Funções

Funções.

Cardinalidade de conjuntos.

Referência: Discrete Mathematics with Graph Theory

Edgar Goodaire e Michael Parmenter, 3rd ed 2006

Capítulo: 3

FUNÇÕES

Definição de função

- □ Uma **função** de um conjunto A para um conjunto B é uma relação binária f de A para B com a propriedade de que, para cada $a \in A$, existe exatamente um $b \in B$ tal que $(a,b) \in f$
 - Portanto f é um subconjunto do produto cartesiano
 - f está definida em todos os elementos do domínio A
 - Cada a está associado a um único b

g não é função: {..., (volvo,ana), (volvo,rui), ...}

h não é função: (toyota,?)

Exemplo de função

□ f={(toyota,ana), (ford,joão), (renault,joão), (volvo,rui)}

b é a imagem de a

- \Box f: C \rightarrow P
- \Box f: a \rightarrow b sse b=f(a)
- \Box f: toyota \rightarrow ana
 - ford → joão
 - renault → joão
 - volvo → rui
- **Domínio** de f: dom f = C
- □ Conjunto de chegada: P
- □ Contradomínio ou imagem de f:

rng
$$f = \{b \in P | (a,b) \in f \text{ para algum } a \in C\}$$

= $\{b \in P | b=f(a) \text{ para algum } a \in C\}$

Propriedades de uma função

- \square Função f: A \rightarrow B é **sobrejetiva** sse rng f = B
 - Contradomínio coincide com o conjunto de chegada
 - Todo o $b \in B$ é imagem de pelo menos um $a \in A$
- □ Função é **injetiva** ou um-para-um sse $f(a_1)=f(a_2) \rightarrow a_1=a_2$
 - Elementos diferentes de A têm imagens diferentes
- □ Função é **bijetiva** sse for sobrejetiva e injetiva

Exemplo

- □ Seja f: $\mathbb{Z} \to \mathbb{Z}$ definida por f(x) = 3x³-x. Determine se f é injetiva ou sobrejetiva.
- □ Resolução:
 - Injetiva: uma linha horizontal só pode intersetar o gráfico uma vez
 - Aparentemente isso acontece mas na zona da origem pode haver

dúvidas

- Por contradição, supor $f(x_1)=f(x_2)$
- $-3x_1^3-x_1=3x_2^3-x_2$
- $-3(x_1^3-x_2^3)=x_1-x_2$
- $-3(x_1-x_2)(x_1^2+x_1x_2+x_2^2)=x_1-x_2$
- Se $x_1 \neq x_2$ então $x_1^2 + x_1 x_2 + x_2^2 = 1/3$
- Impossível pois $x_1 e x_2 \in Z$

Exemplo (cont.)

- **Sobrejetiva**: todos os elementos do conjunto de chegada têm que ser imagens
 - Testando para o caso de b=1
 - $-1=3x^3-x=x(3x^2-1)=1$
 - Não tem solução, pelo que 1 não é imagem e portanto a função não é sobrejetiva

Função identidade

- □ A função identidade num conjunto A é a função ι_A : A → A definida por $\iota_A(a)$ =a
- \square Em termos de pares ordenados, $\iota_A = \{(a,a) \mid a \in A\}$

- \Box A azul A= \mathbb{Z}
- \Box A vermelho $A=\mathbb{R}$
- Não é só a regra de cálculo da imagem que interessa, também os

conjuntos de partida e chegada

Função valor absoluto

O valor absoluto de um número x, denotado |x| é definido

$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$$

Funções chão e teto

- □ Para qualquer número real □ Para qualquer número x, o chão de x, escrito [x] é o maior inteiro inferior ou igual a x.
- \square A função chão f: $\mathbb{R} \to \mathbb{R}$ define-se $f(x) = \lfloor x \rfloor$
 - A imagem de f é ℤ

- real x, o teto de x, escrito x é o menor inteiro superior ou igual a x.
- \square A função teto $f: \mathbb{R} \to \mathbb{R}$ define-se $f(x) = \lceil x \rceil$
 - − A imagem de f é Z

Funções com vários argumentos

- □ Da mesma forma que uma função (de um argumento) é uma relação binária em que existe um e um só par para cada valor do primeiro elemento (domínio da função), uma função de n-1 argumentos é uma relação de ordem n em que existe uma e uma só sequência de ordem n para cada sequência dos primeiros n-1 elementos
 - Diz-se que a relação é funcional no último argumento
- Visão relacional
 - Resultados (aluno, disciplina, ano, nota)
- Visão funcional
 - nota = resultado(aluno, disciplina, ano)
 - É esta a visão das funções na lógica, em que cada termo denota um objeto, a imagem da função

Inversa de uma função

- □ Dada uma função f: A → B, define-se a função inversa, se existir, como $f^{-1} = \{(b,a) \mid (a,b) \in f\}, f^{-1} : B \to A.$
- □ É sempre possível inverter a ordem dos pares de uma relação binária. Porque se salvaguarda na definição a possibilidade de não existir a função?
- □ Uma função f: A → B tem inversa se e só se for bijetiva $a = f^{-1}(b)$ sse b = f(a)
- □ Exemplo: Dada f: $\mathbb{R} \to \mathbb{R}$, f(x) = 2x-3, verifique se f tem inversa e, em caso afirmativo, obtenha essa inversa
- \square Para obter y= f⁻¹(x) fazer x=f(y): x=2y-3; $y = \frac{x+3}{2}$
- $\Box f^{-1}(x) = \frac{x+3}{2}$

Composição de funções

- □ Sejam as funções f: A → B e g: B → C. A composição de g e f é a função g∘f: A → C definida por $(g \circ f)(a) = g(f(a))$ para todo o $a \in A$.
 - Atenção à ordem da composição: em geral g∘f ≠ f∘g (ler g após f é diferente de f após g).
- □ Duas funções f e g são iguais sse tiverem o mesmo domínio, o mesmo conjunto de chegada e f(a)=g(a) para todo o a no domínio comum.
- ☐ A composição de funções é associativa $(f \circ g) \circ h = f \circ (g \circ h)$

Exemplo de composição

- **Exemplo 1**: f, g: $\mathbb{R} \to \mathbb{R}$
- \Box f(x) = 2x-3 g(x) = x²+1
- \Box $(f \circ g)(x) = f(g(x)) = f(x^2+1) = 2(x^2+1)-3$
- \Box $(g \circ f)(x) = g(f(x)) = g(2x-3) = (2x-3)^2+1$

 $(f \circ g)(x) = \frac{3-x}{x}$

- Exemplo 2: $f : \mathbb{R} \to \mathbb{R}$ $g : \mathbb{R} \setminus \{1\} \to \mathbb{R}$ $g(x) = \frac{x}{x-1}$
- \square Para gof existir rng f \subseteq dom g
 - Como rng $f=\mathbb{R}$ não está contido no dom $g=\mathbb{R}\setminus\{1\}$ a função não está definida
- ☐ Já f∘g está definida (f∘g)(x) = $2\frac{x}{x-1}$ $3 = \frac{3-x}{x-1}$

f(x)=2x-3

Composição com a inversa

- □ Se f: A → B tiver inversa f⁻¹: B → A f⁻¹(b)=a sse b=f(a)
- □ Então, para todo o a ∈ A $a = f^{-1}(b) = f^{-1}(f(a)) = (f^{-1} \circ f)(a)$
- □ Portanto $f^{-1} \circ f = \iota_A$ (função identidade em A)
- □ E também $f \circ f^{-1} = \iota_B$ (função identidade em B)

Inversa da composta

- □ Dadas g: A→B e f: B→C, exprima a inversa da composta $(f \circ g)^{-1}$ em termos das inversas das componentes f^{-1} e g^{-1} .
- $f^{-1} \circ (f \circ g) \circ (f \circ g)^{-1} = f^{-1} \circ \iota_C$ $(f^{-1} \circ f) \circ g \circ (f \circ g)^{-1} = f^{-1}$ $\iota_{\mathsf{B}} \circ \mathsf{g} \circ (\mathsf{f} \circ \mathsf{g})^{-1} = \mathsf{f}^{-1}$ $g \circ (f \circ g)^{-1} = f^{-1}$ $g^{-1} \circ g \circ (f \circ g)^{-1} = g^{-1} \circ f^{-1}$ $\iota_{A} \circ (f \circ g)^{-1} = g^{-1} \circ f^{-1}$ $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$

CARDINALIDADE DE CONJUNTOS

Conjuntos finitos e infinitos

- □ A cardinalidade de um conjunto A é o número de elementos desse conjunto, |A|
- \square $|\varnothing| = 0$
- □ Um conjunto A é **finito** se for vazio ou se se conseguir estabelecer uma correspondência biunívoca (função bijetiva) com $\{1,2,3,...,n\}$, para um $n \in \mathbb{N}$. Define-se **cardinalidade** de A como n, |A|=n. Se A não for finito, é **infinito**.
- □ Exemplos:
 - $-a \mapsto x, b \mapsto y \in \text{uma correspondência biunívoca entre } \{a,b\} \in \{x,y\}$
 - A função f: N → N \cup {0} definida por f(n)= n-1 é uma correspondência biunívoca entre N e N \cup {0}
 - A função f: \mathbb{Z} → 2 \mathbb{Z} definida por f(n)= 2n é uma correspondência biunívoca entre o conjunto dos inteiros \mathbb{Z} e o dos inteiros pares 2 \mathbb{Z}

Cardinalidade de conjuntos

□ Dois conjuntos A e B têm a mesma cardinalidade |A|=|B| sse existir uma correspondência biunívoca entre ambos.

```
- |\{a,b\}| = |\{x,y\}|
        \circ a \mapsto x, b \mapsto y
- |\mathbb{N}| = |\mathbb{N} \cup \{0\}|
        0 \quad 1 \mapsto 0, 2 \mapsto 1, \dots, n \mapsto n-1, \dots
- |\mathbb{Z}| = |2\mathbb{Z}|
        \circ 0 \mapsto 0, 1 \mapsto 2, -1 \mapsto -2,
         \circ 2 \mapsto 4, -2 \mapsto -4, ..., n \mapsto 2n, ...
- |\mathbb{R}| = |\mathbb{R}^+|
         \circ f: \mathbb{R} \to \mathbb{R}^+ f(x) = 2^x
- |]0,1]| = |[1,+\infty[]|
         o f: ]0,1] \to [1,+\infty[ f(x) = 1/x]
```


 Quaisquer dois intervalos de números reais têm a mesma cardinalidade

Funções-19

Cardinalidade de Z

- \square \aleph_0 (aleph zero) denota a cardinalidade dos números naturais
- \square Mostre que $|\mathbb{Z}| = \aleph_0$
- □ Para responder basta conseguir enumerar os elementos de Z, isto é, estabelecer uma correspondência biunívoca com os naturais
 - 0,1,-1,2,-2,3,-3,...

$$- f(n) = \begin{cases} \frac{1}{2}n & \text{se } n \text{ par} \\ -\frac{1}{2}(n-1) & \text{se } n \text{ impar} \end{cases}$$

ou

$$f(n) = \frac{1}{4}[1 + (-1)^n(2n - 1)]$$

Cardinalidade de N²

- □ Mostre que $|\mathbb{N} \times \mathbb{N}| = \aleph_0$
- Enumere os pares da figura pela ordem das setas

^				
(1,4)	(2,4)	(3,4)	(4,4)	•••
(1,3)	(2,3)	(3,3)	(4,3)	•••
(1,2)	(2,2)	(3,2)	(4,2)	•••
$(1,1) \longrightarrow$	(2,1)	$(3,1) \longrightarrow$	(4,1)	(5,1)

 \square Esta mesma construção serve para mostrar que $|\mathbb{Q}| = \aleph_0$

Cardinalidade de R

- Mostre que]0,1[é não enumerável.
- □ Prova por contradição: suponhamos que o conjunto é enumerável. Então existe uma lista de **todos** os reais entre 0 e 1, a₁, a₂, a₃, a₄, ... que se pode escrever na forma decimal

$$a_1=0.a_{11}a_{12}a_{13}a_{14}...$$
 $a_2=0.a_{21}a_{22}a_{23}a_{24}...$
 $a_3=0.a_{31}a_{32}a_{33}a_{34}...$

Argumento diagonal George Cantor

- Construir um número b=0.b₁b₂b₃...: $b_i = \begin{cases} 2 & se \ a_{ii} = 1 \\ 1 & se \ a_{ii} \neq 1 \end{cases}$
- O número b está entre 0 e 1 mas é diferente de cada a_i precisamente no dígito a_{ii} e portanto não está na lista, contradizendo a hipótese. Então o conjunto]0,1[é não enumerável e \mathbb{R} também não.

Hipótese do contínuo

- Conclui-se que há conjuntos com a cardinalidade dos naturais e conjuntos muito maiores com a cardinalidade dos reais
- □ **Hipótese do contínuo**: não existe nenhum conjunto A tal que $\aleph_0 < |A| < |\mathbb{R}|$
 - Esta afirmação não se consegue provar a partir dos axiomas normais da teoria de conjuntos de forma que é adicionada como axioma
- Um subconjunto de um conjunto enumerável é enumerável
- □ O conceito de "mesma cardinalidade" estabelece uma relação de equivalência nos conjuntos, a qual é, em particular, transitiva.

Conjuntos infinitos

□ A noção de cardinalidade particiona os conjuntos finitos em classes (de conjuntos com o mesmo número de elementos) e também particiona os conjuntos infinitos em classes (de conjuntos com a mesma cardinalidade)

```
 \begin{array}{lll} - & E_0 = \{C \mid |C| = 0\} = \{\varnothing\} & \text{classe de equivalência cardinalidade 0} \\ - & E_1 = \{C \mid |C| = 1\} = \{\{a\}, \{1\}, \{(a,b)\}, \ldots\} & \text{cl. eq. card. 1} \\ - & E_2 = \{C \mid |C| = 2\} = \{\{a,b\}, \{1,2\}, \{(a,b),(c,d)\}, \ldots\} & \text{cl. eq. card. 2} \\ - & E_{\aleph 0} = \{C \mid |C| = \aleph_0\} = \{\aleph, \mathbb{Z}, 2\mathbb{Z}, \mathbb{Q}, \mathbb{N}^2, \ldots\} & \text{cl. eq. card. } \aleph_0 \\ - & E_{\aleph 1} = \{C \mid |C| = |\mathbb{R}|\} = \{\mathbb{R}, \mathbb{R}^+, ]0,1[, \ldots\} & \text{cl. eq. card. } |\mathbb{R}| \end{array}
```

□ Um conjunto A é **infinito enumerável** sse $|A| = |\mathbb{N}| = \aleph_0$. Um conjunto é **enumerável** sse for finito ou infinito enumerável. Caso contrário é **não enumerável** (como \mathbb{R} e qualquer seu intervalo).