

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Summer 2014 Examination

Subject & Code: Basic Maths (17104) Model Answer Page No: 1/33

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		Important Instructions to the Examiners:		
		1) The Answers should be examined by key words and not as		
		word-to-word as given in the model answer scheme.		
		2) The model answer and the answer written by candidate may		
		vary but the examiner may try to assess the understanding		
		level of the candidate.		
		3) The language errors such as grammatical, spelling errors		
		should not be given more importance. (Not applicable for		
		subject English and Communication Skills.)		
		4) While assessing figures, examiner may give credit for		
		principal components indicated in the figure. The figures		
		drawn by the candidate and those in the model answer may		
		vary. The examiner may give credit for any equivalent		
		figure drawn.		
		5) Credits may be given step wise for numerical problems. In		
		some cases, the assumed constant values may vary and there		
		may be some difference in the candidate's Answers and the		
		model answer.		
		6) In case of some questions credit may be given by judgment		
		on part of examiner of relevant answer based on candidate's		
		understanding.		
		7) For programming language papers, credit may be given to		
		any other program based on equivalent concept.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104)

Page No: 2/33

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
1)		Attempt any TEN of the following:		
	,	Solve to find the value of x, if $\begin{vmatrix} 2 & 3 & 1 \\ 6 & x & 2 \\ 4 & x & -2 \end{vmatrix} = 0$		
	a)	Solve to find the value of x, if $\begin{vmatrix} 6 & x & 2 \end{vmatrix} = 0$		
	Ans.	$\begin{vmatrix} 4 & x & -2 \end{vmatrix}$		
		$\therefore 2(-2x-2x)-3(-12-8)+1(6x-4x)=0$	1	
		$\therefore -8x + 60 + 2x = 0$	4/	
		$\therefore -6x + 60 = 0$	1/2	
		$\therefore -6x = -60 \qquad or \qquad 6x = 60$		
		$\therefore x = 10$	1/2	2
		OR		
		$\begin{vmatrix} 2 & 3 & 1 \\ 6 & x & 2 \\ 4 & x & -2 \end{vmatrix} = 2(-2x - 2x) - 3(-12 - 8) + 1(6x - 4x)$	1	
		$\begin{vmatrix} 4 & x & -2 \end{vmatrix}$		
		= -8x + 60 + 2x		
		=-6x+60	1/2	
		$\therefore -6x + 60 = 0$	/2	
		$\therefore -6x = -60 \qquad or \qquad 6x = 60$		2
		$\therefore x = 10$	1/2	
	1 \	If $A = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$, find $3A - 2B$.		
	b)			
	Ans.	$ 3A = 3 \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} 6 & 9 \\ 12 & 21 \end{bmatrix} $	1/2	
		$ 2B = 2\begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 8 & 12 \end{bmatrix} $	1/2	
		$\therefore 3A - 2B = \begin{bmatrix} 6 & 9 \\ 12 & 21 \end{bmatrix} - \begin{bmatrix} 2 & 6 \\ 8 & 12 \end{bmatrix}$		
			1	2
		$= \begin{bmatrix} 4 & 3 \\ 4 & 9 \end{bmatrix}$		
		OR		
		$\therefore 3A - 2B = 3 \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} - 2 \begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$		
		$ = \begin{bmatrix} 6 & 9 \\ 12 & 21 \end{bmatrix} - \begin{bmatrix} 2 & 6 \\ 8 & 12 \end{bmatrix} $	1/2+1/2	
			72 T 72	
		$= \begin{bmatrix} 4 & 3 \\ 4 & 9 \end{bmatrix}$		
		[4 9]	1	2

Subject & Code: Basic Maths (17104) **Page No:** 3/33

Que.	Sub.		3.6.1	Total
No.	Que.	Model Answers	Marks	Marks
1)	c)	If $A = \begin{bmatrix} 1 & -5 \\ 6 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, find the matrix $AB - 2I$, where I is 2×2 identity matrix.		
	Ans.	$\therefore AB = \begin{bmatrix} 1 & -5 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ $= \begin{bmatrix} 1+0 & 0+5 \\ 6+0 & 0-4 \end{bmatrix}$		
		$= \begin{bmatrix} 1 & 5 \\ 6 & -4 \end{bmatrix}$	1	
		$\therefore AB - 2I = \begin{bmatrix} 1 & 5 \\ 6 & -4 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
		$= \begin{bmatrix} 1 & 5 \\ 6 & -4 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ $\begin{bmatrix} -1 & 5 \end{bmatrix}$	1/2	
		$= \begin{bmatrix} -1 & 5 \\ 6 & -6 \end{bmatrix}$	1/2	2
		OR		
		$\therefore AB - 2I = \begin{bmatrix} 1 & -5 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1+0 & 0+5 \\ 6+0 & 0-4 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
		$= \begin{bmatrix} 1 & 5 \\ 6 & -4 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	1	
		$= \begin{bmatrix} 1 & 5 \\ 6 & -4 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$	1/2	
		$= \begin{bmatrix} -1 & 5 \\ 6 & -6 \end{bmatrix}$	1/2	2
	d)	If $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$, verify that $(A+B)^T = A^T + B^T$		
	Ans.	$A + B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$ $\begin{bmatrix} 3 & 2 \end{bmatrix}$		
		$= \begin{bmatrix} 3 & 2 \\ 5 & 6 \end{bmatrix}$	1/2	

Page No: 4/33

Subject & Code: Basic Maths (17104)

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
1)		$\therefore (A+B)^T = \begin{bmatrix} 3 & 5 \\ 2 & 6 \end{bmatrix} \qquad \dots \dots$	1/2	
		$\therefore A^{T} + B^{T} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ $= \begin{bmatrix} 3 & 5 \\ 2 & 6 \end{bmatrix} \qquad \dots \dots$	1/2	
		$\therefore \text{ by } (i) \text{ and } (ii),$ $(A+B)^T = A^T + B^T$	1/2	2
		OR		
		$\therefore (A+B)^T = \left\{ \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \right\}^T$		
		$=\begin{bmatrix} 3 & 2 \\ 5 & 6 \end{bmatrix}^T$	1/2	
		$=\begin{bmatrix} 3 & 5 \\ 2 & 6 \end{bmatrix} \qquad \dots \dots (i)$	1/2	
		$\therefore A^{T} + B^{T} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ $= \begin{bmatrix} 3 & 5 \\ 2 & 6 \end{bmatrix} \qquad \dots \dots \dots \dots \dots (ii)$	1/2	
		$\therefore \text{ by } (i) \text{ and } (ii),$ $(A+B)^T = A^T + B^T$	1/2	2
	e)	Resolve $\frac{1}{1-x^2}$ into partial fractions.		
	Ans.	$\frac{1}{1-x^2} = \frac{1}{(1-x)(1+x)} = \frac{A}{1-x} + \frac{B}{1+x}$ \(\therefore\) \[1 = (1+x) A + (1-x) B \]		
		$Put \ 1-x=0 \qquad \therefore x=1$		
		$\therefore 1 = (1+1)A + 0$		
		$\therefore \boxed{\frac{1}{2} = A}$	1	

Page No: 5/33

Subject & Code: Basic Maths (17104)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)	~***	$Put \ 1+x=0 \qquad \therefore x=-1$		
		$\therefore 1 = 0 + (1+1)B$		
		$\therefore \boxed{\frac{1}{2} = B}$	1/2	
		$\begin{bmatrix} \cdot \cdot \begin{bmatrix} 2^{-B} \end{bmatrix} \end{bmatrix}$, –	
		$\frac{1}{1}$ $\frac{1}{1}$	1/	2
		$\therefore \frac{1}{1-x^2} = \frac{\frac{1}{2}}{1-x} + \frac{\frac{1}{2}}{1+x}$	1/2	_
		Note for partial fraction problems: The problems of partial fractions could also be solved by the method of "equating equal power coefficients". This method is also applicable. Give appropriate marks in accordance with the scheme of marking in the later problems as the solution by this method is not discussed. For the sake of convenience, the solution of the above problem with the help of this method is illustrated hereunder.		
		$\frac{1}{1-x^2} = \frac{1}{(1-x)(1+x)} = \frac{A}{1-x} + \frac{B}{1+x}$		
		$\therefore 1 = (1+x)A + (1-x)B$		
		$\therefore 1 = (A+B) + (A-B)x$		
		$\therefore 1 + 0x = (A+B) + (A-B)x$		
		$\therefore A + B = 1 and A - B = 0$		
		A + B = 1		
		A-B=0		
		$\therefore 2A = 1$		
		$\therefore \boxed{A = \frac{1}{2}}$	1	
		$\therefore \overline{B=A}$	1/2	
		$\therefore \boxed{B = \frac{1}{2}}$	72	
		$\therefore \therefore \frac{1}{1-x^2} = \frac{\frac{1}{2}}{1-x} + \frac{\frac{1}{2}}{1+x}$	1/2	2

Subject & Code: Basic Maths (17104)

Page No: 6/33

Que.	Sub.	Model Answers	Marks	Total
No. 1)	Que.			Marks
-,	f)	Without using calculator find the value of sin (-330°)		
	Ans.	$\sin\left(-330^{\circ}\right) = -\sin 330^{\circ}$		
		$=-\sin(360^{\circ}-30^{\circ})$	1/2	
		$=-\sin(-30^{\circ})$	1/2	
		$=\sin(30^{\circ})$	1/2	
		$=\frac{1}{2} or 0.5$	1/2	2
		OR		
		$\sin\left(-330^{\circ}\right) = -\sin 330^{\circ}$		
		$=-\sin(270^{\circ}+60^{\circ})$	1/2	
		$=-\sin(3\times90^{\circ}+60^{\circ})$	1/2	
		$= +\cos(60^{\circ})$	1/2	
		$=\frac{1}{2} or 0.5$	1/2	2
		OR		
		$\sin(-330^{\circ}) = \sin(-360^{\circ} + 30^{\circ})$	1/2	
		$=\sin(30^{\circ})$	1	
		$=\frac{1}{2} or 0.5$	1/2	2
	g)	Write the following formulae: (i) $\sin(A+B)$ and (ii) $\cos(A-B)$		
	Ans.	$\sin(A+B) = \sin A \cos B + \cos A \sin B$	1	
	ii)	$\cos(A-B) = \cos A \cos B + \sin A \sin B$	1	2
	h)	If $\sin A = \frac{1}{2}$, find $\sin 3A$.		
		$\sin 3A = 3\sin A - 4\sin^3 A$	1	
	Ans.	$=3\left(\frac{1}{2}\right)-4\left(\frac{1}{2}\right)^3$	1/2	
			1/2	2
		=1(*) Note (*): Due to the use of advence ecceptific colculator virgiting	1/2	_
		Note (*): Due to the use of advance scientific calculator, writing directly the step (*) is allowed. No marks to be deducted.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104)

Page No: 7/33

Que.	Sub.	Model Answers	Marks	Total
No. 1)	Que.			Marks
,	i)	Given that $\sin A = \frac{1}{2}$. $\therefore A = \sin^{-1}\left(\frac{1}{2}\right) = 30^{\circ}$ $\therefore \sin 3A = \sin(3\times30^{\circ}) = \sin(90^{\circ})$ $= 1$ Evaluate $2\cos 75^{\circ}\cos 15^{\circ}$ without using calculator.	1 1/2 1/2	2
	Ans.	$2\cos 75^{\circ}\cos 15^{\circ} = \cos(75^{\circ} + 15^{\circ}) + \cos(75^{\circ} - 15^{\circ})$	1/2	
		$=\cos(90^{\circ})+\cos(60^{\circ})$	1/2	
		$=0+\frac{1}{2}$	1/2	
		$=\frac{1}{2} or 0.5$	1/2	2
		OR		
		$\cos 75^{\circ} = \cos (30^{\circ} + 45^{\circ})$ $= \cos 30^{\circ} \cos 45^{\circ} - \sin 30^{\circ} \sin 45^{\circ}$ $= \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt{2}}$ $= \frac{\sqrt{3} - 1}{2\sqrt{2}}$ $\cos 15^{\circ} = \cos (45^{\circ} - 30^{\circ})$ $= \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$ $= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$ $= \frac{\sqrt{3} + 1}{2\sqrt{2}}$ $2 \cos 75^{\circ} \cos 15^{\circ} = 2 \times \frac{\sqrt{3} - 1}{2\sqrt{2}} \times \frac{\sqrt{3} + 1}{2\sqrt{2}}$ $= \frac{1}{2} or 0.5$	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂	2

Subject & Code: Basic Maths (17104) **Page No:** 8/33

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodel Aliswers	Iviaiks	Marks
1)	j)	Prove that $\cos^{-1}(-x) = \pi - \cos^{-1} x$.		
	Ans.	Let $\cos^{-1}(x) = \theta$		
		$\therefore x = \cos \theta$	1/2	
		$\therefore -x = -\cos\theta$		
		$\therefore -x = \cos\left(\pi - \theta\right)$	1/2	
		$\therefore \cos^{-1}(-x) = \pi - \theta$	1/2	_
		$= \pi - \cos^{-1} x$	1/2	2
	k)	Find the slope of a line passing through points $(-1, -2)$ and		
		(-3, 8).	4	
	Ans.	slope $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{8 + 2}{-3 + 1}$	1	
		=-5	1	2
		Find the range and the coefficient of range for the following		
	1)	data: 120, 100, 130, 50, 150.		
	Ans.	Smallest Value $S = 50$, $L \arg est \ Value \ L = 150$		
	1110.	$\therefore Range = L - S = 150 - 50$		
		=100 $L-S=150-50$	1	
		Coeff. of Range = $\frac{L-S}{L+S} = \frac{150-50}{150+50}$	1/2	
		Coeff. of Range = $\frac{L-S}{L+S} = \frac{150-50}{150+50}$ = $\frac{1}{2}$ or 0.5	1/2	2
2)	a)	The voltage in an electric circuit are related by the following equations: $V_1 + V_2 + V_3 = 9$, $V_1 - V_2 + V_3 = 3$, $V_1 + V_2 - V_3 = 1$. Find V_1 , V_2 and V_3 .		
		Note: As in this problem the method of solution is not mentioned/prescribed and as the problem is to be solved within the prescribed curriculum only, the problem can be solved by two different methods: Cramer's Method and Inverse Matrix Method. But the problem is not supposed to be solved by the method of simultaneous linear equation as prescribed in school algebra.		

Subject & Code: Basic Maths (17104)

Page No: 9/33

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	Que.	$V_1 + V_2 + V_3 = 9$		IVICINS
		$V_1 - V_2 + V_3 = 3$ $V_1 + V_2 - V_3 = 1$		
		$\begin{vmatrix} V_1 + V_2 - V_3 = 1 \\ 1 & 1 & 1 \end{vmatrix}$		
		$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 1(1-1)-1(-1-1)+1(1+1)$		
		$\begin{vmatrix} 1 & 1 & -1 \\ & & = 4 \end{vmatrix}$	1	
		·		
		$D_{1} = \begin{vmatrix} 9 & 1 & 1 \\ 3 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 9(1-1)-1(-3-1)+1(3+1)$		
		$\begin{vmatrix} 1 & 1 & -1 \\ & & = 8 \end{vmatrix}$	1/2	
		$D_2 = \begin{vmatrix} 1 & 9 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 1(-3-1)-9(-1-1)+1(1-3)$		
		$\begin{vmatrix} 1 & 1 & -1 \\ & & = 12 \end{vmatrix}$	1/2	
		$D_3 = \begin{vmatrix} 1 & 1 & 9 \\ 1 & -1 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 1(-1-3)-1(1-3)+9(1+1)$		
		=16	1/2	
		$\therefore V_1 = \frac{D_1}{D} = \frac{8}{4} = 2$	1/2	
		$V_2 = \frac{D_2}{D} = \frac{12}{4} = 3$	1/2	
		$\begin{pmatrix} v_2 - D - 4 \\ D - 16 \end{pmatrix}$	1/2	4
		$V_3 = \frac{D_3}{D} = \frac{16}{4} = 4$	/2	4
		OR		
		$V_1 + V_2 + V_3 = 9$		
		$V_1 - V_2 + V_3 = 3$		
		$\begin{bmatrix} V_1 + V_2 - V_3 = 1 \\ $		
		$\therefore A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}, X = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}, B = \begin{bmatrix} 9 \\ 3 \\ 1 \end{bmatrix}$		
		$\begin{vmatrix} \cdot \cdot A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 1(1-1)-1(-1-1)+1(1+1)$		
		=4	1	

Page No: 10/33

Subject & Code: Basic Maths (17104)

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
2)	Que.	The cofactor matrix of A is, $C(A) = \begin{bmatrix} -1 & 1 & 1 & 1 & 1 & -1 \\ 1 & -1 & -1 &$	1½	Marks
		$= \begin{bmatrix} 2\\3\\4 \end{bmatrix}$ $\therefore V_1 = 2, V_2 = 3, V_3 = 4$	1	4
		Note: 1) (*) In the matrix <i>C</i> (<i>A</i>), if 1 to 3 elements are wrong (either in sign or value), deduct ½ mark, if 4 to 6 elements are wrong, deduct 1 marks, if 7 to 9 are wrong, deduct all the ½ marks. Further, if all the elements in the last i.e., <i>adj</i> (<i>A</i>) are correct, then only give 1 mark.		

Page No: 11/33

Subj	ect &	Code:	Basic	Maths	(17104)	
------	-------	-------	--------------	-------	---------	--

Que.	Sub.	Model Answers	Marks	Total
No. 2)	Que.	Note 2) To find the adj (A), there are various methods are prescribed in the MSBTE Curriculum which are discussed hereunder for the sake of convenience for marks distribution. The matrix of minors is, $M(A) = \begin{bmatrix} -1 & 1 & 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 & 1 & -1 \end{bmatrix}$ $= \begin{bmatrix} 0 & -2 & 2 \\ -2 & -2 & 0 \\ 2 & 0 & -2 \end{bmatrix}$ $\therefore \text{ the matrix of cofactors is,}$	Marks	Marks
		$C(A) = \begin{bmatrix} 0 & 2 & 2 \\ 2 & -2 & 0 \\ 2 & 0 & -2 \end{bmatrix}$ $\therefore adj(A) = \begin{bmatrix} 0 & 2 & 2 \\ 2 & -2 & 0 \\ 2 & 0 & -2 \end{bmatrix}$	1½	
		OR		
		$\begin{vmatrix} A_{11} = \begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} & A_{12} = -\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} & A_{13} = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} \\ A_{21} = -\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} & A_{22} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} & A_{23} = -\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$		
		$\begin{vmatrix} A_{31} = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} & A_{32} = -\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} & A_{33} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$		
		Note: In the above, if 1 to 3 elements are wrong, deduct ½ mark, if 4 to 6 elements are wrong, deduct 1 marks, and if 7 to 9 are wrong, deduct all the marks. Further, if all the elements in the following matrices C(A) and adj (A) are correct, then only give the marks.		

Subject & Code: Basic Maths (17104) **Page No:** 12/33

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)		$\therefore \text{ the matrix of cofactors is,}$ $C(A) = \begin{bmatrix} 0 & 2 & 2 \\ 2 & -2 & 0 \\ 2 & 0 & -2 \end{bmatrix}$ $\therefore adj(A) = \begin{bmatrix} 0 & 2 & 2 \\ 2 & -2 & 0 \\ 2 & 0 & -2 \end{bmatrix}$	1½	
	b)	If $A = \begin{bmatrix} x & 2 & -5 \\ 3 & 1 & 2y \end{bmatrix}$ and $B = \begin{bmatrix} 2y+5 & 6 & -15 \\ 9 & 3 & -6 \end{bmatrix}$ and if $3A = B$, find x, y .		
	Ans.	Given $3A = B$ $\therefore 3\begin{bmatrix} x & 2 & -5 \\ 3 & 1 & 2y \end{bmatrix} = \begin{bmatrix} 2y+5 & 6 & -15 \\ 9 & 3 & -6 \end{bmatrix}$ $\therefore \begin{bmatrix} 3x & 6 & -15 \\ 9 & 3 & 6y \end{bmatrix} = \begin{bmatrix} 2y+5 & 6 & -15 \\ 9 & 3 & -6 \end{bmatrix}$ $\therefore 3x = 2y+5 and 6y = -6$ $\therefore x = 1 and y = -1$	1 1 1+1	4
	c)	If $A = \begin{bmatrix} 0 & 1 & -1 \\ 3 & -2 & 3 \\ 2 & -2 & 3 \end{bmatrix}$, show that $A^2 = I$.		
	Ans.	$A^{2} = A \cdot A = \begin{bmatrix} 0 & 1 & -1 \\ 3 & -2 & 3 \\ 2 & -2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ 3 & -2 & 3 \\ 2 & -2 & 3 \end{bmatrix}$ $= \begin{bmatrix} 0+3-2 & 0-2+2 & 0+3-3 \\ 0-6+6 & 3+4-6 & -3-6+9 \\ 0-6+6 & 2+4-6 & -2-6+9 \end{bmatrix}$	2	
		$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= I$	1	4

Subject & Code: Basic Maths (17104) **Page No:** 13/33

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	d)	Using matrix inversion method, solve the equations: $5x+y=13$, $3x+2y=5$.		IVICINO
	Ans.	5x + y = 13		
		3x + 2y = 5		
		$\therefore A = \begin{bmatrix} 5 & 1 \\ 3 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}, B = \begin{bmatrix} 13 \\ 5 \end{bmatrix}$		
		$ \therefore A = \begin{vmatrix} 5 & 1 \\ 3 & 2 \end{vmatrix} = 10 - 3 = 7$	1	
		$C(A) = \begin{bmatrix} 2 & -3 \\ -1 & 5 \end{bmatrix}$	1	
		$\therefore adj(A) = \begin{bmatrix} 2 & -1 \\ -3 & 5 \end{bmatrix}$	1/2	
		$\therefore A^{-1} = \frac{1}{ A } adj(A)$		
		$=\frac{1}{7}\begin{bmatrix}2 & -1\\ -3 & 5\end{bmatrix}$	1/2	
		∴ the solution is,		
		$X = A^{-1}B$		
		$=\frac{1}{7} \begin{bmatrix} 2 & -1 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 13 \\ 5 \end{bmatrix}$		
		$=\frac{1}{7} \begin{bmatrix} 21\\ -14 \end{bmatrix}$		
		$=\begin{bmatrix} 3\\2 \end{bmatrix}$		
		$\therefore x = 3, \ y = -2$	1	4
		Note: To find the adj (A), students may follow any of methods as shown in the question 2 (a). Please give appropriate marks, as per scheme of marking discussed in the question 2 (a).		
	d)	Resolve into partial fractions: $\frac{x^2 + 4x + 1}{(x-1)(x+1)(x+3)}$		
	Ans.	$\frac{x^2 + 4x + 1}{(x-1)(x+1)(x+3)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x+3}$		
		$\frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{x + 3}$ $\therefore x^2 + 4x + 1 = (x - 1)(x + 1)(x + 3) \left[\frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{x + 3} \right]$		

Subject & Code: Basic Maths (17104) **Page No:** 14/33

Que.	Sub.	M - J - 1 A	N f =1. =	Total
No.	Que.	Model Answers	Marks	Marks
2)		$\therefore x^{2} + 4x + 1 = (x+1)(x+3)A + (x-1)(x+3)B + (x-1)(x+1)C$ Put $x = 1$ $\therefore 1^{2} + 4(1) + 1 = (1+1)(1+3)A + 0 + 0$ $\therefore 6 = 8A$		
		$\therefore \frac{3}{4} = A$ $Put \ x = -1$	1	
		$\therefore (-1)^2 + 4(-1) + 1 = 0 + (-1-1)(-1+3)B + 0$ $\therefore -2 = -4B$		
		$\therefore \boxed{\frac{1}{2} = B}$ $Put \ x = -3$	1	
		$\therefore (-3)^2 + 4(-3) + 1 = 0 + 0 + (-3 - 1)(-3 + 1)C$ $\therefore -2 = 8C$		
		$\therefore \boxed{-\frac{1}{4} = C}$	1	
		$\therefore \frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} = \frac{\frac{3}{4}}{x - 1} + \frac{\frac{1}{2}}{x + 1} + \frac{-\frac{1}{4}}{x + 3}$	1	4
	f)	Resolve into partial fractions: $\frac{x^2 + 23x}{(x+3)(x^2+1)}$		
	Ans.	$\frac{x^2 + 23x}{(x+3)(x^2+1)} = \frac{A}{x+3} + \frac{Bx+C}{x^2+1}$		
		$\therefore x^2 + 23x = (x+3)(x^2+1) \left[\frac{A}{x+3} + \frac{Bx+C}{x^2+1} \right]$		
		$\therefore x^2 + 23x = (x^2 + 1)A + (x + 3)(Bx + C)$ $Put x = -3$		
		$\therefore (-3)^2 + 23(-3) = ((-3)^2 + 1)A + 0$ $\therefore -60 = 10A$		
		$\therefore \boxed{-6 = A}$	1	

THE RESERVE OF THE PARTY OF THE

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104) Page No: 15/33

Que.	Sub.	Model Answers	Marks	Total
No. 2)	Que.	Model Answers $Put \ x = 0$ $\therefore 0^2 + 23(0) = (0^2 + 1)A + (0 + 3)(0 + C)$ $\therefore 0 = A + 3C$ $\therefore 0 = -6 + 3C$ $\therefore 6 = 3C$ $\therefore \boxed{2 = C}$ $Put \ x = 1$ $\therefore 1^2 + 23(1) = (1^2 + 1)A + (1 + 3)(B + C)$ $\therefore 24 = 2A + 4B + 4C$ $\therefore 24 = 2(-6) + 4B + 4(2)$ $\therefore 28 = 4B$ $\therefore \boxed{7 = B}$ $\therefore \boxed{\frac{x^2 + 23x}{(x+3)(x^2+1)} = \frac{-6}{x+3} + \frac{7x+2}{x^2+1}}$ Note for Partial Fraction Methods: The above Q. 2 (e) & (f) problems of partial fractions could be solved by the method of "equating equal power coefficients" also. This method, illustrated in the solution of Q. 1 (e), is also applicable. Give appropriate marks in accordance with the scheme of marking. As this method is very tedious and complicated, hardly someone use this method in such cases. So such solution methods for partial fraction problems are not illustrated herein.	Marks 1 1	Marks 4
3)	a) Ans.	Attempt any four If $A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$, show that $A^2 - 8A$ is a scalar matrix. $A^2 - 8A = A \cdot A - 8A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 4 + 16 + 16 & 8 + 8 + 16 & 8 + 16 + 8 \\ 8 + 8 + 16 & 16 + 4 + 16 & 16 + 8 + 8 \\ 8 + 16 + 8 & 16 + 8 + 8 & 16 + 16 + 4 \end{bmatrix} = \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16 \end{bmatrix}$	1+1	

Subject & Code: Basic Maths (17104) **Page No:** 16/33

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wodel Miswels	Widiks	Marks
3)		$= \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix} - \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16 \end{bmatrix}$ $= \begin{bmatrix} 36-16 & 32-32 & 32-32 \\ 32-32 & 36-16 & 32-32 \\ 32-32 & 32-32 & 36-16 \end{bmatrix}$ $= \begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20 \end{bmatrix}$ $\therefore A^2 - 8A \text{ is a scalar matrix.}$	1	4
		OR		
		$A^{2} = A \cdot A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$ $= \begin{bmatrix} 4+16+16 & 8+8+16 & 8+16+8 \\ 8+8+16 & 16+4+16 & 16+8+8 \\ 8+16+8 & 16+8+8 & 16+16+4 \end{bmatrix}$ $= \begin{bmatrix} 36 & 32 & 32 \\ -32 & 36 & 32 \end{bmatrix}$	1	
		$= \begin{vmatrix} 32 & 36 & 32 \\ 32 & 32 & 36 \end{vmatrix}$	1	
		$8A = 8 \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16 \end{bmatrix}$ $\therefore A^2 - 8A = \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix} - \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16 \end{bmatrix}$	1	
		$= \begin{bmatrix} 36-16 & 32-32 & 32-32 \\ 32-32 & 36-16 & 32-32 \\ 32-32 & 32-32 & 36-16 \end{bmatrix}$		
		$= \begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20 \end{bmatrix}$	1	
		$\therefore A^2 - 8A$ is a scalar matrix.	1	4

Subject & Code: Basic Maths (17104) **Page No:** 17/33

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
3)	b)	Resolve into partial fractions: $\frac{x^2}{(x^2+1)(x^2+2)}$		
	Ans.	$Put x^2 = y$ $x^2 \qquad \qquad y \qquad \qquad A \qquad B$		
		$\frac{x^2}{(x^2+1)(x^2+2)} = \frac{y}{(y+1)(y+2)} = \frac{A}{y+1} + \frac{B}{y+2}$		
		$\therefore y = (y+1)(y+2) \left[\frac{A}{y+1} + \frac{B}{y+2} \right]$		
		$\therefore y = (y+2)A + (y+1)B$ $Put y = -1$		
		$\therefore -1 = (-1+2)A+0$ $\therefore \boxed{-1=A}$	1	
		$Put \ y = -2$		
		$\therefore -2 = 0 + (-2 + 1)B$ $\therefore -2 = -B$	1	
		$\therefore \boxed{2=B}$ $\therefore \frac{y}{(y+1)(y+2)} = \frac{-1}{y+1} + \frac{2}{y+2}$		
			1	
		$\therefore \frac{x^2}{(x^2+1)(x^2+2)} = \frac{-1}{x^2+1} + \frac{2}{x^2+2}$	1	4
	c)	Resolve into partial fractions: $\frac{2x+1}{x^2(x+1)}$		
	Ans.	$\frac{2x+1}{x^{2}(x+1)} = \frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x+1}$		
		$\therefore 2x+1=x^2(x+1)\left[\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x+1}\right]$		
		$\therefore 2x+1 = x(x+1)A+(x+1)B+x^2C$ Put $x = 0$		
		$\therefore 2(0)+1=0+(0+1)B+0$ \tau \left[1=B]	1	
		Put x = -1		
		$\therefore 2(-1)+1=0+0+(-1)^2 C$ $\therefore \boxed{-1=C}$	1	

Subject & Code: Basic Maths (17104) **Page No:** 18/33

Que.	Sub.	Model Answers	Marks	Total Marks
No. 3)	Que.	Put x=1 ∴ 2(1)+1=1(1+1)A+(1+1)B+1 ² C ∴ 3=2A+2B+C ∴ 3=2A+2(1)-1 ∴ 3=2A+1 ∴ 2=2A ∴ 1=A ∴ $\frac{2x+1}{x^2(x+1)} = \frac{1}{x} + \frac{1}{x^2} + \frac{-1}{x+1}$	1	Marks 4
	d)	Prove that $\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$		
	Ans.	$\tan(A-B) = \frac{\sin(A-B)}{\cos(A-B)}$ $= \frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B + \sin A \sin B}$ $= \frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B + \sin A \sin B}$ $= \frac{\cos A \cos B}{\cos A \cos B} - \frac{\cos A \sin B}{\cos A \cos B}$ $= \frac{\sin A \cos B}{\cos A \cos B} - \frac{\cos A \sin B}{\cos A \cos B}$ $= \frac{\cos A \cos B}{\cos A \cos B} + \frac{\sin A \sin B}{\cos A \cos B}$ $= \frac{\tan A - \tan B}{\cos A \cos B}$	1 1 1	4
	e)	Prove that $\frac{\sin A + 2\sin 2A + \sin 3A}{\cos A + 2\cos 2A + \cos 3A} = \tan 2A$		
	Ans.	$\frac{\sin A + 2\sin 2A + \sin 3A}{\cos A + 2\cos 2A + \cos 3A} = \frac{\sin A + \sin 3A + 2\sin 2A}{\cos A + \cos 3A + 2\cos 2A}$ $= \frac{2\sin 2A\cos(-A) + 2\sin 2A}{2\cos 2A\cos(-A) + 2\cos 2A}$ $= \frac{\sin 2A \left[2\cos(-A) + 2\right]}{\cos 2A \left[2\cos(-A) + 2\right]}$	1	
		$= \frac{\sin 2A}{\cos 2A}$ $= \tan 2A$	1	4

Subject & Code: Basic Maths (17104) **Page No:** 19/33

Que.	Sub.	M - J - 1 A	N (1	Total
No.	Que.	Model Answers	Marks	Marks
3)		OR		
		$\frac{\sin A + 2\sin 2A + \sin 3A}{\cos A + 2\cos 2A + \cos 3A} = \frac{(\sin A + \sin 2A) + (\sin 2A + \sin 3A)}{(\cos A + \cos 2A) + (\cos 2A + \cos 3A)}$ $= \frac{2\sin \frac{3A}{2}\cos(-\frac{A}{2}) + 2\sin \frac{5A}{2}\cos(-\frac{A}{2})}{2\cos \frac{3A}{2}\cos(-\frac{A}{2}) + 2\cos \frac{5A}{2}\cos(-\frac{A}{2})}$ $= \frac{2\cos(-\frac{A}{2})\left[\sin \frac{3A}{2} + \sin \frac{5A}{2}\right]}{2\cos(-\frac{A}{2})\left[\cos \frac{3A}{2} + \cos \frac{5A}{2}\right]}$	1	
		$= \frac{\sin\frac{3A}{2} + \sin\frac{5A}{2}}{\cos\frac{3A}{2} + \cos\frac{5A}{2}}$	1	
		$= \frac{2\sin 2A\cos\left(-\frac{A}{2}\right)}{2\cos 2A\cos\left(-\frac{A}{2}\right)}$	1	
		$= \tan 2A$	1	4
	f)	Prove that $\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \cot^{-1}\left(\frac{9}{2}\right)$		
	Ans.	$\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \tan^{-1}\left(\frac{\frac{1}{7} + \frac{1}{13}}{1 - \frac{1}{7} \cdot \frac{1}{13}}\right) \dots (*)$ $= \tan^{-1}\left(\frac{20}{90}\right)$	2	
		$= \tan^{-1}\left(\frac{2}{9}\right) \qquad \dots (**)$ $= \cot^{-1}\left(\frac{9}{2}\right)$	1	4
		Note: Due to advance use of calculator, students may directly write the step (**) after step (*) which is permissible.		

Subject & Code: Basic Maths (17104)	Page No: 20/33
-------------------------------------	-----------------------

Que.	Sub.	N. 1.1.A	N	Total
No.	Que.	Model Answers	Marks	Marks
4)		Attempt any four:		
	a)	Prove that $\sqrt{2+\sqrt{2+2\cos 4\theta}} = 2\cos \theta$		
	Ans.	$\sqrt{2+\sqrt{2+2\cos 4\theta}} = \sqrt{2+\sqrt{2(1+\cos 4\theta)}}$		
		$=\sqrt{2+\sqrt{2\left(2\cos^2 2\theta\right)}}$	1	
		$=\sqrt{2+\sqrt{4\cos^2 2\theta}}$		
		$=\sqrt{2+2\cos 2\theta}$	1	
		$=\sqrt{2(1+\cos 2\theta)}$		
		$=\sqrt{2(2\cos^2\theta)}$	1	
		$=\sqrt{4\cos^2\theta}$		
		$=2\cos\theta$	1	4
	b)	Prove that $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$		
	A	$\cos 3\theta = \cos(\theta + 2\theta)$		
	Ans.	$= \cos\theta\cos 2\theta - \sin\theta\sin 2\theta$	1	
		$= \cos\theta \cdot (2\cos^2\theta - 1) - \sin\theta \cdot 2\sin\theta\cos\theta$	1	
		$= \cos\theta \cdot (2\cos^2\theta - 1) - 2\sin^2\theta \cdot \cos\theta$		
		$=2\cos^3\theta-\cos\theta-2(1-\cos^2\theta)\cos\theta$	1	
		$=4\cos^3\theta-3\cos\theta$	1 1	4
	c)	Prove that $\frac{\sin 7x + \sin x}{\cos 5x - \cos 3x} = \sin 2x - \cos 2x \cot x$		
	Ans.	$\sin 7x + \sin x \qquad 2\sin\left(\frac{7x+x}{2}\right)\cos\left(\frac{7x-x}{2}\right)$		
		$\frac{\sin 7x + \sin x}{\cos 5x - \cos 3x} = \frac{2\sin\left(\frac{7x + x}{2}\right)\cos\left(\frac{7x - x}{2}\right)}{-2\sin\left(\frac{5x + 3x}{2}\right)\sin\left(\frac{5x - 3x}{2}\right)}$		
		$= \frac{2\sin(4x)\cos(3x)}{-2\sin(4x)\sin(x)}$	1	
		$=\frac{\cos(3x)}{-\sin x}$	1	
			1	

Page No: 21/33

Subject & Code: Basic Maths	(17104)	
--	---------	--

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		Walks	Marks
4)		$= \frac{\cos(x+2x)}{-\sin x}$ $= \frac{\cos x \cos 2x - \sin x \sin 2x}{-\sin x}$ $= \frac{\cos x \cos 2x}{-\sin x} - \frac{\sin x \sin 2x}{-\sin x}$	1	
		$= -\cot x \cos 2x + \sin 2x$ $OR \sin 2x - \cot x \cos 2x$	1	4
	d)	Prove that $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$		
	Ans.	$\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \sin 20^{\circ} \sin 40^{\circ} \frac{\sqrt{3}}{2} \sin 80^{\circ}$	1/2	
		$= \frac{\sqrt{3}}{2} \cdot \frac{-1}{2} (-2\sin 20^{\circ} \sin 40^{\circ}) \sin 80^{\circ}$ $= -\frac{\sqrt{3}}{4} (\cos 60^{\circ} - \cos 20^{\circ}) \sin 80^{\circ}$		
		<u> </u>	1/2	
		$=-\frac{\sqrt{3}}{4}\left(\frac{1}{2}-\cos 20^{\circ}\right)\sin 80^{\circ}$	1/2	
		$= -\frac{\sqrt{3}}{4} \left(\frac{1}{2} \sin 80^{\circ} - \sin 80^{\circ} \cos 20^{\circ} \right)$		
		$= -\frac{\sqrt{3}}{4} \left(\frac{1}{2} \sin 80^{\circ} - \frac{1}{2} \cdot 2 \sin 80^{\circ} \cos 20^{\circ} \right)$		
		$= -\frac{\sqrt{3}}{4} \cdot \frac{1}{2} \left[\sin 80^{\circ} - (\sin 100^{\circ} + \sin 60^{\circ}) \right]$	1/2	
		$= -\frac{\sqrt{3}}{8} \left[\sin 80^{\circ} - \sin 100^{\circ} - \frac{\sqrt{3}}{2} \right]$	1/2	
		$= -\frac{\sqrt{3}}{8} \left[2\cos 90^{\circ} \sin 20^{\circ} - \frac{\sqrt{3}}{2} \right]$	1/2	
		$=-\frac{\sqrt{3}}{8}\left[0-\frac{\sqrt{3}}{2}\right]$	1/2	
		$=\frac{3}{16}$	1/2	4
		Note: 1) If the above problem is proved, using the values of $\sin 20^\circ$, $\sin 40^\circ$, $\sin 80^\circ$ with the help of calculator, no		
		marks to be given because under the constraint of the MSBTE Curriculum, it is expected that such problems are to be solved without using calculator.		

Subject & Code: Basic Maths (17104) **Page No:** 22/33

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
4)		Note 2) The above problem may also be solved by making various combinations of sine ratios. Consequently the solutions vary in accordance with the combinations. Please give the appropriate marks in accordance with the scheme of marking. For the sake of convenience one of the solutions is illustrated hereunder.		
		$\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \sin 20^{\circ} \sin 40^{\circ} \frac{\sqrt{3}}{2} \sin 80^{\circ}$	1/2	
		$= \frac{\sqrt{3}}{2} \cdot \frac{-1}{2} \left(-2\sin 40^{\circ} \sin 80^{\circ} \right) \sin 20^{\circ}$		
		$= -\frac{\sqrt{3}}{4} (\cos 120^{\circ} - \cos 40^{\circ}) \sin 20^{\circ}$	1/2	
		$= -\frac{\sqrt{3}}{4} (\cos(90^{\circ} + 30^{\circ}) - \cos 40^{\circ}) \sin 20^{\circ}$		
		$= -\frac{\sqrt{3}}{4} (-\sin 30^{\circ} - \cos 40^{\circ}) \sin 20^{\circ}$	1/2	
		$= -\frac{\sqrt{3}}{4} \left(-\frac{1}{2} - \cos 40^{\circ} \right) \sin 20^{\circ}$	1/2	
		$= -\frac{\sqrt{3}}{4} \left(-\frac{1}{2} \sin 20^{\circ} - \sin 20^{\circ} \cos 40^{\circ} \right)$		
		$= -\frac{\sqrt{3}}{4} \left(-\frac{1}{2} \sin 20^{\circ} - \frac{1}{2} \cdot 2 \sin 20^{\circ} \cos 40^{\circ} \right)$		
		$= \frac{\sqrt{3}}{4} \cdot \frac{1}{2} \left[\sin 20^{\circ} + \sin 60^{\circ} + \sin (-20^{\circ}) \right]$	1/2	
		$= \frac{\sqrt{3}}{8} \left[\sin 20^{\circ} + \frac{\sqrt{3}}{2} - \sin 20^{\circ} \right]$	1/2	
		$=\frac{\sqrt{3}}{8}\left[\frac{\sqrt{3}}{2}\right]$	1/2	
		$=\frac{3}{16}$	1/2	4
	e)	Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{27}{11}\right)$		
	Ans.	Let $A = \cos^{-1}\left(\frac{4}{5}\right)$ $B = \tan^{-1}\left(\frac{3}{5}\right)$		
		$\therefore \cos A = \frac{4}{5} and \tan B = \frac{3}{5}$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104) Page No: 23/33

Que.	Sub.	25.114	3.6.1	Total				
No.	Que.	Model Answers	Marks	Marks				
4)		$\therefore \tan A = \frac{3}{4} \qquad(*)$						
		$\therefore A = \tan^{-1} \left(\frac{3}{4} \right)$	1					
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right)$						
		$= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{3}{5}}{1 - \frac{3}{4} \cdot \frac{3}{5}} \right)$	1					
		$= \tan^{-1} \left(\frac{\frac{15+12}{20}}{\frac{20-9}{20}} \right)$						
		$= \tan^{-1} \left(\frac{27}{11} \right)$	1	4				
		Note: To evaluate value of tan A, various methods are used by students, such as 'using the relation between sin A and tan A' or 'first to find sin A using cos A and find tan A' etc., instead of using Triangle Method as illustrated in the above solution. As main object is to find the value of tan A, please consider these methods also.						
	f)	Prove that $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$						
	Ans.	$\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi + \tan^{-1}\left(\frac{1+2}{1-1\cdot 2}\right) + \tan^{-1}(3)$	1					
		$= \pi + \tan^{-1}(-3) + \tan^{-1}(3)$ $= \pi - \tan^{-1}(3) + \tan^{-1}(3)$ $= \pi$	1 1 1	4				
		OR						

Page No: 24/33

Subject & Code: Basic Maths	(17104)
-----------------------------	---------

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Widdel Allsweis	iviaiks	Marks
4)		$\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \tan^{-1}(1) + \pi + \tan^{-1}\left(\frac{2+3}{1-2\cdot 3}\right)$ $= \tan^{-1}(1) + \pi + \tan^{-1}(-1)$ $= \tan^{-1}(1) + \pi - \tan^{-1}(1)$ $= \pi$	1 1 1 1	4
5)		Attempt any four:		
	a)	Prove that $\sin(A+B)\sin(A-B) = \sin^2 A - \sin^2 B$		
	Ans.	$\sin(A+B)\sin(A-B) = -\frac{1}{2} \left[-2\sin(A+B)\sin(A-B) \right]$ $= -\frac{1}{2} \left[\cos[(A+B)+(A-B)] - \cos[(A+B)-(A-B)] \right]$	1	
		$= -\frac{1}{2} \left[\cos 2A - \cos 2B \right]$	1	
		$= -\frac{1}{2} \left[1 - 2\sin^2 A - 1 + 2\sin^2 B \right]$ $= \sin^2 A - \sin^2 B$	1	4
		OR	1	
		· (A · D) · (A D)		
		$\sin(A+B)\sin(A-B)$ $= [\sin A \cos B + \cos A \sin B][\sin A \cos B - \cos A \sin B]$ $= (\sin A \cos B)^{2} - (\cos A \sin B)^{2}$	1	
		$=\sin^2 A \cos^2 B - \cos^2 A \sin^2 B$	1	
		$= \sin^2 A \left[1 - \sin^2 B\right] - \left[1 - \sin^2 A\right] \sin^2 B$	1	
		$=\sin^2 A - \sin^2 A \sin^2 B - \sin^2 B + \sin^2 A \sin^2 B$		
		$=\sin^2 A - \sin^2 B$	1	4
	b) Ans.	Prove that $\sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$ We know that,		
	AIIS.	$2\sin A\cos B = \sin (A+B) + \sin (A-B)$	1	
		Put A+B=C $A-B=D$	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104)

Page No: 25/33

Outo	Sub.			Total
Que. No.	Que.	Model Answers	Marks	Marks
5)	2	$\therefore A = \frac{C+D}{2} and B = \frac{C-D}{2}$ $\therefore \sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$	1	4
	c) Ans.	Prove that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$, if $xy < 1$. Put $\tan^{-1} x = A$ and $\tan^{-1} y = B$		
		$\therefore x = \tan A \qquad and \qquad y = \tan B$ $\therefore \tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $= \frac{x+y}{1-xy}$	1	
		$1 - xy$ $\therefore A + B = \tan^{-1} \left(\frac{x + y}{1 - xy} \right)$ $\therefore \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x + y}{1 - xy} \right)$	1	
		1	4	
	d)	Prove that if θ is the acute angle between the lines with slopes m_1 and m_2 , then $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $.		
	Ans.	$ \begin{array}{c} & L_1 \\ & \theta_2 \end{array} $	1/2	
		Let θ_1 = Angle of inclination of L_1 θ_2 = Angle of inclination of L_2 \therefore Slope of L_1 is $m_1 = \tan \theta_1$ Slope of L_2 is $m_2 = \tan \theta_2$	1/2	

Subject & Code: Basic Maths (17104)

Page No: 26/33

Que.	Sub.	Model Answers	Marks	Total
No. 5)	Que.			Marks
		:. from figure,		
		$ heta = heta_1 - heta_2$		
		$\therefore \tan \theta = \tan \left(\theta_1 - \theta_2 \right)$		
		$=\frac{\tan\left(\theta_{1}\right)-\tan\left(\theta_{2}\right)}{1+\tan\left(\theta_{1}\right)\tan\left(\theta_{2}\right)}$	1	
		$-1 + \tan(\theta_1) \tan(\theta_2)$		
		$=\frac{m_1-m_2}{m_1-m_2}$	1	
		$1 + m_1 \cdot m_2$ For angle to be acute,		
		1	4	
	e)	Find the equation of the line which passes through the point of intersection of the lines $2x+3y=13$, $5x-y=7$ and		
		perpendicular to the line $2x+3y-13$, $3x-y-7$ and		
	Ans.	$2x + 3y = 13, \ 5x - y = 7$		
		$\therefore 2x + 3y = 13$		
		$\frac{15x - 3y = 21}{17}$		
		$\therefore 17x = 34$		
		$\therefore x = 2$ $y = 3$	1	
		$\therefore \text{ Point of intersection} = (2, 3)$		
		Slope of line $2x-5y+7=0$ is		
			1/-	
		$m_0 = -\frac{A}{B} = -\frac{2}{-5} = \frac{2}{5}$	1/2	
		$\therefore Slope of required line is m = -\frac{5}{2}$	1/2	
		∴ the equation is,		
		$y - y_1 = m(x - x_1)$		
		$\therefore y - 3 = -\frac{5}{2}(x - 2)$	1	
		$\therefore 2y - 6 = -5x + 10$		
		$\therefore 5x + 2y - 16 = 0 \qquad or \qquad 5x + 2y = 16$	1	4

Subject & Code: Basic Maths (17104) **Page No:** 27/33

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5)	f)	Find the length of the perpendicular from (3, 2) on the line		IVIAINS
	,	4x-6y-5=0.		
	Ans.			
		Given $4x-6y-5=0$ $\therefore A=4, B=-6, C=-5$		
		∴ the length of the perpendicular is,		
		2		
		$= \frac{4(3) - 6(2) - 5}{\sqrt{4^2 + (-6)^2}}$		
			1+1	
		$=\frac{5}{\sqrt{52}}$ or 0.693		4
		Note: If -ve sign is left with the answer, 1 mark is to be		
6)		deducted.		
0)				
	a)	Find the perpendicular distance between the parallel lines		
	Ans.	Given $5x-12y+1=0$ and $10x-24y=1$		
		$\therefore 10x - 24y + 2 = 0 and 10x - 24y - 1 = 0$	1	
		$A = 10$, $B = -24$, $C_1 = 2$ and $C_2 = -1$		
		$\therefore p = \left \frac{C_1 - C_2}{\sqrt{A^2 + B^2}} \right $		
			1	
		$= \frac{2+1}{\sqrt{10^2 + \left(-24\right)^2}}$		
			1+1	4
		$=\frac{3}{26} \qquad or \qquad 0.115$	1.1	_
		Note: If the –ve value is written by the student (i.e.,		
		$-\frac{3}{26}$ or -0.115, deduct 1 mark.		
		OR		
		Given $5x-12y+1=0$ and $10x-24y=1$		
		$\therefore 5x - 12y + 1 = 0$ and $5x - 12y - \frac{1}{2} = 0$	1	

Subject & Code: Basic Maths (17104) **Page No:** 28/33

,		suc. Dusic iviatiis (17104)	ige 140. 207	
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	b) Ans.	$\therefore A = 5, B = -12, C_1 = 1 \text{ and } C_2 = -\frac{1}{2}$ $\therefore p = \left \frac{C_1 - C_2}{\sqrt{A^2 + B^2}} \right = \left \frac{1 + \frac{1}{2}}{\sqrt{5^2 + (-12)^2}} \right $ $= \frac{3}{26} \text{or} 0.115$ Find the equation of straight line passing through the points $(-4, 6)$ and $(8, -3)$. $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ $\therefore \frac{y - 6}{-3 - 6} = \frac{x + 4}{8 + 4}$ $\therefore \frac{y - 6}{-9} = \frac{x + 4}{12}$ $\therefore 12(y - 6) = -9(x + 4)$ $\therefore 12y - 72 = -9x - 36$	1 1+1 1 1	4
		$\therefore 9x + 12y - 36 = 0 or -9x - 12y + 36 = 0$ $or 3x + 4y - 12 = 0 or -3x - 4y + 12 = 0$	1	4
		OR		
		$\therefore slope of line is m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 6}{8 + 4} = -\frac{3}{4} \therefore the equation is, y - y_1 = m(x - x_1)$	1	
		$\therefore y - 6 = -\frac{3}{4}(x+4) \qquad or \qquad y+3 = -\frac{3}{4}(x-8)$ $\therefore 4y - 24 = -3x - 12 \qquad or \qquad 4y+12 = -3x+24$ $\therefore 3x + 4y - 12 = 0 \qquad or \qquad -3x - 4y + 12 = 0$	1 1 1	4

Subject & Code: Basic Maths (17104) **Page No:** 29/33

Que.	Sub.			Mo	odel Ans	wers				Marks	Total
No.	Que.										Marks
6)	c)	Find the mea	n devia	ation fr	om mear	n for follo	owing di	stributio	n:		
		Marks		0-10	10-20	20-30	30-40	40-50			
		No. of Stud	ents	5	8	15	16	6			
	Ans.										
		Class	xi	f_{i}	$f_i x_i$	$D_i = z$	$ x_i - \overline{x} $	f_iD_i			
		0-10	5	5	25	22	2	110			
		10-20	15	8	120	12	2	96			
		20-30	25	15	375	2 30		1+1			
		30-40	35	16	560	8	8 128				
		40-50	45	6							
				50	1350			472			
		$\vec{x} = \frac{\sum f_i x_i}{N} = \frac{1}{N}$ $M.D. = \frac{\sum f_i L}{N}$ $= \frac{472}{50}$	1								
		= 9.44								1	4
	d)	Find the S. D	of foll	owing	data:						
		Marks		0-10	10-20	20-30	30-40	40-50			
		No. of Stud	ents	5	8	15	16	6			
	Ans.	Class	s xi	f_i	$f_i x_i$	x_i^2	f_i .	r ²			
	71115.	0-10			$\frac{J_i x_i}{15}$	$\frac{x_i}{25}$	J_i				
		10-20			75	225		25			
		20-30			200	625	50			1+1	
		30-40			105	1225					
		40-50			45	2025					
				20	440		119	900			
		$S.D. = \sqrt{\frac{\sum f_i z}{N}}$									
		$=\sqrt{\frac{11900}{20}}$	$-\left(\frac{440}{20}\right)$	$\left(\frac{1}{2}\right)^{2}$						1	
		=10.536								1	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subje	ct & Co	ode: Basi	c Maths	(17104)						Page	e No: 30/	33
Que. No.	Sub. Que.		Model Answers									
6)						OR						
			Class	xi	f_i	d_{i}	$f_i d_i$	d_i^2	$f_i d_i^2$			
			0-10 10-20	5 15	3 5	-2 -1	-6 -5	4 1	12 5			
			20-30 30-40	25 35	8 3	0 1	3	1	3		1+1	
			40-50	45	1 20	2	2 -6	4	4 24			
		A = 25	h = 10,	$d_i = \frac{x_i}{x_i}$	<u>– A</u>							
		$A = 25 h = 10, d_i = \frac{x_i - A}{h}$ $S.D. = h \times \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2}$ $= 10 \times \sqrt{\frac{24}{20} - \left(\frac{-6}{20}\right)^2}$										
		$ \begin{array}{c c} \hline 24 & (-6)^2 \end{array} $									1	
		$=10 \times \sqrt{\frac{24}{20} - \left(\frac{-6}{20}\right)}$ $=10.536$									1	
												4
		Note: Students may take any another value for A in the above/below example. So the above table and corresponding values vary accordingly. But the final answer will be the same.										
	e)	The two sets of observations are given below: Set I $x = 82.5$ Set II $x = 48.75$										
			σ = 7.3 of the tw				istent?					
	Ans.	C.V.(I)	$=\frac{\sigma}{x}\times 100$	$0 = \frac{7.3}{82.5}$	×100 :	= 8.84	8				1	
		$C. V.(II) = \frac{\sigma}{x} \times 100 = \frac{8.35}{48.75} \times 100 = 17.12$									1	
		$\therefore C.V.(I) < C.V.(II)$ $\therefore Sat I \text{ is more consistent}$								1		
		set	∴ Set I is more consistent.									4

Subject & Code: Basic Maths (17104) **Page No:** 31/33

Que.	Sub.									Total
No.	Que.			Mo	odel Ansv	wers			Marks	Marks
6)	f)	Find the variance	ce and	l coeff	ficient of	variance	of the fo	ollowing:		
		Class Interva	1 ()-10	10-20	20-30	30-40	40-50		
		Frequencies		14	23	27	21	15		
	Ans.	Class	xi	f_{i}	$f_i x_i$	x_i^2	$f_i x$	\hat{z}_i^2		
		0-10	5	14	-	25	35			
		10-20 1		23	345	225	517			
		20-30 2 30-40 3		27	-	625	168		1	
		30-40	21	735	1225					
		40-50	45	15	675 2500	2025	303 785			
		1								
		$\bar{x} = \frac{\sum f_i x_i}{N} = \frac{2500}{100}$ $S.D. = \sqrt{\frac{\sum f_i x_i^2}{N}} - \frac{1}{N}$								
		$= \sqrt{\frac{78500}{100}} - \left(\frac{1}{100}\right)$ $= 12.649$	$\frac{2500}{100}$	2					1/2	
		$\therefore Variance = (S.D)$	$()^2$							
		=12.64	•							
		=159.9							1/2	
				D.					'-	
		Coeff. of Varian	ce = -	$\frac{-1}{\overline{x}} \times 10^{-1}$	00					
			$=\frac{12}{}$	$\frac{0.649}{25} \times$	100					
			=50	.596					1	4
					OR					
					. 2					
		$\therefore Variance = \frac{\sum f}{N}$	$\frac{1}{x_i^2} - \left(\frac{1}{x_i^2} - \frac{1}{x_i^2} \right)$	$\frac{\sum f_i x_i}{N}$						
		$=\frac{7850}{100}$	1							
		=160								
	Coeff. of Variance = $\frac{S.D.}{\overline{x}} \times 100$									
			$=\frac{12}{12}$	$\frac{2.649}{25} \times$	100					
				25).596					1	4

Subject & Code: Basic Maths (17104)

Page No: 32/33

Que.	Sub.				Mod	el Ans	X11040				Marks	Total
No.	Que.				Mode	ei Ans	swers				Warks	Marks
6)		OR										
			61		1			1 2	1 2	7		
			Class	xi	f_i	d_{i}	$f_i d_i$	d_i^2	$f_i d_i^2$			
			0-10	5	14	-2	-28	4	56	_		
			10-20 20-30	15 25	23 27	-1 0	-23 0	1 0	23 0	4	1	
			30-40	35	21	1	21	1	21	1		
			40-50	45	15	2	30	4	60	1		
					100		0		160]		
					4							
		A = 25,	h = 10,	$d_i =$	$\frac{x_i - A}{h}$							
		$\therefore x = A +$	$+\frac{\sum f_i d_i}{N} \times$	(h								
		$\therefore x = A + \frac{\sum f_i d_i}{N} \times h$ $= 25 + \frac{0}{100} \times 10$ $= 25$										
		$\int \sum_{i} f_{i} d_{i}^{2} \left(\sum_{i} f_{i} d_{i} \right)^{2}$										
		$S.D. = h \times \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2}$ $= 10 \times \sqrt{\frac{160}{100} - \left(\frac{0}{100}\right)^2}$										
		=12.649									1/2	
		∴Varian	ce = (S.D)	.)2								
			=12.64	$.9^{2}$								
			=159.9	97							1/2	
		Coeff. o	of Varian	$ce = \frac{S.L}{\overline{k}}$). -×100						/2	
				$=\frac{12.6}{1}$	$\frac{649}{5} \times 10$	00						
				2 = 50.5	-						1	4
				- 30	<i>37</i> 0						1	4
						OR						
	$\therefore Variance = h^2 \left[\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N} \right)^2 \right]$											
			$=h^2 \left[\frac{160}{100} - \left(\frac{0}{100} \right)^2 \right]$									
			=159.9		_						1	

Page No: 33/33

Subject & Code: Basic Maths (17104)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	Que.	Coeff. of Variance = $\frac{S.D.}{\overline{x}} \times 100 = \frac{12.649}{25} \times 100$ = 50.596	1	4
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, FIRST SEE whether the method falls within the scope of the curriculum, and THEN ONLY give appropriate marks in accordance with the scheme of marking.		