

# Analisi e Visualizzazione delle Reti Complesse

NS10 - Power Laws and Rich-Get-Richer Phenomena

Prof. Rossano Schifanella





# Agenda

- Popularity as a Network Phenomenon
- Rich-Get-Richer Models
- The Unpredictability of Rich-Get-Richer Effects
- The Long Tail
- The Effect of Search Tools and Recommendation Systems



# Popularity as a Network Phenomenon



# Popularity, heterogeneity and networks

#### Recap:

- Real networks are heterogeneous
- In-links as a measure of popularity
- The heterogeneity parameter as a measure of distribution's broadness

$$\kappa = rac{\langle k^2
angle}{\langle k
angle^2}$$



Chicago Denver



#### Case study: the Web

- Characterizing popularity reveals imbalances (inequalities)
  - o almost everyone is popular for very few people
  - very few people achieve high popularity
  - o very, very few people achieve global popularity
- Why? Is this phenomenon intrinsic to the whole idea of popularity itself?
  - Have a look at the video for a dynamic view





### Why do hubs emerge?

- Let's accept that power laws represent many phenomena
- Why?
  - We are observing a kind of "order" emerging from chaos
  - Is there an underlying process that keeps the line of the log-log fit so straight?
  - Like normal distributions arise from many independent random decisions averaging out, can we find something similar in this context?
    - we will find that power laws arise from the feedback introduced by correlated decisions across a population



# **Understanding Rich-Get-Richer Models**

- Core principle: New nodes tend to connect to already popular nodes ("the rich get richer")
- Fundamental assumption: People tend to copy decisions made by others who acted before them
- This creates a powerful **feedback mechanism** that amplifies initial advantages



#### Rich-Get-Richer Models: A Framework

- Nodes (e.g., pages) are created sequentially:  $1, 2, \dots, N$
- For each new node j that joins the network:
  - With probability *p*: random attachment (uniform selection)
  - With probability (1 p): copying mechanism

This elegantly captures how individuals balance:

- Exploration (finding new options)
- Exploitation (copying successful precedents)



### Why Copying Creates Rich-Get-Richer

When new node j uses the copying mechanism:

- 1. It randomly selects an existing node i (uniform probability  $\frac{1}{j-1}$ )
- 2. Then connects to wherever *i* points to (node *l*)

This naturally produces preferential attachment because:

- If node l has in-degree  $k_l$ , then  $k_l$  different nodes point to it
- The probability node l receives this new link is  $\frac{k_l}{j-1}$



Without requiring global knowledge of popularity, this simple copying behavior produces the rich-get-richer effect where:

 $P(\text{node } j \text{ connects to } l) \propto k_l$ 



# The Unpredictability of Rich-Get-Richer Effects



### The fragility of popularity

- Power laws are produced by feedback effects
- The initial stages of the process that gives rise to popularity is a relatively fragile state
- Focusing on cultural market:
  - Can we predict the popularity of a song, a movie, a book, etc.?
- We can expect initial fluctuations
  - this brings unpredictability

#### Predicting hubs emergence

- We can predict that a power law and hubs will emerge
- But which hubs?
  - Predicting the success of an individual item is not like predicting that some individual will have global success!



### The MusicLab experiment



#### SHARE REPORT



# Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market



Matthew J. Salganik<sup>1,2,\*</sup>, Peter Sheridan Dodds<sup>2,\*</sup>, Duncan J. Watts<sup>1,2,3,\*</sup>



+ See all authors and affiliations



Science 10 Feb 2006: Vol. 311, Issue 5762, pp. 854-856 DOI: 10.1126/science.1121066

[The MusicLab experiment paper] [pdf]



# The MusicLab Experiment

- Study conducted by Salganik, Dodds, and Watts (2006) published in Science
- Key question: How much is popularity determined by quality versus social influence?
- Experimental design:
  - Web-based music market with 14,341 participants
  - 48 songs by unknown bands available for listening and downloading
  - Participants could listen, rate, and download songs
  - Manipulated visibility of others' choices across different "worlds"



### **Experimental Design: The Different Worlds**

- Participants randomly assigned to one of nine parallel "worlds":
- 1. Independent world (control group):
  - No social influence participants saw only song names and bands
  - No information about others' downloads
- 2. **Social influence worlds** (eight separate worlds):
  - Identical initial conditions
  - Participants could see how many times each song had been downloaded
  - Songs were displayed in order of popularity (most downloaded at top)



# **Key Innovations of the Experiment**

- First large-scale **controlled experiment** on cultural market dynamics
- Created multiple independent "histories" of the same market
- Allowed researchers to:
  - Observe how the same pool of songs performed in different "worlds"
  - Measure the impact of social influence on popularity
  - Quantify the unpredictability of success



#### **Key Findings**

The experiment revealed three distinct categories of outcomes:

- 1. High-Quality Winners: A small subset of songs consistently performed well across all worlds
  - These songs possessed intrinsic qualities that transcended social influence effects
  - Demonstrates a threshold effect where truly exceptional content resists randomness
- 2. Low-Quality Underperformers: Some songs consistently failed regardless of social context
  - Even positive social signals couldn't rescue fundamentally weak content
  - Suggests a quality floor below which social influence is ineffective
- 3. **The Unpredictable Middle**: The majority of songs (~70%) showed highly variable success
  - Neither consistently good nor bad, but subject to path-dependent dynamics
  - Early random fluctuations became amplified through feedback loops
  - These songs demonstrate how small initial perturbations in nonlinear systems can lead to divergent trajectories



# The MusicLab: Experimental Results

- Inter-world correlation analysis revealed true unpredictability
  - Success correlation between worlds was only 0.27 (vs. expected ~0.90 for quality-driven markets)
  - For middle-quality songs, correlations dropped to near-random levels (below 0.15)
  - This indicates that success was not primarily determined by inherent quality
  - Same songs had dramatically different outcomes in different worlds
- Inequality metrics showed social influence amplified popularity differences
  - Social influence worlds: Gini coefficient = 0.31
  - Independent world (no social signals): Gini coefficient = 0.20
  - Top songs in social influence worlds received disproportionately more downloads
  - Market share prediction error was 2.1× higher in social influence worlds
  - Early random fluctuations became self-reinforcing through feedback
- "Success breeds success" dynamics quantified:
  - First 100 listens significantly predicted final market shares (p < 0.01)</li>
  - Early advantages persisted and amplified throughout the experiment



# MusicLab: Influence Strength and Implications

- Variable influence experiment demonstrated causality
  - Researchers created additional worlds with different levels of social signals:
    - Strong influence: Complete download counts visible
    - Weak influence: Download counts shown as coarse categories
    - No influence: Download information hidden
  - Results scaled systematically with influence strength:
    - Inequality (Gini): 0.31 → 0.24 → 0.20 as influence decreased
    - Unpredictability ( $\sigma^2$ ): 0.0088  $\rightarrow$  0.0064  $\rightarrow$  0.0033 as influence decreased



### MusicLab: Influence Strength and Implications

#### • Key theoretical implications

- o Empirically validates rich-get-richer mechanisms in cultural markets
- Shows how simple copying behavior creates power-law distributions
- Demonstrates why predicting individual outcomes is fundamentally limited
- Quality matters, but its influence is mediated by social dynamics
- Even experts would struggle to predict hits due to inherent path dependency



# The Long Tail



### The Long Tail Concept

- **Definition**: The strategy of selling a large number of unique items with relatively small quantities sold of each
- Traditional business model: Focus on "hits" (high-volume products)
  - Example: Bookstores stocking bestsellers
- Long Tail business model: Capture the total value of countless niche markets
  - Example: Amazon offering millions of books that physical stores can't stock
- **Key insight**: In many markets, the accumulated sales/popularity of niche products can exceed that of hits



# **Looking at Two Different Perspectives**

- Hits vs. Niches: Two ways to visualize the same distribution
- The key question: Is there more value in the head or the tail?
  - Are most sales generated by a small set of enormously popular items?
  - Or by a much larger population of items that are individually less popular?
- Chris Anderson's argument: The internet economy fundamentally changes the equation
  - Digital distribution reduces inventory costs
  - Search and recommendation systems help consumers find niche products
  - This unlocks tremendous value previously hidden in the "long tail"



# Focus on Hits: The Traditional View

- Stereotype of traditional media business focused on hits
- Power law visualization: items ranked by popularity
  - X-axis: Product rank
  - Y-axis: Number of sales/downloads/views
- In this view, popular products appear dominant
  - The "head" of the distribution looks significant
  - Tail appears to quickly drop to negligible levels





# Focus on Niches: The Long Tail View

- Changing perspective: Switch the axes to reveal the long tail
- Now plotting:
  - X-axis: Product popularity (sales volume)
  - Y-axis: Number of products at each popularity level
- This reveals the massive number of niche products
  - While each sells little individually, collectively they represent substantial value
  - The "long tail" extends far to the right





### **The Long Tail and Digital Markets**

- Digital technologies enable the long tail by:
  - Eliminating physical constraints: Virtually unlimited "shelf space" online
  - **Reducing discovery costs**: Search and recommendation systems connect users to niche content
  - Lowering production costs: More creators can produce and distribute content
- Economic implications:
  - Markets becoming less hit-driven
  - Diversity of products increasing
  - Consumer tastes fragmenting into micro-cultures
- **Examples**: Netflix, Spotify, Amazon, YouTube all leverage the long tail as major part of their business model



# The Long Tail and Rich-Get-Richer Dynamics

- Seemingly contradictory phenomena:
  - Rich-get-richer processes create extreme popularity inequality
  - Yet the long tail creates significant value from non-hits
- Resolving the paradox:
  - Rich-get-richer explains the shape of the distribution (power law)
  - The long tail focuses on the aggregate value hidden in that distribution
  - Both can coexist in the same markets
- **Key insight**: In power law distributions with exponents near 2, both the head and tail contain substantial value



# The Effect of Search Tools and Recommendation Systems



# Search and Recommendation in the Age of Information Abundance

- Central paradox: Search engines and recommendation systems simultaneously amplify and counteract rich-get-richer dynamics
- These technologies serve as **gatekeepers of attention** in our digital environment
- Key question: Do they democratize access to content or reinforce existing popularity hierarchies?



### How Search Tools Amplify Rich-Get-Richer Dynamics

#### The Feedback Loop of Search Rankings

- PageRank and popularity-based algorithms:
  - Search engines often rank results based partly on existing popularity metrics
  - Higher-ranked pages receive more visibility → more clicks → more links → higher rankings
  - Creates a self-reinforcing cycle that benefits already-popular content
- Example: Google's original innovation was using link structure to determine importance
  - Pages with many inbound links rank higher
  - This algorithmically implements a rich-get-richer mechanism
- Empirical evidence: Top search results receive disproportionate attention
  - ~60% of clicks go to top three results
  - ~90% of users never go beyond the first page



# The Attention Economy's Matthew Effect

#### • Winner-takes-all dynamics:

- Limited user attention + abundance of content = extreme competition
- Search engines create "superstar economics" where top results capture most value

#### Position bias studies:

- Users trust higher-ranked results even when rankings are deliberately inverted
- Experiments show quality perceptions follow position, not actual content quality

#### Traffic concentration:

- Studies show increasing concentration of web traffic to dominant platforms
- Top 10 websites now capture >50% of all internet traffic (vs. ~30% in 2010)



#### How Search Tools Counteract Rich-Get-Richer Effects

- Specialized queries enable niche content discovery:
  - Long-tail search queries (3+ words) now represent >70% of all searches
  - Specific queries bypass popularity contests, connecting users directly to relevant content
  - This creates "micro-markets" where smaller players can compete
- Personalization reduces popularity biases:
  - Modern search engines consider user history, location, and preferences
  - Results vary by individual, reducing the universal advantage of popular content
  - Creates multiple parallel "popularity contests" instead of one global competition
- Example: Small local businesses can outrank global corporations for location-specific queries



#### **Collaborative Filtering's Inherent Biases**

- Traditional recommendation approaches:
  - "People who liked X also liked Y" inherently favors popular items
  - Items with more interactions receive more recommendations
  - New or niche content faces "cold start" problem
- Popularity bias in practice:
  - Netflix study: Recommender increased plays of popular movies by 30%
  - Amazon's early recommendation systems showed 30-40% bias toward bestsellers

#### **Countermeasures and Evolution**

- Modern recommendation algorithms increasingly incorporate:
  - Diversity metrics to avoid recommendation homogeneity
  - **Novelty factors** that reward exposing users to new content
  - Serendipity parameters that intentionally surface unexpected items



### Case Studies: Rich-Get-Richer in Digital Platforms

#### YouTube's Recommendation Engine

- Initial design: Heavily optimized for engagement (watch time)
  - Led to increasing concentration of views among top creators
  - Created "superstar economy" where top 3% of channels received 90% of views
- Recent evolution: Introduction of "Up-and-coming Creator" recommendations
  - Deliberately surfaces newer channels with potential
  - Creates "on-ramps" to counteract incumbent advantages



#### **Spotify's Discovery Weekly**

#### • Balanced approach:

- Algorithm specifically designed to surface music from both established and emerging artists
- Combines popularity signals with novelty and personalization
- Has become a significant pathway for independent artists to gain attention

#### • Reported outcomes:

- 40% of Spotify streams now come from algorithmic recommendations
- Over 16 billion discoveries of new artists facilitated annually



#### Exercise: Analyzing Rich-Get-Richer Phenomena in Web Graphs

#### Part 1: Data Collection and Initial Analysis

- Download a Web graph sample from SNAP Stanford Web Graphs or WebGraph datasets
- Create a directed graph using NetworkX or a similar library
- Calculate the in-degree distribution (number of pages that point to each page)

#### Part 2: Comparing Web Graph to Random Models

- Generate an Erdős-Rényi random graph with the same number of nodes and edges
- Plot the in-degree distributions of both graphs on a log-log scale
- Calculate the heterogeneity parameter κ for both networks
- Does the real web graph show significantly more heterogeneity than the random graph?
   Why?



#### **Part 3: Testing for Power Law Properties**

- Use statistical tools (e.g., powerlaw Python package) to fit the web graph's in-degree distribution
- Calculate the power law exponent α and test the goodness of fit
- Generate a synthetic network using preferential attachment (Barabási–Albert model)
- Compare how well each model (random vs. preferential attachment) approximates the real data

#### Part 4: Temporal Analysis (Optional Extension)

- If available, use a temporal web dataset to analyze how links evolve over time
- Track the growth rate of high-degree nodes vs. low-degree nodes
- Calculate the probability that new links attach to nodes based on their current degree
- Does this empirically confirm the "rich get richer" principle?
- Academic temporal datasets:
  - Stanford SNAP Temporal Networks
  - KONECT Dynamic Networks
  - Network Repository Temporal Graphs



# **Reading material**

[ns2] Chapter 18 (18.1 - 18.7) Power Laws and Rich-Get-Richer Phenomena





