Simulation of Biomolecules

Basic Simulation Analysis

Dr Matteo Degiacomi
University of Edinburgh

matteo.degiacomi@ed.ac.uk

Dr Antonia Mey
University of Edinburgh

antonia.mey@ed.ac.uk

Volume and pressure equilibration

Steps until production:

Production ensemble

[Recall] Sampling the conformational space

Probability of sampling a conformation is inversely proportional to its energy: $p_i \propto e$

Timescales in biology

Different regions, different timescales:

- Side chains faster than backbone
- Loops faster than helices and sheets
- backbone faster than side chains
- Protein surface faster than core

Root Mean Square Deviation (RMSD)

Given a system with N atoms, and a reference arrangement x_0 :

$$RMSD = \sqrt{\frac{1}{N} \sum_{i=0}^{N} (X_i - x_0)^2}$$

In MD, x_0 is often the first conformation in the simulation.

HIV-1 capsomer simulation from: Degiacomi & Dal Peraro, Structure, 2013

Convergence?

Refrain from using RMSD as a single indicator of simulation convergence.

HIV-1 capsomer simulation from: Degiacomi & Dal Peraro, Structure, 2013

RMSD is alignment- and selection-dependent

Pairwise RMSD

• Two structures with same RMSD from a reference are not forcefully similar to each other.

 Pairwise RMSD helps seeing if protein re-visits conformations throughout the simulation.

Root Mean Square Fluctuation (RMSF)

The RMSF σ_i of atom *i* calculates how much it fluctuates around its mean position $\langle X_i \rangle$.

$$\sigma_i = \sqrt{\langle (X_i - \langle X_i \rangle)^2 \rangle}$$

Helps identifying flexible/regid regions. Typically done on C_{α} atoms. Warning: result depends on alignment!

end-to-end distance and Radius of Gyration (Rg)

$$d(p,q) = ||p-q||$$

$$R_g = \sqrt{\frac{1}{N}|r_k - r_{mean}|^2}$$

$$q = C\text{-ter}$$

$$p = N\text{-ter}$$

Help quantifying protein compaction. Internal properties: do *not* depend on alignment

Some quantities are not directly measurable

Submit MD conformers to external software simulating experimental data, e.g.:

Chemical cross-linking

SAXS

DynamXL, Xwalk, ...

CRYSOL, FoXS, ...

Collision cross-section

IMPACT, MobCal, CollisionCode, ...

Warning: time averaging may hide processes

Thought experiment: typically hydrogen bond is considered established if donor-acceptor distance <2.5 Å, and donor-acceptor-hydrogen angle <20°.

Reporting % time a bond is established in simulation can be misleading!

Large ecosystem of software and packages for data analysis

And many more...

The **Universe** contains everything about a MD system

- Static information: atoms and their connectivities
- Dynamic information: The trajectory

Data accessible via a hierarchy of containers

