Qualification Report

OpenCellular - Connect-1 System DVT

Revision: 1.1

[13-FEB-2017]

Table of Contents

1.	<i>Purpose</i>	
2.	Scope	
<i>3</i> .	ReferencesEI	rror! Bookmark not defined.
4.	Device-Under-Test (DUT) Details	
<i>5</i> .	Qualification Test Condition	
6.	Qualification Result Summary	
9.1	System Clock	
9.2	System Controls - 1.1, 1.2, 1.3, 1.4	8
9.3	System Controls - LED	
9.4	System Controls - ALARM	
9.5	System Controls - RESET	
9.6	System Tx – Mean Transmitted RF carrier power	
9.7	System Tx - Intermodulation Attenuation	
9.8	System Power – AUX source, total power consumption	<i>1</i>
9.9	System Power – Solar power	
9.10	System Power - POE	
9.11	System Power – External Battery	
9.12	System Power – Internal Battery	
9.13	System Power – Cold Start	41
9.14	System Power – Power (Initialization) Sequence	
9.15	System RF – GPS lock	46
9.16	System RF – GPS-GSM Coexistence	47
9.17	History	49

1. Purpose

The purpose of this document is to capture test data for Connect-1 system DVT as part of OpenCellular Base Transceiver Station (BTS). The document is intended to provide a formal report of measured and validated parameters to qualify Connect-1 system as part of design validation testing to ensure consistent and reliable operation across all supported operating and environmental conditions.

2. Scope

Perform DVT of Connect-1 GSM BTS, version-life 2 for system test cases. GSM 900 and GSM1900 bands are identified for DVT.

3. Device-Under-Test (DUT) Details

a. System : OpenCellular Connect -1

b. Sub-system : System

c. Hardware version : Life – 1 & Life -2

d. Software version : To be updated

a. Openbsc: 5085e0bb. Osmo-trx: 2e5e2c5c. Uhd: f70dd85

e. Sample Count : 01

4. Qualification Test Condition

Ambient Temperature - 25°C

5. Qualification Result Summary

Board /		F	m	G
System	Test ID	Function	Test cases/specification	Status
System	Sys Clock 1.1	CLOCK	Frequency accuracy (TX EVM)	Fail
System	Sys Clock 1.2	CLOCK	Lock detect	Pass
System	Sys Ctrl 1.1	SYSTEM CONTROLS	LDO enables	Pass
System	Sys Ctrl 1.2	SYSTEM CONTROLS	Power amplifier enables	Pass
System	Sys Ctrl 1.3	SYSTEM CONTROLS	Regulator enables	Pass
System	Sys Ctrl 1.4	SYSTEM CONTROLS	Switch controls and enabling 4 bands and 2 chains both on TX and RX side	Pass
System	Sys Ctrl 1.5	SYSTEM CONTROLS	Reset sequencing	Pass
System	Sys Ctrl 1.6	SYSTEM CONTROLS	System Alarms	Pass
System	Sys Ctrl 1.7	SYSTEM CONTROLS	LED status	Pass
System	Sys Pwr 1.1	SYSTEM POWER	Total Power consumption	Pass
System	Sys Pwr 1.2	System POWER	Power sequencing	Pass
System	Sys Pwr 1.3	System POWER	Cold start with POE++ / Solar / Battery (internal/External)	Pass
System	Sys Pwr 1.4	System POWER	Testing with POE++	Pass
System	Sys Pwr 1.5	System POWER	Testing with Solar	Pass
System	Sys Pwr 1.6	System POWER	Testing with Battery - Internal	Pass
System	Sys Pwr 1.7	System POWER	Testing with Battery - External	Pass
System	Sys Pwr 1.8	System POWER	Testing with DC source	Pass
System	Sys Tx 1.2	System RF Tx	Mean transmitted RF carrier power	Pass
System	Sys Tx 1.7	System RF Tx	Intermodulation attenuation	Fail
System	Sys GPS 1.1	System RF GPS	Sync module - GPS lock	Pass
System	Sys GPS 1.2	System RF GPS	Sync module - GPS/ GSM Coex	Open

NOTE: System RF Tx (Sys Tx 1.2, Sys Tx 1.7, Sys Tx 1.1, Sys Tx 1.3, Sys Tx 1.4, Sys Tx 1.5, Sys Tx 1.6, Sys Tx 1.7),

System RF Rx (Sys Rx 1.1, Sys Rx 1.1,Sys Rx 1.2,Sys Rx 1.3,Sys Rx 1.4,Sys Rx 1.5,Sys Rx 1.6,Sys Rx 1.7,Sys Rx 1.8,Sys Rx 1.9,Sys Rx 1.10,Sys Rx 1.11,Sys Rx 1.12,Sys Rx 1.13,Sys Rx 1.14) and

System Compliance (Sys Comp 1.1, Sys Comp 2.1, Sys Comp 3.1, Sys Comp 3.2, Sys Comp 3.3, Sys Comp 3.4, Sys Comp 3.5, Sys Comp 4.1, Sys Comp 4.2, Sys Comp 4.3, Sys Comp 4.4, Sys Comp 4.5, Sys Comp 5.1) tests are moved to Rev C release

9.1 System Clock

9.1.1 Test ID

Sys Clock 1.1

9.1.2 Purpose

The purpose of this test case is to check system clock PLL performance

9.1.3 Test and Measurement Method

Refer to section 3 of OpenCellular - Connect-1 System Test Specification document

9.1.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.1.5 DUT Sample Information

9.1.6 Test Results

Lock Status

Test Condition	PASS / FAIL	
GPS lock detect	PASS	
Clock PLL detect	PASS	

GMSK Modulation accuracy

			Middle Channel			
		ARFC N	Frequency (MHz)	RMS phase error (deg)	Margin	Test Result PASS / FAIL
Specification				< 5 deg	deg	
Chain	GSM 900	35	942	0.8	4.2	PASS
1	GSM 1800	696	1842	0.5	4.5	PASS
Chain	GSM 900	35	942	0.9	4.1	PASS
2	GSM 1800	696	1842	0.7	4.3	PASS

ARFC N			Middle Channel			
			Frequency (MHz)	Peak phase error (deg)	Margin	Test Result PASS / FAIL
Spe	Specification			< 20deg	deg	
Chain	GSM 900	35	942	2.3	17.7	PASS
1	GSM 1800	696	1842	1.8	18.2	PASS
Chain 2	GSM 900	35	942	2.3	17.7	PASS
	GSM 1800	696	1842	2.1	17.9	PASS

ARFC N			Middle Channel			
			Frequency (MHz)	Mean frequency error (Hz)	Margin	Test Result PASS / FAIL
Spe	Specification			GSM900 < 50Hz, GSM1800 < 90Hz	Hz	
Chain	GSM 900	35	942	2	48	PASS
1	GSM 1800	696	1842	2	88	PASS
Chain	GSM 900	35	942	1.6	48.4	PASS
2	GSM 1800	696	1842	1	49	PASS

			Middle Channel					
		ARFC N	Frequency (MHz)	RMS phase error (deg)	Peak phase error (deg)	Mean frequency error (Hz)	Mean frequency error (ppm)	Test Result PASS / FAIL
Specification				< 5 deg	< 20 deg	GSM900 < 50Hz, GSM1800 < 90Hz	< 0.05 ppm	
Chain	GSM 900	35	942	0.8	2.3	2	2.123E- 09	PASS
1	GSM 1800	696	1842	0.5	1.8	2	1.086E- 09	PASS
Chain 2	GSM 900	35	942	0.9	2.3	1.57	1.667E- 09	PASS
	GSM 1800	696	1842	0.7	2.12	1	5.429E- 10	PASS

9.2 System Controls - 1.1, 1.2, 1.3, 1.4

9.2.1 Test ID

Sys Ctrl 1.1, 1.2, 1.3, 1.4

9.2.2 Purpose

The purpose of this test is to validate the response of System control functions. This test covers the following test ID

Test ID	Subsystem	Test case
Sys Ctrl 1.1	SYSTEM CONTROLS	LDO enables
Sys Ctrl 1.2	SYSTEM CONTROLS	Power amplifier enables
Sys Ctrl 1.3	SYSTEM CONTROLS	Regulator enables
Sys Ctrl 1.4	SYSTEM CONTROLS	Switch controls and enabling 4 bands and 2 chains both on TX and RX side

9.2.3 Test and Measurement Method

Refer to section 4.1.1 of OpenCellular - Connect-1 System Test Specification document

9.2.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Typical System/Test Load: Typical

9.2.5 DUT Sample Information

9.2.6 Test Results

GSM band configuration, Attenuation control

	AD9361 att = -20						
Tx Chain	Band	Tx Att = 0	Tx Att = 1	Tx Att = 5	Tx Att = 10	Tx Att = 15	Test RESULT PASS / FAIL
		dBm	dB	dB	dB	dB	
	GSM850	27.5	0.7	4.3	9	13.9	PASS
Ch1	GSM900	28.2	1	4.9	9.7	14.6	PASS
CIII	GSM1800	22.4	0.8	4.6	10.4	14.4	PASS
	GSM1900	19.5	0.9	4.9	9.8	14.8	PASS
	GSM850	27.8	0.6	4.3	9	13.9	PASS
Ch2	GSM900	28.4	0.8	4.7	9.6	14.5	PASS
Ch2	GSM1800	22.4	0.86	4.7	9.6	14.5	PASS
	GSM1900	20.8	0.83	4.7	9.7	14.6	PASS

Rx Chain	Band	Rx Att = 0	Rx Att = 5	Rx Att = 10	Rx Att = 15	Test RESULT PASS /
		dBm	dB	dB	dB	FAIL
	GSM850	-22	5.5	10.4	15.3	PASS
Ch1	GSM900	-21.1	4.9	9.8	14.7	PASS
CIII	GSM1800	-40	5.5	10.4	15.4	PASS
	GSM1900	-27	4.8	9.8	14.7	PASS
	GSM850	-22.5	5	10	14.9	PASS
Ch2	GSM900	-21.2	4.9	9.8	14.8	PASS
Cnz	GSM1800	-35.9	5.3	10.5	15.4	PASS
	GSM1900	-28	4.7	9.7	14.6	PASS

Bypass configuration

		Chain 1	Chain 2
Drimaga A	Config	Bypass 1	Bypass 2
Bypass A	RF path	Tx	Rx
Drymaga D	Config	Bypass 2	Bypass 1
Bypass B	RF path	Rx	Tx

To Atta Cattings	AD9361	10dB
Tx Attn Settings	Digital Att	10dB
Rx Attn Settings	ANT input	-30 dBm

				Powe	r (dBm)		Test RESULT	
			GSM850	GSM900	GSM1800	GSM1900	PASS / FAIL	
D A	Tx	Ch1	2.8	2.8	0.5	0.4	PASS	
Bypass A	Rx	Ch2	-37	-37.8	-40	-43.3	PASS	
Damasa D	Tx	Ch2	2.66	2.7	-0.19	-0.8	PASS	
Bypass B	Rx	Ch1	-38	-37.8	-39.8	-41.3	PASS	

9.3 System Controls - LED

9.3.1 Test ID

Sys Ctrl 1.7

9.3.2 Purpose

The purpose of this test is to validate the response of front PANEL LED to system state

9.3.3 Test and Measurement Method

Refer to section 4.1.4 of OpenCellular - Connect-1 System Test Specification document

9.3.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Typical System/Test Load: Typical

9.3.5 DUT Sample Information

9.3.6 Test Results

#	SYSTEM STATUS	LED STATUS	LED COLOR	SYSTEM TEST CONDITION	TEST STATUS	Remarks
1	System Boot	Circulating	GREEN	System BOOT	PASS	System BOOT (TIVA tasking issue, circulating stops in between) LED needs to circulate clockwise. For this the TASK needs to run continuously in TIVA. But in between some other task will take over TIVA and for that period LED circulation will stop.
2	System Running	Pulsing	GREEN	System BOOT completes	PASS	SYSTEM RUNNING: LED panel need to pulsate in GREEN (N RESET toggle every 5 second)
3	System Failure	Pulsing	RED	Associate this to any alarm on GBC (temperature, Over current) We can set the threshold for any temperature sensor low enough to trigger this alarm and get the LED status.	PASS	SYSTEM failure: LED panel need to pulsate in RED. (N reset toggle every 5 seconds) Temperature: (INTEL three temperature limits, LOW, HIGH, CRITICAL: HIGH limit set to 34degC) Current: (TIVA default current ~152 mA, Set limit to 100mA to simulate alarm
4	Radio Failure	Flash – Left	RED	Associate this to Radio alarms (RF power, return loss failure, lock detect failure) GPS lock alarm (delay set to 2minutes)	PASS	
5	Backhaul Failure	Flash - Right	RED	N/A	N/A	Test can be performed when BACKHAUL feature is up

9.4 System Controls - ALARM

9.4.1 Test ID

Sys Ctrl 1.6

9.4.2 Purpose

The purpose of this test is to validate the system ALARM reporting.

9.4.3 Test and Measurement Method

Refer to section 4.1.3 of OpenCellular - Connect-1 System Test Specification document

9.4.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Typical System/Test Load: Typical

9.4.5 DUT Sample Information

Test Results

Device	Refdes	I2C address	Alert condition	PASS/ FAIL	MODULE	Comments
INA226	U239	45	MSATA current sensing	PASS		
INA226	U183	41	PWR_12V_ALRT	PASS		
INA226	U185	44	PWR_12V_ALRT	PASS		
INA226	U182	40	PWR_12V_ALRT	PASS		
SE98ATP,547	U210	18	TEMPSEN_TIVA_EVNT1	PASS		Checked for both high and low temperature alerts
SE98ATP,547	U211	19	TEMPSEN_TIVA_EVNT1	PASS		Checked for both high and low temperature alerts
SE98ATP,547	U212	1A	TEMPSEN_TIVA_EVNT1	PASS	GBC	Checked for both high and low temperature alerts
SE98ATP,547	U213	1C	TEMPSEN_TIVA_EVNT2	PASS		Checked for both high and low temperature alerts
SE98ATP,547	U214	1D	TEMPSEN_TIVA_EVNT2	PASS		Checked for both high and low temperature alerts
SE98ATP,547	U215	1F	TEMPSEN_TIVA_EVNT2	PASS		Checked for both high and low temperature alerts
INA226	U2104	40	SYS_ALERT	PASS		
INA226	U2105	41	SYS_ALERT	PASS		
INA226	U32	44	12V_ALRT	N/A		Not connected to SYSALERT
SE98ATP,547	U1803	18	CH1_TEMP_SEN_ALERT_CPU	N/A	RFSDR	not implemented, Parts being changed in REVC
SE98ATP,547	U2003	1F	CH2_TEMP_SEN_ALERT_CPU	N/A		not implemented, Parts being changed in REVC

9.5 System Controls - RESET

9.5.1 Test ID

Sys Ctrl 1.5

9.5.2 Purpose

The purpose of this test is to validate the RESETs.

9.5.3 Test and Measurement Method

Refer to section 4.1.2 of OpenCellular - Connect-1 System Test Specification document

9.5.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Typical System/Test Load: Typical

9.5.5 DUT Sample Information

9.5.6 Test Results

S.No.	Device	RESET through	RESULT PASS / FAIL	REMARKS
1	TIVA	U187, BU4329G-TR, used for monitoring 3.3VDC TIVA	PASS	3.3VDC bus voltage is less than 2.9V than TIVA stays in RESET
2	INTEL	through TIVA , TIVA_RESET_TO_PROC	PASS	
6	ETHERNET switch	through TIVA, TIVA_ETHSW_RESET	PASS	
7	RFSDR RESET	through TIVA, TIVA_TRXFE_RESET	PASS	Requires rework, updated in revC
8	FX3	through TIVA, IOE_FX3_RESE (IO xepander, address 0x1B)	PASS	
11	RFSDR I/O expander	through TIVA, TIVA_TRXFECONN_GPIO1 through TIVA, TIVA_RESET_TO_PROC	PASS	Requires rework, updated in revC
12	SYNC	Through TIVA, - TIVA_SYNC_RESET	PASS	Requires rework, updated in revC

9.6 System Tx – Mean Transmitted RF carrier power

9.6.1 Test ID

Sys Tx 1.2

9.6.2 Purpose

The purpose of this test case is to validate system Tx performance such that the mean transmitted RF carrier power at the system antenna port is within acceptable limits.

9.6.3 Test and Measurement Method

Refer to section 6.1.2 of OpenCellular - Connect-1 System Test Specification document

9.6.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.6.5 DUT Sample Information

9.6.6 Test Results

BAND	Tx Chain	ARF CN	Freq MHz	RF pow er dBm	Dig Attn	Powe r Supp ly curre nt (A)	Spec 33+/- 2dB m	RF Power Margi n (dBm)	RES ULT PAS S / FAI L
GSM900	1	63	947. 6	33	12	2.1	33 +/-	2	PAS S
GSM900	2	63	947. 6	33.5	12	2.1	33 +/-	1.5	PAS S
GSM1800	1	698	1842 .4	33.4	2	2.1	33 +/-	1.6	PAS S
GSM1800	2	698	1842 .4	34	2	2.1	33 +/-	1	PAS S

Specification: $33 \pm 2 \text{ dBm}$

9.7 System Tx - Intermodulation Attenuation

9.7.1 Test ID

Sys Tx 1.7

9.7.2 Purpose

The purpose of this test case is to check system Tx performance for Intermodulation Attenuation performance.

9.7.3 Test and Measurement Method

Refer to section 6.1.8 of OpenCellular - Connect-1 System Test Specification document

9.7.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.7.5 DUT Sample Information

9.7.6 Test Results

GSM900

CHAIN	BAND	ARFCN	FREQUENCY	Tx Power	Interfere Power
1	GSM900	38	942.6 MHz	32.5 dBm	3 dBm

Interferer Freq	Interferer Offset	IM3-	IM3+	Measure BW		PASS	Margin
(MHz)	(kHz)	(dBm)	(dBm)	(kHz)	SPEC	/FAIL	(dB)
934.6	8		-30	300	-36dBm (300KHz)	FAIL	-6
936.6	6		-34	100	-32dBm (100kHz)	PASS	2
938.6	4		-33	100	-32dBm (100kHz)	PASS	1
940.8	1.8		-34	100	-32dBm (100kHz)	PASS	2
944.4	1.8	-33		100	-32dBm (100kHz)	PASS	1
946.6	4	-31		100	-32dBm (100kHz)	FAIL	-1
948.6	6	-31		100	-32dBm (100kHz)	FAIL	-1
950.6	8	-26		300	-36dBm (300KHz)	FAIL	-10

CHAIN	BAND	ARFCN	FREQUENCY	Tx Power	Interfere Power
2	GSM900	38	942.6 MHz	32.5 dBm	3 dBm

Interferer Freq (MHz)	Interferer Offset (kHz)	IM3- (dBm)	IM3+ (dBm)	Measure BW (kHz)	SPEC	PASS /FAIL	Margin (dB)
,	,	(ubiii)					
934.6	8		-31	300	-36dBm (300KHz)	FAIL	-5
936.6	6		-33	100	-32dBm (100kHz)	PASS	1
938.6	4		-36	100	-32dBm (100kHz)	PASS	4
940.8	1.8		-36	100	-32dBm (100kHz)	PASS	4
944.4	1.8	-34		100	-32dBm (100kHz)	PASS	2
946.6	4	-32		100	-32dBm (100kHz)	FAIL	0
948.6	6	-31		100	-32dBm (100kHz)	FAIL	-1
950.6	8	-26		300	-36dBm (300KHz)	FAIL	-10

GSM1800

CHAIN	BAND	ARFCN	FREQUENCY	Tx Power	Interfere Power
1	GSM1800	699	1842.6	33.4 dBm	3 dBm

Interferer Freq	Interferer Offset	IM3-	IM3+	Measure BW		PASS	Margin
(MHz)	(kHz)	(dBm)	(dBm)	(kHz)	SPEC	/FAIL	(dB)
1834.6	8		-43	300	-36dBm (300KHz)	PASS	7
1836.6	6		-48	100	-32dBm (100kHz)	PASS	14
1838.6	4		-47	100	-32dBm (100kHz)	PASS	15
1840.8	1.8		-47	100	-32dBm (100kHz)	PASS	15
1844.4	1.8	-44		100	-32dBm (100kHz)	PASS	12
1846.6	4	-47		100	-32dBm (100kHz)	PASS	15
1848.6	6	-48		100	-32dBm (100kHz)	PASS	16
1850.6	8	-43		300	-36dBm (300KHz)	PASS	7

CHAIN	BAND	ARFCN	FREQUENCY	Tx Power	Interfere Power
2	GSM1800	699	1842.6	33 dBm	3 dBm

Interferer	Interferer			Measure			
Freq	Offset	IM3-	IM3+	BW		PASS	Margin
(MHz)	(kHz)	(dBm)	(dBm)	(kHz)	SPEC	/FAIL	(dB)
1834.6	8		-41	300	-36dBm (300KHz)	PASS	5
1836.6	6		-43	100	-32dBm (100kHz)	PASS	10
1838.6	4		-43	100	-32dBm (100kHz)	PASS	8
1840.8	1.8		-43	100	-32dBm (100kHz)	PASS	11
1844.4	1.8	-43		100	-32dBm (100kHz)	PASS	11
1846.6	4	-41		100	-32dBm (100kHz)	PASS	9
1848.6	6	-39		100	-32dBm (100kHz)	PASS	7
1850.6	8	-36		300	-36dBm (300KHz)	PASS	0

9.7.7 Failure resolution

Intermod products are failing by worst case by 10dB. The intermods are getting generated at PA. For every 1dB reduction in interferer the intermod is expected to reduce by 3dB. In revC isolator is added at PA output. The isolator provides typical isolation of 15dB. With this the intermod levels are expected to come down by ~45dB thereby meeting specs by good margins.

9.8 System Power – AUX source, total power consumption

9.8.1 Test ID

Sys Pwr 1.1, 1.8

9.8.2 Purpose

The purpose of this test case is to ensure systems total power consumption is within specified limits. This test also validates the functionality with DC (AUX) source for power system during max power transmission along with supporting external battery charging.

9.8.3 Test and Measurement Method

Refer to section 5.1.1 of OpenCellular - Connect-1 System Test Specification document

9.8.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.8.5 DUT Sample Information

9.8.6 Test Results

WITHOUT BATTERY CHARGING

POWER SOURCE – AUX 18VDC

GSM900

	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	Freq	26	12	2	1600	6845	262	29627	965	9747	14060	8.707	24.772
	Chain 2							P	ower (mW	')				
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	33.5	12	2.1	1595	6710	260	29962	960	9552	14430	8.565	24.942
SWAP carr	ier													
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	33	12	2.1	1597	6812	262	30155	965	16347	7877	8.671	25.189
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	26.5	12	2.1	1617	6747	262	30387	965	16655	7717	8.626	25.337

TOTAL	POWER CON	SUMPTION		
GBC W	RFSDR W	W W		RESULT (PASS /FAIL)
Spec (10W)	Spec (35W)	Spec (45W)		
8.64	31.74	40.38	4.62	PASS

Note:-

GBC Power (in W) = TIVA + ATOM + MSATA RFSDR Power (in W) = FPGA + Ch1 + Ch2

GSM1800

	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.4	26.3	2	2.1	1600	6770	262	29940	965	8640	15470	8.632	25.075
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.4	34	2	2.1	1600	6705	262	29390	965	8847	14905	8.567	24.717
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.4	33.4	2	2.1	1600	6832	260	29037	970	15942	7355	8.692	24.267
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.4	26.9	1842.4	2	1615	6752	260	28907	970	15800	7240	8.627	24.01

TOTAL	POWER CON	SUMPTION		
GBC W	RFSDR Total W		Total Power Margin (in W)	RESULT (PASS /FAIL)
Spec (10W)	Spec (35W)	Spec (45W)		
6.47	30.85	37.32	7.68	PASS

Note: -

GBC Power (in W) = TIVA + ATOM + MSATA RFSDR Power (in W) = FPGA + Ch1 + Ch2

WITH BATTERY CHARGING

POWER SOURCE – AUX 22VDC

GSM900

			Chain 1								Power					
			Clidili 1				Current				Power					Tota
STEP 1				F	DE		Power								Total GBC	RFSD
(18V)					RF power							l				
			ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
	GSM900	4.8 Middle		947.2	24.3	12	2.1	1622	7062	265		997	9265	13925	8.949	24.18
	_		Chain 2								Power					
							Current									Tota
					RF power		Power								Total GBC	RFSE
			ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
		Middle	≘ 63	947.2	33.1	12	2.1	1650	6902	265	29565	995	9460	14175	8.817	24.6
			Chain 1								Power					
STEP 2							Current									Tota
				Freq	RF power		Power								Total GBC	RFSD
(22V)			ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
	GSM900	4.8 Middle	≘ 63	947.2	24.1	12	1.7	1627	7045	265	29365	997	9457	14172	8.937	24.62
			Chain 2								Power					
							Current									Tota
				Freq	RF power		Power								Total GBC	RFSD
			ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	w	l w
		Middle	9 63	947.2				1650	7040	265	29592	997	9340	14197	8.955	24.53
			Chain 1								Power					
							Current									Tota
STEP3				Freq	RF power		Power								Total GBC	RFSC
(22V, 8A)			ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
, LeadAcid connected	GSM900	Middle		947.2				1617	7052		29560	1002	9515	14152		24.6
, Leauncia connectea	GSIVISOO	Wilduit	_ 05	347.2	27.2	12	4.5	1017	7032	203	23300	1002	3313	14132	0.554	24.0
	_		Chain 2								Power					
			Chain 2				Current				rower					Tot
				F	DE							i			T-+-LCDC	
					RF power	l	Power					l l			Total GBC	RFSI
			ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
		Middle	e 63	947.2	33.1	12	4.3	1660	7012	265	29592	1002	9340	14152	8.937	24.4

STEP 1 (BASELINE)

ТОТА	L POWER CON	SUMPTION		
GBC W	RFSDR W	Total W	Total Power Margin (in W)	RESULT (PASS /FAIL)
Spec (10W)	Spec (35W)	Spec (45W)		
8.95	24.63	33.58	11.42	PASS

Note: -

GBC Power (in W) = TIVA + ATOM + MSATA RFSDR Power (in W) = FPGA + Ch1 + Ch2

STEP 2 (at 22VDC without battery charging)

TOTA	L POWER CON	SUMPTION		
GBC W	RFSDR W	Total W	Total Power Margin (in W)	RESULT (PASS /FAIL)
Spec (10W)	Spec (35W)	Spec (45W)		
8.94	24.53	33.47	11.53	PASS

Note: -

GBC Power (in W) = TIVA + ATOM + MSATA RFSDR Power (in W) = FPGA + Ch1 + Ch2

STEP 3 (at 22VDC with battery charging)

TOTAL I	POWER CONS	UMPTION			Battery	RESULT	
GBC W	RFSDR W	Total W	Total Power Margin (in W)	Battery Charging	Charge Current A	(PASS /FAIL)	
Spec (10W)	Spec (35W)	Spec (45W)		Functional	Spec < 10.8A		
8.93	23.49	32.43	12.57	OK	5.7	PASS	

Note: -

9.9 System Power – Solar power

9.9.1 Test ID

Sys Pwr 1.5

9.9.2 Purpose

The purpose of this test case is to validate system performance when operated with Solar power source.

9.9.3 Test and Measurement Method

Refer to section 5.1.5 of OpenCellular - Connect-1 System Test Specification document

9.9.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.9.5 DUT Sample Information

9.9.6 Test Results

WITHOUT BATTERY CHARGING

GSM900

													•	
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	25.9	12	1.97	1612	10447	262	28975	978	9505	13790	12.321	24.273
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	33.2	12	1.97	1682	10327	280	29382	972	9535	14190	12.289	24.697
SWAP car	rier													
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	32.8	12	1.95	1607	10570	262	29827	975	16335	7800	12.439	25.11
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	26.4	12	1.95	1592	10702	262	29742	972	16427	7597	12.556	24.996

TOTAL 1	POWER CON	SUMPTION		DECLU T
GBC W	RFSDR Total W		Total Power Margin (in W)	RESULT (PASS/FAIL)
Spec (10W)	Spec (35W)	Spec (45W)		
12.40	31.50	43.90	1.1	PASS

GSM1800

	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.2	25.7	2	1.89	1730	10665	262	29705	975	8572	15452	12.657	24.999
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.2	33.5	2	1.89	1697	10695	262	29210	980	8697	14762	12.654	24.439
SWAP car	rier													
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.2	32.8	2	1.86	1600	10775	377	28692	980	15802	7147	12.752	23.929
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.2	30	2	1.86	1590	10682	377	28770	980	15705	7417	12.649	24.102

TOTAL 1	POWER CONS	SUMPTION			
GBC W	RFSDR W	Total W	Total Power Margin (in W)	RESULT (PASS /FAIL)	
Spec (10W)	Spec (35W)	Spec (45W)			
12.68	31.54	44.22	0.78	PASS	

WITH BATTERY CHARGING

NOTE: No RF transmission, with electronic load

STEP 1: No battery connected

	Value	Parameter	Units	Specificatio n
	21.48	Voltage on Solar Source Display	V	
	2.05	Current on Solar Source Display	A	
Solar Source	44.034	Power from Solar Source	W	< 45W
	21.86	Voltage on GBC Front panel connector	V	
	3.4	Current on Electronic load	A	
Electronic Load	12	Voltage on electronic load terminals	V	
	40.8	Power to Electronic Load	W	

STEP 2: External battery connected

	Value	Parameter	Units	Specificatio n
	20.1	Voltage on Solar Source Display	V	
Solar Source	5.06	Current on Solar Source Display	A	
	101.706	Power from Solar Source	W	< 165W

	20.3	Voltage on GBC Front panel connector	V	
	3.4	Current on Electronic load	A	
Electronic Load	12	Voltage on electronic load terminals	V	
	40.8	Power to Electronic Load	W	

	Lead Acid Battery - TIVA Log											
SI.No	Register	Register Address	Hex Value	Decimal Value	Parameter	Value	Comments					
1	VBAT	0x3A	3fb8	16312	Vbatsense/cellcount (V)	2.09						
2	VIN	0x3B	3011	12305	Input Voltage(V)	20.28						
3	VSYS	0x3C	2fde	12254	System Voltage(V)	20.19						
4	IBAT	0x3D	2b8a	11146	Battery current(A)	3.27	At battery voltage					
5	IIN	0x3E	1ff8	8184	Input current(A)	5.99						
6	DIE_TEMP	0x3F	34fc	13564	LTC4015 temperature(deg	34.08						
1	ICHARGE_TARGET	0x1A	1f	31	Charge current target(A)	10.67						
2	VCHARGE_SETTING	0x1B	1	1	Charge voltage target(V/ce	2.01						

Charge Current	Margin (in Amp)	RESULT (PASS/FAIL)		
Spec (< 10.8A)				
6A	4.8A	PASS		

STEP 3: Internal battery connected

	Value	Parameter	Units	Specification
	21.26	Voltage on Solar Source Display	V	
	2.522	Current on Solar Source Display	A	
Solar Source	53.61772	Power from Solar Source	W	< 65.4W
	21.55	Voltage on GBC Front panel connector	V	
	3.4	Current on Electronic load	A	
Electronic Load	12	Voltage on electronic load terminals	V	
	40.8	Power to Electronic Load	W	

	Lithium Ion Battery - TIVA Log									
Sl.No	Register	Register Address	Hex Value	Decimal Value	Parameter	Value	Comments			
1	VBAT	0x3A	4fd8	20440	Vbatsense/cellcount (V)	3.93				
2	VIN	0x3B	3388	13192	2 Input Voltage(V)					
3	VSYS	0x3C	3343	13123	System Voltage(V)					
4	IBAT	0x3D	2a9c	10908	Battery current(A)	3.20	At battery voltage			
5	IIN	0x3E	8fa	2298	Input current(A)	1.68	At 18V			
6	DIE_TEMP	0x3F	3695	13973	LTC4015 temperature(deg C)	43.05				
Charge Current			M	Iargin	RESULT (PASS/F.	AIL)				

	(in Amp)	
Spec (< 1.8A)		
1.7A	0.1 A	PASS

Note:-

9.10 System Power - POE

9.10.1 Test ID

Sys Pwr 1.4

9.10.2 Purpose

The purpose of this test case is to ensure systems functions normally when powered with POE source.

9.10.3 Test and Measurement Method

Refer to section 5.1.4 of OpenCellular - Connect-1 System Test Specification document

9.10.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.10.5 DUT Sample Information

9.10.6 Test Results

GSM900

	01 1 1								_					
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	25.4	16		1605	6785	260	29152	965	9585	13565	8.65	24.115
	Chain 2					Power								
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	33.1	16		1605	6775	260	29327	965	9650	13742	8.64	24.357
SWAP car	SWAP carrier													
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	32.5	16		1595	6765	262	29402	965	15715	7855	8.622	24.535
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	26	16		1610	6825	262	29945	962	16162	7902	8.697	25.026

TOT	TAL POWER CON	SUMPTION		
GBC W	RFSDR W	Total W	Total Power Margin (in W)	RESULT (PASS /FAIL)
Spec (10W)	Spec (35W)	Spec (45W)		
8.65	30.42	39.07	5.93	PASS

Note:-

GBC Power (in W) = TIVA + ATOM + MSATA RFSDR Power (in W) = FPGA + Ch1 + Ch2

GSM1800

	Ch = :- 1								D					
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.2	23.9	6		1640	6822	262	28257	972	8520	13935	8.724	23.427
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.2	32	6		1637	6690	260	27710	975	8727	13242	8.587	22.944
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.2	31	6		1637	6730	262	27150	977	14085	7117	8.629	22.179
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.2	25.7	6		1642	6845	260	27087	977	14077	7330	8.747	22.384

TOTAL POWER CONSUMPTION				
GBC W	RFSDR W	Total W	Total Power Margin (in W)	RESULT (PASS /FAIL)
Spec (10W)	Spec (35W)	Spec (45W)		
8.67	28.30	36.97	8.03	PASS

Note: -

GBC Power (in W) = TIVA + ATOM + MSATA RFSDR Power (in W) = FPGA + Ch1 + Ch2

9.11 System Power – External Battery

9.11.1 Test ID

Sys Pwr 1.7

9.11.2 Purpose

The purpose of this test case is to ensure systems functions normally when powered with External battery.

9.11.3 Test and Measurement Method

Refer to section 5.1.7 of OpenCellular - Connect-1 System Test Specification document

9.11.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.11.5 DUT Sample Information

9.11.6 Test Results

GSM900

	Chain 1								Dayyar					
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	31.3	18		1557	7375	265	28705	995	10170	12615	9.197	23.78
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	31.7	18		1592	7070	265	27687	990	9092	12612	8.927	22.694
SWAP car	rier													
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	31.2	18		1552	7225	265	28120	992	14565	7705	9.042	23.262
	Chain 2								Power					
					Current						·			Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	31.4	18		1587	7187	265	28620	992	15012	7660	9.039	23.664

TOTAL 1	POWER CONS			
GBC W	RFSDR W	Total W	Total Power Margin (in W)	RESULT (PASS/FAIL)
Spec (10W)	Spec (35W)	Spec (45W)		
9.05	28.17	37.22	7.78	PASS

Note:-

GBC Power (in W) = TIVA + ATOM + MSATA RFSDR Power (in W) = FPGA + Ch1 + Ch2

Total Power (in W) = GBC Power + RFSDR Power

GSM1800

	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.4	31.8	4		1592	7195	265	28571	1002	8407	14125	9.052	23.534
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	698	1842.4	32.2	4		1595	7140	265	27935	1005	8572	13505	9	23.082
SWAP carrier														
	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle			31.7	4		1687	7112	265	27715	1007	14430	7410	9.064	22.847
	Chain 2								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle			32.5	4		1602	7192	377	27582	1007	14360	7160	9.171	22.527

TOTAL	POWER CONS			
GBC W	RFSDR W	Total W	Total Power Margin (in W)	RESULT (PASS /FAIL)
Spec (10W)	Spec (35W)	Spec (45W)		
9.07	28.94	38.01	6.99	PASS

Note:-

GBC Power (in W) = TIVA + ATOM + MSATA RFSDR Power (in W) = FPGA + Ch1 + Ch2

Total Power (in W) = GBC Power + RFSDR Power

9.12 System Power – Internal Battery

9.12.1 Test ID

Sys Pwr 1.6

9.12.2 Purpose

The purpose of this test case is to ensure systems functions normally when powered with Internal battery.

9.12.3 Test and Measurement Method

Refer to section 5.1.6 of OpenCellular - Connect-1 System Test Specification document

9.12.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.12.5 DUT Sample Information

RF-SDR Board Serial Number – WZ1630LIFE2SDR0008 GBC Board Serial Number – WZ1630LIFE2GBC0018

9.12.6 Test Results

GSM900

	Chain 1								Power					
					Current									Total
		Freq	RF power		Power								Total GBC	RFSDR
	ARFCN	MHz	dBm	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	W	W
Middle	63	947.6	26	12		1557	8800	380	29325	972	9477	14042	10.737	24.491
	Chain 2								Power					
					Current Power								Total GBC	Total RF
	ARFCN	-	RF power	_	Supply	TIVA	ATOM	MSATA	TRXFE		Ch1	Ch2	power	power
Middle	63	947.6	33.5	12		1540	8792	265	29835	967	9580	14365	10.597	24.912
SWAP carrier														
	Chain 1								Power					
					Current Power							l	Total GBC	Total RF
	ARFCN	Freq	RF power	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	power	power
Middle	63	947.6	33	12		1535	8682	265	29875	967	16272	7919	10.482	25.158
	Chain 2								Power					
					Current Power								Total GBC	Total RF
	ARFCN	Freq	RF power	Dig Attn	Supply	TIVA	ATOM	MSATA	TRXFE	FPGA	Ch1	Ch2	power	power
Middle	63	947.6	26.4			1577	8672	265	30347	965	16607	7877	10.514	25.449

TOTAL P	OWER CONSUM			
GBC W	RFSDR W	Total W	Total Power Margin (in W)	RESULT (PASS /FAIL)
Spec (10W)	Spec (35W)	Spec (45W)		
10.58	31.61	42.19	2.79	PASS

9.13 System Power - Cold Start

9.13.1 Test ID

Sys Pwr 1.3

9.13.2 Purpose

The purpose of this test case is to validate the logic for COLD start

9.13.3 Test and Measurement Method

Refer to section 5.1.3 of OpenCellular - Connect-1 System Test Specification document

9.13.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.13.5 DUT Sample Information

RF-SDR Board Serial Number – WZ1630LIFE2SDR0008 GBC Board Serial Number – WZ1630LIFE2GBC0022

9.13.6 Test Results

VALIDATION STEP	OBSERVATION	REMARKS
Ambient temperature	21 degC	
Threshold value	30 degC	for INTEL temperature Sensor
Before temperature threshold		
GBC power	OK	
RF board power	ON HOLD	
PA enables	ON HOLD	
FX3 reset (active low)	ON HOLD	
After temperature threshold		
GBC power	OK	
RF board power	OK	
PA enables	OK	
FX3 reset (active low)	OK	
Test result (PASS / FAIL)	PASS	Functional Validation of COLD START LOGIC

9.14 System Power – Power (Initialization) Sequence

9.14.1 Test ID

Sys Pwr 1.2

9.14.2 Purpose

The purpose of this test case is to validate the logic for system power up (initialization sequence)

9.14.3 Test and Measurement Method

Refer to section 5.1.2 of OpenCellular - Connect-1 System Test Specification document

9.14.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.14.5 DUT Sample Information

RF-SDR Board Serial Number – WZ1630LIFE2SDR0008 GBC Board Serial Number – WZ1630LIFE2GBC0022

9.14.6 Test Results

S.l	No	Initialization Process Step	Device involved	RESULT OK / NOK	REMARKS
	a	Check Power source	POE	OK	POE not connected
	b		Solar/AUX	OK	Detected AUX power source
1	c		Lithium-ion Battery	OK	Detected Li-ion battery
	d		Lead Acid Battery	OK	Lead acid not Connected
	e		PSE	OK	POE not connected, powered by AUX
2	a	Check - INTEL out of RESET	PSTRST	OK	Checking INTEL out of RESET
	b		COREPOWER	OK	Checking INTEL power OK
3	a	Check - MSATA out of RESET		OK	Checking MSATA out of RESET
4	a	Check - RF out of RESET		OK	Checking RFSDR out of RESET
	a	Checking Device presense	INA226 - GBC (4)	OK	Checks the presence of Current and Voltage monitoring devices on GBC
	b		INA226 - RF (3)	OK	Checks the presence of Current and Voltage monitoring devices on RFSDR
5	c		Temp Sensor - GBC (6)	OK	Checks the presence of temperature sensors on GBC
	d		Temp Sensor - RF (2)	OK	Checks the presence of temperature sensors on RFSDR
	e		Sync module	OK	Checks the presence of Sync Module
	f		LED module	OK	Checks the presence of LED module
	a	Configuration / Initialization of Sensors	INA226 - GBC (4)	OK	Configuring INA226 on GBC
	b		INA226 -RF (3)	OK	Configuring INA226 on RFSDR
	c		PSE	OK	no POE connected
6	d		Lead Acid	OK	Configuring charge controller for Lead Acid battery
	e		Lithium-ion	OK	Configuring charge controller for Li-ion battery
	f		Temp Sensor - GBC (6)	OK	Configuring temperature sensor limits for GBC
	g		Temp Sensor - RF (2)	OK	Configuring temperature sensor limits for RFSDR

S.	No	Initialization Process Step	Device involved	RESULT OK / NOK	REMARKS
	h		Sync module	OK	Configuring I/O expander for SYNC module
	i		LED module	OK	Configuring I/O expander for LED module
	a	Checking device Status	INA226 - GBC (4)	OK	Monitoring bus currents and voltages for GBC
7	b		INA226 - RF (3)	OK	Monitoring bus currents and voltages for GBC
/	c		Temp Sensor - GBC (6)	OK	Monitoring temperature reading on GBC
	d		Temp Sensor - RF (2)	OK	Monitoring temperature reading on RFSDR
		FINAL S	TATUS	PASS	

9.15 System RF – GPS lock

9.15.1 Test ID

Sys GPS 1.1

9.15.2 Purpose

The purpose of this test case is to validate GPS receiver performance.

9.15.3 Test and Measurement Method

Refer to section 8.1.1 of OpenCellular - Connect-1 System Test Specification document

9.15.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.15.5 DUT Sample Information

RF-SDR Board Serial Number – WZ1630LIFE2SDR0008 GBC Board Serial Number – WZ1630LIFE2GBC0022

9.15.6 Test Results

GPSDO Lock detect	GPSDO lock time (Spec < 15mts)	Margin For GPSDO Lock	40MHz reference output	RESULT PASS /FAIL
OK	10 minutes	5 Minutes	OK	PASS

9.16 System RF – GPS-GSM Coexistence

9.16.1 Test ID

Sys GPS 1.2

9.16.2 Purpose

Purpose: To test the coexistence of GPS-GSM in the same BOX. GSM signal transmission should have no impact on GPS signal reception.

9.16.3 Test and Measurement Method

Refer to section 8.1.2 of OpenCellular - Connect-1 System Test Specification document

9.16.4 Test Condition

Ambient Temperature: 25°C Operating Voltage: Nominal System/Test Load: Typical

9.16.5 DUT Sample Information

RF-SDR Board Serial Number –WZ1630LIFE2SDR00 08 GBC Board Serial Number – WZ1630LIFE2GBC0022

9.16.6 Test Results

GPS - Standalone

S.No	GPS Signal Level (dBm)	C/No (dBm/Hz)	Remarks
1	-140	26	No GPS Fix
2	-135	31	GPS fix
3	-130	38	GPS fix
4	-125	42	GPS fix
5	-120	45	GPS fix
6	-115	49	GPS fix
7	-110	51	GPS fix
8	-105	51	GPS fix

GPS-GSM900 Coexistence

GSM Tx Power = 33dBm GPS Signal Input = -130dBm

Variable Attenuation (dB)	Total GSM - GPS Isolation (dB)	C/No	Remarks
no GSM t	ransmission	38	GPS Fix
40	50	35	GPS Fix
35	45	33	GPS Fix
30	40	31	GPS Fix
25	35	29	GPS Fix
20	30	28	GPS Fix
15	25	25	no GPS fix

GPS-GSM1800 Coexistence

GSM Tx Power = 33dBm

GPS Signal Input = -130dBm

Variable Attenuation (dB)	Total Gsm - GPS Isolation (dB)	C/No (dBc / Hz)	Remarks	
no GSM transmission		35	GPS Fix	
40	50	34	GPS Fix	
35	45	33	GPS Fix	
30	40	31	GPS Fix	
25	35	31	GPS Fix	
20	30	30	GPS Fix	
15	25	29	no GPS fix	

Parameter	Specification	Result	Margin	RESULT PASS / FAIL
With and input of - 130dBm, GPS Fix and PLL Lock to be achieved for up to a minimum of GPS-GSM isolation of	35 dB	30dB	5 dB	PASS
Time for GPSDO lock detect for GPS input of - 130dBm and GPS-GSM coupling of 35dB	< 15 minutes	6 minutes	9 Minutes	PASS

9.17 History

SL.no	Date	Version	Author	Comments
1	February 9 th ,2017	1.0	OpenCellular Team	First Release
2	February 13 th , 2017	1.1	OpenCellular Team	Incorporated comments on 1 st and 2 nd page of the report