Homework 9:

P527

- 3. For each of the following relations on the set $\{1,2,3,4\}$, decide whether it is reflexive, whether it is symmetric, whether is antisymmetric, and whether it is transitive.
 - (a) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
 - (b) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
 - (c) $\{(2,4),(4,2)\}$
 - (d) $\{(1,2),(2,3),(3,4)\}$
 - (e) $\{(1,1),(2,2),(3,3),(4,4)\}$
 - (f) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$

Solution:

- a) Neither reflexive nor irreflexive; Neither symmetric nor antisymmetric; transitive
- b) Reflexive; symmetric; transitive
- c) Irreflexive; symmetric; not transitive
- d) Irreflexive; Anti-symmetric, not transitive
- e) Reflexive; either symmetric and anti-symmetric; transitive
- f) Irreflexive; neither symmetric nor antisymmetric; not transitive
- 7. Determine whether the relation R on the set of all integers is reflexive, symmetric, antisymmetric, and/or transitive, where $(x, y) \in R$ if and only if
 - a) $x \neq y$
 - c) x = y + 1 or x = y 1
 - h) $x \geq y^2$

Solution:

- a) Irreflexive; symmetric; not transitive
- c) Irreflexive; symmetric; not transitive (|x y| = 1)
- h) Neither reflexive nor irreflexive; antisymmetric; transitive

P543

13. Let R be the relation represented by the matrix

$$M_R = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Find the matrix representing

a)
$$R^{-1}$$

b)
$$\overline{R}$$

c)
$$R^2$$

Solution:

a)
$$M_{R^{-1}} = M_R^T = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

b)
$$M_{\overline{R}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

c)
$$M_{R^2} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}^{(2)} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

P553

2. Let R be the relation $\{(a,b) \mid a \neq b\}$ on the set of integers. What is the reflexive closure of R?

Solution:

When we add all the pairs (x, x) to the given relation we have all of $\mathbb{Z} \times \mathbb{Z}$; in other words, we have $r(R) = \mathbb{Z} \times \mathbb{Z}$.

3. Let R be the relation $\{(a,b) \mid a \text{ adivides } b\}$ on the set of integers. What is the symmetric closure of R?

Solution:

$$s(R) = \{(a, b) \mid a \text{ adivides } b \text{ or } b \text{ adivides } a\}$$

19. Let R be the relation on the set $\{1, 2, 3, 4, 5\}$ containing the ordered pairs (1,3), (2,4), (3,1), (3,5), (4,3), (5,1), (5,2) and (5,4). Find b) R^3 f) R^*

Solution:

b)
$$R^3 = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,5), (3,1), (3,3), (3,4), (3,5), (4,1), (4,2), (4,3), (4,4), (5,1), (5,3), (5,5)\}$$

$$f) R^* = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (2,5), (3,1), (3,2), (3,3), (3,4), (3,5), (4,1), (4,2), (4,3), (4,4), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5)\}$$

24. Suppose that the relation R is irreflexive. Is the relation R^2 necessarily irreflexive?

2

Solution: It is certainly possibly for R^2 to contain some pairs (a, a). For example, let $R = \{(1, 2), (2, 1)\}.$

27. Using Warshall's algorithm to find the transitive closures of the relation R in Exercise 25(b).

Solution: Warshall's algorithm compute M_{R^*} by efficiently computing $W_0 \to W_1 \to \cdots \to W_4 = M_{R^*}$.

$$W_0 = W_1 = M_R = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$W_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \quad W_3 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \quad W_4 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$