Заняття 12. Атом водню в квантово-механічному розгляді.

Аудиторне заняття

- 1. Електрон в атомі водню знаходиться в основному стані, що описується хвильовою функцією $\psi = A \exp\left(-r/r_1\right)$. Знайти а) нормувальний коефіцієнт A; б) енергію E електрона та величину r_1 (за допомогою рівняння Шрьодінгера). ($\sim \mathbb{N} \ 2.47$)
- 2. Для 1*s*-електрону в атомі водню визначити найбільшу імовірну відстань від ядра $r_{\text{iм}}$ та імовірність P знаходження електрону в області $r < r_{\text{iм}}$.
- 3. Для 1*s*-електрону в атомі водню визначити середнє значення його відстані від ядра < r > .

Домашнє завдання

- 1. Знайти для 2p та 3d електронів в атомі водню найбільш ймовірну відстань від ядра. (№2.49а)
- 2. Визначити для 1s-електрона в атомі водню середні значення його квадрату відстані від ядра $< r^2 >$ та квадрату середнього відхилення $< (r < r >)^2 >$. (№2.48)
- 3. Частинка масою m перебуває в основному стані у потенціальному полі $U = k x^2/2$, а її хвильова функція має вигляд: $\psi(x) = A \exp(-\alpha x^2)$, де A коефіцієнт нормування, α додатна стала. За допомогою рівняння Шрьодінгера знайти величину α та енергію частинки у цьому стані. (№2.46)