ARCHI2 - Compte-rendu du TME1

Nicolas Phan

pour le 17 Janvier 2018

Table des matières

1 Automate du composant PibusSimpleRam					
	1.1 Machine à états du composant	2			

1 Automate du composant PibusSimpleRam

1.1 Machine à états du composant

 $\label{eq:figure 1} \textbf{Figure 1} - \textbf{Graphe de la MAE du composant RAM}$

Fonction	Transition
A	SEL.ADR_OK.READ.DELAY
В	SEL.ADR_OK.READ.DELAY
C	SEL.ADR_OK.READ.DELAY
D	SEL.ADR_OK.READ.DELAY
E	SEL.ADR_OK
F	SEL
G	1
U	GO
υ,	GO
V	GO
٧,	GO
Х	SEL.ADR_OK.READ
Y	SEL.(ADR_OK + READ)
Z	SEL
R	SEL.(ADR_OK + READ)
S	SEL.ADR_OK.READ
T	SEL

 ${\it Table 1-Expression des fonctions de transitions de la MAE du composant RAM}$

	ACK_EN	ACK_VALUE	DT_EN	MEM_CMD
IDLE	0	WAIT	0	NOPE
R_WAIT	1	WAIT	0	READ
R_OK	1	READY	0	READ
W_WAIT	1	WAIT	1	WRITE
W_OK	1	READY	1	WRITE
ERROR	1	ERROR	0	NOPE

 ${\it Table 2-Expression des fonctions de transitions de la MAE du composant RAM}$

 $1.\ \mathbf{Mod\'elisation}$: Cela consiste en la description d'un modèle du processeur,

La Figure ?? résume le flot de travail et les outils utilisés pour les étapes de Syntèse, Placement et Routage.

$$\sum_{\substack{k \in [[0,4]] \\ \text{shift_value}(\texttt{k}) = 1}} 2^k \quad = \texttt{shift_value}$$