CS330 Lecture Notes

1-12-18

What does a simple database contain? users \longleftrightarrow program \longleftrightarrow Database

- Bottom Part (Disk Storage)
 - Data is stored here
 - Indices
 - Data Dictionary (Metadata)
 - Statistical Data
 - DBMS hides details of how data is stored and maintained (Data abstraction)
 - * Why is it important?

 Not to overwhelm the user, security and concurrency.
- Middle Part of DBMS
 - Query processor helps DBMS to simplify and facilitate access to data
 - * Query: A statement requesting information
 - * Queries are represented by a language (Database language)
 - * There are two parts: DDL (Data definition language), DML (Data manipulation language)
 - Storage Manager is important because DB typically requires a large storage space
 - * Buffer Manager
 - · Fetch data from disk storage into main memory
 - · Decide what data to cache into main memory
 - * File Manager
 - · Manages space allocation onn disk storages
 - * Authorization and integrity constraints
 - · Tests for satisfaction of integrity constraints
 - · Checks authority of users
 - * Transaction Manager
 - · A unit of program that accesses and updates data items
 - \cdot Who initiates a transaction? SQL or programming language using ODBC/JDBC
 - · What does transaction manager do? Ensures ACID properities (Atomicity, Consistency, Isolation, Durability)
 - · Atomicty (All or none transaction)
 - · Consistency (Preserves consistency of DB)
 - · **Durability** (After successful funds transfer, new values of A and B must persist, even if system fails)
 - · Isolation (For two transactions T_i T_j , it appears to T_i that either T_j finished execution before T_i started or T_j started execution after T_i finished)

\bullet DBMS solves these 9 problems

- 1. More complexity
- 2. Data Redundancy
- 3. Data Inconsistency
- 4. Difficulty in accessing data
- 5. Data Isolation
- 6. Integrity Problem
- 7. Atomicity problems
- 8. Concurrent-access anomalies
- 9. Security Problems