Project Analysis - Absenteeism

Sagar Bansal

SECTION I: ANALYSIS SUMMARY

We discovered that Salary and whether a raise was given or not to the employee are crucial in identifying employees who are most likely to use a leave day. To a great surprise, employment status and age does not significantly affect the likelihood of the response. It is in contrast to the general belief that part-time employees are more likely to abuse leave policy as they are less loyal/dependent on the company.

A good estimation of accuracy for prediction based on the data will be 62.4%. Although we can modify the model to reach up to 80% accuracy, it would drastically reduce the percentage of accurately identified employees who actually will use the leave policy. Yes, we can tune the model so that at most 10% of the people who don't use the leave policy are incorrectly predicted by the model to use the leave policy. In that case, the people that will be identified to use policy who actually will use the leave policy in three months will range from 0.0% to 17.5%.

Besides this, client should keep in mind that response may be affected by the weather and season of that quarter. The tendency to take leave may have a seasonal pattern. Also, data was highly imbalanced which could give us a false sense of accuracy. Finally, additional features such as Married or not and Reason for leave may have added more to the analysis.

SECTION II: APPENDIX

When we summarized the given data, we found that the average value of Salary and Age variables in the given data are roughly 47519.64 USD and 35, respectively. We made a bar graph on our response variable i.e., tookLeave and found that 20% of the employees took a leave which is significantly high considering the short period length i.e., three months. In addition, the box plot of age categorized by tookLeave didn't show any considerable difference between the two categories. Although the minimum and maximum age is different for both categories, the mean and median are roughly same. Hence, we decided to not include age as a predictor in our model.

Since our response variable is a qualitative variable and we had to classify whether each employee is likely to take a leave or not, we used Logistic Regression in this case. The model had tookLeave as dependent variable and salary, employmentStatus & raiseOrPromo as independent variables. We found that the model is useful as the ROC curve is always above the diagonal line (random guessing) and AUC value is 0.64 which is greater than 0.5. For the model validity, we used Hosmer and Lemeshow Goodness-of-Fit Test to test the null hypothesis that the logistic model built accurately describes the data at 5% significance level and found that the p-value is 0.7827 which is greater than 0.05. Hence, we fail to reject the null hypothesis i.e., there is no evidence that the model does not fit well. Moreover, we didn't notice any pattern in Pearson Chi-Square Residuals vs Case Number plot. Thus, we can say that there is no dependence issue in this model.

Using Wald Chi-squared test, we revealed that Salary (0.0001 < 0.05) and RaiseorPromo (0.0047 < 0.05) are statistically significant whereas employment status (0.2515 > 0.05) does not significantly affect the likelihood of the response at 5% significance level. incorrectly predicted by the model to use the leave policy. For the model accuracy, we chose pprob cut-off of 0.22 which gives us both Specificity (64.2) and Sensitivity (55.3) greater than 50%.

Figure 1: Bar Graph - Fsrequency vs tookLeaave

FREQUENCY 800 700 600 500 400 300 200 100 noLeave yesLeave

Figure 3: Box plot - tookLeave vs Age

Figure 4: Box plot - tookLeave vs Salary

Figure 2: ROC Curve - Sensitivity vs Specificity

tookLeave

Figure 5: Pearson Chi-Square Residual vs Case Number

Table 1 & 2: Numerical Summary of Salary

The	UNIVARIATE Procedure
	Variable: age

	Mo	ments	
N	1030	Sum Weights	1030
Mean	34.9330097	Sum Observations	35981
Std Deviation	6.13631812	Variance	37.6544001
Skewness	-0.0629494	Kurtosis	0.0754738
Uncorrected SS	1295671	Corrected SS	38746.3777
Coeff Variation	17.5659589	Std Error Mean	0.1912006

	Basic S	Statistical Measures			
Location		Variability			
Mean	34.93301	Std Deviation	6.13632		
Median	35.00000	Variance	37.65440		
Mode	36.00000	Range	41.00000		
		Interquartile Range	8.00000		

Table 3 & 4: Numerical Summary of Age

The UNIVARIATE Procedure Variable: salary

	Mo	ments	
N	1030	Sum Weights	1030
Mean	47519.6408	Sum Observations	48945230
Std Deviation	14214.7566	Variance	202059304
Skewness	-0.3046421	Kurtosis	-1.0287839
Uncorrected SS	2.53378E12	Corrected SS	2.07919E11
Coeff Variation	29.9134344	Std Error Mean	442.915434

	Basic	Statistical Measures			
Location		Variability			
Mean	47519.64	Std Deviation	14215		
Median	48917.00	Variance	202059304		
Mode	28943.50	Range	49993		
		Interquartile Range	24712		

Table 5 & 6: Analysis of Effects and Analysis of Maximum Likelihood Estimation

Type 3	Anal	ysis of Effects	
Effect	DF	Wald Chi-Square	Pr > ChiSq
salary	1	14.7173	0.0001
employmentStatus	1	1.3150	0.2515
raiseOrPromo	1	7.9778	0.0047

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-0.2379	0.3746	0.4032	0.5254
salary		1	-0.00004	0.000011	14.7173	0.0001
employmentStatus	FullTime	1	0.3696	0.3223	1.3150	0.2515
employmentStatus	PartTime	0	0			
raiseOrPromo	no	1	0.6245	0.2211	7.9778	0.0047
raiseOrPromo	yes	0	0			

Table 7: Classification Table

Classification Table									
	Correct		Incorre ct		Percentages				
Prob Level	Event	Non- Event	Event	Non- Event	Correct	Sen si- tivity	Spe ci- ficity	False POS	False NEG
0.040	208	0	824	0	20.0	100.0	0.0	80.0	
0.060	208	7	817	0	20.7	100.0	0.8	79.9	0.0
0.080	204	44	780	2	24.1	99.0	5.3	79.3	4.3
0.100	200	75	749	6	26.7	97.1	9.1	78.9	7.4
0.120	183	170	654	23	34.3	88.8	20.6	78.1	11.9
0.140	172	245	579	34	40.5	83.5	29.7	77.1	12.2
0.160	158	325	499	48	46.9	76.7	39.4	76.0	12.9
0.180	145	395	429	61	52.4	70.4	47.9	74.7	13.4
0.200	131	465	359	75	57.9	63.6	58.4	73.3	13.9
0.220	114	529	295	92	62.4	55.3	64.2	72.1	14.8
0.240	96	588	238	110	66.2	46.6	71.1	71.3	15.8
0.260	75	655	169	131	70.9	36.4	79.5	69.3	16.7
0.280	47	707	117	159	73.2	22.8	85.8	71.3	18.4
0.300	36	745	79	170	75.8	17.5	90.4	68.7	18.6
0.320	30	763	61	176	77.0	14.6	92.6	67.0	18.7
0.340	18	781	43	188	77.6	8.7	94.8	70.5	19.4
0.360	11	798	26	195	78.5	5.3	96.8	70.3	19.6
0.380	6	815	9	200	79.7	29	98.9	60.0	19.7
0.400	0	824	0	206	80.0	0.0	100.0		20.0

Table 8: Hosmer and Lemeshow Goodness-of-Fit Test

Hosmer and Leme	show G Test	ioodness-of-Fit
Chi-Square	DF	Pr > ChiSq
4.7823	8	0.7827