Thèse en Informatique	ue
-----------------------	----

Jean Simard

Interactions haptiques collaboratives pour la manipulation moléculaire

École Doctorale d'Informatique de Paris Sud

Thèse soutenue le $1^{\rm er}$ décembre 2011 en présence de

Martin DUPONT (rapporteur) Directeur de recherche au LIMSI Martin DUPOND (examinateur) Directeur de recherche au LIMSI

Table des matières

Ta	able (des matières	iii			
Ta	Table des figures v					
Li	ste d	les tableaux	vii			
Ι	Le	sujet	1			
1	Intr	roduction	3			
Π	É	tude du travail collaboratif	5			
2	Laı	recherche collaborative	7			
	2.1	Présentation	7			
		2.1.1 Objectifs	7			
		2.1.2 Hypothèses	7			
	2.2	Dispositif expérimental	7			
	2.3	Méthode	7			
		2.3.1 Sujets	7			
		2.3.2 Variables	8			
		2.3.3 Tâche	12			
		2.3.4 Procédure	12			
	2.4	Résultats	12			
3	Laı	manipulation collaborative	13			

Table des matières

4 Les dynamiques de groupe	15
III Propositions pour le travail collaboratif	17
5 Travail collaboratif assisté par haptique	19
IV Synthèse	21
6 Conclusion et perspectives	23
Glossary	25
Acronyms	27
A Shaddock – Collaborative Virtual Environment for Molec Design	ular 29

Table des figures

2.1	Répartition des résidus sur les molécules	10
2.2	Schéma des phases de la communication verbale	11

Liste des tableaux

2.1	Liste des résidus recherchés	(
2.2	Paramètres de complexité des résidus	Ć

Liste des \hat{A} faire

Première partie

Le sujet

Introduction

Deuxième partie Étude du travail collaboratif

La recherche collaborative

- 2.1 Présentation
- 2.1.1 Objectifs
- 2.1.2 Hypothèses
- 2.2 Dispositif expérimental
- 2.3 Méthode

2.3.1 Sujets

24 sujets (4 femmes et 20 hommes) avec une moyenne d'âge de $\mu=27.8$ ($\sigma=7.19$) ont participés à cette expérimentation. Ils ont tous été recrutés au sein du laboratoire Laboratoire pour l'Informatique, la Mécanique et les Sciences de l'Ingénieur (CNRS-LIMSI) et sont chercheurs ou assistants de recherche dans les domaines suivants :

- linguistique et traitement automatique de la parole;
- réalité virtuelle et système immersifs ;
- audio-acoustique.

Ils ont tous le français comme langue principale. Aucun participant n'a de déficience visuelle (ou corrigée le cas échéant) ni déficience audio.

Chaque participants est complètement naïf concernant les détails de l'expérimentation. Une explication détaillée de la procédure expérimentale leur est donnée au commencement de l'expérimentation mais en omettant l'objectif de l'étude.

2.3.2 Variables

Variables indépendantes

- (\mathcal{V}_{i1}) Nombre de sujets La première variable indépendante est une variable intra-population, c'est-à-dire que tous les sujets seront expérimentés dans toutes les conditions de cette variable. (\mathcal{V}_{i1}) possède 2 valeurs possibles : « 1 sujet $(c.f.\ mon \hat{o}me)$ » ou « 2 sujets $(c.f.\ bin \hat{o}me)$ ». Le sujets seuls et les sujets en couples ont à leur disposition 2 interfaces haptiques et une souris 3D (SpaceNavigator[®]). Pour les bin \hat{o} mes, seulement un des deux sujets est désigné pour l'utilisation exclusive de la souris 3D. 24 mon \hat{o} mes et 12 bin \hat{o} mes ont été testés ce qui fait deux fois plus de mon \hat{o} mes que de bin \hat{o} mes.
- (\mathcal{V}_{i2}) **Résidu recherché** La seconde variable indépendante est une variable intra-population. (\mathcal{V}_{i2}) concerne les résidus recherchés qui sont au nombre de 10 répartis à part égale dans 2 molécules (voir Table 2.1 page ci-contre). La première molécule est couramment nommée TRP-CAGE [Neidigh et al. 2002] et a pour identifiant PDB 1L2Y sur la *Protein DataBase* ¹. La seconde molécule nommée Prion [Christen et al. 2009] avec l'identifiant PDB 2KFL. 5 résidus sont présents sur chaque molécule (voir Figure 2.1 page 10) et chacun présente différents niveaux de complexité (voir Table 2.2 page ci-contre) :
- Position La position du résidu peut se trouver sur le pourtour de la molécule, en position *externe* ou à l'intérieur, au milieu de l'amas d'atome (position *interne*). Un résidu en position externe ne nécessite pas de déformer la molécule pour le trouver et l'atteindre contrairement à un résidu en position interne qui sera plus complexe d'accès.
- Forme La forme du résidu influe énormément sur la complexité de la recherche. On distingue 3 formes différentes :
 - **Chaîne** Un enchaînement d'atomes seuls les atomes d'hydrogène sont de part et d'autres de cet enchaînement.
 - Cercle Une chaîne d'atomes de carbone ou d'azote qui boucle sur ellemême.
 - **Étoile** Séries de chaînes d'atomes toutes reliées sur un atome central (la plupart du temps, un atome de carbone).
- Couleurs Les atomes sont colorés en fonction de leur nature (rouge pour l'oxygène, blanc pour l'hydrogène, etc.). Les atomes qui sont rares seront donc rapidement trouvés grâce à leur couleur différente. Par contre, les atomes nombreux (comme les hydrogènes ou les carbones) seront plus difficiles à filtrer à cause de leur nombre important.
- Similarité Certains résidus à chercher sont très similaires à d'autres résidus également présents sur la molécule. De par leur similarité, ils vont mobilier la recherche sur des résidus incorrects.

^{1.} http://www.pdb.org/

Table 2.1 – Liste des résidus recherchés

(a) Residus sur la molécule TRP-CAGE

(b) Residus sur la molécule Prion

Résidu	Image	Résidu	Image
(\mathcal{R}_1)		(\mathcal{R}_6)	
(\mathcal{R}_2)	*	(\mathcal{R}_7)	1
(\mathcal{R}_3)		(\mathcal{R}_8)	
(\mathcal{R}_4)		(\mathcal{R}_9)	
(\mathcal{R}_5)		(\mathcal{R}_{10})	7.

Table 2.2 – Paramètres de complexité des résidus

Résidu	Position	Forme	Couleurs	Similarité
(\mathcal{R}_1)	Interne	Cercle	8 C, 1 N	Non
(\mathcal{R}_2)	Interne	Étoile	1 C, 3 N	Non
(\mathcal{R}_3)	Interne	Cercle	6 C, 1 O	Non
(\mathcal{R}_4)	Externe	Chaîne	4 C	Non
(\mathcal{R}_5)	Externe	Chaîne	4 C, 1 N	Non
(\mathcal{R}_6)	Interne	Chaîne	2 C, 2 S	Non
(\mathcal{R}_7)	Externe	Étoile	1 C, 3 N	Non
(\mathcal{R}_8)	Externe	Cercle	6 C, 1 O	Non
(\mathcal{R}_9)	Interne	Chaîne	4 C	Oui
(\mathcal{R}_{10})	Interne	Chaîne	4 C, 1 N	Oui

Figure 2.1 – Répartition des résidus sur les molécules

Variables dépendantes

 (\mathcal{V}_{d1}) Le temps de complétion Ce temps est le temps total pour réaliser la tâche demandée, c'est-à-dire trouver le résidu et l'extraire de la molécule. Ce temps est divisé en 2 phases bien distinctes :

La recherche C'est la phase pendant laquelle les sujets cherchent le résidu. Cette recherche peut être simplement visuelle en orientant et en déplaçant la molécule mais elle peut aussi amener les sujets à déformer la molécule afin d'explorer les résidu inaccessibles.

La sélection La phase de sélection débute dès l'instant où un des 2 sujets a trouvé le résidu. Elle est constitué d'une phase de sélection puis d'une phase d'extraction.

Il n'y a pas de limite de temps pour réaliser la tâche.

 (\mathcal{V}_{d2}) La distance entre les espaces de travail Cette distance est la distance moyenne entre les 2 effecteurs terminaux présents durant l'expérimentation. Cette distance représente donc une distance physique du monde réel, pas une distance virtuelle. Elle est de l'ordre du centimètre.

 (\mathcal{V}_{d3}) Les communications orales L'enregistrement audio permet de mesurer la quantité de temps de parole pendant chaque tâche de l'expérimentation. Ces mesures discrimine la phase de recherche de la phase de sélection (voir (\mathcal{V}_{d1})) comme indiqué plus précisément sur la Figure 2.2.

Figure 2.2 – Schéma des phases de la communication verbale

 (\mathcal{V}_{d4}) L'affinité entre les sujets Le degré d'affinité – concernant uniquement les binômes – est compris entre 1 et 5 selon les critères suivants :

- 1. Les sujets ne se connaissent pas;
- 2. Les sujets travaillent dans la même entreprise, le même laboratoire;
- 3. Les sujets travaillent dans la même équipe;
- 4. Les sujets travaillent dans le même bureau;
- 5. Les sujets sont amis.

- 2.3.3 Tâche
- 2.3.4 Procédure
- 2.4 Résultats

La manipulation collaborative

Les dynamiques de groupe

Troisième partie

Propositions pour le travail collaboratif

Travail collaboratif assisté par haptique

Quatrième partie

Synthèse

Conclusion et perspectives

Glossary

curseur

Élément virtuel associé à un élément physique que le sujet manipule; il est lié à l'effecteur terminal. 25

effecteur terminal

Élément physique que le sujet manipule; il est lié au curseur du monde virtuel. 11

monôme

Groupe constitué d'une unique personne. 8

résidu

Groupe d'atomes constituant un des blocs élémentaires d'une molécule. 8, 11

variable dépendante

Facteur mesuré sur une expérimentation (nombre de sélections, trajectoire, etc.); ces variables sont influencées par les variables indépendantes. 25

variable indépendante

Facteur pouvant varier et être manipuler sur une expérimentation (nombre de participants, tâche, etc.); ces variables vont avoir une incidence sur les variables dépendantes. 8

variable intra-population

Variables pour les quelles les sujets sont confrontés à toutes les modalités de la variable. $8\,$

Acronyms

${ m cnrs-limsi}$

Unité Propre de Recherche du CNRS (UPR $3\,251$) associé aux universités PARIS Sud et Pierre et Marie CURIE. 7

Annexe A

Shaddock – Collaborative Virtual Environment for Molecular Design