Último ejercicio 2° parcial 1° Cuat. 2011

En este ejercicio usaremos el método de resolución para demostrar una propiedad de las relaciones binarias; a saber, que una relación no vacía no puede ser a la vez irreflexiva, simétrica y transitiva.

Para esto tomaremos una relación R y se demostrará que, si R satisface las tres propiedades mencionadas, entonces es vacía.

Dadas las siguientes definiciones:

- 1. R es irreflexiva: $\forall X. \neg R(X, X)$
- 2. R es simétrica: $\forall X. \forall Y. (R(X, Y) \Rightarrow R(Y, X))$
- 3. R es transitiva: $\forall X. \forall Y. \forall Z. ((R(X,Y) \land R(Y,Z)) \Rightarrow R(X,Z))$
- 4. R es vacía: $\forall X. \neg \exists Y. R(X, Y)$

Utilizando resolución, demostrar que sólo una relación vacía puede cumplir a la vez las propiedades 1 a 3. Indicar si el método de resolución utilizado es o no SLD (y justificar).

Último ejercicio

2° parcial 1° Cuat. 2011

```
Cast.:
           R es irreflexiva.
1° o.: \forall X. \neg R(X, X)
Claus.:
                    \{\neg R(X_1, X_1)\}\
           R es simétrica
Cast.:
1° o.: \forall X. \forall Y. (R(X,Y) \Rightarrow R(Y,X))
Claus.:
                    \{\neg R(X_2, Y_2), R(Y_2, X_2)\}\
Cast.:
           R es transitiva.
1° o.:
              \forall X.\forall Y.\forall Z.((R(X,Y) \land R(Y,Z)) \Rightarrow R(X,Z))
Claus.:
                     \{\neg R(X_3, Y_3), \neg R(Y_3, Z_3), R(X_3, Z_3)\}\
```

Último ejercicio (cont.)

2° parcial 1° Cuat. 2011

Se desea demostrar que:

```
Cast.: R es vacía:

1° o.: \forall X. \neg \exists Y. R(X, Y)

Neg.: \exists X. \exists Y. R(X, Y)

Claus.: \{R(a, b)\}
```

Último ejercicio (resolviendo)

2° parcial 1° Cuat. 2011

- 1. $\{\neg R(X_1, X_1)\}$
- 2. $\{\neg R(X_2, Y_2), R(Y_2, X_2)\}$
- 3. $\{\neg R(X_3, Y_3), \neg R(Y_3, Z_3), R(X_3, Z_3)\}$
- 4. $\{R(a,b)\}$
- 5. $(4 y 2) \{R(b,a)\}\ S = \{X_2 := a, Y_2 := b\}$
- 6. (5 y 3) $\{\neg R(X_6, b), R(X_6, a)\}$ $S = \{Y_3 := b, Z_3 := a\}$ renombrando X_3 a X_6
- 7. (6 y 4) $\{R(a,a)\}\ S = \{X_6 := a\}$
- 8. $(7 \text{ y 1}) \square S = \{X_1 := a\}$

¿Esta demostración por resolución es SLD? ¿Por qué, o por qué no?

Alternativa SLD

2° parcial 1° Cuat. 2011

```
1. \{\neg R(X_1, X_1)\}
  2. \{\neg R(X_2, Y_2), R(Y_2, X_2)\}
  3. \{\neg R(X_3, Y_3), \neg R(Y_3, Z_3), R(X_3, Z_3)\}
  4. \{R(a,b)\}
  5. (1 \vee 3) \{ \neg R(X_1, Y_3), \neg R(Y_3, X_1) \} S = \{ X_3 := X_1, Z_3 := X_1 \}
   6. (5 \vee 4) \{ \neg R(b, a) \} S = \{ X_1 := a, Y_3 := b \}
   7. (6 \vee 2) \{ \neg R(a,b) \} S = \{ X_2 := a, Y_2 := b \}
   8. (7 \vee 4) \square S = \emptyset
¿Es la única posible?
```

Otra alternativa SLD (más corta)

2° parcial 1° Cuat. 2011

- 1. $\{\neg R(X_1, X_1)\}$ 2. $\{\neg R(X_2, Y_2), R(Y_2, X_2)\}$
- 3. $\{\neg R(X_3, Y_3), \neg R(Y_3, Z_3), R(X_3, Z_3)\}$
- 4. $\{R(a,b)\}$
- 5. (1 y 3) $\{\neg R(X_1, Y_3), \neg R(Y_3, X_1)\}\$ $S = \{X_3 := X_1, Z_3 := X_1\}\$
- 6. (5 y 2) $\{\neg R(X_2, Y_2)\}\ S = \{X_1 := X_2, Y_3 := Y_2\}$
- 7. (6 y 4) \square $S = \{X_2 := a, Y_2 := b\}$