MODELE DE DEZVOLTARE SOFTWARE -2

Prof. unív. dr. ing. Florica Moldoveanu

Ingineria programelor UPB, Automatică și Calculatoare 2020-2021

Modelul "In V" (V model)

- ☐ Este o varianta a modelului cascada, care include elaborarea planurilor de test in fazele de specificare si proiectare.
- □ Săgețile orizontale evidențiază corelarea dintre etapele de creare a artefactelor software (documente, cod) și cele de verificare.

MODELUL "IN V" detaliat

Avantaj fata de modelul cascada: şanse de succes mai mari datorita elaborarii planurilor de test în primele etape ale procesului de dezvoltare.

Dezvoltarea pe baza de prototip

Modelul Iterativ si Incremental (1)

Modelul Iterativ si Incremental (2)

Caracteristici generale

- Produsul software este dezvoltat in mai multe iteratii.
- Fiecare iteratie include un "ciclu de dezvoltare cascada" si se incheie cu un produs executabil care poate fi livrat clientului.
- In fiecare iteratie se adauga noi functionalitati (cerinte) la ultimul prototip:
 - Cerinte prevazute initial
 - Cerinte noi aparute pe parcursul iteratiei anterioare
- Analiza cerințelor într-o iterație include feedback-ul la utilizarea prototipului anterior.

Modelul Iterativ si Incremental (3)

Iteratiile

- ❖ Scopul fiecarei iteratii este de a produce un produs executabil prin care se poate demonstra partilor interesate în proiect o parte dintre functionalitatile viitorului produs.
- ❖ Durata unei iteratii depinde de modelul de dezvoltare şi tipul de proiect; poate fi de cateva saptamani, una sau mai multe luni.
- Cu cat o iteratie este mai scurta cu atat mai repede se obtine feedback-ul partilor interesate.
- ❖Pentru prima iteratie se alege un subset de cerinte care corespund cazurilor de utilizare principale ale produsului (pun in evidenta aspectele cheie ale produsului).
- ❖ In fiecare iteratie se implementeaza un subset de cerinte prevazute initial dar si cerinte noi (neprevazute initial), tinand cont si de feedback-ul partilor interesate in proiect: client, utilizatori finali, altii.
- ❖ Obiectivele unei iteratii se stabilesc pe baza evaluarii iteratiilor precedente.

Modelul Iterativ si Incremental (4)

Iteratiile (cont)

- ❖ In fiecare iteratie se creaza un nou prototip prin modificarea prototipului anterior → proiectare, codificare, testare.
- Arhitectura produsului software trebuie sa fie flexibila la schimbari (extensibila, sa nu presupuna modificarea sa la fiecare noua iteratie)
- ❖ Analiza intr-o iteratie trebuie sa includa evaluarea evolutiei produsului: evolutia numarului de defecte descoperite in fiecare nou prototip, a complexitatii codului si a arhitecturii, a efortului de actualizare.
 - ➤ Metricile sunt suportul pentru determinarea eficientei procesului si a calitatii produsului: sunt importante nu numai valorile lor absolute ci si evolutia lor in timp.
- ❖ Documentatia este construita treptat, in timpul fiecarei iteratii.

Modelul Iterativ si Incremental (5)

Dezvoltarea iterativă şi incremetală poate fi:

- Proces planificat Exemplu: RUP (Rational Unified Process)
 - Inainte de începerea iterațiilor se efectueaza o analiza de nivel inalt:
 - Se analizeaza: scopul sistemului, obiectivele de nivel înalt, viitorii utilizatori, principalele functionalitati si constrangeri de operare
 - Se definesc cerintele de nivel inalt ale sistemului
 - Se planifica iteratiile si se aloca cerintele pe iteratii
 - Se defineste o arhitectura software de nivel inalt.
 - Durata iteratiilor nu este fixa: saptamani luni, in functie de activitatile planificate
- Proces "agil" Exemple: SCRUM, FDD (Feature-Driven Development), XP, ş.a.
 - Nu se pune accentul pe planificarea iteratiilor, cerintele sunt colectate pe parcurs
 - Iteratiile sunt foarte scurte (1-2 saptamani), indiferent de proiect
 - Se pune accentul pe feedbackul clientului/utilizatorilor
 - Clientul este implicat in procesul de dezvoltare (stabilirea obiectivelor urmatoarei iteratii, prioritizarea cerintelor)
 - Documentaţie minimală

Dezvoltarea iterativa – process planificat (1)

Analiza de nivel inalt

- -Se defineste o "viziune" asupra sistemului
- -Se analizeaza "domeniul problemei"/mediul de operare
- -Se definesc cerintele de nivel inalt ale sistemului
- -Se planifica iteratiile si se aloca cerintele pe iteratii
- -Se defineste o arhitectura software de nivel inalt

Dezvoltarea iterativa – process planificat (2)

Analiza de nivel inalt

- ❖ Se defineste o "viziune" asupra sistemului: scopul său, obiectivele de nivel înalt, cine îl va utiliza, principalele functionalitati si constrangeri de operare.
- ❖ In unele cazuri, se analizeaza "domeniul problemei" (business modeling). Scopul:
 - -de a se intelege structura si dinamica organizatiei tinta (in care va fi implementat sistemul), problemele din organizatia tinta si imbunatatirile potentiale;
 - -de a se asigura o aceeasi intelegere a organizatiei tinta de catre client, utilizatorii finali si dezvoltatori;
 - -de a se deriva cerintele de sistem in scopul sprijinirii organizatiei tinta
- ❖ Se definesc cazurile de utilizare ale viitorului sistem si actorii (cei care vor interactiona cu sistemul). Cazurile de utilizare exprima cerintele functionale de nivel inalt ale sistemului.
- ❖ Se dezvolta un plan initial al proiectului: se impart cerintele in subseturi care vor fi implementate in diferite iteratii, se prioritizeaza cerintele.
- **❖** Se defineste o arhitectura de nivel inalt a produsului software.

Rational Unified Process (RUP)

- □ Rational Unified Process este un **proces de inginerie software**, dezvoltat de corporatia Rational Software (devenita divizie IBM din 2003) si integrat cu suita de instrumente de dezvoltare oferita de IBM.
- ☐ Furnizeaza o abordare disciplinata de asignare a sarcinilor si responsabilitatilor intr-o organizatie care dezvolta software.
- □ RUP este o **platforma proces** care poate fi adaptata si extinsa pentru a satisface necesitatile organizatiei care o adopta.
- ☐ Proces de dezvoltare iterativă, dirijat de urmatoarele principii
- Diminuarea timpurie a riscurilor:
 - Primele iteratii trebuie sa adreseze riscurile cele mai mari
 - Riscul trebuie evaluat pe tot parcursul dezvoltarii: riscul se schimba in timp
 - Lista riscurilor actualizată este intrare pentru dezvoltarea planului iteratiei urmatoare
- Definirea timpurie a arhitecturii: in primele iteratii, testata prin prototipuri executabile
- Utilizarea de metrici obiective pentru evolutia procesului si a produsului dezvoltat

Dezvoltarea iterativa in RUP(1)

Cele doua dimensiuni ale procesului

Continutul - aspectul static: activitati, artefacte, fluxuri de lucru

Timpul - aspectul dinamic: cicluri, faze, iteratii

Dezvoltarea iterativa in RUP(2)

- Procesul de dezvoltare a unui produs software consta din mai multe cicluri de dezvoltare
 (iteratii), la sfarsitul fiecarui ciclu obtinandu-se un produs executabil care poate fi distribuit
 utilizatorilor. El satisface anumite cerinte specificate.
- Un ciclu de dezvoltare este divizat in 4 faze consecutive:
 - Faza de inceput (Inception) –se dezvolta o viziune asupra produsului final si o descriere a afacerii
 - Elaborarea (Elaboration) se specifica cerintele produsului si se proiecteaza arhitectura
 - Construirea (Construction) se construieste produsul adaugand toate componentele la arhitectura
 - Tranzitia (Transition) produsul software este transferat comunitatii de utilizatori
- **Fiecare faza se incheie cu un jalon (milestone)** se verifica satisfacerea anumitor criterii si se decide: intreruperea proiectului, refacerea fazei, trecerea la faza urmatoare
- Fiecare faza se poate desfasura in mai multe iteratii

Desfasurarea unei iteratii in RUP

Modelul Iterativ si Incremental - Concluzii

Avantaje:

- In fiecare iteratie se obtine un produs executabil, care satisface o parte din cerintele utilizator. Opus modelului cascada in care un produs executabil este disponibil la sfarsitul procesului de dezvoltare.
- Prototipurile pot fi livrate clientului/utilizatorilor:
 - → feedback-ul partilor interesate in proiect (utilizatori, client, s.a) este distribuit pe intreg parcursul dezvoltarii.
- Flexibil la schimbarea cerintelor: cerintele noi sau modificate pot fi incoporate in urmatorul prototip.
- Depanarea si testarea mai usor de efectuat intr-o iteratie se testeaza cerintele adaugate
- Produsul este mai fiabil decat intr-o dezvoltare in cascada: aspectele cele mai importante ale sistemului sunt cel mai mult testate.
- Riscurile de eşuare a proiectului sunt reduse.

<u>Dezavantaje (riscuri) – in special intr-un proces neplanificat</u>

- Arhitectura initiala a produsului software poate fi degradata \rightarrow testare dificila, intretinere dificila
- Abordarea incrementala se poate transforma usor intr-una 'construieste si repara' (build and fix) afecteaza calitatea produsului final: numarul de defecte ramase este mare, intretinerea dificila, s.a.

Modelul in Spirala

Boehm, 1986: http://en.wikipedia.org/wiki/Spiral_model

- -Model focalizat pe analiza riscurilor.
- -Combina ideea prototiparii cu dezvoltarea in cascada si dezvoltarea iterativa
- -Adecvat proiectelor mari si critice.
 - Fiecare iteratie (ciclu de dezvoltare) consta in repetarea a 4 faze si se termina cu un prototip al viitorului produs:
 - Determinarea obiectivelor, a constrangerilor, generarea alternativelor. Se colecteaza si studiaza cerintele, prin comunicare continua cu clientul.
 - 2. **Evaluarea alternativelor**: analiza riscurilor, construirea de prototipuri.
 - 3. Dezvoltarea si verificarea urmatorului nivel al produsului:
 - 1) cerinte utilizator; 2) cerinte software;
 - 3) proiectarea; 4) implementarea, integrarea, testarea
 - Evaluarea versiunii curente a produsului.
 Planificarea urmatorului ciclu.

La sfarsitul unei iteratii, prototipul obtinut este evaluat de client. Se decide daca se va efectua o noua iteratie.

Lecturi recomandate

- 1. https://acodez.in/12-best-software-development-methodologies-pros-cons/
- 2. The seductive and dangerous V Model: http://www.clarotesting.com/page11.htm
- 3. Modern Methods of Software Development: https://task.gda.pl/files/quart/TQ2015/04/tq419v-c.pdf
- 4. Rational Unified Process: A Best Practices Approach:

 http://www.eecg.toronto.edu/~jacobsen/courses/ece1770/slides/rup.pdf
- 5. Kruchten, P., The Rational Unified Process: An Introduction, Third Edition, Addison-Wesley, Pearson Education, Inc., NJ, 2004
- 6. https://www.geeksforgeeks.org/software-engineering-spiral-model/