혈소판 기반 초격차 암 조기 스크리닝 기술 개발 (11종암)

ARPA-H: 20-30대 위한 10종 암 조기 스크리닝 기술 개발

FORETELL MY HEALTH

새로운 접근 가능성: Tumor Educated Platelet (TEP)

■ 암은 혈소판의 RNA 를 변화시킴 → 혈소판은 암 생성/성장/혈관생성을 도움 = RNA 변화 탐지로 조기암 진단가능

Endothelial cell

Tumor cells

Stromal cell

Platelet
Tumor-educated platelets
Activated platelet

Platelet-derived mRNA

Tumor-derived mRNA

Tumor cell-platelet aggregate

Platelet-derived factors
Tumor-derived factors

Cancer Metastasis Rev. 2021; 40(2): 563–573. Platelets as messengers of early-stage cancer

• Platelet는 Megakaryocyte로부터 찢어져서 나온 무핵 세포로서, gDNA가 존재하지 아니하고 유전정보는 RNA형태로 저장되어 있습니다.

조기암 스크리닝 성과물의 구성

lacksquare 혈소판 RNA에 기반한 7가지 기술개발 ightarrow 체외진단 의료기기 (1 1종암 조기 스크리닝) 상품 개발

8 스크리닝 대상 11종 암종 → 기존 선별검사 및 종양표지자 현수준 파악, 스크리닝 검사의 시사점 및 활용 가이드 개발

₿ 건강검진 및 역학정보 활용 암종별 기저 위험도 예측 모듈 → 감응도 개선

멀티 모달 지능형 판독 알고리즘

합성 데이터 생성 기술 적용 민감/특이도 개선

NGS	PCR	이미지	건강검진
Random	Eigen	Data	Data
Subsampling	Sampling	Augmentation	Imputation

8 모든 참여기관이 환자동의 및 검체 수집/배송 참여 → 조기암 개발 및 임상적 검증 극대화

	현존		자사의 수준		기술 개발 목표			
Target Product Specification	액체 생검법 수준 ⁽¹⁾	NGS	PCR	혈소판 이미지	NGS	PCR	혈소판 이미지 분석	
암종	50+종	1개암 (난소)	1개암 (난소)	난소암, 대장암	10종+난소암 (총 11종)		<u>\$</u>)	
1기 민감도 (%)	11.9 ^(1,2)	100	100	-	90			
민감도 (%)	47.9 ^(1,2)	100	93.3	80	90			
특이도 (%)	99.5 ⁽¹⁾	96.1	98.1	77.8	95			
위양성률 (%)	0.5 ⁽¹⁾	3.9	1.9	22.2	5			
1기 위음성률 (%)	88.1 ^(1,2)	0	0	-	10			
위음성률 (%)	52.1 ^(1,2)	0	6.7	20	10			
TOO 정확도 (%)	88.7 ⁽¹⁾	83.7	-	-	90			
LOD (%)	0.07~0.17 ⁽³⁾	8.45x10 ⁻⁵⁽⁴⁾	2.42x10 ⁻⁵⁽⁴⁾	NA	8.45x10 ⁻⁵⁽⁴⁾	1.0x10 ⁻⁵	NA	
TAT (시간)	~336 (~2주)	156 (6.5일)	7.5	1	120 (5일)	5.5	1	
가격 (원)	132만/50+종	60만/11종	4만/1종	65백/11종	35만/11종	7만/11종	65백/11종	

⁽¹⁾ Klein, Eric A., et al. "Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set." Annals of Oncology 32.9 (2021): 1167-1177.

⁽²⁾ 자사 기술 개발 목표의 11종 암에 대한 성능을 제시함

⁽³⁾ Alexander, Gregory E., *et al.* "Analytical validation of a multi-cancer early detection test with cancer signal origin using a cell-free DNA-based targeted methylation assay." *PLoSOne* 18.4 (2023): e0283001. (4) 자체측정: (측정법: 의약품등 분석법의 밸리데이션에 대한 가이드라인, 식품의약품안전청, (2004)의 반응의 표준편차와 검량선의 기울기에 근거하는 검출한계 계산 방법)

개선의 아이디어 및 연구내용 ① CanDI 코호트 (~5,000)

■ 공개 암/정상 혈소판 RNA-seq 데이터 (지속수집) + 다기관 연구를 통한 적극적 참여자 모집

13개 논문, 10종암 총 5,338건 (조기암 540건) 6개 기관 1 1개 암종, 35명 교수진 참여 협약 완료 총 5,460 목표 (조기암 1,750건)

암종	논문1	논문2	SE/101	SE/101	SE/101	SE/101	PE/300	PE/200	SE/101	SE/51	SE/101	PE/300	SE/51	총합
자궁내막	39(36)								39(28)					78(64)
담도					14(4)				23(2)					37(6)
췌장					35(11)				133(73)					168(84)
유방					39(14)				93(30)					132(44)
대장					42(6)			132(73)	85(4)					259(83)
뇌		130(0)	39(0)											169(0)
폐				436(39)	60(4)				535(34)		172(11)			1,203(88)
교모세포		246(0)			40(39)									286(39)
난소						28(9)			144(54)					172(63)
신장							24(6)		28(0)					52(6)
기타									576(56)			71(0)	10(7)	657(73)
일반 종양		92(0)		153(0)		32(0)	12(0)	169(0)	347(0)					805(63)
NA						9(0)		21(0)						30(0)
암이 아닌 자		366	41	237	60		13		404	88	51	25	5	1,290

암종	서울대학교병원 -본원	서울대학교병원 -보라매병원	국립암센터	명지병원	서울 아산병원	신촌 세브란스병원	총합
갑상선	60 (30)	60 (30)	180 (90)	0 (0)	0 (0)	0 (0)	300 (150)
대장	90 (30)	90 (30)	240 (90)	0 (0)	0 (0)	0 (0)	420 (150)
폐	150 (30)	150 (30)	300 (60)	0 (0)	0 (0)	0 (0)	600 (120)
위	90 (45)	90 (45)	180 (90)	0 (0)	0 (0)	0 (0)	360 (180)
유방	90 (45)	90 (45)	180 (90)	0 (0)	0 (0)	0 (0)	360 (180)
전립선	90 (45)	90 (45)	90 (45)	180 (90)	0 (0)	0 (0)	450 (225)
간	120 (45)	120 (45)	150 (60)	0 (0)	120 (40)	0 (0)	510 (190)
췌장	0 (0)	150 (15)	450 (45)	0 (0)	300 (30)	150 (15)	1,050 (105)
담도	0 (0)	150 (30)	300 (60)	0 (0)	300 (60)	0 (0)	750 (150)
신장	90 (60)	90 (60)	90 (60)	0 (0)	0 (0)	0 (0)	270 (180)
난소	150 (45)	0 (0)	150 (45)	90 (30)	0 (0)	0 (0)	390 (120)
암이 아닌 자			600				600

간, 전립선, 신장암 혈소판 RNA 공개 데이터 부재

5,338 (540)

5,460 (1,750)

연구 대상자 모집 프로토콜

신환 대상자 선정 ✓ 담당의 신환중 연구대상자 선정 (전날) ✓ 대상자에게 연구진행과 검체 채득에 대해 설명 ✓ 동의서 (연구동의서, <u>인체유래물연구동의서</u>) 수집, 전산 코드 입력 √ Saliva (medi cup) <u>채혈실, 전혈 (EDTA 6 ml)</u> 수집 ✓ 채혈실에서 검체 수령 - bank로 이동 혈액 분리 (PLT, plasma, RBC, <u>buffycoat</u>) ✔ PLT는 연구실로 이동 ✓ 잔여 검체는 bank에 기탁 연구자 동의 서명(연구책임자)

🛢 모든 참여기관이 환자동의 및 검체 수집/배송 참여 → 조기암 스크리닝 개발 및 임상적 검증 극대화

CANcer Detection Innovation 코호트 구축 (1단계: 3,000례, 2단계: 5,500례)

(주관) 포어텔마이헬스

혈소판 기반 초격차 암 조기 스크리닝 기술 개발 (11종암)

> **안태진** 외 12명

담당 기술개발 내용

- 1 조기암 향 혈소판 RNA 바이오마커 발굴
- 2 바이오마커 감응성 개선 및 비용 효율화: NGS
- 4 초 저비용 격차 기술 (혈소판 이미지)
- 지능형 판독 알고리즘 (NGS, PCR, 이미지, 멀티)

(공동) 서울대학교병원

암 조기 스크리닝 기술의 임상적 활용 가이드라인 개발

> 신루미 외 17명

담당 기술개발 내용

스크리닝 결과의 임상 활용 가이드라인

(공동) 국립암센터

건강검진 문진 활용 암 기저 위험도 예측 모형 개발

> 김미경 외 12명

담당 기술개발 내용

혈액검사 / 역학문진 추가 정보 활용 감응도 개선

(위탁) 삼광랩트리

혈소판 RNA 바이오마커의 최적화

황경아 외 3명

담당 기술개발 내용

바이오마커 감응성 개선 및 비용 효율화: PCR