AUA CS 108, Statistics, Fall 2019 Lecture 43 (-1)

Michael Poghosyan
YSU, AUA
michael@ysu.am, mpoghosyan@aua.am

04 Dec 2019

Contents

► Linear Regression

Last Lecture ReCap

▶ Maybe we can skip this this time?

Recall that our Mission (for these last few lectures $\ddot{\ }$) was to give a Model for the Relationship between two and more Variables.

Recall that our Mission (for these last few lectures $\ddot{-}$) was to give a Model for the Relationship between two and more Variables.

Usually, we assume that the Joint Distribution of X and Y is given in the following form: for the fixed value of X, say, X = x, Y has some Distribution, depending (or, maybe independent of) x.

 $^{^{1}}$ And, in fact, we can recover the Joint Distribution, having the Distribution of X and the Conditional Distribution Y|X=x.

Recall that our Mission (for these last few lectures $\ddot{-}$) was to give a Model for the Relationship between two and more Variables.

Usually, we assume that the Joint Distribution of X and Y is given in the following form: for the fixed value of X, say, X=x, Y has some Distribution, depending (or, maybe independent of) x. We will denote that Distribution by

$$Y|X = x$$

and call it the Conditional Distribution of Y given X = x.

 $^{^{1}}$ And, in fact, we can recover the Joint Distribution, having the Distribution of X and the Conditional Distribution Y|X=x.

Recall that our Mission (for these last few lectures $\ddot{-}$) was to give a Model for the Relationship between two and more Variables.

Usually, we assume that the Joint Distribution of X and Y is given in the following form: for the fixed value of X, say, X=x, Y has some Distribution, depending (or, maybe independent of) x. We will denote that Distribution by

$$Y|X = x$$

and call it the Conditional Distribution of Y given X = x.

Example: Say, $(X, Y) \sim Unif([0,1] \times [0,2])$. What is Y|X = 1, or, in general, Y|X = x?

 $^{^{1}}$ And, in fact, we can recover the Joint Distribution, having the Distribution of X and the Conditional Distribution Y|X=x.

Recall that our Mission (for these last few lectures $\ddot{\ }$) was to give a Model for the Relationship between two and more Variables.

Usually, we assume that the Joint Distribution of X and Y is given in the following form: for the fixed value of X, say, X=x, Y has some Distribution, depending (or, maybe independent of) x. We will denote that Distribution by

$$Y|X=x$$

and call it the Conditional Distribution of Y given X = x.

Example: Say, $(X, Y) \sim Unif([0, 1] \times [0, 2])$. What is Y|X = 1, or, in general, Y|X = x?

Example: Now, assume $(X, Y) \sim Unif(D)$, where D is the triangle with vertices at (-1, 0), (0, 1) and (1, 0). What is Y|X = x?

 $^{^{1}}$ And, in fact, we can recover the Joint Distribution, having the Distribution of X and the Conditional Distribution Y|X=x.

Example

Example: Assume $(X, Y) \sim \mathcal{N}(\mu, \Sigma)$, where

$$\mu = \left[egin{array}{c} 0 \\ 0 \end{array}
ight], \qquad \Sigma = \left[egin{array}{cc} 4 & 0.5 \\ 0.5 & 1 \end{array}
ight]$$

What is Y|X = x?

We will simplify our model and consider the case when ${\bf X}$ is not Stochastic (is not Random), but $Y|{\bf X}={\bf x}$ is Random.

We will simplify our model and consider the case when \mathbf{X} is not Stochastic (is not Random), but $Y|\mathbf{X} = \mathbf{x}$ is Random.

Example: Assume $x \in [0, 2\pi]$ and

$$Y|X = x \sim \mathcal{N}(\sin x, 0.3^2)$$

We will simplify our model and consider the case when ${\bf X}$ is not Stochastic (is not Random), but $Y|{\bf X}={\bf x}$ is Random.

Example: Assume $x \in [0, 2\pi]$ and

$$Y|X = x \sim \mathcal{N}(\sin x, 0.3^2)$$

Now, about the Regression. As we talked above, $Y|\mathbf{X} = \mathbf{x}$ is a r.v., for each \mathbf{x} .

Now, about the Regression. As we talked above, Y|X = x is a r.v., for each x. Now, we want to give a deterministic characteristic for each r.v. Y|X = x, i.e., for each x, we want to describe the r.v Y|X = x by just giving one number.

Now, about the Regression. As we talked above, $Y|\mathbf{X}=\mathbf{x}$ is a r.v., for each \mathbf{x} . Now, we want to give a deterministic characteristic for each r.v. $Y|\mathbf{X}=\mathbf{x}$, i.e., for each \mathbf{x} , we want to describe the r.v $Y|\mathbf{X}=\mathbf{x}$ by just giving one number. Can you give just one number that will describe $Y|\mathbf{X}=\mathbf{x}$?

Now, about the Regression. As we talked above, $Y|\mathbf{X}=\mathbf{x}$ is a r.v., for each \mathbf{x} . Now, we want to give a deterministic characteristic for each r.v. $Y|\mathbf{X}=\mathbf{x}$, i.e., for each \mathbf{x} , we want to describe the r.v $Y|\mathbf{X}=\mathbf{x}$ by just giving one number. Can you give just one number that will describe $Y|\mathbf{X}=\mathbf{x}$? Well, of course, the first and most important numerical characteristics of a r.v. is its

Now, about the Regression. As we talked above, Y|X=x is a r.v., for each x. Now, we want to give a deterministic characteristic for each r.v. Y|X=x, i.e., for each x, we want to describe the r.v Y|X=x by just giving one number. Can you give just one number that will describe Y|X=x? Well, of course, the first and most important numerical characteristics of a r.v. is its **Mean**: $\mathbb{E}(Y|X=x)$.

Now, about the Regression. As we talked above, Y|X=x is a r.v., for each x. Now, we want to give a deterministic characteristic for each r.v. Y|X=x, i.e., for each x, we want to describe the r.v Y|X=x by just giving one number. Can you give just one number that will describe Y|X=x? Well, of course, the first and most important numerical characteristics of a r.v. is its **Mean**: $\mathbb{E}(Y|X=x)$. Since for each x this will be a number, we will obtain a (deterministic) function of x, called the **Regression Function**:

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}).$$

Now, about the Regression. As we talked above, $Y|\mathbf{X}=\mathbf{x}$ is a r.v., for each \mathbf{x} . Now, we want to give a deterministic characteristic for each \mathbf{r} .v. $Y|\mathbf{X}=\mathbf{x}$, i.e., for each \mathbf{x} , we want to describe the r.v $Y|\mathbf{X}=\mathbf{x}$ by just giving one number. Can you give just one number that will describe $Y|\mathbf{X}=\mathbf{x}$? Well, of course, the first and most important numerical characteristics of a r.v. is its **Mean**: $\mathbb{E}(Y|\mathbf{X}=\mathbf{x})$. Since for each \mathbf{x} this will be a number, we will obtain a (deterministic) function of \mathbf{x} , called the **Regression Function**:

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}).$$

So our r.v. Y|X = x is a r.v. around RegFun(x), or simply,

$$(Y|X = x) = RegFun(x) + \varepsilon$$

where ε is a r.v. (just take $\varepsilon = (Y|\mathbf{X} = \mathbf{x}) - RegFun(\mathbf{x}))$,

Now, about the Regression. As we talked above, $Y|\mathbf{X}=\mathbf{x}$ is a r.v., for each \mathbf{x} . Now, we want to give a deterministic characteristic for each r.v. $Y|\mathbf{X}=\mathbf{x}$, i.e., for each \mathbf{x} , we want to describe the r.v $Y|\mathbf{X}=\mathbf{x}$ by just giving one number. Can you give just one number that will describe $Y|\mathbf{X}=\mathbf{x}$? Well, of course, the first and most important numerical characteristics of a r.v. is its **Mean**: $\mathbb{E}(Y|\mathbf{X}=\mathbf{x})$. Since for each \mathbf{x} this will be a number, we will obtain a (deterministic) function of \mathbf{x} , called the **Regression Function**:

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}).$$

So our r.v. Y|X = x is a r.v. around RegFun(x), or simply,

$$(Y|X = x) = RegFun(x) + \varepsilon$$

where ε is a r.v. (just take $\varepsilon = (Y|\mathbf{X} = \mathbf{x}) - RegFun(\mathbf{x})$), or, which is the same,

$$Y = RegFun(\mathbf{X}) + \varepsilon.$$

Now, about the Regression. As we talked above, Y|X = x is a r.v., for each x. Now, we want to give a deterministic characteristic for each r.v. Y|X = x, i.e., for each x, we want to describe the r.v Y|X = x by just giving one number. Can you give just one number that will describe Y|X = x? Well, of course, the first and most important numerical characteristics of a r.v. is its **Mean**: $\mathbb{E}(Y|X = x)$. Since for each x this will be a number, we will obtain a (deterministic) function of x, called the **Regression Function**:

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}).$$

So our r.v. Y|X = x is a r.v. around RegFun(x), or simply,

$$(Y|X = x) = RegFun(x) + \varepsilon$$

where ε is a r.v. (just take $\varepsilon = (Y|\mathbf{X} = \mathbf{x}) - RegFun(\mathbf{x})$), or, which is the same,

$$Y = RegFun(\mathbf{X}) + \varepsilon.$$

Here, importantly, $\mathbb{E}(\varepsilon) = 0$, for any **x**.

Example: Say, given the height of a person, the weight will be some fixed number \pm something random, i.e.,

$$Weight = g(Height) + random term.$$

Example: Say, given the height of a person, the weight will be some fixed number \pm something random, i.e.,

$$Weight = g(Height) + random term.$$

Say, see Wiki page for BMI.