4. gyakorlat

1. feladat: Adott az alábbi 3-as típusú grammatika.

$$G = (\{S,A,B\}, \{a,b\}, P, S)$$

$$P: S \rightarrow bb \mid bA$$

$$A \rightarrow \epsilon \mid aB$$

$$B \rightarrow abB \mid aA$$

a) Hozza 3-as normálformára a fenti G grammatikát!

P:
$$S \rightarrow bC | bA$$

$$C \rightarrow bV$$

$$V \to \; \epsilon$$

$$A \to \epsilon \mid aB$$

$$\mathbf{B} \rightarrow \mathbf{a} \mathbf{D} | \mathbf{a} \mathbf{A}$$

$$D\!\to\!\!bB$$

(Az átalakított szabályok pirossal szerepelnek.)

b) Majd adja meg a G-vel ekvivalens nemdeterminisztikus automatát táblázatos formában!

δ	a	b
→S		C, A
C		V
←V		
←A	В	
В	D, A	
D		В

c) Majd adja meg az ekvivalens nemdeterminisztikus automatát táblázatos formában!

δ	a	b
→{ S }	Ø	{A,C}
Ø	Ø	Ø
←{A,C}	{ B }	{V}
{ B }	{A,D}	Ø
←{V}	Ø	Ø
←{A,D}	{ B }	{ B }

Állapot átnevezéssel (sorszámozással) a következő automatát kapjuk.

δ	a	b
→1	2	3
2	2	2
←3	4	5
4	6	2
←5	2	2
6	4	4

4. gyakorlat

<u>2. feladat:</u> Táblázatos formában adott az alábbi nemdeterminisztikus automata, adja meg a vele ekvivalens determinisztikus automatát, szintén táblázatosan!

δ	a	b
→S		A, S
←A	A	B, S
В	A,C	C
←C	S	

Az alábbi determinisztikus automatában állapothalmazokkal címkézzük az állapotokat. Csak a kezdőállapotból elérhető állapotokat tüntetjük fel.

c		,
δ	a	b
→{S}	Ø	{A, S}
Ø	Ø	Ø
\leftarrow {A, S}	{A}	$\{A,B,S\}$
←{A}	{A}	{B,S}
\leftarrow {A,B,S}	{A,C}	$\{A,B,C,S\}$
{ B , S }	{A,C}	$\{A,C,S\}$
←{A,C}	$\{A, S\}$	{B,S}
\leftarrow {A,B,C,S}	{A,C,S}	$\{A,B,C,S\}$
←{A,C,S}	{A, S}	{A,B,S}

Az állapotok megsorszámozásával így néz ki a VDA.

δ	a	ь
→ 1	2	3
2	2	2
← 3	4	5
← 4	4	6
← 5	7	8
6	7	9
← 7	3	6
← 8	9	8
← 9	3	5

Gyakorlás:

1. gyakorlat: $G = (\{a, b, c\}, \{S,A,B\}, \{S \rightarrow cb | cA, A \rightarrow \varepsilon | aB, B \rightarrow bbB | bA\}, S)$

- a) Hozza 3-as normálformára a fenti G nyelvtant!
- b) Majd adja meg a *G*-vel ekvivalens nemdeterminisztikus automatát táblázatos formában!

<u>2. gyakorlat:</u> Táblázatos formában adott az alábbi nemdeterminisztikus automata, adja meg a vele ekvivalens determinisztikus automatát, szintén táblázatosan!

δ	a	b
→S	A,C	
← A	A	B, S
В	A	C,S
←C	S	