School of Computing Fall 2013 Islamabad Campus

CS101 Introduction to Computing Monday, December 16, 2013 Course Instructor Dr. Shahzad Rajput and Dr. Sibt ul Hussain Serial No: Final Exam Total Time: 3 Hour Total Marks: 1000 Signature of Invigilator

DO NOT OPEN THE QUESTION BOOK OR START UNTIL INSTRUCTED. Instructions:

Roll No

Section

Signature

- 1. Attempt on question paper. Attempt all of them. Read the question carefully, understand the question, and then attempt it.
- 2. No additional sheet will be provided for rough work. Use the back of the last page for rough work.
- 3. If you need more space write on the back side of the paper and clearly mark each question and part number etc.
- **4.** After asked to commence the exam, please verify that you have (18) different printed pages including this title page. There are total of **eight** (8) questions.
- **5.** Use of **calculator** is strictly **prohibited**.

Student Name

- 6. Draw a smiley at the bottom of this page and earn ten bonus marks.
- 7. Use permanent ink pens only. Any part done using **soft pencil** will not be marked and cannot be claimed for rechecking.
- 8. Use **proper indentation and comments** while writing code and make sure that your code is legible. Failing to do so can cost you marks.

	Q-1	Q-2	Q-3	Q-4	Q-5	Q-6	Q-7	Q-8	Total
Marks Obtained									
Total Marks	60	220	320	100	50	50	100	100	1000

Vetted By:	Vetter Signature:	

School of Computing

Fall 2013

Islamabad Campus

\cap	No.	1
V.	INO.	J

[6*10=60 marks]

(a) W	(a) What is the binary representation of 35510?													
(b) What is the hexadecimal representation of 1033s?														
(c) Gi	ven th	at 12510	= 0111	1101 ₂ , ,	what is	the sig	gned bi	nary re	presen	ıtation	of -120	10		
(d) Gi	iven th	at 3072	d ₁₀ = 6*2	⁹ and 4	.8 ₁₀ = 3*	²⁴ , wha	at is the	e binary	y repre	sentati	on of 3	13010?		
	(e) What is the 16-bit floating point representation of 10101.01011101101112 in normalized binary form using the following convention? Sign of mantissa = left most bit (where 0: +; 1: -) Mantissa = next 11 bits, leading 1 is hidden, really represents 12 bits Exponent = next four bits, bias 7													
(f) Int	erpret	the fol	lowing	numbe	er give		ating p		-	tation				

0101 1110 0000 10012

using the convention mentioned below:

Sign of mantissa = left most bit (where 0: +; 1: -)

Mantissa = next 11 bits, leading 1 is hidden, really represents 12 bits

Exponent = next four bits, bias 7

School of Computing Fall 2013 Islamabad Campus

Find its decimal equivalent.

Answer:

School of Computing

Fall 2013

Islamabad Campus

Q. No. 2

[11*20=220 marks]

Write the output of the given C++ code segments.

```
(c) Output
#include <iostream>
using namespace std;
int main(){
    number = 62.7;
    double number;
    cout << number << endl;
    return 0;
}</pre>
```

```
(d)
#include <iostream>
using namespace std;

int main(){
    int tV, fV;
    int x = 5, y = 10;

    tV = x < y;
    fV = y == x;

    cout << tV << endl << fV << endl;
    return 0;
}</pre>
```

School of Computing

Fall 2013

```
(e) Output

int num=10;
if( num ){
    int num = 20;
        num *= 100;
        num += 1000;
}
cout << num << endl;
```

```
(i) Output
#include<iostream>
using namespace std;
```

School of Computing

Fall 2013

```
void magic( int *p, int s ) {
        int i = 0;
        while( s-- > 0 ) {
            i += *(p++);
        }
        cout << i << endl;
}
int main() {
    int arr[] = { 1, 2, 3, 4, 5 };
    magic( arr, 5 );
    return 0;
}</pre>
```

```
(j)
int arr[] = { 10, 20, 30, 40, 50, 60, 70 };
int *p = &arr[1];
p = p + 4;
cout << *p << endl;
```

School of Computing

Fall 2013

Islamabad Campus

Q. No. 3

[320 marks]

a) [20 marks]

Consider you have two variables: sales and commissionRate. Write an if statement that performs the following logic: if the variable sales is outside the range [50,000 – 100,000] then assign 0.25 to the commissionRate variable, and assign 250 to the bonus variable.

b) [20 marks]

Write a for loop that displays all of the odd numbers, 1 through 49.

(20 marks)

Convert the following for loop to a while loop:

```
for (int x = 50; x > 0; x--) { cout << x << " seconds to go.\n"; }
```

(20 marks)

Write a function named tenTimes. The function should have an integer parameter named number. When tenTimes is called, it should return the tenth power of the number (i.e., $number^{10}$).

School of Computing

Fall 2013

Islamabad Campus

e) [40 marks]

Write a nested for loop that displays the following output on screen:

```
6
     1
          6
7
     2
          14
     3
8
          24
6
     1
          6
          14
7
     2
     1
          6
```

f) [20 marks]

Complete the following program skeleton by writing a switch statement that displays "one" if the user has entered 1, "two" if the user has entered 2, and "three" if the user has entered 3. If a number other than 1, 2 or 3 is entered, the program should display an error message.

```
#include<iostream>
using namespace std;
int main(){
    int userNum;
    cout << "Enter one of the numbers 1, 2, or 3: ";
    cin >> userNum;
    //
    // Write the switch statement here.
```

School of Computing

Fall 2013

Islamabad Campus

```
//
return 0;
```

[20 marks]

Convert the following if/else if statement into a switch statement:

School of Computing

Fall 2013

Islamabad Campus

h) [40 marks]

Write a piece of C++ program that prompts the user for entering a number, say x, and prints:

Assume that x > 1. For example, if the input is 5, the output should be 1 2 3 4 5 4 3 2 1, similarly if the input is 2, the output should be 1 2 1.

[20 marks]

Let Nums be an integer array with 20 elements. Write a for loop that prints each element of the array.

j) [10 marks]

Define a two-dimensional array of integers named grades. It should have 30 rows and 10 columns.

School of Computing Fall 2013 Islamabad Campus

[20 marks]

An application uses a two-dimensional array defined as: int days[29][5];

Write code that sums each row in the array and displays the results.

[10 marks]

Look at the following array definition: int set[10];

Write a statement using pointer notation that stores the value 99 in set[7].

m) [20 marks]

Write code that dynamically allocates an array of x integers (where x is taken as input from the user), and then uses a loop to allow the user to enter values for each element of the array. Perform both the operation using a pointer.

n) [10 marks]

Assume that tempNumbers is a pointer that points to a dynamically allocated array. Write code that releases the memory used by the array.

School of Computing

Fall 2013

Islamabad Campus

(10 marks)

Look at the following function definition.

```
void getNumber(int &n) {
      cout << "Enter a number: ";
      cin >> n;
}
```

In this function, the parameter n is a reference variable. Rewrite the function so that n is a pointer.

p) [20 marks]

Declare a structure named Circle, with the following members:

x: an integer
y: an integer
r: a float

Next, write statements that

- A) define a Circle structure variable named circle
- B) assign 12 to the x member of circle
- C) assign 7 to the y member of circle
- D) assign 3.5 to the r member of the circle
- D) display the contents of the x, y and r members of circle

National University of Computer and Emerging Sciences Fall 2013 **School of Computing**

D 12 . C20	

School of Computing

Fall 2013

Islamabad Campus

Q. No. 4

Character

[100 marks]

Source	Α	В	C	D	E	F	G	Н	I	J	K	L	M
Character													
Encrypted	L	M	D	P	Α	R	T	F	V	G	Υ	K	Z
Character													
Source	N	О	P	Q	R	S	T	U	V	W	Χ	Y	Z
Character													
Encrypted	0	N	С	Е	Q	В	S	Н	U	I	W	J	X

⁽a) Write a function named encrypt that receives a string/c-string containing only the alphabets [A-Z] and its size as arguments and return the encrypted string. The encryption should be performed using the lookup (mapping) table given above. For e.g., encrypt ("PAKISTAN", 8) should return "CLYVBSLO".

⁽b) Write a function named decrypt that receives a string/c-string containing only the alphabets [A-Z] and its size as arguments and return the decrypted string. The decryption should be performed using the lookup (mapping) table given above. For e.g., decrypt ("CLYVBSLO", 8) should return "PAKISTAN".

School of Computing Fall 2013 Islamabad Campus

Q. No. 5

[50 marks]

Write a complete C++ program that reads a 3x3 matrix as input, and computes and displays the trace and determinant of the matrix.

Recall that

- (1) the trace of a square matrix is the sum of the diagonal values.
- (2) the determinant of a 3x3 matrix is computed as shown below:

$$egin{array}{ccc|c} a & b & c \ d & e & f \ g & h & i \ \end{array} = a(ei-fh) - b(di-fg) + c(dh-eg)$$

School of Computing

Fall 2013

Islamabad Campus

Q. No. 6

[50 marks]

Lets assume that we have two vectors:

$$\vec{V} = [v_1, v_2, v_3]$$

 $\vec{W} = [w_1, w_2, w_3]$

The dot product between the shown below:

$$ec{V}.ec{W}=v_1w_1+v_2w_2+v_3w_3$$
 two vectors is done as

The cross

$$ec{V} imes ec{W} = \left[v_2 w_3 - v_3 w_2, v_3 w_1 - v_1 w_3, v_1 w_2 - v_2 w_1
ight]_{ ext{product}}$$

between the two vectors is done as shown below:

Write a complete C++ program that defines a structure to store a vector's information, then read two vectors as input and the display (1) the dot product, and (2) the cross product between the given vectors.

Note that a solution without using structures would not be graded.

School of Computing Fall 2013 Islamabad Campus

Q. No. 7

[100 marks]

A minimax or saddle point in a two-dimensional array is an element that is the minimum of its row and the maximum of its column, or vice verse. For example, in the following array

11	22	33	33
99	55	66	77
77	44	99	22

the element 33 is a minimax because it is the maximum of row 0 and the minimum of column 2. The element 55 is another minimax because it is the minimum of row 1 and the maximum of column 1.

Write a program that reads a 4-by-3 matrix, and then prints the location and value of each minimax in the matrix. For example, it would print

a[0][2] = 33 is a minimax a[1][1] = 55 is a minimax

for the matrix shown above.

School of Computing

Fall 2013

Islamabad Campus

Q. No. 8

[100 marks]

Write the following function:

```
void rotate(int a[], int n, int k)
```

The function "rotates" the first n elements of the array a, k positions to the right (or -k positions to the left if k is negative). The last k elements are "rotated" around to the beginning of the array. For example, if a is the array shown below:

Offset	0	1	2	3	4	5	6	7
Element	2.2	33	44	55	66	77	8.8	99

Then the call rotate(a,8,3) would transform a into

Offset	0	1	2	3	4	5	6	7
Element	77	88	99	22	33	44	55	66

Note that the call rotate(a, 8, -5) would have the same effect.

National University of Computer and Emerging Sciences Fall 2013 **School of Computing**

Page 19 of 20	

National University of Computer and Emerging Sciences Fall 2013 **School of Computing**

D 20 . C20	