Introduction to Groups

1.1: Basic Axioms and Examples

Exercises

- 1. (a) no: $a (b c) = a b + c \neq (a b) c$
 - (b) yes

$$(a \star b) \star c = (a + b + ab) \star c = a + b + ab + c + (a + b + ab)c = a + b + c + ab + ac + bc + abc$$
 (1)

$$a \star (b \star c) = a \star (b + c + bc) = a + b + c + bc + a(b + c + bc) = a + b + c + bc + ab + ac + abc$$
 (2)

(c) no:

$$(a \star b) \star c = \frac{a+b}{5} \star c = \frac{\frac{a+b}{5} + c}{5} = \frac{a+b+5c}{25}$$
 (3)

$$a \star (b \star c) = a \star \frac{b+c}{5} = \frac{a + \frac{b+c}{5}}{5} = \frac{5a+b+c}{25}$$
 (4)

(d) yes:

$$((a,b)\star(c,d))\star(e,f) = (ad+bc,bd)\star(e,f) = ((ad+bc)\cdot f + bd\cdot e,bd\cdot f) = (adf+bcf+bde,bdf) \quad (5)$$

$$(a,b)\star((c,d)\star(e,f)) = (a,b)\star(cf+de,df) = (a\cdot df+b\cdot(cf+de),b\cdot df) = (adf+bcf+bde,bdf) \quad (6)$$

(e) no:

$$(a \star b) \star c = \frac{a}{b} \star c = \frac{a}{bc} \tag{7}$$

$$a \star (b \star c) = a \star \frac{b}{c} = \frac{a}{\frac{b}{c}} = \frac{ac}{b}$$
 (8)

- 2. (a) no: $a \star b = a b \neq b a = b \star a$
 - (b) yes: $a \star b = a + b + ab = b + a + ba = b \star a$
 - (c) yes: $a \star b = \frac{a+b}{5} = \frac{b+a}{5} = b \star a$
 - (d) yes: $(a,b)\star(c,d)=(ad+bc,bd)=(cb+da,db)=(c,d)\star(a,b)$
 - (e) no: $a \star b = \frac{a}{b} \neq \frac{b}{a} = b \star a$
- 3. I usually don't distinguish between a and \bar{a} but here I will. This is basically just spamming modulo n (since applying it once is the same as applying it e.g. ten times), and then using the associativity of addition.

$$(\bar{a} + \bar{b}) + \bar{c} = ((a+b) \bmod n + c) \bmod n \tag{9}$$

$$= ((a+b) \bmod n + c \bmod n) \bmod n \tag{10}$$

$$= (a \bmod n + (b+c) \bmod n) \bmod n \tag{11}$$

$$= (a + (b+c) \bmod n) \bmod n \tag{12}$$

$$= (\bar{a} + \bar{b}) + \bar{c} \tag{13}$$

- 4. This is identical to the above with all +'s replaced with \cdot 's.
- 5. We just showed it was associative, we know that $\bar{1}$ is the identity, so we need to show that not every element has an inverse. For n > 1, clearly $\bar{0}$ has no inverse since $\bar{0} \cdot \bar{a} = \bar{a} \cdot \bar{0} = \bar{0} \neq \bar{1}$ for all \bar{a} . For n = 1, $\bar{0} = \bar{1}$ is the only element.

- 6. Addition on the reals is obviously associative, and all of these examples contain the additive identity 0, so we just need to check closure and inverses.
 - (a) Closure: idk

<u>Inverse</u>: For any $\frac{a}{2n+1}$ in this set, $\frac{(-a)}{2n+1}$ is also in the set; the two add to zero.

- (b) no closure: $\frac{1}{2} + \frac{1}{2} = 1 = \frac{1}{1}$
- (c) no closure: $\frac{1}{2} + \frac{1}{2} = 1$ again
- (d) no closure: $-\frac{3}{2} + 1 = -\frac{1}{2}$ (can't reuse the same example a third time sadly)
- (e) Closure: A (reduced) rational number with a denominator of 1 can be written with a denominator of 2: $\frac{a}{1} = \frac{2a}{2}, a \in \mathbb{Z}$. A (reduced) rational number with a denominator of 2 must have an odd numerator, since if it didn't then we could divide both top and bottom by 2; so these fractions are of the form $\frac{2b+1}{2}, b \in \mathbb{Z}$. Now just following the rules of adding even and odd numbers (in the numerators) we see that this set is closed under addition: adding two reduced rational numbers with denominator 1, or adding two numbers with a denominator 2, yields a sum with denominator 1; adding a denominator 1 with a denominator 2 gives an denominator 2.

Inverse: The inverse of $\frac{a}{1}$ is $\frac{(-a)}{1}$; likewise for denominator 2.

- (f) no closure: $\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$.
- 7. For $x, y \in G$, $0 \le x, y < 1$ so $0 \le x + y < 2$. If $0 \le x + y < 1$ then $\lfloor x + y \rfloor = 0$ and $x \star y = x + y$. If $1 \le x + y < 2$ then $\lfloor x + y \rfloor = 1$ and $x \star y = x + y 1$. These two cases cover all possibilities.
 - (a) <u>Closure</u>: From the above, if $0 \le x + y < 1$ then $x \star y = x + y$ so $0 \le x \star y < 1$ as required. If $1 \le x + y < 2$, then $x \star y = x + y 1$ or $x \star y + 1 = x + y$ so $1 \le (x \star y + 1) < 2$ which means $0 \le x \star y < 1$ as required. Associativity: Follow from associativity of addition over \mathbb{R} .

 $\overline{\text{Identity: The}}$ additive identity of addition (zero) is in G.

<u>Inverse</u>: For $x \in G$, the inverse is $x^{-1} = 1 - x$ since $x + x^{-1} = x + (1 - x) = 1 \equiv 0$. The exception here is that zero is its own inverse; these two rules cover all elements of G.

Commutativity: $x \star y = x + y - \lfloor x + y \rfloor = y + x - \lfloor y + x \rfloor = y \star x$.

8. (a) Closure: If $z_1^n = z_2^n = 1$, then $(z_1 z_2)^n = 1$.

Associativity: Follows from associativity of multiplication over \mathbb{C} .

 $\overline{\text{Identity: } 1^n} = 1 \text{ so } 1 \in G.$

<u>Inverse</u>: We want to show that the obvious candidate $z^{-1} = \frac{1}{z}$ is the inverse of z where $z^n = 1$. Clearly $z \cdot z^{-1} = 1$, so we just need to check that $z^{-1} \in G$. This follows from $(z^{-1})^n = (\frac{1}{z})^n = \frac{1}{z^n} = 1$.

- (b) Writing each $z \in G$ in polar form, we see that |z| = 1. Clearly $1 \in G$ for all n; but 1 + 1 = 2 has absolute value 2 and hence is not in G, so the operation of addition is not closed.
- 9. (a) Closure: The addition of two generic elements is $(a+b\sqrt{2})+(c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2}$. There is no weird edge case where maybe something cancels because $\sqrt{2} \notin \mathbb{Q}$ so the two terms are guaranteed to stay separate.

Associativity: Follows from associativity of addition for \mathbb{Q} .

Identity: $a + b\sqrt{2}$ with a, b = 0 gives the additive identity.

<u>Inverse</u>: For $a + b\sqrt{2} \in G$, $(-a) + (-b)\sqrt{2} \in G$; the two add to the identity of zero.

(b) Closure: The multiplication of two generic elements is $(a+b\sqrt{2})(c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}$. Since $a,b,c,d\in\mathbb{Q},\ ac+2bd\in\mathbb{Q}$ and $ad+bc\in\mathbb{Q}$ so the product is still in G.

Associativity: Follows from associativity of multiplication for \mathbb{R} .

Identity: $a + b\sqrt{2}$ with a = 1, b = 0 gives the multiplicative identity.

<u>Inverse</u>: For $a + b\sqrt{2}$, we can define the number $\frac{1}{a+b\sqrt{2}}$ since $0 \notin G$. Now we massage:

$$\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} + \frac{(-b)}{a^2-2b^2} \cdot \sqrt{2} \ . \tag{14}$$

Since $a, b \in \mathbb{Q}$, both $\frac{a}{a^2 - 2b^2}$ and $\frac{(-b)}{a^2 - 2b^2}$ are also in \mathbb{Q} , so the inverse is in G.

10. Label the elements of G as $i_1, i_2, \ldots, i_{|G|}$, and denote the matrix of the multiplication as M (so the product $i_j \cdot i_k$ is in M_{jk}). If G is abelian then $i_j i_k = i_k i_j$ for all j, k, which means $M_{jk} = M_{kj}$ for all j, k. Likewise if $M_{jk} = M_{kj}$ for all j, k, then $i_j i_k = i_k i_j$ for all j, k.

- 11. This question asks to find the smallest k such that $ka \equiv 0 \mod 12$. Then $ka = \operatorname{lcm}(a, 12)$. From the relation $\operatorname{lcm}(a,b) \cdot (a,b) = ab$, we see $k = \frac{\operatorname{lcm}(a,12)}{a} = \frac{12}{(a,12)}$.
 - $\bar{0}$: order 1 (identity)
 - $\bar{1}$: order 12
 - $\bar{2}$: order 6
 - $\bar{3}$: order 4
 - $\bar{4}$: order 3
 - $\bar{5}$: order 12
 - $\bar{6}$: order 2
 - $\bar{7}$: order 12
 - $\bar{8}$: order 3
 - $\bar{9}$: order 4
 - $\bar{10}$: order 6
 - $\overline{11}$: order 12
- 12. $\bar{1}$: order 1
 - $-\bar{1} : -1 \cdot -1 = 1$; order 2
 - $\bar{5}: 5 \cdot 5 = 25 \equiv 1$; order 2
 - $\bar{7}: 7 \cdot 7 = 49 \equiv 1; \text{ order } 2$
 - $-\bar{7}:-7\equiv 5$; order 2
 - $\bar{13}$: $13 \equiv 1$; order 1
- 13. Again, the order is $\frac{36}{(a,36)}$, unless of course a=0.
 - $\bar{1}$: order 36
 - $\bar{2}$: order 18
 - $\bar{6}$: order 6
 - $\bar{9}$: order 4
 - $\bar{10}$: order 18
 - $\overline{12}$: order 3
 - $-\bar{1}: -1 \equiv 35 \text{ so } (35, 36) = 1; \text{ order } 36$
 - $-\bar{10}$: $-10 \equiv 26$ so (26, 36) = 2; order 18
 - $-\bar{18}$: $-18 \equiv 18$ so (18, 36) = 18; order 2
- 14. $\bar{1}$: order 1
 - $-\bar{1}: -1 \cdot -1 = 1$; order 2
 - $\bar{5}\,:\,5^2=25\to 25\cdot 5=125\equiv 17\to 17\cdot 5=85\equiv 13\to 13\cdot 5=65\equiv 29\to 29\cdot 5=145\equiv 1;\,\text{order }6\to 13\to 13$
 - $\overline{13}$: $13^2 = 169 \equiv 25 \rightarrow 25 \cdot 13 = 325 \equiv 1$; order 3
 - $-\bar{13}$: from above, $13^3 \equiv 1$, so $(-13)^3 \equiv -1$. Then $(-13)^6 \equiv -1 \cdot -1 = 1$; order 6
 - $\overline{17}$: $17^2 = 289 \equiv 1$; order 2 (thank you)
- 15. For n=1 the equality is trivial. For n=2 we want the inverse of (a_1a_2) . Call it x. Then

$$(a_1 a_2)x = 1 \tag{15}$$

$$a_2 x = a_1^{-1} (16)$$

$$x = a_2^{-1} a_1^{-1} (17)$$

Now we want the inverse of $(a_1
ldots a_n)$, and we know the inverse of $(a_1
ldots a_{n-1})$ is $a_{n-1}^{-1}
ldots a_1^{-1}$. Call the total inverse x again.

$$(a_1 \dots a_{n-1} a_n) x = 1 \tag{18}$$

$$(a_1 \dots a_{n-1})a_n x = 1 \tag{19}$$

$$a_n x = (a_1 \dots a_{n-1})^{-1} \tag{20}$$

$$a_n x = a_{n-1}^{-1} \dots a_1^{-1} \tag{21}$$

$$x = a_n^{-1} \cdot a_{n-1}^{-1} \dots a_1^{-1} \tag{22}$$

- 16. If |x| = 1 then $x^1 = x = 1$, so $x^2 = 1 \cdot 1 = 1$. If |x| = 2 then by definition $x^2 = 1$. For the other direction, if $x^2 = 1$, then |x| is at most 2 since |x| is by definition the smallest power n such that $x^n = 1$. If |x| = 2 then (don't hold your breath) $x^2 = 1$, if |x| < 2 the only option is |x| = 1 so $x^2 = x \cdot x \equiv 1 \cdot 1 = 1$.
- 17. If n=1 then $x^1=x=1$ so trivially any power of x is the identity. For n>1, expand $x^n=1$ to get $x \cdot x \cdot \ldots \cdot x=1$ where there are a total of n factors of x. Group all but the first factor together to get $x \cdot x^{n-1}=1$. By the uniqueness of the inverse, $x^{n-1}=x^{-1}$.
- 18. Start with xy = yx. Left multiply by y^{-1} to get $y^{-1}xy = x$. Left multiply by x^{-1} to get $x^{-1}y^{-1}xy = 1$. The other direction of implications follows from this operation being reversible since e.g. $y = (y^{-1})^{-1}$.
- 19. (a) The first formula is just counting:

$$x^{a}x^{b} = \underbrace{x \dots x}_{a \text{ times } b \text{ times}} = \underbrace{x \dots xx \dots x}_{a+b \text{ times}} = x^{a+b} . \tag{23}$$

Note that this tells us that $x^a x^a = x^{2a}$. Inductively, we get that the product of b copies of x^a is x^{ab} . More clearly, if b = 1 then $(x^a)^b = x^a = x^{ab}$. For $b \ge 2$ we use induction:

$$(x^{a})^{b} = \underbrace{x^{a} \dots x^{a}}_{b \text{ times}} = x^{a} \underbrace{x^{a} \dots x^{a}}_{b-1 \text{ times}} = x^{a} \cdot x^{a(b-1)} = x^{a+a(b-1)} = x^{ab} . \tag{24}$$

(b) The equation $(x^a)^{-1} = x^{-a}$ seems weirdly tautological so let's rephrase it as $(x^a)^{-1} = (x^{-1})^a$: multiplying a copies of the inverse of x to x^a gives the identity. Prove this inductively as well, starting with a = 1. Obviously multiplying 1 copy of x^{-1} to $x^1 = x$ gives the identity. Now for general a > 1,

$$\underbrace{x^{-1} \dots x^{-1}}_{a \text{ times}} x^a = x^{-1} \underbrace{x^{-1} \dots x^{-1}}_{a-1 \text{ times}} x^{a-1} x^1 = x^{-1} \left(\underbrace{x^{-1} \dots x^{-1}}_{a-1 \text{ times}} x^{a-1}\right) x^1 = x^{-1} (1) x^1 = x^{-1} x^1 = 1 . \quad (25)$$

- (c) aaaaaaaaaaaaaa
- 20. First we show that $|x^{-1}| \le |x|$. If |x| = n, then by (25), $1 = 1^{-1} = (x^n)^{-1} = (x^{-1})^n$, so the order of x^{-1} is at most n. Now repeat the same process with x and x^{-1} switched to get that $|x| \le |x^{-1}|$. Therefore the two must be equal.
- 21. If the order of x is odd then $1 = x^{2k-1}$ for some $k \ge 1$. Multiplying both sides by x, we see that

$$x = x \cdot x^{2k-1} = x^{2k} = (x^2)^k \tag{26}$$

where the second equality is by (23) and the third equality is by (24).

22. We want to find $|g^{-1}xg|$. Start multiplying it by itself to see the pattern:

$$(g^{-1}xg)^1 = g^{-1}xg (27)$$

$$(g^{-1}xg)^2 = g^{-1}xgg^{-1}xg = g^{-1}x1xg = g^{-1}x^2g$$
(28)

so it looks like $(g^{-1}xg)^n = g^{-1}x^ng$. Prove this inductively:

$$(g^{-1}xg)^n = g^{-1}xg \cdot (g^{-1}xg)^{n-1}$$
(29)

$$= g^{-1}xg \cdot g^{-1}x^{n-1}g \tag{30}$$

$$= g^{-1}x(1)x^{n-1}g (31)$$

$$=g^{-1}x^ng\tag{32}$$

Now we first show that $|x| = n \implies |g^{-1}xg| = n$. Using $x^n = 1$ and manipulating,

$$(g^{-1}xg)^n = g^{-1}x^ng = g^{-1}(1)g = g^{-1}g = 1. (33)$$

Now we do the implication the other way: $|g^{-1}xg| = n \implies |x| = n$. This is just more manipulation:

$$1 = \left(g^{-1}xg\right)^n\tag{34}$$

$$=g^{-1}x^ng\tag{35}$$

$$g = gg^{-1}x^n g (36)$$

$$g = x^n g (37)$$

$$gg^{-1} = x^n gg^{-1} (38)$$

$$1 = x^n \tag{39}$$

- 23. If $1 = x^n = x^{st}$, from (24) we have $1 = (x^s)^t$ so $|x^s| = t$.
- 24. For n=0 this is brainless: $(ab)^0=1=1\cdot 1=a^0b^0$. Just as brainless for n=1: $(ab)^1=ab=a^1b^1$. Now prove inductively for n>1, assuming $(ab)^{n-1}=a^{n-1}b^{n-1}$:

$$(ab)^n = (ab)(ab)^{n-1} = (ab)a^{n-1}b^{n-1}. (40)$$

Now we want to show that $ba^{n-1} = a^{n-1}b$ which requires induction again. For n = 2 we have ba = ab, which is true by the definition of commutativity. Then for n > 2,

$$ba^{n-1} = ba^{n-2} \cdot a = a^{n-2}b \cdot a = a^{n-2} \cdot ba = a^{n-2} \cdot ab = a^{n-1}b$$

$$\tag{41}$$

where, if we're being pedantic, we used (23). Continuing from (40),

$$(ab)^{n} = (ab)a^{n-1}b^{n-1} = a(ba^{n-1})b^{n-1} = a(a^{n-1}b)b^{n-1} = a^{n}b^{n}$$
(42)

again using (23). Now we want to prove this for n < 0. More explicitly, since

$$(ab)^{-n} = ((ab)^n)^{-1} = (a^n b^n)^{-1}$$
(43)

(we used (25) in the first equality), we want to show that $a^{-n}b^{-n}$ is the inverse of a^nb^n . Multiplying the two looks like

$$1 = {}^{?} a^{-n}b^{-n} \cdot a^n b^n . (44)$$

If we can show that b^{-n} and a^n commute then we're done since we get $1 = a^{-n}a^n \cdot b^{-n}b^n = 1 \cdot 1$. We have to show this inductively (wow!), first do it for n = 1:

$$ab = ba \implies b^{-1}ab = b^{-1}ba = a \implies b^{-1}abb^{-1} = ab^{-1} \implies b^{-1}a = ab^{-1}$$
 (45)

Now inductively we assume that $b^{-(n-1)}a^{(n-1)}=a^{(n-1)}b^{-(n-1)}$ for n>1. Then

$$b^{-n}a^n = b^{-1} \left(b^{-(n-1)}a^{(n-1)} \right) a = b^{-1} \left(a^{(n-1)}b^{-(n-1)} \right) a . \tag{46}$$

We need to show that we can commute b^{-1} with powers of a, and vice versa. Luckily we already did this in (41) and (42); e.g. we can just rename $b^{-1} \to b$ since the only fact that was used was that these two elements commute. Finally we have

$$b^{-n}a^n = b^{-1}a^{(n-1)}b^{-(n-1)}a = a^{(n-1)}b^{-1}b^{-(n-1)}a = a^{(n-1)}b^{-n}a = a^{(n-1)}ab^{-n} = a^nb^{-n}$$

$$(47)$$

(using (23) twice) as required.

25. If $x^2 = 1$ for all $x \in G$, then picking any two elements x and y, their product squares to the identity: $1 = (xy)^2 = xyxy$. Then

$$xy = x(1)y = x(xyxy)y = (xx)yx(yy) = (1)yx(1) = yx$$
. (48)

26. Closure: We are told that for all $h, k \in H$, $hk \in H$.

Associativity: This is inherited from the associativity of G since all elements in H are also in G.

Inverse: We are given that for all $h \in H$, $h^{-1} \in H$.

Identity: If $h \in H$, then $h^{-1} \in H$, and $hh^{-1} = 1 \in H$.

- 27. In the language of the previous exercise, let $H(x) = \{x^n \mid n \in \mathbb{Z}\}$. We want to show that for all $h, k \in H(x)$, we have $hk \in H(x)$ and $h^{-1} \in H(x)$. From the form of H we have $h = x^m$ and $k = x^n$ for some $m, n \in \mathbb{Z}$. Then $hk = x^m x^n = x^{m+n} \in H(x)$ by (23) and $h^{-1} = (x^m)^{-1} = x^{-m} \in H(x)$ by (25).
- 28. Given the groups (A, \star) and (B, \diamond) , for the group $A \times B$ we have
 - (a) Associativity: follows from algebra bashing using the associativity of A and B in the third equality

$$(a_1, b_1)[(a_2, b_2)(a_3, b_3)] = (a_1, b_1)[(a_2 \star a_3, b_2 \diamond b_3)] \tag{49}$$

$$= (a_1 \star (a_2 \star a_3), b_1 \diamond (b_2 \diamond b_3)) \tag{50}$$

$$= ((a_1 \star a_2) \star a_3, (b_1 \diamond b_2) \diamond b_3) \tag{51}$$

$$= [a_1 \star a_2, b_1 \diamond b_2] (a_3, b_3) \tag{52}$$

$$= [(a_1, b_1)(a_2, b_2)] (a_3, b_3)$$
(53)

(b) Identity: We want to show that ae = ea = a for all $a \in A \times B$, with $e = (1_A, 1_B)$:

$$(a,b)(1_A, 1_B) = (a \star 1_A, b \diamond 1_B) = (a,b)$$
(54)

$$(1_A, 1_B)(a, b) = (1_A \star a, 1_B \diamond b) = (a, b) \tag{55}$$

(c) <u>Inverse</u>: We want to show that $(a, b)^{-1} = (a^{-1}, b^{-1})$:

$$(a^{-1}, b^{-1})(a, b) = (a^{-1} \star a, b^{-1} \diamond b) = (1_A, 1_B) = 1$$
(56)

Since $a^{-1} \in A$ and $b^{-1} \in B$, (a^{-1}, b^{-1}) is in $A \times B$ and this is well-defined.

29. Use the same notation from the previous exercise. For arbitrary (a,b) and $(c,d) \in A \times B$,

$$(a,b)(c,d) = (a \star c, b \diamond d) . \tag{57}$$

If $A \times B$ is abelian, then we also have

$$(a,b)(c,d) = (c,d)(a,b) = (c \star a, d \diamond b) \tag{58}$$

which tells us that $a \star c = c \star a$ (for arbitrary $a, c \in A$) meaning A is abelian. The same can be said for B. This works in the other direction: if A and B are both abelian then

$$(a,b)(c,d) = (a \star c, b \diamond d) = (c \star a, d \diamond b) = (c,d)(a,b).$$

$$(59)$$

30. Proving $(a, 1_B)$ and $(1_A, b)$ commute is trivial:

$$(a, 1_B)(1_A, b) = (a \star 1_A, 1_B \diamond b) = (a, b) = (1_A \star a, b \diamond 1_B) = (1_A, b)(a, 1_B). \tag{60}$$

Then, using the result from exercise 24 to split apart the product group (please don't make me prove the last equality),

$$(a,b)^n = ((a,1_B)(1_A,b))^n = (a,1_B)^n (1_A,b)^n = (a^n,1_B)(1_A,b^n).$$
(61)

If we want |(a,b)| = n then we must have both $a^n = 1_A$ and $b^n = 1_B$. The smallest positive n that satisfies this condition is the least common multiple of |a| and |b|.

31. Following the hint, let t(G) be the set of all elements in G that are not their own inverse. From exercise 32 we know that, since G is a finite group, the order of all $x \in G$ is finite. Choose an arbitrary element x and call its order n, then

$$1 = x^{n} = x \cdot x^{n-1} \implies x^{-1} = x^{n-1} . \tag{62}$$

If n > 2, then $x \neq x^{n-1}$, so we have found two elements that are not their own inverse: x and x^{-1} . Add these to t(G). Continuing like this and finding all such pairs in G (double-counting is fine; we just care that they come in pairs), we end up with an even number of elements in t(G). Clearly, $1 \notin t(G)$ since the identity is its own inverse. That means the set $t(G) \cup 1$ has an odd number of elements in it, and contains all $x \in G$ such that |x| = 1 or |x| > 2. Then $G - (t(G) \cup 1)$, assuming it is nonempty, contains all elements of order 2. If |G| is even, then this set must contain an odd (i.e. nonzero) number of elements, hence there is at least one element of order 2.

32. Prove the contrapositive. Suppose that $1, x, x^2, \dots, x^{n-1}$ are not all distinct, i.e. there exist $a, b \in \mathbb{Z}$ with $0 \le a < b \le n-1$ such that $x^a = x^b$. Then, multiplying both sides by x^{-a} and using (23) we see

$$1 = x^{-a}x^a = x^{-a}x^b = x^{b-a} (63)$$

so |x| = b - a < n. Then it cannot be the case that |x| = n.

Since there are |G| distinct elements in G (duh), by the sequence of |G|+1 elements $1, x, x^2, \ldots, x^{|G|}$ cannot contain |G|+1 distinct elements. Following the above argument, we see that |x|<|G|+1 meaning $|x|\leq |G|$.

33. If $x^n = 1$ for some n then, for some given power x^a ,

$$(x^{i})^{-1} = x^{-i} = 1 \cdot x^{-i} = x^{n} x^{-i} = x^{n-i}$$
(64)

using (25) and (23), so if we want the two equal we require i = n - i (more technically, both sides are modulo n), so n = 2i.

- (a) If n is odd then there is no i such that n = 2i, so the above is impossible.
- (b) If n is even, then there is only one solution for i (modulo n), and we have n=2i.
- 34. Prove the contrapositive. Suppose that the elements $x^n, n \in \mathbb{Z}$ are not all distinct. That means there exist $a, b \in \mathbb{Z}$ such that $x^a = x^b$. Then, multiplying both sides by x^{-a} and using (23) we see

$$1 = x^{-a}x^a = x^{-a}x^b = x^{b-a} (65)$$

so we see |x| = b - a, so x does not have infinite order.

35. Suppose |x| = n for some finite (duh) integer n > 0, so $x^n = 1 = 1^{-1} = x^{-n}$. Consider an arbitrary power x^a . By the division algorithm, we can write a = qn + r for some $q, r \in \mathbb{Z}$ and $0 \le r < n$. Then

$$x^{a} = x^{qn+r} = x^{qn}x^{r} = (x^{n})^{q}x^{r} = 1^{q}x^{r} = 1x^{r} = x^{r}$$

$$(66)$$

where the second equality is by (23) and the third equality is by (24). We see that $x^a = x^{a \mod n}$.

36. not sure how to do this using the hint about cancellation rules, the only way I could do this was extremely ugly and trial and error; it'd be easier if I could use the fact that no element has order 3 but we're not there yet