m^2 f) = (-\mathbf{p}^2 + m^2)\hat{f}$$

vanishes on Γ_m .

REFERENCES

[1] H.Davenport On some infinite series involving arithmetical functions(II). Quarterly Journal of Mathematics, 8, 313-320, 1937.

AMSS