1.3.1. Классическая вероятность. Геометрическая вероятность. Формула полной вероятности и формулы Байеса

Цель занятия:

Напомнить основные аксиомы, понятия и базовые утверждения теории вероятностей

План занятия:

- 1. Подробно рассмотрим аксиоматику Колмогорова.
- 2. Рассмотрим классическую и геометрическую вероятность как частные случаи вероятностных пространств
- 3. Выведем формулу полной вероятности и формулу Байеса.
- 4. Разберем пример применения формулы Байеса.

Аксиоматика Колмогорова

В теоретико-множественной аксиоматике теории вероятностей основной объект – это вероятностное пространство (Ω, F, P) . Оно состоит из трех основных ингредиентов:

 Ω – пространство элементарных событий. Его элементы $\omega \in \Omega$ называются элементарными событиями. В результате любого случайного эксперимента на выходе может наблюдаться только одно элементарное событие (или исход) ω .

 $F \subset 2^{\Omega}$ – алгебра подмножеств множества Ω . Ее элементы $A \in F$ называются измеримыми подмножествами Ω и интерпретируются как случайные события. Требуется, чтобы F было так называемой σ -алгеброй, то есть, чтобы оно было замкнуто относительно взятия счетного количества пересечений и/или объединений ее элементов, а также взятия дополнений. Это требование соотносится с интуитивным представлением о случайных событиях: пересечению событий $A \cap B$ отвечает событие, состоящее в том, что A и B произошли одновременно. Объединению $A \cup B$ — событие, состоящее в том, что произошло хотя бы одно из событий A или B. Другими словами, в некотором смысле пересечение — это логическое "и", объединение — это логическое "или". Взятие дополнения \overline{A} при этом, разумеется, соответствует логическому "не".

 $P: F \to [0, 1]$ — **вероятностная мера** (или просто **вероятность**). Требуется, чтобы P была - аддитивной, то есть, чтобы $P(\bigcup_{k=1}^{\infty} A_k) = \bigcup_{k=1}^{\infty} P(A_k)$ для попарно непересекающихся измеримых событий A_k . При этом требуется также, чтобы $P(\emptyset) = 0$, $P(\Omega) = 1$.

Классическая и геометрическая вероятность как частные случаи вероятностных пространств

Если множество Ω конечно или счетно, то говорят о так называемой дискретной модели теории вероятностей. Очень важный в приложениях случай вероятность пространства – это так называемая классическая вероятность. Пусть Ω – конечно, и состоит из элементарных событий ω_k , $k=1,2,\ldots,n$, которые по той или иной причине необходимо считать "равновероятными", "равновозможными". (Пример такой ситуации – это, скажем, подбрасывание честной игральной кости. Ω в таком случае состоит из шести элементов ω_1,\ldots,ω_6 , интерпретация которых такова: $\omega_k=$ "на кубике выпало число k".) Алгебра событий F в таком случае совпадает со всеми подмножествами Ω , то есть, $F=2^{\Omega}$. Меру P определяют на элементарных событиях равномерным образом, то есть, $P(\omega_k)=\frac{1}{n}$. Ясно, что такое определение позволяет вычислить вероятность любого события (подмножества) $A\subset\Omega$ по формуле $P(A)=\frac{|A|}{|\Omega|}$. Эта формула – и есть классическое определение вероятности.

В жизни бывают ситуации, когда Ω не является счетным. Пример такой ситуации — это стрельба в круглую мишень. Скажем, можно задаться вопросом, с какой вероятностью гипотетический стрелок попадет внутрь круга радиуса вдвое меньше, чем мишень. В таком случае говорят о непрерывных моделях вероятности. Одна из простейших таких моделей — так называемая **геометрическая вероятность.** В ней пространство Ω является измеримым (по Лебегу, например) подмножеством вещественного пространства R^n , алгебра $F \subset 2^{\Omega}$ определяется тогда, как алгебра измеримых подмножеств Ω , а сама вероятность определяется по формуле, аналогичной классической вероятности: $P(A) = \frac{\mu(A)}{\mu(\Omega)^n}$ где μ — мера в R^n (опять же, например, Лебега).

Формула полной вероятности и формула Байеса

Очень важное определение. Пусть (Ω, F, P) – вероятностное пространство. Пусть $A \in F$ – некоторое событие положительной вероятности, то есть, $P(A) \neq 0$. Тогда для всех измеримых подмножеств $B \in F$ можно определить так называемую условную вероятность события B при наступлении события A по формуле

$$P(B|A) = \frac{P(A \cap B)}{P(A)}.$$

Эта формула называется формулой условной вероятности, и сама величина $P(B \mid A)$ называется условной вероятностью события B при наступлении события A.

Если теперь мыслить $P(\cdot \mid A) = P_A$ как функцию $P_A : F \to [0, 1]$, то мы получим новую вероятностную меру на F, и, следовательно, новое вероятностное пространство (Ω, F, P_A) . Мыслить эту меру нужно следующим образом: предположим, событие A уже наступило, и это известно достоверно. Тогда можно задаться вопросом: с какой вероятностью при этом знании (как говорят, апостериорном) наступит событие B? Ответ дается формулой условной вероятности.

Очень часто на практике найти (или измерить/оценить) условную вероятность $P(B \mid A)$ — гораздо более простая задача, чем измерить/оценить вероятность совместного наступления событий $P(A \cap B)$. Поэтому формулу условной вероятности можно читать и в следующем виде:

$$P(A \cap B) = P(B \mid A) \cdot P(A)$$

Эта формула имеет тривиальное, однако чудовищно важное обобщение: формулу полной вероятности.

Пусть H_1, H_2, \dots, H_n — полный набор попарно несовместных событий положительной вероятности. То есть, требуется, чтобы $Hi \cap Hj = \emptyset$ для всех i, j, и $\sum H_k = 1$. Пусть $A \in F$ — произвольное событие. Тогда справедлива формула полной вероятности:

$$P(A) = \sum_{k} P(A \mid H_k) \cdot P(H_k).$$

События H_k в этом контексте называются гипотезами, и читать эту формулу можно следующим образом. Вероятность наступления события A может быть вычислена так: нужно найти вероятности A в предположении, что верны все гипотезы H_k из полного набора гипотез, и затем сложить с весами, равными вероятностями самих гипотез.

Отметим еще одну важнейшую формулу теории вероятностей, **формулу Байеса.**

Пусть $A, H \in F$ — два события. Об H мы, опять же, будем думать как о гипотезе из полного набора $\{H, \bar{H}\}$, а об A — как о некотором произвольном событии. Запишем вероятность их одновременного наступления двумя способами посредством формулы условной вероятности:

$$P(A \cap H) = P(H \mid A) \cdot P(A) = P(A \mid H) \cdot P(H).$$

Из этой формулы можно выразить вероятность P(H|A):

$$P(H|A) = \frac{P(A|H) \cdot P(H)}{P(A)},$$

И запишем полную вероятность события A, стоящую в знаменателе, посредством формулы полной вероятности:

$$P(A) = P(A \mid H) \cdot P(H) + P(A \mid \overline{H}) \cdot P(\overline{H}).$$

Подставляя это соотношение в уравнение выше, получим знаменитую формулу Байеса:

$$P(H|A) = \frac{P(A|H) \cdot P(H)}{P(A|H) \cdot P(H) + P(A|\bar{H}) \cdot (1 - P(\bar{H}))}.$$

В этом контексте вероятность P(H|A) – апостериорной. Сила формулы Байеса состоит в том, что она позволяет при появлении новой информации (о том, что произошло событие A), улучшить наше представление о том, с какой вероятностью, или, как говорят, с каким уровнем доверия, имеет место гипотеза H.

Пример применения формулы Байеса

Допустим, в некоторой контрольной группе из 10000 человек в среднем 1 имеет приобретенный иммунодефицит. Пациент сдает тест, достоверность которого составляет 99%. Допустим, пришел положительный результат теста. Можно задать вопрос: стоит ли паниковать? Другими словами: с каким уровнем доверия имеет место гипотеза "у пациента ВИЧ"?

Ответ на этот вопрос может дать формула Байеса. До того, как пациент узнал результаты анализов, априорная вероятность заболевания у него составляла 1/10000. Однако положительный тест вносит поправку в достоверность гипотезы о заболевании.

В наших обозначениях H = "пациент болен ВИЧ", A = "пришел положительный тест". Мы должны вычислить уровень достоверности гипотезы H при условии A. Итак, априорная вероятность есть P(H) = 1/10000; достоверность теста есть $P(A \mid H) = 0$, 99. Положительный тест может прийти как в случае, если пациент действительно болен (за это отвечает первое слагаемое в знаменателе, $P(A \mid H) \cdot P(H) = 0$, 99 · 0, 0001), так и в случае, если тест оказался ложно-положительным (второе слагаемое, $P(A \mid H) \cdot (1 - P(H)) = 0$, 01 – 0, 9999). Применяя формулу Байеса, найдем апостериорную вероятность инфекции:

$$P(H|A) = \frac{0.99 \cdot 0.0001}{0.99 \cdot 0.0001 + 0.01 \cdot 0.9999} \approx 0.01 = 1\%.$$

Таким образом, после положительного теста уровень доверия к наличию инфекции у пациента составляет всего 1%! Именно по этой причине тесты на ВИЧ и другие опасные и/или редкие болезни делают дважды или трижды. Действительно, по формуле Байеса можно вычислить апостериорную вероятность инфекции, если известно, что пришло два положительных теста:

$$P(H|A^2) = \frac{0.9999 \cdot 0.0001}{0.9999 \cdot 0.0001 + 0.0001 \cdot 0.9999} = 0, 5 = 50\%.$$

В случае с тремя положительными тестами мы имеем:

$$P(H|A^3) = \frac{0,999999 \cdot 0,0001}{0,999999 \cdot 0,0001 + 0,000001 \cdot 0,9999} \approx 0,99 = 99\%.$$

Итоги:

- 1. Вспомнили аксиоматику Колмогорова
- 2. Определили классическую вероятность
- 3. Определили геометрическую вероятность
- 4. Вывели формулу полной вероятности и формулу Байеса, продемонстрировали ее работу на примере