DELFT UNIVERSITY OF TECHNOLOGY

LITERATURE RESEARCH & PROJECT PROPOSAL ME56010-22

Bi-threshold Gates for Mechanical Logic in Intelligent Metamaterials

Authors: Eoinlee Bley (5216737)

Supervisors: Dr. Davood Farhadi Machekposhti Malte ten Wolde

in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

September 18, 2023

${\bf Abstract}$

Contents

0.1	Elementary Cellular Automata Formalism	2
0.2	Wolfram Numbering Scheme for ECA	2

0.1 Elementary Cellular Automata Formalism

1. State Space: $S = \{0, 1\}$

2. Neighborhood Configuration: N

$$N = (N_{-1}, N_0, N_1)$$
 where $N_{-1}, N_0, N_1 \in S$

3. Rule Function: $f: S^3 \to S$

4. Rule Set: R

5. Cube Domain: $D \subset \mathbb{R}^3$

Each vertex directly corresponds to a neighborhood configuration N, and its state is

6. Separating Planes: P

Defined by a single normal vector **n** and different offsets $\{d_1, d_2, \dots, d_n\}$.

7. Domain Classification Function: $\Delta: D \to \{0, 1, 2, 3\}$

$$\Delta(x) = \sum_{i=1}^{n} H(n_x \cdot x_x + n_y \cdot x_y + n_z \cdot x_z - d_i)$$

$$H(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$

0.2 Wolfram Numbering Scheme for ECA

In the Wolfram numbering scheme for Elementary Cellular Automata (ECA), the rule set R can be uniquely identified by a single integer, which is the binary representation of the output states for all possible neighborhood configurations. For Rule 110, the binary representation is formed by considering all 8 possible 3-cell neighborhood configurations, starting from 111 down to 000.

For example, in Rule 110, the corresponding output states for these configurations are 01101110. Here's how it maps:

Output State	Binary Position (b)
0	b_7
1	b_6
1	b_5
0	b_4
1	b_3
1	b_2
1	b_1
0	b_0
	Output State 0 1 1 0 1 1 0 1 1 0 1 0

So, the Wolfram number for Rule 110 is obtained by reading the output states from b_7 to b_0 as a binary number: $01101110_2 = 110_{10}$.