

Report No.: C160512R01-EF

FCC 47 CFR PART 15 SUBPART B **TEST REPORT**

for

Product Name: 10.1"Tablet Model No.: 850-033343 **Test Report Number:** C160512R01-EF

Issued to:

Lynx Innovation Limited Unit 8A, 331 Rosedale Road, Albany 0632, North Shore City, New Zealand

Issued by:

Compliance Certification Services Inc.

Kunshan Laboratory

No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China

TEL: 86-512-57355888

FAX: 86-512-57370818

E-Mail: service@ccsrf.com Issued Dated: May 20, 2016

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

Page 1 of 30

Report format Revision 01

Revision History

Version	Report No	Date	Description	Revised By
Rev 00	C160512R01-EF	May 20, 2016	Initial Issue	Wendy.Wei

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	4
2	EUT DESCRIPTION	5
3	TEST METHODOLOGY	6
	3.1. DECISION OF FINAL TEST MODE	6
	EUT SYSTEM OPERATION	6
4	SETUP OF EQUIPMENT UNDER TEST	7
	4.1. DESCRIPTION OF SUPPORT UNITS	7
	4.2. CONFIGURATION OF SYSTEM UNDER TEST	8
5	FACILITIES AND ACCREDITATIONS	9
	5.1. FACILITIES	9
	5.2. ACCREDITATIONS	9
	5.3. MEASUREMENT UNCERTAINTY	
6	CONDUCTED EMISSION MEASUREMENT	11
	6.1. LIMITS OF CONDUCTED EMISSION MEASUREMENT	11
	6.2. TEST INSTRUMENTS	11
	6.3. TEST PROCEDURES	
	6.4. TEST SETUP	13
	6.5. DATA SAMPLE	13
	6.6. TEST RESULTS	
7	RADIATED EMISSION MEASUREMENT	
	7.1. LIMITS OF RADIATED EMISSION MEASUREMENT	
	7.2. TEST INSTRUMENTS	17
	7.3. TEST PROCEDURES	
	7.4. TEST SETUP	19
	7.5. DATA SAMPLE	
	7.6. TEST RESULTS	
8	PHOTOGRAPHS OF THE TEST CONFIGURATION	
APF	PENDIX 1 - PHOTOGRAPHS OF EUT	28

1 **TEST RESULT CERTIFICATION**

Product Name:	10.1"Tablet		
Model Name:	850-033343		
Brand Name:	LYNX		
Applicant:	Lynx Innovation Limited		
Address:	Unit 8A, 331 Rosedale Road, Albany 0632, North Shore City ,New Zealand		
Manufacturer:	Jiaxing Lynx Displays Limited		
Address:	1F,Bldg#7,No.3288,Zhongshan Xi Road,Xiuzhou Industrial Park, Jiaxing,Zhejiang,China		
Date of Test:	May 18~19, 2016		
Test Voltage:	120VAC, 60Hz		

EMISSION				
Standard	Item	Result	Minimum Requirement	
FCC 47 CFR Part 15 B	Conducted (Main Port)	PASS	Meets Class B Limit	
ANSI C63.4-2014	Radiated	PASS	Meets Class B Limit	

Note: 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

2. The information of measurement uncertainty is available upon the customer's request.

Deviation from Applicable Standard
None

The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:	Reviewed by:	
Jeff fang	Ken. Yas	
Jeff.Fang	Ken.Yao	

EMC Section Manager EMC Manager Compliance Certification Service Inc. Compliance Certification Service Inc.

2 EUT DESCRIPTION

Product Name:	10.1"Tablet	
Brand Name:	LYNX	
Model Name:	850-033343	
Series Model:	850-033465,850-033466,850-033467,850-033468,850-033469	
Model differences:	Market segmentation	
Applicant:	Lynx Innovation Limited	
Identify Number:	C160512R01-EF	
Received Date:	May 12, 2016	
EUT Power Rating:	DC 12V	

I/O PORT:

I/O PORT TYPE	Q'TY	TESTED WITH
1). DC Port	1	1
2). HDMI Port	1	1
3). Audio Port	2	2
4). Optical Port	1	0
5). OTG Port	1	1
6). Lan Port	1	1
7). USB2.0 Port	2	2
8). Micro SD Port	1	1

TEST METHODOLOGY 3

3.1. DECISION OF FINAL TEST MODE

1. The EUT was tested together with the above additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

The following test mode(s) were scanned during the preliminary test:

Pre Test Mode				
	Conducted Emission	Mode 1:USB Mode Mode 2:Micro SD Card Mode Mode 3:Lan Mode Mode 4:OTG Mode		
Emission	Radiated Emission	Mode 1:USB Mode Mode 2:Micro SD Card Mode Mode 3:Lan Mode Mode 4:OTG Mode		

2. After the preliminary scan, the following test mode was found to produce the final emission level.

Final Test Mode			
Emission	Conducted Emission	Mode 1:USB Mode	
	Radiated Emission	Mode 1:USB Mode	

Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

3.2. EUT SYSTEM OPERATION

1	According to the erection of figure for site erection.
2	Set up the corresponding resolution test, and start testing.
3	Record test results.

Note: Test program is self-repeating throughout the test.

SETUP OF EQUIPMENT UNDER TEST

4.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model No.	Serial No.	Trade Name	Data Cable	Power Cord
1	Monitor	U2410f	KSLCD-03	DELL	Shielding 1.8M	Unshielding 1.8M
2	Earphone	ST-908	ST9081402004185	SENIC	Unshielding 3.0M	N/A
3	Mouse	MOC5UO	I13057DV	DELL	N/A	N/A
4	Notebook	ZQT	NXM8CN00531708D897578	Acer	Shielding 1.0M	Unshielding 1.8M
5	Notebook	ZQT	NXM8CN00531708D897600	Acer	Unshielding 10M	Unshielding 1.8M
6	USB DISK	DT101 G2	N/A	Kingston	N/A	N/A
7	Micro SD Card	N/A	N/A	Kingston	N/A	N/A
8	Adapter	EA1024PU	N/A	EDAC	N/A	N/A

Note:

- 1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.2. CONFIGURATION OF SYSTEM UNDER TEST

1. Monitor	2. Earphone	3. Mouse	
4. Notebook	5. Notebook	6. USB DISK	
7. Micro SD Card	8. Adapter		

Date of Issue: May 20, 2016 Report No.: C160512R01-EF

5 FACILITIES AND ACCREDITATIONS

5.1. FACILITIES

All measurement facilities used to collect the measurement data are located at No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4, CISPR 16-1-5.

5.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA A2LA China CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada Industry Canada

Japan VCCI Taiwan BSMI USA FCC

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsrf.com

Date of Issue: May 20, 2016 Report No.: C160512R01-EF

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted emissions	0.15MHz~30MHz	+/-2.5819 dB

Measurement	Polarity	Frequency	Uncertainty
	11	30MHz ~ 200MHz	+/- 4.5758dB
Radiated emissions	Н	200MHz ~1000MHz	+/- 4.4227dB
(below 1GHz)	V	30MHz ~ 200MHz	+/- 4.7254dB
		200MHz ~1000MHz	+/- 4.4336dB
	11	1000MHz ~6000MHz	+/- 4.8181dB
Radiated emissions	Н	6000MHz ~18000MHz	+/- 4.2585dB
(above 1GHz)	V	1000MHz ~6000MHz	+/- 4.4005dB
	V	6000MHz ~18000MHz	+/- 3.5897dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2008, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

CONDUCTED EMISSION MEASUREMENT

6.1. LIMITS OF CONDUCTED EMISSION MEASUREMENT

EDECLIENCY (MU-)	Class /	A (dBuV)	Class B (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

6.2. TEST INSTRUMENTS

CE (Shielding Room)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
EMI TEST RECEIVER	R&S	ESCI	100781	03/02/2016	03/01/2017		
V (V-LISN)	SCHWARZBECK	NNLK 8129	8129-143	11/02/2015	11/01/2016		
TWO-LINE V-NETWORK	R&S	ENV216	101604	11/02/2015	11/01/2016		
Pulse LIMITER	R&S	ESH3-Z2	100524	01/06/2016	01/05/2017		
Test Software	EZ-EMC ver.3A1						

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2.N.C.R = No Calibration Required.

6.3. TEST PROCEDURES

PROCEDURE OF PRELIMINARY TEST

- The EUT and support equipment, if needed, were set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.
- All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- The test equipment EUT installed by AC main power, through a Line Impedance Stabilization Network (LISN), which was supplied power source and was grounded to the ground plane.
- All support equipment power by from a second LISN.
- The test program of the EUT was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The worst configuration of EUT and cable of the above highest emission level were recorded for reference of the final test.

PROCEDURE OF FINAL TEST

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- The test data of the worst-case condition(s) was recorded.

6.4. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

6.5. DATA SAMPLE

Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average
	Reading	Reading	Factor	Result	Result	Limit	Limit	Margin	Margin
	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
x.xxxx	50.56	50.82	10.04	60.60	60.86	79.00	66.00	-18.40	-5.14

Correction factor (dB) = cable loss + Insertion loss of LISN+ Insertion loss of transient limiter (The transient limiter included 10 dB attenuation)

(QuasiPeak/ Average)Result = (QuasiPeak/ Average)reading + Correction Factor (dB)

Calculation Formula

(QuasiPeak/ Average)Margin (dB) = (QuasiPeak/ Average)Result (dBuV) –(QuasiPeak/ Average)Limit (dBuV)

6.6. TEST RESULTS

Job No.: C160512R01 Date: 2016-5-19

PM 06:53:20 Company: LYNX Time:

FCC Class B Conduction(QP) Standard: Temp.(C)/Hum.(%): 22(C)/41%

Test item: Conduction test Test By: Tony.qi

Line: L1 Test Voltage: AC 120V/60Hz

Model: 850-033343 Description: Mode 1

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.1552	37.49	18.29	19.79	57.28	38.08	65.72	55.72	-8.44	-17.64	Pass
2	0.1956	31.07	13.42	19.79	50.86	33.21	63.80	53.80	-12.94	-20.59	Pass
3	0.5890	17.97	12.75	19.81	37.78	32.56	56.00	46.00	-18.22	-13.44	Pass
4	5.7371	10.74	3.68	19.93	30.67	23.61	60.00	50.00	-29.33	-26.39	Pass
5	16.1579	14.48	5.65	20.05	34.53	25.70	60.00	50.00	-25.47	-24.30	Pass
6	21.7201	15.91	8.53	20.14	36.05	28.67	60.00	50.00	-23.95	-21.33	Pass

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

Report No.: C160512R01-EF

Job No.: C160512R01 Date: 2016-5-19

Company: LYNX Time: PM 06:46:19

Standard: FCC Class B Conduction(QP) Temp.(C)/Hum.(%): 22(C)/41%

Test item: Conduction test Test By: Tony.qi

L2 Test Voltage: AC 120V/60Hz Line:

Model: 850-033343 Description: Mode 1

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.1500	37.93	19.42	19.74	57.67	39.16	66.00	56.00	-8.33	-16.84	Pass
2	0.1872	32.42	13.92	19.74	52.16	33.66	64.16	54.16	-12.00	-20.50	Pass
3	0.5937	18.56	13.16	19.75	38.31	32.91	56.00	46.00	-17.69	-13.09	Pass
4	1.7029	5.68	1.09	19.76	25.44	20.85	56.00	46.00	-30.56	-25.15	Pass
5	16.3544	14.53	5.86	20.34	34.87	26.20	60.00	50.00	-25.13	-23.80	Pass
6	21.7873	16.22	9.19	20.42	36.64	29.61	60.00	50.00	-23.36	-20.39	Pass

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

RADIATED EMISSION MEASUREMENT

7.1. LIMITS OF RADIATED EMISSION MEASUREMENT

Class A Radiated Emission limit at 10m (for digital device)

Frequency (MHZ)	Field Strength Limit (uV/m)Q.P.	Field Strength Limit (dBuV/m)Q.P.
30 - 88	90	39
88 - 216	150	43.5
216 – 960	210	46.4
Above 960	300	49.5

Class B Radiated Emission limit at 3m

Frequency (MHZ)	Field Strength Limit (uV/m)Q.P.	Field Strength Limit (dBuV/m)Q.P.
30 - 88	100	40
88 - 216	150	43.5
216 – 960	200	46
Above 960	500	54

Above 1GHz

Frequency	Class A (dBu	V/m) (At 10m)	Class B (dBuV/m) (At 3m)		
(MHZ)	Average	Peak	Average	Peak	
Above 1000	49.5	69.5	54	74	

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) Emission level (dBuV/m) = 20 log Emission level (uV/m).
- (3) The measurement above 1GHz is at close-in distances 3m, and determine the limit L2 corresponding to the close-in distance d2 by applying the following relation: L2 = L1 (d1/d2), where L1 is the specified limit in microvolts per metre (uV/m) at the distance d1 (10m), L2 is the new limit for distance d2 (3m).

So the new Class A limit above 1GHz at 3m is as following table:

Frequency	Class A (dBuV/m) (At 3m)			
(MHZ)	Average	Peak		
Above 1000	60	80		

According to FCC Part 15.33 (b), for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.75	30
1.75-108	1000
108-500	2000
500-1000	5000
Above 1000	5 th harmonic of the highest frequency or 40GHz, whichever is lower

7.2. TEST INSTRUMENTS

Radiated Emission (3M Semi Anechoic Chamber (977))										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due					
EMI Test Receiver	R&S	ESCI	101378	01/06/2016	01/05/2017					
Spectrum Analyzer	R&S	FSU26	200789	08/10/2015	08/09/2016					
Pre-Amplfier	Miteq	JS41-00101800-32-10P	1675713	08/10/2015	08/09/2016					
Bilog Antenna	Sunol	JB1	A110204-1	03/06/2016	03/05/2017					
Horn-antenna	SCHWARZBECK	BBHA9120D	267	11/10/2015	11/09/2016					
Test Software	EZ-EMC ver.3A1									

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

^{2.}N.C.R = No Calibration Required.

7.3. TEST PROCEDURES

PROCEDURE OF PRELIMINARY TEST

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a FRP turntable(Below 1GHz) and a EPS turntable (Above 1GHz) with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per ANSI C63.4.
- All I/O cables were positioned to simulate typical usage as per ANSI C63.4.
- The EUT received AC power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 3 or 10 meter away from the EUT as stated in ANSI C63.4. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 40GHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The worst configuration of EUT and cable of the above highest emission level were recorded for reference of the final test.

PROCEDURE OF FINAL TEST

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 40GHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 or 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recording at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. Below 1GHz the Q.P. reading and above 1GHz the Peak and Average reading are presented.
- The test data of the worst-case condition(s) was recorded.

7.4. TEST SETUP

Below 1 GHz

. Above 1 GHz

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Report No.: C160512R01-EF

7.5. DATA SAMPLE

低频辐射使用 3 米场地选择下面

Frequer (MHz	,	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (cm)	Degree (°)	Remark
x.xx	47.01	-14.30	32.71	40.00	-7.29	200	202	peak

= Emission frequency in MHz Freq.

Reading = Uncorrected Analyzer/Receiver reading Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

= Information of value (Peak/ QuasiPeak/Average)

Calculation Formula

Margin (dB) = Result (dBuV/m) - Limit (dBuV/m)

7.6. TEST RESULTS

Below 1GHz

Job No.: C160512R01 Ant.Polar.: Vertical

Standard: FCC Class B 3M Radiation Test Distance: 3m

Test item: **Radiation Test** Power: AC 120V/60Hz Temp.(C)/Hum.(%RH): 25(C)/40%RH Date:2016-5-18 Time:20:02:47 Company: LYNX Test By: Vincant.Peng

Model: 850-033343 Description: Mode 1

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	32.9100	16.06	19.19	35.25	40.00	-4.75	200	0	QP
2	239.5200	26.12	13.20	39.32	46.00	-6.68	100	261	QP
3	375.3200	27.90	16.35	44.25	46.00	-1.75	400	133	QP
4	625.5800	22.75	20.50	43.25	46.00	-2.75	100	332	QP
5	750.7100	20.05	22.20	42.25	46.00	-3.75	100	310	QP
6	806.4500	21.90	22.93	44.83	46.00	-1.17	100	327	QP

Note: 1. The other emission levels were very low against the limit.

Report No.: C160512R01-EF

Job No.: C160512R01 Ant.Polar.: Horizontal

Standard: FCC Class B 3M Radiation Test Distance: 3m

Test item: **Radiation Test** Power: AC 120V/60Hz Temp.(C)/Hum.(%RH): 25(C)/40%RH Date:2016-5-18 Time:20:12:08 Company: LYNX Test By: Vincant.Peng

Model: 850-033343 Description: Mode 1

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.9700	11.31	20.22	31.53	40.00	-8.47	400	23	QP
2	142.5200	21.57	10.96	32.53	43.50	-10.97	200	152	QP
3	239.5200	25.05	13.20	38.25	46.00	-7.75	100	71	QP
4	375.3200	23.90	16.35	40.25	46.00	-5.75	100	260	QP
5	809.7700	19.57	22.96	42.53	46.00	-3.47	100	115	QP
6	875.8400	19.27	23.56	42.83	46.00	-3.17	100	270	QP

1. The other emission levels were very low against the limit. Note:

Above 1GHz

Job No.: C160512R01 Ant.Polar.: Vertical

Standard: FCC Class B 3M Radiation Test Distance: 3m

Test item: **Radiation Test** Power: AC 120V/60Hz Temp.(C)/Hum.(%RH): Date:2016-5-18 Time:21:41:31 25(C)/40%RH Company: LYNX Test By: Vincant.Peng

Model: 850-033343 Description: Mode 1

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	1068.000	66.85	-13.09	53.76	74.00	-20.24	200	182	peak
2	1068.000	54.34	-13.09	41.25	54.00	-12.75	200	182	AVG
3	1986.000	65.48	-9.41	56.07	74.00	-17.93	100	325	peak
4	1986.000	52.66	-9.41	43.25	54.00	-10.75	100	325	AVG
5	12951.000	38.23	9.50	47.73	74.00	-26.27	100	34	peak
6	12951.000	30.75	9.50	40.25	54.00	-13.75	100	34	AVG

Note: 1. The other emission levels were very low against the limit.

Report No.: C160512R01-EF

Job No.: C160512R01 Ant.Polar.: Horizontal

Standard: FCC Class B 3M Radiation Test Distance: 3m

Test item: **Radiation Test** Power: AC 120V/60Hz Temp.(C)/Hum.(%RH): 25(C)/40%RH Date:2016-5-18 Time:21:39:29 LYNX Vincant.Peng

Company: Test By: Model: 850-033343 Description: Mode 1

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	1085.000	66.29	-13.02	53.27	74.00	-20.73	100	301	peak
2	1085.000	53.27	-13.02	40.25	54.00	-13.75	100	301	AVG
3	1986.000	60.21	-9.41	50.80	74.00	-23.20	200	142	peak
4	1986.000	46.66	-9.41	37.25	54.00	-16.75	200	142	AVG
5	13036.000	39.84	9.71	49.55	74.00	-24.45	100	33	peak
6	13036.000	31.61	9.71	41.32	54.00	-12.68	100	33	AVG

Note: 1. The other emission levels were very low against the limit.

PHOTOGRAPHS OF THE TEST CONFIGURATION

CONDUCTED EMISSION TEST

Page 25 of 30

Report format Revision 01

Page 26 of 30

Report format Revision 01

ABOVE 1GHz

APPENDIX 1 - PHOTOGRAPHS OF EUT

END OF REPORT