Introduction of Software Engineering

Chapter 3:

Software Models

VŨ THỊ TRÀ

©2018, Danang University of Education

What is it?

- A process model provides a specific roadmap for software engineering work. It defines
 - the flow of all activities, actions and tasks,
 - the degree of iteration,
 - the work products,
 - the organization of the work

2. Who does it?

- ✓ Software engineer and their managers adapt the process to their needs and then follow it.
- ✓ Those have requested the software have a role to play in the process of defining, building, and testing it.

3. Why is it important?

- process provides stability, control, and organization to an activity that can, if left uncontrolled, become quite chaotic.
- a modern software engineering approach must be "agile."

4. What are steps?

The process model provides you with the steps needed to perform disciplined software engineering work.

5. What are the work product?

the work product is a customized description of the activities and tasks defined by the process.

6. How do I ensure that I've done it right?

- a number of software process assessment mechanisms that enable organizations to determine the "maturity" of their software process.
- the quality, timeliness, and long-term viability of the product you build are the best indicators of the efficacy of the process.

- Process Model were originally proposed to bring order to the chaos of software developments.
 - → The purpose of process models is to try to reduce the chaos present in developing new software products.

- **Prescriptive Process Models**
- **Specialized Process Models**
- The Unified Process Model
- Personal and Team Process Models

Prescriptive Process Models

- A process model defines
 - √ a prescribed set of process elements
 - activities, actions, tasks
 - work products
 - quality assurance
 - change control mechanisms
 - √ a predictable process work flow
- Prescriptive Process Models includes
 - √ The Waterfall Model
 - ✓ Incremental Process Models
 - Evolutionary Process Models
 - √ Concurrent Models

The Waterfall Model

√ classic life cycle

Reasons for Limitations of the Waterfall Model

- Real projects rarely follow the sequential flow
- The natural uncertainty exists at the beginning of many projects. It is often difficult for the customer to state all requirements explicitly.
- A major blunder, if undetected until the working program is reviewed, can be disastrous.

The V- model

- The V-model illustrates how verification and validation actions are associated with earlier engineering actions.
- between the classic life cycle and the V-model

Incremental Process Models

Incremental Process Models

- The incremental model delivers a series of releases, called increment, that provide progressive more functionality for the customer as each increment is delivered.
- Your customer demands delivery by a date that is impossible to meet. Suggest delivering one or more increment by that date and the rest of the software (additional increments) later.

Evolutionary Process Models

- Software, like all complex systems, evolves over a period of time.
- A set of core product or system requirements is well understood, but the details of product or system extensions have yet to be defined.
- Evolutionary models are iterative and enable to develop increasingly more complete versions of the software.

Prototyping

A Typical Spiral Model

A Typical Spiral Model

- Software is developed in a series of evolutionary releases.
- The spiral model can be adapted to apply throughout the entire life cycle of on application from concept development to maintenance.
- Risk is considered as each revolution is made. Anchor point milestones-a combination of work products and conditions that are attained along the path of the spiral are noted for each evolutionary pass.

Concurrent Models

Concurrent Models

- Apply to all types of software development and provide an accurate picture of the current stage of a project.
- Each activity, action, or task on the network exists simultaneously with other activities, actions, or tasks.
- Project plans must be viewed as living documents, progress must be assessed often and reviewed to take changes into account.
- The concurrent model is often more appropriate for product engineering projects where different engineering teams are involved.

CONTENTS

- Prescriptive Process Models
- Specialized Process Models
- The Unified Process Model
- Personal and Team Process Models

Specialized Process Models

- Component-based Development
 - Reduction in development cycle time
 - ✓ Reduction project cost
- The formal methods model
 - Formal methods to specify, develop, and verify a computer-based system.
- Aspect-Oriented Software Development (AOSD)
 - A process or methodological approach for defining, specifying, designing, constructing aspect – mechanisms beyond subroutines and inheritance for localizing the expression of a crosscutting concern.

21 CONTENTS

- Prescriptive Process Models
- Specialized Process Models
- The Unified Process Model
- Personal and Team Process Models

The Unified Process Model

 an attempt to draw on the best features and characteristics of traditional software process models, but characcerize them in a way that implements the best principles of agile software development.

Phases of The Unified Process

Phases of The Unified Process

- 1. Inception Phase
- 2. Elaboration Phase
- 3. Construction Phase
- 4. Transition Phase
- 5. Production Phase

CONTENTS

- Prescriptive Process Models
- Specialized Process Models
- The Unified Process Model
- Personal and Team Process Models

Personal and Team Process Models

- Pesional Software Process
- Team Software Process

Personal Software Process (PSP)

- emphasize personal measurement
 - the work product
 - the resultant quality of the work product
- make the practitioner responsible for project planning.
- empower the practitioner to control the quality of all work products.

PSP' Five Activities

1. Planning

- Estimating and scheduling
- ✓ All metrics are record

2. High-level design

- ✓ Component design created
- ✓ Prototypes are built
- ✓ Uncertainty exits
- ✓ All issues are recored and tracked

3. High-level design review

- Verification methods are appied
- Metrics are maintained

PSP' Five Activities

4. Development

- √ The component-level design is refined and reviewed.
- ✓ Code is generated, reviewed, compiled, and tested.
- Metrics are maintained for important tasks and work results.

5. Postmorterm

- Measures and metrics will provide guidance for modifying the process to improve its effectiveness.
- → PSP emphasizes the need to record and analyze the types of errors you make, so that you can develop strategies to eliminate them.

Team SoftwareProcess (TSP)

- Build self-directed teams that plan and track their work, establish goals, and own their processes and plans.
- Show managers how to coach and motivate their works and how to help them sustain peak performance.
- Accelerate software process improvement by making CMM level 5 behavior normal and expected.
- Provide improvement guidance to high-maturity organizations
- Facilitate team skills.