Notes for Tropical Geometry

Fall 2022

The University of Texas at Austin Lectured by Bernd Seibert

Isaac Martin

Last Compiled: August 26, 2022

Contents

§ **Entry 1** Written: 2022-Aug-26

Left off last time by defining cell complexes aka CW complexes. Recall that that it is a space X which can be constructed ass a discrete set X^0 and then for all n>0 we take $X^n=X^{n-1}\cup D^n_\alpha$ where α index in an index set indexes on n-cells.

We're given maps $\varphi_{\alpha}: S^{n-1} \to X^{n-1}$ with $X^{(n)}$ is $X^{n-1} \cup \coprod D_{\alpha}^{n}$ with identification $x \in S_{\alpha}^{n-1}$ is identified with $\varphi_{\alpha}(x) \in X^{n-1}$.

The φ_{α} 's need not be injective, but $D_{\alpha}^n - S_{\alpha}^{n-1}$ does inject into X^n .

We write e_{α} for the interior of D_{α}^{n} .

Either $X = X^n$ or $X = \bigcup_n X^n$ with the "weak topology": a subset of X is closed if and only if its intersection with each X^n is open.

Example 0.1. Basic Examples, all ways to write S^n :

- (i) {norm 1 vectors $in\mathbb{R}^{n+1}$ }
- (ii) $D^n/\partial D^n$ meaning crush $S^{n-1} = \partial D^n$
- (iii) cell complex with $X^n = 1$ pt with an *n*-disk attached (by a unique map $\partial D^n \to \{pt\}$).
- (iv) 1-pt compactification of \mathbb{R}^n
- (v) Cell complex: $S^0 = S^{n-1}$ with 2 disks attached.
- (5) allows for the definition of $S^{\infty} = \bigcup_{n} S^{n}$, which is not locally compact but is contractible.

Key properties of cell complexes: (approx)

- normal
- locally contractible
- every subset is deformation retractable of some neighborhood of itself
- (\star) every compact set lies in the union of finitely many cells.
- (*) a function on X is continuous if and only if its restriction to each cell is continuous, i.e. $\Phi_{\alpha}: D_{\alpha}^{n} \to X$ followed by f is continuous. Recall that this Φ_{α} is the characteristic map of cell e_{α} .

Example 0.2. We may define $\mathbb{RP}^n = S^{n+1}/\{\pm 1\}$. The cell complex structure is a "quotient of 2-cells-of-eachdimension" version of S^n . \mathbb{RP}^n has one cell of each dimension, the ataching map $\partial D^n = S^{n-1}$ being the canonical map $S^{n-1} \to S^{n-1}/\{\pm 1\} = \mathbb{RP}^n$.

Each cell has its boundary wrapped twice around \mathbb{RP}^{n-1} in \mathbb{RP}^2 .

The following is a severely important/useful tool. If X a space and $A \subseteq X$, then (X, A) has the homotopy extension property (HEP) if for all maps $F: X \to Y$ and every homotopy $F: A \times I \to Y$, $F|_A$ to some other map $A \to Y$, there exists an extension to $\tilde{F}: X \times I \to Y$. The idea is this: if you're given a motion of A inside Y, then you can drag along with it the points of X.

Theorem 0.3. If X is a CW complex and $A \subseteq X$ is a sub-CW complex then (X, A) has the HEP property.

Theorem 0.4. If (X, A) has the HEP and A is contractible, then $X \stackrel{q}{\to} X/A$ is a homotopy equivalence.

Proof: The clever part is writing down a homotopy inverse g. Suppose $f_t:A\times I\to A$ is a contraction $(f_0=\operatorname{id}_A,f_1=\operatorname{const})$. We think of the contraction as a map $f_t:A\times I\to X$, and then use HEP to get $f_t:X\times I$ ot X. Observe $f_1:X\to X$ sends A to a point, inducing a map $g:X/A\to X$ as X/A is exactly all of A collapsed to a point.

We need to check that g is an inverse. Consider $X \xrightarrow{q} X/A \xrightarrow{g} X$ is $f_1 \simeq \mathrm{id}_X$ and

$$X/A \xrightarrow{g} X \xrightarrow{q} X/A$$

is \overline{f}_1 (function $X/A \to X/A$) induced by $f: X \to X$ $\overline{f}_1 \simeq \overline{f}_0$ since f_t sends A into $A \subseteq X$, hence induces $X/A \to X/A$. The \overline{f}_t are a homotopy between $\overline{f}_0 - \operatorname{id}_{X/A}$ and $\overline{f}_1 = \operatorname{q} \circ g$. \square