

Dr. A. Alldridge:

Mathematik für Physiker C (WS 2008/9), Blatt 3

Aufgabe 1 (Residuenkalkül I, rationale Funktionen — 5 Punkte) Berechnen Sie die folgenden Integrale mit Satz 18.11.

- (a) $\int_{-\infty}^{\infty} \frac{dx}{x^6 + 1}$. (b) $\int_{-\infty}^{\infty} \frac{dx}{x^4 + 1}$. (c) $\int_{0}^{\infty} \frac{dx}{(x^2 + 1)(x^2 + 4)^2}$.

Aufgabe 2 (Residuenkalkül II, scharfe Abfallbedingungen — 5 Punkte)

Berechnen Sie jeweils das Integral $\int_0^\infty f(x)\,dx$, indem Sie die Funktion g(z) in der oberen Halbebene betrachten und ausnutzen, dass der Realteil von g gerade und der Imaginärteil von g ungerade ist, oder umgekehrt. Achten Sie darauf, die Voraussetzungen von Satz 18.12 bzw. Satz 18.13 zu überprüfen.

(a)
$$f(x) = \frac{\cos x}{1+x^2}$$
, $g(z) = \frac{e^{iz}}{1+z^2}$

(a)
$$f(x) = \frac{\cos x}{1+x^2}$$
, $g(z) = \frac{e^{iz}}{1+z^2}$.
(b) $f(x) = \frac{x \sin \omega x}{x^2+a}$, $g(z) = \frac{ze^{i\omega z}}{z^2+a}$, ω , $a > 0$.

Aufgabe 3 (Residuenkalkül III, Integration in der geschlitzten Ebene — 5 Punkte) Zeigen Sie, dass für $0 < \alpha < 1$ gilt

$$\int_0^\infty \frac{dx}{x^\alpha (1+x)} = \frac{\pi}{\sin \pi \alpha} .$$

Wenden Sie dafür Satz 18.14 aus der Vorlesung an. Dabei wird z^{α} für $z=re^{i\theta}$ mit $0< heta<2\pi$ definiert durch $z^{lpha}=re^{ir heta}$. Inbesondere ist $(-1)^{lpha}=e^{i\pilpha}$.

Aufgabe 4 (Exponentialfunktion einer Matrix — mündlich)

Berechnen Sie e^A für die folgenden Matrizen A.

- (a) $A = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$, $\alpha, \beta \in \mathbb{R}$ gegeben.
- (b) $A = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}$, $\alpha, \beta \in \mathbb{R}$ gegeben.
- (c) $A = \lambda E + B$, wobei e^B als bekannt vorausgesetzt wird.
- (d) Die Matrix *A* , die den Verschiebeoperator *S* ,

$$S(e_1) = 0$$
 , $S(e_{j+1}) = e_j$

in der Basis e_i darstellt.

Bitte geben Sie die Übungsaufgaben am Montag, 3.11.2008, vor der Vorlesung ab. Bereiten Sie die mündliche Aufgabe zur Übung am Mittwoch, 11.11.2008, vor. Die Übung am 3.11.2008 fällt aus.