2559_2_Expression_L2_Triangle

จงเขียนโปรแกรมคำนวณหาความยาวของด้านที่สามของสามเหลี่ยม เมื่อเราทราบความยาวด้านสองด้าน $(a\ ilde{n})$ และมุมระหว่างด้านสองด้าน $\dot{a}\ \dot{b}$ และมุมระหว่างด้านสองด้าน $\dot{b}\ \dot{b}\ \dot{b}$ และมุมระหว่างด้านสองด้าน $\dot{b}\ \dot{b}\ \dot{b}\ \dot{b}$ และมุมระหว่างด้านสองด้าน $\dot{b}\ \dot{b}\ \dot{b}\ \dot{b}\ \dot{b}$ และมุมระหว่างด้านสองด้าน $\dot{b}\ \dot{b}\ \dot{b}\$

$$c^2 = a^2 + b^2 - 2ab\cos(C)$$

ข้อมูลนำเข้า

บรรทัดแรกคือความยาวด้าน a (หน่วยเป็น centimeter) บรรทัดที่สองคือความยาวด้าน b (หน่วยเป็น centimeter) บรรทัดที่สามคือมุมระหว่างด้านทั้งสอง C (หน่วยเป็นองศา)

ข้อมูลส่งออก

ความยาวด้านที่สามของสามเหลี่ยมที่รับเป็นข้อมูลขาเข้า (หน่วยเป็นเซนติเมตร) แสดงในรูปแบบที่แสดงตามตัวอย่างข้างล่าง

ตัวอย่าง

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
3 4 90	c = 5.0 cm.
7.0 24.0 90.0	c = 25.0 cm.
10 10 180	c = 20.0 cm.
3 3 60	c = 2.99999999999999999999999999999999999

ขั้นตอนการทำงานของโปรแกรม

- 1. รับข้อมูลจากแป้นพิมพ์ เปลี่ยนเป็นจำนวนจริง แล้วเก็บในตัวแปร a
- 2. รับข้อมูลจากแป้นพิมพ์ เปลี่ยนเป็นจำนวนจริง แล้วเก็บในตัวแปร **b**
- 3. รับข้อมูลจากแป้นพิมพ์ เปลี่ยนเป็นจำนวนจริง แล้วเก็บในตัวแปร **D**
- 4. นำ \mathbf{p} ที่มีหน่วยเป็นองศา แปลงเป็น เรเดียน เก็บในตัวแปร \mathbf{c}
- 5. คำนวณความยาวของด้านที่สาม ด้วยสูตร $c = \sqrt{a^2 + b^2 2ab\cos(C)}$
- 6. แสดงความยาวด้านที่คำนวณได้ทางจอภาพในรูปแบบที่แสดงตามตัวอย่าง