

Objectivos

- Adquirir a noção de agrupamento hierárquico
- Explicar a estratégia aglomerativa de agrupamento
- Diferenciar os métodos utilizados para o cálculo das distâncias entre grupos no quadro da estratégia aglomerativa

•Sumário:

- Agrupamento hierárquico.
- Estratégia aglomerativa

Agrupamento hierárquico (1/2)

- Constitui uma ferramenta popular de análise de dados
- A ideia básica consiste em construir uma árvore binária através da junção (ou separação) sucessiva de conjuntos de dados.

Agrupamento hierárquico (2/2)

- Árvore construída é designada dendrograma
- Informação também pode ser apresentada na forma de um diagrama de Venn

Agrupamento hierárquico vs. K – médias

K – médias

- Número de clusters a formar,
 k
- Definição dos centros iniciais
- Medida de semelhança (ou distância) entre os exemplares de dados

Hierárquico

 Medida de semelhança (ou distância) entre grupos de exemplares de dados

Agrupamento hierárquico: tipos (1/2)

- Existem dois tipos de métodos hierárquicos
 - Aglomerativos (ascendentes, bottom up)
 - Cada exemplar de dados é considerado como um grupo individual
 - Grupos são sucessivamente fundidos até formar um agrupamento final
 - Divisivos (descendentes, top down)
 - Consideram inicialmente todo o conjunto de dados como um único grupo
 - Divide recursivamente o grupo até formar um agrupamento final

Agrupamento hierárquico: tipos (2/2)

Métodos aglomerativos (1/3)

- Algoritmo
 - Formar n grupos, contendo cada grupo um objecto de dados individual
 - Repetir
 - Unir os dois grupos mais semelhantes
 - Até que: todos os objectos de dados sejam incluídos no mesmo grupo

Métodos aglomerativos (2/3)

- Baseados igualmente no conceito de semelhança (ou distância)
- Necessidade de avaliar a distância entre dois grupos de objectos

Métodos aglomerativos (3/3)

- Existem diferentes variantes do método
- Diferenciam-se quanto à forma de calcular a distância entre grupos

Distância entre grupos

- Dada uma medida de distância entre dois pontos, d(x, y)
- Existem várias formas de definir a distância entre dois grupos de pontos, D(X, Y)
- As opções mais populares
 - Distância mínima (single linkage)
 - Distância máxima (complete linkage)
 - Distância média (average linkage)

Distância mínima

• A distância entre dois grupos é a distância existente entre os *pontos mais próximos* de um e outro grupo

$$-D_{min}(X,Y) = \min_{x \in X, y \in Y} d(x,y)$$

Distância máxima

• A distância entre dois grupos é a distância existente entre os *pontos mais distantes* de um e outro grupo

$$-D_{max}(X,Y) = \max_{x \in X, y \in Y} d(x,y)$$

Distância média

 A distância entre dois grupos é a distância média entre os pontos de um e outro grupo

$$- D_{avg}(X,Y) = \frac{1}{|X|.|Y|} \sum_{x \in X} \sum_{y \in Y} d(x,y)$$

Exemplo: distância mínima (1/6)

 Suponhamos que temos o seguinte conjunto de dados

	х	У
1	3	2
2	8	4
3	2	9
4	1	10
5	7	8

Exemplo: distância mínima (2/6)

	X	У
1	3	2
2	8	4
3	2	9
4	1	10
5	7	8

	1	2	3	4	5
1	0,0				
2	5,4	0,0			
3	7,1	7,8	0,0		
4	8,2	9,2	1,4	0,0	
5	7,2	4,1	5,1	6,3	0,0

Exemplo: distância mínima (3/6)

	1	2	3	4	5
1	0,0				
2	5,4	0,0			
3	7,1	7,8	0,0		
4	8,2	9,2	1,4	0,0	
5	7,2	4,1	5,1	6,3	0,0

$$D(1, 34) = min\{d(1, 3), d(1, 4)\} = 7,1$$

$$D(2, 34) = min\{d(2, 3), d(2, 4)\} = 7,8$$

$$D(5, 34) = min\{d(5, 3), d(5, 4)\} = 5,1$$

$$(3 4)$$

$$7,1$$

$$7,2$$

$$4,1$$

$$5,1$$

$$0,0$$

$$7,1$$

$$7,2$$

Exemplo: distância mínima (4/6)

$$D(1, 25) = min\{d(1, 2), d(1, 5)\} = 5,4$$

 $D(34, 25) = min\{d(3, 2), d(3, 5), d(4, 2), d(4, 5)\} = 5,1$

Exemplo: distância mínima (5/6)

$$D(1, 2534) = min\{d(1, 2), d(1, 5), d(1, 3), d(1, 4)\} = 5,4$$

Exemplo: distância mínima (6/6)

Distância entre grupos: propriedades (1/2)

- Distância mínima
 - Pode produzir cadeias de alinhamento entre instâncias distantes (chaining)
 - Tende a formar clusters alongados
 - Os clusters formados algumas vezes viola a propriedade de compacidade
- Distância máxima
 - Favorece a compacidade
 - Tende a formar clusters com forma esférica
 - Os clusters formados algumas vezes violam a propriedade de proximidade

Distância entre grupos: propriedades (2/2)

- Distância média
 - Constitui um compromisso natural entre os dois métodos anteriores
 - Tende a produzir grupos relativamente compactos que se encontram relativamente separados uns dos outros

Agrupamento hierárquico: precauções

- Diferentes decisões sobre a distância entre grupos podem conduzir a agrupamentos muito diferentes
- O algoritmo impõe uma estrutura hierárquica aos dados até nos casos em que esta estrutura não é adequada
- O agrupamento é feito com base em decisões locais; uma vez tomadas não podem ser reavaliadas
- Não é robusto ao ruído
- Complexidade de tempo e espaço

Bibliografia

- Witten, pg. 274 279
- Hastie, T., Tibshirani, R. e Friedman, J., The Elements of Statistical Learning, pg. 520 – 528