Politecnico di Milano, Master of Science in Civil Engineering for Risk Mitigation Course Computational Mechanics - A.A. 2021/2022 - Prof. Gabriella Bolzon

Exercise 1

STUDENT IDENTIFICATION NUMBER: _ _ _ _ a b c d e f

Consider the 2 regular elements sketched above, having all side length equal to ℓ , out of plane thickness h, subjected to the volume force distribution (x horizontal direction, y vertical direction):

$$F_{x} = -F_{y} = m \cdot \frac{x - x_{1}}{\ell} - n \cdot \frac{y - y_{1}}{\ell}$$

with
$$m = 7 + \frac{3}{2} \cdot e$$
 and $n = 9 + \frac{3}{2} \cdot f$

where e and f coincide with the corresponding digits of your student id number.

- Compute the nodal forces equivalent to the assigned volume load distribution.
- Graphically represent the equivalent nodal forces.

Solve the exercise and deliver only next page 2 fully compiled.

The delivery mode shall be published with the delivery deadlines after the publication of the official examination dates.

Course Computational Mechanics - A.A. 2021/2022 - Prof. Gabriella Bolzon		
Exercise 1 - SOLUTION		
SURNAME: STUDENT IDENTIFICATION NUMBER:	 a b c d e f	NAME: PERSON CODE:
EXPRESSIONS OF THE VOLUME FORCES		

Politecnico di Milano, Master of Science in Civil Engineering for Risk Mitigation

m = n = $F_x = F_y =$

VALUES OF EQUIVALENT NODAL FORCES

triangle square

SKETCH OF EQUIVALENT NODAL FORCES triangle

square