WHAT IS CLAIMED IS:

1. Compounds of the formula (I)

where

5

10

15

20

*1, *2, *3 and *4 are each independently a stereogenic carbon atom which has R- or S- configuration,

X is absent or is oxygen and

 R^1 and R^2 may each independently be hydrogen, C_1 - C_{20} -alkyl, C_1 - C_{20} -fluoroalkyl, C_2 - C_{20} -alkenyl, C_4 - C_{24} -aryl, C_5 - C_{25} -arylalkyl, C_6 - C_{26} -arylalkenyl or NR^6R^7 , OR^7 , -(C_1 - C_8 -alkyl)- OR^7 , -(C_1 - C_8 -alkyl)- NR^6R^7 or - O_2CR^7 ,

where R^6 and R^7 are each independently C_1 - C_8 -alkyl, C_5 - C_{15} -arylalkyl or C_4 - C_{14} -aryl, or R^6 and R^7 together are a cyclic amino radical having a total of 4 to 20 carbon atoms,

or R¹ and R² are each independently radicals of the formula (IIa)

$$-R^8-SiR^9R^{10}R^{11}$$
 (IIa)

25

where

R⁸ is absent or is oxygen or methylene and

 R^9 , R^{10} and R^{11} are each independently C_1 - C_{12} -alkyl, C_5 - C_{15} -arylalkyl or C_4 - C_{14} -aryl and

5

10

15

R³ and R⁴ are each independently R¹², OR¹³ or NR¹⁴R¹⁵ where R¹², R¹³, R¹⁴ and R¹⁵ are each independently C₁-C₁₂-alkyl, C₅-C₁₅-arylalkyl or C₄-C₁₄-aryl, or NR¹⁴R¹⁵ together is a cyclic amino radical having 4 to 20 carbon atoms, or R³ and R⁴ together are -O-R¹⁶-O- where R¹⁶ is a radical selected from the group of C₂-C₄-alkylene, 1,2-phenylene, 1,3-phenylene, 1,2-cyclohexylene, 1,1'-ferrocenylene, 1,2-ferrocenylene, 2,2'-(1,1'-binaphthylene), 2,2'-(1,1')-biphenylene and 1,1'-(diphenyl-2,2'-methylene)diyl, and the radicals mentioned may optionally be mono- or polysubstituted by radicals selected from the group of fluorine, chlorine, C₁-C₈-alkoxy and C₁-C₈-alkyl and

 R^5 is hydrogen, C_1 - C_{20} -alkyl, C_4 - C_{24} -aryl, C_5 - C_{25} -arylalkyl, C_1 - C_{20} -haloalkyl or a radical of the formula (IIb)

20

where

A is absent or is C_1 - C_{12} -alkylene

25

B is a functionality which is selected from the group of

where

 R^{17} may be C_1 - C_{20} -alkyl, C_4 - C_{24} -aryl, C_5 - C_{25} -arylalkyl

and

5 D is C_1 - C_8 -alkyl, C_4 - C_{24} -aryl or C_5 - C_{25} -arylalkyl or

B and D, in the case that A is not absent, are together optionally cyano or $[(C_1\text{-}C_8\text{-alkylene})\text{-}O]_{n}\text{-}(C_1\text{-}C_8\text{-alkyl}) \text{ where n is an integer between } 1 \text{ and } 8 \text{ or }$

10

15

R¹⁷ and D together are a cyclic amino radical having 4 to 12 carbon atoms.

Compounds according to Claim 1, characterized in that *1, *2, *3 and *4
together define the following stereoisomers of the central substituted furan
ring:

(1R,2R,3R,4R), (1R,2R,3R,4S), (1R,2S,3S,4S), (1R,2S,3S,4R), (1R,2R,3S,4R), (1S,2S,3R,4S), (1S,2S,3S,4S), (1S,2S,3S,4R), (1S,2R,3R,4R), (1S,2R,3R,4S), (1S,2S,3R,4S), (1R,2R,3S,4R).

20

3. Compounds according to Claim 1, characterized in that R¹ and R² are each independently hydrogen, tert-butoxy, trityloxy, tert-butyldimethylsilyloxy, tert-butyldiphenylsilyloxy, trimethylsilyloxy, triethylsilyloxy, triisopropylsilyloxy, neopentoxy or 1-adamantoxy.

- 4. Compounds according to Claim 1, characterized in that R¹ and R² are identical.
- 5. Compounds according to Claim 1, characterized in that R³ and R⁴ are each independently R¹², OR¹³ or NR¹⁴R¹⁵ where R¹², R¹³, R¹⁴ and R¹⁵ are each

independently C₁-C₁₂-alkyl or C₄-C₁₄-aryl, or NR¹⁴R¹⁵ together is a cyclic amino radical having 4 to 12 carbon atoms, or R³ and R⁴ together are -O-R¹⁶-O- where R¹⁶ is ethylene, 1,2-phenylene, 1,3-phenylene, 1,2-cyclohexylene, 1,1'-ferrocenylene, di- or tetra-C₁-C₈-alkyl-substituted 1,1'-(diphenyl-2,2'-methylene)diyl, 1,2-ferrocenylene, 2,2'-(1,1'-binaphthylene) or 2,2'-(1,1')-biphenylene, and 2,2'-(1,1'-binaphthylene) or 2,2'-(1,1')-biphenylene is substituted at least in the 6,6'-position by radicals which are selected from the group of C₁-C₈-alkoxy and C₁-C₈-alkyl, and is optionally substituted in the 5,5'-, 4,4'-, 3,3'- or 2,2'-position by radicals which are selected from the group of fluorine, chlorine, C₁-C₈-alkoxy and C₁-C₈-alkyl.

- 6. Compounds according to Claim 1, characterized in that R⁵ is hydrogen, C₁-C₄-alkyl, -CO(C₁-C₄-alkyl), benzyl-CO-phenyl or phenyl, and benzyl or phenyl is optionally further substituted by one, two or three substituents selected from the group of C₁-C₄-alkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkyl.
- 7. Compounds according to Claim 1, characterized in that they are of the formulae (Ia) to (Id)

20

15

5

$$R^{1}$$
 $*_{1}$
 0
 $*_{4}$
 R^{2}
 $(R^{12})_{2}P$
 R^{5}
(Ia)

5

10

$$R^{1}$$
 k_{2}
 k_{3}
 k_{2}
 k_{3}
 k_{4}
 k_{2}
 k_{3}
 k_{2}
 k_{3}
 k_{4}
 k_{4}
 k_{4}
 k_{5}
 k_{4}
 k_{4}
 k_{5}
 k_{5

where $*1,*2,*3,*4,R^1,R^2,R^5,R^{12},R^{13},R^{14}$ and R^{15} are as defined under formula (I).

- 8. 2-*O*-(Di(2,4-dimethylphenyl)phosphino)-1,6-di-*O*-(*tert*-butyldiphenylsilyl)-2,5-anhydro-D-mannitol.
 - 9. Process for preparing compounds of the formula (Ib)

where

15 R¹, R², R⁵, R⁶ and R¹² are as defined under formula (I), comprising converting compounds of the formula (XV)

$$\begin{array}{c|c}
R^{1} & R^{2} \\
 & *_{1} & O & *_{4} \\
 & *_{2} & *_{3} & (XV)
\end{array}$$

where

R1 and R2 are as defined under formula (I),

in the presence of compounds of the formula (XVI),

 $(R^{12})_2 PMet^2 \quad (XVI)$

where

Met² is lithium, sodium or potassium and

10 R¹² has the definition specified under (I),

to compounds of the formula (XVII)

15 where

 R^1 , R^2 , Met^2 and R^{12} are as defined above, and

reacting the compounds of the formula (XVII) with compounds of the formula (XIII),

where

25 R⁵ has the same definitions as specified under formula (I) and

- Z is chlorine, bromine, iodine or $R^{19}SO_3$ where R^{19} is C_1 - C_{12} -alkyl, C_1 - C_{12} -haloalkyl, C_5 - C_{25} -arylalkyl or C_4 - C_{24} -aryl, and, in the case that R^5 is to be bonded via a carbonyl group, is optionally R^5O_7 .
- 5 10. Transition metal complexes containing compounds according to Claim 1 and a transition metal compound.
 - 11. Transition metal complexes according to Claim 10, characterized in that the transition metal is selected from the group of ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum and copper.
 - 12. Transition metal complexes according to Claim 10, characterized in that the molar ratio of transition metal to the compounds is 1:2, 1:3 or 1:4.
- 15 13. Transition metal complexes according to Claim 10, which is of the formula (XIX)

 $[(I)_4M] \qquad (XIX)$

where

20

- (I) is a compound of the formula (I) as defined in claim 1 and
- M is rhodium or iridium.
- 25 14. Transition metal complexes according to Claim 10 characterized in that they are obtained by reacting the transition metal compounds and the compounds.
- Transition metal complexes according to Claim 14, characterized in that the transition metal compounds used are:

transition metal compounds of the formula (XXa)

 $M(An^1)_q$ (XXa) where 5 M is rhodium, iridium, ruthenium, nickel, palladium, platinum or copper and An1 is chloride, bromide, acetate, nitrate, methanesulphonate, 10 trifluoromethanesulphonate or acetylacetonate and is 3 for rhodium, iridium and ruthenium, is 2 for nickel, palladium q and platinum, and is 1 for copper, 15 or transition metal compounds of the formula (XXb) $M(An^2)_qL^1_2$ (XXb) where 20 M is ruthenium, iridium, ruthenium, nickel, palladium, platinum or copper and An^2 is chloride, bromide, acetate, methanesulphonate or trifluoromethanesulphonate, tetrafluoroborate or 25 hexafluorophosphate, perchlorate, hexafluoroantimonate, tetra(bis-3,5-trifluoromethylphenyl)borate or tetraphenylborate and

q is 1 for rhodium and iridium, is 2 for ruthenium, nickel, palladium and platinum, and is 1 for copper,

	L^{i}	is in each case C ₂ -C ₁₂ -alkene,, or a nitrile, or	
	L^{1}_{2}	together is a (C ₄ -C ₁₂)-diene,,	
5	or transition metal compounds of the formula (XXc)		
	where	$[ML^2An^1{}_2]_2 \qquad (XXc)$	
10	M	is ruthenium and	
	L ²	is an aryl radical, or methylallyl,	
15	or transition metal compounds of the formula (XXd)		
	where	$Met_q^3[M(An^3)_4]$ (XXd)	
20	M	is palladium, nickel, iridium or rhodium and	
	An ³	is chloride or bromide and	
25	Met ³	is lithium, sodium, potassium, ammonium or an organic ammonium ion and	
	q	is 3 for rhodium and iridium, and is 2 for nickel, palladium and platinum,	
30	or trai	nsition metal compounds of the formula (XXe)	

 $[M(L^3)_2]An^4 \qquad (XXe)$

where

M is iridium or rhodium and

5

L³ is (C₄-C₁₂)-diene, and

- is an uncoordinating or weakly coordinating anion,
 methanesulphonate, trifluoromethanesulphonate, tetrafluoroborate,
 hexafluorophosphate, perchlorate, hexafluoroantimonate, tetra(bis3,5-trifluoromethylphenyl)borate or tetraphenylborate,
- or Ni(1,5-cyclooctadiene)₂, Pd₂(dibenzylideneacetone)₃, Pd[PPh₃]₄, cyclopentadienyl₂Ru, Rh(acac)(CO)₂, Ir(pyridine)2(1,5-cyclooctadiene), Cu(phenyl)Br, Cu(phenyl)Cl, Cu(phenyl)I, Cu(PPh₃)₂Br, [Cu(CH₃CN)₄]BF₄ and [Cu(CH₃CN)₄]PF₆ or multinuclear bridged complexes.
- 16. Transition metal complexes according to Claim 14, characterized in that
 20 the amount of the metal in the transition metal compounds used is from 5 to 100 mol%.
 - 17. Catalysts containing transition metal complexes according to Claim 10.
- 25 18. A process for preparing stereoisomerically enriched compounds comprising providing transition metal complexes according to Claim 10 or catalysts containing the transition metal complexes.
- 19. The process of o Claim 18, characterized in that the stereoisomerically enriched compounds are obtained by asymmetric 1,4-additions,

asymmetric hydroformylations, asymmetric hydrocyanations, asymmetric Heck reactions and asymmetric hydrogenations.

- 20. The process of Claim 18, characterized in that the stereoisomerically enriched compounds are used for preparing active ingredients in pharmaceuticals and agrochemicals, or intermediates of both of these classes.
- 21. Process for preparing stereoisomerically enriched compounds by catalytic hydrogenations of olefins, enamines, enamides, imines or ketones, 1,4-additions, hydroformylations, hydrocyanations or Heck reactions, comprising providing catalysts which contain transition metal complexes according to Claim 10.
- 15 22. Process according to Claim 21, characterized in that the amount of the transition metal complexes used is 0.001 to 5 mol%, based on substrate used.
- Process according to Claim 21, characterized in that the stereoisomerically
 enriched compounds are obtained by catalytic hydrogenation of olefins,
 enamides or imines.
 - 24. Process according to Claim 21, characterized in that the working temperature is -20°C to 200°C.
 - 25. Process according to Claim 21, characterized in that the hydrogen pressure is 0.1 to 200 bar.
 - 26. Compounds of the formula (XIV)

30

$$R^{1}$$
 $+1$
 O
 $+3$
 R^{2}
 $+2$
 $+3$
 R^{5}
(XIV)

where

 R^1 , R^2 and R^5 are each as defined under formula (I) in Claim 1.

27. Compounds of the formula (XVIII)

where

10

5

 $R^1,\,R^2$ and R^5 are each as defined under formula (I) in Claim 1 and

 $R^{19} \quad \text{ is C_1-C_{12}-alkyl, C_1-C_{12}-fluoroalkyl, C_5-C_{25}-arylalkyl or C_4-C_{24}-aryl.}$