Location/Area Estimation Based on Multi-Class Classification with DNN Using RSSI of Wireless LAN

Team: DLine

Shota Miyagoshi (University of Fukui)

Tomonori Yokono (University of Fukui)

Challenge

- > Location estimation using only RSSI is difficult
 - ➤ Multi-Pass fading

➤ AI/ML is used for location estimation in this challenge

2021/12/2

Motivation

- ➤ However, it is still difficult to estimate a location using only RSSI
- Estimation error is not small even if AI/ML is used.
 - ➤ In our preliminary experiment, the maximum error is over 15 m.
- Moreover, for some context-aware applications, the determination of location is not needed, just the determination of area is adequate.

AP	RSSI
#1	Value 1
#2	Value 2
#3	Value 3

Location estimation

Area estimation

> We consider the area estimation in addition to the location estimation.

Proposed Method

- ► Multi-Class Classification using DNN
 - ➤ Divide the map into smaller areas
 - Our DNN model predicts which area contains the measurement point

Area No.	Probability
13	40%
35	30%
34	11%
	:

Our Model

- ➤ Input: RSSI values from 4 points (AP001-AP004)
- ➤ Output: Probability with that the measurement point is included in each area

Activation function

Layer	Activation function
Hidden layer1	ReLU
Hidden layer2	ReLU
Hidden layer3	ReLU
Output layer	softmax

- Loss function: categorical cross entropy
 - Categorical cross entropy is widely used as loss function for multi-class classification problems.

We select the area with highest probability as a estimation result

Output

Area No.35

Label Distribution Learning

- There is an ordering among the classes to be classified.
 - ➤ We use categorical cross entropy as a loss function.
 - Whether the model predicts a near or far class, the loss is the same...

1

- > Change the label (one-hot vectors) into a Gaussian distribution with the class label as the center(mean).
 - > We use this distribution as a label.

Generating Training Data

- Access Point
- Measurement Point

- > We randomly select one value from the RSSI of each access point.
- Repeat random selection 500 times to generate 500 records of training data per measurement point

Localization results

Data set 1

1. Average error: 11.1579971 m

2.Maximum error: 24.1497287 m

Data set 2

- AP0037
- Green position : label of training data
- Yellow position : label of verification data

1.Average error: 11.8099257 m

2. Maximum error: 27.1292539 m

Localization results

Data set for Grand Challenge Finale

1.Average error: 13.1439172 m

2.Maximum error: 22.3437030 m

Discussion

- Localization results were not so good
- > We pre-processed on the contents of data very little
 - Preprocessing may improve the accuracy.
 (e.g. delete data whose RSSI value is extremely different from others)

- > Should we create a model that takes into account the time series of the data?
 - >Our model did not take into account the time series.