[x=m #]

More than one Particle So far, only talked about systems whome DoF (assued proton/nuclie stationer) More complicated atoms, have to deal of other elections. eg [wo now complications $-) \mathcal{A}(x) \rightarrow \mathcal{A}(x, x_{2})$ $V(x) \rightarrow V(x, x_2)$ 2 typically Not seperable

=) Sh cannot be shed

analytically

(Analogs in Class. I Phyco) Not much else to say here.

Classielle No way of knowing Following particle paths valutes the uncontint principle => | Mys.cs invaired under $\mathcal{O}(x,x_2) = \mathcal{O}(x_2,x_1)$

Electors
$$S = \frac{1}{2} = \frac{1}{2}$$
 Fermions

Back to an example:

 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ Fermions

 $\frac{1}{2} = \frac{1}{2} =$

Note for fermions $\frac{1}{1}$ $\frac{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

Example (Pauli Exclusion Principle) Cannot have 2 identical fermions in Same Questin State (v/ Same question #5) If so, 4 = 0 By $x_1 \leftrightarrow x_2$ General, Major Implications Major Simplification of the allowed States for systems of fermions

Spin One none piece to Coll Hydrogen wave function. Elector Spin. Fundamental property of electons - Intrinsic anyal monostry - Deep origins. - Intriticals: Think of elaston as sphere of change, then spin measures how much elaston in rotating an spinning (Not gointe right...) $S^2 = S(s+1)t^2$ where S is a Quen Number associated to differ partides (fondametel lakel) Expect 2s+Z Possilla values for He Z-componet (-5, -5+1, ... s)

Asice Space time	+ QM	implie	s Can	oly he
5 =				
Unconstrice C	as we BL ne	and con	er g-ndj	Duiq-e
- Carl	<i>)</i>			
<u> </u>	5 2	-4		5
ST - Q M	S p. a	2 - 1 - 2	Le-	~N~ <u>S</u>
	Spin	$ \wedge $	315	D~S

Wave-Particle Dudity elections - Known to be particles, now seen to also have wave-like behavior photons - make up light, clearly behaves like wave also known to interest whatoms a es like particles Quarton Mechanically all plenomena have both dassid ware a particle properties Classical Particles - localized, scattered, deposits
energy sudday in one spot.
Conserves E & p. No interference
ldiffection Classical Wares: Interfor and diffract Esprend out across space/time
Not quantized Matter and radiation have aspects of Joth. When interacting (emission/absorption) particle aspects when propagatry through space wave aspects

Observations characterized by particle-like poperties

Predictions are " ware-like poperties

We will get more quatitaire next

	,	