Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	
1.2 Описание выходных данных	ε
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	8
3.1 Алгоритм функции main	8
3.2 Алгоритм метода print класса Triangle	8
3.3 Алгоритм функции operator	S
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	10
5 КОД ПРОГРАММЫ	12
5.1 Файл main.cpp	12
5.2 Файл Triangle.cpp	13
5.3 Файл Triangle.h.	14
6 ТЕСТИРОВАНИЕ	15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	16

1 ПОСТАНОВКА ЗАДАЧИ

Перегрузка арифметических операций.

Перезагрузка операции для объекта треугольник.

У треугольника есть стороны a, b, c и они принимают только натуральные значения. Определяем операцию сложения и вычитания для треугольников.

- + сложить значения сторон, если допустимо.
- вычесть значения сторон, если допустимо.

Складываются и вычитаются соответствующие стороны треугольников. Т.е. a1 + a2, b1 + b2, c1 + c2. Если после выполнения операции получается недопустимый треугольник, то результатом операции берется первый аргумент.

Написать программу, которая выполняет операции над треугольниками.

В основной программе реализовать алгоритм:

- 1. Ввод количества треугольников n.
- 2. В цикле для каждого треугольника вводятся исходные длины сторон. Далее создается объект, в конструктор которого передаются значения длин сторон. Каждый объект треугольника получает свой номер от 1 до п.
- 3. В цикле, последовательно, построчно вводится «номер первого треугольника» «символ арифметической операции + или -» «номер второго треугольника»
- 4. После каждого ввода выполняется операция, результат присваивается первому аргументу (объекту треугольника).
- 5. Цикл завершается по завершению данных.
- 6. Выводится результат последней операции.

Гарантируется:

• Количество треугольников больше или равно 2;

• Значения исходных длин сторон треугольников задаются корректно.

Реализовать перегрузку арифметических операции «+» и «-» для объектов треугольника посредством самостоятельных не дружественных функций.

1.1 Описание входных данных

Первая строка содержит значение количества треугольников n:

«Натуральное значение»

Далее п строк содержат

«Натуральное значение» «Натуральное значение»

Начиная с n + 2 строки:

«Натуральное значение» «Знак операции» «Натуральное значение»

1.2 Описание выходных данных

а = «Натуральное значение»; b = «Натуральное значение»; c = «Натуральное значение».

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- простраство имент cin, cout;
- if...else.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм функции main

Функционал: запуск прогрммы.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

N₂	Предикат	Действия	N₂
			перехода
1		объявление переменой n, a, b, c типа int	2
2		ввод значеий переменной п	3
		созданрие пустого массива	
3	i <n< td=""><td></td><td>4</td></n<>		4
			7
4		ввод значений переменных a , b	5
5		создание обхекта obj класса triangles	c 6
		параметрами а, b, с	
6		добавление объека obj в массиве	7
7		объявление переменных	Ø

3.2 Алгоритм метода print класса Triangle

Функционал: вывод значений.

Параметры: нет.

Возвращаемое значение: none.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода print класса Triangle

No	Предикат	Действия	No
			перехода
1		вывод на экран сообщения	Ø

3.3 Алгоритм функции operator

Функционал: оператор вычитания.

Параметры: нет.

Возвращаемое значение: triangle.

Алгоритм функции представлен в таблице 3.

Таблица 3 – Алгоритм функции operator

N₂	Предикат	Действия	N₂
			перехода
1		возвращение значения объекта 11	2
2			Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "Triangle.h"
#include <vector>
using namespace std;
Triangle operator + (Triangle t1, Triangle t2)
  int a = t1.a + t2.a;
  int b = t1.b + t2.b;
  int c = t1.c + t2.c;
  if ((a + b > c) & (a + c > b) & (b + c > a))
     t1.a = a;
     t1.b = b;
     t1.c = c;
  return t1;
}
Triangle operator - (Triangle t1, Triangle t2)
  int a = t1.a - t2.a;
  int b = t1.b - t2.b;
  int c = t1.c - t2.c;
  if ((a + b > c) & (a + c > b) & (b + c > a))
     t1.a = a;
     t1.b = b;
     t1.c = c;
  return t1;
}
int main()
  int a, b, c, n;
  cin >> n;
```

```
vector <Triangle> triangles;
  for (int i = 0; i < n; i++)
  {
     cin >> a >> b >> c;
     Triangle obj(a, b, c);
     triangles.push_back(obj);
  int trian1, trian2;
  char operation;
  while (cin >> trian1, cin >> operation, cin >> trian2)
     if (operation == '+')
        triangles[trian1 - 1] = triangles[trian1 - 1] + triangles[trian2 -
1];
     else if (operation == '-')
        triangles[trian1 - 1] = triangles[trian1 - 1] - triangles[trian2 -
1];
     }
  triangles[trian1 - 1].print();
  return(0);
}
```

5.2 Файл Triangle.cpp

Листинг 2 – Triangle.cpp

```
#include "Triangle.h"
#include <cmath>
Triangle::Triangle(int a, int b, int c)
{
    this->a = a;
    this->b = b;
    this->c = c;
}
void Triangle :: print()
{
    cout << "a = " << a << "; " << "b = " << b << "; " << "c = " << c << "." << endl;
}</pre>
```

5.3 Файл Triangle.h

Листинг 3 – Triangle.h

```
#ifndef __TRIANGLE__H
#define __TRIANGLE__H
#include <iostream>
using namespace std;
class Triangle
{
   public:
    int a, b, c;
   Triangle(int a, int b, int c);
   void print();
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 4.

Таблица 4 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные
	данные	данные
2 3 4 5 5 12 13 1 + 2	a = 8; b = 16; c = 18.	a = 8; b = 16; c = 18.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).