Abfalltrennung mittels Künstlicher Intelligenz Eine Zusammenfassung der prominentesten Methoden

Sorin Arion, Naser Azizi, Leonard Haddad, Christian Jaros, Maximilian Mai

Zusammenfassung-In diesem Paper wird unsere Vorstellung einer sinnvollen Mülltrennung mittels eines KI-gesteuerten Roboterarms aufgezeigt. Die Klima-Krise ist eines der (wenn nicht das) kritischsten Probleme des 21. Jahrhunderts. Durch eine immer weiter wachsende Ökonomie und Weltbevölkerung, in einem System, welches auf dem Prinzip der endlosen Herstellung von Produkten für Verbraucher*innen basiert, ist es immer wichtiger, dieses nachhaltig zu gestalten. Zur Zeit erzeugt dieses System unendliche Massen an Abgasen und giftigen Materialien, durch welche die Umwelt verseucht wird.

Um dieses zu verhindern, werden hier verschiedene bestehende Mülltrennungsverfahren mittels Künstlicher Intelligenz (KI) vorgestellt. Diese können für Produkte im sogenannten end-to-end Stil verwendet werden, startend mit der Produktion und bishin zum Lebensende der Produkte.

Index Terms—Mülltrennung, Künstliche Intelligenz, Nachhaltigkeit

I. EINLEITUNG

ÜLLENTSORGUNG ist im 21. Jahrhundert eins der größten weltweiten Probleme. Mit steigender Population und Konsum steigt auch die Erzeugung von Abfall. Neben den Auswirkungen auf Klima und Umwelt schadet sie auch der Gesundheit vieler Menschen, in vor allem ärmeren Ländern, in denen es keine Müllentsorgungseinrichtungen gibt [1]. Damit geht einher, dass Problem der richtigen Müllentsorgung, sowie ein Konzept zu entwickeln, dass das Entsorgen vereinfacht und bezahlbar macht. Des Weiteren gehen viele wertvolle Materialien verloren, welche durch das Recycling widergewonnen werden könnten.

Die klimaneutrale Entsorgung von Müll ist keine einfache Aufgabe - es gibt viele verschiedene Arten an Abfällen, welche getrennt werden müssen. Zusätzlich entstehen viele Produkte aus Kompositionen von unterschiedlichen Materialien, welche sich nach dem Zusammenfügen nicht mehr trennen lassen. Viele Tonnen an Abfällen werden bereits in frühen Phasen der Produktentwicklung für Konsument*innen erzeugt. Diese lassen sich jedoch nicht wiederverwendet oder ordnungsgerecht entsorgt werden, sondern müssen stattdessen verbrannt werden [2]. Um Abfälle klimaneutral zu entsorgen und so viele Ressourcen wie möglich wiederzugewinnen, müssen diese richtig getrennt werden.

Bisherige Konzepte wie die Eco-City [3] beziehen sich auf die sogenannte End-to-End Abfallentsorgung für Produkte, beginnend bei der Herstellung von diesen (bei denen Produktionabfälle anfallen), während der Lebenszeit des Produktes (z.B. durch Wiederverwendung/Refurbishing bei nichtgebrauch) und bis hin zum Lebensende der Produkte (Recycling und Wiedergewinnung von Ressourcen). Ein ähnliches Konzept stellt die sogenannte Kreislaufwirtschaft dar, bei welcher es hauptsächlich, um die Wiederverwendung sowie

die Herstellung von Produkten geht, welche möglichst lange

In diesem Forschungsantrag widmen wir uns dem Konzept der Mülltrennung mittels KI, da keine der Abfallentsorgungskonzepte funktioniert ohne eine richtige Trennung der Müllarten zu haben. Hierbei haben wir uns dazu entschieden, das Konzept eines Roboter-Arms vorzustellen, welcher in Müllhalden Abfälle in verschiedene dafür vorgesehene Behälter sortieren kann.

II. AUSGANGSLAGE

Mit wachsender Anzahl der Weltbevölkerung und ansteigender Entwicklung unserer Technologien, nimmt auch die Erzeugung der Abfallprodukte sowie ihr Einfluss auf den Zustand unserer Welt zu. Durch die ansteigende Müllerzeugung wird die Entsorgung und Wiederverwertung dieser Produkte immer wichtiger. Umso bedeutungsvoller wird es, an Ressourcen zu sparen bzw. diese nicht zu verschwenden und sie richtig zu entsorgen. Das Müll Management [2] wird immer wichtiger, darunter fällt das Sammeln, die Identifizierung, die Trennung, der Transport und letzlich die Entsorgung von Abfällen und Wiederverwertung recyclebarer Elemente. Unsere Lebensqualität hängt davon ab, ob und wie gut Abfälle entsorgt werden. Die Verschmutzung der Umwelt kann negative Auswirkungen auf alle Organismen mit sich bringen. Auch für uns Menschen kann dies Folgen auf unsere körperliche und geistige Gesundheit haben. Zusammenfassend lässt sich unsere Ausgangslage als, einen weilweiten Zuwachs an Abfall beschreiben, dessen richtige Entsorgung meistens nicht vollständig sichergestellt wird. Welches negativen Folgen auf uns und die Umwelt hat. Zusätzlich werden generell nicht alle wiedergewinnbaren Elemente recycelt, um Kosten zu sparen.

Mit der Entwicklung der Technik verwandeln wir unsere Städte immer mehr in technologisch unterstützte Städte, sogenannte Smart Cities[2]. Durch Anwendung von Technologien wie dem Internet of Things (IOT) werden immer mehr Prozesse oder auch ganze Prozessabschnitte von Maschinen vereinfacht und/oder ganz übernommen. Viele Prozesse im Müllmanagement sind zunächst nur mithilfe menschlicher Bemühungen zu erfüllen. Eine ordnungsgemäße Abfallentsorgung trägt dazu bei unsere Umwelt besser zu schützen. Andernfalls können Umweltschäden wie erhöhte Treibhausgase entstehen. Dabei spielt die Abfalltrennung in den privaten Haushalten eine wichtige Rolle, welche in erster Linie von den Verbraucher*innen abhängt. Die Trennung des Abfalls in den Entsorgungsanlagen kann nur durchgeführt werden, da über gesetzliche Vorgaben eine ordnungsgemäße Trennung von Abfällen stattfindet.

Zurzeit zielt das Design unserer Städteplanung darauf ab, unsere Lebensqualität zu maximieren, dies wird als Eco City [3] bezeichnet. Auch deshalb nimmt der Konsum und die daraus folgende Erzeugung von Abfall immer weiter zu. Als Folge davon entwickelt sich der Trend, dass wir bei der Abfallentsorgung, versuchen keine Ressourcen zu verschwenden und diese auch zurückzugewinnen. Dieser Trend wird als *Zero Waste City* [3] beschrieben, dort wird versucht nicht nur den Abfall komplett zu entsorgen, sondern auch alle mögliche Ressourcen komplett zu recyclen.

Um das Ziel der Zero Waste City zu erreichen, gibt es verschiedene Ansätze die Müllentsorgung effizienter zu gestalten. Eine Methode ist es, die Trennung des Abfalls mithilfe von Maschinen zu automatisieren. Dafür werden Algorithmen zur Bilderkennung eingesetzt, um den Abfall zu erkennen und zuzuordnen. Hierzu gibt es verschiedene Ansätze, von denen hier einige erwähnt werden.

Alle Ansätze verwenden Machine Learning (ML) Algorithmen, um den Abfall über Bilder, Video oder andere Möglichkeiten zu erkennen und zu identifizieren. Beispielsweise haben Salmador, Pérez Cid und Rodríguez Novelle [4] versucht mithilfe ihres Intelligent Gargabe Classifier (IGC) die Trennung von festen Abfallprodukten über visuelle Klassifizierung zu verbessern. Dafür haben sie in ihrerer Arbeit den Prozess der Mülltrennung analysiert. Die Abfalltrennung wurde über Fließbänder geregelt. Dabei wird mithilfe eines Magneten Metall separiert und über ein Gebläse das Papier aussortiert. Zuletzt trennen die Arbeiter*innen den verbleiben Abfall. Ihr System bestand im wesentlichen aus einem Roboterarm, der die Arbeit der Trennung übernimmt, während eine Kamera den Abfall erkennt und klassifiziert. Die Klassifizierung der Objekte wurde über die Bilder der Kamera basierend auf einem k-nearest neighbours classifier (k-NN) für Metall, Glas, Plastik und Papier vorgenommen.

Ein anderer Ansatz fokusiert sich auf die Weiterentwicklung von KI basierten Anwendungen. Dieser baut auf einem Augmented Clustering NMS mit ACNMS single-shot detector Methoden [5] auf. Allerdings erfolgt dieser bisher nur auf der Trennung von biologisch und nicht biologisch abbaubaren Abfällen. Die KI wird mithilfe eines Deep Learning Neural Networks trainiert und soll bei der Überwachung von smarten Mülltonnen helfen. Zusätzlich soll in Haushalten geholfen werden, den Abfall zu trennen und den Typ des Abfalls über die Sensoren erkennen.

Bhavana, Rajeswari, Pasyanthi u. a. [1] unterscheiden zwischen verderblichen und nicht verderblichen Abfällen mithilfe eines smarten Roboters. Auch dieser arbeitet auf einem KIbasierten ML Model. Bhavana, Rajeswari, Pasyanthi u. a. [1] entwickeln ein Abfall Klassifizierungssystem, welches durch Sensoren die Bilder für die Objekterkennung einholt. Ziel ihrer Forschung war es in den Haushalten, ohne menschliche Hilfe, den Abfall zu trennen. Hierdurch sollen Kosten gesenkt werden, die durch falsche Mülltrennung entstehen würden. Sie verwenden dafür auch die Technik von IoT, um Daten für ihr System schneller zu sammeln und in einer Cloud hochzuladen, sowie den Roboter über eine Smartphone Anwendung zu steuern. Mit einem Roboterarm soll der Müll dann immer in den richtigen Mülleimer entsorgt werden.

Einen weiteren Ansatz gibt es von Abeygunawardhana, Shalinda, Bandara u.a. [6], die über einen KI-basierten smarten

Mülleimer den Abfall einsammeln und sortieren. In diesem Fall unterscheiden sie den Abfall in Plastik, Metall und Glas. Per ML Algorithmen und Bildverarbeitung sortiert der Mülleimer den Abfall in deren entsprechende Eimer. Der smarte Mülleimer besteht aus drei Eimern und einer rotierenden Platte, die den Müll in den richtigen Eimer rotiert. Mithilfe einer Kamera lässt sich der Abfall identifizieren und über Sensoren, in den jeweiligen Eimern, wird der Befüllungsgrad bestimmen. Beim ML Algorithmus handelt es sich um ein CNN trainiertes Model, welches ein Objekt erkennt und kategorisiert. Mithilfe einer Smartphone Anwendung lässt sich die Bestandsmenge der Eimer, als auch die Strecke, den der Mülleimern zurücklegen soll, festlegen.

Einen ganz anderen Ansatz verfolgen Zhaojie, Chenjie, Jiajie u. a. [7], welche in China ein System vorstellen, dass Abfall klassifiziert bzw. kategorisiert. Mithilfe eines KI-basierten Systems, soll den Benutzer*innen geholfen werden das Objekt einer Kategorie einzuordnen. Mithilfe eines IoT unterstützten Systems lässt sich mit der Smartphone Kamera ein Bild oder Video vom Objekt aufnehmen und das System identifiziert das Objekt durch das KI Modell. Andernfalls lässt sich das Objekt im System auch über eine Fotogalerie finden und identifizieren. Der Benutzer erhält auch die Option das Objekt zu suchen oder es über Sprache zu benennen, um eine Klassifizierung zu erhalten. Realisiert wird alles über eine Datenbank, die von den Benutzer*innenn weiter ausgebaut werden kann, indem diese ein Foto, ein Video oder einen Eintrag in die Datenbank laden.

Leider reichen diese Ansätze nicht aus, um die Mülltrennung effizient und vollständig ohne menschliche Hilfe oder ohne zusätzlicher Mehrkosten für Haushalte zu lösen. Die Ansätze, die darauf absehen schon in den Haushalten vorab eine Mülltrennung zu erreichen, würden eine zusätzliche Belastung im Budget dieser Haushalte bewirken. Der Ansatz von Salmador, Pérez Cid und Rodríguez Novelle [4] benötigt weitere Mitarbeiter, die kontrollieren dass der Müll vernünftig getrennt wurde bzw. weitere Elemente, die nicht getrennt wurden sind trennen.

III. ZIELE

Im Allgemeinen wird in diesem Projekt angestrebt, viele der definierten Nachhaltigkeitsziele der UN, in einem gewissen Maße, zu erfüllen. Darunter fallen die Ziele Gesundheit und Wohlergehen (3), Industrie, Innovation und Infrastruktur (9), Nachhaltige Städte und Gemeinden (11), Nachhaltiger Konsum und Produktion (12) und Maßnahmen zum Klimaschutz (13). Diese Ziele werden in den Konzepten des nachhaltigen Müllmanagements berücksichtigt und die übergeordneten Ziele dieses Projektes sind unter anderem die Reduzierung von CO_2 mit Hilfe von Abfalltrennung (13). Diese werden durch das Recycling und die Kompostierung, also die Wiederverwendung von erzeugten Gütern, verstärkt (9, 11, 12). Durch das Erreichen dieser Ziele sinkt die Umweltbelastung (13). Gleichzeitig werden die Risiken für Gesundheit und Wohlbefinden reduziert (3). CO_2 kann genau dort eingespart werden, wo die Produktion und der Verbrauch von Materialien zurückgeht. Man nähert sich immer mehr einer Kreislaufwirtschaft an, wo

3

alles Weggeworfene eine Wiederverwendung findet. Um diese übergeordneten Ziele umzusetzen, Bedarf es an Konzepten, die diese Probleme aufgreifen und versuchen zu lösen. Im Kern sollen dabei KI-basierte Verfahren und die Robotik untersucht werden, um die Einhaltbarkeit der Nachhaltigkeitsziele zu erforschen.

Es werden unterschiedliche Arten von Abfällen in Betracht gezogen. Darunter können unter anderem Papier, Glas, Metalle und biologische Abfälle fallen. Es wäre von großem Nutzen diese automatisiert erkennen zu können und nach dem Identifizieren auch zu trennen. Zunächst wird nur auf das Erkennen eingegangen. Um Abfall einer möglichen Kategorie zuzuordnen, ist eines der Ziele, ein KI-Modell auf visuellen Daten, z.B auf Bildern oder anderen Sensordaten zu trainieren. sodass eine Klassifizierung von Abfall auf Kategorien möglich wird. Hier bietet sich an das Modell auf vielen Kategorien zu trainieren, um zwischen allen möglichen Materialien in Abfällen zu unterscheiden. Um zu überprüfen, dass dieses Modell im Einsatz funktioniert, soll entsprechend auf Daten getestet werden, die das Modell noch nie gesehen hat. Das wird für die Auswertung der Performance des Modells genutzt. Hier können Standard Metriken zur Auswertung des Modells verwendet werden.

Für das Training des KI-Modells, werden großen Mengen von Trainingsdaten, insbesondere Bilder benötigt. Daher ergibt sich aus dem genannten Problem das Ziel, Daten in großen Mengen zu akquirieren und zu labeln. Außerdem muss eine Infrastruktur bereitgestellt werden, welche das Bildmaterial in komprimierter Form speichert und für das Training nach Bedarf nutzen kann.

Die Sortierung soll durch einen Roboterarm vorgenommen werden. Dieser wird in Kooperation mit einem Unternehmen verwendet, welches sich auf die Abfallentsorgung spezialisiert und in einer Abfallentsorgungsanlage innerhalb einer Testphase platziert. Der Roboterarm ist in der Lage zwischen verschiedenen Materialien in Abfällen zu unterscheiden und dadurch eine Klassifikation vorzunehmen. Darauf basierend soll eine Sortierung durchgeführt werden. Eine Evaluation kann nach festgelegten Kriterien durchgeführt werden, um die Leistung des Roboterarms zu bewerten und anschließend ein kritisches Fazit zu ziehen. Diese Kriterien müssen dann bei der Planung und Organisation definiert werden. Eine Softwarearchitektur und Verfahren müssen ausgearbeitet werden, die das Fundament für die Klassifikation und Sortierung des Abfalls stellen. Um die Sinnhaftigkeit der Architektur zu überprüfen, bietet es sich an Prototypen zu entwickeln, um einzelne Aspekte der Architektur testen. Außerdem kann dieser Prototyp iterativ ausgebaut werden, um zur Laufzeit des Projekts auf Qualitätsaspekte einzugehen. Gekoppelt an der Architektur müssen Anwendungsszenarien ausgearbeitet werden, damit die Sortierung des Mülls mit Hilfe des Roboterarms gelingen kann. Eine Anbindung an das IoT lässt sich zukünftig mithilfe einer graphischen Oberfläche, in Form einer Smartphoneapp lösen, die bei Inbetriebnahme bereitgestellt wird.

IV. METHODISCHES VORGEHEN

Die statische Sicht des Systems ist in der Abbildung 1 zu sehen.

Abbildung 1. Statische Sicht des Systems

Die Planungskomponente abstrahiert von allen anderen Komponenten und dient dazu, Gesamtentscheidungen für das System zu fällen. Diese Komponente kontrolliert also das Gesamtsystem und kann über Schnittstellen zu vielen Systemkomponenten kommunizieren.

Das Training der KI für den Roboter-Arm benötigt sehr große Mengen an Daten. Die Datenkollektion und Annotation ist eine der größten Herausforderungen bei Systemen welche künstliche Intelligenz verwenden. Diese sind meist mit großem Aufwand verbunden.

Für die Datenerhebung sollen öffentliche Einrichtungen wie z.B. die öffentliche Müllabfuhr genutzt werden, um Trainingsdaten zu erhalten. Hierbei sollen mehrere Abfallentsorgungsanlagen genutzt werden, um z.B. an vorsortierten Abfällen zu trainieren. Die Aufnahmen erfolgen dementsprechend in Zusammenarbeit mit den Entsorgungsunternehmen. Alle aufgenommenen Bilder werden an die Cloud-Schnittstelle übermittelt.

Die Einsetzung von Menschen zur Validierung hat zwar einen großen Aufwand in den frühen Phasen der Datenaufnahme, kann jedoch in späteren Phasen durch erneutes Training der Segmentierungs- und Klassifizierungs-KI mittels den aufgenommenen Daten automatisiert werden. So wird die KI in einem späteren Zeitpunkt mittels von Experten annotierten Daten sowie von weiteren aufgenommenen Daten von den IoT Sensoren trainiert, wodurch die Klassifizierungs- und Segmentierungsfähigkeit der KI verbessert werden soll.

Das KI-Modell soll zuallererst auf schon existierenden Datensets trainiert werden, um ein robustes Modell zu bauen. Ansonsten soll das Modell auf Sensordaten aus den öffentlichen Einrichtungen nachtrainiert werden, damit später robustes Zuordnen zu den Kategorien, in die man sortieren will, ermöglicht wird. Die Systemkomponente KI Modell - Training soll genau dafür zuständig sein, die Sensordaten und vorgelabelten Datensets aus der Cloud in ein einheitliches Format zu überführen und schließlich das Training auf den vereinheitlichten Sensordaten umzusetzen. Nach Abschluss des Training sollen Modellparameter in die Cloud zurückgelegt werden.

In Containern auf Abfallsammelplätzen werden Kameras installiert, die den vorsortierten Müll erfassen können. Die Bilder vom Abfall werden hierbei aufgenommen, um diesen zu klassifizieren. Die Planungskomponente kümmert sich darum,

die Sensordaten aus der Cloud, mithilfe von einer Schnittstelle, zu holen und diese an die Klassifizerungskomponente zu übergeben. Aus der Cloud sollen außerdem die Modellparameter geholt werden, damit die Klassifizierungskomponente auf einem trainierten Modell arbeitet. Die Klassifikation soll dann an das Planning zurückgegeben werden, so dass Planning dem Roboter-Arm mitteilen kann, welche Kategorie von Abfall gefunden wurde. Der Roboter-Arm soll basierend auf den Ergebnissen und mit Hilfe der eingebauten Handkamera, Greifposen berechnen die das Produkt von *Motion Planning* sind.

Um den Abfall in Behälter sortieren zu können, muss der Roboter-Arm jedoch wissen wo die Container jeder Art physisch stehen. Dies geschieht bei dem Kalibrierungsprozess des Roboters bei der Anschaffung. Während der Kalibrierung verwendet der Roboter seine Kamera, um die Container zu lokalisieren, wobei die Distanzen zu den verschiedenen Mülltonnen berechnet werden. Außerdem werden Schrittmotoren kalibriert, um die Drehungen des Roboters auszuführen. Die Drehungswinkel und Distanz zu den verschiedenen Tonnen werden abgespeichert und bei der Müllsortierung verwendet, so dass der Roboter nicht immer die Tonnen erneut suchen muss.

Abbildung 2. Wie der Roboterarm aussehen wird [8].

Die Sortierung des Abfalls geschieht in vordefinierte Abfallarten, je nachdem welche Klassen von Abfall in der jeweiligen Entsorgungseinrichtung verfügbar sein sollen. Für Müll bestehend aus mehreren Materialien kann sich hier die Entsorgungsfirma entscheiden, in welche Unterklassen an Müll dieser sortiert werden soll. Alternativ könnte noch ein Container hinzugefügt werden, für Müll welcher nicht wiederverwendet werden kann.

Wird das System in Betrieb genommen, ist es lohnenswert eine *UI* Komponente einzubauen um zur Laufzeit *Monitoring* zu betreiben und stets auf dem neuesten Stand zu sein. Für die Nutzenden soll zu jeder Zeit klar sein, was das System gerade tut und was als nächstes angestrebt wird. Außerdem soll dem Nutzer im Falle eines fehlerhaften Zustandes mitgeteilt werden wie dieser zustande gekommen ist. Alle für den Nutzer relevanten Informationen werden in Planning zusammengetragen und bei Nachfrage können diese Informationen zugänglich gemacht werden.

V. ZEITPLAN

A. Einleitung

In diesem Abschnitt werden der Zeitplan sowie die dazugehörigen Elemente vorgestellt und erläutert. Dieser Abschnitt ist in zwei Unterabschnitte aufgeteilt. Im ersten Teil definieren wir die jeweiligen Arbeitspakete und die dazugehörigen Unterarbeitspakete. Im zweiten Abschnitt erfolgt eine grafische Darstellung des Zeitplans mittels Gantt-Diagramm, sowie die Hervorhebung der kritischen Pfade.

B. Meilensteine und Arbeitspakete

1) Arbeitspaket 1: Das erste Arbeitspaket enthält Aufgaben organisatorischer und koordinatorischer Natur. Es werden die Datenschutz- und Verhaltenskodex definiert sowie die gesamte Organisation des Projekts. Letzteres befasst sich mit der Festlegung der Meilensteine, Kommunikation, Arbeitspakete und mit der allgemeinen und fortlaufenden Organisation. Aus diesem Arbeitspaket ergeben sich 2 Unterarbeitspakete (UAP1.1 und UAP1.2), welche die angesprochenen Inhalte aufteilen.

Code: AP 1	Bezeichnung: Projektorganisation	Verantwortung: Alle
Ziele:	Koordination und Orga Datenschutz-und Ethil	
Inhalte:	Interne und Externe Ko Festlegung der Meilen: Materialien Beschaffur organisieren fortlaufende Organisa Erarbeitung eines Date	steine und Arbeitspakete ig, Räumlichkeiten tion des Projekts
Ergebnisse:	festgelegte Meilensteine benötigte Ressourcen, um mit dem Projekt zu starten.	
Starttermin: 23.01.2023	Endtermin: 24.01.2025	

Abbildung 3. Arbeitspaket 1

Das erste Unterarbeitspaket befasst sich im Detail mit der Organisation und Koordination des Projekts. Hier befasst man sich mit der Festlegung der Termine, Meilensteine oder Arbeitspakete, auch werden die Kommunikationswege zwischen internen und externen Partnern definiert. Es wird auch festgelegt, welche Räumlichkeiten und Materialien für den Projektstart notwendig sind und diese werden dann auch organisiert.

Code: UAP1.1	Bezeichnung : Organisation und Koordination des Projekts	Verantwortung : Alle
Ziele:	Projektorganisation	
Inhalte	Festlegung der Termine und Meilensteine Festlegung der Kommunikationswege für internen und externen Partnern. Einigung über benötigte Materialien und Räume und dessen Beschaffung/Organisation	
Ergebnisse	Ausgearbeitetes Kommunikationskonzept zwischen für interne und externe Partner Meilensteinplanung erarbeitet Benötigte Utensilien und Räumlichkeiten stehen zur Verfügung.	
Starttermin 23.01.2023	Endtermin 06.02.2023	

Abbildung 4. Unterarbeitspaket 1.1

Im zweiten Unterarbeitspaket geht es um die Ausarbeitung des Verhalten- und Datenschutzkodex. Da dieses Thema ein wichtiges ist, entscheiden wir uns dafür, das in einem abgetrennten Arbeitspaket zu bearbeiten. Das Ziel ist es letztendlich eine gute, sichere Grundlage für eine Zusammenarbeit zu schaffen.

Code: UAP1.2	Bezeichnung: Erarbeitung des Datenschutz- und Ethikkodex	Verantwortung: Alle
Ziele:	Erarbeitung des Dater	nschutz- und Ethikkodex
Inhalte	Erarbeitung und Abstimmung des Datenschutz- sowie des Verhaltenskodex des Projekts Abstimmung sowohl auch mit den externen Partnern	
Ergebnisse	Ausgearbeitetes Kodex	
Starttermin 23.01.2023	Endtermin 30.01.2023	

Abbildung 5. Unterarbeitspaket 1.2

2) Arbeitspaket 2: Das zweite Arbeitspaket beschäftigt sich mit der Datenakquisition. Diese Daten sind wichtig, um unser KI-Modell zu trainieren. Dafür ist eine große Menge von Daten erforderlich. Diese Daten können sowohl aus externen Datensätzen stammen, die schon bestehen, oder wir akquirieren eigene Daten mit Hilfe der von uns gekauften Sensoren (Materialien aus AP1). Dieses Arbeitspaket unterteilt sich in 2 Unterarbeitspakete, welche sich jeweils mit der Datenakquisition aus externen(UAP2.1) und internen(UAP2.2) Quellen beschäftigen.

Code: AP 2	Bezeichnung: Datenakquisition	Verantwortung: Alle
Ziele:	Datenakquisition aus existierenden Datensätzen Mit eigenen Sensoren Datensätze erstellen. Datenstruktur erstellen fortlaufende Datenakquisition aus allen Quellen.	
Inhalte	Recherche nach existierenden passenden Datensätzen und deren Akquisition Mit eigenen Sensoren Daten aufnehmen Eine einheitliche Datenstruktur erstellen. Arbeitspaket übergreifend wenn notwendig jeweils immer wieder neue Daten beschaffen und strukturieren	
Ergebnisse	Strukturierte Daten, mit denen man eine KI trainieren kann.	
Starttermin 07.02.2023	Endtermin 06.03.2023 (gegebenenfalls auch bis Projektende)	

Abbildung 6. Arbeitspaket 2

Neben der genannten Akquisition wird in diesem Unterarbeitspaket auch eine Datenstruktur angelegt, welche als Vorlage für alle weiteren Datenverarbeitungen dienen soll.

Code: UAP 2.1	Bezeichnung: Datenakquisition aus externen Datensätzen	Verantwortung : Alle
Ziele:	Datenakquisition aus b Datenstruktur ersteller	estehenden Datensätze
Inhalte	Bestehende passende Datensätze suchen und diese akquirieren. Eine einheitliche Datenstruktur vorgeben und implementieren	
Ergebnisse	Erste vorhandene Trainingsdaten	
Starttermin 07.02.2023	Endtermin 21.02.2023	

Abbildung 7. Unterarbeitspaket 2.1

Code: UAP 2.2	Bezeichnung: Datenakquisition mit eigenen Sensoren	Verantwortung: Alle
Ziele:	Anbringung eigener Se Mit eigenen Sensoren	
Inhalte	Anbringung eigener Sensoren (gegebenenfalls am Einsatzort) um Datenaufnahme zu ermöglichen Datenaufnahme und Integration der daraus resultierenden Daten in die Datenstruktur.	
Ergebnisse	Genauere Trainingsdaten, um die KI bestmöglich trainieren zu können.	
Starttermin 07.02.2023	Endtermin 06.03.2023	

Abbildung 8. Unterarbeitspaket 2.2

3) Arbeitspaket 3: Mit diesem Arbeitspaket verfolgen wir das Ziel, einen KI-Modell-Prototypen zu implementieren, der Müll erkennen und klassifizieren kann. Das Training erfolgt mit Hilfe der Daten, welche im Arbeitspaket verarbeitet wurden. Dieses Arbeitspaket beginnt jedoch schon vor dem Abschluss des AP2, da einige Implementierungen keine Trainingsdaten benötigen und schon integriert werden können. Als Ergebnis wird ein Prototyp erwartet, der die genannten Ziele erfüllen kann.

Code: AP 3	Bezeichnung: KI - Training	Verantwortung: Alle	
Ziele:		Einsatzfähige KI implementieren , welche Müll erkennen und klassifizieren kann.	
Inhalte	Klassifizierung Älgoritl Training erst mit den E Datensätzen Nachtraining auf Date Sensoren stammen.	Nachtraining auf Daten, die von den eigenen Sensoren stammen. Ständige Evaluation, Verbesserung und Test des	
Ergebnisse		Ein erstes Prototyp der in der Lage ist den Müll zu erkennen und zu klassifizieren	
Starttermin 22.02.202	3 Endtermin 30.06.2023	Endtermin 30.06.2023	

Abbildung 9. Arbeitspaket 3

4) Arbeitspaket 4: Um den Roboterarm einsatzbereit zu machen, bedarf es an verschiedenen Konfigurationen. Dieses Arbeitspaket befasst sich mit der Konfiguration und Kalibrierung des Roboters. Das Ziel soll ein Roboterarm-Prototyp sein, der bereit für eine Schnittstellen-Implementierung mit der bereits entwickelten KI ist.

Code: AP4	Bezeichnung: Roboterarm-Konfiguration	Verantwortung: Alle
Ziele:	Roboterarm beschaffe	en und konfigurieren
Inhalte	Einkauf der notwendigen Utensilien sowie Roboterarm selbst Hardware Einrichtung des Roboterarms Motion Control Testen mit gehardcodeten Input	
Ergebnisse	 Roboter-Prototyp, der bereit für eine Schnittstelle mit der KI ist. 	
Starttermin 01.05.2023	Endtermin 02.10.2023	

Abbildung 10. Arbeitspaket 4

Der Roboterarm muss erstmal beschafft werden, dazu könnten gegebenenfalls auch weitere Utensilien notwendig sein. Dieses Arbeitspaket befasst sich mit der Beschaffung aller notwendigen Materialien, um den Roboterarm konfigurieren zu können.

Code: UAP 4.1	Bezeichnung: Roboterarm-Beschaffung	Verantwortung: Alle
Ziele:	Beschaffung des Robo benötigten Utensilien	oterarms und die dazu
Inhalte	Roboterarm kaufen Benötigte Werkzeuge, Test-Gegenstände, etc. beschaffen	
Ergebnisse	Roboterarm ist bereit für die Motion Control Einrichtung	
Starttermin 01.05.2023	Endtermin 31.05.2023	

Abbildung 11. Arbeitspaket 4.1

Die Kalibrierung und die Hardware-Einrichtung ist der letzte Schritt, bevor der Roboterarm getestet werden kann. Hier wird die Hardware implementiert und die Motion Control. Auch wird am Ende der Roboter für die notwendigen Tests vorbereitet.

Code: UAP 4.2	Bezeichnung: Roboterarm-Kalibrierung	Verantwortung: Alle
Ziele:	Bewegungsregelung u Roboterarms einrichte	
Inhalte	Parameter festlegen Hardware implementieren Tests durchführen Roboter für die Tests vorbereiten	
Ergebnisse	Roboterarm ist bereit für die ersten Tests.	
Starttermin 01.06.2023	Endtermin 30.07.2023	

Abbildung 12. Arbeitspaket 4.2

Nach der Beschaffung und Konfiguration erfolgt im letzten Unterarbeitspaket des AP4 eine Testphase. Hier wird getestet, ob der Roboter mit vorgegebenem Input die vorgesehenen Aufgaben erledigen kann.

Code: UAP 4.3	Bezeichnung: Roboterarm-Prototyp Test	Verantwortung: Alle
Ziele:	Ständiges Testen und Prototypen	Rekalibrierung des
Inhalte	Testen und Evaluieren, bis man mit dem Ergebnis zufrieden ist.	
Ergebnisse	Roboter-Prototyp, das bereit für die Schnittstelle mit der KI ist.	
Starttermin 31.07.2023	Endtermin 02.10.2023	

Abbildung 13. Arbeitspaket 4.3

5) Arbeitspaket 5: Das fünfte Arbeitspaket befasst sich mit der Schnittstellenimplementierung zwischen der entwickelten KI und dem konfigurierten Roboterarm. Das Ziel am Ende dieses AP ist es, einen Prototypen vorstellen zu können, der in der Lage ist, beide entwickelten Methoden auszuführen. Neben der eigentlichen Implementierung sind lange Test- und Evaluationsphasen notwendig. Ist man mit den erreichten Testergebnissen zufrieden, kann man den Roboterarm-Prototypen den Stakeholdern vorstellen.

Code: AP5	Bezeichnung: Schnittstelle Roboter und KI	Verantwortung: Alle	
Ziele:	Schnittstelle zwischer beschreiben Prototypen vorstellen, enthält	n KI und Roboterarm welches beide Komponenten	
Inhalte	Roboterarm und des I Schnittstellen-Test Schnittstellen-evaluati Validierung des Protot Ergebnisse erzielt wur	Schnittstellen-evaluation	
Ergebnisse	Fertigen Roboterarm,	welcher Müll sortieren kann.	
Starttermin 03.10.2023	Endtermin 01.03.2024		

Abbildung 14. Arbeitspaket 5

Das erste Unterarbeitspaket befasst sich mit der Architekturbeschreibung und Schnittstellen-Implementierung. Die Architekturbeschreibung soll das fertige System beschreiben und einen Plan darstellen, wonach die Implementierung ablaufen kann.

Code: UAP 5.1	Bezeichnung: Architekturbeschreibung und Schnittstellenimplementieru ng	Verantwortung: Alle	
Ziele:	erstellen		
Inhalte	 Entwickelte Architektu implementieren 	Absprache über die Architektur des Prototypen Entwickelte Architekturbeschreibung implementieren Erste Tests für die Implementierung	
Ergebnisse	Roboter-Prototyp ist b	Roboter-Prototyp ist bereit für die ersten Tests.	
Starttermin 03.10.2023	Endtermin 02.01.2024		

Abbildung 15. Arbeitspaket 5.1

Die Test- und Evaluationsphase dient dazu, die implementierte Schnittstelle zu testen und gegebenenfalls anzupassen.

Am Ende dieser Phase ist der Roboterarm-Prototyp bereit für den Einsatz.

Code: UAP 5.2	Bezeichnung: Test der Roboter-Prototypen	Verantwortung: Alle
Ziele:	Test und Validierung de	es Prototypen
Inhalte	Die vorhandenen Schnittstelle testen Verschiedene Szenarien testen Qualitätsüberprüfung Validierung des Prototypen für den Einsatz	
Ergebnisse	Fertigen Roboterarm, welcher Müll sortieren kann.	
Starttermin 03.01.2024	Endtermin 01.03.2024	

Abbildung 16. Arbeitspaket 5.2

6) Arbeitspaket 6: Das sechste Arbeitspaket befasst sich mit der Frage der konkreten Einsatzmöglichkeiten. Bereits vordefinierte Parameter sollen jetzt angepasst und geändert werden, sodass im letzten Schritt die Integration am Einsatzort konkret und erfüllend verlaufen kann.

Code: AP6	Bezeichnung: Erörterung konkreter Einsatzmöglichkeiten	Verantwortung: Alle
Ziele:	Besprechung mit Stak Einsatzmöglichkeiten	eholdern über die konkreten
Inhalte	Mehrere schon vor besprochene Ideen bis aufs kleinste Detail konkretisieren Gegebenenfalls schon vorhandene Ideen ändern. Einsatzplan ausarbeiten Plan für die Integration am Einsatzort.	
Ergebnisse	Fertige Planung um den Roboterarm am Einsatzort integrieren zu können	
Starttermin 01.03.2024	Endtermin 05.04.2024	

Abbildung 17. Arbeitspaket 6

7) Arbeitspaket 7: Im vorletzten Arbeitspaket befassen wir uns mit der Integration des Roboterarms am Einsatzort. Neben der eigentlichen Integration wird auch viel Zeit in die Testphase investiert, um die festgelegten Ziele zufriedenstellend zu erreichen. Am Ende dieses Arbeitspakets ist der Roboter im Einsatz und das Projekt beendet.

Code: AP7	Bezeichnung : Roboterarm wird am Einsatzort integriert.	Verantwortung:	
Ziele:	Roboterarm ist bereit abgegeben.	Roboterarm ist bereit für den Einsatz und wird abgegeben.	
Inhalte	Roboterarm wurde integriert Smartphone App für loT implementieren Tests laufen zufriedenstellend Einigung zwischen Projektteilnehmern und Stakeholdern über das gelieferte Produkt		
Ergebnisse	Der Roboter ist am Einsatzort und das Projekt ist beendet.		
Starttermin 08.04.2024	Endtermin 01.01.2025		

Abbildung 18. Arbeitspaket 7

8) Arbeitspaket 8: Im letzten Arbeitspaket fassen wir die Forschungsergebnisse zusammen und präsentieren diese anschließend.

Code: AP8	Bezeichnung: Projektabschluss und Vorstellung der Forschungsergebnisse	Verantwortung: Alle
Ziele:	Ergebnisse auswerten	und präsentieren
Inhalte	Wichtige Projektmeilensteine präsentieren Forschungsergebnisse darstellen	
Ergebnisse	Projektabschluss und Präsentation der Forschungsergebnisse	
Starttermin 01.01.2025	Endtermin 01.02.2025	

Abbildung 19. Arbeitspaket 8

C. Gannt-Diagramm zur grafischen Darstellung

Die Abbildung 20 zeigt das Gantt-Diagramm, das für dieses Projekt erstellt wurde. Das Diagramm zeigt die Abfolge der definierten Arbeitspakete (V-B1) und die dazugehörigen Abhängigkeiten. Aus diesen Abhängigkeiten kann man auch die kritischen Pfade erschließen. Im Allgemeinen kann man jede Abhängigkeit als kritischen Pfad sehen, in diesem Abschnitt werden einige davon beschrieben. Folgende kritische Pfade werden beschrieben:

- AP1 → UAP2.2 → AP3: Für das Training mit Daten, die mit den eigenen Sensoren aufgenommen wurde, wird vorrausgesetzt, dass die benötigten Sensoren in AP1 beschaffen wurden. Wenn diese verspätet beschaffen werden, kann es zu schlechteren Test-Ergebnissen des KI-Models führen. Allerdings setzt AP3 nicht voraus, dass für ein Training auch die internen Daten benötigt werden. Deshalb ist dieser kritischer Pfad mit Sorgfalt zu genießen. Einerseits würde das zu schlechteren Ergebnissen führen, allerdings kann das KI-Modell auch ausschließlich mit externen Daten trainiert
- UAP4.1 → UAP4.2 → UAP4.3: Die Kalibrierung des Roboterarms ist von dessen Beschaffung abhängig. Wiederrum ist das Testen des Roboterarms von der Kalibrierung abhängig. Dies kann als kritischer Pfad angesehen werden, da vor allem eine verzögerte Beschaffung des Roboters zu Verzögerungen des Endtermins von AP4 führen kann.
- AP5 → AP7: Die Einsatzmöglichkeiten vom Roboter, hängen von der Schnittstellenimplementierung zwischen dem Roboterarm und KI-Modell. Wenn die Implementierung verzögert wird, kann es dazu führen dass auch indirekt der Roboterarm später zum Einsatz kommen kann.

VI. BUDGET

Die anfallenden Kosten für das Forschungsprojekt werden in zwei Kategorien aufgeteilt; Personalkosten und Sach- und Materialkosten. Es werden 5 Vollzeitfähige Mitarbeiter*innen eingestellt, die für die gesamte Projektdauer von 24 Monaten angestellt sind. Zusätzlich werden im Laufe der Datenakquisation zwei Werkstudierende auf Basis von 360 Stunden angestellt, welche sich um die Validierung und Annotation der Bilddaten kümmern. Zur Entwicklung der Modelle und Software werden fünf Computer benötigt sowie ein Server auf

dem die erstellten Modelle laufen und mit dem Roboterarm im laufenden Betrieb kommunizieren. Zusätzlich werden ein Roboterarm und Kameras zur Bilderkennung benötigt. Hinzu kommen etwaige Reisekosten und sonstige anfallende Kosten. Anhand vorhandener Berechnungen beläuft sich der Antrag auf eine Summe von schätzungsweise 619.709,20 € Projektkosten für 24 Monate.

EG12 -TVöD	Werkstudierende
3.752,91 € (mtl.)	13€ (std.)
5	2
24 Monate	360 Stunden
450.349,20 €	9.360,00 €
459.709,20 €	
	450.349,20 €

PERSONENKOSTEN FÜR DAS FORSCHUNGSPROJEKT

Sach- und Materialkosten	
Roboterarm	100.000,00 €
Server	10.000,00 €
Kameras	15.000,00 €
Computer	10.000,00 €
Reisekosten	15.000,00 €
Sonstige	10.000,00 €
Summe	160.000,00 €

Tabelle II

SACH- UND MATERIALKOSTEN FÜR DAS FORSCHUNGSPROJEKT

Personalkosten	459.709,20 €
Sach- und Materialkosten	160.000,00 €
Summe	619.709,20 €

Tabelle III

SCHÄTZUNG ÜBER PROJEKTKOSTEN

LITERATUR

- [1] D. Bhavana, T. R. Rajeswari, P. Pasyanthi und K. Yaswanth sai, "Garbage Segregation System with SMART Technology Subtitle as needed (paper subtitle)", in 2022 International Conference on Computer Communication and Informatics (ICCCI), 2022, S. 01–07. DOI: 10. 1109/ICCCI54379.2022.9740845.
- [2] G. U. Fayomi, S. E. Mini, C. M. Chisom u. a., "Smart Waste Management for Smart City: Impact on Industrialization", *IOP Conference Series: Earth and Environmental Science*, Jg. 655, Nr. 1, S. 012 040, Feb. 2021. DOI: 10.1088/1755-1315/655/1/012040.
- [3] A. U. Zaman und S. Lehmann, "Urban Growth and Waste Management Optimization towards 'Zero Waste City'", *City, Culture and Society*, Jg. 2, Nr. 4, S. 177–187, 2011, ISSN: 1877-9166. DOI: 10.1016/j.ccs.2011.11.007.
- [4] A. Salmador, J. Pérez Cid und I. Rodríguez Novelle, "Intelligent garbage classifier", 2008.
- [5] M. Karthikeyan, T. Subashini und R. Jebakumar, "SSD based waste separation in smart garbage using augmented clustering Nms", *Automated Software Engineering*, Jg. 28, Nr. 2, S. 1–17, 2021.

- [6] A. Abeygunawardhana, R. Shalinda, W. Bandara, W. Anesta, D. Kasthurirathna und L. Abeysiri, "AI-Driven Smart Bin for Waste Management", in 2020 2nd International Conference on Advancements in Computing (ICAC), IEEE, Bd. 1, 2020, S. 482–487.
- [7] D. Zhaojie, Z. Chenjie, W. Jiajie, Q. Yifan und C. Gang, "Garbage classification system based on AI and IoT", in 2020 15th International Conference on Computer Science & Education (ICCSE), IEEE, 2020, S. 349–352.
- [8] J. Purba, *Robot,machine,technology robot arm 3d camera*. Adresse: https://www.pngitem.com/middle/ihmmoJx_robot machine technology robot arm 3d camera-hd/.

ANHANG A GANTT- DIAGRAM

Abbildung 20. Gantt-Diagramm