定義 $\mathbf{1}$ (層). X を位相空間とする。 $\mathfrak{F}\colon \operatorname{Op}(X)^{\operatorname{op}} \to \mathfrak{C}$ を X 上のアーベル圏 \mathfrak{C} に値をとる前層とする。 \mathfrak{F} が層 (sheaf) であるとは,任意の開集合 $U \in \operatorname{Op}(X)$ とその開被覆 $(U_i)_{i \in I}$ に対して次の条件をみたすことをいう。

(S1) 列

$$0 \longrightarrow \mathcal{F}(U) \xrightarrow{\prod_i \rho_{U_i U}} \prod_{i \in I} \mathcal{F}(U_i)$$

が完全である. すなわち, $s \in \mathfrak{F}(U)$ が各 $i \in I$ に対して $U_i \perp s|_{U_i} = 0$ ならば, s = 0 である.

(S2) 列

$$\mathcal{F}(U) \xrightarrow{\prod_{i} \rho_{U_{i}U}} \prod_{i \in I} \mathcal{F}(U_{i}) \xrightarrow{\prod_{i,j} \varphi_{ij}} \prod_{i,j \in I} \mathcal{F}(U_{i} \cap U_{j})$$

が完全である。ただし、 $\varphi_{ij}=\rho_{U_i\cap U_j,U_i}-\rho_{U_i\cap U_j,U_j}$. すなわち、 $(s_i)_i\in\prod_i\mathfrak{F}(U_i)$ が各 $i,j\in I$ で $U_i\cap U_j\neq\varnothing$ となるものに対して $U_i\cap U_j\perp s_i|_{U_i\cap U_j}-s_j|_{U_i\cap U_j}=0$ ならば、 $s\in\mathfrak{F}(U)$ で各 $U_i\perp s|_i=s_i$ となるものが存在する.

命題 2. 複素直線 C 上の複素線型空間の前層 f を次で定める。

$$\mathfrak{F}(U) = egin{cases} \mathbf{C} & U = \mathbf{C} \ \mathfrak{O} \ \mathcal{E} \ \mathfrak{F}, \\ 0 & U
eq \mathbf{C} \ \mathfrak{O} \ \mathcal{E} \ \mathfrak{F}. \end{cases}$$

 \mathfrak{F} は層の条件 S_2 をみたすが S_1 はみたさない. したがって、 \mathfrak{F} は層にならない.

証明.

条件 S2 をみたすこと: $U \subsetneq \mathbf{C}$ を \mathbf{C} の開集合とし, $(U_i)_{i \in I}$ を U の開被覆とする. $(s_i)_i \in \prod_i \mathfrak{F}(U_i)$ を各 $U_i \cap U_j$ で $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ をみたす切断の族とする.どの i に対しても $U_i \subset U \subsetneq \mathbf{C}$ であることから $\mathfrak{F}(U_i) = 0$ である.すなわち $s_i = 0$ である.したがって, $0 \in \mathfrak{F}(U)$ は各 $i \in I$ に対し $0|_{U_i} = 0 = s_i$ をみたす.

 $U=\mathbf{C}$ とし、 $(U_i)_{i\in I}$ を \mathbf{C} の開被覆とする。 $(s_i)_i\in\prod_i\mathfrak{F}(U_i)$ を各 $U_i\cap U_j$ で $s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j}$ をみたす切断の族とする。このとき, $U_i\neq\mathbf{C}$ となる i に対して $s_i=0$ となるので, U_i が \mathbf{C} の真部分集合からなる場合は $0\in\mathfrak{F}(\mathbf{C})$ が $0|_{U_i}=0=s_i$ をみたす. $U_i=\mathbf{C}$ となる i があれば,そのような i たちに対して,仮定 $s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j}$ から切断はすべて s_i としてよい.よって $s_i\in\mathfrak{F}(\mathbf{C})$ とすると, $U_j=\mathbf{C}$ 上では $s_i|_{U_i}=s_i=s_j$ が成り立ち, $U_j\subsetneq\mathbf{C}$ 上では $s_i|_{U_i}=0=s_j$ となる.

条件 S1 をみたさないこと: $U = \mathbb{C}$ とする. 開集合 U_0, U_1 を

$$U_0 = \{z \in \mathbb{C}; \operatorname{Re} z > -1\}, \quad U_1 = \{z \in \mathbb{C}; \operatorname{Re} z < 1\}$$

とおくと, $\mathbf{C} = U_0 \cup U_1$ である. $s_0 = 0 \in \mathfrak{F}(U_0), s_1 = 0 \in \mathfrak{F}(U_1)$ とすると

$$s_0|_{U_0\cap U_1}=0=s_1|_{U_0\cap U_1}$$

が成り立つ. ところが、 $s=1\in \mathbf{C}=\mathfrak{F}(U_0\cup U_1)$ とすると、s は 0 ではないが

$$s|_{U_0} = 0 = s_0, \quad s|_{U_1} = 0 = s_1$$

をみたす.