

CE2001/ CZ2001: Algorithms

Quantifying Order of Growth of Time Complexity Functions Through Asymptotic Analysis

Dr. Loke Yuan Ren

CE2001/ CZ2001: ALGORITHMS

Meanings of O, Ω and θ

Big-Oh (O) , Big-Omega (Ω) and Big-Theta ($\!\Theta$) are asymptotic (set) notations used for describing the order of growth of a given function.

 $f \in \Omega(g) : \text{ Set of functions that grow at higher or same rate as } \mathbf{g}$

 $-f \in \Theta(g)$: Set of functions that grow at same rate as **g**

 $f \in O(g)$: Set of functions that grow at lower or same rate as g

CE2001/ CZ2001: ALGORITHMS

Learning Objectives

At the end of this lecture, students should be able to:

- Define Big-Oh (O)
- Define Big-Omega (Ω)
- Define Big-Theta (⊕)

2

CE2001/ CZ2001: ALGORITHMS

Big-Oh Notation

Definition: Let f and g be 2 functions such that

 $f(n): N \rightarrow R^+$ and $g(n): N \rightarrow R^+$,

f(n) is said to be in O(g(n)), denoted by $f(n) \in O(g(n))$

if f(n) is bounded above by some

 $f(n) = \mathcal{O}(g(n))$

constant multiple of g(n) for all large n,

(Or more formally)

if there exist nonnegative constants c and such that

 $f(n) \le c*g(n)$ for all $n \ge n_0$

Big-Oh Notation

Consider:
$$f(n) = 4n+3$$
, $g(n) = n$

Let
$$c = 5$$
, $n_0 = 3$

Then $f(n) \le 5g(n)$, i.e., $4n+3\le 5n$ for all $n\ge 3$

$$\Rightarrow$$
 f(n) = O(g(n)), i.e. $4n+3 \in O(n)$

CE2001/ CZ2001: ALGORITHMS

Big-Oh Notation

Alternative Definition:

Let **f** and **g** be 2 functions such that

$$f(n): N \rightarrow R^+$$
 and $g(n): N \rightarrow R^+$,

if
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

then $f(n) \in O(g(n))$ or f(n) = O(g(n))

CE2001/ CZ2001: ALGORITHMS

Big-Oh Notation

Consider:
$$f(n) = 4n+3$$
, $g(n) = n$

Let
$$c = 5$$
, $n_0 = 3$

Then $f(n) \le 5g(n)$, i.e., $4n+3 \le 5n$ for all $n \ge 3$

$$\Rightarrow$$
 f(n) = O(g(n)), i.e. $4n+3 \in O(n)$

Consider:
$$f(n) = 4n+3$$
, $g(n) = n^3$

Let
$$c = 1$$
, $n_0 = 3$

Then $f(n) \le g(n)$, i.e., $4n+3 \le n^3$ for all $n \ge 3$

⇒
$$f(n) = O(g(n))$$
, i.e. $4n+3 \in O(n^3)$

CE2001/ CZ2001: ALGORITHMS

Big-Oh Notation

Consider: f(n) = 4n+3, g(n) = n (again)

Another way:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{4n+3}{n} = 4 < \infty$$

 \Rightarrow f(n) = O(g(n)), i.e. $4n+3 \in O(n)$

Consider: $g(n) = n^3$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{4n+3}{n^3} = 0 < \infty$$

⇒ f(n) = O(g(n)), i.e. $4n+3 \in O(n^3)$

Big-Oh Notation

Consider:
$$f(n) = 4n$$
, $g(n) = e^n$, $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{4n}{e^n} = ?$

L'Hôpital's Rule: Given functions f(x) and g(x),

if
$$\lim_{n\to\infty} f(x) = \lim_{n\to\infty} g(x) = \pm \infty$$

then
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

where the prime (') denotes the derivative.

Thus,
$$\lim_{n\to\infty}\frac{4n}{e^n}=\lim_{n\to\infty}\frac{4}{e^n}=0$$
 \implies $f(n)\in O(g(n))$

CE2001/ CZ2001: ALGORITHMS

Big-Omega Notation

Alternative Definition:

Let f and g be 2 functions such that

 $f(n) : N -> R^+ \text{ and } g(n) : N -> R^+,$

if
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$$

then $f(n) \in \Omega(g(n))$ or $f(n) = \Omega(g(n))$.

Big-Omega Notation

Definition: Let f and g be 2 functions such that

 $f(n) : N -> R^+ \text{ and } g(n) : N -> R^+,$

f(n) is said to be in $\Omega(g(n))$, denoted by $f(n) \in \Omega(g(n))$, $f(n) = \Omega(g(n))$

if f(n) is bounded below by

some constant multiple of g(n) for all large n,

Or more formally

if there exist positive constants c and n₀ such that

 $f(n) \ge c*g(n)$ for all $n \ge n_0$

CE2001/ CZ2001: ALGORITHMS

Big-Omega Notation

Consider: f(n)=4n+3, g(n)=5n,

Let c=1/5, $n_0 = 0$

Then $f(n) \ge (1/5)g(n)$, i.e., $4n+3 \ge (1/5)5n$ for all $n \ge 0$

Another way: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{4n+3}{5n} = \frac{4}{5} > 0$

 $f(n) = \Omega(g(n))$

Consider: $f(n)=n^3+2n$, g(n)=5n,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^3 + 2n}{5n} = \infty > 0$$

 $f(n) = \Omega(g(n))$

The Big Theta Notation

Definition: Let f and g be 2 functions such that

 $f(n) : N -> R^+ \text{ and } g(n) : N -> R^+,$

if there exist positive constants c₁, c₂ and n₀ such that

 $c_1*g(n) \le f(n) \le c_2*g(n)$ for all $n \ge n_0$

then $f(n) \in \Theta(g(n))$ or $f(n) = \Theta(g(n))$

Alternative definition: if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$

then $f(n) \in \Theta(g(n))$ or $f(n) = \Theta(g(n))$

For example, $\lim_{n \to \infty} \frac{2n^2 + 7}{7n^2 + n} = \lim_{n \to \infty} \frac{4n}{14n + 1} = \frac{2}{7}$

 \Rightarrow 2n²+7 = Θ (7n²+n)

. .

CE2001/ CZ2001: ALGORITHMS

Summary of Limit Definition

$\lim_{n \to \infty} \frac{f(n)}{g(n)}$	$f(n) \in O(g(n))$	$f(n)\in\Omega(g(n))$	$f(n)\in\Theta(g(n))$
0	✓		
0 < C < ∞			
∞		✓	

Summary of Limit Definition $\lim_{n\to\infty}\frac{f(n)}{g(n)} \qquad \text{f(n)} \in \mathrm{O}(\mathrm{g(n)}) \qquad \text{f(n)} \in \mathrm{\Theta}(\mathrm{g(n)})$ $0 \qquad \checkmark$ $0 < C < \infty$

14

CE2001/ CZ2001: ALGORITHMS

 ∞

Summary of Limit Definition

$\lim_{n \to \infty} \frac{f(n)}{g(n)}$	$f(n) \in O(g(n))$	$f(n)\in\Omega(g(n))$	$f(n)\in\Theta(g(n))$
0	✓		
0 < C < ∞	✓	✓	✓
8		✓	

Recap

- Formal definition of O, Ω and Θ
- Limit of ratio definition of O, Ω and Θ
- Comparison of functions using O, Ω and Θ

CE2001/ CZ2001: Algorithms

Use of O, Ω and Θ **Asymptotic Analysis**

Dr. Loke Yuan Ren

CE2001/ CZ2001: ALGORITHMS

Learning Objectives

At the end of this lecture, students should be able to:

- Use O, Ω and Θ to quantify order of growth
- Properties of O, Ω and Θ
- Explain the simplification rules that can be used in asymptotic analysis

CE2001/ CZ2001: ALGORITHMS

Use of O, Ω and Θ

- The O, Ω and Θ notations are used in studying the asymptotic efficiency of an algorithm.
 - If f(n) = O(g(n)), we say
 - g(n) is asymptotic upper bound of f(n)
 - If $f(n) = \Omega(g(n))$, we say
 - g(n) is asymptotic lower bound of f(n)
 - If $f(n) = \Theta(g(n))$, we say
 - g(n) is asymptotic tight bound of f(n)

How to derive Complexity Class of Algorithms?

When time complexity of algorithm A grows faster than algorithm B for the same problem, we say A is inferior to B.

- How to determine the big-Oh notation?
 - Count primitive operations to derive complexity function f (in terms of problem size)
 - 2. Discard constant terms and multipliers in f
 - 3. Determine dominant term in f
 - 4. Dominant term = big-Oh notation for f(= big-Oh notation for algorithm)

21

CE2001/ CZ2001: ALGORITHMS

Simplification Rules for Asymptotic Analysis

- 1. If f(n) = O(cg(n)+) for any constant c>0, then f(n) = O(g(n))
- 2. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)). e.g. f(n) = 2n, $g(n) = n^2$, $h(n) = n^3$
- 3. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$. e.g. 5n + 3lg n = O(n)
- 4. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n)f_2(n) = O(g_1(n)g_2(n))$. e.g. $f_1(n) = 3n^2$, $f_2(n) = \lg n$, $f_1(n) = O(n^2)$, $f_2(n) = O(\lg n)$, then $3n^2 \lg(n) = O(n^2 \lg(n))$

CE2001/ CZ2001: ALGORITHMS

Asymptotic Notation in Equations

When an asymptotic notation appears in an equation, we interpret it as standing for some anonymous function that we do not care to name.

Examples:

- $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$
- $T(n) = T(n/2) + \Theta(n)$
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n) = \Theta(n^2)$

22

CE2001/ CZ2001: ALGORITHMS

Recap

- Application of O, Ω and Θ
- How to derive O of algorithms?
- Simplification Rules

CE2001/ CZ2001: Algorithms

Properties of O, Ω and θ and Time Complexity Classes

Dr. Loke Yuan Ren

CE2001/ CZ2001: ALGORITHMS

Properties of O, Ω and Θ

O, Ω and Θ are reflexive

 $f(n)=O(f(n)), f(n)=\Omega(f(n)), f(n)=\Theta(f(n))$

• O, Ω and Θ are transitive

f(n)=O(g(n)) and g(n)=O(h(n)) => f(n)=O(h(n))

 $f(n)=\Omega(g(n))$ and $g(n)=\Omega(h(n)) => f(n)=\Omega(h(n))$

 $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) => f(n) = \Theta(h(n))$

 $f(n) = \Theta(g(n)) => g(n) = \Theta(f(n))$

CE2001/ CZ2001: ALGORITHMS

Learning Objectives

At the end of this lecture, students should be able to:

- Review the properties of O, Ω and Θ
- Review Common Complexity Classes

26

Properties of O, Ω and θ So θ defines an equivalence relation on functions. The equivalence classes in this relation are called the complexity classes.

Set of all functions of n

Linear functions

Quadratic functions

Common Complexity Classes

CE2001/ CZ2001: ALGORITHMS

Common Complexity Classes

2. f(n) = O(log(n)) means f(n) is of logarithmic order; the running time increases slower than n.

Example: for (i=n; i>=1; i/=2) sum++;

$$f(n) = \lfloor \log_2(n) \rfloor + 1 = O(\log(n))$$

Note 1: log(n) increases slower than n^{ϵ} for all $\epsilon > 0$.

Proof:
$$\lim_{n\to\infty}\frac{\lg n}{n^{\varepsilon}} = \lim_{n\to\infty}\frac{c(\frac{1}{n})}{\varepsilon n^{\varepsilon-1}} = \lim_{n\to\infty}\frac{c}{\varepsilon n^{\varepsilon}} = 0$$

Note 2: Base of log is not important

$$\forall b,c \in R, b>1 \land c>1 \rightarrow log_b n = (log_c n) / (log_c b)$$

E.g.
$$\log_{10} n = \log_2 n / \log_2 10$$

CE2001/ CZ2001: ALGORITHMS

Common Complexity Classes

1. f(n) = O(1) means f(n) is of constant order,i.e. the running time is independent of problem size n.

Example: sum = (1+n)*n/2;

$$f(n) = 4 = O(4) = O(1)$$

Formal verification: $\forall n \ge 0, n \in \mathbb{N}, |f(n)| \le 4.1$

$$\therefore f(n) = O(1)$$

38

CE2001/ CZ2001: ALGORITHMS

Common Complexity Classes

3. **f(n)** = **O(n)** means f(n) is of linear order [optimal for an algorithm that must process n inputs].

E.g. for
$$(j=1; j \le n; j++)$$
 sum++;
 $f(n) = n = O(n)$

4. f(n) = **O(nlogn)** is seen in algorithms that break a problem into sub-problems, solve them independently and combine the solutions.

E.g.
$$W(2) = 1$$

 $W(n) = 2W(n/2) + n-1$

CE2001/ CZ2001: ALGORITHMS

Common Complexity Classes

5. $\exists p \in \mathbb{N}$, $f(n) = O(n^p)$ means f(n) is of polynomial order.

```
E.g. for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

for (k=1; k<=n; k++)

M[i][j] = A[i][k]*B[k][j];

f(n) = O(n^3)
```

6. $\exists a \in \mathbb{N}, a > 1$, $f(n) = O(a^n)$ means f(n) is of exponential order; not practical for normal use.

E.g. Print all subsets of a set of n elements

$$f(n) = c*2^n$$

∴ $f(n) = O(2^n)$

44

CE2001/ CZ2001: Algorithms

Space Complexity

Dr. Loke Yuan Ren

CE2001/ CZ2001: ALGORITHMS

Recap

- Properties of O, Ω and θ
- Common Complexity Classes

42

CE2001/ CZ2001: ALGORITHMS

Space Complexity

- Determine <u>number of entities</u> in problem (also called problem size)
- Count number of basic units in algorithm

Basic units

 Things that can be represented in a constant amount of storage space

E.g. integer, float and character.

CE2001/ CZ2001: ALGORITHMS

How about Structure?

- Space requirements for an array of n integers $\theta(n)$
- If a matrix is used to store edge information of a graph,

i.e. G[x][y] = 1 if there exists an edge from x to y,

space requirement for a graph with n vertices is $\theta(n^2)$

Space/time tradeoff principle

Reduction in time can be achieved by sacrificing space and vice-versa.

15

Recap - Concepts on Space Complexity