重庆理工大学考试试卷

2022--2023 学年第 2 学期

一、选择题(共10小题,每小题3分,共30分)
$\begin{vmatrix} a & b & c \end{vmatrix} \begin{vmatrix} -3a & -3b & -3c \end{vmatrix}$
1、设行列式 $D_1 = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$, $D_2 = \begin{vmatrix} -3a & -3b & -3c \\ 2d & 2e & 2f \\ 2g & 2h & 2i \end{vmatrix}$, 则 D_1 与 D_2 的关系为()
A, $D_2 = -12D_1$ B, $D_2 = -6D_1$ C, $D_2 = 3D_1$ D, $D_2 = 6D_1$
$\begin{vmatrix} x & x & 2 \end{vmatrix}$
A, 2 B, -1 C, 6 D, 3
1 - 2 2
3、行列式 $D = \begin{vmatrix} 1 & -2 & 2 \\ 2 & 1 & 2 \\ 3 & -5 & 3 \end{vmatrix}$, 则 $2A_{13} - A_{23} + 5A_{33} = ($)
A, -1 B, 2 C, 0 D, 1
4、设 A,B 都是5阶方阵,则 $(A-B)^2 = A^2 - 2AB + B^2$ 的充分必要条件是()
A, $A+B=A-B$ B, $ AB = BA $ C, $ A = B $ D, $AB=BA$
5、设向量 $\alpha_1 = (3,1,3)^T$, $\alpha_2 = (x,0,2)^T$,若向量 $\alpha_1 与 \alpha_2$ 正交,则 $x = ($
A, -2 B, 2 C, 6 D, 3
6 、设有向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$,且 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,则(
A 、 α_1, α_2 线性相关 B 、 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关
C 、 α_1,α_2 线性无关 D 、 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关
7、设 3 阶矩阵 A 的特征值为 $1,3,5$,则 $r(A) = ($)
A, 0 B, 1 C, 2 D, 3
8、设 A 为 4×3 矩阵,若 $r(A)=2$,则下列关于 $Ax=b$ 的解的说法正确的是(
A、无解 B 、有唯一解 C 、有无穷多解 D 、不能确定 $Ax = b$ 是否有解
9、设向量 $\alpha = (1,0,1)^T$, $\beta = (3,0,k)^T$, $\gamma = (0,2,1)^T$ 线性相关,则 $k=($

重庆理工大学考试试卷

2022--2023 学年第 2 学期

班级	学号
10,	$A \times 0$ $B \times 1$ $C \times 2$ $D \times 3$ 设矩阵 $A = B$ 相似,则下列说法不正确的是(
- A	$A \cdot r(A) = r(B)$ B、存在矩阵 P 使得 $P^{-1}AP = B$ C、 $A = B $ D、 $ A = B $
=,	填空题(共10小题,每小题3分,共30分)
11,	设 $A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 7 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,则 $ A^3 = $
12,	设 $A = (3 \ 3 \ 4)$, $B = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$,则 $AB = \frac{1}{2}$
13、	设 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 2 & 1 & 4 \end{pmatrix}$,则 $A^* = ^* = \underline{^* = $
14、	设 $A = \begin{pmatrix} 2 & 4 & 0 \\ 3 & 7 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,求 $A^{-1} = $
15、	设非齐次线性方程组 $A_{4\times4}x=b$ 的系数矩阵的秩为 2,则 $Ax=0$ 的基础解系中所含解向量的
个数	文为。
16,	设非齐次线性方程组 $A_{3\times 3}x = b$ 有唯一解,则 $r(A) = $ 。
17、	设 $A = \begin{pmatrix} 4 & 4 & 0 \\ 3 & x & 0 \\ 4 & 0 & 3 \end{pmatrix}$ 秩为 2,则 $x = $ 。
18、	已知 $\alpha = (1,2,-1)$, $\beta = (-1,2,1)$, x 满足 $3\alpha - 2x = \beta$,则 $x =$ 。
19,	已知三阶方阵 A 的三个特征值为 $(1, 1, 1)$,则 $ 2A^{-1}-A^* =$ 。
20,	设二次型 $f(x_1,x_2,x_3) = x_1^2 - x_2^2 - 3x_3^2$,则其正惯性指数为。
三、	计算题(共3小题,每小题10分,共30分)

重庆理工大学考试试卷

2022--2023 学年第 2 学期

$$21$$
、求 $\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 4 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 3 \\ 0 \\ 7 \\ 14 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 的一个最大无关组,并将其余向量用此最

大无关组线性表示。

22、求线性方程组
$$\begin{cases} x_1 + 2x_2 + 4x_3 + 4x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$
的通解。
$$2x_1 + 3x_2 + 5x_3 + 5x_4 = 0$$

23、设矩阵
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
,请写出 A 对应的二次型并将其化为标准形。

四、证明题 (共2小题,每小题5分,共10分)

- 24、设方阵A满足 $A^2 + A 7E = O$,证明A + 3E 可逆,并求其逆。
- 25、设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,证明 $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_1+2\alpha_2+\alpha_3$ 线性相关。

 B_{α} 已知 $\alpha = (1,2,-1)$ $\beta = (-1,2,1)$, x 海走 $3\alpha - 2x = \beta$,则 x = -1

设二次型 f(x,x,x,x)=x--x-3x, 则其正惯性指数为