Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання РГР

з дисципліни: «Вакуумна та плазмова електроніка»

Виконавець:		
Студент 3-го курсу	(підпис)	З. Ю. Рибін
Перевірив:	(підпис)	О.М. Бевза

Завдання

- 1. Дивимось на графіки побудовані для п.3 лабораторної роботи.
 - 1.1 Визначити частоту червоної границі фотоефекту.
 - 1.2 Необхідно визначити напругу запирання для кожного елементу при інтенсивності 50 % та 100%. Пояснити, чому напруги запирання відрізняються при різній інтенсивності.
 - 1.3 Побудувати графіки залежностей напруги запирання від частоти (у вас вказані довжини хвиль, отже їх треба перерахувати в частоту) для випадку інтенсивності 50% та 100%. Для кожного матеріалу (у кожного свої три матеріала).
 - 1.4 Визначити з цих нових побудованих графіків роботу виходу в точці (будь-якій, назвіть її А) за вашим власним вибором, яка розташована десь посередині отриманого графіку. Для всіх трьох матеріалів. Для обох значень інтенсивності (50% та 100%). Порівняйте отримані значення роботи виходу при двох різних інтенсивностей для кожного матеріалу та зробити висновки.
 - 1.5 Розрахувати кінетичну швидкість електронів для точки A для всіх трьох матеріалів.
 - 1.6 Порівняти отримане із розрахунку значення роботи виходу з відомими значеннями роботи виходу (довідкові дані, вказати джерело) та розрахувати абсолютну та відносну помилки. Зробити для трьох ваших матеріалів матеріалів.
 - 1.7 Отримані результати звести до таблиці, де повинен бути вказаний кожен з трьох матеріалів та розраховані для нього значення: частота червоної границі фотоефекту, напруга запирання (для двох інтенсивностей), робота виходу в точці А (дві інтенсивності), кінетична швидкість електронів в точці А (для двох інтенсивностей 50% та 100%).

- 1.8 Зробіть перевірку правильності виконання розрахунків за формулою Ейнштейна для фотоефекту.
- 2. Беремо графіки зроблені до пункту 4, де було побудовано залежності струму від інтенсивності. Ви вибирали самі три довжини хвилі. У кожного вибрано свій один матеріал. Робимо:
 - 2.1 Побудуйте ваш графік в інших координатах, де вісь х- довжина хвилі, вісь у-струм. Беремо значення струму для Інтенсивності 50%.
 - 2.2 Побудуйте самі (ваші припущення) на вашому новому графіку іншим кольором як буде виглядати ця залежність, якщо інтенсивність буде складати, а далі за списком вибираємо свій варіант.
- 3. Пояснити чому струм змінився саме так. Дивимось на графіки побудовані для пункта 5. Де залежності енергії від частоти. Треба:
 - 3.1 Визначити яка саме енергія стоїть у вас по осі ігрек. Це повна енергія фотону чи робота виходу чи кінетична енергія електрона чи щось інше? Відповідь аргументовано пояснити.

Завдання 1

Частота червоної межі фотоефекту для Na $\approx 0.5 \cdot 10^{15}$ Гц Частота червоної межі фотоефекту для Zn $\approx 1.1 \cdot 10^{15}$ Гц Частота червоної межі фотоефекту для Cu $\approx 1.25 \cdot 10^{15}$ Гц

За формулою $v=\frac{c}{\lambda}$ можна знайти частоту наступним чином:

λ , HM	$f \cdot 10^{15}$, Гц
200	1,5
400	0,71
440	0,45
470	0,42

Тепер побудую графіки залежностей напруги запирання від частоти для випадку інтенсивності 50% та 100%, для кожного матеріалу

Na				
$f \cdot 10^{15}$, Гц	U_3 , B			
	50%	100%		
0.42	0.00	0.00		
0.46	0.00	0.00		
0.75	0.00	0.00		
1.5	-7.42	-7.44		

Zn				
$f \cdot 10^{15}$, Гц	U_3 , B			
	50%	100%		
0.43	0.00	0.00		
0.45	0.00	0.00		
0.76	0.00	0.00		
1.5	-6.92	-6.97		

Cu				
$f \cdot 10^{15}$, Гц	U_3 , B			
	50%	100%		
0.43	0.00	0.00		
0.45	0.00	0.00		
0.76	0.00	0.00		
1.5	-6.23	-6.98		

Тепер з побудованих графіків визначу роботу виходу в точці A за власним вибором, яка розташована десь посередині отриманих графіків, для всіх трьох матеріалів та обох значень інтенсивності (50% та 100%). $A=h\cdot f$

$$A_{Na-50\%} = 3.146 \text{ eB}$$

 $A_{Na-100\%} = 2.815 \text{ eB}$
 $A_{Zn} = 4.554 \text{ eB}$
 $A_{Cu-50\%} = 4.099 \text{ eB}$
 $A_{Cu-100\%} = 4.124 \text{ eB}$

Тепер рахуємо кінетичну швидкість електронів для точки A для всіх трьох матеріалів:

$$v = \sqrt{\frac{2 \cdot e \cdot U_3}{m}} \tag{1}$$

Для Na

$$v = 10,18510 \cdot 10^5 \frac{M}{c}$$
 $v = 10,27105 \cdot 10^5 \frac{M}{c}$

Для Zn

$$v = 10,27105 \cdot 10^5 \, \frac{\mathrm{M}}{\mathrm{c}}$$

Для Cu

$$v = 8,99328 \cdot 10^5 \, \frac{\text{M}}{\text{c}}$$
 $v = 9,18670 \cdot 10^5 \, \frac{\text{M}}{\text{c}}$

	Na		Zn		Cu	
	A, eB					
	розраховане	табличне	розраховане	табличне	розразоване	табличне
50%	3.146	2.2	4.554	4	4.099	4.4
100%	2.815	2.2	4.554	4	4.124	4.4

Для Na 50% похибка становить: $\triangle \approx 0.946; \, \delta = 43.000\%$ Для Na 100% похибка становить: $\triangle \approx 0.615; \, \delta = 27.955\%$

Для Zn похибка становить: $\triangle \approx 0.1; \, \delta = 0.554\%$

Для Си 50% похибка становить: $\triangle \approx 0.301; \, \delta = 6.841\%$ Для Си 100% похибка становить: $\triangle \approx 0.276; \, \delta = 6.273\%$

	Na		Zn		Cu		
		A, eB					
	розраховане	ідеальне	розраховане	ідеальне	розраховане	ідеальне	
50%	3.146	2.2	4.554	4	4.099	4.4	
100%	2.815		4.554		4.124		
	U_3 , B						
50%	-2.95		-3		-2.3		
100%	-3		-3		-2.4		
	$V, \cdot 10^5 \frac{M}{c}$						
50%	10, 18510		10,27105		8,99328		
100%	10,27105		10,27105		9,18670		

Частота червоної межі фотоефекту для $\mathrm{Na}\approx 0.5\cdot 10^{15}~\Gamma$ ц Частота червоної межі фотоефекту для $\mathrm{Zn}\approx 1.1\cdot 10^{15}~\Gamma$ ц Частота червоної межі фотоефекту для $\mathrm{Cu}\approx 1.25\cdot 10^{15}~\Gamma$ ц Довідкові дані взято з: https://himya.ru/elektronnyj-spravochnik/page/3

Завдання 2

Взяв графіки зроблені до пункту 4, де було побудовано залежності струму від інтенсивності. Побудував графік в інших координатах, де вісь х- довжина хвилі, вісь у-струм.

На графіку «Сімейство кривих залежності Енергія(частота)» з лабораторної роботи №1 по осі у — це кінетична енергія, як на мене це можна стверджувати опираючись на ІІ закона Столетова.