Data Mining & Machine Learning

CS37300 Purdue University

November 20, 2017

Public L	_eaderboa	ard Private Leaderboa	rd				
This leaderboard is calculated with approximately 30% of the test data. The final results will be based on the other 70%, so the final standings may be different.				≛ Raw Data			
#	∆1w	Team Name	Kernel	Team Members	Score 2	Entries	Las
1	4	Yoda			0.90530	27	70
2	▼ 1	General Grievous			0.87980	6	180
3	▼ 1	Luke Skywalker			0.85997	18	20
4	^ 2	Count Dooku			0.85066	11	30
5	▼2	Captain Rex			0.84621	6	50
6	4	Bossk			0.84216	14	21
7	▼ 3	Revan			0.83407	12	230
8	▼ 1	Cad Bane			0.81991	18	1m
9	▼ 1	Dengar			0.81222	4	160
10	±1	Darth Vader			0.81019	13	100
11	new	IG 88			0.79643	4	201
12	▼ 1	Mace Windu			0.77498	3	140
13	▼ 1	Anakin Solo			0.77296	2	20
14	▼ 1	Ki-Adi-Mundi			0.76811	2	1m
15	▼ 1	Kyp Durron			0.73613	5	80
16	▼ 1	Shaak Ti			0.70133	2	1m
17	▼ 1	Admiral Thrawn			0.65520	2	1m
18	± 1	Clone Commander Cod	yb		0.63901	8	130

Ideal thanksgiving project (entire family can join with ideas)

ENDS Dec 1st (10 days)

K-means Recap

Algorithm 2.1 The k-means algorithm

Input: Dataset D, number clusters k

Output: Set of cluster representatives C, cluster membership vector \mathbf{m}

/* Initialize cluster representatives C */

Randomly choose k data points from D

5: Use these k points as initial set of cluster representatives C repeat

/* Data Assignment */

Reassign points in D to closest cluster mean

Update **m** such that m_i is cluster ID of ith point in D

10: /* Relocation of means */

Update C such that c_j is mean of points in jth cluster

until convergence of objective function $\sum_{i=1}^{N} (argmin_{j}||\mathbf{x_{i}} - \mathbf{c_{j}}||_{2}^{2})$

Score function:
$$wc(C) = \sum_{k=1}^{K} wc(C_k) = \sum_{k=1}^{K} \sum_{x(i) \in C_k} d(x(i), r_k)^2$$

Algorithm details

- Does it terminate?
 - Yes, the objective function decreases on each iteration. It usually converges quickly.
- Does it converge to an optimal solution?
 - No, the algorithm terminates at a local optima which depends on the starting seeds.
- What is the time complexity?
 - O(k·n·i), where i is the number of iterations

K-means

- Strengths:
 - Relatively efficient
 - Finds spherical clusters
- Weaknesses:
 - Terminates at local optimum (sensitive to initial seeds)
 - Applicable only when mean is defined
 - Need to specify k
 - Susceptible to outliers/noise

Variations

- Selection of initial centroids
 - Run with multiple random selections, pick result with best score
 - Use hierarchical clustering to identify likely clusters and pick seeds from distinct groups
 - Select first seed randomly and then pick successive points that are farthest away
- Algorithm modifications:
 - Recompute centroid after each point is assigned
 - Allow for merge and split of clusters (e.g., if cluster becomes empty, start a new one from randomly selected point)

Variations

- When mean is undefined
 - K-medioids: use one of the data points as cluster center
 - K-modes: uses categorical distance measure and frequency-based update method
- How to select k?
 - Plot objective function (within cluster SSE) as a function of k, look for knee in plot

K-means summary

- Knowledge representation
 - K clusters are defined by canonical members (e.g., centroids)
- Model space the algorithm searches over?
 - All possible partitions of the examples into k groups
- Score function?
 - Minimize within-cluster Euclidean distance
- Search procedure?
 - Iterative refinement correspond to greedy hill-climbing

Probabilistic Models

Descriptive Modeling through Modeling Distribution

• Model the probability distribution p(x)

- Hard to describe using a single probability distribution
 - We will use a mixture of simple distributions
 - Drawback: data is may not be mixture of simple distributions:

 K-means is just an approximate solution (heuristic) of a specific type of mixture model (Gaussian Mixture Model)

Probabilistic mixture model

Mixture models

- How to learn the model from data?
- We don't know the mixing coefficients (w_{1...k}) or the component parameters (θ)
- Solution:
 - Interpret mixing coefficients as prior probabilities of cluster membership
 - Use Expectation-Maximization algorithm to estimate model (Dempster, Laird, Rubin, 1977)

$$p(x) = \sum_{k=1}^{K} w_k \ p(x; \theta_k)$$

$$p(k)$$

Generative process (revisited)

- Assume that the data are generated from a mixture of k multi-dimensional Gaussians, where each component is has parameters: $N_k(\mu_k, \Sigma_k)$
- For each data point: average (vector)
 - Pick component Gaussian randomly with probability p(k)
 - Draw point from that Gaussian randomly by sampling from: $N_k(\mu_k, \Sigma_k)$

covariance matrix (next slide)

$$p(x) = \sum_{k=1}^{K} p(k)p(x|k)$$
$$= \sum_{k=1}^{K} p(k)p(x|x \sim N(\mu_k, \Sigma_k))$$

Multidimensional Gaussian

 A multi-dimensional Gaussians, for data with p dimensions is specified as follows

$$x \sim \mathcal{N}(\mu, \Sigma)$$

where:

$$\mu = \left(E[X_1], ..., E[X_p]\right)$$

$$\Sigma = \begin{bmatrix} Var(X_1) & \dots & Cov(X_1, X_p) \\ \dots & \dots & \dots \\ Cov(X_1, X_p) & \dots & Var(X_p) \end{bmatrix}$$

$$p(\mathbf{x}) = p(x_1, ..., x_p) = \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

Learning the model from data

- We want to invert this process
- Given the dataset, find the parameters
 - Mixing coefficients p(k)
 - Component means and covariance matrix $\,N_k(\mu_k,\Sigma_k)\,$
- If we knew which component generated each point then the MLE solution would involve fitting each component distribution to the appropriate cluster points
- Problem: the cluster memberships are hidden

Expectation-maximization (EM) algorithm

- Popular algorithm for parameter estimation in data with hidden/unobserved values
 - Hidden variables=cluster membership
- Basic idea
 - Initialize hidden variables and parameters
 - Predict values for hidden variables given current parameters
 - Estimate parameters given current prediction for hidden variables

E Step

M-Step

Repeat

GMM example

How to learn GMMs?

Score function for GMM

• Log likelihood takes the following form (for model $M=\{w,\mu,\Sigma\}$):

$$log p(D|w, \mu, \Sigma) = \sum_{i=1}^{N} log p(x_n|M)$$

$$= \sum_{i=1}^{N} log \left[\sum_{k=1}^{K} p(x_n|k, M) P(k|M) \right]$$

$$= \sum_{i=1}^{N} log \left[\sum_{k=1}^{K} w_k N(x_n|\mu_k, \Sigma_k) \right]$$

- Note the sum over components is inside the log
- There is no closed form solution for the MLE

Hidden cluster membership variables

- Consider k cluster indicator variables for example x_n : $\mathbf{z_n} = [z_{n1}, ..., z_{nk}]$ which equals 1 for the cluster that x_n is a member of, and 0 otherwise
- If we knew the values of the hidden cluster membership variables (z) we could easily maximize the complete data log-likelihood, which has a closed form solution:

$$log p(D, \mathbf{z}|w, \mu, \Sigma) = \sum_{i=1}^{N} log \left[\sum_{k=1}^{K} z_{nk} \cdot w_k N(x_n | \mu_k, \Sigma_k) \right]$$

$$= \sum_{i=1}^{N} log \left[w_{k'} N(x_n | \mu_{k'}, \Sigma_{k'}) \right] \quad \text{where } z_{nk'} \neq 0$$

$$= \sum_{i=1}^{N} log w_{k'} + log w_{k'} N(x_n | \mu_{k'}, \Sigma_{k'}) \quad \text{where } z_{nk'} \neq 0$$

- Unfortunately we don't know the values for the hidden variables!
- But, for given set of parameters we can compute the expected values of the hidden variables (cluster memberships)

Posterior probabilities of cluster membership

 We can think of the mixing coefficients as prior probabilities for cluster membership

for x

• Then for a given example x_n , we can evaluate the corresponding **posterior** probabilities of **cluster membership** with Bayes theorem:

$$\gamma_k(x_n) \equiv p(z_{nk}=1|x_n) = \frac{p(x_n|z_{nk}=1)p(z_{nk}=1)}{p(x_n)}$$

$$= \frac{w_k N(x_n|\mu_k, \Sigma_k)}{\sum_{j=1}^K w_j N(x_n|\mu_j, \Sigma_j)}$$
 cluster membership

EM for GMM

- Suppose we make a guess for the parameters values
- Use these to evaluate cluster memberships

$$\Gamma(x_n) = [\gamma_1(x_n), ..., \gamma_K(x_n)]$$

 Now compute the log-likelihood using predicted cluster memberships

$$\log p(x, z | \theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_i(x_n) \left[\log w_k + \log N(x_n | \mu_k, \Sigma_k) \right]$$

Use completed likelihood to determine MLE for parameters

Unlabeled dataset

Posterior probabilities of cluster membership

More on EM

- Often both the E and the M step can be solved in closed form
- Neither the E step nor the M step can decrease the log-likelihood
- Algorithm is guaranteed to converge to a local maximum of the likelihood
- Must specify initialization and stopping criteria

Probabilistic clustering

- Model provides full distributional description for each component
 - May be able to interpret differences in the distributions
- Soft clustering (compared to k-mean hard clustering)
 - Given the model, each point has a k-component vector of membership probabilities
- Key cost: assumption of parametric model

Mixture models

- Knowledge representation?
 - Parametric model
 parameters = mixture coefficient and component parameters
- Score function?
 - Likelihood
- Search?
 - Expectation maximization
 iteratively find parameters that maximize likelihood and predicts cluster
 memberships
- Optimal? Exhaustive?

Hierarchical clustering

Hierarchical methods

- Construct a hierarchy of nested clusters rather than picking k beforehand
- Approaches:
 - Agglomerative: merge clusters successively
 - Divisive: divided clusters successively
- Dendrogram depicts sequences of merges or splits and height indicates distance

Agglomerative

- For i = 1 to n:
 - Let $C_i = \{x(i)\}$
- While |C|>1:
 - Let C_i and C_j be the pair of clusters with min D(C_i,C_j)
 - $C_i = C_i \cup C_j$
 - · Remove C_j

Hierarchical clustering

Clustering represented with dendogram

Example

 Agglomerative clustering results of surface water availability in areas of Kruger National Park, South Africa. Three primary clusters can be distinguished, which correspond to a north, south, and far south spatial division of the KNP.

Distance measures between clusters

- Single-link/nearest neighbor:
 - $D(C_i, C_j) = \min\{ d(x,y) \mid x \in C_i, y \in C_j \}$ \Rightarrow can produce long thin clusters
- Complete-link/furthest neighbor:
 - D(C_i,C_j) = max{ d(x,y) | x ∈ C_i, y ∈ C_j}
 ⇒ is sensitive to outliers
- Average link:
 - $D(C_i, C_j) = avg\{ d(x,y) \mid x \in C_i, y \in C_j \}$ \Rightarrow compromise between the two