

Анализ данных на практике

Решающие деревья

Решающие деревья

- Как работают
- Критерии информативности закономерностей
- ID3
- Идея регрессионных деревьев
- Random Forest

Как работают решающие деревья

Решающее дерево для Titanic dataset:

Как работают решающие деревья

Decision surface of a decision tree using paired features

Точный тест Фишера и Information Gain

$$\mathsf{IStat}(p,n) = -\log_2 C_P^p C_N^n / C_{P+N}^{p+n}$$

$$\mathsf{IGain}(p,n) = h\left(\frac{P}{\ell}\right) - \frac{p+n}{\ell}h\left(\frac{p}{p+n}\right) - \frac{\ell-p-n}{\ell}h\left(\frac{P-p}{\ell-p-n}\right)$$

ID3

- Выбираем наиболее информативное разбиение
- Если в одном из поддеревьев меньше αl примеров или все примеры из одного класса: сделать вершину терминальной
- Иначе: повторить процедуру для поддеревьев

Идея регрессионных деревьев

Random Forest

- 1. Бэггинг над деревьями
- 2. Рандомизированные разбиения в деревьях: выбираем k случайных признаков и ищем наиболее информативное разбиение по ним

Дополнительные темы

- C4.5
- CART

Решающие деревья

- Как работают
- Критерии информативности закономерностей
- ID3
- Идея регрессионных деревьев
- Random Forest

Дополнительные слайды

Prunning

- Pre-prunning:
 - Ограничиваем рост дерева до того как оно построено
 - Если в какой-то момент информативность признаков в разбиении меньше порога — не разбиваем вершину
- Post-prunning:
 - Упрощаем дерево после того как дерево построено

Post-prunning

Бинаризация

