Práctica 5 - Sistemas deductivos para lógica proposicional y Aplicaciones de Compacidad -

Salvo que se indique lo contrario, no asumir que SP es correcto ni completo.

Ejercicio 1. Considerar la axiomatización SP para la lógica proposicional dada en la teórica. Demostrar que las siguientes afirmaciones son verdaderas

a.
$$\{\alpha \to \beta, \beta \to \gamma\} \vdash \alpha \to \gamma$$

b.
$$\vdash (\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha)$$

Sugerencia: recordar que en SP vale el teorema de la deducción.

Ejercicio 2.

- a. Demostrar que (toda instanciación de) SP3 es una tautología.
- b. Demostrar que si las premisas de la regla MP son tautologías, el resultado es una tautología.

Ejercicio 3. Sea Γ un conjunto de fórmulas del lenguaje $\{\neg, \rightarrow\}$. Demostrar que Γ es inconsistente (i.e. existe β tal que $\Gamma \vdash \beta$ y $\Gamma \vdash \neg \beta$) sii $\Gamma \vdash \alpha$ para todo α .

Ejercicio 4. Sea Γ un conjunto de fórmulas del lenguaje $\{\neg, \rightarrow\}$. Demostrar los siguientes puntos:

- a. Si Γ es un conjunto maximal consistente, entonces $\Gamma \vdash \alpha$ sii $\alpha \in \Gamma$.
- b. Γ es un conjunto maximal consistente sii sucede simultáneamente:
 - 1. Para toda α , o bien $\alpha \in \Gamma$ o bien ('o' exclusivo) $\neg \alpha \in \Gamma$.
 - 2. Todos los axiomas de SP están en Γ .
 - 3. Γ está cerrado por MP, es decir: si $(\alpha \to \beta) \in \Gamma$ y $\alpha \in \Gamma$ entonces $\beta \in \Gamma$.
- c. Si Γ es maximal consistente y $(\neg \alpha \to \beta) \in \Gamma$, entonces $\alpha \in \Gamma$ ó $\beta \in \Gamma$.

Ejercicio 5. Recordemos el procedimiento de Lindenbaum para obtener un conjunto maximal consistente a partir de un conjunto consistente Γ .

- 1) Enumeramos las fórmulas de nuestro lenguaje $\alpha_1, \alpha_2, \dots$
- 2) Definimos la secuencia de conjuntos:

$$\begin{array}{lcl} \Gamma_0 & = & \Gamma \\ \Gamma_{n+1} & = & \left\{ \begin{array}{ll} \Gamma_n \cup \{\alpha_n\} & \text{si el conjunto es consistente} \\ \Gamma_n \cup \{\neg \alpha_n\} & \text{en otro caso} \end{array} \right. \\ \Gamma^+ & = & \bigcup_{n \geq 0} \Gamma_n \end{array}$$

Demostrar los siguientes puntos:

- a. Cada Γ_i es consistente.
- b. Exactamente una de las fórmulas α y $\neg \alpha$ está en Γ^+ para cada fórmula α .
- c. Todos los teoremas están en Γ^+ .
- d. Γ^+ es un conjunto maximal consistente.

Ejercicio 6. Demostrar que las siguientes definiciones de compacidad son equivalentes:

- a. Si $\Gamma \models \alpha$ entonces para algún subconjunto finito $\Gamma_0 \subseteq \Gamma$, $\Gamma_0 \models \alpha$.
- b. Si todo subconjunto finito $\Gamma_0 \subseteq \Gamma$ es satisfacible, entonces Γ es satisfacible.
- c. Si Γ es insatisfacible, entonces algún subconjunto finito de Γ es insatisfacible.

En los siguientes ejercicios se puede asumir que SP es correcto y completo.

Ejercicio 7. Sea α una fórmula que no es una tautología, y sea Γ el conjunto de todas las instanciaciones de α (por instancia de α nos referimos a reemplazar uniformemente las variables proposicionales de α por fórmulas arbitrarias). Demostrar que Γ es inconsistente.

Ejercicio 8. Sea β una fórmula fija y Γ un conjunto consistente, mostrar que si $\Gamma \nvdash \beta$ y $\Gamma \nvdash \neg \beta$, entonces existen Γ_1 y Γ_2 maximales consistentes, tales que $\mathbf{Con}(\Gamma) \subseteq \mathbf{Con}(\Gamma_1)$, $\mathbf{Con}(\Gamma) \subseteq \mathbf{Con}(\Gamma_2)$, y $\Gamma_1 \vdash \beta$ y $\Gamma_2 \vdash \neg \beta$.

Ejercicio 9. Demostrar que si Γ es un conjunto maximal consistente entonces $\Gamma = \mathbf{Con}(\Gamma)$.

Ejercicio 10. Dados $\{\Gamma_i\}_{i\in\mathbb{N}}$ tal que Γ_i es satisfacible y $\Gamma_i\subseteq\Gamma_{i+1}$. ¿Es $\Gamma^\infty=\bigcup_{i\in\mathbb{N}}\Gamma_i$ satisfacible?

Ejercicio 11. Sean Γ_1 y Γ_2 conjuntos satisfacibles de fórmulas tales que $\Gamma_1 \cup \Gamma_2$ es insatisfacible. Mostrar que existen fórmulas $\alpha \in \mathbf{Con}(\Gamma_1)$, $\beta \in \mathbf{Con}(\Gamma_2)$ tales que $\alpha \to \neg \beta$ es una tautología. *Sugerencia*: usar el Teorema de Compacidad.

Ejercicio 12. Sea Γ un conjunto de contingencias tal que para todo par de fórmulas α, β se cumple que $Var(\alpha) \cap Var(\beta) = \emptyset$. Probar que Γ es satisfacible.

Ejercicio 13. * Sea Γ un conjunto de fórmulas tal que cada valuación satisface al menos una fórmula de Γ. Probar que existe un número finito de fórmulas $\alpha_1, \ldots, \alpha_n \in \Gamma$ tales que $\alpha_1 \vee \ldots \vee \alpha_n$ es tautología.

Ejercicio 14. Sea Γ un conjunto de fórmulas que verifica la siguiente propiedad: si $\alpha, \beta \in \Gamma$, entonces $\alpha \to \beta$ es tautología ó $\beta \to \alpha$ es tautología. Probar que si $\Gamma \models \gamma$, entonces existe $\delta \in \Gamma$ tal que $\{\delta\} \models \gamma$.

Ejercicio 15. Sean Γ_1, Γ_2 satisfacibles, tal que $\Gamma_1 \cup \Gamma_2$ es insatisfacible. Mostrar que existe un α tal que $\Gamma_1 \models \alpha$ y $\Gamma_2 \models \neg \alpha$.

Ejercicio 16. Decidir si la siguiente afirmación es verdadera ó falsa y justificar: Si Γ_1 y Γ_2 son consistentes, entonces o bien a partir de $\Gamma_1 \cup \Gamma_2$ se demuestra una contradicción o bien existe Δ maximal consistente tal que $\Gamma_1 \subseteq \Delta$ y $\Gamma_2 \subseteq \Delta$.

*Este ejercicio puede ser entregado, de manera opcional, como se resolvería en un examen, a modo de práctica para el parcial.