CS 346:Top Down Parser

Resource: Textbook

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, "Compilers: Principles, Techniques, and Tools", Addison-Wesley, 1986.

Top-Down Parsing

- Parse tree created top to bottom
- Top-down parser
 - Recursive-Descent Parsing
 - Backtracking needed: If a choice of a production rule does not work, we backtrack to try other alternatives
 - General parsing technique, but not widely used
 - Not efficient
 - Predictive Parsing
 - no backtracking
 - efficient
 - needs a special form of grammars (LL(1) grammars)
 - Recursive predictive parsing-a special form of recursive descent parsing without backtracking
 - Non-Recursive (Table Driven) predictive parser: also known as LL(1) parser

Recursive-Descent Parsing (uses Backtracking)

- Backtracking is needed
- Tries to find the left-most derivation

$$S \rightarrow aBc$$

 $B \rightarrow bc \mid b$

input: abc

Predictive Parser

• When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the current symbol in the input string

Predictive Parser (example)

```
stmt → if ..... |
while ..... |
begin ..... |
for .....
```

- When we are trying to write the non-terminal *stmt*, if the current token is if we have to choose first production rule
- When we are trying to write the non-terminal *stmt*, we can uniquely choose the production rule by just looking the current token
- Eliminate the left recursion in the grammar, and left factor it. But it may not be suitable for predictive parsing (not LL(1) grammar)

Recursive Predictive Parsing

• Each non-terminal corresponds to a procedure

```
Ex: A → aBb (This is only the production rule for A)
proc A {

match the current token with a, and move to the next token;
call 'B';
match the current token with b, and move to the next token
```

Recursive Predictive Parsing (cont.)

```
A \rightarrow aBb \mid bAB
proc A {
  case of the current token {
         'a': - match the current token with a, and move to the next token;
              - call 'B';
              - match the current token with b, and move to the next token;
         'b': - match the current token with b, and move to the next token;
              - call 'A';
            - call 'B';
```

Recursive Predictive Parsing (cont.)

• When to apply ε -productions?

e.g.,
$$A \rightarrow aA \mid bB \mid \epsilon$$

- Apply ε-production if all other productions fail
 - \bullet For example, if the current token is not a or b, we may apply the $\epsilon\text{-}$ production
- *Most correct choice*: Apply an \(\mathcal{E}\)-production for a non-terminal A when the current token is in the follow set of A
 - terminals that can follow A in the sentential forms (*coming later*)

Recursive Predictive Parsing (Example)

```
A \rightarrow aBe \mid cBd \mid C
B \rightarrow bB \mid \varepsilon
C \rightarrow f
proc A {
    case of the current token {
               - match the current token with a,
                and move to the next token;
               - call B;
               - match the current token with e,
                and move to the next token;
               - match the current token with c,
       C:
                and move to the next token;
               - call B;
               - match the current token with d,
                 and move to the next token;
               - call C
                    first set of C
```

Non-Recursive Predictive Parsing - LL(1) Parser

- Non-Recursive predictive parsing
 - table-driven parser
 - top-down parser
 - also known as LL(1) Parser

LL(1) Parser

input buffer

- Contains the string to be parsed
- End is marked with a special symbol \$

output

• a production rule representing a step of the derivation sequence (left-most derivation) of the string in the input buffer

stack

- contains the grammar symbols
- at the bottom of the stack, there is a special end marker symbol \$
- initially the stack contains only the symbol \$ and the starting symbol \$
- \$S **←** initial stack
- Parsing completes when the stack becomes empty (i.e. only \$ left in the stack)

LL(1) Parser

parsing table

- a two-dimensional array M[A, a]
- each row is a non-terminal symbol
- each column is a terminal symbol or the special symbol \$
- each entry holds a production rule

LL(1) Parser – Parser Actions

- Parser action: determined by the symbol at the top of the stack (say X) and the current symbol in the input string (say a)
- Four possible parser actions:
- 1. If X and a are \$ \rightarrow parser halts (successful completion)
- 2. If *X* and *a* are the same terminal symbol (different from \$)
 - → parser pops X from the stack, and moves to the next symbol in the input buffer

LL(1) Parser-Parser Actions

- 3. If X is a non-terminal
 - \rightarrow parser looks at the parsing table entry M[X,a]
 - \rightarrow If M[X, a] holds a production rule $X \rightarrow Y_1 Y_2 ... Y_k$
 - → pop X from the stack
 - \rightarrow push $Y_k, Y_{k-1}, ..., Y_1$ into the stack
 - \rightarrow Output the production rule $X \rightarrow Y_1 Y_2 ... Y_k$ to represent a step of the derivation

- 4. none of the above → error
 - all empty entries in the parsing table are errors
 - If X is a terminal symbol different from a, this is also an error case

LL(1) Parser – Example1

 $S \rightarrow aBa$ $B \rightarrow bB \mid \epsilon$

	a	b	\$
S	$S \rightarrow aBa$		
В	$B \to \epsilon$	$B \rightarrow bB$	

accept, successful completion

<u>stack</u>	<u>input</u>	<u>output</u>
\$ S	<mark>a</mark> bba\$	$S \rightarrow aBa$
\$aB <mark>a</mark>	abba\$	
\$aB	bba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	bba\$	
\$aB	ba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	ba\$	
\$aB	a\$	$B \rightarrow \epsilon$
\$ <mark>a</mark>	a\$	

LL(1) Parser – Example1 (cont.)

Outputs: $S \to aBa$ $B \to bB$ $B \to \epsilon$

Derivation(left-most): S⇒aBa⇒abBa⇒abbBa⇒abba

LL(1) Parser – Example2

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

LL(1) Parser – Example2

<u>stack</u>	<u>input</u>	<u>output</u>
\$E	id+id\$	$E \rightarrow TE'$
\$E `T	id+id\$	$T \rightarrow FT'$
\$E'T <mark>'F</mark>	id+id\$	$F \longrightarrow id$
\$ E'T'id	id+id\$	
\$ E' T '	+id\$	$T' \rightarrow \epsilon$
\$ E'	+id\$	$E' \rightarrow +TE$
\$ E'T+	+ id\$	
\$ E' T	id\$	$T \rightarrow FT'$
\$ E'T' F	id\$	$F \rightarrow id$
\$ E'T'id	id\$	
\$ E' T '	\$	$T' \rightarrow \epsilon$
\$ E'	\$	$E' \rightarrow \epsilon$
\$	\$	accept

Constructing LL(1) Parsing Tables

- Two functions used in the construction of LL(1) parsing tables:
 - FIRST FOLLOW
- FIRST(α): Set of the terminal symbols which occur as first symbols in strings derived from α where α is any string of grammar symbols
 - if α derives to ε , then ε is also in FIRST(α)
- **FOLLOW(A):** Set of the terminals which occur immediately after (follow) the *non-terminal A* in the strings derived from the starting symbol *
 - a terminal a is in FOLLOW(A) if $S \Rightarrow \alpha Aa\beta$
 - \$ is in FOLLOW(A) if $S \Rightarrow \alpha A$

Compute FIRST for Any String X

- If X is a terminal symbol \rightarrow FIRST(X)={X}
- If X is a non-terminal symbol and $X \to \varepsilon$ is a production rule
 - \rightarrow ϵ is in FIRST(X)
- If X is a non-terminal symbol and $X \rightarrow Y_1 Y_2...Y_n$ is a production rule
 - ⇒ if a terminal **a** in FIRST(Y_i) and ε is in all FIRST(Y_j) for j=1,...,i-1 then **a** is in FIRST(X)
 - \rightarrow if ε is in all FIRST(Y_j) for j=1,...,n then ε is in FIRST(X)
- If X is $\varepsilon \rightarrow FIRST(X) = \{\varepsilon\}$
- If $X \text{ is } Y_1 Y_2 ... Y_n$
 - if a terminal **a** in FIRST(Y_i) and ε is in all FIRST(Y_j) for j=1,...,i-1 then **a** is in FIRST(X)
 - \rightarrow if ε is in all FIRST(Y_j) for j=1,...,n then ε is in FIRST(X)

FIRST Example

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

$$FIRST(F) = \{(,id)\}$$

$$FIRST(T') = \{*, \epsilon\}$$

$$FIRST(T) = \{(,id)\}$$

$$FIRST(E') = \{+, \epsilon\}$$

$$FIRST(E) = \{(,id)\}$$

FIRST(TE') =
$$\{(,id)\}$$

FIRST(+TE') = $\{+\}$
FIRST(ϵ) = $\{\epsilon\}$
FIRST(FT') = $\{(,id)\}$
FIRST(*FT') = $\{*\}$
FIRST(ϵ) = $\{\epsilon\}$
FIRST((ϵ)) = $\{(,id)\}$
FIRST((ϵ)) = $\{(,id)\}$

Compute FOLLOW (for non-terminals)

- If S is the start symbol \rightarrow \$ is in FOLLOW(S)
- if $A \rightarrow \alpha B\beta$ is a production rule
 - \rightarrow everything in FIRST(β) is FOLLOW(B) except ε
- If $(A \to \alpha B \text{ is a production rule})$ or $(A \to \alpha B \beta \text{ is a production rule and } \epsilon \text{ is in FIRST}(\beta)) \rightarrow$ everything in FOLLOW(A) is in FOLLOW(B)

We apply these rules until nothing more can be added to any follow set

FOLLOW Example

```
E \rightarrow TE'
E' \rightarrow +TE' \mid \epsilon
T \rightarrow FT'
T' \rightarrow *FT' \mid \epsilon
F \rightarrow (E) \mid id
FOLLOW(E) = \{ \$, \}
FOLLOW(E') = \{ \$, \}
FOLLOW(T) = \{+, \}
FOLLOW(T') = \{ +, ), \}
FOLLOW(F) = \{+, *, \}
```

Constructing LL(1) Parsing Table -- Algorithm

- for each production rule $A \rightarrow \alpha$ of a grammar G
 - for each terminal a in $FIRST(\alpha)$
 - \rightarrow add A $\rightarrow \alpha$ to M [A, a]
 - If ε is in FIRST(α)
 - \rightarrow for each terminal a in FOLLOW(A) add A $\rightarrow \alpha$ to M [A, a]
 - If ε in FIRST(α) and φ in FOLLOW(A)
 - \rightarrow add A $\rightarrow \alpha$ to M [A, \$]
- All other undefined entries of the parsing table are error entries

Constructing LL(1) Parsing Table -- Example

 $E \rightarrow TE'$

 $FIRST(TE') = \{(,id)\}$

 \rightarrow E \rightarrow TE' into M[E,(] and M[E,id]

 $E' \rightarrow +TE'$

 $FIRST(+TE') = \{+\}$

 \rightarrow E' \rightarrow +TE' into M[E',+]

 $E' \rightarrow \varepsilon$

 $FIRST(\varepsilon) = \{\varepsilon\}$

but since ε in FIRST(ε) and $FOLLOW(E') = \{\$, \}$ → none

 \rightarrow E' \rightarrow ε into M[E', ε] and M[E', ε]

 $T \rightarrow FT'$

 $FIRST(FT') = \{(,id)\}$

 \rightarrow T \rightarrow FT' into M[T,(] and M[T,id]

 $T' \rightarrow *FT'$

 $FIRST(*FT') = \{*\}$

 \rightarrow T' \rightarrow *FT' into M[T',*]

 $T' \rightarrow \varepsilon$

 $FIRST(\varepsilon) = \{\varepsilon\}$

but since ε in FIRST(ε)

→ none

and FOLLOW(T')= $\{\$,\}$ + $\}$ \rightarrow T' \rightarrow ϵ into M[T',\$], M[T',)] and M[T',+]

 $F \rightarrow (E)$

 $FIRST((E)) = \{(\}$

 \rightarrow F \rightarrow (E) into M[F,(]

 $F \rightarrow id$

 $FIRST(id) = \{id\}$

 \rightarrow F \rightarrow id into M[F, id]

LL(1) Grammars

• A grammar whose parsing table has no multiply-defined entries is said to be LL(1) grammar

one input symbol used as a look-ahead symbol to determine parser action $\underbrace{L(1)}_{\text{input scanned from left to right}}$

• Parsing table of a grammar may contain more than one production rule in case of non- LL(1) grammar

A Grammar which is not LL(1)

$$S \rightarrow i C t S E \mid a$$

 $E \rightarrow e S \mid \varepsilon$
 $C \rightarrow b$

FOLLOW(S) =
$$\{\$,e\}$$

FOLLOW(E) = $\{\$,e\}$
FOLLOW(C) = $\{t\}$

FIRST(iCtSE) =
$$\{i\}$$

FIRST(a) = $\{a\}$
FIRST(eS) = $\{e\}$
FIRST(ϵ) = $\{\epsilon\}$
FIRST(b) = $\{b\}$

	a	b	e	i	t	\$
S	$S \rightarrow a$			$S \rightarrow iCtSE$		
E			$E \rightarrow e S$			$E \rightarrow \epsilon$
			$E \rightarrow \varepsilon$			
C		$C \rightarrow b$	two prod	luction rules f	or M[]	E,e]

Problem **\rightarrow** ambiguity

A Grammar which is not LL(1) (cont.)

- Necessary steps that should be taken if the resulting parsing table contains multiply defined entries
 - Eliminate left recursion if it is not already done
 - Remove left factor if it is not already done
 - If its (new grammar's) parsing table still contains multiply defined entries, that grammar is ambiguous or it is inherently not a LL(1) grammar
- A left recursive grammar cannot be a LL(1) grammar
 - $A \rightarrow A\alpha \mid \beta$
 - \Rightarrow any terminal that appears in FIRST(β) also appears in FIRST($A\alpha$) because $A\alpha \Rightarrow \beta\alpha$.
 - \Rightarrow If β is $\epsilon,$ any terminal that appears in FIRST($\!\alpha\!$) also appears in FIRST($\!A\alpha\!$) and FOLLOW($\!A\!$)
- A grammar that is not left factored cannot be a LL(1) grammar
 - $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
 - \Rightarrow any terminal that appears in FIRST($\alpha\beta_1$) also appears in FIRST($\alpha\beta_2$)
- An ambiguous grammar cannot be a LL(1) grammar

Properties of LL(1) Grammars

- A grammar G is LL(1) if and only if the following conditions hold for two distinctive production rules $A \to \alpha$ and $A \to \beta$
 - 1. Both α and β cannot derive strings starting with same terminals
 - 2. At most one of α and β can derive to ε
 - 3. If β can derive to ϵ , then α cannot derive to any string starting with a terminal in FOLLOW(A)

Error Recovery in Predictive Parsing

- An error may occur in the predictive parsing (LL(1) parsing) due to
 - terminal symbol on the top of stack does not match with the current input symbol
 - top of stack is a non-terminal A, the current input symbol is a, and the parsing table entry M[A, a] is empty
- What should the parser do in an error case?
 - parser should be able to give an error message (as much meaningful as possible)
 - error should be recoverable, and it should be able to continue the parsing with the rest of the input

Error Recovery Techniques

Panic-Mode Error Recovery

• Skipping the input symbols until a synchronizing token is found

Phrase-Level Error Recovery

• Each empty entry in the parsing table is filled with a pointer to a specific error routine to take care that error case

Error-Productions

- If we have a good idea of the common errors that might be encountered, we can augment the grammar with productions that generate erroneous constructs
- When an error production is used by the parser, we can generate appropriate *error diagnostics*
- Since it is almost impossible to know all the errors that can be made by the programmers, this *method is* not practical

Global-Correction

- Ideally, we would like a compiler to make as few changes as possible in processing incorrect inputs
- We have to globally analyze the input s to find the error
- This is an expensive method, and it is not in practice

Panic-Mode Error Recovery in LL(1) Parsing

- Skip all the input symbols until a synchronizing token is found
- What is the synchronizing token?
 - All the terminal-symbols in the follow set of a non-terminal can be used as a synchronizing token set for that non-terminal
- Simple panic-mode error recovery for the LL(1) parsing:
 - For the empty entries
 - All the empty entries are marked as *synch* to indicate that the parser will skip all the input symbols until a symbol in the follow set of the non-terminal A appears in the input
 - Parser will pop the non-terminal A from the stack
 - Parsing continues from the state A

Panic-Mode Error Recovery in LL(1) Parsing

- For unmatched terminal symbols, parser
 - pops the unmatched terminal symbol from the stack
 - issues an error message saying that unmatched terminal is inserted

Panic-Mode Error Recovery - Example

$$S \rightarrow AbS \mid e \mid \varepsilon$$

 $A \rightarrow a \mid cAd$

 $FOLLOW(S) = \{\$\}$ $FOLLOW(A) = \{b,d\}$

	a	b	c	d	e	\$
S	$S \rightarrow AbS$	sync	$S \rightarrow AbS$	sync	$S \rightarrow e$	$S \rightarrow \epsilon$
A	$A \rightarrow a$	sync	$A \rightarrow cAd$	sync	sync	sync

<u>stack</u>	<u>input</u>	<u>output</u>
\$ S	aab\$	$S \rightarrow AbS$
\$SbA	aab\$	$A \rightarrow a$
\$Sba	aab\$	
\$Sb	ab\$	Error: missing b, inserted
\$S	ab\$	$S \rightarrow AbS$
\$SbA	ab\$	$A \rightarrow a$
\$Sba	ab\$	
\$Sb	b\$	
\$ S	\$	$S \rightarrow \varepsilon$
\$	\$	accept

<u>stack</u>	<u>input</u>	<u>output</u>
\$S	ceadb\$	$S \rightarrow AbS$
\$SbA	ceadb\$	$A \rightarrow cAd$
\$SbdAc	ceadb\$	
\$SbdA	eadb\$Erro	or:unexpected e (illegal A)
(Remove a	all input to	kens until first b or d, pop A)
\$Sbd	db\$	
\$Sb	b\$	
\$S	\$	$S \rightarrow \varepsilon$
\$	\$	accept

Phrase-Level Error Recovery

- Each empty entry in the parsing table is filled with a pointer to a special error routine that takes care of the error case
- These error routines may:
 - change, insert, or delete input symbols
 - issue appropriate error messages
 - pop items from the stack
- We should be careful when we design these error routines, because we may put the parser into an infinite loop