Logic, First Course, Winter 2020. Week 10, Practice Problems. Back to course website

Week 10, Practice Problems

These practice problems are intended to be a practice exam. Hence, they fall into groups corresponding to Weeks 6-9.

- Week 6 problems
- Week 7 problems
- Week 8 problems
- Week 9 problems

Before you begin, you might consider printing a copy either to work out by hand as you go along, or to work with on a tablet. A nice pdf of this page is INSERT.

Week 6 problems

Each of these problems asks you to do a proof in the Week 6 deductive system. This is the system with just introduction and elimination rules for conjunction, arrow, and disjunction. Remember that the strategy in this system is: (1) try to do elimination rules at the top of your proof, and if that doesn't work, then (2) try to do an introduction rule at the bottom of your proof, and (3) repeat steps (1)-(2).

Example 1.

exercise $((a \land b) \land c) \vdash (a \land c)$ $1. (a \land b) \land c : assumption$

Example 2.

exercise

a, (a \rightarrow (b \land c)), (b \rightarrow d) \vdash d

- 1. a :assumption
- 2. $a \rightarrow (b \land c)$:assumption 3. $b \rightarrow d$:assumption

Example 3.

 $((a \land c) \rightarrow d) \vdash (((a \land b) \land c) \rightarrow d)$

1. $(a \land c) \rightarrow d$:assumption

Example 4.

```
exercise
```

```
(a \Lambda (b V c)), (b \rightarrow (d \Lambda e)), (c \rightarrow (d \Lambda e))
\vdash d
       1. a \land (b \lor c) :assumption
       2. b \rightarrow (d \land e) :assumption
3. c \rightarrow (d \land e) :assumption
```

Example 5.

```
exercise
(a \rightarrow (b \lor c)), ((b \land d) \rightarrow e), ((c \land d) \rightarrow e) \\
\vdash (a \rightarrow (d \rightarrow e))
1. \ a \rightarrow (b \lor c) : assumption \\
2. \ (b \land d) \rightarrow e : assumption \\
3. \ (c \land d) \rightarrow e : assumption
```

Week 7 problems

Each of these problems asks you to do a proof in the Week 7 deductive system. This system just adds onto the Week 6 deductive system with the introduction and elimination rule for negation, as well as EFSQ and the repeat rule. Remember that falsum \bot can be written in the proof-checker (and on exam) as \bot ? You can also just copy and paste \bot from here.

Example 6.

```
exercise
(a \rightarrow b), (b \rightarrow c), \neg c \vdash \neg a
1. \ a \rightarrow b : assumption
2. \ b \rightarrow c : assumption
3. \ \neg c : assumption
```

Example 7.

```
(a \rightarrow (b \land e)), (b \rightarrow (c \land f)), \neg c \vdash \neg (a \land g)
```

- 1. $a \rightarrow (b \land e)$:assumption 2. $b \rightarrow (c \land f)$:assumption
- 3.~c :assumption

Example 8.

exercise

a, $(a \rightarrow (b \land c))$, $\neg d \vdash \neg (b \rightarrow d)$

- 1. a :assumption
- 2. $a \rightarrow (b \land c)$:assumption
- 3. ~d :assumption

Example 9.

$$(\neg a \rightarrow b)$$
, $(\neg a \rightarrow \neg b) \vdash (\neg a \rightarrow c)$

- 1. $\sim a \rightarrow b$:assumption
- 2. ~a→~b :assumption

Example 10.

exe	$r \sim 1$	CD
$C \wedge C$		って

 $(\neg a \lor \neg b) \vdash ((a \land b) \rightarrow c)$

1. ~a∨~b :assumption

Week 8 problems

These problems pertain to the Week 8 deductive system. Remember that the Week 8 deductive system has rules built in for modus tollens (MT), double-negation (DN) commutativity (LCC, LCD), associativity (LAC, LAD), distribution (LDC, LCDD), distribution (LDC, LDD), and disjunctive syllogism (PDS, NDS). Also keep in mind that the strategy for the Week 8 deductive system is to look for patterns associated to these rules, as opposed to following the main connectives like we did in Weeks 6-7.

Example 11.

Example 12.

exercise

$$((a \rightarrow b) \lor (b \rightarrow c)) \vdash ((b \rightarrow c) \lor (a \rightarrow b))$$

1. $(a\rightarrow b)\lor(b\rightarrow c)$:assumption

Example 13.

$$\neg(a \land (b \land (c \land d))), ((\neg a \lor (\neg b \lor (\neg c \lor \neg d))) \rightarrow e) \vdash e$$

- 1. \sim (a \wedge (b \wedge (c \wedge d))) :assumption 2. (\sim a \vee (\sim b \vee (\sim c \vee \sim d))) \rightarrow e :assumption

Example 14.

exercise

(a Λ (b V c)), ((a Λ b) \rightarrow d), (c \rightarrow d) \vdash d

- 1. $a \land (b \lor c)$:assumption 2. $(a \land b) \rightarrow d$:assumption
- 3. $c \rightarrow d$:assumption

Example 15.

((a ∧ (b v c)) ∧ ¬c) ⊢ b

1. (($a \land (b \lor c)$) $\land \neg c$) :assumption

Example 16.

By the Soundness and Completeness Theorems, we can assess the validity of this argument using truth-tables as well. Fill out the following truth-table, just like we did in Week 3:

(We will need this truth-table in Example 20, and so perhaps consider taking a screen shot of it before you move on, for easy access later).

Week 9 problems

These problems pertain to the materials from Week 9 and the first lecture of Week 10.

Example 17

Consider the scale (all, most, few, some). Suppose Laura and Sofia are talking about their recent graduation party, and Laura asks: "Was your family able to come?" and that Sofia responds by saying that "a few of them were." Which of the following is a conversational implicature of Sofia's having said that?

It is not	the case that all of Sofia's family was able to come.
Olt is not	the case that most of Sofia's family was able to come.
Olt is not	the case that few of Sofia's family was able to come.
○It is not	the case that some of Sofia's family was able to come.

Example 18

Suppose that Lily meets Sara for the first time and asks Sara how long she has been working at her present job. Suppose that Sara responds by saying that she has been working there 1 year and 237 days. It seems that Sara has violated one of Grice's conversational maxims. Which one?

Which one?			
Quantity			
Quality			
Relation			
OManner			
Check			

Example 19

Suppose that the probability of $p \land q$ is 2/10 and the probability of $p \land r$ is 3/10 and the probability of $p \land (q \land r)$ is 1/10. What is the probability of $p \land (q \lor r)$? *Hint*: use distribution.

What is it?			
<u></u>			
○3/10			
04/10			
O5/10			
Check			

Example 20

Suppose that each of the rows in the truth-table in Example 16 is weighted equally, that is each has equal chance of happening, namely a 1/8 chance of happening. What is the probability of $a \land (b \lor c)$ conditional on $\neg c$?

What is it?			
00/8			
<u></u> 1/8			
<u></u>			
○3/8			
Check			

This is a practice problem set for this course. It is run on the Carnap software, which is an: