Particle spectrograph

Lagrangian density
$-t_1 \ \omega_{_{\prime}}^{\alpha\prime} \ \omega_{_{\kappa\alpha}}^{} - \frac{1}{3} t_1 \ \omega_{_{\prime}}^{\kappa\lambda} \ \omega_{_{\kappa\lambda}}^{\prime} + \frac{2}{3} t_2 \ \omega_{_{\prime}}^{\kappa\lambda} \ \omega_{_{\kappa\lambda}}^{\prime} + \frac{1}{3} t_1 \ \omega_{_{\kappa\lambda}}^{\prime} \ \omega_{_{\kappa\lambda}}^{\kappa\lambda} + \frac{1}{3} t_2 \ \omega_{_{\kappa\lambda}}^{\prime} \ \omega_{_{\kappa\lambda}}^{\kappa\lambda} + 2 r_1 \partial_{_{\prime}} \omega_{_{\kappa\lambda}}^{\kappa\lambda} \partial_{_{\prime}} \omega_{_{\alpha}}^{\alpha} - \frac{2}{3} r_1 \partial_{_{\prime}} \omega_{_{\alpha\beta}}^{\alpha} \partial_{_{\prime}} \omega_{_{\alpha\beta}}^{\kappa} +$
$\frac{2}{3}r_2\partial^{\beta}\omega^{\theta\alpha}_{\kappa}\partial_{\theta}\omega_{\alpha\beta}^{\kappa} - \frac{2}{3}r_1\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\alpha\beta\theta} - \frac{1}{3}r_2\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\alpha\beta\theta} + \frac{2}{3}r_1\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\theta\alpha\beta} - \frac{2}{3}r_2\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\theta\alpha\beta} + 2r_1\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} - \frac{2}{3}r_1\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\theta\alpha\beta} + 2r_1\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} - \frac{2}{3}r_1\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\theta\alpha\beta} + 2r_1\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} - \frac{2}{3}r_1\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\alpha\beta} + \frac{2}{3}r_1\partial_{\theta}\omega^{\alpha\beta}\partial_{\kappa}\omega^{\alpha\beta} + \frac{2}{3}r_1\partial_{\phi}\omega^{\alpha\beta}\partial_{\kappa}\omega^{\alpha\beta} + \frac{2}{3}r_1\partial_{\phi}\omega^{\alpha\beta}\partial_{\kappa}\omega^{\alpha\beta}\partial_{\kappa}\omega^{\alpha\beta} + \frac{2}{3}r_1\partial_{\phi}\omega^{\alpha\beta}\partial_{\kappa}\omega^{\alpha\beta}\partial_{\kappa}\omega^{\alpha\beta}\partial_{\kappa}\omega^{\alpha\beta}\partial_{\kappa}\omega^{\alpha\beta}\partial_{\kappa}\omega^{\alpha\beta}\partial_{\kappa}\omega^{$
$2r_1\partial_\theta\omega_{\lambda}^{\ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda} + 2r_1\partial_\alpha\omega_{\lambda}^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 4r_1\partial_\theta\omega_{\lambda}^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \frac{1}{3}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\ \theta} + \frac{1}{6}t_2\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\ \theta} - \frac{2}{3}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{6}t_2\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}\partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{6}t_2\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}\partial^\kappa f_{\alpha}\partial$
$\frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\ \ \kappa}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{6}t_2\partial^{\alpha}f^{\lambda}_{\ \ \kappa}\partial^{\kappa}f_{\alpha\lambda} + t_1\ \omega_{\kappa\alpha}^{\ \ \alpha}\partial^{\kappa}f'_{\ \ \prime} + t_1\ \omega_{\kappa\lambda}^{\ \ \lambda}\partial^{\kappa}f'_{\ \ \prime} + 2t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\ \ \prime} - t_1\partial_{\kappa}f^{\lambda}_{\ \ \lambda}\partial^{\kappa}f'_{\ \ \prime} + \frac{1}{3}t_1\ \omega_{\prime\theta\kappa}\partial^{\kappa}f'^{\theta} +$
$\frac{1}{3}t_2 \ \omega_{I\theta\kappa} \ \partial^{\kappa} f^{I\theta} + \frac{4}{3}t_1 \ \omega_{I\kappa\theta} \ \partial^{\kappa} f^{I\theta} - \frac{2}{3}t_2 \ \omega_{I\kappa\theta} \ \partial^{\kappa} f^{I\theta} - \frac{1}{3}t_1 \ \omega_{\thetaI\kappa} \ \partial^{\kappa} f^{I\theta} - \frac{1}{3}t_2 \ \omega_{\thetaI\kappa} \ \partial^{\kappa} f^{I\theta} + \frac{2}{3}t_1 \ \omega_{\thetaKI} \ \partial^{\kappa} f^{I\theta} + \frac{2}{3}t_2 \ \omega_{\thetaKI} \ \partial^{\kappa} f^{I\theta} - \frac{1}{3}t_2 \ \omega_{\thetaKI} \ \partial^{\kappa} f^{I\theta} + \frac{1}{3}t_2 \ \omega_{\thetaKI} \ \partial^{\kappa} f$
$t_1 \; \omega_{_{I}\alpha}^{ \alpha} \; \partial^{\kappa} f^{\prime}_{ \kappa} - t_1 \; \omega_{_{I}\lambda}^{ \lambda} \; \partial^{\kappa} f^{\prime}_{ \kappa} + \tfrac{1}{3} t_1 \partial^{\alpha} f^{\lambda}_{ \kappa} \partial^{\kappa} f_{\lambda\alpha}^{ -} - \tfrac{1}{6} t_2 \partial^{\alpha} f^{\lambda}_{ \kappa} \partial^{\kappa} f_{\lambda\alpha}^{ +} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} - \tfrac{1}{6} t_2 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{2}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\lambda}^{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\lambda}^{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\lambda}^{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\lambda}^{ \theta} \partial^{\kappa} f^{\lambda}_{\lambda}^{ \theta} + \tfrac{1}{3} t_1 \partial_{\kappa} f^{\lambda$
$\frac{1}{6}t_2\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta} - t_1\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa}^{\kappa} + \tfrac{2}{3}r_1\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta}^{\theta} + \tfrac{1}{3}r_2\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta}^{\theta} - \tfrac{2}{3}r_1\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta}^{\theta} + \tfrac{2}{3}r_2\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta}^{\theta} + \tfrac{2}{3}r_2\partial_\kappa\omega^{\theta\alpha\beta}^{\theta} + \tfrac{2}{3}r_2\partial_\omega\omega^{\theta\alpha\beta}^{\theta} + 2$
$\frac{2}{3}r_1\partial^{\beta}\omega_{I}^{\alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta}^{} - \frac{2}{3}r_2\partial^{\beta}\omega_{I}^{}\partial_{\lambda}\omega_{\alpha\beta}^{} - \frac{8}{3}r_1\partial^{\beta}\omega_{I}^{}\partial_{\lambda}\omega_{\alpha\beta}^{} + \frac{2}{3}r_2\partial^{\beta}\omega_{I}^{}\partial_{\lambda}\omega_{\alpha\beta}^{} - 2r_1\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\kappa}^{} + 2r_1\partial_{\theta}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\kappa}^{\kappa}$
Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

Wave operator

	$\omega_{0}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\sharp 1}$										
$\omega_{0}^{\#1}$ †	-t ₁	$i\sqrt{2}kt_1$	0	0										
$f_{0+}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0										
$f_{0+}^{#2} \dagger$	0	0	0	0										
$\omega_{0}^{\#_{1}}$ †	0	0	0	$k^2 r_2 + t_2$	$\omega_{1^{+}lphaeta}^{\#1}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^-lpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$			
				$\omega_{1}^{\#1}\dagger^{lphaeta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0			
				$\omega_1^{\#2}\dagger^{lphaeta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	\frac{t_1 + t_2}{3}	$\frac{1}{3}ik(t_1+t_2)$	0	0	0	0			
				$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	3		0	0	0			
				$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	Īkt₁			
				$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0			
				$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0			
				$f_1^{#2} \dagger^{\alpha}$	0	0	0	$-ikt_1$	0	0	0	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
											$\omega_{2}^{#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{i k t_1}{\sqrt{2}}$	0
											$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
											$\omega_2^{#1}$ † $^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

Saturated propagator

Source constraints

Source constraints	
SO(3) irreps	#
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	3
$\tau_1^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	16

Massive spectrum

Massless spectrum

(No massless particles)

Unitarity conditions

Unitarity conditions
$r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0$