课程安排

- 1. GNN基础
- 2. 基于random walk的图嵌入算法
- 3. GCN
- 4. 研究方向说明
- 5.语言模型GraphSAGE
- 6. Attention机制与GAT
- 7. 实例讲解: HGNN

- 8. 异质图算法
- 9. VGAE和graph GAN
- 10. 实例讲解: DSTG
- 11. GNN模型的解释性
- 12. How to write
- 13. beyondGNN
- 14. 论文选会以及如何让你的论文 更容易发表

Node Embedding

Feature Learning in Graphs

Goal: Efficient task-independent feature learning for machine learning in networks!

Intuition: Map nodes to d-dimensional embeddings such that similar nodes in the graph are embedded close together

Feature Learning in Graphs

Assume we have a graph G:

- V is the vertex set
- **A** is the adjacency matrix (assume binary)
- No node features or extra information is used!

Goal: Map nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the network

- 1. Define an encoder (a function ENC that maps node u to embedding \mathbf{z}_u)
- 2. Define a node similarity function (a measure of similarity in the input network)
- 3. Optimize parameters of the encoder so that:

similarity $(u, v) \approx \mathbf{z}_v^{\top} \mathbf{z}_u$

- 1. Encoder maps a node to a d-dimensional vector: d-dimensional $\operatorname{ENC}(v) = \mathbf{z}_v$ embedding
 - node in the input graph
- 2. Similarity function defines how relationships in the input network map to relationships in the embedding space:

$$\begin{array}{ccc} \text{similarity}(u,v) \approx \mathbf{z}_v^\top \mathbf{z}_u \\ \text{Similarity of } u & \text{dot product} \\ \text{and } v \text{ in the} & \text{between node} \\ \text{network} & \text{embeddings} \end{array}$$

- Many methods use similar encoders:
 - node2vec, DeepWalk, LINE, struc2vec
- These methods use different notions of node similarity:
 - Two nodes have similar embeddings if:
 - they are connected?
 - they share many neighbors?
 - they have similar local network structure?
 - etc.

Adjacency-based Similarity

- Similarity function is the edge weight between u and v in the network
- Intuition: Dot products between node embeddings approximate edge existence

Adjacency-based Similarity

$$\mathcal{L} = \sum_{(u,v)\in V\times V} \|\mathbf{z}_u^\top \mathbf{z}_v - \mathbf{A}_{u,v}\|^2$$

- Find embedding matrix $\mathbf{Z} \in \mathbb{R}^{d \times |V|}$ that minimizes the loss \mathcal{L} :
 - Option 1: Stochastic gradient descent (SGD)
 - Highly scalable, general approach
 - Option 2: Solve matrix decomposition solvers
 - e.g., SVD or QR decompositions
 - Need to derive specialized solvers

Material based on:

- Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.
- Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.
- Ribeiro et al. 2017. struc2vec: Learning Node Representations from Structural Identity. KDD.

Multi-Hop Similarity

Idea: Define node similarity function based on higher-order neighborhoods

- Red: Target node
- **k=1:** 1-hop neighbors
 - A (i.e., adjacency matrix)
- **k= 2:** 2-hop neighbors
- k=3: 3-hop neighbors How to stochastically define these higher-order neighborhoods?

Unsupervised Feature Learning

- Intuition: Find embedding of nodes to d-dimensions that preserves similarity
- Idea: Learn node embedding such that nearby nodes are close together
- Given a node u, how do we define nearby nodes?
 - $N_R(u)$ ··· neighbourhood of u obtained by some strategy R

Randomwalk:

- 节点u开始形成100个路径
- 每个路径跳3次

Unsupervised Feature Learning

- Given G = (V, E)
- Goal is to learn $f: u \to \mathbb{R}^d$
 - where f is a table lookup
 - We directly "learn" coordinates $\mathbf{z}_{\mathbf{u}} = f(\mathbf{u})$ of \mathbf{u}
- Given node u, we want to learn feature representation f(u) that is predictive of nodes in u's neighborhood $N_{\rm R}(u)$

$$\max_{f} \sum_{u \in V} \log \Pr(N_{R}(u) | \mathbf{z}_{u})$$

Unsupervised Feature Learning

Goal: Find embedding \mathbf{z}_u that predicts nearby nodes $N_R(u)$:

$$\sum_{v \in V} \log(P(N_R(u)|\mathbf{z}_u))$$

Assume conditional likelihood factorizes:

$$P(N_R(u)|\mathbf{z}_u) = \prod_{n_i \in N_R(u)} P(n_i|\mathbf{z}_u)$$

Probability that u and v co-Random-walk Embeddings $\mathbf{z}_u^{\top}\mathbf{z}_v \approx \begin{array}{c} \text{occur in a random walk} \\ \text{over the network} \end{array}$

- 1. Simulate many short random walks starting from each node using a strategy *R*
- 2. For each node u, get $N_R(u)$ as a sequence of nodes visited by random walks starting at u
- 3. For each node u, learn its embedding by predicting which nodes are in $N_R(u)$:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

Probability that u and v co-Random-walk Embeddings $\mathbf{z}_u^{\top}\mathbf{z}_v \approx \begin{array}{c} \text{occur in a random walk} \\ \text{over the network} \end{array}$

Random walk embeddings = z_u minimizing L

But doing this naively is too expensive!

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left(\frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)} \right)$$

Nested sum over nodes gives $O(|V|^2)$ complexity!

The problem is normalization term in the softmax function?

Solution: Negative sampling (Mikolov et al.,

$$\begin{split} & \frac{2013)}{\log \left(\frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)} \right)} \\ & \approx \log(\sigma(\mathbf{z}_u^\top \mathbf{z}_v)) - \sum_{i=1}^k \log(\sigma(\mathbf{z}_u^\top \mathbf{z}_{n_i})), n_i \sim P_V \\ & \text{sigmoid function} \end{split}$$

i.e., instead of normalizing w.r.t. all nodes, just normalize against k random **negative samples**

- 1. Simulate many short random walks starting from each node using a strategy *R*
- 2. For each node u, get $N_R(u)$ as a sequence of nodes visited by random walks starting at u
- 3. For each node u, learn its embedding by predicting which nodes are in $N_R(u)$:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

Can efficiently approximate using negative sampling

Random Walk (针对有权图如何修改)

- What strategies can we use to obtain these random walks?
 - Simplest idea:
 - Fixed-length, unbiased random walks starting from each node (i.e., DeepWalk from Perozzi et al., 2013)
 - Can we do better?
 - Grover et al., 2016; Ribeiro et al., 2017; Abu-El-Haija et al., 2017 and many others

Idea: Use flexible, biased random walks that can trade off between local and global views of the network (Grover and Leskovec, 2016)

Two classic strategies to define a neighborhood $N_R(u)$ of a given node u:

$$N_{BFS}(u) = \{ s_1, s_2, s_3 \}$$

$$N_{DFS}(u) = \{ s_4, s_5, s_6 \}$$

Local microscopic view

Global macroscopic view

1/p, 1/q, 1 are unnormalized probabilities

Biased random walk R that given a node u generates neighborhood $N_R(u)$

- Two parameters:
 - Return parameter *p*:
 - return parameter
 - Return back to the previous node
 - In-out parameter *q*:
 - walk away parameter
 - Moving outwards (DFS) vs. inwards (BFS)

Walker is at w. Where to go next?

 $N_S(u)$ are the nodes visited by the walker

Karate Club

- 该图描述了一个空手道俱乐部会员的社交关系,以34名会员作为节点,如果两位会员在俱乐部之外仍保持社交关系,则在节点间增加一条边。
- 每个节点具有一个34维的特征向量,一共有78条边。
- 在收集数据的过程中,管理人员 John A 和 教练 Mr. Hi(化名)之间产生了冲突,会员们选择了站队,一半会员跟随 Mr. Hi 成立了新俱乐部,剩下一半会员找了新教练或退出了俱乐部。

