

Página de Abertur.

Contenido

Página 1 de 54

Regresar

Full Screen

Cerrar

Abandonar

Estadística Bayesiana: Clase 14

Juan Carlos Correa

20 de abril de 2021

Página de Abertura

Contenido

Página 2 de 54

Regresar

Full Screen

Cerrar

Abandonar

Aproximación Bayesiana vía Simulación

Suponga tenemos una población Multinomial con k categorías. El problema lo trabajaremos usando la familia conjugada Dirichlet. Además queremos realizar inferencias acerca de θ , un parámetro que es una función de $(\pi_1, \pi_2, \dots, \pi_k)$, por ejemplo

$$\theta = \frac{\pi_1}{\pi_2}$$

$$\bullet \theta = \frac{\pi_1 \pi_4}{\pi_2 \pi_3}$$

$$\bullet \theta = \log(\pi_1) \log(\pi_2)$$

$$\bullet \ \theta = (\theta_1, \theta_2) = \left(\frac{\pi_2}{\pi_1}, \ \frac{\pi_3}{\pi_1}\right)$$

• etc.

Página de Abertura

Contenido

Página 3 de 54

Regresar

Full Screen

Cerrar

Abandonar

Algoritmo

- 1. Genere π_i de la $Dirichlet(\alpha_i + \mathbf{n}_i)$ para $i = 1, 2, \ldots, k$.
- 2. Haga $\pi' = (\pi'_1, \pi'_2, \dots, \pi'_k)$
- 3. Calcule

$$\theta = g\left(\pi_1', \ \pi_2', \dots, \pi_k'\right)$$

Repita los pasos 1 a 3 muchas veces, digamos N. Al final se obtendrá

$$\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(N)}$$

la distribución posterior de θ se aproxima mediante un "histograma" de los valores calculados.

Página de Abertura

Contenido

Página 4 de 54

Regresar

Full Screen

Cerrar

Abandonar

Tabla 2×2

Ejemplo de niños zurdos

La siguiente tabla presenta información sobre niños zurdos y el sexo:

	Zurdo	Diestro
Niño	79	202
Niña	57	138

La pregunta que nos surge es: Hay más niños zurdos que niñas?

Página de Abertura

Contenido

Página 5 de 54

Regresar

Full Screen

Cerrar

Abandonar

Esquema Producto-Binomial

	Éxito	Fracaso
Pob. I	π_1	$1 - \pi_1$
Pob. II	π_2	$1 - \pi_2$

En esta situación se sacan dos muestras independientes con tamaños predeterminados, digamos n_1 y n_2 . Aquí nos interesa comparar las distribuciones de las dos poblaciones binomiales, o sea comparar π_1 con π_2 . La función de verosimilitud de los datos será

	Éxito	Fracaso
Pob. I	x_1	$n_1 - x_1$
Pob. II	x_2	$n_2 - x_2$

La verosimilitud será

$$L(\pi_1, \pi_2) \propto \pi_1^{x_1} (1 - \pi_1)^{n_1 - x_1} \pi_2^{x_2} (1 - \pi_2)^{n_2 - x_2}$$

Página de Abertura

Contenido

Página 6 de 54

Regresar

Full Screen

Cerrar

Abandonar

Apriori

Problema: Se pueden definir varias apriori.

• Por ejemplo una apriori conjunta para (π_1, π_2) , por ejemplo

$$\xi(\pi_1, \pi_2) \propto \pi_1^{\alpha_1 - 1} (1 - \pi_1)^{\beta_1 - 1} \pi_2^{\alpha_2 - 1} (1 - \pi_2)^{\beta_2 - 1}$$

Este es el caso más sencillo ya que corresponde a la conjugada. La aposteriori será

$$\xi(\pi_1, \pi_2 | Datos) \propto \pi_1^{\alpha_1 + x_1 - 1} (1 - \pi_1)^{n_1 - x_1 + \beta_1} \pi_2^{x_2 + \alpha_2 - 1} (1 - \pi_2)^{n_2 - x_2 + \beta_2 - 1}$$

- Una apriori sobre $\pi_1 \pi_2$
- Una apriori sobre π_1/π_2

Página de Abertura

Contenido

()

→

Página 7 de 54

Regresar

Full Screen

Cerrar

Abandonar

Ejemplo de los niños.

Suponga apriori Beta(1,1)xBeta(1,1)
pi1<-rbeta(1000,79+1,202+1)
pi2<-rbeta(1000,57+1,138+1)</pre>

plot(pi1,pi2)
library(KernSmooth)

x <- cbind(pi1, pi2)
est <- bkde2D(x, bandwidth=c(0.7,7))
contour(est\$x1, est\$x2, est\$fhat)
persp(est\$fhat)</pre>

dif<-pi1-pi2
summary(dif)</pre>

Min. 1st Qu. Median Mean 3rd Qu. Max. -0.12510 -0.03980 -0.01140 -0.01182 0.01590 0.10900

Página de Abertura

Contenido

₩ →

→

Página 8 de 54

Regresar

Full Screen

Cerrar

Abandonar

library(hdrcde)

hdr.den(dif)

\$hdr

[,1] [,2]

99% -0.11388344 0.09407083

95% -0.09382573 0.06901195

50% -0.03672022 0.01884642

\$mode

[1] -0.00719232

\$falpha

1% 5% 50% 0.5544871 1.5005082 7.6356746

hdr.boxplot.2d(pi1, pi2)

Página de Abertura

Contenido

44 >>

→

Página 9 de 54

Regresar

Full Screen

Cerrar

Abandonar

Página de Abertura

Contenido

44 >>

→

Página 10 de 54

Regresar

Full Screen

Cerrar

Abandonar

Página de Abertura

Contenido

44 >>

→

Página 11 de 54

Regresar

Full Screen

Cerrar

Abandonar

density.default(x = x, bw = h)

Página de Abertura

Contenido

44 >>

→

Página 12 de 54

Regresar

Full Screen

Cerrar

Abandonar

Página de Abertura

Contenido

Página 13 de 54

Regresar

Full Screen

Cerrar

Abandonar

Esquema Multinomial

	B	B^c
A	π_{11}	π_{12}
A^c	π_{21}	π_{22}

$$\sum_{i} \sum_{j} \pi_{ij} = 1$$

En esta situación se sacan una muestra con tamaño predeterminado, digamos N. Aquí nos interesa determinar si las dos variables son dependientes o no. O sea queremos ver si $\pi_{ij} = \pi_{i+}\pi + j$. La función de verosimilitud de los datos será

	B	B^c
A	x_{11}	x_{12}
A^c	x_{21}	x_{22}

La verosimilitud será

$$L\left(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}\right) \propto \pi_{11}^{x_{11}} \pi_{12}^{x_{12}} \pi_{21}^{x_{21}} \pi_{22}^{x_{22}}$$

Página de Abertura

Contenido

Página 14 de 54

Regresar

Full Screen

Cerrar

Abandonar

Bajo el esquema multinomial la distribución apriori no informativa puede seleccionarse de una amplia clase:

Apriori Uniforme

$$\xi(\pi_1, \, \pi_2, \, \pi_3, \, \pi_4) \propto 1$$

Apriori de Jeffreys

$$\xi(\pi_1, \pi_2, \pi_3, \pi_4) \propto \pi_1^{-1/2} \pi_2^{-1/2} \pi_3^{-1/2} \pi_4^{-1/2}$$

La siguiente tabla presenta el modelo poblacional para una tabla 2×2 , donde cada celda presenta la probabilidad de ella.

La razón de odds

	\overline{A}	A^c
\overline{B}	$P(A \cap B)$	$P(A^c \cap B)$
B^c	$P(A \cap B^c)$	$P(A^c \cap B^c)$

 $\frac{P\left[B\mid A\right]}{P\left[B^c\mid A\right]}$

La interpretación de la razón anteriror es directa: Asumiendo que el evento A ha ocurrido, esta razón nos dice cúantas veces

Contenido

Página de Abertura

Full Screen

^aLa palabra odds no tiene una única y precisa traducción, algunos la traducen como disparidad y otros como apuestas.

Página de Abertura

Contenido

Página 16 de 54

Regresar

Full Screen

Cerrar

Abandonar

Cornfield (1951) definió la razón de odds como

$$\psi = \frac{\frac{P[B|A]}{P[B^c|A]}}{\frac{P[B|A^c]}{P[B^c|A^c]}}$$

- La interpretación es clara.
- Valores de ψ que se alejen de 1.0 en una dirección particular representa una asocición fuerte.
- Dos valores de ψ pueden representar un mismo nivel de asociación (un valor y su inverso) pero en direcciones opuestas.
- Valores menores que uno indican una asociación negativa, mientras valores mayores que 1 indican una asociación positiva.
- Para simetrizar esta medida se trabaja con el $log(\psi)$.

Página de Abertura

Contenido

Página 17 de 54

Regresar

Full Screen

Cerrar

Abandonar

Tabla 2×2

Ejemplo de habilidad manual de esposos

La siguiente tabla presenta información sobre la destereza manual del esposo y la esposa:

	Esposa	
Esposo	Zurda	Diestra
Zurdo	1	13
Diestro	20	284

La pregunta que nos surge es: hay independencia entre la habilidad manual del esposo y la de la esposa?

Página de Abertura

Contenido

44 | **>>**

→

Página 18 de 54

Regresar

Full Screen

Cerrar

Abandonar

library(MCMCpack)
res<-rdirichlet(10000,c(1+1,13+1,20+1,284+1))

log.OR<-log(res[,1]*res[,4]/(res[,2]*res[,3]))

> summary(log.OR)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.28776 -0.04726 0.55672 0.47431 1.07621 3.37960

> summary(exp(log.OR))

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.01374 0.95384 1.74494 2.25216 2.93354 29.35900

> hdr.den(log.OR,main='Distribución Posterior del log(OR)')
\$hdr

 $[,1] \qquad [,2]$

99% -2.1751819 2.574805

95% -1.2844725 2.138309

50% 0.1082924 1.217970

\$mode

[1] 0.7007231

\$falpha

1% 5% 50% 0.01613558 0.06673433 0.36814598

Página de Abertura

Contenido

44 >>

→

Página 19 de 54

Regresar

Full Screen

Cerrar

Abandonar

> hdr.den(exp(log.OR),main='Distribución Posterior del OR')
\$hdr

[,1] [,2] [,3] [,4]

99% -0.22562515 8.800509 9.15823 9.465179 95% -0.08071155 5.863276 NA NA 50% 0.35235364 1.960321 NA NA

\$mode

[1] 0.8342001

\$falpha

1% 5% 50%

0.003528188 0.025444277 0.247903836

Página de Abertura

Contenido

44 >>

→

Página 20 de 54

Regresar

Full Screen

Cerrar

Abandonar

Distribución Posterior del log(OR)

Página de Abertura

Contenido

44 >>

→

Página 21 de 54

Regresar

Full Screen

Cerrar

Abandonar

Distribución Posterior del OR

Página de Abertura

Contenido

Página 22 de 54

Regresar

Full Screen

Cerrar

Abandonar

MCMC: Monte Carlo por Cadenas de Markov

Los métodos MCMC son algoritmos iterativos que se utilizan cuando el muestreo directo de una distribución de interés ξ no es factible.

Una cadena de Markov es generada muestreando

$$\theta^{(t+1)} \sim p\left(\theta|\theta^{(t)}\right)$$

Este p es llamado el kernel de transición de la cadena de Markov. Así $\theta^{(t+1)}$ depende solo de $\theta^{(t)}$, y no de $\theta^{(0)}$, $\theta^{(1)}$, \cdots , $\theta^{(t-1)}$

Página de Abertura

Contenido

Página 23 de 54

Regresar

Full Screen

Cerrar

Abandonar

Glosario de Cadenas de Markov

Irreducibilidad Una cadena de Markov X_1, X_2, \cdots es irreducible si la cadena puede moverse libremente a través del espacio de estados; esto es, para dos estados cualesquiera x y x', existe un n tal que

$$P(X_n = x' | X_0 = x) > 0.$$

Recurrencia Una cadena de Markov es recurrente si el número promedio de visitas a un estado arbitrario es infinito.

Período Un estado x tiene período d si $P(X_{n+t} = x | X_t = x) = 0$ si n no es divisible por d, donde d es el mayor entero con esta propiedad.

Página de Abertura

Contenido

Página 24 de 54

Regresar

Full Screen

Cerrar

Abandonar

Aperiodicidad Si un estado x tiene período d=1 se dice que es aperiódico.

En una cadena irreducible todos los estados tienen el mismo período. Si ese período es d=1, la cadena de Markov es aperiódica.

Convergencia a una Distribución Estacionaria

Si una cadena de Markov con espacio de estados contable X_1, X_2, \cdots es positiva, recurrente y aperiódica con distribución estacionaria π , entonces desde cualquier estado inicial

$$X_n \to X \sim \pi$$

Página de Abertura

Contenido

Página 25 de 54

Regresar

Full Screen

Cerrar

Abandonar

Ergodicidad Una cadena de Markov positiva, recurrente y aperiódica es llamada ergódica.

Convergencia de Sumas (Teorema Ergódico)

Si una cadena de Markov con espacio de estados contable X_1, X_2, \cdots es ergódica con distribución esatcionaria π , entonces desde cualquier estado inicial

$$\frac{1}{n}\sum_{i=1}^{n}h\left(X_{i}\right)\to E_{\pi}\left[h(X)\right]$$

Página de Abertura

Contenido

Página 26 de 54

Regresar

Full Screen

Cerrar

Abandonar

Algoritmo Metropolis-Hastings

- El muestreo de importancia y el muestreo de rechazo trabajan bien si la densidad propuesta $q(\theta)$ es similar a $p(\theta)$.
- En problemas complejos puede ser difícil crear una única $q(\theta)$ que tenga esta propiedad.
- El algoritmo Metropolis utiliza una densidad propuesta q que depende del estado actual de $\theta^{(t)}$.
- La densidad $q\left(\theta'|\theta^{(t)}\right)$ puede ser tan simple como una normal localizada en $\theta^{(t)}$ y no es necesario que se parezca a $p(\theta)$.

Página de Abertura

Contenido

Página 27 de 54

Regresar

Full Screen

Cerrar

Abandonar

El algoritmo se resume así:

- 1. Comience en cualquier lugar, y digamos que estamos en $\theta^{(t)} = \theta$.
- 2. Genere θ^* de $q(\theta^*|\theta)$. θ^* es llamado un punto candidato y q es llamada una distribución propuesta.
- 3. Calcule

$$\alpha\left(\theta, \theta^{*}\right) = \min\left\{1, \frac{\xi\left(\theta^{*}|Datos\right)q\left(\theta|\theta^{*}\right)}{\xi\left(\theta|Datos\right)q\left(\theta^{*}|\theta\right)}\right\}$$

- 4. Acepte $\theta^{(t+1)} = \theta^*$ con probabilidad $\alpha(\theta, \theta^*)$.
- 5. En otro caso $\theta^{(t+1)} = \theta$