RG

(11)Publication number:

02-210492

(43)Date of publication of application: 21.08.1990

(51)Int.CI.

G09G 3/18 G02F 1/133

(21)Application number: 01-029978

01-029978 10.02.1989 (71)Applicant:

MATSUSHITA ELECTRIC IND CO LTD

(72)Inventor:

YOSHIDA MICHIO

(54) LIQUID CRYSTAL DISPLAY DRIVING DEVICE

(57)Abstract

(22)Date of filing:

PURPOSE: To easily reduce electric power consumption without deteriorating the characteristics of the liquid crystal display element by providing the power source of the driving circuit of the liquid crystal display element with plural pieces of bidirectional transfer gates and adding a function to stop the clock signal of the liquid crystal display element.

CONSTITUTION: Both bidirectional transfer gate circuits 20, 21 conduct and a clock ϕLCD for a liquid crystal operates when the standby signal generated in the internal circuit of an integrated circuit device or inputted from an external terminal is a VSS level. The liquid crystal display element makes an ordinary operation of non-lighting when segment data is the VSS level and of lighting at a VDD level. The liquid crystal driving clock ϕLCD stops and both the bidirectional transfer gate circuits 20, 21 become non-conducting when the standby signal attains the VDD level and, therefore, the power source for driving the liquid crystal is not supplied and the output attains a high impedance state. The standby function is easily realized in this way without deteriorating the characteristics of the liquid crystal display element and the electric power consumption is reduced.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

This Page Blank (USP)(0)

⑩日本国特許庁(JP)

40特許出願公開

母 公 開 特 許 公 報 (A) 平2-210492

Mint. Cl. 5

識別配号

庁内整理番号

@公開 平成2年(1990)8月21日

G 09 G 3/18 G 02 F 1/133

520

8621-5C 8708-2H

審査請求 未請求 請求項の数 1 (全5頁)

64発明の名称

液晶表示駆動装置

②特 顧 平1-29978

匈出 題 平1(1989)2月10日

吉 田 道 雄松下電器産業株式会社

大阪府門真市大字門真1006番地 松下電器產業株式会社内

大阪府門真市大字門真1006番地

四代 理 人 弁理士 星野 恒司

朔 (報) 「書

- 1. 発明の名称 液晶表示撃動装置
- 2. 特許請求の範囲

入力信号とスタンパイ信号を入力接続した論理 和回路の出力を分周回路に接続し、該分属回路の 出力は、PチャンネルMOSトランジスタのドレ インとNチャンネルMOSトランジスタのドレイ ンとを接続し、かつゲートを共通にした、いわゆ る共通電極駆動信号の第1の出力駆動四路の前記 共通にしたゲートに接続すると共に、前記第1の 出力駆動回路と同一の構成を有する第2の出力駆 動回路の共通にしたゲートに出力側を接続した排 他的論理和の否定回路(EX-NOR)に、データ 入力と共に別の入力烙子にそれぞれ接続し、また、 電製菓子と前記第1、第2の出力駆動回路のPチ ャンネルMOSトランジスタのソース、および投 地端子と前記第1. 第2の出力駆動回路のNチャ ンネルMOSトランジスタ間にそれぞれ転送ゲー トを介して接続し、前記転送ゲートをスタンパイ

信号で入り切りする構成としたことを特徴とする 液晶表示駆動装置。

3. 発明の辞細な説明

(産業上の利用分野)

本発明は、被晶表示素子の駆動装置に関する。 (従来の技術)

近年、卓上型電子計算機を始めとして、被品表示素子を使用する電子機器が増加し、その電源として乾電池が多く用いられるため装置の低消費電力化が望まれている。

第3回は、従来の被晶表示素子を直接駆動する 集積回路装置を示している。但し、被晶表示案子 の駆動方式は一般的なスタティック方式とする。 第3回において、1 および 2 は P チャンネルM O S トランジスタ、4 および 5 は N チャンネル M O S トランジスタ、10は E X ー N O R 回路、30 は被 品共通電極駆動回路、31 は被晶セグメント電極駆 動回路である。

第4回は従来例の点灯、非点灯時の被晶表示素 子の駆動信号のタイミングチャートを示したもの である.

次に上記從来例の動作について説明する。第3 関において、クロック入力端子(Lcoをゲート入) 力とし、電源輪子Vooと接砲Vsa間に、Pチャン ネルMOSトランジスタ1とNチャンネルMOS トランジスタ4を直列提続して、いわゆる被品共 通電極駆動回路30とし、MOSトランジスタのド レインを共通にした接続点より出力個号端子 Contを取り出す。また、クロック入力端子occo と表示用データ入力Dを各入力増子とするEX-NOR回路10の出力を、前記被品共通電極駆動団 路30と開機に構成した回路を別に設け、その共通 にしたゲートに接続して被品セグメント電極駆動 回路31を構成し、その出力増子をS。。」とする。 ♦Lepは集種回路装置のクロック入力端子あるい はクロック発紙回路の信号を分周した波晶表示素 子の駆動クロック信号であり、表示データ信号D は、セグメント電極を点灯するとき電源電圧∇οο レベルで、非点灯時はマュレベルとなる。 第4 関 に示すように、表示データDがVェレベルのとき

- 3 - '

本発明は、上記従来の問題を解決するものであり、被品表示素子の特性を劣化させることなく、 容易に低消費電力化を実現する被品表示駆動装置 を提供することを目的とするものである。

(問題を解決するための手段)

本発明は上記目的を達成するために、被暴表示 業子の駆動回路の電源に複数個の双方向の転送ゲートを有し、かつ被暴表示妻子のクロック信号を 停止する機能を付加したものである。

(作用)

したがって、本発明によれば、液晶表示報子駆動用の電源に双方向転送ゲート回路を、該装置内のスタンパイ制御信号で非導通にすることにより、液晶表示業子駆動用の全出力端子の出力が高インピーダンス状態となるために、液晶表示素子の特性を労化させることなく液晶表示素子の駆動クロック信号を停止することが可能となり、低消費電力化が容易に実現できるという作用を有する。

(宴放例)

第1國は本発明の一実施例を示す回路である。

は、被品表表電極影動回路30の出力端子 Comt の 信号出力と、被品セグメント駆動回路31の出力端子 Som の信号出力は同一となり、被品表示楽子 の共通電極とセグメント電極値の電位差は 0 となり非点灯となる。

次に、表示データDがVョッレベルのときは、出力増子Coutと出力増子Soutは逆相の信号出力となり、被晶表示素子の共通電極とセグメント電極間の電位差は電源電圧Vosとなり、点灯状態となる。

(発明が解決しようとする課題)

しかしながら、上記従来の被晶表示駆動装置では、被晶表示案子の駆動用のクロック信号は常時動作状態のために、装置の消費電力が多く、また、低消費電力化を図るためにクロック信号をセグメント点灯時に停止すると、被晶表示素子の特性が劣化する問題点があった。このため、スタンバイ状態や被晶表示が不要なときでもクロック信号が必要となるため、低消費電力化が望まれている電子機器には不向きである。

- 4 -

第1回において、1,2および3はPチャンネル MOSトランジスタ、4,5および6はNチャン ネルMOSトランジスタ、10はEX-NOR四路、 11はOR回路、12はインバータ目路、20は双方向 転送ゲート回路であってソースと基板を接続して 電源端子Vooと接続したPチャンネルMOSトラ ンジスタからなる。21は双方向転送ゲート回路で あって、ソースと某板を複数し接触値子Vェーと接 館したNチャンネルMOSトランジスタからなる。 30は液晶共通電振駆動回路であって、各ゲートを 共通接続した P チャンネルMOSトランジスタ1 のドレインと、ソースと基根を共通接続したNチ ャンネルMOSトランジスタ4のドレインとを接 統し、その接続点を出力編子 Caut として被晶表 示素子の共通電極膨動信号の出力に用いられる。 31は被晶セグメント電極駆動回路であって、液晶 共通電極駆動回路30と同様な轉成の回路の共遂に したゲートにEX-NOR同時10の出力を搭続し て用いられる。32は分周回路である。

前記双方向転送ゲート回路20,21にそれぞれ前

配被品共通電極駆動回路30、被晶セグメント電極駆動回路31のPチャンネルMOSトランジスタ1、2のソース、およびNチャンネルMOSトランジスタ4、5のソースに接続し、スタンバイ信仰転送がトラスタ4、5のソースに接続されてから、21のPチャンネルMOSトランバスタ6ののサインネルのSトランバイ信号というの名がより、20の円がより、20の円が11の出力を前に接続している。

第2回は本実施例のタイミングを示した図であ る。

次に上記実施例の動作について説明する。 第 1 図において、集積回路装置の内部回路で発生あるいは外部縮子より入力されるスタンパイ信号が V::レベルのとき、双方向転送ゲート回路 20、21 は共に導通し、かつ被晶用クロック + 1 cp は動作

- 7 -

本発明は上記実施例より明らかなように、液晶表示素子の駆動用クロック発掘を停止しても、液晶表示素子の特性を劣化することなく容易にスタンパイ機能を実現し、消費電力を低減することができるという効果を有する。

4. 図面の簡単な説明

第1四は本発明の一実施例の被品表示駆動装置の回路図、第2回は第1回の実施例のタイミング 図、第3回は従来の被品表示駆動装置の回路図、 第4回は第3回の従来例のタイミング図である。

1,2,3 … P·チャンネルMOSトランジスタ、4,5,6 … N·チャンネルMOSトランジスタ、10 … E·XーNOR回路、11 … OR回路、12 … インパータ回路、20,21 … 双方向の転送ゲート回路、30 … 被晶共通電極駆動回路、31 … 被晶セグメント電極駆動回路、32 … 分周回路。

特許出願人 松下電器產業株式会社

代理人 星野 恒

する。第2図に示すように、セグメントデータDがVェッレベルでは被虽表示素子は非点灯、Vェッレベルではを対の通常の動作を行う。次に、スタンバイ信号がVェッレベルになると、被品用クロック発生源にあるOR回路11により被品駆動クロックやLca は停止し、かつ双方向製送ゲート回路20。21は共に非導達となるため、液品駆動用の電源Van(Lca)、Vsu(Lca)は供給されず出力は高インピーダンス状態となる。

なお、本実施例は被晶表示素子の原動方式をスタティック方式としたが、被晶用電弧の多いダイナミック駆動方式にも適用されるのは言うまでもない。

双方向転送ゲート回路の構成は、基板パイアス 効果を考慮し、PチャンネルMOSトランジスタ 1個とNチャンネルMOSトランジスタ1個を並 列接載した回路構成を用いてもよい。また、被品 駆動用クロック源の停止は、水晶発振回路等の自 励発振回路にも適用できるのは含うまでもない。

(森明の効果)

- 8 -

運! 図

1.2,3 ··· Pシャンネル MOSトランジスタ

4.5.6 ··· N かンネル MOSトランジスタ

IO ··· EX-NOR 回路

II ··· OR 回路

12…イソパータ回答

20,21…双约教进行上日路

30…液晶失速电极配動目路

31…液晶セグメ小電極配動回路

第 2 図

This Page Blank (USP†0)