Ex.No.9

.04.2025

SET OPERATIONS AND AGGEREGATE FUNCTIONS

AIM

To perform various set operations, aggregate functions, group by and having clause on the relational database.

CREATE TABLE

CREATE TABLE STUDENTS_DETAILS(S_ID VARCHAR2(10), S_NAME VARCHAR2(50), CITY VARCHAR2(50));

Table created.

CREATE TABLE STUDENT_INFO(S_ID VARCHAR2(10), S_NAME VARCHAR2(50), S_CITY VARCHAR2(50));

Table created.

CREATE TABLE EMPLOYEE_INFO(NAME VARCHAR2(50), DEPT VARCHAR2(20), ADDRESS VARCHAR2(50), SALARY NUMBER(8));

Table created.

INSERTING VALUES

SQL> INSERT INTO STUDENTS_DETAILS VALUES('cse01','PRAVEEN','ERODE'); 1 row created.

SQL> INSERT INTO STUDENTS_DETAILS VALUES('it01','KARTHI','CHENNAI'); 1 row created.

SQL> INSERT INTO STUDENTS_DETAILS VALUES('ece01','AJITH','BANGALORE'); 1 row created.

SQL> INSERT INTO STUDENTS_DETAILS VALUES('cse02','JEGAN','MUMBAI'); 1 row created.

SQL> INSERT INTO STUDENTS_DETAILS VALUES('mtr01','SANJAY','SALEM'); 1 row created.

SQL> INSERT INTO STUDENT_INFO VALUES('cse01','RAHUL','MADURAI'); 1 row created.

SQL> INSERT INTO STUDENT_INFO VALUES('ece01','KAMALESH','ITALY'); 1 row created.

SQL> INSERT INTO STUDENT_INFO VALUES('mec01','BABU','TRICHY'); 1 row created.

SQL> INSERT INTO STUDENT_INFO VALUES('itr06','SANJAY','MORAPPUR'); 1 row created.

SQL> INSERT INTO STUDENT_INFO VALUES('eie01','AJITH','BANGALORE'); 1 row created.

SQL> INSERT INTO EMPLOYEE_INFO VALUES('PRAVEEN','IT','ERODE',60000); 1 row created.

SQL> INSERT INTO EMPLOYEE_INFO VALUES('KARTHI','IT','CHENNAI',50000); 1 row created.

SQL> INSERT INTO EMPLOYEE_INFO VALUES('AJITH','CSE','BANGALORE',90000); 1 row created.

SQL> INSERT INTO EMPLOYEE_INFO VALUES('JEGAN','ECE','COIMBATORE',45000); 1 row created.

SQL> INSERT INTO EMPLOYEE_INFO VALUES('SANJAY','CSE','BANGALORE',25000); 1 row created.

SQL> COMMIT;

Commit complete.

UNION KEYWORD

SQL> SELECT S_ID, S_NAME FROM STUDENTS_DETAILS UNION SELECT S ID, S NAME FROM STUDENT INFO;

S ID S NAME cse01 **PRAVEEN** cse01 **RAHUL** cse02 **JEGAN** KAMALESH ece01 ece01 **AJITH** eie01 **AJITH** it01 **KARTHI** itr06 **SANJAY** mec01 **BABU** mtr01 **SANJAY** 10 rows selected.

UNION ALL KEYWORD

SQL> SELECT S_ID, S_NAME, CITY FROM STUDENTS_DETAILS UNION ALL SELECT S_ID, S_NAME, S_CIT Y FROM STUDENT_INFO;

_	S_NAME	
		ERODE CHENNAI
it01	KARTHI	BANGALORE
ece01	AJITH	
	S_NAME	
	JEGAN	
CSEU2	JEGAN	MOMBAI
mtr01	SANJAY	SALEM
cse01	RAHUL	MADURAI
	S_NAME	CITY
	KAMALESH	ITALY
mec01	BABU	TRICHY
itr06	SANJAY	MORAPPUR
		CITY
eie01	AJITH	BANGALORE.

INTERSECT KEYWORD

10 rows selected.

SQL> SELECT * FROM STUDENTS_DETAILS INTERSECT SELECT * FROM STUDENT_INFO; no rows selected

MINUS KEYWORD

SQL> SELECT * FROM STUDENT_INFO MINUS SELECT * FROM STUDENTS_DETAILS;

```
S ID
        S_NAME S_CITY
      RAHUL
                  MADURAI
cse01
ece01
     KAMALESH
                  ITALY
eie01
      AJITH
                   BANGALORE
                 S_CITY
S_{ID}
       S_NAME
        SANJAY MORAPPUR
itr06
mec01
        BABU
                 TRICHY
AGGREGATE FUNCTIONS MAX
SQL> SELECT MAX(SALARY) FROM EMPLOYEE INFO;
MAX(SALARY)
  90000
SQL> SELECT MIN(SALARY) FROM EMPLOYEE INFO;
MIN(SALARY)
  25000
SQL> SELECT AVG(SALARY) FROM EMPLOYEE_INFO;
AVG(SALARY)
 -----
 52601.6
SQL> SELECT SUM(SALARY) FROM EMPLOYEE INFO;
SUM(SALARY)
  263008
SQL> SELECT COUNT(NAME) AS no of employee FROM EMPLOYEE INFO;
NO_OF_EMPLOYEE
     5
```

SECOND MAXIMUM SALARY

SQL> SELECT MAX(SALARY) FROM EMPLOYEE_INFO WHERE SALARY NOT IN (SELECT MAX(SALARY) FROM EMPLOYEE INFO);

MAX(SALARY)

60000

SECOND MINIMUM SALARY

SQL> SELECT MIN(SALARY) FROM EMPLOYEE_INFO WHERE SALARY NOT IN (SELECT MIN(SALARY) FROM EMPLOYEE INFO);

MIN(SALARY)

45000

AGGREGATE FUNCTIONS WITH GROUPBY AND HAVING:

GROUP BY

SQL> SELECT DEPT, AVG(SALARY) AS avg_salary FROM EMPLOYEE_INFO GROUP BY DEPT;

DEPT	AVG_SALARY	
IT	55000	
CSE	54004	
FCF	45000	

SQL> SELECT DEPT, SUM(SALARY) AS total_salary

FROM EMPLOYEE_INFO

GROUP BY DEPT

HAVING AVG(SALARY)>43000;

DEPT	TOTAL_SALARY	
IT	110000	
CSE	108008	
ECE	45000	

DISTINCT
SQL> SELECT DISTINCT DEPT FROM EMPLOYEE_INFO;
DEPT
IT CSE
ECE
TO FIND THE EMPLOYEES WHO EARN SALARY HIGHER THAN THE AVG SALARY OF THEIR CITY
SQL>SELECT NAME FROM EMPLOYEE_INFO e WHERE SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE_INFO WHERE ADDRESS = e.ADDRESS);
NAME
AJITH
TO FIND THE NAME OF THE PERSONS WHO HAVE HIGHER SALARY THAN THE AVERAGE SALARY OF THEIR DEPARTMENT
SQL>SELECT NAME FROM EMPLOYEE_INFO E WHERE SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE_INFO WHERE DEPT = E.DEPT);
NAME
PRAVEEN KARTHI

CONTENTS	MARKS ALLOTED	MARKS OBTAINED
Aim,Algorithm,SQL,PL/SQL	30	
Execution and Result	20	
Viva	10	
Total	60	

RESULT

Thus, various set operations, aggregate computations, and grouping techniques using GROUP BY and HAVING clauses were effectively applied to the relational database.