GRACE HOPPER CELEBRATION

Proof-of-concept to Production

How to scale your Deep Learning Models

Presenters: Swetha Mandava, Alex Qi

Contributor: Michael Mendelson

AGENDA

Deep Learning at Scale

- Why scaling
- Tips and Tricks

Desired outcomes

- Understand when to and how to scale
- Know the typical techniques to apply
- Understand the theory/concepts of typical scaling techniques

Deep Learning At Scale

Proof-of-concept

- Model architecture search
- Hyperparameter Optimization
- Toy dataset/Toy models
- Low frequency of retraining
- Non-optimized resource utilization

Production

- Models need to be trained and retrained with shorter times and higher frequency.
- Massive datasets
- Big & complex models

Pain Points

DL models training:

- Time consuming: can take days, weeks...
- Capability: is limited by memory capacity on batch size and model size

Scaling is necessary but hard:

- Convergence and Stability
- Computation and Scaling efficiency
- Hardware Limits

Src: https://mc.ai/ibm-offering-gpu-powered-notebooks/

Techniques for Scaling Deep Learning Training

- Convergence and Stability
 - Warmup
 - Linear Scaling Rule
 - LARS
- Computation and Scaling efficiency
 - Automatic Mixed Precision
- Hardware limits on Dataset and Model Size
 - User profiles/preference of millions of users
 - Data Parallelism
 - Model Parallelism

Scaling Success

BERT	PreTraining o	n DGX
	SuperPOD	

# V100 GPUs	Time to train (hours)
16	58.4 (2.4 days)
256	3.9
1024	1.2
1472	0.9 (53 min)

GOAL:

- 1. Maintain Accuracy
- 2. Decrease Time to Train

Let's do it on a smaller model: NCF BERT has 110 million parameters!

Recommender System: Neural Collaborative Filtering

Recommendation engines are everywhere... •

NETFLIX

3 Roelof, choose 3 you like

It will help us find TV shows & movies you'll love! Click the ones you liked!

Personalized

Convenient

More efficient

Deep Learning based Recommendation system model architecture

Launch Hands-on Task

- Create Account at https://courses.nvidia.com/join
- Go to courses.nvidia.com/dli-event
- Browser Recommendation: Chrome
- Use event code and create an account

Select the "Course" Tab

Open the first hands-on section

Select the Start button and wait

What else can we do?

- Is 192 still the maximum batch size we can use?
- Can we scale further than 1 GPU?
 - Data Parallelism

https://github.com/NVIDIA/DeepLearningExamples

*Image from Towards Data Science

Summary

Productivity matters: teams with better tools/scaling can try out more ideas

Thank You!

Please remember to complete the session survey in the mobile app.

Follow us @

https://www.linkedin.com/in/alexlingqi/

https://www.linkedin.com/in/swethmandava/

@swethmandava @mrmendelson

#GHC19