Logique des prédicats

Marie-Ange Remiche

Cours donné par Martine De Vleeschouwer

Université de Namur

Etude de cas

Représenter, grâce à la logique du premier ordre, la proposition Tout nombre entier naturel x a un successeur qui est inférieur ou égal à tout entier strictement supérieur à x. par une formule logique en utilisant les prédicats suivants :

Etude de cas

Représenter, grâce à la logique du premier ordre, la proposition *Tout nombre entier naturel* x *a un successeur qui est inférieur ou égal à tout entier strictement supérieur à x.* par une formule logique en utilisant les prédicats suivants :

• x est le successeur de y : succ(x, y),

Etude de cas

Représenter, grâce à la logique du premier ordre, la proposition Tout nombre entier naturel x a un successeur qui est inférieur ou égal à tout entier strictement supérieur à x. par une formule logique en utilisant les prédicats suivants :

- x est le successeur de y : succ(x, y),
- x est inférieur ou égal à y : inf(x, y).

Etude de cas

Représenter, grâce à la logique du premier ordre, la proposition Tout nombre entier naturel x a un successeur qui est inférieur ou égal à tout entier strictement supérieur à x. par une formule logique en utilisant les prédicats suivants :

- x est le successeur de y : succ(x, y),
- x est inférieur ou égal à y : inf(x, y).

D'après vous, cette proposition est-elle vrai ou fausse? Quelle serait la valeur de ce successeur?

• de traduire en langage mathématique des propositions, des prédicats : créer un modèle,

- de traduire en langage mathématique des propositions, des prédicats : créer un modèle,
- d'utiliser à bon escient le formalisme (les connecteurs et les quantificateurs) associé à ce langage,

- de traduire en langage mathématique des propositions, des prédicats : créer un modèle,
- d'utiliser à bon escient le formalisme (les connecteurs et les quantificateurs) associé à ce langage,
- de vérifier la véracité d'une déduction de ces règles, pour des valeurs de paramètres particuliers.

Ce que nous allons voir dans ce chapitre...

Table des matières

Ce que nous allons voir dans ce chapitre...

Table des matières

• apprendre à **quantifier** la valeur du paramètre (ou des paramètres) des prédicats du modèle

Ce que nous allons voir dans ce chapitre...

Table des matières

- apprendre à quantifier la valeur du paramètre (ou des paramètres) des prédicats du modèle
- manipuler à bon escient ces quantificateurs, grâce à leurs propriétés

Exemple

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

Exemple

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

Exemple

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

$$\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$$

Exemple

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

$$\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$$

Définition

Soit p(x) un prédicat en la variable x. La proposition

$$\forall x \in \Omega : p(x)$$

est vraie si et seulement si toute valeur de x rend vrai le prédicat p(x).

Exemple

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

$$\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$$

Définition

Soit p(x) un prédicat en la variable x. La proposition

$$\forall x \in \Omega : p(x)$$

est vraie si et seulement si toute valeur de x rend vrai le prédicat p(x).

Le symbole \forall s'appelle le *quantificateur universel*.

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

 $\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

$$\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$$

Remarques

• Notons d'abord la structure de cette proposition.

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

$$\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$$

- Notons d'abord la structure de cette proposition.
 - On trouve d'abord la présence du quantificateur ∀ qui porte sur le paramètre x.

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

$$\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$$

- Notons d'abord la structure de cette proposition.
 - On trouve d'abord la présence du quantificateur ∀ qui porte sur le paramètre x.
 - Ensuite, nous avons le prédicat.

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

$$\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$$

- Notons d'abord la structure de cette proposition.
 - On trouve d'abord la présence du quantificateur ∀ qui porte sur le paramètre x.
 - Ensuite, nous avons le prédicat.
 - Il s'agit d'un prédicat composé puisqu'il fait intervenir deux prédicats à savoir
 - $x \leq 4$,
 - $x \le 7$.

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

$$\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$$

- Notons d'abord la structure de cette proposition.
 - On trouve d'abord la présence du quantificateur ∀ qui porte sur le paramètre x.
 - Ensuite, nous avons le prédicat.
 - Il s'agit d'un prédicat composé puisqu'il fait intervenir deux prédicats à savoir
 - x < 4.
 - $x \le 7$.
 - Ces deux prédicats sont reliés par une implication.

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

$$\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$$

- Notons d'abord la structure de cette proposition.
 - On trouve d'abord la présence du quantificateur ∀ qui porte sur le paramètre x.
 - Ensuite, nous avons le prédicat.
 - Il s'agit d'un prédicat composé puisqu'il fait intervenir deux prédicats à savoir
 - $x \leq 4$,
 - $x \le 7$.
 - Ces deux prédicats sont reliés par une implication.
- Une proposition ainsi formulée est fausse dès qu'il existe un seul x pour lequel la proposition p(x) ne peut être vérifiée.

L'assertion

Il existe un naturel tel que son carré vaut 4..

peut s'écrire

$$\exists n \in \mathbb{N} : n^2 = 4$$

L'assertion

Il existe un naturel tel que son carré vaut 4..

peut s'écrire

$$\exists n \in \mathbb{N} : n^2 = 4$$

Définition

Soit p(x) un prédicat en la variable x. La proposition

L'assertion

Il existe un naturel tel que son carré vaut 4..

peut s'écrire

$$\exists n \in \mathbb{N} : n^2 = 4$$

Définition

Soit p(x) un prédicat en la variable x. La proposition

$$\exists x \in \Omega : p(x)$$

est vraie si et seulement si il existe au moins une valeur de x qui rend vraie la proposition p(x).

L'assertion

Il existe un naturel tel que son carré vaut 4..

peut s'écrire

$$\exists n \in \mathbb{N} : n^2 = 4$$

Définition

Soit p(x) un prédicat en la variable x. La proposition

$$\exists x \in \Omega : p(x)$$

est vraie si et seulement si il existe au moins une valeur de x qui rend vraie la proposition p(x).

Le symbole \exists s'appelle le *quantificateur existentiel*.

Priorité

Ces quantificateurs ont une priorité maximale. Ils portent donc sur l'ensemble du prédicat.

Priorité

Ces quantificateurs ont une priorité maximale. Ils portent donc sur l'ensemble du prédicat.

Exemple

$$\forall x \in \mathbb{N}: \quad (x \le 4) \Rightarrow (x \le 7)$$

portée pour la quantification de x

$$\forall \epsilon > 0 : \exists \delta > 0 : \|x - 2\| < \delta \Rightarrow \left\| \frac{x^2 - 4}{x^2 - 3x + 2} - 4 \right\| \le \epsilon.$$
portée pour la quantification de \(\delta\)
portée pour la quantification de \(\epsilon\)

La valeur du paramètre δ est fonction de la valeur du paramètre $\varepsilon.$

Soit $A \subset \Omega$, nous avons

$$\forall x \in A : p(x),$$

Soit $A \subset \Omega$, nous avons

$$\forall x \in A : p(x),$$

qui se lit pour tout élément x de A tel que p(x),

Soit $A \subset \Omega$, nous avons

$$\forall x \in A : p(x),$$

qui se lit *pour tout élément* x *de* A *tel que* p(x), est une écriture abrégée de

$$\forall x \in \Omega : ((x \in A) \Rightarrow p(x))$$

Soit $A \subset \Omega$, nous avons

$$\forall x \in A : p(x),$$

qui se lit pour tout élément x de A tel que p(x), est une écriture abrégée de

$$\forall x \in \Omega : ((x \in A) \Rightarrow p(x))$$

En effet, être élément de A suffit pour affirmer (à tort ou à raison) p(x).

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

$$\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$$

L'assertion

Les naturels positifs plus petits que 4, sont plus petits que 7.

peut s'écrire

$$\forall x \in \mathbb{N} : (x \le 4) \Rightarrow (x \le 7),$$

ou encore

$$\forall x \in \{0, 1, 2, 3, 4\} : (x \le 7).$$

Soit $B \subset \Omega$, nous avons également

$$\exists x \in B : p(x)$$

qui signifie il existe un élément x de B tel que p(x),

Soit $B \subset \Omega$, nous avons également

$$\exists x \in B : p(x)$$

qui signifie il existe un élément x de B tel que p(x), est une écriture abrégée de

$$\exists x \in \Omega : ((x \in B) \land p(x)).$$

Soit $B \subset \Omega$, nous avons également

$$\exists x \in B : p(x)$$

qui signifie il existe un élément x de B tel que p(x), est une écriture abrégée de

$$\exists x \in \Omega : ((x \in B) \land p(x)).$$

En effet, affirmer la proposition de départ signifie que vous travaillez avec un élément de B pour lequel vous affirmez (à tort ou à raison) p(x).

En plus des quantificateurs \forall et \exists , on peut également parler du quantificateur \exists !

En plus des quantificateurs \forall et \exists , on peut également parler du quantificateur \exists ! qui signifie *il existe un et un seul*.

En plus des quantificateurs \forall et \exists , on peut également parler du quantificateur \exists ! qui signifie *il existe un et un seul*.

Ecrire la formule

$$\exists!x\in\Omega:p(x)$$

En plus des quantificateurs \forall et \exists , on peut également parler du quantificateur \exists ! qui signifie *il existe un et un seul*.

Ecrire la formule

$$\exists ! x \in \Omega : p(x)$$

est équivalent à écrire

$$\exists x \in \Omega : p(x) \land (\forall y \in \Omega \ \forall z \in \Omega : (p(y) \land p(z) \Rightarrow y = z)).$$

Observons la proposition

$$\exists x \in \Omega : p(x) \land (\forall y \in \Omega \, \forall z \in \Omega : (p(y) \land p(z) \Rightarrow y = z)).$$

Observons la proposition

$$\exists x \in \Omega : p(x) \land (\forall y \in \Omega \ \forall z \in \Omega : (p(y) \land p(z) \Rightarrow y = z)).$$

La première partie $\exists x \in \Omega : p(x)$ affirme l'existence d'un tel élément qui vérifie p(x).

Observons la proposition

$$\exists x \in \Omega : p(x) \land (\forall y \in \Omega \ \forall z \in \Omega : (p(y) \land p(z) \Rightarrow y = z)).$$

La première partie $\exists x \in \Omega : p(x)$ affirme l'existence d'un tel élément qui vérifie p(x).

La seconde affirme l'unicité de l'élément.

Observons la proposition

$$\exists x \in \Omega : p(x) \land (\forall y \in \Omega \ \forall z \in \Omega : (p(y) \land p(z) \Rightarrow y = z)).$$

La première partie $\exists x \in \Omega : p(x)$ affirme l'existence d'un tel élément qui vérifie p(x).

La seconde affirme l'unicité de l'élément.

Leur conjonction affirme qu'il existe un et un seul élément.

Observons la proposition

$$\exists x \in \Omega : p(x) \land (\forall y \in \Omega \, \forall z \in \Omega : (p(y) \land p(z) \Rightarrow y = z)).$$

La première partie $\exists x \in \Omega : p(x)$ affirme l'existence d'un tel élément qui vérifie p(x).

La seconde affirme l'unicité de l'élément.

Leur conjonction affirme qu'il existe un et un seul élément.

Attention, on évitera ce quantificateur.

2. Propriétés des quantificateurs

Propriété

Dans la formule

$$\forall x \in \Omega : p(x)$$

x est une variable.

2. Propriétés des quantificateurs

Propriété

Dans la formule

$$\forall x \in \Omega : p(x)$$

x est une variable.

Dès lors, la formule

$$\forall y \in \Omega : p(y)$$

lui est rigoureusement équivalente.

2. Propriétés des quantificateurs

Propriété

Dans la formule

$$\forall x \in \Omega : p(x)$$

x est une variable.

Dès lors, la formule

$$\forall y \in \Omega : p(y)$$

lui est rigoureusement équivalente.

Nous avons donc

$$\vdash [\forall x \in \Omega : p(x)] \Leftrightarrow [\forall y \in \Omega : p(y)]$$
.

$$\forall \epsilon > 0 : \exists \delta > 0 : \|x - 2\| < \delta \Rightarrow \left\| \frac{x^2 - 4}{x^2 - 3x + 2} - 4 \right\| \le \epsilon$$
portée pour la quantification de ϵ

La valeur du paramètre δ est fonction de la valeur du paramètre ϵ .

$$\forall \epsilon > 0 : \exists \delta > 0 : \|x - 2\| < \delta \Rightarrow \left\| \frac{x^2 - 4}{x^2 - 3x + 2} - 4 \right\| \le \epsilon$$
portée pour la quantification de \(\delta\)

La valeur du paramètre δ est fonction de la valeur du paramètre ϵ .

Remarque

On peut tout à fait écrire des formules où les quantificateurs se présentent en cascade.

$$\forall \epsilon > 0 : \exists \delta > 0 : \|x - 2\| < \delta \Rightarrow \left\| \frac{x^2 - 4}{x^2 - 3x + 2} - 4 \right\| \le \epsilon$$
portée pour la quantification de \(\delta\)

La valeur du paramètre δ est fonction de la valeur du paramètre ϵ .

Remarque

On peut tout à fait écrire des formules où les quantificateurs se présentent en cascade.

Dès lors, leur ordre d'apparition a de l'importance

$$\forall \epsilon > 0 : \exists \delta > 0 : \|x - 2\| < \delta \Rightarrow \left\| \frac{x^2 - 4}{x^2 - 3x + 2} - 4 \right\| \le \epsilon$$
portée pour la quantification de δ

La valeur du paramètre δ est fonction de la valeur du paramètre ϵ .

Remarque

On peut tout à fait écrire des formules où les quantificateurs se présentent en cascade.

Dès lors, leur ordre d'apparition a de l'importance

$$\forall x \in \Omega \,\exists y \in \Omega \,\exists z \in \Omega : p(x, y, z).$$

la valeur de y peut dépendre de x et celle de z de x et de y.

La quantité l est la limite de la suite a_1, a_2, \ldots si

$$\forall \epsilon > 0 : \exists N \geq 1 : \forall n \geq N : -\epsilon < a_n - l < \epsilon,$$

La quantité l est la limite de la suite a_1, a_2, \ldots si

$$\forall \epsilon > 0 : \exists N \geq 1 : \forall n \geq N : -\epsilon < a_n - l < \epsilon,$$

qui se lit Quel que soit le ε que l'on me donne, je peux trouver un nombre naturel N tel que à partir de l'indice n (pour autant qu'il soit plus grand que N), la différence entre le terme a_n de la suite et la quantité l est au maximum de ε .

La quantité l est la limite de la suite a_1, a_2, \ldots si

$$\forall \epsilon > 0 : \exists N \geq 1 : \forall n \geq N : -\epsilon < a_n - l < \epsilon,$$

qui se lit Quel que soit le ε que l'on me donne, je peux trouver un nombre naturel N tel que à partir de l'indice n (pour autant qu'il soit plus grand que N), la différence entre le terme a_n de la suite et la quantité l est au maximum de ε .

Dans cet énoncé, il faut bien comprendre que la quantité N dépend de la valeur de ϵ .

Considérons les deux propositions suivantes :

$$\forall x \in \mathbb{N} : \exists y \in \mathbb{N} : x - y = 0,$$

$$\exists y \in \mathbb{N} : \forall x \in \mathbb{N} : x - y = 0.$$

Considérons les deux propositions suivantes :

$$\forall x \in \mathbb{N} : \exists y \in \mathbb{N} : x - y = 0,$$

$$\exists y \in \mathbb{N} : \forall x \in \mathbb{N} : x - y = 0.$$

La seconde proposition est fausse. Elle affirme qu'il existe un naturel tel que retranché à n'importe quel autre naturel, on obtient 0.

Considérons les deux propositions suivantes :

$$\forall x \in \mathbb{N} : \exists y \in \mathbb{N} : x - y = 0,$$

 $\exists y \in \mathbb{N} : \forall x \in \mathbb{N} : x - y = 0.$

La seconde proposition est fausse. Elle affirme qu'il existe un naturel tel que retranché à n'importe quel autre naturel, on obtient 0.

La première est correcte. En effet, il suffit de choisir y = x.

Considérons les deux propositions suivantes :

$$\forall x \in \mathbb{N} : \exists y \in \mathbb{N} : x - y = 0,$$

 $\exists y \in \mathbb{N} : \forall x \in \mathbb{N} : x - y = 0.$

La seconde proposition est fausse. Elle affirme qu'il existe un naturel tel que retranché à n'importe quel autre naturel, on obtient 0.

La première est correcte. En effet, il suffit de choisir y = x.

Remarque

L'ordre dans lequel se présentent les quantificateurs, est important.

Les règles fondamentales de négation des formules quantifiées sont

$$\vdash \neg(\forall x \in \Omega : p(x)) \Leftrightarrow \exists x \in \Omega : \neg p(x)$$

Les règles fondamentales de négation des formules quantifiées sont

$$\vdash \neg(\forall x \in \Omega : p(x)) \Leftrightarrow \exists x \in \Omega : \neg p(x)$$

$$\vdash \neg(\exists x \in \Omega : p(x)) \Leftrightarrow \forall x \in \Omega : \neg p(x)$$

Les règles fondamentales de négation des formules quantifiées sont

$$\vdash \neg(\forall x \in \Omega : p(x)) \Leftrightarrow \exists x \in \Omega : \neg p(x)$$

$$\vdash \neg(\exists x \in \Omega : p(x)) \Leftrightarrow \forall x \in \Omega : \neg p(x)$$

Exemple

Dès lors, on obtient pour la formule suivante

Les règles fondamentales de négation des formules quantifiées sont

$$\vdash \neg(\forall x \in \Omega : p(x)) \Leftrightarrow \exists x \in \Omega : \neg p(x)$$

$$\vdash \neg(\exists x \in \Omega : p(x)) \Leftrightarrow \forall x \in \Omega : \neg p(x)$$

Exemple

Dès lors, on obtient pour la formule suivante

$$\neg(\forall x \in A : \exists y \in B : \exists z \in C \,\forall t \in B : p(x, y, z, t))$$

Les règles fondamentales de négation des formules quantifiées sont

$$\vdash \neg(\forall x \in \Omega : p(x)) \Leftrightarrow \exists x \in \Omega : \neg p(x)$$

$$\vdash \neg(\exists x \in \Omega : p(x)) \Leftrightarrow \forall x \in \Omega : \neg p(x)$$

Exemple

Dès lors, on obtient pour la formule suivante

$$\neg(\forall x \in A : \exists y \in B : \exists z \in C \,\forall t \in B : p(x, y, z, t))$$

$$\Leftrightarrow$$

$$\exists x \in A : \forall y \in B : \forall z \in C : \exists t \in B : \neg p(x, y, z, t)$$

Soit p(x), q(x) deux prédicats, on a les tautologies suivantes

 $\vdash (\forall x \in \Omega : p(x) \land q(x)) \Leftrightarrow (\forall x \in \Omega \ p(x)) \land (\forall x \in \Omega : q(x))$

Soit p(x), q(x) deux prédicats, on a les tautologies suivantes

$$\vdash (\forall x \in \Omega : p(x) \land q(x)) \Leftrightarrow (\forall x \in \Omega \ p(x)) \land (\forall x \in \Omega : q(x))$$

$$\vdash (\exists x \in \Omega : p(x) \lor q(x)) \Leftrightarrow (\exists x \in \Omega : p(x)) \lor (\exists x \in \Omega : q(x)).$$

les formules suivantes ne sont pas des tautologies

$$\forall x \in \Omega : (p(x) \lor q(x)) \Leftrightarrow (\forall x \in \Omega : p(x)) \lor (\forall x \in \Omega : q(x))$$

les formules suivantes ne sont pas des tautologies

$$\forall x \in \Omega : (p(x) \lor q(x)) \Leftrightarrow (\forall x \in \Omega : p(x)) \lor (\forall x \in \Omega : q(x))$$

$$\exists x \in \Omega : (p(x) \land q(x)) \Leftrightarrow (\exists x \in \Omega : p(x)) \land (\exists x \in \Omega : q(x)).$$

les formules suivantes ne sont pas des tautologies

$$\forall x \in \Omega : (p(x) \lor q(x)) \Leftrightarrow (\forall x \in \Omega : p(x)) \lor (\forall x \in \Omega : q(x))$$

$$\exists x \in \Omega : (p(x) \land q(x)) \Leftrightarrow (\exists x \in \Omega : p(x)) \land (\exists x \in \Omega : q(x)).$$

Elles peuvent être vraies mais elles ne sont pas toujours vraies.

les formules suivantes ne sont pas des tautologies

$$\forall x \in \Omega : (p(x) \lor q(x)) \Leftrightarrow (\forall x \in \Omega : p(x)) \lor (\forall x \in \Omega : q(x))$$

$$\exists x \in \Omega : (p(x) \land q(x)) \Leftrightarrow (\exists x \in \Omega : p(x)) \land (\exists x \in \Omega : q(x)).$$

Elles peuvent être vraies mais elles ne sont pas *toujours* vraies. Tout dépend de la signification des variables propositionnelles.

Soit la proposition suivante

$$\forall x \in \mathbb{N} : (x < 3) \lor (x \ge 3).$$

Soit la proposition suivante

$$\forall x \in \mathbb{N} : (x < 3) \lor (x \ge 3).$$

Celle-ci n'est clairement pas équivalente à

$$(\forall x \in \mathbb{N} : x < 3) \lor (\forall x \in \mathbb{N} : x \ge 3).$$

Soit la proposition suivante

$$\forall x \in \mathbb{N} : (x < 3) \lor (x \ge 3).$$

Celle-ci n'est clairement pas équivalente à

$$(\forall x \in \mathbb{N} : x < 3) \lor (\forall x \in \mathbb{N} : x \ge 3).$$

En effet, cette dernière proposition est fausse.

Soit la proposition suivante

$$\forall x \in \mathbb{N} : (x < 3) \lor (x \ge 3).$$

Celle-ci n'est clairement pas équivalente à

$$(\forall x \in \mathbb{N} : x < 3) \lor (\forall x \in \mathbb{N} : x \ge 3).$$

En effet, cette dernière proposition est fausse.

Tous les naturels ne sont pas strictement plus petits que 3, donc $(\forall x \in \mathbb{N} : x < 3)$ est faux.

Soit la proposition suivante

$$\forall x \in \mathbb{N} : (x < 3) \lor (x \ge 3).$$

Celle-ci n'est clairement pas équivalente à

$$(\forall x \in \mathbb{N} : x < 3) \lor (\forall x \in \mathbb{N} : x \ge 3).$$

En effet, cette dernière proposition est fausse.

Tous les naturels ne sont pas strictement plus petits que 3, donc $(\forall x \in \mathbb{N} : x < 3)$ est faux.

De la même manière, tous les naturels ne sont pas plus grand que 3, donc $(\forall x \in \mathbb{N} : x \geq 3)$ est faux. Ainsi, la disjonction de ces deux propositions est fausse.

Nous avons

$$\exists x \in \mathbb{N} : (x < 1) \land (x > 2)$$

proposition fausse, et pourtant

$$(\exists x \in \mathbb{N} : x < 1) \land (\exists x \in \mathbb{N} : x > 2)$$

est vraie.

Rappel Table des matières

Nous avons...

- appris à quantifier la valeur du paramètre (ou des paramètres) des prédicats du modèle
- manipulé à bon escient ces quantificateurs, grâce à leurs propriétés

Etre capable...

- de traduire en langage mathématique des propositions, des prédicats : créer un modèle,
- d'utiliser à bon escient le formalisme (les connecteurs et les quantificateurs) associé à ce langage,
- de vérifier la véracité d'une déduction de ces règles, pour des valeurs de paramètres particuliers.