Data Structures and Algorithms

Lecture 06

Road Map

- Introduction Trees
- Trees Terminology
- Binary Tree
- Traversals

Introduction

■ Non- linear data structure

- Used to represent data, containing a hierarchical relationship among elements
 - □ University Structure
 - □ Table of Contents

2

- A tree consist of nodes connected by edges
- It can be represented graphically as follows:

Terminology

- The element at the top of the hierarchy is the root.
- Elements next in the hierarchy are the children of the root.
- Elements next in the hierarchy are the grandchildren of the root and so on.
- Elements at the lowest level of the hierarchy are the leaves.

Some other definitions

Leaves, Parent, Grandparent, Siblings,
 Ancestors, Descendents

Leaves = {Mike,Al,Sue,Chris}

Parent(Mary) = Joe

Grandparent(Sue) = Mary

Siblings(Mary) = {Ann,John}

Ancestors(Mike) = {Ann,Joe}

Descendents(Mary)={Mark,Sue}

Define Levels

Root is at level 0 and its children are at level 1

Node Degree

Node degree is the number of children it has

M

Tree Degree

■ Tree degree is the maximum of node degrees

Sub tree – Any node may be considered to be the root of a *sub* tree, which consists of its children and its children's children, and so on.

Path

■ If $n_1, n_2, ... n_k$ is a sequence of nodes in a tree such that n_i is the parent of n_{i+1} , for $1 \le i \le k$, then this sequence is called a *path* from node n_1 to n_k

Length of a path is one less than the number of nodes in a path.

Node to Node(itself) – length of path is zero

Height of a node — length of the longest path from node to a leaf.

- Height of a tree the height of the root node.
- Depth of a node length of the path from the root to that node.

M

Recursive Definition

- A single node by itself is a tree. This node is also the root of this tree.
- Let t₁, t₂, ..., t_k be disjoint trees with roots r₁, r₂, ..., r_k respectively, and let R be another node.
 We can get a new tree by making R the parent of the nodes r₁, r₂, ..., r_k.

Binary Trees

- A tree in which each node can only have 0, 1, or 2 children.
- A binary tree is either empty or consists of a root, and (possibly empty) left and right subtrees.

Note the recursive definition in the above!

Tree Traversal

Methods of visiting(processing) each node in the tree exactly one time.

- Breadth First
- Depth First

30, 15, 45, 10, 13, 42, 29

Algorithm (Breadth First – Level by Level)

```
Algorithm breadthFirst (root)
Process tree using breadth-first traversal.
  Pre root is node to be processed
  Post tree has been processed
1 set currentNode to root
2 createQueue (bfQueue)
  loop (currentNode not null)
  1 process (currentNode)
  2 if (left subtree not null)
        enqueue (bfQueue, left subtree)
  3 end if
     if (right subtree not null)
        enqueue (bfQueue, right subtree)
  5 end if
     if (not emptyQueue(bfQueue))
      1 set currentNode to dequeue (bfQueue)
  7 else
      1 set currentNode to null
    end if
4 end loop
5 destroyQueue (bfQueue)
end breadthFirst
```

M

Depth First Traversal

- Preorder
- Inorder
- Postorder

30, 15, 10, 13, 45, 42, 29

```
Algorithm preOrder (root)
Traverse a binary tree in node-left-right sequence.
  Pre root is the entry node of a tree or subtree
  Post each node has been processed in order
1 if (root is not null)
     process (root)
  2 preOrder (leftSubtree)
     preOrder (rightSubtree)
2 end if
end pre0rder
```


(a) Processing order

(b) "Walking" order

(a) Process tree A

(b) Process tree B

(c) Process tree C

(d) Process tree D

(e) Process tree E

(f) Process tree F

10, 15, 13, 30, 42, 45, 29

```
Algorithm inOrder (root)
Traverse a binary tree in left-node-right sequence.
  Pre root is the entry node of a tree or subtree
  Post each node has been processed in order
1 if (root is not null)
     inOrder (leftSubTree)
    process (root)
     inOrder (rightSubTree)
2 end if
end inOrder
```


(a) Processing order

(b) "Walking" order

10, 13, 15, 42, 29, 45, 30

```
Algorithm postOrder (root)
Traverse a binary tree in left-right-node sequence.
  Pre root is the entry node of a tree or subtree
  Post each node has been processed in order
1 if (root is not null)
     postOrder (left subtree)
  postOrder (right subtree)
  3 process (root)
2 end if
end postOrder
```


(a) Processing order

(b) "Walking" order

Exercise

Consider the following expression tree:

- □ Pre-order
- □ In-order
- ☐ Post-order

