Slide 19-Orthogonality I MAT2040 Linear Algebra

SSE, CUHK(SZ)

Scalar Product and Orthogonality in \mathbb{R}^n

Let \mathbf{x} and \mathbf{y} are two vectors in \mathbb{R}^n , then the product $\mathbf{x}^\mathsf{T}\mathbf{y}$ is called the **scalar product** since $\mathbf{x}^\mathsf{T}\mathbf{y}$ is a real number. (\mathbf{x} and \mathbf{y} can be regarded as $n \times 1$ matrices, $\mathbf{x}^\mathsf{T}\mathbf{y}$ will be a 1×1 matrix which is a real number). Let $\mathbf{x} = [x_1, \cdots, x_n]^\mathsf{T}, \ \mathbf{y} = [y_1, \cdots, y_n]^\mathsf{T}$, then

$$\mathbf{x}^\mathsf{T}\mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n$$

Given any nonzero vector $\mathbf{x} \in \mathbb{R}^n$, geometrically, we can consider it as a vector with starting point at the origin in n-dimensional space.

Definition 19.1 (Euclidean Length) Let $\mathbf{x} = [x_1, x_2, \dots, x_n]^T \in \mathbb{R}^n$, the Euclidean length of \mathbf{x} is given by

$$\parallel \mathbf{x} \parallel = \sqrt{\mathbf{x}^T \mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

It can be regarded as the length of the vector \mathbf{x} .

Example 19.2

Let $\mathbf{x} = [3, -2, 1]^T \in \mathbb{R}^3$, the Euclidean length of \mathbf{x} is given by

$$\parallel \mathbf{x} \parallel = \sqrt{3^2 + (-2)^2 + 1^2} = \sqrt{14}$$

SSE, CUHK(SZ)

Slide 19-Orthogonality I

Definition 19.3 (**Distance**) Let

 $\mathbf{x} = [x_1, x_2, \cdots, x_n]^T$, $\mathbf{y} = [y_1, y_2, \cdots, y_n]^T \in \mathbb{R}^n$, then $\mathbf{x} - \mathbf{y} = [x_1 - y_1, \cdots, x_n - y_n]^T$, the distance between two vectors is given by

$$\parallel \mathbf{x} - \mathbf{y} \parallel = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

Figure: Illustration for 2D case

Example 19.4 Let $\mathbf{x} = [1, 2, -2, 3]^T$, $\mathbf{y} = [2, -1, 3, 4]^T \in \mathbb{R}^4$, then

$$\|\mathbf{x} - \mathbf{y}\| = \sqrt{(1-2)^2 + (2-(-1))^2 + (-2-3)^2 + (3-4)^2} = 6$$

Figure: Illustration for 2D case

SSE, CUHK(SZ)

Lemma 19.5 (Cauchy-Schwartz Inequality)

$$|\mathbf{x}^T\mathbf{y}| \le \parallel \mathbf{x} \parallel \parallel \mathbf{y} \parallel$$

The inequality becomes equality only when one vector is zero or \mathbf{x} and \mathbf{y} are in the same direction (one is a multiple of another). See the appendix for the proof.

Theorem 19.6 (Scalar Product in terms of Vector Length) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, suppose θ is the angle between two nonzero vectors, then

$$\mathbf{x}^T \mathbf{y} = \parallel \mathbf{x} \parallel \parallel \mathbf{y} \parallel \cos \theta, \quad 0 \le \theta \le \pi.$$

Proof. By the cosine law, one has

$$\| \mathbf{x} \|^2 + \| \mathbf{y} \|^2 - \| \mathbf{x} - \mathbf{y} \|^2 = 2 \| \mathbf{x} \| \| \mathbf{y} \| \cos \theta.$$

In addition,

$$\|\mathbf{x} - \mathbf{y}\|^{2} = (\mathbf{x} - \mathbf{y})^{T} (\mathbf{x} - \mathbf{y})$$

$$= \mathbf{x}^{T} \mathbf{x} + \mathbf{y}^{T} \mathbf{y} - \mathbf{x}^{T} \mathbf{y} - \mathbf{y}^{T} \mathbf{x}$$

$$= \|\mathbf{x}\|^{2} + \|\mathbf{y}\|^{2} - \mathbf{x}^{T} \mathbf{y} - \mathbf{y}^{T} \mathbf{x}$$

And $\mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x}$.

Thus

$$\mathbf{x}^T\mathbf{y} = \parallel \mathbf{x} \parallel \parallel \mathbf{y} \parallel \cos \theta$$

Since \mathbf{x} , \mathbf{y} are nonzero vectors, one has

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\parallel \mathbf{x} \parallel \parallel \mathbf{y} \parallel} = \mathbf{u}^T \mathbf{v}$$

where $\mathbf{u} = \frac{\mathbf{x}}{\|\mathbf{x}\|}$ and $\mathbf{v} = \frac{\mathbf{y}}{\|\mathbf{y}\|}$ are the unit vectors in the x, y directions.

Definition 19.7 (Orthogonal Vectors in \mathbb{R}^n) Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are said to be orthogonal if $\mathbf{x}^T \mathbf{y} = 0$. Denote $\mathbf{x} \perp \mathbf{y}$.

Recall:

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\parallel \mathbf{x} \parallel \parallel \mathbf{y} \parallel} = \mathbf{u}^T \mathbf{v}$$

Thus

 \mathbf{x} and \mathbf{y} are orthogonal $\Leftrightarrow \mathbf{x}^T \mathbf{y} = 0 \Leftrightarrow \cos \theta = 0 \Leftrightarrow \theta$ is the right angle.

Example 19.8

- (1) Vectors $[3,2]^T$ and $[-4,6]^T$ are orthogonal in \mathbb{R}^2 .
- (2) Vectors $[2, -3, 1]^T$ and $[1, 1, 1]^T$ are orthogonal in \mathbb{R}^3 .

Theorem 19.9 (Pythagorean's Law)

Let \mathbf{x}, \mathbf{y} be two vectors in \mathbb{R}^n , if they are orthogonal, then

$$\parallel \mathbf{x} + \mathbf{y} \parallel^2 = \parallel \mathbf{x} \parallel^2 + \parallel \mathbf{y} \parallel^2$$

Since

$$\| \mathbf{x} + \mathbf{y} \|^2 = (\mathbf{x} + \mathbf{y})^T (\mathbf{x} + \mathbf{y}) = \| \mathbf{x} \|^2 + \| \mathbf{y} \|^2 + \mathbf{x}^T \mathbf{y} + \mathbf{y}^T \mathbf{x}$$

and $\mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x} = 0$ because of the orthogonality.

Definition 19.10 (Scalar and vector projection) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, find \mathbf{p} in the direction of \mathbf{y} and $\mathbf{x} - \mathbf{p}$ is orthogonal to \mathbf{y} . $\mathbf{u} = \frac{\mathbf{y}}{\|\mathbf{y}\|}$ is the unit vector in \mathbf{y} direction. Suppose $\mathbf{p} = \alpha \mathbf{u}$, then $\mathbf{x} - \alpha \mathbf{u}$ is orthogonal to \mathbf{u} , i.e. $(\mathbf{x} - \alpha \mathbf{u})^T \mathbf{u} = \mathbf{0} \Rightarrow \alpha = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}$. Geometrically, $\alpha = \|\mathbf{x}\| \cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}$.

- (1) α is the scalar projection of **x** onto **y**.
- (2) $\mathbf{p} = \alpha \mathbf{u} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y}$ is the **vector projection** of \mathbf{x} onto \mathbf{y} .

Orthogonal Subspaces in \mathbb{R}^n

Definition 19.11 (Orthogonal Subspaces in \mathbb{R}^n) Two subspaces X and Y of \mathbb{R}^n are said to be orthogonal if

$$\boldsymbol{x}^T\boldsymbol{y}=0,\ \forall\ \boldsymbol{x}\in X,\ \boldsymbol{y}\in Y.$$

Denoted by $X \perp Y$.

Corollary If X and Y are orthogonal subspaces of \mathbb{R}^n , then $X \cap Y = \{\mathbf{0}\}$

Proof. Suppose that $\mathbf{x} \in X \cap Y$, then $\mathbf{x}^T \mathbf{x} = 0 = ||\mathbf{x}||^2$, thus $\mathbf{x} = \mathbf{0}$

SSE, CUHK(SZ)

Example 19.12

(1) Let

$$X = \operatorname{Span}\left(\left[egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight]
ight), \quad Y = \operatorname{Span}\left(\left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight]
ight)$$

then $X \perp Y$.

(2) Let

$$X = \operatorname{Span}\left(\left[egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight], \left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight]
ight), \quad Y = \operatorname{Span}\left(\left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight], \left[egin{array}{c} 0 \\ 0 \\ 1 \end{array}
ight]
ight)$$

then X is the xy plane while Y is yz plane. Geometrically, these two planes are perpendicular with each other but X and Y are not orthogonal

since
$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \in X \cap Y \ (X \cap Y \neq \{\mathbf{0}\}).$$

□▶→□▶→臺▶→臺▶ 臺 ∽久⊙

Definition 19.13 (**Orthogonal Complement**) Let Y be a subspace of \mathbb{R}^n , vectors in \mathbb{R}^n that are orthogonal to every vector in Y is said to be the **orthogonal complement** of Y, denoted by Y^{\perp} . Thus

$$Y^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x}^T \mathbf{y} = 0, \forall \ \mathbf{y} \in Y \}$$

Example 19.14 The subspace $X = \text{Span}(\mathbf{e}_1)$ and $Y = \text{Span}(\mathbf{e}_2)$ of \mathbb{R}^3 are orthogonal but they are not orthogonal complements. Indeed,

$$\textbf{\textit{X}}^{\perp} = \text{Span}(\textbf{e}_2,\textbf{e}_3), \quad \textbf{\textit{Y}}^{\perp} = \text{Span}(\textbf{e}_1,\textbf{e}_3)$$

Proposition 19.15 (Proposition of Orthogonal Complements)

If Y is a subspace of \mathbb{R}^n , then Y^{\perp} is also a subspace of \mathbb{R}^n .

Proof.

Obviously $\mathbf{0} \in Y^{\perp}$. Now suppose that $\mathbf{y}, \mathbf{z} \in Y^{\perp}$ and $\alpha_1, \alpha_2 \in \mathbb{R}$, then for any $\mathbf{x} \in Y$, one has

$$\mathbf{x}^T \mathbf{y} = \mathbf{x}^T \mathbf{z} = 0$$

Thus

$$\mathbf{x}^{T}(\alpha_{1}\mathbf{y} + \alpha_{2}\mathbf{z}) = \alpha_{1}\mathbf{x}^{T}\mathbf{y} + \alpha_{2}\mathbf{x}^{T}\mathbf{z} = 0$$

and

$$\alpha_1 \mathbf{y} + \alpha_2 \mathbf{z} \in \mathbf{Y}^\perp$$

Therefore, Y^{\perp} is a subspace of \mathbb{R}^n .

Example 19.16 Given yz plane in \mathbb{R}^3

$$Y = \mathbf{Span} \left(\left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \right)$$

find Y^{\perp} .

The elements in Y can be written as

$$\left[\begin{array}{c}0\\\alpha_1\\\alpha_2\end{array}\right]$$

For any element

$$\left[\begin{array}{c} x \\ y \\ z \end{array}\right]$$

in Y^{\perp} , it satisfies:

$$0x + \alpha_1 y + \alpha_2 z = 0, \forall \ \alpha_1, \alpha_2 \in \mathbb{R}$$

Thus, y = z = 0 and there is no restriction for x. Thus

$$Y^{\perp} = \operatorname{Span} \left(\left[egin{array}{c} 1 \ 0 \ 0 \end{array}
ight]
ight)$$

Theorem 19.17 (Fundamental Subspaces Theorem)

Let
$$A \in \mathbb{R}^{m \times n} = [\mathbf{a}_1, \cdots, \mathbf{a}_n] = \begin{bmatrix} \vec{\mathbf{a}}_1 \\ \vec{\mathbf{a}}_2 \\ \vdots \\ \vec{\mathbf{a}}_m \end{bmatrix}$$
, $Col(A) = \operatorname{Span}\{\mathbf{a}_1, \cdots, \mathbf{a}_n\}$ is the column space of A , $Row(A) = Col(A^T) = \operatorname{Span}\{\vec{\mathbf{a}}_1^T, \vec{\mathbf{a}}_2^T, \cdots, \vec{\mathbf{a}}_m^T\}$ is

the row space of A, then

$$(1)\mathsf{Null}(\mathsf{A}) {=} \mathit{Col}(\mathsf{A}^T)^\perp {=} \mathit{Row}(\mathsf{A})^\perp$$

$$(2)\mathsf{Null}(A^T) = Col(A)^{\perp} = Row(A^T)^{\perp}$$

Proof. Let
$$A = \begin{bmatrix} \vec{\mathbf{a}}_1 \\ \vec{\mathbf{a}}_2 \\ \vdots \\ \vec{\mathbf{a}}_m \end{bmatrix}$$
, then $A^T = [\vec{\mathbf{a}}_1^T, \vec{\mathbf{a}}_2^T, \cdots, \vec{\mathbf{a}}_m^T]$, and

$$\begin{aligned} \operatorname{Null}(A) &= \{\mathbf{x} | A\mathbf{x} = \mathbf{0}\} \\ &= \{\mathbf{x} | \vec{\mathbf{a}}_i \mathbf{x} = 0, \forall \ i = 1, \cdots, m\} \\ &= \{\mathbf{x} | \left(\sum_{i=1}^m \alpha_i \vec{\mathbf{a}}_i\right) \mathbf{x} = 0, \forall \ \alpha_i \in \mathbb{R}, \ i = 1, 2, \cdots, m\} \\ &= \{\mathbf{x} | \left(\sum_{i=1}^m \alpha_i (\vec{\mathbf{a}}_i)^T\right)^T \mathbf{x} = 0, \forall \ \alpha_i \in \mathbb{R}, \ i = 1, 2, \cdots, m\} \\ &= \{\mathbf{x} | \mathbf{y}^T \mathbf{x} = 0, \forall \mathbf{y} \in \operatorname{Col}(A^T)\} \\ &= \operatorname{Col}(A^T)^{\perp} \\ &= \operatorname{Row}(A)^{\perp} \end{aligned}$$

since $\mathbf{y} = \sum_{i=1}^{m} \alpha_i (\vec{\mathbf{a}}_i)^T$ is the arbitary element in $Col(A^T)$. In addition,

$$Null(A^T) = Col(A)^{\perp} = Row(A^T)^{\perp}$$

Example 19.18 Let

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad A^T = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Then

$$Null(A) = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}, \quad Col(A^T) = Row(A) = \mathbb{R}^2$$

$$\textit{Null}(A^T) = \textbf{Span}\left(\left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right]\right), \quad \textit{Col}(A) = \textbf{Span}\left(\left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right]\right)$$

Thus

$$Null(A)^{\perp} = Col(A^{T}) = Row(A)$$

$$Null(A^T)^{\perp} = Col(A) = Row(A^T)$$

Theorem 19.19 If *S* is a subspace of \mathbb{R}^n , then

$$\dim S + \dim S^{\perp} = n.$$

Furthermore, if $\{\mathbf{u}_1,\cdots,\mathbf{u}_r\}$ is a basis for S and $\{\mathbf{u}_{r+1},\cdots,\mathbf{u}_n\}$ is a basis for S^{\perp} , then $\{\mathbf{u}_1,\cdots,\mathbf{u}_r,\mathbf{u}_{r+1},\cdots,\mathbf{u}_n\}$ is a basis for \mathbb{R}^n .

Proof. Skipped. See Steven's book P220 or see the appendix.

Remark. If S is a subspace of \mathbb{R}^n , it can be shown that $(S^{\perp})^{\perp} = S$ (the proof is skipped, see Steven's book P221). S and S^{\perp} are mutually orthogonal.

Appendix: The proof of Cauchy-Schwartz Inequality

Theorem 19.5 (Cauchy-Schwartz Inequality) If x and y are any two vectors in the \mathbb{R}^n , then

$$|\mathbf{x}^T\mathbf{y}| \leq \parallel \mathbf{x} \parallel \parallel \mathbf{y} \parallel$$

Proof. If $\mathbf{y} = \mathbf{0}$, the inequality becomes equality. If $\mathbf{y} \neq \mathbf{0}$, then $(\mathbf{x} - k\mathbf{y})^T(\mathbf{x} - k\mathbf{y}) \geq 0$ for any $k \in \mathbb{R}$. $(\mathbf{x} - k\mathbf{y})^T(\mathbf{x} - k\mathbf{y}) = \|\mathbf{x}\|^2 - 2k\mathbf{x}^T\mathbf{y} + k^2\|\mathbf{y}\|^2 \geq 0$ for any $k \in \mathbb{R}$. Thus

$$\triangle = 4|\mathbf{x}^T\mathbf{y}|^2 - 4 \parallel \mathbf{x} \parallel^2 \parallel \mathbf{y} \parallel^2 \le 0$$

This gives the result.

Theorem 19.19

If S is a subspace of \mathbb{R}^n , then

$$\dim S + \dim S^{\perp} = n.$$

Furthermore, if $\{\mathbf{u}_1, \cdots, \mathbf{u}_r\}$ is a basis for S and $\{\mathbf{u}_{r+1}, \cdots, \mathbf{u}_n\}$ is a basis for S^{\perp} , then $\{\mathbf{u}_1, \cdots, \mathbf{u}_r, \mathbf{u}_{r+1}, \cdots, \mathbf{u}_n\}$ is a basis for \mathbb{R}^n .

Proof.

- (1) If $S = \{0\}$, then $S^{\perp} = \mathbb{R}^n$, the statement is true.
- (2) Assume that $S \neq \{\mathbf{0}\}$, then let $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ be a basis for S, let $A = [\mathbf{u}_1, \dots, \mathbf{u}_r]$, then S = Col(A), $rank(A) = rank(A^T) = r$ and

$$S^{\perp} = Col(A)^{\perp} = Null(A^{T})$$

By the Rank-Nullity theorem, we have $rank(A^T) + dim(Null(A^T)) = n$, thus

$$\dim S + \dim S^{\perp} = n$$

4 D > 4 P > 4 E > 4 E > 9 Q P

Now suppose that the following linear combination is zero, i.e.,

$$\alpha_1 \mathbf{u}_1 + \cdots + \alpha_r \mathbf{u}_r + \alpha_{r+1} \mathbf{u}_{r+1} + \cdots + \alpha_n \mathbf{u}_n = \mathbf{0}$$

then

$$\alpha_1 \mathbf{u}_1 + \dots + \alpha_r \mathbf{u}_r = -\alpha_{r+1} \mathbf{u}_{r+1} - \dots - \alpha_n \mathbf{u}_n$$

The LHS is a vector in S and the RHS is a vector in S^{\perp} , since $S \cap S^{\perp} = \{0\}$, then

$$\alpha_1 \mathbf{u}_1 + \cdots + \alpha_r \mathbf{u}_r = 0 = -\alpha_{r+1} \mathbf{u}_{r+1} - \cdots - \alpha_n \mathbf{u}_n$$

Since $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ is a basis for S and $\{\mathbf{u}_{r+1}, \dots, \mathbf{u}_n\}$ is a basis for S^{\perp} , thus

$$\alpha_1 = \cdots = \alpha_r = \alpha_{r+1} = \cdots = \alpha_n = 0$$

Thus, $\{\mathbf{u}_1, \dots, \mathbf{u}_r, \mathbf{u}_{r+1}, \dots, \mathbf{u}_n\}$ is a basis for \mathbb{R}^n .

◆ロ > ◆回 > ◆ 直 > ◆ 直 > り へ で