Signals & Systems

Spring 2019

https://sites.google.com/site/ntusands/ https://ceiba.ntu.edu.tw/1072EE2011_04

Yu-Chiang Frank Wang 王鈺強, Associate Professor Dept. Electrical Engineering, National Taiwan University

信號與系統 Signals & Systems

- Time: Mondays 2, 3 (09:10-11:10) & Thursday 7 (14:20-15:10)
- Location: EE2-106 [UPDATED!]
- Website:
 - https://sites.google.com/site/ntusands/ (重要事項,包含作業考試等資訊)
 https://ceiba.ntu.edu.tw/1072EE2011_04 (個人成績等相關資訊)
 Please make sure that your NTU email account is working!
- Required Knowledge & Skills
 - Linear algebra, calculus, and probability
 - Basic programming skills

Disclaimer

- I'm teaching this course for the very 1st time. ©
- Other classes (highly recommended!!) taught by
 - 李琳山教授 @ EE2-143
 - 李枝宏教授 @ EE2-229
 - 陳宏銘教授 @ EE2-106 (course suspended due to sick leave)

What to Expect from this Course?

- What are Signals & Systems?
- Why study Signals & Systems?
- Lots of stuff to learn, but hopefully would be helpful and with lots of fun!

Course Information

- 加簽原則 (How to sign up if not already in?)
- 講師/助教群介紹 Teaching Team & Office Hours
- 課程大綱與精神
- 成績計算方式

加簽原則

- Capacity
 - 教室容量62人,目前已選上60人
 - 加簽上限以教室容量為準 (有可能換教室?)
- Priority
 - 電機系同學 (必修)
 - 他系同學依年級排序

Teaching Team & Office Hours

- Instructor: Yu-Chiang Frank Wang (王鈺強)
- Research Areas
 - Computer Vision, Machine Learning, Deep Learning, & Artificial Intelligence
- Education
- TO NOT THE WAY
- PhD, ECE, Carnegie Mellon University, 2009
- MS, ECE, Carnegie Mellon University, 2004
- BS, EE, National Taiwan University, 2001

- Contact Info
 - Email: ycwang@ntu.edu.tw
- Office Hour for Signals & Systems
 - Mon 11:10am-12pm
 - Alternative time can be arranged by email appointments.

TAs & Office Hours:

(本班助教 #1)

(本班助教 #2)

TAs & Office Hours:

(統籌助教: 課程協調/課後輔導) 陳皇志

(Tight) Schedule

Week	Date	HW	HW Content	Remark
1	2/18 - 2/22	-		
2	2/25 - 3/01	HW1	Periodic signal, inverse function (Ch. 1)	Matlab Tutorial; 2/28 (Thu.) 放假
3	3/04 - 3/08	HW2	LTI, causality, stable properties, convolution (Ch. 2-1~2-3)	
4	3/11 - 3/15	Matlab1	Convolution (Ch. 2-1~2-2)	
5	3/18 - 3/22	HW3	Fourier series (Ch. 3)	
6	3/25 - 3/29	HW4	Fourier transform (Ch. 4-1~4-3)	
7	4/01 - 4/05	Matlab2	DFT, FFT (Ch. 5-1)	4/4 (Thu.) 放假
8	4/08 - 4/12	HW5	Fourier transform (Ch. 5-1~5-3)	
9	4/15 - 4/19	-		4/15 (Mon.) Midterm Exam
10	4/22 - 4/26	-		
11	4/29 - 5/03	HW6	Filter, frequency response (Ch. 6)	
12	5/06 - 5/10	HW7	Sampling theorem (Ch. 7)	
13	5/13 - 5/17	Matlab3	Digital filter (Ch. 6)	
14	5/20 - 5/24	HW8	Laplace transform (Ch. 9)	
15	5/27 - 5/31	HW9	z-transform (Ch. 10)	
16	6/03 - 6/07	Matlab4	z-transform (Ch. 10)	
17	6/10 - 6/14	HW10	Modulation, demodulation (Ch. 8)	
18	6/17 - 6/21	-		6/17 (Mon.) Final Exam

Textbook & Lecture Slides/Notes

- Signals and Systems
 - Alan V. Oppenheim, et al.
 - Pearson; 2nd edition (August 16, 1996)

- Lecture slides/notes
 - Available on Ceiba before the day of class

About Grading & Academic Integrity

- HWs 30%
 - Handwritten HWs x 10 (1% each)
 - Matlab HWs x 4 (5% each)
 - 每周的HW於周五出,手寫作業deadline為一星期後的周五。
 MATLAB作業deadline為兩周後的周五。
- Exams 70%
 - Midterm 70% x 0.45
 - Final 70% x 0.55
- Participation (optional bonus; not guaranteed)
 - Not necessarily 點名
 - Can be 課堂互動、Q&A等
- Can discuss HW with peers, but DO NOT copy and/or share code
 - <u>任一次</u>作業抄襲/被抄襲者,按校規論且本課程學期成績為F
 - This is <u>university policy</u> and <u>not negotiable</u>.

Final Grade

Letter Grading System	Definition	Grade Points	Conversion Scale_
A+	All goals achieved beyond expectation	4.3	90-100
A	All goals achieved	4.0	85-89
A-	All goals achieved, but need some polish	3.7	80-84
B+	Some goals well achieved	3.3	77-79
В	Some goals adequately achieved	3.0	73-76
B- (passing grade for graduate students)	Some goals achieved with minor flaws	2.7	70-72
C+	Minimum goals achieved	2.3	67-69
С	Minimum goals achieved with minor flaws	2.0	63-66
C- (passing grade for undergraduate students)	Minimum goals achieved with major flaws	1.7	60-62
F	Minimum goals not achieved	0	59 and below
Х	Not graded due to unexcused absences or other reasons	0	0
w	Withdrawal		
NG	No grade reported		
IP	In progress		
TR	Transfer credit		
EX	Exempted		

Ch. 1 Signals & Systems

What Are Signals?

Definition

- A signal is a function that "conveys information about the behavior or attributes of some phenomenon". (Wikipedia)
- Signals: any variables that carry information
- Commonly observed and processed (e.g. calculated, stored, transmitted, recovered, predicted, and so on) in communication systems, signal processing, etc. areas.
- Ever heard of data (or "big data")?
 They are observed/represented/processed as signals too!

- Examples
 - Voice/sound/music s=f(t) as signals

- Examples
 - Image I = f(x, y) as signals

- Examples
 - Video V = f(x, y, t) as signals

Properties

- Signals can be 1D, 2D, 3D, or beyond.
- Signals can be consisted of 1s and 0s (i.e., binary signals).
- Signals can be of real or complex values.
- Signals can be continuous-time or discrete-time signals. (e.g., signals processed in analog or digital circuits)

What Are Systems?

Definition

- A system is a group of interacting or interrelated entities that form a unified whole.
- A system is delineated by its spatial and temporal boundaries, surrounded and influenced by its environment, described by its structure and purpose and expressed in its functioning.
- A system processes input signals to produce output signals.
- Sometimes referred to as "models".

What Are Systems? (cont'd)

- Examples
 - Communication systems

What Are Systems? (cont'd)

- Examples
 - Image recognition systems

Sect. 1.1 Continuous-Time and Discrete-Time Signals

- Mathematical Representation
 - For a continuous-time (CT) signal, the independent variable is always enclosed by a parenthesis (·), e.g.,

$$x(t), y(t), z(t), I(x, y), f(x, y, t), etc.$$

• For a discrete-time ()T) signal, the independent variable is always enclosed by a brackets [·], e.g.,

$$x[n], y[n], z[n], I[m, n], F[u, v, n], etc.$$

- Mathematical Representation
 - For a continuous-time (CT) signal, the independent variable is always enclosed by a parenthesis (·), e.g.,

$$x(t), y(t), z(t), I(x, y), f(x, y, t), etc.$$

• For a discrete-time (CT) signal, the independent variable is always enclosed by a brackets [·], e.g.,

$$x[n], y[n], z[n], I[m, n], F[u, v, n], etc.$$

Examples of Continuous Signals

• Circuits (e.g., voltage, current, electric charge)

• Motion (e.g., location, velocity, acceleration)

Examples of Discrete Signals

• Foreign exchange rate (e.g., JPY to NTD)

• Stock market index (e.g., weekly Dow-Jones stock market index)

- Signal Energy & Power
 - Instantaneous Power $p(t) = v(t)i(t) = \frac{1}{R}v^2(t)$
 - Total energy over a finite time interval $\int_{t_1}^{t_2} p(t) dt = \int_{t_1}^{t_2} \frac{1}{R} v^2(t) dt$
 - Average power over a finite time interval

$$\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} p(t) dt = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{1}{R} v^2(t) dt$$

- Signal Energy & Power (cont'd)
 - Total energy over a finite time interval

$$E \triangleq \int_{t_1}^{t_2} |x(t)|^2 dt \quad \text{continuous-time}$$

$$E \triangleq \sum_{n=n_1}^{n_2} |x[n]|^2 \quad \text{discrete-time}$$

Time-averaged power over a finite time interval

$$P \stackrel{\triangle}{=} rac{1}{t_2 - t_1} \int_{t_1}^{t_2} |x(t)|^2 dt$$
 continuous-time $P \stackrel{\triangle}{=} rac{1}{n_2 - n_1 + 1} \sum_{n=n_1}^{n_2} |x[n]|^2$ discrete-time

- Signal Energy & Power (cont'd)
 - Total energy over an infinite time interval

$$\underline{E}_{\infty} \stackrel{\triangle}{=} \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |x(t)|^2 dt$$

$$E_{\infty} \stackrel{\triangle}{=} \lim_{N \to \infty} \sum_{n=-N}^{+N} |x[n]|^2 = \sum_{n=-\infty}^{+\infty} |x[n]|^2$$

• Time-averaged power over an infinite time interval

$$P_{\infty} \stackrel{\triangle}{=} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

$$P_{\infty} \stackrel{\triangle}{=} \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} |x[n]|^2$$

Sect. 1.2 Transformations of the Independent Variable

Key Concepts about the Transformations

- Properties
 - Time shift
 - Time reversal
 - Time scaling
 - Periodic signal and its fundamental period
 - Even and odd signals

Shifting, Reversal, and Scaling

• Time shift:

$$\begin{cases} n_0, t_0 > 0 : & \text{delay } \checkmark \\ n_0, t_0 < 0 : & \text{advance} \end{cases}$$

$$x[n-n_0]$$

$$x(t-t_0)$$

$$y = t_0 < 0$$

 $x(t+5)$

Shifting, Reversal, and Scaling

• Time reversal:

Shifting, Reversal, and Scaling

• Time scaling:

 $t \rightarrow 2t$ x(2t)

• What if the signals are discrete? What would x[kn] be?

Shifting, Reversal, and Scaling (cont'd)

- Example 1.1
 - Determine x(-t+1)
 - You can solve this in two different ways!

$$\tilde{(1)} \propto (+1) \rightarrow \propto (++1)$$

Try Example 1.2 by yourself!

Shifting, Reversal, and Scaling (cont'd)

- Example 1.3
 - $x(t) \rightarrow x(\alpha t + \beta)$
 - $|\alpha| < 1$
 - $|\alpha| > 1$
 - α < 0
 - $\beta > 0$
 - β < 0

- Linearly stretched
- Linearly compressed
- Time reversal
- Advanced time shift
- Delayed time shift

1.2.2 Periodic Signals

- What are periodic signals?
 - Signals which are periodic...
 - Seriously, periodic signals are the signals which would be unchanged by a time shift of T (and obviously 2T, 3T, etc.)
 - Thus, T (or N if discrete) is called the fundamental period, denoted as T₀ or N₀.
 - If a signal is *not* periodic, we call it an aperiodic signal.

A CT Periodic Signal

x(t) = x(t + T) for T > 0 and all values of t

A DT Periodic Signal

x[n] = x[n+N] for N > 0 and all values of n

1.2.2 Periodic Signals (cont'd)

- Example 1.4
 - Is $x(t) = \begin{cases} \cos(t), & \text{if } t < 0 \\ \sin(t), & \text{if } t \ge 0 \end{cases}$ periodic? If so, what is its periodicity?

• Let's first consider the cases when t<0 and t>0...

$$t \sim \chi(t) = \mu_{S}(t) \Rightarrow \tau_{0} = 2\pi$$

 $t \sim \chi(t) = Sin(t) \Rightarrow \tau_{0} = 2\pi$

- What about t=0? () is with with occurs, and it does NoT recur at any other time.
- Since every feature in the shape of a periodic signal must recur periodically, we conclude that x(t) is... recur for the shape of a periodic signal must recur periodically,

even

1.2.3 Even and Odd Signals

• A signal is even if
$$x(-t) = x(t)$$
 or $x[-n] = x[n]$.

• A signal is odd if
$$x(-t) = -x(t)$$
 or $x[-n] = -x[n]$.

- ANY signals can be decomposed into a sum of an even signal and an odd signal!
- BUT, how to get the even/odd parts of a signal?

$$\int_{X} \left\{ x(+) \right\} = \frac{1}{2} \left\{ x(+) - x(-+) \right\}$$

$$\Rightarrow \underline{x(t)} = \underbrace{\mathcal{E}v}_{} \left\{ x(t) \right\} + \underbrace{\mathcal{O}d}_{} \left\{ x(t) \right\}$$

odd

1.2.3 Even and Odd Signals (cont'd)

Even-odd decomposition of a DT signal

$$\mathcal{E}v\left\{x[n]\right\} = \frac{1}{2}\left[x[n] + x[-n]\right]$$

$$\mathcal{O}d\left\{x[n]\right\} = \frac{1}{2}\left[x[n] - x[-n]\right]$$

1.3 Exponential and Sinusoidal Signals

- Mathematical Review: Complex number & complex plane

$$z = \sigma + j\omega$$

$$j = \sqrt{-1}$$

Magnitude and phase representation

$$\sigma + jw \Rightarrow \begin{cases} r = \sqrt{\sigma^2 + w^2} \\ \tan(\theta) = \frac{w}{\sigma} \end{cases} \Rightarrow \sigma + jw = r e^{j\theta}$$

1.3 Exponential and Sinusoidal Signals

• Mathematical Review: Complex number & complex plane

 $\mathcal{I}m$

• Euler's relation

$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$\Rightarrow z = \sigma + j\omega = r(\cos\theta + j\sin\theta)$$

$$= (r\cos\theta) + j(r\sin\theta)$$

• Continuous-time (CT) complex exponential signals

$$x(t) = Ce^{at}$$

where C and a are, in general, complex numbers.

$$a = \sigma + jw$$

$$a = \sigma + jw$$
$$C = |C| e^{j\theta}$$

- Continuous-time (CT) complex exponential signals: $x(t) = Ce^{at}$
- Special case 1: if C and a are real.

- Continuous-time (CT) complex exponential signals: $x(t) = Ce^{at}$
- Special case 2: if a is pure imaginary, i.e., $a=j\omega_0$ (where ω_0 is real) and C is complex $C \neq Ae^{j\phi}$, then

$$x(t) = Ae^{j(\omega_0 t + \phi)}$$

• It is periodic and the fundamental period $T_0 = \frac{2\pi}{\omega_0}$. Why? Proof:

- Continuous-time (CT) complex exponential signals: $x(t) = Ce^{at}$
- Energy of CT complex periodic signals

$$E_{period} = \int_0^{T_0} \left| A e^{j(\omega_0 t + \phi)} \right|^2 dt \qquad P_{period} = \frac{1}{T_0} E_{period} = A^2$$

$$= \int_0^{T_0} A^2 dt = A^2 T_0$$

$$E_{\infty} = \infty \qquad P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T \left| A e^{j(\omega_0 t + \phi)} \right|^2 dt = A^2$$

• For ANY non-zero periodic signals, the total energy E must be infinite.

• For $\underline{x(t)} = Ae^{j(\omega_0 t + \phi)}$, its real part is a sinusoidal signal with fundamental period $T_0 = \frac{2\pi}{\omega_0}$.

$$y(t) = \Re\{x(t)\} = A\cos\left(\omega_0 t + \phi\right)$$

$$A\cos(\omega_0 t + \phi)$$

$$A\cos(\omega_0 t + \phi)$$

- Fundamental period vs. fundamental frequency fundamental frequency = 2π / fundamental period fundamental period = 2π / fundamental frequency
- For example, we have $Acos(\omega_0 t + \phi)$, whose fundamental period is $T_0 = \frac{2\pi}{\omega_0}$, and fundamental frequency is $\frac{2\pi}{T_0} = \omega_0$.

- Fundamental frequency
 - $\omega_1 < \omega_2 < \omega_3$
- Fundamental period
 - $T_n = \frac{2\pi}{\omega_n}$, n = 1, 2, 3.
 - $T_1 > T_2 > T_3$

$$- \operatorname{Fund}_{t} x_{3}(t) = \operatorname{COS}(w_{3} t)$$

- - $T_n = \frac{2\pi}{\omega_n}$, n = 1, 2, 3. $T_1 > T_2 > T_3$

- Example 1.5 What is the fundamental period of $x(t) = e^{j2t} + e^{j3t}$?
- Let's check each complex signal first...

- CT Complex Exponential Signals: $x(t) = Ce^{at}$
- General case:
 Both C and a are complex.

C is expressed in a polar form:
$$C = |C| e^{j\phi}$$

a is expressed in a rectangular form: $a = r + j\omega_0$

$$\underline{Ce^{at}} = (|C|e^{j\theta})(e^{(r+jw_0)t})$$

$$= |C|e^{rt}e^{j(w_0t+\theta)}$$

$$= |C|e^{rt}\cos(w_0t+\theta) + j|C|e^{rt}\sin(w_0t+\theta)$$

Note: The real part is a growing sinusoid signal:

$$|C|e^{rt}\cos(\omega_0t+\theta)$$

- CT Complex Exponential Signals: $x(t) = Ce^{at}$
- General case: Both C and a are complex.
- The real part is a growing sinusoidal signal: $|C|e^{rt}\cos(\omega_0 t + \theta)$

- CT complex exponential signal: $x(t) = Ce^{at}$
- DT complex exponential signal:

$$x[n] = Ce^{\beta n}$$

$$= C(e^{\beta})^n$$

$$= C\alpha^n$$

where C and α are, in general, complex numbers.

- DT complex exponential signals: $x[n] = C\alpha^n$
- Special case 1: if C and α are both real numbers.

- DT complex exponential signals: $x[n] = C\alpha^n$ where $\alpha = e^{\beta}$
- Special case 2: β is purely imaginary and can be expressed as $\beta=j\omega_0$ (ω_0 is real), i.e., $\alpha=e^{j\omega_0}$ and $|\alpha|=1$.

$$x[n] = Ce^{j\omega_0 n}$$

Moreover, if $C = Ae^{j\phi}$, we have

• DT sinusoid signal: $Acos(\omega_0 n + \phi)$

$$x[n] = \cos\left(\frac{2\pi}{12}n\right)$$

$$x[n] = \cos\left(\frac{4 \cdot 2\pi}{31}n\right)$$

$$x[n] = \cos\left(\frac{n}{6}\right)$$

• DT sinusoid signal: $Acos(\omega_0\pi + \phi)$

- DT complex exponential signals: $x[n] = C\alpha^n$
- General case:

if C and α are both complex numbers & their amplitude may not be 1. $C = |C|e^{j\theta}$, $\alpha = |\alpha|e^{j\omega_0}$

$$x[n] = C\alpha^{n} = x[n] = |C| \cdot |A|^{n} e^{j(\omega_{0}n + 0)}$$

$$= |C| \cdot |A|^{n} \cdot \omega_{0}(\omega_{0}n + 0) + C$$
T sinusoid signal:
$$\frac{1}{2} \left\{ \sum_{i=1}^{n} |A_{i}|^{n} \right\} = \sum_{i=1}^{n} |A_{i}|^{n} + C$$

Its real part is a growing DT sinusoid signal:

• Growing DT sinusoid signals: $|C||\alpha|^n \cos(\omega_0 n + \theta)$

$$|\alpha| < 1$$

1.3.3 Periodicity Properties of DT Complex Exponential Signals

- Recall that for CT exponential signal $x(t) = e^{j\omega_0 t}$, the fundamental frequency is ω_{δ} .
- A larger ω corresponds to a larger fundamental frequency.
- For DT exponential ones $x[n] = e^{j\omega_0 n}$, is the fundamental frequency?

- Let's take a closer look...
 - For $x[n]=e^{j\omega_0n}$, the fund, frequency does NOT always increase with ω_0 . This is because $e^{j(\omega_0+2\pi)n}=e^{j2\pi n}e^{j\omega_0n}=e^{j\omega_0n}$
- When ω_0 is changed into $\omega_0 + 2\pi k$ and k is an integer, then the fundamental frequency is unchanged!

- Now we have $e^{j(\omega_0+2\pi)n}=e^{j2\pi n}e^{j\omega_0n}=e^{j\omega_0n}$.
- Therefore, only a frequency interval of length 2π is considered.
- Typically we have $0 \le \omega_0 < 2\pi$ or $-\pi \le \omega_0 < \pi$.
- Given the above observation, we have the low frequencies located at $\omega_0 = 0$, $\frac{1}{2}\sqrt{1}$, ... high frequencies located at $\omega_0 = \pm \pi$, $\frac{1}{2}\sqrt{1}$, ...
- Why? Think about $e^{j\omega_0n}=1$ when $\omega_0=0$, $\frac{1}{2}$, ... and $e^{j\omega_0n}=(-1)^n$ when $\omega_0=\pi$, $\frac{1}{2}$, ...

CT exponential signals

• CT & DT exponential signals $\cos(w_0 n)$ $\mathsf{cos}(w_0 t)$ $w_0 = \overline{0\pi}$ 1.5 0.5 0.5 0.5 0.5 -0.5 -0.5 -0.5 -0.5 $(w_0 n$ cos(1/2*pi*t) cos(1/2*pi*n) -1.5 -10 -10 10 -10 10 10 0 w_{0} w_0 1.5 0.5 0.5 0.5 0.5 0 -0.5 -0.5 -0.5 -0.5 Highes Frequen cos(1*pi*n) cos(1/8*pi*t) cos(1/8*pi*n) -1.5 -1.5 -1.5 -1.5 $\frac{2}{8}\pi$ -10 10 -10 ·10 10 w_{0} w_0 1.8 1.5 1.5 0.5 0.5 0.5 0.5 0 -0.5 -0.5 -0.5 -0.5 cos(1/4*pi*t) cos(1/4*pi*n) cos(3/2*pi*t) cos(3/2*pi*n) -1.5 -1.5 -10 -10 -10 10 10 -10 10 10 t

63

• CT & DT exponential signals

Comparisons of the Periods in the CT and DT Signals

$$x(t) = \cos\left(\frac{2\pi}{12}t\right) \qquad \qquad T$$

$$x[n] = \cos\left(\frac{2\pi}{12}n\right) \qquad \qquad N$$

$$x[n] = \cos\left(\frac{2\pi}{12}n\right) \qquad N = 12$$

$$x(t) = \cos\left(\frac{4 \cdot 2\pi}{31}t\right)$$

$$x[n] = \cos\left(\frac{4 \cdot 2\pi}{31}n\right)$$

$$x(t) = \cos\left(\frac{1}{6}t\right)$$

$$x[n] = \cos\left(\frac{1}{6}n\right)$$

$$T = \frac{31}{4}$$

$$N = \frac{31}{4}?$$

$$T = 12\pi$$

$$N = \frac{12\pi}{7}$$

- In the CT case, the period can be ANY positive real number.
- What about the DT case? The period should be a positive integer.
- For example, we have $e^{j\omega_0 n}$ or $\cos(\omega_0 n)$.
- If $\omega_0=2\pi\frac{m}{N}$, m and N are some integers and m is a prime to N, the fundamental period = N. the fundamental frequency = $\frac{2\pi}{N}$.

If ω_0 does not have the form $2\pi\frac{m}{N}$, then the DT signal is aperiodic.

TABLE 1.1 Comparison of the signals $e^{j\omega_0 t}$ and $e^{j\omega_0 n}$.

$e^{j\omega_0t}$	$e^{j\omega_0 n}$
Distinct signals for distinct values of ω_0	Identical signals for values of ω_0 separated by multiples of 2π
Periodic for any choice of ω_0	Periodic only if $\omega_0 = 2\pi m/N$ for some integers $N > 0$ and m .
Fundamental frequency ω_0	Fundamental frequency ω_0/m
Fundamental period $\omega_0 = 0$: undefined $\omega_0 \neq 0$: $\frac{2\pi}{\omega_0}$	Fundamental period* $\omega_0 = 0: \text{ undefined}$ $\omega_0 \neq 0: m\left(\frac{2\pi}{\omega_0}\right)$

^{*}Assumes that m and N do not have any factor in common.

• Example 1.6 What is the fundamental period of $x[n] = e^{j(2\pi/3)n} + e^{j(3\pi/4)n}$?

1.4 The Unit Impulse and Unit Step Functions

- 1.4.1 The DT Unit Impulse and Unit Step Sequences
- Definitions
 - Unit impulse (or unit sample)

$$\boldsymbol{\delta[n]} = \left\{ \begin{array}{l} 1, & n = 0 \\ 0, & n \neq 0 \end{array} \right.$$

$$\delta[n-n_0] = \begin{cases} 1, & n=n_0 \\ 0, & n \neq n_0 \end{cases}$$

Unit step

$$\mathbf{u[n]} = \left\{ \begin{array}{ll} 0, & n < 0 \\ 1, & n \ge 0 \end{array} \right.$$

$$\mathbf{u} \begin{bmatrix} \mathbf{n} - \mathbf{n}_0 \end{bmatrix} = \begin{cases} 0, & n < n_0 \\ 1, & n \ge n_0 \end{cases}$$

1.4 The Unit Impulse and Unit Step Functions (cont'd)

Relations between Impulse and Step Functions

• First difference

$$\delta[n] = u[n] - u[n-1]$$

• Running sum

$$\mathbf{u[n]} = \sum_{m=-\infty}^{n} \delta[m] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$$

1.4 The Unit Impulse and Unit Step Functions (cont'd)

- Sampling (sifting) property
- For *x*[*n*]

$$x[n]\delta[n] = x[0]\delta[n]$$

More generally,

$$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]$$

$$\delta[n-5]$$

$$x[5]\delta[n-5]$$

1.4 The Unit Impulse and Unit Step Functions

- 1.4.2 The CT Unit Impulse and Unit Step Sequences
- Definitions
 - Unit step function

$$\mathbf{u(t)} = \left\{ \begin{array}{l} 0, & t < 0 \\ 1, & t > 0 \end{array} \right.$$

• Unit impulse function

 $\delta(t)$

1.4 The Unit Impulse and Unit Step Functions

- 1.4.2 The CT Unit Impulse and Unit Step Sequences
- Approximation

$$\delta_{\Delta}(t) = \frac{du_{\Delta}(t)}{dt}$$

$$u(t) = \lim_{\Delta \to 0} u_{\Delta}(t)$$

$$\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t)$$

1.4.2 The CT Unit Impulse and Unit Step Sequences (cont'd)

- Relations between Impulse and Step Functions
- First derivative

$$\delta(t) = \frac{du(t)}{dt}$$

Running integral

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

1.4.2 The CT Unit Impulse and Unit Step Sequences (cont'd)

- Sampling (sifting) property
- For *x*(t)

$$x(t)\delta(t) = x(0)\delta(t)$$

More generally,

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

1.4.2 The CT Unit Impulse and Unit Step Sequences (cont'd)

Example 1.7
 Express x(t) and x'(t) in terms of CT unit impulse/step functions.

$$x(t) = \int_0^t \dot{x}(\tau) d\tau$$

[Example 1.7]

Suppose that x(t) is

then

$$x(t) = 2u(t-1)-3u(t-2)+2u(t-1)$$

$$\dot{x}(t) = 2\delta(t-1) - 3\delta(t-2) + 2\delta(t-1) \qquad x(t) = \int_0^t \dot{x}(\tau) d\tau$$

1.5 CT and DT Systems

- A system can be viewed as a process in which input signals are transformed into other signals (outputs).
- Example 1.8 RC circuit (a CT system)

Output signal: $v_c(t)$

$$i(t) = \frac{v_s(t) - v_c(t)}{R}$$

$$i(t) = C \frac{dv_c(t)}{dt}$$

$$\Rightarrow \frac{v_s(t) - v_c(t)}{R} = C \frac{d}{dt} v_c(t)$$

$$\Rightarrow \frac{dv_c(t)}{dt} + \frac{1}{RC}v_c(t) = \frac{1}{RC}v_s(t)$$

$$\Rightarrow \frac{dy(t)}{dt} + ay(t) = bx(t) \qquad a = b = \frac{1}{RC}$$

1.5.2 Interconnections of Systems

Series or cascade interconnection of 2 systems (e.g., receiver/amplifier)

Parallel interconnection of 2 systems
 (e.g., audio systems with multi-microphones/speakers)

1.5.2 Interconnections of Systems

• Hybrid of series and cascade interconnections

• Feedback interconnections (e.g., control systems, circuits, etc.)

1.5.2 Interconnections of Systems

- An example of a feedback system in circuits
 - (a) Simple electrical circuit

(b) Block diagram in which the circuit is depicted as the feedback interconnection of two circuit elements

1.6 Basic System Properties

- Key Concepts
 - Memory and memoryless (1.6.1)
 - Invertibility (1.6.2)
 - Causaility (1.6.3)
 - Stability and BIBO stable (1.6.4)
 - Time invariance (1.6.5)
 - Linearity (additivity property for a linear system) (1.6.6)
 - Superposition property for a linear system
 - Incrementally linear system and zero-input response

1.6.1 Systems with and without Memory

- CT
 - If y(t) is independent of $x(t+\tau)$ where $\tau \neq 0$, the systems is memoryless.
- DT
 - If y[n] is independent of x[n+k] where $k \neq 0$, the systems is memoryless.
- Example
 - Memoryless systems $y[n] = (2x[n] x[n]^2)^2$ y[n] = x[n] (identity) y(t) = x(t) (identity)
 - Systems with memory

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$
 (accumulator) $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$ (integral) $y[n] = x[n-1]$ (delay)

1.6.2 Invertibility and Inverse Systems

• For a system, if there exits another system that can retrieve the input from the output, then the system is invertible.

- Examples
 - Is y(t) = 2x(t) invertible?
 - Is the summation operation reversible?
 - Is $y(t) = x(t)^2$ invertible?

1.6.3 Causality

- Causal systems
 - The present output (y(t) or y[n]) depends only on the input at the present time (x(t) or x[n]) & those in the past.
 - Future inputs do NOT affect the present output.
 - In a causal CT system y(t) is independent of $x(t + \tau)$ where $\tau > 0$.
 - In a causal DT system y[n] is independent of x[n+k] where k>0.

1.6.3 Causality (cont'd)

• Causal systems
$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$
 $y[n] = x[n] - x[n-1]$

Circuit System and motion system are also causal systems, since the future input is impossible to affect the present output.

Non-causal systems

$$y[n] = x[n] - x[n+1]$$

$$y(t) = x(t+1)$$

$$y[n] = \frac{1}{2M+1} \sum_{k=-M}^{+M} x[n-k].$$

1.6.3 Causality (cont'd)

• Example 1.12 Are the following two systems causal and why? (i) y[n] = x[-n] (ii) $y(t) = x(t)\cos(t+1)$

1.6.4 Stability

Causal systems