# Arya: Nearly Linear-Time Zero-Knowledge Proofs for Correct Program Execution

Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, Mary Maller







Correct Program Execution





Correct Program Execution





# Zero-Knowledge Proofs for Correct Program Execution





Completeness:
An honest prover convinces the verifier.

# Zero-Knowledge Proofs for Correct Program Execution



Computational guarantee

-> argument

Soundness: A dishonest prover never convinces the verifier. Verifier Prover

Completeness: An honest prover convinces the verifier.

# Zero-Knowledge Proofs for Correct Program Execution

convinces the verifier.





Zero-knowledge:

Nothing but the truth of the statement is revealed.

Computational guarantee -> argument

Correct Program Execution





Cryptographic Assumption

# Correct Program Execution



**TinyRAM** 

Instructions include ADD, MULT, XOR, AND,...

# Correct Program Execution



TinyRAM

Public Values <-> Statement

# Correct Program Execution



# Zero-Knowledge Proofs for Correct Program Execution

#### Why TinyRAM?

- Closer to real world statements
- Compilers from restricted C to TinyRAM

# Zero-Knowledge Proofs for Correct Program Execution

# Goal:

Zero-knowledge proof for correct TinyRAM execution with low prover overhead

#### **Execution Trace**







#### Checks





# Memory Consistency

### Checks Time Information r1 **r2** r3 flag 2 3 Trimary Input **Input Tapes Auxiliary Input**



TinyRAM ...

Execution



### Proving Correct Program Execution

#### **Sources of Overhead**

- Large fields and large cyclic groups
- Permutation networks for checking memory
- Large circuits for bitwise operations

#### **Our Solutions**

- Use hash-based proof system over any field
- Alternative approach to checking permutations
- Word decomposition technique gives constant-size circuits

### Results

| Work         | Prover<br>Complexity  | Verifier<br>Complexity              | Communication               | Rounds           | Assumption |
|--------------|-----------------------|-------------------------------------|-----------------------------|------------------|------------|
| BCTV14       | $\Omega(T(\log T)^2)$ | $\omega(L+ v )$                     | $\omega(1)$                 | 1                | KoE        |
| This<br>Work | $O(\alpha T)$         | $poly(\lambda)(\sqrt{T} + L +  v )$ | $poly(\lambda)(\sqrt{T}+L)$ | $O(\log \log T)$ | LT-CRHF    |

Security  $2^{-\omega(\log \lambda)}$ 

Program Length L

Runtime Bound *T* 

Public Input V

#### Overview



#### Arithmetising TinyRAM



# Main Contributions

# Zero-Knowledge Look-Up Arguments and More

Table of baby-name data (baby-2010.csv)

|          | (baby-201 | .0.csv) |        |             |
|----------|-----------|---------|--------|-------------|
| name     | rank      | gender  | year . | Field names |
| Jacob    | 1         | boy     | 2010   | One row     |
| Isabella | 1         | girl    | 2010   | (4 fields)  |
| Ethan    | 2         | boy     | 2010   |             |
| Sophia   | 2         | girl    | 2010   |             |
| Michael  | 3         | boy     | 2010   |             |
|          | ) rows    |         |        | _           |

#### Ideal Linear Commitment Protocols



Commit to vectors





Commit to vectors



Send random challenges

:



Compute linear combinations

Check linear combinations against commitments

#### Ideal Linear Commitment Protocols



Commit to execution trace





Commit to vectors



Send random challenges

 $z \leftarrow C$   $\leftarrow$ Linear combinations

Compute linear combinations

Coefficients of linear combinations embed useful conditions

# Committing



# Checking Commitments



Verifier encodes and spot-checks columns High minimum distance catches cheating

# Linear-time Zero-Knowledge Arguments (2017) Efficient Linear-Time Linear-Time = Ideal + Encodable + Computable Error-Correcting Hash Functions Codes Protocols

#### Correct Instruction Execution

Check consistency of values across each time step



Give batch argument that each copy of circuit is satisfied

#### Correct Instruction Execution

Check consistency of values across each time step



Give batch argument that each copy of circuit is satisfied

# Word Decomposition

Avoid binary circuits when checking bitwise operations on non-binary field elements!



$$a, b \in \{0, 1\}$$

$$a + b = 2(a \wedge b) + (a \oplus b)$$

# Word Decomposition



$$a = 2a_O + a_E$$

# Word Decomposition



XORs in even bits  $a_0 \oplus b_0 \mid a_0 \wedge b_0 \mid a_2 \oplus b_2 \mid a_2 \wedge b_2 \mid \dots \mid \dots \mid \dots \mid a_{W-2} \oplus b_{W-2} \mid a_{W-2} \wedge b_{W-2}$  ANDs in odd bits

$$a_E + b_E$$

# Look-up Argument



# Look-up Argument

Values  $a_1, a_2, ..., a_m$  lie in table

$$\Leftrightarrow$$

$$\{a_1, a_2, \dots, a_m\} \subset \{b_1, b_2, \dots, b_n\}$$



$$\prod_{i=1}^{m} (X - a_i) = \prod_{j=1}^{n} (X - b_j)^{e_j}$$
for some  $e_j \ge 0$ 

#### Look-Up Table

| $b_1, b_2,, b_n$ already public                             |
|-------------------------------------------------------------|
| $b_3$                                                       |
| •••                                                         |
| •••                                                         |
|                                                             |
| Verify a 'square and multiply'  algorithm in zero-knowledge |
| $b_n$                                                       |

Think of  $m \gg n$ 

# Look-up Argument

### Approach:

 $b_1, b_2, \dots, b_n$  already public

1. Commit to  $a_1, a_2, ..., a_m, e_1, e_2, ..., e_n$ 

2. Prove in zero-knowledge that

Verify a 'square and multiply' algorithm in zero-knowledge

$$\prod_{i=1}^{m} (x - a_i) = \prod_{j=1}^{n} (x - b_j)^{e_j}$$
 for random  $x$ 

### Memory Consistency



One memory location -> Cycle

All locations -> permutation

# Memory Consistency

### Approach:

 $a_1, a_2, \dots, a_m$  is a permutation of  $b_1, b_2, \dots, b_m$ 

$$\prod_{i=1}^{m} (X - a_i) = \prod_{i=1}^{m} (X - b_i)$$

Protocol similar to the look-up argument.

# Summary

Nearly-linear proving time

Sublinear verification time

 New word decomposition technique for verifying binary operations over non-binary fields

New look-up argument

### Thanks!

| Work         | Prover<br>Complexity  | Verifier<br>Complexity              | Communication               | Rounds           | Assumption |
|--------------|-----------------------|-------------------------------------|-----------------------------|------------------|------------|
| BCTV14       | $\Omega(T(\log T)^2)$ | $\omega(L+ v )$                     | $\omega(1)$                 | 1                | KoE        |
| This<br>Work | $O(\alpha T)$         | $poly(\lambda)(\sqrt{T} + L +  v )$ | $poly(\lambda)(\sqrt{T}+L)$ | $O(\log \log T)$ | LT-CRHF    |

Security  $2^{-\omega(\log \lambda)}$ 

Program Length L

Runtime Bound *T* 

Public Input V