Extending to non compact Riemann surfaces

Non-abelian hodge theory for non compact curves (tame or wild).

Have a punctured Riemann surface $X \setminus \{p_1, \dots, p_k\}$

Recap the compact case:

- 1. Harmonic Bundle,
- 2. flat (stable) complex bundle,
- 3. Irreducible representations $\pi_1(X) \to GLn$
- 4. Higgs bundles

Maps:

- 1. 1) —; 2)
- 2. 2) —; 1) Couvette donladson 3. 2) —; 3) RH
- 4. 1) ¿ 4) ;; Hitchn Kobeshi

[[MAKE THIS INTO COMMUTATIVE DIAGRAMME]]

[[ADD NON-COMPACT ANALOGUES THAT WE'LL SEE.]]

Includes parabolic bundles, parabolic Higgs bundle

Definition 0.1. A parabolic bundle $E \to \bar{X}$ over compact Riemann surface \bar{X} is a bundle together with a subset $D \subset \bar{X}$, such that for each $p \in D$, we have a full flag

$$E|_{p} > E|_{1,p} > \dots > E|_{r,p} > \{0\}$$
 (1)

$$0 \le \alpha_1 < \dots < \alpha_r < 1 \tag{2}$$

This models holomorphic bundles on X.

Parabolic Higgs field (E,E_{α},ϑ) such that $E_{\alpha,p}\to\Omega_X\otimes E_{\alpha,p}$.

Parabolic flat bundle $(E, \{E_{\alpha}\}, \nabla)$ around the punctures we model these in local coordinates $\frac{dz}{z}$ weighted by α .

Both ϑ and ∇ allow poles of order at most one.

Stability for parabolic Higgs-bundle.

Definition 0.2. Let $(E, \{E_{\alpha}\}\ parabolic\ bundle$. For subbundle $F \to E$ we inherit the flag structure by restricting the flags $\{E_{\alpha}\}.$

$$pardeg(E) = deg(E) + \sum_{p} \sum_{i} \alpha_{i}(p).$$

Then E is stable if it admits the stability where we consider the pardeg instead of deg

Definition 0.3. (E, D, D'', h) is tame if for each puncture the standard metric on D^2 1) Higgs bundles side $|\lambda_i|_{D_z} < c/|z|$ 2) Flat bundle ∇ flat connection have at most polynomial growth at p v my flat section then $|v|^2 < r^2$

As expressed in local coordinates

We have a Riemann Hilbert singularities [[WHICH MEANS??]] for connections with regular singularities

$$\operatorname{Rep}\{\pi_1(\bar{X} \setminus D) \to GLnC\} \to \{ \text{ flat connections with regular singularities} \}$$
 (3)

 (E, ∇) (L,μ) Tabulate Weights Eigenvalues

Moduli spaces

Once we fix the weight α recover all the results we want.

 \mathcal{M}_{Betti} is the usual \mathcal{M}_{dR} has log connections \mathcal{M}_{Dol} If we consider the special case of nilpotent Higgs

fields
$$\vartheta = \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix}$$
 then $E_{i,p} \to E_{i+1,p} \otimes_p \Omega^1_X$
Then consider the strong parabolic endomorphism.

What about the wild case??

$$\nabla = \sum A_i z^{-i} dz$$

 $\nabla = \sum A_i z^{-i} dz$ (Boalch - Biquard)

Still get a correspondence

But we dont get $\mathcal{M}_{\mathrm{Betti}}$