Sparsity Oriented Importance Learning for High-dimensional Linear Regression

Presentation

By:

Jiahui Dong & Qingyang Fu

INTRO

- Variable importance measure has been an interesting research topic that helps to identify which variables are most important for understanding, interpretation, estimation or prediction purposes.
- In this paper, we propose a new variable importance measure, sparsity oriented importance learning (SOIL), for high-dimensional regression from a sparse linear modeling perspective by taking into account the variable selection uncertainty via the use of a sensible model weighting.

OUTLINE

What:

- What scientific problem is addressed in the paper?
- What is the corresponding mathematical or statistical problem?

Why:

- Why is this problem important?
- Why is this problem challenging?
- Why existing methods can not solve this problem?

How:

- How do the authors tackle this problem?
- How do they justify the proposed method?

What scientific problem is addressed in the paper?

In high-dimensional regression, how to improve **reliability** and **reproducibility** in **model choice**.

What is the corresponding mathematical or statistical problem?

How to make good use of a variable importance measure to select variables.

Why is this problem important?

- Data analysts is unsatisfied with single final model.
- Reduce the list of variables with importance values below a thresholds.
- Offering a ranking of variables
- Saving time and cost in data analysis.
- Helping decision makers to understand the underlying data process than trust any single model, and to gain ability to change or replace variables.

Why is this problem challenging?

- Variable importance depends on the goal of the analysis and application.
- based on parametric model or nonparametric model.
- Should the importance measure be purely relative to compare different variables or should their values have some meaning on their own.

Why existing methods can not solve this problem?

- 3 existing method:
 - Simple measure based on final model;
 - LMG:R^2 decomposition;
 - Random Forest
- Simple measure based on Final model: "Winner takes all"; Variable selection uncertainty ignored; Non-selected variable have zero importance.
- LMG(R^2 decomposition): Only deal up to 20 variables
- Random Forest: some **noise variables** receive relatively **large importance values**, even **higher** than almost half of the **true variables**.

How do the authors tackle this problem?

• New variable importance measure: Sparsity Oriented Importance measure (**SOIL**).

• SOIL:

- Two **ingredients**: a **manageable set of models** and a reliable **weighting method** on the models.
- Measure of importance of the predictors in an absolute scale in [0,1].

SOIL: Sparsity Oriented Importance Learning

Features/advantages:

- Involves multiple high-dimensional variable selection methods and combines all the solution path models.
- Uses external **weighting**(independent of the model selection methods) to avoid bias.
- When the weighting is sensible, the importance of the variables will tend to 0 or 1 as the sample size grows.
- Has excellent performance in the numerical study with satisfying behaviors including exclusion, inclusion, order preserving, robustness, etc.

Use of Informative Importance Measures Can Improve the **Reliability** of Data Analysis in Many Ways: **More objective**: immediately inspect if "true" variables are missing in the set or unimportant variables are involved.

Finding best model: the most suitable variables for sparse modeling receive higher importance values.

Getting a sense on model selection uncertainty: data analyst will be informed on possible alternative models/covariates.

Helping on the **choice between model selection and model averaging.**

SOIL: General Methodology

- Candidate models:
 - $A: \{A_k\}_{k=1}^K$
 - Full list of all-subset models when p is small
 - Group of models when p is large
- weighting vector:
 - $w = (w_1, w_2, ..., w_K)^T$
- SOIL importance measure for the j-th variable, $j \in \{1, ..., p\}$:
 - $S_i \equiv S(j; w; A) = \sum_{k=1}^K w_k I(j \in A^k)$

SOIL: Theoretical properties

- Consistency of the SOIL
 - Weak consistency
 - Consistency
- Ensure the weighting is concentrated enough around the true model.

Definition 1 (Weak Consistency and Consistency). The weighting vector **w** is weakly consistent if

$$\frac{\sum_{k=1}^{K} w_k |\mathcal{A}^k \nabla \mathcal{A}^*|}{r^*} \stackrel{p}{\to} 0, \quad \text{as } n \to \infty,$$
 (1)

and \mathbf{w} is consistent if

$$\sum_{k=1}^{K} w_k |\mathcal{A}^k \nabla \mathcal{A}^*| \stackrel{p}{\to} 0, \quad \text{as } n \to \infty,$$

where ∇ denotes the symmetric difference of two sets and $|\cdot|$ denotes number counting.

Theorem 1. (a) Under the assumption that the weighting **w** is weakly consistent, we have:

$$\frac{\sum_{j \in \mathcal{A}^*} S_j}{r^*} \xrightarrow{p} 1, \qquad \frac{\sum_{j \notin \mathcal{A}^*} S_j}{r^*} \xrightarrow{p} 0, \qquad \text{as } n \to \infty;$$

(b) When the weighting **w** is consistent, we have:

$$\min_{j \in \mathcal{A}^*} S_j \stackrel{p}{\to} 1, \qquad \max_{j \notin \mathcal{A}^*} S_j \stackrel{p}{\to} 0, \qquad \text{as } n \to \infty.$$

Candidate models

- In the high-dimensional setting (p>>n), it is computationally infeasible to use the candidate models with all subsets.
- Using tools for high-dimensional penalized regression

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2 + \sum_{j=1}^p p_{\lambda}(\beta_j),$$

- Penalty functions: Lasso, SCAD, MCP
- Apply a method to compute solution paths, e.g. SCAD

$$oldsymbol{A}_{ ext{SCAD}} = \{\mathcal{A}^{\lambda_1}, \mathcal{A}^{\lambda_2}, \dots, \mathcal{A}^{\lambda_L}\}$$

• Put together the models to form a larger set of candidate models

$$m{A} = \{m{A}_{\mathrm{Lasso}}, m{A}_{\mathrm{AdaptiveLasso}}, m{A}_{\mathrm{SCAD}}, m{A}_{\mathrm{MCP}}\}$$

Weighting

Two weighting methods:

- ARM weighting
- **BIC-p** weighting.
- Need to consider the model complexity
 - Prior probability for the model
 - Non-uniform prior

Algorithm 1 The procedure of the ARM weighting for the regression case.

- Randomly split **D** into a training set \mathbf{D}_1 and a test set \mathbf{D}_2 of equal size.
- For each $\mathcal{A}^k \in A$, fit a standard linear regression of y on $\mathbf{x}_s^{(k)}$ using the training set \mathbf{D}_1 and get the estimated $\widehat{\boldsymbol{\beta}}_s^{(k)}$ and $\widehat{\boldsymbol{\sigma}}_s^{(k)}$.
- For each \mathcal{A}^k , compute the prediction $\mathbf{x}_s^{(k)\mathsf{T}}\widehat{\boldsymbol{\beta}}_s^{(k)}$ on the test set \mathbf{D}_2 .
- Compute the weight w_k for each candidate model:

$$w_k = \frac{e^{-\psi C_k} (\widehat{\boldsymbol{\sigma}}_s^{(k)})^{-n/2} \prod_{i \in \mathbf{D}_2} \exp(-(\widehat{\boldsymbol{\sigma}}_s^{(k)})^{-2} (y_i - \mathbf{x}_{s,i}^{(k)} \widehat{\boldsymbol{\beta}}_s^{(k)})^2 / 2)}{\sum_{l=1}^K e^{-\psi C_l} (\widehat{\boldsymbol{\sigma}}_s^{(l)})^{-n/2} \prod_{i \in \mathbf{D}_2} \exp(-(\widehat{\boldsymbol{\sigma}}_s^{(l)})^{-2} (y_i - \mathbf{x}_{s,i}^{(l)} \widehat{\boldsymbol{\beta}}_s^{(k)})^2 / 2)},$$

for $k = 1, \ldots, K$, where $C_k = s_k \log \frac{e \cdot p}{s_k} + 2 \log(s_k + 2)$.

• Repeat the steps above (with random data splitting) L times to get $w_k^{(l)}$ for $l = 1, \ldots, L$, and get $w_k = \frac{1}{L} \sum_{l=1}^{L} w_k^{(l)}$.

• BIC-p: Define $I_k^{BIC} = -2(\log \ell_k + s_k \log n)$

•
$$w_k = \frac{\exp(-I\frac{I_k}{2} - \psi C_k)}{\sum_{l=1}^K \exp(-\frac{I_l}{2} - \psi C_l)}$$

How do they justify the proposed method?

- By comparing SOIL(BIC-p) and SOIL(ARM) with RFI1, RFI2, LMG.
- LMG: relative importance measure by averaging over all possible orderings for R^2 decomposition.
- RFI1: computed from a normalized difference between the prediction error on OOB portion of the data and that on the permuted OOB data for each predictor variable.
- RFI2: the total decrease in node impurities from splitting on a particular variable, averaged over all trees.

Relative Performances of Importance Measures

Example	n	p	Model Settings					
Gaussian Case								
1	100	200	$m{eta}^* = (4,4,4,-6\sqrt{2},rac{3}{4},0,,0)^\intercal$					
2	150	14 + 1	$\boldsymbol{\beta}^* = (4, 4, 4, -6\sqrt{2}, \frac{3}{4}, 0,, 0)^{T}$. Add $X_{15} = 0.5X_1 + 2X_4 + e$ and $\beta_{15}^* = 0$,					
			where $e \sim N(0, 0.01)$.					
3	150	8	$oldsymbol{eta}^* = (0,\dots,0)^\intercal$					
4	150	8	$oldsymbol{eta}^* = (1,\dots,1)^\intercal$					
S1	150	20	$m{eta}^* = (4,4,4,-6\sqrt{2},rac{3}{4},0,,0)^\intercal$					
S2	150	6 + 6	$\boldsymbol{\beta}^* = (4, 4, -6\sqrt{2}, \frac{3}{4}, 0, 0)^{T}$. Add $(X_1^2, X_2^2, X_3^2, X_4^2, X_5^2, X_6^2)$ and corre-					
S3	150	6+6	sponding coefficients $(\beta_7^*, \beta_8^*, \dots, \beta_{12}^*)^{T} = (4, 0, 1, 0, 0, 0)^{T}.$ $\boldsymbol{\beta}^* = (4, 4, -6\sqrt{2}, \frac{3}{4}, 0, 0)^{T}.$					
			Add $(X_1X_2,X_1X_3,X_1X_4,X_2X_3,X_2X_4,X_3X_4)$ and corresponding coef-					
			ficients $(\beta_7^*, \beta_8^*, \dots, \beta_{12}^*)^{\intercal} = (4, 2, 2, 0, 0, 0)^{\intercal}$.					
Binomial Case								
5	80	6	$m{eta}^* = \left(1, rac{1}{2}, rac{1}{3}, rac{1}{4}, rac{1}{5}, rac{1}{6}, 0 ight)$ T					
6	5000	6	$m{eta}^* = \left(1,rac{1}{2},rac{1}{3},rac{1}{4},rac{1}{5},rac{1}{6},0 ight)$ T					
S4	150	20	$m{eta}^* = (4,4,4,-6\sqrt{2},rac{3}{4},0,,0)^\intercal$					
S5	100	200	$m{\beta}^* = (4,4,4,-6\sqrt{2},rac{3}{4},0,,0)^\intercal$					

Table 1: Simulation settings

Relative Performances of Importance Measures

	2077 1735				D 57.0
	SOIL-ARM	SOIL-BIC-p	LMG	RFI1	RFI2
Inclusion/Exclusion	\checkmark	\checkmark			
Tuning in to information	\checkmark	\checkmark			
Robustness to feature correlation	\checkmark	✓			
Robustness against confuser	\checkmark	\checkmark			
Sensitivity to high-order terms	\checkmark	\checkmark			
Pure relativeness			\checkmark	\checkmark	\checkmark
Order preserving	\checkmark	\checkmark			
High-dimensionality	\checkmark	\checkmark		\checkmark	\checkmark
Non-parametricness				\checkmark	\checkmark
Non-negativity	\checkmark	\checkmark	\checkmark		\checkmark

Table 2: Comparison of the characteristics for the importance measures. A " \checkmark " indicates that a specified method has the given property. A blank space indicates the absence of a property.

Relative performances of importance measures

Inclusion/exclusion: address the issue if an importance measure can give a proper sense if a predictor is likely to be needed in the best model to describe the data.

• SOIL-BIC-p and SOIL-ARM have inclusion/exclusion properties in all the examples.

Tuning in to information: the importance obtained should change due to the enrichment of information.

• Only SOIL-BIC-p and SOIL-ARM react to the much-increased info due to sample size increases.

Robustness to feature correlation: SOIL importance show robustness against noise increase and higher feature correlation.

Robustness against confusers: an importance measure oriented towards sparse modeling should assign near zero importance on the confusers.

• SOIL importance measures are much more robust to confusers.

Relative performances of importance measures

Sensitivity to higher-order terms: SOIL importance measures are more sensitive to inclusion of higher-order terms in the model.

Order preserving: refers to the property that the importance reflects the "order" of the variables or not.

• SOIL importance measures exhibit the order preserving property in all the cases.

High-dimensionality: LMG does not support high-dimensional data

Non-negativity: RFI1 does not yield non-negative importance value.

Real Data Example

- Two type of dataset:
 - BGS(Berkeley Guidance Study) with small p
 - Bardet data with large p
- SOIL-ARM and SOIL-BIC-p perform reasonably better than the other importance measure.
- SOIL certainly can **miss subtle variables** in the **true** model when the **sample size is small**. But it does not recommend an **unimportant variable as important**.

Conclusion

- In summary, the SOIL method is helpful in different stages of model building. It can be used to narrow down the set of **covariates** for further consideration and for reaching a **final model** with sound considerations.
- More importantly, it provides an objective view on reliability of the model and the model selection uncertainty.
- Therefore, it can help much improve reproducibility of data analysis that involves variable selection.

謝謝 MERCI THANK YOU

