- Demonstrate that the Graph-Coloring Optimization problem is in NP.
- Draw the <u>entire</u> pruned state space tree that is generated by the backtracking algorithm for the Sum of Subsets problem on the following instance. (15 points)
- W = 15
- $w_1 = 3$ $w_2 = 5$ $w_3 = 6$ $w_4 = 7$

3. Given the following cost adjacency matrix, use Floyd's Algorithm to compute $D^{(4)}$, thus finding the shortest distance from every vertex to every other vertex.

	1	2	3	4
1	0	8	∞	1
2	∞	0	1	∞
3	4	∞	0	∞
4	∞	2	9	0

4. Consider the following instance of the 0-1 knapsack problem. Solve it with the branch-and-bound solution discussed in class. Show the state space tree and the priority queue after each step.

W = 5

	w_{i}	p_{i}
1	2	12
2	1	10
3	3	21
4	2	14

5. Draw the recursion tree formed by QuickSort on the following array. You may assume that the first element is selected as the pivot:

[5, 2, 8, 7, 6, 1, 2, 3, 9, 10, 5]