ELEKTRONIKA MIKROFALOWA

Temat projektu: Układ reflektometru u służącego do pomiaru współczynnika odbicia na badanym porcie.

1. Założenia projektowe i spis użytych elementów:

- Generator sygnału harmonicznego o częstotliwości wyjściowej 1 GHz, o mocy 0 dBm oraz impedancji wyjściowej 50 Ω
- Sprzęgacz kierunkowy BDCA1-6-22+ firmy MiniCircuits
- Detektor mocy typu ADL5513 x2 sztuki
- Zasilacz regulowany w zakresie od +3.3V do +5V
- Elementy L,C użyte w celu dopasowania układu miernika mocy.
- Linie transmisyjne o $\mathcal{E}_R = 4$

Schemat układu w niniejszej pracy znajduje się na ostatniej stronie

W trakcie realizacji projektu przyjęto założenie, że projekt jest realizowany na płytce drukowanej o względnej przenikalności dielektrycznej równej $\mathcal{E}_R = 4$.

Drugim założeniem projektowym było to, że wejścia detektorów mocy muszą być dołączone przez odcinki linii transmisyjnych o impedancji charakterystycznej 50 Ω i długości 10 mm.

Na tej podstawie został opracowany schemat aplikacyjny, którego celem było dopasowanie toru pomiarowego detektorów mocy do impedancji charakterystycznej – 50Ω .

2. Schemat aplikacyjny detektorów mocy ADL5513

W celu poprawnej aplikacji detektorów należy odczytać jego impedancje na zadanej częstotliwości (1 GHz), z parametrów macierzy S udostępnionych przez producenta.

Znając tę wartość należało zaprojektować układ dopasowujący, który zminimalizuje efekty odbicia sygnału od wejścia detektora.

Figure 22. Input Impedance vs. Frequency, No Termination Resistor on INHI, $Z_0 = 50 \Omega$

Odczytana impedancja wejściowa to(przed dołączeniem czujnika do linii transmisyjnej): $101,901-j282,244\,\Omega$

Opis procesu projektowania obwodu dopasowującego.

- 1. Dołączenie odcinka linii transmisyjnej do miernika mocy (założenie projektowe).
- Dołączenie elementów L,C w celu takiego przetransformowania impedancji, aby otrzymać punkt na wykresie Smith'a na okręgu jednostkowym stałej rezystancji. Dzięki temu otrzymana impedancja była równa (≈50 + Xj Ω). W następnym kroku skompensowano część reaktancyjną tej impedancji.
- 3. Poprzez dodanie szeregowej pojemności osiągnięto finalnie impedancje zastępczą układu dopasowującego i miernika równą impedancji charakterystycznej linii (50 + 0j Ω)

Schemat układu dopasowującego oraz opis kolejno otrzymywanych punktów na wykresie Smith'a.:

Start DP	Point	Z	Q	Frequency	
V	DP 1	(101.901 - j282.244) Ω	Q=2.770	1.004GHz	
	TP 2	(9.215 - j76.051) Ω	Q=8.253	1.004GHz	
	TP 3	(9.215 + j49.776) Ω	Q=5.402	1.004GHz	
	TP 4	(50.000 + j106.793) Ω	Q=2.136	1.004GHz	
	TP 5	(50.000 - j0.000) Ω	Q=0.000	1.004GHz	

DP1 – Punkt startowy.
Impedancja detektora na 1 GHz
TP2 – impedancja po dołączeniu
linii transmisyjnej
TP3- impedancja po dołączeniu
szeregowej indukcyjnosci
TP4- impedancja po dołączeniu
równoległej pojemności
TP5- impedancja po dołączeniu
szeregowej pojemności

3. Schemat elektryczny i parametry sprzęgacza

Temperatura 25°C

<u>F</u>	Straty linii		Sprzę	żenie	Kierun	kowość	<u>RETURN LOSS</u>			
[GHz]	głównej "IL"		<u>"C"</u>		"D"		<u>"RL"</u>			
	[dB]		[d	<u> B]</u>	[dB]		[dB]			
	IN-	FWD-	IN-	OUT-	IN-	OUT-	IN	OUT	FWD	REV
1	OUT	REV	FWD	REV	REV	FWD				
	1.21	1.20	7.48	7.48	21.61	21.81	23.17	23.12	25.24	25.34

Electrical Schematic

* ELECTRICAL SCHEMATIC IS FOR BI-DIRECTIONAL COUPLER WITHOUT INTERNAL TRANSFORMERS AND RESISTORS.

Sprzęgacz jest dwukierunkowy.
Należy to szczególnie uwzględnić w
przypadku rachunków mocy odbitej od
portu badanego w kierunku
reflektomeru.

4. Bilans mocy

4.1Dopasowanie wrót wyjściowych (opornik R=50 Ω na wyjściu – porcie pomiarowym).

Współczynnik odbicia - $\Gamma = \frac{50-50 \,\Omega}{50+50 \,\Omega} = 0$

kierunek rozchodzenia się fali: od generatora do reflektometru. Brak odbić od portu wyjściowego.

Izolacja: I[dB] = C + D = 7,48dB + 21,61dB = 29,09dB

Moc na wejściu sprzęgacza:

 $P_{IN} = P_G - P_{IL} - P_{RL_IN} = 1 mW - 24,38 \ dB = 1 mW - 3,648 \ uW \approx 0,9963 \ mW$

Moc na wyjściu sprzężonym: $P_{ADL5513~FRW}=0.9963 \,\mathrm{mW}-C_{\mathrm{IN_FWD}}[\mathrm{dB}]\approx -7.48 \,\mathrm{dBm}\approx 0.178 \,\mathrm{mW}$

Moc na wyjściu izolowany: $P_{ADL5513_REV} = 0.9987 mW - I[db] \approx -28,64 \text{ dBm} \approx 1,368 \text{ uW}$

Moc wyjściowa: $P_{out} = P_{IN} - (P_{ADL5513_{EDW}} + P_{ADL5513_{REV}}) = 0.816 \text{ mW}$

4.2 Niedopasowanie wrót wyjściowych (idealne zwarcie na wyjściu – porcie pomiarowym)

Współczynnik odbicia -
$$\Gamma = \frac{0-50 \,\Omega}{0+50 \,\Omega} = -1$$
, cała moc wyjściowa z punktu poprzedniego

odbije się w przeciw fazie w kierunku reflektometru .

* W sytuacji odbicia się fali w kierunku reflektometru wejście sprzężone i izolowane "zamienią się miejscami" ze względu na dwukierunkowość sprzęgacza. Do wyników z poprzedniego punktu należy dodać odczyty spowodowane propagacją fali od portu wyjściowego w kierunku do reflektometru.

^{*}moc: generatora – P_G, na porcie wyjściowym - P_{OUT},

```
\begin{split} & \text{I[dB]= C+D=7,48dB+21,81 dB=29,29 dB} \\ & \text{Moc propagująca się w kierunku reflektometru.} \\ & P_{OUT}{}' = P_{OUT} - P_{IL} - P_{RL\_OUT} = 0,9963~mW - 24,32~dB = 0,816~mW - 3,01~uW = 0,8129~mW \end{split}
```

Składowe "odbiciowe"

$$\begin{split} P_{ADL5513_FRW_ODBICIE} &= -I[db] = -29,29dB = 0,96uW & //\text{dB względem } P_{OUT}' \\ P_{ADL5513_REV_ODBICIE} &= -C_{OUT_{REV}}[dB] = -7,48 \ dB = 145 \ uW & //\text{dB względem } P_{OUT}' \end{split}$$

Ostateczny wynik:

$$P_{ADL5513_FRW}' = P_{ADL5513_FRW} + P_{ADL5513_FRW_ODBICIE} = 178 \text{ uW} + 0.96 uW = 178.96 uW$$

$$P_{ADL5513_{REV}}{}' = P_{ADL5513_{REV}} + P_{ADL5513_{REV_ODBICIE}} = 1{,}368~\text{uW} + 145~uW = 146{,}368~\text{uW}$$

5.Schemat gotowego układu.

