Spiunk*

Enriching Data with Lookups

Document Usage Guidelines

- Should be used only for enrolled students
- Not meant to be a self-paced document, an instructor is needed
- Lab Exercise slides reference the hands-on lab exercise guide
- Do not distribute

Course Goals

- Define lookups
- Identify types of lookups
- Create a lookup
- Define a geospatial lookup
- Use an external lookup
- Define a KV Store lookup

Course Outline

- What is a Lookup?
- Create a Lookup
- Geospatial Lookups
- External Lookups
- KV Store Lookups
- Best Practices for Lookups

What is a Lookup?

Topic Objectives

- Define a lookup and the default lookup types
- Where lookups fall in the search-time operation sequence

What is a Lookup?

- Lookups provide enrichment to your event data by appending fields from another data source (i.e. lookup output fields)
- Splunk provides four types of lookups by default

Lookup Type	Description
File-based	Populates your events with fields pulled from CSV files
External	Uses Python scripts or binary executables to append data
KV Store	Accesses key value pairs from a KV Store collection
Geospatial	References a KMZ or KML file

Search-time Operation Sequence

Search-time operations are always applied in the same order when generating the knowledge objects

Each operation can reference knowledge objects derived from operations that **precede** them

No operation can reference knowledge objects derived by operations that **follow** them

Create a Lookup

9

Topic Objectives

- Describe lookups at search time
- Use file-based lookups
- Examine a CSV lookup file
- Create a lookup
 - Upload a lookup table file
 - Define a lookup
 - Configure time-based lookup
 - Apply advanced lookup options
- Create and use an automatic lookup at search

Lookups at Search Time

- Sometimes static (or relatively unchanging) data is required for searches, but isn't available in the raw event data
- Lookups pull such data from standalone files at search time and add it to search results as field values

Use a File-Based Lookup

- Lookups allow you to add more fields to your events such as:
 - Descriptions for HTTP status codes ("Not Found", "Service Unavailable")
 - Sale prices for products
 - Usernames, IP addresses, and workstation IDs associated with RFIDs
- After a lookup is invoked, lookup fields appear in the Fields sidebar and can be used in searches and reports
- Lookups can be invoked by the lookup command or configured to run automatically
- Lookup field values are case sensitive by default

A Sample CSV Lookup File

First row represents field names (header)

Input field: The
productId field exists in
both access_combined
 events and .csv file

```
GNU nano 2.3.1
                                  File: products.csv
productId,product_name,categoryId,price,sale_price,Code
  DB-SG-G01, Mediocre Kingdoms, STRATEGY, 24.99, 19.99, A
  DC-SG-G02, Dream Crusher, STRATEGY, 39.99, 24.99, B
  FS-SG-G03, Final Sequel, STRATEGY, 24.99, 16.99, C
  WC-SH-G04, World of Cheese, SH00TER, 24.99, 19.99, D
  WC-SH-T02, World of Cheese Tee, TEE, 9.99, 6.99, E
  PZ-SG-G05, Puppies vs. Zombies, STRATEGY, 4.99, 1.99, F
  CU-PG-G06, Curling 2014, SPORTS, 19.99, 16.99, G
  MB-AG-G07, Manganiello Bros., ARCADE, 39.99, 24.99, H
  MB-AG-T01, Manganiello Bros. Tee, TEE, 9.99, 6.99, I
  FI-AG-G08, Orvil the Wolverine, ARCADE, 39.99, 24.99, J
  BS-AG-G09, Benign Space Debris, ARCADE, 24.99, 19.99, K
  SC-MG-G10, SIM Cubicle, SIMULATION, 19.99, 16.99, L
  WC-SH-A01, Holy Blade of Gouda, ACCESSORIES, 5.99, 2.99, M
  WC-SH-A02, Fire Resistance Suit of Provolone, ACCESSORIES, 3.99, 1.99, N
```

Output fields: All other fields in the .csv file are searchable after the lookup is defined

Create a Lookup

- 1. Upload the file required for the lookup
- 2. Define the lookup type
- 3. Optionally, configure the lookup to run automatically

Add a New Lookup Table File

Settings > Lookups > Lookup table files > New Lookup Table File

- Click New Lookup Table File
- Select a Destination app
- Browse and select the file to use for the lookup table
- 4 Enter a name for the lookup file
- Save

12 August 2022

Create a Lookup Definition

Settings > Lookups > Lookup definitions > 1 New Lookup Definition

- Olick New Lookup Definition
- Select a Destination app
- **3 Name** the Lookup definition
- 4 For Type, select File-based
- 6 Browse and select the file to use for the lookup table
- 6 Save

Configure Time-based Lookup

- Field in the record that represents the timestamp
- 2 Specifies the strptime() format of the time_field attribute (%s.%Q represents Unix epoch time in seconds and milliseconds)
- Minimum amount of time in seconds that an event timestamp can be later than the record timestamp
- Maximum amount of time in seconds that an event timestamp can be later than the record timestamp

12 August 2022

Apply Advanced Lookup Options

12 August 2022

Apply Advanced Lookup Options (cont.)

Create an Automatic Lookup

Settings > Lookups > Automatic lookups > New Automatic Lookup

- Olick New Automatic Lookup
- Select a Destination app
- Name the automatic lookup
- Select the Lookup table definition
- Select host, source, or sourcetype to apply to the lookup and specify the name

Create an Automatic Lookup (cont.)

Settings > Lookups > Automatic lookups > New Automatic Lookup

- Oefine the Lookup input fields: the field(s) that exist in your events that you are relating to the lookup table
 - Column name in CSV
 - **B**Field name in events
- Define Lookup output fields
 - Field name in lookup table
 - Name you want displayed in results, otherwise column name from CSV is inherited
- 8 Save

Create an Automatic Lookup (cont.)

- Lookup is now listed in Lookups > Automatic lookups
- Automatic lookups are applied to all searches at search time

Name ‡	Lookup ‡	Owner \$	App \$	Sharing ‡	Status \$	Actions
access_combined : LOOKUP- status_definitions_auto_lookup	status_definitions_lookup status AS status OUTPUTNEW status_description AS StatusDescription status_type AS StatusType	poweruser	search	Private Permissions	Enabled	Clone Move Delete

Use an Automatic Lookup in Search

To use an automatic lookup, specify the output fields in your search

12 August 2022

Create a Lookup Lab Exercise

Time: 20-25 minutes

Tasks:

- Add lookup table files to your search environment
- Create a lookup definitions
- Create an automatic lookup
- Verify your automatic lookup is working in search

Geospatial Lookups

12 August 2022

Topic Objectives

- Describe the use of geospatial lookups
- Examine KML/KMZ geospatial lookup files
- Add a geospatial lookup file
- Define a geospatial lookup

Geospatial Lookups

- Matches region names in your events to region names in lookup and outputs fields with corresponding geographic feature info
- Location coordinate ranges are provided by geographic feature collections: .KML and .KMZ files
- Geospatial lookups can be invoked in searches to generate choropleth map visualizations
- Splunk ships with two geospatial lookup files:
 - geo_us_states
 - -geo countries

Geospatial Lookup Files

- Provides geographic feature information used to define a geospatial lookup
 - -KML: a type of XML file
 - KMZ: a zipped KML file
- Rely on polygons which are closed shapes that start and end at the same coordinate
- Many are available online or can be created from scratch using software such as Google Earth

```
geo countries.kml
<?xml version="1.0" encoding="utf-8" ?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document id="root doc">
<Schema name="countries" id="countries">
         <SimpleField name="Name" type="string"></SimpleField>
         <SimpleField name="ISO2" type="string"></SimpleField>
         <SimpleField name="ISO3" type="string"></SimpleField>
         <SimpleField name="REGION WB" type="string"></SimpleField>
        <SimpleField name="REGION_UN" type="string"></SimpleField>
         <SimpleField name="SUBREGION" type="string"></SimpleField>
         <SimpleField name="CONTINENT" type="string"></SimpleField>
<Folder><name>countries</name>
  <Placemark>
         <name>Aruba</name>
         <Style><LineStyle><color>ff0000ff</color></LineStyle><PolyStyle><fill>0</fill></
         <ExtendedData><SchemaData schemaUrl="#countries">
                  <SimpleData name="ISO2">AW</SimpleData>
                  <SimpleData name="ISO3">ABW</SimpleData>
                  <SimpleData name="REGION WB">Latin America & amp; Caribbean</SimpleData>
                  <SimpleData name="REGION UN">Americas
                  <SimpleData name="SUBREGION">Caribbean</SimpleData>
                  <SimpleData name="CONTINENT">North America</SimpleData>
         </SchemaData></ExtendedData>
     <Polygon><outerBoundaryIs><LinearRing><coordinates>-
69.996937628999916,12.577582098000036 -69.924672003999945,12.519232489000046 -
69.880197719999842,12.453558661000045 -69.888091600999928,12.417669989000046 -
69.930531378999888,12.425970770000035 -69.945139126999919,12.44037506700009 -
69.924672003999945,12.447211005000014 -70.058094855999883,12.537176825000088 -
70.048736131999931,12.583726304000024 -70.061105923999975,12.625392971000068 -
70.048736131999931,12.632147528000104 -
69.996937628999916,12.577582098000036</coordinates></LinearRing></outerBoundaryIs></
  </Placemark>
                 geo countries content for the island country of Aruba.
```

The Polygon tag (highlighted) contains the coordinates Splunk uses to define its choropleth map data.

Add a Geospatial Lookup Table File

Settings > Lookups > Lookup table files > New Lookup Table File

- Select aDestination app
- Browse and select the .kmz or .kml file to use for the lookup table
- Senter a name for the lookup file
- Save

Define a Geospatial Lookup

Settings > Lookups > Lookup definitions > New Lookup Definition

- Select aDestination app
- Name the lookup definition
- Change Type to Geospatial
- Select the Lookup file from the drop-down list
- Save

External Lookups

12 August 2022

Topic Objectives

- Define the use of external lookups
- Examine an external_lookup.py lookup script
- Configure external lookups

What are External Lookups

- External lookups use scripts or executables to populate events with field values from an external source
- Often referred to as scripted lookups

Manage an External Lookup Script

- Must be a Python script or binary executable
- Must be added to your Splunk deployment in either:
 - -\$SPLUNK_HOME/etc/searchscripts
 - -\$SPLUNK_HOME/etc/apps/<app_name>/bin

external_lookup.py

 Splunk ships with a sample script external_lookup.py in \$SPLUNK_HOME/etc/system/bin

To use the sample script:

- 1. Move external_lookup.py script to appropriate directory
- 2. Create dnslookup definition as shown in next slide
- 3. Invoke the lookup using either:

```
... | lookup dnslookup clienthost
... | lookup dnslookup clientip
```

- Splunk passes values for clienthost into script and script returns clientip (or vice versa)
- Returned values are used to populate **clientip** or **clienthost** in the results

Note

The first step has already been completed in the lab environment.

Configure an External Lookup

Settings > Lookups > Lookup definitions >

New Lookup Definition

- Select Destination app
- Name the lookup definition
- 6 Change Type to External
- 4 Enter script name and arguments passed to script
- 6 List all fields supported by the lookup
- 6 Save

Geospatial & External Lookups Lab Exercise

Time: 10 minutes

Tasks:

- Upload and define a geospatial lookup and verify its contents in search
- Define an external lookup and use it in search

KV Store Lookups

12 August 2022

Topic Objectives

- Define the use of KV Store lookups
- Identify the steps to set up a KV Store lookup
- Examine the KV Store lookups collections.conf file
- Create a KV Store lookup definition
- Identify the options for populating a KV store lookup
- Compare file-based CSV lookups to KV Store lookups

Use KV Store Lookups

- Instead of matching against values in a CSV file, you can also match against values in a KV Store (key value store)
- Use for large lookup tables or ones that are updated often
- KV Store saves and retrieves data in collections of key-value pairs
 - -Similar to database tables in which each record has a unique key
 - Provides multiuser access locking so that multiple users can not edit the same record at the same time

Steps to Set up a KV Store Lookup

- 1. Add configuration stanzas to collections.conf (admin only)
- 2. Create KV Store definition
- 3. Populate the KV Store lookup with data using:
 - outputlookup command (admin and power user ability)
 - REST API (admin ability)
 - A front-end form (not discussed in this course)

Examine the KV Store: collections.conf

An <u>admin</u> must add a stanza for each KV Store in the **collections.conf** file before a definition can be created

Set Up a KV Store: collections.conf (cont.)

- Enforcing data types is useful if you want to:
 - Guarantee a field is always treated as a specific data type
 - Improve the collection's accelerations (beyond the scope of this course)
- For example, an admin would create the following configuration stanza to enforce the data types of this JSON record

```
[kvstorecoll]
enforceTypes = true
field.name = string
field.id = number
field.address_street = string
field.address_city = string
field.address_state = string
field.address_state = string
field.address_zip = string
```

Set Up a KV Store: Create a Definition

Settings > Lookups > Lookup definitions >

New Lookup Definition

- Choose Destination app
- 2 Enter Name that will be used in the search string
- 3 Change to "KV Store"
- 4 Enter Collection Name as defined in collections.conf
- 5 List all fields supported by the lookup

6 Save

Advanced options

If only results from a subset of records in a large KV store collection are required for a search, improve performance by filtering

Filter lookup (CustID>500) AND (CustName="P*")

Filter results from the lookup table before returning data. Create this filter like you would a typical search query using Boolean expressions and/or comparison operators.

Set Up a KV Store: Populating

Option 1: Use outputlookup to write search results into a specific KV Store collection

Option 2: Use Splunk REST API

```
curl -k -u admin:yourpassword \
      https://localhost:8089/servicesNS/nobody/kvst
      oretest/storage/collections/data/kvstorecoll \
      -H 'Content-Type: application/json' \
      -d '{"name": "Splunk HQ", "id": 123, "address": {
 'street": "250 Brannan Street", "city": "San Francisco",
"state": "CA", "zip": "94107"}}'
```

CSV Files vs KV Store

	File-based (CSV)	KV Store
Allows for per-record insertion and editing		
Suitable for frequent updating		/
Allows for data type enforcement		
Allows for field accelerations		/
Provides REST API access to the data collection		/
Require a full rewrite of the file to edit values		
Supports case-sensitive field lookups	/	/
Supports case-insensitive field lookups		
Uploading lookup file is not mandatory		/
Allows for multiuser access locking		
Matches against values in a KV Store		/
Matches against values in a .csv file		

Best Practices for Lookups

Best Practices for Lookups

- Order fields in lookup tables so that 'key' field is first (leftmost), followed by other values
- After uploading, validate lookup in search by using:

```
| inputlookup <lookup>
```

- For commonly used fields, make lookups automatic
- Use gzipped CSV files or KV Store for large lookups
- Keep your lookups fresh and relevant:
 - Do you really need the lookup table to contain a year's worth of data or is one week enough?
 - Maintain the lookup table and delete older data if not needed

Practice

key	value
• • •	•••
• • •	•••
• • •	•••
• • •	•••

Best Practices for Lookups (cont.)

lun a Search >	Job > Ir	nspect Job			
ecution costs					
Duration (seconds)		Component	Invocations	Input count	Output count
	0.02	command.addinfo	20	543	543
	0.01	command.fields	20	543	543
	0.02	command.lookup	20	543	543
	0.02	command.prestats	20	543	166
	0.32	command.search	20	-	543
	0.32	command.search.expand_search	6	-	-
	0.02	command.search.calcfields	16	543	543
1	0.02	command.search.fieldalias	16	543	543
	0.02	command.search.filter	16	-	-
	0.00	command.search.index			
l	0.00	command.search.index.usec_1_8	comm	iana.s	search
	0.00	command.search.index.usec_8_64	4	-	-
	0.27	command.search.rawdata	4	-	
I	0.03	command.search.kv	16	-	-
l	0.02	command.search.lookups	16	543	543
I	0.02	command.search.tags	16	543	543
1			_		

- command.search.lookups
 in job inspector will show
 how long lookups took
 to execute
- If there is latency, see if there is one or many lookups being invoked against large files/tables

Wrap-up Slides

Community

- Splunk Community Portal community.splunk.com
 - Answers
 - Discussions
 - Splunk Trust
 - User Groups
 - Ideas
- Splunk Blogs
 splunk.com/blog/
- Splunk Apps
 splunkbase.com

- Splunk Dev Google Group groups.google.com/forum/#!forum/splunkdev
- Splunk Docs on Twitter twitter.com/splunkdocs
- Splunk Dev on Twitter twitter.com/splunkdev
- Splunk Live! splunklive.splunk.com
- .confconf.splunk.com

Support Programs

Web

- Documentation: <u>dev.splunk.com</u> and <u>docs.splunk.com</u>
- Wiki: wiki.splunk.com
- Splunk Lantern
 Guidance from Splunk experts
 - lantern.splunk.com
- Global Support
 Support for critical issues, a dedicated resource to manage your account 24 x 7 x 365
 - Web: <u>splunk.com/index.php/submit_issue</u>
- Enterprise, Cloud, ITSI, Security Support
 - Web: splunk.com/en_us/about-splunk/contact-us.html#tabs/customersupport
 - Phone: (855) SPLUNK-S or (855) 775-8657

Support ^

Support Portal

Submit a case ticket

Splunk Answers

Ask Splunk experts questions

Contact Us

Contact our customer support

Product Security Updates

Keep your data secure

System Status

Learning Paths (cont.)

Knowledge Manager - Recommended Courses

Free eLearning courses are in blue and courses with an * are present in both learning paths.

- What is Splunk *
- Introduction to Splunk *
- Using Fields *
- Introduction to Knowledge Objects
- Creating Knowledge Objects
- Creating Field Extractions

- Enriching Data with Lookups
- Data Models
- Introduction to Dashboards
- Dynamic Dashboards
- Using Choropleth
- Search Optimization *

Learning Paths

Search Expert - Recommended Courses

Free eLearning courses are in blue and courses with an * are present in both learning paths.

- What is Splunk *
- Introduction to Splunk *
- Using Fields *
- Scheduling Reports and Alerts
- Visualizations
- Statistical Processing
- Working with Time
- Comparing Values

- Result Modification
- Leveraging Lookups and Subsearches
- Correlation Analysis
- Search Under the Hood
- Multivalue Fields
- Search Optimization *

Splunk Certification Offerings & Requirements

Splunk Core and Beyond

Regardless of which Splunk product you use, it all starts with Splunk Core

Splunk Core Certified User

This entry-level certification demonstrates an individual's basic ability to navigate and use Splunk software

Prerequisite Certification(s):

None

Prerequisite Course(s):

None

Splunk Core Certified User Exam

Time to <u>study</u>! We suggest candidates looking to prepare for this exam complete Fundamentals 1 **or** the following courses:

- What is Splunk?
- Intro to Splunk
- Using Fields
- Scheduling Reports and Alerts
- Visualizations
- Statistical Processing
- Working with Time
- Leveraging Lookups and Subsearches
- · Search Optimization
- · Enriching Data with Lookups
- Data Models

See here for registration assistance.

Congratulations! You are a...

Recommended Next Step

· Splunk Core Certified Power User

Splunk Core Certified Advanced Power User

This certification demonstrates an individual's ability to generate complex searches, reports, and dashboards with Splunk's core software to get the most out of their data

Prerequisite Certification(s):

Splunk Core Certified Power User

Prerequisite Course(s):

None

>

Splunk Core Certified Advanced Power User Exam

Time to <u>study</u>! We suggest candidates looking to prepare for this exam complete Fundamentals 3, Creating Dashboards, and Advanced Searching & Reporting **or** the following courses:

- Using Fields
- Working with Time
- Comparing Values
- Result Modification
- Leveraging Lookups and Subsearches
- Correlation Analysis
- Search Under the Hood
- Multivalue Fields
- · Search Optimization
- Creating Field Extractions
- Enriching Data with Lookups
- Data Models
- Using Choropleth
- Introduction to Dashboards
- · Dynamic Dashboards

See here for registration assistance.

Congratulations! You are a...

Recommended Next Steps

- Splunk Enterprise Certified Admin
- Splunk Cloud Certified Admin

Thank You

splunk>