METROLOGÍA ESTADÍSTICA

ANÁLISIS DE DATOS

Cuando se obtiene uno o más grupos de datos, producto de repeticiones en una medida, la mejor forma de representarlas, es mediante las "Medidas de tendencia central"

Medidas de tendencia central

- MEDIAS
 - Aritmética
 - **■**Ponderada
 - Armónica

Media aritmética

Si una serie de repeticiones de la medida de un objeto provee n valores individuales independientes, el valor más probable para el conjunto generalmente es:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$x_i$$

$$n$$

$$\overline{X}=$$
 Media aritmética $x_i=$ Valores individuales del conjunto $n=$ Cantidad de valores individuales

■ Ejemplo:

En la determinación del área efectiva de un conjunto pistón- cilindro de una balanza de presión por el método de comparación, fueron obtenidos los siguientes valores:

Nº	Nº Valor [mm²]		Valor [mm ²]
1	4.032161	8	4.032734
2	4.032161	9	4.032734
3	4.032403	10	4.032863
4	4.032633	11	4.032853
5	4.032674	12	4.032944
6	4.032633	13	4.032752
7	4.032721	14	4.032853

$$\overline{X} = \frac{1}{14} (4.032161 + \dots + 4.032853)$$

$$\overline{X} = 4.032651 [mm^{2}]$$

Media ponderada

Es la media aritmética que se utiliza cuando a cada valor de la variable (xi) se le otorga una ponderación o peso distinto de la frecuencia o repetición. Para poder calcularla se tendrá que tener en cuenta las ponderaciones de cada uno de los valores que tenga la variable

$$\overline{X}_{p} = \frac{\sum_{i=1}^{n} w_{i} X_{i}}{\sum_{i=1}^{n} w_{i}}$$

 $\overline{X}=$ Media ponderada $x_i=$ Valores individuales del conjunto $w_i=$ Peso de cada valor individual

Ejemplo:

Se realizaron 10 repeticiones de una medición de presión, que está relacionada con la temperatura:

Presión (xi)	Temperatura (wi)
40,12	25,8
40,23	26
40,05	25,3
40,13	25,8
40,18	25,9
40,20	25,9
40,23	26,1
40,25	26,4
40,25	26,4
40,26	26,5

$$\overline{X_p} = \frac{(40,12 \times 25,8 + ... + 40,26 \times 26,5)}{25,8 + 26 + ... + 26,5}$$

$$\overline{X_{p}} = 40,19$$

Media armónica

Es la inversa de la media aritmética de las inversas de los valores de la variable, responde a la siguiente expresión:

$$\overline{X_h} = \frac{n}{\sum_{i=1}^n \frac{1}{xi}}$$

 $\overline{X_h} = \overline{X_h}$ Media armónica $x_i = \overline{X_h}$ Valores individuales $n = \overline{X_h}$ Cantidad de valores individuales

Se utiliza para promediar velocidades, caudales, rendimientos etc.

Ejemplo:

Calcular el valor medio de flujo de un punto de calibración en un banco gravimétrico, del cual se tomaron cinco lecturas.

Condiciones del banco:

Tiempo de ventana: 30 segundos Velocidad de la bomba: k * 40 Hz

Nο	Lectura [l/mi
1	253,5
2	253,1
3	252,5
4	252,2
5	252,1

$$\overline{X_h} = \frac{5}{\frac{1}{2535} + \frac{1}{2531} + \frac{1}{2525} + \frac{1}{2522} + \frac{1}{2521}}$$

$$\overline{X_h} = 2526 \frac{l}{\min}$$

Errores en la medición:

Al aceptar que podemos cometer errores en el proceso de medición, estamos también aceptando que utilizar las **medidas de tendencia central** no es suficiente para garantizar por ejemplo, una buena calibración.

Clasificación de los errores:

- •Debidos al método
- •Debidos al operario
- •Debidos al instrumento
- •Debido a las condiciones ambientales
- •Debido al mensurando

Para calificar debidamente un conjunto de datos, necesitamos conocer su dispersión.

Medidas de Dispersión

- Amplitud
- Varianza
- Desviación estándar experimental

Medidas de dispersión

Amplitud

Es la diferencia entre el mayor y el menor valor del conjunto de datos analizado

Grup	00	Valor1	Valor2	Valor3	Amplitud	Media
Α		3	3	3	0	3
В		2	3	4	2	3
С		9	0	0	9	3

Varianza

Como forma de medir la dispersión de un número de mediciones independientes entre sí:

La varianza S^2 se define como la media de las diferencias cuadráticas de n puntuaciones, con respecto a su media aritmética, es decir:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{X})^{2}$$

 $|S^2|$ Varianza

 \overline{X} Media aritmética

 $|x_i|$ Valor de cada repetición

n Número de repeticiones

Desviación estándar experimental

La raíz cuadrada de la varianza es denominada desviación estándar, y tiene la misma dimensión que la media.

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(x_i - \overline{X} \right)^2}$$

T² Desviación estándar

 $\overline{\overline{X}}$ Media aritmética

 $|X_i|$ Valor de cada repetición

n Número de repeticiones

ıem	

Grupo	Valor1	Valor2	Valor3	Amplitud	Media	Varianza	Desviación [unidad]
Α	3	3	3	0	3	0	0
В	2	3	4	2	3	1	1
С	9	0	0	9	3	27	5.19

Varianza

Desviación estándar experimental

$$S_A^2 = \frac{1}{2} [(3-3)^2 + (3-3)^2 + (3-3)^2] = 0$$

$$S = \sqrt{0} = 0$$

$$S_B^2 = \frac{1}{2} [(2-3)^2 + (3-3)^2 + (4-3)^2] = 1$$

$$S = \sqrt{1} = 1$$

$$S_B^2 = \frac{1}{2} [(2-3)^2 + (3-3)^2 + (4-3)^2] = 1$$
$$S_C^2 = \frac{1}{2} [(9-3)^2 + (0-3)^2 + (0-3)^2] = 27$$

$$S = \sqrt{27} = 5.19$$

Criterio de rechazo de Chauvenet

- No es recomendable para pequeñas muestras
- Se admite que un conjunto de repeticiones tenga una distribución normal
- Se rechaza la medida si:

$$X_i - \overline{X} \rangle k_n S$$

Valor de la repetición

Media del conjunto

Coeficiente de Chauvenet

Desviación estándar

Coeficiente de Chouvenet

n	k _n	n	k _n	n	k _n
2	1.15	8	1.86	30	2.40
3	1.35	9	1.92	40	2.48
4	1.54	10	1.96	50	2.57
5	1.65	15	2.13	100	2.81
6	1.73	20	2.24	300	3.14
7	1.80	25	2.33	500	3.29
_		-		1000	3.48

Ejemplo:

Dado el conjunto de repeticiones de la medida del diámetro de un eje, determinar los valores que pueden ser rechazados por el criterio de Chauvenet

i	X _i [mm]	i	X _i [mm]
1	2.557	6	2.597
2	2.561	7	2.565
3	2.553	8	2.555
4	2.567	9	2.547
5	2.549	10	2.559

 \overline{X} = 2.561 [mm] S = 0.014 [mm] K₍₁₀₎ * S = 0.027

i	X _i - X	i	$X_i - \overline{X}$
1	0.004	6	0.036
2	0	7	0.004
3	0.008	8	0.006
4	0.006	9	0.014
5	0.012	10	0.002

El valor de la medida Nº 6:

0.036 > 0.027 es rechazado pues $X_i - \overline{X} > k_{(10)} *S$

Habiendo rechazado el valor N^0 6, el nuevo valor medio es: \overline{X} = 2.557 [mm]

S = 0.007 [mm]

 $k_{(9)} = 0.013$

V V
X _i - X
0
0.004
0.004
0.010
0.008
0.008
0.002
0.010
0.002

De acuerdo con el criterio de Chauvenet, todas las repeticiones son aceptadas pues:

$$X_i - \overline{X} < 0.013$$