Exploring Human Breast Cancer Atlas scRNA-Seq Data

Team 4
Arthi Hariharan, Seowoo Kim, Taeim Kwon

Biological Concepts behind Questions of Interest

- Tumor microenvironment is heterogenous
 - Immune Cells T cells, B cells
 - Mesenchymal Stem cells
 - FIbroblasts Normal, Cancerous
- Breast Cancer Subtypes HER2+, ER+, TNBC
 - Different Gene Signatures
 - Treatment resistance
 - Gene expression profile Prognosis

Biological Questions:

- Identify the differential expression of genes across breast cancer subtypes.
 - Focus on cancer hallmarks Metastasis and Inflammation markers (CXCR family) and Angiogenesis markers (VEGF,PDGF family).
- Show a gene co-expression network in the cells involved with tumor microenvironment, particularly for mesenchymal cells.

Introduction to Dataset

- GSE176078_Wu_etal_2021_BRCA_scRNASeq.tar.gz:
 - A single-cell and spatially resolved atlas of human breast cancers by Wu et al.
 - scRNA-Seq on 26 primary tumors (11 ER+, 5 HER2+ and 10 TNBC)
 - Files
 - Count matrix barcodes.tsv
 - Count_matrix_genes.tsv
 - Count_matrix_sparse.mtx
 - Metadata.csv
 - 29,733 features and 100,064 samples

Initial Processing

1,777 samples were filtered out

2.

> project

An object of class Seurat 29733 features across 100064 samples within 1 assay Active assay: RNA (29733 features, 0 variable features)

> project

An object of class Seurat 29733 features across 98287 samples within 1 assay Active assay: RNA (29733 features, 2000 variable features) 2 dimensional reductions calculated: pca, umap

Read in the files Create the Seura

2. Create the Seurat object

Pre-processing

- 1. Quality control
 - Normalize the data
- 3. Select the highly variable features
- 4. Scale the data

Dimensionality

- 1. Run PCA
- 2. Check an 'elbow plot' to choose the dimension of the data
- 3. Run 'UMAP'

Cell Type Annotation

- Automatic

 annotation with
 the metadata
- 2. Manual
 annotation by
 finding marker
 genes from each
 cluster

Reproduced outputs

Reproduced outputs

Differential Expression Analysis

- Differential Expression Analysis
 - "FindMarkers" function used to find differentially expressed genes
 - Highly expressed markers in HER2+, ER+ and TNBC
 - CXCR family genes, VEGF, PDGF genes across subtypes
 - EnrichR using MSigDb_hallmarks to find upregulated or downregulated GO terms -"DEEnrichRPlot"

Differential Expression Analysis

Identity

Co-expression Network Analysis

- hdWGCNA
 - Analysis tool for co-expression networks in high dimensional transcriptomics data
 - Co-expression networks
 - Approaches
 - kNN algorithm -> Metacells
 - Hierarchical clustering -> Dendrogram
 - Soft-power threshold
 - Modules
 - PCA -> Module eigengenes
 - Eigengene-based connectivity a.k.a kME
- EnrichR using MSigDb for hallmarks to understand our modules better

Soft-power threshold and Dendrogram

Enlarged plots with ranked genes by each module

Dot plots for co-expressed gene modules

Discussion

Differential expression

- Angiogenesis markers have very low expression across all subtypes
- Only CXCR4 chemokine is expressed in CXCR gene family

Co-expression Network

- The module having collagen type genes was highly expressed in the mesenchymal cells
- The module was enriched in the epithelial mesenchymal transition which is often influenced by tumor microenvironment

Contradictory in EnrichR Barplot of differential expressed genes across tumor subtypes

- As the dataset was used for spatial transcriptomics, it might cause conflicting results.
- It would be resolved if we further this analysis taking heterogeneity within the samples into account - divide dataset into specific dimensions or we incorporate the spatial analysis.

References

- Wu, S. Z., Al-Eryani, G., Roden, D. L., Junankar, S., Harvey, K., Andersson, A., Thennavan, A., Wang, C., Torpy, J. R., Bartonicek, N., Wang, T., Larsson, L., Kaczorowski, D., Weisenfeld, N. I., Uytingco, C. R., Chew, J. G., Bent, Z. W., Chan, C. L., Gnanasambandapillai, V., Dutertre, C. A., ... Swarbrick, A. (2021). A single-cell and spatially resolved atlas of human breast cancers. *Nature genetics*, *53*(9), 1334–1347. https://doi.org/10.1038/s41588-021-00911-1
- Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E., & Swarup, V. (2022). High dimensional co-expression networks enable discovery of transcriptomic drivers in complex biological systems. bioRxiv, 2022-09.
- Morabito, S., Miyoshi, E., Michael, N., Shahin, S., Martini, A. C., Head, E., ... & Swarup, V. (2021). Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer's disease. *Nature genetics*, *53*(8), 1143-1155.

Supplementary Plots

