Associated graded algebra, Rees algebra, and classical limit algebra

黒木 玄

2007年10月4日

目次

1	Associated graded algebra	1
2	Classical limit algebra	2
3	Rees algebra	2
4	Weyl 代数の場合	2
5	Lie 代数の universal enveloping algebra の場合	9

1 Associated graded algebra

A は基礎体 $\mathbb F$ 上の associative algebra ($\mathbb F$ -algebra) であるとする. A の $\mathbb F$ 部分空間の族 $\{F_iA\}_{i=0}^\infty$ が $1\in F_0A$, $F_iA\subset F_{i+1}A$, $F_iAF_jA\subset F_{i+j}A$, $\bigcup_{i=0}^\infty F_iA=A$ を満たしているとき, $\{F_iA\}_{i=0}^\infty$ は A の filtration であると言い, A と $\{F_iA\}_{i=0}^\infty$ の組を filtererd algebra と呼ぶ. $\{F_iA\}_{i=0}^\infty$ は A の filtration であるとする. 負の i に対して $F_iA=0$ とおく.

 $\operatorname{gr}_i A = F_i A/F_{i+1} F$ とおき、 $F_i A$ から $\operatorname{gr}_i A$ への自然な射影を σ_i と書く、 $a \in F_i A \setminus F_{i-1} A$ に対して、 $\sigma_i(a) \in \operatorname{gr}_i A$ を a の symbol と呼ぶ、 $\operatorname{gr} A = \bigoplus_{i=0}^\infty$ とおく、 $\operatorname{gr} A$ には $\sigma_i(a)\sigma_j(b) = \sigma_{i+j}(ab)$ $(a \in F_i A, b \in F_j A)$ によって自然に環構造が入り、 $\operatorname{gr} A$ は $\operatorname{\mathbb{F}}$ 上の associative algebra になる。このとき $\operatorname{gr}_i A \operatorname{gr}_j A \subset \operatorname{gr}_{i+j} A$ が成立するので、 $\operatorname{gr} A$ は graded algebra である。 $\operatorname{gr} A$ を filtered algebra A の associated graded algebra と呼ぶ.

交換子を [a,b]=ab-ba と定める. A が $[F_iA,F_jA]\subset F_{i+j-1}A$ を満たしているとき、A は quasi-commutative であることは $\operatorname{gr} A$ が quasi-commutative であることと同値である.

A は quasi-commutative であるとする. このとき $\operatorname{gr} A$ には $\{\sigma_i(a), \sigma_j(b)\} = \sigma_{i+j-1}([a,b])$ $(a \in F_i A, b \in F_j A)$ によって Poisson algebra の構造が入る. よって quasi-commutative filtered algebra A に対して, graded Poisson algebra $\operatorname{gr} A$ が自然に対応している.

2 Classical limit algebra

Planck constant と呼ばれる不定元 \hbar から生成される基礎体 \mathbb{F} 上の一変数多項式環 $\mathbb{F}[\hbar]$ を考え、 \mathcal{A} は $\mathbb{F}[\hbar]$ -algebra ($\mathbb{F}[\hbar]$ 上の associative algebra) であるとする. このとき \mathbb{F} -algebra $\mathcal{A}_{\hbar=0}$ が $\mathcal{A}_{\hbar=0}=\mathcal{A}/\hbar\mathcal{A}$ によって定義される. $\mathcal{A}_{\hbar=0}$ を $\mathbb{F}[\hbar]$ -algebra \mathcal{A} の classical limit と呼ぶ.

 \mathcal{A} が quasi-commutative であるとは任意の $a,b\in\mathcal{A}$ に対して $[a,b]\in\hbar\mathcal{A}$ が成立することである. \mathcal{A} が quasi-commutative であることと $\mathcal{A}_{\hbar=0}$ が commutative であることは同値である.

 \mathcal{A} は quasi-commutative であるとする. このとき $\mathcal{A}_{\hbar=0}$ には $\{a \bmod \hbar \mathcal{A}, b \bmod \hbar \mathcal{A}\} = \hbar^{-1}[a,b] \bmod \hbar \mathcal{A}$ ($a,b \in \mathcal{A}$) によって Poisson algebra の構造が入る. よって quasi-commutative $\mathbb{F}[\hbar]$ -algebra \mathcal{A} に対して, Poisson algebra $\mathcal{A}_{\hbar=0}$ が自然に対応している.

3 Rees algebra

A は基礎体 \mathbb{F} 上の filtered algebra であるとする. $\mathcal{R}A = \bigoplus_{i=0}^{\infty} \hbar^i F_i A$ と置く. $\mathcal{R}A$ には $(\hbar^i a)(\hbar^j b) = \hbar^{i+j} ab \in \hbar^{i+j} F_{i+j} A$ $(a \in F_i A, b \in F_j A), \hbar(\hbar^i a) = \hbar^{i+1} a \in \hbar^{i+1} F_{i+1} A$ $(a \in F_i A)$ によって自然に $\mathbb{F}[\hbar]$ 上の graded algebra の構造が入る. $\mathcal{R}A$ を A の Rees algebra と呼ぶ. $\mathcal{R}A$ は $\hbar^i a$ $(a \in F_i A)$ から生成される $\mathbb{F}[\hbar] \otimes A$ の $\mathbb{F}[\hbar]$ -subalgebra と同一視される.

このとき、graded \mathbb{F} -algebras としての同型 $\operatorname{gr} A \cong (\mathcal{R}A)_{\hbar=0}$ を $\sigma_i(a) \leftrightarrow \hbar^i a \operatorname{mod} \hbar \mathcal{R}A$ $(a \in F_i A)$ によって定めることができる¹. すなわち Rees algebra $\mathcal{R}A$ の classical limit は $\operatorname{gr} A$ と同一視できる.

このことから、filtered algebra A に対して、 $\operatorname{gr} A$ が commutative であること、A が filtered algebra として quasi-commutative であること、 $\mathcal{R}A$ が $\mathbb{F}[\hbar]$ -algebra として quasi-commutative であることは互いに同値であることがわかる.

A が quasi-commutative ならば上の同型 $\operatorname{gr} A \cong (\mathcal{R}A)_{\hbar=0}$ は Poisson algebra としての 同型にもなっている.

4 Weyl 代数の場合

基礎体 $\mathbb F$ は標数 0 であるとする. W_n は $x_1,\ldots,x_n,\partial_1,\ldots,\partial_n$ から生成される $\mathbb F$ -algebra で定義基本関係式 $[x_i,x_j]=[\partial_i,\partial_j]=0$, $[\partial_i,x_j]=\delta_{ij}$ を持つとする. W_n は Weyl algebra と呼ばれる. W_n は自然に左 $\mathbb F[x_1,\ldots,x_n]$ 加群としての自由基底 $\partial_1^{i_1}\cdots\partial_n^{i_n}$ $(i_\nu\in\mathbb Z_{\geq 0})$ を持つ.

 F_iW_n を $\{\partial_1^{i_1}\cdots\partial_n^{i_n}\mid i_1+\cdots+i_n\leqq i\}$ で $\mathbb{F}[x_1,\ldots,x_n]$ 上張られる W_n の部分空間であるとする. このとき $\{F_iW_n\}_{i=0}^\infty$ は W_n の filtration であり, W_n は quasi-commutative filtererd algebra とみなされる.

このとき W_n の Rees algebra $\mathcal{R}W_n = \bigoplus_{i=0}^\infty \hbar^i F_i W_n$ は $x_1,\ldots,x_n,\,\hbar\partial_1,\ldots,\hbar\partial_n$ から生成される $\mathbb{F}[\hbar]\otimes W_n$ の $\mathbb{F}[\hbar]$ -subalgebra \mathcal{W}_n と自然に同一視される.

 $^{^{1}}a \in F_{i}A \setminus F_{i-1}A$ のとき j < i ならば $\hbar^{j}a \notin \mathcal{R}A$ であることに注意せよ.

 $p_i = \hbar \partial_i$ とおく. \mathcal{W}_n の classical limit $\mathcal{W}_{n,\hbar=0} = \operatorname{gr} W_n$ は $\bar{x}_i = x_i \operatorname{mod} \hbar \mathcal{W}_n = \sigma_0(x_i)$, $\bar{p}_i = p_i \operatorname{mod} \hbar \mathcal{W}_n = \sigma_1(\partial_i)$ から生成される \mathbb{F} 上の多項式環になる.

 \mathcal{W}_n において canonical commutation relations $[p_i, x_j] = \hbar \delta_{ij}$ が成立している². よって \mathcal{W}_n の classical limit $\mathcal{W}_{n,\hbar=0} = \operatorname{gr} W_n$ における Poisson bracket は条件 $\{\bar{p}_i, \bar{x}_i\} = \delta_{ij}$ で定義される.

5 Lie 代数の universal enveloping algebra の場合

 $\mathfrak g$ は体 $\mathbb F$ 上の Lie 代数であるとする. $\mathfrak g$ から生成される $\mathbb F$ -algebra で XY-YX=[X,Y] $(X,Y\in\mathfrak g)$ を定義基本関係式に持つものを $\mathfrak g$ の universal enveloping algebra と呼び, $U(\mathfrak g)$ と表わす.

 $\{X_{\lambda}\}_{\lambda\in\Lambda}$ はその基底であるとし、 Λ は全順序集合であるとする.Poincaré-Birkhoff-Witt の定理より、 $U(\mathfrak{g})$ の基底として $X_{\lambda_1}\cdots X_{\lambda_N}$ $(\lambda_1\leqq\cdots\leqq\lambda_N,\,\lambda_\nu\in\Lambda)$ が取れる.(N=0 のとき $X_{\lambda_1}\cdots X_{\lambda_N}=1$ とみなす.)

 $F_iU(\mathfrak{g})$ は $X_{\lambda_1}\cdots X_{\lambda_N}$ ($\lambda_1\leqq\cdots\leqq\lambda_N,\ N\leqq i$) で張られる $U(\mathfrak{g})$ の部分空間であるとする. このとき $\{F_iU(\mathfrak{g})\}_{i=0}^\infty$ は $U(\mathfrak{g})$ の filtration であり, $U(\mathfrak{g})$ は quasi-commutative filtered algebra とみなされる.

このとき $U(\mathfrak{g})$ の Rees algebra $\mathcal{R}U(\mathfrak{g}) = \bigoplus_{i=0}^{\infty} \hbar^i F_i U(\mathfrak{g})$ は $\hbar X$ $(X \in \mathfrak{g})$ から生成される $\mathbb{F}[\hbar] \otimes U(\mathfrak{g})$ の $\mathbb{F}[\hbar]$ -subalgebra $\mathcal{U}(\mathfrak{g})$ と自然に同一視される.

 $X \in \mathfrak{g}$ に対して $X_{\hbar} = \hbar X$ とおく. $\mathcal{U}(\mathfrak{g})$ の classical limit $\mathcal{U}(\mathfrak{g})_{\hbar=0} = \operatorname{gr} U(\mathfrak{g})$ は $\overline{X} = X_{\hbar} \operatorname{mod} \hbar \mathcal{U}(\mathfrak{g}) = \sigma_1(X) \ (X \in \mathfrak{g})$ から生成される \mathbb{F} 上の多項式環になる.

 $\mathcal{U}(\mathfrak{g})$ は X_{\hbar} $(X \in \mathfrak{g})$ で生成される $\mathbb{F}[\hbar]$ -algebra であり、定義基本関係式 $[X_{\hbar}, Y_{\hbar}] = \hbar[X, Y]_{\hbar}$ $(X, Y \in \mathfrak{g})$ を持つ. よって $\mathcal{U}(\mathfrak{g})$ の classical limit $\mathcal{U}(\mathfrak{g})_{\hbar=0} = \operatorname{gr} \mathcal{U}(\mathfrak{g})$ における Poisson bracket は条件 $\{\overline{X}, \overline{Y}\} = \overline{[X, Y]}$ $(X, Y \in \mathfrak{g})$ で定義される.

 $^{^2}$ 物理学における通常の流儀に合わせるためには $\mathbb{F}=\mathbb{C}$ と仮定し, \hbar を $-i\hbar$ (i は虚数単位) で置き換えなければいけない.