2. 2 Syst	erns of Equa	ntions						
Corollary 2.5	los rank-nullity	Given a system	of n linear	equations in	m variables v	where the constant	term is 0,	there is always
	a nontrivial solut	tion if m>n. Mo	preover, the d	limension of th	he solution s	puce of at least	m-n	
def 2.16 Let	· α:V→W be a	linear map. Let	vun be a	basis for V	and let w,,	wm be a basis for	W. Then, for	each i, o((vi) can
be	written uniquely	as a linear con	inblination of	the wj, d(vis= 25 Lijwj	. We define M(d)	to be the 1	nxn matrix with
en	ntry in row i and	column j giv	en by hij					
	note that this			sis for V &	for W			
def 2.19	Given matrices	S A&B of	appropriate	dimensions,	the product	AB has entry in	row i & colum	nn j gjuen by
		\$	Ay, Bri					
a.4 Invert	ible Linear M	Oup						
			a linear mar	B: W=V	is an inv	erse to a if, fo	r even vev.	B(a(v))=V
	and for every			P			0.0.9 (0.9)	
	αoβ= ldw							
		as an inverse,		s invectible				
def a.al l	a linear ma				werse			
Met en j	w micky ma	Punus	Wilder More Tr	II YILIS CITI III	1000			
lemma 2 2	if A A	0 inun 4	i. d 4	4 - 0				
ACHIVIA 2.0.	if β_1 and β	are inverses of	or a, men	P1=/P2				
James 2 22	l a lineau	tellalde tour						
TEMMINA a. a.	d a linear map	a.v-w is invert	1016 124 L12	injunve e	Surjective			
25 100	C VI							
	phisms of Vector							
mer diay	TWO VELTOR Space	es vand w o	rie 120Molby	ic it there	is an invert	ible linear map	α. v→w	
26 Dist	and the							
	ty and the spa					71 4		
det d. 26					W be a lineo	er map. Then, 2.	(d) is the	linear map
	such that,	for each veV,	(X·a)(N=	λ· α(v)				

ef aa7	every	thing i	in Vta	Ow.	Additio	n &	Scalar	multip	lication	are tr	nose p	revious	y def	ined				
£ 2.28	for a	given	vector	space	s A	, ((v _i v) i	s the	. space	of	endom	04b/jish	ns fr	iom V	to its	self		
ef 2.ag									is c					and	often	denoted	d V*,	
2.30									given			map	o d,,	d _{a,} o	s w	hev e		
the	basis	,										V is	Sinite	din	nension	al		
nun 2.31	. Sov	a fin	ite d	imensi	onal	vector	spai	ie V	over	a fi	eld IF,	the	dua	n ebo	ue V [‡]	is isom	lorphic	to V
	give	en a	basis	ξυ,	,, \	1n3 :	for a	vert		ue V	u, the	dual	bas	sis E	J <mark>*</mark>	^f is Isow		
	give	en a	basis	ξυ,	,, \	1n3 :	for a	vert	Or Spa	ue V	u, the	dual	bas	sis E	J <mark>*</mark>			
	give	en a	basis	ξυ,	,, \	1n3 :	for a	vert	Or Spa	ue V	u, the	dual	bas	sis E	J <mark>*</mark>			
	give	en a	basis	ξυ,	,, \	1n3 :	for a	vert	Or Spa	ue V	u, the	dual	bas	sis E	J <mark>*</mark>			
	give	en a	basis	ξυ,	,, \	1n3 :	for a	vert	Or Spa	ue V	u, the	dual	bas	sis E	J <mark>*</mark>			