Деревья в машинном обучении

Лекция №7

Лектор: Артём Шевляков

Здесь лучше начать с примера

Пример дерева для классификации

Это дерево предсказывает средний балл студента на ближайшей сессии (задача регрессии). Здесь s1 (s2) – средний балл за предпоследнюю (последнюю) сессию. Еще использованы «номер курса», «баллы ЕГЭ по математике», «пол».

Предсказание для первокурсников

(у них нет данных о предыдущих сессиях) duration – сколько времени (мин.) студент тратит на дорогу «дом-универ»

Терминология

корень

В «не-листьях» стоят условия на ветвление. В листах стоят предсказания модели.

Основной вопрос

Как найти оптимальное условие для ветвления??? Для этого нужно:

- 1. Найти оптимальный признак.
- 2. Найти значение этого признака для ветвления.

Если в п.1 был выбран бинарный признак, то п.2 можно не делать.

Для простоты далее будем предполагать, что все признаки бинарные (случай не бинарных признаков см. в [1]). Например, вот задача о предсказании результата матча:

V – соперник выше в турнирной таблице D – играем дома L – лидеры команды участвуют в матче R –во время матча идет дождь

№ матча	Выше? (V)	Дома? (D)	Лидеры? (L)	Дождь? (R)	Победа (Y)
1	1	1	1	1	0
2	1	1	1	0	1
3	1	1	0	0	0
4	0	1	0	0	1
5	0	0	0	0	0
6	0	1	0	1	1
7	1	0	1	1	0

Как найти оптимальный признак для ветвления

Есть несколько критериев, каждый з которых вычисляет свою величину:

- 1. Энтропия [1]
- 2. Неопределенность Джини (изучим на этой лекции)
- 3. Статистическая информативность [2]
- 4. и т.д.

Но смысл вех этих умных критериев состоит в следующем:

как определить, что один из признаков определяет Үлучше, чем другой?

Какой тут из признаков лучше всего определяет признак Ү?

P1	P2	P3	P4	Υ
0	1	0	0	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1

А как это формализовать?

Неопределенность Джини (Gini impurity)

Для признака П она считается по формуле (Y – целевой признак):

Gini(
$$\Pi$$
)=Pr(Π =0)*Pr(Y=0| Π =0)*Pr(Y=1| Π =0)+
+Pr(Π =1)*Pr(Y=0| Π =1)*Pr(Y=1| Π =1)

Неопределенность Джини (Gini impurity)

$$Gini(\Pi)=Pr(\Pi=0)*Pr(Y=0|\Pi=0)*Pr(Y=1|\Pi=0)+Pr(\Pi=1)*Pr(Y=0|\Pi=1)*Pr(Y=1|\Pi=1)$$
Для таблицы

P1	P2	Р3	P4	Υ
0	1	0	0	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1

имеем

$$Gini(P1)=0.5*1*0+0.5*0*1=0$$

$$Gini(P2)=0.5*0*1+0.5*1*0=0$$

$$Gini(P3) = 0.5*0.5*0.5*0.5*0.5*0.5=0.25$$

$$Gini(P4)=0.25*1*0+0.75*1/3*2/3=1/6$$

Неопределенность Джини (Gini impurity)

Последний пример показывает, что чем меньше Gini, тем лучше признак.

Правило: при построении дерева для ветвления нужно брать признак с минимальным Gini.

Вычисляем

№ матча	Выше? (V)	Дома? (D)	Лидеры? (L)	Дождь? (R)	Победа (Y)
1	1	1	1	1	0
2	1	1	1	0	1
3	1	1	0	0	0
4	0	1	0	0	1
5	0	0	0	0	0
6	0	1	0	1	1
7	1	0	1	1	0

Вычисляем

$$Pr(V=0)=3/7 Pr(V=1)=4/7$$

№ матча	Выше? (V)	Дома? (D)	Лидеры? (L)	Дождь? (R)	Победа (Y)
1	1	1	1	1	0
2	1	1	1	0	1
3	1	1	0	0	0
4	0	1	0	0	1
5	0	0	0	0	0
6	0	1	0	1	1
7	1	0	1	1	0

Вычисляем

$$Pr(V=0)=3/7 Pr(V=1)=4/7$$

№ матча	Выше? (V)	Дома? (D)	Лидеры? (L)	Дождь? (R)	Победа (Y)
1	1	1	1	1	0
2	1	1	1	0	1
3	1	1	0	0	0
4	0	1	0	0	1
5	0	0	0	0	0
6	0	1	0	1	1
7	1	0	1	1	0

Вычисляем Джини для второго признака

$$Pr(D=0)=2/7 Pr(D=1)=5/7$$

№ матча	Выше? (V)	Дома? (D)	Лидеры? (L)	Дождь? (R)	Победа (Y)
1	1	1	1	1	0
2	1	1	1	0	1
3	1	1	0	0	0
4	0	1	0	0	1
5	0	0	0	0	0
6	0	1	0	1	1
7	1	0	1	1	0

Аналогично для других признаков

Gini(L)=0.24Gini(R)=0.24

№ матча	Выше? (V)	Дома? (D)	Лидеры? (L)	Дождь? (R)	Победа (Y)
1	1	1	1	1	0
2	1	1	1	0	1
3	1	1	0	0	0
4	0	1	0	0	1
5	0	0	0	0	0
6	0	1	0	1	1
7	1	0	1	1	0

Находим признак с минимальным Джини

Этот признак идет в вершину дерева. Тренировочная выборка разбивается на 2 части

Находим признак с минимальным Джини

1

№ матча	Выше? (V)	Лидеры? (L)	Дождь? (R)	Победа (Y)
5	0	0	0	0
7	1	1	1	0

В этом листе все объекты принадлежат одному классу (Y=0). Здесь ветвления заканчиваются.

Теперь работаем с объектами из левой вершины

$$Pr(V=0)=2/5 Pr(V=1)=3/5$$

$$Pr(Y=0|V=0)=0/2$$

$$Pr(Y=1|V=0)=2/2$$

$$Pr(Y=0|V=1)=2/3$$

$$Pr(Y=1|V=1)=1/3$$

№ матча	Выше? (V)	Лидеры? (L)	Дождь? (R)	Победа (Y)
1	1	1	1	0
2	1	1	0	1
3	1	0	0	0
4	0	0	0	1
6	0	0	1	1

Теперь работаем с объектами из левой вершины

Получаем

Gini(V)=0.13

Gini(L)=0.23

Gini(R)=0.23

Выбираем для ветвления признак V

№ матча	Выше? (V)	Лидеры? (L)	Дождь? (R)	Победа (Y)
1	1	1	1	0
2	1	1	0	1
3	1	0	0	0
4	0	0	0	1
6	0	0	1	1

Будем строить ветвление здесь

В этом листе все объекты принадлежат одному классу (Y=1). Здесь ветвления заканчиваются.

Теперь работаем с объектами из левой вершины

Здесь получаем

Gini(L)=
$$0.16$$

Gini(R)= 0.16

Можно выбрать любой из признаков.

№ матча	Лидеры? (L)	Дождь? (R)	Победа (Y)
1	1	1	0
2	1	0	1
3	0	0	0

Если в лист попали тренировочные объекты разных классов, то лист относит тестовые объекты к преобладающему классу.

№	Выше?	Дома?	Лидеры?	Дождь?	Победа
матча	(V)	(D)	(L)	(R)	(Y)
8	0	1	1	0	?

№	Выше?	Дома?	Лидеры?	Дождь?	Победа
матча	(V)	(D)	(L)	(R)	(Y)
8	0	1	1	0	?

Деревья для задачи регрессии

На прошлых слайдах было построено дерево для задачи классификации

А как строить дерево для решения задачи регрессии???

Нужно ответить на вопросы:

- 1. По какому правилу находить признак для ветвления?
- 2. Как выбрать предсказываемое значение для листа?

Пример задачи регрессии

Как выбирать признак? Правило (самое простейшее): выбирай признак, который минимизирует величину $\Pr(\Pi=0)*s_{Y(\Pi=0)}+\Pr(\Pi=1)*s_{Y(\Pi=1)}$ где

 $s_{Y(\Pi=i)}$ – отклонение значений Y, для которых $\Pi=i$

№ матча	Выше ? (V)	Дома ? (D)	Лидеры ? (L)	Дождь? (R)	Число зрителей(Y)
1	1	1	1	1	23
2	1	1	1	0	10
3	1	1	0	0	5
4	0	1	0	0	54
5	0	0	0	0	14
6	0	1	0	1	22
7	1	0	1	1	20

В задаче регрессии значение, которое выдает лист – это

...среднее арифметическое значений Y тренировочных объектов, попавших в этот лист.

Деревья vs пропуски данных

Деревья могут предсказывать...

... значение целевого признака даже для объектов с пропусками.

Для этого нужно:

Объект обрабатывается деревом обычным способом, при попадании в вершину, в которой используется пропущенный признак...

№	Выше?	Дома?	Лидеры?	Дождь?	Победа
матча	(V)	(D)	(L)	(R)	(Y)
8	1	?	1	0	?

Для этого нужно:

Объект обрабатывается деревом обычным способом, при попадании в вершину, в которой используется пропущенный признак происходит ветвление процесса: мы начинаем идти по обеим ветвям из этой вершины.

В итоге мы можем попасть более чем в один лист.

Какой выдать итоговый ответ? Для классификации? Для регрессии?

№	Выше?	Дома?	Лидеры?	Дождь?	Победа
матча	(V)	(D)	(L)	(R)	(Y)
8	1	?	1	0	?

Итоговый ответ, если попали в несколько листьев

Пусть М - множество объектов тренировочной выборки, которые попадают в эти листья.

При предсказании числового признака (регрессия) в качестве ответа нужно взять среднее значение признака Y в M.

При предсказании метки класса в качестве ответа нужно взять метку преобладающего класса в М.

с пропусками данных?

№	Выше?	Дома?	Лидеры?	Дождь?	Победа
матча	(V)	(D)	(L)	(R)	(Y)
8	1	?	1	0	?

№	Выше?	Дома?	Лидеры?	Дождь?	Победа
матча	(V)	(D)	(L)	(R)	(Y)
8	1	?	1	0	?

Поиск выбросов с помощью деревьев (изолирующий лес)

Дерево разбивает пространство на прямоугольные секторы

Это можно использовать в задаче поиска выбросов.

Выброс должен лежать на периферии – следовательно, в секторе с выбросами будет мало элементов.

Изолирующий лес

- 1. Нужно построить N деревьев.
- 2. Каждое дерево строится до исчерпании выборки
- 3. Для построения ветвления в дереве: выбирается случайный признак и случайное значение для расщепления.

Для каждого объекта мера его нормальности – среднее арифметическое глубин листьев, в которые он попал (изолировался)

Изолирующий лес

Логика алгоритма простая: при «случайном» способе построения деревьев выбросы будут попадать в листья на ранних этапах (на небольшой глубине дерева), т.е. выбросы проще «изолировать». Для изоляции выбросов требуется меньшее число условий

Действительно,

чтобы вычленить (изолировать) красную точку, требуется 2 условия. А чтобы изолировать точку из центра выборки, нужно (в лучшем случае) четыре условия с очень жесткими ограничениями.

Случайный лес (Random forest)

Идея:

Построить несколько деревьев. Собрать их ответы для тестируемого объекта А. В качестве окончательного ответа выдать:

- 1. Среднее значение (если предсказывается числовой признак).
- 2. Метку преобладающего класса (если предсказывается категориальный признак).

А как построить несколько деревьев по одной выборке?

Строительство случайных деревьев

- 1. Выбирается подвыборка обучающей выборки по ней строится дерево (для каждого дерева своя подвыборка).
- 2. Для построения каждого расщепления в дереве просматриваем *р* случайных признаков (для каждого нового расщепления свои случайные признаки).
- 3. Выбираем наилучшие признак и расщепление по нему (по заранее заданному критерию) и т.д.

Использованная литература

- 1. https://habrahabr.ru/company/ods/blog/322534/ (здесь же про энтропию и не бинарные признаки)
- 2. Лекции Воронцова по деревьям http://www.machinelearning.ru/wiki/images/3/3e/Voron-ML-Logic.pdf
- 3. https://logic.pdmi.ras.ru/~sergey/teaching/ml/notes-01-dectrees.pdf (здесь пример про предсказание результата матча, но дерево строится с помощью энтропии (а не Джини))