





- Introduction
- Architecture
- Programmation
- Conclusion





#### **Domaine transversal:**

- Optique
- infographie
- mathématiques
- Algorithmes
- ...

# Problématique :

- Réalité
- vitesse d'exécution

## **Objectif initial:**

créer une scène où les objets, la lumière et les ombres de la scène 3D sont affichés sur une image 2D au moyen de la méthode de Monte Carlo



# Notre produit :







Taille: 600\*600, 1000 exemplaires par pixel



#### **Fonctionnement:**







#### Modules principaux:









### Décomposé le problème :

1. Sphere

 $\Omega$ 

2. Materiel

Ţ

3. Rectangulaire

Ţ

4. Lumière simple

Û

5. Calculs accélérés : BVH 6. Afficher ligne par ligne en OpenCV

Д

7. Calculs accélérés : parallèle

 $\hat{\mathbb{U}}$ 

8. Lumière avec le méthode Monte Carlo

 $^{\uparrow}$ 

9. Triangle

 $\hat{1}$ 

10. OBJ load

Faire ensemble







## Principales difficultés :

Trouver l'objet le plus proche du rayon

structure pour enregistrer les informations d'intersection

Affichage dynamique du processus de scannage



OpenCV (problème en plusieurs threads)

Image de sortie a beaucoup de bruit



Échantillonnage de la lumière avec le méthode Monte Carlo

Calcul avec le GPU



OpenGL

Pas encore fait



# Algorithme : Arbre - BVH (bounding volume hierarchy)



#### **Partition Objets - BVH**



```
Intersect ( Ray ray, BVH node ) {
  if ( ray misses node.bbox) return ;

  if (node is a leaf node )
    Test intersection with all objs ;
    Return closest intersection ;

  hit1 = Intersect ( ray, node.child1 ) ;
  hit2 = Intersect ( ray, node.child2 ) ;

  Return the closer of hit1, hit2 ;
}
```



#### Nouvelle domaine :

infographie

## Regrouper les cours qu'on a appris :

- Théorie et pratique de la concurrence
- Langages à objet avancés
- Outils formels pour la science des données
- Algorithmique avancée et complexité
- Algèbre linéaire

#### Version 2.0

- Calcul avec GPU
- Programmer avec OpenGL
- Scènes complexes

