Mathematical Modelling Physics of projectiles

Assumptions:

- Vacuum: No air resistance.
- Uniform gravity: The earth is flat. Gravity is vertical.
- Newton's laws: No relativity.

Model:

- Horizontal motion independent of vertical.
- Each second, ball moves right 20 meters.
- We'll deal with vertical motion separately.

(1) Write in initial values from supervisor: xVelocity=20; xPosition=0;

3	4 ====
xVelocity	xPosition
add in	add in
xAccel	xVelocity
20	0
	add in xAccel

<u> </u>	3 <u></u>	4 ====
xAccel	xVelocity	Positio
add in	add in	add in
xJerk	xAccel	xVelocizy
0	20	
0		20+0
0		
0		
0		
0		
0		

<u> </u>	3 ===	4
xAccel	xVeloci'y	xPosi⁺Jn
add in	In	a in
xJerk	ccel	velocity
0	20	0
0	0+20	20
0		49
0		
0		
0		
0		

₂	3	
xAccel	xVelocity	xPg₃ition
add in	add in	add in
xJerk	xAccel	elocit
0	20	
0	20	20
0		20+20
0	4	20120
0		
0		
0		

<u> </u>	3	4
xAccel	xVelocity	APositic 1
add in	add in	ade'm
xJerk	cel	locity
0	20 /	0
0	20	20
0	0 + 20	4 0
0	0.20	
0		
0		
0		

xAccel	xVelocity	xPontion
add in	add in	a d in
xJerk	xAccel 🔺	Velocit
0	20	
0	20	20
0	20	40
O		60
0		
0		
0		

Mathematical Modelling Physics of projectiles

Assumptions:

- Vacuum, uniform vertical gravity, no relativity, horizontal motion is independent of vertical motion.
- Vertical Model (Discretized!)
 - Each second, ball moves up by its current vertical velocity (meters/second)
 - During the first second, the vertical velocity is 50 meters/second.
 - Each second, the vertical velocity changes by gravity's acceleration of -10 meters/second/second.
 - So, eventually the ball falls.

(1) Write in initial values from supervisor: yVelocity=50; yPosition=0;

	~···· , ·		
7 <u></u>	8	9 ==	
yAccel	yVelocity	yPosition	
add in	add in	add in	
yJerk	yAccel	yVelocity	
-10	50	0	1
-10			2
-10			3
-10			4
-10			5
-10			6

yAccel yVelocity add in dd in add in **v**Velocit yJerk yAccel -10 -10 -10 -10 -10

50+0

(2)Add # above with # _10+50 left and above: ______

	···· .		
7	8	9	
yAccel	yVelc city	yPo ition	
yAccel add in	ad in	√d in	
yJerk	Accel	√elocity	
-10	50	0	1
-10	-10+50	50	2
-10			3
-10			4
-10			5
-10			6

40+50

7 <u></u>	8	9	
yAccel	yVeloc cy	yPosicion	
add in	yVelocicy adain	a d in	
yJerk	Accel	∠ elocity	
-10	50/		1
-10	40	50	2
-10	-10+40	90	3
-10			4
-10			5
-10			6

	· , .		
7 <u></u>	8	9	
yAccel	yVelocity	yP sition	
add in	add in	dd in	
yJerk	yAccel •	Velocity	
-10	50		1
-10	40	50	2
-10	30	90	3
-10		30+90	4
-10			5
-10			6

30+90

yVeloci yAccel add in add in add in elocity yJerk ccel -10+3-10

-10 + 30

	· , ·		
7 <u></u>	8	9	:
yAccel	yVelocity	yPosition	
add in	add in	add in	
yJerk	yAccel	yVelocity	
-10	50	0	1
-10	40	50	2
-10	30	90	3
-10	20	120	4
-10	10	140	5
-10	.0	150	6

Position 0 to position 50 speed was about 50. Position 50 to position 90 speed was about 40. Position 90 to position 120 150 speed was about 30. Position 120 to position 140 speed was about 20. Position 140 to position 150 speed was about 10.

What we did: Simulation

- During each second, the ball moves horizontally 20 meters.
- During each second, the ball moves vertically whatever it's current vertical velocity is.
- During each second the ball's current vertical velocity changes by having 10 (meters/second) subtracted.
- THIS IS NOT PERFECTLY ACCURATE!
- But: It's accurate enough AND it's easy to compute with numbers.

Let's do it with only 4 variables Imagine a paper (memory) shortage!

Horizontal

- int xVelocity;
- int xPosition;
- xVelocity = 20;
- xPosition = 0;
- Repeat:

```
xPostion = xPosition + xVelocity;
```

Let's do it with only 4 variables Imagine a paper (memory) shortage!

Vertical

- int yAccel;
- int yVelocity;
- int yPosition;
- yAccel = -10; yVelocity = 50; yPosition=0;
- REPEAT:

```
yPostion = yPosition + yVelocity;
yVelocity = yVelocity + yAccel;
```

What if you did the two steps within the loop body in reverse order?

Vertical

- int yAccel;
- int yVelocity;
- int yPosition;
- yAccel = -10; yVelocity = 50; yPosition=0;
- REPEAT:

```
yVelocity = yVelocity + yAccel; is yPosition = yPosition + yVelocity; reversed
```

```
yAccel = -10; yVelocity = 50; yPosition=0;
```

REPEAT: (ACTUALLY DO THIS ON PAPER!!)

```
yVelocity = yVelocity + yAccel;
yPosition = yPosition + yVelocity;
```

(A) (B)

yPosition yPosition

 $\mathbf{0}$

50 40

90 70

120 90

(numbers from (DIFFERENT your spreadsheet) numbers from

your spreadsheet)