Quick Recap
R, L, C (V-I characteristics)
Source rollage source?
KCL (conservation of charge)
KVL (conservation of energy) V
Node vorrichle analysis? mesh Loop " ") > (planar circu
Circuits with dependent sources
$g_1 i_1$ R_3 Mesh Analysis $E_1 \stackrel{\uparrow}{=} R_2 \stackrel{\downarrow}{=} E_2$ $M_1 \stackrel{\downarrow}{=} E_2$
KVL for Mesh 1,
$E_1 + 9i \frac{1}{1} - (I_1 + I_2)R_2 - I_1R_1 = 0$
KYL for Mesh 2,
E2 - I2R3 - (I,+I2)R2 =0
$A \mathcal{H} = b$ $\mathcal{H} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$

$$A = \begin{bmatrix} -R_1 - R_2 & -J_1 - R_2 \\ -R_2 & -R_2 - R_3 \end{bmatrix}$$

$$-J_1 - R_2$$

$$-R_2 - R_3$$

$$b = \begin{bmatrix} -E_1 \\ -F_2 \end{bmatrix}$$

(Node Analysis)

KCL at node 1

$$T = \frac{U_1 - U_2}{R_1} + \frac{U_1}{R_2}$$
Ker at node 2,

$$\frac{U_1 - U_2}{R_1} - \frac{U_2}{R_3} + gU_2 = 0$$

Non-felanas Circuit n = 6

no. of choods = b -n+1 = 9-6+1

(grafeh)

$$(I_1 + I_2 - I_3 - I_4)$$

$$2 \rightarrow 3$$

$$(4) \rightarrow (3)$$

$$(I_2 - I_3)$$

$$(4) \rightarrow (5)$$

$$0 \rightarrow 0$$

KUL for loop 1,

$$E_{1} = (I_{1} + I_{2} - I_{4}) R_{1} + (I_{1} + I_{2} - I_{3} - I_{4}) R_{2} + I_{1} R_{4}$$

KVL for loop 2,

$$E_{1} = (I_{1} + I_{2} - I_{4})R_{1} + (I_{1} + I_{2} - I_{3} - I_{4})R_{2} + E_{2}$$

$$+ (I_{2} - I_{3})R_{6} + I_{2}R_{7}$$

 $V_1 = E_1$ CL at node 2

$$\frac{\mathcal{V}_1 - \mathcal{V}_2}{R_1} = \frac{\mathcal{V}_2 - \mathcal{V}_3}{R_2} + \frac{\mathcal{V}_2 - \mathcal{V}_5}{R_5}$$

(Node Analysis)

$$\frac{V_2 - V_5}{R_5} = \frac{V_5}{R_7} + \frac{V_5 - V_4}{R_6}$$

KCL at super node,

$$\frac{U_{5}-U_{4}}{R_{6}}+\frac{U_{1}-U_{4}}{R_{3}}+\frac{U_{2}-U_{3}}{R_{2}}=\frac{U_{3}}{R_{4}}$$

$$V_3 - V_4 = E_2$$