AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A 3-heterocyclyl-substituted benzoyl compound of formula

where the variables have the following meanings:

 R^1 , R^2 are hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

R³ is hydrogen, halogen or C₁-C₆-alkyl;

I

ï

 R^4 , R^5 are hydrogen, halogen, cyano, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, di(C_1 - C_4 -alkyl)-amino- C_1 - C_4 -alkyl, [2,2-di(C_1 - C_4 -alkyl)-1-hydrazino]- C_1 - C_4 -alkyl, C_1 - C_6 -alkyliminooxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxycarbonyl- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_2 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, hydroxyl, C_1 - C_4 -alkylcarbonyloxy, C_1 - C_4 -alkylthio, C_1 - C_4 -haloalkylthio, di(C_1 - C_4 -alkyl)amino, COR^6 , phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy; or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl; or

R⁴ and R⁵ together with the corresponding carbon from a carbonyl or thiocarbonyl group;

 R^6 is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -halogalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_2 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy or NR^7R^8 ;

 R^7 is hydrogen or C_1 - C_4 -alkyl;

 R^8 is C_1 - C_4 -alkyl;

X is CR¹⁰R¹¹;

Y is O, S, or NR^{12} ;

 R^9 , R^{12} are hydrogen or C_1 - C_4 -alkyl;

 R^{10} , R^{11} are hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxycarbonyl or $CONR^7R^8$; or

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} together form a C_2 - C_6 -alkane-diyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

R¹⁵ is a pyrazole of the formula II which is linked in the 4-position

$$\begin{array}{c}
R^{18} \\
N \\
N \\
N \\
N \\
N \\
N \\
O-Z
\end{array}$$
II

where

R¹⁶ is C₁-C₆-alkyl;

Z is H or $SO_2R_{17}SO_2R^{17}$;

 R^{17} is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy;

R¹⁸ is hydrogen or C₁-C₆-alkyl;

with the exception of

4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-1,3-di-methyl-5-hydroxy-1H-pyrazol

or an agriculturally useful salt thereof.

2. (Currently Amended) A 3-heterocyclyl-substituted benzoyl compound of formula I as claims in claim 1, where the variables have the following meanings:

 R^1 , R^2 are hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

R³ is hydrogen, halogen or C₁-C₆-alkyl;

R⁴, R⁵ are hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, di(C₁-C₄-alkyl)-amino-C₁-C₄-alkyl, [2,2-di(C₁-C₄-alkyl)-1-hydrazino]-C₁-C₄-alkyl, C₁-C₆-alkyliminooxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, hydroxyl, C₁-C₄-alkylcarbonyloxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them

one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy; or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl; or

R⁴ and R⁵ together with the corresponding carbon from a carbonyl or thiocarbonyl group;

 R^6 is C_1 - C_4 -alkyl, C_1 - C_4 -halogalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy or NR^7R^8 ;

R⁷ is hydrogen or C₁-C₄-alkyl;

 R^8 is C_1 - C_4 -alkyl;

X is CR¹⁰R¹¹;

Y is O, S, or NR¹²;

 R^9 , R^{12} are hydrogen or C_1 - C_4 -alkyl;

 R^{10} , R^{11} are hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxycarbonyl or $CONR^7R^8$; or

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} together form a C_2 - C_6 -alkane-diyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

R¹⁵ is a pyrazole of the formula II which is linked in the 4-position

where

R¹⁶ is C₁-C₆-alkyl;

Z is H or $SO_2R_{17}SO_2R^{17}$;

 R^{17} is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R¹⁸ is hydrogen or C₁-C₆-alkyl;

with the exception of

4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-1,3-di-methyl-5-hydroxy-1H-pyrazol

or an agriculturally useful salt thereof.

- 3. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where R³ is hydrogen.
- 4. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where

 R^1 , R^2 are nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl.

5.-7. (Cancelled)

8. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where

R⁴ is halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁵ is hydrogen or C₁-C₄-alkyl; or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl.

9. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where

R⁴ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxycarbonyl or CONR⁷R⁸;

R⁵ is hydrogen or C₁-C₄-alkyl; or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl.

10. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where R⁴ and R⁵ are hydrogen.

11. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where R¹⁸ is hydrogen.

12. - 15. (Cancelled)

16. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where

R⁴ is halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁵ is hydrogen or C₁-C₄-alkyl; or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl; or

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} together form a C_2 - C_6 -alkane-diyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl.

17. - 20. (Cancelled)

- 21. (Previously Presented) A composition comprising a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I as defined in claim 1 or 2 or of an agriculturally useful salt thereof, and auxiliaries conventionally used for the information of crop protection products.
- 22. (Previously Presented) A process for the preparation of the composition defined in claim 21, which comprises mixing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I or of the agriculturally useful salt thereof and auxiliaries conventionally used for the formulation of crop protection products.
- 23. (Previously Presented) A method of controlling undesirable vegetation, which comprises allowing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I as defined in claim 1 or 2 or of an agriculturally useful salt thereof to act on plants, their environment and/or on seeds.
- 24. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I

where the variables have the following meanings:

 R^1 , R^2 are hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

R³ is hydrogen, halogen or C₁-C₆-alkyl;

R⁴ is halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁵ is hydrogen or C₁-C₄-alkyl; or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl.

R⁶ is hydrogen, C₁-C₄-alkyl, C₁-C₄-halogalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyloxy or NR⁷R⁸;

R⁷ is hydrogen or C₁-C₄-alkyl;

R⁸ is C₁-C₄-alkyl;

X is O, S, NR⁹, CO or CR¹⁰R¹¹;

Y is O, S, NR¹² or CO;

 R^9 , R^{12} are hydrogen or C_1 - C_4 -alkyl;

 R^{10} , R^{11} are hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxycarbonyl or $CONR^7R^8$; or

R¹⁵ is a pyrazole of the formula II which is linked in the 4-position

$$\begin{array}{c|c}
R^{18} & & & \\
& & & \\
N & & \\
N & & \\
N & & & \\$$

where

 R^{16} is C_1 - C_6 -alkyl;

Z is H;

 R^{17} is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy;

R¹⁸ is hydrogen or C₁-C₆-alkyl;

where X and Y are not simultaneously sulfur;

or an agriculturally useful salt thereof.

25. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24 where the variables have the following meanings:

 R^1 , R^2 are hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

 R^3 is hydrogen, halogen or C_1 - C_6 -alkyl;

R⁴ is halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁵ is hydrogen or C₁-C₄-alkyl; or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

 R^6 is C_1 - C_4 -alkyl, C_1 - C_4 -halogalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy, C_2 - C_4 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy or NR^7R^8 ;

R⁷ is hydrogen or C₁-C₄-alkyl;

 R^8 is C_1 - C_4 -alkyl;

X is O, S, NR⁹, CO or CR¹⁰R¹¹;

Y is O, S, NR¹² or CO;

 R^9 , R^{12} are hydrogen or C_1 - C_4 -alkyl;

 R^{10} , R^{11} are hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxycarbonyl or $CONR^7R^8$; or

R¹⁵ is a pyrazole of the formula II which is linked in the 4-position

where

R¹⁶ is C₁-C₆-alkyl;

Z is H;

 R^{17} is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy;

 R^{18} is hydrogen or C_1 - C_6 -alkyl;

where X and Y are not simultaneously sulfur;

or an agriculturally useful salt thereof.

- 26. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where R³ is hydrogen.
- 27. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where

 R^1 , R^2 are nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl.

28. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where

R⁴ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxycarbonyl or CONR⁷R⁸;

R⁵ is hydrogen or C₁-C₄-alkyl; or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl.

- 29. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where R¹⁸ is hydrogen.
- 30. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where

X is S, NR⁹, CO or CR¹⁰R¹¹.

31. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 24, where

 R^4 is halogen, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 - C_4 -alkyl, C_1 - C_4 -

C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁵ is hydrogen or C₁-C₄-alkyl; or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl; or

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} together form a C_2 - C_6 -alkane-diyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl.

- 32. (Previously Presented) A composition comprising a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I as defined in claim 24 or 25 or of an agriculturally useful salt thereof, and auxiliaries conventionally used for the information of crop protection products.
- 33. (Previously Presented) A process for the preparation of the composition defined in claim 32, which comprises mixing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I or of the agriculturally useful salt thereof and auxiliaries conventionally used for the formulation of crop protection products.

34. (Previously Presented) A method of controlling undesirable vegetation, which comprises allowing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I as defined in claim 24 or of an agriculturally useful salt thereof to act on plants, their environment and/or on seeds.

- 35. (Previously Presented) A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in claim 2, where Z is SO_2R^{17} .
- 36. (Previously Presented) A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in claim 2, where Z is hydrogen.