Convolutiona Networks Basic (Overview)

MIchaelle Perez

April 25, 2021

Contents

1	Lea	rning A	Algorithms	2		
	1.1	Tradit	ional AI vs ML	2		
	1.2		ML	2		
	1.3	_	- Examples	2		
		1.3.1	Examples	2		
		1.3.2	Common Tasks	3		
		1.3.3	Common Tasks	3		
	1.4	1.0.0	o do it?	3		
	1.1	1.4.1	Measuring Performance	3		
		1.4.2	Supervised and Unsupervised Learning	4		
		1.4.2	Supervised and Chsupervised Learning	4		
2	Mai	ain Model Deep Feed Forward Networks				
	2.1		hesis	4		
	2.2		Family" of $f(\cdot, \cdot)$	4		
	2.3		ion Layers	4		
		2.3.1	Fully Connected (Perceptron)	4		
		2.3.2	Activation	5		
		2.3.2 $2.3.3$	Convolutional	5		
		2.3.4		5 5		
	0.4		Attention Networks			
	2.4	•	ization	6		
		2.4.1	Model	6		
		2.4.2	SGD	6		
		2.4.3	Loss Function	7		

3	$\mathbf{Ele}_{\mathbf{I}}$	mentary Model Implementation	7					
	3.1	Modeling Process	7					
	3.2	Data Split (Basic)	7					
	3.3	Model Evaluation Beyond L_f	8					
	3.4	Hands On:	8					
4	ToI	Do						
	4.1	Representative Power of Networks	8					
	4.2	Algorithms	8					
	4.3	Understanding Boltzman Machines	9					

1 Learning Algorithms

1.1 Traditional AI vs ML

- Traditional AI tries to build an algorithm in the strict sense of the word that solves a problem.
- ML try to learn from Data i.e. examples.
 - ML is based on creating a optimization problem in a suitable space.
 - We only need to crate a measure of success and search algorithm on the solution space.

1.2 Why ML

- ML can solve tasks that are too difficult to solve with a fixed program (classical AI).
- There is a profound link between **understanding** ML and understanding the principles of human learning (intelligence).

1.3 Tasks – Examples

1.3.1 Examples

- A ML model is described by how it handles examples.
- An example is an element on feature space.
 - Features are any kind of mathematical object.

- The feature space defines the domain of the underlying function that describes the model.
- Features can be very well hand crafted (specific measures, characteristics, etc.) or not so well crafted (picture).

1.3.2 Common Tasks

- Regression: $f: \mathbb{R}^n \to \mathbb{R}$, samples $f(x_i) = t_i$.
- Classification: $f: \mathbb{R}^n \to \{1, \dots N\}$ samples $f(\mathbf{x}_i) = t_i$.
 - Object recognition [ref]
 - Face recognition [ref]
- Classification with Missing Inputs:

$$\{f_i: \mathbb{R}^{n_i} \to \{1,\ldots,N\},$$

samples $f_i(\mathbf{x_j}) = t_j$.

- Zero shoot learning [ref]
- Super resolution [ref]

1.3.3 Common Tasks

- Denoising: $f: \mathbb{R}^n \to \mathbb{R}^n$, samples $f(\hat{\mathbf{x}}) = \mathbf{x}$.
 - Density estimation.
 - Clustering.
- DE: $f: \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^m$ samples $f(\mathbf{x}) = [\mathbf{x} \stackrel{u}{\mapsto} u(\mathbf{x})]$.
 - _ ??
 - ??

1.4 How to do it?

1.4.1 Measuring Performance

- A key point in the design of a ML algorithm for a specific task T is find a quantitative measure of the performance.
- As an example in the classification task:

- We can measure accuracy over a group of samples:

$$Acc = \frac{1}{N} |\{\mathbf{x}_j \mid f(\mathbf{x}_j) = t_j\}|$$

• The real measure of success of a ML model is **how well it behaves** with data that it has not been seen before.

1.4.2 Supervised and Unsupervised Learning

2 Main Model Deep Feed Forward Networks

2.1 Hypothesis

- Work on AI problems (specially classification) as a parametric statics.
- Given the existence of a f(X) s.t. $f(X_i) = t_i$ for a given set $D = \{(X_i, t_i).$
- Given a family of functions $f(X, \theta)$ where X is the input and θ is the parameter. The goal is to find θ^* s.t. $f(X, \theta^*)$ is close to f.
- We must study how to find the θ_i the nature of the $f(\cdot, \cdot)$ and $D = \{(X_i, t_i)\}.$

2.2 The "family" of $f(\cdot, \cdot)$

- We can't make a search over all the possible functions $f(\cdot, \cdot)$, we must restrict our search to a certain kind of functions (inductive bias).
- The feed forward networks work using a simple approach:

$$f(X_i, \theta) = f_1(f_2(f_3(\dots(f_n(X_n, \theta), \dots), \theta), \theta), \theta).$$

• In classical statistics the f_i are linear; but in ML it is necessary to use some kind of non linearity.

2.3 Common Layers

2.3.1 Fully Connected (Perceptron)

- Input: $X_i = (x_i^1, \dots, x_i^m)$.
- Parameters: $w_i j \in \mathbb{R}$ with j = 1, ..., m and bias $c \in \mathbb{R}^n$

• Fully Connected: Simply acts linearly:

$$f(X_i, W) = X_i W + c$$

• Several limitations due to being linear.

2.3.2 Activation

- \bullet Using a non linear function to increase the representation power of the FC layers.
- Commonly used:

- (Sigmoid)
$$g(t) = \frac{1}{1+e^{-\alpha t}}$$

- (Tan)
$$g(t) = \tanh(t) = \frac{e^t - e^{-t}}{e^t + e^{-t}}$$

- (Relu)
$$g(t) = \begin{cases} 0 & t < 0 \\ t & t \ge 0 \end{cases}$$

2.3.3 Convolutional

• Networks with localized linear operators with an underlying grid geometry.

2.3.4 Attention Networks

Working

2.4 Optimization

2.4.1 Model

• Once constructed the **network architecture** the problem is now find θ s.t.:

$$\min_{\theta} L(f(\cdot, \cdot), \theta, D)$$

- It is possible?
 - Statistical properties of D, bias.
 - Representation power of f.
 - Practical problem of finding the minimum.

2.4.2 SGD

- 1. Steepest Descent Method
 - Using gradient:

$$\nabla_{\theta} L_f(\theta; D) = \Delta \theta.$$

• The iterative method using update:

$$\theta_{i+1} = \theta_i + \alpha \Delta \theta_i$$

- α is called the learning rate.
- 2. Difficulties
 - \square Selecting an appropriate θ_0 .
 - \square Non convexity of L_f .
 - \square Number of iterations needed (time consumed).
 - Complexity on computing L_f for large D (Batch SGD).
 - Automatically compute $D_{\theta}L_f$. Automatic differentiation and back propagation.
 - Check: arXiv:1609.04747 [cs.LG]

2.4.3 Loss Function

• In order to use Batch optimization we need that:

$$L_f(\theta; D_1 \cup D_2) \approx L_f(\theta; D_1) + L_f(\theta; D_2).$$

- The loss function is the way to give an additional bias to our model.
- 1. Common loss.
 - MSE: $\frac{1}{N} \sum_{j=1}^{N} |f(x_j; \theta) t_j|$
 - CCE: $h(\hat{t}_i, t_i) = -(t_i \log(\hat{t}_i) + (1 t_i) \log(1 \hat{t}_i)$
 - ? Others (Wasserstein, Regularization)

3 Elementary Model Implementation

3.1 Modeling Process

- 1. Study the problem. (Domain Knowledge)
- 2. Study data, including a splitting. (?)
- 3. Propose model:
 - $f(;\theta)$
 - $L_f()$
- 4. Train Model
- 5. Model Evaluation (?)

3.2 Data Split (Basic)

- Since the objective of an ML is generalization i.e. a good performance on new data, we split the available data:
 - 1. Train
 - 2. Validation
 - 3. Test
- [?] k-fold validations, stratification.

3.3	\mathbf{Model}	Evaluation	Beyond	L_f
-----	------------------	------------	--------	-------

- \bullet L_f might not capture all the desired characteristics of the model.
- Over-fit [?]
- Accuracy Sensitivity.
- Domain knowledge evaluation.
- Ethical (Bias).

3.4 Hands On:

- Sample Notebook repo (private).
- Trained Model: drive.

4 ToDo

4.1 Representative Power of Networks

Better Understanding:

	"Approximation by superposition of sigmoidal functions" by Cybenk	ю,
	"Approximation capabilities of multilayer feedforward newtorks" Hornik	bу
	"Representation of Deep Forward Networks" by Telgarsky	
	"On the computational efficiency of training Neural Networks" Livni, Shalev	by
	"Complexity Theory Limitations for learning DFNs"	
4.2	Algorithms	
	"Guaranteed Training of Neural Networks using Tensor Methods" Janzamin	by
	"Train faster, generaliza better" by Hardt	

4.3 Understanding Boltzman Machines

- $\hfill\Box$ "Probable Bounds for Learning Some Deep Representations" by Arora
- \square "Deep Learning and Generative Hierarchal models" by Mossel