# Lecture 2: Basic Artificial Neural Networks

Lan Xu SIST, ShanghaiTech Fall, 2022



## Logistics

- Course project
  - □ Each team consists of 4~5 members
  - You may make exceptions if you are among top 10% in first 4 quizzes
- Full course schedule on Piazza
  - ☐ HW1 out next Monday
  - Tutorial schedule: please vote on Piazza
- TA office hours
  - See Piazza for detailed schedule and location



#### **Outline**

- Artificial neuron
  - □ Perceptron algorithm
- Single layer neural networks
  - Network models
  - Example: Logistic Regression
- Multi-layer neural networks
  - □ Limitations of single layer networks
  - Networks with single hidden layer

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes



#### Mathematical model of a neuron

input features  $\underbrace{1}_{x_1} \underbrace{w_{e/g}h_{t_S}}_{x_1}$  sum non-linearity output  $\underbrace{x_M}_{x_M}$ 



# Single neuron as a linear classifier

Binary classification





## How do we determine the weights?

#### Learning problem

- Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
- Hypothesis  $f_w(x) = w^T x$ 
  - $y = 1 \text{ if } w^T x > 0$
  - y = 0 if  $w^T x < 0$
- Prediction:  $y = \text{step}(f_w(x)) = \text{step}(w^T x)$

Linear model  ${\cal H}$ 



#### Linear classification

- Learning problem: simple approach
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Find  $f_w(x) = w^T x$  that minimizes  $\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i y_i)^2$
  - Drawback: Sensitive to "outliers"

Reduce to linear regression; ignore the fact  $y \in \{0,1\}$ 



# 1D Example

Compare two predictors



Learn a single neuron for binary classification



https://towardsdatascience.com/perceptron-explanation-implementation-and-a-visual-example-3c8e76b4e2d1



- Learn a single neuron for binary classification
- Task formulation
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Hypothesis  $f_w(x) = w^T x$ 
    - $y = +1 \text{ if } w^T x > 0$
    - y = -1 if  $w^T x < 0$
  - Prediction:  $y = \text{sign}(f_w(x)) = \text{sign}(w^T x)$
  - Goal: minimize classification error



- Algorithm outline
- Assume for simplicity: all  $x_i$  has length 1
  - 1. Start with the all-zeroes weight vector  $\mathbf{w}_1 = \mathbf{0}$ , and initialize t to 1.
  - 2. Given example  $\mathbf{x}$ , predict positive iff  $\mathbf{w}_t \cdot \mathbf{x} > 0$ .
  - 3. On a mistake, update as follows:
    - Mistake on positive:  $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \mathbf{x}$ .
    - Mistake on negative:  $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \mathbf{x}$ .

$$t \leftarrow t + 1$$
.

Perceptron: figure from the lecture note of Nina Balcan



- Intuition: correct the current mistake
  - If mistake on a positive example

$$w_{t+1}^T x = (w_t + x)^T x = w_t^T x + x^T x = w_t^T x + 1$$

If mistake on a negative example

$$w_{t+1}^T x = (w_t - x)^T x = w_t^T x - x^T x = w_t^T x - 1$$



#### The Perceptron theorem

- Suppose there exists  $w^*$  that correctly classifies  $\{(x_i, y_i)\}$
- W.L.O.G., all  $x_i$  and  $w^*$  have length 1, so the minimum distance of any example to the decision boundary is

$$\gamma = \min_{i} |(w^*)^T x_i|$$

• Then Perceptron makes at most  $\left(\frac{1}{\gamma}\right)^2$  mistakes



# Hyperplane Distance

- Line is a 1D, Plane is 2D
- Hyperplane is many D
  - Includes Line and Plane
- Defined by (w,b)
- Distance:

$$\frac{\left|w^{T}x - b\right|}{\left\|w\right\|}$$

• Signed Distance:  $\frac{w'x-b}{\|w\|}$ 





- The Perceptron theorem: proof
  - First look at the quantity  $w_t^T w^*$
  - Claim 1:  $w_{t+1}^T w^* \ge w_t^T w^* + \gamma$
  - Proof: If mistake on a positive example x

$$w_{t+1}^T w^* = (w_t + x)^T w^* = w_t^T w^* + x^T w^* \ge w_t^T w^* + \gamma$$

If mistake on a negative example

$$w_{t+1}^T w^* = (w_t - x)^T w^* = w_t^T w^* - x^T w^* \ge w_t^T w^* + \gamma$$



- The Perceptron theorem: proof
  - Next look at the quantity  $||w_t||$

Negative since we made a mistake on x

- Claim 2:  $||w_{t+1}||^2 \le ||w_t||^2 + 1$
- ullet Proof: If mistake on a positive example x

$$||w_{t+1}||^2 = ||w_t + x||^2 = ||w_t||^2 + ||x||^2 + 2w_t^T x$$



■ The Perceptron theorem: proof intuition

- Claim 1:  $w_{t+1}^T w^* \ge w_t^T w^* + \gamma$
- Claim 2:  $\left|\left|w_{t+1}\right|\right|^2 \leq \left|\left|w_{t}\right|\right|^2 + 1$

The correlation gets larger. Could be:

- 1.  $W_{t+1}$  gets closer to  $W^*$
- 2.  $w_{t+1}$  gets much longer

Rules out the bad case "2.  $w_{t+1}$  gets much longer"



The Perceptron theorem: proof

- Claim 1:  $w_{t+1}^T w^* \ge w_t^T w^* + \gamma$
- Claim 2:  $||w_{t+1}||^2 \le ||w_t||^2 + 1$

After M mistakes:

- $w_{M+1}^T w^* \ge \gamma M$
- $||w_{M+1}|| \leq \sqrt{M}$
- $w_{M+1}^T w^* \le ||w_{M+1}||$

So  $\gamma M \leq \sqrt{M}$ , and thus  $M \leq \left(\frac{1}{\gamma}\right)^2$ 



#### The Perceptron theorem

- Suppose there exists  $w^*$  that correctly classifies  $\{(x_i, y_i)\}$
- W.L.O.G., all  $x_i$  and  $w^*$  have length 1, so the minimum distance of any example to the decision boundary is

$$\gamma = \min_{i} |(w^*)^T x_i|$$

Need not be i.i.d.!

• Then Perceptron makes at most  $\left(\frac{1}{\nu}\right)^2$  mistakes

Do not depend on n, the length of the data sequence!



## Perceptron Learning problem

- What loss function is minimized?
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Find  $y = f(x) \in \mathcal{H}$  that minimizes  $\widehat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
  - s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$



- What loss function is minimized?
  - Hypothesis:  $y = \text{sign}(w^T x)$
  - Define hinge loss

$$l(w, x_t, y_t) = -y_t w^T x_t \mathbb{I}[\text{mistake on } x_t]$$

$$\widehat{L}(w) = -\sum_{t} y_{t} w^{T} x_{t} \mathbb{I}[\text{mistake on } x_{t}]$$

$$w_{t+1} = w_t - \eta_t \nabla l(w_t, x_t, y_t) = w_t + \eta_t y_t x_t \mathbb{I}[\text{mistake on } x_t]$$



- What loss function is minimized?
  - Hypothesis:  $y = sign(w^T x)$

$$w_{t+1} = w_t - \eta_t \nabla l(w_t, x_t, y_t) = w_t + \eta_t y_t x_t \mathbb{I}[\text{mistake on } x_t]$$

• Set  $\eta_t = 1$ . If mistake on a positive example

$$w_{t+1} = w_t + y_t x_t = w_t + x$$

If mistake on a negative example

$$w_{t+1} = w_t + y_t x_t = w_t - x$$

# м

#### **Outline**

- Artificial neuron
  - □ Perceptron algorithm
- Single layer neural networks
  - Network models
  - Example: Logistic Regression
- Multi-layer neural networks
  - □ Limitations of single layer networks
  - Networks with single hidden layer

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes



# Single layer neural network





## Single layer neural network

input



layer: parallelized weighted sum and non-linearity

one sum per weight vector 
$$s_j = \mathbf{w}_j^\intercal \mathbf{x}$$
  $\longrightarrow$   $\mathbf{s} = \mathbf{W}^\intercal \mathbf{x}$  rom weight matrix

$$\mathbf{h} = \sigma(\mathbf{s})$$









#### What is the output?

- Element-wise nonlinear functions
  - □ Independent feature/attribute detectors



27



#### What is the output?

- Nonlinear functions with vector input
  - Competition between neurons



$$h_j = g(\mathbf{s}) = g(\mathbf{w}_1^\mathsf{T} \mathbf{x}, \cdots, \mathbf{w}_m^\mathsf{T} \mathbf{x})$$



#### What is the output?

- Nonlinear functions with vector input
  - Example: Winner-Take-All (WTA)



$$\mathbf{h} = [h_j]$$

$$h_j = g(\mathbf{s}) = \begin{cases} 1 & \text{if } j = \arg\max_i \mathbf{w}_i^\mathsf{T} \mathbf{x} \\ 0 & \text{if otherwise} \end{cases}$$



## A probabilistic perspective

Change the output nonlinearity



□ From WTA to Softmax function

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where  $egin{aligned} oldsymbol{s} = f(x_i;W) \end{aligned}$ 

#### Multiclass linear classifiers

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



The WTA prediction: one-hot encoding of its predicted label

$$y = 1 \Leftrightarrow y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad y = 2 \Leftrightarrow y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad y = 3 \Leftrightarrow y = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$



#### Probabilistic outputs

#### scores = unnormalized log probabilities of the classes.



$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where 
$$s=f(x_i;W)$$

#### unnormalized probabilities



#### How to learn a multiclass classifier?

- Define a loss function and do minimization
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Find  $y = f(x) \in \mathcal{H}$  that minimizes  $\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
  - s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$

**Empirical loss** 

# Learning a multiclass linear classifier

- Design a loss function for multiclass classifiers
  - □ Perceptron?
    - Yes, see homework
  - ☐ Hinge loss
    - The SVM and max-margin (see CS231n)
  - □ Probabilistic formulation
    - Log loss and logistic regression
- Generalization issue
  - Avoid overfitting by regularization



## **Example: Logistic Regression**

Learning loss: negative log likelihood

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where  $egin{aligned} oldsymbol{s}=oldsymbol{f}(oldsymbol{x}_i;oldsymbol{W}) \end{aligned}$ 

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y = y_i | X = x_i)$$



## Logistic Regression

Learning loss: example





## Logistic Regression

Learning loss: questions





## Logistic Regression

Learning loss: questions





## Learning with regularization

- Constraints on hypothesis space
  - Similar to Linear Regression

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data



Regularization: Model should be "simple", so it works on test data



## Learning with regularization

Regularization terms

#### In common use:

**L2 regularization**  $R(W) = \sum_k \sum_l W_{k,l}^2$ L1 regularization  $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2)  $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$ Max norm regularization (might see later)

- Priors on the weights
  - □ Bayesian: integrating out weights
  - Empirical: computing MAP estimate of W

# L1 vs L2 regularization



https://www.youtube.com/watch?v=jEVh0uheCPk



## L1 vs L2 regularization

#### Sparsity

$$egin{aligned} x &= [1,1,1,1] \ w_1 &= [1,0,0,0] \ w_2 &= [0.25,0.25,0.25,0.25] \ w_3 &= [0.5,0.5,0,0] \end{aligned}$$

$$f(x) = w^{\mathsf{T}} x$$

$$w_1^{\mathsf{T}} x = w_2^{\mathsf{T}} x = w_3^{\mathsf{T}} x$$

$$\|w_1\|^2 = |w_1| = 1$$

$$\|w_2\|^2 = 4/16 = 1/4, |w_2| = 1$$

$$\|w_3\|^2 = 2/4 = 1/2, |w_3| = 1$$

#### A L1 regularization



#### B L2 regularization



# Optimization: gradient descent

#### Gradient descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

#### Learning rate matters





# Optimization: gradient descent

#### Stochastic gradient descent

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

# Optimization: gradient descent

#### Stochastic gradient descent





- the objective does not always decrease for each step
- comparing to GD, SGD needs more steps, but each step is cheaper
- mini-batch, say pick up 100 samples and do average, may accelerate the convergence

## Interpreting network weights

What are those weights?



$$f(x,W) = Wx + b$$



Array of **32x32x3** numbers (3072 numbers total)



## Summary

- Artificial neurons
- Single-layer network
- Next time
  - □ Multi-layer neural networks
  - Computation in neural networks