基于树状区块链的出租车调度算法设计和系统实现

成佳壮

**** 年 * 月

中图分类号: TQ028.1

UDC分类号: 540

基于树状区块链的出租车调度算法设计和系统实现

作	者	姓	名	
学	院	名	称	计算机学院
指	류	教	师	陆慧梅副教授
答辩委员会主席		上席	** 教授	
申	请	学	位	工学硕士
学	科	专	<u>\ \</u>	电子信息
学位授予单位			单位	北京理工大学
论文答辩日期			日期	****年*月

Algorithm Design and System Implementation of Taxi Scheduling Based on Ethereum

Candidate Name:	Jiazhuang Cheng
School or Department:	Computer Science and Technology
Faculty Mentor:	Prof. Huimei Lu
Chair, Thesis Committee:	Prof. **
Degree Applied:	Master of Engineering
Major:	Digital Information
Degree by:	Beijing Institute of Technology
The Date of Defence:	* ****

基于树状区块链的出租车调度算法设计和系统实现

北京理工大学

研究成果声明

本人郑重声明:所提交的学位论文是我本人在指导教师的指导下进行的研究工作获得的研究成果。尽我所知,文中除特别标注和致谢的地方外,学位论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京理工大学或其它教育机构的学位或证书所使用过的材料。与我一同工作的合作者对此研究工作所做的任何贡献均已在学位论文中作了明确的说明并表示了谢意。

烘	批	由	朋	_
٦,	ו ועו	T	' 7.1	0

作者签名:	签字日期:	

关于学位论文使用权的说明

本人完全了解北京理工大学有关保管、使用学位论文的规定,其中包括:①学校有权保管、并向有关部门送交学位论文的原件与复印件;②学校可以采用影印、缩印或其它复制手段复制并保存学位论文;③学校可允许学位论文被查阅或借阅;④学校可以学术交流为目的,复制赠送和交换学位论文;⑤学校可以公布学位论文的全部或部分内容(保密学位论文在解密后遵守此规定)。

作者签名:	导师签名:
签字日期:	签字日期:

摘要

车载自组网是在交通环境参与者间构建的开放式网络,可以为用户提供去中心化的数据传输能力。基于车载自组网,可以实现事故预警、辅助驾驶、道路交通信息查询、车间通信和网络接入服务等应用。研发这些应用需要地理信息和交通数据的支持,但信息的垄断会引发不正当牟利和恶性竞争。针对这一问题,本文利用部署在车载自组网上的区块链网络,基于 GeoHash 矢量地图和基于以太坊的树状区块链平台,开发了一套出租车调度和导航系统以完成出租车的去中心化调度。首先,本文选用GeoHash 作为系统中统一的位置信息表示方法,在系统实现上采用浏览器与智能合约相结合的方式,在智能合约端开发了基于 GeoHash 的路径导航算法和车辆的区域调度算法,解决了车乘分配时的并发冲突问题。在浏览器端实现车辆和乘客的数据采集和乘车业务完整流程的设计。系统充分利用了区块链的性质保证车辆信誉数据的安全性、可溯性和在网络内的同步性。利用 GeoHash 在地理信息上的计算特性对算法速度进行了优化,并进行了优化后的实验验证工作。最后调节系统的关键参数进行性能优化并进行实验验证,通过真实的地图数据验证了此出租车调度系统的可行性。

关键词: 区块链; 导航; GeoHash

Abstract

VANET is an Adhoc networks between participants in trafic and providing decentralized data transmission service. VANET can be used in application like accident warning, drive assist system, trafic information service and InterVehicle Communication. The development of these applications requires the support of geographic information and traffic data, but the monopoly of information will lead to unfair profit-making and vicious competition. In response to this problem, this paper uses the blockchain network deployed on the in-vehicle ad hoc network, based on the GeoHash vector map and the Ethereum platform, to develop a taxi dispatch and navigation system to complete the decentralized dispatch of taxis. First, this thesis use GeoHash for storage and calculation of position. The system in this thesis is made up of browserside programs and smart contract. On the smart contract side, a GeoHash-based route navigation algorithm and a vehicle regional managing algorithm were developed, which solved the problem of concurrency conflicts in the allocation of vehicles and passengers. The browser side realize vehicle and passenger data collection and design the complete process of ride-hailing business. Blockchain makes this system safe, traceable and synchronized. The speed of the algorithm is optimized by using GeoHash's computing characteristics on geographic information, and the optimized experimental verification work is carried out. Finally, the key parameters of the system are adjusted for performance optimization and experimental verification. The feasibility of the taxi dispatching system is verified by real map data.

Key Words: blockchain; navigation; GeoHash

主要符号对照表

BIT 北京理工大学的英文缩写

LATEX 一个很棒的排版系统

 $ext{LMEX } 2\varepsilon$ 一个很棒的排版系统的最新稳定版

X-TEX IMEX 的好兄弟,事实上他有很多个兄弟,但是这个兄弟对各种语言

的支持能力都很强

ctex 成套的中文 LATEX 解决方案,由一帮天才们开发

H₂SO₄ 硫酸

 $e^{\pi i} + 1 = 0$ 一个集自然界五大常数一体的炫酷方程

2H₂ + O₂ ---- 2H₂O 一个昂贵的生成生命之源的方程式

目 录

摘要	•••••		I
Abstra	ct		II
主要符	号对照	8表	III
第1章	绪	沧	1
1.1	本论	文研究的目的和意义	1
1.2	国内组	外研究现状及发展趋势	1
1.3	论文	的研究内容、贡献和组织结构	1
	1.3.1	论文的研究内容	1
	1.3.2	论文贡献	2
	1.3.3	论文的组织结构	2
第2章	相	关工作	3
2.1	基于!	以太坊的树状区块链	3
	2.1.1	传统区块链的特点和不足	3
	2.1.2	树状区块链的特性	3
2.2	GeoH	[ash 地理信息	3
	2.2.1	基于 GeoHash 的地图	3
	2.2.2	GeoHash 几何计算原理	3
	2.2.3	leaflet 矢量地图渲染框架	3
2.3	出租	车调度系统	4
2.4	.4 导航算法		4
第3章	基	于树状区块链的出租车调度系统框架	5
3.1	基于	对状区块链的出租车调度系统架构设计	5
	3.1.1	区块链上智能合约端模块	5
	3.1.2	浏览器客户端模块	5

北京理工大学硕士学位论文

3.2	出租	车调度系统流程设计	5
	3.2.1	乘客端业务流程设计	5
	3.2.2	出租车端业务流程设计	5
第4章	系统	究的工具和算法原理	6
4.1	基于	GeoHash 的矢量地图展示	6
	4.1.1	基于 GeoHash 的地图在区块链上的存储	6
	4.1.2	基于 GeoHash 的矢量地图实现放缩和拖动功能	6
4.2	基于	GeoHash 的几何计算优化	6
	4.2.1	GeoHash 几何计算原理	6
	4.2.2	GeoHash 几何计算方法的优化	6
4.3	基于	GeoHash 的导航算法	7
	4.3.1	导航算法的发展种类	7
	4.3.2	矢量地图路径导航算法的性能对比	7
	4.3.3	astar 导航算法的原理	7
	4.3.4	基于 GeoHash 的 astar 导航算法设计	7
4.4	基于	对状区块链的区域调度车乘匹配算法	7
	4.4.1	树状区块链对区域信息的查询	7
	4.4.2	区域调度车乘匹配算法	8
第5章	参	数设置和系统测试	9
5.1	5.1 参数设置实验		
	5.1.1	astar 导航算法参数	9
	5.1.2	区域调度算法参数	9
5.2	系统	则试实验	9
	5.2.1	模拟双行道正确性测试	9
	5.2.2	真实地图数据测试	9
结论			10
附录A	***	¢	11

北京理工大学硕士学位论文

附录 B	Maxwell Equations	12
攻读学	位期间发表论文与研究成果清单	13
致谢.		14
作者简	介	15

插图

表 格

第1章 绪论

1.1 本论文研究的目的和意义

随着城市交通的逐渐发展,道路网络的复杂度以及车辆保有量日益增长,交通基础设施的建设无法满足需求,给交通流量的管理带来困难。在智能交通系统中,信息的去中心化管理是一项关键技术。其中去中心化的出租车调度系统可以有效地满足实时的出行需求,为智能交通系统的完善提供技术支持,有效地满足城市交通需求以及交通流量的管理与诱导,能够有效提高用户出行效率。(研究出租车调度系统的目的和意义) ……[?????]

1.2 国内外研究现状及发展趋势

简单介绍自组网应用中的导航应用研究现状,以及局限性分析

1.3 论文的研究内容、贡献和组织结构

引出本文研究内容, 讲出工作贡献和论文的组织结构

1.3.1 论文的研究内容

- (1) 为优化区块链对地图数据的处理性能,降低计算量,引入 GeoHash 矢量地理信息存储,并为前端矢量地图数据渲染工具——leaflet 添加支持 GeoHash 格式的放缩和拖动功能。
- (2) 为解决中心化的打车软件对用户信息进行违规利用、利用信息差进行恶性竞争等问题,本文基于树状区块链设计并实现了去中心化的出租车调度系统。
- (3) 实现出租车调度系统的核心是实现导航算法和车乘匹配算法,然而,树状区块链缺乏基于矢量地理数据的导航算法支持,为解决这个问题,本文在基于以太坊的树状区块链平台设计并实现了基于 GeoHash 矢量地理数据的导航算法,并在此基础上实现了基于树状区块链的区域调度车乘匹配算法。
- (4) 针对基于 GeoHash 的距离计算方法,本文通过前缀匹配对算法逻辑进行了优化;同时,本文在对已广泛应用的导航算法进行了修改,使其支持 GeoHash 的距离计

算逻辑,在导航算法中加入可调节的参数增强其适配性;对导航算法和区域调度车乘 匹配算法的关键参数进行调优。

1.3.2 论文贡献

- (1) 完善 leaflet 工具对 GeoHash 格式矢量地图展示的支持。
- (2) 提升 GeoHash 距离计算算法的速度。
- (3) 设计出基于 GeoHash 的导航算法并进行参数调优。
- (4) 设计出基于树状区块链的区域调度车乘匹配算法并进行参数调优。

1.3.3 论文的组织结构

第一章,介绍导航应用研究现状以及去中心化调度系统对于智能交通和反垄断、 反恶性竞争的意义。

第二章,对本文涉及的相关工作进行综述,包括基于以太坊的树状区块链、Geo-Hash 地理信息、leaflet 渲染工具、出租车调度系统、导航算法。

第三章描述系统的框架,包括服务端智能合约的设计结构,和浏览器客户端车辆 和乘客的设计结构,以及系统的运行流程。

第四章详细介绍系统用到的各种技术,包括基于 GeoHash 的矢量地图存储和展示、基于 GeoHash 的导航算法设计、基于树状区块链的区域调度车乘匹配算法。

第五章,介绍了出租车调度系统的参数调优以及系统在真实数据下的工作状态。

第2章 相关工作

本章对本文研究内容的相关工作进行简要介绍。首先是基于以太坊的树状区块链;第二是 GeoHash 地理信息,第三是出租车调度系统的发展现状,第四是导航算法

2.1 基于以太坊的树状区块链

介绍区块链的性能瓶颈,引出树状区块链的研究目的、简要介绍原理。

2.1.1 传统区块链的特点和不足

2.1.2 树状区块链的特性

2.2 GeoHash 地理信息

由于传统计算两个经纬度所表示坐标点距离时需要使用球面距离公式,若在以GeoHash 为坐标表示的系统中沿用这套算法,则丧失了GeoHash 带来的计算简便性。利用 GeoHash 编码的特点进行距离计算,避免了复杂的三角函数和球面计算,并且适用于对小数支持较弱、不提供复杂数学函数计算支持的区块链智能合约编写语言 Solidity。

2.2.1 基于 GeoHash 的地图

将矢量地图数据以 GeoHash 形式存到区块链上的原理、优点分析和改进空间。

2.2.2 GeoHash 几何计算原理

介绍 GeoHash 数格子进行几何距离计算的原理。

2.2.3 leaflet 矢量地图渲染框架

介绍 leaflet 矢量地图渲染框架,以及其对 GeoHash 数据的支持情况。

2.3 出租车调度系统

介绍出租车调度系统的研究现状,指出中心化系统的不足,容易引发信息垄断、信息泄露和恶性竞争。

2.4 导航算法

介绍导航算法的发展历史和研究现状,分类简要介绍几种导航算法的优缺点,指 出区块链应用缺乏导航算法的支持,以及在区块链中将导航算法与 GeoHash 结合的 优点。

第3章 基于树状区块链的出租车调度系统框架

基于树状区块链的出租车调度系统的目标和研发现状简介。

3.1 基于树状区块链的出租车调度系统架构设计

介绍基于树状区块链的出租车调度系统的架构,由区块链后台和浏览器客户端构成。

3.1.1 区块链上智能合约端模块

介绍区块链后台模块的功能。

3.1.2 浏览器客户端模块

介绍浏览器客户端模块的功能。

3.2 出租车调度系统流程设计

出租车调度系统的流程设计,出租车接送客业务的企业研究现状,流程介绍。

3.2.1 乘客端业务流程设计

介绍乘客端浏览器的业务流程。

3.2.2 出租车端业务流程设计

介绍出租车端浏览器的业务流程。

第4章 系统的工具和算法原理

本章详细介绍系统的工具、功能、算法开发工作和原理。

4.1 基于 GeoHash 的矢量地图展示

对系统开发过程中将基于 GeoHash 的矢量地图信息存储在区块链和展示在浏览 器端的开发工作和原理做介绍。

4.1.1 基于 GeoHash 的地图在区块链上的存储

将矢量地图数据以 GeoHash 形式存到区块链上的原理、优点分析和改进空间。

4.1.2 基于 GeoHash 的矢量地图实现放缩和拖动功能

描述放缩和拖动功能的实现原理,解释 GeoHash 矢量地图的渲染步骤。

4.2 基于 GeoHash 的几何计算优化

由于传统计算两个经纬度所表示坐标点距离时需要使用球面距离公式,若在以GeoHash 为坐标表示的系统中沿用这套算法,则丧失了GeoHash 带来的计算简便性。利用 GeoHash 编码的特点进行距离计算,避免了复杂的三角函数和球面计算,并且适用于对小数支持较弱、不提供复杂数学函数计算支持的区块链智能合约编写语言 Solidity。

4.2.1 GeoHash 几何计算原理

具体介绍 GeoHash 数格子进行几何距离计算的原理。

4.2.2 GeoHash 几何计算方法的优化

介绍前缀匹配的思想对 GeoHash 计算速度的优化原理。

4.3 基于 GeoHash 的导航算法

为了完善去中心化的出租车调度系统,需要在智能合约端实现后台的导航算法。

4.3.1 导航算法的发展种类

导航算法的提出和发展由来已久,有适合在未知地图环境下运行的启发式导航算法,可以应用在智能机器人和无人车等领域,此外,还有可以在已知地图信息的情况下,利用已有的矢量地图数据规划出最短路径的导航算法,可以应用在地理信息实时更新的交通系统中。启发式导航算法,适合在不知道地理信息的情况下进行主观的路径探索,这种算法应用在机器人的自动寻路、游戏中的AI角色寻路等场景;路径导航算法,在已知地理信息的情况下进行最短路径的规划,可以应用在车载应用的导航、公共交通实时导航等环境中。

4.3.2 矢量地图路径导航算法的性能对比

理论分析 astar 算法相比 djkstra 路径导航算法的性能优劣,对 GeoHash 的适配性, 阐述选择 astar 路径导航算法作为原型的原因。

4.3.3 astar 导航算法的原理

详细解释 astar 导航算法的原理。

4.3.4 基于 GeoHash 的 astar 导航算法设计

详细解释 astar 导航算法的原理。介绍基于 astar 导航算法设计出支持 GeoHash 格式的导航算法的原理。

4.4 基于树状区块链的区域调度车乘匹配算法

4.4.1 树状区块链对区域信息的杳询

介绍树状区块链对区域信息的查询原理。

4.4.2 区域调度车乘匹配算法

介绍在树状区块链对区域信息查询的基础上实现的区域调度车乘匹配算法原理、对并发请求的冲突解决逻辑。

第5章 参数设置和系统测试

出租车调度系统的实验环境、本章的工作整体介绍。

5.1 参数设置实验

astar 导航算法和区域调度算法的参数调节

- 5.1.1 astar 导航算法参数
- 5.1.2 区域调度算法参数
- 5.2 系统测试实验
- 5.2.1 模拟双行道正确性测试

模拟双行道的导航结果测试。

5.2.2 真实地图数据测试

真实地图的导航结果测试。

结论

总结工作、进行未来工作的展望(结论作为学位论文正文的最后部分单独排写,但不加章号。结论是对整个论文主要结果的总结。在结论中应明确指出本研究的创新点,对其应用前景和社会、经济价值等加以预测和评价,并指出今后进一步在本研究方向进行研究工作的展望与设想。结论部分的撰写应简明扼要,突出创新性。)

附录 A ***

附录相关内容…

附录 B Maxwell Equations

因为在柱坐标系下, $\overline{\mu}$ 是对角的,所以 Maxwell 方程组中电场 $\mathbf E$ 的旋度 所以 $\mathbf H$ 的各个分量可以写为:

$$H_r = \frac{1}{\mathbf{i}\omega\mu_r} \frac{1}{r} \frac{\partial E_z}{\partial \theta}$$
 (B-1a)

$$H_{\theta} = -\frac{1}{\mathbf{i}\omega\mu_{\theta}} \frac{\partial E_z}{\partial r} \tag{B-1b}$$

同样地,在柱坐标系下, $\bar{\epsilon}$ 是对角的,所以 Maxwell 方程组中磁场 **H** 的旋度

$$\nabla \times \mathbf{H} = -\mathbf{i}\omega \mathbf{D} \tag{B-2a}$$

$$\left[\frac{1}{r}\frac{\partial}{\partial r}(rH_{\theta}) - \frac{1}{r}\frac{\partial H_{r}}{\partial \theta}\right]\hat{\mathbf{z}} = -\mathbf{i}\omega\bar{\epsilon}\mathbf{E} = -\mathbf{i}\omega\epsilon_{z}E_{z}\hat{\mathbf{z}}$$
(B–2b)

$$\frac{1}{r}\frac{\partial}{\partial r}(rH_{\theta}) - \frac{1}{r}\frac{\partial H_r}{\partial \theta} = -\mathbf{i}\omega\epsilon_z E_z$$
(B-2c)

由此我们可以得到关于 Ez 的波函数方程:

$$\frac{1}{\mu_{\theta}\epsilon_{z}}\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial E_{z}}{\partial r}\right) + \frac{1}{\mu_{r}\epsilon_{z}}\frac{1}{r^{2}}\frac{\partial^{2}E_{z}}{\partial\theta^{2}} + \omega^{2}E_{z} = 0$$
 (B-3)

攻读学位期间发表论文与研究成果清单

[1] 高凌. 交联型与线形水性聚氨酯的形状记忆性能比较 [J]. 化工进展, 2006, 532 - 535. (核心期刊)

致谢

本论文的工作是在导师……。

作者简介

本人…。