CLEAN VERSION OF REWRITTEN OR ADDED CLAIMS PURSUANT TO 37 CFR § 1.21 (c)(1)(i)

1. A method of labeling an organic compound for fluorescent

detection, comprising:

providing a fluorophore having the structure illustrated by Formula A

FORMULA A

where R₁ and R₁₀ taken alone are hydrogen or halogen; R₂, R₅, R₆ and R₉ taken alone are hydrogen, alkyl, carboxyalkyl, aminoalkyl, alkylether, alkylthioether, halogen or alkoxy; R₃, R₄, R₇ and R₈ taken alone are hydrogen, and substituted or unsubstituted alkyl, carboxyalkyl, aminoalkyl, cycloalkyl, aryl; R₂ and R₃ taken together are alkyl chains each having from 2 to 5 carbon atoms connecting the 2' carbon to the nitrogen attached to the 3' carbon; R₉ and R₈ taken together are alkyl chains each having from 2 to 5 carbon atoms connecting the 7' carbon to the nitrogen attached to the 6' carbon; R₄ and R₅ taken together are alkyl, each having from 2 to 5 carbon atoms connecting the 4' carbon to the nitrogen attached to the 3' carbon; R₆ and R₇ taken together are alkyl, each having from 2 to 5 carbon atoms connecting the/5' carbon to the nitrogen attached to the 6' carbon; R₃ and R₄ taken together form an alkyl or alkylene chain containing up to 5 atoms in the principal chain, consisting of carbon and one or more heteroatoms from the group consisting of nitrogen or oxygen, with both terminal valence bonds of said chain being attached to the nitrogen

attached to the 3' carbon; R₇ and R₈ taken together form an alkyl or alkylene chain containing up to 5 atoms in the principal chain, consisting of carbon and one or more heteroatoms from the group consisting of nitrogen or oxygen, with both terminal valence bonds of said chain being attached to the nitrogen attached to the 6' carbon; R₁₁, R₁₂, R₁₃, and R₁₄ are each hydrogen or halogen, where R_a and R_{a'} are non-hydrogen substituents, wherein R_a confers resistance to lactam ring formation; and,

conjugating the fluorophore with an organic compound at the R_a group under covalent bond forming conditions, wherein the resultant conjugate is a single isomer being fluorescent upon excitation with light of a determinable wavelength.

10. A fluorescent conjugate comprising:

a conjugated substance and a fluorophore, the conjugated substance being an amino acid, peptide, protein, nucleotide, oligonucleotide, or nucleic acid to which is attached one or more fluorophores, the fluoreseent conjugate having the structure illustrated by

Formula 1

N

FORMULA 1

$$R_{13}$$
 R_{14}
 R_{10}
 $R_{$

where R_1 and R_{10} taken alone are hydrogen or halogen; R_2 , R_5 , R_6 and R_9 taken alone are hydrogen, alkyl, carboxyalkyl, aminoalkyl, alkylether, alkylthioether, halogen or alkoxy; R_3 , R_4 , R_7 and R_8 taken alone are hydrogen, and substituted or unsubstituted alkyl, carboxyalkyl, aminoalkyl, cycloalkyl, aryl; R_2 and R_3 taken together are alkyl chains each having from 2 to 5 carbon atoms connecting the 2' carbon to the nitrogen attached to the 3'

Attorney Docket No. SYNGEN-06069

carbon; R₉ and R₈ taken together are alkyl chains each having from 2 to 5 carbon atoms connecting the 7' carbon to the nitrogen attached to the 6' carbon; R₄ and R₅ taken together are alkyl, each having from 2 to 5 carbon atoms connecting the 4' carbon to the nitrogen attached to the 3' carbon; R₆ and R₇ taken together are alkyl, each having from 2 to 5 carbon atoms connecting the 5' carbon to the nitrogen attached to the 6' carbon; R₃ and R₄ taken together form an alkyl or alkylene chain containing up to 5 atoms in the principal chain, consisting of carbon and one or more heteroatoms from the group consisting of nitrogen or oxygen, with both terminal valence bonds of said chain being attached to the nitrogen attached to the 3' carbon; R₇ and R₈ taken together form an alkyl or alkylene chain containing up to 5 atoms in the principal chain, consisting of carbon and one or more heteroatoms from the group consisting of nitrogen or oxygen, with both terminal valence bonds of said chain being attached to the nitrogen attached to the 6' carbon; R₁₁, R₁₂, R₁₃, and R₁₄ are each hydrogen or halogen, where R₃ is an alkyl, carboxyalkyl, aminoalkyl, cycloalkyl, aryl, or arylalkyl having from 1 to 10 carbon atoms, and Z represents a linker plus the conjugated substance, wherein said conjugated substance lacks a lactam ring.

- 4 -