

Space missions based on AC

- □ Real domains in P&S
- □ Real domains in Intelligent Execution
- □ Real domains in Fault Protection
- Conclusions

- ☐ Legacy planners:
 - NONLIN+ (Tate y Whiter, 1984): general planning architecture, precursor of current planners
 - SIPE (Wilkins 1988): independent domain planner and 1st in managing consumable and producible resources and managing conflicts. Used in air and military campaigns
 - DEVISER (Vere 1983): based on NONLIN, was used in Voyager to photograph Jupiter, Saturn and its satellites in 1979, 1980 and 1981

- New approaches:
 - HSTS (Muscettola 1994): integrates P & S, applied to the problem of planning observations in the Hubble Space Telescope
 - O-PLAN2 (Tate et al., 1994): based on NONLIN and Blackboard techniques. Applications: rescue coordination, military operations, space missions
 - NMRA (Muscettola and Smith, 1997): New Millennium Remote Agent was the first time that an Al agent controls a spacecraft for 6 days: the Deep Space One (DS-1)

- New approaches:
 - ASPEN (Rabideau et al. 1999): JPL-NASA P&S system
 - ☐ Earth Orbiting (EO-1): controllable by a small group
 - ☐ Citizen Explorer: small mission with teaching purposes
 - ☐ Antarctic Mapping Missions: Mars-01 Marie Curie rover
 - EUROPA (Frank, Jónsson and Morris 2000): MSL or Phoenix

System	Mission	Year	Used	Techniques
DEVISER	Voyager	1977	On-ground	POP
PLANIT-II	Galileo Mars Pathfinder Spitzer Space Telescope	1995 1997 2003	On-ground On-ground On-ground	Used by AI experts who provide specific Scheduling algorithms
HSTS	DS-1	1998	On-board	HTN & SAT & Refinement CS
ASPEN	AMM-2	2000	On-ground	Repair CS
PROBA	Proba	2001	On-board	OR
ASPEN & CASPER	EO-1	2003	On-board	Repair CS
MPS	Smart-1	2003	On-ground	OR
EUROPA/ MAPGEN	MER	2003	On-ground	HSTS descendent
MEXAR-2	Mars Express	2005	On-ground	Refinement CS
EUROPA2/ ENSEMBLE	Phoenix MSL	2007 2009	On-ground On-ground	HSTS descendent

- □ Real domains in P&S
- Real domains in Intelligent Execution
- □ Real domains in Fault Protection
- Conclusions

Intelligent Execution

System	Mission	Year	Technology	
SCL	Clementine	1994	Time and event-based commanding	
	FUSE	1999	Rule-based firing of procedures	
	EO-1	2001	Integrated with on-board science planning	
MPF/MER/MSL	Mars Pathfinder Lander	1996	Similar to 3T architectures	
Family	Mars Exploration Rovers	2003		
	Mars Science Lab Rover	2009		
Remote Agent Exec	DS-1	1998	Integrated with HSTS & Livingstone	
VML	Mars Odyssey	2001	Sequencing procedural language	
	Spitzer Space Telescope	2003	Has flown on numerous NASA	
	Phoenix Mars Lander otros	2007	spacecraft	

- □ Real domains in P&S
- Real domains in Intelligent Execution
- □ Real domains in Fault Protection
- Conclusions

Fault Protection

System	Mission	Year	Technology
Livingstone/ Livingstone2			Uses a model to find the most likely combination of failures that predicts:
	DS-1 EO-1 X-34 vehicule X-37 vehicule	1998 2001 2002 2002	Observed value of the sensorsSimulation of electronicsSimulation of the propulsion system
Spacecraft Command Language	Clementine	1994	Rule Based Fault protection and recovery system in operations
Cassini AACS	Cassini	1996	Rule Based Fault protection and recovery system in operations
FDIR system	MER	2003	It incorporates at subsystem level fault protection in subsystem behaviors (i.e. arm) and a set of system- level fault responses for when disabling a behavior for a particular subsystem is not sufficient (i.e. battery)

- □ Real domains in P&S
- Real domains in Intelligent Execution
- □ Real domains in Fault Diagnosis
- Conclusions

Conclusions

- ☐ Brief overview of techniques applied to Autonomy for space
- Among the techniques: Al Planning and Scheduling, Intelligent Execution and Fault Protection

UAH

Space missions based on AC

