Continuïtat norma de matrius

Marco Praderio 1361525

Una norma de matrius és una funció $||\cdot||:M_n\to\mathbb{R}^+$ amb les següents propietats

- ||A|| = 0 si i només si A = 0
- $||\alpha A|| = |\alpha|||A||$ amb $\alpha \in \mathbb{R}$
- $||A + B|| \le ||A|| + ||B||$
- $||AB|| \le ||A|| \cdot ||B||$

els nostre objectiu es demostrar que tota norma de matrius és continua respecte dels seus coeficients. Per fer-ho aplicarem directament la definició de continuïtat.

Hem de veure que per a tot $\varepsilon > 0$ existeix $\delta > 0$ tal que si, $||A - B||_{\infty} < \delta$ aleshores $||A - B|| < \varepsilon$. Per simplificar la notació definirem $E_{i,j}$ la matriu $n \times n$ tal que te tots els coeficients nuls excepte el de la fila i columna j que val 1 (aquestes matrius formen una base del espai de matrius de dimensió $n \times n$) i definirem $M = \max\{||E_{i,j}||\}$. Dit això podem començar a acotar superiorment el valor ||A - B||

$$||A - B|| = ||\sum_{i,j=1}^{n} \alpha_{i,j} E_{i,j} \le \sum_{i,j=1}^{n} ||\alpha_{i,j} E_{i,j}|| \le \sum_{i,j=1}^{n} |\alpha_{i,j}| \cdot ||E_{i,j}|| \le M \sum_{i,j=1}^{n} |\alpha_{i,j}| \le n^2 M ||A - B||_{\infty} < n^2 M \delta$$

per tant si agafem $\delta = \frac{\varepsilon}{n^2 M}$ tindrem que per a matrius A, B tals que $||A - B||_{\infty} < \delta$ (els coeficients de A estan com a molt a una distància δ dels coeficients de B) aleshores $||A - B|| < \varepsilon$. En altres paraules la norma de matrius $||\cdot||$ és contínua. Com que $||\cdot||$ és una norma de matrius general aleshores tota norma de matrius és continua.