STABLE CENTRAL LIMIT THEOREMS FOR SUPER ORNSTEIN-UHLENBECK PROCESSES, II

YAN-XIA REN, RENMING SONG, ZHENYAO SUN AND JIANJIE ZHAO

ABSTRACT. This paper is a continuation of our recent paper (Elect. J. Probab. 24 (2019), no. 141) and is devoted to the asymptotic behavior of a class of supercritical super Ornstein-Uhlenbeck processes $(X_t)_{t\geq 0}$ with branching mechanisms of infinite second moment. In the aforementioned paper, we proved stable central limit theorems for $X_t(f)$ for some functions f of polynomial growth in three different regimes. However, we were not able to prove central limit theorems for $X_t(f)$ for all functions f of polynomial growth. In this note, we show that the limit stable random variables in the three different regimes are independent, and as a consequence, we get stable central limit theorems for $X_t(f)$ for all functions f of polynomial growth.

1. Introduction and main result

Let $d \in \mathbb{N} := \{1, 2, \dots\}$ and $\mathbb{R}_+ := [0, \infty)$. Let $\xi = \{(\xi_t)_{t \geq 0}; (\Pi_x)_{x \in \mathbb{R}^d}\}$ be an \mathbb{R}^d -valued Ornstein-Uhlenbeck process (OU process) with generator

$$Lf(x) = \frac{1}{2}\sigma^2 \Delta f(x) - bx \cdot \nabla f(x), \quad x \in \mathbb{R}^d, f \in C^2(\mathbb{R}^d),$$

where $\sigma > 0$ and b > 0 are constants. Let ψ be a function on \mathbb{R}_+ of the form

$$\psi(z) = -\alpha z + \rho z^2 + \int_{(0,\infty)} (e^{-zy} - 1 + zy) \pi(dy), \quad z \in \mathbb{R}_+,$$

where $\alpha > 0$, $\rho \geq 0$ and π is a measure on $(0, \infty)$ with $\int_{(0,\infty)} (y \wedge y^2) \pi(\mathrm{d}y) < \infty$. ψ is referred to as a branching mechanism and π is referred to as the Lévy measure of ψ . Denote by $\mathcal{M}(\mathbb{R}^d)$ ($\mathcal{M}_c(\mathbb{R}^d)$) the space of all finite Borel measures (of compact support) on \mathbb{R}^d . Denote by $\mathcal{B}(\mathbb{R}^d,\mathbb{R})$ ($\mathcal{B}(\mathbb{R}^d,\mathbb{R}_+)$) the space of all \mathbb{R} -valued (\mathbb{R}_+ -valued) Borel functions on \mathbb{R}^d . For $f,g \in \mathcal{B}(\mathbb{R}^d,\mathbb{R})$ and $\mu \in \mathcal{M}(\mathbb{R}^d)$, write $\mu(f) = \int f(x)\mu(\mathrm{d}x)$ and $\langle f,g \rangle = \int f(x)g(x)\mathrm{d}x$ whenever the integrals make sense. We say a real-valued Borel function f on $\mathbb{R}_+ \times \mathbb{R}^d$ is locally bounded if, for each $t \in \mathbb{R}_+$, we have $\sup_{s \in [0,t], x \in \mathbb{R}^d} |f(s,x)| < \infty$.

 $^{2010\} Mathematics\ Subject\ Classification.\ 60 J 68,\ 60 F 05.$

Key words and phrases. Superprocesses, Ornstein-Uhlenbeck processes, Stable distribution, Central limit theorem, Law of large numbers, Branching rate regime.

The research of Yan-Xia Ren is supported in part by NSFC (Grant Nos. 11671017 and 11731009) and LMEQF.

The Research of Renming Song is support in part by a grant from the Simons Foundation (#429343, Renming Song).

Zhenyao Sun is the corresponding author.

For any $\mu \in \mathcal{M}(\mathbb{R}^d)$, we write $\|\mu\| = \mu(1)$. For any σ -finite signed measure μ , denote by $|\mu|$ the total variation measure of μ .

We say that an $\mathcal{M}(\mathbb{R}^d)$ -valued Hunt process $X = \{(X_t)_{t\geq 0}; (\mathbb{P}_{\mu})_{\mu\in\mathcal{M}(\mathbb{R}^d)}\}$ is a super Ornstein-Uhlenbeck process (super-OU process) with branching mechanism ψ , or a (ξ, ψ) -superprocess, if for each non-negative bounded Borel function f on \mathbb{R}^d , we have

$$\mathbb{P}_{\mu}[e^{-X_t(f)}] = e^{-\mu(V_t f)}, \quad t \ge 0, \mu \in \mathcal{M}(\mathbb{R}^d),$$

where $(t,x) \mapsto V_t f(x)$ is the unique locally bounded non-negative solution to the equation

$$V_t f(x) + \Pi_x \left[\int_0^t \psi(V_{t-s} f(\xi_s)) ds \right] = \Pi_x [f(\xi_t)], \quad x \in \mathbb{R}^d, t \ge 0.$$

The existence of such super-OU process X is well known, see [8] for instance.

There have been many central limit theorem type results for branching processes, branching diffusions and superprocesses, under the second moment condition. See [9, 11, 12] for supercritical Galton-Watson processes (GW processes), [13, 14] for supercritical multi-type GW processes, [4, 5, 6] for supercritical multi-type continuous time branching processes and [3] for general supercritical branching Markov processes under certain conditions. Some spatial central limit theorems for supercritical branching OU processes with binary branching mechanism were proved in [1], and some spatial central limit theorems for supercritical super-OU processes with branching mechanisms satisfying a fourth moment condition were proved in [19]. These two papers made connections between central limit theorems and branching rate regimes. The results of [19] were extended and refined in [21]. Since then, a series of spatial central limit theorems for a large class of general supercritical branching Markov processes and superprocesses with spatially dependent branching mechanisms were proved in [22, 23, 24].

There are also central limit theorem type results for supercritical branching processes and branching Markov processes with branching mechanisms of infinite second moment. For earlier papers, see [2, 10]. Recently, Marks and Miloś [17] established some spatial central limit theorems in the small and critical branching rate regimes, for some supercritical branching OU processes with a special stable offspring distribution. In [20], we established stable central limit theorems for super-OU processes X with branching mechanisms ψ satisfying the following two assumptions.

Assumption 1 (Grey's condition). There exists z' > 0 such that $\psi(z) > 0$ for all z > z' and $\int_{z'}^{\infty} \psi(z)^{-1} dz < \infty$.

Assumption 2. There exist constants $\eta > 0$ and $\beta \in (0,1)$ such that

$$\int_{(1,\infty)} y^{1+\beta+\delta} \left| \pi(\mathrm{d}y) - \frac{\eta \mathrm{d}y}{\Gamma(-1-\beta)y^{2+\beta}} \right| < \infty$$

for some $\delta > 0$.

It is known (see [15, Theorems 12.5 & 12.7] for example) that, under Assumption 1, the $extinction\ event$

$$D := \{ \exists t \ge 0, \text{ such that } ||X_t|| = 0 \}$$

is non-trivial with respect to \mathbb{P}_{μ} for each $\mu \in \mathcal{M}(\mathbb{R}^d) \setminus \{0\}$. In fact, $\mathbb{P}_{\mu}(D) = e^{-\bar{v}\|\mu\|}$, where $\bar{v} := \sup\{\lambda \geq 0 : \psi(\lambda) = 0\} \in (0, \infty)$ is the largest root of ψ . Assumption 2 says that ψ is "not too far away" from $\widetilde{\psi}(z) := -\alpha z + \eta z^{1+\beta}$ near 0, see [20, Remark 1.3]. It follows from [20, Lemma 2.2] that, if Assumption 2 holds, then η and β are uniquely determined by the Lévy measure π . In [20, Lemma 2.3], we have shown that, under Assumption 2, ψ satisfies the $L \log L$ condition, i.e., $\int_{(1,\infty)} y \log y \pi(\mathrm{d}y) < \infty$. In the reminder of the paper, we will always use η and β to denote the constants in Assumption 2. Note that δ is not uniquely determined by π .

The limit behavior of X is closely related to the spectral property of the OU semigroup $(P_t)_{t\geq 0}$ which we now recall (see [18] for more details). We use $(P_t)_{t\geq 0}$ to denote the transition semigroup of ξ . Define $P_t^{\alpha}f(x) := e^{\alpha t}P_tf(x) = \Pi_x[e^{\alpha t}f(\xi_t)]$ for each $x \in \mathbb{R}^d$, $t\geq 0$ and $f\in \mathcal{B}(\mathbb{R}^d,\mathbb{R}_+)$. It is known that, see [16, Proposition 2.27] for example, $(P_t^{\alpha})_{t\geq 0}$ is the mean semigroup of X in the sense that $\mathbb{P}_{\mu}[X_t(f)] = \mu(P_t^{\alpha}f)$ for all $\mu \in \mathcal{M}(\mathbb{R}^d)$, $t\geq 0$ and $f\in \mathcal{B}(\mathbb{R}^d,\mathbb{R}_+)$. It is known that the OU process ξ has an invariant probability on \mathbb{R}^d

$$\varphi(x)dx := \left(\frac{b}{\pi\sigma^2}\right)^{d/2} \exp\left(-\frac{b}{\sigma^2}|x|^2\right)dx$$

which is a symmetric multivariate Gaussian distribution. Let $L^2(\varphi)$ be the Hilbert space with inner product

$$\langle f_1, f_2 \rangle_{\varphi} := \int_{\mathbb{R}^d} f_1(x) f_2(x) \varphi(x) dx, \quad f_1, f_2 \in L^2(\varphi).$$

Let $\mathbb{Z}_+ := \mathbb{N} \cup \{0\}$. For each $p = (p_k)_{k=1}^d \in \mathbb{Z}_+^d$, write $|p| := \sum_{k=1}^d p_k$, $p! := \prod_{k=1}^d p_k!$ and $\partial_p := \prod_{k=1}^d (\partial^{p_k}/\partial x_k^{p_k})$. The Hermite polynomials are defined by

$$\mathcal{H}_p(x) := (-1)^{|p|} e^{|x|^2} \partial_p e^{-|x|^2}, \quad x \in \mathbb{R}^d, p \in \mathbb{Z}_+^d.$$

It is known that $(P_t)_{t\geq 0}$ is a strongly continuous semigroup in $L^2(\varphi)$ and its generator L has discrete spectrum $\sigma(L) = \{-bk : k \in \mathbb{Z}_+\}$. For $k \in \mathbb{Z}_+$, denote by \mathcal{A}_k the eigenspace corresponding to the eigenvalue -bk, then $\mathcal{A}_k = \operatorname{Span}\{\phi_p : p \in \mathbb{Z}_+^d, |p| = k\}$ where

$$\phi_p(x) := \frac{1}{\sqrt{p!2^{|p|}}} \mathcal{H}_p\left(\frac{\sqrt{b}}{\sigma}x\right), \quad x \in \mathbb{R}^d, p \in \mathbb{Z}_+^d.$$

In other words, $P_t\phi_p(x) = e^{-b|p|t}\phi_p(x)$ for all $t \geq 0$, $x \in \mathbb{R}^d$ and $p \in \mathbb{Z}_+^d$. Moreover, $\{\phi_p : p \in \mathbb{Z}_+^d\}$ forms a complete orthonormal basis of $L^2(\varphi)$. Thus for each $f \in L^2(\varphi)$, we have

(1.1)
$$f = \sum_{k=0}^{\infty} \sum_{p \in \mathbb{Z}_{+}^{d}: |p|=k} \langle f, \phi_{p} \rangle_{\varphi} \phi_{p}, \quad \text{in } L^{2}(\varphi).$$

For each function $f \in L^2(\varphi)$, define the order of f as

$$\kappa_f := \inf \left\{ k \ge 0 : \exists \ p \in \mathbb{Z}_+^d, \text{ s.t. } |p| = k \text{ and } \langle f, \phi_p \rangle_\varphi \ne 0 \right\}$$

which is the lowest non-trivial frequency in the eigen-expansion (1.1). Note that $\kappa_f \geq 0$ and that, if $f \in L^2(\varphi)$ is non-trivial, then $\kappa_f < \infty$. In particular, the order of any constant non-zero function is zero. For $p \in \mathbb{Z}_+^d$, define

$$H_t^p := e^{-(\alpha - |p|b)t} X_t(\phi_p), \qquad t \ge 0.$$

We will write H_t^0 as H_t . For each $u \neq -1$, we write $\tilde{u} = u/(1+u)$. We have shown in [20, Lemma 3.2] the following:

For any $\mu \in \mathcal{M}_c(\mathbb{R}^d)$, $(H_t^p)_{t\geq 0}$ is a \mathbb{P}_{μ} -martingale. Futhermore, if $\alpha \tilde{\beta} > |p|b$, (1.2) then for every $\gamma \in (0, \beta)$ and $\mu \in \mathcal{M}_c(\mathbb{R}^d)$, $(H_t^p)_{t\geq 0}$ is a \mathbb{P}_{μ} -martingale bounded in $L^{1+\gamma}(\mathbb{P}_{\mu})$; thus $H_{\infty}^p := \lim_{t\to\infty} H_t^p$ exists \mathbb{P}_{μ} -almost surely and in $L^{1+\gamma}(\mathbb{P}_{\mu})$.

We will write H_{∞}^0 as H_{∞} .

Let us also recall some results from [20] before we formulate our main theorem. Denote by \mathcal{P} the class of functions of polynomial growth on \mathbb{R}^d , i.e.,

$$\mathcal{P} := \{ f \in \mathcal{B}(\mathbb{R}^d, \mathbb{R}) : \exists C > 0, n \in \mathbb{Z}_+ \text{ s.t. } \forall x \in \mathbb{R}^d, |f(x)| \le C(1+|x|)^n \}.$$

It is clear that $\mathcal{P} \subset L^2(\varphi)$. Define

$$C_s := \mathcal{P} \cap \overline{\operatorname{Span}} \{ \phi_p : \alpha \tilde{\beta} < |p|b \}, \quad C_c := \mathcal{P} \cap \operatorname{Span} \{ \phi_p : \alpha \tilde{\beta} = |p|b \}, \text{ and } C_1 := \mathcal{P} \cap \operatorname{Span} \{ \phi_p : \alpha \tilde{\beta} > |p|b \}.$$

Note that C_s is an infinite dimensional space, C_l and C_c are finite dimensional spaces, and C_c might be empty. Define a semigroup

$$T_t f := \sum_{p \in \mathbb{Z}_+^d} e^{-\left||p|b - \alpha \tilde{\beta}\right| t} \langle f, \phi_p \rangle_{\varphi} \phi_p, \quad t \ge 0, f \in \mathcal{P},$$

and a family of functionals

(1.3)
$$m_t[f] := \eta \int_0^t du \int_{\mathbb{R}^d} \left(-iT_u f(x) \right)^{1+\beta} \varphi(x) dx, \quad 0 \le t < \infty, f \in \mathcal{P}.$$

For each $\mu \in \mathcal{M}(\mathbb{R}^d) \setminus \{0\}$, write $\widetilde{\mathbb{P}}_{\mu}(\cdot) := \mathbb{P}_{\mu}(\cdot|D^c)$. We have shown in [20, Lemma 2.6 and Proposition 2.7] that,

for each $f \in \mathcal{P}$, there exists a $(1 + \beta)$ -stable random variable ζ^f with characteristic function $\theta \mapsto e^{m[\theta f]}, \theta \in \mathbb{R}$, where

(1.4)
$$m[f] := \begin{cases} \lim_{t \to \infty} m_t[f], & f \in \mathcal{C}_s \oplus \mathcal{C}_l, \\ \lim_{t \to \infty} \frac{1}{t} m_t[f], & f \in \mathcal{P} \setminus \mathcal{C}_s \oplus \mathcal{C}_l. \end{cases}$$

Furthermore, we proved in [20, Theorem 1.6] that

if $\mu \in \mathcal{M}_{c}(\mathbb{R}^{d}) \setminus \{0\}$, $f_{s} \in \mathcal{C}_{s} \setminus \{0\}$, $f_{c} \in \mathcal{C}_{c} \setminus \{0\}$ and $f_{l} \in \mathcal{C}_{l} \setminus \{0\}$, then under $\widetilde{\mathbb{P}}_{\mu}$,

(1.5)
$$e^{-\alpha t} \|X_t\| \xrightarrow[t \to \infty]{\text{a.s.}} \widetilde{H}_{\infty}; \quad \frac{X_t(f_s)}{\|X_t\|^{1-\tilde{\beta}}} \xrightarrow[t \to \infty]{d} \zeta^{f_s}; \\ \frac{X_t(f_c)}{\|tX_t\|^{1-\tilde{\beta}}} \xrightarrow[t \to \infty]{d} \zeta^{f_c}; \quad \frac{X_t(f_l) - \mathbf{x}_t(f_l)}{\|X_t\|^{1-\tilde{\beta}}} \xrightarrow[t \to \infty]{d} \zeta^{-f_l},$$

where \widetilde{H}_{∞} has the distribution of $\{H_{\infty}; \widetilde{\mathbb{P}}_{\mu}\}$; ζ^{f_s} , ζ^{f_c} and ζ^{-f_1} are the $(1 + \beta)$ -stable random variables described in (1.4); and

$$\mathbf{x}_t(f) := \sum_{p \in \mathbb{Z}_+^d : \alpha \tilde{\beta} > |p|b} \langle f, \phi_p \rangle_{\varphi} e^{(\alpha - |p|b)t} H_{\infty}^p, \quad t \ge 0, f \in \mathcal{P}.$$

The above result gives the central limit theorem for $X_t(f)$ if $f \in \mathcal{P} \setminus \{0\}$ satisfies $\alpha \tilde{\beta} \leq \kappa_f b$. A general $f \in \mathcal{P}$ can be decomposed as $f_s + f_c + f_l$ with $f_s \in \mathcal{C}_s$, $f_c \in \mathcal{C}_c$ and $f_l \in \mathcal{C}_l$; and if $f \in \mathcal{P}$ satisfies $\alpha \tilde{\beta} > \kappa_f b$, then f_c and f_l maybe non-zero. In [20], we were not able to establish a central limit theorem in this case. We conjectured there that the limit random variables in (1.5) for $f_s \in \mathcal{C}_s$, $f_c \in \mathcal{C}_c$ and $f_l \in \mathcal{C}_l$ are independent. Once this asymptotic independence is established, a central limit theorem for $X_t(f)$ for all $f \in \mathcal{P}$ would follow.

The main purpose of this note is to show that the limit random variables in (1.5) are independent.

Theorem 1.1. If $\mu \in \mathcal{M}_c(\mathbb{R}^d) \setminus \{0\}$, $f_s \in \mathcal{C}_s \setminus \{0\}$, $f_c \in \mathcal{C}_c \setminus \{0\}$ and $f_l \in \mathcal{C}_l \setminus \{0\}$, then under $\widetilde{\mathbb{P}}_{\mu}$,

(1.6)
$$S(t) := \left(e^{-\alpha t} \| X_t \|, \frac{X_t(f_s)}{\| X_t \|^{1-\tilde{\beta}}}, \frac{X_t(f_c)}{\| t X_t \|^{1-\tilde{\beta}}}, \frac{X_t(f_1) - \mathbf{x}_t(f_1)}{\| X_t \|^{1-\tilde{\beta}}} \right)$$

$$\xrightarrow{d}_{t \to \infty} (\widetilde{H}_{\infty}, \zeta^{f_s}, \zeta^{f_c}, \zeta^{-f_1}),$$

where $\mathbf{x}_t(f_1)$ is defined in (1.5) with f replaced with f_1 ; \widetilde{H}_{∞} has the distribution of $\{H_{\infty}; \widetilde{\mathbb{P}}_{\mu}\}$; ζ^{f_s} , ζ^{f_c} and ζ^{-f_1} are the $(1+\beta)$ -stable random variables described in (1.4); \widetilde{H}_{∞} , ζ^{f_s} , ζ^{f_c} and ζ^{-f_1} are independent.

As a corollary of this theorem, we get central limit theorems for $X_t(f)$ for all $f \in \mathcal{P}$.

Corollary 1.2. Let $\mu \in \mathcal{M}_c(\mathbb{R}^d) \setminus \{0\}$ and $f \in \mathcal{P} \setminus \{0\}$. Let $f = f_s + f_c + f_l$ be the unique decomposition of f with $f_s \in \mathcal{C}_s$, $f_c \in \mathcal{C}_c$ and $f_l \in \mathcal{C}_l$. Then under $\widetilde{\mathbb{P}}_{\mu}$, it holds that

(1) if
$$f_c = 0$$
, then

$$\frac{X_t(f) - \mathbf{x}_t(f)}{\|X_t\|^{1-\tilde{\beta}}} \xrightarrow[t \to \infty]{d} \zeta^{f_{\mathbf{s}}} + \zeta^{-f_{\mathbf{l}}},$$

where ζ^{f_s} and ζ^{-f_l} are the $(1+\beta)$ -stable random variables described in (1.4), ζ^{f_s} and ζ^{-f_l} are independent;

(2) if $f_c \neq 0$, then

$$\frac{X_t(f) - \mathbf{x}_t(f)}{\|tX_t\|^{1-\tilde{\beta}}} \xrightarrow[t \to \infty]{d} \zeta^{f_c}.$$

where ζ^{f_c} is the $(1+\beta)$ -stable random variables described in (1.4). Here $x_t(f)$ is defined in (1.5).

2. Proof of main result

We first make some preparations before proving Theorem 1.1. For every $t \geq 0$ and $f \in \mathcal{P}$, define

$$Z_t f := \int_0^t P_{t-s}^{\alpha} \left(\eta(-iP_s^{\alpha} f)^{1+\beta} \right) \mathrm{d}s, \quad \Upsilon_t^f := \frac{X_{t+1}(f) - X_t(P_1^{\alpha} f)}{\|X_t\|^{1-\tilde{\beta}}}.$$

Form [20, Theorem 3.4] we know that, for each $f \in \mathcal{P}$, $\langle Z_1 f, \varphi \rangle$ is the characteristic exponent of the limit of Υ_t^f . For $g \in \mathcal{P}$, define $\mathcal{P}_g := \{\theta T_n g : n \in \mathbb{Z}_+, \theta \in [-1, 1]\}$. The following generalization of [20, Proposition 3.5] will be used later in the proof of Theorem 2.3, a special case of Theorem 1.1.

Proposition 2.1. For each $f, g \in \mathcal{P}$ and $\mu \in \mathcal{M}_c(\mathbb{R}^d)$, there exist $C, \delta > 0$ such that for all $n_1, n_2 \in \mathbb{Z}_+$, $(f_j)_{j=0}^{n_1} \subset \mathcal{P}_f$, $(g_j)_{j=0}^{n_2} \subset \mathcal{P}_g$ and $t \geq n_1 + 1$, we have

$$(2.1) \qquad \left| \widetilde{\mathbb{P}}_{\mu} \left[\left(\prod_{k=0}^{n_1} e^{i \Upsilon_{t-k-1}^{f_k}} \right) \left(\prod_{k=0}^{n_2} e^{i \Upsilon_{t+k}^{g_k}} \right) \right] - \left(\prod_{k=0}^{n_1} e^{\langle Z_1 f_k, \varphi \rangle} \right) \left(\prod_{k=0}^{n_2} e^{\langle Z_1 g_k, \varphi \rangle} \right) \right| \leq C e^{-\delta(t-n_1)}.$$

Proof. In this proof, we fix $f, g \in \mathcal{P}, \mu \in \mathcal{M}_c(\mathbb{R}^d), n_1, n_2 \in \mathbb{Z}_+, (f_j)_{j=0}^{n_1} \subset \mathcal{P}_f, (g_j)_{j=0}^{n_2} \subset \mathcal{P}_g$ and $t \geq n_1 + 1$. For any $k_1 \in \{-1, 0, \dots, n_1\}$ and $k_2 \in \{-1, 0, \dots, n_2\}$, define

$$a_{k_1,k_2} := \widetilde{\mathbb{P}}_{\mu} \Big[\Big(\prod_{j=k_1+1}^{n_1} e^{i \Upsilon_{t-j-1}^{f_j}} \Big) \Big(\prod_{j=0}^{k_2} e^{i \Upsilon_{t+j}^{g_j}} \Big) \Big] \Big(\prod_{j=0}^{k_1} e^{\langle Z_1 f_j, \varphi \rangle} \Big) \Big(\prod_{j=k_2+1}^{n_2} e^{\langle Z_1 g_j, \varphi \rangle} \Big),$$

where we used the convention that $\prod_{i=0}^{-1} = 1$. Then for all $k_2 \in \{0, \ldots, n_2\}$, we have

$$\begin{split} a_{-1,k_{2}} - a_{-1,k_{2}-1} \\ &= \widetilde{\mathbb{P}}_{\mu} \bigg[\bigg(\prod_{j=0}^{n_{1}} e^{i \Upsilon_{t-j-1}^{f_{j}}} \bigg) \bigg(\prod_{j=0}^{k_{2}} e^{i \Upsilon_{t+j}^{g_{j}}} \bigg) \bigg] \bigg(\prod_{j=k_{2}+1}^{n_{2}} e^{\langle Z_{1}g_{j}, \varphi \rangle} \bigg) \\ &- \widetilde{\mathbb{P}}_{\mu} \bigg[\bigg(\prod_{j=0}^{n_{1}} e^{i \Upsilon_{t-j-1}^{f_{j}}} \bigg) \bigg(\prod_{j=0}^{k_{2}-1} e^{i \Upsilon_{t+j}^{g_{j}}} \bigg) \bigg] \bigg(\prod_{j=k_{2}}^{n_{2}} e^{\langle Z_{1}g_{j}, \varphi \rangle} \bigg) \\ &= \frac{1}{\mathbb{P}_{\mu}(D^{c})} \bigg(\prod_{j=k_{2}+1}^{n_{2}} e^{\langle Z_{1}g_{j}, \varphi \rangle} \bigg) \times \\ \mathbb{P}_{\mu} \bigg[\bigg(\prod_{j=0}^{n_{1}} e^{i \Upsilon_{t-j-1}^{f_{j}}} \bigg) \bigg(\prod_{j=0}^{k_{2}-1} e^{i \Upsilon_{t+j}^{g_{j}}} \bigg) (e^{i \Upsilon_{t+k_{2}}^{g_{k_{2}}}} - e^{\langle Z_{1}g_{k_{2}}, \varphi \rangle}); D^{c} \bigg] \end{split}$$

$$= \frac{1}{\mathbb{P}_{\mu}(D^{c})} \left(\prod_{j=k_{2}+1}^{n_{2}} e^{\langle Z_{1}g_{j},\varphi \rangle} \right) \times$$

$$(2.2)$$

$$\mathbb{P}_{\mu} \left[\left(\prod_{j=0}^{n_{1}} e^{i\Upsilon_{t-j-1}^{f_{j}}} \right) \left(\prod_{j=0}^{k_{2}-1} e^{i\Upsilon_{t+j}^{g_{j}}} \right) \mathbb{P}_{\mu} \left[e^{i\Upsilon_{t+k_{2}}^{g_{k_{2}}}} - e^{\langle Z_{1}g_{k_{2}},\varphi \rangle}; D^{c} \middle| \mathscr{F}_{t+k_{2}} \right] \right].$$

Therefore, there exist $C_0, \delta_0 > 0$, depending only on μ and g, such that for each $k_2 \in \{0, \ldots, n_2\}$,

$$|a_{-1,k_{2}} - a_{-1,k_{2}-1}| \stackrel{(2.2)}{\leq} \mathbb{P}_{\mu}(D^{c})^{-1} \mathbb{P}_{\mu} \Big[|\mathbb{P}_{\mu}[e^{i\Upsilon_{t+k_{2}}^{g_{k_{2}}}} - e^{\langle Z_{1}g_{k_{2}},\varphi\rangle}; D^{c}|\mathscr{F}_{t+k_{2}}]| \Big]$$

$$(2.3) \qquad \leq C_{0}e^{-\delta_{0}(t+k_{2})}.$$

Notice that, for any $k_1 \in \{0, \ldots, n_1\}$,

$$a_{k_{1}-1,-1} - a_{k_{1},-1}$$

$$= \widetilde{\mathbb{P}}_{\mu} \left[\prod_{j=k_{1}}^{n_{1}} e^{i\Upsilon_{t-j-1}^{f_{j}}} \right] \left(\prod_{j=0}^{k_{1}-1} e^{\langle Z_{1}f_{j},\varphi \rangle} \right) \left(\prod_{j=0}^{n_{2}} e^{\langle Z_{1}g_{j},\varphi \rangle} \right) -$$

$$\widetilde{\mathbb{P}}_{\mu} \left[\prod_{j=k_{1}+1}^{n_{1}} e^{i\Upsilon_{t-j-1}^{f_{j}}} \right] \left(\prod_{j=0}^{k_{1}} e^{\langle Z_{1}f_{j},\varphi \rangle} \right) \left(\prod_{j=0}^{n_{2}} e^{\langle Z_{1}g_{j},\varphi \rangle} \right)$$

$$= \widetilde{\mathbb{P}}_{\mu} \left[\left(e^{i\Upsilon_{t-k_{1}-1}^{f_{k_{1}}}} - e^{\langle Z_{1}f_{k_{1}},\varphi \rangle} \right) \prod_{j=k_{1}+1}^{n_{1}} e^{i\Upsilon_{t-j-1}^{f_{j}}} \right] \left(\prod_{j=0}^{k_{1}-1} e^{\langle Z_{1}f_{j},\varphi \rangle} \right) \left(\prod_{j=0}^{n_{2}} e^{\langle Z_{1}g_{j},\varphi \rangle} \right)$$

$$= \frac{1}{\mathbb{P}_{\mu}(D^{c})} \left(\prod_{j=0}^{k_{1}-1} e^{\langle Z_{1}f_{j},\varphi \rangle} \right) \left(\prod_{j=0}^{n_{2}} e^{\langle Z_{1}g_{j},\varphi \rangle} \right) \times$$

$$\mathbb{P}_{\mu} \left[\mathbb{P}_{\mu} \left[e^{i\Upsilon_{t-k_{1}-1}^{f_{k_{1}}}} - e^{\langle Z_{1}f_{k_{1}},\varphi \rangle} ; D^{c} | \mathscr{F}_{t-k_{1}-1} \right] \prod_{j=k_{1}+1}^{n_{1}} e^{i\Upsilon_{t-j-1}^{f_{j}}} \right].$$

Therefore, there exist $C_1, \delta_1 > 0$, depending only on μ and f, such that for any $k_1 \in \{0, \ldots, n_1\}$,

$$|a_{k_{1}-1,-1} - a_{k_{1},-1}| \stackrel{(2.4)}{\leq} \frac{1}{\mathbb{P}_{\mu}(D^{c})} \mathbb{P}_{\mu} \Big[\Big| \mathbb{P}_{\mu} [e^{i\Upsilon_{t-k_{1}-1}^{f_{k_{1}}}} - e^{\langle Z_{1}f_{k_{1}},\varphi \rangle}; D^{c} | \mathscr{F}_{t-k_{1}-1}] \Big| \Big]$$

$$(2.5) \qquad \stackrel{[20, \text{ Proposition } 3.5]}{\leq} C_{1} e^{-\delta_{1}(t-k_{1})}.$$

Therefore, there exist $C, \delta > 0$, depending only on f, g and μ , such that

LHS of (2.1) =
$$|a_{-1,n_2} - a_{n_1,-1}| \le \sum_{k=0}^{n_1} |a_{k-1,-1} - a_{k,-1}| + \sum_{k=0}^{n_2} |a_{-1,k} - a_{-1,k-1}|$$

$$\stackrel{(2.3),(2.5)}{\le} \sum_{k=0}^{n_1} C_1 e^{-\delta_1(t-k)} + \sum_{k=0}^{n_2} C_0 e^{-\delta_0(t+k)} \le C e^{-\delta(t-n_1)}.$$

The following elementary result will also be used in the proof of Theorem 2.3.

Lemma 2.2. There exists a constant C > 0, such that for any $x, y \in \mathbb{R}$,

$$|(x+y)^{1+\beta} - x^{1+\beta} - y^{1+\beta}| \le C(|x||y|^{\beta} + |x|^{\beta}|y|).$$

Proof. Note that

$$\lim_{|y| \to \infty} \frac{(y+1)^{1+\beta} - y^{1+\beta} - 1}{y^{\beta}} = \lim_{|y| \to \infty} \frac{(y+1)^{1+\beta} - y^{1+\beta}}{y^{\beta}} = \lim_{|y| \to \infty} \left((1 + \frac{1}{y})^{1+\beta} - 1 \right) y = 1 + \beta.$$

Using this and continuity, we get that there exists $C_1 > 0$ such that for all $|y| \ge 1$,

$$|(1+y)^{1+\beta} - y^{1+\beta} - 1| \le C_1 |y|^{\beta}.$$

Note that if x = 0 or y = 0, then the desired result is trivial. So we only need to consider the case that $x \neq 0$ and $y \neq 0$. In this case, if $|x| \geq |y|$, we have

$$|(x+y)^{1+\beta} - x^{1+\beta} - y^{1+\beta}| \le |y|^{1+\beta} \left(\left| \left(1 + \frac{x}{y} \right)^{1+\beta} - \left(\frac{x}{y} \right)^{1+\beta} - 1 \right| \right) \le C_1 |y| |x|^{\beta};$$

and if $|x| \leq |y|$, we have

$$|(x+y)^{1+\beta} - x^{1+\beta} - y^{1+\beta}| \le |x|^{1+\beta} \left(\left| \left(1 + \frac{y}{x} \right)^{1+\beta} - \left(\frac{y}{x} \right)^{1+\beta} - 1 \right| \right) \le C_1 |x| |y|^{\beta}.$$

Combining the above, we immediately get the desired result.

In the remainder of this section, we always fix $\mu \in \mathcal{M}_c(\mathbb{R}^d) \setminus \{0\}$, $f_s \in \mathcal{C}_s \setminus \{0\}$, $f_c \in \mathcal{C}_c \setminus \{0\}$ and $f_l \in \mathcal{C}_l \setminus \{0\}$. For any random variable Y with finite mean under \mathbb{P}_{μ} , we define

$$\mathcal{I}_r^t Y := \mathbb{P}_{\mu}[Y | \mathscr{F}_{t \vee 0}] - \mathbb{P}_{\mu}[Y | \mathscr{F}_{r \vee 0}], \quad -\infty < r, t < \infty.$$

For each $t \geq 1$, we have the following decomposition.

$$\begin{split} I^{f_{\mathrm{s}}}(t) &:= \frac{X_{t}(f_{\mathrm{s}})}{\|X_{t}\|^{1-\tilde{\beta}}} = I_{1}^{f_{\mathrm{s}}}(t) + I_{2}^{f_{\mathrm{s}}}(t) + I_{3}^{f_{\mathrm{s}}}(t) \\ &:= \Big(\sum_{k \in \mathbb{N} \cap [0, t-\ln t]} \frac{\mathcal{I}_{t-k-1}^{t-k} X_{t}(f_{\mathrm{s}})}{\|X_{t}\|^{1-\tilde{\beta}}} \Big) + \Big(\sum_{k \in \mathbb{N} \cap (t-\ln t, t]} \frac{\mathcal{I}_{t-k-1}^{t-k} X_{t}(f_{\mathrm{s}})}{\|X_{t}\|^{1-\tilde{\beta}}} \Big) + \Big(\frac{X_{0}(P_{t}^{\alpha} f_{\mathrm{s}})}{\|X_{t}\|^{1-\tilde{\beta}}} \Big), \\ I^{f_{\mathrm{c}}}(t) &:= \frac{X_{t}(f_{\mathrm{c}})}{\|tX_{t}\|^{1-\tilde{\beta}}} = I_{1}^{f_{\mathrm{c}}}(t) + I_{2}^{f_{\mathrm{c}}}(t) + I_{3}^{f_{\mathrm{c}}}(t) \\ &:= \Big(\sum_{k \in \mathbb{N} \cap [0, t-\ln t]} \frac{\mathcal{I}_{t-k-1}^{t-k} X_{t}(f_{\mathrm{c}})}{\|tX_{t}\|^{1-\tilde{\beta}}} \Big) + \Big(\sum_{k \in \mathbb{N} \cap (t-\ln t, t]} \frac{\mathcal{I}_{t-k-1}^{t-k} X_{t}(f_{\mathrm{c}})}{\|tX_{t}\|^{1-\tilde{\beta}}} \Big) + \Big(\frac{X_{0}(P_{t}^{\alpha} f_{\mathrm{c}})}{\|tX_{t}\|^{1-\tilde{\beta}}} \Big), \\ I^{f_{\mathrm{l}}}(t) &:= \frac{X_{t}(f_{\mathrm{l}}) - \mathbf{x}_{t}(f_{\mathrm{l}})}{\|X_{t}\|^{1-\tilde{\beta}}} = I_{1}^{f_{\mathrm{l}}}(t) + I_{2}^{f_{\mathrm{l}}}(t) + I_{3}^{f_{\mathrm{l}}}(t) \\ &:= \Big(\sum_{k \in \mathbb{N} \cap [0, t^{2}]} \frac{\mathcal{I}_{t+k+1}^{t+k} \mathbf{x}_{t}(f_{\mathrm{l}})}{\|X_{t}\|^{1-\tilde{\beta}}} \Big) + \Big(\sum_{k \in \mathbb{N} \cap (t^{2})} \frac{\mathcal{I}_{t+k+1}^{t+k} \mathbf{x}_{t}(f_{\mathrm{l}})}{\|X_{t}\|^{1-\tilde{\beta}}} \Big) + 0, \end{split}$$

where $x_t(f_1)$ is defined in (1.5) with f replaced with f_1 . For every $t \ge 1$, define

$$\begin{split} R_{j}(t) &:= \left(I_{j}^{f_{s}}(t), I_{j}^{f_{c}}(t), I_{j}^{f_{l}}(t)\right), \quad j = 1, 2, 3, \\ R(t) &:= \left(\frac{X_{t}(f_{s})}{\|X_{t}\|^{1-\tilde{\beta}}}, \frac{X_{t}(f_{c})}{\|tX_{t}\|^{1-\tilde{\beta}}}, \frac{X_{t}(f_{l}) - \mathbf{x}_{t}(f_{l})}{\|X_{t}\|^{1-\tilde{\beta}}}\right), \\ R_{0}(t) &= \left(I_{0}^{f_{s}}(t), I_{0}^{f_{c}}(t), I_{0}^{f_{l}}(t)\right) \\ &:= \left(\sum_{k=0}^{\lfloor t-\ln t \rfloor} \Upsilon_{t-k-1}^{T_{k}\tilde{f}_{s}}, t^{\tilde{\beta}-1} \sum_{k=0}^{\lfloor t-\ln t \rfloor} \Upsilon_{t-k-1}^{T_{k}\tilde{f}_{c}}, \sum_{k=0}^{\lfloor t^{2} \rfloor} \Upsilon_{t+k}^{-T_{k}\tilde{f}_{l}}\right), \end{split}$$

where $\mathbf{x}_t(f_l)$ is defined in (1.5) with f replaced with f_l . $\tilde{f}_s := e^{\alpha(\tilde{\beta}-1)} f_s$, $\tilde{f}_c := e^{\alpha(\tilde{\beta}-1)} f_c$ and $\tilde{f}_l := \sum_{p \in \mathcal{N}} e^{-(\alpha-|p|b)} \langle f_l, \phi_p \rangle_{\varphi} \phi_p$. The following result is a special case of Theorem 1.1.

Theorem 2.3. Under $\widetilde{\mathbb{P}}_{\mu}$, $R(t) \xrightarrow[t \to \infty]{d} (\zeta^{f_s}, \zeta^{f_c}, \zeta^{-f_1})$, where ζ^{f_s}, ζ^{f_c} and ζ^{-f_1} are the $(1+\beta)$ -stable random variables described in (1.4), and ζ^{f_s}, ζ^{f_c} and ζ^{-f_1} are independent.

Proof. In this proof, we always work under $\widetilde{\mathbb{P}}_{\mu}$. Note that for each $t \geq 1$,

$$R(t) = R_0(t) + (R_1(t) - R_0(t)) + R_2(t) + R_3(t).$$

Note that

$$(R_1(t) - R_0(t)) = (I_1^{f_s}(t) - I_0^{f_s}(t), I_1^{f_c}(t) - I_0^{f_c}(t), I_1^{f_1}(t) - I_0^{f_1}(t)).$$

In the proof of Theorem 1.6(1) in [20], we proved that $I_1^{f_s}(t) - I_0^{f_s}(t) \xrightarrow[t \to \infty]{d} 0$, $I_2^{f_s}(t) \xrightarrow[t \to \infty]{d} 0$ and $I_3^{f_s}(t) \xrightarrow[t \to \infty]{\tilde{\mathbb{P}}_{\mu}-a.s.} 0$. In the proof of Theorem 1.6(2) in [20], we proved that $I_1^{f_c}(t) - I_0^{f_c}(t) \xrightarrow[t \to \infty]{d} 0$, $I_2^{f_c}(t) \xrightarrow[t \to \infty]{d} 0$ and $I_3^{f_c}(t) \xrightarrow[t \to \infty]{\tilde{\mathbb{P}}_{\mu}-a.s.} 0$. In the proof of Theorem 1.6(3) in [20], we proved that $I_1^{f_1}(t) - I_0^{f_1}(t) \xrightarrow[t \to \infty]{d} 0$ and $I_2^{f_1}(t) \xrightarrow[t \to \infty]{d} 0$. Thus we have $R_1(t) - R_0(t) \xrightarrow[t \to \infty]{d} (0,0,0)$, $R_2(t) \xrightarrow[t \to \infty]{d} (0,0,0)$ and $R_3(t) \xrightarrow[t \to \infty]{d} (0,0,0)$. Combining the above results and using Slutsky's theorem, we only need to show that, under $\widetilde{\mathbb{P}}_{\mu}$,

(2.6)
$$R_0(t) \xrightarrow[t \to \infty]{d} (\zeta^{f_s}, \zeta^{f_c}, \zeta^{-f_1}).$$

Now we prove (2.6). Since Υ_t^f is linear in f, for each $t \geq 1$,

$$\widetilde{\mathbb{P}}_{\mu} \Big[\exp \Big(i \sum_{j=\text{s.c.l}} I_0^{f_j}(t) \Big) \Big] = \widetilde{\mathbb{P}}_{\mu} \Big[\exp \Big(i \sum_{k=0}^{\lfloor t - \ln t \rfloor} \Upsilon_{t-k-1}^{T_k(\tilde{f}_{\text{s}} + t^{\tilde{\beta}-1}\tilde{f}_{\text{c}})} \Big) \exp \Big(i \sum_{k=0}^{\lfloor t^2 \rfloor} \Upsilon_{t+k}^{-T_k\tilde{f}_{\text{l}}} \Big) \Big].$$

Using Proposition 2.1 with $f = \tilde{f}_s + t^{\tilde{\beta}-1}\tilde{f}_c$ and $g = -\tilde{f}_1$, we get that there exist $C_1, \delta_1 > 0$ such that for every $t \geq 1$,

$$\left| \widetilde{\mathbb{P}}_{\mu} \left[\exp \left(i \sum_{j=\text{s.c.l}} I_0^{f_j}(t) \right) \right] - \exp \left(\sum_{k=0}^{\lfloor t - \ln t \rfloor} \langle Z_1(T_k(\tilde{f}_{\text{s}} + t^{\tilde{\beta} - 1}\tilde{f}_{\text{c}})), \varphi \rangle \right) \exp \left(\sum_{k=0}^{\lfloor t^2 \rfloor} \langle Z_1(-T_k\tilde{f}_{\text{l}}), \varphi \rangle \right) \right|$$

$$\leq C_1 e^{-\delta_1(t-\lfloor t-\ln t\rfloor)}.$$

We claim that

(2.7)
$$\lim_{t \to \infty} \exp\left(\sum_{k=0}^{\lfloor t - \ln t \rfloor} \langle Z_1(T_k(\tilde{f}_s + t^{\tilde{\beta} - 1}\tilde{f}_c)), \varphi \rangle\right) \exp\left(\sum_{k=0}^{\lfloor t^2 \rfloor} \langle Z_1(-T_k\tilde{f}_1), \varphi \rangle\right)$$
$$= \exp(m[f_s] + m[f_c] + m[-f_1]).$$

Given this claim, we have

$$\widetilde{\mathbb{P}}_{\mu} \Big[\exp \Big(i \sum_{j=s} I_0^{f_j}(t) \Big) \Big] \xrightarrow[t \to \infty]{} \exp(m[f_s] + m[f_c] + m[-f_l]).$$

Since $I_0^{f_j}(t)$ are linear in $f_j \in \mathcal{C}_j(j = s, c, l)$, replacing f_j with $\theta_j f_j$, we immediately get (2.6).

Now we prove the claim (2.7). For every $f \in \mathcal{C}_s \oplus \mathcal{C}_c$ and $n \in \mathbb{Z}_+$,

$$\sum_{k=0}^{n} \langle Z_1 T_k \tilde{f}, \varphi \rangle = \sum_{k=0}^{n} \int_0^1 \langle P_u^{\alpha} (\eta(-iP_{1-u}^{\alpha} T_k \tilde{f})^{1+\beta}), \varphi \rangle du$$

$$= \sum_{k=0}^{n} \int_0^1 e^{\alpha u} \langle \eta(-iP_{1-u}^{\alpha} T_k \tilde{f})^{1+\beta}, \varphi \rangle du$$

$$= \sum_{k=0}^{n} \int_0^1 \langle \eta(-iT_{k+1-u} f)^{1+\beta}, \varphi \rangle du = \int_0^{n+1} \langle \eta(-iT_u f)^{1+\beta}, \varphi \rangle du = m_{n+1}[f],$$

where $\tilde{f} = e^{\alpha(\tilde{\beta}-1)}f$. Therefore, for any $t \geq 1$,

(2.8)
$$\sum_{k=0}^{\lfloor t-\ln t\rfloor} \langle Z_1 T_k(\tilde{f}_s + t^{\tilde{\beta}-1} \tilde{f}_c), \varphi \rangle = \eta \int_0^{\lfloor t-\ln t\rfloor + 1} \langle \left(-i T_u(f_s + t^{\tilde{\beta}-1} f_c) \right)^{1+\beta}, \varphi \rangle du.$$

Note that for each $u \geq 0$, $T_u f_c = f_c$. Also note that according to Step 1 in the proof of [20, Lemma 2.6], there exist $\delta > 0$ and $h \in \mathcal{P}$ (depending only on f_s) such that for each $u \geq 0$, $|T_u f_s| \leq e^{-\delta u} h$. It follows from Lemma 2.2 that there exists C > 0 such that for all u > 0 and t > 0,

$$|(-i(T_u f_s + t^{\tilde{\beta}-1} T_u f_c))^{1+\beta} - (-iT_u f_s)^{1+\beta} - (-it^{\tilde{\beta}-1} T_u f_c)^{1+\beta}|$$

$$= |-i|^{1+\beta} |(T_u f + t^{\tilde{\beta}-1} T_u f_c)^{1+\beta} - (T_u f_s)^{1+\beta} - (t^{\tilde{\beta}-1} T_u f_c)^{1+\beta}|$$

(2.9)
$$\leq C(t^{-\frac{\beta}{1+\beta}}|T_{u}f_{s}||T_{u}f_{c}|^{\beta} + t^{-\frac{1}{1+\beta}}|T_{u}f_{s}|^{\beta}|T_{u}f_{c}|)$$

$$\leq C(t^{-\frac{\beta}{1+\beta}}e^{-\delta u}h|f_{c}|^{\beta} + t^{-\frac{1}{1+\beta}}e^{-\delta \beta u}h^{\beta}|f_{c}|).$$

This means that there exists $C_1 > 0$ such that for all $t \geq 1$,

$$\left| \left(\sum_{k=0}^{\lfloor t - \ln t \rfloor} \langle Z_1 T_k(\tilde{f}_s + t^{\tilde{\beta} - 1} \tilde{f}_c), \varphi \rangle \right) - m_{\lfloor t - \ln t \rfloor + 1} [f_s] - \frac{1}{t} m_{\lfloor t - \ln t \rfloor + 1} [f_c] \right| \\
\stackrel{(2.8),(1.3)}{\leq} \left| \eta \int_0^{\lfloor t - \ln t \rfloor + 1} \langle \left(-i T_u (f_s + t^{\tilde{\beta} - 1} f_c) \right)^{1+\beta}, \varphi \rangle du - \eta \int_0^{\lfloor t - \ln t \rfloor + 1} \langle (-i T_u f_s)^{1+\beta}, \varphi \rangle du \right| \\
\stackrel{(2.9)}{\leq} C_1 \int_0^{\lfloor t - \ln t \rfloor + 1} \langle t^{-\frac{\beta}{1+\beta}} e^{-\delta u} h |f_c|^{\beta} + t^{-\frac{1}{1+\beta}} e^{-\delta \beta u} h^{\beta} |f_c|, \varphi \rangle du \\
\stackrel{(2.9)}{\leq} C_1 t^{-\frac{\beta}{1+\beta}} \langle h |f_c|^{\beta}, \varphi \rangle \int_0^{\infty} e^{-\delta u} du + C_1 t^{-\frac{1}{1+\beta}} \langle h^{\beta} |f_c|, \varphi \rangle \int_0^{\infty} e^{-\delta \beta u} du \\
\stackrel{(2.9)}{\leq} C_1 t^{-\frac{\beta}{1+\beta}} \langle h |f_c|^{\beta}, \varphi \rangle \int_0^{\infty} e^{-\delta u} du + C_1 t^{-\frac{1}{1+\beta}} \langle h^{\beta} |f_c|, \varphi \rangle \int_0^{\infty} e^{-\delta \beta u} du \\
\stackrel{(2.9)}{\leq} C_1 t^{-\frac{\beta}{1+\beta}} \langle h |f_c|^{\beta}, \varphi \rangle \int_0^{\infty} e^{-\delta u} du + C_1 t^{-\frac{1}{1+\beta}} \langle h^{\beta} |f_c|, \varphi \rangle \int_0^{\infty} e^{-\delta \beta u} du \\
\stackrel{(2.9)}{\leq} C_1 t^{-\frac{\beta}{1+\beta}} \langle h |f_c|^{\beta}, \varphi \rangle \int_0^{\infty} e^{-\delta u} du + C_1 t^{-\frac{1}{1+\beta}} \langle h^{\beta} |f_c|, \varphi \rangle \int_0^{\infty} e^{-\delta \beta u} du \\
\stackrel{(2.9)}{\leq} C_1 t^{-\frac{\beta}{1+\beta}} \langle h |f_c|^{\beta}, \varphi \rangle \int_0^{\infty} e^{-\delta u} du + C_1 t^{-\frac{1}{1+\beta}} \langle h^{\beta} |f_c|, \varphi \rangle \int_0^{\infty} e^{-\delta \beta u} du \\
\stackrel{(2.9)}{\leq} C_1 t^{-\frac{\beta}{1+\beta}} \langle h |f_c|^{\beta}, \varphi \rangle \int_0^{\infty} e^{-\delta u} du + C_1 t^{-\frac{1}{1+\beta}} \langle h^{\beta} |f_c|, \varphi \rangle \int_0^{\infty} e^{-\delta \beta u} du \\
\stackrel{(2.9)}{\leq} C_1 t^{-\frac{\beta}{1+\beta}} \langle h |f_c|^{\beta}, \varphi \rangle \int_0^{\infty} e^{-\delta u} du + C_1 t^{-\frac{1}{1+\beta}} \langle h^{\beta} |f_c|, \varphi \rangle \int_0^{\infty} e^{-\delta \beta u} du \\
\stackrel{(2.9)}{\leq} C_1 t^{-\frac{\beta}{1+\beta}} \langle h |f_c|^{\beta}, \varphi \rangle \int_0^{\infty} e^{-\delta u} du + C_1 t^{-\frac{1}{1+\beta}} \langle h^{\beta} |f_c|, \varphi \rangle du$$

Combining this with (1.4), we get that

(2.10)
$$\lim_{t \to \infty} \exp\left(\sum_{k=0}^{\lfloor t - \ln t \rfloor} \langle Z_1 T_k(\tilde{f}_s + t^{\tilde{\beta} - 1} \tilde{f}_c), \varphi \rangle\right) = \exp(m[f_s] + m[f_c]).$$

Also note that according to the Step 1 in the Proof of Theorem 1.6.(3) in [20], we have

(2.11)
$$\lim_{t \to \infty} \exp\left(\sum_{k=0}^{\lfloor t^2 \rfloor} \langle Z_1(-T_k \tilde{f}_1), \varphi \rangle\right) = \exp(m[-f_1]).$$

Thus the desired claim follows from (2.10) and (2.11).

Proof of Theorem 1.1. We first recall some facts about weak convergence which will be used later. For $f: \mathbb{R}^d \mapsto \mathbb{R}$, let

$$||f||_L := \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|}$$

and $||f||_{BL} := ||f||_{\infty} + ||f||_{L}$. For any probability distributions μ_1 and μ_2 on \mathbb{R}^d , define

$$d(\mu_1, \mu_2) := \sup \left\{ \left| \int f d\mu_1 - \int f d\mu_2 \right| : ||f||_{BL} \le 1 \right\}.$$

Then d is a metric. It follows from [7, Theorem 11.3.3] that the topology generated by d is equivalent to the weak convergence topology. Using the definition, we can easily see that, if μ_1 and μ_2 are the distributions of two \mathbb{R}^d -valued random variables X and Y respectively, defined on same probability space then

$$(2.12) d(\mu_1, \mu_2) \le \mathbb{E}|X - Y|.$$

In this proof, let us fix $\mu \in \mathcal{M}_{c}(\mathbb{R}^{d}) \setminus \{0\}$, $f_{s} \in \mathcal{C}_{s} \setminus \{0\}$, $f_{c} \in \mathcal{C}_{c} \setminus \{0\}$ and $f_{l} \in \mathcal{C}_{l} \setminus \{0\}$. Recall that S(t) $(t \geq 0)$ is given by (1.6). For every r, t > 0, let

$$S(t,r) := \left(e^{-\alpha t} \|X_t\|, \frac{X_{t+r}(f_s)}{\|X_{t+r}\|^{1-\tilde{\beta}}}, \frac{X_{t+r}(f_c)}{\|(t+r)X_{t+r}\|^{1-\tilde{\beta}}}, \frac{X_{t+r}(f_l) - \mathbf{x}_{t+r}(f_l)}{\|X_{t+r}\|^{1-\tilde{\beta}}}\right),$$

and

$$\widetilde{S}(t,r) = \left(e^{-\alpha(t+r)} \|X_{t+r}\| - e^{-\alpha t} \|X_t\|, 0, 0, 0\right),$$

where, for any t > 0, $x_t(f_1)$ is defined in (1.5) with f replaced with f_1 . Then $S(t+r) = S(t,r) + \widetilde{S}(t,r)$. We claim that

for each t > 0, under $\widetilde{\mathbb{P}}_{\mu}$, we have

$$S(t,r) \xrightarrow[r \to \infty]{d} (\widetilde{H}_t, \zeta^{f_s}, \zeta^{f_c}, \zeta^{-f_l}),$$

(2.13) where \widetilde{H}_t has the distribution of $\{e^{-\alpha t}||X_t||; \widetilde{\mathbb{P}}_{\mu}\}, \zeta^{f_s}, \zeta^{f_c}$ and ζ^{-f_l} are the $(1+\beta)$ stable random variables described in (1.4), and $\widetilde{H}_t, \zeta^{f_s}, \zeta^{f_c}$ and ζ^{-f_l} are independent.

For every $r, t \geq 0$, let $\mathcal{D}(r)$ and $\mathcal{D}(r, t)$ be the distributions of S(r) and S(t, r) under $\widetilde{\mathbb{P}}_{\mu}$ respectively; let $\widetilde{\mathcal{D}}(t)$ and \mathcal{D} be the distributions of $(\widetilde{H}_t, \zeta^{f_s}, \zeta^{f_c}, \zeta^{-f_1})$ and $(\widetilde{H}_{\infty}, \zeta^{f_s}, \zeta^{f_c}, \zeta^{-f_1})$, respectively. Then for each $\gamma \in (0, \beta)$, there exist constant C > 0 such that for every t > 0,

$$\frac{\overline{\lim}_{r \to \infty} d(\mathcal{D}(t+r), \mathcal{D})}{d(\mathcal{D}(t+r), \mathcal{D}(t))} + d(\mathcal{D}(t,r), \widetilde{\mathcal{D}}(t)) + d(\widetilde{\mathcal{D}}(t), \mathcal{D}) + d(\widetilde{\mathcal{D}}(t), \mathcal{D})$$

Therefore,

$$\overline{\lim_{r \to \infty}} d(\mathcal{D}(r), \mathcal{D}) = \overline{\lim_{t \to \infty}} \overline{\lim_{r \to \infty}} d(\mathcal{D}(t+r), \mathcal{D}) \stackrel{(2.14)}{\leq} \overline{\lim_{t \to \infty}} Ce^{-\alpha\tilde{\gamma}t} = 0.$$

The desired result now follows immediately.

Now we prove the claim (2.13). For every r, t > 0, let

$$\theta, \theta_s, \theta_c, \theta_l \in \mathbb{R} \mapsto k(\theta, \theta_s, \theta_c, \theta_l, r, t)$$

be the characteristic function of S(t,r) under $\widetilde{\mathbb{P}}_{\mu}$. Then for each $\theta, \theta_{\rm s}, \theta_{\rm c}, \theta_{\rm l} \in \mathbb{R}$ and r, t > 0,

$$k(\theta, \theta_{s}, \theta_{c}, \theta_{l}, r, t) = \widetilde{\mathbb{P}}_{\mu} \left[\exp \left(i\theta e^{-\alpha t} \| X_{t} \| + A(\theta_{s}, \theta_{c}, \theta_{l}, r, t, \infty) \right) \right]$$

$$(2.15) \stackrel{\text{bounded convergence}}{=} \lim_{u \to \infty} \frac{1}{\mathbb{P}_{\mu} (D^{c})} \mathbb{P}_{\mu} \left[\exp \left(i\theta e^{-\alpha t} \| X_{t} \| + A(\theta_{s}, \theta_{c}, \theta_{l}, r, t, u) \right); D^{c} \right],$$

where for each $u \in [0, \infty]$,

$$(2.16) A(\theta_{s}, \theta_{c}, \theta_{l}, r, t, u) = i\theta_{s} \frac{X_{t+r}(f_{s})}{\|X_{t+r}\|^{1-\tilde{\beta}}} + i\theta_{c} \frac{X_{t+r}(f_{c})}{\|(t+r)X_{t+r}\|^{1-\tilde{\beta}}} + i\theta_{l} \frac{X_{t+r}(f_{l}) - \mathbb{P}_{\mu}[\mathbf{x}_{t+r}(f_{l})|\mathscr{F}_{u}]}{\|X_{t+r}\|^{1-\tilde{\beta}}} = i\theta_{s} \frac{X_{t+r}(f_{s})}{\|X_{t+r}\|^{1-\tilde{\beta}}} + \frac{i\theta_{c}}{(t+r)^{1-\tilde{\beta}}} \frac{X_{t+r}(f_{c})}{\|X_{t+r}\|^{1-\tilde{\beta}}} + i\theta_{l} \frac{X_{t+r}(f_{l}) - \sum_{p \in \mathbb{Z}_{+}^{d}: \alpha\tilde{\beta} > |p|b} e^{(\alpha-|p|b)(t+r)} e^{-(\alpha-|p|b)u} X_{u}(\phi_{p})}{\|X_{t+r}\|^{1-\tilde{\beta}}}.$$

Now for each t > 0, we get

$$\lim_{r\to\infty} k(\theta, \theta_{\rm s}, \theta_{\rm c}, \theta_{\rm l}, r, t)$$

$$\stackrel{(2.15)}{=} \lim_{r \to \infty} \lim_{u \to \infty} \frac{1}{\mathbb{P}_{\mu}(D^c)} \mathbb{P}_{\mu} \left[\exp\{i\theta e^{-\alpha t} \|X_t\|\} \mathbf{1}_{\|X_t\| > 0} \mathbb{P}_{\mu} \left[\exp\{A(\theta_s, \theta_c, \theta_l, r, t, u)\} \mathbf{1}_{D^c} | \mathscr{F}_t \right] \right]$$

(2.16), Markov property
$$\lim_{r \to \infty} \lim_{u \to \infty} \frac{1}{\mathbb{P}_{\mu}(D^c)} \mathbb{P}_{\mu} \left[\exp\{i\theta e^{-\alpha t} \|X_t\|\} \mathbf{1}_{\|X_t\| > 0} \times \right]$$

$$\mathbb{P}_{X_t}\bigg[\exp\bigg\{A\bigg(\theta_{\mathrm{s}},\theta_{\mathrm{c}}\Big(\frac{r}{t+r}\Big)^{1-\tilde{\beta}},\theta_{\mathrm{l}},r,0,u-t\bigg)\bigg\}\mathbf{1}_{D^c}\bigg]\bigg]$$

$$\stackrel{\text{bounded convergence}}{=} \lim_{r \to \infty} \mathbb{P}_{\mu} \Bigg[\exp\{i\theta e^{-\alpha t} \|X_t\|\} \mathbf{1}_{\|X_t\| > 0} \frac{\mathbb{P}_{X_t}(D^c)}{\mathbb{P}_{\mu}(D^c)} \times \\$$

$$\widetilde{\mathbb{P}}_{X_t} \left[\exp \left\{ A \left(\theta_{\mathrm{s}}, \theta_{\mathrm{c}} \left(\frac{r}{t+r} \right)^{1-\tilde{\beta}}, \theta_{\mathrm{l}}, r, 0, \infty \right) \right\} \right] \right].$$

$$\stackrel{\text{Theorem 2.3}}{=} \mathbb{P}_{\mu} \bigg[\exp\{i\theta e^{-\alpha t} \|X_t\|\} \mathbf{1}_{\|X_t\| > 0} \frac{\mathbb{P}_{X_t}(D^c)}{\mathbb{P}_{\mu}(D^c)} \bigg] \bigg(\prod_{j=\text{s.c}} \exp\{m[\theta_j f_j]\} \bigg) \exp\{m[-\theta_l f_l]\}$$

$$= \widetilde{\mathbb{P}}_{\mu}[\exp\{i\theta e^{-\alpha t} ||X_t||\}] \left(\prod_{j=s,c} \exp\{m[\theta_j f_j]\} \right) \exp\{m[-\theta_l f_l]\}.$$

References

- [1] R. Adamczak and P. Miłoś, *CLT for Ornstein-Uhlenbeck branching particle system*, Electron. J. Probab. **20** (2015), no. 42, 35 pp.
- [2] S. Asmussen, Convergence rates for branching processes, Ann. Probab. 4 (1976), no. 1, 139–146.

- [3] S. Asmussen and H. Hering, *Branching processes*, Progress in Probability and Statistics, 3. Birkhäuser Boston, Inc., Boston, MA, 1983.
- [4] K. B. Athreya, Limit theorems for multitype continuous time Markov branching processes. I. The case of an eigenvector linear functional, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 12 (1969), 320–332.
- [5] K. B. Athreya, Limit theorems for multitype continuous time Markov branching processes. II. The case of an arbitrary linear functional, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 204–214
- [6] K. B. Athreya, Some refinements in the theory of supercritical multitype Markov branching processes,
 Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 (1971), 47–57.
- [7] R. M. Dudley, Real Analysis and Probability, Cambridge University Press, 2002.
- [8] E. B. Dynkin, Superprocesses and partial differential equations, Ann. Probab. 21 (1993), no. 3, 1185–1262.
- [9] C. C. Heyde, A rate of convergence result for the super-critical Galton-Watson process, J. Appl. Probability 7 (1970), 451–454.
- [10] C. C. Heyde, Some central limit analogues for supercritical Galton-Watson processes, J. Appl. Probability 8 (1971), 52–59.
- [11] C. C. Heyde and B. M. Brown, An invariance principle and some convergence rate results for branching processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, **20** (1971), 271–278.
- [12] C. C. Heyde and J. R. Leslie, Improved classical limit analogues for Galton-Watson processes with or without immigration, Bull. Austral. Math. Soc. 5 (1971), 145–155.
- [13] H. Kesten and B. P. Stigum, Additional limit theorems for indecomposable multidimensional Galton-Watson processes, Ann. Math. Statist. 37 (1966), 1463–1481.
- [14] H. Kesten and B. P. Stigum, A limit theorem for multidimensional Galton-Watson processes, Ann. Math. Statist. 37 (1966), 1211–1223.
- [15] A. E. Kyprianou, Fluctuations of Lévy processes with applications, Introductory lectures. Second edition. Universitext. Springer, Heidelberg, 2014.
- [16] Z. Li, Measure-valued branching Markov processes, Probability and its Applications (New York). Springer, Heidelberg, 2011.
- [17] R. Marks and P. Miłoś, *CLT for supercritical branching processes with heavy-tailed branching law*, arXiv:1803.05491.
- [18] G. Metafune, D. Pallara, and E. Priola, Spectrum of Ornstein-Uhlenbeck operators in L^p spaces with respect to invariant measures, J. Funct. Anal. **196** (2002), no. 1, 40–60.
- [19] P. Miłoś, Spatial central limit theorem for supercritical superprocesses, J. Theoret. Probab. 31 (2018), no. 1, 1–40.
- [20] Y.-X. Ren, R. Song, Z. Sun and J. Zhao, Stable central limit theorems for super Ornstein-Uhlenbeck processes, Elect. J Probab., 24 (2019), no. 141, 1–42.
- [21] Y.-X. Ren, R. Song, and R. Zhang, Central limit theorems for super Ornstein-Uhlenbeck processes, Acta Appl. Math. 130 (2014), 9–49.
- [22] Y.-X. Ren, R. Song, and R. Zhang, Central limit theorems for supercritical branching Markov processes, J. Funct. Anal. **266** (2014), no. 3, 1716–1756.
- [23] Y.-X. Ren, R. Song, and R. Zhang, Central limit theorems for supercritical superprocesses, Stochastic Process. Appl. 125 (2015), no. 2, 428–457.
- [24] Y.-X. Ren, R. Song, and R. Zhang, Central limit theorems for supercritical branching nonsymmetric Markov processes, Ann. Probab. 45 (2017), no. 1, 564–623.

YAN-XIA REN, LMAM SCHOOL OF MATHEMATICAL SCIENCES & CENTER FOR STATISTICAL SCIENCE, PEKING UNIVERSITY, BEIJING 100871, P. R. CHINA

Email address: yxren@math.pku.edu.cn

Renming Song, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Email address: rsong@illinois.edu

Zhenyao Sun, Faculty of Industrial Engineering and Management, Technion, Israel Institute of Technology, Haifa 3200003, Israel

 $Email\ address: {\tt zhenyao.sun@gmail.com}$

JIANJIE ZHAO, SCHOOL OF MATHEMATICAL SCIENCES, PEKING UNIVERSITY, BEIJING 100871, P. R. CHINA

 $Email\ address: {\tt zhaojianjie@pku.edu.cn}$