

Maschinelles Lernen

Multivariate Lineare Regression mit Gradientenabstieg

Prof. Dr. Rainer Stollhoff

Übersicht

Technische
Hochschule
Wildau
Technical University
of Applied Sciences

- Motivation
- Multivariater Gradientenabstieg

Supervised Learning

Supervised Learning

- 1. Aufgabe A Vorhersage $\hat{Y} = A(X)$
- 2. Qualität Q Verlustfunktion $L(\hat{Y}, Y)$
- 3. Erfahrung E

 Datensatz (x_i, y_i) für $i = 1, \dots, n$

Eine Maschine *lernt* aus Erfahrung E eine Aufgabe A mit der Qualität Q, wenn die Qualität Q beim erfüllen der Aufgabe A mit Erfahrung E steigt (T. Mitchell, MIT, 1988)

Einfache univariate Regression – Gradientenabstieg

Aufgabe: Regression, d.h. Vorhersage $\hat{y} = \hat{y}(x) = f(x)$

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n$

Qualität: Quadratische Verlustfunktion

$$L(y,\hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2 = L(\theta)$$

Maschine: vereinfachte lineare Regression mit

$$f(x; \theta) = \widehat{\theta} \cdot x$$

Lernen: Finde einen Wert für θ , der die quadratische Verlustfunktion minimiert

Durch geeignete Wahl von θ in einem iterativen Prozess (Gradientenabstiegsverfahren):

- 1. Wähle Startwert z.B. $\theta^0 = 0$
- 2. Berechne Ableitung $\frac{d}{d\theta}L(\theta) = \frac{d}{d\theta}\sum_{i=1}^{n}(y_i f(x_i;\theta))^2 = \frac{d}{d\theta}\sum_{i=1}^{n}(y_i x_i \cdot \theta)^2$ $= \sum_{i=1}^{n}2\cdot(y_i x_i \cdot \theta)\cdot(-x_i)$

3. Update
$$\theta^{t+1} = \theta^t + \alpha \cdot \frac{d}{d\theta} L(\theta^t) = \theta^t - \alpha \cdot 2 \sum_{i=1}^n (y_i - x_i \cdot \theta^t) \cdot x_i = \theta^t + 2 \sum_{i=1}^n (y_i - x_i \cdot \theta^t) \cdot x_i$$

$$\uparrow \quad d = -1 \quad \text{(stellar Abblies)}$$

Multivariate Regression – Gradientenabstieg

Aufgabe: Regression, d.h. Vorhersage $\hat{y} = \hat{y}(x) = f(x)$

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n$

Qualität: Quadratische Verlustfunktion

$$L(y, \hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2 = L(\theta)$$

Maschine: vereinfachte lineare Regression mit

$$f(x_1, x_2; \theta_0, \theta_1, \theta_2) = \overline{\theta_0} + \underline{\theta_1} \cdot x_1 + \overline{\theta_2} \cdot x_2$$

Lernen: Finde Werte für $\theta = (\theta_0, \theta_1, \theta_2)$, die die quadratische Verlustfunktion minimieren

Multivariate Regression – Gradientenabstieg

Aufgabe: Regression, d.h. Vorhersage $\hat{y} = \hat{y}(x) = f(x)$

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n$

Qualität: Quadratische Verlustfunktion

$$L(y, \hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2 = \underline{L(\theta)}$$

Maschine: vereinfachte lineare Regression mit

$$f(x_1, x_2; \theta_0, \theta_1, \theta_2) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2$$

Lernen: Finde Werte für $\theta=(\theta_0,\theta_1,\theta_2)$, die die quadratische Verlustfunktion minimieren

Durch geeignete Wahl von θ in einem iterativen Prozess (Gradientenabstiegsverfahren):

- 1. Wähle Startwert z.B. $\theta^0 = 0$
- 2. Berechne Ableitung $\frac{d}{d\theta}L(\theta) = \frac{d}{d\theta}\sum_{i=1}^{n}(y_i f(x_i;\theta))^2 = \frac{d}{d\theta}\sum_{i=1}^{n}(y_i x_i \cdot \theta)^2$ $= \sum_{i=1}^{n} 2 \cdot (y_i x_i \cdot \theta) \cdot (-x_i)$
- 3. Update $\theta^{t+1} = \theta^t + \alpha \cdot \frac{d}{d\theta} L(\theta^t) = \theta^k \alpha \cdot 2 \sum_{i=1}^n (y_i x_i \cdot \theta^t) \cdot x_i = \theta^k + 2 \sum_{i=1}^n (y_i x_i \cdot \theta^t) \cdot x_i$

nit d = - ((stellster Absties)

Maschinelles Lernen

Multivariate Analysis - Einführung

Prof. Dr. Rainer Stollhoff

Univariate Lineare Regression – Gradientenabstieg

Aufgabe: Regression, d.h. Vorhersage $\hat{y} = \hat{y}(x) = f(x)$

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n$

Qualität: Verlustfunktion: $L(y, \hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2 = L(\theta)$

Maschine: Regression mit $f(x; \theta) = \underline{\theta} \cdot x$

Lernen: Finde Werte für $\theta = (\underline{\theta})$, die die quadratische Verlustfunktion minimieren

Durch geeignete Wahl von θ in einem iterativen Prozess (Gradientenabstiegsverfahren):

- 1. Wähle Startwert z.B. $\theta^0 = (1)$
- 2. Berechne Gradienten

$$\nabla L(\theta^0) = \left(\frac{\partial}{\partial \theta} L(\theta^0)\right) = \left(\sum_{i=1}^n (y_i - (\theta \cdot x_i)) \cdot (-2 \cdot x_i)\right)$$

3. Update $\theta^{t+1} = \theta^t + \alpha \cdot \nabla L(\theta^t)$

Bivariate Lineare Regression – Gradientenabstieg

Aufgabe: Regression, d.h. Vorhersage $\hat{y} = \hat{y}(x) = f(x)$

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n \text{ mit } x_i = (x_{i,1}, x_{i,2})$

Qualität: Verlustfunktion: $L(y, \hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2 = L(\theta)$

Maschine: Regression mit $f(x_1, x_2; \theta_0, \theta_1, \theta_2) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2$

Lernen: Finde Werte für $\theta = (\theta_0, \theta_1, \theta_2)$, die die quadratische Verlustfunktion minimieren

Durch geeignete Wahl von θ in einem iterativen Prozess (Gradientenabstiegsverfahren):

1. Wähle Startwert z.B.
$$\underline{\theta^0} = \begin{pmatrix} \mathbf{0} \\ 1 \\ \mathbf{1} \end{pmatrix}$$

2.

3. Update
$$\theta^{t+1} = \theta^t + \alpha \cdot \nabla L(\theta^t)$$

Update
$$\theta^{t+1} = \theta^t + \alpha \cdot \nabla L(\theta^t)$$

$$\forall \theta \in \mathbb{R} \text{ Sperify the Me}$$
Sperify the Me

Multivariate Lineare Regression – Gradientenabstieg

Aufgabe: Regression, d.h. Vorhersage $\hat{y} = \hat{y}(x) = f(x)$

Erfahrung: Datensatz $(\mathbf{x}_i, y_i)_{i=1}^n$ mit $\mathbf{x}_i = (x_{i,1}, x_{i,2}, \cdots, \mathbf{x}_{i,n})$

Qualität: Verlustfunktion: $L(y, \hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2 = L(\theta)$

Maschine: Regression mit $f(\mathbf{x}; \boldsymbol{\theta}) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \cdots + \boldsymbol{\theta_n} \cdot \boldsymbol{x_n}$

Lernen: Finde Werte für $\theta = (\theta_0, \theta_1, \theta_2, \cdots, \theta_n)$, die die quadratische Verlustfunktion minimieren Durch geeignete Wahl von θ in einem iterativen Prozess (Gradientenabstiegsverfahren):

1. Wähle Startwert z.B.
$$\theta^0 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

Wähle Startwert z.B.
$$\theta^0 = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$
Berechne Gradienten
$$\nabla L(\theta^0) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} L(\theta^0) \\ \frac{\partial}{\partial \theta_1} L(\theta^0) \\ \vdots \\ \frac{\partial}{\partial \theta_n} L(\theta^0) \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n (y_i - (\theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \dots + \theta_n \cdot x_n)) \cdot (-2) \cdot 1 \\ \sum_{i=1}^n (y_i - (\theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \dots + \theta_n \cdot x_n)) \cdot (-2 \cdot x_{i,1}) \\ \vdots \\ \sum_{i=1}^n (y_i - (\theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \dots + \theta_n \cdot x_n)) \cdot (-2 \cdot x_{i,n}) \end{pmatrix}$$

Update $\theta^{t+1} = \theta^t + \alpha \cdot \nabla L(\theta^t)$

Exkurs: Multivariate Lineare Regression – Analytisch / Lineare Algebra

Technical University of Applied Sciences

- Datensatz $(x_i, y_i)_{i=1}^n$ in Matrixschreibweise $(X, Y) \leftarrow \sum_{i=1}^n (X_i, Y_i)_{i=1}^n$
- Verlustfunktion und Ableitung in Matrixschreibweise $\int_{n}^{\infty} \frac{f(z,\theta)}{f(z,\theta)} = \frac{f(z,\theta)}{f(z,\theta)} =$

$$\nabla \sum_{i=1}^{n} (y_i - \hat{f}(x_i; \boldsymbol{\theta}))^2 = \nabla \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i \boldsymbol{\theta})^2 \left(\sum_{i=1}^{n} (Y_i - \boldsymbol{x}_i \boldsymbol{\theta})^2 \right)^2 = \nabla \left((Y - X\boldsymbol{\theta})^T (Y - X\boldsymbol{\theta}) \right)^2 = 2X^T (Y - X\boldsymbol{\theta})$$

Algebraische Lösung in Matrixschreibweise

$$\Theta = (X^T X)^{-1} X^T Y$$

eibweise $(Y-X\Theta)=O$ $(Y-X\Theta)=(X^TX)^{-1}X^TY$ $(Y-X\Theta)=(X^TX-Y)^{-1}$

Exkurs: Gradientenabstieg oder Lineare Algebra?

Gradientenabstieg

Iterative Berechnung

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \alpha \cdot \nabla L(\boldsymbol{\theta}^t)$$

- •Wahl der Lernrate α bzw. Matrix A
- -Fest
- –Adaptiv
- Benötigt u.U. viele Iterationen
- •Funktioniert auch für großes n, d.h. viele Daten

Lineare Algebra

Algebraische Lösung

$$\boldsymbol{\theta} = (X'X)^{-1}X'Y$$

•keine Meta-Parameter

- •Direkte Lösung, keine Iterationen
- •Benötigt Berechnung von $(X'X)^{-1}$, d.h.
 - —Inverse muss existieren insbesondere keine linear abhängigen Variablen!
 - Rechenintensives Invertieren einer nxn Matrix ~O(n³)
- Langsam für große n

Ausblick: Multivariate Regression – Gradientenabstieg

Aufgabe: Regression, d.h. Vorhersage $\hat{y} = \hat{y}(x) = f(x)$

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n$ mit $x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,n})$

Qualität: Verlustfunktion: $L(y, \hat{y}) = L(\theta) = \angle (f(\theta))$

Maschine: Regression mit $\mathbf{f}(\mathbf{x}; \boldsymbol{\theta})$

Lernen: Finde Werte für $\theta = (\theta_0, \theta_1, \theta_2, \cdots, \theta_n)$, die die quadratische Verlustfunktion minimieren

Durch geeignete Wahl von θ in einem iterativen Prozess (Gradientenabstiegsverfahren):

1. Wähle Startwert z.B.
$$\theta^0 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$
 with a force $Able$

1. Wähle Startwert z.B.
$$\theta^0 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

2. Berechne Gradienten
$$\nabla L(\theta^0) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} L(\theta^0) \\ \frac{\partial}{\partial \theta_1} L(\theta^0) \\ \vdots \\ \frac{\partial}{\partial \theta_l} L(\theta^0) \end{pmatrix} = \begin{pmatrix} \frac{d}{df} L(f(\theta^0)) \cdot \frac{\partial}{\partial \theta_0} f(x; \theta^0) \\ \frac{d}{df} L(f(\theta^0)) \cdot \frac{\partial}{\partial \theta_1} f(x; \theta^0) \\ \vdots \\ \frac{d}{df} L(f(\theta^0)) \cdot \frac{\partial}{\partial \theta_n} f(x; \theta^0) \end{pmatrix}$$

Update $\theta^{t+1} = \theta^t + A \cdot \nabla L(\theta^t)$