Assignment 3, Part 1, Specification

SFWR ENG 2AA4

March 5, 2019

This Module Interface Specification (MIS) document contains modules, types and methods for implementing the state of a game of Forty Thieves solitaire.

[The parts that you need to fill in are marked by comments, like this one. In several of the modules local functions are specified. You can use these local functions to complete the missing specifications. —SS]

[As you edit the tex source, please leave the **wss** comments in the file. Put your answer **before** the comment. This will make grading easier. —SS]

Card Types Module

Module

CardTypes

Uses

N/A

Syntax

Exported Constants

 $TOTAL_CARDS = 104$ ACE = 1 JACK = 11 QUEEN = 12KING = 13

Exported Types

SuitT = {Heart, Diamond, Club, Spade}
RankT = [1..13]
CategoryT = {Tableau, Foundation, Deck, Waste}
CardT = tuple of (s: SuitT, r: RankT)

Exported Access Programs

None

Semantics

State Variables

None

State Invariant

None

Generic Stack Module

Generic Template Module

Stack(T)

Uses

N/A

Syntax

Exported Types

[Stack(T) = ? -SS]

Exported Constants

None

Exported Access Programs

Routine name	In	Out	Exceptions
new Stack	seq of T	Stack	none
push	Т	Stack	none
pop		Stack	out_of_range
top		Т	out_of_range
size		N	
toSeq		seq of T	

Semantics

State Variables

S: [seq of T —SS]

State Invariant

None

Assumptions & Design Decisions

- The Stack(T) constructor is called for each object instance before any other access routine is called for that object. The constructor can only be called once.
- Though the toSeq() method violates the essential property of the stack object, since this could be achieved by calling top and pop many times, this method is provided as a convenience to the client. In fact, it increases the property of separation of concerns since this means that the client does not have to worry about details of building their own sequence from the sequence of pops.

Access Routine Semantics

```
new Stack(s):
   • transition: S := s
   • output: out := self
   • exception: none
push(e):
   • output: out := new Stack(S \mid\mid \langle e \rangle)
   • exception: none
pop():
   • output: [out := new \operatorname{Stack}(S[0..|S|-2]) - SS]
   • exception: [exc := |S| < 1 \implies out\_of\_range -SS]
top():
   • output: out := S[|S| - 1]
   • exception: [exc := |S| < 1 \implies out\_of\_range -SS]
size():
   • output: [out := |S| - SS]
   • exception: None
toSeq():
   • output: out := S
   • exception: None
```

CardStack Module

Template Module

Game Board ADT Module

Template Module

BoardT

Uses

 $\begin{array}{c} {\bf CardTypes} \\ {\bf CardStack} \end{array}$

Syntax

Exported Access Programs

Routine name	In	Out	Exceptions
new BoardT	seq of CardT	BoardT	invalid_argument
is_valid_tab_mv	CategoryT, N, N	\mathbb{B}	out_of_range
is_valid_waste_mv	CategoryT, ℕ	\mathbb{B}	invalid_argument, out_of_range
is_valid_deck_mv		\mathbb{B}	
tab_mv	CategoryT, N, N		invalid_argument
waste_mv	CategoryT, ℕ		invalid_argument
deck_mv			invalid_argument
get_tab	N	CardStackT	out_of_range
get_foundation	N	CardStackT	out_of_range
get_deck		CardStackT	
get_waste		CardStackT	
valid_mv_exists		\mathbb{B}	
is_win_state		\mathbb{B}	

Semantics

State Variables

 $T \colon \mathbf{SeqCrdStckT} \ \# \ Tableau$

 $F \colon \mathbf{SeqCrdStckT} \not \# \mathit{Foundation}$

 $D \colon \mathsf{CardStackT} \ \# \ \mathsf{Deck}$

 $W \colon \mathbf{CardStackT} \ \# \ Waste$

State Invariant

```
|T| = [10 - - SS]
|F| = [8 - - SS]
\operatorname{cnt\_cards}(T, F, D, W, [f - SS]) = \operatorname{TOTAL\_CARDS}
\operatorname{two\_decks}(T, F, D, W) \# each \ card \ appears \ twice \ in \ the \ combined \ deck
```

Assumptions & Design Decisions

- The BoardT constructor is called before any other access routine is called on that instance. Once a BoardT has been created, the constructor will not be called on it again.
- The Foundation stacks must start with an ace, but any Foundation stack can start with any suit. Once an Ace of that suit is placed there, this Foundation stack becomes that type of stack and only those type of cards can be placed there.
- Once a card has been moved to a Foundation stack, it cannot be moved again.
- For better scalability, this module is specified as an Abstract Data Type (ADT) instead of an Abstract Object. This would allow multiple games to be created and tracked at once by a client.
- The getter function is provided, though violating the property of being essential, to give a would-be view function easy access to the state of the game. This ensures that the model is able to be easily integrated with a game system in the future. Although outside of the scope of this assignment, the view function could be part of a Model View Controller design pattern implementation (https://blog.codinghorror.com/understanding-model-view-controller/)
- A function will be available to create a double deck of cards that consists of a random permutation of two regular decks of cards (TOTAL_CARDS cards total). This double deck of cards can be used to build the game board.

Access Routine Semantics

GameBoard(deck):

- transition:
 - $T, F, D, W := \text{tab_deck}(\textit{deck}[0..39]), \text{init_seq}(8), \text{CardStackT}(\textit{deck}[40..103]), \text{CardStackT}(\langle \rangle)$
- exception: $exc := (\neg two_decks(init_seq(10), init_seq(8), CardStackT(deck), CardStackT(\langle \rangle)) \Rightarrow invalid_argument)$

is_valid_tab_mv(c, n_0, n_1):

• output:

	out :=
c = Tableau	$valid_tab_tab(n_0,n_1)$
c = Foundation	valid_tab_foundation (n_0, n_1)
c = Deck	[False —SS]
c = Waste	[False —SS]

• exception:

	exc :=	
$c = \text{Tableau} \land \neg(\text{is_valid_pos}(\text{Tableau}, n_0) \land \text{is_valid_pos}(\text{Tableau}, n_1))$	out_of_range	
$c = \text{Foundation} \land \neg(\text{is_valid_pos}(\text{Tableau}, n_0) \land \text{is_valid_pos}(\text{Foundation}, n_1))$	out_of_range	

is_valid_waste_mv(c, n):

• output:

	out :=
c = Tableau	$valid_waste_tab(n)$
c = Foundation	$valid_waste_foundation(n)$
c = Deck	[False —SS]
c = Waste	[False —SS]

• exception:

	exc :=
W.size() = 0	$invalid_argument$
$c = \text{Tableau} \land \neg \text{is_valid_pos}(\text{Tableau}, n)$	out_of_range
$c = \text{Foundation} \land \neg \text{is_valid_pos}(\text{Foundation}, n)$	out_of_range

$is_valid_deck_mv():$

- output: [D.size() > 0 SS]
- exception: None

 $tab_{-}mv(c, n_0, n_1)$:

• transition:

c = Tableau	$T[n_0], T[n_1] := [T[n_0].pop(), T[n_1].push(T[n_0].top()) -SS]$
c = Foundation	$T[n_0], F[n_1] := [T[n_0].pop(), F[n_1].push(T[n_0].top()) -SS]$

• exception: $exc := (\neg is_valid_tab_mv(c, n_0, n_1) \Rightarrow invalid_argument)$

waste_mv(c, n):

• transition:

c = Tableau	W, T[n] := [W.pop(), T[n].push(W.top()) -SS]
c = Foundation	W, F[n] := [W.pop(), F[n].push(W.top())] -SS]

• exception: $exc := (\neg is_valid_waste_mv(c, n) \Rightarrow invalid_argument)$

deck_mv():

- transition: D, W := [D.pop(), W.push(D.top()) -SS]
- exception: $exc := (\neg is_valid_deck_mv() \Rightarrow invalid_argument)$ get_tab(i):
 - output: out := T[i]
 - exception: exc: ($\neg is_valid_pos(Tableau, i) \Rightarrow out_of_range)$

 $get_foundation(i)$:

- output: out := F[i]
- exception: exc: (\neg is_valid_pos(Foundation, i) \Rightarrow out_of_range)

 $get_{-}deck()$:

- output: out := D
- exception: None

get_waste():

- $\bullet \ \text{output:} \ out := W$
- exception: None

valid_mv_exists():

• output: $out := \text{valid_tab_mv} \lor \text{valid_waste_mv} \lor \text{is_valid_deck_mv}()$ where

```
valid_tab_mv \equiv (\exists c : \text{CategoryT}, n_0 : \mathbb{N}, n_1 : \mathbb{N} | [n_0 \in [0..9], n_1 \in [0..|c| - 1] - - - SS] : \text{is\_valid\_tab\_mv}(c, n_0, n_1))
```

 $\text{valid_waste_mv} \equiv (\exists c : \text{CategoryT}, n : \mathbb{N} | [n \in [0..|c|-1] - - SS] : \text{is_valid_waste_mv}(c,n))$

• exception: None

is_win_state():

- output: $[\forall i : \mathbb{N} \ i \in [0..9] : F.size() = 0 \text{--SS}]$
- exception: None

Local Types

SeqCrdStckT = seq of CardStackT

Local Functions

```
two\_decks : SeqCrdStckT \times SeqCrdStckT \times CardStackT \times CardStackT \rightarrow \mathbb{N}
two_decks(T, F, D, W) \equiv [This function returns True if there is two of each card in the
game —SS]
(\forall st : \text{SuitT}, rk : \text{RankT} | st \in \text{SuitT} \land rk \in \text{RankT} : [\text{cnt\_cards}(T, F, D, W, (st, rk)) = 2 - - - SS])
cnt\_cards\_seg : SegCrdStckT \times (CardT \rightarrow \mathbb{B}) \rightarrow \mathbb{N}
\operatorname{cnt\_cards\_seq}(S, f) \equiv (+s : \operatorname{CardStackT} | s \in S : \operatorname{cnt\_cards\_stack}(s, f))
cnt\_cards\_stack : CardStackT \times (CardT \rightarrow \mathbb{B}) \rightarrow \mathbb{N}
[\text{cnt\_cards\_stack}(s, f) \equiv (+i : CardT | i \in s \land i.r = f.r \land i.s = f.s : 1) \longrightarrow SS]
cnt\_cards: SeqCrdStckT \times SeqCrdStckT \times CardStackT \times CardStackT \times (CardT \rightarrow \mathbb{B}) \rightarrow \mathbb{N}
\operatorname{cnt\_cards}(T, F, D, W, f) \equiv \operatorname{cnt\_cards\_seq}(T, f) + \operatorname{cnt\_cards\_seq}(F, f) + \operatorname{cnt\_cards\_stack}(D, f) +
\operatorname{cnt\_cards\_stack}(W, f)
init\_seq : \mathbb{N} \to SeqCrdStckT
init_seq(n) \equiv s such that (|s| = n \land (\forall i \in [0..n-1] : s[i] = \text{CardStackT}(\langle \rangle))
tab\_deck : (seq of CardT) \rightarrow SeqCrdStckT
tab_{deck}(deck) \equiv
T such that (\forall i : \mathbb{N} | i \in [0..9] : T[i].toSeq() = deck[[\forall j : \mathbb{N} | j \in [0..3] : 4 * i + j - - SS]])
is_valid_pos: CategoryT \times \mathbb{N} \to \mathbb{B}
is_valid_pos(c, n) \equiv (c = \text{Tableau} \Rightarrow n \in [0..9] | c = \text{Foundation} \Rightarrow n \in [0..7] | \text{True} \Rightarrow \text{True})
```

valid_tab_tab: $\mathbb{N} \times \mathbb{N} \to \mathbb{B}$ valid_tab_tab $(n_0, n_1) \equiv$

(0 / 1 /		
$T[n_0].size() > 0$	$T[n_1].size() > 0$	$[tab_placeable(T[n_0].top(), T[n_1].top()) -SS]$
	$T[n_1].size() = 0$	[True —SS]
$T[n_0].size() = 0$	$T[n_1].size() > 0$	[False —SS]
	$T[n_1].size() = 0$	[False —SS]

valid_tab_foundation: $\mathbb{N} \times \mathbb{N} \to \mathbb{B}$ valid_tab_foundation $(n_0, n_1) \equiv$

(0)	1/	
$T[n_0]$.size() > 0	$F[n_1].size() > 0$	[foundation_placeable($T[n_0].top(), F[n_1].top())$ —SS]
	$F[n_1].size() = 0$	[W.top().r = ACE - SS]
$T[n_0].size() = 0$	$F[n_1].size() > 0$	[False —SS]
	$F[n_1].size() = 0$	[False —SS]

valid_waste_tab: $\mathbb{N} \to \mathbb{B}$ valid_waste_tab $(n) \equiv$

T[n].size() > 0	$tab_placeable(W.top(), T[n].top())$
T[n].size() = 0	True

valid_waste_foundation: $\mathbb{N} \to \mathbb{B}$ valid_waste_foundation $(n) \equiv$

F[n].size() > 0	$foundation_placeable(W.top(), F[n].top())$
F[n].size() = 0	W.top().r = ACE

tab_placeable: [CardT×CardT $\rightarrow \mathbb{B}$ tab_placeable(T_0, T_1) $\equiv T_0.r = T_1.r - 1 \land T_0.s = T_1.s$ —SS]

foundation_placeable: $[CardT \times CardT \rightarrow \mathbb{B}]$

foundation_placeable(T_0, T_1) $\equiv T_0.r = T_1.r - 1 \land T_0.s = T_1.s$ —SS]

Critique of Design

[I really like the design. It really shows that a lot of thought went into this design and I am genuinely impressed with how everything is put together. Minimality is practiced in the sense that access routines have a specific function and don't really perform more than one independant service. For example, for the access routines which involve moving a card from the tableau, foundation, deck or waste to a tableau or foundation, the BoardT module specifies seperate methods to check if the move is possible. This could be done within the methods which move the cards but choosing to do it through a seperate access routine keeps the module minimal. The way the program is set up is very organized and I can not think of anything that is missing (since the access routines in BoardT are all quite essential). I also can not think of anything to change about the specification since I believe everything has been thought out and nothing is really missing. Adding more access routines or modules may make the specification contain components which are not essential to the program. The components in the module are also very closely related so an addition of more components may ruin this criteria or even create bugs which are hard to locate. —SS]