NANYANG TECHNOLOGICAL UNIVERSITY

MIDTERM II (CA2)

MH1812 - Discrete Mathematics

April 2018	TIME ALLOWED: 40 minutes	
		1
Name:		
Matric. no.:	Tutor group:	

INSTRUCTIONS TO CANDIDATES

- 1. DO NOT TURN OVER PAPER UNTIL INSTRUCTED.
- 2. This midterm paper contains **THREE** (3) questions.
- 3. Answer **ALL** questions. The marks for each question are indicated at the beginning of each question.
- 4. Candidates can write anywhere on this midterm paper.
- 5. This **IS NOT** an **OPEN BOOK** exam.
- 6. Candidates should clearly explain their reasoning when answering each question.

QUESTION 1. (30 marks)

Solve the following linear recurrences, that is, write a_n and b_n in terms of n:

- (a) $a_n = 10a_{n-1} 21a_{n-2}$ for $n \ge 2$, with initial conditions $a_0 = 3$, $a_1 = 5$;
- (b) $b_n = b_{n-1} + 2$ for $n \ge 1$, with initial condition $b_0 = 2$.

Justify your answers.

QUESTION 2.

(30 marks)

(a) Prove that

$$\sum_{j=1}^{n} j(3j-1) = n^{2}(n+1), \quad \forall n \in \mathbb{N}.$$

- (b) Let $A = \{0, 1\}$ and $B = \{4, 5\}$.
 - (i) Write out all elements of the set $A \times B$.
 - (ii) What is the cardinality of the power set of $A \times B$?

QUESTION 3.

(40 marks)

- (a) Let A, B, and C be sets.
 - (i) Prove that $(\overline{A \cap B}) \cap C = (C A) \cup (C B)$;
 - (ii) Is $(C-A) \cup (C-B) = C$? If yes, prove it, if no, give a counterexample.
- (b) Let $S = \{3a + 6b \mid a, b \in \mathbb{Z}\}.$
 - (i) Show that $S \subseteq \mathbb{Z}$;
 - (ii) Is $S = \mathbb{Z}$? If yes, prove it, if no, give a counterexample.