

Алгоритми та ПЗ для усунення шуму на зображеннях

Алгоритми та ПЗ для усунення шуму на зображеннях

магістерська кваліфікаційна робота, керівник -Роман Кутельмах

Ольга Павлюк

Національний університет "Львівська політехніка", кафедра ПЗ

1 грудня 2015 р.

Зміст

Алгоритми та ПЗ для усунення шуму на зображеннях

1 Проблема шуму в зображеннях

- Визначення
- Характеристики
- Існуючі алгоритми усунення шуму
- 2 Завдання магістерського дослідження
- 3 Алгоритм Curvelet Transform
- 4 Використані технології
- 5 Поточні результати
- Висновки

Проблема шуму на зображеннях

Алгоритми та ПЗ для усунення шуму на зображеннях

Визначення

Шум

випадкові, відсутні на реальному зображенні відхилення інтенсивності

Проблема шуму на зображеннях

Алгоритми та ПЗ для усунення шуму на зображеннях

Ольга Павлю

Проблема шуму в зображеннях Визначення

Характеристик Існуючі алгоритми

Завдання магістерського лослілження

Алгоритк Curvelet Transform

Використан технології

Поточні

Шум

випадкові, відсутні на реальному зображенні відхилення інтенсивності

Поширена проблема для цифрових зображень у багатьох галузях.

Виникає при недостатьому освітленні та високій ISO камери.

Проблема шуму на зображеннях

Алгоритми та ПЗ для усунення шуму на зображеннях

Визначення

Шум

випадкові, відсутні на реальному зображенні відхилення інтенсивності

Поширена проблема для цифрових зображень у багатьох галузях.

Виникає при недостатьому освітленні та високій ISO камери.

Формальний опис

v(i) = u(i) + n(i), де i - піксель зображення

v(i) - спостережене значення, u(i) - справжнє значення

n(i) - значення шуму

Параметри оцінки алгоритмів

Алгоритми та ПЗ для усунення шуму на зображеннях

Ольга Павлю

в зображеннях Визначення Характеристики

Існуючі алгоритми усунення шум

Завдання магістерського дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результати

💶 автоматичні: Peak Signal-to-Noise Ratio

$$MSE = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} [f(m,n) - f'(m,n)]^{2}$$

$$PSNR = 10\log_{10} \frac{255^2}{MSE}$$

2 візуальна оцінка: вирішальний критерій вибору алгоритму

Існуючі методи усунення шуму

Алгоритми та ПЗ для усунення шуму на зображеннях

Існуючі алгоритми усунення шуму

different image domains

алгоритми з патчами $O(n^2)$

алгоритми з вейвлетами O(n*log n)

Існуючі методи усунення шуму

Алгоритми та ПЗ для усунення шуму на зображеннях

льга Павлюі

Проблема шуму в зображеннях Визначення Характеристики Існуючі алгоритми усунення шуму

Завдання магістерського дослідження

Алгоритм Curvelet Transform

Використані технології

Поточні результаті

Висновки

different image domains

алгоритми з патчами

дерево кластерів: нижча складність, нижча якість

алгоритми з вейвлетами

базові функції вейвлета: різна роздільна здатність

Вейвлет-алгоритми

Алгоритми та ПЗ для усунення шуму на зображеннях

Ольга Павлю

Проблема шуму в зображеннях Визначення Характеристики Існуючі алгоритми усунення шуму

Завдання магістерськог дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні

Висновки

виконується рекурсивна декомпозиція сигналу до заданого рівня

- 🛾 коефіцієнти аналізуються "знизу вверх"
- застосовується порогове відсікання (thresholding):

$$w(x) = \begin{cases} w(x), & \text{if } |w(x)| \ge \text{threshold} \\ 0, & \text{otherwise} \end{cases}$$

4 до отриманих коефіцієнтів застосовується зворотнє перетворення

Завдання магістерського дослідження

Алгоритми та ПЗ для усунення шуму на зображеннях

Завдання магістерського дослідження

Об'єкт

шум на зображеннях

Предмет

розробка алгоритму для усунення шуму, що працює в частотній області

Мета

розробити алгоритм з лінійно-логарифмічною складністю, який покращує існуючі методи усунення шуму (час роботи + візуальна оцінка)

Алгоритм Curvelet Transform

Алгоритми та ПЗ для усунення шуму на зображеннях

Алгоритм Curvelet Transform

один з видів вейвлет-перетворення

2 усуває шум вздовж кривих

працює у частотній області

4 складається з кількох незалежних перетворень

Перетворення Фур'є (Fourier Transform)

Алгоритми та ПЗ для усунення шуму на зображеннях

Ольга Павлю

Проблема шум в зображеннях Визначення Характеристики Існуючі алгоритми усунення шуму

Завдання магістерськог дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результати базовии метод для всіх алгоритмів, що працюють з частотами

сигнал можна представити у вигляді суми синусоід з різними амплітудами та зсувом

$$X_k = \sum_{n=0}^{N-1} x_n \cdot (\cos(-2\pi k \frac{n}{N}) + j\sin(-2\pi k \frac{n}{N})), \quad n \in \mathbb{Z}$$

Перетворення Фур'є (Fourier Transform)

Алгоритми та ПЗ для усунення шуму на зображеннях

Ольга Пав

Проблема шуму в зображеннях Визначення Характеристики Існуючі алгоритми усунення шуму

Завдання магістерськог дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результат*и* операція згортки (convolution) сигналу з фільтром довільної довжини виконується за лініинии час

веивлет- фільтри теж можуть бути представлені у частотніи області за допомогою комплексних веивлетів

Перетворення Радона (Radon Transform)

Алгоритми та ПЗ для усунення шуму на зображеннях

Алгоритм Curvelet Transform

це інтегральне перетворення, яке для кожної прямої на зображенні ставить їй у відповідність суму пікселів зображення на цій прямій

Projection-Slice Theorem

Алгоритми та ПЗ для усунення шуму на зображеннях

Алгоритм Curvelet Transform

Ridglet Transform

Алгоритми та ПЗ для усунення шуму на зображеннях

Алгоритм Curvelet Transform

Це вейвлет-перетворення, застосоване до ліній у

просторі Радона

Ridglet Transform

Алгоритми та ПЗ для усунення шуму на зображеннях

Алгоритм Curvelet Transform

Застосовано вейвлет Добеші D4 = [0.482962, 0.836516, 0.224143, -0.129409], висока та низька частота обчислюються за формулами: high[v] = v[2*v]*D4[0] + v[2*v+1]*D4[1] +y[2*v+2]*D4[2] + y[2*v+3]*D4[3]low[v] = y[2*v]*D4[3] - y[2*v+1]*D4[2] +y[2*v+2]*D4[1] - y[2*v+3]*D4[0].Вейвлет-коефіцієнти з абсолютним значенням меншим за заданий поріг встановлюються в 0, потім застосовується обернене перетворення.

Frequency Grid Tiling

Алгоритми та ПЗ для усунення шуму на зображеннях

Алгоритм Curvelet Transform

Ridgelet-перетворення до областей у полярній системі координат

Використані технологіі: C++ та OpenGL

Алгоритми та ПЗ для усунення шуму на зображеннях

Використані технології

Переваги:

- С++: швидкість обчислень + гнучка архітектура
- GLSL: обчислення на GPU в десятки разів швидше

Недоліки:

■ GLSL: труднощі у відлагодженні програм

Приклад коду шейдера:

```
sum = cpx.x * sign_sum, dif = cpx.y * sign_dif;
       float im = sum - re;
      return vec2(re. im):
32 void main()
       float x = v tex coord.x. v = v tex coord.v:
      vec2 div mod 256 = floor(texture2D(s texture2, vec2(x, 0)).xy * 255.5);
      x = ((div_mod_256.y*256.0 + div_mod_256.x) + 0.5)/tex_width;
       vec4 color = texture2D(s texture, decode(encode(vec2(x, v))));
       gl FragColor = color;
```


Діаграма класів Curvelet Transform

Алгоритми та ПЗ для усунення шуму на зображеннях

Ольга Павлю

Проблема шум в зображеннях Визначення Характеристики Існуючі алгоритми

Завдання магістерськог дослідження

Алгорити Curvelet Transforn

Використані технології

Поточні

езультат

Поточні результати

Алгоритми та ПЗ для усунення шуму на зображеннях

Ольга Павлюн

Проблема шуму в зображеннях Визначення Характеристики Існуючі алгоритми усунення шуму

Завдання магістерськог дослідження

Алгорит Curvelet Transforn

Використан технології

Поточні результати Зашумлене зображення (зліва) та результат роботи алгоритму (справа)

Поточні результати

Алгоритми та ПЗ для усунення шуму на зображеннях

Ольга Пав

Проблема шуму в зображеннях Визначення Характеристики Існуючі алгоритми усунення шуму

Завдання магістерськог дослідження

Алгорити Curvelet Transforn

Використан технології

Поточні результати Зашумлене зображення (зліва) та результат роботи алгоритму (справа)

Висновки

Алгоритми та ПЗ для усунення шуму на зображеннях

1 розроблено базову версію алгоритму Curvelet Transform

2 буде покращено схему інтерполяції та обрано інший тип вейвлета

3 це допоможе досягнути вищої візуальної якості

Алгоритми та ПЗ для усунення шуму на зображеннях

Ольга Павлюн

проолема шуму в зображеннях Визначення Характеристики Існуючі алгоритми

Завдання магістерського

Алгоритм Curvelet

Використані технології

Поточні

Висновки

Дякую за увагу!