- 1. Projected Functional Dependencies of Patient Relation:
 - Patient_ID→Name
 - Patient_ID→Gender
 - Patient ID→DOB
 - Patient_ID→Street
 - Patient_ID→City
 - Patient_ID→State
 - Patient_ID→Country
 - Patient ID→Contact no.
 - Patient_ID→Relative_contact_no
 - Patient_ID→Medical history
 - City,State →Country
- 2. Projected Functional Dependencies of Consulted Relation:
 - Patient ID, visit ID→Consultation Date
- 3. Projected Functional Dependencies of Admitted Relation:
 - Patient_ID,visit_ID→Admit_Date
 - Patient ID, visit ID→Discharge Date
 - Patient_ID,visit_ID→Room_No
- 4. Projected Functional Dependencies of Insurance Relation:
 - Policy_No→Company_ID
 - Policy_No→Policy_Name
 - Policy_No→Company_Name
 - Policy No→cashless availability
 - Policy_No→claim_amt
 - Policy_No,Patient_id→Name
 - Policy No, Patient id → Gender
 - Policy No, Patient id → DOB
 - Policy_No,Patient_id→Street
 - Policy_No,Patient_id→City
 - Policy No, Patient id→State
 - Policy_No,Patient_id→Country
- 5. Projected Functional Dependencies of Employee Relation:
 - Emp_ID→Name
 - Emp_ID→DOB
 - Emp ID→Gender
 - Emp ID→Street
 - Emp_ID→City

```
Emp_ID→State
```

6. Projected Functional Dependencies of Doctor Relation:

7. Projected Functional Dependencies of Nurse Relation:

8. Projected Functional Dependencies of Receptionist Relation:

9. Projected Functional Dependencies of HR_Manager Relation:

10. Projected Functional Dependencies of Clerk Relation:

11. Projected Functional Dependencies of Security guard Relation:

12. Projected Functional Dependencies of Janitor Relation:

```
Emp ID→Shift time
```

13. Projected Functional Dependencies of Department Relation:

Dep_ID →Dep_Name

Dep_ID →Dep_Head_ID

Dep_Head_ID→Qualification

Dep_Head_ID→Name

Dep_Head_ID→DOB

Dep_Head_ID→Gender

Dep_Head_ID→Street

Dep_Head_ID→City

Dep Head ID→State

Dep_Head_ID→Country

Dep_Head_ID→Consulting_fees

Dep_Head_ID→Salary

Dep Head ID→Date of join

Dep_Head_ID→Date_of_leaving

14. Projected Functional Dependencies of Medical Equipments Relation:

E ID→Name

E_ID→Cost

E_ID→Type

E ID,Dep ID→Stock

E_ID,Dep_ID→Reorder_level

15. Projected Functional Dependencies of Room Relation:

Room_No→Room_type

Room_No→Capacity

Room No-No of beds available

Room No→No of beds occupied

Room_No-charge_per_bed

16. Projected Functional Dependencies of Treatments_available Relation:

TID→Treatment_name

TID→Charge

 $TID \rightarrow D ID$

TID→Dep Name

TID→Dep_Head_ID

18. Projected Functional Dependencies of Bill Relation:

Bill id→Bill date

Bill_id→Patient_id

```
Bill_id→Policy_No
```

Bill_id→insurance status

Bill_id→patient_status

Bill_id→claim_amt passed

Bill_id→Total charges

Bill_id→Gender

Bill_id→patient_name

 $Bill_id \rightarrow DOB$

Bill id→Street

Bill_id→City

Bill_id→State

Bill_id→Country

Minimal FD sets and BCNF

1) Patient relation

Patient_ID→Name

Patient_ID→Gender

Patient_ID→DOB

Patient_ID→Street

Patient_ID→City

Patient ID→State

Patient_ID→Country

Patient_ID→Contact no.

Patient_ID→Relative_contact_no

Patient_ID→Medical history

Key={Patient_ID}

The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF. R(Patient_ID, Name, Gender, DOB, street, state, city, country, contact_no, relative_contact_no, medical history)

The following three relations are MVDs and hence, violate 4NF.

Patient_ID→Contact no.

Patient_ID→Relative_contact_no

Patient ID→Medical history

```
So
R1(Patient_ID,Contact_no)
R2(Patient_ID,Relative_Contact_no)
R3(Patient_ID,Medical,history)
R4(Patient_ID, Name, Gender, DOB,street, state, city, country)
```

2) Treatments given

```
Patient_id,visit_id → height
Patient_id,visit_id → weight
```

key{Patient_id,visit_id}

The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.

So

R(Patient_id,visit_id,height,weight)

3) Patients_Consulted

Patient_id,visit_id→consultation_date key{Patient_id,visit_id}

The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.

So

R(Patient_id,visit_id,consultation_date)

4) Consultation_bill

```
Visit_id, Case_C_no, Patient_id→cons_charge
Visit_id, Case_C_no, Patient_id→diagnosis
Visit_id, Case_C_no, Patient_id→bill_date
```

key{Patient_id,visit_id,case_C_no}

The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.

The following dependency is a MVD

```
Visit_id, Case_C_no, Patient_id→diagnosis
```

```
So
```

R1(Patient_id,visit_id,case_C_no,diagnosis)
R2(Patient_id,visit_id,case_C_no,cons_charge,bill_date)

5) Patients_admitted

```
Visit_id, Case_A_no, Patient_id→admit_date
Visit_id, Case_A_no, Patient_id→discharge_date
Visit_id, Case_A_no, Patient_id→room_no
```

key{Patient_id,visit_id,case_A_no}
The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.

So

R(Patient_id, visit_id, case_A_no, admit_date, discharge_date, room_no)

6)Intermediate bill

Case_A_no,patient_id,bill_id→bill_date

Case_A_no,patient_id,bill_id→treatment_id

Case A no,patient id,bill id→room no

Case_A_no,patient_id,bill_id→diagnosis

Case_A_no,patient_id,bill_id→special_dr_id

Case A no,patient id,bill id→opd dr id

Case_A_no,patient_id,bill_id→total_charges

key{Patient_id,bill_id,case_A_no}

The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.

The following dependencies are MVDs

Bill_id, Case_C_no, Patient_id→diagnosis
Bill_id, Case_C_no, Patient_id→treatment_id

So

R1(Patient_id, bill_id_id, case_A_no, bill_date, room_no,special_dr_id, opd_dr_id, total_charges)

R2(Patient_id, bill_id_id, case_A_no,diagnosis)

```
R3(Patient_id, bill_id_id, case_A_no,treatment_id)
7) Final_bill
Case A no,patient id→policy no
Case_A_no,patient_id—claim_amt_passed
Case_A_no,patient_id→insurance status
key{Patient id, case A no}
The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
So
R(Case_A_no,patient_id,policy_no,claim_amt_passed,insurance_status)
8) Insurance
Policy_no→policy_name
Policy_no→company_id
company id→company name
Policy_No→cashless_availability
Policy_No→claim_amt
Policy_no→patient_id
Key{policy_no}
The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
The following dependency is a MVD. So it violates 4NF
Policy_no→patient_id
So
R1(policy_no, policy_name, company_id, company_name, cashless_availability, claim_amt)
R2(policy_no,patient_id)
9) Discharge summary
Case_A_no,patient_id→diagnosis
Case_A_no,patient_id→patient_status
key{Patient_id, case_A_no}
```

The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.

The following dependency is a MVD

```
Case_A_no, Patient_id→diagnosis
      So
      R1(Patient_id, case_A_no, patient_status)
      R2(Patient_id, case_A_no,diagnosis)
10) Room
      Room No→Room type
      Room_No→Capacity
      Room_No→No_of beds_occupied
      Room_No→charge_per_bed
      Key{room_no}
The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
So
R(room_no,Room_type, Capacity, charge_per_bed, No_of beds_occupied)
11) Departments
      Dep_ID →Dep_Name
      Dep_ID →Dep_Head_ID
      Key{Dep_ID}
      The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
So
R(Dep_ID, Dep_name, Dep_head_ID)
12) Treatments_available
      TID→Treatment_name
      TID,date→Charge
      TID \rightarrow D_ID
      TID→prerequisite_tests
      key{TID,date}
      It violates 2NF(partial dependency on keys)
      Applying 3NF synthesis algorithm we get
      R1(TID, Treatment name, D ID, prerequisite tests)
      R2(TID,date,charge)
```

```
In R1, prerequisite tests is a MVD, so
R1(TID, Treatment_name, D_ID)
R2(TID,prerequisite_tests)
R3(TID,date,charge)
13) Medical equipments
      E ID→Name
      E_ID→Cost
      E_ID→Type
      E_ID,Dep_ID→Stock
      E_ID,Dep_ID→Reorder_level
key{E_ID,Dep_ID}
      It violates 2NF(partial dependency on keys)
Applying 3NF synthesis algorithm we get
R1(E_ID, name,cost,type)
R2(E_ID,dep_id,stock,reorder_level)
14) Employee
Emp_ID→Name
Emp_ID→DOB
Emp_ID→Gender
Emp ID→Street
Emp_ID→City
Emp_ID→State
Emp ID→Country
Emp ID→Date of join
Emp_ID→Date_of_leaving
Emp_ID→Contact_no
Emp_ID→relative_contact_no
key{Emp_ID}
The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
      The following relations are MVDs and hence, violate 4NF.
      Emp_ID→Contact no.
```

Emp_ID→Relative_contact_no

```
So
R1(Emp_ID,Contact_no)
R2(Emp_ID,Relative_Contact_no)
R3(Emp_ID, Name, Gender, DOB, street, state, city, country, Date_of_join, Date_of_leaving)
15) Doctor
       Emp_ID→Dep_ID
       Emp_ID→Qualification
      key{Emp_ID}
      The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
      So
       R(emp_id,dep_id,qualification)
16) OPD
Emp_id→consulting_fees
Emp_id→salary
emp_id→%share_of_consulting_fees
key{Emp_ID}
      The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
      So
       R(emp_id, consulting_fees, salary, %share_of_consulting_fees)
17) OPD_availability
Emp_id, day→intime
Emp_id, day→outtime
key{Emp_id,day}
      The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
      So
       R(Emp_id,day,intime,outtime)
18)OPD_attendance
```

```
Emp_ID,date→intime
Emp_ID,date→outtime
key{Emp_id,date}
       The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
       So
       R(Emp_id,date,intime,outtime)
19)Resident_Doctor,nurse, security_guard,janitor,receptionist
Emp_id→salary
key{Emp_id}
       The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
       So
       R(Emp_id,salary)
20) Attendance_log for Resident_Doctor,nurse, security_guard,janitor,receptionist
Emp_ID,date→intime
Emp_ID,date→out time
Emp_ID,date→shift_type
key{Emp_id,date}
       The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
       So
       R(Emp_id,date,intime,outtime,shift_type)
21)Specialised_doctor
emp_id→%share_of_consulting_fees
emp_id→charge _per_visit
key{Emp_ID}
       The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.
       So
       R(emp_id, %share_of_consulting_fees, charge_per_visit)
```

```
22) Special_doctor_visit
```

Emp_ID,date→intime Emp_ID,date→out time

key{Emp_id,date}

The FD minimal set satisfies all BCNF requirements. So the relation is in BCNF.

So

R(Emp_id,date,intime,outtime)