Aplicabilidade do sensor LiDAR na detecção de ambientes e objetos para orientação de pessoas com deficiências visuais

Departamento de Sistemas e Computação – FURB Curso de Ciência da Computação Trabalho de Conclusão de Curso I – 2021/1

Acadêmico:

Bruno Henrique de Borba

bhborba@furb.br

Orientador:

Dalton Solano dos Santos

dalton@furb.br

Introdução(1/2)

- Pessoas com deficiência visual tem dificuldades para executar tarefas diárias em ambientes fechados, sendo alguns exemplos:
 - Identificar escadas
 - Reconhecer objetos
 - Locomoção
- Existem aplicativos que se propõem a auxiliar na execução de tais tarefas, utilizando por exemplo a câmera do próprio smartphone. Desta forma, encontram-se algumas limitações:
 - Precisão
 - Iluminação do ambiente

Introdução(2/2)

- Com a evolução constante dos dispositivos móveis, novos hardwares são adicionados aos dispositivos
- O LiDAR foi adicionado nos iPads e iPhones mais recentes da Apple
- O sensor é capaz de capturar uma nuvem de pontos com coordenadas x, y e z de ambientes e objetos
- Um de seus benefícios é a não influência da baixa iluminação do ambiente durante a detecção

Trabalho proposto (1/2)

Objetivo geral:

Disponibilizar um aplicativo móvel para auxiliar pessoas com deficiência visual a se orientarem em ambientes fechados utilizando o sensor LiDAR

Trabalho proposto (2/2)

Objetivos específicos:

- I. utilizar o sensor LiDAR para efetuar o reconhecimento do ambiente e objetos
- II. utilizar recursos do próprio dispositivo móvel para orientar o usuário no deslocamento
- III. validar se os resultados apresentados são satisfatórios para conduzir com segurança em ambientes fechados, uma pessoa que seja portadora de alguma deficiência visual

Trabalhos correlatos (1/3)

Título: LET BLIND PEOPLE SEE: REAL-TIME VISUAL RECOGNITION WITH RESULTS CONVERTED TO 3D AUDIO

Jiang, Lin e Qu (2016)

Trabalho Características	Jiang, Lin e Qu (2016)
Depende de um computador para o processamento	Sim
Utiliza apenas um equipamento para a detecção	Não
Dispositivo para captura de imagens	GoPro
Possui dispositivo capaz de reconhecer profundidade	Não
Funciona em ambientes de baixa iluminação	Não
Faz o reconhecimento de objetos	Sim

Trabalhos correlatos (2/3)

Título: REAL-TIME OBSTACLE DETECTION SYSTEM IN INDOOR ENVIRONMENT FOR THE VISUALLY IMPAIRED USING MICROSOFT KINECT SENSOR

Pham, Le e Vuillerme (2015)

Trabalho Características	Pham, Le e Vuillerme (2015)
Depende de um computador para o processamento	Sim
Utiliza apenas um equipamento para a detecção	Não
Dispositivo para captura de imagens	Microsoft Kinect
Possui equipamento capaz de reconhecer profundidade	Sim
Funciona em ambientes de baixa iluminação	Sim
Faz o reconhecimento de objetos	Não

Trabalhos correlatos (3/3)

Título: WEARABLE TRAVEL AID FOR ENVIRONMENT PERCEPTION AND NAVIGATION OF VISUALLY IMPAIRED PEOPLE

BAI, J. et al. (2019)

Trabalho Características	BAI, J. <i>et al</i> . (2019)
Depende de um computador para o processamento	Não
Utiliza apenas um equipamento para a detecção	Não
Dispositivo para captura de imagens	Câmera RGB-D
Possui equipamento capaz de reconhecer profundidade	Sim
Funciona em ambientes de baixa iluminação	Sim
Faz o reconhecimento de objetos	Sim

Comparação entre os correlatos

Trabalhos Características	Jiang, Lin e Qu (2016)	Pham, Le e Vuillerme (2015)	BAI, J. et al. (2019)
Depende de um computador para o processamento	Sim	Sim	Não
Utiliza apenas um equipamento para a detecção	Não	Não	Não
Dispositivo para captura de imagens	GoPro	Microsoft Kinect	Câmera RGB-D
Possui equipamento capaz de reconhecer profundidade	Não	Sim	Sim
Funciona em ambientes de baixa iluminação	Não	Sim	Sim
Faz o reconhecimento de objetos	Sim	Não	Sim

Diferenciais do trabalho proposto:

- Utilização apenas do smartphone do usuário com o sensor LiDAR para executar as ações

Requisitos

requisitos	descrição				
RF01	realizar a detecção de objetos				
RF02	realizar a detecção de ambientes				
RF03	orientar o usuário para evitar obstáculos no deslocamento em ambientes fechados				
RNF01	ser desenvolvido utilizando a linguagem Swift				
RNF02	utilizar o sensor LiDAR para o processo de detecção				

Cronograma de atividades

	2021									
	ag	go. set.		et.	out.		nov.		dez.	
etapas / quinzenas	1	2	1	2	1	2	1	2	1	2
levantamento bibliográfico										
levantamento de requisitos										
definir técnicas para detecção de ambientes e objetos										
definir formas de alerta de obstáculos para o usuário										
especificação										
implementação										
testes										

Revisão bibliográfica

Assunto	Referências bibliográficas
Detecção de objetos	ZOU, Z. <i>et al</i> . (2019) FRITZ AI (2021) INDATA LABS (2021) O'SHEA, Keiron; NASH, Ryan (2015)
LiDAR	WU (2018) MAKSYMOVA, levgeniia; STEGER, Christian; DRUML, Norbert (2018) BLICKFELD (2021) BRITANNICA (2021) EMERLINE (2021)
ARKit	APPLE (2021)

Muito obrigado!