Lecture 12

niceguy

February 16, 2023

1 Adjoints

Let $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$, and $T \in \mathcal{L}(V)$. Using induction, one can prove that

$$\langle T^n(v), w \rangle = \langle v, (T^*)^n(w) \rangle \forall n \in \mathbb{N}$$

Extending this to the minimal polynomial,

$$0 = \langle p(T)v, w \rangle$$
$$= \langle v, \overline{p}(T^*)w \rangle$$

However, this is true for arbitrary $v, w \in V$. Hence \overline{p} is the minimal polynomial for T^* . (Obviously $\overline{p}(T^*) = 0$. If there is a polynomial with a smaller degree, one obtains a p' of that lower degree such that p'(T) = 0, which is a contradiction, as p is the minimal polynomial).

Recall with a orthonormal basis, if A is the matrix of T, then the matrix of T^* is \overline{A}^t . Assuming this, consider the characteristic polynomial

$$q_T(z) = \det(zI - T) = \det(zI - A)$$

$$q_{T^*}(z) = \det(zI - T^*) = \det(zI - \overline{A}^t) = \det\left((zI - \overline{A})^t\right) = \det(zI - \overline{A}) = \overline{\det(\overline{z}I - A)}$$
 Then

$$q_{T^*}(z) = \overline{q_T(\overline{z})}$$

Now, let J be the Jordan Normal Form of T. Then

$$A = CJC^{-1}$$

$$\overline{A} = \overline{CJC^{-1}}$$

$$\overline{A}^t = \overline{C^{-1}}^t \overline{J}^t \overline{C}^t$$

$$= \overline{C^{-1}}^t \overline{SJS^{-1}C}^t$$

Undoing the change of basis, the Jordan Normal Form of T^* is \overline{J} . Suppose $T^*=T$. Then

- 1. if $W \subseteq V$ is T invariant, then W^{\perp} is alto T invariant
- 2. The eigenvalues of T are real
- 3. T has at least one eigenvector

Theorem 1.1. T is diagnoalisable if $T = T^*$.

Proof. By 3 there is an eigenvector v_1 of T. Then $W = fv_1 \forall f \in \mathbb{F}$ is a T invariant subspace. So W^{\perp} is also T invariant, and

$$T|_{W^{\perp}} \in \mathcal{L}(W^{\perp})$$

Then

$$(T|_{W^\perp})^* = (T|_{W^\perp})$$

By induction, we get v_1, v_2, \ldots, v_n where n is the dimension of V. All v_i are eigenvectors, so T is diagonalisable.