Project Report

1. Read the entire paper thorougly. Understood most of the part and did a dry run of the algorithms that need to be implemented. Code needs to be implemented yet.

To be implemented in the paper.

1. Illustration of confidence set converging into the cone

Need to write a program that,

- 1) Compute the confidence set {a set which encapsulates the predicted theta and original theta with a given regret bound} at each phase of the algorithm.
- 2) And therefore show as a result how the confidence set changes and converges into the cone of the optimal arm.

2. XY - static algorithm.

Min-max optimization problem.

$$x'^{\top}(A + xx^{\top})^{-1}x'$$

then as shown in the RHS, to implement G-allocation strategy, we need to min-max f. This can be implemented as shown below

Input: decision space $\mathcal{X} \in \mathbb{R}^d$, confidence $\delta > 0$ Set: t = 0; $Y = \{y = (x - x'); x \neq x' \in \mathcal{X}\}$; while Eq. 11 is not true do if G-allocation then $x_t = \mathop{\arg\min}_{x \in X} \mathop{\max}_{x' \in X} x'^\top (A + xx^\top)^{-1} x'$ else if $\mathcal{X}\mathcal{Y}$ -allocation then $x_t = \mathop{\arg\min}_{x \in X} \mathop{\max}_{y \in Y} y^\top (A + xx^\top)^{-1} y$ end if $Update \ \hat{\theta}_t = A_t^{-1} b_t, t = t + 1$ end while $Return \ arm \ \Pi(\hat{\theta}_t)$

Figure 2: Static allocation algorithms

Let X_1 , X_2 , X_3 be the arms given.

3. XY – adaptive algorithm

Let X_hat_j => Set of potentially optimal arms in phase j

Algorithm:

- 1. In each phase we implement XY iterative algo.
- 2. The phase length is determined by the uncertainty present in estimating the active directions between successive phases.
- 3. Once a phase ends then we compute theta_hat using OLS method.
- 4. We then use the sub-optimal condition to remove the arms from X_hat_i.
- 5. And loop over the above steps until $| X_hat_j | = 1$