The FSSP database of structurally aligned protein fold families

Liisa Holm* and Chris Sander

Protein Design Group, European Molecular Biology Laboratory, D-69012 Heidelberg, Germany

ABSTRACT

FSSP (families of structurally similar proteins) is a database of structural alignments of proteins in the Protein Data Bank (PDB) [1]. The database currently contains an extended structural family for each of 330 representative protein chains. Each data set contains structural alignments of one search structure with all other structurally significantly similar proteins in the representative set (remote homologs, <30 % sequence identity), as well as all structures in the Protein Data Bank with 70 – 30 % sequence identity relative to the search structure (medium homologs). Very close homologs (above 70 % sequence identity) are excluded as they rarely have marked structural differences. The alignments of remote homologs are the result of pairwise all-against-all structural comparisons in the set of 330 representative protein chains. All such comparisons are based purely on the 3D co-ordinates of the proteins and are derived by automatic (objective) structure comparison programs. The significance of structural similarity is estimated based on statistical criteria. The FSSP database is available electronically from the EMBL file server and by anonymous ftp (file transfer protocol).

INTRODUCTION

It has been estimated that the biochemistry of all living organisms involves no more than 1,000 divergently related protein families [2]. A majority of newly determined protein sequences can be classified into families by detectable sequence homology. The HSSP database of sequence alignments [3] shows that at least 26% of known sequences deposited in public databases (not counting cDNA fragments) have a relative of known 3D structure. However, protein families are known to retain the shape of the fold even when sequences have diverged below the limit of detection of significant similarities at the sequence level. Structural comparisons merge protein families of known 3D structure into structural classes, the members of which may or may not be evolutionarily related [4-7]. The FSSP database of structural alignments provides a rich source of information for the study of both divergent and convergent aspects of the evolution of protein folds.

The FSSP data sets have a wide field of applications. These include studies to discover remote evolutionary connections in

the twilight zone of sequence similarity; to build a multiple alignment of remotely related families for the generation of sequence profiles or sequence patterns that may identify additional remote relatives in sequence databases [8–9]; to classify folds, such as TIM barrels, in order to study their structural principles [10]; to define structural cores for sequence-structure alignment (T. Smith, pers. comm.), for modular construction of novel proteins, or for model building by homology [11]; to test the accuracy of sequence alignment methods (B. Rost and R.Schneider, pers. comm.); or, to use test sets of remotely homologous pairs for fold recognition (M. Sippl, pers. comm.) and to extract representative data sets for statistical structural analyses [12]. Other uses are only limited by your imagination.

FORM AND CONTENT OF THE DATABASE

Structural alignments

For a protein chain in the representative set, with PDB identifier Nxxx (like: 1PPT, 5PCY) and chain identifier Y (omitted if blank), there is an ASCII (text) file Nxxx.FSSP or NxxxY.FSSP which contains a few or tens of proteins structurally similar to the search structure (Z-score above 2 in the pairwise structural comparison, see below), alongside the secondary structure and solvent accessibility extracted from the 3D coordinates of the search structure [13]. The structurally equivalent residues are reported in the form of a multiple alignment and as a list of matching fragments and can be inspected using three-dimensional graphics. The co-ordinates must be retrieved separately from the corresponding PDB data sets, e.g. Nxxx.PDB. Details about the methods used to derive the database are given in [14,15].

Figure 1 shows an example dataset from FSSP, that for the SH3 domain of chicken brain alpha-spectrin (1SHG.FSSP). General information about the structure and notation are given at the top of the dataset. The dataset contains 5 (NALIGN) structurally aligned proteins which are listed in the '## PROTEINS' section. 1SHF-A is the homologous SH3 domain from fyn (PROTEIN column) and is aligned with a positional root mean square deviation of 1.6 Å (RMSD column) over 57 residues (LALI column) and has 33 % sequence identity after structural alignment (%IDE column). The other structural homologs are two more SH3 domains (1HSP is misannotated in the PDB), actinidin, and biotin repressor. Some structural details are given in the '# #ALIGNMENTS' section. Residue W42 (Trp) of 1SHG is in a beta-strand (E) and has a solvent

```
FAMILIES OF STRUCTURALLY SIMILAR PROTEINS, VERSION 0.3 1994
PDBID
          1shq
          file generated on 7-Jun-94
         360 chains from the Protein Data Bank with 30 % sequence identity
DATABASE
          cutoff, based on PDB-select by Hobohm & al, Protein Science 1, 409-417
          Dali version 1.0: Holm, L., Sander, C. (1993) J.Mol.Biol. 233,123-138.
PARAMETER elastic alignment with similarity threshold 0.20
THRESHOLD This file has been filtered to contain only hits that have similarity
THRESHOLD scores > two standard deviations above database average.
REFERENCE Holm, L., Ouzounis, C., Tuparev, G., Vriend, G., Sander, C. (1992)
REFERENCE A database of protein structure families with common folding motifs.
REFERENCE Protein Science 1, 1691-1698.
          e-mail (Internet) Holm@EMBL-Heidelberg.DE or Sander@EMBL-Heidelberg.DE
CONTACT
CONTACT
          phone +49-6221-387361 / fax +49-6221-387306
AVAILABLE Free academic use. Commercial users must apply for licence.
AVAILABLE No incorporation into other databases.
                                                  19-MAY-93 1SHG
          CYTOSKELETON
          ALPHA SPECTRIN (SH3 DOMAIN)
          CHICKEN (GALLUS GALLUS) BRAIN
SOURCE
AUTHOR
          M.NOBLE, R.PAUPTIT, A.MUSACCHIO, M.SARASTE, M.SARASTE,
SEQLENGTH
           57
NALIGN
NCHAIN
             1 chain(s) in data set /data/dssp/1shg.dssp
NOTATION: STRID1/STRID2: PDB identifiers of search protein (STRID1) and structurally
NOTATION:
              aligned protein (STRID2) with chain identifier
NOTATION: RMSD: positional root mean square deviation of superimposed CA atoms in A
NOTATION: LALI: total length of the aligned fragments for each pair comparison by
NOTATION: structural alignment. The list of alignments sorted by LALI. NOTATION: LSEQ2: length of the entire chain of the aligned structure.
NOTATION: %IDE: percentage of sequence identity over aligned positions
NOTATION: REVERS: number of fragments matching in reversed chain direction
NOTATION: PERMUT: number of topological permutations
NOTATION: NFRAG: total number of aligned fragments
NOTATION: TOPO: 'S' sequential order of aligned fragments; 'N' non-sequential alignment
NOTATION: NR: sequential index of structurally aligned pairs
NOTATION: PROTEIN: COMPND record from the PDB file of the aligned structure
NOTATION: SeqNo, PDBNo, AA, STRUCTURE, BP1, BP2, ACC: sequential and PDB residue
NOTATION:
               numbers, amino acid (lower case = Cys), secondary structure,
NOTATION:
               solvent exposure as in DSSP (Kabsch and Sander, Biopolymers 22,
NOTATION:
               2577-2637, 1983). The alignments show the amino acid sequence
               and DSSP code (in lower case) of the aligned fragments.
NOTATION:
NOTATION: NOCC: number of aligned structures spanning this position
NOTATION: RANGE1/RANGE2: sequential and PDB residue numbers of aligned fragments in
NOTATION:
               search structure (RANGE1) and structurally aligned protein (RANGE2);
               topological permutations and matches in reverse chain direction are flagged;
NOTATION:
               '<-->' reads 'is equivalent to'; PDB residue numbers in parentheses
** PROTEINS : PDB/chain identifiers and structural alignment statistics
 NR. STRID1 STRID2 RMSD LALI LSEQ2 %IDE REVERS PERMUT NFRAG TOPO PROTEIN
                                    33
   1: 1sha
             1shf-A 1.6
                           57
                                 59
                                             Λ
                                                    0
                                                           2 S
                                                                   FYN PROTO-ONCOGENE TYROSINE KINASE
                                 71
                           56
   2: 1sha
             1hsp
                    2.9
                                      27
                                              0
                                                     ٥
                                                           3 S
                                                                   PHOSPHOLIPASE C$GAMMA (SH2 DOMAIN)
                    1.7
   3: 1sha
             1pnj
                           53
                                 86
                                      2.8
                                              0
                                                     0
                                                           3 S
                                                                   PHOSPHATIDYLINOSITOL 3-KINASE (P85
                     2.6
                           47
                                                           7 S
   4: 1sha
             2act
                                218
                                       6
                                              0
                                                     0
                                                                   ACTINIDIN (SULFHYDRYL PROTEINASE)
                     2.7
                                              ٥٠
                                                                   BIOTIN OPERON REPRESSOR (BIRA) BIO
             1bia
                           44
                                292
                                                     0
                                                           3 S
   5: 1shq
** ALIGNMENTS
                 1 -
 SeqNo PDBNo AA STRUCTURE BP1 BP2 ACC NOCC
                                                      0
                               0
                                  184
                                         5
                                             V K Gs P Nt
                               0
                                    75
                                          5
                                             T C Y Ve Rs
             Ε
                            0
    3
         8
                           27
                                    71
                                          5
                                             Le A Qe Se Pe
             L
               Ε
                      -AB
                               56A
    4
        9
             v
               Е
                      -AB
                           26
                               55A
                                    0
                                          5
                                             Fe Vb Ye Ve Ve
       10
             L
                E
                      -AB
                           25
                               54A
                                    49
                                          5
                                             Ve Ke Re Ae Ke
        11
             Α
               Ε
                      - B
                            0
                               53A
                                          5
                                             Ae Ae Le Le
       12
             L
                            ٥
                                0
                                    55
                                          5
                                             Ls Ls L D Ie
    8
       13
             Υ
               s
                     S-
                            0
                                0
                                  126
                                          5
                                             Ys Fs Ys A Ie
    9
       14
             D
                            0
                                0
                                    81
                                          5 D D D A Gt
                                          4 Yb Y Yb Fh .
   10
       15
             Υ
               В
                      -F
                           20
                                0B 18
   11
       16
             0
                            υ
                                0
                                    94
                                          4 E Kb K Kh.
   12
       17
             Е
                            0
                                0
                                    61
                                          4
                                             A As K Oh .
                                             Rs Qs E Y .
   13
       18
                            0
                                Ú
                                  149
                                          4
             K
               S >
                     s-
                                0
                                             Ts Rs Rs A .
       19
             s
                            0
                                    32
                                          4
   14
   15
        20
                T 3
                     $+
                            0
                                             Es Es Et Ss
        21
                T 3
                     S+
                            0
                                0
                                  158
                                             Ds Dt Et Gs
                           47
                                0A 10
                                             Db Et Db . .
   17
        22
                B <
   18
       23
                            0
                                0
                                          2 L
                                             s TbD.
                                    55
   19
        24
             т
                            0
                                0
   20
       25
             М
                В
                      -F
                           10
                                OВ
                                     3
                                          3
                                             Fb F Lb.
   21
        26
                            0
                                0 138
                                             н
                                                I H
             Κ
                  >
   22
       27
             K
               T 3
                     S+
                                O
                                  137
                                             Kt Ks Lt V
   23
        28
             G
               T 3
                     S+
                                0
                                    46
                                             Gt Ss Gt D
                            0
                                0
                                             E A D He Ie
   25
        30
             I
                Е
                      -A
                            5
                                0 A
                                    96
                                             Ke I le Ae Fe
        31
             L
                Ε
                      -A
                            4
                               0 A
                                     í)
                                          5
                                             Fe Ib Le Ie Ge
   27
        32
             Т
               E
                      -AD
                            3
                               40A 30
                                          5 Oe O Te Ve Ie
                            0
                              39A
                                             Ie Ns V Ie Se
             L
                                    10
   28
        33
               Е
                      + D
                                             Le Vb . Ve Re
                               0
   29
        34
             L
                Ε
```

## FRAGMENTS: ranges			of	supe	eri	mposed	res	idue	s										
NR.	STRID1	STRID2							R.	ANGE1	<>	RANGE2							
1:	1shg	1shf-A	1	LYS	(6) -	41	VAL	(46)	<>	1 VAL	(84)	-	41	SER	(124)
1:	1shg	1shf-A	42	ASN	(47) -	57	ASP	(62)	<>	44 THR	(127)	-	59	ASP	(142)
2:	1shg	1hsp	1	LYS	(6) -	17	GLU	(22)	<>	6 LYS	(6)	-	22	GLU	(22)
2:	1shg	1hsp	19	THR	(24) -	4 5	GLN	(50)	<>	24 THR	(24)	-	50	LYS	(50)
2:	1shg	1hsp	46	GLY	(51) -	57	ASP	(62)	<>	52 LEU	(52)	-	63	VAL	(63)
3:	1shg	1pnj	1	LYS	(6) -	28	LEU	(33)	<>	7 GLY	(5)	-	34	VAL	(32)
3:	1shg	1pnj	33	ASN	(38) -	42	ASN	(47)	<>	54 GLU	(52)	-	63	GLU	(61)
3:	1shg	1pnj	43	ASP	(48) -	57	ASP	(62)	<>	66 GLY	(64)	-	80	GLY	(78)
4:	1shg	2act	1	LYS	(€) -	9	ASP	(14)	<>	132 PRO	(132)	-	140	ALA	(140)
4:	1shg	2act	10	TYR	(15) -	16	ARG	(21)	<>	144 PHE	(144)	-	150	GLY	(150)
4:	1shg	2act	22	LYS	(27) -	32	THR	(37)	<>	160 VAL	(160)	-	170	GLY	(170)
4:	1shg	2act	37	TRP	(42) -	43	ASP	(48)	<>	178 TRP	(178)	-	184	TRP	(184)
4:	1shg	2act	44	ARG	(49) -	4.8	VAL	(53)	<>	192 GLY	(192)	-	196	ILE	(196)
4:	1shg	2act	50	ALA	(55) -	5.3	VAL	(58)	<>	205 THR	(205)	-	208	ILE	(208)
4:	1shg	2act	54	LYS	(59) -	57	ASP	(*	62)	<>	211 MET	(211)	-	214	TYR	(214)
5:	1shg	1bia	1	LYS	(6) -		ASP	(14)	<>	248 ASN	(273)	-	256	GLY	(281)
5:	1shg	1bia	22	LYS	(27) -	4.9	PRO	(54)	<>	258 LYS	(283)	-	285	MET	(310)
5:	1shg	1bia	51	ALA	(56) -	57	ASP	(62)	<>	286 GLY	(311)	-	292	ARG	(317)

Figure 1. Format of an FSSP file. One FSSP file contains a structural protein family: the search structure and structurally homologous proteins from the PDB. File organization is line-oriented and strictly formatted. Lines have a maximum length of 132 bytes. The file is divided into four sections, HEADER, PROTEINS, ALIGNMENTS and FRAGMENTS. The sections are separated by double hashes (##). The HEADER section is mandatory. The HEADER, PROTEINS and ALIGNMENTS sections are similar to those in the HSSP database [3], with obvious modifications of notation that are explained in the HEADER block. The FRAGMENTS section reports the beginning and ending residue numbers of structurally equivalent segments. The residue ranges are given both according to sequential numbering starting from 1 and, in parentheses, according to the numbering in the PDB files.

accessibility (ACC column) of 39 ${\rm Å}^2$. W42 has a structurally equivalent residue in 5 (NOCC) of the aligned structures, of which three are tryptophans (W), two are leucines (L), and all five are in beta-strands (b or e in We, Wb, Le, We, Le). Finally, the '# # FRAGMENTS' section says that to superimpose the 3D coordinates of 1SHG with those of 1SHF, residues 6-46 and 47-62 of 1SHG should be equivalenced with residues 484-4124 and 4127-4142 of 1SHF.

The default files (Nxxx.FSSP) contain structural alignments generated by the program Dali [15] and are constrained to preserve sequential ordering of the aligned segments. Alignments optimized allowing topological permutations (loop reconnections and chain reversals) are available in files Nxxx_dali.FSSP. Alignments using other methods are available in datasets Nxxx_suppos.FSSP and Nxxx_comp3D.FSSP [14].

Index of protein fold families

To aid navigation in the database, the 330 protein chains contained in the representative set have been clustered into fold families (Table I). A dendrogram of the families was produced by average linkage clustering based on structural similarity scores [15]. Chain length effects were corrected for by transforming the pairwise similarities into statistical significance scores (Z-scores). Families and subfamilies result from truncating the tree at different cut levels of Z-score. The higher the cut, the larger the resulting number of distinct fold families (Figure 2). 142 families resulting from the cut at an average Z-score of 2 are numbered in the first column of Table I. Second and further members of a family are indicated by indentation relative to the first member at the given level of significance. For example, if one decided to derive a

more refined selection of fold families using a Z-score cutoff of 3 instead of 2, then the set of families should be expanded by all subfamilies that are indented by one letter space in Table I, yielding a total of 168 families. The most refined selection possible in the representative set would place each of the 330 chains in a distinct family, but even a cut as high as a Z-score of 10 yields only 255 families (Figure 2).

In comparing proteins with very low sequence identity, there is no direct relationship between the structural Z-score and evolutionary relatedness. To assert descent by common ancestry, the biological function, sequence signatures and architectural detail should be considered. For example, the very distantly related animal/plant lysozymes and T4 lysozyme are classified into two neighbouring families (21 and 22) using the structural Z-score, although they share some structural and biochemical features. As an example of common folding motifs, family 57 in Table I contains six structures with the babbab fold typified by muconolactone isomerase (1MLI).

DISTRIBUTION

Network access

The FSSP data sets can be obtained from the EMBL file server [16]. To get detailed instructions on how to use the service send the messages 'HELP' and 'HELP proteindata' to the network address Netserv@embl-heidelberg.de. If you have access to Internet you can obtain FSSP files by anonymous ftp (file transfer protocol) from ftp.embl-heidelberg.de, directory: /pub/data-bases/protein_extras \ fssp. Access to the database is also possible over the World Wide Web (WWW), e.g. using the XMosaic interface; the URL address is http://www.embl-heidelberg.de/databases/protein_extras \ fssp. Distribution by the Protein Data Bank (pdb.pdb.bnl.gov) is planned for late 1994.

Figure 2. Definition of structural classes. The June 1994 release of the FSSP database is based on a sequence-representative set of 330 protein chains (less than 30 % sequence identity). Average linkage clustering using the similarity scores from an all-against-all structural comparison yielded a tree representation of structural relations in the set (cf. Table 1). Truncating the tree at different levels of structural similarity (horizontal axis, Z-score) defines distinct families, i.e., separated branches of the tree. Cutting at a very low level (Z < 2) leads to a collapse into a very few general classes (all-alpha, all-beta). Cutting at a high level increases the number of distinct families, with a gradual approach to one family per protein chain.

The SUPPOS program is available as part of the WHAT IF package (available from G.Vriend, email: vriend@emblheidelberg.de). The program Dali is currently not available for distribution. Requests for alignments of newly solved crystallographic or solution NMR structures (C^a co-ordinates required) may be sent to L.Holm by email (holm@emblheidelberg.de).

Conditions

Academic redistribution of single files or of the entire database is permitted. No inclusion in other databases or database services, academic or other, without explicit permission of the authors. All rights reserved. Not to be used for classified research. Users are asked to refer to this paper and ref. 14 in reporting results on use of the database.

Size of the current release

The content and size of the FSSP database is of course tightly coupled to the development of the Protein Data Bank which is currently increasing at the rate of hundreds of datasets every year. The size of the sequence-representative set of PDB files [17], which is used here as a point of departure, has increased from 154 in December 1992 to 204 in October 1993 to 330 in June 1994. The complete set of data files (June 1994) requires about 11 Mb of disk storage. Regular and frequent updates of the database are planned.

Limitations

The structure comparison program Dali [15] defines the extent of the common structural core by maximizing the agreement of *intra*molecular CA-CA distances. The scoring function was deliberately designed to allow inter-domain conformational flexibility; hence, positional root mean square deviations for the corresponding rigid-body superimpositions are often higher than for comparison methods that put an absolute upper limit on *inter*molecular positional deviations. This, however, is only an apparent disadvantage.

The current database contains at most one alignment per pair of full length proteins. In future releases, the significance of alignments will be evaluated at the level of structural domains [18], i.e., parts of structures, and significant suboptimal alignments will be included. PDB data sets are referred to by the PDB code; no provision can be made for asynchronous revisions of the PDB data sets relative to the derived database.

Related data banks and programs

It is often useful to complement the compilation of structure alignments with sequence and variability information by direct reference to the latest version of the HSSP database of sequencealigned protein families [3]. Users interested in detailed local structural properties of each protein, such as hydrogen bonding patterns, may refer to the DSSP database of secondary structures, derived from PDB files. The HSSP and DSSP databases are available by the same mechanism of network access as FSSP, see above. An X-windows based protein query and 3D inspection system, ProtQuiz 0.7 (Sander & Scharf, unpubl.; test version available via anonymous ftp from ftp.embl-heidelberg.de), can be used for interactive evaluation of pairwise alignments. The FSSP database is cross-referenced with several sequence and other databases in the information retrieval system SRS [19] with access provided on www.embl-heidelberg.de. Kindly report any problems to the authors by electronic mail.

REFERENCES

- 1. Bernstein F.C., Koetzle T.F., Williams G.J.B., Meyer E.F., Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M., J. Mol. Biol. 112:535-542 (1977).
- 2. Chothia C. Nature 357:543-544 (1992).
- 3. Sander C., Schneider R., Proteins 9:56-68 (1991).
- 4. Overington J., Johnson M.S., Sali A., Blundell T.L., Proc. R. Soc. Lond. B241:132-145 (1990).
- 5. Pascarella S., Argos P., Prot. Eng. 5:121-137 (1992).
- 6. Orengo C.A., Flores T.P., Taylor W.R., Thornton J.M., Prot. Eng. 6:485-500 (1993).
- 7. Holm L., Sander C., Proteins 19:165-173 (1994).
- 8. Bashford D., Chothia C., Lesk A.M., J. Mol. Biol. 196:199-216 (1987).
- 9. Taylor W.R., Prot. Eng. 2:77-86 (1988).
 10. Wilmanns M., Hyde C.C., Davies D.R., Kirschner K., Jansonius J.N., Biochemistry 30:9161-9169 (1991).
- 11. Sutcliffe M.J., Haneef I., Carney D., Blundell T.L., Prot. Eng. 1:377-384 (1987).
- 12. Maiorov V.N., Crippen G.M., J.Mol.Biol. 235:625-634 (1994).
- 13. Kabsch W., Sander C., Biopolymers 22:2577-2637 (1983).
- 14. Holm L., Ouzounis C., Sander C., Tuparev G., Vriend G., Protein Science 1:1691-1698 (1992).
- 15. Holm L., Sander C., J. Mol. Biol. 233:123-138 (1993).
- 16. Stoehr P.J., Omond R.A., Nucleic Acids Res. 17:6763-6764 (1989).
- 17. Hobohm U., Scharf M., Schneider R., Sander C., Protein Science 3:409-417
- 18. Holm L., Sander C., Proteins 19:256-268 (1994).
- 19. Etzold T., Argos P., CABIOS 9:49-57 (1993).

Table I. Protein fold families

	Protein fold families	
family	PDB code	protein
1	1acx	ACTINOXANTHIN
1	lcobB	SUPEROXIDE DISMUTASE (*CO SUBSTITUTED)
2	1ten 2hhrB	TENASCIN (THE THIRD FIBRONECTIN TYPE III REPEAT) HUMAN GROWTH HORMONE COMPLEX WITH ITS RECEPTOR
2	2hlaA	HUMAN CLASS I HISTOCOMPATIBILITY ANTIGEN AW 68.1
2	4fabL	4-4-20 (IG*G2A=KAPPA=) FAB FRAGMENT - FLUORESCEIN (DIANION)
2	3hlaB	HUMAN CLASS I HISTOCOMPATIBILITY ANTIGEN A2.1
2 2	1fc2D 1cid	IMMUNOGLOBULIN FC AND FRAGMENT B OF PROTEIN A COMPLEX CD4 (DOMAINS 3 AND 4)
2	1tlk	TELOKIN
2	1cd8	T CELL CO-RECEPTOR CD8
2	1cd4	/CD4\$ (1 - 183 PLUS ASP - THR) (/D1D2\$) (N-TERMINAL
2	1cdb 1ltsC	CD2 (T LYMPHOCYTE GLYCOPROTEIN, ADHESION DOMAIN) HEAT-LABILE ENTEROTOXIN (LT); CHOLERA-LIKE TOXIN, AB5 TOXIN
4	2hmgB	HEMAGGLUTININ (/G146(A)D\$) (BROMELAIN DIGESTED) (MUTANT
5	1sh1	NEUROTOXIN I (SH I) (ENERGY MINIMIZED AVERAGE STRUCTURE)
6	1dfnB	DEFENSIN /HNP\$-3
7 8	1prcM 2bp2	PHOTOSYNTHETIC REACTION CENTER PROPHOSPHOLIPASE A=2=
9	1mat	METHIONINE AMINOPEPTIDASE (E.C.3.4.11.18)
10	2hhmA	HUMAN INOSITOL MONOPHOSPHATASE DIMER COMPLEXED WITH
10	3fbpB	FRUCTOSE-1,6-BISPHOSPHATASE (D-FRUCTOSE-1,6-BISPHOSPHATE
11 12	1cseI 2rveB	SUBTILISIN CARLSBERG (E.C.3.4.21.14) (COMMERCIAL PRODUCT ECO RV ENDONUCLEASE COMPLEX WITH DNA
13	llgaA	LIGNIN PEROXIDASE (LIP) (E.C.1.11.1) (FERRIC)
13	3сер	YEAST CYTOCHROME \$C PEROXIDASE (E.C.1.11.1.5) MUTANT WITH
14	llfb	TRANSCRIPTION FACTOR LFB1 (HOMEODOMAIN)
14 15	1hddC 1vsgB	ENGRAILED HOMEODOMAIN COMPLEX WITH /DNA\$ VARIANT SUBFACE OF VCORPOTEIN OF TERMINAL DOMAIN
15	1hlhA	VARIANT SURFACE GLYCOPROTEIN (N-TERMINAL DOMAIN) HELIX-LOOP-HELIX DOMAIN (ONLY) FROM THE E47 PROTEIN PRODUCT
15	1ropA	ROP: COL*E1 REPRESSOR OF PRIMER
15	1fha	FERRITIN (H-CHAIN) MUTANT (LYS 86 REPLACED BY GLN) (K86Q)
15 15	2tmvP 1lpe	INTACT TOBACCO MOSAIC VIRUS (FIBER DIFFRACTION STUDY) APOLIDOPPOTEIN *E2 (/LDL\$ DECEDTOR DINIDING DOMAIN)
15	1bbhB	APOLIPOPROTEIN-*E3 (/LDL\$ RECEPTOR BINDING DOMAIN) CYTOCHROME C (PRIME)
15	256bA	CYTOCHROME \$B562 (OXIDIZED)
15	2ccyB	CYTOCHROME \$C(PRIME)
15 15	2hmzA 1brd	HEMERYTHRIN (ADIZOMET) BACTERIORHODOPSIN
16	lmrrA	MANGANESE SUBSTITUTED PROTEIN R2 OF
16	2ztaA	GCN4\$ LEUCINE ZIPPER
16	3inkC	INTERLEUKIN-2 MUTANT WITH CYS 125 REPLACED BY ALA (C125A)
16 16	1bgc 1rcb	GRANULOCYTE COLONY STIMULATING FACTOR (RBG-CSF)
16	1ifa	INTERLEUKIN-4 INTERFERON BETA (MURINE)
16	lgmfA	GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR
17	1dsbA	DSBA (DISULFIDE BOND FORMATION PROTEIN)
17 18	lgplA	GLUTATHIONE PEROXIDASE (E.C.1.11.1.9)
18	3trx 1gstB	THIOREDOXIN (REDUCED FORM) ISOENZYME 3-3 OF GLUTATHIONE S-TRANSFERASE (2.5.1.18)
18	lego	OXIDIZED GLUTAREDOXIN
18	1aba	GLUTAREDOXIN MUTANT WITH VAL 15 REPLACED BY GLY AND TYR 16
19 19	lgal 1trb	GLUCOSE OXIDASE EC 1.1.3.4 THIODEDOVIN DEDITIONSE (E.C.) 6.4.5) MUTANT WITH CVC 129
19	1trb 1npx	THIOREDOXIN REDUCTASE (E.C.1.6.4.5) MUTANT WITH CYS 138 NADH PEROXIDASE (E.C.1.11.1.1) NON-ACTIVE FORM WITH
19	llpfA	LIPOAMIDE DEHYDROGENASE (E.C.1.8.1.6)
19	1phh	\$P-*HYDROXYBENZOATE HYDROXYLASE (/PHBH\$) (E.C.1.14.13.2) -
19	3grs	GLUTATHIONE REDUCTASE (E.C.1.6.4.2), OXIDIZED FORM (E)
20 20	lipd 6icd	3-ISOPROPYLMALATE DEHYDROGENASE (E.C.1.1.1.85) ISOCITRATE DEHYDROGENASE (E.C.1.1.1.42) (MUTANT WITH SER 113
20	oled lglt	GLUTATHIONE SYNTHASE
20	lgrcB	GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE (EC 2.1.2.2)
20	1gd1R 5ldh	\$HOLO-*D-*GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE
20 20	51dh 4mdhB	LACTATE DEHYDROGENASE H=4= AND S-\$LAC-/NAD\$==+== COMPLEX CYTOPLASMIC MALATE DEHYDROGENASE (E.C.1.1.1.37)
20	1dhr	DIHYDROPTERIDINE REDUCTASE (DHPR) (E.C.1.6.99.10) COMPLEX
20	1hsdA	3ALPHA,20BETA-*HYDROXYSTEROID DEHYDROGENASE (HOLO FORM)
20	ludpA	URIDINE DIPHOSPHOGALACTOSE 4-EPIMERASE (E.C.5.1.3.2)
20 20	1pgd 8adh	6-PHOSPHOGLUCONATE DEHYDROGENASE (6-PGDH) APO-LIVER ALCOHOL DEHYDROGENASE (E.C.1.1.99.8)
20	saun	HHAI DNA (CYTOSINE-C5-)-METHYLTRANSFERASE (E.C.2.1.1.37)
	•	

Table I. (cont.)

family	PDB code	protein
20	1pfkA	PHOSPHOFRUCTOKINASE (E.C.2.7.1.11) (R-STATE) COMPLEX WITH
20	2atcA	ASPARTATE CARBAMOYLTRANSFERASE (ASPARTATE TRANSCARBAMYLASE)
20 20	1gdhA 8abp	D-GLYCERATE DEHYDROGENASE (APO FORM) (E.C.1.1.1.29) L-*ARABINOSE-BINDING PROTEIN (MUTANT WITH MET 108 REPLACED
20	ldri	D-RIBOSE-BINDING PROTEIN
20	2gbp	D-*GALACTOSE/D-*GLUCOSE BINDING PROTEIN (/GGBP\$)
20	2liv	LEUCINE(SLASH)*ISOLEUCINE(SLASH)*VALINE-BINDING PROTEIN
20	3chy	CHE*Y
20	2fcr	FLAVODOXIN
20 20	1fx1	FLAVODOXIN NITROCENACE IRON PROTEIN
20	1nipA 1etu	NITROGENASE IRON PROTEIN ELONGATION FACTOR TU (DOMAIN I) - *GUANOSINE DIPHOSPHATE
20	5p21	\$C-*H-RAS \$P21 PROTEIN (AMINO ACIDS 1 - 166) COMPLEX WITH
20	1minA	NITROGENASE MOLYBDENUM-IRON PROTEIN
20	1minB	NITROGENASE MOLYBDENUM-IRON PROTEIN
20	_ltgl	TRIACYLGLYCEROL ACYLHYDROLASE (E.C.3.1.1.3)
20 20	2sc2	SERINE CARBOXYPEPTIDASE II (E.C.3.4.16.1) (CPDW-II)
20	2had 1ace	HALOALKANE DEHALOGENASE (\$P*H 6.2) ACETYLCHOLINESTERASE (E.C.3.1.1.7)
20	racc	THYMIDINE PHOSPHOYLASE (E.C.2.4.2.4)
20	1ulb	PURINE NUCLEOSIDE PHOSPHORYLASE (E.C.2.4.2.1) COMPLEX WITH
20	3сра	CARBOXYPEPTIDASE A=ALPHA= (COX) (E.C.3.4.17.1) COMPLEX WITH
20	1lap	LEUCINE AMINOPEPTIDASE (E.C.3.4.11.1)
20	3adk	ADENYLATE KINASE (E.C.2.7.4.3)
20 21	1gky 1184	GUANYLATE KINASE (E.C.2.7.4.8) COMPLEX WITH LYSOZYME (E.C.3.2.1.17) MUTANT WITH CYS 54 REPLACED BY THR,
22	1baa	BARLEY ENDOCHITINASE (26 KD)
22	1lhm	LYSOZYME (E.C.3.2.1.17) (MUTANT WITH CYS 77 REPLACED BY ALA
23	4fisB	FIS PROTEIN (FACTOR FOR INVERSION STIMULATION) MUTANT
24	1wrpR	\$TRP REPRESSOR (TRIGONAL FORM)
25	1snc	STAPHYLOCOCCAL NUCLEASE (E.C.3.1.31.1) COMPLEX WITH
26 26	lbovA lltsD	VEROTOXIN-1 (B-OLIGOMER), ALSO CALLED SHIGA-LIKE TOXIN-1 HEAT-LABILE ENTEROTOXIN (LT); CHOLERA-LIKE TOXIN, AB5 TOXIN
27	1phs	PHASEOLIN
28	2dpv	CANINE PARVOVIRUS, STRAIN D, VIRAL PROTEIN 2
28	2bpa1	BACTERIOPHAGE PHIX174 CAPID PROTEINS GPF, GPG, GPJ AND
28	1tnfA	TUMOR NECROSIS FACTOR-ALPHA (CACHECTIN)
28	1bmv2	BEAN POD MOTTLE VIRUS (MIDDLE COMPONENT)
28 28	1bbt1 1r093	FOOT AND MOUTH DISEASE VIRUS O=1=BFS 1860 (FMDVO=1=BFS) RHINOVIRUS 14 (/HRV\$14) COMPLEX WITH ANTIVIRAL AGENT
28	2mev1	MENGO ENCEPHALOMYOCARDITIS VIRUS COAT PROTEIN
28	2tbvB	TOMATO BUSHY STUNT VIRUS
28	1r092	RHINOVIRUS 14 (/HRV\$14) COMPLEX WITH ANTIVIRAL AGENT
28	2mev3	MENGO ENCEPHALOMYOCARDITIS VIRUS COAT PROTEIN
28	4sbvA	SOUTHERN BEAN MOSAIC VIRUS COAT PROTEIN
28 28	1rmu1 1bmv1	RHINOVIRUS 14 (/HRV\$14) (MUTANT WITH CYS 1 199 REPLACED BY BEAN POD MOTTLE VIRUS (MIDDLE COMPONENT)
28	2bpa2	BACTERIOPHAGE PHIX174 CAPID PROTEINS GPF, GPG, GPJ AND
28	2stv	SATELLITE TOBACCO NECROSIS VIRUS
28	llte	LECTIN COMPLEX WITH LACTOSE
28	1ayh	HYBRID(1-3,1-4)-BETA-D-GLUCAN-4-GLUCANOHYDROLASE H(A16-M)
28	3hmgE	HEMAGGLUTININ (/L226(A)Q\$) (BROMELAIN DIGESTED) (MUTANT
29 29	1gsgP 3ts1	GLUTAMINYL-T/RNA\$ SYNTHETASE (GLN/RS\$) COMPLEX WITH TYROSYL-TRANSFER /RNA\$ SYNTHETASE (E.C.6.1.1.1) COMPLEXED
30	8catA	CATALASE (E.C.1.11.1.6)
30	1ifb	INTESTINAL FATTY ACID BINDING PROTEIN (APO FORM 1)
30	1mup	MAJOR URINARY PROTEIN COMPLEX WITH 2-(SEC-BUTYL)
30	1rbp	RETINOL BINDING PROTEIN
30 31	1bbpA 1ms2A	BILIN BINDING PROTEIN (/BBP\$) /MS\$2 VIRUS (BACTERIOPHAGE)
31	3bcl	BACTERIOCHLOROPHYLL-A PROTEIN
31	1omf	MATRIX PORIN (OMPF)
31	2por	PORIN (CRYSTAL FORM B)
32	3dpa	PAP*D
32 33	4ait 1thi	TENDAMISTAT (ENERGY MINIMIZED MODEL USING '/FANTOM\$') THAIIMATIN I
33 34	1pcdA	THAUMATIN I PROTOCATECHUATE 3,4-*DIOXYGENASE (E.C.1.13.11.3)
34	2pabB	PREALBUMIN (HUMAN PLASMA)
35	1higA	INTERFERON-GAMMA
36	1c5a	DES-ARG = = 74 = -COMPLEMENT C5A
37	1ppt	AVIAN PANCREATIC POLYPEPTIDE

Table I. (cont.)

amily	PDB code	protein
8	lpafA	POKEWEED ANTIVIRAL PROTEIN
8	1aaiA	RICIN
)	2il8A	INTERLEUKIN 8 (IL-8) (NEUTROPHIL ACTIVATION PROTEIN) /NAP\$
)	ldpi	/DNA\$ POLYMERASE I (KLENOW FRAGMENT) (E.C.2.7.7.7) \$D/CMP\$
l I	lpowA	PYRUVATE OXIDASE (E.C.1.2.3.3) (WILD TYPE) PHOSPHOGLYCERATE KINASE (E.C.2.7.2.3) COMPLEX WITH ATP,
1 2	3pgk 1tfi	TRANSCRIPTIONAL ELONGATION FACTOR SII (TFIIS, NUCLEIC-ACID
3	1rnt	RIBONUCLEASE $T=1=(E.C.3.1.27.3)$ ISOZYME-2(PRIME)-GUANYLIC
3	1rnbA	BARNASE (G SPECIFIC ENDONUCLEASE) (E.C.3.4.21.15) COMPLEX
3	1sarA	RIBONUCLEASE SA (E.C.3.1.4.8)
4	3fxc	FERREDOXIN
1	2pia	PHTHALATE DIOXYGENASE REDUCTASE (E.C.1.18.1.)
1	1fnr	FERREDOXIN:/NADP==+==\$ OXIDOREDUCTASE (FERREDOXIN REDUCTASE)
5	1ubq	UBIQUITIN
5	2gb1	PROTEIN G (B1 DOMAIN) (/NMR\$, RESTRAINED MINIMIZED AVERAGED
5 7	3gf1 9insB	INSULIN-LIKE GROWTH FACTOR (NMR, 10 STRUCTURES) INSULIN
3	llab	LIPOYLATED DOMAIN (RESIDUES 1–80) OF THE LIPOAMIDE
j	1f3g	PHOSPHOCARRIER III = GLC = = FAST =
)	1pda	PORPHOBILINOGEN DEAMINASE (HYDROXYMETHYL BILANE
)	1abg	SULFATE-BINDING PROTEIN WITH SULFATE
О	1abh	PHOSPHATE-BINDING PROTEIN COMPLEX WITH PHOSPHATE
0	1omp	D-MALTODEXTRIN-BINDING PROTEIN
1	4dfrB	DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEX WITH
1	3dfr	DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEX WITH NADPH AND
1 1	2reb 3aat	REC*A PROTEIN ASPARTATE AMINOTRANSFERASE (E.C.2.6.1.1) (MUTANT WITH ARG
2	llis	LYSIN
3	3cp4	CYTOCHROME P450CAM (CAMPHOR MONOOXYGENASE) (E.C.1.14.15.1)
1	2utgA	UTEROGLOBIN
5	4tms	THYMIDYLATE SYNTHASE (E.C.2.1.1.45)
6	1pba	PROCARBOXYPEPTIDASE *B (E.C.3.4.17.2) (ACTIVATION DOMAIN)
7	1mli	MUCONOLACTONE ISOMERASE (E.C.5.3.3.4)
7	1nrcA	PROTEIN FROM UI SMALL NUCLEAR RIBONUCLEOPROTEIN (SNRNP UI)
7	1aps	ACYLPHOSPHATASE (E.C.3.6.1.7) (NMR, 5 STRUCTURES)
7	lndk	NUCLEOSIDE DIPHOSPHATE KINASE (E.C.2.7.4.6) MUTANT WITH
7 7	1tbpA 2glsA	TATA-BINDING PROTEIN (TBP, C-TERMINAL 179 AMINO ACIDS)
8	1pgi	GLUTAMINE SYNTHETASE (E.C.6.3.1.2) D-GLUCOSE 6-PHOSPHATE ISOMERASE (E.C.5.3.1.9)
9	lmsbA	MANNOSE BINDING PROTEIN *A (LECTIN DOMAIN) COMPLEX WITH
0	2crd	CHARYBOOTOXIN (NMR, 12 STRUCTURES)
0	1gps	GAMMA-1-P THIONIN (NMR, 8 MODELS)
1	3csc	CITRATE SYNTHASE (E.C.4.1.3.7)- L-MALATE - ACETYL
2	labd	ACYL-COENZYME A BINDING PROTEIN (ACBP)
2	_1fc2C	IMMUNOGLOBULIN FC AND FRAGMENT B OF PROTEIN A COMPLEX
3	laak	UBIQUITIN CONJUGATING ENZYME
4 1	1shaA	V-SRC TYROSINE KINASE TRANSFORMING PROTEIN (PHOSPHOTYROSINE
4 4	lsryA lbia	SERYL-TRNA SYNTHETASE (E.C.6.1.1.11) BIOTIN OPERON REPRESSOR (BIRA) BIOTIN HOLOENZYME SYNTHETASE
5	lcpcA	C-PHYCOCYANIN
5	1cpcB	C-PHYCOCYANIN
5	1lh3	LEGHEMOGLOBIN (CYANO,MET)
5	1ecd	HEMOGLOBIN (ERYTHROCRUORIN, DEOXY)
5	2mba	MYOGLOBIN
5	1cohB	ALPHA-FERROUS-CARBONMONOXY, BETA-COBALTOUS-DEOXY HEMOGLOBIN
5	1mbn	MYOGLOBIN (FERRIC IRON - METMYOGLOBIN)
5 5	lcolA	COLICIN *A (C-TERMINAL DOMAIN) (PORE-FORMING DOMAIN)
) 7	1gly 1glaG	GLUCOAMYLASE (GLUCAN 1,4-ALPHA-GLUCOSIDASE) GLYCEROL KINASE (ATP:GLYCEROL PHOSPHOTRANSFERASE
, 7	IgiaG latnA	DEOXYRIBONUCLEASE I COMPLEX WITH ACTIN
, 7	2yhx	YEAST HEXOKINASE B (E.C.2.7.1.1) COMPLEX WITH
7	1hsc	44 K /ATP\$ASE FRAGMENT (N-TERMINAL) OF 70K HEAT-SHOCK COGNATE
8	1rnh	SELENOMETHIONYL RIBONUCLEASE H (E.C.3.1.26.4)
8	1hmi	HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 REVERSE TRANSCRIPTASE
9	1wsyB	TRYPTOPHAN SYNTHASE (E.C.4.2.1.20)
9	3pgm	PHOSPHOGLYCERATE MUTASE (E.C.2.7.5.3) DE-PHOSPHO ENZYME
0	8atcB	ASPARTATE CARBAMOYLTRANSFERASE (ASPARTATE TRANSCARBAMYLASE)
1	1mypC 1tml	MYELOPEROXIDASE (E.C.1.11.1.7) ENDO-1,4-BETA-D-GLUCANASE (E.C.3.2.1.4)
7)		1/11/07-1-7 DETA-D-UEUCANAUE (E.C.J.6.1.7)
'2 '2	3cbh	CELLOBIOHYDROLASE /II\$ CORE PROTEIN (E.C.3.2.1.91) (/CBHII\$)

Table I. (cont.)

family	PDB code	protein
72	1cgt	CYCLODEXTRIN GLYCOSYLTRANSFERASE (E.C.2.4.1.19)
72	1btc	BETA-AMYLASE COMPLEXED WITH ALPHA-CYCLODEXTRIN, (ALPHA-1,
72	1ads	ALDOSE REDUCTASE (E.C.1.1.1.21) COMPLEX WITH NADPH
72	1ada	ADENOSINE DAMINASE (E.C.3.5.4.4) COMPLEX WITH
72	1gox	GLYCOLATE OXIDASE (E.C.1.1.3.1)
72	1pii	N-(5'PHOSPORIBOSYL)ANTHRANILATE ISOMERASE (E.C.5.3.1.6):
72	4rubB	RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE(SLASH)OXYGENASE
72	lypiA	TRIOSE PHOSPHATE ISOMERASE (/TIM\$) (E.C.5.3.1.1)
72	2taaA	TAKA-*AMYLASE A (E.C.3.2.1.1)
72	2rusA	RUBISCO (RIBULOSE-1,5-BISPHOSPHATE
72	1wsyA	TRYPTOPHAN SYNTHASE (E.C.4.2.1.20)
72	1ald	ALDOLASE *A (E.C.4.1.2.13)
72	1mle	MUCONATE LACTONIZING ENZYME (CIS,CIS MUCONATE
72	5xiaB	D-*XYLOSE ISOMERASE (E.C.5.3.1.5), XYLITOL COMPLEX
73	9apiA	MODIFIED ALPHA=1=-*ANTITRYPSIN
74	2act	ACTINIDIN (SULFHYDRYL PROTEINASE) (E.C. NUMBER NOT ASSIGNED)
75	lhsp	PHOSPHOLIPASE C\$GAMMA (SH2 DOMAIN) (/NMR\$, MINIMIZED MEAN
75	lpnj	PHOSPHATIDYLINOSITOL 3-KINASE (P85-ALPHA SUBUNIT,
75 76	1shg	ALPHA SPECTRIN (SH3 DOMAIN)
76	1hid	HISTIDINE-CONTAINING PHOSPHOCARRIER PROTEIN HPR (NMR)
76 76	leaa	CATALYTIC DOMAIN (RESIDUES 384–637) OF DIHYDROLIPOYL
76	2cla	CHLORAMPHENICOL ACETYLTRANSFERASE (E.C.2.3.1.28)
77	1hstA	HISTONE H5 (GLOBULAR DOMAIN)
<i>77</i>	3gapA	CATABOLITE GENE ACTIVATOR PROTEIN - CYCLIC /AMP\$ COMPLEX
78 70	1arrA	ARC REPRESSOR
79	1cmcB	E.COLI MET HOLOREPRESSOR (METJ) PHOTOSYNTHETIC REACTION CENTER
80 81	1prcC 8rubS	RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE(SLASH)OXYGENASE
82	1cbp	CUCUMBER BASIC PROTEIN
82	lpaz	PSEUDOAZURIN (OXIDIZED CU ++ AT \$P*H 6.8)
82 82	6pcy	PLASTOCYANIN (CU1+,\$P*H 3.8)
82 82	opcy	NITRITE REDUCTASE (E.C.1.7.99.3)
82	2azaA	AZURIN (OXIDIZED)
83	1sil	SIALIDASE (E.C.3.2.1.18) COMPLEX WITH 2-DEOXY-2,3-
83	6nn9	NEURAMINIDASE N9 (E.C.3.2.1.18) (SIALIDASE) (MUTANT WITH
83	lnsbB	NEURAMINIDASE SIALIDASE (E.C.3.2.1.18)
84	4tln	THERMOLYSIN (E.C.3.4.24.4) COMPLEX WITH
85	llccA	LAC REPRESSOR ('HEADPIECE') COMPLEX WITH AN 11 BASE-PAIR
85	3croL	434 CRO PROTEIN COMPLEX WITH 20 BASE PAIR PIECE OF /DNA\$
85	1lmbB	\$LAMBDA REPRESSOR-OPERATOR COMPLEX
86	1prcH	PHOTOSYNTHETIC REACTION CENTER
87	latnD	DEOXYRIBONUCLEASE I COMPLEX WITH ACTIN
88	2ssi	STREPTOMYCES SUBTILISIN INHIBITOR
89	2fxb	FERREDOXIN
90	1crn	CRAMBIN
91	2ca2	CARBONIC ANHYDRASE /II\$ (CARBONATE DEHYDRATASE) (/HCA II\$)
92	1omb	OMEGA-AGA-IVB (NMR, MINIMIZED AVERAGE STRUCTURE)
93	1cbh	C-TERMINAL DOMAIN OF CELLOBIOHYDROLASE I (/CT-CBH\$ I)
94	2kaiA	KALLIKREIN A (E.C.3.4.21.8) COMPLEX WITH BOVINE PANCREATIC
94	4ptp	BETA TRYPSIN, DIISOPROPYLPHOSPHORYL INHIBITED
94	1arb	ACHROMOBACTER PROTEASE I
94	1p04A	ALPHA-LYTIC PROTEASE (E.C.3.4.21.12) COMPLEX WITH
94	1sgt	TRYPSIN (/SGT\$) (E.C.3.4.21.4)
95	lcroA	CRO REPRESSOR
96	1tpm	TISSUE-TYPE PLASMINOGEN ACTIVATOR (TYPE 1 FIBRIN-BINDING
97	lixa	EGF-LIKE MODULE OF HUMAN FACTOR IX
98	4tgf	DES-VAL = 1 = =, VAL = 2 = =-TRANSFORMING GROWTH FACTOR ALPHA
98	lepi	EPIDERMAL GROWTH FACTOR (EGF) IN PH 6.8 SOLUTION (/NMR\$,
99	1hc6	ARTHROPODAN HEMOCYANIN (DEOXYGENATED) SUBUNIT 6 REFINED ENDONUCLEASE V
100 101	1end 2pmgB	PHOSPHOGLUCOMUTASE (E.C.2.7.5.1)
101	2pmgB 1prf	PROFILIN 1A
102	3blm	BETA-*LACTAMASE (E.C.3.5.2.6)
102	1rhd	RHODANESE (E.C.2.8.1.1)
103	1pec	PECTATE LYASE C (PLC) (E.C.4.2.2.2)
105	lavr	ANNEXIN V (RHOMBOHEDRAL)
106	5acn	ACONITASE (E.C.4.2.1.3) (INACTIVE (3FE-4S) CLUSTER FORM)
	lrec	RECOVERIN (CALCIUM SENSOR IN VISION)
107		
107 107		SARCOPLASMIC CALCIUM BINDING PROTEIN
	2scpA 5cpv	SARCOPLASMIC CALCIUM BINDING PROTEIN CALCIUM-BINDING PARVALBUMIN B

Table I. (cont.)

family	PDB code	protein
107	3icb	CALCIUM-BINDING PROTEIN (VITAMIN D-DEPENDENT, MINOR A FORM)
108	1 fas	FASCICULIN 1
108	1cdtA	CARDIOTOXIN $V=4===/II\$==$ (TOXIN /III\\$)
108	3ebx	ERABUTOXIN \$B
109	1cms	CHYMOSIN B (FORMERLY KNOWN AS RENNIN) (E.C.3.4.23.4)
109	3er3E	ENDOTHIA ASPARTIC PROTEINASE (ENDOTHIAPEPSIN)
109	1mvpA	MYELOBLASTOSIS ASSOCIATED VIRAL PROTEASE (E.C.3.4.23)
109	3hvp	(ABA\$ = 67.95 =)-HIV\$-1 PROTEASE (/SF2\$ ISOLATE)
110	3sdpB	IRON SUPEROXIDE DISMUTASE (E.C.1.15.1.1)
111	1bds	/BDS-I\$ (/NMR\$, MINIMIZED MEAN STRUCTÚRE)
112	2ila	INTERLÈUKIN-1*ALPHA (/IL\$-1*ALPHA)
112	1aaiB	RICIN
112	1tie	ERYTHRINA TRYPSIN INHIBITOR (KUNITZ) DE-3
112	4i1b	INTERLEUKIN-1*BETA (/IL\$-1*BETA)
113	2polA	BETA SUBUNIT OF POL III (E.C.2.7.7.7)
114	labk	ENDONUCLEASE III (E.C.3.1.25.1) (ACS REG 60184-90-9)
115	1rbbB	RIBONUCLEASE B (E.C.3.1.27.5)
116	lpyaB	PYRUVOYL-DEPENDENT HISTIDINE DECARBOXYLASE (L-HISTIDINE
117	1bw3	BARWIN, BASIC BARLEY SEED PROTEIN, HOMOLOGOUS TO THE
118	1mon	MONELLIN
119	1pyp	INORGANIC PYROPHOSPHATASE (E.C.3.6.1.1)
120	1bbl	E3-BINDING DOMAIN OF THE DIHYDROLIPOAMIDE
121	1hleB	HORSE LEUCOCYTE ELASTASE INHIBITOR (HLEI)
121	8apiB	MODIFIED ALPHA=1=-*ANTITRYPSIN
122	1pyaA	PYRUVOYL-DEPENDENT HISTIDINE DECARBOXYLASE (L-HISTIDINE
123	2gn5	GENE 5 /DNA\$ BINDING PROTEIN
124	1tgsI	TRYPSINOGEN COMPLEX WITH PORCINE PANCREATIC SECRETORY
124	lchoI	ALPHA-CHYMOTRYPSIN (E.C.3.4.21.1) COMPLEX WITH TURKEY
125	leps	5-ENOL-PYRUVYL-3-PHOSPHATE SYNTHASE (E.C.2.5.1.9)
126	1fkf	/FK506\$ BINDING PROTEIN (/FKBP\$) COMPLEX WITH
127	lerp	PHEROMONE ER-10 (NMR, 20 MODELS)
128	1pi2	BOWMAN-*BIRK PROTEINASE INHIBITOR /PI-II\$
129	1cpl	CYCLOPHILIN
130	1c2rA	CYTOCHROME \$C=2=
130	1vcc	CYTOCHROME C (ISOZYME 1) (REDUCED)
130	1c53	CYTOCHROME C553
130	451c	CYTOCHROME \$C=551 = (REDUCED)
130	1cc5	CYTOCHROME C=5= (OXIDIZED)
131	1ltsA	HEAT-LABILE ENTEROTOXIN (LT); CHOLERA-LIKE TOXIN, AB5 TOXIN
132	1cy3	CYTOCHROME \$C=3=
133	1hcc	16TH COMPLEMENT CONTROL PROTEIN (/CCP\$) OF FACTOR H
134	1mhu	CD-7 METALLOTHIONEIN-2 (ALPHA DOMAIN) (/NMR\$)
135	2mrt	CD-7 METALLOTHIONEIN-2 (BETA DOMAIN) (/NMR\$)
136	4sgbI	SERINE PROTEINASE B COMPLEX WITH THE POTATO INHIBITOR
137	8pti	BOVINE PANCREATIC TRYPSIN INHIBITOR (/BPTI\$) MUTANT (TYR 35
138	2mev4	MENGO ENCEPHALOMYOCARDITIS VIRUS COAT PROTEIN
139	6hir	HIRUDIN (MUTANT WITH LYS 47 REPLACED BY GLU) (/K47E\$)
140	7wgaB	WHEAT GERM AGGLUTININ (ISOLECTIN 1)
141	4cpaI	CARBOXYPEPTIDASE A=ALPHA= (COX) (E.C.3.4.17.1) COMPLEX WITH
142	lisuA	HIGH-POTENTIAL IRON-SULFUR PROTEIN (HIPIP)
142	2hipB	HIGH POTENTIAL IRON SULFUR PROTEIN (HI/PIP\$)
- · -		Mon 1012.11112 Mon God on thotals (Intil 4)

Structural classification of protein chains in the database of three-dimensional structures (PDB). The sequential index of the fold family is followed by PDB and chain identifiers and protein names of a family member. Family 1 has 2 members (1acx, 1cobB), family 2 has 11 members (1ten, 2hhrB, ...) and so on. Indentation in the 'PDB code' column means that a protein belongs to the same family/subfamily as the protein above. The families are defined by cutting an average linkage clustering tree at a similarity level of 2 standard deviations above expected (Z = 2). Subfamilies are defined by cuts at similarity levels of Z = 3, 4, 5, 6 and 10; more refined family divisions can be made at each level of similarity. For example, 3dpa and 4ait of family 32 are split in two separate families if the cut is made at Z = 3 rather than at Z = 2; 1acx and 1cobB (family 1) end up in different families if a cut is made at Z = 5; 2hhmA and 3fbpB (family 10) stay together even at Z = 10. Only chains in the sequence-representative set (maximally 30% sequence identity) are reported here; higher than 30% sequence identity between homologous proteins implies, in general, structural similarity that would be far off the scale to the right.