Vertex of the Quadratic

Given a quadratic $q(s) = a s^2 + b s + c$ compute its value at $s_1 = -\frac{b}{2a}$ namely $q(s_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $\mathsf{s}_{1^+}\mathsf{h}$, namely $q(s_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = q(s_1 + h) - q(s_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1. $q(s) = 3 s^2 + 41$

