ANÁLISIS NUMÉRICO I/ANÁLISIS NUMÉRICO – 2019 Trabajo de Laboratorio N
O 5

 Programar una función en Julia que integre numéricamente usando las reglas compuestas del trapecio, punto medio y Simpson, nombrarla intenumcomp. La función deberá ejecutarse:

julia > intenumcomp(@fun,a,b,N,regla)

donde ${\tt @fun}$ es la función de ${\tt R}$ a ${\tt R}$ a ser integrada, $a,b\in{\tt R}$ son los extremos de integración, N es la cantidad de subintervalos a usar y regla debera ser 'trapecio', 'pm' o 'simpson'. La salida S debe ser un número real.

2. Ejecutar los comandos necesarios para mostrar en pantalla los errores absolutos de integrar numéricamente

$$\int_0^1 e^{-x} dx,$$

usando 4, 10 y 20 subintervalos con las 3 reglas compuestas del ejercicio 1.

3. Escribir una función en Julia llamada senint que para cada $x \in \mathbb{R}^n$ retorne $y \in \mathbb{R}^n$ tal que y_i es la aproximación numérica de

$$\int_0^{x_i} \cos(t) dt,$$

usando la regla compuesta del trapecio con N_i subintervalos. La cantidad N_i de subintervalos debe ser escogida de forma que la longitud de los subintervalos sea menor o igual a 0.1 (ver comandos floor, ceil, round). Para x=0:0.5:2*pi grafique simultáneamente $\sin(x)$ y senint(x).

4. Calcular mediante la regla del trapecio compuesta y la regla de Simpson compuesta, las siguientes integrales, con una tolerancia de error de 10^{-5} :

(a)
$$I = \int_0^1 x e^{-x} dx$$
, (c) $I = \int_0^1 (1+x^2)^{3/2} dx$,

(b)
$$I = \int_0^1 x \sin(x) dx$$
, (d) $I = \int_0^{\pi/2} \frac{1}{\sqrt{1 - \sin^2(t)/2}} dt$.