Entropia di grafo e il problema dell'ordinamento con informazione parziale

Jacopo Notarstefano

20 Luglio 2012

1 II problema dell'ordinamento con informazione parziale

2 Entropia di grafo

3 Gli algoritmi di Cardinal et al.

1 II problema dell'ordinamento con informazione parziale

2 Entropia di grafo

3 Gli algoritmi di Cardinal et al.

Il problema dell'ordinamento con informazione parziale

Definizione

Sia $P = (V, \leq_P)$ un insieme parzialmente ordinato. Diciamo che un ordine totale $< \grave{e}$ un'estensione lineare di \leq_P se, $\forall v_i, v_i \in V$,

$$v_i \leq_P v_j \implies v_i < v_j$$
.

Denotiamo inoltre con e(P) il numero di estensioni lineari di P.

Definizione

Sia $P = (V, \leq_P)$ un insieme parzialmente ordinato. Il problema dell'ordinamento con informazione parziale consiste nel determinare un'estensione lineare < fissata ma ignota per mezzo di domande del tipo "È vero che $v_i < v_i$?", detti confronti.

Stato dell'arte

Sia P un insieme parzialmente ordinato di cardinalità n. Sono necessari $\Omega(\log_2 e(P))$ confronti affinché un algoritmo risolutivo sia corretto.

	#Confronti	Complessità
Fredman 1976	$\log e(P) + 2n$	superpolinomiale
Kahn & Saks 1984	$O(\log e(P))$	superpolinomiale
Kahn & Kim 1995	$O(\log e(P))$	polinomiale*
Cardinal et al. 2010	$O(\log e(P))$	polinomiale

^{*} usa a ogni passo il metodo dell'ellissoide.

1 Il problema dell'ordinamento con informazione parziale

2 Entropia di grafo

3 Gli algoritmi di Cardinal et al.

Insiemi indipendenti e politopo dei vertici

Definizione

Sia G = (V, E) un grafo. Chiamiamo insieme indipendente (o stabile) un sottoinsieme dei vertici W tale che il sottografo indotto G(W) sia vuoto.

Definizione

Sia G un grafo. Chiamiamo politopo dei vertici l'involucro convesso STAB(G) dei vettori caratteristici degli insiemi indipendenti, cioè:

$$STAB(G) = conv\{\chi^S \in \{0,1\}^V \mid S \subset V, S \text{ insieme indipendente}\}$$

Esempio di politopo dei vertici

Esempio di politopo dei vertici

Esempio di politopo dei vertici

Definizione di entropia di grafo

Definizione

Sia G un grafo e STAB(G) il politopo dei vertici di G. Chiamiamo entropia di grafo il seguente minimo:

$$H(G) = \min_{\substack{\mathbf{a} \in STAB(G)\\\mathbf{a} > 0}} \frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{a_i}$$

Storia dell'entropia di grafo

- Definizione originale di Körner (1973), motivata da un problema di teoria dell'informazione.
- Ne sono state date più definizioni equivalenti dall'aspetto molto diverso e sono note varie applicazioni in ambito algoritmico e combinatoriale.
- Körner e Marton (1988) hanno dato una stima più precisa del numero di funzioni di hash perfetto di un insieme.
- Esiste un interessante collegamento con la teoria dei grafi perfetti di Berge (1961).

Grafi perfetti

Definizione

Sia G un grafo. Chiamiamo cricca un sottografo completo e massimale, numero di cricca $\omega(G)$ la massima cardinalità di una cricca.

È ovvio che $\omega(G) \leq \chi(G)$. Per quali grafi vale l'uguaglianza?

Definizione (Berge 1961)

Sia G un grafo. Diciamo che G è perfetto se, per ogni sottografo indotto H, si ha $\omega(H)=\chi(H)$.

Entropia e grafi perfetti

Teorema (Csiszár, Körner, Lovász, Marton, Simonyi 1990)

Sia G un grafo. Se G è perfetto allora

$$H(G) + H(\overline{G}) = \log n$$
.

Da questo è possibile dedurre il seguente

Teorema (Lovász 1972)

Sia G un grafo. Allora G è perfetto se e soltanto se \overline{G} è perfetto.

Relazione con gli insiemi parzialmente ordinati

Definizione

Sia $P = (V, \leq_P)$ un insieme parzialmente ordinato. Chiamiamo grafo di confrontabilità il grafo G(P) di insieme di vertici V e un arco fra v_i , $v_i \in V$ se sono confrontabili secondo \leq_P .

Scriviamo $H(\overline{P})$ per indicare $H(\overline{G}(P))$. Vale:

Teorema (Kahn, Kim 1995)

$$\log e(P) \le nH(\overline{P}) \le c \log e(P)$$

dove $c = 1 + 7 \log e \approx 11.1$.

1 II problema dell'ordinamento con informazione parziale

2 Entropia di grafo

3 Gli algoritmi di Cardinal et al.

"Merge sort naïve" con informazione parziale

Algoritmo 1 "Merge sort naïve" con informazione parziale

- 1: // Preparazione
- 2: trova una decomposizione golosa di P in catene C_1, \ldots, C_k
- 3: $C \leftarrow \{C_1, \ldots, C_k\}$
- 4: // Ordinamento
- 5: while $|\mathcal{C}| > 1$ do
- seleziona da $\mathcal C$ due catene di lunghezza minima C e C'
- 7: fondi C e C' in tempo lineare, ottenendo C''
- 8: cancella C e C' da C, aggiungi C''
- 9: end while
- 10: return l'unica catena di ${\cal C}$

Numero di confronti del "Merge sort naïve"

Proposizione

Sia P un insieme parzialmente ordinato di cardinalità n. Allora, per ogni $\varepsilon>0$, l'algoritmo "Merge sort naïve" risolve il problema dell'ordinamento parziale impiegando al più

$$(1+\varepsilon)\log e(P) + (1+\varepsilon)\left(\log e + \log\left(1+\frac{1}{\varepsilon}\right) + 1\right) \cdot n$$

confronti.

Il problema della fusione con informazione parziale

Definizione

Chiamiamo problema della fusione con informazione parziale il caso particolare del problema dell'ordinamento con informazione parziale in cui P è un insieme parzialmente ordinato partizionabile in due catene disgiunte A e B.

Proposizione

Esiste un algoritmo ("Merge") che risolva il problema della fusione con informazione parziale impiegando al più $6 \log e(P)$ confronti.

Il Teorema di Cardinal et al.

Teorema (Cardinal, Fiorini, Joret, Jungers, Munro 2010)

Sia P un insieme parzialmente ordinato. Esiste un algoritmo che risolve il problema dell'ordinamento con informazione parziale impiegando al più $c \log e(P)$ confronti e un numero polinomiale di operazioni elementari, dove $c \approx 15.08$.

"Merge sort" con informazione parziale

Algoritmo 2 "Merge sort" con informazione parziale

- 1: trova una catena A di lunghezza massima in P
- 2: applica l'algoritmo "Merge sort naïve" a P-A, ottieni la catena B
- 3: applica l'algoritmo "Merge" all'ordine parziale corrente P'
- 4: return la catena risultante

Dimostrazione del Teorema di Cardinal et al. 1/2

Dimostrazione

- Trovare una catena di lunghezza massima non richiede confronti.
- Sappiamo che l'algoritmo "Merge sort naïve" impiega al più

$$(1+arepsilon)\log e(P-A)+(1+arepsilon)\left(\log e+\log\left(1+rac{1}{arepsilon}
ight)+1
ight)\cdot |P-A|$$

confronti $\forall \varepsilon > 0$.

• L'ultima fusione comporta al più 6 log e(P') confronti.

Dimostrazione del Teorema di Cardinal et al. 2/2

Dimostrazione

Con qualche passaggio algebrico otteniamo che il numero di confronti effettuato dall'algoritmo "Merge sort" è maggiorato, $\forall \varepsilon > 0$, da

$$\left(1+\varepsilon+2\left((1+\varepsilon)\left(1+\ln\left(1+\frac{1}{\varepsilon}\right)\right)+\ln2\right)+6\right)\log e(P).$$

Basta allora porre $\varepsilon \approx 0.351198$ e otteniamo la tesi.

Ringraziamenti

Grazie dell'attenzione!