

Força a distància: llei de gravitació universal

 \vec{r}_{12}

$$G = 6,67384 \cdot 10^{-11} \frac{\text{Nm}^2}{\text{Kg}^2}$$

 $M_T = 5.98 \cdot 10^{24} Kg$ $R_T \approx 6400 \text{ Km}$

$$\left| \vec{F} \right| = mg \Rightarrow g = G \frac{M_T}{R_T^2} \approx 9.8 \text{ m/s}^2$$

Tots els cossos a la mateixa distància del centre de la Terra cauen amb la mateixa acceleració

$$|\vec{F}_{12}| = |\vec{F}_{21}| \Rightarrow M_T a_T = mg \Rightarrow a_T = \frac{m}{M_T} g$$

Forces de contacte

- Normals a la superfície de contacte

- *Tangencials* a la superficie de contacte: fregament

$$|\vec{F}_R| = \mu |\vec{N}|$$

- Són proporcionals a la força normal
- μ depèn del material

Fregament estàtic i cinètic

$ \mu_c $ 7 0,6 5 0,4
5 0,4
0,3
9 0,4
4 0,04
4 0,04
0,80
3 0,25
0,05

Si $F < F_R$ el cos no es comença a moure

Mesura del fregament estàtic

Depèn de la massa, no de l'àrea

$$F_R = \mu mg$$

[en moviment!]

Mesura del fregament estàtic

$$N = mg\cos\alpha$$

$$mg\sin\alpha = F_R \neq \mu_e mg\cos\alpha$$

$$mg\sin\alpha' = F_R = \mu_e mg\cos\alpha'$$

$$\mu_e = \tan \alpha'$$

Equilibri de forces

Eje Y:
$$|\vec{P}| = |\vec{N}| = mg$$

Eje X:
$$|\vec{F}| - |\vec{F}_R| = |\vec{F}| - \mu_c mg = m$$

[estan en moviment]

Eje Y:
$$|\vec{P}| = |\vec{N}'| + |\vec{F}| \sin\theta = mg$$

Eje X:
$$|\vec{F}|\cos\theta - |\vec{F}'_R| = |\vec{F}|\cos\theta - \mu_c(mg - |\vec{F}|\sin\theta) = ma^{-1}$$

$$\Rightarrow |\vec{N}|' < |\vec{N}|$$

Forces internes

$$F = (m_1 + m_2)a$$

$$\mu = 0$$

$$F - F_{21} = m_1 a$$
$$F_{12} = m_2 a$$

$$\mu = 0$$

Forces internes (II)

$$m_1$$

$$F \longrightarrow F_{21}$$

$$F_{R_1}$$

$$F_{R_2}$$

$$F - \mu m_1 g - F_{21} = m_1 a'$$

 $F_{12} - \mu m_2 g = m_2 a'$

$$\mu \neq 0 \ (\mu_1 = \mu_2)$$

Forces internes (III)

Politges i cordes

$$T_1 - T_2 = m_c a$$

$$m_c \approx 0 \quad \Rightarrow \quad T_1 \approx T_2 \equiv T$$

$$T - m_1 g = m_1 a$$

$$m_2 g - T = m_2 a$$

$$\Box$$

$$a = \frac{(m_2 - m_1)}{m_2 + m_1} g$$

 $\mu = 0$

Si la massa de la corda és negligible

$$T_1 \cong T_2$$

$$N_1 = m_1 g \cos \alpha$$
$$m_1 g \sin \alpha - T = m_1 a$$

$$a = \frac{m_1 \sin \alpha - m_2 \sin \beta}{m_1 + m_2} g$$

$$N_2 = m_2 g \cos \beta$$

$$T - m_2 g \sin \beta = m_2 a$$

- Si es major que zero es mou
- Si es zero no es mou
- Si es menor que zero es mou en sentit contrari

$$N_1 = m_1 g \cos \alpha$$

$$m_1 g \sin \alpha - F_{R_1} - T = m_1 a$$

$$F_{R_1} = \mu_e N_1 = \mu_e m_1 g \cos \alpha$$

$$m_1 g \sin \alpha - \mu_e m_1 g \cos \alpha - T = m_1 a$$

$$N_2 = m_2 g \cos \beta$$

$$T - m_2 g \sin\beta - F_{R_2} = m_2 a$$

$$F_{R_2} = \mu_e N_2 = \mu_e m_2 g \cos \alpha$$

$$T - m_2 g \sin \beta - \mu_e m_2 g \cos \beta = m_2 a$$

$$a = \frac{m_1 \sin \alpha - m_2 \sin \beta - \mu_e (m_1 \cos \alpha + m_2 \cos \alpha)}{m_1 + m_2} g$$

- Si es major que zero es mou
- Si es zero no es mou
- Si es menor que zero cal repetir els càlculs en l'altre sentit de gir