NAME: Siddharth Unny

SAP ID: 60004200080

BRANCH: A4

SUBJECT: Data Warehousing and Mining **EXPERIMENT - 3**

Implementation of Classification algorithm

AIM: Implementation of Classification algorithm using

- 1. Decision Tree ID3
- 2. Naïve Bayes algorithm

THEORY:

PART A) Program using inbuilt functions.

Predict class of unseen samples.

Results should display

- 1. Confusion matrix
- 2. Classifier accuracy

CODE:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
train_df = pd.read_csv(titanic_path)train_df.head()

0	<pre>train_df = pd.r train_df.head()</pre>		tanic_pa	th)									
	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	%
	0 1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	
	1 2	. 1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2 3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3 4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	
	4 5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	

#preprocessing of dataset

train_df["Name"]

train_df["Title"]="

for i in range(len(train_df)):

title_search = train_df["Name"][i]

title = str(title_search).split(",")

finaltitle = title[1].split(".")

train_df["Title"][i]=finaltitle[0]


```
#remove nan values
nan_values = train_df.isna()
more = nan_values.mean().round(5)*100
print(more)
for i in range(len(more)):
if(more[i] >= 50):
  remove = train_df.columns[i]
train_df.drop(remove, inplace=True, axis=1)
#filling nans
embark_col = train_df["Embarked"]
for i in range(len(embark_col)):
 if train_df["Embarked"].isnull().any():
  train_df["Embarked"]=train_df["Embarked"].fillna(train_df["Embarked"].mode()[0])
for i in range(len(train_df)):
 if train_df["Age"].isnull().any(): train_df["Age"]=train_df["Age"].fillna(train_df["Age"].mean())
#merging family_mebers
train_df["Family_members"]=train_df["SibSp"]+train_df["Parch"]
train_df.drop("SibSp", inplace=True, axis=1)
train_df.drop("Parch", inplace=True, axis=1)
train_df.drop("Name", inplace=True, axis=1)
train_df.drop("Ticket", inplace=True, axis=1)
train_df.drop("PassengerId", inplace = True,axis=1)
#Normalizing
def normalize(data_list):
X_new = []
X_max = data_list[0]
for i in range(1, len(data_list)):
    if data_list[i] > X_max:
       X_max = data_list[i]
 X_min = min(data_list)
for i in data_list:
  X_{new.append}((i - X_{min})/(X_{max} - X_{min}))
 return X_new
train_df["Age"] = normalize(train_df["Age"])
train_df["Fare"] = normalize(train_df["Fare"])
```

```
train_df["Family_members"] = normalize(train_df["Family_members"])
train_df = pd.get_dummies(train_df, columns=["Pclass", "Sex", "Title", "Embarked"])
titanic_df = pd.DataFrame(train_df)
y = titanic_df["Survived"]
titanic_df.drop("Survived", inplace=True, axis=1)
X = titanic_df
#Gaussian Naive Bayes Theorem
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size= 0.30)
from sklearn.naive_bayes import GaussianNB
gauss = GaussianNB()
gauss.fit(X_train, y_train)
prediction_score = gauss.predict(X_test)
print('Prediction size:', prediction_score.size)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test , prediction_score)
print('Confusion matrix : ')
print(cm)
from sklearn import metrics
print('Classification Report : ')
print(metrics.classification_report(y_test,prediction_score))
print('Gaussian Naive Bayes Accuracy:',(metrics.accuracy_score(y_test,prediction_score)))
```

Prediction size : 268 Confusion matrix : [[130 25] [30 83]]

Classification Report :

			i kepoi c .	CTG22TITCGCTO
support	f1-score	recall	precision	
155	0.83	0.84	0.81	0
113	0.75	0.73	0.77	1
268	0.79			accuracy
268	0.79	0.79	0.79	macro avg
268	0.79	0.79	0.79	weighted avg

Gaussian Naive Bayes Accuracy: 0.7947761194029851

#Decision Tree Classifier

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size= 0.30)

from sklearn.tree import DecisionTreeClassifier classifier= DecisionTreeClassifier(criterion='entropy', random_state=0) classifier.fit(X_train, y_train)

prediction_score = classifier.predict(X_test)
print('Prediction size:', prediction_score.size)

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, prediction_score)
print('Confusion matrix:')
print(cm)

from sklearn import metrics print('Classification Report : ') print(metrics.classification_report(y_test,prediction_score))

print('Decision Tree Classifier Accuracy:',(metrics.accuracy_score(y_test,prediction_score)))

Prediction size: 268 Confusion matrix :

[[139 35]

[22 72]] Classification Report :

	precision	recall	f1-score	support
0	0.86	0.80	0.83	174
1	0.67	0.77	0.72	94
accuracy			0.79	268
macro avg	0.77	0.78	0.77	268
weighted avg	0.80	0.79	0.79	268

Decision Tree Classifier Accuracy: 0.7873134328358209

PART B)

- 1. Compare results of DT and ND for 5 datasets.
- 2. Plot AUROC
- 3. Plot comparison graphs using the results of DT and NB

1. Wine Dataset

	rain_df = pd.read_csv(wine_path) rain_df.head()													
	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6	
1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6	
2	white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6	
3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6	
4	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6	

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size= 0.30)
from sklearn.tree import DecisionTreeClassifier
clf_tree= DecisionTreeClassifier(criterion='entropy', random_state=0)
clf_tree.fit(X_train, y_train)
from sklearn.naive_bayes import GaussianNB
gauss = GaussianNB()
gauss.fit(X_train, y_train)
y_score1 = clf_tree.predict_proba(X_test)[:,1]
y_score2 = gauss.predict_proba(X_test)[:,1]
from sklearn.metrics import roc_curve, roc_auc_score
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn import metrics
def confusionMatrix(y_test,prediction_score,name):cm
= confusion_matrix(y_test , prediction_score)
 print('Confusion matrix of '+ name)
 print(cm)
 print('Classification Report of '+ name)
 print(metrics.classification_report(y_test,prediction_score))
```



```
confusionMatrix(y_test, clf_tree.predict(X_test), "Decision Tree")
confusionMatrix(y_test, gauss.predict(X_test),"Naive Bayes")
def plotfigures(y_score , y_test,X_test, name):
 #Creating False and True Positive Rates and printing Scores
false_positive_rate, true_positive_rate, threshold1 = roc_curve(y_test, y_score)
 print('roc_auc_score for: ' + name, roc_auc_score(y_test, y_score))
 #Plotting ROC Curves
 plt.subplots(1, figsize=(8,5))
 plt.axis('scaled')
 plt.xlim([0, 1.05])
 plt.ylim([0, 1.05])
 plt.title("AUC & ROC Curve for "+ name)
 plt.plot(false_positive_rate, true_positive_rate, 'g')
 plt.fill_between(false_positive_rate, true_positive_rate, alpha=0.7)
 plt.text(0.95, 0.05, 'AUC = %0.4f' % roc_auc_score(y_test, y_score), ha='right', fontsize=12,
weight='bold')
 plt.xlabel("False Positive Rate")
 plt.ylabel("True Positive Rate")
 plt.show()
plotfigures(y_score1 , y_test,X_test, "Decision Tree")
plotfigures(y_score2, y_test,X_test, "Naive Bayes")
def Comparison(y_test,y_score1,y_score2,X_test):
false_positive_rate, true_positive_rate, thresolds = roc_curve(y_test, y_score1)
 plt.plot(false_positive_rate, true_positive_rate, lw=2, alpha=0.3, label='ROC Decision Tree (AUC
= %0.4f)' % roc_auc_score(y_test, y_score1))
false_positive_rate, true_positive_rate, thresolds = roc_curve(y_test, y_score2)
 plt.plot(false_positive_rate, true_positive_rate, lw=2, alpha=0.3, label='ROC Naive Bayes (AUC =
%0.4f)' % roc_auc_score(y_test, y_score2))
 plt.title('ROC Curve Comparison')
 plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
 plt.plot([0,1],[0,1],'r--')
 plt.xlim([0,1.1])
 plt.ylim([0,1.1])
 plt.ylabel('True Positive Rate')
```


plt.xlabel('False Positive Rate') plt.show()

Comparison(y_test,y_score1,y_score2,X_test)

	17]	rix of Deci	sion Tree		
Classific	ation	Report of	Decision	Tree	
		precision		f1-score	support
	0.0	0.94	0.97	0.95	504
	1.0	0.99	0.98	0.98	1435
accur	acy			0.98	1939
macro	avg	0.97	0.97	0.97	1939
weighted	avg	0.98	0.98	0.98	1939

Confusion matrix	of Naiv	e Bayes		
[[472 32]				
[35 1400]]				
Classification F	eport of	Naive Ba	yes	
pr	ecision	recall	f1-score	support
0.0	0.93	0.94	0.93	504
1.0	0.98	0.98	0.98	1435
accuracy			0.97	1939
macro avg	0.95	0.96	0.96	1939
weighted avg	0.97	0.97	0.97	1939

roc_auc_score for : Decision Tree 0.9740977168455618

roc_auc_score for : Naive Bayes 0.9836901266457252

2.Diabetes Dataset

train_df = pd.read_csv(diabetes_path)
train_df.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

y = train_df["Outcome"]
train_df.drop("Outcome", inplace=True, axis=1)
X = train_df

Confusion matrix of Decision Tree [[124 27] [32 48]] Classification Report of Decision Tree recall f1-score precision support 0 0.79 0.82 0.81 151 1 0.64 0.60 0.62 80

0.72

0.74

accuracy

macro avg

weighted avg

Confusion matrix of Naive Bayes [[131 20] [29 51]] Classification Report of Naive Bayes precision recall f1-score support 0 0.82 0.87 0.84 151 0.64 0.68 1 0.72 80 0.79 231 accuracy macro avg 0.77 0.75 0.76 231

0.78

roc_auc_score for : Decision Tree 0.7105960264900663

0.71

0.74

0.74

0.71

0.74

231

231

231

weighted avg

0.79

0.78

231

3.Star Dataset

```
train_df = pd.read_csv(star_path)
train_df.tail()
```

	Vmag	Plx	e_Plx	B-V	SpType	Amag	TargetClass
3637	7.29	3.26	0.95	1.786	K4III	14.856089	0
3638	8.29	6.38	1.00	0.408	F2IV/V	17.314104	1
3639	6.11	2.42	0.79	1.664	M0/M1IIICNp	13.029078	0
3640	7.94	4.94	2.90	0.210	A5V	16.408636	1
3641	8.81	1.87	1.23	1.176	K1/K2III	15.169209	0

```
y = train_df["TargetClass"]
train_df.drop(["TargetClass","SpType"], inplace=True, axis=1)
X = train_df
```


Confusion matrix of Decision Tree [[463 89] 91 450]] Classification Report of Decision Tree precision recall f1-score support 0 0.84 0.84 0.84 552 1 0.83 0.83 0.83 541 1093 0.84 accuracy macro avg 0.84 0.84 0.84 1093 weighted avg 0.84 0.84 1093 0.84

Confusion mat [[513 39] [110 431]] Classification		50	yes							
precision recall f1-score suppo										
0	0.82	0.93	0.87	552						
1	0.92	0.80	0.85	541						
accuracy			0.86	1093						
macro avg	0.87	0.86	0.86	1093						
weighted avg	0.87	0.86	0.86	1093						

roc_auc_score for : Decision Tree 0.835280545956227

roc_auc_score for : Naive Bayes 0.9317588202202041

ROC Decision Tree (AUC = 0.8353) ROC Naive Bayes (AUC = 0.9318)

train_df = pd.read_csv(gender_path)
train_df.head()

	Favorite Color	Favorite Music Genre	Favorite Beverage	Favorite Soft Drink	Gender
0	Cool	Rock	Vodka	7UP/Sprite	F
1	Neutral	Hip hop	Vodka	Coca Cola/Pepsi	F
2	Warm	Rock	Wine	Coca Cola/Pepsi	F
3	Warm	Folk/Traditional	Whiskey	Fanta	F
4	Cool	Rock	Vodka	Coca Cola/Pepsi	F

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
for i in train_df.columns:
 train_df[i]=le.fit_transform(train_df[i])
train_df.head()

	Favorite Color	Favorite Music Genre	Favorite Beverage	Favorite Soft Drink	Gender
0	0	6	3	0	0
1	1	2	3	1	0
2	2	6	5	1	0
3	2	1	4	2	0
4	0	6	3	1	0

y = train_df["Gender"]
train_df.drop("Gender", inplace=True, axis=1)X
= train_df

Confusion mat	rix of Deci	ision Tree			Confusion mat	rix of Naiv	e Bayes		
[[6 4]					[[7 3]				
[2 8]]					[6 4]]				
Classificatio	n Report of	Decision	Tree		Classification	n Report of	Naive Ba	yes	
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.75	0.60	0.67	10	0	0.54	0.70	0.61	10
1	0.67	0.80	0.73	10	1	0.57	0.40	0.47	10
accuracy			0.70	20	accuracy			0.55	20
macro avg	0.71	0.70	0.70	20	macro avg	0.55	0.55	0.54	20
weighted avg	0.71	0.70	0.70	20	weighted avg	0.55	0.55	0.54	20

roc_auc_score for : Decision Tree 0.73

roc_auc_score for : Naive Bayes 0.59000000000000001

ROC Decision Tree (AUC = 0.7300)
ROC Naive Bayes (AUC = 0.5900)

5.Mushroom Dataset

train_df = pd.read_csv(mushroom_path)
train_df.head()

	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	stalk- shape	•••	stalk- color- above- ring	stalk- color- below- ring		veil- color	ring- number	ring- type	spore- print- color	population	habitat	class
0	х	s	n	t	р	f	С	n	k	е		w	w	р	W	0	р	k	s	u	р
1	x	s	у	t	а	f	С	b	k	е		w	W	р	W	0	p	n	n	g	е
2	b	s	w	t	1	f	С	b	n	е		w	w	р	W	0	р	n	n	m	е
3	X	У	W	t	р	f	С	n	n	е		w	w	р	w	0	p	k	S	u	р
4	х	s	g	f	n	f	W	b	k	t		w	w	р	W	0	е	n	а	g	е

5 rows × 23 columns

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
for i in train_df.columns:
 train_df[i]=le.fit_transform(train_df[i])

train_df.head()

	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	stalk- shape	 color- above- ring	color- below- ring	veil- type	veil- color	ring- number	ring- type	spore- print- color	population	habitat	class
0	5	2	4	1	6	1	0	1	4	0	 7	7	0	2	1	4	2	3	5	1
1	5	2	9	1	0	1	0	0	4	0	 7	7	0	2	1	4	3	2	1	0
2	0	2	8	1	3	1	0	0	5	0	 7	7	0	2	1	4	3	2	3	0
3	5	3	8	1	6	1	0	1	5	0	 7	7	0	2	1	4	2	3	5	1
4	5	2	3	0	5	1	1	0	4	1	 7	7	0	2	1	0	3	0	1	0

5 rows × 23 columns

y = train_df["class"]

train_df.drop("class", inplace=True, axis=1)X

= train_df

Confusion matr	ix of Deci	sion Tree			Confusion matrix of Naive Bayes						
[[1265 0]					[[1154 111]						
[0 1173]]					[86 1087]]						
Classification	Report of	Decision	Tree		Classification Report of Naive Bayes						
	precision	recall	f1-score	support	pre	precision recall f1-score					
0	1.00	1.00	1.00	1265	0	0.93	0.91	0.92	1265		
1	1.00	1.00	1.00	1173	1	0.91	0.93	0.92	1173		
accuracy			1.00	2438	accuracy			0.92	2438		
macro avg	1.00	1.00	1.00	2438	macro avg	0.92	0.92	0.92	2438		
weighted avg	1.00	1.00	1.00	2438	weighted avg	0.92	0.92	0.92	2438		

- 1. In Wine Quality Data, both Naïve Bayes and Decision Tree have approximately the same accuracy .
- 2. In Diabetes Data, Naive Bayes has better accuracy than Decision Tree so it is the better classifier.
- 3. In Star Data, Naive Bayes has better accuracy than Decision Tree so it is the better classifier.
- 4. In Gender Data, Decision Tree has best accuracy so it is the better classifier.
- 5. In Mushroom Data, both Naïve Bayes and Decision Tree have approximately the same accuracy

PART C) Modify DT/NB to use k-fold cross validation and ensemble models

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, roc_curve,
mean_squared_error
from sklearn.model_selection import KFold, cross_val_score
from sklearn.ensemble import VotingClassifier
#Using star dataset
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.20, random_state=0)
print("Using 7 folds cross validation")
k = 7
kf = KFold(n_splits=k, random_state=None)
nb = GaussianNB()
dt = DecisionTreeClassifier(random_state=0)
result = cross_val_score(nb , X, y, cv = kf)
print("Avg accuracy for Naive Bayes : {}".format(result.mean()))
result = cross_val_score(dt , X, y, cv = kf)
print("Avg accuracy for Decision Tree : {}".format(result.mean()))
print()
final_model = VotingClassifier(
estimators=[('nb', nb), ('dt', dt)], voting='hard')
result = cross_val_score(final_model, X, y, cv = kf)
print("\nEnsemble Using Max votings")
print("Avg accuracy with k-folds cross validation : {}".format(result.mean()))
final_model.fit(X_train, y_train)
pred_final = final_model.predict(X_test)
cm2 = confusion_matrix(y_test, pred_final)
print("\nConfusion matrix :\n",cm2)
print("Classifier Accuracy without cross validation: ",accuracy_score(y_test, pred_final))
```

OUTPUT:

```
Using 7 folds cross validation
Avg accuracy for Naive Bayes: 0.8682077998776655
Avg accuracy for Decision Tree: 0.8426667861888592

Ensemble Using Max votings
Avg accuracy with k-folds cross validation: 0.852554786863808

Confusion matrix:

[[346 24]
[89 270]]
Classifier Accuracy without cross validation: 0.8449931412894376
```

CONCLUSION:

Python was used to implement the classification algorithms Decision Tree (ID3) and Naive Bayes. We learnt different ways to evaluate the classification model using : Confusion Matrix and AUROC curve .

The confusion matrix provides us a matrix/table as output and describes the performance of the model.It is also known as the error matrix. The matrix consists of predictions resulting in a summarized form, which has a total number of correct predictions and incorrect predictions.

ROC curve stands for Receiver Operating Characteristics Curve and AUC stands for Area Under the Curve. It is a graph that shows the performance of the classification model at different thresholds. To visualize the performance of the multi-class classification model, we use the AUC-ROC Curve. The algorithms were modified using k-fold cross validation and ensemble models, and the AUROC and comparison graphs were generated.