Policy Optimzation

1. 강화학습과 정책 최적화란?

강화학습은 에이전트(Agent)가 환경(Environment)과 상호작용하면서 보상(Reward)을 최대화하도록 학습하는 머신러닝 분야다.

여기서 에이전트는 **정책(Policy)**라는 걸 따라 행동을 선택하는데, 정책은 쉽게 말해 "상황(상태, State)이 주어졌을 때 어떤 행동(Action)을 할지 결정하는 규칙"이다.

정책 최적화(Policy Optimization)는 이 정책을 더 좋은 방향으로 개선하는 과정이야. 즉, 에이전트가 더 많은 보상을 받을 수 있도록 정책을 업데이트하는 거지. PPO는 이 과정을 효율적이고 안정적으로 수행하기 위해 고안된 방법 중 하나이다.

2. PPO의 핵심 아이디어

PPO는 이전 정책 최적화 방법들(예: TRPO 같은 것들)이 너무 복잡하거나 불안정하다는 문제를 해결하려고 나왔어. PPO의 목표는:

- 안정성: 정책을 너무 급격하게 바꾸면 학습이 망가질 수 있으니, 업데이트를 "안전하게" 제한하자.
- 단순함: 복잡한 수학 계산을 줄여서 구현하기 쉽게 만들자.
- 효율성: 적은 계산으로도 좋은 성능을 내자.

PPO는 이 세 가지를 잘 조화시킨 알고리즘이야.

3. PPO가 동작하는 방식 (쉽게 비유로 설명)

PPO를 이해하기 쉽게, 우리가 친구와 함께 미로 탈출 게임을 한다고 생각해보자. 미로에서 출구(보상)를 찾으려면 어디로 갈지 계속 선택해야 해. 여기서 PPO는 이런 식으로 작동해:

(1) 현재 정책으로 미로 탐색하기

- 네가 지금까지 배운 "미로에서 왼쪽으로 가면 출구에 가까워진다" 같은 규칙(정책)을 따라 움직여봐.
- 이 과정에서 어떤 선택이 잘 됐는지(보상이 높았는지) 데이터를 모아.

(2) 새 정책으로 조금씩 업데이트

- 모은 데이터를 보고 "음, 왼쪽도 괜찮았지만 오른쪽으로 가는 게 더 빠를 수도 있겠다"라고 생각해.
- 근데 여기서 중요한 건, 갑자기 "이제 무조건 오른쪽만 간다!"라고 완전히 바꾸지 않는다는 거야. 왜냐? 너무 큰 변화는 오히려 길을 잃게 할 수 있거든.
- PPO는 "기존 정책에서 너무 멀리 벗어나지 않도록" 제한을 걸어. 마치 "기존 길에서 한두 발짝만 옆으로 가보자" 같은 느낌이야.

(3) 보상 확인하고 반복

- 새로 바꾼 정책으로 다시 미로를 탐색하면서 더 나은 보상을 받는지 확인해.
- 이 과정을 계속 반복하면서 점점 출구에 가까워지도록 정책을 개선하는 거야.

Policy Optimization 1

4. PPO의 기술적 핵심 (조금 더 깊이 들어가기)

이제 좀 더 구체적으로 PPO가 어떻게 이 "제한된 업데이트"를 하는지 설명해볼게. 수학적인 부분은 최대한 쉽게 풀어서 설명할게.

(1) Clipped Objective Function (클리핑된 목표 함수)

- PPO는 정책을 업데이트할 때 "너무 큰 변화는 안 돼!"라는 규칙을 적용해. 이를 위해 **클리핑(Clipping)**이라는 방법을 써.
- 쉽게 말해, 새 정책이 기존 정책과 얼마나 다른지를 계산하고, 그 차이가 너무 크면 "그 정도까지만 바꿔!"라고 잘라버리는 거야.
- 예를 들어, 네가 미로에서 "왼쪽으로 10번 가던 걸 갑자기 오른쪽으로 100번 가자"고 바꾸면 위험하니까, "최 대 20번까지만 바꿀게" 같은 제한을 두는 식이야.

(2) Advantage Function (이득 함수)

- PPO는 어떤 행동이 얼마나 좋은지 판단하기 위해 "이득(Advantage)"라는 개념을 써. 이건 "이 행동을 했을 때 평균보다 얼마나 더 좋은 보상을 받았나?"를 계산한 거야.
- 이득이 크면 그 행동을 더 자주 하도록 정책을 조정하고, 작으면 덜 하도록 조정해.

(3) Actor-Critic 구조

- PPO는 보통 "Actor"와 "Critic"이라는 두 개의 네트워크를 같이 써.
 - Actor: 정책을 담당해. "어떤 행동을 할까?"를 결정해.
 - Critic: 보상을 평가해. "이 행동이 얼마나 좋은 결과를 낼까?"를 예측해.
- 이 둘이 협력하면서 Actor는 더 나은 행동을 배우고, Critic은 더 정확한 평가를 하게 돼.

5. PPO의 장점과 한계

장점:

- 안정적: 정책 업데이트가 제한돼 있어서 학습이 망가질 확률이 적어.
- 구현 쉬움: 복잡한 수학 계산이 덜 필요해서 코드로 쓰기 편해.
- 범용성: 게임, 로봇 제어 등 다양한 강화학습 문제에 잘 맞아.

한계:

- 성능 제한: 너무 안전하게 업데이트하다 보니, 가끔 최적의 정책을 찾는 데 시간이 더 걸릴 수 있어.
- 하이퍼파라미터 의존: 클리핑 범위 같은 설정을 잘 조정해야 성능이 좋아져.

6. 실생활 비유로 마무리

PPO를 요리 실력 키우기로 비유해보면:

- 처음엔 "이 레시피대로만 요리하자"라는 정책을 따라.
- 요리해보고 "소금을 조금 더 넣으면 맛있겠다"라는 피드백을 받아.
- 근데 갑자기 "소금을 10배 넣자!"는 안 하고, "조금씩만 더 넣어보자"로 안전하게 실험해.
- 계속 맛보고 조정하면서 점점 완벽한 요리를 만드는 법을 배우는 거야.

Policy Optimzation 2

▼ 개선 방안

1. 적응형 클리핑(Adaptive Clipping):

PPO는 클리핑 범위를 고정적으로 설정하는데, 이걸 상황에 따라 유연하게 바꾸는 방법이 있어. 예를 들어, 학습 초반엔 클리핑을 느슨하게 해서 더 큰 변화를 허용하고, 나중에 안정되면 조여서 세밀하게 조정하는 식이야. 이렇게 하면 느리게 가는 걸 줄이고 더 빠르게 최적의 정책에 가까워질 수 있어.

2. 자동 튜닝(Auto-Tuning):

하이퍼파라미터를 수동으로 조정하는 대신, 학습 중에 성능을 보고 자동으로 조정하는 알고리즘을 추가할 수 있어. 예를 들어, 클리핑 범위를 보상의 변화나 정책 안정성에 따라 실시간으로 바꾸는 거야.

Policy Optimzation 3