Environnement d'exécution sécurisé (TEE)

SRIO

Djob Mvondo

Principes de sécurité

Ces trois élements sont d'une importance capitale.

Néamoins il y'a un qui semble être plus complexe que les autres

Quelles sont les techniques pour assurer l'intégrité d'un système?

Hashing + Chiffrement etc...

Donc c'est parfait?

Quelles sont les techniques pour assurer l'intégrité d'un système?

Hashing + Chiffrement etc...

Malhereus ement non

Quelles sont les techniques pour assurer l'intégrité d'un système?

Hashing + Chiffrement etc...

Malhereus ement non

Quelles sont les techniques pour assurer l'intégrité d'un système ?

Peux capturer la donner lorsqu'elle est déchiffré par les processeur

Hashing + Chiffrement etc...

Malhereus ement non

Quelles sont les techniques pour assurer l'intégrité d'un système ?

Hashing + Chiffrement etc... → Insuffisant

Administrateur

Utilisateur lambda

Faut un support matériel

Environnement d'exécution sécurisé

Une zone appelée enclos dans le processeur qui n'est accessible que par le processus ayant la clé.

Pour accéder à l'enclos, faut des opérations spécifique qui implique l'agrément du fournisseur du processeur qui assure l'intégrité des clés.

Ne peut rien faire vue que l'enclave est protégée et separé des autres zones

Donnée chiffrée + hash

Mémoire

Environnement d'exécution sécurisé

Environnement d'exécution sécurisé

Plusieurs constructeurs propose leur TEE: Intel SGX, AMD SEV, etc...

Des limitations,

- la taille de l'enclave et
- la dégradation du aux opérations spécifiques et l'attestation à distance.

Technologie très récente (2016/2017) mais qui continue à évoluer.

