计算机密码学理论与应用

关于身份认证类协议的习题

习 超 1(参阅Stallings 习题15.7):一种双向身份认证协议及其攻击实例

以下是双向身份认证协议, $S_{12}(x)$ 表示x及用A的私钥对x生成的数字签名, N_A 是A生成的随机数, t_A 是A的本地时间, 10_A 是A的身份标识,等。

*

*

1. A \leftarrow B: initiation, ID_B

*

2. $A \rightarrow B$: $Sig_A(t_A, N_A, ID_B)$

*

3. A \leftarrow B: Sig_B (t_B, N_B, ID_A, N_A)

*

4. $A \rightarrow B$: $Sig_A(N_B)$

- * (1) 准确、完整地表述该协议在A、B进程中的完整动作。
- * 【从编程的角度,对进程A、B的处理动作分别阐述】
- * (2) 如果协议不使用动态时钟,是否安全(抵抗身份欺诈)? * 分析下面的例子。

(2) 不使用时钟的情况: C是攻击者、A和B是诚实的参与方

- 1. A \leftarrow B: initiation, ID_B
- 2. $A \rightarrow B$: Sig_A(0, N_A , ID_B)
- 3. A \leftarrow B: Sig_B(0, N_B , ID_A, N_A)
- 4. $A \rightarrow B$: $Sig_A(N_B)$

A、B之间的某轮协议会话

C拟向B冒充自己是A。

- 10. A \leftarrow C: initiation, ID_C
- 11. A \rightarrow C: Sig_A(0, N^*_A , ID_C)
- 12. A \leftarrow C: Sig_C(0, N_B^* , ID_A, N_A^*)
- 13. A \rightarrow C: $\operatorname{Sig}_{\mathbf{A}}(N^*_{\mathbf{B}})$

- 5. A \leftarrow B: initiation, ID_B
- 6. C阻塞消息5
- 7. $C \rightarrow B$: $Sig_A(0, N_A, ID_B)$
- 8. $C/A \leftarrow B: Sig_B(0, N_B^*, ID_A, N_A)$
- 9. $C \rightarrow B$: $Sig_A(N_B^*)$

14(9). $C \rightarrow B: \mathbf{Sig_A(N^*_B)}$

- * 在第12.步之后, A达到什么判定状态? 在第14步后, B达到什么判定状态?
- * A、B两者的判定状态是否与双向身份认证目的一致?
- * (3) 如果各方使用本地的动态时钟,上述欺诈是否还起作用?
- * 更准确地说: 协议进程应如何处理时钟信信息,能使上述攻击失效?

习 题 1(Stallings 参考习题15.7): 缭

(4) 看下面不使用时钟的协议设计:

* 1. A \leftarrow B: initiation, ID_B

*

*

*

*

2. $A \rightarrow B$: $Sig_A(N_A, ID_B)$

3. A \leftarrow B: Sig_B(N_B , ID_A, N_A)

4. A \rightarrow B: Sig_A($N_{\rm B}$, $N_{\rm A}$)

* 准确、完整地表述该协议在A、B进程中的完整动作。

(5)以上协议是否能抵抗前述攻击/身份欺诈?试给出分析说明。

根据你的分析,检查你在(4)中的陈述是否准确、完整!

【答案参阅最后一页PPT;请先独立思考】

习 题 2(参阅Stallings 习题15.9)

分析以下单向认证协议、R表示随机数、E是某种安全的公钥加密方案。

- (1) 准确、完整地表述该协议在A、B进程中的完整动作。
- * 【从编程的角度,对进程A、B的处理动作分别阐述】
- * (2) 该协议并不安全, 试给出一种欺诈攻击途径。
- * (3) 试改进该协议,并准确、完整表述协议在A、B进程中的完整动作。
 - * 1. A \leftarrow B: initiation, ID_B
 - * 2. $A \rightarrow B$: ID_A
 - * 3. A \leftarrow B: $E_A(R_B)$
 - * 4. A→B: R_B

【参考答案见下页;请先独立思考】

习题2(参阅Stallings习题15.9):一种欺诈途径

C拟向B冒充自己是A

- * 5. A \leftarrow B: initiation, ID_B
- * 6. C阻塞上述消息
- * 7. $C \rightarrow B$: ID_A
- * 8. C/A \leftarrow B: $\mathbf{E}_{\mathbf{A}}(\mathbf{R}_2)$
- * 9. $C \rightarrow B : \mathcal{R}_2$

* 10. A
$$\leftarrow$$
C: initiation, ID_C

* 11.
$$A \rightarrow C$$
: ID_A

* 12. A
$$\leftarrow$$
C: $\mathbf{E}_{\mathbf{A}}(\mathbf{R}_2)$

* 14(9). C→B: **R**₂

习题2(参阅Stallings 习题15.9):一种改进

- * 改进的协议
- * 1. A \leftarrow B: initiation, ID_B
- * 2. $A \rightarrow B$: N_A , ID_A
- * 3. A \leftarrow B: $E_A(N_A||R_B)$
- * 4. A→B: *R*_B

C拟向B冒充自己是A

- * 10. A \leftarrow C: initiation, ID_C
- * 11. A \rightarrow C: N^* , ID_A
- * 12. A \leftarrow C: $\mathbf{E}_{\mathbf{A}}(N||\mathbf{R}_2)$
- * 13. A→B: **R**₂

- * 5. A \leftarrow B: initiation, ID_B
- * 6. C阻塞上述消息
- * 7. $C \rightarrow B$: N, ID_A
- * 8. C/A \leftarrow B: $\mathbf{E}_{\mathbf{A}}(N||\mathbf{R}_2)$
- * 9. C→B:R2

C这样做还可行吗? A预期解密后应该 看到什么样的明文? 理解这一点后, 相 应的处理应该成为进程A动作的一部分。

- * 14(9). C→B: **R**₂
- 【注】(x,y,z)和x||y||z等均表示数据项的顺序连结。下同。

习 题 1(Stallings 参考习题15.7) 参考答案

(4) 新版协议在面向原攻击时的情况: C是攻击者、A和B是诚实的参与方

- 1. A \leftarrow B: initiation, ID_B
- 2. $A \rightarrow B$: $Sig_A(N_A, ID_B)$
- 3. A \leftarrow B: Sig_B(N_B , ID_A, N_A)
- 4. A \rightarrow B: Sig_A(N_B , N_A)

A、B之间的某轮协议会话

A拟向B冒充自己是A

- 10. A \leftarrow C: initiation, ID_C
- 11. A \rightarrow C: Sig_A(0, N^*_A , ID_C)
- 12. A \leftarrow C: Sig_C(0, N_B^* , ID_A, N_A^*)
- 13. $A \rightarrow C$: $\operatorname{Sig}_{A}(N_{B}^{*}, N_{A}^{*}) \rightarrow$

- 5. A \leftarrow B: initiation, ID_B
- 6. C阻塞消息5
- 7. $C \rightarrow B$: $Sig_A(0, N_A, ID_B)$
- 8. $C \leftarrow B: \operatorname{Sig}_{B}(0, N_{B}^{*}, \operatorname{ID}_{A}, N_{A})$
- 9. $C \rightarrow B$: $Sig_A(N_B^*, N_A)$

14(9). C→B: 这里C还能利用 $Sig_A(N^*_B, N^*_A)$ 来 欺骗B让其相信对话的是A吗?

一些存在缺陷的协议实例

* 参阅:

*

- * Bruce Schnerier 应用密码学,机械工业出版社,2001
- * 田园 网络安全教程,人民邮电出版社,2009,第九章。

