Prova Totale di **Ottimizzazione Combinatoria**

19 giugno 2007

Cognome	
Nome	
Matricola	

Domanda 1

Enunciare e dimostrare il teorema di Gallai

Domanda 2

Disegnare due grafi $G_1=(V,E)$ e $G_2=(V,E')$ tali che

- 1. |V| > 7
- 2. $\mu(G_1) = \tau(G_1)$
- 3. $\mu(G_2) = \mu(G_1) < \tau(G_2)$

Domanda 3

Dato il problema di knapsack

$$\max 12x_1 - 22x_2 + 13x_3 - 15x_4 + 16x_5 + 23x_6 - 31x_7 + 27x_8 + 15x_9$$

$$st$$

$$4x_1 - 5x_2 + 6x_3 + 6x_4 + 5x_5 + 4x_6 - 3x_7 + 2x_8 - 3x_9 \le 2$$

$$x \in \{0,1\}^8$$

descrivere un algoritmo basato sulla programmazione dinamica e risolverlo.

Esercizio 1

La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

1	2	3	4	5	6	7	
-	95	82	50	140	80	83	1
	-	18	60	229	190	290	2
		-	72	209	180	201	3
			-	160	123	159	4
				-	90	80	5
					-	119	6
						-	7

Calcolare

- 1. Il valore del rilassamento che si ottiene determinando l'1-albero di costo minimo.
- 2. Calcolare l'1-albero di costo minimo con il metodo del simplesso dinamico
- 3. Una soluzione euristica S ottenuta tramite l'algoritmo di Farthest Insertion

Esercizio 2

Determinare, sul grafo di figura, il massimo matching (a partire dal matching evidenziato in grassetto) e il minimo vertex cover a partire dall'abbinamento evidenziato in grassetto e spiegando nel dettaglio i passi degli algoritmi utilizzati.

Prova Totale di **Ottimizzazione Combinatoria** 19 giugno 2007

Cognome	
Nome	
Matricola	

Un'azienda di deve pianificare gli investimenti per il prossimo anno. La direzione ha selezionato i seguenti investimenti (tutti i dati sono in milioni di Euro)

I1: Redditività: 9 Cash flow: {-8, -11, -12, -20}

I2: Redditività: 22 Cash flow: {-15, -14, +5, +11}

I3: Redditività: 13 Cash flow: {-3, -4, -6, -2}

I4: Redditività: 8 Cash flow: {-12, -11, +4, +7}

I5: Redditività: 15 Cash flow: {+11, +6, -5, -12}

I6: Redditività: 7 Cash flow: {-3, -7, -8, -10}

I7: Redditività: 4 Cash flow: {+7, +5, -2, -4}

Sapendo che:

- a) Il budget trimestrale a disposizione dell'azienda è di {21, 15, 7, 20} M€ per trimestre
- b) Gli investimenti I1, I2 e I3 hanno un costo fisso di attivazione pari rispettivamente a {5, 12, 4} M€
- c) Per vincoli contrattuali, almeno uno tra gli investimenti I1, I3 e I4 deve essere attivato
- d) Gli investimenti I1 e I2 non possono essere scelti contemporaneamente
- 1. Formulare come PL-{0, 1} il problema di massimizzare la redditività senza violare il vincolo di budget trimestrale.
- 2. Rafforzare il rilassamento lineare della formulazione di cui al punto 1 con l'aggiunta di opportune disequazioni valide
- 3. Risolvere la formulazione di cui al punto 2 con l'algoritmo di branch-and-bound