

Subject Index

A

- AAA⁺ ATPase family
 - DnaA protein and, 360–61
- abaA* gene
 - virulence genes in dimorphic fungal pathogens and, 284
- abc* genes
 - multilocus sequence typing and, 570
- ABC transporter
 - Mn²⁺ in transport and virulence, 187–90, 193–95, 198–99, 201
- Acacia decurrens*
 - Cryptococcus neoformans* species complex and, 78
- Acanthamoeba castellanii*
 - Cryptococcus neoformans* species complex and, 79
 - Francisella tularensis* and, 169
- Acidaminococcus fermentans*
 - radical enzymes in anaerobes and, 37
- Acinetobacter baumannii*
 - multilocus sequence typing and, 577
- acpA* gene
 - Francisella tularensis* and, 176
- Acquired immunodeficiency syndrome (AIDS)
 - Cryptococcus neoformans* species complex and, 70, 72, 83, 88
- Acrylate
 - radical enzymes in anaerobes and, 29
- Actinomyces naeslundii*
 - surface proteins of gram-positive bacteria and, 405–6
- Acyl-CoA dehydrogenase
 - radical enzymes in anaerobes and, 30
- Adaptation
 - competence induction and, 458
 - RNA silencing and, 503

- Roseobacter* lineage environmental biology and, 256, 260, 263–64, 273
- Adaptive mutation controversy
 - advantages of mutagenesis, 493
 - aging colonies, 490–91
 - amplification model, 483–90
 - arabinose promoter, 490
 - auxotrophs, 492
 - bacteria, 492–93
 - broader implications, 495
 - Cairns system, 479–96
 - choosing a model, 485–88
 - cost/benefit analysis, 492–95
 - directing mutagenesis, 495
 - discussion, 488–89
 - duplications, 489–90
 - evolution, 493
 - fitness, 491
 - functional direction, 482
 - futility, 493–94
 - β-galactosidase, 490
 - generally hypermutable state, 482–83
 - growth, 483–85
 - hypermutability, 483
 - introduction, 479
 - kanamycin resistance, 491
 - lac*, 488, 490
 - lack of necessity for mutagenesis, 493
 - long-term growth experiments, 494–95
 - minimizing mutation rates, 492–93
 - mixed clones, 488–89
 - Mu prophage, 490
 - natural isolates, 494
 - natural populations, 492
 - new issues, 489–90

nongrowing populations, 491–92
perspectives, 479
ppK, 490
recombination, 488
reopening of debate, 479–82
repressor function, 491–92
reversion, 481–82, 492
rpoS, 490
selection, 483–85, 491–92
stationary-phase cultures, 491
strain structure, 480–81
stress-induced mutagenesis, 482–83, 490–92
summary points, 496
temporary increases in mutation rates, 494
two pathways, 488–89
yeast, 492

Adenosylcobalamin
radical enzymes in anaerobes and, 29–30, 32

Adhesins
virulence genes in dimorphic fungal pathogens and, 287, 290–91

adk genes
multilocus sequence typing and, 570

Aerobic anoxygenic phototropy
Roseobacter lineage environmental biology and, 255–56, 260–64

Aeropyrum pernix
arsenic and selenium in microbial metabolism, 108, 117–18

agg genes
curli biogenesis and function, 132

Aging colonies
adaptive mutation controversy and, 490–91

AGO genes
RNA silencing and, 508, 510–11, 517–18, 521

Agrobacterium tumefaciens
arsenic and selenium in microbial metabolism, 115, 117
RNA silencing and, 509
Tat pathway and, 377, 385
type III effector proteins and, 432
virulence genes in dimorphic fungal pathogens and, 286, 294

Alarmone
competence induction and, 463

Alcaligenes faecalis
arsenic and selenium in microbial metabolism, 113, 116–17

Alcalimicrobium ehrlicebi
arsenic and selenium in microbial metabolism, 109–10

Alexandrium spp.

Roseobacter lineage environmental biology and, 268–69

Algae
Roseobacter lineage environmental biology and, 268–69

Alkaliphilus metallireducens
arsenic and selenium in microbial metabolism, 116–18

Allolysis
competence induction and, 151

Alteromonas putrefaciens
uranium reduction and, 151

Alzheimer's disease
curli biogenesis and function, 131, 138

ami genes
Tat pathway and, 377, 385

4-Amino-5-hydroxymethyl-2-methylpyrimidine (HMP)
microbial metabolism and, 541–43, 546

Aminoglycosides
competence induction and, 462

Aminoimidazole carboxamide ribotide (AICAR)
microbial metabolism and, 539–40, 542–43

Aminoimidazole ribotide (AIR)
microbial metabolism and, 541–44, 546

A-motility
history of research, 16

Amphidinium operculatum
Roseobacter lineage environmental biology and, 268

Ampicillin resistance
Tat pathway and, 387

Amplification
adaptive mutation controversy and, 483–90, 496
microbial metabolism and, 539
RNA silencing and, 506–7

Amplified restriction fragment length polymorphism (AFLP)

Cryptococcus neoformans species complex and, 82

Amyloid fibers
curli biogenesis and function, 131, 138–42

Anacyclis nidulans
radical enzymes in anaerobes and, 39

Anaerobes
arsenic and selenium in microbial metabolism, 107–9
radical enzymes and, 27–43
Tat pathway and, 373

Anaromyxobacter dehalogenans
uranium reduction and, 151

Anapleurotic metabolism

- Roseobacter* lineage environmental biology and, 262

Anaromyxobacter spp.

- uranium reduction and, 159

Anchoring

- surface proteins of gram-positive bacteria and, 397–414

Anopheles gambiae

- RNA silencing and, 508

Anoxia

- arsenic and selenium in microbial metabolism, 111
- Roseobacter* lineage environmental biology and, 255–64
- uranium reduction and, 159

Antibiotic resistance

- adaptive mutation controversy and, 491
- curli biogenesis and function, 134
- DnaA protein and, 351, 354, 362–63
- Tat pathway and, 387

Antiviral silencing

- RNA silencing and, 503–23

aox genes

- arsenic and selenium in microbial metabolism, 117–18
- virulence genes in dimorphic fungal pathogens and, 290

aph genes

- microbial metabolism and, 545–46

Apoptosis

- coronavirus replication and virus-host interaction, 211, 213–14
- Francisella tularensis* and, 175

aqpS gene

- arsenic and selenium in microbial metabolism, 115

Aquifex aeolicus

- arsenic and selenium in microbial metabolism, 120
- DnaA protein and, 352, 360

Aquifiales spp.

- arsenic and selenium in microbial metabolism, 109, 119

Arabidopsis thaliana

- RNA silencing and, 507–21, 523
- type III effector proteins and, 429–35, 437

Arabinose promoter

- adaptive mutation controversy and, 490

Archaea

- environmental stress and lesion-bypass DNA polymerases, 231, 242–45
- radical enzymes in anaerobes and, 27

Archerase

- radical enzymes in anaerobes and, 37, 42

Arginine catabolism

- virulence genes in dimorphic fungal pathogens and, 292

aro genes

- arsenic and selenium in microbial metabolism, 117
- multilocus sequence typing and, 570

arr genes

- arsenic and selenium in microbial metabolism, 115, 117–18

Arsenic

- microbial metabolism and, 107–22

ars genes

- arsenic and selenium in microbial metabolism, 114–15

Arteriviruses

- coronavirus replication and virus-host interaction, 211

Arthropods

- microbial genome architecture and, 341–42

A-signal

- history of research, 12–13

aso genes

- arsenic and selenium in microbial metabolism, 117

Aspergillus fumigatus

- Cryptococcus neoformans* species complex and, 79, 88

Asymmetric surface localization

- surface proteins of gram-positive bacteria and, 409–12

ATPases

- DnaA protein and, 360–61

Attachment

- curli biogenesis and function, 141
- surface proteins of gram-positive bacteria and, 397–414

Autofertilization

- Cryptococcus neoformans* species complex and, 91

Autolysins

- surface proteins of gram-positive bacteria and, 409–11

Auxotrophs

- adaptive mutation controversy and, 492

Avr genes

- type III effector proteins and, 429, 432, 435–37, 440

Azoarcus spp.

arsenic and selenium in microbial metabolism, 116, 121
uranium reduction and, 159

B

"Baby machine" method
DnaA protein and, 353

Bacillus anthracis
 Mn^{2+} in transport and virulence, 189, 198
multilocus sequence typing and, 563
surface proteins of gram-positive bacteria and, 403

Bacillus spp.
arsenic and selenium in microbial metabolism, 109, 111, 115–19
multilocus sequence typing and, 576
surface proteins of gram-positive bacteria and, 403, 408, 412

Bacillus subtilis
competence induction and, 451–54, 456–60, 462–67

Cryptococcus neoformans species complex and, 78
DnaA protein and, 359
microbial metabolism and, 535, 538
 Mn^{2+} in transport and virulence, 189–91, 193–94
radical enzymes in anaerobes and, 34
surface proteins of gram-positive bacteria and, 399, 401–3, 409–10, 412
Tat pathway and, 374–75, 380

Bacterial artificial chromosome (BAC)
Roseobacter lineage environmental biology and, 257, 271

Bacteriochlorophyll *a*
Roseobacter lineage environmental biology and, 257

Bacteriophage λ
history of research, 2–8

Bacteriophage μ
adaptive mutation controversy and, 490

BAD1 gene
virulence genes in dimorphic fungal pathogens and, 281, 287–88, 295

Basal defense
type III effector proteins and, 435–37

Based upon related sequence types (BURST)
analysis
multilocus sequence typing and, 573

Basidiospores
Cryptococcus neoformans species complex and, 80–83, 90–91

Batrachochytrium dendrobatidis
multilocus sequence typing and, 577
bgl genes
 Mn^{2+} in transport and virulence, 188, 195, 197

Bean pod mottle virus
RNA in icosahedral virus assembly and, 54–55

Benzoyl-CoA reductase
radical enzymes in anaerobes and, 27, 38–39

Beta binding motif
DnaA protein and, 360

Biofilms
curli biogenesis and function, 131, 136–38, 142

Francisella tularensis and, 171

Roseobacter lineage environmental biology and, 270

Biogeochemical cycles
arsenic and selenium in microbial metabolism, 107, 109–11

Roseobacter lineage environmental biology and, 255–56, 260–62, 264–67, 272–73

Bioinformatics
microbial metabolism and, 536, 538, 549

BIOLINIX initiative
multilocus sequence typing and, 568, 573

Bioremediation
uranium reduction and, 149–60

Biotechnology
Tat pathway and, 373, 386–88

Biowarfare
Francisella tularensis and, 167–70

Blastomyces dermatitidis
virulence genes in dimorphic fungal pathogens and, 282–83, 287–88, 290, 293, 295

BLAST program
arsenic and selenium in microbial metabolism, 120

Blochmannia spp.
microbial genome architecture and, 341

Blood-brain barrier
Cryptococcus neoformans species complex and, 74–75, 88, 93

Bordetella spp.
multilocus sequence typing and, 577

Bottlenecking
multilocus sequence typing and, 565

Bradyrhizobium japonicum
surface proteins of gram-positive bacteria and, 403

type III effector proteins and, 438

Brome mosaic virus
RNA in icosahedral virus assembly and, 63

btrA gene
competence induction and, 455

Buchnera aphidicola
microbial genome architecture and, 341–42

Bugula neritina
Roseobacter lineage environmental biology and, 267

Bulk DNA hypothesis
microbial genome architecture and, 332–33

Burkholderia spp.
arsenic and selenium in microbial metabolism, 120
 Mn^{2+} in transport and virulence, 191
multilocus sequence typing and, 576

Roseobacter lineage environmental biology and, 270

Butyryl-CoA
radical enzymes in anaerobes and, 31

BYV1 gene
virulence genes in dimorphic fungal pathogens and, 293

C

Caenorhabditis elegans
Cryptococcus neoformans species complex and, 79
microbial genome architecture and, 331
RNA silencing and, 507–8

Cairns system
adaptive mutation controversy and, 479–82, 486–88, 490, 492–93, 495–96

Campylobacter spp.
arsenic and selenium in microbial metabolism, 120
multilocus sequence typing and, 574, 576–77

Cancer
adaptive mutation controversy and, 477, 496

Candida spp.
Cryptococcus neoformans species complex and, 79, 88
multilocus sequence typing and, 575–77

Cap primers
RNA replication structure and function, 312

Carbon
 Mn^{2+} in transport and virulence, 200
Roseobacter lineage environmental biology and, 255–56, 260–62, 264, 272–73

Carbon monoxide (CO)
Roseobacter lineage environmental biology and, 255, 264–65

Carboxydothermus hydrogenoformans

arsenic and selenium in microbial metabolism, 120

Catabolism
virulence genes in dimorphic fungal pathogens and, 292

CAT genes
virulence genes in dimorphic fungal pathogens and, 290

Cation transport
 Mn^{2+} in transport and virulence, 191–93

cbp genes
competence induction and, 456
virulence genes in dimorphic fungal pathogens and, 281, 285, 287, 295

cdgR gene
 Mn^{2+} in transport and virulence, 200

Cell-based assays
RNA silencing and, 510

Cell cycle
coronavirus replication and virus-host interaction, 211, 213–14

DnaA protein and, 351–63

Cell density
competence induction and, 460

Cell envelope
Tat pathway and, 373

Cell metabolism
arsenic and selenium in microbial metabolism, 112–21

Cellulomonas spp.
uranium reduction and, 151

Cellulose
curli biogenesis and function, 137

Cellulosome
surface proteins of gram-positive bacteria and, 408–9

Cell wall
surface proteins of gram-positive bacteria and, 397–414

Cenibacterium arsenoxidans
arsenic and selenium in microbial metabolism, 116–17

Central nervous system (CNS)
Cryptococcus neoformans species complex and, 71–72, 74–75, 86, 88

Cephalexin
DnaA protein and, 354, 362

Chicken foot structures
environmental stress and lesion-bypass DNA polymerases, 233

Chlamydia spp.
type III effector proteins and, 426

dbl genes
 arsenic and selenium in microbial metabolism, 121

Chlorobium spp.
 arsenic and selenium in microbial metabolism, 108, 116–18

Chloroflexus aurantiacus
 arsenic and selenium in microbial metabolism, 108, 116–18

Choline-binding proteins
 surface proteins of gram-positive bacteria and, 407

Cbondromyces spp.
 history of research, 10

Chrysogenes arsenatis
 arsenic and selenium in microbial metabolism, 115–18

cI/cII/cIII genes
 history of research, 4–5, 8

cibAB gene
 competence induction and, 456

Ciprofloxacin
Francisella tularensis and, 175

Cloning
Cryptococcus neoformans species complex and, 84–86
 multilocus sequence typing and, 566, 574

Clostridium spp.
 arsenic and selenium in microbial metabolism, 113, 116, 118–20
 radical enzymes in anaerobes and, 29, 31–32, 36–37, 40
 surface proteins of gram-positive bacteria and, 405–8
 uranium reduction and, 151

dpL gene
 competence induction and, 455

Coat proteins
 RNA in icosahedral virus assembly and, 51–64

Cob(II)alamin
 radical enzymes in anaerobes and, 29–30, 32–33

Coccidioides spp.
 virulence genes in dimorphic fungal pathogens and, 282–83, 287–89, 293, 295

Coenzyme B₁₂
 radical enzymes in anaerobes and, 27, 29–32, 42

Coevolution
Cryptococcus neoformans species complex and, 88

Cofactors
 Mn^{2+} in transport and virulence, 199–200

Tat pathway and, 373–88

Cohesive ends
 λ DNA
 history of research, 6–7

Coinfiltration assay
 RNA silencing and, 509, 522

Colinearity
 history of research, 1

Colwellia psychrerythraea
 surface proteins of gram-positive bacteria and, 403

com genes
 competence induction and, 453–56, 458–59, 461–62

Compartmentalization
 RNA replication structure and function, 315

Competence induction
 stress response in gram-positive bacteria and
 adaptive responses, 458
 aminoglycosides, 462
Bacillus subtilis, 452–54, 457–60, 463–65
 cell density, 460
 chromosome repair, 462–63
com genes, 454–56
 ComK, 458–59
 conclusions, 466
 CSP-responsive genes, 455
 diversity, 463–65
 DNA uptake, 462–63
 fitness-enhancing strategies, 463–65
 fratricide, 456, 464–65
 future research, 467
 genomic profiling, 454–58
 introduction, 452
 K-state, 457–60
 mitomycin C, 462
 on-off switch, 465
 quinolones, 462
 regulatory cascades, 453–54
 signals, 460–62
 sobrinicide, 464–65
 SOS response, 463–65
Streptococcus pneumoniae, 452–55, 460–65
 summary points, 466–67
 transformation, 455–56
 two-pronged regulation, 458–59
 X-state, 454–56

Conditional growth
 microbial metabolism and, 540–41

Contamination
 environmental
 uranium reduction and, 149–60

Contingency loci
 adaptive mutation controversy and, 495

Coronaviruses (CoVs)
 replication and virus-host interaction
 apoptosis, 213–14
 cell compartment, 215
 cell cycle, 213–14
 cell proteins, 215–19, 221
 genome replication, 216–18
 host cells, 212–13
 host systems, 214–15
 introduction, 212
 signal pathway, 212–15
 summary points, 222
 transcription, 212–13, 218–21
 translation, 212–13, 215–16
 viral proteins, 215–19, 221

Corynebacterium diphtheriae
 Mn^{2+} in transport and virulence, 189, 194
 surface proteins of gram-positive bacteria and, 405–6

Countercselection
 adaptive mutation controversy and, 494–95

Coussapoa spp.
Cryptococcus neoformans species complex and, 77

Covalent attachment
 surface proteins of gram-positive bacteria and, 403–6

Crassostrea virginica
Roseobacter lineage environmental biology and, 269

p-Cresol
 radical enzymes in anaerobes and, 36

Croton spp.
Cryptococcus neoformans species complex and, 77

Cryptococcus neoformans species complex
 acute infection, 72
 animals, 75–77
 biological variation, 87–90
 clonal reproduction, 84–86
Cryptococcus gattii, 77–78
Cryptococcus neoformans var. *grubii*, 78
 dispersal, 80–82
 distribution, 83–84
 eucalyptus trees, 77–78
 evolution, 92
 fertility, 86–87
 genetic variation, 87–90
 genome structure, 88
 heterologous hosts, 78–79
 humans, 71–75
 hybrids, 89–92

infection, 71–82
 introduction, 70–71
 koala, 77
 latent infection, 72
 life cycle, 79–80, 88–89
 mating types, 82–87
 meningoencephalitis, 74–75
 mixed infection, 72–75
 Mn^{2+} , 192
 molecular types, 82–87
 neurotropism, 74–75
 organs involved, 71–72
 pathogenic variation, 87–90
 phenotypic variation, 87–90
 pigeons, 76–77
 polymorphism, 88–90
 route of infection, 71–72
 serotypes, 82–87
 sexual reproduction, 84–86
 single infection, 72–75
 speciation, 90–92
 summary points, 93
 transport, 192
 trees, 77–78
 virulence, 86–90

cag genes
 curli biogenesis and function, 132–42
 history of research, 13, 15

C-signal
 history of research, 13–14

CTSI gene
 virulence genes in dimorphic fungal pathogens and, 292

c-type cytochromes
 uranium reduction and, 149

Cupressus lusitanica
Cryptococcus neoformans species complex and, 78

Curated databases
 multilocus sequence typing and, 564, 571–73, 578–79

Curli fibers
 biogenesis and function
 amyloids, 138–40
 attachment, 141
 biofilms, 137–38
 biogenesis, 132–35
 conclusions, 141–42
 extracellular matrix, 137
 gene regulation, 135–37
 introduction, 132
 invasion, 141
 pathogenesis, 140–41

- summary points, 142
- 3',5'-Cyclic diguanylate*
 - Mn²⁺ in transport and virulence, 200
- Cytochromes
 - uranium reduction and, 149
- Cytokines
 - Francisella tularensis* and, 167, 176–78
- Cytoplasmic membrane
 - surface proteins of gram-positive bacteria and, 399–403
 - Tat pathway and, 373–88
- Cytosol
 - Francisella tularensis* and, 174–75

- D**
- dam* genes
 - DnaA protein and, 354–56
- datA* gene
 - DnaA protein and, 351, 361–63
- DCL* genes
 - RNA silencing and, 507–8, 518–21, 523
- Dechloromonas agitata*
 - arsenic and selenium in microbial metabolism, 116, 121, 159
- Dehydratases
 - radical enzymes in anaerobes and, 27, 30–32, 34, 38
- Dehydrogenases
 - radical enzymes in anaerobes and, 29–30
- Deinococcus radiodurans*
 - uranium reduction and, 151
- Demethylation
 - arsenic and selenium in microbial metabolism, 111, 119, 122
- 5-Deoxyadenosyl radical
 - radical enzymes in anaerobes and, 31–33
- Desulfovobacterium bafniense*
 - arsenic and selenium in microbial metabolism, 116–17
- Desulfomaculatum reducens*
 - uranium reduction and, 151–52, 154
- Desulfomicrobium norvegicum*
 - uranium reduction and, 151
- Desulfosporosinus* spp.
 - arsenic and selenium in microbial metabolism, 110, 116–18
 - uranium reduction and, 151–52
- Desulfovibrio* spp.
 - arsenic and selenium in microbial metabolism, 113, 116, 119–20
 - radical enzymes in anaerobes and, 40

- uranium reduction and, 151–54, 156–57
- Desulfiuromonas* spp.
 - arsenic and selenium in microbial metabolism, 120
 - uranium reduction and, 159
- Detoxification
 - arsenic and selenium in microbial metabolism, 107–8
 - Tat pathway and, 373
- dev* operon
 - history of research, 14–15
- Dictyostelium discoideum*
 - Cryptococcus neoformans* species complex and, 79
 - history of research, 10
- Dideoxycycle termination method
 - multilocus sequence typing and, 569
- Dimethylsulfide (DMS)
 - Roseobacter* lineage environmental biology and, 265
- Dimethylsulfoniopropionate (DMSP)
 - Roseobacter* lineage environmental biology and, 265–66
- Dimethyl sulfoxide (DMSO)
 - arsenic and selenium in microbial metabolism, 116–18, 122
 - Tat pathway and, 376–77
- Dimorphic fungal pathogens
 - virulence genes and
 - adhesins, 290–91
 - arginine catabolism, 292
 - Blastomyces*, 287–88
 - candidate virulence factors, 289
 - cell surface composition, 292
 - Coccidioides*, 288
 - conclusions, 295
 - future research, 294–95
 - Histoplasma*, 285–87
 - melanin, 290
 - molecular determinants, 284–85
 - overview, 282–83
 - Paracoccidioides*, 289
 - parasitic life cycle regulation, 292
 - parasitic phase-based screens, 292–94
 - pulmonary defenses, 283–84
 - secreted products, 291–92
 - summary points, 295
- din* genes
 - adaptive mutation controversy and, 481–82, 484–88, 490, 495–96
 - competence induction and, 457
 - environmental stress and lesion-bypass DNA polymerases, 234–37, 243

Dinoflagellate toxins
Roseobacter lineage environmental biology and, 255, 267–68

Dinoroseobacter shibae
Roseobacter lineage environmental biology and, 262, 271

Dioxygen
radical enzymes in anaerobes and, 27, 32

Directional mutation pressure
microbial genome architecture and, 329–31

Disease resistance
type III effector proteins and, 425

Dispersal
Cryptococcus neoformans species complex and, 80–82

Dissimilatory metal-reducing bacteria (DMRB)
uranium reduction and, 151–52

Diversity
arsenic and selenium in microbial metabolism, 108–9, 122
competence induction and, 451, 463–67
Roseobacter lineage environmental biology and, 257–60, 271

DnaA protein
controlling initiation of bacterial DNA replication
AAA⁺ ATPase family, 360–61
asynchronous initiations, 362–63
beta binding motif, 360
cell cycle-dependent events, 352–54
datA, 361–63
DNA polymerase III, 358–59
eclipse period, 355–57
ectopic chromosomal sites, 362
extra initiations, 363
bda, 358–61
introduction, 352
media-dependent initiations, 362–63
nucleotide-bound state, 357–61
oriC, 355–57
regulatory pathways, 354–63
RIDA activity, 358–60
rifampicin, 363
seqA, 355–57

DNA fingerprinting
Cryptococcus neoformans species complex and, 73, 82, 87, 90

dna genes
competence induction and, 455
DnaA protein and, 352, 354–55, 358–60, 363
environmental stress and lesion-bypass DNA polymerases, 234, 241

DNA polymerases
DnaA protein and, 351, 358–59, 363
environmental stress and lesion-bypass DNA polymerases, 231, 234–41

DNA viruses
RNA silencing and, 520

Dodecahedral packaging
RNA in icosahedral virus assembly and, 60–61

dpo4 gene
environmental stress and lesion-bypass DNA polymerases, 244

dprA gene
competence induction and, 456

Drosophila melanogaster
Cryptococcus neoformans species complex and, 79
history of research, 17
microbial genome architecture and, 331
RNA silencing and, 505–6, 508, 510–11, 515–18, 521

dsp genes
history of research, 16

Duplication
adaptive mutation controversy and, 489–90

E

ebg genes
adaptive mutation controversy and, 490

Eclipse period
DnaA protein and, 355–57

Ecology
arsenic and selenium in microbial metabolism, 107–11
Cryptococcus neoformans species complex and, 69, 90
Roseobacter lineage environmental biology and, 255–56, 261

Ectopic chromosomal sites
DnaA protein and, 362

Effectors
RNA silencing and, 505–6
type III effector proteins and, 425–41

ego-I gene
RNA silencing and, 507

Electron transfer
radical enzymes in anaerobes and, 27, 33–34
uranium reduction and, 149–60

Electroparamagnetic spin resonance (EPR)
spectroscopy
radical enzymes in anaerobes and, 31–35, 37–39

Eliminases
 radical enzymes in anaerobes and, 31
 Elongation
 RNA replication structure and function, 313
 Encapsulation
 RNA in icosahedral virus assembly and,
 61–62
 End-to-end joining
 history of research, 8–9
Endobugula sertula
 Roseobacter lineage environmental biology and,
 267
 Endosymbionts
 microbial genome architecture and, 327,
 339–43
eno genes
 Mn²⁺ in transport and virulence, 200
Enterobacteriaceae
 curli biogenesis and function, 131–42
Enterococcus faecalis
 Mn²⁺ in transport and virulence, 189, 198
 multilocus sequence typing and, 576
 surface proteins of gram-positive bacteria and,
 405
 Environmental biology
 Roseobacter lineage and, 255–73
 uranium reduction and, 149–60
 Epidemiology
 Cryptococcus neoformans species complex and,
 69, 90
 multilocus sequence typing and, 561, 568,
 582
 Episomal plasmids
 virulence genes in dimorphic fungal pathogens
 and, 286
Erwinia spp.
 type III effector proteins and, 425, 427, 429,
 433, 439
 Erythromycin
 competence induction and, 462
 curli biogenesis and function, 134
Escherichia coli
 adaptive mutation controversy and, 481,
 489–90, 493, 495
 arsenic and selenium in microbial metabolism,
 114, 116, 119–20
 competence induction and, 462–63
 Cryptococcus neoformans species complex and, 78
 curli biogenesis and function, 131–38, 140–41
 DnaA protein and, 351–63
 environmental stress and lesion-bypass DNA
 polymerases, 231–33, 235–38, 240–45

Francisella tularensis and, 170, 172–73
 history of research, 3, 5–9, 11
 microbial genome architecture and, 331–32
 microbial metabolism and, 535, 538
 Mn²⁺ in transport and virulence, 189–91,
 193–94, 199
 multilocus sequence typing and, 577
 radical enzymes in anaerobes and, 34
 RNA replication structure and function,
 309
Roseobacter lineage environmental biology and,
 258–59
 surface proteins of gram-positive bacteria and,
 399, 405, 409
 Tat pathway and, 373–75, 377–86

Eubacterium spp.
 arsenic and selenium in microbial metabolism,
 120
 radical enzymes in anaerobes and, 31–32
Eucalyptus spp.
 Cryptococcus neoformans species complex and,
 77–78

Evolution
 adaptive mutation controversy and, 477–96
 arsenic and selenium in microbial metabolism,
 122
 Cryptococcus neoformans species complex and,
 69, 83, 88, 90, 92
 environmental stress and lesion-bypass DNA
 polymerases, 231
 history of research, 10–11
 microbial genome architecture and, 327–43
 microbial metabolism and, 536
 multilocus sequence typing and, 564–66,
 578–80, 582
 radical enzymes in anaerobes and, 28–30
 RNA replication structure and function,
 311–12
 RNA silencing and, 513–14, 516
 Roseobacter lineage environmental biology and,
 256, 260, 273

Export
 adaptive mutation controversy and, 492
 Tat pathway and, 373–88

ExPortal
 surface proteins of gram-positive bacteria and,
 410

Expressed sequence tags (ESTs)
 virulence genes in dimorphic fungal pathogens
 and, 293

Extracellular matrix
 curli biogenesis and function, 131–42

F

Factor XII
curli biogenesis and function, 140

feoB gene
 Mn^{2+} in transport and virulence, 197

Ferrodoxin
radical enzymes in anaerobes and, 27, 30,
32–33, 40–42

Fertility
Cryptococcus neoformans species complex and,
85–87, 92

Fe-S cluster metabolism
microbial metabolism and, 545–46

Fibrin/fibrinogen
curli biogenesis and function, 140

Ficus soatensis
Cryptococcus neoformans species complex and, 77

Filobasidiella spp.
Cryptococcus neoformans species complex and, 92

Fitness
adaptive mutation controversy and, 491–92,
495

competence induction and, 451, 457, 463–65,
467

Flavin adenine dinucleotide (FAD)
radical enzymes in anaerobes and, 27, 39–40

Flock house virus
RNA in icosahedral virus assembly and, 56

Fluoroquinolones
competence induction and, 462

Flux
microbial metabolism and, 540, 544

Foldases
surface proteins of gram-positive bacteria and,
412

Francisella tularensis
apoptosis, 175

biowarfare, 169–70

conclusions, 177

cytokines, 176–77

cytosol, 174–75

genetics, 172–73

genome, 172–73

geographic distribution, 168–69

host defense, 176–77

immunopathogenesis, 173–77

introduction, 168

lipopolysaccharide, 170–71

macrophages, 173–75

neutrophils, 175–76

phagocytosis, 173, 176–77

phagosome, 174–75

receptors, 173

structure, 170–71

summary points, 178

taxonomy, 168–69

Fratricide
competence induction and, 451, 456, 464–67

fruA gene
history of research, 15

Fruiting bodies
history of research, 9–11, 13–15

frz genes
history of research, 15, 17

fts genes
DnaA protein and, 359

Full-length RNA structure models
RNA in icosahedral virus assembly and, 57–59

fumC gene
multilocus sequence typing and, 570

Functional direction of mutagenesis model
adaptive mutation controversy and, 482

Fungi
arsenic and selenium in microbial metabolism,
109, 112

Cryptococcus neoformans species complex and,
69–93

curli biogenesis and function, 139

Mn^{2+} in transport and virulence, 192

multilocus sequence typing and, 575

virulence genes in dimorphic fungi and,
281–95

fur genes
environmental stress and lesion-bypass DNA
polymerases, 242

Francisella tularensis and, 172

Mn^{2+} in transport and virulence, 194

Fusobacterium nucleatum
radical enzymes in anaerobes and, 29, 31, 36,
39

G

gal operon
history of research, 5, 7

β -Galactosidase
adaptive mutation controversy and, 481, 490

Galleria mellonella
Cryptococcus neoformans species complex and,
79

gdb genes
multilocus sequence typing and, 570

Gene disruption
virulence genes in dimorphic fungal pathogens
and, 286

Genomics

- adaptive mutation controversy and, 492, 495–96
- arsenic and selenium in microbial metabolism, 107
- competence induction and, 451, 454–58, 462
- coronavirus replication and virus-host interaction, 216–18
- Cryptococcus neoformans* species complex and, 88, 90
- environmental stress and lesion-bypass DNA polymerases, 231
- Francisella tularensis* and, 167, 171–73, 178
- history of research, 5, 12
- microbial genome architecture and, 327–43
- microbial metabolism and, 533, 536, 538, 549
- Mn²⁺ in transport and virulence, 193
- RNA in icosahedral virus assembly and, 51–64
- RNA replication structure and function, 305–7, 309–11, 315–17
- Roseobacter* lineage environmental biology and, 255, 257–58, 260, 271–72
- surface proteins of gram-positive bacteria and, 403–5
- type III effector proteins and, 439–40
- virulence genes in dimorphic fungal pathogens and, 281

***Geobacter* spp.**

- arsenic and selenium in microbial metabolism, 120
- uranium reduction and, 152–54, 156, 158–59

Gliding motility

- history of research, 15–18

α-(1,3)-Glucan

- virulence genes in dimorphic fungal pathogens and, 281, 285, 287, 295

Glutamate

- radical enzymes in anaerobes and, 29, 31

Glycerol dehydratase

- radical enzymes in anaerobes and, 32, 34

Glycyl radical

- radical enzymes in anaerobes and, 27, 29–31, 34–36

***gly* genes**

- DnaA protein and, 361

***gor* genes**

- Tat pathway and, 384, 386

***GP43* transgene**

- virulence genes in dimorphic fungal pathogens and, 291

***gpm* genes**

- Mn²⁺ in transport and virulence, 200

Grafting assay

- RNA silencing and, 509–10

Gram-negative bacteria

- type III effector proteins and, 425–41

Gram-positive bacteria

- competence induction and, 451–67
- surface proteins and, 397–414

Greenhouse gases

- Roseobacter* lineage environmental biology and, 255, 264–65

***gro* genes**

- competence induction and, 455
- environmental stress and lesion-bypass DNA polymerases, 243
- history of research, 9

Growth

- adaptive mutation controversy and, 477–96
- microbial metabolism and, 540–41

Growth advantage in stationary phase (GASP)

- phenomenon
- adaptive mutation controversy and, 491

***grpE* gene**

- competence induction and, 455

***gsbA* gene**

- microbial metabolism and, 545–46

Guettarda acreana

- Cryptococcus neoformans* species complex and, 78

***Gus* transgene**

- RNA silencing and, 509

GW repeat modules

- surface proteins of gram-positive bacteria and, 407–8

***Gymnodinium* spp.**

- Roseobacter* lineage environmental biology and, 267–68

***gyrB* gene**

- DnaA protein and, 356

H

Haemophilus influenzae

- arsenic and selenium in microbial metabolism, 120
- competence induction and, 457, 462–63
- microbial metabolism and, 547
- multilocus sequence typing and, 576

***Halobacterium* spp.**

- radical enzymes in anaerobes and, 40
- Tat pathway and, 375, 377

Haloflexax volcanii

- Tat pathway and, 375, 377–78, 380

***bda* genes**

DnaA protein and, 351, 358–61

Helicobacter spp
arsenic and selenium in microbial metabolism, 120
multilocus sequence typing and, 576
Tat pathway and, 386

Hematite
uranium reduction and, 160

Hemi-methylation
DnaA protein and, 351, 356–57, 363

Heterologous systems
Cryptococcus neoformans species complex and, 78–79
microbial metabolism and, 535–36

bflB1 gene
Mn²⁺ in transport and virulence, 191

High-throughput sequencing
multilocus sequence typing and, 561, 566–67, 582

bim genes
DnaA protein and, 354

bisD gene
environmental stress and lesion-bypass DNA polymerases, 238

Histoplasma capsulatum
Cryptococcus neoformans species complex and, 79
virulence genes in dimorphic fungal pathogens and, 282–87, 293, 295

bog1 gene
RNA silencing and, 520

Homolysis
radical enzymes in anaerobes and, 28

bop genes
type III effector proteins and, 432–33, 435, 437, 440

Horizontal gene transfer
multilocus sequence typing and, 566
Roseobacter lineage environmental biology and, 273

Human immunodeficiency virus (HIV)
adaptive mutation controversy and, 492
Cryptococcus neoformans species complex and, 70

Huntington's disease
curli biogenesis and function, 131

bup4 gene
DnaA protein and, 354

Hybridization
Cryptococcus neoformans species complex and, 69, 84–85, 88–93

Hydrogenophaga spp.
arsenic and selenium in microbial metabolism, 117

Hypermutable state model
adaptive mutation controversy and, 482–83

Hyperthermophiles
environmental stress and lesion-bypass DNA polymerases, 231, 242–45

Hypochnicium vellereum
Cryptococcus neoformans species complex and, 92

I

Icosahedral virus assembly
RNA in
bean pod mottle virus, 54–55
conformational changes, 63
dodecahedral packaging, 60–61
flock house virus, 56
full-length RNA structure models, 57–59
high-resolution visualization, 53–54
introduction, 52
nodaviruses, 60–61
pariacoto virus, 56
RNA encapsidation/assembly models, 61–62
RNA folding, 60
RNA packaging, 52–54
satellite tobacco mosaic virus, 55–56
structural plasticity, 60–61
structures of icosahedrally ordered portions of viral RNAs, 54–63
summary points, 63–64
virion, 62–63

Ideonella dechloratans
arsenic and selenium in microbial metabolism, 116, 121

igf genes
Francisella tularensis and, 172–73, 175

ibf genes
curli biogenesis and function, 137
DnaA protein and, 354, 363

itvC gene
microbial metabolism and, 549

Immune response
coronavirus replication and virus-host interaction, 211

Cryptococcus neoformans species complex and, 69–93
Francisella tularensis and, 167–68, 170, 173–77
RNA silencing and, 503–23
type III effector proteins and, 425

Induction
competence induction and, 451, 461, 463–65, 467

RNA silencing and, 507–8

Inflammatory response

- coronavirus replication and virus-host interaction, 211
- curli biogenesis and function, 131, 141–42
- Francisella tularensis* and, 167

Information technology

- multilocus sequence typing and, 561, 567–68, 582

Inhibition

- RNA silencing and, 519–20

Initiation

- DnaA protein and, 351–63
- RNA replication structure and function, 312–13

Innate immunity

- RNA silencing and, 508
- type III effector proteins and, 425

Insects

- RNA silencing and, 511

Insertional mutagenesis

- virulence genes in dimorphic fungal pathogens and, 286

In situ bioreduction

- uranium reduction and, 149–60

isc genes

- microbial metabolism and, 545–46

Isobutyryl-CoA

- radical enzymes in anaerobes and, 31

ity genes

- Mn²⁺ in transport and virulence, 188, 195

K

Kaiser D, 1–18

Kanamycin resistance

- adaptive mutation controversy and, 491
- competence induction and, 462
- DnaA protein and, 362
- history of research, 11

Karenia brevis

- Roseobacter* lineage environmental biology and, 268

Kauffman–White scheme

- multilocus sequence typing and, 565

Ketyl radical anion

- radical enzymes in anaerobes and, 27, 29, 36–39

Klebsiella spp.

- arsenic and selenium in microbial metabolism, 118
- multilocus sequence typing and, 576

radical enzymes in anaerobes and, 32

Koala

- Cryptococcus neoformans* species complex and, 77

Koch's postulates

- molecular
- virulence genes in dimorphic fungal pathogens and, 285

K-state

- competence induction and, 457–59, 466

L

lac operon

- adaptive mutation controversy and, 479–96
- history of research, 11, 15
- virulence genes in dimorphic fungal pathogens and, 290

β-Lactams

- competence induction and, 462

Lactobacillus spp.

- Mn²⁺ in transport and virulence, 189–90
- radical enzymes in anaerobes and, 31

Lactococcus lactis

- competence induction and, 461
- surface proteins of gram-positive bacteria and, 409, 412

Laminin

- curli biogenesis and function, 140

Latex agglutination

- Cryptococcus neoformans* species complex and, 89
- Legionella pneumophila*
- Tat pathway and, 377, 386

Leishmania donovani

- Mn²⁺ in transport and virulence, 188

Leptotrix spp.

- arsenic and selenium in microbial metabolism, 111

Lesion-bypass DNA polymerases

- environmental stress and
- archaeal DNA polymerases, 242–44
- conclusions, 244
- coordination of multiple DNA polymerases, 240–41
- DNA damage, 233–34
- DNA polymerase II, 236–37
- DNA polymerase III holoenzyme, 240
- DNA polymerase IV, 237–38
- DNA polymerase V, 238–39
- heat-induced DNA damage, 243–44
- introduction, 232–33
- mutagenesis, 241–43

nucleotide pool damage, 241–42
 SOS-inducible DNA polymerases, 236
 starvation-induced mutagenesis, 242–43
 summary points, 244–45
 Y-family DNA polymerases, 234–36

Levofloxacin
 competence induction and, 462

lexA gene
 environmental stress and lesion-bypass DNA polymerases, 233, 238, 243

Life cycle
Cryptococcus neoformans species complex and, 69, 79–80, 88–90, 93
 virulence genes in dimorphic fungal pathogens and, 292

Light-harvesting complex
Roseobacter lineage environmental biology and, 262

Linkage disequilibrium
Cryptococcus neoformans species complex and, 85–86

Lipopolysaccharide (LPS)
Francisella tularensis and, 167, 170–71, 174, 177–78

Listeria monocytogenes
 multilocus sequence typing and, 577
 surface proteins of gram-positive bacteria and, 401, 403–4, 407–8, 410, 413

Localized sex
 multilocus sequence typing and, 565–66

Loligo pealei
Roseobacter lineage environmental biology and, 258

Lral protein family
 Mn^{2+} in transport and virulence, 187, 193

lsh genes
 Mn^{2+} in transport and virulence, 188, 195

luc gene
 competence induction and, 461–63

lux gene
Roseobacter lineage environmental biology and, 270

Lysine 2,3-aminomutase
 radical enzymes in anaerobes and, 32–34

LysM domain
 surface proteins of gram-positive bacteria and, 409

Lysogeny
 history of research, 1, 8

lyt4 gene
 competence induction and, 456

M

macA gene
 uranium reduction and, 156

Macrophages
Francisella tularensis and, 167, 173–75, 178
 Mn^{2+} in transport and virulence, 195–96

Maltose binding protein
 Tat pathway and, 379

Marine microbial communities
Roseobacter lineage environmental biology and, 255–73

Marlierea tomentosa
Cryptococcus neoformans species complex and, 78

MAT genes
Cryptococcus neoformans species complex and, 74, 83–84, 86–88, 90

Mating types
Cryptococcus neoformans species complex and, 69, 74, 80–88, 90, 93

meca gene
 competence induction and, 457

Melanin
Cryptococcus neoformans species complex and, 78, 91, 93
 virulence genes in dimorphic fungal pathogens and, 290

Membrane proteins
 Tat pathway and, 373–88

Meningoencephalitis
Cryptococcus neoformans species complex and, 69–93

Mep1 gene
 virulence genes in dimorphic fungal pathogens and, 281, 287, 289, 295

Metabolism
 arsenic and selenium in microbial metabolism, 107–22
 microbial metabolism and, 533
 Mn^{2+} in transport and virulence, 200
Roseobacter lineage environmental biology and, 262, 264
 Tat pathway and, 373
 uranium reduction and, 149–60

Metagenomic libraries
Roseobacter lineage environmental biology and, 255, 257–58, 267, 271–72

Metalloprotease
 virulence genes in dimorphic fungal pathogens and, 281, 289, 295

Methane-forming enzymes
 radical enzymes in anaerobes and, 27, 40–42

Methanobacterium spp.
arsenic and selenium in microbial metabolism, 107, 112–13
surface proteins of gram-positive bacteria and, 403

Methanococcus spp.
arsenic and selenium in microbial metabolism, 119

Methanopyrus kandleri
surface proteins of gram-positive bacteria and, 403

Methylaspartate
radical enzymes in anaerobes and, 29

Methylation
arsenic and selenium in microbial metabolism, 107–8, 112–14, 119–20, 122
DnaA protein and, 351, 356–57, 363
RNA silencing and, 507

Methyl-CoM reductase
radical enzymes in anaerobes and, 27, 30, 41

Methylmalonyl-CoA
radical enzymes in anaerobes and, 31

Mezorhizobium loti
type III effector proteins and, 438

mgl genes
Francisella tularensis and, 172, 175
history of research, 17

mgnL gene
radical enzymes in anaerobes and, 32

mi genes
history of research, 4

Microarray analysis
virulence genes in dimorphic fungal pathogens and, 286

Microbial communities
Roseobacter lineage environmental biology and, 255–73

Microbial genome architecture
streamlining and simplification
arthropods, 341–42
bulk DNA hypothesis, 332–33
directional mutation pressure, 329–31
efficient removal of mutationally hazardous DNA, 337–39
endosymbionts, 339–42
eukaryotes, 338–39
evolutionary maintenance of compact genomes, 329–34
introduction, 328–29
introns, 337–38
mitochondrial genomics, 339–41
mobile elements, 337–38

modular gene structure, 338–39
mutational burden hypothesis, 333–34
operons, 338–39
phenotypic modulator, 332–33
population genetics, 334–37
scaling of genome content/size, 329
selfish DNA hypothesis, 332
summary points, 342–43

Microbial metabolism
amplification, 539
arsenic and selenium in arsenic, 109–18
arsenic resistance, 114–15
arsenite oxidase, 117–18
biogeochemical cycles, 109–11
cellular metabolism, 112–21
conclusions, 121
diversity, 108–9
ecology, 109–11
future research, 121–22
introduction, 108
methylation, 112–14, 120
organoarsenicals, 114
phylogeny, 108–9
respiratory arsenate reductase, 115–17
respiratory selenate reductase, 121
selenum, 110–21
selenocysteine, 119–20
summary points, 122

bench science, 535
biochemistry, 537
bioinformatics, 536, 538
classical genetics, 537–38
complexity, 541–49
conclusions, 550
conditional growth, 540–41
core metabolism, 535
data interpretation, 538–39, 541
Fe–S cluster metabolism, 545–46
focal areas of research, 549–50
genomics, 536, 538
heterologous systems, 535–36
instability, 541
introduction, 534–35
lesions, 541–43
low flux, 541
metabolic connections, 541–43
metabolic nodes, 544–45, 549
metabolites, 539–40
model organisms, 536–37
molecular genetics, 537–38
nutrition, 539–40

ORFs, 546–49
 phenotypic analysis, 546–49
 phosphoribosylamine, 543–45
 promiscuous enzymes, 539
purF, 541–45
 regulation, 539–40
 small-flux changes, 539
 stability, 538–39
 strengths/limitations of tools, 536–38
 summary points, 550
 suppressor analysis, 548–49
 thiamine, 540–43, 545–46
 unique metabolic processes, 535–36
 wild-type strains, 538–39
ygjF, 547–48

Microbulbifer degradans
 surface proteins of gram-positive bacteria and, 403

Micrococcus lactilyticus
 uranium reduction and, 151

Microevolution
Cryptococcus neoformans species complex and, 87

mind gene
Francisella tularensis and, 176

Mitochondria
 microbial genome architecture and, 339–41

Mitomycin C
 competence induction and, 462

MLSTdBNNet software
 multilocus sequence typing and, 571–74, 579

Mn^{2+}
 in transport and virulence
 ABC Mn^{2+} permeases, 189, 193
 animal studies, 196–99
Bacillus antracis, 198
 carbon metabolism, 200
 cation transport, 191–93
 conclusions, 201
 3',5'-cyclic diguanylate, 200
Enterococcus faecalis, 198
fur, 194
 future research, 201–2
 introduction, 188–89
 macrophages, 195–96
 membrane topology, 191
 Mn^{2+} -dependent enzymes, 199–201
muntR, 194
Mycobacterium tuberculosis, 197
 Nramp Mn^{2+} transporters, 188–93, 196
 oral streptococci, 198
oxyR, 194–95
perR, 194–95

phosphorylation, 200
 ppGpp synthases, 200–1
Salmonella typhimurium, 195–99
Shigella flexneri, 198
spaT, 200–1
Staphylococcus aureus, 199
 summary points, 201
 superoxide dismutase, 199–200
 transport, 193–95
Yersinia pestis, 198

mnt genes
 Mn^{2+} in transport and virulence, 191, 194–99

Mobile elements
 microbial genome architecture and, 337–38

Modular gene structure
 microbial genome architecture and, 338–39

Moraxella spp.
 multilocus sequence typing and, 577

Roseobacter lineage environmental biology and, 268

Moxifloxacin
 competence induction and, 462

mtr genes
 uranium reduction and, 155

Multicellular morphogenesis
 history of research, 1, 4, 9–15

Multilocus enzyme electrophoresis (MLEE)
 multilocus sequence typing and, 563–66, 568, 571, 573–74, 578, 580, 582

Multilocus sequence typing (MLST)
 alleles, 568, 570–71
 applications, 574–75, 577, 579–81
 available schemes, 574–75
 conclusions, 581–82
Cryptococcus neoformans species complex, 82
 data analysis, 573–74
 databases, 570–73
 designing schemes, 563–64, 568–70
 evolution, 564–80
 exploiting advances in knowledge/technology, 568
 high-throughput sequencing, 566–67
 information technology, 567–68
 introduction, 562–68
 methodologies, 568–74
 miscellaneous organisms, 581
Neisseria MLST scheme, 575–81
 nomenclature, 562–63
 pathogenesis, 580
 population structure, 564–66, 578–80
 prospects, 581–82
 public health policy, 580

summary points, 582
 typing approaches, 563–64
Mu prophage
 adaptive mutation controversy and, 490
Mutational burden hypothesis
 microbial genome architecture and, 333–34
mut genes
 DnaA protein and, 355
 environmental stress and lesion-bypass DNA polymerases, 241
Mutualism
Roseobacter lineage environmental biology and, 267–70
Mycobacterium spp.
 arsenic and selenium in microbial metabolism, 113
 Mn^{2+} in transport and virulence, 189, 191, 197
 surface proteins of gram-positive bacteria and, 401–2
 Tat pathway and, 386
Myxococcus xanthus
 history of research, 1, 10–13, 15–16, 18

N

Nanospheres
 arsenic and selenium in microbial metabolism, 111
Nanowires
 uranium reduction and, 149, 156
NB-LRR proteins
 type III effector proteins and, 435
Negative-strand RNA viruses
 RNA replication structure and function, 309–10, 316
Neisseria spp.
 competence induction and, 462
 history of research, 16
 multilocus sequence typing and, 561, 570–71, 575–82
Neurotropism
Cryptococcus neoformans species complex and, 74–75, 93
Nicotiana spp.
 RNA silencing and, 519
 type III effector proteins and, 432
Nidovirus
 coronavirus replication and virus-host interaction, 211–22
Nitrobacter hamburgensis
 arsenic and selenium in microbial metabolism, 116–17

Nitrogen fixation
 type III effector proteins and, 425, 428
Nodaviruses
 RNA in icosahedral virus assembly and, 60–61
Noncell autonomous silencing
 RNA silencing and, 507
Noncovalent attachment
 surface proteins of gram-positive bacteria and, 406–9
NOR1 gene
 virulence genes in dimorphic fungal pathogens and, 290
Norfloxacin
 competence induction and, 462
Nramp transporters
 Mn^{2+} in transport and virulence, 187–93, 195–201
Nucleocapsid
 RNA in icosahedral virus assembly and, 52
Nucleotide pool damage
 environmental stress and lesion-bypass DNA polymerases, 241–42
Nutrition
 microbial metabolism and, 539–40

O

omc genes
 uranium reduction and, 155–56
ompR gene
 curli biogenesis and function, 136, 138
On-off switch
 competence induction and, 465
orfT35 gene
 environmental stress and lesion-bypass DNA polymerases, 241
oriC gene
 DnaA protein and, 351–59, 361, 363
Ostrea edulis
Roseobacter lineage environmental biology and, 258
Oxidases
 arsenic and selenium in microbial metabolism, 107, 116–18
Oxidation
 radical enzymes in anaerobes and, 27, 30, 34, 36–39, 42
Roseobacter lineage environmental biology and, 264–65
2-Oxoglutarate
 radical enzymes in anaerobes and, 29
2-Oxacyacid dehydrogenases

radical enzymes in anaerobes and, 29

oxyR gene

- Mn²⁺ in transport and virulence, 194–95

P

Panmictic population structure

- multilocus sequence typing and, 566

Paracoccidioides brasiliensis

- virulence genes in dimorphic fungal pathogens and, 282–84, 287, 289–95

Pariacoto virus

- RNA in icosahedral virus assembly and, 56

Parkinson's disease

- curli biogenesis and function, 138

Pathogen-associated molecular pattern (PAMP)

- curli biogenesis and function, 141

Pathogenesis

- coronavirus replication and virus-host interaction, 211
- Cryptococcus neoformans* species complex and, 69–93
- curli biogenesis and function, 131, 140–41
- Francisella tularensis* and, 167–68, 170, 173–77
- Mn²⁺ in transport and virulence, 187–202
- multilocus sequence typing and, 569, 575, 580, 582
- RNA silencing and, 503–23
- Roseobacter* lineage environmental biology and, 267–70
- Tat pathway and, 385–86
- type III effector proteins and, 425–41
- virulence genes in dimorphic fungal pathogens and, 281–95

pbs1 gene

- type III effector proteins and, 435

pck genes

- Mn²⁺ in transport and virulence, 200

pdbC gene

- multilocus sequence typing and, 570

pdp genes

- Francisella tularensis* and, 172, 175

Pelagibacter ubique

- Roseobacter* lineage environmental biology and, 263

Penicillium spp.

- arsenic and selenium in microbial metabolism, 113
- virulence genes in dimorphic fungal pathogens and, 282, 284

Peptidases

surface proteins of gram-positive bacteria and, 401–2

Peptidoglycan

- surface proteins of gram-positive bacteria and, 403–6

Periodic selection

- multilocus sequence typing and, 565

Periplasm

- uranium reduction and, 153

Permeases

- Mn²⁺ in transport and virulence, 189, 193

perR gene

- Mn²⁺ in transport and virulence, 194–95

Pfiesteria spp.

- Roseobacter* lineage environmental biology and, 267, 269

pgm genes

- multilocus sequence typing and, 570

Phagocytosis

- Francisella tularensis* and, 173–77

Phase-based screens

- virulence genes in dimorphic fungal pathogens and, 292–94

Phenotypic analysis

- adaptive mutation controversy and, 477, 479
- Cryptococcus neoformans* species complex and, 87–90, 93
- microbial genome architecture and, 332–33
- microbial metabolism and, 537–40, 546–49
- Mn²⁺ in transport and virulence, 187

Pheromones

- competence induction and, 451, 453, 463

Phosphoribosylamine

- microbial metabolism and, 541, 543–45

Phosphorylation

- Mn²⁺ in transport and virulence, 200
- Roseobacter* lineage environmental biology and, 261–62

Photobacterium spp.

- arsenic and selenium in microbial metabolism, 120

Photosynthesis

- Roseobacter* lineage environmental biology and, 255–56, 260–64

pbr genes

- competence induction and, 460

Phycomyces spp.

- history of research, 9, 18

Pigeons

- Cryptococcus neoformans* species complex and, 76–77

Pigments

Roseobacter lineage environmental biology and, 262

Pil genes history of research, 16–17

Pili surface proteins of gram-positive bacteria and, 405–6

Pilobolus spp. *Cryptococcus neoformans* species complex and, 81

Pinus radiata *Cryptococcus neoformans* species complex and, 78

Plasmin/plasminogen curli biogenesis and function, 140

Plasticity competence induction and, 463
Cryptococcus neoformans species complex and, 93
 RNA in icosahedral virus assembly and, 60–61

Pneumococcus spp. history of research, 3–4

pol genes environmental stress and lesion-bypass DNA polymerases, 234–38, 241

Polyketide synthases *Roseobacter* lineage environmental biology and, 268

Polymerase chain reaction (PCR) *Cryptococcus neoformans* species complex and, 72, 82–84, 90
 multilocus sequence typing and, 567, 569, 577
Roseobacter lineage environmental biology and, 257–58
 uranium reduction and, 159
 virulence genes in dimorphic fungal pathogens and, 287

Polymerases DnaA protein and, 351, 358–59, 363
 environmental stress and lesion-bypass DNA polymerases, 231, 234–41
 RNA replication structure and function, 305–6, 314–17

Polymorphism *Cryptococcus neoformans* species complex and, 69, 72–73, 82, 87–90

Population biology adaptive mutation controversy and, 477–96
Cryptococcus neoformans species complex and, 69
 microbial genome architecture and, 327, 334–37
 multilocus sequence typing and, 561, 564–66, 578–80, 582

Pores Tat pathway and, 380–83

Porphyromonas gingivalis Mn²⁺ in transport and virulence, 189
 multilocus sequence typing and, 577

Positional direction of hypermutability model adaptive mutation controversy and, 483

Positive-strand RNA viruses RNA replication structure and function, 306–10, 315–16

Postzygotic isolation *Cryptococcus neoformans* species complex and, 90

ppc genes Mn²⁺ in transport and virulence, 200
 uranium reduction and, 156

ppGpp synthases Mn²⁺ in transport and virulence, 200–1

ppk genes adaptive mutation controversy and, 490
 environmental stress and lesion-bypass DNA polymerases, 243

pre genes history of research, 7

Prezygotic isolation *Cryptococcus neoformans* species complex and, 90

Prion diseases curli biogenesis and function, 131, 138

prm genes history of research, 7

Probiotics *Roseobacter* lineage environmental biology and, 269–70

Processivity environmental stress and lesion-bypass DNA polymerases, 231
 RNA replication structure and function, 313

Prochlorococcus spp. *Roseobacter* lineage environmental biology and, 260

Promiscuous enzymes microbial metabolism and, 539

Promoters adaptive mutation controversy and, 490

Prorocentrum spp. *Roseobacter* lineage environmental biology and, 268–69

Protein folding RNA silencing and, 515–16
 surface proteins of gram-positive bacteria and, 411–13

Tat pathway and, 373–88

α-Proteobacteria *Roseobacter* lineage environmental biology and, 255

Proteomics

- virulence genes in dimorphic fungal pathogens and, 293

Proteorhodopsin

- Roseobacter* lineage environmental biology and, 260

Protogonyaulax sp.

- Roseobacter* lineage environmental biology and, 268

PrsA gene

- surface proteins of gram-positive bacteria and, 412–13

psa genes

- Mn²⁺ in transport and virulence, 199

Pseudoalteromonas spp.

- Roseobacter* lineage environmental biology and, 269

Pseudomonas aeruginosa

- arsenic and selenium in microbial metabolism, 120
- Cryptococcus neoformans* species complex and, 78–79
- Mn²⁺ in transport and virulence, 191, 199–200
- multilocus sequence typing and, 576
- Roseobacter* lineage environmental biology and, 271
- Tat pathway and, 385–86

Pseudomonas spp.

- arsenic and selenium in microbial metabolism, 111, 113, 120
- history of research, 16
- Roseobacter* lineage environmental biology and, 268, 270–71
- type III effector proteins and, 428
- uranium reduction and, 159

Pseudomonas syringae

- arsenic and selenium in microbial metabolism, 120
- Tat pathway and, 386
- type III effector proteins and, 425–27, 429–31, 433–34, 436, 438–40

Pto genes

- type III effector proteins and, 432–33, 437, 440

PubMLST isolate database

- multilocus sequence typing and, 571–73, 578

puf genes

- Roseobacter* lineage environmental biology and, 260–62

Pulmonary defenses

- virulence genes in dimorphic fungal pathogens and, 283–84

PulseNet system

- multilocus sequence typing and, 567

pur genes

- adaptive mutation controversy and, 491–92
- microbial metabolism and, 541–45

pyk genes

- Mn²⁺ in transport and virulence, 200

Pyridoxal 5'-phosphate

- radical enzymes in anaerobes and, 32–33

Pyrobaculum aeropyrum

- arsenic and selenium in microbial metabolism, 118

Pyrococcus furiosus

- environmental stress and lesion-bypass DNA polymerases, 242–43

Pyruvate

- radical enzymes in anaerobes and, 27, 29–42

Pythium ultimum

- type III effector proteins and, 428

Q

Qbeta paradigm

- RNA replication structure and function, 314, 317

Quality control

- Tat pathway and, 383–85

Quorum sensing

- competence induction and, 453, 461
- Roseobacter* lineage environmental biology and, 255, 257, 270–71, 273

R

Radical enzymes

- in anaerobes
- S-adenosylmethionine radical enzymes, 32–34
- coenzyme B₁₂-dependent enzymes, 30–31
- conclusions, 42
- evolution, 28–30
- flavins, 39–40
- future research, 43
- generation of radicals, 30
- glycyl radical enzymes, 34–36
- introduction, 28
- ketyl radical anions, 36–39
- methane-forming enzymes, 40–42
- one-electron reductions, 36–39
- pyruvate-oxidizing enzymes, 40–42
- summary points, 42–43

Ralstonia solanacearum

- type III effector proteins and, 425, 427, 429, 433–34, 438–39

Random genetic drift
microbial genome architecture and, 327, 333, 342

Randomly amplified polymorphic DNA (RAPD) analysis
Cryptococcus neoformans species complex and, 72–73, 82

rap genes
competence induction and, 460

RDR genes
RNA silencing and, 507–8, 518, 521

Reaction centers
Roseobacter lineage environmental biology and, 260, 262–3

Reactive nitrogen species (RNS)
virulence genes in dimorphic fungal pathogens and, 283, 290

Reactive oxygen species (ROS)
environmental stress and lesion-bypass DNA polymerases, 231, 244
virulence genes in dimorphic fungal pathogens and, 283, 285, 290

rec genes
adaptive mutation controversy and, 482, 484, 487
competence induction and, 456–57, 463
environmental stress and lesion-bypass DNA polymerases, 233, 238–39

Recombination
adaptive mutation controversy and, 488, 496

Red clover necrotic mosaic virus
RNA in icosahedral virus assembly and, 63

Redox reaction
Tat pathway and, 373–88

Reductases
arsenic and selenium in microbial metabolism, 107, 115–18, 121–22
uranium reduction and, 152–56

Reduction
uranium reduction and, 149–60

rekA gene
environmental stress and lesion-bypass DNA polymerases, 243

relA gene
history of research, 13
 Mn^{2+} in transport and virulence, 200

Reoxidation
uranium reduction and, 149, 159–60

Replicases
DnaA protein and, 351, 358–59, 363

Replication
coronavirus replication and virus-host interaction, 211–22
DnaA protein and, 351–63
RNA replication structure and function, 305–17

Reporter genes
virulence genes in dimorphic fungal pathogens and, 286

Repressors
adaptive mutation controversy and, 491–92
history of research, 1, 7–8
type III effector proteins and, 435–37

Reproduction
Cryptococcus neoformans species complex and, 69, 80, 84–90, 92–93

Respiration
arsenic and selenium in microbial metabolism, 107–9, 111

Resting organisms in a structured environment (ROSE) phenomenon
adaptive mutation controversy and, 491

Restriction fragment length polymorphism (RFLP)
Cryptococcus neoformans species complex and, 82

Retroviruses
adaptive mutation controversy and, 492
Cryptococcus neoformans species complex and, 70, 72, 83, 88

Reversion experiment
adaptive mutation controversy and, 481–82, 492

R genes
history of research, 4
type III effector proteins and, 429, 432

Rhizobiales spp.
Roseobacter lineage environmental biology and, 270

Rhizobium spp.
arsenic and selenium in microbial metabolism, 116–17
 Mn^{2+} in transport and virulence, 190
type III effector proteins and, 425, 428

Rhodobacter sphaeroides
arsenic and selenium in microbial metabolism, 116–17
Roseobacter lineage environmental biology and, 261, 263

Rhodococcus *tenuis*
arsenic and selenium in microbial metabolism, 120

Rhodoferax ferrireducens

arsenic and selenium in microbial metabolism, 116–17

Rhodomonas spp.
Roseobacter lineage environmental biology and, 269

Rhodopseudomonas palustris
arsenic and selenium in microbial metabolism, 113

Rhodospirillum rubrum
arsenic and selenium in microbial metabolism, 120

Rhodovulum sulfidophilum
arsenic and selenium in microbial metabolism, 116, 121

Rickettsia prowazekii
Tat pathway and, 374, 379

RIDA activity
DnaA protein and, 358–60

Rifampicin resistance
DnaA protein and, 351, 354, 362–63

rin4 gene
type III effector proteins and, 426, 435–37

RNA folding
RNA in icosahedral virus assembly and, 60

RNA interference (RNAi)
virulence genes in dimorphic fungal pathogens and, 286, 290, 295

RNA packaging
RNA in icosahedral virus assembly and, 51–54

RNA polymerase
RNA replication structure and function, 305–6, 314–17

RNA replication
viral
cap primers, 312
cellular biology, 315–16
chain elongation, 313
chain initiation, 312–13
compartmentalization, 315
competing processes, 316–17
coordination, 316–17
double-stranded RNA viruses, 311
fidelity, 313
future research, 317
host factors, 313–15
mechanisms, 311–13
negative-strand RNA viruses, 309–10, 316
outline, 306–10
polypeptides, 312
positive-strand RNA viruses, 306–10, 315–16
processivity, 313

Qbeta paradigm, 314

replication complexes, 314–15

short oligonucleotides, 312–13

steps, 311–13

summary points, 317

template recognition, 311–12, 315

transcription, 315–16

translation, 316–17

viral polymerase, 314–15

RNA silencing
amplification, 506–7
animals, 510–13
B2, 516

cell-based assays, 510

coinfiltration, 509

cross-suppression, 513

DNA viruses, 520

dsRNA binding, 515–16

effector complex assembly, 505–6

evasion, 522

evolution, 513–14, 516

exploitation, 522–23

future research, 521–23

genetic control, 521

grafting, 509–10

inhibition, 519–20

innate immunity, 508

insects, 511

introduction, 504–5

invertebrates, 508

mammals, 508, 511–13

miRNAs, 520

noncell autonomous silencing, 507

NS1, 516

P19, 516

plants, 507–8, 511–13

protein folding, 515–16

sequestration, 518–19

siRNA, 516–19

small RNA production, 505

structured viral RNAs, 511–12

summary points, 523

suppressors, 509–20

transitive silencing, 506–7

vertebrates, 511–13

viral infection, 507–8

Roseatales depolymerans
Roseobacter lineage environmental biology and, 261

Roseobacter lineage
environmental biology and
abundance, 257

adaptation, 263–64
aerobic anoxygenic phototrophy, 260–64
antibiotics, 270–71
carbon monoxide oxidation, 264–65
cyclic phosphorylation, 261–62
dinoflagellate toxins, 267–68
diversity, 257–59
DMS, 265
DMSP, 265–66
ecology, 261
eukaryotic hosts, 267–70
future research, 273
genomes, 271–72
introduction, 256–57
marine algae, 268–69
metagenomes, 271–72
mutualism, 267–70
outlook, 272
pathogenesis, 267–70
pigments, 262
probiotics, 269–70
quorum sensing, 270–71
reaction centers, 263
regulation, 263
sulfur cycling, 265–67
summary points, 272–73
symbiosis, 267–70
unresolved issues, 273

Roseovarius tolerans

Roseobacter lineage environmental biology and, 262

rpoS gene

adaptive mutation controversy and, 490
curli biogenesis and function, 135–36
environmental stress and lesion-bypass DNA polymerases, 233, 242–43

rseC gene

microbial metabolism and, 545–46

Rubisco

Roseobacter lineage environmental biology and, 262

Ruegeria spp.

Roseobacter lineage environmental biology and, 258, 271

Ruminococcus spp.

surface proteins of gram-positive bacteria and, 408

S

sac genes

DnaA protein and, 363

environmental stress and lesion-bypass DNA polymerases, 243

Saccharomyces cerevisiae

Cryptococcus neoformans species complex and, 88, 91–92

environmental stress and lesion-bypass DNA polymerases, 235–37

microbial genome architecture and, 331

microbial metabolism and, 535, 538

Mn²⁺ in transport and virulence, 190, 192

virulence genes in dimorphic fungal pathogens and, 290

S-adenosylmethionine (SAM)

microbial metabolism and, 546

radical enzymes in anaerobes and, 27, 30–34

Salinibacter ruber

Tat pathway and, 378

Salmonella enterica

arsenic and selenium in microbial metabolism, 120

environmental stress and lesion-bypass DNA polymerases, 231

Francisella tularensis and, 170

microbial metabolism and, 540, 547

Mn²⁺ in transport and virulence, 188–200

multilocus sequence typing and, 562–63, 565, 577

Tat pathway and, 376, 384

Salmonella spp.

adaptive mutation controversy and, 489, 493

curli biogenesis and function, 131–33, 135–38, 141

microbial metabolism and, 543, 545, 547, 549

type III effector proteins and, 426

Salmonella typhimurium

arsenic and selenium in microbial metabolism, 117–18

environmental stress and lesion-bypass DNA polymerases, 231, 237–38, 240–41

Francisella tularensis and, 170

microbial metabolism and, 535

Mn²⁺ in transport and virulence, 188–200

multilocus sequence typing and, 577

Same-sex reproduction

Cryptococcus neoformans species complex and, 85, 89–90

sasR gene

history of research, 13

Satellite tobacco mosaic virus

RNA in icosahedral virus assembly and, 55–56

Scaling

microbial genome architecture and, 327, 329

Schizophyllum commune
Cryptococcus neoformans species complex and, 89

Scophtalmus maximus
Roseobacter lineage environmental biology and, 258, 269

Scopulariopsis brevicaulis
 arsenic and selenium in microbial metabolism, 112–13

Secretion systems
 surface proteins of gram-positive bacteria and, 402–3

type III effector proteins and, 425–41

Sec translocon
 surface proteins of gram-positive bacteria and, 399–400, 403, 410

Tat pathway and, 373, 386–87

Selection
 adaptive mutation controversy and, 477–96

Selenium
 microbial metabolism and, 107–22

Selenocysteine
 arsenic and selenium in microbial metabolism, 107, 119–21

Selfish DNA hypothesis
 microbial genome architecture and, 332–33

Septum
 surface proteins of gram-positive bacteria and, 409, 411

seqA gene
DnaA protein and, 351, 354–57

Sequestration
 RNA silencing and, 518–19

uranium reduction and, 149–60

ser genes
 arsenic and selenium in microbial metabolism, 121

Sexual reproduction
Cryptococcus neoformans species complex and, 69, 80, 84–86, 90, 92–93

sfiA gene
 environmental stress and lesion-bypass DNA polymerases, 241

Shewanella spp.
 arsenic and selenium in microbial metabolism, 115–20

Francisella tularensis and, 171

Mn²⁺ in transport and virulence, 189, 198

surface proteins of gram-positive bacteria and, 403

Tat pathway and, 384

uranium reduction and, 151–56

Shigella spp.

type III effector proteins and, 426, 438

Shotgun clone library
Roseobacter lineage environmental biology and, 257

Signal peptidases
 surface proteins of gram-positive bacteria and, 401–2

Signaling
 competence induction and, 460–62

coronavirus replication and virus-host interaction, 212–15

history of research, 12–14

Tat pathway and, 375–76

Signal recognition particle
 surface proteins of gram-positive bacteria and, 401

Silicibacter pomeroyi
Roseobacter lineage environmental biology and, 255, 257–58, 264, 270–71

Single-stranded positive-sense RNA [(+)ssRNA]
 RNA in icosahedral virus assembly and, 51–64

Sinorhizobium meliloti
 arsenic and selenium in microbial metabolism, 115, 120

Mn²⁺ in transport and virulence, 190

Roseobacter lineage environmental biology and, 258–59

sit genes
 Mn²⁺ in transport and virulence, 192–97

S-layer proteins
 surface proteins of gram-positive bacteria and, 408

Slime secretion
 history of research, 16–18

sloC gene
 Mn²⁺ in transport and virulence, 199

Small-flux changes
 microbial metabolism and, 539

snn genes
 surface proteins of gram-positive bacteria and, 402–3

Sobrinicide
 competence induction and, 464–67

Social motility
 history of research, 15–16

Sodalis glossinidius
 microbial genome architecture and, 342

sod genes
 environmental stress and lesion-bypass DNA polymerases, 242

Mn²⁺ in transport and virulence, 199–200

Sortases

surface proteins of gram-positive bacteria and, 403–6

SOS response
adaptive mutation controversy and, 482–83, 487–88
competence induction and, 451, 461, 463–67
environmental stress and lesion-bypass DNA polymerases, 231–45

SOWgp
virulence genes in dimorphic fungal pathogens and, 281, 287–89, 295

Speciation
Cryptococcus neoformans species complex and, 90–92

Split decomposition
multilocus sequence typing and, 574

Sporothrix schenckii
virulence genes in dimorphic fungal pathogens and, 282, 290

spoT gene
 Mn^{2+} in transport and virulence, 200–1

sbkB gene
competence induction and, 456, 461–62

sso genes
environmental stress and lesion-bypass DNA polymerases, 243–44

Staphylococcus aureus
arsenic and selenium in microbial metabolism, 114

Cryptococcus neoformans species complex and, 78

Mn^{2+} in transport and virulence, 189, 191, 195, 199–200

radical enzymes in anaerobes and, 34

surface proteins of gram-positive bacteria and, 403–4, 406, 408, 410

Tat pathway and, 374

Staphylococcus epidermidis
 Mn^{2+} in transport and virulence, 189

multilocus sequence typing and, 577

Stappia stellulata
Roseobacter lineage environmental biology and, 269

START2 package
multilocus sequence typing and, 574

Starvation
environmental stress and lesion-bypass DNA polymerases, 231–32

Stationary-phase mutagenesis
adaptive mutation controversy and, 477, 491

Stigmatella aurantica
history of research, 10, 14

Streamlining

microbial genome architecture and, 327–43

Streptococcus pneumoniae
competence induction and, 451–57, 460–67
 Mn^{2+} in transport and virulence, 189, 198–99
multilocus sequence typing and, 562–63, 576
surface proteins of gram-positive bacteria and, 407

Streptococcus spp.
 Mn^{2+} in transport and virulence, 189, 193, 195, 198–99

multilocus sequence typing and, 576
radical enzymes in anaerobes and, 31

surface proteins of gram-positive bacteria and, 401, 404–7, 410–11, 413

Streptomyces spp.
Cryptococcus neoformans species complex and, 79

Tat pathway and, 375, 377

Streptomycin
competence induction and, 462

Stress-induced mutagenesis
adaptive mutation controversy and, 482–83, 490–92, 496

Stress response
competence induction and, 451–67

coronavirus replication and virus-host interaction, 211

environmental stress and lesion-bypass DNA polymerases, 231

Structural plasticity
RNA in icosahedral virus assembly and, 60–61

Succinyl-CoA
radical enzymes in anaerobes and, 31

Sulfobolus spp.
arsenic and selenium in microbial metabolism, 108, 117–18

environmental stress and lesion-bypass DNA polymerases, 231, 242–45

Sulfur cycle
Roseobacter lineage environmental biology and, 255–56, 265–67, 273

Sulfurospirillum spp.
arsenic and selenium in microbial metabolism, 109, 111, 116–18

Superoxide dismutase
 Mn^{2+} in transport and virulence, 199–200

Suppressors
microbial metabolism and, 548–49

RNA silencing and, 503, 509–23

Surface proteins
gram-positive bacteria and
asymmetric surface localization, 409–12
autolysins, 409–12

cellulosome, 408–9
 cell wall, 399, 403–6
 choline-binding proteins, 407
 conclusions, 413–14
 covalent attachment, 403–6
 cytoplasmic membrane, 399–403
ExPortal, 410
 foldases, 412
 future research, 413–14
 genomes, 403–5
 gram-positive bacteria, 403–5
 GW repeat modules, 407–8
 introduction, 398–99
 LTA, 407–8
 LysM domain, 409
 miscellaneous surface proteins, 413
 nomenclature, 406
 noncovalent attachment, 406–9
 peptidoglycan, 403–6
 pili, 405–6
 poles, 409, 411
 polymerization, 405–6
 protein folding, 411–13
PrxA, 412–13
 Sec pathway, 399–400, 403, 410
 secretion systems, 402–3
 septum, 409, 411
 signal peptidases, 401–2
 signal recognition particle, 401
 S-layer proteins, 408
smm pathway, 402–3
 sortases, 403–6
SrtA, 403
Streptococcus pneumoniae, 407
 summary points, 414
 teichoic acid, 406–7
 transport, 399–403

Surfactin
 competence induction and, 458, 467

***Symbiobacterium* spp.**
 arsenic and selenium in microbial metabolism, 120

Symbiosis
Roseobacter lineage environmental biology and, 260, 267–70
 type III effector proteins and, 425, 428

Synarpia glomulifera
Cryptococcus neoformans species complex and, 77

***Synechococcus* spp.**
Roseobacter lineage environmental biology and, 260

***Synechocystis* spp.**

history of research, 16
 Mn^{2+} in transport and virulence, 190, 193

Systematic evolution of ligands by exponential enrichment (SELEX) technique
 RNA replication structure and function, 311–12

Syzigium cumini
Cryptococcus neoformans species complex and, 78

T

***tat* genes**
 Tat pathway and, 373–88

Teichoic acid
 surface proteins of gram-positive bacteria and, 406–7

Temperature
 environmental stress and lesion-bypass DNA polymerases, 231–32, 242–45

Template recognition
 RNA replication structure and function, 311–12, 315

Template switching
 coronavirus replication and virus-host interaction, 211

Terminalia catappa
Cryptococcus neoformans species complex and, 77

***tetA* gene**
 adaptive mutation controversy and, 485–87

Tetracycline
 competence induction and, 462

***Tbauera* spp.**
 arsenic and selenium in microbial metabolism, 116, 118, 121
 radical enzymes in anaerobes and, 35, 37

***Tberoplasma* spp.**
 Tat pathway and, 376

Thermoterrabacterium ferrireducens
 uranium reduction and, 154

***Thermus* spp.**
 arsenic and selenium in microbial metabolism, 108, 116–18

Thiamine
 microbial metabolism and, 540–43, 545–46
 radical enzymes in anaerobes and, 42

***Thiobacillus* spp.**
 arsenic and selenium in microbial metabolism, 111
 uranium reduction and, 160

Thioflavin T
 curli biogenesis and function, 138–39

Tissue plasminogen activator (t-PA)

- curli biogenesis and function, 140
- TMAO reductase
- arsenic and selenium in microbial metabolism, 116
- Tobacco mosaic virus
 - history of research, 5
 - RNA in icosahedral virus assembly and, 63
- Toll-like receptor 2 (TLR2)
 - curli biogenesis and function, 140–41
- topA* gene
 - DnaA protein and, 356
- torD* gene
 - Tat pathway and, 384
- tra* genes
 - adaptive mutation controversy and, 483, 490
- Transcription
 - coronavirus replication and virus-host interaction, 211–22
 - RNA replication structure and function, 315–16
- Transcriptomics
 - competence induction and, 454
- Transformation
 - competence induction and, 451–67
- Transitive silencing
 - RNA silencing and, 506–7
- Translation
 - coronavirus replication and virus-host interaction, 211–22
 - RNA replication structure and function, 316–17
- Translesion DNA synthesis
 - environmental stress and lesion-bypass DNA polymerases, 231
- Translocation
 - arsenic and selenium in microbial metabolism, 117
 - surface proteins of gram-positive bacteria and, 410
 - Tat pathway and, 373, 380–83
- Transmission electron microscopy (TEM)
 - uranium reduction and, 153
- Transport
 - Mn²⁺ in transport and virulence, 187–202
 - surface proteins of gram-positive bacteria and, 397–414
- Treponema* spp.
 - arsenic and selenium in microbial metabolism, 120
- Trimethylamine N-oxide (TMAO)
 - Tat pathway and, 376, 379
- Tropheryma whipplei*
- surface proteins of gram-positive bacteria and, 403
- trp* genes
 - history of research, 6, 8, 11
 - microbial metabolism and, 544–45
- trxB* gene
 - Tat pathway and, 386
- Tularemia
 - Francisella tularensis* and, 167–78
- Tumor progression
 - adaptive mutation controversy and, 477
- Twin-arginine translocation (Tat) pathway
 - arsenic and selenium in microbial metabolism, 117
 - biotechnological applications, 386–87
 - export of proteins, 376–78, 385
 - introduction, 374–75
 - mechanistic considerations, 378–85
 - pathogenesis, 385–86
 - pore, 380–83
 - protein folding, 383–85
 - quality control, 383–85
 - signal peptides, 375–76
 - substrate proteins, 375–78
 - summary points, 387–88
 - Tat ABC proteins, 378–80
 - translocation, 380–83
- Type III effector proteins
 - AvrB, 435–36
 - AvrPto, 437
 - AvrRpm1, 435–38
 - AvrRpt2, 435–38
 - basal defense, 435–37
 - conclusions, 440
 - distribution, 437–40
 - genomics, 439–40
 - HopAB2, 437
 - HopAR1, 435
 - introduction, 426–29
 - manipulation, 433–40
 - NB-LRR proteins, 435
 - PBS1, 435
 - repressor, 435–37
 - RIN4, 435–37
 - subterfuge, 429–40
 - summary points, 440–41
 - virulence, 429–40
- U**
- umu* genes
 - environmental stress and lesion-bypass DNA polymerases, 233–34, 238–39

Unweighted pair group method with arithmetic mean (UPGMA) 167

multilocus sequence typing and, 573

Uranium reduction 151–52

- microbial
 - bioavailable uranium complexes, 152–53
 - bioremediation, 157–59
 - cellular location of UO₂ precipitates, 153–54
 - competition between U(VI) and other electron acceptors, 156–57
 - Desulfovibrio vulgaris* reductases, 154
 - establishment, 151–52
 - Geobacter* reductases, 156
 - introduction, 150–51
 - nanowires, 156
 - reoxidation, 159–60
 - Sphaerotilus* reductases, 154–56
 - single-electron reduction, 153
 - summary points, 160
 - two-electron reduction, 153
 - uranium reductases, 152–56
 - uraninite, 149–60

Urease 167

- virulence genes in dimorphic fungal pathogens and, 281, 287, 289, 295

URE gene 289

- virulence genes in dimorphic fungal pathogens and, 289

Uroleucon ambrosiae 341

uvrA genes 238

- environmental stress and lesion-bypass DNA polymerases, 238

uvrA gene 238

- environmental stress and lesion-bypass DNA polymerases, 238

V

Veillonella alcalescens 151

- uranium reduction and, 151

Verticillium lecanii 92

- Cryptococcus neoformans* species complex and, 92

Vibrio spp. 200

- Mn²⁺ in transport and virulence, 200
- multilocus sequence typing and, 570, 577, 581

Roseobacter lineage environmental biology and, 269–71

Virulence

- Cryptococcus neoformans* species complex and, 69, 78–88

dimorphic fungal pathogens and, 281–95

Francisella tularensis and, 167, 172, 178

Mn²⁺ in transport and virulence, 187–202

Tat pathway and, 373

type III effector proteins and, 429–40

Viruses

- adaptive mutation controversy and, 492
- coronavirus replication and virus-host interaction, 211–22
- history of research, 5
- microbial genome architecture and, 342
- RNA in icosahedral virus assembly and, 51–64
- RNA replication structure and function, 305–17
- RNA silencing and, 503–23

W

Wigglesworthia spp. 341

- microbial genome architecture and, 341–42

Wild-type strains 538–39

- microbial metabolism and, 538–39

Wolbachia persica 168

Francisella tularensis and, 168

Wolinella succinogenes 116–18

- arsenic and selenium in microbial metabolism, 116–18

X

Xanthomonas campestris 427

- type III effector proteins and, 425, 427, 429–30, 433–35

Xenopus laevis 190

- Mn²⁺ in transport and virulence, 190

xis genes 7

- history of research, 7

X-ray crystallography 37

- radical enzymes in anaerobes and, 34, 37
- RNA in icosahedral virus assembly and, 51–64

X-state 466

- competence induction and, 454–56, 466

Y

ydiV gene 200

- Mn²⁺ in transport and virulence, 200

Yeast 492

- adaptive mutation controversy and, 492
- arsenic and selenium in microbial metabolism, 114

Cryptococcus neoformans species complex and, 69–93

curli biogenesis and function, 139
DnaA protein and, 359
environmental stress and lesion-bypass DNA polymerases, 233, 235–37
microbial genome architecture and, 331
microbial metabolism and, 535, 538
 Mn^{2+} in transport and virulence, 190, 192
virulence genes in dimorphic fungal pathogens and, 282–95

Yersinia spp.
arsenic and selenium in microbial metabolism, 120
 Mn^{2+} in transport and virulence, 189, 198–200
multilocus sequence typing and, 563
type III effector proteins and, 433, 438–39

Yet another typing method (YATM)

multilocus sequence typing and, 563
Y-family DNA polymerases
environmental stress and lesion-bypass DNA polymerases, 231, 234–36

yggX gene
microbial metabolism and, 546

ygiF gene
microbial metabolism and, 547–48

YPS3 gene
virulence genes in dimorphic fungal pathogens and, 287, 293

Z

Zoonosis

Francisella tularensis and, 167–78

