DATA SHEET

SILICON TRANSISTOR 2SC3357

NPN SILICON EPITAXIAL TRANSISTOR POWER MINI MOLD

DESCRIPTION

The 2SC3357 is an NPN silicon epitaxial transistor designed for low noise amplifier at VHF, UHF and CATV band.

It has large dynamic range and good current characteristic.

FEATURES

· Low Noise and High Gain

NF = 1.1 dB TYP.,
$$G_a$$
 = 8.0 dB TYP. @VcE = 10 V, Ic = 7 mA, f = 1.0 GHz NF = 1.8 dB TYP., G_a = 9.0 dB TYP. @VcE = 10 V, Ic = 40 mA, f = 1.0 GHz

Large P_T in Small Package

 P_T : 2 W with 16 cm² × 0.7 mm Ceramic Substrate.

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Collector to Base Voltage	Vсво	20	V
Collector to Emitter Voltage	VCEO	12	V
Emitter to Base Voltage	VEBO	3.0	V
Collector Current	Ic	100	mΑ
Total Power Dissipation	P _T *	1.2	W
Thermal Resistance	$R_{th(j-a)}^*$	62.5	°C/W
Junction Temperature	T_{j}	150	°C
Storage Temperature	T _{stg}	-65 to +150	°C

 $^{^{\}star}$ mounted on 16 $\text{cm}^2 \times 0.7$ mm Ceramic Substrate

ELECTRICAL CHARACTERISTICS (TA = 25 °C)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Collector Cutoff Current	Ісво			1.0	μΑ	V _{CB} = 10 V, I _E = 0
Emitter Cutoff Current	ІЕВО			1.0	μΑ	V _{EB} = 1.0 V, I _C = 0
DC Current Gain	h _{FE} *	50	120	300		Vce = 10 V, Ic = 20 mA
Gain Bandwidth Product	f⊤		6.5		GHz	Vce = 10 V, Ic = 20 mA
Feed-Back Capacitance	Cre**		0.65	1.0	pF	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz
Insertion Power Gain	S ₂₁ e ²		9		dB	Vce = 10 V, Ic = 20 mA, f = 1.0 GHz
Noise Figure	NF		1.1		dB	Vce = 10 V, Ic = 7 mA, f = 1.0 GHz
Noise Figure	NF		1.8	3.0	dB	Vce = 10 V, Ic = 40 mA, f = 1.0 GHz

^{*} Pulse Measurement PW \leq 350 μ s, Duty Cycle \leq 2 %

hFE Classification

Class	RH	RF	RE
Marking	RH	RF	RE
hfe	50 to 100	80 to 160	125 to 250

TYPICAL CHARACTERISTICS (TA = 25 °C)

^{**} The emitter terminal and the case shall be connected to the guard terminal of the three-terminal capacitnace bridge.

S-PARAMETER

V_{CE} = 10 V, Ic = 40 mA, Z_{O} = 50 Ω								
f (MHz)	S ₁₁	∠ S ₁₁	S ₂₁	∠ S ₂₁	S ₁₂	∠ S ₁₂	S ₂₂	∠ S 22
200	0.196	-94.4	13.023	102.4	0.043	74.5	0.444	-21.1
400	0.103	-118.3	6.852	89.2	0.081	77.4	0.398	-25.3
600	0.056	-131.1	4.632	78.3	0.118	77.5	0.399	-26.9
800	0.024	-43.7	3.527	75.9	0.152	78.0	0.414	-28.9
1000	0.008	-2.0	2.854	68.7	0.188	78.4	0.440	-33.5
1200	0.039	13.1	2.421	65.7	0.218	75.7	0.461	-33.3
1400	0.072	11.8	2.118	59.0	0.255	71.7	0.479	-36.3
1600	0.102	9.6	1.887	57.1	0.278	73.1	0.499	-35.5
1800	0.129	8.6	1.681	52.5	0.308	71.3	0.515	-38.8
2000	0.151	9.8	1.579	51.4	0.339	71.8	0.537	-35.9
Vce = 10 V	/, Ic = 20 mA	a, Zo = 50 Ω						
f (MHz)	S ₁₁	∠ S 11	S ₂₁	∠ S 21	S ₁₂	∠ S ₁₂	S ₂₂	∠ S 22
200	0.130	-109.2	13.430	98.1	0.042	79.0	0.403	-22.1
400	0.073	-134.1	6.930	87.2	0.081	80.6	0.382	-24.7
600	0.037	-146.6	4.690	79.4	0.119	79.4	0.392	-25.6
800	0.010	177.1	3.560	75.2	0.154	79.7	0.412	-27.1
1000	0.024	23.7	2.878	68.2	0.191	76.5	0.440	-31.9
1200	0.056	17.2	2.439	65.4	0.220	76.8	0.463	-32.3
1400	0.093	13.8	2.133	59.0	0.257	72.9	0.483	-35.7
1600	0.124	12.0	1.898	57.3	0.280	74.0	0.504	-35.3
1800	0.151	11.0	1.693	52.9	0.311	72.4	0.519	-38.4
2000	0.174	13.4	1.591	52.0	0.341	72.8	0.542	-36.3

