1 Filtres et convolution

1.1 Convolution de fonctions définies sur \mathbb{Z}

Définition 1. On dit qu'une fonction $f: \mathbb{Z} \to \mathbb{C}$ est à support fini s'il existe un nombre fini de points x pour lesquels $f(x) \neq 0$.

Définition 2. Soient deux fonctions f, g de \mathbb{Z} dans \mathbb{C} . On suppose que le support de l'une des fonctions est fini. La convolution de f, g est $f * g(z) = \sum_{x+y=z} f(x)g(y)$.

Essayez de lire la definition précédente et de la comprendre.

Définition 3. On répresente les fonction $\mathbb{Z} \to \mathbb{C}$ satisfaisant f(x) = 0 pour x < 0 par des listes. Par exemple, la liste [1,2,4] représente la fonction $f: \mathbb{Z} \to \mathbb{C}$ qui vaut f(0) = 1, f(1) = 2, f(2) = 4 et f(x) = 0 si x < 0 ou x > 2.

Exercice 1.

a) Calculer la convolution de f = [0, 1] et q = [0, 0, 1]. Commencer par calculer f * q(1) en regardant toutes les facons de faire x + y = 1 dans la définition de la convolution. On peut prendre par exemple x = 0 et y = 1 donc f(x)g(y) = f(0)g(1) = 0.0. On peut prendre aussi x = 1, y = 0 et alors f(1)g(0) = 1.0 = 0. Sinon on prend x négatif, ou x > 1, on a f(x) = 0, donc f(x)g(y) = 0. Donc tous les termes f(x)g(y) qui apparaissent dans la définition de f*g(1) sont nuls. On a donc f*g(1)=0. Je vous propose maintenant de calculer f * g(3). Vous allez prendre tous les x,y tels que x + y = 3, calculer f(x)g(y) pour chacun et ajouter le tout. (Tout le monde voit, c'est bon?) Donc on peut prendre x = 0, y = 3, ce qui donne f(0)g(3) = 0.0 = 0. Si x = 1, y = 2, f(1)g(2) = 1.1 = 1. Si x > 1 ou x < 0, f(x) = 0. Donc f * g(3) = 0 + 1 = 1. Essayer maintenant de calculer completement la fonction f * g. Par exemple de voir que f * g(z) vaut 0 si z < 0. Si x + y = z < 0, alors soit xest négatif et f(x) = 0, soit y est négatif, alors g(y) = 0. Dans tous les cas, le produit f(x)g(y) = 0. Donc f * g(z) qui est la somme de ces termes f(x)g(y) est nul si z < 0. Essayer sur le même principe de montrer que f * g(z) est nul si z est grand (si z > 3). Si z > 3 et x + y = z alors soit x > 1, soit y > 2. Donc dans tous les cas f(x)g(y) est nul. Et f * g(z) = 0. Il nous reste à calculer la convolution pour z=0,2. On trouve f*g(0)=f(0)g(0)=0. Et f*g(2)=0 aussi. Donc au final f * g = [0, 0, 0, 1].

b) Calculer la convolution de [5] et [1,2,3]. Vous devez trouver [5,10,15]

c)Calculer la convolution de f = [0,0,5] et de g = [1,2,3]. par rapport auc calcul précédent, on a décalé les valeurs de la fonction f de 2 crans vers la droite. Donc quand on regarde les z avec z = x + y, on va également faire les mêmes calculs que précédemment, mais décaler les z de 2 crans vers la droite. Au total, on trouve f * g = [0,0,5,10,15].

La proposition suivante résume le calcul qu'on vient de faire.

Proposition 4. La convolution avec [a] est la mulltiplication par a, c'est à dire $[a] * [y_0, y_1, y_2...] = [ay_0, ay_1, ay_2...]$. La convolution avec [0, 0,, 1] est le décalage de d crans ou d est la longeur de la liste -1. C'est à dire $[0, 0, ..., 0, x_{d-1} = 1] * [y_0, y_1, ...] = [0, ..., 0, y_0, y_1, ...]$ avec d-1 zéros devant le y_0 .

Remarque 5. Pour le cas particulier de f=[1], on peut appliquer au choix la première ou la deuxieme règle de la proposition précédente. Dans les 2 cas, on voit que [1] est un élément neutre pour le produit de convolution, c'est à dire [1]*g=g. La première règle avec a=1 donne [1]*g=g. La deuxième règle avec d=1 donne également [1]*g=g il y a un décalage en ajoutant d-1=0 élements 0 devant la liste g.

Exercice 2. Soit $f: \mathbb{Z} \to \mathbb{C}$ définie par f(x) = 1 pour tout x. Calculer la convolution f * f

Celui la, je vous laisse essayer de faire le calcul, vous verrez qu'on trouve un résultat infini, car on peut trouver une infinité de x, y tels que x + y = 0 par exemple avec à chaque fois f(x)g(y) = 1.1 = 1. Donc il faut ajouter une infinité de fois le nombre 1.

En fait le pb de l'exo précédent ne se pose pas pour les fonctions à support finie, c'est à dire avec des listes finies. C'est l'objet de la remarque suivante.

Remarque 6. Dans la définition du produit de convolution, on suppose que l'une des fonctions est à support fini. Ainsi la somme apparaissant dans la définition est finie et il n'y a pas de pbs de convergence ou de somme infinie.

Exercice 3.

a)Qu'est ce que la convolution avec f = [0,0,0,3]? Calculer $f * [y_0,y_1,...]$. Il y a la fois un decalage vers la droite et une multiplication par 3. On trouve $f * [y_0,y_1,...] = [0,0,0,3y_0,3y_1,....]$.

b)On prend un signal sonore s. Que représente sur le plan sonore le signal s*[1,0,0,0.5]. Vous pouvez décomposer le terme de droite comme une somme. On a [1,0,0,0.5] = [1,0,0,0] + [0,0,0,0.5] = [1] + [0,0,0,0.5] = i+t. Donc pour le produit de convolution s*(i+t) = s*i+s*t. Comme i=[1], s*i=s. Et s*t est le même signal que t, mais décalé vers la droite (c'est à dire retardé dans le temps) et multiplié par 0.5, c'est à dire moins fort. Dons s*(i+t) représente un écho, on joue le son s, puis le même son, un peu plus tard et un peu moins fort.

Remarque 7. Dans un produit de convolution de fonctions définies sur \mathbb{Z} , on peut ajouter des zéros. Par exemple les listes [1,2] et [1,2,0,0] représentent la même fonction, à savoir la fonction f telle que f(0) = 1, f(1) = 2 et f(x) = 0 sinon.