

00/80/00

Express Mail Label: EL618698748US

11-09-00

Case No.: 1511-00

A

ASSISTANT COMMISSIONER FOR PATENTS  
Washington, DC 20231

Sir:

Transmitted herewith for filing is the patent application of

Inventor(s): Keith Luker of Patterson, New Jersey

For: EXTRUDER MIXER

Also enclosed are:

 7 Sheets of drawings Recordation Form Cover Sheet - Patents Only and an Assignment of the invention to \_\_\_\_\_ Postcard and Express Mail Certification

The filing fee has been calculated as shown below:

|        | NO. OF CLAIMS FILED |   | NO. OF CLAIMS FROM BASIC FEE | NO. OF EXTRA CLAIMS |
|--------|---------------------|---|------------------------------|---------------------|
| TOTAL  | 33                  | - | 20 =                         | 13                  |
| INDEP. | 2                   | - | 3 =                          | 0                   |

First presentation of multiple dependent claim

## SMALL ENTITY

| RATE   | BASIC FEE \$355. |
|--------|------------------|
| x 9 =  | \$117.00         |
| x40 =  | \$               |
| +135 = | \$               |

## OTHER THAN SMALL ENTITY

OR

| RATE   | BASIC FEE \$710. |
|--------|------------------|
| x18 =  | \$               |
| x80 =  | \$               |
| +270 = | \$               |

TOTAL FEE \$472.00 OR

\$ \_\_\_\_\_

A check in the amount of \$ \_\_\_\_\_ is enclosed to cover the official filing fee for a large entity.

A check in the amount of \$472.00 is enclosed to cover the official filing fee for a small entity.

A check in the amount of \$ \_\_\_\_\_ is enclosed to cover the recordal fee.

Please charge my Deposit Account No. 13-3405 in the amount of \$ \_\_\_\_\_. A duplicate copy of this sheet is enclosed.

 In regard to this communication, the Commissioner is hereby authorized to charge payment of any additional filing fees required under 37 CFR §1.16 and any additional patent application processing fees under 37 CFR §1.17 or credit any overpayment to Deposit Account No. 13-3405. A duplicate copy of this sheet is enclosed. During the pendency of this application, the Commissioner is hereby authorized to charge payment of any filing fees for presentation of extra claims under 37 CFR §1.16 and any patent application processing fees under 37 CFR §1.17 or credit any overpayment to Deposit Account No. 13-3405. A duplicate copy of this sheet is enclosed.Respectfully submitted,  
Austin R. Miller, Reg. No. 16,602  
Guy T. Donatiello, Reg. No. 33,167  
Schnader Harrison Segal & Lewis  
1600 Market Street, 36th Floor  
Philadelphia, PA 19103  
Attorney for Applicant(s)ARM:rb  
(215) 563-181010914 U.S. PTO  
11/09/708225

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Art Unit :  
Examiner :  
Serial No. :  
Filed : Herewith  
Inventor : Keith Luker  
Title : EXTRUDER MIXER

36th Floor  
1600 Market Street  
Philadelphia, PA 19103

Docket: 1511-00

Dated: November 8, 2000

JC914 U.S. PRO  
09/708225  
11/08/00

**Box Patent Applications**

Assistant Commissioner for Patents  
Washington, DC 20231

**EXPRESS MAIL CERTIFICATION**

**37 C.F.R. §1.10**

Express Mail Label No.: EL618698748US

Date of Deposit: November 8, 2000

Description of Contents: Postcard, \$472.00 Check, Application Transmittal Letter, in duplicate, Specification including claims and abstract, and 7 sheet of drawings.

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR §1.10 on the date indicated above and is addressed to Box Patent Applications, Assistant Commissioner for Patents, Washington, DC 20231.

Regina Belitz

(*Typed or printed name of person mailing paper or fee*)

  
(*Signature of person mailing paper or fee*)

## EXTRUDER MIXER

This invention relates to a new extruder mixer and method for mixing plastic or plastifiable materials, utilizing novel effects of elongational stress in the feed material, with improved mixing performance dramatically at all concentrations for the plastic mixture. The invention relates particularly to laboratory-scale mixers, and to their use in designing, building and operating full-scale production mixers using the novel concepts of this invention.

Laboratory extrusion machine builders have traditionally scaled down what the large extruder mixers have available in production. Nevertheless, when these large mixer designs are used in small extruders, they unfortunately do not compound very well.

Laboratory single screw compounders suffer from problems associated with being small. Lower shear rates, lower backflow, and the repercussions of using the same size pellets in laboratory extruders as in large extruders, all reduce the mixing compounder performance of small laboratory mixers.

Shear rates for a 5/8 inch extruder, for example, are roughly one-third that of a 4.5 inch extruder. Many workers regard higher shear rates as important to mixing. Small screws can generate much higher pressures than large extruders because of their small channel depths. Therefore, there is little back-mixing even at high pressure generation. It is a truism that, the better mixed the material enters the extruder, the better mixed is the output. Considering a simple mixture of conventional nominal 1/8 inch pellets mixed with a 1% additive concentrate of the same size and weight, one should consider how many standard 1/8 inch pellets are present at any given time in a 5/8 inch extruder compared with larger machines. For example, a 5/8 inch 24/1 L/D screw contains only 330 pellets or an average of 14 pellets per L/D. Yet a 2 inch screw contains about 905 pellets, a 3.5 about 3,600 pellets, and a 6 inch extruder about 384,000 pellets.

5

10

0920825  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
698  
699  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
798  
799  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
898  
899  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
997  
998  
998  
999  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1097  
1098  
1098  
1099  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1197  
1198  
1198  
1199  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1297  
1298  
1298  
1299  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1388  
1389  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1397  
1398  
1398  
1399  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1488  
1489  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1497  
1498  
1498  
1499  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1588  
1589  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1597  
1598  
1598  
1599  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1688  
1689  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1697  
1698  
1698  
1699  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1788  
1789  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1797  
1798<br

If we imagine a perfectly mixed 1% additive of the same pellet size, the 5/8 inch extruder will contain only 3 pellets of the additive, spread throughout 24 L/Ds of extruder length! The extruder is required to mix one pellet into 8 L/Ds of length. Even a small 2 inch extruder processes a remarkable improvement in the quality of the incoming mixture as it will have 9 additive pellets in each L/D of extruder length. Larger machines obviously have more.

The problem is worse than this, in practice, because the mixture is unlikely to be perfectly mixed. In the foregoing "3 pellet per 8 L/D" example, it is very probable that only 2 or as many as 4 pellets could be in the extruder at one time. Accordingly, there will be times when only 1 pellet might be present. If the hopper mixture were slightly uneven, there might even be a time with no additive pellets in the entire screw -- a difficult mixing problem to be sure.

This problem is so unlikely to exist in large extruders that it needs no consideration. The possible use of micro-pellets would seem to avoid these problems but such pellets are expensive, inconvenient, and often require at least one additional processing history. Accordingly, it would be highly advantageous to resolve the problem even with the use of standard or typical pelletized feed stocks.

Most single screw extruders are flood fed, by filling the hopper and the screw channel to its limit. However, compression of solids is not necessarily consistent with good mixing. In a compressive extruder where equal amounts of two types of pellets, A and B, are to be mixed in the extruder, on entering the screw, it is extremely unlikely that the mix will be perfect, i.e. A-B-A-B-A-B-A-B etc. Some inconsistent sequence will likely occur such as A-A-A-A-B-B-B-B. Compression of this sequence at high pressure often results in very sturdy "A" and "B" material where each agglomeration has to be broken up, i.e., mixed by dispersion, and then mixed intimately with each other, i.e., by distribution. This is inherently

counterproductive to good mixing.

The creation of the vertically oriented extruder improved the laboratory extruder itself, with its natural advantages of better feeding and screw strength, and dramatic increase of the L/D ratio. This is possible because the vertical screw is in tension rather than compression. This eliminates the buckling forces (caused by pressure at the tips of other screws) that otherwise destroy long small screws.

Length is an important attribute of a screw for many reasons. Length presents the opportunity to begin the melting process without compression.

#### BACKGROUND OF THE INVENTION

Of the many mixing elements that have been made, three fluted mixers are of particular interest. These are the mixers of G. LeRoy U.S. Patent No. 3,486,192, R.B. Gregory and L.F. Street U.S. Patent No. 3,411,179, and R.G. Dray, U.S. Patent No. 3,788,612. These mixers are often claimed to have dispersive mixing properties because the barrier clearance within the inner wall of the outer cylinder of the extruder is so small that the material is subjected to a high shear rate, the corresponding shear stress then being large enough to break down particles in the polymer melt. An important assumption in this prior art analysis is that the mixer is filled with plasticized material under compression. For example, in R.G. Dray U.S. Patent No. 3,788,612, since the material is described as plasticized and forced through increasing resistance through the mixing element, the intention of the patent is to force material, under compression, through this mixing element. The foregoing will be seen to be contrary to the substance of this invention.

#### SUMMARY OF THE INVENTION

In this invention the mixer is preferably an integral part of the melting zone of the screw. Therefore, the mix viscosity at the mixer is much higher than otherwise. This allows the creation of a tensile stress on the mixture, and enables novel elongational dispersion of

the mixture in the melting zone.

In order to mix at the optimum level, only a minimum amount of pressure is applied to deliver the feed material to the inlet channel of the mixer. Once the incoming plastic material enters the inlet channel, it meets one or a succession of cross-axial pumping members preferably having substantial clearance with the outer shell of the extruder, and each one takes on a cross-axial pumping function. When the cross-axial pumping, effective at an angle to the extruder axis, exceeds the inlet flow, the pumping function causes the inlet channel to become partially emptied. The plastic material that approaches each cross-axial pump is then stressed in elongation rather than compression, and remarkable mixing dispersion takes place. As the material then moves over each cross-axial pump, it is reoriented in a planar shear field. These successive reorientations take place in the absence of a worm flight as typically exists to generate pressure between two successive mixing elements. This effect may be further augmented by starve feeding of the plastic feed into the extruder, which may be controlled or assisted by screw design. Starve feeding adds a great deal of flexibility to the process and to optimization of the mixing process.

To encourage or reduce the amount of remixing, for example, additional feed rate to fill the end of the inlet channel with plastic material can be used as a control.

#### BRIEF DESCRIPTION OF THE DRAWINGS

This invention will further be described in detail in the drawings, which are intended to be illustrative but are not intended to define or limit the scope of the invention, which is defined in the appended claims.

Figs. 1(a) and 1(b) are views in showing a mixer in accordance with this invention.

Figs. 2(a) and 2(b) are views in side elevation showing a mixer in accordance with this invention.

Figs. 3(a) and 3(b) are side and sectional views showing a modified form of the

invention.

Figs. 4(a) and 4(b) are fragmentary side sectional views, representing a preferred embodiment of this invention, as will further be described hereinafter.

Figs. 5(a) and 5(b) represent a further embodiment in accordance with this invention.

Fig. 6 comprises Fig. 6(a) and 6(b) in accordance with this invention, showing a multiplicity of inlet channels, outlet channels and cross-axial pumps as will further be described in detail hereinafter. Fig. 6(a) is a sectional view taken through the mixer of Fig. 6(b), along the lines and arrows V-V; and

Figs. 7(a) and 7(b) show a further embodiment of the invention.

#### DETAILED DESCRIPTION OF THE INVENTION

The current invention optimizes the mixing that takes place in a limited axial space along the extruder screw by providing multiple passes of plastic material drawn through a plurality of elongational mixing zones. This gives much greater latitude in design and achieves much better mixing results than heretofore suggested, as will further appear hereinafter.

In a mixer of this invention, the plastic material flow is shown schematically in Figs. 1(a) and 1(b) of the drawings. First inlet channel 21 is starved (partially empty) conveying material to first cross-axial pump 22. As the flow accelerates into cross-axial pump 22, an important improvement in mixing is created. Cross-axial pump 22 reorients the material in planar shear while pumping into the second channel inlet 23. Second channel inlet, also starved, conveys material to the inlet to subsequent cross-axial pump 24. Cross-axial pump 24 then functions as an output channel.

Fig. 2(b) shows the four flights 26 that tend to induce a certain amount of downstream flow in the various adjacent inlet channels.

First inlet channel 21 is starved (partially empty) conveying material to first cross-

axial pump 22. As the flow accelerates into cross-axial pump 22, an important improvement in mixing is created. Cross-axial pump 22 reorients the material in planar shear while pumping into second channel inlet 23. Second channel inlet 23, also starved, conveys material to the inlet to subsequent cross-axial pump 24 where subsequent acceleration and further mixing improvements take place. Subsequent cross-axial pump 24 further reorients the material in planar shear while pumping material to subsequent inlet channel 25. After subsequent mixing and pumping, material is delivered to final output channel 27. The cross-axial pumps 22 and 24 pump the mixture at an angle such as (a) in Fig. 2(a) and draw off the material from the inlet channels 21, 23, 25 until the supply is exhausted.

In the preferred embodiment shown in Fig. 4, the screw (which is driven in rotation by any suitable power source, not shown) has fifteen sections of inlet channels 11, cross-axially acting pumps and one outlet channel 12, and therefore provides exceptional mixing. Further flight 26 is shown to become a connected inlet and outlet flight that both guides material to first inlet channel 11 and from outlet channel 12.

Previous mixers have attempted to force material from one channel, over a barrier, and into a flight or channel such as in LeRoy U.S. Patent No. 3,486,192 and Dray U.S. Patent No. 3,788,612. Dray forced material from channel to flight in an uncontrolled manner, as shown in Dray U.S. Patent No. 3,788,612. By forcing, the flow fields were compressive rather than extensional.

The invention of Figs. 2 and 4 achieves a series of mixing stages, in extensional plastic material flow fields, in a short axial length compared to the length of the extruder screw. Extension of the plastic material is achieved by cross-axial drawing of the mixture from one channel directly to another channel at reduced pressure and preferably by operation in which the channels are in a partially empty mode. This latter mode may be achieved by starve feeding the inlet to the mixer, preferably by limiting the input amount by combined

use of a starve feeder (such a variable speed volumetric feeder) or, for example, by limiting the amount of material received by the mixer as a matter of screw design prior to the mixer.

It has heretofore been suggested, contrary to this invention, to provide possible means to reduce the amount of remixing. There is no mechanism suggested, to the best of my knowledge, that causes substantially all of the material to be remixed, as in this invention. Indeed, it has been indicated that additional feed rate to fill the end of the inlet channel would prevent remixing.

Fig. 5 of the drawings, like Figs. 2(a) and 2(b), shows disconnected inlet and outlet flights 8, 9 and also shows a multiplicity of inlet channels 1, 3, 5 and a multiplicity of outlet channels 7, with intervening cross-axial pumps 2, 4, 6 pumping in angular directions such as (a), (b), which are important features in accordance with this invention.

Figs. 6(a) and 6(b) show another embodiment of this invention comprising a multiplicity of these inlet and cross-axial pumping channels, working in combination with connected output flight 26 and where first cross-axial pump 22, second inlet channel 23, subsequent cross-axial pumps 24 and subsequent inlet channels 25 are bounded by a flight on two sides. This embodiment substantially prevents downstream flow from entering the mixer. The first inlet channel bears the number 21, the first cross-axial pump 22, the second inlet channel 23, the subsequent cross-axial pump 24, the subsequent inlet channel 25. The arrows (a) and (b) indicate cross-axial pumping, and arrow (c) designates downstream flow. The flight in the mixer section is identified as 26, while the final output channel is identified by the number 27. The input and output portions of flight 26 are identified as 28 and 29.

Figs. 3(a) and 3(b) show the use of a reverse screw flight 30 in a mixer otherwise similar to Figs. 2(a) and 2(b). In Figs. 3(a) and 3(b) the plastic material flow is from right to left, with the reverse flight urging the plastic material toward the right, into the outlet channels of the mixer for the purpose of control. It is preferred to limit the reverse effect to

avoid completely filling the mixer, because the mixer would then become compressive and lose the benefits of this invention.

Referring to Figs. 7(a) and 7(b), this embodiment includes a blister ring 31 to urge the plastic material toward the right, countercurrently. The blister ring 31 is a non-axial pumping ring which is designed as a narrow ring to control the mixer to be not quite filled, because it would then become compressive.

As an alternative, the channel depth could be reduced downstream of the mixer to decrease its pumping capacity, causing some plastic material to back up into the empty mixing channels.

It has been suggested that notches in the flight will permit material to flow through the flight into the inlet channel. Thus, the concept of notches permits material to flow either into one of the inlet channels or continued to be pumped out a discharge channel. This has serious drawbacks that the present invention overcomes.

A flight such as 26 in Fig. 6(b) has a small radial clearance from the extruder housing. A channel according to this invention has a large radial clearance from the extruder housing.

The flight 26 restricts flow for the purpose of promoting flow down and along the outlet channel. It is preferred for the flight 26 not to be a notched flight. A notched flight primarily promotes material into an inlet channel through the notches. When such flow exceeds the pumping capacity of the cross-axial pumps 22, 24, for example, the mixer flow will become undesirably compressive. A flight such as 26 in this invention includes variations in design sufficient to maintain elongational, non-compressive, flow in the mixer.

Although this invention has been described with reference to specific embodiments thereof, it will be appreciated that many variations may be made in the specific design of the extruder and its mixing section, including variations of the numbers and arrangements of inlet channels, cross-axial pumps, the number of inlet channels and cross-axial pumps, and

5

10

the number and arrangement of subsequent outlet channels. It will further be appreciated that the flight at the input and the exit ends of the mixing section can either be connected to or disconnected from the channels. Further, although it has been indicated as preferred to utilize a separate starve feeding mechanism, the invention is fully capable of operating with benefit and advantage in the absence of any such controlling mechanism. The dimensions of various channels may be specially designed to be similar or different from each other, where plural channels are utilized, and the dimensions of the first and subsequent cross-axial pumps can differ from each other. Although the channels may be oriented parallel to the screw axis, they may be angled as well. Further, some of the channels may be non-inlet channels and bounded by a flight on one side or more than one side. Many other variations may be made, as will readily become apparent to those skilled in the art.

SEARCHED INDEXED  
SERIALIZED FILED

What Is Claimed Is:

1. An extruder mixer for plastified material comprising a rotatable elongated screw and means for rotating said screw, said screw having a mixing section adapted to mix plastified materials, said mixing section having an inlet channel connected to a cross-axial pump constructed and arranged to feed a subsequent said channel, wherein said subsequent channel is connected to further feed said mixture to at least one subsequent cross-axial pump that is bounded by a flight on at least one side of said output channel to deliver the resulting plastic mixture.

2. The apparatus of Claim 1, wherein the cross-axial pumps are bounded by channels on more than one side.

3. The apparatus of Claim 1, wherein an upstream feeder is connected to cause and to control input feed of mixable materials.

4. The apparatus of Claim 1, where a screw channel is provided at the input of said mixer to control the flow rate mixer input.

5. The apparatus of Claim 1, where an output flight is connected to a downstream flight of said mixer section.

6. The apparatus of Claim 1, where an output flight is connected to a channel of said extruder mixing section.

7. The apparatus of Claim 1, wherein the dimensions of said first and subsequent

channels are substantially the same as each other.

8. The apparatus of Claim 1, wherein said extruder screw is substantially vertically oriented.

9. The apparatus of Claim 1, wherein the dimensions of said first and subsequent channels are different from each other.

10. The apparatus of Claim 1, wherein the dimensions of said first and subsequent cross-axial pumps are the same.

11. The apparatus of Claim 1, wherein the dimensions of said first and subsequent cross-axial pumps are different from each other.

12. The apparatus of Claim 1, wherein said channels are oriented substantially parallel to the screw axis.

13. The apparatus of Claim 1, wherein said channels are oriented at an angle to the screw axis.

14. The apparatus of Claim 1, wherein at least some of the channels are unconnected to said inlet channel and are bounded by a flight on one side.

15. The apparatus of Claim 14, wherein at least some of said non-inlet channels are bounded by a flight on two sides.

16. The apparatus of Claim 1, wherein said mixer is not starve fed.

17. The apparatus of Claim 1, where resistance devices are provided on said screw to force said plastic material into said outlet channels.

18. The apparatus of Claim 1, wherein there are multiple inlet channels.

19. The apparatus of Claim 1, wherein there are multiple connected inlet flights.

20. The apparatus of Claim 1, wherein there are multiple connected outlet flights.

21. In a method of mixing plastic or plastifiable materials in an extruder comprising a rotatable extruder screw having a mixing section comprising a plurality of inlet and outlet channels for said materials, the steps which comprise:

(a) drawing said materials into an inlet channel,

(b) cross-axially pumping said material from said inlet channel to at least one subsequent said inlet channel, and

(c) cross-axially pumping said material.

22. The method of Claim 21, comprising the further step of cross-axially pumping said material into an outlet channel.

23. The method of Claim 21 comprising the further step of controlling upstream feed of input of said material to said extruder.

24. The method of Claim 23, wherein said input is fed through a screw channel, and wherein said step of controlling comprises constraining the feed rate of said screw channel.

25. The method of Claim 21 comprising the further step of controlling the rate of material output from said outlet channel.

26. The method of Claim 23, wherein an output flight is connected to a channel of said extruder, and wherein said step of controlling comprises limiting the rate of rotation of said output flight.

27. The method of Claim 21, comprising the step of starve feeding said extruder.

28. The method of Claim 21 comprising the step of applying resistance to output material flow to force said plastic material into said outlet channel.

29. The method of Claim 21 comprising the step of introducing said plastifiable material separately into a plurality of separate inlet channels.

30. The method of Claim 21 comprising the step of concurrently feeding said plastifiable material into a multiplicity of individual channels.

31. The method of Claim 21 including the further step of connecting a plurality of said channels together for concurrent flow of said material therein.

32. The method of Claim 21 comprising the step of removing said mixed material

concurrently through a plurality of multiple outlet flights.

33. The method of Claim 21 comprising the further step of maintaining said plastifiable material in a melted state within said mixing section.

ABSTRACT OF THE DISCLOSURE

An extruder mixer and method for mixing plastic materials utilizes an elongated screw having an inlet channel connected to a first cross-axial pump that feeds, at an angle to the screw axis, a subsequent channel, wherein the subsequent channel becomes a further inlet channel connected to at least one subsequent cross-axial pump, and wherein the cross-  
5 axial pump is bounded by a flight on at least one side.

DRAFTING DRAWING ATTACHED

FIG. 1 (a)



FIG. 1 (b)



FIG. 2(a)



FIG. 2(b)





FIG. 3(a)

FIG. 3(b)



FIG. 4(b)

FIG. 4(a)



CROSS-AXIAL PUMPS

FIG. 5(b)

FIG. 5(a)

FIG. 6(b)



FIG. 6(a)





Fig. 7(a)



Fig. 7(b)