Machine Learning from Data

Lecture 2: Spring 2021

Today's Lecture

- The Perceptron
- Learning Set-Up
- The PLA
- Other Views of Learning

In the Previous Lecture

- Formalized Components of Learning
- Learning Process

UNKNOWN TARGET FUNCTION

$$f: \mathcal{X} \mapsto \mathcal{Y}$$

(ideal credit approval formula)

TRAINING EXAMPLES

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\ldots,(\mathbf{x}_N,y_N)$$

(historical records of credit customers)

(set of candidate formulas)

 \mathcal{H}

Formalize Components of Learning:

```
input \mathbf{x} \in \mathbb{R}^d = \mathcal{X}.

output y \in \{-1, +1\} = \mathcal{Y}.

target function f : \mathcal{X} \mapsto \mathcal{Y}.

(The target f is unknown.)

data set \mathcal{D} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N).

(y_n = f(\mathbf{x}_n).)
```

- Input: Salary, debt, years
 Output: Approve or not
 Target function: Relationship
 between X and Y
- Data on customers
- X, Y and D will be given by the learning problem.

A Simple Learning Model: The Perceptron

- Let us consider the Credit Example: We as Data Scientists/ML Practitioners want to approve/decline an incoming application.
- Formalize the problem:

Simple Learning Model

The Perceptron Hypothesis Set

Geometry of the Perceptron

Geometry of Perceptron

Use Data to Pick the Perfect Line

How to Learn a Final Hypothesis g from H

- What do we want?
- What does that mean in terms of the data?
- How do we find this g in H(which is infinite)?
- How can we get started?

Perceptron Learning Algorithm

PLA Summarized

A simple iterative method.

1:
$$\mathbf{w}(1) = \mathbf{0}$$

- 2: **for** iteration t = 1, 2, 3, ...
- 3: the weight vector is $\mathbf{w}(t)$.
- 4: From $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ pick any misclassified example.
- 5: Call the misclassified example (\mathbf{x}_*, y_*) ,

$$sign(\mathbf{w}(t) \cdot \mathbf{x}_*) \neq y_*.$$

6: Update the weight:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*.$$

7:
$$t \leftarrow t + 1$$

PLA Convergence

• Theorem: If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one.

Other Views of Learning

- Design: learning is from data, design is from specs and a model.
- Statistics
- Data Mining

Types of Learning

- Supervised
- Unsupervised
- Reinforcement Learning

Unsupervised Learning

Categorizing Coins

