2.3 Γραμμική Ανεξαρτησία

Ορισμός

Ένα σύνολο διανυσμάτων $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_m$ του \mathbb{R}^n λέγεται

• γραμμικά ανεξάρτητο αν η εξίσωση

$$x_1\mathbf{v}_1+x_2\mathbf{v}_2+\ldots+x_n\mathbf{v}_n=\mathbb{O}$$

έχει μοναδική λύση την τετριμμένη, δηλαδή $x_1 = x_2 = \ldots = x_n = 0$.

• γραμμικά εξαρτημένο αν δεν είναι γραμμικά ανεξάρτητο, δηλαδή υπάρχουν x_1, x_2, \ldots, x_n όχι όλα ίσα με μηδέν ώστε να ικανοποιούν την εξίσωση

$$x_1\mathbf{v}_1+x_2\mathbf{v}_2+\ldots+x_n\mathbf{v}_n=\mathbb{O}.$$

Σ. Δημόπουλος ΜΑΣ029 1 / 11

Παράδειγμα

Έστω $\mathbf{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$. Να ελέγξετε αν τα σύνολα $\{\mathbf{i},\mathbf{j}\}$ και $\{\mathbf{i},\mathbf{j},\mathbf{w}\}$ είναι γραμμικά ανεξάρτητα.

Σ. Δημόπουλος ΜΑΣ029 2 / 11

Θεώρημα

Τα παρακάτω είναι ισοδύναμα για $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n$.

- **①** Το $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ είναι γραμμικά ανεξάρτητο.
- ② H εξίσωση x_1 **v**₁ + x_2 **v**₂ + . . . + x_m **v**_m = $\mathbb O$ έχει μόνο την τετριμμένη λύση.
- ③ Το γραμμικό σύστημα $A\mathbf{x} = \mathbb{O}$ έχει μόνο την τετριμμένη λύση $(A \circ \pi i \mathbf{v} \mathbf{a} \kappa \mathbf{a} \varsigma \mu \epsilon \sigma \tau i \lambda \epsilon \varsigma \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m)$.

Θεώρημα

Οι στήλες ενός πίνακας A είναι γραμμικά ανεξάρτητες αν και μόνο αν το γραμμικό σύστημα $A\mathbf{x}=\mathbb{O}$ έχει μόνο την τετριμμένη λύση.

Σ. Δημόπουλος ΜΑΣ029 3 / 11

Παράδειγμα

Προσδιορίστε αν το $\{\textbf{v}_1,\textbf{v}_2,\textbf{v}_3\}$ είναι γραμμικά ανεξάρτητο, όπου

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \ \mathbf{v}_3 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}.$$

Σ. Δημόπουλος ΜΑΣ029 4 / 11

Γεωμετρική ερμηνεία

 Δ ύο διανύσματα $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ είναι γραμμικά ανεξάρτητα αν και μόνο αν το ένα είναι πολλαπλάσιο του άλλου.

Σ. Δημόπουλος ΜΑΣ029 5 / 1

Γεωμετρική ερμηνεία

 Δ ύο διανύσματα $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ είναι γραμμικά ανεξάρτητα αν και μόνο αν το ένα είναι πολλαπλάσιο του άλλου.

Σ. Δημόπουλος ΜΑΣ029 6 / 13

Γεωμετρική ερμηνεία

 Δ ύο διανύσματα $\textbf{u},\textbf{v}\in\mathbb{R}^3$ είναι γραμμικά ανεξάρτητα αν και μόνο αν το ένα βρίσκονται στο ίδιο επίπεδο.

Σ. Δημόπουλος ΜΑΣ029 7 / 11

Θεώρημα

Έστω $\{\mathbf v_1, \mathbf v_2, \dots, \mathbf v_r\}$ σύνολο διανυσμάτων του $\mathbb R^n$. Αν r>n τότε το σύνολο είναι γραμμικά εξαρτημένο.

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 8 / 11

Παράδειγμα

Επαληθεύστε το θεώρημα για τα διανύσματα

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 \\ 3 \\ 3 \\ 3 \end{pmatrix}.$$

Σ. Δημόπουλος ΜΑΣ029 9 / 11

Παρατήρηση

Αν το σύνολο $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_r\}$ περιέχει το μηδενικό διάνυσμα, τότε είναι γραμμικά εξαρτημένο.

Σ. Δημόπουλος ΜΑΣ029 10 / 1

Παρατήρηση

Αν το σύνολο $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ είναι γραμμικά εξαρτημένο, τότε υπάρχει i ώστε $\mathbf{v}_i \in \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \dots \mathbf{v}_r\}$.

Σ. Δημόπουλος ΜΑΣ029 11 / 11