```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

| Out[2]: |         | Unnamed:<br>0 | Year | Month | DayofMonth | DayOfWeek | DepTime | CRSDepTime | ArrTime | CRSArrTime | Uniqu |
|---------|---------|---------------|------|-------|------------|-----------|---------|------------|---------|------------|-------|
|         | 0       | 0             | 2008 | 1     | 3          | 4         | 2003.0  | 1955       | 2211.0  | 2225       |       |
|         | 1       | 1             | 2008 | 1     | 3          | 4         | 754.0   | 735        | 1002.0  | 1000       |       |
|         | 2       | 2             | 2008 | 1     | 3          | 4         | 628.0   | 620        | 804.0   | 750        |       |
|         | 3       | 4             | 2008 | 1     | 3          | 4         | 1829.0  | 1755       | 1959.0  | 1925       |       |
|         | 4       | 5             | 2008 | 1     | 3          | 4         | 1940.0  | 1915       | 2121.0  | 2110       |       |
|         | •••     |               |      |       |            |           |         |            |         |            |       |
|         | 1936753 | 7009710       | 2008 | 12    | 13         | 6         | 1250.0  | 1220       | 1617.0  | 1552       |       |
|         | 1936754 | 7009717       | 2008 | 12    | 13         | 6         | 657.0   | 600        | 904.0   | 749        |       |
|         | 1936755 | 7009718       | 2008 | 12    | 13         | 6         | 1007.0  | 847        | 1149.0  | 1010       |       |
|         | 1936756 | 7009726       | 2008 | 12    | 13         | 6         | 1251.0  | 1240       | 1446.0  | 1437       |       |
|         | 1936757 | 7009727       | 2008 | 12    | 13         | 6         | 1110.0  | 1103       | 1413.0  | 1418       |       |

1936758 rows × 30 columns

## Ejercicio

Resume gráficamente el Data Set, al menos que contenga

Una variable categórica (UniqueCarrier)

Una variable numérica (ArrDelay)

Una variable numérica y una categórica (ArrDelay y UniqueCarrier)

Dos variables numéricas (ArrDelay y DepDelay)

Tres variables (ArrDelay, DepDelay y UniqueCarrier)

Más de tres variables (ArrDelay, DepDelay, AirTime y UniqueCarrier).



```
In []:
In [186... AD=df5['ArrDelay'][df5['ArrDelay'].isnull()!=True].value_counts() # extraemos un n-vector,
# su vez excluímos los valores nulos
```

# su vez excluímos los valores nulos
indexAD= AD.index # lo mismo que en el anterior, sacamos índice y lo convertimos en vecto;
AD=AD.to\_numpy()
indexAD= indexAD.to\_numpy()
plt.figure(figsize=(15,10))
plt.xlabel('Retraso en minutos')
plt.ylabel('Cantidad de vuelos')

```
# observando el gráfico, limitamos el eje X, ya que encima de los 1300-1400 minutos son ca
# por encima de 300 empieza a aparecer una constante con pendiente casi nula
plt.xlim(-90,300)
corte = [x for x in range(-90,300,20)]
plt.xticks(corte, corte)
plt.scatter(indexAD,AD,color="black", marker= ".", s= 2.5)
plt.grid()
plt.savefig("fig2.png")
plt.show()
```



```
In [127...
# extraemos del Data set, La UniqueCarrier y Arrdelay, eliminando los valores nulos de Arr
df8 = df5 [["UniqueCarrier", "ArrDelay"]][df5['ArrDelay'].isnull()!=True]# agrupamos por co
# de retraso
comp_delay= df8.groupby('UniqueCarrier')['ArrDelay'].sum().sort_values()
```

```
In [187...
    plt.figure(figsize=(15,10))
    plt.title("Minutos acumulados de retraso por comapañía", size= 25)
    comp_delay.plot( kind="bar" , color= col, )
    plt.xlabel( "compañía", size= 20)
    plt.ylabel( "minutos acumulados en millones", size= 15)
    plt.savefig("fig3.png")
```



```
In [9]:
# sacamos las columnas del retraso de salida y retraso de llegada y las convertimos en ved
df12 = df5 [["DepDelay", "ArrDelay"]][df5['ArrDelay'].isnull()!=True]
x1= df12["DepDelay"]
x1= x1.to_numpy()
y1= df12["ArrDelay"]
y1= y1.to_numpy()
print ( np.max(x1), np.max(y1))
print ( np.min(x1), np.min(y1)) # miramos sus límites para ver el alcance del eje
2467.0 2461.0
```

2467.0 2461.0 6.0 -109.0

```
In [189...
         from scipy import stats# para hacer la regresión a través de scipy
         plt.figure(figsize=(15,10))
         plt.scatter(x1,y1, color = "black", s=0.5) # hacemos un gráfico de dispersión
         plt.ylim(-120, 1500) # limitando el gráfico
         plt.xlim(-120, 1500)
         plt.xlabel("DepDelay", size = 20)
         plt.ylabel("ArrDelay", size = 20)
         plt.grid()
         slope, intercept, r, p, std err = stats.linregress(x1, y1)
          #por otro lado, hacemos la regresión de la serie de puntos.
         def myfunc(x):
           return slope * x + intercept
         mymodel = list(map(myfunc, x1))
         plt.plot(x1, mymodel, color = "r" )
         plt.legend("y")
         plt.savefig("fig4.png")
```



In [138... print ( "coeficiente de correlación es de : ", r)

coeficiente de correlación es de : 0.9529266852030124

In [79]:

df13 = df5 [["UniqueCarrier", "DepDelay", "ArrDelay"]][df5['ArrDelay'].isnull()!=True]# coge
comp\_arrdelay= df13.groupby('UniqueCarrier')[["DepDelay", "ArrDelay"]].sum()#agrupamos por
#los todos lo minutos de retraso

Out[79]: DepDelay ArrDelay

## UniqueCarrier

2441828.0 2420468.0 9E 8857373.0 8889066.0 AAAQ 19362.0 15814.0 1481435.0 1406735.0 AS 3017321.0 3025749.0 **B6** 4045932.0 CO 4294574.0 DL 4436113.0 4535644.0 EV 3946204.0 3888131.0 F9 781023.0 788549.0 FL 3015378.0 3100150.0 HA 247005.0 255613.0

|               | DepDelay   | ArrDelay   |  |  |  |  |  |
|---------------|------------|------------|--|--|--|--|--|
| UniqueCarrier |            |            |  |  |  |  |  |
| MQ            | 6157615.0  | 6396704.0  |  |  |  |  |  |
| NW            | 3253428.0  | 3462075.0  |  |  |  |  |  |
| ОН            | 2565685.0  | 2675993.0  |  |  |  |  |  |
| 00            | 5890399.0  | 5978936.0  |  |  |  |  |  |
| UA            | 7031651.0  | 6733013.0  |  |  |  |  |  |
| US            | 3798756.0  | 3571867.0  |  |  |  |  |  |
| WN            | 13012255.0 | 11319092.0 |  |  |  |  |  |
| XE            | 5153534.0  | 5176042.0  |  |  |  |  |  |
| YV            | 3695832.0  | 3691461.0  |  |  |  |  |  |

```
In [167... col2= ["red", "green"] comp_arrdelay.plot(kind= "bar", figsize= (15,15), color = col2, grid= "True", ylabel= ("minutos acumulados de retraso"), title= " Tiempo acumulado de retraso plt.savefig("fig5.png")
```





```
In [141...

df15 = df5 [["UniqueCarrier", "DepDelay", "ArrDelay", "AirTime"]][((df5['ArrDelay'].isnull())
mean= df15.groupby('UniqueCarrier')[["DepDelay", "ArrDelay", "AirTime"]].mean()
#sacamos 4 columnas, agrupamos por compañía y sacamos la media por cada una de las tres va
```

```
In [149...
col3= ["blue","black", "red"]
mean.plot(kind= "bar", figsize= (15,10), color = col3, grid= "True", ylabel= "media de mir
title= "tiempo medio de retraso y de vuelo")
plt.savefig("fig7.png")
```

