

System Assessment of a High Power 3-U CubeSat

Katie Shaw
NASA Glenn Research Center
Small Sat CubeSat Developers Workshop
8-6-16

Overview

- Advanced Electrical Bus CubeSat Overview
- Driving Requirements and Constraints
- Power Generation and Storage Solutions
- Thermal Management Solutions
- Packaging
- Conclusion

Advanced Electrical Bus CubeSat Project

- Pathfinder technology demonstration mission for high power CubeSats
 - Demonstrate 100 W distribution of electrical power to a target load
 - Develop a reliable retention and release mechanism for deployable arrays
 - Develop solutions for high power system integration
- Objectives
 - Resettable retention and release mechanisms
 - Demonstrate dual function hinges for array deployment and power transfer
 - End to end power management and distribution efficiency
 - Assess on-orbit *performance* of battery management system
 - Adequate thermal management to demonstrate operation of the power management and distribution subsystem in 3-U CubeSat form factor

Driving Requirements

- Distribute 100 W of power to target load
- Maintain electronics within de-rated temperature limits

	Waste Heat (W) by Operational Mode				Temp Limits (C)	
	Quiescent, Not Charging	Quiescent, Charging	Transmit	Test	Min	Max
Discharge Circuit	0	0	0	104	-20	100
C&DH	0.5	0.5	0.5	0.5	-20	85
Boost	0.0	0.5	0.5	0.5	-20	85
BMS	0.6	0.6	0.6	2	-20	85
Batteries	0.2	0.2	2	2	0	40
Radio	0.1	0.1	10	0	-20	80
Total	1.4	1.9	13	109		

3-U Surface Area Constraint

- Power Generation Capability
 - 0.03 m², 28% efficient UTJ cells, 70% Packing Density
 - ~7 10 W power generation without active attitude control
- Thermal Radiation Emissive Power
 - Assuming .12 m², ε=.9, Steady State Surface Temp 85 C to maintain high power electronics below temperature limits, Average Sink Temperature of 225 K
 - 84 W of emissive power if entire 3-U CubeSat area is a radiator
- Concluded that power and thermal management needs for 3-U CubeSat require thermal and energy storage solutions

NASA

Power Management and Distribution

- 4 Body Mounted + 4 Deployable Arrays (COTS)
 - 7S, 2P configuration
 - 10 W generation
- Super elastic Shape Memory Alloy (SMA) hinges provide deployment spring force and power transfer
- Activated SMA resettable retention and release mechanism
- Boost Convertor Battery Charging System
- 80 W-hr COTS Battery Pack
 - 14.4 V, 7 A
 - Discharged at 1.25 C
- Cell balancing battery management system
- Regulated discharge system
 - 95% efficiency

Thermal Management

- Store thermal energy from 100 W discharge
 - 100 W electrical power → 100 W of heat is unique to this mission
 - Isolate from the rest of the system as much as possible
- Use body area of CubeSat to reject electronics waste heat and generate power
 - Body mounted solar arrays decrease effective emissive power but adequate to reject electronics waste heat
 - Demonstrate that 3-U CubeSat is capable of managing heat loads from power management and control electronics without additional design
- Options considered

Thermal Management Solution

- 350 g Aluminum Heat Sink
- Silver Coated Teflon surface finish
- Isolated from chassis with polymers
- PMAD and C&DH waste heat
 - Bulkhead with conductive path to chassis for electronics with high heat loads
 - Thermally conductive, electrically isolating interface between chassis and body mounted solar arrays
 - Arrays reject heat
- Radio high emissivity coating to reject heat during peak uplink/downlink transients

Thermal Vacuum Development Test Results

 350 g heat sink provides ~3 minutes of run time with 100 W distribution at 20 C initial condition 100 W

Thermal

Power

Storage

80 W-hr COTS pack

12% system mass

Mass and Volume

80 W-hr COTS pack

12% system mass

80 W-hr COTS pack

12% system mass

Packaging

	Mass (g)	Internal Volume (cm³)	
'Payload'	500	300	
PMAD + Battery Packs	800	1000	
Solar Arrays	800	n/a	
Chassis (COTS)	200	n/a	
Retention and Release Mechanisms	210	500	
Harnesses and Cables	220	TBD	
Radio/Antenna (COTS)	440	400	
Secondary Structures	250	n/a	
Passive Attitude Control	200	n/a	
C&DH	80	200	
Total	3500	1500	

Conclusions

- High Power (100 W) systems are possible in a 3-U CubeSat with some limitations on operations
 - Peak heat loads can be handled transiently
 - Steady state operation would require deployable surfaces or larger form factor for both power generation and thermal management
- Resettable and robust deployment mechanisms are feasible
 - Challenge to minimize internal volume for ALBus mission specific application
- Dual purpose shape memory alloy hinges for reliable deployment and power transmission are feasible and provide clean integration
- Packaging with margin on mass and volume for other subsystems and/or payloads