JYOTHY INSTITUTE OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS

Semester- III ASSIGNMENT 21MAT31

MODULE-1

Laplace Tranforms and Inverse Laplace Transforms

- 1. Find the Laplace transform of $\frac{\cos at \cos bt}{t} + \sin at$
- 2. Find Laplace transform of $2^t + \frac{\cos^2 2t \cos 3t}{t} + t \sin t$
- 3. Evaluate i) $L\left\{\frac{\cos 2t \cos 3t}{t}\right\}$ ii) $L\left\{t^2e^{-3t}\sin 2t\right\}$
- 4. Find L{ $e^{3t}(2\cos 5t 3\sin 5t)$ }
- 5. A Periodic function f(t) with period 'a' is defined by $f(t) = \begin{cases} E, 0 \le t \le \frac{a}{2} \\ -E, \frac{a}{2} \le t \le a \end{cases}$ Show that $L\{f(t)\} = \frac{1}{2}$ $\left(\frac{E}{s}\right)$ tanh $\left(\frac{as}{4}\right)$
- 6. If $f(t) = \begin{cases} t, & 0 \le t \le a \\ 2a t, & a \le t \le 2a \end{cases}$, f(t + 2a) = f(t) then show that $L\{f(t)\} = \frac{1}{s^2} \tanh\left(\frac{as}{2}\right)$ 7. Express $f(t) = \begin{cases} cos2t & \pi < t < 2\pi \\ cos3t & t > 2\pi \end{cases}$ in terms of unit step function and hence find its Laplace
- 8. Express $f(t) = \begin{cases} sint & 0 \le t < \pi \\ sin2t & \pi \le t < 2\pi \\ sin3t & t > 2\pi \end{cases}$ in terms of unit step function and hence find its Laplace transform
- 9. Express $f(t) = \begin{cases} 1, & 0 < t \le 1 \\ t, & 1 < t \le 2 \text{ in terms of unit step function and hence find its Laplace transform} \\ t^2, & t > 2 \end{cases}$ 10. Express $f(t) = \begin{cases} sint, & 0 \le t \le \frac{\pi}{2} \\ cost, & t > \frac{\pi}{2} \end{cases}$ in terms of unit step function and hence find its Laplace
- transform
- 11. Solve the differential equation $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{-x}$ with $y(0) = y^1(0) = 1$ using Laplace transform method
- 12. Solve the differential equation $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-t}$ with $y(0) = y^1(0) = 0$ using Laplace transform
- 13. Solve the differential equation $\frac{d^2x}{dt^2} 2\frac{dx}{dt} + x = e^{2t}$ with $x(0) = x^1(0) = -1$ using Laplace transform
- 14. Solve the equation by Laplace transform method y''' + 2y'' y' 2y = 0 Given y(0) = y'(0) = 00, y''(0) = 6
- 15. Solve the differential equation $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 12 t^2 e^{-3t}$ with $y(0) = y^1(0) = 0$ using Laplace transform method
- 16. Solve the differential equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = te^{-t}$ with $y(0) = y^1(0) = -2$ using Laplace transform method

- 17. Find the inverse Laplace transform of log $(\frac{s(s+5)}{(s^2+25)(s-7)})$
- 18. Evaluate $L^{-1}\left\{\frac{4s+5}{(s+1)^2(s+2)}\right\}$
- 19. Find $L^{-1}\left\{\frac{1}{s(s^2+a^2)}\right\}$ by using convolution theorem
- 20. Find the inverse transform of $\frac{s^2}{(s^2+a^2)^2}$ using convolution theorem
- 21. Evaluate $L^{-1}\left\{\log\left\{\frac{s^2+1}{s(s+1)}\right\}\right\}$
- 22. Evaluate $L^{-1}\left\{\frac{s+3}{s^2-4s+13}\right\}$
- 23. Find the Laplace transform of i) $\frac{\cos at \cos bt}{t}$ ii) $t e^{-t} \sin (4t)$
- 24. Evaluate $L^{-1}\left\{\frac{s}{(s-1)(s^2+4)}\right\}$

MODULE-2

Fourier series

- 1. Expand $f(x) = \sqrt{1 \cos x}$, $0 < x < 2\pi$ in the Fourier series. Hence evaluate $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + + \dots$
- 2. Obtain the Fourier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi} & in -\pi \le x \le 0 \\ 1 \frac{2x}{\pi} & in 0 \le x \le \pi \end{cases}$ and hence deduce $\frac{1}{1^2} + \frac{1}{2} + \frac{1}{2}$
 - $\frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}.$
- 3. Find the Fourier series of $f(x) = x x^2$, $-\pi \le x \le \pi$. Hence deduce that $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \dots = \frac{\pi^2}{12}$.
- 4. Expand $f(x) = x \sin x$ as a Fourier series in the interval $(-\pi, \pi)$, hence deduce the following $i)\frac{\pi}{2} = 1 + \frac{2}{1.3} \frac{2}{3.5} + \frac{2}{5.7} \dots$ $ii)\frac{\pi-2}{4} = \frac{1}{1.3} \frac{1}{3.5} + \frac{1}{5.7} + \dots$
- 5. Obtain the Fourier expansion of $f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}$ and hence $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$
- 6. Obtain the Fourier series of $f(x) = \left(\frac{\pi x}{2}\right)^2$ in the interval $(0, 2\pi)$ and deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi}{6}$
- 7. Find the Fourier series for the function f(x) = |x| in $(-\pi, \pi)$, hence deduce that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$
- 8. Obtain the half range Fourier cosine series for the function f(x) = x(l-x) in $0 \le x \le l$. Find the half range Fourier cosine series for the function $f(x) = \begin{cases} kx & \text{in } 0 \le x \le l/2 \\ k(l-x) & \text{in } l/2 < x \le l \end{cases}$ Where k is a non-integer positive constant.
- 9. Find the half range Fourier cosine series for the function $f(x) = (x l)^2$ in 0 < x < l and hence show that $\pi^2 = 8\left\{\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots\right\}$
- 10. Find the half range Fourier sine series for the function $f(x) = \begin{cases} x & \text{in } 0 < x < \frac{\pi}{2} \\ \pi x & \text{in } \frac{\pi}{2} < x < \pi \end{cases}$

11 Find the helf near a Fermina sine series for the forestion f(v)	$\left(\frac{1}{4}-x\right)$	in	$0 < x < \frac{l}{2}$
11. Find the half range Fourier sine series for the function $f(x) = \frac{1}{x}$	$\left(x-\frac{3}{4}\right)$	in	$\frac{l}{2} < x < l$

- 12. Find the half range sine series of $f(x) = e^x$ in (0,1).
- 13. Find a_0 , a_1 and b_1 in the Fourier expansion of y using the harmonic analysis from the following table

x	0	1	2	3	4	5
у	9	18	24	28	26	20

14. Find the constant term and the first two harmonics in the Fourier series for f(x) given by the following table:

x	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1.0

15. In a machine the displacement y of a given point is given for a certain angle x as follows

x	0	30	60	90	120	150	180	210	240	270	300	330
y	7.9	8	7.2	5.6	3.6	1.7	0.5	0.2	0.9	2.5	4.7	6.8

16. Obtain the constant term and coefficients of first cosine and sine terms in the expansion of y from the following table

							360 ⁰
у	7.9	7.2	3.6	0.5	0.9	6.8	7.9

Module III Fourier Transform and Z Transform

- 1. Find the Fourier transform of $f(x) = \begin{cases} 1 x^2 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ and evaluate $\int_0^\infty \frac{x \cos x \sin x}{x^3} \cos \frac{x}{2} dx$.
- 2. Find Fourier transformation of $e^{-a^2x^2}$ ($-\infty < x < \infty$) hence show that $e^{-\frac{x^2}{2}}$ is self reciprocal.
- 3. Find Fourier cosine and sine transformation of $f(x) = \begin{cases} x & 0 < x < a \\ 0 & x \ge a \end{cases}$ 4. Solve integral equation $\int_0^\infty f(x) \cos sx \ dx = \begin{cases} 1-s & 0 < s < 1 \\ 0 & s \ge 1 \end{cases}$ hence deduce $\int_0^\infty \frac{1-\cos x}{x^2} \ dx = \frac{\pi}{2}$.

 5. Find the Fourier transform of $f(x) = \begin{cases} 1-|x| & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ hence deduce that $\int_0^\infty \frac{\sin^2 t}{t^2} \ dt = \frac{\pi}{2}$.
- 6. Find f(x), if $\tau_s\{f(x)\} = \frac{s}{s^2+1}$
- 7. Find the Fourier cosine transform of e^{-ax} and $x e^{-ax}$ where a > 0 deduce that, $\int_0^\infty \frac{\cos mx}{x^2 + a^2} dx = \frac{\pi}{2a} e^{-am}$
- 8. Find the Fourier sine transform of $\frac{e^{-ax}}{x}$
- 8. Find the Fourier sine transform of $f(x) = \begin{cases} 4x & for & 0 < x < 1 \\ 4 x & for & 1 < x < 4 \\ 0 & for & x > 4 \end{cases}$
- 10. Find the Fourier transform of the function $f(x) = \begin{cases} 1 & for & |x| \le a \\ 0 & for & |x| > a \end{cases}$ and hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$.
- 11. Find the Fourier sine transform of $f(x) = e^{-|x|}$ and hence evaluate $\int_0^\infty \frac{x \sin mx}{x^2 + 1} dx$, m > 0.
- 12. Find the Fourier transform of the function $f(x) = xe^{-a|x|}$.
- 13. Find the inverse Fourier sine transform of e^{-s^2}
- 14. Find the z-transform of: i) $\sin h \, n\theta$; ii) $\cos h \, n\theta$; iii) $n \cos n \, \theta$; iv) $n \sin n\theta$.

Module V Numerical solution of second order ODE and Calculus of variation

- 1. Given y'' xy' y = 0 with initial condition y(0) = 1, y'(0) = 0 compute y(0.2) by taking h=0.2 using fourth order Runge Kutta Method.
- 2. Applying Milne's method compute y (0.8). Given that y satisfies the equation y'' = 2yy'

$$y(0) = 0$$
, $y(0.2) = 0.2027$, $y(0.4) = 0.4228$, $y(0.6) = 0.6841$

$$y'(0) = 1$$
, $y'(0.2) = 1.041$, $y'(0.4) = 1.179$, $y'(0.6) = 1.468$ (Apply corrector only once)

3. Obtain the solution of the equation $2\frac{d^2y}{dx} = 4x + \frac{dy}{dx}$ by computing the value of the dependent variable corresponding to the value 1.4 of the independent variable by applying Milne's method using the following the data:

X	1	1.1	1.2	1.3
у	2	2.2156	2.4649	2.7514
y'	2	2.3178	2.6725	3.0657

- 4. By Runge Kutta method solve $\frac{d^2y}{dx^2} = x(\frac{dy}{dx})^2 y^2$ for x = 0.2. Correct to four decimal places using the initial conditions y = 1 and y' = 0 at x = 0, h = 0.2
- 5. Using R-k method, find the solution at x = 0.1 of an equation $y'' x^2y' 2xy 1 = 0$ with the conditions y(0) = 1, y'(0) = 0 and step size h = 0.1
- 6. Given that y'' + xy = 0, y(0) = 1, y(0.1) = 1.0998, y(0.2) = 1.1987, y(0.3) = 1.2955y'(0) = 1, y'(0.1) = 0.9946, y'(0.2) = 0.9773, y'(0.3) = 0.946 Find y(0.4) Using Milne's method
- 7. Derive Euler's equation in the standard form $(\partial f/\partial y) d/dx (\partial f/\partial y) = 0$.
- 8. Find the extremal of the functional $\int_{0}^{\frac{11}{2}} (y^2 y'^2 + 2y \sin x) dx$
- 9. Find the geodesics on a surface given that the arc length on the surface is $S = \int_{x_1}^{x_2} \sqrt{x(1+y_1^2)} \, dx$.
- 10. Prove that the shortest distance between two points in a plane is along the straight line joining them or prove that the geodesics on a plane are straight lines.
- 11. Prove that catenary is a curve which when rotated about a line generates a surface of minimum area.
- 12. Find the path in which a particle, in the absence of friction, will slide from one point to another in the shortest time under the action of gravity.

