Robust and Efficient Subspace Segmentation via Least Squares Regression

Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng Yan

Subspace Segmentation Problem

Given a set of data vectors $X=[X_1,\cdots,X_k]=[x_1,\cdots,x_n]\in\mathbb{R}^{d\times n}$ drawn from a union of k subspaces $\{S_i\}_{i=1}^k$. Let X_i be a collection of n_i data vectors drawn from the subspace S_i , $n = \sum_{i=1}^k n_i$. The task is to segment the data according to the underlying subspaces they are drawn from.

Figure 1: A set of sample points in \mathbb{R}^3 drawn from a union of three subspaces: two lines and a plane.

Figure 2: The ideal affinity matrix is block diagonal.

Related Works

- Spectral Clustering (SC) is used as the framework for subspace segmentation.
- The main challenge by using SC is to define a "good" affinity matrix (or graph) $Z \in \mathbb{R}^{n \times n}$. Each entry Z_{ij} measures the similarity between x_i and x_j .
- Ideally, the affinity matrix should be block diagonal, the between-cluster affinities are all zeros (See Figure 2).

SSC (Sparse Subspace Clustering) (Elhamifar and Vidal, CVPR 2009):

$$\min ||Z||_0 \text{ s.t. } X = XZ, \text{ diag}(Z) = 0.$$
 (1)

$$\min ||Z||_1 \text{ s.t. } X = XZ, \text{ diag}(Z) = 0.$$
 (2)

If the subspaces are **independent**¹, the solution Z^* to (2) is **block diagonal**.

LRR (Low-Rank Representation) (Liu et al., ICML 2010, TPAMI 2012):

$$\min \operatorname{rank}(Z) \text{ s.t. } X = XZ. \tag{3}$$

$$\min ||Z||_* \text{ s.t. } X = XZ. \tag{4}$$

If the subspaces are **independent**, the solution Z^* to (4) is **block diagonal**.

MSR (Multi-Subspace Representation) (Luo et al., ECML PKDD 2011):

$$\min ||Z||_* + \delta ||Z||_1 \text{ s.t. } X = XZ, \operatorname{diag}(Z) = 0.$$
 (5)

If the subspaces are **independent**, the solution Z^* to (5) is **block diagonal**.

SSQP (Subspace Segmentation via Quadratic Programming) (Wang et al., AAAI 2011):

$$\min ||XZ - X||_F^2 + \lambda ||Z^T Z||_1 \text{ s.t. } Z \ge 0, \operatorname{diag}(Z) = 0.$$
 (6)

If the subspaces are **orthogonal**, the solution Z^* to (6) is **block diagonal**.

Theoretical Analysis

Consider a general model as follow:

$$\min f(Z) \text{ s.t. } Z \in \Omega = \{Z | X = XZ\}. \tag{7}$$

Enforced Block Diagonal (EBD) Conditions A function f is defined on $\Omega(\neq\varnothing)$ which is a set of matrices. For any $Z=\begin{bmatrix}A&B\\C&D\end{bmatrix}\in\Omega, Z\neq0$, where A and D are square matrices, B and C are of compatible dimension, A, $D \in \Omega$. Let $Z^D = \begin{bmatrix} \bar{A} & 0 \\ 0 & D \end{bmatrix} \in \Omega$. We require

- (1) f(Z) = f(ZP), for any permutation matrix $P, ZP \in \Omega$.
- $(2) f(Z) \ge f(Z^D)$, where the equality holds if and only if B = C = 0 (or
- (3) $f(Z^D) = f(A) + f(D)$.

Theorem 1 Assume the data sampling is sufficient ², and the subspaces are **in**dependent. If f satisfies the EBD conditions (1)(2), the optimal solution(s) Z^* to problem (7) is **block diagonal**:

$$Z^* = \begin{bmatrix} Z_1^* & 0 & \cdots & 0 \\ 0 & Z_2^* & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Z_k^* \end{bmatrix}$$

with $Z_i^* \in \mathbb{R}^{n_i \times n_i}$ corresponding to X_i , for each i. Furthermore, if f satisfies the EBD conditions (1)(2)(3), for each i, Z_i^* is also the optimal solution to the following problem:

$$\min f(Y) \text{ s.t. } X_i = X_i Y. \tag{8}$$

Table 1: *Criteria which satisfy the EBD conditions* (1)(2)(3).

	f(Z)	Ω		
SSC	$ Z _0 \text{ or } Z _1$	$\{Z X = XZ, \operatorname{diag}(Z) = 0\}$		
LRR	$ Z _*$	$\{Z X=XZ\}$		
SSQP	$ Z^TZ _1$	$\{Z X=XZ,Z\geq 0,\operatorname{diag}(Z)=0\}$		
MSR	$ Z _1 + \delta Z _*$	$\{Z X=XZ,\operatorname{diag}(Z)=0\}$		
Other choices	$\frac{(\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} Z_{ij} ^{p_{ij}})^{s}}{\lambda_{ij} > 0, p_{ij} > 0, s > 0}$	$\{Z X=XZ,\operatorname{diag}(Z)=0\}$		

Theorem 2 If the subspaces are **orthogonal**, and f satisfies the EBD conditions (1)(2), the optimal solution(s) to the following problem:

$$\min||X - XZ||_{2,p} + \lambda f(Z) \tag{9}$$

must be **block diagonal**, where p > 0, and $\lambda > 0$.

Some Remarks:

- EBD (1) is the basic requirement for subspace segmentation; EBD (2) enforces the solution to be block diagonal; EBD (3) shows the representation coefficient in each block.
- For SSC, the solution may be too sparse if the data are highly correlated.
- For LRR by (3), rank(Z) does not satisfies the EBD (2).

LSR (Least Squares Regression)

LSR without noise: $\min ||Z||_F$ s.t. X = XZ, $\operatorname{diag}(Z) = 0$. LSR1 with noise: $\min ||X - XZ||_F^2 + \lambda ||Z||_F^2$ s.t. $\operatorname{diag}(Z) = 0.(11)$ LSR2 with noise: $\min ||X - XZ||_F^2 + \lambda ||Z||_F^2$.

The Grouping Effect: LSR exhibits the grouping effect that the coefficients of a group of correlated data are approximately equal:

Theorem 3 Given a data vector $y \in \mathbb{R}^d$, data points $X \in \mathbb{R}^{d \times n}$ and a parameter λ . Assume each data point of X are normalized. Let z^* be the optimal solution to the following LSR (in vector form) problem:

$$\min ||y - Xz||_2^2 + \lambda ||z||_2^2. \tag{13}$$

We have

$$\frac{||z_i^* - z_j^*||_2}{||u||_2} \le \frac{1}{\lambda} \sqrt{2(1-r)},\tag{14}$$

where $r = x_i^T x_j$ is the sample correlation.

Some Remarks:

- The grouping effect of LSR shows that highly correlated data tends to be grouped in a same cluster.
- SSC and LRR by (3) does not has the grouping effect.
- LRR by (4) has the grouping effect.

Experimental Verification

Table 3: Comparison of the segmentation errors (%) and running time (s) on the Hopkins 155 Database

	SSC	LRR	LSR1	LSR2
Max	39.53	36.36	36.36	36.36
Mean	4.02	3.23	2.50	2.84
Median	0.90	0.50	0.31	0.34
STD	10.04	6.06	5.62	6.16
Time	149.70	129.30	24.33	21.35

Table 4: Comparison of the segmenta tion accuracies (%) and running time (s) on the Extended Yale Database B

SSC LRR LSR1 LSR2 5 | 76.88 | 81.88 | 88.13 | **91.56** 10 47.81 65.00 70.16 **72.34** Running | 5 | 0.657 0.602 0.018 **0.009** 10 4.760 2.261 0.101 **0.045**

Conclusions

- The proposed EBD conditions summaries some existing methods.
- The grouping effect is important for subspace segmentation, especially for correlated data. The proposed LSR is effective and efficient.
- LSR is simpler and better. The previous models, SSC, LRR, MSR and SSQP, are unnecessary sophistication.

¹A collection of k subspaces $\{S_i\}_{i=1}^k$ are independent if and only if $\sum_{i=1}^k S_i = \bigoplus_{i=1}^k S_i$. ²The data sampling is sufficient which makes the problem (7) have a nontrivial solution.