Contrôle de cours APEF (1 heure)

Nom:	Prénom :	Classe:
N.B.: Le barème est	sur 20 points.	Note : /20
1 Polynômes ((7 points)	
Les questions sont inc	dépendantes.	
1. Soit $(A, B) \in (\mathbb{R}[A])$	$(X]^2$ avec $B \neq 0$. Énoncer le théorème de la division	euclidienne de A par B .
2. Soient $P \in \mathbb{R}[X]$	et $a \in \mathbb{R}$. On suppose que a est une racine d'ordre d	e multiplicité exactement 3 de P .
(a) En termes de	divisibilité, que cela signifie-t-il?	
(b) Donner une co	ondition nécessaire et suffisante sur P et ses dérivées	pour être dans ce cas là.
	e degré strictement supérieur à 3. Mettre les symbolest possible, mettre une croix.	les \Longrightarrow , \Longleftrightarrow ou \Longleftrightarrow à la place des pointillés. Si
a) $X+3 P \dots$		0 et $P'(1) = 0$ c) $X \mid P \dots P(X) = X^4 - X$
d) $P(0) = P(2) =$	= 0 $X^2 - 2X P$ e) $P'(1) = 0$ $(X - 2X)^2 = 0$	$-1) \mid P$
4. Donner l'ordre de	e multiplicité exact de la racine 1 de $P(X) = (X - 1)$	$)^4(X^2-X)$. Justifier.
5. Donner un exemplo 3 et tel que $P(-3)$	le d'un polynôme $P \in \mathbb{R}[X]$, de degré 6 qui admet -1 $S = P'(-3) = 0$.	comme racine d'ordre de multiplicité exactement
6. Soit $P(X) = X^5$ (justifier brièvement)	$2X + 4)^2(X^2 - 5X + 6)(X^2 + X + 3)$. Écrire P comment).	ne produit de polynômes irréductibles dans $\mathbb{R}[X]$

2 Équations différentielles linéaires du premier ordre (5,5 points)

Soient a, b et c trois fonctions continues sur \mathbb{R} telles que $\forall t \in \mathbb{R}$, $a(t) \neq 0$.

On considère les équations différentielles (E): a(t)y'(t)+b(t)y(t)=c(t) et $(E_0): a(t)y'(t)+b(t)y(t)=0$.

On note S l'ensemble des solutions de (E) et S_0 l'ensemble des solutions de (E_0) .

Un professeur demande à un élève d'expliciter précisément l'ensemble S_0 au tableau. L'élève note alors :

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & ke^{-F(t)} \end{array}, k \in \mathbb{R} \right\}.$$

1.	Le professeur demande à l'élève d'être plus précis et d'écrire F en fonction de a et de b . Qu'écrit l'élève ? Vous donnerez
	aussi F' en fonction de a et de b .

.....

2.	Montrer l'inclusion	$S_0 \subset \left\{ \begin{array}{c} \mathbb{R} \\ t \end{array} \right.$	$\longrightarrow \mathbb{R}$ $\longmapsto ke^{-F(t)}$	$, k \in \mathbb{R}$. On adn	net l'inclusion réciproq	ue.	
						• • • • • • • • • • • • • • • • • • • •	• • • •

• • • •	 	 	• • •	 • •	 • •	• • •	 • •	• •	• •	٠.	• •	٠.	• •	• •	• •	• •	• •	• • •	 	٠.	• •	• •	• •	 • •	• •	 • •	• •	• •	 	• •	 • •	• •	٠.	• •	 	• •	٠.	 • • •
	 	 		 	 ٠.		 ٠.		٠.	٠.									 	٠.				 		 ٠.	٠.		 		 ٠.		٠.		 			
	 	 		 • •	 		 												 				• • •	 		 			 		 ٠.				 			
	 	 		 • •	 		 												 				• •	 		 			 		 				 			
	 	 		 	 		 ٠.												 					 		 ٠.	٠.		 		 ٠.				 			

 • • • • •	 	 • • • •	• • • •	 • • • •	 	• • • •	 	 	 • • • •	• • • •	 • • • •	 • • • •	• • •	 	 • • • •
 • • • •	 	 		 	 		 	 	 		 	 		 	
 • • • •	 	 		 	 	• • • •	 	 	 		 	 		 	

3.	Soit y_p une solution particulière de (E) . Donner S en fonction de S_0 et y_p .

- $4. \ \ Continuer \ les \ 2 \ phrases \ suivantes.$

3 Équations différentielles linéaires du second ordre (2 points)

On considère l'équation différentielle (E) ay'' + by' + cy = 0 où $(a, b, c) \in \mathbb{R}^3$ avec $a \neq 0$. On note (C) l'équation caractéristique associée à (E). Continuer les phrases ci-dessous : 2. Si 3 et -4 sont les deux racines réelles de (C) alors l'ensemble des solutions de (E) est formé des fonctions de la forme : 3. Si -2+3i est une des deux racines complexes de (C) alors l'ensemble des solutions de (E) est formé des fonctions de la forme: 4. Si (C) admet -7 comme racine double réelle alors l'ensemble des solutions de (E) est formé des fonctions de la forme : Étude locale de fonctions (5,5 points) Les questions sont indépendantes. 1. Donner le développement limité au voisinage de 0 à l'ordre 4 de (a) $\ln(1+x)$. Le DL est : $\ln(1+x) = \dots$ (b) $\sin(x)$. Le DL est : $\sin(x) = \dots$ 2. Soient f et g deux fonctions telles qu'au voisinage de 0, $f(x) = x - 2x^2 + x^3 + o(x^3)$ et $g(x) = 1 + 3x - x^2 + o(x^2)$. (a) Donner (sans justifier) un équivalent simple en 0 de f(x) et de g(x) - 1. (b) Donner une autre façon d'écrire $o(x^3)$. (c) À quel ordre maximal peut-on avoir le DL de f(x) + g(x)? Trouver ce DL dans ce cas là. (d) Donner le DL à l'ordre 2 de $f(x) \times g(x)$