

Applied Generalized Linear Models (FS 20) ANOVA and ANCOVA

Viviana Amati

Course structure - schedule

Date	Topic	Assignment
18.02	Introduction to the course	Ass. 1
25.02	Introduction to R and review of the linear regression model	released on 25.02
03.03	The general linear model: ANOVA and ANCOVA	due to 19.03
10.03	Practical: ANOVA and ANCOVA	
17.03	Binary outcomes: logistic regression and probit models	Ass. 2
24.03	Practical: logistic regression and probit models	released on 17.03
31.03	Nominal outcomes: multinomial logistic regression	due to 23.04
07.04	Practical: multinomial logistic regression	
21.04	Ordinal outcomes: ordered logistic regression and probit models	Ass. 3
28.04	Practical: ordered logistic regression and probit models	released on 21.04
05.05	Count outcomes: Poisson and negative binomial models	due to 21.05
12.05	Practical: Poisson and negative binomial models	
19.05	Survival models (lecture+practical)	
26.05	Exam	

ETH zürich

Today's agenda

▶ Introduction to ANOVA and ANCOVA

► Material: Slides and lecture notes (Chapter 2)

An Example

- ➤ The "classic pullover" company has collected data on pullover sales (number of pullovers sold over the last week) in 30 shops which have adopted different marketing strategies
- ▶ Three marketing strategies each adopted by 10 shops
 - advertisement in local newspaper
 - presence of sales assistant
 - luxury presentation in shop windows
- ▶ Strategy were randomly assigned to the shops
- ▶ Is there an association between the pullover sales and the marketing strategy?

Association

		Observations								
Strategy	1	2	3	4	5	6	7	8	9	10
Assistant	8	10	10	11	12	15	12	13	13	11
Newspaper	7	9	10	10	11	9	11	12	13	13
Window	12	14	14	14	15	16	17	17	17	18

Any idea?

Association

Observations											
Strategy	1	2	3	4	5	6	7	8	9	10	Average
Assistant	8	10	10	11	12	15	12	13	13	11	11.5
Newspaper	7	9	10	10	11	9	11	12	13	13	10.5
Window	12	14	14	14	15	16	17	17	17	18	15.4

Comparing group means

$$H_0: \mu_A = \mu_N = \mu_W \quad ,$$

with μ_j the population mean in group j,

Association

Observations												
Strategy	1	2	3	4	5	6	7	8	9	10	Average	s.d.
Assistant	8	10	10	11	12	15	12	13	13	11	11.5	1.958
Newspaper	7	9	10	10	11	9	11	12	13	13	10.5	1.900
Window	12	14	14	14	15	16	17	17	17	18	15.4	1.897

Comparing group means

$$H_0: \mu_A = \mu_N = \mu_W \quad ,$$

with μ_j the population mean in group j, while accounting for group variability

Comparing group means

- 1. Linear regression model with categorical explanatory variables
- 2. Analysis of variance ANOVA

LRM with categorical explanatory variables

- \triangleright Y continuous and X categorical with M categories c_1, \ldots, c_M
- ▶ For each category c_j (j = 1..., M) we create dummy variables D_j

$$D_{ij} = \begin{cases} 1 & \text{if } x_i = c_j \\ 0 & \text{otherwise} \end{cases}$$

- ► LRM
 - Model without intercept

$$E[Y|\mathbf{D}] = \gamma_1 D_1 + \ldots + \gamma_M D_M \quad ,$$

- with \mathbf{D} the matrix of dummy variables
- $-\gamma_j$: expected value of Y when X takes category c_j

LRM with categorical explanatory variables

- \triangleright Y continuous and X categorical with M categories c_1, \ldots, c_M
- ▶ For each category c_j (j = 1..., M) we create dummy variable D_j

$$D_{ij} = \begin{cases} 1 & \text{if } x_i = c_j \\ 0 & \text{otherwise} \end{cases}$$

▶ LRM

- Model with intercept and reference category c_M

$$E[Y|\mathbf{D}] = \beta_0 + \beta_1 D_1 + \ldots + \beta_{M-1} D_{M-1}$$

with $\mathbf D$ the matrix with a first column of 1s and M-1 dummy variables

- $-\beta_0$: expected value of Y when X takes the reference category c_M
- $-\beta_j$: expected difference in Y for two subjects with categories c_j and c_M , respectively

LRM with categorical explanatory variables

Testing group means

▶ We would like to test

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_M$$

 H_1 : at least two of the group means are different

► This is equivalent to test

$$H_0: \beta_1 = \ldots = \beta_{M-1} = 0$$

$$H_1$$
: at least one of $\beta_j \neq 0$, $j=1,\ldots,M-1$

► F-test

$$\frac{\text{SSReg}/(M-1)}{\text{SSR}/(n-M)} \sim F_{M-1,n-M}$$

LRM: back to the example

Dummy variables

Strategy	D_1	D_2	D_3
presence of sales assistant	1	0	0
luxury presentation in shop windows	0	1	0
advertisement in local newspaper	0	0	1

LRM: back to the example

Example: model estimation

	Estimate	Std. Error	t value	$\Pr(> t)$
intercept	10.5000	0.6068	17.31	0.0000
assistant	1.0000	0.8581	1.17	0.2541
window	4.9000	0.8581	5.71	0.0000

At significance level $\alpha = 0.05$

- \triangleright β_0 : on average a shop with "advertisement in local newspaper" sells nearly 11 pullovers per week
- \triangleright β_1 : not significantly different from 0. No difference in weekly pullover sales when using advertisement in local newspaper or sales assistant
- \triangleright β_2 : significantly different from 0. On average the weekly pullover sales of a shop with strategy "luxury presentation in shop windows" is of nearly 5 pullovers larger than that of a shop with strategy "advertisement in local newspaper"

LRM: back to the example

Example: model estimation

	Estimate	Std. Error	t value	$\Pr(> t)$
intercept	10.5000	0.6068	17.31	0.0000
assistant	1.0000	0.8581	1.17	0.2541
window	4.9000	0.8581	5.71	0.0000

At significance level $\alpha = 0.05$

- \triangleright β_0 : on average a shop with "advertisement in local newspaper" sells nearly 11 pullovers per week
- \triangleright β_1 : not significantly different from 0. No difference in weekly pullover sales when using advertisement in local newspaper or sales assistant
- \triangleright β_2 : significantly different from 0. On average the weekly pullover sales of a shop with strategy "luxury presentation in shop windows" is of nearly 5 pullovers larger than that of a shop with strategy "advertisement in local newspaper"
- ▶ F-test: $F_{2,27} = 18.21$, p-value: < 0.001 There is a difference among the population means of pullover sales for the three marketing strategies

ANOVA

Term used in two different contexts:

- ▶ LRMs: the partition of the SST into the SSReg and SSR used to compute the coefficient of determination R^2 and the (overall and partial) F-tests to evaluate the fit of a model
- ▶ Design of experiments: statistical methods for testing and fitting linear models in which the explanatory variables are categorical
 - categorical variables are referred to as factors and their categories as levels
 - experiments aim to test whether one (or more factors) have an effect on an outcome variable

ANOVA: data

Factor		Observ	ations	
Level 1	y_{11}	y_{21}		y_{n1}
Level 2	y_{12}	y_{22}		y_{n2}
:	:	:	:	:
Level M	y_{1M}	y_{2M}		y_{nM}

- \triangleright Y be a continuous dependent variable
- ightharpoonup observations partitioned into M groups determined by the levels of the factor
- ▶ y_{ij} : observation of Y for the *i*-th unit in the *j*-th level
- ▶ n_j : number of observations in the j-th group is n_j
- ▶ $N = \sum_{j=1}^{M} n_j$: total number of observations

ANOVA: model

$$Y_{ij} = \mu + \alpha_j + \varepsilon_{ij} \quad ,$$

with

- $\triangleright \mu$: the population mean of Y
- $\triangleright \alpha_j$: effect on the dependent variable in the j-th group
- $\triangleright \varepsilon_{ij}$: error term
 - independent and normally distributed
 - $-E[\varepsilon_{ij}] = 0$ and $Var[\varepsilon_{ij}] = \sigma^2$

Implication:

$$Y_{ij} \sim N(\mu + \alpha_j, \sigma^2)$$

ANOVA: estimation

- ▶ The parameters cannot be uniquely estimated M categories, M-1 equations identifying the parameters
- ▶ Sigma constraint on the model parameters

$$\sum_{j=1}^{M} \alpha_j = 0$$

▶ The estimates of the model parameters are

$$\mu = \frac{1}{M} \sum_{j=1}^{M} \mu_j = \mu.$$

$$\alpha_j = \mu_j - \mu.$$

with

- $-\mu$.: population mean
- μ_j : mean in the j-th group
- $-\alpha_j$: difference between the mean of the j-th group and the general mean

ANOVA: deviation regressors

▶ To estimate the parameters under the sigma constraint, we use M-1 deviation regressors S_j with elements

$$S_{ij} = \begin{cases} 1 & \text{for observations in group } j \\ -1 & \text{for observations in group } M \\ 0 & \text{otherwise} \end{cases}$$

Deviation-coded model can be expressed as

$$Y_{ij} = \mu + \alpha_1 S_{i1} + \alpha_2 S_{i2} + \ldots + \alpha_{M-1} S_{i(M-1)} + \varepsilon_{ij}$$

▶ Equations for the group means:

$$\mu_1 = \mu + \alpha_1$$

$$\vdots$$

$$\mu_{M-1} = \mu + \alpha_{M-1}$$

$$\mu_M = \mu - \alpha_1 - \alpha_2 - \ldots - \alpha_{M-1}$$

ANOVA: hypothesis testing

Under the sigma constraint,

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_M$$

is equivalent to

$$H_0: \alpha_1 = \alpha_2 = \ldots = \alpha_{M-1} = 0$$

 H_0 is tested by the overall F-test for the deviation-coded model

ANOVA: F-test

 $\operatorname{SST},$ SSReg and SSR of the deviation-code model take simple formulas as illustrated by the ANOVA table

	Sum of squares (SS)	df	Mean Square (MS)	F-test
Factor	$\sum_{j=1}^{M} n_j (\overline{y}_j - \overline{y})^2$	M-1	$\frac{SSReg}{M-1}$	$\frac{MSReg}{MSR}$
Residuals	$\sum_{j=1}^{M} \sum_{i=1}^{n_j} (y_{ij} - \overline{y}_j)^2$	N-M	$rac{SSR}{N-M}$	
Total	$\sum_{j=1}^{M} \sum_{i=1}^{n_j} (y_{ij} - \overline{y})^2$	N-1		

- ▶ ANOVA is usually presented as an F-test for comparing group means
- ▶ The table above tells us whether group means are different but not which group means differ → post-hoc analysis (Bonferroni test)

ANOVA: back to the example

Deviation-coded model

$$Y_{ij} = \mu + \alpha_1 S_{i1} + \alpha_2 S_{i2} + \varepsilon_{ij} \quad ,$$

with deviation regressors:

Strategy	S_1	S_2
assistant	1	0
window	0	1
newspaper	-1	-1

ANOVA: back to the example

ANOVA table

	Sum Sq	Df	Mean Sq	F value	Pr(>F)
Strategy	134.07	2	67.03	18.21	0.0000
Residuals	99.40	27	3.68		
Total	233.47	29			

We reject

$$H_0: \mu_A = \mu_N = \mu_W$$

The deviation coding is equivalent to the dummy coding in that they both lead to the same fit to the data and overall F-test

ANOVA: back to the example

Estimates of the deviation-coded model

	Estimate	Std. Error	t value	$\Pr(> t)$
intercept	12.467	0.350	35.588	0.000
assistant	-0.967	0.495	-1.951	0.061
window	2.933	0.495	5.921	0.000

- \triangleright μ : average number of pullover sold by the 30 shops is 12.4
- \triangleright α_1 : not significant. No difference between the average number of pullovers sold in one week by all the shops and the group of shops with "sales assistant" strategy
- \triangleright α_2 : shops with strategy "presentation in shop windows" on average sell nearly 3 pullover more than the average number of pullovers sold in one week by all the shops

ANCOVA

- ▶ Linear models that contains both qualitative and quantitative explanatory variables
- ▶ ANOVA formulation for the main effects of the categorical explanatory variables (i.e. deviation coding)
- ▶ Quantitative explanatory variables are expressed as deviations from their means (i.e. centred explanatory variables)
- ▶ ANCOVA provides a more intuitive interpretation of the model parameters