

CANDIDATE

z5496297

**TEST** 

# Quiz 4

| Subject code      |                  |
|-------------------|------------------|
| Evaluation type   |                  |
| Test opening time | 06.03.2024 07:00 |
| End time          | 13.03.2024 07:00 |
| Grade deadline    |                  |
| PDF created       | 13.08.2024 06:34 |

| Question | Status  | Marks                 | Question type     |
|----------|---------|-----------------------|-------------------|
| 1.1      | Correct | 1/1                   | Multiple Response |
| 1.2      | Correct | 1/1                   | Multiple Choice   |
| 1.3      | Correct | 1/1                   | Multiple Choice   |
| 1.4      | Correct | 1/1                   | True / False      |
| 1.5      | Correct | 1/1                   | True / False      |
| 2.1      | Correct | 1/1                   | Multiple Response |
| 2.2      | Correct | 1/1                   | Multiple Response |
| 2.3      | Correct | 1/1                   | Multiple Response |
| 2.4      | Correct | 1/1                   | Multiple Response |
| 2.5      | Wrong   | 0.02999999329447746/1 | Text Entry        |

### 1.1 Consider the relation

 $R = \{(m,n) \in \mathbb{Z} imes \mathbb{Z} \ : \ m^2 =_{(5)} n^2 \}$ 

Which of the following properties does R satisfy?

## Select all that apply



**1.2** Let  $\Sigma = \{a,b,c\}$  and define a binary relation R on  $\Sigma^*$  as follows:

 $(w,v) \in R$  if and only if length(w) = length(v).

Which of the following is true?

- R is neither an equivalence relation nor a partial order
- R is both an equivalence relation and a partial order
- R is a partial order and not an equivalence relation
- R is an equivalence relation and not a partial order



1.3 Consider the poset  $(\{1, 3, 5, 9, 15, 45\}, |)$ . What is glb(15,9)?

- 0 1
- 3



- **5**
- 9
- 0 15
- 45
- Doesn't exist

**1.4** True or false:

For all relations R, if R is symmetric, then R = R<sup>←</sup>

False



**1.5** True or false:

For all relations R, if R is transitive and antisymmetric, then R is reflexive



**2.1** Let  $\Sigma = \{0,1\}$  and consider the relation on  $\Sigma^*$  given by  $R = \{(w,v) : length(w) \ge 2 \cdot length(v)\}$  Which of the following properties does R satisfy?

Select all that apply:

Reflexivity (R)



2.2 Which of the following relations (over ℕ) are also functions? Select all that apply:



2.3 Let  $F = \mathbb{N}^{\mathbb{N}}$  denote the set of functions from  $\mathbb{N}$  to  $\mathbb{N}$ . Define the relation R on F×F as follows:  $(f,g) \in R$  if  $f(n) \neq g(n)$  for only finitely many  $n \in \mathbb{N}$  Which of the following properties does R satisfy?

Select all that apply:

□ Antisymmetry (AS)☑ Transitivity (T)







Antireflexivity (AR)





**2.4** Let  $F = \mathbb{N}^{\mathbb{N}}$  denote the set of functions from  $\mathbb{N}$  to  $\mathbb{N}$ . Define the relation R on F×F as follows:

# $(f,g)\in R ext{ if } f(n)\leq g(n) ext{ for infinitely many } n\in \mathbb{N}$

Which of the following properties does R satisfy?

### Select all that apply:

■ Transitivity (T)



- **2.5** Let  $\Sigma = \{0,1\}$  and define  $f: \Sigma^* \times \Sigma^* \to \Sigma^*$  and  $g,h,k: \Sigma^* \to \Sigma^*$  as follows:
  - f(v,u) = uv for all  $v,u \in \Sigma^*$
  - g(w) = f(01,w)
  - h(w) = f(10,w)
  - k = g∘h

