# Adversarial Machine Learning for Social Good: Reprogramming Black-box Machine

## Learning Models with Scarce Data and Limited Resources

Yun-Yun Tsai<sup>†</sup>, Pin-Yu Chen<sup>‡</sup>, Tsung-Yi Ho<sup>†</sup>

†Department of Computer Science, National Tsing Hua University ‡IBM Research



The Youtube voiceover can be found at https://youtu.be/XJJO1qQKRa8.

## Objective and Motivations

In this work, we propose a novel approach, black-box adversarial reprogramming (BAR), that reprograms a deployed machine learning (ML) model (e.g., a prediction API) for performing ML tasks related to social good in a black-box manner, such as autism spectrum disorder (ASD) classification and diabetic retinopathy (DR) detection. Our proposed method is inspired by a recent work on adversarial reprogramming (AR) [2], but we note the following substantial differences and unique challenges:

- Black-box setting.
- Data scarcity and resource constraint.



Fig. 1: Overview of black-box ML API

#### Problem Formulation

• We assume that the adversary has no knowledge of architecture or parameters related to black-box ML classification model which he/she want to reprogram. Such an adversary can train an adversarial program as an input transformation function.

#### Overview of BAR



Fig. 2: Overview of our proposed black-box adversarial reprogramming (BAR) method.

#### Our proposed BAR algorithm

Algorithm 1 Training algorithm of black-box adversarial reprogramming (BAR)

**Input:** black-box ML model F, AR loss function  $Loss(\cdot)$ , target domain training data  $\{D_i, y_i\}_{i=1}^n$ , maximum number of iterations T, number of random vectors for gradient estimation q, multi-label mapping function  $h(\cdot)$ , step size  $\{\alpha_t\}_{t=1}^T$ 

- Output: Optimal adversarial program parameters W
- 1: Randomly initialize W; set t = 1
- 2: Embed  $\{D_i\}_{i=1}^n$  with mask M to create  $\{X_i\}_{i=1}^n$
- 3: while  $t \leq T$  do
- 4: # Generate adversarial program
  - $P = \tanh(W \odot M)$
  - Generate q perturbed adversarial programs
- $P_j = \tanh((W + U_j) \odot M) \text{ for all } j \in [q]$
- $\{U_j\}_{j=1}^q$  are standard normal Gaussian random vectors divided by its Euclidean norm.
- 5: # Loss function evaluation for gradient estimation
- The loss function is defined a

$$Loss(W) = -\sum_{i=1}^{n} \sum_{j=1}^{K'} y_{ij} \log h_j \left( F(X_i + P(W)) \right). \tag{1}$$

Evaluate Loss in (1) with W and  $\{X_i + P\}_{i=1}^n$ 

Evaluate Loss in (1) with  $W + U_j$  and  $\{X_i + \widetilde{P}_j\}_{i=1}^n$  for all  $j \in [q]$ 

6: # Optimize adversarial program's parameters:

Use Step 5 and averaged gradient estimator  $\frac{1}{q}\sum_{j=1}^{q}g_{j}$  to obtain estimated gradient  $\bar{g}(W)$ , where  $\{g_{j}\}_{j=1}^{q}$  are q independent random gradient estimates of the form[3, 1]

$$g_j = b \cdot \frac{Loss(W + \beta U_j) - Loss(W)}{\beta} \cdot U_j, \tag{2}$$

 $W \leftarrow W - \alpha_t \cdot \bar{g}(W)$  $t \leftarrow t + 1$ 

7: end while

#### Experimental Results

We present the following experiments for performance evaluation.

• Reprogramming ImageNet classifiers for two social good tasks, including Autism Spectrum Disorder (ASD) classification (binary classification task) and Diabetic Retinopathy (DR) detection (5-class classification task).

| Model                 | training          | cnn                        | white-box                  | black-box                  |
|-----------------------|-------------------|----------------------------|----------------------------|----------------------------|
|                       | size(avg.)        | Acc.                       | Acc.                       | Acc.                       |
| Resnet 50<br>With MLM | 230<br>465<br>930 | 50.00%<br>48.71%<br>52.99% | 56.80%<br>62.55%<br>62.03% | 54.18%<br>57.00%<br>62.13% |
| Incept. V3 230        |                   | 50.00%                     | 60.12%                     | 57.55%                     |
| With MLM 465          |                   | 48.71%                     | 62.14%                     | 60.21%                     |
| 930                   |                   | 52.99%                     | 65.00%                     | 61.15%                     |

Fig. 3: Performance comparison on ASD classification task.

| Model                  | training<br>size(avg.) | cnn<br>Acc. | white-box<br>Acc. | black-box<br>Acc. |
|------------------------|------------------------|-------------|-------------------|-------------------|
| Resnet 50<br>With MLM  | 800                    | 71.84%      | 72.00%            | 71.46%            |
|                        | 1500                   | 72.62%      | 72.76%            | 73.04%            |
|                        | 3000                   | 72.65%      | 73.92%            | 73.71%            |
| Incept. V3<br>With MLM | 800                    | 71.84%      | 72.63%            | 72.68%            |
|                        | 1500                   | 72.62%      | 75.58%            | 73.83%            |
|                        | 3000                   | 72.65%      | 76.42%            | 74.33%            |

Fig. 4: Performance comparison on DR classification task.

• Reprogramming two online image classification APIs from Clarifai.com for ASD and DR tasks.

| Task | Training size/testing size | # of<br>query | cnn<br>Acc. | BAR<br>Acc. | Cost    |
|------|----------------------------|---------------|-------------|-------------|---------|
| DR   | 800/2400                   | 12.8k         | 71.84%      | 71.03%      | \$14.24 |
|      | 1500/2400                  | 24k           | 72.65%      | 72.75%      | \$23.2  |
| ASD  | 459/104                    | 11.9k         | 48.71%      | 60.14%      | \$13.52 |
|      | 930/104                    | 23.8k         | 52.99%      | 62.30%      | \$23.04 |

Fig. 5: Performance of BAR on Clarifai Moderation API and NSFW API.

## Ablation Study and Sensitivity Analysis

• In figure 6 (a), we shows sensitivity analysis on the training data size and the number of random vectors q for gradient estimation. For multi-label mapping (MLM), as shown in figure 6 (b), the accuracy of BAR can be further enhanced with MLM.





Fig. 6: Sensitive analysis

#### Conclusion

In this paper, we proposed a novel black-box adversarial reprogramming (BAR) method. Evaluated on two social good tasks with limited training data size, BAR showed comparable performance to the vanilla white-box AR method and outperformed baseline neural network models trained on the same dataset. We also demonstrated the practicality and effectiveness of BAR in reprogramming real-life online image classification APIs for social good tasks with low expenses (less than \$24 US dollars).

#### References

- [1] Pin-Yu Chen et al. "ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks Without Training Substitute Models". In: ACM Workshop on Artificial Intelligence and Security. 2017, pp. 15–26.
- [2] Gamaleldin F. Elsayed, Ian J. Goodfellow, and Jascha Sohl-Dickstein. "Adversarial Reprogramming of Neural Networks". In: *ArXiv* abs/1806.11146 (2018).
- [3] Chun-Chen Tu et al. "AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks". In: AAAI (2019).