ບົດທີ7 ນາຕຣິສ ແລະ ຄຸນລັກສະນະຂອງນາຕຣິສ

25 มกราคม 2565 2:36

1. ນິຍາມ

ິນິຍາມ. ມາຕຣິດແມ່ນຕາຕະລາງຈຳນວນ ເຊິ່ງອົງປະກອບຂອງມັນມີຕຳແໜ່ງ ຫຼື ມີເລກທີ (ນ້ຳເປີ)ແຖວ ແລະ ເລກທີ່ຖັນ.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

ເຊິ່ງ $a_{11},a_{12},...a_{23}$ ເອີ້ນວ່າອົງປະກອບຂອງມາຕຣິດ, ຕົວເລກທີ່ຫ້ອຍສະແດງເຖິງ ຕຳແໜ່ງຂອງອົງປະກອບດັ່ງກ່າວເຊັ່ນ: a_{11} ແມ່ນອົງປະກອບທີ່ຢູ່ແຖວທີໜຶ່ງຖັນທີໜຶ່ງ a_{12} ແມ່ນອົງປະກອບທີ່ຢູ່ແຖວທີໜຶ່ງຖັນທີສອງ

ມາຕຣົດທີ່ມີ m ແຖວ ແລະ n ຖັນ ອາດຂຽນ $A=\left(a_{ij}\right)_{m\times n}$ ເມື່ອ i=1,2,3,...m , j=1,2,3,...n

ຈຳນວນແຖວ ແລະ ຈຳນວນຖັນແມ່ນຈະບອກຂະໜາດຂອງມາຕຣິດ

ຄົວຍ້າງ 1.
$$A = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 0.5 & 3 \end{pmatrix}$$
 ແມ່ນ ມາຕຣິດຂະໜາດ 2×3 $B = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$ ແມ່ນ ມາຕຣິດຂະໜາດ 2×2

ມາຕຣິດມີພຸງແຕ່ແຖວດງວເອີ້ນວ່າມາຕຣິດແຖວ ເຊັ່ນ: (1 2 3), (1 0)

ມາຕຣິດມີພງງແຕ່ຖັນດງວເອີ້ນວ່າມາຕຣິດຖັນ ເຊັ່ນ $egin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$, $egin{pmatrix} 1 \\ 0 \end{pmatrix}$

ມາຕຣິດທີ່ມີຈຳນວນແຖວ ແລະ ຈຳນວນຖັນເທົ່າກັນເອີ້ນວ່າ ມາຕຣິດຈະຕຸລັດ ເຊັ່ນ

$$\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 & 1 \\ 1 & 3 & -2 \\ -1 & 0 & -3 \end{pmatrix}, \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

ມາຕຣິດທີ່ມີອົງປະກອບຢູ່ເສັ້ນເນັ່ງຈອມຫຼັກຢ່າງໜ້ອຍໜຶ່ງຕົວຕ່າງສູນນອກນັ້ນເປັນສູນ (2,0,0)(1,0,0)

ໝົດເອີ້ນວ່າ: ມາຕຣິດເນັ່ງຈອມ ເຊັ່ນ:
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -3 \end{pmatrix}$

ມາຕຣິດທີ່ມີອົງປະກອບຢູ່ເທິງເສັ້ນເນັ່ງຈອມທຸກຕົວເປັນສູນໝົດເອີ້ນວ່າ: ມາຕຣິດສາມ

ແຈເບື້ອງລຸ່ມ ເຊັ່ນ:
$$\begin{pmatrix} -1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 5 \end{pmatrix}$$

ມາຕຣິດທີ່ມີອົງປະກອບຢູ່ລຸ່ມເສັ້ນເນັ່ງຈອມທຸກຕົວເປັນສູນໝົດເອີ້ນວ່າມາຕຣິດສາມແຈເບື້ອງ

ເຫົງ ເຊັ່ນ
$$\begin{pmatrix} -1 & -2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

ມາຕຣິດຫົວໜ່ວຍ ແມ່ນມາຕຣິດຈະຕຸລັດທີ່ມີອົງປະກອບຢູ່ເສັ້ນເນັ່ງຈອມເປັນໜຶ່ງທຸກ

ຕົວນອກນັ້ນເປັນສູນເຊິ່ງ ສັນຍາລັກດ້ວຍ
$$I$$
 ເຊັ່ນ $I_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

