SIPPI

Ed. version 1.0

COLLABORATORS								
	TITLE :							
ACTION	NAME	DATE	SIGNATURE					
WRITTEN BY	Thomas Mejer Hansen and Knud Skou Cordua	April 11, 2014						

REVISION HISTORY						
DATE	DATE DESCRIPTION					

Contents

1		1					
	1.1	SIPPI		1			
	1.1.1 SGeMS (optional)						
2	Setti	Setting up SIPPI					
	2.1	.1 The a priori model					
		2.1.1	Types of a priori models	2			
			2.1.1.1 1D Generalized Gaussian	2			
			2.1.1.2 VISIM	2			
			2.1.1.3 FFTMA	2			
			2.1.1.4 SISIM	2			
			2.1.1.5 SNESIM	2			
		2.1.2	Sampling the prior	2			
		2.1.3	Sequential Gibbs sampling / Conditional Resampling	3			
			2.1.3.1 Controlling sequential Gibbs sampling / Conditional Resampling	3			
	2.2	The da	ta and the noise	3			
	2.3	The fo	e forward model				
3	The	a poste	riori distribution	4			
	3.1	Sampling the a posteriori probability density					
		3.1.1	The rejection sampler	4			
		3.1.2	The extended Metropolis sampler	4			
			3.1.2.1 The extended independent Metropolis sampler	4			
		3.1.3	linear least squares	4			
	3.2	Simula	ated Annealing	4			
4	Exa	mples		5			
	4.1	Line fi	tting	5			
	4.2	4.2 Covariance model inference		5			
	4.3	3 Cross hole tomography					
	4.4	Reflect	tion seismic inversion	5			
5	Bibl	iograph	\mathbf{y}	6			

About

SIPPI is a Matlab toolbox (compatible with GNU Octave) that allow sampling the solution of non-linear inverse problems with realistic a priori information.

In order to make use of SIPPI one has to

- Install and setup SIPPI
- Define the prior model, in form of the prior data structure
- Define the forward model, in form of the forward data structure, and the sippi_forward.m m-file
- Define the data and noise model, in form of the prior data structure
- Choose a method for sampling the a posteriori probability density.

SIPPI 1/6

Chapter 1

Installation

1.1 SIPPI

Download the latest version of SIPPI from http://sippi.sourceforge.net.

Unpack ZIPPI_1.0.zip somewhere, for example to 'c:\Users\tmh\SIPPI'. Then setup the Matlab path to point to the appropriate SIPPI directories:

addpath c:\Users\tmh\SIPPI
sippi_set_path

1.1.1 SGeMS (optional)

To make use of the SISIM and SNESIM type priori models SGeMS needs to be available.

Currently only SGeMS version 2.1 (download) for Windows is supported.

SIPPI 2/6

Chapter 2

Setting up SIPPI

2.1 The a priori model

2.1.1 Types of a priori models

2.1.1.1 1D Generalized Gaussian

A 1D generalized Gaussian prior model can be specified using the 'gaussian' type prior model

```
prior{1}.type='gaussian';
```

A simple 1D Gaussian distribution with mean 10, and standard deviation 2, can be specified using

```
prior{1}.type='gaussian';
prior{1}.m0=10;
prior{1}.std=2;
```

The norm of a generalized Gaussian can be set using the 'norm' field. A generalized 1D Gaussian with mean 10, standard devation of 2, and a norm of 70, can be specified using (The norm is equivelent of the beta factor referenced in Wikipedia: Generalized_normal_dist

```
prior{1}.type='gaussian';
prior{1}.m0=10;
prior{1}.std=2;
prior{1}.norm=70;
```

- 2.1.1.2 VISIM
- 2.1.1.3 FFTMA
- 2.1.1.4 SISIM
- 2.1.1.5 SNESIM

2.1.2 Sampling the prior

Once the prior data structure has been defined a sample from the prior distribution can be generated using

```
m=sippi_prior(prior);
```

'm' is a Matlab data structure of the same size as the 'prior' data structure. Thus, if two prior distributions have been defined in 'prior{1}' and 'prior{2}', then 'm{1}' will hold a realization of 'prior{1}', and 'm{2}' will hold a realization of 'prior{2}'.

Each time 'm=sippi_prior(prior)' is called, a new independant realization of the prior will be generated.

SIPPI 3/6

2.1.3 Sequential Gibbs sampling / Conditional Resampling

All the available a priori types available allow perturbing one realization of a prior into a new realization of prior, in the vicinity of the first one. To do this we make use of sequential Gibbs sampling [HCM12]. Sequential Gibbs in essence is a type of conditional resampling. From a current realization of a prior, a number of model parameters are discarded and treated as unknown, and the simulated conditional to the fixed values of the model parameters.

In order to generate a new realization 'm2' in the vicinity of the realization 'm1' use

```
m1=sippi_prior(prior);
[m2,prior]=sippi_prior(prior,m1);
```

If this process is iterated, then a random walk in the space of a priori acceptable models will be perform. And, the collection of realization obatined, will represent a sample from prior distribution.

2.1.3.1 Controlling sequential Gibbs sampling / Conditional Resampling

All properties related to sequential Gibbs sampling can be set in the 'seq_gibbs' data struture, for each prior type. The following two parameters determined how the a current model is perturbed

```
prior{m}.seq_gibbs.step=1;
prior{m}.seq_gibbs.type=2;
```

One can also optionally, as part of running the extended Metropolis sampler, automatically update the 'step'-length in order to ensure a specific approximate acceptance ratio 'P_target' of the Metropolios sampler. See [CHM12] for details.

The default parameters for adjusting the step length is givel below. These parameters will be set the first time 'sippi_prior' is called with the 'prior' structure as output. The default parameters. [?, ?]

```
prior{m}.seq_gibbs.step_min=0;
prior{m}.seq_gibbs.step_min=1;
prior{m}.seq_gibbs.i_update_step=50
prior{m}.seq_gibbs.i_update_step_max=1000
prior{m}.seq_gibbs.n_update_history=50
prior{m}.seq_gibbs.P_target=0.3000
```

By default adustment of the step length, in order to achieve an acceptance ratio of 0.3 ('prior{m}.seq_gibbs.P_target='), will be performed for every 50 ('prior{m}.seq_gibbs.i_update_step') iterations, using the acceptabce ratio observed in the last 50 ('prior{m}.seq_gibbs.i_update_history') iteration.

Adjustment of the step length will be performed only in the first 1000 ('prior{m}.seq_gibbs.i_update_step_max') iterations.

In order to disable automatiuc adjustment of the step length simply set

```
prior{m}.seq_gibbs.i_update_step_max=0; % disable automatic step length
```

2.2 The data and the noise

2.3 The forward model

SIPPI 4/6

Chapter 3

The a posteriori distribution

- 3.1 Sampling the a posteriori probability density
- 3.1.1 The rejection sampler
- 3.1.2 The extended Metropolis sampler
- 3.1.2.1 The extended independent Metropolis sampler
- 3.1.3 linear least squares
- 3.2 Simulated Annealing

SIPPI 5 / 6

Chapter 4

Examples

4.1 Line fitting

The forward problem consists of computing the y-value as a function of the x-position of the data, and the polynomial coefficients determining the line. sippi_forward_linefit.m:

```
% sippi_forward_linefit Line fit forward solver for SIPPI
%
% [d,forward,prior,data]=sippi_forward_linefit(m,forward,prior,data);
%
function [d,forward,prior,data]=sippi_forward_linefit(m,forward,prior,data);
if length(m)==1;
    d{1}=forward.x*m{1};
elseif length(m)==2;
    d{1}=forward.x*m{1}+m{2};
else
    d{1}=forward.x.^2*m{1}+forward.x*m{2}+m{3};
end
```

4.2 Covariance model inference

4.3 Cross hole tomography

4.4 Reflection seismic inversion

SIPPI 6 / 6

Chapter 5

Bibliography

[CHM12] K. S. Cordua, T. M. Hansen, and K. Mosegaard, Monte Carlo full waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information, H19--H31.

Geophysics, 77, 2012.

[HCLM13a] T.M. Hansen, K.S. Cordua, M.C. Looms, and K. Mosegaard, SIPPI: a Matlab toolbox for sampling the solution to inverse problems with complex prior information: Part 1, methodology, 470--480.

Computers & Geosciences, 52, 03 2013.

[HCLM13b] T.M. Hansen, K.S. Cordua, M.C. Looms, and K. Mosegaard, SIPPI: a Matlab toolbox for sampling the solution to inverse problems with complex prior information: Part 2, Application to cross hole GPR tomography, 481-492.

Computers & Geosciences, 52, 03 2013.

[HCM12] T. M. Hansen, K. C. Cordua, and K. Mosegaard, Inverse problems with non-trivial priors - efficient solution through sequential Gibbs sampling, 593--611.

Computational Geosciences, 16, 2012.

[HCM14] T. M. Hansen, K. S. Cordua, and K. Mosegaard, Accounting for imperfect forward modeling in geophysical inverse problems - exemplified for cross hole tomography, xx.

Accepted for publication in Geophysics, xx, 2014.