

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2550

วิชา ENE 325 Electromagnetic fields and waves กาควิชา วศ.อิเล็กทรอนิกส์ข ปีที่ 3 สอบ วันศุกร์ที่ 10 สิงหาคม พ.ศ. 2550

เวลา 9.00-12.00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 5 ข้อ 9 หน้า (รวมใบปะหน้า)
- 2. ให้ทำทุกข้อลงในข้อสอบ
- 3. ไม่อนุญาตให้นำเอกสารประกอบการเรียนเข้าห้องสอบ
- 4. อนุญาตให้ใช้เครื่องคำนวณได้
- 5. ให้เขียนชื่อ-นามสกุล และเลขประจำตัวลงในข้อสอบทุกหน้า

เมื่อนักศึกษาทำช้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พันสภาพการเป็นนักศึกษา		
ชื่อ-สกุล		รหัสประจำตัว
อาจารย์ราชวดี ศิลาพันธ์		
ผู้ออกข้อสอบ โทร 0-2470- 9 062		

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

ผศ.ดร.วุฒิชัย อัศวินชัยโชติ หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

สูตรที่ใช้ในการคำนวณ

1.พิกัดทรงกลม (r, θ, ϕ)

Differential element

volume:

$$dv = r^2 \sin \theta dr d\theta d\phi$$

surface vector: $d\vec{s} = r^2 \sin\theta d\theta d\phi \hat{a}_r$

$$d\vec{s} = r^2 \sin\theta d\theta d\phi \hat{a}$$

2. พิกัด Cylindrical (ρ, ϕ, z)

Differential element

volume:

$$dv = \rho d\rho d\phi dz$$

surface vector (ด้านบน): $d\vec{s} = \rho d\rho d\hat{\phi} \hat{a}_z$

$$: d\vec{s} = \rho d\rho d\hat{\phi} \hat{a}_z$$

surface vector (ด้านข้าง): $d\vec{s} = \rho d\phi dz \hat{a}_{\rho}$

3. Unit vector $\hat{a}_R = \frac{\vec{R}}{R}$

4. Electric flux $\psi = \oint \vec{D} \cdot d\vec{S}$ coulomb

5. Gauss's law $Q_{en} = \oint \overrightarrow{D} \cdot d\overrightarrow{S}$ coulomb

6.
$$\vec{E} = \frac{\vec{D}}{\varepsilon}$$
 V/m

โดย
$$\mathcal{E} = \mathcal{E}_r \mathcal{E}_o$$

 \mathcal{E}_r = relative permittivity (\mathcal{E}_r ของอากาศ = 1)

 \mathcal{E}_0 = free space permittivity = 8.854x10⁻¹² F/m

7. $\vec{E} = -\nabla V$

8. Conductor-dielectric boundary conditions

$$E_t = 0$$

$$D_n = \rho_s$$

โดย $ho_{
m s}$ = ความหนาแน่นประจุต่อพื้นที่ (C/m²)

1. Coordinate system: กำหนดจุด P (ho = 0.03, ϕ = 120 $^{\circ}$, z= 0.03) และสนามไฟฟ้า $\vec{E} = 2\rho z^2 \hat{a}_{\rho} + z^2 \cos\phi \hat{a}_{\phi} + 2\rho^2 z \sin\phi \hat{a}_z$ V/m จงคำนวณ (20 คะแนน) a) \vec{E} ที่จุด P (10 คะแนน)

b) $|\vec{E}|$ ที่จุด P (5 คะแนน)

c) unit vector ในทิศทาง \vec{E} ที่จุด P (5 คะแนน)

- 2. สนามไพ่ฟ้าจากข้อ 1 พุ่งผ่านส่วนของท่อซึ่งมีรัศมีภายใน ho_{in} = 3 cm รัศมีภายนอก ho_{out} = 5 cm, ϕ = 90 $^{\circ}$ ถึง ϕ = 150 $^{\circ}$, และ z = 3 cm ถึง z = 4.5 cm, กำหนดให้เนื้อท่อมี \mathcal{E}_r = 1 จงคำนวณ (20 คะแนน)
- a) พื้นที่ด้านข้าง (ไม่รวมส่วนที่มี surface vector ในแนว \hat{a}_{ϕ}) (10 คะแนน)

b) ฟลักซ์ซึ่งพุ่งผ่านพื้นที่ด้านข้างของท่อ (ไม่รวมส่วนที่มี surface vector ในแนว \hat{a}_{ϕ}) (10 คะแนน) (แนะนำ: ท่อมีลักษณะกลวงดังนั้นต้องคำนวณฟลักซ์ที่เกิดจากทั้งพื้นที่ด้านในและด้านนอก)

3. จากรูปทรงกลุ่มกลวงซึ่งมีรัศมี r ภายใน 8 mm และภายนอก 10 mm มีความหนาแน่นประจุ $ho_{\!\scriptscriptstyle
m v}$ 80 μ C/m³ กำหนดให้ $\rho_{\rm v}$ = 0 ที่ 0 < r < 8 mm จงคำนวณ (25 คะแนน)

a) ค่าของประจุทั้งหมดที่อยู่ภายในพื้นผิวทรงกลมนี้ (10 คะแนน)

b) ใช้ Gauss's law คำนวณความหนาแน่นฟลักซ์ D_r ที่ r=10 mm (10 คะแนน)

c) ถ้าไม่มีประจุใดๆอีกเลยที่ $r > 10 \text{ mm } D_r$ จะเป็นเท่าไรที่ r = 20 mm (5 คะแนน)

- 4. กำหนดให้ $V=2xy^2z+\ln(x^2+2y+3z^2)$ \ ในตัวกลางฉนวนที่มีค่า $\mathcal{E}_{r}=4$ จงคำนวณค่า ต่อไปนี้ที่จุด P (3, 2, -1) (20 คะแนน)
- a) |V| และงานที่ใช้ในการลากประจุ 1 หน่วยนี้มาจากสนามไฟฟ้าหรือแรงจากภายนอก (5 คะแนน)

b) **E** (5 คะแนน)

c) | E | (5 คะแนน)

d) Dี (5 คะแนน)

- 5. ตัวกลาง 1 ($x \leq 0$) เป็นสารฉนวนต่อกับตัวกลาง 2 ($x \geq 0$) ซึ่งเป็นตัวนำและมีค่า $ho_{
 m s}$ = 50 nC/m² ที่บริเวณรอยต่อ กำหนดให้ $\vec{E}_1 = -200\hat{a}_x$ V/m จงคำนวณ (15 คะแนน)
- a) \vec{E}_{t1} และ \vec{D}_{h1} (5 คะแนน)

b) ค่า relative permittivity \mathcal{E}_r ของตัวกลาง 1 (5 คะแนน)

c) \vec{E}_{n2} (5 คะแนน)