UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer & Mathematical Sciences

STAD70H3 Statistics & Finance II April 2019 Final Examination

Duration: 3 hours
Instructor: Sotirios Damouras
Aids allowed: Open book/notes, scientific calculator
T4 N
Last Name:
First Name:
Student #.

Instructions:

- Read the questions carefully and answer only what is being asked.
- Answer all questions directly on the examination paper; use the last pages if you need more space, and provide clear pointers to your work.
- Show your intermediate work, and write clearly and legibly.

Question:	1	2	3	4	5	6	Total
Points:	15	10	25	20	20	20	110
Score:							

1. [15 points] Assume the return on an asset follows a logistic distribution with CDF

$$F_X(x) = \frac{1}{1 + \exp\left(-\frac{x-\mu}{\lambda}\right)}, \quad \forall x \in \mathbb{R}, \ \lambda > 0,$$

where μ and λ are the location and scale parameters, respectively. Find a closed-form expression for VaR(α) and CVaR(α).

(Hint:
$$\int \log(x) dx = x \log(x) - x + c$$
)

2. [10 points] Assume the returns on all assets in a market follow multivariate Normal distribution with mean μ and variance-covariance matrix Σ . Furthermore, assume investors pick portfolios with minimum VaR(α) for some α . Show that the only portfolios that investors would consider are the ones lying on the *efficient frontier* of mean-variance analysis.

(Hint: show that minimizing VaR for a *Normal* distribution is equivalent to minimizing the portfolio variance for a given mean return level.)

- 3. Consider a standard Brownian motion $\{W_t\}$ with $W_0 = 0$.
 - (a) [15 points] Let $M_1 = \max\{W_t : t \in [0,1]\}$ be the maximum of the process by time 1. Find the conditional expectation of M_1 given $(M_1 > 1)$, i.e $\mathbb{E}[M_1|M_1 > 1]$, in terms of the standard Normal CDF $\Phi(z)$.
 - (b) [10 points] Condition on the event $(W_1 = 1)$, and find the conditional (bivariate) distribution of $\begin{bmatrix} W_s \\ W_t \end{bmatrix} | (W_1 = 1)$, where 0 < s < t < 1.

(Hint: for a multivariate Normal
$$\left[\frac{\boldsymbol{X}_1}{\boldsymbol{X}_2}\right] \sim N\left(\left[\frac{\boldsymbol{\mu}_1}{\boldsymbol{\mu}_2}\right], \left[\frac{\boldsymbol{\Sigma}_{11} \mid \boldsymbol{\Sigma}_{12}}{\boldsymbol{\Sigma}_{21} \mid \boldsymbol{\Sigma}_{22}}\right]\right)$$
, we have $\boldsymbol{X}_1 | (\boldsymbol{X}_2 = \boldsymbol{x}_2) \sim N\left(\boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\boldsymbol{x}_2 - \boldsymbol{\mu}_2), \ \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}\right)$

Student #:

- 4. Consider two assets whose revenues are independently and uniformly distributed as $R_1, R_2 \sim^{iid} Unif(-1, 1)$.
 - (a) [10 points] Find a closed-form expression for the individual asset value at risk, i.e. find $VaR_{\alpha}(R_1)$ as a function of α .
 - (b) [10 points] Show that VaR is *not* subadditive in this case, i.e. show that $VaR_{\alpha}(R_1 + R_2) \not \leq VaR_{\alpha}(R_1) + VaR_{\alpha}(R_2)$ for some α . (Hint: try $\alpha = 7/8$)

Student #:

- 5. Consider two sets of assets whose return vectors $\mathbf{R}_1, \mathbf{R}_2$ are independent and have variance-covariance matrices $\mathbb{V}[\mathbf{R}_1] = \mathbf{\Sigma}_1$, $\mathbb{V}[\mathbf{R}_2] = \mathbf{\Sigma}_2$. Let the minimum-variance weights for a portfolio consisting only of assets in \mathbf{R}_1 be \mathbf{w}_1 , and let the achieved minimum variance be σ_1^2 . Similarly for the assets in \mathbf{R}_2 , let the minimum-variance portfolio weights be \mathbf{w}_2 and the minimum variance be σ_2^2 . Now turn attention to the minimum variance portfolio for both sets of assets $\left\lceil \frac{\mathbf{R}_1}{\mathbf{R}_2} \right\rceil$.
 - (a) [10 points] Show that the combined minimum-variance portfolio weights are given by $\boldsymbol{w} = \frac{1}{\sigma_1^2 + \sigma_2^2} \left[\frac{\sigma_2^2 \boldsymbol{w}_1}{\sigma_1^2 \boldsymbol{w}_2} \right]$.
 - (b) [10 points] Show that the attained minimum variance is given by $\sigma^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$.

Student #:

- 6. Consider a standard Normal random variable $Z \sim N(0,1)$ and let $Y = e^Z$. Assume you want to estimate $\mathbb{E}[Y]$ using simulation, i.e. using $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i = \frac{1}{n} \sum_{i=1}^n e^{Z_i}$, where $Z_i \sim^{iid} N(0,1)$.
 - (a) [7 points] Find the variance of your estimate $\mathbb{V}[\bar{Y}]$, as a function of n only. (Hint: the moment generating function of $Z \sim N(0,1)$ is $m_Z(t) = \mathbb{E}[e^{tZ}] = e^{t^2/2}$.)
 - (b) [13 points] Assume you use X=Z as a control variable for your simulation. Find the relative reduction in estimation accuracy, i.e. find the value of $\mathbb{V}[\bar{Y}_{ctrl}]/\mathbb{V}[\bar{Y}]$. (Hint: for $Z \sim N(0,1)$, we have $\mathbb{E}[Ze^Z] = \sqrt{e}$.)

Student #:

Extra Space (use if needed	and clearly indicate which	questions you are answering)
1	V	

Student	#:	
Dudacii	77 •	

 $\mathbf{Extra}\ \mathbf{Space}$ (use if needed and clearly indicate which questions you are answering)

Extra Space (use if needed and clearly indicate which questions you are answering)