Implementation

Although I've learned a lot about HiCNN, they came out with an updated and improved HiCNN2

HiCNN2 is an improved version of our previously developed tool <u>HiCNN</u> for enhancing resolution of Hi-C data and uses three architectures to learn the mapping between low-resolution and high-resolution Hi-C contact matrices. HiCNN2-1 uses one convolutional neural network (ConvNet1); HiCNN2-2 consists of an ensemble of two different ConvNets (ConvNet1 and ConvNet2); HiCNN2-3 uses an ensemble of three different ConvNets (ConvNet1, ConvNet2, and ConvNet3)

Set Up

The requirements for this project are:

PyCharm

PyTorch

Numpy

Anaconda and <u>CUDA</u> are optional but can help with organization and GPU speed, but is not supported by MacOS.

Materials and Methods

Their readme section outlines how to use this this on the HIC071 Hi-C sample.

To download the "HIC071" that was used, in terminal:

```
curl -0
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM1551nnn/GSM1551620/suppl/GSM155162
0_HIC071_merged_nodups.txt.gz
```

Extract the file and end up with a file named: GSM1551620_HIC071_merged_nodups.txt

Generate a Hi-C read-pair file for one chromosome. Here I'll be using chromosome 15:

```
python get_chr_reads.py GSM1551620_HIC071_merged_nodups.txt 15 chr15.reads
```

- "15", the second argument, is the chromosome ID of interest.
- The Hi-C read-pair file for chromosome 15 chr15, reads can be found in the "data" folder.

Generate the input of HiCNN2 predict using a python script:

```
python get_HiCNN2_input.py chr15.reads 102531392 10000 chr15.subMats
chr15.index
```

- "chr15.reads" is the output file of step (3);
- "102531392" is the length of chromosome 15;
- "10000" is the resolution of interest;
- "chr15.subMats" is the output submatrix file with shape (n140*40);
- "chr15.index" is the output index file with shape (n*2) for us to rebuild the whole Hi-C matrix after running HiCNN2_predict.

Make sure to install torch:

```
pip install torch
```

Run HiCNN2_predict:

```
python HiCNN2_predict.py -f1 data/chr15.subMats.npy -f2
data/chr15.subMats_HiCNN23_16 -mid 3 -m checkpoint/model_HiCNN23_16.pt -r 16
```

```
python HiCNN2_predict.py -f1 data/chr15.subMats.npy -f2
data/chr15.subMats_HiCNN21_16 -mid 1 -m checkpoint/model_HiCNN21_16.pt -r 16
```

- "-f1" is followed by the input file generated in step (4).
- "-f2" is followed by the output file.
- "-mid 3" means that we are using HiCNN2-3.
- "-m" indicates the best model we want to use. We provide 6 checkpoint files in the "checkpoint" folder. The checkpoint files are named with the format "model*HiCNN2**#.pt", where "*" may be 1/2/3 representing the three architectures and "#" may be 8/16/25 representing the three down sampling ratios (1/8, 1/16, and 1/25).

Because I'm using my MacOS system, I had to modify HiCNN2_predict.py:

Replace this line:

```
Net.load_state_dict(torch.load(args.file_best_model))
```

With this:

```
Net.load_state_dict(torch.load(args.file_best_model, map_location='cpu'))
```

Now combine predicted sub-matrices to get a big predicted high-resolution Hi-C matrix for one chromosome.

```
python combine_subMats.py data/chr15.subMats_HiCNN23_16.npy
data/chr15.index.npy 102531392 10000 data/chr15.predictedMat
```

- "data/chr15.subMats_HiCNN23_16.npy" is from step (5).
- "data/chr15.index.npy" is from step(4).
- "102531392" is the chromosome length.
- "10000" is the resolution.
- "data/chr15.predictedMat" is the predicted high-resolution matrix for one chromosome (chr15).

Training

Now to train we can do the following:

```
python HiCNN2_training.py -f1 data/chr15.subMats_HiCNN23_16.npy -f2
data/chr15.subMats_HiCNN23_16.npy -f3 data/chr15.subMats_HiCNN23_16.npy -f4
```

```
data/chr15.subMats_HiCNN23_16.npy -m 3 -d models -r 16 --batch-size 256 -- epochs 500 --lr 0.1 --momentum 0.5 --weight-decay 1e-4 --clip 0.01 --seed 1
```

```
.py -f1 data/chr15.subMats_HiCNN23_16.npy -f2 data/chr15.subMats_HiCNN23_16.npy -f3 data/chr15.subMats_HiCNN23_16.npy -f4 data/chr15.subMats_HiCNN23_16.npy -m 3 -d models -r 16 --batch-size 256 --epochs 500 --lr 0.1 --momentum 0.5 --weight-
decay 1e-4 --clip 0.01 --seed 1
Using HiCNN2-3...
/opt/anaconda3/lib/python3.11/site-packages/torch/nn/modules/loss.py:535: UserWa
rning: Using a target size (torch.Size([256, 1, 22, 22])) that is different to t
he input size (torch.Size([256, 1, 16, 16])). This will likely lead to incorrect
results due to broadcasting. Please ensure they have the same size.
 return F.mse_loss(input, target, reduction=self.reduction)
Traceback (most recent call last):
 File "/Users/naomirodriguez/Documents/Past UCCS Classes/Spring 2024/CS 3850 Bi
oinformatics & Computational Bio/HiCNN2/HiCNN2_package/HiCNN2_training.py", line
147, in <module>
   main()
 File "/Users/naomirodriguez/Documents/Past UCCS Classes/Spring 2024/CS 3850 Bi
oinformatics & Computational Bio/HiCNN2/HiCNN2_package/HiCNN2_training.py", line
138, in main
    loss_train = train(model, device, train_loader, optimizer, args.clip)
  File "/opt/anaconda3/lib/python3.11/site-packages/torch/nn/modules/module.py"
 line 1511, in _wrapped_call_impl
    return self._call_impl(*args, **kwar
                                     **kwargs)
  File "/opt/anaconda3/lib/python3.11/site-packages/torch/nn/modules/module.py"
 line 1520, in call impl
    return forward_call(*args, **kwargs)
                                \AAAA
File "/opt/anaconda3/lib/python3.11/site-packages/torch/nn/modules/loss.py", ine 535, in forward
    return F.mse_loss(input, target, reduction=self.reduction)
File "/opt/anaconda3/lib/python3.11/site-packages/torch/nn/functional.py", line 3338, in mse_loss
    expanded_input, expanded_target = torch.broadcast_tensors(input, target)
  File "/opt/anaconda3/lib/python3.11/site-packages/torch/functional.py", line 7
6, in broadcast_tensors
    return _VF._broadcast_tensors(tensors) # type: ignore[attr-defined]
RuntimeError: The size of tensor a (16) must match the size of tensor b (22) at
non-singleton dimension 3
```

(base) naomirodriguez@Naomis-MacBook-Air HiCNN2_package % python HiCNN2_training

Something that is recommended for this process is juicer version 1.8.9.

Since we've been using the chromosome 15 data, I used the following command:

```
java -jar juicer_tools.1.8.9_jcuda.0.8.jar dump observed NONE
https://hicfiles.s3.amazonaws.com/hiseq/gm12878/in-situ/primary.hic 15 15 BP
10000 chr15_10kb.txt
```

```
(base) naomirodriguez@Naomis-MacBook-Air HiCNN2_package % java -jar juicer_tools .1.8.9_jcuda.0.8.jar dump observed NONE https://hicfiles.s3.amazonaws.com/hiseq/gm12878/in-situ/primary.hic 15 15 BP 10000 chr15_10kb.txt

INFO [2024-05-08 07:17:12,491] [HttpUtils.java:833] [main] Range-byte request succeeded
```

Create a getInput.py file:

```
resolution = 10000
# Step 1: Read the chr15_10kb.txt file
with open('chr15_10kb.txt', 'r') as f:
    lines = f.readlines()
# Step 2: Parse each line to extract indices and values
contact matrix = {}
for line in lines:
    parts = line.strip().split()
    i, j, value = int(parts[0]), int(parts[1]), float(parts[2])
    contact_matrix[(i, j)] = value
# Step 3: Convert indices to match the expected format
converted matrix = {}
for (i, j), value in contact_matrix.items():
    new_i, new_j = i // resolution, j // resolution
   if new_i == new_j:
        continue # Ignore diagonal entries
    converted_matrix[(new_i, new_j)] = value
# Step 4: Write the converted matrix to a new file
with open('chr15 10kb converted.txt', 'w') as f:
    for (i, j), value in converted_matrix.items():
        f.write(f'{i}\t{j}\t{value}\n')
# Step 5: Run get_HiCNN2_input_fromMat.py with the new file
import subprocess
subprocess.run(['python', 'get_HiCNN2_input_fromMat.py',
'chr15_10kb_converted.txt', '102531392', '10000', 'chr15.subMats',
'chr15.index'l)
```

HiCNN2 trains from low to high resolution. We'll use 25kb to 10kb.

```
java -jar juicer_tools.1.8.9_jcuda.0.8.jar dump observed NONE
https://hicfiles.s3.amazonaws.com/hiseq/gm12878/in-situ/primary.hic 15 15 BP
25000 chr15_25kb.txt
```

Use the same getInput.py file as above but change the values to 25kb.

Now we can run the command:

```
python HiCNN2_training.py -f1 data/chr15.subMats.npy -f2
data/chr15.subMats.npy -f3 data/chr15.subMats.npy -f4 data/chr15.subMats.npy
```

```
-m 3 -d models -r 16 --batch-size 256 --epochs 5 --lr 0.1 --momentum 0.5 -- weight-decay 1e-4 --clip 0.01 --seed 1
```

Deliverables

.pdb file: Create a pdb0utput.py

```
import numpy as np
from sklearn.manifold import MDS

predicted_matrix = np.load('data/chr15.predictedMat.npy')

mds = MDS(n_components=3, dissimilarity='precomputed')
spatial_coordinates = mds.fit_transform(predicted_matrix)

with open('output_structure.pdb', 'w') as f:
    for i, coords in enumerate(spatial_coordinates):
        f.write(f'ATOM {i+1:5} CA ALA A 1 {coords[0]:8.3f} {coords[1]:8.3f}{coords[2]:8.3f} 1.00 0.00\n')
```

I ignored this warning:

```
(base) naomirodriguez@Naomis-MacBook-Air HiCNN2_package % python pdbOutput.py /opt/anaconda3/lib/python3.11/site-packages/sklearn/manifold/_mds.py:299: Future Warning: The default value of `normalized_stress` will change to `'auto'` in ver sion 1.4. To suppress this warning, manually set the value of `normalized_stress`.
__warnings.warn(
```

python evaluate.py

PCC: 0.03214729394446348, SCC: 0.007693662823237533, RMSE: 326.1650117694344

```
[(base) naomirodriguez@Naomis-MacBook-Air HiCNN2_package % python evaluate.py
/opt/anaconda3/lib/python3.11/site-packages/sklearn/manifold/_mds.py:299: Future
Warning: The default value of `normalized_stress` will change to `'auto'` in ver
sion 1.4. To suppress this warning, manually set the value of `normalized_stress`.
    warnings.warn(
PCC: 0.03214729394446348, SCC: 0.007693662823237533, RMSE: 326.1650117694344
```

PSNR: 43.312898542712844

RMSE: 0.8784693641089675

Pearson Correlation: 0.9983280547803866

Spearman Correlation: 0.9909719968982479

PSNR: 43.312898542712844 RMSE: 0.8784693641089675

Pearson Correlation: 0.9983280547803866 Spearman Correlation: 0.9909719968982479