IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

	application of)	
E. UH	LMANN et al.)	
Applic	ation No. Not Yet Assigned)	Group Art Unit: Not Yet Assigned
Filed:	Herewith)	Examiner: Not Yet Assigned
For:	POLYAMIDE NUCLEIC ACID)	
	DERIVATIVES AND AGENTS)	
	AND PROCESSES FOR)	
	PREPARING THEM)	

STATEMENT TO SUPPORT FILING AND SUBMISSION IN ACCORDANCE WITH 37 C.F.R. §§ 1.821 - 1.825

Sir:

In connection with the Sequence Listing submitted herewith, the undersigned hereby states that:

- 1. The submission, filed herewith in accordance with 37 C.F.R. § 1.821, does not contain any new matter;
- 2. The content of the attached paper copy and the attached computer readable copy of the Sequence Listing, submitted in accordance with 37 C.F.R. § 1.821(c) and (e), respectively, are the same; and
- 3. All statements made herein on the undersigned's knowledge are true, and all statements made on information and belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the

application or any patent resulting therefrom.

Please grant any extensions of time required to enter this response and charge any required fees to our Deposit Account No. 06-0916.

Respectfully submitted,

FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P.

Bv.

Matthew T. Latimer Reg. No. 44,024

(202) 408-4495

matthew.latimer@finnegan.com

SEQUENCE LISTING

<110>	UHLMAN	IN,	EUG	EN	
	BREIPO	OHL,	GE	RHARI	
	WILL,	DAV	ID	W	

- <120> POLYAMIDE NUCLEIC ACID DERIVATIVES AND AGENTS AND PROCESSES FOR PREPARING THEM
- <130> 02481.1742 SEQUENCE LISTING
- <140> Not Yet Assigned
- <141> 2001-04-16
- <160> 64
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets
- <400> 1

gegtttgete ttettettge g

21

- <210> 2
- <211> 20
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets
- <400> 2

acacccaatt ctgaaaatgg

20

- <210> 3
- <211> 20

<212>	DNA Artificial Sequence	
	Arteriorar bequence	
<220> <223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets	
<400>	3	
	cetgt tegggegeea	20
<210>	4	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	4	
acaaaa	getee atgggggteg	20
<210>	5	
<211>	15	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	5	
cageto	gcaac ccage	15
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	

	viral and cellular targets	
<400>	6	
tattc	egtca t	11
<210>	7	
<211>	22	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	7	
ttccgt	ccatc getectcagg gg	22
<210>	8	
<211>	15	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	8	
ggctg	ccatg gtccc	15
<210>	9	
<211>	21	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	9	

ggctgctgga gcggggcaca c

<220>

<210> <211> <212> <213>	15	
<220> <223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets	
<400> aacgtt	10 gagg ggcat	15
<220>	18	
<400> gtgccg	11 ggggt cttcgggc	18
<210> <211> <212> <213>	17	
<220> <223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets	
<400> cgagaa	12 loate atogtgg	17
<210> <211> <212>	21	
	Artificial Sequence	

<2Z3>	base sequence of PNA derivatives that bind to viral and cellular targets	
<400>		
ggaga	acatc atggtcgaaa g	21
<210>		
<211>		
<212> <213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets	
<400>	14	
cccga	gaaca tcatggtcga ag	22
<210>	15	
<211>		
<212>	DNA Artificial Sequence	
12107	International bequeined	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to viral and cellular targets	
<400>		
ggggaa	aagcc cggcaagggg	20
<210>	16	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>		
cacccc	geett ggeeteeeae	20

<210><211><212><213>	18	
<220> <223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets	
<400> gggac	17 teegg egeagege	18
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets	
<400> ggcaa	18 acttt cttttcctcc	20
<210><211><211><212><213>	19	
<220> <223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets	
<400> gggaa	19 ggagg aggatgagg	19
<210><211><211><212><213>	21	

<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	· 20	
ggcag	steate cagettegga g	21
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: nucleotide	
12237	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
	Vilai and Cellulai Cargets	
<400>	· 21	
tataa	cagog tgcgccat	18
<210>	- 22	
<211>	. 19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	. 22	
• • • •	gatag acatccatg	19
gegee	gatag acatecatg	TR
<210>	23	
<211>	12	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	

<400>	23	
ggagg	cccga cc	12
<210>	24	
<211>	12	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	24	
ggttt	cggag gc	12
<210>	25	
<211>	12	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	25	
tggtg	gaggt ag	12
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	26	
		10
gearge	gtgga gg	12
<210>	27	
<211>		
~~	44	

<212> <213>	DNA Artifícíal Sequence	
<220> <223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets	
<400> ttggc		12
<210><211><211><212><213>	12	
<220> <223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets	
<400> gcctg	28 ggacc ac	12
<210><211><211><212><213>	12	
<220> <223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets	
<400> cagcct	29 Eggga cc	12
<210><211><211><212><213>	12	
<220> <223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to	

<400> 33 atgggtgcag cc

	viral and cellular targets	
<400>	30	
	rectgg ga	12
, , , ,	, 55 54	12
<210>	• 31	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
\223/	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to	
	viral and cellular targets	
	viii and obligite talgots	
<400>	31	
gtgca	gcctg gg	12
<210>		
<211>		
<212>		
/ST3>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>		
ggtgc	ageet gg	12
<210>	33	
<211>	12	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	

12

<220>

<210	> 34	
<211	> 12	
<212	> DNA	
<213	> Artificial Sequence	
-000		
<220		
\423	> Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to viral and cellular targets	
	virur and certurar targets	
<400	> 34	
ggct:	tgaaga tg	12
<210		
<211:		
	> DNA	
<213	> Artificial Sequence	
<220	,	
	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	· 35	
gcago	ecceg ca	12
<210>	36	
<211>		
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	36	
	30	
	agccc cc	10
	agccc cc	12
	agece ee	12
<210>	37	12
<211>	37 20	12
<211> <212>	37 20 DNA	12
<211> <212>	37 20	12

<223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	· 37	
tecce	gootgt gacatgoatt	20
<210>		
<211>		
<212>		
\213/	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>		
gttct	cgctg gtgagtttca	20
<210>	39	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	39	
gcgtg	cctcc tcactggc	18
		10
<210>		
<211>		
<212>		
\Z13/	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>		
gcagta	agca tocatato	18

<210× <211× <212×		
	> Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to viral and cellular targets	
<400>	41	
gccca	agctg gcatccgtca	20
<210>	42	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	42	
	accac ttcccctctc	20
		20
<210>	4.2	
<211>		
<212>		
<213>	Artificial Sequence	
<0.20>		
<220>	Description of Antificial Games	
12207	Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to	
	viral and cellular targets	
- 4 0 0		
<400>		
	ccacc acttececte	20
<210>		
<211>		
<212>	DNA Artificial Sequence	
\L_I_J/	vicitionar peddeuce	

<220	>	
<223	> Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	> 44	
actac	ggagcc atagcgagg	1.0
J J :	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	19
<210>	• 45	
<211>	• 21	
<212>		
	· Artificial Sequence	
<220>		
	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
	vital and cellular targets	
<400>	45	
	tgcct cttgtctcag g	
	egout oregeology g	21
<210>	46	
<211>		
<212>		
	Artificial Sequence	
-2207	·merrace pedaence	
<220>		
	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
	and octivial targets	
<400>	46	
caatca	aatga cttcaagagt to	20
		22
<210>	47	
<211>		
<212>		
	Artificial Sequence	
	official pedaeuce	
<220>		
_	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
	ATTAL and Cerrarat fargers	

<400	> 4/	
gcgg	oggaaa agodatog	18
<210	> 48	
<2112	> 18	
<2123	> DNA	
<213	> Artificial Sequence	
<220>	>	
	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
	viidi dha ceridiar cargets	
<400>	48	
	ggggt ctccgggc	
, ,	33332 00003333	18
<210>	49	
<211>		
<212>		
	Artificial Sequence	
10137	ureillerar geduence	
<220>		
12207	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	40	
	tgagg ggcat	
cacge	cyayy yycac	15
<210>	50	
<211>		
<212>		
\213/	Artificial Sequence	
<220>		
	Description of Autificial a	
12237	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	50	
-	ccata gttactca	
90000	Journal of the second of the s	18
<210>	51	
<211>		
	± v	

<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	51	
gatca	ggcgt gcctcaaa	18
<210>	52	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	5.2	
	aggge ggeatggegg g	21
gacyg	aggge ggeatggegg g	21
<210>	53	
<211>	4	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	53	
aact		4
<210>	5.4	
<211>		
<212>		
	Artificial Sequence	
12107	in canada bequence	
<220>		
	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	

viral and cellular targets

<400>	54	
acatca	atggt cg	12
<210>	55	
<211>	12	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>		
ccacga	atgat gt	12
<210>	5.6	
<211>		
<211>		
	Artificial Sequence	
/213/	Wittigial pedaeuce	
<220>		
	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	56	
gagcca	tgta tagtgac	17
-0.4.5		
<210>		
<211>		
<212>		
<<13>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<400>	57	
teggtt	tgag atctgg	16
	· -	

	10> 58	
	11> 11	
	12> DNA	
<2	13> Artificial Sequence	
<22	20>	
<22	23> Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<4(00> 58	
tat	tteegtea t	11
		11
<21	10> 59	
	11> 12	
	12> DNA	
	13> Artificial Sequence	
<22		
<22	23> Description of Artificial Sequence: nucleotide	
	base sequence of PNA derivatives that bind to	
	viral and cellular targets	
<40	00> 59	
act	gatgtag tc	12
<21	0> 60	
	1> 12	
<21	2> DNA	
<21	3> Artificial Sequence	
-00		
<22		
	3> Description of Artificial Sequence: nucleotide base sequence of PNA derivatives that bind to	
	viral and cellular targets	
	0> 60	
gct	gatgtag tc	12
<210	0> 61	
<211	1> 12	
	2> DNA	
<213	3> Artificial Sequence	
<220	0>	
	v ·	

```
<223> Description of Artificial Sequence: nucleotide
       base sequence of PNA derivatives that bind to
       viral and cellular targets
<400> 61
 ggtatgggat at
                                                                    12
<210> 62
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: nucleotide
      base sequence of PNA derivatives that bind to
      viral and cellular targets
<400> 62
tgaaggaaga gg
                                                                    12
<210> 63
<211> 11
<212> DNA
<213> Artificíal Sequence
<220>
<223> Description of Artificial Sequence: nucleotide
      base sequence of PNA derivatives that bind to
      viral and cellular targets
<400> 63
gttagggtta g
                                                                   11
<210> 64
<211> 8
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: nucleotide
     base sequence of PNA derivatives that bind to
      viral and cellular targets
<400> 64
cacattaa
```

8