

Model Development Phase Template

Date	15 March 2024
Team ID	SWTID1720027196
Project Title	Greenclassify: Deep Learning-Based Approach For Vegetable Image Classification
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

Paste the screenshot of the model training code

Model Validation and Evaluation Report (5 marks):

Model	Summary			Training and Validation Performance Metrics	
	Model: "sequential"			Uplyter myModel and Ondown thinks app The Late View has been been produced thinks app B + X □ □ x = 0 → to the control of t	
	Layer (type)	Output Shape	Param #	[2]: # Train the model	
	conv2d (Conv2D)	(None, 222, 222, 32)	896	history = model.fit(train_generator,	
	max_pooling2d (MaxPooling2D)	(None, 111, 111, 32)	•	<pre>stem_per_monobites(m_percenter.semples // MATOLSIE, volidation_intervolidation_percentor, volidation_tepersolidation_percento.unples // MATOLSIE,</pre>	
	conv2d_1 (Conv2D)	(None, 109, 109, 64)	18,496	epochasse, callbacker(checkpoint, early_stopping)	
	max_pcoling2d_1 (MaxPooling2D)	(None, 54, 54, 64)	•		
	conv2d_2 (Conv20)	(None, 52, 52, 128)		Tpenh 43/50 93/99 — In 4m/step - ecorway: 0.8750 - loss: 0.3573 - val_ecorway: 0.7517 Ecoch 43/50	- vel_loss: 0.3527
Model 1	max_pcoling2d_2 (MaxPooling2D)	(None, 26, 26, 128)		1603	
	flatten (Flatten)	(None, 86528)			
	dense (Dense)	(None, 512)		93/93 324 0/4509 - accoracy: 0.0004 - 1404: 0.4064 - val_accoracy: 0.908 93/93 31 4m/stop - accoracy: 0.950 - 1001: 0.2409 - val_accoracy: 0.950	
	dropout (Bropout)	(None, 512)		\$pach 47/50 93/93 386a 3a/ates - ecouracy: 0.8687 - lass: 0.3885 - val.acouracy: 0.872	
	dense_1 (Dense)	(None, 15)		\$pach 40/50 \$2/83	0 - val_lass: 0.1534
				93/93 288 39/9189 - accoracy: 0.0939 - lass: 0.3189 - val_accoracy: 0.098 Epoch 50/50	
	Total params: 44,403,701 (169.39 M8)			99/99 — 64 (Perfette - Accuracy, 6.962 - Issue 0.226 - val. accuracy, 6.968 [1] # freducts the model on the text set	3 - vsl_lam: 0.1001
	_			test_loss, test_acc = model.evaluate(test_generator, stepsstest_generator.semples // 0MTOLSIZE print(('Sent_accorator (test_acc)-29'))	>
	Trainable params: 44,403,791 (169.39 MB)			99/99 464 500ms/step - accuracy: 0.5664 - loss: 0.1600	
	Non-trainable params: 0 (0.00 B)			Test securicy 8.59 [2] descring the model mid-land (spirital_s_land)(spiri	