Thermodynamics- Basic Concepts

MEE 1003 Thermodynamics Fall 2019-20

Dr. Y. Mukkamala

Outline

- Basic concepts definitions
- SI units review
- Properties of a system
- State, system (closed and open), equilibrium, process and cycle
- Energy, forms of energy
- Work and heat transfer
- Temperature, pressure (absolute and gage), temperature scales, zeroth law of Thermodynamics

References

- Yunus Cengel, Michael A. Boles,
 "Thermodynamics and engineering approach".
- Profesor H.K. Ma, National Taiwan University.

Introduction to Thermodynamics

 https://www.youtube.com/watch?v=F_NmS-Wy2lE&t=12s

Applications of Thermodynamics

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Basic Concepts - Definitions

- Therme (heat in Greek) + dynamics (power) =
 Thermodynamics
- Thermodynamics:
 - Science of energy
 - Energy transformation
 - Power generation
 - Refrigeration
 - Properties and states of matter.
- Principle of conservation of energy:
 - -Energy cannot be created or destroyed; it can only change forms (the first law)
 - -Energy is a thermodynamic property.

SI Units

- Dimension: Any physical quantity
- Units: The arbitrary magnitudes assigned to the dimensions
- Primary or fundamental dimension:
 - -mass m, length L, time t, temperature T, etc
- Second or derived dimension:
 - -velocity v, energy E, volume V, etc.

- Mass: kg
- Length: m
- Temperature: C, K (absolute)
- Time: s

Derived SI units

- Force F = ma; 1 N = 1 (kg) x 1 (m/s²)
- Weight W = mg;
 - $-1 \text{ kgf} = 1 \text{ (kg) x 9.81 (m/s}^2) = 9.81 \text{ N}$
- Work (form of energy) = F x s (distance);
- units J (Joule); 1 J = 1 N x 1 m
- Energy E; units kJ

Thermodynamic State

- Defined by its properties
- State postulate:
 - State of a simple compressible system is completely defined by two independent and intensive properties.
- A system is simply compressible if magnetic, electric, gravitational, motion, and surface tension forces are absent.

System (Closed and open)

System:

A quantity of matter or a region in space chosen for study

Surrounding:

Everything external to the system

Boundary:

The real or imaginary surface that separates the system from its surroundings.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

SURROUNDINGS

Closed and Open Systems

Closed system

A specified amount of mass, no flow of matter

Open system

A specified region in space, open to the flow of matter

Isolated system

One that is not influenced in anyway by surroundings)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

(a) A control volume with real and imaginary boundaries

(b) A control volume with fixed and moving boundaries

Properties of a system

- Any characteristic of a system
 - Ex: Pressure (p), Temperature (T), mass (m)
- Intensive
 - Independent of mass
 - Ex: Density (kg/m³), Temperature, Pressure
- Extensive
 - Dependent on mass
 - Ex: Weight (mg), total mass (density x volume)

- Extensive properties per unit mass
 - Specific properties
 - Ex: Specific volume (m³/kg)
- Continuum:
 - Continuous, homogeneous matter with disregard to atomic structure.
 - Ex: Air, water at room conditions

Equilibrium

- A state of balance
 - No unbalanced potential (forces, temperature, voltage, etc.)
- A system in equilibrium is subjected to no change when isolated from surroundings.
- Thermal equilibrium
 - Temperature is the same throughout the system

Processes

Process

 Any change in system from one equilibrium state to another

Path

- Series of states through which the system passes during a process
- Quasi-equilibrium (or quasi-static)
 - System changes infinitesimally slowly and always remains in equilibrium
 - Slow process allows internal variables to adjust to maintain constant equilibrium

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Types of Processes

- Steady flow process
 - Process which occurs with no change in time
- Uniform process
 - Process that doesn't change with location.
- Isothermal process
 - Process that occurs at constant temperature
- Isobaric process
 - Process that happens at constant pressure
- Isochoric process
 - Process occurring at constant volume

Forms of Energy

- Thermal
- Mechanical
- Electrical
- Magnetic
- Chemical
- Nuclear
- The sum of them is *Total Energy*

- Total energy
 - Microscopic; Macroscopic
- Macroscopic
 - Ex: Potential and Kinetic energies (w.r.t an external reference frame)
- Microscopic
 - Ex: Internal energy (due to molecular activity independent of external reference frames)

• Energy equations:

Specific energy: $e = \frac{E}{m}$ (kJ/kg); E: total energy

$$KE = m \frac{V^2}{2}$$
 (kJ); $PE = mgz$ (kJ)

Total energy (excluding magnetic, electrical, surface tension, nuclear):

$$E = U + m \frac{V^2}{2} + mgz$$
 (kJ); Intensive (per unit mass) $e = u + \frac{V^2}{2} + gz$ (kJ/kg)

Mass flow rate
$$\dot{m} = \rho VA$$
 (kg/s); Energy flow rate $\dot{E} = \dot{m}e$ ($\frac{kg}{s}x\frac{kJ}{kg} = kW$)

Mechanical energy = flow work + kinetic energy + potential energy

$$e_{mech} = pv + \frac{V^2}{2} + gz; \ v \text{ (specific volume)} = \frac{1}{\rho}$$

If
$$\rho = \text{const}$$
 (incompresible flow); $\Delta e = (p_2 - p_1)v + \frac{V_2^2 - V_1^2}{2} + g(z_2 - z_1)$ (kJ/kg)

Work and Heat Transfer

- Energy transfer at a boundary:
 - Heat
 - Work
- Heat
 - Energy transfer between two systems by virtue of temperature difference.
 - Thermodynamics deals with quantity of energy transfer.
 - Heat flow or transfer is the rate of that energy transfer.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Surroundings

Modes of heat transfer

Conduction

 Heat transfer in a solid, liquid or gas due to intermolecular vibrations (lattice vibrations in solids)

Convection

 Heat transfer in liquids and gases due to the bulk motion of the fluid.

Radiation

 Heat transfer with or without medium due to photon and electromagnetic wave emissions.

Adiabatic

No heat transfer between system and surroundings

Modes of heat transfer

Conduction: $\dot{Q} = -kA_c \frac{dT}{dx}$ (Fourier's law); k - coefficient of thermal conductivity

Convection: $\dot{Q} = hA_{surface}\Delta T$ (Newton's law of cooling); h - convective heat transfer coefficient

Radiation: $Q = \sigma \varepsilon A_{surface} (T_1^4 - T_2^4)$; σ - Stefan Boltzmann constant; ε - Emissivity

Work

- Energy transfer when force acts through a certain distance.
 - Work done by a system is +ve
 - Work done on a system is negative
 - Like heat, work is path dependent
 - Both heat and work transfer are represented by inexact differentials
 - $-\delta Q$, δW

$$\int_{1}^{2} \delta W = W_{12}$$

(H.K.Ma, National Taiwan University)

Work Equation

$$\delta W = \underline{F} \cdot d\underline{s}$$

Types of work

Mechanical work (Shaft, spring, acceleration)

Shaft work: T = Fr; $s = (2\pi r) N$ for N rpm

If T = const,
$$W_{\text{shaft}} = F \times s = \left(\frac{T}{r}\right) \times (2\pi rN) = (2\pi rNT)$$

Spring Work: F = kx (k is the spring constant in N/m).

$$\delta W_{spring} = Fdx$$

$$\int_{1}^{2} \delta W_{\text{spring}} = \int_{1}^{2} F dx = \int_{1}^{2} kx \ dx = \frac{kx^{2}}{2} \bigg|_{1}^{2} = \frac{1}{2} k(x_{2}^{2} - x_{1}^{2})$$

Acceleration work

$$F = ma = m\frac{dV}{dt}. W = \int_{1}^{2} F ds = \int_{1}^{2} m\frac{dV}{dt} V dt \quad (\frac{ds}{dt} = V)$$

$$\Rightarrow W = \int_{1}^{2} mV dV = \frac{1}{2} m(V_2^2 - V_1^2)$$

Energy-Work correlation

Energy change of a system = Heat flow + work transfer + mass flow

$$E_{in} - E_{out} = (Q_{in} - Q_{out}) + (W_{in} - W_{out}) + (E_{mass,in} - E_{mass,out})$$

Adiabatic system: $\Delta Q = 0$; Closed system: $\Delta E_{mass} = 0$; Static systems: $\Delta W = 0$

In rate form:

$$\Delta \, \dot{E} = \Delta \, \dot{Q} \, + \Delta \, \dot{W} \, + \Delta \, \dot{E}_{mass}$$

$$Q = \dot{Q} \Delta t$$
; $W = \dot{W} \Delta t$; $E = \dot{E} \Delta t$

Energy conversion efficiencies

Energy efficiency =
$$\frac{\text{Actual output}}{\text{Required output}}$$

$$\eta_{\text{combustion}} = \frac{\text{Actual heat release during combustion}}{\text{Heating value (Calorific value)}}$$

Electrical generator (power → electricity)

$$\eta_{\text{overall}} = \eta_{\text{comb}} \times \eta_{\text{thermal}} \times \eta_{\text{generator}} = \frac{W_{\text{net}}}{HHV \times m_{\text{net}}}$$

$$\eta_{\text{mech}} = \frac{E_{\text{mech,out}}}{E_{\text{mech, in}}}; \quad \eta_{\text{turbine}} = \frac{Power \text{ out}}{Ideal \text{ power (isentropic)}};$$
Ideal power input (isentropic)

$$\eta_{\text{compresor/pump}} = \frac{\text{Ideal power input (isentropic)}}{\text{Actual power input}}$$

Temperature and Zeroth Law of Thermodynamics

Temperature

- The degree of hotness or coldness
- Measured indirectly my detecting changes in physical properties (ex: volume variation of Hg in a glass thermometer)
- "Feel" can be misleading.
 - A metal chair feels colder than a wooden chair at same temperature because of higher radiation loss.

Zeroth law of Thermodynamics

- Two bodies in thermal equilibrium with a third body are also in equilibrium with each other.
- Thermal equilibrium occurs when heat transfer from hot to cold object stops.
- At that state, all bodies have same temperature.

Thermodynamic Temperature Scale:

- C; F; K; R; Ideal gas temperature scale, K

Constant-volume gas thermometer

At low pressure, the temperature of a gas is proportional to its pressure at constant volume