

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de São José do Rio Preto

Fluxograma para um domingo

Acordar Tomar café Dia de Sol? Ler jornal. Vou à praia. Fazer refeição.

Fim do domingo.

Ciência da Computação

Prof. Dr. Leandro Alves Neves

Aula 02

Sumário

- Representação de Dados
- Sistemas de Numeração
- Conversão de Dados

- O computador, por ser uma máquina eletrônica, só consegue processar duas informações: presença ou ausência de energia.
 - As informações Binárias (valores 0 e 1) ou Bits são representados por:
 - ~3v: Representa o Bit valor 1
 - bit [de "Binary digIT"]
 - ~0,5v: Representa o Bit valor 0
- código numérico: BINÁRIO

BYTE (Blnary TErm)

- Grupo ordenado de 8 bits, para efeito de manipulação interna mais eficiente
- Tratado de forma individual, como unidade de armazenamento e transferência.

Bit (1947), termo definido por **John Wilder Tukey** (**Americano**), **matemático**

Byte (1956), termo criado por Werner Buchholz (Alemão), cientista da computação

Byte

 Letras, números e outros caracteres são codificados e decodificados pelos equipamentos via associação (Tabela).

Sistema para representação: ASCII, UNICODE e outros

Binário	Caractere
0100 0001	Α
0100 0010	В
0110 0001	а
0110 0010	b
0011 1100	<
0011 1101	=
0001 1011	ESC
0111 1111	DEL

Bit - 2 estados: 0 e 1

Byte	В	8 bits	-
Quilobyte	KB	1.024 bytes	2 ¹⁰ =1.024
(ou Kilobyte)			
Megabyte	MB	1.024 KB	2 ²⁰ =1.048.576
Gigabyte	GB	1.024 MB	2 ³⁰ =1.073.741.824
Terabyte	ТВ	1.024 GB	240=1.099.511.627.776

Os valores utilizados em computação para indicar capacidade de memória e armazenamento são normalmente compostos de um número (entre 0 e 999) e uma das abreviaturas citadas (ex.: 256KB, 64MB, etc.).

- Permite representar uma informação usando um conjunto de símbolos.
- Os símbolos fazem referência a um valor numérico padronizado, chamada de "base".
 - A quantidade de diferentes símbolos existentes num dado sistema de numeração representa a sua base.
- Exemplo: Sistema de numeração decimal é composto por dez símbolos diferentes:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 = 10 símbolos = **base 10**

Por exemplo: 5.031.902 na base 10:

```
5 \times 10^6 + 0 \times 10^5 + 3 \times 10^4 + 1 \times 10^3 + 9 \times 10^2 + 0 \times 10^1 + 2 \times 10^0 = 5.031.902
```

- Alguns tipos de representações possíveis:
 - Decimal: base 10
 - □ Binário: base 2 → 2 símbolos → 0 e 1
 - Hexadecimal: base 16
 - Octal: base 8

Sistemas de Numeração básicos:

Sistema	Base	Algarismos	
Binário	2	0,1	
Ternário	3	0,1,2	
Octal	8	0,1,2,3,4,5,6,7	
Decimal	10	0,1,2,3,4,5,6,7,8,9	
Duodecimal	12	0,1,2,3,4,5,6,7,8,9,A,B	
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F	

Sistemas de Numeração básicos:

Decimal	Binário	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
-			

Decimal para Binário

- Divisão (Decimal (base 10 base 2))
- Dividir o número por b (base do sistema) e também os resultados obtidos consecutivas vezes.

125 em binário (Base 2)?

Decimal para Binário: 8,375

em binário (Base 2)?

parte inteira:

0,500 o processo pára aqui, pois a parte do número 1,000

depois da virgula é nula.

parte fracionária:

0,375 parte fracionária 2 base 0,750

1,500

quando atingimos o número 1, e a parte do número após a virgula não for nula, separamos esta última e reiniciamos o processo:

Sendo assim, podemos escrever: 0,011, = 0,375,0. Para completarmos a conversão efetuamos a composição da parte inteira com a fracionária:

Binário para Decimal

(Binário (base 2 → base 10)
 (01111101)_b → (?)_{dec}

$$0x2^7 + 1x2^6 + 1x2^5 + 1x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0$$

 $(00001001)_{b}$ $(?)_{dec}$ $(00001011)_{b}$ $(?)_{dec}$

Conversão de Números Fracionários

Lei de Formação ampliada

Número =
$$a \cdot b^n + a \cdot b^{n-1} + a \cdot b^{n-2} + ... + a \cdot b^0 + a \cdot b^{-1} + a \cdot b^{-2} + ... + a \cdot b^{-m}$$

parte inteira parte fracionária

Exemplo:
$$(101,110)_b = (?)_{dec}$$

$$1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3}$$
 (5,75)_{dec}

- Representação de Números Hexadecimais:
 - Sistema que adota 16 algarismos

Representação de Números Hexadecimais:

□ Seja (1 A 7 B)

$$1 = 1$$

$$A = 10$$

$$7 = 7$$

$$B = 11$$

Decimal para Hexadecimal:

□ Seja 666 em decimal:

$$666 / 16 = 41$$
 resto 10 A
 $41 / 16 = 2$ resto 9
 $2 / 16 = 0$ resto 2

$$666 = 29A$$

Hexadecimal para Decimal:

□ Seja 120 em decimal:

$$120/16 = 7 \implies resto 8$$

$$7/16 = 7 \implies 7$$
Resultado: 78

$$7x16^1 + 8x16^0 = 120$$

Até aqui vimos o seguinte:

- A representação da informação
 - Lógica binária e informação digital
 - Codificação de informações
 - Conversões entre bases
- Próximo Conteúdo:
 - Linguagem de máquina, Linguagem de alto nível.
 - Tipos de linguagens e suas características.
 - Compilação

Bibliografia

- TANENBAUM, Andrew S. (1992). Organização Estruturada de Computadores, 5^a Edição, São Paulo: Prentice/Hall.
 - Apêndices A e B
- MONTEIRO, M. A. Introdução à Organização de Computadores, Rio de Janeiro, LTC, 4 ed., 2002.
 - Capítulos 2 e 3