QUEEN MARY UNIVERSITY OF LONDON TUE 17 DECEMBER 2019

Unmixer: An Interface for Extracting and Remixing Loops

Jordan B. L. Smith¹, Yuta Kawasaki¹ and Masataka Goto¹*

¹National Institute of Advanced Industrial Science and Technology (AIST), Japan, unmixer-ml@aist.go.jp

Abstract— Someone planning to remix a song would like to have segmented stem tracks at their disposal; that is, isolated instances of the loops and sounds that were used to compose the original song. We present Unmixer, a web service that will analyze and extract loops from any audio uploaded by a user (see Fig. 1). The loops are presented in an interface that allows them to be immediately remixed, and if users upload multiple tracks, they can create mash-ups with the loops, which are automatically matched in tempo.

Figure 1: Screenshot of Unmixer website annotated with main features.

I. PROJECT DETAILS

To analyze the audio, we adapt a method of source separation that we recently proposed [1], in which a 2D spectrogram is split at each downbeat and stacked into a 3D "spectral cube", allowing us to model periodic repetitions. We estimate the nonnegative Tucker decomposition, which describes the signal very naturally as the product of a set of sounds, rhythms, and loop activations, the latter directly estimating the compositional layout of the estimated loops (see Fig. 2).

*This work was supported in part by JST ACCEL Grant Number JPMJAC1602, Japan.

- J. B. L. Smith was a Visiting Researcher at AIST Japan when this project was initiated.
- Y. Kawasaki is a Creative Engineer in the Information Technology Research Institute at AIST Japan.
- M. Goto is Prime Senior Researcher at AIST Japan. All authors may be reached regarding this project at unmixer-ml@aist.go.jp.

Figure 2: Illustration of non-negative Tucker decomposition being applied to a song of length 8 bars, decomposed as a product of 32 sounds, 20 rhythms, and 4 loop activation templates. The loop activation templates reproduce the true composition of this synthetic example.

To reduce the redundancy of some loops, we propose an extra factorization step with a sparseness constraint and demonstrate (in a test using synthesized pieces) that it improves the source separation result. We also propose a method for selecting the best instances of the extracted loops (maximizing their loudness and minimizing cross-talk from other loops) and demonstrate its effectiveness in an evaluation. Both of these improvements are incorporated into the back end of the interface.

REFERENCES

 J. B. L. Smith and M. Goto, "Nonnegative tensor factorization for source separation of loops in audio" in *Proceedings of ICASSP*, Calgary, Canada, pp. 171–175.