HOMEWORK 4, DUE MARCH 19, 2019

ANALYSIS II

- (1) Write the coordinates on \mathbf{R}^{2n} as $(x_1, y_1, x_2, y_2, \dots, x_n, y_n)$. Let ω be the two form defined by $\omega = dx_1 \wedge dy_1 + dx_2 \wedge dy_2 + \dots + dx_n \wedge dy_n = \sum_{i=1}^n dx_i \wedge dy_i$. Compute $\omega^n = \omega \wedge \dots \wedge \omega$ (*n*-fold wedge product). (First work out the cases n = 1, 2, 3.)
- (2) Write the coordinates on \mathbf{R}^{2n+1} as $(x_1, y_1, x_2, y_2, \cdots, x_n, y_n, z)$. Let $\alpha = dz + \sum_{i=1}^n x_i dy_i$. Compute $\alpha \wedge (d\alpha)^n = \alpha \wedge d\alpha \wedge \cdots \wedge d\alpha$.
- (3) Let $\omega^i = \sum_{j=1}^k A_j^i dy_j$ where $a_j^i \in \mathbf{R}$. Show that $\omega^1 \wedge \omega^2 \wedge \cdots \wedge \omega^k = \det(A) dy_1 \wedge \cdots \wedge dy_k$.
- (4) Let $T: \mathbf{R}^2 \to \mathbf{R}^4$ defined by $T(y_1, y_2) = (y_1^3, y_1^2 y_2, y_1 y_2^2, y_2^3)$. Find the explicit formula for $T^*(dz_2 \wedge dz_3)$ and $T^*(dz_1 + dz_3)$.