Last time: V finite don. over k alg. closed (eg. C), q: V-V liver operator >>

- · I basis st. M(4) is upper hiangular (1/0/2)
- φ- /I is invertible (=) x \$ {λ,..., λη}, so the diagonal extres are the eigenvalues of φ!
- . the eigenspaces  $Ker(\phi-\lambda;)$  are linearly independent, but need not span V(if they do: 3 basis of eigenvectors, hence  $\varphi$  is diagonalizable)
- · To do better, we introduced the generalized eigenspaces  $V_{\lambda} = \{v \in V \mid \exists m \in \mathbb{N} \text{ st } (\varphi - \lambda)^m v = 0\} = g \ker(\varphi - \lambda) = \ker(\varphi - \lambda)^n$  $ke(\varphi-\lambda)=ke(\varphi-\lambda)^2=...$ Lecomes combant in at most  $n=dim\ V\ steps$ (This is only nonthinial if  $\lambda$  is an eigenvalue of  $\varphi$ )

Prop.1: | Vy = Ker (4- )I) and Wz = Im (4- )I) are invained subspaces of 4, and V=Vx0Wz. Prop2: The subspace  $V_i \subset V$  are independent:  $\sum v_i = 0$ ,  $v_i \in V_i$ .  $\Rightarrow v_i = 0 \ \forall i$ .

Thm: If k is alg. closed, V finite-dim vect space on k,  $\varphi: V \to V$ , then V decomposes into the direct sum of the generalized eigenspaces  $V_{\lambda}$  of  $\varphi$ ,  $V = \bigoplus V_{\lambda}$ .

Proof: By induction on dim V! (the noult is clear for dim V= 1). Assume the roult holds up to dimension n-1, and consider the case dim V=n.

Wêre seen before: k alg. closed => 4 has at least one eigenvalue 1 Let  $V_{\lambda_i} = gker(\varphi - \lambda_i^T) = ker((\varphi - \lambda_i^T))^n$ ,  $U = k \lambda_i = Im(\varphi - \lambda_i^T)^n$ .

By prop. 1 above, Vz, and U are invariant subspaces, and V=Vz@U.

Since him U < dim V, industron => U decompose into generalized eigenspaces for  $\varphi_{|U}$ ,  $U = U_{\lambda_2} \oplus ... \oplus U_{\lambda_{\ell}}$ ,  $\lambda_2 ... \lambda_{\ell}$  eigenvalues of  $\varphi_{|U}$  ( E) eigenvalues of  $\varphi$  with an eigenvector E U $U_{\lambda j} = \ker(\varphi_{|U} - \lambda_j^{I}) = \ker(\varphi_{-1}^{I})^n \cap U = V_{\lambda j} \cap U$ 

Morrore,  $\gamma_{1U}$  doesn't have  $\lambda$  as e'genralise (sine  $Ker(\varphi-\lambda I)^n U = 0$ ), so  $\lambda \notin \{\lambda_2...\lambda_0\}$ .

Now: Uz = Ker((q-1; I)) = Vz; , and V=Vz = Vz = Uz = Uz = ... & Uze.

Since the gene eigenspaces Va; contain Uz; Vjz2, we find that Vx,...Val span V,

and they are independent by Rop. 2, hence  $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus ... \oplus V_{\lambda_\ell}$ .

(and in fact  $V_{\lambda_j} = U_{\lambda_j}$   $V_j \ge 2$ ; in other terms,  $\operatorname{Im}(\varphi - \lambda_i I)^n = \bigoplus_{j \neq i} \ker(\varphi - \lambda_j I)^n$ .



Def:  $\| \varphi_i \vee \neg \vee is \text{ nilpotent if } \exists m \in \mathbb{N} \text{ st. } \varphi^m = 0 \text{ ie. } gker(\varphi) = V.$   $(\rightleftharpoons \varphi^n = 0 \text{ for } n = din V).$ 

Goal: find a "nice" basis of V for a nilpoked operator 4: V-V. (This works over any field, don't need to alg. closed)

Observe: if dm V=2, here are 2 cares: either  $\varphi=0$ ; or  $\varphi^2=0$  by  $\varphi\neq 0$ . In second case: let  $v \notin \ker \varphi$ , then  $\varphi(v) = u \in \ker \varphi$  so u, v are indigendent and form a basis, in which  $M(q) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ 

Jordan's nethod generalizes this to higher dimensions:

Php: | 
$$\exists$$
 basis of  $V: \{\varphi^{m_1}(v_1), \varphi^{m_2-1}(v_1), ..., v_1, ..., \varphi^{m_k}(v_k), ..., v_k\}$  where  $\varphi^{m_i+1}(v_i) = 0$  Vi in which  $M(\varphi) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$  Usek diagonal built from silpotent Jordan blocks (each basis clement  $\mapsto$  previous one)  $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$  first basis elt  $\mapsto$  0

cker  $\varphi^m = V$ . assume this is the smallest m. ie.  $\varphi^m = 0$  but  $\varphi^{m-1} \neq 0$ . Recall  $0 < ke \varphi < ke \varphi^2 < \dots$ 

\* Claim: | if a subspace  $U = ke(\varphi^{kl})$  satisfies  $ke(\varphi^k) \cap U = fo$  }  $(k \ge 1)$ , then |  $\varphi_{1U}$  is injective,  $\varphi(U) \subset \ker(\varphi^k)$ , and  $\ker(\varphi^{k-1}) \cap \varphi(U) = \{0\}$ .

Truled:  $\forall v \in U \Rightarrow \{\varphi^k(v) \neq 0 . Truled : \varphi(v) \neq 0 , ie. ker(\varphi_{|U}) = \{0\}, injective. \\ \psi \neq 0 \Rightarrow \{\varphi^{k+1}(v) = 0 : A(o), \varphi^k(\varphi(v)) = 0 \Rightarrow \varphi(v) \in ker(\varphi^{k+1}(v)) = 0 \}$ and  $\varphi^{k+1}(\varphi(v)) = \varphi^k(v) \neq 0 \Rightarrow \varphi(v) \notin ker(\varphi^{k+1}(v)) = 0$ 

\* First step: let  $U_m$  st.  $Ke(\phi^m) = V = Ke(\phi^{m-1}) \oplus U_m$ [these will yield Jordan] looks of size m! & pick a basis (Vm,1,..., Vm,km) of Um

(eg: start from a basis of ker com, extend to basis of V by adding rectors vm,1,..., vm, km, ) (3) and let Um be their span. Now by the claim, vm-1,1 = \( (vm,1), ..., vm-1, km = \( \phi(vm,km) \) are liealy indipendent, and their span is  $= \ker(\varphi^{m-1})$  but inducted of  $\ker(\varphi^{m-2})$ .

Stat from a basis of  $\ker(\varphi^{m-2})$ , add  $V_{m-1,1}, \dots, V_{m-1,k_m}$  and complete to a basis of  $\ker(\varphi^{m-1})$  by adding some other vectors  $V_{m-1,k_m}+1,\dots,V_{m-1,k_{m-1}}$  (if needed: could have  $k_{m-1}=k_m$ ). (these will yield blocks of size m-1). Let Um, = span ( Vm., 1, ..., Vm., km., 1). Then ker ( qm.) = ker (qm2) & Um, And so on; given  $U_j = \operatorname{Span}(v_{j,1} \dots v_{j,k_j})$  with  $\ker \varphi^j = \ker \varphi^{j-1} \oplus U_j$ , take  $V_{j-1,i} = \varphi(V_{j,i})$  for 1 = i = k; and extend by adding vectors as needed to build Us. This eventually gives a basis of V= U, ... . Um, and rearinging it as (V1,1,..., Vm,1, V1,2,...) we get the risult. D

We now combine our routh to arre at the geg. C

Jordan normal form: V finite din uch space over k alg. cloud, y & Hom(V,V)  $\Rightarrow$   $\exists$  basis of V in which the matrix of  $\varphi$  is block diagonal, with each block a Jordan block  $\begin{pmatrix} \lambda.1.0\\ 0&\lambda \end{pmatrix}$ .

Rml: • size 1 Jardon block: (1), size 2;  $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ , ...  $\varphi$  is diagonalizable  $\iff$  all the blocks have size 1.

- · the values of I that appear are exactly the eigenvalues of q. There may be several blocks with the same is the generalized eigenspace Vx.
- · proof: we've seen V= + Vy generalized eigenspaces; now 9/1/2- AI is nilpotent, so can decomposed into nilpotent Jordan blocks  $\psi_{|N_{\lambda}} - \lambda I = \bigoplus {\binom{0}{1}}, so \psi_{|N_{\lambda}} = \bigoplus {\binom{1}{1}}$

4 Characteristic polynomial, minimal polynomial:

Let k be algebraically closed,  $\varphi: V \rightarrow V$ ,  $V = \bigoplus_{i=1}^{\ell} V_{\lambda_i}$ .  $V_{\lambda_i}$  generalized eigenspaces

Call · n; = dim Vz; the rulhitishy of z; ( \sum ni = dim V) · Mi = nilpotence order of (4/Vz; - \(\gamma\_i \text{Id}\) ie - smallet mi st.  $V_{i} = \ker(\varphi - \lambda_i I)^{m_i}$ 

From the above:  $m_i \leq n_i$ , and  $V_{\lambda_i}$  is diagonalizable iff all  $m_i = 1$ .

Def: | The characterskic polynomial of  $\varphi$  is  $\chi_{\varphi}(x) = \prod_{i=1}^{n} (x - \lambda_i)^{n_i}$ 

The usual definition, are we have defined determinant, is:  $\| \chi_{\varphi}(x) = \det(xI - \varphi)$ .

Manifestly, in a basis where M(q) is triangular (or Jordan), M(xI-q)= (x-21 x) and this is the same thing. (but can we any basis to calculate def). The significance is: given matrix of up in any basis, A, we can calculate  $\chi(x) = det(xI-A) \in k[x]$ , and solve for roots = eigenvalues rulliplicities = dim of gen- eigenspaces. (This also works over non alg. closed k, without any guarantee that x(x) has any roots.) Def: The minimal polynomial of  $\varphi$  is  $\mu_{\varphi}(x) = \prod_{i=1}^{n} (x-\lambda_i)^{m_i}$ . Significance: (4-2) = 0 on the gen eigenspace Vi; iff t > mi I involide on the other get eigenpaces. So  $p_{\psi}(\psi) = \text{simplet polynomial expression in } \psi \text{ that is zero on all } V_{\lambda_i}'s, hence on <math>\Phi V_{\lambda_i} = V$ . Here:  $\| \mu_{\varphi}(\varphi) = 0$ , and  $\forall p \in k(x)$ ,  $p(\varphi) = 0 \in Hom(V, V)$  iff  $\mu_{\varphi}$  divides p. Since nilpoture order mi is always & din Vi = ni, pre d'inde Xe, so: Then (Cayley-Hamilton)  $|| \chi_{\varphi}(\varphi) = 0$ . (This is also how over non algorithm to, by passing to algorithms; see below for an example) · A word about operators on finite din. R. vector spaces: Let V real vector space (din. n),  $\varphi: V \rightarrow V$  linear operator. Since R is not alg. closed, if night not have eigenvalues, and we can't put 4 in triangular or Jordan form. Yet: every real operator has an invariant subspace of dim. 1 or 2 Apprach: work over I which is alg. closed. How do we do this? Del: The complexitication of V is  $V_C = V \times V = \{v + iw \mid v, w \in V\},$ with addition  $(v_1+iw_1)+(v_2+iw_2)=(v_1+v_2)+i(w_1+w_2)$ scalar mult. (a+ib) (v+iw) = (av-bw) + i(bv+aw)

• This is a C-vector space of dimension n: if  $(e_1...e_n)$  is a basis of V ove IR, then  $e_1(=e_1+i0)$ , ...,  $e_n$  is also a basis of  $V_C$  ove C.

· Gran φ: V-> V IR linear, we can extend it to φc: V<sub>C</sub> → V<sub>C</sub> C. linear S simply by Ψ<sub>C</sub> (V+iw) = φ(V)+iψ(W). Choosing a basis (e<sub>1</sub>...e<sub>n</sub>) as above, the matrix of φ<sub>C</sub> is the same as that of φ (φ<sub>C</sub>(e<sub>j</sub>+i0) = φ(e<sub>j</sub>) + i0).

But now... φ<sub>C</sub> is guaranteed to have an eigenvector!

(and gent eigenpaces, and Jordan form,...)

Let V=V+iW be an eigenvector of φ<sub>C</sub> for eigenvalue λ∈ C, φ<sub>C</sub>(W)=λV.

There are two cases:

• if λ∈ R, then φ<sub>C</sub>(V+iw) = φ(V) +iφ(W) = λV + iλW

⇒ V = Re(V) and W = Im(V) are eigenvectors of φ with the

if  $\lambda \in \mathbb{R}$ , then  $(\varphi_{\mathbb{C}}(V+iw) = \varphi(v) + i\varphi(w) = \lambda v + i\lambda w)$   $\Rightarrow v = \operatorname{Re}(v)$  and  $w = \operatorname{Im}(v)$  are eigenvectors of  $\varphi$  with the same eigenvalue  $\lambda$  (if they are nonzero; one of them is). ( $\triangle$  the multiplicity of  $\lambda$  for  $\varphi$  has no reason to be even).

• if  $\lambda = a + ib \notin R$ , then  $\psi_{\mathbb{C}}(v + iw) = (a + ib)(v + iw)$   $\Rightarrow \psi_{\mathbb{C}}(v - iw) = (a - ib)(v - iw)$  (compare real and inaginary parts!)

i.e.  $\overline{v} = v - iw$  is an eigenvector of  $\psi_{\mathbb{C}}$  with eigenvalue  $\overline{\lambda}$ .

It follows that v and w are linearly independent, and span a 2-dinergional

It follows that v and w are linearly independent, and span a 2-dimensional invariant subseque UCV:  $\varphi(v) = av - bw$   $\mathcal{M}(\varphi_{|U}, |v, u|) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ .

(One could hister show block histographer decompositions of 4 etc. starting from 40).