中国科学技术大学2023-2024学年第一学期 数学分析A3 期中试卷

	3.4.4.4	
性名:	学号.	
生石:	T /·	_
ш н.		

题号	-	=	三	四	五	六	七	八	总分
得分									

一(每题6分, 共计24分)、讨论级数或无穷乘积的敛散性。

但从	
1477	

(1).
$$\sum_{n=1}^{\infty} (1 - \frac{1}{n})^n$$
;

(2).
$$\sum_{n=1}^{\infty} (-1)^n \frac{\cos n!}{n(n+1)};$$

(3).
$$\sum_{n=3}^{\infty} \frac{1}{(\ln n)^{\ln n}}$$
;

$$(4). \ \prod_{n=1}^{\infty} \cos \frac{1}{n}.$$

二(12分)、 讨论级数 $\sum_{n=2}^{\infty} (-1)^n \frac{\cos 2n}{n^p}$ 的敛散性和绝对收敛性,其中 $p \in \mathbb{R}$ 。 $\boxed{$ 得分 $\boxed{}$

三(10分)、 计算
$$\int_{\ln 2}^{\ln 5} f(x) dx$$
, 其中 $f(x) = \sum_{n=1}^{\infty} ne^{-nx}$ 。

得分

四(10分)、求级数
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
 的和。

得分

五(20分)、

得分

(1). 研究函数列 $\{f_n(x)=e^{-(x-n)^2}\}$ 在下列区间上的一致收敛性:

$$(a).(-1,1),$$

(a).
$$(-1, 1)$$
, (b). $(-\infty, +\infty)$;

(2). 研究函数项级数 $\sum_{n=1}^{\infty} 2^n \sin \frac{1}{3^n x}$ 在 $(0, +\infty)$ 上的收敛性和一致收敛性。

六(8分)、设正数列 $\{a_n\}$ 单调递减,且 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问 $\sum_{n=1}^{\infty} \left(\frac{1}{1+a_n}\right)^n$ 是否收敛? 并说明理由。

七(8分)、设函数f(x)在[0,1]上有任意阶导数且f(0)=0。若存在 $\alpha\in(0,1)$ 使得 $f'(x)=f(\alpha x), x\in[0,1]$,则f(x)=0。

八(8分)、设对每	$\uparrow n \geq 1$,	函数 f_n :	$[0,1] \to [0,$	1] 为单调	增函数,	若 $f_n(x)$	在[0,1]	中收敛
于连续函数 $f(x)$,	证明 f_n (x) 在[0,1]	中一致收敛	(ff(x))。	(注意 f_n	不一定是	连续函	数)

(17.4)	
得分	

2023 数分 A3 期中考试题及 1,3,5,7 题评分标准

1. (24 分,每小题 6 分)讨论级数或无穷乘积的敛散性。

$$(1) \sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^{n}$$

$$(1) \sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n \qquad (2) \sum_{n=1}^{\infty} (-1)^n \frac{\cos n!}{n(n+1)} \qquad (3) \sum_{n=3}^{\infty} \frac{1}{(\ln n)^{\ln n}} \qquad (4) \prod_{n=1}^{\infty} \cos \frac{1}{n}$$

(3)
$$\sum_{n=3}^{\infty} \frac{1}{(\ln n)^{\ln n}}$$

$$(4) \prod_{n=1}^{\infty} \cos \frac{1}{n}$$

评分标准.

- (1) 每道小题,结论错误(-6);使用判别法的条件没写全(或未经证明给出一个断言,断言本 身很难证),且那题根本不能用该判别法做(-6);
- (2) 每道小题,使用判别法的条件没写全,但那题可以用该判别法做(-3),使用课后习题的结 论(-3),证明过程出现核心步骤有错误(-3);
- (3) 每道小题,某些计算出错(-2),如第 (1) 问计算 $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = \frac{1}{e}$ 出错,第 (4) 问计算 $\cos \frac{1}{n}$ 的二阶展开出错;
- (4) 第(4) 问没有判断保号,或者过程中没有能够得到保号的式子(-3).
- **2.** (12 分) 讨论级数 $\sum_{n=0}^{\infty} (-1)^n \frac{\cos 2n}{n^p}$ 的敛散性和绝对敛散性,其中 $p \in \mathbb{R}$

3. (10 分) 计算
$$\int_{\ln 2}^{\ln 5} f(x) dx$$
,其中 $f(x) = \sum_{n=1}^{\infty} n e^{-nx}$

评分标准.

- (1) 证明级数一致收敛(6 %); 计算积分(4 %);
- (2) 证明一致收敛部分:写出一致收敛结论 $(2 \text{ } \frac{1}{2})$,但一致收敛的范围写错(写了 $(0,+\infty)$ 一致收敛)不得分;
- (3) 证明一致收敛部分: 用了正确的方法, 但重要步骤出现错误(-2); 对通项用上确界判别法 证一致收敛的不得分;直接写出 f(x) 表达式,没有计算过程的(-2);没写一致收敛的范围, 或者没有任何地方写出讨论一致收敛性的x的范围(-1);
- (4) 计算部分: 结果错误(-2), 结果错误的会视计算步骤适当给分。

注.

- (1) 这里之所以强调要写一致收敛范围,或限制 x 的范围来讨论一致收敛性,是因为本题的级数在 $(0, +\infty)$ 不一致收敛;
- (2) 选择直接计算 f(x) 表达式来做这题的同学,如果计算出现严重错误,丢分会很严重,所以涉及计算的题目大家一定要细心再细心!
- **4.** (10 分) 求级数 $\sum_{n=1}^{\infty} \frac{n}{2^n}$ 的和.
- **5.** $(20 \, \mathcal{G})(1)$ 研究函数列 $\{f_n(x) = e^{-(x-n)^2}\}$ 在下列区间的一致收敛性:

$$(a) (-1,1) \qquad (b) (-\infty, +\infty)$$

(2) 研究函数项级数 $\sum_{n=1}^{\infty} 2^n \sin \frac{1}{3^n x}$ 在 $(0,+\infty)$ 上的收敛性和一致收敛性.

评分标准.

- (1) 每个部分各占5分;
- (2) 结论错误(-5); 每有一个结论正确(2分)(共4个结论,全写对可以拿8分);
- (3) 第 (1) 问的 (a),使用上确界判别法计算 $\beta_n = e^{-(n-1)^2}$ 出错(-2); 其他计算,如 (b) 中 β_n 的值算错,第 (2) 问取点代入计算函数值验证通项不一致趋于 0 算错(-1).
- **6.** (8 分) 设正数列 $\{a_n\}$ 单调递减,且 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问 $\sum_{n=1}^{\infty} \left(\frac{1}{1+a_n}\right)^n$ 是否收敛?
- 7. (8 分) 设函数 f(x) 在 [0,1] 有任意阶导数,且 f(0) = 0. 若存在 $\alpha \in (0,1)$ 使得 $f'(x) = f(\alpha x), x \in [0,1]$,则 f(x) = 0.

评分标准.

- (1) 对比较多见的做法而言,证明 $f^{(n)}(x)$ 的某个表达式(3 分),证明 f(x) 可以在 x = 0 附近做幂级数展开(3 分),推导 f(x) = 0(2 分);
- (2) 没有证明直接说 f(x) 可以做幂级数展开(-2);
- (3) 写出了 $f^{(n)}(x)$ 表达式的(中间没有做任何的放缩), $f^{(n)}(x) = \alpha^{\frac{n(n-1)}{2}} f(\alpha^n x)$,系数和括号内系数各1 分.
- **8.** (8 分) 设对每个 $n \ge 1$, 函数 $f_n : [0,1] \to [0,1]$ 为单调递增函数,若 $f_n(x)$ 在 [0,1] 中收敛于连续函数 f(x), 证明 $f_n(x)$ 在 [0,1] 中一致收敛于 f(x).