CHANGE DETECTION ALGORITHMS

FUNDAMENTALS

Riccardo M.G. Ferrari May 1st 2025

LECTURE SUMMARY

- 1. Introduction
- 2. Deterministic tests
- 3. Basic Probabilistic Tests
- 4. Conclusions

REMEMBER THE PARALLEL WITH MEDICAL DIAGNOSIS?

$Diagnosis \Rightarrow (Multiple)$ Hypothesis testing

1 DETECTION

Testing the **null hypothesis**:

 \mathcal{H}_0 : "Is the system behaving in a **nominal** way?"

DIAGNOSIS ⇒ (MULTIPLE) HYPOTHESIS TESTING

1 DETECTION

Testing the null hypothesis:

 \mathcal{H}_0 : "Is the system behaving in a **nominal** way?"

2 ISOLATION

Testing the N faulty hypotheses:

 \mathcal{H}_i : "Is the system behaving as if the i-th fault is present?"

DIAGNOSIS ⇒ (MULTIPLE) HYPOTHESIS TESTING

1 DETECTION

Testing the **null hypothesis**:

 \mathcal{H}_0 : "Is the system behaving in a **nominal** way?"

2 ISOLATION

Testing the N faulty hypotheses:

 \mathcal{H}_i : "Is the system behaving as if the i-th fault is present?"

3 IDENTIFICATION AND ESTIMATION

If every but one \mathcal{H}_i is falsified \Rightarrow **estimate** parameters of *i*-th fault If every \mathcal{H}_i is falsified \Rightarrow **identify** model of new fault

THE BOY WHO CRIED WOLF

Aesop's Fable: The Boy Who Cried Wolf

1. The shepherd boy cries wolf when there is no wolf. Villagers rush in and get mad to find out it was a joke.

[Repeat 1. for other N-1 times]

2. Finally the wolf comes, the boy cries wolf but the villagers do not come. The wolf eats the boy.

the street of th

THE BOY AS A WOLF DETECTOR: CONFUSION MATRIX

Here we assume \mathcal{H}_0 = "No wolf" = healthy.

Reality

	reditty	
	Wolf	No Wolf
Wolf	True Positive (TP) Boy is a hero!	False positive (FP) Villagers are mad!
No Wolf	False negative (FN) Boy is eaten	True negative (TN) Everyone is fine

An FP is also called Type-I error, while a FN is also called Type-II error.

DETECTION PERFORMANCE

Definition (Detection errors) True Positive $TP \triangleq \# \neg \mathcal{H}_0(\mathsf{F})$ $TN \triangleq \#\mathcal{H}_0(H)$ **True Negative** False Positive $FP \triangleq \# \neg \mathcal{H}_0(H)$ False Negative $|FN \triangleq \#\mathcal{H}_0(F)|$

Definition (Detection performance) False Positive Rate $| FPR \triangleq \frac{FP}{FP + TN}$ True Negative Rate $|TNR \triangleq 1 - FPR$ $TPR \triangleq \frac{TP}{TP+FN}$ **True Positive Rate** $FNR \triangleq 1 - TPR$ False Negative Rate Accuracy $ACC \triangleq \frac{TP+TN}{TP+FP+TN+FN}$ **Recall** $RE \triangleq \frac{TP}{TP + FN} = TPR$

[■] Tom Fawcett. "An introduction to ROC analysis". In: Pattern recognition letters 27.8 (2006), pp. 861–874

DETECTION PERFORMANCE

■ Tom Fawcett. "An introduction to ROC analysis". In: Pattern recognition letters 27.8 (2006), pp. 861–874

THE CHANGE DETECTION PROBLEM

- **Behaviour** of system is described by a parameter θ
- ► It changes from a known **nominal** value θ_0 to a **faulty** θ_1 at some time instant k_0

THE CHANGE DETECTION PROBLEM

- ▶ Behaviour of system is described by a parameter θ
- ► It changes from a known nominal value θ_0 to a faulty θ_1 at some time instant k_0
- ightharpoonup You can only measure a symptom z(k)

THE CHANGE DETECTION PROBLEM

- ▶ Behaviour of system is described by a parameter θ
- lt changes from a known nominal value θ_0 to a faulty θ_1 at some time instant k_0
- ightharpoonup You can only measure a symptom z(k)

Change detection problem

Estimate k_0 and θ_1 by looking at z(k)

LIMIT CHECK: SCALAR VARIABLES

- In any process you know which are the minimum and maximum allowed values
 - E.g.: you heart rate at rest should be between 60 and 100 bpm

Intuition: is z(k) inside a known range?

Limit check: $z(k) \notin [z_{min} z_{max}] \Rightarrow ALARM$

CONS

LIMIT CHECK: SCALAR VARIABLES

- In any process you know which are the minimum and maximum allowed values
 - E.g.: you heart rate at rest should be between 60 and 100 bpm

Intuition: is z(k) inside a known range?

Limit check: $z(k) \notin [z_{min} z_{max}] \Rightarrow ALARM$

PROS

- It holds for sure!
- **◆** Simple to define and check

CONS

- Over conservative
- Works in steady state only

LIMIT CHECK: VECTOR VARIABLES

► Assume $z(k) \in \mathbb{R}^n$

Intuition: evaluation function

Define a scalar valued **evaluation function** and reduce the problem to scalar limit-checking.

$$Z \triangleq f_{\text{ev}}(z(k)), f_{\text{ev}} : \mathbb{R}^n \mapsto \mathbb{R}$$

LIMIT CHECK: VECTOR VARIABLES

► Assume $z(k) \in \mathbb{R}^n$

Intuition: evaluation function

Define a scalar valued evaluation function and reduce the problem to scalar limit-checking.

$$Z \triangleq f_{\text{ev}}(z(k)), f_{\text{ev}} : \mathbb{R}^n \mapsto \mathbb{R}$$

Example:
$$z \in \mathbb{R}^2$$
, $f_{\text{ev}}(z(k)) = ||z(k)||_2$

Most of the times you want $f_{ev}: \mathbb{R}^n \mapsto \mathbb{R}^+$

LIMIT CHECK: VECTOR VARIABLES

► Assume $z(k) \in \mathbb{R}^n$

Intuition: evaluation function

Define a scalar valued **evaluation function** and reduce the problem to scalar limit-checking.

$$Z \triangleq f_{\text{ev}}(z(k)), \ f_{\text{ev}} : \mathbb{R}^n \mapsto \mathbb{R}$$

Example:
$$z \in \mathbb{R}^2$$
, $f_{\mathsf{ev}}(z(k)) = \|z(k)\|_2$

Most of the times you want $f_{ev}: \mathbb{R}^n \mapsto \mathbb{R}^+$

LIMIT CHECK: VECTOR VARIABLES - EXAMPLES

$$c \in \mathbb{R}^+$$

$$||z||_0 = c = 0$$

$$||z||_{\infty} = c$$

$$||Az||_{\infty} = c$$

$$A \in \mathbb{R}^{2 \times 2}$$

poly(z) = c

LIMIT CHECK: SEQUENCES OVER TIME

- ightharpoonup In previous examples we applied limit checks only to instantaneous value z(k)
- ► How to check a vector-valued sequence $\{z(k)\}_{k_1}^{k_2}$ over time?

1. First over all the components, then over time

Examples:
$$Z = ||z(k)||_{p,[k_1,k_2]} = \sum_{k=1}^{k_2} ||z(k)||_p$$
 (sum of L^p norms)

$$Z = \|\{\|z(k)\|_p\}_{k_1}^{k_2}\|_{\ell^q}$$
 (ℓ^q norm of L^p norms)

Fundamentals of change detection

LIMIT CHECK: SEQUENCES OVER TIME

- In previous examples we applied limit checks only to instantaneous value z(k)
- ► How to check a vector-valued sequence $\{z(k)\}_{k_1}^{k_2}$ over time?

2. First over time, then over all the components

Examples:
$$Z = \|\sum_{k=k_1}^{k_2} z(k)/(k_2 - k_1 + 1)\|_p$$
 (L^p norm of averages)

$$Z = \|\mathsf{FFT}(\{z(k)\}_{k_1}^{k_2})\|_p \qquad \qquad (L^p \text{ norm of FFT components})$$

LIMIT CHECK: IMPROVEMENTS

- ► Time-varying limits
 - Dependent on operating conditions
 - ▶ Based on models ⇒ valid also in non-steady-state conditions
 - Lectures L4.x and L5.x
- Probabilistic checks
 - next section and next lecture

MOTIVATIONS

- Deterministic checks leads to zero-FPR by construction
- They can have very poor TPR (no-free-lunch principle) see slide on ROC
- Evident when z can have large but rare values
- When data is generated by a random process (i.e. always) with infinite support, you cannot define $[Z_{\min} Z_{\max}]$

STATISTICAL HYPOTHESIS TESTING

Intuition: check if the PDF changed

- 1. Assume that under \mathcal{H}_0 data is generated by a random process with given PDF $p_0(z)$
- 2. Collect actual data
- 3. Answer the question: is the data likely to have been drawn from $p_0(z)$ or from another PDF?

Fundamentals of change detection

Rolf Isermann. Fault-diagnosis systems: an introduction from fault detection to fault tolerance. Springer Science & Business Media, 2006, Ch. 7

STATISTICAL HYPOTHESIS TESTING À-LA FISHER - EXAMPLE

Intuition: check p-value of parameters

- 1. Assume that you know one parameter of $p_0(z)$, e.g. the true mean μ_0
- 2. Compute the empirical mean $\hat{\mu}_0$ from data (its PDF is $p_{\hat{\mu}_0}$)
- 3. Check if its p-value $< \alpha$, where $0 \le \alpha \ll 1$ is the significance^a

What is the FPR of this test?

^aThe confidence level of this test is $1 - \alpha$

STATISTICAL HYPOTHESIS TESTING À-LA FISHER - EXAMPLE

$$\begin{array}{ll} \mu_0 & \text{True mean of data (known)} \\ \hat{\mu}_0 & \text{Empirical mean of data} \\ p_{\hat{\mu}_0} & \text{PDF of } \hat{\mu}_0 \text{ (not of data!)} \\ \\ \mu_{\frac{\alpha}{2}}: & \int_{-\infty}^{\mu_{\frac{\alpha}{2}}} p_{\hat{\mu}_0}(\mu) \mathrm{d}\mu = \frac{\alpha}{2} \\ \\ \mu_{1-\frac{\alpha}{2}}: & \int_{\mu_{1-\frac{\alpha}{2}}}^{\infty} p_{\hat{\mu}_0}(\mu) \mathrm{d}\mu = \frac{\alpha}{2} \end{array}$$

Did you know? $\mathbb{E}[\hat{\mu}_0] = \mu_0$, because $\hat{\mu}_0$ is an unbiased estimator

STATISTICAL HYPOTHESIS TESTING À-LA FISHER - EXAMPLE

Definition (p-value)

The p-value of a given realization x^* of a random process X is the probability that X can take values more extreme than x^* .

Do you know how many tails has your distribution?

STATISTICAL HYPOTHESIS TESTING À-LA FISHER - EXAMPLE

The Perils of the P-value

- One of most-abused concept in science
- It tells you how likely is the data given \mathcal{H}_0 , not the other way around!
- Completely nonsense if your hypothesis on PDF of data is wrong

15/23

Fundamentals of change detection

Thttps://www.scientificamerican.com/article/the-significant-problem-of-p-values/

EMPIRICAL MOMENTS

In the following we will make use of empirical mean and variance computed over a moving window

Mean
$$\hat{\mu}_{[k-N+1,k]} \triangleq \frac{1}{N} \sum_{j=k-N+1}^k z(j)$$
 Variance
$$\hat{\sigma}_{[k-N+1,k]}^2 \triangleq \frac{1}{N-1} \sum_{j=k-N+1}^k (z(j)-\mu_0)^2$$

• We may use a shortened notation such as $\hat{\mu}(k) \equiv \hat{\mu}_{[k-N+1.k]}$

16/23

In case μ_0 is not known, we may replace it with $\hat{\mu}$ in the computation of $\hat{\sigma}^2$

TESTING THE MEAN - T-STUDENT

PROBLEM

- Determine if the mean of a normal random variable changed
- Nominal mean μ_0 is known
- Nominal variance is not known, but constant
- Empirical moments $\hat{\mu}(\mathbf{k})$ and $\hat{\sigma}^2(\mathbf{k})$ are estimated from last N samples

TESTING THE MEAN - T-STUDENT

PROBLEM

- Determine if the mean of a normal random variable changed
- Nominal mean μ_0 is known
- Nominal variance is not known, but constant
- ► Empirical moments $\hat{\mu}(k)$ and $\hat{\sigma}^2(k)$ are estimated from last N samples

SOLUTION

The following random variable

$$t(\mathbf{k}) = \frac{\hat{\mu}(\mathbf{k}) - \mu_0}{\hat{\sigma}(\mathbf{k}) / \sqrt{N}}$$

is **t–Student** with N-1 degrees of freedom

ightharpoonup test if $|t| > t_{\alpha,N-1}$

TESTING THE MEAN - MORE T-STUDENT

PROBLEM

() Same as before, but ... nominal mean μ_0 is **unknown**

TESTING THE MEAN - MORE T-STUDENT

PROBLEM

© Same as before, but ... nominal mean μ_0 is **unknown**

- Estimate true mean before and after change as $\hat{\mu}_0(k) = \hat{\mu}_{[k-N_0+1,k]}$ and, respectively, $\hat{\mu}_1(k) = \hat{\mu}_{[k,k+N_1-1]}$
- ► Similarly estimate $\hat{\sigma}_0^2$ and $\hat{\sigma}_1^2$
- ightharpoonup The following random variable is **t–Student** with $N_0 + N_1 2$ degrees of freedom

$$t(k) = \frac{\hat{\mu}_0(k) - \hat{\mu}_1(k)}{\sqrt{(N_0 - 1)\hat{\sigma}_0^2(k) + (N_1 - 1)\hat{\sigma}_1^2(k)}} \sqrt{\frac{N_0 N_1 (N_0 + N_1 - 2)}{N_0 + N_1}}$$

Testing the variance – χ^2

PROBLEM

 $\ensuremath{\textcircled{0}}$ Determine if variance of a normal random variables changed from a known value σ_0^2

Testing the variance – χ^2

PROBLEM

Determine if variance of a normal random variables changed from a known value σ_0^2

SOLUTION

- Compute the empirical variance $\hat{\sigma}^2(k)$ from previous N samples
- ightharpoonup The following random variable is χ^2 with N-1 degrees of freedom

$$\chi^2(\mathbf{k}) = \frac{(\mathbf{N} - 1)\hat{\sigma}^2}{\sigma_0^2}$$

 \rightarrow if $\chi^2(k) > \chi^2_{N-1}$ then reject \mathcal{H}_0 with significance α

how many tails has χ^2 ?

TESTING THE VARIANCE – F-TEST

PROBLEM

lead Same as before, but true σ_0 is unknown

TESTING THE VARIANCE – F-TEST

PROBLEM

lacktriangle Same as before, but true σ_0 is unknown

SOLUTION

- Compute the empirical variance $\hat{\sigma}_0^2(\mathbf{k})$ from previous N_0 samples, and $\hat{\sigma}_1^2(\mathbf{k})$ from next N_1 samples
- ► The following random variable is F with $(N_0 1, N_1 1)$ degrees of freedom

$$\mathit{F}(\mathit{k}) = rac{\hat{\sigma}_0^2}{\hat{\sigma}_1^2}$$

 \Rightarrow if $F > F_{N_0-1, N_1-1, 1-\alpha}$ then reject \mathcal{H}_0 with significance α

LIMITATIONS

- ➤ To falsify the null hypothesis with good significance you need a high number of samples before and after the (hypothetical) change
- ► this delays detection
- likelihood based algorithms (such as CUSUM), next lecture

CONCLUSIONS

IN THIS LECTURE WE COVERED

- ► Fundamentals of change detection
- Deterministic tests
- Basic probabilistic tests

Next lecture: Advanced probabilistic tests

CONCLUSIONS

THANK YOU FOR YOUR ATTENTION!

For further information:
Course page on Brightspace
or
our MS Team