

Theory / Convex function

Convex function

The function f(x), which is defined on the convex set $S \subseteq \mathbb{R}^n$, is called **convex** on S, if:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

for any $x_1, x_2 \in S$ and $0 \le \lambda \le 1$.

If above inequality holds as strict inequality $x_1
eq x_2$ and $0 < \lambda < 1$, then function is called strictly convex on S.

EXAMPLE

- $oldsymbol{f}(x)=x^p, \quad p>1, \quad x\in \mathbb{R}_+$
- f(x)=x, f(x)=x

- $f(x) = x \ln x, \quad x \in \mathbb{R}_{++}$
- The sum of the largest k coordinates $f(x) = x_{(1)} + \ldots + x_{(k)}, \quad x \in \mathbb{R}^n$

$$f(X) = \lambda_{max}(X), \quad X = X^T$$

$$egin{aligned} oldsymbol{\cdot} & f(X) = \lambda_{max}(X), \quad X = X^T \ oldsymbol{\cdot} & f(X) = -\log \det X, \quad X \in S^n_{++} \end{aligned}$$

Epigraph

For the function f(x), defined on $S \subseteq \mathbb{R}^n$, the following set:

epi
$$f = \{[x, \mu] \in S \times \mathbb{R} : f(x) \leq \mu\}$$

is called **epigraph** of the function f(x).

Sublevel set

For the function f(x), defined on $S\subseteq \mathbb{R}^n$, the following set:

$$\mathcal{L}_{\beta} = \{x \in S : f(x) \le \beta\}$$

is called **sublevel set** or Lebesgue set of the function f(x).

Criteria of convexity

First order differential criterion of convexity

The differentiable function f(x) defined on the convex set $S\subseteq\mathbb{R}^n$ is convex if and only if $\forall x,y\in S$:

$$f(y) \ge f(x) + \nabla f^T(x)(y - x)$$

Let $y=x+\Delta x$, then the criterion will become more tractable:

$$f(x + \Delta x) \ge f(x) + \nabla f^T(x) \Delta x$$

Second order differential criterion of convexity

Twice differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is convex if and only if $\forall x \in \mathbf{int}(S) \neq \emptyset$:

$$\nabla^2 f(x) \succeq 0$$

In other words, $\forall y \in \mathbb{R}^n$:

$$\langle y,
abla^2 f(x) y
angle \geq 0$$

Connection with epigraph

The function is convex if and only if its epigraph is a convex set.

EXAMPLE

Let a norm $\|\cdot\|$ be defined in the space U. Consider the set:

$$K := \{(x, t) \in U \times \mathbb{R}^+ : ||x|| \le t\}$$

which represents the epigraph of the function $x\mapsto \|x\|$. This set is called the cone norm. According to statement above, the set K is convex.

In the case where $U=\mathbb{R}^n$ and $\|x\|=\|x\|_2$ (Euclidean norm), the abstract set K transitions into the set:

$$\{(x,t) \in \mathbb{R}^n \times \mathbb{R}^+ : ||x||_2 \le t\}$$

Connection with sublevel set

If f(x) - is a convex function defined on the convex set $S \subseteq \mathbb{R}^n$, then for any β sublevel set \mathcal{L}_{β} is convex.

The function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is closed if and only if for any β sublevel set \mathcal{L}_β is closed.

Reduction to a line

 $f:S\to\mathbb{R}$ is convex if and only if S is a convex set and the function g(t)=f(x+tv) defined on $\{t\mid x+tv\in S\}$ is convex for any $x\in S,v\in\mathbb{R}^n$, which allows to check convexity of the scalar function in order to establish convexity of the vector function.

Strong convexity

f(x), defined on the convex set $S\subseteq\mathbb{R}^n$, is called μ -strongly convex (strongly convex) on S, if:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) - \mu\lambda(1 - \lambda)\|x_1 - x_2\|^2$$

for any $x_1, x_2 \in S$ and $0 \le \lambda \le 1$ for some $\mu > 0$.

Criteria of strong convexity

First order differential criterion of strong convexity

Differentiable f(x) defined on the convex set $S\subseteq\mathbb{R}^n$ is μ -strongly convex if and only if $\forall x,y\in S$:

$$f(y) \geq f(x) +
abla f^T(x)(y-x) + rac{\mu}{2} \lVert y-x
Vert^2$$

Let $y=x+\Delta x$, then the criterion will become more tractable:

$$f(x + \Delta x) \geq f(x) +
abla f^T(x) \Delta x + rac{\mu}{2} \|\Delta x\|^2$$

Second order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is called μ -strongly convex if and only if $\forall x \in \mathbf{int}(S) \neq \emptyset$:

$$\nabla^2 f(x) \succeq \mu I$$

In other words:

$$\langle y,
abla^2 f(x) y
angle \ge \mu \|y\|^2$$

Facts

- f(x) is called (strictly) concave, if the function -f(x) is (strictly) convex.
- Jensen's inequality for the convex functions:

$$\left\{ f\left(\sum_{i=1}^n lpha_i x_i
ight) \leq \sum_{i=1}^n lpha_i f(x_i)
ight\}$$

for $lpha_i \geq 0; \quad \sum\limits_{i=1}^n lpha_i = 1$ (probability simplex)

For the infinite dimension case:

$$f\left(\int\limits_{S}xp(x)dx
ight)\leq\int\limits_{S}f(x)p(x)dx$$

If the integrals exist and $p(x) \geq 0, \quad \int\limits_S p(x) dx = 1$

- If the function f(x) and the set S are convex, then any local minimum $x^*=\arg\min_{x\in S}f(x)$ will be the global one. Strong convexity guarantees the uniqueness of the solution.
- Let f(x) be a convex function on a convex set $S\subseteq \mathbb{R}^n$. Then f(x) is continuous $\forall x\in \mathbf{ri}(S)$.

Operations that preserve convexity

- Non-negative sum of the convex functions: $lpha f(x) + eta g(x), (lpha \geq 0, eta \geq 0).$
- Composition with affine function f(Ax+b) is convex, if f(x) is convex.
- Pointwise maximum (supremum): If $f_1(x),\ldots,f_m(x)$ are convex, then $f(x)=\max\{f_1(x),\ldots,f_m(x)\}$ is convex.
- If f(x,y) is convex on x for any $y \in Y$: $g(x) = \sup_{y \in Y} f(x,y)$ is convex.
- If f(x) is convex on S , then g(x,t)=tf(x/t) is convex with $x/t\in S, t>0$.
- Let $f_1:S_1\to\mathbb{R}$ and $f_2:S_2\to\mathbb{R}$, where $\mathrm{range}(f_1)\subseteq S_2$. If f_1 and f_2 are convex, and f_2 is increasing, then $f_2\circ f_1$ is convex on S_1 .

Other forms of convexity

- Log-convex: $\log f$ is convex; Log convexity implies convexity.
- Log-concavity: $\log f$ concave; **not** closed under addition!
- ullet Exponentially convex: $[f(x_i+x_j)]\succeq 0$, for x_1,\ldots,x_n
- Operator convex: $f(\lambda X + (1-\lambda)Y) \preceq \lambda f(X) + (1-\lambda)f(Y)$
- Quasiconvex: $f(\lambda x + (1 \lambda)y) \le \max\{f(x), f(y)\}$
- Pseudoconvex: $\langle \nabla f(y), x-y \rangle \geq 0 \longrightarrow f(x) \geq f(y)$
- Discrete convexity: $f:\mathbb{Z}^n o\mathbb{Z}$; "convexity + matroid theory."

EXAMPLE

Show, that $f(x) = c^{\top}x + b$ is convex and concave.

▼ Solution

EXAMPLE

Show, that $f(x) = x^{\top}Ax$, where $A \succeq 0$ - is convex on \mathbb{R}^n .

▼ Solution

Show, that $f(A) = \lambda_{max}(A)$ - is convex, if $A \in S^n$.

▼ Solution

PL inequality holds if the following condition is satisfied for some $\mu>0$,

$$\|\nabla f(x)\|^2 \ge \mu(f(x) - f^*) \forall x$$

The example of function, that satisfy PL-condition, but is not convex. f(x,y)= $(y-\sin x)^2$

References

- Steven Boyd lectures
- **Suvrit Sra lectures**
- Martin Jaggi lectures
- Example pf Pl non-convex function Open in Colab

Conjugate set

Conjugate (dual) set

Пусть $S\subseteq\mathbb{R}^n$ - произвольное непустое множество. Тогда сопряженное к нему множество определяется, как:

$$S^* = \{y \in \mathbb{R}^n \mid \langle y, x \rangle \geq -1 \ \ orall x \in S\}$$

Double conjugate set

Множество S^{**} называется вторым сопряженным к множеству S, если:

$$S^{**} = \{y \in \mathbb{R}^n \mid \langle y, x \rangle \geq -1 \ \ \forall x \in S^* \}$$

Inter-conjugate and self-conjugate sets

- ullet Множества S_1 и S_2 называются **взаимосопряженными**, если $S_1^*=S_2, S_2^*=S_1.$
- Множество S называется **самосопряженным**, если $S^{st}=S$

Properties

- Сопряженное множество всегда замкнуто, выпукло и содержит нуль.
- Для произвольного множества $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

ullet Если $S_1\subset S_2$, то $S_2^*\subset S_1^*$

$$\bullet \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*$$

$ullet$ Если S - замкнуто, выпукло, включает 0 , то $S^{**}=S$ $ullet$ $S^*=\left(\overline{S} ight)^*$																					
Examples																					
1																					
Доказать, что $S^* = \left(\overline{S}\right)^*$																					
Решение:																					
			٠		•	•				•	•					•					
		•													•						
								•						-						-	
		•	٠		•	٠	٠	•		•	•			-	,	•			•	•	٠
																•				•	
		•				·				•	•										•
				٠		٠	٠			•											•
													•								
2																					
Доказать, что $(\mathbf{conv}(S))^* = S^*$																					
Решение:																					
									٠							٠					
	•				•				٠								•				•
								•													
•			•	•	٠	٠	٠	•	٠	•			•			•	•	•	•		•

3

Доказать, что если B(0,r) - шар радиуса r по некоторой норме с центром в нуле, то $(B(0,r))^*=B(0,1/r)$

Решение:

Dual cones

Сопряженным конусом к конусу K называется такое множество K^{st} , что:

$$K^* = \{y \mid \langle x,y
angle \geq 0 \quad orall x \in K \}$$

Чтобы показать, что это определение непосредственно следует из теории выше вспомним, что такое сопряженное множество и что такое конус $\forall \lambda>0$

$$\{y \ \in \mathbb{R}^n \mid \langle y, x
angle \geq -1 \ \ orall x \in S\}
ightarrow \{\lambda y \ \in \mathbb{R}^n \mid \langle y, x
angle \geq -rac{1}{\lambda} \ \ orall x \in S\}$$

Dual cones properties

- ullet Если K замкнутый выпуклый конус. Тогда $K^{**}=K$
- ullet Для произвольного множества $S\subseteq \mathbb{R}^n$ и конуса $K\subseteq \mathbb{R}^n$:

$$(S+K)^* = S^* \cap K^*$$

ullet Пусть K_1,\ldots,K_m - конусы в \mathbb{R}^n , тогда:

$$\left(\sum_{i=1}^m K_i
ight)^* = igcap_{i=1}^m K_i^*$$

• Пусть K_1, \ldots, K_m - конусы в \mathbb{R}^n . Пусть так же, их пересечение имеет внутреннюю точку, тогда:

$$\left(igcap_{i=1}^m K_i
ight)^* = \sum_{i=1}^m K_i^*$$

Examples

4

Найти сопряженнй конус для монотонного неотрицательного конуса:

$$K = \{x \in \mathbb{R}^n \mid x_1 \geq x_2 \geq \ldots \geq x_n \geq 0\}$$

Решение:

Polyhedra

Множество решений системы линейных неравенств и равенств представляет собой многогранник:

$$Ax \leq b, \quad Cx = d$$

Здесь $A \in \mathbb{R}^{m imes n}, C \in \mathbb{R}^{p imes n}$, а неравенство - поэлементное.

Теорема:

Пусть $x_1,\dots,x_m\in\mathbb{R}^n$. Сопряженным к многогранному множеству:

$$S = \mathbf{conv}(x_1, \dots, x_k) + \mathbf{cone}(x_{k+1}, \dots, x_m)$$

является полиэдр (многогранник):

$$S^* = \left\{ p \in \mathbb{R}^n \mid \langle p, x_i
angle \geq -1, i = \overline{1, k}; \langle p, x_i
angle \geq 0, i = \overline{k+1, m}
ight\}$$

Доказательство:

ullet Пусть $S=X,S^*=Y$. Возьмем некоторый $p\in X^*$, тогда $\langle p,x_i
angle\geq -1,i=\overline{1,k}$. В то же время для любых $heta>0,i=\overline{k+1,m}$:

$$egin{aligned} \langle p, x_i
angle \geq -1 &
ightarrow \langle p, heta x_i
angle \geq -1 \ \langle p, x_i
angle \geq -rac{1}{ heta} &
ightarrow \langle p, x_i
angle \geq 0 \end{aligned}$$

Значит, $p \in Y o X^* \subset Y$

ullet Пусть, напротив, $p \in Y$. Для любой точки $x \in X$:

$$x = \sum_{i=1}^m heta_i x_i \qquad \sum_{i=1}^k heta_i = 1, heta_i \geq 0$$

Значит:

$$\langle p,x
angle = \sum_{i=1}^m heta_i \langle p,x_i
angle = \sum_{i=1}^k heta_i \langle p,x_i
angle + \sum_{i=k+1}^m heta_i \langle p,x_i
angle \geq \sum_{i=1}^k heta_i (-1) + \sum_{i=1}^k heta_i \cdot 0 = -1$$

Значит, $p \in X^* o Y \subset X^*$

5

Найти и изобразить на плоскости множество, сопряженное к многогранному конусу:

$$S = \mathbf{cone} \{ (-3, 1), (2, 3), (4, 5) \}$$

Решение:

Лемма (теорема) Фаркаша (Фаркаша - Минковского)

Пусть $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

1)
$$Ax = b, x \ge 0$$

2)
$$pA \geq 0, \langle p, b \rangle < 0$$

Ax=b при $x\geq 0$ означает, что b лежит в конусе, натянутым на столбцы матрицы A $pA\geq 0,\; \langle p,b\rangle < 0$ означает, что существует разделяющая гиперплоскость между вектором b и конусом из столбцов матрицы A.

Следствие:

Пусть $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

1)
$$Ax \leq b$$

$$2)\ pA=0, \langle p,b\rangle<0, p\geq 0$$

Если в задаче линейного программирования на минимум допустимое множество непусто и целевая функция ограничена на нём снизу, то задача имеет решение.