Wednesday,	October	25th	2023	-
Topic:: Midterm #2				
 Wednesday,	October	25th	2023	-

Definitions: linear combination, span, linear dependence and independence, basis, subspace, dimension, linear transformation, rank, column space, row space, null space, nullity, orthogonal complement, orthogonal basis, projection

Skills

- Given two points $P(x_1, x_2, ..., x_n)$ and $Q(y_1, y_2, ..., y_n)$,
 - \circ determine the vector \overrightarrow{PQ}
 - write a parametrization of the line through *P* and *Q*
 - find the distance from P to Q (it equals the length of \overrightarrow{PQ})
 - express $\vec{v} = \overrightarrow{PQ}$ as the product of its length and direction
 - \circ write the equation of the hyperplane through *P* orthogonal to \vec{v}
- Given vectors \vec{u} , \vec{v}
 - o calculate $\vec{u} \cdot \vec{v}$, and determine if they are orthogonal
 - find the angle $\theta \in [0, \pi]$ between \vec{u}, \vec{v}
 - depict their sum $\vec{u} + \vec{v}$ (drawing a parallelogram?)
 - depict their difference $\vec{u} \vec{v}$
 - \circ calculate and depict proj $_{\vec{u}}$ \vec{v}
 - \circ calculate and depict \vec{v} proj $_{\vec{u}}$ \vec{v}
- Given a collection of vectors $S = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$ taken from \mathbb{R}^n , and denoting W = span(S),
 - determine if *S* is linearly independent
 - ∘ determine dim(*W*)
 - o determine if a given vector \vec{v} is in span(S) and, when the answer is yes, write \vec{v} as a linear combination of vectors in S
 - find an orthogonal basis for span(*S*) (Gram-Schmidt process)
 - o for a given $\vec{v} \in \mathbb{R}^n$, find proj_W \vec{v}
 - ∘ find a basis for W^{\perp}
- Given an *m*-by-*n* matrix *A*,
 - determine the rank and nullity of *A*
 - \circ determine a basis of col(A), row(A), null(A)
- Miscellaneous
 - Given a *description* of a collection V of vectors in \mathbb{R}^n , determine if V is a *subspace* of \mathbb{R}^n .
 - Given a function $T: \mathbb{R}^n \to \mathbb{R}^m$
 - * determine (and be able to demonstrate) whether *T* is *linear*

* in cases where T is linear, find an m-by-n matrix A such that $T(\vec{x}) = A\vec{x}$ whenever $\vec{x} \in \mathbb{R}^n$

Some highlighted results to be familiar with

- Cauchy-Schwarz Inequality
- Triangle Inequality
- Linear transformations of the plane (\mathbb{R}^2)

$$\circ T(\vec{x}) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \vec{x}$$
 rotates the plane counterclockwise through angle θ

$$\circ T(\vec{x}) = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix} \vec{x}$$

dilates the plane if c > 1

leaves everything in place if c = 1

contracts if 0 < c < 1

takes everything to the zero vector if c = 0 and reflects through the origin if c < 0

$$\circ T(\vec{x}) = \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \vec{x}$$
 multiplies one coordinate of \vec{x} by c , the other by d