Below are raw outputs of supervised learning models on ECA

\$	Model	precision_at_4	~	recall_at_4	
0	Logistic Regression		0.5000		0.5000
3	Extra Trees		0.5000		0.5000
4	Gradient Boosting		0.4375		0.4375
9	SVM (RBF)		0.4375		0.4375
2	Random Forest		0.3750		0.3750
7	KNN		0.3750		0.3750
13	MLP		0.3750		0.3750
11	LDA		0.3750		0.3750
8	SVM (Linear)		0.3750		0.3750
10	GaussianNB		0.3125		0.3125
5	AdaBoost		0.2500		0.2500
12	QDA		0.1875		0.1875
6	Hist Gradient Boosting		0.1875		0.1875
1	Decision Tree		0.1250		0.1250
15	LSTM		0.1250		0.1250
16	GRU		0.1250		0.1250
14	ARIMA		0.0625		0.0625

		Danisia A	A	D11 A	AUC	F1	WET	WET -b
		Precision \$	Accuracy ÷	Recall ÷	AUC \$	F1score ÷	WEI ÷	WEI_share \$
Ð	Logistic Regression	0.400	0.9536	0.1250	0.9382	0.1905	0.0643	1.0
1	Decision Tree	0.105	0.9153	0.1250	0.5382	0.1143	0.0847	1.0
2	Random Forest	0.312	0.9399	0.3125	0.7376	0.3125	0.0904	1.0
3	Extra Trees	0.875	0.9727	0.4375	0.7618	0.5833	0.0749	1.0
4	Gradient Boosting	0.300	0.9344	0.3750	0.7876	0.3333	0.0746	1.0
5	AdaBoost	0.352	0.9426	0.3750	0.7786	0.3636	0.3500	1.0
6	Hist Gradient Boosting	0.000	0.9563	0.0000	0.8292	0.0000	0.0618	1.0
7	KNN	1.000	0.9617	0.1250	0.7294	0.2222	0.0617	1.0
8	SVM (Linear)	0.000	0.9508	0.0000	0.8793	0.0000	0.0680	1.0
9	SVM (RBF)	0.666	0.9590	0.1250	0.8468	0.2105	0.0821	1.0
10	GaussianNB	0.103	0.8934	0.1875	0.6839	0.1333	0.1747	1.0
11	LDA	0.333	0.9481	0.1875	0.9362	0.2400	0.0630	1.0
12	QDA	0.142	0.9153	0.1875	0.8614	0.1622	0.0971	1.0
13	MLP	0.333	0.9454	0.2500	0.9261	0.2857	0.0537	1.0
14	ARIMA	0.055	0.5219	0.6250	0.5488	0.1026	0.4877	1.0
15	LSTM	0.000	0.9563	0.0000	0.5000	0.0000	0.0832	1.0
16	GRU	0.000	0.9563	0.0000	0.5000	0.0000	0.0740	1.0

From the results and plots, we can see that the extra tree model can perform best in predicting. So, we choose to evaluate that model.

== 20	≡= 2024 results - Extra Trees ≡=								
4 rows	4 rows ✓ 4 rows × 4 cols								
¢	Extra Trees_prob		actual_peak \$	is_CP ÷	timestamp ÷				
901		0.64250	22485.78	1	2024-06-20				
900		0.53500	23851.82	1	2024-06-19				
887		0.46875	18764.47	0	2024-06-06				
904		0.37500	19076.84	0	2024-06-23				
	2/4 True CP in L@4: 50.00%	month: 4	Precision@4: 50.0	0%					
4 rows	✓ 4 rows × 4 cols								
÷	Extra Trees_prob		actual_peak	is_CP ÷	timestamp ÷				
942		0.80250	23355.86	1	2024-07-31				
941		0.71500	22371.08	1	2024-07-30				
940		0.61875	22244.97	1	2024-07-29				
926		0.58625	21637.19	0	2024-07-15				
	3/4 True CP in L@4: 75.00%	month: 4	Precision@4: 75.0	0%					
4 rows	✓ 4 rows × 4 cols								
÷	Extra Trees_prob		actual_peak	is_CP ÷	timestamp ÷				
944		0.84125	22103.13	1	2024-08-02				
943		0.79500	23179.24	1	2024-08-01				
947		0.49375	20269.79	0	2024-08-05				
945		0.40875	21899.00	0	2024-08-03				
	2/4 True CP in L@4: 50.00%	month: 4	Precision@4: 50.0	9%					
4 rows	✓ 4 rows × 4 cols								
\$	Extra Trees_prob		actual_peak ÷	is_CP ‡	timestamp ÷				
992		0.20500	20886.45	1	2024-09-19				
994		0.12250	18923.97	0	2024-09-21				
979		0.06625	18005.31	0	2024-09-06				
983		0.05250	17733.50	0	2024-09-10				
	1/4 True CP in L@4: 25.00%	month: 4	Precision@4: 25.0	0%					

For 2024's results, the model can achieve an average precision of 50% and an average recall of 50%. While in the previous algorithm, it cannot be evaluated on ECA, so almost every metric is 0.

	Original	Limited to June September	Monte Carlo	
Accuracy		0	0	0.5
Recal1		0	0	0
Precision		0	0	0

This showed that the supervised model can perform much better than the old ones.

Next, below are raw outputs of supervised learning models on RTO/TESLA $\,$

	model	Precision		Accuracy		Recall ÷	AUC		F1score		WEI		WEI_share	
Θ	Logistic Regression		0.5714	0.9	9645	0.7500	Θ.	.9680		0.6486	6	0.0564		1.0
8	SVM (Linear)		0.6667	0.9	7727	0.7500	0.	.9673		0.7059	6	0.0468		1.0
10	GaussianNB		0.2121	0.8	3525	0.8750	0.	.9646		0.3415	6	.1460		1.0
11	LDA		0.7143	0.9	7727	0.6250	0.	.9573		0.6667	6	0.0631		1.0
5	AdaBoost		0.4615	0.9	7508	0.7500	Θ.	.9488		0.5714	6	.3115		1.0
3	Extra Trees		0.5217	0.9	9590	0.7500	Θ.	.9477		0.6154	6	0.0604		1.0
6	Hist Gradient Boosting		0.4800	0.9	9536	0.7500	0.	9429		0.5854	6	0.0539		1.
4	Gradient Boosting		0.4074	0.9	9426	0.687	0.	.9422		0.5116	6	0.0682		1.
2	Random Forest		0.4615	0.9	7508	0.7500	0.	.9247		0.5714	6	0.0611		1.
7	KNN		0.6316	0.9	9699	0.7500	0.	.9143		0.6857	6	0.0514		1.
12	QDA		0.1379	0.8	3989	0.2500	Θ.	.8988		0.1778	6	.1013		1.
13	MLP		0.1333	0.9	9262	0.1250	Θ.	.8845		0.1290	6	0.0734		1.
9	SVM (RBF)		0.7059	0.9	9754	0.7500	0.	.8811		0.7273	6	.0581		
1	Decision Tree		0.2727	0.9	9290	0.3750	0.	.6646		0.3158	6	0.0710		1.
15	LSTM		0.0000	0.9	9563	0.000	0.	.5000		0.0000	(.0833		1.
16	GRU		0.0000	0.9	9563	0.000	0.	.5000		0.0000	(0.0794		1.
14	ARIMA		0.0000	0.9	7508	0.000	0.	.4971		0.0000	(.0895		1.

÷	Model	precision_at_4		recall_at_4	~
0	Logistic Regression		0.7500		0.7500
8	SVM (Linear)		0.7500		0.7500
10	GaussianNB		0.7500		0.7500
11	LDA		0.6875		0.6875
9	SVM (RBF)		0.6250		0.6250
6	Hist Gradient Boosting		0.5625		0.5625
2	Random Forest		0.5625		0.5625
5	AdaBoost		0.5000		0.5000
3	Extra Trees		0.3750		0.3750
4	Gradient Boosting		0.3750		0.3750
7	KNN		0.3750		0.3750
1	Decision Tree		0.1875		0.1875
12	QDA		0.1875		0.1875
13	MLP		0.1875		0.1875
14	ARIMA		0.1250		0.1250
15	LSTM		0.1250		0.1250
16	GRU		0.1250		0.1250

From the results and plots, we can see that the SVM (Linear) model performs best in predicting. So, we choose to evaluate that model.

== 26	≡= 2024 results - SVM (Linear) ===							
4 rows	✓ 4 rows × 4 cols							
\$	SVM (Linear)_prob	actual_pea	ak \$	is_CP	timestamp \$			
900	0.9915	12	23851.82	1	2024-06-19			
899	0.9763	83	23097.18	1	2024-06-18			
901	0.8942	98	22485.78	1	2024-06-20			
898	0.8144	11	21647.62	1	2024-06-17			
	4/4 True CP in month: 4 _04: 100.00%	4 Precision	@4: 100. 00	%				
4 rows	✓ 4 rows × 4 cols							
\$	SVM (Linear)_prob	actual_pea	ak ‡	is_CP ÷	timestamp ÷			
920	0.9534	14	21836.21	0	2024-07-09			
940	0.9533	46	22244.97	1	2024-07-29			
926	0.9489	89	21637.19	0	2024-07-15			
942	0.8681	42	23355.86	1	2024-07-31			
	2/4 True CP in month: 4 _04: 50.00%	4 Precision	1@4: 50.00%	\$				
4 rows	✓ 4 rows × 4 cols							
\$	SVM (Linear)_prob	actual_pea	ak ‡	is_CP ‡	timestamp 💠			
943	0.9774	80	23179.24	1	2024-08-01			
969	0.9562	75	22749.83	1	2024-08-27			
944	0.9188	41	22103.13	1	2024-08-02			
968	0.8763	54	22466.42	1	2024-08-26			
	4/4 True CP in month: 4 _04: 100.00%	4 Precision	i@4: 100.00	%				
4 rows	✓ 4 rows × 4 cols							
\$	SVM (Linear)_prob	actual_pea	ak ‡	is_CP ÷	timestamp ‡			
991	0.2644	84	20180.01	0	2024-09-18			
989	0.1982	96	21546.47	1	2024-09-16			
992	0.1421	51	20886.45	1	2024-09-19			
985	0.1242	92	19582.95	0	2024-09-12			
	2/4 True CP in month: 4 _04: 50.00%	4 Precision		<u> </u>				

For 2024's results, the model can achieve an average precision of 75% and an average recall of 75%. For June and August, it can even achieve 100% accuracy.

	Original	Limited to June- September	Monte Carlo
Accuracy	0. 333333333	0. 333333333	0. 428571429
Recal1	0.6	0.6	0.6
Precision	0. 428571429	0. 428571429	0.6

While in the previous algorithm, both Recall and Precision are lower than the new model. And the new model is even more accurate.

Though the models used for the datasets are different, we can find that the logistic regression model can achieve almost the second-best on both sides when evaluating normal power load, while maintaining the same precision and recall value when predicting 4CP. So, I think we can simply conclude that logistic regression is a better model in general evaluation.