FIFA Data Visualization - EDA

```
In [8]: # import libraries
          import numpy as np
          import pandas as pd
          import seaborn as sns
          sns.set(style="whitegrid")
          import matplotlib.pyplot as plt
          from collections import Counter
          %matplotlib inline
 In [9]: # ignore warnings
          import warnings
          warnings.filterwarnings('ignore')
In [10]:
          # read Dataset
          fifa19 = pd.read_csv('FIFA.csv')
In [12]: # Explorary Data Analysis
          fifa19.head()
Out[12]:
             Unnamed:
                             ID
                                                                                   Photo Natio
                                   Name Age
                     0 158023
          0
                                 L. Messi
                                            31 https://cdn.sofifa.org/players/4/19/158023.png
                                                                                            Arge
                                 Cristiano
                         20801
          1
                                            33
                                                 https://cdn.sofifa.org/players/4/19/20801.png
                                                                                             Po
                                 Ronaldo
                                 Neymar
          2
                     2 190871
                                            26 https://cdn.sofifa.org/players/4/19/190871.png
          3
                     3 193080
                                  De Gea
                                            27 https://cdn.sofifa.org/players/4/19/193080.png
                                    K. De
          4
                     4 192985
                                            27 https://cdn.sofifa.org/players/4/19/192985.png
                                                                                             Be
                                  Bruyne
         5 rows × 89 columns
         fifa19.drop('Unnamed: 0',axis=1,inplace=True)
In [17]:
In [18]:
          # Preview the dataset
          fifa19.head()
```

00.0[-0].	Ou	t[18		:
-----------	----	----	----	--	---

	ID	Name	Age	Photo	Nationality	
0	158023	L. Messi	31	https://cdn.sofifa.org/players/4/19/158023.png	Argentina	https
1	20801	Cristiano Ronaldo	33	https://cdn.sofifa.org/players/4/19/20801.png	Portugal	https
2	190871	Neymar Jr	26	https://cdn.sofifa.org/players/4/19/190871.png	Brazil	https
3	193080	De Gea	27	https://cdn.sofifa.org/players/4/19/193080.png	Spain	https
4	192985	K. De Bruyne	27	https://cdn.sofifa.org/players/4/19/192985.png	Belgium	http
5 rows × 88 columns						

In [19]: # View summary of dataset
fifa19.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18207 entries, 0 to 18206
Data columns (total 88 columns):

Data	columns (total 88 columns)):	
#	Column	Non-Null Count	Dtype
0	ID	18207 non-null	int64
1	Name	18207 non-null	object
2	Age	18207 non-null	int64
	_		
3	Photo	18207 non-null	object
4	Nationality	18207 non-null	object
5	Flag	18207 non-null	object
6	Overall	18207 non-null	int64
7	Potential	18207 non-null	int64
8	Club	17966 non-null	object
9	Club Logo	18207 non-null	object
10	Value	18207 non-null	object
11	Wage	18207 non-null	object
12	Special	18207 non-null	int64
	•		
13	Preferred Foot	18159 non-null	object
14	International Reputation	18159 non-null	float64
15	Weak Foot	18159 non-null	float64
16	Skill Moves	18159 non-null	float64
17	Work Rate	18159 non-null	object
18	Body Type	18159 non-null	object
19	Real Face	18159 non-null	object
20	Position	18147 non-null	object
21	Jersey Number	18147 non-null	float64
22	Joined	16654 non-null	object
23	Loaned From	1264 non-null	object
24	Contract Valid Until	17918 non-null	-
			object
25	Height	18159 non-null	object
26	Weight	18159 non-null	object
27	LS	16122 non-null	object
28	ST	16122 non-null	object
29	RS	16122 non-null	object
30	LW	16122 non-null	object
31	LF	16122 non-null	object
32	CF	16122 non-null	object
33	RF	16122 non-null	object
34	RW	16122 non-null	object
35	LAM	16122 non-null	object
36	CAM	16122 non-null	object
37	RAM	16122 non-null	object
38	LM	16122 non-null	object
			-
39	LCM	16122 non-null	object
40	CM	16122 non-null	object
41	RCM	16122 non-null	object
42	RM	16122 non-null	object
43	LWB	16122 non-null	object
44	LDM	16122 non-null	object
45	CDM	16122 non-null	object
46	RDM	16122 non-null	object
47	RWB	16122 non-null	object
48	LB	16122 non-null	object
49	LCB	16122 non-null	object
50	СВ	16122 non-null	object
51	RCB	16122 non-null	object
52	RB	16122 non-null	object
52 53			_
	Crossing	18159 non-null	float64
54	Finishing	18159 non-null	float64

```
55 HeadingAccuracy
                                        18159 non-null float64
         56 ShortPassing
                                         18159 non-null float64
                                         18159 non-null float64
          57 Volleys
         58 Dribbling
                                        18159 non-null float64
                                        18159 non-null float64
          59 Curve
         60 FKAccuracy
61 LongPassing
62 BallControl
                                        18159 non-null float64
                                        18159 non-null float64
                                        18159 non-null float64
         63 Acceleration64 SprintSpeed65 Agility
                                        18159 non-null float64
                                        18159 non-null float64
                                        18159 non-null float64
          66 Reactions
                                        18159 non-null float64
          67 Balance
                                        18159 non-null float64
         68 ShotPower
69 Jumping
                                        18159 non-null float64
                                        18159 non-null float64
          70 Stamina
                                         18159 non-null float64
         71 Strength
72 LongShots
73 Aggression
                                        18159 non-null float64
                                        18159 non-null float64
                                        18159 non-null float64
         73 Aggression 18159 non-null float64
74 Interceptions 18159 non-null float64
75 Positioning 18159 non-null float64
          76 Vision
                                        18159 non-null float64
          77 Penalties
                                        18159 non-null float64
         77 Penarca
78 Composure
                                        18159 non-null float64
18159 non-null float64
         80 StandingTackle
81 SlidingTackle
                                        18159 non-null float64
                                        18159 non-null float64
                                        18159 non-null float64
18159 non-null float64
         82 GKDiving
         83 GKHandling
84 GKKicking
                                18159 non-null float64
18159 non-null float64
18159 non-null float64
16643 non-null object
         85 GKPositioning
86 GKReflexes
          86 GKReflexes
          87 Release Clause
         dtypes: float64(38), int64(5), object(45)
         memory usage: 12.2+ MB
In [20]: fifa19['Body Type'].value counts()
Out[20]: Body Type
          Normal
                                  10595
          Lean
                                   6417
          Stocky
                                   1140
          Messi
                                     1
          C. Ronaldo
          Neymar
          Courtois
          PLAYER_BODY_TYPE_25
          Shaqiri
          Akinfenwa
          Name: count, dtype: int64
 In [ ]: # Explore Age Vaiable
In [21]: # Visualise distribution of Age Variable with Seaborn distplot() function
          f, ax = plt.subplots(figsize=(8,6))
          x = fifa19['Age']
          ax = sns.distplot(x, bins=10)
          plt.show()
```



```
In [23]: f, ax = plt.subplots(figsize=(8,6))
x = fifa19['Age']
ax = sns.distplot(x, bins=10, vertical = True)
plt.show()
```



```
In [24]: # Seaborn KDE plot

f, ax = plt.subplots(figsize=(8,6))
x = fifa19['Age']
x = pd.Series(x, name="Age variable")
ax = sns.kdeplot(x)
plt.show()
```



```
In [26]: # Histograms
    f, ax = plt.subplots(figsize=(8,6))
    x = fifa19['Age']
    ax = sns.distplot(x, kde=False, rug=True, bins=10)
    plt.show()
```



```
In [27]: # Plot a KDE Plot
    f, ax = plt.subplots(figsize=(8,6))
    x = fifa19['Age']
    ax = sns.distplot(x, hist=False, rug=True, bins=10)
    plt.show()
```



```
In [28]: # Explore Preferred Foot Variable
In [30]: # Check number of unique values in Preferred Foot Variable
         fifa19['Preferred Foot'].nunique()
Out[30]: 2
In [31]: # Check the distribution of values in Preferred Foot Variable
         fifa19['Preferred Foot'].value_counts()
Out[31]: Preferred Foot
                  13948
         Right
         Left
                   4211
         Name: count, dtype: int64
In [32]: # Visualise distribution of values with Seaborn countplot() function
         f, ax = plt.subplots(figsize=(8, 6))
         sns.countplot(x="Preferred Foot", data=fifa19, color="c")
         plt.show()
```


In [34]: f, ax = plt.subplots(figsize=(8, 6))
sns.countplot(x="Preferred Foot", data=fifa19, hue="Real Face")
plt.show()


```
In [35]: # draw plot vertically
f, ax = plt.subplots(figsize=(8, 6))
```

```
sns.countplot(y="Preferred Foot", data=fifa19, color="c")
plt.show()
```



```
In [36]: # Seaborn Catplot() function
g = sns.catplot(x="Preferred Foot", kind="count", palette="ch:.25", data=fifa19)
```



```
In [37]: # Explore International Reputation Variable
In [38]: # Check the number of unique values in International Reputation Varible
         fifa19['International Reputation'].value_counts()
Out[38]: International Reputation
         1.0
                16532
         2.0
                 1261
         3.0
                  309
         4.0
                   51
         5.0
         Name: count, dtype: int64
In [39]: # Seaborn StripPlot() function
         f, ax = plt.subplots(figsize=(8, 6))
         sns.stripplot(x="International Reputation", y="Potential", data=fifa19)
         plt.show()
```


In [40]: # we can add jitter to bring out the distribution of values

f, ax = plt.subplots(figsize=(8, 6))
sns.stripplot(x="International Reputation", y="Potential", data=fifa19, jitter=0
plt.show()


```
In [43]: # Seaborn Boxplot()
f, ax = plt.subplots(figsize=(8, 6))
sns.boxplot(x=fifa19["Potential"])
plt.show()
```


In [44]: f, ax = plt.subplots(figsize=(8, 6))
sns.boxplot(x="International Reputation", y="Potential", data=fifa19)
plt.show()

In [45]: # we can draw a boxplot with nested grouping by two categorical variable
 f, ax = plt.subplots(figsize=(8, 6))
 sns.boxplot(x="International Reputation", y="Potential", hue="Preferred Foot", d
 plt.show()


```
In [46]: # Seaborn Violin Plot() function

f, ax = plt.subplots(figsize=(8, 6))
sns.violinplot(x=fifa19["Potential"])
plt.show()
```


In [47]: # draw the vertical violinplot grouped by the categorical variable International
 f, ax = plt.subplots(figsize=(8, 6))
 sns.violinplot(x="International Reputation", y="Potential", data=fifa19)
 plt.show()

In [48]: # draw a violinplot with nested grouing by two categorical variable

f, ax = plt.subplots(figsize=(8, 6))
sns.violinplot(x="International Reputation", y="Potential", hue="Preferred Foot"
plt.show()


```
In [50]: # Seaborn pointplot()
    f, ax = plt.subplots(figsize=(8, 6))
    sns.pointplot(x="International Reputation", y="Potential", data=fifa19)
    plt.show()
```


In [51]: # we can draw a set of vertical points with nested grouping by a two variable
 f, ax = plt.subplots(figsize=(8, 6))
 sns.pointplot(x="International Reputation", y="Potential", hue="Preferred Foot",
 plt.show()

In [52]: # We can separate the points for different hue levels along the categorical axis
 f, ax = plt.subplots(figsize=(8, 6))
 sns.pointplot(x="International Reputation", y="Potential", hue="Preferred Foot",
 plt.show()


```
In [54]: # Seaborn Boxplot()

f, ax = plt.subplots(figsize=(8, 6))
sns.barplot(x="International Reputation", y="Potential", data=fifa19)
plt.show()
```


In [56]: # draw a set of vertcal bars with nested grouping by a two variable
 f, ax = plt.subplots(figsize=(8, 6))
 sns.barplot(x="International Reputation", y="Potential",hue="Preferred Foot", da
 plt.show()

In [60]: # We can use median as the estimation of central tendency
 from numpy import median
 f, ax = plt.subplots(figsize=(8, 6))
 sns.barplot(x="International Reputation", y="Potential", data=fifa19, estimator=
 plt.show()

In [61]: # we can show the standard erroe of the mean with the error bars as follows:
 f, ax = plt.subplots(figsize=(8, 6))
 sns.barplot(x="International Reputation", y="Potential", data=fifa19, ci=68)
 plt.show()

In [62]: # We can show standars deviation of observations instead of a confideance interv
f, ax = plt.subplots(figsize=(8, 6))
sns.barplot(x="International Reputation", y="Potential", data=fifa19, ci="sd")
plt.show()


```
In [63]: # we can add "caps" to the error bars:
    f, ax = plt.subplots(figsize=(8, 6))
    sns.barplot(x="International Reputation", y="Potential", data=fifa19, capsize=0.
    plt.show()
```



```
In [64]: # Visualizing statistical relationship with seaborn relplot() function
In [65]: # Seaborn relplot() function
g = sns.relplot(x="Overall", y="Potential", data=fifa19)
```



```
In [66]: # Seaborn scatterplot()

f, ax = plt.subplots(figsize=(8, 6))
sns.scatterplot(x="Height", y="Weight", data=fifa19)
plt.show()
```


57 6'2 5'9 6'4 5'11 5'8 6'0 5'6 5'10 6'6 6'1 5'4 6'3 5'5 6'5 6'7 5'3 5'2 6'8 5'1 6'9 Height

```
In [67]: # Seaborn Lineplot() function

f, ax = plt.subplots(figsize=(8, 6))
ax = sns.lineplot(x="Stamina", y="Strength", data=fifa19)
plt.show()
```



```
In [69]: # Seaborn regplot() function
f, ax = plt.subplots(figsize=(8,6))
ax = sns.regplot(x="Overall",y="Potential",data=fifa19)
plt.show()
```



```
In [70]: # we can use different color and marker
f, ax = plt.subplots(figsize=(8, 6))
ax = sns.regplot(x="Overall", y="Potential", data=fifa19, color= "g", marker="+"
plt.show()
```


In [71]: # we can plot with a discrete variable and add some jitter as follows:
 f,ax=plt.subplots(figsize=(8,6))
 sns.regplot(x="International Reputation", y="Potential", data=fifa19, x_jitter=.
 plt.show()


```
In [72]: # Seaborn LmpLot() function
g = sns.lmplot(x="Overall", y="Potential", data=fifa19)
```


In [73]: # we can comdition on a third variable and plot the levels in different colors a
g = sns.lmplot(x="Overall", y="Potential", hue="Preferred Foot", data=fifa19)

In [74]: # using different color palette
g= sns.lmplot(x="Overall", y="Potential", hue="Preferred Foot", data=fifa19, pal

In [75]: # we can plot the levels of the third variable across different columns as follo
g= sns.lmplot(x="Overall", y="Potential", col="Preferred Foot", data=fifa19)

In [76]: # Multi-plot Grids
g = sns.FacetGrid(fifa19, col="Preferred Foot")

In [77]: # we can draw a univariate plot of potential variable on each facet as followsg = sns.FacetGrid(fifa19, col="Preferred Foot")
g = g.map(plt.hist, "Potential")


```
In [78]: g = sns.FacetGrid(fifa19, col="Preferred Foot")
g = g.map(plt.hist, "Potential", bins=10, color="r")
```


In [79]: # We can plot a bivariate function on each facet as followsg = sns.FacetGrid(fifa19, col="Preferred Foot")
g = (g.map(plt.scatter, "Height", "Weight", edgecolor="w").add_legend())


```
In [80]: g = sns.FacetGrid(fifa19, col="Preferred Foot", height=5, aspect=1)
    g = g.map(plt.hist, "Potential")
```



```
In [81]: # Seaborn Pairgrid()
  fifa19_new = fifa19[['Age', 'Potential', 'Strength', 'Stamina', 'Preferred Foot'

In [82]: g = sns.PairGrid(fifa19_new)
  g = g.map(plt.scatter)
```


In [83]: # we can show a univariate distribution on the diagonal as follows-

g = sns.PairGrid(fifa19_new)

g = g.map_diag(plt.hist)
g = g.map_offdiag(plt.scatter)

In [84]: # we can color the points using the categorical variable Preferred Foot as follo

g = sns.PairGrid(fifa19_new, hue="Preferred Foot")

g = g.map_diag(plt.hist)

g = g.map_offdiag(plt.scatter)

g = g.add_legend()

In [85]: # we can plot a subset of variables as followsg = sns.PairGrid(fifa19_new, vars=['Age', 'Stamina'])
g = g.map(plt.scatter)

In [86]: # We can use different functions on the upper and lower triangles as follows:

g = sns.PairGrid(fifa19_new)
g = g.map_upper(plt.scatter)
g = g.map_lower(sns.kdeplot, cmap="Blues_d")
g = g.map_diag(sns.kdeplot, lw=3, legend=False)

In [87]: # Seaborn Jointgrid()

g = sns.JointGrid(x="Overall", y="Potential", data=fifa19)

g = g.plot(sns.regplot, sns.distplot)


```
In [89]: import matplotlib.pyplot as plt

In [90]: g = sns.JointGrid(x="Overall", y="Potential", data=fifa19)
    g = g.plot_joint(plt.scatter, color=".5", edgecolor="white")
    g = g.plot_marginals(sns.distplot, kde=False, color=".5")
```


In [91]: # we can remove the space between the joint and marginal axes as followsg = sns.JointGrid(x="Overall", y="Potential", data=fifa19, space=0)
g = g.plot_joint(sns.kdeplot, cmap="Blues_d")
g = g.plot_marginals(sns.kdeplot, shade=True)


```
In [92]: g = sns.JointGrid(x="Overall", y="Potential", data=fifa19, height=5, ratio=2)
    g = g.plot_joint(sns.kdeplot, cmap="Reds_d")
    g = g.plot_marginals(sns.kdeplot, color="r", shade=True)
```


Out[94]: <seaborn.axisgrid.FacetGrid at 0x1d74fbda250>


```
In [95]: # Seaborn figure styles
def sinplot(flip=1):
    x = np.linspace(0, 14, 100)
    for i in range(1, 7):
        plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)
```

In [96]: # This is what the plot looks like with matplotlib default parameters.
sinplot()

In [97]: # To switch to seaborn deafaults, we need to call the set() function as follows-

In [98]: # we can set different styles as followssns.set_style("whitegrid")
sinplot()


```
In [99]: sns.set_style("dark")
    sinplot()
```


In []: sns.set_style("whitegrid")
 sinplot()