Membranes and Signal transduction

Importance of cell membranes:

- a) Border (outer inner)
- b) Barrier (protection)
- c) Substance- and Information exchange
- d) Recognition
- e) Formation of tissues

Composition of Membranes:

a) Lipids (Phospholipids)	79%
b) Proteins	18%
c) Carbohydrates (Lipid-	~ 3%
and Protein-bound)	

Phosphatidylcholine

Monomolecular layer (Air or lipophilic phase)

Double-molecular layer

b) Micelle

Liposome, Vesicle (classical cell membrane)

Mobility of membrane components

The double membrane is not homogenous

Intracellular Water/Protein

polar groups

fluid Phase

polar Groups extracellular Water/Protein

Asymetric Distribution of Lipids in the Membrane

Proteins of the Membrane

Lipid Rafts

Summary

Membranes:

- thickness in human cells: 70-100 Å
- Lipid-Double layer with Proteins
- Asymetric Double layer
- Fluid Mosaic (Lipid Rafts)

Properties of Membranes

Non-permeable for:

water, ions, charged molecules polar substances peptides and proteins Macromolecules

permeable for:

small, lipophilic molecules small, non-polar substances

Transport:

- diffusion
- active transport primary secondary
- special case: gap junctions

Membrane Proteins

Adhesion proteins

Cadherins, CAM, Integrins

Carrier

Antiporter, Symporter

Pore proteins

Aquaporins

Receptors

G protein-coupled receptors (GPCR)

Receptor Tyrosine Kinases (RTK)

Receptor Serine/Threonine kinasen

Receptor guanylyl cyclases

Tyrosine kinase-coupled receptors

Ion channel

- Physiology - Lectures!

Adhesion proteins

Cell adhesion molecules:

- homologous binding: (E-Cadherin, N-Cadherin)
- heterologous binding: (CAMs cell adhesion molecules; N-CAM, I-CAM)

Matrix Protein Receptors:

- Integrins (Transmembrane Proteins; Heterodimers)
- Dystroglykan

Transport proteins - Carrier

Transport proteins – Carrier Sugar Transporter

Transport proteins — Carrier Sugar Transporter

Transport proteins - Symporter

Transport proteins — Carrier Na-I-Symporter

Pore proteins Aquaporins

Pore proteins Aquaporins

Signal transduction

Signal transduktion Signal **Antenna** playback Signal transducer Signal amplifier

Signal tuner

Signal transduction

Signal Hormone

Antenna Receptor

Tuner Co-Receptors

Adaptor

Amplifier Enzymes

Playback Effectors

Signals

- heat
- Light
- mechanical and acoustic signals
- odors
- taste substances
- Pheromones
- extracellular Matrix
- cell surface glycoproteins
- Antigens
- Hormones
- Cytokines
- Chemokines

Signals

Rezeptor definition (biochemical)

Biomolecule or Biomolecule complex,

- Signal molecule binds
- Structural changes
- Activation of one or more signal transduction cascades

Receptor types

metabotropic vs ionotropic

 nuclear receptors (Steroid hormones; thyroid hormones)

- Membrane receptors (Peptides / Proteo-Hormones)
- Ligand-regulated Ion channels (Neurotransmitters; Ligands)

Receptor types

- 1. Nuclear receptors
- 2. G protein-coupled receptors
- 3. Receptor Tyrosine kinases (RTK)
- 4. Receptors with associated kinases

Receptor types

Steroid Receptor - Structure

Steroid Receptor – Activation prozess

Steroid Receptors - Structure

Nuclear Receptors - Structure

Nuclear Receptors - Dimerization

Steroid receptors: Homodimers (in Cytoplasm)

e.g.: Glucocorticoids, Progesterone

• non-steroidal Receptors: Homodimers or Heterodimers (most are in the nucleus)

e.g.: Retinoic acid (RAR, RXR)

bile acid (LXR)

Vitamin D (VDR)

thyroid hormone (TR)

Nuclear Receptors – DNA Binding

RXR RAR TR, VDR PPAR 9-cis-Retinsäure all-trans-Retinsäure T3, Vitamin D Peroxisomen Proliferatoren

(z.B. Clofibrat)

Nuclear Receptors – DNA Binding

Nuclear Receptors – DNA Binding

