Efficient Estimation of Random Coefficients Demand Models using Product and Consumer Datasets

Paul L. E. Grieco Charles Murry Joris Pinkse Stephan Sagl

Penn State

Boston College

Penn State

Penn State

Why another (micro) BLP methods paper?

- Applicability:

"nests" mixed logit, micro/macroBLP datasets & assumptions.

Efficiency:

makes full use of observed data and assumptions.

- Inference:

avoids strong assumptions; accounts for sampling in aggregate shares.

How is this accomplished

- Exploit likelihood of micro-data: no picking moments.
- Replace share constraint with "macro likelihood": allows micro-data to inform share estimates.
- Proper weighting between datasets.
- Introduce product-moments via penalty: adaptive rate of convergence.
- No computational penalty (objective function profiles).

The Model

A consumer i in market m with observable characteristics z_{im} purchases product j with probability:

$$\pi_{\mathrm{jm}}^{\mathrm{z}_{\mathrm{im}}}(\psi) = \mathbb{P}(\mathrm{y}_{\mathrm{ijm}} = 1 | \mathrm{z}_{\mathrm{im}}; \psi) = \int \underbrace{\frac{\exp(\delta_{\mathrm{jm}} + \mu_{\mathrm{ijm}}^{\mathrm{z}} + \mu_{\mathrm{ijm}}^{\mathrm{y}})}{\sum_{\mathrm{s}_{\mathrm{jm}}(\mathrm{z}_{\mathrm{im}}, \nu; \psi)}^{\mathrm{J}_{\mathrm{m}}} \exp(\delta_{\mathrm{gm}} + \mu_{\mathrm{igm}}^{\mathrm{z}} + \mu_{\mathrm{igm}}^{\nu})}}_{\mathrm{s}_{\mathrm{jm}}(\mathrm{z}_{\mathrm{im}}, \nu; \psi)} \mathrm{d} \mathrm{F}_{\mathrm{m}}(\nu),$$

where δ_{jm} absorbs product-market quality shock:

$$\delta_{\mathsf{jm}} = \mathsf{x}'_{\mathsf{jm}}\beta - \alpha \mathsf{p}_{\mathsf{jm}} + \xi_{\mathsf{jm}}$$

and ψ collects δ and parameters of μ .

4

Intuition from "missing" demographic data:

Suppose we observed y_{ijm} for all consumers but z_{im} only if $D_{im} = 1$. The loglikelihood would be:

$$\mathsf{LL}(\psi) = \sum_{\mathit{m}=1}^{\mathsf{M}} \sum_{i=0}^{\mathsf{J}_{\mathit{m}}} \sum_{i=1}^{\mathsf{N}_{\mathit{m}}} \mathsf{y}_{\mathsf{ijm}} \left(\mathsf{D}_{\mathsf{im}} \log \pi_{\mathsf{jm}}^{\mathsf{z}_{\mathsf{im}}}(\psi) + (1 - \mathsf{D}_{\mathsf{im}}) \log \pi_{\mathsf{jm}}^{\mathsf{D}=0}(\psi) \right),$$

where we can compute,

$$\pi_{jm}^{\mathsf{D}=0}(\psi) = \int \mathbb{P}(\mathsf{y}_{\mathsf{ijm}} = 1 \cap \mathsf{D}_{\mathsf{im}} = 0 \mid \mathsf{z}_{\mathsf{im}} = \mathsf{z}) \; \mathsf{dG}_{\mathsf{m}}(\mathsf{z}).$$

5

Our loglikelihood

We observe a consumer sample $\{y_{ijm}, z_{im}\}$ and product shares

$$\mathsf{s}_{\mathsf{jm}} = \frac{1}{\mathsf{N}_{\mathsf{m}}} \sum_{i=1}^{\mathsf{N}_{\mathsf{m}}} \mathbb{1}_{\mathsf{y}_{\mathsf{ijm}}=1},$$

so rewrite loglikelihood:

$$\mathsf{LL}(\psi) = \underbrace{\sum_{m=1}^{M} \sum_{j=0}^{J_m} \sum_{i=1}^{N_m} \mathsf{D}_{im} \mathsf{y}_{ijm} \log \frac{\pi_{jm}^{\mathsf{Z}_{im}}(\psi)}{\pi_{jm}^{\mathsf{D}=1}(\psi)}}_{\mathsf{micro}} + \underbrace{\sum_{m=1}^{M} \mathsf{N}_m \sum_{j=0}^{J_m} \mathsf{s}_{jm} \log \pi_{jm}(\psi)}_{\mathsf{macro}},$$

recover $(\hat{\alpha}, \hat{\beta}) = \Xi \hat{\delta}$ with typical projection, $\Xi = (X^T P_v X)^{-1} X^T P_v$.

Contrast with GMM approach

- FOCs of macro term are the " δ -inversion" (Berry 1994) but they are not imposed as a constraint since micro term exists.
 - Small or heterogeneously sized markets.
 - Sampling of micro-data.
- Replace aggregated micro-moments with micro-likelihood.
- Straightforward inference that accounts for sampling error in macro shares—matters when shares are small!

GMM (dot) v. LL + Share Constraint (dash) v. MDLE (solid)

Are random coefficients (μ_{iim}^{ν}) identified?

- If demographics shift utility $(\mu_{iim}^z \neq 0)$, yes! Just as in a mixed-logit.
- However, if $\mu_{ijm}^z \approx 0$, identification will be weak. How close is close? Depends on consumer sample size $S_m = \sum_i D_{im}$.
- Product level moments introduce additional assumptions to address non or weak identification.
 - Benefit: stronger exogeneity assumptions (powerful, if true).
 - Cost: Moments coverage at rate J (number of products), not S_m (number of sampled consumers).

Best of both worlds: Penalized Estimator

We add a penalty term to our estimator to incorporate product moments:

$$\mathsf{LL}(\psi) - \frac{1}{\mathsf{J}} \hat{m}^\mathsf{T}(\alpha, \beta, \delta) \hat{\mathcal{W}} \hat{m}(\alpha, \beta, \delta)$$

where,

$$\hat{m}(\alpha, \beta, \delta) = \sum_{m=1}^{M} \sum_{j=1}^{J_m} b_{jm} (\delta_{jm} - \beta^{\mathsf{T}} \mathbf{x}_{jm} - \alpha \mathbf{p}_{jm}),$$

and b_{jm} are instruments such that $E[b_{jm}\xi_{jm}]=0$.

Note penalty also estimates (α, β) , need sufficient dimension in b.

Adaptive Convergence

	$\sqrt{S/J} imes \mu^{z}$ small		$\sqrt{S/J} imes \mu^{z}$ large	
Estimation method	\hat{eta}	$\hat{ heta}^{ u}$	\hat{eta}	$\hat{ heta}^{ u}$
Penalized loglikelihood	\sqrt{J}	\sqrt{J}	\sqrt{J}	\sqrt{S}
LL (no penalty)	weak	identification	\sqrt{J}	\sqrt{S}
GMM: $\partial \hat{\Omega}$ and $\hat{\Pi}$	\sqrt{J}	\sqrt{J}	\sqrt{J}	\sqrt{J}

Table: Asymptotic rates of convergence with (strong and valid) product-level moments

MDLE (dashed) vs. Penalized-MDLE (solid)

Conclusion

- Efficient likelihood-based estimator for discrete choice demand.
- Incorporates
 - Consumer-level data
 - Market-level data
 - Product-level exogeneity restricitons
- Adaptive convergence rate for weak identification.
- Straightforward, correct inference on all model parameters and functionals (elasticities, diversion, counterfactuals).