Back-propagation through convolution

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab:

Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Contents

- Introduction
- Notation
- Derivation of ΔW
- Derivation of ΔX
- **Summary**

Back-propagation through convolution

Introduction

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Convolution:

- Foward-pass:
 - Input:
 - (a) X: feature map from previous layer
 - (b) W: Learnable parameter of the convolution
 - Goal:
 - (a) Compute Y, and it is cached for using in backward-pass

Backward-pass:

- Input:
 - (a) ΔY : partial derivatives of error function with respect to each value in Y
 - (b) X: cached from the forward-pass
 - (c) W: current parameters of the convolution
- Goal:
 - (a) Compute ΔX: partial derivatives of error function with respect to each value in X

- Backward-pass:
 - Input:
 - (a) ΔY: partial derivatives of error function with respect to each value in Y
 - (b) X: cached from the forward-pass
 - (c) W: current parameters of the convolution
 - Goal:
 - (a) Compute ΔX: partial derivatives of error function with respect to each value in X

(b) Compute ΔW: partial derivatives of error function with respect to each value in W

How to learn parameters

After backward-pass done, update weights according to the equation below

$$W = W - \alpha \times \Delta W$$

 α : learning rate, a hyper-parameter

Question:

(1) How to perform backward-pass

Convolution:

	X 11	X 12	X 13
X =	X 21	X 22	X 23
	X 31	X 32	X 33

- X is a the feature map to the convolution, in forward-pass
- X is the output of previous layer in forward-pass, it's cached for using in backward-pass

• Convolution:

$$\Delta \mathbf{X} = \begin{bmatrix} \delta x_{11} & \delta x_{12} & \delta x_{13} \\ \delta x_{21} & \delta x_{22} & \delta x_{23} \end{bmatrix}$$
$$\delta x_{31} & \delta x_{31} & \delta x_{33}$$

 $\delta x_{ij} = \frac{\partial J}{\partial x_{ij}}$: partial derivative of error function with respect to δx_{ij}

 We have to compute ΔX because it's the input to previous layer in backward-pass

• Convolution:

Current parameters of the convolution

• Convolution:

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}_{11} & \mathbf{w}_{12} \\ \mathbf{w}_{21} & \mathbf{w}_{22} \end{bmatrix} \mathbf{\Delta W} = \begin{bmatrix} \delta w_{11} & \delta w_{12} \\ \delta w_{21} & \delta w_{22} \end{bmatrix}$$

 $\delta w_{ij} = \frac{\partial J}{\partial w_{ij}}$: partial derivative of error function with respect to w_{ij}

• Convolution:

Output of the convolution

• Convolution:

$$\Delta Y = \begin{bmatrix} \delta y_{11} & \delta y_{12} \\ \delta y_{21} & \delta y_{22} \end{bmatrix}$$

 $\delta y_{ij} = \frac{\partial J}{\partial y_{ii}}$: partial derivative of error function with respect to y_{ij}

Back-propagation through convolution layer Derivation of AW

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

• Input-output relationship

HOW?

Input-output relationship

$$\mathbf{Y} = \begin{bmatrix} y_{11} = w_{22}x_{11} + w_{21}x_{12} + & y_{12} = w_{22}x_{12} + w_{21}x_{13} + \\ w_{12}x_{21} + w_{11}x_{22} & w_{12}x_{22} + w_{11}x_{23} \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} y_{21} = w_{22}x_{21} + w_{21}x_{22} + & y_{22} = w_{22}x_{22} + w_{21}x_{23} + \\ w_{12}x_{31} + w_{11}x_{32} & w_{12}x_{32} + w_{11}x_{33} \end{bmatrix}$$

V	V	R	ot18	00(V	 V)
W 21	W22		W12	W11	
W11	W 12	Rotate W 180º	W22	W21	

W ₂₂ X ₁₁	W ₂₁ X ₁₂	X 13
W12X21	W ₁₁ X ₂₂	X 23
X 31	X 32	X 33

$y_{11} = w_{22}x_{11} + w_{21}x_{12} + w_{12}x_{21} + w_{11}x_{22}$	

X

W22	W21
W12	W11

 $Rot180^{0}(W)$

X ₁₁	W22X12	W ₂₁ X ₁₃
X 21	W ₁₂ X ₂₂	W ₁₁ X ₂₃
X 31	X 32	X 33

X

$y_{11} = w_{22}x_{11} + w_{21}x_{12} + w_{12}x_{21} + w_{11}x_{22}$	$y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{22} + w_{11}x_{23}$

W22	W 21
W 12	W11

 $Rot180^{0}(W)$

Derivation of ΔW

Similarly,

$$y_{11} = w_{22}x_{11} + w_{21}x_{12} + w_{12}x_{21} + w_{11}x_{22}$$

$$y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{22} + w_{11}x_{23}$$

$$y_{21} = w_{22}x_{21} + w_{21}x_{22} + w_{12}x_{31} + w_{11}x_{32}$$

$$y_{22} = w_{22}x_{22} + w_{21}x_{23} + w_{12}x_{32} + w_{11}x_{33}$$

Convolution layer in the whole network:

Because J depends on $y_{i,j}$ and $y_{i,j}$ depends on $w_{m,n}$:

$$\frac{\partial J}{\partial w_{12}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{12}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{12}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{12}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{12}}$$

$$\frac{\partial J}{\partial w_{21}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{21}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{21}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{21}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{21}}$$

$$\frac{\partial J}{\partial w_{22}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{22}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{22}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{22}}$$

Chain rule:

Derivation of ΔW

$$y_{11} = w_{22}x_{11} + w_{21}x_{12} + y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{21} + w_{11}x_{22}$$

$$y_{21} = w_{22}x_{21} + w_{21}x_{22} + y_{22} = w_{22}x_{22} + w_{21}x_{23} + w_{12}x_{31} + w_{11}x_{32}$$

$$y_{22} = w_{22}x_{22} + w_{21}x_{23} + w_{11}x_{33} + w_{12}x_{32} + w_{11}x_{33} + w_{12}x_{33} + w_{11}x_{33}$$

$$\frac{\partial J}{\partial w_{11}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{11}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{11}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{11}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{11}}
= \delta y_{11} x_{22} + \delta y_{12} x_{23} + \delta y_{21} x_{32} + \delta y_{22} x_{33}$$

Notation:
$$\frac{\partial J}{\partial w_{11}} \stackrel{\Delta}{=} \delta w_{11}$$
$$\frac{\partial J}{\partial y_{ii}} \stackrel{\Delta}{=} \delta y_{ij}$$

Derivation of ΔW

$$y_{11} = w_{22}x_{11} + w_{21}x_{12} + y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{21} + w_{11}x_{22}$$
 $y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{22} + w_{11}x_{23}$ $y_{21} = w_{22}x_{21} + w_{21}x_{22} + y_{22} = w_{22}x_{22} + w_{21}x_{23} + w_{12}x_{31} + w_{11}x_{32}$ $w_{12}x_{32} + w_{11}x_{33}$

$$\frac{\partial J}{\partial w_{11}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{11}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{11}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{11}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{11}}$$
$$= \delta y_{11} x_{22} + \delta y_{12} x_{23} + \delta y_{21} x_{32} + \delta y_{22} x_{33}$$

$$\frac{\partial J}{\partial w_{12}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{12}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{12}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{12}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{12}}
= \delta y_{11} x_{21} + \delta y_{12} x_{22} + \delta y_{21} x_{31} + \delta y_{22} x_{32}$$

$$y_{11} = w_{22}x_{11} + w_{21}x_{12} + y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{21} + w_{11}x_{22}$$

$$y_{21} = w_{22}x_{21} + w_{21}x_{22} + y_{22} = w_{22}x_{22} + w_{21}x_{23} + w_{12}x_{31} + w_{11}x_{32}$$

$$y_{22} = w_{22}x_{22} + w_{21}x_{23} + w_{11}x_{33} + w_{12}x_{32} + w_{12}x_{32} + w_{11}x_{33} + w_{12}x_{32} + w_{12}x_{32} + w_{12}x_{33} + w_{12}x_{32} + w_{12}x_{33} + w_$$

$$\frac{\partial J}{\partial w_{11}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{11}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{11}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{11}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{11}}$$

$$= \delta y_{11} x_{22} + \delta y_{12} x_{23} + \delta y_{21} x_{32} + \delta y_{22} x_{33}$$

$$\frac{\partial J}{\partial w_{12}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{12}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{12}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{12}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{12}}
= \delta y_{11} x_{21} + \delta y_{12} x_{22} + \delta y_{21} x_{31} + \delta y_{22} x_{32}$$

$$\frac{\partial J}{\partial w_{21}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{21}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{21}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{21}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{21}}
= \delta y_{11} x_{12} + \delta y_{12} x_{13} + \delta y_{21} x_{22} + \delta y_{22} x_{23}$$

Derivation of ΔW

$$y_{11} = w_{22}x_{11} + w_{21}x_{12} + y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{21} + w_{11}x_{22}$$
 $y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{22} + w_{11}x_{23}$ $y_{21} = w_{22}x_{21} + w_{21}x_{22} + y_{22} = w_{22}x_{22} + w_{21}x_{23} + w_{12}x_{31} + w_{11}x_{32}$ $w_{12}x_{32} + w_{11}x_{33}$

$$\frac{\partial J}{\partial w_{11}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{11}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{11}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{11}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{11}}
= \delta y_{11} x_{22} + \delta y_{12} x_{23} + \delta y_{21} x_{32} + \delta y_{22} x_{33}$$

$$\frac{\partial J}{\partial w_{12}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{12}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{12}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{12}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{12}}
= \delta y_{11} x_{21} + \delta y_{12} x_{22} + \delta y_{21} x_{31} + \delta y_{22} x_{32}$$

$$\frac{\partial J}{\partial w_{21}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{21}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{21}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{21}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{21}}$$

$$= \delta y_{11} x_{12} + \delta y_{12} x_{13} + \delta y_{21} x_{22} + \delta y_{22} x_{23}$$

$$\frac{\partial J}{\partial w_{22}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial w_{22}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial w_{22}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial w_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial w_{22}}$$

$$= \delta y_{11} x_{11} + \delta y_{12} x_{12} + \delta y_{21} x_{21} + \delta y_{22} x_{22}$$

$$\delta w_{11} = \delta y_{11} x_{22} + \delta y_{12} x_{23} + \delta y_{21} x_{32} + \delta y_{22} x_{33}$$

$$\delta w_{12} = \delta y_{11} x_{21} + \delta y_{12} x_{22} + \delta y_{21} x_{31} + \delta y_{22} x_{32}$$

$$\delta w_{21} = \delta y_{11} x_{12} + \delta y_{12} x_{13} + \delta y_{21} x_{22} + \delta y_{22} x_{23}$$

$$\delta w_{22} = \delta y_{11} x_{11} + \delta y_{12} x_{12} + \delta y_{21} x_{21} + \delta y_{22} x_{22}$$

$$\delta w_{11} = \delta y_{11} x_{22} + \delta y_{12} x_{23} + \delta y_{21} x_{32} + \delta y_{22} x_{33}$$

$$\delta w_{12} = \delta y_{11} x_{21} + \delta y_{12} x_{22} + \delta y_{21} x_{31} + \delta y_{22} x_{32}$$

$$\delta w_{21} = \delta y_{11} x_{12} + \delta y_{12} x_{13} + \delta y_{21} x_{22} + \delta y_{22} x_{23}$$

$$\delta w_{22} = \delta y_{11} x_{11} + \delta y_{12} x_{12} + \delta y_{21} x_{21} + \delta y_{22} x_{22}$$

Formal result:

* Input from the consecutive layer in backward mode:

$$\Delta \mathbf{Y} = \begin{bmatrix} \delta y_{11} & \delta y_{12} \\ \delta y_{21} & \delta y_{22} \end{bmatrix}$$

- [™] ★ ΔW is computed as follows:
 - (1) Step 1: Rotate ΔY to obtain Rot180^o(ΔY)
 - (2) Step 2: Compute convolution between Rot180⁰(ΔΥ) (as input) and X (as kernel)

$$\Delta W = Rot180^{0}(\Delta Y) * X$$

Verification:

X11	X 12	X 13		X 33	X 32	X 31
X 21	X 22	X 23	X (as kernel) Rotate 180°	X ₂₃	X 22	X 21
X 31	X 32	X 33		X 13	X 12	X11

Verification:

$\delta y_{22}x_{33}$	$\delta y_{21}x_{32}$	X 31
$\delta y_{12}x_{23}$	$\delta y_{11}x_{22}$	X 21
X 13	X 12	X 11

(Rotated kernel)

δy_{22}	δy_{21}
δy_{12}	δy_{11}

 $Rot180^{0}(\Delta Y)$ (as input)

 $\delta w_{11} = \delta y_{11} x_{22} + \delta y_{12} x_{23} + \delta y_{21} x_{32} + \delta y_{22} x_{33}$

Verification:

X 33	$\delta y_{22}x_{32}$	$\delta y_{21}x_{31}$
X 23	$\delta y_{12}x_{22}$	$\delta y_{11}x_{21}$
X 13	X 12	X 11

 $\delta w_{11} = \delta y_{11} x_{22} + \delta y_{12} x_{23} + \delta y_{21} x_{32} + \delta y_{22} x_{33}$

 $\delta w_{12} = \delta y_{11} x_{21} + \delta y_{12} x_{22} + \delta y_{21} x_{31} + \delta y_{22} x_{32}$

(Rotated kernel)

$$\begin{array}{|c|c|c|c|}\hline \delta y_{22} & \delta y_{21} \\ \hline \delta y_{12} & \delta y_{11} \\ \hline \end{array}$$

 $Rot180^{0}(\Delta Y)$ (as input)

Verification:

X 33	$\delta y_{22}x_{32}$	$\delta y_{21}x_{31}$
X ₂₃	$\delta y_{12}x_{22}$	$\delta y_{11}x_{21}$
X 13	X 12	X11

(Rotated kernel)

δy_{22}	δy_{21}
δy_{12}	δy_{11}

 $Rot180^{0}(\Delta Y)$ (as input)

$$\delta w_{11} = \delta y_{11} x_{22} + \delta y_{12} x_{23} + \delta y_{21} x_{32} + \delta y_{22} x_{33}$$

$$\delta w_{12} = \delta y_{11} x_{21} + \delta y_{12} x_{22} + \delta y_{21} x_{31} + \delta y_{22} x_{32}$$

Similarly,

$$\delta w_{21} = \delta y_{11} x_{12} + \delta y_{12} x_{13} + \delta y_{21} x_{22} + \delta y_{22} x_{23}$$

$$\delta w_{22} = \delta y_{11} x_{11} + \delta y_{12} x_{12} + \delta y_{21} x_{21} + \delta y_{22} x_{22}$$

Back-propagation through convolution layer Derivation of AX

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Derivation of ΔX

Because J depends on $y_{i,j}$ and $y_{i,j}$ depends on $x_{u,v}$:

Chain rule:

$$\frac{\partial J}{\partial x_{11}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{11}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{11}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{11}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{11}}$$

$$\frac{\partial J}{\partial x_{12}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{12}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{12}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{12}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{12}}$$

$$\frac{\partial J}{\partial x_{13}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{13}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{13}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{13}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{13}}$$

$$\frac{\partial J}{\partial x_{21}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{21}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{21}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{21}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{21}}$$

$$\frac{\partial J}{\partial x_{22}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{22}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{22}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}}$$

$$\frac{\partial J}{\partial x_{23}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{23}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{23}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{23}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{23}}$$

Because J depends on $y_{i,j}$ and $y_{i,j}$ depends on $x_{u,v}$:

91

Chain rule:

$$\frac{\partial J}{\partial x_{31}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{31}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{31}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{31}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{31}}$$

$$\frac{\partial J}{\partial x_{32}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{32}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{32}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{32}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{32}}$$

$$\frac{\partial J}{\partial x_{33}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{33}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{33}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{33}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{33}}$$

We have:
$$y_{11} = w_{22}x_{11} + w_{21}x_{12} + y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{21} + w_{11}x_{22}$$

$$w_{12}x_{21} + w_{11}x_{22} + w_{11}x_{23}$$

$$y_{21} = w_{22}x_{21} + w_{21}x_{22} + w_{21}x_{22} + w_{21}x_{23} + w_{12}x_{31} + w_{11}x_{32}$$

$$w_{12}x_{31} + w_{11}x_{32} + w_{11}x_{33}$$

$$\frac{\partial J}{\partial x_{11}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{11}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{11}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{11}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{11}} = \delta y_{11} w_{22}$$

$$\frac{\partial J}{\partial x_{12}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{12}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{12}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{12}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{12}} = \delta y_{11} w_{21} + \delta y_{12} w_{22}$$

$$\frac{\partial J}{\partial x_{13}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{13}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{13}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{13}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{13}} = \delta y_{12} w_{21}$$

We have:
$$y_{11} = w_{22}x_{11} + w_{21}x_{12} + y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{21} + w_{11}x_{22}$$

$$w_{12}x_{21} + w_{11}x_{22} + w_{11}x_{23}$$

$$y_{21} = w_{22}x_{21} + w_{21}x_{22} + w_{21}x_{22} + w_{21}x_{23} + w_{12}x_{31} + w_{11}x_{32}$$

$$w_{12}x_{31} + w_{11}x_{32} + w_{11}x_{33}$$

$$\frac{\partial J}{\partial x_{21}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{21}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{21}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{21}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{21}} = \delta y_{11} w_{12} + \delta y_{21} w_{22}$$

$$\delta y_{11} w_{12} + \delta y_{21} w_{22}$$

$$\frac{\partial J}{\partial x_{22}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{22}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{22}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{21}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{21}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{21}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{21}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{21}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{21}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{21}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} = \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{22}} + \frac{\partial J}{\partial y_{22}}$$

$$\delta y_{11} w_{11} + \delta y_{12} w_{12} +$$

$$\delta y_{21}w_{21} + \delta y_{11}w_{22}$$

$$\frac{\partial J}{\partial x_{23}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{23}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{23}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{23}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{23}} =$$

$$\delta y_{12}w_{11} + \delta y_{22}w_{21}$$

We have:
$$y_{11} = w_{22}x_{11} + w_{21}x_{12} + y_{12} = w_{22}x_{12} + w_{21}x_{13} + w_{12}x_{21} + w_{11}x_{22}$$

$$w_{12}x_{21} + w_{11}x_{22} + w_{11}x_{23}$$

$$y_{21} = w_{22}x_{21} + w_{21}x_{22} + w_{21}x_{22} + w_{21}x_{23} + w_{12}x_{31} + w_{11}x_{32}$$

$$w_{12}x_{31} + w_{11}x_{32} + w_{11}x_{33}$$

$$\frac{\partial J}{\partial x_{31}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{31}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{31}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{31}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{31}} = \delta y_{21} w_{12}$$

$$\frac{\partial J}{\partial x_{32}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{32}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{32}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{32}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{32}} = \delta y_{21} w_{11} + \delta y_{22} w_{12}$$

$$\frac{\partial J}{\partial x_{33}} = \frac{\partial J}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{33}} + \frac{\partial J}{\partial y_{12}} \frac{\partial y_{12}}{\partial x_{33}} + \frac{\partial J}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{33}} + \frac{\partial J}{\partial y_{22}} \frac{\partial y_{22}}{\partial x_{33}} = \delta y_{22} w_{11}$$

$$\delta x_{12} = \delta y_{11} w_{21} + \delta y_{12} w_{22}$$

$$\delta x_{13} = \delta y_{12} w_{21}$$

$$\delta x_{21} = \delta y_{11} w_{12} + \delta y_{21} w_{22}$$

$$\delta x_{22} = \delta y_{11} w_{11} + \delta y_{12} w_{12} + \delta y_{21} w_{21} + \delta y_{11} w_{22}$$

$$\delta x_{23} = \delta y_{12} w_{11} + \delta y_{22} w_{21}$$

$$\delta x_{31} = \delta y_{21} w_{12}$$

$$\delta x_{32} = \delta y_{21} w_{11} + \delta y_{22} w_{12}$$

$$\delta x_{33} = \delta y_{22} w_{11}$$

$$\delta x_{11} = \delta y_{11} w_{22} \qquad \delta x_{12} = \delta y_{11} w_{21} + \delta y_{12} w_{22} \qquad \delta x_{13} = \delta y_{12} w_{21}$$

$$\delta x_{21} = \delta y_{11} w_{12} + \delta y_{21} w_{22} \qquad \delta x_{22} = \delta y_{11} w_{11} + \delta y_{12} w_{12} + \delta y_{21} w_{21} + \delta y_{11} w_{22} \qquad \delta x_{23} = \delta y_{12} w_{11} + \delta y_{22} w_{21}$$

$$\delta x_{31} = \delta y_{21} w_{12} \qquad \delta x_{32} = \delta y_{21} w_{11} + \delta y_{22} w_{12} \qquad \delta x_{33} = \delta y_{22} w_{11}$$

Formal result:

* Input from the consecutive layer in backward mode:

$$\Delta \mathbf{Y} = \begin{bmatrix} \delta y_{11} & \delta y_{12} \\ \delta y_{21} & \delta y_{22} \end{bmatrix}$$

- ** **ΔX** is computed as follows:
 - (1) Step 1: Rotate **W** to obtain **Rot180**°(**W**)
 - (2) Step 2: Compute convolution between **Rot180**⁰(**W**) (as input) and **ΔY** (as kernel); using full padding convolution.

$$\Delta X = Rot180^{0}(W) * \Delta Y$$

Verification:

(use this backward mode, as input)

Verification:

δy_{11}	δy_{12}	using as kernel, therefore need rotation	δy_{22}	δy_{21}
δy_{21}	δy_{22}	Rotate 180 ^o	δy_{12}	δy_{11}

 ΔY

 $Rot180^{0}(\Delta Y)$

Verification:

W22	W 21
W 12	W 11

Rot180⁰(**W**)

(use this backward mode, as input)

δy_{22}	δy_{21}
δy_{12}	δy_{11}

 $Rot180^{0}(\Delta Y)$

(rotated kernel)

Now, compute cross-correlation

Output

Verification:

δy_{22}	δy_{21}		
δy_{12}	$\delta y_{11}w_{22}$	W 21	
	W 12	W 11	

$\delta x_{11} = \delta y_{11} w_{22}$	

Output

Verification:

IIGat		
δy_{22}	δy_{21}	
$\delta y_{12}w_{22}$	$\delta y_{11}w_{21}$	
W 12	W11	

$\delta x_{11} = \delta y_{11} w_{22}$	$\delta x_{12} = \\ \delta y_{11} w_{21} + \delta y_{12} w_{22}$	

Output

Verification:

	δy_{22}	δy_{21}
W22	$\delta y_{12}w_{21}$	δy_{11}
W ₁₂	W11	

$\delta x_{11} = \delta y_{11} w_{22}$	$\delta x_{12} = \\ \delta y_{11} w_{21} + \delta y_{12} w_{22}$	$\delta x_{13} = \delta y_{12} w_{21}$

Output

Verification:

δy_{22}	$\delta y_{21}w_{22}$	W21	
δy_{12}	$\delta y_{11}w_{12}$	W11	

$\delta x_{11} = \delta y_{11} w_{22}$	$\delta x_{12} = \\ \delta y_{11} w_{21} + \delta y_{12} w_{22}$	$\delta x_{13} = \delta y_{12} w_{21}$
$\delta x_{21} = \\ \delta y_{11} w_{12} + \delta y_{21} w_{22}$		

Output

Verification:

$\delta x_{11} = \delta y_{11} w_{22}$	$\delta x_{12} = \\ \delta y_{11} w_{21} + \delta y_{12} w_{22}$	$\delta x_{13} = \delta y_{12} w_{21}$
$\delta x_{21} = \\ \delta y_{11} w_{12} + \delta y_{21} w_{22}$	$\delta x_{22} = \\ \delta y_{11} w_{11} + \delta y_{12} w_{12} + \\ \delta y_{21} w_{21} + \delta y_{11} w_{22}$	

Output

Verification:

W22	$\delta y_{22}w_{21}$	δy_{21}
W 12	$\delta y_{12}w_{11}$	δy_{11}

$\delta x_{11} = \delta y_{11} w_{22}$	$\delta x_{12} = \\ \delta y_{11} w_{21} + \delta y_{12} w_{22}$	$\delta x_{13} = \delta y_{12} w_{21}$
$\delta x_{21} = \\ \delta y_{11} w_{12} + \delta y_{21} w_{22}$	$\delta x_{22} = \\ \delta y_{11} w_{11} + \delta y_{12} w_{12} + \\ \delta y_{21} w_{21} + \delta y_{11} w_{22}$	

Output

Verification:

	W22	W21	
δy_{22}	$\delta y_{21}w_{12}$	W11	
δy_{12}	δy_{11}		

$\delta x_{11} = \delta y_{11} w_{22}$	$\delta x_{12} = \\ \delta y_{11} w_{21} + \delta y_{12} w_{22}$	$\delta x_{13} = \delta y_{12} w_{21}$
$\delta x_{21} = \\ \delta y_{11} w_{12} + \delta y_{21} w_{22}$	$\delta x_{22} = \\ \delta y_{11} w_{11} + \delta y_{12} w_{12} + \\ \delta y_{21} w_{21} + \delta y_{11} w_{22}$	$\delta y_{12}w_{11} + \delta y_{22}w_{21}$
$\delta x_{31} = \delta y_{21} w_{12}$		

Output

Verification:

$\delta x_{11} = \delta y_{11} w_{22}$	$\delta x_{12} = \\ \delta y_{11} w_{21} + \delta y_{12} w_{22}$	$\delta x_{13} = \delta y_{12} w_{21}$
$\delta x_{21} = \\ \delta y_{11} w_{12} + \delta y_{21} w_{22}$	$\delta x_{22} = \\ \delta y_{11} w_{11} + \delta y_{12} w_{12} + \\ \delta y_{21} w_{21} + \delta y_{11} w_{22}$	$\delta y_{12}w_{11} + \delta y_{22}w_{21}$
$\delta x_{31} = \delta y_{21} w_{12}$	$\delta x_{32} = \\ \delta y_{21} w_{11} + \delta y_{22} w_{12}$	

Output

Verification:

$\delta x_{11} = \delta y_{11} w_{22}$	$\delta x_{12} = \\ \delta y_{11} w_{21} + \delta y_{12} w_{22}$	$\delta x_{13} = \delta y_{12} w_{21}$
$\delta x_{21} = \\ \delta y_{11} w_{12} + \delta y_{21} w_{22}$	$\delta y_{11} w_{11} + \delta y_{12} w_{12} + \delta y_{21} w_{21} + \delta y_{11} w_{22}$	
$\delta x_{31} = \delta y_{21} w_{12}$	$\delta x_{32} = \\ \delta y_{21} w_{11} + \delta y_{22} w_{12}$	$\delta x_{33} = \delta y_{22} w_{11}$

Output

Back-propagation through convolution layer Summary

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, **HCMUT**

Backprop with convolution layer

Convolution:

Backprop through convolution layer

Forward-pass:

$$Y = X * W$$

* Cache Y for using in backward mode

Backprop through convolution layer

Backward-pass:

- * (1) Compute ΔX, Eq. (1), and use it as the input to previous layer in backward mode.
 - ♣ Rot180º(W) as input, full padding
 - ♦ ΔY as kernel

 ∂b

$$\Delta X = Rot180^{0}(W) * \Delta Y$$

Eq. (1)

Backprop through convolution layer

Backward-pass:

- * (2) Compute ΔW , Eq. (2), and use it to update convolution's kernel.
 - ◆ Rot180⁰(ΔY) as input, no padding
 - ★ X as kernel

$$\Delta \mathbf{W} = \mathbf{Rot180}^{0}(\Delta \mathbf{Y}) * \mathbf{X}$$
 Eq. (2)