Revisit Systematic Generalization via Meaningful Learning

Ning Shi, Boxin Wang, Wei Wang, Xiangyu Liu, Zhouhan Lin

ning.shi@ualberta.ca, boxinw2@illinois.edu, {luyang.ww,eason.lxy}@alibaba-inc.com, lin.zhouhan@gmail.com

Introduction

Humans can systematically generalize to novel compositions of existing concepts. Recent studies argue that neural networks appear inherently ineffective in such cognitive capacity, leading to a pessimistic view and a lack of attention to optimistic results.

In contrast, the successful one-shot generalization in the turn-left experiment on the Simplified CommAl Navigation (SCAN) task reveals the potential of seq2seq recurrent networks in controlled environments (Lake and Baroni, 2018).

Question by Lake and Baroni (2018) on page 8:

"What are, precisely, the generalization mechanisms that subtend the networks' success in these experiments?"

Meaningful Learning

In educational psychology, *meaningful learning* refers to learning new concepts by relating them to old ones (Ausubel, 1963).

On the contrary, *rote learning* stands for learning new concepts without the consideration of relationships.

Inductive Learning

Inductive learning is a *bottom-up* approach from the more specific to the more general. In grammar teaching, inductive learning is a rulediscovery approach starting with the presentation of specific examples from which a general rule can be inferred.

One-shot Example

"turn left and walk and jump left" -> LTURN WALK LTURN JUMP

An example of the one-shot compositional generalization from the old concept "walk left" to the new one "turn left and walk" in SCAN.

One-shot Generalization

Deductive Learning

Deductive Learning, the opposite of inductive learning, is a top-down approach from the more general to the more specific. As a rule-driven approach, teaching in a deductive manner often begins with presenting a general rule followed by specific examples in practice where the rule is applied.

Data	Primitive	Variant	#Variants			Primitive	Semantic Links	Variant	Concept Rule		
CCAN	·	÷	10						Primitive Rule	Variant Rule	
SCAN	jump	jump_0	10	[concept] twice		jump		jump_0	jump o JUMP	$jump_0 o JUMP$	
GEO	new york city	houston city	39	how long is [concept] where is [concept]	SCAN	look	Lexical Variant	$look_0$	$look \rightarrow LOOK$	$look_0 \rightarrow LOOK$	
	mississippi rivier	red rivier	9			run		run_0	$run \rightarrow RUN$	$run_0 \rightarrow \text{RUN}$	
	,	_	40			walk		walk_0	$walk o ext{WALK}$	$walk_0 \rightarrow WALK$	
	dc	kansas	49			new york city	Co-hyponym	houston city	$new\ york\ city o ext{CITY_NAME}$	houston $city \rightarrow CITY_NAME$	
	dover salem	salem	8 what states capital is [concept]		GEO	mississippi rivier		red rivier	$mississippi\ rivier o RIVER_NAME$	$red\ rivier o RIVER_NAME$	
				_ 010	dc	Co-nyponym	kansas	$dc o STATE_NAME$	$kansas \rightarrow STATE_NAME$		
ADV	a history of american film	advanced ai techniques	5/424	who teaches [concept] ? does [concept] give upper-level courses ?		dover		salem	$dover \rightarrow \text{CAPITAL_NAME}$	$salem \rightarrow CAPITAL_NAME$	
	aaron magid	cargo	5/492			a history of american film		advanced ai techniques	a history of american film \rightarrow TOPIC	advanced ai techniques \rightarrow TOPIC	
	aaptis	survmeth	5/1720		ADV	aaron magid	Co-hyponym	cargo	$aaron\ magid \rightarrow INSTRUCTOR$	$cargo \rightarrow INSTRUCTOR$	
	•			• - •	7112 4	aaptis		survmeth	$aaptis \rightarrow DEPARTMENT$	$survmeth \rightarrow DEPARTMENT$	
	100	[20] 171 5/1895 can undergrads take [concept]?	can undergrads take [concept] ?	_	100		171	$100 \rightarrow \text{NUMBER}$	$171 \rightarrow \text{NUMBER}$		

Systematic Generalization

Setup - we treat concepts in the initial data set as primitives and generate variant samples and rules accordingly. Next, we mix them up and construct a seq2seq task after a random split. We repeatedly train and evaluate models but slowly decrease the number of times they see each variant until one-shot learning.

Results - we observe there is *hardly* a performance drop for three representative model structures.

Conclusion - This evidences that, with *semantic linking*, even canonical neural networks can generalize systematically to new concepts and compositions.

			IWSLT'14					IWSLT'15						
Model		En-De		De	En-Fr				Fr-En					
•			BLEU SacreBLEU		BLEU	SacreBLEU	BLEU		SacreBLEU		BLEU	SacreBLEU		
Baseline	s													
LSTM (Luong et al., 2015)			24.98	3	24.88	30.18	32.62	38.	38.06 42.93		93	37.34	39.36	
Transformer (Vaswani et al., 2017)			28.95	5	28.85	35.24	37.60	41.	41.82 46.41		1	40.45	42.61	
Dynamic Conv. (Wu et al., 2019)			27.39)	27.28	33.33	35.54	40.	41	45.32		39.61	41.42	
+Vocabu	ılary Augmentatio	on												
LSTM (Luong et al., 2015)			$25.35\uparrow_{0}$	0.37	$25.38\uparrow_{0.50}$	$30.99 \uparrow_{0.81}$	$33.63 \uparrow_{1.01}$	38.32	$38.32\uparrow_{0.26}$ $43.30\uparrow_{0.37}$		0.37	$37.77 \uparrow_{0.43}$	$39.83 \uparrow_{0.47}$	
Transformer (Vaswani et al., 2017)			29.40 ↑ ₀		$29.29^{\uparrow}_{0.44}$	$35.72 \uparrow_{0.48}$	$38.07^{+}_{0.47}$	$42.19\uparrow_{0.37}$ 46.68		46.681	0.27	$41.04\uparrow_{0.59}$	$43.15\uparrow_{0.54}$	
Dynamic Conv. (Wu et al., 2019)			27.60 ↑ ₀		27.50 _{↑0.22}	$33.62\uparrow_{0.29}$	36.00 ↑ _{0.46}	40.87	$0.87\uparrow_{0.46}$ $45.95\uparrow_{0.63}$		39.95↑ _{0.34}	41.86† _{0.44}		
		Geography						Advising						
Model	Tra		Test			Train		Test			t			
,	Token Acc.%	Seq. A	Acc.%	Toke	en Acc.%	Seq. Acc.%	Token Acc	e.% Seq. Ac		Acc.%	Token Acc.%		Seq. Acc.%	
Baseline	es													
RNN	89.05	17	.39	(69.81	9.68	92.22	3.64		.64	60.41		6.11	
CNN	98 45	70	74	,	78 <i>4</i> 4	55 91	99 74		81.62			81 74	51 13	

Proof of Concept

This work was supported by Shining Lab, Learnable, Inc., and Alibaba Group.

@BlackboxNLP