Applied Machine Learning Lecture 10: Unsupervised learning

Selpi (selpi@chalmers.se)

The slides are further development of Richard Johansson's slides

February 25, 2020

Overview

Different learning approaches

Unsupervised learning

Clustering

modeling distributions

dimensionality reduction

Different learning approaches based on supervision

supervised Χ

Different learning approaches based on supervision

Different learning approaches based on supervision

Overview

Different learning approaches

Unsupervised learning

Clustering

modeling distributions

dimensionality reduction

Unsupervised learning

- ► Why do this?
 - ► hand-labeled data might not be available or expensive and time-consuming to produce

- ► Goal:
 - to discover structure in the data to summarise, explore, visualise, and understand data

Applications of unsupervised learning

Cyber Security

https://www.technologyreview.com/s/612427/the-rare-form-of-machine-learning-that-can-spothackers-who-have-aiready-broken-in/

When <u>Darktrace</u> deploys its software, it sets up physical and digital sensors around the client's network to map out its activity. That raw data is funneled to over 60 different unsupervised-learning algorithms that compete with one another to find anomalous behavior.

Recommender Systems

Market segmentations

Main types of unsupervised approaches

- grouping the data: clustering
- modeling the statistical distribution of the data
- dimensionality reduction: projecting a high-dimensional dataset to a lower dimensionality

Overview

Different learning approaches

Unsupervised learning

Clustering

modeling distributions

dimensionality reduction

clustering

clustering describes the data by forming groups (partitions)
 or hierarchies

What do we need to be able to cluster data?

Euclidean distance

Manhattan distance

$$d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p} - \mathbf{q}\|_1 = \sum_{i=1}^n |p_i - q_i|$$

Different clustering methods

- Partitional
 - K-means
 - Graph-based
 - ► EM
- ► Hierarchical
 - Single linkage
 - Average linkage
 - ► Median linkage
 - ► Complete linkage
 - Centrod linkage
 - ► Ward's method
- Neural network

in scikit-learn

http://scikit-learn.org/stable/modules/clustering.html

flat clustering

flat clustering methods: overview

- ightharpoonup each cluster is represented by its centroid μ_i
- minimize the within-cluster sum of squares:

$$\arg\min_{S} \sum_{i=1}^{k} \sum_{\mathsf{x} \in S_i} \|\mathsf{x} - \boldsymbol{\mu}_i\|^2$$

Randomly initialise k cluster centroids repeat until converged:

assign cluster to each training data, based on distance move each centroid to the centre of its cluster

- ► How to determine number of clusters?
 - ► Elbow method, trial and error, use domain knowledge

- How to determine number of clusters?
 - ► Elbow method, trial and error, use domain knowledge
- Advantages
 - simple, easy to understand, fast, robust enough, good for distinct clusters

- How to determine number of clusters?
 - ► Elbow method, trial and error, use domain knowledge
- Advantages
 - simple, easy to understand, fast, robust enough, good for distinct clusters
- Disadvantages
 - Rely on k, can have local minima, depends on initialisation, it clusters even a uniform data, cannot handle outlier, sensitive to scalling

- How to determine number of clusters?
 - ► Elbow method, trial and error, use domain knowledge
- Advantages
 - simple, easy to understand, fast, robust enough, good for distinct clusters
- Disadvantages
 - Rely on k, can have local minima, depends on initialisation, it clusters even a uniform data, cannot handle outlier, sensitive to scalling

► See Demo!

DBSCAN

source

Parameters: eps and min_samples

- 1) Randomly select a point P
- 2) Retrieve all points directly density-reachable from P w.r.t. eps (radius to search for neighboors).
 - If P is a core point, a cluster is formed. Find recursively all its density conected points and assign them to the same cluster as P
 - If P is not a core point, iterate through the remaining unvisited points in the dataset

DBSCAN example

See demo!

Discussion

▶ why is clustering hard?

Discussion

- ▶ why is clustering hard?
 - ▶ Difficult to interpret and evaluate the results

Evaluating clustering algorithms

- how could we evaluate the result produced by a clustering algorithm?
 - Check Silhouette score
 - Compare with gold standard data (if any)

Evaluating flat clustering (1): internal consistency

Cluster evaluation: the silhouette score

- Measures how close each object is to its own cluster compared to other clusters.
- ightharpoonup For each data point x_i , the silhouette score is defined

$$s_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$

where

- a_i is the average distance to other members in the same cluster
- $ightharpoonup b_i$ the minimal average distance to **another** cluster
- then we take the average over all the data
- ▶ in scikit-learn: sklearn.metrics.silhouette score

example

evaluating flat clustering (2): comparing to a gold standard

evaluating flat clustering (2): comparing to a gold standard

- scikit-learn contains several evaluation metrics for this scenario
 - http://scikit-learn.org/stable/modules/classes. html#clustering-metrics
 - http://scikit-learn.org/stable/modules/clustering. html#clustering-evaluation
- ▶ for instance, the adjusted Rand score:

Agreement: a, dDisagreement: b, c

$$RI(P,G) = \frac{a+d}{a+b+c+d}$$

$$ARI = \frac{RI - E(RI)}{1 - E(RI)}$$

[source]

hierarchical clustering

Single linkage clustering

Single-linkage clustering (SLINK)

 distance between two clusters is determined by a element pair, that are closest to each other

Complete linkage clustering

Complete-linkage clustering (CLINK)

 distance between two clusters is determined by a element pair, that are farthest to each other

Co-clustering

Co-Clustering

• Co-Clustering: Cluster rows and columns of *A* simultaneously:

Overview

Different learning approaches

Unsupervised learning

Clustering

modeling distributions

dimensionality reduction

modeling distributions

- we are given a dataset and now we need to
 - visualize the distribution
 - find the most probable region in the data
 - randomly generate new synthetic data from the same distribution
 - are there any exceptional data points?
 - for some new data point x, does it seem plausible that it comes from the same distribution?

source

modeling distributions

- we are given a dataset and now we need to
 - visualize the distribution
 - find the most probable region in the data
 - randomly generate new synthetic data from the same distribution
 - are there any exceptional data points?
 - for some new data point x, does it seem plausible that it comes from the same distribution?

[source]

- we need to model the statistical distribution of the data
 - how would we solve this using an approach we've seen in a basic stats class?
 - ...and what are the limitations of that method?

kernel density estimation

[source]

kernel density estimation (2)

[source]

in scikit-learn

sklearn.neighbors.KernelDensity

outliers

"An **outlier** is an **observation** in a data set which appears to be **inconsistent** with the remainder of that set of data."

<u> Johnson 1992</u>

"An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism."

Hawkins 1980

source

novelty detection, anomaly detection, ...

Novelty Detection

source

Applications: fraud detection, cyber security, manufacturing processes, monitoring machine.

Anomaly detection vs supervised

Anomaly detection: Very small number of positive examples, large number of negative examples, future anomalies are unlikely to be similar to the training set

Supervised: Large number of positives and negatives future examples are likely to be similar to training set.

in scikit-learn

http://scikit-learn.org/stable/modules/outlier_detection.html

one-class SVM

• the one-class SVM tries to find a decision boundary that encloses the training data (except a fraction ν)

▶ it can be used for novelty and outlier detection

source

one-class SVM (formally)

$$egin{aligned} \min_{w,\,\xi_i,\,
ho} rac{1}{2} \|w\|^2 + rac{1}{
u n} \sum_{i=1}^n \xi_i -
ho \ & ext{subject to:} \ (w \cdot \phi(x_i)) \geq &
ho - \xi_i & ext{for all } i = 1, \ldots, n \ \xi_i \geq 0 & ext{for all } i = 1, \ldots, n \end{aligned}$$

Anomaly detection - choosing features

- ▶ Plot histogram of data, see if the data looks gaussian. If not gaussian, do transformation to make the data look gaussian (e.g., take log(x) and plot the data again).
- ▶ log(x) can be changed with other function. The function that makes the data more Gaussian can be used as a feature

evaluation of anomaly detection systems

▶ how do you think it should be done?

Overview

Different learning approaches

Unsupervised learning

Clustering

modeling distributions

dimensionality reduction

dimensionality reduction

reducing a high-dimensional dataset to a low-dimensional one

- ► why?
 - visualizing, understanding
 - reducing the need for storage
 - making supervised/unsupervised algorithms run faster
 - making supervised/unsupervised learning easier

Principal Component Analysis

[source]

autoencoders: dimensionality reduction using a NN

▶ for several Keras implementations, see

https://blog.keras.io/building-autoencoders-in-keras.html

Review from today's lecture

- ► Characterise essential differences between supervised, unsupervised, semi-supervised learning approaches
- Discuss several unsupervised learning methods
- Compare and evaluate different clustering methods
- Compare and evaluate different distance measures

Next two lectures

- 28 Feb: Ethics in Machine Learning
 - Will be given by Vilhelm Verendel (https://www.chalmers.se/en/staff/Pages/vilhelm-gustav-verendel.aspx)
- ▶ 3 March: Dealing with time series data