INF251 Computer Graphics Autumn 2016 Exercise 05 Due to 23.11.2016

Stefan Bruckner and Sergej Stoppel University of Bergen

Problem 1. Splines

Assume you are given six pairwise different control points $p_i, 0 \le i \le 5$. We construct three different spline curves from these points. Fill in YES or NO in the following table, according to the relationship of the entries.

(12 points)

the corresponding	interpolates	interpolates	changing	degree of	The shape
	both p_0 and	all p_i	p_1 has a	smoothness	of the curve
	p_5		global in-	in all curve	is depen-
			fluence on	points is	dent on the
			the whole	$(C_0, G_1,$	coordinate
			curve	$C_1, C_2,$	system
				more)	
5th-order Bezier					
curve					
natural cubic spline					
uniform (not open)					
quadratic B-spline					

Problem 2. Splines

• $p_{k-1}(t), p_k(t)$ and $p_{k+1}(t)$ are three 2D spline curves that are part of a natural cubic spline interpolation of 2D points and two of them are given as follows:

$$(1) p_{k-1}(t) = \begin{pmatrix} -2\\0 \end{pmatrix} \cdot t^3 + \begin{pmatrix} 4\\3 \end{pmatrix} \cdot t^2 + \begin{pmatrix} 1\\-4 \end{pmatrix} \cdot t + \begin{pmatrix} 1\\2 \end{pmatrix}$$

$$(2) p_{k+1}(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot t^3 + \begin{pmatrix} -2 \\ 0 \end{pmatrix} \cdot t^2 + \begin{pmatrix} -1 \\ 5 \end{pmatrix} \cdot t + \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

- 1. At which 2D point do $p_k(t)$ and $p_{k+1}(t)$ meet?
- 2. What is the tangent vector of the spline curve in that point?

(6 points)

- Find the one 2D point \tilde{t} of $p_{k-1}(t)$ which has the smallest y-coordinate of all points $p_{k-1}(t)$ (6 points)
- what is the x-coordinate of $p_k \frac{1}{2}$? Note 1: being part of this natural cubic spline interpolation, $p_k(t)$ is fully determined (implicitly) by the definitions of $p_{k-1}(t)$ and $p_{k+1}(t)$. Note 2: You can save 50% of the computation by only searching for x. (16 points)

(28 points)

Problem 3. Splines Compute the natural cube spline interpolant of the given points:

X	0	1	2	3
f(x)	0	2	1	0

(12 points)

Problem 4. Splines

In the below grids ...

- ... place six control points of a closed, fifth-degree Bezier curve which is min. C^2 -continuous in all points (also in the closing point) in the left grid, and label them with p_0, p_1, p_2, p_3, p_4 and p_5 . Snap the points to the grid.
 - Just mark the locations of these points, with a x and label these locations you don't have to draw the curve.
- ... place five control points in the right grid in a way that they will form the letter S. Label them accordingly!

Figure 1: Left Grid Figure 2: Right Grid

(10 points)