Bayesian Inference: Principles and Practice

4. Sparse Bayesian Models: Analysis, Optimisation and Applications

Mike Tipping

Lecture 4: Overview

- Further analysis of the sparse Bayesian marginal likelihood function
- Based on this, an improved optimisation algorithm
- Extensions and applications of (sparse) Bayesian models

The Marginal Likelihood Function

■ We integrated out weights **w** to obtain *marginal likelihood*:

$$\begin{split} p(\mathbf{t}|\alpha,\sigma^2) &= \int p(\mathbf{t}|\mathbf{w},\sigma^2) \, p(\mathbf{w}|\alpha) \; d\mathbf{w}, \\ &= (2\pi)^{-N/2} |\mathbf{C}|^{-1/2} \exp \left\{ -\frac{1}{2} \mathbf{t}^\mathsf{T} \mathbf{C}^{-1} \mathbf{t} \right\} \end{split}$$
 with $\mathbf{C} = \sigma^2 \mathbf{I} + \sum_m \alpha_m^{-1} \phi_m \phi_m^\mathsf{T}$

- Further integration over α intractable
- We maximise $p(\alpha, \sigma^2 | \mathbf{t})$ to find α_{MP} and σ^2_{MP}
- For uniform hyperpriors, equivalent to maximising $p(\mathbf{t}|\alpha, \sigma^2)$

That Picture Again...

$$\mathbf{C} = \sigma^2 \mathbf{I} + \sum_{m} \alpha_m^{-1} \phi_m \phi_m^{\mathsf{T}}$$

Dependence on a Single Hyperparameter (1)

Our objective is to maximise:

$$\log p(\mathbf{t}|\alpha, \sigma^2) = -\frac{1}{2} \left[\log |\mathbf{C}| + \mathbf{t}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{t} \right] + \text{constant terms}$$

Decompose:

$$\mathbf{C} = \sigma^2 \mathbf{I} + \sum_{m \neq i} \alpha_m^{-1} \phi_m \phi_m^{\mathsf{T}} + \alpha_i^{-1} \phi_i \phi_i^{\mathsf{T}}$$
$$= \mathbf{C}_{-i} + \alpha_i^{-1} \phi_i \phi_i^{\mathsf{T}}$$

Now we exploit some established matrix identities:

$$|\mathbf{C}| = |\mathbf{C}_{-i}| |1 + \alpha_i^{-1} \phi_i^{\mathsf{T}} \mathbf{C}_{-i}^{-1} \phi_i|$$

$$\mathbf{C}^{-1} = \mathbf{C}_{-i}^{-1} - \frac{\mathbf{C}_{-i}^{-1} \phi_i \phi_i^{\mathsf{T}} \mathbf{C}_{-i}^{-1}}{\alpha_i + \phi_i^{\mathsf{T}} \mathbf{C}_{-i}^{-1} \phi_i}$$

Dependence on a Single Hyperparameter (2)

 $\log p(\mathbf{t}|\alpha, \sigma^2)$ can then be written in the form:

$$\log p(\mathbf{t}|\alpha_{-i}, \sigma^2) + \frac{1}{2} \left[\log \alpha_i - \log (\alpha_i + s_i) + \frac{q_i^2}{\alpha_i + s_i} \right]$$

where $\log p(\mathbf{t}|\alpha_{-i}, \sigma^2)$ is independent of α_i

For convenience, "quality" and "sparsity" terms have been defined:

$$q_i = \phi_i^\mathsf{T} \mathbf{C}_{-i}^{-1} \mathbf{t}$$

$$\mathbf{s}_i = \boldsymbol{\phi}_i^\mathsf{T} \mathbf{C}_{-i}^{-1} \boldsymbol{\phi}_i$$

Note these terms are independent of α_i (but depend on all other α_{-i})

Maxima of the Marginal Likelihood

■ Dependence of marginal likelihood on single hyperparameter α_i is captured by:

$$\ell(\alpha_i) = \log \alpha_i - \log (\alpha_i + s_i) + \frac{q_i^2}{\alpha_i + s_i}$$

- Setting $\partial \ell(\alpha_i)/\partial \alpha_i = 0$ gives analytic solutions:
 - If $q_i^2 > s_i$:

$$\alpha_i^{\text{opt}} = \frac{s_i^2}{q_i^2 - s_i}$$

If
$$q_i^2 \leq s_i$$
:

$$\alpha_i^{\text{opt}} = \infty$$

Maxima Visualised

Optimisation Operations

- For any given basis function $\phi_i(\mathbf{x})$ and associated hyperparameter α_i we can compute the quantities s_i and q_i^2 (true even if $\alpha_i = \infty$)
- Depending on the criterion $q_i^2 > s_i$ and the value of α_i we can then perform the following updates, all of which will increase $p(\mathbf{t}|\alpha, \sigma^2)$:

	"In model": $\alpha_i < \infty$	"Out of model": $\alpha_i = \infty$
$q_i^2 > s_i$	re-estimation of α_i	addition of $\phi_i(\mathbf{x})$
$q_i^2 \leq s_i$	deletion of $\phi_i(\mathbf{x})$	

Optimisation Algorithm Sketch

- 1 Initialise σ^2 sensibly and all $\alpha_m = \infty$ (i.e. the 'empty' model)
- 2 Select a function $\phi_i(\mathbf{x})$ from the set of all M
- **3** Compute "relevance" $\mathcal{R}_i \triangleq q_i^2 s_i$
 - If $\mathcal{R}_i > 0$ and $\alpha_i < \infty$: re-estimate α_i
 - If $\mathcal{R}_i > 0$ and $\alpha_i = \infty$: add ϕ_i to the model with updated α_i
 - If $\mathcal{R}_i \leq 0$ and $\alpha_i < \infty$: delete ϕ_i from the model and set $\alpha_i = \infty$
- 4 If estimating the noise level, update σ^2
- **5** Recalculate all q_m and s_m
- If converged terminate, otherwise goto ②

Performance Illustration: run time

Performance Illustration: example timing

Comparing at N = 1000 we have:

	Regression	Classification
Old RVM	4 mins 17 secs	4 mins 58 secs
New RVM	14.42 secs	12.84 secs
SVM ^{light}	1.03 secs	0.38 secs

Greediness?

- Agglomerative algorithms (e.g. "matching pursuit") are often greedy i.e. "early" additions can be significantly sub-optimal
- Demonstration: a popular signal processing test data set

- Approximate with a basis comprising:
 - "heaviside" step functions (easy)
 - "heaviside" and Gaussians (hard?)

"Blocks" Data Results Summary

	Heaviside		Heaviside + Gauss	
	Bayes	ORMP	Bayes	ORMP
М	1024	1024	5120	5120
\widehat{M}	12	12	12	82
Iterations	21	11	224	82
Additions	11	11	107	82
Deletions	0	_	96	_
Re-estimates	10	_	21	_
Time	1.34s	1.19s	43.3s	24.6s

Applications: approximation (1)

- Assume the target is noise-free and is to be approximated more 'cheaply', e.g. an image which is to be compressed
- Choose some appropriate basis set (e.g. Gabor wavelets)
- Fix σ^2 as desired
- Run the sparse Bayes regression algorithm
- Interpretation of σ^2 has changed it now models the approximation error, not the noise process

Applications: image compression

Applications: approximation (2)

 \blacksquare Can approximate *functions* $f(\mathbf{x})$:

Likelihood
$$\propto \exp \left\{-\frac{1}{2\sigma^2} \int ||y(\mathbf{x}; \mathbf{w}) - f(\mathbf{x})||^2 d\mathbf{x}\right\}$$

- Condition: we need to compute all $\int \phi_i(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$ and $\int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$
- Practical example: $f(\mathbf{x}) = \sum_{j} v_{j} \psi_{j}(\mathbf{x})$ with ψ_{j} Gaussian
- Potential target functions: Gaussian process, SVM, kernel density estimator etc

Mean Gaussian Process Predictor

(b) σ =0.001, *M*=15/100

(a) σ=0.100, *M*=7/100

(c) σ=0.001, *M*=20/2000

Applications: sparse kernel PCA

Work directly with $\mathbf{C} = \sum_{n=1}^{N} \alpha_n^{-1} \phi_n \phi_n^{\mathsf{T}} + \sigma^2 \mathbf{I}$

Applications: robust regression

Exploit *variational* formalism to incorporate outlier distribution. *i.e.* 'mixture' likelihood: $p(\mathbf{t}|\mathbf{w}) = \theta.p_{\text{data}}(\mathbf{t}|\mathbf{w}) + (1-\theta).p_{\text{outlier}}(\mathbf{t})$

Standard RV regression RMS error: **0.1597** Noise: 0.113 Estimate: 0.304 8.0 0.6 0.4 0.2 -0.2-0.410 -10-50 5

RV regression with outlier 'detection'

Applications: Image Super-Resolution

Exploits marginalisation over the unknown high-resolution image to optimise registration parameters

Low-resolution image (1 of 16)

4x Super-resolved image (Bayesian)

More Information

http://www.research.microsoft.com/mlp/RVM/