

## BOUNDED KNAPSACK PROBLEMS

## Why

We consider the knapsack problem in which the n items are considered to be types of items and we have a certain quantity of each.

## **Definition**

Suppose we have zero-one knapsack problem data (p, w, c) where  $p : [n] \to \mathbb{R}$  is the profit function,  $w : [n] \to \mathbb{R}_+$  is the weight function, and  $c \in \mathbb{R}_+$  is the capacity constraint. Given budgets  $b_1, \ldots, b_n \in \mathbb{Z}_+$ , find  $x \in \mathbb{Z}_+^n$  to

minimize 
$$\sum_i p_i x_i$$
  
subject to  $\sum_i w_i x_i \le c$   
 $0 \le x_i \le b_i, \quad i = 1, \dots, n,$   
 $x_i \in \mathbf{Z} \quad i = 1, \dots, n$ 

The above is called the *bounded knapsack problem*. The problem above without the budget constraints, is called the *unbounded knapsack problem*.

