Three types of pipe flow problems (1)

- 1. Head loss problem
 - $\bullet \;$ Given $L, \; D \; Q$ (or V), and pipe roughness ε
 - Compute f, h_f , Δp , etc.
- 2. Flow rate problem
 - ullet Given L, D, h_L and arepsilon
 - Compute V, (or Q)
 - Requires iteration
- 3. Pipe sizing problem
 - ullet Given L, Q (or V), and h_L
 - ullet Compute D required to provide the desired flow

Basic Head Loss Problem

Given L, D, Q (or V), and pipe roughness ε

- 1. Look up fluid properties ρ , μ
- 2. Compute Re_D to determine whether the flow is laminar or turbulent
- 3. If turbulent, look up ε for the pipe material
- 4. Use the Colebrook equation or the Moody chart to find f
- 5. Use the Darcy-Weisbach equation to compute $h_{\it L}$
- 6. Use the steady-flow energy equation to find other terms, e.g. pressure drop

Basic Pipe Sizing Problem

Given L, Q (or V), h_L and ε compute D for a round pipe

- 1. Solve energy equation for $h_{\it L}$
- 2. Guess D
- 3. Compute ε/D , Re_D
- 4. Find f (Colebrook equation or Moody chart)
- 5. Solve for D by combining Darcy-Weisbach equation and energy equation

$$h_L = f \frac{L}{D} \frac{V^2}{2g} = f \frac{L}{D} \frac{1}{2g} \frac{Q^2}{(\pi/4)^2 D^4} = f \frac{8LQ^2}{\pi^2 g} \frac{1}{D^5} \Longrightarrow D = \left[\frac{8LQ^2 f}{\pi^2 g h_L} \right]^{1/5}$$

6. If $D_{\rm new} pprox D_{\rm old}$, stop, otherwise return to step 3

Note: Choose next larger standard pipe size

Basic Flow Rate Problem

Given L, D, h_L and ε

- 1. Solve the energy equation for h_L
- 2. Guess f: use the "wholly turbulent" range to find f for the known value of ε/D .
- 3. Solve for V with the Darcy-Weisbach equation

$$h_f = f \frac{L}{D} \frac{V^2}{2g} \implies V = \sqrt{\frac{2gh_f D}{fL}}$$

- 4. Compute Re_D
- 5. With new Re_D , use the Colebrook equation or the Moody chart to find f
- 6. If $f\mathrm{new} pprox f_\mathrm{old}$ stop, otherwise return to step 3