Einführung in die Algebra

Blatt 7

Jendrik Stelzner

29. November 2013

Aufgabe 7.1.

Aufgabe 7.2.

Aufgabe 7.3.

Aufgabe 7.4.

Definition. Sei R ein kommutativer Ring. Für $p = \sum_{i=0}^{\infty} a_i X^i \in R[\![x]\!]$ bezeichnet

$$\mathrm{Deg}(p) := \begin{cases} \min\{i \in \mathbb{N} : a_i \neq 0\} & \textit{falls } f \neq 0, \\ \infty & \textit{sonst.} \end{cases}$$

den Grad von p.

Für einen kommutativen Ring R und $p,q \in R[\![x]\!]$ ist

$$\mathrm{Deg}(p+q) \geq \min\{\mathrm{Deg}(p),\mathrm{Deg}(q)\} \text{ und } \mathrm{Deg}(pq) \geq \mathrm{Deg}(p) + \mathrm{Deg}(q). \tag{1}$$

Ist ${\cal R}$ nullteilerfrei, so gilt sogar

$$Deg(pq) = Deg(p) + Deg(q).$$
 (2)

Die Beweise der entsprechenden Aussage laufen analog zu den Beweisen der entsprechenden Aussagen für die Gradfunktion deg von $\mathbb{R}[X]$.

(i)

Ist R kein Integritätsring, so ist auch $R[X] \subsetneq R[\![x]\!]$ kein Integritätsring, also auch $R[\![x]\!]$ nicht. Ist $R[\![x]\!]$ kein Integritätsring, so gibt es $p,q\in R[\![x]\!]$ mit $p,q\neq 0$, also $\mathrm{Deg}(p),\mathrm{Deg}(q)<\infty$, aber pq=0, also $\mathrm{Deg}(pq)=\infty$. Mit (2) folgt, dass R kein Integritätsring ist.

Ist $p=\sum_{i=0}^\infty a_i X^i\in R[\![x]\!]$ invertierbar, so gibt es $q=\sum_{i=0}^\infty b_i X^i\in R[\![x]\!]$ mit pq = 1. Insbesondere ist daher

$$1 = (pq)_1 = a_0b_0,$$

also a_0 invertierbar.

Ist $p=\sum_{i=0}^\infty a_i X^i\in R[\![x]\!]$ mit a_0 invertierbar, so definieren wir eine Folge $(b_i)_{i\in\mathbb{N}}$ auf R rekursiv durch

$$b_0 := a_0^{-1} \text{ und } b_i := -a_0^{-1} \sum_{j=1}^i a_j b_{n-j},$$

und $q:=\sum_{i=0}^{\infty}b_{i}X^{i}$ als die entsprechende Potenzreihe. Für e=pqergibt sich dann

$$e_i = \sum_{j=0}^{i} a_j b_{i-j} = \sum_{j=1}^{i} a_j b_{i-j} + a_0 b_i = \sum_{j=1}^{i} a_j b_{i-j} - \sum_{j=1}^{i} a_j b_{n-j} = 0.$$

Also ist e=1 und p daher invertierbar mit $p^{-1}=q$. Inbesondere ergibt sich das folgende Lemma:

Lemma 1. Sei K ein Körper und seien $p, q \in K[x]$. Dann gilt:

- 1. p ist genau dann invertierbar, wenn Deg p = 0.
- 2. Ist $\operatorname{Deg} p = \operatorname{Deg} q$, so sind p und q assoziiert. Ist $\operatorname{Deg} p = \operatorname{Deg} q < \infty$, so sind p $und \ q \ assoziiert \ zu \ X^{\operatorname{Deg} p}.$
- 3. Ist $\operatorname{Deg} p \ge \operatorname{Deg} q$, so ist $q \mid p$.

Beweis. (i)

 $p = \sum_{i=0}^{\infty} a_i X^i$ ist genau dann invertierbar, wenn a_0 invertierbar ist, also genau dann wenn $a_0 \neq 0$, was wiederum äquivalent zu Deg $a_0 = 0$ ist.

Ist p=q=0 so ist nichts zu zeigen. Ansonsten ist $p=\sum_{i=0}^{\infty}a_iX^i\neq 0$, also $p=X^{\mathrm{Deg}\,p}p'$ für $p'=\sum_{i=0}^{\infty}a_{i+\mathrm{Deg}\,p}X^i$ mit $a_{\mathrm{Deg}\,p}\neq 0$. Nach (i) ist p' invertierbar, also p assoziiert zu $X^{\mathrm{Deg}\,p}$. Analog ergibt sich, dass q assoziiert zu $X^{\mathrm{Deg}\,q}$ ist. Mit $\operatorname{Deg} p = \operatorname{Deg} q$ folt damit auch die Assoziiertheit von p und q.

(iii)

Ist $\operatorname{Deg} p = \infty$, so ist p = 0 und nichts zu zeigen. Ansonsten ist $p = X^{\operatorname{Deg} p - \operatorname{Deg} q} p'$ wobei p' assozziert zu q ist, also $p = X^{\text{Deg } p - \text{Deg } q} c q$ für $c \in K^*$.

(iii)

f ist in $\mathbb{Z}[X]$ nicht irreduzibel, da f=(X+1)(X+2). Seien $p,q\in\mathbb{Z}[\![x]\!]$ mit $p=\sum_{i=0}^\infty a_iX^i$ und $q=\sum_{j=0}^\infty b_iX^j$ so dass pq=f. Dann ergibt sich durch Koeffizientenvergleich, dass $a_0b_0=2$. Da $a_0,b_0\in\mathbb{Z}$, und $2\in\mathbb{Z}$ irreduzibel ist, ist a_0 oder b_0 eine Einheit. Entsprechend ist p oder q eine Einheit. Also ist f irreduzibel in $\mathbb{Z}[x]$.