General Semiparametric Estimating Equations for Missing Data

Estimating equation with finite-dimension parameters

- ightharpoonup Consider the p-dimension parameter of interest to be θ .
- ▶ A *p*-dimension estimating function(s) for θ , denoted by $m(O; \theta)$ (O denotes individual observations), satisfies

$$E_{\theta}[m(O;\theta)]=0.$$

▶ An estimator based on *n* i.i.d observations $O_1, ..., O_n$ solves

$$\sum_{i=1}^{n} m(O_i; \theta) = 0.$$

Influence function

- ▶ We denote the estimator as $\hat{\theta}$.
- ► Heuristically, under some regularity conditions, we can show

$$\sqrt{n}(\hat{\theta} - \theta) = n^{-1/2} \sum_{i=1}^{n} \phi(O_i; \theta) + o_p(1),$$

where

$$\phi(O;\theta) = -E[\dot{m}(O;\theta)]^{-1}m(O;\theta).$$

• $\phi(O; \theta)$ is called the influence function associated with $\hat{\theta}$.

Properties of influence function

- ightharpoonup First, $E[\phi(O;\theta)]=0$.
- ► Second, since $E_{\theta}[m(O;\theta)] = \int m(O;\theta) f(O;\theta) d\nu(O) = 0$ where $f(O;\theta)$ is the density function, we differentiate both sides with respect to θ to obtain

$$E[\dot{m}(O;\theta)] + E[m(O;\theta)\dot{l}_{\theta}(O)^{T}] = 0$$

where \dot{l}_{θ} is the score function.

► Therefore, we have

$$E[\phi(O;\theta)\dot{l}_{\theta}(O)^{T}] = I_{p \times p}.$$

Influence function for parameter of interest

▶ In a semiparametric model, θ is usually decomposed into the parameter of interest, β , and the nuisance parameter, η . That is, $\theta = (\beta, \eta)$ and $\hat{\theta} = (\hat{\beta}, \hat{\eta})$. Correspondingly, the estimating function $m(O; \theta) = (m_1(O; \theta), m_2(O; \theta))$ and

$$\phi(O;\theta) = (\phi_1(O;\theta), \phi_2(O;\theta)).$$

The score function is decomposed as

$$\dot{l}_{\theta}(O) = (\dot{l}_{\beta}(O), \dot{l}_{\eta}(O)).$$

• $\phi_1(O; \theta)$ is the influence function for $\hat{\beta}$.

Important properties for the influence function

▶ The properties of $\phi(O; \theta)$ imply

$$\begin{split} E[\phi_1(O;\theta)] &= 0, \\ E[\phi_1(O;\theta)\dot{l}_\beta(O)^T] &= I_{q\times q}, \\ E[\phi_1(O;\theta)\dot{l}_\eta(O)^T] &= o_{q\times (p-q)}. \end{split}$$

▶ On the other hand, given a function ϕ_1 satisfying the above equations, we can construct the following estimating equation for β

$$\sum_{i=1}^{n} \phi_1(O_i; \beta, \hat{\eta}(\beta)) = 0,$$

where
$$\hat{\eta}(\beta) - \eta_0 = O_p(n^{-1/2})$$
 for $|\beta - \beta_0| = O_p(n^{-1/2})$.

► The solution to the estimating equation is asymptotically linear with influence function $\phi_1(O; \theta_0)$.

What are the key messages?

- ► To construct all possible estimating equations for β , we need to find all functions (influence functions), $\phi_1(O;\theta)$, such that
 - 1. It has mean zero and finite variance;
 - 2. $E[\phi_1(O;\theta)\dot{l}_{\beta}(O)] = I_{q\times q};$
 - 3. $E[\phi_1(O;\theta)\hat{l}_{\eta}(O)] = o_{q \times (p-q)}.$
- ▶ Of course, to actually implement it, we also need to construct a reasonable estimator for η for any given β .

A general procedure to find all influence functions

- ► Find a specific influence function $\phi_1^*(O;\theta)$. Usually, this is achieved through constructing a simple estimating equation for β and then obtaining its influence function.
- ► Find all mean zero functions, $\psi(O; \theta)$, such that

$$E[\psi(O;\theta)\dot{l}_{\beta}(O)] = 0, \ E[\psi(O;\theta)\dot{l}_{\eta}(O)] = 0.$$

Equivalently, $E[\psi(O;\theta)\dot{l}_{\theta}(O)] = 0$.

- ► Then all influence functions for β are given as $\phi_1^*(O;\theta) + \psi(O;\theta)$ for some $\psi(O;\theta)$.
- ▶ In conclusion, the keys are to identify ϕ_1^* and all mean zero functions that are orthogonal to any score functions.
- ▶ A note, in the language of Hilbert space, $E[g_1g_2] = 0$ is called g_1 and g_2 are orthogonal.

Extension to infinite-dimensional nuisance parameter

- ▶ The same conclusion applies to the situation when η is infinite-dimensional.
- ► The major extension includes
 - extending the definition of the score function for η ;
 - characterizing the space consisting of all the score functions.

Let's practise some examples

Example 1:

$$E[Y|X] = \beta X.$$

Example 2: estimating $\mu = E[Y]$ in a constrained model satisfying

$$Var(Y) = c\mu^2$$
.

Efficient influence function

- ► From the previous derivation, the estimator corresponding to an influence function, $\phi_1(O; \theta)$, has an asymptotic variance $Var(\phi_1(O; \theta))$.
- ► A natural question is which influence function gives the smallest variance. Such one is called the efficient influence function, denoted as $\phi_1^{eff}(O;\theta)$.
- ► That is, we aim to find $\psi(O; \theta)$, which is orthogonal to all score functions, such that $Var(\phi_1^* + \psi)$ is the least.
- ► Conclusion: if we decompose ϕ_1^* as the projection on the space spanned by all the score functions plus the projection on its orthocomplement, then $\phi_1^{e\!f\!f}(O;\theta)$ is equal to the first projection. Furthermore, $\phi_1^{e\!f\!f}(O;\theta)$ is unique and doesn't depend on the choice of ϕ_1^* .
- ► Let's calculate the efficient influence function for the two examples.

How to apply the previous results to missing data?

- ► The unique challenge for the missing data is to characterize the corresponding score function and its orthogonal complement, as well as the projection on the score space.
- ▶ Let O_F be the full data with density $f(O_F; \theta)$, and let C denote the missing pattern with $C \in \{1, ..., \infty\}$, where $C = \infty$ indicates no missing data. Corresponding to each missing pattern C = r, we let O_r denote the observed data.
- ► The observed likelihood function is

$$\prod_{r} \left\{ \int_{O_F: G(O_F, r) = O_r} f(O_F; \theta) P(C = r | O_F) d\nu(O_F) \right\}^{I(C = r)},$$

where $G(O_F, r)$ maps O_F into the component with missing pattern r.

MAR/CAR assumption

▶ Under MAR (coarsening at random) where we assume $P(C = r|O_F) = P(C = r|O_r)$, the observed likelihood function becomes

$$\prod_{r} \left\{ \int_{O_F: G(O_F, r) = O_r} f(O_F; \theta) d\nu(O_F) P(C = r | O_r) \right\}^{I(C = r)}.$$

▶ The score function for θ takes form

$$\sum_{r} I(C=r)E[S_F(O_F;\theta)|O_r],$$

where $S_F(O_F; \theta)$ is any score function for θ in the full data likelihood.

Task 1: Determine the orthogonal space of the score space

► The function of the observed data, $\sum_r I(C = r)g_r(O_r)$, satisfies

$$E\left\{\left(\sum_{r}I(C=r)g_{r}(O_{r})\right)\left(\sum_{r}I(C=r)E[S_{F}(O_{F};\theta)|O_{r}]\right)\right\}=0.$$

Thus,

$$\sum_{r} E\{P(C = r | O_r)g_r(O_r)E[S_F(O_F; \theta) | O_r]\} = 0;$$

or equivalently,

$$\sum_{r} P(C = r | O_r) g_r(O_r) = \psi_F(O_F; \theta)$$

for some $\psi_F(O_F; \theta)$ in the orthogonal space of the score space for the full data.

► We obtain

$$g_{\infty}(O_F) = \frac{1}{P(C = \infty | O_F)} \left\{ \psi_F(O_F; \theta) - \sum_{r \neq \infty} P(C = r | O_r) g_r(O_r) \right\}.$$

► In other words, any function in the orthogonal space takes the form

$$\begin{split} \frac{I(C=\infty)}{P(C=\infty|O_F)} \left\{ \psi_F(O_F;\theta) - \sum_{r \neq \infty} P(C=r|O_r) g_r(O_r) \right\} \\ + \sum_{r \neq \infty} I(C=r) g_r(O_r) \\ = \frac{I(C=\infty)}{P(C=\infty|O_F)} \psi_F(O_F;\theta) \\ + \sum_{r \neq \infty} \frac{I(C=r) P(C=\infty|O_F) - I(C=\infty) P(C=r|O_r)}{P(C=\infty|O_F)} g_r(O_r). \end{split}$$

Task 2: Projection on the score space

For any mean zero function of the observed data

$$\sum_{r} I(C=r)g_r(O_r),$$

we aim to calculate its projection on the score space.

► Equivalently, we aim to find some S_F^* that is the score function in the full data space, such that

$$E\left\{\left(\sum_{r}I(C=r)g_{r}(O_{r})-\sum_{r}I(C=r)E[S_{F}^{*}(O_{F};\theta)|O_{r}]\right)\right\}$$

$$\times \left(\sum_{r} I(C=r) E[S_F(O_F;\theta)|O_r]\right) = 0$$

for any S_F in the score space of the full data.

Calculation continued

► That is,

$$\sum_{r} E\left\{P(C=r|O_r)(g_r(O_r) - E[S_F^*(O_F;\theta)|O_r]\right)$$
$$\times E[S_F(O_F;\theta)|O_r]\right\} = 0.$$

► This gives

$$\sum_{r} P(C = r | O_r) (g_r(O_r) - E[S_F^*(O_F; \theta) | O_r]) = \psi_F(O_F; \theta)$$

for some $\psi_F(O_F; \theta)$ in the orthogonal space of the score space for the full data.

Calculation continued

- ► Assume $P(C = \infty | O_F) > 0$.
- ► The equation becomes a self-consistency equation to solve for $S_F^*(O_F; \theta)$:

$$S_F^*(O_F; \theta) = \frac{g_{\infty}(O_F) - \psi_F(O_F; \theta)}{P(C = \infty | O_F)}$$
$$+ \sum_{r \neq \infty} \frac{P(C = r | O_r)}{P(C = \infty | O_F)} (g_r(O_r) - E[S_F^*(O_F; \theta) | O_r]).$$

- ► It is Fredholm integral equation of the second kind and the solution exits.
- ► We can obtain an explicit solution if the missing patterns are monotone!

Application to some specific examples

- ► Regression problem: $E[Y|X] = \beta X$ with Y subject to missingness
- ► Longitudinal data problem: $E[Y_k|X] = \beta X, k = 1, ..., K$ with monotone missingness on Y's
- ► Cox model with right-censored data