Contenu

Théorie des ensembles de base

- Principe d'induction
- Langages et automates

Definition (Alphabet)

Un alphabet est un ensemble noté Σ dont les éléments sont appelés *lettres* ou *symboles*.

Definition (Mot)

Un mot sur Σ est une suite (ou chaîne) finie de lettres de Σ .

- Le mot *vide* est noté ϵ .
- La longueur d'un mot u est notée |u|. ϵ est le mot de longueur nulle.
- L'ensemble des mots finis sur Σ est noté Σ^* .

Definition (Concaténation de mots)

 Σ^* est muni d'une opération binaire, la *concaténation*. La concaténation du mot u avec le mot v et dénotée $u \cdot v$ ou simplement uv en omettant le \cdot , est le mot obtenu en ajoutant v à la suite de u. Cette opération est :

- associative et
- possède le mot vide comme élément neutre.

Definition (Langage)

Une partie de Σ^* est appelée *langage* sur Σ .

Definition (Constructeurs de langages)

• La concaténation : $L \cdot L' = \{u \cdot u' : u \in L \land u' \in L'\}$

Remarque

- $L \cdot \emptyset = \emptyset \cdot L = \emptyset$
- $L \cdot \Sigma^* \neq \Sigma^* \neq \Sigma^* \cdot L$
- Si $\epsilon \in L$ alors $L \cdot \Sigma^* = \Sigma^* \cdot L = \Sigma^*$
- $L \cdot \{\epsilon\} = \{\epsilon\} \cdot L = L$
- La fermeture de Kleene : $L^* = \bigcup_{n \in \mathbb{N}} L^n$ où

$$L^{n} = \{ u_{1} u_{2} \dots u_{n} : u_{1}, u_{2}, \dots u_{n} \in L \}$$

Example

Soit les langages $L_1 = \{bb\}$ et $L_2 = \{\epsilon, bb, bbbb\}$. Les langages L_1^* et L_2^* sont formés, tous les deux, de tous les mots sur l'alphabet $\{b\}$ qui contiennent un nombre pairs de b.

Example

Le langage $L_1 = \{a, b\}^* \{bb\} \{a, b\}^*$ est formé de tous les mots sur l'alphabet $\{a, b\}$ qui contiennent le facteur bb.

Example

Le langage $\{aa, ab, ba, bb\}^*$ est formé de tous les mots sur l'alphabet $\{a, b\}$ de longueur paire : $\{a, b\}^* \setminus \{aa, ab, ba, bb\}^*$ est formé de tous les mots sur l'alphabet $\{a, b\}$ de longueur impaire. De façon alternative : $\{a, b\}\{aa, ab, ba, bb\}^*$

Definition (Expressions régulières)

- ϵ , \emptyset et a (pour tout $a \in \Sigma$) sont des ER
- Si u, v sont des ER alors $u \cdot v, u + v$ et u^* sont des ER

Definition (Sémantique des expressions régulières)

La sémantique des expressions régulières est donnée par l'application $L:ER \to \mathcal{P}(\Sigma^*)$ définie par

- $L(\epsilon) = \{\epsilon\}$ et $L(\emptyset) = \emptyset$
- Pour tout $a \in \Sigma$, $L(a) = \{a\}$
- Si u, v sont des ER alors $L(u \cdot v) = L(u) \cdot L(v)$, $L(u+v) = L(u) \cup L(v)$ et $L(u^*) = L(u)^*$

Definition (Langages réguliers)

L est régulier ssi il existe une ER u telle que L(u) = L

Definition (Automates à états finis déterministe)

Un automate à états finis déterministe (AFD) est un quintuplet $(S, \Sigma, \delta, s_0, F)$ où

- S est un ensemble fini d'états
- Σ, un alphabet
- $\delta: S \times \Sigma \to S$ est appelée fonction de transition .
- s₀, un état initial
- Un ensemble F d'états finaux ou acceptants avec $F \subseteq S$

Definition (Exécution d'un AFD)

On étend δ à une fonction $\Delta: \mathcal{S} \times \Sigma^* \to \mathcal{S}$:

- $\Delta(q, \epsilon) = q$
- $\Delta(q, xa) = \delta(\Delta(q, x), a)$.

Soit un mot $w = x_0 x_1 \dots x_n$. La suite $s_0 q_1 \dots q_{n+1}$ telle que

$$q_{i+1} = \Delta(s_0, x_0 x_1 \dots x_i)$$
, pour tout $0 \le i \le n$

est appelé exécution de w.

Example (Exécution de 110101 d'un AFD qui reconnait $\Sigma^*01\Sigma^*$)

Definition (Langage reconnu par un AFD)

Le langage L(A) défini par :

$$L(\mathcal{A}) = \{ w \in \Sigma^* : \Delta(s_0, w) \in F \}$$

est appelé le langage reconnu par A.

Example (AFD qui reconnait $\Sigma^*01\Sigma^*$)

Definition (Automates à états finis non-déterministe)

Un automate à états finis non-déterministe (AFN) est un quintuplet $(S, \Sigma, \delta, s_0, F)$ où

- S est un ensemble fini d'états
- Σ, un alphabet
- $\delta: S \times \Sigma \to \mathcal{P}(S)$ est appelée fonction de transition.
- s₀, un état initial
- Un ensemble F d'états finaux ou acceptants avec $F \subseteq S$

Definition (Exécution d'un AFN)

On étend δ à une fonction $\Delta : S \times \Sigma^* \to \mathcal{P}(S)$:

- Soit w = xa où $x \in \Sigma^*$ et $a \in \Sigma$ alors

$$\Delta(q, w) = \bigcup_{i=1}^k \delta(p_i, a)$$

où
$$\Delta(q, x) = \{p_1, p_2, \dots, p_k\}.$$

Soit un mot $w = x_0 x_1 \dots x_n$. Une suite $s_0 q_1 \dots q_{n+1}$ telle que

$$q_{i+1} \in \Delta(s_0, x_0x_1 \dots x_i)$$
, pour tout $0 \le i \le n$

est appelé exécution de w.

Definition (Langage reconnu par un AFN)

Le langage L(A) défini par :

$$L(A) = \{ w \in \Sigma^* : \Delta(s_0, w) \cap F \neq \emptyset \}$$

est appelé le langage reconnu par A.

Example (AFN qui reconnait $\Sigma^*01\Sigma^*$)

Theorem (Kleene)

Un langage est reconnaissable par un AFD si et seulement s'il est régulier.

Tout lang. régulier est reconnaissable par un AFN

John Mullins (Professeur)

Exemple: AFN reconnaissant 1* + 01

Déterminisation (Rabin-Scott, 1959)

$L = \{0^n 1^n : n \in \mathbb{N}\}$ n'est pas régulier

- *N* : nombre d'états de l'AFD qui reconnait $L = \{0^n 1^n : n \in \mathbb{N}\}$
- On considère une exécution de 0^N1^N
- \bullet $s_0 \xrightarrow{u} s_i$
- $s_i \xrightarrow{v} s_j$
- $s_i \xrightarrow{w} s_{2N}$
- Pour tout $n \in \mathbb{N}$, on a $0^i 0^{(n(j-i)} 0^{N-j} 1^N \in L$ (contradiction)

Problèmes de décisions

D'autres propriétés de fermeture

- Intersection
- Complémentation

Problème du vide

Étant donné un automate fini A on on peut décider si $L(A) = \emptyset$

Problème d'inclusion

Étant donné des automate fini \mathcal{A} et \mathcal{B} on on peut décider si $L(\mathcal{A}) \subseteq L(\mathcal{B})$

