Algorytmy Macierzowe laboratorium 1.

Mnożenie macierzy

Antoni Kucharski, Joachim Grys

22.10.2024

1 Wprowadzenie

Celem ćwiczenia było zaimplementowanie trzech algorytmów rekurencyjnego mnożenia macierzy:

- Metoda Binet'a
- Metoda Strassena
- Metoda AI

Dla każdej z metod należało wykonać wykresy zależności

- ilości operacji addytywnych
- ilości operacji multiplikatywnych
- wszystkich operacji zmiennoprzecinkowych
- czasu trwania mnożenia macierzy

od wielkości macierzy wejściowej.

2 Algorytm Binet'a

2.1 Idea

2.1.1 Macierze blokowe

W algorytmie Binet'a należy podzielić wejściowe macierze kwadratowe na cztery bloki zgodnie ze wzorem:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

Dla macierzy kwadratowych o nieparzystej wielkości, przyjmując n jako liczbę wierszy i kolumn oraz $k=\frac{n-1}{2}$ i $m=\frac{n+1}{2}$ wymiary poszczególnych bloków to:

- A_{11} : $k \times k$
- A_{12} : $k \times m$
- A_{21} : $m \times k$
- A_{22} : $m \times m$

2.1.2 Algorytm

Dla macierzy kwadratowych $A,\,B$ tej samej wielkości algorytm Binet'a wygląda następująco:

Jeżeli A = [a] i B = [b] to AB = [ab], w przeciwnym wypadku

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} (A_{11}B_{11} + A_{12}B_{21}) & (A_{11}B_{12} + A_{12}B_{22}) \\ (A_{21}B_{11} + A_{22}B_{21}) & (A_{21}B_{12} + A_{22}B_{22}) \end{bmatrix}$$

8 mnożeń bloków w macierzy wynikowej to rekurencyjne wywołania algorytmu.

2.1.3 Pseudokod

```
 \begin{array}{l} \textit{def partition}(M) \; \textit{do} \\ (n, \; m) = \textit{shape}(M) \\ n = n \; / \; 2, \; m = m \; / \; 2 \\ \textit{return } \; M[:n, \; :m], \; M[:n, \; m:], \; M[n:, \; :m], \; M[n:, \; m:] \\ \textit{end} \\ \\ \textit{def binet}([a], \; [b]), \; \textit{do:} \; [a \; * \; b] \\ \textit{def binet}(A, \; B) \; \textit{do} \\ A_{11}, \; A_{12}, \; A_{21}, \; A_{22} = \textit{partition}(A) \\ B_{11}, \; B_{12}, \; B_{21}, \; B_{22} = \textit{partition}(B) \\ \textit{return} \; \begin{bmatrix} \textit{binet}(A_{11}, B_{11}) + \textit{binet}(A_{12}, B_{21}) & \textit{binet}(A_{11}, B_{12}) + \textit{binet}(A_{12}, B_{22}) \\ \textit{binet}(A_{21}, B_{11}) + \textit{binet}(A_{22}, B_{21}) & \textit{binet}(A_{21}, B_{12}) + \textit{binet}(A_{22}, B_{22}) \end{bmatrix} \\ \textit{end} \end{array}
```

2.2 Analiza algorytmu

	A.size	B.size	Time [s]	Additions	Subtractions	Multiplications	Divisions
0	1	1	0.000023	0	0	1	0
1	2	2	0.000020	4	0	8	0
3	4	4	0.000094	48	0	64	0
7	8	8	0.000657	448	0	512	0
15	16	16	0.005040	3840	0	4096	0
31	32	32	0.036079	31744	0	32768	0
63	64	64	0.346451	258048	0	262144	0
127	128	128	2.434857	2080768	0	2097152	0
255	256	256	19.277508	16711680	0	16777216	0
511	512	512	154.519365	133955584	0	134217728	0

Tabela 1: Szczegółowe wyniki dla algorytmu Binet'a

Rysunek 1: Wykres czasu dla macierzy $n \times n$

2.3 Złożoność obliczeniowa

W metodzie Binet'a mamy 8 rekurencyjnych mnożeń i 4 dodawania w każdym kroku. Oznaczając jako T(n) złożoność mnożenia macierzy $n \times n$ otrzymujemy równanie rekurencyjne:

$$T(n) = 8T(\frac{n}{2}) + 4n^2$$

$$T(n) = O(n^{\log_2 8}) = O(n^3)$$

Rysunek 2: Wykres ilości dodawań i odejmowań dla końcowej \boldsymbol{n} elementowej macierzy

Rysunek 3: Wykres ilości mnożeń dla końcowej n elementowej macierzy

Rysunek 4: Wykres ilości operacji zmiennoprzecinkowych dla macierzy $n\times n$

3 Algorytm Strassena

3.1 Idea

Algorytm Strassena jest efektywną metodą mnożenia macierzy, która redukuje liczbę mnożeń potrzebnych do obliczenia iloczynu dwóch macierzy. Tradycyjna metoda mnożenia dwóch macierzy $n\times n$ wymaga n^3 operacji mnożenia. Algorytm Strassena zmniejsza tę liczbę, co prowadzi do szybszego działania przy dużych macierzach

Zamiast wykonywać pełne mnożenie blokowe dwóch macierzy za pomocą 8 operacji mnożenia, algorytm Strassena redukuje tę liczbę do 7 mnożeń dzięki sprytnemu rozkładaniu macierzy na bloki i odpowiedniej manipulacji tymi blokami. Taki algorytm działa tylko dla macierzy $2^n \times 2^n$. Żeby działał dla każdego

Algorithm 1 Algorytm Strassena dla mnożenia macierzy

```
1: procedure Strassen(A, B)
 2:
          if n == 1 then
 3:
               return A \times B
          end if
 4:
          Podziel A i B na cztery macierze o wymiarach \frac{n}{2} \times \frac{n}{2}:
 5:
                 \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}
 6:
          Oblicz pomocnicze macierze:
 7:
          M_1 = (A_{11} + A_{22}) \times (B_{11} + B_{22})
 8:
          M_2 = (A_{21} + A_{22}) \times B_{11}
 9:
          M_3 = A_{11} \times (B_{12} - B_{22})
10:
          M_4 = A_{22} \times (B_{21} - B_{11})
11:
          M_5 = (A_{11} + A_{12}) \times B_{22}
12:
          M_6 = (A_{21} - A_{11}) \times (B_{11} + B_{12})
13:
          M_7 = (A_{12} - A_{22}) \times (B_{21} + B_{22})
14:
          Oblicz końcowe bloki macierzy wyniku C:
15:
          C_{11} = M_1 + M_4 - M_5 + M_7
16:
17:
          C_{12} = M_3 + M_5
          C_{21} = M_2 + M_4
18:
          C_{22} = M_1 - M_2 + M_3 + M_6
19:
          Złóż macierz C:
20:
                  \begin{bmatrix} C_{11} & C_{12} \end{bmatrix}
21:
                  C_{21} C_{22}
          return C
22:
23: end procedure
```

rodzaju macierzy kwadratowej trzeba go jednak "uodpornić", uzupełniając na początku macierz zerami. Poniżej jest implementacja tego algorytmu.

```
def Strassen(A: np.ndarray, B: np.ndarray, iter: int = 0) -> np.ndarray:
    shape_start = A.shape[0]
```

```
if A.shape[0] == 1:
    return A * B
if iter == 0:
    m = 1
    n = A.shape[0]
    while m < n:
        m *= 2
    A = np.pad(A, ((0, m - A.shape[0]), (0, m - A.shape[1])),
               mode='constant', constant_values=(0, 0))
    B = np.pad(B, ((0, m - B.shape[0]), (0, m - B.shape[1])),
               mode='constant', constant_values=(0, 0))
n = A.shape[0] // 2
A_{-}11, A_{-}12, A_{-}21, A_{-}22 = A[:n, :n], A[:n, n:], A[n:, :n], A[n:, n:]
B_11, B_12, B_21, B_22 = B[:n, :n], B[:n, n:], B[n:, :n], B[n:, n:]
iter_temp = iter + 1
M1 = Strassen(A_11 + A_22, B_11 + B_22, iter_temp)
M2 = Strassen(A_21 + A_22, B_11, iter_temp)
M3 = Strassen(A_11, B_12 - B_22, iter_temp)
M4 = Strassen(A_22, B_21 - B_11, iter_temp)
M5 = Strassen(A_11 + A_12, B_22, iter_temp)
M6 = Strassen(A_21 - A_11, B_11 + B_12, iter_temp)
M7 = Strassen(A_{12} - A_{22}, B_{21} + B_{22}, iter_temp)
C11 = M1 + M4 - M5 + M7
C12 = M3 + M5
C21 = M2 + M4
C22 = M1 - M2 + M3 + M6
C = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
return C[:shape_start, :shape_start]
```

Taki kod działa, natomiast na potrzeby analizy dobierzemy rozmiary macierzy tak, aby nie trzeba było macierzy uzupełniać zerami. Pozwoli to nam na lepszą analize danych.

3.2 Analiza algorytmu

Dla macierzy o wymiarach n×nn×n, złożoność można wyrazić jako:

$$T(n) = 7T((\frac{n}{2})^2) + O((\frac{n}{2})^2)$$

Co daje nam:

$$T(n) = O(n^{\log_2 7}) \approx O(n^{2.81})$$

3.3 Wyniki

	A.size	B.size	Time [s]	Additions	Subtractions	Multiplications	Divisions
0	1	1	0.000013	0	0	1	0
1	2	2	0.000074	12	6	7	0
3	4	4	0.000453	132	66	49	0
7	8	8	0.002539	1116	558	343	0
15	16	16	0.017107	8580	4290	2401	0
31	32	32	0.116922	63132	31566	16807	0
63	64	64	0.822051	454212	227106	117649	0
127	128	128	6.026194	3228636	1614318	823543	0
255	256	256	42.766295	22797060	11398530	5764801	0
511	512	512	301.524905	160365852	80182926	40353607	0

Tabela 2: Szczegółowe wyniki dla algorytmu Strassena

Rysunek 5: Wykres czasu dla macierzy $n\times n$

Rysunek 6: Wykres ilości mnożeń dla końcowej \boldsymbol{n} elementowej macierzy

Rysunek 7: Wykres ilości operacji zmiennoprzecinkowych dla macierzy $n\times n$

Rysunek 8: Wykres ilości mnożeń dla macierzy $n \times n$ Powyższe wykresy pokazują zaletę algorytmu Strassena - jest duża różnica w ilości operacji multiplikatywnych, które w arytmetyce zmiennoprzecinkowej potrafią całkowicie wypaczeć wynik działania. Również

4 Algorytm AI

4.1 Idea

Algorytm mnożenia macierzy opracowany przez sztuczną inteligencję wykorzystuje uczenie ze wzmocnieniem do odkrywania bardziej efektywnych metod mnożenia. Traktując problem jako grę tensorową, AI eksploruje przestrzeń możliwych algorytmów w poszukiwaniu takich, które minimalizują liczbę operacji mnożenia. Algorytm ten jest jednak ograniczony - działa tylko dla mnożenia macierzy $A-4^n\times 5^m$ przez $B-5^m\times 5^k$.

4.2 Analiza algorytmu

	N	M	Time [s]	Additions	Subtractions	Multiplications	Divisions	Size of result
564	20	25	0.001031	281	258	76	0	500
565	80	25	0.002115	803	783	304	0	2000
567	320	25	0.003899	2891	2883	1216	0	8000
570	1280	25	0.079934	11243	11283	4864	0	32000
566	100	625	0.005077	5065	2950	1900	0	62500
574	5120	25	0.113159	44651	44883	19456	0	128000
568	400	625	0.066352	26957	24548	5776	0	250000
571	1600	625	0.118409	75407	73043	23104	0	1000000
575	6400	625	0.378391	269207	267023	92416	0	4000000
569	500	15625	0.087882	116825	56250	47500	0	7812500
572	2000	15625	0.404592	466445	290400	144400	0	31250000
576	8000	15625	4.823394	2140345	1934606	438976	0	125000000
573	2500	390625	4.343946	2871625	1318750	1187500	0	976562500
577	10000	390625	10.803828	10623725	5643500	3610000	0	3906250000

Tabela 3: Szczegółowe wyniki dla algorytmu AI

Poniższe wykresy zawierają pierwsze 7 danych zebranych podczas pomiarów metody AI, ze względu na skale, jak bardzo algorytm AI jest lepszy od "konwencjonalnych metod".

Powyższe wyniki są **za dobre**, mogą sugerować złożoność liniową tego algorytmu. Przyczyną jest prawdopodobnie zbyt słaba jakość testów - większych nie udało się wygenerować przez ograniczenia sprzętowe.

Rysunek 9: Wykres czasu dla macierzy $n\times n$

Rysunek 10: Wykres ilości operacji zmiennoprzecinkowych dla macierzy $n\times n$

Rysunek 11: Wykres ilości dodawań i odejmowań dla końcowej \boldsymbol{n} elementowej macierzy

Rysunek 12: Wykres ilości mnożeń dla końcowej n elementowej macierzy

5 Porównanie z MATLABem

```
MATLAB
64x64: 0.000192s
128x128: 0.000319s
256x256: 0.000354s
512x512: 0.00132s
1024x1024: 0.00799s
2048x2048: 0.058941s

PYTHON
64x64: 0.30934834480285645s
128x128: 2.35215425491333s
256x256: 18.8021457195282s
```

Rysunek 13: Czas mnożnenia macierzy w MATLAB vs Python

Porównaliśmy również czas mnożenia poszczególnych macierzy w programie MATLAB do podstawowego mnożenia za pomocą operatora @ w NumPy. Wyniki mówią same za siebie — MATLAB zdecydowanie lepiej radzi sobie z mnożeniem macierzy.

6 Wnioski

- Algorytm Strassena w naszej implementacji nie działa szybciej niż algorytm Binet'a lecz daje dużą przestrzeń do poprawy.
- Metoda zaproponowana przez sztuczną inteligencje jest dużo szybsza niż konwencjonale metody używane do tej pory. Jednak ograniczenie wielkości macierzy oraz duża ilość podstawień powoduje, że w "codziennym użyciu" jest ona gorsza niż algorytm Strassena czy Binet'a (odpowiednio 7 i 8 podstawień)

Adding and subtracting matrices Multiplying matrices

Rysunek 14: Mem na polepszenie humoru