Mendelian Inheritance

Jurg Ott
Columbia and Rockefeller Universities
New York

Genes — Mendelian Inheritance

Gregor Mendel, monk in a monastery in Brünn (now Brno in Czech Republic): Breeding experiments with the garden pea: Flower color and seed shape (phenotypes) are determined by "factors" (now "genes") that are passed through generations. He formulated two laws of inheritance that he thought were generally valid.

Mendel's Laws

- **First Law**, *Segregation of Characteristics*: Of a pair of characteristics (e.g. blue and brown eye color) only one can be represented in a gamete even though there are two genes in ordinary cells.
- Second Law, *Independent Assortment*: For two characteristics, the genes are inherited independently. Today we make use of deviations from this law for statistical gene mapping.

Mendel's paper

Mendel GJ (1866) Versuche über Pflanzen-Hybriden. Verh Naturforsch Ver Brünn 4:3-47

Ironically, when Mendel's paper was published in 1866, it had little impact. It wasn't until the early 20th century that the enormity of his ideas was realized.

Simple Modes of Inheritance

- Trait due to a single gene
- Examples:
 - Huntington disease (dominant)
 - Cystic fibrosis (recessive)

Dominant

Recessive

X-Linked Inheritance

- Female genotypes:
 As for autosomal genes
- Male genotypes: N/y and D/y (hemizygous)

• Examples (usually recessive): hemophilia, red/green color blindness, Duchenne muscular dystrophy

Genetic Inheritance

- Genes are arranged along chromosomes
- Genes code for enzymes, blood groups, etc.
- Gene defects may cause disease.
- Chromosomes and genes are passed from parents to children.

Genotype and Phenotype

- **Genotype** = set of 2 alleles at a locus (gene) in an individual. *Examples*: A/G (marker alleles), N/A (disease alleles)
- **Phenotype** = "what you see", expression of this genotype. *Examples*: A/G (marker), affected (disease).

Relation between Genotype and Phenotype

Dominant

	Genotype			
Pheno- type	N/N	A/N	A/A	
unaffected	1	0	0	
affected	0	1	1	

Recessive

7.1	Genotype		
Pheno- type	N/N	A/N	A/A
unaffected	1	1	0
affected	0	0	1

Table entries = penetrances. Usually, only 1 line needed (affected).

Penetrance = conditional probability of phenotype given genotype.

Penetrance = probability of being affected given genotype (diseases).

ABO Blood Types

3 alleles: A, B, 0

Pheno-	Genotype					
type	A/A	A/B	A/0	B/B	B/0	0/0
A	1	0	1	0	0	0
В	0	0	0	1	1	0
AB	0	1	0	0	0	0
0	0	0	0	0	0	1

Generalized mendelian inheritance

Genotype	NN	DN	DD
Frequency	$(1-p)^2$	2p(1-p)	p^2
Penetrance	f_1	f_2	f_3

p = population frequency of D allele

Prevalence =
$$(1-p)^2 f_1 + 2p(1-p) f_2 + p^2 f_3$$

Penetrance: Cystic fibrosis

p = frequency of disease alleles, 0.025

Genotype	NN	DN	DD
Frequency	0.9506	0.0488	0.0006
Penetrance	0	0	1

Incidence = Prevalence at birth = 0.0006 = 1/1600Carrier frequency = $0.0488 \approx 1/20$

Age-dependent penetrance

Huntington disease Penetrance

Penetrance = Proportion of susceptible individuals affected by given age

Torsion Dystonia

Median age of onset ≈ 10 years Penetrance at high age ≈ 30%

Familial Breast Cancer, BRCA1

Newman et al. (1988) *PNAS* **85**, 3044 Easton et al. (1993) *Am J Hum Genet* **52**, 678

Age	P(affected by given age)		
group	dd	Dd	DD
< 30	.00009	.008	.008
30-39	.00146	.083	.083
40-49	.0083	.269	.269
50-59	.021	.469	.469
60-69	.039	.616	.616
70-79	.061	.724	.724
80+	.082	.801	.801

Breast Cancer Penetrances

Cystic fibrosis — 3 mating types

Counselee = unaffected child, negative for tested mutations. Carrier? No genetic marker information.

t = tested CF mutations cover 80% of mut.

r = remaining mutations, 20%

	Father		
Mother	t/n 0.8	r/n 0.2	
t/n 0.8	0.64	0.16	
r/n 0.2	0.16	0.04	

Cystic fibrosis — Calculations

	Counselee's genotype			
Mating types	1/4	1/4	1/4	1/4
$t/n \times t/n = 0.64$	t/t 0.16	t/n 0.16	t/n 0.16	n/n 0.16
$t/n \times r/n = 0.32$	t/r 0.08	t/n 0.08	r/n 0.08	n/n 0.08
$r/n \times r/n \ 0.04$	r/r 0.01	r/n 0.01	r/n 0.01	n/n 0.01

Risk:
$$\frac{8+1+1}{8+1+1+16+8+1} = \frac{10}{35} = \frac{2}{7} = 29\%$$

Heritability

- Linear model for phenotype:
 - x = g + c + e. Heritability = Var(g)/Var(x)
- Gene-environment interactions:
 - CCR5: No effect of mutation without infection
 - Sickle cell anemia: heterozygote advantage in malaria
 - Pima Indians: Obesity, "thrifty gene" hypothesis
- Measure degree of genetic influence by how consistently a trait runs in families

Framingham Study

http://www.nhlbi.nih.gov/about/framingham/policies/pagetwelve.htm

Blood Pressure Variable	Families	Subjects	Heritability
Systolic Blood Pressure, adjusted for age	238	2067	0.323 ± 0.043
Systolic Blood Pressure, adjusted for age, BMI	238	2064	0.339 ± 0.043

Lipid Variable	Families	Subjects	Heritability
Total Cholesterol, adjusted	1366	4527	0.462 ± 0.034
HDL Cholesterol, adjusted	1366	4527	0.433 ± 0.034
Log Lp(a), adjusted	902	1832	0.805 ± 0.064
Log TG, adjusted	1366	4527	0.396 ± 0.033
TC / HDL Ratio, adjusted	1366	4527	0.410 ± 0.032
TG / HDL Ratio, adjusted	1366	4527	0.332 ± 0.031

Twin Concordance Rates "Complex Diseases"

Plomin et al. (1994) Science 264, 1734

Risch's lambda measure

Risch (1990) Am J Hum Genet 46, 222-228

- Risk, R_r = Prob(relative or type r has trait given index case has trait)
- Risk ratio, $\lambda_r = R_r/R_{unrelated} = R_r/K$, K = population prevalence
- Most common: $\lambda_s = risk ratio to a sib$
- CF: $\lambda_s = \frac{1}{4} / 0.0006 = 417$

Sib risk ratios for obesity

Price and Lee (2001) Hum Hered 51, 35-40

Risk ratios higher when proband and sibling have high BMI → strong obesity is more heritable than mild obesity.