Traffic Signal Control using Reinforcement Learning

Chitu Irina[†], Iordache Bogdan[‡], Manghiuc Teodor[‡], Marchitan Teodor[‡], Sotir Anca[‡], group 507 Artificial Intelligence, ‡ - group 512 Natural Language Processing

Overview

- Introduction
- Survey of Related Work
- Experiments

Introduction

Introduction

- Traffic congestion affects people's daily lives
 - Wasted time on commute due to bad traffic conditions
 - Traffic congestion also contributes to fuel waste
 - It also increases harmful emissions (greenhouse gases and other particles)
- Provide designs for better traffic signal control systems
- RL is a promising solution

Terminology

- Movement signal
- Phase (combination of movement signals)
- Interval
- Phase sequence
- Signal plan (sequence of phases and their starting time)

Terminology

Various combinations of movement signals and commonly considered phases

Survey of Related Work

Non-RL approaches based on heuristics:

- SOTL (Self-Organizing Traffic Lights)
- MaxPressure

The actions of the agent correspond to changing the phase of one or more intersections.

Common features for representing the state of an intersection:

- queue length
- waiting time
- volume
- delay

- speed
- phase duration
- positions of vehicles
- phase

Commonly used parameters for the definition of the **reward** are:

- queue length
- waiting time
- change of delay
- speed

- number of stops
- throughput
- freq. of signal change
- pressure

Control in systems with multiple intersections:

- 1. Centralized control
- 2. Individual RL without coordination
- 3. Individual RL with coordination

centralized control

individual RL w/ coordination

IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic Light Control

Key contributions:

- Real-world traffic data (24 intersections, China - Jinan, 31 days)
- Phase-Gated Deep Q-Network with memory palace

Interpret policies learned from real data:

- peak hour vs. non-peak hour
- weekday vs. weekend
- major arterial vs. minor arterial

2 Switch to Green-WE SN-NS SN-

(a) Early morning when traffic on WE-EW is less than SN-NS

(b) Noon when traffic on WE-EW is more than SN-NS

(c) Late night when traffic on WE-EW is more than SN-NS

PressLight: Learning Max Pressure Control to Coordinate Traffic Signal in Arterial Network

- MaxPressure (MP) is proven to maximize the system throughput
- State includes the current phase, the number of vehicles on each outgoing lane and the number of vehicles on each segment of every incoming lane
- Reward is defined as minus the pressure of the intersection
 - **Deep Q-Network** is used as function approximator to estimate the Q-value function.

PressLight

		Synthe	etic traffic		Real-world traffic						
	LightFlat	LightPeak	HeavyFlat	HeavyPeak	Qingdao Rd., Jinan	Beaver Ave., State College	8th Ave., NYC	, 9th Ave., NYC	10th Ave., NYC	11th Ave. NYC	
FixedTime	93.29	109.50	325.48	246.25	317.40	336.29	432.60	469.54	347.05	368.84	
GreenWave	98.39	124.09	263.36	286.85	370.30	332.06	451.98	502.30	317.02	314.08	
MaxPressure	74.30	82.37	262.26	225.60	567.06	222.90	412.58	370.61	392.77	224.54	
GRL	123.02	115.85	525.64	757.73	238.19	455.42	704.98	669.69	676.19	548.34	
LIT	65.07	66.77	233.17	258.33	58.18	338.52	471.30	726.04	309.95	340.40	
PressLight	59.96	61.34	160.48	184.51	54.87	92.00	223.36	149.01	161.21	140.82	

DemoLight: Learning Traffic Signal Control from Demonstrations

- the first work that tries to integrate demonstrations into RL for traffic signal control
- exploits demonstrations collected from SOTL to accelerate an actor-critic RL algorithm
- actor and critic are trained with demonstrations in order to provide expert-like initialization
- ablation studies for assessing the role of demonstrations in overall performance

DemoLight

Training using demonstrations:

• **Actor:** the sampled actions are drawn from the categorical distribution provided by the policy

 $a_{\text{soft}} = \operatorname{softmax}((g+\pi)/\tau)$, where g corresponds to random re-parametrization.

 $L_{pre}(\theta_{\pi}) = \text{Cross-Entropy}(a_{\text{soft}}, a_D), \text{ where } a_D \text{ is the action of the demo.}$

DemoLight

Training using demonstrations:

- Critic: cloning through four losses
 - o 1-step TD
 - o n-step TD
 - o large margin classification loss
 - L2 regularization

$$L_{TD}(\theta_Q) = \frac{1}{2} (R(s, a) + \gamma Q(s', a') - Q(s, a|\theta_Q))^2$$

$$L_{\text{margin}}(\theta_Q) = \max_{a} [Q(s, a) + l(a_D, a)] - Q(s, a_D)$$
where $l(a_D, a) = 0.8$ if $a_D \neq a$ else 0.

DemoLight

Ablation study for learning traffic signal control through demonstrations

FRAP: Learning Phase Competition for Traffic Signal Control

- The authors introduced FRAP in 2019
 - Especially designed for traffic signal control
 - The aim is to capture the competition between phases
- The most important advantage: invariance to symmetrical traffic conditions
- Major contributions
 - o Propose a novel design, FRAP
 - Demonstrate its **faster convergence**
 - o Demonstrate its generalizability
 - Different intersection structure
 - Different traffic flows
 - Multi-intersection environments

FRAP

- A single RL agent manages an individual intersection (standard 4-way)
- States = the number of vehicles for each traffic movement & the active phase
- Reward = based on the average queue length for each traffic movement

Design

- The FRAP network is made up of **embedding** and **convolutional** layers
 - Represent the demand for each phase and then the competition between pairs of phases
 - Intuitively: when two phases are in conflict, the higher demanding one should be chosen
- DQN method
 - Predict the Q-value for each phase and the agent will choose the highest one

FRAP

Experiments on real world datasets, using CityFlow.

- 2 private sets (Jinan, Hangzhou) and 1 public set (Atlanta)
- All show superior results compared with previous models

The authors' experiments have led to the following conclusions regarding FRAP's performance:

- Good results for multi-intersection envs (even without explicit coordination)
- Saves time it does not need retraining when traffic patterns drastically change
- Easily adapts to different intersection structures (from 4-way to 3 and 5-way)

CoLight: Learning Network-level Cooperation for

Traffic Signal Control

Key contributions:

- Use Graph Attentional Network to learn the dynamics of the traffic trends
- Index-free model learning with parameter sharing
- Scalable to hundreds of intersections

Model framework

Performance Comparison

MetaLight: Value-based Meta-reinforcement Learning for Traffic Signal Control

Main advantages:

- Easy to adapt in new situations
- No need for a large number of samples

MetaLight

Contributions:

- FRAP++: Removed the influence of difference in the lane number under each phase
- Improved MAML: A generalization of the parameters is learnt in order to be quickly adapted

How to transfer knowledge to new intersections?

• Given a new intersection, the learnt parameters are used and then quickly optimized

MetaLight

City	Ho	mogeneo	us	Heterogeneous				
City	JN	AT	LA	JN	AT	LA		
Random	451.88	379.16	262.23	363.59	602.60	684.15		
Pretrained	128.20	186.86	104.59	156.04	351.39	331.75		
MAML	173.13	301.29	135.11	335.81	618.84	393.58		
MetaLight	95.01	161.37	77.23	137.02	310.39	308.71		
Improvement	25.89%	13.64%	26.16%	10.17%	11.67%	6.94%		

MPLight: Toward A Thousand Lights: Decentralized Deep Reinforcement Learning for Large-Scale Traffic Signal Control

• No other model was tested on networks containing more than 1K traffic lights.

- The authors propose 3 key issues that must be addressed by an effective model
 - Scalability (cannot be satisfied by centralized methods)
 - Coordination (is not easily satisfied by decentralized methods)
 - Data feasibility (some models use data which cannot realistically be obtained in real scenarios)
- They propose MPLight, a model which combines FRAP with PressLight

MPLight

- Decentralized approach → satisfy scalability
- Parameter sharing → satisfy coordination
 - FRAP as base model (also using deep Q-learning)
 - Faster convergence
 - Agents essentially follow the same logic even when managing different intersection types
- State and reward based on PressLight → satisfy coordination
 - o Balances the distribution of vehicles and maximizes the throughput
- The pressure of an intersection → satisfy **data feasibility**
 - It is derived from simple features as queue length

MPLight

Experiments made using CityFlow, on both synthetic and real-world data.

- 1. Synthetic experiments
 - 4x4 network, 4 configurations (different traffic patterns and arrival rates)
- 2. Real-world experiments
 - The road network of Manhattan (obtained from OpenStreetMap)
 - Contains circa 2.5K street lights

MPLight outperformed all previous models in both synthetic and real scenarios.

Other interesting experiments

- The positive impact of using **pressure** for three different model architectures
- The positive impact of **parameter sharing** (less episodes needed to converge)

Not a trivial task, due to some limitations:

- differences in synthetic data generation
- single intersection performance vs. multi-intersection networks
- using various subsets of a roadnet (just a main road, or the whole network)
- different simulation environments (SUMO vs. CityFlow)

Model				Jinan						Hang	zhou		
Model	1	2	3	4	5	6	7	1	2	3	4	5	6
Fixedtime	118.82	250.00	233.83	297.23	101.06	104.00	146.66	271.16	192.32	258.93	207.73	259.88	237.77
Formula	107.92	195.89	245.94	159.11	76.16	100.56	130.72	218.68	203.17	227.85	155.09	218.66	230.49
SOTL	97.80	149.29	172.99	64.67	76.53	92.14	109.35	179.90	134.92	172.33	119.70	188.40	171.77
DRL	98.90	235.78	182.31	73.79	66.40	76.88	119.22	146.50	118.90	218.41	80.13	120.88	147.80
IntelliLight	88.74	195.71	100.39	73.24	61.26	76.96	112.36	97.87	129.02	186.04	81.48	177.30	130.40
A2C	135.81	166.97	226.82	43.28	67.05	148.69	236.17	110.91	98.56	187.41	86.56	116.70	128.88
FRAP	66.40	88.40	84.32	33.83	54.43	61.72	72.31	80.24	79.43	110.33	67.87	92.90	88.28
Improvement	25.17%	40.79%	16.01%	47.69%	11.15%	19.72%	33.87%	18.01%	33.20%	35.98%	15.30%	23.15%	32.30%

Model	Jinan	Hangzhou	Atlanta 493.49	
Fixedtime	880.18	823.13		
Formula	385.46	629.77	831.34	
SOTL	1422.35	1315.98	721.15	
DRL	1047.52	1683.05	769.46	
IntelliLight	358.83	634.73	306.07	
A2C	316.61	591.14	244.10	
FRAP	293.35	528.44	124.42	

FRAP performs better than IntelliLight on both single-intersection and multi-intersection environments

Model	<i>Grid</i> _{6×6} -Uni	$Grid_{6\times 6}$ -Bi	$D_{NewYork}$	$D_{Hangzhou}$	D_{Jinan}
Fixedtime [15]	209.68	209.68	1950.27	728.79	869.85
MaxPressure [24]	186.07	194.96	1633.41	422.15	361.33
CGRL [23]	1532.75	2884.23	2187.12	1582.26	1210.70
Individual RL [30]	314.82	261.60	_*	345.00	325.56
OneModel [5]	181.81	242.63	1973.11	394.56	728.63
Neighbor RL [1]	240.68	248.11	2280.92	1053.45	1168.32
GCN [18]	205.40	272.14	1876.37	768.43	625.66
CoLight-node	178.42	176.71	1493.37	331.50	340.70
CoLight	173.79	170.11	1459.28	297.26	291.14

"No result as Individual RL can not scale up to 196 intersections in New York's road network.

CoLight was also compared with IntelliLight, and it achieves better average travel time on multi-intersection settings

22.6.0		Travel	l Time		Throughput					
Model	Config 1	Config 2	Config 3	Config 4	Config 1	Config 2	Config 3	Config 4		
FixedTime	573.13	564.02	536.04	563.06	3555	3477	3898	3556		
MaxPressure	361.17	402.72	360.05	406.45	4702	4324	4814	4386		
GRL	735.38	758.58	771.05	721.37	3122	2792	2962	2991		
GCN	516.65	523.79	646.24	585.91	4275	4151	3660	3695		
NeighborRL	690.87	687.27	781.24	791.44	3504	3255	2863	2537		
PressLight	354.94	353.46	348.21	398.85	4887	4742	5129	5009		
FRAP	340.44	298.55	361.36	598.52	5097	5113	5483	4475		
MPLight	309.33	262.50	281.34	353.13	5219	5213	5652	5060		

MPLight achieves better performance than PressLight and FRAP on multi-intersection environments using synthetic data.

Experiments

CityFlow

- simulation environment designed for large-scale traffic signal control benchmarking
- leverages multithreaded computations in order to efficiently simulate a large amount of traffic
- faster than previous approaches (SUMO)

CityFlow

roadnet description

- o roads, and their corresponding lanes
- o intersections, with corresponding road-links and lane-links
- traffic light phases description for each intersection
- flow configuration (vehicle-related information)
 - dimensions
 - maximum speed
 - maximum acceleration
 - intersection related speed

We have wrapped the simulation environment inside an OpenAI Gym environment.

1x1 two-lane intersection with one hour of traffic recorded in Hangzhou, China

```
{
    "interval": 1.0,
    "seed": 0,
    "dir": "data/",
    "roadnetFile": "roadnet/testcase_roadnet_3x3.json",
    "flowFile": "flow/testcase_flow_3x3.json",
    "rITrafficLight": false,
    "saveReplay": true,
    "roadnetLogFile": "frontend/web/testcase_roadnet_3x3.json",
    "replayLogFile": "frontend/web/testcase_replay_3x3.txt"
}
```

CityFlow

CityFlow WebGL Frontend

Problem Representation

For the **state** we consider:

- the number of waiting vehicles for each incoming lane
- the total number of vehicles on each lane, both incoming and outgoing (inspired from the definition of pressure)

The actions performed by the agent can change the current phase of the intersection, at each time-step.

The **reward** is computed as the total number of waiting vehicles on incoming lanes.

We also tried to penalize phase changes that are performed too often, but with no sensible improvements.

Stable Baselines 3

Method	Policy	Observations
Q-learning	off-policy	discrete observation space
SARSA	on-policy	discrete observation space
Deep Q-network (DQN)	off-policy	
Deep Deterministic Policy Gradient (DDPG)	off-policy	only continuous action space
Advantage Actor Critic (A2C)	on-policy	
Proximal Policy Optimization (PPO)	on-policy	

Considered methods for RL experiments

Through hyperparameter tuning, we have decided on the following settings:

- **DQN**: batch size = 128, learning rate of 0.0005
- A2C: num. steps per update = 15, learning rate of 0.0005
- **PPO**: batch size = 256, learning rate of 0.0007

The training is done for **200** episodes, each episode consisting of **3.600** steps.

Evolution of total reward computed for each training episode

Average vehicle waiting time at each step, using best performing models

Conclusions

- a brief overview of most recent RL methods for traffic signal control
- how various formulations of state and reward can improve traffic
- a comparison of popular RL algorithms on a minimal representation of the state

Thank you!