Equilíbrio Químico (cap.14, Chang)

Equilíbrio — estado em que não existem alterações observáveis ao longo do tempo.

> Equilíbrio físico $H_2O(I) \longrightarrow H_2O(g)$

O equilíbrio químico é alcançado quando:

- · As velocidades das reacções directa e inversa forem iguais; e
- As concentrações dos reagentes e dos produtos não variarem com o tempo.

Equilíbrio químico $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

1

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$

incolor castanho

Início com NO₂

Início com N₂O₄

Início com NO₂ e N₂O₄

2

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$
 $K = \frac{[NO_2]^2}{[N_2O_4]} = 4.63 \times 10^{-3}$

$$aA + bB \longrightarrow cC + dD$$

$$K = \frac{[C]^{\circ}[D]^{d}}{[A]^{a}[B]^{b}}$$

Constante de equilibrio

Deslocação para a direita

Favorece os produtos

Deslocação para a esquerda

Favorece os reagentes

3

Formas de exprimir as constantes de equilíbrio

O equilíbrio homogéneo aplica-se a reacções em que todas as espécies envolvidas se encontram na mesma fase.

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]}$$
 $K_p = \frac{P_{N_0}^2}{P_{N_0}}$

Na maioria dos casos

$$aA(g) + bB(g) \rightleftharpoons cC(g) + dD(g)$$

$$\Delta n = (c + d) - (a + b)$$

PV=nRT P=n/V.RT=[X].RT (n/V. RT)² $K_p = \frac{1}{n/V. RT}$ N_2O_4

R=0,0821L.atm.K-1.mol-1

5

5

1. As concentrações de equilíbrio para a reacção entre o monóxido de carbono e o cloro molecular para formar COCl₂ (g) a 74° C são [CO] = 0,012 M, [Cl₂] = 0,054 M e [COCl₂] = 0,14 M. Calcule

as constantes de equilíbrio K_c e K_p .

$$CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$$

Equilíbrio Homogéneos

 $CH_3COOH(aq) + H_2O(l) \longrightarrow CH_3COO^-(aq) + H_3O^+(aq)$

$$K_c^{i} = \frac{[CH_3COO^{-}][H_3O^{+}]}{[CH_3COOH][H_2O]}$$

$$[H_2O]$$
 = constante

$$K_c = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]} = K_c^{\iota}[H_2O]$$

Repare que é comum não incluir unidades na constante de equilíbrio.

6

6

2. A constante de equilíbrio K_p para a reacção

$$2NO_2(g)$$
 \rightleftharpoons $2NO(g) + O_2(g)$

é 158 a 1000K. Qual é a pressão de equilíbrio do O_2 se P_{NO} = 0,400 atm $e P_{NO2} = 0,270 atm?$

 $P_{NO} = 0.400 \text{ atm}$ $P_{NO2} = 0,270 \text{ atm}$ P₀₂=?

7

8

7

O equilíbrio heterogéneo aplica-se a reacções nas quais os reagentes e os produtos estão em fases diferentes.

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

$$K_c^{\epsilon} = \frac{[CaO][CO_2]}{[CaCO_3]}$$
 [CaCO₃] = constante [CaO] = constante

$$K_c = [CO_2] = K_c^4 \times \frac{[CaCO_3]}{[CaO]}$$
 $K_\rho = P_{CO_2}$

As concentrações de **sólidos** e **líquidos puros** não estão incluídos na expressão da constante de equilíbrio.

9

9

3. Considere o seguinte equilíbrio a 295 K:

$$NH_4HS(s)$$
 \longrightarrow $NH_3(g) + H_2S(g)$

A pressão parcial de cada gás é 0,265 atm. Calcule K_p e K_c da reacção?

$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$

 $P_{\text{CO}_2} = K_p$

P_{CO₂} não depende da quantidade de CaCO₃ ou CaO

10

12

10

Equilíbrio múltiplo

$$A+B \longrightarrow C+D \longrightarrow E+F$$

$$\mathsf{A} + \mathsf{B} \longrightarrow \mathsf{C} + \mathsf{D} \qquad \mathcal{K}_c^{\iota} \qquad \qquad \mathcal{K}_c^{\iota} = \frac{[\mathsf{C}][\mathsf{D}]}{[\mathsf{A}][\mathsf{B}]}$$

$$C + D \longrightarrow E + F$$
 K_c'' $K_c'' = \frac{[E][F]}{[C][D]}$

$$A + B \longrightarrow E + F$$
 K_c $K_c = \frac{[E][F]}{[A][B]}$

11

11

Equilíbrio múltiplo

$$A+B \longrightarrow C+D \longrightarrow E+F$$

$$\mathcal{K}_{c}^{\prime} = \frac{[\mathbb{C}][\mathbb{D}]}{[\mathbb{A}][\mathbb{B}]}$$
 $\mathcal{K}_{c}^{\prime\prime} = \frac{[\mathbb{E}][\mathbb{F}]}{[\mathbb{C}][\mathbb{B}]}$

$$A + B \stackrel{\longrightarrow}{\longleftarrow} E + F \qquad \mathcal{K}_c \qquad \qquad \mathcal{K}_c = \frac{[E][F]}{[A][B]}$$

$$K_c = \frac{[E][F]}{[A][B]}$$

$$K_c = K_c^c \times K_c^{cc}$$

Se a reacção puder ser expressa como a soma de duas ou mais reaccões, a constante de equilíbrio para a reacção global é dada pelo produto das constantes de equilíbrio de cada uma das reacções.

13

13

O valor de K e a equação de equilíbrio

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$
 $K = \frac{[NO_2]^2}{[N_2O_4]} = 4.63 \times 10^{-3}$

$$\frac{1}{2} N_2 O_4(g) \longrightarrow NO_2(g) \qquad K = \frac{[NO_2]}{[N_2 O_4]^{1/2}} = 0,0680$$

O valor de K depende da forma de acerto da equação da reação

A forma de K e a equação de equilíbrio

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$

$$K = \frac{[NO_2]^2}{[N_2O_4]} = 4,63 \times 10^{-3}$$
 $K' = \frac{[N_2O_4]}{[NO_2]^2} = \frac{1}{K} = 216$

$$2NO_2(g) \longrightarrow N_2O_4(g)$$

$$K' = \frac{[N_2O_4]}{[NO_2]^2} = \frac{1}{K} = 216$$

Quando a equação da reação reversível for escrita no sentido oposto, a constante de equilibrío é o inverso da constante de equilíbrio original.

É necessário especificar como é que está escrita a reação para que a constante de equilíbrio possa ter significado.

14

14

Escrever expressões da Constante de Equilíbrio

- Na fase condensada, as concentrações das espécies reagentes são expressas em M (mol/L); em fase gasosa, as concentrações podem ser expressas em M ou em atm.
- As concentrações de sólidos puros, líquidos puros e solventes não aparecem nas expressões da constante de equilíbrio.
- A constante de equilíbrio (K) é tratada como uma quantidade adimencional.
- Ao atribuirmos um valor à constante de equilíbrio, devemos especificar as equações acertadas e a temperatura.
- Se uma reacção puder ser expressa como a soma de duas ou mais reações, a constante de equilíbrio da reacção global é dada pelo produto das constantes de equilíbrio das reacções individuais.

15

O $quociente\ relaccional\ (Q_c)$ calcula-se substituindo as concentrações

iniciais de reagentes e de produtos na expressão da constante de equilíbrio (K_c).

$$A + B \longrightarrow C + D$$

$$Q_c = \frac{[C]_{i}.[D]_{i}}{[A]_{i}.[B]_{i}}$$

SE

- Q_c < K_c ⇒ O sistema evolui da esquerda para a direita (consumindo reagentes, formando produtos) até se atingir o equilíbrio.
- Q_c = K_c ⇒ O sistema está em equilíbrio.
- Q_c > K_c ⇒ O sistema evolui da direita para a esquerda (consumindo produtos, formando reagentes) até se atingir o equilíbrio.

17

4. A 1280°C a constante de equilíbro (\mathcal{K}_{c}) da reacção

$$Br_2(g) \implies 2Br(g)$$

é 1,1 × 10^{-3} . Se as concentrações iniciais forem [Br₂] = 0,063 *M* e [Br] = = 0,012 *M*, calcule as concentrações destas espécies no equilibrio.

Seja x a variação na concentração de Br₂

$$Br_2(g) \Longrightarrow 2Br(g)$$

Inicial (*M*) 0,063 0,012

Variação (M) -x +2x

Equilíbrio (*M*) 0.063 - x 0.012 + 2x

$$K_c = \frac{[Br]^2}{[Br_2]}$$
 $K_c = \frac{(0.012 + 2x)^2}{0.063 - x} = 1.1 \times 10^{-3}$ Resolva en ordem a x

19

Cálculo das Concentrações de Equilíbrio

- Exprimir as concentrações de todas as espécies no equilíbrio em função das concentrações iniciais e de uma única incógnita x, que representa a variação na concentração.
- Escrever a expressão da constante de equilíbrio em função das concentrações no equilíbrio. Conhecendo o valor da constante de equilíbrio, resolver em ordem a x.
- 3. Depois de resolver em ordem a x, calcular as concentrações de todas as espécies no equilíbrio.

18

20

18

$$K_c = \frac{(0.012 + 2x)^2}{0.063 - x} = 1.1 \times 10^{-3}$$

 $4x^2 + 0.048x + 0.000144 = 0.0000693 - 0.0011x$

 $4x^2 + 0.0491x + 0.0000747 = 0$

$$ax^2 + bx + c = 0$$

Equilíbrio (M)

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

0.012 + 2x

 $\begin{array}{ccc} & & \operatorname{Br_2}\left(g\right) & \longrightarrow & \operatorname{2Br}\left(g\right) \\ \operatorname{Inicial}\left(M\right) & & 0,063 & & 0,012 \\ \operatorname{Variação}\left(M\right) & & -x & & +2x \end{array}$

x = -0.0105 x = -0.00178 Em equilíbrio, [Br] = 0.012 + 2x = -0.009 M ou 0.00844 M Em equilíbrio, [Br₂] = 0.063 - x = 0.0648 M

0.063 - x

20

Princípio de Le Châtelier

Se um sistema em equilíbrio for perturbado externamente, o sistema ajusta-se de forma a minimizar a acção dessa perturbação.

· Variações na Concentração

21

Princípio de Le Châtelier

· Alterações no Volume e na Pressão

$$K = \frac{[B]}{[A]^2}$$

P.V = n.R.T <=> P = (n/V).R.T

Alteração

Deslocações do Equilíbrio

Aumento da pressão Diminuição do volume

Lado com menos moles de gás

Diminuição da pressão Aumento do volume

Lado com mais moles de gás

23

21

Princípio de Le Châtelier

· Variações na Concentração (continuação)

$$aA + bB \implies cC + dD$$

Alteração Deslocações no equilíbrio

Aumenta a concentração de produto(s) esquerda Diminui a concentração de produto(s) direita Aumenta a concentração de reagente(s) direita Diminui a concentração de reagente(s) esquerda

22

22

Princípio de Le Châtelier • Alterações na Temperatura

·=> alteração de K

Reação Exotérmica

A + B C + Energia

Alteração

Aumento da temperatura K diminui Diminuição da temperatura K aumenta

Reação Endotérmica

Energia + C A + B

 $\Delta H > 0$

Alteração

Aumento da temperatura K aumenta Diminuição da temperatura K diminui

24

23

Princípio de Le Châtelier

· Adição de um catalisador

Não altera a constante de equilílibrio *K* Não desvia a posição de um sistema em equilíbrio O sistema atinge o equilíbrio mais rapidamente

Progresso da reacção

Progresso da reacção

- O catalisador diminui a *E*_a para as reacções directa e inversa.
- O catalisador não altera a constante de equilíbrio nem desloca o equilíbrio 25

Princípio de Le Châtelier

<u>Alteração</u>	<u>Deslocação</u> no equilíbrio	Alteração da constante de equilíbrio
Concentração	sim	não
Pressão	sim	não
Volume	sim	não
Temperatura	sim	sim
Catalisador	não	não

26

25