MILLER-RABIN PRIMALITY TESTING

PROBABILISTIC COMPLITING

BEN BURGER

2020-11-12

MATH BACKGROUND

Fermat's Theorem

If *n* if prime, then for any *a*, we have $a^{n-1} = 1 \pmod{n}$

This suggests the Fermat test: pick a random $a \in [1..n-1]$ and see if $a^{n-1} = 1 \pmod{n}$ holds.

Miller-Rabin Theorem

We recall that n is prime if and only if the solutions of $x^2 = 1 \pmod{n}$ are $x = \pm 1$.

If *n* passes the Fermat test, we should also check $a^{(n-1)/2} = /pm1$.

Similarly, the Miller-Rabin test picks a random $a \in [1..n-1]$ and determines if these equalities hold.

<u>Performance</u>

METHODOLOGY

Test Primality

Checks base case, calls the Miller-Rabin test k times.

Miller-Rabin

Chooses a random a value, performs Miller-Rabin test.

Power

Modular exponentiation utility function.

