Early Type Galaxies

Studying Velocity dispersion profiles

Ravi Shankar Chaurasia Masters in astrophysics Supervisor: Dr. Davor Krajnović

Scope of Presentation

- Motivation
- Classification of Galaxies
- Formation of Galaxies
- Distribution function and moments
- Pixel fitting
- Velocity dispersion
- Data & Sample Selection
- Kinemetry
- Results
- Future work

Understanding Galaxy Evolution Through Early-Types and Their Dynamics

Most massive galaxies = Most evolved systems

Excellent probes of galaxy evolution at all stages

Reveal complex internal dynamics

End products of hierarchical assembly processes

Galaxy kinematics \rightarrow formation and evolution

Velocity profiles \rightarrow past assembly and evolution histories

Physical processes -> shaping velocity dispersion

Reconstruct galaxy assembly histories from kinematics

Formation of Galaxies

Rapid Collapse

Primordial hydrogen cloud.

Cloud collapses under gravity.

Large bulge of ancient stars dominates galaxy.

Environmental Effects

Disk galaxy and companion.

Smaller galaxy falls into disk galaxy.

Bulge inflates with addition of young stars and gas.

Classification of Galaxies

Distribution function and Moments

Davor Krajnovic et. al

$$\mu(x, y) = \int_{LOS} dz \int \int \int d\mathbf{v} f(\mathbf{r}, \mathbf{v}). \qquad \mathcal{L}(v; x, y) = \int_{LOS} dz \int \int dv_x dv_y f(\mathbf{r}, \mathbf{v}),$$

- The LOSVD is a projection of the distribution function.
- Distribution of stars as a function of line-of-sight velocity

$$\langle v
angle = rac{1}{\mu(x,y)} \int v \, L(v;x,y) \, dv \qquad \quad \sigma^2(x,y) = rac{1}{\mu(x,y)} \int (v - \langle v
angle)^2 \, L(v;x,y) \, dv$$

$$L(v;x,y) = rac{\mu(x,y)}{\sigma(x,y)\sqrt{2\pi}}\,e^{-rac{(v-\langle v
angle)^2}{2\sigma^2}}\,[1+h_3H_3(w)+h_4H_4(w)+\dots]\,.$$

Penalized-PiXel Fitting

- Full-spectrum fitting technique
- Generates a model spectrum by convolving weighted templates with parametric LOSVD

$$G_{mod} = \sum_{n=1}^{N} w_n \{T_n * L_n(x)\}$$

Velocity Dispersion

- Velocity dispersion → spread in velocities
- Galaxy spectrum → the absorption lines → broadened
- Fitting templates → observed galaxy spectrum → width of the best fit template
- High velocity dispersion implies a dynamically hot system

 stars are moving in many directions, and there is no dominant rotation.
- Spiral disks \rightarrow low dispersion and are rotation-dominated.

Massive Data

Parametrization

$$\sigma(R) = \sigma_0 2^{\gamma_1 - \gamma_2} \left(\frac{R}{R_b}\right)^{\gamma_1} \left(1 + \frac{R}{R_b}\right)^{\gamma_2 - \gamma_1},$$

Han et al.

Data

- MaNGA (Mapping Nearby Galaxies at Apache Point Observatory)
- 0.5 arcsec/pixel in MaNGA
- 10000 nearby galaxies in the redshift range 0.01 < z < 0.15
- The spectra cover a simultaneous wavelength range from 3600 Å to 10300 Å, with a spectral resolution $R \sim 2000$
- The observation covers a spatial range from 1.5Re to 2.5Re

Credits: SDSS

Sample selection

- The final data release SDSS DR17 includes 10296 galaxies.
- Quality flag = -1 to 3
- 6,065 galaxies have Qual ≥ 1
- The TType follows standard morphological classification:
- TType < 0 → Early-type galaxies (E, S0)
- TType ≥ 0 → Late-type galaxies (Sa and later)
- Total galaxies with Qual >= 1 and TType available: 6054.
- Early-type galaxies: 1942 Late-type galaxies: 4112

Morphological Type	T-Type
Elliptical (E)	-5
E/S0	-4
Lenticular (S0)	-2 to 0
Sa	1
Sab	2
Sb	3
Sbc	4
Sc	5
Scd	6
Sd	7
Sdm	8
Sm	9
Irregular (Irr)	10
Unclassified / Merger	11

Contour plots

Sigma Maps with Flux Contours

Kinemetry

- Kinemetry -> kinematic analogue of photometry,
- Analyzes the 2D distribution of kinematic quantities in galaxies.
- Kinemetry operates on a 2D spatial maps
- Ellipse fitting → Kinematic quantity → function of angle ψ
- It applies Fourier decomposition to extract how the observed kinematics vary with azimuthal angle ψ
- On each elliptical ring, a general kinematic field K(ψ) is modeled as:

$$K(\psi) = A_0 + \sum_{n=1}^N \left[A_n \sin(n\psi) + B_n \cos(n\psi)
ight]$$

Repeat for each ellipse to construct radial profiles of each harmonic coefficient.

Grid fit for radius=9.09

Davor Krajnovic et. al

Sauron Data

MaNGA data

Future Work

- Measure inner and outer gradients of $\sigma(R)$
- Quantify correlations
- Use kinemetry to extract spatially resolved higher-order moments (h₃, h₄)
- Analyze K₅/K₁ ratio

Thank you