3

2	the method comprising
1	12. A method of decreasing the production of IgE in a subject exposed to an allergen,
2	molecule that comprises a gene expressing Der p 5.
1	11. A transformed Streptococcus thermophilus bacterium comprising a DNA
2	that comprises a gene expressing Der p 5.
1	10. A transformed Lactobacillus acidophilus bacterium comprising a DNA molecule
	manage of the same sea.
1 2	9. The bacterium of claim 1, wherein the promoter is a bacterial erythromycin resistance gene promoter.
1	
1	8. The bacterium of claim 7, wherein the allergen is Der p 5.
2	pteronyssinus.
1	7. The bacterium of claim 6, wherein the dust mite is Dermatophagoides
1	6. The bacterium of claim 1, wherein the protein allergen a dust mite allergen.
1	5. The bacterium of claim 4, wherein the bacterium is <i>Streptococcus thermophilus</i> .
1	5. The hacterium of claim 4 whomain the hacterium is Games and the
1	4. The bacterium of claim 1, wherein the bacterium is of the genus <i>Streptococcus</i> .
1	3. The bacterium of claim 2, wherein the bacterium is <i>Lactobacillus acidophilus</i> .
1	2. The bacterium of claim 1, wherein the bacterium is of the genus <i>Lactobacillus</i> .
3	operably linked to the nucleotide sequence.
2	that comprises (1) a nucleotide sequence that encodes a protein allergen and (2) a promoter
1	1. A transformed lactic acid bacterium, the bacterium comprising a DNA molecule

administering to a subject the bacterium of claim 1; and

4	expressing the allergen in the subject in an amount sufficient to induce in the subject
5	immunological tolerance to the allergen, wherein the tolerance includes suppression of
6	allergen-specific IgE production in the subject upon subsequent exposure to the allergen.
1	13. A method of decreasing the production of IgE in a subject exposed to a dust mite
2	allergen, the method comprising
3	1 0
	administering to a subject the bacterium of claim 10; and
4	expressing the allergen in the subject in an amount sufficient to induce in the subject
5	immunological tolerance to the allergen, wherein the tolerance includes suppression of
6	allergen-specific IgE production in the subject upon subsequent exposure to the allergen.
1	14. A method of decreasing the production of IgE in a subject exposed to a dust mite
2	allergen, the method comprising
3	administering to a subject the bacterium of claim 11;
4	expressing the allergen in the subject in an amount sufficient to induce in the subject
5	immunological tolerance to the allergen, wherein the tolerance includes suppression of
6	allergen-specific IgE production in the subject upon subsequent exposure to the allergen.
1	15. A method of relieving bronchopulmonary congestion in a subject exposed to an
2	allergen, the method comprising
3	administering to a subject the bacterium of claim 1; and
4	expressing the allergen in the subject in an amount sufficient to relieve
5	bronchopulmonary congestion in the subject upon subsequent exposure to the allergen.
1	16. A method of relieving bronchopulmonary congestion in a subject exposed to a
2	dust mite allergen, the method comprising
3	administering to a subject the bacterium of claim 10; and
4	expressing the allergen in the subject in an amount sufficient to relieve
5	bronchopulmonary congestion in the subject upon subsequent exposure to the allergen.

1

2

subject.

1 17. A method of relieving bronchopulmonary congestion in a subject exposed to a 2 dust mite allergen, the method comprising 3 administering to a subject the bacterium of claim 11; and 4 expressing the allergen in the subject in an amount sufficient to relieve 5 bronchopulmonary congestion in the subject upon subsequent exposure to the allergen. 1 18. The method of claim 12, wherein the bacterium is orally administered to the 2 subject. 1 19. The method of claim 13, wherein the bacterium is orally administered to the 2 subject. 20. The method of claim 14, wherein the bacterium is orally administered to the 1 2 subject. 1 21. The method of claim 15, wherein the bacterium is orally administered to the 2 subject. 1 22. The method of claim 16, wherein the bacterium is orally administered to the 2 subject.

23. The method of claim 17, wherein the bacterium is orally administered to the