

Intel® SGX and Blockchain

李志强

英特尔中国平台安全战略规划

Intel® SGX – Physical Attack Protection

- Security perimeter is the CPU package boundary
- Data and code unencrypted inside CPU package
- Data and code outside CPU package is encrypted and integrity checked
- External memory reads and bus snoops see only encrypted data
- SGX is an App Level TEE
- http://software.intel.com/sgx

Trusted Execution Environment for Blockchain

Intel security and performance technologies such as Intel® Software Guard Extensions (Intel® SGX), consist of built-in CPU instructions and platform enhancements that enable code to be executed in a Trust Execution Environment (TEE) with enhanced data protections without compromising performance for workloads.

For blockchain, a TEE can provide:

基于芯片的可信执行环境

INTEL'S TECHNOLOGY CONTRIBUTION TO BLOCKCHAIN

英特尔技术 助力 区块链

https://hyperledger.org/projects/sawtooth

Other names and brands may be claimed as the property of others.

Backup

SGX USE CASES - DATA CENTER, CLOUD & INTERNET OF THINGS

Privacy Preserving

Enactional typics oint computation the computation approved data in a privacy-preserving manner

HSM

Hardware Security Module
Customers and ISVs use
Secure Enclave to protect
encryption keys and/or
HSM replacement

Encrypted Databases

Encrypted database operations

Secure Containers

Running unmodified applications within enclave

NFV

Network Function Virtualization Trust established for protecting & virtualizing network functions

Key Protection

Protecting keys on local file system; hardening disk protection, building scalable cloud KMS

Blockchain

Secure transaction processing for Cryptocurrency, Secure Contracts, and Hyperledger protection

Internet of Things

Secure IoT edge devices and cloud communications Boxcreek toolkit for secure enclave uses

INTEL'S BLOCKCHAIN STRATEGY英特尔与区块链

Silicon

Utilize silicon technologies like Intel SGX and Xeon SP to improve blockchain solutions and establish long-term value.

Solutions

Utilize Intel's open source blockchain software as building blocks for ecosystem scale - Sawtooth, Private Data Objects, and Intel SGX Components.

Standards

Ensure that specifications in industry consortiums yield the promise of trusted disintermediation - Hyperledger, Enterprise Ethereum Alliance, and R3.

DIFFERENTIATION WITH INTEL SGX

SECURITY

Private key storage mechanism for blockchain transactions.

Tencent 腾讯

PRIVACY

Enhance protections for data from 3rd parties on common infrastructure (incl. off-chain throughput).

AlphaPoint

Developers are using isolation, attestation verification, and code integrity features of Intel SGX to address key issues that influence blockchain adoption

https://www.hyperledger.org/blog/2018/01/30/announcing-hyperledger-sawtooth-1-0

https://www.hyperledger.org/projects/sawtooth

https://hyperledger.org/members

https://entethalliance.org/members/

https://www.corda.net/wp-content/uploads/2017/05/R3FundingPressRelease.pdf

BLOCKCHAIN SOFTWARE AND ECOSYSTEM

HYPERLEDGER SAWTOOTH

An open source modular enterprise blockchain stack designed to run in distributed environments like hybrid cloud and cloud data centers.

PRIVATE DATA OBJECTS

Open source software that utilizes Intel SGX to run blockchain code off-chain thereby improving data privacy and throughput

ENTERPRISE ETHEREUM ALLIANCE*

Motivate enterprise adoption of Ethereum on an IA-friendly specification

https://www.hyperledger.org/blog/2018/01/30/announcing-hyperledger-sawtooth-1-0

https://www.hyperledger.org/projects/sawtooth

https://hyperledger.org/members

<u> https://entethalliance.org/members/</u>

https://www.corda.net/wp-content/uploads/2017/05/R3FundingPressRelease.pdf

ASSETS AVAILABLE

More information: https://www.intel.com/content/www/us/en/security/blockchain-overview.html

Private Data Object

-Service Deployment Architecture Distributed Ledger:

- Decentralized commit log
- Dependency enforcement
- Contract Provisioning Record
- No contract semantics, blinded identities, and only encrypted state

Provisioning Services:

- Generate secrets for building state encryption keys
- Trust is both computational and institutional

CE

Enclave Hosting Service

CE

- Contract interpreter
- Executes within SGX enclave

Enclave Hosting Service

CE

PS

CE

CE

CE

CE

Private Data Object

-Method Invocation (Transaction)

Contract Enclave

Contract Participant

Ledger

1. Get current state

2. Return state $e_c(S_i)$

3. invoke(S_i, M_i, CC, U, CH_i)
4. result(V_i, S_i, S_{i+1}, M_i, CC, CH_i)

5. $txn(S_i, S_{i+1}, M_i, CC, CH_i)$

Ledger orders state transitions; a state change is not valid until it is committed in the ledger

Thanks