Neural Tangent Kernel: Convergence and Generalization in Neural Networks

Arthur Jacot

École Polytechnique Fédérale de Lausanne arthur.jacot@netopera.net

Franck Gabriel

Imperial College London and École Polytechnique Fédérale de Lausanne franckrgabriel@gmail.com

Clément Hongler

École Polytechnique Fédérale de Lausanne clement.hongler@gmail.com

Slides by Nolan Dey

https://arxiv.org/abs/1806.07572

What is a kernel?

- A kernel K(x,x') is a function that computes the dot product of two vectors x and x' in some feature space
- You can think of K(x,x') as the distance between x and x' in some space

Double Descent Phenomenon

https://openai.com/blog/deep-double-descent/

Setup

- We have some neural network: f(x, w)
 - Input data: $x \in \mathbb{R}^{n \times d}$
 - Network parameters: $w \in \mathbb{R}^p$
- Loss: $L(f(x, w), y) = \frac{1}{2}(f(x, w) y)^2$
- Optimize using full-batch gradient descent

What is the Neural Tangent Kernel (NTK)?

- Infinitely wide neural networks can fit any function
- Infinite width networks trained to convergence can be described by the NTK
- NTK describes training dynamics: $\frac{df(x,w)}{dt} = -NTK(w_0)(f(x,w)-y)$

Taylor expansion of neural network

ullet Taylor expansion of neural network with respect to initialization weights w_0

•
$$f(x, w) \approx f(x, w_0) + \nabla_w f(x, w_0)^T (w - w_0)$$

This Taylor expansion is only accurate when weights remain close to initialization

When is Taylor expansion accurate?

- Taylor expansion is only accurate when the weights don't change much during training
 - Weights don't change much when network is sufficiently wide
 - Lazy training = weights don't need to change

• Gradient descent: $w_{t+1} = w_t - \eta \nabla_w L(w_t)$

• Gradient descent: $w_{t+1} = w_t - \eta \nabla_w L(w_t)$

. Rewrite as:
$$\frac{w_{t+1} - w_t}{\eta} = -\nabla_w L(w_t)$$

• Gradient descent: $w_{t+1} = w_t - \eta \nabla_w L(w_t)$

. Rewrite as:
$$\frac{w_{t+1} - w_t}{\eta} = -\nabla_w L(w_t)$$

- Resembles finite difference^
- Take infinitesimally small learning rate η

- Gradient descent: $w_{t+1} = w_t \eta \nabla_w L(w_t)$
- . Rewrite as: $\frac{w_{t+1} w_t}{\eta} = -\nabla_w L(w_t)$
 - Resembles finite difference^
- Take infinitesimally small learning rate η

Gradient flow!
$$-> \frac{dw(t)}{dt} = -\nabla_w L(w(t))$$

•
$$\frac{dw(t)}{dt} = -\nabla_w L(w(t)) = -\nabla_w \left[\frac{1}{2}(f(x, w) - y)^2\right] = -\nabla_w f(x, w)(f(x, w) - y)$$

•
$$\frac{dw(t)}{dt} = -\nabla_w L(w(t)) = -\nabla_w \left[\frac{1}{2}(f(x, w) - y)^2\right] = -\nabla_w f(x, w)(f(x, w) - y)$$

$$\frac{df(x, w(t))}{dt} = \frac{df(x, w(t))}{dw} \frac{dw(t)}{dt} = \nabla_w f(x, w) \frac{dw(t)}{dt} = -\nabla_w f(x, w)^T \nabla_w f(x, w) (f(x, w) - y)$$

$$\frac{dw(t)}{dt} = -\nabla_w L(w(t)) = -\nabla_w \left[\frac{1}{2}(f(x, w) - y)^2\right] = -\nabla_w f(x, w)(f(x, w) - y)$$

$$\frac{df(x, w(t))}{dt} = \frac{df(x, w(t))}{dw} \frac{dw(t)}{dt} = \nabla_w f(x, w) \frac{dw(t)}{dt} = -\nabla_w f(x, w)^T \nabla_w f(x, w) (f(x, w) - y)$$

•
$$NTK_t(x, x') = \nabla_w f(x, w)^T \nabla_w f(x, w)$$

•
$$\frac{dw(t)}{dt} = -\nabla_w L(w(t)) = -\nabla_w \left[\frac{1}{2}(f(x, w) - y)^2\right] = -\nabla_w f(x, w)(f(x, w) - y)$$

$$\frac{df(x, w(t))}{dt} = \frac{df(x, w(t))}{dw} \frac{dw(t)}{dt} = \nabla_w f(x, w) \frac{dw(t)}{dt} = -\nabla_w f(x, w)^T \nabla_w f(x, w) (f(x, w) - y)$$

•
$$NTK_t(x, x') = \nabla_w f(x, w)^T \nabla_w f(x, w)$$

• In the infinite width limit: $NTK_t(x, x') = NTK_0(x, x')$

$$\frac{dw(t)}{dt} = -\nabla_w L(w(t)) = -\nabla_w \left[\frac{1}{2}(f(x, w) - y)^2\right] = -\nabla_w f(x, w)(f(x, w) - y)$$

$$\frac{df(x, w(t))}{dt} = \frac{df(x, w(t))}{dw} \frac{dw(t)}{dt} = \nabla_w f(x, w) \frac{dw(t)}{dt} = -\nabla_w f(x, w)^T \nabla_w f(x, w) (f(x, w) - y)$$

•
$$NTK_t(x, x') = \nabla_w f(x, w)^T \nabla_w f(x, w)$$

• In the infinite width limit: $NTK_t(x, x') = NTK_0(x, x')$

$$\frac{df(x,w)}{dt} = -NTK_0(x,x')(f(x,w)-y)$$
https://rajatvd.github.io/NTK/

• ODE:
$$\frac{df(x, w)}{dt} = -NTK(w_0)(f(x, w) - y)$$

• Substitute u = f(x, w) - y

$$\frac{du}{dt} = -NTK(w_0)u$$

• Solution: $u(t) = u(0)e^{-NTK(w_0)t}$

On Exact Computation with an Infinitely Wide Neural Net

Recall from [Lee et al., 2018] that in the infinite width limit, the pre-activations $f^{(h)}(x)$ at every hidden layer $h \in [L]$ has all its coordinates tending to i.i.d. centered Gaussian processes of covariance $\Sigma^{(h-1)}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ defined recursively as: for $h \in [L]$,

$$\Sigma^{(0)}(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{x}^{\top} \boldsymbol{x}',$$

$$\boldsymbol{\Lambda}^{(h)}(\boldsymbol{x}, \boldsymbol{x}') = \begin{pmatrix} \Sigma^{(h-1)}(\boldsymbol{x}, \boldsymbol{x}) & \Sigma^{(h-1)}(\boldsymbol{x}, \boldsymbol{x}') \\ \Sigma^{(h-1)}(\boldsymbol{x}', \boldsymbol{x}) & \Sigma^{(h-1)}(\boldsymbol{x}', \boldsymbol{x}') \end{pmatrix} \in \mathbb{R}^{2 \times 2},$$

$$\Sigma^{(h)}(\boldsymbol{x}, \boldsymbol{x}') = c_{\sigma} \underset{(u,v) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Lambda}^{(h)})}{\mathbb{E}} [\sigma(u) \sigma(v)].$$
(7)

To give the formula of NTK, we also need to define a derivative covariance:

$$\dot{\Sigma}^{(h)}(\boldsymbol{x}, \boldsymbol{x}') = c_{\sigma} \underset{(u,v) \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Lambda}^{(h)}\right)}{\mathbb{E}} \left[\dot{\sigma}(u)\dot{\sigma}(v)\right]. \tag{8}$$

The final NTK expression for the fully-connected neural network is

$$\Theta^{(L)}(\boldsymbol{x}, \boldsymbol{x}') = \sum_{h=1}^{L+1} \left(\Sigma^{(h-1)}(\boldsymbol{x}, \boldsymbol{x}') \cdot \prod_{h'=h}^{L+1} \dot{\Sigma}^{(h')}(\boldsymbol{x}, \boldsymbol{x}') \right), \tag{9}$$

https://arxiv.org/abs/1904.11955

What does this mean?

- NTK is a useful tool for studying the dynamics of infinitely wide neural networks
- Successful nets in practice DO NOT OPERATE IN THE NTK REGIME
 - Finite nets still outperform their exactly computed infinite width counterparts
 - SGD vs full-batch gradient descent
 - NTK kernel matrix has $O(n^2)$ memory complexity

Further reading

- Convolutional NTK (https://arxiv.org/abs/1904.11955)
- Tensor Programs II: Neural Tangent Kernel for Any Architecture (https://arxiv.org/abs/2006.14548)
- Google neural_tangents library (https://arxiv.org/abs/1912.02803)
- Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks (https://arxiv.org/abs/1910.01663)
 - SOTA on UCI datasets (structured data) (Beats random forest)

Thanks for listening!