Notebook Index

- 1- Import essential libraries
- 2- Read the data and do explotary data analysis
- 2.1 Check for duplicates
- 2.2 Check data types and null values
- 2.3 Check for classes balance
- 2.3 result: There is imbalance, we will deal with if the score are affected
- 2.4 Merge the data with time as DateTime and drop the columns Data and Time
- 2.5 Check features corralation
- 2.6 Aggregating features to deal with the corralation issue
- 2.7 Check the corralation after aggregation
- 2.8 Pair plot after the aggregation
- 3- Define and prepare the features and target
- 3.1 Split the dataset into train and test data
- 3.2 Scale the features (Standardization)
- 4- Initiate the machine learning models
- 4.1 Logistic Regression Model with evaluation metrics and coefficients
- 4.1 Result: The bench mark model. it has a greate overall scores. but the individual classes (2 and 3) has a low scores
- 4.2 Gaussian naïve bayes with evaluation metrics and class probabilities
- 4.2 Result: The second best classifier out of the three classifiers. The score of individual classes are good except Class (3) has a low scores but still acceptable

Loading [MathJax]/extensions/Safe.js

- 4.3 XGboost with evaluation metrics and features importance plot
- 4.3 Result: The highest score out of the three models. Also the score for the indvidual classes are high

1- Import essential libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

2- Read the data and do explotary data analysis

```
In [2]: df = pd.read_csv('Occupancy_Estimation.csv')
    df.head()
```

Out[2]:		Date	Time	S1_Temp	S2_Temp	S3_Temp	S4_Temp	S1_Light	S2_Light	S3_Light	S4_Lig
	0	2017/12/22	10:49:41	24.94	24.75	24.56	25.38	121	34	53	
	1	2017/12/22	10:50:12	24.94	24.75	24.56	25.44	121	33	53	
	2	2017/12/22	10:50:42	25.00	24.75	24.50	25.44	121	34	53	
	3	2017/12/22	10:51:13	25.00	24.75	24.56	25.44	121	34	53	
	4	2017/12/22	10:51:44	25.00	24.75	24.56	25.44	121	34	54	

```
In [3]: df.shape

Out[3]: (10129, 19)
```

2.1 Check for duplicates

```
In [4]: df[df.duplicated()]
Out[4]: Date Time S1_Temp S2_Temp S3_Temp S4_Temp S1_Light S2_Light S3_Light S4_Light S1_So
In [5]: df.columns
```

2.2 Check data types and null values

Loading [MathJax]/extensions/Safe.js

Non-Null Count Dtype

```
10129 non-null object
 0
    Date
    Time
                           10129 non-null object
                           10129 non-null float64
10129 non-null float64
 2
    S1_Temp
    S2_Temp
 3
    S3 Temp
                           10129 non-null float64
 5
    S4 Temp
                           10129 non-null float64
                           10129 non-null int64
 6
    S1 Light
 7
    S2 Light
                           10129 non-null int64
 8
    S3_Light
                           10129 non-null int64
                           10129 non-null int64
 9
    S4 Light
                           10129 non-null float64
 10 S1 Sound
 11 S2 Sound
                           10129 non-null float64
 12 S3_Sound
                           10129 non-null float64
13 S4 Sound
                          10129 non-null float64
 14 S5 C02
                          10129 non-null int64
                           10129 non-null float64
10129 non-null int64
 15 S5 CO2 Slope
 16 S6_PIR
 17 S7 PIR
                           10129 non-null int64
18 Room_Occupancy_Count 10129 non-null int64
dtypes: float64(9), int64(8), object(2)
memory usage: 1.5+ MB
```

```
In [7]:
         df.describe()
```

Out[7]:		S1_Temp	S2_Temp	S3_Temp	S4_Temp	S1_Light	S2_Light	S3_L
	count	10129.000000	10129.000000	10129.000000	10129.000000	10129.000000	10129.00000	10129.000
	mean	25.454012	25.546059	25.056621	25.754125	25.445059	26.01629	34.248
	std	0.351351	0.586325	0.427283	0.356434	51.011264	67.30417	58.400
	min	24.940000	24.750000	24.440000	24.940000	0.000000	0.00000	0.000
	25%	25.190000	25.190000	24.690000	25.440000	0.000000	0.00000	0.000
	50%	25.380000	25.380000	24.940000	25.750000	0.000000	0.00000	0.000
	75 %	25.630000	25.630000	25.380000	26.000000	12.000000	14.00000	50.000
	max	26.380000	29.000000	26.190000	26.560000	165.000000	258.00000	280.000

2.3 Check for classes balance

Name: Room_Occupancy_Count, dtype: int64

```
In [8]:
         df.Room Occupancy Count.value counts()
              8228
Out[8]:
               748
               694
        1
               459
```

- 2.3 result: There is imbalance, we will deal with if the score are affected
- 2.4 Merge the data with time as DateTime and drop the columns Data and Time

```
In [9]:
         DateTimeConc = df['Date'] + ' ' + df['Time']
         df['DateTime'] = pd.to datetime(DateTimeConc)
```

```
In [10]:
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10129 entries, 0 to 10128
         Data columns (total 20 columns):
              Column
                                     Non-Null Count Dtype
                                     -----
          0
              Date
                                     10129 non-null object
          1
              Time
                                     10129 non-null object
          2
              S1 Temp
                                     10129 non-null float64
          3
              S2 Temp
                                     10129 non-null float64
          4
              S3 Temp
                                     10129 non-null float64
          5
              S4 Temp
                                     10129 non-null float64
          6
              S1 Light
                                     10129 non-null int64
          7
                                     10129 non-null int64
              S2 Light
          8
                                     10129 non-null int64
              S3 Light
          9
              S4 Light
                                     10129 non-null int64
          10
              S1 Sound
                                     10129 non-null float64
          11 S2 Sound
                                     10129 non-null float64
          12 S3 Sound
                                     10129 non-null float64
          13
              S4 Sound
                                     10129 non-null float64
          14 S5 C02
                                     10129 non-null int64
              S5_C02_Slope
                                     10129 non-null float64
          15
              S6 PIR
                                     10129 non-null int64
          17
              S7 PIR
                                     10129 non-null int64
              Room_Occupancy_Count 10129 non-null int64
          18
              DateTime
                                     10129 non-null datetime64[ns]
         dtypes: datetime64[ns](1), float64(9), int64(8), object(2)
         memory usage: 1.5+ MB
In [11]:
          df.drop(columns=['Date','Time'], inplace = True)
In [12]:
          df.columns
         Index(['S1 Temp', 'S2 Temp', 'S3 Temp', 'S4 Temp', 'S1 Light', 'S2 Light',
Out[12]:
                 'S3_Light', 'S4_Light', 'S1_Sound', 'S2_Sound', 'S3_Sound', 'S4_Sound', 'S5_C02', 'S5_C02_Slope', 'S6_PIR', 'S7_PIR', 'Room_Occupancy_Count',
                 'DateTime'],
                dtype='object')
         2.5 Check features corralation
In [13]:
          df.corr()
                                 S1_Temp S2_Temp S3_Temp S4_Temp S1_Light S2_Light S3_Light S4_Li
Out[13]:
                       S1_Temp 1.000000 0.799707 0.948839 0.855279 0.680743 0.548735 0.645163 0.212
                       52 Temp 0.799707 1.000000 0.765525 0.696581 0.639773 0.645987 0.607349 0.370
                       53 Temp 0.948839 0.765525 1.000000 0.885186 0.594311 0.500054 0.642601 0.301
                       54_Temp 0.855279 0.696581 0.885186 1.000000 0.581482 0.456350 0.588459 0.386
```

0.639773 0.594311 0.581482 1.000000 0.842090 0.816438

 S2_Light
 0.548735
 0.645987
 0.500054
 0.456350
 0.842090
 1.000000
 0.709579
 0.458

 S3_Light
 0.645163
 0.607349
 0.642601
 0.588459
 0.816438
 0.709579
 1.000000
 0.579

 S4_Light
 0.212217
 0.370897
 0.301419
 0.386871
 0.510853
 0.458914
 0.579484
 1.000

 S1 Sound
 0.436099
 0.438274
 0.375183
 0.355111
 0.601166
 0.503021
 0.502606
 0.293

Loading [MathJax]/extensions/Safe.js | ound 0.391137 0.409545 0.344026 0.312594 0.534274 0.560630 0.434859 0.303

S1 Light 0.680743

```
        S1_Temp
        S2_Temp
        S3_Temp
        S4_Temp
        S1_Light
        S3_Light
        S4_Light

        S3_Sound
        0.438769
        0.427133
        0.398177
        0.340808
        0.494080
        0.439269
        0.577151
        0.169

        S4_Sound
        0.355826
        0.378724
        0.326182
        0.294939
        0.441712
        0.413932
        0.473606
        0.200

        S5_CO2_Slope
        0.137391
        0.202547
        0.095842
        0.106208
        0.498185
        0.493281
        0.447708
        0.212

        S6_PIR
        0.436363
        0.476901
        0.403355
        0.340000
        0.607159
        0.554658
        0.501836
        0.324

        Room_Occupancy_Count
        0.700868
        0.671263
        0.652047
        0.526509
        0.849058
        0.788764
        0.793081
        0.355
```

2.6 Aggregating features to deal with the corralation issue

	Room_Occupancy_Count	S1_4_Temp_Mean	S1_4_Light_Mean	S1_4_Sound_Mean	S6_7_PIR_Sur
count	10129.000000	10129.000000	10129.000000	10129.000000	10129.00000
mean	0.398559	25.452704	24.732525	0.137551	0.16971
std	0.893633	0.399201	43.811460	0.231763	0.49376
min	0.000000	24.890000	0.000000	0.052500	0.00000
25%	0.000000	25.127500	0.000000	0.062500	0.00000
50%	0.000000	25.362500	0.000000	0.067500	0.00000
75%	0.000000	25.612500	30.500000	0.075000	0.00000
max	3.000000	26.800000	193.750000	3.182500	2.00000

2.7 Check the corralation after aggregation

In [18]:	df[list_df_Agg].corr()							
Out[18]:		Room_Occupancy_Count	S1_4_Temp_Mean	S1_4_Light_Mean	S1_4_Sound_M			
	Room Occupancy Count	1.000000	0.692698	0.854160	0.653			

0.692698

1.000000

0.685873

0.506

Loading [MathJax]/extensions/Safe.js

S1_4_Temp_Mean

	Room_Occupancy_Count	S1_4_Temp_Mean	S1_4_Light_Mean	S1_4_Sound_M
S1_4_Light_Mean	0.854160	0.685873	1.000000	0.646
S1_4_Sound_Mean	0.653527	0.506396	0.646892	1.000
S6_7_PIR_Sum	0.748247	0.523816	0.667364	0.657
S5_CO2	0.660144	0.828725	0.626629	0.472
S5_CO2_Slope	0.601105	0.153957	0.507454	0.401

2.8 Pair plot after the aggregation

3- Define and prepare the features and target

3.1 Split the dataset into train and test data

```
In [20]:
           from sklearn.model selection import train test split
          X = df[Aggregated Features]
          y = df['Room_Occupancy_Count']
          X train, X test, y train, y test = train test split(X, y, test size = 0.2, random state =
In [21]:
           print(X_train)
                S1_4_Temp Mean
                                  S1 4 Light Mean
                                                    S1 4 Sound Mean
                                                                       S6 7 PIR Sum
                                                                                      S5 C02
          1937
                        25.1425
                                              0.00
                                                              0.0600
                                                                                          360
                                                                                   0
          4477
                        25.3300
                                              0.00
                                                              0.0600
                                                                                          365
          8550
                        25.5475
                                              0.00
                                                              0.0625
                                                                                   0
                                                                                          530
          1346
                        25.4850
                                              0.00
                                                              0.0600
                                                                                   0
                                                                                          390
          7296
                        25.3475
                                              0.00
                                                              0.0700
                                                                                   0
                                                                                          355
          . . .
                             . . .
                                               . . .
                                                                                          . . .
                        25.4075
                                             41.50
                                                              0.0675
          5734
                                                                                   0
                                                                                          355
                        25.0650
                                             14.25
                                                                                   0
          5191
                                                              0.0575
                                                                                          360
                                                              0.0650
          5390
                        25.0625
                                             23.50
                                                                                   0
                                                                                          355
          860
                        26.3750
                                            144.00
                                                              0.4100
                                                                                   1
                                                                                         1160
          7270
                        25.3125
                                                                                   0
                                                                                          355
                                              0.00
                                                              0.0675
                S5 C02 Slope
          1937
                     0.000000
          4477
                     0.000000
          8550
                    -2.592308
          1346
                    -0.642308
          7296
                     0.000000
          . . .
          5734
                     0.000000
                     0.000000
          5191
          5390
                     0.000000
          860
                     3.165385
          7270
                     0.000000
          [8103 rows \times 6 columns]
In [22]:
           print(X_test)
                                                                                      S5 C02 \
                                  S1 4 Light Mean
                                                    S1 4 Sound Mean
                                                                       S6 7 PIR Sum
                S1 4 Temp Mean
          8855
                        25.2650
                                              0.00
                                                              0.0625
                                                                                          360
          532
                        25.9675
                                             61.75
                                                              0.0650
                                                                                   0
                                                                                          590
                        25.6725
                                              0.00
                                                                                   0
                                                                                          645
          1155
                                                              0.0600
          7769
                        25.1125
                                              0.00
                                                                                   0
                                                                                          350
                                                              0.0725
          4922
                        25.1275
                                              0.00
                                                              0.0575
                                                                                   0
                                                                                          360
                                               . . .
                                                                                          . . .
                        25.0800
          9396
                                              0.00
                                                              0.0600
                                                                                   0
                                                                                          345
          8359
                        26.0000
                                             95.25
                                                              0.3400
                                                                                   1
                                                                                          830
          9609
                        25.0500
                                              0.00
                                                              0.0600
                                                                                   0
                                                                                          345
          8936
                        25.2350
                                              0.00
                                                              0.0650
                                                                                   0
                                                                                          350
                                                              0.0650
          8513
                        25.5800
                                              0.00
                                                                                          620
                S5 CO2 Slope
          8855
                     0.000000
          532
                     0.746154
          1155
                    -2.207692
          7769
                    -0.088462
          4922
                    -0.023077
```

Loading [MathJax]/extensions/Safe.js

```
9396
                    0.000000
          8359
                    0.100000
          9609
                    0.000000
          8936
                   -0.046154
                   -0.984615
          8513
          [2026 rows \times 6 columns]
 In [23]:
           print(y_train)
          1937
                  0
          4477
                  0
          8550
                  0
          1346
                  0
          7296
                  0
                 . .
          5734
                 0
          5191
                  0
          5390
                  0
                  3
          860
          7270
          Name: Room Occupancy Count, Length: 8103, dtype: int64
 In [24]:
           print(y_test)
          8855
                  0
          532
                  1
          1155
                  0
          7769
          4922
                  0
          9396
          8359
                  2
          9609
                  0
                  0
          8936
          8513
          Name: Room Occupancy Count, Length: 2026, dtype: int64
          3.2 Scale the features (Standardization)
 In [25]:
           from sklearn.preprocessing import StandardScaler
           sc = StandardScaler()
           X train Scl = sc.fit transform(X train)
           X_test_Scl = sc.transform(X_test)
 In [26]:
           print(X_train_Scl)
          [[-0.76937327 -0.5609514 -0.33326261 -0.34110302 -0.50225845
                                                                       0.01289966]
           [-0.30095103 -0.5609514 -0.33326261 -0.34110302 -0.47739742
                                                                       0.01289966]
           [ 0.24241877 -0.5609514 -0.32241377 -0.34110302 0.34301654 -2.20336051]
           [-0.96923342 -0.01944273 -0.31156494 -0.34110302 -0.52711947
                                                                       0.01289966]
           2.71910458]
           [-0.34467044 - 0.5609514 - 0.3007161 - 0.34110302 - 0.52711947
                                                                       0.01289966]]
 In [27]:
           print(X test Scl)

↑ 5609514 -0.32241377 -0.34110302 -0.50225845 0.01289966]

Loading [MathJax]/extensions/Safe.js
```

```
[ 1.29168458  0.86194903  -0.31156494  -0.34110302  0.64134889  0.65081431] [ 0.55470026  -0.5609514  -0.33326261  -0.34110302  0.91482021  -1.87453853] ... [-1.00046157  -0.5609514  -0.33326261  -0.34110302  -0.57684153  0.01289966] [ -0.53828496  -0.5609514  -0.31156494  -0.34110302  -0.5519805  -0.02655898] [ 0.32361196  -0.5609514  -0.31156494  -0.34110302  0.79051507  -0.82888462]]
```

4- Initiate the machine learning models

4.1 Logistic Regression Model with evaluation metrics and coefficients

```
In [28]:
           from sklearn.linear model import LogisticRegression
           LR = LogisticRegression(random state = 42, max iter = 10000)
           LR.fit(X train, y train)
           LR SclFt = LogisticRegression(random state = 42, max iter = 10000)
           LR SclFt.fit(X train Scl, y train)
           LogisticRegression(max iter=10000, random state=42)
 Out[28]:
 In [29]:
           LR y pred = LR.predict(X test)
           LR SclFt y pred = LR SclFt.predict(X test Scl)
 In [41]:
           from sklearn.metrics import confusion matrix, accuracy score, classification report
           from sklearn.model selection import cross val score, KFold
           LR cm = confusion matrix(y test, LR y pred)
           LR SclFt cm = confusion matrix(y test, LR SclFt y pred)
           print('LR confusion matrix')
           print(LR cm)
           print('######')
           print('LR accuracy score')
           print(accuracy score(y test, LR y pred))
           print('######')
           print('LR report')
           print(classification report(y test, LR y pred))
           print('######')
           cv X = np.array(X)
           cv y = np.array(y)
           kf = KFold(n splits = 5, shuffle=True, random state = 42)
           print('LR cross validation with f1 weighted average')
           LR cv results = cross val score(LR, cv X, cv y, cv=kf, scoring='f1 weighted')
           print('Cross validation results is {}'.format(LR cv results))
           print('Average of cross validation results is {}'.format(np.mean(LR cv results)))
           print('----')
           print('LR confusion matrix with standardized features')
           print(LR SclFt cm)
           print('######')
           print('LR accuracy score with standardized features')
           print(accuracy_score(y_test, LR_SclFt_y_pred))
            print('######')
            print('LR report with standardized features')
           print(classification report(y test, LR SclFt y pred))
Loading [Math]ax]/extensions/Safe.js
```

```
cv X scl = sc.fit transform(cv X)
print('LR with standardized features cross validation with f1 weighted average')
LR_SclFt_cv_results = cross_val_score(LR_SclFt, cv_X_scl, cv_y, cv=kf, scoring='f1_weighted)
print('Cross validation results are {}'.format(LR_SclFt_cv_results))
print('Average of cross validation results is {}'.format(np.mean(LR_SclFt_cv_results)))
LR confusion matrix
[[1613
               4
                    2]
          0
    9
              10
         84
                    0]
 [
     0
          2
            122
 ſ
                   401
 [
   10
          6
              22 102]]
#######
LR accuracy score
0.9481737413622903
#######
LR report
              precision
                           recall f1-score
                                               support
                   0.99
                                        0.99
           0
                              1.00
                                                   1619
           1
                   0.91
                              0.82
                                        0.86
                                                    103
           2
                   0.77
                              0.74
                                        0.76
                                                    164
           3
                   0.71
                                        0.72
                                                    140
                              0.73
                                        0.95
                                                   2026
    accuracy
   macro avg
                   0.85
                              0.82
                                        0.83
                                                   2026
                   0.95
                              0.95
                                        0.95
                                                   2026
weighted avg
#######
LR cross validation with f1 weighted average
Cross validation results is [0.94774191 0.95089792 0.94831601 0.95264111 0.94800591]
Average of cross validation results is 0.9495205722402724
LR confusion matrix with standardized features
               0
[[1612
          1
                    6]
   10
         83
               6
                    4]
          3
            131
                   30]
 [
          7
              20
     9
                 104]]
 [
#######
LR accuracy score with standardized features
0.9526159921026653
#######
LR report with standardized features
              precision
                           recall f1-score
                                               support
           0
                   0.99
                              1.00
                                        0.99
                                                   1619
                   0.88
                                        0.84
           1
                              0.81
                                                    103
           2
                   0.83
                              0.80
                                        0.82
                                                    164
           3
                   0.72
                              0.74
                                        0.73
                                                    140
                                        0.95
                                                   2026
    accuracy
                              0.84
                                        0.85
                                                   2026
   macro avq
                   0.86
                   0.95
                              0.95
                                        0.95
                                                   2026
weighted avg
```

#######

LR with standardized features cross validation with f1 weighted average Cross validation results are [0.95223682 0.9540699 0.95497631 0.95932083 0.9551636] Average of cross validation results is 0.9551534912981046

4.1 Result: The bench mark model. it has a greate overall scores. but the individual classes (2 and 3) has a low scores

```
print(LR SclFt.coef )
         [[ 4.65979616e-01 -1.66026142e-01 -1.94985926e+00 -3.24425284e+00
          -3.00203303e-03 -2.13288014e+00]
         [ 1.10834027e-01 3.69850666e-02 -7.18874316e-01 2.61240948e-01
          -4.96850398e-03 -2.86291339e-01]
         [-2.08360312e-01 6.68141587e-02 1.57198461e+00 1.16256194e+00
           1.76033769e-03 7.70511130e-01]
         [-3.68453330e-01 6.22269165e-02 1.09674896e+00 1.82044996e+00
           6.21019931e-03 1.64866035e+00]]
        #######
         [[-1.31974634 -5.93587956 -0.70564651 -1.38611235 0.19838202 -2.2520995 ]
         [-0.12698557 2.53291049 0.52014803 0.48863213 0.30915453 0.75540447]
         [ 1.28127851  2.09400614  0.3697685  0.855237
                                                         0.71430189 1.89989029]]
In [32]:
         print(LR.intercept )
         print('######')
         print(LR SclFt.intercept )
         [ 0.35632858 -0.28565973  0.31666823 -0.38733707]
        #######
         [ 6.55499954 1.33578078 -1.86414132 -6.026639 ]
        4.2 Gaussian naïve bayes with evaluation metrics and class
        probabilities
In [33]:
         from sklearn.naive bayes import GaussianNB
         GNB = GaussianNB()
         GNB.fit(X train, y train)
         GaussianNB()
Out[33]:
In [34]:
         GNB y pred = GNB.predict(X test)
In [35]:
         GNB cm = confusion matrix(y test, GNB y pred)
         print('GNB confusion matrix')
         print(GNB cm)
         print('######')
         print('GNB accuracy score')
         print(accuracy score(y test, GNB y pred))
         print('######')
         print('GNB report')
         print(classification report(y test, GNB y pred))
         print('######')
         print('GNB cross validation with f1 weighted average')
         GNB cv results = cross val score(GNB, cv X, cv y, cv=kf, scoring='f1 weighted')
         print('Cross validation results are {}'.format(GNB cv results))
         print('Average of cross validation results is {}'.format(np.mean(GNB cv results)))
        GNB confusion matrix
         [[1583
                      10
                           25]
                1
                       4
             0
                 97
                           2]
             0
                    146
                           18]
             6
                  6
                     23
                          105]]
```

print('######')

Loading [MathJax]/extensions/Safe.js

```
GNB accuracy score
0.9531095755182626
#######
GNB report
                           recall f1-score
              precision
                                              support
           0
                   1.00
                             0.98
                                        0.99
                                                  1619
           1
                             0.94
                                        0.94
                   0.93
                                                   103
           2
                   0.80
                             0.89
                                        0.84
                                                   164
           3
                   0.70
                             0.75
                                        0.72
                                                   140
                                        0.95
                                                  2026
    accuracy
                             0.89
                   0.86
                                        0.87
                                                  2026
   macro avg
weighted avg
                   0.96
                             0.95
                                        0.95
                                                  2026
#######
GNB cross validation with f1 weighted average
Cross validation results are [0.95445217 0.96377101 0.963722
                                                                0.96339622 0.96838648]
Average of cross validation results is 0.9627455761497805
```

4.2 Result: The second best classifier out of the three classifiers. The score of individual classes are good except Class (3) has a low scores but still acceptable

4.3 XGboost with evaluation metrics and features importance plot

```
In [37]:
          import xgboost as xgb
          xgbM = xgb.XGBClassifier(
                                   n estimators=600,
                                   max depth=4,
                                   objective='binary:logistic', #new objective
                                   learning rate=.05,
                                   subsample=.8,
                                   min child weight=3,
                                   colsample bytree=.8,
                                   use label encoder=False
          eval set=[(X train,y train),(X test,y test)]
          fit model = xgbM.fit(
                               X_train, y_train,
                               eval set=eval set,
                               eval_metric='mlogloss', #new evaluation metric: classification error
                               early stopping rounds=50,
                               verbose=False
```

```
In [38]: xqbM y pred = xqbM.predict(X_test)
Loading [MathJax]/extensions/Safe.js
```

```
In [39]:
          xgbM cm = confusion matrix(y test, xgbM y pred)
          print('XGB confusion matrix')
          print(xqbM cm)
          print('######')
          print('XGB accuracy score')
          print(accuracy score(y test, xgbM y pred))
          print('######")
          print('XGB report')
          print(classification_report(y_test, xgbM_y_pred))
          # to hide warning about mlogloss
          xgb.set config(verbosity=0)
          print('######')
          print('XGB cross validation with f1 weighted average')
          XGB cv results = cross val score(xgbM, cv X, cv y, cv=kf, scoring='f1 weighted')
          print('Cross validation results are {}'.format(XGB cv results))
          print('Average of cross validation results is {}'.format(np.mean(XGB cv results)))
         XGB confusion matrix
         [[1618
                 0
              0 103
                        0
                              01
          [
                     161
              0
                              21
          ſ
                   1
              2
          [
                   0
                        2
                          136]]
         #######
         XGB accuracy score
         0.9960513326752222
         #######
         XGB report
                       precision
                                     recall f1-score
                                                        support
                    0
                             1.00
                                       1.00
                                                 1.00
                                                           1619
                    1
                             0.99
                                       1.00
                                                 1.00
                                                            103
                    2
                             0.99
                                       0.98
                                                 0.98
                                                            164
                    3
                             0.98
                                       0.97
                                                 0.97
                                                            140
                                                 1.00
                                                           2026
             accuracy
                            0.99
                                       0.99
                                                 0.99
                                                           2026
            macro avg
         weighted avg
                             1.00
                                       1.00
                                                 1.00
                                                           2026
         #######
         XGB cross validation with f1 weighted average
         Cross validation results are [0.99604279 0.99703742 0.99753129 0.99654521 0.99556268]
         Average of cross validation results is 0.9965438770934242
```

4.3 Result: The highest score out of the three models. Also the score for the indvidual classes are high

```
In [40]:
    ax = xgb.plot_importance(xgbM)
    fig = ax.figure
    fig.set_size_inches(8, 4);
```


In []: