Activity 7

OBJECTIVE

To verify the algebraic identity : $(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$

MATERIAL REQUIRED

Acrylic sheet, coloured papers, glazed papers, saw, sketch pen, adhesive, Cello-tape.

METHOD OF CONSTRUCTION

- 1. Make a cube of side a units and one more cube of side b units (b < a), using acrylic sheet and cello-tape/adhesive [see Fig. 1 and Fig. 2].
- 2. Similarly, make three cuboids of dimensions $a \times a \times b$ and three cuboids of dimensions $a \times b \times b$ [see Fig. 3 and Fig. 4].

Mathematics 27

Fig. 4

3. Arrange the cubes and cuboids as shown in Fig. 5.

Fig. 5

DEMONSTRATION

Volume of the cube of side $a = a \times a \times a = a^3$, volume of the cube of side $b = b^3$

Volume of the cuboid of dimensions $a \times a \times b = a^2b$, volume of three such cuboids $= 3a^2b$

Volume of the cuboid of dimensions $a \times b \times b = ab^2$, volume of three such cuboids $= 3ab^2$

Solid figure obtained in Fig. 5 is a cube of side (a + b)

Its volume = $(a + b)^3$

Therefore, $(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$

Here, volume is in cubic units.

OBSERVATION

On actual measurement:

$$a = \dots, b = \dots, a^3 = \dots,$$

So, $a^3 = \dots, b^3 = \dots, a^2b = \dots, 3a^2b = \dots,$
 $ab^2 = \dots, 3ab^2 = \dots, (a+b)^3 = \dots,$

Therefore, $(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$

APPLICATION

The identity may be used for

- 1. calculating cube of a number expressed as the sum of two convenient numbers
- 2. simplification and factorisation of algebraic expressions.

Mathematics 29