Due Wed, Jan 22. You can send the code for the programming problem to blins@hsc.edu.

1. Write a logical expression using the operators \land (AND), \lor (OR), and \neg (NOT) and the Boolean variables x_0, x_1, x_2 so that the expression is TRUE when an even number of the variables are TRUE and FALSE otherwise.

2. Translate the following mathematical short-hand into English:

 $\forall a, b \in \mathbb{Z} \text{ with } b \neq 0, \exists N \in \mathbb{N} : N > a/b \land N > b/a.$

3. Describe the following sets in words. Just give a brief description of what objects are in the sets, you do not need to list all of the elements.

(a)
$$[9] \times [9] \times [9]$$
.

(b)
$$\{x \in \{0,1\}^{2n} : x_i = x_{i+n} \ \forall i \in [n]\}.$$

- 4. Write a computer program to verify that $n^3 + (n+1)^3 + (n+2)^3$ is divisible by 9 for every integer $0 \le n < 100$.
- 5. Use mathematical induction to prove that $n^3 + (n+1)^3 + (n+2)^3$ is divisible by 9 for every integer $n \ge 0$.