This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Offic uropéen des brevets

(11) EP 1 118 668 A1

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 25.07.2001 Bulletin 2001/30
- (21) Application number: 00100351.6
- (22) Date of filing: 07.01.2000

- (51) Int CI.7: C12N 15/62, C12N 9/00, C12N 5/10, C12N 1/21, C07K 14/435, C07K 14/035, C07K 14/16, A01K 67/027, A61K 38/43, A61K 47/48
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (71) Applicant: ARTEMIS Pharmaceuticals GmbH 51063 Köln (DE)
- (72) Inventor: Schwenk, Frieder 50739 Köln (DE)
- (74) Representative:
 Helbing, Jörg, Dr.Dipl.-Chem. et al
 Patentanwälte
 von Kreisler-Selting-Werner,
 Deichmannhaus am Hauptbahnhof
 50667 Köln (DE)
- (54) Transduction of recombinases for inducible gene targeting
- (57) The present invention provides the use of a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain for pre-

paring an agent for inducing target gene alteration in a living organism, suitable fusion proteins and a method for the production of said fusion proteins.

Fig. 1

Descripti n

[0001] The present invention provides the use of a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain for preparing an agent for inducing target gene alteration in a living organism, suitable fusion proteins and a method for the production of said fusion proteins.

Background

20

30

35

55

[0002] For some years targeted mutagenesis in totipotent mouse embryonic stem (ES) cells has been used to inactivate genes, for which cloned sequences were available (Capecchi Trends in Genetics 5, 70 - 76 (1989)). Since ES cells can pass mutations induced in vitro to transgenic offspring in vivo, it is possible to analyze the consequences of gene disruption in the context of the entire organism. Thus, numerous mouse strains with functionally inactivated genes ("knock out mice") have been created by this technology and utilized to study the biological function of a variety of genes. [0003] A refined method of targeted mutagenesis, referred to as conditional mutagenesis, employs a site-specific recombination system (e.g. Cre/loxP or Flp/frt - Sauer and Henderson, N. Proc. Natl. Acad. Sci. USA 85, 5166-5170 (1988); Senecoff et al., J. Mol. Biol., 201, 405 - 421 (1988)) which enables a temporally and/or spatially restricted alteration of target genes (Rajewsky et al, J. Clin. Invest., 98, 600 - 603 (1996)). The creation of conditional mouse mutants requires the generation of two mouse strains, i.e. the recombinase recognition strain and the recombinase expressing strain. The recombinase recognition strain is generated by homologous recombination in ES cells as described above except that the targeted exon(s) is (are) flanked by two recombinase recognition sequences (hereinafter "RRS"; e.g. loxP or frt). The type of recombination event mediated by the recombinase depends on the disposition of the RRS, with deletions, inversions, translocations and integrations being possible (Torres and Kühn, Oxford Univerity Press, Oxford, New York (1997)). By placing the RRS into introns, an interference with gene expression before recombination can be avoided. The recombinase expressing strain contains a recombinase transgene (e.g. Cre, Flp) whose expression is either restricted to certain cells and tissues or is inducible by external agents. Crossing of the recombinase recognition strain with the recombinase expressing strain recombines the RRS-flanked exons from the doubly transgenic offspring in a prespecified temporally and/or spatially restricted manner. Thus, the method allows the temporal analysis of gene function in particular cells and tissues of otherwise widely expressed genes. Moreover, it enables the analysis of gene function in the adult organism by circumventing embryonic lethality which is frequently the consequence of gene mutation. For pharmaceutical research, aiming to validate the utility of genes and their products as targets for drug development, inducible mutations provide an excellent genetic tool. However, the current systems for inducible recombinase expression in transgenic animals suffer from a certain degree of leakyness in the absence of the inducer (Kühn et al., Science 269(5229):1427-9 (1995); Schwenk et al., Nucleic Acids Res; 26(6):1427-32 (1998)). Furthermore, the generation of conditional mutants is a time consuming and labor intensive procedure, since the recombinase recognition strain and the recombinase expressing strain have to be breed at least over two generations in order to obtain animals carrying both, the recombinase transgene and two copies of the RRS-flanked target gene

[0004] Protein domains that have the ability to cross cell membranes were identified in the Antennapedia protein from Drosophila (Vives et al., J Biol Chem, 272(25):16010-7 (1997)), VP22 from HSV (Elliott and O'Hare, Cell, 88(2): 223-33 (1997)) and TAT from HIV (Green and Loewenstein, Cell, 55(6):1179-88 (1988); Frankel and Pabo, Cell, 55(6): 1189-93 (1988)). Fusion of such domains to heterologous proteins conferred the ability to transduce into cultured cells (Fawell et al., Proc Natl Acad Sci U S A, 91(2):664-8 (1994); Elliott and O'Hare (1997), Phelan et al., Nature Biotech. 16; 440-443 (1998) and Dilber et al., Gene Ther., 6(1):12-21 (1999)). Dalby and Bennett showed that a fusion protein consisting of VP22 and functional Fip recombinase translocated between cells in culture (from COS-1 cells transfected with VP22-Fip to CHO cells carrying Fip recognition sites (FRT sites); see Dalby and Bennett, Invitrogen, Expressions 6.2, page 13 (1999)).

[0005] On the other hand, a recent report demonstrated that the ß-galactosidase protein fused to the 11 amino acids transduction domain from the HIV TAT protein can infiltrate all tissues of living mice reaching every single cell (Schwarze et al., Science, 285(5433):1569-72 (1999)).

[0006] It was found that site-specific DNA recombinases can be translocated into cells of a living organism when fused to a protein transduction domain. Thus, whenever a gene mutation is desired, recombination is induced upon the injection of the appropriate site-specific recombinase fused to a transduction domain into such a living organism (provided, however, that said organism carries at least one appropriate RRS integrated in the genome).

[0007] The present invention thus provides

(1) the use of a fusion protein comprising

(a) a site-specific DNA recombinase domain and

(b) a protein transduction domain

for preparing an agent for inducing target gene alterations in a living organism, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome;

- (2) a method for inducing gene alterations in a living organism which comprises administering to said living organism a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain as defined in (1) above, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome;
 - (3) a fusion protein comprising

10

15

20

35

5

- (a) a site-specific DNA recombinase domain and
- (b) a protein transduction domain

provided that when the site-specific DNA recombinase domain is wild type Flp then the protein transduction domain is not the VP22 protein of HSV (i.e., the fusion protein is not identical to the fusion protein of Dalby and Bennett (1999));

(4) a DNA sequence coding for the fusion protein of (3) above;

- (5) a vector comprising the DNA sequence as defined in (4) above;
- (6) a host cell transformed with the vector of (5) above and/or comprising the DNA of (4) above;
- (7) a method for producing the fusion protein of (1) above which comprises culturing the transformed host cell of
- (6) above and isolating the fusion protein; and
- (8) an injectable composition comprising the fusion protein as defined in (1) or (3) above.

[0008] The invention is further illustrated by the appended Figure and is explained in detail below.

[0009] Figure 1: Generation of induced mouse mutants using purified fusion proteins.

A: Expression of the fusion protein consisting of the site-specific DNA recombinase (e.g. Cre) and the protein transduction domain (e.g. the HIV derived TAT peptide) in prokaryontic or eukaryontic cells.

B: Extraction and purification of the expressed fusion protein (e.g. as described in Nagahara et al., 1998).

C: Injection of the purified fusion protein into mice carrying the RRS-flanked target sequence.

D: Analysis of the pattern of induced target gene recombination and the resulting phenotype. Triangle: RRS.

[0010] The expression "target sequences" according to the present invention means all kind of sequences which may be mutated (viz. deleted, translocated, integrated and/or inverted) by the action of the recombinase. The number of RRS in the target sequence depends on the kind of mutation to be performed by the recombinase. For most of the mutations (especially for deletions and invertions) two RRS are required which are flanking the sequence to be mutated (deleted or inverted). For some kinds of integrations only one RRS may be necessary within the target sequence.

[0011] The "living organisms" according to the present invention are multi-cell organisms and can be vertebrates such as mammals (e.g., rodents such as mice or rats) or non-mammals (e.g., fish) or can be invertebrates such as insects or worms. Most preferred living organisms are mice and fish.

[0012] The site-specific DNA recombinase domain within the fusion protein of the invention of the present application is preferably selected from a recombinase protein derived from Cre, Flp, ¢C31 recombinase (Thorpe and Smith, Proc. Natl. Acad. Sci, USA, vol. 95, 5505-5510 (1998)) and R recombinase (Araki et al., J. Mol. Biol., 182, 191-203 (1985)). The preferred recombinases are Cre (e.g., the Cre variant of aa 15 to 357 of SEQ ID NO: 2 or aa 325-667 of SEQ ID NO: 6) and Flpe (i.e., the Flp variant of aa 15 to 437 of SEQ ID NO: 4 or aa 325 to 747 of SEQ ID NO: 8).

[0013] The protein transduction domain according to the present invention is preferably derived from the Antennapedia protein of Drosophila, from the VP22 protein of HSV or from the TAT protein of HIV. Preferrably the protein transduction domain is derived from the TAT protein among which a TAT protein comprising the amino acid sequence shown in SEQ ID NO: 10 is most preferred.

[0014] The fusion of the two domains of the fusion protein can occur at any possible position, i.e., the protein transduction domain can be fused to the N- or C-terminal of the site-specific DNA recombinase or can be fused to active sites within the site-specific DNA recombinase. Preferrably the protein transfusion domain is fused to the N-terminal of the site-specific DNA recombinase domain.

[0015] The protein transduction domain can be fused to the site-specific DNA recombinase either through a direct chemical bond or through a linker molecule. Such linker molecule can be any bivalent chemical structure capable of linking the two domains. The preferred linker molecule according to the present invention is a short peptide, .g., having 1 to 20, preferrably 1 to 10, amino acid residues. Specifically preferred short peptides are ssentially consisting of Gly, Ala and/or Leu.

[0016] The fusion protein of the invention of the present application may further comprise other functional sequences

such as secretion conferring signals, nuclear localization signals and/or signals conferring protein stabilization.

[0017] In case the fusion protein comprises a protein transduction domain derived from the TAT protein of HIV, the DNA sequence coding for said fusion protein preferrably comprises the sequence

[0018] Such a preferred DNA sequence is for instance shown in SEQ ID NO: 11. In said sequence the 3' terminal codon ggc codes for the linker Gly. The DNA sequence of a suitable recombinase may be directly attached to said codon ggc.

[0019] The fusion protein can be obtained by the following steps:

5

15

20

40

45

50

55

- 1. Fusion of the recombinase coding region (e.g. encoding Cre: see amino acids 15 to 357 of SEQ ID NO: 2) with the sequence conferring protein translocation (e.g. the sequence encoding the TAT peptide YGRKKRRQRRR, SEQ ID NO: 10) using standard cloning protocols (Maniatis et al., Cold Spring Harbor Laboratory, New York (1989)) or chemical synthesis.
- 2. Generation of a construct for the expression of the fusion protein in prokaryotic or eukaryotic cells, e.g. in E. coli DH5a (Hanahan, J. Mol. Biol.;166(4):557-80 (1983)) using the QIAexpress pQE vector (Qiagen, Hilden).
- 3. Expression of the above mentioned fusion protein in prokaryotic or eukaryotic cells, e.g. in E. coli DH5a (Hanahan, 1983)
- 4. Extraction and purification of the above mentioned fusion protein e.g. as described in Nagahara et al., Nat. Med., 4(12):1449-52 (1998).
- [0020] Injection of the purified fusion protein into a living organism (e.g., a mouse) carrying a gene comprising the RRS-flanked target sequence (e.g., in an amount of 5 to 50 μg per g body weight). To demonstrate the feasibility of the invention, a reporter mouse strain is used harbouring a RRS-flanked flanked cassette which, when deleted by the recombinase, allows the expression of a cellular marker protein, such as β-galacosidase (Thorey et al., Mol. Cell Biol., 18(10):6164 (1998)).
- [0021] Analysis is achieved by determining the pattern of induced target gene recombination (e.g. through Southern blot analysis and X-Gal staining on tissue sections; Maniatis et al., 1989; Gossler and Zachgo, Joyner AL (Ed.), Oxford University Press, Oxford, New York (1993)).
 - [0022] The procedure's advantages over current technology are as follows:
- 35 (i) The absence of background recombination before administration of the fusion protein.
 - (ii) The reduction of time and resources which are necessary to combine the recombinase transgene and two copies of the RRS-flanked target gene by conventional breeding.

	SEQUENCE LISTING														
	<110> ARTEMIS Pharmaceuticals GmbH														
5 .	<120> Transduction of recombinases for inducible gene targeting														
	<130> 992928ep/JH/ml														
10	<140> <141>														
	<160> 12														
15	<170> PatentIn Ver. 2.1														
20	<210> 1 <211> 1074 <212> DNA <213> Artificial Sequence														
	<211> 1074 <212> DNA														
25	<220> <221> CDS <222> (1)(1071)														
30	<pre><400> 1 atg ggc tac ggc cgc aag aag cgc cgc caa cgc cgc c</pre>														
35	aat tta ctg acc gta cac caa aat ttg cct gca tta ccg gtc gat gca 96 Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val Asp Ala 20 25 30														
	acg agt gat gag gtt cgc aag aac ctg atg gac atg ttc agg gat cgc Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg Asp Arg 35 40 45														
40	cag gcg ttt tct gag cat acc tgg aaa atg ctt ctg tcc gtt tgc cgg 192 Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val Cys Arg 50 55 60														
45	tcg tgg gcg gca tgg tgc aag ttg aat aac cgg aaa tgg ttt ccc gca Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe Pro Ala 65 70 75 80														
50	gaa cct gaa gat gtt cgc gat tat ctt cta tat ctt cag gcg cgc ggt 288 Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala Arg Gly 85 90 95														
	ctg gca gta aaa act atc cag caa cat ttg ggc cag cta aac atg ctt Leu Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn Met Leu 100 105 110														

	cat His	cgt Arg	cgg Arg 115	tcc Ser	G1 y ggg	ctg Leu	cca Pro	cga Arg 120	cca Pro	agt Ser	gac Asp	agc Ser	aat Asn 125	gct Ala	gtt Val	tca Ser	384
5	ctg Leu	gtt Val 130	atg Met	cgg Arg	cgg Arg	atc Ile	cga Arg 135	aaa Lys	gaa Glu	aac Asn	gtt Val	gat Asp 140	gcc Ala	ggt Gly	gaa Glu	cgt Arg	432
10	gca Ala 145	aaa Lys	cag Gln	gct Ala	cta Leu	gcg Ala 150	ttc Phe	gaa Glu	cgc Arg	act Thr	gat Asp 155	ttc Phe	gac Asp	cag Gln	gtt Val	cgt Arg 160	480
15	tca Ser	ctc Leu	atg Met	gaa Glu	aat Asn 165	agc Ser	gat Asp	cgc Arg	tgc Cys	cag Gln 170	gat Asp	ata Ile	cgt Arg	aat Asn	ctg Leu 175	gca Ala	528
·	ttt Phe	ctg Leu	Gly	att Ile 180	gct Ala	tat Tyr	aac Asn	acc Thr	ctg Leu 185	tta Leu	cgt Arg	ata Ile	gcc Ala	gaa Glu 190	att Ile	gcc Ala	576
20	agg Arg	atc Ile	agg Arg 195	gtt Val	aaa Lys	gat Asp	atc Ile	tca Ser 200	cgt Arg	act Thr	gac Asp	ggt Gly	ggg Gly 205	aga Arg	atg Met	tta Leu	624
25	atc Ile	cạt His 210	att Ile	ggc Gly	aga Arg	acg Thr	aaa Lys 215	acg Thr	ctg Leu	gtt Val	agc Ser	acc Thr 220	gca Ala	ggt Gly	gta Val	gag Glu	672
	aag Lys 225	gca Ala	ctt Leu	agc Ser	ctg Leu	ggg Gly 230	gta Val	act Thr	aaa Lys	ctg Leu	gtc Val 235	gag Glu	cga Arg	tgg Trp	att Ile	tcc Ser 240	720
30	gtc Val	tct Ser	ggt Gly	gta Val	gct Ala 245	gat Asp	gat Asp	ccg Pro	aat Asn	aac Asn 250	tac Tyr	ctg Leu	ttt Phe	tgc Cys	cgg Arg 255	gtc Val	768
35	aga Arg	aaa Lys	aat Asn	ggt Gly 260	Val	gcc Ala	gcg Ala	cca Pro	tct Ser 265	gcc Ala	acc Thr	agc Ser	cag Gln	cta Leu 270	tca Ser	act Thr	816
40	cgc Arg	gcc Ala	ctg Leu 275	Glu	ggg Gly	att Ile	ttt Phe	gaa Glu 280	gca Ala	act Thr	cat His	cga Arg	ttg Leu 285	att Ile	tac Tyr	ggc Gly	864
	gct Ala	aag Lys 290	gat Asp	gac Asp	tct Ser	ggt Gly	cag Gln 295	aga Arg	tac Tyr	ctg Leu	gcc Ala	tgg Trp 300	tct Ser	gga Gly	cac His	agt Ser	912
45	gcc Ala 305	Arg	gtc Val	gga Gly	gcc Ala	gcg Ala 310	cga Arg	gat Asp	atg Met	gcc Ala	cgc Arg 315	gct Ala	gga Gly	gtt Val	tca Ser	ata Ile 320	960
50	ccg	gag Glu	atc Ile	atg Met	caa Gln 325	gct Ala	ggt Gly	ggc Gly	tgg Trp	acc Thr 330	aat Asn	gta Val	aat Asn	att Ile	gtc Val 335	atg Met	1008
55			atc Ile		Asn												1056

1074

ctg gaa gat ggc gat tag Leu Glu Asp Gly Asp 355 <210> 2 .<211> 357 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: DNA sequence 10 coding for a fusion protein TAT-Cre Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Met Ser 15 Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg Asp Arg 20 Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe Pro Ala 25 Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn Met Leu 30 His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala Val Ser - 120 35 Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly Glu Arg 135 Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Gln Val Arg 150 155 40 Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu Ile Ala 185 45 Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg Met Leu 200 Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly Val Glu 215 50 Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys Arg Val 55 250 245

	Arg	Lys	Asn	Gly 260	Val	Ala	Ala	Pro	Ser 265	Ala	Thr	Ser	Gln	Leu 270	Ser	Thr	
5	Arg	Ala	Leu 275	Glu	Gly	Ile		Glu 280	Ala	Thr	His	Λrg	Leu 285	Ile	Tyr	Gly	
	Ala	Lys 290	Asp	Asp	Ser	Gly	Gln 295	Arg	Tyr	Leu	Ala	Trp 300	Ser	Gly	His	Ser	
10	Ala 305	Arg	Val	Gly	Ala	Ala 310	Arg	Asp	Met	Ala	Arg 315	Ala	Gly	Val	Ser	Ile 320	
. 15	Pro	Glu	lle	Met	Gln 325	Ala	Gly	Gly	Trp	Thr 330	Asn	Val	Asn	Ile	Val 335	Met	
•	Asn	Tyr	Ile	Arg 340	Asn	Leu	Asp	Ser	Glu 345	Thr	Gly	Ala -	Met	Val 350	Arg	Leu	
20	Leu	Glu	Asp 355	Gly	Asp												٠
25	·<212	l> 13 2> DN	IA .	icial	L Sec	Jueno	ce			٠			٠				
	<220 <223			iptic	on Of								equer	nce			
		C	oding	g for	af	fusio	on p	rote:	in TA	\T- F]	Lpe .						
30)> l> CI	os .	f for (131)		Tusio	on p	rote	in TA	\T −F]	Lpe .	,					
35	<221 <222 <400 atg)> L> CI ?> (1)> 3 ggc	os L)	_	L) .cgc	aag	aag	cgc	cgc	caa	cgc	cgc	cgc Arg	ggc Gly	atg Met 15	agt Ser	48
	<221 <222 <400 atg Met 1)> l> Cl 2> (1)> 3 ggc Gly	tac Tyr	(131) ggc	cgc Arg 5	aag Lys tgt	aag Lys aaa	cgc Arg	cgc Arg	caa Gln 10	cgc Arg	cgc Arg	Arg	Gly gtt	Met 15 cgt	Ser cag	48
35 40	<221 <222 <400 atg Met 1 caa Gln)> l> Cl 2> (1)> 3 ggc Gly ttt Phe	tac Tyr gat Asp	ggc Gly ata	cgc Arg 5 tta Leu	aag Lys tgt Cys	aag Lys aaa Lys	cgc Arg aca Thr	cgc Arg cca Pro 25	caa Gln 10 cct Pro	cgc Arg aag Lys	cgc Arg gtc Val	Arg ctg Leu ata	gtt Val 30 gca	Met 15 cgt Arg	Ser cag Gln tgt	
35	<222 <400 atg Met 1 caa Gln ttt Phe)> i> CI 2> (1)> 3 ggc Gly ttt Phe gtg Val	tac Tyr gat Asp gaa Glu 35	ggc Gly ata Ile 20	cgc Arg 5 tta Leu ttt Phe	aag Lys tgt Cys gaa Glu	aag Lys aaa Lys aga Arg	cgc Arg aca Thr cct Pro 40	cgc Arg cca Pro 25 tca Ser	caa Gln 10 cct Pro ggg Gly	cgc Arg aag Lys gaa Glu	cgc Arg gtc Val aaa Lys	ctg Leu ata Ile 45	gtt Val 30 gca Ala	Met 15 cgt Arg tca Ser	cag Gln tgt Cys	96
35 40	<221 <222 <400 atg Met 1 caa Gln ttt Phe gct Ala)> i> CI 2> (1) 2> (2) ttt Phe gtg Val gct Ala 50 atc	tac Tyr gat Asp gaa Glu 35 gaa Glu	ggc Gly ata Ile 20 agg Arg	cgc Arg 5 tta Leu ttt Phe acc Thr	aag Lys tgt Cys gaa Glu tat Tyr	aaag Lys aaaa Lys aga Arg tta Leu 55	cgc Arg aca Thr cct Pro 40 tgt Cys	cgc Arg cca Pro 25 tca Ser tgg Trp	caa Gln 10 cct Pro ggg Gly atg Met	cgc Arg aag Lys gaa Glu att Ile	cgc Arg gtc Val aaa Lys act Thr 60 act	Ctg Leu ata Ile 45 cat His	gtt Val 30 gca Ala aac Asn	Met 15 cgt Arg tca Ser gga Gly	cag Gln tgt Cys aca Thr	96

5			aca Thr						336
٠			aca Thr						384
10			att Ile						432
15			aag Lys						480
20			ggt Gly 165						528
			tat Tyr						576
25			cta Leu						624
30			gat Asp						672
			atc Ile						720
35			tac Tyr 245						768
40			gaa Glu						816
45			ggc Gly						864
			tta Leu						912
50			atc Ile						960
55			atg Met 325						1008

5		act Thr															1056
	gcc Ala	agg Arg	aca Thr 355	acg Thr	tat Tyr	act Thr	cat His	cag Gln 360	ata Ile	aca Thr	gca Ala	ata Ile	cct Pro 365	gat Asp	cac His	tac Tyr	1104
10																	
		gca Ala 370															1152
15		ata Ile															1200
20		gaa Glu															1248
25	tgg Trp	aat Asn	G] À GGÀ	ata Ile 420	ata Ile	tca Ser	cag Gln	gag Glu	gta Val 425	cta Leu	gac Asp	tac Tyr	ctt Leu	tca Ser 430	tcc Ser	tac Tyr	1296
2.5	ata Ile	aat Asn	_	_		taat	tga										1317
30	_	0> 4 1> 4	37								•		•				
30	<21 <21 <21	1> 4: 2> Pl 3> A:	RT rtif:			-		cial	Segi	uence	e: Di	NA Se	eauei	nce	-	•	
35	<21 <21 <21	1> 4: 2> Pl 3> A: 3> De	RT rtif:	iptio	on of	Ē Art	tific		-			NA Se	equei	nce ,	-	•	
	<21 <21: <21: <22:	1> 4: 2> Pl 3> A: 3> De	RT rtif: escri	iptio g for	on of	f Art	tific on p	rote	in T	AT-F	lpe				Met 15	Ser	
	<21 <21 <21 <22 <40 Met	1> 4: 2> PI 3> A: 3> De Co	RT rtif: escr: odin: Tyr	iptio g for Gly	on of r a f Arg 5	f Art	tific on p	rote: Arg	in T	Gln 10	lpe Arg	Arg	Arg	Gly	15		
35 40	<21 <21 <21 <22 <40 Met 1	1> 4: 2> P! 3> A: 3> De co 0> 4 Gly	RT rtif: escr: oding Tyr Asp	Gly Ile 20	Arg 5	E Art	Lys Lys	Arg Thr	Arg Pro 25	Gln 10 Pro	lpe Arg Lys	Arg Val	Arg Leu	Gly Val 30	15 Arg	Gln .	
35	<21 <21 <21 <22 <40 Met 1 Gln	1> 4: 2> Pl 3> A: 3> Do co 0> 4 Gly	Tyr Asp Glu 35	Gly Ile 20 Arg	Arg 5 Leu	Lys Cys	Lys Lys Lys	Arg Thr Pro	Arg Pro 25 Ser	Gln 10 Pro Gly	Arg Lys Glu	Arg Val Lys	Arg Leu Ile 45	Gly Val 30 Ala	15 Arg Ser	Gln Cys	
35 40	<21 <21 <21 <22 <40 Met 1 Gln Phe	1> 4: 2> PI 3> A: 3> Do co 0> 4 Gly Phe Val Ala 50	Tyr Asp Glu 35	Gly Ile 20 Arg	Arg 5 Leu Phe	E Art fusion Lys Cys Glu	Lys Lys Arg Leu 55	Thr Pro 40 Cys	Arg Pro 25 Ser	Gln 10 Pro Gly Met	Arg Lys Glu Ile	Arg Val Lys Thr	Arg Leu Ile 45 His	Gly Val 30 Ala Asn	15 Arg Ser Gly	Gln Cys Thr	
35 40 45	<21 <21 <21 <22 <40 Met 1 Gln Phe Ala 65	1> 4: 2> PI 3> A: 3> Do co 0> 4 Gly Phe Val Ala 50	Tyr Asp Glu 35 Glu Lys	Gly Ile 20 Arg Leu Arg	Arg 5 Leu Phe Thr	Lys Cys Glu Tyr Thr	Lys Lys Arg Leu 55	Thr Pro 40 Cys	Arg Pro 25 Ser Trp	Gln 10 Pro Gly Met	Lys Glu Ile Asn 75	Arg Val Lys Thr 60	Arg Leu Ile 45 His	Gly Val 30 Ala Asn	15 Arg Ser Gly Ser	Gln Cys Thr	

	Ala	Trp	Glu 115	Phe	Thr	Ile	Ile	Pro 120	Tyr	Asn	Gly	Gln	Lys 125	His	Gln	Ser
5	Asp	Ile 130	Thr	Asp	Ile	Val	Ser 135	Ser	Leu	Gln	Leu	Gln 140	Phe	Glu	Ser	Ser
	Glu 145	Glu	Ala	Asp	Lys	Gly 150	Asn	Ser	His	Ser	Lys 155	Lys	Met	Leu	Lys	Ala 160
10	Leu	Leu	Ser	Glu	Gly 165	Glu	Ser	Ile	Trp	Glu 170	Ile	Thr	Glu	Lys	Ile 175	Leu
15	Asn	Ser	Phe	Glu 180		Thr	Ser	Arg	Phe 185	Thr	Lys	Thr	Lys	Thr 190	Leu	Tyr
	Gln	Phe	Leu 195	Phe	Leu	Ala	Thr	Phe 200	Ile	Asn	Cys	Gly	Arg 205	Phe	Ser	Asp
20	Ile	Lys 210	Asn	Val	Asp	Pro	Lys 215	Ser	Phe	Lys	Leu	Val 220	Gln	Asn	Lys	Tyr
	Leu 225	Gly	Val	Ile	Ile	Gln 230	Cys	Leu	Val	Thr	Glu 235	Thr	Lys	Thr	Ser	Val . 240
25	Ser	Arg	His	Ile	Tyr 245	Phe	Phe	Ser	Ala	Arg 250	Gly	Arg	Ile	Asp	Pro 255	Leu
	Val	Tyr	Leu	Asp 260	Glu	Phe	Leu	Ärg	Asn 265	Ser	Glu	Pro	Val	Leu 270	Lys	Arg
30	Val	Asn	Arg 275	Thr	Gly	Asn	Ser	Ser 280	Ser	Asn	Lys	Gln	Glu 285	Tyr	Gln	Leu
	Leu	Lys 290	Asp	Asn	Leu	Val	Arg 295		Tyr	Asn	Lys	Ala 300	Leu	Lys	Lys	Asn
35	Ala 305	Pro	Tyr	Pro	Ile	Phe 310	Ala	Ile	Lys	Asn	Gly 315	Pro	Lys	Ser	His	Ile 320
	Gly	Arg	His	Leu	Met 325	Thr	Ser	Phe	Leu	Ser 330	Met	Lys	Gly	Leu	Thr 335	Glu
40	Leu	Thr	Asn	Val 340	Val	Gly	Asn	Trp	Ser 345	Asp	Lys	Arg	Ala	Ser 350	Ala	Val
45	Ala	Arg	Thr 355	Thr	Tyr	Thr	His	Gln 360	Ile	Thr	Ala	Ile	Pro 365	Asp	His	Tyr
	Phe	Ala 370	Leu	Val	Ser	Arg	Tyr 375	Tyr	Ala	Tyr	Asp	Pro 380	Ile	Ser	Lys	Glu
50	Met 385	Ile	Ala	Leu	Lys	Asp 390	Glu	Thr	Asn	Pro	Ile 395	Glu	Glu	Trp	Gln	His 400
•	Ile	Glu	Gln	Leu	Lys 405	Gly	Ser	Ala	Glu	Gly 410	Ser	Ile	Arg	Tyr	Pro 415	Ala
55	Trp	Asn	Gly	Ile 420		Ser	Gln	Glu	Val 425	Leu	Asp	Tyr	Leu	Ser 430	Ser	Tyr

	Ile Asn Arg Arg Ile 435
5	<210> 5 <211> 2004 <212> DNA <213> Artificial Sequence
	<220> <223> Description of Artificial Sequence: DNA sequence coding for a fusion protein VP22-Cre
15	<220> <221> CDS <222> (1)(2001)
20	<pre><400> 5 atg acc tct cgc cgc tcc gtg aag tcg ggt ccg cgg gag gtt ccg cgc 48 Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg 1</pre>
25	gat gag tac gag gat ctg tac tac acc ccg tct tca ggt atg gcg agt 96 Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser 20 25 30
·	ccc gát agt ccg cct gac acc tcc cgc cgt ggc gcc cta cag aca cgc l44 Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg 35 40 45
30	tcg cgc cag agg ggc gag gtc cgt ttc gtc cag tac gac gag tcg gat 192 Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp 50 55 60
35	tat gcc ctc tac ggg ggc tcg tct tcc gaa gac gac gaa cac ccg gag Tyr Ala Leu Tyr Gly Gly Ser Ser Ser Glu Asp Asp Glu His Pro Glu 65 70 75 80
40	gtc ccc cgg acg cgg cgt ccc gtt tcc ggg gcg gtt ttg tcc ggc ccg 288 Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly Pro 85 90 95
	ggg cct gcg cgg gcg cct ccg cca ccc gct ggg tcc gga ggg gcc gga 336 Gly Pro Ala Arg Ala Pro Pro Pro Pro Ala Gly Ser Gly Gly Ala Gly 100 105 110
45	cgc aca ccc acc gcc ccc cgg gcc ccc cga acc cag cgg gtg gcg Arg Thr Pro Thr Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val Ala 115 120 125
50	act aag gcc ccc gcg gcc ccg gcg gcg gag acc acc
g g	tcg qcc cag cca gaa tcc gcc gca ctc cca gac gcc ccc gcg tcg acg Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser Thr 145 150 155 160

	gcg Ala	cca Pro	acc Thr	cga Arg	tcc Ser 165	aag Lys	aca Thr	ccc Pro	gcg Ala	cag Gln 170	ggg Gly	ctg Leu	gcc Ala	aga Arg	aag Lys 175	ctg Leu	528
5															ccc Pro		576
10	gtg Val	gcc Ala	ggc Gly 195	ttt Phe	aac Asn	aag Lys	cgc Arg	gtc Val 200	ttc Phe	tgc Cys	gcc Ala	gcg Ala	gtc Val 205	ggg Gly	cgc Arg	ctg Leu	624
15	gcg Ala	gcc Ala 210	atg Met	cat His	gcc Ala	cgg Arg	atg Met 215	gcg Ala	gcg Ala	gtc Val	cag Glņ	ctc Leu 220	tgg Trp	gac Asp	atg Met	tcg Ser	672
	cgt Arg 225	ccg Pro	cgc Arg	aca Thr	gac Asp	gaa Glu 230	gac Asp	ctc Leu	aac Asn	gaa Glu	ctc Leu 235	ctt Leu	ggc Gly	atc Ile	acc Thr	acc Thr 240	720
20	atc Ile	cgc Arg	gtg Val	acg Thr	gtc Val 245	tgc Cys	gag Glu	ggc Gly	aaa Lys	aac Asn 250	ctg Leu	ctt Leu	cag Gln	cgc Arg	gcc Ala 255	aac Asn	768
25	gag Glu	ttg Leu	gtg Val	aat Asn 260	cca Pro	gac Asp	gtg Val	gtg Val	cag Gln 265	gac Asp	gtc Val	gac Asp	gcg Ala	gcc Ala 270	acg Thr	gcg Ala	816
30	act Thr	cga Arg	ggg Gly 275	cgt Arg	tct Ser	gcg Ala	gcg Ala	tcg Ser 280	cgc Arg	ccc Pro	acc Thr	gag Glu	cga Arg 285	cct Pro	cga Arg	gcc Ala	864
	cca Pro	gcc Ala 290	cgc Arg	tcc Ser	gct Ala	tct Ser	cgc Arg 295	ccc Pro	aga Arg	cgg Arg	Pro	gtc Val 300	gag Glu	ggt Gly	acc Thr	gag Glu	912
35	ctc Leu 305	gga Gly	tcc Ser	act Thr	agt Ser	cca Pro 310	gtg Val	tgg Trp	tgg Trp	aat Asn	tct Ser 315	gca Ala	gat Asp	atc Ile	cag Gln	cac His 320	960
40															ttg Leu 335		1008
45	gca Ala	tta Leu	ccg Pro	gtc Val 340	gat Asp	gca Ala	acg Thr	agt Ser	gat Asp 345	gag Glu	gtt Val	cgc Arg	aag Lys	aac Asn 350	ctg Leu	atg Met	1056
	gac Asp	atg Met	ttc Phe 355	agg Arg	gat Asp	cgc Arg	cag Gln	gcg Ala 360	ttt Phe	tct Ser	gag Glu	cat His	acc Thr 365	tgg Trp	aaa Lys	atg Met	1104
50															aat Asn		1152
55	cgg Arg 385														ctt Leu		1200

5	tat Tyr	ctt Leu	cag Gln	gcg Ala	cgc Arg 405	ggt Gly	ct'g Leu	gca Ala	gta Val	aaa Lys 410	act Thr	atc Ile	cag Gln	caa Gln	cat His 415	ttg Leu	1248
	ggc Gly	cag Gln	cta Leu	aac Asn 420	atg Met	ctt Leu	cat His	cgt Arg	cgg Arg 425	tcc Ser	ggg Gly	ctg Leu	cca Pro	cga Arg 430	cca Pro	agt Ser	1296
10	gac Asp	agc Ser	aat Asn 435	gct Ala	gtt Val	tca Ser	ctg Leu	gtt Val 440	atg Met	cgg Arg	cgg Arg	atc Ile	cga Arg 445	aaa Lys	gaa Glu	aac Asn	1344
15	gtt Val	gat Asp 450	gcc Ala	ggt Gly	gaa Glu	cgt Arg	gca Ala 455	aaa Lys	cag Gln	gct Ala	cta Leu	gcg Ala 460	ttc Phe	gaa Glu	cgc Arg	act Thr	1392
20	gat Asp 465	ttc Phe	gac Asp	cag Gln	gtt Val	cgt Arg 470	tca Ser	ctc Leu	atg Met	gaa Glu	aat Asn 475	agc Ser	gat Asp	cgc Arg	tgc Cys	cag Gln 480	1440
25	gat Asp	ata Ile	cgt Arg	aat Asn	ctg Leu 485	gca Ala	ttt Phe	ctg Leu	ggg Gly	att Ile 490	gct Ala	tat Tyr	aac Asn	acc Thr	ctg Leu 495	tta Leu	1488
	cgt Arg	ata Ile	gcc Ala	gaa Glu 500	att Ile	gcc Ala	agg Arg	atc Ile	agg Arg 505	gtt Val	aaa Lys	gat Asp	atc Ile	tca Ser 510	cgt Arg	act Thr	1536
30	gac Asp	ggt Gly	ggg Gly 515	aga Arg	atg Met	tta Leu	atc Ile	cat His 520	att Ile	ggc Gly	aga Arg	acg Thr	aaa Lys 525	acg Thr	ctg Leu	gtt Val	1584
35	agc Ser	acc Thr 530	gca Ala	ggt Gly	gta Val	gag Glu	aag Lys 535	gca Ala	ctt Leu	agc Ser	ctg Leu	999 Gly 540	gta Val	act Thr	aaa Lys	ctg Leu	1632
	gtc Val 545	gag Glu	cga Arg	tgg Trp	att Ile	tcc Ser 550	gtc Val	tct Ser	ggt Gly	gta Val	gct Ala 555	gat Asp	gat Asp	ccg Pro	aat Asn	aac Asn 560	1680
40	tac Tyr	ctg Leu	ttt Phe	tgc Cys	cgg Arg 565	gtc Val	aga Arg	aaa Lys	aat Asn	ggt Gly 570	gtt Val	gcc Ala	gcg Ala	cca Pro	tct Ser 575	gcc Ala	1728
45	acc Thr	agc Ser	cag Gln	cta Leu 580	tca Ser	act Thr	cgc Arg	gcc Ala	ctg Leu 585	gaa Glu	Gly ggg	att Ile	ttt Phe	gaa Glu 590	gca Ala	act Thr	1776
50	cat His	cga Arg	ttg Leu 595	att Ile	tac Tyr	ggc Gly	gct Ala	aag Lys 600	gat Asp	gac Asp	tct Ser	ggt Gly	cag Gln 605	aga Arg	tac Tyr	ctg Leu	1824
	gcc Ala	tgg Trp 610	tct Ser	gga Gly	cac His	agt Ser	gcc Ala 615	cgt Arg	gtc Val	gga Gly	gcc Ala	gcg Ala 620	cga Arg	gat Asp	atg Met	gcc Ala	1872
55	cgc	gct	gga	gtt	tca	ata	ccg	gag	atc	atg	caa	gct	ggt	ggc	t.gg	acc	1920

	Arg 4 625	Ala	Gly	Val	Ser	Ile 630	Pro	Glu	Ile	Met	Gln 635	Ala	Gly	Gly	Trp	Thr 640	
5	aat o Asn V	gta Val	aat Asn	att Ile	gtc Val 645	atg Met	aac Asn	tat Tyr	atc Ile	cgt Arg 650	aac Asn	ctg Leu	gat Asp	agt Ser	gaa Glu 655	aca Thr	1968
10	ggg g Gly A											t.ag					2004
15	<2102 <2112 <2122 <2132 <2232	> 66 > PR > Ar > De	tifi scri	ptic	on of		ific					NA s€	eguer	nce			
20	<4002 Met 1	> 6 Thr	Ser	Arg	Arg 5	Ser	Val	Lys	Ser	Gly 10	Pro	Arg	Glu	Val	Pro 15	Arg	
25	Asp (Glu	Tyr	Glu 20	Asp	Leu	Tyr	Tyr	Thr 25	Pro	Ser	Ser	Gly	Met 30	Ala	Ser	
	Pro I	Asp	Ser 35	Pro	Pro	Asp	Thr	Ser 40	Arg	Arg	Gly	Ala	Leu 45	Gln	Thr	Arg	
30	Ser i	Arg 50	Gln	Arg	Gly	Glu	Val 55	Arg	Phe	Val	Gln	Tyr 60	Asp	Glu	Ser	Asp	
٠.	Tyr 1 65	Ala	Leu	Tyr	Gly	Gly 70	Ser	Ser	Ser	Glu	Asp . 75	Asp	Glu	His	Pro	Glu 80	
35	Val 1	Pro	Arg	Thr	Arg 85	Arg	Pro	Val	Ser	Gly 90	Ala	Val	Leu	Ser	Gly 95	Pro	
	.Gly 1	Pro	Ala	Arg 100	Ala	Pro	Pro	Pro	Pro 105	Ala	Gly	Ser	Gly	Gly 110	Ala	Gly	•
40	Arg '	Thr	Pro 115	Thr	Thr	Ala	Pro	Arg 120	Ala	Pro	Arg	Thr	Gln 125	Arg	Val	Ala	
45	Thr 1	Lys 130	Ala	Pro	Ala	Ala	Pro 135	Ala	Ala	Ġlυ	Thr	Thr 140	Arg	Gly	Arg	Lys	
	Ser 1	Ala	Gln	Pro	Glu	Ser 150	Ala	Ala	Leu	Pro	Asp 155	Ala	Pro	Ala	Ser	Thr 160	
50 ·	Ala	Pro	Thr	Arg	Ser 165	Lys	Thr	Pro	Ala	Gln 170	Gly	Leu	Ala	Arg	Lys 175	Leu	
	His I	Phe	Ser	Thr 180	Ala	Pro	Pro	Asn	Pro 185	Asp	Ala	Pro	Trp	Thr 190	Pro	Arg	
55	Val i	Ala	Gly 195	Phe	Asn	Lys	Arg	Val 200		Cys	Ala	Ala	Val 205	Gly	Arg	Leu	

	Ala	Ala 210	Met	His	Ala	Arg	Met 215	Ala	Ala	Val	Gln	Leu 220	Ţrp	Asp	Met	Ser
.	Arg 225	Pro	Arg	Thr	Asp	Glu 230	Asp	Leu	Asn	Glu	Leu 235	Leu	Gly	Ile	Thr	Thr 240
10	Ile	Arg	Val	Thr	Val 245	Cys	Glu	Gly	Lys	Asn 250	Leu	Leu	Gln	Arg	Ala 255	Asn
10	Glu	Leu	Val	Asn 260	Pro	Asp	Val	Val	G1n 265	Asp	Val	Asp	Ala	Ala 270	Thr	Ala
15	Thr	Arg	Gly 275	Arg	Ser	Ala	Ala	Ser 280	Arg	Pro	Thr	Glu	Arg 285	Pro	Arg	Ala
	Pro	Ala 290	Arg	Ser	Ala	Ser	Arg 295	Pro	Arg	Arg	Pro	Val 300	Glu	Gly	Thr	Glu
20	Leu 305	Gly	Ser	Thr	Ser	Pro 310	Val	Trp	Trp	Asn	Ser 315	Ala	Asp	Ile	Gln	His 320
	Ser	Gly	Gly	Arg	Met 325	Ser	Asn	Leu	Leu	Thr 330	Val	His	Gln	Asn	Leu 335	Pro
25 .	Ala	Leu	Pro	Val 340	Asp	Ala	Thr	Ser	Asp 345	Glu	Val	Arg	Lys	Asn 350	Leu	Met
	Asp	Met	Phe 355	Arg	Asp	Arg	Gln	Ala 360	Phe	Ser	Glu	His	Thr 365	Trp	Lys	Met
30	Leu	Leu 370	Ser	Val	Çys	Arg	Ser 375	Trp	Ala	Ala	,Trp	Cys 380	Lys	Leu	Asn	Asn
35	Arg 385	Lys	Trp	Phe	Pro	Ala 390	Glu	Pro	Glu	Asp	Val 395	Arg	Asp	Tyr	Leu	Leu 400
	Туг	Leu	Gln	Ala	Arg 405	Gly	Leu	Ala	Val	Lys 410	Thr	Ile	Gln	Gln	His 415	Leu
40	Gly	Gln	Leu	Asn 420	Met	Leu	His	Arg	Arg 425	Ser	Gly	Leu	Pro	Arg 430	Pro	Ser
	Asp	Ser	Asn 435	Ala	Val	Ser	Leu	Val 440	Met	Arg	Arg	Ile	Arg 445	Lys	Glu	Asn
45	Val	Asp 450	Ala	Gly	Glu	Arg	Ala 455	Lys	Gln	Ala	Leu	Ala 460	Phe	Glu	Arg	Thr
	Asp 465		Asp	Gln	Val	Arg 470	Ser	Leu	Met	Glu	Asn 475	Ser	Asp	Arg	Cys	Gln 480
50	Asp	Ile	Arg	Asn	Leu 485	Ala	Phe	Leu	Gly	11e 490	Ala	Tyr	Asn	Thr	Leu 495	Leu
	Arg	Ile	Ala	Glu 500	Ile	Ala	Arg	Ile	Arg 505	Val	Lys	Asp	Ile	Ser 510	Arg	Thr
55	Asp	Gly	Gly	Arg	Met	Leu	Ile	His	Ile	Gly	Arg	Thr	Lys	Thr	Leu	Val

									F 2.0				•	E 2 E				
				515					520					525				
5		Ser	Thr 530	Ala	Gly	Val	Glu	Lys 535	Ala	Leu	Ser	Leu	Gly 540	Val	Thr	Lys	Leu	
		Val 545	Glu	Arg	Trp	Ile	Ser 550	Val	Ser	Gly	Val	Ala 555	Asp	Asp	Pro	Asn	Asn 560	
10	,	Tyr	Leu	Phe		Arg 565	Val	Arg	Lys	Asn	Gly 570	Val	Ala	Ala	Pro	Ser 575	Ala	
		Thr	Ser	Gln	Leu 580	Ser	Thr	Arg	Ala	Leu 585	Glu	Gly	Ile	Phe	Glu 590	Ala	Thr	
15	5	His	Arg	Leu 595	Ile	Tyr	Gly	Ala	Lys 600	Asp	Asp	Ser	Gly	Gln 605	Arg	Tyr	Leu	
		Ala	Trp 610	Ser	Gly	His	Ser	Ala 615	Arg	Val	Gly	Ala	Ala 620	Arg	Asp	Met	Ala	
20	,	Arg 625	Ala	Gly	Val	Ser	Ile 630	Pro	Glu	Ile	Met	Gln 635	Ala	Gly	Gly	Trp	Thr 640	
		Asn	Val	Asn	Ile	Val 645	Met	Asn	Tyr	Ile	Arg 650	Asn	Leu	Asp	Ser	Glu 655	Thr	
25		Gly	Ala	Met	Val 660	Arg	Ļeu	Leu	Glu	Asp 665	Gly	Asp					٠	
30)	<21:	0> 7 1> 20 2> DI 3> A:	NA	icia	l Sed	quen	ce										
35	5	<22 <22	3> D		iption									eque	nce			
			0> 1> C 2> ((199	8)												
40	0	ato	0> 7 acc Thr	tct Ser	cgc Arg	cgc Arg	tcc Ser	gtg Val	aag Lys	tcg Ser	ggt Gly 10	ccg Pro	cgg Arg	gag Glu	gtt Val	ccg Pro 15	cgc Arg	48
4:	5	αat	gag Glu	tac Tyr	gag Glu 20	αat	ctg Leu	tac Tyr	tac Tyr	acc Thr 25	ccg Pro	tct Ser	tca Ser	ggt Gly	atg Met 30	gcg Ala	agt Ser	96
5	o ·	ccc Pro	gat Asp	agt Ser 35	ccg Pro	cct Pro	gac Asp	acc Thr	tcc Ser 40	Arg	cgt Arg	ggc Gly	gcc	cta Leu 45	cag Gln	aca Thr	cgc Arg	144
5.	5	tcg Ser	cgc Arg 50	Gln	agg Arg	Gly	gag Glu	gtc Val 55	Arg	ttc Phe	gtc Val	cag Gln	tac Tyr 60	Asp	gag Glu	tcg Ser	gat Asp	192

	tat Tyr 65	gcc Ala	ctc Leu	tac Tyr	ggg Gly	ggc Gly 70	tcg Ser	tct Ser	tcc Ser	gaa Glu	gac Asp 75	gac Asp	gaa Glu	cac His	ccg Pro	gag Glu 80	240
5	gtc Val	ccc Pro	cgg Arg	acg Thr	cgg Arg 85	cgt Arg	ccc Pro	gtt Val	tcc Ser	ggg Gly 90	gcg Ala	gtt Val	ttg Leu	tcc Ser	ggc Gly 95	ccg Pro	288
10	ggg ggg	cct Pro	gcg Ala	cgg Arg 100	gcg Ala	cct Pro	ccg Pro	cca Pro	ccc Pro 105	gct Ala	ggg Gly	tcc Ser	gga Gly	ggg Gly 110	Ala	gga Gly	336
15	cgc Arg	aca Thr	ccc Pro 115	acc Thr	acc Thr	gcc Ala	ccc Pro	cgg Arg 120	gcc Ala	ccc Pro	cga Arg	acc Thr	cag Gln 125	cgg Arg	gtg Val	gcg Ala	384
	act Thr	aag Lys 130	gcc Ala	ccc Pro	gcg Ala	gcc Ala	ccg Pro 135	gcg Ala	gcg. Ala	gag Glu	acc Thr	acc Thr 140	cgc Arg	ggc Gly	agg Arg	aaa Lys	432
20	tcg Ser 145	gcc Ala	cag Gln	cca Pro	gaa Glu	tcc Ser 150	gcc Ala	gca Ala	ctc Leu	cca Pro	gac Asp 155	gcc Ala	ccc Pro	gcg Ala	tcg Ser	acg Thr 160	480
25	gcg Ala	cca Pro	acc Thr	cga Arg	tcc Ser 165	aag Lys	aca Thr	ccc Pro	gcg Ala	cag Gln 170	ggg Gly	ctg Leu	gcc Ala	aga Arg	aag Lys 175	ctg Leu	528
	cac His	ttt Phe	agc Ser	acc Thr 180	gcc Ala	ccc Pro	cca Pro	aac Asn	ccc Pro 185	gac Asp	gcg Ala	cca Pro	tgg Trp	acc Thr 190	ccc Pro	cgg Arg	576
30	gtg Val	gcc Ala	ggc Gly 195	ttt Phe	aac Asn	aag Lys	cgc Arg	gtc Val 200	ttc Phe	tgc Cys	gcc Ala	gcg Ala	gtc Val 205	ggg Gly	aga Arg	ctg Leu	624
35	 gcg Ala	gcc Ala 210	atg Met	cat His	gcc Ala	cgg Arg	atg Met 215	gcg Ala	gcg Ala	gtc Val	cag Gln	ctc Leu 220	tgg Trp	gac Asp	atg Met	tcg Ser	672
40	cgt Arg 225	ccg Pro	cgc Arg	aca Thr	gac Asp	gaa Glu 230	gac Asp	ctc Leu	aac Asn	gaa Glu	ctc Leu 235	ctt Leu	ggc Gly	atc Ile	acc Thr	acc Thr 240	720
	atc Ile	cgc Arg	gtg Val	acg Thr	gtc Val 245	tgc Cys	gag Glu	ggc Gly	aaa Lys	aac Asn 250	ctg Leu	ctt Leu	cag Gln	cgc Arg	gcc Ala 255	aac Asn	768
45	gag Glu	ttg Leu	gtg Val	aat Asn 260	cca Pro	gac Asp	gtg Val	gtg Val	cag Gln 265	gac Asp	gtc Val	gac Asp	gcg Ala	gcc Ala 270	acg Thr	gcg Ala	816
50	act Thr	cga Arg	ggg Gly 275	cgt	tct Ser	gcg Ala	gcg Ala	tcg Ser 280	cgc Arg	ccc Pro	acc Thr	gag Glu	cga Arg 285	cct Pro	cga Arg	gcc Ala	864
55											ccc Pro						912

	ctc Leu 305	gga Gly	tcc Ser	act Thr	agt Ser	cca Pro 310	gtg Val	tgg Trp	tgg Trp	aat Asn	tct Ser 315	gca Ala	gat Asp	atc Ile	cag Gln	cac His 320	960
5	agt Ser	ggc Gly	ggc Gly	cgc Arg	atg Met 325	tcc Ser	aat Asn	tta Leu	ctg Leu	acc Thr 330	gta Val	cac His	caa Gln	aat Asn	t t.g Leu 335	cat Pro	1008
10	gca Ala	tta Leu	ccg Pro	gtc Val 340	gat Asp	gca Ala	acg Thr	agt Ser	gat Asp 345	gag Glu	gtt Val	cgc Arg	aag Lys	aac Asn 350	ctg Leu	atg Met	1056
15	gac Asp	atg Met	ttc Phe 355	agg Arg	gat Asp	cgc Arg	cag Gln	gcg Ala 360	ttt Phe	tct Ser	gag Glu	cat His	acc Thr 365	tgg Trp	aaa Lys	atg Met	1104
	ctt Leu	ctg Leu 370	tcc Ser	gtt Val	tgc Cys	cgg Arg	tcg Ser 375	tgg Trp	gcg Ala	gca Ala	tgg Trp	tgc Cys 380	aag Lys	ttg Leu	aat Asn	aac Asn	1152
20	cgg Arg 385	aaa Lys	tgg Trp	ttt Phe	ccc Pro	gca Ala 390	gaa Glu	cct Pro	gaa Glu	gat Asp	gtt Val 395	cgc Arg	gat Asp	tat Tyr	ctt Leu	cta Leu 400	1200
25	tat Tyr	ctt Leu	cag Gln	gcg Ala	cgc Arg 405	ggt Gly	ctg Leu	gca Ala	gta Val	aaa Lys 410	act Thr	atc Ile	cag Gln	caa Gln	cat His 415	ttg Leu	1248
30	ggc	cag Gln	cta Leu	aac Asn 420	atg Met	ctt Leu	cat His	cgt Arg	cgg Arg 425	tcc Ser	ej A aaa	ctg Leu	cca Pro	cga Arg 430	cca Pro	agt Ser	1296
	gac Asp	agc Ser	aat Asn 435	gct Ala	gtt Val	tca Ser	ctg Leu	gtt Val 440	atg Met	cgg Arg	cgg Arg	atc Ile	cga Arg 445	aaa Lys	gaa Glu	aac Asn	1344
35	gtt Val	gat Asp 450	gcc Ala	ggt Gly	gaa Glu	cgt Arg	gca Ala 455	aaa Lys	cag Gln	gct Ala	cta Leu	gcg Ala 460	ttc Phe	gaa Glu	cgc Arg	act Thr	1392
40	gat Asp 465	ttc Phe	gac Asp	cag Gln	gtt Val	cgt Arg 470	tca Ser	ctc Leu	atg Met	gaa Glu	aat Asn 475	agc Ser	gat Asp	cgc Arg	tgc Cys	cag Gln 480	1440
45	gat Asp	ata Ile	cgt Arg	aat Asn	ctg Leu 485	gca Ala	ttt Phe	ctg Leu	Gly ggg	att Ile 490	gct Ala	tat Tyr	aac Asn	acc Thr	ctg Leu 495	tta Leu	1488
	cgt Arg	ata Ile	gcc Ala	gaa Glu 500	att Ile	gcc Ala	agg Arg	Ile	agg Arg 505	gtt Val	aaa Lys	gat Asp	atc Ile	tca Ser 510	cgt	act Thr	1536
50	gac Asp	ggt Gly	ggg Gly 515	aga Arg	atg Met	tta Leu	atc Ile	cat His 520	Ile	ggc Gly	aga Arg	acg Thr	aaa Lys 525	acg Thr	ctg Leu	gtt Val	1584
55	agc Ser	acc Thr 530	gca Ala	ggt Gly	gta Val	gag Glu	aag Lys 535	gca Ala	ctt Leu	agc Ser	ctg Leu	ggg Gly 540	gta Val	act Thr	aaa 1.ys	ctg Leu	1632

5	gtc Val 545	gag Glu	cga Arg	tgg Trp	att Ile	tcc Ser 550	gtc Val	tct Ser	ggt Gly	gta Val	gct Ala 555	gat Asp	gat Asp	ccg Pro	aat Asn	aac Asn 560	1680
	tac Tyr	ctg Leu	ttt Phe	tgc Cys	cgg Arg 565	gtc Val	aga Arg	aaa Lys	aat Asn	ggt Gly 570	gtt Val	gcc Ala	gcg Ala	cca Pro	tct Ser 575	gcc Ala	1728
10	acc Thr	agc Ser	cag Gln	cta Leu 580	tca Ser	act Thr	cgc Arg	gcc Ala	ctg Leu 585	gaa Glu	ggg Gly	att Ile	ttt Phe	gaa Glu 590	gca Ala	act Thr	1776
15	cat His	cga Arg	ttg Leu 595	att Ile	tac Tyr	ggc Gly	gct Ala	aag Lys 600	gat Asp	gac Asp	tct Ser	ggt Gly	cag Gln 605	aga Arg	tac Tyr	ctg Leu	1824
20	gcc Ala	tgg Trp 610	tct Ser	gga Gly	cac His	agt Ser	gcc Ala 615	cgt Arg	gtc Val	gga Gly	gcc Ala	gcg Ala 620	cga Arg	gat Asp	atg Met	gcc Ala	1872
20	cgc Arg 625	gct Ala	gga Gly	gtt Val	tca Ser	ata Ile 630	ccg Pro	gag Glu	atc Ile	atg Met	caa Gln 635	gct Ala	ggt Gly	ggc Gly	tgg Trp	acc Thr 640	1920
25	aat Asn	gta Val	aat Asn	att Ile	gtc Val 645	atg Met	aac Asn	tat Tyr	atc Ile	cgt Arg 650	aac Asn	ctg Leu	gat Asp	agt. Ser	gaa Glu 655	aca Thr	1968
30	ggg Gly	gca Ala	atg Met	gtg Val 660	cgc Arg	ctg Leu	ctg Leu	gaa Glu	gat Asp 665	ggc Gly	gati	ag					2004
35	<21	0> 8 1> 60					*							•			
	<21		rtif:			queno		rial	Segi	ience	e: Di	NA SE	eauer	nce			
40	<21	3> A: 3> D:	rtif: escr:	ipti	on of	quenc f Art fusic	cific					NA S	equer	nce			
40 ·	<21: <22:	3> A: 3> D: C:	rtif: escr: odin	iption	on of rai	Art	cific on p	rote	in V	222-1	Flpe				Pro 15	Arg	
40	<21: <22: <40: Met	3> A: 3> D: c: 0> 8 Thr	rtif: escr: oding	iptic g fo: Arg	on of r a f Arg 5	f Art fusio	cific on pi	Lys	in V	Gly 10	Flpe Pro	Arg	Glu	Val	15		
	<21 <22 <40 Met 1 Asp	3> A: 3> D: c: 0> 8 Thr	rtif: escr: oding Ser	Arg Glu 20	Arg 5	f Art fusio Ser	val	Lys Tyr	Ser Thr 25	Gly 10 Pro	Pro Ser	Arg Ser	Glu Gly	Val Met 30	15 Ala	Ser	
	<21: <22: <400 Met 1 Asp	3> A: 3> De 3> De 0> 8 Thr Glu Asp	rtif: escr: oding Ser Tyr Ser 35	Arg Glu 20 Pro	Arg 5 Asp	f Art fusio Ser Leu	Val Tyr	Lys Tyr Ser	Ser Thr 25 Arg	Gly 10 Pro	Pro Ser Gly	Arg Ser Ala	Glu Gly Leu 45	Val Met 30 Gln	15 Ala Thr	Ser Arg	
45	<21 <22 <40 Met 1 Asp Pro	3> A: 3> Do Co 0> 8 Thr Glu Asp Arg 50	ser Tyr Ser 35	Arg Glu 20 Pro	Arg 5 Asp Pro	Ser Leu	Val Tyr Val 55	Lys Tyr Ser 40 Arg	Ser Thr 25 Arg	Gly 10 Pro Arg	Pro Ser Gly	Arg Ser Ala Tyr	Glu Gly Leu 45 Asp	Val Met 30 Gln	15 Ala Thr Ser	Ser Arg Asp	

					85					90					95	
5	Gly	Pro	Ala	Arg 100	Ala	Pro	Pro	Pro	Pro 105	Ala	Gly	Ser	Gly	G1y 110	Ala	Gly
	Arg	Thr	Pro 115	Thr	Thr	Ala	Pro	Arg 120	λla	Pro	Arg	Thr	Gln 125	Arg	Val	Ala
10	Thr	Lys 130	Ala	Pro	Ala	Ala	Pro 135	Ala	Ala	Glu	Thr	Thr 140	Arg	Gly	Arg	Lys
	Ser 145	Ala	Gln	Pro	Glu	Ser 150	Ala	Ala	Leu	Pro	Asp 155	Ala	Pro	Ala	Ser	Thr 160
15	Ala	Pro	Thr	Arg	Ser 165	Lys	Thr	Pro	Ala	Gln 170	Gly	Leu	Ala	Arg	Lys 175	Leu
	His	Phe	Ser	Thr 180	Ala	Pro	Pro		Pro 185	Asp	Ala	Pro	Trp	Thr 190	Pro	Arg
20	Val	Ala	Gly 195	Phe	Asn	Lys	Arg	Val 200	Phe	Cys	Ala	Ala	Val 205	Gly	Arg	Leu
	Ala	Ala 210	Met	His	Ala	Arg	Met 215	Ala	Ala	Val	Gln	Leu 220	Trp	Asp	Met	Ser
25	Arg 225	Pro	Arg	Thr	Asp	Glu 230	Asp	Leu	Asn	Glu	Leu 235	Leu	Gly	Ile	Thr	Thr 240
	Ile	Arg	Val	Thr	Val 245	_	Glu	Gly	Lys	Asn 250	Leu	Leu	Gln	Arg	Ala 255	Asn
30	Glu	Leu	Val	Asn	Pro	Asp	Val	Val	Gln	Asp	Val	Asp	Ala	Ala	Thr	Ala
	014			260					265					270		
35	Thr	Arg	Gly 275	Arg	Ser	Ala	Ala	Ser 280	Arg	Pro	Thr	Glu	Arg 285	Pro	Arg	Ala
	Pro	Ala 290	Arg	Ser	Ala	Ser	Arg 295	Pro	Arg	Arg	Pro	Val 300	Glu	Gly	Thr	Glu
40	Leu 305	Gly	Ser	Thr	Ser	Pro 310	Val	Trp	Trp	Asn	Ser 315	Ala	Asp	Ile	G1n	His 320
	Ser	Gly	Gly	Arg	Met 325	Ser	Asn	Leu	Leu	Thr 330		His	Glņ	Asn	Leu 335	Pro
45	Ala	Leu	Pro	Val 340	Asp	Ala	Thr	Ser	Asp 345	Glu	Val	Arg	Lys	Asn 350	Leu	Met
	Asp	Met	Phe 355	Arg	Asp	Arg	Gln	Ala 360	Phe	Ser	Glu	His	Thr 365	Trp	Lys	Met
50	Leu	Leu 370	Ser	Val	Cys	Arg	Ser 375	Trp	Ala	Ala	Trp	Cys 380	Lys	Leu	Asn	Asn
55	Arg 385		Trp	Phe	Pro	Ala 390	Glu	Pro	Glu	Asp	Val 395	Arg	Asp	Tyr	Leu	Leu 400

	Tyr	Leu	Gln	Ala	Arg 405	Gly	Leu	Ala	Val	Lys 410	Thr	Ile	Gln	Gln	His 415	Leu	
5	Gly	Gln	Leu	Asn 420	Met	Leu	His	Arg	Arg 425	Ser	Gly	Leu	Pro	Arg 430	Pro	Ser	
	Asp	Ser	Asn 435	Ala	Val	Ser	Leu	Val 440	Met	Arg	Arg	Ile	Arg 445	Lys	Glu	Asn	
10	Val	Asp 450	Ala	Gly	Glu	Arg	Ala 455	Lys	Gln	Ala	Leu	Ala 460	Phe	Glu	Arg	Thr	
	Asp 465	Phe	Asp	Gln	Val	Arg 470	Ser	Leu	Met	Glu	Asn 475	Ser	Asp	Arg	Cys	Gln 480	
15	Asp	Ile	Arg	Asn	Leu 485	Ala	Phe	Leu	Gly	Ile 490	Ala	Tyr	Asn	Thr	Leu 495	Leu	
20	Arg	Ile	Ala	Glu 500	Ile	Ala	Arg	Ile	Arg 505	Val	Lys	Asp	Ile	Ser 510	Arg	Thr	
20	Asp	Gly	Gly 515	Arg	Met	Leu	Ile	His 520	Ile	Gly	Arg	Thr	Lys 525	Thr	Leu	Val	
25	Ser	Thr 530	Ala	Gly	Val	Glu	Lys 535	Ala	Leu	Ser	Leu	Gly 540	Val	Thr	Lys	Leu	
	Val 545	Glu	Arg	Trp	Ile	Ser 550	Val	Ser	Gly	Val	Ala 555	Asp	Asp	Pro	Asn	Asn 560	
30	Tyr	Leu	Phe	Суѕ	Arg 565	Val	Arg	Lys	Asn	Gly 570	Val	Ala	Ala	Pro	Ser 575	Ala	
				580	Ser				585					590			
35	His	Arg	Leu 595	Ile	Tyr	Gly	Ala	Lys 600	Asp	Asp	Ser	Gly	Gln 605	Arg	Tyr	Leu	٠
•		610			His		615	•				620			•		÷
40	625		_		Ser	630	•				635					640	
	Asn	Val	Asn	Ile	Val 645	Met	Asn	Tyr	Ile	Arg 650	Asn	Leu	Asp	Ser	G1u 655	Thr	-
45	Gly	Ala	Met	Val 660	Arg	Leu	Leu	Glu	Asp 665	Gly							
50	<21 <21	0> 9 1> 3 2> D 3> H	3 NA	imm	unod	efic	ienc	y Vi	rus			٠	·			÷. (
55		0> 9 ggcc		agaa	gcgc	cg c	caac	gccg	c cg	С							33

```
<210> 10
    <211> 11
    <212> PRT
    <213> Human immunodeficiency virus
    <400> 10
    Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg
10
    <210> 11
    <211> 42
    <212> DNA
    <213> Human immunodeficiency virus
15
    <220>
    <221> CDS
    <222> (4)..(42)
20
    <400> 11
    42
        Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Gly
25
    <210> 12
    <211> 13
    <212> PRT
    <213> Human immunodeficiency virus
30
    <400> 12
    Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly
35
```

Claims

45

50

- Use of a fusion protein comprising
 - (a) a site-specific DNA recombinase domain and
 - (b) a protein transduction domain
 - for preparing an agent for inducing target gene alterations in a living organism, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome.
 - 2. The use of claim 1 wherein the site-specific DNA recombinase domain is selected from a recombinase protein derived from Cre, Flp, φC31 recombinase, and R recombinase and preferably is Cre having amino acids 15 to 357 of SEQ ID NO: 2 or Flpe having amino acids 15 to 437 of SEQ ID NO: 4.
 - 3. The use of claim 1 or 2 wherein the protein transduction domain is a protein derived from the Antennapedia protein of Drosophila, from the VP22 protein of HSV or from the TAT protein of HIV, and preferably is derived from the TAT protein.
- 55 4. The use of claim 3, wherein the TAT protein comprises the amino acid sequenc

YGRKKRQRRR (SEQ ID NO: 10).

- The use of claims 1 to 4, wherein the protein transduction domain is fused to the N-terminal of the site-specific DNA recombinase domain.
 - 6. The use of claims 1 to 5, wherein the protein transduction domain is fused to the site-specific DNA recombinase domain through a direct chemical bond or through a linker molecule.
 - 7. The use of claim 6, wherein the linker molecule is a short peptide having 1 to 20, preferably 1 to 10 amino acid residues.
 - 8. The use of claims 1 to 7, wherein said fusion protein further comprises additional functional sequences.
 - 9. The use of claim 1, wherein the fusion protein has the sequence shown in SEQ ID NOs: 2, 4, 6 or 8.
 - 10. The use of claims 1 to 8, wherein the living organism is a vertebrate, preferably a rodent or a fish.
- 20 11. A method for inducing gene alterations in a living organism which comprises administering to said living organism, a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain as defined in claims 1 to 9, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome.
- 25 12. A fusion protein comprising

10

15

30

40

45

50

55

- (a) a site-specific DNA recombinase domain and
- (b) a protein transduction domain provided that when (a) is Flp then (b) is not the VP22 protein of HSV.
- 13. The fusion protein of claim 11 being as defined in claims 2 to 9.
- 14. The fusion of claim 12 or 13, wherein the protein transduction domain is derived from the TAT protein of HIV.
- 35 15. A DNA sequence coding for the fusion protein of claim 12.
 - 16. The DNA sequence of claim 15 comprising the sequence shown in SEQ ID NOs: 9 and/or 11.
 - 17. A vector comprising the DNA sequence of claim 15.
 - 18. A host cell transformed with the vector of claim 17 and/or comprising the DNA of claim 15.
 - 19. A method for producing the fusion protein of claim 11 which comprises culturing the transformed host cell of claim 17 and isolating the fusion protein.
 - 20. An injectable composition comprising the fusion protein as defined in claims 1 to 9 or12 to14.

Fig. 1

PARTIAL EUROPEAN SEARCH REPORT

which under Rule 45 of the European Patent ConventionEP 00 10 0351 shall be considered, for the purposes of subsequent proceedings, as the European search report

				1					
	DOCUMENTS CONSID	ERED TO BE RELEVANT	r						
Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)					
X	WO 99 11809 A (IMP ;CRISANTI ANDREA (G 11 March 1999 (1999 * example 3 *		10-13,	C12N15/62 C12N9/00 C12N5/10 C12N1/21 C07K14/435					
X	WO 99 60142 A (HEND ;MARPLES BRIAN (GB) CANCE) 25 November * claim 9 *	; SCOTT SIMON (GB);	1-3, 5-13,15, 17-20	C07K14/035					
D,X	Translocation" EXPRESSIONS,	er(TM) - The power of	13						
	vol. 6, no. 1, Febr page 6 XPO02140132 * column 1, paragra	uary 1999 (1999-02), ph 7 *							
A	SCHWARZE S ET AL: transduction: deliv active protein into	ery of a biologically							
i	SCIENCE., vol. 285, no. 5433,			TECHNICAL FIELDS SEARCHED (Int.Cl.7)					
·	3 September 1999 (1 1569-1572, XP002140	999-09-03), pages		C12N C07K A01K A61K					
INCO	MPLETE SEARCH	······································	<u> </u>	·					
not comp be carried Claims se Claims se	ch Division considers that the present by with the EPC to such an extent that out, or can only be carried out partia sarched completely: sarched incompletely;	application, or one or more of its claims, does a meaningful search into the state of the art of ity, for these claims.	s/do Jannol						
Alt	the human/animal bod	rected to a method of to y (Article 52(4) EPC),	the						
sea eff	rch has been carried ects of the compound	out and based on the a composition.	i regea						
	Place of search	Date of completion of the search	<u> </u>	Examiner					
	THE HAGUE	14 June 2000	Lon	noy, 0					
X : par Y : par doo A : tec	ATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with ano ument of the same category thrological background	E : earlier patent do after the filing da ther D : document ched L : document ched	cument, but publite in the application or other reasons	lahed on, or					
O ; no	n-written disclosure ermediate document	& ; member of the s document	& : member of the same patent family, corresponding						

EPO FORM 1509 03.82 (P04C07)

Application Number

EP 00 10 0351

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filling more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
·
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

PARTIAL EUROPEAN SEARCH REPORT

Application Number

EP 00 10 0351

	OOCUMENTS CONSIDERED TO BE RELEVANT	CLASSIFICATION OF THE APPLICATION (Int.CL7)	
ategory	Citation of document with Indication, where appropriate, of relevant passages	Relevant to claim	
A	WO 95 00555 A (EUROP MOLECULAR BIOLOGY LAB EM ;STEWART FRANCIS (DE)) 5 January 1995 (1995-01-05)		
	·		
			TECHNICAL FIELDS SEARCHED (Int.CL7)
		·	

LACK OF UNITY OF INVENTION SHEET B

Application Number EP 00 10 0351

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: 1-3,5-8,10-13,15,17-20 (all partially)

Use of a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain for preparing an agent for inducing target gene alterations in a living organism carrying at least one recognition site in its genome; said use wherein the site-specific recombinase is the Cre recombinase and said protein transduction domain is derived from Antennapedia protein of Drosophila; corresponding method, fusion protein, DNA sequence, vector, host cell and composition.

2. Claims: 1-3,5-13,15,17-20 (all partially)

As for subject 1, but wherein said site-specific recombinase is the Cre recombinase and said protein transduction domain is derived from VP22 of HSV, eventually as presented in SeqIdNo.6

3. Claims: 1-20 (all partially)

As for subject 1, but wherein said site-specific recombinase is the Cre recombinase and said protein transduction domain is derived from Tat of HIV, eventually as presented in SeqIdNo.2, eventually comprising the Tat-derived sequences of SeqIdNo.9, SeqIdNo.10 or SeqIdNo.11

4. Claims: 1-3,5-8,10-13,15,17-20 (all partially)

As for subject 1, but wherein said site-specific recombinase is the Flp recombinase or its modified variant Flpe, and said protein transduction domain is derived from AntP of Drosophila

5. Claims: 1-3,5-13,15,17-20 (all partially)

As for subject 1, but wherein said site-specific recombinase is the Flp recombinase or its modified variant Flpe, and said protein transduction domain is derived from VP22 of HSV, eventually as presented in SeqIdNo.8

6. Claims: 1-20 (all partially)

As for subject 1, but wherein said site-specific recombinase is the Flp recombinase or its modified variant Flpe, and said protein transduction domain is derived from Tat of HIV, eventually as presented in SeqIdNo.4, eventually comprising

LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 00-10 0351

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

the Tat-derived sequences of SeqIdNo.9, SeqIdNo.10 or SeqIdNo.11

7. Claims: 1-3,5-8,10-13,15,17-20 (all partially)

As for subject 1, but wherein said site-specific recombinase is the PhiC31 recombinase, and said protein transduction domain is derived from AntP of Drosophila

8. Claims: 1-3,5-8,10-13,15,17-20 (all partially)

As for subject 1, but wherein said site-specific recombinase is the PhiC31 recombinase, and said protein transduction domain is derived from VP22 of HSV

9. Claims: 1-8,10-20 (all partially)

As for subject 1, but wherein said site-specific recombinase is the PhiC31 recombinase, and said protein transduction domain is derived from Tat of HIV, eventually comprising the Tat-derived sequences of SeqIdNo.9, SeqIdNo.10 or SeqIdNo.11

10. Claims: 1-3,5-8,10-13,15,17-20 (all partially)

As for subject 1, but wherein said site-specific recombinase is the R recombinase, and said protein transduction domain is derived from AntP of Drosophila

- 11. Claims: 1-3,5-8,10-13,15,17-20 (all partially)

As for subject 1, but wherein said site-specific recombinase is the R recombinase, and said protein transduction domain is derived from VP22 of HSV

12. Claims: 1-8,10-20 (all partially)

As for subject 1, but wherein said site-specific recombinase is the R recombinase, and said protein transduction domain is derived from Tat of HIV, eventually comprising the Tat-derived sequences of SeqIdNo.9, SeqIdNo.10 or SeqIdNo.11

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 10 0351

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

14-06-2000

	Patent document ed in search repo		Publication date		Patent family member(s)	Publication date
MO	9911809	Α	11-03-1999	AU	8877698 A	22-03-199
MO	9960142	Α	25-11-1999	AU	3937599 A	06-12-1999
WO	9500555	A	05-01-1995	EP AT AU CA DE DE EP ES JP US	0632054 A 152123 T 7227994 A 2166198 A 69402863 D 69402863 T 0707599 A 2101552 T 2986915 B 8511681 T 6040430 A	04-01-1999 15-05-199 17-01-1999 05-01-1999 28-05-1999 31-07-1999 24-04-1999 01-07-1999 10-12-1999 21-03-2000
	, p					
			•			
					•	
				•		
			\			
				٠.		
-						

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82