Quiz 1 (10월 16일 수 7,8 교시)

[2013년 2학기 수학 및 연습 2] (시간은 20분이고, 20점 만점입니다.)

- * 답안지에 학번과 이름을 쓰시오. 답안 작성시 풀이과정을 명시하시오.
- 1. (7점) 다음 함수의 극대점, 극소점과 안장점을 구하시오.

(a)
$$(4 \stackrel{\text{d}}{\to}) f(x,y) = x^3 + y^2 - 6xy + 6x + 3y$$

(b)
$$(3점)$$
 $f(x,y) = x^3 - 3xy^2$

- 2. (7점) 평면 x + y + z = 1 에서 함수 $f(x, y, z) = x^2 + 2y^2 + 3z^2$ 의 최소 값은 존재한다. 라그랑즈 승수법을 이용하여 이 최소값을 구하시오.
- 3. (6점) 다음에 주어진 함수들의 야코비 행렬식값을 구하여라.

$$G_1(r, \theta, z) = (r \cos \theta, r \sin \theta, z)$$

$$G_2(\rho, \varphi, \theta) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi)$$

$$G_3(u, v, w) = (u + \sin v + \cos w, 2v + e^w, 3w)$$

정답

1. (a)
$$D_1f=3x^2-6y+6,\ D_2f=2y-6x+3$$
 에서 임계점은 $(1,\frac{3}{2}),(5,\frac{27}{2}).$ (1점)

헤세 행렬은

$$f''(x,y) = \begin{pmatrix} 6x & -6 \\ -6 & 2 \end{pmatrix} \tag{2 점}$$

$$\det f''(1, \frac{3}{2}) < 0 \Rightarrow (1, \frac{3}{2}) 는 안장점.$$
 (3점)

해세 판정법에 의해
$$\det f''(1,\frac{3}{2}) < 0 \Rightarrow (1,\frac{3}{2}) 는 안장점. \tag{3점}$$

$$\det f''(5,\frac{27}{2}) > 0 \Rightarrow (5,\frac{27}{2}) 는 극소점. \tag{4점}$$

(b)
$$D_1 f = 3x^2 - 3y^2$$
, $D_2 f = -6xy$ 에서
임계점은 $(0,0)$. (1점)
 (x,y) 가 x 가 0 보다 작은 쪽에서 x -축을 따라 $(0,0)$ 에 접근할 때
와 0 보다 큰 쪽에서 x -측을 따라 $(0,0)$ 에 접근 할 때 $f(x,y)$ 의
부호가 다르므로 점 $(0,0)$ 은 안장점. (3점)

2. g(x,y,z) = x + y + x - 1 이라 하면, Lagrange 승수법에 의해

$$\operatorname{grad} f(x,y,z) = \lambda \operatorname{grad} g(x,y,z)$$

을 만족하는 실수 λ 가 존재한다.

즉,
$$(x, 2y, 3z) = \lambda(1, 1, 1)$$
 이다. (2점)

위의 연립방정식을 풀면

$$x = \lambda, y = \frac{1}{2}\lambda, z = \frac{1}{3}\lambda$$

이고

$$\lambda + \frac{1}{2}\lambda + \frac{1}{3}\lambda = 1$$

에서
$$\lambda = \frac{6}{11}$$
 이다. (4점)

따라서 구하려는 최소값은
$$\frac{6}{11}$$
 이다. $(7점)$

3.

$$\det G_1' = r$$
, $\det G_2' = \rho^2 \sin \varphi$, $\det G_3' = 6$

(각 2점씩)