Statistical and Computational Security

Symmetric Encryption Scheme

- A symmetric encryption scheme is a triple of algorithms (K,E,D)
 - K keys generation
 - E encryption algorithm
 - D decryption algorithm
- For simplicity assume that $\mathbf{k} \leftarrow \mathbf{K}$ uniformly at random, $k \in \{0,1\}^l$ or $k \in U_l$
- $P \in \{0,1\}^m$ plaintext

$$E: \{0,1\}^{l} \times \{0,1\}^{m} \to \{0,1\}^{*} \mid E_{k}(P) = C$$

 $D: \{0,1\}^{l} \times \{0,1\}^{*} \to \{0,1\}^{m} \mid D_{k}(C) = P$

In general, E (and possibly D) are randomized

Perfect Security

Let (K,E,D) be a symmetric encryption scheme. It is said to be perfectly secure if for any two plaintexts P₁,P₂ and a ciphertext C

$$\Pr[E_k(P_1) = C] = \Pr[E_k(P_2) = C],$$

where the probability is over the random choice $k \leftarrow K$, and also over the coins flipped by E

Statistical Distance

Let \mathcal{X} and \mathcal{Y} be two distributions over $\{0,1\}^m$ The statistical distance between \mathcal{X} and \mathcal{Y} , denoted $\Delta(\mathcal{X},\mathcal{Y})$ is

$$\max_{T\subseteq\{0,1\}^m} |\Pr[\mathcal{X}\in T] - \Pr[\mathcal{Y}\in T]|$$

$$\mathcal{X} \quad \text{If } \Delta(\mathcal{X},\mathcal{Y}) \leq \varepsilon \text{ we write}$$

$$\mathcal{X} \equiv_{\varepsilon} \mathcal{Y}$$

Statistical Security

A symmetric encryption scheme is said to be ε-statistically secure, if for any two plaintexts P_1, P_2 distributions $E_k(P_1), E_k(P_2)$ are ε-equivalent

Theorem.

Let (K,E,D) be a SES with m-bit messages and m-1 –bit keys. Then there are plaintexts P_1, P_2 with $\Delta(E_k(P_1), E_k(P_2)) \ge \frac{1}{2}$

Statistical Security (cntd)

Observation.

If $\mathbb{E}[X] \leq \mu$ then $\Pr[X \leq \mu] > 0$.

Proof (of the theorem).

Let $P_1 = 0^m$ and $S = \{E_k(0^m) \mid k \in \{0,1\}^{m-1}\}$ Then $|S| \le 2^{m-1}$ Experiment:

Choose a random plaintext $P \in \{0,1\}^m$ define 2^{m-1} random variables: for every $k \in \{0,1\}^{m-1}$ we set

 $T_k(P) = 1$ if $E_k(P) \in S$ and 0 otherwise

For every k, E_k is one-to-one, hence, $\Pr[T_k = 1] \le \frac{1}{2}$

Therefore $\mathbb{E}[T_k] \leq \frac{1}{2}$

Statistical Security (cntd)

Proof (cntd)
Set $T = \sum_{k} T_{k}$ Then $\mathbb{E}[T] = \mathbb{E}\left[\sum_{k} T_{k}\right] = \sum_{k} \mathbb{E}[T_{k}] \le \frac{2^{m-1}}{2}$

By Observation, $\Pr[T \le \frac{2^{m-1}}{2}] > 0$, or in other words, there exists P such that $\sum_k T_k(P) \le \frac{2^{m-1}}{2}$

For such P at most half of the keys satisfy $E_k(P) \in S$ or, equivalently, $\Pr[E_k(P) \in S] \leq \frac{1}{2}$

Since $\Pr[E_k(0^m) \in S] = 1$, we get $\Delta(E_k(0^m), E_k(P)) \ge \frac{1}{2}$

Algorithms

- Algorithm performs a sequence of `elementary steps' that can be:
 - arithmetic operations
 - bit operations
 - Turing machine moves
 - (but not quantum computing!!)
- We allow probabilistic algorithms, that is flipping coins is permitted

Complexity

- The time complexity of algorithm A is function f(n) that is equal to the number of elementary steps required to process the most difficult input of length n
- We do not distinguish algorithms of complexity 2n² and 100000n²
- A computational problem has time complexity at most f(n) if there is an algorithm that solves the problem and has complexity O(f(n))
 - problem solvable in linear time: there is an algorithm that on input of length n performs at most Cn steps
 - problem solvable in quadratic time: there is an algorithm that on input of length n performs at most Cn² steps

Complexity (cntd)

- Polynomial time solvable problems:
 - There is a polynomial p(n) such that the problem is solvable in time O(p(n)
- P class of problems solvable in poly time by a deterministic algorithm
- BPP class of problems solvable in poly time by a probabilistic algorithm
- An algorithm is superpolynomial if its time complexity f(n) is not in O(p(n)) for any polynomial p(n)
- A function $\varepsilon: \mathbb{N} \to [0,1]$ is polynomially bounded if $\varepsilon(n) \ge \frac{1}{p(n)}$ for some polynomial p(n)

Computational Security

Let (K,E,D) be a SES that uses n-bit keys to encrypt m(n)-bit messages. It is computationally secure if for any polynomial time algorithm Eve: $\{0,1\}^* \rightarrow \{0,1\}$, any polynomially bounded ϵ : $\{0,1\}^* \rightarrow [0,1]$, n, and $P_1,P_2 \in \{0,1\}^{m(n)}$

$$|\Pr[\mathsf{Eve}(E_{U_n}(P_1)) = 1] - \Pr[\mathsf{Eve}(E_{U_n}(P_2)) = 1]| < \varepsilon(n)$$

Conjecture.

A computationally secure SES exists for $m(n) = n^{100}$ (may be even for $m(n) = 2^{0.9n}$)

Computational Indistinguishability: Difficulties

- It is useful to define computational security in a similar way as statistical one: define distance or equivalence of distributions and then say that $E_{U_n}(P_1)$ and $E_{U_n}(P_1)$ are 'equivalent'. However, there are problems
- For computational definitions we need algorithms, not events Solution: Instead of saying $X \in S$ we use the characteristic function f of S. So we say f(X) = 1 instead.

Distance between distributions can then be defined as

$$\max_{f} |\Pr[f(X) = 1] - \Pr[f(Y) = 1]|$$
 over all 'easily' computable functions f

Computational complexity does not make sense for fixed distributions.

Solution: Use collections or sequences of random variables

Computational Indistinguishability: Definition

Let T(n) and $\varepsilon(n)$ be functions on natural numbers. Collections of random variables $\{X_n\}$ and $\{Y_n\}$ such that $X_n, Y_n \in \{0,1\}^n$ are said to be computationally (T,ε) -indistinguishable, if for any probabilistic algorithm. Alg with time complexity at most T(n)

$$|\Pr[\mathsf{Alg}(X_n) = 1] - \Pr[\mathsf{Alg}(Y_n) = 1]| \leq \mathcal{E}(n)$$

 Denoted $\{X_n\} \approx_{T,\mathcal{E}} \{Y_n\}$

For example:

Let (K,E,D) be a SES that uses n-bit keys to encript m(n)-bit messages. It is computationally secure if for any $P_1,P_2\in\{0,1\}^{m(n)}$ distributions $E_{U_n}(P_1)$ and $E_{U_n}(P_1)$ are (T,ϵ) -indistinguishable for any polynomial T and any polynomially bounded ϵ