## The Marabou Framework for Verification and Analysis of Deep Neural Networks

September 9, 2022

# 目录

Introduction

2 Marabou

# 目录

1 Introduction

2 Marabou

#### Contribution

- Marabou is an SMT-based tool that can answer queries about a network's properties by transforming these queries into constraint satisfaction problems.
- The Marabou framework is a significant improvement over its predecessor, Reluplex. Specifically, it includes the following enhancements and modifications:
  - support for CNN
  - support for divide-and-conquer solving mode
  - a simplex-based linear programming core that replaces the external solver (GLPK)
  - Multiple interfaces for feeding queries into the solver
  - Support for network-level reasoning and deduction.

# 目录

Introduction

2 Marabou

### Design of Marabou



### Simplex Core

- Solve the linear constraints
- ullet Reluplex: solve linear constraints by GLPK.  $\to$  Marabou: implement a new custom solver
  - repeated translation of queries into GLPK and extraction of results from GLPK was a limiting factor on performance
  - black box simplex solver did not afford the flexibility we needed in the context of DNN verification

#### Piecewise-Linear Constraints

- configuration:
  - abstract class: PiecewiseLinearConstraint class
  - class: Max and Relu
  - objects: constraints
- methods of PiecewiseLinearConstraint class:
  - satisfied()
  - getPossibleFixes()
  - getCaseSplits():piecewise-linear constraint  $\varphi \to c_1 \vee \ldots \vee c_n$
  - getEntailedTightenings(): query the constraint for tighter variable bounds

### Constraint and Network-Level Reasoning

Constraint-level bound tightening: using getEntailedTightenings()

$$\text{deriveLowerBound} \quad \frac{x_i \in \mathcal{B}, \quad l(x_i) < \sum_{x_j \in \text{pos}(x_i)} T_{i,j} \cdot l(x_j) + \sum_{x_j \in \text{neg}(x_i)} T_{i,j} \cdot u(x_j)}{l(x_i) := \sum_{x_j \in \text{pos}(x_i)} T_{i,j} \cdot l(x_j) + \sum_{x_j \in \text{neg}(x_i)} T_{i,j} \cdot u(x_j)}$$

$$\text{deriveUpperBound} \quad \frac{x_i \in \mathcal{B}, \quad u(x_i) > \sum_{x_j \in \text{pos}(x_i)} T_{i,j} \cdot u(x_j) + \sum_{x_j \in \text{neg}(x_i)} T_{i,j} \cdot l(x_j)}{u(x_i) := \sum_{x_j \in \text{pos}(x_i)} T_{i,j} \cdot u(x_j) + \sum_{x_j \in \text{neg}(x_i)} T_{i,j} \cdot l(x_j)}$$

### Constraint and Network-Level Reasoning

DNN-level reasoning: Symbolic interval propagation



(a) Naive interval propagation



(b) Symbolic interval propagation

### Constraint and Network-Level Reasoning

DNN-level reasoning:symbolic bound tightening procedure

- Initializing the DNN-level reasoners with the most up-to-date information discovered during the search, such as variable bounds and the state of piecewise-linear constraints
- Feeding any new information that is discovered back into the search procedure.

### Engine



- If there is a violated linear constraint, perform a simplex step.
- If there is a violated piecewise-linear constraint, attempt to fix it.
- If a piecewise-linear constraint had to be fixed more than a certain number of times, perform a case split on that constraint.
- If the problem has become unsatisfiable, undo a previous case split (or return UNSAT if no such case split exists).
- Return SAT (all constraints are satisfied).
- Deduction: heuristics

## The Divide-and-Conquer Mode and Concurrency

Given a query  $\phi$ , the solver maintains a queue Q of  $\langle \text{query}, \text{timeout} \rangle$  pairs. Q is initialized with one element  $\langle \phi, T \rangle$ , where T, the initial timeout, is a configurable parameter. To solve  $\phi$ , the solver loops through the following steps:

- 1. Pop a pair  $\langle \phi', t' \rangle$  from Q and attempt to solve  $\phi'$  with a timeout of t'.
- 2. If the problem is UNSAT and Q is empty, return UNSAT.
- 3. If the problem is UNSAT and Q is not empty, return to step 1.
- 4. If the problem is SAT, return SAT.
- 5. If a timeout occurred, split  $\phi'$  into k sub-queries  $\phi'_1, \ldots, \phi'_k$  by partitioning its input region. For each sub-query  $\phi'_i$ , push  $\langle \phi'_i, m \cdot t' \rangle$  into Q.

Thank you