Measure Theory

1 σ-Algebras

Definition 1.1. A σ -algebra \mathcal{A} on a set X is a family of subsets of X such that:

1.
$$X \in \mathcal{A}$$
 (Σ_1)

2. If
$$A \in \mathcal{A}$$
, then $A^c \in \mathcal{A}$ (Σ_2)

3. If
$$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$$
, then $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$ (Σ_3)

A set $A \in \mathcal{A}$ is said to be measurable or \mathcal{A} -measurable.

Example 1.1.

- 1. $\mathcal{P}(X)$ is a σ -algebra (the maximal σ -algebra on X).
- 2. $\{\emptyset, X\}$ is a σ -algebra (the minimal σ -algebra on X).
- 3. $A := \{A \subseteq X : \#A < \infty \text{ or } \#A^c < \infty\}$ is a σ -algebra.
- 4. (Trace σ -algebra) Let $E\subseteq X$ be any set and let $\mathcal A$ be a σ -algebra on X. Then

$$\mathcal{A}_E := \{ E \cap A : A \in \mathcal{A} \}$$

is a σ -algebra on E.

Proof. We verify the three defining properties of a σ -algebra on E:

- (a) Since $X \in \mathcal{A}$, we have $E = E \cap X \in \mathcal{A}_E$.
- (b) If $E \cap A \in \mathcal{A}_E$, then $E \setminus (E \cap A) = E \cap A^c$, and since $A^c \in \mathcal{A}$, it follows that $E \cap A^c \in \mathcal{A}_E$.
- (c) If $(E \cap A_n)_{n \in \mathbb{N}} \subseteq \mathcal{A}_E$, then $\bigcup_n (E \cap A_n) = E \cap \bigcup_n A_n$, and since $\bigcup_n A_n \in \mathcal{A}$, we conclude that $\bigcup_n (E \cap A_n) \in \mathcal{A}_E$.

Hence, A_E is a σ -algebra on E.

5. (Pre-image σ -algebra) Let $f: X \to X'$ be a function and let \mathcal{A}' be a σ -algebra on X'. Then

$$\mathcal{A} := \{ f^{-1}(A') : A' \in \mathcal{A}' \}$$

is a σ -algebra on X.

Theorem 1.1. Let X be a set and let $\{A_i : i \in I\}$ be a family of σ -algebras on X. Define

$$\mathcal{A} := \bigcap_{i \in I} \mathcal{A}_i = \{ A \subseteq X : A \in \mathcal{A}_i \text{ for all } i \in I \}.$$

Then, \mathcal{A} is a σ -algebra on X.

Proof. We verify the σ -algebra properties for \mathcal{A} :

- 1. Since $X \in \mathcal{A}_i$ for all $i \in I$, we have $X \in \mathcal{A}$.
- 2. If $A \in \mathcal{A}$, then $A \in \mathcal{A}_i$ for all $i \in I$, so $A^c = X \setminus A \in \mathcal{A}_i$ for all $i \in I$, hence $A^c \in \mathcal{A}$.
- 3. If $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$, then $A_n\in\mathcal{A}_i$ for all n and i, so $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}_i$ for all $i\in I$, and thus $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$.

Therefore, \mathcal{A} is a σ -algebra on X.

Definition 1.2. Let X be a set and let $\mathcal{E} \subseteq \mathcal{P}(X)$ be a collection of subsets of X. The σ -algebra generated by \mathcal{E} , denoted by $\sigma(\mathcal{E})$, is the smallest σ -algebra on X containing all sets in \mathcal{E} . That is,

$$\sigma(\mathcal{E}) := \bigcap \big\{ \mathcal{A} \subseteq \mathcal{P}(X) : \mathcal{A} \text{ is a σ-algebra on } X, \ \mathcal{E} \subseteq \mathcal{A} \big\}.$$

Remark 1.1 (Generated σ -algebras).

- 1. If \mathcal{A} is a σ -algebra, then $\sigma(\mathcal{A}) = \mathcal{A}$.
- 2. For $A \subseteq X$, we have $\sigma(\{A\}) = \{\emptyset, A, A^c, X\}$.
- 3. If $\mathcal{F} \subseteq \mathcal{G} \subseteq \mathcal{A}$, then $\sigma(\mathcal{F}) \subseteq \sigma(\mathcal{G}) \subseteq \sigma(\mathcal{A})$.

Definition 1.3 (Topological Space). A topological space is a pair (X, \mathcal{T}) where X is a set and $\mathcal{T} \subseteq \mathcal{P}(X)$ is a collection of subsets of X, called open sets, satisfying the following properties:

1. $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,

- 2. If $\{U_{\alpha} \in \mathcal{T} : \alpha \in I\}$ is an arbitrary collection of open sets, then the union $\bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}$,
- 3. If $\{U_i \in \mathcal{T} : i = 1, ..., n\}$ is a finite collection of open sets, then the intersection $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

The collection \mathcal{T} is called a *topology* on X. The complement of an open set is called a *closed set*.

Remark 1.2 (Standard Topology on \mathbb{R}^n). A subset $U \subseteq \mathbb{R}^n$ is called *open* if for every point $x \in U$, there exists an $\varepsilon > 0$ such that the open ball

$$B_{\varepsilon}(x) := \{ y \in \mathbb{R}^n : ||x - y|| < \varepsilon \},$$

where $\|\cdot\|$ denotes the Euclidean norm, is contained in U; that is, $B_{\varepsilon}(x) \subseteq U$. The collection of all such open sets is denoted by $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ and forms the standard topology on \mathbb{R}^n .

Definition 1.4 (Borel σ -algebra). The σ -algebra $\sigma(\mathcal{O})$ generated by the collection of open sets $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ of \mathbb{R}^n is called the *Borel* σ -algebra on \mathbb{R}^n .

Its elements are called *Borel sets* or *Borel measurable sets*. We denote the Borel σ -algebra by $\mathcal{B}(\mathbb{R}^n)$.

Definition 1.5. Let X be a topological space and let $A \subseteq X$. A collection $\{U_{\alpha}\}_{{\alpha}\in A}\subseteq \mathcal{T}$ of open sets is called an *open cover* of A if

$$A \subseteq \bigcup_{\alpha \in A} U_{\alpha}.$$

A *subcover* is a subcollection that still covers A. The set A is called *compact* if every open cover of A admits a finite subcover.

Remark 1.3. In \mathbb{R}^n , a set is compact if and only if it is closed and bounded (Heine–Borel Theorem).

Theorem 1.2 (Borel σ -algebra from Different Generators). Let $\mathcal{O}, \mathcal{C}, \mathcal{K} \subseteq \mathcal{P}(\mathbb{R}^n)$ denote the collections of open, closed, and compact subsets of \mathbb{R}^n , respectively. Then,

$$\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{O}) = \sigma(\mathcal{C}) = \sigma(\mathcal{K}).$$

Proof. Since compact sets are closed, we have $\mathcal{K} \subseteq \mathcal{C}$, and by Remark 1.1(3), $\sigma(\mathcal{K}) \subseteq \sigma(\mathcal{C})$. Conversely, for any $C \in \mathcal{C}$, define $C_k := C \cap B_k(0)$, where $B_k(0)$ is the closed ball of radius k centered at the origin. Each C_k is closed and bounded,

hence compact, so $C_k \in \mathcal{K}$. Since $C = \bigcup_{k \in \mathbb{N}} C_k$, it follows that $C \in \sigma(\mathcal{K})$, and thus $\sigma(\mathcal{C}) \subseteq \sigma(\mathcal{K})$.

Next, since $\mathcal{C} = \mathcal{O}^c := \{U^c : U \in \mathcal{O}\}$, and complements of sets in a σ -algebra are again in the σ -algebra, it follows that $\mathcal{C} \subseteq \sigma(\mathcal{O})$, hence $\sigma(\mathcal{C}) \subseteq \sigma(\mathcal{O})$. The reverse inclusion follows similarly from $\mathcal{O} = \mathcal{C}^c$. Therefore, we have:

$$\sigma(\mathcal{K}) = \sigma(\mathcal{C}) = \sigma(\mathcal{O}).$$

Generating Sets of the Borel Algebra. The Borel σ -algebra $\mathcal{B}(\mathbb{R}^n)$ can be generated by various systems of sets. Of particular importance are:

• The family of open rectangles:

$$\mathcal{J}_{o,n} := \left\{ (a_1, b_1) \times \cdots \times (a_n, b_n) : a_i, b_i \in \mathbb{R} \right\},\,$$

• The family of half-open rectangles:

$$\mathcal{J}_n := \{ [a_1, b_1) \times \cdots \times [a_n, b_n) : a_i, b_i \in \mathbb{R} \}.$$

We denote by $\mathcal{J}_n^{\mathrm{rat}}$, $\mathcal{J}_{o,n}^{\mathrm{rat}}$ the subsets with rational endpoints. These sets represent intervals in \mathbb{R} , rectangles in \mathbb{R}^2 , cuboids in \mathbb{R}^3 , and hypercubes in higher dimensions.

Theorem 1.3. We have the following equality of Borel σ -algebras on \mathbb{R}^n :

$$\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{J}_n^{\mathrm{rat}}) = \sigma(\mathcal{J}_{o,n}^{\mathrm{rat}}) = \sigma(\mathcal{J}_n) = \sigma(\mathcal{J}_{o,n}),$$

Remark 1.4. Let $D \subseteq \mathbb{R}$ be a dense subset, for example $D = \mathbb{Q}$ or $D = \mathbb{R}$. Then the Borel sets on \mathbb{R} can also be generated by any of the following families of intervals:

$$\{(-\infty, a) : a \in D\}, \{(-\infty, a] : a \in D\}, \{(a, \infty) : a \in D\}, \{[a, \infty) : a \in D\}.$$

2 Measure Spaces

Definition 2.1. A *(positive) measure* μ on X is a map $\mu : \mathcal{A} \to [0, \infty]$, where \mathcal{A} is a σ -algebra on X, satisfying:

$$\mu(\emptyset) = 0,\tag{M1}$$

and for any pairwise disjoint sequence $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$,

$$\mu\left(\bigsqcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu(A_n). \tag{M2}$$

Property (M2) is also called *countable additivity*.

If μ satisfies (M1), (M2), but \mathcal{A} is not a σ -algebra, then μ is called a *premeasure*.

Remark 2.1. (M2) requires implicitly that $\bigsqcup_n A_n$ is again in \mathcal{A} this is clearly the case for σ -algebras, but needs special attention when dealing with premeasures.

Definition 2.2 (Monotone sequences of sets). Let $(A_n)_{n\in\mathbb{N}}$ and $(B_n)_{n\in\mathbb{N}}$ be sequences of subsets of X.

We say (A_n) is increasing if

$$A_1 \subset A_2 \subset A_3 \subset \cdots$$

and write $A_n \uparrow A$ where

$$A := \bigcup_{n \in \mathbb{N}} A_n$$

Similarly, (B_n) is decreasing if

$$B_1 \supset B_2 \supset B_3 \supset \cdots$$

and write $B_n \downarrow B$ where

$$B:=\bigcap_{n\in\mathbb{N}}B_n$$

Definition 2.3. Let X be a set and \mathcal{A} a σ -algebra on X. The pair (X, \mathcal{A}) is called a *measurable space*. If μ is a measure on (X, \mathcal{A}) , then (X, \mathcal{A}, μ) is called a *measure space*.

A measure μ is called:

- finite if $\mu(X) < \infty$,
- a probability measure if $\mu(X) = 1$.

Accordingly, we speak of a *finite measure space* and a *probability space*.

Definition 2.4. A measure μ on a measurable space (X, \mathcal{A}) is called σ -finite if there exists a sequence $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$ such that:

$$A_n \uparrow X$$
 and $\mu(A_n) < \infty$ for all $n \in \mathbb{N}$.

In this case, the measure space (X, \mathcal{A}, μ) is called σ -finite.

Lemma 2.1 (Basic properties of measures). Let (X, \mathcal{A}, μ) be a measure space. Then:

- (i) If $A_0, \ldots, A_k \in \mathcal{A}$ are pairwise disjoint, then $\mu(\bigcup_{n=0}^k A_n) = \sum_{n=0}^k \mu(A_n)$.
- (ii) If $A, B \in \mathcal{A}$ with $A \subseteq B$, then $\mu(A) \leq \mu(B)$.
- (iii) If $A, B \in \mathcal{A}$, $A \subseteq B$, and $\mu(A) < \infty$, then $\mu(B \setminus A) = \mu(B) \mu(A)$.

Proof. (i) Extend (A_n) by $A_n = \emptyset$ for n > k. Then by countable additivity,

$$\mu(\bigcup_{n=0}^{k} A_n) = \mu(\bigcup_{n=0}^{\infty} A_n) = \sum_{n=0}^{\infty} \mu(A_n) = \sum_{n=0}^{k} \mu(A_n).$$

(ii) Since $B = A \cup (B \setminus A)$ with disjoint union,

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$$

(iii) Rearranging gives

$$\mu(B \setminus A) = \mu(B) - \mu(A),$$

which is well-defined if $\mu(A) < \infty$.

Lemma 2.2 (Main properties of measures). Let (X, \mathcal{A}, μ) be a measure space. Then:

(i) Countable subadditivity: For any countable family $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$,

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)\leq\sum_{i\in\mathbb{N}}\mu(A_i).$$

(ii) Continuity from below (increasing sequence): If $A_1 \subseteq A_2 \subseteq \cdots$ (i.e., $A_n \uparrow A$), then

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu(A_n).$$

(iii) Continuity from above (decreasing sequence): If $B_1 \supseteq B_2 \supseteq \cdots$ (i.e., $B_n \downarrow B$), then

$$\mu\left(\bigcap_{n\in\mathbb{N}}B_n\right)=\lim_{n\to\infty}\mu(B_n).$$

Proof. (i) For countable subadditivity, set $B_k := A_k \setminus \bigcup_{i=1}^{k-1} A_i$, so that (B_k) are disjoint with $B_k \subseteq A_k$. Then,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigsqcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mu(B_i) \le \sum_{i=1}^{\infty} \mu(A_i).$$

(ii) Let $A_n \uparrow A$, i.e., $A_n \subseteq A_{n+1}$ and $A = \bigcup_{n \in \mathbb{N}} A_n$. Define $B_n := A_n \setminus A_{n-1}$ with $A_0 := \emptyset$. Then (B_n) is disjoint and $\coprod_n B_n = A$. By countable additivity,

$$\mu(A) = \sum_{n=1}^{\infty} \mu(B_n) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k) = \lim_{n \to \infty} \mu(A_n)$$

(iii) Assume $B_n \downarrow B$, i.e., $B_n \supseteq B_{n+1}$ and $B = \bigcap_n B_n$, with $\mu(B_1) < \infty$. Set $A_n := B_1 \setminus B_n$, so $A_n \uparrow A := B_1 \setminus B$. Then

$$\mu(B) = \mu(B_1) - \mu(A) = \mu(B_1) - \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \mu(B_n)$$

Remark 2.2. With appropriate modifications, these properties also hold for pre-measures, i.e., when A is not necessarily a σ -algebra.

Example 2.1 (Dirac measure). Let (X, A) be a measurable space and let $x \in X$. Define $\delta_x : A \to \{0, 1\}$ by

$$\delta_x(A) := \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

Then δ_x is a measure on (X, \mathcal{A}) , called the *Dirac measure* (or unit mass) at the point x.

Example 2.2 (Counting measure). Let (X, \mathcal{A}) be a measurable space. Define $\#A: \mathcal{A} \to [0, \infty]$ by

$$\#A := \begin{cases} \text{number of elements in } A & \text{if } A \text{ is finite,} \\ \infty & \text{if } A \text{ is infinite.} \end{cases}$$

Then # is a measure on (X, A), called the *counting measure*.

Example 2.3 (Discrete probability measure). Let $\Omega = \{\omega_1, \omega_2, \dots\}$ be a countable set, and let $(p_n)_{n \in \mathbb{N}} \subseteq [0, 1]$ be a sequence such that $\sum_{n \in \mathbb{N}} p_n = 1$. Define the set function $P : \mathcal{P}(\Omega) \to [0, 1]$ by

$$P(A) := \sum_{\{n \in \mathbb{N}: \omega_n \in A\}} p_n = \sum_{n \in \mathbb{N}} p_n \, \delta_{\omega_n}(A), \quad A \subseteq \Omega,$$

where δ_{ω_n} denotes the Dirac measure at ω_n . Then P is a probability measure on $(\Omega, \mathcal{P}(\Omega))$, and the triplet $(\Omega, \mathcal{P}(\Omega), P)$ is called a discrete probability space.

Example 2.4 (Linear combination of measures). Let (X, \mathcal{A}) be a measurable space, and let $(\mu_n)_{n\in\mathbb{N}}$ be a sequence of measures on (X, \mathcal{A}) . Let $(x_n)_{n\in\mathbb{N}}\subseteq [0,\infty]$. Then the set function

$$\mu := \sum_{n \in \mathbb{N}} x_n \mu_n$$

defined by

$$\mu(A) := \sum_{n \in \mathbb{N}} x_n \mu_n(A), \text{ for all } A \in \mathcal{A},$$

is a measure on (X, A)

Proof. We verify the axioms of a measure:

(M1) (Null empty set): For all $n \in \mathbb{N}$, $\mu_n(\emptyset) = 0$, so

$$\mu(\emptyset) = \sum_{n \in \mathbb{N}} x_n \mu_n(\emptyset) = \sum_{n \in \mathbb{N}} x_n \cdot 0 = 0.$$

(M2) (Countable additivity): Let $(A_k)_{k\in\mathbb{N}}\subseteq\mathcal{A}$ be pairwise disjoint. Since each μ_n is a measure, we have

$$\mu_n\left(\bigsqcup_{k\in\mathbb{N}} A_k\right) = \sum_{k\in\mathbb{N}} \mu_n(A_k), \text{ for all } n\in\mathbb{N}.$$

Then,

$$\mu\left(\bigsqcup_{k\in\mathbb{N}}A_k\right) = \sum_{n\in\mathbb{N}}x_n\mu_n\left(\bigsqcup_{k\in\mathbb{N}}A_k\right) = \sum_{n\in\mathbb{N}}x_n\sum_{k\in\mathbb{N}}\mu_n(A_k).$$

Since all terms are non-negative, we may exchange the order of summation:

$$\sum_{n\in\mathbb{N}} x_n \sum_{k\in\mathbb{N}} \mu_n(A_k) = \sum_{k\in\mathbb{N}} \sum_{n\in\mathbb{N}} x_n \mu_n(A_k) = \sum_{k\in\mathbb{N}} \mu(A_k).$$

Therefore, μ is countably additive.

Example 2.5 (Restriction of a measure). Let (X, \mathcal{A}, μ) be a measure space and let $A \in \mathcal{A}$. Define the set function $\mu_A : \mathcal{A} \to [0, \infty]$ by

$$\mu_A(B) := \mu(A \cap B)$$
, for all $B \in \mathcal{A}$.

Then μ_A is a measure on (X, A), called the restriction of μ to A.

Proof. We verify the two defining properties of a measure:

(M1):
$$\mu_A(\emptyset) = \mu(A \cap \emptyset) = \mu(\emptyset) = 0.$$

(M2): Let $(B_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$ be pairwise disjoint. Then $(A\cap B_n)_{n\in\mathbb{N}}$ are also pairwise disjoint, and

$$\mu_A\left(\bigsqcup_{n\in\mathbb{N}}B_n\right) = \mu\left(A\cap\bigsqcup_{n\in\mathbb{N}}B_n\right) = \mu\left(\bigsqcup_{n\in\mathbb{N}}(A\cap B_n)\right) = \sum_{n\in\mathbb{N}}\mu(A\cap B_n) = \sum_{n\in\mathbb{N}}\mu_A(B_n).$$

Hence, μ_A is a measure.

Definition 2.5 (Lebesgue measure on \mathbb{R}^n). Define the set function λ_n on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ by

$$\lambda_n\left(\llbracket a,b\rrbracket\right):=\prod_{i=1}^n(b_i-a_i),$$

for all $[a,b] := [a_1,b_1) \times \cdots \times [a_n,b_n) \in \mathcal{J}_n$. This is called the *n*-dimensional Lebesgue measure.

Remark 2.3. The set function λ_n is defined only on the family \mathcal{J}_n of half-open rectangles and hence is not yet a measure. Extending λ_n to a measure on $\mathcal{B}(\mathbb{R}^n)$ requires the Carathéodory extension theorem, which will be developed later.