MLOPs Zoomcamp Week 2 (part 1): Experiment Tracking

Gabriel

2.1 Experiment Tracking Intro

Experiment Tracking

- ML experiment: the process of building an ML model
- Experiment run: each trial in an ML exp
- Run artifact: any file that is associated with an ML run
- Experiment metadata

Tracking relevant information

- Source code
- Environment
- Data
- Model
- Hyperparameters
- Metrics
- ..

For:

- Reproducibility
- Organization
- Optimization

MLflow

- Open source tool for ML lifecycle (python package)
- Four main modules:
 - Tracking
 - Models (special type of model)
 - Model Registry
 - Projects

Allows you to keep track of...

- Parameters
- Metrics
- Metadata: tags (name of the developer, algorithm)
- Artifacts: visualization, dataset (but hard to scale), dictionary vectorizer
- Models

Also auto log:

- Source code
- Version of the code (git commit)
- Start and end time
- Author

Install and run (with sqlite backend)

\$pip install mlflow

\$mlflow ui -backend-store-uri sqlite:///mlflow.db

```
(exp-tracking-env) → experiment_tracking git:(main) × mlflow ui --backend-store-uri sqlite:/
//mlflow.db
[2022-05-09 16:53:53 +0200] [6995] [INFO] Starting gunicorn 20.1.0
[2022-05-09 16:53:53 +0200] [6995] [INFO] Listening at: http://127.0.0.1:5000 (6995)
[2022-05-09 16:53:53 +0200] [6995] [INFO] Using worker: sync
[2022-05-09 16:53:53 +0200] [6996] [INFO] Booting worker with pid: 6996
```

2.2 Getting Started with MLflow

In notebook file

- Check duration-prediction.ipynb

2.3 Experiment Tracking with MLflow

2.3 Tags

2.3 compare Xgboost tags

Auto logging

Automatic Logging

Automatic logging allows you to log metrics, parameters, and models without the need for explicit log statements.

There are two ways to use autologging:

- 1. Call mlflow.autolog() before your training code. This will enable autologging for each supported library you have installed as soon as you import it.
- 2. Use library-specific autolog calls for each library you use in your code. See below for examples.

The following libraries support autologging:

- · Scikit-learn
- · TensorFlow and Keras
- · Gluon
- XGBoost
- · LightGBM
- Statsmodels
- Spark
- Fastai
- · Pytorch

2.4 Model Management

ML Lifecycle

Model management

What's wrong with this?

- Error prone
- No versioning
- No model lineage

Log artifacts

```
# 2.4 log artifacts
mlflow.log_artifact(local_path='./models/lin_reg.bin' ,artifact_path='models_pickle')
→ Not good, don't have instruction of how to use the model
```


After logging the model, 2 ways to load

Artifacts

```
▶ model
                                Full Path:./mlruns/1/6c961e3b8387446fb183c560e1c43e5f/artifacts/mo...
▼ models_mlflow
                                Size: 421B
    MLmodel
                              artifact_path: models_mlflow
    di conda.yaml
                              flavors:
    model.xgb
                                python_function:
    a requirements.txt
                                  data: model.xqb
                                  env: conda.yaml
  feature_importance_weight.js
                                  loader_module: mlflow.xgboost
  feature_importance_weight.p
                                  python_version: 3.9.12
                                xaboost:
                                  code: null
                                  data: model.xgb
                                  model_class: xgboost.core.Booster
                                  xgb_version: 1.6.0
                              mlflow_version: 1.25.1
                              model_uuid: e0c25f86e7d340fcb778c6871608c3e3
                              run id: 6c961e3b8387446fb183c560e1c43e5f
                              utc_time_created: '2022-05-15 16:53:38.986314'
```

Logged model, artifacts

Model: auto logging

Models_mlflow: manual logging

Preprocessor: artifacts for dictionary vectorizer

Load model and make predictions

Recap of logging models in MLflow

Two options:

Log model as an artifact

```
mlflow.log artifact("mymodel", artifact path="models/")
```

Log model using the method log model

```
mlflow.<framework>.log model(model, artifact path="models/")
```

MLflow Model Format

2.5 Model Registry

Model Registry: version control

Registering the models

- Register models (in artifact tab)
- Add to the group
- Check inside the registered models:
 - Lineage (which version links to which run)
 - Add tags (name and model)
- Check model-registry.ipynb

MlflowClient Class

- A client of ...
 - an MLflow Tracking Server that creates and manages experiments and runs.
 - an MLflow Registry Server that creates and manages registered models and model versions.
- To instantiate it we need to pass a tracking URI and/or a registry URI:

```
from mlflow.tracking import MlflowClient

client = MlflowClient(tracking_uri="sqlite:///mlflow.db")
```