Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафедра теоретических основ электротехники

ОТЧЕТ по лабораторной работе №3 на тему

ИССЛЕДОВАНИЕ ПРОСТЫХ ЦЕПЕЙ СИНУСОИДАЛЬНОГО ТОКА

Студент группы №950503

Полховский А.Ф.

Преподаватель

Батюков С. В.

1 Цель лабораторной работы.

Приобретение навыков работы с вольтметром, амперметром, генератором, фазометром. Экспериментальная проверка законов распределения токов и напряжений в последовательной, параллельной и последовательно-параллельной цепях гармонического тока.

2 Расчет домашнего задания.

2.1 Исходные данные представлены в таблице 2.1.

Таблица 2.1 – Исходные данные

U, B	Схема на рис.		<i>R</i> ₁ , Ом	<i>R</i> ₂ , Ом	<i>R</i> ₃ , Ом	L , м Γ н	r_k , Om	<i>С</i> , мкФ
8	3.8	800	110	109.6	109.9	44.3	58.7	1.04

2.2 Расчет последовательной схемы.

Рассчитываемая схема изображена на рисунке 1.

Рисунок 1 – Схема с последовательным соединением элементов

Циклическая частота ω, рад/с, равна

$$\omega = 2\pi f = 2 \cdot \pi \cdot 800 = 1600\pi \frac{\text{pag}}{c}$$

Реактивные сопротивления X_L и X_C , Ом, равны

$$X_L = \omega \cdot L = 1600\pi \cdot 44.3 \cdot 10^{-3} = 222.676 \text{ (Om)},$$

$$X_C = \frac{1}{\omega \cdot C} = \frac{1}{1600\pi \cdot 1.04 \cdot 10^{-6}} = 191.292 \text{ (Om)}.$$

Комплексные сопротивления Z_K , Z_C , Z_1 , Ом, равны

$$Z_K = r_k + j \cdot X_L = 58,7 + j222.676 \,\mathrm{Om},$$
 $Z_C = -j \cdot X_C = -j191.292 \,\mathrm{Om},$ $Z_1 = R_1 = 110 \,\mathrm{Om}.$

Полное комплексное сопротивление цепи Z, Ом, равно

$$\underline{Z} = \underline{Z}_K + \underline{Z}_C + \underline{Z}_1 = 58.7 + j222.676 - j191.292 + 124.7 + 110 = 168.7 + j31.384 = 171.594e^{j10.539^{\circ}}$$
 Om

Входной ток \dot{I} , A, равен

$$\dot{I} = \frac{\dot{U}}{Z} = \frac{8}{171.594e^{j10.539^{\circ}}} = 0.047e^{-j10.539^{\circ}} \text{ A}.$$

Напряжения на элементах схемы $\dot{U}_{\it K},\,\dot{U}_{\it C},\,\dot{U}_{\it I},\,{\rm B},$ равны

Рассчитанные напряжения и ток представлены графически на векторной диаграмме (рис. 2)

Рисунок 2 — Векторная диаграмма для последовательной цепи Расчетные результаты представлены в таблице 2.2.

Таблица 2.2 – Расчетные и экспериментальные результаты

	X_L , Om	X_C , Om	Z		İ		\dot{U}_{K}		\dot{U}_C		\dot{U}_1	
			<i>Z</i> , Ом	φ, град	<i>I</i> , мА	ψ ₁ , град	$U_{\it K}$, B	ψ <i>ик</i> , град	U_C , B	ψ <i>uc</i> , град	U_1 , B	ψ_{U1} , град
Расчет	222.676	191,292	171.594	10.539	47	-10.539	10.736	64.964	8.918	-100.539	5.128	-10.539
Опыт	-	-	-	-	45,8	-14,3	11,07	61,3	8,75	-	4,99	-14,23

2.3 Расчет параллельной схемы.

Рассчитываемая схема с параллельным соединением элементов представлена на рисунке 3.

Рисунок 3 – Схема с параллельным соединением элементов

Токи ветвей \dot{I}_1 , \dot{I}_2 , \dot{I}_3 , A, равны

$$\begin{split} \dot{I}_1 &= \frac{\dot{U}}{R_1} = \frac{8}{110} = 0.073 e^{j0^{\circ}} \text{ A,} \\ \dot{I}_2 &= \frac{\dot{U}}{Z_C} = \frac{8}{-j191.292} = j0,042 = 0,042 e^{j90^{\circ}} \text{ A,} \\ \dot{I}_3 &= \frac{\dot{U}}{Z_K} = \frac{8}{58.7 + j222.676} = 0.008855 - j0,038 = 0,035 e^{-j75.232^{\circ}} \text{ A.} \end{split}$$

Входной ток \dot{I} , A, равен сумме токов \dot{I}_1 , \dot{I}_2 , \dot{I}_3

$$\dot{I} = \dot{I}_1 + \dot{I}_2 + \dot{I}_3 = 0.073e^{j0^{\circ}} + 0.042e^{j90^{\circ}} + 0.035e^{-j75.232^{\circ}} = 0.082 - j0.008223 = 0.082e^{j5.76^{\circ}}$$
 A.

Напряжение и рассчитанные токи представлены графически на векторной диаграмме (рис. 4)

Рисунок 4 – Векторная диаграмма для параллельной цепи

Расчетные результаты представлены в таблице 2.3.

Таблица 2.3 – Расчетные и экспериментальные результаты

	İ		1	; 1	Ì	\dot{I}_2	\dot{I}_3		
	Ι,	ψ_I ,	I_1 ,	ψ_{I1} ,	I_2 ,	Ψ12,	I_3 ,	Ψ <i>I</i> 3,	
	мА	град	мА	град	мА	град	мА	град	
Расчет	82	5,76	73	0	42	90	35	-75,23	
Опыт	81,6	-172,2	_	_	_	_	_	_	

2.4 Расчет смешанной схемы.

Расчетная схема последовательно-параллельной электрической цепи гармонического тока представлена на рисунке 5.

Рисунок 5 — Схема с последовательно-параллельным подключением элементов

Комплексное сопротивление Z_{3Lk} , Ом, ветви, состоящей из катушки индуктивности L, нагрузки r_k и нагрузки R_3 , равно

$$Z_{3Lk} = R_3 + r_k + j \cdot X_L = 168.6 + j222.676 = 279,304e^{j52,869^{\circ}}$$
 Om.

Входное комплексное сопротивление цепи со смешанным подключением Z, Ом равно

$$\begin{split} & \underline{Z} = R_1 + \frac{\underline{Z}_{3Lk} \cdot R_2}{\underline{Z}_{3Lk} + R_2} = 110 + \frac{168.6 + j222.676 \cdot 124,9}{168.6 + j222.676 + 124,9} = \\ & = 193.283 + j21,065 = 194.427 e^{j6.22^{\circ}} \, \mathrm{Om}. \end{split}$$

Входной ток \dot{I} , A, равен току \dot{I}_1 на сопротивлении R_1 и имеет численное значение

$$\dot{I} = \dot{I}_1 = \frac{\dot{U}}{Z} = \frac{8}{194.427e^{j6.22^{\circ}}} = 0.041 - j0.004458 = 0.041e^{-j6.22^{\circ}} \text{ A}.$$

По правилу плеч ток \dot{I}_2 , A, равен

$$\begin{split} \dot{I}_2 &= \dot{I}_1 \cdot \frac{Z_{3Lk}}{R_2 + Z_{3Lk}} = 0.032 e^{-j7.974^{\circ}} \cdot \frac{168.6 + j222.676}{109.6 + 168.6 + j222.676} = \\ &= 0.032 - j0.004474 = 0.032 e^{j7.974^{\circ}} \, \text{A}. \end{split}$$

Исходя из первого закона Кирхгофа, имеем

$$\begin{split} \dot{I}_3 &= \dot{I}_1 - \dot{I}_2 = 0.041 e^{-j6.22^{\circ}} - 0.032 e^{j7.974^{\circ}} = 8.965 - j0.008932 \\ &= 0.013 e^{-j44,894^{\circ}} \, \text{A}. \end{split}$$

Напряжения \dot{U}_1 , \dot{U}_2 , \dot{U}_3 , \dot{U}_k , B, на элементах схемы равны

$$\begin{split} \dot{U}_1 &= \dot{I}_1 \cdot R_1 = 0.041 e^{-j6.22^{\circ}} \cdot 110 = 4.526 e^{-j6.22^{\circ}} \, \mathrm{B}, \\ \dot{U}_2 &= \dot{I}_2 \cdot R_2 = 0.032 e^{j7.974^{\circ}} \cdot 109.6 = 3.535 e^{j7.974^{\circ}} \, \mathrm{B}, \\ \dot{U}_3 &= \dot{I}_3 \cdot R_3 = 0.013 e^{-j44,894^{\circ}} \cdot 109.9 = 1.391 e^{-j44.894^{\circ}} \, \mathrm{B}, \\ \dot{U}_k &= \dot{I}_3 \cdot Z_k = 0.013 e^{-j44,894^{\circ}} \cdot (58,7 + j222.676) = \\ &= 2,914 e^{j30.338^{\circ}} \, \mathrm{B}. \end{split}$$

Напряжения и токи представлены графически на векторных диаграммах (рис.6 и рис.7 соответственно)

Рисунок 6 – Векторная диаграмма напряжений для смешанной цепи

Рисунок 7 – Векторная диаграмма токов для смешанной цепи

Расчет баланса активных и реактивных мощностей цепи. Активная мошность:

$$\begin{split} P &= \dot{I}_1^2 R_1 + \dot{I}_2^2 R_2 + \dot{I}_3^2 R_3 + \dot{I}_3^2 r_k = (0.041 - j0.004458)^2 \cdot 110 + \\ &+ (0.032 - j0.004474)^2 \cdot 109.6 + (8.965 - j0.008932)^2 \cdot 109.9 \\ &+ (8.965 - j0.008932)^2 \cdot 58.7 = 0.292 - j0,036 \\ &= 0.294 e^{-j6.999^\circ} \, \mathrm{Bt}. \end{split}$$

Реактивная мощность:

$$Q = \dot{I}_3^2 \cdot X_L = (8.965 - j0.008932)^2 \cdot 222.676 =$$

= 0.0001317 - j0.036 = 0,036 $e^{-j89.788^{\circ}}$ BAp.

Мощность источника:

$$\hat{S}_{\text{HCT}} = U \cdot \dot{I} = 8 \cdot (0.041 - j0.004458) = 0.327 - j0.036 = 0,329e^{-j6.22^{\circ}} \text{ Bt,}$$

 $\tilde{S}_{\text{HCT}} = P + jQ = 0.292 - j0,036 + 0.0001317 - j0.036 =$
 $= 0.327 - j0.036 = 0,329e^{-j6.22^{\circ}} \text{ BA.}$

Коэффициент мощности цепи равен:

$$cos(\psi_{\tilde{S}_{\text{MCT}}}) = cos(-6.22^{\circ}) = 0.994.$$

Расчетные результаты представлены в таблице 2.4.

Таблица 2.4 – Расчетные и экспериментальные результаты

таолица 2. т	The ferrible it skettephinetrasibible pesysibitation										
Разветв-	\dot{I}_1		\dot{I}_2		\dot{I}_3		U_1 ,	U_2 ,	U_3 ,	Ü	<i>l</i> k
ленная	I_1 ,	ψ_{I1} ,	I_2 ,	ψ_{I2} ,	I_3 ,	Ψ <i>I</i> 3,	В	В	В	Uk,	Ψ_{Uk} ,
цепь	мА	град	мА	град	мА	град				В	град
Расчет	41	-6.22	32	7.974	13	-44.894	4.526	3.535	1.391	2.914	30.338
Опыт	38,5	-5,3	30,12	5,5	12,24	-65,2	4,18	3,8	0,842	3,6	_