Image Processing Home work 08

Aqeel Labash **Lecturer:** Gholamreza Anbarjafari

May 17, 2016

\mathbf{A}

The histogram is just the frequency vs Value. The values as in the following table :

Value	Count
2	6
3	3
4	2
5	3
6	1
8	1
9	1
10	2
11	1
12	3
14	2

Fig. 1: Histogram of the image

\mathbf{B}

First here is the values:

value	Count	Probablitiy	CDF	$^{\mathrm{HE}}$
2	6	0.24	0.24	0
3	3	0.12	0.36	2
4	2	0.08	0.44	4
5	3	0.12	0.56	6
6	1	0.04	0.60	7
8	1	0.04	0.64	8
9	1	0.04	0.68	9
10	2	0.08	0.76	10
11	1	0.04	0.80	11
12	3	0.12	0.92	13
14	2	0.08	1.00	15

And here is the historam of the equalized image:

Fig. 2: Histogram of the equalized image

\mathbf{C}

For Huffman coding I found a way with numbers (same as probabilities but just with counts). I made the draw on the board here is the image :

Fig. 3: The process of building Huffman Code

Here is the values:

value	Count	Pr	Code_Length
0	6	0.24	2
2	3	0.12	3
6	3	0.12	3
13	3	0.12	5
4	2	0.08	3
10	2	0.08	5
15	2	0.08	5
7	1	0.04	3
8	1	0.04	4
9	1	0.04	4
11	1	0.04	5

D)

The value of laplacian image for that specific pixel is 62 and the new value is -62. Filter mask for digital laplacian :

	1	1	1
L =	1	-8	1
	1	1	1

The equalized image at the same point in circle :

$$IM = \begin{bmatrix} 6 & 13 & 2 \\ 7 & 0 & 0 \\ 10 & 9 & 15 \end{bmatrix}$$

$$Sum(L*IM) = 62$$

depending on the rule

 $g(x,y) = f(x,y) - \nabla^2 f(x,y)$ since the center coefficient of the laplacian mask is negative

$$= -62$$

 $\bf Note: All\ .py$, .tex , .pdf , .png , etc.. exist on github

E.O.F