OWL Web Ontology Language as a Scripting Language for Smart Space Applications

Espen Suenson, Johan Lilius, Iván Porres Åbo Akademi

> RuleML 2011 July 21st, Barcelona

Simplify the development of new software applications that use the features of multiple smart devices.

with phone:- Phone, pvr:- PVR(id="pvr01"):
 when phone.IncomingCall: pvr.Pause
end

```
with user \equiv /User \cap \exists/Id.{"peter.smith@abo.fi"} phone \equiv /Phone \cap \exists/Owner^-. user busyUser \equiv user \cap /Busy ringingPhone \equiv phone \cap /IncomingCall
```

```
when (\exists T. busyUser) \sqcap (\exists T.ringingPhone)
```

then insert /ActivateVoicemail(ringingPhone)

```
with
      EquivalentClasses(user ObjectIntersectionOf(/User
       ObjectSomeValuesFrom(/Id ObjectOneOf(
       "peter.smith@abo.fi"))))
      EquivalentClasses (phone ObjectIntersectionOf (/Phone
       ObjectSomeValuesFrom(ObjectInverseOf(/Owner) user)))
      EquivalentClasses (busyUser
       ObjectIntersectionOf(user /Busy))
      EquivalentClasses (ringingPhone
       ObjectIntersectionOf(phone /IncomingCall))
when
      ObjectIntersectionOf(ObjectSomeValuesFrom(
       owl:topObjectProperty busyUser)
```

ObjectSomeValuesFrom(owl:topObjectProperty

then insert /ActivateVoicemail(ringingPhone)

ringingPhone))

```
with user = /User and /Id == "peter.smith@abo.fi"
    phone = /Phone /Owner user
    busyUser = user and /Busy
    ringingPhone = phone and /IncomingCall
```

then incent /ActivateVaicemail/ mingingPhone

when busyUser, ringingPhone

then insert /ActivateVoicemail(ringingPhone)

```
when /SIB_Location and /EmployeeRestaurant,
    dev/Time > "11:00:00" ^^xsd:time,
    dev/Time < "13:30:00" ^^xsd:time</pre>
```

then insert /AtLunch (user)

Class Expression	Interpretation · C
(CE)	(CE) ^C
CE ₁ and CE ₂	$(CE_1)^{\mathring{\mathbb{C}}} \cap (CE_2)^{\mathring{\mathbb{C}}}$
CE ₁ or CE ₂	$(CE_1)^C \cup (CE_2)^C$
${\tt CE}_1$, ${\tt CE}_2$	$\begin{cases} \delta & \text{if } \exists x, y : x \in (CE_1)^C \text{ and } y \in (CE_2)^C \\ \emptyset & \text{otherwise} \\ \text{where } \delta \subseteq \Delta_1 \text{ and } \delta \neq \emptyset \end{cases}$
CE ₁ OPE CE ₂	$\{x \mid \exists y : (x, y) \in (OPE)^{OP} \text{ and } x \in (CE_1)^C, y \in (CE_2)^C\}$
n CE ₁ OPE CE ₂	$\{x \mid \#\{y \mid (x, y) \in (OPE)^{OP} \text{ and } x \in (CE_1)^C, y \in (CE_2)^C\} = n\}$
$\min \ n \ CE_1 \ OPE \ CE_2$	$\{x \mid \#\{y \mid (x,y) \in (OPE)^{OP} \text{ and } x \in (CE_1)^C, y \in (CE_2)^C\} \ge n\}$
\max n CE_1 OPE CE_2	$\{x \mid \#\{y \mid (x, y) \in (OPE)^{OP} \text{ and } x \in (CE_1)^C, y \in (CE_2)^C\} \le n\}$
only ${\tt CE}_1$ OPE ${\tt CE}_2$	$\{x \mid \forall y : (x, y) \in (OPE)^{OP}, x \in (CE_1)^{C} \text{ implies } y \in (CE_2)^{C}\}$
? OPE CE	$\{x \mid \exists y : (x, y) \in (OPE)^{OP} \text{ and } y \in (CE)^{C}\}$
CE OPE ?	$\{y \mid \exists x : (x, y) \in (OPE)^{OP} \text{ and } x \in (CE)^{C}\}$
DPE DR	$\{x \mid \exists y : (x, y) \in (DPE)^{DP} \text{ and } y \in (DR)^{DT}\}$

OWL Web Ontology Language as a Scripting Language for Smart Space Applications

Espen Suenson, Johan Lilius, Iván Porres Åbo Akademi

> RuleML 2011 July 21st, Barcelona