Lazy Segment Tree

Time Limit: 2 Second Memory Limit: 2048 MB

You are given an array A with n elements $(1 \le n \le 5 \times 10^5)$, and all of its elements are initially 0. Write a program that supports the following three operations:

- 1. Add l r v add v to all elements in $A[l \dots r]$
- 2. Max l r find the maximum element of $A[l \dots r]$.
- 3. Sum l r find the sum of element of $A[l \dots r]$.

Input

The first line contains two integers n and q $(1 \le n, q \le 5 \times 10^5)$ - the number of elements in array A and the number of operations.

The next q lines describe the sequence of operations. Each line starts with one of Add, Max, or Sum. If the operation is Add, three integers l, r, and v $(1 \le l \le r \le n, 1 \le v \le 10^5)$ follow. Otherwise two integers l and r $(1 \le l \le r \le n)$ follow.

Output

For each operation of type Max or Sum, output a single integer denoting value of the maximum element in the given range.

Sample	Inputs
--------	--------

sample inputs									
3 4									
Add	1	2	5						
Add	2	3	6						
Max	1	2							
$\operatorname{\mathtt{Sum}}$	1	3							

Sample Outputs

11 22