C01-02 Intervalles

1. Intervalles de nombres réels

2. Unions et intersections d'intervalles

E Définition

Soient I et J deux intervalles.

- L'intersection de I et J est l'ensemble des réels qui appartiennent à la fois à I \textbf{ET} à J. On note cet ensemble $I \cap J$.
- ullet La réunion de I et J est l'ensemble des réels qui appartiennent à I \textbf{OU} à J. On note cet ensemble $I\cup J$.

Remarques

- La notation \cap se lit \setminus og inter \setminus fg. D'où $I \cap J$ se lit \setminus og I inter $J \setminus$ fg.
- La notation \cup se lit \setminus og union \setminus fg. D'où $I \cup J$ se lit \setminus og I union $J \setminus$ fg.
- Parfois, il n'y a aucun élément qui appartiennent à la fois à I et J. L'intersection est donc \textbf{vide}, et on note \emptyset l'ensemble vide. Dans ce cas $I \cap J = \emptyset$.

Exemple

On considère les intervalles I = [3; 7] et J =]2; 5[.

• L'ensemble $I \cap J$ est [3;5[.

• L'ensemble $I \cup J$ est]2;7].

(?) Utiliser les notations ∩ et ∪

L'ensemble vide est noté \emptyset .

- ? Travailler les inéquations et les intervalles
- Représenter sous la forme d'intervalles
- Résolutions d'équations du premier degré
- Résolutions d'inéquations du premier degré

>

>