1 26th of October 2018 — F. Poloni

1.1 How to construct a QR factorization

In the previous lecture we introduced the QR factorization and we defined what an Householder reflector is.

At the end of the lecture we gave a first MatLab implementation of householder_vector:

ALGORITHM 1.1 Householder vector Matlab implementation.

```
function[v,s] = householdervector(x)
s = norm(x);
v = x;
v(1) = v(1) - s;
v = v / norm(v);
```

What's the problem of this algorithm? That the subtraction may create a problem with machine numbers, if s and ||x|| are very close. If we take ||x|| = -s the subtraction becomes and addition, and everything works well.

In the end, we would like to obtain this behaviour for every possible value for x and s, so line 2 may be modified as s = - sign(x(1)) * norm(x).

FIGURE 1.1: If x is oriented as in the plot it's better if we choose $-||x||e_1$ verse, since it's opposite to x.

Step 1: costruct a Householder matrix that sends A(:,1) (first column of A) to a multiple

of
$$e_1$$
. Then we have $H_1A = \begin{pmatrix} \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{pmatrix}$

STEP 2: take $H_2 \in \mathcal{M}(m-1, m-1, \mathbb{R})$ such that $H_2A(2: end, 2) = \begin{pmatrix} \times \\ 0 \\ 0 \\ 0 \end{pmatrix}$ and compute:

$$Q_{2}(H_{1}A) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & & & H_{2} \\ 0 & & & & \\ 0 & & & & \end{pmatrix} \begin{pmatrix} \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times & \times \end{pmatrix}$$

$$(1.1)$$

And we denote $Q_2 = \begin{pmatrix} I_{1\times 1} & 0 \\ 0 & H_2 \end{pmatrix}$, $Q_1 = H_1$;

STEP 3: take $H_3 \in \mathcal{M}(m-2, m-2, \mathbb{R})$ such that $H_3A(3:end,3) = \begin{pmatrix} \times \\ 0 \\ 0 \end{pmatrix}$ and we compute:

$$Q_{3}(Q_{2}Q_{1}A) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & H_{3} \\ 0 & 0 & \end{pmatrix} \begin{pmatrix} \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \end{pmatrix}$$

$$= \begin{pmatrix} \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times & \times \end{pmatrix}$$

$$(1.2)$$

So,
$$Q_3 = \begin{pmatrix} I_{2\times 2} & 0\\ 0 & H_3 \end{pmatrix}$$
;

STEP 4: take $H_4 \in \mathcal{M}(m-3, m-3, \mathbb{R})$ such that $H_4A(4:end, 4) = \begin{pmatrix} \times \\ 0 \end{pmatrix}$ and we compute:

Where,
$$Q_4 = \begin{pmatrix} I_{3\times3} & 0\\ 0 & H_4 \end{pmatrix}$$
.

In the end, since Q_i is an orthogonal matrix and the product of orthogonal matrices is orthogonal, $Q_1Q_2Q_3Q_4A = T$, which is an upper triangular matrix.

Theorem 1.1 (Product of block matrices). Let $I \in \mathcal{M}(k, k, \mathbb{R})$, let $H_i \in \mathcal{M}(m-k, m-k, \mathbb{R})$ and let $B_i \in \mathcal{M}(k, k, \mathbb{R})$, $C_i \in \mathcal{M}(k, m-k, \mathbb{R})$ and $A_i \in \mathcal{M}(m-k, m-k, \mathbb{R})$, then the product between the two following block matrices is exactly the one showed below.

$$\begin{pmatrix} I & 0 \\ 0 & H_i \end{pmatrix} \begin{pmatrix} B_i & C_i \\ 0 & A_i \end{pmatrix} = \begin{pmatrix} B_i I & C_i \\ 0 & H_i A_i \end{pmatrix}$$

Proof. It's trivial computation, using the definition of matrix product.

1.1.1 Matlab implementation

```
Algorithm 1.2 First implementation of QR factorization.
```

```
function [Q, R] = myqr(A)

[m, n] = size(A);

Q = eye(m);

for j = 1:n

v = householder_vector(A(j:end, j));

H = eye(length(v)) - 2*v*v';

A(j:end,j:end) = H * A(j:end,j:end);

Q(:, j:end) = Q(:, j:end) * H;

end

R = A;
```

Fact 1.2. The cost of this implementation when A is a square matrix is $O(n^3 + (n-1)^3 + \cdots + 1^3)$. If A is a rectangular matrix, then the computational complexity is $O(m \cdot n^2 + (m-1) \cdot (n-1)^2 + \cdots + (m-n+1)^3)$.

Proof. Line 7 does a matrix product between matrices of size $n, n-1, \ldots, 1$, so the resulting cost is $O(m \cdot n^2 + (m-1) \cdot (n-1)^2 + \cdots + (m-n+1)^3)$.

We may design a faster algorithm, since $HA_j = A_j - 2v(v^TA_j)$.

Algorithm 1.3 More efficient implementation of QR factorization.

```
function [Q, A] = myqr(A)

[m, n] = size(A);

Q = eye(m);

for j = 1:n-1

[v, s] = householder_vector(A(j:end, j));

A(j,j) = s; A(j+1:end,j) = 0;

A(j:end,j+1:end) = A(j:end,j+1:end) - ...

2*v*(v'*A(j:end,j+1:end));

Q(:, j:end) = Q(:, j:end) - Q(:,j:end)*v*2*v';

end
```

Let's suppose that A is square matrix, partitioned as:

$$A = \begin{pmatrix} A_1 & A_2 \end{pmatrix} = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{1,1} & R_{1,2} \\ 0 & R_{2,2} \end{pmatrix}$$

Then we can recover the factorization of A_1 from the factorization of A, since $A_1 = Q \cdot R_{11}$.

Fact 1.3 (Thin QR factorization). We may replace $Q \in \mathcal{M}(m, m, \mathbb{R})$ and $R \in \mathcal{M}(m, m, \mathbb{R})$ with $Q_1 \in \mathcal{M}(m, n, \mathbb{R})$ and $R_1 \in \mathcal{M}(n, n, \mathbb{R})$ and the same factorization holds: $A = QR = Q_1R_1$. This is called **thin QR factorization**.

Proof.
$$A_1 \in \mathcal{M}(m, n, \mathbb{R}), A = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \cdot \begin{pmatrix} R_1 \\ 0 \end{pmatrix} = QR = Q_1R_1 + Q_20 = Q_1R_1$$

In order to save space we may work in the following way:

$$QB = \begin{pmatrix} 1 & \times & \cdots & \times \\ 0 & & & \\ \vdots & & I-2V_1V_1^T \\ 0 & & & \end{pmatrix} \begin{pmatrix} 1 & \times & \times & \cdots & \times \\ 0 & 1 & \times & \cdots & \times \\ \vdots & 0 & & I-2V_2V_2^T \\ 0 & \vdots & & & \\ 0 & 0 & & & \end{pmatrix} \dots$$

$$\dots \begin{pmatrix} 1 & \times & \times & \cdots & \times \\ 0 & 1 & \times & \cdots & \times \\ \vdots & 0 & 1 & & \\ 0 & \vdots & 0 & & \text{I-2V}_n \text{V}_n^T \\ 0 & 0 & 0 & & \end{pmatrix} B.$$

Fun fact

There are some libraries that store the v_i vectors in the lower part of matrix R which is upper triangular and has only zeros below the main diagonal.

1.2 How to use the thin QR factorization to solve a least squares problem

We would like to solve $||Ax - b|| \forall A \in \mathcal{M}(m, n, \mathbb{R})$ and $\forall B \in \mathbb{R}^n$ where m > n (aka A is a tall, thin matrix),through the QR factorization. We would like to solve min ||Ax - b|| through the QR factorization.

We may write first the QR factorization of A, so $\forall A \in \mathcal{M}(m, n, \mathbb{R}), \exists Q \in \mathcal{M}(m, m, \mathbb{R}),$

$$\exists R \in \mathcal{M}(m, n, \mathbb{R}) \text{ such that } A = QR, \text{ where } Q = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \text{ and } R = \begin{pmatrix} R_1 \\ 0 \end{pmatrix}.$$

Then,

$$||A\mathbf{x} - \mathbf{b}|| = ||Q^{T}(A\mathbf{x} - \mathbf{b})|| = ||Q^{T}QR\mathbf{x} - Q^{T}\mathbf{b}||$$

$$= ||R\mathbf{x} - Q^{T}\mathbf{b}|| = ||\binom{R_{1}}{0}\mathbf{x} - \binom{Q_{1}^{T}}{Q_{2}^{T}}\mathbf{b}||$$

$$= ||\binom{R_{1}\mathbf{x} - {Q_{1}^{T}\mathbf{b}}}{{Q_{2}^{T}\mathbf{b}}}||$$
(1.4)

How can we pick \mathbf{x} to minimize the norm of $A\mathbf{x} - \mathbf{b}$?

Can we choose x such that $R_1\mathbf{x} - {Q_1}^T\mathbf{b} = 0$? Yes, we can, since this is a linear square system, so $\mathbf{x} = {R_1}^{-1} {Q_1}^T\mathbf{b}$

$$||A\mathbf{x} - \mathbf{b}|| = ||Q_2^T \mathbf{b}||$$

We used the fact that R_1 is invertible, but is it always true that R_1 is invertible?

Lemma 1.4. R_1 is invertible $\Leftrightarrow A$ has full column rank.

Proof. A has full column rank $\Leftrightarrow A^T A$ is positive definite $\Leftrightarrow A^T A$ is positive semidefinite and invertible, but $A^T A$ is positive semidefinite, so we only need to prove its invertibility.

Let's compute
$$QR^TQR = R^TQ^TQR = R^TR = \begin{pmatrix} R_1^T & 0 \end{pmatrix} \begin{pmatrix} R_1 \\ 0 \end{pmatrix} = R_1^TR_1$$
.

So, A^TA is invertible $\Leftrightarrow R_1$ is invertible.

Note

 $R_1^T R_1$ is the Cholesky factorization of $A^T A$.

The computational complexity is asymptotically equal to the one of computing the QR factorization, since the other operations are cheaper (the product Q_1^Tb costs O(mn) and solving the triangular linear system by back-substitution costs $O(n^2)$).