Risc V Reference Card

Instruction Formats

31	25	24	20	19		15	14	11	7	6	0	
funct7			rs2		rs1		funct3	r	d	opco	de	R-type
imm[11:0]					rs1		funct3	r	d	opco	de	I-type
imm[11:5			rs2		rs1		imm[4:0]	r	d	opco	de	S-type
imm[12 10:	5]		rs2		rs1		imm[4:1 11]	r	d	opco	de	B-type
imm[31:12]								r	d	opco	de	U-type
imm[20 10:1 11 19:12]								r	d	opco	de] J-type

RV32I Base Instructions

Name	Fmt	Opcode	Funct3	Funct7	Assembly	Description	Note
Add	R	0110011	000	0000000	add rd, rs1, rs2	rd = rs1 + rs2	
Subtract	R	0110011	000	0100000	sub rd, rs1, rs2	rd = rs1 - rs2	
AND	R	0110011	111	0000000	and rd, rs1, rs2	$rd = rs1 \wedge rs2$	
OR	R	0110011	110	0000000	or $rd, rs1, rs2$	$rd = rs1 \lor rs2$	
XOR	R	0110011	100	0000000	xor rd, rs1, rs2	$rd = rs1 \oplus rs2$	
Shift Left Logical	R	0110011	001	0000000	sll rd, rs1, rs2	$rd = rs1 \ll rs2$	
Set Less Than	R	0110011	010	0000000	slt rd, rs1, rs2	rd = (rs1 < rs2)?1:0	
Set Less Than (U)	R	0110011	011	0000000	sltu rd, rs1, rs2	rd = (rs1 < rs2)?1:0	zero extends ¹
Shift Right Logical	R	0110011	101	0000000	srl rd, rs1, rs2	$rd = rs1 \gg rs2$	
Shift Right Arithmetic	R	0110011	101	0100000	srl rd, rs1, rs2	$rd = rs1 \gg rs2$	msb extends ²

²Assumes values are unsigned integers ²Fills in with sign bit during right shift

Bibliography

- [1] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666–677, 1978. ISSN 1557-7317.
- [2] B. Vinter and K. Skovhede. Synchronous message exchange for hardware designs. $Communicating\ Process\ Architectures$, pages 201–212, 2014.