Application of Neural Networks with the Suspension of Classes

CPELEC1 - Project

Sidney Carlo P. Lopez (11222522) sidneylopez18@gmail.com

Jeremy B. Reccion (11210192) jeremybreccion@yahoo.com

Carl Michael O. Sy (11208929) carl.michael.sy@gmail.com

Wellington S. Villasin (11209534) wellvill08@gmail.com

Department of Electronics and Communications Engineering Gokongwei College of Engineering, De La Salle University Manila, Philippines

Abstract— to be able to create a program where it would monitor the typhoon's rainfall, pressure, and wind speed. This would result into creating a machine in order to predict the program whether classes would be suspended in some areas of manila. This would benefit everyone since it has the capability to check how strong the typhoon will be thus predict if it would result into having a numerous disasters to the areas of Manila.

Keywords—Typhoon, Artificial Neural Network, image processing, suspension, disasters

I. INTRODUCTION

Artificial neural networks (ANNs) are a popular tool in machine learning especially in predicting and classifying several data. ANN adapts from the given data to construct appropriate functions for a specific task. The purpose of neural networks allows advantages like adaptive learning, self-organization, real time operation, and fault tolerance via Redundant Information Coding.

For this project, MATLAB's Neural Network toolbox will be used. This Graphical User Interface (GUI) is capable of conveniently construct an ANN and generate equivalent MATLAB scripts. The dataset consists of records from past typhoons that entered the Philippines. By using this dataset the program would implement a network that can predict whether class suspensions in Manila would occur.

II. OBJECTIVES

- To gather data that is unique from the Philippine setting or specific to DLSU.
- To divide the data into Train, Validation, and Test.
- To plot the cost function curve.
- To plot the Mean Squared Error (MSE) curve.
- To illustrate the confusion matrix.
- To achieve at least 80% accuracy.

III. METHODOLOGY

The dataset consists of the most recent typhoons that entered the Philippines. However, some of these have no available data, therefore excluding them from the dataset. Furthermore, some entered the country but did not land on Philippine soil. It was concluded that they are still included in the dataset so as to maintain the relevance of samples with each other. Nonetheless, the dataset still tries to get the most recent data as possible.

Each typhoon is considered as a sample and has information (i.e. wind speed, pressure, and rainfall) which are converted into parameters. Moreover, additional flags are included to provide more complexity. The chosen references are prioritized over the others because they are more significant. This means that these records occurred nearest to Manila or has the most extreme values. This achieves the first objective.

MATLAB is capable of delivering the results necessary to meet the succeeding objectives. To implement its ANN, the GUI is first used before generating the equivalent scripts. The dataset is imported separately into Inputs for the input parameters and Targets for the outputs. Afterwards, this can be divided into Train, Validation, and Test through the toolbox's defined functions. The toolbox also has functions that can plot the cost function and MSE curves and illustrate the confusion matrix. Lastly, the accuracy is read from the blue colored square in the confusion matrix.

IV. DATA AND RESULTS

The dataset is presented below along with a brief discussion. Refer to Table I. for the dataset.

Parameters:

X1 - Wind speed (kph)

Highest maximum sustained wind recorded.

X2 - Pressure (hPa)

Lowest pressure recorded.

X3 – *Rainfall (mm)*

Nearest and maximum rainfall recorded.

X4 – Quarter

- 1 for January-March,
- 2 for April-June,
- 3 for July-September,
- 4 for October-December.

If storm is between two months, consider month at which storm is closest to Manila.

X5 – Manila Hit

Did diameter hit Manila?

Y – Manila Suspend

Did classes in Manila suspend during the storm?

	. 1		
1	. 0	h	Δ
		n	

	X1	X2	X3	X4	X5	Y
1	120	970	50	1	0	0
2	150	959	50	2	0	0
3	230	922	50	2	0	0
4	185.2	940	35.5	1	0	0
5	61	990	40	1	1	0
6	130	935	400	3	1	1
7	95	980	100	3	1	1
8	150	955	109	3	0	0
9	195	900	100	3	0	0
10	170	937	100	3	0	0
11	215	900	600	4	0	0
12	210	935	720	4	0	0
13	85	996	200	3	1	1
14	120	985	200	3	1	1
15	55	1002	170	3	1	0
16	195	975	225	3	1	1
17	100	980	50	3	1	0
18	130	965	300	3	0	0
19	165	935	300	3	1	1
20	185	930	305	3	0	0
21	75	994	50	2	1	0
22	65	998	150	2	0	0
23	55	1004	52	1	1	0
24	65	1000	300	1	0	0
25	65	1002	500	1	0	0
26	45	1002	45	4	0	0
27	235	895	200	4	1	1
28	55	1003	100	4	0	0
29	150	963	100	4	0	0
30	160	920	25	4	0	0
31	165	930	15	4	1	0
32	140	965	520	4	1	0

33	165	935	250	4	0	0
34	140	960	325	3	0	0
35	120	965	330	3	0	0
36	205	910	400	3	0	0
37	100	980	450	3	0	0
38	110	965	300	3	0	0
39	195	925	350	3	1	1
40	110	965	300	3	0	0
41	95	985	300	3	0	0
42	75	1000	15	3	1	1
43	185	925	400	3	0	0
44	95	985	220	2	0	0
45	75	990	500	2	0	0
46	75	994	250	2	1	1
47	85	990	220	2	0	0
48	65	1002	200	1	0	0
49	55	1002	15	1	0	0
50	95	990	350	1	1	1
51	180	944	100	3	0	0
52	130	925	120	3	0	0
53	75	950	175	4	0	1
54	175	925	800	4	1	1
55	150	935	20	4	1	1
		· ·				

The division of data that is implemented by MATLAB does not allow saving the divided samples. As a solution, the last 13 samples of the dataset were separated and put into another file. This is to avoid duplications of samples during testing. In the MATLAB code, the remaining samples are now only divided into training and validation. This is presented by Fig.1.

```
% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 85/100;
net.divideParam.valRatio = 15/100;
```

Fig.1. division in training code

The network is now ready to be trained. This can be repeated until an acceptable performance is determined. This can be presented by the cost function curve and MSE curve. Fig.2, Fig.3 and Fig.4 presents the mentioned curves as well as the toolbox.

×

Neural Network Training (nntraintool)

Fig.2. neural network training toolbox

Fig.3. cost function curve

This ends the training. Now that acceptable results are determined, the network can now be saved. At the test program, the same network is loaded and the test samples are imported as well. The results of the testing can be viewed by the confusion matrix and error histogram. The confusion matrix displays how many samples were correctly classified. The error histogram plots the error values versus the instances each error occur. These are presented by Fig.5 and Fig.6.

Fig.5. confusion matrix

Fig.6. error histogram

The confusion matrix also determines the accuracy, which is the value inside the blue colored square. The accuracy, 85.7% is within requirements.

V. ANALYSIS AND CONCLUSION

This paper achieves most if not all objectives required. The unique dataset is divided into train, validation, and test. Through MATLAB, several figures can be obtained. The cost function and MSE curves were first illustrated. The confusion matrix displays how many samples were successfully classified and the accuracy of the network. In the process of testing the code, it was observed that not all runs are consistent. This may be caused by insufficient samples or less optimized neural network. Nonetheless, most runs meet the requirements.

VI. RECOMMENDATIONS

It is recommended to gather more accurate data with high relevance to each other. This means that samples are not outdated and if possible taken from the same years so as to set the pattern more clearly. Furthermore, it is better to choose parameter values that occur nearest to the target city which is Manila. A limitation of this project is that some samples occurred far from the city thus making the parameters inaccurate than expected. Another recommendation is to optimize the network by adding multiple layers or adding more hidden neurons.

VII. REFERENCES

- [1] A. Ng, "Multivariate Linear Regression," 2012. [Online]. Available: http://openclassroom.stanford.edu/MainFolder/Doc umentPage.php?course=MachineLearning&doc=ex ercises%2Fex3%2Fex3.html. [Accessed 9 September 2015].
- [2] M. Nedrich, "An Introduction to Gradient Descent

- and Linear Regression," 2014. [Online]. Available: http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/. [Accessed 9 September 2015].
- [3] C.-H. Chen, "Cost Functions," 2007. [Online]. Available: http://ocw.mit.edu/courses/economics/14-01principles-of-microeconomics-fall-2007/lecturenotes/14_01_lec13.pdf. [Accessed 9 September 2015].
- [4] E. Aurelio, 'Typhoon 'Kabayan' leaves PH, but rains to persist', Newsinfo.inquirer.net, 2015.
 [Online]. Available:
 http://newsinfo.inquirer.net/727607/typhoon-kabayan-leaves-ph-but-rains-to-persist. [Accessed: 01- Dec- 2015].
- [5] CNN, 'Typhoon Hanna to bring moderate to heavy rain', 2015. [Online]. Available: http://cnnphilippines.com/news/2015/08/05/typhoo n-hanna-to-bring-moderate-to-heavy-rain.html. [Accessed: 01- Dec- 2015].
- [6] I. GMA New Media, 'AMANG BAGYO', Gmanetwork.com, 2015. [Online]. Available: http://www.gmanetwork.com/news/story/409136/n ews/regions/walang-pasok-list-of-areas-with-classsuspensions-due-to-amang. [Accessed: 01- Dec-2015].
- [7] GMA News Online, 'PAGASA: Typhoon Goring exits PAR, weakens further', 2015. [Online]. Available: http://www.gmanetwork.com/news/story/528122/sc itech/weather/pagasa-typhoon-goring-exits-parweakens-further. [Accessed: 01- Dec- 2015].
- [8] J. Jesus, 'Typhoon 'Lando' slightly weakens as it makes landfall', Newsinfo.inquirer.net, 2015. [Online]. Available: http://newsinfo.inquirer.net/732195/typhoon-landoslightly-weakens-as-it-makes-landfall. [Accessed: 01- Dec- 2015].
- [9] F. Mangosing, 'Typhoon 'Marilyn' to miss PH—Pagasa', Newsinfo.inquirer.net, 2015. [Online]. Available: http://newsinfo.inquirer.net/741603/typhoon-marilyn-to-miss-ph-pagasa. [Accessed: 01- Dec-2015].
- [10] NASA, 'HIGOS-NORTHWEST-PACIFIC-OCEAN', 2015. [Online]. Available: https://www.nasa.gov/content/goddard/higos-northwest-pacific-ocean. [Accessed: 01- Dec-2015].
- [11] NASA, 'Bavi (was 03W NW Pacific Ocean)', 2015. [Online]. Available: https://www.nasa.gov/content/goddard/bavi-nw-pacific-ocean/. [Accessed: 01- Dec- 2015].
- [12] Official Gazette of the Republic of the Philippines, 'Weather bulletin no. 8: Typhoon Ineng, issued at

- 11:00 a.m., August 20, 2015 | GOVPH', 2015. [Online]. Available: http://www.gov.ph/2015/08/20/weather-bulletin-no-8-typhoon-ineng-issued-at-1100-a-m-august-20-2015/. [Accessed: 01- Dec- 2015].
- [13] PAGASA | Philippine Atmospheric Geophysical and Astronomical Services Administration, 'Tropical Cyclone Update', 2015. [Online]. Available: https://web.pagasa.dost.gov.ph/index.php/tropicalcyclones/weather-bulletin. [Accessed: 01- Dec-2015].
- [14] Pagasa.dost.gov.ph, '#6', 2015. [Online]. Available: http://pagasa.dost.gov.ph/index.php/139-tropical-cyclones/severe-weather-bulletin/falcon-2015-bulletin/1152-6. [Accessed: 01- Dec- 2015].
- [15] Philstar.com, 'Typhoon 'Jenny' exits PAR | Weather Philstar.com', 2015. [Online]. Available: http://www.philstar.com/nation/weather/jenny/news /2015/09/29/1505222/typhoon-jenny-exits-par. [Accessed: 01- Dec- 2015].
- [16] Weather, 'WeatherPH', 2015. [Online]. Available: http://weather.com.ph/announcements/typhoon-mekkhala-amang-update-number-012. [Accessed: 01- Dec- 2015].
- [17] Weather, 'Bagyong Chedeng', 2015. [Online]. Available: http://weather.com.ph/announcements/typhoon-maysak-chedeng-update-number-012. [Accessed: 01- Dec- 2015].
- [18] Weather, 'Typhoon Dodong', 2015. [Online]. Available: http://weather.com.ph/announcements/super-typhoon-noul-dodong-update-number-022. [Accessed: 01- Dec- 2015].

VIII. REFERENCES

1 – TYPHOON MEKKHALA (AMANG – JAN 2015)

HTTP://WEATHER.COM.PH/ANNOUNCEMENTS/TYPHOON-MEKKHALA-AMANG-UPDATE-NUMBER-012

HTTP://www.gmanetwork.com/news/story/409136/new s/regions/walang-pasok-list-of-areas-with-class-suspensions-due-to-amang

2 – TYPHOON MAYSAK (CHEDENG – APR 2015)

HTTP://WEATHER.COM.PH/ANNOUNCEMENTS/TYPHOON-MAYSAK-CHEDENG-UPDATE-NUMBER-012

3 – SUPER TYPHOON NOUL (DODONG – MAY 2015)

HTTP://WEATHER.COM.PH/ANNOUNCEMENTS/SUPER-TYPHOON-NOUL-DODONG-UPDATE-NUMBER-022

4 – TYPHOON HIGOS (FEB 2015)

HTTPS://WWW.NASA.GOV/CONTENT/GODDARD/HIGOSNORTHWEST-PACIFIC-OCEAN

5 – TROPICAL STORM BETTY (MAR 2015)

HTTPS://WWW.NASA.GOV/CONTENT/GODDARD/BAVI-NW-PACIFIC-OCEAN/

6 – TYPHOON FALCON (JULY 2015)

HTTP://PAGASA.DOST.GOV.PH/INDEX.PHP/139-TROPICAL-CYCLONES/SEVERE-WEATHER-BULLETIN/FALCON-2015-BULLETIN/1152-6

7 – TROPICAL STORM EGAY (JULY 2015)

HTTPS://WEB.PAGASA.DOST.GOV.PH/INDEX.PHP/TROPICAL-CYCLONES/WEATHER-BULLETIN

8 – TYPHOON GORING (JULY 2015)

HTTP://www.gmanetwork.com/news/story/528122/scit ech/weather/pagasa-typhoon-goring-exits-par-weakens-further

9 – TYPHOON HANNA (JULY 2015)

 $\label{lem:http://cnnphilippines.com/news/2015/08/05/typhoon-hanna-to-bring-moderate-to-heavy-rain.html$

10 - TYPHOON INENG (AUGUST 2015)

 $\label{eq:http://www.gov.ph/2015/08/20/weather-bulletin-no-8-typhoon-ineng-issued-at-1100-a-m-august-20-2015/$

11 – TYPHOON JENNY (SEPTEMBER 2015)

HTTP://WWW.PHILSTAR.COM/NATION/WEATHER/JENNY/NEWS/2015/09/29/1505222/TYPHOON-JENNY-EXITS-PAR

12 – TYPHOON KABAYAN (OCTOBER 2015)

HTTP://NEWSINFO.INQUIRER.NET/727607/TYPHOON-KABAYAN-LEAVES-PH-BUT-RAINS-TO-PERSIST

13 – TYPHOON LANDO (OCTOBER 2015)

HTTP://NEWSINFO.INQUIRER.NET/732195/TYPHOON-LANDO-SLIGHTLY-WEAKENS-AS-IT-MAKES-LANDFALL

14 – TYPHOON MARILYN (NOVEMBER 2015)

HTTP://NEWSINFO.INQUIRER.NET/741603/TYPHOON-MARILYN-TO-MISS-PH-PAGASA

[A. Ng, "Multivariate Linear Regression," 2012. [Online].

Available:
] http://openclassroom.stanford.edu/MainFolder/Document
Page.php?course=MachineLearning&doc=exercises%2F
ex3%2Fex3.html. [Accessed 9 September 2015].

[M. Nedrich, "An Introduction to Gradient Descent and
Linear Regression," 2014. [Online]. Available:
] http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/. [Accessed 9 September 2015].
[C.-H. Chen, "Cost Functions," 2007. [Online]. Available:
] http://ocw.mit.edu/courses/economics/14-01-principlesof-microeconomics-fall-2007/lecturenotes/14_01_lec13.pdf. [Accessed 9 September 2015].

Appendix

The advanced script generated after using MATLAB's Neural Network Toolbox are separated into Training and Testing. Modifications were made in order to save and load the network when run.

ANNTraining.m

```
% Solve a Pattern Recognition Problem with a Neural Network
% Script generated by NPRTOOL
% Created Fri Nov 27 20:29:43 SGT 2015
close all; clear; clc
inputs = importInput('input.xlsx');
inputs = inputs.data';
targets = importOutput('output.xlsx');
targets = targets.data';
% Create a Pattern Recognition Network
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);
% Choose Input and Output Pre/Post-Processing Functions
% For a list of all processing functions type: help nnprocess
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};
% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 85/100;
net.divideParam.valRatio = 15/100;
% For help on training function 'trainscg' type: help trainscg
% For a list of all training functions type: help nntrain
net.trainFcn = 'trainscg'; % Scaled conjugate gradient
% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse'; % Mean squared error
% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
  'plotregression', 'plotfit'};
% Train the Network
[net,tr] = train(net,inputs,targets);
save net;
```

ANNTesting.m

```
close all;clear;clc
%Load the Network file
load net
%Load Testing Data
inputs = importInput('inputTest.xlsx');
inputs = inputs.data';
targets = importOutput('outputTest.xlsx');
targets = targets.data';
% Test the Network
outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net, targets, outputs)
% View the Network
%view(net)
% Plots
% Uncomment these lines to enable various plots.
figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotconfusion(targets,outputs)
figure, plotroc(targets,outputs)
figure, ploterrhist(errors)
importInput function generated for importing input data
function [newData1] = importInput(fileToRead1)
%IMPORTFILE (FILETOREAD1)
% Imports data from the specified file
% FILETOREAD1: file to read
  Auto-generated by MATLAB on 27-Nov-2015 20:11:39
% Import the file
sheetName='Sheet1';
[numbers, strings] = xlsread(fileToRead1, sheetName);
if ~isempty(numbers)
    newData1.data = numbers;
end
if ~isempty(strings)
    newData1.textdata = strings;
end
importOutput function generated for importing output data
function [newData1] = importOutput(fileToRead1)
```

%IMPORTFILE (FILETOREAD1)

```
% Imports data from the specified file
% FILETOREAD1: file to read
% Auto-generated by MATLAB on 27-Nov-2015 20:12:28
% Import the file
sheetName='Sheet1';
[numbers, strings, raw] = xlsread(fileToRead1, sheetName);
if ~isempty(numbers)
    newData1.data = numbers;
end
if ~isempty(strings)
   newData1.textdata = strings;
end
if ~isempty(strings) && ~isempty(numbers)
    [strRows, strCols] = size(strings);
    [numRows, numCols] = size(numbers);
    likelyRow = size(raw,1) - numRows;
    % Break the data up into a new structure with one field per column.
    if strCols == numCols && likelyRow > 0 && strRows >= likelyRow
       newData1.colheaders = strings(likelyRow, :);
    end
end
```