Modeling Approaches

```
# pip install xgboost
        import pandas as pd
In [2]:
        import numpy as np
        # import dask.dataframe as dd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.model_selection import train_test_split
        from datetime import datetime
        from sklearn.metrics import roc_auc_score, f1_score, confusion_matrix
        from sklearn.linear_model import LogisticRegression
        from collections import defaultdict
        # Week 7
        from sklearn.model_selection import cross_val_score
        from sklearn.metrics import accuracy_score
        import xgboost as xgb
```

Reading into the data

```
In [3]:
         pd.set_option('display.max_columns', None)
         train = pd.read_csv('train_final.csv', low_memory=False)
         validation = pd.read_csv('val_set_final.csv')
         train.head()
In [4]:
Out[4]:
            Unnamed:
                        date customer_code employee_index country female
                                                                                 age new_cust seniority_
                       2015-
         0
                                    664160
                                                                          0 0.632653
                       07-28
                       2016-
         1
                                    1076784
                                                         Ν
                                                                          0 0.214286
                                                                                             0
                       01-28
                       2015-
         2
                                    672465
                                                                          0 0.387755
                       12-28
                       2015-
         3
                                    774528
                                                                          0 0.397959
                                                                                             0
                       10-28
                       2016-
         4
                                    569598
                                                                  1
                                                                          0 0.459184
                                                                                             0
                       05-28
         validation.head()
In [5]:
```

Out[5]:	t[5]: Unnam		Unnamed: 0	date	customer_code	employee_index	country_spain	female	age	fiı
	0	0	0	2015- 11-28	161428	N	1	1	0.744898	
	1	1	1	2015- 12-28	367478	N	1	1	0.418367	
	2	2	2	2015- 11-28	643150	N	1	0	0.520408	
	3	3	3	2016- 04-28	1385854	N	1	0	0.367347	
	4	4	4	2015- 08-28	495733	N	1	0	0.346939	
										•

Pre-processing

Changing columns name and dropping columns so both datasets are the same

```
In [6]: train = train.rename(columns={'country': 'country_spain'})
In [7]: train = train.drop(columns=['Unnamed: 0'])
    validation = validation.drop(columns=['Unnamed: 0', 'Unnamed: 0.1'])
    drop = ['join_channel', 'province_name', 'employee_index', 'segment', 'total_products'
    train = train.drop(columns=drop + ['customer_code_encoded'])
    validation = validation.drop(columns=drop + ['payroll_acct.1', 'first_contract_date',
```

Setting products we want to predict

Dropping duplicates on customer code column since the last instance will show all the products a client has

```
In [9]: train = train.drop_duplicates(subset=['customer_code'], keep='last')
    validation = validation.drop_duplicates(subset=['customer_code'], keep='last')

# Removing customers from validation set that appear in training set
    validation = validation[~validation['customer_code'].isin(train['customer_code'])]
In [10]: print(train.info())
    print(validation.info())
```

<class 'pandas.core.frame.DataFrame'>
Index: 706866 entries, 39288 to 6579716

```
Data columns (total 42 columns):
```

# 	Column	Non-Null Count	Dtype
0	date	706866 non-null	object
1	customer_code	706866 non-null	int64
2	country_spain	706866 non-null	int64
3	female	706866 non-null	int64
4	age	706866 non-null	float64
5	new_cust	706866 non-null	int64
6	_ seniority_in_months	706866 non-null	float64
7	cust_type	706866 non-null	int64
8	residency_spain	706866 non-null	int64
9	birth_spain	706866 non-null	int64
10	active_cust	706866 non-null	int64
11	income	706866 non-null	float64
12	savings_acct	706866 non-null	int64
13	guarantees	706866 non-null	int64
14	current_acct	706866 non-null	int64
15	_ derivada_acct	706866 non-null	int64
16	payroll_acct	706866 non-null	int64
17	junior acct	706866 non-null	int64
18	mas_particular_acct	706866 non-null	int64
19	particular_acct	706866 non-null	int64
20	particular_plus_acct	706866 non-null	int64
21	short_term_depo	706866 non-null	int64
22	medium_term_depo	706866 non-null	int64
23	long_term_depo	706866 non-null	int64
24	e_acct	706866 non-null	int64
25	_ funds	706866 non-null	int64
26	mortgage	706866 non-null	int64
27	pension	706866 non-null	int64
28	loans	706866 non-null	int64
29	taxes	706866 non-null	int64
30	credit_card	706866 non-null	int64
31	securities	706866 non-null	int64
32	home acct	706866 non-null	int64
33	pensions_2	706866 non-null	int64
34	direct_debt	706866 non-null	int64
35	01 - TOP	706866 non-null	int64
36	02 - PARTICULARES	706866 non-null	int64
37	03 - UNIVERSITARIO	706866 non-null	int64
38	join channel encoded	706866 non-null	float64
39	province_name_encoded	706866 non-null	float64
40		706866 non-null	float64
41	income to age	706866 non-null	float64
	es: float64(7), int64(34		
	ry usage: 231.9+ MB	,, 5 ()	
None			
	ss 'pandas.core.frame.Da	taFrame'>	
	k: 200333 entries, 51 to		
	columns (total 42 column		
#	Column	Non-Null Count	Dtype
0	date	200333 non-null	object
1	customer_code	200333 non-null	int64
2	country_spain	200333 non-null	int64
3	female	200333 non-null	int64
_			

age

200333 non-null float64

```
200333 non-null int64
    new cust
    seniority_in_months
                           200333 non-null float64
6
7
    cust_type
                           200333 non-null int64
    residency_spain
                           200333 non-null int64
                           200333 non-null int64
    birth_spain
                           200333 non-null int64
10 active_cust
 11 income
                           200333 non-null float64
12 savings_acct
                           200333 non-null int64
                           200333 non-null int64
 13
    guarantees
                           200333 non-null int64
 14 current_acct
15 derivada_acct
                           200333 non-null int64
                           200333 non-null int64
 16 payroll acct
17 junior_acct
                           200333 non-null int64
18 mas_particular_acct
                          200333 non-null int64
                           200333 non-null int64
19 particular acct
 20 particular_plus_acct
                           200333 non-null int64
 21 short term depo
                           200333 non-null int64
 22 medium_term_depo
                           200333 non-null int64
                           200333 non-null int64
 23 long_term_depo
 24 e acct
                           200333 non-null int64
25 funds
                           200333 non-null int64
 26 mortgage
                           200333 non-null int64
 27 pension
                           200333 non-null int64
 28 loans
                          200333 non-null int64
                           200333 non-null int64
 29 taxes
                          200333 non-null int64
 30 credit_card
 31 securities
                         200333 non-null int64
                          200333 non-null int64
 32 home_acct
                          200333 non-null int64
 33 pensions 2
 34 direct debt
                          200333 non-null int64
 35 01 - TOP
                           200333 non-null int64
 36 02 - PARTICULARES
                           200333 non-null int64
37 03 - UNIVERSITARIO
                           200333 non-null int64
38 join_channel_encoded
                           200333 non-null float64
                           200333 non-null float64
    province_name_encoded
40 employee_index_encoded 200333 non-null float64
41 income_to_age
                           200333 non-null float64
dtypes: float64(7), int64(34), object(1)
memory usage: 65.7+ MB
None
```

Defining our Xs and Ys

```
In [11]: X_train = train.drop(['customer_code', 'date'] + products, axis=1)
    y_train = train[products]

X_val = validation.drop(['customer_code', 'date'] + products, axis=1)
    y_val = validation[products]

In [12]: print("Shape of X_train:", X_train.shape)
    print("Shape of y_train:", y_train.shape)

    print("Shape of X_val:", X_val.shape)
    print("Shape of y_val:", y_val.shape)

Shape of X_train: (706866, 17)
    Shape of y_train: (706866, 23)
    Shape of X_val: (200333, 17)
    Shape of y_val: (200333, 23)
```

Week 7 - Develop Second Modeling Approach

Setting hyperparameters for XGBoost model

```
In [13]:
          # Define hyperparameter variations
          hyperparameters = [
                  'max_depth': 3,
                  'learning rate': 0.1,
                  'subsample': 0.8,
                  'colsample_bytree': 0.8,
              },
                  'max_depth': 5,
                  'learning_rate': 0.05,
                  'subsample': 0.7,
                  'colsample_bytree': 0.7,
              },
                  'max_depth': 7,
                  'learning_rate': 0.01,
                  'subsample': 0.6,
                  'colsample_bytree': 0.6,
              }
          ]
```

Creating funtion to train and evaluate the XGBoost model

This week we will keep the same metrics used last week -ROC AUC, F1 Score and Confusion Matrix, so we can compare in the end which model is better

We are looping through ech one of the products, and creating a DMatrix to store the data. To avoid overfitting, we are using early stopping, which means that if the model does not improve for 20 rounds, it will stop early

```
In [14]: # Model function
def xgb_model(X_train, y_train, X_val, y_val, params):
    metrics = {}
    for product in y_train.columns:
        # Creating DMatrix for XGBoost
        dtrain = xgb.DMatrix(X_train, label=y_train[product])
        dval = xgb.DMatrix(X_val, label=y_val[product])

# Setting up early stopping to prevent overfitting
        early_stopping_rounds = 20
        eval_set = [(dtrain, 'train'), (dval, 'val')]

# Train
    model = xgb.train(
        params,
        dtrain,
        num_boost_round=1000,
```

```
evals=[(dval, 'val')],
            early_stopping_rounds=early_stopping_rounds,
            verbose eval=False
        )
        # Predictions
        y train pred = model.predict(dtrain)
        y_val_pred = model.predict(dval)
        # Metrics
        metrics[product] = {
            'train': calc_metrics(y_train[product], y_train_pred),
            'val': calc_metrics(y_val[product], y_val_pred)
        }
    return metrics
# Metrics Function
def calc_metrics(y_true, y_pred):
        'ROC AUC': roc_auc_score(y_true, y_pred),
        'F1 Score': f1_score(y_true, y_pred > 0.5),
        'Confusion Matrix': confusion_matrix(y_true, y_pred > 0.5)
    }
```

Creating a table to summarize results and define which variation is the best

```
In [28]: # Summary table
         results = pd.DataFrame(results)
         print(results.to_string(index=False))
         best_model = results.loc[results['Val ROC AUC'].idxmax()]['Variation']
         print(f"\nThe best model for this week is {best_model}")
           Variation Train ROC AUC Train F1 Score Val ROC AUC Val F1 Score
                                           0.144641
         Variation 1
                           0.918933
                                                        0.904372
                                                                      0.132815
                                                                      0.139032
         Variation 2
                           0.926318
                                           0.150042
                                                        0.923959
         Variation 3
                           0.933340
                                           0.135798
                                                        0.884652
                                                                     0.117693
         The best model for this week is Variation 2
```

Creating a table to see the results in a easier to interpret way

```
In [19]: train metrics list = []
         val_metrics_list = []
         for variation_idx, params in enumerate(hyperparameters, 1):
             variation_name = f"Variation {variation_idx}"
             for product in y_train.columns:
                 train_roc_auc = metrics[product]['train']['ROC AUC']
                 train_f1_score = metrics[product]['train']['F1 Score']
                 train_conf_matrix = metrics[product]['train']['Confusion Matrix']
                 val roc auc = metrics[product]['val']['ROC AUC']
                 val_f1_score = metrics[product]['val']['F1 Score']
                 val_conf_matrix = metrics[product]['val']['Confusion Matrix']
                 # Appending lists
                 train_metrics_list.append({
                      'Variation': variation_name,
                      'Dataset': 'Train',
                      'Product': product,
                      'ROC AUC': train_roc_auc,
                      'F1 Score': train_f1_score,
                      'Confusion Matrix': train_conf_matrix
                 })
                 val_metrics_list.append({
                      'Variation': variation name,
                      'Dataset': 'Validation',
                      'Product': product,
                      'ROC AUC': val_roc_auc,
                      'F1 Score': val_f1_score,
                      'Confusion Matrix': val_conf_matrix
                  })
         metrics_df = pd.DataFrame(train_metrics_list + val_metrics_list)
         print(metrics df.to string(index=False))
```

			WCCKI		
Variation fusion Matrix	Dataset	Product	ROC AUC	F1 Score	Con
Variation 1 0], [74, 0]]	Train	savings_acct	0.993083	0.000000	[[706792,
Variation 1 0], [16, 0]]	Train	guarantees	0.999966	0.000000	[[706850,
Variation 1 525, 360381]]	Train	current_acct	0.808806	0.804876	[[171753, 105207], [69
Variation 1 0], [263, 0]]	Train	derivada_acct	0.967359	0.000000	[[706603,
Variation 1	Train	payroll_acct	0.896745	0.013931	[[667803, 58],
[38731, 274]] Variation 1 4], [64, 6517]	Train	junior_acct	0.999975	0.966054	[[699891, 39
Variation 1 1], [5701, 44]	Train	mas_particular_acct	0.981853	0.015199	[[701120,
Variation 1 7410, 29323]]	Train	particular_acct	0.925143	0.438586	[[602473, 17660], [5
Variation 1 [29487, 21]]	Train	particular_plus_acct	0.921532	0.001422	[[677355, 3],
Variation 1 0], [1009, 0]]	Train	short_term_depo	0.969419	0.000000	[[705857,
Variation 1 0], [1049, 0]]	Train	medium_term_depo	0.945110	0.000000	[[705817,
Variation 1 [21971, 7551]]	Train	long_term_depo	0.936072	0.363833	[[672909, 4435],
Variation 1 8592, 10289]]	Train	e_acct	0.899611	0.274052	[[642067, 5918], [4
Variation 1 0], [12767, 0]	Train	funds	0.930750	0.000000	[[694099,
Variation 1 0], [4059, 0]]	Train	mortgage	0.957530	0.000000	[[702807,
Variation 1 0], [6407, 5]]	Train	pension	0.936456	0.001558	[[700454,
Variation 1 3], [1600, 56]	Train	loans	0.962701	0.065306	[[705207,
Variation 1 0], [38220, 2]	Train	taxes	0.882262	0.000105	[[668644,
Variation 1 [31013, 75]]	Train	credit_card	0.907053	0.004812	[[675770, 8],
Variation 1 [17605, 26]]	Train	securities	0.921937	0.002945	[[689233, 2],
Variation 1 0], [2710, 0]]	Train	home_acct	0.935767	0.000000	[[704156,
Variation 1 [42344, 262]]	Train	pensions_2	0.887281	0.012208	[[664206, 54],
Variation 1 [81892, 8110]]	Train	direct_debt	0.900405	0.158468	[[612621, 4243],
Variation 2 0], [74, 0]]	Train	savings_acct	0.993083	0.000000	[[706792,
Variation 2 0], [16, 0]]	Train	guarantees	0.999966	0.000000	[[706850,
Variation 2 525, 360381]]	Train	current_acct	0.808806	0.804876	[[171753, 105207], [69
Variation 2 0], [263, 0]]	Train	derivada_acct	0.967359	0.000000	[[706603,
Variation 2 [38731, 274]]	Train	payroll_acct	0.896745	0.013931	[[667803, 58],
Variation 2 4], [64, 6517]	Train 1	junior_acct	0.999975	0.966054	[[699891, 39
	-				

Variation 2	Train	mas_particular_acct	0.981853	0.015199	[[701120,
1], [5701, 44]] Variation 2	Train	particular_acct	0.925143	0.438586	[[602473, 17660], [5
7410, 29323]] Variation 2 [29487, 21]]	Train	particular_plus_acct	0.921532	0.001422	[[677355, 3],
Variation 2 0], [1009, 0]]	Train	short_term_depo	0.969419	0.000000	[[705857,
Variation 2 0], [1049, 0]]	Train	medium_term_depo	0.945110	0.000000	[[705817,
Variation 2 [21971, 7551]]	Train	long_term_depo	0.936072	0.363833	[[672909, 4435],
Variation 2 8592, 10289]]	Train	e_acct	0.899611	0.274052	[[642067, 5918], [4
Variation 2 0], [12767, 0]]	Train	funds	0.930750	0.000000	[[694099,
Variation 2 0], [4059, 0]]	Train	mortgage	0.957530	0.000000	[[702807,
Variation 2 0], [6407, 5]]	Train	pension	0.936456	0.001558	[[700454,
Variation 2 3], [1600, 56]]	Train	loans	0.962701	0.065306	[[705207,
Variation 2 0], [38220, 2]]	Train	taxes	0.882262	0.000105	[[668644,
Variation 2 [31013, 75]]	Train	credit_card	0.907053	0.004812	[[675770, 8],
Variation 2 [17605, 26]]	Train	securities	0.921937	0.002945	[[689233, 2],
Variation 2 0], [2710, 0]]	Train	home_acct	0.935767	0.000000	[[704156,
Variation 2 [42344, 262]]	Train	pensions_2	0.887281	0.012208	[[664206, 54],
Variation 2 [81892, 8110]]	Train	direct_debt	0.900405	0.158468	[[612621, 4243],
Variation 3	Train	savings_acct	0.993083	0.000000	[[706792,
0], [74, 0]] Variation 3 0], [16, 0]]	Train	guarantees	0.999966	0.000000	[[706850,
Variation 3 525, 360381]]	Train	current_acct	0.808806	0.804876	[[171753, 105207], [69
Variation 3 0], [263, 0]]	Train	derivada_acct	0.967359	0.000000	[[706603,
Variation 3 [38731, 274]]	Train	payroll_acct	0.896745	0.013931	[[667803, 58],
Variation 3 4], [64, 6517]]	Train	junior_acct	0.999975	0.966054	[[699891, 39
Variation 3 1], [5701, 44]]	Train	mas_particular_acct	0.981853	0.015199	[[701120,
Variation 3 7410, 29323]]	Train	particular_acct	0.925143	0.438586	[[602473, 17660], [5
Variation 3 [29487, 21]]	Train	particular_plus_acct	0.921532	0.001422	[[677355, 3],
Variation 3	Train	short_term_depo	0.969419	0.000000	[[705857,
0], [1009, 0]] Variation 3	Train	medium_term_depo	0.945110	0.000000	[[705817,
0], [1049, 0]] Variation 3	Train	long_term_depo	0.936072	0.363833	[[672909, 4435],
[21971, 7551]] Variation 3 8592, 10289]]	Train	e_acct	0.899611	0.274052	[[642067, 5918], [4
› ·11					

Variation 3 Tra: 0], [12767, 0]]	in funds	0.930750	0.000000	[[694099,
Variation 3 Tra	in mortgage	0.957530	0.000000	[[702807,
0], [4059, 0]] Variation 3 Tra: 0], [6407, 5]]	in pension	0.936456	0.001558	[[700454,
Variation 3 Tra: 3], [1600, 56]]	in loans	0.962701	0.065306	[[705207,
Variation 3 Tra: 0], [38220, 2]]	in taxes	0.882262	0.000105	[[668644,
Variation 3 Tra: [31013, 75]]	in credit_card	0.907053	0.004812	[[675770, 8],
Variation 3 Tra: [17605, 26]]	in securities	0.921937	0.002945	[[689233, 2],
Variation 3 Tra: 0], [2710, 0]]	in home_acct	0.935767	0.000000	[[704156,
Variation 3 Tra: [42344, 262]]	in pensions_2	0.887281	0.012208	[[664206, 54],
Variation 3 Tra: [81892, 8110]]	in direct_debt	0.900405	0.158468	[[612621, 4243],
Variation 1 Validation 5, 0], [8, 0]]	on savings_acct	0.904347	0.000000	[[20032
Variation 1 Validation 1, 0], [2, 0]]	on guarantees	0.029764	0.000000	[[20033
Variation 1 Validation 774, 103407]]	on current_acct	0.813402	0.818449	[[51050, 27102], [18
Variation 1 Validation 0], [44, 0]]	on derivada_acct	0.900264	0.000000	[[200289,
Variation 1 Validation 2], [6184, 30]]	on payroll_acct	0.897229	0.009591	[[194107, 1
Variation 1 Validation 8], [46, 1073]]	on junior_acct	0.999902	0.933043	[[199106, 10
	on mas_particular_acct	0.955139	0.000712	[[197526,
Variation 1 Validation [10646, 4417]]	on particular_acct	0.952627	0.404784	[[182926, 2344],
	on particular_plus_acct	0.944120	0.000000	[[195857,
Variation 1 Validation 0], [324, 0]]	on short_term_depo	0.947906	0.000000	[[200009,
Variation 1 Validation 0], [181, 0]]	on medium_term_depo	0.901511	0.000000	[[200152,
Variation 1 Validation [3857, 804]	on long_term_depo	0.947198	0.266093	[[195094, 578],
Variation 1 Validation [8758, 802]]	on e_acct	0.914806	0.146672	[[190199, 574],
Variation 1 Validation 0], [2087, 0]]	on funds	0.928412	0.000000	[[198246,
Variation 1 Validation 0], [521, 0]]	on mortgage	0.969950	0.000000	[[199812,
Variation 1 Validation	on pension	0.941016	0.000000	[[199454,
0], [879, 0]] Variation 1 Validatio	on loans	0.931207	0.023121	[[199991,
4], [334, 4]] Variation 1 Validation	on taxes	0.886356	0.000000	[[195396,
0], [4937, 0]] Variation 1 Validation	on credit_card	0.932572	0.001829	[[195963,
6], [4360, 4]] Variation 1 Validation 0], [3052, 0]]	on securities	0.924884	0.000000	[[197281,

Variation 1 Validation	home_acct	0.926991	0.000000	[[200015,
0], [318, 0]] Variation 1 Validation	pensions_2	0.891483	0.007692	[[193599, 1
0], [6698, 26]] Variation 1 Validation [15269, 832]]	direct_debt	0.905907	0.094950	[[183640, 592],
Variation 2 Validation	savings_acct	0.904347	0.000000	[[20032
5, 0], [8, 0]] Variation 2 Validation	guarantees	0.029764	0.000000	[[20033
1, 0], [2, 0]] Variation 2 Validation 774, 103407]]	current_acct	0.813402	0.818449	[[51050, 27102], [18
Variation 2 Validation 0], [44, 0]]	derivada_acct	0.900264	0.000000	[[200289,
Variation 2 Validation 2], [6184, 30]]	payroll_acct	0.897229	0.009591	[[194107, 1
Variation 2 Validation 8], [46, 1073]]	junior_acct	0.999902	0.933043	[[199106, 10
Variation 2 Validation 0], [2806, 1]]	mas_particular_acct	0.955139	0.000712	[[197526,
Variation 2 Validation [10646, 4417]]	particular_acct	0.952627	0.404784	[[182926, 2344],
Variation 2 Validation 0], [4476, 0]]	particular_plus_acct	0.944120	0.000000	[[195857,
Variation 2 Validation 0], [324, 0]]	short_term_depo	0.947906	0.000000	[[200009,
Variation 2 Validation 0], [181, 0]]	medium_term_depo	0.901511	0.000000	[[200152,
Variation 2 Validation [3857, 804]]	long_term_depo	0.947198	0.266093	[[195094, 578],
Variation 2 Validation [8758, 802]]	e_acct	0.914806	0.146672	[[190199, 574],
Variation 2 Validation 0], [2087, 0]]	funds	0.928412	0.000000	[[198246,
Variation 2 Validation 0], [521, 0]]	mortgage	0.969950	0.000000	[[199812,
Variation 2 Validation 0], [879, 0]]	pension	0.941016	0.000000	[[199454,
Variation 2 Validation 4], [334, 4]]	loans	0.931207	0.023121	[[199991,
Variation 2 Validation 0], [4937, 0]]	taxes	0.886356	0.000000	[[195396,
Variation 2 Validation 6], [4360, 4]]	credit_card	0.932572	0.001829	[[195963,
Variation 2 Validation 0], [3052, 0]]	securities	0.924884	0.000000	[[197281,
Variation 2 Validation 0], [318, 0]]	home_acct	0.926991	0.000000	[[200015,
Variation 2 Validation 0], [6698, 26]]	pensions_2	0.891483	0.007692	[[193599, 1
Variation 2 Validation [15269, 832]]	direct_debt	0.905907	0.094950	[[183640, 592],
Variation 3 Validation 5, 0], [8, 0]]	savings_acct	0.904347	0.000000	[[20032
Variation 3 Validation 1, 0], [2, 0]]	guarantees	0.029764	0.000000	[[20033
Variation 3 Validation 774, 103407]]	current_acct	0.813402	0.818449	[[51050, 27102], [18
Variation 3 Validation 0], [44, 0]]	derivada_acct	0.900264	0.000000	[[200289,

		WEEKI		
Variation 3 Validation	payroll_acct	0.897229	0.009591	[[194107, 1
2], [6184, 30]]				
Variation 3 Validation	junior_acct	0.999902	0.933043	[[199106, 10
8], [46, 1073]]				
Variation 3 Validation	mas_particular_acct	0.955139	0.000712	[[197526,
0], [2806, 1]]				
Variation 3 Validation	particular_acct	0.952627	0.404784	[[182926, 2344],
[10646, 4417]]	. –			, , ,
Variation 3 Validation	particular plus acct	0.944120	0.000000	[[195857,
0], [4476, 0]]	_p			[[,
Variation 3 Validation	short_term_depo	0 947906	0.000000	[[200009,
0], [324, 0]]	31101 t_te1 iii_depo	0.547500	0.000000	[[20000],
Variation 3 Validation	medium_term_depo	0 001511	0.000000	[[200152,
	illeditdiii_tei iii_depo	0.901311	0.000000	[[200132,
0], [181, 0]]	1 4 4	0.047400	0.266002	[[105004 570]
Variation 3 Validation	long_term_depo	0.94/198	0.266093	[[195094, 578],
[3857, 804]]		0.044006	0.446670	[[400400
Variation 3 Validation	e_acct	0.914806	0.146672	[[190199, 574],
[8758, 802]]				
Variation 3 Validation	funds	0.928412	0.000000	[[198246,
0], [2087, 0]]				
Variation 3 Validation	mortgage	0.969950	0.000000	[[199812,
0], [521, 0]]				
Variation 3 Validation	pension	0.941016	0.000000	[[199454,
0], [879, 0]]				
Variation 3 Validation	loans	0.931207	0.023121	[[199991,
4], [334, 4]]				
Variation 3 Validation	taxes	0.886356	0.000000	[[195396,
0], [4937, 0]]				
Variation 3 Validation	credit_card	0.932572	0.001829	[[195963,
6], [4360, 4]]	_			
Variation 3 Validation	securities	0.924884	0.000000	[[197281,
0], [3052, 0]]				
Variation 3 Validation	home_acct	0.926991	0.000000	[[200015,
0], [318, 0]]				[[
Variation 3 Validation	pensions_2	0 891483	0.007692	[[193599, 1
0], [6698, 26]]	pc113±0113_2	0.001400	0.007032	[[+55555]
Variation 3 Validation	direct_debt	0 905907	0.094950	[[183640, 592],
[15269, 832]]	dil ect_debt	0.903907	0.094930	[[103040, 392],
[13203, 032]]				

Generate product recommendations

Here we want to visualize the product recommendations for each customer We will generate the product recommendations using Variation 2 - that had the best performance between all variations

```
In [31]: best_params = hyperparameters[int(best_model.split()[-1]) - 1]

# Train model using Variation 2
product_models = {}
for product in y_train.columns:
    dtrain = xgb.DMatrix(X_train, label=y_train[product])
    model = xgb.train(
        best_params,
        dtrain,
        num_boost_round=1000,
        verbose_eval=False
    )
```

```
product_models[product] = model

# Generate predictions
train_preds = {}
for product in y_train.columns:
    dtrain = xgb.DMatrix(X_train)
    proba = product_models[product].predict(dtrain)

for customer_id, prob in zip(train['customer_code'], proba):
    if customer_id not in train_preds:
        train_preds[customer_id] = []
    train_preds[customer_id].append((product, prob))
```

We want to make sure that we are not recommending a product that the customer already own, so we will store the products that customers already have

```
In [32]: def get_active_products(customer_data):
    return set(product for product in y_train.columns if customer_data[product] > 0)
```

We will sort the recommended products by the probability of a client getting it and we will get the top 7 recommendations

```
In [33]: # Generate top 7 products, excluding owned products
for customer_id in train_preds:
    sorted_prods = sorted(train_preds[customer_id], key=lambda x: x[1], reverse=True)
    customer_data = train[train['customer_code'] == customer_id].iloc[0]
    active_products = get_active_products(customer_data)
    recommended_products = [prod for prod, _ in sorted_prods if prod not in active_products_in_in_preds[customer_id] = recommended_products[:7]

# Recommendations for the first 5 customers
print("Recommendations:")
for customer_id in list(train_preds.keys())[:5]:
    print(f"Customer {customer_id}: {train_preds[customer_id]}")

Recommendations:
Customer 1225385: ['current_acct', 'taxes', 'pension', 'particular_acct', 'funds', 'c
```

Customer 1225385: ['current_acct', 'taxes', 'pension', 'particular_acct', 'funds', 'c redit_card', 'securities']
Customer 1358829: ['direct_debt', 'pensions_2', 'e_acct', 'payroll_acct', 'taxes', 's ecurities', 'pension']
Customer 1436539: ['pensions_2', 'payroll_acct', 'direct_debt', 'mas_particular_acct', 'e_acct', 'particular_acct', 'credit_card']
Customer 1448049: ['current_acct', 'payroll_acct', 'particular_plus_acct', 'mas_particular_acct', 'mortgage', 'pension', 'loans']
Customer 1396837: ['direct_debt', 'pensions_2', 'payroll_acct', 'e_acct', 'mas_particular_acct', 'taxes', 'long_term_depo']

Lastly, we want to identify which product has been recommended the most and least in the model

```
In [34]: product_rec_counts = {product: sum(1 for recs in train_preds.values() if product in re
    most_rec = max(product_rec_counts, key=product_rec_counts.get)
    least_rec = min(product_rec_counts, key=product_rec_counts.get)
```

print(f"Most frequently recommended product: {most_rec} ({product_rec_counts[most_rec]}
print(f"Least frequently recommended product: {least_rec} ({product_rec_counts[least_rec]})

Most frequently recommended product: taxes (533949 times) Least frequently recommended product: guarantees (18541 times)