H574160: Control Telerobotic Arm Remotely Via Pose Detection Of Human Arm

Ng Wei Jie Brandon A0184893L

Agenda

- 1. Introduction
- 2. Related Works
- 3. Datasets
- 4. Training Pipeline
- 5. Models
- 6. Results
- 7. Demo
- 8. Conclusion

Introduction

Motivation

Virtual Reality

Haptic Gloves

Accessible?

Contactless?

Seemingless?

Contributions

Demo pick and place

Design and train models

Collect upper body poses

Challenge

Temporal Info?

Multiview Info?

Image Info?

Turning left or right?

Previous

Choppy trajectory

Trained model on vector of 2D poses

Unreasonable poses for difficult 2D poses

Not physical robot

Related Works

Overview Of Related Works

- 1. **Chernytska**: Resnet based network (2019)
- 2. **Zhao**: SemGCN network (2019)
- 3. Bazarevsky: Lightweight network (2020)

SemGCN

BlazePose

Strategy

Loss Function?

Datasets

NTU Hand Dataset

Synthetically generated data

Freihand Dataset

Manually annotated data

Custom Upper Body Dataset

Record 3D poses with depth camera

Identify joint using 2D pose estimator to read the depth pixel

Training Pipeline

Data Annotation

Bright spot in heatmap is the joint location

Data Augmentation

Augmentation Step	Description	Hand Pose	Upper Body Pose
Brightness	Adjusted image brightness by a factor	Yes	Yes
	in the range of [-0.25, 0.25]		
Contrast	Adjusted image contrast by a factor in	Yes	Yes
	the range of [-0.25, 0.25]		
Sharpness	Adjusted image sharpness by a factor	Yes	Yes
	in the range of [-0.25, 0.25]		
Mirror	Mirror original image	Yes	No
Flip	Flip original image	Yes	No
Rotate	Rotate by an angle in the range of [0,	Yes	Yes
	360) degrees		
Translate	Translate by a pixel in the range of [-	Yes	Yes
	100, 100] pixels		
Fill holes	Fill black pixels after transformation	Yes	Yes
	with background images		

Formula to rotate 3D poses

$$\mathbf{P_{rotated}} = \begin{bmatrix} cos(\theta) & -sin(\theta) & 0 \\ sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{P}$$

Formula to translate 3D poses

$$x_{new} = x_{old} - \frac{p_x}{f_x} \times z$$

$$y_{new} = y_{old} - \frac{p_y}{f_y} \times z$$

Training Details

Training Detail	Description
Epochs	Trained for about 200 epochs for Pose 2D and 50 epochs for Pose
	3D till the validation loss saturated
Batch Size	Trained using minibatch size of 32 to average the loss
Optimizer	Trained with Adam optimizer to adapt the learning rate for different
	parameters
Learning Rate	Trained with 0.001 for the first half epochs and 0.0001 for the second
	half to fine tune performance
Embedding	Trained 3D Regressor using the encoded features in Pose 2D Rsti-
	mator as image embedding
Workers	Set workers to 8 to reduce time spent in I/O computation
Shuffle	Set shuffle flag to true when training the model to vary the training
	data
Loss Function	Supervisor training for Pose 2D Estimator using IoU loss and Pose
	3D Regressor using MSE

Added bone vector loss during fine-tuning

Loss Functions

IOU Loss Function (Supervise 2D Poses)

$$\begin{split} L_{IoU} &= 1 - IoU \\ IoU &= \frac{I}{U} \\ I &= \sum_{i} (y_{pred,i} * y_{true,i}) \\ U &= \sum_{i} (y_{pred,i} * y_{pred,i}) + \sum_{i} (y_{true,i} * y_{true,i}) - \sum_{i} (y_{pred,i} * y_{true,i}) \end{split}$$

Joint Position Loss Function (Supervise 3D Joint Position)

$$L_{mse} = \sum_{i} (P_{pred,i} - P_{true,i})^2$$

Bone Vector Loss Function (Supervise 3D Bone Vector)

$$L_{mse} = \sum_{i} (B_{pred,i} - B_{true,i})^2$$

Metrics

Mean Per Joint Position Error (MPJPE)

$$E = \sum_{i=1} |\mathbf{p_{pred}}(i) - \mathbf{p_{gt}}(i)|$$

Percentage Correct Keypoints (PCK)

$$Accuracy_{<5/15mm} = \frac{N_{keypoints} < 5/15mm}{N_{keypoints}} \times 100\%$$

Models

Model 1.X

Residual blocks adds complexity

	Models	Heat map	Regre	ssor Modul	e	Final Layer	MSE Loss Function
	v1.0	Yes	1 Conv +	Residual B	lock	Fully-Connected	3D Joints
	v1.1	No	1 Conv +	Residual B	Block	Fully-Connected	3D Joints
	v1.2	No	1 Conv +	Residual B	lock	Fully-Connected	3D Joints
Heatmap contributes	v1.3	No	1 Conv +	Residual B	Block	Fully-Connected	3D Joints
little to performance							
·	Model	Params	FP	PS 1	MPJPE	PCK@5mm	PCK@15mm
	v1.0	13.44M	12.	.6	8.66	30.77	87.85
	v1.1	13.30M	14.	77	8.24	34.68	89.04
	v1.2	16.85M	13.	85	8.64	32.05	87.46
	v1.3	8.58M	17.	33	9.24	29.99	84.63

Channels drastically increase the number of params

Model 2.X

1 Conv layer used for comparison

Heatmap contributes little to performance

Models	Heat map	Regressor Module	Final Layer	MSE Loss Function
v2.0	Yes	1 Conv	Fully-Connected	3D Joints
v2.1	No	1 Conv	Fully-Connected	3D Joints
v2.2	No	1 Conv	Fully-Connected	3D Joints
v2.3	No	1 Conv	Fully-Connected	3D Joints

Model	Params	FPS	MPJPE	PCK@5mm	PCK@15mm
v2.0	2.08M	20.16	10.61	21.73	80.08
v2.1	2.07M	21.02	10.46	22.95	80.14
v2.2	8.20M	18.14	11.84	17.24	74.90
v2.3	0.63M	22.47	12.47	17.02	70.57

Channels drastically increase the number of params

Model 3.X

SemGCN + NonLocal replaced FC layer

Heatmap contributes little to performance

Models	Heat map	Regressor Module	Final Layer	MSE Loss Function
v3.0	Yes	1 Conv	4 SemGCN + NonLocal	3D Joints
v3.1	No	1 Conv	4 SemGCN + NonLocal	3D Joints
v3.2	No	1 Conv	4 SemGCN + NonLocal	3D Joints
v3.3	No	1 Conv	4 SemGCN + NonLocal	3D Joints

Model	Params	FPS	MPJPE	PCK@5mm	PCK@15mm
v3.0	2.19M	18.02	8.24	35.63	88.76
v3.1	2.18M	19.17	8.28	33.84	89.41
v3.2	8.46M	16.23	7.64	39.70	90.70
v3.3	0.72M	19.40	9.10	33.65	84.90

Channels drastically increase the number of params

Model 4.X

Models

v4.0

SemGCN replace FC layer only

Final Layer

4 SemGCN

MSE Loss Function

3D Joints

v4.1 No 1 Conv 4 SemGCN 3D Joints No v4.2 1 Conv 4 SemGCN 3D Joints No 4 SemGCN 3D Joints v4.3 1 Conv Heatmap contributes

Heat map

Yes

Regressor Module

1 Conv

little to performance

Model	Params	FPS	MPJPE	PCK@5mm	PCK@15mm
v4.0	2.18M	18.99	8.31	34.71	88.89
v4.1	2.17M	20.00	8.63	33.26	87.76
v4.2	8.45M	17.38	8.09	37.64	88.89
v4.3	0.71M	21.01	10.25	24.60	81.43

Channels drastically increase the number of params

Model 3.X

Models	Heat map	Regressor Module	Final Layer	MSE Loss Function
v3.0	Yes	1 Conv	4 SemGCN + NonLocal	3D Joints
v3.1	No	1 Conv	4 SemGCN + NonLocal	3D Joints
v3.2	No	1 Conv	4 SemGCN + NonLocal	3D Joints
v3.3	No	1 Conv	4 SemGCN + NonLocal	3D Joints

Model	Params	FPS	MPJPE	PCK@5mm	PCK@15mm
v3.0	2.19M	18.02	8.24	35.63	88.76
v3.1	2.18M	19.17	8.28	33.84	89.41
v3.2	8.46M	16.23	7.64	39.70	90.70
v3.3	0.72M	19.40	9.10	33.65	84.90

Number of params is more than 4 times

Can we improve this?

Models	Heat map	Regressor Module	Final Layer	MSE Loss Function
v3.1.0	No	1 Conv	4 SemGCN + NonLocal	3D Joints
v3.1.1	No	1 Conv	2 SemGCN + NonLocal	3D Joints
v3.1.2	No	1 Conv	6 SemGCN + NonLocal	3D Joints
v3.1.3	No	2 Conv	4 SemGCN + NonLocal	3D Joints
v3.1.4	No	1 Conv	4 SemGCN + NonLocal	2D Joints + 3D Joints
v3.1.5	No	1 Conv	4 SemGCN + NonLocal	3D Joints + 3D Bone

Add 1 more Conv layer instead of residual block

Model	Params	FPS	MPJPE	PCK@5mm	PCK@15mm
v3.1.0	2.18M	19.17	7.29	40.78	92.78
v3.1.1	2.11M	20.05	7.32	41.59	92.49
v3.1.2	2.24M	18.38	6.93	44.52	93.64
v3.1.3	1.57M	19.37	6.87	44.94	93.89
v3.1.4	2.18M	19.13	8.52	30.43	89.30
v3.1.5	2.18M	19.17	6.87	45.27	93.56

Train longer at lower learning rate

Add bone vector loss for supervision

Results

Overview Of Results

- 1. Hand Pose (Benchmark)
- 2. Upper Body Pose (Image Embedding vs 2D Poses)
- 3. Successful Pose Estimation
- 4. Failed Pose Estimation

Hand Models

Performs better on NTU dataset*

Model	Dataset	Full Params	Pose 3D Module Params	MPJPE
Ours	NTU	23.05M	1.57M	6.79*
L. Ge [3]	NTU	21.77M	9.19M	8.03
Ours	Freihand	23.05M	1.57M	9.08*
K. Lin [6]	Freihand	98.43M	-	6.00
H. Choi [2]	Freihand	74.96M	67.60M	7.40

Does not perform too far off but model params is much smaller

Upper Body Models

Generalise well to my hand

Generalise well with occlusions

Failure

Demo

Robot Setup

Setup Unity as simulated robot

Setup MyCobot as physical robot

Teleoperation

Conclusion

Future Exploration

Model Distillation

Mobile Phone IMU And Cameras For Controls

References

- [1] Valentin Bazarevsky et al. BlazePose: On-device Real-time Body Pose tracking. 2020.
- [2] Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee. Pose2Mesh: Graph Convolutional Network for 3D Human Pose and Mesh Recovery from a 2D Human Pose. 2020.
- [3] Liuhao Ge et al. 3D Hand Shape and Pose Estimation from a Single RGB Image. 2019.
- [4] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015.
- [5] Shuang Li et al. A Mobile Robot Hand-Arm Teleoperation System by Vision and IMU. 2020.
- [6] Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh Graphormer. 2021.
- [7] Julieta Martinez et al. A simple yet effective baseline for 3d human pose estimation, 2017.
- [8] Chernytska Olha and Pranchuk Dmitry. 3D Hand Pose Estimation from Single RGB Camera. 2019.

- [10] Elephant Robotics. MyCobot Ros. URL: https://github.com/elephantrobotics/mycobot_ros.
- [11] Susumu Tachi. Forty Years of Telexistence From Concept to TELESAR VI. 2019.
- [12] Unity Technologies. Unity Robotics Hub. URL : https://github.com/Unity-Technologies/Unity-Robotics-Hub.
- [13] Jinbao Wang et al. Deep 3D human pose estimation: A review. 2021.
- [14] Xiaolong Wang et al. Non-local Neural Networks. 2018.
- [15] Long Zhao et al. Semantic Graph Convolutional Networks for 3D Human Pose Regression. 2020.
- [16] Christian Zimmermann et al. FreiHAND: A Dataset for Markerless Capture of Hand Pose and Shape from Single RGB Images. 2019.