Familienname:	1
Vorname:	2
Matrikelnummer:	$egin{array}{c c} 3 \ 4 \end{array}$
Studienkennzahl(en):	G

Note:

Einführung in das mathematische Arbeiten Roland Steinbauer, Sommersemester 2007 2. Prüfungstermin (17.4.2007)

1. (Kurvendiskussion) Eine rationale Funktion r der Form

$$r(x) = \frac{ax^2 + bx + c}{x + d}$$

hat ihren einzigen Pol, der erster Ordnung ist, bei x = 1. Der Punkt P = (4, 33) ist ein Extremwert von r, und die Steigung von r bei x = 0 beträgt -24.

- (a) Bestimme die Funktionsgleichung von r. (4 Punkte)
- (b) Ermittle alle Nullstellen, Hoch- und Tiefpunkte von r. (2 Punkte)
- (c) Bestimme die schräge Asymptote von r und fertige eine Skizze an. (2 Punkte)
- (d) Ermittle den Inhalt des endlichen Flächenstücks, das von r und der x-Achse eingeschlossen wird. (2 Punkte)
- 2. (Analytische Geometrie)
 - (a) Eine Ellipse und eine Parabel in erster Hauptlage haben einen gemeinsamen Brennpunkt und schneiden einander im Punkt $P = (3, 2\sqrt{6})$. Fertige eine Skizze an und bestimme die Gleichung von Parabel und Ellipse. Gibt es weitere Schnittpunkte? Wenn ja gib ihre Koordinaten an. (6 Punkte)
 - (b) Eine Ebene ε im \mathbb{R}^3 hat die Gleichung 3x-6y+2z=10. Für den Punkt P(-1|6|0) bestimme:
 - (a) Die Gleichung der durch P gehenden Normale n auf ε .
 - (b) Den Schnittpunkt von n und ε .
 - (4 Punkte)

- 3. (Ordnungsrelationen)
 - (a) Sei M eine Menge und $\mathbb{P}M$ ihre Potenzmenge. Zeige, dass folgende Relation auf $\mathbb{P}M$ eine Halbordnung ist

$$A \prec B :\Leftrightarrow A \subset B$$
.

Handelt es sich sogar um eine Totalordnung? (5 Punkte)

- (b) Definiere den Begriff geordneter Körper. (2 Punkte)
- (c) Zeige, dass in einem geordneten Körper 1 > 0 gilt. (3 Punkte)
- 4. (a) (Abbildungen) Sei $f: A \to B$ eine Funktion.
 - i. Für Teilmengen $M\subseteq A$ und $N\subseteq B$ definiere das Bild f(M) sowie das Urbild $f^{-1}(N)$. (2 Punkte)
 - ii. Zeige dass f genau dann surjektiv ist, falls f(A) = B gilt. (3 Punkte)
 - (b) (Gruppen) Sei (G, \circ) eine Gruppe.
 - i. Definiere den Begriff einer Untergruppe von (G, \circ) . (1 Punkt)
 - ii. Sei $H \subseteq G$. Zeige, dass die folgenden beiden Bedingungen äquivalent sind.
 - $\forall g, h \in H : g \circ h^{-1} \in H$
 - $\forall g, h \in H : g \circ h \in H \land h^{-1} \in H$

(4 Punkte)