#### Theoretical Computer Science

Tutorial - week 5

February 18, 2021

nvoboriz

# Agenda

- ► Recap
- Pumping lemma
- Examples

▶ What is proposition?

- ▶ What is proposition?
- ▶ What is predicate?

- ▶ What is proposition?
- ▶ What is predicate?
- Quantifiers in predicate logic:

- ▶ What is proposition?
- ► What is predicate?
- ► Quantifiers in predicate logic:
  - ▶ ∃ existential quantifier, "there exists ..., for at least one..."

- ▶ What is proposition?
- ► What is predicate?
- Quantifiers in predicate logic:
  - ▶ ∃ existential quantifier, "there exists ..., for at least one..."
  - ightharpoonup

- ► What is proposition?
- What is predicate?
- Quantifiers in predicate logic:
  - ▶ ∃ existential quantifier, "there exists ..., for at least one..."
  - ightharpoonup universal quantifier, "any ..., for all ..."

- ▶ What is proposition?
- What is predicate?
- Quantifiers in predicate logic:
  - ▶ ∃ existential quantifier, "there exists ..., for at least one..."
  - ▶ ∀ universal quantifier, "any ..., for all ..."
- What is Pumping lemma for regular languages?

- ▶ What is proposition?
- What is predicate?
- Quantifiers in predicate logic:
  - ▶ ∃ existential quantifier, "there exists ..., for at least one..."
  - ▶ ∀ universal quantifier, "any ..., for all ..."
- What is Pumping lemma for regular languages?
  - Can we use this theorem to prove that a language is regular?

- ▶ What is proposition?
- What is predicate?
- Quantifiers in predicate logic:
  - ▶ ∃ existential quantifier, "there exists ..., for at least one..."
  - ▶ ∀ universal quantifier, "any ..., for all ..."
- What is Pumping lemma for regular languages?
  - Can we use this theorem to prove that a language is regular?
  - Can we use this theorem to prove that a language is not regular?

- ▶ What is proposition?
- ► What is predicate?
- Quantifiers in predicate logic:
  - → ∃ existential quantifier, "there exists ..., for at least one..."
  - ▶ ∀ universal quantifier, "any ..., for all ..."
- What is Pumping lemma for regular languages?
  - Can we use this theorem to prove that a language is regular?
  - ► Can we use this theorem to prove that a language is not regular? How?

# Pumping lemma

Let  $L\subseteq \Sigma^*$  be a regular language. Then there exists  $m\geq 1$  such that, for any  $w\in L$  where  $\mid w\mid\geq m$ , there exist  $x,y,z\in \Sigma^*$  with  $\mid y\mid\geq 1$  and  $\mid xy\mid\leq m$  such that w=xyz and, for any  $i\geq 0$ , we have  $xy^iz\in L$ .

# Pumping lemma: formally

```
\forall L \subseteq \Sigma^* \bullet regular(L) \Longrightarrow (\exists m \in \mathbb{N} \bullet m \ge 1 \land (\forall w \in L \bullet \mid w \mid \ge m \Longrightarrow (\exists x, y, z \in \Sigma^* \bullet w = xyz \land \mid y \mid \ge 1 \land \mid xy \mid \le m \land (\forall i \ge 0 \bullet xy^i z \in L))))
```

# Pumping lemma: intuition

# Pumping lemma: intuition :-)

# Da Pumpin' Lemma

(Orig. lyrics: Harry Mairson)



Hear it on my new album: Dig dat funky DFA

Any regular language L has a magic numba pAnd any long-enuff word s in L has da followin' propa'ty: Amongst its first p symbols is a segment you can find Whoz repetition or omission leaves s amongst its kind.

So if ya find a language L which fails dis acid test, And some long word ya pump becomes distinct from all da rest, By contradiction you have shown dat language L is not A regular homie, resilient to the damage you've caused.

# Pumping lemma: intuition<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>A tool JFLAP is used

► Can we use this theorem to prove that a set is regular?

No, because it gives only a necessary condition for a language to be regular (and not a sufficient condition).

- No, because it gives only a necessary condition for a language to be regular (and not a sufficient condition).
- ▶ We can use it to prove that a language is not regular. How?

We can use it to prove that a language is not regular. How?

Proof by contrapositive

$$R \implies P$$

$$\neg P \implies \neg R$$

# Pumping lemma: formally

```
\forall L \subseteq \Sigma^* \bullet regular(L) \Longrightarrow (\exists m \in \mathbb{N} \bullet m \ge 1 \land (\forall w \in L \bullet \mid w \mid \ge m \Longrightarrow (\exists x, y, z \in \Sigma^* \bullet w = xyz \land (\mid y \mid \ge 1 \land \mid xy \mid \le m \land (\forall i \ge 0 \bullet xy^i z \in L))))
```

Let's consider language  $L_1$ 

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is  $L_1$  a regular language?

```
Let's consider language L_1
L_1 = \{a^nb^m \mid n \leq m\}
Is L_1 a regular language?

regular(L_1) \implies \\ (\exists m \in \mathbb{N} \bullet m \geq 1 \land \\ (\forall w \in L_1 \bullet \mid w \mid \geq m \implies \\ (\exists x, y, z \in \Sigma^* \bullet w = xyz \land \mid y \mid \geq 1 \land \mid xy \mid \leq m \land \\ (\forall i > 0 \bullet xy^iz \in L_1))))
```

Let's consider language  $L_1$ 

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is  $L_1$  a regular language?

$$\neg(\exists m \in \mathbb{N} \bullet m \ge 1 \land \\ (\forall w \in L_1 \bullet \mid w \mid \ge m \implies \\ (\exists x, y, z \in \Sigma^* \bullet w = xyz \land \mid y \mid \ge 1 \land \mid xy \mid \le m \land \\ (\forall i \ge 0 \bullet xy^i z \in L_1)))) \implies \neg regular(L_1)$$

#### Negation

The negation of a universal quantifier:

 $\neg(\forall x \bullet P(x))$  is logically equivalent to  $\exists x \bullet \neg P(x)$ 

## Negation

The negation of a universal quantifier:

$$\neg(\forall x \bullet P(x))$$
 is logically equivalent to  $\exists x \bullet \neg P(x)$ 

The negation of a existential quantifier:

$$\neg(\exists x \bullet P(x))$$
 is logically equivalent to  $\forall x \bullet \neg P(x)$ 

## Negation

The negation of a universal quantifier:

$$\neg(\forall x \bullet P(x))$$
 is logically equivalent to  $\exists x \bullet \neg P(x)$ 

The negation of a existential quantifier:

$$\neg(\exists x \bullet P(x))$$
 is logically equivalent to  $\forall x \bullet \neg P(x)$ 

De Morgan's law:

$$\neg (P \land Q)$$
 is logically equivalent to  $\neg P \lor \neg Q$   
 $\neg (P \lor Q)$  is logically equivalent to  $\neg P \land \neg Q$ 

Let's consider language  $L_1$ 

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is  $L_1$  a regular language?

## Negation of an Implication

The negation of an implication is a conjunction:

$$\neg (P \implies Q)$$
 is logically equivalent to  $P \land \neg Q$ 

Let's consider language  $L_1$ 

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is  $L_1$  a regular language?

$$\begin{array}{l} (\forall m \in \mathbb{N} \bullet \neg (m \geq 1) \lor \\ (\exists w \in L_1 \bullet \mid w \mid \geq m \land \\ \neg (\exists x, y, z \in \Sigma^* \bullet w = xyz \land \mid y \mid \geq 1 \land \mid xy \mid \leq m \land \\ (\forall i \geq 0 \bullet xy^i z \in L_1)))) \implies \neg regular(L_1) \end{array}$$

Let's consider language  $L_1$ 

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is  $L_1$  a regular language?

$$\begin{array}{l} (\forall m \in \mathbb{N} \bullet \neg (m \geq 1) \lor \\ (\exists w \in L_1 \bullet \mid w \mid \geq m \land \\ (\forall x, y, z \in \Sigma^* \bullet \neg (w = xyz) \lor \neg (\mid y \mid \geq 1) \lor \neg (\mid xy \mid \leq m) \lor \\ \neg (\forall i \geq 0 \bullet xy^iz \in L_1)))) \implies \neg regular(L_1) \end{array}$$

Let's consider language  $L_1$ 

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is  $L_1$  a regular language?

$$\begin{array}{l} (\forall m \in \mathbb{N} \bullet \neg (m \geq 1) \lor \\ (\exists w \in L_1 \bullet \mid w \mid \geq m \land \\ (\forall x, y, z \in \Sigma^* \bullet \neg (w = xyz) \lor \neg (\mid y \mid \geq 1) \lor \neg (\mid xy \mid \leq m) \lor \\ (\exists i \geq 0 \bullet \neg (xy^iz \in L_1))))) \implies \neg regular(L_1) \end{array}$$

Let's consider language  $L_1$ 

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is  $L_1$  a regular language?

```
 \begin{array}{l} (\forall m \in \mathbb{N} \bullet m < 1 \lor \\ (\exists w \in L_1 \bullet \mid w \mid \geq m \land \\ (\forall x, y, z \in \Sigma^* \bullet (w \neq xyz) \lor (\mid y \mid < 1) \lor (\mid xy \mid > m) \lor \\ (\exists i \geq 0 \bullet xy^i z \notin L_1)))) \implies \neg regular(L_1) \end{array}
```

## Disjunction elimination

But before eliminating  $\neg$ , let us eliminate  $\lor$ 's

$$P \vee Q$$
 is logically equivalent to  $\neg P \implies Q$ 

Or, more generally:

$$Q_1 \vee \cdots \vee Q_{n-1} \vee Q_n$$

is logically equivalent to

$$\neg Q_1 \implies (\cdots \implies (\neg Q_{n-1} \implies Q_n) \ldots)$$

Let's consider language  $L_1$ 

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is  $L_1$  a regular language?

$$\begin{array}{l} (\forall m \in \mathbb{N} \bullet \neg \neg (m \geq 1) \implies \\ (\exists w \in L_1 \bullet \mid w \mid \geq m \land \\ (\forall x, y, z \in \Sigma^* \bullet \neg \neg (w = xyz) \implies \\ (\neg \neg (\mid y \mid \geq 1) \implies (\neg \neg (\mid xy \mid \leq m) \implies \\ (\exists i \geq 0 \bullet \neg (xy^iz \in L_1))))))) \implies \neg \textit{regular}(L_1) \end{array}$$

```
Let's consider language L_1
       L_1 = \{a^n b^m \mid n < m\}
Is L_1 a regular language?
Which is equivalent to ...
(\forall m \in \mathbb{N} \bullet m > 1 \implies
   (\exists w \in L_1 \bullet \mid w \mid \geq m \land
       (\forall x, y, z \in \Sigma^* \bullet w = xyz \implies
          (|y| > 1 \implies (|xy| \le m \implies
              (\exists i > 0 \bullet \neg (xy^i z \in L_1))))))) \implies \neg regular(L_1)
```

Let's consider language  $L_1$  $L_1 = \{a^n b^m \mid n < m\}$ Is  $L_1$  a regular language? Which is equivalent to ...  $(\forall m \in \mathbb{N} \bullet m > 1 \implies$  $(\exists w \in L_1 \bullet \mid w \mid \geq m \land$  $(\forall x, y, z \in \Sigma^* \bullet w = xyz \implies$  $(|y| > 1 \implies (|xy| < m \implies$  $(\exists i > 0 \bullet xy^i z \notin L_1)))))) \implies \neg regular(L_1)$ 

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is  $L_1$  a regular language?

#### **Proof**

Let  $m \in \mathbb{N}$ .

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is  $L_1$  a regular language?

#### **Proof**

Let  $m \in \mathbb{N}$ . We set  $w = a^m b^m$ ; notice that  $w \in L_1$  and |w| = 2m which is |w| > m.

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is  $L_1$  a regular language?

#### **Proof**

Let  $m \in \mathbb{N}$ . We set  $w = a^m b^m$ ; notice that  $w \in L_1$  and |w| = 2m which is |w| > m. Let  $x, y, z \in \{a, b\}^*$  such that  $|y| \ge 1$ ,  $|xy| \le m$  and w = xyz.

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is  $L_1$  a regular language?

#### **Proof**

Let  $m \in \mathbb{N}$ . We set  $w = a^m b^m$ ; notice that  $w \in L_1$  and |w| = 2m which is |w| > m. Let  $x, y, z \in \{a, b\}^*$  such that  $|y| \ge 1$ ,  $|xy| \le m$  and w = xyz. We have  $y = a^l$  for some  $l \in \{1, \ldots, m\}$ ,  $x = a^{l'}$  for some  $l' \in \{0, \ldots, m-l\}$  and  $z = a^{m-l-l'}b^m$ .

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is  $L_1$  a regular language?

#### **Proof**

Let  $m \in \mathbb{N}$ . We set  $w = a^m b^m$ ; notice that  $w \in L_1$  and |w| = 2m which is |w| > m. Let  $x, y, z \in \{a, b\}^*$  such that  $|y| \ge 1$ ,  $|xy| \le m$  and w = xyz. We have  $y = a^l$  for some  $l \in \{1, \ldots, m\}$ ,  $x = a^{l'}$  for some  $l' \in \{0, \ldots, m-l\}$  and  $z = a^{m-l-l'}b^m$ . We set i = 2.

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is  $L_1$  a regular language?

#### **Proof**

Let  $m \in \mathbb{N}$ . We set  $w = a^m b^m$ ; notice that  $w \in L_1$  and |w| = 2m which is |w| > m. Let  $x, y, z \in \{a, b\}^*$  such that  $|y| \ge 1$ ,  $|xy| \le m$  and w = xyz. We have  $y = a^l$  for some  $l \in \{1, \ldots, m\}$ ,  $x = a^{l'}$  for some  $l' \in \{0, \ldots, m-l\}$  and  $z = a^{m-l-l'}b^m$ . We set i = 2. We have  $xy^2z = a^{m+l}b^m$  with  $l \ge 1$ , and thus  $xy^2z$  not in  $L_1$ .

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is  $L_1$  a regular language?

#### **Proof**

Let  $m \in \mathbb{N}$ . We set  $w = a^m b^m$ ; notice that  $w \in L_1$  and |w| = 2m which is |w| > m. Let  $x, y, z \in \{a, b\}^*$  such that  $|y| \ge 1$ ,  $|xy| \le m$  and w = xyz. We have  $y = a^l$  for some  $l \in \{1, \ldots, m\}$ ,  $x = a^{l'}$  for some  $l' \in \{0, \ldots, m-l\}$  and  $z = a^{m-l-l'}b^m$ . We set i = 2. We have  $xy^2z = a^{m+l}b^m$  with  $l \ge 1$ , and thus  $xy^2z$  not in  $L_1$ .

By applying the Pumping lemma for regular languages, we can conclude that that the language  $L_1$  is not regular.

# Wrap up

▶ What have you learnt today?

# Wrap up

- ▶ What have you learnt today?
- ▶ What for this could be useful?