Logic Design by MOS Gates

VLSI Design Flow

Conduction Complement

Complementary CMOS gates always produce 0 or 1

- Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS

- Rule of *Conduction Complements*
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel

Realization by NAND Gates

CMOS Gate Design

CMOS NOR gate

Realization by NOR Gates

Complementary CMOS (single complex cell)

- Complementary CMOS logic gates
 - nMOS pull-down network
 - pMOS pull-up network
 - a.k.a. static CMOS

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Series and Parallel

- nMOS: 1 = ON
- pMOS: 0 = ON
- Series: both must be ON
- Parallel: either can be ON

(c)

(d)

ON

ON

OFF

Compound Gates

Compound gates can do any inverting function

•
$$Y = \overline{(A+B+C) \bullet D}$$

Example:

$$Y = \overline{(A \bullet B) + (C \bullet D)}$$

Example:
$$Y = \overline{(A \bullet B) + (C \bullet D)}$$

Several Realizations: NMOS

$$Y = \overline{AB + CD} = \overline{AB + CD} = (\overline{A+B})(\overline{C+D}) = \overline{AC + BC + AD + BD}$$

$$= (\overline{A+C})(B+C)(A+D)(B+D)$$

Series-Parallel (SP)

Several Realizations: PMOS

$$Y = \overline{AB + CD} = (\overline{A} + \overline{B}) (\overline{C} + \overline{D}) = \overline{A} \overline{C} + \overline{B} \overline{C} + \overline{A} \overline{D} + \overline{B} \overline{D}$$

Different single complex cell designs using CMOS

Different single complex cell designs using CMOS

$$Y = \overline{(AD + BD + CD)}$$

•
$$Y = \overline{(AD + BD + CD)}$$

How to optimize the circuit?

The question of delay, power, space

Two level gate level optimization

Multilevel gate level optimization

Optimization with respect to transistors

Optimization with respect to space in fabrication of Integrated circuits