Chapter I: roadmap

- I.I What is the Internet?
- I.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - * circuit switching, packet switching
 - hierarchical Internet structure
- 1.4 Performance:
 - delay, loss and throughput
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

The network core

mesh of interconnected routers

Internet Design Principles

- I. Packet vs Circuit Switching (BC 6 or KR 1.3)
- 2. Hierarchy: Network of Networks (BC 6 or KR 1.3)
- 3. Layered Architecture (BC 7 or KR 1.5)

Through a Historical Perspective (or KR 1.7)

"Networks Illustrated: Principles without Calculus" by Brinton & Chiang

Book: http://www.amazon.com/gp/product/B00DIIKDJO

Coursera: https://www.coursera.org/course/ni

Sharing Resources

☐ FDMA, TDMA, CDMA

- Circuit-switched:
 Dedicate / assign network
 resources
- Negative Not all resources used constantly!

Paradigm shift

 Packet-switched: Let everyone share the resources

Session

- Application-level
- Unicast: One source, one dest.

Circuit Switching Advantage

- Debate runs far and deep
- I. Guarantee of Quality
- Circuit Switching
 - * Each session has a dedicated circuit
 - Throughput and delay performance will not change!
- Packet Switching
 - Best-effort service: no guarantees ("NO effort)
 - * Links get congested, messages arrive out of order, ...

Packet Switching Advantages

2. Ease of Connectivity

- No need to allocate resources first
- Transmit at will, as long as protocols are followed

3. Scalability

- Large number of diverse sessions
- Obtained through high efficiency
- (I) Statistical multiplexing
- * (2) Resource pooling

Packet Switching Advantages

- Statistical multiplexing
 - Multiple sessions can share one path
- Resource pooling
 - One session can use multiple paths
- No wasted/idle network resources through reservations

Packet vs. Circuit Switching

Property	Circuit Switching	Packet Switching
Guarantee of Quality	✓	X
Ease of Connectivity	X	✓
Scalability	X	✓

- ☐ In the end, packet switching won the day
- □ Not clear until early 2000s
- □ Scalability first, then search for other quality control solutions

Resource Allocation

Human Analogies:

- * reservation at a restaurant
- a reserved lane on the highway
- Q: other human analogies of reserved resources vs. on-demand allocation?

Networks:

- Resources (bandwidth, buffer) divided into pieces and allocated to calls or packets
- Reservations: circuit-switching
- No reservations: packet-switching

Packet Switching vs. Circuit Switching

Is packet switching a clear winner?"

- + great for bursty data
 - network's pov: resource sharing ("statistical multiplexing")
 - user's pov: simpler (no call setup), less delay to start service
- excessive congestion possible
 - packet delay and loss
 - * protocols needed for reliable data transfer, congestion control
 - no bandwidth guarantees needed for audio/video apps

Packet Switching vs. Circuit Switching

+ Packet switching allows more users ("statistical multiplexing)!

example:

- I Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time
- □ circuit-switching:
 - 10 users
- packet switching:
 - with 35 users, probability (> 10 active at same time) is <0.0004 *</p>

- Q: how did we get value 0.0004?
- Q: what happens if > 35 users?

Circuit-switching

Introduction 1-60

Message Switching: no pipelining

Packet Switching: one packet

Packet Switching: multiple packets

Chapter I: roadmap

- I.I What is the Internet?
- I.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Performance:
 - delay, loss and throughput
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

Packet-switching: store-and-forward

- □ takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link

At Intermediate Nodes (routers)

Packets queue in router buffers

if packet arrival rate to link exceeds output link capacity

Four sources of packet delay

- d_{proc}: nodal processing
 - e.g. check but errors, determine output link, ... Typically < Ims.
- d_{queue}: queueing delay
 - time waiting at output buffer for transmission, depends on congestion level at router)
- d_{trans} : transmission delay =L/R
- d_{prop} : propagation delay = d/s,
 - d: length of physical link, s: propagation speed in medium (~2x108 m/sec)

Queueing delay

- R: link bandwidth (bps)
- L: packet length (bits)
- a: average packet arrival rate (packets/sec)

- ❖ La/R ~ 0: avg. queueing delay small
- \star La/R \rightarrow I: avg. queueing delay large
- La/R > I: more work arriving than can be serviced, average delay infinite!

 $La/R \rightarrow I$

Packet loss

- Packets get dropped due to congestion at queues:
 - queue (aka buffer) preceding link in buffer has finite capacity
 - packet arriving to full queue dropped (aka lost)
 - lost packet may be retransmitted by previous node, by source end system, or not at all
- Packets can also be lost due to link failure, misconfiguration etc.

Throughput

throughput: rate (bits/time unit) at which bits transferred between sender/receiver

Throughput (cont'd)

 $R_s < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: Internet scenario

- per-connection end-end throughput: min(R_c,R_s,R/I0)
- in practice: R_c or R_s is often the bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

Numerical example

- Question: How long does it take to send a file of F=640Kbits from Source to Destination over a packet switched network?
 - there are 3 links on the path
 - every link have speed: R=1.5 Mbps and propagation delay d_{prop}=10ms
 - processing and queuing delays are negligible
 - the file is broken into packets of P=1000 bits each (ignore added headers)

Interactive Exercise:

http://wps.pearsoned.com/ecs_kurose_compnetw_6/216/55463/14198700.cw/index html

on every hop:

Packet-switching

E2E delay

$$d = d_{proc} + d_{queue} + d_{trans} + d_{prop}$$

Packet Switching

E2E throughput=L(bits)/e2e delay(sec)

Numerical example

- Question: How long does it take to send a file of 640Kbits from Source to Destination over a circuit-switched network?
 - all link speeds: R=1.536 Mbps
 - each link uses TDM with n=24 slots/sec
 - 500 msec to establish end-to-end circuit

Circuit Switching: delay

The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - forward packets from one router to the next, across links on path from source to destination
 - each packet transmitted at full link capacity

Two key network-core functions

routing: determines sourceforwarding: move packets from destination route taken by router's input to appropriate packets router output routing algorithms routing algorithm local forwarding table header value output link 0100 0101 0111 1001 dest address in arriving Analogies: mail or driving packet's header **Network Layer** 4-79

Chapter I: roadmap

- I.I What is the Internet?
- I.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching vs packet switching,
 - network structure
- 1.4 Performance:
 - delay, loss and throughput
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History