AmBe Detector Calibration Calculations

John Boyington Kansas State University

The document describes the calculations used to obtain the absolute efficiency of the LiI neutron detector used in Bonner Sphere measurements.

1 Source Term

The following equation was used to determine W, a value for the WGT parameter on the source SDEF card, which represents the total number of source neutrons emitted during the measurement period.

$$W = At3.7 \times 10^{10} (\mathrm{Bq/Ci})$$

Here, A is the source activity, 4.85 Ci, t is the total measurement time, 60s, and 3.7×10^{10} is the conversion from Ci to Bq. This equation yields a value of 1.0767×10^{13} for W. Below is given a PDF of the energy-dependent source spectrum.

2 Tally Normalization

The result of the MCNP F4 tally will be given in units of $[1/\text{cm}^2]$. By using a tally multiplier card with an ENDF reaction number of 105, that value will be multiplied by the microscopic cross section $\sigma[\text{barns}]$. A constant of proportionality, C, equal to the atomic number density N in $[1/\text{b} \cdot \text{cm}]$ times the volume V in $[\text{cm}^3]$ is needed to convert this fluence value into a total reaction rate.

$$R = C \int \Phi(E)\sigma(E)dE$$

where

$$C = VN \frac{1}{10^{24}} (\text{barns/cm}^2)$$

and

$$N = \frac{\rho N_A}{M}$$

In this case, N is reported as 1.74×10^{22} [atoms/cm³] in a paper by Decker. The detector volume V is a 4mm \times 4mm cylinder, and therefore equal to $\pi(\frac{D}{2})^2h$, or 0.0502645 cm³. The value for C calculated using these parameters is thus 8.7965×10^{-4} cm²/barn.

3 Efficiency Calculation

Experimentally, for a 60s count, a total experimental response, R_e , of 53,016 counts were measured (53,161 gross cpm - 145 background cpm). The MCNP result for the response was found to be 580,541. The following equation is used to determine the detection efficiency of the detector.

efficiency =
$$\frac{R_e}{R_{mc}}$$

Therefore, the overall efficiency of the detector is:

efficiency =
$$0.0913$$