Probabilistic Robotics Course

Projects

Giorgio Grisetti

grisetti@dis.uniroma1.it

Dept. of Computer Control and Management Engineering Sapienza University of Rome

#1 Least Squares based 3D Camera Localization

Input:

Landmark based map

Anonymized observations

Odometry

Output: tracked position of the vehicle, and covariance.

#2 ICP++

•Input:

2 Point Clouds (w/o data association)
Register them.

#3 2D Loop Detector and Validator

- Input:
 - set of 2D point scans
 - a reference scan

Find the transform between reference and each scan, if they match.

#4 Least Squares based 2D Bearing Only SLAM

Input:

2D Bearing only labeled observations

Odometry

Output trajectory and map.

#5 2D Least Squares-based SCLAM

- Input:
 - Encoder ticks
 - Labeled landmark observations

Output:

- Map
- Calibration Parameters

#6 3D Calibration

- Input:
 - Raw data
 - Camera tracking output
 - Encoder ticks

#7 Kalman based IMU SLAM

- Input:
 - G2o file with IMU measurements
 - unlabeled point observations

- Output:
 - Trajectory and map

#8 Find that object

- Input:
 - Cloud of an object
 - Cloud of a scene with the object inside

Output:

Pose of the object in the cloud

#9 Monocular SLAM with odometry guess

- Input:
 - Monocular stream data
 - Synchronized odometry
 - Extrinsics, i.e. transform odometry/camera

Platform Trajectory

#10 Planar Monocular SLAM

- Differential Drive equipped with a monocular camera
 - useful reading [HBST, Schlegel et al. 2018]
- Input:
 - Integrated dead reckoning
 - Stream of images
 - Extrinsics (sensor pose w.r.t. platform)
- Output:
 - Trajectory and Map

#11

Propose your own projects

How to get a project

Send an email asking for a project (pick a number) to

- dellacorte@diag.uniroma1.it
 - or
- schlegel@diag.uniroma1.it

use as Subject: [ProbRob][ProjAss]

Wait for instructions