of the two second diameters is less than the restricted section inner diameter and each tubular limb comprises a trumpet-shaped, concave transition portion extending from the second diameter to the third diameter.

Concl

12. (Once Amended) A method of treating an afflicted portion of a branched lumen, the method comprising the steps of:

identifying a first lumen comprising a restricted section having an inner surface with an inner surface diameter and a bifurcation into branch lumen each having an inner surface with an inner surface diameter, the first lumen restricted section inner surface diameter being smaller than the sum of the branch lumen inner surface diameters,

implanting an endoluminal device in a location in the first lumen, the endoluminal device_comprising a proximal main tubular portion having a first diameter and two tubular limbs depending from the main tubular portion, each limb having a second diameter and a distal end portion, the distal end portion having a third diameter larger than the second diameter the location comprising a location in which: (i) said proximal main tubular portion is disposed within a proximal portion of the first lumen; (ii) each of said tubular limbs is disposed inside an associated branch lumen; and (iii) the distal end portion is disposed within one of said branch lumen and restricted from full expansion by the branch lumen inner surface, wherein the second diameters of each of said two tubular limbs are sufficiently small to allow both tubular limbs to be deployed side-by-side in a fully expanded state within the restricted section inner diameter without being constrained by the restricted section inner surface and wherein each tubular limb comprises a trumpet-shaped, concave transition portion extending from the second diameter to the third diameter.

 \int_{4}^{2}

13. (Twice Amended) An endoluminal device for deployment within a first lumen having a restricted section with a diameter and a bifurcation into a plurality of branch lumen each having an inner diameter, the device comprising:

a proximal main tubular portion to be retained within a proximal portion of the first lumen; and

(2

a first and a second tubular limb depending from said proximal main tubular portion;

wherein each of said first and second tubular limbs comprises: (i) an elongated portion for extending across the restricted section and having a first diameter which is less than one-half of the restricted diameter; (ii) a distal end portion to be located inside an associated branch lumen and to be held against an inner surface of the branch lumen, the distal end portion defining a second diameter larger than the first diameter and greater than one-half of the restricted diameter; and (iii) a trumpet-shaped, concave transition portion extending between the elongated portion and the distal end portion.

14. (Newly added) The device of claim 7, wherein the device is adapted to be deployed in a lumen in which the sum of the branch lumen inner diameters is 20% greater than the restricted section inner diameter.

15. (Newly added) The method of claim 12, wherein the step of identifying the first lumen comprises identifying a lumen in which the sum of the branch lumen inner surface diameters is 20% greater than the restricted section inner surface diameter.

16. (Newly added) The device of claim 13, wherein a sum of the plurality of branch lumen inner diameters is 20% greater than the restricted diameter.

 $\frac{11}{3}$

8

9

10

Jw029

 $\int_{-4}^{6} \left(\int_{-4}^{2} \right)^{2}$

1 2

3

1