

Архитектура компьютера и операционные системы

Лекция 6. Помехоустойчивое кодирование

Андреева Евгения Михайловна доцент кафедры информатики и вычислительного эксперимента

План лекции

- Помехоустойчивое кодирование (ЕСС)
 - бит четности
 - код троекратного повторения
 - (7, 4) код Хэмминга
- Домашнее задание

Подсистема ввода-вывода

Центральный процессор

Откуда берутся ошибки?

- Всплеск напряжения (при записи-чтении, память, диск)
- Физические повреждения (жесткие и оптические диски, шины)
- Ошибки приема/передачи данных (сети)

•

Что делать с ошибками?

- обнаружение ошибок и автоматический запрос повторной передачи (на канальном и транспортном уровнях);
- обнаружение ошибок и отбрасывание повреждённых блоков (в системах потокового мультимедиа);
- обнаружение и исправление ошибок (применяется на физическом уровне).

Код коррекции/контроля ошибок

ECC (error-correcting/controlling code, код коррекции/контроля ошибок):

- сообщения длины К и кодовые слова длины N, N>K,
 (N, K)-код
- метрика Хэмминга (1950)
- простейший код контроля ошибок
 - код проверки четности
- простейший код исправления ошибки
 - код троекратного повторения

Кодовое слово

- Последовательность из N бит, содержащую K бит данных и R контрольных разрядов называют кодовым словом.
- Предположим, что слово состоит из К бит данных, к которым мы дополнительно прибавляем R бит (контрольных разрядов). Общая длина кодового слова составит N бит (N = K + R).
- Пример. Бит четности.
 - исходное слово 01011101 (K=8)
 - контрольный разряд 1 (R=1)
 - кодовое слово 010111011 (N=9)

Кодовое пространство

- **Кодовое пространство** совокупность всех кодовых слов (векторов) которые используются в данной системе кодирования. Максимальное количество кодовых векторов для двоичной системы в N-разрядном кодовом пространстве 2^N.
- **Расстояние по Хэммингу** (метрика Хэмминга) число позиций, в которых два кодовых вектора отличаются друг от друга (для 0110 и 0011 расстояние по Хеммингу = 2).
- Минимальное кодовое расстояние d наименьшее кодовое расстояние, взятое по всем допустимым кодовым комбинациям в данной системе кодирования.

Пример. Бит четности

- N=3, K=2, R=1
- Допустимые кодовые слова
 - -000
 - -011
 - **-** 10 1
 - **-** 11 0
- **d**=2

- Обнаруживает, но не исправляет ошибки
- 2^к количество разрешенных к передаче кодов (разрешенные кодовые комбинации)
- R/N избыточность кода, здесь 1/3

Код троекратного повторения

- N=3, K=1, R=2
- Допустимые кодовые слова
 - **-** 0 00
 - -111
- d=3
- Исправляет ошибку
- Избыточный, 2/3.

Обнаружение и исправление ошибок

- Пусть g количество ошибок
- Для обнаружения ошибок:

$$d \ge g+1$$

Для исправления ошибок:

$$d \ge 2 g + 1$$

- Пример:

 - d=5
 - для слова 0000000111, при g≤2 можем исправить ошибки, при g>2 можем только обнаружить

Число контрольных разрядов

- Общая длина кодового слова составит N бит (N = K + R). К бит данных. R бит контрольных разрядов.
- Нижний предел числа контрольных разрядов, необходимых для исправления одиночных ошибок выражается формулой K+R+1 ≤ 2^R

Размер исходно- го слова	Количество контроль- ных разрядов	Общий размер слова	Процент увеличе- ния слова	
8	4	12	50	
16	5	21	31	
32	6	38	19	
64	7	71	11	
128	8	136	6	
256	9	265	4	
512	10	522	2	

 $(N+1) 2^K \le 2^N$

(7, 4) - код Хэмминга

- Принцип тот же проверка на четность числа единичных битов: к последовательности добавляется такой элемент, чтобы число единичных символов в получившейся последовательности было четным.
- (7, 4) –код N=7, K=4, R=3

Основные характеристики

- Если расстояние Хэмминга для двух слов равно d, значит, достаточно d одноразрядных ошибок, чтобы превратить одно слово в другое.
- Кол-во контролируемых ошибок d-1.
- Кол-во исправляемых ошибок (d-1)/2, округленное с недостатком

(7, 4) - код Хэмминга

$$r_1 = d_1 + d_2 + d_4$$

 $r_2 = d_1 + d_3 + d_4$
 $r_3 = d_2 + d_3 + d_4$

- Кодовое слово $c=(r_1, r_2, d_1, r_3, d_2, d_3, d_4)$.
- В позиции, соответствующие степеням 2 надо вписать контрольные разряды, позиции слева-направо.
- Семейство кодов Хэмминга (2^R-1, 2^R-R-1).

(7, 4) - код Хэмминга

Пусть исходное слово (d_1, d_2, d_3, d_4) . Контрольные разряды вычисляются по формулам:

$$r_1 = d_1 + d_2 + d_4$$

 $r_2 = d_1 + d_3 + d_4$
 $r_3 = d_2 + d_3 + d_4$

Кодовое слово $c=(r_1, r_2, d_1, r_3, d_2, d_3, d_4)$ номера позиций 1 2 3 4 5 6 7

- Тогда кодовое слово будет иметь вид $c = (d_1 + d_2 + d_4, d_1 + d_3 + d_4, d_1, d_2 + d_3 + d_4, d_2, d_3, d_4).$
- Минимальное кодовое расстояние d=3

Проверочная матрица Н

	r_1	r_2	d_{I}	r_3	d_2	d_3	d_4
r_I	1	0	1	0	1	0	1
r_2	0	1	1	0	0	1	1
r_3	0	0	0	1	1	1	1

Пусть v – принятое по каналу слово, которое отличается от кодового слова с (7, 4) – кода Хэмминга не более, чем в одной позиции, тогда вектор s (синдром): s=Hv дает двоичную запись номера этой позиции. Если s=0, то v=c.

$$(d_1, d_2, d_3, d_4)$$
 $r_1 = d_1 + d_2 + d_4$
 $r_2 = d_1 + d_3 + d_4$
 $r_3 = d_2 + d_3 + d_4$

Пример

	r_1	r_2	d_{I}	r_3	d_2	d_3	d_4
r_I	1	0	1	0	1	0	1
r_2	0	1	1	0	0	1	1
<i>r</i> ₃	0	0	0	1	1	1	1

• v=(0111100)

1010101

$$s = Hv = 0110011 \times 0111100^{T} = 000^{T}$$
 0001111

- Пусть $v_1 = (0101100)$, тогда $s_1 = 110$
- Пусть v_2 =(0110100), тогда s_2 = 001

Домашнее задание

- Для закрепления лекций читать [Таненбаум Э] стр. 98-168, 239-259
- Подготовка к тестированию по материалам лекций 5 и 6
- Для лабораторных занятий
 Приложение В из [Таненбаум Э] стр. 784-789
- Подготовка к лабораторной 5.