KEY POINTS OF THE FINAL EXAMINATION

1st Semester, 2022-2023

R	Kno	owledge Shares of the exam points:	
		Classic digital logic (Chp1-3): 50~60%	
		Modern EDA (Chp4-7): 40~50%	
P	Question Types		
		Short answers	
		Circuit analysis and design	
		Verilog programming	
	Chp 1		
		Number systems and code systems, including 1's and 2's complements (Sect. 1.2)	
		◆ Conversions of a number among different number systems	
		Digital logic fundamentals, simplification of logic functions using formulas,	
		and K-maps with constraints (5 points at least). (Sect. 1.3)	
		Logic symbols of commonly used logic gates (Sect.1.4)	
	Chp	2	
		The steps to analyze a combinational circuit.	
		Sect 2.3, commonly used comb. circuits, including encoders, decoder, MUX,	
		comparators, and adders, about their principles, logic functions, and symbols.	
	_	♦ You may SKIP their respective design processes.	
		Carry-Lookahead Adders' principles, and merits/demerits over Serial Carry	
		Adders.	
		Signed binary number adders	
		How to calculate the OF flag?	
	_	◆ 3 treatments of the extra bit, including their principles.	
		Sect 2.4, design process steps. Given a truth table, derive functions, and device the logic diagram.	
		Sect 2.5, basic concepts, like propagation delays, wave forms, etc.	
	ш	◆ Methods to handle hazards.	
	Ch		
		Sect 3.1 basic concepts, categories, and fig. 3-1 of sequential circuits, STGs	
		(State-Transition Graphs) as well.	
		Sect 3.2, symbols, characteristic tables and functions of all FLIP-FLOPS.	
		♦ Know the ways to construct a required type of flip-flop using other types	
		of flip-flops, like to build a JK using a D flip-flop.	
		Sect 3.3, The steps to analyze a sequential circuit. Understand what exactly	
		each step is accomplishing.	
		Sect 3.4	

- ◆ Registers: the principles of all types of registers: parallel/serial input/output registers.
- Counters: the following knowledge and skills are REQUIRED:
 - Suppose you are required to design a 12-carry counter with a 74HC161 giving its function table and pin assignments, using the specified method of asynchronous clearing, synchronous clearing, or presetting. You need to
 - draw the <u>STG including invalid states</u>,
 - and draw the <u>logic diagram</u> by connecting wires, basic gates to a 74HC161 IC, like fig.3-64, fig.3-65, and fig.3-67.
 - Know how to design a 200-carry counter using two 74HC161s similarly.

	Sect 3.6, basic concepts, like clock cycle, aperture time, max propagation
	delay time, etc.
Ch	o 4 to 5
	Verilog fundamentals
	• grammar, common system tasks and system functions.
	◆ Values, constants, wires and variables, vectors and arrays.
	◆ Operators.
	Three styles of programming: gate-level, data-flow, and behavioral styles.
	Comprehend the typical EDA design process (fig. 5-2).
Ch	p 6-7: modules and their corresponding test benches.
	6.1, Basic gates
	6.2, Encoders (the first two methods), HC148 as well.
	6.3 Decoders, HC4511 as well.
	6.4-6.6, MUX, comparators, and 4-bit serial carry adders.
	7.2, D, JK, and T flip-flops
	7.3.1 and 7.3.2, registers.
	7.5, counters, and HC161.
	7.6, understand the "Triple-always" module (p.7-30) and its test bench (p.
	7-32)

The final examination may include the above key points, as well as other knowledge and skills introduced in our classes.

STUDY HARD, AND BEST WISHES TO YOU ALL!