How Cropland Data Errors Impact Our Understanding of Socioeconomic and Environment Change

Lyndon Estes^{1,2}, Peng Chen³, Stephanie Debats¹, Tom Evans³, Stefanus Ferreira⁴, Tobias Kuemmerle⁵, Gabrielle Ragazzo⁶, Justin Sheffield¹, Adam Wolf⁶, Eric Wood¹, and Kelly Caylor⁷

²Woodrow Wilson School, Princeton University, Princeton, NJ USA
¹Civil and Environmental Engineering, Princeton University, Princeton, NJ USA
³Indiana University, Bloomington, IN USA
⁴GeoTerraImage, Pretoria, RSA
⁵Geography Department, Humboldt University, 10099 Berlin, Germany
⁶Arable Labs, Princeton, NJ USA
⁷Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA USA

Abstract

Research into global environmental change is often built upon land cover data, particularly croplands maps, which can have substantial errors. How these errors impact our understanding of environmental change processes and associated policies is thus of great interest, but is difficult to fully quantify because we lack spatially comprehensive reference data, particularly in the World's most rapidly developing regions. We used a high quality, national-scale cropland map to assess bias and accuracy within the cropland classes of current generation land cover datasets and four examples of "downstream" (land cover-dependent) analyses, two related to physical processes (estimates of vegetative carbon stocks and evapotranspiration) and two to socio-economic processes (gridded crop production estimates and agent-based simulation of household food security), at resolutions ranging from 1-100 km. We found that cropland maps have substantial errors below 25 km resolution, with substantial biases and inaccuracies, particularly from maps derived from coarse resolution sensors. In some cases these error metrics remain high even when maps are aggregated to 100 km. These errors can be substantially amplified in downstream analyses (e.g. the carbon and crop production analyses), but in cases where the values of different cover types that underpin the analysis are similar (e.g. evapotranspiration estimates) the results can be relatively insensitive. To avoid these errors, and thus minimize the risk of misunderstanding global change processes or misinforming policy, substantial map aggregation of land cover maps from their base resolution is often needed. NEW TEXT HERE.

Introduction

10

11

12

15

16

The functioning of the Earth System is fundamentally connected to the characteristics of land cover (Lambin, 1997). Our increasing modification of the Earth's surface (Lambin *et al.*, 2003) means that socioeconomic and physical processes increasingly interact through land cover. To fully understand these processes, an accurate understanding of the nature and distribution of land cover is essential.

This importance is understood by a growing number of social, economic, and natural scientists, who are using land cover data to advance understanding of food security (Lark *et al.*, 2015; Licker *et al.*, 2010; Wright & Wimberly, 2013), carbon cycling (Asner *et al.*, 2010; Gaveau *et al.*, 2014), biodiversity loss (Luoto *et al.*, 2004; Newbold *et al.*, 2015), demographic shifts (Linard *et al.*, 2010), and other important facets of Earth System processes (we hereafter collectively refer to this sort of work as Earth System Science (ESS), of which global change research is a subset).

The value of the insights resulting from ESS studies depends upon the veracity of their underlying land cover data, much as a house requires a solid foundation in order to remain standing. Unfortunately, the evidence to date indicates that this house has shaky foundations. The reason for this is that land cover data can only practically be derived from satellite imaging, which has several important constraints that propagate mapping errors. First, in many regions the spatial arrangement of cover types is smaller than the sensor resolution (e.g. smallholder's farms Debats *et al.*, 2016; Jain *et al.*, 2013; Ozdogan & Woodcock, 2006), or the types of interest are spectrally indistinct from neighboring ones (Sweeney *et al.*, 2015), which are factors that increase mapping complexity (Yu *et al.*,

2014). Second, the act of defining a cover class can cause error, in that selected classes may have highly diverse spectral properties (e.g. croplands or savannas; Debats *et al.*, 2016; Estes *et al.*, 2016a)) and thus be difficult for the classifier to distinguish. Discretizing a continuous cover type (e.g. dividing a forest into different canopy cover classes) can promote classification error, particularly near class boundaries (Foody, 2002), as well as confusion about the actual extent of the cover type (Sexton *et al.*, 2015). Furthermore, class definitions often vary between maps, complicating inter-comparison (Kuemmerle *et al.*, 2013). Third, land cover maps are often used to detect changes (e.g. Gross *et al.*, 2013), but seasonal variability and land cover changes can be easily confused. Given these multiple sources of error, land cover maps are often inaccurate at finer scales and disagree widely between products, particularly in the world's most rapidly developing regions (Estes *et al.*, 2013a; Fritz *et al.*, 2010, 2013, 2011). These errors limit our ability to obtain granular, mechanistic understanding of processes related to global change.

These problems with land cover products are known (Fritz et al., 2015, 2010, 2011; See et al., 2015; Verburg et al., 2011), and there are a variety of map improvement efforts underway (e.g. Estes et al., 2016a; Fritz et al., 2012). Likewise, the importance of assessing the accuracy of land cover maps is increasingly recognized, and there are well-developed, best-practice guidelines for gathering and using ground-truth samples to robustly quantify map error (Foody, 2002; Olofsson et al., 2014, 2013; Stehman et al., 2012). Because comprehensive, spatially representative ground truth data are typically unavailable for rapidly changing regions (See et al., 2015), what remains an open question is exactly how much the maps researchers typically use deviate from actual land cover, and how this in turn impacts our understanding of environmental change processes. Our current understanding of map accuracy over such areas is often based on scarce information or top-down "sanity checks" made in comparison to aggregated survey data (Larsen et al., 2015; Yu et al., 2014).

Since it is difficult to fully quantify land cover map errors, it is even more challenging to gauge their impact on downstream analyses, where there is substantial risk of error amplification (Kuemmerle *et al.*, 2013). Although a number of previous studies have examined how land cover maps errors can propagate, these are primarily assessed using either simulated errors, relative differences in existing land cover maps, or ground validation data covering relatively small areas. (e.g. Ge *et al.*, 2007; Linard *et al.*, 2010; Quaife *et al.*, 2008; Schmit *et al.*, 2006; Tuanmu & Jetz, 2014).

Fortunately, the recent, explosive growth in public and private initiatives to develop new Earth observing capabilities, which range from small drones¹ to new high resolution satellite arrays² and better mapping methods (Debats *et al.*, 2016; Estes *et al.*, 2013a; Fritz *et al.*, 2012; Tuanmu & Jetz, 2014), are finally providing the means to more comprehensively interrogate the accuracy and biases in the land cover products that have become commonplace in global change research—and which are often used to make policy decisions (Searchinger *et al.*, 2015).

In this study, we take advantage of this recent growth in data to address the call to more thoroughly assess errors in land cover maps (Kuemmerle *et al.*, 2013; Olofsson *et al.*, 2014, 2012), and further examine how these errors might impact our understanding of socioeconomic and environmental conditions. Using a unique, high-quality, spatially extensive map of South African croplands, which was created by expert mappers delineating individual fields visible within high resolution imagery, we conduct spatially comprehensive, bottom-up analyses to answer the following two questions: 1) What is the extent of error in several widely used land cover products?; 2) How do these errors propagate through downstream biophysical and socioeconomic studies?

The answers to these questions provide important insights into how cropland datasets can influence our understanding socioeconomic and environmental processes in South Africa, as well as more broadly throughout the rest of sub-Saharan Africa (SSA), where our current knowledge of the extent and distribution of cropland relies heavily on land cover maps (Fritz *et al.*, 2010; See *et al.*, 2015).

Materials and Methods

Datasets

In the late 2000s, the South African government commissioned a cropland map that was made by manually interpreting and digitizing fields visible within high resolution satellite imagery (Fourie, 2009). The resulting vectorized field boundaries provide unique, highly accurate data on field sizes and distribution for 2009-2011. The accuracy of this dataset was evaluated in a previous study (Estes *et al.*, 2016a), in which visual assessment of cropland presence/absence was made within 15,225 4 ha plots (25 sub-plots within 609 1 km² grids) placed over high resolution satellite imagery, and compared to coverage by the vector boundaries. Measured in terms of its ability to distinguish crop fields from other cover types, the results showed these data to be 97% percent accurate, with user's accuracies of 94% and 98% for the cropland and non-cropland classes, and producer's accuracies of 84 and 99% (see SI for more description, and Estes *et al.*, 2016a).

We used these vector data as a reference for evaluating four land cover products representative of the type commonly used in global change studies and related areas of research. The first was South Africa's own 30 m resolution 2009 National land cover map (SA-LC SANBI, 2009), which is typical of the higher-resolution, Landsat-

¹e.g. 3DRobotics, DJIA

²Planet Labs, Skybox

based maps that are created for individual countries (e.g. Fry et al., 2009). Although global-scale, Landsat-derived maps have recently become available (Chen et al., 2015), their reported accuracy for cultivated areas is lower (80-85% user's accuracy) than that achieved by more intensive, national to sub-national products (e.g. 90% user's accuracy Sweeney et al., 2015). The second and third were respectively the 300 m GlobCover 2009 (Arino et al., 2012) and 500 m resolution MODIS land cover data (for 2011, the final year of the reference interval), which are widely used global-scale products (e.g. Gross et al., 2013; Shackelford et al., 2015). The fourth dataset was the 1 km GeoWiki cropland map for Africa (Fritz et al., 2015), which fuses the cropland classes of multiple landcover products (including the three assessed here), with the resulting cropland percentages adjusted until their totals sum to match cropland areas reported in national agricultural statistics. This "hybrid-fusion" approach represents the state of the art in mapping agricultural land cover. Since GeoWiki provides a continuous bounded value of land cover (percent cropland cover), which cannot be feasibly converted to a categorical value, we converted all other datasets, including the reference vectors, into comparable 1 km gridded percent cropland estimates.

To develop percent coverage from the cropland reference map, we intersected the original field boundary vector maps with a 1 km grid, and calculated the percent of each cell occupied by fields. In the resulting grid, we masked out areas classified as communal farmland (18.7% of mapped croplands in the reference data), because only their outer perimeters were digitized (Fourie, 2009), which risked overestimating cropland extent because the vectors also enclose uncropped areas between adjacent smallholder fields. We also excluded from the analysis areas covered by permanent tree crops, sugarcane plantations, and commercially afforested areas, because these three classes were not common to all five cropland datasets. To remove permanent tree crops (3.1% of cropland area), we masked out reference vectors labelled as such, and to exclude the other two cover types, which are not included in the reference data, we relied on information from two other datasets. We used a 20 m resolution landcover map of KwaZulu-Natal to mask out the primarily coastal sugarcane farms (93-100% user's and 76-98% producer's accuracy for sugarcane classes; GeoTerraImage, 2013), and used the SA-LC dataset to filter out areas of commercial afforestation, which are mainly located in South Africa's montane areas and do not overlap with arable croplands. In both cases, we aggregated these classes, and then masked out any 1 km pixels that had >0% cover of each class. The resulting masked reference grid covered 90% of South Africa (1,081,000 km²), of which 104,304 km² was cropland.

We extracted the cropland classes from SA-LC, MODIS, and GlobCover, and converted these into percent cropland estimates at 1 km resolution. Both MODIS and GlobCover had mixed/mosaic classes of cropland and other covers, thus we followed Fritz *et al.* (2015) by creating upper, mean, and lower cropland estimates from these classes to produce three versions of the gridded percentages. We used the mean map for the main analysis, but estimated error variability using all three versions (SI).

Assessment of cropland map errors

We first evaluated the quality of the land cover product-derived percent cropland maps (hereafter referred to as the "test maps"). Instead of the standard confusion matrix-based accuracy metrics (Olofsson *et al.*, 2014, 2013), which apply to categorical land cover maps, we assessed the bias and accuracy of the test maps based on the gridded residuals that resulted when each test map was subtracted from the reference map. Here bias is the mean residual value, weighted by the density of reference cropland, and accuracy is the mean of the absolute values of residuals (also weighted by cropland density), thus lower values signify higher accuracy. We calculated these metrics for the original 1 km resolution, and for maps that were further aggregated to 5, 10, 25, 50, and 100 km resolutions, in order to evaluate how bias and accuracy changes with observational grain. For these aggregated maps, we applied a further weight in calculating error metrics, the number of pixels contributing to each aggregated pixel, to prevent pixels close to national boundaries or where non-target cover types were masked out from having outsize influence on the statistics.

We also assessed how land cover pattern impacts map performance by modeling the correlation between map accuracy and cropland density. To evaluate this relationship, we used magisterial district boundaries (n=354, mean area=3,445 km²; SI) to provide a landscape-scaled unit for calculating characteristic cover density. We filtered out pixels with <0.05% (0.5 ha) cropland, to prevent the much larger areas of non-agricultural districts from dominating the signal, extracted the absolute values of test map errors and corresponding reference cropland percentages, and calculated their district-wide means. The relationship between mean absolute error (response) and cropland density (predictor) was then modeled using a generalized additive model (Hastie & Tibshirani, 1990), with each district weighted by its number of agricultural pixels (Wood, 2001). To account for potential spatial autocorrelation, we fit a two-dimensional smoothing spline to the coordinates of each district's centroid.

Impact of map error on downstream analyses

We then used these maps to conduct four analyses typical of global change research: 1) estimation of carbon stocks, 2) simulation of evapotranspiration, 3) disaggregation of crop yield and production, and 4) simulating household dynamics using an agent-based model. The first and third analyses were relatively simple, in that the variable(s) of interest were mapped onto land cover using empirical relationships. The second and fourth relied on more complex numerical methods, where land cover was one of several variables needed to run each model. For

the simpler analyses, we examined how results were influenced by map aggregation, while for the more complex cases, our assessments were confined to each numerical model's standard output resolution.

Estimating vegetative carbon stocks

To understand the carbon cycle and climate forcing due to land use change, it is important to have accurate, high resolution maps of vegetative carbon stocks (Searchinger *et al.*, 2015). One widely used vegetative carbon dataset is that of (Ruesch & Gibbs, 2008), who mapped estimated carbon density values for different vegetation types to the classes of a global land cover product. The resulting data were intended to provide a baseline for climate policy by the Intergovernmental Panel on Climate Change (IPCC), as well as input to other land use and biogeochemical analyses (Ruesch & Gibbs, 2008).

We followed this method to create vegetative carbon maps for South Africa. Since our cropland percentage map provided no information on surrounding cover, we developed several variants representing potential surrounding cover types by assigning the average carbon densities of five biomes (forest, secondary forest, shrubland, grassland, and sparse vegetation (Ruesch & Gibbs, 2008)) to the non-cropland fraction of our maps. These hypothetical maps represented the range in potential carbon densities, and allowed us to investigate how carbon estimates can vary as a function of i) test map errors and ii) the properties of neighboring cover types. We multiplied cropland densities by cropland fractions and added these to each of the five other densities multiplied by the residual non-cropland fractions to create five different carbon density maps. We aggregated each carbon map up to the five coarser resolutions for scaling comparisons (SI).

To assess carbon estimation error, we subtracted test map-derived carbon maps from those based on the reference map, and calculated bias and accuracy scores using the method described for the cropland maps (see previous section).

Estimating evapotranspiration

Accurate estimation of hydrological fluxes is critical to understanding how land-atmosphere interactions impact the climate system and runoff (Liang *et al.*, 1994). Land surface hydrological models are used to simulate these processes, and depend on land cover maps to provide information on the characteristics of vegetation and other materials covering the surface, as these govern the rates of runoff, infiltration, and evapotranspiration. We used the Variable Infiltration Capacity (VIC; Liang *et al.*, 1994) land surface hydrology model run with the Africa Flood and Drought Monitor's meteorological data (Sheffield *et al.*, 2013) to produce monthly gridded evapotranspiration estimates for South Africa for the years 1979-2010 at 25 km resolution. VIC's land cover scheme (derived from AVHRR) provides values for leaf area index (LAI), plant rooting depth, aerodynamic roughness, and several other variables that the modeluses to partition water vapor fluxes into their evaporative and transpirative components. We adjusted VIC's base map so that its cropland fractions matched those of the 25 km reference and test maps (each reprojected and resampled to VIC's 0.25° resolution), then ran one instance of VIC for each of the five land cover schemes. We then compared the mean annual ET produced by the reference map variant with those from the test maps to assess the degree to which map errors impact evapotranspiration values.

Disaggregating crop yield and production statistics

The spatial variability of yield and production is critical for understanding food security, trade, and the potential for agricultural expansion and intensification (Licker *et al.*, 2010; Monfreda *et al.*, 2008). The most reliable source of such data are national to sub-national agricultural statistics, often available only at relatively coarse-scaled administrative boundaries. To obtain higher spatial resolutions, disaggregation of these statistics using gridded land cover data is common (Monfreda *et al.*, 2008; Ramankutty *et al.*, 2008; ?).

We used these methods to first disaggregate the harvested area for maize (South Africa's largest crop (Estes et al., 2013a)) onto our cropland maps, followed by yields, which were assigned to cells having harvested areas greater than zero. The first step in this process entails adjusting cropland percentages so that their totals match census-derived cropland area estimates (Ramankutty et al., 2008). In place of census statistics, we used the reference map to calculate total cropland areas for South Africa's nine provinces, then adjusted the pixel-wise cropland percentages in the four test maps so that their province-wise sums matched these totals (SI). We then followed Monfreda et al.'s (2008) procedure for disaggregating maize (South Africa's largest crop; Estes et al., 2013b) planted area and yields onto the reference and adjusted test maps. The necessary statistics were obtained from magisterial district-level agricultural censuses conducted for the year 2007 (?).

We then used these two layers to calculate maize production, and further aggregated the yield and production grids to 5, 10, 25, 50, and 100 km resolutions before quantifying the bias and accuracy of each test map's yield and production values. In this case, we could not convert cell-wise errors into percentages of the reference map values (because many cells had zero values for one map but not the other), so we calculated bias and accuracy from the map residuals and then normalized their values to the reference map means.

Agent-based simulation of household food security

Spatially-explicit agent-based model (ABMs) are frequently employed to understand land use decision-making, to analyze socio-ecological system dynamics, and to facilitate improved policy-making (Berger & Schreinemachers,

2006). To obtain robust insights, it is important to calibrate an ABM to empirical data describing the characteristics of land and land users, so that the model realistically represents the social and biophysical features of the study region (Berger & Schreinemachers, 2006).

In our example, we used an ABM of household food security that simulates food production by individual farming households (the agents; Chen *et al.*, 2013). The model (described briefly here and in more detail in the SI) is initialized so that each household is allocated a designated share of cropland (the number of households and their cropland areas are derived from survey statistics), on which annual household's crop production (maize) is simulated as a function of its field area, local weather, soil properties, and management actions. As these factors differ between households, household-level crop production can vary substantially. The initialization process iteratively assigns households to the landscape as a function of neighbor and cropland proximity, ensuring that households are grouped into communities and that their fields are within a realistic proximity. To achieve this, the model first takes a weighted (by cropland area frequency) random draw of 100 households and places these within the simulated landscape, assigning each household its required number of "fields" (cropland pixels), which must be within 1.5 km of the household's location and not already assigned to another household. This process is iterated until all households are assigned cropland, or all available cropland is allocated. The model is considered to be well-calibrated when all households are allocated cropland, and all cropland is allocated to households.

Like many spatial ABMs, the model is computationally intensive, and thus run over smaller geographic domains (e.g. district, rather than country, scales) and at higher spatial resolutions (10s to 100s of meters) in order to represent the different land units of individual farmers. To match these computational characteristics, we selected four contiguous magisterial districts (ranging from 1,040-1,343 km²) in eastern South Africa with similar climate and 28-45% of cropland coverage. The frequency distributions of household cropland holdings were derived from survey data obtained from Zambia (no equivalent data were available for South Africa). We used these statistics to calculate the "true" number of households per district, as well as household cropland area distributions. To create cropland surfaces for each district, we disaggregated all five cropland maps to 100 m, binary cropland/non-cropland cover maps (to match the survey-recorded average field size of 1 ha). We ran the model separately for each district, with household agents planting and managing a maize crop throughout the growing season.

We ran each ABM simulation for a single season, once per district and when initialized by each of the cropland maps (20 simulations total). To examine how map errors impacted the land allocation process and household food production estimates, we calculated three variables: the percent of unallocated cropland, land deficit, and food deficit. The percent of unallocated cropland is the share of the district's total cropland area that was not assigned to any household, which measures how effective the model was in matching household agents to available cropland resources. Land deficit is the total area of cropland that should have been allocated to households in each district but wasn't, due to the mismatch between the cropland map and the survey-based estimates of what total cropland holdings should have been. Food deficit is the percentage shortfall in the average amount of food production that should have been produced by each household but wasn't because of the land deficit.

The impact of map error on identifying specific locations

The bias and accuracy metrics reflect the degree to quantitative estimates are influenced by land cover map errors. However, land cover data may also be used to identify specific locations (e.g. areas of high agricultural potential and low ecological cost; Estes *et al.*, 2016b), as opposed to general quantities. It is therefore important to also assess how map errors can impact the ability to accurately locate specific features of interest. To evaluate this, we calculated the mean euclidean distance (in km) between pixels representing a specific feature within the test maps relative to their nearest neighboring pixels representing the same feature in the reference map. The features in this analysis were simply those locations falling within the upper deciles of a) cropland cover, b) carbon density (based on the average carbon density of non-crop vegetation types), and c) crop yield. We confined this analysis to the 1 km resolution maps, as higher spatial resolutions are typically required when maps are used to identify locations rather than estimating quantities (e.g. Estes *et al.*, 2016b).

Results

Cropland map errors

Our reference cropland map indicated that crop fields covered nearly 10% of the total study area in the 2009-2011 time period. Subtracting each test map from the reference maps created pixel-wise residuals, where negative and positive values respectively represent overestimates and underestimates by the test map (Fig. 1A).

The most pronounced errors were in the MODIS and GlobCover maps, which showed large positive residuals in the center of the country where cropland is most concentrated (blue areas in Fig. 1A), and negative residuals (red areas) along the eastern and northern margins. These patterns translated into substantial map bias (Fig. 1B), with GlobCover and MODIS mean error exceeding 45% and 25% respectively at 1 km resolution, meaning that each map tends to underestimate cropland by that amount at that resolution. This bias declined with each level of map aggregation, being reduced to nearly 15% for GlobCover and 5% for MODIS at 100 km. The magnitude of mean absolute error (MAE) was somewhat higher in all cases. The GeoWiki map, in contrast, was the least biased overall, showing just a 7% bias at 1 km and near 0 for all other scales of aggregation, although its accuracy

(23% MAE) was only half as good as SA-LC's at 1 km (11% MAE), which despite its uniform overestimation bias (Fig. 1A) was the most accurate map at aggregation scales < 10km. Above this, GeoWiki became slightly more accurate, having <5% MAE at 100 km resolution. The reason GeoWiki had relatively poor accuracy at 1 km resolution was due to the high heterogeneous error pattern, which traded between positive and negative residuals over short distances, thereby inflating MAE at this scale.

Figure 1: (A) Errors in the percent cropland estimates resulting from each of the four test maps relative to the reference map at different scale of pixel aggregation. Rows indicate the test map being assessed (by subtraction from the reference map), while columns refer to resolution of aggregation. White indicates areas where areas under communal farmlands or permanent tree crops were removed from analysis. (B) The bias (mean error) and accuracy (mean absolute error [MAE]) of each test map at each scale of aggregation, weighted by the percentage cropland in each cell of the reference map. Bias estimates are indicated by the semi-transparent bars, accuracy (lower is more accurate) by the solid bars, with bar colors coded to specific cropland maps.

The generalized additive model revealed primarily non-linear relationships between district MAE and cropland density that were best approximated by a first order polynomial function of cropland density (for all four cropland maps: p<0.001 on both terms of quadratic and on smoothing function applied to district centroids; > 85% deviance explained). Map accuracy was typically lowest at intermediate levels of cropland density (50-60% cover) for all but the GlobCover map (where accuracy continues to decline with cropland cover), and was highest where the landscape is dominated either by cropland or by another type (Fig. 2). In other words, accuracy is generally lowest when cropland cover is mixed evenly with other cover types. GlobCover's accuracy continued to decrease with cropland density because the dominant agricultural cover class contributing to the test map was defined as 50-70% crops mingled with other vegetation, thus the maximum percentage was constrained by this mixture range.

The impact of map error on downstream analyses

Carbon estimates

The spatial patterns of test map errors transmitted into substantial carbon estimation errors, with the sign varying as a function of the density of carbon adjacent to croplands (SI). Where cropland was underestimated and the surrounding cover type was more carbon dense than cropland, carbon density was overestimated, but when the cover type was less dense than croplands (e.g. sparse vegetation), then carbon density was underestimated. The inverse was true where cropland was overestimated.

The magnitude of carbon errors varied as a function of the carbon density of surrounding cover, as demonstrated by the bias statistics (Fig. 3). Bias was near zero when grassland was the adjacent cover type (SI), as its carbon density is nearly the same as cropland. However, when forest was adjacent then bias was a three- to five-fold multiple of cropland map bias (Fig. 1B). At the most extreme, GlobCover's bias was -276% at 1 km, but even SA-LC and GeoWiki had biases of 22% and -50%, respectively. Bias could be substantial even for the least carbon dense vegetation type (sparse), as evidenced by the 15-25% mean error at 1 km for MODIS and GlobCover under this class. The mean bias across the different potential adjacent vegetation classes ranged between -20 for GeoWiki and -123% for GlobCover at 1 km (with MODIS in between these), while SA-LC's average bias was 11%. Biases declined fairly rapidly with aggregation, with all datasets having an average (across cover types) bias magnitude of <10% at ≥25 km of aggregation, except for GlobCover, which was -12% at 100 km (SI). As with cropland percentages, GeoWiki produced the least biased carbon density estimates above 1 km resolution.

Figure 2: The relationship between map accuracy (the mean absolute error) in test maps and the actual cropland cover within agricultural landscapes (reference map pixels having >0.5% cropland), here defined by the boundaries of magisterial districts (n = 345), as fit with a generalized additive model. Prediction curves are color-coded to the different test maps, with the solid line indicating predicted absolute bias, and the lighter shading the standard error of the coefficients.

Figure 3: Biases and accuracies (mean absolute errors) of carbon densities derived from cropland maps, calculated as percents relative to the reference map. Bias estimates (represented by symbols) fall within the semi-transparent floating bars, while accuracies are contained in the solid bars. Bar colors are coded to specific cropland map, symbols indicate which cover type was used to calculate cropland-adjacent carbon density. The bar represents the mean biases calculated across each of the 5 cover types. Shrubland and grassland bias values were near zero, while secondary forest values were close to forest values, and thus these are not shown for display clarity (but see Table S2). MODIS and GlobCover values at 1 km exceeding the plot's Y limits are provided near their truncated tops.

In terms of accuracy, MAE values were essentially the same as bias magnitudes, except for GeoWiki's, which were twice as large. The average MAE across vegetation classes was 47% at 1 km, dropping to <10 only with 25 km of aggregation. In contrast, SA-LC's carbon estimates were twice as accurate at 1 km, and were slightly more accurate up to 25 km of aggregation were GeoWiki achieved parity.

Evapotranspiration estimates

Compared to the carbon analysis, the bias and accuracy in evapotranspiration (ET) calculated using the VIC model was negligible, averaging less than than +/-2%. However, there were several error hotspots in the resulting ET residual maps (Fig. 4). The most pronounced of these were the 5-15% overestimates in the center of the country caused when VIC was initialized with MODIS and GlobCover, while overestimates along the southern and western coasts reached 25%. These locations correspond primarily to the margins of major crop production regions—in the center is the westernmost boundary of the summer rainfall growing region, marked approximately by the 400 mm isohyet, where maize is the primary crop. The west coast hotspot falls at the western edge of the wheat-dominated winter rainfall region (Hardy *et al.*, 2011), where growing season rainfall is approximately 200 mm.

SA-LC and GeoWiki also resulted in ET errors estimates along the southern and western coasts, but here the tendency was to underestimate ET, while biases in the center of the country were either negligible to absent. All but MODIS underestimated ET by 5-15% in the northern tip of the country.

Figure 4: Differences in annual mean evapotranspiration estimates from 29-year runs of the VIC land surface hydrology model when initialized with LAI response curves derived from the reference map, versus those from the four test maps.

Downscaling crop yield and production data

Maize yields disaggregated onto the test maps showed some marked differences relative to the reference map, but only at the margins of the major crop production areas where cropland is sparser (SI). These differences resulted when a yield value was mapped onto a grid cell where the reference map had no harvested area, and thus zero yield. In more densely cropped areas, such discrepancies were less frequent because both the reference and test maps were both likely to have some maize harvested area, and therefore a yield value. Yield biases were thus fairly low (and accuracy high), with the largest being 20% for MODIS at 1 km, following by GlobCover with 10% (Fig. 5). These dropped to <10% with aggregation.

Production biases were generally slightly higher, but still low, for most datasets, with the exception of Glob-Cover, which had a large underestimation bias of >60% (relative to mean production) at 1 km, which remained above 10% even at 100 km of aggregation. MODIS production bias was above 20% at 1 km, but declined to below 10% at higher levels of aggregation.

In contrast, the accuracy of production estimates was poor. Here all datasets but SA-LC had MAE values of \geq 30% below 25 km of aggregation (Fig. 5), reaching as high as 100% for GlobCover at 1 km, followed by 65% for MODIS and 45% for GeoWiki. SA-LC estimated production was most accurate, having between 10-20% MAE between 1 and 10 km, and <10% at 25 km and higher. This low accuracy relative to the gridded yield measures relates to the disaggregation process for harvested area, which allocates a fractional value to each pixel, which is itself a fraction. The process of adjusting the gridded values so that their totals match reported statistics does relatively little to correct the map's underlying commission or omission errors, and this constraint in fact appears to shorten the distance between negative and positive residuals (SI), thereby increasing absolute errors.

Figure 5: Bias (mean error) and accuracy (mean absolute error [MAE]) in disaggregated maize yield and production estimates. Bias estimates (represented by symbols) fall within the semi-transparent bars, mean absolute errors in the solid bars, with bar colors coded to specific cropland maps. Symbols code the different variables (production and yield), normalized to their respective means.

Agent-based model of household food security

In terms of impact to agent-based model simulation, where cropland map errors were negative (indicating a cropland overestimate by the test maps), the percent of land left unallocated had a straight one-to-one relationship with the percentage of overestimation (Fig. 6A). When cropland was underestimated, all croplands were allocated up until the underestimation exceeded 50%. The MODIS-based simulation for districts 1 and 2 was most pronounced for this tendency, with 5-10% of cropland remaining unallocated despite the fact that the majority of households were not assigned cropland (because cropland was underestimated by 85%). This non-linear relationship occurred because croplands tend to cluster, and when underestimated clusters tend to be small and isolated, they are more likely to fall outside of the search radius used by the model for allocating fields to households when they are initially seeded onto the landscape.

Land deficit (the total area of cropland that should have been allocated to households in each district, but wasn't) increased exponentially in relation to cropland underestimation–reaching around 800% for MODIS in districts 1 and 2 (Fig. 6B)–and would become infinite in the case of a 100% underestimate. This contrasted with food deficit (the percentage shortfall in the average amount of food production that should have been produced by each household but wasn't), which increased linearly with the percentage of cropland underestimate (Fig. 6C).

Figure 6: Biases in agent-based model results relative to the district-wise errors (as a percent) in total cropland area, in terms of A) the percent of cropland in each district that was not allocated to any household, B) the land deficit, or the total area of cropland that should have been allocated to households in each district but wasn't (expressed as a percent of total district cropland, as determined by test maps), and C) the food deficit, or the percentage shortfall (relative to the reference simulation) in mean household food production resulting from inadequate cropland allocation. Dot sizes correspond to district numbers, colors represent the land cover map.

35 Location errors

338

339

340

342

The average distance between areas containing the highest cropland densities (upper decile) in the reference map and those delineated by the test maps ranged from 1.1 km for SA-LC to 18.2 km for GlobCover, with MODIS (10.1 km) and GeoWiki (2.8 km) had intermediate offsets (Fig. 7). Locational errors in maps indicating the highest yielding areas showed a similar pattern, with a range of 0.8-14.2 km (SA-LC and GlobCover) and intermediate errors of 5.8-7.5 km (GeoWiki and MODIS). For areas of highest carbon density, locations identified by the MODIS-derived map were most distant from those shown by the reference map (11.3 km), followed by GeoWiki (7.4 km), GlobCover (6.8 km), and SA-LC (3.7 km).

Figure 7: Average nearest neighbor distances (in km) between pixels representing features identified by the reference map versus those identified from the test maps. Bar colors indicate the different features (and thus contributing maps), which were delineated by selecting pixels with values greater than the 90th percentile: densest cropland (solid bars); highest maize yield (medium transparent bars); highest carbon density (most transparent bars).

43 Discussion

344 Error and its propagation

Quantities

Aggregation can minimize error, but issue of MAUP, and might not be the application needed.

347 Identifying locations

A few to 10s of km. Doesn't sounds like much, but if need to precisely identify a location, can make a big difference. Sensitivity is generally within the same range for each application. ABM results indicate locational errors also.

351 Sources of error

357

358

359

360

Mixed classes - MODIS versus GlobCover. Pixel size Mosaic classes - cropland density/error relationship Withinclass variability (cropland particularly pronounced)

354 Broader implications

Broader conclusions are necessarily limited, because of single country involved in this analysis. Parochial study.

But suggests important findings for rest of Africa.

However, support from previous studies. Properties revealed here in this study are relevant. Mosaic classes. Background vegetation similar to cropland (savanna, grassland). Should expect even high error.

How to deal with it: Limited

Synthetic assessments can help you determine how much impact error can make.

Implications for different types of analyses??? Previous studies as backup. Fritz et al, etc.

362 Conclusion/way forward

- points to make:
 - Fritz and See (2008) about comparing maps with different themes
- (?). Spatial scale of pixel matters with respect to mapping accuracy. Average local variance is related to size of features being mapped. Averaging (smoothing) pixel value is also a better way of increasing accuracy (this is in estimating vegetation parameters).

Acknowledgments

- This work was supported by funds from the Princeton Environmental Institute Grand Challenges program, the
- NASA New Investigator Program (NNX15AC64G), and the National Science Foundation (SES-1360463 and BCS-
- 371 1026776).

References

- Arino O, Perez JJR, Kalogirou V, Bontemps S, Defourny P, Bogaert EV (2012) Global Land Cover Map for 2009 (GlobCover 2009). PAN-GAEA.
- Asner GP, Powell GVN, Mascaro J, et al. (2010) High-resolution forest carbon stocks and emissions in the Amazon. *Proceedings of the National Academy of Sciences*, **107**, 16738–16742.
- Berger T, Schreinemachers P (2006) Creating agents and landscapes for multiagent systems from random samples. *Ecology and Society*, **11**, 19.
- Carletto C, Jolliffe D, Banerjee R (2013) The emperor has no data! Agricultural statistics in Sub-Saharan Africa. World Bank.
- Cattaneo A, Lubowski R, Busch J, Creed A, Strassburg B, Boltz F, Ashton R (2010) On international equity in reducing emissions from deforestation. Environmental Science & Policy, 13, 742–753.
- Chen J, Chen J, Liao A, *et al.* (2015) Global land cover mapping at 30 m resolution: A POK-based operational approach. *ISPRS Journal of Photogrammetry and Remote Sensing*, **103**, 7–27.
- Chen P, Plale B, Evans T (2013) Dependency Provenance in Agent Based Modeling. In: 2013 IEEE 9th International Conference on eScience (eScience), pp. 180–187.
- Debats SR, Luo D, Estes LD, Fuchs TJ, Caylor KK (2016) A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes. *Remote Sensing of Environment*, **179**, 210–221.
- Estes LD, Beukes H, Bradley BA, *et al.* (2013a) Projected climate impacts to South African maize and wheat production in 2055: A comparison of empirical and mechanistic modeling approaches. *Global Change Biology*, **19**, 3762–3774.
- Estes LD, Bradley BA, Beukes H, *et al.* (2013b) Comparing mechanistic and empirical model projections of crop suitability and productivity: Implications for ecological forecasting. *Global Ecology and Biogeography*, **22**, 1007–1018.
- Estes LD, McRitchie D, Choi J, et al. (2016a) A platform for crowdsourcing the creation of representative, accurate landcover maps. Environmental Modelling & Software, 80, 41–53.
- Estes LD, Paroz LL, Bradley BA, *et al.* (2014) Using changes in agricultural utility to quantify future climate-induced risk to conservation.

 Conservation Biology, **28**, 427–437.
- Estes LD, Searchinger T, Spiegel M, *et al.* (2016b) Reconciling agriculture, carbon and biodiversity in a savannah transformation frontier. *Phil. Trans. R. Soc. B*, **371**, 20150316.
- FAO, Bank W (2013) Action Plan of the Global Strategy to Improve Agricultural and Rural Statistics: For Food Security, Sustainable Agriculture and Rural Development. FAO, Rome.
- Foley JA, Ramankutty N, Brauman KA, et al. (2011) Solutions for a cultivated planet. Nature, 478, 337–342.
- Foody GM (2002) Status of land cover classification accuracy assessment. Remote sensing of environment, 80, 185–201.
- 402 Fourie A (2009) Better Crop Estimates in South Africa. ArcUser Online.
- Fritz S, McCallum I, Schill C, *et al.* (2012) Geo-Wiki: An online platform for improving global land cover. *Environmental Modelling & Software*, **31**, 110–123.
- Fritz S, See L, McCallum I, et al. (2015) Mapping global cropland and field size. Global Change Biology, 21, 1980–1992.
- Fritz S, See L, Rembold F (2010) Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa. *International Journal of Remote Sensing*, **31**, 2237–2256.
- Fritz S, See L, You L, et al. (2013) The Need for Improved Maps of Global Cropland. Eos, Transactions American Geophysical Union, 94,
- Fritz S, You L, Bun A, et al. (2011) Cropland for sub-Saharan Africa: A synergistic approach using five land cover data sets. Geophysical Research Letters, 38, L04404.

- Fry J, Coan M, Homer C, Meyer D, Wickham J (2009) Completion of the National Land Cover Database (NLCD) 1992-2001 Land Cover Change Retrofit Product. USGS Numbered Series 2008-1379, U.S. Geological Survey.
- Gaveau DLA, Salim MA, Hergoualc'h K, *et al.* (2014) Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires. *Scientific Reports*, **4**.
- Ge J, Qi J, Lofgren BM, Moore N, Torbick N, Olson JM (2007) Impacts of land use/cover classification accuracy on regional climate simulations. *Journal of Geophysical Research: Atmospheres*, 112, D05107.
- 418 GeoTerraImage (2013) 2011 KZN Province land-cover mapping. Data users report and meta data.
- Gross D, Dubois G, Pekel JF, *et al.* (2013) Monitoring land cover changes in African protected areas in the 21st century. *Ecological Informatics*, **14**, 31–37.
- 421 Hansen MC, Potapov PV, Moore R, et al. (2013) High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342, 850–853.
- Hardy M, Dziba L, Kilian W, Tolmay J (2011) Rainfed Farming Systems in South Africa. In: *Rainfed Farming Systems* (eds. Tow P, Cooper I,
 Partridge I, Birch C), pp. 395–432. Springer Netherlands.
- 424 Hastie T, Tibshirani R (1990) Generalized Additive Models. Chapman and Hall.
- Jain M, Mondal P, DeFries RS, Small C, Galford GL (2013) Mapping cropping intensity of smallholder farms: A comparison of methods using
 multiple sensors. Remote Sensing of Environment, 134, 210–223.
- Janssen MA, Ostrom E (2006) Empirically based, agent-based models. Ecology and Society, 11, 37.
- Jones J, Hoogenboom G, Porter CH, et al. (2003) Modelling Cropping Systems: Science, Software and Applications. European Journal of
 Agronomy, 18, 235–265. 3-4.
- Kuemmerle T, Erb K, Meyfroidt P, et al. (2013) Challenges and opportunities in mapping land use intensity globally. Current Opinion in
 Environmental Sustainability, 5, 484–493.
- Lambin E, Gibbs H, Ferreira L, *et al.* (2013) Estimating the world's potentially available cropland using a bottom-up approach. *Global Environmental Change*.
- Lambin EF (1997) Modelling and monitoring land-cover change processes in tropical regions. Progress in Physical Geography, 21, 375–393.
- Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. *Annual Review of Environment and Resources*, **28**, 205–241.
- Lark TJ, Salmon JM, Gibbs HK (2015) Cropland expansion outpaces agricultural and biofuel policies in the United States. *Environmental Research Letters*, 10, 044003.
- Larsen AE, Hendrickson BT, Dedeic N, MacDonald AJ (2015) Taken as a given: Evaluating the accuracy of remotely sensed crop data in the USA. *Agricultural Systems*, **141**, 121–125.
- Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general
 circulation models. *Journal of Geophysical Research*, 99, 14415.
- Licker R, Johnston M, Foley JA, Barford C, Kucharik CJ, Monfreda C, Ramankutty N (2010) Mind the gap: How do climate and agricultural
 management explain the yield gap of croplands around the world? *Global Ecology and Biogeography*, 19, 769–782.
- Linard C, Gilbert M, Tatem AJ (2010) Assessing the use of global land cover data for guiding large area population distribution modelling.
 GeoJournal, 76, 525–538.
- Luoto M, Virkkala R, Heikkinen RK, Rainio K (2004) Predicting bird species richness using remote sensing in boreal agricultural-forest mosaics. *Ecological Applications*, **14**, 1946–1962.
- Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. *Global Biogeochemical Cycles*, **22**, GB1022.
- Mueller ND, Butler EE, McKinnon KA, Rhines A, Tingley M, Holbrook NM, Huybers P (2015) Cooling of US Midwest summer temperature
 extremes from cropland intensification. *Nature Climate Change*.
- Newbold T, Hudson LN, Hill SLL, et al. (2015) Global effects of land use on local terrestrial biodiversity. Nature, 520, 45-50.
- Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA (2014) Good practices for estimating area and assessing accuracy of land change. *Remote Sensing of Environment*, **148**, 42–57.
- Olofsson P, Foody GM, Stehman SV, Woodcock CE (2013) Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. *Remote Sensing of Environment*, **129**, 122–131.
- Olofsson P, Stehman SV, Woodcock CE, *et al.* (2012) A global land-cover validation data set, part I: Fundamental design principles. *International Journal of Remote Sensing*, **33**, 5768–5788.
- Ozdogan M, Woodcock CE (2006) Resolution dependent errors in remote sensing of cultivated areas. *Remote Sensing of Environment*, **103**, 203–217.
- Quaife T, Quegan S, Disney M, Lewis P, Lomas M, Woodward FI (2008) Impact of land cover uncertainties on estimates of biospheric carbon
 fluxes. Global Biogeochemical Cycles, 22, GB4016.

- Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. *Global Biogeochemical Cycles*, **22**, 19 PP.
- Ruesch A, Gibbs HK (2008) New IPCC Tier-1 global biomass carbon map for the year 2000. Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, Tennessee. Available online at: http://cdiac.ornl.
 gov/epubs/ndp/global_carbon/carbon_documentation. html.
- Rulli MC, Saviori A, D'Odorico P (2013) Global land and water grabbing. Proceedings of the National Academy of Sciences, 110, 892–897.
- Sacks WJ, Cook BI, Buenning N, Levis S, Helkowski JH (2008) Effects of global irrigation on the near-surface climate. *Climate Dynamics*,
 33, 159–175.
- 472 SANBI (2009) National Landcover 2009. Tech. rep., South African National Biodiversity Institute; National Department of Environmental
 473 Affairs and Tourism, Pretoria, South Africa.
- Schmit C, Rounsevell MDA, La Jeunesse I (2006) The limitations of spatial land use data in environmental analysis. *Environmental Science & Policy*, 9, 174–188.
- Searchinger TD, Estes L, Thornton PK, et al. (2015) High carbon and biodiversity costs from converting Africa's wet savannahs to cropland.
 Nature Climate Change, 5, 481–486.
- 478 See L, Fritz S, You L, et al. (2015) Improved global cropland data as an essential ingredient for food security. Global Food Security, 4, 37–45.
- Sexton JO, Noojipady P, Song XP, *et al.* (2015) Conservation policy and the measurement of forests. *Nature Climate Change*, **advance online publication**.
- Shackelford GE, Steward PR, German RN, Sait SM, Benton TG (2015) Conservation planning in agricultural landscapes: Hotspots of conflict between agriculture and nature. *Diversity and Distributions*, **21**, 357–367.
- Sheffield J, Wood EF, Chaney N, *et al.* (2013) A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security. *Bulletin of the American Meteorological Society*, **95**, 861–882.
- Stehman SV, Olofsson P, Woodcock CE, Herold M, Friedl MA (2012) A global land-cover validation data set, II: Augmenting a stratified sampling design to estimate accuracy by region and land-cover class. *International Journal of Remote Sensing*, **33**, 6975–6993.
- Strassburg BB, Kelly A, Balmford A, et al. (2010) Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conservation
 Letters, 3, 98–105.
- Sweeney S, Ruseva T, Estes L, Evans T (2015) Mapping Cropland in Smallholder-Dominated Savannas: Integrating Remote Sensing Techniques and Probabilistic Modeling. *Remote Sensing*, 7, 15295–15317.
- Tuanmu MN, Jetz W (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. *Global Ecology and Biogeography*, **23**, 1031–1045.
- Verburg PH, Neumann K, Nol L (2011) Challenges in using land use and land cover data for global change studies. *Global Change Biology*,
 17, 974–989.
- Wood SN (2001) Mgcv: GAMs and Generalized Ridge Regression for R. R News, 1, 20–25.
- Wright CK, Wimberly MC (2013) Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proceedings of the
 National Academy of Sciences, 110, 4134–4139.
- 498 Yu L, Liang L, Wang J, et al. (2014) Meta-discoveries from a synthesis of satellite-based land-cover mapping research. International Journal 499 of Remote Sensing, 35, 4573–4588.