

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

LESSON 15 SPECTRUM ANALYSIS OF DISCRETE SIGNALS

PhD. Nguyen Hong Quang

Assoc. Prof. Trinh Van Loan

PhD. Doan Phong Tung

Computer Engineering Department

□ CONTENT

- 1. Analyze the spectrum of a discrete non-periodic signal.
- 2. Discrete Fourier Transform DFT.
- 3. Fast Fourier transform FFT.

☐ Lesson Objectives

After completing this lesson, you will be able to understand the following topics:

- Spectral analysis of discrete non-periodic signals.
- Discrete Fourier transform method.
- Fast Fourier transform method.

1. Spectral analysis of discrete non-periodic signals

• The Fourier transform of a discrete non-periodic signal:

DTFT:
$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

IDTFT:
$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{-j\omega n} d\omega$$

$$X(e^{j\omega}) = R(\omega) \cdot e^{j \cdot \varphi(\omega)}$$

$$R(\omega) = |X(e^{j\omega})| \ge 0$$

$$-\pi \le \varphi(\omega) = \arg[X(e^{j\omega})] \le \pi$$

 $|X(\omega)|$: magnitude spectrum

 $\Theta(\omega) = \not\preceq X(\omega)$: phase spectrum

Example: $x(n) = \delta(n-2)$

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n} \implies X(\omega) = e^{-j2\omega}$$

Relationship between the Fourier transform and the Z

transform?

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

$$X(z)\Big|_{z=e^{j\omega}} \equiv X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

- The z transform becomes the Fourier transform when the amplitude of the z variable is 1, i.e.
 on a circle with radius 1 in the z-plane.
- This circle is called the unit circle.

ROC: $r_2 < |z| < r_1$

Energy density spectrum

$$E_{x} = \sum_{n=-\infty}^{\infty} |x(n)|^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^{2} d\omega$$

- Energy density spectrum: $S_{xx}(\omega) = |X(\omega)|^2$
- When x(n) is real:

$$S_{xx}(-\omega) = S_{xx}(\omega)$$

Example: Determine and plot the energy density spectrum of a signal:

$$x(n) = a^n \cdot u(n)$$
, -1a = 0.5 và $a = -0.5$

$$X(\omega) = \frac{1}{1 - ae^{-j\omega}}$$

$$S_{xx}(\omega) = \frac{1}{1 - 2a\cos(\omega) + a^2}$$

Example

Signal $0.5^n u(n)$, $(-0.5)^n u(n)$ and energy density spectrum

Some basic properties of the Fourier transform

- Linearity: $ax_1(n) + bx_2(n) \xrightarrow{\mathcal{F}} aX_1(e^{j\omega}) + bX_2(e^{j\omega})$
- Periodicity: $X(e^{j\omega})$ periodic period 2π , X(f) periodic period is 1
- $\begin{array}{ll} \bullet & \text{Delay:} \\ & x(n) \stackrel{\mathcal{F}}{\longrightarrow} X(e^{j\omega}) \\ & x(n-n_0) \stackrel{\mathcal{F}}{\longrightarrow} ? \end{array} \qquad \qquad \begin{array}{ll} \mathcal{F}\{x(n-n_0)\} = \sum_{n=-\infty}^{\infty} x(n-n_0)e^{-j\omega n} \\ & = e^{-j\omega n_0}X(e^{j\omega}) \end{array}$
- Comment: The delay signal has a constant amplitude spectrum, but the phase spectrum is shifted by an amount ωn_0
- Convolution: $y(n) = x(n) * h(n) \xrightarrow{\mathcal{F}} Y(e^{j\omega}) = X(e^{j\omega}).H(e^{j\omega})$

2. Discrete Fourier Transform DFT

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

- DTFT: Frequency ω is continuous, $X(\omega)$ is periodic with a period of 2π .
- For x(n) of finite length : n = 0, 1, 2, ..., N 1.
- Discrete N frequencies $\omega \rightarrow \omega_k = k2\pi/N$
- ⇒ DFT (Discrete Fourier Transform): Fourier transform of a sequence of finite length with discrete frequency, called discrete Fourier transform for short
- Forward transform (analytical), reverse transform (synthetic)

$$X(k) = \begin{cases} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}nk} & 0 \le k \le N-1 \\ 0 & k \text{ còn lại} \end{cases} \qquad x(n) = \begin{cases} \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{-j\frac{2\pi}{N}nk} & 0 \le n \le N-1 \\ 0 & n \text{ còn lại} \end{cases}$$

Example

$$X(k) = \begin{cases} \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}nk} & 0 \le k \le N-1 \\ 0 & k \text{ còn lại} \end{cases}$$

- DFT analysis with N = 4 of $x(n) = rect_3(n)$.
- X(k) = [3, -j, 1, j]
- Relationship with DTFT:

3. Fast Fourier Transform (FFT)

$$X(k) = \begin{cases} \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}nk} & 0 \le k \le N-1 \\ 0 & k \text{ còn lại} \end{cases}$$

(FFT: Fast Fourier Transform)

- Directly calculating the DFT requires N^2 complex number multiplications and N(N-1) complex number addition.
- FFT algorithm: decompose the DFT of a sequence of N numbers into DFT of smaller sequences
- Conditions to apply the algorithm: $N = 2^M$
- The number of operations is reduced to N log₂ N

Time division FFT

$$\begin{split} X(k) &= \sum_{n=0}^{N-1} x(n) e^{-J\frac{2\pi}{N}kn} = \sum_{n=0}^{N-1} x(n) W_N^{kn} \quad \text{v\'oi} \quad W_N = e^{-j\frac{2\pi}{N}} \quad \text{v\`a} \quad 0 \leq k \leq N-1 \\ X(k) &= \sum_{n=0}^{N-1} x(n) W_N^{kn} = \sum_{n=0,2,4...} x(n) W_N^{kn} + \sum_{n=1,3,5...}^{N-1} x(n) W_N^{kn} \end{split}$$

Example with N = 2

• Replace n = 2r (n even) and n = 2r + 1 (n odd): x(0)

$$X(k) = \sum_{r=0}^{\left(\frac{N}{2}\right)-1} x(2r)W_N^{2kr} + \sum_{r=0}^{\left(\frac{N}{2}\right)-1} x(2r+1)W_N^{k(2r+1)}$$

$$x(0)$$
 $x(1)$ $X(0)$ $X(1)$

$$X(k) = X_0(k) + W_N^k X_1(k)$$

$$X(0) = X_0(0) + W_2^0 \cdot X_1(0) = x(0) + x(1)$$

$$X(1) = X_0(1) + W_2^1 \cdot X_1(1) = x(0) - x(1)$$

Example with N = 4:

Đảo bit

0	00	00	0
1	01	10	2
2	10	01	1
3	11	11	3

$$X_0(0) = x(0) + x(2)$$

$$X_0(1) = x(0) - x(2)$$

$$X_1(0) = x(1) + x(3)$$

$$X_1(1) = x(1) - x(3)$$

$$X(0) = X_0(0) + W_4^0 \cdot X_1(0) = X_0(0) + X_1(0)$$

$$X(1) = X_0(1) + W_4^1 \cdot X_1(1) = X_0(0) - j \cdot X_1(0)$$

$$X(2) = X_0(2) + W_4^2 \cdot X_1(2) = X_0(0) - X_1(0)$$

$$X(3) = X_0(3) + W_4^3 \cdot X_1(3) = X_0(0) + j \cdot X_1(0)$$

4. Summary

- The discrete-time Fourier transform converts a non-periodic discrete signal of finite energy into the frequency domain with a continuous frequency.
- Discrete Fourier transform is used to represent the frequency domain with discrete frequencies.
- The fast Fourier algorithm allows to perform the discrete Fourier transform quickly.

Homework

- \square Signal $x(n) = rect_3(n)$
 - a. Calculate and plot the discrete spectrum of this signal using the FFT algorithm with N=4
 - b. Calculate and plot the discrete spectrum of this signal using the FFT algorithm with N=8
 - c. Calculate and plot the spectrum of x(n) by DTFT transformation, then compare the results of sentences a and b with the results of sentences c and make comments on the relationship between these spectra.

Next lesson. Lesson

DISCRETE SYSTEM IN FREQUENCY DOMAIN

References:

- Nguyễn Quốc Trung (2008), Xử lý tín hiệu và lọc số, Tập 1, Nhà xuất bản Khoa học và Kỹ thuật, Chương 1 Tín hiệu và hệ thống rời rạc.
- J.G. Proakis, D.G. Manolakis (2007), Digital Signal Processing, Principles, Algorithms, and Applications, 4th Ed, Prentice Hall, Chapter 1 Introduction.

Wish you all good study!