

CLAIMS

What is claimed is:

Sub A1

1. A method for restoring a memory value comprising:
2 identifying a first logic value stored in a first register;
3 branching to a first predefined location within programming code
4 based upon the first logic value;
5 utilizing the first register as a scratch register during execution of the
6 programming code;
7 restoring the first logic value back to the first register after execution
8 of the programming code has finished.

1. 2. The method of claim 1 further comprising detecting an occurrence
2 of an interrupt during execution.

1 3. The method of claim 1 further comprising:
2 identifying a second logic value stored in a second register;
3 branching to a second predefined location within the programming
4 code based upon the second logic value;
5 utilizing the second register as scratch register during execution of the
6 programming code;
7 restoring the second logic value back to the second register in
8 response to the second predefined location.

1 5. The method of claim 1, wherein the branching to a first
2 predefined location further including identifying the first predefined location
3 from a plurality of predefined locations in the programming code.

1 6. The method of claim 1 further comprising executing the
2 programming code in a processor firmware layer.

1 7. The method of claim 1 further comprising storing the
2 programming code in a non-volatile memory.

1 8. The method of claim 1 further comprising utilizing the first
2 register as an index register during execution of the programming code.

1 9. The method of claim 1 further comprising utilizing the first
2 register as a predicate register during execution of the programming code.

1 10. The method of claim 1 further comprising saving rest of processor
2 states before execution of interrupt handlers.

1 11. A digital processing system comprising:
2 an execution unit;
3 a general purpose register file coupled to the execution unit
4 containing a plurality of general-purpose registers;
5 a memory coupled to the execution unit for storing a processor
6 abstraction layer, the processor abstraction layer further
7 including interrupt handlers, each of the interrupt handler
8 further including saving architecture state code, the saving
9 architecture state code further including a plurality of
10 predefined sections, wherein each the predefined section
11 corresponds to a logic value of a register whereby the logic
12 value can be restored in response to the predefined sections.

1 12. The digital processing system of claim 11, wherein the saving
2 architecture state code is stored in a non-volatile memory.

1 13. The digital processing system of claim 11, wherein the register is
2 multiple bits wide.

1 14. The digital processing system of claim 11, wherein the logic value
2 can be restored in the register.

1 15. The digital processing system of claim 11, wherein the logic value
2 is restored in a memory location.

1 16. The digital processing system of claim 11, wherein the register is a
2 general-purpose register.

1 17. The digital processing system of claim 11, wherein the register is a
2 predicate register.

1 18. An article of manufacture for use in a digital processing system
2 for storing a logic value in a programming code, the article of manufacture
3 comprising a machine readable medium having machine readable program
4 code embodied in the medium, the program code comprising:
5 identifying a first logic value stored in a first register;
6 branching to a first predefined location within programming code in
7 response to the first logic value;
8 utilizing the first register as a scratch register during execution of the
9 programming code;
10 restoring the first logic value back to the first register in response to
11 the first predefined location.

1 19. The article of manufacture of claim 18, further including computer
2 readable program code for:

3 identifying a second logic value stored in a second register;
4 branching to a second predefined location within the programming
5 code in response to the second logic value;
6 utilizing the second register as scratch register during execution of the
7 programming code; and
8 restoring the second logic value back to the second register in
9 response to the second predefined location.

1 20. The article of manufacture of claim 18, wherein the branching to a
2 first predefined location further including computer readable program code
3 for identifying the first predefined location from a plurality of predefined
4 locations in the programming code.

1 21. The article of ~~manufacture~~ of claim 18, further including computer
2 readable program code for executing the programming code in a processor
3 firmware layer.

1 22. A computer system comprising:
2 means for identifying a first logic value stored in a first register;
3 means for branching to a first predefined location within a
4 programming code based upon the first logic value;
5 means for utilizing the first register as a scratch register during
6 execution of the programming code;
7 means for restoring the first logic value back to the first register in
8 response to the first predefined location.

1 23. The computer system of claim 22, further comprising means for
2 detecting an occurrence of an interrupt during execution.

1 24. The computer system of claim 22, further comprising:
2 means for identifying a second logic value stored in a second register;
3 means for branching to a second predefined location within the
4 programming code in response to the second logic value;
5 means for utilizing the second register as scratch register during
6 execution of the programming code;
7 means for restoring the second logic value back to the second register
8 in response to the second predefined location.

1 25. The computer system of claim 22, wherein the branching to a first
2 predefined location further including means for identifying the first
3 predefined location from a plurality of predefined locations in the
4 programming code.

1 26. The computer system of claim 22, further comprising means for
2 executing the programming code in a processor firmware layer.

1 27. The computer system of claim 22, further comprising means for
2 storing the programming code in a non-volatile memory.

1 28. The computer system of claim 22, further comprising means for
2 utilizing the first register as an index register during execution of the
3 programming code.

Add
A'