Морозов Д. І.

СПРЯЖЕННІСТЬ ТРАНЗИТИВНО-СТАБІЛЬНИХ АВТОМОРФІЗМІВ У $FAutT_2$

Статтю присвячено дослідженню спряженності транзитивно стабільних автоморфізмів кореневого однорідного дерева валентності 2 у групі скінченно-станових автоморфізмів цього дерева. Побудовано перетин класу спряженності в цій групі, що містить автоморфізм adding machine, з множиною транзитивно стабільних автоморфізмів.

Ключові слова: кореневе дерево, автоморфізм дерева, група скінченно-станових автоморфізмів, спряженність автоморфізмів.

Відсутність на даний момент необхідної та достатньої умови спряженності автоморфізмів у групі скінченно-автоматних підстановок примушує при дослідженні рівняння спряженності використовувати певні достатні умови (наприклад, шаровотранзитивні автоморфізми a та b не спряжені, якщо фактор-послідовність для a періодична, а для b не періодична, або якщо a та b мають різний ріст). Стабільно-транзитивні автоморфізми дуже близькі за своїми властивостями один до одного, тому цілий клас достатніх умов ϵ не еффективний при дослідженні питання спряженності таких автоморфізмів. Пропонуємо підхід, який дає змогу побудувати перетин класу спряженності в групі скінченноавтоматних підстановок, що містить автоморфізм adding machine з множиною транзитивно стабільних автоморфізмів.

Означення 1. Означимо фактор *п-го* рівня шарово-транзитивного автоморфізма

$$a = (b, c) \circ \sigma$$

індуктивно. Фактором 1-го рівня для автоморфізму a називається автоморфізм $b \circ c$. Фактором n-го рівня автоморфізма a називається фактор 1-го рівня для фактора (n-1)-рівня автоморфізму a.

Означення 2. Фактор-послідовністю для автоморфізму $a \in AutZ_2$ назвемо послідовність $\{a_n\}$ автоморфізмів, в якій a_n дорівнює фактору n-го рівня для автоморфізму a.

Означення 3. Назвемо автоморфізм $x \in AutT_2$ транзитивно-стабільним, якщо фактор-послідовність для цього автоморфізму ϵ стаціонарною.

Рекурсивно означимо множини W_x та R_x для шарово-транзитивного автоморфізму $x \in AutT_2$.

Означення 4. Тотожний автоморфізм id належить W_x . Нехай автоморфізм $t=(t_1,t_2)$ або автоморфізм $t=(t_1,t_2)\circ\sigma$ належить W_x . Тоді автоморфізм $x\circ t_2$ належить W_x .

Означення 5. Тотожний автоморфізм id належить R_x . Нехай автоморфізм $t=(t_1,t_2)$ або автоморфізм $t=(t_1,t_2)\circ\sigma$ належить R_x . Тоді автоморфізми t_1 та $x\circ t_2$ належать R_x .

Легко бачити, що W_x належить R_x .

Приклад 1. Обчислимо множини W_{ε} та R_{ε} для автоморфізма adding machine, що задається співвідношенням $\varepsilon = (id, \varepsilon) \circ \sigma$.

Обчислимо W_{ε} . Згідно з рекурсивною процедурою разом з id множині W_{ε} належить автоморфізм ε . Далі з ε отримаємо ε^2 , з $\varepsilon^2 - \varepsilon^2$. Зрозуміло, що більше ніяких автоморфізмів в множині W_{ε} немає. Отже, W_{ε} складається з автоморфізмів id, ε та ε^2 .

Обчислимо R_{ε} . Згідно з рекурсивною процедурою разом з id множині R_{ε} належать автоморфізми id та ε . Далі з ε отримаємо id та ε^2 , з ε^2 отримаємо ε та ε^2 . Зрозуміло, що більше ніяких автоморфізмів в множині R_{ε} немає. Отже, R_{ε} складається з автоморфізмів id, ε та ε^2 .

Означення 6. Назвемо автоморфізм $x \in AutT_2$ регулярним, якщо множина R_x — скінченна.

Означення 7. Назвемо автоморфізм $x \in AutT_2$ слабко регулярним, якщо множина W_x — скінченна.

Оскільки W_x належить R_x , то регулярний автоморфізм ϵ слабко регулярним. Згідно з прикладом 1 автоморфізм adding machine ϵ регулярний.

Лема 1. Автоморфізм $b \in AutT_2$ є транзитивностабільним тоді і тільки тоді, коли знайдеться $t \in AutT_2$, такий, що $b = (t, t^{-1} \circ b) \circ \sigma$.

Доведення. \Rightarrow Нехай $b=(t,l)\circ\sigma$. Оскільки b- транзитивно-стабільний, то $b=t\circ l$, отже $l=t^{-1}\circ b$.

 $\Leftarrow \quad b = (t, t^{-1} \circ b) \circ \sigma.$ Оскільки $t \circ t^{-1} \circ b = b,$ то b — транзитивно-стабільний.

Теорема 1. Нехай b- транзитивно-стабільний автоморфізм, що задається співвідношенням $b=(t,t^{-1}\circ b)\circ \sigma$. Тоді 0-розв'язком рівняння $\varepsilon^\chi=b$ є автоморфізм, що задається співвідношенням $a=(a,a\circ t)$

Доведення. Зауважимо, що для автоморфізму $a=(a,a\circ t)$

$$...000 * a = ...000.$$

Справді,

$$x0 * (a,b) = (x * a)0.$$

Далі маємо

$$\begin{split} a^{-1} \circ \varepsilon \circ a &= (a, a \circ t)^{-1} \circ \varepsilon \circ (a, a \circ t) = \\ &= (a^{-1}, t^{-1} \circ a^{-1}) \circ (id, \varepsilon) \circ \sigma \circ (a, a \circ t) = \\ &= (a^{-1}, t^{-1} \circ a^{-1}) \circ (id, \varepsilon) \circ (a \circ t, a) \circ \sigma = \\ &= (t, t^{-1} \circ (a^{-1} \circ \varepsilon \circ a)) \circ \sigma. \end{split}$$

Оскільки для шарово-транзитивних, а отже, і для стабільно-транзитивних автоморфізмів α та β , 0-розв'язок рівняння $\alpha^\chi = \beta$ існує і єдиний, то, згідно з зауваженням та отриманною рівністю, автоморфізм $a = (a, a \circ t)$ є 0- розв'язком рівняння $\varepsilon^\chi = b$.

Природнім ϵ питання, при яких t автоморфізм $a=(a,a\circ t)$ ϵ скінченно-становим. Умова скінченно-становості автоморфізму t необхідна. Справді, оскільки автоморфізм a скінченностановий, то його права проєкція $\pi_R(a)=a\circ t$ ϵ скінченно-становим автоморфізмом, і тому автоморфізм

$$t = a^{-1} \circ (a \circ t) = a^{-1} \circ \pi_R(a)$$

також скінченно-становий. Але ця умова не ε достатньою. Це підтверджують наступні теорема та приклад:

Теорема 2. Автоморфізм $a = (a, a \circ t)$ є скінченностановим тоді і тільки тоді, коли t -регулярний.

Доведення. Нехай $\pi_L(a)$ — ліва, а $\pi_R(a)$ — права проєкція автоморфізму $a=(a,a\circ t)$. Тоді виконуються рівності:

$$\pi_L(a \circ f) = a \circ \pi_L(f);$$

$$\pi_R(a \circ f) = a \circ (t \circ \pi_R(f)).$$

Тобто станами автоморфізму a є автоморфізми вигляду $\{a \circ x | x \in R_t\}$. Тому a скінченно-становий тоді і тільки тоді, коли множина R_t є скінченною.

Приклад 2. Автоморфізм $a=(a,a\circ 3x)$ не скінченно-становий.

Покажемо, що множина W_{3x} — нескінченна. Справді, вона містить нескінченну кількість автоморфізмів вигляду $3^nx + c_n$. Отже, автоморфізм x*t=3x є скінченно-становим (зі станами 3x,3x+1,3x+2), але не є слабко-регулярним, тому не є і регулярним. За теоремою 2 автоморфізм $a=(a,a\circ 3x)$ — нескінченно-становий.

Наслідком теорем 1 і 2 ϵ наступна теорема:

Теорема 3. Нехай b- транзитивно-стабільний автоморфізм, автоморфізм t- ліва проекція автоморфізма b. Автоморфізми ε та b спряженні b $FAutT_2$ тоді і тільки тоді, коли t- регулярний.

Далі сформулюємо критерій скінченно-становості для транзитивно-стабільних автоморфізмів.

Теорема 4. Нехай b — транзитивно-стабільний автоморфізм, автоморфізм t — ліва проекція автоморфізма b. Автоморфізм b ϵ скінченно-становим тоді і тільки тоді, коли t — слабко регулярний.

Доведення. Очевидно, b та b^{-1} мають однакову кількість станів. Покладемо

$$b' = b^{-1} = (b^{-1} \circ t, t^{-1}) \circ \sigma.$$

Кожен стан b' з вершиною, що належить кінцю ... 000 має вигляд

$$b' \circ x \mid x \in W_t$$
.

Якщо множина W_t — скінчена, то інші стани мають виглял

$$t^{-1} \circ t_1 \circ \ldots \circ t_N$$

(де t_i ϵ підстанами автоморфізму t і кількість доданків обмежена деяким натуральним N, що залежить від $|W_t|$), або ϵ підстанами таких станів.

Отже, b є скінченно-становим тоді і лише тоді, коли множина W_t скінчена.

Як було зауважено, регулярний автоморфізм є слабко регулярним. Цікаво отримати приклад слабко регулярного автоморфізму, який не є регулярним. Згідно з теоремами 3 та 4 такий автоморфізм дає змогу побудувати приклад скінченно-станового стабільно-транзитивного автоморфізму, що не є спряженим з adding machine у $FAutT_2$. Побудувати слабко регулярний автоморфізм, який не є регулярним дає можливість наступна теорема.

Теорема 5. Скінченно-становий автоморфізм $t = (t_1, t_2) \epsilon$ слабко регулярним тоді і тільки тоді, коли автоморфізм $t_2 \epsilon$ слабко регулярним.

Доведення. Достатньо звернути увагу на те, що

$$W_t = \{id, t, t \circ t_2, \ldots\} = id \cup \{t \circ x | x \in W_{t_2}\}.$$

Тобто множини W_t та W_{t_2} скінченні або нескінченні одночасно.

Приклад 3. Згідно з прикладом 2 автоморфізм $t': x \to 3x$ не є регулярним, автоморфізм id є слабко регулярним. Тому автоморфізм t=(3x,id) є слабко-регулярним автоморфізмом, що не є регулярним.

Маємо приклад двох транзитивно-стабільних скінченно-станових автоморфізмів, не спряженних у $FAutT_2$:

$$\varepsilon = (id, \varepsilon) \circ \sigma;$$

$$b = ((3x, id), (\frac{1}{3}x, id) \circ b) \circ \sigma.$$

Сформулюємо основний результат. Перетин множини транзитивно-стабільних автоморфізмів із класом спряженності в групі скінченно-станових автоморфізмів, що містить *adding machine*, складається з транзитивно-стабільних автоморфізмів із регулярною лівою проекцією.

Список літератури

- 1. Коблиц Н. р-адические числа, р-адический анализ и дзета-функции / Н. Коблиц М. : Мир, 1982.-190 с.
- Морозов Д. І. Спряженість автоморфізмів, що задаються лінійними функціями в групі скінченностанових автоморфізмів кореневого сферично-однорідного дерева / Д. І. Моро-
- зов // Вісник Київського ун-ту. Серія : фізикоматематичні науки. 2008. Вип. 1 C. 40–43.
- 3. Морозов Д. І. Централізатори шаровооднорідних автоморфізмів однорідного дерева валентності р / Д. І. Морозов // Вісник Київського ун-ту. Серія : фізико-математичні науки. 2007. Вип. 4 С. 52–54.

D. Morozov

CONJUGACY OF TRANSITIVE-STABLE AUTOMORPHISMS IN $FAutT_2$

The work is devoted to the research of conjugacy of transitive-stable automorphisms of a rooted homogenious tree of valency 2 in a group of finite-state automorphisms of this tree. The intersection of the conjugacy class in this group has been built, containing adding machine automorphism, with the set of transitive-stable automorphisms.

Keywords: rooted tree, tree automorphism, group of finite-state automorphisms, automorphisms conjugacy.

Матеріал надійшов 02.04.2012