Sistemas Digitales

Tomás Agustín Hernández

1. Introducción a los sistemas de representación

Magnitud

Llamamos magnitud al tamaño de algo, dicho en una medida específica. Es representada a través de un sistema que cumple 3 conceptos fundamentales:

- Finito: Debe haber una cantidad finita de elementos.
- Composicional: El conjunto de elementos atómicos deben ser fáciles de implementar y componer.
- Posicional: La posición de cada dígito determina en qué proporción modifica su valor a la magnitud total del número.

Algunos de los sistemas de representación más utilizados son: binario, octal, decimal y hexadecimal.

Bases

Una base nos indica la cantidad de símbolos que podemos utilizar para poder representar determinada magnitud.

Base	Símbolos disponibles
2 (binario)	0, 1
8 (octal)	0, 1, 2, 3, 4, 5, 6, 7
10 (decimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
16 (hexadecimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Tabla 1: Bases más utilizadas

La tabla anterior representa los símbolos disponibles para las bases 2, 8, 10 y 16.

Consideremos por un momento que estamos en binario; ¿sería correcto que 1+1=2? ¡No! Porque 2 no es un símbolo válido en base 2.

Para indicar la base en la que está escrito un número, se coloca la base entre paréntesis en la esquina inferior derecha.

 $1024_{(10)}$: 1024 representado en base 10 (decimal)

Digitos/Bits

Sea $n \in \mathbb{Z}$, cuando decimos que tenemos n bits es lo mismo que decir que tenemos n dígitos.

- 0001: Representa el número 1 en binario, en 4 bits/dígitos.
- 0010: Representa el número 2 en binario, en 4 bits/dígitos.

Teorema de división

Es una manera de poder realizar un cambio de base de un número decimal a otra base. La representación en la otra base es el resto visto desde abajo hacia arriba.

$$a = k * d + r \ con \ 0 \le r < |d|$$

donde:

- = k = cociente
- \bullet d = divisor.
- r = resto de la división de a por d.

Pasaje del número $128_{(10)}$ a $128_{(2)}$ en 8 bits

$$128 = 64 * 2 + 0$$

$$64 = 32 * 2 + 0$$

$$32 = 16 * 2 + 0$$

$$16 = 8 * 2 + 0$$

$$8 = 4 * 2 + 0$$
$$4 = 2 * 2 + 0$$
$$2 = 1 * 2 + 0$$

$$1 = 0 * 2 + 1$$

Luego, $128_{(2)} = 1000\ 0000$

Bit más significativo / menos significativo

El bit más significativo en un número es el que se encuentra a la izquierda, mientras que el menos significativo es el que se encuentra a la derecha.

1000000₍₂₎

Tipos numéricos

Representemos números naturales y enteros a partir de la representación en base 2 (binario)

Sin signo: Representa únicamente números positivos. No se pueden utilizar los símbolos de resta (-) ni tampoco coma (,)

$$1_{(10)} = 01_{(2)}$$
$$128_{(10)} = 10000000_{(2)}$$

Signo + Magnitud: Nos permite representar números negativos en binario. El bit más significativo indica el signo

- 0: número positivo
- 1: número negativo.

$$18_{(10)} = \mathbf{0}0010010_{(2)}$$
$$-18_{(10)} = \mathbf{1}0010010_{(2)}$$

Representar números en S+M suele traer problemas porque el 0 puede representarse de dos maneras

$$+0_{(10)} = \mathbf{0}0000000_{(2)}$$

 $-0_{(10)} = \mathbf{1}0000000_{(2)}$

Para solucionar este problema, las CPU utilizan la notación Complemento a 2 (C_2)

Exceso m: Sea $m \in \mathbb{Z}$, decimos que un número n está con exceso m unidades cuando m > 0

$$n_0 = n + m$$

$$n = 1 \land m = 10 \longrightarrow n_0 = -9$$

Nota: n_0 indica el valor original de n antes de ser excedido m unidades.

Complemento a 2: Los positivos se representan igual.

El bit más significativo indica el signo, facilitando saber si el número es positivo o negativo. Cosas a tener en cuenta

- Rango: $-2^{n-1} hasta 2^{n-1} 1$
- Cantidad de representaciones del cero: Una sola
- Negación: Invierto el número en representación binaria positiva y le sumo uno.
 - \bullet $-2_{(2)} = inv(010) + 1$
 - $-2_{(2)} = 101 + 1$
 - $-2_{(2)} = 110$
- Extender número a más bits: Se rellena a la izquierda con el valor del bit del signo.
- Regla de Desbordamiento: Si se suman dos números con el mismo signo, solo se produce desbordamiento cuando el resultado tiene signo opuesto.

Overflow / Desbordamiento

Hablamos de overflow/desbordamiento cuando

- El número a representar en una base dada, excede la cantidad de bits que tenemos disponibles.
- lacktriangle Si estamos en notación C_2 al sumar dos números cambia el signo.

Acarreo / Carry

Ocurre cuando realizamos una suma de números binarios y el resultado tiene más bits que los números originales que estamos sumando

Suma entre números binarios

Se hace exactamente igual que una suma común y corriente.

Es importante prestar atención a la cantidad de dígitos que nos piden para representarlo, y en caso de estar en C_2 que el signo no cambie.

Hagamos sumas en C_2 (sin límite de bits)

Nota: El color azul indica el carry; El rojo indica qué es lo que produce overflow (cambio de signo).

Hagamos sumas en C_2 (límite de bits: 4)

Nota: Al tener un límite de 4 bits, en las sumas que tenemos carry terminamos teniendo overflow.

Rango de valores representables en n bits

Sean $n, m \in \mathbb{Z}$ decimos que el rango de representación en base n y m bits acepta el rango de valores de: $[-n^m, n^m - 1]$ ¿Es posible representar el 1024 en binario y 4 bits? No.

- $2^4 = 16 \implies [-16, 15]$
- Pero, $1024 \notin [-16, 15]$
- Por lo tanto, 1024 no es representable en 4 bits.

Pasar número binario a decimal

1. Si tenemos el mismo número todo el tiempo podemos usar la serie geométrica

¿Qué número decimal representa el número 1111111111₍₂₎?

$$\sum_{i=0}^{j-1} 1 \cdot n^i = \frac{q^{n+1} - 1}{q - 1} Luego,$$

$$\sum_{i=0}^{9} 1 \cdot 2^i = 2^{10} - 1 = 1023$$

2. Si no tenemos el mismo número todo el tiempo podemos multiplicar cada dígito por la base donde el exponente es la posición del bit.

4

$$10_{(2)} = 1 * 2^1 + 0 * 2^0 = 2_{(10)}$$

Extender un número de n bits a m bits

Sea $n, m \in \mathbb{Z}$ donde n es la cantidad de bits inicial y m es la cantidad a la que se quiere extender.

$$n = 3 \land m = 8$$

- Signo + Magnitud y exceso m: Se extiende con 0's luego del signo.
 - En 3 bits, -2 = 110
 - En 8 bits, -2 = 10000010
- ullet Complemento 2 (C_2): Se extiende con el bit más significativo.
 - En 3 bits, -2 = 110
 - En 8 bits, -2 = 1111111110

Cambios de base

Sea $n, m \in \mathbb{Z}$ dos bases distintas, para pasar de base n a base m se debe realizar el siguiente proceso

- Pasar el número a base decimal.
- Aplicar el teorema de división utilizando la base deseada.

Encontremos en base 5, el número que corresponde a $17_{(8)}$:

- $17_{(8)} = 1 * 8^1 + 7 * 8^0 = 15_{(10)}$
- Usando ahora el teorema de división
 - 15 = 3 * 5 + 0
 - 3 = 0 * 5 + 3
 - Luego, $30_{(5)}$
- Por lo tanto, $17_{(8)} = 30_{(5)}$

2. Desplazamientos

Utilizamos los desplazamientos para poder mover los bits. Cada casillero representa los bits.

■ Desplazamiento hacia la izquierda: Se desplazan los bits del dato tantas posiciones como se indiquen a la izquierda. $variable \ll cantidad$

Posición	<i>V</i> ₃	V ₂	v_1	<i>v</i> ₀
а	1	0	1	0
<i>c</i> = <i>a</i> ≪ 2	1	0	0	0

 Desplazamiento lógico hacia la derecha: Se aplica desplazando los bits del dato tantas posiciones como se indiquen a la derecha.

 $variable \gg_l cantidad$

Posición	<i>V</i> ₃	V ₂	<i>v</i> ₁	<i>v</i> ₀
а	1	0	1	0
$c=a\gg_l 2$	0	0	1	0

■ Desplazamiento aritmético hacia la derecha: Se aplica desplazando los bits del dato tantas posiciones como se indiquen a la derecha, pero copiando el valor del bit más significativo. $variable \gg_a cantidad$

Posición	V3	V ₂	v_1	<i>v</i> ₀
а	1	0	1	0
$c = a \gg_a 2$	1	1	1	0

3. Operaciones lógicas

• OR (+): (1, 0), (0, 1), (1, 1) = 1

■ AND (*): (1, 1) = 1

• XOR (\oplus) : (1, 0), (0, 1) = 1

4. Circuitos combinatorios

Negación

Sea p una variable proposicional, el opuesto de p lo escribimos como \bar{p} .

$$p = 1 \iff \bar{p} = 0$$

Propiedades para operaciones lógicas

Propiedad	AND	OR
	7.1.10	
Identidad	1.A = A	0 + A = A
Nulo	0.A = 0	1 + A = 1
Idempotencia	A.A = A	A + A = A
Inverso	$A.\overline{A}=0$	$A + \overline{A} = 1$
Conmutatividad	A.B = B.A	A+B=B+A
Asociatividad	(A.B).C = A.(B.C)	(A+B)+C=A+(B+C)
Distributividad	A + (B.C) = (A + B).(A + C)	A.(B+C) = A.B + A.C
Absorción	A.(A+B)=A	A + A.B = A
De Morgan	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B}=\overline{A}.\overline{B}$

Operaciones booleanas

Se resuelven utilizando las propiedades para operaciones lógicas

Verifique si son equivalentes $(X + \bar{Y} = \overline{(\bar{X} * Y)} * Z + X * \bar{Z} + \overline{(Y + Z)})$

 $\blacksquare \ \overline{\bar{X}*Y}*Z + X*\bar{Z} + (\bar{Y}*\bar{Z}) \implies De \ Morgan$

 $\blacksquare \ (X + \bar{Y}) * Z + X * \bar{Z} + (\bar{Y} * \bar{Z}) \implies De \ Morgan \ \land \ Distributiva$

 $\quad \blacksquare \ (X+\bar{Y})*Z+\bar{Z}*(X+\bar{Y})$

 $\blacksquare \ (X + \bar{Y}) * (Z + \bar{Z}) \implies Inverso$

 $\quad \blacksquare \ (X + \bar{Y}) * 1 \implies Identidad$

 $-(X+\bar{Y})$

Nota: También se pueden probar equivalencias utilizando tablas de verdad

Funciones booleanas

 $\bullet \ \mathrm{AND} = \mathrm{A} * \mathrm{B}$

OR = A + B

• NOT = \bar{A}

Tablas de verdad

Nos permiten observar todas las salidas para todas las combinaciones de entradas dada una función. Veamos un ejemplo con una función F:

$$Sea\ F=X+\bar{Y}$$

X	Y	F
1	1	1
1	0	1
0	1	1
0	0	0

Protip: El símbolo de + indica OR porque 1 + 0 = 1 mientras que el símbolo AND indica * porque 1 * 0 = 0

Compuertas

Son modelos idealizados de dispositivos electrónicos que realizan operaciones booleanas.

Nombre	Símbolo gráfico	Función algebraica	Tabla verdad
AND	A F	$F = A \cdot B$ or $F = AB$	AB F 0 0 0 0 1 0 1 0 0 1 1 1
OR	A F	F = A + B	AB F 0000 011 101 1111
NOT	A — F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0
NAND	A B F	$F = (\overline{AB})$	AB F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	A B F	$F = (\overline{A + B})$	AB F 00 1 0 1 0 1 0 0 1 1 0

Nota: XOR = \oplus

Compuertas Universales

Nos permiten obtener otros operadores.

- NAND = $\overline{A \wedge B}$
- NOR = $\overline{A \vee B}$
- XNOR = $\overline{A \oplus B}$ = Si son iguales es V

Compuertas en SystemVerilog

- A AND B (A * B) = (assign O = A & B)
- A OR B (A + B)= assign $A \mid B$
- \blacksquare A XOR B = assign A \land B
- NOT A $(\bar{a}) = (\sim A)$

Entradas / Salidas de un circuito

Se representan con flechas. En SystemVerilog se llaman input y output.

```
module ALU #(parameter DATA_WIDTH = 16)
     (input [DATA_WIDTH-1:0] operandoZ,
     input [DATA_WIDTH-1:0] operandoY,
     input [2:0] opcode,
     output [DATA_WIDTH-1:0] salidas,
     output overflow);
end module;
```