Para una trayectoria que describe un movimiento rectilíneo y uniforme, el vector velocidad es constante. En general, el vector velocidad es una función vectorial $\mathbf{v} = \mathbf{c}'(t)$ que depende de t. Su derivada $\mathbf{a} = d\mathbf{v}/dt = \mathbf{c}''(t)$ se denomina aceleración de la curva. Si la curva es (x(t), y(t), z(t)), entonces la aceleración en el instante t viene dada por

$$\mathbf{a}(t) = x''(t)\mathbf{i} + y''(t)\mathbf{j} + z''(t)\mathbf{k}$$

Ejemplo 2

Una partícula se mueve de manera que su aceleración es igual al vector constante $-\mathbf{k}$. Si en el instante t=0 se encuentra en el punto (0,0,1) y la velocidad en t=0 es $\mathbf{i}+\mathbf{j}$, ¿cuándo y en qué punto cae la partícula por debajo del plano z=0? Describir la trayectoria seguida por la partícula (suponiendo $t\geq 0$).

Solución

Sea $\mathbf{c}(t) = (x(t), y(t), z(t)) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ la trayectoria descrita por la partícula, de modo que el vector velocidad es $\mathbf{c}'(t) = x'(t)\mathbf{i} + y'(t)\mathbf{j} + z'(t)\mathbf{k}$. La aceleración $\mathbf{c}''(t)$ es igual a $-\mathbf{k}$, de manera que x''(t) = 0, y''(t) = 0 y z''(t) = -1. Se sigue que x'(t) y y'(t) son funciones constantes y z'(t) es una función lineal, con pendiente -1. Puesto que $\mathbf{c}'(0) = \mathbf{i} + \mathbf{j}$, obtenemos $\mathbf{c}'(t) = \mathbf{i} + \mathbf{j} - t\mathbf{k}$. Integrando de nuevo, y sabiendo que la partícula parte inicialmente del punto (0, 0, 1), obtenemos que $(x(t), y(t), z(t)) = (t, t, 1 - \frac{1}{2}t^2)$. La partícula cruza el plano z = 0 cuando $1 - \frac{1}{2}t^2 = 0$; es decir, $t = \sqrt{2}$ (porque $t \geq 0$). En ese instante su posición es $(\sqrt{2}, \sqrt{2}, 0)$. La trayectoria descrita por la partícula es una parábola en el plano y = x (véase la Figura 4.1.1), puesto que en ese plano la ecuación viene descrita por $z = 1 - \frac{1}{2}x^2$.

Figura 4.1.1 La trayectoria de la partícula con posición inicial (0, 0, 1), velocidad inicial $\mathbf{i} + \mathbf{j}$ y aceleración constante $-\mathbf{k}$ es una parábola en el plano y = x.

La imagen de una trayectoria C^1 no es necesariamente "muy suave"; en efecto, puede mostrar ángulos o bruscos cambios de dirección. Por ejemplo, como puede verse en la Figura 2.4.6, la cicloide $\mathbf{c}(t) = (t - \sec t, 1 - \cos t)$ presenta picos en todos los puntos donde \mathbf{c} toca al eje x (es decir, cuando $1 - \cos t = 0$, lo que sucede cuando $t = 2\pi n, n = 0, \pm 1, \ldots$). Otro ejemplo es la *hipocicloide de cuatro puntas*, $\mathbf{c}: [0, 2\pi] \to \mathbb{R}^2, t \mapsto (\cos^3 t, \sin^3 t)$, que tiene picos o cúspides en cuatro puntos (véase la Figura 4.1.2). En tales puntos, sin embargo, $\mathbf{c}'(t) = \mathbf{0}$ y la recta tangente