Classification/Decision Trees (II)

Jia Li

Department of Statistics
The Pennsylvania State University

Email: jiali@stat.psu.edu http://www.stat.psu.edu/~jiali

Right Sized Trees

- ▶ Let the expected misclassification rate of a tree T be $R^*(T)$.
- ▶ Recall the resubstitution estimate for $R^*(T)$ is

$$R(T) = \sum_{t \in \tilde{T}} r(t)p(t) = \sum_{t \in \tilde{T}} R(t).$$

 \triangleright R(T) is biased downward.

$$R(t) \geq R(t_L) + R(t_R)$$
.

Digit recognition example

No. Terminal Nodes	R(T)	$R^{ts}(T)$
71	.00	.42
63	.00	.40
58	.03	.39
40	.10	.32
34	.12	.32
19	.29	.31
10	.29	.30
9	.32	.34
7	.41	.47
6	.46	.54
5	.53	.61
2	.75	.82
1	.86	.91

- ► The estimate *R*(*T*) becomes increasingly less accurate as the trees grow larger.
- ▶ The estimate *R*^{ts} decreases first when the tree becomes larger, hits minimum at the tree with 10 terminal nodes, and begins to increase when the tree further grows.

Preliminaries for Pruning

- Grow a very large tree T_{max} .
 - 1. Until all terminal nodes are pure (contain only one class) or contain only identical measurement vectors.
 - 2. When the number of data in each terminal node is no greater than a certain threshold, say 5, or even 1.
 - 3. As long as the tree is sufficiently large, the size of the initial tree is not critical.

- 1. Descendant: a node t' is a descendant of node t if there is a connected path down the tree leading from t to t'.
- 2. Ancestor: t is an ancestor of t' if t' is its descendant.
- 3. A branch T_t of T with root node $t \in T$ consists of the node t and all descendants of t in T.
- 4. Pruning a branch T_t from a tree T consists of deleting from T all descendants of t, that is, cutting off all of T_t except its root node. The tree pruned this way will be denoted by $T T_t$.
- 5. If T' is gotten from T by successively pruning off branches, then T' is called a pruned subtree of T and denoted by $T' \prec T$.

Subtrees

- ▶ Even for a moderate sized T_{max} , there is an enormously large number of subtrees and an even larger number ways to prune the initial tree to them.
- A "selective" pruning procedure is needed.
 - ► The pruning is optimal in a certain sense.
 - ► The search for different ways of pruning should be of manageable computational load.

Minimal Cost-Complexity Pruning

- ▶ Definition for the cost-complexity measure:
 - ▶ For any subtree $T \leq T_{max}$, define its complexity as $|\tilde{T}|$, the number of terminal nodes in T. Let $\alpha \geq 0$ be a real number called the *complexity parameter* and define the *cost-complexity measure* $R_{\alpha}(T)$ as

$$R_{\alpha}(T) = R(T) + \alpha |\tilde{T}|$$
.

▶ For each value of α , find the subtree $T(\alpha)$ that minimizes $R_{\alpha}(T)$, i.e.,

$$R_{\alpha}(T(\alpha)) = \min_{T \prec T_{max}} R_{\alpha}(T)$$
.

- ▶ If α is small, the penalty for having a large number of terminal nodes is small and $T(\alpha)$ tends to be large.
- For α sufficiently large, the minimizing subtree $T(\alpha)$ will consist of the root node only.

- ▶ Since there are at most a finite number of subtrees of T_{max} , $R_{\alpha}(T(\alpha))$ yields different values for only finitely many α 's. $T(\alpha)$ continues to be the minimizing tree when α increases until a jump point is reached.
- ► Two questions:
 - ▶ Is there a unique subtree $T \leq T_{max}$ which minimizes $R_{\alpha}(T)$?
 - In the minimizing sequence of trees T_1 , T_2 , ..., is each subtree obtained by pruning upward from the previous subtree, i.e., does the nesting

$$T_1 \succ T_2 \succ \cdots \succ \{t_1\} \text{ hold?}$$

- ▶ Definition: The smallest minimizing subtree $T(\alpha)$ for complexity parameter α is defined by the conditions:
 - 1. $R_{\alpha}(T(\alpha)) = \min_{T \leq T_{max}} R_{\alpha}(T)$
 - 2. If $R_{\alpha}(T) = R_{\alpha}(T(\alpha))$, then $T(\alpha) \leq T$.
- ▶ If subtree $T(\alpha)$ exists, it must be unique.
- It can be proved that for every value of α , there exists a smallest minimizing subtree.

▶ The starting point for the pruning is not T_{max} , but rather $T_1 = T(0)$, which is the smallest subtree of T_{max} satisfying

$$R(T_1) = R(T_{max})$$
.

- Let t_L and t_R be any two terminal nodes in T_{max} descended from the same parent node t. If $R(t) = R(t_L) + R(t_R)$, prune off t_L and t_R .
- ► Continue the process until no more pruning is possible. The resulting tree is *T*₁.

▶ For T_t any branch of T_1 , define $R(T_t)$ by

$$R(T_t) = \sum_{t' \in \tilde{T}_t} R(t') ,$$

where \tilde{T}_t is the set of terminal nodes of T_t .

▶ For t any nonterminal node of T_1 , $R(t) > R(T_t)$.

Weakest-Link Cutting

- ▶ For any node $t \in T_1$, set $R_{\alpha}(\{t\}) = R(t) + \alpha$.
- ▶ For any branch T_t , define $R_{\alpha}(T_t) = R(T_t) + \alpha |\tilde{T}_t|$.
- ▶ When $\alpha = 0$, $R_0(T_t) < R_0(\{t\})$. The inequality holds for sufficiently small α . But at some critical value of α , the two cost-complexities become equal. For α exceeding this threshold, the inequality is reversed.
- ▶ Solve the inequality $R_{\alpha}(T_t) < R_{\alpha}(\{t\})$ and get

$$\alpha < \frac{R(t) - R(T_t)}{|\tilde{T}_t| - 1}.$$

The right hand side is always positive.

▶ Define a function $g_1(t)$, $t \in T_1$ by

$$g_1(t) = \left\{ egin{array}{ll} rac{R(t) - R(T_t)}{| ilde{T}_t| - 1}, & t
otin ilde{T}_1 \ + \infty, & t \in ilde{T}_1 \end{array}
ight.$$

▶ Define the *weakest link* \bar{t}_1 in T_1 as the node such that

$$g_1(\overline{t}_1) = \min_{t \in T_1} g_1(t) .$$

and put $\alpha_2 = g_1(\bar{t}_1)$.

- ▶ When α increases, \bar{t}_1 is the first node that becomes more preferable than the branch $T_{\bar{t}_1}$ descended from it.
- $lpha_2$ is the first value after $lpha_1=0$ that yields a strict subtree of T_1 with a smaller cost-complexity at this complexity parameter. That is, for all $lpha_1\leq lpha<lpha_2$, the tree with smallest cost-complexity is T_1 .
- ▶ Let $T_2 = T_1 T_{\bar{t}_1}$.

▶ Repeat the previous steps. Use T_2 instead of T_1 , find the weakest link in T_2 and prune off at the weakest link node.

$$egin{array}{lcl} g_2(t) & = & \left\{ egin{array}{ll} rac{R(t) - R(T_{2t})}{| ilde{T}_{2t}| - 1}, & t \in T_2, t
otin ilde{T}_2 \\ + \infty, & t \in ilde{T}_2 \end{array}
ight. \ g_2(ar{t}_2) & = & \min_{t \in T_2} g_2(t) \ & lpha_3 & = & g_2(ar{t}_2) \ & T_3 & = & T_2 - T_{ar{t}_2} \end{array}$$

- ▶ If at any stage, there are multiple weakest links, for instance, if $g_k(\bar{t}_k) = g_k(\bar{t}'_k)$, then define $T_{k+1} = T_k T_{\bar{t}_k} T_{\bar{t}'_k}$.
 - ▶ Two branches are either nested or share no node.

▶ A decreasing sequence of nested subtrees are obtained:

$$T_1 \succ T_2 \succ T_3 \succ \cdots \succ \{t_1\}$$
.

▶ Theorem: The $\{\alpha_k\}$ are an increasing sequence, that is, $\alpha_k < \alpha_{k+1}$, $k \ge 1$, where $\alpha_1 = 0$. For $k \ge 1$, $\alpha_k \le \alpha < \alpha_{k+1}$, $T(\alpha) = T(\alpha_k) = T_k$.

- ▶ At the initial steps of pruning, the algorithm tends to cut off large subbranches with many leaf nodes. With the tree becoming smaller, it tends to cut off fewer.
- Digit recognition example:

Tree	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	T_{11}	T_{12}	T_{13}
$ \tilde{T}_k $	71	63	58	40	34	19	10	9	7	6	5	2	1
* K	' -	00	50	10	5 1	10	10	,	•	U	9	_	_

Best Pruned Subtree

- ▶ Two approaches to choose the best pruned subtree:
 - ▶ Use a test sample set.
 - Cross-validation
- Use a test set to compute the classification error rate of each minimum cost-complexity subtree. Choose the subtree with the minimum test error rate.
- ► Cross validation: tree structures are not stable. When the training data set changes slightly, there may be large structural change in the tree.
 - ▶ It is difficult to correspond a subtree trained from the entire data set to a subtree trained from a majority part of it.
 - Focus on choosing the right complexity parameter α .

Pruning by Cross-Validation

- Consider V-fold cross-validation. The original learning sample \mathcal{L} is divided by random selection into V subsets, \mathcal{L}_{v} , v=1,...,V. Let the training sample set in each fold be $\mathcal{L}^{(v)}=\mathcal{L}-\mathcal{L}_{v}$.
- ▶ The tree grown on the original set is T_{max} . V accessory trees $T_{max}^{(v)}$ are grown on $\mathcal{L}^{(v)}$.

- ▶ For each value of the complexity parameter α , let $T(\alpha)$, $T^{(v)}(\alpha)$, v=1,...,V, be the corresponding minimal cost-complexity subtrees of T_{max} , $T_{max}^{(v)}$.
 - For each maximum tree, we obtain a sequence of jump points of α :

$$\alpha_1 < \alpha_2 < \alpha_3 \cdots < \alpha_k < \cdots$$

▶ To find the corresponding minimal cost-complexity subtree at α , find α_k from the list such that $\alpha_k \leq \alpha < \alpha_{k+1}$. Then the subtree corresponding to α_k is the subtree for α .

▶ The cross-validation error rate of $T(\alpha)$ is computed by

$$R^{CV}(T(\alpha)) = \frac{1}{V} \sum_{v=1}^{V} \frac{N_{miss}^{(v)}}{N^{(v)}},$$

where $N^{(v)}$ is the number of samples in the test set \mathcal{L}_v in fold v; and $N^{(v)}_{miss}$ is the number of misclassified samples in \mathcal{L}_v using $T^{(v)}(\alpha)$, a pruned tree of $T^{(v)}_{max}$ trained from $\mathcal{L}^{(v)}$.

▶ Although α is continuous, there are only finite minimum cost-complexity trees grown on \mathcal{L} .

- Let $T_k = T(\alpha_k)$. To compute the cross-validation error rate of T_k , let $\alpha_k' = \sqrt{\alpha_k \alpha_{k+1}}$.
- Let

$$R^{CV}(T_k) = R^{CV}(T(\alpha'_k))$$
.

- ▶ For the root node tree $\{t_1\}$, $R^{CV}(\{t_1\})$ is set to the resubstitution cost $R(\{t_1\})$.
- ▶ Choose the subtree T_k with minimum cross-validation error rate $R^{CV}(T_k)$.

Computation Involved

- 1. Grow V + 1 maximum trees.
- 2. For each of the V+1 trees, find the sequence of subtrees with minimum cost-complexity.
- 3. Suppose the maximum tree grown on the original data set T_{max} has K subtrees.
- 4. For each of the (K-1) α_k' , compute the misclassification rate of each of the V test sample set, average the error rates and set the mean to the cross-validation error rate.
- 5. Find the subtree of T_{max} with minimum $R^{CV}(T_k)$.

