Introduction to Machine Learning

Bayesian Classification

Mingchen Gao

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA mgao8@buffalo.edu slides adapted from Varun Chandola

Outline

Learning Probabilistic Classifiers

Treating Output Label Y as a Random Variable Computing Posterior for Y Computing Class Conditional Probabilities

Naive Bayes Classification

Naive Bayes Assumption
Maximizing Likelihood
Maximum Likelihood Estimates
Adding Prior
Using Naive Bayes Model for Prediction
Naive Bayes Example

Gaussian Discriminant Analysis

Moving to Continuous Data Quadratic and Linear Discriminant Analysis Training a QDA or LDA Classifier

Learning Probabilistic Classifiers

Training data, $D = [\langle \mathbf{x_i}, y_i \rangle]_{i=1}^N$

- 1. {circular,large,light,smooth,thick}, malignant
- 2. {circular,large,light,irregular,thick}, malignant
- 3. {oval,large,dark,smooth,thin}, benign
- 4. {oval, large, light, irregular, thick}, malignant
- 5. {circular,small,light,smooth,thick}, benign
- ► **Testing**: Predict *y** for **x***
- ▶ Option 1: Functional Approximation

$$y^* = f(\mathbf{x}^*)$$

Option 2: Probabilistic Classifier

$$P(Y = benign | \mathbf{X} = \mathbf{x}^*), P(Y = malignant | \mathbf{X} = \mathbf{x}^*)$$

4 □ ト 4 □ ト 4 豆 ト 4 豆 ト 豆 ・ 夕 Q ○
CSE 4/574 3 / 20

Applying Bayes Rule

Training data, $D = [\langle \mathbf{x_i}, y_i \rangle]_{i=1}^D$

- 1.
- 2.
- 3.
- 4.
- 5.
- $ightharpoonup x^* = circular, small, light, irregular, thin$
- What is $P(Y = benign|\mathbf{x}^*)$?
- ▶ What is $P(Y = malignant | \mathbf{x}^*)$?

4 / 20

CSE 4/574

Output Label – A Discrete Random Variable

- Y takes two values
- \blacktriangleright What is p(Y)?
 - ightharpoonup ~ $Ber(\theta)$
 - ▶ How do you estimate θ ?
 - Treat the labels in training data as binary samples
 - ▶ Posterior for θ

$$p(\theta) = \frac{\alpha_0 + N_1}{\alpha_0 + \beta_0 + N}$$

- Class 1 Malignant; Class 2 Benign
- ▶ Can we just use $p(y|\theta)$ for predicting future labels?
 - ▶ Just a prior for *Y*

- ▶ What is probability of **x*** to be malignant
 - $P(X = x^*|Y = malignant)?$

- ▶ What is probability of **x*** to be malignant
 - ▶ $P(X = x^*|Y = malignant)$?
 - ightharpoonup P(Y = malignant)?

- ▶ What is probability of **x*** to be malignant
 - $P(X = x^*|Y = malignant)?$
 - \triangleright P(Y = malignant)?
 - $P(Y = malignant | \mathbf{X} = \mathbf{x}^*) ?$

- ▶ What is probability of **x*** to be malignant
 - ▶ $P(X = x^*|Y = malignant)$?
 - \triangleright P(Y = malignant)?
 - $P(Y = malignant | \mathbf{X} = \mathbf{x}^*) ?$
 - $P(Y = malignant | \mathbf{X} = \mathbf{x}^*) = P(\mathbf{X} = \mathbf{x}^* | \mathbf{Y} = malignant) = P(\mathbf{X} = \mathbf{x}^* | \mathbf{Y} = malignant) + P(\mathbf{X} = \mathbf{x}^* | \mathbf{Y} = malignant) + P(\mathbf{X} = \mathbf{x}^* | \mathbf{Y} = benign) + P(\mathbf{Y} = benign)$

Mingchen Gao

What is $P(\mathbf{X} = \mathbf{x}^* | Y = malignant)$?

- Class conditional probability of random variable X
- ▶ **Step 1**: Assume a probability distribution for X(p(X))
- ▶ **Step 2**: Learn parameters from training data

What is $P(\mathbf{X} = \mathbf{x}^* | Y = malignant)$?

- Class conditional probability of random variable X
- ▶ **Step 1**: Assume a probability distribution for X(p(X))
- ▶ **Step 2**: Learn parameters from training data
- ▶ But **X** is multivariate discrete random variable!
- ▶ How many parameters are needed?

What is $P(X = x^*|Y = malignant)$?

- Class conditional probability of random variable X
- ▶ Step 1: Assume a probability distribution for X(p(X))
- ▶ Step 2: Learn parameters from training data
- ▶ But **X** is multivariate discrete random variable!
- ▶ How many parameters are needed?
- $ightharpoonup 2(2^D-1)$

What is $P(\mathbf{X} = \mathbf{x}^* | Y = malignant)$?

- Class conditional probability of random variable X
- ▶ **Step 1**: Assume a probability distribution for X(p(X))
- ▶ Step 2: Learn parameters from training data
- ▶ But **X** is multivariate discrete random variable!
- ▶ How many parameters are needed?
- $ightharpoonup 2(2^D-1)$
- ► How much training data is needed?

Naive Bayes Assumption

- All features are independent
- ▶ Each variable can be assumed to be a Bernoulli random variable

$$P(\mathbf{X} = \mathbf{x}^* | Y = malignant) = \prod_{j=1}^{D} p(x_j^* | Y = malignant)$$

$$P(\mathbf{X} = \mathbf{x}^* | Y = benign) = \prod_{j=1}^{D} p(x_j^* | Y = benign)$$

Only need 2D parameters

Example - Only binary features

- Training a Naive Bayes Classifier
- ► Find parameters that maximize likelihood of training data
 - ► What is a training example?
 - ► x;?
 - $ightharpoonup \langle \mathbf{x_i}, y_i \rangle$
 - What are the parameters?
 - \triangleright θ for Y (class prior)
 - lacktriangledown $heta_{benign}$ and $heta_{malignant}$ (or $heta_1$ and $heta_2$)
 - Joint probability distribution of (X, Y)

$$\begin{aligned}
\rho(\mathbf{x}_i, y_i) &= \rho(y_i | \theta) \rho(\mathbf{x}_i | y_i) \\
&= \rho(y_i | \theta) \prod_j \rho(\mathbf{x}_{ij} | \theta_{jy_i})
\end{aligned}$$

CSE 4/574

Likelihood?

Likelihood for D

$$I(D|\Theta) = \prod_{i} \left(p(y_i|\theta) \prod_{j} p(x_{ij}|\theta_{jy_i}) \right)$$

► Log-likelihood for *D*

$$II(D|\Theta) = N_1 \log \theta + N_2 \log(1-\theta)$$

 $+ N_{1j} \log \theta_{1j} + (N_1 - N_{1j}) \log (1-\theta_{1j})$
 $+ N_{2j} \log \theta_{2j} + (N_2 - N_{2j}) \log (1-\theta_{2j})$

- $ightharpoonup N_1$ # malignant training examples, N_2 = # benign training examples
- ▶ N_{1j} # malignant training examples with $x_j = 1$, $N_{2j} = \#$ benign training examples with $x_i = 2$

◆ロト ◆母 ト ◆恵 ト ◆恵 ト 恵 め へ ○

MLE?

 Maximize with respect to θ, assuming Y to be Bernoulli

$$\hat{\theta} = \frac{N_c}{N}$$

Assuming each feature is binary $(x_j|(y=c) \sim Bernoulli(\theta_{cj}), c = \{1,2\})$

$$\hat{\theta}_{cj} = \frac{N_{cj}}{N_c}$$

Algorithm 1 Naive Bayes Training for Binary Features

```
1: N_c = 0, N_{cj} = 0, \forall j

2: for i = 1 : N do

3: c \leftarrow y_i

4: N_c \leftarrow N_c + 1

5: for j = 1 : D do

6: if x_{ij} = 1 then

7: N_{cj} \leftarrow N_{cj} + 1

8: end if

9: end for

10: end for

11: \hat{\theta}_c = \frac{N_c}{N}, \hat{\theta}_{cj} = \frac{N_{cj}}{N_c}

12: return b
```

Adding Prior

- ▶ Add prior to θ and each θ_{ci} .
 - ▶ Beta prior for θ (\sim Beta(a_0, b_0))
 - ▶ Beta prior for θ_{cj} (\sim Beta(a, b))

Posterior Estimates

$$p(\theta|D) = Beta(N_1 + a_0, N - N_1 + b_0)$$

$$p(\theta_{cj}|D) = Beta(N_{cj} + a, N_c - N_{cj} + b)$$

Using Naive Bayes Model for Prediction

$$p(y=c|\mathbf{x}^*,D) \propto p(y=c|D) \prod_j p(x_j^*|y=c,D)$$

- MLE approach, MAP approach?
- Bayesian approach:

$$p(y = 1 | \mathbf{x}, D) \propto \left[\int Ber(y = 1 | \theta) p(\theta | D) d\theta \right]$$

$$\prod_{i} \left[\int Ber(x_{i} | \theta_{ci}) p(\theta_{ci} | D) d\theta_{ci} \right]$$

$$\bar{\theta} = \frac{N_1 + a_0}{N + a_0 + b_0}$$

$$\bar{\theta}_{cj} = \frac{N_{cj} + a}{N_{cj} + a + b}$$

Example

#	Shape	Size	Color	Туре
1	cir	large	light	malignant
2	cir	large	light	benign
3	cir	large	light	malignant
4	ovl	large	light	benign
5	ovl	large	dark	malignant
6	ovl	small	dark	benign
7	ovl	small	dark	malignant
8	ovl	small	light	benign
9	cir	small	dark	benign
10	cir	large	dark	malignant

▶ Test example: $\mathbf{x}^* = \{cir, small, light\}$

What if Attributes are Continuous?

- ► Naive Bayes is still applicable!
- ► Each variable is a univariate Gaussian (normal) distribution

$$p(y|\mathbf{x}) \propto p(y) \prod_{j} p(x_{j}|y) = p(y) \prod_{j} \frac{1}{\sqrt{2\pi\sigma_{j}^{2}}} e^{-\frac{(x_{j}-\mu_{j})^{2}}{2\sigma_{j}^{2}}}$$
$$= p(y) \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{(\mathbf{x}-\mu)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x}-\mu)}{2}}$$

- ▶ Where Σ is a diagonal matrix with $\sigma_1^2, \sigma_1^2, \dots, \sigma_D^2$ as the diagonal entries
- $\blacktriangleright \mu$ is a vector of means
- ► Treating **x** as a multivariate Gaussian with zero covariance

What if Σ is not diagonal?

- Gaussian Discriminant Analysis
 - Class conditional density

$$p(\mathbf{x}|y=1) = \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$

$$p(\mathbf{x}|y=2) = \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

Posterior density for y

$$p(y=1|\mathbf{x}) = \frac{p(y=1)\mathcal{N}(\boldsymbol{\mu}_1,\boldsymbol{\Sigma}_1)}{p(y=1)\mathcal{N}(\boldsymbol{\mu}_1,\boldsymbol{\Sigma}_1) + p(y=2)\mathcal{N}(\boldsymbol{\mu}_2,\boldsymbol{\Sigma}_2)}$$

Quadratic and Linear Discriminant Analysis

- Using non-diagonal covariance matrices for each class Quadratic Discriminant Analysis (QDA)
 - ▶ Quadratic decision boundary
- lacksquare If $\Sigma_1=\Sigma_2=\Sigma$
- Linear Discriminant Analysis (LDA)
 - Parameter sharing or tying
 - Results in linear surface
 - No quadratic term

Alternative Interpretation of LDA

- Equivalent to computing the Mahalanobis distance of x to the two means.
- **Euclidean distance** is a special case of Mahalanobis distance when Σ is an identity matrix.

Mingchen Gao CSE 4/574 18 / 20

How to Train

MLE Training

- ▶ Estimate Bernoulli parameters for Y using MLE
- For each class, estimate MLE parameters for the multivariate normal distribution, i.e., μ_1 , Σ_1 and μ_2 , Σ_2
- ightharpoonup For LDA, compute the MLE for Σ using all training data (ignoring the class label)

Mingchen Gao CSE 4/574 19 / 20

References

Murphy Book Chapters 9.1 - 9.3