SUMMARY OF	WINDOW FUNCTIONS IN FIR FILTER DESIGN.		
Reference: "Digite Else vie	al Filters: Theory and Applications, N.K. Bose, T Science Publishing Co., Inc., New York, 1985.		
WINDOW	WINDOW FUNCTION W(K) -NSKEN W(K) = D + K K > N.		
RECTANGULAR	1		
HANN	1/2 [1+ cos((211k)/(2N))]		
HAMMING	0.54 + 0.46 cos ((211K) / (2N))		
GENERALIZED	x+ (1-α) cos ((2πK) / (2N)) O <α<1		
FEJER - CESARO/ BARTLETT/TRIANGULAR	2 1 - ((21k1)/(2N))		
LANCZOS	(sin [(2KT)/(2N)]/(2KT)/(2N)]?L		
POLPH - CHEBYSHEV (Fourier Transform)	$W(e^{j\omega}) = \cos \left[(2N) \cos^{2}(x) \cos(\frac{\omega}{2}) \right]$		
PAPOULIS	1 [sin[(211K))/(2N)]] + 2 K cos 211K		
KAISER -	Io[βN/1-(K/N) ²] β>0. Io(βN)		
	$I_0(x) = modified$ Bessel function of first- kind and order 0 in x . $I_0(x) \stackrel{\triangle}{=} 1 + \stackrel{\triangle}{=} [(x/2)^1]^2$.		
TUKEY	1 + K 5 XN O < X <		
7	1 [1 + cos{[(k- XN)TT]/[(1-X)N]}]		
PARZEN			
	$\frac{1}{2}(x) = \text{modified Bessel Function of first-kind and order O in } x$ $I_{0}(x) \stackrel{\triangle}{=} 1 + \sum_{l=1}^{\infty} \left[\frac{(x/2)^{l}}{2^{l}} \right]^{2}$ $1 + x \leq x \qquad 0 < x < x $ $\frac{1}{2} \left[1 + \cos \left\{ \left[(k - x) \right] \right] / \left[(1 - x) \right] \right]$ $ x = \frac{1}{2} x $ $ x \leq x < x < x $ $ x \leq x $ $ x = $		
	£[1-2[m]] 4 ≤ [m] ≤ /2		
BLACKMAN	$0.42 + 0.5 \cos(\frac{2\pi k}{2N}) + 0.08 \cos(\frac{4\pi k}{2N})$		

Window functions - Comparison of commonly used windows in FIR filter design

Window Type (Name)	Peak relative sidelobe amplitude (dB)	The second second second second	e Peak error in approximation 20.log ₁₀ δ(dB)	α in Kaiser window	Equivalent Kaiser window Transition vidth **
Rectangular	- 13	4π/(2N+1)	- 21	0	1.81π/2N
Bartlett	- 25	4π/N	-25	1.33	2.37π/2N
Hann	-31	4π/N	- 44	3.86	5.01π/2N
Hamming	- 41	4π/N	- 53	4.86	6.27π/2N
Blackman	- 57	6π/N	, -74	7.04	.19π/2N

 δ = peak ripple in passband and stopband $\alpha = \beta . N$ in Kaiser window

^{*}: to get the same δ as the corresponding window

^{** :} accordingly $\Delta\omega_T$ from empirical equations below.

• Empirical design equations for Kaiser window

Fig. : Prototype Specifications for Low Pass FIR filter

Reference: "Discrete - Time Signal Processing", Oppenheim and Schafer, pp.450-454

Design steps:

1. Choose N according to
$$(2N+1) \ge 1 + \frac{A-8}{2.285\Delta\omega_T}$$

2. Now choose α and hence β according to

$$\alpha = \begin{cases} 0.1102 (A - 8.7) & \text{for all } A > 50 \\ 0.5842 (A - 21)^{0.4} + 0.07886 (A - 21) & \text{for } 21 \le A \le 50 \\ 0 & \text{for } A < 21 \end{cases}$$

Remember $\beta = \alpha / N$

Park Mc Clellan Algorithm for FIR filters (odd length, symmetric)

To determine optimum filter of the form, H_{FIR} (e) as below, Optimum filter is bound to satisfy - Eqn 1 below

$$H_{FIR}(e^{j\omega}) = \sum_{n=-N}^{N} h_{FIR}[n].e^{-j\omega n}$$

 $Eqn.1: E_{p}(\omega_{i}) = W_{p}(\omega_{i}).[D_{p}(\omega_{i}) - P(\cos\omega_{i})] = (-1)^{i+1}\delta$

i = 1, ----, N+2.

$$H_{FIR}(e^{j\omega}) = P.(\cos\omega) = P(x) = \sum_{k=0}^{N} a_k . x^k$$
 $x = \cos\omega$

where ω_i , $i=1,\dots,N+2$ are the external frequencies

Flow - chart (contd...)

Eq. n 1) gives the system

$$x.A = H$$

$$H = \left[D_p(\omega_1) - \dots - D_p(\omega_{N+2}) \right]$$

 $i\neq k$ for all the products \prod in the equations below

$$d_k = \prod_{i=1}^{N+1} [1/(x_k - x_i)] \qquad b_k = \prod_{i=1}^{N+2} [1/(x_k - x_i)]$$

$$\delta = \frac{\sum_{k=1}^{N+2} \dot{b}_k . D_p(\omega_k)}{\sum_{k=1}^{N+2} [b_k . (-1)^{k+1} / W_p(\omega_k)]}$$

Solution to the matrix equation given by x.A = H is:

$$c_k = D_p(\omega_k) - [(-1)^{k+1} \delta / W_p(\omega_k)]$$

Interpolating polynomial is given by

$$P(x) = \frac{\sum_{k=1}^{N+1} [d_k / (x - x_k)] . c_k}{\sum_{k=1}^{N+1} [d_k / (x - x_k)]}$$