ESD PROJECT

WINTER 2019

RFID BASED ATTENDANCE AND SECURITY SYSTEM

Project Report

Embedded System Design

In

ICT

By

Yug Patel (1741017)
Deep Gohel (1741060)
Manav Shah (1741042)
Dhruvil Shah (1741024)

Under the guidance of

Prof. Anurag Lakhlani

School of Engineering and Applied Science

Ahmedabad University

Ahmedabad - 380009

February 2019

SUMMARY

This report provides a brief introduction to a new way of taking attendance, limiting entries providing and a seamless. time-efficient design for the given purposes. The primitive methods for attendance are the roll call, signature takings or biometric system. As we have found that these methods are either outdated, expensive or time-consuming. We found a comparatively newer and cheaper way to serve the purpose. It is the RFID based attendance system. Each student and lecturer has been issued an RFID tag using which they mark their attendance. This can increase the efficiency of attendance and save lecturers' time.

Outcome:

Through this, any student cannot enter any cabin or any place without ID card or tag. Through this, master can increase his security and no other documents or any paper of them can be missed or replaced or are stolen or leak.

Through attendance system, no other student can be marked absent if student have his or her tag and through this efficiency of attendance and save lecturers' time. So this system is efficient to save attendance and also for security

BLOCK DIAGRAM

Components needed:-

Index	Name of component
1	ATMEGA32 Microcontroller
2	Breadboard
3	RFID Reader
4	RFID tags(*3)
5	Jumper wires
6	16*2 LCD Display
7	MAX 232
8	LED

FLOW CHART

Selection Criteria

- ATmega32 Microcontroller: ATmega32 has USART:
 Universal Synchronous/Asynchronous Receiver/Transmitter which is a microcontroller peripheral that converts incoming and outgoing bytes of data into a serial bit stream.

 Attendance system and security system needs almost 32KB of memory. RFID transmits and receives data through USART.
- RFID Reader: Radio frequency Identification (RFID) is a
 wireless identification technology that uses radio waves to
 identify the presence of RFID tags. This module directly
 connects to the ATmega32 microcontroller UART or through
 an RS232 converter to PC. It gives USART output. We use
 EM18 reader module RFID reader.

 Passive RFID Tags: Passive RFID Tags uses electromagnetic energy transmitted by the RFID reader. It uses frequency of 125kHz

 MAX232: The MAX232 is a dual transmitter / dual receiver that typically is used to convert the RX, TX signals to respective voltage. It is used to convert -3V to -25V and +3V to +25V of RS232 to +5V and 0V.

LED: It is used to indicate that the door has been opened.

CIRCUIT DIAGRAM

DATASHEET OF VARIOUS **COMPONENTS** 1) ATmega32

Features

- High-performance, Low-power Atmel®AVR® 8-bit Microcontroller
- Advanced RISC Architecture
 131 Powerful Instructions - Most Single-clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 Fully Static Operation
 Up to 16 MIPS Throughput at 16MHz
- On-chip 2-cycle Multiplier
 High Endurance Non-volatile Memory segments
 - 32Kbytes of In-System Self-programmable Flash program memory 1024Bytes EEPROM

 - 2Kbytes Internal SRAM

 - ZADytes internal SHAM

 Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

 Data retention: 20 years at 85°C/100 years at 25°C(1)

 Optional Boot Code Section with Independent Lock Bits
 In-System Programming by On-chip Boot Program
- True Read-While-Write Operation

 Programming Lock for Software Security

 JTAG (IEEE std. 1149.1 Compliant) Interface
- Boundary-scan Capabilities According to the JTAG Standard
 Extensive On-chip Debug Support
 Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

 Peripheral Features
- Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
 - Real Time Counter with Separate Oscillator
 - Four PWM Channels
 8-channel, 10-bit ADC

 - 8-cnannel, 10-bit ADC
 8 Single-ended Channels
 7 Differential Channels in TQFP Package Only
 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x

 Byte-oriented Two-wire Serial Interface
 Programmable Serial USART

 - Master/Slave SPI Serial Interface
 Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
 Special Microcontroller Features
- - Power-on Reset and Programmable Brown-out Detection
 Internal Calibrated RC Oscillator

 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby
- I/O and Packages
 32 Programmable I/O Lines
 - 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF

- Speed Grades

 0 8MHz for ATmega32L
- O 16MHz for ATmega32
 Power Consumption at 1MHz, 3V, 25°C
- - Active: 1.1mAIdle Mode: 0.35mA
 - Power-down Mode: < 1µA

8-bit AVR® Microcontroller with 32KBytes In-System **Programmable** Flash

ATmega32 ATmega32L

2) RFID Reader(EM18)

EM-18 RFID Reader

The EM-18 RFID Reader module operating at 125kHz is an inexpensive solution for your RFID based application. The Reader module comes with an on-chip antenna and can be powered up with a 5V power supply. Power-up the module and connect the transmit pin of the module to recieve pin of your microcontroller. Show your card within the reading distance and the card number is thrown at the output. Optionally the module can be configured for also a weigand output.

Typical Applications

- · e-Payment
- · e-Toll Road Pricing
- · e-Ticketing for Events
- e-Ticketing for Public Transport
- · Access Control
- PC Access
- Authentication
- Printer / Production Equipment

3) MAX232

MAX232, MAX232I DUAL EIA-232 DRIVERS/RECEIVERS

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

- Meets or Exceeds TIA/EIA-232-F and ITU Recommendation V.28
- Operates From a Single 5-V Power Supply With 1.0-μF Charge-Pump Capacitors
- Operates Up To 120 kbit/s
- Two Drivers and Two Receivers
- ±30-V Input Levels
- Low Supply Current . . . 8 mA Typical
- ESD Protection Exceeds JESD 22
 2000-V Human-Body Model (A114-A)
- Upgrade With Improved ESD (15-kV HBM) and 0.1-μF Charge-Pump Capacitors is Available With the MAX202
- Applications
 - TIA/EIA-232-F, Battery-Powered Systems, Terminals, Modems, and Computers

MAX232 . . . D, DW, N, OR NS PACKAGE MAX232I . . . D, DW, OR N PACKAGE (TOP VIEW)

description/ordering information

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/EIA-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ± 30 -V inputs. Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASICTM library.

ORDERING INFORMATION

TA	PAG	CKAGET	ORDERABLE PART NUMBER	TOP-SIDE MARKING			
	PDIP (N)	Tube of 25	MAX232N	MAX232N			
	0010 (D)	Tube of 40	MAX232D				
	SOIC (D)	Reel of 2500	MAX232DR	MAX232			
0°C to 70°C	2010 (014)	Tube of 40	MAX232DW				
	SOIC (DW)	Reel of 2000	MAX232DWR	MAX232			
	SOP (NS)	Reel of 2000	MAX232NSR	MAX232			
	PDIP (N)	Tube of 25	MAX232IN	MAX232IN			
	0010 (D)	Tube of 40	MAX232ID	1443/0001			
-40°C to 85°C	SOIC (D)	Reel of 2500	MAX232IDR	MAX232I			
	SOIC (DW)	Tube of 40	MAX232IDW	MAYOOOL			
	SOIC (DW)	Reel of 2000	MAX232IDWR	MAX232I			

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinASIC is a trademark of Texas Instruments.

ublication date.
xxxs instruments
cessarily include

TEXAS
INSTRUMENTS

Copyright © 2004, Texas Instruments Incorporated

1

4) LCD(16*2)

LCD-016M002B

Vishay

16 x 2 Character LCD

MECHANICAL DATA							
ITEM	STANDARD VALUE	UNIT					
Module Dimension	80.0 x 36.0	mm					
Viewing Area	66.0 x 16.0	mm					
Dot Size	0.56 x 0.66	mm					
Character Size	2.96 x 5.56	mm					

FEATURES

- 5 x 8 dots with cursor
- · Built-in controller (KS 0066 or Equivalent)
- + 5V power supply (Also available for + 3V)
- 1/16 duty cycle
- B/L to be driven by pin 1, pin 2 or pin 15, pin 16 or A.K (LED)
- N.V. optional for + 3V power supply

ABSOLUTE MAXIMUM RATING										
ITEM	SYMBOL	STAN	UNIT							
		MIN.	TYP.	MAX.						
Power Supply	VDD-VSS	- 0.3	1-	7.0	٧					
Input Voltage	VI	- 0.3	-	VDD	V					

NOTE: VSS = 0 Volt, VDD = 5.0 Volt

ELECTRICAL SPECIFICATIONS									
ITEM	SYMBOL	CONDITI	ON	ST	STANDARD VALUE				
				MIN.	TYP.	MAX.			
Input Voltage	VDD	VDD = + 5	5V	4.7	5.0	5.3	V		
		VDD = + 3	3V	2.7	3.0	5.3	V		
Supply Current	IDD	VDD = 5	V	_	1.2	3.0	mA		
		- 20 °C		_	-	_			
Recommended LC Driving	VDD - V0	0°C		4.2	4.8	5.1	V		
Voltage for Normal Temp.		25°C		3.8	4.2	4.6			
Version Module		50°C		3.6	4.0	4.4			
		70°C		1	: - ::	_			
LED Forward Voltage	VF	25°C	25°C		4.2	4.6	V		
LED Forward Current	IF	25°C	Array	-	130	260	mA		
			Edge	-	20	40			
EL Power Supply Current	IEL	Vel = 110VAC:400Hz		7-2		5.0	mA		

DISPLAY CHARACTER ADDRESS CODE:																
Display Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DD RAM Address	00	01														0F
DD RAM Address	40	41														4F

TIMELINE

Date	Basic Design of our Circuit and second report	Coding part of our Circuit and third report	Entire Project and Final Report	Project demo and viva
05/03/2019	V			
19/03/2019		V		
02/4/2019			V	
17/04/2019				\checkmark