Homework assignment 4

Group -10

Shweta Siddha, Manisha Gupta, Achint Khanijo, Kartikay Nigam

For each ID, the data is sorted by year. You need to create the ID and year variables Q1. I have given you a panel data on wages (Wage data) in which N=334, T=3 years (1984-1986).

Columns	Variable name	Description
C1	Edu	Education in years
C2	Hr	Work hours per year
C3	Wage	Dollar wage per hour
2	Famearn	Family earnings in dollars per year
CS	Self	Dummy for self-employed
66	Sal	Dummy for salaried
C7	Mar	Dummy for married
C8	Numkid	Number of children
C9	Age	
C10	unemp	Local unemployment percentage

We need to understand the effect of the following variables: age, edu, numkid, hr, mar, sal, self, unemp. We need to do a regression to understand the determinants of "natural log (wages)" that is {ln(wage)}.

Find the best linear regression model. Check for multicollinearity and take appropriate actions.

			Parameter Estimates	r Estimat	es		
Variable	8	Parameter Estimate	Standard Error	t Value Pr> t	Pr>∥	Standardized Estimate	Variance Inflation
Intercept		1.35635	0.18086	7.50	<.0001	0	0
age		0.01225	0.00213	5.75	<0001	0.17327	1.20133
edu		0.06793	0.00723	9.40	^0001	0.28153	1.18581
numkid		0.02640	0.01957	1.35	0.1775	0.04148	1.24890
=		-0.00014238	0.00002526	-5.54	<.0001	-0.16716	1,16278
married	-	0.13837	0.07512	1.84	0.0658	0.05318	1,10220
salaried	بد.	0.29291	0.04436	6.50	<u>^</u> 0001	0.20436	1.26600
selfempl		-0.35071	0.05203	-6.74	< 0001	-0, 19653	1.12365
locunemp		-0.01499	0.01134	.1.32	0.1867	-0.03688	1.02955

			503.87752	1000	Corrected Total 1000 503.87752
		0.38118	992 378,13268	992	Error
^ 00	41.24 < .0001	15.71811	8 125.74484 15.71811	co	Model
Pr×	F Value	Square	Sum of Mean Squares Square F Value Pr > F	8	Source

eo-en-monorareanna-no-no-hu	0.2435	Adj R-Sq	2.59390 23.80201	Dependent Mean Coeff Var	
enninanani.	0.2496	R-Square 0.2496	0.61740	Root MSE	

Above regression is done with

Dummy for salaried, Dummy for self-employed and Local unemployment percentage is equal to zero. Null hypothesis: Coefficient of age, education, Number of children, Work hours per year, Dummy for married,

Alternate hyposthesis: Atleast one of the coefficient is not zero.

hence the coefficient of atleast one independent variables is not zero. As the p-value (0.0001) is less than alpha (0.05), therefore we have sufficient proof to reject the null hypothesis.

independent variables could explain only 24% of variation in dependent variable. For the above resultset, the R-squared is 0.2496 and ajusted R-squared is 0.2435, this means that the given 8

Variable significance:

unemployment percentage are not significant. variables at 95% confidence level. But variables Number of children, Dummy for married and Local Variables age, education, Work hours per year, Dummy for salaried and Dummy for self-employed are significant The state of the s

Test for Multicollinearity:

no multicollinearity in the dataset. As the VIF of all the variable coefficient is less than 10, and Collin index is less than 100, we can say that there is

Re-running the regression model with significant variables:

SOM MANAGEMENT AND			503.87752	1000	Corrected Total 1000 503.87752
		0.38179	994 379,49795	994	Error
^ 88	54.30 < 0001	20.72993	6 124.37957 20.72993	တ	Model
P.V	Mean Square F Value Pr>F	Mean Square	Squares	8	Source

		23.82094	Coeff Var
0.242	2.59390 Adj R-Sq 0.2423	2.59390	Dependent Mean
0.2468	0.61789 R-Square 0.2468	0.61789	Root MSE

			Parameter Estimates	er Estima	tes		
Variable	묶	Parameter Estimate	Standard Error	t Value Pr≻∥	Pr V E	Standardized Estimate	Variance Inflation
Intercept		1.28890	0.14926	8.64	8.64 < .0001	0	
age		0.01128	0.00198	5.68	5.68 < 0001	0.15951	1.03994
edu		0.06806	0.00718	9.48	9.48 < 0001	0.28204	1.16764
₹		-0.00014082	0.00002515	-5.60	-5.60 <.0001	-0.16533	1.15085
married	-4	0.16489	0.07288	2.26	2.26 0.0239	0.06338	1.03575
salaried	k	0.29524	0.04415	6.69	< 001	0.20599	1 25214
selfempi		-0.34800	0.05202	-6.69	-6.69 < .0001	-0.19501	1.12141

variable became significant. after removing number of children and Local unemployment percentage from the model; Dummy for married In the first analysis, we found that Dummy for married variable was not significant at 95% confidence level, but

significant independent variables are able to again explain only 24% of variation in dependent variable (wage). For the above resultset, the R-squared is 0.2468 and adjusted R-squared is 0.2423, that means the given

NON-LINEARITY TEST:

Wage (log term) as dependent variable and Age, Age squared term as independent variable: $\ln(\text{wage}) = b0 + b1*\text{age} + b2*(\text{age*age})$ $\ln(wage) = b0 + b1*age + b2*(age*age) + b3*edu + b4*hr + b5*mar + b6*sal + b7*self$

Variance Inflation

101.26851 101.11231

1.17899

Equation wage_im

On performing regression between dependent variable wage (log term) and; age and age squared term as independent variable, they came out to be statistically significant at 95% confidence interval.

1.25321 1.03596 1.15358

squared term is not very significant at 95% confidence interval. But on running regression between significant variables (obtained in question 1-1) including age squared term, age

b. Wage (log term) as dependent variable and education, education squared term as independent variable: ln(wage) = b0 + b1*edu + b2*(edu*edu) - ln(wage) = b0 + b1*age + b2* edu+b3*(edu*edu) + b4*hr+b5*mar+b6*sal+b7*self

	1	John Maryon	0.00000	o out to available Art to	V. 2.4. 00	
	Dep	Dependent Mean	2.59390	Adj R-Sq	0.2665	
	Coe	Coeff Var	23.43800			
						::.
		Para	Parameter Estimates	nates		
/ariable	묶	Parameter Estimate	Standard Error	 I Value Pr> t	Pr>N	Variance Inflation
ntercept		2.13154	0.20642	10.33	<.0001	0
ğ		0.01045	0.00196	5 6.34	<0001	1.04552
ğ		-0.08531	0.02733	3,12	0.0019	17.48640
du sq		0.00677	0.00116	Ch Ch	<.0001	17.90609
=	د	-0.00013646	0.00002476	-5.51	<.0001	1.15190
narried	ud	0.14623	0.07178	3 2.04	0.0419	1.03782
alaried		0.24950	0.04415	5.65	<.0001	1,29329

as independent variable, they came out to be statistically significant at 95% confidence interval. On performing regression between dependent variable wage (log term) and; education and education squared term

0 Objective*N 435.2120

0.05123

-7.05 <.0001 1.12367

term, education squared term is still significant at 95% confidence interval. Also, on running regression between significant variable (obtained in question 1-1) including education squared

c. Wage (log term) as dependent variable and work hours, work hours squared term as independent variable: $\ln(\text{wage}) = b0 + b1*\text{hr} + b2*(\text{hr*hr})$ $\ln(\text{wage}) = b0 + b1*\text{age} + b2*\text{edu} + b3*\text{hr} + b4*(\text{hr*hr}) + b5*\text{mar} + b6*\text{sal} + b7*\text{self}$

Equation	Equation DF Model DF Error SSE MSE Root MSE R.Square Adj R.Sq	DF Error	SSE	#SE	Root MSE	R-Square
wage_lm	w	998	480.8	998 480.8 0.4817	0.6941	0.0459
		lonlinear	d S TO	aramete	Nonlinear OLS Parameter Estimates	
	Paramete	Estimate	A Pp	rox Std	Approx Parameter Estimate Approx Std Err (Value Pr > It	Approx Pr>
	8	2.555756	,	0.0847	47 30.18	٨
	T		•	2 222	- Constant	3
		0.000214		3.0000.0		3,03 0,0025

-7.91E-8

1.542E-8

5.13 < 0001

	7000	Charles and the	50000	ACCION SUBSECTIONS OF POOR	2000	
	Des	Dependent Mean	2.59390	Adj R-Sq	0.2540	
	Ç	Coeff Var	23.63547			
		Pan	Perameter Estimates	ates		
Variable	DF.	Parameter Estimate	Standard Error	t Value Pr>N	Pr V M	Variance Inflation
intercept	,,,	1.06282	0.15818	6.72	< 0001	o
ege		0.01236	66100'0	6 22	< 0001	1.05892
gåu	4	0.05700	0.00713	9.40	<.0001	1.16920
*		0.00010539	0.00006542	1,61	0.1075	7.90794
T sg		-5.68673E-8	1.396758E-8	-4.07	<.0001	7.56017
married	Ä	0.13534	0.07268	1.86	0.0629	1.04617
salaried	44.	0.27591	0.04406	6.26	<.0001	1.26686
selfempi	-3	-0.33233	0.05176		-6.42 <.0001	1.12764

term as independent variable, they came out to be statistically significant at 95% confidence interval. On performing regression between dependent variable wage (log term) and; work hours and work hours squared

But on running regression between significant variable (obtained in question 1-1) including work hours squared term, work hours squared term is still significant at 95% confidence interval.

d. Final regression model with all squared terms: $\ln(\text{wage}) = b0 + b1 * \text{age} + b2 * (\text{age*age}) + b3 * \text{edu} + b4 * (\text{edu*edu}) + b5 * \text{hr} + b6 * (\text{hr*hr}) + b7 * \text{mar} + b8 * \text{sal} + b9 * \text{self}$

		Par	Parameter Estimates	ates		
Variable	8	Parameter Estimate	Standard Error	ndard Error t Value Pr > t	P v #	Variance Inflation
Intercept		1,08407	0.42883	2.53	2.53 0.0116	
age		0.05401	0.01905	284	2.84 0.0047	101,28698
age_sq		-0.00048804	0.00021795	-224	0.0254	-2 24 0 0254 101 37849
edu	k	-0.09551	0.02710	-3.52	-3.52 0.0004	17,58912
enclasticiviledu_sq		0.00710	0.00115	6 15	K 0001	6.15 × 0001 × 17.96569 15
7		0.00013032	0.00006425	2.03	2.03 0.0428	7.93800
br_sq	حب	-6.21855E-8	-6.21855E-8 1.371702E-8	4.53	4.53 < 0001	7.58744
married		0.11073	0.07135	1.55	1.55 0.1210	1.04912
salaried		0.22330	0.04396	5.08	5.08 < 0001	1.31244
selfempl		-0.34777	0.05080	-6.85	-6.85 < .0001	1.13020

活力を受け	こうでは ままを		503.87752	1000	Corrected Total 1000 503.87752
	management and the first of the	0.36123	991 357.97867 0.36123	991	T a
< 0001	44.88 < 0001	krisiannika	145.89886	ဖ	Model
P Y	Mean Square F Value Pr > F	Mean Square	Sum of Squares	유	Source
		riance	Analysis of Variance	À	

		Root MSE
Coeff Vai		23
	75	~
×		×
(D)		Q
	O .	
	- 23	220
×	•	- series
C D		L/A
MANY .		m
9.5.	Dependent Mean	
	2234	
	2000	
	O	
	Ca	
	-	1000000
	•••	
	بالمنسسندة	Signification of
8.5		.)
23	K. 1	
-		
	(J)	ത
7	59	8
170	593	69
1707	5939	6010
17070	59390	60102
17070	59390	60102
23.17070	59390	60102
17070	59390 A	60102 R
17070	59390 Ac	60102 R
17070	59390 Adj	60102 R-S
17070	59390 Adj	60102 R-Se
17070	59390 Adj R	60102 R-Squ
17070	59390 Adj R-	60102 R-Squ
17070	59390 Adj R-S	60102 R-Squa
17070	59390 Adj R-Sq	60102 R-Squar
17070	59390 Adj R-Sq	60102 R-Square
17070	59390 Adj R-Sq	60102 R-Square
17070	2.59390 Adj R-Sq	0.60102 R.Square (
17070	59390 Adj R-Sq 0	60102 R-Square 0
17070	59390 Adj R-Sq 0.2	60102 R-Square 0.2
17070	59390 Adj R-Sq 0.28	60102 R-Square 0.28
17070	59390 Adj R-Sq 0.283	60102 R-Square 0.289
17070	59390 Adj R-Sq 0 283	60102 R-Square 0.2896
17070	59390 Adj R-Sq 0.2831	60102 R-Square 0.2896

From the above model we can see that coefficient of Dummy for married variable again is not significant at 95%

After removing married variable from the final model:

 $\ln(\text{wage}) = b0 + b1 * \text{age} + b2 * (\text{age} * \text{age}) + b3 * \text{edu} + b4 * (\text{edu} * \text{edu}) + b5 * \text{hr} + b6 * (\text{hr} * \text{hr}) + b7 * \text{sal} + b8 * \text{self} + b6 * (\text{hr} * \text{hr}) + b7 * \text{sal} + b8 * \text{self} + b$

		Par	Parameter Estimates	ates		
Variable	묶	Parameter Estimate	Standard Error	t Value Pr > N	P Y ≝	Variance Inflation
Intercept		1.15719	0.42654	271	2.71 0.0068	0
age		0.05487	0.01906	2.88	2.88 0.0041	101.20213
age_sq		-0.00049410	0.00021807	-2.27	-2.27 0.0237	101.34598
edu		-0.09794	0.02707	-3.62	-3,62 0.0003	17.53029
edu_sq		0.00719	0.00115	6.23	< 0001	17.92027
Ŧ		0.00014542	0.00006356	2.29	0.0223	7.75598
H_80	.	-6.43713E-8	1.36542E-8	4.71	4.71 <.0001	7.50745
salaried	.	0.21886	0.04390	4.99	< 0001	1.30689
selfempl		-0.34470	0.05079	-6.79	<.0001	1.12849

Corrected Total 1000 503.87752	Fire	Model	Source	
1000	992	င္တ	묶	2
503.87752	992 358.84865	8 145.02888	Sum of Squares	Analysis of Variance
	0.36174	18. 12861	Mean Square	mance
		50.11	Mean Square F Value Pr > F	
		50.11 < 0001	Pr>F	

	T.				
Coeff Var	30.7		80		XOOK BUT
~		Dependent Mean	83		
V	8.			Ĭ	w
0	100			ş.,	C
****	3: 0	m		\$ · ·	*
-	1	385		3	
200		₩.		žii.	₩,
-		α.		ŧ.,	-
C)		7		3.	u
****	8.	***		3	173
	- 8				ं

	1	-		š.,	
		2			
	100	(1)			
		200			
	8	131			
	1	-		8	
	100				
				ş	
N	i.				
شا	į.	N		1	~
	1			3	*
	į.	Cn	1.	3 '	О
00	3 .	ഥ		8	c
*****	1	tas		8 .	
	1 -	ñ		1	£
23, 18714	1	-		8	00 40
		•		į .	·
mereni	nķan	mm	en e	bee	
	3	×		8-1	-
	31.	-			ø
	3	o.		ğ.) ;	2
	3.8	****			u
	3				Ω
	3	بد			-
	31.5	2 59390 Adi R-Sa		٤l.,	o z-uquale
	3	u		8	533
	1	O:		8.11	***
	\$ 100			٠.	Ф
	4			٤	110
	1			€"	
	1	0 2821		٤.	C
	1 .	١.	. :	ş .:	ť.
	4 .	r o		1	1
	1	တ		8	0
		N		8	***
				1	0/0/0
		~		} .	~
amanana	mino	vono	20000	enay.	none.

Now coefficient of all the variables are significant at 95% confidence level. Hence this is our final model.

i.e., FIXEDONE, FIXEDTWO, RANONE, RANTWO. Using the same model, run fixed effects models and random effects models

Create a table of coefficients side-by side with significant coefficients shown in bold (you may do this in

		FIXONE	NE	Parameter Estimates RANONE	-Estimate	s FIXTWO	WO	RANTWO	O.M.
Variable	DF	Estimate Pr > t		Estimate Pr > t	Pr > t	Estimate Pr > t		Estimate Pr > t	Pr > t
Intercept	1	-0.78993	0.5139	<u>-0.78993</u> 0.5139 1.322901 0.0299	0.0299	4.970931 <.0001		1.322944	0.0299
age	1 (0.134429	0.0111	0.068983	0.0102	0	•	0.068978	0.0102
age_sq	1	-0.00141 0.0211		-0.00068 0.0265	0.0265	-0.0014	0.022	-0.00068 0.0265	0.0265
edu	0	0	•	-0.09432	0.0291	0	٠	-0.09432	1620.0
edu_sq	0	0	•	0.007299	<.0001	0	•	0.007299 < .0001	<.0001
hr		-0.00041 < .0001	<.0001	-0.00022	0.0001	-0.00041	<.0001	-0.00022	1000.0
hr_sq		2.17E-08	Ċ	-7.33E-		2.16E-08	•	-7.33E-	•
		ŕ		09				09	
salaried		0.125724 0.0125	0.0125	0.18169 < .0001		0.127231	0.0117	0.1817 <.0001	<.0001
selfempl		-0.22899	0.0005	0.0005 -0.27204	<.0001	-0.22991	0.0005	-0.27205 < .0001	<.0001

FIXONE - One way fixed effects - cross section (CS) heterogeneity

which the observation belong as in our case individuals. The above results shows that education of an individual From the above results we can observe that as in one way fixed effect model we analyze only the cross section to does not change frequently and during the given years there is no change in education, hence its coefficient is zero

In random effects model, variance-components are calculated, they are used to standardize the data and OLS is performed.

 $\mathfrak{A}_{\mathbb{R}}$ Write a report on your findings. Interpret model fit, t-values, meaning of coefficients, collinearity diagnostics, White test, Breusch-Pagan test etc.

HAUSMAN Test: To decide which model to use for the given dataset we can check the statistics value from the Hausman Test.

Null Hypothesis: No correlation between error term u_i and X variables

Alternate Hypothesis: Correlation is present.

correlation between error terms ui and X variables, so use Fixed Effects model for the given dataset. As the p-value (0.001) is less than alpha (0.05), we reject the Null Hypothesis and conclude that there is no

Interpretation of Model Fit:

Fixed One-Way Estimates One way random effects

Two way fixed effects

Two way random effects

R-Square	MSE	BSS	
0.8723	0.0973	64.3861	Fit Statistics
	Root MSE	묾	distics
	0.3119	662	

0.3162	Root MSE (0.1000	Ē
993	DFE	99 2813	SSE

Fit Statistics SSE 99.2928 DFE	Root MSE 0.3162	2 4222	E K	8
	Ă	99,2928	SSE	3 3
				5
	2	Els sia		

0.0974 Root MSE 0.3

terms of model fit for one way and two way model. observations or less number of observations across time periods, we do not see much difference in the model in-Also, from the dataset we can see that it is a balanced panel dataset. So, probably because of less number of main difference between one way and two way is whether the given cross sectional dataset is time invariant or not. fixed estimates. Also, R-square value for Random one way estimates is same as two way random estimates. The From the above statistics, we can observe that R-square value for Fixed one way estimates is same as two way

which vary with time to capture the effect of time invariance in the dataset. variables only hours worked in a year is time variant, rest two are dummy. So we do not have much variables Among the given variables we can see that age and education are quite time invariant, whereas out of other

education, education squared term in fix one and fix two model. Work hours squared term is not significant in any Dummy for self-employed are significant in all four models, where as age is not significant in fix two model and t-values: From the t-values we can see that age squared term, Work hours per year, Dummy for salaried and One correct longuage (1/15) when interpreted

Random effect model. So people as they grow old will have increase in wages. Meaning of coefficients:

Age: For a unit increase in age, wage will increase by 0.13 units as per Fixed effect model and by 0.06 units for

Random effect model. The education level of a person does not vary much in 3 years time span Education: Education coefficient is zero in Fixed effect model and wage will decrease by 0.09 units as per

model and by 0.09432 units for Random effect model. Work hours per year: For a unit increase in work hours, wage will decrease by 0.00041 units as per Fixed effect

employed, sales would increase by 0.12 units in Fixed effect model and 0.18 units as per Random effect model. Dummy for self-employed: The interpretation of the coefficient of a self-employed is that when a person is self-

decrease by 0.22 units in Fixed effect model and 0.27 units as per Random effect model. Dummy for salaried: The interpretation of the coefficient of salaried is that when a person is salaried, sales would

高級各有人的人物 如此如此的一次

人名西西 医斯里耳氏征 医克里斯氏 医神经神经病 经人人的人

49866

THE PROPERTY OF THE PROPERTY OF THE PARTY OF

Collinearity diagnostics:

Correlation of Estimates (RANONE)

			Correlati	ons of Pa	Correlations of Parameter Estimates	stimates			
	Intercept	age	agesq	ed E	edusq	=	翼	salaried	selfempi
Intercept	1.00000	-0.88627	0.86347	-9.38176		-0.08816	0.03565	0.03782	0.00692
age	-0.88627	0	-0.99377	-0.03088	0.00857	-0.01323	-0.00856	-0.04318	-0.00774
agesq	0.86347	-0 99377	1.00000		-0.01736		-0.00099	0.04166	0.00558
edu	-0_38176	-0.03088	12.	1.00000	-0.96866	-0.03059	0.02872	0.05316	-0.00743
bentra	0.38563	0.00857	-0.01736	-0.96866	1.00000	0.02241	-0.02255	-0.11063	·0.01471
¥	0.08816	-0.01323	0.02619	.0.03059	0 02241	1.00000	.0.92422	-0 12326	-0 00672
brsq	0.08565	-0.00856	-0.00099	0.02872	-Q.02255		1.00000	0.08207	-0.01666
salarjed.	0.03782	-0.04318	0.04166	0.05316	0.05316 -0.11063	-0.12326	0.08207	1.00000	0.12658
selfempl	0.00592	-0.00774	0.00558	-0.00743	-0.01471	0.00592 -0.00774 0.00558 -0.00743 -0.01471 -0.00672 -0.01666	-0.01666	0.12658	1.00000

Correlation of Estimates (FIXONE)

					A	College St. Commoder Francisco			
	Intercept	aga	agesq	edu	edu adusq	Ŧ	þisq	salaried	salaried selfempi
Intercept	1 00000	-0.36568	0.89245			-0.01386	0.03204	0.07426	-0.04029
2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3	.0.96568	1.00000	-0.97340			-0.04952	0.01854	-0.07148	0.03825
agesq	0.89245	-0.97340	1.00000			0.06589	-0.03119	80690.0	-0.03510
edu									
edusq	,			,			,	,	
4	-0.01386	-0.04952	0.06589	-	•	1,00000	-0.92420	-0.00416	0.02122
head	0.03204	0.01854 -0.03119	-0.03119			-0.92420	1.00000	0.05469	-0.00758
\$3laried	0.07426	-0.07148 0.06908	0.08903	ر - اوق		-0.08416	0.05469	1,00000	0.03720
xeffempl	-0.04029	-0.04029 0.03825 -0.03510	-0.03510			0.02122 -0.00758	-0 00758	0.03720	1,00000

correlation is observed between the estimates. The correlation between estimates and their squared terms is high which is expected. Apart from that, no high

Breusch-Pagan test:

Coefficients DF m Value Pr > m	Coefficien
TO SECURE OF THE PARTY OF THE P	A CONTRACTOR OF THE PROPERTY O
Harrisman Tout for Dandom Efficate	Hausman
ent for Error 0.097372	Variance Component for Error
Variance Component for Time Series	/ariance Compon
Variance Component for Cross Sections 0.268172	/anance Compon

Breusch Pagan Test for Random Effects (Two Way)

무

m Value 480.60

^ Pr 0001

variables. In that case, heteroskedasticity is present. checks whether the variance of the errors from a regression is dependent on the values of the independent From the above results we can see that variance of cross section is greater than variance of time series. The BP test

As the test statistic has a p-value below threshold (e.g. p<0.05) then the null hypothesis of homoskedasticity is rejected. Hence we can conclude with 95% confidence level that heteroskedasticity is present in our model

percentage? What is the effect of panel data models on the coefficients? What parameters have changed and by what

	Fixed Effects	ffects	Regression	ssion	
Variable	Estimate	Pr > t	Estimate Pr > t Estimate Pr > t %change	Pr > t	%change
Intercept	-0.78993 0.5139	0.5139	1.15861 0.0067	0.0067	-168.179111
age	0.134429 0.0111	0.0111	0.0548	0.0041	0.0548 0.0041 145.3083942
age_sq	-0.00141	0.0211	-0.00141 0.0211 -0.00049 0.0238	0.0238	185.835918
edu	0	•	-0.09797 0.0003	0.0003	-100
edu_sq	0	•	0.00719 <.0001	<.0001	-100
hr	-0.00041	<.0001	-0.00041 < $.0001$ 0.000145 0.0224	0.0224	-382.135976
hr_sq	0.00	•	0.00	0.00 <.0001	-133.70128
salaried	0.125724 0.0125	0.0125	0.21895 <.0001	<.0001	-42.5786709
selfempl	selfempl -0.22899 0.0005 -0.34517 <.0001 -33.6587768	0.0005	_0 34517	\ 0001	-33 6587768

0.13 in fixed effect model. It coefficient has increased which will increase in the wage for unit change in the age. Similary the coefficient of age squared term is increased but the other coefficient values is decreased. in parameter coefficients. Coefficient of Age was 0.0041 in regression equation (question 1-2) and has become Comparing the panel data (Fixed Effect) and poolled data results for the given dataset, we can see there is change

changed across the different models? We are especially interested in the effect of education on wages. Notice how much (%) has this coefficient

Education Estimate for In(WAGE) using RANTWO

we can interpret the relation as: The estimate of education and lnwage is non-linear in nature. As the variable educ has a significant squared term,

Delta(ln(WAGE)) = 2*0.007299*EDUC - 0.09432

at EDUC=10, Increase in one year in education increases wage by 5.166% at EDUC=12, Increase in one year in education increases wage by 8.085% at EDUC=14, Increase in one year in education increases wage by 11.005%

selfempl	salaried	bisq	a	edusq	edi	agesq	age	Intercept	Variable	
	-4			-4					묶	
-0.27205	0.1817	-7.33E-9	-0.00022	0.007299	-0.09432	-0.00068	0.068978	1.322944	Estimate	Paramet
0.0523	0.0424	○ 0	0.000056	0.00182	0.0432	0.000307	0.0268	0.6083	Standard Error	Parameter Estimates
-5.20	4.28	\sim	-3.85	4.00	2 19	222	2.57	2.17	t Value	in
-5.20 < 0001	<,0001	ęxanama.	0.0001	<.0001	0.0291	0.0265	0.0102	0.0299	Pr > II	

a territoria de la compansa de la co

goods industries, we are interested in replicating the analysis for industrial goods industries. (1985), we will estimate a simultaneous system of five equations. While the paper considered consumer the data are in the following order. These variables and definitions are given in the paper by Robinson and Q2. I have provided a dataset PIMS.dat which has data on industrial goods manufacturers. The variables in Fornell (1985) on pioneering advantages (see Tables 1, 2 and 3). As in the paper by Robinson and Fornell

Please estimate a 2SLS model with the following five equations.

model MS=qual plb price pion ef phpf plpf psc papc ncomp mktexp

model Qual=price dc pion ef tyrp mktexp pnp

model PLB=dc pion tyrp ef pnp custtyp ncust custsize

model Price=ms qual dc pion ef tyrp mktexp pnp

model DC=ms qual pion ef tyrp penew cap rbvi emprody union

Run the 2SLS model using SAS (PROC SYSLIN) and estimate the effect of pioneering on market share. Be sure to consider the direct effects as well as the indirect effects. (read the paper on pioneering advantages for this interpretation).

		Parar	Parameter Estimates	nates		
Variable	P	Parameter Estimate	Standard Error	t Value	Pr> t	Varlable Label
Intercept		42,00303	66.23322	0.63	0.5261	Intercept
qual		0.510213	0.123225	4.14	<.0001	qual
plb	->	-1.01115	0.413727	-2.44	0.0147	plb
price		0.852267	0.683350	1.25	0.2126	price
pion		7,543081	3,538605	2.13	0.0332	pion
tyrp		-0.37812	3.225028	-0.12	0,9067	tyrp
ef		5.787019	1.562470	3.70	0.0002	eţ
phpf	-	0.584949	1.530377	0.38	0.7024	phpf
pipf	_	0:167317	3.955604	0.04	0.9663	plpf
psc	_	-30.8958	12.92588	-2.39	0.0170	psc
papc		-1.50612	2.252581	-0.67	0.5039	papc
ncomp	_	-7.54440	0.496102	-15.21	<.0001	псотр
mktexp	_1	-0.28543	0.172875	-1.65	0.0990	mktexp

		Parai	Parameter Estimates	nates		
Variable	무	Parameter Estimate	Standard Error	t Value	Pr > t	Variable Label
Intercept		-265,494	63.56925	4.18	<.0001	Intercept
price		2.595316	0.638913	4.06	<.0001	price
dc		10.47285	1.958009	5.35	<.0001	dc
pion		-0.39839	4.642522	-0.09	0.9316	pion
ef		-2.23599	2.142150	-1.04	0.2968	eţ.
tyrp		0.187802	4.337466	0.04	0.9655	tyrp
mktexp		-0.48914	0.205769	-2.38	0.0176	mktexp
pnp		0.211277	0.061838	3.42	3.42 0.0007	dud

						Parar	Parameter Estimates	ates		
=	timates					Parameter	Standard			Variable
<u>a</u>			Variable	Variable	ΡF	Estimate	Error	t Value	Pr > t	Label
ž	or tValue Pr> t	Pr > t	Label	Intercept		100.3140	0.916136	109.50	<.0001	Intercept
ಭ	66.08		<.0001 Intercept	ms.		-0 01764	Ი Ი1938Ი	5 91	0 3628	B,
ij				ē	-	0.017	0.010000		0.0020	1
6	-3.40	0.0007 dc	dc	qual	<u></u>	0.141663	0.035232	4.02	<.0001	qual
7	1.01	0.312/	pion	<u>}</u>	_	0 45750	0 610037	074	0 4606	5
ര്	-0.19	-0.19 0.8483 tyrp	tyro O	5	_	5.40.00	0.019921	-0.12	-0.74 0.4000 00	5
7	-0 17	-0 17 O 8668	D,	pion	هــــ	1.661022	1.073669	1.55	1.55 0.1221	pion
5	3		3	eţ.		0.070665	0.517670	0,14	0.14 0.8914 ef	ፎ
1			7	-						- [
\mathbf{z}	2.88	0.0041 custtyp	custtyp	tyrp	_	-1.42106	0.979397	-1.45	-1.45 0.1470	tyrp
77	1.07	1.07 0.2840 ncust	ncust	mktexp		0.224952	0.030689	7.33	7.33 <.0001 mktexp	mktexp
9	0.81	0.81 0.4155 custsize	custsize	pnp		-0.02127	0.016541	-1.29	-1.29 0.1988	gnp

The below table shows the 2SLS estimations for five models. Estimations for pion variable show the pioneering market share, the coefficient of "pion" are insignificant. effect on market share. Pioneering has direct effect on market share. In models where dependent variable is not

ncust custtyp

custsize

1 0.520397 0.638869

0.210697

tyrp pion

0.054686 0.021919 -0.12958 0.772197 -0.29136 1.523126 Intercept Variable

Parameter Standard Estimate Error

Error t Value

Parameter Estimates

qual		ms	Intercept		Dependent Variable ms	
					Variable	
0.852267 2.595316	0.510213		42.00303		ms	6.3
2.595316			42.00303 -265.494 109.0706 100.314		qual	
			109.0706		pllb	
	0.141663 0.035383	-0.01764 0.004963	100.314		price	
A Company	0.035383	0.004963	1.140754		dc	

	emprodv	rbvi	cap	penew	custsize 0.520397	ncust 0.225838	custtyp 3.940911	pnp 0.211277 0.054686 -0.021	tyrp -0.37812 0.187802 -0.29136 -1.421	mktexp -0.28543 -0.48914 0.2249	ncomp -7.5444	pape -1.50612	psc -30.8958	plpf 0.167317	phpf 0.584949	ef 5.787019 -2.23599 -0.12958 0.0706	pion 7. 543081 -0.39839 1.715145 1.6610	dc 10.47285 -8.73302 -0.457	
					7	8	1		6 -1.42106	0.224952						8 0.070665	5 1.661022	2 -0.45759	
0.001010	の ののつをつる	-0.04885	0.000041	-0.0034					0.221522							0.140887	-0.07697		

Endogenous Variables: MS, QUAL, PLB, PRICE, DC; hence 5 simultaneous equations. Instrument Variables: PION, EF, PHPF, PLPF, PSC, PAPC, NCOMP, MKTEXP, TYRP, PNP, CUSTTYP, NCUST,

value<0.05) at 95% confidence level. is selling seasonally changed goods/inventory, and Number of competitors are significant (i.e. |t-value|>1.96 and p-Product quality, Product Line Breadth, If a business is a market pioneer, Whether a firm is an early follower, Pioneer

pioneer and sells goods that are changed seasonally then the market share will decrease by 30.89 units pioneering on market share. If the firm is a pioneer, the market share will increase by 7.54 units. Also, if a firm is a **Direct Effect:** Pioneering is a significant variable. (t value = 2.13 and p-value = 0.0332) so there is an effect of

Total Effects = Direct Effect + Indirect effect = 5.9PION-DC-QUAL-MS: -0.07697*(10.47285)*(0.510213)= -0.41 PION-DC-PRICE-MS: -0.07697*(-0.45759)*(0.852267)= 0.03 PION-DC-PLB-MS: -0.07697*(-8.73302)*(-1.01115)= -0.68 PION-PRICE-MS: 1.661022*0.852267 = 1.41PION-PLB-MS: 1.715145*(-1.01115) = -1.73PION-QUAL-MS: -0.39839* 0.510213= -0.20 Indirect Effect: (where pion = 1) Total indirect effect is -1.58

Run a simple regression model of market share as given in the first equation. What is the effect of pioneering on market share using this simple model? How does this effect change across different Fig. 18 0 Page 19 Soft 14 1 a state openicionad back a secondario

and the second section of the second second

		Pa	Parameter Estimates	mates		
Variable	Label	뮊	Parameter Estimate	Standard Error	t Value	Pr > 1
intercept	Intercept		47.42575	7.94019	5.97	<.0001
qual	qual		0.16785	0.01669	10.06	<.0001
did	þlb	>	-0.48829	0.06033	-8.09	<.0001
price	price		0.33321	0.07842	4.25	<.0001
pion	pion		12.60256	2.58479	4.88	<.0001
tyrp	tyrp		-2.92100	2.40991	-1.21	0.2257
ef	ef		4.96526	1.21261	4.09	<.0001
phpf	phpf	بد	1.61160	1.20764	1.33	0.1823
plpf	plpf	_	1,14544	2.71817	0.42	0.6735
psc	psc		-20.77004	9.99043	-2.08	0.0378
papc	papc		-1.20403	1.55664	-0.77	0.4394
ncomp	псотр		-7.48754	0.37961	-19.72	<.0001
mktexp	mktexp		-0.10667	0.07495	-1.42	0.1550

We observed following differences between regression and 2sls model-

use 2SLS model instead of simple regression which removes endogeneity issue. QUAL, PLB, PRICE, DC. That is why simple regression is violating the unbiased assumption. The solution is to 2SLS (7.54 direct and 5.9 indirect). The reason is-there is endogeneity due to simultaneity occurring in MS, Pioneering is significant in both the models, but its coefficient is high in simple regression (12.6) as opposed to

removed by 2SLS and so it becomes insignificant. model since it is correlated with Quality, however, Price is insignificant in 2SLS model. This endogeneity is Both models have common significant coefficients except price. Price is significant in the simple regression

coefficients in simple regression that confirms endogeneity as variables are showing effects of relation with each Considering 95% significance level, Product Quality, Product Line Breadth, Whether firm is an early follower, other. The remaining variables remain insignificant in both 2SLS and simple regression model. Pioneer Seasonal Product Change, Number of competitors are significant in both the models but have higher

2 SLS model has resolved endogeneity and unobserved heterogeneity and is giving unbiased results

