Concordia University Comp 232 Sample Review Questions

Instructor: Robert Mearns 06/04/2016

1.	State truth value	of: If $1 + 1 = 2$ or	1 + 1 = 3 then 2	2+2=3 and $2+2=4$.
	True	False	Justify	
2.		$igcup_{f No}$ No	ally equivalent	? $p \to (\neg q \land r), \ \neg p \lor \neg (r \to q).$
3.		er the following pr \square Not Tau		autology: $((p \rightarrow \neg q) \land q) \rightarrow \neg p$ $\square Justify$
4. F	P(x) represents $x + 2$ a) $\exists y \forall x P(x, y)$ True b) $\neg \forall x \exists y \neg P(x, y)$	2y = xy. What is the False	ne truth value o	of each of the following?
	True	False	Justify	
				for m and n is the set of e following statements?
	True b) $\forall m \exists n P(m, n)$ True	False False	Justify Justify	
6. A	Are the following st a) $\forall x \forall y [P(x) \land \neg Q($ Valid b) $\forall x \forall y [P(x) \lor Q(y)]$ Valid	$y)] \equiv \forall x P(x) \land \neg \exists y \in \mathbb{N}$ Not Valid	Just	
c x	course, $F(x)$ rep. x is	s a freshman, $B(x)$	rep. x is a full-	M(y) rep. y is a math time student, $T(x,y)$ rep. ithout using variables in
	b) $\exists x \forall y T(x,y)$			
	c) $\forall x \exists y [(B(x) \land F(x))]$	$(x) \rightarrow (M(y) \wedge T(x, y))$	<i>(</i>))]	

	8. Suppose the variables x and y represent real numbers, and $L(x,y): x < y$, $Q(x,y): x = y$, $E(x): x$ is even, $I(x): x$ is an integer. Write the statement using these predicates and any needed quantifiers. a) Every integer is even.					
		b) If $x < y$, then x is not equal to y .				
		c) There is no largest real number.				
	9.	Determine whether the following argument is valid or not valid: She is a Math Major or a Computer Science Major. If she does not know discrete math, she is not a Math Major. If she knows discrete math, she is smart. She is not a Computer Science Major. Therefore, she is smart. Valid Not Valid Justify				
	10.	Place the correct symbol from the list \subseteq , =, \supseteq between each pair of sets below a) $A \cup B$, $A \cup (B - A)$ b) $A \cup (B \cap C)$, $(A \cup B) \cap C$ c) $(A - B) \cup (A - C)$, $A - (B \cap C)$ d) $(A - C) - (B - C)$, $A - B$				
		Suppose $f: R \to Z$ where $f(x) = \lceil 2x - 1 \rceil$. a) Is f one to one? Yes No Justify b) Is f onto Z ? No Justify				
	12.	Suppose $g: R \to R$ where $g(x) = \lfloor \frac{x-1}{2} \rfloor$. List the answer for each. a) If $S = \{x 1 \le x \le 6\}$, find $g(S)$ b) If $T = \{2\}$, find $g^{-1}(T)$				
https		For each of the following statements below state whether it is True or False: a) For all integers a, b, c , if $a c$ and $b c$, then $(a+b) c$. True False Justify b) For all integers a, b, c, d , if $a b$ and $c d$ then $(ac) (b+d)$. True False Justify c) If a and b are rational numbers (not equal to zero), then a^b is rational. True False Justify d) If $f(n) = n^2 - n + 17$, then $f(n)$ is prime for all positive integers n . True False Justify Justify				
		☐ True ☐ False ☐ Justify				

14. List the answer(s) for each. a) Find the smallest integer $a > 1$ such that $(a + 1) \equiv 2a \mod 11$.						
b) Find integers a and b such that $(a + b) \equiv (a - b) \mod 5$.						
c) Solve for a if $a = (5^4 \mod 7)^3 \mod 13$.						
 15. List a complete proof for each proposition showing all steps with references. a) Consider the statement: If 7n+4 is an even Integer then n is an even Integer. Prove this statement two ways: by Contraposition and by Direct methods. 						
b) Prove that given a non negative Integer n , there is a unique non negative Integer m such that: $m^2 \le n < (m+1)^2$						
c) Use the Principle of Mathematical Induction to prove that $5 (7^n-2^n)$ for all $n \ge 0$.						
d) Let $a_1=2, a_2=9$ and $a_n=2a_{n-1}+3a_{n-2}$ for $n\geq 3$. Prove that $a_n\leq 3^n$ for all positive integers n . Use Strong Induction.						
16. If Relation R is on set $\{a,b,c,d\}$ represented by $M_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ determine if R is:						
a) Reflexive $ \Box \text{ True} \qquad \Box \text{ False} \qquad \Box \text{ Justify} $ b) Symmetric						
True Justify c) Antisymmetric						
True Justify d) Transitive						
True						
R is: a) Reflexive						
True Justify b) Symmetric						
True Justify c) Antisymmetric						
True Justify d) Transitive						
True https://www.coursehero.com/file/14827955/Comp-232-Sample-Review-Questions-Final-exam/ Justify						

10.	R is:					
	a) Reflexive					
	True	False	Justify			
	b) Symmetric					
	True	L False	☐ Justify			
	c) Antisymmetric					
	☐ True	False	☐ Justify			
		☐ False	Inatific			
	Irue	raise	☐ Justify			
19. Consider R and S are relations on $\{a,b,c,d\}$, where $R=\{(a,b),(a,d),(b,c),(c,c),(d,a)\}$ and $S=\{(a,c),(b,d),(d,a)\}$ Find value of each: a) R^2						
	b) <i>R</i> ³					
	c) $S \circ R$ d) The transitive	closure of R				
20.		ined on A where $(a$	ordered pairs of positive integers. Let R $(a,b)R(c,d)$ means that $a+d=b+c$. Is R			
	True	False	Justify			
21.	Find the value of ea) The smallest ed		on $\{1,2,3\}$ that contains $(1,2)$ and $(2,3)$.			
	b) The smallest pa	artial order relation	on $\{1,2,3\}$ that contains $(1,1),(3,2),(1,3)$			
22.	Let R be the relationly if $a \ge b$. Is R a		et of integers defined by $(a,b) \in R$ if and			
	True	☐ False	Justify			

```
1. False 2.Yes 3. Tautology 4 a) False 4 b) False 5 a) False 5 b) True 6 a) Valid 6 b) Valid 7 a)
  Every student is taking a course 7b) Some student is taking every course 7 c) Every full-time
  freshman is taking a math course 8 a) \forall x(I(x) \to E(x)) 8 b) \forall x \forall y(L(x,y) \to \neg Q(x,y)) 8 c)
  \forall x \exists y L(x,y) \ 9. \ \text{Valid } 10 \ \text{a}) = 10 \ \text{b}) \supseteq 10 \ \text{c}) = 10 \ \text{d}) \subseteq 11 \ \text{a}) \ \text{No} \ 11 \ \text{b}) \ \text{Yes} \ 12 \ \text{a}) \ \{0,1,2\} \ 12 \ \text{b})
  5 \le x < 7 13 a) False: a = b = c = 1 13 b) False: a = b = 2, c = d = 1 13 c) False (\frac{1}{2})^{\frac{1}{2}} = \frac{\sqrt{2}}{2} which is
  not a Rational 13 d) False, f(17) is divisible by 17 13 e) True 14 a) 12 14 b)
  b = 0, \pm 5, \pm 10, \pm 15, \ldots; a any integer 14 c) 8 15 a) 15 b) proofs see below 16 a) True 16 b) False
  16 c) False 16 d) False 17 a) True 17 b) True 17 c) False 17 d) True 18 a) False 18 b) False 18 c)
  True 18 d) True 19 a) \{(a,a),(a,c),(b,c),(c,c),(d,b),(d,d)\} 19 b)
  \{(a,b),(a,c),(a,d),(b,c),(c,c),(d,a),(d,c)\} 19 c) \{(a,a),(a,d),(d,c)\} 19 d)
  \{(a,a),(a,b),(a,c),(a,d),(b,c),(c,c),(d,a),(d,b),(d,c),(d,d)\} 20 Yes: Reflexive: a+b=b+a;
  Symmetric: if a + d = b + c, then c + b = d + a; Transitive: if a + d = b + c and c + f = d + e, then
  a + d - (d + e) = (b + c) - (c + f), therefore a - e = b - f, or a + f = b + e. 21 a)
  \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\} 21 b) \{(1,1),(2,2),(3,3),(3,2),(1,3),(1,2)\} 22 T
  15a) Hint: For the Direct proof use Backward reasoning to decide on the initial form of 7n + 4
  15b) There are two parts to the proof. Hint: Use Backward reasoning to decide on the
            relationship between m and n in the Existence part of the proof.
            Use a proof by Contradiction in the Uniqueness part of the proof
  15c) Prove P(n): 5 | (7^n - 2^n) \forall n \ge 0
         Step1 (Base case) Prove P(1): 5 | (7^1 - 2^1)
            Proof 5 \mid 5 \to 5 \mid (7-2) \to 5 \mid (7^1-2^1) \to P(1)
         Step2 (Inductive hypothesis) Assume P(k): 5 \mid (7^k - 2^k)
         Step3 (What must be proved in the inductive Step4)
                  Prove P(k) \to P(k+1): 5 \mid (7^k - 2^k) \to 5 \mid (7^{k+1} - 2^{k+1})
         Step4 (Proof of the inductive step) Prove P(k+1): 5 \mid (7^{k+1}-2^{k+1})
            Proof
            P(k) \to 5 \mid (7^k - 2^k) \to 5 \mid 7(7^k - 2^k)
                                                            Assumption, then Def. of Division
            P(1) \to 5 \mid (7-2) \to 5 \mid 2^{k}(7-2)
                                                            P(1), then Def. of Division
            \rightarrow 5 \mid [7(7^k - 2^k) + 2^k(7 - 2)]
                                                            Addition, Def. of Division
            \rightarrow 5 \mid [7^{k+1} - 7 \times 2^k + 7 \times 2^k - 2^{k+1}]
                                                            Multiplication
            \rightarrow 5 \mid 7^{k+1} - 2^{k+1} \mid
                                                            Cancel
            \rightarrow P(k+1)
            \rightarrow P(n): 5 \mid (7^n - 2^n) \ \forall n \ge 0
                                                            By Mathematical Induction
  15 c) Prove P(n): a_n \leq 3^n \ \forall n \ \epsilon \ Z^+ \ \text{Using Strong Induction}
         Step1 (Base cases) Prove P(1): a_1 \leq 3^1 and P(2): a_2 \leq 3^2
            Proof LHS = a_1 = 2, RHS = 3^1 \to a_1 \le 3^1 \to P(1)
                    LHS = a_2 = 9, RHS = 3^2 \rightarrow a_2 \le 3^2 \rightarrow P(2)
         Step2 (Inductive hypothesis) Assume P(k): a_k \leq 3^k for 1 \leq k < n where n \geq 3, n \in \mathbb{Z}^+
         Step3 (What must be proved in the inductive Step 4)
                  Prove P(k) \to P(k+1): a_k \le 3^k \text{ for } 1 \le k < n \to a_{k+1} \le 3^{k+1}
         Step4 (Proof of the inductive step) Prove P(k+1): a_{k+1} \leq 3^{k+1}
            Proof
                    =2a_k+3a_{k-1}
                                                  Since k+1 \ge 3 use recursive definition of a_n
            a_{k+1}
                    \leq 2 \times 3^k + 3 \times 3^{k-1}
                                                  By Assumption replace a_k and a_{k-1}
                    = 2 \times 3^k + 3^k
                                                  Multiplication
                    = 3 \times 3^k
                                                  Addition
                    = 3^{k+1}
                                                  Multiplication
            \to a_{k+1} \le 3^{k+1}
            \rightarrow P(k+1)
```