UNISONIC TECHNOLOGIES CO., LTD

78LXX

LINEAR INTEGRATED CIRCUIT

3-TERMINAL 0.1A POSITIVE VOLTAGE REGULATOR

DESCRIPTION

The UTC 78LXX family is monolithic fixed voltage regulator integrated circuit. They are suitable for applications that required supply current up to 100mA.

FEATURES

- * Output current up to 100mA
- * Fixed output voltage of 5V, 6V, 8V, 9V, 10V, 12V, 15V, 18V and 24V available
- * Thermal overload shutdown protection
- * Short circuit current limiting

ORDERING INFORMATION

Ordering	Ordering Number		Pin Assignment							Packing	
Lead Free	Halogen Free	Package	1	2	ფ	4	5	6	7	8	Packing
78LXXL-AB3-R	78LXXG-AB3-R	SOT-89	0	O	_	ı	-	-	-	-	Tape Reel
78LXXL-AB3-C-R	78LXXG-AB3-C-R	SOT-89	G	_	0	ı	-	-	-	-	Tape Reel
78LXXL-AF5-R	78LXXG-AF5-R	SOT-25	G	_	0	Z	Ν				Tape Reel
78LXXL-S08-R	78LXXG-S08-R	SOP-8	0	U	G	Z	Ν	G	G	Ι	Tape Reel
78LXXL-T92-B	78LXXG-T92-B	TO-92	0	G	_	ı	-	-	-	-	Tape Box
78LXXL-T92-K	78LXXG-T92-K	TO-92	0	G	-	-	-	-	-	-	Bulk
78LXXL-T9N-B	78LXXG-T9N-B	TO-92NL	0	G	Ι	-	-	-	-	-	Tape Box
78LXXL-T9N-K	78LXXG-T9N-K	TO-92NL	0	G	I	-	-	-	-	-	Bulk

Note: 1. XX: Output Voltage, refer to Marking Information.

2. Pin Assignment: O: Output G: GND I: Input N: No Connection

- (1) B: Tape Box, K: Bulk, R: Tape Reel
- (2) refer to Pin Assignment
- (3) AB3: SOT-89, AF5: SOT-25, S08: SOP-8, T92: TO-92, T9N: TO-92NL
- (4) G: Halogen Free and Lead Free, L: Lead Free
- (5) XX: refer to Marking Information

www.unisonic.com.tw 1 of 9

■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
SOT-89		Date Code Voltage Code Voltage Code TRLXX Pin Code L: Lead Free G: Halogen Free 1 2 3
SOT-25	05:5.0V 06:6.0V 08:8.0V	Voltage Code
SOP-8	09:9.0V 10:10V 12:12V	Date Code Voltage Code Voltage Code Voltage Code Voltage Code L: Lead Free G: Halogen Free Lot Code
TO-92	15:15V 18:18V 24: 24V	Voltage Code UTC 78LXX□ G: Halogen Free Date Code 1 2 3
TO-92NL		Voltage Code UTC 78LXX □ □ 2 G: Halogen Free Date Code

■ ABSOLUTE MAXIMUM RATINGS

PARAMETE	R	SYMBOL	RATINGS	UNIT
	V _{OUT} =5~9V		30	V
Input Voltage	V _{OUT} =10~18V	V_{IN}	35	V
	V _{OUT} =24V		40	V
Output Current		I _{OUT}	100	mA
Output Current Power Dissipation	SOT-89		350	mW
	SOT-25	ь	240	mW
	SOP-8	P_{D}	300	mW
	TO-92/TO-92NL		VIN 30 V 35 V 40 V 100T 100 mA 350 mW 240 mW 300 mW 625 mW T _J +150 °C T _{OPR} -40 ~ +125 °C	mW
Junction Temperature		T_J	+150	°C
Operating Temperature (Note	ature (Note 2) T _{OPR} -40 ~ +125		°C	
Storage Temperature		T _{STG}	-55 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

For UTC78L05 (V_{IN} =10V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		T _J =25°C	4.80	5.0	5.20	V
Output Voltage	V _{OUT}	7V≤V _{IN} ≤20V,I _{OUT} =1mA-40mA	4.75		5.25	V
		7V≤V _{IN} ≤V _{MAX} ,I _{OUT} =1mA-70mA	4.75		5.20	V (note 2)
Load Degulation	41/	$T_J=25$ °C, $I_{OUT}=1$ mA-100mA		15	60	mV
Load Regulation	ΔV_OUT .	T _J =25°C,I _{OUT} =1mA-40mA		8	30	mV
Line regulation	AVOUT	7V≤V _{IN} ≤20V,T _J =25°C		8	150	mV
Line regulation		8V≤V _{IN} ≤20V,T _J =25°C		6	100	mV
Quiescent Current	ΙQ	V _{IN} =10V,I _{OUT} =0mA,T _J =25°C		2.0	5.5	mA
Quiaccant Current Change	41	8V≤V _{IN} ≤20V			1.5	mA
Quiescent Current Change	Δl_{Q}	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		40		μV
Temperature coefficient of V _{OUT}	$\Delta V_{O}/\Delta_{T}$	I _{OUT} =5mA		1.0		mV/°C
Ripple Rejection	RR	8V≤V _{IN} ≤20V,f=120Hz,T _J =25°C		60		dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

For UTC78L06 (V_{IN} =12V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		T _J =25°C	5.76	6.0	6.24	V
Output Voltage	V_{OUT}	$8.5V \le V_{IN} \le 20V, I_{OUT} = 1mA-40mA$	5.70		6.30	V
		$8.5V \le V_{IN} \le V_{MAX}$, $I_{OUT} = 1 \text{mA} - 70 \text{mA}$	5.70		6.24	V(note 2)
Lood Dogulation	A\/	T _J =25°C,I _{OUT} =1mA-100mA		16	80	mV
Load Regulation	ΔV _{OUT}	T _J =25°C,I _{OUT} =1mA-40mA		9	40	mV
Line regulation	I AVOUT I	8.5V≤V _{IN} ≤20V,T _J =25°C		10	175	mV
Line regulation		9V≤V _{IN} ≤20V,T _J =25°C		8	125	mV
Quiescent Current	IQ	V _{IN} =12V,I _{OUT} =0mA,T _J =25°C		2.0	5.5	mA
Quiaccent Current Change	4.1	9V≤V _{IN} ≤20V			1.5	mA
Quiescent Current Change	ΔI_Q	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		49		μV
Temperature coefficient of Vout	$\Delta V_O/\Delta_T$	I _{OUT} =5mA		1.3		mV/°C
Ripple Rejection	RR	10V≤V _{IN} ≤20V,f=120Hz, T _J =25°C		56		dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

^{2.} It is guarantee by design, not 100% be tested.

■ ELECTRICAL CHARACTERISTICS (Cont.)

For UTC78L08 (V_{IN} =14V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

1 01 01010 00 (VIN-117, 1001-101117, 0 0 11) 1 100 0, 0 1-0.00 pt , 0 0-0.1 pt , directo direct mod openica)									
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
		T _J =25°C	7.68	8.0	8.32	V			
Output Voltage	V _{OUT}	10.5V≤V _{IN} ≤23V,I _{OUT} =1mA-40mA	7.60		8.40	V			
		10.5V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	7.60		0 8.32 8.40 8.40 8 80 0 40 2 175 0 125 0 5.5 1.5 0.1 9	V(note 2)			
Load Degulation	A\/	T _J =25°C,I _{OUT} =1mA-100mA		18	80	mV			
Load Regulation	ΔV_{OUT}	T _J =25°C,I _{OUT} =1mA-40mA		10	40	mV			
1.	ΔV _{OUT}	10.5V≤V _{IN} ≤23V,T _J =25°C		12	175	mV			
Line regulation		11V≤V _{IN} ≤23V,T _J =25°C		10	125	mV			
Quiescent Current	ΙQ	V _{IN} =14V,I _{OUT} =0mA,T _J =25°C		2.0	5.5	mA			
Quiaccent Current Change		11V≤V _{IN} ≤23V			1.5	mA			
Line regulation Quiescent Current Quiescent Current Change	ΔI_Q	1mA≤V _{IN} ≤40mA			0.1	mA			
Output Noise Voltage	eN	10Hz≤f≤100kHz		49		μV			
Temperature coefficient of Vo	$\Delta V_O/\Delta_T$	I _{OUT} =5mA		1.5		mV/°C			
Ripple Rejection	RR	11V≤V _{IN} ≤23V,f=120Hz,T _J =25°C		52		dB			
Dropout Voltage	V_D	T _J =25°C		1.7		V			

For UTC78L09 (V_{IN} =15V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage		T _J =25°C	8.64	9.0	9.36	V
	V _{OUT}	11.5V≤V _{IN} ≤24V,I _{OUT} =1mA-40mA	8.55		9.45	V
		11.5V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	8.55		9.45	V(note 2)
Load Degulation	437	T _J =25°C,I _{OUT} =1mA-100mA		20	90	mV
Load Regulation	ΔV_{OUT}	T _J =25°C,I _{OUT} =1mA-40mA		10	40	mV
Line regulation	AVOUT 1	11.5V≤V _{IN} ≤24V,T _J =25°C		15	200	mV
Line regulation		13V≤V _{IN} ≤24V,T _J =25°C		10	150	mV
Quiescent Current	ΙQ	V _{IN} =15V,I _{OUT} =0mA,T _J =25°C		2.0	6.0	mA
Quiaccent Current Change		13V≤V _{IN} ≤24V			1.5	mA
Quiescent Current Change	ΔlQ	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		70		μV
Temperature coefficient of V _{OUT}	$\Delta V_{O}/\Delta_{T}$	I _{OUT} =5mA		1.6		mV/°C
Ripple Rejection	RR	12V≤V _{IN} ≤24V,f=120Hz,T _J =25°C		46		dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

For UTC78L10 (V_{IN} =16V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage		T _J =25°C	9.6	10.0	10.4	V
	V_{OUT}	12.5V≤V _{IN} ≤25V,I _{OUT} =1mA-40mA	9.5		10.5	V
		12.5V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	9.5		0.0 10.4 10.5 10.5 0 90 0 45 5 200 0 170 .0 6.0 1.5 0.1	V(note 2)
Load Degulation	A\/	T _J =25°C, I _{OUT} =1mA-100mA		20	90	mV
oad Regulation	ΔV{OUT}	T _J =25°C, I _{OUT} =1mA-40mA		10	45	mV
	I AVOUT I	12.5V≤V _{IN} ≤25V,T _J =25°C		25	200	mV
Line regulation		14V≤V _{IN} ≤25V,T _J =25°C		20	170	mV
Quiescent Current	IQ	V _{IN} =17V,I _{OUT} =0mA,T _J =25°C		2.0	6.0	mA
Ouisseent Current Change	4.1	12.5V≤V _{IN} ≤25V			1.5	mA
Load Regulation Line regulation Quiescent Current Quiescent Current Change Output Noise Voltage Temperature coefficient of Vout Ripple Rejection	ΔI_{Q}	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		74		μV
Temperature coefficient of V _{OUT}	$\Delta V_{O}/\Delta_{T}$	I _{OUT} =5mA		1.7		mV/°C
Ripple Rejection	RR	15V≤V _{IN} ≤25V,f=120Hz,T _J =25°C		45		dB
Dropout Voltage	V_D	T _J =25°C		1.7	·	V

■ ELECTRICAL CHARACTERISTICS (Cont.)

For UTC78L12 (V_{IN} =19V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN			UNIT
		T _J =25°C	11.52		12.48	V
Output Voltage	V _{OUT}	14.5V≤V _{IN} ≤27V,I _{OUT} =1mA-40mA	11.40		12.60	V
		14.5V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	11.40			V(note 2)
Lood Degulation	41/	T _J =25°C, I _{OUT} =1mA-100mA		25	100	mV
Load Regulation	ΔV_{OUT}	T _J =25°C, I _{OUT} =1mA-40mA		12	50	mV
	ΛV_{OUT}	14.5V≤V _{IN} ≤27V,T _J =25°C		25	300	mV
Line regulation		16V≤V _{IN} ≤27V,T _J =25°C		20	250	mV
Quiescent Current	IQ	V _{IN} =19V,I _{OUT} =0mA,T _J =25°C		2.0	6.5	mA
Quiaccant Current Change	4.1	16V≤V _{IN} ≤27V			1.5	mA
Quiescent Current Change	Δl_{Q}	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		80		μV
Temperature coefficient of V _{OUT}	$\Delta V_{O}/\Delta_{T}$	I _{OUT} =5mA		1.8		mV/°C
Ripple Rejection	RR	15V≤V _{IN} ≤25V,f=120Hz,T _J =25°C		45		dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

For UTC78L15 (V_{IN} =23V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

, , , , , , , , , , , , , , , , , , , ,	1	<u> </u>				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		T _J =25°C	14.40	15.0	15.60	V
Output Voltage	V _{OUT}	17.5V≤V _{IN} ≤30V,I _{OUT} =1mA-40mA	14.25		15.75	V
		17.5V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	14.25	4.40 15.0 15.60 4.25 15.75	V(note 2)	
Load Degulation	417	T _J =25°C, I _{OUT} =1mA-100mA		25	150	mV
Load Regulation	ΔV_{OUT} .	T _J =25°C, I _{OUT} =1mA-40mA		15	75	mV
Line Regulation	I AVOUT I	17.5V≤V _{IN} ≤30V,T _J =25°C		25	150	mV
Line Regulation		20V≤V _{IN} ≤30V,T _J =25°C		15	75	mV
Quiescent Current	ΙQ	V _{IN} =23V,I _{OUT} =0mA,T _J =25°C		2.2	6.5	mA
Quiescent Current Change		20V≤V _{IN} ≤30V			1.5	mA
Quiescent Current Change	ΔI_{Q}	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		90		μV
Temperature Coefficient of V _{OUT}	$\Delta V_{O}/\Delta_{T}$	I _{OUT} =5mA		2.0		mV/°C
Ripple Rejection	RR	18.5V≤V _{IN} ≤28.5V,f=120Hz, T _J =25°C		45		dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

 $\textbf{For UTC78L18} \; (V_{IN} = 27V, \, I_{OUT} = 40 \text{mA}, \, 0^{\circ}\text{C} < T_{J} < 150^{\circ}\text{C}, \, C1 = 0.33 \mu\text{F}, \, Co = 0.1 \mu\text{F}, \, unless \, otherwise \, specified)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage		T _J =25°C	17.28	18.0	18.72	V
	V _{OUT}	21V≤V _{IN} ≤33V,I _{OUT} =1mA-40mA	17.10		18.90	V
-		21V≤V _{IN} ≤V _{MAX} ,I _{OUT} =1mA-70mA	17.46		18.54	V(note 2)
Load Degulation	41/	T _J =25°C, I _{OUT} =1mA-100mA		30	180	mV
Load Regulation	ΔV_{OUT}	T _J =25°C, I _{OUT} =1mA-40mA		20	90	mV
1: B 1:	I AVOUT I	21V≤V _{IN} ≤33V,T _J =25°C		45	300	mV
Line Regulation		22V≤V _{IN} ≤33V,T _J =25°C		35	250	mV
Quiescent Current	IQ	V _{IN} =27V,I _{OUT} =0mA,T _J =25°C		2.2	6.5	mΑ
Quiaccant Current Change		21V≤V _{IN} ≤33V			1.5	mΑ
Quiescent Current Change	ΔI_Q	1mA≤V _{IN} ≤40mA			0.1	mΑ
Output Noise Voltage	eN	10Hz≤f≤100kHz		150		μV
Temperature Coefficient of V _{OUT}	$\Delta V_{O}/\Delta_{T}$	I _{OUT} =5mA		2.2		mV/°C
Ripple Rejection	RR	23V≤V _{IN} ≤33V,f=120Hz,T _J =25°C		45		dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

■ ELECTRICAL CHARACTERISTICS (Cont.)

For UTC78L24 (V_{IN} =33V, I_{OUT} =40mA, 0°C<T_J<150°C, C1=0.33 μ F, Co=0.1 μ F,unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
		T _J =25°C	23.04	24.0	24.96	V		
Output Voltage	V_{OUT}	27V≤V _{IN} ≤38V,I _{OUT} =1mA-40mA	22.8		25.2	V		
		27V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	22.8		24.96 25.2 25.2 41 240 28 120 160 300 150 250 2.2 6.0 1.5 0.1 200 2.0	V(note 2)		
Load Degulation	$\triangle V_{OUT}$	T _J =25°C, I _{OUT} =1mA-100mA		41	240	mV		
Load Regulation	△ ∨ 001	T _J =25°C, I _{OUT} =1mA-40mA		28	120	mV		
Line Regulation	I /\Vour	27V≤V _{IN} ≤38V,T _J =25°C		160	300	mV		
Line Regulation		28V≤V _{IN} ≤38V,T _J =25°C		150	250	mV		
Quiescent Current	IQ	V _{IN} =33V,I _{OUT} =0mA,T _J =25°C		2.2	6.0	mA		
Quiacoant Current Change	41	27V≤V _{IN} ≤38V			1.5	mA		
Quiescent Current Change	ΔI_{Q}	1mA≤V _{IN} ≤40mA			0.1	mΑ		
Output Noise Voltage	eN	10Hz≤f≤100kHz		200		μV		
Temperature Coefficient of Vout	$\Delta V_{O}/\Delta_{T}$	I _{OUT} =5mA		-2.0		mV/°C		
Ripple Rejection	RR	27V≤V _{IN} ≤38V,f=120Hz,T _J =25°C		45		dB		
Dropout Voltage	V_D	T _J =25°C		1.7		V		

Notes 1. The Maximum steady state usable output current is dependent on input voltage, heat sinking, lead length of the package and copper pattern of PCB.

^{2.} Power dissipation < 0.5W

■ APPLICATION CIRCUIT

Notes: 1. To specify an output voltage, substitute voltage value for "XX".

2. Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulators.

■ TEST CIRCUIT

■ TYPICAL CHARACTERISTICS

■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.