DAA-LAB5

DIVIDE AND CONQUER PROBLEM

<u>Sr.</u>	Admission	<u>Team Members Names</u>	
No.	No.		
1	U19CS011	RAJ JIKADRA	
2	U19CS012	BHAGYA RANA	
3	U19CS049	DEV JARIWALA	
4	U19CS080	MUKTESH	

Design and Analysis of Algorithms (CS206)

LAB Assignment – 5

1.1. (T) Find a computational problem that you can solve using the divide and conquer approach. The problem should be different than the problems discussed in class, and it should be **unique** and **interesting**.

HELP BOB!

Bob, the Builder is working in Skyline Real Estate Company, and his Company has assigned him Project 'DEMOLITION'.

In Project DEMOLITION, Skyline Real Estate Developers is planning to demolish a number of old, unoccupied buildings and construct a shopping mall in their place.

Bob's task is to find the largest solid area in which the mall can be constructed. There are a number of buildings in a certain two-dimensional landscape.

Each building has a height, given by h[i] where i belongs [1, n].

If you Join k adjacent buildings, they will form solid rectangle of area:

$$k \times min(h[i], h[i+1], \ldots, h[i+k-1]).$$

But, Bob would get Promotion, if the Area Demolished is Maximum!

Would you Help Bob to solve this Problem to get Maximum Area, he can demolished?

Input Format

Input File Containing space-separated integers, each representing the height of a building.

Constraints

$$1 \le h[i] \le 10^6$$

Output Format

Print long integer, representing the maximum area of rectangle that can be formed. Remember that this Rectangle must be aligned at common base line.

For Example,

Sample Input:

1 2 3 4 5

Sample Output:

9

Explanation:

Maximum Area $\{3,4,5\} = 3*[3] = 9$

1.2. (T) Write pseudocodes to design algorithms for the above mentioned computational problem using the brute-force approach (incremental approach) and the divide and conquer approach.

Pseudo-Code INCREMENTAL

```
• • •
maxAreaIterative (heights)
   maxArea = 0
1.
    minHeight = 0
3. for i = 0 to height.length-1
       maxArea = max(heights[i], maxArea)
5.
       minHeight = heights[i]
6. for j = i - 1 to 0
           minHeight = min(heights[j], minHeight)
7.
           width = (i - j + 1)
           maxArea = max(maxArea, (minHeight * width))
9.
10.return maxArea
```

Pseudo-Code DIVIDE AND CONQUER

```
• • •
heights : Array Of Height of Buil
left : Left Boundery
right : right Boundary
maxAreaDnC ( heights, left, right)
1. if left == right
       return heights[left]
// BASE CASE [2 Building]
2. if left + 1 == right
       minH = min(heights[left], heights[right])
       return max( minH * 2, max(heights[left], heights[right]))
5. mid = (left + right) / 2
6. leftArea = maxAreaDnC(heights, left, mid-1)
7. rightArea = maxAreaDnC(heights, mid+1, right)
8. i = mid, j = mid
9. width, midArea = 0
10. height = heights[mid]
11. while i >= left && j <= right
12.
           width = j - i + 1
13.
           height = min(height, min(heights[i], heights[j]))
           midArea = max(midArea, width * height)
           if i == left
15.
               j += 1
17. else if j == right
               i -= 1
18.
19. else if heights[i-1] >= heights[j+1]
               i -= 1
20.
21. else
22.
               i += 1
23. return max( midArea, max(leftArea, rightArea) )
```

	Analysis			
(A)				
	max Area Therative (heights)	Cost/open	Best con	Worst Call
0	maxArea = 0	C)	1	1
0	minHeight = 0	C2	1	1
3)	for i=0 to height. length-1	c ₃	2	n+1
(4)	maxArea = max (heighls[i], maxArea)	C4	1	0
(5)	minHeight = heights (i)]	C ₅	3	U U
(E)	for j=i-1 to 0	CG	2	Σmcji
1	minteight = min (heights (1), minteights)	(1	1	7 5 (1)
8	width = 1-1+1	c8	1	1 200
9	max Area = max (max Area, cminHeight x	((Atbru)	1	1
0	return mox Area	cho	1	1
	Best case: T(n)= 9+c2+ 2xc3+c4+c5+ C6x2+c7+ C8+C9+C10			
	= C (C=	constant)	
-	= 0(1)			
			741	
	Whorst case: $T(n) = q + c_2 + c_3 \times (n+1) + (c_4 + c_5) \times n + \sum_{i=0}^{n+1} c_{i+1}$		((6) +	
$= \frac{(3+c_{8}+c_{8}+)\sum_{j=0}^{2}(6+c_{8}+c_{9})}{2} + \frac{(3+c_{8}+c_{9}+$				
		8,) 218 +	+ C ₁₀	
			~	
		+ 1,3 (0	$c) + \Omega (c)$	
		B, Ce, Ce = con		
	$= An^2 + Bn + C = O(n^2)$			
vision				

			-	arra
(B)	Divide and Conquer Approach	1	In: size of hight	
	det time take be		T(n)	
	max Area DnC (heights, left, right?	Cost	Best core	Worst Co
0	if left == right	c ₁	1	1
@	return heights [left]	(2	1	10
3	if left+1 == right-	c3	(1
9	mint = min Cheights [sett] heights [night])	C4	1	D
5	Peturn max (minH * 2, max (heightelet), heights (right))	Cs	1	0
0	mid = (eff + night) /2	CC	1	1
3	dest Area = max Area Dne (heights, left, mid-1)	CA	T(n/	2)
0	sight Area = max Area Dr. (heighb, mid+1, right)	C8	T(M	2)
0	i= mid j = mid	cq	1	J
6	width, midArea = 0	Cro	1	1
(1)	height = heights[mid]	Cu		1
(D)	While it=left le ix=right	Cla	2	m+1
(3)	width = 9-1+1	(13	1	η
(4)	height = min (height min (height (i) height (j))) e14	1	0
(13)	midArea = max (midArea, width * height)	CIS	0	n
(B)	if i == left 1++	CIC	13	12
<u> </u>	else if j == right t	CIA	10	- En
(B)	esse if heights (1-1) 7 = heights (1+1) i	C18	7 3	R
<u>(9)</u>	else j++	Cla	,	7
(20)	neturn max (f seftArea, orghtArea, midArea y)	czo	1	1

(A)	Best case: $T(n) = (C_1 + c_2 + c_3 + c_4 + c_5 + c_6) 1 + 2T(n) + (C_4 + c_{16} + c_{11}) + 2C_{12} + c_{13}$			
	T(n) = C + 2T(n/2) - Bus case recurrence			
	Using Masker theorem, $T(n) = \Theta(n^{\log_2 2})$ $T(n) = \Theta(n) $			
181	$ Nors - (ale : T(n) = (G+c_3+c_6) + 2T(n) + (c_9+c_{10}+c_{11}) + c_{12} \times (n+1)$ $+ (C_{13}+c_{14}+c_{4}+c_{4}+c_{16}) + c_{20}$			
	$= C_A + (C_B)(n) + 2 T \left(\frac{n}{2}\right)$ $T(n) = 2 T \left(\frac{n}{2}\right) + \theta(n)$			
0	Using moster theorem, $T(n) = \theta(n^{\log_2 2} (\log^{(0+1)}(n))$			
	$ T(n) = \theta (n \log(n)) - 2$			
vision				

1.3. (T) Analyze the time complexity of above algorithms.

Analyze the divide and conquer algorithm using different methods such as:

(1) Recursion Tree Method

Analuin I o
Analysis ley Recuesion Teree Method
The recursion teree can be derauen as follow.
cn -> cn
$\frac{cn/2}{cn/2} cn$
$\frac{cn_4}{cn_4} \frac{cn_4}{cn_4} \frac{cn_4}{cn_4} \rightarrow cn$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The depth of the tree is log(n), as for termination condition,
$ \begin{array}{ccc} n & = 1 & \Rightarrow & k = 109 (n) \\ 2k & & & & & & & & & \\ \end{array} $
2 K
times
$T(n) = cn + cn + cn \log(n) times$
$T(n) = \theta(n q(n))$

(2) Iterative Method

- Analysis by Iterative method
T(n) = 2T(n/2) + cn $T(n/2) = 2T(n/2) + cn$
T(n/2) = 2T(n/4) + cn/2 T(n/4) = 2T(n/8) + cn/4
T(i) = c -> Termination condition.
T(n) = 2(2T(n/4) + cn/2) + cn
= 4 (2T(n/8) + cn + cn + cn + cn
= 8 + (n/8) + cn + cn + cn
= 2 k r (n/2k) + en (1+1+1 k times)
het $n = 1 = 2 = 2 = n = 2 = 2 = 2 = 2 = 2 = 2 = 2$
$T(n) = 2^{R} T(i) + cn \cdot k$
$= 2^{\log_2(n)} T(1) + Cn \cdot \log(n)$
$= n \cdot c + cn \cdot \log(n)^{2}$
$\therefore T(n) = \theta(n g(n)) \qquad \left[g(n) = \log(n) \right]$

(3) Master Method

Analysis by Master's theorem

$$T(n) = 2T(n/2) + cn$$

$$Here, a = 2, b = 2 \text{ and } f(n) = cn$$

$$f(n) = cn = P(n^{\log_2 2}) = Q(n)$$

$$\text{on we can say that,}$$

$$T(n) = Q(n^{\log_2 2} | g(n))$$

$$T(n) = Q(n^{\log_2 2} | g(n))$$

(4) Substitution Method.

Analysis ley substitution method.

Assume that
$$T(n) = O(n \lg(n))$$

Now, $T(n) = 2T(n/2) + cn$

$$\therefore T(n) \stackrel{\checkmark}{=} 2(cn/2) \lg(n/2) + cn$$

$$=) T(n) \stackrel{\checkmark}{=} cn \lceil \lg(n) - \lg(2) \rceil + cn$$

$$=) T(n) \stackrel{\checkmark}{=} cn \lg(n) - cn + cn$$

$$=) T(n) \stackrel{\checkmark}{=} cn \lg(n)$$

$$\therefore T(n) = O(n \lg(n))$$

1.4. (L) Provide the details of Hardware/Software you used to implement algorithms and to measure the time.

<u>Hardware Details</u> of Laptop used for testing:

PARAMETER	LAPTOP CONFIGURATION		
Operating System	Microsoft Windows 10 v-20H2		
Processor	Intel(R) Core(TM) i5-9300H [Core i5 9th Gen]		
CPU	2.30GHz(base) , 4GHz(boost) , 4 Core(s), 8 Logical Processor(s)		
System Type	x64-based PC [64 Bit]		
RAM	8.00 GB		
Hard Drive/SSD	512 GB SSD		

Software Used:

PARAMETER	LAPTOP CONFIGURATION
Code Editor Intellij IDEA Community Edition 202	
Compiler	jdk-13.0.2
Time	Measured using System.nanotime()
Programming Language Used	Java

1.5. (L) Implement the above algorithms and submit the code (complete programs).

```
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class maxAreaHistogram {
    public static void main(String[] args) {
            File output = new File("output.txt");
            output.createNewFile();
            FileWriter writer = new FileWriter(output);
            ArrayList<Integer> 1 = new ArrayList<>();
            long startTime, endTime, timeTaken;
            String file;
            for (int i = 1; i < 4; i++) {
                file = String.format("File %d.txt", i);
```

```
try {
                    loadFile(1, file);
                } catch (FileNotFoundException e) {
                    e.printStackTrace();
                int[] heights = 1.stream()
                .mapToInt(Integer::intValue)
                .toArray();
                int size = heights.length;
                int ans = 0;
                writer.write("File " + i + "\n");
                System.out.println("File " + i);
                timeTaken = 0;
                startTime = System.nanoTime();
                for (int j = 0; j < 20; j++) {
                    ans = maxAreaIterative(heights);
                endTime = System.nanoTime();
                timeTaken = (endTime - startTime);
                writer.write(ans + ", ");
                System.out.print(ans + ", ");
                writer.write(timeTaken / 20 + " ns, ");
                System.out.print(timeTaken / 20 + " ns, ");
                timeTaken = 0;
                startTime = System.nanoTime();
                for (int j = 0; j < 20; j++) {
                    ans = maxAreaDnC(heights, 0, size - 1);
                endTime = System.nanoTime();
                timeTaken = (endTime - startTime);
                writer.write(ans + ", ");
                System.out.print(ans + ", ");
                writer.write(timeTaken / 20 + " ns\n");
                System.out.println(timeTaken / 20 + " ns");
                1.clear();
            writer.close();
        } catch (IOException e) {
            e.printStackTrace();
    public static void loadFile(ArrayList<Integer> A, String file) throws FileNotFoundExcepti
on {
        Scanner s = new Scanner(new File(file));
        int temp;
```

```
while (s.hasNext()) {
        temp = s.nextInt();
        A.add(temp);
public static int maxAreaIterative(int[] heights) {
    int maxArea = ∅;
    int minHeight = 0;
    for (int i = 0; i < heights.length; i++) {</pre>
        maxArea = Math.max(heights[i], maxArea);
        minHeight = heights[i];
        for(int j = i - 1; j >= 0 ; j--) {
            minHeight = Math.min(heights[j], minHeight);
            int width = (i - j + 1);
            maxArea = Math.max(maxArea, (minHeight * width));
    return maxArea;
public static int maxAreaDnC(int[] heights, int left, int right) {
    if (left == right) {
        return heights[left];
    if (left + 1 == right) {
        int minH = Math.min(heights[left], heights[right]);
        return Math.max(minH * 2, Math.max(heights[left], heights[right]));
    int mid = (left + right) / 2;
    int leftArea = maxAreaDnC(heights, left, mid-1);
    int rightArea = maxAreaDnC(heights, mid+1, right);
    int i = mid, j = mid;
    int width, midArea = 0;
    int height = heights[mid];
    while (i >= left && j <= right) {</pre>
        width = j - i + 1;
        height = Math.min(height, Math.min(heights[i], heights[j]));
        midArea = Math.max(midArea, width * height);
        if (i == left) {
            j += 1;
        } else if (j == right) {
        } else if (heights[i-1] >= heights[j+1]) {
            i -= 1;
        } else {
            j += 1;
```

```
}

return Math.max( midArea, Math.max(leftArea, rightArea) );
}
}
```

1.6. (L) Analyze the performance of both the implemented algorithms (performance of algorithms on your computers). Plot a graph.

BRUTE FORCE (ITERATIVE)

Sr. No.	No of Elements	Brute Force (ms)
1	1024	21.51845
2	2048	96.03287
3	4096	424.20708
4	8192	1539.63372
5	16384	5947.25934
6	32768	29003.11334
7	65536	110500.4987
8	131072	406734.3615
9	262144	1636508.868

 \Rightarrow Here T(n) = 0.0000236585*n² + 0.0359048*n + 473.34

DIVIDE AND CONQUER

Sr. No.	No of Elements	Divide and Conquer (ms)
1	1024	0.88949
2	2048	1.66137
3	4096	3.6958
4	8192	8.0214
5	16384	17.09201
6	32768	39.39826
7	65536	76.16316
8	131072	161.02624
9	262144	354.04978

 $\Rightarrow \ Here \ T(n) = 0.00010009*n*log_2n - 0.000459491*n + 1.2401$

1.7. (L) Comparatively Analyze the performance of above algorithms and plot a graph.

Sr. No.	No of Elements	Brute Force (ms)	Divide and Conquer (ms)
1	1024	21.51845	0.88949
2	2048	96.03287	1.66137
3	4096	424.20708	3.6958
4	8192	1539.63372	8.0214
5	16384	5947.25934	17.09201
6	32768	29003.11334	39.39826
7	65536	110500.4987	76.16316
8	131072	406734.3615	161.02624
9	262144	1636508.868	354.04978

SUBMITTED BY:

Sr. No.	Admission No.
1	U19CS011
2	U19CS012
3	U19CS049
4	U19CS080