

Course Number	ELE404
Course Title	Electronic Circuits I
Semester/Year	W2022
Instructor	Fei Yuan
TA Name	Anas Razzaq
Lab/Tutorial Report No.	Design Project
Report Title	BJT Amplifiers
Section No.	01

Student Name	Student ID	Signature*
Ahmad El-Gohary	501011852	Ahmad Cl-Gohary

17-April-2022

17-April-2022

*By signing above, you attest that you have contributed to this submission and confirm that all work you have contributed to this submission is your own work. Any suspicion of copying or plagiarism in this work will result in an investigation of Academic Misconduct and may result in a "0" on the work, an "F" in the course, or possibly more severe penalties, as well as a Disciplinary Notice on your academic record under the Student Code of Academic Conduct, which can be found online at:

http://www.ryerson.ca/content/dam/senate/policies/pol60.pdf

Submission Date

Due Date

Contents

Introduction	
Objectives	
Circuit Under Test	4
Experimental and Results	5
Conclusions and Remarks	Error! Bookmark not defined.
Appendix – Prelab	Error! Bookmark not defined

Introduction

This report is for Design Project "BJT Amplifiers". The project took place from 1 April 2022 to 17 April.

Objectives

The objective of this lab was to design an amplifier circuit that complies with the following specifications.

- Power supply: +10V relative to the ground;
- Quiescent current drawn from the power supply: no larger than 10 mA;
- No-load voltage gain (at 1 kHz): $|A_{vo}| = 50 \ (\pm 10\%)$;
- Maximum no-load output voltage swing (at 1 kHz): no smaller than 8 V peak to peak;
- Loaded voltage gain (at 1 kHz and with R_L = 1 kΩ): no smaller than 90% of the no-load voltage gain;
- Maximum loaded output voltage swing (at 1 kHz and R_L = 1 kΩ): no smaller than 4 V peak to peak;
- Input resistance (at 1 kHz): no smaller than 20 kΩ;
- Amplifier type: inverting or non-inverting;
- Frequency response: 20 Hz to 50 kHz (-3dB response);
- Type of transistors: BIT;
- Number of transistors (stages): no more than 3;
- Resistances permitted: values smaller than 220 kΩ from the E24 series;
- Capacitors permitted: $0.1 \mu F$, $1.0 \mu F$, $2.2 \mu F$, $4.7 \mu F$, $10 \mu F$, $47 \mu F$, $100 \mu F$, $220 \mu F$;
- Other components (B]Ts, diodes, Zener diodes, etc.): only from your ELE404 lab kit.

Circuit Made

The Circuit shows 3 stage amplifiers CE then CE then CC Amplifiers.

First CE has an amplification of x2 second one has an amplification of x25.

CC has amplification of x1.

Results

Input:

Output: 8V p2p without load

Output: more than 4 p2p with load

Av without load:

Vin = 0.075V

 $V_0 = 4$

Vin/Vo=53.333

Av with load:

Vin = 0.075V

Vo = 3.31

Vin/Vo= 44.1333

Calculations

Calculations

In conclusion, the circuit was mostly calculated except for the RC and RE in S2 these were picked based on trial and error. And the S3 circuit was based on the Lab 7 CC circuit with the resistor put as 1k to minimize clipping.