CNN - Lista de Exercícios 2

November 9, 2021

1 Convoluções sobre volumes

- 1- Suponha uma entrada de tamanho $63 \times 63 \times 16$. Ao aplicar uma convolução nessa entrada com 32 filtros de tamanho 7×7 , usando stride igual a 2 e sem padding. Qual será o volume de saída?
- **2-** Suponha uma entrada de tamanho $15 \times 15 \times 8$. Usando a operação de padding igual 2, qual é a dimensão do dado de saída após o padding?
- **3-** Dado uma entrada de dimensão $63 \times 63 \times 16$ e uma convolução com 32 filtros de dimensão 7×7 cada e um stride igual a 1, qual deverá ser o tamanho do padding utilizado para que você obtenha uma saída com o mesmo tamanho da entrada (same padding)?
- **4-** Considere um volume de entrada $65\times65\times3$ e um filtro $11\times11\times3$. Quantas operações de multiplicação serão feitas em cada um dos casos:
 - a) Valid padding e stride = 1.
 - **b)** Valid padding e stride = 3.
 - c) Same padding e stride = 1.
 - d) Same padding e stride = 3.
- 5- Repita as alternativas a) e c) do exercício anterior para um filtro de tamanho $5\times 5.$

2 Pooling

- **6-** Suponha uma entrada de tamanho $32 \times 32 \times 16$. Seja a aplicação do max pooling com stride e tamanho de filtro iguais a 2. Quais são as dimensões da saída?
- 7- Suponha uma entrada de tamanho $6 \times 6 \times 3$. Seja a aplicação de um pooling (average ou max) com stride e tamanho de filtro iguais a 2. Responda:
 - a) Quais são as dimensões da saída?

Assumindo que os valores do primeiro canal estão mostrados na matriz abaixo, mostre o resultado obtido ao aplicar o seguinte pooling:

$$\begin{bmatrix} 4 & 9 & 2 & 5 & 8 & 3 \\ 5 & 6 & 2 & 4 & 0 & 3 \\ 2 & 4 & 5 & 4 & 5 & 2 \\ 5 & 6 & 5 & 4 & 7 & 8 \\ 5 & 7 & 7 & 9 & 2 & 1 \\ 5 & 8 & 5 & 3 & 8 & 4 \end{bmatrix}$$

- b) Max pooling
- c) Average pooling
- **8-** Explique como as camadas de pooling, apesar de não possuírem parâmetros, afetam o cálculo do backpropagation.

3 CNNs

- ${\bf 9}\text{-}$ Por que as conexões em camadas convolucionais são consideradas esparsas?
- 10- Suponha que a entrada para uma rede neural de convolução seja uma imagem colorida (RGB) 32×32 . A primeira camada contém oito filtros 5×5 com três canais, utilizando Valid padding e stride = 2. Qual o formato da saída dessa camada?
- 11- Dado uma imagem de dimensão 224×224 com 3 canais (RGB), desenhe a rede convolucional, incluindo as dimensões das matrizes de entrada e saída, de acordo com as operações descritas abaixo.
- 1. Aplique uma convolução com "Valid padding" com 96 filtros de tamanho 7 e stride igual a 2. Em seguida, aplique um max pooling com filtro de tamanho

3e stride igual a 2. A saída dessa camada será chamada de $A^{\left[1\right]}.$

- 2. Aplique uma convolução com "Valid padding" com 256 filtros de tamanho 5 e stride igual a 2. Em seguida, aplique um max pooling com filtro de tamanho 3 e stride igual a 2. A saída dessa camada será chamada de $A^{[2]}$.
- 3. Aplique uma convolução com "Same padding" com 384 filtros de tamanho 3 e stride igual a 1. A saída dessa camada será chamada de $A^{[3]}$.
- 4. Aplique uma convolução com "Same padding" com 384 filtros de tamanho 3 e stride igual a 1. A saída dessa camada será chamada de $A^{[4]}$.
- 5. Aplique uma convolução com "Same padding" com 256 filtros de tamanho 3 e stride igual a 1. Em seguida, aplique um max pooling com filtro de tamanho 3 e stride igual a 2. A saída dessa camada será chamada de $A^{[5]}$.
- 6. Aplique uma camada fully-connected com 4096 nós. A saída dessa camada será chamada de $A^{[6]}$.
- 7. Aplique uma camada fully-connected com 4096 nós. A saída dessa camada será chamada de $A^{[7]}$.
- 8. Por fim, aplique uma softmax (aqui não é necessário se preocupar com a dimensão da saída). A saída dessa camada será chamada de $A^{[8]}$.
- 12- Quantos parâmetros possui a rede convolucional *LeNet*, mostrada na figura abaixo? A cada passo, mostre a quantidade de pesos existentes em cada operação sobre as camadas.

Solução

1-
$$29 \times 29 \times 32$$

2-
$$19 \times 19 \times 8$$

3-
$$p = 3$$

4-

a)
$$(55 * 55) * (11 * 11 * 3) = 1.098.075$$

b)
$$(19 * 19) * (11 * 11 * 3) = 131.043$$

c)
$$(65*65)*(11*11*3) = 1.533.675$$

d)
$$(65 * 65) * (11 * 11 * 3) = 1.533.675$$

5-

$$\mathbf{a)}(61*61)*(5*5*3) = 279.075$$

$$\mathbf{c})(65*65)*(5*5*3) = 316.875$$

6-
$$16 \times 16 \times 16$$

7-

a)
$$3 \times 3 \times 3$$

$$\begin{bmatrix} 9 & 5 & 8 \\ 6 & 5 & 8 \\ 8 & 9 & 8 \end{bmatrix}$$

c)

$$\begin{bmatrix} 6 & 3.25 & 3.5 \\ 4.25 & 4.5 & 5.5 \\ 6.25 & 6 & 3.75 \end{bmatrix}$$

- 8- No max pooling, apenas o gradiente da célula com valor máximo (na região onde é aplicado o pooling) é passado para a camada anterior no back-propagation, os outros gradientes são iguais a 0. No average pooling, o gradiente passado é a média dos gradientes da camada posterior.
- ${\bf 9\text{-}}$ Cada ativação em uma camada depende apenas de um pequeno número de ativações da camada anterior.

10-
$$14 \times 14 \times 8$$

11- Imagem do paper original:

Rede com as dimensões calculadas de acordo com as convenções do curso até agora.

12-

Camada	Parâmetros
input	0
CONV1	608
POOL1	0
CONV2	3216
POOL2	0
FC3	48120
FC4	10164
Softmax	850
Total	62958