Lezione 4

- Esempio di interpretazione
- Equivalenza logica
- Conseguenza logica e tautologica.
- Le regole per ragionare con «e» e «o»

Un mondo

NB. Il dodecaedro

non ha nome

Т	1. Tet(a)				
Т	2. Tet(b)				
F	3. Tet(c)				
F	4. Cube(a)				
F	5. Cube(b)				
Т	6. Cube(c)				
F	7. Dodec(a)				
F	8. Dodec(b)				
F	9. Dodec(c)				

T	10. SameShape(a,a)
Т	11. SameShape(a,b)
F	12. SameShape(a,c)
Т	13. SameShape(b,a)
Т	14. SameShape(b,b)
F	15. SameShape(b,c)
F	16. SameShape(c,a)
F	17. SameShape(c,b)
T	18. SameShape(c,c)

L'interpretazione corrispondente

$$A = \{x,y,z,w\}, \qquad I(a), I(b), I(c) \in A, \\ I(Tet) \subseteq A, I(Cube) \subseteq A, I(Dodec) \subseteq A, I(SameShape) \subseteq A^2.$$

$$I(a) = x, I(b) = y, I(c) = z.$$

 $I(Tet) = \{x,y\}, I(Cube) = \{z\}, I(Dodec) = \{w\}, I(SameShape) = \{(x,x),(x,y),(y,x),(y,y),(z,z),(w,w)\}.$

Т	1. Tet(a)				
Т	2. Tet(b)				
F	3. Tet(c)				
F	4. Cube(a)				
F	5. Cube(b)				
Т	6. Cube(c)				
F	7. Dodec(a)				
F	8. Dodec(b)				
F	9. Dodec(c)				

T	10. SameShape(a,a)
Т	11. SameShape(a,b)
F	12. SameShape(a,c)
Т	13. SameShape(b,a)
۲	14. SameShape(b,b)
F	15. SameShape(b,c)
F	16. SameShape(c,a)
H.	17. SameShape(c,b)
Т	18. SameShape(c,c)

L'interpretazione corrispondente

Ecco, qui sopra, la formalizzazione in termini di Relazioni e Costanti dell'interpretazione qui a sinistra.

Logica dei connettivi

Nozioni semantiche fondamentali: terminologia nello stile del libro

- P è logicamente vera (in un contesto) sse P è vera in tutte le circostanze del contesto
- P è tautologicamente vera o tautologia sse P è vera in tutte le interpretazioni booleane (in tutte le righe della tavola di verità)
- P è logicamente possibile (in un contesto) sse esiste una circostanza del contesto in cui P è vera.
- P è tautologicamente possibile (o soddisfacibile) sse esiste una interpretazione booleana (esiste una riga della tavola) in cui P è vera
- P è logicamente impossibile (in un contesto) sse P è falsa in tutte le circostanze del contesto
- P è tautologicamente impossibile (o insoddisfacibile) sse P è falsa in tutte le interpretazioni booleane (in tutte le righe della tavola di verità)

Nozioni semantiche fondamentali: terminologia standard

- P è logicamente vera (in un contesto) sse P è vera in tutte le circostanze del contesto
- P è tautologicamente vera o tautologia sse P è vera in tutte le interpretazioni booleane (in tutte le righe della tavola di verità)
- P è logicamente possibile (in un contesto) sse esiste una circostanza del contesto in cui P è vera.
- P è proposizionalmente possibile (o soddisfacibile) sse esiste una interpretazione booleana (esiste una riga della tavola) in cui P è vera
- P è logicamente impossibile (in un contesto) sse P è falsa in tutte le circostanze del contesto
- P è proposizionalmente impossibile (o insoddisfacibile) sse P è falsa in tutte le interpretazioni booleane (in tutte le righe della tavola di verità)

Il contesto come sottoinsieme di interpretazioni booleane

- Un contesto determina un insieme di circostanze,
- Un insieme di circostanze corrisponde a un sottoinsieme di tutte le interpretazioni booleane: vale a dire, un sottoinsieme di righe della tabella di verità.
- P è logicamente vera (in un contesto) sse P è vera in tutte le circostanze del contesto (in tutte le righe della tabella che corrispondono al contesto)
- P è logicamente possibile (in un contesto) sse esiste una circostanza del contesto (esiste una riga nel sottoinsieme corrispondente al contesto) in cui P è vera
- P è logicamente impossibile (in un contesto) sse P è falsa in tutte le circostanze del contesto (in tutte le righe della tabella che corrispondono al contesto)

Formule logicamente vere (in un contesto)

Esprimono proprietà generali valide nel contesto e sono conoscenze utilizzabili nel ragionamento.

Alcuni esempi di proprietà logicamente vere in TW:

Proprietà di forma (per ogni blocco a):

- Tet(a) \times Cube(a) \times Dodec(a)
- \neg (Tet(a) \land Cube(a))
- \neg (Tet(a) \land Dodec(a))
- \neg (Dodec(a) \land Cube(a))

Esercizio

- A) Le seguenti proprietà sono logicamente vere in TW; scrivetele in formule.
- Un dodecaedro a non può essere un cubo
- Un blocco a grande non è piccolo
- Non può essere che a si trovi fra b e c, ma non fra c e b
- Non può essere che un blocco a sia contemporaneamente davanti e dietro a un blocco b

B) Trovate altre proprietà logicamente vere in TW.

TAUTOLOGIE

• Rappresentano *LEGGI di ragionamento generali* poiché sono vere in **ogni** circostanza e contesto.

Tautologie Importanti:

- Terzo escluso: $P \vee \neg P$
- Non contraddizione: $\neg(P \land \neg P)$

• Vedremo altre tautologie significative quando introdurremo \rightarrow .

Esempio: Tautologie con Boole

Le proprietà logicamente/proposizionalmente impossibili

A volte è più intuitivo ragionare in termini di impossibilità: È impossibile che un blocco **a** si trovi contemporaneamente davanti e dietro a un blocco **b**.

L'impossibilità logica/proposizionale è riconducibile alla verità logica/tautologica attraverso la negazione:

Teorema. P è logicamente impossibile in un contesto C **sse** \neg P è logicamente vera in C.

Teorema. P è proposizionalmente impossibile **sse** \neg P è tautologicamente vera.

Il metodo delle tavole di verità

• La tavola di verità di una fbf F mostra il valore di verità di F per tutte le interpretazioni booleane delle atomiche di F.

• Ricordare che con n atomiche si hanno 2ⁿ interpretazioni booleane.

• Si costruisce gradualmente, riempiendo prima le colonne di strato 0, poi quelli di strato 1, e così via sino al connettivo principale.

Esempio con Boole

		Tet(a)	Cube(a)				(Tet(a) ∧ Cube(a)) v ¬Tet(a)	
Tutte le interpretazioni delle atomiche (strato 0)			T T F	T F T F				
Tet(a)	Cube(a)	(T	et(a) ^ Cube(a	a))	v ¬Tet	(a)		
Т	Т			Т		F		
Т	F			F		F		Calcolo del valore di
F	Т			F		Т		verità dello strato 1
F	F			F		Т		
Tet(a)	Cube(a)	"	(T	et(a) л Cube(a))	v ¬Te	t(a)	
Т	Т		~	Т		TF		Calcolo del valore di
Т	F		/	F		FF		verità dello strato 2
F	Т		1	F		TT		
F	F		/	F		TT		

Uso delle tavole di verità

Se nella tavola di una fbf F sotto al connettivo principale si trovano:

- 1. Tutti T: Fè una tautologia.
- 2. Tutti T nelle interpretazioni possibili in un contesto: F è logicamente vera nel contesto.

- 3. Almeno un T: F è possibile proposizionalmente.
- 4. Almeno un T fra le interpretazioni possibili in un contesto: F è possibile in quel contesto.

È una tautologia

Non è una tautologia (¬Tet(a) ∧ ¬Cube(a)) v ¬Dodec(a) Tet(a) Cube(a) Dodec(a) FF F FT TT FF F F FF F

ma è una verità logica in TW: cancellando le interpretazioni impossibili in TW, risulta vera in tutte le altre

Proprietà importanti

- a) Se P è una tautologia allora P è logicamente vera in ogni contesto,
- **b) ma** vi sono formule logicamente vere (ad es.) in TW, che non sono tautologie.
- c) Se P è possibile in un contesto allora è anche proposizionalmente possibile,
- d) ma vi sono formule proposizionalmente possibili ma impossibili (ad es.) in TW.
- **Esercizio 1.** a), c) sono abbastanza ovvi, provatelo con una vostra dimostrazione informale (ragionate sulle tavole di verità).
- Esercizio 2. Mostrate una formula di TW che verifica b).
- Esercizio 3. Mostrate una formula di TW che verifica d).

Equivalenza logica

Equivalenza (tauto)logica

Due proposizioni sono

- tautologicamente (o, proposizionalmente) equivalenti , scritto P ⇔_T Q,
 sse hanno lo stesso valore di verità in tutte le interpretazioni booleane
- *logicamente equivalenti* in un contesto C, scritto $P \Leftrightarrow_{\mathbb{C}} Q$ **sse** hanno lo stesso valore di verità in tutte le interpretazioni possibili nel contesto

Al solito, se P e Q sono tautologicamente equivalenti, allora sono logicamente equivalenti in ogni contesto.

Ci sono solo 3 interpretazioni booleane che rappresentano circostanze possibili in TW; in esse le colonne sotto alle due fbf coincidono, per cui $Tet(a) \lor Dodec(a) \Leftrightarrow_{TW} \neg Cube(a)$

Equivalenza logica e rimpiazzamento (o riscrittura)

- Rimpiazzamento (o riscrittura): se P ⇔ Q, posso rimpiazzare P con Q in una formula F, ottenendo una formula G ⇔ F
 - Non abbiamo riportato il pedice perché la proprietà vale sia per $\Leftrightarrow_{\mathsf{T}}$, sia per $\Leftrightarrow_{\mathsf{C}}$ in un contesto C.

• La riscrittura serve per dire una stessa cosa in modi diversi, se ritenuti più chiari o più adatti in un ragionamento o più convenienti.

Usiamo le equivalenze:

- a) Tet(a) \vee Dodec(a) $\Leftrightarrow_{\mathsf{TW}} \neg \mathsf{Cube}(\mathsf{a})$
- b) Small(a) \vee Medium(a) \Leftrightarrow_{TW} \neg Large(a)
- c) $\neg (A \land B) \Leftrightarrow_{\mathsf{T}} \neg A \lor \neg B$

- 1. Tet(a) \vee Dodec(a) \vee Small(a) \vee Medium(a)
- 2. \neg Cube(a) \lor Small(a) \lor Medium(a)
- 3. \neg Cube(a) $\lor \neg$ Large(a)
- 4. \neg (Cube(a) \land Large(a))

Alcune equivalenze tautologiche notevoli

Doppia Negazione

 $\neg\neg A \Leftrightarrow_{\mathsf{T}} A$

DeMorgan:

$$\neg (A \land B) \Leftrightarrow_{\mathsf{T}} \neg A \lor \neg B$$

$$\neg (A \lor B) \Leftrightarrow_{\mathsf{T}} \neg A \land \neg B$$

Associatività: $(A \land B) \land C \Leftrightarrow_T A \land (B \land C)$

$$(A \vee B) \vee C \Leftrightarrow_T A \vee (B \vee C)$$

Commutatività:

$$A \wedge B \Leftrightarrow_{\mathsf{T}} B \wedge A$$

$$A \vee B \Leftrightarrow_{\mathsf{T}} B \vee A$$

Idempotenza:

$$A \wedge A \Leftrightarrow_{\mathsf{T}} A$$

$$A \vee A \Leftrightarrow_{\mathsf{T}} A$$

Assorbimento:

$$A \Leftrightarrow_{\mathsf{T}} A \wedge (A \vee B)$$

$$A \Leftrightarrow_{\mathsf{T}} A \vee (A \wedge B)$$

Distributività: $A \wedge (B \vee C) \Leftrightarrow_T (A \wedge B) \vee (A \wedge C)$

$$A \vee (B \wedge C) \Leftrightarrow_T (A \vee B) \wedge (A \vee C)$$

Esercizi importanti

- 1. Date una formula che sia una tautologia e dimostratelo con le tavole di verità
- 2. Date una formula che sia logicamente vera in TW ma non sia una tautologia e dimostratelo con le tavole di verità
- 3. Date una formula che sia possibile in TW ma non sia logicamente vera in TW e dimostratelo con le tavole di verità. La formula è anche proposizionalmente possibile? È una tautologia?
- 4. Date una formula proposizionalmente possibile ma impossibile in TW e dimostratelo con le tavole di verità.

Conseguenza logica e tautologica

Conseguenza logica e tautologica: le definizioni

DEF. Conseguenza logica: Q segue logicamente da $P_1,...,P_n$ in un contesto **C sse** Q è vera in tutte le interpretazioni nel contesto, in cui $P_1,...,P_n$ sono vere.

Notazione: $P_1,...,P_n \models_{\mathbf{C}} \mathbf{Q}$

DEF. Conseguenza tautologica: Q segue tautologicamente da $P_1,...,P_n$ **sse** Q è vera in ogni interpretazione booleana in cui $P_1,...,P_n$ sono vere.

Notazione: $P_1,...,P_n \models_T Q$

Siccome le interpretazioni possibili in un contesto sono un sottoinsieme di quelle booleane:

• $P_1,...,P_n \models_T Q$ implica $P_1,...,P_n \models_C Q$, ma non vale in genere il viceversa.

Stabilire la conseguenza logica con le tavole di verità

Siano P_1 , ..., P_n le premesse e C la conseguenza. Costruiamo la tavola di verità di P_1 , ..., P_n , C e analizziamo i valori di verità ottenuti nelle varie interpretazioni booleane (le righe della tabella).

- 1. Se non troviamo 'righe controesempio', ovvero interpretazioni booleane in cui C è *falsa* e le premesse sono *tutte vere*, allora C è conseguenza tautologica delle premesse.
- 2. Se vi sono righe controesempio, ma *nessuna di queste* corrisponde ad una interpretazione possibile nel contesto, allora C è conseguenza logica delle premesse nel contesto ma non è conseguenza tautologica.
- 3. Se 1,2 non valgono, C non è neppure conseguenza logica nel contesto.

Dire se si tratta di conseguenza tautologica, o logica in TW ma non tautologica, o nessuno dei due casi:

Premesse:

- 1. $Tet(a) \lor Cube(b)$
- 2. Dodec(b)

Conseguenza:

3. Tet(a)

	Tet(a)	Cube(b)	Dodec(b)	Tet(a) ∨ Cube(b)	Dodec(b)	Tet(a)
1	F	F	F	F	F	F
2	F	F	Т	F	Т	F
3	F	Т	F	Т	F	F
4	F	Т	Т	Т	Т	F

Siccome cerco i controesempi considero solo le circostanze in cui la conseguenza è falsa; in esse la 4 è un controesempio. Dunque Tet(a) *non è conseguenza tautologica delle premesse*. Però la 4 non è possibile in TW, dunque in TW non ci sono controesempi e Tet(a) *è conseguenza logica delle premesse in TW.*

Premesse:

- 1. $Tet(a) \lor Cube(b)$
- 2. ¬Cube(b)

Conseguenza:

3. Tet(a)

Invece in questo caso si ha conseguenza tautologica

	Tet(a)	Cube(b)	Tet(a) ∨ Cube(b)	¬Cube(b)	Tet(a)
1	F	F	F	Т	F
2	F	Т	Т	F	F

Considero le circostanze in cui la conseguenza è falsa; nessuna di esse è un controesempio.

Dunque Tet(a) è conseguenza tautologica delle premesse.

Conseguenze fondamentali per i connettivi A, V

$$\land$$
 Intro) A, B \models_T A \land B

$$\wedge$$
 Elim) $A \wedge B \models_T A$

$$A \wedge B \models_T B$$

$$\vee$$
 Intro) $A \models_T A \vee B$

$$B \vDash_{T} A \vee B$$

(e per quanto riguarda « > Elim»?, Lo vedremo)

Le regole per ragionare con «e» e «o»

Introduzione ed eliminazione di ∧: si applicano le conseguenze tautologiche fondamentali:

$$\land$$
 Intro) $P_1,...,P_n \models_T P_1 \land ... \land P_n$

$$\wedge$$
 Elim) $P_1 \wedge ... \wedge P_n \models_T P_i$

Conjunction Introduction (\lambda Intro):

$$P_1$$
 \downarrow
 P_n
 \vdots
 $P_1 \wedge \ldots \wedge P_n$

Conjunction Elimination (\lambda Elim):

$$P_1 \wedge \ldots \wedge P_i \wedge \ldots \wedge P_n$$
 \vdots
 P_i

Regola di introduzione di ∨

$$\vee$$
 Intro) $P_i \models_T P_1 \vee ... \vee P_n$

Disjunction Introduction (\vee Intro):

$$P_i$$
 \vdots
 $P_1 \lor \ldots \lor P_i \lor \ldots \lor P_n$

E la Regola di eliminazione di «o»?

Da «P o Q» cosa posso inferire?

 Si procede per casi: cosa posso inferire nel caso P e cosa nel caso Q; se in entrambi i casi posso inferire C, allora C segue da «P o Q».

• Prima di vedere l'eliminazione di ∨ vediamo come operano le regole ∧ Intro, ∧ Elim, ∨ Intro.

Dimostriamo
$$P \wedge Q \models_T Q \wedge (P \vee \neg R)$$
.

• Al primo passo scriviamo il nostro «goal»:

P∧Q è la premessa

 $Q \wedge (P \vee \neg R)$ è la conclusione, il nostro goal

• La regola ci dice che per dimostrare $Q \wedge (P \vee \neg R)$ dobbiamo dimostrare separatamente Q e $(P \vee \neg R)$.

Osserviamo che smontando $P \wedge Q$ in P, Q con \wedge Elim, otteniamo Q direttamente; per quanto riguarda $P \vee \neg R$, la possiamo ottenere per \vee Intro da P.

• Quindi la prova è

1. $P \wedge Q$

2. Q

3. P

4. $P \vee \neg R$

5. $Q \wedge (P \vee \neg R)$

∧ Elim 1

∧ Elim 1

∨ Intro 3

 \wedge Intro 2, 4

Riferimenti al libro di testo

• Chapter 3: Sezione 3.6

• Chapter 4: fino a Sezione 4.3 inclusa; Sezione 4.5