Credit Approval Analysis

Ryan Kuhn May 1, 2015

Background

Objective:

To demonstrate the analytical techniques taught during the Special Topics in Audit Analytics course at Rutgers University

Data:

- Dataset- Credit Screening on Credit Card Applications
- Source- UCI Machine Learning Repository

Assumptions:

Field names and values changed to meaningless values. Made assumtions about what attributes the data represents.

Q: Is there a relationship between Age, Income, Credit Score, and Debt levels and the credit approval status? Can this relationship be used to predict if a person is granted credit? If yes, does the relationship indicate reasonable risk management strategies?

Q: Is there a relationship between Age, Income, Credit Score, and Debt levels and the credit approval status? Can this relationship be used to predict if a person is granted credit? If yes, does the relationship indicate reasonable risk management strategies?

A: Relationships exists between Prior default, Years employed, Credit score, and Income level. These variables are reasonable management strategies.

Q: Ethnicity is a protected status and the decision to approve or deny an application cannot be based on the applicant's ethnicity. Is there a statistically significant difference in how credit is granted between ethnicities that could indicate bias or discrimination?

H0: Ethnicity and approval are independent.

H1: Approval status is dependent on the ethnicity and credit card company has a compliance risk.

Q: Ethnicity is a protected status and the decision to approve or deny an application cannot be based on the applicant's ethnicity. Is there a statistically significant difference in how credit is granted between ethnicities that could indicate bias or discrimination?

H0: Ethnicity and approval are independent.

H1: Approval status is dependent on the ethnicity and credit card company has a compliance risk.

A: A chi-squared test did not give evidence that ethnicity and approval status are dependent. We cannot reject the null hypothesis.

Analytic Methods Used

Methods used:

- · Linear regression
- Descriptive Statistics and Normalization
- Association Rules
- Logistic regression
- · Classification and Regression Tree
- Ensembling

Linear Regression

Used to fill in missing values in Age

	Age	Debt	YearsEmployed	CreditScore	Income
Age	1.000	0.202	0.396	0.186	0.019
Debt	0.202	1.000	0.301	0.271	0.122
YearsEmployed	0.396	0.301	1.000	0.327	0.053
CreditScore	0.186	0.271	0.327	1.000	0.063
Income	0.019	0.122	0.053	0.063	1.000

```
(Intercept) YearsEmployed 28.446953 1.412399
```

Descriptive Stats and Normalization

Convert values to Z-Scores

Distribution of Values Before and After Normalization

Association Rules

- 1. Support: Support is how often the left hand side of the rule occurs in the dataset. In our example above, we would count how many times {u,g,c} occurs and divide by the total number of transactions.
- 2. Confidence: Confidence measures how often a rule is true. First, we find the subset of all transactions that contain {u,g,c}. Of this subset, we then count the number of transactions that match the right hand side of rule, or {1}. The confidence ratio is calculated by taking the number of times the rule is true and dividing it by the number of times the left hand side occurs.

```
lhs rhs support confidence lift 
1 {EducationLevel=c} => {Male=0} 0.1545319 0.7647059 1.099673
```

Baseline Model

- · Simple mean of results.
- Establish benchmark to measure model accuracy

```
Total Success Percent
1 517 230 44.49
```

Logistic Regression

```
Call:
qlm(formula = Approved ~ AgeNorm + DebtLog + YearsEmployedLog +
   CreditScoreLog + IncomeLog, family = binomial, data = Train)
Deviance Residuals:
   Min
            10 Median
                            30
                                  Max
-2.4339 -0.7848 -0.4970 0.7164 2.1596
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
              -0.10596 0.11283 -0.939 0.347648
(Intercept)
              0.01541 0.11674 0.132 0.894965
AgeNorm
        0.08430 0.11635 0.725 0.468744
DebtLog
YearsEmployedLog 0.70937 0.13021 5.448 5.10e-08 ***
CreditScoreLog 1.01687 0.13944 7.293 3.04e-13 ***
         IncomeLog
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 698.11 on 506 degrees of freedom
```

Residual deviance: 500.25 on 501 degrees of freedom

CART Model

```
n= 517

node), split, n, loss, yval, (yprob)
   * denotes terminal node

1) root 517 230 0 (0.55512573 0.44487427)
   2) PriorDefault=0 247 16 0 (0.93522267 0.06477733) *
   3) PriorDefault=1 270 56 1 (0.20740741 0.79259259) *
```


References

Data:

http://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening

Analytic Report:

http://www.rpubs.com/kuhnrl30/CreditScreen