Самостоятельная работа №2:

Инвариантная часть:

<u>Задание 2.1:</u> Визуализация примера для моделей и подходов к организации данных

Модель данных — это структурное представление элементов данных, их отношений и ограничений в системе управления базами данных (СУБД).

В зависимости от степени абстракции модели данных можно разделить на следующие категории:

1. Иерархическая модель

Предметная область: Система управления файловой структурой компьютера. Взаимоотношения:

- Данные организованы в виде дерева с одним корневым узлом.
- Каждая папка (родитель) содержит файлы или подпапки (потомки).
- Пример:

Корень (С:/)

— Документы

Работа

Учеба

Программы

Браузеры

Офис

Характеристика: Жесткая структура, быстрый доступ к потомкам, но сложность связей «многие-ко-многим».

2. Сетевая модель

Предметная область: Система учета поставщиков и товаров. Взаимоотношения:

- Объекты связаны через указатели (сети).
- Один товар может поставляться разными поставщиками, а поставщик

 работать с несколькими товарами.
- Пример:

Поставщик A o Товар 1

Поставщик Б \rightarrow Товар 1

Поставщик Б \rightarrow Товар 2

Характеристика: Гибкость связей, но сложность проектирования.

3. Реляционная модель

Предметная область: Интернет-магазин.

Взаимоотношения:

- Данные хранятся в таблицах с связями через ключи.
- Пример таблиц:
 - 。 Покупатели (id, имя)
 - 。 Заказы (id, покупатель id, дата)
 - о Товары (id, название, цена)
 - Состав_заказа (заказ_id, товар_id, количество) **SQL-запрос:**

sql

SELECT Покупатели.имя, Товары.название

FROM Покупатели

JOIN Заказы ON Покупатели.id = Заказы.покупатель id

JOIN Состав заказа ON Заказы.id = Состав заказа.заказ id

JOIN Товары ON Товары.id = Состав заказа.товар id;

Характеристика: Простота, стандартизация (SQL), но проблемы с масштабированием.

4. Объектно-ориентированная модель

Предметная область: Система проектирования САD (чертежи). Взаимоотношения:

- Данные объекты с методами (например, «сохранить», «отрендерить»).
- Пример классов:

```
python
class Деталь:
  def init (self, название, материал):
    self.название = название
    self.материал = материал
  def отрендерить(self):
    pass
class Сборка:
  def init (self, детали):
    self.детали = детали # Список объектов Деталь
Характеристика: Естественность для ООП, но низкая скорость сложных
запросов.
5. Документо-ориентированная модель (NoSQL)
Предметная область: Блог-платформа.
Взаимоотношения:
     Данные — JSON-документы с вложенными структурами.
   • Пример документа в MongoDB:
ison
 " id": "123",
 "title": "Как работает NoSQL",
 "author": "Иван Петров",
 "comments": [
  {"user": "Анна", "text": "Отличная статья!"},
  {"user": "Петр", "text": "Спасибо!"}
}
```

Характеристика: Гибкость схемы, быстрое чтение/запись, но нет JOIN.

6. Графовая модель

Предметная область: Социальная сеть.

Взаимоотношения:

- Узлы (люди) и ребра (дружба, лайки).
- Запрос в Neo4j (Cypher):

cypher

MATCH (user:User)-[:FRIENDS WITH]->(friend)

WHERE user.name = "Анна"

RETURN friend.name;

Характеристика: Идеально для сложных связей, но избыточно для простых данных.

7. Колоночная модель (NoSQL)

Предметная область: Аналитика продаж.

Взаимоотношения:

- Данные хранятся по столбцам, а не строкам.
- Пример (Cassandra):

sql

```
CREATE TABLE sales (

product_id UUID,

date DATE,

region TEXT,

amount DECIMAL,

PRIMARY KEY (product_id, date)
);
```

Характеристика: Быстрые агрегации (SUM, AVG), но медленные обновления.

Вариативная часть:

Задание 2.2: Заполните таблицу "Преимущества и недостатки моделей данных"

No	Модель данных	Преимущества	Недостатки
1	Иерархическая	Простота,	Жесткость связей
		скорость	
2	Сетевая	Гибкость связей	Сложность
			проектирования
3	Реляционная	Стандартизация	Проблемы с
		(SQL)	масштабированием
4	Объектно-ориентированная	Естественность	Медленные
		для ООП	запросы
5	Документно-ориентированная	Гибкость схемы	Нет транзакций
6	Графовая	Эффективность	Избыточность для
		связей	простых данных
7	Колоночная	Скорость	Сложность
		агрегаций	обновлений