

SOURCE

Part	PIN
LED0	H17
LED1	K15
LED2	J13
LED3	N14
LED4	R18
LED5	V17

Part	PIN
LED6	U17
LED7	U16
LED8	V16
LED9	T15
LED10	U14
LED11	T16
LED12	V15
LED13	V14
LED14	V12
LED15	V11
SW0	J15
SW1	L16
SW2	M13
SW3	R15
SW4	R17
SW5	T18
SW6	U18
SW7	R13
SW8	Т8
SW9	U8
SW10	R16
SW11	T13
SW12	Н6
SW13	U12
SW14	U11
SW15	V10

∂ Listing architecture

```
architecture Behavioral of mux_2bit_4to1 is
begin

process (a_i, b_i, c_i, d_i, s_i)
begin

case s_i is
    when "00" => q_o <= a_i;
    when "01" => q_o <= b_i;
    when "10" => q_o <= c_i;
    when "11" => q_o <= d_i;
    when others => null;
    end case;
end process;
end Behavioral;
```

∂ Listing testbench architecture

```
architecture testbench of tb mux 2bit 4tol is
     signal s_a : std_logic_vector(1 downto 0);
    signal s_b : std_logic_vector(1 downto 0);
signal s_c : std_logic_vector(1 downto 0);
    signal s_d : std_logic_vector(1 downto 0);
signal s_s : std_logic_vector(1 downto 0);
signal s_q : std_logic_vector(1 downto 0);
begin
     --connecting testbench
     uut_mux_2bit_4to1 : entity work.mux_2bit_4to1
          port map(
               a_i => s_a,
               b_i => s_b,
c_i => s_c,
d_i => s_d,
               s_i => s_s,
q_o => s_q
          );
      --Test signal generating
      p_stimuls : process
      begin
      --init. signal
          s a <= "11";
          s b <= "11";
          s c <= "11";
          s d <= "11";
      --1.st combination
```

```
s_s <= "00";
            s_a <= "01";
            wait for 100 ns;
            s_a <= "10";
            wait for 100 ns;
            s a <= "11";
     --2.nd combination
        s s \le "01";
            s_b <= "01";
            wait for 100 ns;
            s_b <= "10";
            wait for 100 ns;
            s b <= "11";
     --3.rd combination
        s s \le "10";
            s c \ll 01";
            wait for 100 ns;
            s_c <= "10";
            wait for 100 ns;
            s_c <= "11";
     --4.th combination
        s s <= "11";
            s d \ll "01";
            wait for 100 ns;
            s_d <= "10";
            wait for 100 ns;
        wait;
     end process p_stimuls;
end architecture testbench;
```

⊘ Screenshot

Vstupní signály byly voleny tak, aby funkčnost multiplexoru byla zjevná.

Vivado tutorial

∂ Project creation:

*Vytvoř soubor (Create file) a pojmenuj ho. Tím se vytvoří name.vhd soubor kódu.

⊘ Testbench:

 File > Add Sources > Add or create simulation > Create file vytvoříme name.vhd soubor testbenche. Zpravidla volíme název jako tb name.vhd

Testbench vytvoříš běžným postupem jak ses naučil např. na EDA-Playground.

∂ Simulace:

 Zvolením ** Flow > Run Simulation > Run Behavioral Simulation** spustíme simulaci (projekt je prvně třeba uložit).

∂ Postprocesor:

- V postprocesoru vidíme průběhy jednotlivých signálů
- Zvětšíme náhled na průběhy a zazoomujeme podle potřeby
- Jednotlivé sběrnice můžeme rozkliknout na signály, můžeme je libovolně podbarvovat, měřit a vizualizovat

V nastavení simulace je možné zvětšit délku trvání simulace

∂ Mapování vstupů:

- File > Add Sources > Add or create constrains > Create file vytvoříme name.xdc soubor mapování.
- Do souboru mapování vložím z předdefinovaného souboru od výrobce
- Odkomentuji ty prvky, které hodlám v programu použít

 Přepíši dané porty, tak aby odpovídali již napsané architektuře LAB_03c - [C:/Users/Ventus/Documents/VivadoDocs/LAB_03c/LAB_03c.xpr] - Vivado 2020.2 Edit Flow Tools Reports Window Layout View Run Help Q- Quick Access ▼ I C E Default Layout 10 us SIMULATION - Behavioral Simulation - Functional - sim_1 - tb_mux_2bit_4to1 ? × x Pr ? _ □ Ľ tb_mux_2bit_4to1.vhd × mux_2bit_4to1.vhd × tb_mux_2bit_4to1_behav.wcfg × nexys_a7_50T.xdc \$k ? _ □ Ľ Q | ¥ | ♦ | ° Q, C:/Users/Ventus/Documents/VivadoDocs/LAB_03c/LAB_03c.srcs/constrs_1/new/nexys_a7_50T.xdc ∨ □ Design Source Name ٥ ● ∴ mux 2t > 💖 s a[1:0] > 💖 s_b[1:0] ∨ □ Constraints (1) ∨ □ constrs_1 > 💖 s_c[1:0] 11 ##Switches set_property -dict { PACKAGE_PIN J15 IOSTANDARD LVCMOS33 } [get_ports { a_i[0] }]; #IO_L24N_T3_RS0_15 Sch=sw[0] nexvs > 💖 s_d[1:0] | IOSTANDARD LVCMOS33 | [get_ports { a_i[1] |]; #IO_LNN TO_DOS_EMCKER_14 Sch=sw[1] | IOSTANDARD LVCMOS33 | [get_ports { b_i[0] |]; #IO_LNN TO_DOS_EMCKER_14 Sch=sw[2] | IOSTANDARD LVCMOS33 | [get_ports { b_i[1] |]; #IO_LISN_TO_MRCC_14 Sch=sw[3] | IOSTANDARD LVCMOS33 | [get_ports { c_i[0] |]; #IO_LISN_TI_MRCC_14 Sch=sw[4] | IOSTANDARD LVCMOS33 | [get_ports { c_i[0] |]; #IO_LISN_TI_MRCC_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | IOSTANDARD LVCMOS33 | [get_ports { c_i[1] |]; #IO_LISN_TI_DIO_14 Sch=sw[5] | I 13 set_property -dict { PACKAGE_PIN L16 ∨ 🗎 Simulation Soi > 🐯 s_s[1:0] set_property -dict { PACKAGE_PIN M13 ∨ sim 1 (2) set_property -dict { PACKAGE_PIN R15 > 💖 s_q[1:0] set_property -dict { PACKAGE_PIN R17
set_property -dict { PACKAGE_PIN T18 ∨ ● 📫 tb ı uu set property -dict { PACKAGE PIN U18 set property -dict { PACKAGE PIN R13 IOSTANDARD LVCMOS33 } [get_ports { d_i[0] }]; #IO_L17N_T2_A13_D29_14 Sch=sw[6] IOSTANDARD LVCMOS33 } [get_ports { d_i[1] }]; #IO_L5N_T0_D07_14 Sch=sw[7] >
Wavef IOSTANDARD LVCMOS18 } [get_ports { s_i[0] }]; #IO_L2N T3 34 Sch=sv[8]

IOSTANDARD LVCMOS18 } [get_ports { s_i[1] }]; #IO_25 34 Sch=sv[9]

IOSTANDARD LVCMOS33 } [get_ports { SW[10] }]; #IO_L15P_T2_DQ5_RDWR_B 14 Sch=sv[10] > = Utility Sources set_property -dict { PACKAGE_PIN T8 set_property -dict { PACKAGE_PIN U8 #set_property -dict (PACKAGE_PIN R16 23 #set_property -dict (PACKAGE PIN T13 24 | #set_property -dict (PACKAGE PIN H6 IOSTANDARD LVCMOS33) [get ports { SW[11] }]; #IO L23P T3 A03 D19 14 Sch=sw[11] IOSTANDARD LVCMOS33) [get ports (SW[12])]; #IO L24P T3 35 Sch=sw[12] IOSTANDARD LVCMOS33) [get ports (SW[13])]; #IO L20P T3 A08 D24 14 Sch=sw[13] IOSTANDARD LVCMOS33) [get ports (SW[14])]; #IO L19N T3 A09 D25 VREF 14 Sch=sw[14] #set_property -dict (PACKAGE_PIN U12 #set property -dict / PACKAGE PIN U11 #set_property -dict (PACKAGE_PIN V10 IOSTANDARD LVCMOS33 } [get_ports { SW[15] }]; #IO_L21P_T3_DQS_14 Sch=sw[15] 28 Hierarchy ← ▶ ≡ Tcl Console × Messages Log Q 🛨 🔷 II 📵 🖩 🛍 file mkdir C:/Users/Ventus/Documents/VivadoDocs/LAB 03c/LAB 03c.srcs/constrs 1/new close [open C:/Users/Ventus/Documents/VivadoDocs/LAB 03c/LAB 03c.srcs/constrs 1/new/nexys a7 50T.xdc w] Type a Tcl command here 21:80 Sim Time: 1 us XDC Insert ∠ Type here to search