Introduction to Algorithms

CS 430

Lecture 15-16

Outlines

- Amortized Analysis
 - Aggregate Analysis
 - Accounting Analysis
 - Potential Analysis
 - More Examples

What is Amortized Analysis?

- Not an algorithm;
- Do NOT need to or should NOT appear in the code;
- It is the average cost over a sequence of operations on a data structure;
- It could be small although a single operation may be expensive;
- It is not the cost for average case and does not involve probability analysis;

What is Amortized Analysis?

- If the upper bound on cost of a sequence of operations is T(n)--worst case, then T(n)/n is the amortized cost of each operation;
- In amortized analysis, all operations have the same amortized cost as T(n)/n, although their accurate cost may differ.
- why? It helps to improve your algorithm design.

What is Amortized Analysis?

- ex. Insertion to a dynamic array.
 - items can be inserted at a given index--cost is O(1);
 - if that index is not present in the array, it has to double the size of the array then inserts the element if the index is present--the cost is not a constant;

ex. Insertion to a dynamic array.

- ex. Insertion to a dynamic array.
 - If ci is the cost to insert ith element,

So
$$ci = 1 + \begin{cases} i - 1, & \text{if } i - 1 \text{ is power of } 2 \\ 0, & \text{Otherwise} \end{cases}$$

$$\frac{\sum_{i=1}^{n} c_i}{n} \le \frac{n + \sum_{j=1}^{\lfloor \log_2(n-1) \rfloor} 2^j}{n} = \frac{O(n)}{n}$$

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{a} = 2^{a+1} - 1$$

$$\Rightarrow 2^{1} + 2^{2} + \dots + 2^{\lfloor \lg(n-1) \rfloor} = 2^{\lfloor \lg(n-1) \rfloor + 1} - 1 - 1 = 2^{\lfloor \lg(n-1) \rfloor + 1} - 2 = 2(n-1) - 2 = O(n)$$

- the amortized cost =T(n)/n and it applies to any operation in n-operations sequence.
 - operations may be in different types.
- T(n) is the worst case cost.
- what are different types of operations?
 - insertion, deletion, selecting a single element, selecting a subarray of elements.....

Ex#1. Stack operations

- pop, push, what else?
- PUSH (S,x)--pushes x onto stack S;--O(1)
- POP (S)-- pops and returns the top of S;--O(1)
- the cost of a sequence of n PUSH or POP operations is O(n).
- add a new operation: Multipop(S,k)--pops k top elements from S if the size of S>=k; otherwise pops all elements.

- Ex#1. Stack operations
 - Multipop(S,k)--pops k top elements from S if the size of S>=k; otherwise pops all elements.
 - Multipop(S,4), Multipop(S,3)

algorithm and running time

```
MULTIPOP(S,k)

I while not STACK-EMPTY(S) and k\neq 0

2 do POP(S)

3 k\leftarrow k-1
```

Accurate running is:

Running time for a POP operation is c; running time for Multipop (S,k)=c*min{s,k}, where s is the size of S. what is the cost of a sequence of n POP, PUSH and Mulitpop?

- the size of stack is n;
- worst case:
 - the cost of a Multipop is at most n= O(n);
 - n multipop operations in the sequence;
 - entire cost is O(n*n)=O(n2)

Is O(n²) correct?

Correct, but NOT TIGHT.

- interaction between operations:
 - push once, pop at most once
 - the number of times that POP, including Multipops is executed is at most = # PUSH
 - # PUSH is at most n;
 - For any n, the cost of a sequence of n POP,
 PUSH or Multipop is O(n).
- Amortized cost=O(n)/n=O(1)

• Ex#2. Binary Counter

- A[0..k-1] is an array denoting a k-bit binary counter that counts up from 0;
- counts up: add 1 to the value of counter;
- A[0] stores the lowest value place of the counter and A[k-1] stores the highest value place.
- x is the counting value.
- for example, if x=11, then A[]=(11010000000...00)

A[k-

- Ex#2. Binary Counter
 - count up by 1for 16 times

Adding 1 to A[i] is to flip it.
 if A[i] is 1, it yields a carry to A[i+1]. Then it goes iteratively.

Counter value	WILKE WE WE WE WO WILKED	Total cost
0	0000000	0
1	00000001	1
2	0 0 0 0 0 0 1 0	3
3	00000011	4
4	0 0 0 0 0 1 0 0	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	0 0 0 0 0 1 1 1	11
8	0 0 0 0 1 0 0	15
9	0 0 0 0 1 0 0 1	16
10	00001010	18
11	00001011	19
12	00001100	22
13	00001101	23
14	00001110	25
15	00001111	26
16	00010000	31

Algorithm of Binary Counter--count up by 1

```
INCREMENT(A)
 i←-O
2 while i<length[A] and A[i]=1
3 doA[i]←0
       i←i+l
5 if i<length[A]
6 then A[i]←1
```

- Amortized analysis on binary counter
 - worst case: each increment costs O(k);
 - a sequence of n Increment operations: O(nk);
 - correct, but not tight!

Consider the worst case.

if an operation causes

k flips, the operation

following it will cause 1 flip

Counter value	WI. YO,	Total cost
0	0000000	0
1	00000001	1
2	00000010	3
3	00000011	4
4	00000100	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	00000111	11
8	0000100	15
9	00001001	16
10	00001010	18
11	00001011	19
12	00001100	22
13	00001101	23
14	00001110	25
15	00001111	26
16	00010000	31

- A[0] flips every time. It flips times at most.
- A[1] flips every other time. It flips $\left|\frac{n}{2}\right|$ times at most.
- A[2] flips $\left\lfloor \frac{n}{4} \right\rfloor$ times at most. for i=0,1,..., $\lfloor \lg n \rfloor$, A[i] flips $\left\lfloor \frac{n}{2^i} \right\rfloor$ times.
- for $i> \lfloor \lg n \rfloor$, those A[i] do not need to flip at all.
 - each operation is an increment by 1, so that n operations is making n as the value of A, which requires $\lfloor \lg n \rfloor$ bits as a binary for n.

Counter value	MI, Me, Me, Me, Me, Me, Me, Me, Me, Me, Me	Total cost
0	0000000	0
1	0 0 0 0 0 0 0 1	1
2	00000010	3
3	0 0 0 0 0 0 1 1	4
4	0 0 0 0 0 1 0 0	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	0 0 0 0 0 1 1 1	11
8	0 0 0 0 1 0 0	15
9	0 0 0 0 1 0 0 1	16
10	0 0 0 0 1 0 1 0	18
11	00001011	19
12	00001100	22
13	00001101	23
14	00001110	25
15	00001111	26
16	00010000	31

- A[2] flips $\left\lfloor \frac{n}{4} \right\rfloor$ times at most. for i=0,1,..., $\left\lfloor \lg n \right\rfloor$ A[i] flips $\left\lfloor \frac{n}{2^i} \right\rfloor$ times.
- the total number of flips in A is:

$$\sum_{i=0}^{\lfloor \lg n \rfloor} \left\lfloor \frac{n}{2^i} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i} = n \times \frac{1}{1 - \frac{1}{2}} = 2n$$

- O(n)
- Amortized cost=O(n)/n=O(1)

Counter	MINENSMANSMONING	Total cost
0	0000000	0
1	00000001	1
2	0 0 0 0 0 0 1 0	3
3	00000011	4
4	00000100	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	00000111	11
8	00001000	15
9	00001001	16
10	00001010	18
11	00001011	19
12	00001100	22
13	00001101	23
14	00001110	25
15	00001111	26
16	00010000	31

Accounting Method

definitions

- for different operations, accounting method "charges" differently from their actual costs, less or more. These chargers are amortized cost.
- when amortized cost>actual cost, credit=amortized cost-actual cost;
- credit is stored for future use when amortized cost<actual cost.

Accounting Method

- definitions (cont'd)
 - How to assign amortized cost?
 - it must show that in worst case, the average cost is small;
 - the total amortized cost must be an upper bound on actual cost.
 - $\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$, if there are n operations in a sequence.
 - total credit stored in the data structure is:

(otherwise amortized cost will not be upper on actual cost)

$$\sum_{i=1}^{n} \hat{c}_{i} - \sum_{i=1}^{n} c_{i} \ge 0$$

```
Ex#1: stack operations
actual cost: PUSH 1
      POP 1
      Multipop min(k, s)
amortized cost: PUSH 2
      Multipop
```


Amortized Analysis

..... Accounting Method: Stack Example

3 ops:	\$1 pays actual \$1 as credit		
	Push(S,x)	Pop(S)	Multi-pop(S,k)
•Actual cost:	1	1	min(S ,k)
•Amortized cost:	2	0	0

Push(S,x) pays for possible later pop of x.

Amortized Analysis

- amortized cost analysis
 - each object in the stack has \$1 of credit on it;
 - the total credit for a stack is nonnegative= the number of objects in the stack after a sequence of n operations=O(n);

• Ex#2. Binary Counter actual cost: flip 1

amortized cost: set a bit to 1:2

reset a bit to 0:0

every 1 has a 1 dollar of credit on it

amortized analysis
 INCREMENT(A)

```
i←O
2 while i<length[A] and A[i]=1
       doA[i]←0
                                                     do not need extra
                                                    payment. Each 1 has
           i←i+1
                                                       $1 credit.
5 if i<length[A]
       then A[i]←I
                                                    Pay $2. But in each
                                                    Increment, at most 1
                                                        bit is set.
```

The total amortized cost is nonnegative; In each Increment, the amortized cost is at most \$2; The total amortized cost is at most 2*n=O(n).

Potential Method

Definitions

- the overpaid work is stored as "potential";
- it is associated with the entire data structure other than a single object;
- it can be released for future operation;
 (decreases after an operation)

Potential Method

Definitions (cont'd)

- $-c_i$: the actual cost of the ith operation; D_i : the data structure after ith operation to D_{i-1} ; $\phi(D_i)$ is the potential associated with D_i ;
- $-\hat{c}_i$ is the amortized cost of the ith operation and is defined as: $\hat{c}_i = c_i + \phi(D_i) \phi(D_{i-1})$
- the total amortized cost is:

$$\sum_{i=0}^{n} \hat{c}_{i} = \sum_{i=1}^{n} [c_{i} + \phi(D_{i}) - \phi(D_{i-1})] = \sum_{i=1}^{n} c_{i} + \phi(D_{n}) - \phi(D_{0})$$

Key point: how to define φ ?

Potential Method

- Definitions (cont'd)
 - the total amortized cost is:

$$\sum_{i=0}^{n} \hat{c}_{i} = \sum_{i=1}^{n} [c_{i} + \phi(D_{i}) - \phi(D_{i-1})] = \sum_{i=1}^{n} c_{i} + \phi(D_{n}) - \phi(D_{0})$$

To define φ:

 $\phi(D_n) > = \phi(D_0)$, so that total amortized cost is the upper bound to actual cost; (we'd better let all $\phi(D_i) > = \phi(D_0)$ and $\phi(D_0) = 0$)

All ϕ s that follow the above codes are applicable for amortized analysis, but may yield different upper bounds.

• Ex#1. Stack problem

Amortized Analysis: Stack Example

Potential method:

Let the potential of a stack be the *number of elements* in the stack.

For the worst case, amortized cost of a sequence of n operations=n*2=O(n)

• Ex#2. Binary Counter

t_i is the number of reset bits in the ith operation;

• we have
$$\hat{c}_i = c_i + \phi(D_i) - \phi(D_{i-1}) = c_i + b_i - b_{i-1} \le c_i + b_{i-1} - t_i + 1 - b_{i-1}$$

 $\le c_i - t_i + 1 \le t_i + 1 - t_i + 1 = 2$

the worst case amortized cost=n*2=O(n).

More Examples Dynamic Tables

Algorithm of insertion

```
TABLE-INSERT(T, x)
lif size (T)=0
    then allocate table (T) with 1 slot
        size (T)←I
4 if num[T]=size[T]
    then allocate new table with 2*size[T] slots
        insert all old items into the new table
6
        release table[T]
7
        table[T]←new table
8
       size[T]=2*size[+]
9
10 insert x into table[T]
\parallel \text{num}[T] \leftarrow \text{num}[T] + \text{I}
```

- amortized analysis--aggregate analysis
 - for one operation, the worst-case cost is n, and the total cost is $O(n^2)$ --correct but not tight.

So
$$ci = 1 + \begin{cases} i - 1, & \text{if } i - 1 \text{ is power of } 2 \\ 0, & \text{Otherwise} \end{cases}$$

$$\frac{\sum_{i=1}^{n} c_i}{n} \le \frac{n + \sum_{j=1}^{\lfloor \log_2(n-1) \rfloor} 2^j}{n} = \frac{3n}{n} = 3$$

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{a} = 2^{a+1} - 1$$

$$\Rightarrow 2^{1} + 2^{2} + \dots + 2^{\lfloor \lg(n-1) \rfloor} = 2^{\lfloor \lg(n-1) \rfloor + 1} - 1 - 1 = 2^{\lfloor \lg(n-1) \rfloor + 1} - 2 = 2(n-1) - 2 = O(2n)$$

amortized analysis--accounting method

The total credit at any moment is in [0,n]=O(n)

- amortized analysis--potential method
- $\phi(T)=2*num(T)-size(T);$ (when 2*num(T)=size(T), $\phi(T)=0$)
- $-\alpha(T)>=1/2$, then $\varphi(T)$ is nonnegative;
- total amortized cost is the upper bound of actual cost;

when the ith insertion does not trigger an expansion:

$$\begin{split} \hat{c}_{i} &= c_{i} + \phi(D_{i}) - \phi(D_{i-1}) = c_{i} + 2num_{i} - size_{i} - (2num_{i-1} - size_{i-1}) \\ &= 1 + 2num_{i-1} + 2 - size_{i} - 2num_{i-1} + size_{i} \\ &= 3 \end{split}$$

when it does:

$$\hat{c}_{i} = c_{i} + \phi(D_{i}) - \phi(D_{i-1}) = c_{i} + 2num_{i} - size_{i} - (2num_{i-1} - size_{i-1})$$

$$= num_{i} + 2num_{i} - 2(num_{i} - 1) - 2(num_{i} - 1) + num_{i} - 1$$

$$= 3$$

- Contraction
 - To keep load factor >=1/2, we contract the table to half when num; is half of size;?
 - example: when n=8, we conduct the following operations:

```
I,I,I,I,D,D,I
```

- Contraction
 - To keep load factor >=1/2, we contract the table to half when num; is half of size;?
 - example: when n=8, we conduct the following operations:

- Contraction
 - To keep load factor >=1/2, we contract the table to half when num; is half of size;?
 - example: when n=8, we conduct the following operations:

- Contraction
 - To keep load factor >=1/2, we contract the table to half when num; is half of size;?
 - example: when n=8, we conduct the following operations:

```
I,I,I,I,D,D,I
```

a1 a2 a3

- Contraction
 - To keep load factor >=1/2, we contract the table to half when num; is half of size;?
 - example: when n=8, we conduct the following operations:

```
I,I,I,I,I,D,D,I
```

```
a1 a2 a3 a4
```

- Contraction
 - To keep load factor >=1/2, we contract the table to half when num; is half of size;?
 - example: when n=8, we conduct the following operations:

How to fix it?

Actual cost is $O(n/2*n/2)=O(n^2)$

- Solution: let load factor be 1/4 when contraction occurs.
- amortized analysis--potential method

$$-\phi_{i} = 2*num_{i}-size_{i}, \quad \alpha_{i} > = 1/2$$

$$size_{i}/2-num_{i} \quad \alpha_{i} < 1/2$$

for insertion:

if
$$\alpha_{i-1} > = 1/2$$
, $\hat{c}_i = 3$
if $\alpha_{i-1} < 1/2$, and $\alpha_i < 1/2$, $\hat{c}_i = c_i + \phi(D_i) - \phi(D_{i-1}) = 1 + size_i/2 - num_i - (size_{i-1}/2 - num_{i-1})$
 $= 1 + size_i/2 - num_i - [size_i/2 - (num_i - 1)]$
 $= 0$
 $\hat{c}_i = c_i + \phi(D_i) - \phi(D_{i-1}) = 1 + 2num_i - size_i - (size_{i-1}/2 - num_{i-1})$
 $= 1 + 2(num_{i-1} + 1) - size_{i-1} - (size_{i-1}/2 - num_{i-1})$
 $= 3num_{i-1} - \frac{3}{2} size_{i-1} + 3 = 3\alpha_{i-1} size_{i-1} - \frac{3}{2} size_{i-1} + 3$
 $< 3 \times \frac{1}{2} size_{i-1} - \frac{3}{2} size_{i-1} + 3 = 3$

amortized analysis--potential method

$$- \varphi_i = 2*num_i - size_i, \quad \alpha_i > = 1/2$$

 $size_i/2 - num_i \quad \alpha_i < 1/2$

for deletion:

∫if $α_{i-1}$ >=1/2, the cost is a constant; if $α_{i-1}$ <1/2, and does not contract,

$$\begin{split} \hat{c}_i &= c_i + \phi(D_i) - \phi(D_{i-1}) = 1 + size_i / 2 - num_i - (size_{i-1} / 2 - num_{i-1}) \\ &= 1 + size_i / 2 - num_i - [size_i / 2 - (num_i + 1)] \\ &= 2 \end{split}$$

contracts,

$$\hat{c}_{i} = c_{i} + \phi(D_{i}) - \phi(D_{i-1}) = num_{i} + 1 + size_{i} / 2 - num_{i} - (size_{i-1} / 2 - num_{i-1})$$

$$= num_{i} + 1 + num_{i} + 1 - num_{i} - [(2num_{i} + 2) - (num_{i} + 1)]$$

$$= 1$$