ANALIZA MATEMATYCZNA

LISTA ZADAŃ 8

27.11.17

- (1) Niech $f(x) = \sqrt[3]{x^2}$. Korzystając z definicji oblicz f'(8).
- (2) Niech $f(x) = x^5$. Korzystając z definicji wyprowadź wzór na f'(x).
- (3) Niech $n \in \mathbb{N}$. Dobierz stałe a, b, c tak, aby funkcja

$$f_n(x) = \begin{cases} |x| & : & |x| \ge 1/n, \\ ax^2 + bx + c & : & |x| < 1/n \end{cases}$$

była różniczkowalna. Oblicz pochodną $f'_n(x)$, naszkicuj wykres funkcji $f_n(x)$ oraz wykres pochodnej.

(4) Oblicz pochodną następujących funkcji. Podaj w jakim zbiorze istnieje pochodna:

(a)
$$f(x) = 3x^2 - 5x + 1$$
,

(b)
$$f(x) = (\sqrt{x} + 1) \left(\frac{1}{\sqrt{x}} - 1 \right)$$
,

(c)
$$f(x) = \frac{1-x^3}{1+x^3}$$
,

(d)
$$f(x) = (1 + \sqrt{x})(1 + x^{1/3})(1 + x^{1/4}),$$

(e)
$$f(x) = (x^2 + 1)^4$$
,

(f)
$$f(x) = \frac{x+1}{x-1}$$
,

(g)
$$f(x) = \frac{x}{x^2 + 1}$$
,

(h)
$$f(x) = (1+2x)^{30}$$
,

(i)
$$f(x) = \left(\frac{1}{1+x^2}\right)^{1/3}$$
,

(j)
$$f(x) = \frac{1}{\sqrt{1 - x^4 - x^8}}$$

(k)
$$f(x) = 2^{x+3}$$
,

(1)
$$f(x) = x \cdot 10^x$$

(m)
$$f(x) = \frac{x}{e^x}$$
,

(n)
$$f(x) = x^2(x+1)e^x$$
,

(o)
$$f(x) = e^x \log x,$$

$$(p) \quad f(x) = \frac{\log x}{e^x},$$

$$f(x) = e^{x^2}$$

(r)
$$f(x) = x^{10} \log x$$

(q)
$$f(x) = e^{x^2}$$
,
(s) $f(x) = e^{e^x}$,

(t)
$$f(x) = \log \log x$$
,
(v) $f(x) = 10^{2x-3}$,

(i)
$$f(x) = \log_{10}(x-1)$$

(v)
$$f(x) = 10^{2x-3}$$
.

(u)
$$f(x) = \log_{10}(x-1),$$

(w) $f(x) = 2^{3^x},$

(x)
$$f(x) = \log_2 |\log_3(\log_5 x)|$$
,
(z) $f(x) = x^{x^2}$,
(ab) $f(x) = x^{\sqrt{x}}$,
(ad) $f(x) = e^{-x^2} \log x$,

$$(v) f(x) = e^{\sqrt{\log x}}.$$

$$(z) \quad f(x) = x^{x^2},$$

$$(aa) \quad f(x) = x^{x^x},$$

(ab)
$$f(x) = x^{\sqrt{x}}$$

$$(ac) \quad f(x) = (\log x)^x,$$

$$(ad) \quad f(x) = e^{-x^2} \log x,$$

(ae)
$$f(x) = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^{10}$$
,

(af)
$$f(x) = x^5(x^6 - 8)^{1/3}$$
,

(ag)
$$f(x) = e^{2x+3} \left(x^2 - x + \frac{1}{2} \right)$$
,
(ai) $f(x) = \frac{e^{x^2}}{e^x + e^{-x}}$,

$$(ah) \quad f(x) = \log \frac{1}{1+x},$$

(ai)
$$f(x) = \frac{e^{x^2}}{x^2}$$
,

$$(aj) \quad f(x) = |x|^3,$$

(ak)
$$f(x) = \operatorname{sgn} x$$
,

(al)
$$f(x) = \begin{cases} 0 & \text{dla } x < 0, \\ x^2 & \text{dla } x \ge 0 \end{cases}$$

(am)
$$f(x) = e^{-|x|}$$
,

(an)
$$f(x) = \sqrt{\sqrt{1+x^2}-1}$$
,

(ao)
$$f(x) = \{x\},$$
 (ap) $f(x) = \begin{cases} x & \text{dla } x < 0, \\ x^2 & \text{dla } x \ge 0, \end{cases}$

(aq)
$$f(x) = \operatorname{sgn}(x^5 - x^3)$$
, (ar) $f(x) = \frac{\pi^{10}}{\pi - e}$,

(as)
$$f(x) = \begin{cases} e^x & \text{dla } x < 0, \\ 1+x & \text{dla } x \ge 0, \end{cases}$$
 (at) $f(x) = x^7 + e^2,$

(au)
$$f(x) = (x + e)^{20}$$
, (av) $f(x) = e^{e}$

- (5) Potrzebna jest kadź w kształcie walca, otwarta od góry, której dno i bok wykonane są z tego samego materiału. Kadź ma mieć pojemność 257 hektolitrów. Jaki powinien być stosunek średnicy dna do wysokości kadzi, aby do jej wykonania zużyć jak najmniej materiału?
- (6) Znajdź najmniejszą i największą wartość funkcji określonej podanym wzorem w podanym przedziale:

(a)
$$f(x) = x^2 + 2x + 21$$
, $[-2, 7]$, (b) $f(x) = |x^2 - 1| + 3x$, $[-2, 2]$

(c)
$$f(x) = |x+1| + x^2$$
, $[-10, 10]$, (d) $f(x) = |10x-1| + x^3$, $[0, 1]$,

(a)
$$f(x) = x^2 + 2x + 21$$
, $[-2,7]$, (b) $f(x) = |x^2 - 1| + 3x$, $[-2,2]$, (c) $f(x) = |x + 1| + x^2$, $[-10,10]$, (d) $f(x) = |10x - 1| + x^3$, $[0,1]$, (e) $f(x) = \log(x) - \frac{x}{10}$, $[1,e^3]$, (f) $f(x) = |\sin(x)| + \frac{x}{2}$, $[0,2\pi]$, (g) $f(x) = x^{1/x}$, $[2,4]$, (h) $f(x) = 3\sin(x) + \sin(3x)$, $[0,2\pi]$.

g)
$$f(x) = x^{1/x}$$
, $[2, 4]$, $[0, 2\pi]$

(7) Oblicz granice:

a)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin(x)} \right)$$
, (b) $\lim_{x \to \infty} x^{1/x}$,

(a)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin(x)}\right)$$
, (b) $\lim_{x\to \infty} x^{1/x}$, (c) $\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin(x)}$, (d) $\lim_{x\to 0} \frac{2\cos(x) + x^2 - 2}{x\sin(x) - x^2}$, (e) $\lim_{x\to \infty} xe^{-x}$, (f) $\lim_{x\to 0} \frac{\log(x)}{x}$, (g) $\lim_{x\to 0} \frac{e^x - 1}{x}$, (h) $\lim_{x\to 0} \frac{e^x - e}{x}$, (i) $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$, (j) $\lim_{x\to 1} \frac{\log(x)}{x - 1}$, (i) $\lim_{x\to 0} \log(x) - x + 1$

g)
$$\lim_{x \to 0} \frac{e^x - 1}{x}$$
, (h) $\lim_{x \to 0} \frac{e^{e^x} - e}{x}$

n)
$$\lim_{x \to \infty} \frac{x^4}{e^x}$$
, (n) $\lim_{x \to 2} \frac{x^x - 4}{x - 2}$