Corrigé exercice 63:

1. f est une somme de fonctions dérivables sur \mathbb{R} , elle est donc dérivable et continue sur \mathbb{R} . Sa dérivée est définie sur \mathbb{R} par $f'(x) = 3x^2 + 1$. On a donc, pour tout réel x, f'(x) > 0. On en déduit le tableau de variations suivant.

x	$-\infty$ $+\infty$
f'(x)	+
f	$-\infty$ $+\infty$

- 2. f est continue et strictement croissante sur [-1; 0]. De plus, f(-1) = -1 et f(0) = 1. Comme $0 \in [-1; 1]$, d'après le théorème de la bijection, l'équation f(x) = 0 admet une unique solution sur [-1; 0].
- 3. Comme f(-1) = -1 et f(0) = 1, pour tout $k \in [-1; 1]$, l'équation f(x) = k admet une unique solution sur [-1; 0].

Corrigé exercice 64:

- 1. h est une somme de deux fonctions dérivables sur \mathbb{R} , elle est donc dérivable sur \mathbb{R} . On a $h'(x) = e^x + 1$ et comme la fonction exponentielle est toujours positive, on a h'(x) > 0. Donc h est continue et strictement croissante sur \mathbb{R} . De plus, $\lim_{x \to -\infty} h(x) = -\infty$ et $\lim_{x \to +\infty} h(x) = +\infty$. Comme $0 \in]-\infty$; $+\infty[$, d'après le théorème de la bijection, l'équation h(x) = 0 admet une unique solution réelle.
- 2. Par balayage, à l'aide de la calculatrice par exemple, on montre que cette valeur est comprise entre -0.6 et -0.5.