Would you like to see this cheatsheet in your native language? You can help us translating it (https://github.com/shervinea/cheatsheet-translation) on GitHub!

(https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks#cs-229---machine-learning)CS 229 - Machine Learning (teaching/cs-229)

العربية (l/ar/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks) **English** Español (l/es/teaching/cs-229/hoja-referencia-aprendizaje-automatico-consejos-trucos) فارسى (l/fa/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks) Français (l/fr/teaching/cs-229/pense-bete-machine-learning-petites-astuces) 한국어 (l/ko/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks) Português (l/pt/teaching/cs-229/dicas-truques-aprendizado-maquina) Türkçe (l/tr/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks) 繁中 (l/zh-tw/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks)

(https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks#cheatsheet)Machine Learning tips and tricks cheatsheet

By Afshine Amidi (https://twitter.com/afshinea) and Shervine Amidi (https://twitter.com/shervinea)

(https://stanford.edu/~shervine/teaching/cs-229/cheatsheetmachine-learning-tips-and-tricks#classification-metrics) Classification metrics

In a context of a binary classification, here are the main metrics that are important to track in order to assess the performance of the model.

Confusion matrix — The confusion matrix is used to have a more complete picture when assessing the performance of a model. It is defined as follows:

Main metrics — The following metrics are commonly used to assess the performance of classification models:

Metric	Formula	Interpretation
Accuracy	[Math Processing Error]	Overall performance of model
Precision	[Math Processing Error]	How accurate the positive predictions are
Recall Sensitivity	[Math Processing Error]	Coverage of actual positive sample
Specificity	[Math Processing Error]	Coverage of actual negative sample
F1 score	[Math Processing Error]	Hybrid metric useful for unbalanced classes

ROC — The receiver operating curve, also noted ROC, is the plot of TPR versus FPR by varying the threshold. These metrics are are summed up in the table below:

Metric	Formula	Equivalent
True Positive Rate TPR	[Math Processing Error]	Recall, sensitivity
False Positive Rate FPR	[Math Processing Error]	1-specificity

AUC — The area under the receiving operating curve, also noted AUC or AUROC, is the area below the ROC as shown in the following figure:

ROC AUC

[https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks#regression-metrics) Regression metrics

Basic metrics — Given a regression model [Math Processing Error], the following metrics are commonly used to assess the performance of the model:

Total sum of squares	Explained sum of squares	Residual sum of squares
[Math Processing Error]	[Math Processing Error]	[Math Processing Error]

Coefficient of determination — The coefficient of determination, often noted [Math Processing Error] or [Math Processing Error], provides a measure of how well the observed outcomes are replicated by the model and is defined as follows:

[Math Processing Error]

Main metrics — The following metrics are commonly used to assess the performance of regression models, by taking into account the number of variables [Math Processing Error] that they take into consideration:

Mallow's Cp	AIC	BIC	Adjusted [Math Processing Error]
[Math Processing	[Math Processing	[Math Processing	[Math Processing
Error]	Error]	Error]	Error]

where [Math Processing Error] is the likelihood and [Math Processing Error] is an estimate of the variance associated with each response.

[https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks#model-selection) Model selection

Vocabulary — When selecting a model, we distinguish 3 different parts of the data that we have as follows:

Training set	Validation set	Testing set
 Model is trained Usually 80% of the dataset	Model is assessedUsually 20% of the datasetAlso called hold-out or development set	Model gives predictionsUnseen data

Once the model has been chosen, it is trained on the entire dataset and tested on the unseen test set. These are represented in the figure below:

Partition of the dataset

Cross-validation — Cross-validation, also noted CV, is a method that is used to select a model that does not rely too much on the initial training set. The different types are summed up in the table below:

k-fold	Leave-p-out
--------	-------------

- Training on [Math Processing Error] folds and assessment on the remaining one
- Generally [Math Processing Error] or [Math Processing Error]
- Training on [Math Processing Error]
 observations and assessment on the [Math
 Processing Error] remaining ones
- Case [Math Processing Error] is called leave-one-out

The most commonly used method is called [Math Processing Error]-fold cross-validation and splits the training data into [Math Processing Error] folds to validate the model on one fold while training the model on the [Math Processing Error] other folds, all of this [Math Processing Error] times. The error is then averaged over the [Math Processing Error] folds and is named cross-validation error.

Cross-validation

Regularization — The regularization procedure aims at avoiding the model to overfit the data and thus deals with high variance issues. The following table sums up the different types of commonly used regularization techniques:

LASSO	Ridge	Elastic Net	
Shrinks coefficients to 0Good for variable selection	Makes coefficients smaller	Tradeoff between variat selection and small coe	
Lasso	Ridge	Elastic Net	
[Math Processing Error] [Math Processing Error]	[Math Processing Error] [Math Processing Error]	[Math Processing Error] [Math Processing Error]	

[https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks#diagnostics) Diagnostics

Bias — The bias of a model is the difference between the expected prediction and the correct model that we try to predict for given data points.

Variance — The variance of a model is the variability of the model prediction for given data points.

Bias/variance tradeoff — The simpler the model, the higher the bias, and the more complex the model, the higher the variance.

	Underfitting	Just right	Overfitting
Symptoms	High training errorTraining error close to test errorHigh bias	Training error slightly lower than test error	Very low training eTraining error muclelower than test erroHigh variance
Regression illustration	Underfit in regression	Right fit in regression	Overfit in regress
Classification illustration	Underfit in classification	Right fit in classification	Overfit in classification
Deep learning illustration	Underfit in deep learning	Right fit in deep learning	Overfit in dee learning
Possible remedies	Complexify modelAdd more featuresTrain longer		Perform regulariza Get more data

Error analysis — Error analysis is analyzing the root cause of the difference in performance between the current and the perfect models.

Ablative analysis — Ablative analysis is analyzing the root cause of the difference in performance between the current and the baseline models.

