

Lab 8 - Linear Mixed Models

Introduction

Andreia J. Amaral

(Bioinformatics applied to genomics, Geneticist) University of Évora, Évora (Portugal)

R script

Day3_Lab8_dog_data.Rdata

Day3_lab8_start.Rmd

Testing linear hypothesis

multcomp Package

glht (general linear hypotheses testing)

visualizing confidence intervals for β coefficients Ci.lin Epi tidy

testing nested models Anova car

estimating marginal means emmeans

Fitting model in R

head(data_dog_weight)

Description: df [6 × 6]							
	ld <int></int>		measurement <fctr></fctr>	weight <int></int>		mother <chr></chr>	
1	1	male	day1	320	4	Flor	
2	1	male	day2	400	5	Flor	
3	1	male	day3	440	6	Flor	
4	1	male	day4	500	7	Flor	
5	1	male	day5	580	8	Flor	
6	1	male	day6	560	9	Flor	

Q: Does age affects distance in spite of individual variations???

Linear mixed-effects models can be fitted using the lmer function in the lm4 package.

Fitting model in R

summary(lin_0)

Linear mixed model fit by REML. t-tests use Satterthwaite's method ['ImerModLmerTest']

Random efect

Formula: weight ~ 1 + (1 | Id)

Data: data dog weight

REML criterion at convergence: 3337.7

Scaled residuals:

Min 1Q Median 3Q Max -1.7037 -0.8175 -0.0672 0.7562 2.4580

Random effects:

estimated variance of the random-effect reflecting between-subject variability

Groups Name Variance Std.Dev.

d (Intercept) 16281 127.6

Residual 59198 243.3 the estimated variance of the error term reflecting within-subject variability

Number of obs: 240, groups: Id, 20

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 726.41 32.57 19.00 22.3 4.35e-15 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation between any two repeated measures (ICC)

$$ICC = \frac{\sigma_{u_0}^2}{\sigma_{u_0}^2 + \sigma^2}$$

Testing variance components


```
ranova(lin_0)
```

ANOVA-like table for random-effects: Single term deletions

suggests evidence of between-individual heterogeneity, which support evidence for choosing a mixed-effects model instead of a only fixed-effects model.

Graphical presentation of the model

