Algorytmiczna Analiza Danych Zajęcia 0 Wprowadzenie

2025-10-02

Adrian Herda

Politechnika Wrocławska

1. Inforamcje organizacyjne

Wszystko jest na stronie!!!

- Zasoby
- Literatura
- Konsultacje

Ćwiczenia w formie deklaracyjnej

• za 100% można dostać przepis

2. Techniki analizy danych w zależności od reprezentacji danych

2.1. Bazy danych

- SQL, BI
- MongoDB
- Wektorowe bazy danych
- Grafowe bazy danych

2.2. Inne

- CSU
- Excel

2.3. Grafy

- PageBreak
- Algorytmy grafowe
- Wyznaczanie wezłów centralnych

2.4. Strumienie danych

- HyperLogLog
- Algorytm próbkowania
- Analiza częstości
- Spark, Hadop (?), Kafka (?)

2.5. Grafika

3. Dane tbaleryczne

Z etykietami	Bez etykiet
 Satisfied learning ~ 1950, np. regresja liniowa, regresja logistyczna Machine learning ~ 1990, np. drzewo decyzyjne, k-najbliższych sąsiadów, sieci neuronowe, SVM Deep learning ~ 2012, 	 klasteryzacja, detekcja anomalii reguły asocjacyjne, np. APRIORI pieluszka + mleko → piwo (1) PCA (principal component analysis), mapy cieplne autoenkodery

4. Różnica machine learning oraz deep learning

4.1. ~ 1950 - pomysł na AI

Input:

- Dane
- Reguly

Output:

• Odpowiedzi

idea:

AI wyłoni się z dużej ilości reguł (system ekspercki) problemy:

- 1. cena wysoka wymaga pracy prgramistów i ekspertów
- 2. trudne do stworzenia eksperci nie chcą kub nie umieją pisać reguł

$4.2. \sim 1990 - ML$

Input:

- Dane \rightarrow ekstrakcja cech (eksperci)
- Odpowiedzi (etykiety)

Output:

• reguly (wytrenowny model)

idea:

Przykłady zamist ekspertów

problemy:

Nadaje się tylko do prostych zadań z niewielką liczbą cech, w przeciwnym przypadku potrzebna jest inżynieria cech (ang. feature engineering) oraz pre-processing Czyli eksperci są niezbędni

$4.3. \sim 2012$ - Deep Learning

Input:

- Dane \rightarrow automatic feature extraction
- Etykiety

Output:

• Model

idea:

Złożone problemy bez wiedzy ekspertów