

Capstone Project

Mobile Price Range Prediction

SAMEER THETE

Problem statement

In the competitive mobile phone market companies want to understand sales data of mobile phonesand factors which drive the prices.

The objective is to find out some relation between features of a mobile phone(e.g.- RAM, Internal Memory, etc.) and its selling price. In this problem, we do not have to predict the actual price but aprice range indicating how high the price is.

Points to discuss

- Data description and summary
- Exploratory data analysis
- Heat map
- Machine learning algorithms
 - 1. Logistic regression
 - 2. Decision tree
 - 3. Random forest classifier
 - 4. Xgboost classifier
- conclusion

Data description

The data contains information regarding mobile phone features, specifications etc and their price range. The various features and information can be used to predict the price range of a mobile phone.

- Battery_power Total energy a battery can store in one time measured in mAh
- Blue Has bluetooth or not
- Clock_speed speed at which microprocessor executes instructions
- Dual_sim Has dual sim support or not
- Fc Front Camera mega pixels
- Four_g Has 4G or not
- Int_memory Internal Memory in Gigabytes
- M_dep Mobile Depth in cm
- Mobile_wt Weight of mobile phone

Data description(cont,.)

- N_cores Number of cores of processor
- Pc Primary Camera mega pixels
- Px_height Pixel Resolution Height
- Px_width Pixel Resolution Width
- Ram Random Access Memory in Mega Bytes
- Sc_h Screen Height of mobile in cm
- Sc_w Screen Width of mobile in cm
- Talk_time longest time that a single battery charge will last when you are
- Three_g Has 3G or not
- Touch_screen Has touch screen or not
- Wifi Has wifi or not
- Price_range This is the target variable with value of 0(low cost), 1(medium cost),
- 2(high cost) and 3(very high cost).

Price

 there are mobile phones in 4 price ranges. the number of elements is almost similar

Battery

this plot shows how the battery mAh is spread.
 there is a gradual increase as the price range increases

bluetooth

half the devices have Bluetooth, and half don't

RAM

Ram has continuous increase with price range while moving from Low cost to Very high cost

Px_width

px_height

There is not a continuous increase in pixel width as we move from Low cost to Very high cost. Mobiles with 'Medium cost' and 'High cost' has almost equal pixel width. so we can say that it would be a driving factor in deciding price_range.

Pixel height is almost similar as we move from Low costto Very high cost.little variation in pixel_height

screen_size

Combining the sc_height and sc_width into one column that is sc_size, Screen Size shows little variation along the target variables. This can be helpful in predicting the target categories.

4g and 3g

50% of the phones support 4_g and 76% of phones support 3_g,feature 'three_g' play an important feature in prediction

three_g

FC (front camera megapixels)

PC (Primary camera Megapixels)

mobile weight

- This features distribution is almost similar along all the price ranges variable, it may not be helpful in making predictions
- Primary camera megapixels are showing a little variation along the target categories, which is a good sign for prediction.

costly phones are lighter

Heat map

- RAM and price_range shows high correlation which is a good sign, it signifies that RAM will play major deciding factor in estimating the price range.
- There is some collinearity in feature pairs ('pc', 'fc') and ('px_width', 'px_height'). Both correlations are justified since there are good chances that if front camera of a phone is good, the back camera would also be good.
- Also, if px_height increases, pixel width also increases, that means the overall pixels in the screen.
 We can replace these two features with one feature.
 Front Camera megapixels and Primary camera megapixels are different entities despite of showing colinearity. So we'll be keeping them as they are.

ML algorithms

- 1. Logistic regression
- 2. Decision tree
- 3. Random Forest classification
- 4. XGboost

Train_accuracy: 92% Test_accuracy: 90%

```
from sklearn.metrics import classification report
print('Classification report for Logistic Regression (Test set)= ')
print(classification_report(y_pred_test, y_test))
Classification report for Logistic Regression (Test set)=
                          recall f1-score
                   0.97
                            0.95
                                                 107
                            0.87
                                      0.86
                                                 92
                  0.82
                            0.82
                                      0.82
                  0.92
                            0.93
                                      0.92
                                                 111
                                      0.90
    accuracy
   macro ave
                  0.89
                            0.89
                                      0.89
                                                 400
weighted ave
                  0.90
                            0.90
                                      0.90
                                                 400
```

Seaborn Confusion Matrix with labels

Decision tree

Test_accuracy: 84%

0.82

0.82

0.83

0.82

macro avg

weighted avg

```
# Evaluation metrics for test
print('Classification report for Decision Tree (Test set)= ')
print(classification report(y pred test, y test))
Classification report for Decision Tree (Test set)=
              precision
                           recall f1-score
                   0.87
                             0.98
                                       0.92
                  0.81
                             0.73
                                       0.77
                                                  101
                  0.78
                             0.67
                                       0.72
                                                  108
                  0.81
                             0.93
                                       0.87
                                                   98
    accuracy
                                       0.82
                                                  400
```

0.82

0.82

400

400

Decision tree with hyperparameter tuning

Test_accuracy: 82%

```
# Prediction
y_pred_test = grid.predict(X test)
y_pres_train = grid.predict(X_train)
# Evaluation metrics for test
print('Classification Report for Decision Tree (Test set)= ')
print(classification_report(y_test, y_pred_test))
Classification Report for Decision Tree (Test set)=
              precision
                          recall f1-score
                                                  105
                             0.90
                                       0.93
                  9.75
                                       9.79
                                                  91
                  0.75
                            0.70
                                      0.72
                                                  92
                                                  112
                                      0.89
    accuracy
                                       0.84
                                                  400
   macro avg
                  0.84
                            0.83
                                      0.83
                                                  400
weighted avg
                                       0.84
                                                  400
```

Seaborn Confusion Matrix with labels

Predicted Values

Random forest classifier with hyper parameter tuning

Train_accuracy: 86.5%

)	<pre>print(classification_report(y_test, y_pred))</pre>							
D		precision	recall	f1-score	support			
	0	0.94	0.95	0.95	105			
	1	0.86	0.84	0.85	91			
	2	0.77	0.85	0.81	92			
	3	0.93	0.88	0.90	112			
	accuracy			0.88	400			
	macro avg	0.88	0.88	0.88	400			
	weighted avg	0.88	0.88	0.88	400			

Seaborn Confusion Matrix with labels

Predicted Values

As we can see the top 3 important features of our dataset are: RAM, battery_power ,pixels

XGboost

Test_accuracy: 89%

Classificatio	n Report for	XGBoost(Test set)=	
	precision	recall	f1-score	support
0	0.95	0.93	0.94	105
1	0.83	0.88	0.86	91
2	0.81	0.84	0.82	92
3	0.94	0.89	0.92	112
accuracy			0.89	400
macro avg	0.88	0.89	0.88	400
weighted avg	0.89	0.89	0.89	400

XGboost with hyperparameter tuning

Test_accuracy: 90%

Seaborn Confusion Matrix with labels

conclusion

- From EDA we can see that here are mobile phones in 4 price ranges. The number of elements is almost similar.
- half the devices have Bluetooth, and half don't
- there is a gradual increase in battery as the price range increases
- Ram has continuous increase with price range while moving from Low cost to Very high cost
- costly phones are lighter
- RAM, battery power, pixels played more significant role in deciding the price range of mobile phone.
- form all the above experiments we can conclude that logistic regression and, XGboosting with using hyperparameters we got the best results
- The accuracy and performance of the model is evaluated by using confusion matrix