

DIFFERENTIATION-INDUCING AGENT

Publication number: JP10152462 (A)

Also published as:

Publication date: 1998-06-08

 JP354090 (B2)

Inventor(s): SUZUKI TSUNESHI; ANDO TOMOYUKI; TSUCHIYA KATSUTOSHI; NAKANISHI OSAMU; SAITO AKIKO; YAMASHITA TAKASHI; SHIRAISHI GENGO; TANAKA EIJI +

Applicant(s): MITSUI CHEMICALS INC +

Classification:

- International:

A61K31/165; A61K31/167; A61K31/17; A61K31/27;
 A61K31/275; A61K31/38; A61K31/381; A61K31/415;
 A61K31/4166; A61K31/42; A61K31/421; A61K31/425;
 A61K31/428; A61K31/44; A61K31/4418; A61K31/4427;
 A61K31/443; A61K31/4438; A61K31/445; A61K31/495;
 A61K31/496; A61K31/505; A61P17/00; A61P33/00; A61P35/00;
 A61P35/02; A61P37/00; A61P43/00; C07C237/42; C07C255/31;
 C07C271/16; C07C271/40; C07C275/24; C07C275/28;
 C07C283/58; C07C283/62; C07C287/48; C07C335/16;
 C07D207/34; C07D209/42; C07D211/24; C07D213/30;
 C07D213/40; C07D213/56; C07D213/65; C07D213/70;
 C07D213/74; C07D213/75; C07D213/81; C07D213/82;
 C07D233/34; C07D233/42; C07D233/64; C07D239/28;
 C07D241/14; C07D261/08; C07D261/10; C07D263/48;
 C07D275/02; C07D277/20; C07D277/24; C07D277/40;
 C07D295/08; C07D307/12; C07D307/68; C07D307/84;
 C07D333/16; C07D333/38; C07D333/62; C07D401/06;
 C07D401/12; C07D405/12; C07D409/12; C07D413/12;
 C07D453/02; C07D491/04; C07D495/04; C07D521/00; (IPC1-
 7); A61K31/165; A61K31/17; A61K31/27; A61K31/275;
 A61K31/38; A61K31/415; A61K31/42; A61K31/425; A61K31/44;
 A61K31/445; A61K31/495; A61K31/505; C07C237/42;
 C07C255/31; C07C271/18; C07C271/40; C07C275/24;
 C07C279/28; C07C283/52; C07C283/62; C07C287/48;
 C07C335/16; C07D207/34; C07D209/42; C07D211/24;
 C07D213/30; C07D213/40; C07D213/56; C07D213/65;
 C07D213/70; C07D213/74; C07D213/75; C07D213/81;
 C07D213/82; C07D233/34; C07D233/42; C07D233/64;
 C07D239/28; C07D241/14; C07D261/08; C07D261/10;
 C07D263/48; C07D275/02; C07D277/24; C07D277/40;
 C07D285/08; C07D307/12; C07D307/68; C07D307/84;
 C07D333/16; C07D333/38; C07D333/62; C07D401/06;
 C07D401/12; C07D405/12; C07D409/12; C07D413/12;
 C07D453/02; C07D491/04; C07D495/04; C07D521/00

- European:

Application number: JP19970280277 19970928

Priority number(s): JP19970280277 19970928; JP19980258868 19980930

Abstract of JP 10152462 (A)

PROBLEM TO BE SOLVED: To obtain a new benzamide derivative having differentiation inducing action, useful as a medicine for treating and improving malignant tumor, autoimmune disease, dermatitis and parasitic infectious disease.

SOLUTION: This compound is shown by formula I. A is a (substituted) phenyl or heterocycle (which may contain 1 to 4 substituent groups such as a halogen, hydroxyl group, amino, nitro and cyano); X is a direct bond, $(\text{CH}_2)_n$, $(\text{CH}_2)_g - \text{O} - (\text{CH}_2)_g$, etc. ((e) is 1-4; (g) is 0-4); Q is a structure shown by formula II [R7 is H, a 1-C (substituted) alkyl], etc.; R1 and R2 are each H, a halogen, etc.; R3 is a hydroxyl group or amino. The compound of formula I is obtained, for example, by subjecting a compound of the formula A-X-R9 [R9 is C(=G)OH (G is oxygen or sulfur) or NH2] and a compound of formula III [R9 and R10 are not the same and one is C(=G)OH and the other is NH2; R11 is a protected hydroxyl group] to condensation reaction.

II

III

Data supplied from the espacenet database — Worldwide

(19) 日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-152462

(43) 公開日 平成10年(1998)6月9日

(51) Int.Cl.¹ 認別記号
C 07 C 237/42
A 61 K 31/165 ADU
31/17
31/27
31/275

F 1
C 07 C 237/42
A 61 K 31/165 ADU
31/17
31/27
31/275

審査請求 未踏求 踏求項の数32 OJ (全 79 頁) 最終質に聞く

(21) 出願番号 特願平9-260277
 (22) 出願日 平成9年(1997)9月25日
 (31) 優先権主登録番号 特願平8-258863
 (32) 優先日 平8(1996)9月30日
 (33) 優先権主国 日本(JP)

(71) 出願人 000003126
三井東圧化学株式会社
東京都千代田区霞が関三丁目2番5号

(72) 発明者 鈴木 常司
千葉県茂原市東郷1144番地 三井東圧化学
株式会社内

(72) 発明者 安藤 知行
千葉県茂原市東郷1144番地 三井東圧化学
株式会社内

(72) 発明者 土屋 克敏
千葉県茂原市東郷1144番地 三井東圧化学
株式会社内

最終頁に続く

(54) (発明の名称) 分化誘導剤

〈57〉【要約】

【課題】分化誘導作用を有する新規ベンズアミド誘導体および新規アリニド誘導体を提供すること。

【解決手段】式(1)で示される新規ベンズアミド誘導体および式(13)で表される新規アリニド誘導体

【効果】式(1)で示される本発明の新規ベンズアミド誘導体および式(13)で表される新規アリニド誘導体は分化誘導作用を有するため、悪性腫瘍、自己免疫疾

患、皮膚病、寄生虫感染症の治療、改善剤として有用である。特に、制癌剤として効果が高く、造血器腫瘍、固形瘤に有効である。

(2)

特開平10-152462

【特許請求の範囲】

【請求項1】 式(1) [化1]

〔式中、Aは置換されていてもよいフェニル基または複素環（置換基として、ハロゲン原子、水酸基、アミノ基、ニトロ基、シアノ基、炭素数1～4のアルキル基、炭素数1～4のアルコキシ基、炭素数1～4のアミノアルキル基、炭素数1～4のアルキラミノ基、炭素数1～4のアシル基、炭素数1～4のアシルアミノ基、炭素数1～4のアルキルチオ基、炭素数1～4のパーグルオキシ基、カルボキシル基、炭素数1～4のアルコキシカルボニル基、フェニル基、複素環からなる群より選ばれた基を1～4個有する）を表す。Xは直接結合または式(2) [化2]」

〔化2〕 ロアルキル基、炭素数1～4のパーグルオロアルキルオキシ基、カルボキシル基、炭素数1～4のアルコキシカルボニル基、フェニル基、複素環からなる群より選ばれた基を1～4個有する)を表す。Xは直接結合または式(2) [化2]」

〔化2〕

〔式中、eは1～4の整数を表す。gおよびmはそれぞれ独立して0～4の整数を表す。R4は水素原子、置換されていてもよい炭素数1～4のアルキル基または式(3) [化3]」

〔化3〕

〔式中、R6は置換されていてもよい炭素数1～4のアルキル基、炭素数1～4のパーグルオロアルキル基、フェニル基または複素環を表す)で表されるアシル基を表す。R5は水素原子または置換されていてもよい炭素数1～4のアルキル基を表す)で示される構造のいずれかを表す。nは0～4の整数を表す。但しXが直接結合の場合は、nは0とはならない。Qは式(4) [化4]」

〔化4〕

〔式中、R7およびR8はそれぞれ独立して、水素原子または置換されていてもよい炭素数1～4のアルキル基を表す)で示される構造のいずれかを表す。R1およびR2はそれぞれ独立して、水素原子、ハロゲン原子、水酸基、アミノ基、炭素数1～4のアルキル基、炭素数1～4のアルコキシ基、炭素数1～4のアミノアルキル基、炭素数1～4のアルキラミノ基、炭素数1～4のアシル基、炭素数1～4のアシルアミノ基、炭素数1～4のアルキルチオ基、炭素数1～4のパーグルオロアル

キル基、炭素数1～4のパーグルオロアルキルオキシ基、カルボキシル基または炭素数1～4のアルコキシカルボニル基を表す。R3は水酸基またはアミノ基を表す、]で表されるベンズアミド誘導体および薬学的に許容される塩。

〔請求項2〕 nが1～4の整数である請求項1記載のベンズアミド誘導体および薬学的に許容される塩。

〔請求項3〕 Qが式(5) [化5]」

〔化5〕

(3)

特開平10-152462

(式中、R₇およびR₈は前記と同義。)で示される構造のいずれかである請求項2記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項4】 Aが置換されていてもよいヘテロ環である請求項3記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項5】 Aが置換されていてもよいピリジル基である請求項4記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項6】 Xが直接結合である請求項4記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項7】 R₁およびR₂が水素原子である請求項6記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項8】 R₃がアミノ基である請求項7記載のベ

(式中、e、gおよびR₄は前記と同義。)で示される構造のいずれかである請求項5記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項13】 nが1で、R₁およびR₂が水素原子である請求項12記載のベンズアミド誘導体および薬学

(式中、g、mおよびR₅は前記と同義。)で示される構造のいずれかである請求項5記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項16】 nが1で、R₁およびR₂が水素原子である請求項15記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項17】 R₃がアミノ基である請求項16記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項18】 nが0である請求項1記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項19】 Qが式(5)で示される構造のいずれかである請求項18記載のベンズアミド誘導体および薬学的に許容される塩。

で示される請求項1記載のベンズアミド誘導体および薬学的に許容される塩。

ンズアミド誘導体および薬学的に許容される塩。

【請求項9】 Xが式(6)【化6】

【化6】

(式中、eは前記と同義。)で示される構造である請求項5記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項10】 nが1で、R₁およびR₂が水素原子である請求項9記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項11】 R₃がアミノ基である請求項10記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項12】 Xが式(7)【化7】

【化7】

的許容される塩。

【請求項14】 R₃がアミノ基である請求項13記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項15】 Xが式(8)【化8】

【化8】

【請求項20】 Aが置換されていてもよいヘテロ環である請求項19記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項21】 Aが置換されていてもよいピリジル基である請求項20記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項22】 R₁およびR₂が水素原子である請求項21記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項23】 R₃がアミノ基である請求項22記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項24】 式(9)【化9】

【化9】

【請求項25】 式(10)【化10】

【化10】

(4)

特開平10-152462

で示される請求項1記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項26】 式(11)【化11】
【化11】

で示される請求項1記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項27】 式(12)【化12】
【化12】

で示される請求項1記載のベンズアミド誘導体および薬学的に許容される塩。

【請求項28】 式(13)【化13】
【化13】

【式中、AおよびBは置換されていてもよいフェニル基または極素環（置換基として、ハロゲン原子、水酸基、アミノ基、ニトロ基、シアノ基、炭素数1～4のアルキル基、炭素数1～4のアルコキシ基、炭素数1～4のアミノアルキル基、炭素数1～4のアルキルアミノ基、炭素数1～4のアシル基、炭素数1～4のアシルアミノ基、炭素数1～4のアルキルチオ基、炭素数1～4のパーフルオロアルキル基、炭素数1～4のパーフルオロアルキルオキシ基、カルボキシル基、炭素数1～4のアルコキシカルボニル基、フェニル基、極素環からなる群より選ばれた基を1～4個有する）を表す。Yは-CO-、-CS-、-SO-および-SO₂-のいずれかを構造中に有し、AとBを連結する鎖状、環状またはそれらの組み合わされた構造を表す。R3は水酸基またはアミノ基を表す。】において、B環の重心（W1）、A環の重心（W2）、Y中の水素結合受容体となる酸素原子または硫黄原子（W3）のなす距離が、それぞれW1～W2=6.0～11.0Å、W1～W3=3.0～8.

0Å、W2～W3=3.0～8.0Åとなる立体配置をとることが可能なアニリド誘導体および薬学的に許容される塩。

【請求項29】 Aが置換されていてもよい極素環、R3がアミノ基、Yが-COO-を構造中に有するAとBを連結する鎖状、環状またはそれらの組み合わされた構造である請求項28記載のアニリド誘導体および薬学的に許容される塩。

【請求項30】 Bが置換されてもよいフェニル基、W1～W2=7.0～9.5Å、W1～W3=3.0～5.0Å、W2～W3=5.0～8.0Åである請求項29記載のアニリド誘導体および薬学的に許容される塩。

【請求項31】 請求項1～30いずれかに記載の化合物のうち、少なくとも1つを有効成分として含有する製剤。

【請求項32】 請求項1～30いずれかに記載の化合物のうち、少なくとも1つを有効成分として含有する医薬品。

【発明の詳細な説明】

【0001】

【施業上の利用分野】 本発明は分化誘導剤に関する。さらに詳しくは、新規ベンズアミド誘導体または新規アリニド誘導体の分化誘導作用に基づく制癌剤およびその他の医薬品への利用に関するものである。

【0002】

【従来の技術】 現在、癌は死亡原因の中で心疾患、脳血管疾患を抜いて最大の原因となっており、これまで多く

(5)

特開平10-152462

の研究が多額の費用と時間をかけて行われてきた。しかし、外科的手術、放射線療法、温熱療法など多岐にわたる治療法の研究にも拘らず癌は克服されていない。その中で化学療法は癌治療の大きな柱の一つであるが、今日に至っても十分満足のゆく薬剤は見いだされておらず、毒性が低く治療効果の高い制癌剤が待ち望まれている。これまで多くの制癌剤は細胞、主にDNAに作用し細胞毒性を発現することで癌細胞に傷害を与え、制癌効果を発揮している。しかし、癌細胞と正常細胞との選択性が十分でないため、正常細胞において発現する副作用が治療の限界となっている。

【0003】ところが制癌剤の中でも分化誘導剤は直接の殺細胞ではなく、癌細胞に分化を促し癌細胞の無限増殖を抑えることを目的としている。そのため癌の退縮においては直接細胞を殺す種類の制癌剤には及ばないが、低い毒性と異なる選択性が期待できる。実際、分化誘導剤であるレチノイン酸が治療に用いられ急性前骨髄性白血病で高い効果を示すことはよく知られている[Huanら; Blood 72: 567-572(1988)、Castaignら; Blood 76: 1704-1709 (1990)、Warrellら; New Engl. J. Med. 324: 1385-1393(1991)など]。また、ビタミンD誘導体が分化誘導作用を示すことから制癌剤への応用も多く研究されている[Olssonら; Cancer Res. 43: 5862-5867(1983)他]。

【0004】これらの研究を受けて、分化誘導剤である

ビタミンD誘導体(特開平6-179622号公報)、イソブレン誘導体(特開平6-192073号公報)、トコフェロール(特開平6-256181号公報)、キノン誘導体(特開平6-305955号公報)、非環状ポリイソプレノイド(特開平6-316520号公報)、安息香酸誘導体(特開平7-206765号公報)、糖脂質(特開平7-258100号公報)等の制癌剤への応用が報告されている。しかしながら、これらの研究によても癌治療上十分なレベルに達した薬剤はなく、各種の癌に対し有効で安全性の高い薬剤が強く望まれている。

【0005】

【発明が解決しようとする課題】本発明の課題は、分化誘導作用を有し、悪性腫瘍、自己免疫疾患、皮膚病、寄生虫感染症の治療・改善薬などの医薬品として有用な化合物を提供することにある。

【0006】

【課題を解決するための手段】本発明者は上記課題を解決すべく銳意検討した結果、分化誘導作用を有する新規ベンズアミド誘導体および新規アリニド誘導体が抗腫瘍効果を示すことを見いだし、本発明を完成させた。すなわち本発明は、

【1】式(1)【化14】

【0007】

【化14】

【式中、Aは置換されていてもよいフェニル基または複素環(置換基として、ハロゲン原子、水酸基、アミノ基、ニトロ基、シアノ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアミノアルキル基、炭素数1~4のアルキルアミノ基、炭素数1~4のアシル基、炭素数1~4のアシルアミノ基、炭素数1~4のアルキルチオ基、炭素数1~4のバーフルオ

ロアルキル基、炭素数1~4のバーフルオロアルキルオキシ基、カルボキシル基、炭素数1~4のアルコキシカルボニル基、フェニル基、複素環からなる群より選ばれた基を1~4個有する)を表す。Xは直接結合または式

(2)【化15】

【0008】

【化15】

】式中、eは1~4の整数を表す。gおよびmはそれぞれ独立して0~4の整数を表す。R4は水素原子、置換されていてもよい炭素数1~4のアルキル基または式

(3)【化16】

【0009】

【化16】

(6)

特開平10-152462

(式中、R₆は置換されていてもよい炭素数1~4のアルキル基、炭素数1~4のパーフルオロアルキル基、フェニル基または複素環を表す)で示されるアシル基を表す。

(式中、R₇およびR₈はそれぞれ独立して、水素原子または置換されていてもよい炭素数1~4のアルキル基を表す)で示される構造のいずれかを表す。

【0011】 R₁およびR₂はそれぞれ独立して、水素原子、ハログン原子、水酸基、アミノ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアミノアルキル基、炭素数1~4のアルキルアミノ基、炭素数1~4のアシル基、炭素数1~4のアシルアミノ基、炭素数1~4のアルキルチオ基、炭素数1~4のパーフルオロアルキル基、炭素数1~4のパーフル

(式中、R₇およびR₈は前記と同様。)で示される構造のいずれかである【2】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0015】 [4] Aが置換されていてもよいヘテロ環である【3】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0016】 [5] Aが置換されていてもよいピリジル基である【4】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0017】 [6] Xが直接結合である【4】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0018】 [7] R₁およびR₂が水素原子である【6】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0019】 [8] R₃がアミノ基である【7】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

(式中、e、gおよびR₄は前記と同様。)示される構造のいずれかである【5】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

す。R₅は水素原子または置換されていてもよい炭素数1~4のアルキル基を表す)で示される構造のいずれかを表す。nは0~4の整数を表す。但しXが直接結合の場合は、nは0とはならない。Qは式(4)【化17】

【0010】

【化17】

(式中、R₇およびR₈はそれぞれ独立して、水素原子または置換されていてもよい炭素数1~4のアルキル基を表す)で示される構造のいずれかを表す。

【0011】 R₁およびR₂はそれぞれ独立して、水素原子、ハログン原子、水酸基、アミノ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアミノアルキル基、炭素数1~4のアルキルアミノ基、炭素数1~4のアシル基、炭素数1~4のアシルアミノ基、炭素数1~4のアルキルチオ基、炭素数1~4のパーフルオロアルキル基、炭素数1~4のパーフル

オロアルキルオキシ基、カルボキシル基または炭素数1~4のアルコキシカルボニル基を表す。R₃は水酸基またはアミノ基を表す。】で示されるベンズアミド誘導体および薬学的に許容される塩であり、また、

【0012】 [2] nが1~4の整数である【1】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0013】 [3] Qが式(5)【化18】

【0014】

【化18】

【0020】 [9] Xが式(6)【化19】

【0021】

【化19】

(式中、eは前記と同様。)で示される構造である【5】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0022】 [10] nが1で、R₁およびR₂が水素原子である【9】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0023】 [11] R₃がアミノ基である【10】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0024】 [12] Xが式(7)【化20】

【0025】

【化20】

【0026】 [13] nが1で、R₁およびR₂が水素原子である【12】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

(7)

特開平10-152462

【0027】 [14] R₃がアミノ基である[13]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

(式中、g、mおよびR₅は前記と同様。)示される構造のいずれかである[5]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0030】 [16] nが1で、R₁およびR₂が水素原子である[15]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0031】 [17] R₃がアミノ基である[16]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0032】 [18] nが0である[1]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0033】 [19] Qが式(5)で示される構造のいずれかである[18]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0028】 [15] Xが式(8)【化21】

【0029】

【化21】

【0034】 [20] Aが置換されていてもよいヘテロ環である[19]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0035】 [21] Aが置換されていてもよいピリジル基である[20]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0036】 [22] R₁およびR₂が水素原子である[21]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0037】 [23] R₃がアミノ基である[22]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0038】 [24] 式(9)【化22】

【0039】

【化22】

で示される[1]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0040】 [25] 式(10)【化23】

で示される[1]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0042】 [26] 式(11)【化24】

【0043】

【化24】

【0041】

【化23】

で示される[1]記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0044】 [27] 式(12)【化25】

【0045】

【化25】

(8)

特開平10-152462

で示される【1】記載のベンズアミド誘導体および薬学的に許容される塩であり、また、

【0046】[28] 式(13)【化26】

【0047】

【化26】

【式中、AおよびBは置換されていてもよいフェニル基または複素環（置換基として、ハロゲン原子、水酸基、アミノ基、ニトロ基、シアノ基、炭素数1～4のアルキル基、炭素数1～4のアルコキシ基、炭素数1～4のアミノアルキル基、炭素数1～4のアルキルアミノ基、炭素数1～4のアシル基、炭素数1～4のアシルアミノ基、炭素数1～4のアルキルチオ基、炭素数1～4のパーフルオロアルキル基、炭素数1～4のパーフルオロアルキルオキシ基、カルボキシル基、炭素数1～4のアルコキシカルボニル基、フェニル基、複素環からなる群より選ばれた基を1～4個有する）を表す。

【0048】Yは-CO-、-CS-、-SO-および-SO₂-のいずれかを構造中に有し、AとBを連結する鎖状、環状またはそれらの組み合わされた構造を表す。R3は水酸基またはアミノ基を表す。】において、B環の重心（W1）、A環の重心（W2）、Y中の水素結合受容体となる酸素原子または硫黄原子（W3）のなす距離が、それぞれW1～W2=6.0～11.0Å、W1～W3=3.0～8.0Åとなる立体配位をとることが可能なアニリド誘導体および薬学的に許容される塩であり、また、

【0049】[29] Aが置換されていてもよい複素環、R3がアミノ基、Yが-CO-を構造中に有するAとBを連結する鎖状、環状またはそれらの組み合わされた構造である【28】記載のアニリド誘導体および薬学的に許容される塩であり、また、

【0050】[30] Bが置換されてもよいフェニル基、W1～W2=7.0～9.5Å、W1～W3=3.0～5.0Å、W2～W3=5.0～8.0Åである

【29】記載のアニリド誘導体および薬学的に許容される塩であり、また、

【0051】[31] 【1】～【30】いずれかに記載の化合物のうち、少なくとも1つを有効成分として含

有する製剤であり、また、

【0052】[32] 【1】～【30】いずれかに記載の化合物のうち、少なくとも1つを有効成分として含有する医薬品である。

【0053】

【発明の実施の形態】以下、本発明を詳細に説明する。本発明でいう炭素数1～4とは、単位置換基あたりの炭素数を表す。すなわち、例えばジアルキル置換の場合は、炭素数2～8を意味する。

【0054】式(1)および式(13)で示される化合物における複素環とは、窒素原子または酸素原子または硫黄原子を1～4個を含む員環または6員環からなる單環式複素環または2環式結合複素環で、例えば單環式複素環としてはピリジン、ピラジン、ピリミジン、ピリダジン、チオフェン、フラン、ピロール、ピラゾール、イソオキサゾール、イソチアゾール、イミダゾール、オキサゾール、チアゾール、ビペリジン、ビペラジン、ピロリジン、キタクリジン、テトラヒドロフラン、モルホリン、チオモルホリンなどを、2環式結合複素環としてはキノリン、イソキノリン、ナフチリジン、フロピリジン、チエノピリジン、ピロロピリジン、オキサゾロピリジン、イミダゾロピリジン、チアゾロピリジンなどの縮合ピリジン環、ベンゾフラン、ベンゾチオフェン、ベンズイミダゾールなどを挙げることができる。

【0055】ハロゲン原子とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができる。炭素数1～4のアルキル基とは、例えばメチル基、エチル基、n-ブロピル基、イソブロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基などを挙げることができる。

【0056】炭素数1～4のアルコキシ基とは、例えばメトキシ基、エトキシ基、n-ブロボキシ基、イソブロボキシ基、アリルオキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基などを挙げることができる。炭素数1～4のアミノアルキル基とは、例えばアミノメチル基、1-アミノエチル基、2-アミノブロピル基などを挙げることができる。

【0057】炭素数1～4のアルキルアミノ基とは、例えばN-メチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N-メチル-N-エチルアミノ基、N,N-ジイソブロピルアミノ基などを挙げることができる。炭素数1～4のアシル基とは、例えばアセチル基、プロパンオイル基、ブタノイル基を挙げることができる。

【0058】炭素数1～4のアシルアミノ基とは、例えばアセチルアミノ基、プロパンオイルアミノ基、ブタノイルアミノ基などを挙げることができる。炭素数1～4のアルキルチオ基とは、メチルチオ基、エチルチオ基、ブロピルチオ基などを挙げることができる。

【0059】炭素数1～4のパーフルオロアルキル基とは、例えばトリフルオロメチル基、ペントフルオロエチル基などを挙げることができる。炭素数1～4のパーフルオロアルキルオキシ基とは、例えばトリフルオロメトキシ基、ペントフルオロエトキシ基などを挙げができる。

【0060】炭素数1～4のアルコキシカルボニル基とは、例えばメトキシカルボニル基、エトキシカルボニル基などを挙げができる。置換されていてもよい炭素数1～4のアルキル基とは、例えばメチル基、エチル基、ヌーブロピル基、イソブロピル基、ヌーブチル基、イソブチル基、sec-ブチル基、tert-ブチル基などやこれに置換基として、ハロゲン原子、水酸基、アミノ基、ニトロ基、シアノ基、フェニル基、複素環からなる群より選ばれた基を1～4個有するものを挙げることができる。

【0061】式(13)で表される化合物において、高い分化誘導活性を示すために必要な要素は、後述するように(a)環A、環Bと水素結合受容体としての酸素原子あるいは硫黄原子の存在、(b)それらの立体的構造配置によって規定される距離である。よって、Yはその構造中に水素結合受容体を持ち、環Aと環Bの立体的位置を必要な位置に規定する構造であれば特に限定されない。すなわち、Yの-CO-, -CS-, -SO-または-SO₂-のいずれかを構造中に有し、AおよびBを連結する鎖状または環状あるいはそれらの組み合わされた構造とは、(a)炭素原子やヘテロ原子などで構成された、直鎖状あるいは分枝した鎖状の構造中に-CO-, -CS-, -SO-, -SO₂-を含むAとBを連結する構造、(b)環状構造中に-CO-, -CS-, -SO-, -SO₂-を持つAとBを連結する構造、(c)環状構造と鎖状の構造が組合わさり1つの構造となり、その構造中に-CO-, -CS-, -SO-, -SO₂-を含むAとBを連結する構造のいずれかを意味する。

【0062】環状構造の基本構造として、4から7員環の炭素原子あるいはヘテロ原子を含む環構造、あるいはそれらの複合環が挙げられる。シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、オキセタン環、オキソラン環、オキサン環、オキセパン環、ピロリジン環、イミダゾリジン環、ピラゾリジン環、ピベリジン環、ピペラジン環、インドリン環、イソインドリン環、チオラン環、チアゾリジン環、オキサゾリジン環などが挙げられ、その構造中に不飽和結合、水素結合受容体や置換基を持つことができる。

【0063】式(13)で表される化合物のコンフォメーションの自由度を考慮した解析を行うことにより、高い分化誘導活性を示す化合物において、疎水性相互作用や水素結合などの生体-薬物相互作用に関与すると考えられる原子団が特定の空間配置をとることを見いたした。

【0064】具体的には、高活性化合物の3次元構造を、分子モデリングソフトウェア(SYBYL6.3)を用いて発生し、すべての回転可能な結合について配座解析を行うことにより最安定構造を求めた。ここでエネルギーの評価は、Gasteiger-Hückel法により各原子上に電荷を発生させた後、Tripos力場を用いて行った。ついで最安定構造を出发構造として、コンフォメーションを考慮した重ね合わせをDISCO/SYBYLにより行った結果、ある特定の空間配置が高い分化誘導活性の発現に必要であることを見いたした。

【0065】上記の解析操作において、他の市販の計算パッケージ【CATALYST(MSI社)、Cerius2/QSAR+(MSI社)、SYBYL/DISCO(Tripos社)など】を用いることによつても解析を行うことが可能であり、本発明で得られた距離情報は特定の計算プログラムにより限定されるものではない。

【0066】空間配置の定義に用いた環の重心は、環を構成する原子のX、YおよびZ軸の平均として定義することができる。また対象とする環構造が総合多環系の場合、総合環全体の重心あるいはその一部の環の重心のいずれかを、空間を定義するための重心として用いることができる。

【0067】立体配置をとることが可能なとは、空間配置を満たすコンフォーマーがエネルギー的に最安定構造から1.5 kcal/mol以内に存在することを意味するが、より好ましくは8 kcal/mol以内に存在することが望ましい。計算手法の詳細は、Sybylマニュアル:H.ClarkまたはJ.Comput.Chem. 10, 982(1989)に記載の方法に従い行うことができる。

【0068】算學的に許容される化合物の塩とは、この分野で常用される塩酸、臭化水素酸、硫酸、磷酸などの無機酸や、酢酸、乳酸、酒石酸、リンゴ酸、コハク酸、フマル酸、マレイン酸、クエン酸、安息香酸、トリフルオロ酢酸、2-トルエンスルホン酸、メタンスルホン酸などの有機酸との塩を挙げることができる。例えば、N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド塩酸塩、N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド臭化水素酸塩、N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド硫酸塩、

【0069】N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチ

(10)

特開平10-152462

ル】ベンズアミド酔酸塩、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド酔酸塩、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド乳酔酸塩、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド酒石酸、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミドドリンゴ酸塩、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミドコハク酸塩、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミドフマル酸塩、
【0070】N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミドマレイン酸塩、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミドクエン酸塩、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド

トリフルオロ酢酸、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミドp-トルエンスルホン酸塩、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミドメタンスルホン酸塩などを挙げることができる。

【0071】医薬品とは制癌剤の他、自己免疫疾患、皮膚病、寄生虫感染症などの治療および/または改善率を表す。

【0072】式(1)および式(13)で表される化合物において不育炭素を有する場合は、異なった立体異性形態またはラセミ形態を含む立体異性形態の混合物の形態で存在することができる。すなわち、本発明はこのように規定した種々の形態をも包含するが、これらも同様に有効成分化合物として用いることができる。

【0073】以下、本発明の式(1)および式(13)で示される代表的化合物を表-1【表1-表24】、表-2【表25-表26】、表-3【表27-表28】および表-4【表29-表30】に具体的に例示する。なお、本発明はこれらの例に限定されるものではない。

【0074】

【表1】表-1

(11)

特許平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
1		直接結合		1	H	H	NH ₂
2		-CH ₂ -		0	H	H	NH ₂
3		-(CH ₂) ₂ -		0	H	H	NH ₂
4		-(CH ₂) ₃ -		0	H	H	NH ₂
5		-(CH ₂) ₄ -		0	H	H	NH ₂
6		-CH ₂ -		1	H	H	NH ₂
7		-(CH ₂) ₂ -		1	H	H	NH ₂
8		-CH ₂ -		0	H	H	NH ₂
9		-(CH ₂) ₃ -		0	H	H	NH ₂
10		直接結合		1	H	H	NH ₂

【0075】

【表2】表-1続きの1

(12)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
1 1		$-\text{CH}_2-$	$-\text{O}-\text{C}(=\text{O})-\text{N}-$	1	H	H	NH_2
1 2		直接結合	$-\text{O}-\text{C}(=\text{O})-\text{N}-$	1	H	H	NH_2
1 3		直接結合	$-\text{O}-\text{C}(=\text{O})-\text{N}-$	1	H	H	NH_2
1 4		直接結合	$-\text{O}-\text{C}(=\text{O})-\text{N}-$	1	H	H	NH_2
1 5		$-\text{CH}_2-$	$-\text{C}(=\text{O})-\text{N}-$	0	H	H	NH_2
1 6		直接結合	$-\text{C}(=\text{O})-\text{N}-$	1	H	H	NH_2
1 7		直接結合	$-\text{C}(=\text{O})-\text{N}-$	1	H	H	NH_2
1 8		直接結合	$-\text{C}(=\text{O})-\text{N}-$	1	H	H	NH_2
1 9		$-\text{CH}_2-$	$-\text{C}(=\text{O})-\text{N}-$	0	H	H	NH_2
2 0		直接結合	$-\text{N}-\text{C}(=\text{O})-\text{N}-$	1	H	H	NH_2

【0076】

【表3】表-1続きの2

(13)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
2 1		-CH ₂ -		0	H	H	NH ₂
2 2		-CH ₂ -		0	H	H	NH ₂
2 3		-CH ₂ -		1	H	H	NH ₂
2 4		直接結合		1	H	H	NH ₂
2 5		直接結合		1	H	H	NH ₂
2 6		-CH ₂ -		0	H	H	NH ₂
2 7		直接結合		1	H	H	NH ₂
2 8		直接結合		1	H	H	NH ₂
2 9		直接結合		1	H	H	NH ₂
3 0		直接結合		1	H	H	NH ₂

【0077】

【表4】表-1続きの3

(14)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
3 1	<chem>Oc1ccccc1</chem>	直接結合	<chem>-C(=O)N-</chem>	1	H	H	NH ₂
3 2	<chem>Oc1ccccc1</chem>	-CH ₂ -	<chem>-C(=O)N-</chem>	0	H	H	NH ₂
3 3	<chem>Oc1ccc(Oc2ccccc2)cc1</chem>	直接結合	<chem>-C(=O)N-</chem>	1	H	H	NH ₂
3 4	<chem>Oc1ccc(Oc2ccccc2)cc1</chem>	-CH ₂ -	<chem>-O-C(=O)N-</chem>	1	H	H	NH ₂
3 5	<chem>Nc1ccccc1</chem>	直接結合	<chem>-C(=O)N-</chem>	1	H	H	NH ₂
3 6	<chem>Nc1ccccc1</chem>	直接結合	<chem>-C(=O)N-</chem>	1	H	H	NH ₂
3 7	<chem>Nc1ccccc1</chem>	直接結合	<chem>-N=C(=O)N-</chem>	1	H	H	NH ₂
3 8	<chem>Nc1ccccc1C(=O)N</chem>	-CH ₂ -	<chem>-O-C(=O)N-</chem>	1	H	H	NH ₂
3 9	<chem>Nc1ccccc1C(=O)N</chem>	-CH ₂ -	<chem>-O-C(=O)N-</chem>	1	H	H	NH ₂
4 0	<chem>Nc1ccccc1C(=O)N</chem>	直接結合	<chem>-C(=O)N-</chem>	1	H	H	NH ₂

【0078】

【表5】表-1続きの4

(15)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
4.1	<chem>N#Cc1ccccc1</chem>	直接結合		1	H	H	NH ₂
4.2	<chem>N#Cc1ccccc1</chem>	直接結合		1	H	H	NH ₂
4.3	<chem>Fc1ccccc1</chem>	-CH ₂ -		0	H	H	NH ₂
4.4	<chem>Fc1ccccc1</chem>	直接結合		1	H	H	NH ₂
4.5	<chem>NaOCc1ccccc1</chem>	直接結合		1	H	H	NH ₂
4.6	<chem>NaOC(=O)c1ccccc1</chem>	直接結合		1	H	H	NH ₂
4.7	<chem>Nc1ccccc1</chem>	-CH ₂ -		1	H	H	NH ₂
4.8	<chem>c1ccccc1</chem>	-O-CH ₂ -		1	H	H	NH ₂
4.9	<chem>c1ccccc1</chem>	-S-CH ₂ -		1	H	H	NH ₂
5.0	<chem>c1ccccc1</chem>	-N-CH ₂ -		1	H	H	NH ₂

【0079】

【表6】表-1続ぎの5

(16)

特許平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
5.1		-CH ₂ -		1	H	H	NH ₂
5.2		-CH ₂ -		1	H	H	NH ₂
5.3		-CH ₂ -		0	H	H	NH ₂
5.4		-O-CH ₂ -		0	H	H	NH ₂
5.5		-O-CH ₂ -		0	H	H	NH ₂
5.6		-O-CH ₂ -		1	H	H	NH ₂
5.7		-O-CH ₂ -		1	H	S-F	NH ₂
5.8		-CH ₂ -O-CH ₂ -		0	H	H	NH ₂
5.9				1	H	H	NH ₂
6.0				1	H	H	NH ₂

{0080}

【表7】表-1続ぎの6

(17)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
6.1		-O-CH ₂ -		1	H	H	NH ₂
6.2		-O-(CH ₂) ₂ -		1	H	H	NH ₂
6.3		-N-CH ₂ -		1	H	H	NH ₂
6.4		-S-CH ₂ -		1	H	H	NH ₂
6.5		-O-CH ₂ -		0	H	H	NH ₂
6.6		-O-(CH ₂) ₂ -		0	H	H	NH ₂
6.7		-O-(CH ₂) ₃ -		0	H	H	NH ₂
6.8		-CH ₂ -		0	H	H	NH ₂
6.9		-(CH ₂) ₂ -		0	H	H	NH ₂
7.0		-(CH ₂) ₃ -		0	H	H	NH ₂

【0081】

【表8】表-1 続きの7

(18)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
71		直接結合		1	H	H	NH ₂
72		直接結合		2	H	H	NH ₂
73		直接結合		3	H	H	NH ₂
74		-CH ₂ -		1	H	H	NH ₂
75		-(CH ₂) ₂ -		1	H	H	NH ₂
76		-(CH ₂) ₂ -		1	H	H	NH ₂
77		-CH ₂ -		2	H	H	NH ₂
78		-CH ₂ -		1	H	H	NH ₂
79		直接結合		2	H	H	NH ₂
80		-CH ₂ -		2	H	H	NH ₂

[0082]

【表9】表-1続きの8

(19)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
8 1		直接結合		1	H	H	NH ₂
8 2		-CH ₂ -		1	H	H	NH ₂
8 3		-(CH ₂) ₂ -		1	H	H	NH ₂
8 4		-(CH ₂) ₃ -		1	H	H	NH ₂
8 5		-CH ₂ -		1	H	H	NH ₂
8 6		-CH ₂ -		1	H	H	NH ₂
8 7		nitro基		1	H	H	NH ₂
8 8		-CH ₂ -		1	H	H	NH ₂
8 9		-(CH ₂) ₂ -		1	H	H	NH ₂
9 0		-CH ₂ -		1	H	H	NH ₂

【0083】

【表10】表-1続の9

(20)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
9.1		-O-CH ₂ -		1	H	H	NH ₂
9.2		-O-CH ₂ -		1	H	H	NH ₂
9.3		-O-CH ₂ -		1	H	H	OH
9.4		-NH-C(=O)-CH ₂ -		0	H	H	NH ₂
9.5		-NH-C(=O)-		1	H	H	NH ₂
9.6		-NH-CH ₂ -		1	H	H	NH ₂
9.7		-NH-CH ₂ -		0	H	H	NH ₂
9.8		-O-CH ₂ -		1	H	H	NH ₂
9.9		-C-(CH ₂) ₂ -		0	H	H	NH ₂
10.0		-C-(CH ₂) ₃ -		1	H	H	NH ₂

【0084】

【表11】表-1続の10

(21)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
101		$-CH_2-O-CH_2-$		0	H	H	NH ₂
102		$-CH_2-O-CH_2-$		0	$s-CH_3$	H	NH ₂
103		$-CH_2-O-CH_2-$		0	H	H	NH ₂
104		$-CH_2-NH-C(=O)-$		0	H	H	NH ₂
105		$-CH_2-NH-CH_2-$		0	H	H	NH ₂
106		$-CH_2-NH-CH_2-$		0	H	H	NH ₂
107		$-CH_2-NH-CH_2-$		1	H	H	NH ₂
108		$-CH_2-NH-CH_2-$		0	H	H	NH ₂
109		$-CH_2-$		1	H	H	NH ₂
110		$-CH_2-$		1	H	$s-F$	NH ₂

【0085】

【表12】表~1統きの11

(22)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
111		-CH ₂ -		1	H	H	OH
112		-CH ₂ -		1	H	5-F	NH ₂
113		-CH ₂ -		1	H	4-Cl	NH ₂
114		-CH ₂ -		1	H	H	OH
115		-CH ₂ -		1	H	H	OH
116		-CH ₂ -		1	H	4-OH	OH
117		-CH ₂ -		1	H	H	OH
118		-CH ₂ -		1	H	5-CH ₃	OH
119		-CH ₂ -		1	H	5-OCH ₃	OH
120		-CH ₂ -		1	H	H	NH ₂

【0086】

【表13】表-1続の12

(23)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
121		-CH ₂ -		1	H	5-OCH ₃	NH ₂
122		-(CH ₂) ₂ -		0	H	6-F	NH ₂
123		-(CH ₂) ₂ -		0	3-Cl	H	NH ₂
124		-(CH ₂) ₂ -		0	H	H	NH ₂
125		-(CH ₂) ₂ -		1	H	H	OH
126				1	H	H	NH ₂
127				1	H	H	NH ₂
128		-O-CH ₃ -		1	2-Cl	H	NH ₂
129		-O-CH ₂ -		1	H	6-F	NH ₂
130		-O-CH ₂ -		1	H	5-OCH ₃	NH ₂

【0087】

【表14】表-1統合の13

(24)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
131		-CH ₂ -		1	H	H	NH ₂
132		-O-CH ₂ -		1	H	H	NH ₂
133		-CH ₂ -O-CH ₂ -		1	H	H	NH ₂
134		-CH ₂ -		1	H	H	NH ₂
135		-O-CH ₂ -		1	H	H	NH ₂
136		-CH ₂ -O-CH ₂ -		1	H	H	NH ₂
137		-CH ₂ -		1	H	H	NH ₂
138		-O-CH ₂ -		1	H	H	NH ₂
139		-CH ₂ -O-CH ₂ -		1	H	H	NH ₂
140		-CH ₂ -		1	H	6-F	NH ₂

【0088】

【表15】表-1続の14

(25)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
141		直接結合		1	H	H	NH ₂
142		-CH ₂ -		1	H	H	NH ₂
143		直接結合		1	H	H	NH ₂
144		-CH ₂ -		1	H	H	NH ₂
145		-CH ₂ -		1	H	H	NH ₂
146		-CH ₂ -		1	H	H	NH ₂
147		-CH ₂ -		1	H	H	NH ₂
148		-CH ₂ -		1	H	H	NH ₂
149		-CH ₂ -		1	H	H	NH ₂
150		-(CH ₂) ₂ -		1	H	H	NH ₂

[0089]

【表16】表-1続の15

(26)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
151		$-(CH_2)_2-$		1	H	H	NH ₂
152		$-(CH_2)_2-$		0	H	H	NH ₂
153		$-CH_2-$		2	H	H	NH ₂
154		直接結合		1	H	H	NH ₂
155		$-CH_2-$		1	H	H	NH ₂
156		直接結合		1	H	H	NH ₂
157		$-CH_2-$		1	H	H	NH ₂
158		$-O-CH_2-$		1	H	H	NH ₂
159		$-O-CH_2-$		1	H	H	NH ₂
160		$-CH_2-$		1	H	H	NH ₂

【0090】

【表17】表-1続きの16

(27)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
161		-CH ₂ -		1	H	H	NH ₂
162		-CH ₂ -		1	H	H	NH ₂
163		-CH ₂ -		1	H	H	NH ₂
164		-(CH ₂) ₂ -		1	H	H	NH ₂
165		-(CH ₂) ₂ -		1	H	H	NH ₂
166		-(CH ₂) ₂ -		0	H	H	NH ₂
167		-CH ₂ -		2	H	H	NH ₂
168		-CH ₂ -		1	H	H	NH ₂
169		-CH ₂ -		1	H	H	NH ₂
170		-CH ₂ -		1	H	H	NH ₂

【0091】

【表18】表-1続の17

(28)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
171		-CH ₂ -		1	H	H	NH ₂
172		-(CH ₂) ₂ -		1	H	H	NH ₂
173		波浪結合		1	H	H	NH ₂
174		-CH ₂ -		0	H	H	NH ₂
175		-O-CH ₃ -		1	H	5-OCH ₃	NH ₂
176		-CH ₂ -O-CH ₂ -		0	H	H	NH ₂
177		-CH ₃ -		0	H	H	NH ₂
178		波浪結合		1	H	H	NH ₂
179		-CH ₂ -		1	H	H	NH ₂
180		-CH ₂ -		1	H	H	NH ₂

【0092】

【表19】表-1続きの18

(29)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
181		-CH ₂ -		1	H	H	NH ₂
182		-(CH ₂) ₂ -		1	H	H	NH ₂
183		直接結合		1	H	H	NH ₂
184		-CH ₂ -		0	H	H	NH ₂
185		-CH ₂ -		0	H	H	NH ₂
186		-CH ₂ -		1	H	H	NH ₂
187		-CH ₂ -		0	H	H	NH ₂
188		直接結合		1	H	H	NH ₂
189		-CH ₂ -		1	H	H	NH ₂
190		-CH ₂ -		1	H	H	NH ₂

【0093】

【表20】表-1続の19

(30)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
191		直接結合		1	H	H	NH ₂
192		-CH ₂ -		1	H	H	NH ₂
193		-CH ₂ -O-CH ₂ -		1	H	H	NH ₂
194		-CH ₂ -O-CH ₃ -		0	H	H	NH ₂
195		直接結合		1	H	H	NH ₂
196		-CH ₂ -		1	H	H	NH ₂
197		直接結合		1	H	H	NH ₂
198		-CH ₂ -		1	H	H	NH ₂
199		-CH ₂ -O-CH ₂ -		1	H	H	NH ₂
200		-CH ₂ -O-CH ₃ -		0	H	H	NH ₂

【0094】

【表21】表-1続の20

(31)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
201		直接結合		2	H	H	NH ₂
202		-CH ₂ -		1	H	H	NH ₂
203		-(CH ₂) ₂ -		1	H	H	NH ₂
204		-CH ₂ -O-CH ₂ -		0	H	H	NH ₂
205		直接結合		1	H	H	NH ₂
206		-CH ₂ -		1	H	H	NH ₂
207		-CH ₂ -O-CH ₂ -		1	H	H	NH ₂
208		-CH ₂ -O-CH ₂ -		0	H	H	NH ₂
209		直接結合		1	H	H	NH ₂
210		直接結合		1	H	H	NH ₂

【0095】

【表22】表-1続きの21

[0096]

(表23) 第一類物質の構造

220	
219	
218	
217	
216	
215	
214	
213	
212	
211	

화합물번호 A X Q u R1 R2 R3

特開平10-152462

(32)

(33)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
221		$-\text{CH}_2-$	$-\text{O}-\text{C}(=\text{O})-\text{NH}-$	1	H	H	NH ₂
222		$-\text{CH}_2-\text{O}-\text{CH}_2-$		1	H	H	NH ₂
223		$-\text{CH}_2-\text{O}-\text{CH}_2-$		1	H	H	NH ₂
224		直接結合	$-\text{O}-\text{C}(=\text{O})-\text{NH}-$	1	H	H	NH ₂
225		$-\text{CH}_2-$		1	H	H	NH ₂
226		$-\text{CH}_2-\text{O}-\text{CH}_2-$		1	H	H	NH ₂
227	$\text{N}_2\text{C}-\text{N}$	$-(\text{CH}_2)_2-$		1	H	H	NH ₂
228		直接結合	$-\text{O}-\text{C}(=\text{O})-\text{NH}-$	1	H	H	NH ₂
229		$-\text{CH}_2-$		1	H	H	NH ₂
230		$-\text{CH}_2-\text{O}-\text{CH}_2-$		1	H	H	NH ₂

【0097】

【表24】表-1続きの23

(94)

特開平10-152462

化合物番号	A	X	Q	n	R1	R2	R3
231		直接結合		1	H	H	NH ₂
232		直接結合		1	H	H	NH ₂
233		直接結合		1	H	H	NH ₂
234		直接結合		1	H	H	NH ₂
235		直接結合		1	H	H	NH ₂
236		直接結合		1	H	H	NH ₂
237		直接結合		1	H	H	NH ₂
238		直接結合		1	H	H	NH ₂
239		直接結合		1	H	H	NH ₂
240		直接結合		1	H	H	NH ₂

[0098]

【表25】表-2

(35)

特開平10-152462

化合物番号	構造式
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

【0099】

【表26】表-2続の1

(36)

特許平10-152462

化合物番号	構造式
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

[0100]

【表27】表-3

(37)

特開平10-152462

化合物番号 1	構造式
化合物番号 2	構造式
化合物番号 3	構造式
化合物番号 4	構造式
化合物番号 5	構造式
化合物番号 6	構造式
化合物番号 7	構造式
化合物番号 8	構造式
化合物番号 9	構造式
化合物番号 10	構造式

[0101]

【表28】表-3続きの1

(38)

特開平10-152462

【0102】

【表29】表-4

(39)

特開平10-152462

化合物番号	構造式
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

【0103】

【表30】表-4続きの1

(40)

特開平10-152462

化合物番号	構造式
11	
12	
13	
14	

【0104】本発明の化合物は、例えば下記のような方法により製造することができる。

(a) 式(14)【化27】

【0105】
【化27】

A-X-R9 (14)

【式中、R1、R2およびnは前記と同義。R10はR9が-C(=G)OH(Gは前記と同義)のときは-H₂Oを表し、R9が-NH₂のときは-C(=G)OH(Gは前記と同義)を表す。R11はtert-ブトキシカルボニル基などの通常のペプチド形成反応に用いられる保護基で保護されたアミノ基またはベンジル基などの通常のペプチド形成反応に用いられる保護基で保護された水酸基を表す。】で示される化合物を総合反応に付すか、

(b) 式(16)【化29】

【0107】
【化29】

A-X-R12 (16)

【式中、AおよびXは前記と同義。R12は-OHまたは-NH₂を表す。】で示される化合物と式(17)【化30】

【式中、AおよびXは前記と同義。R9は-C(=G)OH(Gは、酸素原子または硫黄原子を表す)または-NH₂を表す。】で示される化合物と式(15)【化28】

【0106】
【化28】

【0108】
【化30】

【式中、R1、R2、R11およびnは前記と同義。R13は-OHまたは-NH₂を表す。】で示される化合物を、N, N'-カルボニルジイミダゾール、N, N'-チオカルボニルジイミダゾール、ホスゲンまたはチオホスゲンなどを用いて総合反応に付して得られる式(18)【化31】

【0109】
【化31】

(41)

特開平10-152462

(式中、A、X、Q、n、R1、R2およびR11は前記と同義。)で示される化合物の保護基を除去することにより本発明の化合物を得ることができる。

(c) 式(14)で示される化合物と式(19)【化32】

【0110】
【化32】

(式中、R1、R10およびnは前記と同義。R14は、メチル基、エチル基またはtert-ブチル基を表す。)で示される化合物を縮合反応に付すか、

(d) 式(16)で示される化合物と式(20)【化33】

【0111】
【化33】

(式中、R1、R13、R14およびnは前記と同義。)で示される化合物を、N,N'-カルボニルジイミダゾール、N,N'-チオカルボニルジイミダゾール、ホスゲンまたはチオホスゲンなどを用いて縮合反応に付して得られる式(21)【化34】

【0112】
【化34】

(式中、A、X、Q、n、R1およびR14は前記と同義。)で示される化合物を加水分解して得られる式(22)【化35】

【0113】
【化35】

(式中、A、X、Q、nおよびR1は前記と同義。)で示される化合物を式(23)【化36】

【0114】
【化36】

(式中、R2およびR11は前記と同義。)で示される化合物と縮合反応に付して得られる式(18)で示される化合物の保護基を除去することによっても本発明の化合物を得ることができる。

(e) 式(22)で示される化合物と式(24)【化37】

【0115】
【化37】

(式中、R2およびR3は前記と同義。)で示される化合物を縮合反応に付すことによっても本発明の化合物を得ることができる。

【0116】代表的な中間体の合成について述べる。式(15)で示される化合物は、式(25)【化38】

【0117】
【化38】

(式中、R1、R10およびnは前記と同義。)で示される安息香酸鉄等体に適当な保護基を導入した後、式(23)で示される化合物と縮合反応に付し、さらに脱保護を行うことにより得ることができる。式(17)で示される化合物は、式(26)【化39】

【0118】
【化39】

(42)

特開平10-152462

(式中、R₁、R₁₃およびyは前記と同義。)で示される安息香酸誘導体に適当な保護基を導入した後、式(23)で示される化合物と縮合反応に付し、さらに脱保護を行うことにより得ることができる。式(23)で示される化合物は、式(24)で示される化合物に保護基を導入することにより得ることができる。

【0119】次に反応について述べる。(a)の縮合反応は、通常のペプチドにおけるアミド結合形成反応、例えば活性エステルまたは混合酸無水物または酸塩化物の方法によって実施することができる。例えば、カルボン酸成分【式(14)においてR₉が-C(=G)OH(Gは前記と同義。)で示される化合物または式(15)においてR₁₀が-C(=G)OH(Gは前記と同義)で示される化合物】と2、4、5-トリクロロフェノール、ベンタクロロフェノールもしくは4-ニトロフェノールなどのフェノール類、またはN-ヒドロキシクシミド、N-ヒドロキシベンズトリアゾールなどのN-ヒドロキシ化合物を、ジシクロヘキシカルボジイミドの存在下に縮合させ、活性エステル体に変換した後、アミン成分【式(14)においてR₉が-NH₂で示される化合物または式(15)においてR₁₀が-NH₂で示される化合物】と縮合させることによって行うことができる。

【0120】また、カルボン酸成分【式(14)においてR₉が-C(=G)OH(Gは前記と同義)で示される化合物または式(15)においてR₁₀が-C(=G)OH(Gは前記と同義)で示される化合物】を塩化オキザリル、塩化チオニル、オキシ塩化リンなどと反応させ、酸塩化物に変換した後、アミン成分【式(14)においてR₉が-NH₂で示される化合物または式(15)においてR₁₀が-NH₂で示される化合物】と縮合させることによって行うことができる。

【0121】また、カルボン酸成分【式(14)においてR₉が-C(=G)OH(Gは前記と同義)で示される化合物または式(15)においてR₁₀が-C(=G)OH(Gは前記と同義)で示される化合物】をクロロ炭酸イソブチルまたはメタヌルホニルクロライドなどと反応させることによって混合酸無水物を得た後、アミン成分【式(14)においてR₉が-NH₂で示される化合物または式(15)においてR₁₀が-NH₂で示される化合物】と縮合させることによって行うことができる。

【0122】さらにまた、当該縮合反応は、ジシクロヘキシカルボジイミド、N、N'-カルボニルジイミダゾール、ジフェニルリン酸アジド、ジエチルリン酸シアニド、2-クロロ-1,3-ジメチルレイミダゾロニウムクロライドなどのペプチド縮合試薬を単独で用いて行うこともできる。

【0123】反応は、通常-20～+50℃で0.5～48時間行う。用いられる溶媒としては例えば、ベンゼ

ン、トルエンなどの芳香族炭化水素類、テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類、塩化メチレン、クロロホルムなどのハロゲン化炭化水素類、N、N-ジメチルホルムアミドの他、メタノール、エタノールなどのアルコール類またはこれらの混合物が挙げられる。必要により有機塩基例えは、トリエチルアミンまたはピリジンなどを加えて反応する。

【0124】(b)の縮合反応は、式(16)または式(17)で示される化合物のどちらか一方をホスゲン、チオホスゲン、N、N'-カルボニルジイミダゾールやN、N'-チオカルボニルジイミダゾールなどを用いて活性化した後、もう一方の化合物と反応させることによって行うことができる。反応は、通常-20～+50℃で0.5～48時間反応行う。用いられる溶媒としては例えば、ベンゼン、トルエンなどの芳香族炭化水素類、テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類、塩化メチレン、クロロホルムなどのハロゲン化炭化水素類、N、N-ジメチルホルムアミド、またはこれらの混合物が挙げられる。必要により有機塩基例えは、トリエチルアミンまたはピリジンなどを加えて反応を行う。

【0125】(c)の縮合反応は(a)の縮合反応と同様の方法により行うことができる。(d)の縮合反応は(b)の縮合反応と同様の方法により行うことができる。

【0126】式(17)で示される化合物の保護基の除去は、通常のペプチド形成反応に用いられる条件で行われる。例えば、式(18)においてR₁₁が、tert-アブトキシカルボニル基で保護されたアミノ基の場合には、塩酸またはトリフルオロ酢酸などの酸で処理することにより脱保護反応を行うことができる。

【0127】式(1)および式(13)で示される化合物の塩は、式(1)および式(13)で示される化合物を製造する反応で得ることもできるが、薬学的に許容される酸と容易に塩を形成し得る、その酸としては、例えは塩酸、臭化水素酸、硫酸、磷酸などの無機酸や、酢酸、酒石酸、マル酸、マレイン酸、クエン酸、安息香酸、トリフルオロ酢酸、2-トルエンスルホン酸などの有機酸を挙げることができる。これらの塩もまたフリー体の式(1)および式(13)の化合物と同様に本発明の有効成分化合物として用いることができる。

【0128】式(1)および式(13)で示される化合物は、反応混合物から通常の分離手段、例えは抽出法、再結晶法、カラムクロマトグラフィーなどの方法により単離精製することができる。

【0129】本発明の新規ベンズアミド誘導体および新規アリニド誘導体は分化誘導作用を有しており、悪性腫瘍、自己免疫疾患、皮膚病、寄生虫感染症などの治療および/または改善剤として有用である。

【0130】ここで悪性腫瘍とは急性白血病、慢性白血

(43)

特開平10-152462

病、悪性リンパ腫、多発性骨髓腫、マクログロブリン血症などの造血器疾患の他、大腸癌、脳膜癌、頭頸部癌、乳癌、肺癌、食道癌、胃癌、肝癌、胆嚢癌、胆管癌、膀胱癌、肺島細胞癌、腎細胞癌、副腎皮質癌、膀胱癌、前立腺癌、睾丸腫瘍、卵巣癌、子宮癌、绒毛癌、甲状腺癌、悪性カルチノイド腫瘍、皮膚癌、悪性黒色腫、骨肉腫、軟部組織肉腫、神経芽細胞腫、ウィルムス腫瘍、網膜芽細胞腫などの固形腫瘍が挙げられる。

【0131】自己免疫疾患とはリウマチ、腎炎、糖尿病、全身性エリテマトーデス、ヒト自己免疫性リンパ球増殖性リンパ節症、免疫芽細胞性リンパ節症、クローン病、潰瘍性大腸炎などを示す。皮膚病とは、乾せん、アクネ、湿疹、アトピー性皮膚炎などを示す。寄生虫感染症とは、マラリア感染症等の寄生虫の感染によってひきおこされる疾患を示す。なお、本発明の対象疾患はこれらに限定されることはない。

【0132】本発明の有効成分化合物は、医薬品として有用であり、これらは一般的な医療製剤の形態で用いられる。製剤は通常使用される充填剤、增量剤、結合剤、保湿剤、崩壊剤、界面活性剤、滑潤剤等の希釈剤あるいは賦形剤を用いて調製される。この医薬製剤としては各種の形態が治療目的に応じて選択でき、その代表的なものとして錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤、注射剤（液剤、懸濁剤等）および坐剤等が挙げられる。

【0133】錠剤の形態に成形するに際しては、粗体としてこの分野で從来よりよく知られている各種のものを広く使用することができる。その例としては、例えば乳糖、ブドウ糖、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケイ酸等の賦形剤、水、エタノール、プロピルアルコール、单シロップ、ブドウ糖液、デンプン液、ゼラチン溶液、カルボキシメチセルロース、セラック、メチセルロース、ポリビニルピロリドン等の結合剤、乾燥デンプン、アルギン酸ナトリウム、カントン末、カルメロースカルシウム、デンプン、乳糖等の崩壊剤、白糖。

【0134】カカオバター、水添植物油等の崩壊抑制剤、第4級アンモニウム堿基、ラウリル硫酸ナトリウム等の吸収促進剤、グリセリン、デンプン等の保湿剤、デンプン、乳糖、カオリン、ベントナイト、コロイド状ケイ酸等の吸着剤、タルク、ステアリン酸塩、ポリエチレングリコール等の滑潤剤等を使用することができる。さらに錠剤については、必要に応じ通常の剤皮を施した錠剤、例えば糖衣錠、ゼラチン被包錠、腸溶性被包錠、フィルムコーティング錠あるいは二層錠、多層錠とすることができます。

【0135】丸剤の形態に成形するに際しては、粗体として從来この分野で公知のものを広く使用できる。その例としては、例えば結晶セルロース、乳糖、デンプン、硬化植物油、カオリン、タルク等の賦形剤、アラビアゴ

ム末、トラガント末、ゼラチン等の結合剤、カルメロースカルシウム、カンテン等の崩壊剤等が挙げられる。

【0136】カプセル剤は、常法に従い通常有効成分化合物を上記で例示した各種の粗体と混合して、硬質ゼラチンカプセル、軟質カプセル等に充填して調製される。

【0137】注射剤として調製する場合、液剤、乳剤および懸濁剤は殺菌され、かつ血液と等張であることが好ましく、これらの形態に成形するに際しては、希釈剤としてこの分野において慣用されているもの、例えば水、エタノール、マクロゴール、プロピレングリコール、エトキシ化イソステアリルアルコール、ポリオキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル類等を使用することができる。この場合等張性の液剤を調製するに必要な量の食塩、ブドウ糖あるいはグリセリンを医薬製剤中に含有させてもよく、また通常の溶解補助剤、緩衝剤、無漬化剤等を添加してもよい。

【0138】坐剤の形態に成形するに際しては、粗体として從来公知のものを広く使用することができる。その例としては、例えば半合成グリセライド、カカオ脂、高級アルコール、高級アルコールのエステル類、ポリエチレングリコール等を挙げることができる。

【0139】さらに必要に応じて着色剤、保存剤、香料、風味剤、甘味剤等や他の医薬品を医薬製剤中に含有させることもできる。本発明のこれらの医薬製剤中に含有されるべき有効成分化合物の量は、特に限定されずに広範囲から適宜選択されるが、通常製剤組成物中に約1～70重量%、好ましくは約5～50重量%とするのがよい。

【0140】本発明のこれら医薬製剤の投与方法は特に制限ではなく、各種製剤形態、患者の年齢、性別、疾患の程度およびその他の条件に応じた方法で投与される。例えば錠剤、丸剤、液剤、懸濁剤、乳剤、顆粒剤およびカプセル剤の場合には、経口投与され、注射剤の場合は、単独またはブドウ糖、アミノ酸等の通常の補液と混合して静脈内投与され、さらに必要に応じて単独で筋肉内、皮下もしくは腹腔内投与される。坐剤の場合は直腸内投与される。

【0141】本発明のこれら医薬製剤の投与量は、用法、患者の年齢、性別、疾患の程度およびその他の条件により適宜選択されるが、通常有効成分化合物の量としては、体重1kg当たり、一日約0.0001～100mg程度とするのがよい。また投与単位形態の製剤中には有効成分化合物が約0.001～1,000mgの範囲で含有されることが望ましい。本発明の式(1)および式(13)で表される化合物およびその塩は、薬理学的に効果を示す投与量において問題となるような毒性を示さない。

【0142】

【実施例】以下に本発明を実施例で詳細に説明するが、本発明はこれらに限定されるものではない。なお、表題

(44)

特許平10-152462

の括弧内の番号は詳細な説明に例示した化合物の番号である。

【0143】実施例1

N-(2-アミノフェニル)-4-(N-ベンゾイルアミノメチル)ベンズアミド 塩酸塩(表-1: 化合物番号1の塩酸塩)の合成

(1-1) 4-アミノメチル安息香酸 21. 16g (140mmol) のジクロロメタン (450ml) 混液に、トリエチルアミン 42ml (300mmol) を加えた。氷冷下、内温を 3~8°C に保ちながら無水トリフルオロ酢酸 60. 4g (287mmol) のジクロロメタン (50ml) 溶液を滴下した後、3時間攪拌した。飽和重曹水中に反応液をあけた後、さらに 10% 塩酸水溶液で酸性にした。析出したゲル状沈澱物を、汎取、乾燥することにより、4-(N-トリフルオロアセチルアミノメチル) 安息香酸 30. 4g (収率 87. 8%) を乳白色固体として得た。

1H NMR (270MHz, DMSO-d6) δ ppm: 4.47(2H, d, J=5.8Hz), 7.39(2H, d, J=8.1Hz), 7.93(2H, d, J=8.1Hz), 10.08(1H, t, J=5.8Hz), 12.95(1H, br.s).

【0144】(1-2) o-フェニレンジアミン 10.8g (1.0mol) のジオキサン (1000ml) 溶液に 1 規定水酸化ナトリウム水溶液 (500ml) を加え、氷冷下ジテルト-ブチルジカーポネット 218g (1.1mol) のジオキサン (500ml) 溶液を加えた。室温で 6 時間攪拌後、一晩放置した。溶媒を 1/2 容にまで濃縮した後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去して得た残渣をシリカゲルカラムクロマトグラフィー (クロロホルム) で精製し、得られた固体をエチルエーテルで洗浄することにより N-tert-ブトキシカルボニル-o-フェニレンジアミン 6.8. 4g (収率 32. 8%) を白色固体として得た。

1H NMR (270MHz, CDCl3) δ ppm: 1.51(9H, s), 3.75(2H, s), 6.26(1H, s), 6.77(1H, d, J=8.1Hz), 6.79(1H, dd, J=7.3, 8.1Hz), 7.00(1H, dd, J=7.3, 8.1Hz), 7.27(1H, d, J=8.1Hz).

【0145】(1-3) 工程 (1-1) で得られた化合物 30. 0g (121mmol) のジクロロメタン (200ml) 混液に、氷冷しながら (内温 10~15°C) オキザリルクロライド 21g (165mmol) を徐々に滴下した。その際にときどき (およそ 2ml 滴下する毎に 0. 1ml) DMF を加えた。全量滴下後、発泡が止まるまで攪拌し、その後 40°C で 1 時間攪拌した。溶媒を留去した後、トルエンで過剰のオキザリルクロライドを共沸し、再度ジクロロメタン (100ml) に溶解した。工程 (1-2) で得られた化合物 22. 88g (110mmol) のジクロロメタン (100ml) - ピリジン (200ml) 溶液に、先に調製した酸クロライド溶液を氷冷下 (内温 7~9°C) 滴下した。

【0146】滴下終了後、室温まで昇温させた後、一晩放置した。反応混合物に飽和重曹水を加えた後、クロロホルムで抽出し、飽和食塩水で洗浄後、乾燥、溶媒を留去した。得られた残渣にメタノール-ジイソプロピルエーテルを加え、析出した固体を汎取、乾燥することにより、N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-(N-トリフルオロアセチルアミノメチル)ベンズアミド 28. 1g (収率 58%) を淡黄色固体として得た。

1H NMR (270MHz, DMSO-d6) δ ppm: 1.44(9H, s), 4.48(2H, d, J=5.9Hz), 7.12-7.23(2H, m), 7.44(2H, d, J=8.1Hz), 7.54(2H, d, J=8.1Hz), 7.94(2H, d, J=8.1Hz), 8.68(1H, br.s), 9.83(1H, s), 10.10(1H, br.t, J=5.9Hz).

【0147】(1-4) 工程 (1-3) の化合物 1

3. 12g (30mmol) のメタノール (120ml) - 水 (180ml) 混液に炭酸カリウム 4. 70g (34. 0mmol) を加え、70°C で 4 時間加熱攪拌した。クロロホルムで抽出し、有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去し、乾燥することにより、4-アミノメチル-N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]ベンズアミド 10. 3g (定量的) を淡黄色アモルファス状固体として得た。

1H NMR (270MHz, DMSO-d6) δ ppm: 3.80(2H, s), 7.13-7.23(2H, m), 7.48-7.58(4H, m), 7.90(2H, d, J=8.1Hz), 8.69(1H, br.s), 9.77(1H, br.s).

【0148】(1-5) 工程 (1-4) の化合物 0. 11g (0. 44mmol) のピリジン (5ml) 溶液に氷冷下、ベンゾイルクロライド 0. 08g (0. 53mmol) を加えた後、室温まで徐々に温度を上げながら 8 時間攪拌した。飽和重曹水を加えた後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、乾燥、溶媒を留去して得られた残渣をジイソプロピルエーテルで洗浄し、得られた固体を乾燥することにより、N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-(N-ベンゾイルアミノメチル)ベンズアミド 0. 14g (収率 71. 4%) を白色固体として得た。

1H NMR (270MHz, DMSO-d6) δ ppm: 1.44(9H, s), 4.56(2H, d, J=5.9Hz), 7.11-7.22(2H, m), 7.46-7.56(7H, m), 7.90-7.94(4H, m), 8.67(1H, s), 9.15(1H, t, J=5.9Hz), 9.81(1H, s).

【0149】(1-6) 工程 (1-5) の化合物 0. 10g (0. 224mmol) のジオキサン (5ml) - メタノール (1ml) 溶液に 4 規定塩酸-ジオキサン (5ml) を加え、室温で 7 時間攪拌した。溶媒を留去した残渣にジイソプロピルエーテルを加え、得られた固体を汎取、乾燥することにより、N-(2-アミノフェニル)-4-(N-ベンゾイルアミノメチル)ベンズアミド 塩酸塩 0. 08g (収率 93%) を淡褐色固体として得た。

(45)

特開平10-152462

mp. 206-209°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.57(2H, d, J=5.8Hz), 7.27-7.38(4H, m), 7.47-7.59(5H, m), 7.92(1H, d, J=8.1Hz), 8.05(1H, d, J=8.1Hz), 9.19(1H, t, J=5.8Hz), 10.38(1H, br. s).

IR(KBr)cm⁻¹: 3286, 3003(br.), 1630, 1551, 1492, 1306, 1250, 749, 695.

実施例1と同様の方法により、実施例2から実施例44の化合物を合成した。以下に、化合物の融点(mp.)、1H NMR、IRの測定値を示す。

【0150】実施例2

N-(2-アミノフェニル)-4-[N-(2-クロロベンゾイル)アミノメチル]ベンズアミド(表-1: 化合物番号14)

mp. 201-204°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.52(2H, t, J=5.9Hz), 4.89(2H, br. s), 6.60(1H, ddd, J=1.5, 7.3, 8.1Hz), 6.78(1H, dd, J=1.5, 8.1Hz), 6.97(1H, ddd, J=1.5, 7.3, 8.1Hz), 7.17(1H, d, J=8.1Hz), 7.38-7.54(6H, m), 7.97(2H, d, J=8.1Hz), 9.06(1H, br. t, J=5.9Hz), 9.63(1H, br. s).

IR(KBr)cm⁻¹: 3268, 1649, 1458, 1304, 748.

【0151】実施例3

N-(2-アミノフェニル)-4-[N-(2-エトロベンゾイル)アミノメチル]ベンズアミド 塩酸塩(表-1: 化合物番号18の塩酸塩)

mp. 210-212°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.55(2H, t, J=5.9Hz), 7.20-7.40(3H, m), 7.50-7.60(1H, m), 7.53(2H, d, J=8.1Hz), 7.60-7.70(2H, m), 7.83(1H, ddd, J=1.5, 8.1, 8.1Hz), 8.00-8.10(3H, m), 9.34(1H, t, J=5.9Hz), 10.43(1H, br. s).

IR(KBr)cm⁻¹: 3283, 2500-3000(br.), 1648, 1534, 1461, 1362, 1314, 1754, 701.

【0152】実施例4

N-(2-アミノフェニル)-4-[N-(4-メチルベンゾイル)アミノメチル]ベンズアミド 塩酸塩(表-1: 化合物番号28の塩酸塩)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 2.37(3H, s), 4.56(2H, d, J=5.0Hz), 7.20-7.30(6H, m), 7.47(4H, d, J=8.8Hz), 7.82(2H, d, J=8.8Hz), 8.03(2H, d, J=8.8Hz), 9.09(1H, t, J=5Hz), 10.36(1H, br. s).

IR(KBr)cm⁻¹: 3269(br.), 2861(br.), 1743, 1636, 1534, 1505, 1456, 1308, 1120, 753.

【0153】実施例5

N-(2-アミノフェニル)-4-[N-(3-メトキシベンゾイル)アミノメチル]ベンズアミド(表-1: 化合物番号30)

mp. 182-185°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.81(3H, s), 4.54(2H,

d, J=5.9Hz), 4.88(2H, br. s), 6.60(1H, dd, J=6.6, 7.3Hz), 6.78(1H, d, J=7.3Hz), 6.97(1H, dd, J=6.6, 7.3Hz), 7.11(1H, dd, J=1.5, 8.1Hz), 7.16(1H, d, J=7.3Hz), 7.35-7.51(5H, m), 7.94(2H, d, J=8.1Hz), 9.12(1H, br. t, J=5.9Hz), 9.63(1H, br. s).

IR(KBr)cm⁻¹: 3301, 1637, 1524, 1489, 1457, 1314, 1248, 752.

【0154】実施例6

N-(2-アミノフェニル)-4-[N-(4-メトキシベンゾイル)アミノメチル]ベンズアミド(表-1: 化合物番号31)

mp. 149-151°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.82(3H, s), 4.53(2H, d, J=5.9Hz), 4.88(2H, s), 6.59(1H, dd, J=7.3, 7.3Hz), 6.77(1H, d, J=8.1Hz), 6.94-7.00(1H, m), 7.02(2H, d, J=8.8Hz), 7.16(1H, d, J=8.1Hz), 7.43(2H, d, J=8.1Hz), 7.89(2H, d, J=8.8Hz), 7.94(2H, d, J=8.1Hz), 8.98(1H, br. t, J=5.9Hz), 9.61(1H, br. s).

IR(KBr)cm⁻¹: 3297, 1630, 1527, 1505, 1457, 1256, 1177, 1024, 843, 749.

【0155】実施例7

N-(2-アミノフェニル)-4-[N-(3, 4, 5-トリメトキシベンゾイル)アミノメチル]ベンズアミド(表-1: 化合物番号33)

mp. 208-210°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.71(3H, s), 3.83(6H, s), 4.55(2H, d, J=5.9Hz), 4.88(2H, br. s), 6.60(1H, dd, J=7.3, 8.1Hz), 6.78(1H, d, J=8.1Hz), 6.97(1H, dd, J=6.6, 8.1Hz), 7.16(1H, d, J=8.1Hz), 7.26(2H, s), 7.44(2H, d, J=8.1Hz), 7.95(2H, d, J=8.8Hz), 9.07(1H, t, J=5.9Hz), 9.62(1H, br. s).

IR(KBr)cm⁻¹: 3267, 1635, 1582, 1457, 1237, 1132, 755.

【0156】実施例8

N-(2-アミノフェニル)-4-[N-(4-(N,N-ジメチル)アミノベンゾイル)アミノメチル]ベンズアミド(表-1: 化合物番号36)

mp. 216-219°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 2.98(6H, s), 4.51(2H, d, J=5.9Hz), 4.88(2H, br. s), 6.60(1H, dd, J=8.1, 8.1Hz), 6.71(2H, d, J=8.8Hz), 6.97(1H, dd, J=7.3, 8.1Hz), 7.16(1H, d, J=7.3Hz), 7.41(2H, d, J=8.1Hz), 7.78(2H, d, J=8.8Hz), 7.93(2H, d, J=8.1Hz), 8.77(1H, t, J=5.9Hz), 9.63(1H, br. s).

IR(KBr)cm⁻¹: 3301, 1632, 1519, 1457, 1298, 754.

【0157】実施例9

N-(2-アミノフェニル)-4-[N-(4-トリフルオロメチルベンゾイル)アミノメチル]ベンズアミド(表-1: 化合物番号42)

mp. 243-246°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.58(2H, d, J=5.9Hz),

(46)

特開平10-152462

4.88(2H,br,s), 6.59(1H,dd,J=6.6,7.3Hz), 6.77(1H,d,J=8.1Hz), 6.94(1H,dd,J=5.9,6.6Hz), 7.16(1H,d,J=8.1Hz), 7.45(2H,d,J=8.1Hz), 7.88(2H,d,J=8.8Hz), 7.95(2H,d,J=8.1Hz), 8.11(2H,d,J=8.1Hz), 9.38(1H,t,J=5.9Hz), 9.64(1H,br,s).

IR(KBr)cm⁻¹: 3301, 1640, 1549, 1523, 1458, 1334, 1162, 1120, 1070, 856, 750.

【0158】実施例10

N-(2-アミノフェニル)-4-[N-(4-カルボキシベンゾイル)アミノメチル]ベンズアミド 塩酸塩
(表-1: 化合物番号45の塩酸塩)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.58(2H,d,J=5.9Hz), 7.29-7.37(3H,m), 7.49(3H,d,J=8.1Hz), 8.02-8.06(6H,m), 9.36(1H,t,J=5.9Hz), 10.4(1H,br.s).

IR(KBr)cm⁻¹: 3432(br.), 1718, 1637, 1542, 1499, 1303(br.), 1116, 1018, 757.

【0159】実施例11

N-(2-アミノフェニル)-4-[N-(4-メトキカルボニルベンゾイル)アミノメチル]ベンズアミド
(表-1: 化合物番号46)

mp. 204-209°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.89(3H,s), 4.57(2H,d,J=5.9Hz), 4.88(2H,br.s), 6.60(1H,dd,J=6.6,7.3Hz), 6.78(2H,d,J=7.3Hz), 6.97(1H,ddd,J=1.5,6.6,7.3Hz), 7.16(1H,d,J=7.3Hz), 7.45(2H,d,J=8.1Hz), 7.95(2H,d,J=8.1Hz), 8.03(2H,d,J=8.8Hz), 8.07(2H,d,J=8.8Hz), 9.35(1H,t,J=5.9Hz), 9.64(1H,br.s).

IR(KBr)cm⁻¹: 3287(br.), 1721, 1634, 1281, 1113, 750, 703.

【0160】実施例12

N-(2-アミノフェニル)-4-[N-(ピコリノイルアミノメチル)ベンズアミド (表-1: 化合物番号173)

mp. 173-178°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.57(2H,d,J=6.6Hz), 4.88(2H,br.s), 6.59(1H,dd,J=7.3,8.1Hz), 6.77(1H,d,J=8.1Hz), 6.96(1H,dd,J=7.3,8.1Hz), 7.16(1H,d,J=7.3Hz), 7.44(2H,d,J=8.1Hz), 7.60-7.65(1H,m), 7.93(2H,d,J=8.1Hz), 7.98-8.08(2H,m), 8.67(1H,d,J=4.4Hz), 9.45(1H,t,J=6.6Hz), 9.61(1H,br.s).

IR(KBr)cm⁻¹: 3330, 1656, 1634, 1523, 1456, 1294, 752.

【0161】実施例13

N-(2-アミノフェニル)-4-[N-(6-メチルピコリノイル)アミノメチル]ベンズアミド (表-1: 化合物番号178)

mp. 172-173°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.51(3H,s), 4.57(2H,d,J=6.6Hz), 5.0(2H,br.s), 6.61(1H,dd,J=7.3,8.1Hz), 6.79(1H,d,J=7.3Hz), 6.98(1H,dd,J=7.3,8.1Hz), 7.17

(1H,d,J=7.3Hz), 7.44(2H,d,J=8.1Hz), 7.43-7.49(1H,m), 7.84-7.90(2H,m), 7.94(2H,d,J=8.1Hz), 9.27(1H,t,J=5.9Hz), 9.64(1H,br.s).

IR(KBr)cm⁻¹: 3331, 1675, 1634, 1594, 1523, 1454, 1307, 1292, 750.

【0162】実施例14

N-(2-アミノフェニル)-4-[N-(ニコチノイルアミノメチル)ベンズアミド (表-1: 化合物番号71)

mp. 193-196°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.58(2H,d), 4.88(2H,br.s), 6.60(1H,t), 6.78(1H,d), 6.97(1H,t), 7.16(1H,d), 7.46(2H,d), 7.53(1H,dd), 7.95(2H,d), 8.24(1H,ddd), 8.73(1H,dd), 9.07(1H,d), 9.32(1H,br.t), 9.63(1H,br.s).

IR(KBr)cm⁻¹: 3301, 1639, 1522, 1457, 1314, 749, 705.

【0163】実施例15

N-(2-アミノフェニル)-4-[N-(2-メチルニコチノイル)アミノメチル]ベンズアミド (表-1: 化合物番号141)

mp. 191-194°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 2.53(3H,s), 4.53(2H,d,J=5.9Hz), 4.88(2H,br.s), 6.60(1H,dd,J=6.6,8.1Hz), 6.78(1H,d,J=7.3Hz), 6.97(1H,dd,J=7.3,8.1Hz), 7.17(1H,d,J=7.3Hz), 7.29(1H,dd,J=5.1,8.1Hz), 7.47(2H,d,J=8.1Hz), 7.77(1H,dd,J=1.5,8.1Hz), 7.97(2H,d,J=8.1Hz), 8.51(1H,dd,J=1.5,5.1Hz), 9.06(1H,t,J=5.9Hz), 9.64(1H,s).

IR(KBr)cm⁻¹: 3261, 1642, 1523, 1310, 753.

【0164】実施例16

N-(2-アミノフェニル)-4-[N-(6-メチルニコチノイル)アミノメチル]ベンズアミド (表-1: 化合物番号143)

mp. 186-190°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 2.36(3H,s), 4.56(2H,d,J=5.9Hz), 4.88(2H,s), 6.60(1H,dd,J=7.4,7.8Hz), 6.78(1H,d,J=7.8Hz), 6.97(1H,dd,J=6.9,6.9Hz), 7.16(1H,d,J=7.4Hz), 7.37(1H,d,J=8.3Hz), 7.45(2H,d,J=8.3Hz), 7.95(2H,d,J=8.3Hz), 8.13(1H,dd,J=2.0,8.3Hz), 8.96(1H,s), 9.24(1H,t,J=5.9Hz), 9.63(1H,br.s).

IR(KBr)cm⁻¹: 3302, 1636, 1602, 1523, 1489, 1457, 1313, 751.

【0165】実施例17

N-(2-アミノフェニル)-4-[N-(2-クロロニコチノイル)アミノメチル]ベンズアミド (表-1: 化合物番号154)

mp. 176-178°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.54(2H,t,J=5.9Hz), 4.90(2H,br.s), 6.60(1H,ddd,J=1.5,7.3,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,ddd,J=1.5,7.3,7.3Hz), 7.18

(47)

特開平10-152462

(1H, d, J=8.1Hz), 7.48-7.54(3H, m), 7.94-7.99(3H, m),
8.49(1H, dd, J=2.1, 5.1Hz), 9.23(1H, br. t, J=5.9Hz), 9.
65(1H, br.s).

IR(KBr)cm⁻¹: 3264, 1649, 1524, 1400, 1309, 751.

【0166】実施例18

N-(2-アミノフェニル)-4-[N-(6-クロロニコチノイル)アミノメチル]ベンズアミド(表-1: 化合物番号156)

mp. 205-208°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 5.57(2H, d, J=5.9Hz),
6.60(1H, dd, J=7.3, 7.3Hz), 6.78(1H, d, J=8.1Hz), 6.96
(1H, dd, J=7.3, 8.1Hz), 7.16(1H, d, J=8.1Hz), 7.45(2H,
d, J=8.1Hz), 7.66(1H, d, J=8.8Hz), 7.95(2H, d, J=8.1H
z), 8.27-8.32(1H, m), 8.90(1H, d, J=2.1Hz), 9.38(1H, t,
J=5.9Hz), 9.63(1H, s).

IR(KBr)cm⁻¹: 3318(br.), 2929, 1646, 1590, 1525, 1503, 14
54, 1108, 745.

【0167】実施例19

N-(2-アミノフェニル)-4-[N-(イソニコチノイル)アミノメチル]ベンズアミド(表-1: 化合物番号183)

mp. 234-237°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.57(2H, t, J=5.9Hz),
4.88(2H, br. s), 6.59(1H, dd, J=6.6, 7.3Hz), 6.78(1H, d,
J=8.1Hz), 6.96(1H, dd, J=7.3, 7.3Hz), 7.16(1H, d, J=7.3
Hz), 7.45(2H, d, J=8.1Hz), 7.81(2H, d, J=1.5, 4.4Hz),
7.95(2H, d, J=8.1Hz), 8.75(2H, d, J=6.6Hz), 9.41(1H, t,
J=5.9Hz), 9.62(1H, br.s).

IR(KBr)cm⁻¹: 3298, 1646, 1550, 1525, 1457, 1304, 843, 76
0, 695.

【0168】実施例20

N-(2-アミノフェニル)-4-[N-(ビラジン-2-イル)カルボニルアミノメチル]ベンズアミド(表-1: 化合物番号191)

mp. 207°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.58(2H, d, J=5.9Hz),
4.88(2H, br. s), 6.59(1H, dd, J=7.3, 7.3Hz), 6.77(1H, d,
J=8.1Hz), 6.94(1H, dd, J=1.5, 7.3, 8.1Hz), 7.15(1H, d,
J=7.3Hz), 7.45(2H, d, J=8.1Hz), 7.93(2H, d, J=8.1Hz),
8.77(1H, d, J=1.5Hz), 8.90(1H, d, J=2.1Hz), 9.21(1H,
s), 9.55-9.61(2H, m).

IR(KBr)cm⁻¹: 3368(br.), 1657, 1524, 1455, 1295, 1023, 75
1.

【0169】実施例21

N-(2-アミノフェニル)-4-[N-(チオフェン-2-イル)カルボニルアミノメチル]ベンズアミド(表-1: 化合物番号201)

mp. 202-205°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.52(2H, t, J=5.9Hz),
4.88(2H, br. s), 6.60(1H, dd, J=6.6, 7.3Hz), 6.78(1H, d,
J=8.1Hz), 6.97(1H, dd, J=7.3, 8.1Hz), 7.12(1H, d, J=2.1

J=8.1Hz), 6.97(1H, dd, J=7.3, 8.1Hz), 7.15-7.18(2H,
m), 7.43(2H, d, J=8.1Hz), 7.78(1H, d, J=4.4), 7.82(1H,
d, J=3.7Hz), 7.95(2H, d, J=8.1Hz), 9.12(1H, br. t, J=5.9
Hz), 9.62(1H, br.s).

IR(KBr)cm⁻¹: 3306, 1639, 1523, 1456, 1297, 750, 716.

【0170】実施例22

N-(2-アミノフェニル)-4-[N-(フラン-2-イル)カルボニルアミノメチル]ベンズアミド(表-1: 化合物番号205)

mp. 197°C(dec.).

【0171】1H NMR(270MHz, DMSO-d6) δ ppm: 4.59(2H,
d, J=6.6Hz), 4.86(2H, br. s), 6.59(1H, dd, J=6.6, 6.6Hz
z), 6.63(1H, dd, J=1.5, 3.6Hz), 6.78(1H, d, J=8.1Hz),
6.96(1H, dd, J=7.3, 6.6Hz), 7.10-7.20(2H, m), 7.41(2H,
d, J=8.1Hz), 7.84(1H, s), 7.94(2H, d, J=8.1Hz), 9.00(1
H, br. t, J=5.9Hz), 9.62(1H, s).

IR(KBr)cm⁻¹: 3245, 1651, 1573, 1545, 1323, 1241, 745.

【0172】実施例23

N-(2-アミノフェニル)-4-[N-(ピロール-2-イル)カルボニルアミノメチル]ベンズアミド(表-1: 化合物番号209)

mp. 216-220°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.50(2H, d, J=5.9Hz),
4.88(2H, br. s), 6.10(1H, dd, J=2.1, 5.9Hz), 6.59(1H, d
d, J=7.3, 7.3Hz), 6.77(1H, dd, J=1.5, 8.1Hz), 6.84-6.88
(2H, m), 6.97(1H, dd, J=1.5, 7.3, 8.1Hz), 7.16(1H, d, J=
7.3Hz), 7.41(2H, d, J=8.1Hz), 7.94(2H, d, J=8.1Hz), 8.
62(1H, br. t, J=5.9Hz), 9.62(1H, br.s).

IR(KBr)cm⁻¹: 3275, 1655, 1584, 1534, 1458, 1316, 747.

【0173】実施例24

N-(2-アミノフェニル)-4-[N-(1-メチル-1H-ピロール-2-イル)カルボニルアミノメチ
ル]ベンズアミド(表-1: 化合物番号210)

mp. 177-179°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.84(3H, s), 4.46(2H,
d, J=5.9Hz), 4.88(2H, br. s), 6.03(1H, dd, J=2.1, 4.4H
z), 6.59(1H, dd, J=8.1, 8.1Hz), 6.77(1H, d, J=8.1Hz),
6.84-6.97(2H, m), 7.16(1H, d, J=7.3Hz), 7.41(2H, d, J=
8.1Hz), 7.99(2H, d, J=8.1Hz), 8.61(1H, t, J=5.9Hz), 9.
62(1H, br.s).

IR(KBr)cm⁻¹: 3325(br.), 1630, 1551, 1520, 1507, 1324, 12
65, 1154, 740.

【0174】実施例25

N-(2-アミノフェニル)-4-[N-(イソオキサゾール-5-イル)カルボニルアミノメチル]ベンズア
ミド(表-1: 化合物番号212)

mp. 183-185°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.53(2H, d, J=6.6Hz),
4.89(2H, br. s), 6.60(1H, dd, J=7.3, 7.3Hz), 6.78(1H, d,
J=7.3Hz), 6.97(1H, dd, J=7.3, 8.1Hz), 7.12(1H, d, J=2.1

(48)

特開平10-152462

Hz), 7.16(1H,d,J=8.1Hz), 7.44(2H,d,J=8.1Hz), 7.95(2H,d,J=8.1Hz), 8.76(1H,d,J=1.5Hz), 9.61(1H,t,J=5.9Hz), 9.64(1H,br.s).

IR(KBr)cm⁻¹: 3278(br.), 1636, 1576, 1522, 1458, 1220, 749.

【0175】実施例26

N-(2-アミノフェニル)-4-[N-(3-メチルイソチアゾール-5-イル)カルボニルアミノメチル]ベンズアミド(表-1:化合物番号213)

mp. 168-169°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.47(3H,s), 4.54(2H,d,J=5.9Hz), 4.89(2H,br.s), 6.60(1H,dd,J=7.3,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,ddd,J=1.0,7.3,8.1Hz), 7.17(1H,d,J=7.3Hz), 7.44(2H,d,J=8.1Hz), 7.73(1H,s), 7.96(2H,d,J=8.1Hz), 9.44(1H,t,J=5.9Hz), 9.64(1H,br.s).

IR(KBr)cm⁻¹: 3310, 1637, 1503, 1294, 751.

【0176】実施例27

N-(2-アミノフェニル)-4-[N-(イミダゾール-4-イル)カルボニルアミノメチル]ベンズアミド(表-1:化合物番号214)

mp.(amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.49(2H,d,J=6.4Hz), 4.87(2H,br.s), 6.59(1H,dd,J=6.9,6.9Hz), 6.77(1H,d,J=6.9Hz), 6.96(1H,dd,J=7.4,7.4Hz), 7.16(1H,d,J=6.9Hz), 7.41(2H,d,J=6.9Hz), 7.64(1H,br.s), 7.73(1H,b,r.s), 7.92(2H,d,J=6.9Hz), 8.56(1H,br.t,J=6.4Hz), 9.61(1H,s), 12.5(1H,br.s).

IR(KBr)cm⁻¹: 3278(br.), 1636, 1576, 1522, 1458, 1220, 749.

【0177】実施例28

N-(2-アミノフェニル)-4-[N-(3-アミノフェニル)アセチルアミノメチル]ベンズアミド(表-1:化合物番号23の化合物)

mp. 171-176°C

1H NMR(270MHz, DMSO-d6) δ ppm: 4.34(2H,d,J=5.9Hz), 5.24(4H,br.s), 6.48-6.63(4H,m), 6.78-6.81(1H,m), 6.94-7.00(2H,m), 7.18(1H,d,J=8.1Hz), 7.34(2H,d,J=8.1Hz), 7.92(2H,d,J=8.1Hz), 8.50(1H,t,J=5.9Hz), 9.61(1H,s).

【0178】実施例29

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)アセチルアミノメチル]ベンズアミド(表-1:化合物番号74)

mp. 127°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.84(2H,s), 4.40(2H,d,J=5.8Hz), 7.15-7.29(3H,m), 7.37(1H,d,J=6.6Hz), 7.43(2H,d,J=8.8Hz), 7.96(1H,m), 7.98(2H,d,J=8.8Hz), 8.40(1H,d,J=8.8Hz), 8.79-8.87(3H,m), 10.20(1H,s).

【0179】実施例30

N-(2-アミノフェニル)-4-[N-(3-(ビリジン-3-イル)プロピオニル)アミノメチル]ベンズアミド(表-1:化合物番号75の化合物)

mp. 183-186°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.51(2H,t,J=7.3Hz), 2.88(2H,d,J=7.3Hz), 4.31(2H,d,J=5.9Hz), 4.89(2H,b,r.s), 6.60(1H,dd,J=7.3,8.1Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,ddd,J=1.5,7.3,8.1Hz), 7.16(1H,d,J=8.1Hz), 7.23(2H,d,J=8.8Hz), 7.28-7.33(1H,m), 7.63(1H,d,J=8.1Hz), 7.89(2H,d,J=8.1Hz), 8.41-8.45(3H,m), 9.62(1H,br.s).

IR(KBr)cm⁻¹: 3407, 3313, 1640, 1552, 1522, 1456, 1309, 746, 717.

【0180】実施例31

N-(2-アミノフェニル)-4-[N-(4-(ビリジン-3-イル)-1,4-ジオキソブチル)アミノメチル]ベンズアミド(表-1:化合物番号100)

mp. 145-147°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 2.37-2.50(2H,s), 2.62-2.68(2H,m), 4.13(2H,s), 4.85(2H,s), 6.56-6.61(1H,m), 6.76-6.79(1H,m), 6.94-6.99(1H,m), 7.10-7.39(4H,m), 7.43-7.46(1H,m), 7.78(2H,d,J=8.1Hz), 8.60-8.64(1H,m), 9.58(1H,s).

IR(KBr)cm⁻¹: 3348, 1691, 1655, 1534, 1508, 1458, 1395, 1315, 1083, 746.

【0181】実施例32

N-(2-アミノフェニル)-4-[N-(5-クロロピリジン-3-イル)オキシアセチルアミノメチル]ベンツアミド(表-1:化合物番号158)

mp. 199-201°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.43(2H,d,J=6.6Hz), 4.75(2H,s), 4.87(2H,br.s), 6.60(1H,dd,J=7.3,8.1Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=7.3,8.1Hz), 7.16(1H,d,J=8.1Hz), 7.37(2H,d,J=8.1Hz), 7.59(1H,d,J=2.2Hz), 7.93(2H,d,J=8.1Hz), 8.25(1H,d,J=1.5Hz), 8.81(1H,t,J=6.6Hz), 9.64(1H,s).

IR(KBr)cm⁻¹: 3288, 3058, 1675, 1633, 1523, 1457, 1314, 912, 755.

【0182】実施例33

N-(2-アミノ-5-メトキシフェニル)-4-[N-(ピリジン-3-イル)オキシアセチルアミノメチル]ベンズアミド(表-1:化合物番号175)

mp. 141-144°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.66(3H,s), 4.43(2H,d,J=5.9Hz), 4.49(2H,br.s), 4.68(2H,s), 6.62(1H,dd,J=2.9,8.8Hz), 6.75(1H,d,J=8.8Hz), 6.91(1H,d,J=2.2Hz), 7.37(4H,m), 7.92(2H,d,J=8.8Hz), 8.21(1H,dd,J=1.5,4.4Hz), 8.35(1H,d,J=2.7Hz), 8.81(1H,s), 9.65(1H,s).

(49)

特開平10-152462

【0183】実施例34

N-(2-アミノフェニル)-4-[N-[3-(ビリジン-3-イル)-1,3-ジオキソプロピル]アミノメチル]ベンズアミド(表-1:化合物番号98)
mp. 204-206°C. 1H NMR(270MHz, DMSO-d6) δ ppm: 4.08(4H,s), 4.39(4H,d,J=5.9Hz), 4.49(2H,d,J=5.9Hz), 4.90(2H,br.s), 5.93(1/3H,s), 6.60(1H,t,J=7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,t,J=7.3Hz), 7.16(1H,d,J=7.3Hz), 7.3-7.7(3H,m), 7.8-8.4(3H,m), 8.6-9.2(3H,m), 9.64(1H,s), 14.74(1/3H,s). (2:1の平衡混合物)
IR(KBr)cm⁻¹:3282, 1690, 1645, 1527, 1421, 1314, 1217, 1028, 994, 911, 753, 701.

【0184】実施例35

N-(2-アミノフェニル)-4-[N-[N-(ビリジン-3-イル)アミノアセチル]アミノメチル]ベンズアミド(表-1:化合物番号96)
mp. (amorphous).
1H NMR(270MHz, DMSO-d6) δ ppm: 3.77(2H,d,J=6.6Hz), 4.37(2H,d,J=5.9Hz), 4.87(2H,br.s), 6.27(1H,t,J=5.9Hz), 6.60(1H,dd,J=7.3,7.3Hz), 6.78(1H,d,J=7.3Hz), 6.87(1H,d,J=8.1Hz), 6.96(1H,dd,J=7.3,8.1Hz), 7.09(1H,d,J=4.4Hz), 7.12(1H,d,J=4.4Hz), 7.16(1H,d,J=8.1Hz), 7.33(2H,d,J=8.8Hz), 7.81(1H,d,J=4.4Hz), 7.91(2H,d,J=7.3Hz), 7.99(1H,d,J=2.9Hz), 8.59(1H,br.t,J=5.1Hz), 9.63(1H,br.s).
IR(KBr)cm⁻¹:3350, 1658, 1525, 1502, 1314, 750.

【0185】実施例36

N-(2-アミノフェニル)-4-[N-(2-アミノチアゾール-4-イル)アセチルアミノメチル]ベンズアミド(表-1:化合物番号220)
mp. (amorphous).
1H NMR(270MHz, DMSO-d6) δ ppm: 3.34(2H,s), 4.35(2H,d,J=5.9Hz), 4.87(2H,s), 6.25(1H,s), 6.59(1H,dd,J=7.3,7.3Hz), 6.78(1H,d,J=7.3Hz), 6.87(2H,s), 6.96(1H,dd,J=7.3,7.3Hz), 7.16(1H,d,J=7.3Hz), 7.37(2H,d,J=8.1Hz), 7.93(2H,d,J=8.1Hz), 8.44(1H,t,J=5.9Hz), 9.62(1H,s).

【0186】実施例37

N-(2-アミノフェニル)-4-[N-(キノリン-6-イル)カルボニルアミノメチル]ベンズアミド(表-1:化合物番号231)
mp. 209-210°C.
1H NMR(270MHz, DMSO-d6) δ ppm: 4.62(2H,d,J=5.9Hz), 4.88(2H,s), 6.60(1H,t,J=7.7Hz), 6.78(1H,d,J=7.3Hz), 6.95(1H,d,J=7.3Hz), 7.17(1H,d,J=7.3Hz), 7.49(2H,d,J=8.8Hz), 7.62(1H,dd,J=4.4,8.1Hz), 7.96(2H,d,J=8.8Hz), 8.10(1H,d,J=8.8Hz), 8.23(1H,dd,J=2.2,8.8Hz), 8.38(1H,m), 8.49(1H,d,J=8.1Hz), 8.58(1H,s), 8.99(1H,s), 9.64(1H,s).

IR(KBr)cm⁻¹:3301, 1640, 1614, 1545, 1496, 1312, 910, 853,

745.

【0187】実施例38

N-(2-アミノフェニル)-4-[N-(フロ[3,2-b]ビリジン-2-イル)カルボニルアミノメチル]ベンズアミド(表-1:化合物番号233)
mp. 191°C(dec.).
1H NMR(270MHz, DMSO-d6) δ ppm: 4.58(2H,d,J=5.9Hz), 4.88(2H,s), 6.57-6.62(1H,m), 6.76-6.79(1H,m), 6.93-6.99(1H,m), 7.15-7.25(1H,m), 7.45-7.52(3H,m), 7.74(1H,s), 7.95(2H,d,J=8.1Hz), 8.13(1H,d,J=8.8Hz), 8.63(1H,d,J=3.7Hz), 9.54(1H,t,J=5.9Hz), 9.64(1H,s).

IR(KBr)cm⁻¹:3406, 1662, 1529, 1507, 1420, 1313, 1209, 1139, 1170, 1139, 924, 741.

【0188】実施例39

N-(2-アミノフェニル)-4-[N-(フロ[2,3-c]ビリジン-2-イル)カルボニルアミノメチル]ベンズアミド(表-1:化合物番号234)
mp. 210°C(dec.).
1H NMR(270MHz, DMSO-d6) δ ppm: 4.58(2H,J=6.6Hz), 4.87(2H,s), 6.57-6.62(1H,m), 6.76-6.79(1H,m), 6.93-6.99(1H,m), 7.14-7.17(1H,m), 7.47(2H,d,J=8.1Hz), 7.66(1H,s), 7.82(1H,d,J=4.4Hz), 7.96(2H,d,J=8.1Hz), 8.48(1H,d,J=5.1Hz), 9.06(1H,s), 9.60-9.64(2H,m).

IR(KBr)cm⁻¹:3320, 1653, 1632, 1598, 1457, 1424, 1308, 1187, 1033, 853, 749.

【0189】実施例40

N-(2-ヒドロキシフェニル)-4-[N-(3-(ビリジン-3-イル)プロピオニル)アミノメチル]ベンズアミド(表-1:化合物番号125)
mp. (amorphous).
1H NMR(270MHz, CD3OD) δ ppm: 2.61(2H,t,J=7.3Hz), 3.00(2H,t,J=7.3Hz), 4.39(2H,s), 7.04(1H,dd,J=1.5,8.1Hz), 7.25(2H,d,J=8.1Hz), 7.33(1H,dd,J=5.1,8.1Hz), 7.69(1H,d,J=8.1Hz), 7.85(2H,d,J=8.1Hz), 7.86(1H,d,J=8.1Hz), 8.41(2H,br.s).

IR(neat)cm⁻¹:3276, 1645, 1614, 1536, 1509, 1435, 1415, 1385, 1333, 1280, 1247, 1091, 737.

【0190】実施例41

N-(2-ヒドロキシフェニル)-4-[N-(ビリジン-3-イル)オキシアセチルアミノメチル]ベンズアミド(表-1:化合物番号93)
mp. (amorphous).
1H NMR(270MHz, DMSO-d6) δ ppm: 4.43(2H,d,J=6.6Hz), 4.69(2H,s), 6.83(1H,t,J=6.6Hz), 6.91(1H,d,J=8.1Hz), 7.68(1H,d,J=6.6Hz), 7.82(2H,d,J=8.1Hz), 8.21(1H,d,J=4.4Hz), 8.35(1H,d,J=2.2Hz), 8.81(1H,t,J=6.6Hz), 9.48(1H,s), 9.75(1H,s).

(50)

特開平10-152462

IR(KBr)cm⁻¹:3399, 1664, 1535, 1236, 1064.

【0191】実施例42

N-(2-ヒドロキシフェニル)-4-[N-(ピリジン-3-イル)アセチルアミノメチル]ベンズアミド(表-1:化合物番号117)

mp. 201-202°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.56(2H,s), 4.37(2H,d, J=5.9Hz), 6.83(1H,ddd,J=1.5,8.1,8.1Hz), 6.92(1H,br.d,J=8.1Hz), 7.03(1H,ddd,J=1.5,8.1,8.1Hz), 7.34(1H,dd,J=3.7,8.1Hz), 7.37(2H,d,J=8.1Hz), 7.70(2H,d,J=8.1Hz), 7.91(2H,d,J=8.1Hz), 8.45(1H,br.d,J=3.7Hz), 8.49(1H,s), 8.73(1H,t,J=5.9Hz), 9.47(1H,s), 9.73(1H,br.s).

IR(KBr)cm⁻¹:3272, 3067, 1661, 1647, 1598, 1536, 1455, 1334, 1288, 1194, 1024, 742.

【0192】実施例43

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)オキシアセチル-N-[3-(ピリジン-3-イル)プロピル]アミノメチル]ベンズアミド(表-1:化合物番号91)

mp. (anorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 1.77-1.93(2H,m), 2.50-2.63(2H,m), 3.16-3.30(2H,m), 4.63(1.2H,s), 4.71(0.8H,s), 4.88(1.2H,s), 4.95(0.8H,s), 5.05(2H,s), 6.57-6.63(1H,m), 6.77-6.79(1H,m), 6.94-7.00(1H,m), 7.11-7.42(5H,m), 7.58-7.64(1H,m), 7.92-8.02(2H,m), 8.15-8.43(5H,m), 9.65(0.6H,s), 9.69(0.4H,s). (回転異性体の混合物)

【0193】実施例44

N-(2-アミノフェニル)-4-[N-メチル-N-(ピリジン-3-イル)オキシアセチル]アミノメチルベンズアミド(表-1:化合物番号92)

mp. 117-120°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.84 and 2.99(total 3H,s), 4.60 and 4.69(total 2H,s), 4.90(2H,br.s), 4.99 and 5.08(total 2H,s), 6.60(1H,dd,J=7.3,8.1Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=7.3,7.3Hz), 7.16(1H,d,J=7.3Hz), 7.30-7.43(4H,m), 7.95 and 8.01(total 2H,d,J=8.1Hz), 8.17(1H,d,J=4.4Hz), 8.31(1H,d,J=2.9Hz), 9.65 and 9.68(total 1H,br.s). (回転異性体の混合物)

IR(KBr)cm⁻¹:3298, 1665, 1501, 1425, 1310, 1276, 1254, 1078, 799, 746, 703.

【0194】実施例45

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)オキサモイルアミノメチル]ベンズアミド(表-1:化合物番号95)の合成

(45-1) N-(ピリジン-3-イル)オキサミン酸エチルエステル 388mg (2mmol)と実施例1の工程(1-4)で得られた化合物638mg (2mm

o l)をエタノールに溶解し、40~50°Cに2, 5時間加熱搅拌した。析出した結晶をろ取し、エタノール2mlとエチルエーテル3mlで洗浄した。得られた結晶を乾燥し、N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-[N-(ピリジン-3-イル)オキサモイルアミノメチル]ベンズアミド72.4mg (収率74%)を得た。

1H NMR(270MHz, DMSO-d6) δ ppm: 1.44(9H,s), 4.49(2H,d, J=5.9Hz), 7.10-7.30(2H,m), 7.35-7.57(5H,m), 7.93(2H,d,J=8.1Hz), 8.21(1H,br.d,J=5.1Hz), 8.35(1H,dd,J=1.5,5.1Hz), 8.68(1H,br.s), 9.00(1H,d,J=2.9Hz), 9.70(1H,t,J=5.9Hz), 9.82(1H,s), 10.98(1H,br.s).

【0195】(45-2) 工程(45-1)の化合物72.0mgをメタノール8mlに懸濁し、4規定塩酸-ジオキサン浴液8mlを加えた。3時間搅拌し、希水酸化ナトリウム水溶液へあけアルカリ性とした後、析出した結晶をろ取した。得られた結晶をTHF/メタノール=1/1で再結晶し、目的物28.0mgを得た。

mp. 254-258°C(dec.)

1H NMR(270MHz, DMSO-d6) δ ppm: 4.67(2H,d,J=5.9Hz), 4.89(2H,br.s), 6.59(1H,dd,J=7.3Hz), 6.77(1H,d,J=8.1Hz), 6.97(1H,dd,J=6.6,7.3Hz), 7.16(1H,d,J=8.1Hz), 7.38-7.44(1H,m), 7.43(2H,d,J=8.1Hz), 7.95(2H,d,J=8.1Hz), 8.18-8.24(1H,m), 8.34(1H,dd,J=1.5,4.4Hz), 9.00(1H,d,J=2.1Hz), 9.63(1H,s), 9.69(1H,br.t,J=6.6Hz), 10.97(1H,br.s).

IR(KBr, cm⁻¹):3312, 3270, 1663, 1636, 1521, 1312, 1296, 1019

【0196】実施例46

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)オキシアセチルアミノメチル]ベンズアミド(表-1:化合物番号61)の合成

(46-1) 水素化ナトリウム(60%油状懸濁)0.22g (5.5mmol)のDMF(2ml)懸濁液に、3-ヒドロキシピリジン0.48g (5.0mmol)のDMF(2ml)溶液を室温で滴下した後、1時間搅拌した。得られた褐色溶液を氷冷した後、プロモ酢酸tert-ブチルエステル0.81ml (5.5mmol)を加え、氷冷下で1時間、定温で2時間搅拌した。水を加えた後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:酢酸エチル=5:1)で精製することにより、3-ピリジルオキシ酢酸tert-ブチルエステル0.34g (収率32.5%)を無色油状物として得た。

1H NMR(270MHz, CDCl₃) δ ppm: 1.49(9H,s), 4.56(2H,s), 7.18-7.24(2H,m), 8.26(1H,dd,J=1.5,3.6Hz), 8.32(1H,d,J=2.9Hz).

【0197】(46-2) 工程(46-1)の化合物0.14g (0.67mmol)のジクロロメタン(2

(51)

特開平10-152462

m l) 溶液にトリフルオロ酢酸2m l を加えて室温で3時間搅拌した。溶媒を留去した後、ジイソプロピルエーテルを加え、析出した固体を沪取、乾燥することにより、3-ビリジルオキシ酢酸トリフルオロ酢酸塩0.15g(收率83.8%)を淡黄色固体として得た。

1H NMR(270MHz, DMSO-d6) δ ppm: 4.86(2H, s), 7.57(1H, dd, J=4.8.1Hz), 7.67(1H, ddd, J=1.5, 1.5, 8.8Hz), 8.31(1H, d, J=5.1Hz), 8.46(1H, d, J=2.1Hz), 13.00(1H, br. s).

【0198】(46-3) 工程(46-2)の化合物100mg(0.37mmol)および実施例1の工程(1-4)で得られた化合物255mg(0.75mmol)のジクロロメタン(5m l)懸濁液にトリエチルアミン0.14m l (1.0mmol)を加え、氷冷した。氷冷下2-クロロ-1, 3-ジメチルイミダゾリニウムクロライド140mg(0.83mmol)のジクロロメタン(6m l)溶液を加え、室温まで昇温させながら7時間搅拌した後、室温で一晩放置した。水および飽和食塩水を加えた後、クロロホルムで抽出した。

【0199】有機屑を飽和食塩水で洗浄後、乾燥、溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=10:1)で精製することにより、N-[2-(N-tert-ブロピオニル)アミノフェニル]-4-[N-(ビリジン-3-イル)オキシアセチルアミノメチル]ベンズアミド0.37g(定量的)を無色油状物として得た。

mp. 154-155°C

1H NMR(270MHz, CDCl3) δ ppm: 1.52(9H, s), 4.62(2H, s), 4.63(2H, d, J=7.3Hz), 6.76(1H, br. s), 6.90-7.00(1H, br. s), 7.15-7.35(5H, m), 7.40(2H, d, J=8.1Hz), 7.82(1H, d, J=8.1Hz), 7.95(2H, d, J=8.1Hz), 8.32(1H, dd, J=2.1, 4.4Hz), 8.37(1H, d, J=2.8Hz), 9.20(1H, br. s).

【0200】(46-4) 工程(46-3)の化合物175mg(0.37mmol)のジオキサン(2m l)-メタノール(2m l)溶液に、4規定塩酸-ジオキサン(2m l)を加えて室温で2時間搅拌した。飽和亜硝水を加えた後、酢酸エチルで抽出した。有機屑を飽和食塩水で洗浄後、乾燥、溶媒を留去して得られた残渣にメタノールおよびジイソプロピルエーテルを加え、析出した固体を沪取、乾燥することにより、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)オキシアセチルアミノメチル]ベンズアミド90mg(收率64.6%)を乳白色固体として得た。

1H NMR(270MHz, DMSO-d6) δ ppm: 4.42(2H, d, J=5.9Hz), 4.69(2H, s), 4.89(2H, br. s), 6.59(1H, dd, J=7.3, 8.1Hz), 6.78(1H, d, J=8.1Hz), 6.97(1H, dd, J=6.6, 7.3Hz), 7.16(1H, d, J=7.3Hz), 7.33-7.39(4H, m), 7.92(2H, d, J=8.1Hz), 8.21(1H, dd, J=1.5, 4.4Hz), 8.35(1H, d, J=2.9Hz), 8.80(1H, br. t, J=5.9Hz), 9.63(1H, br. s).

IR(KBr)cm⁻¹: 3307, 1672, 1631, 1523, 1456, 1429, 1269, 12

31,803, 756.

【0201】実施例47

N-(2-アミノフェニル)-4-[N-(2-(ビリジン-3-イル)オキシ)プロピオニルアミノメチル]ベンズアミド(表4:化合物番号3)の合成

【0202】(47-1) 水素化ナトリウム(60%油状懸濁)1.20g(30.0mmol)の乾燥DMF(10m l)懸濁液に、室温で3-ヒドロキシビリジン2.85g(30mmol)の乾燥DMF(10m l)溶液を40°C以下になるようしながら滴下した後、室温で90分間搅拌した。氷冷下内温を5~10°Cに保ちながら2-ブロモアロビオン酸tert-ブチルエステル6.28g(30mmol)の乾燥DMF(10m l)溶液を徐々に滴下した後、室温まで昇温させながら4時間搅拌した。飽和食塩水を加えて中和した後、酢酸エチルで抽出した。有機層を、水、飽和食塩水で洗浄後、乾燥、溶媒留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製することにより2-(ビリジン-3-イル)オキシアロビオン酸tert-ブチルエステル4.15g(收率62%)を茶色油状物として得た。

1H-NMR(270MHz, CDCl3) δ ppm: 1.44(9H, s), 1.61(3H, d, J=7.3Hz), 4.66(1H, q, J=7.3Hz), 7.13-7.23(2H, m), 8.24(1H, dd, J=1.5, 4.4Hz), 8.29(1H, d, J=2.1Hz).

【0203】(47-2) 工程(47-1)で得た化合物1.65g(7.4mmol)のジクロロメタン(9m l)溶液に30°C以下を保ちながらトリフルオロ酢酸(9m l)を加えた後、室温で8時間搅拌した。溶媒を留去した後、ジイソプロピルエーテルを加え、析出した固体を沪取、乾燥することにより2-(ビリジン-3-イル)オキシアロビオン酸トリフルオロ酢酸塩1.86g(收率43.5%)を淡褐色固体として得た。

1H-NMR(270MHz, DMSO-d6) δ ppm: 1.53(3H, d, J=6.6Hz), 5.12(1H, q, J=6.6Hz), 7.60-7.75(2H, m), 8.35(1H, d, J=5.1Hz), 8.47(1H, s), 12.9(1H, br. s).

【0204】(47-3) 工程(47-2)で得た化合物0.98g(3.5mmol)、実施例1の工程(1-4)で得た化合物1.02g(3.0mmol)をジクロロメタン(20m l)に懸濁させた後、トリエチルアミン1.3m l (9.0mmol)を加え氷冷した。氷冷下、2-クロロ-1, 3-ジメチルイミダゾリニウムクロライド0.59g(3.5mmol)のジクロロメタン(5m l)溶液を滴下した後、さらに2時間搅拌した。飽和亜硝水を加えて中和した後、クロロホルムで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒留去して得た残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=10:1)で精製することによりN-[2-(N-tert-ブロピオニル)アミノメチル]ベンズアミド90mg(收率64.6%)を乳白色固体として得た。

(52)

特開平10-152462

ルアミノ)フェニル] -4-[N-[2-(ピリジン-3-イル)オキシプロピオニル]アミノメチル]ベンズアミド1.64gを1,3-ジメチル-2-イミダゾリノンとの混合物として得た。

¹H-NMR(270MHz, CDCl₃) δ ppm: 1.51(9H,s), 1.64(3H,d, J=7.3Hz), 4.54(2H,m), 4.78(1H,q,J=6.6Hz), 6.87(2H,r.s), 7.13-7.30(6H,m), 7.81(1H,d,J=7.3Hz), 7.90(2H,d,J=8.1Hz), 8.29(1H,dd,J=1.5,4.4Hz), 8.33(1H,d,J=2.1Hz), 9.22(1H,br.s).

【0205】(47-4) 工程(47-3)で得た化合物1.64gをジオキサン(10mL)メタノール(4mL)に溶解した。室温下4規定塩酸-ジオキサン溶液(10mL)を加え、2時間搅拌した。飽和食塩水を加え中和した後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒留去して得た残渣にメタノールおよびジイソプロピルエーテルを加え、析出した固体を汎取、乾燥することにより、N-(2-アミノフェニル)-4-[N-[2-(ピリジン-3-イル)オキシ]プロピオニルアミノメチル]ベンズアミド0.71g(2stepsで収率60.5%)を白色固体として得た。

【0206】mp. 171-173°C(dec.).

¹H-NMR(270MHz, DMSO-d₆) δ ppm: 1.51(3H,d,J=6.6Hz), 4.36(2H,d,J=5.9Hz), 4.89(2H,br.s), 4.90(1H,t,J=6.6Hz), 6.60(1H,dd,J=6.6,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=6.6,7.3Hz), 7.15(1H,d,J=7.3Hz), 7.27(2H,d,J=8.1Hz), 7.33-7.37(2H,m), 7.89(2H,d,J=8.1Hz), 8.21(1H,dd,J=2.9,2.9Hz), 8.32(1H,d,J=1.5Hz), 8.82(1H,t,J=5.9Hz), 9.63(1H,br.s).

【0207】実施例4B

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号82)の合成

(48-1) 3-ピリジンメタノール3.84mg(3.52mmol)を5mLの乾燥THFに溶解し、N,N'-カルボニルジイミダゾール5.23mg(3.22mmol)を室温で加えた。1時間搅拌した後、実施例1の工程(1-4)の化合物1.0g(2.93mmol)の乾燥THF溶液6mLを加えた。

【0208】室温で一夜放置後、クロロホルム100mLを加え、水20mLで3回洗浄した。ついで飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去後、シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=30:1)で精製し、N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド1.27gをアモルファス状固体として得た(定量的)。

¹H-NMR(270MHz, CDCl₃) δ ppm: 1.51(9H,s), 4.45(2H,d,J=5.9Hz), 5.16(1H,s), 7.10-7.50(7H,m), 7.70(1H,d,J=8.

8.1Hz), 7.80(1H,d,J=7.3Hz), 7.93(1H,d,J=8.1Hz), 8.57(1H,d,J=4.4Hz), 8.63(1H,s), 9.17(1H,s).

【0209】(48-2) 工程(48-1)の化合物1.2g(2.8mmol)をメタノール10mLに溶解した。4規定塩酸-ジオキサン溶液20mLを加え、室温で1.5時間搅拌した。希水酸化ナトリウム水溶液にあけた後、クロロホルム60mLで3回抽出した。飽和食塩水で2回洗浄後、無水硫酸マグネシウムで乾燥し、濃縮して0.88gの結晶を得た。ついでエタノール16mLで再精晶を行い、N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド668mg(収率73%)を得た。

【0210】mp. 159-160°C.

¹H-NMR(270MHz, DMSO-d₆) δ ppm: 4.28(2H,d,J=5.9Hz), 4.86(2H,s), 5.10(2H,s), 6.60(1H,t,J=7.3Hz), 6.78(1H,d,J=7Hz), 6.97(1H,t,J=7Hz), 7.17(1H,d,J=8Hz), 7.30-7.50(3H,m), 7.78(1H,d,J=8Hz), 7.93(2H,d,J=8Hz), 8.53(1H,d,J=3.7Hz), 8.59(1H,s), 9.61(1H,s).

IR(KBr)cm⁻¹: 3295, 1648, 1541, 1508, 1457, 1309, 1183, 742.

実施例4Bと同様の方法により、実施例49から実施例87の化合物を合成した。以下に、化合物の融点(mp.)、¹H-NMR、IRの測定値を示す。

【0211】実施例49

N-(2-アミノフェニル)-4-[N-(ベンジルオキシカルボニル)アミノメチル]ベンズアミド(表-1:化合物番号11)

mp. 174-178°C.

¹H-NMR(270MHz, DMSO-d₆) δ ppm: 4.28(2H,d,J=5.9Hz), 4.89(2H,br.s), 5.06(2H,s), 6.59(1H,dd,J=7.3,8.1Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=7.3,8.1Hz), 7.16(1H,d,J=7.3Hz), 7.30-7.40(6H,m), 7.93(3H,m), 9.63(1H,s).

IR(KBr)cm⁻¹: 3332, 1687, 1652, 1536, 1456, 1279, 747.

【0212】実施例50

N-(2-アミノフェニル)-4-[N-(4-(イミグゾール-1-イル)ベンジル)オキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号47)

mp. 195-198°C.

¹H-NMR(270MHz, DMSO-d₆) δ ppm: 4.29(2H,d,J=5.6Hz), 4.88(2H,s), 5.10(2H,s), 6.60-6.63(1H,m), 6.78(1H,d,J=8.1Hz), 6.97(1H,t,J=7.3Hz), 7.11(1H,s), 7.16(1H,d,J=7.3Hz), 7.37(2H,d,J=8.1Hz), 7.49(2H,d,J=8.8Hz), 7.66(2H,d,J=8.1Hz), 7.74(1H,s), 7.92-7.96(3H,m), 8.25(1H,s), 9.62(1H,s).

【0213】実施例51

N-(2-アミノフェニル)-4-[N-(ピリジン-2-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号171)

(53)

特開平10-152462

mp. 166-167°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.30(2H, d, J=5.9Hz), 4.88(2H, br, s), 5.12(2H, s), 6.60(1H, dd, J=7.3, 8.1Hz), 6.78(1H, d, J=8.1Hz), 6.97(1H, ddd, J=1.5, 7.3, 8.1Hz), 7.16(1H, d, J=7.3Hz), 7.33(1H, dd, J=3.7, 7.3Hz), 7.40(3H, d, J=8.1Hz), 7.83(1H, ddd, J=1.5, 7.3, 8.1Hz), 7.94(2H, d, J=8.1Hz), 8.03(1H, t, J=5.9Hz), 8.55(1H, d, J=5.1Hz), 9.62(1H, br, s).

IR(KBr)cm-1: 3334, 1694, 1632, 1580, 1276, 755.

【0214】実施例52

N-(2-アミノフェニル)-4-[N-(2-(ビリジン-3-イル)エトキシカルボニル)アミノメチル]ベンズアミド(表-1: 化合物番号172)

mp. 146-148°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.04(2H, t, J=6.6Hz), 4.23(2H, d, J=5.9Hz), 4.36(2H, t, J=6.6Hz), 4.88(2H, br, s), 6.60(1H, dd, J=7.3, 8.1Hz), 6.78(1H, d, J=8.1Hz), 6.97(1H, dd, J=7.3, 8.1Hz), 7.15-7.30(3H, m), 7.34(2H, d, J=8.1Hz), 7.69-7.77(2H, m), 7.92(2H, d, J=7.3Hz), 8.50(1H, d, J=4.4Hz), 9.62(1H, br, s).

IR(KBr)cm-1: 3330, 1690, 1633, 1594, 1524, 1277, 760.

【0215】実施例53

N-(2-アミノフェニル)-4-[N-(6-メチルビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号179)

mp. 138°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.47(3H, s), 4.30(2H, d, J=5.9Hz), 5.07(4H, s), 6.63(1H, t, J=8.1Hz), 6.80(1H, d, J=7.34), 6.98(1H, t, J=8.1Hz), 7.18(3H, d, J=7.3Hz), 7.40(2H, d, J=8.1Hz), 7.71(1H, t, J=8.1Hz), 7.94(2H, d, J=8.1Hz), 8.03(1H, t, J=5.9Hz), 9.66(1H, s).

IR(KBr)cm-1: 3335, 1693, 1634, 1259.

【0216】実施例54

N-(2-アミノフェニル)-4-[N-(2-(ビリジン-3-イル)エトキシカルボニル)アミノメチル]ベンズアミド(表-1: 化合物番号83)

mp. 120-125°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.91(2H, t, J=6.6Hz), 4.22(4H, t, J=6.6Hz), 4.89(2H, s), 6.55-6.63(1H, m), 6.78(1H, dd, J=8.1, 1.5Hz), 6.97(1H, t, J=6.6Hz), 7.17(1H, d, J=6.6Hz), 7.33(3H, d, J=8.1Hz), 7.69(1H, d, J=8.1Hz), 7.79(1H, t, J=6.6Hz), 7.93(2H, d, J=8.0Hz), 8.43-8.49(2H, m), 9.62(1H, s).

IR(KBr)cm-1: 3234, 1705, 1655, 1260.

【0217】実施例55

N-(2-アミノフェニル)-4-[N-(3-(ビリジン-3-イル)プロピルオキシカルボニル)アミノメチル]ベンズアミド(表-1: 化合物番号84)

mp. 121-124°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 1.83-1.94(2H, m), 2.6

7(2H, t, J=7.3Hz), 3.98(2H, t, J=6.6Hz), 4.26(2H, d, J=5.9Hz), 4.89(2H, br, s), 6.60(1H, dd, J=8.1, 8.1Hz), 6.78(1H, d, J=7.3Hz), 6.97(1H, ddd, J=1.5, 7.3, 8.1Hz), 7.16(1H, d, J=8.1Hz), 7.29-7.33(1H, m), 7.37(1H, d, J=8.1Hz), 7.64(1H, d, J=8.1Hz), 7.81(1H, dd, J=5.9, 6.6Hz), 7.94(2H, d, J=8.1Hz), 8.40-8.44(2H, m), 9.63(1H, br, s).

IR(KBr)cm-1: 3348, 1696, 1635, 1523, 1458, 1302, 1272, 1141, 1019, 754, 713.

【0218】実施例56

N-(2-アミノフェニル)-4-[N-(2-メチルビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号142)

mp. 164-165°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.49(3H, s), 4.23(2H, d, J=6.6Hz), 4.89(2H, s), 5.10(2H, s), 6.60(1H, t, J=6.6Hz), 6.78(1H, d, J=8.1Hz), 6.90(1H, t, J=7.3Hz), 7.17(1H, d, J=7.3Hz), 7.21-7.26(1H, m), 7.37(2H, d, J=8.1Hz), 7.68(1H, d, J=6.6Hz), 7.92-8.00(3H, m), 8.39(1H, d, J=4.4Hz), 9.62(1H, s).

IR(KBr)cm-1: 3332, 1719, 1630, 1260.

【0219】実施例57

N-(2-アミノフェニル)-4-[N-(6-メチルビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号144)

mp. 164-165°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.45(3H, s), 4.27(2H, d, J=6.6Hz), 4.88(2H, s), 5.05(2H, s), 6.59(1H, dt, J=1.5, 8.1Hz), 6.78(1H, dd, J=8.1, 1.5Hz), 6.97(1H, dt, J=1.5, 7.3Hz), 7.17(1H, d, J=7.3Hz), 7.26(1H, d, J=8.1Hz), 7.36(2H, d, J=8.1Hz), 7.67(1H, dd, J=8.1, 2.2Hz), 7.93(3H, d, J=8.1Hz), 8.45(1H, d, J=1.5Hz), 9.62(1H, s).

IR(KBr)cm-1: 3293, 1701, 1632, 1260.

【0220】実施例58

N-(2-アミノフェニル)-4-[N-(2-クロロビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号155)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.30(2H, d, J=5.9Hz), 5.00(2H, s), 5.13(2H, s), 6.61(1H, t, J=7.3Hz), 6.79(1H, dd, J=8.1, 1.5Hz), 6.98(1H, dt, J=1.5, 7.3Hz), 7.17(1H, d, J=6.6Hz), 7.39(2H, d, J=8.0Hz), 7.47-7.52(1H, m), 7.91-7.96(3H, m), 8.08(1H, t, J=5.9Hz), 8.40(1H, d, J=4.4, 1.5Hz), 9.64(1H, s).

IR(KBr)cm-1: 3340, 1702, 1632, 1273.

【0221】実施例59

N-(2-アミノフェニル)-4-[N-(6-クロロビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号157)

mp. 180-185°C.

¹H NMR(270MHz, DMSO-d₆) δ ppm: 4.24(2H,d,J=5.9Hz), 4.89(2H,br.s), 5.10(2H,s), 6.60(1H,t,J=7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dt,J=1.5,8.1Hz), 7.16(1H,d,J=6.6Hz), 7.37(2H,d,J=8.1Hz), 7.56(1H,d,J=8.1Hz), 7.85-8.02(4H,m), 8.44(1H,d,J=2.2Hz), 9.62(1H,s).

IR(KBr)cm⁻¹: 3346, 3282, 1696, 1533, 1271.

【0221】実施例60

N-(2-アミノフェニル)-4-[N-(ビリジン-4-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号181)

mp. 180-183°C.

¹H NMR(270MHz, DMSO-d₆) δ ppm: 4.30(2H,d,J=6.6Hz), 4.89(2H,s), 5.12(2H,s), 6.60(1H,dd,J=7.3,7.3Hz), 6.78(1H,dd,J=1.5,7.3Hz), 6.97(1H,ddd,J=1.5,7.3,8.1Hz), 7.16(1H,d,J=7.3Hz), 7.34(2H,d,J=5.9Hz), 7.39(2H,d,J=8.1Hz), 7.94(2H,d,J=8.1Hz), 8.09(1H,t,J=5.9Hz), 8.57(1H,d), 9.64(1H,br.s).

IR(KBr)cm⁻¹: 3394, 3290, 1711, 1645, 1624, 1535, 1504, 1321, 1251, 1138, 1049, 763.

【0223】実施例61

N-(2-アミノフェニル)-4-[N-[2-(チオフェン-3-イル)エトキシカルボニル]アミノメチル]ベンズアミド(表-1: 化合物番号203)

mp. (amorphous).

¹H NMR(270MHz, DMSO-d₆) δ ppm: 2.90(2H,t,J=7.3Hz), 4.17-4.26(4H,m), 4.89(2H,s), 6.60(1H,t,J=8.1Hz), 6.78(1H,d,J=6.6Hz), 6.97(1H,t,J=7.3Hz), 7.06(1H,d,J=5.1Hz), 7.17(1H,d,J=7.3Hz), 7.26(1H,s), 7.36(2H,d,J=8.1Hz), 7.47(1H,t,J=2.2Hz), 7.81(1H,t,J=5.9Hz), 7.93(2H,d,J=8.1Hz), 9.63(1H,s).

IR(KBr)cm⁻¹: 3314, 1716, 1638, 1252.

【0224】実施例62

N-(2-アミノフェニル)-4-[N-(3-フェニルオキサゾール-5-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号211)

mp. 192-195°C.

¹H NMR(270MHz, DMSO-d₆) δ ppm: 4.30(2H,d,J=5.9Hz), 4.89(2H,s), 5.25(2H,s), 6.60(1H,t,J=6.6Hz), 6.68(1H,d,J=8.1Hz), 6.94(1H,t,J=7.3Hz), 7.09(1H,s), 7.16(1H,d,J=7.3Hz), 7.39(2H,d,J=8.1Hz), 7.51(4H,d,J=2.2Hz), 7.87-7.96(5H,m), 8.12(1H,t,J=5.9Hz), 9.63(1H,s).

IR(KBr)cm⁻¹: 3292, 1718, 1630, 1262.

【0225】実施例63

N-(2-アミノフェニル)-4-[N-(チアゾール-5-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号216)

mp. (amorphous).

¹H NMR(270MHz, DMSO-d₆) δ ppm: 4.28(2H,d,J=5.9Hz), 4.91(2H,br.s), 5.30(2H,s), 6.60(1H,dd,J=7.3,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=7.3,8.1Hz), 7.16(1H,d,J=7.3Hz), 7.36(2H,d,J=8.1Hz), 7.91-8.00(4H,m), 9.09(1H,s), 9.63(1H,s).

IR(KBr)cm⁻¹: 3346(br.), 1697, 1636, 1525, 1456, 1271, 873, 753.

【0226】実施例64

N-(2-アミノフェニル)-4-[N-[2-(4-メチルチアゾール-5-イル)エトキシカルボニル]アミノメチル]ベンズアミド(表-1: 化合物番号217)

mp. 130-133°C.

¹H NMR(270MHz, DMSO-d₆) δ ppm: 2.32(3H,s), 3.07(2H,t,J=5.9Hz), 4.15(2H,t,J=5.9Hz), 4.25(2H,d,J=6.6Hz), 4.89(2H,s), 6.60(1H,t,J=5.9Hz), 6.78(1H,dd,J=7.3,1.5Hz), 6.97(1H,dt,J=1.5,7.3Hz), 7.16(1H,d,J=8.1Hz), 7.35(2H,d,J=8.1Hz), 7.83(1H,t,J=5.9Hz), 7.94(2H,d,J=8.1Hz), 8.85(1H,s), 9.62(1H,s).

IR(KBr)cm⁻¹: 3350, 1691, 1635, 1270.

【0227】実施例65

N-(2-アミノフェニル)-4-[N-(1-メチルピペリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号225)

mp. 130-135°C.

¹H NMR(270MHz, DMSO-d₆) δ ppm: 1.49-1.78(3H,m), 1.83-2.01(3H,m), 2.30(3H,s), 2.85(2H,s), 3.74-3.94(2H,m), 4.25(2H,d,J=5.8Hz), 6.55-6.62(3H,m), 6.78(1H,d,J=8.1Hz), 6.97(1H,t,J=7.3Hz), 7.16(1H,d,J=8.1Hz), 7.37(2H,d,J=8.1Hz), 7.79(1H,t,J=6.6Hz), 7.93(2H,d,J=8.0Hz), 9.66(1H,s).

IR(KBr)cm⁻¹: 3323, 2722, 1702, 1648, 1263.

【0228】実施例66

N-(2-アミノフェニル)-4-[N-(4-メチルピペラジン-1-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号227)

mp. (amorphous).

¹H NMR(270MHz, DMSO-d₆) δ ppm: 1.73(2H,t,J=6.6Hz), 2.36-2.63(13H,m), 4.00(2H,t,J=6.6Hz), 4.30(2H,d,J=5.8Hz), 6.55-6.63(4H,m), 6.78(1H,d,J=6.6Hz), 6.97(1H,t,J=7.3Hz), 7.16(1H,d,J=7.3Hz), 7.37(2H,d,J=8.7Hz), 7.73(1H,t,J=5.9Hz), 7.94(2H,d,J=8.0Hz), 9.66(1H,s).

IR(KBr)cm⁻¹: 3341, 2706, 1701, 1262.

【0229】実施例67

N-(2-アミノフェニル)-4-[N-(テトラヒドロフラン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号231)

mp. (amorphous).

¹H NMR(270MHz, DMSO-d₆) δ ppm: 1.50-1.60(1H,m), 1.8

(55)

特開平10-152462

8-2.00(1H, m), 2.44-2.54(1H, m), 3.41-3.47(1H, m), 3.56-3.77(3H, m), 3.85-4.04(2H, m), 4.25(2H, d, J=5.9Hz), 4.89(2H, s), 6.60(1H, dd, J=7.3, 7.3Hz), 6.78(1H, d, J=8.1Hz), 6.97(1H, dd, J=7.3, 8.1Hz), 7.17(1H, d, J=8.1Hz), 7.37(2H, d, J=8.1Hz), 7.81(1H, t, J=5.9Hz), 7.94(2H, d, J=8.1Hz), 9.62(1H, br, s).
IR(KBr)cm⁻¹: 3349, 1695, 1635, 1523, 1457, 1259, 754.

【0230】実施例68

N-(2-アミノフェニル)-4-[N-(フェノキシカルボニル)アミノメチル]ベンズアミド(表-1:化合物番号12)
mp. 174-175°C.
1H NMR(270MHz, DMSO-d6) δ ppm: 4.36(2H, d, J=5.9Hz), 4.90(2H, br, s), 6.60(1H, dd, J=7.3, 7.3Hz), 6.77(1H, d, J=7.3, 7.3Hz), 6.98(1H, ddd, J=1.5, 7.3, 7.3Hz), 7.05-7.24(4H, m), 7.39-7.46(4H, m), 7.97(2H, d, J=8.1Hz), 8.41(1H, t, J=5.9Hz), 9.65(1H, br, s).
IR(KBr)cm⁻¹: 3443, 3362, 3313, 1732, 1706, 1636, 1527, 1493, 1458, 1305, 1217, 748.

【0231】実施例69

N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)オキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号81)
mp. 209°C(dec.).
1H NMR(270MHz, DMSO-d6) δ ppm: 4.38(2H, d, J=6.6Hz), 4.90(2H, br, s), 6.55-6.63(1H, m), 6.78(1H, d, J=8.1Hz), 7.00(1H, dd, J=7.3, 7.3Hz), 7.17(1H, d, J=8.8Hz), 7.37-7.47(3H, m), 7.64(1H, d, J=8.8Hz), 7.97(2H, d, J=8.1Hz), 8.43(2H, d, J=3.1Hz), 8.59(1H, t, J=5.9Hz), 9.66(1H, br, s).

【0232】実施例70

N-(2-アミノ-5-フルオロフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号110)
mp. 160-162°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.28(2H, d, J=6.6Hz), 4.81(2H, s), 5.10(2H, s), 6.70-6.90(2H, m), 7.10-8.00(8H, m), 8.53(1H, d, J=3.6Hz), 8.59(1H, s), 9.61(1H, s).
IR(KBr)cm⁻¹: 3269, 1716, 1638, 1488, 1436, 1247, 1141, 1043, 744.

【0233】実施例71

N-(2-アミノフェニル)-4-[N-(2-アミノフェニル)メトキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号51)
mp. 149-151°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.28(2H, d, J=5.9Hz), 4.88(2H, s), 4.96(2H, s), 5.06(2H, s), 6.53(1H, dd, J=7.3, 7.3Hz), 6.56-6.67(2H, m), 6.78(1H, dd, J=1.5, 8.1Hz), 6.93-7.12(3H, m), 7.16(1H, d, J=6.6Hz), 7.38(2H,

d, J=8.1Hz), 7.86(1H, t-like, J=5.9Hz), 7.93(2H, d, J=8.1Hz), 9.61(1H, s).

IR(KBr)cm⁻¹: 3336, 1685, 1632, 1527, 1276, 748.

【0234】実施例72

N-(2-アミノフェニル)-4-[N-(キヌクリシン-3-イル)オキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号228)
mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 1.30-1.90(4H, m), 1.90(1H, br, s), 2.45-2.80(6H, m), 3.04-3.13(1H, m), 4.15(2H, d, J=5.9Hz), 4.55-4.60(1H, m), 4.88(2H, br, s), 6.60(1H, ddd, J=1.5, 7.3, 7.3Hz), 6.78(1H, d, J=8.1Hz), 6.97(1H, ddd, J=1.5, 7.3, 7.3Hz), 7.17(1H, d, J=6.6Hz), 7.37(2H, d, J=8.1Hz), 7.78(1H, t, J=5.9Hz), 7.94(1H, d, J=7.3Hz), 9.62(1H, s).

IR(KBr)cm⁻¹: 3328, 2942, 1700, 1648, 1504, 1259, 749.

【0235】実施例73

N-(2-アミノフェニル)-4-[N-(3-アミノフェニル)メトキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号52)
mp. 149-153°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.27(2H, d, J=5.9Hz), 4.88 and 4.89(total 4H, each br, s), 5.08(2H, s), 6.47-6.63(3H, m), 6.78(1H, d, J=8.1Hz), 6.94-7.02(2H, m), 7.15(1H, dd, J=7.3, 8.8Hz), 7.37(2H, d, J=8.1Hz), 7.84(1H, t, J=5.9Hz), 7.93(2H, d, J=8.8Hz), 9.61(1H, br, s).

IR(KBr)cm⁻¹: 3367, 1682, 1632, 1523, 1457, 1261, 754.

【0236】実施例74

N-(2-アミノフェニル)-4-[N-(1-メチルイミダゾール-1-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号218)
mp. 162-165°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.62(3H, s), 4.27(2H, d, J=5.9Hz), 4.91(2H, br, s), 5.05(2H, s), 6.60(1H, dd, J=7.3, 7.3Hz), 6.78(1H, d, J=8.1Hz), 6.95-7.00(2H, m), 7.16(1H, d, J=7.3Hz), 7.36(2H, d, J=8.1Hz), 7.63(1H, s), 7.87-7.95(3H, m), 9.64(1H, br, s).

IR(KBr)cm⁻¹: 3293, 1688, 1651, 1534, 1506, 1259, 1121, 1043, 748.

【0237】実施例75

N-(2-アミノ-4-クロロフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号113)
mp. 167-170°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.28(2H, d, J=5.9Hz), 5.10(2H, s), 5.21(2H, s), 6.72(1H, dd, J=2.2, 8.1Hz), 6.81(1H, d, J=2.2Hz), 7.16(1H, d, J=8.1Hz), 7.37(2H, d, J=8.1Hz), 7.78(1H, d, J=8.1Hz), 7.92(2H, d, J=8.1Hz), 8.53(1H, d, J=4.4Hz), 8.59(1H, s), 9.60(1H, s).

(56)

特開平10-152462

IR(KBr)cm⁻¹: 3347, 3062, 2931, 1653, 1576, 1505, 1456, 1428, 1301, 1232, 1114, 1070, 1019.

【0238】実施例76

N-(2-アミノフェニル)-4-[N-(5-メトキシジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号161)

mp. 169-170°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.83(3H, s), 4.29(2H, d, J=6.6Hz), 4.87(2H, s), 5.09(2H, s), 6.57-6.62(1H, m), 6.76-6.79(1H, m), 6.94-6.99(1H, m), 7.14-7.18(1H, m), 7.36-7.39(3H, m), 7.91-7.99(3H, m), 8.19-8.30(2H, m), 9.63(1H, s).

IR(KBr)cm⁻¹: 3330, 1694, 1633, 1524, 1457, 1298, 1269, 1045, 760.

【0239】実施例77

N-(2-アミノフェニル)-4-[N-(ピラジン-2-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号192)

mp. 182°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.30(2H, d, J=6.6Hz), 4.88(2H, br, s), 5.20(2H, s), 6.60(1H, dd, J=7.3, 8.1Hz), 6.78(1H, d, J=8.1Hz), 6.97(1H, dd, J=6.6, 8.1Hz), 7.16(1H, d, J=7.3Hz), 7.39(2H, d, J=8.8Hz), 7.94(2H, d, J=8.8Hz), 8.08(1H, t-like, J=6.6Hz), 8.61(1H, s), 8.65(1H, s), 8.68(1H, s), 9.63(1H, s).

IR(KBr)cm⁻¹: 3266, 1709, 1632, 1535, 1508, 1284, 1055, 1022, 744.

【0240】実施例78

N-(2-アミノ-5-メトキシフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号121)

mp. 141-143°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.66(3H, s), 4.29(2H, d, J=5.9Hz), 4.51(2H, br, s), 5.10(2H, s), 6.63(1H, dd, J=2.9, 8.8Hz), 6.74(1H, d, J=8.8Hz), 6.91(1H, d, J=2.2Hz), 7.38(2H, d, J=8.8Hz), 7.41(1H, s), 7.79(1H, d, J=8.1Hz), 7.92(2H, d, J=8.1Hz), 7.98(1H, t, J=5.9Hz), 8.54(1H, d, J=3.7Hz), 8.60(1H, s), 9.65(1H, s).

【0241】実施例79

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メチル-N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号109)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.50(2H, s), 4.56(2H, s), 4.87(2H, s), 5.21(2H, s), 6.60(1H, t, J=7.7Hz), 6.78(1H, d, J=7.3Hz), 6.97(1H, d, J=7.3Hz), 7.17(1H, d, J=7.3Hz), 7.20-7.50(4H, m), 7.60-8.00(4H, m), 8.40-8.60(4H, m), 9.65(1H, s).

IR(KBr)cm⁻¹: 3268, 1700, 1504, 1246, 1120, 940, 714.

【0242】実施例80

N-(2-アミノフェニル)-4-[N-(3-(ピリジン-3-イル)プロピル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号120)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 1.75-1.90(2H, m), 2.48-2.62(2H, m), 3.20-3.36(2H, m), 4.55(2H, s), 4.89(2H, s), 5.16(2H, s), 6.57-6.63(1H, m), 6.76-6.80(1H, m), 6.94-6.99(1H, m), 7.14-7.17(1H, m), 7.32-7.74(6H, m), 7.94(2H, d, J=8.1Hz), 8.30-8.65(4H, m), 9.64(1H, s).

【0243】実施例81

N-(2-ヒドロキシフェニル)-4-[N-(ピリジン-3-イル)メチル-N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号115)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.52(2H, s), 4.57(2H, s), 5.20(2H, s), 6.84(1H, t, J=6.6Hz), 6.93(1H, d, J=6.6Hz), 7.03(1H, d, J=7.3Hz), 7.37(4H, m), 7.68(2H, dd, J=1.5, 8.1Hz), 7.92(2H, br, s), 8.53(4H, m), 9.49(1H, s), 9.77(1H, br, s).

IR(KBr)cm⁻¹: 3035, 1698, 1243, 1118, 754, 640.

【0244】実施例82

N-(2-ヒドロキシフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号111)

mp. 162-164°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.29(1H, d, J=5.9Hz), 5.10(2H, s), 6.83(1H, t, J=8.1Hz), 6.92(1H, d, J=6.6Hz), 7.07(1H, t, J=6.6Hz), 7.39(2H, d, J=8.8Hz), 7.43(1H, d, J=5.1Hz), 7.68(2H, d, J=8.1Hz), 7.80(1H, d, J=8.1Hz), 7.92(2H, d, J=8.1Hz), 7.99(1H, t, J=5.9Hz), 8.54(1H, d, J=4.4Hz), 8.60(1H, s), 9.49(1H, s), 9.76(1H, br, s).

IR(KBr)cm⁻¹: 3353, 3259, 1694, 1645, 1529, 1267, 720.

【0245】実施例83

N-(2,4-ジヒドロキシフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1: 化合物番号116)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.27(2H, d, J=6.6Hz), 5.10(2H, s), 6.20(2H, dd, J=2.2, 8.1Hz), 6.39(2H, d, J=2.9Hz), 6.88(2H, d, J=8.8Hz), 7.33(1H, d, J=8.1Hz), 7.41(1H, dd, J=5.1, 7.1Hz), 7.89(1H, d, J=8.8Hz), 7.98(1H, t, J=6.6Hz), 8.05(2H, s), 8.52(1H, m), 8.59(1H, s), 9.30(2H, br, s).

IR(KBr)cm⁻¹: 3387, 1702, 1612, 1311, 1169, 845.

【0246】実施例84

N-(2-ヒドロキシ-5-メチルフェニル)-4-

(57)

特開平10-152462

[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号118)
mp. 155-155.5°C.

1H NMR(270MHz, DMSO-d6): 2.22(3H, s), 4.29(2H, d, J=5.8Hz), 5.11(2H, s), 6.82(2H, m), 7.39(2H, d, J=8.8Hz), 7.42(2H, m), 7.51(1H, s), 7.79(1H, d, J=8.1Hz), 7.92(1H, d, J=8.1Hz), 7.98(1H, t, J=5.9Hz), 8.54(1H, d, J=4.4Hz), 8.60(1H, s), 9.48(2H, d, J=8.1Hz).

IR(KBr)cm⁻¹: 3306, 1723, 1655, 1525, 801, 639.

【0247】実施例85

N-(2-ヒドロキシ-5-メトキシフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド(表-1:化合物番号119)
mp. 175-176°C.

1H NMR(270MHz, DMSO-d6): 3.69(3H, s), 4.29(2H, d, J=5.9Hz), 5.10(2H, s), 6.63(1H, dd, J=2.9, 8.7Hz), 6.84(1H, d, J=8.8Hz), 7.41(4H, m), 7.79(1H, d, J=8.1Hz), 7.91(1H, d, J=8.1Hz), 7.99(1H, t, J=5.9Hz), 8.54(1H, d, J=5.1Hz), 8.60(1H, s), 9.31(1H, s), 9.45(1H, s).

IR(KBr)cm⁻¹: 3305, 1687, 1573, 1262, 1039, 868.

【0248】実施例86

N-(2-アミノフェニル)-4-[N-[2-(ピリジン-3-イル)エトキシカルボニル]アミノ]ベンズアミド(表-1:化合物番号124)
mp. (amorphous),

1H NMR(270MHz, DMSO-d6) δ ppm: 3.00(2H, t, J=6.6Hz), 4.37(2H, t, J=6.6Hz), 4.87(2H, br. s), 6.60(1H, t, J=7.3Hz), 6.97(1H, t, J=7.3Hz), 7.15(1H, d, J=7.3Hz), 7.36(1H, dd, J=4.4, 8.1Hz), 7.56(2H, d, J=8.8Hz), 7.92(2H, d, J=8.8Hz), 8.46(1H, d, J=4.4Hz), 8.54(1H, d, J=2.2Hz), 9.95(1H, s).

IR(KBr)cm⁻¹: 3285, 1695, 1519, 1315, 1233, 1079.

【0249】実施例87

N-(2-アミノフェニル)-5-[N-(ピリジン-3-イル)メトキシカルボニル]アミノベンゾフラン-2-カルボキシアミド(表-3:化合物番号2)
mp. 173-174°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 5.22(2H, s), 6.60(1H, dd, J=8.1, 8.1Hz), 6.79(1H, dd, J=1.5, 8.1Hz), 7.00(1H, d, J=8.1, 8.1Hz), 7.20(1H, dd, J=1.5, 8.1Hz), 7.44(1H, m), 7.48(1H, dd, J=1.5, 8.8Hz), 7.61(1H, d, J=8.8Hz), 7.67(1H, s), 7.88(1H, dd, J=1.5, 8.1Hz), 7.96(1H, d, J=1.5Hz), 8.56(1H, dd, J=1.5, 4.8Hz), 8.68(1H, d, J=1.5Hz), 9.83(1H, s), 9.91(1H, s).

IR(KBr)cm⁻¹: 3308, 1707, 1667, 1584, 1536, 1452, 1316, 1248, 1157, 1128, 1070, 995, 879, 795, 748, 710.

【0250】実施例88

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシオカルボニルアミノメチル]ベンズアミド(表-1:化合物番号86)の合成

(88-1) 3-ピリジンメタノール20mg(0.18mmol)を5mlの乾燥THFに溶解し、N,N'-チオカルボニルジイミダゾール30mg(0.16mmol)を室温で加えた。終夜攪拌した後、実施例1の工程(1-4)の化合物50mg(0.14mmol)を加えた。

【0251】室温で一夜放置後、クロロホルム100mlを加え、水20mlで3回洗浄した。ついで饱和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去後シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=30:1)で精製し、N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-[N-(ピリジン-3-イル)メトキシオカルボニルアミノメチル]ベンズアミド70mg(收率88%)を得た。

1H NMR(270MHz, DMSO-d6) δ ppm: 1.45(9H, s), 4.73(2H, d, J=5.9Hz), 5.52(2H, s), 6.73-7.33(3H, m), 7.35-7.43(2H, m), 7.58-7.95(5H, m), 8.14-8.65(3H, m), 9.80(1H, s), 9.91(1H, br. t).

【0252】(88-2) 工程(88-1)の化合物50mg(0.10mmol)をメタノール3mlに溶解した。4規定塗酸-ジオキサン溶液3mlを加え、室温で1.5時間攪拌した。希水酸化ナトリウム水溶液にあけ塩酸を中和した後、クロロホルム10mlで3回抽出出した。饱和食塩水で2回洗浄後、無水硫酸マグネシウムで乾燥し、濾紙して34mg(收率87%)のN-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシオカルボニルアミノメチル]ベンズアミドを得た。

mp. 154-156°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.73(2H, d, J=5.9Hz), 4.88(2H, s), 5.52(2H, s), 6.60(1H, t, J=7.3Hz), 6.77(1H, d, J=8.1Hz), 6.96(1H, t, J=8.1Hz), 7.16(1H, d, J=7.3Hz), 7.29-7.41(3H, m), 7.83-7.95(3H, m), 8.50-8.56(1H, m), 8.65(1H, s), 9.62(1H, s), 9.93(1H, s).

IR(KBr)cm⁻¹: 3204, 3035, 1631, 1523, 1456, 1289, 1191, 920, 753.

【0253】実施例89

N-(2-アミノフェニル)-4-[N'-(ピリジン-3-イルメチル)ウレイドメチル]ベンズアミド(表-1:化合物番号88)の合成

(89-1) 3-ビコリルアミノ0.28g(2.6mmol)のTHF(10ml)溶液に室温でN,N'-カルボニルジイミダゾール0.42g(2.4mmol)を加え、1時間攪拌した。この溶液に蜜湯で実施例1の工程(1-4)で得られた化合物0.58g(1.8mmol)を加え、3時間攪拌した後、一晩放置した。

【0254】水を加え希釈した後、酢酸エチルで抽出した。有機層を饱和食塩水で洗浄後、乾燥、溶媒を留去し

て得た残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-メタノール=10:1)で精製して、N-(2-(N-tert-ブトキシカルボニル)アミノ)フェニル-4-[N'-(ビリジン-3-イルメチル)ウレイドメチル]ベンズアミドO. 77g(収率90%)を白色アモルファス状固体として得た。

1H NMR(270MHz, CDCl₃) δ ppm: 1.46(9H,s), 4.20(2H,d, J=5.1Hz), 4.28(2H,d,J=4.3Hz), 6.10-6.30(2H,m), 7.00-7.25(4H,m), 7.33(1H,d,J=7.3Hz), 7.49-7.54(2H,m), 7.58-7.64(3H,m), 7.75(1H,s), 8.28(1H,br.s), 8.39(1H,d,J=5.1Hz), 9.65(1H,br.s).

【0255】(89-2) 工程(89-1)で得た化合物O. 63g(1.32mmol)のジオキサン(4ml)-メタノール(2ml)溶液に4規定塩酸-ジオキサン(4ml)を加え、室温2時間で攪拌した。飽和食塩水を加えた後、酢酸エチル-メチルエチルケトンで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去して得た残渣をジイソプロピルエーテルで洗浄することにより、N-(2-アミノフェニル)-4-[N'-(ビリジン-3-イルメチル)ウレイドメチル]ベンズアミドO. 37g(収率74.7%)を褐色固体として得た。

【0256】mp. (amorphous).

1H NMR(270MHz, DMSO-d₆) δ ppm: 4.27(2H,d,J=5.9Hz), 4.31(2H,d,J=5.9Hz), 4.89(2H,br.s), 6.57-6.63(3H,m), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=7.3,8.1Hz), 7.17(1H,d,J=7.3Hz), 7.32-7.38(3H,m), 7.66(1H,d,J=8.1Hz), 7.93(2H,d,J=8.1Hz), 8.44(1H,d,J=5.1Hz), 8.49(1H,d,J=2.1Hz), 9.63(1H,br.s).

IR(KBr)cm⁻¹: 3344, 3241, 1645, 1560, 1527, 1505, 1283, 751, 708.

【0257】実施例89と同様の方法により、実施例90から実施例95の化合物を合成した。以下に、化合物の融点(mp.)、1H NMR、IRの測定値を示す。

【0258】実施例90

N-(2-アミノフェニル)-4-[N'-(3-アミノフェニル)ウレイドメチル]ベンズアミド(表-1: 化合物番号24)

mp. 206-208°C(dec.).

1H NMR(270MHz, DMSO-d₆) δ ppm: 4.35(2H,d,J=5.9Hz), 4.93(4H,br.s), 6.13(1H,d,J=7.3Hz), 6.51-6.62(3H,m), 6.74-6.98(3H,m), 7.12-7.18(1H,m), 7.41(2H,d,J=8.1Hz), 7.94(2H,d,J=8.1Hz), 8.28(1H,s), 9.61(1H,s).

IR(KBr)cm⁻¹: 3356, 3269, 1640, 1555, 1495, 1458, 1308, 1236, 753.

【0259】実施例91

N-(2-アミノフェニル)-4-[N'-(ビリジン-3-イル)ウレイドメチル]ベンズアミド(表-1: 化合物番号87)

mp. 187-190°C.

1H NMR(270MHz, DMSO-d₆) δ ppm: 4.39(2H,d,J=5.9Hz), 4.89(2H,br.s), 6.59(1H,d,J=7.3,7.3Hz), 6.77(1H,d,J=6.6Hz), 6.88(1H,t,J=5.9Hz), 6.97(1H,ddd,J=1.5,6.6,7.3Hz), 7.15(1H,d,J=8.1Hz), 7.26(1H,dd,J=4.4,8.1Hz), 7.42(2H,d,J=8.8Hz), 7.95(2H,d,J=8.1Hz), 7.89-7.96(1H,m), 8.12(1H,dd,J=1.5,4.4Hz), 8.56(1H,d,J=3.0Hz), 8.85(1H,s), 9.62(1H,s).

IR(KBr)cm⁻¹: 3248, 1663, 1541, 1423, 1280, 1054.

【0260】実施例92

N-(2-アミノフェニル)-4-[N'-(3-アミノフェニル)チオウレイドメチル]ベンズアミド(表-1: 化合物番号25)

mp. 123°C(dec.).

1H NMR(270MHz, DMSO-d₆) δ ppm: 4.80(2H,d,J=5.1Hz), 4.87(2H,s), 5.12(2H,s), 6.36(1H,dd,J=1.5,8.1Hz), 6.48-6.63(3H,m), 6.78(1H,d,J=6.6Hz), 6.94-7.00(2H,m), 7.17(1H,d,J=8.1Hz), 7.42(2H,d,J=8.1Hz), 7.92-8.01(3H,m), 9.46(1H,s), 9.61(1H,s).

IR(KBr)cm⁻¹: 3335, 1616, 1528, 1503, 1456, 1311, 864, 751.

【0261】実施例93

N-(2-アミノフェニル)-4-[N'-(3-ニトロフェニル)チオウレイドメチル]ベンズアミド(表-1: 化合物番号20)

mp. 160°C(dec.).

1H NMR(270MHz, DMSO-d₆) δ ppm: 4.87(2H,d,J=5.1Hz), 7.27-7.33(3H,m), 7.46-7.63(5H,m), 7.89-7.95(2H,m), 8.05(2H,d,J=8.1Hz), 8.70(1H,s), 8.84(1H,t,J=8.9Hz), 10.37(1H,s).

【0262】実施例94

N-(2-アミノ-5-フロロフェニル)-4-[N'-(ビリジン-3-イル)メチルウレイドメチル]ベンズアミド(表-1: 化合物番号112)

mp. (amorphous).

1H-NMR(270MHz, DMSO-d₆): 4.77(4H,d,J=5.1Hz), 4.85(2H,s), 6.81(2H,m), 7.16(1H,dd,J=2.9,10.3Hz), 7.39(1H,dd,J=5.1,8.1Hz), 7.53(2H,d,J=8.1Hz), 7.81(1H,d,J=8.1Hz), 7.93(2H,d,J=8.1Hz), 8.51(1H,dd,J=1.5,5.1Hz), 8.62(1H,d,J=1.5Hz), 9.66(1H,s).

IR(KBr)cm⁻¹: 3399, 1730, 1638, 1508, 1444, 1411.

【0263】実施例95

N-(2-ヒドロキシフェニル)-4-[N'-(ビリジン-3-イル)メチルウレイドメチル]ベンズアミド(表-1: 化合物番号114)

mp. (amorphous).

1H-NMR(270MHz, DMSO-d₆): 4.43(2H,d,J=6.6Hz), 4.69(2H,s), 6.83(1H,t,J=6.6Hz), 6.91(1H,d,J=8.1Hz), 7.68(1H,d,J=6.6Hz), 7.82(2H,d,J=8.1Hz), 8.21(1H,d,J=4.4Hz), 8.35(1H,d,J=2.2Hz), 8.81(1H,t,J=6.6Hz), 9.

(59)

特開平10-152462

48(1H,s), 9.75(1H,s).

IR(KBr)cm⁻¹: 3399, 1664, 1535, 1236, 1064.

【0264】実施例96

N-[2-(2-アミノフェニル)-4-[2-[N-(ピリジン-3-イル)アセチルアミノ]エチル]ベンズアミド(表-1:化合物番号77)の合成

(96-1) テレフタルアルdehyド酸3.40g(2.6mmol)のトルエン(25ml)懸濁液にチオニルクロライド(4ml)を加え、80°Cで2時間加熱攪拌した。放冷後、溶媒を留去して得られた残渣をTHF(50ml)に溶解し、酸クロライドを調製した。実施例1の工程(1-2)の化合物4.16g(20.0mmol)のTHF(10ml)溶液にトリエチルアミン(6ml, 42.8mmol)を加え、さらに先に調製した酸クロライドを冰水冷下30分かけて滴下した。

【0265】5時間攪拌後、飽和食塩水を加え、酢酸エチルで抽出した。有機層を飽和食塩水洗浄後、乾燥、溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム→クロロホルム:酢酸エチル=10:1)で精製し、N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-ホルミルベンズアミド3.42g(収率50.2%)を淡褐色固体として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.52(9H,s), 6.77(1H,br.s), 7.16-7.18(2H,m), 7.23-7.26(1H,m), 7.88(1H,d,J=8.8Hz), 7.98(2H,d,J=8.8Hz), 8.13(2H,d,J=8.8Hz), 9.57(1H,br.s), 10.11(1H,br.s).

IR(KBr)cm⁻¹: 3326, 3251, 1707, 1696, 1659, 1603, 1165.

【0266】(96-2) 工程(96-1)で得られた化合物3.0g(8.82mmol)およびエトキシカルボニルメチルトリフェニルホスフィン4.5g(12.9mmol)のトルエン(10ml)懸濁液を窒素気流下80°Cで、5.5時間攪拌した。放冷後、酢酸エチルで希釈した後、飽和食塩水、水、飽和食塩水で洗浄し、乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:酢酸エチル=20:1)で精製し、エチル 4-[N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]アミノカルボニル]シンナメート3.3g(収率91.1%)を黄色アモルファス状固体として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.35(3H,t,J=7.3Hz), 1.52(9H,s), 4.28(2H,q,J=7.3Hz), 6.52(1H,d,J=15.1Hz), 6.80(1H,br.s), 7.16-7.25(3H,m), 7.61(2H,d,J=8.1Hz), 7.71(1H,d,J=15.1Hz), 7.82(1H,d,J=7.3Hz), 7.98(2H,d,J=8.1Hz), 9.34(1H,br.s).

【0267】(96-3) 工程(96-2)で得られた化合物2.50g(6.09mmol)のTHF(30ml)-メタノール(40ml)溶液に窒素気流下10%Pd/C(含水、0.5g)を加えた後、水素気流下30分間攪拌した。漏斗置換した後、漏斗を満過し

た。沪液の溶媒を留去して得た残渣にジイソプロピルエーテルを加え、析出した固体を沪取、乾燥することによりN-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-(2-エトキシカルボニルエチル)ベンズアミド2.23g(収率88.8%)を白色固体として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.25(3H,t,J=7.3Hz), 1.52(9H,s), 2.65(2H,t,J=7.3Hz), 3.02(2H,t,J=7.3Hz), 4.13(2H,q,J=7.3Hz), 6.77(1H,br.s), 7.16-7.33(5H,m), 7.78(1H,d,J=8.1Hz), 7.89(2H,d,J=8.8Hz), 9.06(1H,br.s).

【0268】(96-4) 工程(96-3)で得られた化合物2.21g(5.36mmol)のメタノール(10ml)-水(15ml)懸濁液に水酸化リチウム1水和物0.37g(8.82mmol)を加え、40°Cで3時間攪拌した。放冷後10%塩酸水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去して得られた残渣をジイソプロピルエーテルを加え、析出した固体を沪取、乾燥することにより、N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-(2-カルボキシエチル)ベンズアミド1.87g(収率90.8%)を白色固体として得た。

¹H NMR(270MHz, DMSO-d₆) δ ppm: 1.45(9H,s), 2.59(2H,t,J=7.3Hz), 2.91(2H,t,J=7.3Hz), 7.13-7.20(2H,m), 7.40(2H,d,J=8.1Hz), 7.54(2H,dd,J=7.3,2.1Hz), 7.88(2H,d,J=8.1Hz), 8.66(1H,br.s), 9.79(1H,br.s).

【0269】(96-5) 工程(96-4)で得られた化合物0.12g(0.3mmol)のベンゼン(5ml)懸濁液にトリエチルアミン0.1ml(0.7mmol)およびモレキュラーシープ4AO.3gを加え、窒素気流下0.5時間攪拌した。この溶液にジフェニルホスホリルアシド0.15ml(0.7mmol)を加え、2時間加熱還流した。放冷後、ベンジルアルコール0.4ml(3.8mmol)を加え、さらに2.5時間加熱還流した。酢酸エチルで希釈した後、水、飽和食塩水で洗浄した。

【0270】有機層を乾燥後、溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:酢酸エチル=4:1)で精製することにより、N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-[2-(N-ベンジルオキシカルボニルアミノ)エチル]ベンズアミド1.29mg(88%)を無色油状物として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.51(9H,s), 2.89(2H,t,J=7.3Hz), 3.45-3.54(2H,m), 4.80(1H,m), 5.10(2H,s), 6.76(1H,br.s), 7.20-7.38(10H,m), 7.79(1H,d,J=8.8Hz), 7.89(2H,d,J=8.1Hz), 9.10(1H,br.s).

【0271】(96-6) 工程(96-5)で得られた化合物1.29mg(0.26mmol)のメタノール

(60)

特開平10-152462

(10ml) 溶液に窒素気流下10%Pd/C(含水, 0.05g)を加え、水素気流下2時間搅拌した。触媒を留去した後、乾燥することにより得られた残渣をジクロロメタン(5ml)に溶解した。この溶液に3-ビリジン酢酸塩0.18g(1.04mmol)を加え、さらにトリエチルアミン0.28g(2.0mmol)を加えて氷冷した。氷冷下、2-クロロ-1,3-ジメチルイミダゾリニウムクロライド0.17g(1.0mmol)を加え、2時間搅拌した。飽和食塩水を加えた後、クロロホルムで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去して得た残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=10:1)で精製することにより、N-[2-(N-tert-エトキシカルボニル)アミノフェニル]-4-[2-[N-(ビリジン-3-イル)アセチルアミノ]エチル]ベンズアミド50mg(収率40%)を無色油状物として得た。

【0272】¹H NMR(270MHz, CDCl₃) δ ppm: 1.48(9H, s), 2.80(2H, t, J=6.6Hz), 3.42(2H, m), 3.52(2H, s), 6.3(1H, t-11ke, J=5.9Hz), 7.09(2H, d, J=8.1Hz), 7.14-7.20(2H, m), 7.24(1H, dd, J=4.4, 7.3Hz), 7.41(1H, dd, J=3, 7.5Hz), 7.50(1H, s), 7.58(1H, dd, J=1.5, 5.9Hz), 7.69(1H, dd, J=3.7, 5.9Hz), 7.75(2H, d, J=8.1Hz), 8.22(1H, d, J=2.1Hz), 8.44(1H, dd, J=1.5, 4.4Hz), 9.49(1H, br. s).

【0273】(96-7) 工程(96-6)の化合物50mg(0.10mmol)のジオキサン(2ml)-メタノール(1ml)溶液に4規定塩酸-ジオキサン(2ml)を加え、室温で2.5時間搅拌した。飽和食塩水を加えた後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去して得られた残渣を乾燥することにより、N-(2-アミノフェニル)-4-[2-[N-(ビリジン-3-イル)アセチルアミノ]エチル]ベンズアミド2.2mg(収率5.9%)をアモルファス状固体として得た。

【0274】mp. (amorphous).
¹H NMR(270MHz, DMSO-d6) δ ppm: 2.70-2.90(4H, m), 3.42(2H, s), 4.89(2H, br. s), 6.60(1H, dd, J=7.3, 7.3Hz), 6.78(1H, d, J=7.3Hz), 6.97(1H, dd, J=7.3, 7.3Hz), 7.16(1H, d, J=7.3Hz), 7.29-7.32(3H, m), 7.59(1H, d, J=8.1Hz), 7.89(1H, d, J=8.1Hz), 8.22(1H, t-11ke), 8.41-8.43(2H, m), 9.62(1H, br. s).

【0275】実施例97

N-(2-アミノフェニル)-4-[2-[N-(3-ビコリル)アミノカルボニル]エチル]ベンズアミド(表-1:化合物番号80)の合成

(97-1) 実施例96の工程(96-4)で得られた化合物0.58g(1.5mmol)のジクロロメタン(5ml)懸濁液に、3-ビコリルアミン0.22g(2.0mmol)およびトリエチルアミン0.56m

l(4.0mmol)を加えた。氷冷下、2-クロロ-1,3-ジメチルイミダゾリニウムクロライド0.39g(2.0mmol)のジクロロメタン(5ml)溶液を加え、1.5時間搅拌した。飽和食塩水を加えた後、クロロホルムで抽出した。

【0276】有機層を水、飽和食塩水で洗浄後、乾燥、溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール:アンモニア水=100:10:1)で精製することにより、N-[2-(N-tert-エトキシカルボニル)アミノフェニル]-4-[2-[N-(3-ビコリル)アミノカルボニル]エチル]ベンズアミド0.71g(収率94%)を淡褐色油状物として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.45(9H, s), 2.42(2H, t, J=7.3Hz), 2.98(2H, t, J=7.3Hz), 4.32(2H, d, J=6.6Hz), 6.44(1H, t, J=6.6Hz), 7.14-7.27(5H, m), 7.49-7.57(3H, m), 7.63-7.68(3H, m), 7.90(1H, d, J=2.1Hz), 8.43(1H, d, J=1.4, 4.4Hz), 9.86(1H, br. s).

【0277】(97-2) 工程(97-1)の化合物0.70g(1.47mmol)のジオキサン(5ml)溶液に4規定塩酸-ジオキサン(5ml)を加え、さらにメタノール(2ml)を加えて室温で2時間搅拌した。飽和食塩水を加えた後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去して得られた残渣にジイソプロピルエーテルを加え、析出した固体を汎取、乾燥することにより、N-(2-アミノフェニル)-4-[2-[N-(3-ビコリル)アミノカルボニル]エチル]ベンズアミド0.42g(収率76.9%)を乳白色固体として得た。

【0278】mp. 168-170°C.
¹H NMR(270MHz, DMSO-d6) δ ppm: 2.47-2.53(2H, m), 2.93(2H, t, J=7.3Hz), 4.27(2H, d, J=5.9Hz), 4.90(2H, br. s), 6.60(1H, dd, J=7.3, 7.3Hz), 6.78(1H, d, J=8.1Hz), 6.97(1H, dd, J=6.6, 7.3Hz), 7.16(1H, d, J=6.6Hz), 7.28-7.35(1H, m), 7.33(2H, d, J=8.1Hz), 7.49(1H, dd, J=2.1, 5.9Hz), 7.89(2H, d, J=8.1Hz), 8.39-8.44(3H, m), 9.62(1H, br. s).

IR(KBr)cm⁻¹: 3313, 1641, 1523, 1457, 1300, 748, 713.

【0279】実施例98

N-(2-アミノフェニル)-4-[2-[N-(3-ビコリル)アミノカルボニルオキシメチル]ベンズアミド(表-1:化合物番号85)の合成
(98-1) メチル 4-ヒドロキシメチルベンゾエート1.99g(12.0mmol)のTHF(20ml)溶液に室温でN, N'-カルボニルジイミダゾール1.78g(11.0mmol)を加え、1時間搅拌した。この溶液に室温で3-ビコリルアミン1.08g(10.0mmol)を加え、3.5時間搅拌した後、一晩放置した。これに水を加え希釈した後、酢酸エチルで抽出した。

(61)

特開平10-152462

【0280】有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去して得た残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製して、N-(4-メトキシカルボニル)ベンジルオキシカルボニル-3-ピコリラミン2.76g(収率91.9%)を白色ワックス状固体として得た。

1H NMR(270MHz, CDCl₃) δ ppm: 3.91(3H,s), 4.40(2H,d, J=5.9Hz), 5.18(2H,s), 5.50(1H,br.s), 7.24-7.28(1H,m), 7.40(2H,d,J=8.1Hz), 7.65(1H,d,J=7.3Hz), 8.02(2H,d,J=8.8Hz), 8.50-8.53(2H,m).

【0281】(98-2) 工程(98-1)の化合物2.40g(8.0mmol)のメタノール(10mL)-水(20mL)懸濁液に、水酸化リチウム1水和物0.42g(10.0mmol)を加え、室温で5時間攪拌した。10%塩酸水溶液を加え、酸性(pH 2~4)にした後、析出した固体を汎取、乾燥することにより、N-(4-カルボキシ)ベンジルオキシカルボニル-3-ピコリラミン1.83g(収率79.9%)を白色固体として得た。

1H NMR(270MHz, DMSO-d₆) δ ppm: 4.24(2H,d,J=5.9Hz), 5.13(2H,s), 7.33-7.38(1H,m), 7.46(2H,d,J=8.1Hz), 7.94(2H,d,J=8.1Hz), 7.95-8.01(1H,m), 8.46(1H,d,J=5.1Hz), 8.49(1H,d,J=1.5Hz), 13.0(1H,br.s).

【0282】(98-3) 工程(98-2)の化合物1.26g(4.4mmol)のジクロロメタン(20mL)懸濁液にオキザリルクロライド1.0mL(1.4mL)を徐々に加え、さらにDMFを数滴加えた後室温で10分間、さらに40°Cで30分間攪拌した。放冷後、溶媒を留去し、更にトルエンで過剰のオキザリルクロライドを留去した。この残渣にジクロロメタン(10mL)を加えた後、氷冷し、さらに実施例1の工程(1-2)で得られた化合物0.83g(4.0mmol)のジクロロメタン(8mL)-ビリジン(8mL)溶液を滴下した後、室温まで昇温させながら7時間攪拌し、一晩放置した。

【0283】飽和重曹水を加えた後、クロロホルムで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去して得られた残渣にトルエンを加え、さらに過剰のビリジンを共沸した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製することによりN-[2-(N-t_{er}t-ブトキシカルボニル)アミノフェニル]-4-[ビリジン-3-イル]メチルアミノカルボニルオキシメチル]ベンズアミド1.40g(収率73.4%)を淡褐色固体として得た。

1H NMR(270MHz, CDCl₃) δ ppm: 1.51(9H,s), 4.40(2H,d, J=5.9Hz), 5.19(2H,s), 5.56(1H,m), 7.07(1H,br.s), 7.14-7.31(4H,m), 7.43(2H,d,J=8.1Hz), 7.65(1H,d,J=8.1Hz), 7.76(1H,d,J=7.3Hz), 7.95(2H,d,J=8.1Hz), 8.52(2H,d,J=4.1Hz), 9.32(1H,br.s).

【0284】(98-4) 工程(98-3)の化合物

1.00g(2.10mmol)のジオキサン(10mL)-メタノール(2mL)溶液に室温で4規定塩酸-ジオキサン(9mL)を加えて2時間攪拌した。飽和重曹水を加えた後、酢酸エチル-メチルエチルケトン(1:1)で抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去し、得られた残渣にメタノール-ジイソプロピルエーテルを加え、生成した固体を汎取、乾燥することにより、N-(2-アミノフェニル)-4-[ビリジン-3-イル]メチルアミノカルボニルオキシメチル]ベンズアミド0.79g(定量的)を白色固体として得た。

【0285】mp. 139-141°C

1H NMR(270MHz, DMSO-d₆) δ ppm: 4.25(2H,d,J=5.9Hz), 4.90(2H,s), 5.13(2H,s), 6.60(1H,dd,J=6.6,7.3Hz), 6.78(1H,d,J=7.3Hz), 6.97(1H,dd,J=6.6,7.3Hz), 7.17(1H,d,J=7.3Hz), 7.36(1H,dd,J=4.4,8.1Hz), 7.47(2H,d,J=8.1Hz), 7.67(1H,d,J=8.1Hz), 7.97(2H,d,J=7.3Hz), 7.90-8.00(1H,m), 8.46(1H,dd,J=1.5,5.1Hz), 8.49(1H,d,J=2.1Hz), 9.65(1H,br.s).

IR(KBr)cm⁻¹: 3326(br), 1694, 1637, 1526, 1458, 1147, 750, 712.

【0286】実施例9-9

N-(2-アミノフェニル)-4-[3-(イミダゾール-1-イル)プロピルアミノカルボニルオキシメチル]ベンズアミド(表-1: 化合物番号215)

実施例9-8と同様の方法により合成した。

mp. (amorphous).

1H NMR(270MHz, DMSO-d₆) δ ppm: 1.80-1.89(2H,m), 2.94-3.02(2H,m), 3.98(2H,t,J=7.3Hz), 4.88(2H,s), 5.11(2H,s), 6.55-6.63(1H,m), 6.76-6.97(3H,m), 7.10-7.18(2H,m), 7.43-7.48(3H,m), 7.61(1H,s), 7.98(2H,d,J=8.1Hz), 9.66(1H,s).

【0287】実施例100

N-(2-アミノフェニル)-4-(フェニルアセチルアミノ)ベンズアミド(表-1: 化合物番号2)の合成(100-1) 実施例1の工程(1-2)で得た化合物16.6g(80mmol)のジクロロメタン(120mL)溶液にトリエチルアミン16.8mL(120mmol)を加え、さらに氷冷下、4-ニトロベンゾイルクロライド16.0g(86.4mmol)のジクロロメタン(40mL)溶液を徐々に加えた後、7時間攪拌した。飽和重曹水を加えた後、クロロホルムで抽出した。

【0288】有機層を1規定塩酸水溶液、飽和重曹水、飽和食塩水で洗浄した後、乾燥、溶媒を留去した。得られた残渣をジイソプロピルエーテルで洗浄することにより、N-[2-(N-t_{er}t-ブトキシカルボニルアミノ)フェニル]-4-ニトロベンズアミド28.0g(収率98%)を淡黄色固体として得た。

1H NMR(270MHz, CDCl₃) δ ppm: 1.53(9H,s), 7.17-7.29

(62)

特開平10-152462

(4H, m), 7.85(1H, br.d, J=7.3Hz), 8.17(2H, d, J=8.8Hz), 8.32(2H, d, J=8.8Hz), 9.88(1H, br.s).

【0289】(100-2) 工程(100-1)で得た化合物24.0g(67.2mmol)のTHF(80ml)-メタノール(80ml)混合溶液に窒素気流下10%Pd/C(含水, 2.4g)を加え、水素気流下1.5時間搅拌した。水素の吸収が停止した後、触媒を沪別、溶媒を留去して得られた残渣にジイソプロピルエーテルおよび酢酸エチルを加え、得られた固体を沪取、乾燥することにより、N-[2-(N-tert-ブトキシカルボニルアミノ)フェニル]-4-アミノベンズアミド18.96g(収率86%)を白色固体として得た。

1H NMR(270MHz, DMSO-d6) δ ppm: 1.46(9H, s), 5.84(2H, s), 6.61(2H, d, J=8.8Hz), 7.10-7.18(2H, m), 7.46-7.55(2H, m), 7.68(2H, d, J=8.8Hz), 8.67(1H, s), 9.49(1H, s).

【0290】(100-3) 工程(100-2)で得た化合物1.6g(4.88mmol)の塩化メチレン溶液(15ml)に、ビリジン0.8ml(9.9mmol)、フェニルアセチルクロライド0.96ml(7.26mmol)を加え1日間搅拌した。反応終了後、水を加え、析出した結晶を沪取し、N-[2-(N-tert-ブトキシカルボニルアミノ)フェニル]-4-(フェニルアセチルアミノ)ベンズアミド1.66g(収率76%)を得た。

【0291】(100-4) 工程(100-3)で得た化合物1g(2.24mmol)のアセトニトリル溶液(25ml)に室温でヨードトリメチルシリラン0.88ml(6.18mmol)を加え3時間搅拌した。反応終了後、溶媒を濃縮し得られた残留物をメタノールから再結晶して、N-(2-アミノフェニル)-4-(フェニルアセチルアミノ)ベンズアミド0.29g(収率38%)を白色結晶として得た。

【0292】mp. 232-237°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.69(2H, s), 4.90(2H, s), 6.60(1H, t, J=7.3Hz), 6.77(1H, d, J=7.3Hz), 6.96(1H, t, J=7.3Hz), 7.15(1H, d, J=7.4Hz), 7.22-7.35(5H, m), 7.72(2H, d, J=8.8Hz), 7.95(2H, d, J=8.8Hz), 9.57(1H, s), 10.43(1H, s). IR(KBr)cm⁻¹: 2937, 2764, 1660, 1598, 1506, 1459.

【0293】実施例100と同様の方法により、実施例101から実施例128の化合物を合成した。以下に、化合物の融点(mp.)、1H NMR、IRの測定値を示す。

【0294】実施例101

N-(2-アミノフェニル)-4-(4-フェニルブタノイル)アミノ]ベンズアミド(表-1:化合物番号4)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 1.91(2H, hep, J=7.3H

z), 2.37(2H, t, J=7.3Hz), 2.64(2H, t, J=7.3Hz), 5.0(2H, br.s), 6.61(1H, t, 7.0Hz), 6.79(1H, dd, J=1.5, 8.1Hz), 6.97(1H, t, J=7.0Hz), 7.10-7.40(6H, m), 7.71(2H, d, J=8.8Hz), 7.94(2H, d, J=8.8Hz), 9.57(1H, s), 10.15(1H, s). IR(KBr)cm⁻¹: 3344, 1687, 1603, 1542, 1460, 1315, 1033, 842, 737.

【0295】実施例102

N-(2-アミノフェニル)-4-[4-クロロフェニルアセチル]アミノ]ベンズアミド(表-1:化合物番号15)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.72(2H, s), 7.29-7.43(8H, m), 7.77(2H, d, J=8.8Hz), 8.00(2H, d, J=8.8Hz), 10.29(1H, s), 10.52(1H, s). IR(KBr)cm⁻¹: 3300, 2868, 1664, 1638, 1520.

【0296】実施例103

N-(2-アミノフェニル)-4-[2-ニトロフェニルアセチル]アミノ]ベンズアミド 塩酸塩(表-1:化合物番号19の塩酸塩)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.20(2H, s), 7.20-7.30(3H, m), 7.40-7.45(1H, m), 7.60(2H, d), 7.71-7.77(3H, m), 8.02-8.10(4H, m), 10.27(1H, br.s), 10.64(1H, br.s).

IR(KBr)cm⁻¹: 3263, 1676, 1647, 1518, 1184, 759.

【0297】実施例104

N-(2-アミノフェニル)-4-[4-ニトロフェニルアセチル]アミノ]ベンズアミド(表-1:化合物番号21)

mp. 222-225°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.90(2H, s), 4.96(2H, br.s), 6.60(1H, dt, J=1.5, 6.6Hz), 6.78(1H, dd, J=1.5, 6.6Hz), 6.97(1H, dt, J=1.5, 6.6Hz), 7.15(1H, dd, J=1.5, 6.6Hz), 7.63(2H, d, J=8.8Hz), 7.71(2H, d, J=8.8Hz), 7.95(2H, d, J=8.8Hz), 8.22(2H, d, J=8.8Hz), 9.59(1H, s), 10.54(1H, s).

IR(KBr)cm⁻¹: 3395, 3334, 1671, 1630, 1519, 1346.

【0298】実施例105

N-(2-アミノフェニル)-4-[2-アミノフェニルアセチル]アミノ]ベンズアミド(表-1:化合物番号22)

mp. 177-182°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.54(2H, s), 4.88(2H, br.s), 5.09(2H, br.s), 6.55(1H, dd, J=6.6, 7.3Hz), 6.59(1H, dd, J=7.3, 7.3Hz), 6.68(1H, d, J=7.3Hz), 6.78(1H, d, J=7.3Hz), 6.96(2H, dd, J=7.3, 7.3Hz), 7.06(1H, d, J=6.6Hz), 7.15(1H, d, J=7.3Hz), 7.71(2H, d, J=8.8Hz), 7.95(2H, d, J=8.8Hz), 9.57(1H, br.s), 10.39(1H, br.s). IR(KBr)cm⁻¹: 3374, 3256(br.), 1683, 1597, 1503, 1317, 1262, 1180, 1153, 747.

(63)

特開平10-152462

【0299】実施例106

N-(2-アミノフェニル)-4-[4-アミノフェニルアセチル]アミノベンズアミド(表-1:化合物番号26)

mp. 219-226°C(dec.)

1H NMR(270MHz, DMSO-d6) δ ppm: 3.46(2H,s), 4.93(4H,br.s), 6.52(2H,d,J=8.1Hz), 6.59(1H,dt,J=1.5,7.3Hz), 6.77(1H,dd,J=1.4,7.3Hz), 6.97(1H,dt,J=1.4,7.3Hz), 6.99(2H,d,J=8.1Hz), 7.15(1H,dd,J=1.5,7.3Hz), 7.70(2H,d,J=8.8Hz), 7.93(2H,d,J=8.8Hz).

IR(KBr)cm⁻¹: 3278, 3032, 1675, 1628, 1516.

【0300】実施例107

N-(2-アミノフェニル)-4-[4-メトキシフェニルアセチル]アミノベンズアミド(表-1:化合物番号32)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.62(2H,s), 3.74(3H,s), 6.90(2H,d,J=8.8Hz), 7.26(2H,d,J=8.8Hz), 7.30(3H,m), 7.39(1H,s), 7.77(2H,d,J=8.8Hz), 7.99(2H,d,J=8.8Hz), 10.26(1H,s), 10.44(1H,s).

IR(KBr)cm⁻¹: 3300, 2759, 1670, 1638, 1514, 1250.

【0301】実施例108

N-(2-アミノフェニル)-4-[4-(N,N-ジメチルアミノ)フェニルアセチル]アミノベンズアミド(表-1:化合物番号59)

mp. 140°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.04(6H,s), 3.67(2H,s), 7.16(2H,d,J=8.1Hz), 7.29-7.40(6H,m), 7.76(2H,d,J=8.8Hz), 7.99(2H,d,J=8.8Hz), 10.29(1H,s), 10.47(1H,s).

IR(KBr)cm⁻¹: 3244, 2951, 2639, 1647, 1599, 1507.

【0302】実施例109

N-(2-アミノフェニル)-4-[4-トリフルオロメチルフェニルアセチル]アミノベンズアミド(表-1:化合物番号43)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.84(2H,s), 6.89(1H,t,J=7.4Hz), 7.00(1H,d,J=7.4Hz), 7.11(1H,t,J=7.4Hz), 7.25(1H,d,J=7.4Hz), 7.57(2H,d,J=8.8Hz), 7.71(2H,d,J=8.8Hz), 7.73(2H,d,J=8.8Hz), 7.97(2H,d,J=8.8Hz), 9.87(1H,s), 10.54(1H,s).

IR(KBr)cm⁻¹: 3260, 1664, 1605, 1521, 1327, 1119.

【0303】実施例110

N-(2-アミノフェニル)-4-[4-(ビリジン-2-イル)アセチルアミノ]ベンズアミド 2塩酸塩(表-1:化合物番号174の塩酸塩)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.60(2H,s), 7.30-7.46(3H,m), 7.56(1H,d,J=7.4Hz), 7.79(2H,d,J=8.8Hz), 7.95(1H,t,J=6.6Hz), 8.01(1H,d,J=7.4Hz), 8.11(2H,d,

J=8.8Hz), 8.49(1H,t,J=7.4Hz), 8.87(1H,d,J=5.1Hz), 10.46(1H,s).

【0304】実施例111

N-(2-アミノフェニル)-4-[4-(ビリジン-3-イル)アセチルアミノ]ベンズアミド 2塩酸塩(表-1:化合物番号68の塩酸塩)

mp. 182-189°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.12(2H,s), 7.29-7.59(4H,m), 7.80(2H,d,J=8.8Hz), 8.05(1H,m), 8.11(2H,d,J=8.8Hz), 8.57(1H,d,J=8.1Hz), 8.85(1H,d,J=5.2Hz), 8.95(1H,s), 10.25(1H,s), 10.48(1H,s).

【0305】実施例112

N-(2-アミノフェニル)-4-[4-(ビリジン-3-イル)プロパノイル]アミノベンズアミド(表-1:化合物番号69)

mp. 184-186°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.80(2H,t,J=7.3Hz), 3.08(2H,t,J=7.3Hz), 6.87(1H,t,J=8.0Hz), 6.99(1H,d,d,J=1.4,8.0Hz), 7.11(1H,dt,J=1.4,8.0Hz), 7.25(1H,d,J=8.0Hz), 7.70(2H,d,J=8.8Hz), 7.77(1H,dd,J=5.8,8.0Hz), 7.95(2H,d,J=8.8Hz), 8.22(1H,d,J=8.0Hz), 8.75(1H,d,J=1.4Hz), 9.83(1H,s), 10.25(1H,s).

【0306】実施例113

N-(2-アミノフェニル)-2-クロロ-4-[3-(ビリジン-3-イル)プロパノイルアミノ]ベンズアミド(表-1:化合物番号123)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 2.70(2H,t,J=8.1Hz), 2.96(2H,t,J=7.3Hz), 4.74(2H,br.s), 6.60(1H,t,J=6.6Hz), 6.78(1H,d,J=6.6Hz), 6.95(1H,t,J=6.6Hz), 7.19(1H,dd,J=1.5,7.3Hz), 7.29(1H,dd,J=5.1,7.3Hz), 7.66(2H,d,J=8.8Hz), 7.92(2H,d,J=8.8Hz), 8.48(1H,d,J=2.2Hz), 9.37(1H,s), 10.00(1H,s).

IR(KBr)cm⁻¹: 3273, 1675, 1519, 1315, 1181, 852, 747.

【0307】実施例114

N-(2-アミノフェニル)-4-[4-(ビリジン-3-イル)メチル-N-トリフルオロアセチルアミノ]アセチルアミノベンズアミド(表-1:化合物番号107)

mp. 145°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.18 and 4.42(total 2H,s), 4.73 and 4.83(total 2H,s), 4.87(2H,br.s), 6.60(1H,dd,J=7.3,8.1Hz), 6.78(1H,d,J=8.1Hz), 6.96(1H,dd,J=7.3,7.3Hz), 7.16(1H,d,J=8.1Hz), 7.35-7.45(1H,m), 7.66(2H,d,J=5.9Hz), 7.70-7.80(1H,m), 7.90-8.00(2H,m), 8.51-8.55(1H,m), 8.58(1H,s), 9.60(1H,br.s), 10.36 and 10.43(total 1H,br.s).

【0308】実施例115

N-(2-アミノフェニル)-4-[4-(ビリジン-3-イル)メチルアミノ]アセチルアミノベンズア

(64)

特開平10-152462

ミド(表-1:化合物番号105)

mp. 160°C(dec.)

1H NMR(270MHz, DMSO-d6) δ ppm: 3.30(2H,s), 3.79(2H,s), 4.88(2H,s), 6.60(1H,dd,J=7.3,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=7.3,8.1Hz), 7.16(1H,d,J=8.1Hz), 7.74(2H,d,J=8.8Hz), 7.80(1H,d,J=7.3Hz), 7.95(2H,d,J=8.1Hz), 8.46(1H,d,J=3.7Hz), 8.57(1H,s), 9.57(1H,s), 10.08(1H,br.s).
IR(KBr)cm-1: 3298, 1693, 1637, 1602, 1544, 1454, 1262, 848, 762.

【0309】実施例116

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メチルオキサモイルアミノ]ベンズアミド(表-1:化合物番号104)
mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.43(2H,d,J=6.6Hz), 4.90(2H,br.s), 6.60(1H,dd,J=6.6,7.3Hz), 6.78(1H,d,J=7.3Hz), 6.97(1H,ddd,J=1.5,6.6,7.3Hz), 7.16(1H,d,J=7.3Hz), 7.37(1H,dd,J=4.4,8.1Hz), 7.73(1H,d,J=8.1Hz), 7.96 and 7.96(4H,AA'BB',J=9.4Hz), 8.47(1H,dd,J=1.5,5.1Hz), 8.56(1H,d,J=1.5Hz), 9.59(1H,s), 9.67(1H,t,J=6.6Hz), 10.92(1H,br.s).
IR(KBr)cm-1: 3299, 1644, 1518, 1320, 1119, 748.

【0310】実施例117

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メチル-N-ニコチノイルアミノ]アセチルアミノ]ベンズアミド(表-1:化合物番号106)
mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.11(major 2H,s), 4.26(minor 2H,s), 4.75(major 2H,s), 4.65(minor 2H,s), 4.88(total 2H,br.s), 6.60(total 1H,dd,J=7.3,8.1Hz), 6.78(total 1H,d,J=7.3Hz), 6.97(total 1H,dd,J=7.3,8.1Hz), 7.15(total 1H,d,J=8.1Hz), 7.41-7.95(total 8H,m), 8.46-8.52(total 1H,m), 8.63-8.70(total 2H,m), 9.59(total 1H,s), 10.22(major 1H,br.s), 10.37(minor 1H,br.s).
IR(KBr)cm-1: 3269, 1701, 1637, 1603, 1534, 1506, 1312, 1254, 752.

【0311】実施例118

N-(2-アミノフェニル)-4-[4-(ピリジン-3-イル)ブタノイル]アミノ]ベンズアミド(表-1:化合物番号70)
mp. 165-167°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 1.88-1.99(2H,m), 2.68(2H,t,J=7.3Hz), 2.39(2H,t,J=7.3Hz), 6.78-6.81(1H,m), 6.94-6.99(1H,m), 7.15-7.18(1H,m), 7.34-7.39(1H,m), 7.69-7.72(3H,m), 7.94(2H,d,J=8.8Hz), 8.43-8.48(2H,m).
IR(KBr)cm-1: 3291, 1660, 1626, 1308, 1261, 1182, 1027, 825, 747.

【0312】実施例119

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メチル-N-メチルアミノ]アセチルアミノ]ベンズアミド(表-1:化合物番号108)
mp. 154-155°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.28(3H,s), 3.27(2H,s), 3.71(2H,s), 4.88(2H,br.s), 6.60(1H,dd,J=6.6,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=7.3,8.1Hz), 7.16(1H,d,J=8.1Hz), 7.38(1H,dd,J=2.9,8.1Hz), 7.77(2H,d,J=8.8Hz), 7.75-7.85(1H,m), 7.95(2H,d,J=8.8Hz), 8.47(1H,d,J=1.5Hz), 8.49(1H,s), 9.56(1H,s), 10.02(1H,br.s).

【0313】実施例120

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)オキシアセチルアミノ]ベンズアミド(表-1:化合物番号65)
mp. 175-179°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.86(2H,s), 4.90(2H,br.s), 6.60(1H,d,J=7.3,7.3Hz), 6.78(1H,d,J=7.3Hz), 6.97(1H,dd,J=6.6,7.3Hz), 7.16(1H,d,J=8.1Hz), 7.34-7.47(2H,m), 7.76(2H,d,J=8.8Hz), 7.98(2H,d,J=8.8Hz), 8.22(1H,d,J=3.6Hz), 8.39(1H,d,J=2.9Hz), 9.60(1H,br.s), 10.40(1H,br.s).
IR(KBr)cm-1: 3321, 1655, 1530, 1276, 1231, 1068, 757.

【0314】実施例121

N-(2-アミノフェニル)-4-[4-(ピリジン-3-イル)-1,4-ジオキソブチルアミノ]ベンズアミド(表-1:化合物番号99)
mp. 190-194°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.08(2H,t,J=6.4Hz), 3.41(2H,t,J=6.4Hz), 4.86(2H,s), 6.59(1H,t,J=5.6Hz), 6.78(1H,d,J=7.9Hz), 6.96(1H,t,J=7.4Hz), 7.15(1H,d,J=7.9Hz), 7.58(1H,dd,J=4.9,7.9Hz), 7.70(2H,d,J=8.9Hz), 7.94(2H,d,J=8.9Hz), 8.35(1H,d,J=7.9Hz), 8.81(1H,d,J=4Hz), 9.18(1H,s), 9.56(1H,s), 10.32(1H,s).
IR(KBr)cm-1: 3317, 1691, 1652, 1601, 1522, 1312, 982, 847, 764, 701.

【0315】実施例122

N-(2-アミノフェニル)-4-[3-[N-(ピリジン-3-イル)アミノ]-1,3-ジオキソプロピルアミノ]ベンズアミド(表-1:化合物番号94)
mp. 196°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.57(2H,s), 4.87(2H,s), 6.57-6.62(1H,m), 6.76-6.79(1H,m), 6.94-6.99(1H,m), 7.14-7.17(1H,m), 7.33-7.38(1H,m), 7.73(2H,d,J=8.8Hz), 7.97(2H,d,J=8.8Hz), 8.05-8.08(1H,m), 8.27-8.30(1H,m), 8.75-8.76(1H,m), 9.59(1H,s), 10.44(1H,s), 10.47(1H,s).
IR(KBr)cm-1: 3410, 3315, 1685, 1655, 1625, 1536, 1428, 13

(65)

特開平10-152462

62,1263,1201,744.

【0316】実施例123

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシアセチルアミノ]-3-メチルベンズアミド(表-1:化合物番号102)
mp. 178-181°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 2.28(3H,s), 4.22(2H,s), 4.71(2H,s), 4.89(2H,br.s), 6.60(1H,dd,J=7.3,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=7.3,8.1Hz), 7.16(1H,d,J=7.3Hz), 7.43(1H,dd,J=4.4,8.1Hz), 7.71(1H,d,J=8.1Hz), 7.79-7.89(3H,m), 8.54(1H,dd,J=1.5,4.4Hz), 8.66(1H,d,J=1.5Hz), 9.36(1H,br.s), 9.60(1H,br.s).

IR(KBr)cm⁻¹: 3394,3269,1683,1630,1593,1521,1460,1131,750,716.

【0317】実施例124

N-(2-アミノフェニル)-4-[N-(チオフェン-3-イル)メトキシアセチルアミノ]ベンズアミド(表-1:化合物番号204)
mp. 186-189°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.11(2H,s), 4.63(2H,s), 4.89(2H,br.s), 6.60(1H,dd,J=7.3,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=7.3,7.3Hz), 7.12-7.19(2H,m), 7.53-7.57(2H,m), 7.78(2H,d,J=8.8Hz), 7.95(2H,d,J=8.8Hz), 9.58(1H,br.s), 10.04(1H,br.s).

IR(KBr)cm⁻¹: 3341,3248,1694,1631,1611,1506,1314,1126.

【0318】実施例125

N-(2-アミノフェニル)-4-[N-メチル-N-(ピリジン-3-イル)メトキシアセチルアミノ]ベンズアミド(表-1:化合物番号103)
mp. 180-183°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.24(3H,s), 4.08(2H,br.s), 4.50(2H,s), 4.94(2H,br.s), 6.60(1H,dd,J=7.3,7.3Hz), 6.79(1H,d,J=8.1Hz), 6.98(1H,dd,J=7.3,8.1Hz), 8.03(1H,d,J=8.1Hz), 8.48-8.50(2H,m), 9.72(1H,br.s).

IR(KBr)cm⁻¹: 3395,3283,1683,1639,1604,1506,1459,1307,1124.

【0319】実施例126

N-(2-アミノフェニル)-4-[N-(ピリジン-2-イル)メトキシアセチルアミノ]ベンズアミド(表-1:化合物番号176)
mp. 171-173°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.26(2H,s), 4.74(2H,s), 4.89(2H,br.s), 6.60(1H,dd,J=6.6,8.1Hz), 6.78(1H,d,J=7.3Hz), 6.97(1H,ddd,J=1.5,7.3,8.1Hz), 7.16(1H,d,J=7.3Hz), 7.35(1H,dd,J=5.1,6.6Hz), 7.80(2H,d,J=8.1Hz), 7.80-7.89(1H,m), 7.97(2H,d,J=8.1Hz), 8.59(1H,d,J=4.4Hz), 9.59(1H,br.s), 10.30(1H,br.s).

IR(KBr)cm⁻¹: 3391,3258,1678,1629,1593,1517,1128,767,742.

【0320】実施例127

N-(2-アミノフェニル)-4-[N-(N-ニコチノイルアミノ)アセチルアミノ]ベンズアミド(表-1:化合物番号97)
mp. 218-220°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.13(2H,d,J=5.9Hz), 4.89(2H,s), 6.59(1H,dd,J=7.3,7.3Hz), 6.77(1H,d,J=8.1Hz), 6.96(1H,dd,J=7.3,8.1Hz), 7.15(1H,d,J=7.3Hz), 7.55(1H,dd,J=5.1,8.1Hz), 7.73(2H,d,J=8.8Hz), 7.95(2H,d,J=8.8Hz), 8.25(1H,d,J=8.1Hz), 8.74(1H,d,J=5.1Hz), 9.07(1H,d,J=1.5Hz), 9.13(1H,t-like,J=5.9Hz), 9.58(1H,s), 10.36(1H,s).

【0321】実施例128

N-(2-アミノフェニル)-5-[3-(ピリジン-3-イル)プロピオニアミド]ベンズフラン-2-カルボキシアミド(表-3:化合物番号1)
mp. 257-272°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 2.51(2H,t,J=7.3Hz), 2.97(2H,t,J=7.3Hz), 6.61(1H,dd,J=8.1,8.8Hz), 6.80(1H,dd,J=1.5,8.1Hz), 6.99(1H,dd,J=8.1,8.8Hz), 7.20(1H,dd,J=1.5,8.1Hz), 7.32(1H,dd,J=5.2,8.1Hz), 7.49(1H,dd,J=1.5,8.8Hz), 7.61(1H,d,J=8.8Hz), 7.67(1H,s), 7.70(1H,m), 8.15(1H,d,J=1.5Hz), 8.40(1H,dd,J=1.5,5.2Hz), 8.51(1H,d,J=1.5Hz), 9.84(1H,s), 10.1(1H,s).

IR(KBr)cm⁻¹: 3333,3272,1666,1583,1561,1458,1314,1247,1143,807,746,713.

【0322】実施例129

N-(2-アミノフェニル)-4-[N-[2-(ピリジン-3-イル)オキシプロピオニル]アミノ]ベンズアミド(表-4:化合物番号2)の合成

(129-1) 実施例47の工程(47-2)で得た化合物0.34g(1.2mmol)、実施例100の工程(100-2)で得た化合物0.34g(1.0mmol)をジクロロメタン(10ml)に溶解し、さらにトリエチラミン0.5ml(3.6mmol)を加えた。この溶液を氷冷下、2-クロロ-1,3-ジメチルイミダゾリニウムクロライド0.21g(1.24mmol)のジクロロメタン(5ml)溶液を加え、氷冷下さらに2時間攪拌した。飽和塩水を加え中和した後、水で希釈してクロロホルムで抽出した。

【0323】有機層を飽和食塩水で洗浄後、乾燥、溶媒留去して得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=10:1)で精製することにより、N-[2-(N-tert-ブトキシカルボニルアミノ)フェニル]-4-[N-[2-(ピリジン-3-イル)オキシプロピオニル]アミノ]ベンズアミド0.68gを1,3-ジメチル-2-イミダゾリ

(66)

特開平10-152462

ノンの混合物として得た。

¹H-NMR(270MHz, CDCl₃) δ ppm: 1.52(9H,s), 1.70(3H,d, J=6.6Hz), 4.84(1H,q,J=6.6Hz), 6.89(1H,br.s), 7.12-7.31(6H,m), 7.68(2H,d,J=8.8Hz), 7.79(1H,d,J=8.1Hz), 7.96(2H,d,J=8.8Hz), 8.34(1H,d,J=2.9,2.9Hz), 8.43(1H,d,J=1.5Hz), 9.25(1H,br.s),

【0324】(129-2) 工程(129-1)で得た化合物O. 68gのジクロロメタン(5mL)溶液に室温で15% (v o l/v o l) トリフルオロ酢酸・ジクロロメタン溶液(10mL)を加え室温で4.5時間搅拌した。飽和重曹水を加え中和した後ジクロロメタンを留去した。この溶液を酢酸エチルで抽出した。有機層を饱和食塩水で洗浄後、乾燥、溶液留去して得た残渣にメタノールおよびジイソプロピルエーテルを加え析出した沈澱を汎取、乾燥することにより、N-(2-アミノフェニル)-4-[N-(2-(ビリジン-3-イル)オキシプロピオニル)アミノ]ベンズアミドO. 22g (2 steps, 収率58%)を乳白色固体として得た。

mp. 193-196°C.

¹H-NMR(270MHz, DMSO-d₆) δ ppm: 1.60(3H,d,J=6.6Hz), 4.88(2H,br.s), 5.04(1H,q,J=6.6Hz), 6.60(1H,dd,J=6.6,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=7.3,8.1Hz), 7.15(1H,d,J=7.3Hz), 7.32-7.39(2H,m), 7.75(2H,d,J=8.8Hz), 7.96(2H,d,J=8.1Hz), 8.20(1H,dd,J=1.5,3.7Hz), 8.35(1H,d,J=2.1Hz), 9.59(1H,br.s), 10.44(1H,br.s).

【0325】実施例130

N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシアセチルアミノ]ベンズアミド(表-1: 化合物番号101)の合成

(130-1) 水素化ナトリウム(60%油懸濁状)4.4g(11.0mmol)のTHF(300mL)懸濁液に、室温で3-ビリジンメタノール10.91g(10.0mmol)のTHF(20mL)溶液を滴下した後、室温で2時間搅拌した。得られた白色懸濁液を氷冷し、内温10~12°Cを保ちながらプロモ酢酸tert-ブチル19.51g(10.0mmol)のTHF(20mL)溶液を滴下した。この懸濁液を室温まで昇温せながら3時間搅拌した後、一晩放置した。水および飽和重曹水を加えた後、酢酸エチルで抽出した。有機層を饱和食塩水で洗浄後、乾燥し、溶液留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ニーハキサン:酢酸エチル=1:1→酢酸エチル)で精製し、(ビリジン-3-イル)メトキシ酢酸tert-ブチルエステル7.56g(33.8%)を茶色油状物として得た。

【0326】¹H NMR(270MHz, CDCl₃) δ ppm: 1.49(9H,s), 4.03(2H,s), 4.64(2H,s), 7.30(1H,dd,J=4.9,7.3Hz), 7.76(1H,d,J=7.3Hz), 8.56(1H,d,J=4.9Hz), 8.60(1

H,s).

(130-2) 工程(130-1)で得た化合物3. 5g(15.7mmol)に氷冷下トリフルオロ酢酸(12mL)を加えた後、室温で6時間搅拌した。その後トリフルオロ酢酸を一部留去し(ビリジン-3-イル)メトキシ酢酸とトリフルオロ酢酸の混合物5. 5gを得た。これにジクロロメタン(70mL)を加え溶解させた後、ビリジン(25mL)を加えた。さらに実施例100の工程(100-2)で得られた化合物4. 26g(13mmol)を加えた。氷冷下、2-クロロ-1,3-ジメチルイミダゾリニウムクロライド2.37g(14.0mmol)のジクロロメタン(20mL)溶液を30分かけて徐々に滴下した。

【0327】氷冷下さらに5時間搅拌した後、飽和重曹水を加え、室温で発泡が止まるまで搅拌した。クロロホルムで抽出し、得られた有機層を饱和食塩水で洗浄後、乾燥、溶液留去して得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル→酢酸エチル:メタノール=10:1)で精製して、N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-[N-(ビリジン-3-イル)メトキシアセチルアミノ]ベンズアミド4. 78g(収率62%)をDMI(1,3-ジメチル-2-イミダゾリノン)との1:1(mol)混合物として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.51(9H,s), 4.15(2H,s), 4.70(2H,s), 6.92(1H,br.e), 7.15-7.29(3H,m), 7.37(1H,dd,J=7.3,5.1Hz), 7.67(2H,d,J=8.8Hz), 7.71-7.79(2H,m), 7.96(2H,d,J=8.8Hz), 8.41(1H,s), 8.62-8.66(2H,s), 9.23(1H,br.s).

【0328】(130-3) 工程(130-2)で得られた化合物2. 39g(4.0mmol)のジクロロメタン(28mL)溶液に15% (v o l/v o l) トリフルオロ酢酸・ジクロロメタン溶液(55mL)を加え室温で7時間搅拌した。飽和重曹水を加え、中和した後に水を加え室温で搅拌した。反応混合物を酢酸エチル-メチルエチルケトン(2:1)、酢酸エチル-THF(2:1)、酢酸エチルで順に抽出し、全有機層を饱和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。乾燥剤を汎別した後、汎液を濃縮し、得られた残渣にメタノールおよびジイソプロピルエーテルを加え析出した固体を汎取、乾燥することにより、N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシアセチルアミノ]ベンズアミド1.29g(収率85.6%)を茶褐色固体として得た。

【0329】¹H NMR(270MHz, DMSO-d₆) δ ppm: 4.19(2H,s), 4.68(2H,s), 4.90(2H,br.s), 6.60(1H,dd,d,J=1.5,7.3,8.1Hz), 6.78(1H,dd,J=1.5,8.1Hz), 6.97(1H,dd,J=7.3,7.3Hz), 7.15(1H,d,J=7.3Hz), 7.42(1H,dd,J=4.4,8.1Hz), 7.77(2H,d,J=8.8Hz), 7.85(1H,d,J=7.3Hz), 7.96(2H,d,J=8.8Hz), 8.54(1H,dd,J=1.5,5.1Hz), 8.63(1

(67)

特開平10-152462

H,s), 9.58(1H,s), 10.09(1H,s).

IR(KBr)cm⁻¹: 3403, 3341, 3250, 1694, 1630, 1610, 1506, 1314, 1259, 1118, 764.

【0330】実施例131

N-(2-アミノフェニル)-4-[N-[2-(ビリジン-3-イル)メトキシプロピオニル]アミノ]ベンズアミド(表-4:化合物番号1番)

(131-1) 水素化ナトリウム(60%油状懶溶)1.24g(31mmol)を乾燥THF(90mL)に懶溶させた後、室温で3-ビリジンメタノール3.27g(30mmol)の乾燥THF(10mL)溶液を5分間かけて滴下した。得られた白色懶溶液を1時間室温で搅拌したのち、室温で2-プロモプロピオン酸tert-ブチルエステル6.27g(30mmol)の乾燥THF(10mL)溶液を5分間かけて滴下した。室温で11.5時間搅拌した。水を加えた後酢酸エチルで抽出した。有機層を饱和食塩水で洗浄後、乾燥、溶媒留去して得た残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン: 酢酸エチル=1:1)で精製することにより(ビリジン-3-イル)メトキシ酢酸tert-ブチルエステル4.01g(收率56.3%)を茶褐色油状物として得た。

1H-NMR(270MHz, CDCl₃) δ ppm: 1.42(3H,d,J=7.3Hz), 1.50(9H,s), 3.95(1H,q,J=6.6Hz), 4.47, 4.69(2H,ABq,J=11.0Hz), 7.29(1H,dd,J=5.1,8.1Hz), 7.75(1H,d,J=8.1Hz), 8.50(1H,d,J=4.4Hz), 8.60(1H,s).

【0331】(131-2) 工程(131-1)で得た化合物1.09g(4.59mmol)のジクロロメタン(5mL)溶液にトリフルオロ酢酸(8mL)を加え室温で9.5時間搅拌した。溶媒を留去して得た残渣にジクロロメタン(25mL)を加え、さらにビリジン(3mL)を加えた。氷冷下、2-クロロ-1,3-ジメチルイミダゾリジニウムクロライド0.70g(4.1mmol)のジクロロメタン(8mL)溶液を滴下した後、30分間搅拌した。この溶液に実施例100の工程(100-2)で得た化合物0.98g(3.0mmol)のジクロロメタン(20mL)-ビリジン(10mL)溶液を氷冷下15分かけて徐々に滴下した後、室温まで昇温させながら8時間搅拌した。饱和重曹水を加えた後、水で希釈してクロロホルムで抽出した。

【0332】有機層を饱和食塩水で洗浄後、乾燥、溶媒留去して得た残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-メタノール=8:1)で精製する事により、N-[2-(N-tert-ブトキシカルボニルアミノ)フェニル]-4-[N-[2-(ビリジン-3-イル)メトキシプロピオニル]アミノ]ベンズアミド1.19gを1,3-ジメチル-2-イミダゾリノンとの2:3(モル比)混合物として得た。

1H-NMR(270MHz, CDCl₃) δ ppm: 1.51(9H,s), 1.54(3H,d,J=6.6Hz), 4.13(1H,q,J=6.6Hz), 4.65, 4.71(2H,ABq,J=8.1Hz), 7.12-7.18(2H,m), 7.28-7.37(3H,m), 7.65(2H,d,J=8.1Hz), 7.73(2H,br.d,J=5.9Hz), 7.96(2H,d,J=8.8Hz), 8.59-8.64(3H,m), 9.39(1H,br.s).

【0333】(131-3) 工程(131-2)で得た化合物1.19g(1.8mmol)のジクロロメタン(10mL)溶液に15%(v1/v0)トリフルオロ酢酸-ジクロロメタン溶液(20mL)を加え、室温で4.5時間搅拌した。饱和重曹水中にあけた後、ジクロロメタンを搅拌して得られた水層を酢酸エチルで抽出した。有機層を饱和食塩水で洗浄後、乾燥、溶媒留去して得られた残渣にメタノールおよびジイソプロピルエーテルを加え、析出した固体を汎取、乾燥することによりN-(2-アミノフェニル)-4-[N-[2-(ビリジン-3-イル)メトキシプロピオニル]アミノ]ベンズアミド5.85mgを淡褐色固体として得た。

【0334】mp. 144-148°C.
1H NMR(270MHz, DMSO-d6) δ ppm: 1.40(3H,d,J=6.6Hz), 4.14(1H,q,J=6.6Hz), 4.56 and 4.65(2H,ABq,J=11.8Hz), 4.89(2H,br.s), 6.60(1H,dd,J=7.3,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=6.6,7.3Hz), 7.16(1H,d,J=7.3Hz), 7.40(1H,dd,J=4.4Hz,7.3Hz), 7.78-7.85(3H,m), 7.97(2H,d,J=8.8Hz), 8.52(1H,dd,J=1.5,5.1Hz), 8.61(1H,d,J=2.1Hz), 9.60(1H,s), 10.15(1H,s).

【0335】実施例132

N-(2-アミノフェニル)-4-(N-ベンジルアミノ)カルボニルベンズアミド(表-1:化合物番号8番)の合成

(132-1) テレフタル酸モノメチル13.0g(72.2mmol)のトルエン(100mL)懶溶液にチオニルクロライド(10mL)を室温で滴下した。80°Cで3時間搅拌した後、溶媒および過剰のチオニルクロライドを留去した。得られた残渣をジオキサン(100mL)に懶溶させた後、2-ニトロアニリン9.98g(72.2mmol)を加え、4時間加热過流した。

【0336】冷却後、溶媒を留去し、得られた残渣をメタノールで洗浄することにより、N-(2-ニトロフェニル)-4-メトキシカルボニルベンズアミド20.3g(收率93.7%)を黄色固体として得た。

1H NMR(270MHz, DMSO-d6) δ ppm: 3.91(3H,s), 7.43-7.49(1H,m), 7.76-7.78(2H,m), 8.03(1H,d,J=8.1Hz), 8.08(2H,d,J=8.8Hz), 8.14(2H,d,J=8.8Hz), 10.94(1H,s).

【0337】(132-2) 工程(132-1)で得られた化合物4.24g(14.12mmol)のTHF(50mL)-メタノール(50mL)混合溶液に、窒素気流下10%Pd/C0.4gを加えた後、水素気流下で1.5時間搅拌した。触媒をろ過後、溶媒を留去し、得られた残渣をメタノールで洗浄することによりN-(2-アミノフェニル)-4-メトキシカルボニルベンズアミド3.4g(收率87.5%)を淡黄色固体と

して得た。

¹H-NMR(270MHz, DMSO-d₆) δ ppm: 3.90(3H,s), 4.95(2H,s), 6.60(1H,dd,J=7.3,8.1Hz), 6.78(1H,d,J=7.3Hz), 6.99(1H,dd,J=7.3,7.3Hz), 7.17(1H,d,J=7.3Hz), 8.08(2H,d,J=8.1Hz), 8.11(2H,d,J=8.1Hz), 9.85(1H,e)

【0338】(132-3) 工程(132-2)で得られた化合物2.71g(10.0mmol)のジオキサン(100ml)-水(50ml)溶液に5%水酸化ナトリウム水溶液を氷冷下で加えた後、さらにジ-tert-ブチルジカルボネート2.62g(12.0mmol)のジオキサン(40ml)溶液を滴下した。室温で4時間搅拌後、一晩放置した。飽和食塩水及び酢酸エチルを加え二層に分離した後、水層を酢酸エチルで抽出した。有機層を飽和食塩水洗浄した後、乾燥、溶媒を留去して得られた残渣をメタノールで洗浄することにより、N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-メトキカルボニルベンズアミド3.54g(収率95.7%)を淡褐色固体として得た。

¹H-NMR(270MHz, DMSO-d₆) δ ppm: 1.44(9H,s), 3.90(3H,s), 7.12-7.24(2H,m), 7.55-7.58(2H,m), 8.09(2H,d,J=8.8Hz), 8.10(2H,d,J=8.8Hz), 8.72(1H,s), 10.00(1H,s).

【0339】(132-4) 工程(132-3)で得た化合物3.00g(8.10mmol)のメタノール(50ml)-0.5規定水酸化リチウム水溶液(25ml)懸濁液を40°Cで5時間加温搅拌した。メタノールを留去した後、得られた残渣に1規定塩酸水溶液を加え、さらに酢酸エチルで抽出した。有機層を少量の水及び飽和食塩水で洗浄した後、乾燥した。溶媒を留去して得られた残渣をメタノールで洗浄することにより、テレフタル酸モノ-2-(N-tert-ブトキシカルボニル)アミノアニリド2.24g(収率77.6%)を淡褐色固体として得た。

¹H-NMR(270MHz, DMSO-d₆) δ ppm: 1.45(9H,s), 7.12-7.21(2H,m), 7.53-7.58(2H,m), 8.06(2H,d,J=8.8Hz), 8.10(2H,d,J=8.8Hz), 8.71(1H,s), 9.97(1H,s).

【0340】(132-5) 工程(132-4)で得た化合物0.20g(0.56mmol)のジクロロメタン(4ml)懸濁液にベンジルアミン0.14g(1.3mmol)を加え、さらにトリエチルアミン0.21ml(1.5mmol)を加えた。この溶液に氷冷下2-クロロ-1,3-ジメチルイミダゾリウムクロライド0.25g(1.48mmol)を加え、さらに氷冷下1時間、室温で1時間搅拌した。クロロホルムで希釈した後、水を加え、水層をクロロホルムで抽出した。

【0341】有機層を飽和食塩水洗浄後、乾燥、溶媒を留去して得た残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1)で精製し、

得られた固体をエチルエーテルで洗浄することにより、N-(2-tert-ブトキシカルボニルアミノフェニル)-4-(N-ベンジルアミノ)カルボニルベンズアミド2.79mg(収率62.6%)を白色固体として得た。

¹H-NMR(270MHz, DMSO-d₆) δ ppm: 1.45(9H,s), 4.52(2H,d,J=5.8Hz), 7.13-7.28(4H,m), 7.34-7.35(3H,m), 7.56(2H,d,J=8.1Hz), 8.05(4H,s), 8.71(1H,br.s), 9.23(1H,t), 9.94(1H,s).

【0342】(132-6) 工程(132-5)で得た化合物1.51mg(0.339mmol)に4規定塩酸ジオキサン溶液(5ml)を室温で加え、4時間搅拌した。溶媒を留去した後、酢酸エチル/飽和食塩水で分離し、析出した沈澱を除いた後に水層をさらに酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒を留去して得た残渣にエチルエーテルを加え、析出した沈澱を沪取、乾燥することによりN-(2-アミノフェニル)-4-(N-ベンジルアミノ)カルボニルベンズアミド7.8mg(収率67%)を白色固体として得た。

mp. 239-241°C(dec.).

¹H-NMR(270MHz, DMSO-d₆) δ ppm: 4.51(2H,s), 4.93(2H,br.d), 6.60(1H,dd,J=7.3,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.95(1H,dd,J=7.3,8.3Hz), 7.18(1H,d), 7.23-7.35(5H,m), 8.01(2H,d,J=8.8Hz), 8.07(2H,d,J=8.8Hz), 9.22(1H,br.t), 9.81(1H,br.s).

【0343】実施例132と同様の方法により、実施例133の化合物を合成した。以下に、化合物の融点(mp.)、¹H-NMR、IRの測定値を示す。

【0344】実施例133

N-(2-アミノフェニル)-4-[N-(2-フェニルエチル)アミノ]カルボニルベンズアミド(表-1:化合物番号9)

mp. 237-240°C(dec.).

¹H-NMR(270MHz, DMSO-d₆) δ ppm: 2.87(2H,t,J=7.3Hz), 3.51(2H,dt,J=5.9,7.3Hz), 4.94(2H,br.s), 6.60(1H,d,d,J=7.3,7.3Hz), 6.78(1H,d,J=7.3Hz), 6.98(1H,dd,J=7.3,7.3Hz), 7.15-7.34(6H,m), 7.93(2H,d,J=8.1Hz), 8.04(2H,d,J=8.1Hz), 8.73(1H,t,J=5.1Hz), 9.76(1H,br.s). IR(KBr)cm⁻¹: 3396, 3320, 1625, 1602, 1539, 1458, 1313, 699.

【0345】実施例134

N-(2-アミノフェニル)-4-[N-(4-ニトロフェノキシアセチル)アミノ]ベンズアミド(表-1:化合物番号54)の合成

(134-1) 実施例100の工程(100-2)で得られた化合物3g(9.2mmol)、4-ニトロフェノキシアセチ酸2.16g(11.0mmol)のDMF溶液(7ml)にジシクロヘキシルカルボジイミド2.82g(13.8mmol)のDMF溶液(5ml)、

(69)

特開平10-152462

触媒量のN,N-ジメチルアミノピリジンを加え1日間攪拌した。反応終了後、酢酸エチルを加え、不溶物をセライト沪過し、溶媒を留去した。

【0346】得られた残渣物をクロロホルムから再結晶し、N-[2-(tert-ブトキシカルボニルアミノ)フェニル]-4-[(4-ニトロフェノキシアセチル)アミノ]ベンズアミド2.34g(収率50%)を得た。

1H NMR(270MHz, DMSO-d6) δ ppm: 1.45(9H,s), 4.97(2H,s), 7.12-7.26(3H,m), 7.23(2H,d,J=8.8Hz), 7.53(1H,t,J=2.2,7.3Hz), 7.79(2H,d,J=8.8Hz), 7.95(2H,d,J=8.8Hz), 8.25(2H,d,J=8.8Hz), 8.71(1H,s), 9.79(1H,s), 10.52(1H,s).

【0347】(134-2) 工程(134-1)で得られた化合物0.7g(1.38mmol)のアセトニトリル溶液(10mL)に室温でヨードトリメチルシリラン1.26mL(8.85mmol)を加え、2時間攪拌した。反応終了後、溶媒を濃縮し、酢酸エチルを加え20分間攪拌し、析出した結晶を沪取した。得られた結晶をメチルエチルケトンに溶解し、飽和チオ硫酸ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を留去した。得られた残留物を酢酸エチルで洗浄し、N-(2-アミノフェニル)-4-[(N-(4-ニトロフェノキシアセチル)アミノ]ベンズアミド0.22g(収率39%)を白色結晶として得た。

【0348】mp. 212-215°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.97(2H,s), 6.88(1H,t,J=7.3Hz), 6.99(1H,d,J=7.3Hz), 7.11(1H,t,J=7.3Hz), 7.23(2H,d,J=8.8Hz), 7.24(1H,m), 7.77(2H,d,J=8.8Hz), 8.00(2H,d,J=8.8Hz), 8.25(2H,d,J=8.8Hz), 9.89(1H,s), 10.52(1H,s).

IR(KBr)cm⁻¹: 3382, 3109, 1650, 1591, 1508, 1341.

【0349】実施例135

N-(2-アミノフェニル)-4-[(4-アミノフェノキシアセチル)アミノ]ベンズアミド(表-1:化合物番号55)の合成

実施例134の工程(134-1)で得られた化合物1.41g(2.78mmol)のメタノール(15mL)-THF(25mL)溶液に10%Pd-Cを加え水素雰囲気下室温で1時間攪拌した。反応終了後、触媒を沪過し溶媒を濃縮後、ジイソプロピルエーテルでスラッジングして、N-[2-(tert-ブトキシカルボニルアミノ)フェニル]-4-[(4-アミノフェノキシアセチル)アミノ]ベンズアミド1.1gを得た。

【0350】これをアセトニトリル15mLに溶解し、ヨードトリメチルシリラン0.74mL(5.20mmol)を加え、室温で3時間攪拌した。反応終了後、溶媒を濃縮しメチルエチルケトンで洗浄して、N-(2-アミノフェニル)-4-[(4-アミノフェノキシアセチ

ル)アミノ]ベンズアミド0.86g(収率83%)を得た。

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.82(2H,s), 7.13(2H,d,J=8.8Hz), 7.30-7.48(6H,m), 7.82(2H,d,J=8.8Hz), 8.03(2H,d,J=8.8Hz), 10.34(1H,s), 10.46(1H,s). IR(KBr)cm⁻¹: 2873, 2590, 1680, 1602, 1505, 1243.

【0351】実施例136

N-(2-アミノフェニル)-4-[(5-フェノキシメチル)-1,3-オキサゾリン-2-オン-3-イル]ベンズアミド(表-2:化合物番号1)の合成(136-1) 4-[(N-ベンジルオキシカルボニルアミノ)安息香酸-1-ブチルエステル0.7g(2.14mmol)1)のTHF溶液(10mL)に、-78°Cでn-ブチルリチウム1.33mL(2.25mmol)を5分間かけて滴下した。同温でさらに1.5時間攪拌した後、フェニルグリシドール0.31mL(2.29mmol)1)を加え同温で更に1時間攪拌した。室温で1日間放置した後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで2回抽出し、有機層を硫酸マグネシウムで乾燥し、溶媒を留去した。得られた残渣をエーテルから再結晶し、N-[4-(tert-ブトキシカルボニル)フェニル]-5-フェノキシメチル-1,3-オキサゾリン-2-オン0.31g(収率39%)を得た。

1H NMR(270MHz, DMSO-d6) δ ppm: 1.53(9H,s), 3.97(1H,dd,J=6.0,8.8Hz), 4.23-4.34(3H,m), 5.11(1H,m), 6.94-7.00(3H,m), 7.31(2H,m), 7.71(2H,d,J=8.8Hz), 7.93(2H,d,J=8.8Hz).

【0352】(136-2) 工程(136-1)の化合物0.26g(0.704mmol)のアセトニトリル溶液(4mL)にトリメチルシリルアイオダイド0.15mL(1.05mmol)を加え、室温で2時間攪拌した。反応終了後、溶媒を濃縮し得られた濃縮物を酢酸エチル-メチルエチルケトンでスラッジングし、N-(4-カルボキシフェニル)-5-フェノキシメチル-1,3-オキサゾリン-2-オン0.2g(収率91%)を得た。

1H NMR(270MHz, DMSO-d6) δ ppm: 3.98(1H,dd,J=6.6,9.6Hz), 4.23-4.34(3H,m), 5.10(1H,m), 6.94-6.99(3H,m), 7.30(2H,t,J=8.1Hz), 7.72(2H,d,J=8.8Hz), 7.98(2H,d,J=8.8Hz), 12.85(1H,s).

【0353】(136-3) 工程(136-2)の化合物0.15g(0.479mmol)の塩化メチレン溶液(7mL)に触媒量のDMFを加えた後、オキザリルクロライド0.12mL(1.40mmol)を加え室温で2時間攪拌した。次に溶媒を濃縮し、トルエンで2回共沸した後塩化メチレン(4mL)に溶解し、氷冷下実施例1の工程(1-2)の化合物0.105g(0.504mmol)、ビリジン0.12g(1.52mmol)の塩化メチレン溶液(1mL)を加えた

(70)

特許平10-152462

後、室温に昇温し1時間搅拌した。反応終了後、水を加えクロロホルムで2回抽出し、有機層を饱和食塩水で洗浄した。硫酸マグネシウムで乾燥後、溶媒を留去した。得られた残渣をイソプロピルエーテルでスラッジングし、N-[2-(N-tert-ブトキシカルボニルアミノ)フェニル]-4-(5-フェノキシメチル-1,3-オキサゾリン-2-オン-3-イル)ベンズアミド0.25g(定量的)を得た。

1H NMR(270MHz, DMSO-d6) δ ppm: 1.52(9H,s), 4.11(1H, dd, J=5.9, 6.6Hz), 4.21-4.27(3H,m), 5.01(1H,m), 6.84(1H, br.s), 6.91(2H,d, J=8.8Hz), 7.01(1H,t, J=7.4Hz), 7.12-7.34(5H,m), 7.68(2H,d, J=8.8Hz).
【0354】(136-4) 工程(136-3)の化合物0.22g(0.437mmol)のアセトニトリル溶液(4mL)に還温でトリメチルシリルアイオダイド0.1mL(0.703mmol)を加え2時間搅拌した。饱和チオ硫酸ナトリウム水溶液を加えた後、酢酸エチルで2回抽出し、有機層を硫酸マグネシウムで乾燥後、溶媒を留去した。得られた残留物をメタノールから再结晶し、N-(2-アミノフェニル)-4-(5-フェノキシメチル-1,3-オキサゾリン-2-オン-3-イル)ベンズアミド0.13g(収率74%)を白色結晶として得た。mp. 165-170°C(dec.)。

1H NMR(270MHz, DMSO-d6) δ ppm: 4.01(1H, dd, J=6.6, 9.6Hz), 4.28-4.34(3H,n), 5.12(1H,m), 5.23(2H, br.s), 6.64(1H,t, J=7.4Hz), 6.81(1H,d, J=8.1Hz), 6.95-7.00(3H,m), 7.18(1H,d, J=6.6Hz), 7.31(2H,t, J=8.1Hz), 7.72(2H,d, J=8.8Hz), 8.05(2H,d, J=8.8Hz), 9.69(1H,s).

IR(KBr)cm-1: 3393, 1740, 1610, 1508, 1253.

【0355】実施例136と同様の方法により、実施例137から143の化合物を合成した。以下に、化合物の化合物の融点(mp.)、1H NMR、IRの測定値を示す。

【0356】実施例137

N-(2-アミノフェニル)-4-[5-(4-ニトロフェノキシ)メチル-1,3-オキサゾリン-2-オン-3-イル]ベンズアミド(表-2:化合物番号2)
mp. 162-164°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.97(1H, dd, J=6.6, 9.5Hz), 4.10(1H, dd, J=5.1, 11.0Hz), 4.17(1H, dd, J=3.7, 1.0Hz), 4.27(1H, t, J=8.8Hz), 6.53-6.80(6H,m), 6.97(1H,t, J=8.1Hz), 7.16(1H,d, J=6.6Hz), 7.72(2H,d, J=8.8Hz), 8.04(2H,d, J=8.8Hz), 9.65(1H,s),

IR(KBr)cm-1: 3356, 2365, 1741, 1609, 1510, 1247.

【0357】実施例138

N-(2-アミノフェニル)-4-(5-ベンジルオキシメチル-1,3-オキサゾリン-2-オン-3-イル)ベンズアミド 塩酸塩(表-2:化合物番号3)の塩酸塩
mp. 181-183°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 3.69(1H, dd, J=5.2, 11.

0Hz), 3.76(1H, dd, J=3.7, 11.0Hz), 3.91(1H, dd, J=5.9, 8.8Hz), 4.59(2H,s), 4.93(1H,m), 7.26-7.41(8H,m), 7.51(1H,m), 7.74(2H,d, J=8.8Hz), 8.15(2H,d, J=8.8Hz), 10.42(1H,s).

【0358】実施例139

N-(2-アミノフェニル)-4-[5-(ビリジン-3-イル)オキシメチル-1,3-オキサゾリン-2-オン-3-イル]ベンズアミド(表-2:化合物番号4)

mp. 199-201°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.01(1H, dd, J=6.6, 8.8Hz), 4.28-4.46(3H,m), 4.96(2H, br.s), 5.14(1H,m), 6.61(1H,t, J=7.4Hz), 6.79(1H,d, J=7.4Hz), 6.98(1H,t, J=7.4Hz), 7.16(1H,d, J=7.4Hz), 7.36(1H, dd, J=4.4, 8.1Hz), 7.44(1H, dd, J=1.5, 8.1Hz).

IR(KBr)cm-1: 2815, 2631, 2365, 1752, 1610, 1520, 1225.

【0359】実施例140

N-(2-アミノフェニル)-4-[5-(ビリジン-3-イル)メチルオキシメチル-1,3-オキサゾリン-2-オン-3-イル]ベンズアミド(表-2:化合物番号5)

mp. 160-164°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.73(1H, dd, J=5.2, 11.7Hz), 3.79(1H, dd, J=2.9, 11.7Hz), 3.91(1H, dd, J=5.9, 8.8Hz), 4.21(1H,t, J=8.8Hz), 4.62(2H,s), 4.91(3H, br.s), 6.60(1H,t, J=7.4Hz), 6.78(1H,d, J=7.4Hz), 6.98(1H,t, J=7.4Hz), 7.16(1H,d, J=7.4Hz), 7.38(1H, dd, J=4.4, 7.4Hz), 7.69(2H,d, J=8.8Hz), 7.71(1H,m), 8.03(2H,d, J=8.8Hz), 8.51(1H, dd, J=1.5, 4.4Hz), 8.54(1H,d, J=1.5Hz), 9.65(1H,s).

IR(KBr)cm-1: 3368, 1742, 1648, 1608, 1492, 1226.

【0360】実施例141

N-(2-アミノフェニル)-4-[5-(3-ニトロフェノキシ)メチル-1,3-オキサゾリン-2-オン-3-イル]ベンズアミド(表-2:化合物番号6)

mp. 230°C(dec.).

1H NMR(270MHz, DMSO-d6) δ ppm: 4.04(1H,t, J=8.8Hz), 4.32(1H,t, J=8.8Hz), 4.41-4.53(2H,m), 4.91(2H,s), 5.15(1H,m), 6.61(1H,t, J=7.4Hz), 6.79(1H,d, J=7.4Hz), 6.98(1H,t, J=7.4Hz), 7.16(1H,d, J=7.4Hz), 7.46(1H, dd, J=1.5, 8.1Hz), 7.61(1H,t, J=8.1Hz), 7.71-7.79(3H,m), 7.87(1H,d, J=8.1Hz), 8.06(2H,d, J=8.8Hz), 9.66(1H,s).

IR(KBr)cm-1: 3363, 3095, 2365, 1741, 1608, 1529.

【0361】実施例142

N-(2-アミノフェニル)-4-[5-(ビリジン-2-イル)メチルオキシメチル-1,3-オキサゾリン-2-オン-3-イル]ベンズアミド(表-2:化合物番号7)

mp. 172-174°C.

(71)

特開平10-152462

1H NMR(270MHz, DMSO-d6) δ ppm: 3.79(1H, dd, J=5.2, 11.0Hz), 3.85(1H, dd, J=2.9, 11.0Hz), 3.95(1H, dd, J=6.6, 9.6Hz), 4.23(1H, t, J=9.6Hz), 4.67(2H, s), 4.90(2H, s), 4.95(1H, m), 6.60(1H, t, J=7.4Hz), 6.78(1H, d, J=7.4Hz), 6.97(1H, t, J=7.4Hz), 7.16(1H, d, J=7.4Hz), 7.29(1H, dd, J=5.2, 6.6Hz), 7.40(1H, d, J=6.6Hz), 7.70(2H, d, J=8.3Hz), 7.78(1H, dt, J=2.2, 7.4Hz), 8.03(2H, d, J=8.8Hz), 8.51(1H, d, J=4.4Hz), 9.64(1H, s).

IR(KBr)cm⁻¹: 3369, 1743, 1651, 1608, 1492, 1283.

【0362】実施例143

N-(2-アミノフェニル)-4-[5-(ビリジン-2-イル)オキシメチル]-1,3-オキサゾリン-2-オン-3-イル]ベンズアミド(表-2:化合物番号8)

mp. (amorphous).

1H NMR(270MHz, DMSO-d6) δ ppm: 3.96(1H, dd, J=5.9, 9.6Hz), 4.21-4.40(3H, m), 4.90(2H, s), 5.03(1H, m), 6.28(1H, t, J=6.6Hz), 6.43(1H, d, J=9.6Hz), 6.60(1H, t, J=6.6Hz), 6.78(1H, d, J=6.6Hz), 6.97(1H, t, J=7.4Hz), 7.15(1H, d, J=6.6Hz), 7.46(1H, dt, J=7.4, 1.5Hz), 7.67(2H, d, J=8.8Hz), 7.69(1H, m), 8.03(2H, d, J=8.8Hz), 9.64(1H, s).

【0363】実施例144

N-(2-アミノフェニル)-4-[N-[3-(ビリジン-3-イル)メチルアミノ]シクロブテン-1,2-ジオン-4-イル]アミノメチル]ベンズアミド(表-2:化合物番号9)

(144-1) 3,4-ジエーブトキシ-3-シクロブテン-1,2-ジオン。0.073g(0.323mmol)のTHF溶液(2mL)に実施例1の工程(1-4)の化合物O.1g(0.293mmol)を加え4時間搅拌した後、さらに3-アミノメチルビリジン0.033mL(0.327mmol)を加え1日間反応した。反応終了後、水を加えメチルエチルケトンで2回抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を留去した。

【0364】得られた残留物をメタノールでスラッジングしてN-[2-(N-tert-ブトキシカルボニルアミノ)フェニル]-4-[N-[3-(ビリジン-3-イル)メチルアミノ]シクロブテン-1,2-ジオン-4-イル]アミノメチル]ベンズアミドO.12g(収率78%)を得た。

1H NMR(270MHz, DMSO-d6) δ ppm: 1.44(9H, s), 4.75-4.81(4H, m), 7.15(1H, dt, J=2.2, 7.4Hz), 7.20(1H, dt, J=2.2, 7.4Hz), 7.40(1H, dd, J=2.2, 7.4Hz), 7.47(2H, d, J=8.1Hz), 7.54(2H, dd, J=2.2, 7.4Hz), 7.73(1H, m), 7.94(2H, d, J=8.1Hz), 8.50(1H, m), 8.55(1H, d, J=1.5Hz), 8.67(1H, s), 9.82(1H, s).

【0365】(144-2) 工程(144-1)の化合物O.1g(0.19mmol)のジオキサン(4mL)

1) -メタノール(1mL)溶液に4規定塩酸-ジオキサン(4mL)を加え2時間反応した。反応終了後、溶媒を濃縮し飽和食塩水で中和後、メチルエチルケトンを加え、得られた結晶を汎取してN-(2-アミノフェニル)-4-[N-[3-(ビリジン-3-イル)メチルアミノ]シクロブテン-1,2-ジオン-4-イル]アミノメチル]ベンズアミド。0.4g(収率49%)を得た。

mp. 230°C.

1H NMR(270MHz, DMSO-d6) δ ppm: 4.76(2H, s), 4.79(2H, s), 4.90(2H, s), 6.60(1H, t, J=7.4Hz), 6.78(1H, d, J=7.4Hz), 6.97(1H, t, J=7.4Hz), 7.16(1H, d, J=7.4Hz), 7.39(1H, m), 7.43(2H, d, J=8.1Hz), 7.73(1H, d, J=8.1Hz), 7.97(2H, d, J=8.1Hz), 7.99(1H, br. s), 8.51(1H, d, J=8.1Hz), 8.55(1H, s), 9.64(1H, s).

【0366】実施例145

N-(2-アミノフェニル)-4-[3-(ビリジン-3-イル)メチルイミダゾリン-2-オン-1-イル]メチルベンズアミド(表-2:化合物番号10番)

(145-1) エチレン尿素4.92g(5.7mmol), メチル4-ブロモメチルベンゾエート5.73g(2.5mmol)、ヨウ化テトラノルマルブチルアンモニウム1.85g(5.0mmol)のDMF(30mL)溶液に炭酸カリウム7.88g(5.7mmol)を加え、80°Cで5時間加热搅拌した。

【0367】放冷後、固体分を汎取した後酢酸エチルで固体分を洗浄した。汎液を濃縮した後、得られた残渣をシリカゲルカラムクロマグラフィー(酢酸エチル:メタノール=10:1)で精製して得られた淡黄色油状物にジイソアロビルエーテルを加え、析出した固体を汎取、乾燥することにより、N-(4-メトキシカルボニルフェニルメチル)イミダゾリン-2-オン3.36g(収率57.4%)を淡褐色固体として得た。

1H-NMR(270MHz, CDCl₃) δ ppm: 3.28-3.35(2H, m), 3.41-3.47(2H, m), 3.92(3H, s), 4.42(2H, s), 4.61(1H, br. s), 7.35(2H, d, J=8.1Hz), 8.01(2H, d, J=8.1Hz),

【0368】(145-2) 3-クロロメチルビリジン塩酸塩2.05g(12.5mmol)に飽和食塩水を加えた後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒留去して得た残渣にトルエンを加え共沸し、さらに得られた残渣にDMF(5mL)を加えた後、ヨウ化テトラノルマルブチルアンモニウム0.37g(1.0mmol)を加え、ベンジルハライドのDMF溶液を調製した。水蒸化ナトリウム(60%油状懸濁液)0.30g(7.5mmol)のDMF(5mL)懸濁液に室温で、工程(145-1)で得た化合物1.17g(5.0mmol)のDMF(10mL)溶液を徐々に滴下した後、室温で30分搅拌した。この溶液に先に調製したベンジルハライド溶液を加えた後、80°Cで7時間加热搅拌した。

(72)

特開平10-152462

【0369】一晩室温で放置した。DMFを濃縮した後、酢酸エチル及び水を加え分離した。さらに水層を酢酸エチル-メチルエチルケトン(2:1)で抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒留去して得た残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=10:1)で精製し、N-(4-メトキシカルボニルフェニルメチル)-N'-(ビリジン-3-イル)メチレイミダゾリン-2-オン1.17g(収率72.3%)を茶色油状物として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 3.20(4H,s), 3.92(3H,s), 4.44(2H,s), 4.46(2H,s), 7.27-7.36(3H,m), 7.64-7.69(1H,d), 8.01(2H,d,J=8.1Hz), 8.53-8.56(2H,m).

【0370】(145-3) 工程(145-2)で得た化合物0.55g(1.7mmol)のメタノール(8ml)一水(8ml)溶液に室温で水酸化リチウム1水和物11.0mg(2.62mmol)を加え50°Cで1.5時間加熱搅拌した後、さらに水酸化リチウム1水和物0.05g(1.2mmol)を加え、50°Cで1.5時間搅拌した。10%塩酸水溶液を用いて酸性(pH3~4)にしたのち、飽和食塩水を加え、酢酸エチルで2回、酢酸エチル-メチルエチルケトン(1:1)で1回抽出した。有機層を無水硫酸ナトリウムで乾燥後、溶媒留去して得た残渣を乾燥することにより4-[3-(ビリジン-3-イル)メチレイミダゾリン-2-オン-1-イル]メチル安息香酸0.32g(収率61%)を茶色油状物として得た。

¹H NMR(270MHz, DMSO-d₆) δ ppm: 3.17(2H,s), 3.20(2H,s), 4.36(2H,s), 4.38(2H,s), 7.35-7.42(3H,m), 7.68(1H,dd,J=6.6Hz), 7.92(2H,d,J=8.1Hz), 8.51(2H,m).

【0371】(145-4) 工程(145-3)で得た化合物0.31g(1.0mmol)のジクロロメタン(12ml)溶液に室温でオキザリルクロライド0.3ml(3.5mmol)を滴下した後室温で30分、40°Cで1.5時間搅拌した。溶媒を留去した後トルエンで共沸し、ジクロロメタン10mlに懸濁した。この反応懸濁液を氷冷した後、実施例1の工程(1-2)の化合物0.21g(1.0mmol)のジクロロメタン(2ml)-ビリジン(2ml)溶液を滴下した。室温まで昇温させながら搅拌した後、室温で一晩放置した。飽和重曹水を加えた後クロロホルムで抽出した。

【0372】有機層を飽和食塩水で洗浄後、乾燥、溶媒留去して得た残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-メタノール=20:1)で精製することによりN-(2-テルト-ブトキシカルボニルアミノフェニル)-4-[3-(ビリジン-3-イル)メチル]イミダゾリン-2-オン-1-イル]メチルベンズアミド0.10g(収率20%)を茶色油状物として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.52(9H,s), 3.20(4H,s), 4.45(2H,s), 4.48(2H,s), 6.75(1H,br.s), 7.15-7.4

0(5H,m), 7.65-7.70(2H,m), 7.83(1H,d,J=7.3Hz), 7.94(2H,d,J=8.1Hz), 8.50-8.60(3H,br.m).

【0373】(145-5) 工程(145-4)で得た化合物100mg(0.20mmol)をジオキサン(2ml)に溶解した後、4規定塩酸-ジオキサン(2ml)を加えた後、メタノール(0.5ml)を加え溶解させた。2時間搅拌後、飽和重曹水を加え中和した後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、乾燥、溶媒留去して得た残渣を室温で減圧下乾燥することによりN-(2-アミノフェニル)-4-[3-(ビリジン-3-イル)メチレイミダゾリン-2-オン-1-イル]メチルベンズアミド4.7mg(収率58%)を褐色油状物として得た。

mp. (amorphous).

¹H NMR(270MHz, DMSO-d₆) δ ppm: 3.20(4H,s), 4.37(2H,s), 4.39(2H,s), 4.87(2H,br.s), 6.60(1H,dd,J=7.3,7.3Hz), 6.78(1H,d,J=8.1Hz), 6.97(1H,dd,J=6.6,7.3Hz), 7.16(1H,d,J=7.3Hz), 7.35-7.41(3H,m), 7.68(1H,d,J=8.1Hz), 7.90-8.00(2H,m), 8.50(2H,br.s), 9.63(1H,b.r.s).

【0374】実施例146

N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド 0.5フマル酸塩(表-1:化合物番号82のフマル酸塩)の合成

実施例48で得られた化合物310mgをメタノール10mlに加え、加熱して溶解させた。フマル酸96mgをメタノールに溶解した溶液を加えた後、冷却した。析出した結晶をろ取りし、メタノール5mlで再結晶し、目的物を200mg得た(収率56%)。

【0375】mp. 166-167°C.

¹H NMR(270MHz, DMSO-d₆) δ ppm: 4.28(2H,d,J=6.6Hz), 5.10(2H,s), 6.60(1H,t,J=8.0Hz), 6.63(1H,s), 6.78(1H,d,J=8.0Hz), 6.90-7.50(5H,m), 7.70-8.00(4H,m), 8.55(1H,d,J=3.6Hz), 8.60(1H,s), 9.63(1H,s).

IR(KBr)cm⁻¹: 3332, 1715, 1665, 1505, 1283, 1136, 1044, 983, 760, 712.

元素分析 C21H20N4O3+H₂O/2C4H4O4として

C H N

計算値 68.59, 5.10, 12.90

測定値 68.66, 5.22, 12.97

【0376】実施例146と同様の方法により、実施例147から149の化合物を合成した。以下に、化合物の融点(mp.)、¹H NMR、IRの測定値を示す。

【0377】実施例147

N-(2-アミノフェニル)-4-[N-(ビリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド マレイン酸塩(表-1:化合物番号82のマレイン酸塩)

mp. 123-124°C.

(73)

特許平10-152462

¹H NMR (270MHz, DMSO-d₆) δ ppm: 4.28(2H,d,J=6.6Hz), 5.11(2H,s), 6.24(2H,s), 6.66(1H,t,J=8.0Hz), 6.83(1H,d,J=8.0Hz), 6.90-8.00(9H,m), 8.56(1H,d,J=3.6Hz), 8.62(1H,s), 9.69(1H,s).
IR(KBr)cm⁻¹: 3298, 1719, 1546, 1365, 1313, 1250, 1194, 1149, 1044, 993, 862, 751.

元素分析 C₂₁H₂₀N₄O₃+0.5H₂Oとして

C	H	N
計算値 60.31, 4.98, 11.25		
測定値 60.52, 5.12, 11.08		

【0378】実施例148

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド 塩酸塩(表-1: 化合物番号82の塩酸塩)
mp. 140(dec.)℃.

¹H NMR (270MHz, DMSO-d₆) δ ppm: 4.31(2H,d,J=5.8Hz), 5.24(2H,s), 7.10-7.60(6H,m), 7.90-8.50(5H,m), 8.70-8.90(2H,m), 10.46(1H,s).

IR(KBr)cm⁻¹: 3353, 3224, 1706, 1638, 1530, 1279, 1145, 1050, 1005, 827.

【0379】実施例149

N-(2-アミノフェニル)-4-[N-(ピリジン-3-イル)オキシアセチルアミノメチル]ベンズアミド
O-7フマル酸(表-1: 化合物番号61のフマル酸塩)

実施例146と同様の方法により、実施例46の化合物より合成した。

mp. 154-155℃.

¹H NMR (270MHz, DMSO-d₆) δ ppm: 4.42(2H,d,J=5.9Hz), 4.69(2H,s), 6.60(1H,t,J=8.0Hz), 6.63(0.7H,s), 6.78(1H,d,J=8.0Hz), 6.90-7.50(6H,m), 7.93(2H,d,J=8.0Hz), 8.20-8.40(2H,m), 8.82(1H,br.s), 9.63(1H,s).

IR(KBr)cm⁻¹: 3324, 1709, 1631, 1521, 1457, 1428, 1260, 1064, 806, 698.

元素分析 C₂₁H₂₀N₄O₃+0.7C₄H₄O₄+0.7H₂Oとして

C	H	N
計算値 60.79, 5.19, 11.91		
測定値 60.95, 5.20, 11.76		

【0380】参考例1

N-(3-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド

実施例48と同様の方法により合成した。

mp. 156℃.

¹H NMR (270MHz, DMSO-d₆) δ ppm: 4.27(2H,d,J=6.6Hz), 5.06(2H,s), 5.10(2H,s), 6.20-6.40(1H,m), 6.80-7.10(3H,m), 7.30-7.50(3H,m), 7.70-8.00(4H,m), 8.53(1H,d,J=3.6Hz), 8.59(1H,s), 9.88(1H,s).

IR(KBr)cm⁻¹: 3327, 3218, 1708, 1639, 1536, 1279, 1147, 1050, 859, 788.

【0381】参考例2

N-(4-アミノフェニル)-4-[N-(ピリジン-3-イル)メトキシカルボニルアミノメチル]ベンズアミド

実施例48と同様の方法により合成した。

mp. 204-205℃.

¹H NMR (270MHz, DMSO-d₆) δ ppm: 4.27(2H,d,J=6.6Hz), 4.91(2H,s), 5.10(2H,s), 6.52(2H,d,J=8.8Hz), 7.30-7.50(5H,m), 7.70-8.00(4H,m), 8.50-8.60(2H,m), 9.80(1H,s).

IR(KBr)cm⁻¹: 3336, 3224, 1706, 1638, 1530, 1279, 1145, 1050, 1005, 827.

【0382】薬理試験例1

A2780細胞に対する分化誘導作用試験

アルカリフィオスファターゼ(ALP)活性の上昇は、ヒト大腸癌細胞の分化の指標として知られており、例えば酢酸ナトリウムがALP活性を上昇させることが知られている [Youngら; Cancer Res., 45, 2976 (1985)、Moritaら; Cancer Res., 42, 4540 (1982)]。そこでALP活性を指標に分化誘導作用の評価を行った。

【0383】(実験方法) 96穴プレートに15,000ケル/ウェルとなるように、A2780細胞を0.1mlずつまき、翌日培地にて段階希釈した被検薬の溶液を0.1mlずつ添加した。3日間培養後、プレート上の細胞をTBS緩衝液(20 mM Tris, 137 mM NaCl, pH 7.6)で2回洗浄した。ついで、0.6mg/mlの濃度のローニトロフェニルフェヌフェイト(9.6% ジエタノールアミン、0.5 mM MgCl₂ (pH 9.6))溶液を0.05mlずつ添加し、室温で30分インキュベートした。3規定水酸化ナトリウム水溶液0.05mlで反応を停止した後、405nmの吸光度を測定し、ALP活性の上昇を惹起する薬物の最小濃度(ALPmin)を求めた。(実験結果) 実験結果を、表-5 [表31] に示した。

【0384】

【表31】表-5: A2780細胞に対する分化誘導作用

供試化合物	ALPmin (μM)
実施例1の化合物	1
実施例2の化合物	3
実施例3の化合物	3
実施例4の化合物	1
実施例5の化合物	1
実施例6の化合物	1
実施例7の化合物	1
実施例8の化合物	1
実施例9の化合物	1
【0385】	
実施例10の化合物	3

(74)

特開平10-152462

実施例11の化合物	1	実施例66の化合物	3
実施例13の化合物	1	実施例67の化合物	3
実施例15の化合物	3	実施例68の化合物	3
実施例16の化合物	3	【0390】	
実施例17の化合物	3	実施例70の化合物	0.1
実施例18の化合物	3	実施例71の化合物	10
実施例23の化合物	1	実施例72の化合物	10
実施例24の化合物	1	実施例73の化合物	3
実施例25の化合物	3	実施例74の化合物	10
【0386】		実施例76の化合物	1
実施例26の化合物	1	実施例77の化合物	3
実施例27の化合物	10	実施例79の化合物	0.1
実施例28の化合物	10	実施例80の化合物	0.1
実施例29の化合物	10	実施例81の化合物	10
実施例30の化合物	0.1	【0391】	
実施例31の化合物	10	実施例82の化合物	1
実施例32の化合物	3	実施例85の化合物	3
実施例33の化合物	0.3	実施例86の化合物	0.3
実施例34の化合物	0.1	実施例87の化合物	0.1
実施例35の化合物	0.3	実施例88の化合物	0.1
【0387】		実施例89の化合物	0.3
実施例36の化合物	10	実施例90の化合物	3
実施例37の化合物	1	実施例91の化合物	0.1
実施例38の化合物	3	実施例92の化合物	3
実施例39の化合物	0.1	実施例93の化合物	3
実施例40の化合物	10	【0392】	
実施例41の化合物	0.3	実施例94の化合物	3
実施例42の化合物	10	実施例95の化合物	3
実施例43の化合物	3	実施例96の化合物	10
実施例44の化合物	0.01	実施例97の化合物	0.1
実施例45の化合物	0.003	実施例98の化合物	0.1
【0388】		実施例99の化合物	3
実施例46の化合物	0.1	実施例100の化合物	1
実施例48の化合物	0.1	実施例101の化合物	3
実施例49の化合物	1	実施例102の化合物	3
実施例50の化合物	1	実施例103の化合物	1
実施例51の化合物	1	【0393】	
実施例52の化合物	1	実施例104の化合物	1
実施例53の化合物	3	実施例105の化合物	1
実施例54の化合物	1	実施例106の化合物	1
実施例55の化合物	1	実施例107の化合物	1
実施例56の化合物	3	実施例108の化合物	3
【0389】		実施例109の化合物	1
実施例57の化合物	3	実施例110の化合物	3
実施例58の化合物	3	実施例111の化合物	3
実施例59の化合物	3	実施例112の化合物	0.1
実施例60の化合物	3	実施例113の化合物	0.3
実施例63の化合物	3	【0394】	
実施例64の化合物	3	実施例114の化合物	3
実施例65の化合物	3	実施例115の化合物	0.01

(75)

特開平10-152462

実施例116の化合物	0.01	実施例139の化合物	0.3
実施例119の化合物	3	実施例140の化合物	0.3
実施例120の化合物	0.3	実施例141の化合物	1
実施例121の化合物	3	実施例142の化合物	0.1
実施例122の化合物	0.03	実施例143の化合物	3
実施例123の化合物	3	実施例145の化合物	3
実施例124の化合物	3	比較例1の化合物	>100
実施例125の化合物	0.1	比較例2の化合物	>100
【0395】		【0397】薬理試験例2	
実施例126の化合物	3	抗腫瘍試験	
実施例127の化合物	0.3	(実験方法) マウス骨髄性白血病細胞WEHI-3 ($1 \sim 3 \times 10^6$ cells) をBalb/cマウス腹腔内に移植し、翌日から薬物の投与を開始した。これを1日目とし以後1~4日および7~11日に薬剤を1日1回経口投与した。移植後の生存日数を観察し、Controll群の生存日数に対する薬物投与群の生存日数の比(T/C %)を算出し、これを延命効果として評価した。	
実施例128の化合物	0.1	(実験結果) 実験結果を、表-6【表32】に示した。	
実施例129の化合物	1	【0398】	
実施例130の化合物	0.03	【表32】	
実施例131の化合物	0.3		
実施例132の化合物	10		
実施例133の化合物	3		
実施例134の化合物	3		
実施例135の化合物	3		
【0396】			
実施例136の化合物	1		
実施例137の化合物	1		
実施例138の化合物	1		

表-6: WEHI-3細胞に対する抗腫瘍作用

供試化合物	投与量 ($\mu\text{mol}/\text{kg}$)	T/C (%)
実施例45の化合物	16	138
実施例46の化合物	32	141
実施例48の化合物	130	190
実施例130の化合物	130	189

【0399】薬理試験例3

抗腫瘍作用試験

(実験方法) ニードマウス皮下で代替された腫瘍細胞(HT-29, KB-3-1)をニードマウスに移植し、体積が $20 \sim 100 \text{ mm}^3$ 程度になり、生着が確認されたところで薬剤の投与を開始した。これを1日目とし以後1~5日、8~12日、15~19日および22~26日に薬剤を経口投与した。腫瘍体積は、(腫瘍体積) = $1/2 \times$ (長径) \times (短径) 2 により求めた。

【0400】(実験結果) HT-29に対する実施例48の化合物(投与量 $6.6 \mu\text{mol}/\text{kg}$)の実験結果を、【図1】に示した。

【0401】KB-3-1に対する実施例48の化合物(投与量 $6.6 \mu\text{mol}/\text{kg}$)の実験結果を、【図2】に示した。

【0402】計算実施例

(高活性化合物による重ね合わせモデルの構築) 高い分化誘導活性を示す化合物である実施例45、実施例46および実施例48の化合物を用い、活性発現に必要な原子団の空間配置に関する情報を抽出するため3次元構造の重ね合わせを行った。

【0403】この目的のためには、市販されている計算パッケージ【CATALYST(MSI社)、Cerius2/QSAR+(MSI社)、SYBYL/DISCO(Tripos社)など】のいずれかを用いて同様な解析を行うことが可能であるが、今回の重ね合わせ構造の作成および解析には、SYBYL/DISCO(Tripos社)を用いた。

【0404】実施例48の化合物について、SYBYLのスケッチ機能を用いて3次元構造を発生し、Gasteiger-Hückel法により各原子上に点電荷を付与した後、Tripos力場を用いて構造最適化を行った。次に、薬物-生体間相互作用に必要と考えられる疎水性相互作用部位(芳香環、脂肪族側鎖)および水素結合部位(カルボニル酸素、ヒドロキシル基、アミノ基など)などの相互作用が想定される部位を特定するためにダミー原子を相互作用が可能な部位に置いた。

【0405】この時、疎水性相互作用、水素結合および静電相互作用部位などの相互作用の種類を区別するために、相互作用の分類を行い各々異なるダミー原子タイプを設定した。さらに、回転可能結合について回転させたコンフォーマーを発生させ、想定される相互作用部位に配置したダミー原子間の距離が変化するものを、新規な

コンフォメーションとして、コンフォメーションファイアルに保存した。実施例45および実施例46の化合物についても同様に3次元構造の作成およびコンフォメーションの発生を行った。

【0406】実施例48の化合物を鏡型分子として、そのそれぞれのコンフォメーションに対して実施例45および実施例46の化合物のすべてのコンフォメーションについて同じ種類の相互作用を示すダミー原子が重なるように重ね合わせ構造を作成した。

【0407】得られた重ね合わせ構造について、重ね合わせに用いられたダミー原子の個数(共通な相互作用の数)、立体的な重なり具合(重なり体積)および活性値を用いた3次元QSARの解析結果などをもとに、最適な重ね合わせ構造を選択した。

【0408】今回得られた重ね合わせ構造では、式(1)の化合物のB環の重心(W1)、A環の重心(W2)および水素結合受容体(カルボニル酸素など)(W3)において、W1-W2=8.34Å、W1-W3=3.80Å、W2-W3=5.55Åの配置をとることが示された。

【0409】(計算例1:実施例130の化合物) 実施例130の化合物の相互作用想定部位およびベンズアミド構造の構成原子から適当な7個の原子を選択し、上記の重ね合わせに用いた実施例45、実施例46および実施例48の化合物を標的構造として、実施例130の化合物に拘束ボテンシャルを与えて構造最適化を行った。次に、拘束ボテンシャルを解除して構造最適化を行い、実施例130の化合物の活性コンフォメーションを得た。この活性コンフォメーションに対し、ベンズアミドのベンゼン環の重心(W1)およびピリジン環の重心(W2)およびカルボニル酸素(W3)を定義し、空間配置のパラメータの抽出を行った。

【0410】また、回転可能な結合についてすべてのコンフォメーションを発生し各コンフォメーションでのエネルギーを計算し、最安定構造を求めた。最安定構造でのエネルギーを計算し、活性コンフォメーションとのエネルギー差を求めた。その結果、今回得られた構造では、W1-W2=8.43Å、W1-W3=3.82Å、W2-W3=5.88Å(最安定構造とのエネルギー差: 2.86kcal/mol)の配置をとることが示された。

【0411】また、前記の重ね合わせ構造モデルの構築で得られたダミー原子を標的構造として、解析操作を行うことによって同一の結果が得られた。(計算結果)

計算結果を表-7 [表93] に示した。表-7: 空間

配位のパラメータの計算結果

【0412】

【表93】

化合物	W1-W2 (Å)	W1-W3 (Å)	W2-W3 (Å)
実施例89の化合物	8.80	3.85	5.49
実施例45の化合物	8.54	3.85	5.55
実施例46の化合物	7.42	3.97	5.98
実施例47の化合物	8.52	3.88	5.96
実施例48の化合物	8.43	3.94	5.51
実施例79の化合物	7.09	5.20	5.48
実施例80の化合物	8.59	4.37	5.51
実施例87の化合物	8.80	3.80	3.68
【0413】			
実施例88の化合物	8.87	3.50	6.22
実施例124の化合物	8.29	3.76	6.42
実施例128の化合物	8.64	3.76	6.90
実施例130の化合物	8.43	3.82	5.88
実施例131の化合物	8.59	4.38	5.47
実施例138の化合物	7.59	3.94	7.27
実施例137の化合物	7.58	3.94	7.27
【0414】			
実施例138の化合物	8.07	3.94	7.47
実施例139の化合物	7.64	3.94	7.29
実施例140の化合物	8.11	3.94	7.60
実施例141の化合物	7.60	3.94	7.28
実施例142の化合物	8.02	3.94	7.44
実施例143の化合物	7.62	3.94	7.29
実施例145の化合物	8.48	4.40	5.69

【0415】

【発明の効果】本発明の新規ベンズアミド誘導体および新規アリニド誘導体は分化誘導作用を有し、悪性腫瘍、自己免疫疾患、皮膚病、寄生虫感染症の治療・改善薬などの医薬品として有用である。特に制癌剤として効果が高く、造血器腫瘍、固形癌に有効である。

【図面の簡単な説明】

【図1】腫瘍細胞(HT-29)に対して実施例48の化合物投与時の腫瘍体積の変化を示す図である。

【図2】腫瘍細胞(KB-3-1)に対して実施例48の化合物投与時の腫瘍体積の変化を示す図である。

(77)

特開平10-152462

【図1】

【図2】

フロントページの続き

(51) Int. Cl. 6	識別記号	F I
A 61 K 31/38	ADS	A 61 K 31/38
31/415		31/415
31/42	ABA	31/42
31/425		31/425
31/44	ADA	31/44
31/445	AEA	31/445
31/495	ADV	31/495
31/505		31/505
C 07 C 255/31		C 07 C 255/31
271/18		271/18
271/40		271/40

(78)

特明平10-152462

275/24		275/24	
275/28		275/28	
323/52		323/52	
323/62		323/62	
327/48		327/48	
335/16		335/16	
C 0 7-D	207/34	C 0 7 D	207/34
209/42		209/42	
211/24		211/24	
213/30		213/30	
213/40		213/40	
213/56		213/56	
213/65		213/65	
213/70		213/70	
213/74		213/74	
213/75		213/75	
213/81		213/81	
213/82		213/82	
233/34		233/34	
233/42		233/42	
233/64	1 0 3	233/64	1 0 3
239/28		239/28	
241/14		241/14	
261/08		261/08	
261/10		261/10	
263/48		263/48	
275/02		275/02	
277/24		277/24	
277/40		277/40	
295/08		295/08	A
307/12		307/12	
307/68		307/68	
307/84		307/84	
333/16		333/16	
333/38		333/38	
333/62		333/62	
401/06	2 3 3	401/06	2 3 3
	2 3 9		2 3 9
401/12	2 0 7	401/12	2 0 7
	2 3 3		2 3 3
405/12	2 1 3	405/12	2 1 3
409/12	2 1 3	409/12	2 1 3
413/12	2 1 3	413/12	2 1 3
453/02		453/02	
491/048		491/048	
495/04	1 0 5	495/04	1 0 5 A
521/00		521/00	
		275/02	

(79)

特開平10-152462

(72)発明者 中西 理
千葉県茂原市東郷1900番地1 三井東圧化
学株式会社内
(72)発明者 齊藤 明子
千葉県茂原市東郷1900番地1 三井東圧化
学株式会社内

(72)発明者 山下 優
千葉県茂原市東郷1900番地1 三井東圧化
学株式会社内
(72)発明者 白石 敏悟
神奈川県横浜市戸塚区平戸3-42-7 東
戸塚泰
(72)発明者 田中 英司
千葉県茂原市東郷1144番地 三井東圧化学
株式会社内