Lab6: Deep Q-Network and Deep Deterministic Policy Gradient

310605005 王映勻

Report

 A tensorboard plot shows episode rewards of at least 800 training episodes in LunarLander-v2.

2. A tensorboard plot shows episode rewards of at least 800 training episodes in LunarLanderContinuous-v2.

3. Describe your major implementation of both algorithms in detail.

✓ DQN

在一般 Q-learning 的方法中,會建立一個表格儲存所有 action 和 state 所對應的 Q value,而 DQN 就是引入神經網絡代替原本的 Q 值表,以避免記憶體爆炸的情況。

這次使用 DQN 的環境為 LunarLander-v2·其有 8 種 state、4 種 action,因此設計的神經網路架構,其輸入為 8-dimension,輸出為 4-

dimension,中間有一層 32-dimension 的 hidden layer。

```
class Net(nn.Module):
    def __init__(self, state_dim=8, action_dim=4, hidden_dim=32):
        super().__init__()
        ## TODO ##

        # raise NotImplementedError
        self.fc1 = nn.Linear(state_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, action_dim)
        self.relu = nn.ReLU()

def forward(self, x):
        ## TODO ##

        # raise NotImplementedError
        out = self.relu(self.fc1(x))
        out = self.fc2(out)
        return out
```

在 select action 的部份,這邊採用 epsilon-greedy 的方式。設定一個 0-1 的 epsilon 值,每次隨機選擇一個 0-1 的值,大於 epsilon 就選擇分數最高的 action,反之則隨機選擇一個 action,讓模型能夠有隨機探索的機會。

DQN 在訓練過程中將計算 target Q value 的神經網路跟訓練用的神經網路分開,這邊分為 target_network 和 behavior_network。

在 update_behavior_network 的部分,每次會從 replay memory 所建立的 transition buffer 隨機取樣一個 mini batch,以確保訓練資料不會有連續 step 間的相關性。接著將 state 傳入 behavior_network,得到選擇 action 時用的 q_value,再將 next_state 傳入 target_network,利用其得到的 q_next 計算出 q_target 之後,就可將兩者的 mean square error 作為 loss,利用 back-propagation 更新 behavior_network。

而 target_network 的部分,在訓練一開始,其參數設定會和 behavior_network 一樣,依據我們的設計,behavior_network 是每 4 個 iteration 更新一次,而 target_network 則是每 1000 個 iteration 才會與 behavior network 的參數同步,以維持訓練的穩定性。

```
def update(self, total_steps):
    if total_steps % self.freq == 0:
        self._update_behavior_network(self.gamma)
    if total_steps % self.target_freq
         self._update_target_network()
def _update_behavior_network(self, gamma):
    state, action, reward, next_state, done = self._memory.sample(
        self.batch_size, self.device)
    q_value = self._behavior_net(state).gather(dim=1,index=action.long())
     with torch.no_grad():
    q_next = self._target_net(next_state).max(dim=1)[0].view(-1,1)
q_target = reward + gamma*q_next*(1-done)
criterion = nn.MSELoss()
    loss = criterion(q_value, q_target)
    self._optimizer.zero_grad()
    loss.backward()
    nn.utils.clip_grad_norm_(self._behavior_net.parameters(), 5)
    self._optimizer.step()
def _update_target_network(self):
       'update target network by copying from behavior network'''
    ## TODO ##
    self._target_net.load_state_dict(self._behavior_net.state_dict())
```

✓ DDPG

DDPG 的架構是基於 Actor-Critic 並結合 DQN 的思想,使其不僅像 DQN 可以處理離散型動作問題,也可以處理本次 LunarLander Continuous-v2 這種連續型動作問題。

如上圖所示,actor 和 critic 分別由 target network (_target_actor_net & _target_critic_net)和 behavior network (_actor_net & _critic_net)構成,所以在 DDPG 中相當於總共有 4 個 network 架構。

Actor network 的架構如下,參考助教給的 Network Architecture, 其輸入為 8-dimension state,輸出為 2-dimension action,中間有 400*1 和 300*1 共兩層 hidden layer。

```
class ActorNet(nn.Module):
    def __init__(self, state_dim=8, action_dim=2, hidden_dim=(400, 300)):
        super().__init__()
        ## TODO ##
        # raise NotImplementedError
        self.fc1 = nn.Linear(state_dim, hidden_dim[0])
        self.fc2 = nn.Linear(hidden_dim[0], hidden_dim[1])
        self.fc3 = nn.Linear(hidden_dim[1], action_dim)
        self.relu = nn.ReLU()
        self.tanh = nn.Tanh()

def forward(self, x):
        ## TODO ##
        # raise NotImplementedError
        out = self.relu(self.fc1(x))
        out = self.relu(self.fc2(out))
        out = self.tanh(self.fc3(out))
        return out
```

Critic network 的部分,其將兩個獨立的輸入 observation 和 action concatenate 在一起,使最後的輸出為 1-dimension 的純量(Q value)。

在 select action 的部份,在 actor network 回傳 action 給環境之前, 會加上隨機的 noise,增加探索 action space 的機會。

在 update_behavior_network 的部分·critic network 的更新方式與DQN 類似,差別只在這邊必須先經過_target_actor_net 得到 a_next,再輸入到_target_critic_net 才能得到 q_next。而 actor network 的更新方法,是將_actor_net 的輸出傳給_critic_net,然後將其負輸出當成 loss,利用back-propagation 完成網路的更新。

```
def _update_behavior_network(self, gamma):
    actor_net, critic_net, target_actor_net, target_critic_net = self._actor_net, self._critic_net,
    self._target_actor_net, self._target_actor_net, self._target_critic_net
    actor_opt, critic_opt = self._actor_opt, self._critic_opt

# sample a minibatch of transitions
state, action, reward, next_state, done = self._memory.sample(self.batch_size, self.device)

## update critic ##
# critic loss
# raise NotImplementedError
q_value = self__critic_net(state, action)
with torch.no_grad():
    a_next = self__traget_actor_net(next_state)
    q_next = self__traget_critic_net(next_state, a_next)
    q_target = reward + gamma*q_next*(1-done)
critic_loss = criterion(q_value, q_target)

# optimize critic
actor_net.zero_grad()
critic_loss.backward()
critic_loss.backward()
critic_loss.backward()
critic_loss.backward()
actor_loss.backward()
critic_net.zero_grad()
critic_net.zero_grad()
critic_net.zero_grad()
critic_net.zero_grad()
critic_net.zero_grad()
critic_net.zero_grad()
critic_net.zero_grad()
critic_net.zero_grad()
critic_net.zero_grad()
actor_loss.backward()
```

4. Describe differences between your implementation and algorithms.

在 training 的時候,依據我們設定的 warmup 值,每個 episode 在剛開始的一段時間,會採取隨機探索的策略,也就是隨機從 action space 中選擇 action,將 transition 存進 buffer,直到 warmup 結束才開始 update network 的參數。

另外在 DQN 的部份,並不是每個 iteration 都會更新 behavior network,而是依據我們設定的 frequency,每隔一段時間才會更新一次。

5. Describe your implementation and the gradient of actor updating.

如上圖所示,actor network 的目標是要找到一個 action 能使得輸出的 Q value (q_t) 最大,因此要優化 actor network 的梯度就是要最大化 critic network 輸出的 Q value,再利用 back-propagation 更新網路,而將輸出取負號當成 Loss 是為了方便做最小化。公式及實際做法如下:

Update the actor policy using the sampled gradient:

$$\nabla_{\theta^{\mu}\mu}|s_{i}\approx\frac{1}{N}\sum_{i}\nabla_{a}Q(s,a|\theta^{Q})|_{s=s_{i},a=\mu(s_{i})}\nabla_{\theta^{\mu}\mu}(s|\theta^{\mu})|s_{i}$$

```
action = self._actor_net(state)
actor_loss = -self._critic_net(state,action).mean()

# optimize actor
actor_net.zero_grad()
critic_net.zero_grad()
actor_loss.backward()
actor_opt.step()
```

6. Describe your implementation and the gradient of critic updating.

利用 target network 得到的 y_i 和 behavior network (_critic_net)得到的 Q(s, a) · 計算 mean square error 作為 loss · 利用 back-propagation來更新網路。公式及實際做法如下:

Set
$$y_i = r_i + \gamma Q'(s_{t+1}, \mu'(s_{t+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

```
q_value = self._critic_net(state, action)
with torch.no_grad():
    a_next = self._target_actor_net(next_state)
    q_next = self._target_critic_net(next_state,a_next)
    q_target = reward + gamma*q_next*(1-done)
criterion = nn.MSELoss()
critic_loss = criterion(q_value, q_target)

# optimize critic
actor_net.zero_grad()
critic_net.zero_grad()
critic_loss.backward()
critic_opt.step()
```

7. Explain effects of the discount factor.

$$y_{j} = \begin{cases} r_{j} & \text{if episode terminates at step } j+1 \\ r_{j} + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^{-}) & \text{otherwise} \end{cases}$$

上一題所提到的 y_i 以及上面公式的 y_j 分別為 DDPG 和 DQN 計算 total reward 的方式,其中的 γ 就是 discount factor ($\gamma \in [0,1]$)。從公式可看出,discount factor 會使未來所給的 reward 影響越來越小,目的就是要讓當前 reward 的影響力比未來的 reward 更大,但若是未來的 reward 本身影響巨大,還是能左右現在的選擇。

8. Explain benefits of epsilon-greedy in comparison to greedy action selection.

一般 greedy 的策略是每次都選分數最高的 action,這樣做雖然可以快速收斂但容易卡在 local optimum。而 epsilon-greedy 的作法是在選擇行動時,依據設定的 epsilon 值,有一定的機率隨機探索,也就是隨機從 action space 中選擇 action,反之就是選擇 Q value 最佳的 action,使模型在大部分時間裡採用現階段最優策略,在少部分時間裡實現探索,達到平衡的關係。

9. Explain the necessity of the target network.

由於數據本身存在不穩定性,每一輪迭代都可能產生一些波動,如果只有使用單一網路訓練,模型通過當前時刻的回報和下一時刻的價值估計隨時進行更新,這些波動會立刻反映到下一個迭代的計算中,這樣就很難得到一個穩定的模型,因此引入 target network 就是為了解決這個問題。

Target network 和 behavior network 不同,不會每一輪迭代都更新,而是要經過一定次數的迭代,才會同步 behavior network 的參數,這樣做就可以讓 Q-Learning 的 target value 不會一直波動,模型也能夠有一定的穩定性。

10. Explain the effect of replay buffer size in case of too large or too small.

Replay buffer size 越大,訓練會越穩定,但資料量多就會需要更長時間才能收斂。而若 buffer size 太小,裡面的資料就會很相近,容易造成 overfitting 的問題 。

Performance

(Average reward of 10 testing episodes)

1. [LunarLander-v2]

Average $\div 30 = 9.108$

```
Start Testing
total reward: 235.19
total reward: 275.03
total reward: 263.58
total reward: 261.29
total reward: 301.98
total reward: 257.19
total reward: 299.13
total reward: 284.86
total reward: 313.14
total reward: 240.94
Average Reward 273.23365187288726
```

2. [LunarLanderContinuous-v2]

Average $\div 30 = 9.453$

```
Start Testing
total reward: 254.32
total reward: 287.12
total reward: 285.19
total reward: 281.24
total reward: 283.67
total reward: 272.55
total reward: 293.64
total reward: 293.70
total reward: 302.90
total reward: 281.47
Average Reward 283.58049453615547
```

Bonus

1. Implement and experiment on Double-DQN (DDQN)

DQN 容易出現高估 Q 值的問題,而 DDQN 就是為了解決這個問題誕生的優化版本。參考" Deep Reinforcement Learning with Double Q-

Learning" 這篇論文,發現 DDQN 的架構大致上與 DQN 差不多,關鍵是差在 update behavior betwork 時 q_target 如何取得。

$$Y_t^{\text{DQN}} \equiv R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a; \boldsymbol{\theta}_t^-)$$
$$Y_t^{\text{DoubleQ}} \equiv R_{t+1} + \gamma Q(S_{t+1}, \operatorname*{argmax}_{a} Q(S_{t+1}, a; \boldsymbol{\theta}_t); \boldsymbol{\theta}_t')$$

DQN 是直接從 target_network 取得 $max\ Q(S,a)$ 作為 q_next,而 DDQN 是先用 behavior_network 找到 $max\ Q(S,a)$ 對應的 index,再根據 這個 index 從 target_network 取得 q_next。

程式實作及結果如下,原本和 dqn 訓練時遇到一樣的問題,分數結果變化很大,且 ddqn 的上限更遇到瓶頸,但調整一些參數及增加 hidden 的層數後問題就解決了,且表現應該是有比原本 dqn 再好一點:


```
Start Testing
total reward: 255.77
total reward: 286.04
total reward: 284.41
total reward: 279.42
total reward: 292.46
total reward: 271.49
total reward: 289.97
total reward: 294.35
total reward: 314.42
total reward: 297.44
Average Reward 286.5763725871952
```

Implement and experiment on TD3 (Twin-Delayed DDPG)

由於 DDPG 是起源於 DQN,因此同樣會有高估 Q 值的問題,而 TD3 就是為了解決這個問題的 DDPG 優化版本,其主要引入了下面三種方法:

(1) Clipped Double-Q Learning:

跟 Double DQN 解決 Q 值過估計的做法一樣,使用了兩套 critic network 來估算 Q 值,並使用較小的值作為更新的目標

(2) Delayed" Policy Updates:
 降低 actor network 更新的頻率,使訓練較為穩定

(3) Target Policy Smoothing:

在 target_actor_net 中加入了 noise, 使 Q 函數變得平滑避免 overfitting 的問題

程式實作及結果如下,從 tensorboard 的訓練圖可以看出來,雖然收斂時間看起來比 ddqn 慢,但其實整個訓練過程模型是穩定很多的,不像ddqn 分數跳動很大:

```
def _update_behavior_network(self, gamma, args, epoch):
# sample a minibatch of transitions
state, action, reward, next_state, done = self._memory.sample(self.batch_size, self.device)
## update critic ##
# critic loss
## TODO ##

ql_value = self._critic_net1(state, action)
q2_value = self._critic_net2(state, action)
with torch.no.grad():
### Target Policy Smoothing ###

noise = torch.ones_like(action).data.normal_(0, args.policy_noise).to(self.device)
a_next = self._target_action.net(next_state) + noise
### Clipped Double-Q Learning ###

ql_next = self._target_critic_net2(next_state, a_next)
q2_next = self._target_critic_net2(next_state, a_next)
q2_next = self._target_critic_net2(next_state, a_next)
q.next = torch.min(q1_next, q2_next)
```


Start Testing
total reward: 250.54
total reward: 289.52
total reward: 274.44
total reward: 277.10
total reward: 317.59
total reward: 267.47
total reward: 296.25
total reward: 303.38
total reward: 297.34
total reward: 295.32
Average Reward 286.89550901683316