Lie Theory

November 17, 2023

Contents

1	Bac	kground 2	2
	1.1	Topology	2
2	Topologcial Groups		
	2.1	Introduction)
	2.2	Neighborhoods of Identity	2
	2.3	Metrizable Groups	3
	2.4	Homomorphisms	3
	2.5	Subgroups	1
	2.6	Connected Components of Topological Groups	1
	2.7	Group Action	5
	2.8	Homogeneous Spaces	5
	2.9	Orbits and Homogeneous Spaces	7
	2.10	Examples	7
3	\mathbf{Lie}	Group 8	3
	3.1	Basics	3
	3.2	Tangent Bundle to a Manifold	3
	3.3	Lie Groups	3
	3.4	Lie Algebra)
	3.5	Exponential Map)
	3.6	Exponential Map Formulas	L
	3.7	Lie Algebras and Lie Group Homomorphisms	3
	3.8	The Adjoint Representation	1
	3.9	Haar Measure on Lie Group	5
4	Lie'	s Fundamental Theorem 16	3
	4.1		3
	4.2	Baker Campbell Hausdorff Theorem	3
	4.3	Universal Enveloping Algebra	7
	4.4	Completing the Proof of PBW Theorem	7
	4.5	Bialgebra	7
	4.6	Universal algebra as Differential Operators	

1 Background

1.1 Topology

Definition 1.1.1. A topological space is *locally connected* at point x if everyneighborhood of x contains a connected open neighborhood.

2 Topologcial Groups

2.1 Introduction

Definition 2.1.1. A *topological group* is a group such that

- 1. he product $p: G \times G \to G, p(g,h) = gh$, is a continuous map if $G \times G$ has the product topology;
- 2. The map $\iota: G \to G, \iota(g) = g^{-1}$, is continuous (hence, a homeomorphism, as $\iota^{-1} = \iota$).

Each element $g \in G$ defines the following maps.

- left translation: $L_q: G \to G, L_q(h) = gh;$
- right translation: $R_q: G \to G, R_q(h) = hg;$
- conjugation: $C_q: G \to G, C_q(h) = ghg^{-1}$.

2.2 Neighborhoods of Identity

An (open) neighborhood of $x \in X$, where X is a topological space, is an open set U that cointains x.

Let G be a topological group, and $1 \in G$ is the identity. V(1) refers to the set of all neighborhoods of 1.

Proposition 2.2.1 (Proposition 2.2). Let G be a t.g. (topological group), V = V(1). Then we'll have

- 1. (T1)for all $u \in V, 1 \in u$;
- 2. $(T2)u, v \in V \implies u \cap v \in V$;
- 3. (TG1) for all $u \in V$, there exists $v \in V$ s.t. $v^2 \subseteq u$;
- 4. $(TG2) \ u \in V \implies u^{-1} \in V$;
- 5. $(TG3) \ u \in V, g \in G \implies gug^{-1} \in V$.

Definition 2.2.2. Let G be a group, not necessarily topological group. A system of neighborhood of $1 \in G$ is a family of sets sastisfying (T1) to (TG3).

Definition 2.2.3. Let X be a topological space and $x \in X$. A fundamental system of neighborhoods of x is a family F of open sets containing x s.t. for all open u that contains x, there exists $v \in F$ s.t. $v \subseteq u$.

Theorem 2.2.4 (Proposition 2.5). Let G be an abstract group, V be a system of neighborhoods of 1. There exists a unique topology on G making G into a topological group and s.t. V is a fundamental system of neighborhoods of 1.

 $idea \ of \ proof.$

Proposition 2.2.5. Let G be a topological group. TFAE

- 1. topology of G is a Hausdorff
- 2. $\{1\}$ is closed in
- 3. $\bigcap_{U \in \mathcal{V}(1)} U = \{1\}$

2.3 Metrizable Groups

Definition 2.3.1. Let G be a topological group. G is metrizable if it has a left-(or right-) invariate distance which defines the tooplogy left-invariant for all $g \in G$ and d(gx, gy) = d(x, y) for all $x, y \in G$.

Theorem 2.3.2. A topological group G is metrizable iff it has a countable system of neighborhoods of 1.

2.4 Homomorphisms

We need to talk about $G \to H$ continuous homomorphisms.

Example 2.4.1. The determinant homomorphism det : $GL_n(\mathbb{R}) \to \mathbb{R}^* = GL(1,\mathbb{R})$ is continuous.

Theorem 2.4.2. Let G, H be topological group. A group homomorphism $\phi : G \to H$ is continuous iff ϕ is continuous at $1 \in G$.

Proof. \implies is obvious. Let's look at the other direction.

Note that $\phi \circ L_g = L_{\phi(g)} \circ \phi$ as maps $G \to H$ because

$$(\phi \circ L_g)(g') = \phi(gg') = \phi(g)\phi(g') = (L_{\phi(g)} \circ \phi)(g').$$

Then

$$\phi = L_{\phi(q)} \circ \phi \circ L_{q^{-1}}$$

is continuous at g, as $L_{g^{-1}}$ is continuous at g, ϕ continuous at 1, and $L_{\phi(g)}$ continuous everywhere.

Theorem 2.4.3. A map $\phi: G \to H$ is a group homomorphism (G, H are just groups) iff

$$gr(\phi) := \{(g, \phi(g)) \mid g \in G\} \subseteq G \times H.$$

Proposition 2.4.4. Let X and Y be topological spaces, such that Y is Hausdorff. A map $\phi: X \to Y$ is continuous if and only if its graph $gr(\phi)$ is closed and the projection $p(x, \phi(x)) = x$ is a homeomorphism.

Proof. Suppose ϕ is continuous. Then

$$gr(\phi) = \theta^{-1}(\Delta y)$$
 w.r.t. $\theta: X \times Y \to Y \times Y$

is closed, since *tehta* is continuous and Δy is closed.

Theorem 2.4.5. Suppose G, H are topological groups, H is Hausdorff. The map $G \to H$ is a continuous homomorphism iff $gr(\phi)$ is a closed subgroup and $p: gr(\phi) \to G$ is a homeomorphism.

2.5 Subgroups

Let G be a topological group. $H \subseteq G$ is a topological subgroup if H is a topological group w.r.t. the induced topology.

Proposition 2.5.1. Let G be a topological group. If $H \subseteq G$ a subgroup, which is open. Then H is also closed.

Proof. Consider

$$Y = \bigcup_{g \in G - H} gH.$$

Y is open, as it is a union of open sets. H is also closed, as G-Y=H. Hence, H is closed.

Proposition 2.5.2. G a topological group, $H \subseteq G$ a subgroup. Then \overline{H} is also a subgroup of G.

Proof. Note that $A \subseteq X$ (subset of a topological space), $x \in \overline{A}$ iff for all open U that contains $x, U \cap A \neq \emptyset$. Then we check the followings.

1. \overline{H} is closed under $m: G \times G \to G$.

2.6 Connected Components of Topological Groups

A connected space cannot be written as the union of two disjoint open sets.

A *connected component* of a point $x \in X$ is the union of all connected sets containing x, which is also the maximal connected set containing x.

A connected component of X is a maximal connected subset.

If $A \subseteq X$ is connected, then the closure \overline{A} is connected. Thus, every connected component is closed.

Let G be a topological group, G_0 is the connected component of $1 \in G$.

Proposition 2.6.1. G_0 is a closed normal subgroup of G. The connected components of G are exactly gG_0 for $g \in G$.

A neighborhood N of $x \in X$ is a subset $N \subseteq X$, $x \in N$ and there exists an open $U \subseteq X$ s.t $x \in U \subseteq N$.

A space is *locally connected* if for every open neighborhood of every point contains a connected open neighborhood.

Proposition 2.6.2. If G is locally conencted, then G_0 is open.

Proposition 2.6.3. If G connected, $U \in \mathcal{V}(1)$, then $G = \bigcup_{n \geq 1} U^n$.

2.7 Group Action

Suppose G a group, X a set.

Definition 2.7.1. A *left action* of a group G on a set X is a function that associates to $g \in G$ a map $a(g) : X \to X$ which satisfies the properties: 1. $a(1) = \mathrm{id}_X$, that is, a(1)(x) = x, for every $x \in X$; 2. $a(gh) = a(g) \circ a(h)$.

Definition 2.7.2. Let $\phi_x: G \times X \to X, \phi_y: G \times Y \to Y$. A map $f: X \to Y$ is G-equivariant if

$$\phi_y(g, f(x)) = f(\phi_x(g, x)).$$

Same stroy for topological groups.

Definition 2.7.3. Let G be a topological group, X a topological space, an *action* G on X should be continuous. In other words, G acts on X by homeomorphisms ϕ_g .

Action is *transitive* if X = Gx for some $x \in X$. We define the *orbit* of x to be $Gx = \{gx \mid g \in G\}$. A *stabilizer* or *isotropy subgroup* of x is $G_x = \{g \in G \mid gx = x\}$.

An action is an effective action or faithful if $gx = x, \forall x \in X \implies g = 1$, equivalently, $\bigcap_{x \in X} G_x = \{1\}$.

Proposition 2.7.4.

$$G/G_x \to X$$
 where $gG_x \mapsto gx$.

This map is equivariant.

Proposition 2.7.5. Suppose that the action of G on X is continuous and that X is a Hausdorff space. Then, any isotropy subgroup $G_x, x \in X$, is closed.

2.8 Homogeneous Spaces

Let G be a topological group.

Definition 2.8.1. A homogeneous G-space is just G/H for a subgroup H of G.

Definition 2.8.2. A topological space X without regards to group is *homogeneous* if for all $x,y \in X$, there exists a homeomorphism $\phi: X \to X$ s.t. $\phi(x) = y$.

Topology on G/H is that of a quotient: $\pi: G \to G/H$. In other words, $U \subseteq G/H$ open if $\pi^{-1}(U) \subseteq G$ open.

Note: action of G on G/H is continuous:

$$G \times G/H \to G/H$$
 where $(x, gH) \mapsto xgH$.

Proposition 2.8.3. We have the following facts.

- 1. G/H is a homogeneous space in the sense of topology.
- 2. $\pi: G \to G/H$ is an open map (it takes open sets to open sets).
- 3. H compact implies that π is a closed map.
- 4. G/H is Hausdorff iff H is closed.
- 5. G/H discrete iff H open. (HW2)
- 6. If G is compact, G/H discrete and finite iff H is open.
- 7. $H \triangleleft G$ implies G/H is a topological group.
- 8. $H := \overline{\{1\}}$. Then H is a normal subgroup of G, and G/H is Hausdorff topological group.

Proof of 1. Consider left translation

$$L_x: qH \mapsto xqH.$$

This is a homeomorphism since $L_{x^{-1}}$ is an inverse and both are continuous. \square

Proof of 2. We need to show that $\pi^{-1}\pi(U)$ is open. (Omitted, just do image preimage and write it as union of right cosets).

Proof of 3. Take $F \subseteq G$ closed, if H is a compact subset, then $FH \subseteq G$ is closed. (From a proposition from textbook).

Notice that $\pi(F)$ closed iff $\pi^{-1}\pi(F)$ closed, and the latter equals to FH. \square

Proof of 4. We first show \implies . Note that $H = \pi^{-1}(H)$, which is a point of G/H, so it's closed. Thus H is closed.

Then we show \Leftarrow . Consider the homeomorphism

$$f: G/H \times G/H \to G \times G/H \times H$$
 where $(g_1H, g_2H) \mapsto (g_1, g_2)H \times H$.

Denote $\Delta = \{(gH, gH)\}$. Then $f(\Delta) = \{(g, g)H \times H\}$ is closed iff $\pi_{G \times G}^{-1} f(\Delta)$ is closed, which equals to $\{(g_1, g_2) \mid g_1H = g_2H\} = \{(g_1, g_2) \mid g_1^{-1}g_2 \in H\}$. \square

Let G be a topological group, $H \subseteq G$ a subgroup.

Proposition 2.8.4. If H and G/H are compact, then so is G.

Proof.

$$\pi:G\to G/H$$

is a *perfect map*, i.e., a continuous subjective closed map with compact fibers $\pi^{-1}(x), \forall x \in G/H$.

Proposition 2.8.5. If G/H and H are connected, then so is G.

Proof. Suppose G is not connected, then there exists $A \bigsqcup B = G$, $A, B \neq \emptyset$ open, disjoin $\subseteq G$. Then $\pi(A), \pi(B) \neq \emptyset$, open because π is always open, $\pi(A) \cup \pi(B) = G/H$, which is connected. Therefore $\pi(A) \cap \pi(B) \neq \emptyset$. Thus there exists $gH \in G/H$ s.t. $gH \cap A \neq \emptyset$ and $gH \cap B \neq \emptyset$.

2.9 Orbits and Homogeneous Spaces

Homogeneous space G/G_x , we hav ea bijection:

$$G/G_x \to G \cdot x$$
 where $gG_x \mapsto gx$.

Proposition 2.9.1. Let $G \times X \to X$ be a continuous and transitive action of G on X. Fix $x \in X$ and consider the bijection

$$\xi_x: G/G_x \to X \text{ given by } \xi_x(gG_X) = gx.$$

Then ξ_x is continuous with respect to the quotient topology in G/G_x .

Proposition 2.9.2. Let $G \times X \to X$ be a topological transitive group action. Suppose G is locally compact and spearable (i.e., has a countable dense subset) and X is Hausdorff and locally compact, Then

$$\xi_x: G/G_x \to X = G \cdot x \quad \forall x \in X$$

is a homeomorphism.

2.10 Examples

We have

$$O(N) = \{ g \in GL(n, \mathbb{R}) \mid gg^T = I_n(\det g = 1) \}.$$

O(n) acts on \mathbb{R}^n with orbits being $S_r^{n-1} - \{x \in \mathbb{R}^n \mid |x| = r\}, r \geq 0$.

Induction implies that O(n), SO(n) are compact, SO(n) connected.

Also $SL(n,\mathbb{R})$ is connected, as it has for n > -2 has 2 orbits on $\mathbb{R}^n : \{0\}, \mathbb{R}^n - \{0\}$. Also $SL(n,\mathbb{C})$ is connected.

Consider unitary groups

$$U(n) = \{ g \in GL(n, \mathbb{C}) \mid gg^{-T} - I_n(\det g = 1) \}.$$

 $GL(n,\mathbb{F})$ acts on \mathbb{P}^{n-1} , which is the set of lines through 0 in \mathbb{F}^n .

 $Gr_k(n, \mathbb{F})$ is the set of k-dimensional subspaces of \mathbb{F}^n , which is the quotient of the set of $n \times k$ -matrices of rank k by $GL(k, \mathbb{F})$ acting on the right.

3 Lie Group

3.1 Basics

Definition 3.1.1. A Lie group G is a group and a manifold such that

$$m: G \times G \to G$$

is smooth.

The composition of two smooth maps is smooth.

Proposition 3.1.2. The inverse map $\iota: G \to G$ is a diffeomorphism with

$$d\iota_q = -(dL_{q^{-1}})_1 \circ (dR_{q^{-1}})_q.$$

Particularly, $\iota_1 = -\operatorname{id}$.

3.2 Tangent Bundle to a Manifold

A fiber bundle is a structure (E,B,π,F) , where E,B, and F are topological spaces and $\pi:E\to B$ is a continuous surjection satisfying a local triviality condition outlined below. The space B is called the base space of the bundle, E the total space, and F the fiber. The map π is called the projection map (or bundle projection). We shall assume in what follows that the base space B is connected.

We require that for every $x \in B$, there is an open neighborhood $U \subseteq B$ of x (which will be called a trivializing neighborhood) such that there is a homeomorphism $\varphi: \pi^{-1}(U) \to U \times F$ (where $\pi^{-1}(U)$ is given the subspace topology, and $U \times F$ is the product space) in such a way that π agrees with the projection onto the first factor. That is, the following diagram should commute:

ADD THIS!

Denote the tangent bundle

$$TM = \bigcup_{x \in M} T_x M$$
 $T_x M = \{ m(t) \mid m(0) = x \} / \sim .$

3.3 Lie Groups

Let TG be the tangent bundle to a Lie group G. We define

$$d(L_g)_h: T_hG \to T_{gh}G$$
 where $h'(t) \mapsto (gh)'(t)$.

Notice that then

$$d(L_q)_1: T_1G \simeq T_qG.$$

Moreover,

$$G \times T_1G \simeq TG$$
 where $(g, v) \mapsto (g, d(L_g)_1 v)$.

Thus, TG is trivial as a vector bundle for a Lie group G. i.e. G is parallelizable.

3.4 Lie Algebra

Proposition 3.4.1.

$$[\phi * X, \phi * Y] = \phi * ([X, Y]).$$

Definition 3.4.2. Let G be a Lie group. A vector field X on G is said to be

• right invariant if, for every $g \in G, (R_g)_* X = X$. In detail,

$$d(R_q)_k(X(h)) = X(hq)$$

for every $g, h \in G$;

• left invariant if, for every $g \in G, (L_g)_* X = X$, that is,

$$d(L_g)_h(X(h)) = X(gh).$$

Definition 3.4.3. We define Maurer-Cartan forms, which are differential 1 forms on G with values in T_1G . They are defined by right or left translations by

$$\omega_g^r(v) = d\left(R_{g^{-1}}\right)_g(v) \quad \text{ and } \quad \omega_g^l(v) = d\left(L_{g^{-1}}\right)_g(v)$$

for $g \in G$ and $v \in T_qG$.

Proposition 3.4.4. If $X \in Vect(G)$ is right-invariant, then $\omega^r(X) = X(1)$, the constant T_1G -valued function. Similarly, if X is left-invariant, then $\omega^l(X) = X(1)$.

Definition 3.4.5. We define the set of right invariant fields as

$$Inv_r = \bigcap_{q \in G} ker\left((R_q)_* - Id_{vect(G)}\right) \subseteq Vect(G).$$

Theorem 3.4.6. Let $Inv_r \cong T_1G \cong Inv_e$

Definition 3.4.7. $\mathfrak{g} = (Inv_r, [,])$ is the *Lie algebra* of a Lie group G.

Proposition 3.4.8. This bracket gives the following bracket on T_1G :

$$A \in T_1G \to A^r(g) = d(R_g)_1A.$$

Moreover

$$[A, B] := [A, B]_r = [A^r, B^r](1).$$

Proposition 3.4.9. Let $A, B \in T_1G$. Then, $[A, B]_r = -[A, B]_l$.

$$[A, B] = -[A, B]_e = BA - AB.$$

3.5 Exponential Map

Remarks on flows on manifolds.

Let X be a vector field on manifold $M, X \in C^{\infty}(M, TM)$. A flow ϕ_t^x defined by $\phi_t^x(x) = x(t), t \in (-\epsilon, \epsilon)$, and $\frac{dx}{dt} = X(x), x(0) = x$.

Another notation is $X_t = \phi_t^x$.

WTS

$$X_{s+t} = X_s \circ X_t = X_t \circ X_s$$
.

Take $X \in \mathfrak{g} = Inv^r$ right invariant vector field

Then $X_t(g)$ the flow equals to g(t) and is given by

$$\frac{dg}{dt} = X(g), \quad g(0) = g.$$

For $g \in G$, $g(t) : (-\epsilon, \epsilon) \to G$.

Lemma 3.5.1. For $X \in Inv^r$, we have

$$X_t(gh) = X_t(g)h \quad \forall g, h \in G.$$

Theorem 3.5.2. A right-invariant vector field X is complete, i.e., defined for all $t \in \mathbb{R}$.

G a lie group, $\mathfrak{g} = T_1G$ its lie algebra.

Definition 3.5.3. The exponential map

$$\exp:\mathfrak{g}\to G$$

is defined by $X \in \mathfrak{g}$ generates the right invariant vector field $X^r(g) = d(R_g)_1 X, g \in G$.

Then we create a flow, denoted by $X_t^r = g(t)$, for $\frac{dg(t)}{gt} = X^r(g(t)), g(0) = g$, which gives that $X_t^r(1)|_{t=1} = \exp(X)$.

Proposition 3.5.4. By doing the same procedure using left-invariant vector field X^l gives the same result:

$$X_t^l(1)|_{t=1} = X_t^r(1)|_{t=1} = \exp(X).$$

Moreover,

$$X_t^l(1) = X_t^r(1) \quad \forall t \in \mathbb{R}.$$

Proof. Denote $g(t_0) = X_t^r(1), g(0) = 1$. It's sufficient to show that $\frac{dg}{dt} = X^l(g)$.

We know that

$$\begin{split} \frac{dg}{dt} &= \frac{d}{dt} \left(X_t^r(1) \right) = \frac{d}{ds} \left(X_{s+t}^r(1) \right) |_{s=0} \\ &= \frac{d}{ds} \left(X_t^r(X_s^r(1)) \right) |_{s=0} \\ &= \frac{d}{ds} \left(X_t^r(1) X_s^r(1) \right) |_{s=0} \\ &= \frac{d}{ds} \left(L_{X_t^r(1)} X_s^r(1) \right) |_{s=0} \\ &= d(L_{X_t^r(1)})_1 \frac{d}{ds} \left(X_s^r(1) \right) |_{s=0} \\ &= d(L_{X_t^r(1)})_1 X^r(1) \\ &= d(L_{X_t^r(1)})_1 X \\ &= X^l(X_t^r(1)) \\ &= X^l(g(t)) \end{split}$$
 chain rule

We have

$$X_t(1): (\mathbb{R}, t) \to G.$$

a homomorphism, sometimes we call it a *one-parametric* subgroup of G generated by a right invariant vector field X^r .

Q: What is $X_t^r(1)$ and $X_t^l(1)$ via exp?

A: Suppose Y a vector field on M. Suppose we run a corresponding flow Y_t on M. Let $a \in \mathbb{R}$, then $(aY)_t = Y_{at}$ whenever flow Y_{at} and Y_t are defined.

$$(tY)_s|_{s=1} = Y_t.$$

Applying this to $M = G, Y = X^r$ at $g = 1, tX^r = (tX)^r$, we have

$$\exp(tX) = (tX)_s^r(1)|_{s=1} = (tX^r)_s(1)|_{s=1} = X_t^r(1).$$

Then

$$X_t^r(1) = \exp(tX) \quad X_t^l(1) = \exp(tX).$$

From office hour: $(\phi_*X)(y) = (d\phi)_{\phi^{-1}(y)}X(\phi^{-1}(y))$ pushforward

3.6 Exponential Map Formulas

One formula is that

$$\exp((s+t)X) = \exp(sX)\exp(tX) = \exp(tX)\exp(sX), \quad \forall x, t \in \mathbb{R}, x \in \mathfrak{g}.$$

This implies that for all X,

$$\{\exp(tX) \mid t \in \mathbb{R}\}\$$

is an abelian subgroup of G.

Take $X \in \mathfrak{g}, X^r \in Inv^r, g \in \mathfrak{g}$, we have

$$X_t^r(g) = X_t^r(1)g$$
 because $X_t^r(gh) = X_t^r(g) = h$.

This implies that

$$X_t^r(g) = X_t^r(1)g = \exp(tX)g$$
, similarly $X_t^l(g) = g \exp(tX)$.

We also have

- 1. $\exp(0) = 1$;
- 2. $\exp(nX) = \exp(X)^n$ for all $n \in \mathbb{Z}$;
- 3. $\exp(X)^{-1} = \exp(-X)$.

Note that $\mathfrak{g} \cong \mathbb{R}^N$, so $T_y \mathfrak{g} = \mathfrak{g}$ for all $y \in \mathfrak{g}$.

Proposition 3.6.1. exp : $\mathfrak{g} \to G$ is smooth, and

$$d(\exp)_0: T_0\mathfrak{g} \to T_1G \quad where \quad X \mapsto X.$$

In other words, $d(\exp)_0 = id_{\mathfrak{a}}$.

Proof. $\exp(X)$ is smooth because $X^r(g) = d(R_g)_1 X$ depends smoothly on X. Then flow $X_t^r(g)$ depends smoothly on X^r . Thus specialization of $X_t^r(g)$ at g = 1, t = 1 is also smooth as a function of X. Thus

$$\exp(X) = X^r(1)|_{t=1}$$

is smooth.

Now let's compute the differential.

$$d(\exp)_0(X) = \frac{d}{dt} (\exp(0 + tX)) |_{t=0}$$
$$= \frac{d}{dt} (X_t^r(1))_{t=0}$$
$$= X^r(1)$$
$$= X$$

By inverse function theorem, $\exp:\mathfrak{g}\to G$ is a diffeomorphism locally near $0\in\mathfrak{g}$, i.e. there is an open neighborhood $U\subseteq\mathfrak{g}$ of 0 and an open neighborhood $V\subseteq G$ of 1 such that

$$\exp |_U: U \to V$$

is a diffeo-morphism.

Theorem 3.6.2. If G is connected, then for all $g \in G$, there exists $x_1, \ldots, x_n \in \mathfrak{g}$ such that $g = \exp(x_1) \cdots \exp(x_n)$.

Proof. Let G be a connected topological group, V any open neighborhood of 1. Then $G = \bigcup_{n \ge 1} V^n$. For all $g \in G$, there exists n such that $g \in V^n$. In other words, $g = v_1 \cdots v_n$ where $v_i \in V$.

Take V from the previous remark about exp a locally diffeomorphism locally near 0, we have $v_i = \exp(x_i)$ for some $x_i \in U$.

3.7 Lie Algebras and Lie Group Homomorphisms

Let G, H be Lie groups. A *Lie group homomorphism* $\phi : G \to H$ is a smooth map which is a group homomorphism.

We claim that for a group homomorphism $\phi: G \to H$. For ϕ to be a Lie group homomorphism, it's enough to check the differentiability just at g = 1.

Notice that

$$\phi = R_{\phi(g)} \circ \phi \circ R_{g^{-1}}.$$

For h close to g in G, we have

$$\phi(h) = (R_{\phi(g)} \circ \phi)(hg^{-1}).$$

Therefore, $(d\phi)_1$ exists implies $d(R_{\phi(q)} \circ \phi)_1$ exists, and then $(d\phi)_g$ exists.

Proposition 3.7.1 (Lemma 5.14). Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} , respectively. Let $\phi: G \to H$ be a differentiable homomorphism and take $X \in \mathfrak{g}$. Then, for every $g \in G$, it holds

$$d\phi_q(X^r(g)) = Y^r(\phi(g)) \quad d\phi_q(X^l(g)) = Y^l(\phi(g)),$$

where $Y = d\phi_1(X)$.

This proposition shows that X^r and Y^r (same with X^l and Y^l) are ϕ -related, i.e. $d\phi_x(X(x)) = Y(\phi(x))$.

Proposition 3.7.2. Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} , respectively. Let $\phi: G \to H$ be a differentiable homomorphism and take $X \in \mathfrak{g}$. Then,

$$\phi(\exp(X)) = \exp(d\phi_1(X)).$$

Proposition 3.7.3 (Proposition A.2). Let $\phi: M \to N$ be a differentiable map and X_1, X_2 vector fields on M. Suppose that Y_1 and Y_2 are vector fields on N that are ϕ -related to X_1 and X_2 , respectively. Then $[X_1, X_2]$ and $[Y_1, Y_2]$ are ϕ -related.

Proposition 3.7.4 (Proposition 5.16). Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} , respectively. Let $\phi: G \to H$ be a differentiable homomorphism. Then, $d\phi_1: \mathfrak{g} \to \mathfrak{h}$ is a homomorphism, that is,

$$d\phi_1[X,Y] = [d\phi_1 X, d\phi_1 Y]$$

with left or right invariant brackets.

Example 3.7.5. Consider

$$\det: GL(n,\mathbb{R}) \to \mathbb{R}^{\times} = GL(1,\mathbb{R}).$$

Then we know

$$d(\det)_1: \mathfrak{gl}(n,\mathbb{R}) \to \mathbb{R}.$$

Proposition 3.7.6. From the above example, we have

$$d(\det)_1 A = \operatorname{tr} A.$$

Proof. We have $G = GL(n, \mathbb{R}), A \in T_1G$. Consider

$$\alpha(t): (-\epsilon, \epsilon) \to G$$
 where $\alpha(0) = 1, \alpha'(0) = A$.

Then

$$d(\det)_1 A = \frac{d}{dt} (I_n + tA)|_{t=0}$$

$$= \frac{d}{dt} \left(t^n \chi_{-A} \left(\frac{1}{t} \right) \right)|_{t=0}$$

$$\chi_A(\lambda) = \det(\lambda I_n - A)$$

$$= (\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$$

$$= \lambda^n - (\operatorname{tr} A) \lambda^{n-1} + \cdots + (-1)^n \det A$$

$$= \frac{d}{dt} (1 + t(\operatorname{tr} A) + \cdots + t^n \det A)|_{t=0}$$

$$= \operatorname{tr} A$$

Remark that

$$\ker \det = \{ g \in GL(n, \mathbb{R}) \mid \det g = 1 \} = SL(n, \mathbb{R}).$$

3.8 The Adjoint Representation

Definition 3.8.1. A representation of a Lie group G on a finite vector space V is a Lie group homomorphism

$$\rho: G \to GL(V) \cong GL(n, \mathbb{R}).$$

Example 3.8.2 (Martin Page 105). Let $G = Gl(n, \mathbb{R})$. Its canonical representation on \mathbb{R}^n is the identity map. The corresponding infinitesimal representation is also the identity, that is, it associates with an element of $\mathfrak{gl}(n, \mathbb{R})$ the corresponding linear map of \mathbb{R}^n . This statement follows from

$$\frac{d}{dt} \left(e^{tA} \right)_{|t=0} = A$$

Example 3.8.3 (Martin Page 106). Again, let $G = Gl(n, \mathbb{R})$ and consider the tensor product

$$T_k = \bigotimes^k \mathbb{R}^n = \mathbb{R}^n \otimes \cdots \otimes \mathbb{R}^n.$$

For $g \in G$, define the linear map $\rho_k(g): T_k \to T_k$ in such a way that, for the tensor products $v_1 \otimes \cdots \otimes v_k, v_1, \ldots, v_k \in \mathbb{R}^n$, it holds

$$\rho_k(g) (v_1 \otimes \cdots \otimes v_k) = gv_1 \otimes \cdots \otimes gv_k.$$

Map ρ_k is a representation of $Gl(n,\mathbb{R})$. Its infinitesimal representation is computed with the derivative

$$\frac{d}{dt} \left(e^{tA} v_1 \otimes \cdots \otimes e^{tA} v_k \right)_{|t=0} = \sum_{i=1}^k v_1 \otimes \cdots \otimes A v_i \otimes \cdots \otimes v_k$$

The right hand side in this equality defines the linear map $(d\rho_k)_1(A)$. The tensor representation can be restricted to any linear group $G \subset Gl(n, \mathbb{R})$.

Analogous representations are obtained for the k-th exterior product $\wedge^k \mathbb{R}^n$. The expressions for $\rho_k(g)$ and $(d\rho_k)_1$ are the same, replacing the tensor product \otimes by the exterior product \wedge .

Definition 3.8.4. The *adjoint representation* Ad : $G \to Gl(\mathfrak{g})$, of G on its Lie algebra \mathfrak{g} is defined by

$$Ad(g) = d(C_g)_1 = d(L_g \circ R_{g^{-1}})_1 = d(R_{g^{-1}} \circ L_g)_1$$
$$= (dL_g)_{g^{-1}} \circ (dR_{g^{-1}})_1 = (dR_{g^{-1}})_g \circ (dL_g)_1.$$

The representation Ad is differentiable.

Recall

$$d(Ad)_1 = \operatorname{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}) \quad \text{where} \quad X \mapsto [X, -].$$

Corollary 3.8.5 (Proposition 5.19). Let G be a Lie group with Lie algebra \mathfrak{g} , with bracket given by left invariant vector fields. Then, $d(\mathrm{Ad})_1(X) = \mathrm{ad}_l(X)$ for every $X \in \mathfrak{g}$ and

$$Ad(\exp X) = \exp(ad_l(X))$$

Proposition 3.8.6. If G is abelian, then \mathfrak{g} is abelian. If $G = G_0$, then \mathfrak{g} abelian which implies G is abelian.

Proposition 3.8.7. We have $\ker \operatorname{Ad} = \operatorname{Ad}^{-1} \subseteq G$ (closed subgroup). And $\ker \operatorname{Ad} = Z(G_0)$ (centralizer of G_0).

3.9 Haar Measure on Lie Group

Definition 3.9.1. A left(right) *Haar measure* is a measure invariant under left (right) translations.

$$\omega \in \Omega^n(G)$$

invariant under left translation gives a Haar measure. It means that

$$L_q^*(\omega) = \omega \quad \forall g \in G.$$

Example 3.9.2. Let $G = GL(n, \mathbb{R})$. The Haar measure would be

$$\frac{1}{(\det q)^n} \wedge dg_{ij} \quad g \in GL(n, \mathbb{R}).$$

We have ω is left-invariant iff for all q, h,

$$((L_q)^*\omega)(h) = \omega(h)$$
 i.e. $(L_{q^{-1}})_q^*\omega(1) = \omega(g)$.

4 Lie's Fundamental Theorem

4.1

Theorem 4.1.1 (Lie's Third and Second Theorem). The functor from simply connected Lie group to Lie algebra establishes an equivalence of categories. (it's surjective)

Proposition 4.1.2. For every finite dimensional Lie algebra \mathfrak{g} , there exists a Lie group with \mathfrak{g} as its Lie algebra.

In mathematics, the Baker-Campbell-Hausdorff formula is the solution for Z to the equation

 $e^X e^Y = e^Z$

for possibly noncommutative X and Y in the Lie algebra of a Lie group. There are various ways of writing the formula, but all ultimately yield an expressio for Z in Lie algebraic terms, that is, as a formal series (not necessarily convergent) in X and Y and iterated commutators thereof. The first few terms of this series are:

$$Z = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]] + \cdots$$

4.2 Baker Campbell Hausdorff Theorem

Let $\mathbb{R}\langle x,y\rangle$ be the free associated algebra on x,y, also could be written as the tensor algebra of $V=\mathbb{R}x\oplus\mathbb{R}y$, written as $T(V)=\oplus_{n>0}V^{\oplus n}$.

Given A associated \mathbb{R} -algebra. Denote A[[s,t]] the algebra of formal power series in s, t(st=ts), could be written as

$$A[[s,t]] = \{a_{00} + a_{10}s + a_{01}t + a_{11}st + a_{12}st^2 + a_{21}s^2t + \dots \mid a_{ij} \in A\}$$
$$A = \lim_{\leftarrow} A[s,t]/(s,t)^n.$$

Define

$$\ell(xs, yt) = \log(\exp(xs)\exp(yt)) = \log(e^{xs}e^{yt}),$$

where

$$e^{xs} = 1 + \frac{xs}{1!} + \frac{x^2s^2}{2!} + \frac{x^3s^3}{3!} + \cdots$$

and

$$\log(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \cdots$$

 $z \in (s,t) \subseteq \mathbb{R} < x,y > [[s,t]].$ And $\log(\alpha) = \log(a + (\alpha-1)),$ provided $\alpha-1 \in (s,t).$

Theorem 4.2.1 (BCH). 1. For the formal power series $\ell(xs, yt)$, we have

$$\ell(xs,yt) = xs + yt + \frac{1}{2}[x,y]st + \frac{1}{12}[x,[x,y]]s^2t + \frac{1}{12}[y,[y,x]]st^2 + \cdots$$

with all the coefficients in power series $\ell(xs,yt)$ given by Lie-bracket polynomials, where $[x,y] := xy - yx \in \mathbb{R}\langle x,y\rangle$. The coefficients may be obtained by a recursive formula.

2. Given a Lie group G, there exists $u' \subseteq u \subseteq \mathfrak{g}$ and $V \subseteq G$ (open neighborhoods of 0 and 1, resp.) such that $\exp(\mathfrak{g}) = G$ and $\log(V) = u$. And u' is such that for all $X, Y \in u'$, we have $\exp(X) \exp(Y) \in V$, which allows us to apply \log :

$$C(X,Y) := \log(\exp(X)\exp(Y)).$$

Then the series $\ell(X,Y)$ as a series in \mathfrak{g} , converges to C(X,Y).

Corollary 4.2.2. A smooth Lie group G is real analytic.

4.3 Universal Enveloping Algebra

Let V be a vector space with $k = \mathbb{R}, \mathbb{C}, \mathbb{Q}_p$ or any field of

Let T(V) be the free algebra generated by V. Universal property iff Functor $T:Vect\to Alg$ from vector space to associated algebras is a left forgetful functor:

$$F: Alg \rightarrow Vect \quad A \mapsto F(A) = A.$$

That is a natural bijection

$$\operatorname{Hom}_{Alg}(T(V), A) \cong \operatorname{Hom}_{Vect}(V, A).$$

There exists a left adjoint of $Alg \to LieAlg$ which takes A to $\mathfrak{g}(A) = A$, denoted by $U: LieAlg \to Alg$ where $\mathfrak{g} \mapsto U\mathfrak{g}$, which is called the *universal enveloping algebra*.

Definition 4.3.1. $U\mathfrak{g} = T(\mathfrak{g})/(xy - yx - [x, y])$ with $x, y \in \mathfrak{g}$.

Proposition 4.3.2. This is a left-adjoint, indeed.

4.4 Completing the Proof of PBW Theorem

Given a filtered vector space V, we define $\operatorname{gr} V \stackrel{\text{def}}{=} \bigoplus_{n \geq 0} \operatorname{gr}_n V$, where $\operatorname{gr}_n V \stackrel{\text{def}}{=} V_{\leq n}/V_{\leq (n-1)}$.

A Lie algebra \mathfrak{g} is abelian if the bracket is identically 0. If \mathfrak{g} is abelian, then $\mathcal{U}\mathfrak{g} = \mathcal{S}\mathfrak{g}$, where $\mathcal{S}V$ is the symmetric algebra generated by the vector space V (so that \mathcal{S} is left-adjoint to Forget: CoMALG \to VECT).

Theorem 4.4.1 (Poincaré-Birkhoff-Witt). The map $S\mathfrak{g} \to \operatorname{gr} \mathcal{U}\mathfrak{g}$ is an isomorphism of algebras.

4.5 Bialgebra

Definition 4.5.1. An element x of a coalgebra B is called *primitive* if $\delta(x) = x \otimes 1 + 1 \otimes x$. Denote prim(B) as the set of all primitive $x \in B$.

Proposition 4.5.2. There is a bialgebra structure on $\mathcal{U}\mathfrak{g}$ for a Lie algebra \mathfrak{g} such that $prim(\mathcal{U}\mathfrak{g}) = \mathfrak{g}$.

4.6 Universal algebra as Differential Operators

Definition 4.6.1 (Grothendieck). Let X be a space and $\mathscr S$ a sheaf of functions on X. We define the *sheaf* $\mathscr D$ *of Grothendieck differential operators* inductively. Given open $U \subseteq X$, we define $\mathscr D \le 0(U) = \mathscr S(U)$, and

$$\mathscr{D}_{\leq n}(U) = \{x : \mathscr{S}(U) \to \mathscr{S}(U) \text{ s.t. } [x, f] \in \mathscr{D}_{\leq (n-1)}(U) \forall f \in \mathscr{S}(U) \},$$

where $\mathscr{S}(U) \curvearrowright \mathscr{S}(U)$ by left-multiplication. Then $\mathscr{D}(U) = \bigcup_{n \geq 0} \mathscr{D}_{\leq n}(U)$ is a filtered sheaf; we say that $x \in \mathscr{D}_{\leq n}(U)$ is an *nth-order differential operator on* U

 $\mathcal{D}_{\leq 1}$ is a subsheaf, a sheaf of Lie algebras.

By Jacobi identity we have

$$[\mathscr{D}_{\leq m}, \mathscr{D}_{\leq n}] \subseteq \mathscr{D}_{m+n-1}.$$

We have

$$\mathscr{D}_{<1}(U) = C_M^{\infty}(U) \oplus Vect(U) = \{D \in \mathscr{D}_{<1}(U) \mid D(1) = 0\}.$$

 \mathscr{D} is generated as a sheaf of associated algebras by C_M^{∞} and TM.

Proposition 4.6.2. Let G be a Lie group, and $\mathscr{D}(G)^G$ the subalgebra of left-invariant differential operators on G. The natural map $U\mathfrak{g} \to \mathscr{D}(G)^G$ generated by the identification of \mathfrak{g} with leftinvariant vector fields is an isomorphism of algebras.

Lemma 4.6.3. Suppose for some $u \in \mathcal{U}\mathfrak{g} = \mathcal{D}(G)^G$, we have (uf)(1) = 0 for each $f \in C_{G,1}^{\infty}$ stalk of germs of functions C_G^{∞} at 1. Then u = 0.

Proof. Let's show u = 0 as a differential operator. For all $g \in G$,

$$(uf)(g) = (L_g^*(uf))(1) = (u(L_g^*f))(1) = 0.$$

Thus uf = 0 and u = 0.

Proposition 4.6.4. Extend Δ to

$$\Delta: \mathcal{U}\mathfrak{g}[[s]] \to (\mathcal{U}\mathfrak{g} \otimes \mathcal{U}\mathfrak{g})[[s]].$$

then Δ is an s-adic-continuous algebra homomorphism. Then $u(s) \in \mathcal{U}\mathfrak{g}[[s]]$ is primitive iff $e^{u(s)}$ is group-like, that is

$$\Delta(e^{u(s)}) = e^{u(s)} \otimes e^{u(s)},$$

.