第三章 导数、微分、边际与弹性

一、单项选择题

2. 函数 $f(x) = x ^3$	Ex = 0 处满足下列员	『个结论(D).				
(A) 极限不存在		(B) 极限存在,不连	续			
(C) 连续,不可导		(D) 可导				
3. 函数 $f(x)$ 在区间	J(a,b) 内连续是 $f(x)$) 在 (a, b) 内可导的 (B).			
(A) 充分但非必要条	件	(B) 必要但非充分条件				
(C) 充分必要条件		(D) 既非充分又非必要条件				
			N			
4. 设函数 $f(x)$ 可导,记 $g(x) = f(x) + f(-x)$,则导数 $g'(x)$ 为 (A) .						
(A) 奇函数	(B) 偶函数	(C) 非奇非偶	(D) 奇偶性不定			
(:	x , a					
5. 函数 $f(x) = \begin{cases} -1 \\ 1 - \end{cases}$	$\frac{x}{e^{\frac{1}{x}}} x \neq 0$ $0 x = 0$, $E(x) = 0$	处(B).				
	$0 \qquad x = 0$					
(A) 不连续		(B) 连续但不可导				
(C) 可导, 且 $f'(0) = 0$		(D) 可导,且 $f'(0) = 1$				
• NH 2" N 24 2 M						
	导函数,则 $f''(x) = 0$					
(A) e^{2x}	(B) $2e^{2x}$	(C) $4e^{2x}$	(D) 0			
7 设 f'(0)-2 则	ちゃ、0 时 f(v) f	S(0) 县 v 的 (P)				
	$ \exists x \to 0 $ 时, $f(x) - f$		(D) 然从王宏玉县			
(A) 似所元为小里	(B) 同阶无穷小量	(C) 局例无为小里	(D) 寺饼兀为小里			
8. 设 $f(x) = x \ln 2x$	在 x_0 处可导,且 f'	$(x_0) = 2$,	(B).			
		_				
(A) 1	$(\mathbf{b}) \frac{-}{2}$	(C) $\frac{2}{e}$	(D) 62			

9. 曲线 $y = x \ln x - x$ 在 x = e 处的切线方程是(B).

(A)
$$y = e - x$$

(B)
$$y = x - e^{-x}$$

(A)
$$y = e - x$$
 (B) $y = x - e$ (C) $y = x - e + 1$ (D) $y = e + x$

(D)
$$y = e + x$$

10. 设
$$f(x)$$
 可导且 $f'(-2)=2$,又 $y=f(-x^2)$,则 $dy|_{x=\sqrt{2}}=(D)$.

- (A) 2 dx
- (B) $-2 \, dx$
- (C) $4\sqrt{2} dx$

11. 设
$$f(0) = 0$$
,且 $f'(0)$ 存在,则 $\lim_{x \to 0} \frac{f(x)}{x} = (B)$.

- (A) f'(x)

- (D) $\frac{1}{2}f(0)$

12. 设
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 , 则该函数在 $x = 0$ 处 (D) .

(A) 极限不存在

(C) 连续但不可导

13. 设
$$y = f(x)$$
, 已知 $\lim_{x \to 0} \frac{f(x_0) - f(x_0 + 2x)}{6x} = 3$, 则 $\mathrm{d}y|_{x = x_0} = (A)$. (A) $-9\,\mathrm{d}x$ (B) $18\,\mathrm{d}x$ (C) $-3\,\mathrm{d}x$ (D) $2\,\mathrm{d}x$

- (A) 0
- (B) -5!
- (C) -5

15. 设可微函数 y = f(x),如果 $f'(x_0) = 0.5$,则当 $\Delta x \to 0$ 时,该函数在 $x = x_0$ 处 的微分 dy 是(B).

(A) Δx 的等价无穷小

(B) Δx 的同阶但不等价的无穷小

(C) Δx 的低阶无穷小

- (D) Δx 的高阶无穷小
- **16.** 下列函数中,在点 x = 0 处可导的是 (B).
- (A) f(x) = |x|

(B) f(x) = |x-1|

(C) $f(x) = |\sin x|$

(D) $f(x) = \begin{cases} x^2 & x \le 0 \\ x & x > 0 \end{cases}$

17. 设周期函数 f(x) 在 $(-\infty, +\infty)$ 内可导,周期为 4,又 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$, 则 y = f(x) 在点 (5, f(5)) 处的切线的斜率为 (D).

- (A) $\frac{1}{2}$
- (C) -1
- (D) -2

18. 设
$$f(x) = \begin{cases} \frac{1 - \cos x}{\sqrt{x}} & x > 0 \\ x^2 g(x) & x \le 0 \end{cases}$$
 其中 $g'(x)$ 是有界函数,则 $f(x)$ 在 $x = 0$ 处 (D).

(A) 极限不存在

(B) 极限存在,但不连续

(C) 连续,但不可导

(D) 可导

19. 设函数
$$f(x) = \begin{cases} \sqrt{|x|} \sin(1/x^2) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
,则 $f(x)$ 在 $x = 0$ 处(C).

(A) 极限不存在

(B) 极限存在但不连续

(C) 连续但不可导

- (D) 可导
- **20.** $\forall F(x) = \max[f_1(x), f_2(x)], 0 < x < 2, \text{ } \sharp \vdash f_1(x) = x, f_2(x) = x^2, \text{ } \sharp \vdash f_1(x) = x, f_2(x) = x^2, \text{ } \sharp \vdash f_1(x) = x, \text{ } \sharp \vdash f_2(x) = x^2, \text{ } \sharp \vdash f_1(x) = x, \text{ } \sharp \vdash f_2(x) = x^2, \text{ } \sharp \vdash f_1(x) = x, \text{ } \sharp \vdash f_2(x) = x^2, \text{ } \sharp \vdash f_1(x) = x, \text{ } \sharp \vdash f_2(x) = x^2, \text{ }$

(A)
$$F'(x) = \begin{cases} 1 & 0 < x < 0.5 \\ 2x & 0.5 < x < 2 \end{cases}$$

(B)
$$F'(x) = \begin{cases} 1 & 0 < x \le 1 \\ 2x & 1 < x < 2 \end{cases}$$

(C)
$$F'(x) = \begin{cases} 1 & 0 < x < 1 \\ 2x & 1 \le x < 2 \end{cases}$$

(D)
$$F'(x) = \begin{cases} 1 & 0 < x < 1 \\ 2x & 1 < x < 2 \end{cases}$$

二、填空题

1. 设
$$y = f(\ln x)e^{f(x)}$$
, 其中 f 可微,则 $dy = e^{f(x)} \left[\frac{1}{x} f'(\ln x) + f'(x) f(\ln x) \right]$.

3. 设 (x_0, y_0) 是抛物线 $y = ax^2 + bx + c$ 上的一点,若在该点的切线过原点,则系数应满足的关系是 $ax_0^2 = c$,b 任意 .

6. 设
$$f(x)$$
 具有二导数,且 $f'(x) = [f(x)]^2$,则 $f''(x) = 2[f(x)]^3$.

7. 设函数
$$f(x) = (x+1)(x+2)(x+3)...(x+n)$$
 (其中 n 为正整数),则 $f'(0) = n! \sum_{k=1}^{n} \frac{1}{k}$.

8. 曲线
$$y = (1+x)e^x$$
 在点 $x = 0$ 处的切线方程为 $y = 2x + 1$.

10. 某商品的需求量 Q 与价格 P 的关系为 $Q = P^5$,则需求量 Q 对价格 P 的弹性是 5 .

11. 设函数
$$f(u)$$
 二阶可导,且 $y = f(\ln x)$,则 $y'' = \frac{1}{x^2} [f''(\ln x) - f'(\ln x)]$.

13. 设函数
$$f(x)$$
 在 $(-\infty, +\infty)$ 上可导,且 $y = f(x^{2006}) + [f(x)]^{2006}$,则 $\frac{dy}{dx} = f'(x^{2006}) \cdot 2006 \cdot x^{2005} + 2006 \cdot [f(x)]^{2005} \cdot f'(x) = 2006 \left\{ x^{2005} f'(x^{2006}) + [f(x)]^{2005} f'(x) \right\}$.

14. 设
$$\ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x}$$
,则 $\frac{dy}{dx} = \frac{x + y}{x - y}$.

- **15.** 设曲线 $f(x) = x^n$ 在点(1,1)处的切线与 x 轴的交点为(ξ_n ,0),则 $\lim_{n\to\infty} f(\xi_n) = \underline{e^{-1}}$.
- **16.** 函数 $f(x) = \sqrt[3]{x} |x|$ 在点 x = 0 处的导数 f'(0) = 0.
- **17.** 设 y = 2x + 1,则其反函数 x = x(y) 的导数 $x'(y) = \frac{1}{2}$.

18.
$$\begin{tabular}{l} \begin{tabular}{l} \textbf{18.} \end{tabular} \begin{tabular}{l} \begin{tabula$$

19. 问自然数
$$n$$
 至少多大,才能使 $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 在 $x = 0$ 处二阶可导 $(f''(0)$ 存在),并求其值. $n \geq 4$ $f''(0) = 0$.

三、计算题

1. 设函数
$$f(x) = \begin{cases} 3x + 2, & x \le 0 \\ e^x + 1, & x > 0 \end{cases}$$
 , 求 $f'(x)$.

解.
$$f'(x) = \begin{cases} 3, & x < 0 \\ e^x, & x > 0 \end{cases}$$
 , (在 $x = 0$ 处不可导)

2. 设
$$y = \frac{x \arctan x}{1+x}$$
, 求 dy.

AP.
$$dy = \frac{\arctan x + \frac{x^2 + x}{1 + x^2}}{(1 + x)^2} dx$$
.

AF.
$$3^x \ln 3 + 3x^2 + x^{\cos 3x} \left(-3\sin 3x \ln x + \frac{\cos 3x}{x} \right)$$
.

4. 设 y = y(x) 由方程 y = f[x + g(y)]. 所确定,其中 f 和 g 均可导,求 y'.

AF.
$$\frac{f'[x+g(y)]}{1-f'[x+g(y)]\cdot g'(y)}.$$

解. arctan $\frac{1}{x}$.

AE.
$$\frac{(x+1)^2 \sqrt[4]{x-2}}{\sqrt[3]{(x+2)^2}} \left[\frac{2}{x+1} + \frac{1}{4(x-2)} - \frac{2}{3(x+2)} \right].$$

7. 已知 $y^x = x^y$,求 y'.

解.
$$\frac{y(y-x \ln y)}{x(x-y \ln x)}$$
.

8. 由 $e^{x^2+y^2} + \sin(xy) = 5$ 确定 $y \in x$ 的函数 y(x),求 y'(x).

AF.
$$y' = -\frac{2xe^{x^2+y^2} + y\cos(xy)}{2ye^{x^2+y^2} + x\cos(xy)}$$

9. 函数 y = y(x) 由方程 $e^x - e^y - xy = 0$ 确定,求 $\frac{d^2y}{dx^2}\Big|_{x=0}$

解. 对方程两边关于 x 求导,得

$$e^{x} - e^{y} y' - y - x y' = 0,$$

两边关于 x 再求导,得

$$e^{x} - e^{y} y'^{2} - e^{y} y'' - y' - y' - x y'' = 0$$

$$\forall x = 0 \text{ If } y = 0 \text{ If$$

又当 x = 0 时, y = 0,于是 y'(0) = 1,故 $\frac{d^2 y}{dx^2}\Big|_{x=0} = -2$.

PAT.
$$\frac{e^t(\cos 3t + 3\sin 3t)}{36\cos^3 3t}.$$

11. 设曲线方程为 $\begin{cases} x = t + \sin t + 2 \\ y = t + \cos t \end{cases}$, 求此曲线在点 x = 2 处的切线方程,及 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$

解. 当
$$x = 2$$
 时, $t = 0$, $y = 1$, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - \sin t}{1 + \cos t}$, $\frac{\mathrm{d}y}{\mathrm{d}x} \bigg|_{t=0} = \frac{1}{2}$,

切线方程:

$$y-1=\frac{1}{2}(x-2);$$

二阶导数:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) \cdot \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\sin t - \cos t - 1}{(1 + \cos t)^3}$$

12. 设 f(x) 存在二阶连续导数,且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$, f''(0) = 4,求 $\lim_{x\to 0} \left(1 + \frac{f(x)}{x}\right)^{\frac{1}{x}}$. **解.** e^2 .

13. 设曲线
$$f(x)$$
 在 [0,1] 上可导,且 $y = f(\sin^2 x) + f(\cos^2 x)$,求 $\frac{dy}{dx}$ 解. $y' = [f'(\sin^2 x) - f'(\cos^2 x)] \sin 2x$

四、综合与应用题

1. 一人以 2m 每秒的速度通过一座高 20m 的桥,此人的正下方有一小船以 $\frac{4}{3}$ m 每秒的速度与桥垂直的方向前进,求第 5 秒末人与船相离的速率。

解. 设在时刻 t 人与船的距离为 s,则

$$s = \sqrt{20^2 + (2t)^2 + \left(\frac{4}{3}t\right)^2} = \frac{1}{3}\sqrt{3600 + 52t^2},$$
$$\frac{\mathrm{d}s}{\mathrm{d}t} = \left.\frac{52}{3}\frac{t}{\sqrt{3600 + 5t^2}}, \quad \left.\frac{\mathrm{d}s}{\mathrm{d}t}\right|_{t=5} = \frac{26}{21}(\mathrm{m/s}).$$

答: 第5秒末人与船相离的速率为 $\frac{26}{21}$ (m/s).

2. 设 $f(x) = \begin{cases} k + \ln(1+x) & x \ge 0 \\ e^{\sin x} & x < 0 \end{cases}$, 当 k 为何值时,点 x = 0 处可导;此时求出 f'(x).

解. 当
$$k = 1$$
 时, $f(x)$ 在点 $x = 0$ 处可导; 此时 $f'(x) = \begin{cases} \frac{1}{1+x} & x \ge 0 \\ e^{\sin x} \cos x & x < 0 \end{cases}$.

3. 若 y = f(x) 是奇函数且在点 x = 0 处可导,则点 x = 0 是函数 $F(x) = \frac{f(x)}{x}$ 什么类型的间断点? 说明理由.

解. 由 f(x) 是奇函数,且在点 x = 0 处可导,知 f(x) 在点 x = 0 处连续,f(0) = -f(0),则 f(0) = 0,于是 $\lim_{x \to 0} F(x) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0)$ 存在,故点 x = 0 是函数 F(x) 第一类间断点 (可去).

4. 试确定常数
$$a,b$$
 的值,使得函数 $f(x) = \begin{cases} 2e^x + a & x < 0 \\ x^2 + bx + 1 & x \ge 0 \end{cases}$ 处处可导.

解. 为使 f(x) 在点 x=0 处连续,必须

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0),$$

即

$$\lim_{x \to 0^{-}} f(x) = 2 + a, \lim_{x \to 0^{+}} f(x) = f(0) = 1,$$

所以 a=-1.

为使 f(x) 在点 x=0 处可导, 必须 $f'_{-}(0)=f'_{+}(0)$, 而

$$f'(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{2(e^{x} - 1)}{x} = 2,$$

$$f'(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^{2} + bx}{x} = 1.$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{x^{2} + bx}{x} = b,$$

所以 b=2.

(导入时去掉了表格)

- **5.** 已知某商品的需函数为 $Q = \frac{1200}{P}$,试求:
- (1) 从 P = 30 到 P = 20,25,32,50 各点间的需求弹性;
- (2) P=30 时的需求弹性,并说明其经济意义。

AF.
$$\eta(P) = -Q'(P)\frac{P}{Q(P)} = 1 \Rightarrow \eta(30) = 1.$$

P	20	25	30	32	50
Q	60	48	40	37.5	24
ΔP	-10	-5		2	20
ΔQ	20	8		-2.5	-16
$\frac{\Delta P}{P}$	-1/3	-1/6		1/15	2/3
$\frac{\Delta Q}{Q}$	0.5	0.2		-0.0625	-0.4
$ar{ar{\eta}}$	1.5	1.2		15/16	0.6

经济意义: 在P=30时,价格上涨 1%,则需求减少 1%;而价格下跌 1%,则需求增加 1%.

6. 设 f(x) 对任何 x 满足 f(x+1)=2 f(x), 且 f(0)=1, f'(0)=C (常数), 求 f'(1). **解.** 注意题设 f(x) 仅在 x=0 的导数存在. 故函数在其它点的导数应用导数定义求之.

令
$$x = 0$$
 有 $f(1) = 2f(0) = 2$, 所以

$$f'(1) = \lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{x \to 0} \frac{2f(x) - 2}{x}$$
$$= 2\lim_{x \to 0} \frac{f(x) - f(0)}{x}$$
$$= 2f'(0) = 2C$$

7. 试确定常数 a,b 的值,使函数 $f(x) = \begin{cases} \cos 3x & x \le 0 \\ be^x + a & x > 0 \end{cases}$,在 x = 0 处可导.

解. 由

$$\lim_{x\to 0}, f(x) = \lim_{x\to 0^+} f(x) = f(0),$$

得 a+b=1.

又

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{\cos 3x - 1}{x} = 0,$$

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{b e^{x} + a - 1}{x} = \frac{b (e^{x} - 1)}{x} = b,$$

所以 a=1, b=0 时 f(x) 在 x=0 处可导.

8. 设
$$f(x) = \begin{cases} \cos x & x \le 0 \\ ax^2 + bx + c & x > 0 \end{cases}$$
, 求 a, b, c 的值,使 $f(x)$ 在 $x = 0$ 处二阶可导.

解. 首先在 x=0 连续, 故

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0),$$

得 c = 1.

在 x=0 处一阶可导, 故

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{\cos x - 1}{x} = 0$$

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{a x^{2} + b x}{x} = b$$

得 b = 0. 所以

$$f'(x) = \begin{cases} -\sin x, & x \le 0 \\ 2ax, & x > 0 \end{cases}.$$

在 x=0 处二阶可导

$$\lim_{x \to 0^{-}} \frac{f'(x) - f'(0)}{x} = \lim_{x \to 0^{-}} \frac{-\sin x}{x} = -1,$$

$$\lim_{x \to 0^{+}} \frac{f'(x) - f'(0)}{x} = \lim_{x \to 0^{+}} \frac{2ax}{x} = 2a.$$

得到 2a = -1, 即 $a = -\frac{1}{2}$.

五、分析与证明题

1. 设函数 f(x) 在 $(-\infty, +\infty)$ 上有定义,对任意的 $x, y \in (-\infty, +\infty)$ 有 f(x+y) = f(x) + f(y) + xy,且 f'(0) = 1,证明 f'(x) = 1 + x

解. 取 x = y = 0,得 f(0) = 0;又取 $y = \Delta x$,得

$$\Delta y = f(x + \Delta x) - f(x) = f(\Delta x) + x \Delta x.$$

故

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(\Delta x)}{\Delta x} + x = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} + x = f'(0) + x = 1 + x.$$

2. 设 $f(x) = g(x)\sin^{\alpha}(x - x_0)$ ($\alpha > 1$), 其中 g(x) 在 x_0 处连续,证明: f(x) 在 x_0 处可导。

解. 因为

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{g(x) \sin^{\alpha}(x - x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \left\{ \left[g(x) \sin^{\alpha - 1}(x - x_0) \right] \cdot \frac{\sin(x - x_0)}{x - x_0} \right\} = \begin{cases} g(x_0) & \alpha = 1 \\ 0 & \alpha > 1 \end{cases}$$

所以 f(x) 在 x_0 处可导

- **3.** 设 f(x) 在 $(-\infty, +\infty)$ 上有定义且在 x = 0 处连续,对任意的 x_1 , x_2 均有 $f(x_1 + x_2) = f(x_1) + f(x_2)$.
- (1) 证明 f(x) 在 $(-\infty, +\infty)$ 上连续;
- (2) 又设 f'(0) = a (常数), 证明 f(x) = ax.

解. (1) 考虑
$$\lim_{\Delta x \to 0} \Delta y$$
. 令 $x_1 = 0$, $x_2 = 0$, 得 $f(0) = 0$, 又令 $x_1 = x$, $x_2 = \Delta x$, 则 $f(x + \Delta x) = f(x) + f(\Delta x)$,

即

$$\Delta y = f(x + \Delta x) - f(x) = f(\Delta x),$$

而 f(x) 在点 x=0 处连续,所以

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} f(\Delta x) = f(0) = 0$$

故 f(x) 在 $(-\infty, +\infty)$ 内连续。

(2) 考虑
$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
. 对 $\forall x \in (-\infty, +\infty)$, 令 $x_1 = x$, $x_2 = \Delta x$, 则
$$f(x + \Delta x) = f(x) + f(\Delta x),$$

即

$$\Delta y = f(x + \Delta x) - f(x) = f(\Delta x)$$

所以

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(\Delta x)}{\Delta x} = f'(0) = a,$$

得 f(x) = ax + c. 因为 f(0) = 0, 故 f(x) = ax.

4. 设函数 f(x) 对任何实数 x_1 , x_2 有 $f(x_1+x_2)=f(x_1)+f(x_2)$. 且 f'(0)=1, 证明: 函数 f(x) 可导,且 f'(x)=1.

解. 由 f(0+0) = f(0) + f(0) \Rightarrow f(0) = 0. 所以对任何实数 x 有

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{Ax \to 0} \frac{f(x) + f(\Delta x) - f(x)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{f(\Delta x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = f'(0) = 1.$$

5. 设函数 $f(x) = \frac{\sqrt{x}}{\sqrt{1+x}+1}$, 证明 f(x) 在 x = 0 处右连续,但右导数不存在.

解. 易知

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x}}{\sqrt{1+x}+1} = 0 = f(0),$$

所以 f(x) 在 x=0 处右连续.

又

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\sqrt{x}}{x(\sqrt{1 + x} + 1)}$$
 不存在,

故函数在 x=0 处右导数不存在.