

Interaktionsparadigmen

Ilhan Aslan, Chi Tai Dang, Björn Bittner, Katrin Janowski, Elisabeth André

Human Centered Multimedia

Institute of Computer Science Augsburg University Universitätsstr. 6a 86159 Augsburg, Germany

Interaktionsparadigmen

- Interaktionsparadigmen:
 - legen den Stil der Interaktion fest
 - berücksichtigen:
 - Geräte
 - Anordnung von Anzeigen und Eingabemöglichkeiten
 - Situation/Position des Nutzers
 - Erlaubte/unerwünschte Umgebungseinflüsse
 - mentale/konzeptuelle Modelle
- Klassische Interaktionsparadigmen
 - Konversation
 - 2. Direkte Manipulation (von Objekten)
 - 3. Navigation / Browsing

Interaktionsparadigmen Konversation

Idee: Interaktion über Spracheingabe

Arten von Konversation:

- Verbal: Nutzer spricht DIREKT mit dem System
 - Natürliche Sprache
 - Schlüsselwörter (z.B. Befehle)
- Non-verbal: Nutzer "spricht" INDIREKT mit dem System
 - Textbefehle als Kommandosprache für eine Konsole
 - Gesten
 - Mimik
 - **–**

Konversation: Natürliche Sprache

- + System spricht die Sprache des Nutzers
- + Einfach zu nutzen, insb. für Computerund Technikneulinge
- Schwer für freie Sprache
- Ungenaue, mehrdeutige Äußerungen, Missverständnisse
- Lösungen:
 - Domäne stark einschränken
 - Schlüsselworte erkennen.

https://www.youtube.com/wat ch?feature=fvwp&NR=1&v=d hy0MYgLrIY

Konversation: Textbefehle als Kommandosprache für eine Konsole


```
C:\Users\HCM-Lab\echo xTIMEx
17:23:28,63

C:\Users\HCM-Lab\java -version
java version "1.7.0_45"
Java(TM) SE Runtime Environment (build 1.7.0_45-b18)
Java HotSpot(TM) 64-Bit Server UM (build 24.45-b08, mixed mode)

C:\Users\HCM-Lab\cd..

C:\Users\cd..

C:\Scd xPROGRAMFILESx

C:\Program Files\_
```

- + einfach zu programmierende Benutzerschnittstelle
- + nur für Umgebungen mit stark eingeschränkter Menge von häufig benutzten Kommandos sinnvoll
- Wenig intuitiv
- Nutzer muss Kommandos und deren Bedeutung erlernen

Interaktionsparadigmen Direkte Manipulation

Merkmale direkter Manipulation

Idee: Indirekte Interaktion mit System durch Manipulation von Objekten

Merkmale:

- Physikalische Aktionen (z.B. Button Drücken) anstelle komplexer Syntax
- Manipulation eines Objekts ist an eine Systemeingabe gekoppelt
- 3. Konsistente Darstellung von Objekten
- Schnelle inkrementelle und umkehrbare Operationen
- Auswirkung der Operationen auf das betroffene Objekt unmittelbar für den Benutzer sichtbar

Shneiderman 1982

Direkte Manipulation

Beispiele:

Manipulation virtuell angezeigter Objekte

Manipulation realer Objekte
 (z.B. Greifbare Schnittstellen (engl. tangible interfaces))

Direkte Manipulation: Ein historisches Beispiel

Xerox Alto (1973) / Xerox Star (1981)

- Erste Computer mit WIMP Interface
 ("windows, icon, menus, pointer") bzw.
 GUI ("Graphical user interface")
- Direkte Manipulation geht mit der Idee Graphischer Benutzeroberflächen einher (siehe Metapher, Direktes Mapping...)
- Grundlage f
 ür den Erfolg von Microsoft und Apple

Direkte Manipulation: Interaktionsgeräte

Unterscheidung der Geräte nach Shneiderman (1982):

- Relative vs. absolute Eingabe
 - Positionseingabe: konkrete bzw. absolute Position
 - Bewegungseingabe: relative Position zu vorheriger Position
- Direkte vs. indirekte Eingabe
 - "a unified input and display surface"
 - Ist das Eingabemedium auch das Ausgabemedium?

Direkte Manipulation: Interaktionsgeräte

Beispiele:

- Maus
 - Relativ, da Bewegungen ermittelt werden (Mausspur)
 - Indirekt, da für Eingabe (die Maus) und Ausgabe (der Bildschirm) unterschiedliche Medien genutzt werden
- Interaktive Oberflächen (z.B. Microsoft Surface/Smart Phones/Tablets)
 - Absolute Positionierung und Bewegungsaktionen durch Finger
 - Direkt, da Ein- und Ausgabe durch das gleiche Medium erfolgen

Direkte Manipulation: Ein modernes Beispiel

 Schneller Austausch von Daten durch Berührung zweier NFC-fähiger Smartphones

Direkte Manipulation: 3D Stereoskopische Displays

- Probleme bei Fokussierung:
 - Fokus auf Finger => Gestörte Wahrnehmung des Objekts
 - Fokus auf Objekt => Gestörte Wahrnehmung des Fingers

Direkter Manipulation: Vor- und Nachteile

- + Einfach zu erlernen
- + Intuitive Bedienung
- + Benutzer hat immer die Kontrolle
- + Vermeidung syntaktischer Fehler
- großer Suchraum
- Aktionen ausschließlich als Reaktion auf unmittelbare Benutzereingaben

Interaktionsparadigmen Navigation / Browsing

Navigation / Browsing

Idee: Interaktion dient der Suche / Navigation in einem System

Listen- oder Menünavigation

Hypermedia-Dokumente

3D-Welten

Navigation durch Menüs und Bildsammlungen

Fischaugentechnik: Information im Fokus gut sichtbar ist, während der Kontext zunehmend kleiner und verzerrter dargestellt wird

University of Maryland

http://www.phodana.de/flash/fischauge n-navigation-mit-adobe-flex/

Navigation in 3D Welten

https://www.youtube.com/watch?
v=B9ioVceVlvI

Navigation in 3D-Welten und Hypermedia-Dokumenten

- + Nutzer wird aktiv in den Vorgang der Informationsdarbietung einbezogen
- + Fördert exploratives Verhalten
- + Bietet Möglichkeit zur Organisation heterogener und unstrukturierter Information
- möglicher Orientierungsverlust

Neue Interaktionsparadigmen

- Vorherrschendes Design in den 80er Jahren:
 Nutzerzentrierte Applikationen für einzelne Desktopnutzer
- Neue Sichtweise seit Mitte der 90er Jahre
 Technische Entwicklungen führten zu neuer Generation von Mensch-Computer-Umgebungen (Virtuelle Welten, Multimedia, agentenbasierte Interfaces, Ubiquitäres Computing)
- 'Going beyond the desktop' führte zu neuen Herausforderungen, Fragen und Phänomenen

Neue Interaktionsparadigmen

Perceptual Tangible / **Interfaces Embodied Graspable Interfaces Interfaces Ubiquitous / Intuitive** uvm. **Pervasive Interfaces Computing Intuitive Social Augmented** Gestensteuerung **Interfaces** Reality

Interaktionsparadigma Embodied Agents

Embodied Agents

Direkte Manipulation

Indirektes

Management

Interface als Summe aller Informationskanäle zwischen Benutzer und Computer

Interface als Vermittler zwischen Benutzer und Anwendung

Computer als Werkzeug

Computer als Agent

Embodied Agents

Embodied Agents Vor- und Nachteile

- + Spezifikation komplexer Aufgaben auf hohem Abstraktionsniveau
- + Delegation von Aufgaben möglich
- Verlust an Kontrolle
- Fehlende Transparenz, was die Fähigkeiten und das Verhalten des Agenten angeht
- Möglicherweise nicht-deterministisches Verhalten

Interaktionsparadigma Natural User Interfaces

Natural User Interfaces (NUI)

Die Evolution der Interaktionsparadigmen:

Natürliche Interaktionen direkt mit Finger, Gesten, Bewegungen

Natural User Interfaces (NUI)

Quelle: Jun Rekimoto, Sony

http://www.youtube.com/watch?v=ITMAKHzbl1E&feature=player_embedded

http://www.youtube.com/watch
?v=rFw9aMubL-Y

Natural User Interfaces (NUI)

http://video.golem.de/games/9524/microsoft-ueber-die-funktionen-von-xbox-smart-glass.html

http://www.youtube.com/watch
?v=4e3qaPg_keg

Vor- und Nachteile von NUIs

- + Geringerer Lernaufwand
- + Weniger Funktionalität → einfachere Nutzerschnittstelle
- Größerer Nutzerkreis
- Sehr gut für kollaboratives Arbeiten
- vielen gleichzeitigen Aktionen möglich
- Weniger Funktionalität → ungeeignet für Profi-Anwendungen
- Teilweise sehr teure Hardware für ein stabiles System
- Natürliche Verschmutzung (Staub, Fett, etc.)
- Größerer körperlicher Aufwand

Interaktionsparadigma (Be)greifbare, tangible Interaktion

Tangible Interaktion (Forschung)

Prinzip:

- Alltägliche Objekte werden zum Träger digitaler Information.
- Nahtloser Übergang zwischen virtueller und physikalischer Welt
- Interaktion zwischen Mensch und physikalischer Welt erfolgt zwar rechnergestützt, jedoch treten die daran beteiligten Rechner nicht unmittelbar in Erscheinung.

Display Cube (Koop. mit LMU)

RFID-Based Tangible Interaction

Tangible Interaktion (Spiele)

Interaktive Oberflächen

Herausforderungen:

- Stark parallel (parallele Eingaben mehrerer Nutzer, beidhändige Eingaben)
- Multimodale Eingabe (Tangible / Finger Interaktion)
- Kontextabhängige Interpretation

Tangile Interaktion

Multitouch Interaktion

Tangible Interaktion

Beispiel: Tangible Geospace on MetaDesk)

Tangible Interaktion Vor- und Nachteile

Vorteile

- Natürliche und intuitive Interaktion
- Erfassung mehrerer Sinne
- Körperliche Interaktion
- Realistischeres Interaktion
- Erhöhung der Immersion

Nachteile

- Keine standardisierten Ein- und Ausgabegeräte
- Aufwand bei der Herstellung
- Fehlende Dynamik von Tangibles (nur schwer oder gar nicht änderbar)

Interaktionsparadigma Intuitive Gestensteuerung

Intuitive Gestensteuerung Handgesten

Wiimote:

- Beschleunigungssensoren für 3 Achsen
- Infrarot-Sensor + IR-LED-Bar
- Vibration

Kinderuni Augsburg

Intuitive Gestensteuerung Finger- und Handgesten

Leap Motion Sensor:

 Erkennt Fingergesten über einen optischen Sensor

http://www.youtube.com/watch?v=xNqs_S-zEBY&list=FLyChSY1QQ1pID7o68CSJmvg

Myo Armband:

 analysiert Muskelaktivität, zur Erkennung von Fingergesten

Intuitive Gestensteuerung Ganzkörper-Gesten

Kinect

- Erkennung von Gesten und Ganzkörperinteraktionen
- Kameras für Farbe und Tiefeninformationen

Interaktion durch z.B.:

- Kopfrichtung
- Körperstellungen
- Fußbewegungen
- Handbewegungen
- Fingerzeigen

http://www.youtube.com/watch
?v=tUGqmatPQkk

Intuitive Gestensteuerung Vor- und Nachteile

Vorteile:

- Intuitive Bedienung mit Händen oder dem ganzen Körper
 - z.B. Arbeiten wie in "Minority Report" oder "Iron Man 2"
- Ermöglicht viele Dimensionen für Interaktion
 - 3D-Raum, Position, Haltung
 - Richtungsänderungen von Händen, Füßen, Kopf, etc.
 - Gesten mit Händen, Füßen, Kombinationen, Körper

Nachteile:

- Ermüdend (je nach Einsatz des Körpers)
- Technisch anspruchsvollere Software erforderlich, da durch mehr Dimensionen auch mehr Fehlerquellen entstehen

Interaktionsparadigma Augmented Reality

 Einbettung von virtuellen Charakteren und Objekten in die reale Welt des Benutzers

Virtueller Anatomieassistent:

- Nutzer sieht sich in virtuellem Spiegel
- Reale Objekte z.B. das Skelett werden durch virtuelle Organe augmentiert
- Virtueller Assistent hilft bei der Auswahl und Platzierung der Organe
- Interaktion über optisches Trackingsystem (Position des Skelettes und "3D-Maus"
 zum Platzieren der Organe)

PhobiAR

Überlagerung der realen Welt mit Spinnen zu Therapiezwecken

Virtuelle Besucher am Lehrstuhl:

- Motion Capturing System zur Erfassung der Nutzerbewegungen
- Head Mounted Display f
 ür die Darstellung

Augmented Reality Vor- und Nachteile

Vorteile:

- Steigert die Wahrnehmung der realen Welt und der Interaktionen mit ihr.
- Virtuelle Objekte zeigen Informationen, die sonst nicht direkt über unsere Sinne erkennbar sind.
- Informationen, die durch die virtuellen Objekte vermittelt werden, helfen bei der Erfüllung realer Aufgaben.

Nachteile:

- Technische Probleme bei der Kombination von realer und virtueller Welt
- Mögliche Gefahrenquellen durch eingeschränkte
 Wahrnehmung der realen Welt (z.B. beim Autofahren)

Mobile Augmented Reality

CityViewAR (Christchurch, NZ)

http://www.hitlabnz.org/index .php/products/cityviewar

Mobile Augmented Reality

Google Glass

blendet Nutzern Informationen ins Sichtfeld ein

http://www.youtube.com/watch?list=UUK8sQmJBp8GCxrOt XWBpyEA&feature=player_embedded&v=v1uyQZNg2vE

Mobiler Augmented Reality Vor- und Nachteile

- Siehe Augmented Reality
- Zusätzliche Vorteile:
 - Mobiler Einsatz ermöglicht
 - Nutzung von handelsüblichen Smartphones möglich
- Zusätzlicher Nachteil:
 - Ausreichende Rechenleistung erforderlich

Interaktionsparadigmen Zusammenfassung

Wie entstehen Interaktionsparadigmen?

 meist durch Analogien und Metaphern-Bildung Beispiel:

Funktion und Bedienung sind bekannt

Analogie zur Schreibmaschine erschließt Funktion und Bedienung

- durch langwierige Nutzung und Gewöhnung (z.B. Telefon, Fernseher, Fernbedienung, Softkeys, usw.)
- Gefahr, dass Metapher zu "wörtlich" genommen wird.

Welches Interaktionsparadigma sollte man einsetzen?

Einige Faustregeln:

- Direkte Manipulation ist geeignet f
 ür Aufgaben, bei denen etwas gestaltet wird (z.B. Texte, Graphik, ...)
- Kommandos sind gut geeignet für wiederkehrende Aufgaben (z.B. File-Management)
- Konversationen oder Sprache ist besonders gut für Computerneulinge, Kinder, Telefonie-Anwendungen geeignet
- Hybride Formen sind geeignet, wenn die gleiche Aufgabe auf verschiedene Art von verschiedenen Nutzern gelöst werden soll
- Interface Metaphern k\u00f6nnen/sollten sich an den Aufgaben oder den zu manipulierenden Objekten orientieren

Welches Interaktionsparadigma sollte man einsetzen?

Einige Kriterien:

Flexibilität

- Dialoginitiative
- Ausführbarkeit mehrerer Aktionen/Aufgaben gleichzeitig
- Unterbrechbarkeit von Aktionen/Aufgaben
- Individuelle Anpassbarkeit
- Aufgabenrationalisierung

Lernbarkeit:

- Vertrautheit
- Generalisierbarkeit
- Konsistenz
- Vorhersagbarkeit

Robustheit

- Beobachtbarkeit
- Korrigierbarkeit
- Antwortverhalten
- Stabilität
- Aufgabenangemessenheit

Künftige Interaktionsparadigmen

- Durch Einbettung von Computern und Sensorik in Gebrauchsgegenstände sowie deren Vernetzung erhalten diese neue Zusatzfunktionen: Beispiele:
 - Dinge werden ansprechbar
 - Dinge geben Äußerungen (Sprache, Display) von sich
 - Dinge beobachten Umgebung und Nutzer, um situationsbezogen zu antizipieren, welche Dienste gerade benötigt werden (proaktives Verhalten)
- Ziel sollte jedoch sein, gesteigerte Funktionalität für den Nutzer beherrschbar zu halten, z.B. durch:
 - die Wahl intuitiver Interaktionsformen
 - Anlehnung an bekannte Interaktionsformen (Vereinheitlichung)
 - Transparenz: "Was kann ein System? Warum tut es das?"

Zusammenfassung

- Einige der üblichen Interaktionsgeräte und -paradigmen sind schon recht alt
- Die Hardware stellt die Rahmenbedingungen für Interaktionsmöglichkeiten
- Paradigmenwechsel vom derzeit noch dominierenden "Desktop Computing" hin zu hochkomplexen multimodalen Interaktionsumgebungen
- > neue Chancen und Herausforderungen für die Gestaltung der Mensch-Maschine Interaktion