I.3.) From perturbations to CHB anisotropies

Our description of cosmological perturbations is complete now, but not directly usable: many observations (in particular, of the errB) consist in two-dimensional maps of the sky, not 3D maps that could be expanded in Fourier space.

CMB map = ST(n) = Em aem Yem (n)

complex number with a e-m (-1) a tem (57 being real)

In the following, we will find relations between aem and perturbations in Fourier space (E(y, te)). We will prove that:

* aem's are stochastic, Gaussian, with zero mean value (like each fourier mode S.GR)) Asaem

* aem's are independent of each other: (aem aem) > See, Smir (like Fourier modes: (S(n,R) S, G,R') > x S(3/R-R')

* two-point correlation function depends on Ponly due to isotropy: (dem atem) = Ce See Smini

power spectrum in harmonic space

(similarity to Fourier space: $\langle S_i(n_iR)S_i^{\dagger}(n_iR') \rangle = S^{(3)}(R^2R^3)$ $\times \langle S_i(n_iR')|^2 \rangle$ $\frac{2\pi^2}{R^3} S_{S_i}(R)$ Hence, all information on CHB temperature anisotropies for one given cosmological model is contained in the power spectrum in harmonic space: Ce!!!

The cosmological perturbation theory predicts. Flut the two-point correlation function of the map should be

given by: $< \frac{ST}{T}(\hat{n}) \frac{ST}{T}(\hat{n}') > = \frac{2}{e_{mi}} < a_{e_{mi}} a_{e_{mi}}^* > Y_{e_{mi}}(\hat{n}) Y_{e_{mi}}(\hat{n}')$

this is a theoretical average, on many possible realization of the stockastic theory. Observers counct do such an average... but they can compute the average over all possible in and in with fixed in in = coso.

By ergodicity, the second should tend to the first

= & Ce (2011 Pe (n.n.))

= & Ce (2011 Pe (n.n.))

Hence, if we know Ce, we con predict the value of the 2-point correlation function in real space.

M Cosmic variance

Cin the limit of many

independent in's and ni's)

In the theory, Ce = <aem atem > theoretical average over all possible realizations of the stochastic theory.

In real life, we see only one realization and the measurement of a single aem does not provide Co!!

However are can build "estimators" allowing to measure Co up to "cosmic variance". Indeed, suppose that we measure STOBS and expand it in acts.

Each alem is a realization of a Gaussian probability distribution of a Gaussian with variance Ce:

The product agent agent is an estimator of Ce (ie, its typical value would be Ce), but with a large dispersion Indeed, the product agentiem should about a 2 distribution with 2 d.o.f., for which the variance is of order Ce: μX_2^2

Since all aem's with fixed P obey to the same probability, we can boild the average quantity:

G = 1 = 2 | ads |2

Again this is an estimator of Ce, which is much better than lagist slone, since it does to a 22 distribution with 28+12-0.f:

Indeed, in Ce we average over 22+1 independent

realizations of the same Gaussian (indeed: since
agn = agn) (in ago - & I independent restization
in aem with 15m & 1: 28 independent
(trap periodical times are part)
In am with - leme-teno forther independent
realization
So, Ce is a good estimator of Ce: the measured
Ce should be such Hot (Ce-Ce) = 2007 CE in
68% of the cases.
The Corresponding errorber on Ce, DCe= 12 Ce, is
called "cosmic variance" or "sampling variance".
a throng needste Co'c:

The theory is valid if 68% of E's are in the range Cet SCe:

When & P: number of m P => DCe

1 Relation between harmonic space (aem's) and
multipoles in fourier space ((De (y, 12)):
By definition, $\frac{87}{7}$ (h) = $\Theta(N_0, R_0, -h) = \frac{2}{8}$ aren'yem! direction of direction of propagation of photons coming from direction h
So \(\text{Mor} (\text{Ro}, \(\hat{\hat{\hat{h}}} \) = \(\frac{1}{2} \\ \text{em} \\ \text{em} \\ \text{em} \\ \text{em} \((-\hat{\hat{h}} \) \)
If $\vec{n} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$, $-\hat{n} = \begin{pmatrix} \pi - \theta \\ 4 + \pi \end{pmatrix}$; but $Y_{em}(\pi - \theta, 4 + \pi) = (-1)^{N} Y_{em}(\theta, 4)$ spherical solutionstes So $Y_{em}(-\hat{n}) = (-1)^{N} Y_{em}(\hat{n})$
So (Mo, Ko, A) = E arm Yem(A) (-1)
Using the orthogonality relation: Solin Yeur(n) Yein (n) = Sepi Smm, (Note: dn = d) = desine.
We can extract the coefficient aem: aem = San (-1) (po, xo, n) Yem (n) Fourier expansion of (1):
aem (A) Sars einzo San (90, R, Rin) Yem (n)
Legendre exponsion of (1): $ \alpha_{em} = (-1)^{\ell} S_{em}^{apk} e^{i\vec{R}\cdot\vec{x}_{e}} \lesssim (-1)^{\ell} (2\ell+1) \Theta_{e}(\gamma_{e}, \vec{R}) \int d\hat{n} P_{e}(\hat{R}\cdot\hat{n}) Y_{e}^{apk}(\hat{n}) $
We expand Per (Rin) = \(\sum_{e'm} \) \(\text{R} \) \\ \\ \e'm' \) \(\text{R} \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

Corrying integral on dit and using orthogonality of Yems:

alm = (-1) f Sans eine & (-1) (20+

Without loss of generality, and for simplicity, we can put the origin at the observer's location: $\vec{\chi}_0 = \vec{\sigma}$. Then:

aem=(if S d3k E) Yem (k)

It is useful to remember that $\bigoplus(\eta, R)$ is the product of an initial condition (= stochastic number depending on R) and a transfer function accounting for the evolution by early universe and today (= function depending on η and k, not R because of isotropy). For instance, for the adiabatic mode, I.C. can be expressed as $\mathbb{R}(R) = \text{curvature perturbation for mode } R$ when it is cotside the Hubble radius (keat) and constant in time. So:

De(n,R) = De(n, R) R(R)
Honsfer Functions of
pholons, defined with respect to R

Theu:

$$a_{em} = (i)^{\ell} \int \frac{\partial^3 \mathcal{R}}{2\pi^2} \triangle_{\ell}(N_0, k) Y_{em}(\hat{k}) \mathcal{R}(\vec{k})$$

12 Relation between anisotropy power spectrum (Ce)
and Fourier power spectrum (<10ex) or De (12/2>)
We can compute
(aem ate'm) = (i) P-P' SAR (AP) (2713) AP DE Ate, Yem(R) Y. (R) (R) (R) (R)
S(3)(R-R)(RR))
$S^{(3)}(\mathcal{R}-\mathcal{R}) \stackrel{2n^2}{\leftarrow} \mathcal{S}_{\mathcal{R}}(\mathcal{K})$
$= Er)^{4} \left\{ \frac{d^3 \mathcal{R}}{2\pi^2} \left[\mathcal{R}^3 \Delta e(y_0) \mathcal{K} \Delta e(y_0) \mathcal{K} \right] \right\}_{em} (\mathcal{R}) \left\{ \frac{d^3 \mathcal{R}}{2\pi^2} \left[\mathcal{R}^3 \Delta e(y_0) \mathcal{K} \right] \Delta e(y_0) \mathcal{K} \right\}_{em} (\mathcal{R}) \left\{ \frac{d^3 \mathcal{R}}{2\pi^2} \left[\mathcal{R}^3 \Delta e(y_0) \mathcal{K} \right] \right\}_{em} (\mathcal{R}) \left\{ \frac{d^3 \mathcal{R}}{2\pi^2} \left[\mathcal{R}^3 \Delta e(y_0) \mathcal{K} \right] \right\}_{em} (\mathcal{R}) \left\{ \frac{d^3 \mathcal{R}}{2\pi^2} \left[\mathcal{R}^3 \Delta e(y_0) \mathcal{K} \right] \right\}_{em} (\mathcal{R}) \left\{ \frac{d^3 \mathcal{R}}{2\pi^2} \left[\mathcal{R}^3 \Delta e(y_0) \mathcal{K} \right] \right\}_{em} (\mathcal{R}) \left\{ \frac{d^3 \mathcal{R}}{2\pi^2} \left[\mathcal{R}^3 \Delta e(y_0) \mathcal{K} \right] \right\}_{em} (\mathcal{R}) \left\{ \frac{d^3 \mathcal{R}}{2\pi^2} \left[\mathcal{R} \right]_{em} (\mathcal{R}) \left[\mathcal{R} \right]_{em} (\mathcal{R}) \left[\mathcal{R} \right]_{em} (\mathcal{R}) \left\{ \frac{d^3 \mathcal{R}}{2\pi^2} \left[\mathcal{R} \right]_{em} (\mathcal{R}) \left[\mathcal{R} \right$
But d3R = dk k2d8 smed4 = dk k2 ax
(aem atm) = (Fi) P-P' Sak Opholose Gold Sak Yem/R) Yem/R
So: (aematemi) = See' Smm' [= Sak Ke(no,k) BR (k)]
Hence we can identify $C_e = \frac{1}{2\pi^2} \int_{\mathcal{K}}^{dk} \Delta_e(\eta_0, k) ^2 \mathcal{D}_{\mathcal{R}}(k)$
= 1/4TI SRAK) CA(MO,K) (< (SCAD) >
(Note: some outhors define fourier transform as
S = C382 inches of C382

 $S_{x}=S_{const}^{3R}$ in stead of S_{cons}^{3R} ...

In the expression of G, they get the Same result as us multiplied by $(2m)^3!$

Brute force calculation of Ce's:

At this stage, we know all formulas and equations necessary for the Ce's. A brute force calculation would consist in running a code doing the following:

* the code should know the full system of equations in Fourier Space:

Econtinuity + Euler For S_c, θ_c " S_b, θ_b Boltzmann For $S_7, \theta_7, \sigma_7, \Phi_{23}$ (+ Einstein used as constraint equations providing metric perturbations)

* the cade integrates this system from mini to Mo, starting from initial condition: 4th, S(R)=1, so that De(n,R) of the code corresponds to De (n, k) of this course. Hence, as a result, we get ce(yo, k) for all e's and k's. * the code performs finally the convolution

with the primordial spectrum:

Ge = La SEK /Se(Mp, K) PSQ(K)

THIS APPROACH TAKES OF THE ORDER OF A FEW DAYS for on spectrum Ce.

The computation time is large due to:

@ Number of variables ap (n, k)

need many e's norder to get Cds of up to lay 2500.

Typically, the Boltzmann hierarchy can only be truncated around ~21 max

need several K's in order to sample all accordic oscillations in observable range of wavelengths

So, typically, one needs a sooo e's and a log k's ...

D Need for small time-step before decoupling (interaction fine very small for photons). However this can be alleviated by using tight-coupling approximation for making

(E) Need for small time-step after decoupling, to follow the way in which high I's are populated during the free-streaming epoch (starting from just Ob and Obe being non-zero).

INTUITIVELY, WE SEE THAT THERE SHOULD BE A MORE CLEVER APPROACH BECAUSE:

Population of high I's after decoupling should be universal (free-streaming does not depend on cosmological parameters)

should be a waste to integrate De's for high Ps, only first few P's encode non-trivial evolution

=> This metriole the next sub-section

A line-of-sight integral in Fourier space (!!!) We want to do as in real space: identify total derivative over time and integrate... u=k.n Boltzmann -D 回'+ikye回-4'+ikye中=-z'(回。回+i提口b) 田田+(ikye-で)田= 中一はxx中-で(田のお食の) => dm [@eikun-=] = [4'-ikut-z'(Bo+ikuh)]eikun-z We integrate from Mini to Molfody). We can use the fact that Z(Mo)=0. Also, we take the limit Mini-00, so that e z (Mini) _ DO. Then: (D(No,R, M) eikuno = 3 dn [4'-ikut-z'(Bo+ikob)]eikurz

(m) (m) (m) = San [4'-iku4-z'(00+iku6)] eiku(n-no)-z

It is useful to integrate by part in order to eliminate all dependence on a inside the brackets:

Som f(k, n) ike eikunnon-z

= - Soan (8(x, y) ez) eixu(y-y0) + [8(km) ez eixu(y-y0)] no

promishes in Modue to e²(0)=0

I* in Mo, contribution only to
monopole: Bligge) does not
depend on a Hence, undetectable
(absorbed in background 7).

We apply this formula with & (kin) = - & or - Z Bb and get:

$$\Theta(N_0, R_{,pl}) = \int_0^\infty d\eta \left[\Psi' e^{\tau} + (\Phi e^{\tau})' - \tau' e^{\tau} \Theta_0 + \left(\frac{\pi}{R_0} \Theta_0 e^{\tau} \right)' \right] e^{ik_{,pl}} (\eta - \eta_0)$$

$$= \int_0^\infty d\eta \, S(R_{,n}) e^{ik_{,pl}} (\eta - \eta_0)$$

with
$$S(R,n) = (444)e^{-r} + g(n)(4+00) + (gn)\frac{g_0}{k^2}$$

where $\Psi', \Phi', \Phi, \Theta_0$ and Θ_b are functions of R, M. This expression can easily be expanded in Legendre coefficients, because the plane wave e^{iRX} has simple Legendre coefficients: the spherica Bassel function $\hat{g}_e(X) = \sqrt{\frac{\pi}{2X}} J_{e+1}(X)$

Lusual Bessel Function of 1st kind.

Take $\vec{X} = (N_0 - m) \hat{n} = position of a photon travelling in straight line and seen today in direction <math>\hat{n}$. Then $e^{i\vec{X}\vec{X}} = \stackrel{\text{def}}{=} Gi^2(244) \hat{g}_e(kx) P_e(k\hat{x})$

So, we can expand D = San S eiku (9-96) in Legendre multipoles and get:

As usual, it is usefull to write S(R, M) as the product of stockostic initial condition SR(R) and transfer function (not depending on R).

Let us call this transfer function S:

$$S(\eta, k) = \frac{S(\eta, R)}{R(R)} = \frac{(4)+b'}{R(R)} = \frac{(4)+b'}{R} = \frac{$$

This transfer function is called the source function of temperature anisatropies. Finally we can write:

$$\Theta(\gamma_0, R, \omega) = \stackrel{70}{5} d\eta S(k_M) e^{ik_{\omega}(\gamma_0 - N)} S(R)$$
or
 $\Re(\varphi_0, R) = \stackrel{70}{5} d\eta S(k_M) \frac{1}{5} e(k(\gamma_0 - N)) S(R)$.

We defined the transfer function $\Delta e(\eta, h) = \frac{\Theta_e(\eta, h)}{\Re(R)}$. So

In other words, we managed to separate $\triangle e(\eta_0, h)$ in a term depending on the physics: S(h, m), and a term depending on the geometry: $\hat{g}e(h(\eta_0-h))$.

But S(RM) depends only on 4', b', b, Do, Ob, not on Dezz! So we can think of a very improved scheme for computing C's:

We could write a code doing the following:

- * the code should know the system of equations in Fourier space, with Boltzmann hierarchy truvated of low! (typically Para) because we only need to trust result for DoGR)
- * the code integrates this system from Minitoryo and, at each step, store SCKM) in memory.
- * the initial conditions should be fk, R(R)=1, so that S(R) in the code = $S(r_0,k)$ in the coarse.
- * If the end, the code performs the following convolutions: $Oe(N_0, h) = Sdn S(h, y) \delta e(kn_0, x_0)$ $|C_e = \frac{1}{2\pi^2} S \frac{dk}{K} |Oe(N_0, h)|^2 S_Q(h)$

In this approach, number of variables dramatically reduced (apt's instead of 2800 es), and time step ofter nace can be very large because S(km) becomes a very smooth function of m ofter decoupling...

** Limber approximation:

In the large-1 limit, je(x) is very peaked around ftj and can be approximated by 混成 (中意一之).
This will be useful in the next sections.

Instantaneous decoupling approximation:

If the optical depth is going abruptly from large values to zero of recombination, we have seen that $e^{-2} \simeq H(\eta-\eta dec)$ and $g(\eta) \simeq \delta(\eta-\eta dec)$. This gives

S(km) = H(n-yde) (4+41), + S(n-yde) (4+03), + (8h-yde) (0b) km)
and:

De(k, Mo) = Son (4+4) Kin Se (K(Mo-4))

+ (@o+ P) KMaec Be (KMo-7dec) + K'(Ob) KMae B(KMo-Ydec)

~ With & (X) = ge

Since $C_e \, \nu \, S_k^{-1} \, \Delta_e^2 \, S_R$, we see that C_e receives contributions mainly from $(\omega_0 + \phi)$ and ω_b evaluated at Marc for $k \, n \, M_0 \, M_$