Deterministic finite automata

Where it is not stated otherwise, let the alphabet be $\Sigma = \{a, b\}$.

- 1. Construct a deterministic finite automaton for each of the following languages:
 - a) words containing exactly 3 letters
 - c) words containing only the letter a
 - e) words containing exactly 3 letters of a

 - g) words containing at least 3 letters of a
- b) words starting with letter a
- d) words ending on letter b
- f) words not containing the letter $a \Sigma = \{a,b,c\}$
- h) words containing at least 3 letters of a and containing at least 3 letters of b
- 2. What laguages do the following automata accept? (Similarly to excercise 1, try constructing a rule that describes exactly which words the automata accepts.)

- 3. Construct a deterministic finite automaton for each of the following languages:
 - a) words containing *aa* exactly once
- b) words in which the first and last letters match
- c) words with alternating letters a and b (eg.: abababa d) words in which every a is followed by bbor babab)
- e*) words in which there is at least one a and at least f*) $a^n b^n$ (any number of letter a, followed by **the** one b between every letter $c \Sigma = \{a, b, c\}$
- **same number of** letter b)
- 4. Construct a deterministic finite automaton for each of the following divisibility rules:
 - a) numbers divisible by 5, $\Sigma = \{0, 1, 2, ..., 9\}$
- b) numbers divisible by 3, $\Sigma = \{0, 1, 2, ..., 9\}$
- c) binary numbers divisible by 2, $\Sigma = \{0, 1\}$
- d*) binary numbers divisible by 3, $\Sigma = \{0, 1\}$

Hiányos, nemdeterminisztikus véges automaták

Ahol a feladat mást nem mond, az ábécé legyen $\Sigma = \{a, b\}$.

1. Milyen nyelvet fogadnak el az alábbi hiányos automaták?

2. Milyen nyelvet fogadnak el az alábbi nemdeterminisztikus automaták?

- 3. Adj nemdeterminisztikus véges automatát az alábbi nyelvekre! Ahol a feladat mást nem mond, az ábécé legyen $\Sigma = \{a,b\}$. Használd ki a nemdeterminisztikusságot, törekedj arra, hogy minél kevesebb állapot felhasználásával adj helyes megodást!
 - a) szavak, melyekben szerepel az abaab részszó
 - c) szavak, melyekben nem szerepel az abc részszó, $\Sigma = \{a,b,c\}$
 - e) szavak, melyekben legalább az egyik betű nem szerepel, $\Sigma = \{a,b,c,d\}$
 - g*) palindromok (tehát minden szó, ami balról és jobbról olvasva ugyanaz)
- b) szavak, melyekben van két olyan b betű, melyek közt néggyel osztható számú a van
- d) olyan betűre végződik, ami korábban nem szerepelt a szóban, $\Sigma = \{a, b, c\}$
- f) szavak, melyekben szerepel az aaa és a bbb részszó is
- h*) szavak, melyekben nem szerepel sem az aaa, sem a bbb részszó

Veremautomaták

A veremautomaták esetében a determinisztikus és nemdeterminisztikus verziók nem azonos erősségűek. A nemdeterminisztikus változattal fel tudunk ismerni olyan nyelveket, amiket a determinisztikussal nem lehet. Veremautomaták esetén ezért mindig nemdeterminisztikussal szokás dolgozni, tegyél te is így!

1. Milyen nyelvet fogadnak el az alábbi nemdeterminisztikus automaták?

- 2. Adj veremautomatát az alábbi nyelvekre! Ahol a feladat mást nem mond, a megadott nyelvek ábécéje $\Sigma =$ $\{a,b\}$, a veremben viszont ezen kívül bármilyen egyéb ábécét használhatsz.
 - a) $a^n b^m a^n$

- b) első és utolsó betű megegyezik c) $a^n b^m$, ahol $m \ge n$

- d) $a^n b^m$, ahol m = 2n
- e) palindromok

- f) $a^n b^n c^m d^m, \Sigma = \{a, b, c, d\}$
- g) $a^n b^m c^m d^n$, $\Sigma = \{a, b, c, d\}$ h^*) $(ab)^n a^m (ab)^n$
- i*) $a^n b^m$, $2n \ge m \ge n$

- j*) $a^nb^nc^n$, $\Sigma=\{a,b,c\}$ k^*) $a^lb^mc^n$, ahol m=l+n, $\Sigma = \{a, b, c\}$