Systèmes Hilbertiens

Les mathématiques sont un jeu que l'on exerce selon des règles simples en manipulant des symboles ou des concepts qui n'ont en soi, aucune importance particulière.

Jean-David Hilbert.

1 Logique minimale

Soit \mathcal{L}_0 le langage de formules décrit par la grammaire suivante

$$P,Q := X \mid P \rightarrow Q$$

où X varie dans un ensemble $\mathcal V$ infini dénombrable de variables. On laissera les formules pencher naturellement à droite, ainsi on notera $(P \to Q) \to (Q \to R) \to P \to R$ à la place de $(P \to Q) \to ((Q \to R) \to (P \to R))$. On définit ensuite la famille, paramétrée par un ensemble Γ de formules, de systèmes de déduction suivants :

$$P \in \Gamma \xrightarrow{\vdash_{\Gamma} P} \text{Axiome} \qquad \qquad \frac{\vdash_{\Gamma} P \to Q \qquad \vdash_{\Gamma} P}{\vdash_{\Gamma} Q} \text{Modus-ponens}$$

On note Γ_0 le plus petit ensemble tel que pour toutes formules P, Q et R

 $(K): P \to Q \to P \in \Gamma_0,$

(S):
$$(P \to Q \to R) \to (P \to Q) \to P \to R \in \Gamma_0$$
.

Question 1. Prouver dans \vdash_{Γ_0} les formules $P \to P$ et $P \to Q \to Q$.

Question 2. Prouver que pour tout ensemble Γ de formules tel que $\Gamma_0 \subseteq \Gamma$, $\vdash_{\Gamma} P \to Q$ si et seulement si $\vdash_{\Gamma,P} Q$.

On dit alors que la règle suivante est admissible

$$\frac{\vdash_{\Gamma,P} Q}{\vdash_{\Gamma} P \to Q} \to \text{-Introduction}$$

c'est-à-dire que s'il existe une preuve qui utilise cette règle alors il existe une preuve de la même formule qui ne l'utilise pas.

Question 3. Déduisez-en que $(P \to Q) \to (Q \to R) \to P \to R$ est prouvable.

D.Hilbert

2 Logique intuitionniste

On enrichit le langage \mathcal{L}_0 avec de nouveaux symboles en un langage \mathcal{L} défini par la grammaire

$$P,Q := X \mid P \to Q \mid P \land Q \mid P \lor Q \mid \top \mid \bot.$$

On notera $\neg P$ la formule $P \to \bot$ et $P \leftrightarrow Q$ la formule $P \to Q \land Q \to P$.

Question 4. Sauriez vous trouver les schémas d'axiomes à rajouter pour pouvoir utiliser ces symboles (trois pour la conjonction, trois pour la disjonction, un pour \top et un pour \bot)?

On appellera Γ_1 le plus petit ensemble contenant Γ_0 et satisfaisant ces schémas d'axiomes.

Question 5. Les formules suivantes sont-elles prouvables dans \vdash_{Γ_1} ?

$$P \wedge Q \leftrightarrow Q \wedge P \quad P \vee Q \leftrightarrow Q \vee P$$

$$P \wedge (Q \vee R) \leftrightarrow (P \wedge Q) \vee (P \wedge R) \quad P \vee (Q \wedge R) \leftrightarrow (P \vee Q) \wedge (P \vee R)$$

$$\neg P \vee \neg Q \rightarrow \neg (P \wedge Q) \quad \neg (P \vee Q) \leftrightarrow \neg P \wedge \neg Q \quad \neg P \vee Q \rightarrow (P \rightarrow Q)$$

$$P \rightarrow \neg \neg P \quad \neg \neg \neg P \rightarrow \neg P \quad (P \rightarrow Q) \rightarrow (\neg Q \rightarrow \neg P)$$

Une question très naturelle serait de se demander si ces nouveaux symboles pourraient nous aider à prouver plus de formules. En fait, on peut montrer que notre logique intuitionniste est une extension conservative de la logique minimale : pour toute formule P dans \mathcal{L}_0 , on a $\vdash_{\Gamma_0} P$ si et seulement si $\vdash_{\Gamma_1} P$.

3 Logique classique

Dans une prochaine séance, on montrera que le tiers exclu $P \vee \neg P$ n'est pas prouvable dans \vdash_{Γ_1} . Maintenant, on obtient la logique classique en rajoutant le tiers exclu à Γ_1 : soit Γ_2 le plus petit ensemble contenant Γ_1 tel que pour toute formule P, on a $P \vee \neg P \in \Gamma_2$.

Question 6. Montrer que les formules ci-dessous sont prouvables dans \vdash_{Γ_2} .

$$\neg\neg P \to P \quad \neg (P \land Q) \to \neg P \lor \neg Q \quad ((P \to Q) \to P) \to P \quad P \to Q \lor Q \to P$$

Un modèle \mathcal{M} sera ici pour nous une fonction $\mathcal{V} \longrightarrow \{0,1\}$. On notera $[\![X]\!]_{\mathcal{M}}$ l'image $\mathcal{M}(X)$ d'une variable X par un modèle \mathcal{M} .

Question 7. Généraliser cette notation à toutes les formules.

On dira qu'une formule P est valide dans un modèle \mathcal{M} si $[\![P]\!]_{\mathcal{M}} = 1$. On notera $\mathcal{M} \models P$ si P est valide dans \mathcal{M} et $\mathcal{M} \models \Gamma$ si $\mathcal{M} \models P$ pour tout $P \in \Gamma$.

Question 8. Montrer que $\mathcal{M} \models \Gamma_2$ (et donc $\mathcal{M} \models \Gamma_1$ et $\mathcal{M} \models \Gamma_0$).

Question 9. Prouver que $\mathcal{M} \models P \leftrightarrow Q$ est équivalent à $\mathcal{M} \models P$ si et seulement si $\mathcal{M} \models Q$.

Question 10. Prouver que ces modèles sont corrects vis-à-vis des systèmes de déductions. Vous devez prouver que pour tout Γ et tout modèle tel que $\mathcal{M} \models \Gamma$, si $\vdash_{\Gamma} P$, alors $\mathcal{M} \models P$.

Question 11. En déduire que \vdash_{Γ_2} puis que \vdash_{Γ_1} sont cohérents (vous devez prouver qu'il existe une formule que ces systèmes ne prouvent pas).

Question 12. Pour toute formule P, construisez une formule P' ne contenant pas de variable et telle que $\vdash_{\Gamma_2} P'$ si et seulement si $\mathcal{M} \models P$ pour tout modèle \mathcal{M} .

Question 13. En déduire :

- Que ces modèles sont complets pour \vdash_{Γ_2} . Vous devez prouver que pour toute formule P, si P est satisfaite dans tout modèle (qui satisfait Γ_2), alors P est prouvable dans \vdash_{Γ_2} .
- Une procédure de décision qui décide de la prouvabilité dans \vdash_{Γ_2} (question subsidiaire : dans quelle classe de complexité célèbre se range ce problème de décision?).