Lista de Exercícios EQE-776 Modelagem e simulação de processos

Questão 1

Dois tanques cilíndricos são colocados em série como apresentado na seguinte figura.

São conhecidos os seguintes dados:

Q₀ = 20 m³/h; Vazão de alimentação para o TK1

D₁ = 4 m; Diâmetro do TK1

D₂ = 3 m; Diâmetro do TK2

k₁ = 14 m^{2.5}/h; Parâmetro da válvula saída do TK1

k₂ = 12 m^{2.5}/h; Parâmetro da válvula saída do TK2

h₁₀ = 3 m; Nível de líquido inicial no TK1

h₂₀ = 2 m; Nível de líquido inicial no TK2

As vazões de saída de cada tanque podem ser estimadas em função do nível de líquido no próprio tanque mediante a seguinte equação: $Q_i=k_i\,\sqrt{h_i}$; em que h_i é o nível de líquido no tanque i

Elabore o modelo dinâmico do processo e realize a simulação das primeiras 20 horas de operação para obter o gráfico do perfil temporal do nível de líquido em cada tanque.

Questão 2

Um tanque de mistura perfeitamente agitado recebe duas correntes de entrada e tem uma corrente de saída como apresentado na figura.

São conhecidos os seguintes dados:

F₁ = 10 kg/min; Vazão da corrente 1

x_{A1} = 0,6; Fração mássica do componente A na corrente 1

x_{B1} = 0,0; Fração mássica do componente B na corrente 1

x_{C1} = 0,4; Fração mássica do componente C na corrente 1

F₂ = 8 kg/min; Vazão da corrente 2

x_{A2} = 0,0; Fração mássica do componente A na corrente 2

x_{B2} = 0,7; Fração mássica do componente B na corrente 2

x_{C2} = 0,3; Fração mássica do componente C na corrente 2

rho_A = 1200 kg/m³; Densidade do componente A

rho_B = 1400 kg/m³; Densidade do componente B

rhoc = 1000 kg/m³; Densidade do componente C

A = 0,2 m²; Área da seção transversal do tanque

k = 0,02 m^{2.5}/min; Parâmetro da válvula saída do taque

mA0 = 20 kg; Quantidade inicial do componente A dentro do tanque

mB0 = 20 kg; Quantidade inicial do componente B dentro do tanque

mC0 = 40 kg; Quantidade inicial do componente C dentro do tanque

A vazão de saída pode ser estimada em função do nível de líquido no tanque mediante a seguinte equação: $F_3 = \rho_3 \ k \ \sqrt{h}$; em que ρ_3 é a densidade da corrente 3 e h é o nível de líquido no tanque.

Elabore o modelo dinâmico do processo e realize a simulação dos primeiros 60 minutos de operação para obter o gráfico do perfil temporal do nível de líquido e das frações mássicas de cada componente na corrente de saída.

Questão 3

Um reator do tipo BSTR (batelada) é utilizado para executar a seguinte reação reversível:

$$A + B \leftrightarrow C + D$$

As taxas [mol.L⁻¹.min⁻¹)] das reações direta e inversa podem ser estimadas segundo as seguintes equações:

$$r_d = k_d C_A^{1,1} C_B^{1,4}$$
 $k_d = 50000 e^{\left(-\frac{4000}{T}\right)}$
 $r_i = k_i C_C^{1,3} C_D^{1,2}$ $k_i = 30000 e^{\left(-\frac{5000}{T}\right)}$

em que CA, CB, CC e CD são as concentrações [mol/L] e T é a temperatura [K]

Inicialmente são colocados no reator somente os reagentes A e B, com concentrações de 0,5 mol/L e 0,8 mol/L, respectivamente. O reator apresenta um sistema de ajuste de temperatura que inicialmente está fixado em 400 K. Essa temperatura é mantida constante durante os primeiros 5 minutos de batelada. Passado esse tempo, inicia-se uma rampa de diminuição da temperatura de forma que ao final da batelada a temperatura alcança o valor de 350 K.

Elabore o modelo dinâmico do processo e realize a simulação dos 15 minutos de batelada para obter o gráfico do perfil temporal da temperatura, das concentrações de cada componente e da conversão do reagente A.

Questão 4

Considere um sistema com reator tubular de dispersão axial e reciclo apresentado na seguinte figura:

Segue o modelo adimensional do reator é

$$\frac{\partial C(t,z)}{\partial t} + \frac{\partial C(t,z)}{\partial z} = \frac{1}{Pe} \frac{\partial^2 C(t,z)}{\partial z^2} - Da C(t,z)$$

Sendo as condições de contorno:

$$C(t, 0) - \frac{1}{P_e} \frac{\partial C(t, z)}{\partial z} \bigg|_{z=0} = C_{alim}$$

$$\frac{\partial C(t, z)}{\partial z} \bigg|_{z=1} = 0$$

Perceba que a alimentação do reator (C_{alim}) deve ser obtida a partir do balanço no ponto de mistura. Discretize a coordenada z em diferenças finitas, utilizando 60 pontos, e resolva o sistema de EDOs resultante, conhecendo os seguintes dados:

R = 5; Razão de reciclo ($R = Q_{REC}/Q_F$)

Pe = 15; Número adimensional Péclet

Da = 1; Número adimensional Damkohler

C_F = 1; Concentração do reagente na entrada adimensional

Q_F = 10; Vazão de entrada adimensional

O reator está inicialmente vazio.

Simule o comportamento do sistema durante 5 unidades de tempo adimensionais para obter o gráfico do perfil temporal da C_{alim} e da concentração dentro do reator para z=0,25; z=0,50; z=0,75; e z=1.