BubbleSort:

Baseado na troca de elementos adjacentes.

Cada iteração leva o elemento maior para o final do vetor.

Melhor caso é na ordem de n; mas vai iterar na ordem de n vezes.

SelectionSort:

Baseado na seleção do maior e seu posicionamento no final. Primeiro seleciona, depois leva para a posição correta.

Selection sort

```
SELECTION-SORT (A)

n = length(A)

for i \leftarrow 1 to n \in A

min = i

min = i

min \leftarrow j

min \leftarrow j
```

InsertionSort:

Baseado na ideia de inserir um elemento em uma lista ordenada.

Insertion sort

Comparação

Algoritmo	melhor tempo	tempo médio	pior tempo	espaço
Insertion sort	O(n)	O(n^2)	O(n^2)	in-place
Selection sort	O(n^2)	O(n^2)	O(n^2)	in-place
Bubble sort	O(n)	O(n^2)	O(n^2)	in-place

BubbleSort muitas comparação e troca.

SelectionSort muitas comparações e menos trocas.

InsertionSort menos comparações (último da lista ordenada) e reduz a quantidade de troca (faz trocas suficientes para encaixar a posição do elemento na lista ordenada).

Questões de Implementação:

Como ordenar apenas uma faixa de um array ?

Questões de implementação

Como ordenar apenas uma faixa de um array?

*