

Cloud Computing : Economics Tutorial

Prof. Soumya K Ghosh

Department of Computer Science and Engineering
IIT KHARAGPUR

Cloud Properties: Economic Viewpoint

Common Infrastructure

 pooled, standardized resources, with benefits generated by statistical multiplexing.

Location-independence

 ubiquitous availability meeting performance requirements, with benefits deriving from latency reduction and user experience enhancement.

Online connectivity

 an enabler of other attributes ensuring service access. Costs and performance impacts of network architectures can be quantified using traditional methods.

Cloud Properties: Economic Viewpoint (contd...)

Utility pricing

 usage-sensitive or pay-per-use pricing, with benefits applying in environments with variable demand levels.

on-Demand Resources

 scalable, elastic resources provisioned and de-provisioned without delay or costs associated with change.

Utility Pricing in Detail

D(t)	demand for resources 0 <t<t< td=""></t<t<>
Р	max (D(t)) : Peak Demand
A	Avg (D(t)) : Average Demand
В	Baseline (owned) unit cost $[B_T: Total \ Baseline \ Cost]$
С	Cloud unit cost $[C_T: Total Cloud Cost]$
U (=C/B)	Utility Premium [For rental car example, U=4.5]

$$C_T = \int_0^T U \times B \times D(t)dt = A \times U \times B \times T$$
 $B_T = P \times B \times T$

 Because the baseline should handle peak demand

When is cloud cheaper than owning?

$$C_T < B_T \rightarrow A \times U \times B \times T < P \times B \times T$$

 $\rightarrow U < \frac{P}{A}$

 When utility premium is less than ratio of peak demand to Average demand

Utility Pricing in Real World

- In practice demands are often highly spiky
 - News stories, marketing promotions, product launches, Internet flash floods, Tax season, Christmas shopping, etc.
- Often a hybrid model is the best
 - You own a car for daily commute, and rent a car when traveling or when you need a van to move
 - Key factor is again the ratio of peak to average demand
 - But we should also consider other costs
 - Network cost (both fixed costs and usage costs)
 - Interoperability overhead
 - Consider Reliability, accessibility

Value of on-Demand Services

- Simple Problem: When owning your resources, you will pay a penalty whenever your resources do not match the instantaneous demand
 - I. Either pay for unused resources, or suffer the penalty of missing service delivery
- D(t) Instantaneous Demand at time t
- R(t) Resources at time t

Penalty Cost $\alpha \int |D(t) - R(t)| dt$

- If demand is flat, penalty = 0
- If demand is linear periodic provisioning is acceptable

Penalty Costs for Exponential Demand

- Penalty cost $\propto \int |D(t) R(t)| dt$
- If demand is exponential $(D(t)=e^t)$, any fixed provisioning interval (t_p) according to the current demands will fall exponentially behind
- $R(t) = e^{t-tp}$
- $D(t) R(t) = e^t e^{t-t_p} = e^t (1 e^{t_p}) = k_1 e^t$
- Penalty cost $\propto c.k_1e^t$

Exponential Growth with Continuous Monitoring And Non-Zero Provisioning Interval

Assignment 1

Consider the peak computing demand for an organization is 120 units. The demand as a function of time can be expressed as:

$$D(t) = \begin{cases} 50\sin(t), & 0 \le t < \frac{\pi}{2} \\ 20\sin(t), & \frac{\pi}{2} \le t < \pi \end{cases}$$

The resource provisioned by the cloud to satisfy current demand at time t is given as:

$$R(t) = D(t) + \delta \cdot (\frac{dD(t)}{dt})$$

where, δ is the delay in provisioning the extra computing recourse on demand

The cost to provision unit cloud resource for unit time is 0.9 units.

Calculate the penalty.

[Assume the delay in provisioning is $\pi/_{12}$ time units and minimum demand is 0] (Penalty: Either pay for unused resource or missing service delivery)

Assignment 2

Consider that the peak computing demand for an organization is *100 units*. The demand as a function of time can be expressed as

$$D(t) = 50(1 + e^{-t})$$

Baseline (owned) unit cost is 120 and cloud unit cost is 200.

In this situation is cloud cheaper than owning for a period of 100 time units?

Assignment 3

A company X needs to support a spike in demand when it becomes popular, followed potentially by a reduction once some of the visitors turn away. The company has two options to satisfy the requirements which are given in the following table:

Expenditures	In-house server (INR)	Cloud server
Purchase cost	6,00,000	-
Number of CPU cores	12	8
Cost/hour (over three year span)	-	42
Efficiency	40%	80%
Power and cooling (cost/hour)	22	-
Management cost (cost/hour)	6	1

- Calculate the price of a core-hour on in-house server and cloud server.
- Find the cost/effective-hour for both the options.
- Calculate the ratio of the total cost/effective-hour for in-house to cloud deployment.
- If the efficiency of in-house server is increased to 70%, which deployment will have now better total cost/effective-hour?

Thank You!

