System Identification Project Part 1: Fitting an unknown function

Team: Project Fit 17

Moroșanu Ștefania Raluca

Cuc Ana Alexia

Capac Teodora

Table of contents

01. Problem statement

02. Approximator structure and finding the parameters

03. Key features

04. Tuning results

06. Conclusion

07. Our team

05. Representative plots

Problem Statement

- Having a nonlinear static function f, using a polynomial approximator, what would the model for this function be?
- What is the most optimal degree for which the approximated output is as close as possible to the true output?

Approximator structure and finding the parameters

Approximator structure:

- > Two independent variables as input
- ➤ The polynomial expansion up to a configurable maximum degree
- Matrix of regressors(φ)

Finding the parameters:

- ➤ The regressor matrix is formed for each degree
- Including all possible combinations for each degree
- Combining the terms to form each polynomial regressor term
- \triangleright Finding the vector of parameters(θ) using left division

theta =
$$PHI \setminus Y$$
;

Key features

Constructing the regressor matrix

- \triangleright Initially, φ is a column of ones.
- ➤ For each polynomial degree, all possible combinations of powers are included
- > Exponents of X1 and X2 are computed so that they always sum up to the current degree.

 Φ is constructed by concatenation of columns which correspond to each polynomial term

Tuning results

Representative plots

Conclusion

➤ Goal:

- to build a polynomial approximator by using a matrix of regressors
- to find the optimal degree for which the MSE has the lowest value
- to find the polynomial model which has the best performance

> How we achieved it:

- formed the regressor matrix and theta accordingly up to a maximum degree
- compared the values of MSEs for each degree and took the minimum one
- evaluated the representative plots until finding a maximum degree which fits performs accurately

Our team

Capac Teodora

-forming the matrix of regressors

Cuc Ana Alexia

-calculating the parameters of the approximator

Moroșanu Ștefania

-finding the optimal degree for the approximation according to the MSE

*data acquisition, plots, research and the presentation were a joined effort

Table of Contents

Declaring the identification and validation data
Define maximum polynomial degree
Finding the best polynomial model for our data
Find Best Polynomial Degree Based on Validation MSE
MSE vs. Polynomial Degree
Mesh Plots of Identification and Validation Data
Construction of the Regressor Matrix
clear
clc
<pre>load('proj fit 17.mat');</pre>

Declaring the identification and validation data

Define maximum polynomial degree

```
m_max = 25;

MSE_id = zeros(1, m_max);

MSE val = zeros(1, m_max);
```

Finding the best polynomial model for our data

Find Best Polynomial Degree Based on Validation MSE

```
[best_MSE_val, best_degree] = min(MSE_val);
fprintf('The best degree for the polynomial model is %d with a validation
MSE of %.4f.\n', best_degree, best_MSE_val);
The best degree for the polynomial model is 4 with a validation MSE of
95.6346.
```

MSE vs. Polynomial Degree

```
figure;
plot(1:m_max, MSE_id, '-o', 'DisplayName', 'Identification MSE');
hold on;
plot(1:m_max, MSE_val, '-x', 'DisplayName', 'Validation MSE');
xlabel('Polynomial Degree');
ylabel('Mean Squared Error (MSE)');
legend show;
title('MSE vs Polynomial Degree');
grid on;
```


Mesh Plots of Identification and Validation Data

```
figure;
subplot(2, 2, 1);
mesh(X1, X2, id.Y);
title('Identification Data');
xlabel('X1');
ylabel('X2');
zlabel('Y');
subplot(2, 2, 2);
mesh(X1, X2, reshape(yhat id, length(X2), length(X1)));
                                                             %Creates a 3D
mesh plot of the identification data s predicted values,
                                                             %reshaped to
match the dimensions of X1 and X2.
title('$\hat{Y}$ Identification', 'Interpreter', 'latex');
xlabel('X1');
ylabel('X2');
zlabel('Yhat');
subplot(2, 2, 3);
mesh(X1 val, X2 val, val.Y);
title('Validation Data');
xlabel('X1');
ylabel('X2');
```

```
zlabel('Y');
subplot(2, 2, 4);
mesh(X1_val, X2_val, reshape(yhat_val, length(X2_val), length(X1_val)));
title('$\hat{Y}$ Validation', 'Interpreter', 'latex');
xlabel('X1');
ylabel('X2');
zlabel('Y');
```


Construction of the Regressor Matrix

```
function phi = form_phi(X1, X2, degree) %form_phi constructs the feature
matrix phi for a polynomial model of a specified degree.
  [X1, X2] = meshgrid(X1, X2); %returns 2-D grid coordinates
based on the coordinates contained in vectors x and y
  phi = ones(prod(size(X1)), 1); %initializes phi with a column of
ones to account for the constant term in the polynomial.

for i = 1:degree
  for j = 0:i
        k = i - j;
        phi = [phi, (X1(:) .^ k) .* (X2(:) .^ j)]; % concatenates each
polynomial term to phi.
  end
```

end end

Published with MATLAB® R2023b