

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Mid Exam Fall 2021.

CSE 2233/CSI 233: Theory of Computation/Theory of Computing

Total Marks: 30

Duration: 105 Minutes

Answer all questions. Figures are in the right-hand margin indicates full marks.

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

1.	Design DFAs that accept the following languages: a) L= contains 'zyx' and ends with 'zy' $\Sigma = \{x,y,z\}$ b) L= does not contain '0121' $\Sigma = \{0,1,2\}$ c) L = starts with 'mn' and contains 'xm' and ends with 'x' $\Sigma = \{m,n,x\}$	3x3
2.	Design NFAs that accept the following languages: a) L= ends with 'b' and contains 'ca' and starts with 'a' $\Sigma = \{a,b,c\}$ b) L= contains '110' or '011' or '122' and ends with '3' $\Sigma = \{0,1,2,3\}$ c) L = starts with 'mxn' and contains 'mxn' and ends with 'mxn' $\Sigma = \{m,n,x\}$	3x3
3.	Consider the following NFA, and show with the help of NFA-tree whether the string "1101010" is accepted or not.	3
4.	Convert the following NFA over alphabet $\Sigma = \{0,1\}$ to an equivalent DFA.	6

Page 1 of 2 (Turn over)

5.	Develop Regular expression over $\Sigma = \{a, b\}$ for following languages:	3x1
	a) All strings w where every 'a' is followed by at least one 'b'.	
	b) All strings w which contains 'bba'.	
	c) All strings w where number of 'b's is a multiple of 3.	