Exercise 4.2

Triangle ABC is inscribed in a circle with centre O. If ∠AOB = 140° and ∠BOC = 100°, find ∠ABC.

In given figure, BC is a diameter of the circle and AD bisects ∠BAC. Find ∠BCD.

3. In given figure, O is the centre of the circle, prove that $\angle z = \angle x + \angle y$ [CBSE 2002]

Teach san ban

4. In given figure, if $\frac{x}{3} = \frac{y}{4} = \frac{z}{5}$, then calculate the values of x, y and z.

5. In given figure. ABCD is a cyclic quadrilateral. Side CD is produced on both sides such that $\angle BCP = 110^{\circ}$ and $\angle ADQ = 95^{\circ}$. Find the values of $\angle A$ and $\angle B$. [CBSE (Foreign) 2004]

- 6. Prove that any four vertices of a regular pentagon are concyclic.
- 7. Prove that the angle subtended by an arc of a circle at its centre is double the angle subtended by it at any point on the remaining part of the circle. Using the above result prove that the angle in a major segment is acute.

 [CBSE (Sample paper) 2006]
- 8. In given figure. ABCD is a cyclic quadrilateral in which $\angle BAD = 75^{\circ}$, $\angle ABD = 58^{\circ}$, and $\angle ADC = 77^{\circ}$. Find (i) $\angle BDC$ (ii) $\angle BCD$ (iii) $\angle BCA$

In given figure. PQ is a diameter of a circle with centre O.
 If ∠PQR = 65°, ∠SPR = 40°, ∠PQM = 50°, find ∠QPR, ∠PRS and ∠QPM.

- 10. Prove that the mid-point of the hypotenuse of a right triangle is equidistant from its vertices.
- In given figure. AB is a diameter of a circle, with centre O. If∠ABC = 70°. ∠CAD = 30°. ∠BAE = 60°. find, ∠BAC, ∠ACD and ∠ABE.

[CBSE 2004]

12. In given figure, AB is a diameter of a circle, with centre O. If $\angle PAB = 55^{\circ}$, $\angle PBQ = 25^{\circ}$, and $\angle ABR = 50^{\circ}$, find [CBSE 2004] the \angle PBA, \angle BPQ and \angle BAR. 13. Prove that cyclic trapezium is isosceles and its

diagonals are equal. 14. (a) ABCD is a cyclic quadrilateral. (i) If $\angle BCD = 100^{\circ}$ and $\angle ABD = 70^{\circ}$, find $\angle ADB$

(ii) If $\angle DBC = 80^{\circ}$ and $\angle BAC = 40^{\circ}$, find $\angle BCD$.

(a) If $\angle DBC = 80$ and $\angle DBC = 80$ and $\angle PBA$, if P lies on (b) AB is the diameter of the circle. $\angle PAB = 40^{\circ}$. Find $\angle PBA$, if P lies on

the circle. 15. (i) In given fig., ABCD is a cyclic quadrilateral in which

B

 $\angle A = (x + y + 10)^{\circ}, \angle B = (y + 20)^{\circ}, \angle C = (x + y - 30)^{\circ}$ and $\angle D = (x + y)^{\circ}$. Find x and y.

16. In given fig., ABCD is a cyclic quadrilateral calculate (ii) ∠BDC (iv) ∠ABD.

Also prove that triangle ABD is isosceles. 17. In the given fig., O and O' are the centres of two circles

(ii) ABCD is a cyclic trapezium with AD || BC, if $\angle B = 70^{\circ}$, determine the other three angles of the trapezium.

the circumference of the bigger circle.

18. In the given fig., two circles intersect at L and M. The centres of the

If \angle LPM = 65°, find \angle LCM.

65°

smaller circle and bigger circle are O and O' respectively, and it lies on

Teach san ban

(i) ∠BAD

(iii) ∠CAD

line, find x.

In the given fig., two congruent circles with centres 0 and 0' intersect at A and B. If $\angle AO'B = 40^{\circ}$, then find $\angle APB$.

1. 60° 2. 45° 4. 36° , 48° , 60° 5. $\angle B = 95^{\circ}$, $\angle A = 110^{\circ}$,

(i) 30° (ii) 105° (iii) 45°

9. $\angle QPR = 25^{\circ}, \angle PRS = 25^{\circ}, \angle QPM = 40^{\circ}$

9. $\angle QPR = 25^{\circ}, \angle IRS = 25^{\circ}, \angle ABE = 30^{\circ}$ 11. $\angle BAC = 20^{\circ}, \angle ACD = 40^{\circ}, \angle ABE = 30^{\circ}$

11. $\angle BAC = 20^{\circ}$, $\angle ACD = 10^{\circ}$, $\angle BAC = 40^{\circ}$ 12. $\angle PBA = 35^{\circ}$, $\angle BPQ = 30^{\circ}$ and $\angle BAR = 40^{\circ}$

- 14. (a) (i) 110°(ii) 60° (b) 50°
- 15. (i) $x = 40^{\circ}$ and $y = 60^{\circ}$ (ii) $\angle A = 110^{\circ}$, $\angle C = 70^{\circ}$ and $\angle D = 110^{\circ}$
- 16. (i) 116° (ii) 50° (iii) 66° (iv) 32° 17. 120° 18. 50° 19. 20°