

	Page No.	
b)	an= nn	
	N.	
	Using natio test for sequences , we have	
	Using natio test for sequences , we have	
	n-100 an n-100 [n+1]; nn	
	$=$ $\lim_{n \to \infty} (n+1)^n$	
	$= \lim_{N \to \infty} \left(\frac{N+1}{N} \right)^{N}$	
	= e (2 marlis)	
	(2marus)	
	Λ · · · · · · · · · · · · · · · · · · ·	
	As limant = e > 1	-
	N-100 am	
	This implies the sequence diverges	
	(1 mark)	
		_
		-

Untitled.pdf Page 1 of 1

For Q2a)

For those using direct definition live own

Seq. of partial sums conv. 1 Judgement

conv.
$$\Rightarrow$$
 cauchy 1

 $|a_{n+1} - a_n| \le \frac{1}{2} |a_n - a_{n-1}|$ 2.5

Mention of contraction result to conclude 0.5

Monotonic 0.5

bounded + monotonic \Rightarrow conv. 0.5

conv. \Rightarrow cauchy 1

```
Fox Q2.b)

Showed monotoniety 0.\overline{5}

Showed bounded 1.\overline{5}

bounded + monotone \Rightarrow comu. 0.\overline{5}

conv. \Rightarrow cauchy 0.\overline{5}

|a_{n+1}| < 3
|a_{n+1} - a_n| < \frac{3}{2}n

Using this showed cauchy 0.\overline{5}
```

3) a)
$$\frac{3}{100} \frac{3(\frac{2K}{100} - (-1)^{2K})}{N}$$

Sel: $= \frac{20}{2} \frac{3(\frac{2K}{2MH} - (-1)^{2K})}{2K} + \frac{20}{2K+1} \frac{3(\frac{2K+1}{2K+2} - (-1)^{2K+1})}{2K+1}$
 $= \frac{20}{3} \frac{3(\frac{2K}{2MH} - 1)}{2K} + \frac{20}{2K+1} \frac{3(\frac{2K+1}{2K+2})}{2K+1}$
 $= \frac{20}{3} \frac{3(\frac{2K+1}{2K+1})}{2K+1} + \frac{20}{2K+1} \frac{3(\frac{2K+1}{2K+2})}{2K+1}$
 $= \frac{20}{2} \frac{3(\frac{2K+1}{2K+1})}{2K+1} + \frac{20}{2K+1} + \frac$

Sel 2:
$$\frac{\Lambda}{n+1} + (-1)^n \le \frac{3}{2}$$
 (aynumber beyond $\frac{3}{2}$ is a captable)
$$\frac{3}{2} = \frac{(n+1)}{n+1} - (-1)^n > \frac{3}{2} > \frac{3}{2} = 0$$

$$\frac{3}{2} = = 0$$

$$\frac$$

3.(b) \(\sigma \text{n(n+1)(n+2)} $0 < \frac{1}{n(n+1)(n+2)} < \frac{1}{n3}$ We know that 2 hs is convergent By the comparison test, the give Another solution: $\frac{1}{n(n+2)} = \frac{1}{2} \left[\frac{1}{n} - \frac{1}{n+2} \right]$ $=\frac{1}{n(n+1)(n+2)}=\frac{1}{2(n(n+1)-(n+2))}$ = 1 (1 - 1) - (n+1 n+2 =) E | (k+1)(k+2) = 2 (1-1)-(1) Hence, the given series is convergent

Test the convergence of the following series.

$$n=3$$
 $\frac{1}{n \ln(\ln n)}$

Solution. We know that
$$ln(n) \leq n$$
=> $ln(ln(n)) \leq ln(n)$

$$=) \frac{1}{\ln(m)} \leq \frac{1}{\ln(\ln(m))}$$

$$=) \frac{1}{n \ln(n)} \leq \frac{1}{n \ln(\ln(n))} \cdot \longrightarrow 0$$

He know that $\sum_{m \in \mathbb{N}} \frac{1}{m \cdot lm(m)}$ is divergent.

... By composition text, the given series ______

$$P) \sum_{\infty} \frac{\omega_i}{5\omega_i}$$

Solution. Let $a_n = \frac{2^n n^n}{n!}$. Then

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1} (n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n n^n} \longrightarrow 0$$

$$= 2 \cdot (\frac{n+1}{n})^n$$

$$= 2 \cdot (\frac{1+1}{n})^m \longrightarrow 2e > 1.$$

$$\therefore By satio text the given some diverges.$$