Insertion Sort

Adapted from the CLRS book slides

EXAMPLE: INSERTION-SORT

```
INSERTION-SORT(A, n)
```

```
for i = 2 to n
key = A[i]
 // Insert A[i] into the sorted subarray A[1:i-1].
 i = i - 1
 while j > 0 and A[j] > key
     A[j + 1] = A[j]
     j = j - 1
 A[j+1] = key
```

EXAMPLE: INSERTION-SORT

Claim: INSERTION-SORT runs in $O(n^2)$ time INSERTION-SORT(A, n)• The total number of iterations of the inner loop is at most (n-1)(n-1), which is less than n^2 . for i = 2 to $n \leftarrow n-1$ iterations • Each inner loop iteration takes constant time, for a total of at most cn^2 for some constant c, or $O(n^2)$. key = A[i]// Insert A[i] into the sorted subarray A[1:i-1]. j = i - 1**while** j > 0 and A[j] > key \longleftarrow at most i-1 iterations A[j+1] = A[j]j = j - 1

A[j+1] = key

8

EXAMPLE: INSERTION-SORT (continued)

Now show that INSERTION-SORT has a worst-case running time of $\Omega(n^2)$:

Observe that for a value to end up k positions to the right of where it started, the line A[j+1] = A[j] must have been executed k times.

Assume that n is a multiple of 3 so that we can divide the array A into groups of n/3 positions.

A[1:n/3]	A[n/3 + 1:2n/3]	A[2n/3+1:n]
each of the <i>n</i> /3 largest values moves	through each of these <i>n</i> /3 positions	to somewhere in these <i>n</i> /3 positions

EXAMPLE: INSERTION-SORT (continued)

Because at least n/3 values must pass through at least n/3 positions, the line A[j+1] = A[j] executes at least $(n/3)(n/3) = n^2/9$ times, which is $\Omega(n^2)$. For this input, INSERTION-SORT takes time $\Omega(n^2)$.

Since we have shown that INSERTION-SORT runs in $O(n^2)$ time in all cases and that there is an input that makes it take $\Omega(n^2)$ time, we can conclude that the worst-case running time of INSERTION-SORT is $\Theta(n^2)$.

The constant factors for the upper and lower bounds may differ. That doesn't matter.