THE WITHOUT BURDERS

"МАТЕМАТИКА БЕЗ ГРАНИЦИ" - 2014 -2015

ECEH

18-26 октомври 2014 г. ОСМИ КЛАС

УВАЖАЕМИ УЧЕНИЦИ,

За всеки верен отговор получавате по 1 точка, а за грешен или непосочен отговор – 0 точки. Съветваме ви да прочетете внимателно всяка задача и да запишете правилния отговор в листа за отговори!

Класирането се извършва по регламента на турнира.

Време за работа - 60 минути.

УСПЕХ!

Задача 1. Произведението на три естествени числа е 12. Намерете най-големият възможен сбор на тези числа.

A) 8 **B)** 7 Γ) друг отговор

Задача 2. Ако N е естествено число и N^2-9 е просто число, тогава N е:

A) просто число **B)** число, кратно на 3 Γ) друг отговор

Задача 3. Да се пресметне израза $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+2}$.

A) $3+2\sqrt{2}+2\sqrt{3}$ **B)** $3-2\sqrt{2}+2\sqrt{3}$ **B)** $3-2\sqrt{2}-2\sqrt{3}$ **Г)** 1

Задача 4. Две момчета играят на следната игра: от кутия с 13 бонбона те един след друг за един ход изяждат 1, 2 или 3 бонбона. Печели този, който изяде последния бонбон. Колко бонбона трябва да изяде първият играч при първия си ход, за да си осигури възможност за победа в играта, при всеки ход на втория играч?

A) 1 **B)** 2 **B)** 3 Г) друг отговор

Задача 5. Триъгълник има височини 1 cm, 2 cm и x cm, за всяко число x от интервала:

A) (0, 4) **B)** (2/3, 2) Γ (0, 2)

Задача 6. Нека A е естествено число, а B и C са цели числа, такива че

(x-A)(x-2)+1=(x+B)(x+C) е тъждество. Тогава A е:

A) 1 **B)** 3 Γ) 4

•			9.99!, ако с <i>N</i> ! означа	ваме
произведението на вс	ички цели числа	от 1 до N включителн	но и 0!=1.	
A) 100!	Б) 101!	B) 102!		
Задача 8. Броят на ра	щионалните числ	иа в редицата $\sqrt{1}$, $\sqrt{2}$,	$\sqrt{3}$,, $\sqrt{99}$, $\sqrt{100}$ e:	
A) 100	Б) 50	B) 10	Γ) 0	
Задача 9. Колко са в	възможните двуц	ифрени числа N , так	ива че $1^N + 2^N + 3^N + 4^N$ н	IE ce
дели на 10?				
A) 13	Б) 22	B) 23	Γ) 33	
Задача 10. Точката <i>(</i>	Э е пресечна точн	ка на диагоналите на	правоъгълник <i>ABCD</i> . Точ	ката
M е от страната AB и	і ъгъл <i>АОМ</i> е 30	градуса. Точката N е	е от отсечката ОВ и такава	а, че
<i>ОМ=ОN</i> . Да се пресм	етне ъгъл <i>NMB</i> .			
			Г) 30 градуса елете най-голямата възмо	жна
стойност на най-голе	мия общ делител	на тези числа.		
Задача 12. Колко са т	грицифрените чи	сла, които са 12 пъти	по-големи от сбора на сво	ите
цифри?				
Задача 13. Ако ъглит	е на триъгълник	се отнасят както 1:5:6	б и лицето му е 8 кв. см,	
определете дължинат	а на най-голямат	а страна на този триъ	гълник.	
Задача 14. Колко са	целочислените р	решения х и у на ура	внението $\frac{1}{x} - \frac{1}{y} = \frac{1}{N}$, ако	N e
просто число?				
Задача 15. Квадрат и	правоъгълник им	мат равни лица. Коя ф	оигура винаги има по-голя	M
периметър?				
Задача 16. Колко са ј	решенията на нер	равенството $(x^3 - 3x^2 -$	$+3x-1)^{2014}+(1-x^2)^{2016} \le 0$?
Задача 17. Точката <i>D</i>	е от медианата (${\it CM}$ на триъгълник ${\it AB}$	С, такава че <i>CD:DM</i> =1:3.	Ако
точката E е пресечна	точка на правата	AD и страна BC наме	ерете <i>CE:CB</i> .	
Задача 18. Ако отида	на училище пеш	и, а се върна с автобус	ще изразходвам час и	
половина. Ако и на о	гиване, и на връп	цане пътувам с автобу	ус – това ще ми отнеме 30	
минути. За колко вре	ме ще отида на уч	чилище пеш и ще се в	върна пеш?	
Задача 19. Нека кате	тите <i>AC</i> и <i>BC</i> на г	правоъгълен триъгълі	ник <i>ABC</i> са съответно 3 сп	пи4
$\it cm$. Нека точката $\it L$ е	от хипотенузата	AB, a CL е ъглополо	вяща за триъгълника АВС	. Да
се пресметне разстоя	нието от точката	L до катета AC .		
Задача 20. Колко са ч	нислата до 1000 с	ъс сбор на цифрите 1	1, които се делят на 11?	