

Hybrid Genome Assembly and Multi-Omics Analysis of Composting-Residue Isolates Reveal Bioplastic Degradation Potential

Martina Castellucci | A.Y. 2024/2025

MSc Bioinformatics

Applied Genomics Project

Polyhydroxyalkanoates

- -Microbial polyester -Bioplastics, medical -Faster
- -Faster degradation

Polylactic Acid

-Plant polyester -Packaging, biomedical -Slow degradation

Scientific Context & Study Rationale

Background

- PLA & PHA: persistent bioplastics.
- Fungi → hydrolytic enzymes (esterases, cutinases, lipases).
- Compost = hotspot for degraders.
- 20 isolates; several active.

Rationale

- Reveal genes & enzymes for degradation.
- Integrate **genome + transcriptome**.
- Basis for **bioplastic valorization**.

Goal

- High-quality genome + RNA-Seq.
- Link genotype ↔ expression.
- Identify candidate enzymes.

1) Sample collection from PLA/PHA-enriched compost

1

2) Isolation & identification (Rhodamine B assay + ITS sequencing)

 \downarrow

3) DNA/RNA extraction & QC

1

4) Hybrid sequencing: Illumina NovaSeq + Oxford Nanopore GridION

T

5) Genome assembly & polishing

6) Functional annotation (CAZymes, BGCs, degradative enzymes)

1

7) Comparative genomics & phylogenetic analysis

1

8) Transcriptomic profiling under PLA/PHA conditions

 \downarrow

9) Integration of multi-omics for enzyme discovery

Research Workflow Overview

Collection and Identification

- Compost from **PLA/PHA-rich organic waste** yielded **20** isolates; **5** were selected as PLA/PHA degraders.
- Cultured on PDA + o.5% PLA + Rhodamine B
 → visible fluorescent halos = esterase activity.
- Microscopy showed **septate hyphae with conidia**, serving as the first step in taxonomic identification.
- ITS rDNA sequencing confirmed species-level identity.

CTAB extraction protocol \rightarrow high-molecular-weight DNA (>20 kb).

QC: **Qubit** (yield), **Nanodrop** (purity), **gel electrophoresis** (integrity).

Essential for Nanopore long-read sequencing.

DNA Extraction & RNA Quality Control

Extraction: TRIzol + silica column purification.

QC: Bioanalyzer (RIN > 8), Nanodrop (A260/280).

Libraries: 12 RNA-Seq samples (Control, PLA, PHA,

Blank \times 3 replicates).

Ensures reliable transcriptome profiling.

Illumina NovaSeq 6000

Hybrid Genome Sequencing Strategy

Feature	Illumina NovaSeq 6000	Oxford Nanopore GridION
Read type	Short, paired-end	Long, single-molecule
Read length	150 bp (PE150)	Up to 20 kb
Coverage in project	~up to 30×	~35×
Accuracy	>99.9% (Phred > Q30)	~90–95% (after polishing)
Strengths	High base accuracy, SNP detection, RNA-Seq	Resolves repeats, structural variants, improves contiguity
Main role in project	Error correction, polishing, transcriptome mapping	Primary genome scaffolding, structural resolution

Assembly & QC

- Flye (Nanopore-first assembly) + Pilon (Illumina polishing)
- QC: QUAST (contiguity), BUSCO >90%
 expected (completeness)

Annotation

- MAKER3 pipeline (Augustus, GeneMark-ES)
- RNA-Seq evidence for gene models
- dbCAN3: CAZyme annotation
- Geneious: manual curation

Expected Key Results

- ✓ **Genome assemblies**: high contiguity + completeness
- ✓ Broad CAZyme repertoire predicted, including:
 - ✓ Esterases
 - ✓ Cutinases
 - ✓ Lipases

Hybrid Assembly & CAZyme Profile

MAKER Overview

Phylogenomic Workflow (Mock / Reference Example) OrthoFinder Identification of single copy orthologue sequences Single Copy Orthologues (.fasta) MAFFI Alignment of each orthologue sequence Sequences Alignment Gblocks Selection of conserved blocks from multiple alignments Blocked Alignment AMAS Conatanation of multiple alignments Concatenated Alignment (.fasta) Phylogenetic analyses MEGA11 V11.03.13 FastTree RAXML MrBayes

Approach >

Phylogenomics integrates degraders and non-degraders to resolve evolutionary placement.

OrthoFinder identifies orthogroups, distinguishing shared vs unique genes.

MCScanX / MAUVE assess genome collinearity, synteny, and structural rearrangements across related fungi.

Genomic Comparison & Evolutionary Context

Mock example jvenn (Orthofinder)

Expected Results:

- Unique orthogroups in degraders → candidate degradation genes.
- Synteny breaks / rearrangements linked to adaptation.
- **Evolutionary placement** of degraders within related fungi.
- **Integration** pinpoints gene clusters for PLA/PHA degradation.

Gene Expression Response to Bioplastics

Transcriptomic Analysis

RNA-Seq design

- 12 libraries: Control, PLA, PHA, Blank × 3 replicates
- PLA/PHA sampled at 12 h, 24 h,
 36 h; Control = baseline

Quantification & DEG analysis

- Salmon: transcript quantification
- **tximport**: gene-level aggregation
- **DESeq2**: DEG detection (FDR \leq 0.05, $|\log_2 FC| \geq 2$)
- Thousands of DEGs identified, with plastic-specific signatures

Expected DEGs

PLA → ↑ cutinases, esterases, lipases
PHA → ↑ PHA depolymerase-like, lipases
Shared → ↑ oxidoreductases, transporters
Integration → overlap with
CAZymes & orthogroups

From Genome to Green Solutions

Resource efficiency

Biodegradable and compostable plastics — challenges and opportunities

Strengths	Challenges	
Targeted enzyme discovery enabling efficient PLA/PHA degradation	Scaling from lab to industrial composting facilities required	
Multi-omics integration for mechanistic insights	Enzyme stability and efficiency under real environmental conditions	
Alignment with EU Green Deal & Circular Economy Action Plan	Regulatory and safety assessments for field applications	
Potential for industrial composting and waste valorization	Economic feasibility vs. conventional waste management	
Creation of an open-access dataset for biotechnology R&D		

European Environment Agency (2020). EEA Briefing No. 09/2020. DOI: 10.2800/552241

Estimated Project Budget

Personnel	Activity	Estimated Cost (€)	Description
Wet lab Postdoc salary		45,000	One-year contract for lab activities
	Sampling & Isolation	3,000	Compost collection & fungal culturing
	DNA Extraction & QC	2,000	CTAB reagents, plasticware, gel materials
	Illumina PE150 Sequencing	30,000	Short-read library preparation & sequencing
	Oxford Nanopore Sequencing	50,000	Long-read flow cells & library kits
	RNA extraction (12 libraries)	1,000	TRIzol & silica column kits
	RNA library preparation (12 libraries)	1,500	Illumina TruSeq RNA kits
	RNASeq Illumina (12 libraries)	2,500	PE150 sequencing
Bioinformatics Postdoc		45,000	One-year contract for analysis & reporting
	Genome Assembly & Polishing	0	Flye + Pilon (open-source)
	Functional Annotation	0	MAKER3, dbCAN3, Geneious (manual curation)
	Comparative Genomics	0	OrthoFinder, MAUVE, MCScanX
	Non-open source softwares	5,000	Geneious & other licensed tools
	Reports, Dissemination	15,000	Publications, conferences, outreach
		200,000	

Selected References & Tools

Scientific Articles

- Menicucci, A., Iacono, S., Ramos, M., Fiorenzani, C., Peres, N. A., et al. (2025). Can whole genome sequencing resolve taxonomic ambiguities in fungi? The case study of *Colletotrichum* associated with ferns. *Frontiers in Fungal Biology*, 6, 1540469.
- Ekanayaka, A. H. et al. (2025). Linking metabolic pathways to plastic-degrading fungi: a comprehensive review. J. Fungal Biol.
- Prasad, P., Varshney, D., & Adholeya, A. (2015). Whole genome annotation and comparative genomic analyses of bio-control fungus Purpureocillium lilacinum. BMC Genomics, 16(1), 1004.

Main Tools Used

- Assembly: Flye (long reads), Pilon (polishing with Illumina).
- QC: QUAST + BUSCO (assembly completeness).
- Annotation: MAKER3 (gene models, repeat masking), dbCAN3 (CAZyme annotation).
- Comparative Genomics: OrthoFinder (orthogroups), MCScanX (synteny/collinearity).
- Transcriptomics: Salmon (quantification), DESeq2 (DEG analysis).
- Visualization: R / Python (plots), Geneious (manual curation).