EST-297 Métodos de Clustering basados en K-Means

Juan Zamora O.

Mayo, 2024.

Estructura de la Presentación

- 1 Aprendizaje No-Supervisado
- 2 Clustering basado en representantes
- 3 Algoritmo Kernel K-Means
- 4 Clustering Spectral

Aprendizaje No-Supervisado

- Existen muchas bases de datos no etiquetadas
 - ullet Muchos registros o dificultad para etiquetado manual
 - Subjetividad en etiquetado humano es otro problema
 - Costo de tener expertxs etiquetando es alto
- No-Supervisado significa que no hay "Instructor" en forma de etiquetas de clase para cada observación o registro

El problema de Clustering

El objetivo de la tarea de Clustering consiste en agrupar objetos similares y separarlos de aquellos "disimiles"

Enfoque empleado exitosamente en diversos dominios tales como:

- Genómica
- Imágenes médicas
- Sistemas recomendadores
- Segmentación de mercado

Ejemplo 1: Identificación de ROI

Ejemplo 2: Segmentación de clientes

Ejemplo 3: Grupos en red de enfermedades

Métodos de Clustering

- Sin etiquetas, es necesario hacer algunos supuestos para definir qué propiedades son deseables en un grupo y cuando dos objetos serán considerados como similares
- Existen dos tipos de métodos de Clustering: Particionales y Jerárquicos.
- En este Curso haremos un mayor incapié en los particionales

Clustering basado en representantes

- Dado un conjunto de datos con n puntos en un espacio d-dimensional, $\mathcal{D}=\{\mathbf{x}_j\}_{j=1}^n$
- Dado también $k \in \mathbb{Z}$, el número de grupos a encontrar en \mathcal{D}
- El **objetivo** de la tarea es particionar $\mathcal D$ en k grupos o *clusters*, representados como $\mathcal C=\{C_1,C_2,\dots,C_k\}$
- ullet Luego, para cada cluster C_i existe un punto representativo μ_i
 - Comúnmente se le denomina centroide y corresponde a

$$\mu_i = \frac{1}{|C_i|} \sum_{\mathbf{x}_j \in C_i} \mathbf{x}_j$$

Método de Fuerza bruta

Una posible solución a este problema consiste en

- **1** Generar todos las posibles particiones de n puntos en k grupos, $\binom{n}{k}$
- 2 Para cada una, evaluar alguna puntuación que favorezca ciertas propiedades
 - Podría usarse

$$SSE(\mathcal{C}) = \sum_{i=1}^k \sum_{\mathbf{x}_j \in C_i} \|\mathbf{x}_j - \boldsymbol{\mu}_i\|^2$$

3 Reportar aquella partición con la mejor puntuación, es decir

$$\mathcal{C}^* = \mathop{\mathrm{arg\,min}}_{\mathcal{C}} SSE(\mathcal{C})$$

Problema $\mathcal{O}(k^n/k!)$ posibles soluciones ...

Algoritmo K-Means

- K-Means utiliza una estrategia *Greedy* e iterativa para encontrar \mathcal{C}^*
 - lacktriangle Inicializa los centroides al azar, generando k puntos en \mathbb{R}^d
 - 2 Comienza a iterar y en cada iteración realiza dos pasos: Asignación a un grupo y actualización de centroides
 - 3 Cada punto es asignado al grupo asociado al centroide más cercano.
 - 4 Se actualizan los centroides, calculando nuevamente las medias sobre los puntos asignados en el paso anterior.
 - 6 Al alcanzarse una cierta cantidad de iteraciones, no haber cambios en las asignaciones o bien, no encontrarse cambios significativos, el método termina.


```
K-MEANS (D, k, \epsilon):
 1 t = 0
 2 Randomly initialize k centroids: \mu_1^t, \mu_2^t, \dots, \mu_k^t \in \mathbb{R}^d
 3 repeat
          t \leftarrow t + 1
 5 C_i \leftarrow \emptyset for all i = 1, \dots, k
          // Cluster Assignment Step
 6 | foreach x_i ∈ D do
 _{7} \mid j^* \leftarrow \operatorname{argmin}_i \left\{ \left\| \mathbf{x}_j - \boldsymbol{\mu}_i^t \right\|^2 \right\} / / \operatorname{Assign} \mathbf{x}_j \text{ to closest centroid}
         C_{i^*} \leftarrow C_{i^*} \cup \{\mathbf{x}_i\}
           // Centroid Update Step
 foreach i = 1 to k do
\mathbf{10} \qquad \qquad \boldsymbol{\mu}_i^t \leftarrow \frac{1}{|C_i|} \sum_{\mathbf{x}_i \in C_i} \mathbf{x}_i
11 until \sum_{i=1}^{k} \| \boldsymbol{\mu}_{i}^{t} - \boldsymbol{\mu}_{i}^{t-1} \|^{2} \leq \epsilon
```

Algoritmo Kernel K-Means

- K-means realiza una separación en el espacio original de características de los datos
- El uso del *Kernel Trick* puede ayudar a construir grupos usando transformaciones no-lineales de este espacio

- Se mapea cada $\mathbf{x_i} \in \mathcal{C}$ mediante $\phi(\mathbf{x_i})$
- Una función de kernel **K** es aplicada sobre cada par de puntos, $\mathbf{K}(\mathbf{x_i},\mathbf{x_j}) = \phi(\mathbf{x_i})^T \phi(\mathbf{x_j})$
- Se aplica K-Means en este nuevo espacio
- La nueva función objetivo en el espacio de características es:

$$\min_{\mathcal{C}} SSE(\mathcal{C}) = \sum_{i=1}^k \sum_{\mathbf{x}_j \in C_i} \lVert \phi(\mathbf{x}_j) - \mu_i^\phi \rVert^2$$

$$\min_{\mathcal{C}} SSE(\mathcal{C}) = \sum_{j=1}^{n} \mathbf{K}(\mathbf{x}_{j}, \mathbf{x}_{j}) - \sum_{i=1}^{k} \frac{1}{|C_{i}|} \sum_{\mathbf{x}_{p} \in C_{i}} \sum_{\mathbf{x}_{q} \in C_{i}} \mathbf{K}(\mathbf{x}_{p}, \mathbf{x}_{q})$$

```
KERNEL-KMEANS(K, k, \epsilon):
 1 t ← 0
 2 C^t \leftarrow \{C_1, \dots, C_k\} / / Randomly partition points into k clusters
 3 repeat
          t \leftarrow t + 1
           foreach C_i \in \mathcal{C}^{t-1} do // Squared norm of cluster means
            sqnorm_i \leftarrow \frac{1}{n^2} \sum_{\mathbf{x}_a \in C_i} \sum_{\mathbf{x}_b \in C_i} K(\mathbf{x}_a, \mathbf{x}_b)
           foreach \mathbf{x}_i \in \mathbf{D} do // Average kernel value for \mathbf{x}_i and C_i
 7
                  foreach C_i \in C^{t-1} do
 8
                \operatorname{avg}_{ji} \leftarrow \frac{1}{n_i} \sum_{\mathbf{x}_a \in C_i} K(\mathbf{x}_a, \mathbf{x}_j)
 Q
            // Find closest cluster for each point
           foreach x_i \in D do
10
                 foreach C_i \in C^{t-1} do
11
                  d(\mathbf{x}_i, C_i) \leftarrow \operatorname{sqnorm}_i - 2 \cdot \operatorname{avg}_{ii}
12
               i^* \leftarrow \operatorname{arg\,min}_i \{ d(\mathbf{x}_i, C_i) \}
13
           C_{i^*}^t \leftarrow C_{i^*}^t \cup \{\mathbf{x}_i\} // Cluster reassignment
         C^t \leftarrow \{C_1, \dots, C_t\}
16 until 1 - \frac{1}{2} \sum_{i=1}^{k} |C_i^t \cap C_i^{t-1}| \le \epsilon
```

Vista general del método

- 1 Pre-procesamiento: Construir una representación de grafo (matriz)
- 2 Descomposición:
 - Calcular los valores y vectores propios de la matriz
 - Mapear cada punto en $\mathcal D$ a una representación vectorial basado en uno o más vectores propios
- 3 Agrupar
 - Asignar todos los puntos a 2 o más grupos, usando la nueva representación vectorial

Particionamiento espectral de un grafo

- Dado un grafo G=(V,E), con $V=\{1,2,\ldots,n\}$ y $E:V\times V\to\{0,1\}$
- A: Matriz de adyacencia de un grafo no dirigido que codifica los vecindarios de cada nodo en G
 - $A_{ij} = 1$ cuando existe conexión entre instancias i y j. 0 en otro caso.
 - Simétrica
 - Tiene n valores propios
 - Vectores propios reales y ortogonales
- *D*: Matriz de grados
 - $D = [d_{ii}]$, donde d_{ii} es el grado del nodo i
 - Es diagonal

Laplaciano

- L = D A: Matriz Laplaciano
- Todos sus valores propios son ≥ 0
- $xLx = \sum_{i,j} L_{ij} x_i x_j \ge 0$ para todo x
- Multiplicidad del primer valor propio es igual al número de componentes conectados
- Si vértices i y j están conectados en el grafo, en algún vector propio asociado al primer valor propio las conmponentes i y j serán 1

Clustering

- El segundo valor propio es clave
- El vector propio de este segundo valor será usado para encontrar los grupos
- **Obj.** Minimizar la cantidad de arcos de una partición a otra.
- Este vector es real, no tiene etiquetas $\{-1, +1\}$
 - Puede usarse la función signo

¿Cómo generar más de 2 clusters?

- Tomar los k vectores propios asociados a los valores propios más pequeños
- Esta matriz de $n \times k$ es entregada a otro método (e.g. K-Means)

Adyacencia

Γ0	1	1	1	0	0
1	0	1	0	0	0
1	1	0	0	1	0
		0			
		1			
0	0	0	1	1	0_

Grado

3	0	0	0	0	0		
0	2	0	0	0	0		
0	0	3	0	0	0		
0	0	0	3	0	0		
0	0	0	0	3	0		
0	0	0	0	0	2		

Las otras matrices ...

- L = D A
- Laplaciano

$$\begin{bmatrix} 3 & -1 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & 0 & -1 & 0 \\ -1 & 0 & 0 & 3 & -1 & -1 \\ 0 & 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix}$$

Valores propios

Γ0	0	0	0	0	07
0 0 0 0 0	1	0	0	0	0
0	0	3	$0 \\ 3$	0	0
0	0	0	3	0	0
0	0	0	0	4	0
0	0	0	0	0	5

Vectores propios

[-0.408]	0.289	0	-0.577	-0.408	0.5^{-}
-0.408	0.577	0.5	0.289	0.408	0
-0.408	0.289	-0.5	0.289	-0.408	-0.5
-0.408	-0.289	0	-0.577	0.408	-0.5
-0.408	-0.289	-0.5	0.289	0.408	0.5
[-0.408]	-0.577	0.5	0.289	-0.408	0 _

Datos proyectados sobre los vectores propios

$$\begin{pmatrix} -0.408 & 0.289 & 0 \\ -0.408 & 0.577 & 0.5 \\ -0.408 & 0.289 & -0.5 \\ -0.408 & -0.289 & 0 \\ -0.408 & -0.289 & 0 \\ -0.408 & -0.289 & -0.5 \\ -0.408 & -0.289 & -0.5 \\ -0.408 & -0.577 & 0.5 \end{pmatrix} \begin{pmatrix} -0.577 & -0.408 & 0.5 \\ 0.289 & 0.408 & -0.5 \\ -0.289 & 0.408 & 0.5 \\ 0.289 & -0.408 & 0 \end{pmatrix}$$