Kernelization and Approximation for Finding a Perfect Phylogeny from Mixed Tumor Samples

Author: Wen-Horng, Sheu

Source: unpublished

Speaker: Wen-Horng, Sheu

Outline

- Introduction
- Preliminaries
- A kernelization algorithm for MSRP
- An approximation algorithm for MSRP (skipped)
- Approximation algorithms for MDCRSP
- Conclusion and future work

Perfect phylogenies

• A *perfect phylogeny* (PP) is a rooted tree *T* representing the evolutionary history of *m objects* in terms of *n characters*

Perfect phylogenies

- The leaves of T correspond bijectively to the objects.
- Each character labels an edge of T
- An object r exhibits a character c if and only if c is on the path from the root to r

Perfect phylogenies

- The *matrix representation* of a PP is a binary matrix *M* such that:
 - 1. each row is associated with an object
 - 2. each column is associated with a character

3. for a row r and a column c, $M_{r,c} = 1$ if and only if r exhibits c

M	c_1	c_2	c_3	c_4	c_5	c_6	
r_1	1				1		
r_2					1		
r_3		1				1	
r_4				1		1	
r_5			1			1	ļ

- Tumor progression is assumed to admit a perfect phylogeny [7], where:
 - each object is a tumor subclone
 - each character is a somatic mutation
- This phylogenetic tree can offer a more comprehensive knowledge of tumor progression [2, 11]

• DNA sequencing technologies can help us to obtain the matrix representation and thereby reconstruct the PP

M	c_1	c_2	c_3	c_4	c_5	c_6	
A	1				1		
В					1		
C		1				1	
D				1		1	
E			1			1	

sequencing data

reconstructed PP

• However, most data used currently are obtained from *bulk sequencing* due to cost effectivity

• In such data, each tumor sample may contain more than one subclones

• In this case, a mutation is observed in a sample if it is carried by any of the subclones mixed in the sample

• The data obtained by bulk sequencing may not exhibit a perfect phylogeny

• To reconstruct the PP from bulk sequencing data, two optimization problems were proposed

• We begin by the *minimum split-row problem* (MSRP) [7]

• Note: all matrices in this slides are binary

• Given a matrix M, a *split-row operation* on M split a row r of M into several rows whose bitwise OR is r

• In MSRP, each split-row operation is associated with a cost: the number of additional rows

		4	4	4	4
r_2					
5		_	_	_	_

$$cost = 2$$

$oxed{E}$		1			1
В				1	
D			1		1

- The goal is to perform split-row operations such that:
 - 1. The resulting matrix corresponds to a PP
 - 2. The total cost is minimum possible

M	c_1	c_2	c_3	c_4	c_5	c_6
r_1	1	1		1	1	1
r_2					1	
r_3			1	1	1	1
r_4		1				1

$$cost = 4$$

M'	c_1	c_2	c_3	c_4	c_5	c_6
$r_1^{(1)}$	1				1	
$r_1^{(2)}$		1				1
$r_1^{(3)}$				1		1
$r_2^{(1)}$					1	
$r_3^{(1)}$			1			1
$r_3^{(2)}$					1	
$r_3^{(3)}$				1		1
$r_4^{(1)}$		1				1 ¹²

Notation

- We need the following
- m: the number of rows of M
- n: the number of columns of M
- $\varepsilon(M)$: minimum cost of transforming M into a matrix corresponding to a PP
- O*-notation: suppress the factors polynomial in input size
- Example: $mn^2 2^n = O^*(2^n)$

• Parameterized MSRP:

Input: a matrix M, an integer k > 0

Output: is $\varepsilon(M) \le k$?

Parameter: k

• A problem is *fixed-parameter tractable* (FPT) [4] with respect to a parameter k if it can be solved in $f(k) \cdot (|I| + k)^{O(1)}$ time, where I is the input instance

• Example: $O(2^k n^3) = O^*(2^k)$ time

• MSRP was proposed by Hajirasouliha and Raphael [7]

• Hujdurović *et al*. [9] showed that MSRP is NP-hard and gave an efficient heuristic algorithm

• Later, Hujdurović *et al*. [8] proved the APX-hardness of MSRP and gave exact and approximation algorithms

- Husić *et al.* [10] formulated MSRP as an *Integer Linear Program* (ILP)
- The ILP is implemented in the software package MIPUP [10]
- Sheu *et al*. [12] showed that MSRP is fixed-parameter tractable

Source	Complexity	
naive [8]	$2^{\Omega(nm)}$	
[8]	$O^*(n^n)$	
[~]		
[10]	- (ILP)	
[12]	$O^*(2^{\min(n, 2\varepsilon(M))})$	← FPT-time

Exact algorithms for MSRP (APX-hard)

• We study the *kernelization* of MSRP

• Kernelization is a mathematical concept that aims to analyze preprocessing algorithms.

It is defined as follows

• Two instances (I, k) and (I', k') are *equivalent* if (I, k) is a yes-instance $\leftrightarrow (I', k')$ is a yes-instance

- A *kernelization algorithm*, or a *kernel*, is an algorithm that given an instance (*I*, *k*),
 works in time polynomial in |*I*| + *k*,
 returns an equivalent instance (*I'*, *k'*) such that
 |*I'*| + *k'* is bounded by a computable function of *k*
- The output of a kernelization algorithm is also called a *kernel*
- Example: $m \times n$ matrix $\rightarrow 3k \times 4k$ matrix (kernel)

Contribution

• It is known that a problem is FPT if and only if it admits a *kernel* [4]

• Thus, Sheu *et al.*'s FPT result implies that MSRP admits a kernel (of exponential size)

• We show that MSRP admits a kernel with the numbers of rows and columns both linear to $\varepsilon(M)$

Contribution

Kernelization algorithms for MSRP

Source	Size	Time	
implied by [12] exponential in $\varepsilon(M)$		polynomial	
[this]	$3\varepsilon(M)$ rows $4\varepsilon(M)$ columns	$O(mn^{1.373} + n^3)$	

m: number of rows of *M*

n: number of columns of *M*

- Hujdurović *et al.*'s [8] approximation algorithms are based on an equivalent formulation, called the *branching formulation*, of MSRP
- In this formulation, the input matrix M is represented by a directed acyclic graph D_M
- The ratio of their approximation algorithms are measured by, respectively, the *height* and *width* of D_M
- The precise definitions will be given later

Related work (wrong)

- Let h(M) be the height of D_M
- Let w(M) be the width of D_M
- Their result is summarized in the following table

Source	ratio	Complexity
[8]	h(M)	$O(mn^2)$
[8]	w(M)	$O(mn^2 + n^{3.373})$

Existing approximation algorithms for MSRP

Related work (correction)

- Let h(M) be the height of D_M
- Let w(M) be the width of D_M
- Their result is summarized in the following table

Source	Guarantee	Complexity
[8]	$h(M) \cdot (m + \varepsilon(M))$	$O(mn^2)$
[8]	$w(M) \cdot (m + \varepsilon(M))$	$O(mn^2 + n^{3.373})$

Existing approximation algorithms for MSRP

Contribution

- We give a new approximation algorithm with ratio $2 \min(\lg n, \lg 2\varepsilon(M))$
- Our algorithm improves on [8]'s algorithms:
- Given any matrix M, it finds a solution which is at least as good (in terms of cost) as the output of each of [8]'s algorithms
- In addition, it is faster than [8]'s w(M)-approximation algorithm

Contribution

Approximation algorithms for MSRP

Source	Guarantee	Complexity
[8]	$h(M)\cdot (m+\varepsilon(M))$	$O(mn^2)$
[8]	$w(M) \cdot (m + \varepsilon(M))$	$O(mn^2 + n^{3.373})$
[this]	$2\lg(n) \cdot \varepsilon(M)$	$O(mn^2 + n^3)$

always finds a solution not worse than the outputs of [8]'s algorithms

• A variant of MSRP, called the *minimum distinct row split problem* (MDCRSP) [7], is also considered

• The only difference is that MDCRSP seeks to minimize

the number of distinct rows

M	c_1	c_2	c_3	c_4	c_5	c_6
r_1	1	1		1	1	1
r_2					1	
r_3			1	1	1	1
r_4		1				1

cost = 5 (distinct rows)

- MDCRSP is APX-complete [8]
- Most exact algorithms for MSRP can be generalized to solve MDCRSP

Reference	Complexity
[8]	$O^*(n^n)$
[10]	- (ILP)
[12]	$O^*(2^{\min(n, 3\varepsilon(M))})$

Exact algorithms for MDCRSP

m: number of rows of *M*

n: number of columns of *M*

Contribution

 We give new approximation algorithms with improved ratios for MDCRSP

Source	Approximation ratio	Time
[8]	2	$O(mn^2)$
[this]	5/3 ≈ 1.67	$O(mn^2)$
[this]	for any $\delta > 0$	$n^{O(1/\delta)} \approx n^{64/\delta}$

$4/3 + \delta \approx 1.33 + \delta$

Approximation algorithms for MDCRSP

m: number of rows of *M*

n: number of columns of M

Outline

- Introduction
- Preliminaries
- A kernelization algorithm for MSRP
- Conclusion and future work

Review of [8]'s formulation

• Hujdurović *et al.* [8] proposed a new formulation, called the *branching formulation*, of MSRP

• They showed that MSRP is equivalent to finding an optimal spanning forest of a derived DAG

The formulation is reviewed as follows

• For a column c of M, the *support* of c, denoted by $supp_{M}(c)$, is the set of rows r such that $M_{r,c} = 1$

M	c_1	c_2	c_3	c_4	c_5	c_6
r_1	1	1		1	1	1
r_2					1	
r_3			1	1	1	1
r_4		1				1

$$supp_{M}(c_{6}) = \{r_{1}, r_{3}, r_{4}\}$$

• Consider two columns c and c'

• c and c' are disjoint if their supports are disjoint

<i>M</i> ′	c_1	c_2	c_3	c_4	c_5	c_6
$r_1^{(1)}$	1				1	
$r_1^{(2)}$		1				1
$r_1^{(3)}$				1		1
$r_2^{(1)}$					1	
$r_3^{(1)}$			1			1
$r_3^{(2)}$					1	
$r_3^{(3)}$				1		1
$r_4^{(1)}$		1				1

• c contains c' if $supp_M(c) \supset supp_M(c')$.

• c and c' are nested if c contains c' or c' contains c

	•					
M'	c_1	c_2	c_3	c_4	c_5	c_6
$r_1^{(1)}$	1				1	
$r_1^{(2)}$		1				1
$r_1^{(3)}$				1		1
$r_2^{(1)}$					1	
$r_3^{(1)}$			1			1
$r_3^{(2)}$					1	
$r_3^{(3)}$	_			1		1
$r_4^{(1)}$		1				1

- c, c' are in conflict if:
 - 1. they are not disjoint
 - 2. they are not nested
- In other words, they have partial intersection

conflict

M	c_1	c_2	c_3	c_4	c_5	c_6
r_1	1	1		1	1	1
r_2					1	
r_3			1	1	1	1
r_4		1				1

Assumptions

• For simplicity, we assume the input matrix contains no empty columns

• Removal of such columns does not change $\varepsilon(M)$

M	$ c_1 $	c_2	c_3	c_4	c_5	c_6
r_1		1	1	1	1	1
r_2					1	
r_3				1	1	1
r_4		1	1			1

- Under the assumption, the relation between two columns c, c' is exactly one of:
 - 1. disjoint
 - 2. nested
 - 3. in conflict
- We say c, c' are compatible if they are not in conflict

- The *containment digraph* D_M [8] is a DAG such that:
 - 1. the vertex set is the set of (distinct) supports
 - 2. (v, v') is an arc of D_M iff $v \subset v'$

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7
r_1	1	1		1	1	1	1
r_2					1		
r_3			1	1	1	1	1
r_4		1				1	1

Note: duplicate columns map to the same vertex

• A *branching* is a subset of arcs of D_M such that for each vertex v there is has at most one arc leaving v

- For a row r and a vertex v, if $r \in v$, then (r, v) is a *target* pair
- In the branching formulation, each target pair (r, v) specifies a "demand":
 - vertex v demands a row r in its children

• A *B-uncovered pair* is a target pair (r, v) such that r is not in any child of v

a *B*-uncovered pair (r_3, v_5)

- Let U(B) be the set of all B-uncovered pairs
- The *cost* of B is defined as |U(B)|
- Solving MSRP is equivalent to finding the minimum cost branching [8]

$$cost = 8$$

The branching formulation

• Let $\beta(M)$ be the minimum cost of a branching

• Theorem 2.1. [8] $\beta(M) = m + \epsilon(M)$

m: the number of rows

• By Theorem 2.1, the finding of $\varepsilon(M)$ can be done by finding the optimal branching

The branching formulation

- Let $U_B(r)$ be the set of uncovered pairs contributed by r
- Each row r contributes $|U_B(r)|$ to the cost of B

$$U_B(r_1)$$
: { $(r_1, v_1), (r_1, v_2), (r_1, v_4)$ }

The branching formulation

• Consider an optimal branching B^*

• We say that r contributes $|U_{B^*}(r)| - 1$ to $\varepsilon(M)$

Notation

- *B*-parent of *v*:
- the parent of v in $(V(D_M), B)$

• *B-child of v*:

a child of v in $(V(D_M), B)$

• $p_B(v)$:

the B-parent of v

$$p_B(v_4) = v_6$$

Assumption

- As in [12], we assume that *M* has a column whose entries are all ones.
- Denote the support of this column by ρ
- We call ρ *the root vertex*

Assumption

• Thus, we may assume that D_M has an optimal branching with $(V(D_M), B)$ being a tree rooted at ρ

Notation

- For clarity, in our examples, we only display *elementary* arcs [1, 12] of D_M , where
- an arc (u, v) is elementary if there exists **no** w such that (u, w) and (w, v) are both arcs of D_M

Notation

• The set of elementary arcs has the following property [1]: for any two vertices u, v, (u, v) is an arc of D_M if and only if there is a path consisting of only elementary arcs from u to v

Remark

- We remark that omitting non-elementary arcs is simply for clarity of illustration
- A branching may contain non-elementary arcs

Outline

- Introduction
- Preliminaries
- A kernelization algorithm for MSRP
 - Definition
 - Kernel size
 - Correctness
 - The algorithm
- Conclusion and future work

Idea

• Let M be a matrix

• The idea of our kernelization is to remove a subset of rows and columns to obtain a matrix M^- where $\varepsilon(M^-) = \varepsilon(M)$

Reduction rule

• Rule 1. If M contains a pair of duplicate columns c_i , c_j , remove one of them.

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7
r_1	1	1		1	1	1	1
r_2					1		
r_3			1	1	1	1	1
r_4		1				1	1

M	c_1	c_2	c_3	c_4	c_5	c_6
r_1	1	1		1	1	1
r_2					1	
r_3			1	1	1	1
r_4		1				1

- For a row r of M, let $V_M(r)$ be the set of vertices containing r in $V(D_M)$.
- A row r is *chain-like* if any two vertices $u, v \in V_M(r)$ are nested.

Observation

• Let r be a chain-like row. Order the vertices of $V_M(r)$ into $(u_1, u_2, ..., u_k)$ such that $|u_1| \le |u_2| \le ... \le |u_k|$

• Observation. $u_1 \subset u_2 \subset ... \subset u_k$

- A row x is *doubly-chain-like* if: there exists a chain-like row y with $V(M, x) \subseteq V(M, y)$
- Note: every doubly-chain-like row is chain-like

Reduction rule (last time)

- Rule 2 (last time). If
 - (1) Rule 1 is not applicable to M, and
 - (2) M has a doubly-chain-like row r, remove r.

Reduction rule

• Rule 2. If M has a doubly-chain-like row r, remove r

Reduction rule

- The containment digraph after performing Rule 2:
- The duplicate columns c_2 , c_3 are both represented by v_2

- A vertex *v* is *sibling-compatible* [12] if there is a vertex *p*:
 - (1) $v \subset p$ $A(D_M)$: the set of arcs
 - (2) for all vertices s such that $(s, p) \in A(D_M)$ s and v are compatible.
- Note: if v is the only vertex with $v \subset p$, (2) is vacuously true
- For any (v, p) such that the above holds, we say v is *sibling-compatible at p*

Reduction rule (last time)

- Rule 3 (last time). If
 - (1) Rule 1 is not applicable to M, and
 - (2) D_M contains a sibling-compatible vertex v, then remove the column c with $supp_M(c) = v$.

Reduction rule

• Rule 3. If D_M contains a sibling-compatible vertex v, then remove all columns c with $supp_M(c) = v$.

Kernelization algorithm

- A matrix is *reduced* if Rules 1, 2 and 3 are not applicable
- Our algorithm performs Rules 1, 2 and 3 on the input matrix exhaustively to obtain a reduced matrix
- To show that our algorithm is a kernelization, we analyze:
 - kernel size
 - safeness
 - time complexity

Outline

- A kernelization algorithm for MSRP
 - Definition
 - Kernel size
 - Safeness
 - The algorithm

Assumption

- Let M be a reduced matrix
- We assume that $\varepsilon(M) > 0$
- Otherwise, the problem can be solved in polynomial time [6]
- In this section, we give upper bound on the size of M
- We first derive an upper bound on the number of rows

Lemma

- Lemma 3.4. Every vertex $v \in V(D_M)$ satisfies:
 - (1) v contains at least two rows
 - (2) v contains at least one non-chain-like rows

Proof

- Consider a non-root vertex v
- Note that $v \subset \rho$ and v is not sibling-compatible at ρ
- Thus, v is in conflict with some vertex $u \subset \rho$

Proof

- By the definition of conflict, we know that
 - $|v \cap u| \ge 1$ conflict \leftrightarrow partial intersection
 - $|v u| \ge 1$
- Since there is a row r in $v \cap u$ and r is non-chain-like:
 - (1) v contains a non-chain-like row, and
 - (2) |v| > 1

Proof

• Consider the root vertex ρ

• Since $\varepsilon(M) > 0$, D_M contains at least one non-root vertex v

• Since v satisfies (1) and (2) and $v \subset \rho$, ρ satisfies (1) and (2)

• This completes the proof

• An antichain of D_M is a set of pairwise non-nested vertices

• Example: $\{v_5, v_7, v_{10}\}$

Lemma

• Lemma 3.1. If a row r is in every vertex of an antichain X, then $|U_B(r)| \ge |X|$ for any branching B

- Let $X = \{u_1, u_2, ..., u_{|X|}\}$
- Consider a branching B
- Since X is an antichain, any two vertices u_i , u_j have no ancestor-descendant relation in B.
- Thus, the subtrees of $u_1, u_2, ..., u_k$ are disjoint

- Recall that each u_i corresponds to a target pair (r, u_i)
- Thus, the row r is B-uncovered in some descendant w_i of u_i for each u_i

Corollary

- Corollary 3.2. [12] If r is non-chain-like, then any branching B has $|U_B(r)| \ge 2$.
- **Proof**. By definition, $V_M(r)$ has a non-nested pair (u, v)
- Note that $\{u, v\}$ is an antichain with $r \in u$ and $r \in v$
- By Lemma 3.1, the corollary holds

Lemma

- Lemma 3.3. M has at most $\varepsilon(M)$ non-chain-like rows
- **Proof**. Consider an optimal branching B^* ,
- Each non-chain-like row r contributes ≥ 2 uncovered pairs
- Thus, each r contributes $|U_{B^*}(r)| 1 \ge 1$ to $\varepsilon(M)$
- Therefore, $\varepsilon(M) \ge$ (the number of non-chain-like rows)

Lemma

- Lemma 3.5. The size of any antichain of D_M is at most $2\varepsilon(M)$
- **Proof**. Let

X: an antichain of D_M

 n_r : the number of vertices containing r in X for each non-chain-like row r of M

- By Lemma 3.4, every vertex in *X* contains at least one non-chain-like row
- Thus, $\sum_{\text{non-chain-like rows } r} n_r \ge |X|$
- Let r be a non-chain-like row
- Recall that r is in n_r vertices of X
- By Lemma 3.1, any branching B satisfies $|U_B(r)| \ge n_r$ Lemma 3.1: r is in every vertex of an antichain $X \to |U_B(r)| \ge |X| \ \forall \ B$

• Thus, r contributes at least $n_r - 1$ to $\varepsilon(M)$

• Therefore, we have

$$\varepsilon(M) \ge \Sigma_{\text{non-chain-like } r} (n_r - 1)$$

$$= \Sigma_{\text{non-chain-like } r} n_r - \Sigma_{\text{non-chain-like } r} 1$$

$$\ge |X| - \Sigma_{\text{non-chain-like } r} 1$$

$$= |X| - (\# \text{ non-chain-like rows of } M)$$

- By Lemma 3.3, there are at most $\varepsilon(M)$ non-chain-like rows
- Thus, (# non-chain-like rows of M) $\leq \varepsilon(M)$

$$\rightarrow \varepsilon(M) \ge |X| - \varepsilon(M)$$

$$\rightarrow 2\varepsilon(M) \ge |X|$$

Definition

- Let v be a vertex of D_M
- A *super-support* of *v* is a vertex *u* with $v \subset u$
- A *sub-support* of *v* is a vertex *u* with $u \subset v$

Definition

- The *tail* of a chain-like row *r* is the smallest vertex containing *r*
- Denote by t_r the tail of r
- Note that $V_M(r)$ can be equivalently re-defined as the super-supports of t_r

Theorem 3.6

- Let R(M) be the set of rows of M
- Theorem 3.6. $|R(M)| \le 3\varepsilon(M)$
- Proof.
- By Lemma 3.3, M has at most $\varepsilon(M)$ non-chain-like rows
- It suffices to show that M has at most $2\varepsilon(M)$ chain-like rows

• Observe that for two chain-like rows r_1 , r_2 , if $t_{r_1} \subseteq t_{r_2}$, then r_1 is doubly-chain-like

- Since *M* has no doubly-chain-like row, the tail of any two chain-like rows are distinct
- In addition, the set $X = \{t_r \mid r \text{ is chain-like}\}$ is an antichain

• Therefore, X is an antichain with |X| =(the number of chain-like rows)

• By Lemma 3.5, $|X| \le 2\varepsilon(M)$

• Thus, the theorem holds

- Let C(M) be the set of columns of M
- Theorem 3.7. $|C(M)| \le 4\varepsilon(M) 1$
- **Proof.** Recall that $\beta(M) = |R(M)| + \varepsilon(M)$ $\beta(M)$: the cost of an optimal branching
- By Theorem 3.6, $\beta(M) = |R(M)| + \varepsilon(M) \le 3\varepsilon(M) + \varepsilon(M)$
- Thus, it suffices to show that $|C(M)| \le \beta(M) 1$

- Let B^* be an optimal branching in which each vertex $v \neq \rho$ has a parent
- Let $F_{B^*} = (V(D_M), B^*)$ be a tree rooted at ρ
- We construct a tree T from F_{R^*} as follows:
 - For each B^* -uncovered pair (r, v), add a leaf child (r, v) of v
- We present an example in the next page

The rooted tree F_{R^*}

For each uncovered-pair (r, v), add a leaf child (r, v) of v

Note that *T* is a rooted tree with:

- set of internals $V(D_M)$
- set of leaves $U(B^*)$

We claim that each internal of T has at least two children Let $v \in V(D_M)$ be an internal of T

- Case 1: v has in-degree = 0 in B^*
- Case 2: v has in-degree = 1 in B^*
- Case 3: v has in-degree > 1 in B^*

- Case 1: v has in-degree = 0 in B^*
- By Lemma 3.4, $|v| \ge 2$
- Thus, v has ≥ 2 children representing the uncovered elements in v

- Case 2: v has in-degree = 1 in B^*
- Let u be the in-neighbor of v in B^*
- Since $u \neq v$, there is at least one row r uncovered in v
- Thus, v has two children: u and the uncovered pair (r, v)

Case 3: v has in-degree > 1 in B^* Since the in-neighbors of v in B^* are children of v in T, v has at least two children

- Since each internal of T has two or more children, $(\# \text{ internals of } T) \le (\# \text{ leaves of } T) 1$
- That is, $|V(D_M)| \le |U(B^*)| 1 = \beta(M) 1$
- This can be rephrased as $|C(M)| \le 4\varepsilon(M) 1$
- This completes the proof

Summary

- By Theorems 3.6 and 3.7, *M* has at most:
 - $3\varepsilon(M)$ rows
 - $4\varepsilon(M) 1$ columns
- Thus, the kernel size is upper bounded by $12\varepsilon(M)^2 3\varepsilon(M)$

Remark

• We remark that the bound on |R(M)| is tight

- Given a positive integer k, a reduced matrix M_k with:
 - $\varepsilon(M) = k$
 - $3\varepsilon(M)$ rows (tight)
 - $2\varepsilon(M) + 1$ columns (not tight)

can be constructed

Construction

• Base case: k = 1

construction: repeat this part

Construction

Outline

- A kernelization algorithm for MSRP
 - Definition
 - Kernel size
 - Safeness
 - The algorithm

Known results

• The *safeness* of Rules 1 and 3 has been shown in [8, 12]

These results are reviewed as follows

• Rule 1. If M contains a pair of duplicate columns c_i , c_j , remove one of them.

• Lemma 4.1. [8] Let M^- be a matrix obtained from M by removing a duplicate column, then $\varepsilon(M) = \varepsilon(M^-)$.

Known results

Rule 3. If

- (1) Rule 1 is not applicable to M, and
- (2) D_M contains a sibling-compatible vertex v

then remove the column c with $supp_M(c) = v$

Lemma 4.2. [12] Let M be a matrix with distinct columns and M^- be a matrix obtained from M by removing a column whose support is a sibling-compatible vertex of D_M , then $\varepsilon(M) = \varepsilon(M^-)$.

• Therefore, it suffices to show the safeness of Rule 2

Notation

• Rule 2: If M has a doubly-chain-like row, remove it.

- Notation:
- M: a matrix
- M⁻: obtained by a single application of Rule 2 on M
- x: the doubly-chain-like row removed by the application of Rule 2
- y: a chain-like row such that $V_M(x) \subseteq V_M(y)$
- The rows of M is also labeled by $\{r_1, r_2, ..., r_m\}$

Notation

- Label the columns of M and M^- with $\{c_1, c_2, ..., c_n\}$
- Label the rows of M^- with $R(M) \{x\}$
- Note: each of M and M^- may contain duplicate columns

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			
X			1	1	1			

M^{-}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			

Lemma

• Let s_i denote $supp_M(c_i)$

• Let s'_i denote $supp_{M-}(c_i)$

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			
X			1	1	1			

$$s_3 = \{r_1, r_2, y, x\}$$

$$M^ c_1$$
 c_2
 c_3
 c_4
 c_5
 c_6
 c_7
 c_8
 r_1
 1
 1
 1
 1
 1
 1

 r_2
 1
 1
 1
 1
 1
 1

 r_3
 1
 1
 1
 1
 1
 1

 r_3
 1
 1
 1
 1
 1
 1

$$s'_3 = \{r_1, r_2, y\}$$

Lemma

- The following lemma shows that "Rule 2 "preserves" nested relations
- Lemma 4.3. For all s_i , s_j , if $s_i \subseteq s_j$, then $s'_i \subseteq s'_j$
- **Proof.** Recall that M^- is obtained by removing x
- If $s_i \subseteq s_j$, then $s_i \{x\} \subseteq s_j \{x\}$
- Thus, $s'_i \subseteq s'_j$

Definition

• Let $C_M(r)$ be the set of columns c with $r \in supp_M(c)$

$$C_{\mathcal{M}}(r_1) = \{c_2, c_3, ..., c_8\}$$

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	
r_1		1	1	1	1	1	1	1	
r_2	1	1	1	1	1	1		1	
r_3					1	1	1		
y	1	1	1	1	1				
X			1	1	1				

Recall

- Recall that a row r is chain-like if the vertices in $V_M(r)$ are pairwise nested
- Equivalently, a row r is chain-like if the columns in $C_M(r)$ are pairwise nested

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
у	1	1	1	1	1			
x			1	1	1			

nested

Notation

• W.L.O.G., assume that:

(1)
$$C_M(y) = \{c_1, c_2, ..., c_k\}$$
 where $k = |C_M(y)|$

(2)
$$supp_{M}(c_{1}) \subseteq supp_{M}(c_{2}) \subseteq ... \subseteq supp_{M}(c_{k})$$

• By (2), $C_M(x) = \{c_q, c_{q+1}, ..., c_k\}$ for some $q \le k$

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			
X			1	1	1			

Corollary

- Corollary 4.4. y is a chain-like row of M^- . Furthermore, $supp_{M^-}(c_1) \subseteq supp_{M^-}(c_2) \subseteq ... \subseteq supp_{M^-}(c_k)$
- **Proof.** Since $supp_M(c_1) \subseteq supp_M(c_2) \subseteq ... \subseteq supp_M(c_k)$, by Lemma 4.3, the Corollary is true

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			
X			1	1	1			

M^{-}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			

Corollary 4.4: nested (\subseteq)

Known: nested (\subseteq)

• The remaining part of the proof uses the original formulation of MSRP

• Recall that a split-row operation splits a row *r* into several rows whose bitwise OR is *r*

• The cost is the number of additional rows

$$cost = 2$$

E		1			1
В				1	
D			1	,	1

• For a matrix *P*, a *row split* of *P* is a matrix obtained by performing split-row operations on *P*

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			
X			1	1	1			

N	c'_1	c' ₂	c' ₃	c' ₄	c' ₅	c' ₆	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y'</i>	1	1	1	1	1			
<i>x'</i>			1	1	1			

111

• A matrix is *conflict-free* if the supports of any two columns are compatible (nested or disjoint)

N	c'_1	c' ₂	c' ₃	c' ₄	c' ₅	c' ₆	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y</i> '	1	1	1	1	1			
x'			1	1	1			

Known result

- MSRP (an equivalent formulation [8, 9, 12]):
- Find a conflict-free row split *N* of *M* such that the the number of *additional rows* in *N* is minimized

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			
X			1	1	1			

N	c'_1	c_2'	c'_3	c' ₄	c_5'	c'_6	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y'</i>	1	1	1	1	1			
<i>x'</i>			1	1	1	1	13	

• For a row split Q of P, a *feasible partition of* Q (with respect to P) is a partition of rows of Q into $m = |R(P)| \text{ sets } Q|^{r_1}, Q|^{r_2}, ..., Q|^{r_m} \text{ such that the bitwise OR of the rows in } Q|^{r_i} \text{ is } r_i$

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			
X			1	1	1			

• As in [8, 12], we make a slight technical abuse by considering any row split Q of P as already equipped with an fixed feasible partition (with respect to P)

M	1	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r	1		1	1	1	1	1	1	1
r	2	1	1	1	1	1	1		1
r	3					1	1	1	
J	,	1	1	1	1	1			
X	•			1	1	1			

Notation

• For ease of notation, we assume that the columns of any row split of M (resp. M^-) are labeled with $\{c'_1, c'_2, ..., c'_n\}$ such that c'_i is the corresponding column of c_i

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
У	1	1	1	1	1			
x			1	1	1			

N	c'_1	c' ₂	c' ₃	c' ₄	c' ₅	c' ₆	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y</i> '	1	1	1	1	1			
x'			1	1	1	1	16	

Lemma

• Lemma 4.5. [12] For any matrix P, there exists an optimal conflict-free row split Q s.t. for each chain-like row r of P, $Q|^r$ contains a single row identical to r

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			
х			1	1	1			

N	c'_1	c' ₂	c' ₃	c' ₄	c' ₅	c' ₆	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y</i> '	1	1	1	1	1			
x'			1	1	1			

Result: identical to *x*

Lemma

• Lemma 4.6. There exists an optimal conflict-free row split N^- of M^- satisfying the following:

(P1) $N^{-|y|}$ contains a single row identical to y

(P2) $supp_{N-}(c'_1) \subseteq supp_{N-}(c'_2) \subseteq ... \subseteq supp_{N-}(c'_k)$

M^{-}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
у	1	1	1	1	1			

N^{-}	c'_1	c' ₂	c' ₃	c' ₄	c' ₅	c' ₆	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
<i>c'</i>					1	1	1	
<i>y</i> ′	1	1	1	1	1			

Known: nested (\subseteq)

Lemma 4.6: nested (\subseteq)

• By Lemma 4.5, there exists an optimal solution satisfying (P1)

(P1) $N^-|y|$ contains a single row

- Among all such solutions, let *N*⁻ be the one having the most duplicate columns
- In the following, we show that N^- satisfies (P2)

(P2)
$$supp_{N-}(c'_1) \subseteq supp_{N-}(c'_2) \subseteq ... \subseteq supp_{N-}(c'_k)$$

- Consider two columns c_i , c_{i+1} , where $1 \le i < k$
- Recall that $supp_{M-}(c_i) \subseteq supp_{M-}(c_{i+1})$
- Consider two cases:
 - 1. $supp_{M-}(c_i) = supp_{M-}(c_{i+1})$ (duplicate)
 - 2. $supp_{M-}(c_i) \subset supp_{M-}(c_{i+1})$

M^{-}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
\overline{y}	1	1	1	1	1			

Case 2 Case 1

N ⁻	c'_1	c' ₂	c' ₃	c' ₄	c' ₅	c' ₆	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y'</i>	1	1	1	1	1			

- If c_i and c_{i+1} is a pair of duplicate columns, c'_i and c'_{i+1} must be a pair of duplicate columns
- (Otherwise, replacing c'_{i} with c'_{i+1} to reach a contradiction)
- Thus, $supp_{N-}(c'_i) \subseteq supp_{N-}(c'_{i+1})$

duplicate

M^{-}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			

duplicate

N^{-}	c'_1	c' ₂	c' ₃	c' ₄	c' ₅	c' ₆	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y'</i>	1	1	1	1	1		12:	L

- Suppose $supp_{M-}(c_i) \subset supp_{M-}(c_{i+1})$
- Let r be a row in $supp_{M-}(c_{i+1}) supp_{M-}(c_i)$
- In $N^-|^r$, there is a row r' in $supp_{N-}(c'_{i+1}) supp_{N-}(c'_i)$
- Since N^- is conflict-free, c'_i and c'_{i+1} are nested, and thus $supp_{N-}(c'_i) \subset supp_{N-}(c'_{i+1})$

duplicate

M^{-}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			

N^{-}	c'_1	c'_2	c' ₃	c' ₄	c' ₅	c' ₆	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y</i> '	1	1	1	1	1		122	2

Theorem

- Theorem 4.7. $\varepsilon(M) = \varepsilon(M^-)$
- **Proof.** We first show that $\varepsilon(M^-) \le \varepsilon(M)$
- Let N be an optimal conflict-free row split of M

• Let N^- be the matrix obtained from N by removing all

rows in $N^{-|x|}$

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			
X			1	1	1			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{bmatrix} a_3 \\ \end{bmatrix}$ 1 1	1
	1
7 1 1 1 1 1	
$\left egin{array}{c c c c c c c c c c c c c c c c c c c $	
	1
c' 1 1 1 1	
y' 1 1 1 1 1 1 I	
1 1 1	
A 1 1 1	
1 1 1 1 1 1	_

• To prove $\varepsilon(M^-) \le \varepsilon(M)$, it suffices to show: N^- is a conflict-free row split of M^- with at most $\varepsilon(M)$ additional rows

• Clearly, N^- is a row split of M^- with at most $\varepsilon(M)$ additional

 N^{-}

rows

M^{-}								
M	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			
3.0			1	1	1			
<i>-</i>		l	1	1	1			l

N	c'_1	c' ₂	c' ₃	c' ₄	c' ₅	c' ₆	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y</i> '	1	1	1	1	1			
,			1	1	1			
\mathcal{A}			1	1	1		1 7	1
<u> </u>				1	1		124	+
A				1	1			

- To show N^- is conflict-free, we claim that removing any row r from a conflict-free matrix (e.g. N) does not induce any pair of conflicting columns
- Two disjoint columns of $N \to \text{still disjoint after removing } r$
- Two nested columns of N
 - \rightarrow nested or disjoint after removing r
- Thus, N^- is conflict-free and $\varepsilon(M^-) \le \varepsilon(M)$

- We proceed to show that $\varepsilon(M) \le \varepsilon(M^-)$
- Let N^- be an optimal conflict-free row split of M^-
- By Lemma 4.6, we may assume that N^- satisfies:
 - (P1) $N^{-|y|}$ contains a single row identical to y

(P2)
$$supp_{N-}(c'_1) \subseteq supp_{N-}(c'_2) \subseteq ... \subseteq supp_{N-}(c'_k)$$

M^{-}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
У	1	1	1	1	1			

N^{-}	c'_1	c' ₂	c' ₃	c' ₄	c' ₅	c' ₆	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
<i>c'</i>					1	1	1	
<i>y</i> '	1	1	1	1	1		12	6

• We obtain from N^- a matrix N by appending a row, labeled by x', such that $N_{x',c'i} = M_{x',c_i}$ for all columns $c_i \in C(M)$

M^{-}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			

N	c'_1	c_2'	c_3'	c' ₄	c_5'	c'_6	c'_7	c'_8
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y'</i>	1	1	1	1	1			
x'			1	1	1		127	7

- To prove $\varepsilon(M^-) \le \varepsilon(M)$, it suffices to show that
 - (1) N^- is a row split of M^- with exacyly $\varepsilon(M)$ additional rows (clearly)
 - (2) N^- is conflict-free

M^{-}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
r_1		1	1	1	1	1	1	1
r_2	1	1	1	1	1	1		1
r_3					1	1	1	
y	1	1	1	1	1			

W	c'_1	c'_2	c_3'	c' ₄	c_5'	c'_6	c'_7	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y</i> ′	1	1	1	1	1			
x'			1	1	1		128	3

- Let y' be the only row in $N^{-|y|}$
- Note that $C_N(y') = \{c'_1, c'_2, ..., c'_k\}$
- Consider a pair of columns c'_i , c'_j , where i < j
- Let $s_i^- = supp_{N-}(c_i')$, and $s_i^- = supp_N(c_i')$

					\boldsymbol{c}_{k}			
$N^{\!-}$	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y</i> '	1	1	1	1	1			
b_2 c'					1		1	1

N	c'_1	c_2'	c_3'	c' ₄	c_5'	c_6'	c' ₇	c'_8
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y</i> '	1	1	1	1	1			
x'			1	1	1		129)

• Three cases are considered:

Case 1: $i, j > k \rightarrow$ support unchanged \rightarrow compatible

Case 2: $i, j \le k$

Case 3: $i \le k, j > k$

			_		C'_{k}			
N	c'_1	c' ₂	c' ₃	c' ₄	c' ₅	c'_6	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
<i>c'</i>					1	1	1	
<i>y'</i>	1	1	1	1	1			
<i>x'</i>			1	1	1		130)

Case 2: $i, j \le k$

- Recall that (P2) $s_1^- \subseteq s_2^- \subseteq ... \subseteq s_k^-$
- Since $C_N(x') = \{c'_q, c'_{q+1}, ..., c'_k\}$, after appending x', we have $s_1 \subseteq s_2 \subseteq ... \subseteq s_k$

N^{-}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y'</i>	1	1	1	1	1			

 $|c'_{1}|c'_{2}|c'_{3}|c'_{4}|c'_{5}|c'_{6}|$

Case 3: $i \le k, j > k$

- In Case 3, $y \in S_i^-$ but $y \notin S_j^-$
- Since N^- is conflict-free, either $s^-_i \supset s^-_j$ or s^-_i , s^-_j are disjoint
- In both cases, s_i and s_j are compatible

N^{-}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
<i>c'</i>					1	1	1	
<i>y</i> '	1	1	1	1	1			

N	c'_1	c_2'	c' ₃	c' ₄	c' ₅	c' ₆	c' ₇	c' ₈
a_1		1	1	1	1			
a_2					1	1	1	
a_3					1	1		1
b_1	1	1	1	1	1			
b_2					1	1		1
c'					1	1	1	
<i>y'</i>	1	1	1	1	1			
<i>x'</i>			1	1	1		132	2

• Therefore, N is indeed conflict-free

• As a result, $\varepsilon(M^-) \le \varepsilon(M)$

• This completes the proof.

Outline

- Introduction
- Preliminaries
- A kernelization algorithm for MSRP
- An approximation algorithm for MSRP
- Approximation algorithms for MDCRSP
- Conclusion and future work

• Recall that a conflict-free row split is a feasible solution

- That is, a matrix which
 - 1. can be obtained by split-row operations, and
 - 2. corresponds to a perfect phylogeny

• MDCRSP asks to find a conflict-free row split of *M* with the minimum number of distinct rows

M	c_1	c_2	c_3	c_4	c_5	c_6
r_1	1	1		1	1	1
r_2					1	
r_3			1	1	1	1
r_4		1				1

IVI .	c_1	c_2	c_3	C_4	c_5	c_6
$r_1^{(1)}$	1				1	
$r_1^{(2)}$		1				1
$r_1^{(3)}$				1		1
$r_2^{(1)}$					1	
$r_3^{(1)}$			1			1
$r_3^{(2)}$					1	
$r_3^{(3)}$				1		1
$r_4^{(1)}$		1				1

cost = 5 (distinct rows)

 We will present new approximation algorithms for MDCRSP

Source	Approximation ratio	Time
[8]	2	$O(mn^2)$
[this]	5/3 ≈ 1.67	$O(mn^2)$
[this]	$4/3 + \delta$ for any $\delta > 0$	$n^{O(1/\delta)} \approx n^{64/\delta}$

Known result

- Let $\eta(M)$ be the minimum number of distinct rows in a conflict-free row split
- Similar to MSRP, removing duplicate columns does not change $\eta(M)$ [8]
- Thus, we assume that M has no duplicate columns

M	c_1	c_2	c_3	c_4	c_5	c_6	c_7
r_1	1	1		1	1	1	1
r_2					1		
r_3			1	1	1	1	1
r_4		1				1	1

M	c_1	c_2	c_3	c_4	c_5	c_6
r_1	1	1		1	1	1
r_2					1	
r_3			1	1	1	1
r_4		1				1 138

Known results

• MDCRSP admits a formulation similar to the branching formulation [8]

• Recall: the branching formulation

- Recall that a B-uncovered pair is a target pair (r, v) such that r is not in any child of v
- A vertex *v* is *B-irreducible* if there is a *B*-uncovered pair (*r*, *v*) for some row *r*

has an uncovered pair $(b, v_4) \rightarrow v_4$ is irreducible

• A vertex *v* is *B-reducible* if it is not *B*-irreducible

• In other words, a vertex *v* is *B*-reducible if the union of its *B*-children is itself

- Let *I*(*B*) be the set of all *B*-irreducible vertices
- We re-define *cost* of a branching B as |I(B)|
- Let $\zeta(M)$ be the minimum cost of a branching

Known result

- MDCRSP is equivalent to finding the minimum cost branching [8]
- Theorem 5.1. [8] For any matrix M, the following hold:
- 1. Any branching B of D_M can be transformed to a conflict-free row split with |I(B)| distinct rows.
- 2. Any conflict-free row split M' of M can be transformed to a branching B such that |I(B)| is at most the number of distinct rows of M'.
- Consequently, $\eta(M) = \zeta(M)$

Remark

• By Theorem 5.1, the approximation of $\eta(M)$ can be done by approximating $\zeta(M)$

• We begin by simple observations

• Consider a branching B

Observation

- Suppose that there is an arc $(v, v') \in B$ s.t. v' is irreducible
- Let $B' = B \{(v, v')\}$
- The costs of B and B' are the same

more uncovered pairs, still irreducible

- A branching is *trimmed* if every irreducible vertex has no child
- By the observation, each branching B can be transformed to a trimmed branching B' with I(B) = I(B')
- In MDCRSP, it suffices to consider trimmed branchings

- A candidate is a pair (p, Q), where
 p is a vertex (of D_M) and Q is a subset of vertices, such that
 (1) B = {(v, p) | v ∈ Q} is a branching
 - (2) p is B-reducible

$$q_2 = \{a, c\}$$

$$q_3 = \{a, b, d\}$$

$$q_1 = \{d, y\}$$

$$p = \{a, b, c, d, y\}$$

$$q_1 = \{d, y\}$$

$$p = \{a, b, c, d, y\}$$

- Two candidates $(p_1, Q_1), (p_2, Q_2)$ are *disjoint* if
 - 1. $p_1 \neq p_2$
 - 2. Q_1 and Q_2 are disjoint
- Note that Q_1 may contain p_2 (resp???)
- Example: $(v_5, \{v_2, v_3\})$ and $(v_9, \{v_5, v_6\})$

Observation

- A trimmed branching B can be transformed to a set of pairwise disjoint candidates:
- Each reducible vertex p corresponds to a candidate (p, Q) where Q is the child set of p
- Since B has n |I(B)| reducible vertices, the resulting set contains n |I(B)| candidates

Observation

• Recall that MDCRSP seeks a branching with the minimum number of irreducible vertices

• Thus, the exact solution of MDCRSP can be found by selecting the maximum number of disjoint candidates

Remark

• In the following, we first show that MDCRSP can be reduced to *the set packing problem*

• Our algorithm is obtained by modifying the reduction

The Set Packing problem (SP):
 Given a universe of elements E and
 a family F of subsets of E,
 find a maximum size subfamily of F of pairwise
 disjoint sets

The reduction

- Given an $m \times n$ matrix M, we construct an instance (E, \mathcal{F}) of SP as follows
- Each vertex v of D_M is associated with two elements $v^{(in)}$, $v^{(out)}$ in E
- Each candidate (p, Q) is associated with a set $\{p^{(in)}\} \cup Q^{(out)}$, where $Q^{(out)} = \{v^{(out)} \mid v \in Q\}$

Example

• An example:

Example

- The universe *E*
- and some sets (not all sets) in \mathcal{F}

Observation

- Let $C_1 = (p_1, Q_1)$ and $C_2 = (p_2, Q_2)$ be two candidates
- Let S_1 , S_2 be the corresponding set of C_1 , C_2 in \mathcal{F}

Observation

- Let $C_1 = (p_1, Q_1)$ and $C_2 = (p_2, Q_2)$ be two candidates
- Let S_1 , S_2 be the corresponding set of C_1 , C_2 in \mathcal{F}
- Observe that C_1 and C_2 are disjoint $\leftrightarrow S_1$, S_2 are disjoint

The reduction

• A packing of \mathcal{F} is a collection of disjoint sets in \mathcal{F}

- Lemma 5.2. For any matrix M, the following hold:
- 1. Any trimmed branching B of D_M can be transformed to a packing of \mathcal{F} with size n |I(B)|
- 2. Any packing \mathcal{P} of \mathcal{F} can be transformed to a trimmed branching B with $|I(B)| = n |\mathcal{P}|$

Part 1. trimmed branching \rightarrow packing

- Let B be a trimmed branching
- Let $p_1, p_2, ..., p_x$ be the *B*-reducible vertices of *B*, where x = n |I(B)|
- Let Q_i be the child set of p_i

B

- For i = 1, 2, ..., x, let $C_i = (p_i, Q_i)$ be a candidate
- Since B is a branching, the sets $Q_1, Q_2, ..., Q_x$ are pairwise disjoint
- Thus, C_1 , C_2 , ..., C_x are pairwise disjoint

- $C_1, C_2, ..., C_x$ corresponds to a subfamily $\{S_1, S_2, ..., S_x\}$ of \mathcal{F}
- Since C_1 , C_2 , ..., C_x are pairwise disjoint, $\{S_1, S_2, ..., S_x\}$ is a packing of size x = n |I(B)|

Part 2. packing → trimmed branching

- This part is symmetric to Part 1
- This completes the proof

Remark

• Lemma 5.2 shows that the optimal packing of \mathcal{F} has size $n - \zeta(M)$

• This suggests us to use approximation algorithms for SP to approximate $n - \zeta(M)$

Remark

- However, there are two difficulties in approximating $\zeta(M)$
 - (1) There is no constant approximation algo. for SP (unless P = NP)
 - (2) a constant approximation of $n \zeta(M)$ does not imply a constant approximation of $\zeta(M)$

• Because of (1), we will use approximation algorithms for the k-Set Packing Problem

• For a constant *k*, the *k-Set Packing problem* is SP with an additional constraint:

each set in the input family \mathcal{F} has size at most k

Remark

• We will present two algorithms

• Both are based on approximation algorithms for k-SP

• The first one is efficient and guarantees a ratio of 5/3

• The second one is less efficient but guarantees a ratio of $4/3 + \delta$

• The *degree* of a candidate (p, Q) is the size of Q

• Since the vertices of D_M (i.e. the supports of M) are distinct, each candidate has degree ≥ 2

$$D_{M}$$

$$v_2 = \{a, c\}$$
 degree = 3 $v_8 = \{a, b, d\}$

$$v_6 = \{d, y\} \qquad v_9 = \{a, b, c, d, y\}$$

- For a fixed integer d, let \mathcal{F}_d denote the subfamily of \mathcal{F} which contains all sets in \mathcal{F} with size at most d+1
- That is, \mathcal{F}_d corresponds to the set of candidates of degree at most d
- (E, \mathcal{F}_d) is an instance of (d+1)-SP

Lemma

• Our first algorithm is based on the following folklore lemma

• Lemma 5.3. [??] There is a linear time

3-approximation algorithm for 3-SP

• *Proof.* Let (E', \mathcal{F}') : an instance of 3-SP

 P^* : the optimal packing of \mathcal{F}'

P: an inclusion-wise maximal packing

- We claim that $|P| \ge |P^*| / 3$
- First, since P is maximal, each set in P^* intersects at least one set in P

- Consider a set S in P
- Since P^* is a packing, each element in S is in at most one set in P^*
- Since the size of S is at most 3, S intersects at most 3 sets in P^*

- In summary:
 - each set in P^* intersects a least one set in P
 - each set in P intersects at most 3 sets in P^*
 - $\rightarrow P$ has at least $|P^*| / 3$ sets
- Thus, it suffices to show that a maximal packing can be found in linear time

- Maintain a packing P'; Initially, set $P' = \emptyset$
- For each set S in \mathcal{F}' : if $P' \cup \{S\}$ is a packing, set $P' = P' \cup \{S\}$
- The checking can be done in O(3) = O(1) time
- This completes the proof

Algorithm 1

- Our first algorithm is as follows
 - Step 1. compute D_M
 - Step 2. compute (E, \mathcal{F}_2)
 - Step 3. find a packing P of \mathcal{F}_2 by using Lemma 5.3
 - Step 4. transform P to a branching B
 - Step 5. output B

Theorem

• Theorem 5.4. Algorithm 1 is a (5/3)-approximation algorithm for MDCRSP with time complexity $O(mn^2)$

• *Proof.* We first analyze the approximation ratio

- Let
 - B^* : an optimal trimmed branching of D_M
 - X_2 : the set of B^* -reducible vertices with in-degree 2
 - X_3 : the set of B^* -reducible vertices with in-degree ≥ 3
- Note that $\{X_2, X_3\}$ is a partition of B^* -reducible vertices

- Since B^* has $|X_2|$ reducible vertices of degree 2, \mathcal{F}_2 has a packing of size $|X_2|$
- (Recall that \mathcal{F}_2 corresponds to the candidates of degree 2)
- Recall that the packing P is obtained by performing a 3-approximation algorithm on \mathcal{F}_2
- Thus, $|P| \ge |X_2| / 3$

• Since B is the corresponding branching of P, B has at least $|X_2|$ / 3 reducible vertices (of degree 2)

- The cost of B^* : $n |X_2| |X_3|$
- The cost of B: $\leq n |X_2|/3$
- Goal: upper bound the ratio $(n |X_2| / 3) / (n |X_2| |X_3|)$

• Since B^* is a branching, (the sum of in-degrees) $\leq n-1$

• Thus, we have $2|X_2| + 3|X_3| \le n - 1$

Remark

• We claim that the ratio $(n - |X_2| / 3) / (n - |X_2| - |X_3|) \le 5/3$

• Before proceeding the proof, we present a rough estimation of the worst-case performance of Algorithm 1

Estimation

- In summary:
 - $|X_2| = (\# \text{ reducible vertices with in-degree 2 in } B^*);$
 - $|X_3| = (\# \text{ reducible vertices with in-degree} > 2 \text{ in } B^*)$
 - B has at least $|X_2|$ / 3 reducible vertices
 - $2|X_2| + 3|X_3| \le n 1$

Estimation

- Consider two bad cases for our algorithm
- Bad case 1: in B^* , $|X_2| = 0$, $|X_3| \approx n/3$
 - The cost of $B^* \approx n n / 3 = (2/3)n$
 - The cost of $B \le n |X_2| / 3 = n 0$
 - \rightarrow in this case, the ratio = n / ((2/3)n) = 3/2 < 5/3 (our goal)

Estimation

- **Bad case 2**: in B^* , $|X_2| \approx n/2$, $|X_3| = 0$
 - The cost of $B^* \approx n n / 2 = (1/2)n$
 - The cost of $B \le n |X_2| / 3 \approx (5/6)n$
 - \rightarrow in this case, ratio = (5/6)n / (1/2)n = 5 / 3 (our goal)
- It turns out that this is the worst case

Back to the proof

• Let $\alpha = |X_2| / n$ and $\beta = |X_3| / n$

• α is the portion of vertices which are reducible and have in-degree 2

• Note that α and β are non-negative

Back to the proof

• Our analysis is rephrased as follows:

•
$$2|X_2| + 3|X_3| \le n - 1$$

 $\to 2\alpha + 3\beta \le (n - 1) / n \le 1$

• α , $\beta \geq 0$

• To sum up, we have the following mathematical program:

Program 1: maximize
$$\frac{3-x}{3-3x-3y}$$

subject to (I1) $2x + 3y \le 1$ and (I2) $x, y \ge 0$

- Let r^* be the maximum objective value of Program 1
- Since (α, β) is a feasible point of Program 1, the approximation ratio is upper bounded by r^*

Program 1: maximize
$$\frac{3-x}{3-3x-3y}$$

subject to (I1) $2x + 3y \le 1$ and (I2) $x, y \ge 0$

- By (I1), the objective value is always positive
- Thus, the objective value increases as y increases
- Hence, there is a maximizer (x^*, y^*) with $2x^* + 3y^* = 1$, or equivalently, $y^* = (1 2x^*) / 3$
- Therefore, we can rewrite Program 1 with y = (1 2x)/3

Program 1: maximize
$$\frac{3-x}{3-3x-3y}$$

subject to $2x + 3y = 1$ and $x, y \ge 0$

• By y = (1 - 2x) / 3, the objective function is rewritten as

$$\frac{3-x}{3-3x-(1-2x)} = \frac{3-x}{2-x}$$

Program 1: maximize
$$\frac{3-x}{3-3x-3y}$$

subject to $2x + 3y = 1$ and $x, y \ge 0$

is equivalent to

Program 2: maximize
$$f(x) = \frac{3-x}{2-x}$$

subject to $2x \le 1$ (and $y = (1-x)/3$) and $x \ge 0$

Program 2: maximize
$$f(x) = \frac{3-x}{2-x}$$

subject to $2x \le 1$ and $x \ge 0$

• The derivative of f(x) is

$$f'(x) = \frac{-(2-x) + (3-x)}{(2-x)^2}$$
$$= \frac{1}{(2-x)^2}$$
$$> 0 \text{ for } x \neq 2$$

Quotient rule
$$\left(\frac{g}{h}\right)' = \frac{g'h - gh'}{h^2}$$

 \rightarrow f is strictly increasing in the range: $0 \le 2x \le 1$

Program 2: maximize
$$f(x) = (3 - x) / (2 - x)$$

subject to $2x \le 1$ and $x \ge 0$

• Since $2x \le 1$, Program 2 is maximized when x = 0.5

• The maximum is
$$f(0.5) = \frac{2.5}{1.5} = \frac{5}{3}$$

• Consequently, the algorithm guarantees a ratio of $\frac{5}{3}$

- We proceed to show that Algorithm 1 runs in $O(mn^2)$ time
- Recall Algorithm 1:
 - Step 1. compute D_M
 - Step 2. compute (E, \mathcal{F}_2)
 - Step 3. find a packing P of \mathcal{F}_2 by using Lemma 5.3
 - Step 4. transform P to a branching B
 - Step 5. output B

• Step 1. compute D_M

• By my master thesis, D_M can be computed in $O(\max(mn^{1.373}, m^{0.373}n^2)) = O(mn^2)$ time

- Step 2. compute (E, \mathcal{F}_2)
- $E = \{v^{(in)} \mid v \in V(D_M)\} \cup \{v^{(out)} \mid v \in V(D_M)\}$ can be obtained in O(n) time
- Recall that \mathcal{F}_2 corresponds to the candidates $\{(p, Q) \mid Q \text{ contains at most two vertices}\}$ = $\{(p, Q) \mid Q \text{ contains exactly two vertices}\}$

- For each pair of vertices u, v (u, v containment?) $\in V(D_M)$:
 - Let $p = u \cup v$
 - If $p \in V(D_M)$, $p \neq u$ and $p \neq v$, add $\{p^{(in)}, u^{(out)}, v^{(out)}\}$ to \mathcal{F}_2
- We need an efficient data structure to check if $p \in V(D_M)$

- Recall that each vertex of D_M represents a column of M
- Thus, a vertex (set of rows) can be represented by an *m*-bit vector
- We build a *digital search tree T* on the set of columns
- Each leaf has depth m and represents a column of M

M	c_1	c_2	c_3	c_4	c_5	c_6
a	1	1		1	1	1
b					1	0
C			1	1	1	1
d		1				1

- Recall: for each pair of vertices $u, v \in V(D_M)$:
 - Let $p = u \cup v \rightarrow O(m)$ time
 - If $p \in V(D_M)$, $p \neq u$ and $p \neq v$, $\rightarrow O(m)$ time add $\{p^{(in)}, u^{(out)}, v^{(out)}\}$ to \mathcal{F}_2
 - \rightarrow Step 2 takes $O(mn^2)$ time

M	c_1	c_2	c_3	c_4	c_5	c_6
a	1	1		1	1	1
b					1	
c			1	1	1	1
d		1				1

• Step 3. find a packing P of \mathcal{F}_2 by using Lemma 5.3

• Recall that the algorithm in Lemma 5.3 takes linear time

• Since $|\mathcal{F}_2| = O(n^2)$, Step 3 takes $O(n^2)$ time

- Step 4. transform P to a branching B
- Step 5. output *B*
- Clearly, Step 4 and 5 can be done in O(n) time
- Since each step is done in $O(mn^2)$ time, the proof is complete

Algorithm 2

• We proceed to present Algorithm 2

• It is based on the result of [A]

• Theorem 5.5. [A] There is a deterministic algorithm for kSP which, given any $\varepsilon > 0$, achieves an approximation ratio $\frac{k+1}{3} + \varepsilon$ in time $n^{O(k^3/\varepsilon^2)}$.

Theorem

• **Theorem 5.6.** For any $\delta > 0$, there is a polynomial time $\left(\frac{4}{3} + \delta\right)$ -approximation algorithm for MDCRSP

- *Proof.* Let δ be a fixed positive real number
- W.L.O.G., assume that $\delta < 1$
- We first use Theorem 5.5 to obtain algorithms for 3-SP and 4-SP

Theorem 5.5.

 $\left(\frac{k+1}{3} + \varepsilon\right)$ -approximation for k-SP

• Let
$$\rho_1 = \frac{4}{3-2\delta} > \frac{4}{3}$$

• Since $\rho_1 > \frac{4}{3}$, by Theorem 5.5, there exists a ρ_1 -approximation algorithm A_1 for 3-SP

• Let
$$a_1 = \frac{1}{\rho_1} = \frac{3-2\delta}{4} = \frac{3}{4} - \frac{1}{2}\delta$$

• By definition, given an instance of 3-SP with optimal packing size t, $A_1 \text{ finds a packing with size } \ge t / \rho_1 = a_1 \cdot t$

Theorem 5.5.

 $\left(\frac{k+1}{3} + \varepsilon\right)$ -approximation for k-SP

• Let
$$\rho_2 = \frac{10}{6-5\delta} > \frac{10}{6} = \frac{5}{3}$$

• Again, by Theorem 5.5, there exists a ρ_2 -approximation algorithm A_2 for 4-SP

• Let
$$a_2 = \frac{1}{\rho_2} = \frac{6 - 5\delta}{10} = \frac{3}{5} - \frac{1}{2}\delta$$

• By definition, given an instance of 4-SP with optimal packing size t, $A_1 \text{ finds a packing with size } \ge t / \rho_2 = a_2 \cdot t$

Algorithm 2

- Input: a matrix M and a positive real number δ
- Output: a branching B of D_M
 - Step 1. compute D_M , E, \mathcal{F}_2 and \mathcal{F}_3
 - Step 2. run A_1 on \mathcal{F}_2 to obtain a packing P_1 run A_2 on \mathcal{F}_3 to obtain a packing P_2
 - Step 3. transform P_1 to a branching B_1 , transform P_2 to a branching B_2
 - Step 4. output the branching with smaller cost

• Clearly, Algorithm 2 runs in polynomial time

- We will show that $B \text{ costs no more than } \left(\frac{4}{3} + \delta\right) \text{ times the optimal cost}$
- Interestingly, each of B_1 and B_2 does not have this property

- Let
 - B^* : an optimal branching of D_M
 - Y_2 : the set of reducible vertices with in-degree 2
 - Y_3 : the set of reducible vertices with in-degree 3
 - Y_4 : the set of reducible vertices with in-degree ≥ 4
- Y_2 , Y_3 and Y_4 patition the set of reducible vertices

• Let *B* be the output of Algorithm 2

• Similar to Theorem 5.4, we upper bound the cost of B in terms of $|Y_2|$ and $|Y_3|$

- Recall:
 - \mathcal{F}_2 corresponds to the set of candidates with degree ≤ 2
 - \mathcal{F}_3 corresponds to the set of candidates with degree ≤ 3
- *B** has:
 - $|Y_2|$ reducible vertices of in-degree 2
 - $|Y_3|$ reducible vertices of in-degree 3
- As a result, \mathcal{F}_2 has a packing of size $|Y_2|$, and \mathcal{F}_3 has a packing of size $|Y_2| + |Y_3|$

• In last page: \mathcal{F}_2 has a packing of size $|Y_2|$, and \mathcal{F}_3 has a packing of size $|Y_2| + |Y_3|$

- Recall that the packing P_1 is obtained by running A_1 on \mathcal{F}_2 ,
 - \rightarrow the size of P_1 is at least $a_1 \cdot |Y_2|$
 - \rightarrow the cost of $B_1 \le n a_1 \cdot |Y_2|$
- Similarly, the cost of $B_2 \le n a_2 \cdot (|Y_2| + |Y_3|)$

• Recall that B is the branching with smaller cost among B_1 and B_2

• We obtain the following upper bounds on the costs:

cost of
$$B_1 \le n - a_1 \cdot |Y_2|$$
;
cost of $B_2 \le n - a_2 \cdot (|Y_2| + |Y_3|)$;
cost of $B = \min(\text{cost of } B_1, \text{ cost of } B_2)$
 $\le \min(n - a_1 \cdot |Y_2|, n - a_2 \cdot (|Y_2| + |Y_3|))$;
cost of $B^* = n - |Y_2| - |Y_3| - |Y_4|$.

• Thus, (the cost of B) / (the cost of B^*) \leq

$$\min(n - a_1|Y_2|, n - a_2(|Y_2| + |Y_2|))$$

$$n - |Y_2| - |Y_3| - |Y_4|$$

• Let
$$x = \frac{|Y_2|}{n}$$
, $y = \frac{|Y_3|}{n}$ and $z = \frac{|Y_4|}{n}$

• The ratio is rewritten as

$$\frac{\min(1 - a_1 x, 1 - a_2(x + y))}{1 - x - y - z}$$

• Since the total in-degree of $B^* \le n-1$, we have

$$2|Y_2| + 3|Y_3| + 4|Y_4| \le n - 1$$
,
and thus $2x + 3y + 4z \le (n - 1)/n \le 1$

• Similar to Theorem 5.4, we summarize our analysis with a mathematical program

Program 3: maximize
$$\frac{\min(1-a_1x, 1-a_2(x+y))}{1-x-y-z}$$
subject to $2x+3y+4z \le 1$ and $x, y, z \ge 0$

Program 3: maximize
$$\frac{\min(1-a_1x, 1-a_2(x+y))}{1-x-y-z}$$
subject to $2x+3y+4z \le 1$ and $x, y, z \ge 0$

- Note that both the denominator and the numerator of the objective value are positive
- Since the objective value increases as z increases, there is a maximizer with 2x + 3y + 4z = 1
- Thus, we may rewrite Program 3 by replacing z with (1 - 2x - 3y) / 4

•
$$\frac{\min(1-a_1x, 1-a_2(x+y))}{1-x-y-z}$$

$$= \frac{\min(1 - a_1 x, 1 - a_2 (x + y))}{1 - x - y - (1 - 2x - 3y)/4}$$
 (by $z = (1 - 2x - 3y)/4$)

$$= \frac{\min(4 - 4a_1x, 4 - 4a_2(x + y))}{3 - 2x - y} \qquad (\times \frac{4}{4})$$

Program 3: maximize
$$\frac{\min(1-a_1x, 1-a_2(x+y))}{1-x-y-z}$$
subject to $2x+3y+4z \le 1$ and $x, y, z \ge 0$

is rewritten as

Program 4: maximize
$$\frac{\min(4-4a_1x, 4-4a_2(x+y))}{3-2x-y}$$
 subject to $2x+3y \le 1$ and $x, y \ge 0$

Program 4: maximize
$$\frac{\min(4-4a_1x, 4-4a_2(x+y))}{3-2x-y}$$
 subject to $2x+3y \le 1$ and $x, y \ge 0$

• Let *Q* be the feasible region of Program 4

• Note that $x \le (1/2)$ and $y \le (1/3)$ in Q

$$\max \frac{\min(4 - 4a_1x, 4 - 4a_2(x + y))}{3 - 2x - y}$$
s.t. $2x + 3y \le 1, x, y \ge 0$

• Let
$$f_1(x, y) = \frac{4 - 4a_1x}{3 - 2x - y}$$
; and
$$f_2(x, y) = \frac{4 - 4a_2(x + y)}{3 - 2x - y}$$

- Let Q_1 be the subset of feasible points (x, y) with $f_1(x, y) < f_2(x, y)$
- Let $Q_2 = Q Q_1$ be the feasible points with $f_1(x, y) \ge f_2(x, y)$

$$\max \frac{\min(4 - 4a_1x, 4 - 4a_2(x + y))}{3 - 2x - y}$$

s.t.
$$2x + 3y \le 1$$
, $x, y \ge 0$

• The points in Q_1 satisfy

$$4 - a_1 x < 4 - a_2 (x + y),$$

or equivalently,

$$(a_1 - a_2)x - a_2y > 0$$

• Let L be the line

$$(a_1 - a_2)x - a_2y = 0$$

• Q_1 is the sub-region of Q which is to the right of L

$$\max \frac{\min(4 - 4a_1x, 4 - 4a_2(x + y))}{3 - 2x - y}$$

s.t.
$$2x + 3y \le 1, x, y \ge 0$$

$$(a_1 - a_2)x - a_2y = k$$
?
variable is k

- Before proceeding the proof, let us give a rough estimation of the performance of A_1 and A_2
- The worst case for A_1 happens at (x, y) = (0, 1/3)
- It this case, the cost of B_1 / cost of $B^* \approx 3/2 > 4/3$ (our goal)

- Later, we will show that (0, 1/3) is at Q_2
- That is, in the worst case of A_1 , A_2 provides a better approximation

- Similarly, the worst case (1/2, 0) for A_2 is in Q_1
- It this case, the cost of B_2 / cost of $B^* \approx 1.4 > 4/3$ (our goal)

- That is, each of A_1 and A_2 has some bad cases in which the ratio > 4/3
- However, they complement each other
- It can be easily verified that on the line L, both A_1 and A_2 have ratios $\approx 4/3$

- Before proceeding the proof, let us give a rough estimation of the performance of A_1 and A_2
- Recall that a feasible point (x, y) represents $|Y_2|/n \approx x$ and $|Y_3|/n \approx y$ (degree 2) (degree 3)
- A_1 gives an accurate ($\approx 4/3$) approximation to $|Y_2|$ (x)
- A_2 gives a rough ($\approx 5/3$) approximation to $|Y_2| + |Y_3| (x + y)$

• The worst case for A_1 is as follows

• In B^* , all reducible vertices have degree 3

• In this case, $x \approx 0$ and $y \approx 1/3$

• It can be verified that cost of B_1 / cost of B^* $\approx 3/2 > 4/3$ (our goal)

$$\max \frac{\min(4 - 4a_1x, 4 - 4a_2(x + y))}{3 - 2x - y}$$

s.t.
$$2x + 3y \le 1$$
, $x, y \ge 0$

- Later, we will show that the point (0, 1/3) is in Q_2
- That is, in the worst case of A_1 , A_2 provides a better approximation

- The worst case for A_2 :
 All reducible vertices have degree 2
- In this case, $x \approx 1/2$ and $y \approx 0$
- It can be verified that cost of B_1 / cost of B^* $\approx 7/5 = 1.4 > 4/3$ (our goal)

• Later, we will show that the point (1/2, 0) is in Q_1

• That is, in the worst case of A_2 , A_1 provides a better approximation

- That is, each of A_1 and A_2 has some bad cases in which the ratio > 4/3
- However, they complement each other
- It can be easily verified that on the line L, both A_1 and A_2 have ratios $\approx 4/3$

- We proceed to determine L
- Recall:

$$L: (a_1 - a_2)x - a_2y = 0$$

$$L: (a_1 - a_2)x - a_2y = 0$$

$$a_1 = \frac{3}{4} - \frac{1}{2}\delta; \qquad a_2 = \frac{3}{5} - \frac{1}{2}\delta$$

• By plugging in the value of a_1 and a_2 , L can be rewritten as

$$\left(\left(\frac{3}{4} - \frac{1}{2}\delta \right) - \left(\frac{3}{5} - \frac{1}{2}\delta \right) \right) x - \left(\frac{3}{5} - \frac{1}{2}\delta \right) y = 0$$

$$\rightarrow \frac{3}{20}x - \frac{3}{5}y = -\frac{1}{2}\delta y$$

$$\rightarrow x - 4y = -\frac{20}{6}\delta y = -\frac{10}{3}\delta y$$
 $(\times \frac{20}{3})$

• Remark: When δ is small, L is close to the line x - 4y = 0

• Since Q_1 is to the right of L, each point in Q_1 satisfies $x - 4y > -\frac{10}{3}\delta y$

- Let (x^*, y^*) be the maximizer of Program 4
- Suppose, for the sake of contradiction, that the objective value at (x^*, y^*) is greater than $4/3 + \delta$
- Two cases are considered:

Case 1.
$$(x^*, y^*) \in Q_1$$

Case 2.
$$(x^*, y^*) \in Q_2$$

• Consider Case 1

• Since (x^*, y^*) is to the right of L, we have

$$x^* - 4y^* > -\frac{10}{3}\delta y^*$$

 $\to x^* - 4y^* > -b$, where $b = \frac{10}{3}\delta y^*$ (I1)

• In addition, we know that the objective value at (x^*, y^*) is $f_1(x^*, y^*)$

$$\max \frac{\min(4 - 4a_1x, 4 - 4a_2(x + y))}{3 - 2x - y}$$

s.t.
$$2x + 3y \le 1$$
, $x, y \ge 0$

• Since
$$f_1(x^*, y^*) > 4/3 + \delta$$
,

$$\times 3(3-2x^*-y^*) \to 12 - 12a_1x^* > (12 - 8x^* - 4y^*) + 3\delta(3 - 2x^* - y^*)$$

$$\to -12(\frac{3}{4} - \frac{1}{2}\delta)x^* > -8x^* - 4y^* + 3\delta(3 - 2x^* - y^*)$$

$$\to -9x^* + 6\delta x^* > -8x^* - 4y^* + 3\delta(3 - 2x^* - y^*)$$

• Let
$$s = 6\delta x^*$$
 and $t = 3\delta(3 - 2x^* - y^*)$
 $\rightarrow -9x^* + s > -8x^* - 4y^* + t$
 $\rightarrow s - t > x^* - 4y^*$ (I2)

(I1)
$$x^* - 4y^* > -b$$

(I2) $x^* - 4y^* < s - t$

• By (I1) and (I2), we have

$$-b < x^* - 4y^* < s - t$$

- Thus, -b < s t and thus s t + b is positive
- We now show that s t + b cannot be positive (and thus we have a contradiction)

$$s = 6\delta x^*$$

$$t = 3\delta(3 - 2x^* - y^*)$$

$$b = (10/3)\delta y^*$$

•
$$s - t + b$$

= $(6\delta x^*) - 3\delta(3 - 2x^* - y^*) + (\frac{10}{3}\delta y^*)$
= $\delta(12x^* + \frac{19}{3}y^* - 9)$

• Since (x^*, y^*) is feasible, $x^* \le 1/2$ and $y^* \le 1/3$

$$\rightarrow s - t + b = \delta(12x^* + \frac{19}{3}y^* - 9)$$

$$\leq \delta\left(6 + \frac{19}{9} - 9\right)$$

$$= \frac{-8}{9}\delta \leq 0$$

(contradiction, s - t + b is not positive)

• Consider Case 2, in which $p^* \in Q_2$

• The argument is similar

• Recall that Q_2 is to the left of L

• Thus, we have
$$x^* - 4y^* \le -b$$
 (I3)
(where $b = (10/3)\delta y^*$)

$$\max \frac{\min(4 - 4a_1x, 4 - 4a_2(x + y))}{3 - 2x - y}$$

s.t.
$$2x + 3y \le 1$$
, $x, y \ge 0$

• By our supposition, $f_2(x^*, y^*) > 4/3 + \delta$

Recall: $t = 3\delta(3 - 2x^* - y^*)$

- In last page: $6\delta(x^* + y^*) + \frac{4}{5}x^* \frac{16}{5}y^* > t$
- Multiply both side by $\frac{5}{4}$, we have

$$\frac{15}{2}\delta(x^* + y^*) + x^* - 4y^* > \frac{5}{4}t$$

• Let
$$c = \frac{15}{2} \delta(x^* + y^*)$$

 $\rightarrow x^* - 4y^* > -c + (5/4)t$ (I4)

• Recall:

(I3)
$$x^* - 4y^* \le -b$$

(I4) $x^* - 4y^* \ge -c + (5/4)t$

• Thus,
$$-b > -c + (5/4)t$$

 $\rightarrow c - b - (5/4)t$ is positive

• Again, we will show that a - b - (5/4)t is non-positive

•
$$c = 0$$

• $c = b - (5/4)t$
 $\leq c - (5/4)t$
 $= \left[\frac{15}{2}\delta(x^* + y^*)\right] - \frac{5}{4}[3\delta(3 - 2x^* - y^*)]$

$$= \frac{\delta}{2} \times \left(\left(\frac{15}{2} + \frac{15}{2} \right) \times x^* + \left(\frac{15}{2} + \frac{15}{4} \right) \times y^* \right)$$

$$+ \qquad \left(\qquad -\frac{45}{4} \qquad \right) \times 1)$$

$$=\delta(15x^*+\frac{45}{4}y^*-\frac{45}{4})$$

$$a = \frac{15}{2}\delta(x^* + y^*)$$
$$b = \frac{10}{3}\delta y^*$$
$$t = 3\delta(3 - 2x^* - y^*)$$

$$b = \frac{10}{3} \delta y^*$$

$$t = 3\delta(3 - 2x^* - y^*)$$

• Last page:
$$a - b - (5/4)t \le \delta(15x^* + \frac{45}{4}y^* - \frac{45}{4})$$

• Since (x^*, y^*) is feasible, $x^* \le 1/2$ and $y^* \le 1/3$

• Thus,
$$\delta(15x^* + \frac{45}{4}y^* - \frac{45}{4})$$

 $\leq \delta\left(\frac{15}{2} + \frac{15}{4} - \frac{45}{4}\right)$
 $= \delta\left(\frac{30}{4} + \frac{15}{4} - \frac{45}{4}\right) = 0$

• This implies that a - b - (5/4)t is not positive

• The obtained contradiction shows that (the maximum of Program 4) $\leq 4/3 + \delta$

• Thus, Algorithm 2 guarantees an approximation ratio of $4/3 + \delta$

• This completes the proof

Remark 1

• A natural extension of Algorithm 2 is to consider not only \mathcal{F}_2 , \mathcal{F}_3 , but also \mathcal{F}_4 , \mathcal{F}_5 , ..., and so on

• However, it seems to the author that the approximation ratio of this algorithm is also $4/3 + \delta$

The reason is as follows

Remark 1 (cont'd)

degree 2

- When $|Y_2| \approx \frac{4}{11}n$, $|Y_3| \approx \frac{1}{11}n$, and $|Y_4| \approx 0$,
 - both B_1 and B_2 cost about $\frac{4}{3}$ times the optimal cost
- Since $|Y_4| = 0$, in our analysis, \mathcal{F}_4 provides no additional information

Remark 2

- Although Algorithm 2 is extremely inefficient, our technique can be used to design practical approx. algorithms for MDCRSP
- For example, we may replace A_1 and A_2 by more efficient approximation algorithms for 3-SP and 4-SP, respectively
- The interested reader is referred to [?] for a survey of approximation algorithms for *k*-SP

Future work

Consider the following problem

• Name: *d*-MDCRSP

• Statement: Given a matrix M, find the minimum cost branching whose maximum in-degree is d

 Algorithm 1 can be seen as an approximation algorithm for 2-MDCRSP

Future work

• If d-MDCRSP is polynomial time solvable for d = 2 and 3, the ratio of Algorithm 2 can be improved to (5/4)

• In addition, there will be a simple (4/3)-approximation algorithm

• Thus, we leave as an open problem to find a polynomial-time algorithm 2/3-MDCRSP

• Recall that for $d \ge ???$, the problem is NP-hard

Future work

• Other future works:

- Faster FPT-time algorithm for MSRP
- Better kernel size for MSRP
- Constant approximation for MSRP
- Improve the approx. ratio for MDCRSP
- Improve the time complexity of our MDCRSP algorithm
- Approximation lower bound for MDCRSP

$$a = \frac{15}{2}\delta(x^* + y^*)$$
$$b = \frac{10}{3}\delta y^*$$
$$t = 3\delta(3 - 2x^* - y^*)$$

•
$$a - b - (5/4)t$$

$$= \left[\frac{15}{2}\delta(x^* + y^*)\right] - \left[\frac{10}{3}\delta y^*\right] - \frac{5}{4}\left[3\delta(3 - 2x^* - y^*)\right]$$

$$= \delta \times \left(\left(\frac{15}{2} + \frac{15}{2} \right) \times x^* + \left(\frac{15}{2} - \frac{10}{3} + \frac{15}{4} \right) \times y^* \right)$$

$$+ (-\frac{45}{4}))$$

$$=\delta(15x^*+\frac{95}{12}y^*-\frac{45}{4})$$

Remark

• The two cases:

Case 1.
$$(x^*, y^*) \in Q_1$$

Case 2. $(x^*, y^*) \in Q_2$

- To obtain a contradiction:
 - In Case 1, we will show that (x^*, y^*) must be in Q_2
 - In Case 2, we will show that (x^*, y^*) must be in Q_1

Remark

- The proof of Theorem ?? can be extended to analyze the algorithms of the following kind:
- Algorithm 1:
- Input: a matrix M, an integer $d \ge 2$
 - Step 1. compute D_M and E
 - Step 2. compute \mathcal{F}_d
 - Step 3. use an approximation algorithm for (d + 1)-SP to find a packing \mathcal{P} of (E, \mathcal{F}_d)
 - Step 4. transform \mathcal{P} to a branching B
 - Step 5. output B

Theorem

- *Proof.* Let $\rho_1 = 4/(3 + 12\delta)$ be a positive number < 4/3
- By Theorem ??, there exists a ρ_1 -approximation algorithm A_1 for 3-SP
- Let $a_1 = 1 / \rho_1 a ((4 + 1) / 3 + \varepsilon)$ -approximation algorithm A_2 for 4-SP
- Let $\rho_1 = 4/3 + \varepsilon$ and $\rho_2 = 5/3 + \varepsilon$ be, respectively, the approx. ratios for A_1 and A_2

Theorem

• *Proof.* Let $\rho_1 = 4/(3 + 12\delta)$ be a positive number < 4/3

- By Theorem ??, there exist:
 - a $((3 + 1) / 3 + \varepsilon)$ -approximation algorithm A_1 for 3-SP
 - a $((4+1)/3+\varepsilon)$ -approximation algorithm A_2 for 4-SP
- Let $\rho_1 = 4/3 + \varepsilon$ and $\rho_2 = 5/3 + \varepsilon$ be, respectively, the approx. ratios for A_1 and A_2

$$\max \frac{\min(4 - 4a_1x, 4 - 4a_2(x + y))}{3 - 2x - y}$$

s.t.
$$2x + 3y \le 1$$
, $x, y \ge 0$

- For case where $|Y_2| = |Y_3| = 0$, $|Y_4| \approx n/4$:
- In this case, $x \approx y \approx 0$
- Both algorithm guarantees a ratio of 4/3 (our goal)
- Surprisingly, this is not the worst case for either algorithm

$$\max \frac{\min(4 - 4a_1x, 4 - 4a_2(x + y))}{3 - 2x - y}$$

s.t.
$$2x + 3y \le 1, x, y \ge 0$$

- Recall that L is close to the line x 4y = 0
- The performance of A_1 and A_2 coincides on L
- That is, when y = 4x:
 - B_1 guarantees $(4 4a_1x) / (3 2x y)$ $\approx (4 - 12y) / (3 - 9y) = 4/3,$
 - and so does B_2
 - Each of B_1 and B_2 gurantees a ratio of 4/3

- For each pair of vertices $u, v \in V(D_M)$:
 - Let $p = u \cup v$
 - If $p \in V(D_M)$, $p \neq u$ and $p \neq v$, add $\{p^{(in)}, u^{(out)}, v^{(out)}\}$ to \mathcal{F}_2
- We need an efficient data structure to check if $p \in V(D_M)$

