Subject

An identifier of the subject who carried out the experiment

Activity

Activity name

- 1 WALKING
- 2 WALKING_UPSTAIRS
- 3 WALKING DOWNSTAIRS
- 4 SITTING
- **5 STANDING**
- **6 LAYING**

tBodyAcc_mean_X

Mean value of the estimated variables of the body X-acceleration for each pair of subject and activity

tBodyAcc_mean_Y

Mean value of the estimated variables of the body Y-acceleration for each pair of subject and activity

tBodyAcc mean Z

Mean value of the estimated variables of the body Z-acceleration for each pair of subject and activity

tGravityAcc mean X

Mean value of the estimated variables of the gravity X-acceleration for each pair of subject and activity

tGravityAcc mean Y

Mean value of the estimated variables of the gravity Y-acceleration for each pair of subject and activity

tGravityAcc mean Z

Mean value of the estimated variables of the gravity Z-acceleration for each pair of subject and activity

tBodyAccJerk mean X

Mean value of the estimated body X-acceleration derived in time to obtain Jerk signals for each pair of subject and activity

tBodyAccJerk mean Y

Mean value of the estimated body Y-acceleration derived in time to obtain Jerk signals for each pair of subject and activity

tBodyAccJerk mean Z

Mean value of the estimated body Z-acceleration derived in time to obtain Jerk signals for each pair of subject and activity

tBodyGyro_mean_X

Mean value of the estimated body X-angular velocity from the gyroscope for each pair of subject and activity

tBodyGyro_mean_Y

Mean value of the estimated body Y-angular velocity from the gyroscope for each pair of subject and activity

tBodyGyro mean Z

Mean value of the estimated body Z-angular velocity from the gyroscope for each pair of subject and activity

tBodyGyroJerk mean X

Mean value of the estimated body X-angular velocity from the gyroscope derived in time to obtain Jerk signals for each pair of subject and activity

tBodyGyroJerk_mean_Y

Mean value of the estimated body Y-angular velocity from the gyroscope derived in time to obtain Jerk signals for each pair of subject and activity

tBodyGyroJerk mean Z

Mean value of the estimated body Z-angular velocity from the gyroscope derived in time to obtain Jerk signals for each pair of subject and activity

tBodyAccMag mean

Mean value of the estimated magnitude of body acceleration for each pair of subject and activity

tGravityAccMag mean

Mean value of the estimated magnitude of gravity acceleration for each pair of subject and activity

tBodyAccJerkMag mean

Mean value of the estimated magnitude of body acceleration derived in time to obtain Jerk signals for each pair of subject and activity

tBodyGyroMag mean

Mean value of the estimated magnitude of body angular velocity from the gyroscope for each pair of subject and activity

tBodyGyroJerkMag_mean

Mean value of the estimated magnitude of body angular velocity from the gyroscope derived in time to obtain Jerk signals for each pair of subject and activity

fBodyAcc_mean_X

Mean value of the estimated FFT of body X-acceleration for each pair of subject and activity

fBodyAcc mean Y

Mean value of the estimated FFT of body Y-acceleration for each pair of subject and activity

fBodyAcc mean Z

Mean value of the estimated FFT of body Z-acceleration for each pair of subject and activity

fBodyAccJerk mean X

Mean value of the estimated FFT Jerk signals of body X-acceleration for each pair of subject and activity

fBodyAccJerk_mean_Y

Mean value of the estimated FFT Jerk signals of body Y-acceleration for each pair of subject and activity

fBodyAccJerk mean Z

Mean value of the estimated FFT Jerk signals of body Z-acceleration for each pair of subject and activity

fBodyGyro mean X

Mean value of the estimated FFT of body X-angular velocity from gyroscope for each pair of subject and activity

fBodyGyro mean Y

Mean value of the estimated FFT of body Y-angular velocity from gyroscope for each pair of subject and activity

fBodyGyro_mean_Z

Mean value of the estimated FFT of body Z-angular velocity from gyroscope for each pair of subject and activity

fBodyAccMag mean

Mean value of the estimated magnitude of FFT of body acceleration for each pair of subject and activity

fBodyBodyAccJerkMag mean

Mean value of the estimated magnitude of FFT Jerk signals of body acceleration for each pair of subject and activity

fBodyBodyGyroMag_mean

Mean value of the estimated magnitude of FFT of body angular velocity from gyroscope for each pair of subject and activity

fBodyBodyGyroJerkMag mean

Mean value of the estimated magnitude of FFT Jerk signals of body angular velocity from gyroscope for each pair of subject and activity

tBodyAcc std X

Standard deviation of the estimated variables of the body X-acceleration for each pair of subject and activity

tBodyAcc std Y

Standard deviation of the estimated variables of the body Y-acceleration for each pair of subject and activity

tBodyAcc_std_Z

Standard deviation of the estimated variables of the body Z-acceleration for each pair of subject and activity

tGravityAcc std X

Standard deviation of the estimated variables of the gravity X-acceleration for each pair of subject and activity

tGravityAcc std Y

Standard deviation of the estimated variables of the gravity Y-acceleration for each pair of subject and activity

tGravityAcc std Z

Standard deviation of the estimated variables of the gravity Z-acceleration for each pair of subject and activity

$tBodyAccJerk_std_X$

Standard deviation of the estimated body X-acceleration derived in time to obtain Jerk signals for each pair of subject and activity

tBodyAccJerk std Y

Standard deviation of the estimated body Y-acceleration derived in time to obtain Jerk signals for each pair of subject and activity

tBodyAccJerk std Z

Standard deviation of the estimated body Z-acceleration derived in time to obtain Jerk signals for each pair of subject and activity

$tBodyGyro_std_X$

Standard deviation of the estimated body X-angular velocity from the gyroscope for each pair of subject and activity

tBodyGyro std Y

Standard deviation of the estimated body Y-angular velocity from the gyroscope for each pair of subject and activity

tBodyGyro std Z

Standard deviation of the estimated body Z-angular velocity from the gyroscope for each pair of subject and activity

tBodyGyroJerk_std_X

Standard deviation of the estimated Jerk signals of body X-angular velocity from the gyroscope for each pair of subject and activity

tBodyGyroJerk_std_Y

Standard deviation of the estimated Jerk signals of body Y-angular velocity from the gyroscope for each pair of subject and activity

tBodyGyroJerk_std_Z

Standard deviation of the estimated Jerk signals of body Z-angular velocity from the gyroscope for each pair of subject and activity

tBodyAccMag std

Standard deviation of the estimated magnitude of body acceleration for each pair of subject and activity

tGravityAccMag std

Standard deviation of the estimated magnitude of gravity acceleration for each pair of subject and activity

tBodyAccJerkMag std

Standard deviation of the estimated magnitude of Jerk signals of body acceleration for each pair of subject and activity

tBodyGyroMag std

Standard deviation of the estimated magnitude of body angular velocity from the gyroscope for each pair of subject and activity

tBodyGyroJerkMag_std

Standard deviation of the estimated magnitude of Jerk signals of body angular velocity from the gyroscope for each pair of subject and activity

fBodyAcc std X

Standard deviation of the estimated FFT of body X-acceleration for each pair of subject and activity

fBodyAcc_std_Y

Standard deviation of the estimated FFT of body Y-acceleration for each pair of subject and activity

fBodyAcc std Z

Standard deviation of the estimated FFT of body Z-acceleration for each pair of subject and activity

fBodyAccJerk std X

Standard deviation of the estimated FFT of Jerk signals of body X-acceleration for each pair of subject and activity

fBodyAccJerk std Y

Standard deviation of the estimated FFT of Jerk signals of body Y-acceleration for each pair of subject and activity

fBodyAccJerk_std_Z

Standard deviation of the estimated FFT of Jerk signals of body Z-acceleration for each pair of subject and activity

fBodyGyro_std_X

Standard deviation of the estimated FFT of body X-angular velocity from the gyroscope for each pair of subject and activity

fBodyGyro_std_Y

Standard deviation of the estimated FFT of body Y-angular velocity from the gyroscope for each pair of subject and activity

$fBodyGyro_std_Z$

Standard deviation of the estimated FFT of body Z-angular velocity from the gyroscope for each pair of subject and activity

fBodyAccMag_std

Standard deviation of the estimated magnitude of FFT of body acceleration for each pair of

subject and activity

fBodyBodyAccJerkMag_std

Standard deviation of the estimated magnitude of FFT Jerk signal of body acceleration for each pair of subject and activity

$fBodyBodyGyroMag_std$

Standard deviation of the estimated magnitude of FFT of body angular velocity from the gyroscope for each pair of subject and activity

$fBodyBodyGyroJerkMag_std$

Standard deviation of the estimated magnitude of FFT Jerk signal of body angular velocity from the gyroscope for each pair of subject and activity