Proving Inequalities in a Triangle

Jonathan R. Bacolod

Sauyo High School

Angle Addition Postulate

Definition of Angle Bisector

If \overrightarrow{OY} bisects $\angle XOZ$, then $\angle XOY \cong \angle YOZ$.

Angle-Side Relationship theorem

In a triangle, the side opposite the larger angle is the longer side.

Base Angles theorem

Definition of Betweenness

If Y is between \overline{XZ} , then $m\overline{XZ} = m\overline{XY} + m\overline{YZ}$.

Corresponding Parts of Congruent Triangles are Congruent (CPCTC)

If $\triangle ABC \cong \triangle CDA$, then all the corresponding sides and angles of the triangles are congruent.

If M is the midpoint of \overline{BA} , then $\overline{BM} \cong \overline{MA}$.

Vertical Angles theorem

If $\angle 1$ and $\angle 3$ are vertical angles, then $\angle 1 \cong \angle 3$.

The whole is greater than its parts.

 $m\angle BAD > m\angle BAC$ and $m\angle BAD > m\angle CAD$.

Given: \underline{M} is the midpoint of \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Given: \underline{M} is the \underline{m} idpoint of

 \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Statements	Reasons
------------	---------

Given: \underline{M} is the \underline{m} idpoint of

 \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Statements	Reasons
1. M is the midpoint of \overline{AC} and \overline{BE}	1. Given

Given: \underline{M} is the \underline{m} idpoint of

 \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Statements	Reasons
1. M is the midpoint of \overline{AC} and \overline{BE}	1. Given
$2. \overline{AM} \cong \overline{CM}, \overline{BM} \cong \overline{EM}$	2. Definition of Midpoint

Given: \underline{M} is the \underline{m} idpoint of

 \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Statements	Reasons
1. M is the midpoint of \overline{AC} and \overline{BE}	1. Given
$2. \overline{AM} \cong \overline{CM}, \overline{BM} \cong \overline{EM}$	2. Definition of Midpoint
3. ∠AMB≅∠CME	3. Vertical Angles theorem

Given: \underline{M} is the \underline{m} idpoint of

 \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Statements	Reasons
1. M is the midpoint of \overline{AC} and \overline{BE}	1. Given
2. $\overline{AM} \cong \overline{CM}, \overline{BM} \cong \overline{EM}$	2. Definition of Midpoint
3. ∠AMB≅∠CME	3. Vertical Angles theorem
$4. \triangle AMB \cong \triangle CME$	4. SAS Triangle
4. ANIVID = ACIVIE	Congruence Postulate

Given: \underline{M} is the \underline{m} idpoint of

 \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Statements	Reasons
1. M is the midpoint of \overline{AC} and \overline{BE}	1. Given
2. $\overline{AM} \cong \overline{CM}, \overline{BM} \cong \overline{EM}$	2. Definition of Midpoint
3. ∠AMB≅∠CME	3. Vertical Angles theorem
$4. \triangle AMB \cong \triangle CME$	4. SAS Triangle
$4. \ \triangle \triangle \text{NVID} = \triangle \text{CIVIL}$	Congruence Postulate
5. ∠A ≅ ∠ <i>ECM</i>	5. CPCTC

Given: \underline{M} is the \underline{m} idpoint of

 \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Statements	Reasons
1. M is the midpoint of \overline{AC} and \overline{BE}	1. Given
2. $\overline{AM} \cong \overline{CM}, \overline{BM} \cong \overline{EM}$	2. Definition of Midpoint
3. ∠ <i>AMB</i> ≅ ∠ <i>CME</i>	3. Vertical Angles theorem
$4. \ \triangle AMB \cong \triangle CME$	4. SAS Triangle
	Congruence Postulate
5. ∠A ≅ ∠ <i>ECM</i>	5. CPCTC
6. <i>m</i> ∠ <i>A</i> = <i>m</i> ∠ <i>ECM</i>	6. Definition of \cong Angles

Given: \underline{M} is the midpoint of

 \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Statements	Reasons
1. M is the midpoint of \overline{AC} and \overline{BE}	1. Given
2. $\overline{AM} \cong \overline{CM}, \overline{BM} \cong \overline{EM}$	2. Definition of Midpoint
3. ∠AMB ≅ ∠CME	3. Vertical Angles theorem
$4. \triangle AMB \cong \triangle CME$	4. SAS Triangle
	Congruence Postulate
5. ∠A ≅ ∠ <i>ECM</i>	5. CPCTC
6. m∠A = m∠ECM	6. Definition of \cong Angles
7. $m\angle ACD = m\angle ECD + m\angle ECM$	7. Angle Addition Postulate

Given: \underline{M} is the midpoint of

 \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Statements	Reasons
1. M is the midpoint of \overline{AC} and \overline{BE}	1. Given
2. $\overline{AM} \cong \overline{CM}, \overline{BM} \cong \overline{EM}$	2. Definition of Midpoint
3. ∠AMB ≅ ∠CME	3. Vertical Angles theorem
$4. \triangle AMB \cong \triangle CME$	4. SAS Triangle
	Congruence Postulate
5. ∠A ≅ ∠ <i>ECM</i>	5. CPCTC
6. <i>m</i> ∠ <i>A</i> = <i>m</i> ∠ <i>ECM</i>	6. Definition of \cong Angles
7. $m\angle ACD = m\angle ECD + m\angle ECM$	7. Angle Addition Postulate
8. $m\angle ACD = m\angle ECD + m\angle A$	8. Substitution Property

Given: \underline{M} is the \underline{m} idpoint of

 \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Statements	Reasons
1. M is the midpoint of \overline{AC} and \overline{BE}	1. Given
2. $\overline{AM} \cong \overline{CM}, \overline{BM} \cong \overline{EM}$	2. Definition of Midpoint
3. ∠ <i>AMB</i> ≅ ∠ <i>CME</i>	3. Vertical Angles theorem
$4. \ \triangle AMB \cong \triangle CME$	4. SAS Triangle
	Congruence Postulate
5. ∠A ≅ ∠ <i>ECM</i>	5. CPCTC
6. m∠A = m∠ECM	6. Definition of \cong Angles
7. $m\angle ACD = m\angle ECD + m\angle ECM$	7. Angle Addition Postulate
8. $m\angle ACD = m\angle ECD + m\angle A$	8. Substitution Property
9. m/ACD > m/A	9. The whole is greater
7. IIIZAOD / IIIZA	than its parts.

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Statements	Reasons
$ \begin{array}{c} 1. \overline{AB} \cong \overline{BC}, B \text{ is the midpoint of} \\ \overline{CD} \text{ and } \overline{BE} \end{array} $	1. Given

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Statements	Reasons
$ \begin{array}{c} 1. \ \overline{AB} \cong \overline{BC}, B \text{ is the midpoint of} \\ \overline{CD} \text{ and } \overline{BE} \end{array} $	1. Given
$2. \ \overline{BC} \cong \overline{DB}$	2. Definition of Midpoint

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Statements	Reasons
1. $\overline{AB} \cong \overline{BC}$, B is the midpoint of \overline{CD} and \overline{BE}	1. Given
2. $\overline{BC} \cong \overline{DB}$	2. Definition of Midpoint
3. $\overline{AB} \cong \overline{DB}$	3. Transitive Property

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Statements	Reasons
1. $\overline{AB} \cong \overline{BC}$, B is the midpoint of \overline{CD} and \overline{BE}	1. Given
$\overline{2. \ \overline{BC} \cong \overline{DB}}$	2. Definition of Midpoint
3. $\overline{AB} \cong \overline{DB}$	3. Transitive Property
4. ∠D ≅ ∠DAB	4. Base Angles Theorem

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Statements	Reasons
1. $\overline{AB} \cong \overline{BC}$, B is the midpoint of \overline{CD} and \overline{BE}	1. Given
2. $\overline{BC} \cong \overline{DB}$	2. Definition of Midpoint
3. $\overline{AB} \cong \overline{DB}$	3. Transitive Property
4. ∠D ≅ ∠DAB	4. Base Angles Theorem
5. $m\angle DAC = m\angle DAB + m\angle BAC$	5. Angle Addition Postulate

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Statements	Reasons
1. $\overline{AB} \cong \overline{BC}$, B is the midpoint of	1. Given
\overline{CD} and \overline{BE}	
2. $\overline{BC} \cong \overline{DB}$	2. Definition of Midpoint
$\overline{3. \overline{AB} \cong \overline{DB}}$	3. Transitive Property
4. ∠D ≅ ∠DAB	4. Base Angles Theorem
5. $m\angle DAC = m\angle DAB + m\angle BAC$	5. Angle Addition Postulate
6. $m\angle DAC = m\angle D + m\angle BAC$	6. Substitution Property

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Statements	Reasons
1. $\overline{AB} \cong \overline{BC}$, B is the midpoint of	1. Given
\overline{CD} and \overline{BE}	
2. $\overline{BC} \cong \overline{DB}$	2. Definition of Midpoint
$\overline{3. \overline{AB} \cong \overline{DB}}$	3. Transitive Property
4. ∠D ≅ ∠DAB	4. Base Angles Theorem
5. $m\angle DAC = m\angle DAB + m\angle BAC$	5. Angle Addition Postulate
6. $m\angle DAC = m\angle D + m\angle BAC$	6. Substitution Property
7. $m\angle DAC > m\angle D$	7. The whole > its parts.

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Statements	Reasons
1. $\overline{AB} \cong \overline{BC}$, B is the midpoint of	1. Given
\overline{CD} and \overline{BE}	1. 010011
2. $\overline{BC} \cong \overline{DB}$	2. Definition of Midpoint
3. $\overline{AB} \cong \overline{DB}$	3. Transitive Property
4. ∠D ≅ ∠DAB	4. Base Angles Theorem
5. $m\angle DAC = m\angle DAB + m\angle BAC$	5. Angle Addition Postulate
6. $m\angle DAC = m\angle D + m\angle BAC$	6. Substitution Property
7. $m\angle DAC > m\angle D$	7. The whole > its parts.
8. $m\overline{DC} > m\overline{AC}$	8. Angle-Side Relationship
0. HIDC > HAC	theorem

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Statements	Reasons
1. $\overline{AB} \cong \overline{BC}$, B is the midpoint of	1. Given
\overline{CD} and \overline{BE}	1. Giveri
2. $\overline{BC} \cong \overline{DB}$	2. Definition of Midpoint
3. $\overline{AB} \cong \overline{DB}$	3. Transitive Property
4. ∠D ≅ ∠DAB	4. Base Angles Theorem
5. $m\angle DAC = m\angle DAB + m\angle BAC$	5. Angle Addition Postulate
6. $m\angle DAC = m\angle D + m\angle BAC$	6. Substitution Property
7. <i>m∠DAC</i> > <i>m</i> ∠ <i>D</i>	7. The whole > its parts.
8. $m\overline{DC} > m\overline{AC}$	8. Angle-Side Relationship
	theorem
9. $m\overline{DC} = m\overline{DB} + m\overline{BC}$	9. Def. of Betweenness

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Statements	Reasons
$ \begin{array}{c} 1. \ \overline{AB} \cong \overline{BC}, B \text{ is the midpoint of} \\ \overline{CD} \text{ and } \overline{BE} \end{array} $	1. Given
2. $\overline{BC} \cong \overline{DB}$	2. Definition of Midpoint
3. $\overline{AB} \cong \overline{DB}$	3. Transitive Property
4. ∠ <i>D</i> ≅ ∠ <i>DAB</i>	4. Base Angles Theorem
5. $m\angle DAC = m\angle DAB + m\angle BAC$	5. Angle Addition Postulate
6. $m\angle DAC = m\angle D + m\angle BAC$	6. Substitution Property
7. <i>m∠DAC</i> > <i>m∠D</i>	7. The whole > its parts.
8. $m\overline{DC} > m\overline{AC}$	8. Angle-Side Relationship theorem
9. $m\overline{DC} = m\overline{DB} + m\overline{BC}$	9. Def. of Betweenness
$10. \ m\overline{DC} = m\overline{AB} + m\overline{BC}$	10. Substitution Property

Given: \underline{B} is the midpoint of \overline{CD}

 $\overline{AB} \cong \overline{BC}$

Prove: $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Statements	Reasons
1. $\overline{AB} \cong \overline{BC}$, B is the midpoint of	1. Given
CD and BE	
2. $BC \cong \overline{DB}$	2. Definition of Midpoint
3. $\overline{AB} \cong \overline{DB}$	3. Transitive Property
4. ∠ <i>D</i> ≅ ∠ <i>DAB</i>	4. Base Angles Theorem
5. $m\angle DAC = m\angle DAB + m\angle BAC$	5. Angle Addition Postulate
6. $m\angle DAC = m\angle D + m\angle BAC$	6. Substitution Property
7. <i>m∠DAC</i> > <i>m</i> ∠ <i>D</i>	7. The whole > its parts.
8. $m\overline{DC} > m\overline{AC}$	8. Angle-Side Relationship
0. IIIDC > IIIAC	theorem
9. $m\overline{DC} = m\overline{DB} + m\overline{BC}$	9. Def. of Betweenness
$10. \ m\overline{DC} = m\overline{AB} + m\overline{BC}$	10. Substitution Property
11. $m\overline{AB} + m\overline{BC} > m\overline{AC}$	11. Substitution Property

Hinge Theorem

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$

 $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Hinge Theorem

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
------------	---------

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1. Given

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1. Given
2. $\overline{AG} \cong \overline{DE}, \overline{GC} \cong \overline{EF}$	2. CPCTC

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1. Given
2. $\overline{AG} \cong \overline{DE}, \overline{GC} \cong \overline{EF}$	2. CPCTC
3. ∠ <i>BAM</i> ≅ ∠ <i>GAM</i>	3. Def. of Angle Bisector

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1. Given
2. $\overline{AG} \cong \overline{DE}, \overline{GC} \cong \overline{EF}$	2. CPCTC
3. ∠ <i>BAM</i> ≅ ∠ <i>GAM</i>	3. Def. of Angle Bisector
4. $\overline{AM} \cong \overline{AM}$	4. Reflexive Property

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1. Given
2. $\overline{AG} \cong \overline{DE}, \overline{GC} \cong \overline{EF}$	2. CPCTC
3. ∠ <i>BAM</i> ≅ ∠ <i>GAM</i>	3. Def. of Angle Bisector
$\overline{AM} \cong \overline{AM}$	4. Reflexive Property
5. $\triangle BAM \cong \triangle GAM$	5. SAS Postulate

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1. Given
2. $\overline{AG} \cong \overline{DE}, \overline{GC} \cong \overline{EF}$	2. CPCTC
3. ∠ <i>BAM</i> ≅ ∠ <i>GAM</i>	3. Def. of Angle Bisector
4. $\overline{AM} \cong \overline{AM}$	4. Reflexive Property
5. $\triangle BAM \cong \triangle GAM$	5. SAS Postulate
6. <i>BM</i> ≅ <i>GM</i>	6. CPCTC

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1. Given
2. $\overline{AG} \cong \overline{DE}, \overline{GC} \cong \overline{EF}$	2. CPCTC
3. ∠ <i>BAM</i> ≅ ∠ <i>GAM</i>	3. Def. of Angle Bisector
$\overline{AM} \cong \overline{AM}$	4. Reflexive Property
5. $\triangle BAM \cong \triangle GAM$	5. SAS Postulate
6. <u>BM</u> ≅ <u>GM</u>	6. CPCTC
7. $m\overline{CM} + m\overline{GM} > m\overline{GC}$	7. Triangle Inequality thm.

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1. Given
2. $\overline{AG} \cong \overline{DE}, \overline{GC} \cong \overline{EF}$	2. CPCTC
3. ∠ <i>BAM</i> ≅ ∠ <i>GAM</i>	3. Def. of Angle Bisector
4. $\overline{AM} \cong \overline{AM}$	4. Reflexive Property
5. $\triangle BAM \cong \triangle GAM$	5. SAS Postulate
6. <u>BM</u> ≅ <u>GM</u>	6. CPCTC
7. $\overline{mCM} + \overline{mGM} > \overline{mGC}$	7. Triangle Inequality thm.
8. $m\overline{CM} + m\overline{BM} > m\overline{GC}$	8. Substitution Property

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1. Given
2. $\overline{AG} \cong \overline{DE}, \overline{GC} \cong \overline{EF}$	2. CPCTC
3. ∠ <i>BAM</i> ≅ ∠ <i>GAM</i>	3. Def. of Angle Bisector
$\overline{A. \overline{AM}} \cong \overline{AM}$	4. Reflexive Property
5. $\triangle BAM \cong \triangle GAM$	5. SAS Postulate
6. <u>BM</u> ≅ <u>GM</u>	6. CPCTC
7. $\overline{mCM} + \overline{mGM} > \overline{mGC}$	7. Triangle Inequality thm.
8. $m\overline{CM} + m\overline{BM} > m\overline{GC}$	8. Substitution Property
9. $\overline{mBC} = \overline{mBM} + \overline{mCM}$	9. Def. of Betweenness

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1. Given
2. $\overline{AG} \cong \overline{DE}, \overline{GC} \cong \overline{EF}$	2. CPCTC
3. ∠ <i>BAM</i> ≅ ∠ <i>GAM</i>	3. Def. of Angle Bisector
4. $\overline{AM} \cong \overline{AM}$	4. Reflexive Property
5. $\triangle BAM \cong \triangle GAM$	5. SAS Postulate
6. <u>BM</u> ≅ <u>GM</u>	6. CPCTC
7. $\overline{mCM} + \overline{mGM} > \overline{mGC}$	7. Triangle Inequality thm.
8. $m\overline{CM} + m\overline{BM} > m\overline{GC}$	8. Substitution Property
9. $\overline{mBC} = \overline{mBM} + \overline{mCM}$	9. Def. of Betweenness
10. $\overline{mBC} > \overline{mGC}$	10. Substitution Property

Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: $m\overline{BC} > m\overline{EF}$

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1. Given
2. $\overline{AG} \cong \overline{DE}, \overline{GC} \cong \overline{EF}$	2. CPCTC
3. ∠BAM≅∠GAM	3. Def. of Angle Bisector
4. $\overline{AM} \cong \overline{AM}$	4. Reflexive Property
5. $\triangle BAM \cong \triangle GAM$	5. SAS Postulate
6. $\overline{BM} \cong \overline{GM}$	6. CPCTC
7. $\overline{mCM} + \overline{mGM} > \overline{mGC}$	7. Triangle Inequality thm.
8. $\overline{mCM} + \overline{mBM} > \overline{mGC}$	8. Substitution Property
9. $\overline{mBC} = \overline{mBM} + \overline{mCM}$	9. Def. of Betweenness
10. $m\overline{BC} > m\overline{GC}$	10. Substitution Property
11. mBC > mEF	11. Substitution Property

Thank you for attending the virtual class.