l'Ingénieur

Gouverne de profondeur d'un airbus

Savoirs et compétences :

Présentation du système

On se propose d'étudier la réalisation de la fonction « Asservir en position la gouverne de profondeur ». On se limitera à l'asservissement en position de la servocommande d'une gouverne intérieure.

Nous allons seulement étudier l'asservissement en position de la tige du vérin (c'est-à-dire la première boucle d'asservissement) dont le cahier des charges est le suivant.

Asservir en position la tige du vérin

r	
Exigence	Niveaux
Marge de phase	≥ 60°
Marge de gain	10 dB
Ecart de position	$\varepsilon_p = 0 \mathrm{mm}$
Ecart de traînage pour une	$\varepsilon_T < 0.2 \mathrm{mm}$
consigne $x_{2c}(t) = 0, 1t$	
Temps de réponse à 5%	$tR_{5\%} < 0.045 \mathrm{s}$
(échelon)	
Dépassement (échelon)	D% < 5%

La chaîne d'énergie qui permet de modifier l'inclinaison de gouverne de profondeur est composée d'une servovalve comme actionneur et d'un vérin comme effecteur. Comme le montre la figure suivante, il y a deux boucles

d'asservissement pour asservir en position la gouverne de profondeur. On note i l'intensité alimentant la servovalve, Q le débit alimentant le vérin, β l'inclinaison des gouvernes par rapport au PHR et x_2 la position de la tige du vérin.

On modélise cet asservissement par le schéma bloc suivant.

C(p) est la fonction de transfert du correcteur, $FTBO_{nc}(p)$ est la fonction de transfert de la FTBO non corrigée :

$$FTBO_{nc}(p) = \frac{0.01}{p\left(1 + \frac{2 \cdot 0.0032}{161.7}p + \frac{p^2}{161.7^2}\right)}.$$

Les questions seront traitées de manière analytique en TD puis en utilisant Scilab en TP.

Système non corrigé

Question 1 Déterminer les niveaux des 6 critères du cahier des charges. Conclure.

Correction La boucle ouverte est de classe 1. On a donc:

- $\varepsilon_S = 0 \text{ mm} \text{ » CDC OK};$ $\varepsilon_T = \frac{0,2}{0,01} = 20 \text{ mm}.$

Objectif L'objectif du TP est de trouver les caractéristiques d'un correcteur qui permet de valider le cahier des charges.

Action proportionnelle

1

On choisit d'utiliser un correcteur proportionnel dont la fonction de transfert est $C(p) = K_p$.

Question 2 Trouver la plus grande valeur de K_p qui permet de vérifier les marges de stabilité.

Correction

Question 3 Expliquer pourquoi l'écart de position (ou écart statique) ne dépend pas de la valeur de K_p .

Correction

Question 4 Trouver la plus grande valeur de K_p qui permet de vérifier l'écart de trainage. Conclure.

Correction

Question 5 Faire un bilan, dans un tableau, de l'influence de K_p (pour $K_p > 1$) sur les 3 performances : stabilité, précision et rapidité. Quelles sont les performances qui vont ensemble et celles qui sont antagonistes?

Correction

Question 6 Un correcteur proportionnel suffit-il à vérifier le cahier des charges?

Correction

Action intégrale

On choisit d'utiliser un correcteur intégral dont la fonction de transfert est $C(p) = \frac{K_I}{p}$.

Question 7 Faire un bilan, dans un tableau, de l'influence de la présence d'un correcteur intégral sur les 2 performances : stabilité et précision.

Correction

Action dérivée

On choisit d'utiliser un correcteur dérivé dont la fonction de transfert est $C(p) = K_D p$.

Question 8 Faire un bilan, dans un tableau, de l'influence de la présence d'un correcteur dérivé sur les 2 performances : stabilité et précision

Correction

Correcteur PID

Afin de profiter des avantages des trois actions précédentes, on utilise un correcteur Proportionnel-Intégral-

Dérivé :
$$C(p) = K_p + K_D p + \frac{K_I}{p} = K \frac{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}{p}$$
.

Question 9 Que dire sur les critères de précision du cahier des charges avec ce correcteur.

Correction

Question 10 En faisant varier K, ξ et ω_0 , observer leur influence sur la rapidité (bande passante de la FTBF).

Correction

Afin de vérifier le critère sur la marge de gain on va trouver des paramètres pour que la phase de la FTBO soit toujours supérieure à -180°..

Question 11 Quel est l'influence de K, ξ et ω_0 , sur la phase de la FTBO?

Correction

Question 12 Trouver un couple de valeur de K et ω_0 permettant de vérifier le cahier des charges : proposez une méthodologie.

Correction

Correcteur à avance de phase

On choisit d'utiliser un correcteur à avance de phase dont la fonction de transfert est $C(p) = \frac{K(1+aTp)}{1+Tp}$ avec a>1.

Question 13 Déterminer les paramètres du correcteur à avance de phase pour vérifier le critère de stabilité.

Correction

Correcteur à retard de phase

On choisit d'utiliser un correcteur à retard de phase dont la fonction de transfert est $C(p) = K(\frac{1+Tp}{1+bTp})$ avec b > 1.

Question 14 Déterminer les paramètres du correcteur à retard de phase pour vérifier le critère de précision sans impacter la stabilité du système.

Correction

Correcteur « compensateur »

On choisit un correcteur, réalisable numériquement, de fonction de transfert : $C(p) = K_c \frac{N(p)}{D(n)} =$

$$K_c \frac{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}{1 + \frac{2\xi_c}{\omega_c} p + \frac{p^2}{\omega_c^2}}.$$
 Caractéristiques du correcteur :

- le gain K_c du correcteur est choisi égal à 50;
- le facteur d'amortissement ξ_c est choisi égal à 0,7;
- le numérateur N(p) de C(p) est choisi égal au terme du second ordre du dénominateur de la fonction H(p).

Question 15 *Justifier les choix de la valeur du gain de boucle* K_c *et celle du facteur d'amortissement* ξ_c .

Question 17 *Que vaut la phase de la FTBO pour* ω_c ? *Pour quelles valeurs de* ω_c *le système est-il instable* ?

Correction

Correction

Question 16 Donner la nouvelle expression de la FTBO. Expliquer le nom de ce correcteur.

Question 18 Donner la valeur de ω_c qui permet de vérifier la marge de phase de 60°.

Correction

Correction