MO. 20 - Základní síťový hardware

Síťová karta

- zařízení pro propojení počítačů v síti
- může být externí ve formě karty (PCle sběrnice na základní desce) nebo integrovaná; pro laptopy se dají připojit i přes USB
 - každá karta má od výrobce určenou MAC adresu
 - obsahuje:
- specializovaný komunikační obvod specializovaný komunikační procesor obsahující vše, co komunikace přes síť vyžaduje
 - ROM paměť (BootROM)
- paměť má v sobě nahraný program, který umožňuje připojení k LAN bez dodatečného komunikačního softwaru
- umožňuje postavení bezdiskové stanice veškerý software potřebný pro práci stáhne ze serveru
 - o napěťový měnič z 5 V na 9 V potřebný pro některé druhy sítí
 - konektor pro připojení síťového kabelu
 - LED diody na indikaci aktivity sítě a přítomnosti signálu v síti
 - rozdělení:
 - serverové
 - víceportové
 - zvýšená datová propustnost
 - rozšířené možnosti komunikace
 - snížené zatížení procesoru
 - pro pracovní stanice
 - parametry
- typ média: kroucená dvojlinka, tenký/tlustý koaxiální kabel, bezdrátová komunikace, optické vlákno
 - typ sítě: Ethernet, Fast Ethernet, Arcnet, Token Ring, FDDI
 - rychlost: 4 Mbit/s, 10 Mbit/s, 16 Mbit/s, 100 Mbit/s, 1 Gbit/s, 10 Gbit/s

Hub

- větví síť bez jakéhokoliv řízení do hvězdicové topologie (při zkolabování hubu zkolabuje celá síť)
- chová se jako opakovač data, která přijdou na jeden z portů, jsou obnovena a odeslána na všechny ostatní porty; zpoždění 1 bit
 - pracuje na 1. vrstvě OSI modelu
 - dnes u starších sítí → nahrazeno switchem
 - podle LED diod je možné zjistit vadné spojení
 - kvůli schopnosti detekce kolize
 - je počet hubů v síti omezen dle rychlosti
 - 10 Mbit/s 5 segmentů (4 huby) mezi dvěma koncovými stanicemi
 - 10 Mbit/s 3 segmenty (2 huby) mezi dvěma koncovými stanicemi

Switch

- propojuje zařízení nebo části jedné sítě hvězdicovou topologií
- pracuje pouze v místní síti, do které je připojen

- způsoby přeposílání paketů:
- store and forward paket z jednoho portu přijme; uloží si jej do bufferu;
 prozkoumá hlavičky; odešle paket do příslušného portu
- cut-through switching k analýze hlaviček dochází, když dorazí začátek paketů; jakmile je destinace určena, začne se paket odesílat (nečeká se na celý paket)
- fragment free přeposlání paketu začne až po přijetí 64 bytů (pro detekci kolize); pro sítě, kde je do switche připojen hub
- adaptive switching automatické přepínání mezi metodami cut-through switching a store and forward
 - vrstva
 - základní switche 2. vrstva OSI modelu
- LAN switche 3. vrstva, pokud je rozhodnutí založeno na IP adrese; 4. vrstva, pokud je rozhodováno podle IP adresy a síťového portu

Router

- router spojuje dvě sítě a přenáší mezi nimi data
- na třetí vrstvě OSI modelu
- nejčastěji spojován s IP protokolem
- může ho využít jakýkoli počítač s podporou síťování
- "jednoruký" router používá jeden port a routuje pakety mezi VLAN provozovanými na této zásuvce
 - "okrajový" router/gateway připojuje klienty k vnější síti (většinou Internet)
 - "vnitřní" router přenáší data mezi jinými routery

Repeater

- přijímá poškozený signál a zesílený ho vyšle dále
- k zvýšení dosahu média bez ztráty kvality a obsahu signálu
- patří do první vrstvy OSI modelu (pracuje přímo s elektrickým signálem)
- odstraňuje šum tím, že obnoví příchozí signál do původní digitální podoby a poté jej znovu převede do analogové podoby a vyšle ve správný čas
 - u Ethernetu je jejich počet omezen z důvodu kolizních protokolů
 - komunikace:
 - bezdrátová
- repeater se skládá z rádio přijímače, zesilovače, vysílače, izolátoru a dvou antén
- vysílač generuje signál na odlišné frekvenci od signálu na vstupu; ochrana vstupu od zesíleného signálu; izolátor v tomto případě poskytuje dodatečnou ochranu
- rádiový signál k oddělení signálu v jejich frekvenčním rozsahu od jednoho přijímače ke druhému
 - optická
 - repeater je složen z fotobuňky (přijímač) a LEDky/IREDky (vysílač)
- signál je převeden na elektronický a po zrestaurování zpět na optický, který je dále vysílán
 - pracují s mnohem menšími výkony než bezdrátové; mnohem

jednodušší a levnější

■ jejich výroba vyžaduje vyšší přesnost a kvalitu; z důvodu minimalizace šumu

Bridge

- spojuje dvě části sítě na druhé vrstvě OSI modelu; pro vyšší vrstvy je most neviditelný
 - odděluje provoz různých segmentů sítě a tím zmenšuje její zatížení
 - v RAM si sám sestaví tabulku MAC adres a portů
- leží-li příjemce ve stejném segmentu jako odesílatel, most pakety do jiných částí sítě neodešle; v opačném případě je odešle do příslušného segmentu v nezměněném stavu (Unicast pakety) nebo je propustí bez omezení (Multicast, Broadcast)
 - transparent bridging
 - mosty jsou neviditelné pro koncové stanice
- zařízení na začátku vůbec neví, jak jsou jednotlivé stanice v síti rozloženy, a musí paket přijatý na jedné síti poslat do všech ostatních připojených sítí, protože ještě neví, kde se cílová stanice nachází; postupně se naučí, jak jsou stanice v síti rozloženy
 - source route bridging
 - ve spojení s token ring sítěmi
- každý paket musí kromě adresy odesílatele a příjemce obsahovat také posloupnost adres všech mostů, kterými musí paket projít
 - snižuje velikost kolizní domény
 - transparentní k protokolům z vyšších vrstev
- vyšší latence než opakovače z důvodu čtení MAC adresy; dražší než opakovače
 - bridging × routing
- bridging a routing jsou podobná řízení toku dat, ale pracují pomocí různých metod
 - o bridging se provádí na 2. vrstvě; routing na 3. vrstvě
- most směruje pakety podle jejich hardwarové MAC adresy; router se rozhoduje podle IP adresy uvnitř přenášeného datagramu

<u>Kabely</u> Měděné

- Nabízejí vysokou rychlost a stabilitu.
- · Jsou cenově dostupnější než optické kabely.
- Mají větší odolnost vůči napadení než bezdrátové sítě.
- Délka kabelu je omezena, zejména při vyšších přenosových rychlostech.

UTP (Unshielded Twisted Pair)

- Skládá se z několika párů zkroucených měděných drátů.
- Kroucení snižuje elektromagnetické rušení.

STP (Shielded Twisted Pair)

 Podobný UTP, ale každý pár drátů je navíc chráněn kovovým opletením, což zajišťuje vyšší úroveň ochrany proti rušení.

Koaxiální

Obsahuje centrální vodič obklopený izolací a kovovým opletením.

Optické

- Nabízejí vysokou rychlost, dlouhý dosah a odolnost vůči rušení ve srovnání s měděnými kabely.
- Přenášejí data jako světelné impulsy skrze tenké skleněné nebo plastové vlákno.
- V optickém vlákně se signál tlumí mnohem méně než v měděném kabelu a není ovlivněn elektromagnetickým rušením.
- Vlákna jsou křehká a snadno se poškozují.

Konektory

- Fyzicky propojují jednotlivá zařízení s přenosovým médiem (nejčastěji kabelem).
- Každý typ kabelu vyžaduje specifický typ konektoru.
- Různé konektory podporují různé přenosové rychlosti.
- Některá prostředí, jako je průmysl, vyžadují odolnější typy konektorů.
- Existují rozdíly v počtu pinů.

Typy konektorů

- RJ-45: Konektor pro UTP a STP kabely; název je odvozen od podobnosti s
 telefonními koncovkami, které však nejsou kompatibilní s moderními
 počítačovými síťovými kabely.
- **SC**: Konektor pro optická vlákna, má čtvercový tvar a jednoduchý západkový mechanismus.
- **ST**: Konektor pro optická vlákna, kulatý tvar s bajonetovým zámkem pro zajištění; obecně považován za robustnější než SC konektor.
- **LC**: Nejmenší typ konektorů pro optická vlákna se západkovým mechanismem; liší se úhlem leštění koncovky.
- **FC**: Konektor pro optická vlákna, navržený pro prostředí s vysokými vibracemi; končí 2,5 mm kováním (zinek nebo nerez) a špička je leštěna do kulovitého tvaru.
- **BNC**: Konektor pro koaxiální kabely, impedance 50 až 75 Ohmů, určený pro frekvence do 4 GHz a napětí do 500 voltů.

nejčastěji používaný typ zapojení síťových kabelů UTP (používá se k propojení internetové přípojky s routerem) a STP (kabely jsou stíněny před rušivými vlivy pomocí fólií)

Switch propojuje více zařízení v jedné síti pomocí LAN portů a tím vytváří strukturu sítě

Basic home network diagram