Adaptive Hybrid Greedy and Reinforcement Learning for Distributed Submodular Maximization (AHRL-Greedy)

Presenter: William Zhong

Date: 26 Nov 2024

Problem Statement:

- Selecting a representative subset from massive datasets is crucial in large-scale machine learning tasks like clustering and kernel methods.
- This selection can be modeled as maximizing a submodular objective function.

Challenges:

- Traditional centralized approaches are impractical for large-scale problems due to the need for centralized data access.
- Existing methods like GREEDI, while computationally efficient, may not always achieve optimal solutions.

Motivation

- Why It's Important:
 - Submodular maximization has applications in machine learning, data mining, and sensor networks.
 - Scalable algorithms are essential for handling growing and distributed data volumes.

- Why It's Challenging:
 - Submodular maximization is typically NP-hard, especially with constraints.
 - Distributed settings add complexity due to coordination and communication challenges among nodes.

Related Work

- Greedy Algorithms:
 - Foundational in submodular optimization, offering simple yet effective approximations.
- Parallel Greedy Algorithms:
 - Extend greedy approaches to distributed settings, allowing simultaneous selections by multiple nodes.
- Randomized Greedy Algorithms:
 - Introduce randomness to improve solution diversity and explore a larger solution space.
- Hybrid Approaches:
 - Combine greedy algorithms with learning mechanisms to address the limitations of purely greedy methods.
- Reinforcement Learning (RL):
 - Applied to combinatorial optimization problems, enabling adaptive and learned decision-making.

Problem Formulation

- Objective:
 - o Maximize a submodular function $f:2^{v} \to R_{\geq 0}$ over a dataset V, subject to a cardinality constraint k.

- Distributed Environment:
 - \circ Data is partitioned across N nodes, each holding a subset $V_i \subseteq V$
 - Each node selects a local subset $S_i \subseteq V_i$ aiming to contribute to a global solution S^* .

Proposed Method: AHRL-Greedy

- Hybrid Greedy-RL Selection:
 - Each node operates as an RL agent, selecting elements based on local marginal gains and learned Q-values.
 - The selection criterion is $v_i^* = argmax_{v \in V_i} (\Delta f(S_i, v) + Q_i(S_i, v))$.
- Reward Function:
 - Combines immediate submodular gain, diversity, and coverage:
 - $r_i(S,v) = \Delta f(S,v) + \lambda \cdot diversity(S,v) + \mu \cdot coverage(S,v)$ $\Delta f(S,v) : \text{Marginal gain from adding v to S.}$

 - λ,μ: Hyperparameters balancing diversity and coverage

Experience Replay and Learning

- Experience Replay Buffer:
 - Each node maintains a buffer BiB_iBi storing past experiences (S,v,r,S').

- Q-Value Updates:
 - \circ Parameters θ i\theta_i θ i are updated using temporal difference learning:
 - $\circ \quad \theta_i \leftarrow \theta_i + \alpha (r_i + \gamma max_{v'} Q_i(S', v') Q_i(S, v)) \nabla \theta_i Q_i(S, v)$
 - \circ α : Learning rate.
 - o γ: Discount factor.

Consensus Mechanism

• After local selections, a consensus mechanism combines $S_1, S_2, ..., S_N$ to form the global solution S^* .

• Ensures representativeness and diversity across the entire dataset.

Algorithm Overview

Algorithm 1: AHRL-Greedy Algorithm

Input: Set V, number of nodes N, cardinality constraint k, learning rate α , discount factor γ .

Output: Final global solution S^* .

Initialize local subsets $S_i = \emptyset$ for each node $i \in \mathcal{N}$;

Initialize Q-value parameters θ_i and experience replay buffer \mathcal{B}_i for each node;

for each time step t = 1, 2, ..., T do

for each node $i \in \mathcal{N}$ in parallel do

Select element
$$v_i^* = \arg \max_{v \in V_i} \left(\Delta f(S_i, v) + Q_i(S_i, v) \right);$$

Add element to local subset: $S_i \leftarrow S_i \cup \{v_i^*\}$; Store experience (S_i, v_i^*, r_i, S_i') in \mathcal{B}_i ;

Update Q-value parameters θ_i using experience replay;

Apply consensus mechanism to generate final global solution $S^* = \text{consensus}(S_1, S_2, \dots, S_N);$

Experiments

Objective:

• Evaluate the performance of AHRL-Greedy compared to existing methods like GREEDI.

Datasets:

 Utilized standard large-scale datasets commonly used in submodular maximization tasks.

Metrics:

- Measured solution quality based on the value of the submodular objective function achieved.
- Assessed computational efficiency in terms of runtime and scalability across distributed nodes.

• Results:

- AHRL-Greedy consistently matched or outperformed GREEDI in solution quality.
- Demonstrated efficient scalability with increasing data sizes and number of nodes.

Experiments (Con't)

Figure 1: Experiment of AHRL-Greedy and comparison with different method.

Conclusion

Summary:

- Introduced AHRL-Greedy, a novel algorithm combining greedy heuristics with reinforcement learning for distributed submodular maximization.
- Addressed challenges of scalability and coordination in distributed environments.

Key Takeaways:

- AHRL-Greedy effectively balances immediate gains with long-term benefits like diversity and coverage.
- The integration of reinforcement learning enables adaptive decision-making in dynamic data scenarios.

Future Work:

- Explore enhancements to the consensus mechanism for improved global solution quality.
- Investigate the application of AHRL-Greedy to other combinatorial optimization problems beyond submodular maximization.