# 66116 Frühjahr 2012

Datenbanksysteme / Softwaretechnologie (vertieft)

Aufgabenstellungen mit Lösungsvorschlägen



Die Bschlangaul-Sammlung

Hermine Bschlangaul and Friends

## Aufgabenübersicht

| Гhema Nr. 1                    | 3 |
|--------------------------------|---|
| Teilaufgabe Nr. 1              | 3 |
| Aufgabe 1 [Handelsunternehmen] | 3 |
| Aufgabe 2 [Wareneingänge]      | 3 |
| SOL [Gebrauchtwagen]           | 5 |



### Die Bschlangaul-Sammlung

Hermine Bschlangaul and Friends

Eine freie Aufgabensammlung mit Lösungen von Studierenden für Studierende zur Vorbereitung auf die 1. Staatsexamensprüfungen des Lehramts Informatik in Bayern.



Diese Materialsammlung unterliegt den Bestimmungen der Creative Commons Namensnennung-Nicht kommerziell-Share Alike 4.0 International-Lizenz.

### Thema Nr. 1

#### Teilaufgabe Nr. 1

#### Aufgabe 1 [Handelsunternehmen]

Ein Handelsunternehmen möchte seine Struktur verbessern und ein Datenbanksystem zur Verwaltung seiner Filialen, angebotenen Waren und Kunden erstellen.

Die Basis dieses Systems bilden die Filialen des Unternehmens. Jede Filiale ist eindeutig durch ihre Filialnummer gekennzeichnet und befindet sich in einer Stadt. Außerdem hat jede Filiale einen Filialleiter.

Zu jeder Filiale gehört genau ein Lager mit einer eindeutigen Lagernummer und ebenfalls einem Leiter. Jedes Lager verfügt über eine bestimmte Menge an verschiedenen Waren. Jede Ware kann in mehreren Lagern vorrätig sein und ist über eine Nummer, einen Namen und einen Preis gekennzeichnet.

Ein Kunde kann in einer Filiale des Unternehmens Bestellungen aufgeben. Der Kunde hat eine Kundennummer, einen Namen und eine Adresse, Eine Bestellung enthält dabei jeweils einen Warenartikel, dessen gewünschte Menge und das Datum, an dem die Bestellung abgeholt wird.

- (a) Erstellen Sie ein Entity-Relationship-Diagramm für obige Datenbank.
- (b) Setzen Sie das in Teilaufgabe a) erstellte Entity-Relationship-Diagramm in ein Relationenschema um. Relationships sollen mit einer möglichst geringen Anzahl von Relationen realisiert werden. Dabei sind unnötige Redundanzen zu vermeiden. Ein Relationenschema ist in folgender Form anzugeben: Relation (Attributl, Attribut2, ...). Schlüsselattribute sind dabei zu unterstreichen. Achten Sie bei der Wahl des Schlüssels auf Eindeutigkeit und Minimalität.

#### Aufgabe 2 [Wareneingänge]

Gegeben sei folgende Datenbank für Wareneingänge eines Warenlagers. Die Primärschlüssel-Attribute sind unterstrichen.

| ZulieferungsNr | ArtikelNr | Datum      | Artikelname | Menge |
|----------------|-----------|------------|-------------|-------|
| 1              | 1         | 01.01.2009 | Handschuhe  | 5     |
| 1              | 2         | 01.01.2009 | Mütze       | 10    |
| 2              | 3         | 05.01.2009 | Schal       | 2     |
| 2              | 1         | 05.01.2009 | Handschuhe  | 18    |
| 3              | 4         | 06.01.2009 | Jacke       | 2     |

(a) Erläutern Sie, inwiefern obiges Schema die 3. Normalform verletzt.

Diese Aufgabe hat noch keine Lösung. Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net.

(b) Geben Sie für obige Datenbank alle vollen funktionalen Abhängigkeiten (einschließlich der transitiven) an.

Lösungsvorschlag

Lösungsvorschlag

#### Exkurs: Voll funktionale Abhängigkeit

Eine vollständig funktionale Abhängigkeit liegt dann vor, wenn dass Nicht-Schlüsselattribut nicht nur von einem Teil der Attribute eines zusammengesetzten Schlüsselkandidaten funktional abhängig ist, sondern von allen Teilen eines Relationstyps. Die vollständig funktionale Abhängigkeit wird mit der 2. Normalform (2NF) erreicht. <sup>a</sup>

Lösungsvorschlag

#### Exkurs: Transitive Abhängigkeit

Eine transitive Abhängigkeit liegt dann vor, wenn Y von X funktional abhängig und Z von Y, so ist Z von X funktional abhängig. Diese Abhängigkeit ist transitiv. Die transitive Abhängigkeit wird mit 3. Normalform (3NF) erreicht.  $^a$ 

<sup>a</sup>datenbank-verstehen.de

```
\begin{split} \text{FA} = \Big\{ & & \big\{ \textit{ZulieferungsNr} \big\} \rightarrow \big\{ \textit{Datum} \big\}, \\ & & \big\{ \textit{ArtikelNr} \big\} \rightarrow \big\{ \textit{Artikelname} \big\}, \\ & \big\{ \textit{ZulieferungsNr}, \textit{ArtikelNr} \big\} \rightarrow \big\{ \textit{Menge} \big\}, \end{split}
```

(c) Überführen Sie das obige Relationenschema in die 3. Normalform. Erläutern Sie die dazu durchzuführenden Schritte jeweils kurz.

Lösungsvorschlag

Diese Aufgabe hat noch keine Lösung. Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net.

<sup>&</sup>lt;sup>a</sup>datenbank-verstehen.de

#### SQL [Gebrauchtwagen]

Gegeben sei das folgende Relationenschema:

```
Fahrzeug : {[ MNR[Modell], FZGNR, Baujahr, KMStand, Preis ]}

Modell : {[ MNR, HNR[Hersteller], Typ, Neupreis, ps ]}

Hersteller : {[ HNR, Name ]}
```

Dabei sind die Schlüsselattribute jeweils unterstrichen und zusätzlich für alle Attribute die Typen angegeben. Formulieren Sie die folgenden Anfragen bzw. Anweisungen in SQL.

(a) Geben Sie die Anweisungen in SQL-DDL an, die notwendig sind, um die Relationen "Fahrzeug", "Modell" und "Hersteller" zu erzeugen. Achten Sie dabei darauf, die Primärschlüssel der Relationen zu kennzeichnen.

Lösungsvorschlag

```
CREATE TABLE IF NOT EXISTS Hersteller (
  HNR INTEGER PRIMARY KEY,
  Name CHAR(20)
);
CREATE TABLE IF NOT EXISTS Modell (
  MNR INTEGER PRIMARY KEY,
  HNR INTEGER REFERENCES Hersteller(HNR),
  Typ CHAR(20),
  Neupreis INTEGER,
  ps INTEGER
);
CREATE TABLE IF NOT EXISTS Fahrzeug (
  MNR INTEGER REFERENCES Modell(MNR),
  FZGNR CHAR(12) PRIMARY KEY,
 Baujahr INTEGER,
  KMStand INTEGER,
  Preis INTEGER
);
```

(b) Bestimmen Sie die Typen aller Modelle des Herstellers mit Namen BMW.

```
SELECT m.Typ
FROM Modell m, Hersteller h
WHERE h.HNR = m.HNR AND h.Name = 'BMW'
GROUP BY m.Typ;
```

(c) Bestimmen Sie den Mindestpreis, bezogen auf das Attribut "Preis", der Fahrzeuge eines jeden Herstellers.

```
SELECT h1.Name AS Hersteller, (
   SELECT MIN(f.Preis)
  FROM Fahrzeug f, Modell m, Hersteller h2
  WHERE
    f.MNR = m.MNR AND
    m.HNR = h2.HNR AND
    H2.HNR = h1.HNR
) AS Mindestpreis
FROM Hersteller h1;
```

(d) Bestimmen Sie die Namen der Hersteller, für die von jedem ihrer Modelle mindestens ein Fahrzeug in der Datenbank gespeichert ist.

Lösungsvorschlag

```
SELECT h.Name AS Hersteller
FROM Fahrzeug f, Modell m, Hersteller h
WHERE
f.MNR = m.MNR AND
m.HNR = h.HNR
GROUP BY h.Name;
```

(e) Bestimmen Sie die Namen aller Hersteller, von denen mindestens fünf Fahrzeuge eines beliebigen Modells in der Datenbank gespeichert sind.