

COMPLEX ROOTS

DEFINITION

LET NEIN NZZ CET WEL WE SAY THAT ZEK IS A COMPLEX N-ROOTH of WIFIT SOLVES

3 N = W

25 = 21 CONPLEX ROOT

THE NOTATION W DENOTES ALL POSSIBLES ROOT of W

REMARK

Z"= 0 C=> Z=0 VN21

SO FROM NOW ON WE DEFINE WE [, N + 0

IMPORTANT REMARK
IN IR V4=2 AND AV-4

IN K, \(4 = 12 (224)

V-+ = 12i (22=-4)

W ~D N IS NOT A FUNCTION!

REMARK

$$z^{N} = w = 7 \quad z^{N} - w = 0$$
 $z^{N} = w = 7 \quad z^{N} - w = 0$
 $z^{N} = w = 0$
 z^{N}

TH EOREM

NOTATION W=1 2"=1

ITS SOLUTIONS ARE CALLED N-TH ROOTS OF UNITY

REMARK

PROOF
$$W = P(\cos \theta + i \sin \theta) P^{20}$$
 $z = \chi(\cos \alpha + i \sin \alpha) \chi_{70}$
 $z^{N} = W = \chi^{N}(\cos(n\alpha) + i \sin(n\alpha)) = P(\cos \theta + i \sin \theta)$

$$2R = \int_{-\infty}^{1/N} \left(\cos\left(\frac{\theta}{N} + \frac{2KT}{N}\right) + i\sin\left(\frac{\theta}{N} + \frac{2KT}{N}\right)\right)$$
, $K \in \mathbb{R}$
 $2R = 20$ AND $20,...2N$, ARE OFFERENT AND THEME
CAN NOT BE ANY MORE SOCUTIONS!

$$W = 1 + \sqrt{3} i \qquad W = 2 \left(\cos \frac{\pi}{3} + i \sin \left(\frac{\pi}{3}\right)\right)$$

$$Z'' = R \cos I$$

$$\sqrt{2} \left(\cos \left(\frac{\pi}{6}\right) + i \sin \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{\sqrt{2}} + \frac{i}{\sqrt{2}} = \frac{2}{\sqrt{2}}$$

$$\sqrt{2} \left(\cos \left(\frac{\pi}{6}\right) + i \sin \left(\frac{\pi}{6} + \pi\right) = \frac{\sqrt{3}}{\sqrt{2}} + \frac{i}{\sqrt{2}} = 2$$

$$\sqrt{2} \left(\cos \left(\frac{\pi}{6}\right) + i \sin \left(\frac{\pi}{6}\right) = -\left(\frac{\sqrt{3}}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right) = 2$$

CUBIC ROOTS

$$\sqrt[3]{2} \left(\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} \right) \right) = 20$$

$$\sqrt[3]{2} \left(\cos \left(\frac{\pi}{3} + 2\pi \right) + i \sin \left(\frac{\pi}{3} + 2\pi \right) \right) = 20$$

$$\sqrt[3]{2} \left(\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} + 2\pi \right) \right) = 20$$

$$\sqrt[3]{2} \left(\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} + 2\pi \right) \right) = 20$$

$$\sqrt[3]{2} \left(\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} + 2\pi \right) \right) = 20$$

$$\sqrt[3]{2} \left(\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} + 2\pi \right) \right) = 20$$

$$\sqrt[3]{2} \left(\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} + 2\pi \right) \right) = 20$$

Ex

COMPUTE AND DRAW THE 4-TH ROOT OF W

EXAMPLE

1 IS ALWAYS A N-TH ROOT OF THE WITY
1=1 (COSB+ i SINB)

CINAL REMARK

a, b, L Ell with outo. Solve
$$a/2^2+b^2+C=0$$
 $2 \in \mathbb{R}$

2 13 A SOLUTION (=) $z=-b+\sqrt{b^2-4AC}$

EXAMPLE 0,6,6 ER 040. IN C THE EQUATION

OUE + 78+C=0 HAS THE FOCKOWING SOUTIONS

$$A = b^{2} - 4nc > 0 \quad ? = \frac{b + \sqrt{b^{2} - 4nc}}{2a} = \frac{-b \pm \sqrt{b^{2} - 4nc}}{2a}$$

$$A = 0 \quad ? = -\frac{b}{2a}$$

$$2a \quad ? = 0$$

$$\frac{a \cos \delta = -b^{4} \sqrt{b^{2} - nac}}{2a} = \frac{-b \pm \sqrt{nac - b^{2}}}{2a}$$

Example

$$0 = 9 - 40 = -31$$

$$2_1 = \frac{3! \sqrt{31}}{4}$$

$$\Delta = 9 - 4i^{2} = 13$$

$$2\underline{1} = \frac{3 \pm \sqrt{13}}{2i} = \frac{-i}{2} \left(3 \pm \sqrt{13} \right)$$

SEQUENCES

LET X BE AN ARBITRARY SET (X \$ \$)

WE CALL SEQUENCE OF X A FUNCTION

S: IN -> X

IN -> S(x) = X N EX

A sequence is denoted & Angrell & X

NOTE DIFFERENT FROM & XN, NEINZ OADERING IN A SERVETCE MATTERS)

EXAMPLE X=IR

5: IN - IR S(N) = XN=N VNEIN

1,2,3..., N, ... {N} NEIN

FINHR S(N)= -N2 VNEIN

-1, -+, -9, ... , -N2, ... {-N2) NE [N

5: IN- 11 5 (N)= x,= 1 YNEIN

1, 1, 1, 1, ... { 1 } well

5: IN + IR 5 (N) = 24 = 3 YneIN

3,3,3 ... 3, ... { 3) NEIN

* X = β(m)

S: IN > β(IN) \$ (n) = × n = ξ n } ANEIN

{ 13, { e3, { 33, ... { n}, ... { { n}} } nein

S · IN - P(IN) \$ (n) = × n = ξ n, ... n} Anein

{ 2, 3, 5, 1, 23, 6, 2, 23, ... { 3, 2, ... n} { { ξ n, ... n} } nein

DE FINITION

LET P(N) BE A STATEMENT DEPENDING ON NEIN

WE SAY THAT P(N) IS DEFINETLY TRUE IF

HOEIN SUCH THAT YNEIN WITH NZ NO WE HAVE

THAT P(N) IS TRUE

REMARK

LET P(N) BE DEFINETLY TRUE

(3 NO EIN SUCH THAT YNZ NO P(N) ISTRUE)

LET Q(N) BE DEFINETLY TRUE

(3 NO E (N) SUCH TAMT YNZ NO Q(N) IS TAUE)

THEN S(N) AND Q(N) E DEFINETLY TRUE

IN FACT, LET XO = MAK (NO, NO)

YNZKO, NZNO SOP(M) IS TRUE AND NZMO SOQ(M)
IS TRUE HENCE

YNZKO BOTH P(N) AND Q(N) ARE TRUE

Units of Sequences

DEFINITION CET ZON JNEIN EIR BEN SEQUENCE

· Soughelm is convergent if JavelR such THAT

WE HAVE | QUI, - QUICE

IN THIS CASE WE SAY THAT THE UMIT OF (QN) NEIN AS A GOES TO 4 YE IS QU OF THAT

OUN GOES OR CONVERGES TO WAS A GOES TO +A

UM OUN COU ON AWYOU AS NYTON

REMARK . | an-a) = 5 (3) a-E < on cate (a) ant (a)-e, ane) (2) d(2) N-OV) L E €7 ~ € B € (a)

LET C70 BE A CONSTANT. WE CAN REPLACE C3 WITH CE, CCE, SCE

625 AE 20 3 MO END ANS ONE HOVE OF 13A 325

THAT HAVE MISS OF EST SUCH THAT YNONO WE HAVE (01-0) LESE = 2C = 2E, =7 SZE HOLDS WITH MO= No

HA E > O KET E = E THEN I MEIN SHOW THAT YN 2 MO WE HAVE (01, - 01) = 261 = 2 € < E => (3 HOLQ) WITH NO=M

EXAMPLE

OUN=1 THEN LIM OUN= CIN
$$\frac{1}{N}$$
 =0

FIX E 70 FICH NOCH SUCH THAT NO > 1 THAN

 $\forall N \ge NO$ WE HAVE

 $-\epsilon < 0 < \lceil \infty_N - O \rceil = 1 < 1 < \epsilon$
 $= \frac{1}{N} < \epsilon$

$$Q_N = \frac{N^2-1}{N^2+4}$$
 THEN LIM

$$\left| \omega_{N} - 1 \right| = \left| \frac{\mu^{2} - 1}{\mu^{2} + 1} - 1 \right| = \left| \frac{2}{\mu^{2} + 1} \right| = \frac{2}{\mu^{2} + 1} \le \frac{2}{\mu^{2}} \le \frac{$$

UM QUE MIS OF THE LIMIT

LET & WIJNEW & IR BE A SEQUENCE OF REAL NUMBERS IT { OUNGAGENT, IT

CAN NOT CONVERGE TO TWO DIFFERENT LIMITS,

THAT IS, IF I au, bein Such THAT

CIA au, ou And CIM au = b, THEN au = b

PADOF

CET at 6 THEN
$$d = d(a, 6) = |b-a|/70$$
TAREN (a)-E, atc) $n(b-e, b+e) = $$

11

 $be(a)$
 $B_c(b)$

IN FACT, BT CONTRADICTION, ASSUME

SO JCEBE (21) N BE(6) THAT IS

 $d(c, a) \in Ann d(c, 6) \in aut$ $0 \leq d = d(a, 6) \leq d(a, 6) + d(c, 6) \in e + \epsilon : 2\epsilon \leq 2d = d$ contradiction!

BY CONTRADICTION, ASSUME Q & b PICM OLES & 2

LIM DON = W =>] AND EIN SUCH THAT YND WE HAVE DONE (OU)

LIM DIN = B =] AND EIN SUCH THAT YND TO WE HAVE

ONE 6 (b)

 $\omega_n \in \mathcal{B}_{\varepsilon}(\omega)$ And $\omega_n \in \mathcal{B}_{\varepsilon}(b)$ that is $\omega_n \in \mathcal{B}_{\varepsilon}(\omega)$ OB $\varepsilon(b)$ contradiction!

Be (a) 1 Be (b) = \$ [