DM 14, corrigé

Exercice 1. Puissances d'endomorphismes

0) f est bien définie de \mathbb{R}^2 dans \mathbb{R}^2 . Il reste à montrer la linéarité pour que f soit un endomorphisme.

On fixe
$$X_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, X_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \in \mathbb{R}^2 \text{ et } \lambda, \mu \in \mathbb{R}$$
. On a alors :

$$f(\lambda X_1 + \mu X_2) = \begin{pmatrix} \lambda x_1 + \mu x_2 - (\lambda y_1 + \mu y_2) \\ 2(\lambda x_1 + \mu x_2) + 4(\lambda y_1 + \mu y_2) \end{pmatrix}$$
$$= \begin{pmatrix} \lambda (x_1 - y_1) + \mu (x_2 - y_2) \\ \lambda (2x_1 + 4y_1) + \mu (2x_2 + 4y_2) \end{pmatrix} .$$
$$= \lambda f(X_1) + \mu f(X_2).$$

f est donc bien un endomorphisme de \mathbb{R}^2 .

1) Pour $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$, on a par linéarité de f :

$$(f^{2} - 5f + 6\operatorname{Id}_{\mathbb{R}^{2}}) \begin{pmatrix} x \\ y \end{pmatrix} = f \begin{pmatrix} x - y \\ 2x + 4y \end{pmatrix} - 5 \begin{pmatrix} x - y \\ 2x + 4y \end{pmatrix} + 6 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} (x - y) - (2x + 4y) \\ 2(x - y) + 4(2x + 4y) \end{pmatrix} + \begin{pmatrix} -5x + 5y \\ -10x - 20y \end{pmatrix} + \begin{pmatrix} 6x \\ 6y \end{pmatrix}$$

$$= \begin{pmatrix} -x - 5y \\ 10x + 14y \end{pmatrix} + \begin{pmatrix} x + 5y \\ -10x - 14y \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

On a donc bien $f^2 - 5f + 6\operatorname{Id}_{\mathbb{R}^2} = 0$.

2) En reprenant l'expression obtenue à la question précédente, on remarque que $\mathrm{Id}_{\mathbb{R}^2}=\frac{5f-f^2}{6}$. Ceci entraine que :

$$\operatorname{Id}_{\mathbb{R}^2} = f \circ \left(\frac{5}{6} \operatorname{Id}_{\mathbb{R}^2} - \frac{1}{6} f\right) = \left(\frac{5}{6} \operatorname{Id}_{\mathbb{R}^2} - \frac{1}{6} f\right) \circ f.$$

On en déduit que f est inversible, donc bijective et que $f^{-1} = \frac{5}{6} \mathrm{Id}_{\mathbb{R}^2} - \frac{1}{6} f$.

3) On a directement $p+q=\mathrm{Id}_{\mathbb{R}^2}$ et avec la première question :

$$p \circ p = (f - 2\mathrm{Id}_{\mathbb{R}^2}) \circ (f - 2\mathrm{Id}_{\mathbb{R}^2})$$

$$= f^2 - 4f + 4\mathrm{Id}_{\mathbb{R}^2}$$

$$= 5f - 6\mathrm{Id}_{\mathbb{R}^2} - 4f + 4\mathrm{Id}_{\mathbb{R}^2}$$

$$= f - 2\mathrm{Id}_{\mathbb{R}^2}$$

$$= p.$$

1

Ceci entraine que p est un projecteur. On a de même :

$$q \circ q = (3\mathrm{Id}_{\mathbb{R}^2} - f) \circ (3\mathrm{Id}_{\mathbb{R}^2} - f)$$

 $= 9\mathrm{Id}_{\mathbb{R}^2} - 6f + f^2$
 $= 9\mathrm{Id}_{\mathbb{R}^2} - 6f + 5f - 6\mathrm{Id}_{\mathbb{R}^2}$
 $= 3\mathrm{Id}_{\mathbb{R}^2} - f$
 $= a$.

q est également un projecteur. Il est clair que $p \circ q = q \circ p$ car f et l'identité commutent et p et q ne dépendent que de f et de l'identité. On a alors (on pourrait faire le même calcul de l'autre côté bien sûr) :

$$q \circ p = (3\operatorname{Id}_{\mathbb{R}^2} - f) \circ (f - 2\operatorname{Id}_{\mathbb{R}^2})$$
$$= 3f - 6\operatorname{Id}_{\mathbb{R}^2} - f^2 + 2f$$
$$= 0$$

- 4) Calcul des puissances de f.
 - a) On a $p = f 2\operatorname{Id}_{\mathbb{R}^2}$ et $q = -f + 3\operatorname{Id}_{\mathbb{R}^2}$. On a donc 3p + 2q = f.
 - b) Puisque p et q commutent, on peut utiliser la formule du binome de Newton. On a alors pour $n \in \mathbb{N}$:

$$f^n = (3p + 2q)^n = \sum_{k=0}^n (3^k p^k) \circ (2^{n-k} q^{n-k}).$$

Or, puisque p et q sont des projecteurs, on a $p^j = p$ et $q^i = q$ pour tout $i, j \in \mathbb{N}^*$. Puisque $p \circ q = 0$, on en déduit que tous les termes de la somme sont nuls sauf ceux pour k = 0 et k = n. On obtient donc pour $n \in \mathbb{N}^*$:

$$f^n = 2^n q^n + 3^n p^n = 3^n p + 2^n q.$$

La propriété est également vraie en 0 car $f^0 = \mathrm{Id}_{\mathbb{R}^2} = p + q$.

c) Soit $n \in \mathbb{N}$. On a alors :

$$\begin{array}{ll} f^n \circ \left(3^{-n}p + 2^{-n}q\right) & = & (3^np + 2^nq) \circ (3^{-n}p + 2^{-n}q) \\ & = & p^2 + 3^n2^{-n}p \circ q + 2^n3^{-n}q \circ p + q^2 \\ & = & p + q \\ & = & \operatorname{Id}_{\mathbb{R}^3}. \end{array}$$

On fait de même à gauche, ce qui prouve que f^n est inversible et que $(f^n)^{-1} = f^{-n} = 2^{-n}p + 3^{-n}q$ ce qui prouve la propriété voulue pour tous les n négatifs.

5)

a) Soit $n \in \mathbb{N}$. On remarque que $\binom{u_{n+1}}{v_{n+1}} = f\binom{u_n}{v_n}$. Par récurrence directe, on en déduit que : $\binom{u_n}{v_n} = f^n\binom{u_0}{v_0}$

$$= 3^n p \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} + 2^n q \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}.$$

b) Les deux suites sont dominées par 2^n si et seulement si $p\begin{pmatrix} u_0 \\ v_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, autrement dit si et seulement si :

$$\begin{pmatrix} u_0 - v_0 \\ 2u_0 + 4v_0 \end{pmatrix} - 2 \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} -u_0 - v_0 = 0 \\ 2u_0 + 2v_0 = 0 \end{cases}$$

On a donc comme condition nécessaire et suffisante que $u_0 + v_0 = 0$.

PROBLÈME Noyaux et images itérés

Partie I. Étude de C et N

1) Soit $x \in \ker(f^n)$. On a $f^n(x) = 0$ donc $f^{n+1}(x) = f(f^n(x)) = f(0) = 0$ car f est linéaire. Ceci entraine que $f^{n+1}(x) = 0$ et donc que $x \in \ker(f^{n+1})$. On a donc montré que $\ker(f^n) \subset \ker(f^{n+1})$.

Soit $y \in \text{Im}(f^{n+1})$. Il existe donc $x \in E$ tel que $f^{n+1}(x) = y$. On a alors également $y = f^n(f(x))$ ce qui prouve que $y \in \text{Im}(f^n)$. On a donc montré que $\text{Im}(f^{n+1}) \subset \text{Im}(f^n)$.

2) C est une intersection de sous-espaces vectoriels de E. C'est donc un sous-espace vectoriel de E. Montrons à présent que N est un sous-espace vectoriel de E. Il est non vide car il contient 0 (car par exemple $0 \in \ker(f)$ et que $\ker(f) \subset N$). Soient $x, y \in N$ et $\lambda, \mu \in \mathbb{K}$. Montrons que $\lambda x + \mu y \in \mathbb{K}$. Puisque $x \in N$, il existe $n_1 \in \mathbb{N}$ tel que $x \in \ker(f^{n_1})$. De même, il existe $n_2 \in \mathbb{N}$ tel que $y \in \ker(f^{n_2})$. Posons $n_3 = \max(n_1, n_2)$. On a alors:

$$\begin{array}{lcl} f^{n_3}(\lambda x + \mu y) & = & \lambda f^{n_3}(x) + \mu f^{n_3}(y) \\ & = & \lambda f^{n_3 - n_1}(f^{n_1}(x)) + \mu f^{n_3 - n_2}(f^{n_2}(y)) \\ & = & \lambda f^{n_3 - n_1}(0) + \mu f^{n_3 - n_2}(0) \\ & = & 0 \end{array}$$

Ceci entraine que $\lambda x + \mu y \in \ker(f^{n_3}) \subset N$ (car N est l'union de tous les noyaux). On a donc N qui est non vide et stable par combinaisons linéaires. C'est un sous-espace vectoriel de E.

3) Montrons que C est stable par f. Soit $y \in C$. Montrons que $f(y) \in C$. Par hypothèse, pour tout $n \in \mathbb{N}$, on a $y \in \text{Im}(f^n)$. Pour tout $n \in \mathbb{N}$, il existe donc $x_n \in E$ tel que $y = f^n(x_n)$. On a alors $f(y) = f^{n+1}(x_n) = f^n(f(x_n))$. Ceci entraine que pour tout $n \in \mathbb{N}$, $f(y) \in \text{Im}(f^n)$. f(y) est donc dans tous les $\text{Im}(f^n)$ et donc dans leur intersection. On en déduit que $f(y) \in C$. C est donc stable par f.

Montrons que N est stable par f. Soit $x \in \mathbb{N}$. Il existe donc $n \in \mathbb{N}$ tel que $x \in \ker(f^n)$, c'est à dire tel que $f^n(x) = 0$. Ceci entraine que $f^{n+1}(x) = f(f^n(x)) = f(0) = 0$ et puisque $f^{n+1}(x) = f^n(f(x))$, on a $f(x) \in \ker f^n$. On en déduit que f(x) est dans au moins un des $\ker(f^n)$ et donc que $f(x) \in N$, ce qui implique que f(x) est stable par f.

- 4) On va procéder par double implication.
- (⇒) Supposons f injective. On a alors $f \circ f$ injective (composée d'applications injectives) et par récurrence directe, pour tout $k \in \mathbb{N}^*$, f^k est injective. On a également $f^0 = \text{Id}$ qui est injective. Ceci entraine que pour tout $k \in \mathbb{N}$, $\ker(f^k) = \{0\}$ et donc que $N = \{0\}$.
- (\Leftarrow) Réciproquement, si $N = \{0\}$, alors puisque $\ker(f) \subset N$, on a également $\ker(f) \subset \{0\}$. Ceci entraine que $\ker(f) = \{0\}$ (l'inclusion inverse étant toujours vraie) et donc que f est injective.
 - 5) Encore par double implication.
- (\Rightarrow) Supposons f surjective. On a alors également $f \circ f$ surjective (composée d'applications surjectives) et par récurrence directe, f^k est surjective pour tout $k \in \mathbb{N}^*$. On a également $f^0 = \text{Id}$ qui est surjective. Ceci entraine que pour tout $k \in \mathbb{N}$, f^k est surjective et donc que $\text{Im}(f^k) = E$. On a donc bien C = E.
- (\Leftarrow) Réciproquement, supposons C=E. On a alors $E\subset \mathrm{Im}(f)$ (car $C\subset \mathrm{Im}(f)$). Or, l'inclusion $\mathrm{Im}(f)\subset E$ est toujours vraie car f est un endomorphisme. On en déduit que $\mathrm{Im}(f)=E$ et donc que f est surjective.

6) Exemples:

a) Soient F et G deux sous-espaces vectoriels de E tels que $E = F \oplus G$ et f la projection sur F parallèlement à G. On a $f^2 = f \circ f = f$ car f est un projecteur. Ceci entraine par récurrence directe que pour tout $k \in \mathbb{N}^*$, on a $f^k = f$. Pour calculer G et G il suffit donc de calculer G in G i

b) On prend $E=\mathbb{R}[X]$ et $f: \left\{ \begin{array}{ccc} \mathbb{R}[X] & \to & \mathbb{R}[X] \\ P & \mapsto & XP(X) \end{array} \right.$. Il est clair que f est bien définie et linéaire. On a de plus f injective. En effet, si $P \in \ker(f)$, on a f(P) = XP(X) = 0. Ceci entraine que le polynôme P a une infinité de racines et donc que c'est le polynôme nul (il s'annule plus de fois que son degré). On a donc $\ker(f) = \{0\}$ et d'après la question 3, on a $N = \{0\}$.

Pour $n \in \mathbb{N}$, on a $f^n(P) = X^n P(X)$. Ceci entraine que $\operatorname{Im}(f^n)$ est l'ensemble des polynômes ayant 0 comme racine de multiplicité au moins n. Montrons ceci par double inclusion.

(\subset) Soit $Q \in \text{Im}(f^n)$. Il existe donc $P \in \mathbb{R}[X]$ tel que $Q = X^n P$. Ceci entraine soit que Q = 0 (si P = 0), soit que X^n divise Q. Dans les deux cas, on a bien Q qui admet 0 comme racine de multiplicité au moins n.

(\supset) Réciproquement, si Q admet 0 comme racine de multiplicité au moins n, il existe $P \in \mathbb{R}[X]$ tel que $Q = X^n P$ donc $Q = f^n(P)$, ce qui est bien le fait que $Q \in \text{Im}(f^n)$.

Montrons alors que $C = \{0\}$. L'inclusion $\{0\} \subset C$ est toujours vraie car C est un espace vectoriel. Réciproquement, si $P \in C$, alors pour tout $n \in \mathbb{N}^*$, 0 est racine de multiplicité au moins n de P. On en déduit que P admet 0 comme racine de multiplicité strictement plus grande que son degré. Ceci n'est possible que si P = 0. On a donc $C = \{0\}$.

c) On prend $E = \mathbb{R}^3$ et $f : \mathbb{R}^3 \to \mathbb{R}^3$ définie par $\forall (x,y,z) \in \mathbb{R}^3$, $f((x,y,z)) = \left(\frac{x+y}{2}, \frac{x+y}{2}, z\right)$. f est bien définie de \mathbb{R}^3 dans \mathbb{R}^3 . Vérifions rapidement la linéarité. Si (x,y,z) et (x',y',z') sont dans \mathbb{R}^3 et $\lambda, \mu \in \mathbb{R}$, on a :

$$f(\lambda(x, y, z) + \mu(x', y', z')) = f((\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z'))$$

$$= \left(\frac{\lambda x + \mu x' + \lambda y + \mu y'}{2}, \frac{\lambda x + \mu x' + \lambda y + \mu y'}{2}, \lambda z + \mu z'\right)$$

$$= \lambda \left(\frac{x + y}{2}, \frac{x + y}{2}, z\right) + \mu \left(\frac{x' + y'}{2}, \frac{x' + y'}{2}, z'\right)$$

$$= \lambda f((x, y, z)) + \mu f((x', y', z')).$$

Ceci entraine que f est linéaire. Remarquons que $f \circ f = f$ car pour tout $(x, y, z) \in \mathbb{R}^3$:

$$f(f((x,y,z))) = f\left(\left(\frac{x+y}{2}, \frac{x+y}{2}, z\right)\right)$$

$$= \left(\frac{\frac{x+y}{2} + \frac{x+y}{2}}{2}, \frac{\frac{x+y}{2} + \frac{x+y}{2}}{2}, z\right)$$

$$= \left(\frac{x+y}{2}, \frac{x+y}{2}, z\right)$$

$$= f((x,y,z)).$$

Pour déterminer les espaces caractéristiques de f, il faut calculer son image et son noyau. On a :

$$(x, y, z) \in \ker(f) \Leftrightarrow \left\{ \begin{array}{l} x + y = 0 \\ z = 0 \end{array} \right.$$

On a donc $\ker(f)$ qui est la droite \mathcal{D} passant par O de vecteur directeur $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$.

On a également pour tout $(x, y, z) \in \mathbb{R}^3$:

$$f((x,y,z)) = \frac{x+y}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix} + z \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

Ceci entraine que $\operatorname{Im}(f) \subset \mathcal{P}$ où $\mathcal{P} = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}\right)$. L'inclusion réciproque est vraie (soit par un argument de dimension, car on sait que $\operatorname{Im}(f)$ est de dimension 2 donc un plan), soit puisque l'application $(x,y) \mapsto \frac{x+y}{2}$ est surjective de \mathbb{R}^2 dans \mathbb{R} donc on atteint bien toutes les valeurs possibles.

D'après la question 6.a, on a $C = \mathcal{P}$ et $N = \mathcal{D}$.

Partie II. Temps d'arrêt

On suppose dans cette partie qu'il existe un $n \in \mathbb{N}$ tel que $\ker(f^n) = \ker(f^{n+1})$ et un $m \in \mathbb{N}$ tel que $\operatorname{Im}(f^m) = \operatorname{Im}(f^{m+1})$. 7) On a montré que $\ker(f^{n+1}) \subset \ker(f^{n+2})$ au I.1. Montrons

l'inclusion réciproque. Fixons pour cela $x \in \ker(f^{n+2})$. On a alors $0 = f^{n+2}(x) = f^{n+1}(f(x))$ et donc $f(x) \in \ker f^{n+1}$. Or, on a par hypothèse $\ker f^{n+1} = \ker f^n$. On en déduit que $f(x) \in \ker f^n$, c'est à dire que $f^n(f(x)) = 0$. On a donc $f^{n+1}(x) = 0$, c'est à dire $x \in \ker(f^{n+1})$. On a donc montré que $\ker(f^{n+2}) \subset \ker(f^{n+1})$ ce qui montre l'autre inclusion.

On a déjà montré l'inclusion $\operatorname{Im}(f^{m+1})\supset \operatorname{Im}(f^{m+2})$ au I.1. Montrons l'inclusion réciproque. Soit $y\in \operatorname{Im}(f^{m+1})$. Il existe donc $x\in E$ tel que $y=f^{m+1}(x)$. On a $f^m(x)\in \operatorname{Im}(f^m)=\operatorname{Im}(f^{m+1})$ par hypothèse. Il existe donc $x'\in E$ tel que $f^m(x)=f^{m+1}(x')$. Ceci entraine en composant par f que $f^{m+2}(x')=f^{m+1}(x)=y$. On a donc $y\in \operatorname{Im}(f^{m+2})$. Ceci montre que $\operatorname{Im}(f^{m+1})\subset \operatorname{Im}(f^{m+2})$.

8) L'ensemble $A = \{k \in \mathbb{N} \ / \ \ker(f^k) = \ker(f^{k+1})\}$. A est une partie de \mathbb{N} non vide (elle contient n) et minorée (par 0). Elle admet donc un minimum que l'on notera s. On a alors pour tout k < s, d'après l'inclusion de la partie I.1 que $\ker(f^0) \subset \ker(f^1) \subset \ldots \subset \ker(f^s)$. De plus, les inclusions sont strictes sinon cela contredirait la définition du minimum. On a ensuite $\ker(f^s) = \ker(f^{s+1})$ et ensuite $\ker(f^{s+1}) = \ker(f^{s+2})$ en utilisant la question précédente. On a alors par récurrence directe que pour tout k > s, $\ker(f^{k+1}) = \ker(f^k) = \ldots = \ker(f^s)$. s est bien unique car c'est le premier entier tel que $\ker(f^s) = \ker(f^{s+1})$. On a donc bien :

$$\ker(f^0) \subsetneq \ker(f) \subsetneq \ker(f^2) \subsetneq \dots \subsetneq \ker(f^s) = \ker(f^{s+1}) = \ker(f^{s+2}) = \dots$$

On procède exactement de même pour les images en considérant le minimum de $B = \{k \in \mathbb{N} \mid \operatorname{Im}(f^k) = \operatorname{Im}(f^{k+1})\}$, les inclusions étant données par le I.1 (le fait qu'elles soient strictes par la définition du minimum) et les égalités des ensembles à partir du rang r venant de la question précédente (si on a égalité à partir d'un rang, alors on a égalité pour tous les rangs suivants).

Puisque les $\ker(f^k)$ sont tous égaux à $\ker(f^s)$ à partir du rang s et que les $\operatorname{Im}(f^k)$ sont égaux à $\operatorname{Im}(f^r)$ à partir du rang r, on a :

$$N = \bigcup_{k=0}^{r} \ker(f^k) \text{ et } C = \bigcap_{k=0}^{s} \operatorname{Im}(f^k).$$

Or, d'après les inclusions démontrées à cette question, pour $k \in [0, s]$, tous les $\ker(f^k)$ sont inclus dans $\ker(f^r)$ et pour $k \in [0, r]$, tous les $\operatorname{Im}(f^k)$ contiennent $\operatorname{Im}(f^r)$. On a donc bien $N = \ker(f^s)$ et $C = \operatorname{Im}(f^r)$.

9) Montrons que $N \cap \text{Im}(f^s) = \{0\}$. L'inclusions $\{0\} \subset N \cap \text{Im}(f^s)$ est toujours vraie car 0 est toujours dans un espace vectoriel. Montrons l'inclusion réciproque. Soit $x \in N \cap \text{Im}(f^s)$. On alors d'après la question précédente $x \in \ker(f^s) \cap \text{Im}(f^s)$. Puisque $x \in \text{Im}(f^s)$, il existe $y \in E$ tel que $x = f^s(y)$. Puisque $x \in \ker(f^s)$, on a $f^s(x) = 0$ donc $f^{2s}(y) = 0$, ce qui entraine $y \in \ker(f^{2s})$. Or, $\ker(f^s) = \ker(f^{2s})$ d'après la question 2. On en déduit que $y \in \ker(f^s)$, ce qui entraine $f^s(y) = 0$. puisque $x = f^s(y)$, on a donc montré que x = 0 et donc l'inclusion inverse.

On a bien montré $N \cap \text{Im}(f^s) = \{0\}.$

10) Montrons que $E = I + N_r$. L'inclusion (\supset) est toujours vraie. Montrons donc l'autre inclusion. Soit $x \in E$. On a alors $f^r(x) \in \text{Im}(f^r)$. Puisque $\text{Im}(f^{2r}) = \text{Im}(f^r)$, il existe $y \in E$ tel que $f^{2r}(y) = f^r(x)$. Ceci entraine par linéarité de f^r que $f^r(x - f^r(y)) = 0$. On a donc :

$$x = f^{r}(-y) + (x - f^{r}(y)).$$

Ceci entraine que $x \in C + \ker(f^r)$. On a donc montré que $E \subset C + \ker(f^r)$ ce qui termine la preuve.

11) Puisque $N \cap \text{Im}(f^s) = \{0\}$, on a alors $N \cap \text{Im}(f^s) \cap \text{Im}(f^r) = \{0\}$. Or, $\text{Im}(f^s) \cap \text{Im}(f^r) = C$ (puisque C est l'intersection de toutes les images et d'après la question II.2). Ceci entraine que $N \cap C = \{0\}$.

Puisque $C + \ker(f^r) = E$ et que $\ker(f^r) \subset N$, on a alors C + N = E. On a donc montré que C + N = E et que $C \cap N = \{0\}$. Ceci entraine que $E = C \oplus N$. C et N sont donc supplémentaires.

12) Montrons que $f|_C$ est bijective de C dans C. On a déjà montré à la question I.3 que C était stable par f. Ceci implique que $f|_C$ est bien définie de C dans C.

Pour montrer l'injectivité de $f|_C$, considérons $x \in \ker(f|_C)$. On a alors f(x) = 0 avec $x \in C$. On a alors $x \in \ker(f) \subset N$. Ceci entraine que $x \in C \cap N$, et donc que x = 0. On en déduit que $\ker(f|_C) = \{0\}$ et donc que $f|_C$ est injective.

Montrons à présent que $f|_C$ est surjective de C dans C. Soit $x \in C$. On a alors en particulier $x \in \text{Im}(f^{s+1})$ (car C est l'intersection de toutes les images). Il existe donc $y \in E$ tel que $x = f^{s+1}(y)$. Or, puisque $E = C \oplus N$, il existe $x' \in C$ et $y' \in N$ tels que y = x' + y'. Puisque $N = \ker(f^s)$, on a alors:

$$x = f^{s+1}(y)$$

$$= f(f^{s}(x' + y'))$$

$$= f(f^{s}(x') + f^{s}(y'))$$

$$= f(f^{s}(x')).$$

On a donc $x = f(f^s(x'))$ avec $x' \in C$. Puisque C est stable par f, on a également $f^s(x') \in C$. On a donc $x = f(f^s(x'))$ avec $f^s(x') \in C$. On a donc construit un antécédent par f à x dans C. $f|_C$ est donc surjective de C dans C.

Ceci entraine que $f|_C$ est un automorphisme de C dans C.

13) On va montrer que $r \leq s$ et que $r \geq s$.

Soit $x \in \ker(f^r)$. On a alors $f^s(x) \in \operatorname{Im}(f^s)$ et $f^s(x) \in N$ (car $x \in N$ et N est stable par f d'après la question I.3. On a donc $f^s(x) \in \operatorname{Im}(f^s) \cap N$, ce qui montre que $f^s(x) = 0$. On a donc $x \in \ker(f^s)$. On a donc $\ker(f^r) \subset \ker(f^s)$. Or, $\ker(f^r)$ est « le plus grand » des noyaux d'après la question II.2. On en déduit que $r \leq s$.

Soit à présent $x \in \text{Im}(f^s)$. Il existe donc $y \in E$ tel que $x = f^s(y)$. Or, d'après le II.4, il existe $x' \in C$ et $y' \in \text{ker}(f^r)$ tels que y = x' + y'. On a alors :

$$x = f^{s}(x' + y') = f^{s}(x') + f^{s}(y').$$

Or, on a montré ci-dessus que $r \leq s$. On a donc $f^s(y') = f^{s-r}(f^r(y')) = f^{s-r}(0) = 0$. On a donc $x \in f^s(x')$ avec $x' \in C$. Or, C est stable par f (d'après le I.3), ce qui entraine que $x \in C$, c'est à dire $x \in \text{Im}(f^r)$. On a donc montré $\text{Im}(f^s) \subset \text{Im}(f^r)$. Or, $\text{Im}(f^r)$ est la « plus petite » des images des f^k d'après le II.2. On en déduit que $s \geq r$.

Par double inégalité, on a donc s = r.