Metody numeryczne – wyniki, laboratorium nr 3, grupa 6 Metoda największego spadku dla macierzy wstęgowej

Ad 1.6.

(b) Pojedyncza precyzja (float), warunek zbieżności: $\sqrt{\mathbf{r}_k^{\mathrm{T}}\mathbf{r}_k} < 10^{-3}$

Rysunek 1: Norma wektora reszt $||\vec{r}_k||_2$ (kolor czerwony, lewa oś) oraz norma wektora rozwiązań $||\vec{x}_k||_2$ (kolor niebieski, prawa oś) w funkcji numeru iteracji.

Wyniki pośrednie

(Nie są wymagane według treści, ale mogą posłużyć Państwu do testów swojego programu – szczególnie, jeśli wyniki z rys. 1 byłyby u Państwa nieprawidłowe.)

Ad 1.1. Prawidłowo wypełniona macierz **A** o rozmiarze $n \times n$ (tj. 1000×1000) powinna mieć 2m+1 niezerowych przekątnych: diagonala, 5 przekątnych nad diagonalą oraz 5 przekątnych pod diagonalą (dokładne wartości: wzór (1)).

Najczęściej popełniane błędy:

- dzielenie int/int wynik jest obliczany w typie int, więc elementy macierzy są zaokrąglone w większości do 0. Żeby się przed tym uchronić, wystarczy zapisać np. licznik w formie 1.0 (zamiast całkowitego 1).
- brak nawiasu wokół mianownika ze względu na priorytety operatorów oraz ich kierunek wiązania, mianownik musi być ujęty w nawias.
- brak inicjalizacji elementów, które są zerowe należy dopilnować, żeby zera były wpisane w elementach poza wstęgą.

Ad 1.2. Wektor wyrazów wolnych o n = 1000 elementach – wartości według wzoru b[i] = i + 1 powinny wynosić (wzór (2)):

$$\vec{b} = \begin{pmatrix} 1\\2\\3\\4\\5\\\vdots\\998\\999\\1000 \end{pmatrix}$$
 (2)

Ad 1.3. Metoda największego spadku – najczęściej popełniane błędy:

- ^ nie jest operatorem potęgowania! Stałą typu 10⁻⁶ zapisujemy jako stałą zmiennoprzecinkową w notacji wykładniczej: 1e-6.
- Jak uzyskać transpozycję wektora? Nijak :) Transpozycja jest nam potrzebna tylko w celu poprawnego zrozumienia wzoru. Rozpisane wzory dla wektorów (iloczyn skalarny) biorą już pod uwagę transpozycję. Sposób zapisania wektora w pamięci jest nieistotny to kwestia abstrakcyjna :)
- Pierwiastki w złych miejscach lub ich brak: przy obliczaniu samego iloczynu skalarnego nie ma pierwiastka. Przy obliczaniu normy musi być pierwiastek (z iloczynu skalarnego).

- Źle wypełniony wektor początkowy \vec{x}_0 wszystkie elementy wektora muszą być zainicjalizowane tą samą wartością początkową (w podpunkcie a) są to zera, w podpunkcie b): jedynki).
- Błędny warunek zbieżności proszę pamiętać, że dla typu double używamy warunku obiegu pętli: $\|\vec{r}_k\|_2 > 10^{-6}$, natomiast dla float: $\|\vec{r}_k\|_2 > 10^{-3}$. Inaczej pętla może stać się nieskończona.
- Ad 1.4. Niektóre wartości wypisane przez program: dla typu double: tabela 1., float: tabela 2. (na ich podstawie wygenerowano wykresy 1(a) oraz 1(b)).

Uwaga: jeśli wartości **nieznacznie się różnią**, niekoniecznie oznacza to błąd; może to wynikać z innego zaokrąglenia liczb zmiennoprzecinkowych, ze względu np. na inną kolejność obliczeń.

k	$ \vec{r}_k _2 \ (\vec{x}_0 = \vec{0})$	α_k	$ \vec{x}_k _2$
1	18271.111077	0.257112	4697.722212
2	482.785484	0.496902	4703.843599
3	212.182191	0.457346	4716.089481
:	:	:	:
128	0.000001	0.495898	4720.211839
129	0.000001	0.470064	4720.211839
130	0.000001	0.495920	4720.211839

k	$ \vec{r}_k _2 \ (\vec{x}_0 = \vec{1})$	α_k	$ \vec{x}_k _2$
1	18164.577309	0.257116	4697.772883
2	481.816214	0.497276	4703.830333
3	211.894834	0.457304	4716.120869
:	:	:	:
128	0.000001	0.496029	4720.211839
129	0.000001	0.469947	4720.211839
130	0.000001	0.496050	4720.211839

- (a) Przypadek dla wektora startowego $\vec{x}_0 = \vec{0}$
- (b) Przypadek dla wektora startowego $\vec{x}_0 = \vec{1}$

Tabela 1: Wyniki dla podwójnej precyzji double, $\epsilon = 10^{-6}$

k	$ \vec{r}_k _2 \ (\vec{x}_0 = \vec{0})$	α_k	$ \vec{x}_k _2$
1	18271.101554	0.257112	4697.719021
2	482.785165	0.496903	4703.845236
3	212.181149	0.457349	4716.088634
:	:	:	:
81	0.001062	0.428694	4720.211860
82	0.001031	0.487603	4720.211648
83	0.000997	0.431019	4720.211860

k	$ \vec{r}_k _2 \ (\vec{x}_0 = \vec{1})$	α_k	$ \vec{x}_k _2$
1	18164.574754	0.257116	4697.770109
2	481.815933	0.497277	4703.832267
3	211.894026	0.457306	4716.118319
:	:	:	:
84	0.001055	0.437672	4720.211648
85	0.001003	0.421533	4720.212283
86	0.000980	0.455854	4720.212072

- (a) Przypadek dla wektora startowego $\vec{x}_0 = \vec{0}$
- (b) Przypadek dla wektora startowego $\vec{x}_0 = \vec{1}$

Tabela 2: Wyniki dla pojedynczej precyzji float, $\epsilon=10^{-3}$