Lecture 9: Tree-Based Methods and Ensemble Learning

Readings: ESL (Ch. 9-10, 15), ISL (Ch. 8), Bach (Ch. 10); code

Soon Hoe Lim

September 23, 2025

Outline

- 1 From Linear to Flexible Models
- 2 Decision Trees: Recursive Partitioning
- 3 The Fundamental Problem: Tree Instability
- 4 Ensemble Methods: Combining Multiple Models
- **5** Boosting: Sequential Learning
- 6 Gradient Boosted Decision Trees
- Practical Implementation
- 8 Model Interpretation and Feature Importance
- 9 Summary
- ① Exercises (Draft)

The Limitation of Linear Models

Linear Model Assumptions

Linear models assume: $\mathbb{E}[Y|X] = \beta_0 + \sum_{j=1}^{p} \beta_j X_j$

- ▶ Additive, linear relationships between features and response
- ► Constant effects across the entire feature space
- Limited ability to capture interactions automatically

The Curse of Dimensionality: Fully non-parametric approaches (kernel methods, k-NN) require exponentially more data as dimension p increases. To maintain density, we need N^p observations.

Real-world relationships are often:

- Non-linear: $f(x) = x^2 + \sin(x)$
- Interactive: $f(x_1, x_2) = x_1 \cdot x_2$
- ▶ Piecewise: Different behavior in different regions
- **Q** Can we build models that adapt their complexity to the data in a natural, interpretable way?

Additive Models: A Flexible Compromise

Definition 1: Additive Model

An additive model assumes:

$$\mathbb{E}[Y|X_1,\ldots,X_p]=\alpha+\sum_{j=1}^p f_j(X_j)$$

where each f_i is an unknown smooth univariate function.

Key advantages:

- ▶ **Interpretability:** Effect of X_i on Y captured by $f_i(X_i)$ alone
- **Flexibility:** Each f_i can be any smooth function
- ▶ **Dimensionality:** Avoids curse by modeling univariate functions
- ▶ **Identifiability:** Require $\sum_{i=1}^{N} f_i(x_{ij}) = 0$ for each j

Extensions: Can include selected interactions: $f_{jk}(X_j, X_k)$

The Backfitting Algorithm

Minimize RSS:
$$\sum_{i=1}^{N} \left(y_i - \alpha - \sum_{j=1}^{p} f_j(x_{ij}) \right)^2$$

Backfitting Algorithm

- 1: Initialize: $\hat{\alpha} = \bar{y}$, $\hat{f}_j \equiv 0$ for $j = 1, \dots, p$
- 2: repeat
- 3: **for** j = 1, ..., p **do**
- 4: Compute partial residuals:

$$r_{ij} = y_i - \hat{\alpha} - \sum_{k \neq j} \hat{f}_k(x_{ik})$$

5: Smooth partial residuals:

$$\hat{f}_j \leftarrow \mathcal{S}_j[\{(x_{ij}, r_{ij})\}_{i=1}^N]$$

- 6: Center: $\hat{f}_j(x) \leftarrow \hat{f}_j(x) \frac{1}{N} \sum_{i=1}^N \hat{f}_j(x_{ij})$
- 7: end for
- 8: until convergence

Common smoothers: splines, local regression, kernel methods

Introduction to Decision Trees

Definition 2: Tree-Based Model

Partition feature space into M disjoint regions R_1, \ldots, R_M :

$$f(\mathbf{x}) = \sum_{m=1}^{M} c_m \mathbb{I}(\mathbf{x} \in R_m)$$

where c_m is the prediction in region R_m .

Regional Predictions

- ▶ **Regression:** $c_m = \text{mean}(y_i : \mathbf{x}_i \in R_m)$
- ▶ Classification: $c_m = mode(y_i : \mathbf{x}_i \in R_m)$

Advantages and Disadvantages

Advantages:

- Simple interpretation (if-then rules)
- ► Handles mixed data types naturally
- Automatic variable selection
- Captures interactions naturally
- ▶ No assumptions about data distribution

Disadvantages:

- High variance (instability)
- Limited smoothness
- Greedy construction may miss optimal splits

Growing Regression Trees

CART Algorithm for Regression

```
1: Input: Training data \{(\mathbf{x}_i, y_i)\}_{i=1}^N, stopping criteria
 2: Initialize: Root node containing all data
    for each internal node t do
         if stopping criterion not met then
 4:
             for each variable X_i and split point s do
 5:
                  Define: t_L = \{ \mathbf{x} \in t : x_i < s \}, t_R = \{ \mathbf{x} \in t : x_i > s \}
 6:
 7:
                  Compute improvement:
                            \Delta(s, i) = RSS(t) - RSS(t_L) - RSS(t_R)
             end for
 8.
             Choose: (s^*, j^*) = \arg \max_{s,i} \Delta(s, j)
 g.
             Split node if \Delta(s^*, i^*) > \text{threshold}
10:
         end if
11.
12: end for
```

Where
$$\mathsf{RSS}(t) = \sum_{\mathsf{x}_i \in t} (y_i - \bar{y}_t)^2$$

Classification Trees: Impurity Measures

For K classes, let $\hat{p}_{mk} = \text{proportion of class } k \text{ in node } m$.

Node Impurity Measures

- 1. Misclassification Error: $1 \max_k \hat{p}_{mk}$
- 2. Gini Index: $\sum_{k=1}^{K} \hat{p}_{mk} (1 \hat{p}_{mk})$
- 3. Cross-Entropy: $-\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$

Why Gini/Entropy over Misclassification?

- ▶ More sensitive to changes in node probabilities
- ► Differentiable (better for optimization)
- ▶ Lead to better intermediate splits during construction

The choice between Gini and entropy rarely affects final performance significantly.

Tree Pruning: Cost-Complexity Method

Problem: Large trees overfit; simple stopping rules are suboptimal.

Definition 3: Cost-Complexity Pruning

For subtree $T \subseteq T_0$ (full tree), minimize:

$$C_{lpha}(\mathit{T}) = \sum_{m=1}^{|\mathit{T}|} \mathsf{N}_m Q_m(\mathit{T}) + lpha|\mathit{T}|$$
 , where

- |T| = number of terminal nodes
- $ightharpoonup N_m = \text{number of observations in node } m$
- $ightharpoonup Q_m(T) = \text{node impurity}$
- $ightharpoonup \alpha = complexity parameter$

Pruning Strategy

- 1: Grow large tree T_0
- 2: For each α , find $T(\alpha) = \arg \min_T C_{\alpha}(T)$
- 3: Use cross-validation to select optimal α^*
- 4: Return $T(\alpha^*)$

Understanding Tree Instability

High Variance Problem: Small changes in training data can lead to very different tree structures and predictions.

Sources of instability:

- ▶ Hierarchical Effect: Errors in early splits propagate throughout tree
- ▶ Greedy Selection: Locally optimal splits may be globally suboptimal
- ▶ Discrete Splits: Small data changes can move split points dramatically
- ► Hard Boundaries: Abrupt transitions between regions

Bias-Variance Trade-off for Trees

- ▶ Low Bias: Can approximate complex decision boundaries
- ▶ **High Variance:** Very sensitive to training data
- ▶ **Result:** Poor generalization despite good training fit

Intuition: If x is near split point s, small training changes can move x to different sides, causing completely different predictions.

MARS: A More Stable Alternative

Multivariate Adaptive Regression Splines combine tree flexibility with linear stability.

Definition 4: MARS Model

$$f(\mathbf{x}) = \beta_0 + \sum_{m=1}^{M} \beta_m h_m(\mathbf{x})$$
, where each basis function is:

$$h_m(\mathbf{x}) = \prod_{k=1}^{N_m} [s_{km} \cdot (x_{v(k,m)} - t_{km})]_+,$$

- $[\cdot]_+ = \max(0,\cdot)$ (hinge function)
- $ightharpoonup s_{km} \in \{-1, +1\}$ (direction)
- \triangleright v(k, m) selects variable, t_{km} is knot

Key advantages over trees:

- Continuous everywhere (vs. discontinuous)
- ► Piecewise linear (vs. piecewise constant)
- More stable to data perturbations
- Built-in model selection via GCV

The Ensemble Philosophy

Key Insight: Instead of finding one "perfect" model, combine many "good" models to achieve better performance than any individual model.

Why ensembles work:

- ▶ Variance Reduction: Averaging reduces variance without increasing bias
- ▶ Bias Reduction: Sequential methods can reduce bias
- ▶ Improved Stability: Less sensitive to outliers and data peculiarities
- ▶ Better Generalization: Combine different "views" of the data

Two main approaches:

- 1. **Parallel:** Train models independently, then combine (Bagging, Random Forest)
- 2. **Sequential:** Train models sequentially, each learning from previous mistakes (Boosting)

Bagging: Bootstrap Aggregating

Definition 5: Bagging Algorithm

- 1. For b = 1, ..., B:
- 2. Draw bootstrap sample \mathcal{Z}^{*b} of size N (sampling with replacement)
- 3. Train model \hat{f}_b on \mathcal{Z}^{*b}

Final prediction:

$$\hat{f}_{\mathsf{bag}}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(\mathbf{x})$$

Why bagging helps:

- ▶ Variance reduction: If models are independent with variance σ^2 , ensemble variance is σ^2/B
- ▶ Bias unchanged: $\mathbb{E}[\hat{f}_{\mathsf{bag}}] = \mathbb{E}[\hat{f}]$
- ▶ Most effective: For high-variance, low-bias models (like unpruned trees)

Out-of-Bag (OOB) Error: Each bootstrap sample omits \sim 37% of data; use these for validation.

Random Forest: Adding Decorrelation

Problem with bagged trees: When predictors are correlated, trees become correlated, reducing variance reduction benefits.

Definition 6: Random Forest Algorithm

- 1. For b = 1, ..., B:
- 2. Draw bootstrap sample \mathcal{Z}^{*b}
- 3. Train tree on \mathbb{Z}^{*b} with modification:
- 4. At each split: Randomly select $m \ll p$ features to consider
- 5. Choose best split from these m features only

Key parameters:

- ▶ B: Number of trees (larger usually better, diminishing returns)
- m: Features per split $(\sqrt{p} \text{ for classification, } p/3 \text{ for regression})$
- ► Tree depth: Usually grown deep (minimal pruning)

Benefits: Combines variance reduction (bagging) with decorrelation (random features)

Random Forest: Variable Importance

Two methods for measuring feature importance:

- 1. Mean Decrease in Impurity (Gini Importance)
 - \triangleright For each tree, sum impurity decreases for splits using feature j
 - Average across all trees
 - ▶ Fast to compute, but can be biased toward high-cardinality features

2. Permutation Importance (Preferred)

- Record baseline OOB error
- For each feature j: randomly permute feature j in OOB samples
- Recompute OOB error
- ► Importance = increase in error due to permutation
- ► More reliable, model-agnostic measure

Applications: Feature selection, understanding model behavior, identifying redundant features

The Boosting Philosophy

Central Question: "Can weak learners be combined into a strong learner?"

Definition 7: Weak vs Strong Learners

- ► Weak Learner: Slightly better than random (error | 0.5 for binary classification)
- ▶ **Strong Learner:** Arbitrarily low error rate achievable

Boosting strategy:

- 1. Start with equal weights on training observations
- 2. Fit weak learner to weighted data
- 3. Increase weights on misclassified observations
- 4. Repeat: each new learner focuses on "hard" cases
- 5. Combine learners with weighted voting

Theoretical guarantee: Training error decreases exponentially with number of rounds (Freund-Schapire, 1997).

AdaBoost: The Breakthrough Algorithm

Binary classification with $Y \in \{-1, +1\}$, weak learners $G_m(\mathbf{x}) \in \{-1, +1\}$.

AdaBoost Algorithm

- 1: **Initialize:** $w_i^{(1)} = 1/N$ for i = 1, ..., N
- 2: **for** m = 1 to M **do**
- 3: Fit classifier: $G_m = \arg\min_G \sum_{i=1}^N w_i^{(m)} \mathbb{I}(y_i \neq G(\mathbf{x}_i))$
- 4: **Compute error:** $\operatorname{err}_m = \frac{\sum_{i=1}^N w_i^{(m)} \mathbb{I}(y_i \neq G_m(x_i))}{\sum_{i=1}^N w_i^{(m)}}$
- 5: Compute weight: $\alpha_m = \log \left(\frac{1 \text{err}_m}{\text{err}_m} \right)$
- 6: Update weights: $w_i^{(m+1)} = w_i^{(m)} \exp[\alpha_m \mathbb{I}(y_i \neq G_m(\mathbf{x}_i))]$
- 7: **Normalize:** $w_i^{(m+1)} \leftarrow w_i^{(m+1)} / \sum_i w_i^{(m+1)}$
- 8: end for
- 9: **Output:** $G(\mathbf{x}) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(\mathbf{x}) \right]$

AdaBoost: Statistical Foundation

AdaBoost minimizes the exponential loss:

$$L(y, f) = \exp(-yf)$$

Why exponential loss?

- ▶ Differentiable (unlike 0-1 loss)
- Emphasizes misclassified examples exponentially
- Leads to closed-form weight updates
- Population minimizer: $f^*(\mathbf{x}) = \frac{1}{2} \log \frac{P(Y=1|\mathbf{x})}{P(Y=-1|\mathbf{x})}$

Connection to logistic regression: As $f \to \infty$: $\frac{\exp(-\gamma f)}{1+\exp(-\gamma f)} \to 0$

Limitation: Sensitive to outliers and noise (exponential penalty grows rapidly).

Gradient Boosting: The General Framework

Key insight: Boosting can be viewed as gradient descent in function space.

Definition 8: Forward Stagewise Additive Modeling

Fit models of the form: $f(\mathbf{x}) = \sum_{m=1}^{M} \beta_m b(\mathbf{x}; \gamma_m)$ At each step m:

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(\mathbf{x}_i) + \beta b(\mathbf{x}_i; \gamma))$$

Definition 9: Gradient Boosting Principle

Approximate the solution by fitting to negative gradients (pseudo-residuals):

$$r_{im} = -\left[\frac{\partial L(y_i, f(\mathbf{x}_i))}{\partial f(\mathbf{x}_i)}\right]_{f = f_{m-1}}$$

This generalizes boosting to any differentiable loss function.

Common Loss Functions and Gradients

Loss Functions for Different Problems

- ► Squared Loss: $L(y, f) = \frac{1}{2}(y f)^2 \Rightarrow r_i = y_i f(\mathbf{x}_i)$
- ▶ Absolute Loss: $L(y, f) = |y f| \Rightarrow r_i = \text{sign}(y_i f(\mathbf{x}_i))$
- ▶ **Huber Loss:** Robust combination of squared and absolute loss
- ▶ **Logistic Loss:** $L(y, f) = \log(1 + \exp(-yf))$ for classification
- **Exponential Loss:** $L(y, f) = \exp(-yf)$ (AdaBoost special case)

Generic Gradient Boosting

- 1: **Initialize:** $f_0(\mathbf{x}) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$
- 2: **for** m = 1 to M **do**
- 3: Compute pseudo-residuals: $r_{im} = -\frac{\partial L(y_i, f(\mathbf{x}_i))}{\partial f(\mathbf{x}_i)}\Big|_{f=f_{m-1}}$
- 4: **Fit model:** $h_m = \arg\min_h \sum_{i=1}^N (r_{im} h(\mathbf{x}_i))^2$
- 5: Line search: $\rho_m = \arg\min_{\rho} \sum_{i=1}^{N} L(y_i, f_{m-1}(\mathbf{x}_i) + \rho h_m(\mathbf{x}_i))$
- 6: **Update:** $f_m(x) = f_{m-1}(x) + \rho_m h_m(x)$
- 7. end for

Why Trees as Weak Learners?

Trees are ideal weak learners because they:

- ▶ Handle mixed data types naturally (numerical + categorical)
- Capture interactions automatically
- ▶ Require no data preprocessing (scaling, normalization)
- ► Handle missing values naturally
- ► Are computationally efficient
- Provide good bias-variance trade-off when shallow

Definition 10: Gradient Tree Boosting

Use regression trees as base learners $h_m(\mathbf{x})$:

- 1. Fit tree to pseudo-residuals, creating J_m terminal regions R_{jm}
- 2. For each region, optimize separately:

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{\mathbf{x}_i \in R_{im}} L(y_i, f_{m-1}(\mathbf{x}_i) + \gamma)$$

- 3. Update: $f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \nu \sum_{i=1}^{J_m} \gamma_{jm} \mathbb{I}(\mathbf{x} \in R_{jm})$
- Yey insight: Optimize a separate coefficient for each leaf, not just one global step size.

Gradient Boosted Trees: Complete Algorithm

Gradient Tree Boosting

```
1: Initialize: f_0(\mathbf{x}) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)
 2: for m = 1 to M do
           Compute pseudo-residuals: r_{im} = -\frac{\partial L(y_i, f(\mathbf{x}_i))}{\partial f(\mathbf{x}_i)}\Big|_{f=f_{m-1}}
 3:
           Fit regression tree: Train tree T_m on \{(\mathbf{x}_i, r_{im})\}_{i=1}^N
 4.
           Create regions: Tree produces terminal regions R_{im}, j = 1, \ldots, J_m
 5:
 6:
          for j=1 to J_m do
                 Optimize leaf values: \gamma_{jm} = \arg\min_{\gamma} \sum_{\mathbf{x}_i \in R_{im}} L(y_i, f_{m-1}(\mathbf{x}_i) + \gamma)
 7:
           end for
 8:
           Update model: f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \nu \sum_{i=1}^{J_m} \gamma_{jm} \mathbb{I}(\mathbf{x} \in R_{jm})
 9:
10: end for
```

Key Hyperparameters and Tuning

1. Number of Boosting Rounds (M)

- Controls model complexity and fitting capacity
- Use early stopping on validation set (don't fix via CV)
- ► Typical range: 100–10,000 depending on learning rate

2. Learning Rate/Shrinkage (ν)

- ▶ Scales the contribution of each tree: $f_m = f_{m-1} + \nu \cdot h_m$
- ightharpoonup Smaller ν requires larger M but often improves generalization
- ▶ Typical values: $\nu \in [0.01, 0.3]$, default often 0.1
- ▶ Trade-off: $\nu \times M \approx \text{constant for similar performance}$

3. Tree Complexity (J)

- ightharpoonup J-1= number of interactions modeled
- ▶ Common values: J = 2 (stumps), J = 6 (5-way interactions)
- Rarely need J > 10; validation helps select optimal value

Advanced Regularization Techniques

Stochastic Gradient Boosting (Subsampling)

At each iteration, train on random subsample (50–80%) of data:

- ▶ Reduces overfitting through variance reduction
- Improves computational efficiency
- ► Acts as implicit regularization (similar to dropout)

Feature Subsampling

Randomly sample features at each:

- ▶ Tree level: Different random subset per tree
- Split level: Different random subset per split (more aggressive)
- Prevents overfitting to irrelevant features
- Especially helpful when *p* is large

Early Stopping

Monitor validation error and stop when it plateaus:

 $M^* = \arg \min_M \text{ValidationError}(M)$. More reliable than fixed cross-validation for model selection.

Statistical View: Boosting as Regularization

Implicit regularization: Boosting solves approximately:

$$\min_f \sum_{i=1}^N L(y_i, f(\mathbf{x}_i)) + \Omega(f)$$

Sources of Regularization

- 1. **Shrinkage** (ν): Smaller steps create smoother paths in function space
- 2. Early Stopping: Limits model complexity before overfitting
- 3. Tree Constraints: Depth limits control interaction complexity
- 4. Subsampling: Adds stochastic regularization

Connection to Sparsity

Forward stagewise with infinitesimal steps (linear case) is equivalent to: $\min_{\beta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_2^2 + \lambda \|\beta\|_1$ This suggests boosting performs implicit feature selection.

Margin Theory and Generalization (Optional)

Definition 11: Classification Margin

For binary classification, the margin of example (\mathbf{x}_i, y_i) is: $\operatorname{margin}_i = y_i f(\mathbf{x}_i)$ where $f(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m G_m(\mathbf{x})$ and $y_i \in \{-1, +1\}$.

Theorem 1: Margin-Based Generalization Bound

The test error is bounded by: $P(\text{error}) \leq P(\text{margin} \leq \theta) + \mathcal{O}\left(\frac{\sqrt{d \log^2(N/d)}}{N\theta^2}\right)$ where d relates to the complexity of the weak learner class.

Key implications:

- Boosting increases margins of training examples over time
- Larger margins lead to better generalization bounds
- Explains why boosting rarely overfits even with many rounds
- ► Zero training error doesn't imply overfitting if margins keep growing

Loss Function Robustness

Robustness to Outliers

Different loss functions have varying sensitivity to outliers:

Loss Function	Robustness	Comments	
Exponential	Poor	Very sensitive to outliers	
Logistic	Moderate	Better than exponential	
Squared	Poor	Quadratic penalty	
Absolute (LAD)	Good	Linear penalty	
Huber	Good	Combines squared + absolute	

Huber Loss (Robust Alternative)

$$L_{\delta}(y,f) = \begin{cases} \frac{1}{2}(y-f)^2 & \text{if } |y-f| \leq \delta \\ \delta|y-f| - \frac{1}{2}\delta^2 & \text{if } |y-f| > \delta \end{cases}$$
 Combines quadratic loss (small errors) with linear loss (large errors).

Computational Considerations

Time Complexity: $\mathcal{O}(M \times N \times p \times J \log J)$ per training, where:

- ightharpoonup M = number of boosting rounds
- \triangleright N = training set size
- \triangleright p = number of features
- ightharpoonup J = maximum tree depth

Optimization Strategies

- ▶ Approximate split finding: Use quantiles instead of all splits
- ▶ Parallelization: Across features and data points
- ▶ **Histogram methods:** Pre-bin continuous features (LightGBM)
- ▶ Column sampling: Random feature subsets
- **Early stopping:** Avoid unnecessary iterations
- ▶ **Memory optimization:** Efficient tree storage, gradient caching

Modern implementations: XGBoost, LightGBM, CatBoost provide highly optimized versions with additional regularization and system improvements.

Ensemble Method Comparison

Aspect	Boosting	Bagging	Random Forest
Construction	Sequential	Parallel	Parallel
Primary Goal	Bias reduction	Variance reduc- tion	Variance + decorrelation
Base Learners	Weak (simple)	Strong (com- plex)	Medium com- plexity
Overfitting Risk	Moderate	Low	Very Iow
Interpretability	Moderate	Low	Low
Noise Sensitivity	High	Low	Low
Parallelization	Limited	Full	Full
Hyperparameter Tuning	Complex	Simple	Simple
Typical Performance	Excellent (tabu- lar)	Good	Very good

Practical guide: Try both boosting and Random Forest. Boosting often wins on structured/tabular data competitions, while Random Forest is more robust for general practitioners.

Variable Importance in Boosted Trees

Definition 12: Relative Variable Importance

For variable X_j , sum squared improvements across all splits: $\hat{l}_j^2 = \sum_{m=1}^M \sum_{t \in \text{splits}(T_m)} \hat{i}_t^2 \cdot \mathbb{I}(\text{split uses } X_j)$ where \hat{i}_t^2 is the improvement in loss at split t.

Partial Dependence Plots

Show marginal effect of feature X_j : $\bar{f}_j(x_j) = \frac{1}{N} \sum_{i=1}^N f(x_j, \mathbf{x}_{i, \setminus j})$

Procedure:

- 1. Fix $X_i = x_i$ for all observations
- 2. Keep other features at their observed values
- 3. Compute average prediction
- 4. Plot $\bar{f}_j(x_j)$ vs x_j

Limitations: Assumes independence between features (can be misleading with strong interactions).

SHAP Values for Model Explanation

Definition 13: SHAP (Shapley Additive Explanations)

For any prediction $f(\mathbf{x})$, SHAP values satisfy: $f(\mathbf{x}) = \phi_0 + \sum_{j=1}^{p} \phi_j(\mathbf{x})$ where $\phi_0 = \mathbb{E}[f(\mathbf{X})]$ and $\phi_j(\mathbf{x})$ is feature *jscontribution*.

Desirable properties (Shapley axioms):

- **Efficiency:** Contributions sum to prediction
- Symmetry: Equal features get equal credit
- Dummy: Irrelevant features get zero credit
- Additivity: Consistent across model combinations

TreeSHAP Algorithm

- Computes exact SHAP values for tree ensembles efficiently
- ▶ Time complexity: $\mathcal{O}(TLD)$ where T = trees, L = leaves, D = depth
- Provides both local (individual) and global (feature importance) explanations

Key Takeaways

From Linear to Flexible Models

- Additive models balance flexibility with interpretability
- ▶ **Decision trees** capture interactions naturally but are unstable
- ▶ MARS provides stable piecewise-linear alternative to trees

Ensemble Methods Revolution

- ▶ Bagging/Random Forest: Parallel combination reduces variance
- Boosting: Sequential combination reduces bias
- ▶ Key insight: Combining many weak learners beats single strong learner
- Use Random Forest for robustness and ease of use
- Use gradient boosting for maximum accuracy on tabular data
- Always validate hyperparameters properly
- Consider interpretability requirements in method selection
- Modern implementations (XGBoost, LightGBM) provide excellent performance

Exercises

Exercise 9

- 1. ESL 9.2.
- 2. ESL 9.3.
- 3. ESL 10.2.
- 4. ESL 10.9.
- Experimental. Explore the effect of different loss functions (squared, absolute, Huber) on boosting performance with outliers in the data.