#linear_algebra

The difference between a matrix equation $A\mathbf{x} = \mathbf{b}$ and the associated vector equation $x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$ is merely a matter of notation. However, a matrix equation $A\mathbf{x} = \mathbf{b}$ can arise in linear algebra (and in applications such as computer graphics and signal processing) in a way that is not directly connected with linear combinations of vectors. This happens when we think of the matrix A as an object that "acts" on a vector \mathbf{x} by multiplication to produce a new vector called $A\mathbf{x}$.

For instance, the equations

$$\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

say that multiplication by A transforms \mathbf{x} into \mathbf{b} and transforms \mathbf{u} into the zero vector. See Fig. 1.

FIGURE 1 Transforming vectors via matrix multiplication.

From this new point of view, solving the equation $A\mathbf{x} = \mathbf{b}$ amounts to finding all vectors \mathbf{x} in \mathbb{R}^4 that are transformed into the vector \mathbf{b} in \mathbb{R}^2 under the "action" of multiplication by A.

The correspondence from \mathbf{x} to $A\mathbf{x}$ is a *function* from one set of vectors to another. This concept generalizes the common notion of a function as a rule that transforms one real number into another.

A **transformation** (or **function** or **mapping**) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . The set \mathbb{R}^n is called the **domain** of T, and \mathbb{R}^m is called the **codomain** of T. The notation $T: \mathbb{R}^n \to \mathbb{R}^m$ indicates that the domain of T is \mathbb{R}^n and the codomain is \mathbb{R}^m . For \mathbf{x} in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the **image** of \mathbf{x} (under the action of T). The set of all images $T(\mathbf{x})$ is called the **range** of T. See Fig. 2.

FIGURE 2 Domain, codomain, and range of $T: \mathbb{R}^n \to \mathbb{R}^m$.

Matrix transformation

The rest of this section focuses on mappings associated with matrix multiplication. For each \mathbf{x} in \mathbb{R}^n , $T(\mathbf{x})$ is computed as $A\mathbf{x}$, where A is an $m \times n$ matrix. For simplicity, we sometimes denote such a *matrix transformation* by $\mathbf{x} \mapsto A\mathbf{x}$. Observe that the domain of T is \mathbb{R}^n when A has n columns and the codomain of T is \mathbb{R}^m when each column of A has M entries. The range of T is the set of all linear combinations of the columns of A, because each image $T(\mathbf{x})$ is of the form $A\mathbf{x}$.

EXAMPLE 2 If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ projects

points in \mathbb{R}^3 onto the x_1x_2 -plane because

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

See Fig. 3.

FIGURE 3

A projection transformation.

EXAMPLE 3 Let $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

 $T(\mathbf{x}) = A\mathbf{x}$ is called a **shear transformation**. It can be shown that if T acts on each point in the 2×2 square shown in Fig. 4, then the set of images forms the shaded parallelogram. The key idea is to show that T maps line segments onto line segments (as shown in Exercise 27) and then to check that the corners of the square map onto $\begin{bmatrix} 0 \end{bmatrix}$

the vertices of the parallelogram. For instance, the image of the point $\mathbf{u} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ is

$$T(\mathbf{u}) = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}, \text{ and the image of } \begin{bmatrix} 2 \\ 2 \end{bmatrix} \text{ is } \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \end{bmatrix}. T$$

deforms the square as if the top of the square were pushed to the right while the base is held fixed. Shear transformations appear in physics, geology, and crystallography.

FIGURE 4 A shear transformation.

Linear transformations

A transformation (or mapping) T is **linear** if:

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in the domain of T;
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

If T is a linear transformation, then

$$T(\mathbf{0}) = \mathbf{0} \tag{3}$$

and

$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v}) \tag{4}$$

for all vectors \mathbf{u} , \mathbf{v} in the domain of T and all scalars c, d.

Property (3) follows from condition (ii) in the definition, because $T(\mathbf{0}) = T(0\mathbf{u}) = 0$ $T(\mathbf{u}) = \mathbf{0}$. Property (4) requires both (i) and (ii):

$$T(c\mathbf{u} + d\mathbf{v}) = T(c\mathbf{u}) + T(d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$

Observe that if a transformation satisfies (4) for all \mathbf{u} , \mathbf{v} and c, d, it must be linear. (Set c = d = 1 for preservation of addition, and set d = 0 for preservation of scalar multiplication.) Repeated application of (4) produces a useful generalization:

$$T(c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p) = c_1T(\mathbf{v}_1) + \dots + c_pT(\mathbf{v}_p)$$
(5)

In engineering and physics, (5) is referred to as a *superposition principle*. Think of $\mathbf{v}_1, \dots, \mathbf{v}_p$ as signals that go into a system and $T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)$ as the responses of that system to the signals. The system satisfies the superposition principle if whenever an input is expressed as a linear combination of such signals, the system's response is *the same* linear combination of the responses to the individual signals. We will return to this idea in Chapter 4.

EXAMPLE 4 Given a scalar r, define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = r\mathbf{x}$. T is called a **contraction** when $0 \le r \le 1$ and a **dilation** when r > 1. Let r = 3, and show that T is a linear transformation.

SOLUTION Let \mathbf{u}, \mathbf{v} be in \mathbb{R}^2 and let c, d be scalars. Then

$$T(c\mathbf{u} + d\mathbf{v}) = 3(c\mathbf{u} + d\mathbf{v})$$
 Definition of T

$$= 3c\mathbf{u} + 3d\mathbf{v}$$

$$= c(3\mathbf{u}) + d(3\mathbf{v})$$
 Vector arithmetic
$$= cT(\mathbf{u}) + dT(\mathbf{v})$$

Thus T is a linear transformation because it satisfies (4). See Fig. 5.

FIGURE 5 A dilation transformation.