Number Theory: Divisibility

Freeman Cheng

Erindale Secondary School

October 22, 2018

Outline

Methods of Proof
Direct Proof
Proof by Contradiction

Introduction
Definitions
Properties

Greatest Common Divisor Definition Euclidean Algorithm

Conclusion

Methods of Proof

▶ We will briefly cover direct proof and proof by contradiction.

Direct Proof

Example

Prove that the sum of two even numbers is even.

Proof by Contradiction

Example

Prove that $\sqrt{2}$ is irrational.

Introduction

(1.1) Definition

Let a and b be two integers, a being nonzero. We can say that a is a divisor of b if there exist an integer x such that ax = b.

- ▶ We use the notation a|b to represent this.
- ► For example, 12|48.

Properties

(Taken from Number Theory: Structures, Examples, and Problems by Dorin Andrica and Titu Andreescu).

- 1. If a|b and $b \neq 0$, then $|a| \leq |b|$;
- 2. If a|b and a|c, then a|sb + tc for any integers s and t;
- 3. If a|b and $a|b \pm c$, then a|c;
- 4. a|a;
- 5. If a|b and b|c, then a|c;
- 6. If a|b and b|a, then |a| = |b|.

Example

Problem 1

Find all positive integers n such that n^2+1 is divisible by n+1 (W. Sierpinski).

Let a and b be integers, with a nonzero. Note that if a|b, then a|b-ka for some integer k. Thus, it follows that

$$n + 1|n^2 + 1 - (n - 1)(n + 1),$$

 $n + 1|n^2 + 1 - (n^2 - 1),$
 $n + 1|2.$

Since n + 1|2 and n > 0, we can conclude that n = 1.

Problem

Problem 2

Let n be a positive integer divisible by 3. Explain why the sum of the digits of n is also divisible by 3.

▶ Use the same strategy as the previous problem.

Problem

Problem 3

Find all positive integers n for which the number obtained by erasing the last digit is a divisor of n.

Let the number after erasing the last digit be a and the last digit be b. Thus,

$$n = 10a + b$$
.

It follows that

$$a|n,$$

$$a|10a+b,$$

$$a|b.$$

Thus any number which ends in 0 will satisfy the conditions. If $b \neq 0$, then we can manually list out all n: 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 26, 28, 33, 36, 39, 44, 48, 55, 66, 77, 88, 99.

Division Algorithm

(1.2) Division Algorithm

Let a and b be integers, with a positive. There must exist unique integers q and r such that b = qa + r with $0 \le r < a$.

▶ Note that *q* is the quotient and *r* is the remainder.

Proof (Optional)

The well-ordering principle is a prerequisite for this proof.

(1.3) Well-Ordering Principle

Every non-empty set of non-negative integers contains a least element.

First we prove that there must exist such a remainder. Given integers a and b and varying q, consider the set

$$S = \{b - qa \text{ such that } b - qa \ge 0\}.$$

Let the minimum of this set occur when $q=q_1$. For the sake of contradiction, let $r=b-q_1a\geq a$. We arrive at a contradiction since

$$b-q_1a \geq a \implies b-q_1(a+1) \geq 0$$

(we get a new minimum). Thus, there will always exist such a remainder. (Inspired by Justin Stevens' book).

Greatest Common Divisor

(1.4) Definition

The greatest common divisor of two integers a and b is the largest number which is a divisor of both.

- \blacktriangleright We will use gcd(a, b) to represent greatest common divisor.
- We can find the GCD of two numbers by comparing prime factors. For example, find gcd(84,98).
- ▶ If gcd(a, b) = 1, we say that a and b are relatively prime.

Division Algorithm and GCD

Problem 4

Given integers b, q, a, r such that b = qa + r, prove

$$gcd(b, a) = gcd(a, r).$$

Suppose there is some integer c such that c|b and c|a. It follows that

$$c|b-qa \implies c|r$$
.

Now suppose that there is some integer d such that d|a and d|r. It follows that

$$d|qa+r \implies d|b.$$

The pairs of integers (b, a) and (a, r) share the same common divisors, thus gcd(b, a) = gcd(a, r).

Euclidean Algorithm

Problem 5

Explain why gcd(a, b) = gcd(a, b - ka) for integers a, b, k.

- ► This is called the Euclidean Algorithm.
- ▶ Use the result of the previous problem to prove this.

A Problem From The First IMO

Problem 6

Prove that for all positive integers n, the fraction

$$\frac{21n+4}{14n+3}$$

is irreducible.

Our goal is to prove that gcd(21n + 4, 14n + 3) = 1. We apply the Euclidean Algorithm. We have

$$\gcd(21n+4,14n+3)=\gcd(7n+1,14n+3)=\gcd(7n+1,1)=1.$$

Our proof is complete.

Notice that if d|a and d|b then d|sa + tb for any integers s, t. Since

$$(-2)(21n+4)+(3)(14n+3)=1,$$

the two numbers share no common factor other than 1, implying that the fraction is irreducible.

More Problems

Problem 7

Prove that $n^5 - 5n^3 + 4n$ is divisible by 120.

Problem 8

What is the largest positive integer n such that $n^3 + 100$ is divisible by n + 10 (AIME).

Problem 9

Show that for any natural number $n \ge 2$, one can find three distinct natural numbers a, b, c between n^2 and $(n+1)^2$ such that $a^2 + b^2$ is divisible by c.

Next Week

- ▶ We will do more problems.
- ▶ Introduce the relation between GCD and LCM.