DATA DICTIONARY - 2014 MEAN AND STANDARD DEVIATION

1. activity

Activity performed by a subject

WALKING

WALKING UPSTAIRS

WALKING DOWNSTAIRS

SITTING

STANDING

LAYING

2. subject

The number of the person who perfored some taks

tBodyAccmeanX

Mean of body acceleration in the time domain in the X axis

4. tBodyAccmeanY

Mean of body acceleration in the time domain in the Y axis

tBodyAccmeanZ

Mean of body acceleration in the time domain in the Z axis

6. tGravityAccmeanX

Mean of gravity acceleration in the time domain in the X axis

tGravityAccmeanY

Mean of gravity acceleration in the time domain in the Y axis

8. tGravityAccmeanZ

Mean of gravity acceleration in the time domain in the Z axis

9. tBodyAccJerkmeanX

Mean of body acceleration from Jerk signals in the time domain in the X axis

10. tBodyAccJerkmeanY

Mean of body acceleration from Jerk signals in the time domain in the Y axis

11. tBodyAccJerkmeanZ

Mean of body acceleration from Jerk signals in the time domain in the Z axis

12. tBodyGyromeanX

Mean of body gyroscope in the time domain in the X axis

13. tBodyGyromeanY

Mean of body gyroscope in the time domain in the Y axis

14. tBodyGyromeanZ

Mean of body gyroscope in the time domain in the Z axis

15. tBodyGyroJerkmeanX

Mean of body gyroscope from Jerk signal in the time domain in the X axis

16. tBodyGyroJerkmeanY

Mean of body gyroscope from Jerk signal in the time domain in the Y axis

17. tBodyGyroJerkmeanZ

Mean of body gyroscope from Jerk signal in the time domain in the Z axis

18. tBodyAccMagmean

Mean of acceleration of body magnitude from Euclidian norm in the time domain

19. tGravityAccMagmean

Mean of acceleration of gravity magnitude from Euclidian norm in the time domain

20. tBodyAccJerkMagmean

Mean of acceleration of body magnitude from Euclidian norm from Jerk signal in the time domain

21. tBodyGyroMagmean

Mean of gyroscope of body magnitude from Euclidian norm in the time domain

22. tBodyGyroJerkMagmean

Mean of gyroscope of body magnitude from Euclidian norm from Jerk signal in the time domain

23. fBodyAccmeanX

Mean of body acceleration in the frequency domain in the X axis

24. fBodyAccmeanY

Mean of body acceleration in the frequency domain in the Y axis

25. fBodyAccmeanZ

Mean of body acceleration in the frequency domain in the Z axis

26. fBodyAccmeanFreqX

Mean of body acceleration in the frequency domain in the X axis

27. fBodyAccmeanFreqY

Mean of body acceleration in the frequency domain in the Y axis

28. fBodyAccmeanFreqZ

Mean of body acceleration in the frequency domain in the Z axis

29. fBodyAccJerkmeanX

Mean of body acceleration from Jerk signal in the frequency domain in the X axis

30. fBodyAccJerkmeanY

Mean of body acceleration from Jerk signal in the frequency domain in the Y axis

31. fBodyAccJerkmeanZ

Mean of body acceleration from Jerk signal in the frequency domain in the Z axis

fBodyAccJerkmeanFreqX

Mean of body acceleration from Jerk signal in the frequency domain in the X axis

33. fBodyAccJerkmeanFreqY

Mean of body acceleration from Jerk signal in the frequency domain in the Y axis

34. fBodyAccJerkmeanFreqZ

Mean of body acceleration from Jerk signal in the frequency domain in the Z axis

35. fBodyGyromeanX

Mean of body gyroscope in the frequency domain in the X axis

36. fBodyGyromeanY

Mean of body gyroscope in the frequency domain in the Y axis

37. fBodyGyromeanZ

Mean of body gyroscope in the frequency domain in the Z axis

38. fBodyGyromeanFreqX

Mean of body gyroscope in the frequency domain in the X axis

39. fBodyGyromeanFreqY

Mean of body gyroscope in the frequency domain in the Y axis

40. fBodyGyromeanFreqZ

Mean of body gyroscope in the frequency domain in the Z axis

41. fBodvAccMagmean

Mean of acceleration of body magnitude from Euclidian norm in the frequency domain

42. fBodyAccMagmeanFreq

Mean of acceleration of body magnitude from Euclidian norm in the frequency domain

43. fBodyBodyAccJerkMagmean

Mean of acceleration of body magnitude from Euclidian norm from Jerk signal in the frequency domain

44. fBodyBodyAccJerkMagmeanFreq

Mean of acceleration of body magnitude from Euclidian norm from Jerk signal in the frequency domain

45. fBodyBodyGyroMagmean

Mean of gyroscope of body magnitude from Euclidian norm in the frequency domain

46. fBodyBodyGyroMagmeanFreq

Mean of gyroscope of body magnitude from Euclidian norm in the frequency domain

47. fBodyBodyGyroJerkMagmean

Mean of gyroscope of body magnitude from Euclidian norm from Jerk signal in the frequency domain

48. fBodyBodyGyroJerkMagmeanFreq

Mean of gyroscope of body magnitude from Euclidian norm from Jerk signal in the frequency domain

49. angletBodyAccMeangravity

Body angle according to gravity acceleration

50. angletBodyAccJerkMeangravityMean

Body angle according to gravity acceleration from Jerk signal

51. angletBodyGyroMeangravityMean

Body angle according to gravity gyroscope

52. angletBodyGyroJerkMeangravityMean

Body angle according to gravity gyroscope from Jerk signal

53. anglexgravityMean

Mean of gravity angle X

54. angleYgravityMean

Mean of gravity angle Y

55. angleZgravityMean

Mean of gravity angle Z

56. tBodyAccstdX

Standard deviation of body acceleration in the time domain in the X axis

57. tBodyAccstdY

Standard deviation of body acceleration in the time domain in the Y axis

58. tBodyAccstdZ

Standard deviation of body acceleration in the time domain in the ${\tt Z}$ axis

59. tGravityAccstdX

Standard deviation of gravity acceleration in the time domain in the ${\tt X}$ axis

60. tGravityAccstdY

Standard deviation of gravity acceleration in the time domain in the Y ${\sf axis}$

61. tGravityAccstdZ

Standard deviation of gravity acceleration in the time domain in the ${\bf Z}$ axis

62. tBodyAccJerkstdX

Standard deviation of gravity acceleration from Jerk signal in the time domain in the ${\bf X}$ axis

63. tBodyAccJerkstdY

Standard deviation of gravity acceleration from Jerk signal in the time domain in the Y axis $\frac{1}{2}$

64. tBodyAccJerkstdZ

Standard deviation of gravity acceleration from Jerk signal in the time domain in the ${\bf Z}$ axis

65. tBodyGyrostdX

Standard deviation of body gyroscope in the time domain in the ${\tt X}$ axis

66. tBodyGyrostdY

Standard deviation of body gyroscope in the time domain in the Y ${\tt axis}$

67. tBodyGyrostdZ

Standard deviation of body gyroscope in the time domain in the ${\bf Z}$ axis

68. tBodyGyroJerkstdX

Standard deviation of body gyroscope from Jerk signal in the tim ${\tt e}$ domain in the X axis

69. tBodyGyroJerkstdY

70. Standard deviation of body gyroscope from Jerk signal in the ti me domain in the Y axis

71. TBodyGyroJerkstdZ

Standard deviation of body gyroscope from Jerk signal in the time domain in the ${\bf Z}$ axis

72. TBodyAccMagstd

Standard deviation of acceleration of body magnitude from Eucli dian norm in the time domain

73. tGravityAccMagstd

Standard deviation of acceleration of gravity magnitude from Euclidian norm in the time domain

74. tBodyAccJerkMagstd

Standard deviation of acceleration of body magnitude from Euclid ian norm from Jerk signal in the time domain

75. tBodyGyroMagstd

Standard deviation of gyroscope of body magnitude from Jerk sign al in the time domain

76. tBodyGyroJerkMagstd

Standard deviation of gyroscope of body magnitude from Euclidian norm from Jerk signal in the time domain

77. fBodyAccstdX

Standard deviation of body acceleration in the frequency domain in the X axis

78. tBodyAccstdY

Standard deviation of body acceleration in the frequency domain in the Y axis

79. fBodyAccstdZ

Standard deviation of body acceleration in the frequency domain in the Z axis

80. fBodyAccJerkstdX

Standard deviation of body acceleration from Jerk signal in the frequency domain in the X axis

81. fBodyAccJerkstdY

Standard deviation of body acceleration from Jerk signal in the frequency domain in the Y axis

82. fBodyAccJerkstdZ

Standard deviation of body acceleration from Jerk signal in the frequency domain in the Z axis

83. fBodyGyrostdX

Standard deviation of body gyroscope in the frequency domain in the X axis

84. fBodyGyrostdY

Standard deviation of body gyroscope in the frequency domain in the Y axis

85. fBodyGyrostdZ

Standard deviation of body gyroscope in the frequency domain in the Z axis

86. fBodyBodyAccJerkMagstd

Standard deviation of acceleration of body magnitude from Euclid ian norm from Jerk signal in the frequency domain

87. fBodyBodyGyroMagstd

Standard deviation of gyroscope of body magnitude from Jerk sign al in the frequency domain

88. fBodyBodyGyroJerkMagstd

Standard deviation of gyroscope of body magnitude from Euclidian norm from Jerk signal in the frequency domain