ST2334 Finals cheatsheet

by Khoo Jing Hong, Derrick

Chapter 1: Probability MORE EVENT OPERATIONS

(a) $A \cap A' = \emptyset$

(b)
$$A \cap \emptyset = \emptyset$$

(c) $A \cup A' = S$

$$(d) (A')' = A$$

(e)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 Diffing (UV)

(f) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$$(g) A \cup B = A \cup (B \cap A')$$

For any n events A_1, A_2, \ldots, A_n ,

(i)
$$(A_1 \cup A_2 \cup \ldots \cup A_n)' = A'_1 \cap A'_2 \cap \ldots \cap A'_n$$
.
A special case: $(A \cup B)' = A' \cap B'$.

(j)
$$(A_1 \cap A_2 \cap ... \cap A_n)' = A'_1 \cup A'_2 \cup ... \cup A'_n$$

A special case:
$$(A \cap B)' = A' \cup B'$$
.

AXIOMS OF PROBABILITY

Probability, denoted by $P(\cdot)$, is a **function** on the collection of events of the sample space S, satisfying:

Axiom 1. For any event A,

$$0 \le P(A) \le 1.$$

Axiom 2. For the sample space,

$$P(S) = 1.$$

Axiom 3. For any two mutually exclusive events *A* and *B*, that is, $A \cap B = \emptyset$,

$$P(A \cup B) = P(A) + P(B).$$

PROPOSITION 5

For any two events A and B,

$$P(A) = P(A \cap B) + P(A \cap B').$$

Conditional probability:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Bayes Theorem:

Used to flip a conditional probability from P(A|B) to P(B|A)

SPECIAL CASE: BAYES' THEOREM

Let us consider a special case of Bayes' Theorem when n = 2.

 $\{A,A'\}$ becomes a partition of S, and we have

$$P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A')P(B|A')}.$$

$$= P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A')P(B|A')}.$$

Law of total probability:

SPECIAL CASE: LAW OF TOTAL PROBABILITY

For any events A and B, we have

$$P(B) = P(A)P(B|A) + P(A')P(B|A').$$

Chapter 2: Random variables

$\frac{(g)A\cup B=A\cup (B\cap A')}{g}$ From Vern divigion for $\frac{g}{g}$ Discrete Random Variables $\frac{(DRV)}{g}$

Properties of PMF:

PROPERTIES OF THE PROBABILITY MASS FUNCTION

The probability mass function f(x) of a discrete random variable **must** satisfy:

- (1) $f(x_i) \ge 0$ for all $x_i \in R_X$;
- (2) f(x) = 0 for all $x \notin R_X$;

(3)
$$\sum_{i=1} f(x_i) = 1$$
, or $\sum_{x_i \in R_X} f(x_i) = 1$.

For any set $B \subset \mathbb{R}$, we have

$$P(X \in B) = \sum_{x_i \in B \cap R_X} f(x_i).$$

Continuous Random Variables(CRV)

Properties of PDF:

DEFINITION 4 (PROBABILITY DENSITY FUNCTION)

The probability density function of a continuous random variable X, denoted by f(x), is a function that satisfies:

- (1) $f(x) \ge 0$ for all $x \in R_X$; and f(x) = 0 for $x \notin R_X$;
- (2) $\int_{\mathbb{R}} f(x) dx = 1;$
- (3) For any a and b such that $a \le b$,

$$P(a \le X \le b) = \int_a^b f(x) \, \mathrm{d}x.$$

Properties of CDF:

Non-decreasing in general

Case (discrete random variable)

CDF: DISCRETE RANDOM VARIABLE If *X* is a discrete random variable, we have

$$F(x) = \sum_{t \in R_X: t \le x} f(t)$$

$$= \sum_{t \in R_X: t \le x} P(X = t)$$

The cumulative distribution function of a discrete

where "a-" represents the "largest value in R_X that is smaller than a". Mathemati-

$$F(a-) = \lim_{x \uparrow a} F(x).$$

Case (Continuous Random Variable)

CDF: CONTINUOUS RANDOM VARIABLE If *X* is a continuous random variable.

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

$$f(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x}$$

Further

$$P(a \le X \le b) = P(a < X < b) = F(b) - F(a).$$

Graphing Calculator

Z ~ N(0,1) (p-value)

P(47.5 < X ≤ 80) -> normalcdf(47.5,80,65,5)

P(Z > 0.5) -> normalcdf(0.5, E99, 0, 1)

P(Z < 0.5) -> normalcdf(-E99,0.5,0,1)

 $\Phi(c) = x \rightarrow -1 * invNorm(x, 0, 1, RIGHT)$

X ~ N(65,25),

Expectation and Variance

DRV:
$$E(X) = \sum x_i f(x_i)$$
.

$$\mathbf{CRV:} \quad \mu_X = E(X) = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d} x = \int_{x \in R_X} x f(x) \, \mathrm{d} x \, .$$

Variance:
$$\sigma_X^2 = V(X) = E(X - \mu_X)^2$$
. OR

$$V(X) = E(X^2) - (E(X))^2$$

Properties:

$$V(aX + b) = a^2V(X)$$

Chapter 3: Joint Distributions

· Discrete variant

Properties:

PROPERTIES OF THE DISCRETE JOINT PROBABILITY FUNCTION The joint probability mass function has the following properties:

- (1) $f_{X,Y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$.
- (2) $f_{X,Y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$.
- (3) $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{X,Y}(x_i, y_j) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = 1.$
- (4) Let A be any subset of $R_{X,Y}$, then

$$P((X,Y)\in A)=\sum\sum_{(x,y)\in A}f_{X,Y}(x,y).$$

Continuous variant

Properties:

PROPERTIES OF THE CONTINUOUS JOINT PROBABILITY FUNCTION The joint probability density function has the following properties:

 $\begin{array}{l} \text{(1)} \ \ f_{X,Y}(x,y) \geq 0, \ \text{for any } (x,y) \in R_{X,Y}. \\ \text{(2)} \ \ f_{X,Y}(x,y) = 0, \ \text{for any } (x,y) \notin R_{X,Y}. \\ \text{(3)} \ \ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y = 1. \\ \text{Equivalently, } \iint_{(x,y) \in R_{X,Y}} f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y = 1. \end{array} \right\} \ \ \begin{array}{l} \text{def.} \ \ \text{for inf.} \\ \text{Probubility dannly} \\ \text{function} \end{array}$

· Marginal probability distribution

$$f_X(x) = \sum_{y} f_{X,Y}(x,y).$$
 $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy.$

Key idea: Ignoring 1 var and do sum/integr on 1 var

• Conditional distribution
$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

Key ideas:

- 1.X and Y are independent if $f_{X,Y}(x,y) = f_X(x) f_Y(y).$
- 2. Covariance:

$$cov(X,Y) = E[(X - E(X))(Y - E(Y))].$$

$$cov(X,Y) = E(XY) - E(X)E(Y).$$

If X,Y are independent, then cov(X,Y) = 0. Also,

$$cov(aX + b, cY + d) = ac \cdot cov(X, Y).$$

$$cov(X, Y) = cov(Y, X);$$

$$cov(X+b,Y) = cov(X,Y);$$

$$cov(aX,Y) = a cov(X,Y).$$

Regarding variance:

$$V(aX+bY) = a^2V(X) + b^2V(Y) + 2ab \cdot cov(X,Y).$$

$$V(aX) = a^2V(X);$$

$$V(X+Y) = V(X) + V(Y) + 2\operatorname{cov}(X,Y).$$

Chapter 4: Probability Distributions DRV:

Bernoulli Trial: 2 possible outcomes -> Bernoulli random variable

Bernoulli Process: Sequence of

independent and identically distributed Bernoulli random vars

Negative Binom: Until the kth success Geometric: Until the 1st success

Poisson: Fixed period of time or fixed region(eg certain amt of time)

- From 1 day to 2 day -> multiply to lambda
- Approx to Binom: when n -> inf. **p** -> 0 and if n >= 20 and p <= 0.05 OR n >= 100 and np <= 10,

where lambda = np

CRV:

Exponential: First success in continuous time

• Memoryless property

Normal:

- Formal: $Z = \frac{X \mu}{Z}$ Standardised:
 - For any z, $\Phi(z) = P(Z < z) = P(Z > -z) = 1 \Phi(-z)$;
- · Normal approx to Binom:
 - \circ np > 5, n(1-p) > 5
 - when n -> inf, p remain constant
 - MUST APPLY continuity correction

of capeare equality watch

Out for the rules

CONTINUITY CORRECTION

We apply continuity correction when approximating the binomial using the nor-

$$P(a \le X \le b) \approx P(a - 1/2 < X < b + 1/2)$$

 $P(a < X < b) \approx P(a + 1/2 < X < b + 1/2)$

$$P(a \le X < b) \approx P(a - 1/2 < X < b - 1/2)$$

 $P(a < X < b) \approx P(a + 1/2 < X < b - 1/2)$

$$(u < X < b) \approx F(u + 1/2 < X < b - 1/2)$$

$$P(X \le c) = P(0 \le X \le c) \approx P(-1/2 < X < c + 1/2)$$

$$P(X > c) = P(c < X \le n) \approx P(c + 1/2 < X < n + 1/2)$$

Chapter 5: Sampling and sampling dist

- 1. For random samples of size n taken from population with mean μ and variance σ^2 , sample has mean = μ , var = σ^2/n
- 2. Central Limit Theorem Sampling distribution of sample mean is approximately normal if n is large
- 3. Law of Large Numbers Sample mean converges to population mean when n increases, because σ^2/n decreases.
- 4. Chi-Square distribution Used for the square of a random variable(eq. sample variance)

Properties of χ^2 Distributions

- 1. If $Y \sim \chi^2(n)$, then E(Y) = n and V(Y) = 2n.
- 2. For large n, $\chi^2(n)$ is approximately N(n,2n).
- 3. If Y_1 and Y_2 are independent χ^2 random variables with m and n degrees of freedom respectively, then $Y_1 + Y_2$ is a χ^2 random variable with m + n degrees
- 4. The χ^2 distribution is a family of curves, each determined by the degrees of freedom n. All the density functions have a long right tail.

Special case: Sample variance distribution THEOREM 12

If S^2 is the variance of a random sample of size n taken from a normal population having the variance σ^2 , then the random variable

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2}$$

has a χ^2 distribution with n-1 degrees of freedom.

5. t-Distribution - Used when population is normal, sample size n < 30

If
$$T \sim t(n)$$
, then $E(T) = 0$ and $V(T) = n/(n-2)$ for $n > 2$.

$$t = \frac{X - \mu}{S/\sqrt{n}}$$

6. F-distribution - Used when looking at the distribution of sample statistic/sample statistic and sample statistic follows a chi-square distribution.

$$F = \frac{U/m}{V/n}$$

Chapter 6: Estimation

- 1. Maximum error of estimate with probability (1 alpha), error E =
- 2. Minimum sample size so that with probability (1 alpha), error is at most E

- 3. Equal variance $s1/s2 \sim [1/2, 2]$
- 4. Paired data, D = Difference

$$T = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}}$$
, where $\overline{D} = \frac{\sum_{i=1}^n D_i}{n}$, $S_D^2 = \frac{\sum_{i=1}^n (D_i - \overline{D})^2}{n-1}$.

CONFIDENCE INTERVALS: PAIRED DATA

For paired data, if n is small (n < 30) and the population is normally distributed, a $(1-\alpha)100\%$ confidence interval for μ_D is

$$\overline{d} \pm \underline{t_{n-1}}; \alpha/2 \cdot \frac{s_D}{\sqrt{n}}$$

If n is large (n > 30), a $(1 - \alpha)100\%$ confidence interval for μ_D is

$$\overline{d} \pm z_{\alpha/2} \cdot \frac{s_D}{\sqrt{n}}$$
.

Chapter 7: Hypothesis Test

HOW TO DO A HYPOTHESIS TEST

There are five main steps to hypothesis testing

Step 1: Set your competing hypotheses: null and alternative

Step 2: Set the level of significance

Step 5: Conclusion.

- Step 3: Identify the test statistic, its distribution and the rejection criteria
- Step 4: Compute the observed test statistic value, based on your data.
- If p-value $\geq \alpha$, do not reject H_0 .

• If *p*-value $< \alpha$, reject H_0 ; else

Do not reject H_0 Reject Ho Correct Decision Type I error H_0 is true Correct Decision H_0 is false Type II error