Summary of Subset of RISC-V ISA

1 MOVE instruction

do not set floating-point exception flags. Note, FSGNJ rx, ry, ry moves ry to rx; FSGNJN rx, ry, ry moves the the negation of ry to rx; and FSGNJX rx, ry, ry moves the absolute value of ry to rx.

31	27	26 2	22 21 1	7 16	12 11	9 8 7	6	0
$_{\mathrm{rd}}$		rs1	rs2	funct	rm	fmt	opcode	
5		5	5	5	3	2	7	
des	st	$\operatorname{src}1$	${ m src}2$	FSGNJ[N]	000	S/D	OP-FP	
des	st	$\operatorname{src}1$	${ m src}2$	FSGNJX	000	S/D	OP-FP	

2 Load/Store

31	27 26	22	21 17	16	10 9	7 6		0
rd		rs1	imm[11:7]	imm[6:0]	func	t3	opcode	
5		5	5	7	3	·	7	
dest	-	base	off	set[11:0]	widt	h	LOAD	
dest	5	base	off	set[11:0]	widt	h	LOAD-FP	

31	27	26	22 21	1	17 16		10	9	7	6		0
imm[11:7]		rs1		rs2		imm[6:0]		funct	3		opcode	
5		5		5		7		3			7	
offset[11:7]	7]	base		src		offset[6:0]		width	1	Ş	STORE	
offset[11:7]	7]	base		src		offset[6:0]		width	1	ST	ORE-FP	

Load and store instructions transfer a value between the registers and memory. Loads are encoded in the I-type format, and stores are B-type. The effective byte address is obtained by adding register rs1 to the sign-extended immediate. Loads write to register rd a value in memory. Stores write to memory the value in register rs2.

3 Shifts

31	27	26	$22\ 21$	16	15	14	10	9	7	6	0
rd		rs1	imm[11:6]	imm[5]	imm	[4:0]	func	t3	opcode	
5		5	6		1	5		3	•	7	
dest		src	SRA/	SRL	$\operatorname{shamt}[5]$	shamt	[4:0]	SRx	I	OP-IMM	
dest		src	SRA/	SRL	0	shamt	[4:0]	SRxI	W	OP-IMM-32	
dest		src	0		shamt[5]	shamt	[4:0]	SLL	I	OP-IMM	
dest		src	0		0	shamt	[4:0]	SLLI	W	OP-IMM-32	

Shifts by a constant are also encoded as a specialization of the I-type format. The operand to be shifted is in rs1, and the shift amount is encoded in the lower 6 bits of the immediate field for RV64, and in the lower 5 bits for RV32. The shift type is encoded in the upper bits of the immediate field.

SLLI is a logical left shift (zeros are shifted into the lower bits); SRLI is a logical right shift (zeros are shifted into the upper bits); and SRAI is an arithmetic right shift (the original sign bit is copied into the vacated upper bits). In RV32, SLLI, SRLI, and SRAI generate an illegal instruction trap if $imm[5] \neq 0$.

SLLIW, SRLIW, and SRAIW are RV64-only instructions that are analogously defined but operate on 32-bit values and produce signed 32-bit results. SLLIW, SRLIW, and SRAIW generate an illegal instruction trap if $imm[5] \neq 0$.

4 ADDI, ANDI, ORI, XORI and (implicitly) NOT with Immediates

Integer Register-Immediate Instructions

31	27 26	$22 \ 21$	17 16	10	9 7	6	0
rd	rs1	imm	[11:7] i	mm[6:0]	funct3	opcode	
5	5		5	7	3	7	
dest	src	i	mmediate[11:0]	ADDI/SLTI[U]	OP-IMM	
dest	src	i	mmediate[11:0]	ANDI/ORI/XORI	OP-IMM	
dest	src	i	mmediate[11:0]	ADDIW	OP-IMM-32	

ADDI and ADDIW add the sign-extended 12-bit immediate to register rs1. ADDIW is an RV64-only instruction that produces the proper sign-extension of a 32-bit result. Note, ADDIW rd, rs1, θ writes the sign-extension of the lower 32 bits of register rs1 into register rd.

SLTI (set less than immediate) places the value 1 in register rd if register rs1 is less than the sign-extended immediate when both are treated as signed numbers, else 0 is written to rd. SLTIU is similar but compares the values as unsigned numbers.

ANDI, ORI, XORI are logical operations that perform bit-wise AND, OR, and XOR on register rs1 and the sign-extended 12-bit immediate and place the result in rd. Note, XORI rd, rs1, -1 performs a logical inversion (NOT) of register rs1.

5 ADD, AND, OR, XOR with Registers

RISC-V defines several arithmetic R-type operations. All operations read the rs1 and rs2 registers as source operands and write the result into register rd. The funct field selects the type of operation.

31	27 26	22	21	17 16	7 6	0
rd		rs1	rs2	funct10	opcode	
5		5	5	10	7	
dest		$\mathrm{src}1$	src2	ADD/SUB/SLT/SLTU	OP	
dest		$\mathrm{src}1$	src2	$\mathrm{AND}/\mathrm{OR}/\mathrm{XOR}$	OP	
dest		$\mathrm{src}1$	src2	$\mathrm{SLL}/\mathrm{SRL}/\mathrm{SRA}$	OP	
dest		$\mathrm{src}1$	src2	${ m ADDW/SUBW}$	OP-32	
dest		$\mathrm{src}1$	$\mathrm{src}2$	SLLW/SRLW/SRAW	OP-32	

ADD and SUB perform addition and subtraction respectively. SLT and SLTU perform signed and unsigned compares respectively, writing 1 to rd if rs1 < rs2, 0 otherwise. AND, OR, and XOR perform bitwise logical operations.

ADDW and SUBW are RV64-only instructions that are defined analogously to ADD and SUB but operate on 32-bit values and produce signed 32-bit results.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in register rs1 by the shift amount held in register rs2. In RV64, only the low 6 bits of rs2 are considered for the shift amount. Similarly for RV32, only the low 5 bits of rs2 are considered.

SLLW, SRLW, and SRAW are RV64-only instructions that are analogously defined but operate on 32-bit values and produce signed 32-bit results. The shift amount is given by rs2[4:0].

6 Multiply Divide (May want to incorporate later)

31	27 26	22	21	17 16	7 6	0
$_{\mathrm{rd}}$		rs1	rs2	funct10	opcode	
5		5	5	10	7	
dest		$\operatorname{src}1$	$\mathrm{src}2$	$\mathrm{MUL}/\mathrm{MULH}[[\mathrm{S}]\mathrm{U}]$	OP	
dest	Ċ	$\operatorname{lividend}$	divisor	$\mathrm{DIV}[\mathrm{U}]/\mathrm{REM}[\mathrm{U}]$	OP	
dest		$\operatorname{src}1$	$\mathrm{src}2$	$\mathrm{MUL}[\mathrm{U}]\mathrm{W}$	OP-32	
dest	Ċ	lividend	divisor	DIV[U]W/REM[U]W	OP-32	

MUL performs an XPRLEN-bit×XPRLEN-bit multiplication and places the lower XPRLEN bits in the destination register. MULH, MULHU, and MULHSU perform the same multiplication but return the upper XPRLEN bits of the full 2×XPRLEN-bit product, for signed×signed, unsigned×unsigned, and signed×unsigned multiplication respectively. If both the high and low bits of the same product are required, then the recommended code sequence is: MULH[[S]U] rdh, rs1, rs2; MUL rdl, rs1, rs2 (source register specifiers must be in same order and rdh cannot be the same as rs1 or rs2). Microarchitectures can then fuse these into a single multiply operation instead of performing two separate multiplies.

MULW is an RV64-only instruction that multiplies the lower 32 bits of the source registers, placing the sign-extension of the lower 32 bits of the result into the destination register. MUL can be used to obtain the upper 32 bits of the 64-bit product, but signed arguments must be proper 32-bit signed values, whereas unsigned arguments must have their upper 32 bits clear.

DIV and DIVU perform signed and unsigned integer division of XPRLEN bits by XPRLEN bits. REM and REMU provide the remainder of the corresponding division operation. If both the quotient and remainder are required from the same division, the recommended code sequence is: DIV[U] rdq, rs1, rs2; REM[U] rdr, rs1, rs2 (rdq cannot be the same as rs1 or rs2). Microarchitectures can then fuse these into a single divide operation instead of performing two separate divides.

DIVW and DIVUW are RV64-only instructions that divide the lower 32 bits rs1 by the lower 32 bits of rs2, treating them as signed and unsigned integers respectively, placing the 32-bit quotient in rd. REMW and REMUW are RV64-only instructions that provide the corresponding signed and unsigned remainder operations respectively.

7 Unconditional Jump/Branch

Absolute jumps (J) and jump and link (JAL) instructions use the J-type format. The 25-bit jump target offset is sign-extended and shifted left one bit to form a byte offset, then added to the pc to form the jump target address. Jumps can therefore target a $\pm 32 \,\mathrm{MB}$ range. JAL stores the address of the instruction following the jump (pc+4) into register x1.

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. It has three variants that are functionally identical but provide hints to the implementation: JALR.C is used to call subroutines; JALR.R is used to return from subroutines; and JALR.J is used for indirect jumps. The target address is obtained by sign-extending the 12-bit immediate then adding it to the address contained in register rs1. The address of the instruction following the jump (pc+4) is written to register rd. Register x0 can be used as the destination if the result is not required.

8 Conditional Jump/Branch

All branch instructions use the B-type encoding. The 12-bit immediate is sign-extended, shifted left one bit, then added to the current pc to give the target address.

31	27 26	22	2 21 1'	7 16	10 9	7	6		0
imm[11:'	7] r	s1	rs2	imm[6:0]		funct3		opcode	
5		5	5	7		3		7	
offset[11:	7] s:	rc1	src2	offset[6:0]	В	BEQ/BN	$^{ m IE}$	BRANCH	
offset[11:	7] s:	rc1	${ m src}2$	offset[6:0]	Ε	BLT[U]		BRANCH	
offset[11:	7] s:	rc1	${ m src2}$	offset[6:0]	Е	GE[U]		BRANCH	

Branch instructions compare two registers. BEQ and BNE take the branch if registers rs1 and rs2 are equal or unequal respectively. BLT and BLTU take the branch if rs1 is less than rs2, using signed and unsigned comparison respectively. BGE and BGEU take the branch if rs1 is greater than or equal to rs2, using signed and unsigned comparison respectively. Note, BGT, BGTU, BLE, and BLEU can be synthesized by reversing the operands to BLT, BLTU, BGE, and BGEU, respectively.

31 27	$26\ 22$	21 17	16 15 14 12	11 10	9 8 7	6 0			
		j	ump target			opcode	J-type		
rd	rd LUI-immediate								
rd	rs1	imm[11:7]	imm[6:0)]	funct3	opcode	I-type		
imm[11:7]	rs1	rs2	imm[6:0)]	funct3	opcode	B-type		
rd	rs1	rs2		funct10		opcode	R-type		
rd	rs1	rs2	rs3		funct5	opcode	R4-type		

Unimplemented Instruction

Control Transfer Instructions

		Conti	of fransier mistractions					
			imm25		1100111] J in		
			imm25		1101111	JAI		
imm12hi	rs1	rs2	imm12lo	000	1100011	BE		
imm12hi	rs1	rs2	imm12lo	001	1100011	BN		
imm12hi	rs1	rs2	imm12lo	100	1100011	BL.		
imm12hi	rs1	rs2	imm12lo	101	1100011	BG		
imm12hi	rs1	rs2	imm12lo	110	1100011	BL.		
imm12hi	rs1	rs2	imm12lo	111	1100011	BG		
rd	rs1		imm12	000	1101011	JAI		
rd	rs1		imm12	001	1101011	JAI		
rd	rs1		imm12 010					
rd	00000		00000000000 100					
	•			•	•	•		

J imm25
JAL imm25
BEQ rs1,rs2,imm12
BNE rs1,rs2,imm12
BLT rs1,rs2,imm12
BGE rs1,rs2,imm12
BLTU rs1,rs2,imm12
BGEU rs1,rs2,imm12
JALR.C rd,rs1,imm12
JALR.R rd,rs1,imm12
JALR.J rd,rs1,imm12
RDNPC rd

Memory Instructions

rd	rs1		imm12	000	0000011
rd	rs1		imm12	001	0000011
rd	rs1		imm12	010	0000011
rd	rs1		imm12	011	0000011
rd	rs1		imm12	100	0000011
rd	rs1		imm12	101	0000011
rd	rs1		imm12	110	0000011
imm12hi	rs1	rs2	imm12lo	000	0100011
imm12hi	rs1	rs2	imm12lo	001	0100011
imm12hi	rs1	rs2	imm12lo	010	0100011
imm12hi	rs1	rs2	imm12lo	011	0100011

LB rd,rs1,imm12 LH rd,rs1,imm12 LW rd,rs1,imm12 LD rd,rs1,imm12 LBU rd,rs1,imm12 LHU rd,rs1,imm12 LWU rd,rs1,imm12 SB rs1,rs2,imm12 SH rs1,rs2,imm12 SW rs1,rs2,imm12 SD rs1,rs2,imm12

Atomic Memory Instructions

	Atomic Wemory Institutions											
rd	rs1	rs2	0000000	010	0101011							
rd	rs1	rs2	0000001	010	0101011							
rd	rs1	rs2	0000010	010	0101011							
rd	rs1	rs2	0000011	010	0101011							
rd	rs1	rs2	0000100	010	0101011							
rd	rs1	rs2	0000101	010	0101011							
rd	rs1	rs2	0000110	010	0101011							
rd	rs1	rs2	0000111	010	0101011							
rd	rs1	rs2	0000000	011	0101011							
rd	rs1	rs2	0000001	011	0101011							
rd	rs1	rs2	0000010	011	0101011							
rd	rs1	rs2	0000011	011	0101011							
rd	rs1	rs2	0000100	011	0101011							
rd	rs1	rs2	0000101	011	0101011							
rd	rs1	rs2	0000110	011	0101011							
rd	rs1	rs2	0000111	011	0101011							

AMOADD.W rd,rs1,rs2 AMOSWAP.W rd,rs1,rs2 AMOAND.W rd,rs1,rs2 AMOOR.W rd,rs1,rs2 AMOMIN.W rd,rs1,rs2 AMOMAX.W rd,rs1,rs2 AMOMINU.W rd,rs1,rs2 AMOMAXU.W rd,rs1,rs2 AMOADD.D rd,rs1,rs2 AMOSWAP.D rd,rs1,rs2 AMOAND.D rd,rs1,rs2 AMOOR.D rd,rs1,rs2 AMOMIN.D rd.rs1.rs2 AMOMAX.D rd,rs1,rs2 AMOMINU.D rd,rs1,rs2 AMOMAXU.D rd,rs1,rs2

31 27	$26\ 22$	21 17	16 15 14 12	11 10	9 8 7	6 0	
		j	ump target			opcode	J-type
rd			opcode	LUI-type			
rd	rs1	imm[11:7]	imm[6:0]		funct3	opcode	I-type
imm[11:7]	rs1	rs2	imm[6:0]		funct3	opcode	B-type
rd	rs1	rs2	1	opcode	R-type		
rd	rs1	rs2	rs3	fı	unct5	opcode	R4-type

Integer Compute Instructions

rd	- 4		Integer Compute Instructions											
ra	rs1		imm12	000	0010011	ADDI rd,rs1,imm12								
rd	rs1	000000	shamt	001	0010011	SLLI rd,rs1,shamt								
rd	rs1		imm12	010	0010011	SLTI rd,rs1,imm12								
rd	rs1		imm12	011	0010011	SLTIU rd,rs1,imm12								
rd	rs1		imm12	100	0010011	XORI rd,rs1,imm12								
rd	rs1	000000	shamt	101	0010011	SRLI rd,rs1,shamt								
rd	rs1	000001	shamt	101	0010011	SRAI rd,rs1,shamt								
rd	rs1		imm12	110	0010011	ORI rd,rs1,imm12								
rd	rs1		imm12	111	0010011	ANDI rd,rs1,imm12								
rd	rs1	rs2	0000000	000	0110011	ADD rd,rs1,rs2								
rd	rs1	rs2	1000000	000	0110011	SUB rd,rs1,rs2								
rd	rs1	rs2	0000000	001	0110011	SLL rd,rs1,rs2								
rd	rs1	rs2	0000000	010	0110011	SLT rd,rs1,rs2								
rd	rs1	rs2	0000000	011	0110011	SLTU rd,rs1,rs2								
rd	rs1	rs2	0000000	100	0110011	XOR rd,rs1,rs2								
rd	rs1	rs2	0000000	101	0110011	SRL rd,rs1,rs2								
rd	rs1	rs2	1000000	101	0110011	SRA rd,rs1,rs2								
rd	rs1	rs2	0000000	110	0110011	OR rd,rs1,rs2								
rd	rs1	rs2	0000000	111	0110011	AND rd,rs1,rs2								
rd	rs1	rs2	0000001	000	0110011	MUL rd,rs1,rs2								
rd	rs1	rs2	0000001	001	0110011	MULH rd,rs1,rs2								
rd	rs1	rs2	0000001	010	0110011	MULHSU rd,rs1,rs2								
rd	rs1	rs2	0000001	011	0110011	MULHU rd,rs1,rs2								
rd	rs1	rs2	0000001	100	0110011	DIV rd,rs1,rs2								
rd	rs1	rs2	0000001	101	0110011	DIVU rd,rs1,rs2								
rd	rs1	rs2	0000001	110	0110011	REM rd,rs1,rs2								
rd	rs1	rs2	0000001	111	0110011	REMU rd,rs1,rs2								
rd			imm20		0110111	LUI rd,imm20								

32-bit Integer Compute Instructions

G F												
rd	rs1		imm12	2	000	0011011						
rd	rs1	0000	000	shamtw	001	0011011						
rd	rs1	00000	000	shamtw	101	0011011						
rd	rs1	00000	010	shamtw	101	0011011						
rd	rs1	rs2		0000000	000	0111011						
rd	rs1	rs2		1000000	000	0111011						
rd	rs1	rs2	(0000000	001	0111011						
rd	rs1	rs2	(0000000	101	0111011						
rd	rs1	rs2		1000000	101	0111011						
rd	rs1	rs2	(0000001	000	0111011						
rd	rs1	rs2	(0000001	100	0111011						
rd	rs1	rs2	0000001		101	0111011						
rd	rs1	rs2	(0000001	110	0111011						
rd	rs1	rs2		0000001	111	0111011						

ADDIW rd,rs1,imm12 SLLIW rd,rs1,shamtw SRLIW rd,rs1,shamtw SRAIW rd,rs1,shamtw ADDW rd,rs1,rs2 SUBW rd,rs1,rs2 SLLW rd,rs1,rs2 SRLW rd,rs1,rs2 MULW rd,rs1,rs2 DIVW rd,rs1,rs2 DIVUW rd,rs1,rs2 REMW rd,rs1,rs2 REMW rd,rs1,rs2

	31 2	27	26 22	21 17	16	15	$14 \ 12$	11 10	9	8 7	6 0	
					jump	target	;				opcode	J-type
	$_{\mathrm{rd}}$				opcode	LUI-type						
	$_{\mathrm{rd}}$		rs1	imm[11:	7]	imm[6:0]			fur	1ct3	opcode	I-type
	imm[1]	1:7]	rs1	rs2		imm[6:0]			fur	nct3	opcode	B-type
	rd		rs1	rs2		$\operatorname{funct} 10$					opcode	R-type
Ī	rd		rs1	rs2		rs3			funct5		opcode	R4-type

Floating-Point Memory Instructions

$^{\mathrm{rd}}$	rs1		imm12	010	0000111	FLW rd,rs1,imm12
$^{\mathrm{rd}}$	rs1		imm12	011	0000111	FLD rd,rs1,imm12
imm12hi	rs1	rs2	imm12lo	010	0100111	FSW rs1,rs2,imm12
imm12hi	rs1	rs2	imm12lo	011	0100111	FSD rs1,rs2,imm12

Floating-Point Compute Instructions

		O				
rd	rs1	rs2	00000	rm	00	1010011
rd	rs1	rs2	00001	rm	00	1010011
rd	rs1	rs2	00010	rm	00	1010011
rd	rs1	rs2	00011	rm	00	1010011
rd	rs1	00000	00100	rm	00	1010011
rd	rs1	rs2	11000	000	00	1010011
rd	rs1	rs2	11001	000	00	1010011
rd	rs1	rs2	00000	rm	01	1010011
rd	rs1	rs2	00001	rm	01	1010011
rd	rs1	rs2	00010	rm	01	1010011
rd	rs1	rs2	00011	rm	01	1010011
rd	rs1	00000	00100	rm	01	1010011
rd	rs1	rs2	11000	000	01	1010011
rd	rs1	rs2	11001	000	01	1010011
rd	rs1	rs2	rs3	rm	00	1000011
rd	rs1	rs2	rs3	rm	00	1000111
rd	rs1	rs2	rs3	rm	00	1001011
rd	rs1	rs2	rs3	rm	00	1001111
rd	rs1	rs2	rs3	rm	01	1000011
rd	rs1	rs2	rs3	rm	01	1000111
rd	rs1	rs2	rs3	rm	01	1001011
rd	rs1	rs2	rs3	rm	01	1001111

FADD.S rd,rs1,rs2[,rm] FSUB.S rd,rs1,rs2[,rm] FMUL.S rd,rs1,rs2[,rm] FDIV.S rd,rs1,rs2[,rm] FSQRT.S rd,rs1[,rm] FMIN.S rd,rs1,rs2 FMAX.S rd,rs1,rs2 FADD.D rd,rs1,rs2[,rm] FSUB.D rd,rs1,rs2[,rm] FMUL.D rd,rs1,rs2[,rm] FDIV.D rd,rs1,rs2[,rm] FSQRT.D rd,rs1[,rm] FMIN.D rd,rs1,rs2 FMAX.D rd,rs1,rs2FMADD.S rd,rs1,rs2,rs3[,rm] FMSUB.S rd,rs1,rs2,rs3[,rm] FNMSUB.S rd,rs1,rs2,rs3[,rm] FNMADD.S rd,rs1,rs2,rs3[,rm] FMADD.D rd,rs1,rs2,rs3[,rm]

FMSUB.D rd,rs1,rs2,rs3[,rm] FNMSUB.D rd,rs1,rs2,rs3[,rm] FNMADD.D rd,rs1,rs2,rs3[,rm

31 27	$26\ 22$	21 17	16 15 14 1	2 11 10	9 8 7	6 0	
		j	ump target			opcode	J-type
rd			opcode	LUI-type			
rd	rs1	imm[11:7]	imm[6:	0]	funct3	opcode	I-type
imm[11:7]	rs1	rs2	imm[6:	0]	funct3	opcode	B-type
rd	rs1	rs2		opcode	R-type		
rd	rs1	rs2	rs3		funct5	opcode	R4-type

Floating-Point Move & Conversion Instructions

$^{\mathrm{rd}}$	rs1	rs2	00101	000	00	1010011	FSGNJ.S rd,rs1,rs2
$^{\mathrm{rd}}$	rs1	rs2	00110	000	00	1010011	FSGNJN.S rd,rs1,rs2
$^{\mathrm{rd}}$	rs1	rs2	00111	000	00	1010011	FSGNJX.S rd,rs1,rs2
rd	rs1	rs2	00101	000	01	1010011	FSGNJ.D rd,rs1,rs2
rd	rs1	rs2	00110	000	01	1010011	FSGNJN.D rd,rs1,rs2
rd	rs1	rs2	00111	000	01	1010011	FSGNJX.D rd,rs1,rs2
rd	rs1	00000	10001	rm	00	1010011	FCVT.S.D rd,rs1[,rm]
rd	rs1	00000	10000	rm	01	1010011	FCVT.D.S rd,rs1[,rm]

Integer to Floating-Point Move & Conversion Instructions

rd	rs1	00000	01100	rm	00	1010011	FCVT.S.L rd,rs1[,rm]
rd	rs1	00000	01101	rm	00	1010011	FCVT.S.LU rd,rs1[,rm]
rd	rs1	00000	01110	rm	00	1010011	FCVT.S.W rd,rs1[,rm]
rd	rs1	00000	01111	rm	00	1010011	FCVT.S.WU rd,rs1[,rm]
rd	rs1	00000	01100	rm	01	1010011	FCVT.D.L rd,rs1[,rm]
rd	rs1	00000	01101	rm	01	1010011	FCVT.D.LU rd,rs1[,rm]
rd	rs1	00000	01110	rm	01	1010011	FCVT.D.W rd,rs1[,rm]
rd	rs1	00000	01111	rm	01	1010011	FCVT.D.WU rd,rs1[,rm]
rd	rs1	00000	11110	000	00	1010011	MXTF.S rd,rs1
rd	rs1	00000	11110	000	01	1010011	MXTF.D rd,rs1
rd	rs1	00000	11111	000	00	1010011	MTFSR rd,rs1

Floating-Point to Integer Move & Conversion Instructions

O		O				
rs1	00000	01000	rm	00	1010011	FCVT.L.S rd,rs1[,rm]
rs1	00000	01001	rm	00	1010011	FCVT.LU.S rd,rs1[,rm]
rs1	00000	01010	rm	00	1010011	FCVT.W.S rd,rs1[,rm]
rs1	00000	01011	rm	00	1010011	FCVT.WU.S rd,rs1[,rm]
rs1	00000	01000	rm	01	1010011	FCVT.L.D rd,rs1[,rm]
rs1	00000	01001	rm	01	1010011	FCVT.LU.D rd,rs1[,rm]
rs1	00000	01010	rm	01	1010011	FCVT.W.D rd,rs1[,rm]
rs1	00000	01011	rm	01	1010011	FCVT.WU.D rd,rs1[,rm]
00000	rs2	11100	000	00	1010011	MFTX.S rd,rs2
00000	rs2	11100	000	01	1010011	MFTX.D rd,rs2
00000	00000	11101	000	00	1010011	MFFSR rd
	rs1 rs1 rs1 rs1 rs1 rs1 rs1 rs1 rs1 00000 00000	rs1 00000 rs2 00000 rs2	rs1 00000 01000 rs1 00000 01001 rs1 00000 01010 rs1 00000 01011 rs1 00000 01000 rs1 00000 01001 rs1 00000 01010 rs1 00000 01011 00000 rs2 11100 00000 rs2 11100	rs1 00000 01000 rm rs1 00000 01001 rm rs1 00000 01010 rm rs1 00000 01011 rm rs1 00000 01000 rm rs1 00000 01001 rm rs1 00000 01010 rm rs1 00000 01011 rm 00000 rs2 11100 000 0000 rs2 11100 000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	31 27	26 22	21 17	16 1	5 14 12	11 10	9	8 7	6 0			
			i	ımp tar					opcode] J-type		
	rd		<u>J</u>		immediate				opcode	LUI-type		
	rd	rs1	imm[11:7]		imm[6:0]		fur	ct3	opcode	I-type		
i	imm[11:7]	rs1	rs2		imm[6:0]			ict3	opcode	B-type		
	rd	rs1	rs2		f	unct10			opcode	R-type		
	rd	rs1	rs2		rs3		funct5		opcode	R4-type		
		1										
_			Floating-l							1		
	rd	rs1	rs2	1	0101	00	0	00	1010011	FEQ.S rd,rs1,rs2		
	rd	rs1	rs2	1	0110	00	0	00	1010011	FLT.S rd,rs1,rs2		
	rd	rs1	rs2	1	0111	00	0	00	1010011	FLE.S rd,rs1,rs2		
	rd	rs1	rs2	1	0101	00	0	01	1010011	FEQ.D rd,rs1,rs2		
	rd	rs1	rs2	1	0110	00	0	01	1010011	FLT.D rd,rs1,rs2		
	rd	rs1	rs2	1	0111	00	0	01	1010011	FLE.D rd,rs1,rs2		
									•	•		
			Miscellar	ieous N	Iemory In	structio	ns			_		
	rd	rs1		imn	n12		0	01	0101111	FENCE.I rd,rs1,imm12		
	rd	rs1		imn	n12		0	10	0101111	FENCE rd,rs1,imm12		
										-		
	System Instructions											
	00000	00000	00000		0000000			00	1110111	SYSCALL		
	00000	00000	00000		0000000			01	1110111	BREAK		
	rd	00000	00000		0000000			00	1110111	RDCYCLE rd		
	rd	00000	00000		0000001		10	00	1110111	RDTIME rd		
	$^{\mathrm{rd}}$	00000	00000		0000010		10	00	1110111	RDINSTRET rd		

Table 6: Instruction listing for RISC-V