FourierMagneticPropagator — WaveBlocksND devel documentation

Navigation

- index
- modules
- next
- previous
- WaveBlocksND devel documentation »

FourierMagneticPropagator¶

About the FourierMagneticPropagator class¶

The WaveBlocks Project

@author: R. Bourquin @copyright: Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015, 2016 R. Bourquin @license: Modified BSD License

Inheritance diagram¶

```
digraph inheritance0585146a3b { rankdir=LR; size="8.0, 12.0";
BlocksND.FourierMagneticPropagator.FourierMagneticPropagator"
name="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica,
sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",tooltip="This
class can numerically propagate given initial values :math:'\Psi(x 0,
t 0)'
       on"];
               "WaveBlocksND.Propagator.Propagator" ->
                                                              "WaveBlock-
sND. Fourier Magnetic Propagator. Fourier Magnetic Propagator"
size=0.5,style="setlinewidth(0.5)"]; "WaveBlocksND.SplittingParameters.SplittingParameters"
-> "WaveBlocksND.FourierMagneticPropagator.FourierMagneticPropagator" [ar-
rowsize=0.5,style="setlinewidth(0.5)"]; "WaveBlocksND.Propagator.Propagator"
[fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica,
sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",tooltip="Propagators
can numerically simulate the time evolution of quantum states"]; "WaveBlock-
sND.SplittingParameters.SplittingParameters" [fontname="Vera Sans, DejaVu
Sans, Liberation Sans, Arial, Helvetica, sans", fontsize=10, height=0.25, shape=box, style="setlinewidth(0.5)"];
```

Class documentation \P

$class$ WaveBlocksND.FourierMagneticPropagator $(parameters,\ potential,\ initial_values) [source]$	ſſ
/_images/math/09ed461798fa50f983c7	'f98
This class can numerically propagate given initial values	
/_images/math/947b2e7cf74785c545d567645fb43e1310e3b227.pr	ıg
on a potential hyper surface, in presence of a magnetic field. The propagation is done with a splitting of the time propagation	
/_images/math/06bd4236d9ab66809a1626d5c16887acd3db060e.png	
operator Available splitting schemes are implemented in SplittingParameters.	
init(parameters, potential, initialvalues)[source]¶ Initialize a new FourierMagneticPropagator instance. Pre-	
/_images/math/f5339fd8776a3b7a951bfacc10f6c264c27	'22c
calculate the the kinetic operator and the potential	
/_images/math/dd50200d238d34d8a9c9a131b57883840d9a6980.png	
operator used for time propagation.	

Parameters:

Raise:

ValueError If the number of components of

does no

../_images/math/334

ValueError If the number of components of

 \square does n

Raise:

Raise:

ValueError If the dimensions of the splitting scheme parameters

Parameters: method - A string specifying the method for time integration.

../_images/math/bd9d9c7fh4ge89fae0h257a9d32b84897t6dtb9909f4fh8g2ce36533.

Returns: Two arrays and ...

Method	Order	Authors	Reference
LT	1	Lie/Trotter	[1], [3] page 42, o
S2	2	Strang	[2], [3] page 42,
SS	2	Strang	[2], [3] page 42,
PRKS6	4	Blanes/Moan	[4] page 318, tab
BM42	4	Blanes/Moan	[4] page 318, tab
Y4	4	Yoshida	[5], [3] page 40, o
Y61	6	Yoshida	[5], [3] page 144,
BM63	6	Blanes/Moan	[4] page 318, tab
KL6	6	Kahan/Li	[6], [3] page 144,
KL8	8	Kahan/Li	[6], [3] page 145,
KL10	10	Kahan/Li	[6], [3] page 146,

[1] H.F. Trotter, "On the product of semi-groups of operators", Proc. Am. Math. Soc.1O (1959) 545-551.

2] (1, 2) G. Strang, "On the construction and comparison of difference schemes", SIAM J. Numer. Anal. 5

[3]	(1, 2, 3, 4, 5, 6, 7, 8) E. Hairer, C. Lubich, and G. Wanner, "Geometric Numerical Integration - Struct
[4]	(1, 2, 3) S. Blanes and P.C. Moan, "Practical Symplectic Partitioned Runge-Kutta and Runge-Kutta-N
[5]	(1, 2) H. Yoshida, "Construction of higher order symplectic integrators", Phys. Lett. A 150 (1990) 262-
[0]	
[6]	(1, 2, 3) W. Kahan and Rc. Li, "Composition constants for raising the orders of unconventional scheme
	$\texttt{build}(method) \P$
	/_images/math/f4170ed8938b79490d89238
	get_number_components()[source]¶ Get the number
	/_images/math/334b0728f25dd84a28e483181038a307ea6e483e.png
	of components of
	/_images/math/f4170ed8938b79490d8923857962695514a8e4d
	Returns: The number
	get_operators()[source]¶ Get the kinetic and potential operators
	/_images/math/ac3f@ <u>0</u> &@&@&@&###############################</td></tr><tr><td></td><td></td></tr><tr><td></td><td> and</td></tr></tbody></table>

../_images/math/93dc9ee713f6b766cbb69993fe73da97734012f8.png Returns: A tuple containing two ndarrays. ../_images/math/947b2e7cf74785c545d567645fb43e1310 get_potential()¶ Returns the potential \[
\] used for time propagation. Returns: A MatrixPotential subclass instance. get_wavefunction()[source]¶ Get the wavefunction that stores the cur-../_images/math/7e3449b74b914c8f5312bb21cc4c91a78e529e3f.png rent data Returns: The WaveFunction instance. $intsplit(psi1, psi2, a, b, tspan, N, args1=[], args2=[])\P$

Compute a single, full propagation step by operator splitting.

Parameters:

/_images/math/f59ab6519c20d5ec43c63697e7603d2c1a6f
,_images,mach,issassoisezsasseisessos,evosazeiasi
• psi2 – Second evolution
/_images/math/e1a342b133bb7797223252052133
operator • a – Parameters for evolution
/_images/math/f59ab6519c20d5ec43c63697e7603d2
with • b - Parameters for evolution
/_images/math/e1a342b133bb7797223252052133e810
with • tspan – Timespan
/_images/math/5ec053cf70dc1c98cc297322250569eda193
of a single, full splitting step
 N - Number of substeps to perform args1 - Additional optional
/_images/math/f59ab6519c20d5ec43c63697
arguments of • args2 – Additional optional
/_images/math/e1a342b133bb779722325205
arguments of

• psi1 – First evolution operator

Note

The values for args1 and args2 have to be of type list even in case of single items.

Parameters: **method** – A string specifying the method for time integration. Returns: The order of this method.

post_propagate(tspan)[source] ¶ Given an initial wavepacket ../_images/math/0de1b0b%6ififige69file429cbfibh4296da506a392filec2269384bec23557d.png at time ______, calculate the propagated ../_images/math/334b0729f2linkgata/20at46/3b89Da3am3cbDetife2233cbfpr4ga1dd20c914ac wavepacket _____ at time ______. We perform ../_images/math/19535649b870cTff@g2a2mian6f08e624656af2a98pfg582782ce0753cb8bf372a.

Parameters: tspan - ndarray consisting of end time at position 0, other positions are irrelevant.

fore running the ordinary time propagation and after each time simulation data was saved.

This method does not raise an exception but instead just does nothing and returns.

propagate(tspan)[source]¶ This method does nothing.

Table Of Contents

- $\bullet \quad Fourier Magnetic Propagator \\$
 - About the FourierMagneticPropagator class
 - Inheritance diagram
 - Class documentation

Previous topic

FourierPropagator

Next topic

ChinChenPropagator

This Page

• Show Source

Quick search

Navigation

- \bullet index
- modules |
- next
- previous
- WaveBlocksND devel documentation »
- © Copyright 2016, R. Bourquin. Created using Sphinx 1.6.7.