Обзор статьи «Image Transformers»

Поконечный Эдуард ФИВТ МФТИ, группа М05-014г @celidos pokonechnyy.ep@phystech.edu

15 января 2021 г.

Аннотация

Ссылка на статью: https://arxiv.org/abs/1802.05751. Авторы исходной статьи: Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, Alexander Ku, Dustin Tran.

1 Введение

Существует множество архитектур для моделирования естественно выглядящего распределения изображений. Например PixelRNN, PixelCNN. PixelRNN плохо параллелятся; PixelCNN имеот ограниченное рецептивное поле, особенно если в модели малое число слоев.

Авторы работы хотят показать, что механизм self-attention представляет собой баланс между бесконечным receptive field у PixelRNN и ограниченным receptive field у PixelCNN. Авторы проверяют качество работы на двух задачах: условная генерация изображений (сигнал - класс изображения) и superresolution.

2 Представление картинки

Используется два представления:

- 1. категориальное интенсивность каждого пискеля представлена одним из 256 векоров размерности d (для всех трех цветов)
- 2. численное изображение обрабатывается сверткой для получения размера [h,w,d]

К представлениям пикселей также добавляется positional encoding, он также бывает двух видов:

1. sin/cos [3]. Общий вид функций:

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d}}\right)$$

$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d}}\right)$$

2. позиционные эмбеддинги.

3 Механизм self-attention

Архитектура энкодер-декодер.

Как и в задачах обработки естественного языка, трансформер на изображениях – это чередование слоев self-attention и обычных полносвязных слоев, применяемых поэлементно.

Общая схема работы: есть вектора запросов (q, query) и вектора ключей (M, она же память, memory). Для вектора q и для всех векторов из памяти M вычисляются веса attention — уровень релевантности данного вектора из M текущему вектору q. Затем эти веса используются для вычисления взвешенной суммы всех преобразованных с помощью матрицы W_v векторов из блока памяти M. Полученный вектор считается новым представлением текущей позиции и отправляется дальше (в данном случае, направляется через слой dropout в residual-соедниение).

$$q_a = \text{LN}(q + \text{DO}(\text{softmax}\left(\frac{W_q q (MW_k)^T}{\sqrt{d}}\right) MW_v))$$

$$q' = LN(q_a + DO(W_1[W_2q_a]_+))$$

где DO – дропаут, LN – layer norm. Общий вид layer norm [1]:

$$\overline{a}_i^l = \frac{\text{gain}}{\sigma_i^l} \left(a_i^l - \mu_i^l \right)$$

$$\mu^l = \frac{1}{H} \sum_{i=1}^{H} a_i^l$$

$$\sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} \left(a_{i}^{l} - \mu^{l}\right)^{2}}$$

4 Локальный self-attention

Количество позиций, которое находится в памяти, сильно влияет на производительность модели. Здесь на первый план выход идея авторов считать attention не на всем изображении, а лишь на его локальной части.

Изображение разбивается на части (блоки запросов), и каждому такому блоку ставится в соответствие блок M большего размера, который содержит в себе блок query. Это сделано для достижения следующих целей:

- уменьшения количества высилений путем уменьшения позиций, на которые смотрит attention в каждый момент времени;
- получения возможности вычислять эти блоки параллельно.

Также предложено две разновидонсти локального внимания — одномерный и двумерный. В случае одномерного внимания двумерный слой-картинка вытягивается в строку, которая затем разбивается на непересекающиеся окна из подряд идущих пикселей. При этом, однако, может нарушаться целостность пространственной структуры пикселей, входящих в очередной

блок и блок памяти. В случае двумерного внимания, изображение не вытягивается в строку, а выбор блоков запросов и блоков памяти сохраняет пространственную структуру.

5 Эксперименты и выводы

На безусловной генерации на CIFAR-10 результаты сравнимы с PixelCNN++ и PixelSNAIL (еще одна основанная на attention модель). На ImageNet показала лучшие результаты по состоянию на 2018 год. Увеличение рецептивного поля ведет к значительному улучшению перплексии.

При условной генерации сигналом явлется обучаемый эмбеддинг класса. Проверяли на CIFAR-10, лог. правдоподобие примерно такое же, как и при безусловной генерации, но выше качество для восприятия человеком.

На задаче superresolution занимались увеличением картинок с размера 8×8 до 32×32 , проверяли на наборе данных CelebA и CIFAR-10.

В целом сейчас много еще более любопытных и многообещающих статей по транформерам [2][4], эта уже достаточно старая. Но авторы в этой статье показали принципиальную применимость трансформеров для ряда задач, считаю, что со своей задачей они справились.

Также беспокоит, что большая часть экспериментов была поставлена на картинках очень небольшого размера (до 32×32). Скорее всего, это говорит о том, что трансформеры в чистом виде слишком тяжелы для применения к крупным картинкам непосредственно. Большая часть имеющихся моделей с трансформерами так или иначе пытается сократить «зону ответственности» и уменьшить число позиций, которые должен посетить attention.

Список литературы

- [1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. 2016.
- [2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: transformers for image recognition at scale. 2020.
- [3] S. Takase and N. Okazaki. Positional Encoding to Control Output Sequence Length. 2019.
- [4] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient image transformers distillation through attention. 2020