Number Systems & Codes

Octal Numbers

Octal Number system also provides a convenient way to represent long string of binary numbers. The Octal number is a base 8 number system with digits ranging from 0 to 7. Octal number system was prevalent in earlier digital systems and is not used in modern digital systems especially when the Hexadecimal number is available. Each Octal Number digit can represent a 3-bit Binary Number. The Binary Numbers and the Octal equivalents are listed in Table 4.1

Decimal	Binary	Octal
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7

Table 4.1 Octal Equivalents of Decimal and Binary Numbers

Counting in Octal Number System

Counting in Octal is similar to counting in any other Number system. The maximum value represented by a single Octal digit is 7. For representing larger values a combination of two or more Octal digits has to be used. Thus decimal 8 is represented by a combination of 10_8 . The subscript 8 indicates the number is Octal 10 and not decimal ten. The Octal Numbers for Decimal numbers 8 to 30 are listed in Table 4.2

Decimal	Octal	Decimal	Octal	Decimal	Octal
8	10	16	20	24	30
9	11	17	21	25	31
10	12	18	22	26	32
11	13	19	23	27	33
12	14	20	24	28	34
13	15	21	25	29	35
14	16	22	26	30	36
15	17	23	27	31	37

Table 4.2 Counting using Octal Numbers

Binary to Octal Conversion

Converting Binary to Octal is a very simple. The Binary string is divided into small groups of 3-bits starting from the least significant bit. Each 3-bit binary group is replaced by its Octal equivalent.

1110	0101	101	0111	001	0110)	Binary Number
111	010	110	101	110	010	110	Dividing into groups of 3-bits
7	2	6	5	6	2	6	Replacing each group by its Octal equivalent

Thus 111010110101110010110 is represented in Octal by 7265626

Binary strings which can not be exactly divided into a whole number of 3-bit groups are assumed to have 0's appended in the most significant bits to complete a group.

1101100000110	Binary Number
1 101 100 000 110	Dividing into groups of 3-bits
<u>00</u> 1 101 100 000 110	Appending three 0s to complete the group
1 5 4 0 6	Replacing each group by its Octal equivalent

Octal to Binary Conversion

Converting from Octal back to binary is also very simple. Each digit of the Octal number is replaced by an equivalent binary string of 3-bits

1726 Octal Number

001 111 010 110 Replacing each Octal digit by its 3-bit binary equivalent

Decimal to Octal Conversion

There are two methods to convert from Decimal to Octal. The first method is the Indirect Method and the second method is the Repeated Division Method.

1. Indirect Method

A decimal number can be converted into its Octal equivalent indirectly by first converting the decimal number into its binary equivalent and then converting the binary to Octal.

2. Repeated Division-by-8 Method

The Repeated Division Method has been discussed earlier and used to convert Decimal Numbers to Binary and Hexadecimal by repeatedly dividing the Decimal Number by 2 and 16 respectively. A decimal number can be directly converted into Octal by using repeated division. The decimal number is continuously divided by 8 (base value of the Octal number system).

The conversion of Decimal 2075 to Octal using the Repeated Division-by-8 Method is illustrated in Table 4.3. The Octal equivalent of 2075_{10} is 4033_8 .

Number	Quotient after division	Remainder after division
2075	259	3
259	32	3
8	4	0
4	0	4

Table 4.3 Octal Equivalent of Decimal Numbers using Repeated Division

Octal to Decimal Conversion

Converting Octal Numbers to Decimal is done using two Methods. The first Method is the Indirect Method and the second method is the Sum-of-Weights method.

1. Indirect Method

The indirect method of converting Octal number to decimal number is to first convert Octal number to Binary and then Binary to Decimal.

2. Sum-of-Weights Method

An Octal number can be directly converted into Decimal by using the sum of weights method. The conversion steps using the Sum-of-Weights method are shown.

4033 Octal number
$$4 \times 8^3 + 0 \times 8^2 + 3 \times 8^1 + 3 \times 8^0$$
 Writing the number in an expression $(4 \times 512) + (0 \times 64) + (3 \times 8) + (3 \times 1)$ Summing the Weights 2075 Decimal equivalent

Octal Addition and Subtraction

Numbers represented in Octal can be added and subtracted directly without having to convert them into decimal or binary equivalents. The rules of Addition and Subtraction that are used to add and subtract numbers in Decimal or Binary number systems apply to Octal Addition and Subtraction. Octal Addition and Subtractions allows large Binary numbers to be quickly added and subtracted.

1. Octal Addition

Carry		1			
Number 1		7	6	0	2
Number 2		5	7	7	1
Sum	1	5	5	7	3

1. Octal Subtraction

Borrow		1	1	
Number 1	7	6	0	2
Number 2	5	7	7	1
Difference	1	6	1	1

Working with different Binary representations

There are different ways of representing numbers in binary. Four ways of representing binary numbers have been already discussed.

- Unsigned binary
- Signed-Magnitude form
- 2's Complement form
- Floating point notation

The different representations help in processing of numbers. For example 2's complement based signed numbers help in handling positive and negative numbers. Floating point notations help in handling numbers having an integer and a fraction part. Digital systems generally allow processing of multiple data values that are of the same type. For example, one number represented using unsigned binary can not be used to perform arithmetic operations with another number represented using signed notation. Therefore before a digital system like a computer is able to process data it has to be explicitly informed the types of data and the manner in which they have been represented within the machine.

When computer Programs are written, usually as a first step of the program different variables and their data types are declared and defined. During program execution when ever a particular variable is accessed by the Computer it knows exactly the data type and the type of operations that can be performed on it.

Alternate forms of Binary representations

There are many different ways to represent binary numbers, other than the 4 representation that we have discussed. Many of these alternate representations are used to support specific applications and requirements. Biased Code or Excess Code is used by floating point numbers to represent positive and negative exponent values.

In many applications in which Digital Systems are used, the Digital systems interact with the real world. For example, a digital controller controls a motor which positions a solar panel to point towards the sun to extract maximum solar energy. The controller needs to accurately know the angle at which the panel is pointing; this can be determined by the position of the shaft of the motor with respect to some reference point. The shaft position has to be encoded in some suitable format to be of use to the controller. A shaft encoder based on the Gray Code is used to read the angular position of the motor shaft.

The angular position of the motor shaft can be displayed on a 7-segment display panel in terms of Decimal Numbers. BCD Code is used to display decimal digits on 7-Segment Display Panels.

The Excess Code

Consider the decimal number range +7 to -8. These positive and negative decimal numbers can be represented by the 2's complement representation. The magnitude of positive and negative numbers can not be easily compared as the positive and negative numbers represented in 2's complement form are not represented on a uniformly increasing scale.

The decimal number range +7 to -8 is represented using an Excess-8 code that assigns 0000 to -8 the lowest number in the range and 1111 to +7 the highest number in the range. Excess-8 code is obtained by adding a number to the lowest number -8 in the range such that the result is zero. The number is 8. The number 8 is added to all the

remaining decimal numbers from -7 up to the highest number +7. The Excess-8 represented is presented in Table 4.4.

Decimal	2's	Excess-8	Decimal	2's	Excess-8
	Complement			Complement	
0	0000	1000	-8	1000	0000
1	0001	1001	-7	1001	0001
2	0010	1010	-6	1010	0010
3	0011	1011	-5	1011	0011
4	0100	1100	-4	1100	0100
5	0101	1101	-3	1101	0101
6	0110	1110	-2	1110	0110
7	0111	1111	-1	1111	0111

Figure 4.4 Excess-8 Code Representation of decimal numbers in the range 7 to -8

The BCD Code

Binary Coded Decimal (BCD) code is used to represent decimal digits in binary. BCD code is a 4-bit binary code; the first 10 combinations represent the decimal digits 0 to 9. The remaining six 4-bit combinations 1010, 1011, 1100, 1101, 1110 and 1111 are considered to be invalid and do not exist.

The BCD code representing the decimal digits 0 to 9 is shown in Table 4.4

Decimal	BCD	Decimal	BCD
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

Table 4.4 BCD representation of Decimal digits 0 to 9

To write 17, two BCD code for 1 and 7 are used 0001 and 0111. The two digits are considered to be separate. The conventional method of representing decimal 17 using unsigned binary is 10001. A telephone keypad having the digits 0 to 9 generates BCD codes for the keys pressed.

Most digital systems display a count value or the time in decimal on 7-segment LED display panels. Since the numbers displayed are in decimal, therefore the BCD Code is used to display the decimal numbers. Consider a 2-digit 7-segment display that can display a count value from 0 to 99. To display the two decimal digits two separate BCD codes are applied at the two 7-segment display circuit inputs.

BCD Addition

Multi-digit BCD numbers can be added together.

23	0010 0011
45	0100 0101
68	0110 1000

The two 2-digit BCD numbers are added and generate a result in BCD. In the example the least significant digits 3 and 5 add up to 8 which is a valid BCD representation. Similarly the most significant digits 2 and 4 add up to 6 which also is a valid BCD representation.

Consider the next example where the least significant numbers add up to a number greater than 9 for which there is no valid BCD code

23	0010 0011
48	0100 1000
71	0110 1011

For BCD numbers that add up to an invalid BCD number or generate a carry the number 6 (0110) is added to the invalid number. If a carry results, it is added to the next most significant digit. Thus

0011	
<u>1000</u>	
1011	11 is generated which is an invalid BCD number
0110	6 is added
1 0001	

A carry is generated which is added to the result of the next most significant digits

1 0110 0111

The answer is 0111 0001

The Gray Code

The Gray code does not have any weights assigned to its bit positions. The Gray Code is not a positional code. The Gray code is different from the unsigned binary code as successive values of Gray code differ by only one bit. Table 4.5 shows the Gray Code representation of Decimal numbers 0 to 9.

Decimal	Gray	Binary
0	0000	0000
1	0001	0001
2	0011	0010
3	0010	0011
4	0 1 10	0100
5	011 1	0101
6	01 0 1	0110
7	010 0	0111
8	1100	1000
9	110 1	1001

Table 4.5 Gray Code representation of Decimal values

The bits in **bold** change in successive values of Gray code representation

Gray Code Application

Figure 4.1 Binary and Gray Code based Shaft Encoders

The diagram shows a disk connected to the shaft of a rotating machine. The shaded areas on the disk indicate conducting area at a voltage of +5 volts. The non-shaded areas indicate a non-conducting area. Three stationary brushes A, B and C touch the surface of the rotating disk. The three brushes are connected to three LED lamps through wires. As the disk rotates the brushes come in contact with the conducting area and the insulated area. The three LEDs display the position of the rotating shaft in terms of 3-bit numbers. Thus if the disk on the right rotates in the anti-clockwise direction by 45^0 the Brush A comes in contact with the conducting strip at 5 volts, which turns on the LED indicating Binary 001.

If the disk continuous its rotation, after a rotation of another 45⁰, brush B comes in contact with the conducting strip and brush A comes in contact with the non-

conducting strip. Thus LED connected to brush B lights up indicating binary 010. Thus at any instant of time, the LEDs indicate the angular position of the rotating shaft.

Assume that the three brushes A, B and C are not aligned properly and Brush B is slightly ahead of brushes A and C. Now if the disk rotates 90° from its start position. Brush A would be in contact with the conducting strip, Brush B due to its misalignment would also be in contact with the conducting strip and brush C would be in contact with the insulated strip. Thus when the disk rotates the LEDs will show a 001, followed by a 011 for a short duration when the disk rotates from 90° to 91° and then to 010. Thus due to misalignment the count value jumped from 1 to 3 and then back to 2.

Consider the disk shown on the right. The conducting and non-conducting strips follow a Gray Code pattern 000, 001, 011, 010, 110, 111, 101 and 100 representing decimal 0, 1, 2, 3, 4, 5, 6 and 7. Now even if the brushes are misaligned, the LEDs would always display the correct count value. Thus a Gray Code based shaft encoder allows angular position of the shaft to be determined even when the brushes are misaligned.

Alphanumeric Codes

All the representation studied so far allow decimal numbers to be represented in binary. Digital systems also process text information as in editing of documents. Thus each letter of the alphabet, upper case and lower case, along with the punctuation marks should have a representation. Numbers are also written in textual form such as 2nd June 2003. The ASCII Code is a universally accepted code that allows 128 characters and symbols to be represented.

ASCII Code

The ASCII Code (American Standard Code for Information Interchange) is a 7-bit code representing 128 unique codes which represent the alphabet characters A to Z in lower case and upper case, the decimal numbers 0 to 9, punctuation marks and control characters.

- ASCII codes 011 0000 (30h) to 011 1001 (39h) represents numbers 0 to 9
- ASCII codes 110 0001 (61h) to 111 1010 (7Ah) represent lower case alphabets a to z
- ASCII codes 100 0001 (41h) to 101 1010 (5Ah) represent upper case alphabets A to 7
- ASCII codes 000 0000 (0h) to 001 1111 (1Fh) represent the 32 Control characters.

Extended ASCII Code

The 7-bit ASCII code only has 128 unique codes which are not enough to represent some graphical characters displayed on Computer screens. An 8-bit code Extended ASCII code gives 256 unique codes. The extended 128 unique codes represent graphic symbols which have become an unofficial standard as vendors use their own interpretation of these graphic codes.

Parity Method

Binary information which can be text or numbers is processed, stored and transmitted. Although digital systems are extremely reliable but still there is a possibility that one bit gets corrupted. That is, a 1 changes to 0 or 0 changes to 1. Many systems use a parity bit to detect errors. A single parity based error detection scheme is not very practically efficient and more elaborate and robust schemes have been designed and implemented to detect and correct multiple bit errors. However, the use of a parity bit does help in understanding the basic concept of error detection.

Consider that the 8-bit Extended ASCII Code is used to transmit text messages from one location to another remote location. An extra bit is appended with the 8 data bits making a total of nine bits. The 8-bits comprise the information that is to be stored or transmitted and the extra parity bit is appended to check for any errors that might occur during the storage or transmission of the information. Two schemes are used, Even Parity or Odd Parity essentially the two schemes are identical except for a very minor difference

Even Parity Method

The information 10001101 is to be transmitted to a remote location. A parity bit error detection method is adopted to indicate if the information has been corrupted when it reaches the other end. In the Even Parity method the number of 1s is counted in the information and depending upon the number of 1s in the message the appended parity bit is either set to 0 or 1 to make the total number of 1s to be even (Even Parity)

The 8-bit data 10001101 has even number of 1s, therefore the parity bit which is appended is set to 0. The 9-bit message is 100011010. The parity bit is indicated in Bold. Suppose the message received at the other end of the wire shows the bits to be 101011010, the underlined bit has changed from 0 to 1. Before transmitting the message, the users at both ends of the wire have agreed that they would be sending and receiving messages using even parity. Thus the receiver on receiving the 9-bit message does a quick parity check. The total number of bits including the parity bit should add up to an even number. However, in this case the numbers of 1 in the message add up to 5 which indicates that a bit has been corrupted. There is no way that the receiver can know the location of the corrupted bit in the message. The only solution is to request the sender to retransmit the message. If two bits get corrupted during the transmission, $10\underline{100}1010$ then the total number of 1s remains the same and the receiver would not be able to detect an error. If 3-bits get corrupted, $10\underline{1000}010$ the user would still be able to detect that an error has occurred, however there is no way to determine if a single bit or 3-bit, or 5-bit or 7-bit error has occurred.

Odd parity is identical except that both the sender and receiver agree to send information using the Odd parity and the parity bit is set or cleared so that the total number of 1s in the message including the Parity bit sums up to an Odd Number.