

YC31xx UART 应用说明

V1.0

Yichip Microelectronics ©2014

Revision History

Version	Date	Author	Description
V1.0	2020-2-25	Duanziyang	Initial version

Confidentiality Level:

confidential

目录

1.	文档ì	说明		4
	1.1		目的	
	1.2		5 <u>围</u>	
	1.3		- · - · · · · · · · · · · · · · · · · ·	
	1	1.3.1	UART Interrupt	4
	1	1.3.2	UART RX Recvbuf	
	1	1.3.3	UART RX RecvData	4
	1	1.3.4	UART TX Sendbuf	4
	1	1.3.5	UART_TX_SendData	4
2.	结构体	体说明		5
	UAR	Γ_InitTy	peDef	5
3.	库函数	数说明		5
	3.1	UART	_StructInit	5
	3.2	UART	_Init	6
	3.3	UART	_DeInit	6
	3.4	UART	_AutoFlowCtrlCmd	6
	3.5		_IsRXFIFOFull	
	3.6	UART	_IsRXFIFONotEmpty	7
	3.7		_IsUARTBusy	
	3.8		_ReceiveData	
	3.9	UART	_RecvBuf	8
	3.10	UART	_ReceiveDataLen	8
	3.11	UART	_SendBuf	9
	3.12		_DMASendBuf	
	3.13		_SendData	
	3.14		_ITConfig	
	3.15		_ClearIT	
	3.16		_SetITTimeout	
	3.17	UART	_SetRxITNum	12
	3.18		_GetITIdentity	
4.	Demo		.明	
	4.1		_Configuration	
	4.2	UART	1 IROHandler	14

1. 文档说明

1.1 编写目的

为使用 UART 相关 Demo 及 UART 库函数 提供指南

1.2 适用范围

31xx 系列芯片

1.3 文件说明

YC31xx 系列芯片 UARTx 只能使用 DMA 的方式,有两个缓冲区 buffer 做为 DMA 缓冲区, buffer 缓冲区的空间大小可根据实际应用修改

UART Demo 路径为 UART 库文件为如下图 uart.c 与 uart.h,路径为 ModuleDemo\UART

Librarier\sdk

UART Demo 中共有五个示例 Demo, 依次做简要说明

1.3.1 UART_Interrupt

该 demo 主要示例 UART 接收字符串中断与发送字符串中断(发送完触发中断)

1.3.2 UART RX Recvbuf

该 demo 主要示例 UART 接受字符串中断

1.3.3 UART_RX_RecvData

该 demo 主要示例 UART 接受一个字节数据,并打印出来

1.3.4 UART_TX_Sendbuf

该 demo 示例 UART 发送字符串

1.3.5 UART TX SendData

该 demo 示例 UART 发送多个字节数据

2. 结构体说明

UART_InitTypeDef

元素名称	类型	说明	参数项
Mode	uint8_t	Uart 通信模式:	Mode_Single_Line (单工)
		单工,双工全双工	Mode_duplex (全双工)
RaudRate	uint32_t	波特率如: 9600, 38400, 115200	Max: 300000, 默认为 0
DataBits	uint8_t	数据位宽	Databits_8b (8bit, 则无奇偶校验位)
			Databits_9b(9bit,第 9bit 为奇偶校验位)
StopBits	uint8_t	停止位	StopBits_1 (0)
			StopBits_2 (1)
Parity	uint8_t	奇偶校验位设置	Parity_None (无校验)
			Parity_Even (偶校验)
			Parity_Odd (奇校验)
FlowCtrl	uint8_t	指定是启用还是禁用硬件流控	FlowCtrl_None (禁用流控)
		制模式。	FlowCtrl_Enable (启用流控)
RxBufLen	int	Uart DMA rx buff length	指定 Rx DMA buff 长度

3. 库函数说明

3.1 UART_StructInit

函数原型: void UART_StructInit(UART_InitTypeDef* UART_InitStruct); 说明: UART 预初始化函数,将 UART InitStruct 结构体赋初值,见注 1

参数	方向	说明
UART_InitTypeDef*	OUT	UART InitStruct 指针指向的结构体将被初始化
UART_InitStruct		

表格 3-1-1 UART_StructInit 形参表

返回值	说明
None	None

表格 3-1-2 UART_StructInit 返回值

注 1: UART_InitStruct 初值如下图:


```
UART_InitStruct->BaudRate = 9600;
UART_InitStruct->DataBits = Databits_8b;
UART_InitStruct->FlowCtrl = FlowCtrl_None;
UART_InitStruct->Mode = Mode_duplex;
UART_InitStruct->StopBits = StopBits_1;
UART_InitStruct->Parity = 0;
```

3.2 UART_Init

函数原型: void UART Init(UART TypeDef UARTx, UART InitTypeDef* UART InitStruct);

说明: 根据 UART InitStruct 中的配置初始化 UARTx

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
参数	方向	说明
UART_TypeDef UARTx	IN	选择 USART 或 UART。该参数可设置为以下值之一:
		UART0, UART1.
UART_InitTypeDef*	IN	该指针指向内容包含所需要配置的 UART 中所有配
UART_InitStruct		置参数

表格 3-2-1 UART_Init 形参列表

返回值	说明
None	None

表格 3-2-2 UART_Init 返回值

3.3 UART_Delnit

函数原型: void UART DeInit(UART TypeDef UARTx);

说明: UART 去初始化函数, 目的是恢复 UARTx 寄存器初始值

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UARTO, UART1.

表格 3-3-1 UART DeInit 形参表

返回值	说明
None	None

表格 3-3-2 UART_DeInit 返回值

3.4 UART_AutoFlowCtrlCmd

函数原型: void UART AutoFlowCtrlCmd(UART TypeDef UARTx, FunctionalState NewState);

说明: 启用或禁用 UARTx 自动流控制

参数	方向	说明
<i>></i> ≫	7313	%6 73

UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之
UARTx		—: UART0, UART1.
FunctionalState	IN	ENABLE or DISABLE auto flow control
NewState		

表格 3-4-1 UART_AutoFlowCtrlCmd 形参表

返回值	说明
None	None

表格 3-4-2 UART_AutoFlowCtrlCmd 返回值

3.5 UART_IsRXFIFOFull

函数原型: Boolean UART_IsRXFIFOFull(UART_TypeDef UARTx);

说明: 判断 UARTx 接收空间是否满

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UART0, UART1.

表格 3-5-1 UART_IsRXFIFOFull 形参表

返回值	说明
TRUE	接收空间已满
FALSE	接收空间未满

表格 3-5-2 UART_IsRXFIFOFull 返回值

3.6 UART_ISRXFIFONotEmpty

函数原型: Boolean UART IsRXFIFONotEmpty(UART TypeDef UARTx);

说明: 判断接收空间是否为空

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UART0, UART1.

表格 3-6-1 UART_IsRXFIFONotEmpty 形参表

返回值	说明		
TRUE	接收空间不为空		
FALSE	接收空间为空		

表格 3-6-2 UART_IsRXFIFONotEmpty 返回值

3.7 UART_IsUARTBusy

函数原型: Boolean UART_IsUARTBusy(UART_TypeDef UARTx);

说明: 判断 UARTx 是否为忙

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UARTO, UART1.

表格 3-7-1 UART_IsUARTBusy 形参表

返回值	说明		
TRUE	UART is busy		
FALSE	UART is not busy		

表格 3-7-2 UART IsUARTBusy 返回值

3.8 UART_ReceiveData

函数原型: uint8_t UART_ReceiveData(UART_TypeDef UARTx);

说明: 通过 UARTx 接收单个数据 (1字节)

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UARTO, UART1.

表格 3-8-1 UART_ReceiveData 形参表

返回值	说明
Data	A byte of data received

表格 3-8-1 UART_ReceiveData 返回值

3.9 UART_RecvBuf

函数原型: int UART_RecvBuf(UART_TypeDef UARTx, uint8_t* buf, int len);

说明: 通过 UARTx DMA buf 接收数据

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UART0, UART1.
uint8_t* buf	OUT	接收数据存放空间的首地址
int len	OUT	接收数据长度

表格 3-9-1 UART RecvBuf 形参表

返回值	说明
length	Returns the number of bytes accepted

表格 3-9-2 UART_RecvBuf 返回值

3.10UART_ReceiveDataLen

函数原型: uint16 t UART ReceiveDataLen(UART TypeDef UARTx);

说明: 获取 UARTx 接收缓冲区中待接收数据长度

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UARTO, UART1.

表格 3-10-1 UART_ReceiveDataLen 形参表

返回值	说明
ReceiveDataLen	接收缓冲区中待接收数据长度

表格 3-10-2 UART_ReceiveDataLen 返回值

3.11UART_SendBuf

函数原型: void UART_SendBuf(UART_TypeDef UARTx, uint8_t* buf, int len); 说明: 通过 UARTx DMA 发送数据,数据发送后返回,**数据发送过程中阻塞**

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UART0, UART1.
uint8_t* buf	IN	待发送发送数据所在的首地址
Int len	IN	待发送数据的长度

表格 3-11-1 UART_SendBuf 形参表

返回值	说明
None	None

表格 3-11-2 UART SendBuf返回值

3.12UART_DMASendBuf

函数原型: void UART_DMASendBuf(UART_TypeDef UARTx,uint8_t* buf,int len);

说明: 发送数据给 UARTx DMA, DMA 特性, 数据发送过程中并不阻塞 (与 3.11 区别)

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之
UARTx		—: UARTO, UART1.
uint8_t* buf	IN	待发送发送数据所在的首地址, 注意该指针指向的
		变量必须在数据发送完之后才可被销毁(最好全局
		变量)
int len	IN	待发送数据的长度

表格 3-12-1 UART_DMASendBuf 形参表

返回值	说明
None	None

表格 3-12-2 UART_DMASendBuf 返回值

3.13UART_SendData

函数原型: void UART_SendData(UART_TypeDef UARTx, uint8_t Data);

说明: 通过 UARTx 发送一个字节数据

参数	方向	说明
UART_TypeDef	IN	选择USART或UART。该参数可设置为以下值之一:
UARTx		UART0, UART1.
uint8_t Data	IN	待发送数据(一个字节)

表格 3-13-1 UART_SendData 形参表

返回值	说明
None	None

表格 3-13-2 UART_SendData 返回值

3.14UART_ITConfig

函数原型: void UART_ITConfig(UART_TypeDef UARTx, uint32_t UART_IT,

FunctionalState NewState);

说明: Config Interrupt trigger mode

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UART0, UART1.
uint32_t UART_IT	IN	UART_IT:中断触发方式,可设置以下参数
		UART_IT_TX:发送完数据后触发中断.
		UART_IT_RX:接收数据时触发中断.
FunctionalState	IN	ENABLE or DISABLE UART 中断
NewState		

表格 3-14-1 UART_ITConfig 形参表

返回值	说明
None	None

表格 3-14-2 UART_ITConfig 返回值

3.15UART_ClearIT

函数原型: void UART_ClearIT(UART_TypeDef UARTx);

说明: Clear IT

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx	. 1	UARTO, UART1.

表格 3-15-1 UART_ClearIT 形参表

返回值	说明	
None	None	

表格 3-15-2 UART_ClearIT 返回值

3.16UART_SetITTimeout

函数原型: void UART SetITTimeout(UART TypeDef UARTx,uint16 t timeout);

说明: 设置 UART 接收数据字符间的超时时间,超过该时间触发中断

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UART0, UART1.
uint16_t timeout	IN	接收超时中断时间值(value*X),X 随主频变动。
		例: 主频 24M, X 为 24

表格 3-16-1 UART_SetITTimeout 形参表

返回值	说明
None	None

表格 3-16-2 UART_SetITTimeout 返回值

3.17UART_SetRxITNum

函数原型: void UART_SetRxITNum(UART_TypeDef UARTx, uint8_t Bcnt);

说明: 设置 UART 接收时一次中断最多接收字节数

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UART0, UART1.
uint8_t Bent	IN	0 为不触发,该参数控制中断一次最多接收字节数

表格 3-17-1 UART_SetRxITNum 形参表

返回值	说明
None	None

表格 3-17-2 UART_SetRxITNum 返回值

3.18UART_GetITIdentity

函数原型: uint8_t UART_GetITIdentity(UART_TypeDef UARTx);

说明: 获取 UARTx 的中断号

参数	方向	说明
UART_TypeDef	IN	选择 USART 或 UART。该参数可设置为以下值之一:
UARTx		UART0, UART1.

表格 3-18-1 UART_ClearIT 形参表

返回值	说明
IT Identity	中断号

表格 3-18-2 UART_ClearIT 返回值

4. Demo 函数说明

4.1 UART_Configuration

```
void UART Configuration(void)
    UART InitTypeDef UART InitStruct;
    /* Configure serial ports 0 RX and TX for IO. */
    GPIO Config(GPIOA, GPIO_Pin_1, UART0_TXD);
                                                      函数见 GPIO 应用说明
    GPIO Config(GPIOA, GPIO Pin 0, UARTO RXD);
    /* Configure serial ports 1 RX and TX for IO. */
    GPIO Config(GPIOC, GPIO Pin 7, UART1 TXD);
    GPIO_Config(GPIOC, GPIO_Pin_8, UART1_RXD);
    /* USARTx configured as follow:
  - BaudRate = 115200 baud
  - Word Length = 8 Bits
  - Stop Bit = 1 Stop Bit
  - Parity = No Parity
  - Hardware flow control disabled (RTS and CTS signals)
  - Receive and transmit enabled*/
    配置结构体 UART_InitStruct, 也可调用 UART_StructInit 使用默认参数
    UART InitStruct.BaudRate = uartBaud; //Configure serial port baud rate, the baud rate defaults to 128000.
    UART InitStruct.DataBits = Databits 8b;
    UART InitStruct.StopBits = StopBits 1;
    UART InitStruct.Parity = Parity None;
    UART InitStruct.FlowCtrl = FlowCtrl None;
    UART InitStruct.Mode = Mode duplex;
    UART Init(UART0, &UART InitStruct);
    UART Init(UART1, &UART InitStruct);
```


4.2 UART1_IRQHandler

```
UART 中断服务函数
void UART1 IRQHandler(void)
    uint8 trbuf[10], r;
    uint8_t tbuf[] = "UART1 TX INTERRUPT test successful!\n";
    if (UART GetITIdentity(UART1) = UART IT RX)
                                                    判断是否接收中断
        if (UART IsRXFIFONotEmpty(UART1))
                                                   判断接收空间是否为空
            r = UART RecvBuf(UART1, rbuf, 9);
            rbuf[r] = '\0';
        MyPrintf("UART1 RX INTERRUPT test successful, this buf is %s!\n", rbuf);
        UART_ClearIT(UART1);
                                                   清中断
    else if (UART_GetITIdentity(UART1) == UART_IT_TX)
        UART SendBuf(UART1, tbuf, sizeof(tbuf)-1);
        UART ClearIT(UART1);
```