Лекция 2 Представление целых чисел

Стандарты Си и Си++

- ISO/IEC 9899:2018 последний стандарт Си (С17 или С18) – bugfix С11
- ISO/IEC 14882:2017 последний стандарт Си++ (C++17)
- Общая модель выполнения ("виртуальная машина") байт-адресуемый двоичный процессор

Биты

- Двоичная система счисления натуральна для элементной базы (манипулирование напряжением для передачи сигнала, транзисторные ключи и т. д.)
- Попытки использовать симметричную троичную систему { -1, 0, 1 } ЭВМ "Сетунь"
- Некоторые теоретические преимущества не оправдываются усложнением схемотехники

Byte vs Octet

- Почти всегда говоря "байт" мы подразумеваем "8 бит" строго говоря, это не так
- С точки зрения стандартов C/C++ byte == char минимальная адресуемая единица памяти
- sizeof(char)== 1
- Количество бит в char определяется константой CHAR_BIT
- Стандарт требует CHAR_BIT >= 8
- Если память можно адресовать только по 16-битным словам, то CHAR_BIT == 16
- Октет всегда 8 бит

Integral types

- sizeof(signed T) == sizeof(unsigned T) == sizeof(T)
- short как минимум 16 бит
- int как минимум 16 бит
- long как минимум 32 бита
- long long как минимум 64 бита
- <stdint.h>: intN_t, uintN_t
- <inttypes.h>: I/O макросы

Byte (unsigned char)

- IEEE Std 1003.1-2017 The Open Group Base Specifications стандарт на API Unix-like
- Tpeбyeт CHAR_BIT == 8
- Далее будем предполагать что CHAR_BIT==8
- Беззнаковые целые числа представляют значения [0;2^N-1], N число бит
- Unsigned char позволяет представлять значения [0; 255]

Нумерация битов

- Индивидуальные биты в байте не адресуются, но для удобства мы их нумеруем
- 0 младший (самый правый в двочной записи) бит
- 7 старший (самый левый в двоичной записи) бит

Нумерация битов

Слово (16 бит)

Битовые операции

- ~, &, |, ^ применимы к целым числам
- Каждый бит операндов рассматривается независимо

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

Битовые вектора для множеств

• В 8-битном числе храним множество не более чем из 8 эл-тов {0,1,2,3,4,5,6,7}

```
- 01101001 { 0, 3, 5, 6 }
- 76543210
- 01010101 { 0, 2, 4, 6 }
- 76543210
```

• Операции

```
& - Пересечение – 01000001 - { 0, 6 }
| - Объединение – 01111101 - { 0, 2, 3, 4, 5, 6 }
- ^ - Симметрическая разность – 00111100 - { 2, 3, 4, 5 }
- ~ - Дополнение (ко второму множеству) – 10101010 - { 1, 3, 5, 7 }
```

Сдвиги (беззнаковые)

- Сдвиг влево: x << n
 - Пример (для 8 битных беззнаковых чисел)
 - 01101100 << 3 == (011)01100*000*
 - Эквивалентно умножению на 2ⁿ
- Сдвиг вправо: x >> n
 - -01101100 >> 4 == 00000110(1100)
 - Эквивалентно целой части от деления на 2^n

Знаковые числа

- Необходимо кодировать знак числа в N бит представления числа
- Стандарты Си/Си++ допускают три типа представления знаковых чисел
 - Прямой код (sign-magnitude)
 - Обратный код (one's complement)
 - Дополнительный код (two's complement)

Прямой код

Положительное	Двоичное	Прямой код
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	- 0
9	1001	-1
10	1010	-2
11	1011	-3
12	1100	-4
13	1101	-5
14	1110	-6
15	1111	-7

Обратный код

	• •
Двоичное	Прямой код
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0
	Двоичное 0000 0001 0010 0011 0100 0111 1000 1001 1010 1011 1100 1101 1110

Дополнительный код

ЛВОИЦНОВ	Прямой код
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1
	0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101

Знаковые числа

- Старший разряд знаковый
 - 0 положительные числа
 - 1 отрицательные числа
- Практически универсально используется дополнительный код
- UNISYS 2200 обратный код
- Прямой код мантисса представления IEEE-754 вещественных чисел

Дополнительный код

- -x = -x + 1
- Несимметричный диапазон, например, для signed char [-128; 127]
- Рассмотрим далее 4-битные числа: [-8; 7]
- Ограниченная разрядность сохраняются только младшие биты результата соотв. разрядности (например, 4), старшие биты теряются
- Примеры в двоичной системе:
 - $-0000 = -0000 + 1 = 1111 + 1 = \pm 0000 \rightarrow 0$
 - -1000=~1000+1=0111+1=1000
 - 0110+(-0110)=0110+ (~0110+1)=0110+(1001+1)=(0110+1001+1)=1111+1 = $\frac{1}{2}$ 0000 \rightarrow 0

Удобство дополнительного кода

- Операции сложения и вычитания n-битных беззнаковых чисел дают правильный результат для знаковых чисел
- В процессоре не нужно различать знаковые и беззнаковые числа при сложении и вычитании меньше инструкций, проще аппаратура
- Для 4-битных чисел (0b запись двоичного числа в Си):
 - -5 + 9 = 0b0101 + 0b1001 = 0b1110 = 14
 - -5 + (-7) = 0b0101 + 0b1001 = 0b1110 = -2
 - 12+13 = 0b1100 + 0b1101 = 0b11001 = 9 беззнаковое переполнение
 - -4+(-3) = 0b1100 + 0b1101 = 0b11001 = -7 co знаковыми ОК

Типы char в Си/Си++

- sizeof(char) == sizeof(signed char) == sizeof(unsigned char)== 1
- Char может быть либо знаковым, либо беззнаковым (implementation defined behavior)
- На x86/x64 char знаковый, на ARM char беззнаковый
- Но формально char и signed char (или char и unsigned char) разные типы
- GCC позволяет переключаться между режимами: fsigned-char -funsigned-char
- Программа должна быть корректной в любом случае

Byte order

- Память адресуется побайтно
- Целые числа большей длины могут размещаться в памяти по-разному
- Преобразование прозначно для программиста
- Little-endian: x86
- Big-endian: SPARC
- Переключаемые: ARM, PPC (Android LE, iOS LE)
- Подавляющее большинство компьютерных систем в настоящее время работает в режиме LE

Byte order

Low address				High address				
Address	0	1	2	3	4	5	6	7
Little-endian	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Big-endian	Byte 7	Byte 6	Byte 5	Byte 4	Byte 3	Byte 2	Byte 1	Byte 0
Memory content	0x11	0x22	0x33	0x44	0x55	0x66	0x77	0x88
64 bit value on Little-endian 64 bit value on Big-endian								
	0x8877665544332211			0x1	122334	4556677	788	

Типы данных в Си/Си++

- sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long) <= sizeof(long long)
- sizeof(float) <= sizeof(double) <= sizeof(long double)
- sizeof(signed T) == sizeof(unsigned T)
- Преобразование более "широкого" значения в более "узкое" отсекает старшие биты

Расширение типа

- Беззнаковое расширение: unsigned char → unsigned short дополнение нулями
 - 0b11100011 \rightarrow 0b00000000 11100011
- Знаковое расширение: signed char → signed short
 - 0b01110011 \rightarrow 0b00000000 01110011
 - 0b11100011 \rightarrow 0b1111111 11100011

Sizeof для типов

Тип	Atmel AVR	32-bit	Win64	64-bit
char	1	1	1	1
short	2	2	2	2
int	2	4	4	4
long	4	4	4	8
long long	-	8	8	8
int128 !	-	-	-	16
float	4	4	4	4
double	4	8	8	8
long double	4	8 или 12	8	16
void *	2	4	8	8

Максимальные/минимальные значения типов

- C++
 - #include <limits>
 - std::numeric_limits<T>::max()
 - std::numeric_limits<T>::min()
- C
 - #include <limits.h>
 - CHAR_MIN, CHAR_MAX, SCHAR_MIN, SCHAR_MAX, UCHAR_MIN, ..., INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX, ULONG_MAX, LLONG_MIN, LLONG_MAX, ULLONG_MAX

Типы фиксированной битности

- Заголовочный файл <stdint.h>
 - Знаковые типы: int8_t, int16_t, int32_t, int64_t
 - Беззнаковые типы: uint8_t, uint16_t, uint32_t, uint64_t
 - Типы размера, достаточного для хранения указателя: intptr_t, uintptr_t
- Дополнительно в <inttypes.h>:
 - Макросы для printf и scanf для использования этих типов: PRId32, ...
 - printf("%" PRId64 "\n", t);

Переполнение беззнаковых чисел

- Все операции над беззнаковыми числами выполняются по модулю 2^N (N битность)
- Поведение строго определено стандартом
- UINT_MAX + 1 == 0
- 0 1U == UINT_MAX

Implementation-defined behavior

- Каждая реализация компилятора Си/Си++ должна реализовывать implementation- defined behavior разумным образом (одним из нескольких предопределенных вариантов) и документировать это поведение
- Пример: представление отрицательных чисел

Unspecified behavior

- Каждая реализация компилятора Си/Си++ может реализовывать unspecified behavior по-разному, даже в пределах одной программы, не обязана документировать. Unspecified behavior – это корректное (но недетерминированное) поведение корректной программы
- Пример: порядок вычисления аргументов при вызове функции

Undefined behavior

- Если программа выполнила операцию, описанную как undefined behavior, дальнейшее поведение программы **не определено** это ошибочная программа
- Варианты поведения: ignore, crash, burn computer
- Примеры: разыменование нулевого указателя, выход за пределы массива

Undefined behavior

• Компилятор Си/Си++ вправе предполагать, что при выполнении программы **никогда не произойдет** undefined behavior и использовать это при оптимизации

```
*p = 'a';
if (!p) {
    fprintf(stderr, "NULL pointer\n"); return;
}
```

• if можно удалить, исходя из предположения выше

Операции со знаковыми значениями

- Преобразование широкого типа к знаковому узкому, при условии, что значение непредставимо узким знаковым типом implementation defined (обычно truncation)
 - Пример: (char) 384 == -128
- Сдвиг отрицательного числа вправо implementation defined (обычно знаковый бит остается на месте арифметический сдвиг)

Операции со знаковыми значениями

- Переполнение при выполнении знаковых операций +, -, *, /, % undefined behavior
 - Для компилятора N < N + 1 выполняется всегда!
- Сдвиг на число бит, большее размера типа undefined behavior
- Сдвиг отрицательного числа влево undefined behavior
- Сдвиг на отрицательную величину undefined behavior

Опции дсс

- -ftrapv abort() при знаковом целочисленном переполнении
- -fwrapv выполнять знаковые операции по модулю 2^N, но компилятор не делает никаких оптимизационных предположений
- -fsanitize=undefined проверка на undefined behavior при работе программы