Arterial stenosis

Leif Rune Hellevik

Department of Structural Engineering Norwegian University of Science and Technology Trondheim, Norway

September 18, 2017

Outline

Atherosclerosis

- Fatty material is deposited in the vessel wall
- Impairment of blood flow
- Symptoms: Chest pain
- No symptom until complication occurs

Coarctation of the aorta

- Narrowing of the aorta
- Birth defect

- Normally
 - High blood pressure in upper body and arms
 - Low blood pressure in lower body and legs
- Symptoms
 - Localized hypertension
 - Cold feet/legs
 - Decreased exercise performance
 - Heart failure

Geometrical description of a stenosis/coarctation

- Converging section. Bernoulli applies
- Narrow long section. Poiseuille's law applies.
- Diverging section. Turbulent with significant losses.

Stenosis pressure loss derivation

Conservation of mass

$$v_1 = v_4 = \frac{Q}{A_0}$$
 $v_2 = v_3 = \frac{Q}{A_s}$

▶ 1 to 2 Bernoulli

$$p_1 - p_2 = \frac{\rho Q^2}{2A^2} \left(\left(\frac{A}{A_s} \right)^2 - 1 \right)$$

▶ 2 to 3 Poiseuille

$$p_2 - p_3 = \frac{8\pi\mu I_s}{A_s^2}Q$$

3 to 4 Euler's first axiom

$$p_3 A - p_4 A = \rho v^2 A - \rho v_S^2 A_s$$
$$= \rho \frac{Q^2}{A} \left(1 - \frac{A}{A_s} \right)$$

The pressure loss in a stenosis

$$\Delta p = \underbrace{\frac{8\pi\mu I_s}{A_s^2} Q}_{Poiseuille} + \underbrace{\frac{K_t \rho}{2A_0^2} \left(\frac{A_0}{A_s} - 1\right)^2 Q^2}_{Borda-Carnot} = a_1 Q + a_2 Q^2$$

• $K_t \approx 1.5$ empirical coefficient

Physiological and clinical relevance of arterial stenosis

- $\Delta p \propto A_0^2$ and Q^2 for stenosis
- $ightharpoonup \Delta p \propto Q$ for laminar straight pipe flow
- Example I
 - Patient with mild coarctation
 - ▶ $\Delta p \approx 10 \text{ mmHg}$ at rest
 - ▶ Walking ⇒ peripheral bed dilates to increase pressure drop and perfusion
 - ► Increase to 3Q $\Rightarrow \Delta p \approx 90 \ mmHg$...impossible
 - Dilatation does not increase flow sufficiently

Example II

•
$$\Delta p \propto \left(\frac{A_0}{A_s} - 1\right)^2$$

▶ 80% area stenosis

$$\left(\frac{A_0}{A_s} - 1\right)^2 = 16$$

▶ 90% area $\left(\frac{A_0}{A_s} - 1\right)^2 = 81$ stenosis

▶ 90% is approximately 5 times more severe than 80%

Flow reserve (FR)

Motivation

- Angiography gives inaccurate functional information
- Methods for functional description needed

Definition

$$ightharpoonup FR = Q_{\max}/Q_c$$

- $ightharpoonup Q_{\max} = \max \text{ dilatation flow}$
- $ightharpoonup Q_c = control flow$

Illustration

- P_d distal (downstream) to stenosis
- ▶ Dilatation $\Rightarrow R_c \downarrow R_d$
- ▶ Stenosis $\Rightarrow P_d \downarrow$ and $Q_{\max,s} \downarrow$

Stenosis impact

- Limits flow for max dilatation
- ightharpoonup \Rightarrow FR \downarrow
- $ightharpoonup FR(stenosis, R_{c,d})$
- Negligible in control
- Severe for max dilatation

Fractional Flow Reserve (FFR)

$$egin{aligned} extit{FFR} &= rac{Q_{ extit{max},s}}{Q_{ extit{max},n}} = rac{(
ho_d -
ho_v)/R_s}{(
ho_{ extit{prox}} -
ho_v)/R_n} \ &pprox rac{
ho_d}{
ho_{ extit{prox}}} \end{aligned}$$

Assumptions

- Microvascular resistance equal for normal and stenosed conditions
- Venous pressure is small with respect to p_d , $p_v \le p_d$
- ► FFR < 0.74 is pathological

Summary

- Stenosis (coarctation)
 - Narrow section of a blood vessel
- lacksquare $\Delta
 ho \propto \left(rac{A_0}{A_s}
 ight)^2$
 - ▶ 90% occlusion much worse than 80%
- ho $\Delta p \propto Q^2$
 - Small influence at rest
 - ► Severe influence for max dilatation
- Flow reserve $FR = Q_{\text{max}}/Q_c$
- Fractional Flow Reserve $FFR = \frac{Q_{\max,s}}{Q_{\max,n}} \approx \frac{p_d}{p_{prox}}$