## Find the second derivative of y using implicit differentiation of $x^2 - y^2 = 5$ . FB1

$$x^2 - y^2 = 5$$

Taking the 1st derivative of the function, using the difference rule and implicit differentiation.

$$\frac{d}{dx}x^2 - \frac{d}{dx}y^2 = \frac{d}{dx}5$$

$$2x - 2y\frac{d}{dx}y = 0$$

$$\frac{d}{dx}y = \frac{2x}{2y} = \frac{x}{y}$$

$$y' = \frac{x}{y}$$

Taking the 2nd derivative using the quotient rule and implicit differentiation. (From the first part we know that  $y' = \frac{x}{y}$ 

$$y'' = \frac{x'y - xy'}{y^2} = \frac{y - x \times \frac{x}{y}}{y^2} = \frac{1}{y} - \frac{x^2}{y^3}$$
$$y'' = \frac{d^2y}{dx^2} = \frac{1}{y} - \frac{x^2}{y^3}$$

## FB2**Prove by induction that** $n! \leq n^n$ , for all $n \in \mathbb{N}$

$$n! \leq n^n, n \in \mathbb{N}, k \in \mathbb{N}$$

We check if it is true at 1 and if it's true we assume  $k! \leq k^k$  is correct for some k. Then we check if  $(k+1)! \le (k+1)^{k+1}$  is true.

$$n_1 = 1$$
  $n! \leqslant n^n => 1! \leqslant 1^1 => 1 \leqslant 1$   
 $n_2 = 2$   $n! \leqslant n^n => 2! \leqslant 2^2 => 2 \leqslant 4$ 



- We made the assumption that  $k! \leq k^k$  was correct, which it is at k=1 and k=2.
- $k^k \leq (k+1)^k \ \forall \ k, \ k \in \mathbb{N}$ . That is because we can take the  $k_{th}$  root of both sides and we will get  $k \leq k+1$ which is true. We can take the  $k_{th}$  root because  $k \in \mathbb{N}$ .
- $k! \leq (k+1)^k$  is true because of the assumption  $k! \leq k^k$  and  $k^k \leq (k+1)^k$ .  $(k! \leq k^k \leq (k+1)^k)$
- Therefore,  $(k+1)! \leq (k+1)^{k+1}$  is true because  $k! \leq (k+1)^k$  was derived from it and is equal.

 $n! \le n^n$  is true when n=k+1 if it is true at  $n=k, k \in \mathbb{N}$  and we know that it is true for n=1 and n=2.

I have proved that  $n! \leq n^n$ ,  $\forall n \in \mathbb{N}$  using the principles of mathematical induction.

FB3 Suppose the roots of the equation  $2x^2 - 5x - 6 = 0$  are  $\alpha$  and  $\beta$ . Find the quadratic equation with roots  $\frac{1}{\alpha}$  and  $\frac{1}{\beta}$ 

$$a_1x^2 + b_1x + c_1 = 2x^2 - 5x - 6 = 0$$

Vieta's formulas applied to quadratic polynomial:  $\alpha + \beta = \frac{-b}{a}$  and  $\alpha\beta = \frac{c}{a}$ , the same formulas are given and proved in the book "A concise introduction to pure mathematics" by M. W. Liebeck on page 56.

$$\alpha + \beta = \frac{-b_1}{a_1} = \frac{5}{2} = 2.5$$
 and  $\alpha\beta = \frac{c_1}{a_1} = \frac{-6}{2} = -3$ 

The new equation with roots  $\frac{1}{\alpha}$  and  $\frac{1}{\beta}$ ,  $x^2 + b_2 x + c_2 = 0$ 

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} \quad and \quad \frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha \beta}$$

$$-b_2 = \frac{\alpha + \beta}{\alpha \beta} = \frac{2.5}{-3} = -\frac{5}{6} \quad and \quad c_2 = \frac{1}{\alpha \beta} = \frac{1}{-3} = -\frac{1}{3}$$

$$b_2 = \frac{5}{6} \quad and \quad c_2 = -\frac{1}{3}$$

Substitute  $b_2$  and  $c_2$  in the equation:  $x^2 + b_2 x + c_2 = 0$ 

$$x^2 + \frac{5}{6}x - \frac{1}{3} = 0$$

To get rid of fractions as arguments we can multiply the equation by 6

$$6x^2 + 5x - 2 = 0$$

The equation  $x^2 + \frac{5}{6}x - \frac{1}{3} = 0$  which is equal to  $6x^2 + 5x - 2 = 0$  has roots  $\frac{1}{\alpha}$  and  $\frac{1}{\beta}$ .