Field arithmetic and the complexity of algebraic objects

Danny Krashen, IAS/PCMI GSS 2021

D. Zack Garza University of Georgia dzackgarza@gmail.com

Last updated: 2021-07-15

Table of Contents

Contents

Table of Contents			2
1	Monday, July 12		
	1.1	Intro	3
	1.2	Galois Cohomology	3
	1.3	Milnor K-Theory	
	1.4	Witt Ring	4
	1.5	Motivic Cohomology	5
	1.6	Dimension	
	1.7	Structural Problems in Galois Cohomology	7
		1.7.1 Period-Index Problems	
		1.7.2 Symbol Length Problem	8
2		sday, July 13	9
	2.1	Pfister Form	11
	2.2	Canonical Dimension	12

Table of Contents

1 | Monday, July 12

Talk: Danny Krashen

1.1 Intro

Missed first 13m

Fix a field $k_0 \in \mathsf{Field}$, we'll consider extensions $k \in \mathsf{Field}_{/k_0}$.

1.2 Galois Cohomology

Definition 1.2.1 (Galois Cohomology)

For $M \in \mathsf{G_k}\text{-Mod}$ for G_k the Galois group of $k \in \mathsf{Field}_{/k_0}$, we can take invariants M^{G_k} . The functor $-^{G_k}$ is left-exact, so we define

$$H_{\mathrm{Gal}}^*(G_k; -) := \mathbb{R}^*(-)^{G_k}.$$

Remark 1.2.2: Note that the tensor product on $\mathsf{G}_{\mathsf{k}}\text{-}\mathsf{Mod}$ induces a cup product on H^*_{Gal} . An important example of coefficients is $M = \mu_\ell^{\otimes m}$, where $\mu_\ell^{\otimes 0} \coloneqq \mathbb{Z}/n$. It is known that $H^*_{\mathrm{Gal}}(G_k; \mu^{\otimes 0}) = \mathbb{Z}/n$.

We'll define symbols

$$(a_1, \cdots, a_n) := (a_1) \smile \cdots \smile (a_n) \in H^*_{\mathrm{Gal}}(k, \mu_{\ell}^{\otimes n}),$$

which are in fact generators. To remember the ℓ , we write $(a_1, a_2, \dots, a_n)_{\ell}$.

Remark 1.2.3: Galois cohomology is a special case of étale cohomology, where for $M \in \mathsf{G_k}\text{-}\mathsf{Mod}$,

$$H_{\mathrm{Gal}}^n(G_k; M) = H_{\mathrm{\acute{e}t}}^n(k; M) = H_{\mathrm{\acute{e}t}}^n(\operatorname{Spec} k; M).$$

Étale cohomology works for schemes other than just Spec k.

1.3 Milnor K-Theory

Monday, July 12

Definition 1.3.1 (?)

Given $k \in \mathsf{Field}$, define

$$\mathbf{K}_*^{\mathbf{M}}(k) \coloneqq \bigoplus_{i=1}^{\infty} \mathbf{K}_i^{\mathbf{M}}(k)$$

where

- $K_0^M(k) = \mathbb{Z}$ $K_1^M(k) = k^m$, written additively as elements $\{a\}$ on the left-hand side, so $\{a\} + \{b\} :=$
- It's generated by $K_1^M(k)$, with products written by concatenation:

$$\{a_1, \cdots, a_n\} = \{a_1\} \{a_2\} \cdots \{a_n\}.$$

• The only relations are $\{a, b\} = 0$ when a + b = 1, motivated by

$$(a,b)_{\ell} = 0 \in H^2_{Gal}(k; \mu_{\ell}^{\otimes 2}) \iff a+b=1.$$

There is a map

$$\mathbf{K}_0^{\mathbf{M}}(k) \to H_{\mathrm{\acute{e}t}}^*(k; \mu_\ell^{\otimes 0})$$

 $\{a\} \mapsto (a),$

and the Norm-Residue isomorphism (formerly the Bloch-Kato conjecture) states that this is an isomorphism after modding out by ℓ , i.e.

$$K_0^M(k)/\ell \xrightarrow{\sim} H_{\text{\'et}}^*(k; \mu_\ell^{\otimes 0}).$$

1.4 Witt Ring

Quadratic forms \rightleftharpoons Symmetric bilinear forms

$$\begin{split} q_b(x) &\coloneqq b(x,x) \longleftrightarrow b(x,y) \\ q &\mapsto b_q(x,y) \coloneqq \frac{1}{2} \left(q(x+y) - q(x) - q(y) \right). \end{split}$$

So we'll identify these going forward and write q for an arbitrary symmetric bilinear form or a quadratic form. We say q is **nondegenerate** if there is an induced isomorphism:

$$V \xrightarrow{\sim} V^{\vee}$$
$$v \mapsto b_q(v, -).$$

1.3 Milnor K-Theory 4

Note that a symmetric bilinear form q on V can be regarded as an element of $\operatorname{Sym}^2(V^{\vee})$.

Definition 1.4.2 (The Witt Ring)

Let $\mathsf{QuadForm}_{/k}$ be the category of pairs (V,q) with $V \in \mathsf{Vect}_{/k}$ a k-vector space and $q \in \mathsf{Sym}^2(V^\vee)$ representing a quadratic form on V. The **Witt ring** is generated as a group by isomorphism representing a quadratic form on V.

$$W(k) = \frac{\mathbb{Z}\left\langle\left\{[(V,q)] \in \mathsf{QuadForm}_{/k}\right\}\right\rangle}{\left\langle q_{\mathrm{hyp}}, (q_1+q_2) - (q_1 \perp q_2)\right\rangle} \in \mathsf{AbGrp}.$$

where the **hyperbolic form** is defined as $q_{\text{hyp}}(x,y) = xy$. The ring structure is given by the tensor product (a.k.a. Kronecker product of forms).

Remark 1.4.3: Noting that Galois cohomology lives mod ℓ for various ℓ , here $K_0^M(k)$ lives over \mathbb{Z} . So Milnor K-theory relates all of the various mod ℓ Galois cohomologies together.

Definition 1.4.4 (Fundamental ideals and Pfister Forms)

The **fundamental ideal** $I(k) \subseteq W(k)$ is the ideal of even dimensional forms, and set $I^n(k) := (I(k))^n$. There is a map

$$\mathbf{K}_{n}^{\mathbf{M}}(k) \to I^{n}(k)/I^{n+1}(k)$$

 $\{a_{1}, a_{2}, \cdots, a_{n}\} \mapsto \langle\langle a_{1}, a_{2}, \cdots, a_{n}\rangle\rangle,$

which follows from Gram-Schmidt: any form can be diagonalized $q \cong \sum a_i x_i^2$, which we can write as $\langle a_1, a_2, \dots, a_n \rangle$. We can define the *n*-fold Pfister forms

$$\langle \langle a \rangle \rangle := \langle \langle 1, -a \rangle \rangle$$

 $\langle \langle a_1, a_2, \cdots, a_n \rangle \rangle := \prod_{i=1}^n \langle \langle a_i \rangle \rangle.$

Remark 1.4.5: The **Milnor conjecture** (proved by Voevodsky et al) states that the above map is an isomorphism after modding out by 2, so

$$K_n^M(k)/2 \xrightarrow{\sim} I^n(k)/I^{n+1}(k).$$

Moreover, the LHS is isomorphic to $H^n(k, \mu_2)$. There are interesting maps going the other way

$$I^n(k) \to I^n(k)/I^{n+1}(k) \xrightarrow{\sim} H^n(k, \mu_2)$$

Upshot: this is surjective – any mod 2 cohomology class comes from a quadratic form, and thus we can reason about cohomology by reasoning about quadratic forms.

1.5 Motivic Cohomology

1.5 Motivic Cohomology 5

Remark 1.5.1: Motivic cohomology relates the various mod ℓ cohomologies together much like K_*^M , but additionally relates different twists. In particular, it relates various $H_{\text{\'et}}^i(k;\mu_\ell^{\otimes j})$, where Milnor K-theory interprets this "diagonally" when i = j. This works by constructing **motivic** complexes

$$\mathbb{Z}(m) \in \mathsf{Ch}(\underset{\mathsf{pre}}{\mathsf{ShsmSch}}_{/k}),$$

which are complexes of presheaves on smooth k-schemes, usually considered in the Zariski, étale, or Nisnevich topologies.

Remark 1.5.2: Zariski hypercohomology is defined as

$$\mathbb{H}^n(X;\mathbb{Z}(m)) = H^{n,m}(X;\mathbb{Z}) = H^n_{\text{mot}}(X;\mathbb{Z}(m)) \qquad \text{for } X := \operatorname{Spec} k.$$

These relate to Galois cohomology in the following ways:

- There is a quasi-isomorphism $\mu_{\ell}^{\otimes m} \xrightarrow{\sim_W} \mathbb{Z}/\ell(n)$ in the étale topology.
- There is an isomorphism $H^n_{\rm zar}(k,\mathbb{Z}(n)) \xrightarrow{\sim} \mathrm{K}^{\mathrm{M}}_n(k)$. Bloch-Kato identifies $H^*_{\rm zar}(X;\mathbb{Z}/\ell(n)) \xrightarrow{\sim} H^n_{\mathrm{\acute{e}t}}(X;\mathbb{Z}/\ell(n))$.

Dimension 1.6

Remark 1.6.1: There are a number of competing notions for the "dimension" of a field.

Definition 1.6.2 (Dimension of a field)

If k is finitely generated over either a prime field or an algebraically closed field, we say

$$\dim(k) = \begin{cases} [k:k_0]_{\text{tr}} & k_0 = \bar{k}_0 \\ [k:k_0]_{\text{tr}} + 1 & k_0 \text{ finite} \\ [k:k_0]_{\text{tr}} + 2 & k_0 = \mathbb{Q}. \end{cases}$$

Definition 1.6.3 (Cohomological dimension)

We define its **cohomological dimension** cohdim(k), which is at most n if $H^n(G_k; M) = 0$ for all m > n and M torsion,

$$\operatorname{cohdim}(k) \coloneqq \min \left\{ n \ \middle| \ \operatorname{cohdim}(k) \le n \right\}.$$

Equivalently, cohdim $(k) = n \iff$ there exists a torsion M with $H^n(G_k; M) \neq 0$ and $H^m(G_k; M) = 0$ for all m > n.

Remark 1.6.4: cohdim $(k) = \dim(k)$ if k is finitely generated or a finite extension of $k_0 = \bar{k}_0$, or if k is finitely generated over \mathbb{Q} and has no real orderings. So if k has orderings, $\mathrm{cohdim}(k) = \infty$.

1.6 Dimension 6

Definition 1.6.5 (Diophantine Dimension)

We say k is C_n if for d > 0 and $m > d^n$, then every homogeneous polynomials of degree d in m variables has a nontrivial root.

$$ddim(k) := \min \left\{ n \mid k \text{ is } C_n \right\}.$$

Example 1.6.6(?): If k is finitely generated or finite over $k_0 = \bar{k}_0$, then

$$ddim(k) = dim(k) = cohdim(k)$$
.

Definition 1.6.7 $(T_n$ -rank)

We say k is T_n if for every $d_1, d_2, \dots, d_r > 0$ and every system of polynomial equations $f_1 = \dots = f_r = 0$ with deg $f_i = d_i$ in m variables, with $m > \sum d_i^n$. Then the T_n -rank is defined as

$$T_n$$
-rank $(k) := \min \{ n \mid k \text{ is } T_n \}.$

Question 1.6.8

Note that $T_n \implies C_n$, so T_n -rank $(k) \ge \operatorname{ddim}(k)$, when are they equal? This is likely unknown.

Remark 1.6.9: There is a famous example of a field k with $\operatorname{cohdim}(k) = 1$ but $\operatorname{ddim}(k) = \infty$.

Question 1.6.10

Is it true that $ddim(k) \ge cohdim(k)$? Serre showed that this holds when cohdim is replaced by $cohdim_2$, the 2-primary part – does this hold for all p? These are both open.

Why would one expect this to be true?

Remark 1.6.11: A recent result: cohdim_p grows at most linearly in ddim, with slope not 1 but rather $\approx \log_2 p$. These questions say that if an equation has enough variables then there is a solution, but why should this be reflected in cohomology? To show this bound, one would want to show that given some $\alpha \in H^*(k)$, there exists a polynomial f_{α} where if f_{α} has a root and $\alpha = 0$ in homology. In special cases, we were able to come up with such polynomials. When α is a symbol, this is closely related to norm varieties which have a point iff α is split. One might optimistically hope these are described as hypersurfaces, from which answers to the above would follow, but they turn out to not have such a concrete realization.

1.7 Structural Problems in Galois Cohomology

Remark 1.7.1: Here we'll describe the problems we need help with! Perhaps insight from motivic cohomology will lend insight to them. We'll write $H^i(k) := H^i(k; \mu_\ell^{\otimes j})$.

1.7.1 Period-Index Problems

Definition 1.7.2 (An extension splitting a cohomology class) If $\alpha \in H^i(k)$, we say $L_{/k}$ splits α if

$$\alpha|_L = 0 \in H^i(L).$$

Definition 1.7.3 (?)

We define the **index**

$$\operatorname{ind}\alpha\coloneqq\operatorname{gcd}\left\{[L:k]\ \middle|\ L_{/k}\text{ finite and splits }\alpha\right\}.$$

and the **period** of α as its (group-theoretic) order $H^i(k)$. Note that per $\alpha \leq \ell$.

Remark 1.7.4: One can show that per $\alpha \mid \text{ind } \alpha$, and ind $\alpha \mid (\text{per } \alpha)^m$ for some m.

Question 1.7.5

For a fixed k and i, j, ℓ , which is the minimum m such that

$$\operatorname{ind} \alpha \mid (\operatorname{per} \alpha)^m$$
?

Alternatively, what is the minimum m such that ind $\alpha \mid \ell^m$?

Conjecture 1.7.6.

If ddim(k) = n (or dim(k) = n since k is finitely generated) with $\alpha \in H^2(k, \mu_{\ell})$, then

$$\operatorname{ind} \alpha \mid (\operatorname{per} \alpha)^{n-1}$$
.

Remark 1.7.7: Even in this case, no known bound is known for $k = \mathbb{Q}(t)$, for any choice of ℓ . How complicated can the cohomology class be? The rough idea is that for $H^i(k)$ with i near dim k, this should have a small index and if $i = \dim k$ then per $k = \operatorname{ind} k$.

Remark 1.7.8: We know per = ind for any number field for classes in $H^2(\operatorname{Spec} k; \mu_N)$, with or without roots.

1.7.2 Symbol Length Problem

Remark 1.7.9: We know $H^n(k, \mu_{\ell}^{\otimes n})$ is generated by symbols (a_1, a_2, \dots, a_n) . We can use symbol length to measure complexity, leading to the following:

Question 1.7.10

Given k, n, what is the minimal number m such that every $\alpha \in H^n(k)$ is a sum of no more than m symbols. I.e. how easy is it to write α ?

Remark 1.7.11: We'd like a bound in terms of ddim(k) and dim(k). One can construct fields needing arbitrarily long symbols, but perhaps for finite dimensional fields, one feels there should be a bound. Danny feels that there may not be such a bound once $n \ge 4$.

Remark 1.7.12: What's known: for number fields (or global fields, i.e. a reasonable notion of dimension with dim k=2) which lie over finitely generated or prime fields and have a primitive ℓ th root of unity, we know every class in H^2 can be written as exactly one symbol.

Remark 1.7.13: A result of Malgri (?): assuming we have roots of unity, if $\ell = p^t$, then for H^2 one needs at most $t(p^{\operatorname{ddim}(k)-1}-1)$ symbols. If $\operatorname{ddim}(k) < \infty$ this yields a bound, and conjecturally this shouldn't depend on ???

For higher degree cohomology, we know almost nothing except for special cases of H^4 for "3-dimensional" p-adic curves.

Remark 1.7.14: If one can bound the symbol length, one can uniformly write down a generic element in cohomology as a sum of at most n symbols. The inability to be able to write down a general form of a cohomology class for a given field is what makes this difficult – they have "complexity" that isn't necessarily bounded in a known way.

2 | Tuesday, July 13

Remark 2.0.1: Fix a $k_0 \in \mathsf{Field}$.

Outline

- Arithmetic problems: consider "complexity" of cohomology or algebraic structures (Witt group, symbol length, index of classes).
 - Examples were ddim, cohdim, the period-index problem, the period-symbol length problem, which we saw last time.
- Algebraic structure problems: describe (algebraic) structural features of the class of all field extensions $k \in \mathsf{Field}_{/k_0}$.

Today we'll describe a way to connect these using a notion of *essential dimension*. Computing this is difficult in general, but finding lower/upper bounds can be tractable. We'll get upper bounds from *canonical dimensions*, and lower bounds from cohomological invariants.

Tuesday, July 13

Remark 2.0.2: For a particularly concrete problem, consider

$$\alpha \in H^2(k; \mu_\ell) \subseteq H^2(k; \mathbb{G}_m)[\ell] := \operatorname{Br}(k)[\ell],$$

i.e. this is a subgroup of the ℓ -torsion of the **Brauer group**. Suppose we know

$$\operatorname{ind} \alpha \coloneqq \operatorname{gcd} \left\{ [L:k] \mid \alpha_L = 0 \right\} = \min \left\{ [L:K] \mid \alpha_L = 0 \right\},\,$$

where the last equality holds in the special case of Br(k). If k contains a primitive ℓ th root of unity, we can identify $\mu_{\ell} = \mathbb{Z}/\ell = \mu_{\ell}^{\otimes 2}$, and thus identify

$$H^{2}(k; \mu_{\ell}) = H^{2}(k; \mu_{\ell}^{\otimes 2}) = K_{2}^{M}(k)/\ell.$$

So we can write $\alpha = \alpha_1 + \cdots + \alpha_r$ as a sum of symbols with $\alpha_i = (b_i, c_i)_{\ell}$ with $b_i, c_i \in k^{\times}$.

Question 2.0.3

How big does n have to be?

Remark 2.0.4: It follows from "the literature" (after stringing several results together) that there almost exists an absolute bounds depending only on ℓ , n but not k. However, we do not know what this bound actually is. There are some known cases:

- $\ell = n = 2, 3$: $r \le 1$, so only one symbol is needed.
- $\ell = n = 4$: probably $r \le 4$.
- $\ell = 2, n = 4$: $r \leq 2$, a classical results on central simple algebras.
- $\ell = 2, n = 8 : r \le 4$

Remark 2.0.5: It turns out that if k contains a field k_0 with $\dim k_0 < \infty$, one can produce an explicit bound. Given some $\alpha \in H^2(k; \mu_\ell)$ we can find some $k_0 \subseteq L \subseteq k$ with L finitely generated over k_0 and $[L:k_0]_{\mathrm{tr}}$ depending only on the period ℓ and index n, such that $\alpha \in \mathrm{im}\left(H^2(L;\mu) \to H^2(k;\mu)\right)$.

Slogan 2.0.6

Central simple algebras of a given period and index have finite essential dimension.

An important property is that

$$\operatorname{ddim} L \leq \operatorname{ddim} k_0 + [L:k_0]_{\operatorname{tr}}.$$

Recall that we can bound the symbol length in $H^2(k; \mu_\ell)$ in terms of ddim L. The idea is that we can bound the transcendence degree in terms of ℓ , n. This bound can be made very explicit, although it's not tight: for $\ell = 2, n = 8$, it's $2^{17 + \operatorname{ddim} k_0} - 1$. This is an improvement over $k_0 = \mathbb{Q}$ though, where it's known there's a bound but it can't be written down. The lower bound is very low: it is hard to show a symbol can not be written with very few symbols.

Tuesday, July 13

2.1 Pfister Form

Remark 2.1.1: Recall W(k), whose elements are isometry classes of nondegenerate quadratic forms with addition given by perpendicular sum and the Kronecker product. There is a hyperbolic form xy, or $x^2 - y^2$ in ch $k \neq 2$, which we can write as $\langle 1, -1 \rangle$, and a fundamental ideal of even-dimensional forms $\langle 1, -a \rangle = \langle \langle a \rangle \rangle$. We write

$$\langle \langle a_1, a_2, \cdots, a_n \rangle \rangle := \langle \langle a_1 \rangle \rangle \langle \langle a_2 \rangle \rangle \cdots \langle \langle a_n \rangle \rangle \in I^n(k),$$

which in fact generate $I^n(k)$.

Question 2.1.2

Given $q \in I^n(k)$ of dimension d, we know we can write $q \sim q_1 \perp \cdots \perp q_r$ where q_i are n-fold Pfister forms. How many are needed? Is this number even bounded?

Theorem 2.1.3((Vishik)).

If $d < 2^n + 2^{n-1}$ then r is bounded by some small number.

Remark 2.1.4: For $d \ge 2^n + 2^{n-1}$, it's not so clear, although it is bounded when $n \ge 3$. Why is $n \le 3$ easy and $n \ge 4$ hard?

Remark 2.1.5: Consider the following objects:

- $H^2(k; \mu)$
- Br(*k*)
- *W*(*k*)
- $I^n(k)$
- $q \in I^n(k)$ with dim q = d

These can all be viewed as functors $\mathsf{Field}_{/k_0} \to \mathsf{Set}$ taking field extensions to sets.

Definition 2.1.6 (Essential dimension of a functor)

Given a functor f and $\alpha \in F(k)$, define

$$\operatorname{essdim}(\alpha) = \min \left\{ [L : k_0]_{\operatorname{tr}} \; \middle| \; \alpha \in \operatorname{im}(F(L) \to F(k)) \right\}$$
$$\operatorname{essdim}(F) = \min \left\{ \operatorname{essdim}(\alpha) \; \middle| \; \alpha \in F(k) \; \forall k_{/k_0} \right\}.$$

Definition 2.1.7 (Versal)

Given a functor $F: \mathsf{Alg}_{/k_0} \to \mathsf{Set}$, we say $\alpha \in F(R)$ is **versal** if for every $\beta \in F(K)$, for any $k_{/k_0}$, there exists a morphism $R \to k$ such that β is the image of α under $F(R) \to F(k)$.

2.1 Pfister Form

Observation 2.1.8

If there exists a versal $\alpha \in F(R)$ then krulldim $R \ge \operatorname{essdim}(F)$, so the essential dimension is bounded above by the Krull dimension.

Example 2.1.9(?): Let F(k) be the set of quadratic forms of dimension n over k, then essdim F = n. Every such q can be diagonalized to yields $q \simeq \langle a_1, a_2, \cdots, a_n \rangle$ which is defined over $L := k_0(a_1, a_2, \cdots, a_n)$. Alternatively,

$$q = \langle x_1, x_2, \cdots, x_n \rangle / k_0[x_1^{\pm 1}, x_2^{\pm 1}, \cdots, x_n^{\pm 1}]$$

is versal. Thus every such quadratic form comes from "specializing".

Considering now the fundamental ideals, the Milnor conjectures yield an isomorphism $I^n/I^{n+1} \cong H^n(k; \mu_2)$, so there is a SES

$$1 \to I^{n+1} \to I^n \xrightarrow{e_n} H^n(k; \mu_2) \to 1.$$

Thus a quadratic form q of dimension d in I^{n+1} is equivalent to $q \in I^n$ such that $e_n(q) = 0$.

2.2 Canonical Dimension

Definition 2.2.1 (Canonical Dimension)

This is a generalization of essdim. Letting $k_{/k_0}$, suppose $F: \mathsf{Field}_{/k} \to \mathsf{Set}_+$ is a functor now

2.2 Canonical Dimension 12

from extensions of k (not k_0) into pointed sets. For $\alpha \in F(k)$, define a new functor

$$\check{F}_{\alpha}(L) := \begin{cases} \emptyset & \alpha_L \neq \mathrm{pt} \\ \{\mathrm{pt}\} & \alpha_L = \mathrm{pt}, \end{cases}$$

and define the canonical dimension

$$\operatorname{candim}(\alpha) = \operatorname{essdim}(\check{F}(\alpha)).$$

Remark 2.2.2: This measures how many parameters are needed to trivialize/split α . To have $\operatorname{candim}(\alpha) \leq r$ means that if $\alpha = \operatorname{pt}$ means the following: if $\alpha_L = \operatorname{pt}$ then there exists an E with $k \subseteq E \subseteq L$ with $[E:k]_{\operatorname{tr}} \leq r$ such that $\alpha_E = \operatorname{pt}$.

Definition 2.2.3 (Generic splitting scheme)

Given F as above and $\alpha \in F(k)$, we say an $X \in Sch_{/k}$ is a **generic splitting scheme** for α if

$$\alpha_L = 0 \iff X(L) \neq \emptyset.$$

Remark 2.2.4: So this encodes triviality of α into polynomial equations.

Example 2.2.5(?): If X is a generic splitting scheme for α finite type over L implies candim(α) \leq dim X.

Question 2.2.6

Does there exists a finite type generic splitting scheme for cohomology classes in $H^i(k; \mu_\ell^{\otimes j})$?

Remark 2.2.7: We do know this in special cases:

- i = 1: Yes, these are etale algebras, so finite schemes over k.
- i = 2: Yes, Danny shows these exist for all twists.
 - -j=1: Classical, these are Severi-Brauer varieties.
- For symbols, $i = 3, j = 2, \ell$ a prime: see Merkurjev-Suslin
- For symbols, $i = 4, j = 3, \ell = 3$: see Albert algebras
- For symbols, ℓ prime: this can be done up to prime-to- ℓ extensions, see Rost's "Norm Varieties". Related to Bloch-Kato conjecture.
- For symbols, $\ell = 2$: see Pfister quadrics.

Remark 2.2.8: Upshot: if there exists generic splitting schemes for classes in $H^i(k; \mu_2)$ for $i \geq 3$, one could bound Pfister numbers and thus essdim. Write $\mathcal{I}_d^n(k)$ to be the set of quadratic forms of dimension d in I^n , then essdim(\mathcal{I}_d^n) $< \infty$ would imply that if $q \in \mathcal{I}_d^n(k)$ for $k \supseteq k_0$ then q would be defined over some $L_{/k_0}$ with $[L:k_0]_{\mathrm{tr}} < \infty$.

If we knew that $\dim k_0 < \infty$, e.g. if k_0 contains a finite field, this yields a bound on $\dim L$ and thus on cohdim L. If there is a versal element in $\alpha \in \mathcal{I}_d^n$, then α needs some finite number m of

2.2 Canonical Dimension 13

Pfister forms to be written. Everything else is a specialization of α , so the length m will almost give an upper bound.

⚠ Warning 2.2.9

This may seem like a correct argument, but it is not! A problem arises where you may have denominators – specialization can get worse, but only a finite number of times, which is how the actual argument goes.

Remark 2.2.10: If you knew the essential dimensions were finite with some given bound, and some general period-index conjecture were known, these would give bounds on symbol length in $H^i(L; \mu_2)$. There's an argument pushing things into higher powers of the fundamental ideal, thus higher degree cohomology, which disappear at some point and yield a bound. Motives enter the picture in terms of the tools used to attack these problems.

2.2 Canonical Dimension 14