Non-linear Programming - Neural Networks

ce

Section 1: Training single-layer perceptron: gradient descent Section 2: Training multi-layer perceptron: back-propagation

Gradient descent

Initialisation step: Initialise weight vector (w) where each w; is a small value. Optimisation step: Until termination conditions are met, optimise w.

E.g. #ID (d)	Characteristic 1	Characteristic 2	outcome (td)
1	0.2	0.9	1
2	0.1	0-1	0
3	0.2	0.4	0
4	0.2	0.5	0
5	0.4	0.5	1
		0.8	

bias / distortion

wo = (-1), learning rate $\eta = 0.1$ > must be a small positive value If negative, algorithm performs gradient ascend

Step 1: Create table of predictions & errors

d		×		+2	prediction score, Od = wtxd	squared error, (td-0d)2
		Characteristic 1	Characteristic 2			
	1	0.2	0.9		(-1)(1) + (1)(0.2) + (1)(0.9) = 0.10	$(1-\frac{0.10}{0.10})^2 = 0.81$
2		0.1	0-1	0	-0.80	0-64
3	1	0.2	0.4	٥	-0.40	0-16
4	1	0.2	0.5	0	-0.30	0-09
5	1	0.4	0.5)	-0.10	1.21
6		0.3	0.8	1	0.(0	6.81

Step 1.5: If required, compute "sum of square error" $\frac{1}{2}\sum_{k}(t_{2}-o_{2})^{2}=\frac{1}{2}(0.81+0.64+0.16+0.09+1.21+0.81)=1.86$

Step 2: Compute weight correction vector
$$\Delta w = \eta \sum_{a} (t_a - 0_a) \times a = 0.1 \left[(1-0.10) \begin{pmatrix} 0.2 \\ 0.2 \end{pmatrix} + \begin{pmatrix} 0.8 \\ 0.08 \\ 0.08 \end{pmatrix} + \begin{pmatrix} 0.4 \\ 0.08 \\ 0.06 \end{pmatrix} + \begin{pmatrix} 0.3 \\ 0.06 \\ 0.15 \end{pmatrix} + \begin{pmatrix} 0.9 \\ 0.44 \\ 0.55 \end{pmatrix} + \begin{pmatrix} 0.9 \\ 0.27 \\ 0.72 \end{pmatrix} = \begin{pmatrix} 0.440 \\ 0.11 \\ 0.247 \end{pmatrix}$$

Step 3: Compute we weights
$$\omega_{\text{new}} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0.440 \\ 0.1(1) \\ 0.247 \end{pmatrix} = \begin{pmatrix} -0.550 \\ 1.11 \\ 1.247 \end{pmatrix}$$

Step 3.5: If required, compute "sum of square emor" again

Step 4: Repeat steps 1-3 until termination condition is met, resetting Dw to 0

Stochastic gradient descent Gradient descent uses batch update (update after "seeing" all samples) -> Difficulty #1: Slow convergence to local minimum D incremental gradient descent, or D stochastic gradient descent (update after "seeing" a random sample / subset of samples) 4> Difficulty #2: No guaranteed convergence to global minimum PRUM the gradient descont algorithm repeatedly, with different seeds Activation function / gain function / transfer function / squashing function To ensure that output range is restricted to [0,1], differentiable activation for is used. The computation of gradient of error must take into account the derivative of the differentiable activation fur. Weight is corrected by negative of gradient: \(\(\mathcal{E}(\frac{1}{2}; -0;)\)\(\overline{0}; \((1-0;)\)\(\mathcal{Z}; \)\(E.g. if sigmoid fu is used, \(\overline{0}; = \int(\pi_1\overline{\pi})\)\" Example 1: Sign function => non-differentiable $f(\theta) = \begin{cases} 1, & \theta > 0 \\ -1, & \theta \leq 0 \end{cases}$ Example 2. Sigmoid function => differentiable σ(y)= 1+e-9 where y= w^Tx 5 (y) = 5 (y) (1- 5 (y)) Example 3: hyperbolic tangent ⇒ differentiable tanh (y) = ey - ey = 2 o (2y) -1 where y= w x tanh'(y) = 1 - tanh(y)

Section 1: Training single-layer perceptron: gradient descent Section 2: Training multi-layer perceptron: back-propagation

Back-propagation

Note: When using multi-layer perceptions, a differentiable activation function is required after each weighted sum calculation. Else, because linear combination of linear combinations is still a linear combination, having multiple layers does not add value to the model. (Without activation function, model is performing linear regression at each step; with activation function, it is performing logistic regression)

Initialisation: Set $E_{max} > 0$, Y > 0, W to a mandom value, V to a mandom value. Initialise E = 0. Optimization: For each input data, perform Phase I of Phase II.

Termination: If E < Erax, stop. Else, E=0, go to step 2.

Notation

- D Each training example 18 denoted as (x, d) where x is the vector of input values, d is the vector of target network values
- D 4 : learning rate
- DI, J.K: # input nuits, widden units, output units
- D W: weight matrix for connections from hidden units to output units, with Krows & J columns
- D V . weight matrix for connections from input units to hidden units, with J rows & I columns
- D, y: Vector of hidden unit activations, with I rows
- DO: vector of output unit activations, with Krows

Phase I (feedforward phase)

Step 1: Compute hidden unit activation & output unit activation

- D hidden unit activation, $y_j = f(v_j Tx)$ for j = 1, 2, ..., J
- Doutput unit activation, $O_k = f(w_k^T y)$ for k = 1, 2, ..., K

Example 1

Suppose activation function used at hidden Loutput units is sigmoid, given input data (x_2) ,

La hidden unit activation · y, = o(v x) = o(v, x, +v, x)

by predicted output on = 5 (wig) = 5 (winy)

by prediction error = $(d_1 - o_1)$, contribution to error sum = $\frac{1}{2}(d_1 - o_1)^2$

Example 2

X₂ = 0.9 0.05 H₂ 0.05 O₁

0.3 0.02 0.015

Ly At H, , WIX, +W2X2 + W3X3 = (0.05)(0.2)+(0.01)(0.9)-0.3=-0.281

activation value = 1+e0.281 = 0.431

At O_1 , $W_1 x_1 + W_2 x_2 + W_3 x_3 + bias = (0.01)(0.430) + (0.05)(0.506) + (0.015)(0.511) - 0.015 = 0.0$ activation value = $\frac{1}{1 + e^{-0.0233}} = 0.506$

IP cut-off = 0.5, the sample is classified as Class 1

Step 2: Compute prediction envol $D = \pm \frac{1}{2} \left(d_k - O_k \right)^2$

Phase II (backpropagation phase)

Step 1: Compute error signal vectors So and Sy for output and hidden layor units

Step 2: Update output larger and hidden larger weights

$$D W_{kj} += y S_{0k} Y_{j}, \text{ where } \frac{\partial E}{\partial W_{kj}} = -S_{0k} Y_{j} \text{ for } k=1,2,..., K \text{ and } j=1,2,..., I$$

$$D V_{i} += y S_{0j} Y_{i}, \text{ where } \frac{\partial E}{\partial V_{ij}} = -S_{0j} X_{i}, \text{ for } j=1,2,..., J \text{ and } i=1,2,..., I$$

$$\bigvee_{i}$$
 += \bigvee_{i} Y_{i} , where $\frac{3}{2}V_{ij}$ = $-S_{ij}$ X_{i} for $j=1,2,...,J$ and $i=1,2,...,J$

=> Intuition:

To tune a weight:

Source Doutput Doutput Diapat

Compute Doutput Diapat

Doutpute Doutput Diapat

Doutpute Doutput

Doutpute Diapat

Doutpute Diapat

Doutpute Diapat

Doutpute Diapat

Doutput

Example 1

Step 2.
$$\omega_{11}$$
 += γ S_{01} ω_{1} ($\frac{\partial E}{\partial \omega_{11}} = -S_{01}$ ω_{1})

 V_{11} += γ S_{y1} x_{1} ($\frac{\partial E}{\partial v_{11}} = -S_{y1}$ x_{1})

 V_{12} += γ S_{y1} x_{2} ($\frac{\partial E}{\partial v_{12}} = -S_{y1}$ x_{2})

Derivation (w/o using given formula)

$$\frac{\partial E}{\partial \omega_{ii}} = (-1)(\frac{1}{2})(2)(\lambda_{1} - 0_{1}) \frac{\partial O_{1}}{\partial \omega_{i1}}$$

$$= -(\lambda_{1} - 0_{1}) O_{1}(1 - 0_{1}) \frac{\partial (\omega^{T}y)}{\partial \omega_{11}}$$

$$= -(\lambda_{1} - 0_{1}) O_{1}(1 - 0_{1}) y_{1}$$

$$= -\delta_{01}y_{1}$$

$$\frac{\partial E}{\partial V_{t,t}} = (-t)(\frac{1}{2})(2)(\frac{1}{2}, -0_1) \frac{\partial O_1}{\partial V_{t,t}}$$

$$= -(\frac{1}{2}, -0_1)O_1(1-O_1) \frac{\partial O_1}{\partial V_{t,t}}$$

$$= -(\frac{1}{2}, -0_1)O_1(1-O_1) \omega_{t,t} \frac{\partial O_1}{\partial V_{t,t}}$$

$$= -(\lambda_{1} - o_{1}) o_{1} (1 - o_{1}) \omega_{11} \quad \exists V_{11}$$

$$= -(\lambda_{1} - o_{1}) o_{1} (1 - o_{1}) \omega_{11} \quad y_{1} (1 - y_{1}) \quad \exists V_{11}$$

$$= -(\lambda_{1} - o_{1}) o_{1} (1 - o_{1}) \omega_{11} y_{1} (1 - y_{1}) \quad \chi_{1}$$