TELECOM Nancy 1A — Mathématiques Appliquées pour l'Informatique

Théorie des langages : généralités, opérations sur les langages,

langages réguliers, expressions régulières, codes

Exercice 1

Soient A un alphabet et L, L_1 , L_2 , L_3 et L_4 cinq langages sur A. Montrer que :

- 1. si $L_1 \subset L_2$ et $L_3 \subset L_4$ alors $L_1.L_3 \subset L_2.L_4$
- 2. si $L_1 \subset L_2$ alors $L_1^* \subset L_2^*$
- 3. $(L^*)^* = L^*$
- 4. $L.(L_1 \cup L_2) = L.L_1 \cup L.L_2$
- 5. $L(\bigcup_{i\geq 0} L_i) = \bigcup_{i\geq 0} L L_i$ où les L_i sont des langages $(i \in \mathbb{N})$.
- 6. $L^+ = L.L^* = L^*.L$
- 7. $L.L^* \cup \{\varepsilon\} = L^*$

Exercice 2

Soient A un alphabet et L, L_1 , L_2 , L_3 quatre langages sur A. Soient les propriétés suivantes dire si elles sont vraies ou fausses en justifiant vos réponses.

- 1. $L \cup \emptyset = \emptyset \cup L = L$
- 2. $L_1 \cup L_2 = L_2 \cup L_1$
- 3. $(L_1 \cup L_2) \cup L_3 = L_1 \cup (L_2 \cup L_3)$
- 4. $L_1.L_2 = L_2.L_1$
- 5. $L \cup A^* = A^* \cup L = A^*$
- 6. $(L_1.L_2).L_3 = L_1.(L_2.L_3)$
- 7. $\{\varepsilon\}.L = L.\{\varepsilon\} = L$
- 8. $\emptyset . L = L . \emptyset = \emptyset$

Exercice 3

Soit $A=\{a,b\}$ un alphabet. Ecrire des expressions régulières (rationnelles) qui dénotent les langages suivants :

- 1. $L_1 =$ l'ensemble des mots de A^* se terminant par a
- 2. $L_2 =$ l'ensemble des mots de A^* contenant au moins un a
- 3. $L_3 =$ l'ensemble des mots de A^* contenant au plus un b
- 4. $L_4=$ l'ensemble des mots de A^* contenant un nombre pair de a
- 5. $L_4 =$ l'ensemble des mots de A^* contenant autant de a que de b

Avez-vous rencontré des difficultés pour décrire un de ces langages ? Qu'en conclure ?

Exercice 4

Soit $A = \{a, b\}$ un alphabet. Décrire les langages dénotés par les expressions régulières (rationnelles) suivantes :

- 1. $e_1 = (a+b)^*$
- 2. $e_2 = (a^*b^*)^*$
- 3. $e_3 = a^*ba^*ba^*ba^*$
- 4. $e_4 = (a + ba + bbaa)^*(b + \epsilon)$

Exercice 5

On rappelle qu'un langage non vide $C \subset A^+$ est un code si tout mot de C^* se décompose de manière unique comme produit (concaténation) de mots de C. On a les propriétés suivantes :

- 1. Tout sous-ensemble d'un code est un code.
- 2. Si C est un code, $\varepsilon \notin C$.
- 3. Si C est un code, C et $\bigcup_{n\geq 2} C^n$ sont deux ensembles disjoints.
- 4. Si tous les mots de C sont de même longueur non nulle, alors C est un code. On parle de code uniforme.
- 5. Si aucun mot de C n'est préfixe (resp. suffixe) d'autre mot de C alors C est un code. Dans ce cas C est qualifié de code préfixe (resp. suffixe).

Lorsque ces propriétés ne sont pas suffisantes pour montrer qu'un langage L est ou n'est pas un code, on a recours à l'algorithme de Sardinas Patterson suivant :

- 1. Initialisation : $U_0 = L^{-1}.L \setminus \{\varepsilon\}$
- 2. Itération : $U_{n+1} = U_n^{-1}.L \cup L^{-1}.U_n$
- 3. Condition d'arrêt : $\begin{cases} \varepsilon \in U_n & \Rightarrow L \text{ } n'est \text{ } pas \text{ } un \text{ } code \\ \exists (i,j) \in \mathbb{N}^2 \text{ } i \neq j \text{ } et \text{ } U_i = U_j & \Rightarrow L \text{ } est \text{ } un \text{ } code \end{cases}$

Parmi les langages suivants déterminer ceux qui sont des codes ¹.

- 1. $L_1 = \{a, b\}$
- 2. $L_2 = ab^*$
- 3. $L_3 = \{a, ab, ba\}$
- 4. $L_4 = \{a, ba, bb\}$
- 5. $L_5 = \{aa, baa, ba\}$
- 6. $L_6 = \{a, abbba, babab, bb\}$
- 7. $L_7 = a^+b^+$
- 8. $L_8 = a^+b^*$
- 9. $L_9 = \{a^n b^n, n \in \mathbb{N}^*\}$
- 10. $L_{10} = (ab)^*$

Exercice 6

Soit $A = \{0, 1\}$ un alphabet et C un sous-ensemble fini de A^n .

- 1. Soient $\alpha, \beta \in A^n$, on pose $d_H(\alpha, \beta) = \text{le nombre de rangs entre 1 et } n$ pour lesquels les deux mots α et β diffèrent. Donner une définition plus formelle de cette quantité appelée distance de Hamming de α à β . Vérifier que d_H a bien les propriétés d'une distance.
- 2. On pose $H_C = \inf\{d_H(\alpha, \beta), (\alpha, \beta) \in C \times C \text{ et } \alpha \neq \beta\}$. Cette quantité s'appelle constante de Hamming de C. Quelle utilité peut avoir cette constante ?

^{1.} On demande une démonstration pour chaque langage. Il est recommandé d'utiliser prioritairement les propriétés.