Scilab Textbook Companion for Signals And Systems by S. Ghosh¹

Created by
Shafquet Iftekhar
B.Tech
Electronics Engineering
Jamia Millia Islamia
College Teacher
Dr. Sajad A. Loan
Cross-Checked by

August 11, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Signals And Systems

Author: S. Ghosh

Publisher: Pearson Education, New Delhi

Edition: 1

Year: 2007

ISBN: 81-7758-380-8

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Fundamentals of Signals and Systems	7
2	Fourier Series	26
3	Fourier Transform	28
4	Laplace Transform	30
5	System Modelling	35
6	Z Transform	37
7	Convolution	42
8	Stability	45
11	Discrete Fourier Transform and Fast Fourier Transform	51

List of Scilab Codes

Exa 1.1	Time shifting and scaling	7
Exa 1.3.a	Check for energy or power signal	8
Exa 1.3.b	Check for energy or power signal	9
Exa 1.4	Time shifting and scaling	11
Exa 1.5	Sum and multiplication of two signal	11
Exa 1.6	Ploting of signal	13
Exa 1.8.a	Check for periodicity	14
Exa 1.9.a	Find energy of signal	15
Exa 1.9.b	Find power of signal	15
Exa 1.9.c	Find power of signal	16
Exa 1.11.b	Check for time invariant systems	16
	Check for linear systems	17
	Check for periodicity	18
	Check for periodicity	21
	Check for periodicity	21
	Check for periodicity	22
	Check for periodicity	23
	Check for periodicity	24
	Check for periodicity	24
	Check for periodicity	25
Exa 2.2	Find trigonometric fourier series	26
Exa 3.4	Find system function	28
Exa 3.5	Find impulse responce	28
Exa 4.3	Laplace transform of function	30
Exa 4.4	Laplace transform of function	30
Exa 4.8	Laplace transform of function	31
Exa 4.11	Inverse laplace transform	31
Exa 4.14	Inverse laplace transform	31

Exa	4.15	Inverse laplace transform
Exa	4.16	Inverse laplace transform
Exa	4.17	Inverse laplace transform
Exa	4.18	Inverse laplace transform
Exa	4.19	Inverse laplace transform
Exa	4.28	Determine the input for given output
Exa	4.29	Find unit step response of system
Exa	5.2	Find transfer function
Exa	5.3	Find responce of system
Exa	6.1.a	z transform of sequence
Exa	6.1.b	z transform of sequence
Exa	6.2	Convolution of two sequences
Exa	6.5	z transform
Exa	6.6.a	z transform
Exa	6.6.b	z transform
Exa	6.12	z transform of sequence
Exa	6.14.a	z transform
		z transform
		z transform
Exa	7.2	Convolution of two periodic signals 42
Exa	7.3	Linear and circular convolution
Exa	7.4	Convolution of two sequences
Exa	7.5	Convolution of two sequences
Exa	7.6	Convolution of two sequences
Exa	8.3	Check the stability
Exa	8.4	Check the stability
Exa	8.5.a	Check the stability
Exa	8.5.b	Check the stability
Exa	8.6	Check the stability
Exa	8.7	Check the stability
Exa	8.9	Check the stability
Exa	11.1	DFT of sequence
Exa	11.2	Circular convolution

List of Figures

1.1	Time shifting and scaling	8
1.2	Time shifting and scaling	9
1.3	Time shifting and scaling	0
		2
1.5	Ploting of signal	.3
		4
1.7	Check for periodicity	9
1.8	Check for periodicity	20
1.9	Check for periodicity	21
1.10	Check for periodicity	22
1.11	Check for periodicity	23
2.1	Find trigonometric fourier series	27

Fundamentals of Signals and Systems

Scilab code Exa 1.1 Time shifting and scaling

```
1 / Example 1.1
2 clc;
3 t=0:0.01:9;
4 \quad A = 0:4/900:4;
5 for i=1:length(t)
       if t(i) < 3 then
7
            x(i)=A(i)*t(i);
8
       else
9
            x(i) = 0
10
        end
11 end
12 t1=t+3;
13 subplot(2,2,1)
14 plot(t1,x);
15 xtitle('x(t-3)');
16 subplot (2,2,2)
17 plot(4*t,x);
```


Figure 1.1: Time shifting and scaling

```
18  xtitle('x(t/4)');
19  subplot(2,2,3)
20  plot(t/3,x);
21  xtitle('x(3t)');
22  subplot(2,2,4)
23  t2=-9:0.01:0
24  plot(t2,x($:-1:1));
25  xtitle('x(-t)');
26  figure
27  plot(t,x);
28  xtitle('x(t)');
```

Scilab code Exa 1.3.a Check for energy or power signal

```
1 //Example 1.3 a
```


Figure 1.2: Time shifting and scaling

```
//Find whether the the given signal is energy or
    power signal

clc;

A=0.5;

phi=0;

t=0:0.001:10;

y=A*sin(2*%pi*t+phi);

P=(integrate('A^2*(sin(2*%pi*t))^2','t',0,2*%pi))
    /(2*%pi);

disp(P,'Power of the signal is');

disp('Since the power of the given signal is finite so we can say that this signal is a power signal');
```

Scilab code Exa 1.3.b Check for energy or power signal

```
1 / \text{Example } 1.3 \,\text{b}
```


Figure 1.3: Time shifting and scaling

```
//Find whether the the given signal is energy or
    power signal

clc;
b=0.5;
t=0:0.001:10;
y=exp(-b*t);
E=integrate('(exp(-b*t))^2','t',0,2*%pi);
disp(E,'Energy of the signal is');
disp('Since the energy of the given signal is finite so we can say that this signal is an energy signal');
```

Scilab code Exa 1.4 Time shifting and scaling

```
1 //Example 1.4
2 //Time Shifting And Scaling
3 clc;
4 n = -2:8;
5 x = [0,0,0,1,2,3,4,4,0,0,0];
6 n1=n+3;
7 subplot(2,2,1);
8 plot2d3(n1,x);
9 xtitle('x[n-3]');
10 subplot(2,2,2);
11 plot2d3(ceil(n/3),x);
12 xtitle('x[3n]');
13 subplot (2,2,3);
14 n2 = -8:2;
15 plot2d3(n2,x($:-1:1));
16 xtitle('x[-n]');
17 subplot (2,2,4)
18 \quad n3=n2+3;
19 plot2d3(n3,x($:-1:1));
20 xtitle('x[-n+3]');
21 figure
22 plot2d3(n,x);
23 xtitle('x[n]');
```

Scilab code Exa 1.5 Sum and multiplication of two signal

```
1 //Example 1.5
2 clc;
3 n=-1:5;
4 x1=[0,0,1,2,-3,0,-2];
5 x2=[2,1,-1,3,2,0,0];
```


Figure 1.4: Time shifting and scaling

Figure 1.5: Ploting of signal

```
6 y1=x1+x2;
7 disp(y1, 'y1[n]=');
8 y2=x1.*x2;
9 disp(y2, 'y2[n]=');
```

Scilab code Exa 1.6 Ploting of signal

```
1 //Example 1.6
2 clc;
3 n1=-4:-1;
4 for i=1:length(n1)
```


Figure 1.6: Check for periodicity

```
5     x(i)=1+(n1(i)/4);
6     end
7     for j=5:9
8         x(j)=1;
9     end
10     n=-4:4;
11     plot2d3(n,x);
12     xtitle('x[n]');
```

Scilab code Exa 1.8.a Check for periodicity

```
//Example 1.8a
//Check whether the given signal is periodic or not
clc;
n=-20:20;
x=cos(0.1*%pi*n);
plot2d3(n,x);
f=0.1*%pi/(2*%pi);//f is no. of cycles per sample
N=1/f;//N is no. of samples per cycle
disp('samples',N,'Figure shows that the signal is periodic with period equal to');
```

Scilab code Exa 1.9.a Find energy of signal

```
1 / Example 1.9a
2 clc;
3 E=0;
4 \text{ for } n=0:100
       x(n+1) = (-0.3)^n;
6 end
7 \text{ for } n=0:100
       E=E+x(n+1)^2;
9 end
10 if E<%inf then
11
       disp(E, 'The given signal is energy signal with
           energy=');
12 else
       disp('The given signal is not energy signal');
13
14 end
```

Scilab code Exa 1.9.b Find power of signal

```
1 //Example 1.9b
2 clc;
```

```
3  for n=0:100
4          x(n+1)=2;
5  end
6  P=0;
7  for n=0:100
8          P=P+(abs(x(n+1)^2))/100;
9  end
10  if P<%inf then
11          disp(P, 'The given signal is power signal with power =');
12  else
13          disp('The given signal is not power signal');
14  end</pre>
```

Scilab code Exa 1.9.c Find power of signal

```
1 //Example 1.9 c
2 clc;
3 \text{ for } n=1:100
       x(n) = 3*exp(%i*2*n);
5 end
6 P = 0;
7 	 for 	 n=1:100
        P=P+(abs(x(n)^2))/100;
9 end
10 if P<%inf then
        disp(P, 'The given signal is power signal with
11
           power = ');
12 else
13
        disp('The given signal is not power signal');
14 \, \text{end}
```

Scilab code Exa 1.11.b Check for time invariant systems

```
1 //Example 1.11b
2 //Determine whether the following signal is time
      invariant or not
3 clc:
4 n0=2;
5 N = 10;
6 \quad for \quad n=1:N
       x(n)=n;
       y(n)=n*x(n);
8
9 end
10 inputshift=x(N-n0);
11 outputshift=y(N-n0);
12 if(inputshift==outputshift)
       disp('THE GIVEN SYSTEM IS TIME INVARIANT')
13
14 else
       disp('THE GIVEN SYSTEM IS TIME VARIANT');
15
16 end
```

Scilab code Exa 1.12.b Check for linear systems

```
1 //Example 1.12b
2 //Determine whether the system is linear or not
3 clc;
4 x1 = [1,1,1,1]
5 \quad x2 = [2,2,2,2]
6 a=1
7 b = 1
8 for n=1:length(x1)
9
       x3(n)=a*x1(n)+b*x2(n)
10 end
11 for n=1:length(x1)
       y1(n)=x1(n)^2
12
       y2(n)=x2(n)^2
13
14
       y3(n)=x3(n)^2
15 end
```

```
16 for n=1:length(y1)
       z(n)=a*y1(n)+b*y2(n)
17
18 end
19 count = 0
20 for n=1:length(y1)
21
       if(y3(n)==z(n))
22
           count = count +1;
23
        end
24 end
25 if (count == length (y3))
26 disp('It satisfy the superposition principle');
27 disp('THE GIVEN SYSTEM IS LINEAR');
28 else
29
       disp('It does not satisfy superposition
          principle ');
       disp('THE GIVEN SYSTEM IS NON LINEAR');
30
31 end
```

Scilab code Exa 1.15.a Check for periodicity

```
//Example 1.15a
//Check whether the given signal is periodic or not
clc;
t=-10:0.01:10;
y=cos(t+(%pi/3));
plot(t,y);
disp('Plot shows that the given signal is periodic with period 2*%pi');
```


Figure 1.7: Check for periodicity

Figure 1.8: Check for periodicity

Figure 1.9: Check for periodicity

Scilab code Exa 1.15.b Check for periodicity

```
1 //Example 1.15b
2 //Check whether the given signal is periodic or not
3 clc;
4 t=-10:0.01:10;
5 y=sin((2*%pi/5)*t);
6 plot(t,y);
7 disp('Plot shows that the given signal is periodic with period 5');
```


Figure 1.10: Check for periodicity

Scilab code Exa 1.15.c Check for periodicity

```
//Example 1.15c
//Check whether the given signal is periodic or not
clc;
t=-20:0.01:20;
y=sin((%pi/2)*t)+cos((%pi/4)*t);
plot(t,y);
disp('Plot shows that the given signal is periodic with period 40');
```


Figure 1.11: Check for periodicity

Scilab code Exa 1.15.d Check for periodicity

```
//Example 1.15d
//Check whether the given signal is periodic or not
clc;
t=-10:0.01:10;
y=(cos(t))^2;
plot(t,y);
disp('Plot shows that the given signal is periodic with period %pi');
```

Scilab code Exa 1.15.e Check for periodicity

```
//Example 1.15e
//Check whether the given signal is periodic or not
clc;
t=-20:0.01:20;
y=sin(t)+cos(sqrt(3)*t);
plot(t,y);
disp('Plot shows that the given signal is NOT periodic');
```

Scilab code Exa 1.19.a Check for periodicity

```
1 //Example 1.19a
2 //Check whether the given signal is periodic or not
3 clc;
4 n=-50:50;
5 y=sin(n/5);
6 plot2d3(n,y);
7 disp('Plot shows that the given signal is periodic')
;
```

Scilab code Exa 1.19.b Check for periodicity

```
//Example 1.19b
//Check whether the given signal is periodic or not
clc;
n=-20:20;
x=exp(%i*(%pi/5)*n);
plot2d3(n,x);
disp('Plot shows that the given signal is periodic');
;
```

Scilab code Exa 1.19.c Check for periodicity

```
//Example 1.19c
//Check whether the given signal is periodic or not
clc;
n=-75:75;
x=cos((%pi/5)*n)+sin((%pi/6)*n);
plot2d3(n,x);
disp('Plot shows that the given signal is periodic');
;
```

Fourier Series

Scilab code Exa 2.2 Find trigonometric fourier series

```
1 clear ;
2 close;
3 clc;
4 \text{ TO} = 4;
5 t = .01:0.01:2*T0;
6 t_temp=0.01:0.01:T0/2;
7 s=length(t)/length(t_temp);
8 x = [];
9 for i=1:s
       if modulo(i,2) == 0 then
10
            x=[x zeros(1,length(t_temp))];
11
12
       else
            x=[x ones(1,length(t_temp))];
13
14
       end
15 end
16 a=gca();
17 plot(t,x)
18 poly1=a.children.children;
19 poly1.thickness=3;
```


Figure 2.1: Find trigonometric fourier series

```
20 poly1.foreground=2;
21 xtitle('x(t)','t')
22 \text{ w0=\%pi/2};
23 \text{ for } k=1:5
        cc(k,:) = exp(-\%i*k*w0*t);
24
        ck(k)=x*cc(k,:)'/length(t);
25
26
        if abs(ck(k)) < 0.01 then
27
        ck(k)=0;
        else if imag(ck(k))<0.01 then</pre>
28
        ck(k) = real(ck(k));
29
30
        end
        end
31
32
33 end
34 \quad a=2*real(ck);
35 b=2*imag(ck);
36 disp(b, 'bn=');
```

Fourier Transform

Scilab code Exa 3.4 Find system function

```
//Example 3.4
//Find system function and output of the system
clc;
syms t;
h=%e^(-3*t);
H=laplace(h,t,'jw');
disp(H,'SYSTEM FUNCTION=');
x=%e^(-2*t);
X=laplace(x,t,'jw');
Y=H*X;
y=ilaplace(Y,'jw',t);
disp(y,'OUTPUT OF THE SYSTEM FOR THE GIVEN INPUT IS=');
```

Scilab code Exa 3.5 Find impulse responce

```
1 //Example 3.5
2 //Find the impulse response and output of the system
```

```
3 clc;
4 syms jw t;
5 H=(jw+1)/((jw+2)*(jw+3));
6 h=ilaplace(H,jw,t);
7 disp(h,'IMPULSE RESPONCE=');
8 x=%e^(-2*t);
9 X=laplace(x,t,jw);
10 Y=H*X;
11 y=ilaplace(Y,jw,t);
12 disp(y,'OUTPTU OF THE SYSTEM IS=');
```

Laplace Transform

Scilab code Exa 4.3 Laplace transform of function

```
1 //Example 4.3
2 //Laplace transform of f(t)=3-2%e^(-4t)
3 clc;
4 syms t;
5 f=3-2*%e^(-4*t);
6 F=laplace(f);
7 disp(F);
```

Scilab code Exa 4.4 Laplace transform of function

```
1  //Example 4.4
2  //Laplace transform of f(t)=5cos(wt)+4sin(wt)
3  clc;
4  syms w t;
5  f=5*cos(w*t)+4*sin(w*t);
6  F=laplace(f);
7  disp(F);
```

Scilab code Exa 4.8 Laplace transform of function

```
1 //Example 4.8
2 //Laplace transform of x(t)=%e^(3t)u(-t)+%e^(t)u(t)
3 clc;
4 syms t;
5 x1=%e^(3*t);
6 x2=%e^t;
7 X1=laplace(x1);
8 X2=laplace(x2);
9 X=X2-X1;//since x1 is form -%inf to 0
10 disp(X);
```

Scilab code Exa 4.11 Inverse laplace transform

```
1 //Example 4.11
2 clc;
3 syms s;
4 I=(3*s+4)/(s^2+4*s);
5 i=ilaplace(I);
6 disp(i);
```

Scilab code Exa 4.14 Inverse laplace transform

```
1 //Example 4.14
2 clc;
3 syms s;
4 F=(s+3)/(s*(s+1)*(s+2));
5 f=ilaplace(F);
6 disp(f);
```

Scilab code Exa 4.15 Inverse laplace transform

```
1 //Example 4.15
2 clc;
3 syms s;
4 F=(s+3)/(s*((s+1)^2)*(s+2));
5 f=ilaplace(F);
6 disp(f);
```

Scilab code Exa 4.16 Inverse laplace transform

```
1 //Example 4.16
2 clc;
3 syms s;
4 F=1/((s^2)*(s+2));
5 f=ilaplace(F);
6 disp(f);
```

Scilab code Exa 4.17 Inverse laplace transform

```
1 //Example 4.17
2 clc;
3 syms s;
4 I=(s+6)/(s*(s+3));
5 i=ilaplace(I);
6 Io=limit(s*I,s,0);
7 disp(Io,'FINAL VALUE OF i(t)');
```

Scilab code Exa 4.18 Inverse laplace transform

```
1 //Example 4.18
2 clc;
3 syms s;
4 I=(2*s+3)/((s+1)*(s+3));
5 i=ilaplace(I);
6 io=limit(i,t,0);
7 disp(io, 'INITIAL VALUE OF i(t)');
```

Scilab code Exa 4.19 Inverse laplace transform

```
1 //Example 4.19
2 clc;
3 syms s;
4 F=1/((s+1)*(s+2));
5 f=ilaplace(F);
6 disp(f);
```

Scilab code Exa 4.28 Determine the input for given output

```
1 //Example 4.28
2 clc;
3 syms t;
4 h=%e^(-2*t)+%e^(-3*t);
5 vo=t*%e^(-2*t);
6 Vo=laplace(vo);
7 H=laplace(h);
8 Vi=Vo/H;
```

```
9 vi=ilaplace(Vi);
10 disp(vi);
```

Scilab code Exa 4.29 Find unit step responce of system

```
1 //Example 4.29
2 clc;
3 syms t;
4 h=0.24*(%e^(-0.36*t)-%e^(-2.4*t));
5 H=laplace(h);
6 x=1;
7 X=laplace(x);
8 Y=X*H;
9 y=ilaplace(Y);
10 disp(y);
```

System Modelling

Scilab code Exa 5.2 Find transfer function

```
1 //Example 5.2
2 clc;
3 syms t;
4 h=%e^(-3*t);
5 H=laplace(h);
6 disp(H, 'Transfer Function is');
```

Scilab code Exa 5.3 Find responce of system

```
1 //Example 5.3
2 clc;
3 syms t;
4 h=%e^(-3*t);
5 x=%e^(-4*t);
6 H=laplace(h);
7 X=laplace(x);
8 Y=X*H;
9 y=ilaplace(Y);
10 disp(y,'y(t)=');
```

Z Transform

Scilab code Exa 6.1.a z transform of sequence

```
1 //Example 6.1a
2 clc;
3 function[za]=ztransfer(sequence,n)
4     z=poly(0, 'z', 'r')
5     za=sequence*(1/z)^n'
6 endfunction
7 x=[1,2,3,4,5,6,7];
8 n1=0:length(x)-1;
9 X=ztransfer(x,n1);
10 disp(X, 'X(z)=');
11 funcprot(0);
```

Scilab code Exa 6.1.b z transform of sequence

```
1 //Example 6.1b
2 clc;
3 function[za]=ztransfer(sequence,n)
4 z=poly(0,'z','r')
```

```
5          za=sequence*(1/z)^n'
6          endfunction
7          x=[1,2,3,4,5,6,7];
8          n1=-2:length(x)-3;
9          X=ztransfer(x,n1);
10          disp(X,'X(z)=');
11          funcprot(0);
```

Scilab code Exa 6.2 Convolution of two sequences

```
1 / \text{Example } 6.2
2 clc;
3 function[za]=ztransfer(sequence,n)
        z=poly(0, 'z', 'r')
        za=sequence*(1/z)^n'
6 endfunction
7 \times 1 = [1, -3, 2];
8 n1=0:length(x1)-1;
9 X1=ztransfer(x1,n1);
10 x2 = [1, 2, 1];
11 n2=0:length(x2)-1;
12 X2=ztransfer(x2,n2);
13 X = X1 * X2;
14 disp(X, 'X(z)=');
15 z=poly(0, 'z');
16 X = [1; -z^{-1}; -3*z^{-2}; z^{-3}; 2*z^{-4}];
17 \quad n=0:4;
18 ZI=z^n;
19 x=numer(X.*ZI);
20 disp(x, 'x[n]=');
```

Scilab code Exa 6.5 z transform

```
1 //Example 6.5
2 clc;
3 syms z n;
4 x1=4*(5^n);
5 x2=3*(4^n);
6 X1=symsum(x1*(z^-n),n,0,%inf);
7 X2=symsum(x2*(z^-n),n,0,%inf);
8 X=X1-X2;
```

Scilab code Exa 6.6.a z transform

```
1 //Example 6.6a
2 clc;
3 syms z n;
4 x=(1/3)^n;
5 X=symsum(x*(z^-n),n,-%inf,0);
```

Scilab code Exa 6.6.b z transform

```
1 //Example 6.6b
2 clc;
3 syms z n;
4 x=(1/3)^n;
5 X1=symsum(x*(z^-n),n,0,%inf);
6 X2=symsum(x*(z^-n),n,8,%inf);
7 X=X1-X2;
```

Scilab code Exa 6.12 z transform of sequence

```
1 //Example 6.12
```

```
2 clc;
3 function[za]=ztransfer(sequence,n)
4     z=poly(0,'z','r')
5     za=sequence*(1/z)^n'
6 endfunction
7 x=[4,2,-1,0,3,-4];
8 n1=-2:length(x)-3;
9 X=ztransfer(x,n1);
10 disp(X,'X(z)=');
11 funcprot(0);
```

Scilab code Exa 6.14.a z transform

```
1 //Example 6.14a
2 clc;
3 syms z n;
4 x1=(1/4)^n;
5 x2=(1/5)^n;
6 X1=symsum(x1*(z^-n),n,0,%inf);
7 X2=symsum(x2*(z^-n),n,0,%inf);
8 X=X1+X2;
9 disp(X,'X(z)=');
```

Scilab code Exa 6.14.b z transform

```
1 //Example 6.14b
2 clc;
3 syms z n;
4 x1=(1/5)^n;
5 x2=(1/4)^n;
6 X1=symsum(x1*(z^-n),n,0,%inf);
7 X2=symsum(x2*(z^-n),n,-%inf,-1);
8 X=X1+X2;
```

```
9 disp(X, 'X(z)=');
```

Scilab code Exa 6.14.c z transform

```
1 //Example 6.14c
2 clc;
3 syms z n;
4 x1=(1/4)^n;
5 x2=(1/5)^n;
6 X1=symsum(x1*(z^-n),n,0,%inf);
7 X2=symsum(x2*(z^-n),n,-%inf,-1);
8 X=X1+X2;
9 disp(X,'X(z)=');
```

Convolution

Scilab code Exa 7.2 Convolution of two periodic signals

```
1 //Example 7.2
2 //Convolution of two periodic signals
3 clc;
4 x1=[1,2,3,4];
5 x2=[3,1,1,3];
6 X1=fft(x1,-1);
7 X2=fft(x2,-1);
8 X3=X1.*X2;
9 x3=fft(X3,1);
10 disp(x3,'Convolution of the two given periodic signals is');
```

Scilab code Exa 7.3 Linear and circular convolution

```
1 //Example 7.3
2 //Linear and circular convolution of two sequences
3 clc;
4 x1=[1,2,3,4];
```

Scilab code Exa 7.4 Convolution of two sequences

```
//Example 7.4
//Convolution of given sequences

clc;
x=[1,2,3,4];
y=[1,-2];
X=convol(x,y);
disp(X,'Convolution of given sequences');
```

Scilab code Exa 7.5 Convolution of two sequences

```
1 //Example 7.5
2 //Convolution of two signals
3 clc;
4 x=[1,3,2];
5 y=[4,1,2];
6 X=convol(x,y);
7 disp(X,'Convolution of the given sequences');
```

Scilab code Exa 7.6 Convolution of two sequences

```
//Example 7.6
//Convolution of given sequences

clc;
x=[1,-2,2];
y=[2,5,3,6];
X=convol(x,y);
disp(X,'Convolution of the given sequences');
```

Stability

Scilab code Exa 8.3 Check the stability

```
1 / \text{Example } 8.3
2 clc;
3 // Define the polynomial
4 s=poly(0,"s");
5 p=3+10*s+5*s^2+s^3;
6 // Calculate the routh of above polynomial
7 r=routh_t(p);
8 disp(r, "Routh array=");
9 A=r(:,1);
10 c = 0;
11 x1=0;
12 eps=0;
13 for i=1:4
14
      x1=A(i,1);
15
      if x1<0
16
        c=c+1;
17
      end
18 \text{ end}
      if(c>=1) then
19
           printf("system is unstable");
20
21
      else
```

```
22     printf("system is stable");
23     end
24     x=roots(p);
```

Scilab code Exa 8.4 Check the stability

```
1 //Example 8.4
2 clc;
3 // Define the polynomial
4 s=poly(0,"s");
5 p=10+3*s+2*s^2+s^3;
6 // Calculate the routh of above polynomial
7 r=routh_t(p);
8 disp(r, "Routh array=");
9 A=r(:,1);
10 c = 0;
11 x1=0;
12 \text{ eps=0};
13 for i=1:4
14
       x1=A(i,1);
15
       if x1<0
16
            c=c+1;
17
       end
18 end
      if(c>=1) then
19
          printf("system is unstable");
20
21
      else
          printf("system is stable");
22
23
      end
24 x = roots(p);
```

Scilab code Exa 8.5.a Check the stability

```
1 / Example 8.5a
2 clc;
3 // Define the polynomial
4 s=poly(0,"s");
5 p=20+36*s+21*s^2+21*s^3+s^4;
6 // Calculate the routh of above polynomial
7 r=routh_t(p);
8 disp(r, "Routh array=");
9 \text{ A=r}(:,1);
10 c = 0;
11 x1=0;
12 \text{ eps=0};
13 for i=1:5
14
      x1=A(i,1);
15
      if x1<0
16
           c=c+1;
17
      end
18 \text{ end}
19
      if(c>=1) then
           printf("system is unstable");
20
21
      else
           printf("system is stable");
22
23
      end
24 x = roots(p);
```

Scilab code Exa 8.5.b Check the stability

```
1 //Example 8.5b
2 clc;
3 // Define the polynomial
4 s=poly(0,"s");
5 p=1+s+2*s^2+3*s^3+6*s^4+s^5;
6 // Calculate the routh of above polynomial
7 r=routh_t(p);
8 disp(r,"Routh array=");
```

```
9 A=r(:,1);
10 c = 0;
11 x1=0;
12 eps=0;
13 for i=1:6
14
          x1 = A(i,1);
15
          if x1<0
16
               c = c + 1;
17
          end
18 \text{ end}
       if(c>=1) then
19
            printf("system is unstable");
20
21
       else
            printf("system is stable");
22
       \quad \text{end} \quad
23
24 x = roots(p);
```

Scilab code Exa 8.6 Check the stability

```
1 / \text{Example } 8.6
2 clc;
3 // Define the polynomial
4 s=poly(0, "s");
5 p=1+3*s+8*s^2+4*s^3+2*s^4+s^5;
6 // Calculate the routh of above polynomial
7 r=routh_t(p);
8 A=r(:,1);
9 c = 0;
10 x = 0;
11 for i=1:6
       x=A(i,1);
12
13
       if x <> 0
14
            c=c+1;
15
       end
16 end
```

```
if(c>=1) then
printf("system is unstable");
else
printf("system is stable");
end
```

Scilab code Exa 8.7 Check the stability

```
1 / \text{Example } 8.7
2 clc;
3 // Define the polynomial
4 s=poly(0,"s");
5 p=8+4*s+4*s^2+2*s^3+2*s^4+s^5;
6 // Calculate the routh of above polynomial
7 r=routh_t(p);
8 S=roots(p);
9 disp(r, "Routh array=");
10 disp(S, "Roots=");
11 A=r(:,1);
12 c=0;
13 x = 0;
14 for i=1:5
       x=A(i,1);
15
16
       if x < 0
17
            c=c+1;
18
       end
19 end
20 \text{ if (c>=1) then}
21
      printf("system is unstable");
22 else
       l=length(S);
23
24
       c=0;
25
       for i=1:1
26
            a=S(i,1);
27
            r=real(a);
```

```
28
            if r<0 then
29
                 c=c+1;
30
            end
31
       end
32
       if c==0 then
33
            printf("system is stable");
34
       else
            printf("system is unstable");
35
36
       end
37 end
```

Scilab code Exa 8.9 Check the stability

```
1 //Example 8.9
2 \text{ clc};
3 // Define the polynomial
4 s=poly(0,"s");
5 p=8+4*s+3*s^2+3*s^3+s^4+s^5;
6 // Calculate the routh of above polynomial
7 r=routh_t(p);
8 A=r(:,1);
9 c = 0;
10 x = 0;
11 for i=1:6
12
       x = A(i, 1);
13
       if x <> 0
14
            c=c+1;
15
        end
16 \text{ end}
17 \text{ if (c>=1) then}
        printf("system is unstable");
18
19 else
20
       printf("system is stable");
21 end
```

Discrete Fourier Transform and Fast Fourier Transform

Scilab code Exa 11.1 DFT of sequence

```
1 //Example 11.1
2 //Find the DFT of x[n]=[1,2,3,4]
3 clc;
4 x=[1,2,3,4];
5 X=fft(x,-1);
6 disp(X,'X(k)=');
```

Scilab code Exa 11.2 Circular convolution

```
1 //Example 11.2
2 //Find the circular convolution
3 clc;
4 x1=[3,1,3,1];
5 x2=[1,2,3,4];
6 X1=fft(x1,-1);
7 X2=fft(x2,-1);
```

```
8 X3=X1.*X2;

9 x3=fft(X3,1);

10 disp(x3,'x3(n)=x1(n)(N)x2(n)');
```