$$X^{in} = X^{out}$$

Задачи 1.1-1.4. Из скана задача 1054 (8, 11, 10, 12).

Задача 1.5. Пусть U и W — подпространства в \mathbb{R}^{20} , причём $\dim U = 7$, $\dim W = 15$. Какие значения могут принимать $\dim(U + W)$ и $\dim(U \cap W)$? Не забудьте, что нужна не только оценка, но и примеры! А чтобы не рисовать векторы длины 20, вы можете воспользоваться базисными векторами e_1, \ldots, e_{20} .

Проекции их нахождение. Рассмотрим простой случай, когда $V = U \oplus W$. Тогда для любого $v \in V$ существует единственное разложение $v = u + w, u \in U, w \in W$. В этой ситуации вектор u называется проекцией вектора v на подпространство U вдоль подпространства W.

Пусть теперь у нас есть конкретный пример, скажем,

$$\mathbb{R}^{3} = \langle \underbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}} \rangle \oplus \underbrace{\langle \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}}_{=W} \rangle$$

Ясно, что U и W линейно независимы: ведь объединение их базисов является линейно независимой системой векторов. Найдём проекцию вектора $v=(1,1,1)^T$ на U вдоль W.

Обозначим через u_1 , u_2 указанный выше базис U, а через w_1 указанный выше базис W. Тогда, так как их объединение u_1,u_2,w_1 является базисом \mathbb{W}^3 , существует единственное разложение $v=x_1u_1+x_2u_2+y_1w_1$, где x_1,x_2,y_1 — некоторые скаляры. Тогда воистину x единственным образом представляется в виде

$$x = \underbrace{(x_1u_1 + x_2u_2)}_{\in U} + \underbrace{y_1w_1}_{\in W}$$

так что проекцией v на U вдоль W является вектор $x_1u_1+x_2u_2$. Осталось найти коэффициенты. Для этого мы представляем равенство $x_1u_1+x_2u_2+y_1w_1=v$

$$\left(u_1 \ u_2 \ w_1\right) \left(\begin{matrix} x_1 \\ x_2 \\ y_1 \end{matrix}\right) = v$$

Подставляем числа:

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Её решением является вектор $(6,-3,1)^T$. Таким образом, проекция v на U вдоль W равна

$$x_1u_1 + x_2u_2 = 6 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$$

Нелишне, кстати, проверить себя. Если всё ок, то вектор

$$v - (x_1 u_1 + x_2 u_2) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

должен быть равен y_1w_1 . Ну, вроде, действительно равен.

Задачи 1.6. и 1.7. Пусть

$$U = \langle \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -4 \\ -1 \\ 4 \end{pmatrix} \rangle, \qquad W = \langle \begin{pmatrix} 0 \\ -3 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 3 \\ -3 \end{pmatrix} \rangle$$

Докажите, что $\mathbb{R}^4=U\oplus W.$ Найдите проекцию вектора $v=(1,2,-2,-1)^T$ на U вдоль W.

Задача 1.8. Пусть

$$U: \begin{cases} 2x_1 + x_2 - x_3 = 0, \\ x_1 - x_4 = 0 \end{cases}, \quad W: \begin{cases} x_1 + x_2 - 2x_4 = 0, \\ -x_1 + 2x_3 = 0 \end{cases}$$

Не находя базисов этих подпространств, докажите, что $\mathbb{R}^4 = U \oplus W$.

Указание. Если $\dim \mathbb{R}^4 = \dim U + \dim W$, причём $U \cap W = 0$, то $\mathbb{R}^4 = U \oplus W$. Первое вы легко проверите, если вспомните, что $\dim \{x \in \mathbb{R}^n \mid Ax = 0\} = n - \text{rk}A$. Ну, а искать пересечение подпространств, заданных системами линейных уравнений, вы тоже должны уметь.

Задача 1.9. Для подпространств из предыдущей задачи найдите проекцию вектора $v = (-1, 1, 0, 1)^T$ на U вдоль W.

 $\mathit{Указаниe}$. А вот тут вам, наверное, лучше всё-таки найти базисы U и W; впрочем это несложно делается с помощью Φ CP.

Задача 1.10. Пусть

$$U_{1} = \langle \begin{pmatrix} 1\\1\\1\\1\\0 \end{pmatrix} \rangle, \qquad U_{2}: \begin{cases} x_{1} + x_{2} = 0, \\ x_{3} - x_{5} = 0 \end{cases}, \qquad U_{3} = \langle \begin{pmatrix} 0\\1\\0\\0\\-1 \end{pmatrix} \rangle$$

Докажите, что $\mathbb{R}^5=U_1\oplus U_2\oplus U_3$. Докажите, что $\mathbb{R}^5=U_1\oplus U_2\oplus U_3$.

 $\mathit{Указаниe}$. Найдите базисы этих подпространств и докажите, что объединение этих базисов является базисом \mathbb{R}^5 (что равносильно тому, что матрица, составленная из векторов этого базиса имеет ранг 5 — ну, или, что то же самое, она невырождена).

Задача 2.1. Пусть U и W — подпространства конечномерного векторного пространства V. Докажите, что если $\dim(U+W)=1+\dim(U\cap W)$, то сумма U+W совпадает с одним из подпространств U и W, а пересечение $U\cap W$ — с другим.

Задача 2.2. Докажите, что

$$\dim((U+V)\cap W) + \dim(U\cap V) = \dim((V+W)\cap U) + \dim(V\cap W)$$

Указание. Вспомните формулу, связывающую размерности суммы и пересечения.

Задача 2.3. Докажите, что

$$U \cap (V + (U \cap W)) = (U \cap V) + (U \cap W)$$

Задача 2.4. Вы уже должны были привыкнуть к тому, что зная размерности двух подпространств и размерность их пересечения, вы можете запросто узнать размерность суммы. В этой задаче вы попробуете разобраться, так ли это просто для случая, когда подпространства три.

Пусть U_1,U_2,U_3 — три подпространства пространства V. Допустим, что вам известны их размерности, а также размерности всевозможных их пересечений: $U_1 \cap U_2 \cap U_3,\ U_1 \cap U_2,\ U_1 \cap U_3,\ U_2 \cap U_3$. Можете ли вы найти размерность $U_1 + U_2 + U_3$?

Указание. В этой задаче вам нужно либо ответить "да" и придумать (и желательно доказать) формулу, связывающую размерность суммы с размерностями подпространств и их всевозможных пересечений, либо ответить "нет" и привести примеры двух троек подпространств U_1, U_2, U_3 и W_1, W_2, W_3 , для которых $\dim U_i = \dim W_i$, $\dim(U_i \cap U_j) = \dim(W_i \cap W_j)$ и $\dim(U_1 \cap U_2 \cap U_3) = \dim(W_1 \cap W_2 \cap W_3)$, но $\dim(U_1 + U_2 + U_3) \neq \dim(W_1 + W_2 + W_3)$. Во втором случае попробуйте понять, какие ещё сведения нужны для того, чтобы можно было найти размерность суммы.

Задача 2.5. Пусть U — подпространство симметричных матриц, W — подпространство верхненильтреугольных матриц (то есть верхнетреугольных с нулями на диагонали) в $\mathrm{Mat}_n(\mathbb{R})$ (то есть в пространстве матриц $n \times n$ с действительными коэффициентами). Докажите, что $\mathrm{Mat}_n(\mathbb{R}) = U \oplus W$. Найдите проекцию матрицы E_{31} (это матричная единица) на U вдоль W.

Задача 2.6. Найдите какое-нибудь подпространство в \mathbb{R}^4 такое, что проекция вектора $(1,1,1,1)^T$ вдоль него на

$$U: \begin{cases} x_1 + x_3 = 0, \\ x_1 + x_2 - 2x_4 = 0 \end{cases}$$

равна $(1, -1, -1, 0)^T$. Обязательно объясните ответ!

Задача 2.7. Найдите какие-нибудь подпространства U и W в \mathbb{R}^4 такие, что проекции вектора $(1,1,1,1)^T$ вдоль U на W и вдоль W на U равны $(1,0,1,-1)^T$ и (0,1,0,2) соответственно. Обязательно объясните ответ!