Probabilité : Science d'Incertitude et de Données.

A.Belcaid

ENSA-Safi

March 8, 2022

- Introduction
 - Definition
 - Modelisation Abstraction
 - Objectif cours
- 2 Expérience Évènement Aléatoire
 - Espace d'états
 - discret fini
 - Example continue
 - Axiome de probabilité
 - Exemple discret uniforme

Définition

Une théorie mathématique pour quantifier le HASARD.

Elle est fondamentale dans de nombreux domaines d'applications:

Définition

Une théorie mathématique pour quantifier le HASARD.

Elle est fondamentale dans de nombreux domaines d'applications:

• Physique: (physique quantique, physique des particules)

<u>A.Belcaid</u> 3/21

Définition

Une théorie mathématique pour quantifier le HASARD.

Elle est fondamentale dans de nombreux domaines d'applications:

- Physique: (physique quantique, physique des particules)
- Informatique et Réseaux de Télécommunications.

Définition

Une théorie mathématique pour quantifier le HASARD.

Elle est fondamentale dans de nombreux domaines d'applications:

- Physique: (physique quantique, physique des particules)
- Informatique et Réseaux de Télécommunications.
- Traitement de signal et de la parole.

Définition

Une théorie mathématique pour quantifier le HASARD.

Elle est fondamentale dans de nombreux domaines d'applications:

- Physique: (physique quantique, physique des particules)
- Informatique et Réseaux de Télécommunications.
- Traitement de signal et de la parole.
- Biologie, Écologie

Définition

Une théorie mathématique pour quantifier le HASARD.

Elle est fondamentale dans de nombreux domaines d'applications:

- Physique: (physique quantique, physique des particules)
- Informatique et Réseaux de Télécommunications.
- Traitement de signal et de la parole.
- Biologie, Écologie
- Économie, Finance, Assurance

• Innombrable situations ou le hasard intervient

Modèle probabiliste.

• Innombrable situations ou le hasard intervient

Abstraction

Nécessité d'une abstraction mathématique pour donner un cadre général d'étude.

Modèle probabiliste.

Innombrable situations ou le hasard intervient

Abstraction

Nécessité d'une abstraction mathématique pour donner un cadre général d'étude.

Modèle probabiliste.

 Aussi utilise pour des fins fin numeriques: Méthodes de Monte-Carlo.

Innombrable situations ou le hasard intervient

Abstraction

Nécessité d'une abstraction mathématique pour donner un cadre général d'étude.

Modèle probabiliste.

 Aussi utilise pour des fins fin numeriques: Méthodes de Monte-Carlo.

Efficace en grande dimension.

Innombrable situations ou le hasard intervient

Abstraction

Nécessité d'une abstraction mathématique pour donner un cadre général d'étude.

Modèle probabiliste.

 Aussi utilise pour des fins fin numeriques: Méthodes de Monte-Carlo.

- Efficace en grande dimension.
- Simulation de phénomènes irréguliers.

Objectif du cours

Le but de ce cours est de vous donner une approche élémentaire mais rigoureuse de la théorie probabiliste et de l'illustrer avec un certain nombre de simulations.

A la fin du cours, on souhaite vous transmettre une démarche de mathématique appliqués, qui se décrit par les trois étapes suivantes:

Modélisation.

Objectif du cours

Le but de ce cours est de vous donner une approche **élémentaire** mais rigoureuse de la théorie probabiliste et de l'illustrer avec un certain nombre de simulations.

A la fin du cours, on souhaite vous transmettre une démarche de mathématique appliqués, qui se décrit par les trois étapes suivantes:

- Modélisation.
- Résolution théorique

Objectif du cours

Le but de ce cours est de vous donner une approche **élémentaire** mais rigoureuse de la théorie probabiliste et de l'illustrer avec un certain nombre de simulations.

A la fin du cours, on souhaite vous transmettre une démarche de mathématique appliqués, qui se décrit par les trois étapes suivantes:

- Modélisation.
- Résolution théorique
- Expérimentation numérique

Expérience aléatoire

On appelle une Expérience aléatoire une expérience ξ , qui sous conditions identiques, peut reproduire plusieurs résultats possibles qui sont imprévisible^a.

^aOn ne peut pas prédire leur résultat par avance

Expérience aléatoire

On appelle une Expérience aléatoire une expérience ξ , qui sous conditions identiques, peut reproduire plusieurs résultats possibles qui sont imprévisible^a.

^aOn ne peut pas prédire leur résultat par avance

• Pour décrire une telle expérience, il nous faut:

Expérience aléatoire

On appelle une Expérience aléatoire une expérience ξ , qui sous conditions identiques, peut reproduire plusieurs résultats possibles qui sont imprévisible^a.

^aOn ne peut pas prédire leur résultat par avance

- Pour décrire une telle expérience, il nous faut:
 - Décrire tous les résultats possibles

Expérience aléatoire

On appelle une Expérience aléatoire une expérience ξ , qui sous conditions identiques, peut reproduire plusieurs résultats possibles qui sont imprévisible^a.

^aOn ne peut pas prédire leur résultat par avance

- Pour décrire une telle expérience, il nous faut:
 - Décrire tous les résultats possibles
 - Décrire notre croyance pour chaque résultat.

Espace d'État

Note Ω espace de tous les résultats possibles.

Espace d'État

Note Ω espace de tous les résultats possibles.

0

Les évènements doivent être:

Espace d'État

Note Ω espace de tous les résultats possibles.

•

- Les évènements doivent être:
 - Mutuellement exclusive.

Espace d'État

Note Ω espace de tous les résultats possibles.

0

- Les évènements doivent être:
 - Mutuellement exclusive.
 - Collectivement exhaustive

Espace d'État

Note Ω espace de tous les résultats possibles.

- •
- Les évènements doivent être:
 - Mutuellement exclusive.
 - Collectivement exhaustive
 - Au niveau correct de détail?.

Espace d'État

Note Ω espace de tous les résultats possibles.

- •
- Les évènements doivent être:
 - Mutuellement exclusive.
 - Collectivement exhaustive
 - Au niveau correct de détail?.

Mini Exercice

Pour l'expérience de lancer un de, pour chaque choix,
Déterminer si on possède un espace d'états correct.

Mini Exercice

Pour l'expérience de lancer un de, pour chaque choix,
Déterminer si on possède un espace d'états correct.

4

$$\Omega = \{ H \text{ et pluie, } H \text{ et non pluie, } T \}$$
 (1)

Mini Exercice

Pour l'expérience de lancer un de, pour chaque choix,
Déterminer si on possède un espace d'états correct.

1

$$\Omega = \{ H \text{ et pluie, } H \text{ et non pluie, } T \}$$
 (1)

0

$$\Omega = \{ H \text{ et pluie}, T \text{ et non pluie}, T \}$$
 (2)

Espace d'états : Discret/fini

Lance de deux de a quatre faces.

4				
3		2,3		
2			3,2	
1	1,1			
	1	2	3	4

A.Belcaid 9/21

Exemple continue

• Lancé d'une balle dans une **position** (x, y) tel que $0 \le x, y \le 1$.

Figure: Exemple d'espace d'étai continus

<u>A.Belcaid</u> 10/21

Evenement aleatoire

Évènement

On appelle un Évènement aléatoire ${\bf A}$ un sous ensemble de l'ensemble d'étai ξ

• On associe des **probabilités** a des évènements.

A.Belcaid 11/21

Évènement

On appelle un Évènement aléatoire ${\bf A}$ un sous ensemble de l'ensemble d'étai ξ

• On associe des **probabilités** a des évènements.

A.Belcaid 11/21

Axiomes de probabilités

Axiomes

O Positivité:

$$P(A) \geqslant 0 \tag{3}$$

O Normalité:

$$P(\Omega) = 1 \tag{4}$$

Additivité

si
$$A \cap B = \emptyset$$
, alors $P(A \cup B) = P(A) + P(B)$ (5)

Axiomes

•
$$P(A) \geqslant 0$$

Conséquences

•
$$P(A) \leqslant 1$$

•
$$P(\Omega) = 1$$

$$P(\emptyset) = 0$$

$$P(A \cup B) = P(A) + P(B)$$

$$\bullet \ P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

Plus Généralement, pour k évènements disjoints:

$$P(\bigcup A_k) = \sum_k P(A_k) \tag{6}$$

<u>A.Belcaid</u> 13/21

Autres conséquences

• si
$$A \subset B$$
, alors $P(A) \leq P(B)$

$$\bullet \ P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B)$$

Conséquences

$$P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C)$$

Lance d'un de a quatre faces.

•
$$P(X = 1) =$$

Lance d'un de a quatre faces.

•
$$P(X = 1) =$$

Lance d'un de a quatre faces.

•
$$P(X = 1) =$$

- Soit Z = min(x, y)
- P(Z = 4) =

Lance d'un de a quatre faces.

•
$$P(X = 1) =$$

- Soit Z = min(x, y)
- P(Z = 4) =

Lance d'un de a quatre faces.

•
$$P(X = 1) =$$

• Soit
$$Z = min(x, y)$$

•
$$P(Z = 4) =$$

•
$$P(Z = 2) =$$

Lance d'un de a quatre faces.

•
$$P(X = 1) =$$

• Soit Z = min(x, y)

•
$$P(Z = 4) =$$

•
$$P(Z = 2) =$$

Exemple discret uniforme

- lacktriangle On assume que Ω consiste de \mathbf{n} .
- Tous les éléments ont la même probabilité.
- L'évènement A contient k éléments.

Exemple discret uniforme

- On assume que Ω consiste de n.
- Tous les éléments ont la même probabilité.
- L'évènement A contient k éléments.

$$P(A) = \frac{k}{n} \tag{7}$$

Exemple continu

- Simple exemple uniforme: probabilité = surface.
 - $P\left(\left\{(x,y)\mid x+y\leqslant\frac{1}{2}\right\}\right)$
 - $P(\{(0.5, 0.3)\}) =$

<u>A.Belcaid</u> 18/21

Étapes de calcul de probabilité

- Spécifier l'espace des États
- Spécifier la loi de probabilité!!
- Identifier l'évènement.

Calculer...

<u>A.Belcaid</u> 19/21

Exemple discret et Infini

• Espace d'états $\{1, 2, \ldots\}$

A.Belcaid 20/21

Exemple discret et Infini

- Espace d'états {1, 2, . . .}
- la loi de probabilité est donnée par:

$$P(n) = \frac{1}{2^n}$$

A.Belcaid 20/21

Exemple discret et Infini

- Espace d'états {1, 2, . . .}
- la loi de probabilité est donnée par:

$$P(n) = \frac{1}{2^n}$$

S'agit il d'une loi de probabilité?

Calculer P(résultat pair) =

<u>A.Belcaid</u> 20/21

Somme Infinie

• Resultat plus fort que la somme:

Theroeme

Si A_1 , A_2 , A_3 , ... est une suite d'évènements disjoints, alors:

$$P(A_1 \cup P_2 \cup A_3 \cup \ldots) = P(A_1) + P(A_2) + P(A_3) + \ldots$$
 (8)

• Faites attention que la somme doit etre **dénombrable**.

<u>A.Belcaid</u> 21/21