Ejercicio 3.12: Probar que ln(x) es cóncava hacia abajo. Deducir la desigualdad de Young: si $\frac{1}{p} + \frac{1}{q} = 1$ siendo p > 1, entonces $ab \le \frac{a^p}{p} + \frac{b^q}{q}$, para cada $a, b \in \mathbb{R}^+$.

Corolario: Si $f: I \to \mathbb{R}$ es continua en I y dos veces derivable en I^0 entonces f es cóncava hacia abajo en I si, y sólo si, $f''(x) \leq 0$, para cada $x \in I^0$.

En nuestro caso, f(x) = ln(x), que es continua en $I = (0, +\infty)$. Calculamos la segunda derivada:

$$f'(x) = \frac{1}{x}$$
$$f''(x) = -\frac{1}{x^2}$$

Calculamos la segunda derivada para un valor $x \in I^0$.

 $f''(1) = -\frac{1}{1} = -1 < 0$. Por lo tanto, $f(x) = \ln(x)$ es cóncava hacia abajo en I.

Desigualdad de Young: Sean p,q>1tal que $\frac{1}{p}+\frac{1}{q}=1$ y $a,b\geq 0 \rightarrow ab \leq \frac{a^p}{p}+\frac{b^q}{q}.$

Teorema de la concavidad hacia arriba de la función exponencial:

Sea $f(x) = e^x$. Tenemos que $f''(x) = e^x > 0 \ \forall x \in \mathbb{R} \to f(x)$ es cóncava hacia arriba en \mathbb{R} .

 $\forall x,y \in \mathbb{R} \text{ y } \forall \alpha \geq 0, \beta \geq 0 \text{ con } \alpha + \beta = 1 \text{ tenemos que } e^{\alpha x + \beta y} \leq \alpha e^x + \beta e^y.$

Si a=0 o b=0 es trivial que nos da 0 ≤ un número no negativo. Si a > 0 y b > 0:
$$\alpha = \frac{1}{p}, \frac{1}{q}, x = pln(a), y = qln(b) \rightarrow e^{lna+lnb} = e^{lna}e^{lnb} = ab \rightarrow \frac{1}{p}e^{plna} + \frac{1}{q}e^{qlnb} = \frac{1}{p}e^{lna^p} + \frac{1}{q}e^{lnb^q} = \frac{a^p}{p} + \frac{b^q}{q}$$

Probando así que $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$