Задача

Вам заданы две арифметические прогрессии: $a_1k + b_1$ и $a_2l + b_2$.

Найдите количество целых чисел x таких, что $L \le x \le R$ и $x = a_1k' + b_1 = a_2l' + b_2$, для некоторых целых $k', l' \ge 0$.

Дополнительные условия

Входные данные

В единственной строке находятся шесть целых чисел a_1, b_1, a_2, b_2, L, R (0 < $a_1, a_2 \le 2 \cdot 10^9, -2 \cdot 10^9 \le b_1, b_2, L, R \le 2 \cdot 10^9, L \le R$).

Выходные данные

Выведите искомое количество целых чисел \boldsymbol{x} .

Ограничения: 1 секунда, 256 мегабайт.

Разбор

Уравнение, которое описывает все решения: $(x =) a_1k + b_1 = a_2l + b_2 \rightarrow a_1k - a_2l = b_2 - b_1$. Обозначим известные константы: $A = a_1$, $B = -a_2$, $C = b_2 - b_1$. Получим Диофантово уравнение относительно k = x и l = y: Ax + By = C. Известно, что решение такого уравнения имеет вид $(x_0 - k * B / (A, B); y0 + k * A / (A, B))$, где $(x_0; y_0)$ - частное решение, которое находится с помощью расширенного алгоритма Евклида, а k произвольное целое число. Таким образом мы получили общий вид l и r, для которых выполнено равенство элементов прогрессии, значит мы можем получит и общий вид для всех x подставив l или r в начальное уравнение. Осталось лишь учесть ограничение на искомые x: $L \le x \le R$ и посчитать количество решений.