SM

PyR@TE 3.0

7 April 2020, 14:46

Contents

1	Mo	Model					
	1.1	Gauge groups					
	1.2	Fermions					
	1.3	Scalars					
2	Lagrangian						
	2.1	Definitions					
	2.2	Yukawa couplings					
	2.3	Quartic couplings					
	2.4	Scalar mass couplings					
3	Renormalization Group Equations						
	3.1	Convention					
	3.2	Definitions and substitutions					
	3.3	Gauge couplings					
	3.4	Yukawa couplings					
	3.5	Quartic couplings					
	3.6	Scalar mass couplings					
	3.7	Vacuum-expectation values					
A	Gro	oup theoretical information					
		Gauge groups					

1 Model

1.1 Gauge groups

Name	Type	Abelian	Coupling constant
U1Y	U(1)	True	g_1
SU2L	SU(2)	False	g_2
SU3c	SU(3)	False	g_3

1.2 Fermions

Name	Generations	$U1Y \times SU2L \times SU3c$
Q	3	$(+rac{1}{6},{f 2},{f 3})$
L	3	$(-rac{1}{2},{f 2},{f 1})$
u_R	3	$(+rac{2}{3}, {f 1}, {f 3})$
d_R	3	$(-rac{1}{3}, {f 1}, {f 3})$
e_R	3	(-1, 1 , 1)

1.3 Scalars

Name	Complex	Expression	Generations	$U1Y \times SU2L \times SU3c$
H	True	$\frac{1}{\sqrt{2}} \left(\Pi + i \Sigma \right)$	1	$(+\frac{1}{2},{f 2},{f 1})$

2 Lagrangian

2.1 Definitions

$$\tilde{H}_i = \epsilon_{i,j} H_j^{\dagger}$$

2.2 Yukawa couplings

$$-\mathcal{L}_{Y} = +Y_{uf_{1},f_{2}}\widetilde{H}_{i}\overline{Q}_{f_{1},i,a}u_{Rf_{2},a} + Y_{df_{1},f_{2}}\overline{Q}_{f_{1},i,a}H_{i}d_{Rf_{2},a} + Y_{ef_{1},f_{2}}\overline{L}_{f_{1},i}H_{i}e_{Rf_{2}} + \text{h.c.}$$

2.3 Quartic couplings

$$-\mathcal{L}_Q = +\lambda H_i^{\dagger} H_i H_{i_1}^{\dagger} H_{i_1}$$

2.4 Scalar mass couplings

$$-\mathcal{L}_{sm} = + \mu H_i^{\dagger} H_i$$

3 Renormalization Group Equations

3.1 Convention

$$\beta(X) \equiv \mu \frac{dX}{d\mu} \equiv \frac{1}{(4\pi)^2} \beta^{(1)}(X) + \frac{1}{(4\pi)^4} \beta^{(2)}(X)$$

3.2 Definitions and substitutions

$$Y_u = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_t \end{pmatrix} \quad , \quad Y_d = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_b \end{pmatrix} \quad , \quad Y_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_\tau \end{pmatrix}$$

3.3 Gauge couplings

$$\beta^{(1)}(g_1) = \frac{41}{10}g_1^3$$

$$\beta^{(2)}(g_1) = +\frac{199}{50}g_1^5 + \frac{27}{10}g_1^3g_2^2 + \frac{44}{5}g_1^3g_3^2 - \frac{17}{10}g_1^3\left|y_t\right|^2 - \frac{1}{2}g_1^3\left|y_b\right|^2 - \frac{3}{2}g_1^3\left|y_\tau\right|^2$$

$$\beta^{(1)}(g_2) = -\frac{19}{6}g_2^3$$

$$\beta^{(2)}(g_2) = +\frac{9}{10}g_1^2g_2^3 + \frac{35}{6}g_2^5 + 12g_2^3g_3^2 - \frac{3}{2}g_2^3 |y_t|^2 - \frac{3}{2}g_2^3 |y_b|^2 - \frac{1}{2}g_2^3 |y_\tau|^2$$

$$\beta^{(1)}(g_3) = -7g_3^3$$

$$\beta^{(2)}(g_3) = +\frac{11}{10}g_1^2g_3^3 + \frac{9}{2}g_2^2g_3^3 - 26g_3^5 - 2g_3^3 |y_t|^2 - 2g_3^3 |y_b|^2$$

3.4 Yukawa couplings

$$\beta^{(1)}(y_t) = +\frac{9}{2}y_t |y_t|^2 + y_t |y_\tau|^2 + \frac{3}{2}y_t |y_b|^2 - \frac{17}{20}g_1^2 y_t - \frac{9}{4}g_2^2 y_t - 8g_3^2 y_t$$

$$\beta^{(2)}(y_t) = -12y_t |y_t|^4 - \frac{1}{4}y_t |y_b|^4 - \frac{9}{4}y_t |y_\tau|^4 - \frac{11}{4}y_t |y_b|^2 |y_t|^2 + \frac{5}{4}y_t |y_b|^2 |y_\tau|^2 - \frac{9}{4}y_t |y_t|^2 |y_\tau|^2 - \frac{15}{4}y_t |y_t|^2 |y_\tau|^2 + \frac{15}{8}g_1^2 y_t |y_t|^2 + \frac{15}{8}g_1^2 y_t |y_\tau|^2 + \frac{15}{8}g_1^2 y_t |y_\tau|^2 + \frac{15}{8}g_1^2 y_t |y_\tau|^2 + \frac{15}{8}g_1^2 y_t |y_b|^2 + \frac{15}{8}g_1^2 y_t |y_b|^2 + \frac{15}{8}g_1^2 y_t |y_b|^2 + \frac{1187}{600}g_1^4 y_t - \frac{9}{20}g_1^2 g_2^2 y_t + \frac{19}{15}g_1^2 g_3^2 y_t - \frac{23}{4}g_2^4 y_t + 9g_2^2 g_3^2 y_t - 108g_3^4 y_t$$

$$\beta^{(1)}(y_b) = +\frac{3}{2}y_b |y_t|^2 + \frac{9}{2}y_b |y_b|^2 + y_b |y_\tau|^2 - \frac{1}{4}g_1^2 y_b - \frac{9}{4}g_2^2 y_b - 8g_3^2 y_b$$

$$\beta^{(2)}(y_b) = -\frac{11}{4}y_b |y_b|^2 |y_t|^2 - \frac{1}{4}y_b |y_t|^4 + \frac{5}{4}y_b |y_t|^2 |y_\tau|^2 - 12y_b |y_b|^4 - \frac{9}{4}y_b |y_\tau|^4 - \frac{9}{4}y_b |y_b|^2 |y_\tau|^2 - 12\lambda y_b |y_b|^4 - \frac{9}{4}y_b |y_\tau|^4 - \frac{9}{4}y_b |y_b|^2 |y_\tau|^2 - 12\lambda y_b |y_b|^2 + 6\lambda^2 y_b + \frac{91}{80}g_1^2 y_b |y_t|^2 + \frac{99}{16}g_2^2 y_b |y_t|^2 + 4g_3^2 y_b |y_t|^2 + \frac{237}{80}g_1^2 y_b |y_b|^2 + \frac{225}{16}g_2^2 y_b |y_b|^2 + 36g_3^2 y_b |y_b|^2 + \frac{15}{8}g_1^2 y_b |y_\tau|^2 + \frac{15}{8}g_2^2 y_b |y_\tau|^2 - \frac{127}{600}g_1^4 y_b - \frac{27}{20}g_1^2 g_2^2 y_b + \frac{31}{15}g_1^2 g_3^2 y_b - \frac{23}{4}g_2^4 y_b + 9g_2^2 g_3^2 y_b - 108g_3^4 y_b$$

$$\beta^{(1)}(y_{\tau}) = +3y_{\tau} |y_{t}|^{2} + 3y_{\tau} |y_{b}|^{2} + \frac{5}{2}y_{\tau} |y_{\tau}|^{2} - \frac{9}{4}g_{1}^{2}y_{\tau} - \frac{9}{4}g_{2}^{2}y_{\tau}$$

$$\begin{split} \beta^{(2)}(y_{\tau}) &= \; -\frac{27}{4}y_{\tau} \left| y_{t} \right|^{2} \left| y_{\tau} \right|^{2} + \frac{3}{2}y_{\tau} \left| y_{b} \right|^{2} \left| y_{t} \right|^{2} - \frac{27}{4}y_{\tau} \left| y_{b} \right|^{2} \left| y_{\tau} \right|^{2} - \frac{27}{4}y_{\tau} \left| y_{t} \right|^{4} - \frac{27}{4}y_{\tau} \left| y_{b} \right|^{4} \\ &- 3y_{\tau} \left| y_{\tau} \right|^{4} - 12\lambda y_{\tau} \left| y_{\tau} \right|^{2} + 6\lambda^{2}y_{\tau} + \frac{17}{8}g_{1}^{2}y_{\tau} \left| y_{t} \right|^{2} + \frac{45}{8}g_{2}^{2}y_{\tau} \left| y_{t} \right|^{2} + 20g_{3}^{2}y_{\tau} \left| y_{t} \right|^{2} \\ &+ \frac{5}{8}g_{1}^{2}y_{\tau} \left| y_{b} \right|^{2} + \frac{45}{8}g_{2}^{2}y_{\tau} \left| y_{b} \right|^{2} + 20g_{3}^{2}y_{\tau} \left| y_{b} \right|^{2} + \frac{537}{80}g_{1}^{2}y_{\tau} \left| y_{\tau} \right|^{2} + \frac{165}{16}g_{2}^{2}y_{\tau} \left| y_{\tau} \right|^{2} \\ &+ \frac{1371}{200}g_{1}^{4}y_{\tau} + \frac{27}{20}g_{1}^{2}g_{2}^{2}y_{\tau} - \frac{23}{4}g_{2}^{4}y_{\tau} \end{split}$$

3.5 Quartic couplings

$$\beta^{(1)}(\lambda) = +24\lambda^2 - \frac{9}{5}g_1^2\lambda - 9g_2^2\lambda + \frac{27}{200}g_1^4 + \frac{9}{20}g_1^2g_2^2 + \frac{9}{8}g_2^4 + 12\lambda |y_t|^2 + 12\lambda |y_b|^2 + 4\lambda |y_\tau|^2$$

$$-6|y_t|^4 - 6|y_b|^4 - 2|y_\tau|^4$$

$$\begin{split} \beta^{(2)}(\lambda) &= -312\lambda^3 + \frac{108}{5}g_1^2\lambda^2 + 108g_2^2\lambda^2 + \frac{1887}{200}g_1^4\lambda + \frac{117}{20}g_1^2g_2^2\lambda - \frac{73}{8}g_2^4\lambda - \frac{3411}{2000}g_1^6 \\ &- \frac{1677}{400}g_1^4g_2^2 - \frac{289}{80}g_1^2g_2^4 + \frac{305}{16}g_2^6 - 144\lambda^2\left|y_t\right|^2 - 144\lambda^2\left|y_b\right|^2 - 48\lambda^2\left|y_\tau\right|^2 \\ &+ \frac{17}{2}g_1^2\lambda\left|y_t\right|^2 + \frac{5}{2}g_1^2\lambda\left|y_b\right|^2 + \frac{15}{2}g_1^2\lambda\left|y_\tau\right|^2 + \frac{45}{2}g_2^2\lambda\left|y_t\right|^2 + \frac{45}{2}g_2^2\lambda\left|y_b\right|^2 + \frac{15}{2}g_2^2\lambda\left|y_\tau\right|^2 \\ &+ 80g_3^2\lambda\left|y_t\right|^2 + 80g_3^2\lambda\left|y_b\right|^2 - \frac{171}{100}g_1^4\left|y_t\right|^2 + \frac{9}{20}g_1^4\left|y_b\right|^2 - \frac{9}{4}g_1^4\left|y_\tau\right|^2 + \frac{63}{10}g_1^2g_2^2\left|y_t\right|^2 \\ &+ \frac{27}{10}g_1^2g_2^2\left|y_b\right|^2 + \frac{33}{10}g_1^2g_2^2\left|y_\tau\right|^2 - \frac{9}{4}g_2^4\left|y_t\right|^2 - \frac{9}{4}g_2^4\left|y_b\right|^2 - \frac{3}{4}g_2^4\left|y_\tau\right|^2 - 3\lambda\left|y_t\right|^4 \\ &- 42\lambda\left|y_b\right|^2\left|y_t\right|^2 - 3\lambda\left|y_b\right|^4 - \lambda\left|y_\tau\right|^4 - \frac{8}{5}g_1^2\left|y_t\right|^4 + \frac{4}{5}g_1^2\left|y_b\right|^4 - \frac{12}{5}g_1^2\left|y_\tau\right|^4 - 32g_3^2\left|y_t\right|^4 \\ &- 32g_3^2\left|y_b\right|^4 + 30\left|y_t\right|^6 - 6\left|y_b\right|^4\left|y_t\right|^2 - 6\left|y_b\right|^2\left|y_t\right|^4 + 30\left|y_b\right|^6 + 10\left|y_\tau\right|^6 \end{split}$$

3.6 Scalar mass couplings

$$\beta^{(1)}(\mu) = -\frac{9}{10}g_1^2\mu - \frac{9}{2}g_2^2\mu + 12\lambda\mu + 6\mu |y_t|^2 + 6\mu |y_b|^2 + 2\mu |y_\tau|^2$$

$$\beta^{(2)}(\mu) = +\frac{1671}{400}g_1^4\mu + \frac{9}{8}g_1^2g_2^2\mu - \frac{145}{16}g_2^4\mu + \frac{72}{5}g_1^2\lambda\mu + 72g_2^2\lambda\mu - 60\lambda^2\mu + \frac{17}{4}g_1^2\mu |y_t|^2 + \frac{5}{4}g_1^2\mu |y_b|^2 + \frac{15}{4}g_1^2\mu |y_\tau|^2 + \frac{45}{4}g_2^2\mu |y_t|^2 + \frac{45}{4}g_2^2\mu |y_b|^2 + \frac{15}{4}g_2^2\mu |y_\tau|^2 + 40g_3^2\mu |y_t|^2 + 40g_3^2\mu |y_b|^2 - 72\lambda\mu |y_t|^2 - 72\lambda\mu |y_b|^2 - 24\lambda\mu |y_\tau|^2 - \frac{27}{2}\mu |y_t|^4 - 21\mu |y_b|^2 |y_t|^2 - \frac{27}{2}\mu |y_b|^4 - \frac{9}{2}\mu |y_\tau|^4$$

3.7 Vacuum-expectation values

Definitions:

$$H: \frac{1}{\sqrt{2}}\Pi_2 \to \frac{1}{\sqrt{2}}(\Pi_2 + v)$$

Gauge fixing:

$$\xi \to 1$$

RGEs:

$$\beta^{(1)}(v) = +\frac{3}{5}g_1^2v + 3g_2^2v - 3v|y_t|^2 - 3v|y_b|^2 - v|y_\tau|^2$$

$$\beta^{(2)}(v) = -\frac{1221}{800}g_1^4v + \frac{9}{16}g_1^2g_2^2v + \frac{199}{32}g_2^4v - \frac{103}{40}g_1^2v |y_t|^2 - \frac{43}{40}g_1^2v |y_b|^2 - \frac{81}{40}g_1^2v |y_\tau|^2 - \frac{63}{8}g_2^2v |y_t|^2 - \frac{63}{8}g_2^2v |y_b|^2 - \frac{21}{8}g_2^2v |y_\tau|^2 - 20g_3^2v |y_t|^2 - 20g_3^2v |y_b|^2 + \frac{27}{4}v |y_t|^4 - \frac{3}{2}v |y_b|^2 |y_t|^2 + \frac{27}{4}v |y_b|^4 + \frac{9}{4}v |y_\tau|^4 - 6\lambda^2v$$

A Group theoretical information

A.1 Gauge groups

Group	Lie algebra	Dim.	Rank	Representations		
Group				Name / Dim.	Dynkin labels	Type
SU2	A1	3	1	$rac{2}{2}$	[1] [1, True]	Pseudo-real Pseudo-real
SU3	A2	8	2	$\frac{3}{3}$	[1, 0] [0, 1]	Complex Complex