# Digital Control Systems

**EEME E4601** 



#### Week 1

# Homayoon Beigi

Homayoon.Beigi@columbia.edu https://www.RecoTechnologies.com/beigi

Mechanical Engineering dept.

X

Electrical Engineering dept.

Columbia University, NYC, NY, U.S.A.



## Course

- Classroom: 1127 Mudd Building
- Class Time: Wednesdays 4:10 PM 6:40 PM
- Instructor: Homayoon Beigi <hb87@columbia.edu>
- TA: Do-Gon Kim <dk3322@columbia.edu>
- Website: https://www.RecoTechnologies.com/beigi



#### Office Hours

1. Homayoon Beigi (Prof.)

Email: hb87@columbia.edu

Days: Mondays and Wednesdays Time: 11AM to 12 Noon on zoom:

Link: https://columbiauniversity.zoom.us/j/93321040837?pwd=fipJs4JkAXh50aPwTXBqDLHI0Ry2iQ.1

And Thursdays: 4PM-5PM by appointment only

2. Do-Gon Kim (TA)

Email: dk3322@columbia.edu

Days: Tuesdays: Time 10AM to 11AM and Fridays Time: 11AM to 12Noon

Link: https://meet.jit.si/ColumbiaEEME00YpsEAJajhm



# Background

- Recognition Technologies, Inc. President since 2003
- Internet Server Connections, Inc. Vice President since 2001
- Columbia University Adjunct Professor since 1995

  Courses: Fundamentals of Speech Recognition, Signal Recognition,

  Speaker Recognition, Handwriting Recognition, and Digital Control

  Depts: CS, ME, EE, and CE
- IBM T.J. Watson Research Center Research Staff Member 1991-2001
- Columbia University Center for Telecommunications Research 1990-1991
- Columbia University BS (1984), MS (1985) & PhD (1990)
- Various Patent Advisory and Expert Services



#### **Academic Activities**

#### **Textbook Publication:**

Fundamentals of Speaker Recognition – 2007 - 2011 Springer-Verlag 2011

Columbia University – SEAS
Adjunct Professor – since 2003

Adjunct Associate Professor: 1997 – 2003 Adjunct Assistant Professor: 1995 – 1997

Spring 2012 – 2023

Fundamentals of Speaker/Speech Recognition – Computer Science Dept.

#### Other Courses:

**Speech Recognition** (1995 & 1996) – Electrical Engineering. Dept.

**Applied Signal Recognition** (2004, 2005, 2019, 2020) – Mechanical Engineering Dept.

**Digital Control Systems** (1998, 2004, 2013, 2019) – Mechanical & Electrical Engineering



# Research and Development Activities

IBM – T.J. Watson Research Center Research Staff Member – 1991-2001

**Unconstrained Online Handwriting Recognition** – *Lead Researcher* 1991 – 1997

**Speaker Recognition** – Speech Recognition Group – Lead Researcher 1997 – 2001

Adventurous System and Software Research – Award in Adventurous Research

#### **Pen-Based Music Composition**

An award to conduct an independent research for two years (1995 - 1997) (initially 1 year and renewed for a second year)

Many Patents and Publications including top 10% patent value to IBM



# Research and Development Activities

**Face, Object, and Emotion Recognition** – *Recognition technologies, Inc.* 

**Speech and Speaker Recognition** – *Recognition technologies, Inc. and IBM Research* 

**Online Handwriting Recognition** – *Recognition technologies, Inc. and IBM Research* 

Structural Health Monitoring – Joint Project with the Civil Engineering Dept. of Columbia University

**Language Proficiency Rating** – Recognition technologies, Inc.

Large-Scale Portfolio Optimization –Internet Server Connections, Inc.

Neural Network and Deep Learning – Pioneered Deep Nonlinear Learning Formulation

**Iterative Learning Control** – Pioneered the Adaptive Learning Control Field

**Machine Health Prognosis** – *Machinery Components* 

**Lossless Image Compression** – A Project for the Library of Congress

**Zero-Gravity Fluid Research** – A joint project with the NASA Space Lab

**Kinematics** – A Unification Formulation for all types of Four Bar Linkages Joint research with the late Prof. F. Freudenstein



#### Selected Professional Activities

#### **Standards:**

#### U.S. Delegation of ISO/SC 37 JTC 1 W3C

Active Liaison

#### ANSI / INCITS Standards for Biometric Data Interchange Format

Active Liaison & Driving Force for Speaker Recognition

#### **VoiceXML Forum** Standards for Speaker Biometric

Active Liaison & Driving Force for Speaker Recognition

#### Other Committees:

#### FBI / NIST Speaker Recognition Advisory Panel

*Invited Member – 2009* 

#### Biometric Operations and Support Services Unrestricted (BOSS-U)

Computer Sciences Corporation Team

#### **Voice Identification Policy Group (VIPG)**

Advisory Team



# Grading

Homework – 30%

Small Problems and/or Coding Assignments

Midterm - 20% - Mar. 12, 2025

Problems and/or Coding Assignments

Project Proposal – 10% – Mar. 26, 2025

2-page proposal, including state of the art and proposed methodology

Final Project – 40% – May 14, 2025

15% - Code - Dec. 15, 2024

25% – 6-page IEEE Style Report of the methodology and result + 3 minute Video Presentation



# Grading (Continued)

#### Proposal (10%)

Two-page extended abstract – as you would submit to a conference for publication

- Description of the problem + Data
- Description of the intended experiments
- Quick review of the State of the Art
- Expectations Expected results and problems

- Roadmap of the research

#### Project -- 40% (25% written Paper and 3 minute Video Presentation & 15% Code) Six-page conference-style paper

- Abstract
- Introduction problem description and the State of the Art
- Problem Formulation Mathematical formulation, etc.
- Experiment Description and Setup + Data
- Results Presentation and Analysis
- Conclusion including Future Direction

Source code and documentation for running the experiment

Input and Output Data



## **Tools**

#### Matlab

It will be useful to have Matlab installed on your computer.

- Student license should be available through Columbia.

#### Audacity

Audio Manipulation Application

#### Google Cloud

We will use Google cloud for access to GPUs for training Neural Nets.

#### **GPU**

Installing a GPU card such as the Nvidia GTX 1080Ti or better would be advantageous.

- Google cloud is temperamental and credits can be easily depleted.



## **Books**

#### Textbooks:

#### Required:

Charles L. Phillips, Digital Control System Analysis & Design, Pearson Prentice Hall, 2015.

#### Reference:

Homayoon Beigi, "Fundamentals of Speaker Recognition, Springer-Verlag, New York, 2011.

## Textbook

~1000 Pages – 26 chapters – 177 illustrations

100,000+ downloads of online version www.FundamentalsOfSpeakerRecognition.org

#### Part I – Basic Theory

- 1. Introduction
- 2. Anatomy of Speech
- 3. Signal Representation of Speech
- 4. Phonetics and Phonology
- 5. Signal Proc. & Feature Extraction
- 6. Probability Theory and Statistics
- 7. Information Theory
- 8. Metrics and Divergences

- 9. Decision Theory
- 10. Parameter Estimation
- 11. Unsuperv. Clust. & Learning
- 12. Transformation
- 13. Hidden Markov Modeling
- 14. Neural Networks
- 15. Support Vector Machines

# Fundamentals of Speaker Recognition Fundamentals of Speaker Recognition

ISBN: 978-0-387-77591-3

#### Part II – Advanced Theory

- 16. Speaker Modeling
- 17. Speaker Recognition

#### Part III - Practice

- 19. Evaluation & Representation of Results
- 20. Time Lapse Effects

- 18. Signal Enhancement & Comp.
- 21. Adaptation over Time
- 22. Overall Design

#### Part IV – Background Material

- 23. Linear Algebra
- 24. Integral Transforms
- 25. Optimization Theory
- 26. Standards



# Control Problem Components

#### Goals

**Transient Response** 

Disturbance Rejection

**Steady-State Error Correction** 

Plant Parameter-Change Sensitivity

#### Approach

**Sensor Selection** 

**Actuator Selection** 

System Modeling – Developing Equations for the Plant Dynamics, Sensor Response, and Actuator Dynamics

Controller Design

Evaluation – analytic evaluation, simulation, hardware test

Repetition of the tests to achieve repeatable and acceptable results



# **Terminology**

Open-Loop vs Closed-Loop

Linear vs Nonlinear

Time-Variant vs Time-Invariant

Continuous-Time vs Discrete-Time

Single-Input Single-Output (SISO) vs Multi-Input Multi-Output (MIMO)



## Controllers

Adaptive Control Systems
Self-tuning Regulators
Model-Reference Control
Fuzzy Control Systems

Repetitive Processes
Iterative Learning Control
Adaptive Learning Control
Repetitive Control



# Nonlinear Control Systems

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$$
  
 $\mathbf{y}(t) = \mathbf{h}(\mathbf{x}(t), t)$ 



# Linear Time-Invariant (LTI) Single-Input Single Output (SISO)

$$\frac{d^{(n)}y(t)}{dt^{(n)}} + p_{n-1}\frac{d^{(n-1)}y(t)}{dt^{(n-1)}} + p_{n-2}\frac{d^{(n-2)}y(t)}{dt^{(n-2)}} + \dots + p_0y(t)$$

$$= q_{n-1}\frac{d^{(n-1)}u(t)}{dt^{(n-1)}} + q_{n-2}\frac{d^{(n-2)}u(t)}{dt^{(n-2)}} + \dots + q_0u(t)$$



# Linear Time-Invariant (LTI) State-Space Representation (SISO & MIMO)

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

**A** is the System Matrix

**B** is the Control Matrix

C is the Observation Control

**D** is the Direct Input Observation



## Time-Variant System

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{u}(t)$$

- $\mathbf{A}(t)$  is the time-dependent System Matrix
- $\mathbf{B}(t)$  is the time-dependent Control Matrix
- $\mathbf{C}(t)$  is the time-dependent Observation Control
- $\mathbf{D}(t)$  is the time-dependent Direct Input Observation



# Generic Control System





## Sensor Data



Walked up and down stairs at home

Based on the ideal gas law: 
$$h = \frac{RT}{g} \ln(\frac{P_0}{P})$$

$$R = 287 \frac{J}{kg \times^{\circ} K}$$

$$g = 9.81 \ m/s^2$$

$$T = 273.15 + 15 = 288.15$$
 ° $K$ 

$$P_0 = 1013.25 \ hPa$$



#### Sensor Data



Mudd Building
1st floor to 13th floor and back



Mudd Building 1st floor to 10th floor



Mudd Building 10<sup>th</sup> floor to 2<sup>nd</sup> floor



# Homework – Due in two weeks (See Courseworks for details)

Download and Install Phyphox (by Univ. of Aachen) on a smartphone

Choose two buildings – the taller the better

Examples: Mudd, CEPSR, your dorm, etc.

Use the Pressure and Elevator options

Send yourself the raw data using CSV format

Record the pressure going from the lowest floor to the highest and back – Do two trials

From the Pressure sensor data compute speed and acceleration using Matlab

Repeat experiment with Elevator option two times

Compare the 4 results by finding the sum of squares of errors

Save the plot screenshots from Phyphox as well

In one page, present the results and make any discussions that you note

Talk about the control strategy and profile of the speed







# Single Axis Analog Attitude Control Systems

Attitude: Combination of Pitch and Bank





# Single Axis Discrete Attitude Control Systems

Attitude: Combination of Pitch and Bank





# Single Axis Discrete Attitude Control Systems with Multirate Sampling

Attitude: Combination of Pitch and Bank





# Sample Plant (Engine Cooling System)



Source: Bencs 2021



# Sample Plant (Engine Cooling System)





# Robot Manipulator Control



Nonlinear System ID using Neural Networks for Robot Control

Source: Son 2017

Copyright: Homayoon Beigi Jan 22, 2025



# Sample Plant (Home HVAC System)



Bai-2013



# Sample Control System (HVAC) (Adaptive Incremental Fuzzy Proportional Integrator Controller)



Bai-2013



# Electric Vehicle Antilock Braking System (ABS) using Sliding Mode Control

Quarter Vehicle Model (one wheel)





Use a sliding mode schedule to control T<sub>b</sub>, the braking torque

Source: Widjiantoro 2020 Uses Sliding Mode Control



## Disk Drive Control





**Position Control** 

Source: Yabui 2016 Uses Adaptive Feedforward Control



# **Iterative Learning Control**





**Learning Self-Tuning Regulator** 



#### Fin-Controlled Rocket



Flight Computer And Navigation Software Fin-Controlled Rocket



#### The Parker Solar Probe



Source: Johns Hopkins Applied Physics Department
Maximum Speed: 691,870 km/h = 192 km/s



Source: IEEE Spectrum



#### **Autonomous Vehicle Sensors**

System behind General Motors' future self-driving Chevrolet Bolt



Source: Using Machine Learning for Autonomous Control (Medium Article)

Copyright: Homayoon Beigi Jan 22, 2025



#### Vector



In Engineering and physics the location does not matter



### Vector



In Mathematics, we define a vector about the origin







# Vector (subtraction)





# Vector (scaling)





# Vector (span of multiple vectors)

Take two 2-D vectors. The Span of two vectors is given by,

$$\vec{s} = \alpha \vec{v}_1 + \beta \vec{v}_2$$

If the two basis vectors are colinear, then only one dimension can be spanned. Otherwise, they will span the whole two-dimensional space. The scaling factors are used to allow access to any point on the spanned plane.



Jan 22, 2025



# Vector (span of multiple vectors)

Take two 2-D vectors. The Span of two vectors is given by,

$$\vec{s} = \alpha \vec{v}_1 + \beta \vec{v}_2$$

If the two basis vectors are colinear, then only one dimension can be spanned. Otherwise, they will span the whole two-dimensional space. The scaling factors are used to allow access to any point on the spanned plane.



Jan 22, 2025



## **Identity Matrix**

**Definition 23.1 (Identity Matrix).** The N dimensional identity matrix is denoted by  $I_N$  (or sometimes I) and is defined as follows,

 $\mathbf{I}_N: \mathcal{R}^N \mapsto \mathcal{R}^N$  is the matrix such that

$$\mathbf{I}_{ij} = \begin{cases} 1 & \forall i = j \\ 0 & \forall i \neq j \end{cases} \tag{23.1}$$

where  $i, j \in \{1, 2, ..., N\}$  are the row number and column number of the corresponding element of matrix  $\mathbf{I}_N$ .



### Matrix Transpose

**Definition 23.2 (Transpose of a Matrix).** The transpose of a matrix  $\mathbf{A} : \mathcal{R}^N \mapsto \mathcal{R}^M$  is given by  $\mathbf{A}^T : \mathcal{R}^M \mapsto \mathcal{R}^N$  such that,

$$\mathbf{A}_{ji}^T = \mathbf{A}_{ij} \tag{23.2}$$

where indices  $i \in \{1,2,...,M\}$  and  $j \in \{1,2,...,N\}$  denote the location of elements of the matrix such that the first index corresponds to the row and the second index corresponds to the column number.



## Hermitian Transpose

**Definition 23.3 (Hermitian Transpose).** The Hermitian transpose of a matrix  $\mathbf{A}$ :  $\mathscr{C}^N \mapsto \mathscr{C}^M$  is given by  $\mathbf{A}^H : \mathscr{C}^M \mapsto \mathscr{C}^N$  such that,

$$\mathbf{A} = \mathbf{A}_R + i\mathbf{A}_I \mathbf{A}_R, \mathbf{A}_I : \mathcal{R}^N \mapsto \mathcal{R}^M$$
 (23.3)

and

$$\mathbf{A}^H = \mathbf{A}_R^T - i\mathbf{A}_I^T \tag{23.4}$$

Matrix  $A^H$  is also known as the adjoint matrix of matrix A.



#### Hermitian Matrix

**Definition 23.4 (Hermitian Matrix).** A Hermitian matrix  $\mathbf{A}: \mathcal{C}^N \mapsto \mathcal{C}^N$  is the matrix for which,

$$\mathbf{A} = \mathbf{A}^H \tag{23.5}$$



## Inverse of a Square Matrix

**Definition 23.5 (Inverse of a Square Matrix).** The Inverse of a Square Matrix  $\mathbf{A}: \mathcal{R}^N \mapsto \mathcal{R}^N$  (if it exists) is denoted by  $\mathbf{A}^{-1}: \mathcal{R}^N \mapsto \mathcal{R}^N$  and is that unique matrix such that,

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_N \tag{23.6}$$