

Missions

 Assembler un dataset avec des variables qui informent sur le comportement des clients

• Regrouper les clients par caractéristiques communes

 Simuler les prédictions du modèle pour évaluer sa pertinence dans le temps

Variables:

- RFM:
 - Récence
 - Fréquence
 - Montant
- Satisfaction: review_score
- Type de produits: product_weight_g

Sélection des variables Variables orders_item_dataset: Prix (M) Poids Variables orders_dataset: plist products dataset olist_order_mayments_dataset Nombre de commandes (F) Date (R) Prix (M) product_id order_id Poids order_id seller_id order /dolist order reviews dataset folist_sellers_dataset olist_orders_dataset olist_order_items_dataset customer_id zip_code_prefix Wist_order_customer_dataset olist geolocation dataset

Sélection des variables

Variables orders_dataset:

- Nombre de commandes (F)
- Date (R)
- Prix (M)
- Poids
- Score

Variables pour interprétations:

- Nombre de produits
- Catégorie Produit
- Panier Moyen
- Localisation

Nouveau dataset

- Sélection d'une période:
 - 1 janvier 2017 31 août 2018
- 95 762 Clients

• 3% des clients ont commandé plusieurs fois

• 12% des clients ont acheté plusieurs produits

Algorithme non-supervisé

- Kmeans
 - Regroupement basé sur la proximité
- DBSCAN
 - Prend compte la densité
- Clustering Hiérarchique
 - Division ou Agglomération

Kmeans

• Méthode du coude pour le choix de la valeur du paramètre k

Sensible aux outliers

Le score silhouette pour 5 clusters

- Mesure:
 - Distinction entre cluster
 - Densité

• Score: 0,31

Clustering Hiérarchique

- Intuitif et flexible: Niveau de coupe
- Utile pour interpréter les relations

Temps de calcul important

Pour un échantillon de 1000 :

- Pour 7 clusters:
 - Score silhouette: 0,29

DBSCAN

- Choix des Paramétrages:
 - Distance esp
 - taille de l'échantillon mini
- Exclut le bruit
- Nécessite un paramétrage subtil

Exemple sur un échantillon de 10 000 clients:

- esp=0.16 , min_samples=100 (1%)
 - 4 clusters
 - Bruit: 3 608 (36%)
 - Score silhouette:0,07

- L'augmentation du min_sample entraine une augmentation du bruit.
- 1 cluster identifier principalement.

5 Segments

- Standards: 58%
 - 2017
 - 2018
- Mécontents: 13,8%
 - Score moyen: 1,2

5 Segments

- Piliers:
 - 32,4% du CA
 - Panier moyen: 250 réales
 - Poids produits: élevé
- Premiums:
 - 27% du CA
 - Panier moyen: 342 réales
 - 10,5 % sont récidivistes

Quels produits?

- Piliers:
 - Meubles
 - Salle de bain

- Premium:
 - Montres
 - Produits de beauté

Simulation d'ajout de nouveaux clients

Stabilité du modèle dans le temps

Optimisation de la fréquence des segmentations

• Adaptation à l'évolution des comportements des clients

Prédiction vs Nouvelle segmentation

17

Conclusion

- Sélection des variables pour comprendre le comportement des clients
- Choix de Kmeans:
 - Facile à paramétrer
 - Utilisable sur des grands ensembles de données
- 5 comportements distincts de la clientèle
- Simulation: modèle entrainé sur 13 mois et pour 5 clusters apporte des prédictions proches d'une nouvelle segmentation pendant plusieurs mois.