BBM105: Week 7, Operating Systems

Objectives

In this chapter, you will learn about

System software

Assemblers and assembly language

Operating systems

Introduction

- Von Neumann computer
 - "Naked machine"
 - Hardware without any helpful user-oriented features
 - Extremely difficult for a human to work with
- An interface between the user and the hardware is needed to make a Von Neumann computer usable

Introduction (continued)

Tasks of the interface

- Hide details of the underlying hardware from the user
- Present information in a way that does not require in-depth knowledge of the internal structure of the system
- Allow easy user access to the available resources
- Prevent accidental or intentional damage to hardware, programs, and data

System Software: The Virtual Machine

- System software
 - Acts as an intermediary between users and hardware
 - Creates a virtual environment for the user that hides the actual computer architecture
- Virtual machine (or virtual environment)
 - Set of services and resources created by the system software and seen by the user

Figure 6.1
The Role of System Software

Types of System Software

- System software is a collection of many different programs
- Operating system
 - Controls the overall operation of the computer
 - Communicates with the user
 - Determines what the user wants
 - Activates system programs, applications packages, or user programs to carry out user requests

Figure 6.2
Types of System Software

Types of System Software (continued)

- User interface
 - Graphical user interface (GUI) provides graphical control of the capabilities and services of the computer
- Language services
 - Assemblers, compilers, and interpreters
 - Allow you to write programs in a high-level, useroriented language, and then execute them

Types of System Software (continued)

- Memory managers
 - Allocate and retrieve memory space
- Information managers
 - Handle the organization, storage, and retrieval of information on mass storage devices
- I/O systems
 - Allow the use of different types of input and output devices

Types of System Software (continued)

Scheduler

 Keeps a list of programs ready to run and selects the one that will execute next

Utilities

 Collections of library routines that provide services either to user or other system routines

Assembly Language

- Machine language
 - Uses binary
 - Allows only numeric memory addresses
 - Difficult to change
 - Difficult to create data

Assembly Language (continued)

- Assembly languages
 - Designed to overcome shortcomings of machine languages
 - Create a more productive, user-oriented environment
 - Earlier termed second-generation languages
 - Now viewed as low-level programming languages

Figure 6.3
The Continuum of Programming Languages

Assembly Language (continued)

- Source program
 - An assembly language program
- Object program
 - A machine language program
- Assembler
 - Translates a source program into a corresponding object program

The Translation/Loading/Execution Process

Assembly Language (continued)

- Advantages of writing in assembly language rather than machine language
 - Use of symbolic operation codes rather than numeric (binary) ones
 - Use of symbolic memory addresses rather than numeric (binary) ones
- We do not go in the details of assemble language!

Operating Systems

- System commands
 - Carry out services such as translate a program, load a program, run a program
 - Types of system commands
 - Lines of text typed at a terminal
 - Menu items displayed on a screen and selected with a mouse and a button: Point-and-click
 - Examined by the operating system

Functions of an Operating System

- Five most important responsibilities of the operating system
 - User interface management
 - Program scheduling and activation
 - Control of access to system and files
 - Efficient resource allocation
 - Deadlock detection and error detection

The User Interface

- Operating system
 - Waits for a user command
 - If command is legal, activates and schedules the appropriate software package
- User interfaces
 - Text-oriented
 - Graphical

System Security And Protection

- The operating system must prevent
 - Non-authorized people from using the computer
 - User names and passwords
 - Legitimate users from accessing data or programs they are not authorized to access
 - Authorization lists

Efficient Allocation Of Resources

- The operating system ensures that
 - Multiple tasks of the computer can be underway at one time
 - Processor is constantly busy
 - Keeps a queue of programs that are ready to run
 - Whenever processor is idle, picks a job from the queue and assigns it to the processor

The Safe Use Of Resources

- Deadlock
 - Two processes are each holding a resource the other needs
 - Neither process will ever progress
- The operating system must handle deadlocks
 - Deadlock prevention
 - Deadlock recovery

The Future

- Operating systems will continue to evolve
- Possible characteristics of fifth-generation systems
 - Multimedia user interfaces
 - Parallel processing systems
 - Completely distributed computing environments

Figure 6.23 Structure of a Distributed System

GENERATION	APPROXIMATE DATES	MAJOR ADVANCES
First	1945–1955	No operating system available
		Programmers operated the machine themselves
Second	1955–1965	Batch operating systems
		Improved system utilization
		Development of the first command language
Third	1965–1985	Multiprogrammed operating systems
		Time-sharing operating systems
		Increasing concern for protecting programs from damage by other programs
		Creation of privileged instructions and user instructions
		Interactive use of computers
		Increasing concern for security and access control
		First personal computer operating systems
Fourth	1985-present	Network operating systems
	·	Client-server computing
		Remote access to resources
		Graphical user interfaces
		Real-time operating systems
		Embedded systems
Fifth	??	Multimedia user interfaces
		Massively parallel operating systems
		Distributed computing environments
Figure 6.24		

Some of the Major Advances in Operating Systems Development

Summary

- System software acts as an intermediary between the users and the hardware
- Assembly language creates a more productive, user-oriented environment than machine language
- An assembler translates an assembly language program into a machine language program

Summary (continued)

- Responsibilities of the operating system
 - User interface management
 - Program scheduling and activation
 - Control of access to system and files
 - Efficient resource allocation
 - Deadlock detection and error detection