2.4 The Execution of Commands

Wataru Yachi

JAIST

June 15, 2023

Execution of Commands

Definition (execution relation)

A relation

$$\langle c, \sigma \rangle \to \sigma'$$

means that execution of command c in state σ terminates in final state σ' .

Example

$$\langle X := 5, \sigma \rangle \to \sigma'$$

Replacement of Location

Notation

Let σ be a state. Let $m \in \mathbb{N}$. Let $X \in \mathbf{Loc}$. A new state which obtained from σ by replacing its contents in X by m is denoted as follows;

$$\sigma[m/X]$$
.

And we have

$$\sigma[m/X](Y) = \begin{cases} m & \text{if } Y = X \\ \sigma(Y) & \text{if } Y \neq X \end{cases}$$

Example (Quiz)

- \bullet $(\sigma[5/X])[3/Y](X) = ?$
- $\sigma[2/Y](X) = ?$

Rules for Commands 1

Definition

Atomic commands

$$\frac{\langle \mathbf{a}, \sigma \rangle \to m}{\langle \mathbf{skip}, \sigma \rangle \to \sigma} \quad \frac{\langle a, \sigma \rangle \to m}{\langle X := a, \sigma \rangle \to \sigma[m/X]}$$

Sequencing

$$\frac{\langle c_0, \sigma \rangle \to \sigma'' \quad \langle c_1, \sigma'' \rangle \to \sigma'}{\langle c_0; c_1, \sigma \rangle \to \sigma'}$$

Conditionals

$$\frac{\langle b, \sigma \rangle \to \mathbf{true} \quad \langle c_0, \sigma \rangle \to \sigma'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \to \sigma'} \quad \frac{\langle b, \sigma \rangle \to \mathbf{false} \quad \langle c_1, \sigma \rangle \to \sigma'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \to \sigma'}$$

Rules for Commands 2

Definition

While-loops

Equivalence Relation on Commands

Definition (equivalence relation \sim on commands)

Let c_0 and c_1 be a command, a equivalence relation \sim on commands is defined as follows;

$$c_0 \sim c_1 := \forall \sigma, \sigma' \in \Sigma. \langle c_0, \sigma \rangle \to \sigma' \iff \langle c_1, \sigma \rangle \to \sigma'.$$

Example

- $X := 5 \sim X := 2 + 3$?
- if true then X := 5 else $X := 0 \sim$ if false then X := 0 else X := 5?
- $\blacksquare X := 5$; skip $\sim X := 5$; while false do X := 0?