курс «Прикладные задачи анализа данных»

Функции ошибки / функционалы качества Часть 2: чёткая бинарная классификации

Александр Дьяконов

План на эти несколько лекций

задача регрессии

задача бинарной классификации

- чёткая классификация
- скоринговые функции кривые в ML

задача классификации с несколькими классами

задачи ранжирования

задачи кластеризации

Задача классификации

сначала – чёткая классификация

«Confusion Matrix» – матрица ошибок / несоответствий

ответы

y	а

0 1 1

1 1 1

2 1 2

3 2 1

4 2 3

5 3 2

6 3 3

7 3 3

8 1 2

9 2 2

матрица ошибок

Для классов $\{1, 2, ..., l\}$

$$N = \parallel m_{ij} \parallel_{l \times l}$$

$$m_{ij} = \sum_{t=1}^{m} I[a_t = i]I[y_t = j]$$

from sklearn.metrics import confusion_matrix n = confusion_matrix(df.y, df.a) # 1й способ n = pd.crosstab(df.y, df.a) # 2й способ

Обычная точность – Accuracy, Mean Consequential Error

MCE =
$$\frac{1}{m} \sum_{i=1}^{m} I[a_i = y_i] = \frac{\sum_{t=1}^{l} m_{tt}}{\sum_{t=1}^{l} \sum_{s=1}^{l} m_{ts}}$$

- первое, что приходит в голову
- не учитывает разную мощность классов

$$y = [0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0]$$

Выгодно выдавать решение – константу 0!

«Confusion Matrix» в задаче классификации с двумя классами

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

в scikit-learn-е такая ориентация! Иногда: наоборот!

from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, a_test)

Задача классификации с двумя классами

tn, fp, fn, tp = confusion_matrix(y, a).ravel() # вычисление tn, ...

Как запомнить названия ошибок

1 рода – не учил, но сдал (= знает по мнению экзаменатора) 2 рода – учил, но не сдал (= не знает по мнению экзаменатора)

Ошибка 1 рода

Ошибка 2 рода

FP/m

FN/m

Точность Accuracy

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

$$Accuracy = \frac{TN+TP}{TN+FN+TP+FP}$$

Полнота (Sensitivity, True Positive Rate, Recall, Hit Rate)

$$TPR = R = \frac{TP}{TP + FN}$$

какой процент объектов положительного класса мы правильно классифицировали

Точность (Precision, Positive Predictive Value)

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

$$PPV = P = \frac{TP}{TP + FP}$$

какой процент положительных объектов (т.е. тех, что мы считаем положительными) правильно классифицирован

Специфичность (Specificity, True Negative Rate)

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

TNR = Specificity =
$$R_0 = \frac{\text{TN}}{\text{TN} + \text{FP}}$$

процент правильно классифицированных объектов негативного класса

«полнота для негативного класса»!

Negative Predictive Value (Inverse Precision)

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

$$NPV = P_0 = \frac{TN}{TN + FN}$$

точность для нулевого класса

False Positive Rate (FPR, fall-out, false alarm rate)

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

$$FPR = \frac{FP}{TN+FP} = 1 - TNR = 1 - Specificity$$

доля объектов негативного класса, которых мы ошибочно отнесли к положительному

F₁ score

$$\frac{2}{\frac{1}{P} + \frac{1}{R}} = \frac{2}{\frac{1}{TP/(TP + FP)} + \frac{1}{TP/(TP + FN)}} = \frac{2TP}{2TP + FP + FN}$$

F_{β} score

$$F_{\beta} = \frac{1}{\frac{\alpha}{P} + \frac{1 - \alpha}{R}} = \frac{1}{\alpha} \frac{P \cdot R}{R + \left(\frac{1}{\alpha} - 1\right)P} = (1 + \beta^2) \frac{P \cdot R}{R + \beta^2 P}$$

$$\beta^2 = \left(\frac{1}{\alpha} - 1\right)$$

Почему используется F-мера

$$(P+R)/2$$

$$2/(1/P+1/R)$$

min(P,R)

Почему используется F-мера

$$2/(1/P+1/R)$$

$$1/(0.9/P+0.1/R)$$

Можно сколь угодно улучшать один из показателей (R), если второй не увеличивается (P), то качество ограничено

Каппа Коэна (Cohen's Kappa) в задачах классификации

Идея: поскольку использование точности вызывает сомнение в задачах с сильном дисбалансом классов, надо её значения немного перенормировать

$$\kappa = \frac{\text{Accuracy} - \text{Accuracy}_{\text{chance}}}{1 - \text{Accuracy}_{\text{chance}}}$$

Chance adjusted index – статистика для измерения согласованности между ответами (Accuracy) с нормировкой на согласованность по случайности ($Accuracy_{chance}$)

Каппа Коэна (Cohen's Kappa) в задачах классификации

$$\kappa = \frac{\text{Accuracy} - \text{Accuracy}_{\text{chance}}}{1 - \text{Accuracy}_{\text{chance}}}$$

$$a = 0 \quad a = 1$$

$$y = 0 \quad m_{00} \quad m_{01}$$

$$y = 1 \quad m_{10} \quad m_{11}$$

$$Accuracy = \frac{m_{00} + m_{11}}{m}$$

Accuracy_{chance} =
$$\frac{m_{00} + m_{01}}{m} \frac{m_{00} + m_{10}}{m} + \frac{m_{10} + m_{11}}{m} \frac{m_{01} + m_{11}}{m}$$

- вероятность угадать класс 0
- вероятность угадать класс 1

Каппа Коэна (Cohen's Kappa) смысл: поправка значения точности.

Как раз для решения проблемы дисбаланса классов.

```
from sklearn.metrics import cohen_kappa_score
cohen_kappa_score(a, y)
```

Каппа Коэна (Cohen's Kappa) три модельные задачи

Как будет выглядеть график СК от порога бинаризации? Как меняется ROC AUC?

Каппа Коэна (Cohen's Kappa)

график СК от порога бинаризации

ROC AUC: 0.77 во всех задачах!

Коэффициент Мэттьюса Matthews correlation coefficient (MCC)

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}} \in [-1, +1]$$

Подходит для несбалансированных выборок

ДЗ Показать преимущество перед другими функционалами

Коэффициент Мэттьюса

Для понимания смысла...

Рассмотрим среднее геометрическое точности и полноты:

$$\sqrt{P \cdot R} = \sqrt{\frac{\text{TP}}{\text{TP+FP}} \cdot \frac{\text{TP}}{\text{TP+FN}}} = \frac{\text{TP}}{\sqrt{(\text{TP+FP})(\text{TP+FN})}}$$

это точность и полнота для класса 1, теперь умножим это на точность и полноту для класса 0:

$$\sqrt{P_1 R_1 P_0 R_0} = \frac{\text{TP-TN}}{\sqrt{(\text{TP+FP})(\text{TP+FN})(\text{TN+FP})(\text{TN+FN})}} \in [0, 1]$$

теперь посмотрим на формулу МСС...

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}} \in [-1, +1]$$

Сбалансированная точность (Balanced Accuracy)

BA =
$$\frac{R_1 + R_0}{2} = \frac{1}{2} \left(\frac{\text{TP}}{\text{TP+FN}} + \frac{\text{TN}}{\text{TN+FP}} \right)$$

среднее арифметическое чувствительности и специфичности

Если классы примерно равномощны...

$$TP+FN \approx TN+FP \approx m/2$$

ДЗ Придумать аналогичную простую, но нетривиальную задачу с аналитическим выводом всех функционалов.

Где оптимальный порог бинаризации для F-меры? Для ВА, МСС, к?

$$R = 1 - \theta^2$$

$$MCC = \sqrt{\theta(1-\theta)}$$

$$P = (1 + \theta) / 2$$

$$\kappa = \frac{\frac{1+2\theta-2\theta^2}{2} - \frac{1}{2}}{1-\frac{1}{2}} = 2\theta(1-\theta)$$

$$F_1 = \frac{1 - \theta^2}{1.5 - \theta}$$

BA=Accuracy =
$$\frac{(1-\theta^2) + (1-(1-\theta)^2)}{2} = \frac{1+2\theta-2\theta^2}{2}$$

оптимальный порог для F-меры

$$\theta_{\text{opt}} = \frac{3 - \sqrt{5}}{2} \approx 0.38$$

в теории и оценённые по выборке 300 объектов...

Дисбаланс классов

если сделать дисбаланс классов - какой?

Дисбаланс классов

Оптимальный порог бинаризации для разных функционалов при изменении доли класса 1 в выборке

Вопросы

- у какого функционала качества самый маленький оптимальный порог бинаризации (в общем случае), почему?
- какой функционал качества действительно имеет смысл использовать в задачах с сильным дисбалансом классов (заметим, что стандартные советы: ВА, МСС, карра, F1 обладают совершенно разными свойствами)?
- какой «самый неустойчивый» из перечисленных функционалов (его значения на небольших выборках сильнее отличаются от вычисленных на достаточно больших)?
- что изменится в примерах выше, если от линейных плотностей перейти к нормальным? Как это сделать корректно (и в чём некорректность описанной модельной задачи)?

Вопросы Д3

- верно ли, что максимальное значение точности (т.е. значение точности при оптимальном выборе порога) всегда не меньше максимального значения сбалансированной точности?
- выведите явные формулы функционалов качества в задаче с дисбалансом классов
 (придётся повозиться с формулами).

Итог

В задаче чёткой бинарной классификации вся информация об ошибках в 2×2-матрице несоответствий

Много разных функционалов качества

- естественные
- из информационного поиска
 - для учёта дисбаланса

Accuracy	P/R	
ВА	F ₁	κ/MCC

Литература

Jeffrey M Girard «Inter-observer reliability» //

https://github.com/jmgirard/mReliability/wiki

Функционалы качества бинарной классификации

https://dyakonov.org/2019/05/31/функционалы-качества-в-задаче-бинарн/