Wydział Fizyki, Matematyki i Informatyki Stosowanej Instytut Modelowania Komputerowego Zakład Grafiki Komputerowej i Obliczeń Wysokiej Wydajności

Grafika Komputerowa

wykład 1:

Rodzaje i zastosowania grafiki komputerowej

Tematyka:

Grafika wektorowa i rastrowa.

Algorytmy rysowania prymitywów 2D.

Podstawy programowania grafiki – OpenGL.

Transformacje geometryczne, rzutowanie.

Poprawa jakości rastra (operacje na histogramach).

Akwizycja obrazów, fizjologia widzenia.

Cyfrowe modele barw, głębokość bitowa barwy.

Formaty plików graficznych.

Podstawy komunikacji człowiek – komputer.

Zasady zaliczenia przedmiotu:

Wykłady:

Kolokwium zaliczeniowe – 40% oceny końcowej

Laboratoria:

Średnia ocen z ćwiczeń – 60% oceny końcowej

- Charles Petzold, "Programowanie Windows. Kompletny podręcznik Win32 API do Windows 95/98/NT", RM, Warszawa 2007,
- Piotr Besta, "Visual Studio 2005. Programowanie API z Windows API w języku C++" Helion, Gliwice 2008
- James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, Richard L. Phillips Wprowadzenie do grafiki komputerowej WNT, Warszawa 2001
- Piotr Andrzejewski, Jakub Kurzak, "Wprowadzenie do OpenGL.
 Programowanie zastosowań graficznych", Kwantum, Warszawa 2000.
- Richard S.Wright, Benjamin Lipchak, Nicholas Haemel, "OpenGL superbible: comprehensive tutorial and reference", Addison-Wesley Professional, 2007
- Jakob Nielsen, Hoa Loranger "Optymalizacja funkcjonalności serwisów internetowych", Helion, Gliwice 2007

Literatura dodatkowa:

- Michał Jankowski "Elementy grafiki komputerowej", WNT, Warszawa 2006.
- Witold Malina, Maciej Smiatacz "Metody cyfrowego przetwarzania obrazów", Akademicka Oficyna wydawnicza EXIT, Warszawa 2005
- Tricia Austin, Richard Doust "Projektowanie dla nowych mediów", PWN, Warszawa 2008
- Steve Krug, "Nie każ mi myśleć. O życiowym podejściu do funkcjonalności stron internetowych", Helion, Gliwice 2010

Grafika Komputerowa

Obszar dotyczący wyświetlania i nadzorowania obrazów na ekranie komputera.

(Encyclopedia Britannica)

System generacji, prezentacji i manipulacji obrazu przy użyciu komputera. Najogólniej dzielony jest na grafikę_rastrową i grafikę wektorową, które to dwie podstawowe odmiany stanowią podstawę wszystkich innych pochodnych rodzajów grafiki komputerowej niezależnie od zastosowań, począwszy od składu publikacji i stron WWW, a skończywszy na montażu telewizyjnym. Dodatkowo można wymienić specyficzny rodzaj grafiki nie podlegający bezpośrednio pod żaden z wyżej wymienionych – grafikę fraktalną.

(Wikipedia)

Krótka historia grafiki komputerowej

- rok 1950 MIT komputer Whirlwind wyposażony w wyjściowe urządzenie wyświetlające z elektropromieniową lampą CRT sterowaną przez komputer,
- głównie zastosowania militarne (wizualizacje) bardzo wysoki koszt urządzeń,
- system Sketchpad Ivan Sutherland struktury danych dla pamiętania hierarchii symboli budowanych przez powielanie elementów, metody interakcji za pomocą klawiatury i pióra świetlnego,
- połowa lat sześćdziesiątych początki zastosowań komercyjnych w dużych firmach (GM – projektowanie samochodów, Itek Digitek – projektowanie soczewek), początki systemów CAD,

Krótka historia grafiki komputerowej

- początek lat 70 gwałtowny rozwój elektroniki, technologia monitorów CRT, rozwój kolorowej grafiki stymulowanej symulatorami lotu dla potrzeb wojska, rozpowszechnienie systemów CAD,
- koniec lat siedemdziesiątych rewolucja mikrokomputerowa komputery z wbudowanymi rastrowymi urządzeniami wyświetlającymi (Apple, IBM) – programy do obróbki bitmap,
- początek lat osiemdziesiątych rozwój elektroniki prowadzący do radykalnego potanienia urządzeń, wkroczenie grafiki w nowe rejony takie jak rozrywka i wizualizacja,

Krótka historia grafiki komputerowej

- lata osiemdziesiąte ukształtowanie grafiki komputerowej w obecnej postaci. Nowe zastosowania przetwarzanie obrazów, systemy OCR (optical character recognition), modelowanie graficzne, zastosowania komercyjne: grafika prezentacyjna, reklamowa,
- przełom lat osiemdziesiątych i dziewięćdziesiątych kolejne nowe obszary zastosowań animacja, rendering, sztuczna rzeczywistość (virtual reality), powszechność graficznych systemów operacyjnych,
- dalszy rozwój powodowany rosnącą mocą komputerów w pełni wirtualne filmy, wirtualna rzeczywistość, rekonstrukcje historyczne,
- rozwój Internetu stymulujący rozpowszechnienie wszystkich wcześniejszych dziedzin, powszechność graficznych interfejsów systemów operacyjnych.

Ze względu na rodzaj sceny, grafikę komputerową dzielimy na:

grafikę płaską, dwuwymiarową "grafika 2D"

grafikę trójwymiarową (przestrzenną) "grafika 3D"

Rodzaje plików graficznych:

- 1. PLIKI RASTROWE reprezentują obraz jako prostokątną tablicę pikseli (np.standardy PCX, BMP, Targa, TIFF, GIF, JPEG, PNG),
- 2. PLIKI WEKTOROWE obraz reprezentowany jako zbiór prostych, łuków, krzywych itp. (np. standardy DXF, VRLM, LV)
- **3. METAPLIKI** oprócz danych wektorowych zawierają listę poleceń dla systemu graficznego (np. WMF),

4. PLIKI DANYCH DRUKAREK:

Rozszerzone formaty tekstowe – włączają informacje graficzne do konwencjonalnego strumienia danych tekstowych (np. PCL), Języki opisu strony – język programowania używany do opisu strony (np. PostScript).

Grafika Rastrowa (bitmapowa)

- Sposób zapisu obrazów w postaci prostokątnej tablicy wartości, które opisują kolory poszczególnych punktów obrazu (pikseli).
- W przeciwieństwie do grafiki wektorowej, grafika rastrowa jest zależna od rozdzielczości. Obrazy mają ustaloną długość i szerokość (podawaną w pikselach).
- Każdemu pikselowi przyporządkowane jest jego położenie w obrazie oraz kolor, zatem grafika rastrowa przypomina mozaikę złożoną z dużej liczby oddzielnych prostokątów.
- Ze względu na duże ilości danych, większość formatów graficznych opierających się na zapisie rastrowym (np. GIF, JPEG) wykorzystuje algorytmy, które pozwalają przechowywać informację w postaci skompresowanej.

Grafika Rastrowa (bitmapowa)

- Formaty te działają w oparciu o analizę zmiany koloru ciągłych zbiorów pikseli (jeżeli dane o obrazie pobierane są kolejnymi rzędami). Dzięki temu rysunki zawierające duże obszary wypełnione tym samym kolorem (np. błękitne niebo na zdjęciach krajobrazu) zajmują znacznie mniej miejsca w pliku.
- Edycja bitmapy polega na modyfikacji poszczególnych pikseli. Wymaga to znacznych mocy obliczeniowych. Niektóre operacje (np. skalowanie) poza tym, że przebiegają znacznie wolniej niż w przypadku grafiki wektorowej, mogą także przyczynić się do utraty jakości obrazu. Podczas powiększania obrazu rastrowego uwidaczniają się wyraźne pojedyncze piksele dając wrażenie "schodkowatości" rysunku, w czasie jego pomniejszania może dojść do "gubienia" pikseli, jeżeli elementy obrazu osiągają tzw. grubość podpikselową.

Grafika Rastrowa

Grafika Rastrowa – formaty plików

- BMP mapa bitowa o różnej palecie barw: 1 (mono), 8 (256 odcieni),
 24 bity na piksel (full color)
- **TIF** Tagget Image File Format standardowy format stosowany w poligrafii. Bardzo wiele odmian pod względem palety kolorów i metod kompresji (np. Huffmana, LZW)
- GIF Graphics Image Format zapis z przeplotem linii (umożliwia wstępne uproszczone wyświetlanie). Paleta barw uproszczona do 256 pozycji. Kompresja bezstratna LZW (Lempel-Ziv-Welch). Może zawierać więcej niż jeden obraz (gify animowane)
- JPG, JPEG pełna paleta barw RGB. Zwykle stosuje się stratną, lecz bardzo wydajną kompresję DCT.

Grafika Rastrowa – formaty plików (cd)

- **TGA** Targa Dość szeroko stosowany format o palecie 8, 16, 24, 32 (true color) bity na piksel. Może obsługiwać tzw. kanał alfa (tj. zawierać informacje o przeźroczystości)
- PNG Potrable Network Graphics unowocześniony format w stosunku do GIF, z ulepszonym mechanizmem kompresji, pełną paletą barw, kanał alfa
- PCX format programu Paintbrush/Paint. Kilka wersji o różnej palecie barw 1, 4, 8, 24 bity na piksel

Grafika Wektorowa (obiektowa)

- Grafika generowana w całości komputerowo, nie ma bezpośredniego przełożenia na obrazowanie obiektów z natury.
- Sposób zapisu obrazu za pomocą figur geometrycznych.
 W przeciwieństwie do tradycyjnej grafiki rastrowej (opierającej się na zapamiętywaniu koloru oraz położenia pojedynczych pikseli), grafika wektorowa zachowuje informacje o liniach oraz krzywych tworzących kształty obiektów, uwzględniając ich położenie oraz barwę.
- U podstawy grafiki wektorowej leży linia, która może być opisana jako prosty odcinek lub krzywa (np.: krzywe Beziera). Obszary zamykane liniami (lub przynajmniej częściowo nimi otoczone) mogą mieć nadawane atrybuty koloru (jednolitej barwy, gradientu, wypełnienia wzorem "pattern") o określonym stopniu przezroczystości lub tworzyć maski ("otwory", przez które widać elementy leżące pod spodem).

Grafika Wektorowa (obiektowa)

- Linie mogą służyć do ograniczania obszarów (jeżeli posiadają zerową grubość, będą niewidoczne) lub tworzyć obrysy (ang. *stroke*) i stanowić widzialne elementy obrazu (jeżeli mają grubość). Wreszcie linie (wektory) mogą służyć do innych celów, jak np. być liniami odniesienia przy przekształceniach geometrycznych.
- Grafika wektorowa jest grafiką w pełni skalowalną, co oznacza, iż można obrazy wektorowe powiększać oraz zmieniać ich proporcje bez uszczerbku dla jakości.

Grafika Wektorowa

Grafika wektorowa – formaty plików

- WMF Windows Meta File uniwersalny format zapisu wektorowego stosowany w MS Windows
- CDR format zapisu zbiorów programu CorelDraw
- DXF format zapisu zbiorów programu AutoCAD
- EPS, PS Encapsulated Postscript właściwie język opisu stron opracowany przez firmę Adobe. Stosowany w zapisie dla celów poligraficznych. Obsługiwany sprzętowo przez wiele rodzajów drukarek i profesjonalnych systemów drukowania
- **CGM** Computer Graphics Metafile format opracowany dla dokumentów elektronicznych. Posiada liczne zastosowania przemysłowe.

Wzajemne relacje grafiki rastrowej i wektorowej

- Obrazy w grafice wektorowej można łatwo przetwarzać w obrazy bitmapowe podając jedynie docelową rozdzielczość obrazu. W drugą stronę operacja przetworzenia bitmapy w rysunek wektorowy (wektoryzacja) jest niezmiernie trudna i dotyczy tylko prostych elementów graficznych, lub tworzenia obrysów wyraźnych, kontrastowych motywów obrazu.
- Grafikę wektorową w porównaniu ze standardowymi formatami bitmapowymi (JPEG, GIF, BMP) cechuje mniejsza objętość plików. Dotyczy to zarówno statycznych obrazów, jak animacji (np. prezentacji Flash, animacji SVG).

Wzajemne relacje grafiki rastrowej i wektorowej

- W odróżnieniu od grafiki rastrowej, istnieje niewiele uniwersalnych (zewnętrznych) formatów plików przechowujących grafikę wektorową. Zalicza się do nich DXF i EPS. Większość innych formatów jest obsługiwana jedynie wewnątrz poszczególnych programów wektorowych.
- W przypadku umieszczania grafiki wektorowej w Internecie konieczność wyświetlania grafiki w różnych systemach pociąga za sobą potrzebę jej zamiany w rastrową. Wyjątek stanowią animacje Flash, Shockwave oraz SVG, za przyczyną własnych "wtyczek" (plug-ins) do przeglądarek.
- Grafika wektorowa daje szersze możliwości niezależnej edycji poszczególnych elementów.

Grafika Komputerowa – wykład 1 Grafika Fraktalna

 Generowana w oparciu o tzw. fraktale, czyli figury geometryczne posiadające własności samopodobieństwa. Grafika fraktalna wykorzystywana jest zwykle do generacji losowych krajobrazów oraz map geograficznych. Ten typ grafiki charakteryzuje możliwość nieskończonego powiększania dowolnego elementu obrazu.

Grafika Fraktalna

Żuk Mandelbrota

Jeden z klasycznych fraktali (Dragon's Tail)

Graficzny interfejs użytkownika (Graphical User Interface, GUI) Interfejs graficzny został wprowadzony przez firmę Xerox w latach 70 XX wieku w laboratorium PARC.

Zastosowania grafiki komputerowej

DTP - skład i montaż komputerowy (*Desktop publishing*)

Zastosowania grafiki komputerowej

Zastosowania grafiki komputerowej

Wizualizacja Wizualizacja naukowa

Zastosowania grafiki komputerowej

Wizualizacja Wizualizacja naukowa

Wizualizacja rzeczywistości, symulacja inwestycji

Symulatory

Wirtualna rzeczywistość (Virtual reality)

Grafika Komputerowa – wykład 1 Zastosowania grafiki komputerowej

Wykresy w nauce, technologii, gospodarce

Zastosowania grafiki komputerowej

Kartografia

Zastosowania grafiki komputerowej

Medycyna

Zastosowania grafiki komputerowej

Systemy CAD

(Computer Aided Design)

Komputerowe wspomaganie projektowania

Projektowanie inżynierskie

C4 = CAD + CAM + CAE + CIM

Zastosowania komputerów i grafiki komputerowej związane
z automatyzacją projektowania i procesów produkcyjnych.

- **CAD** projektowanie wspomagane komputerowo (*Computer-Aided Design*),
- **CADD** komputerowe wspomaganie kreślenia i projektowania (*Computer-Aided Drafting and Design*)
- **CAM** komputerowe wspomaganie wytwarzania (*Computer-Aided Manufacturing*)
- CAE komputerowe wspomaganie działalności inżynierskiej (Computer-Aided Engineering)
- **CIM** komputerowo zintegrowana produkcja (*Computer-Intgrated Manufacturing*)

Zastosowania grafiki komputerowej

RozrywkaGry komputerowe

SztukaObrazy, filmy

Sztuka i rozrywka - Obrazy, filmy