

电子秤专用模拟/数字 (A/D) 转换器芯片

简介

HX711 采用了海芯科技集成电路专利技术,是一款专为高精度电子秤而设计的 24 位 A/D 转换器芯片。与同类型其它芯片相比,该芯片集成了包括稳压电源、片内时钟振荡器等其它同类型芯片所需要的外围电路,具有集成度高、响应速度快、抗干扰性强等优点。降低了电子秤的整机成本,提高了整机的性能和可靠性。

该芯片与后端 MCU 芯片的接口和编程非常简单,所有控制信号由管脚驱动,无需对芯片内部的寄存器编程。输入选择开关可任意选取通道 A 或通道 B,与其内部的低噪声可编程放大器相连。通道 A 的可编程增益为 128 或 64,对应的满额度差分输入信号幅值分别为±20mV或±40mV。通道 B 则为固定的 32 增益,用于系统参数检测。芯片内提供的稳压电源可以直接向外部传感器和芯片内的 A/D 转换器提供电源,系统板上无需另外的模拟电源。芯片内的时钟振荡器不需要任何外接器件。上电自动复位功能简化了开机的初始化过程。

特点

- 两路可选择差分输入
- 片内低噪声可编程放大器,可选增益为 32,64 和 128
- 片内稳压电路可直接向外部传感器和芯片内 A/D 转换器提供电源
- 片内时钟振荡器无需任何外接器件,必要时 也可使用外接晶振或时钟
- 上电自动复位电路
- 简单的数字控制和串口通讯: 所有控制由管脚输入, 芯片内寄存器无需编程
- 可选择 10Hz 或 80Hz 的输出数据速率
- 同步抑制 50Hz 和 60Hz 的电源干扰
- 耗电量(含稳压电源电路): 典型工作电流: < 1.6mA, 断电电流: < 1μA
- 工作电压范围: 2.6~5.5V
- 工作温度范围: -40~+85℃
- 16 管脚的 SOP-16 封装

Information contained in this document is for design reference only and not a guarantee. Avia Semiconductor reserves the right to modify it without notice.

TEL: (592) 252-9530 (P. R. China) EMAIL: market@aviaic.com

管脚说明

SOP-16L 封装

管脚号	名称	性能	描述
1	VSUP	电源	稳压电路供电电源: 2.6 ~ 5.5V
2	BASE	模拟输出	稳压电路控制输出(不用稳压电路时为无连接)
3	AVDD	电源	模拟电源: 2.6 ~ 5.5V
4	VFB	模拟输入	稳压电路控制输入(不用稳压电路时应接地)
5	AGND	地	模拟地
6	VBG	模拟输出	参考电源输出
7	INA-	模拟输入	通道 A 负输入端
8	INA+	模拟输入	通道 A 正输入端
9	INB-	模拟输入	通道 B 负输入端
10	INB+	模拟输入	通道 B 正输入端
11	PD_SCK	数字输入	断电控制(高电平有效)和串口时钟输入
12	DOUT	数字输出	串口数据输出
13	XO	数字输入输出	晶振输入(不用晶振时为无连接)
14	XI	数字输入	外部时钟或晶振输入,0:使用片内振荡器
15	RATE	数字输入	输出数据速率控制, 0: 10Hz; 1: 80Hz
16	DVDD	电源	数字电源: 2.6 ~ 5.5V

表一 管脚描述

AVIA SEMICONDUCTOR V2.0 2

主要电气参数

参数	条件及说明	最小值	典型值	最大值	单位
满额度差分输入范围	V(inp)-V(inn)		± 0.5 (AVDD/GAIN)		V
有效位数(Effective- Number-of-Bits) ⁽¹⁾	增益 = 128,速率=10Hz		19.7		Bits
无噪声位数(Noise- Free Bits) ⁽²⁾	增益 = 128,速率=10Hz		17.3		Bits
积分非线性(INL)	满量程的百分比		± 0.001		% of FSR
输入共模电压范围		AGND+1.2		AVDD-1.3	V
输出数据速率	使用片内振荡器, RATE=0		10		Hz
	使用片内振荡器,RATE = DVDD		80		
	外部时钟或晶振, RATE = 0		$f_{clk}/1,105,920$		
	外部时钟或晶振,RATE = DVDD		$f_{clk}/138,240$		
输出数据编码	二进制补码	800000 7FFFFI		7FFFFF	HEX
输出稳定时间 ⁽³⁾	RATE = 0		400		ms
	RATE = DVDD		50		
输入零点漂移	增益 = 128		0.1		mV
	增益 = 64		0.2		mV
输入噪声	增益 = 128, RATE = 0		50		nV(rms)
	增益 = 128,RATE = DVDD		90		
温度系数	输入零点漂移(增益 = 128)		±12		nV/℃
	增益漂移(增益 = 128)		±7		ppm/℃
输入共模信号抑制比	增益 = 128,RATE = 0		100		dB
电源干扰抑制比	增益 = 128,RATE = 0		100		dB
输出参考电压(V _{BG})			1.25		V
外部时钟或晶振频率		1	11.0592	20	MHz
电源电压	DVDD	2.6		5.5	V
	AVDD, VSUP	2.6		5.5	
模拟电源电流	正常工作		1500		μΑ
(含稳压电路)	断电		0.5		
数字电源电流	正常工作		100		μΑ
	断电		0.2		

- (1) 有效位数 ENBs(Effective Number of Bits) = ln(*FSR/RMS Noise*)/ln(2)。*FSR* 为满量程输入或输出,*RMS Noise* 为对应的输入或输出噪声有效值。
- (2) 无噪声位数 (Noise-Free Bits) = ln(*FSR/Peak-to-Peak Noise*)/ln(2)。*FSR* 为满量程输入或输出,*Peak-to-Peak Noise* 为对应的输入或输出噪声峰-峰值。
- (3) 输出稳定时间指从上电、复位、输入通道或增益改变到有效的稳定输出数据时间。

表二 主要电气参数表

AVIA SEMICONDUCTOR V2.0 3

模拟输入

通道 A 模拟差分输入可直接与桥式传感器的差分输出相接。由于桥式传感器输出的信号较小,为了充分利用 A/D 转换器的输入动态范围,该通道的可编程增益较大,为 128 或 64。这些增益所对应的满量程差分输入电压分别±20mV 或±40mV。

通道 B 为固定的 32 增益,所对应的满量程差分输入电压为±80mV。通道 B 应用于包括电池在内的系统参数检测。

供电电源

数字电源(DVDD)应使用与 MCU 芯片相同的的数字供电电源。

HX711 芯片内的稳压电路可同时向 A/D 转换器和外部传感器提供模拟电源。稳压电源的供电电压 (VSUP) 可与数字电源 (DVDD) 相同。稳压电源的输出电压值 (V_{AVDD}) 由外部分压电阻 R_1 、 R_2 和芯片的输出参考电压 V_{BC} 决定(图 1), $V_{AVDD}=V_{BG}(R_1+R_2)/R_2$ 。应选择该输出电压比稳压电源的输入电压 (V_{SUP}) 低至少 100mV。

如果不使用芯片内的稳压电路,管脚 VSUP 应连接到 DVDD 或 AVDD 中电压较高的一个管脚上。管脚 VBG 上不需要外接电容,管脚 VFB 应接地,管脚 BASE 为无连接。

时钟选择

如果将管脚 XI 接地,HX711 将自动选择使用内部时钟振荡器,并自动关闭外部时钟输入和晶振的相关电路。这种情况下,典型输出数据速率为 10Hz 或 80Hz。

如果需要准确的输出数据速率,可将外部输入时钟通过一个 20pF 的隔直电容连接到 XI 管脚上,或将晶振连接到 XI 和 XO 管脚上。这种情况下,芯片内的时钟振荡器电路会自动关

闭,晶振时钟或外部输入时钟电路被采用。此时,若晶振频率为11.0592MHz,输出数据速率为准确的10Hz或80Hz。输出数据速率与晶振频率以上述关系按比例增加或减少。

使用外部输入时钟时,外部时钟信号不一定需要为方波。可将 MCU 芯片的晶振输出管脚上的时钟信号通过 20pF 的隔直电容连接到 XI 管脚上,作为外部时钟输入。外部时钟输入信号的幅值可低至 150mV。

串口通讯

串口通讯线由管脚 PD_SCK 和 DOUT 组成,用来输出数据,选择输入通道和增益。

当数据输出管脚 DOUT 为高电平时,表明 A/D 转换器还未准备好输出数据,此时串口时钟输入信号 PD_SCK 应为低电平。当 DOUT 从高电平变低电平后,PD_SCK 应输入 25 至 27 个不等的时钟脉冲(图二)。其中第一个时钟脉冲的上升沿将读出输出 24 位数据的最高位(MSB),直至第 24 个时钟脉冲完成,24 位输出数据从最高位至最低位逐位输出完成。第 25 至 27 个时钟脉冲用来选择下一次 A/D 转换的输入通道和增益,参见表三。

PD_SCK 脉冲数	输入通道	增益
25	A	128
26	В	32
27	A	64

表三 输入通道和增益选择

PD_SCK 的输入时钟脉冲数不应少于 25 或多于 27, 否则会造成串口通讯错误。

当 A/D 转换器的输入通道或增益改变时, A/D 转换器需要 4 个数据输出周期才能稳定。 DOUT 在 4 个数据输出周期后才会从高电平变低 电平,输出有效数据。

图二 数据输出,输入通道和增益选择时序图

符号	说明	最小值	典型值	最大值	单位
T_1	DOUT 下降沿到 PD_SCK 脉冲上升沿	0. 1			μs
T_2	PD_SCK 脉冲上升沿到 DOUT 数据有效			0. 1	μs
T ₃	PD_SCK 正脉冲电平时间	0. 2		50	μs
T ₄	PD_SCK 负脉冲电平时间	0. 2			μs

复位和断电

当芯片上电时,芯片内的上电自动复位电 路会使芯片自动复位。

管脚 PD_SCK 输入用来控制 HX711 的断电。 当 PD_SCK 为低电平时,芯片处于正常工作状态。

如果 PD_SCK 从低电平变高电平并保持在高电平超过 60μs, HX711 即进入断电状态(图三)。如使用片内稳压电源电路,断电时,外部传感器和片内 A/D 转换器会被同时断电。当PD_SCK 重新回到低电平时,芯片会自动复位后进入正常工作状态。芯片从断电状态回到正常

工作状态后,会自动保持断电前的增益和输入信号选择。注意,在改变 PD_SCK 时钟脉冲数的当前数据周期内不应断电,如需断电,应等到下一个数据周期或者之后断电。

芯片从复位或断电状态进入正常工作状态 后,A/D 转换器需要 4 个数据输出周期才能稳 定。DOUT 在 4 个数据输出周期后才会从高电平 变低电平,输出有效数据。

应用实例

参考 PCB 板(单层)

图五为与HX711 相关部分的PCB参考设计线路图。图六为相应的单层PCB板参考设计图。

图五 HX711 称重衡器应用参考设计线路图之二

Information contained in this document is for design reference only and not a guarantee. Avia Semiconductor reserves the right to modify it without notice.

TEL: (592) 252-9530 (P. R. China)

AVIA SEMICONDUCTOR

EMAIL: market@aviaic.com

图六 与 HX711 相关部分的单层 PCB 板参考设计板图

参考驱动程序(汇编)

```
在ASM中调用:
                LCALL
                       ReadAD
可以在C中调用:
                extern unsigned long ReadAD(void);
                unsigned long data;
                data=ReadAD();
PUBLIC
            ReadAD
            segment code
HX711ROM
            HX711ROM
rseg
sbit
            ADDO = P1.5;
sbit
            ADSK = P0.0;
OUT: R4, R5, R6, R7 R7=>LSB
如果在C中调用,不能修改R4,R5,R6,R7。
ReadAD:
                          //使能AD (PD_SCK置低)
   CLR
         ADSK
         ADDO, $
                          //判断AD转换是否结束,若未结束则等待否则开始读取
   JΒ
   MOV
         R4, #24
ShiftOut:
   SETB
         ADSK
                          //PD_SCK置高(发送脉冲)
   NOP
   CLR
         ADSK
                          //PD_SCK置低
         C, ADDO
                          //读取数据(每次一位)
   MOV
                          //移入数据
   XCH
         A, R7
   RLC
         A
   XCH
         A, R7
   XCH
         A, R6
   RLC
         A
   XCH
         A, R6
   XCH
         A, R5
   RLC
         A
   XCH
         A, R5
                         //判断是否移入24BIT
   DJNZ
         R4, ShiftOut
   SETB
         ADSK
   NOP
   CLR
         ADSK
   RET
   END
```


参考驱动程序(C) sbit $ADDO = P1^5$; sbit $ADSK = P0^0$; unsigned long ReadCount(void){ unsigned long Count; unsigned char i; ADSK=0; Count=0; while(ADDO); for (i=0;i<24;i++){ ADSK=1; Count=Count<<1; ADSK=0; if(ADDO) Count++; ADSK=1; Count=Count^0x800000; ADSK=0; return(Count);

封装尺寸

SOP-16L 封装

注意事项

- 1. 所有数字输入管脚,包括 RATE, XI 和 PD_SCK 管脚,芯片内均无内置拉高或拉低电阻。这些管脚在使用时不应悬空。
- 2. 建议使用通道 A 与传感器相连,作为小信号输入通道;通道 B 用于系统参数检测,如电池电压检测。
- 3. 建议使用 PNP 管 S8550 与片内稳压电源电路配合。也可根据需要使用其他 MOS 或双极晶体管,但应注意稳压电源的稳定性。
- 4. 无论是采用片内稳压电源或系统上其他电源,建议传感器和 A/D 转换器使用同一模拟供电电源。
- 5. PD SCK 的输入时钟脉冲数不应少于 25 或多于 27, 否则会造成串口通讯错误。
- 6. 与 DOUT 相连的 MCU 接口应设置为输入口,并且不接任何拉高或拉低电阻,以减少 MCU 与 ADC 之间的电流交换(干扰)。

AVIA SEMICONDUCTOR V2.0 10

历史修改记录

版本号	记录	
1.0	初始版本	
2.0	更改"复位和断电控制"	