

Nome:

Duração 90 minutos. Respostas certas, 1 ponto, erradas, -0.25. Pode consultar unicamente um formulário de uma folha A4 (frente e verso). Pode usar calculadora ou PC, mas unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $q = 9.8 \text{ m/s}^2$.

- 1. A expressão da energia cinética de uma partícula de massa m, que se desloca numa curva no plano $xy \in m(\dot{x}^2 + \dot{y}^2)/2$ e, se o eixo y é vertical, a energia potencial gravítica é m q y. Basta um único grau de liberdade para estudar o movimento da partícula ao longo da curva. Se a equação da curva é $y = \frac{1}{x^2}$, pode usar-se x como grau de liberdade. Determine a expressão para \ddot{x} (equação de movimento) admitindo que não existem forças não conservativas.
 - $(\mathbf{A}) \ -\frac{4\,x\,\dot{x}^2 + 2\,x\,g}{}$ $4x^2 + 1$
- $(\mathbf{D}) \frac{16 x \dot{x}^2 + 4 x g}{16 x^2 + 1}$
- (B) $\frac{8\dot{x}^2 + 2gx^3}{x^5 + 4x}$ (C) $\frac{2\dot{x}^2 + gx^3}{x^5 + x}$
- (E) $\frac{12\dot{x}^2 + 2gx^4}{x^7 + 4x}$

Resposta:

2. O sistema dinâmico não linear:

 $\dot{x} = xy - 4x + y - 4$ $\dot{y} = xy + x - 1y - 1$ tem um ponto de equilíbrio em x=1, y=4. Qual é o sistema linear que aproxima o sistema não linear na vizinhança desse ponto de equilíbrio?

- **(A)** $\dot{x} = 2y$ $\dot{y} = 5x$
- **(D)** $\dot{x} = 5y$ $\dot{y} = 2x$
- (C) $\dot{x} = -5y$ $\dot{y} = -2x$

Resposta:

3. As equações de evolução de um sistema linear são: $\dot{x} = -2x - y$ $\dot{y} = 2x$

Que tipo de ponto de equilíbrio tem esse sistema?

- (A) foco atrativo.
- (**D**) ponto de sela.
- (B) nó repulsivo.
- (E) centro.
- (C) foco repulsivo.

Resposta:

- 4. A componente tangencial da aceleração de um corpo é dada pela expressão $a_t = 3s + v$ (SI), em que s é a posição na trajetória e v a velocidade. Determine a velocidade de fase no ponto do espaço de fase com coordenadas (s, v) = (1, 3).
 - (A) (3, 1)
- (C) (6, 3)
- (E) (3, 6)

- **(B)** (3, -1)
- (\mathbf{D}) (3, 3)

Resposta:

- 5. As unidades J·s/m (joule vezes segundo sobre metro) podem ser usadas para medir:
 - (A) Quantidade de movi- (C) Aceleração. mento.
- (D) Trabalho.
- (**B**) Energia.
- (E) Velocidade.

Resposta:

6. Sobre um corpo atuam unicamente forças conservativas. No espaço de fase (s, v), onde s é a posição na trajetória e v o valor da velocidade, o retrato de fase do corpo tem uma órbita heteroclínica. Qual dos seguintes gráficos pode representar a energia potencial total do corpo em função de s?

(**A**) U (\mathbf{B})

Resposta:

- 7. A expressão da energia cinética de um sistema conservativo é $\frac{1}{2}$ ($\dot{s}^2 + 5s^2$), onde s é a posição na trajetória, e a expressão da energia potencial total é 15 s. O sistema tem um único ponto de equilíbrio; determine o valor de s nesse ponto de equilíbrio.
 - (**A**) -1
- (C) -2
- **(E)** 1

- **(B)** 2
- (**D**) 3

Resposta:

- 8. Num sistema que se desloca no eixo dos x, a força resultante é $x^2 + x - 2$. Na lista seguinte, qual dos valores corresponde à posição x dum ponto de equilíbrio instável?
 - (**A**) 1
- (C) -1
- (E) -2

- **(B)** 3
- (**D**) 2

Resposta:

9. Qual das matrizes na lista é a matriz jacobiana do sistema dinâmico equivalente à seguinte equação diferencial?

 $\ddot{x} x - 4 x^2 \dot{x} + 2 x^2 = 0$

Resposta:

	 (B) Podem existir um, dois ou nenhum ponto de equilibrio. (C) Todas as curvas de evolução passam pela origem do espaço de fase. (D) Os seus pontos de equilíbrio só podem ser centros ou pontos de sela. 	As equações de evolução de um sistema linear são: $ \dot{x} = 3 (x-2) - 4 (x-y) \qquad \dot{y} = 2 (y-2) + 2 (x-y) $ Qual das matrizes na lista é a matriz do sistema? $ (\mathbf{A}) \begin{bmatrix} 1 & 2 \\ 4 & -1 \end{bmatrix} \qquad (\mathbf{D}) \begin{bmatrix} 2 & 2 \\ -3 & 5 \end{bmatrix} $ $ (\mathbf{B}) \begin{bmatrix} -1 & 4 \\ 2 & 0 \end{bmatrix} \qquad (\mathbf{E}) \begin{bmatrix} -1 & 3 \\ 2 & 1 \end{bmatrix} $ $ (\mathbf{C}) \begin{bmatrix} -2 & 4 \\ -3 & 5 \end{bmatrix} $ Resposta: $ (\mathbf{E}) \begin{bmatrix} -1 & 3 \\ 2 & 1 \end{bmatrix} $ Um bloco de massa 3 kg desce deslizando sobre a superfície de um plano inclinado, partindo do ponto A com valor da velocidade igual a 3 m/s e parando completamente no ponto B. As alturas dos pontos A e B, medidas na vertical desde a base horizontal do plano, são: $h_B = 10 \mathrm{cm}$ e $h_A = 100 \mathrm{cm}$. Calcule o trabalho realizado pela força de atrito, desde A até B.
	(E) Todas as curvas de evolução são linhas retas. Resposta:	(A) -37.0 J (C) -28.2 J (E) -34.1 J
12.	A matriz jacobiana de um sistema não linear, num ponto de	(B) -40.0 J (D) -31.1 J
	equilíbrio P no plano de fase (x, y) , encontra-se na variável	Resposta:
	que tipo de ponto de equilíbrio é o ponto P? (A) ponto de sela. (D) nó atrativo.	A força tangencial resultante sobre uma partícula é $F_{\rm t} = (s+1)(s-1)(s-3)$. Qual das seguintes afirmações é verdadeira, em relação aos pontos de equilíbrio da partícula?
	(B) foco repulsivo.(C) foco atrativo.(E) centro.	(A) $s = -1$ e $s = 1$ são instáveis.
	Resposta:	 (B) s = 1 é instável e s = 3 é estável. (C) s = -1 é estável e s = 3 é instável.
13.	Para subir uma caixa com massa de 60 kg, desde o chão até um camião com altura 115 cm, um homem empurra a caixa sobre cilindros (para reduzir o atrito) ao longo de uma rampa inclinada 30° em relação à horizontal. Determine o trabalho mínimo (quando o atrito e a resistência do ar são desprezáveis) que deverá realizar o homem para subir a caixa ao camião.	(D) $s = 1$ é estável e $s = 3$ é instável. (E) $s = -1$ é instável e $s = 3$ é estável. Resposta: Qual dos vetores na lista é vetor próprio da matriz: $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$?
	(A) 676 J (C) 586 J (E) 293 J	$\begin{bmatrix} -1 & 2 \end{bmatrix}$ (C) $(2,1)$ (E) $(0,1)$
	(B) 169 J (D) 338 J	(B) (1,2) (D) (1,1)
	Resposta:	Resposta:
14.	Um sistema de pesos e roldanas, conservativo, tem um único grau de liberdade y . A energia cinética é dada pela expressão $5m\dot{y}^2$ e a energia potencial é: $U=-6mgy$, onde g é a aceleração da gravidade e m é um parámetro com unidades de massa. Determine o valor da aceleração \ddot{y} . (C) $\frac{18}{5}g$ (C) $\frac{12}{5}g$ (E) $\frac{2}{5}g$	Um sistema dinâmico com duas variáveis de estado x e y tem um ponto de equilíbrio no ponto $x=10, y=5$. O gráfico mostra a evolução da variável x em função de tempo. Que tipo de ponto é esse ponto de equilíbrio?
	(A) $\frac{18}{5}g$ (C) $\frac{12}{5}g$ (E) $\frac{2}{5}g$ (B) $\frac{3}{5}g$	10
	Resposta:	
15.	Uma esfera de massa m e raio R roda sobre uma superfície plana, sem derrapar. Sabendo que o momento de inércia, em relação ao centro de massa, de uma esfera é dado pela	\xrightarrow{t}
	expressão $\frac{2}{5}mR^2$, determine a expressão para a energia cipática, em função da volocidade y do centro do massa	(\mathbf{A}) foco repulsivo (\mathbf{D}) nó repulsivo
	cinética, em função da velocidade v do centro de massa. (A) $\frac{1}{2}mv^2$ (C) $\frac{2}{2}mv^2$ (E) $\frac{7}{2}mv^2$	(B) foco atrativo (E) nó atrativo
	(A) $\frac{1}{2} m v^2$ (C) $\frac{2}{5} m v^2$ (E) $\frac{7}{10} m v^2$ (B) $\frac{9}{10} m v^2$ (D) $\frac{7}{5} m v^2$	(C) centro
		Resposta:
	Resposta:	

Respostas

1. E

E (

2. A

3. A

4. E

5. A

6. E

7. D

8. A

9. C

10. C

11. A

12. D

13. A

14. B

15. E

16. B

17. B

18. D

19. D

20. E