# **DIP IA1**

# M1Q1) Explain the components of an Image Processing System.



- 1. **Image Sensors**: These capture the image using devices that are sensitive to the energy emitted by the object. A digitizer then converts this data into digital form.
- 2. **Specialized Image Processing Hardware**: This includes components like Arithmetic Logic Units (ALUs) which perform operations like image averaging, primarily for noise reduction and real-time processing.
- 3. **Computer**: A general-purpose computer handles the main processing tasks. It can range from personal computers to supercomputers depending

DIP IA1

- on the application.
- 4. **Image Processing Software**: These are specialized software modules used for performing various image processing tasks. Some software packages also allow users to write custom code.
- 5. **Mass Storage**: Storage devices are required for storing image data. This can be short-term storage for ongoing tasks, online storage for easy access, or archival storage for long-term retention.
- 6. **Image Displays**: Monitors or display units, typically color flat-screen TVs, are used for viewing the processed images.
- 7. **Hardcopy Devices**: Devices like laser printers, inkjet printers, and film cameras are used to create physical copies of images.
- 8. **Networking**: Networking capabilities allow image data to be transmitted to remote locations for further analysis or storage.

# M1Q2) Explain the fundamental steps in Digital Image Processing.

- Image Acquisition: It involves capturing an image using a sensor and converting it into a manageable digital format. This may also include preprocessing steps like scaling and noise reduction.
- 2. **Image Enhancement**: This step is used to improve the visual quality of an image, making it more suitable for further analysis or display. Enhancement techniques are subjective and application-specific.
- 3. **Image Restoration**: Unlike enhancement, restoration uses mathematical models to recover an image that has been degraded. It is objective and often applied in applications like medical imaging or satellite imagery.
- 4. **Color Image Processing:** Focuses on color spaces and manipulations, applying techniques for color correction, enhancement, and segmentation.
- Wavelets and Multiresolution Processing: This involves the application of wavelet transforms for analyzing images at multiple resolutions, often used in image compression.
- 6. **Compression**: Reducing the size of an image for storage or transmission using techniques like JPEG or PNG.

DIP IA1 2

- 7. **Morphological Processing**: Extracts image components useful in shape representation and description using techniques like dilation, erosion, and skeletonization.
- 8. **Segmentation**: This step partitions an image into meaningful regions or objects, which is often a crucial part of object recognition tasks.
- Representation and Description: After segmentation, the shape and structure of the objects are described using boundary or region-based descriptors.
- 10. **Object Recognition**: Finally, recognition algorithms classify objects into categories based on their descriptors.



# M1Q3) Explain formation of image in human eye with example.

The human eye works similarly to a camera, forming images using a lens and projecting them onto a light-sensitive surface called the **retina**. The key components involved in the image formation process are:

DIP IA1

#### 1. Cornea and Lens:

- Light enters the eye through the cornea, which provides most of the focusing power.
- The light then passes through the aqueous humor and reaches the lens, which further adjusts its shape to focus the light correctly onto the retina.

#### 2. Iris and Pupil:

- The **iris** controls the size of the **pupil**, regulating the amount of light entering the eye.
- In bright light, the pupil contracts, and in dim light, it expands.

#### 3. Retina and Photoreceptors:

- The retina contains millions of photoreceptor cells called rods and cones.
- Rods are highly sensitive to light and are responsible for night vision.
- **Cones** detect **color** and are concentrated in the central region called the **fovea**, providing sharp and detailed vision.

#### 4. Optic Nerve and Visual Perception:

- The signals from the photoreceptors are converted into electrical impulses and sent to the brain via the optic nerve.
- The brain processes these signals to form the image we perceive.

## **Example of Image Formation**

If a person looks at a **tree 15 meters high** from a distance of **100 meters**, the eye's lens focuses the light onto the retina. Using geometric optics, the height of the image formed on the retina can be calculated using the ratio of distances:

$$\frac{\text{Image Height}}{\text{Retinal Distance (17 mm)}} = \frac{15 \text{ m}}{100 \text{ m}} \qquad \qquad \text{Image Height} = \frac{15 \text{ m} \times 17 \text{ mm}}{100 \text{ m}} = 2.55 \text{ mm}$$

DIP IA1 4



# M1Q4) Consider the two images subsets S1 and S2 shown in the figure. For V={1}, determine whether the two subsets are:

- a) 4-adjacent
- b) 8-adjacent

#### Coordinates of S1 and S2 Pixels

- $S_1$  includes the block of pixels from the left part.
- $S_2$  includes the block of pixels from the right part.

### a) 4-Adjacency Check

- In 4-adjacency, two pixels are adjacent if they share a side (left, right, top, bottom).
- Examining the borders of  $S_1$  and  $S_2$ , no pixel from  $S_1$  directly touches a pixel from  $S_2$ .
- Hence, they are not 4-adjacent.

## b) 8-Adjacency Check

- In 8-adjacency, two pixels are adjacent if they share a side or a corner (diagonal).
- There are instances where pixels from  $S_1$  and  $S_2$  touch diagonally. Like the (2,5) pixel from  $S_1$  and the (2,6) pixel from  $S_2$ .
- Therefore,  $S_1$  and  $S_2$  are 8-adjacent.

# **Representative Diagram**

Below is an approximate text representation of the adjacency check:

- The **vertical bar**  $\parallel$  separates  $S_1$  and  $S_2$ .
- No direct side connection → Not 4-adjacent.
- Some diagonal connections exist → 8-adjacent.

This confirms that  $S_1$  and  $S_2$  satisfy **8-adjacency but not 4-adjacency**.

# M1Q5) Explain the importance of brightness adaptation and discrimination in image processing.

### **Brightness Adaptation**

- The human visual system can adapt to a broad range of light intensities, approximately from  $10^{-6}$  to  $10^6$  millilamberts (mL).
- However, it cannot operate over this entire range simultaneously. Instead, the eye adjusts its sensitivity through brightness adaptation.
- Adaptation Level: At any given time, the eye adapts to a specific brightness level, called the adaptation level. This determines the range of intensities the eye can effectively perceive.



Range of subjective brightness sensations showing a particular adaptation level.

 Figure 2.4 in the textbook shows the adaptation curve, illustrating how the visual system transitions from **scotopic** (low-light) to **photopic** (bright-light) vision.

#### **Brightness Discrimination**

- Brightness discrimination refers to the eye's ability to detect small differences in light intensity.
- The Weber Ratio is used to measure discrimination and is defined as:



Weber Ratio =  $\frac{\Delta I}{I}$ 

#### Where:

- $\circ$  I = Background illumination
- $\circ$   $\Delta I$  = Minimum detectable intensity difference
- A small Weber ratio implies good discrimination, while a large ratio indicates poor discrimination. The eye is more sensitive to changes in intensity at higher illumination levels.

# M2Q1) Explain the 2D DFT Properties.

#### 1. Symmetric and Unitary

The 2D DFT is symmetric and unitary, meaning it preserves energy. In matrix notation:

$$\mathcal{F}^{-1}=\mathcal{F}^*=F^*\otimes F^*$$

#### Where:

- $\mathcal{F}$  is the DFT matrix
- $\mathcal{F}^{-1}$  is its inverse
- ullet  $F^*$  denotes the conjugate transpose of the 1D DFT matrix
- ⊗ denotes the Kronecker product.

#### 2. Periodic Extensions

Both the image and its transform are treated as periodic functions:

$$v(k+N,l+N) = v(k,l)$$
 all  $k,l$   $u(m+N,n+N) = u(m,n)$  all  $m,n$ 

#### 3. Sampled Fourier Spectrum

The 2D DFT samples the continuous Fourier transform of the image:

$$V(k,l) = \mathrm{DFT}\{u(m,n)\} = v(k,l)$$

Where V(k,l) is the sampled transform at discrete frequencies.

#### 4. Fast Transform

The separability of the 2D DFT allows it to be efficiently computed using the Fast Fourier Transform (FFT):

Total Operations = 
$$O(N^2 \log_2 N)$$

This is done using two 1D FFTs applied row-wise and then column-wise.

#### 5. Conjugate Symmetry

For real images, the 2D DFT exhibits conjugate symmetry:

$$v(k,l)=v^*(N-k,N-l), \quad 0\leq k,l\leq N-1$$

This reduces the storage requirement to half of the transform coefficients.

# M2Q2) State and explain properties unitary transforms.

#### 1. Energy Conservation and Rotation

- A unitary transformation preserves the energy of the signal or the length of the vector in the N-dimensional space.
- Mathematically:

$$||v||^2 = ||u||^2$$
  $\sum_{k=0}^{N-1} |v(k)|^2 = \sum_{n=0}^{N-1} |u(n)|^2$ 

This implies that a unitary transform is a rotation in the vector space.

#### 2. Energy Compaction and Variance of Transform Coefficients

- Most unitary transforms tend to pack a significant fraction of the image's energy into a few transform coefficients.
- Given the mean  $\mu_u$  and covariance  $R_u$  of a vector u, the corresponding mean and covariance for the transformed vector v are:

$$\mu_v = A\mu_u$$
 $R_v = AR_uA^*$ 

· Variance of transform coefficients:

$$\sigma_v^2(k) = [R_v]_{k,k} = [AR_uA^*]_{k,k}$$

#### 3. Decorrelation

- When input vector elements are correlated, the transform coefficients tend to become uncorrelated.
- The off-diagonal elements of the covariance matrix  $R_v$  become small, making the matrix nearly diagonal.
- The Karhunen-Loève Transform (KLT) is optimal in this regard.

#### 4. Other Properties

• **Determinant and Eigenvalues**: The magnitude of the determinant of a unitary matrix is unity. All eigenvalues also have a magnitude of one.

$$|\det(A)| = 1$$

• **Entropy Preservation**: The entropy of a random vector is preserved under a unitary transform, meaning no information is lost.

# M2Q3) Define and explain Image Transforms.

An **image transform** refers to a mathematical operation that converts an image from its spatial domain to a different domain, often the frequency domain, to facilitate further processing such as compression, enhancement, and analysis.

## **Explanation:**

#### 1. Basis Images and Series Representation

 Similar to representing one-dimensional signals using orthogonal series expansions, images can be expanded using a discrete set of basis images. • Mathematically, a unitary transformation for a 1D sequence u(n) of size N is given by:

$$v(k) = \sum_{n=0}^{N-1} a(k,n)u(n)$$

where a(k, n) are the transform coefficients.

• The inverse transform is expressed as:

$$u(n)=\sum_{k=0}^{N-1}v(k)a^*(k,n)$$

Here,  $a^*(k,n)$  represents the complex conjugate of the matrix.

#### 2. Two-Dimensional Image Transforms

• For a 2D image u(m,n) of size  $N \times N$ , the transform and inverse transform are given by:

$$v(k,l) = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} u(m,n) a(k,l,m,n)$$

$$u(m,n) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} v(k,l) a^*(k,l,m,n)$$

• The basis functions a(k,l,m,n) form a complete orthonormal set that can represent any image.

#### 3. Applications of Image Transforms

- **Filtering:** Unwanted noise or features can be removed by manipulating the transform coefficients.
- **Compression:** Transforms like the Discrete Cosine Transform (DCT) are widely used in image compression algorithms such as JPEG.
- **Feature Extraction:** Key image features can be extracted using transforms like the Fourier Transform.