

Akademia Górniczo-Hutnicza w Krakowie Wydział FiIS Fizyka techniczna

Zespół:

1.Kulig Mateusz 2.Ryś Przemysław

Laboratorium Technik Jądrowych							
Rok akademicki: 2022/2023	Semestr V	Grupa: 2					
T							

Temat ćwiczenia:

Dozymetria promieniowania jonizującego

Data wykonania ćwiczenia Data oddania sprawozdania Ocena 03.11.2022 16.11.2022

1 Wstęp teoretyczny

Dawką skuteczną określamy stopień narażenia na promieniowanie, wielkość tę mierzymy w siwertach [Sv]. Jeżeli wielkość tę podzielimy przez czas, w którym ciało było narażone na ekspozycję źródła otrzymamy wielkość zwaną dawką ekspozycyjną, na ogół mierzoną w $\left[\frac{\mu S v}{h}\right]$, w sprawozdaniu będziemy korzystać wyłącznie z tej drugiej wielkości nazywając ją zamiennie z dawką skuteczną. Ćwiczenie polegało na zebraniu danych uzyskanych w wyniku zmierzenia mocy dawki skutecznej dla osłoniętego i nieosłoniętego źródła promieniotwórczego, teoretycznym wyliczeniu mocy dawki dla użytego przez nas źródła, którym był 137 Cs oraz przedstawieniu danych na wykresach zależności tej wielkości od odległości. Równania płynące z teorii mówią nam, że aktywność zależy od kwadratu odległości od źródła promieniotwórczego, zatem spodziewamy się danych układających się na kształt hiperboli.

2 Aparatura

W skład aparatury wchodziły następujące przyrządy:

- Miernik cyfrowy Polon EKO-C
- Miernik Model 19 Micro R Meter
- Metrowa linijka
- Pojemniki o grubościach 5, 10, 20, 30 milimetrów
- Źródło promieniotwórcze cez-137

Na rysunku 1 przedstawiony został poglądowy schemat układu doświadczalnego, z kolei na rysunku 2 zmierzone zostało tło w $\left[\frac{\mu R}{h}\right]$.

3 Analiza danych

Ponieważ miernik Model 19 Micro R Meter rejestrował moc dawki skutecznej w mikro rentgenach stosujemy przelicznik $100[\frac{\mu R}{h}] = 1[\frac{\mu Sv}{h}]$ dla zgodnej analizy danych.

Korzystając z tablicowej równoważnej wartości stałej ekspozycyjnej dla cezu 137 równej

 $\Gamma_r=0,008[\frac{\text{cGym}^2}{\text{hGbq}}]$ oraz z podanej aktywności źródła równej A=0,24[mCi]=8,88[MBq]=0,00888[Gbq] obliczyliśmy moc dawki skutecznej

$$D_{teo} = \frac{\Gamma_r A}{k l^2 0,087} = \frac{0,008 \cdot 0,00888}{1 \cdot 1 \cdot 0,087} = 0,7859 [\frac{\mu \mathrm{Sv}}{\mathrm{h}}].$$

Za pomocą miernika cyfrowego POLON EKO-C zmierzyliśmy moc dawki skutecznej i otrzymaliśmy wartość $D_{d1} = 1,17$. Po odjęciu promieniowania tła zmierzonego tym samym miernikiem $D_{t1} = 0,21$ otrzymujemy ostatecznie $D_{d1} = 0,96$. Względna różnica pomiędzy wynikiem teoretycznym a otrzymanym doświadczalnie wynosi

$$R = 100 \cdot \frac{E_{d1} - E_{t1}}{E_{t1}} = 100 \cdot \frac{0,96 - 0,7859}{0,7859} = 22,2\%$$

Za pomocą miernika Ludlum model 19 zmierzyliśmy moc dawki skutecznej i otrzymaliśmy wartość $D_{d2} = 1, 1$. Po odjęciu promieniowania tła $D_{t2} = 0, 21$ otrzymujemy ostatecznie $D_{d2} = 0, 89$. Względna różnica pomiędzy wynikiem teoretycznym a otrzymanym doświadczalnie wynosi

$$R = 100 \cdot \frac{E_{d2} - E_{t2}}{E_{t2}} = 100 \cdot \frac{0,89 - 0,7859}{0,7859} = 13,2\%$$

Następnie z pomiarów zebranych za pomocą obu mierników w zakresie odległości od 0,3 [m] do 1,5 [m] ze skokiem co 0,1 [m] przedstawionych w tabelach 2 oraz 3 wykonaliśmy wykresy zależności mocy dawki skutecznej od odległości w której znajdował się detektor. Rysunki 3 i 4 przedstawiają zebrane dane dla każdego z mierników z osobna, a na rysunku 5 przedstawiliśmy wspólny wykres obu mierników oraz moc dawki promieniowania obliczoną ze wzoru $D_t = \frac{\Gamma_r A}{kl^2 0,087}$. Aby lepiej przekonać się jak dobrze wartości zmierzone odpowiadają wartością teoretycznym sporządziliśmy wykres przedstawiający zależności wartości uzyskanych z pomiarów od obliczonych teoretycznie. Jak widać na rysunku 6 wartości zmierzone. lepszą zgodnością charakteryzuje się miernik Lundlum Model 19. Oszacowaliśmy współczynnik przez który należałoby pomnożyć zmierzone wartości by te zgadzały się z obliczonymi. Wynosi on kolejno dla miernika Polon EKO-C $\alpha_1 = 0,638$, a dla miernika Lundulum Model 19 $\alpha_2 = 0,765$.

W kolejnym kroku umieściliśmy źródło promieniowania w ołowianych pojemnikach o różnej grubości ścianek. Otrzymane wyniki przedstawiliśmy w tabeli 1 oraz na rysunku 7. W celu wyznaczenia krotności osłabienia promieniowania należy obliczyć stosunek mocy dawki dla niezasłoniętego źródła do mocy dawki wydzielanej przez źródło znajdujące się w pojemniku. Pomiarów dokonywaliśmy w odległości 0,2 [m]. Dla tej odległości moc dawki bez zasłony wynosi $D_0=18\frac{\mu Sv}{\hbar}$. Krotność osłabienia dla pojemników wynosi z kolei

- pojemnik o grubości ścianki 5 [mm] $K = \frac{18}{11} = 1,64,$
- pojemnik o grubości ścianki 10 [mm] $K = \frac{18}{8} = 2,25,$
- pojemnik o grubości ścianki 20 [mm] $K = \frac{18}{2.6} = 6,92,$
- pojemnik o grubości ścianki 30 [mm] $K = \frac{18}{1.1} = 16, 36.$

4 Aneks

Rys. 1: Schemat układu doświadczalnego

Tab. 1: Osłabienie dawki dla ołowianych pojemników o różnej grubości, gdzie odpowiednia liczba oznacza grubość w [cm].

Pojemnik	P-5	P-10	P-20	P-30
	7,11	5,29	1,85	0,91
D	6,8	5,01	2,03	0,86
$D[\frac{\mu R}{h}]$	6,21	5,42	1,94	0,79
11	6,89	4,42	1,72	0,83
	6,65	4,82	1,62	0,84
Średnia	6,73	4,99	1,83	0,85

Odległość od ściany	wejście do pracowni		stanowisko ćwiczenia 3 25	4	5	6
1 Zlew	14	38	100	70	24	12
2	17	26	25	20	22	20
3	13,5	Biurko 16	16	16	18	17
4	13	13	11	12	14	
Szafka ze źródłami 5	21	13				
6	39	17				

Rys. 2: poziom aktywności tła w poszczególnych obszarach pracowni.

Rys. 3: Moc dawki skutecznej dla miernika Polon EKO-C

Rys. 4: Moc dawki skutecznej dla miernika Model 19 Micro R Meter

Rys. 5: Wspólny wykres dla wartości uzyskanych z obu mierników oraz tych obliczonych teoretycznie.

Tab. 2: Wyniki pomiaru mocy dawki skutecznej mierzonej w jednostkach $[\frac{\mu Sv}{h}]$ w zależności od odległości [m] dla miernika Polon EKO-C.

l - odległość [m]	Г) - moc (dawki sk	cuteczne	$j\left[\frac{\mu Sv}{h}\right]$	średnia $\left[\frac{\mu S v}{h}\right]$	wartości teoretyczne $\left[\frac{\mu S v}{h}\right]$
0,3	10,89	11,39	12,42	12,81	11,87	11,88	8,73
0,4	6,46	6,72	6,97	7,32	6,73	6,84	4,91
0,5	4,71	4,4	4,23	4,4	4,6	4,47	3,14
0,6	3,19	3,44	3,23	2,94	3,19	3,20	2,18
0,7	2,17	2,24	2,8	2,32	2,19	2,34	1,6
0,8	1,6	1,75	1,84	1,93	1,64	1,75	1,23
0,9	1,38	1,5	1,69	1,55	1,6	1,54	0,97
1	1,42	1,36	1,2	1,08	1,14	1,24	0,79
1,1	1,23	1,17	1,25	1,21	1,16	1,20	0,65
1,2	0,93	1,09	1,04	1	0,83	0,98	0,55
1,3	0,95	0,75	0,71	0,72	0,84	0,79	0,47
1,4	0,53	0,62	0,76	0,8	0,69	0,68	0,4
1,5	0,66	0,6	0,58	0,74	0,67	0,65	0,35

Rys. 6: Wykres zależności wartości uzyskanych z pomiarów od obliczonych teoretycznie.

Rys. 7: Wykres zależności mocy dawki skutecznej od grubości osłony.

Tab. 3: Wyniki pomiaru mocy dawki skutecznej mierzonej w jednostkach $[\frac{\mu S v}{h}]$ w zależności od odległości [m] dla miernika Model 19 Micro R Meter

l - odległość [m]	D - moc dawki skutecznej $\left[\frac{\mu S v}{h}\right]$					średnia $\left[\frac{R}{h}\right]$	średnia $\left[\frac{Sv}{h}\right]$	Wartośći teoretyczne $\left[\frac{\mu S v}{h}\right]$
0,3	800	800	800	800	790	798	7,98	8,73
0,4	480	485	490	475	475	481	4,81	4,91
0,5	320	320	320	320	325	321	3,21	3,14
0,6	250	250	250	255	250	251	2,51	2,18
0,7	195	200	190	200	200	197	1,97	1,6
0,8	160	160	155	160	160	159	1,59	1,23
0,9	140	140	145	140	140	141	1,41	0,97
1	110	110	100	115	110	109	1,09	0,79
1,1	100	90	95	100	100	97	0,97	0,65
1,2	85	90	90	85	90	88	0,88	0,55
1,3	80	75	80	80	75	78	0,78	0,47
1,4	70	70	75	70	75	72	0,72	0,4
1,5	65	65	65	60	65	64	0,64	0,35