AirBnB Destinations

Project Design

This project uses the AirBnB Challenge dataset from a 2015 Kaggle challenge. The target of this challenge is country_destination, the country a new AirBnB traveled in their first booking. There are 12 classes to classify on, of which I drop one, NDF, for users that haven't booked a first trip.

I built three subset models, which I rank from simplest to most complex here:

Model	Number of Targets
USA vs France	2
USA vs Not-USA	2
Multiclass	11

Tools

Pandas, Numpy, SKLearn, imblearn, scipy

Sklearn submodules: RandomizedSearchCV, LogisticRegression, KNN, SVC, preprocessing, pipeline, model_selection.

Data

The data are stored in four separate .csv tables:

- Age Gender Brackets (12 kb)
- Countries (<1 kb)
- Sessions (632 MB)
- Train Users (25 MB)

Table	List of columns	Size
age_gender_bkts	<pre>(age_bucket , country_destination , gender , population_in_thousands , year)</pre>	12 kb
countries	<pre>(country_destination, lat_destination, lng_destination, distance_km, destination_km2, destination_language, language_levenshtein_distance)</pre>	1 kb
sessions	<pre>(user_id, action, action_type, action_detail, device_type, secs_elapsed)</pre>	632 MB
train_users	<pre>(id, date_account_created, timestamp_first_active, date_first_booking, gender, age, signup_method, signup_flow, language, affiliate_channel, affiliate_provider, first_affiliate_tracked, signup_app, first_device_type, first_browser)</pre>	25 MB

Algorithms

I built extensive data cleaning and feature engineering code code in <code>airbnb.py</code>, which results in a well-formated, feature-engineered DataFrame <code>Joined_Users</code>. This DataFrame then was split, transformed into the three model subsets, upsampled via <code>SMOTE</code>, and optimized via a hyperparameter search using <code>RandomizedSearchCV</code>. The scheme is capture below:

What to do different next time

This was a challenging project, in large part because it was difficult to form an intuition around the data and how it best relates to the target. Next time, I'd try to get a better strategy down on data cleaning and feature engineering and do so sooner rather than later.