AirCloud: A Cloud-based Air-Quality Monitoring System for Everyone

Yun Cheng, Xiucheng Li, Zhijun Li, Shouxu Jiang, Yilong Li, Ji Jia, and Xiaofan (Fred) Jiang

> Air Scientific Inc. Harbin Institute of Technology

Motivation and Challenges: For Individuals

Motivation and Challenges: For Individuals

Not the air you breath in

Not accurate

Motivation and Challenges:

For Government and Orgs

AirCloud System A Client-Cloud Approach

DATA COLLECTION

Low Cost
Internet-Connected
Sensor Front-end

ONLINE AIR-QUALITY
ANALYTICS ENGINE

Single-point Calibration Multi-point Prediction

SERVICES AND APPLICATIONS

The Client Hardware

custom-designed devices

AQM

Stationary Version
Ethernet/GPRS -> backend

miniAQM

Portable Version BLE4.0->Phone->backend

The Client Hardware mechanical structure

front

The Client Hardware

mechanical structure

inside

Hardware Calibration reduce variations between sensors

Calibration

Processing **AQM** mini **AQM** Calibration Sensor Hardware **Parameters** Standard Board Calibration Readings (A) (B) (C)

Air Chamber

Online Air-Quality Analytics Engine The whole Picture

Air-Quality Analytics Engine Signal Reconstruction Module

$$minimize ||\hat{x} - x_{cor}||^2 + \delta ||D\hat{x}||^2$$

$$\hat{x} = (I + \delta D^T D)^{-1} x_{cor}$$

 $x_{cor} = x + v$

De-noise and smooth the corrupted original signal

Air-Quality Analytics Engine ANN Calibration Module

- [PM2.5_obs, Temp, Humidity] -> PM2.5_true
- Online stochastic gradient descent

Online multi-modal calibration (same location)

Air-Quality Analytics Engine Online Inference Module

Feature vector

x: [distance, {POI}, Temp, Humidity]

Similarity specified by kernel function K:

$$k_{SE}(x, x') = \exp\left(-\sum_{i=1}^{n} \frac{(x_i - x_i')^2}{2w_i^2}\right)$$

wi specifies importance of the feature I

Compute covariance matrix:

$$K_y = K(X, X) + \operatorname{diag}(\delta_i^2)$$

Smaller delta_i -> higher confidence

Predict PM2.5:

$$\mu_* = K_*^T K_u^{-1} y$$

Infer/predict PM2.5 based on other data sources (different location)

Evaluation and Results

Evaluation and Results Setup and datasets

Historical Dataset:

- Training and Verifying the ANN model
- 5 months data, sample once a minute
- Training dataset (70%) testing dataset (30%)

Evaluation and Results Setup and datasets

Deployment Dataset:

- Verifying the ANN and GP inference model
- 2 months data, sample once a minute
- 10 AQMs + 2 miniAQMs+ 3 Dylos + 2 Thermo
- 4km * 4km which covers all kinds of environments (POI)

Evaluation and Results Signature Reconstruction

Evaluation and Results definition of PM2.5 levels

$PM_{2.5}(\text{ug/}m^3)$	Levels	Values Levels of Health Concern
0-35	1	Good
35-75	2	Moderate
75-115	3	Unhealthy for sensitive groups
115-150	4	Unhealthy
150-200	5	Highly unhealthy
200-250	6	Very unhealthy
250-350	7	Hazardous
>350	8	Severely Hazardous

- Level 1-4 is the same as the official one
- Level 5 and 6 equal to official 5
- Level 6 and 7 equal to official 6

Evaluation and Results SR + ANN + GP Online Interference (deployment dataset)

Raw Data

Signal Reconstruction

Neural Network

Inference

Evaluation and Results on the deployment dataset

Overall Results:

53.6% increase

Cloud Architecture open data exchange platform

APIs and Applications web applications

Find more on our website: http://www.air-scientific.com

APIs and Applications heat map

APIs and Applications heat map

Heatmap of the Spatial Inference

APIs and Applications mobile applications

Find more info on our website: http://www.air-scientific.com

Conclusion

• Stationary and mobile Internet-connected PM2.5 monitors

- Cloud-based data analytics engine to increase the accuracy of AQM by 53.6% in real deployment
- An open platform to provide easily accessible air quality data and web services
- Several useful web and mobile applications for individuals and government

Thank you for listening!

Questions?