Project Development Phase Model Performance Test

Date	13 November 2022		
Team ID	PNT2022TMID26146		
Project Name	Project – Web Phishing Detection		
Maximum Marks	10 Marks		

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Classification Model: Gradient Boosting Classification Accuray Score- 97.1%	#computing the classification report of the model print(metrics.classification_report(y_test, y_test_gbc)) C
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method – KFOLD & Cross Validation Method	Wilcoxon signed-rank test In [78] #870.0 and cross self-and-model for all control of the self-and-model for all control of the self-and-model for a global space self-and-

1.METRICS:

CLASSIFICATION REPORT:

PERFORMANCE:

	ML Model	Accuracy	f1_score	Recall	Precision
0	Logistic Regression	0.924	0.933	0.947	0.927
1	K-Nearest Neighbors	0.953	0.959	0.990	0.989
2	Support Vector Machine	0.957	0.963	0.982	0.966
3	Decision Tree	0.958	0.963	0.992	0.991
4	Random Forest	0.965	0.970	0.995	0.987
5	Gradient Boosting Classifier	0.971	0.975	0.992	0.985

1. TUNE THE MODEL - HYPERPARAMETER TUNING

```
# fit the model
gbc.fit(X_train,y_train)
```

GradientBoostingClassifier(learning_rate=0.7, max_depth=4)

```
GridSearchCV(cv=5,

estimator=GradientBoostingClassifier(learning_rate=0.7,

max_depth=4),

param_grid={'max_features': array([1, 2, 3, 4, 5]),

'n_estimators': array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200])})

* estimator: GradientBoostingClassifier

GradientBoostingClassifier(learning_rate=0.7, max_depth=4)

* GradientBoostingClassifier(learning_rate=0.7, max_depth=4)
```

VALIDATION METHODS: KFOLD & Cross Folding

Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation Model
         from scipy.stats import wilcoxon
         from sklearn.datasets import load_iris
         from sklearn.ensemble import GradientBoostingClassifier
         from xgboost import XGBClassifier
         from sklearn.model selection import cross val score, KFold
         # Load the dataset
         X = load_iris().data
         y = load_iris().target
         # Prepare models and select your CV method
         model1 = GradientBoostingClassifier(n estimators=100)
         model2 = XGBClassifier(n_estimators=100)
         kf = KFold(n_splits=20, random_state=None)
         # Extract results for each model on the same folds
         results_model1 = cross_val_score(model1, X, y, cv=kf)
         results_model2 = cross_val_score(model2, X, y, cv=kf)
         stat, p = wilcoxon(results model1, results model2, zero method='zsplit');
         stat
Out[78]: 95.0
```

5x2CV combined F test

```
In [89]: from mlxtend.evaluate import combined_ftest_5x2cv
         from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
         from sklearn.ensemble import GradientBoostingClassifier
         from mlxtend.data import iris_data
         # Prepare data and clfs
         X, y = iris_data()
         clf1 = GradientBoostingClassifier()
         clf2 = DecisionTreeClassifier()
         # Calculate p-value
         f, p = combined_ftest_5x2cv(estimator1=clf1,
                                   estimator2=clf2,
                                   X=X, y=y,
                                   random_seed=1)
         print('f-value:', f)
         print('p-value:', p)
         f-value: 1.727272727272733
         p-value: 0.2840135734291782
```