参考答案

一、选择题

题号	1	2	3	4	5
答案	В	A	С	A	В

二、填空题

- 1. $N=MN_A/M_{\text{mol}}$
- $2. N \int_{100}^{\infty} f(v) dv$
- 3. 462 2.4×10^5
- 4. 6.21×10^{-21}
- 1.49×10^{-7}
- 5. 3×10^5

三、计算题

1. 设有 N 个气体分子,速率分布函数为 f(v), Nf(v)与v的

关系曲线如图所示, v_0 、 m_0 已知,求:

- (2) 常数a=?
- $(3) \qquad \frac{v_0}{2} \sim v_0 内的分子数;$
- (4) 气体分子的平均速率 \bar{v} 。

参考答案:

(1)
$$f(v) = \begin{cases} \frac{a}{Nv_0} v, (0 \le v \le v_0) \\ \frac{a}{N}, (v_0 \le v \le 2v_0) \\ -\frac{a}{2Nv_0} v + \frac{2a}{N}, (2v_0 \le v \le 4v_0) \end{cases}$$

$$(2) \qquad : \int_0^\infty f(v)dv = \int_0^{v_0} \frac{a}{Nv_0} v dv + \int_{v_0}^{2v_0} \frac{a}{N} dv + \int_{2v_0}^{4v_0} (-\frac{a}{2Nv_0} v + \frac{2a}{N}) dv = 1 ,$$

解得:
$$a = \frac{2N}{5v_0}$$
 ;

(3)
$$\Delta N = \int_{v_1}^{v_2} Nf(v) dv = \int_{v_0/2}^{v_0} N \frac{a}{Nv_0} v dv = \frac{3}{8} av_0 = \frac{3}{20} N \quad ;$$

(4)
$$\overline{v} = \int_0^\infty f(v)vdv = \int_0^{v_0} \frac{a}{Nv_0} v^2 dv + \int_{v_0}^{2v_0} \frac{a}{N} v dv + \int_{2v_0}^{4v_0} (-\frac{a}{2Nv_0} v + \frac{2a}{N})v dv$$

$$= \frac{27}{6} \frac{a}{N} v_0^2 = \frac{9}{5} v_0$$

2. 参考答案:

(1) 氧气与氢气的温度相同,所以平均平动动能与氢气相同。 $\overline{arepsilon_{
m k}}$ = $6.21 imes10^{-21}J$

(2)
$$\sqrt{\overline{v^2}} = \left(\frac{2\overline{\varepsilon_k}}{m}\right)^{\frac{1}{2}} = 483m/s$$

(3)
$$T = \frac{2\overline{\varepsilon_k}}{3k} = 300K$$