

UD3 – Prueba de validación – Calculadora y mascotas

Resultados de aprendizaje:

2. Escribe y prueba programas sencillos, reconociendo y aplicando los fundamentos de la programación orientada a objetos.

Criterios de evaluación:

- a Se han identificado los fundamentos de la programación orientada a objetos.
- b Se han escrito programas simples.
- c Se han instanciado objetos a partir de clases predefinidas.
- d Se han utilizado métodos y propiedades de los objetos.
- e Se han escrito llamadas a métodos estáticos.
- f Se han utilizado parámetros en la llamada a métodos.
- h Se han utilizado constructores.
- i Se ha utilizado el entorno integrado de desarrollo en la creación y compilación de programas simples.
- 4. Desarrolla programas organizados en clases analizando y aplicando los principios de la programación orientada a objetos.

Criterios de evaluación:

- a Se ha reconocido la sintaxis, estructura y componentes típicos de una clase.
- b Se han definido clases.
- c Se han definido propiedades y métodos.
- d Se han creado constructores.
- e Se han desarrollado programas que instancien y utilicen objetos de las clases creadas anteriormente.
- f Se han utilizado mecanismos para controlar la visibilidad de las clases y de sus miembros.
- Se han definido v utilizado clases heredadas.
- h Se han creado y utilizado métodos estáticos.
- j Se han creado y utilizado conjuntos y librerías de clases.

Recuerda:

- El examen finalizará a las 11:45, no se corregirá ninguna prueba entregada después de la hora marcada en la plataforma de elearning.
- Una vez finalizada la prueba, avisa al profesor para que la corrija contigo.
- Durante la prueba podrás consultar todas las fuentes que necesites, tanto apuntes, como prácticas o internet. Sin embargo, queda totalmente prohibido el uso de sistemas de mensaiería instantánea como Whatsapp, Telegram, Slack, Twitch, etc...
- Durante la prueba no se podrá salir del aula.
- La presencia y uso de dispositivos móviles, ya sean estos tablets, teléfonos o smartwatches está totalmente prohibida.
- Para corregir esta práctica, se utilizará la rúbrica registrada en la plataforma de elearning.
- Las actividades deben realizarse en un solo proyecto. Cada actividad tendrá su paquete principal con su propia clase ejecutable.

Primer problema

Crea una clase en Java que disponga de los siguientes tres métodos estáticos:

a) **factorialDeN**: Debe recibir un parámetro que será el valor de N y debe devolver el resultado de multiplicar todos los números enteros comprendidos entre 1 y N, ambos incluidos.

Por ejemplo: Si el método recibe como parámetro 6, debe devolver el resultado de la siguiente operación: 1 * 2 * 3 * 4 * 5 * 6

b) **mediaHastaN:** Debe recibir un parámetro positivo que será el valor de N y debe devolver el resultado de calcular la media de los números enteros comprendidos entre 1 y N, ambos incluidos.

<u>Por ejemplo:</u> Si el método recibe como parámetro 6, debe devolver el resultado de la siguiente operación: (1 + 2 + 3 + 4 + 5 + 6) / 6

c) **obtenerPasosFibonacci**: Debe recibir un parámetro positivo N y debe devolver el resultado de los N primeros pasos de la <u>sucesión de Fibonacci</u>.

<u>Por ejemplo:</u> Si el método recibe como parámetro 7, debe devolver una cadena con los siete primeros pasos de la sucesión de Fibonacci: "0, 1, 1, 2, 3, 5, 8".

El programa principal de la clase ejecutable debe solicitar al usuario un valor numérico N y, a continuación, mostrar la salida de los tres métodos para ese valor.

Segundo problema

Crea una clase que represente a un **vehículo** y cumpla con estas características:

- a) Debe contener los siguientes atributos:
 - Marca
 - Peso
 - Potencia (en kW)
 - Número de puertas
 - Velocidad (en km/h)
- b) Debe disponer de un constructor y de todos los métodos de acceso.
- c) Debe disponer de un método que le permita acelerar. Este método debe sumar 10 unidades al atributo velocidad del vehículo.

A continuación, crea dos clases **ciclomotor** y **camión** que cumplan con estos requisitos:

- a) Estas clases deben heredar de la clase vehículo anterior.
 - El ciclomotor debe tener un atributo adicional que haga referencia a si está habilitado para ir por la autopista.

- El camión debe tener un atributo adicional que haga referencia a su capacidad de carga.
- b) Deben sobrecargar el método que permite acelerar a los objetos vehículo.
 - En el caso de la clase ciclomotor, este método debe sumar 7 unidades a su atributo velocidad.
 - En el caso de la clase camión, este método debe sumar 5 unidades a su atributo velocidad.
- c) Sobrecarga el método toString de ambas clases de manera que generen una salida idéntica a las siguientes:

Ciclomotor	* Tipo de vehículo: Ciclomotor. * Marca: <mostrar atributo="" correspondiente="" del="" el="" valor=""> * Peso: <mostrar del="" el="" peso="" valor=""> * Potencia: <mostrar atributo="" correspondiente="" del="" el="" valor=""> * Número de puertas: <debe aquí="" correspondiente="" el="" mostrarse="" valor=""> * Puede ir por autopista: <debe "no"="" "si"="" aquí="" mostrarse="" o=""> * Velocidad actual: <mostrar con="" correspondiente="" el="" unidades="" valor=""></mostrar></debe></debe></mostrar></mostrar></mostrar>
Camión	* Tipo de vehículo: Camión. * Marca: <mostrar atributo="" correspondiente="" del="" el="" valor=""> * Peso: <mostrar del="" el="" peso="" valor=""> * Potencia: <mostrar atributo="" con="" correspondiente="" del="" el="" unidades="" valor=""> * Número de puertas: <debe aquí="" correspondiente="" el="" mostrarse="" valor=""> * Capacidad de carga: <debe aquí="" correspondiente="" el="" mostrarse="" valor=""> * Velocidad actual: <mostrar con="" correspondiente="" el="" unidades="" valor=""></mostrar></debe></debe></mostrar></mostrar></mostrar>

Por último, en la clase ejecutable, instancia un objeto de cada tipo, haz que aceleren y muéstralos por pantalla empleando el comando sout.