Let X and Y be compact topological spaces, and consider the product space $X \times Y$. Let $\{U_{\alpha}\}_{{\alpha} \in \mathcal{A}}$ be an open cover of $X \times Y$, then for each ${\alpha} \in \mathcal{A}$, there exist collections $\{U_{\beta}\}_{{\beta} \in \mathcal{B}_{\alpha}}$ and $\{V_{\beta}\}_{{\beta} \in \mathcal{B}_{\alpha}}$ of open sets in X and Y respectively, where

$$U_{\alpha} = \bigcup_{\beta \in \mathcal{B}_{\alpha}} U_{\beta} \times V_{\beta}.$$

Now, let $\{U'_{\beta}\}_{\beta\in\mathcal{B}}$ be a collection of open sets in X where

$$\mathcal{B} = \bigcup_{lpha \in \mathcal{A}} \mathcal{B}_{lpha}$$

We can show that this collection is an open cover of X. Let $x \in X$, then we know that there exists $y \in Y$ where $(x,y) \in X \times Y$. Since $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ is a cover of $X \times Y$, we know that for all $(x,y) \in X \times Y$, there exists $\alpha \in \mathcal{A}$ and $\beta \in \mathcal{B}_{\alpha}$ where $x \in U_{\beta}$, and thus there exists $\beta \in \mathcal{B}$ where $x \in U'_{\beta}$, thus we know that $\{U'_{\beta}\}_{\beta \in \mathcal{B}}$ is an open cover of X. A similar argument admits an open cover $\{V'_{\beta}\}_{\beta \in \mathcal{B}}$ of Y that depends on $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$. Since X and Y are compact, there exist finite subcovers $\{U'_{\beta}\}_{\beta \in \mathcal{B}'}$ and $\{V'_{\beta}\}_{\beta \in \mathcal{B}'}$ of X and Y respectively for some $\mathcal{B}' \subseteq \mathcal{B}$. Next, let $\{P_{\beta}\}_{\beta \in \mathcal{B}'}$ be a finite collection of sets where $P_{\beta} = U'_{\beta} \times V'_{\beta}$. For each $(x,y) \in X \times Y$, we know that there exists $\beta \in \mathcal{B}$ where $x \in U'_{\beta}$ and $y \in V'_{\beta}$, and thus there exists $\beta' \in \mathcal{B}'$ where $x \in U'_{\beta'}$ and $y \in V'_{\beta'}$, thus $(x,y) \in P_{\beta'}$, thus $\{P_{\beta}\}_{\beta \in \mathcal{B}'}$ is a finite cover of $X \times Y$. Lastly, there exists α where $\beta \in \mathcal{B}_{\alpha}$, thus