Foglio di Esercizi 3 – Basi e dimensione di sottospazi vettoriali

Esercizio 1. Nello spazio vettoriale $V = \mathbb{R}[x]$ dei polinomi in x a coefficienti reali, si determini la dimensione dei seguenti sottospazi:

1.1
$$W_1 = \operatorname{Span} \{1 + x, (1+x)^2\}$$
.

1.2
$$W_2 = \text{Span}\{1, x + x^2, x^3, (1+x)^3\}$$
.

1.3
$$W_3 = \text{Span}\{x, x^2, x - x^2, x + x^2\}$$
.

Esercizio 2. Stabilire se ognuno dei seguenti sottoinsiemi di \mathbb{R}^3 è formato da vettori linearmente indipendenti e se è un insieme di generatori. Se il sottoinsieme non costituisce una base di \mathbb{R}^3 , completarlo ad una base o estrarre una base.

2.1
$$S = \{(1,0,0), (1,1,0), (0,1,1)\}$$
;

2.2
$$T = \{(1,0,0), (0,1,1), (5,1,1)\}$$
;

2.3
$$U = \{(1,0,0), (5,1,1)\}$$
;

2.4
$$V = \{(1,1,0), (0,1,1), (5,1,1), (1,2,1)\}$$
;

Esercizio 3. Stabilire se ognuno dei seguenti sottoinsiemi di \mathbb{R}^4 è formato da vettori linearmente indipendenti e se è un insieme di generatori. Se il sottoinsieme non costituisce una base di \mathbb{R}^4 , completarlo ad una base o estrarre una base.

3.1
$$S = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\};$$

3.2
$$T = \{(1,0,0,0), (1,1,1,0), (1,1,1,1)\}$$
;

3.3
$$U = \{(1,0,0,0), (0,1,1,1), (1,1,1,0), (1,1,1,1)\};$$

3.4
$$V = \{(1,0,0,0), (0,1,1,1), (1,1,1,0), (1,1,1,1), (0,3,0,0)\}$$
;

Esercizio 4. Stabilire se ognuno dei seguenti sottoinsiemi di $\mathbb{R}_2[x]$ è formato da vettori linearmente indipendenti e se è un insieme di generatori. Se il sottoinsieme non costituisce una base di $\mathbb{R}_2[x]$, completarlo ad una base o estrarre una base.

4.1
$$S = \{1, x, x^2\}$$
;

4.2
$$S = \{1, x\}$$
;

4.3
$$S = \{x, x^2\}$$
;

4.4
$$S = \{1 + x, x, x^2\}$$
;

4.5
$$S = \{1, x, x^2, 1 + x\}$$
:

4.6
$$S = \{1, x, 2 + x\}$$
:

4.7
$$S = \{1, x, x^2, 2 - x\}$$
;

4.8
$$S = \{2 - x, x, x^2\}$$
;

4.9
$$S = \{1, x + x^2, 1 + x + x^2\}$$
;

4.10
$$S = \{1, x + x^2, 1 + x - x^2\}$$
;

4.11
$$S = \{x + x^2, 1 + x + x^2\}$$
;

Esercizio 5. Stabilire se i vettori di \mathbb{R}^4

$$v_1 = (1, 0, 2, -2), \quad v_2 = (2, 0, 2, 1) \quad e \quad v_3 = (1, 1, 0, 1)$$

sono linearmente indipendenti. Stabilire se $S=(v_1,v_2,v_3)$ è una base di \mathbb{R}^4 . È possibile trovare un vettore v_4 che completi S a una base di \mathbb{R}^4 ?

Esercizio 6. Sono dati i vettori di \mathbb{R}^3 :

$$v_1 = (1, 2, 1), \quad v_2 = (1, 0, 2), \quad v_3 = (1, k, -1).$$

- 6.1 Per quali valori di $k \in \mathbb{R}$ i tre vettori formano una base di \mathbb{R}^3 ?
- 6.2 Calcolare, al variare di $k \in \mathbb{R}$, la dimensione del sottospazio $E = \operatorname{Span}\{v_1, v_2, v_3\}$.
- 6.3 Calcolare, al variare di $k \in \mathbb{R}$, la dimensione del sottospazio $F = \operatorname{Span}\{v_2, v_3\}$.

Esercizio 7. Stabilire per quali valori di $t \in \mathbb{R}$ il vettore u = (2,t,0,1) appartiene al sottospazio W generato da v = (1,0,0,1) e w = (0,1,0,1). Calcolare poi la dimensione del sottospazio di \mathbb{R}^4 generato da u,v e w al variare di $t \in \mathbb{R}$.

Esercizio 8. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y e z

$$S_1: x-y+2z=0$$
 $S_2: \begin{cases} x+y-z=0\\ x-3y=0 \end{cases}$ $S_3: \begin{cases} x+y-z=0\\ x-3y=0\\ 2x+y=0 \end{cases}$

Determinare in ciascun caso una base (e quindi la dimensione) del sottospazio di \mathbb{R}^3 formato dalle soluzioni del sistema.

Esercizio 9. Sono dati i seguenti sistemi lineari omogenei nelle incognite $\ x,y,z \ \ e \ \ w :$

$$S_1: x - 2y + w = 0$$
 $S_2: \begin{cases} x - 2y + w = 0 \\ x + y + z = 0 \end{cases}$

Determinare in ciascun caso una base (e quindi la dimensione) del sottospazio di \mathbb{R}^4 formato dalle soluzioni del sistema.

Esercizio 10. Sia E il sottospazio di \mathbb{R}^4 formato dalle soluzioni dell'equazione x+y+z+w=0 , e sia

$$F = \operatorname{Span} \left\{ \begin{pmatrix} 1\\1\\1\\-3 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix} \right\}$$

- 10.1 Determinare una base e la dimensione di E e di F .
- 10.2 È vero che $F \subset E$?
- 10.3 È vero che F = E?