ORGANIC ELECTROLUMINESCENT ELEMENT

Patent number:

JP10270172

Publication date:

1998-10-09

Inventor:

KIDO JUNJI; MIZUKAMI TOKIO

Applicant:

KIDO JUNJI; AIMESU KK

Classification:

- international:

C09K11/06; H05B33/22; C09K11/06; H05B33/22; (IPC1-7): H05B33/22;

C09K11/06

- european:

Application number: JP19970075834 19970327

Priority number(s): JP19970075834 19970327; JP19970012815 19970127

Report a data error here

Abstract of JP10270172

PROBLEM TO BE SOLVED: To provide a low driving voltage and highly efficient organic EL element at low costs by providing a light emission layer made of an organic compound between opposing positive and negative electrodes and an organic compound layer doped with metal oxide or metallic salt in a boundary with the negative electrode. SOLUTION: An organic ÉL element is provided by sequentially stacking a transparent substrate 1 made of glass or the like, a positive transparent electrode 2, a hole transport layer 3, a light emission layer 4 made of a organic compound, a metal doping layer 5 and a negative backside electrode 6. The metal doping layer 5 is obtained by doping an organic compound with metal oxide or metallic salt in a boundary with the negative electrode 6. For this oxide or salt metal, alkaline metal such as Li, alkaline earth metal such as Mg or transition metal containing rare earth metal is preferred. Also, for the doping layer 5 doped with this metal, preferably, dopant concentration is set to 0.1 to 99 wt.% and a thickness is set to 10 to 2000 & angst . Thus, the energy barrier of electron injection from the negative electrode to the organic compound layer is reduced and thereby a low driving voltage is realized.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-270172

(43)公開日 平成10年(1998)10月9日

(51) Int.Cl.6

H05B 33/22

C09K 11/06

識別記号

FΙ

H 0 5 B 33/22

C09K 11/06

Z

審査請求 未請求 請求項の数6 OL (全 7 頁)

(21)出願番号

特願平9-75834

(22)出顧日

平成9年(1997)3月27日

(31) 優先権主張番号 特願平9-12815

(32)優先日

平9 (1997) 1月27日

(33)優先権主張国

日本 (JP)

(71)出願人 597011728

城戸 淳二

奈良県北葛城郡広陵町馬見北9-4-3

(71)出願人 593191350

株式会社アイメス

神奈川県藤沢市桐原町3番地

(72)発明者 城戸 淳二

奈良県北葛城郡広陵町馬見北9-4-3

(72)発明者 水上 時雄

神奈川県藤沢市桐原町3番地 株式会社ア

イメス内

(74)代理人 弁理士 三浦 邦夫

(54) 【発明の名称】 有機エレクトロルミネッセント素子

(57) 【要約】

【目的】 有機EL素子において、陰極から有機化合物 層への電子注入におけるエネルギー障壁を低下させ、陰 極材料の仕事関数に関わらず低駆動電圧を実現する。

【構成】 陰極電極6に接する有機化合物層を金属酸化 物あるいは金属塩でドーピングした金属ドーピング層5 とし、陰極から有機化合物層への電子注入障壁を小さく し、駆動電圧を低下させた有機EL素子。

6	陰極電極
5	金属ドーピング層
4	発光層
3 ——	正孔翰送曆
2	陽極透明電極(ITO)
1	透明基板

【特許請求の範囲】

【請求項1】 対向する陽極電極と陰極電極の間に、有機化合物から構成される少なくとも一層の発光層を有する有機エレクトロルミネッセント素子において、上記陰極電極との界面に、金属酸化物または金属塩でドーピングした有機化合物層を金属ドーピング層として有することを特徴とする有機エレクトロルミネッセント素子。

【請求項2】 請求項1記載の素子において、上記金属酸化物が、アルカリ金属、アルカリ土類金属、または稀土類金属を含む遷移金属の金属酸化物からなる有機エレクトロルミネッセント素子。

【請求項3】 請求項1記載の素子において、上記金属塩が、アルカリ金属、アルカリ土類金属、稀土類金属を含む遷移金属の金属塩からなる有機エレクトロルミネッセント素子。

【請求項4】 請求項1~3のいずれか1項記載の素子において、金属ドーピング層の金属酸化物または金属塩の濃度が、0.1~99重量%である有機エレクトロルミネッセント素子。

【請求項5】 請求項1~4のいずれか1項記載の素子において、金属ドーピング層の厚さが、10Å~2000Åである有機エレクトロルミネッセント素子。

【請求項6】 請求項1~5のいずれか1項記載の素子において、陰極構成材料の少なくとも一つがアルミニウムである有機エレクトロルミネッセント素子。

【発明の詳細な説明】

[0001]

【技術分野】本発明は、平面光源や表示素子に利用される有機エレクトロルミネッセント素子(以下、有機EL素子)に関するものである。

[0002]

【従来の技術およびその問題点】発光層が有機化合物か ら構成される有機エレクトロルミネッセント素子(以 下、有機EL素子)は、低電圧駆動の大面積表示素子を実 現するものとして注目されている。Tangらは素子の高効 率化のため、キャリア輸送性の異なる有機化合物を積層 し、正孔と電子がそれぞれ陽極、陰極よりバランスよく 注入される構造とし、しかも有機層の膜厚が2000 A以下 とすることで、10V 以下の印加電圧で1000cd/m と外部 量子効率1%の実用化に十分な高輝度、高効率を得るこ とに成功した (Appl. Phys. Lett., 51, 913 (1987).)。この高効率素子において、Tangらは基本的に絶縁 物とみなされる有機化合物に対して、金属電極から電子 を注入する際に問題となるエネルギー障壁を低下させる ため、仕事関数の小さいMg(マグネシウム)を使用し た。その際、Mgは酸化しやすく、不安定であるのと、有 機表面への接着性に乏しいので比較的安定で、しかも有 機表面に密着性の良いAg(銀)と共蒸着により合金化し て用いた。

【0003】凸版印刷株式会社のグループ(第51回応

用物理学会学術講演会、講演予稿集28a-PB-4、p. 1040) およびパイオニア株式会社のグループ (第54回応用物理学会学術講演会、講演予稿集29p-ZC-15、p. 1127) は、Mgより更に仕事関数の小さいLi (リチウム)を用いる1 (アルミニウム)と合金化する事により安定化させ陰極として用いることにより、Mg合金を用いた素子より低い駆動電圧と高い発光輝度を達成している。また、本発明者らは有機化合物層上にLiを単独で10Å程度に極めて薄く蒸着し、その上から銀を積層した二層型陰極が低駆動電圧の実現に有効であることを報告している(IEEE Trans. Electron Devices., 40, 1342 (1993))。

【0004】最近ではUNIAX 社のPei らが、ポリマー発光層全体にLi塩を均一にドーピングし、駆動電圧を低下する事に成功している(Science, 269, 1086 (1995))。これは電圧印加によってポリマー発光層中に均一分散したLi塩を解離させ、陰極と陽極近傍にそれぞれLiイオンと対イオンを分布させることにより電極近傍のポリマー分子をin situでドーピングするものである。この場合、陰極近傍のポリマーは電子供与性(ドナー)ドーパントであるLiによって還元されたラジカルアニオン状態で存在するため、陰極からの電子注入障壁はLiドーピングしない場合より極めて低くなる(Science, 269, 1086 (1995))。

【0005】さらに最近になって、イーストマン- コダ ック社のHungらはフッ化リチウム (LiF) や酸化マグネ シウム (MgO) などの誘電体を極めて薄く (5 ~10Å) 電子輸送性有機化合物層と陰極との間に挿入することに より、陰極からの電子注入障壁を低下させ低電圧駆動を 実現している。この二層型陰極を有する素子では、誘電 体が陰極と有機化合物層の間に存在することにより、誘 電体に接する有機化合物のエネルギー準位(バンド構 造)が変化し、陰極からの電子注入が容易になると解釈 されている (Appl. Phys. Lett., 70, 152 (1997))。 【0006】しかしながら、MgやLiの合金電極において も電極の酸化等による素子劣化が起こる上、配線材料と しての機能を考慮しなければならないので、合金電極で は電極材料選択において制限を受ける。本発明者らの二 層型陰極では、Li層の厚みが20Å以上では陰極機能しな いうえ (IEEE Trans. Electron Devices., 40, 1342(19 93))、極めて薄い10Å程度のLiの蒸着は膜厚制御が困 難であり素子作製の再現性に問題がある。また、Pei ら の発光層中に塩を添加して電界にて解離させるin situ ドーピング法では、解離したイオンの電極近傍までの移 動時間が律速となり、素子応答速度が著しく遅くなる欠 点がある。Hungらの二層型陰極においても最適な誘電体 層膜厚が5 Åと極めて薄いため、有機化合物上へ均一な 膜厚を有する誘電体超薄膜層を作製しにくい欠点があ

[0007]

【発明の目的】本発明は、以上の事情に鑑みてなされた

ものであり、その目的は陰極から有機化合物層への電子 注入におけるエネルギー障壁を低下させることにより、 陰極材料の仕事関数に関わらず低駆動電圧を実現するこ とを目的とする。本発明の他の目的は、A1の様な従来よ り配線材として一般に用いられてきた安価で安定な金属 を陰極材料として単独で用いた場合でも、上述の合金を 電極として用いた場合と同様、若しくはそれ以上の特性 を発現しうる素子を提供することである。

[8000]

【発明の概要】本発明は、陰極に接する有機化合物層を 金属酸化物あるいは金属塩などの誘電体でドーピングす ると、陰極から有機化合物層への電子注入障壁が小さく なり、駆動電圧を低下させることができることを見い出 して完成されたものである。すなわち、本発明の有機E L素子は、対向する陽極電極と陰極電極の間に、有機化 合物から構成される少なくとも一層の発光層を有するEL 素子において、陰極電極との界面に、金属酸化物あるい は金属塩でドーピングした有機化合物層を有することを 特徴としている。

[0009]

【発明の実施の形態】図1は、本発明による有機EL素 子の一実施形態を示す模式図である。ガラス基板(透明 基板)1上には、順に、陽極電極を構成する透明電極 2、正孔輸送性を有する正孔輸送層3、発光層4、金属 ドーピング層5および陰極となる背面電極6を積層して なっている。これらの要素(層)のうち、ガラス基板 (透明基板) 1、透明電極2、正孔輸送層3、発光層 4、および陰極電極6は周知の要素であり、金属ドーピ ング層 5 が本発明で提案した要素(層)である。有機EL 素子の具体的な積層構成としては、この他、陽極/発光 層/金属ドーピング層/陰極、陽極/正孔輸送層/発光 層/金属ドーピング層/陰極、陽極/正孔輸送層/発光 層/電子輸送層/金属ドーピング層/陰極、陽極/正孔 注入層/発光層/金属ドーピング層/陰極、陽極/正孔 注入層/正孔輸送層/発光層/金属ドーピング層/陰 極、陽極/正孔注入層/正孔輸送層/発光層/電子輸送 層/金属ドーピング層/陰極、などが挙げられるが、本 発明による有機EL素子は、金属ドーピング層5を陰極 電極6との界面に有するものであればいかなる素子構成 であっても良い。

【0010】図2は、陰極電極6と有機発光層4との間に電子輸送層8が存在し、この電子輸送層8と陰極電極6の界面に金属ドーピング層5が設けられている例を示している。金属ドーピング層5は、有機化合物中に誘電体である金属酸化物や金属塩がドーパントとして存在しており、このため、ドーパントに接する有機分子のバンド構造が変化し、LUMO準位が下がる。この結果、陰極からの電子注入が容易になる。

【0011】図3は、比較のために、Hungらの提案した 従来の有機EL素子の陰極界面部分を示している。この例 は誘電体薄膜層 9 を陰極電極 6 と電子輸送層 8 との界面に有する場合であるが、この素子では誘電体に接する陰極界面近傍の有機化合物のバンド構造が変化し、電子が注入される有機化合物の最低空準位(LUMO)が低下し、陰極からの電子注入が容易になると言われてきたが、本発明による有機配素子では、図 3 の従来の陰極界面構造に比較して、さらに陰極からの電子注入が容易となり、駆動電圧を低下させることができる。

【0012】有機EL素子では陰極から基本的に絶縁物で ある有機化合物層への電子注入過程は、陰極表面での有 機化合物の還元、すなわちラジカルアニオン状態の形成 である (Phys. Rev. Lett., 14, 229 (1965))。これは すなわち有機化合物の最低空準位 (LUMO) への電子注入 である。したがって、LUMO準位の低い有機化合物ほど陰 極から電子が注入しやすい。 本発明の素子においては、 予め有機化合物のLUMOを低下させる効果のある金属酸化 物あるいは金属塩を陰極に接触する有機化合物層中にド ーピングする事により、陰極電極からの電子注入に際す るエネルギー障壁を低下させることができる。 金属ドー ピング層5は、このように金属酸化物あるいは金属塩か らなるドーパント物質をドーピングした有機化合物層で ある。金属ドーピングした有機化合物は先に述べたよう にLUMO準位が低くなるので、陰極からの電子注入エネル ギー障壁が小さく、従来の有機EL素子と比べて駆動電圧 を低下できる。しかも陰極には一般に配線材として用い られている安定なAlのような金属を使用できる。

【0013】ドーパントはホストとなる有機化合物の電子エネルギー準位を変化させ、LUMO準位を低下させることのできるLi等のアルカリ金属、Mg等のアルカリ土類金属、あるいは稀土類金属を含む遷移金属の金属酸化物や金属塩であれば特に限定はないが、金属酸化物の場合は、Li $_2$ 0、Na $_2$ 0、K $_2$ 0、Rb $_2$ 0、Cs $_2$ 0、Mg0、Ca0 など、金属塩の場合はLiF、NaF、KF、RbF、CsF、MgF $_2$ 、CaF $_2$ 、SrF $_2$ 、BaF $_2$ 、LiCl、NaCl、KCl、RbCl、CsCl、MgCl 、CaCl $_2$ 、SrCl $_2$ 、BaCl $_2$ などを好適に用いることができる。

【0014】金属ドーピング層 5のドーパント濃度は特に限定されないが、0.1~99重量%であることが好ましい。0.1重量%未満では、ドーパントの濃度が低すぎドーピングの効果が小さく、99重量%を超えると、膜中のドーパント濃度が高過ぎ、陰極近傍で電子が注入されるべき有機化合物濃度が逆に低すぎるので、ドーピングの効果が下がる。また、この金属ドーピング層の厚みは、特に限定されないが10Å~2000Åが好ましい。10Å未満では、金属ドーピング層の膜厚が薄すぎ、均一な膜が得られにいうえ、電子が注入されるべきLUMO準位の下がった有機分子の量が少なすぎる。また、2000Åを超えると有機層全体の膜厚が厚すぎ、逆に駆動電圧の上昇を招くので好ましくない。

【0015】上記金属ドーピング層5の成膜法は、いか

なる薄膜形成法であってもよく、たとえば蒸着法やスパッタ法が使用できる。また、溶液からの塗布で薄膜形成が可能な場合には、スピンコーティング法やディップコーティング法などの溶液からの塗布法が使用できる。この場合、ドーピングされる有機化合物とドーパントを不活性なポリマー中に分散して用いても良い。

【0016】発光層、電子輸送層、金属ドーピング層と

して使用できる有機化合物としては、特に限定はない が、p-テルフェニルやクアテルフェニルなどの多環化合 物およびそれらの誘導体、ナフタレン、テトラセン、ピ レン、コロネン、クリセン、アントラセン、ジフェニル アントラセン、ナフタセン、フェナントレンなどの縮合 多環炭化水素化合物及びそれらの誘導体、フェナントロ リン、バソフェナントロリン、フェナントリジン、アク リジン、キノリン、キノキサリン、フェナジンなどの縮 合複素環化合物およびそれらの誘導体や。フルオロセイ ン、ペリレン、フタロペリレン、ナフタロペリレン、ペ リノン、フタロペリノン、ナフタロペリノン、ジフェニ ルプタジエン、テトラフェニルブタジエン、オキサジア ゾール、アルダジン、ビスベンゾキサゾリン、ビススチ リル、ピラジン、シクロペンタジエン、オキシン、アミ ノキノリン、イミン、ジフェニルエチレン、ビニルアン トラセン、ジアミノカルバゾール、ピラン、チオピラ ン、ポリメチン、メロシアニン、キナクリドン、ルブレ ン等およびそれらの誘導体などを挙げることができる。 【0017】また、特開昭63-295695 号公報、特開平8-22557 号公報、特開平8-81472 号公報、特開平5-9470号 公報、特開平5-17764 号公報に開示されている金属キレ 一ト錯体化合物、特に金属キレート化オキサノイド化合 物では、トリス(8-キノリノラト)アルミニウム、ビス (8-キノリノラト) マグネシウム、ビス [ベンゾ (f) -

ラト)アルミニウム、トリス (8-キノリノラト) インジウム、トリス (5-メチル-8- キノリノラト) アルミニウム、8-キノリノラトリチウム、トリス (5-クロロ-8- キノリノラト) ガリウム、ビス (5-クロロ-8- キノリノラト) ガリウム、ビス (5-クロロ-8- キノリノラト) カルシウムなどの8-キノリノラトあるいはその誘導体を配位子として少なくとも一つ有する金属錯体が好適に使用される。 【0018】特開平5-202011号公報、特開平7-179394号公報、特開平7-278124号公報、特開平7-228579号公報に開示されているオキサジアゾール類、特開平7-157473号

8- キノリノラト] 亜鉛、ビス (2-メチル-8- キノリノ

40018】特開平5-202011号公報、特開平7-179394号公報、特開平7-278124号公報、特開平7-228579号公報に開示されているオキサジアゾール類、特開平7-157473号公報に開示されているトリアジン類、特開平6-203963号公報に開示されているスチルベン誘導体およびジスチリルアリーレン誘導体、特開平6-132080号公報や特開平6-88072号公報に開示されているスチリル誘導体、特開平6-100857号公報や特開平6-207170号公報に開示されているジオレフィン誘導体も発光層、電子輸送層、金属ドーピング層として好ましい。

【0019】さらに、ベンソオキサゾール系、ベンゾチ

アゾール系、ベンゾイミダゾール系などの蛍光増白剤も 使用でき、例えば、特開昭59-194393 号公報に開示され ているものが挙げられる。その代表例としては、2,5-ビ ス(5,7-ジ-t-ベンチル-2-ベンゾオキサゾリル)-1,3, 4- チアゾール、4,4'- ビス(5,7-t-ペンチル-2- ベン ゾオキサゾリル)スチルベン、4.4'-ビス「5.7-ジー (2-メチル-2- ブチル) -2- ベンゾオキサゾリル] スチ ルベン、2,5-ビス(5.7-ジ-t-ペンチル-2-ベンゾオキ サゾリル) チオフェン、2,5-ビス $[5-(\alpha, \alpha-i)]$ メチ ルベンジル) -2-ベンゾオキサゾリル] チオフェン、2,5 -ビス [5,7-ジー (2-メチル-2- ブチル) -2- ベンゾオ キサゾリル]-3,4-ジフェニルチオフェン、2,5-ビス (5-メチル-2- ベンゾオキサゾリル) チオフェン、4,4' - ビス (2-ベンゾオキサゾリル) ビフェニル、5-メチル -2- (2-[4-(5-メチル-2-ベンゾオキサゾリル)フェ ニル] ビニル} ベンゾオキサゾール、2- [2- (4-クロロ フェニル) ビニル] ナフト (1,2-d)オキサゾールなどの ベンゾオキサゾール系、2,2'-(p-フェニレンジピニレ ン)-ビスベンゾチアゾールなどのベンゾチアゾール系、 2-{2-{4-(2-ベンゾイミダソリル) フェニル] ビニ ル} ベンゾイミダゾール、2-[2-(4-カルボキシフェニ ル) ビニル] ベンゾイミダゾールなどのベンゾイミダゾ ール系などの蛍光増白剤が挙げられる。

【0020】ジスチリルベンゼン系化合物としては、例えば欧州特許第0373582 号明細書に開始されているものを用いることができる。その代表例としては、1,4-ビス(2-メチルスチリル)ベンゼン、1,4-ビス(4-メチルスチリル)ベンゼン、ジスチリルでンゼン、1,4-ビス(2-エチルスチリル)ベンゼン、ジスチリルベンゼン、1,4-ビス(3-エチルスチリル)ベンゼン、1,4-ビス(2-メチルスチリル)-2- メチルベンゼン、1,4-ビス(2-メチルスチリル)-2- エチルベンゼンなどが挙げられる。

【0021】また、特開平2-252793号公報に開示されているジスチリルピラジン誘導体も発光層、電子輸送層、金属ドーピング層として用いることができる。その代表例としては、2,5-ビス(4-メチルスチリル)ピラジン、2,5-ビス [2-(1-ナフチル)ビニル】ピラジン、2,5-ビス [2-(4-ビフェニル)ビニル】ピラジン、2,5-ビス [2-(1-ピレニル)ビニル】ピラジン、2,5-ビス [2-(1-ピレニル)ビニル】ピラジンなどが挙げられる。

【0022】その他、欧州特許第388768号明細書や特開 平3-231970号公報に開示されているジメチリディン誘導 体を発光層、電子輸送層、金属ドーピング層の材料として用いることもできる。その代表例としては、1,4-フェニレンジメチリディン、4,4'-フェニレンジメチリディン、2,6-ナフチレンジメチリディン、1,4-ビフェニレンジメチリディン、1,4-p-テレフェニレンジメチリディン、9,10-アントラセン

ジイルジメチリディン、4,4'- (2,2- ジ-t- ブチルフェ ニルビニル) ビフェニル、4,4'-(2,2-ジフェニルビニ ル)ビフェニル、など、及びこれらの誘導体や、特開平 6-49079 号公報、特開平6-293778号公報に開示されてい るシラナミン誘導体、特開平6-279322号公報、特開平6-279323号公報に開示されている多官能スチリル化合物、 特開平6-107648号公報や特開平6-92947 号公報に開示さ れているオキサジアゾール誘導体、特開平6-206865号公 報に開示されているアントラセン化合物、特開平6-1451 46号公報に開示されているオキシネイト誘導体、特開平 4-96990 号公報に開示されているテトラフェニルブタジ エン化合物、特開平3-296595号公報に開示されている有 機三官能化合物、さらには、特開平2-191694号公報に開 示されているクマリン誘導体、特開平2-196885号公報に 開示されているペリレン誘導体、特開平2-255789号に開 示されているナフタレン誘導体、特開平2-289676号及び 特開平2-88689 号公報に開示されているフタロペリノン 誘導体、特開平2-250292号公報に開示されているスチリ ルアミン誘導体などが挙げられる。さらに、従来有機比 素子の作製に使用されている公知のものを適宜用いるこ とができる。

【0023】正孔注入層、正孔輸送層、正孔輸送性発光 層として使用されるアリールアミン化合物類としては、 特に限定はないが、特開平6-25659 号公報、特開平6-20 3963号公報、特開平6-215874号公報、特開平7-145116号 公報、特開平7-224012号公報、特開平7-157473号公報、 特開平8-48656 号公報、特開平7-126226号公報、特開平 7-188130号公報、特開平8-40995 号公報、特開平8-4099 6 号公報、特開平8-40997 号公報、特開平7-126225号公 報、特開平7-101911号公報、特開平7-97355 号公報に開 示されているアリールアミン化合物類が好ましく、例え ば、N,N,N',N'-テトラフェニル-4,4'-ジアミノフェニ ル、N,N'- ジフェニル-N,N'-ジ (3-メチルフェニル) -4,4'-ジアミノビフェニル、2,2-ビス (4-ジ-p- トリル アミノフェニル) プロパン、N,N,N',N'-テトラ-p- トリ ル-4,4'-ジアミノビフェニル、ビス(4-ジ-p- トリルア ミノフェニル) フェニルメタン、N,N'- ジフェニル-N, N'-ジ (4-メトキシフェニル) -4,4'-ジアミノビフェニ ル、N, N, N', N' - テトラフェニル-4, 4' - ジアミノジフェニ ルエーテル、4,4'- ビス (ジフェニルアミノ) クオード リフェニル、4-N,N-ジフェニルアミノ- (2-ジフェニル ビニル) ベンゼン、3-メトキシ-4'-N, N-ジフェニルアミ ノスチルベンゼン、N-フェニルカルバゾール、1, 1-ビス (4- ジ-p- トリアミノフェニル) - シクロヘキサン、 1,1-ビス (4-ジ-p-トリアミノフェニル) -4- フェニル シクロヘキサン、ビス(4-ジメチルアミノ-2- メチルフ ェニル) - フェニルメタン、N,N,N-トリ (p-トリル) ア ミン、4- (ジ-p- トリルアミノ) -4'- [4 (ジ-p- トリ ルアミノ) スチリル] スチルベン、N, N, N', N' -テトラ-p - トリル-4,4'-ジアミノ- ビフェニル、N,N,N',N'-テト

ラフェニル-4,4'-ジアミノ- ビフェニルN-フェニルカル バゾール、4,4'- ビス [N- (1-ナフチル) -N- フェニル - アミノ] ビフェニル、4,4''-ビス [N- (1-ナフチル) -N- フェニル- アミノ] p-ターフェニル、4,4'- ビス [N- (2-ナフチル) -N- フェニル- アミノ] ビフェニ ル、4,4'- ビス [N- (3-アセナフテニル) -N- フェニル - アミノ] ビフェニル、1,5-ビス [N- (1-ナフチル) -N - フェニル- アミノ] ナフタレン、4,4'- ビス [N- (9-アントリル) -N- フェニル- アミノ] ビフェニル、4, 4''-ビス [N- (1-アントリル) -N- フェニル- アミノ] p-ターフェニル、4,4'- ビス [N- (2-フェナントリル) -N- フェニル- アミノ] ビフェニル、4,4'- ビス [N-(8-フルオランテニル) -N- フェニル- アミノ] ビフェ ニル、4,4'-ビス [N- (2-ピレニル) -N- フェニル- ア ミノ] ビフェニル、4,4'- ビス [N- (2-ペリレニル) -N - フェニル- アミノ] ビフェニル、4,4'- ビス [N- (1-コロネニル) -N- フェニル- アミノ] ビフェニル、2,6-ビス (ジ-p- トリルアミノ) ナフタレン、2,6-ビス [ジ - (1-ナフチル) アミノ] ナフタレン、2,6-ビス [N-(1-ナフチル) -N- (2-ナフチル) アミノ] ナフタレ ン、4.4''-ビス [N,N-ジ (2-ナフチル) アミノ] ターフ エニル、4.4'- ビス {N-フェニル-N- [4- (1-ナフチ ル) フェニル] アミノ} ビフェニル、4,4'- ビス [N-フ ェニル-N- (2-ピレニル) - アミノ] ビフェニル、2,6-ビス [N, N-ジ (2-ナフチル) アミノ] フルオレン、4, 4''- ビス (N, N-ジ-p- トリルアミノ) ターフェニル、 ビス(N-1-ナフチル)(N-2-ナフチル)アミンなどがあ る。さらに、従来有機比素子の作製に使用されている公 知のものを適宜用いることができる

【0024】さらに、正孔注入層、正孔輸送層、正孔輸送性発光層として、上述の有機化合物をポリマー中に分散したものや、ポリマー化したものも使用できる。ポリパラフェニレンビニレンやその誘導体などのいわゆる π 共役ポリマー、ポリ (N-ビニルカルバゾール) に代表されるホール輸送性非共役ポリマー、ポリシラン類のシグマ共役ポリマーも用いることができる。

【0025】ITO 電極上に形成する正孔注入層としては、特に限定はないが、銅フタロシアニンなどの金属フタロシアニン類および無金属フタロシアニン類、カーボン膜、ポリアニリンなどの導電性ポリマーが好適に使用できる。さらに、前述のアリールアミン類に酸化剤としてルイス酸を作用させ、ラジカルカチオンを形成させて正孔注入層として用いることもできる。

【0026】陰極電極には、空気中で安定に使用できる 金属であれば限定はないが、特に配線電極として一般に 広く使用されているアルミニウムが好ましい。

【0027】 [実施例] 以下に実施例を挙げて本発明を 説明するが、本発明はこれにより限定されるものではな い。なお、有機化合物および金属の蒸着には、真空機工 社製VPC-400 真空蒸着機を使用した。膜厚の測定はスロ ーン社製DekTak3ST 触針式段差計を用いた。素子の特性評価には、菊水PBX 40-2.5直流電源、岩通VOAC-7510 マルチメーター、トプコンBM-8輝度計を使用した。素子のITO を陽極、Alを陰極として直流電圧を0.5 V/2秒あるいは1 V/2秒の割合でステップ状に印加し、電圧上昇1秒後の輝度および電流値を測定した。また、ELスペクトルは浜松ホトニクスPMA-10オプチカルマルチチャンネルアナライザーを使用して定電流駆動し測定した。

【0028】実施例1

図1の積層構成の有機LL素子に本発明を適用したものである。ガラス基板1上に、陽極透明電極2として、シート抵抗 15Ω / \square のITO (インジウムースズ酸化物、旭硝子社製電子ビーム蒸着品)がコートされている。その上に正孔輸送性を有する下記式1:

【化1】

で表される α NPD を10[®] torr下で、3 Å / 秒の蒸着速度で400 Å の厚さに成膜し、正孔輸送層 3 を形成した。 【 0 0 2 9 】次に、前記正孔輸送層 3 の上に、発光層 4 として緑色発光を有する下記式 2 :

【化2】

で表されるトリス(8-キノリノラト)アルミニウム錯体層(以下「Alq」という)4を3と同じ条件で600 Åの厚さに真空蒸着して形成した。次に、前記発光層4の上に金属ドーピング層5として、Alq とLiFをLiFが2重量%となるように各々の蒸着速度を調整して100 Å成膜した。最後に、前記金属ドーピング層5の上に陰極となる背面電極6としてAlを蒸着速度15Å/秒で1000Å蒸着した。発光領域は縦0.5cm、横0.5cmの正方形状とした。前記の有機EL素子において、陽極電極であるIT0と陰極電極であるAl6との間に、直流電圧を印加し、発光層Alq4からの緑色発光の輝度を測定した。この素子からは15000cd/mの高輝度を13Vにおいて示した。このときの電流密度は440mA/cm であった。

【0030】比較例1

実施例1と同じく、ITO 上にまず正孔輸送層としてαNP

D を400 Åの厚さに成膜し、その上に、発光層としてAl q を3と同じ条件で600 Åの厚さに真空蒸着して形成した。そして、Alq の上から陰極としてAlを2000 Å蒸着した。この素子では15V で最高6700cd/m² の輝度しか与えず、輝度の向上と駆動電圧を下げるのに金属ドーピング層 5 が有効であることがわかる。

【003.1.】比較例2

実施例1と同条件で、ITO 上にまず正孔輸送層としてα NPD を400 Åの厚さに成膜し、その上に、Alq を500 Å 蒸着した後に、LiF のみを100 Åの厚さに真空蒸着して形成し、その上から陰極としてAlを2000 Å蒸着した。この素子では電流が全く注入されず、素子からの発光が観測されなかった。これはLiF のみ100 Å挿入したのではLiF 層が完全な絶縁体層であるため、陰極からの電子注入が行われなかったと思われる。したがって、LiF が100 Åの場合には陰極に接する部分には電子注入のために有機分子が必要であることを示している。

【0032】実施例2

厚さ1mmの石英ガラス上に、Alq とLiF をLiF が2重量%となるように各々の蒸着速度を調整して1000 Å成膜した。また、Alq のみを蒸着して1000 Å成膜した試料も作製した。これらの可視紫外吸収スペクトルにおいて、Alqのみを蒸着した膜ではキノリン環による吸収が400mm付近に見られたが、LiFをドーピングしたAlq膜ではこのようなキノリン環による強い吸収が375nmに見られた。これはLiFがAlq分子の近傍に存在することでAlq分子のエネルギー準位が変化していることを表している。

【0033】実施例3

ITO 上に、正孔輸送層 3 として α NPD を400 Å、発光層 4 としてAlq を600 Å真空蒸着した後、Alq と酸化リチウム (Li_2 0) を金属ドーピング層 5 として Li_2 0 濃度が 3 重量%となるよう100 Åの厚みに共蒸着した。その上から、陰極電極 6 として、Al を1000 Å蒸着し素子を作製した。この素子は印加電圧 1 3 V で最高輝度16000 cd/n^2 と電流密度480 mA/cm^2 を与え、実施例 1 と同じく、低い駆動電圧で高輝度を与えた。

【0034】比較例3

実施例1と同条件で、ITO 上にまず正孔輸送層としてα NPD を400 Åの厚さに成膜し、その上に、Alq を600 Å 蒸着した後に、Li₂0のみを100 Åの厚さに真空蒸着して形成し、その上から陰極としてAlを2000 Å蒸着した。この素子では電流が全く注入されず、発光は観測されなかった。これはLi₂0のみ100 Å挿入したのではLi₂0層が完全な絶縁体層であるため、陰極からの電子注入が行われなかったと思われる。したがって、金属ドーピング層には電子注入のために有機化合物との共蒸着が必要不可欠であることを示している。

【0035】実施例4

ITO 上に、正孔輸送層 3 として α NPD を 400 Å、発光層

4 としてA1q を500 Å真空蒸着した後、バソフェナントロリンと Li_20 を金属ドーピング層 5 として Li_20 が 3 重量%となるように100 Åの厚みに共蒸着した。その上から、陰極電極 6 としてA1を1000 Å蒸着し素子を作製した。この素子は印加電圧13 V で最高輝度21000cd/m 2 、電流密度630mA/cm 2 を与え、実施例 1 と同じく、低い駆動電圧で高輝度を与えた。

[0036]

【発明の効果】以上の如く、本発明の有機EL素子は、金属酸化物と金属塩の少なくとも一方によってドーピングした有機化合物層(金属ドーピング層)を陰極電極との界面に設けることによって、駆動電圧が低く、高効率、高輝度発光素子の作製を可能にした。したがって、本発明の有機EL素子は、実用性が高く、表示素子や光源とし

【図1】

ての有効利用を期待できる。

【図面の簡単な説明】

【図1】本発明の有機EL素子の積層構造例を示す模式断面図である。

【図2】本発明の有機EL素子の陰極部分を示す説明図である。

【図3】従来の有機比素子の陰極部分を示す説明図である。

【符号の説明】

- 1 透明基板
- 2 陽極透明電極
- 4 発光層
- 5 金属ドーピング層
- 6 陰極電極

