Université Toulouse III Paul Sabatier Cours M2 ISTR / RODECO - Commande linéaire avancée - Commande Robuste

Examen du 16 Octobre 2020

À toutes fins utiles le recto de cette feuille contient quelques résultats numériques et des formules. Les deux exercices sont indépendants.

1. Soit M un système dynamique représenté par

$$\dot{x} = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} x + \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} w_{\Delta} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w$$

$$z_{\Delta} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} w_{\Delta}$$

$$z = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

1.1. Calculer la matrice de transfert de w vers z. Soit γ_1 sa norme H_{∞} . Que peut-on conclure sur le couple de signaux (w, z)?

1.2. Calculer la matrice de transfert de w_{Δ} vers z_{Δ} . Soit γ_2 sa norme H_{∞} . Que peut-on en conclure d'après de théorème du petit-gain?

1.3. Calculer la matrice de transfert de $\begin{pmatrix} w_{\Delta} \\ w \end{pmatrix}$ vers $\begin{pmatrix} z_{\Delta} \\ z \end{pmatrix}$. Soit γ_3 sa norme H_{∞} . Que peut-on en conclure d'après de théorème du petit-gain? Que peut-on conclure sur le couple de signaux (w, z)?

1.4. Soit la LFT $\Delta \star M$ où $\Delta = \begin{bmatrix} \delta & 0 \\ 0 & \delta \end{bmatrix}$. Pour quelles valeurs de δ ce système est-il stable?

2. Soit le système dynamique représenté par

$$\dot{x} = \begin{bmatrix} -1 + \delta_1 & 1 + \delta_2^2 & 0\\ -1 + \delta_1 & -1 & 1\\ 0 & -1 & -1 + \delta_1 \delta_2 \end{bmatrix} x$$

2.1. On pose $\delta_1 = \delta_2 = 0$, montrer que ce système est stable en utilisant la fonction de Lyapunov $V(x) = x^T x$.

2.2. On pose $\delta_1 = 0$ et $-1 \le \delta_2 \le 1$, construire un modèle polytopique et montrer que ce système est robustement stable en utilisant la fonction de Lyapunov $V(x) = x^T x$.

2.3. On pose $-0.5 \le \delta_1 \le 0.5$ et $-1 \le \delta_2 \le 1$, construire un modèle polytopique. Ce système est-il robustement stable?

2.4. On pose $-0.5 \le \delta_1 \le 0.5$ et $-1 \le \delta_2 \le 1$, construire un modèle LFT de type $\Delta \star M$. Que peut-on conclure avec le théorème du petit gain?

A toutes fins utiles on donne les éléments suivants :

Les valeurs propres de $A \in \mathbb{R}^{2 \times 2}$ sont toutes a partie réelle négative \Leftrightarrow $\begin{cases} Tr(A) < 0 \\ det(A) > 0 \end{cases}$

$$\left[\begin{array}{c|c} M_{11} & M_{12} \\ \hline M_{21} & M_{22} \end{array}\right] \star \Delta = M_{11} + M_{12} \Delta (I - \Delta M_{22})^{-1} M_{21}$$

$$\Delta \star \left[\begin{array}{c|c} M_{11} & M_{12} \\ \hline M_{21} & M_{22} \end{array} \right] = M_{22} + M_{21} \Delta (I - \Delta M_{11})^{-1} M_{12}$$

$$||G||_{\infty}^2 = \max_{\omega} \overline{\sigma}^2(G(j\omega))$$

 $\overline{\sigma}^2(M) = \text{plus grande valeur propre de } M^T M$

$$\left\| \frac{s+1}{s+2s+2} \right\|_{\infty} < 0.636$$

$$\left\| \begin{bmatrix} \frac{-2}{s^2 + 2s + 2} & \frac{-1}{s^2 + 2s + 2} \\ 1 & 0 \end{bmatrix} \right\|_{-1} < 1.460$$

$$\left\| \begin{bmatrix} \frac{-2}{s^2 + 2s + 2} & \frac{-1}{s^2 + 2s + 2} & \frac{s + 1}{s^2 + 2s + 2} \\ 1 & 0 & 0 \\ \frac{2(s + 1)}{s^2 + 2s + 2} & \frac{s + 1}{s^2 + 2s + 2} & \frac{1}{s^2 + 2s + 2} \end{bmatrix} \right\|_{\infty} < 2.020$$

Le système suivant

a une norme H_{∞} égale à 1.188.