Variedades Complejas (examen 1)

Eduardo León (梁遠光)

Octubre 2020

Ejercicio 1. Muestre que $\mathbb{C}^{n+1} - \{0\}$ es biholomorfo al complemento de la sección cero en el espacio total del fibrado tautológico $\mathcal{O}_{\mathbb{CP}^1}(-1)$ y utilice este resultado para construir una sumersión $\psi: S^{2n+1} \to \mathbb{CP}^n$ cuyas fibras son difeomorfas a S^1 .

Solución. Sea $M = \mathbb{C}^{n+1} - \{0\}$. Tras remover la sección cero del fibrado tautológico, tenemos

$$N = \{(p, v) \in \mathbb{CP}^n \times M : v \in p\},\$$

donde $v \in p$ tiene sentido porque los puntos de \mathbb{CP}^n son rectas en \mathbb{C}^{n+1} . Entonces,

- La identificación $\varphi: M \to N$ se define por $\varphi(v) = ([v], v)$, donde [v] es la recta generada por v. Todo punto de N es de la forma ([v], v), así que φ es una biyección.
- Más aún, φ es un biholomorfismo, porque la asignación $v \mapsto [v]$ es holomorfa, en virtud de la manera como se construye el espacio proyectivo \mathbb{CP}^n como cociente M/\mathbb{C}^* .
- La sumersión pedida ψ se define por $\psi = \pi \circ \varphi \circ \iota$, donde $\iota : S^{2n+1} \to M$ es la aplicación inclusión y $\pi : N \to \mathbb{CP}^n$ es la proyección natural desde N como fibrado sobre \mathbb{CP}^n .
- Las fibras de ψ son de la forma $N_p = \{(p, v) : v \in p \cap S^{2n+1}\}$. Pero p es una recta en \mathbb{C}^{n+1} , cuya intersección con la esfera unitaria S^{2n+1} es una copia del círculo unitario S^1 . Así pues, las fibras de ψ son difeomorfas a S^1 .

Ejercicio 2. Sean X e Y variedades complejas.

- a) Muestre que X tiene una estructura compleja bien definida $J_X: TX \to TX$.
- b) Muestre que una aplicación diferenciable $f: X \to Y$ es holomorfa si y sólo si $df \circ J_X = J_Y \circ df$.
- c) Dé ejemplos explícitos de una aplicación $\varphi: \mathbb{P}^1 \to \mathbb{P}^1$ que es holomorfa y otra aplicación $\psi: \mathbb{P}^1 \to \mathbb{P}^1$ que no lo es.

Solución.

a) Tomemos una carta $\varphi: U \to \mathbb{C}^n$ del atlas holomorfo de X. Para cada punto $p \in U$, esta carta induce un isomorfismo \mathbb{C} -lineal $d\varphi_p: T_pX \to \mathbb{C}^n$. Definamos $J: \mathbb{C}^n \to \mathbb{C}^n$ como la multiplicación de cada coordenada por i y definamos $J_p: T_pX \to T_pX$ de tal manera que el diagrama

$$T_{p}X \xrightarrow{J_{p}} T_{p}X$$

$$\downarrow^{d\varphi_{p}} \qquad \downarrow^{d\varphi_{p}}$$

$$\mathbb{C}^{n} \xrightarrow{J} \mathbb{C}^{n}$$

conmute. Por construcción, se cumple $J_p^2=-1$ para todo $p\in U$. Además, la asignación $p\mapsto J_p$ es trivialmente diferenciable, porque su representación coordenada $\varphi(p)\mapsto J$ es constante. Sin embargo, todavía tenemos el problema de que, ostensiblemente, J_p depende de la carta tomada.

Tomemos otra carta $\psi: V \to \mathbb{C}^n$ del atlas holomorfo de X. Puesto que X es una variedad compleja, la aplicación de transición $\tau: \varphi(U \cap V) \to \psi(U \cap V)$ es un biholomorfismo. Entonces, para cada punto $p \in U \cap V$, el diferencial $d\tau_p = d\psi_p \circ d\varphi_p^{-1}: \mathbb{C}^n \to \mathbb{C}^n$ es un automorfismo \mathbb{C} -lineal. Puesto que J está en el centro del grupo lineal $\mathrm{GL}(n,\mathbb{C})$, el diagrama

$$\mathbb{C}^{n} \xrightarrow{d\varphi_{p}^{-1}} T_{p}X \xrightarrow{d\psi_{p}} \mathbb{C}^{n}$$

$$\downarrow^{J} \qquad \qquad \downarrow^{J} \downarrow^{J}$$

$$\mathbb{C}^{n} \xrightarrow{d\varphi_{p}^{-1}} T_{p}X \xrightarrow{d\psi_{p}} \mathbb{C}^{n}$$

conmuta. Por lo tanto, el atlas holomorfo de X en su conjunto asigna de manera diferenciable a cada punto $p \in X$ una única transformación \mathbb{C} -lineal bien definida $J_p: T_pX \to T_pX$ tal que $J_p^2 = -1$. Esto significa que $J: TX \to TX$ es un morfismo diferenciable bien definido tal que $J^2 = -1$. Es decir, J es una estructura casi compleja sobre X.

b) Recordemos que la holomorfía de una función $f: X \to Y$ es una propiedad local: f es holomorfa si y sólo si es holomorfa en cada punto $p \in X$. Entonces podemos tomar coordenadas locales z_1, \ldots, z_m alrededor de p, así como coordenadas locales w_1, \ldots, w_n alrededor de f(p). Por el lema de Osgood, f es holomorfa si y sólo si las restricciones de f a cada curva coordenada son holomorfas. Entonces no hay pérdida de generalidad en suponer que X, Y tienen dimensión compleja m = n = 1.

Por supuesto, w = u + iv es una función holomorfa de z = x + iy si y sólo si

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0,$$
 $\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$

Componiendo df con J en los dos órdenes posibles, tenemos

$$df \circ J = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} u_y & -u_x \\ v_y & -v_x \end{bmatrix}$$

$$J \circ df = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} = \begin{bmatrix} -v_x & -v_y \\ u_x & u_y \end{bmatrix}$$

Por lo tanto, f es holomorfa si y sólo si df conmuta con J. Globalmente, f es holomorfa si y sólo si df preserva la estructura casi compleja.

- c) Consideremos la acción de $G = Gal(\mathbb{C}, \mathbb{R})$ sobre cada coordenada de \mathbb{C}^{n+1} . Entonces,
 - Los hiperplanos $z_i = 1$ que parametrizan las vecindades afines $U_i \subset \mathbb{CP}^n$ son G-invariantes.
 - Las funciones de transición entre estos hiperplanos conmutan con la acción de G.

Por ende, la acción de G sobre \mathbb{C}^{n+1} desciende a una acción diferenciable sobre \mathbb{CP}^n . Obviamente, el elemento neutro de G es el biholomorfismo identidad $\varphi: \mathbb{CP}^n \to \mathbb{CP}^n$ y la conjugación compleja es un antibiholomorfismo $\psi: \mathbb{CP}^n \to \mathbb{CP}^n$.

Ejercicio 3. Sea $\rho \in \mathbb{C}^*$ una raíz quinta de la unidad. Considere la acción de $G = \langle \rho \rangle$ sobre \mathbb{CP}^3 por

$$\rho \cdot [z_0 : z_1 : z_2 : z_3] = [z_0 : \rho z_1 : \rho^2 z_0 : \rho^3 z_3]$$

Sea $Y \subset \mathbb{CP}^3$ el conjunto de ceros del polinomio $f = z_0^5 + z_1^5 + z_2^5 + z_3^5$. La superficie de Godeaux se define como el espacio de órbitas Y/G de la acción de G restricta a Y.

- a) Describa los puntos fijos de la acción de G sobre \mathbb{CP}^3 .
- b) Muestre que Y es una superficie G-invariante y G actúa libremente sobre Y.

Solución.

a) La acción de G puede verse como un automorfismo lineal $\rho: \mathbb{C}^4 \to \mathbb{C}^4$ que rota cada eje coordenado por un ángulo diferente. La única manera una recta compleja $L \subset \mathbb{C}^4$ sea G-invariante es que L sea uno de los ejes coordenados. Por lo tanto, los puntos fijos de la acción de G son

$$[1:0:0:0],$$
 $[0:1:0:0],$ $[0:0:1:0],$

b) La superficie Y es G-invariante porque la rotación de cada z_i por una raíz quinta de la unidad tiene efecto nulo sobre su quinta potencia z_i^5 . Además, por simple inspección, f no se anula en ninguno de los puntos arriba listados. Entonces las G-órbitas contenidas en Y son copias isomorfas de G, ya que G es un grupo simple. Por lo tanto, G actúa libremente sobre Y.

Ejercicio 4. Sea $\Sigma_n = \mathbb{P}(\mathcal{O}_{\mathbb{CP}^1}(n) \oplus \mathcal{O}_{\mathbb{CP}^1}(0))$ la superficie de Hirzebruch.

- a) Muestre que Σ_n es isomorfa a la variedad multiproyectiva $V(xw^n yv^n) \subset \mathbb{CP}^1 \times \mathbb{CP}^2$, donde [v:w] y [x:y:z] son las coordenadas homogéneas de \mathbb{CP}^1 y \mathbb{CP}^2 , respectivamente.
- b) Muestre que Σ_0 es isomorfa a $\mathbb{CP}^1 \times \mathbb{CP}^1$.
- c) Muestre que Σ_1 es isomorfa a la explosión de \mathbb{CP}^2 en un único punto.

Solución.

a) El espacio total de $\mathcal{O}_{\mathbb{CP}^1}(n)$ se construye como el espacio de órbitas

$$\mathcal{O}_{\mathbb{CP}^1}(n) \cong \frac{S^3 \times \mathbb{C}}{S^1},$$

donde S^1 actúa por rotaciones ponderadas $\lambda \cdot (p,q) = (\lambda p, \lambda^n q)$. El factor S^3 se proyecta sobre la base del fibrado $S^3/S^1 \cong \mathbb{CP}^1$. Entonces el espacio total de $\mathcal{O}_{\mathbb{CP}^1}(n) \oplus \mathcal{O}_{\mathbb{CP}^1}(0)$ es

$$\mathcal{O}_{\mathbb{CP}^1}(n) \oplus \mathcal{O}_{\mathbb{CP}^1}(0) \cong \frac{S^3 \times \mathbb{C} \times \mathbb{C}}{S^1},$$

donde S^1 actúa por rotaciones ponderadas $\lambda \cdot (p,q,r) = (\lambda p, \lambda^n q, r)$.

Los puntos $p \in S^3$ son pares ordenados $(v, w) \in \mathbb{C}^2$ tales que $|v|^2 + |w|^2 = 1$. Esto es un problema si queremos encontrar una función f con las siguientes propiedades:

- f es homogénea en v, w.
- f es homogénea en q.
- f = 0 describe adecuadamente la relación entre p, q.

Para superar este *impasse*, reinterpretemos q como el par $(x,y) = (v^n q, w^n q)$. Entonces,

- Las tuplas (v, w, x, y), deben satisfacer la ecuación $xw^n = yv^n$.
- La acción de S^1 fija [x:y], cuando $q \neq 0$.
- La acción de S^1 fija (x,y)=(0,0), cuando q=0.

Por razones cosméticas, renombremos también z=r. Entonces,

$$S^3 \times \mathbb{C} \times \mathbb{C} \cong \{((v, w), (x, y, z)) \in S^3 \times \mathbb{C}^3 : xw^n = yv^n\}.$$

Nuestro gran logro es que la ecuación $xw^n = yv^n$ es simultáneamente homogénea en las coordenadas (v, w) que describen a p y homogénea en las coordenadas (x, y, z) que describen a (q, r). Entonces, al cocientar por S^1 y luego proyectivizar, tenemos

$$\Sigma_n \cong \{([v:w], [x:y:z]) \in \mathbb{CP}^1 \times \in \mathbb{CP}^2, xw^n = yv^n\}.$$

Ésta es precisamente la variedad multiprovectiva $V(xw^n - yv^n)$ del enunciado.

- b) La superficie Σ_0 está definida por la ecuación x-y, en la cual no aparecen las coordenadas de \mathbb{CP}^1 , así que Σ_0 es simplemente el producto de \mathbb{CP}^1 y el hiperplano $V(x-y)\subset \mathbb{CP}^2$.
- c) La superficie Σ_1 está definida por la ecuación xw-yv. Consideremos la proyección $\pi:\Sigma_1\to\mathbb{CP}^2$ e identifiquemos la fibra sobre cada $[x:y:z]\in\mathbb{CP}^2$ con el subconjunto

$$\pi^{-1}([x:y:z]) = \{[v:w] \in \mathbb{CP}^1 : xw = yv\} = \begin{cases} \{[x:y]\}, & \text{si } [x:y:z] \neq [0:0:1] \\ \mathbb{CP}^1, & \text{si } [x:y:z] = [0:0:1] \end{cases}$$

Identifiquemos \mathbb{C}^2 con el abierto afín $z \neq 0$ de \mathbb{CP}^2 . La parte de Σ_1 que se proyecta sobre \mathbb{C}^2 es

$$\mathcal{O}_{\mathbb{CP}_1}(-1) = \{([v:w], (x,y)) \in \mathbb{CP}^1 \times \mathbb{C}^2 : xw = yv\}.$$

Por construcción, la restricción $\pi: \mathcal{O}_{\mathbb{CP}^1}(-1) \to \mathbb{C}^2$ es la explosión de \mathbb{C}^2 en el origen. Por lo tanto, nuestra proyección original $\pi: \Sigma_1 \to \mathbb{CP}^2$ es la explosión de \mathbb{CP}^2 en el punto [0:0:1].

Ejercicio 5. Una forma diferenciable compleja α se dice *holomorfa* si es de tipo (p,0) y $\bar{\partial}\alpha = 0$. Muestre que toda forma holomorfa se puede escribir en coordenadas locales como

$$\alpha = f_I dz^I$$
,

donde f_I son funciones holomorfas e I corre sobre los multi-índices de grado p.

Nota. Por supuesto, estoy usando la notación de Einstein.

Solución. La existencia de las funciones f_I no está en duda, ya que las (p,0)-formas coordenadas forman una base local del fibrado de (p,0)-formas. Entonces,

$$\bar{\partial}\alpha = \bar{\partial}(f_I dz^I) = \bar{\partial}f_I \wedge dz^I + f_I \bar{\partial}dz^I = 0.$$

Por inducción en p, tenemos $\bar{\partial} dz^I = 0$, así que el segundo sumando se anula. Entonces,

$$\bar{\partial}\alpha = \frac{\partial f_I}{\partial \bar{z}^i} \, d\bar{z}^i \wedge dz^I = 0.$$

Pero las (p,1)-formas coordenadas $d\bar{z}^i \wedge dz^I$ son linealmente independientes. Entonces,

$$\frac{\partial f_I}{\partial \bar{z}^i} = 0.$$

Por lo tanto, las funciones f_I son holomorfas.

Ejercicio 6. Sea X un campo real. Muestre que las siguientes proposiciones son equivalentes:

- \blacksquare X es un campo real holomorfo, i.e., $X^{(1,0)}=\frac{1}{2}(X-iJX)$ es un campo holomorfo.
- \blacksquare JX es un campo real holomorfo.
- [X, JY] = J[X, Y] para todo campo Y, es decir, $\mathcal{L}_X J = 0$.

Solución. Si $X^{(1,0)}$ es un campo vectorial holomorfo, entonces

$$(JX)^{(1,0)} = \frac{1}{2} (JX - iJ^2X) = \frac{i}{2} (X - iJX) = iX^{(1,0)}$$

también es un campo vectorial holomorfo. Por ende, son equivalentes:

- X es real holomorfo, i.e., $X^{(1,0)}$ es holomorfo.
- JX es real holomorfo, i.e., $(JX)^{(1,0)}$ es holomorfo.

Sean f una función holomorfa e Y un campo de tipo (0,1). Tenemos

$$[X,Y](f) + Y \circ X(f) = X \circ Y(f) = X(0) = 0.$$

Entonces las siguientes proposiciones son equivalentes:

- \blacksquare X es un campo real holomorfo.
- X(f) es una función holomorfa, independientemente de f.
- $Y \circ X(f) = 0$, independientemente de f e Y.
- [X,Y](f) = 0, independientemente de $f \in Y$.
- \blacksquare [X, Y] es un campo de tipo (0, 1), independientemente de Y.
- [X, JY] = iJ[X, JY] = J[X, iJY] = J[X, Y], independientemente de Y.

Esta misma estrategia de argumentación también funciona cuando f es una función antiholomorfa e Y es un campo de tipo (1,0). En este caso, las siguientes proposiciones son equivalentes:

- \blacksquare X es real holomorfo.
- $X^{(0,1)}$, el complejo conjugado de $X^{(1,0)}$, es antiholomorfo.
- X(f) es una función antiholomorfa, independientemente de f.
- $Y \circ X(f) = 0$, independientemente de $f \in Y$.
- [X,Y](f) = 0, independientemente de $f \in Y$.
- \blacksquare [X, Y] es un campo de tipo (1,0), independientemente de Y.
- [X, JY] = -iJ[X, JY] = J[X, -iJY] = J[X, Y], independientemente de Y.

Finalmente, consideremos que Y es un campo arbitrario. Entonces son equivalentes:

- \blacksquare X es real holomorfo.
- [X, -] respeta los campos de tipo (1, 0) y (0, 1).
- lacktriangle Para todo campo Y, se cumple la ecuación

$$[X, JY] = [X, JY^{(1,0)}] + [X, JY^{(0,1)}] = J[X, Y^{(1,0)}] + J[X, Y^{(0,1)}] = J[X, Y].$$

- Para todo campo Y, se cumple la ecuación $(\mathcal{L}_X J)(Y) = [X, JY] J[X, Y] = 0$.
- \bullet $\mathcal{L}_XJ=0,$ i.e., el flujo de X está conformado por biholomorfismos de X.