МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра систем штучного інтелекту

Лабораторна робота №1

3 дисципліни

«Дискретна математика»

Виконав:

Студент КН-113

Сайкевич В.А.

Викладач:

Мельникова Н.І.

Тема: «Моделювання основних логічних операцій»

Мета: Ознайомитись на практиці з основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні значення таблицями істинності, використовувати закони математичної логіки, освоїти методи доведень.

Варіант №14

Завдання 1

Формалізувати речення. Сашко працює, якщо він втомився, то він відпочиває; якщо він не відпочиває, то він хворий і виконує простішу роботу.

- a- працю ϵ ;
- b- втомився;
- с- відпочиває;
- d- хворий;
- е- виконує просту роботу;

$$a \lor (b \to c) \lor (\bar{b} \to (d \land e))$$

Завдання 2

Побудувати таблицю істинності для висловлювань:

$$((x \to y) \land (y \to z)) \to (x \to z)$$

X	y	Z	$x \to y$	$y \rightarrow z$	$\chi \to z$	$(x \to y) \land (y \to z)$	$((x \to y) \land (y \to z)) \to (x \to z)$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	0	1	0	1
1	0	0	0	1	0	0	1
0	1	1	1	1	1	1	1
1	0	1	0	1	1	0	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

Завдання 3

Побудовою таблиці істинності вияснити чи висловлювання ϵ тавтологією чи протиріччям:

$$(\overline{(p \, \rightarrow \, q)} \, \leftrightarrow \, (\bar{q} \, \rightarrow \, r)) \, \rightarrow \, (p \vee \bar{r})$$

1.
$$\overline{p} \rightarrow \overline{q} = A$$

2.
$$\bar{q} \rightarrow r = B$$

3.
$$pv\bar{r} = C$$

p	q	r	A	В	A↔B	С	(A↔B)→C
0	0	0	0	0	1	1	1
0	0	1	0	1	0	0	1
0	1	0	0	1	0	1	1
1	0	0	1	0	0	1	1
0	1	1	0	1	0	0	1
1	0	1	1	1	1	1	1
1	1	0	0	1	0	1	1
1	1	1	0	1	0	1	1

Отже, висловлювання ϵ тавтологією.

Завдання 4

За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити , чи ϵ тавтологіями висловлювання :

$$((p \to q) \land (q \to q)) \to p$$

Припустимо, що формула не ϵ тавтологією. Оскільки остання операція, яка виконується, ϵ імплікація, то формула ϵ хибною, коли її ліва частина набуває значення True, а права — False:

$$((p \rightarrow q) \land (q \rightarrow q)) = T; p = F$$

Підставимо р = F у ліву частину висловлювань, отримаєм:

$$((F \rightarrow q) \land (q \rightarrow q))$$

Так як
$$(q \to q) = T$$
,
то $(F \to q) \wedge T$
 $(F \to q) = T$, при будь-якому q ,

отже
$$(F \rightarrow q) \wedge T = T$$
.

Оскільки $T \to F = False$, ми довели, що формула ϵ хибною, а отже висловлювання не ϵ тавтологією .

Завдання 5

Довести, що формули еквівалентні:

$$(r \land q) \lor (q \rightarrow r); (p \leftrightarrow r) \rightarrow (p \land r)$$

q	r	$r \wedge q$	$q \rightarrow r$	$(r \land q) \lor (q \rightarrow r)$
0	0	0	1	1
0	1	0	1	1
1	0	0	0	0
1	1	1	1	1

p	r	$p \leftrightarrow r$	$p \wedge r$	$(p \leftrightarrow r) \rightarrow (p \land r)$
0	0	1	0	0
0	1	0	0	1
1	0	0	0	1
1	1	1	1	1

За допомогою таблиць істинності, ми довели, що формули не ϵ еквівалентними.

Додаток 2

Завдання: написати програму для реалізації програмного визначення значень таблиць істинності логічних висловлювань при різних інтерпретаціях, для формули: $((x => y) \land (y => z)) => (x => z)$

Результати:

Висновок:

Ми ознайомились на практиці з основними поняттями математичної логіки, навчились будувати складні висловлювання за допомогою логічних операцій та знаходити їхні значення таблицями істинності, використовувати закони математичної логіки, освоїли методи доведень.