Announcements

- PSet-2 announced today
- No laptops during the class.

Last time

- Dimensionality reduction
 - PCA
 - PCoA
 - CCA
- Bag of Words (language)
- Bag of Visual Words

Bag of words

Word	Appearance count	Index	
the	2	0	
brown	1	1	
fox	1	2	
jumps	1	3	
over	1	4	
lazy	1	5	
dog	1	6	
oov	0	7	

the	br	fox	jum	ove	laz	dog	oov	whit	cat
2	1	1	1	1	1	1	0	0	0

Bag of visual words

Learning between multiple modalities

Teddy bears shopping for groceries in ancient Egypt

Generative Model

DALL-E 2

Input

Output

Learning between multiple modalities

Teddy bears shopping for groceries in ancient Egypt

Input

DALL-E 2

Output

CLIP (Contrastive Language Image Pre-training)

Today: Clustering

- Agglomerative Clustering
- Divisive Clustering
- K-means
- Vector Quantization with K-Means
- Mixtures of Gaussians
- Expectation Maximization

Recall: Types of learning

Supervised

Unsupervised

Reinforcement

Supervised Learning

Supervised

Training set: $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$

Decision Trees, SVMs, etc.

Recall: Types of learning

Supervised

Unsupervised

Reinforcement

Unsupervised Learning

Training set: $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$

Training set: $\{x_1, x_2, ..., x_N\}$

Clustering

Gene analysis

Types of voters

Social network analysis

Trending news

Example Clusters

Protein folding: AlphaFold2

Today: Clustering

- Agglomerative Clustering
- Divisive Clustering
- K-means
- Vector Quantization with K-Means
- Mixtures of Gaussians
- Expectation Maximization

Today: Clustering

- Agglomerative Clustering
- Divisive Clustering
- K-means
- Vector Quantization with K-Means
- Mixtures of Gaussians
- Expectation Maximization

What are some good ways to compute distances between green points and the red points (select all that apply)

When to stop combining?

How to decide when to stop clustering? (select all that apply)

Compute pairwise distances between nodes

What is the average space complexity of agglomerative clustering for N datapoints? Space complexity quantifies the amount of memory taken by an algorithm to run

What is the space complexity of agglomerative clustering for N datapoints? Space complexity quantifies the amount of memory taken by an algorithm to run

Which cluster should the orange dot belong to?

Today: Clustering

- Agglomerative Clustering
- Divisive Clustering
- K-means
- Vector Quantization with K-Means
- Mixtures of Gaussians
- Expectation Maximization

Clustering Method Comparison

Agglomerative Clustering

- Initializes each data point as its own cluster
- Merges cluster on each step

Divisive Clustering

- Initializes all data points as a single cluster
- Splits a cluster on each step

What are the scenarios where divisive clustering is more beneficial than agglomerative clustering? Select all that apply

What are the scenarios where divisive clustering is more beneficial than agglomerative clustering? Select all that apply

Divisive clustering is more suitable for large-scale datasets. ⊘ 83% Divisive clustering is better at identifying larger, well-separated clusters ⊗ 90% Divisive clustering is more intuitive than agglomerative clustering 43% Both algorithms will converge to the same solution 24%

Today: Clustering

- Agglomerative Clustering
- Divisive Clustering
- K-means
- Vector Quantization with K-Means
- Mixtures of Gaussians
- Expectation Maximization

Assign rest of the points to closest cluster centroids

Recompute the cluster centroids

Reassign the points

Recompute the cluster centroids

Reassign the points

Recompute the cluster centroids

Input:

- K (number of clusters $\{c\}$)
- Training set $\{x_1, x_2, ..., x_N\}$

K-means algorithm

```
Randomly initialize K cluster centroids c_1, c_2, ..., c_K
Repeat {
        for i = 1 to N
           \delta_{i,j}:= one-hot vector (of length K) where the cluster
                  centroid j closest to x_i has value 1
        for k = 1 to K
           c_k:= average (mean) of points assigned to cluster k
```

K-means Cost Function

= one-hot vector vector (of length K) where the cluster centroid j closest to x_i has value 1 C_i = cluster centroid i

Optimization cost: "distortion"

$$\Phi(\delta,c) = \sum_{i,j} \delta_{i,j} \left[\left(x_i - c_j \right)^T \left(x_i - c_j \right) \right]$$

Intra-cluster compactness

For a given value of K, will k-means result in the same cluster every time?

For a given value of K, will k-means result in the same cluster every time?

Factors that lead to different clusters for the same dataset

- Random initialization of cluster centers
- Distance metric
- Cluster assignment criteria.

Random initialization

Should have K < N

Randomly pick K training examples.

Set c_1, c_2, \dots, c_K equal to these K examples.

Local Optima

Avoiding Local Optima with Random Initialization

```
For i = 1 to 100 {
         Randomly initialize K-means.
         Run K-means. Get \delta_1, \delta_2, ..., \delta_N and c_1, c_2, ..., c_K.
         Compute cost function (distortion)
                                    \Phi(\delta,c)
```

Pick clustering that gave lowest cost $\Phi(\delta, c)$

How to choose K?

Called the elbow method

How to choose K?

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

E.g.

- Each {R, G, B} pixel value is an input vector x_i (255 x 255 x 255 possible values)
- Problem: Memory scales exponentially with image resolution.

One solution: Compress an image using K-means

Today: Clustering

- Agglomerative Clustering
- Divisive Clustering
- K-means
- Vector Quantization with K-Means
- Mixtures of Gaussians
- Expectation Maximization

Application of Clustering: Vector Quantization

- Each {R, G, B} pixel value is an input vector x_i (255 x 255 x 255 possible values)
- Problem: Memory scales exponentially with image resolution.
- One solution: Compress an image using K-means
- Replace each vector by its cluster assignment $\delta_{i,j}$ (K possible values)

Vector quantization: color values

Vector quantization: color values

K-Means for Image Compression

Bishop Figure 9.3 Two examples of the application of the *K*-means clustering algorithm to image segmentation showing the initial images together with their *K*-means segmentations obtained using various values of *K*. This also illustrates of the use of vector quantization for data compression, in which smaller values of *K* give higher compression at the expense of poorer image quality.

K-Means for Image Compression

Bishop Figure 9.3 Two examples of the application of the *K*-means clustering algorithm to image segmentation showing the initial images together with their *K*-means segmentations obtained using various values of *K*. This also illustrates of the use of vector quantization for data compression, in which smaller values of *K* give higher compression at the expense of poorer image quality.

K-Means for Image Compression

Figure 9.3 Two examples of the application of the K-means clustering algorithm to image segmentation showing the initial images together with their K-means segmentations obtained using various values of K. This also illustrates of the use of vector quantization for data compression, in which smaller values of K give higher compression at the expense of poorer image quality.

Vector quantization: general case

Where else can vector quantization come handy?

Unsupervised learning

Training set: $\{x_1, x_2, x_3, ...\}$

Vector quantization

Supervised learning

v/s

Training set: $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$

Where else can vector quantization come handy?

Unsupervised learning

Supervised learning

v/s

Training set: $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$

Training set: $\{x_1, x_2, x_3, ...\}$

Label learning

Vector quantization

Today: Clustering

- Agglomerative Clustering
- Divisive Clustering
- K-means
- Vector Quantization with K-Means
- Mixtures of Gaussians
- Expectation Maximization

K-means v/s Gaussian Mixture models

What does Gaussian Mixture Models offer over k-means?

What does Gaussian Mixture Models offer over k-means?

GMMs are more complex given the lack of hard assignments to a given cluster
72%

Robustness to noise and outliers ⊙

87%

Flexibility in terms of data labeling due to soft assignments ⊙

91%

Mixtures of Gaussians: Intuition

"Soft" cluster membership

To generate each point in x,

- Choose its cluster component δ
- Sample x from the Gaussian distribution for that component
- What do we need to define a Gaussian distribution?

Mixtures of Gaussians

- Two parameters: mean (μ) , variance (Σ)
- Assume K components, k-th component is a Gaussian with parameters μ_k , Σ_k

Mixtures of Gaussians

- Introduce discrete r.v. $\delta \in R^K$ that denotes the component that generates the point
- one element of δ is equal to 1 and others are 0, i.e. "one-hot": $\delta_k \in \{0,1\}$

Variables we have so far

Variable	Role
K	Number of clusters / mixture models
μ_k	Mean of Gaussian distribution (k)
$\Sigma_{\mathbf{k}}$	Variance of Gaussian distribution (k)
δ_k	

Variables we have so far

Variable	Role
К	Number of clusters / mixture models
μ_k	Mean of Gaussian distribution (k)
$\Sigma_{\mathbf{k}}$	Variance of Gaussian distribution (k)
δ_k	Cluster membership indicator

Mixtures of Gaussian models

Mixtures of Gaussians: Data generation example

• Suppose K=2 components, k-th component is a Gaussian with parameters μ_k, Σ_k

Mixtures of Gaussians: Data generation example

- Suppose K=2 components, k-th component is a Gaussian with parameters μ_k, Σ_k
- To sample *i*-th data point:
 - Pick component δ^i with $p(\delta_k = 1) = \pi_k$ (parameter)
 - for example, $\pi_k = 0.5$, and we picked $\delta^1 = [0, 1]^T$
 - Pick data point x^i with probability $N(x; \mu_k, \Sigma_k)$

Mixtures of Gaussians

✓ sum of

- $\delta_k \in \{0,1\}$ and $\sum_k \delta_k = 1$
- K components, k-th component is a Gaussian with parameters μ_k, Σ_k

• define the joint distribution $p(\mathbf{x}, \delta)$ in terms of a marginal distribution $p(\delta)$ and a conditional distribution $p(\mathbf{x}|\delta)$

$$p(x) = \sum_{\delta} p(\delta)p(x|\delta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

where

$$p(\delta_k = 1) = \pi_k \qquad 0 \le \pi_k \le 1$$

$$p(x|\delta) = \sum_{k=1}^K \mathcal{N}(x|\mu_k, \Sigma_k)^{\delta_k}$$

Substitute and simplify

Variables we have so far

Variable	Role	
К	Number of clusters / mixture models	
μ_k	Mean of Gaussian distribution (k)	
$\Sigma_{\mathbf{k}}$	Variance of Gaussian distribution (k)	
δ_k	Cluster membership indicator	
$p(\delta)$	Marginal distribution of mixture of Gaussian membership	
p(x)	Distribution of the Mixture of Gaussians	

This distribution is known as a Mixture of Gaussians

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mu_k \Sigma_k)$$

What are the unknowns here?

 We can estimate these parameters via Expectation Maximization (EM)

Today: Clustering

- Agglomerative Clustering
- Divisive Clustering
- K-means
- Vector Quantization with K-Means
- Mixtures of Gaussians
- Expectation Maximization

This distribution is known as a Mixture of Gaussians

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mu_k \Sigma_k)$$

 We can estimate these parameters via Expectation Maximization (EM)

Solution: Use coordinate descent

Coordinate Descent

gradient descent:

 Minimize w.r.t all parameters at each step

coordinate descent:

- fix some coordinates, minimize w.r.t. the rest
- alternate

Credit: http://vis.supstat.com/2013/03/gradient-descent-algorithm-with-r/

Is K-means a type of coordinate descent algorithm?

Is K-means a type of coordinate descent algorithm?

