Topics and References

- Auction Theory, Price of Anarchy:
 - Hartline "Mechanism Design and Approximation", Ch 2, 3, 6.
- Online Learning:
 - "Algorithmic Game Theory", Ch 4 (Blum and Mansour)
- Econometrics:
 - Chawla, Hartline, Nekipelov (2017) "Mechanism Redesign"
 - Nekipelov, Syrgkanis, Tardos (2015) "Econometrics for Learning Agents"

Not covered

• Sample complexity.

Overview

"online learning and online markets"

- auction theory
 - first-price auction
 - Bayes-Nash equilibrium
 - price of anarchy
 - econometric inference
 - revenue maximization
- online learning
 - external and internal regret
 - expert learning
 - internal regret learning
 - multi-armed bandit learning
- markets and learning
 - optimal pricing via learning
 - learning and equilibria
 - econometric inference for learning agents
 - price of anarchy for learning agents

Part I: Auction Theory

Equilibrium

"given a game, what is outcome when players behave selfishly?"

Mechanism Design

"design the game so that selfish behavior leads to desired outcome"

Two objectives:

- welfare
- profit

Single-item auctions

"sell a single **item** to one of several **bidders**, each with **private value** for item."

Solution 1: first-price auction (FPA)

- accept sealed bids.
- winner is highest bidder.
- charge winner their bid.

Question 1: what's a good bidder strategy?

Question 2: what is auction outcome?

Solution 2: "English auction"

- raise price from zero.
- bidders drop out until one bidder remaining.

- remaining bidder is winner.
- charge winner the current price.

Question 1: what's a good bidder strategy?

Answer: stop when price > value."

Question 2: what is auction outcome?

Answer: winner has highest value, pays second highest value.

Note: English auction maximizes welfare.

Challenge: takes a long time to run.

Idea: simulate English auction with sealed bids. [Vickrey, '61; Nobel prize]

Solution 3: second-price auction (SPA)

- accept sealed bids.
- simulate English auction:
 - winner is highest bidder.
 - charge winner second highest bid.

Question 1: what's a good bidder strategy?

Answer: bid your value.

Question 2: what is auction outcome?

Answer: winner has highest value, pays second highest value.

Question: how can the seller maximize their profit?

Example 1:

- second-price auction,
- two bidders, and
- values uniformly at random between 0 and 1 (i.e., U[0, 1])

Question: what is second-price's profit?

Review of probability

- Random variable, e.g., $X \sim U[0, 1]$
- cumulative distribution function, $F_X(z) = \mathbf{Pr}[X < z]$, e.g., $F_X(z) = z$.
- density function $f_X(z) = \frac{dF_X(z)}{dz}$, e.g., $f_X(z) = 1$.
- expectation, $\mathbf{E}[X] = \int_{-\infty}^{\infty} z f_X(z) dz$, e.g., $\mathbf{E}[X] = \int_0^1 z \cdot 1 dz = 1/2$.

Answer:

- $\mathbf{E}[\text{profit}] = \mathbf{E}[\text{2nd highest bid}] = \mathbf{E}[\text{2nd highest value}]$
- what is **E**[2nd highest value]?
- Picture: $0 \frac{1}{3} \frac{2}{3} 1$

Question: can we get more profit?

Def: second-price auction w. reserve price r

- accept sealed bids.
- \bullet add "seller bid" r
- winner is highest bidder. (if seller wins, keep item)
- charge winner second highest bid.

Example 2:

- second-price auction with reserve price 1/2,
- two bidders, and

• values uniformly at random between 0 and 1 (i.e., U[0,1])

Question: what is profit of second-price with reserve 1/2?

Answer:

- sort $v_{(1)} > v_{(2)}$
- consider cases:

- Calculate $\mathbf{E}[v_{(2)} \mid C] = 4/6$ Picture: 0——-1/2-4/6-5/6-1
- calculate total: $\mathbf{E}[SPA_{1/2}] = 1/2 \cdot 1/2 + 0 \cdot 1/4 + 4/6 \cdot 1/4 = 5/12$.

Note:
$$E[SPA_{1/2}] = 5/12 > E[SPA] = 1/3$$

Question: what is best reserve price?

Question: what is best auction?

Equilibrium

"given a game, what is outcome when players behave selfishly?"

Incomplete information games (i.e., auctions)

"players have private information that specifies their payoff"

Notation

- vectors $\mathbf{v} = (v_1, \dots, v_n)$
- hiding coordinates: $\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n).$
- filling in coordinates: $(\mathbf{v}_{-i}, z) = (v_1, \dots, v_{i-1}, z, v_{i+1}, \dots, v_n).$

Def: a **strategy** is a function from private info to an action.

Example: strategy for second-price auction: "bid your value"

Note: "bid your value" is a <u>dominant</u> strategy equilibrium (DSE) for second-price auction.

Bayes-Nash Equilibrium

"how do agents play, when no DSE?"

Recall: first-price auction has no DSE.

Example:

- first price auction
- two bidders, values U[0,1].

Question: what is equilibrium?

Answer: (guess and verify)

- if player 2 bids $b_2 \sim U[0, 1/2]$, how should player 1 bid?
- what is 1's expected utility with bid b_1 ? $\mathbf{E}[u_1] = (v_1 b_1) \times \mathbf{Pr}[1 \text{ wins}]$ $= (v_1 b_1)\mathbf{Pr}[b_1 > b_2]$ $= (v_1 b_1)\mathbf{Pr}[b_1 > v_2/2]$ $= (v_1 b_1)\mathbf{Pr}[2b_1 > v_2]$ $= (v_1 b_1)F(2b_1)$ $= (v_1 b_1)2b_1$ $= 2v_1b_1 2b_1^2$
- to maximize, take derivative and set to zero, solve
- $b_1 = v_1/2$.
- conclusion: equilibrium!

Def: players with a <u>common prior</u> know the distribution of the private info, $\boldsymbol{v} \sim \boldsymbol{F}$.

Def: a <u>strategy profile</u> of $\mathbf{s} = (s_1, \dots, s_n)$ $(s_i \text{ maps value } v_i \text{ to bid } b_i)$ is a <u>Bayes-Nash equilibrium (BNE)</u> if for all $i \ s_i(v_i)$ is a best response when other agents play $\mathbf{s}_{-i}(\mathbf{v}_{-i})$ with $\mathbf{v}_{-i} \sim \mathbf{F}_{-i|v_i}$ (conditioned on v_i).

Single-dimensional Games

"the agent's private information is singledimensional"

Def:

- Value: v_i = value of agent i for "service"
- ullet outcome of game is $oldsymbol{x}$ and $oldsymbol{p}$
- game outcome for i:

•
$$x_i = \begin{cases} 1 & i \text{ is served} \\ 0 & \text{otherwise} \end{cases}$$

- $p_i = \text{payment } i \text{ makes.}$
- Utility: $u_i = v_i x_i p_i$
- agents are risk neutral.

Game rules $(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{p}})$ map \boldsymbol{b} to outcomes and payments.

- $\tilde{x}_i(b)$ = outcome to i when bids are b.
- $\tilde{p}_i(\mathbf{b}) = \text{outcome to } i \text{ when bids are } \mathbf{b}$.

Compose game $(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{p}})$ with \boldsymbol{s} to map \boldsymbol{v} to outcomes and payments:

- $x_i(\mathbf{v}) = \tilde{x}_i(\mathbf{s}(\mathbf{v})) = \text{outcome when bidder values are } \mathbf{v}$
- $p_i(\mathbf{v}) = \tilde{p}_i(\mathbf{s}(\mathbf{v})) = \text{payment for } i \text{ when } \text{values are } \mathbf{v}.$

For values $\boldsymbol{v} \sim \boldsymbol{F}$:

•
$$x_i(v_i) = \mathbf{E}[x_i(\boldsymbol{v}) \mid v_i]$$

= $\mathbf{E}_{\boldsymbol{v}_{-i}}[x_i(\boldsymbol{v}_{-i}, v_i)].$

- $p_i(v_i) = \mathbf{E}[p_i(\mathbf{v}) \mid v_i].$
- $u_i(v_i) = v_i x_i(v_i) p_i(v_i)$.

Note: in notation $x_i(v_i)$: \tilde{x}_i , \boldsymbol{s} , \boldsymbol{F} are implicit.

Characterization of BNE

"can we tell if an outcome can be a BNE?"

Def: BNE (for onto strategies):

$$\forall i, v_i, z: \quad v_i x_i(v_i) - p_i(v_i) \ge v_i x_i(z) - p_i(z).$$

Theorem: G, onto \boldsymbol{s} , and \boldsymbol{F} are in BNE iff

1. $x_i(v_i)$ is monotone non-decreasing,

2.
$$p_i(v_i) = v_i x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0),$$

and often $p_i(0) = 0$.

Proof: (BNE \iff char) "by picture"

Show that i prefers $s_i(v_i)$ over $s_i(z)$

(Case 1: $z < v_i$; opposite case analogous)

- $u_i(v_i, z)$ = utility witch value v_i playing $s_i(z)$.
- calculate $u_i(v_i, v_i) = v_i x_i(v_i) p_i(v_i)$
 - plot $v_i x_i(v_i)$

• plot $p_i(v_i)$

• subtract to get $u_i(v_i)$

- calculate $u_i(v_i, z) = v_i x_i(z) p_i(z)$
 - plot $v_i x_i(z)$

• plot $p_i(z)$

• subtract to get $u_i(v_i, z)$

• agent loss is: $u_i(v_i, v_i) - u_i(v_i, z)$

QED

Proof: (BNE \Rightarrow char)

Monotonicity:

- Recall: $u_i(v_i, z) = v_i x_i(z) p_i(z)$
- BNE $\Rightarrow u_i(v_i, v_i) \ge u_i(v_i, z)$

$$z_2 x_i(z_2) - p_i(z_2) \ge z_2 x_i(z_1) - p_i(z_1)$$

$$z_1 x_i(z_1) - p_i(z_1) \ge z_1 x_i(z_2) - p_i(z_2)$$
add and cancel
$$z_2 x_i(z_2) + z_1 x_i(z_1) \ge z_2 x_i(z_1) + z_1 x_i(z_2)$$

• Regroup:

$$(z_2 - z_1)x_i(z_2) - (z_2 - z_1)x_i(z_1) \ge 0$$
$$(z_2 - z_1)(x_i(z_2) - x_i(z_1)) \ge 0$$

then

$$z_2 - z_1 > 0 \Rightarrow x(z_2) \ge x(z_1)$$

 $\Rightarrow x_i(\cdot)$ is monotone!

Payment identity (Proof 1):

• solve for $\xi = p_i(z_2) - p_i(z_1)$

 $z_2(x_i(z_2)-x_i(z_1)) \ge \xi \ge z_1(x_i(z_2)-x_i(z_1))$ auctions with same BNE outcome have same

- draw picture.
- draw $p_i(\cdot)$ that satisfies bounds.
- plug in $z_2 = v$ and $z_1 = 0$ for identity.

Payment identity (Proof 2):

- Recall: $u_i(v_i, z) = v_i x_i(z) p_i(z)$
- BNE implies $u_i(v_i, z)$ maximized $z = v_i$ \Rightarrow derivative is zero at $z = v_i$.
 - Differentiate with respect to z

$$\frac{d}{dz}u_i(v_i, z) = v_i x_i'(z) - p_i'(z)$$

$$v_i x_i'(v_i) - p_i'(v_i) = 0$$

• holds for all v_i , thus identity:

$$p_i'(z) = zx_i'(z)$$

• integrate both sizes from 0 to v_i

$$\int_0^{v_i} p_i'(z)dz = \int_0^{v_i} z x_i'(z)dz$$
$$p_i(v_i) - p_i(0) = [z x_i(z)]_0^{v_i} - \int_0^{v_i} x_i(z)dz$$

• regroup:

$$p_i(v_i) = v_i x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0).$$

QED

Revenue Equivalence

profit"

Question: what is outcome of second-price auction?

Answer: bidder with highest value.

Question: who wins in BNE of first-price auction?

Answer: bidder with highest value.

Result: second- and first-price have same expected profit.

Welfare Analysis in Equilibrium

"price of anarchy: bound welfare of complex BNE"

Recall: iid, single-item auction

- first-price auction is efficient.
- first-price with monopoly reserve is revenue-optimal.

Question: what about asymmetry: non-iid?

Example: two agents, $v_1 \sim U[0,1], v_2 \sim U[0,2]$

•
$$s_1(v) = \frac{2}{3v}(2 - \sqrt{4 - 3v^2})$$

•
$$s_2(v) = \frac{2}{3v}(\sqrt{4-3v^2}) - 2)$$

Note: highest-valued agent does not always win.

Goal: show that equilibria are still pretty good.

Winner-pays-bid best-response geometry

- bid allocation rule: $\tilde{x}(b)$
 - $= \mathbf{Pr}[\text{win with bid } b].$

- $= \mathbf{Pr}[\text{crit. bid} < b].$
- utility: $u(v, b) = (v b)\tilde{x}(b)$
- expected critial bid: $\hat{B} = \int_0^\infty (1 \tilde{x}(b)) db$.

Welfare Analysis

Lemma (Utility Value Covering): in BNE, $u(v) + \hat{B} \ge \frac{e-1}{e}v$

Proof: (for 1/2)

- BNE $u(v) + \hat{B} \ge u(v, v/2) + \hat{B} \ge v/2$.
- picture:

Def: auction is $\mu \geq 1$ revenue covered if, any bid dists, and feasible alloc \boldsymbol{y} ,

$$\mu \mathbf{E}[\text{Rev}] \ge \sum_i \hat{B}_i y_i$$

Lemma: first-price auction is $\mu = 1$ revenue covered.

Proof: $\sum_{i} \hat{B}_{i} y_{i}$

 $\leq \sum_{i} \mathbf{E}[\text{Rev}] y_i$

 $\leq \mathbf{E}[\text{Rev}] \sum_{i} y_i$

 $\leq \mathbf{E}[Rev]$

Theorem: μ revenue-covered auction, BNE welfare $\geq \frac{e-1}{e\mu}$ optimal welfare.

- \bullet fix \boldsymbol{v}
- value covering

$$\Rightarrow u_i(v_i) + \hat{B}_i \ge \frac{e-1}{e}v_i$$

• for optimal $x_i^{\star}(\boldsymbol{v})$:

$$\Rightarrow u_i(v_i) + \hat{B}_i x_i^{\star}(\boldsymbol{v}) \ge \frac{e-1}{e} v_i x_i^{\star}(\boldsymbol{v})$$

• sum over i & revenue covering

$$\Rightarrow \sum_{i} u_i(v_i) + \mu \mathbf{E}[\text{Rev}] \ge \frac{e-1}{e} \text{OPT}(\boldsymbol{v})$$

ullet expectation over $oldsymbol{v}$

$$\Rightarrow \underbrace{\mathbf{E}[\text{Util}] + \mu \mathbf{E}[\text{Rev}]}_{\mu \text{Welfare}>} \ge \frac{e-1}{e} \text{ OPT}$$

Def: single-minded combinatorial auction

- \bullet *m* items,
- agent i: value v_i for items S_i .
- $x_i = 1$ if i gets all items in S_i .

Example: single-minded CA not revenue covered.

- agent 0: $S_0 = \{1, \dots, m\}, b_0 = 1.$
- agent $i: S_i = \{i\}, b_i = 0.$

$$\Rightarrow \text{Rev} = 1, \hat{B}_i = 1, \sum_i \hat{B}_i = m,$$

Conclusion: revenue covering

- ullet implies auction good
- $\bullet\,$ no dependence on BNE.
- simple to check

Econometric Inference

"for observed bids in mechanism, infer values"

Observation: in equilibrium and limit with **Recall:** in BNE bids from the distribution

- \tilde{x} and \tilde{p} are continuous and observable.
- bidder's first-order condition is satisfied: $\frac{d}{db}[v\tilde{x}(b) - \tilde{p}(b)] = 0$ $\Rightarrow v = \tilde{p}'(b)/\tilde{x}'(b).$

Inference for first-price auction

- $\tilde{p}(b) = b\tilde{x}(b)$
- $\tilde{p}'(b) = b\tilde{x}'(b) + \tilde{x}(b)$
- $\Rightarrow v = b + \tilde{x}(b)/\tilde{x}'(b).$

Example: first-price auction, bids U[0, 1/2].

- $\tilde{x}(b) = 2b; \ \tilde{x}'(b) = 2.$
- v = b + (2b)/(2) = 2b.

Note: with finite data, need estimator for \tilde{x} and \tilde{x}' .

- \tilde{x} is estimated at rate \sqrt{N} .
- \tilde{x}' is estimated at rate $N^{1/3}$. (e.g., by smoothing)

Profit Maximization

"among all auctions, which has highest profit?"

- allocation monotonicity: $x_i(v_i)$ is non-decreasing.
- payment identity: $p_i(v_i) = v_i x_i(v_i) - \int_0^{v_i} x_i(z) dz$

Claim: in BNE
$$\mathbf{E}_{v_i}[p_i(v_i)] = \mathbf{E}_{v_i} \left[\left(v_i - \frac{1 - F(v_i)}{f(v_i)} \right) x_i(v_i) \right]$$

Proof: (sketch)
$$\mathbf{E}_{v_i}[p_i(v_i)] = \int_0^\infty p_i(z)f(z)dz$$

$$= \int_0^\infty zx_i(z)f(z)dz - \int_0^\infty \int_0^z x_i(w)dwdz$$
swap order of integration, simplify

$$= \int_0^\infty \left(z - \frac{1 - F(z)}{f(z)} \right) x_i(z) f(z) dz$$
$$= \mathbf{E}_{v_i} \left[\left(v_i - \frac{1 - F(v_i)}{f(v_i)} \right) x_i(v_i) \right]$$

QED

Def: virtual valuation:
$$\phi(v_i) = v_i - \frac{1 - F(v_i)}{f(v_i)}.$$

Example: for uniform distribution $\phi(v_i) = v_i - \frac{1 - v_i}{1} = 2v_i - 1.$

Def: <u>virtual surplus</u> for allocation \boldsymbol{x} is $\sum_{i} \phi(v_i) x_i$

Note: E[profit] = E[virtual surplus]

Goal: maximize virtual surplus, subject to monotone allocation

Approach:

- relax monotonicity constraint.
- solve.
- check monotonicity constraint.

Idea: to optimize virtual surplus: choose $\boldsymbol{x} = \operatorname{argmax}_{\boldsymbol{x}'} \sum_{i} \phi(v_i) x_i'$.

Question: is this monotone? **Answer:** yes, when virtual values are monotone.

Theorem: for monotone v.v.'s, optimal auction allocates to bidder with highest positive virtual valuation.

Note: winner i has

$$\phi(v_i) > \max(0, \phi(v_j))$$

$$\phi^{-1}(\phi(v_i)) > \phi^{-1}(\max(0, \phi(v_j)))$$

$$v_i > \max(\phi^{-1}(0), v_j)$$

Corollary: for monotone virtual values, optimal auction is second-price with reserve price $\phi^{-1}(0)$

Question: optimal auction for two bidders U[0, 1]?

Answer: second-price with reserve price $\phi^{-1}(0) = 1/2$

(End of Part I)

Part II: Online Learning

Expert Learning

"learn to do as well as best expert in hindsight, payoffs observed"

Model

- \bullet k actions (a.k.a., "experts")
- \bullet T rounds
- payoff $v_i^t \in [0, h]$ (action j, round t)
- in round t:
 - (a) choose an action j^t
 - (b) learn payoffs v_1^t, \ldots, v_k^t
 - (c) obtain payoff $v_{i^t}^t$.

Goal: profit close to best action in hindsight

$$OPT = \max_{j} \sum_{t=1}^{T} v_{j}^{t}$$

Algorithm 0: follow the leader (FTL)

- let $V_j^t = \sum_{r=1}^t v_j^r$.
- \bullet in round t choose

$$j^t = \operatorname{argmax}_i V_i^{t-1}$$

Example: (2 actions)

	1	2	3	4	5	6	
Action 1	1/2	0	1	0	1	0	
Action 2	0	1	0	1	0	1	

- OPT $\approx n/2$
- FTL ≈ 0 .

Lemma: all deterministic expert algorithm are $\Omega(n)$ -approx.

Conclusion: must randomize!

Learning Algorithms

Algorithm 1: exponential weights $(EW_{\epsilon}; a.k.a., Hedge)$

- let $V_j^t = \sum_{r=1}^t v_j^r$.
- in round t choose j^t with probability proportional to $(1+\epsilon)^{V_j^{t-1}/h}$

Theorem: for expert payoffs in [0, h],

$$\mathbf{E}[\mathrm{EW}] \ge (1 - \epsilon) \mathrm{OPT} - \frac{h}{\epsilon} \ln k$$

Corollary: For T steps and payoffs in [0, h],

$$\operatorname{regret}(\mathrm{EW}) \le 2h\sqrt{\frac{\ln k}{T}}$$

Proof of corollary:

- OPT < hT.
- set $\epsilon hT = \frac{h}{\epsilon} \log k$
- $\Rightarrow \epsilon = \sqrt{\frac{1}{T} \ln k}$
- $\Rightarrow \mathbf{E}[EW] \ge OPT 2h\sqrt{T \ln n}$

Algorithm 2: follow the perturbed leader (FTPL)

1. hallucinate:

 $V_j^0 = h \times \#$ heads in a row

2. follow the hallucinating leader.

in round t choose

$$j^t = \operatorname{argmax}_j \{ V_j^0 + V_j^{t-1} \}$$

Theorem: for expert payoffs in [0, h],

$$\mathbf{E}[\text{FTPL}] \ge \text{OPT}/2 - O(h \ln k)$$

be the perturbed leader

Lemma 1:
$$\mathbf{E}[\overline{\mathrm{BTPL}}] \ge \mathrm{OPT} - O(h \ln k)$$

Lemma 2:
$$\mathbf{E}[\text{FTPL}] \geq \mathbf{E}[\text{BTPL}]/2$$
.

Proof: (of Lemma 1)

- H_t = perturbed leader's score at t= $\max_j (V_j^0 + V_j^t)$
- $\bullet \ h_t = H_t H_{t-1}$
- BTPL $_t$ = BTPL's payoff from round t.
- 1. BTPL $\geq H_T H_0$
 - (a) BTPL $_t \ge h_t$
 - best expert after t has score H_t
 - best expert before t has score H_{t-1}
 - $BTPL_t$ = best experts payoff from t

$$\geq h_t$$

(b) BTPL =
$$\sum_t \text{BTPL}_t \ge \sum_t h_t = H_T - T_0$$
.

2. $H_T \geq \text{OPT}$

$$H_T = \max_j (V_i^0) + V_i^T \ge \max_j V_i^T$$

3. $\mathbf{E}[H_0] = \Theta(h \log k)$

 $H_0 = \max \text{ of } k \text{ geometric r.v.s}$

- (a) flip coins in rounds(1 for each expert)
- (b) discard tails expert (about half survive)
- (c) how many rounds until none left?
- $\Rightarrow \Theta(\log k)$ rounds
- $\Rightarrow \Theta(h \log k)$ maximum hallucination.

$$\Rightarrow$$
 E[BTPL] \geq **E**[$H_T - H_0$] \geq OPT $-\Theta(h \log k)$.

QED

Proof: (of lemma 2)

Approach:

- $q_j^t = \mathbf{Pr}[\text{FTPL chooses } j \text{ in round } t]$
- $p_j^t = \mathbf{Pr}[\text{BTPL chooses } j \text{ in round } t]$
- show $q_i^t \ge \frac{1}{2} p_i^t$
- apply linearity of expectation:

$$\begin{aligned} \text{BTPL} &= \sum_{jt} p_j^t v_j^t; \\ \text{FTPL} &= \sum_{jt} q_j^t v_j^t \end{aligned}$$

Analysis of coupled process

- (a) start with raw scores including round t: V_1^t, \dots, V_k^t
- (b) add geometric noise as:
 - (iv) pick expert j with lowest score
 - (v) flip coin: heads: add h to j's score. tails: discard expert j.
 - (vi) repeat until one expert j^* left
- (c) flip j^* 's coin.

heads: best score $\geq h+$ second best score.

- \Rightarrow BTPL and FTPL pick j^* .
- \Rightarrow same probability of picking j^*

Pr[FTPL chooses j in round $t \mid j^* \land \text{head}_{\mathbf{q}|\mathbf{k}}$

=

 $\mathbf{Pr}[\text{BTPL chooses } j \text{ in round } t \mid j^* \land \text{ heads}] \mathbf{v}$

tails: **Pr**[FTPL picks j^* in round $t \mid j^* \land \text{ tails}] \ge 0$.

 $\mathbf{Pr}[\text{FTPL picks } j \text{ in round } t \mid j^* \land \text{ tails}] \geq 0$

$$\Rightarrow q_j^t \ge p_j^t/2$$

$$\Rightarrow$$
 FTPL \geq BTPL $/2$.

From External to Internal Regret

"reduce internal regret to external regret"

Def:

- alg chooses q^1, \dots, q^T $q_i^t = \mathbf{Pr}[\text{alg picks } j \text{ in round } t]$
- external regret:

$$\sum_{t} \boldsymbol{q}^{t} \cdot \boldsymbol{v}^{t} \geq \sum_{t} v_{j}^{t} - R$$

• internal regret: for deviation $f:[k] \to [k]$

$$\sum_{t} \mathbf{q}^{t} \cdot \mathbf{v}^{t} \geq \sum_{t} \sum_{j} q_{j}^{t} v_{f(j)}^{t} - R$$

Idea:

- use external regret alg for each action.
- mix over external regret algs so as: $\mathbf{Pr}[\text{pick alg } j] = \mathbf{Pr}[\text{pick expert } j]$

Linear Algebra Review

Fact 1: any $n \times n$ square matrix Q has eigenvectors $\mathbf{q}_1, \dots, \mathbf{q}_n$ with eigenvalues $\lambda_1, \dots, \lambda_n$

$$Q\boldsymbol{q}_j = \lambda_j \boldsymbol{q}_j.$$

Def: a stochastic matrix Q has rows (or columns) summing to 1.

Fact 2: a stochastic matrix Q has principle eigenvector \boldsymbol{q} with eigenvalue 1, i.e,

$$Q\mathbf{q} = \mathbf{q}$$
.

Def: principle eigenvector of stochastic transition matrix is fixed point.

Algorithm: External to Internal Regret Reduction

- 1. instantiate k external regret algorithms (A_1, \ldots, A_k)
- 2. in round t, algs recommend $Q^t = [\boldsymbol{q}_1^t, \dots, \boldsymbol{q}_2^t]$ (transposed)
- 3. let \mathbf{p}^t be fixed point for Q^t i.e., $Q^t \mathbf{p}^t = \mathbf{p}^t$.
- 4. choose expert with prob. from p.

(same as choosing algorithm j with prob p_j and then choosing expert with prob. from \boldsymbol{q}_j)

5. each alg j's payoff is $p_j^t v^t$.

Theorem: If algs have external regret at most R, then reduction has internal regret at most kR, i.e., for all $f:[k] \to [k]$,

$$\sum_{t} \boldsymbol{p}^{t} \cdot \boldsymbol{v}^{t} \ge \sum_{t} \sum_{j} p_{j}^{t} \cdot v_{f(j)}^{t} - kR.$$

Proof:

• for any j, j', A_i satisfies:

$$\sum_{t} p_j^t(\boldsymbol{q}_j^t \cdot \boldsymbol{v}^t) \ge \sum_{t} p_j^t v_{j'}^t - R$$

(because A_j has external regret $\leq R$)

• consider sum over j of LHS:

$$\begin{split} \sum_{t} \sum_{j} p_{j}^{t}(\boldsymbol{q}_{j}^{t} \cdot \boldsymbol{v}^{t}) \\ &= \sum_{t} (\boldsymbol{p}^{t} \cdot Q^{t}) \cdot \boldsymbol{v}^{t} \\ &= \sum_{t} \boldsymbol{p}^{t} \cdot \boldsymbol{v}^{t} \end{split}$$

• sum both sides over j letting j' = f(j):

$$\sum_t \boldsymbol{p}^t \cdot \boldsymbol{v}^t \geq \sum_t \sum_j p_j^t \cdot v_{f(j)}^t - kR.$$
 QED

Corollary: exists an algorithm H with average internal regret for all $f:[k] \to [k]$,

$$\operatorname{regret}(H, f) \le 2kh\sqrt{\frac{\ln k}{T}}.$$

From Full to Partial Information

"partial information: only learn payoff of chosen expert"

a.k.a. the multi-armed bandit problem

$\Rightarrow \tilde{h} \le hk/\epsilon.$

Model

In round t

- ullet choose expert j^t
- learn payoff $v_{i^t}^t$
- goal: approximate OPT = $\max_j \sum_t v_j^t$

Challenge: must tradeoff <u>explore</u> versus <u>exploit</u>.

Approach: reduce full information to partial information

Idea 1: instead of actual payoff, give alg unbiased estimator of payoff.

- ullet if alg suggests $oldsymbol{q}^t$
- and samples $j^t \sim q^t$
- (real payoffs are \boldsymbol{v} , learn v_{i^t})
- report payoff $\tilde{\boldsymbol{v}}^t = (0, \dots, v_{j^t}/q_{j^t}, \dots, 0)$

Note:

- reported payoffs in $[0, \tilde{h}]$ with $\tilde{h} = \max_{j,t} v_j^t/q_j^t$.
- if q_j^t is small, then v_j^t/q_j^t can be very big.

Idea 2: pick a random bandit with some minimal probability ϵ/k .

Algorithm: Partial to Full Info Algorithm

- 1. full info alg recommends q^t
- 2. use $\tilde{q}_j^t = (1 \epsilon)q_j^t + \epsilon/k$ (bandit $j^t \sim \tilde{q}^t$ chosen)
- 3. report to full info alg $\tilde{\boldsymbol{v}}$ as

$$\tilde{v}_j^t = \begin{cases} v_j^t / \tilde{q}_j^t & \text{if } j = j^t \\ 0 & \text{otherwise.} \end{cases}$$

Lemma: For expert learning (EL) alg with regret R(h) for payoffs in [0, h], the multi-armed bandit (MAB) alg satisfies

$$\mathbf{E}[MAB] \ge (1 - \epsilon) \text{ OPT } -R(hk/\epsilon)$$

Theorem: for payoff in [0, h] and MAB-EW satisfies

$$\mathbf{E}[\text{MAB-EW}] \ge (1 - 2\epsilon) \text{ OPT } -\frac{kh}{\epsilon^2} \ln k$$

Proof: combine lemma + EW regret bound

Corollary: for payoff in [0, h] and MAB-EW total regret satisfies

$$\operatorname{regret}(MAB-EW) \ge 3h[(kT^2 \log k)]^{1/3}.$$

Proof: similar to before.

Proof of Lemma

1. what does EL guarantee?

for any
$$\tilde{\pmb{v}}^1,\dots,\tilde{\pmb{v}}^T,$$
 and $j^\star=\max_j\sum_t v_j^t$

$$\begin{aligned} \mathrm{EL} &= \sum_{t} \boldsymbol{q}^{t} \cdot \tilde{\boldsymbol{v}}^{t} \geq \sum_{t} \tilde{v}_{j\star}^{t} - R. \\ \mathbf{E}[\mathrm{EL}] &= \sum_{t} \mathbf{E} \left[\boldsymbol{q}^{t} \cdot \tilde{\boldsymbol{v}}^{t} \right] \geq \sum_{t} \mathbf{E} \left[\tilde{v}_{j\star}^{t} \right] - R. \\ &= &= \\ \sum_{t} \mathbf{E} \left[\boldsymbol{q}^{t} \cdot \boldsymbol{v}^{t} \right] \geq \sum_{t} v_{j\star}^{t} - R = \mathrm{OPT} - R \end{aligned}$$

For left-hand side equality:

$$egin{aligned} \mathbf{E}ig[oldsymbol{q}^t\cdot ilde{oldsymbol{v}}^tig] &= \int_{oldsymbol{q}^t}\mathbf{E}ig[oldsymbol{q}^t\cdot ilde{oldsymbol{v}}^t\ |\ oldsymbol{q}^tig]\mathbf{Pr}ig[oldsymbol{q}^tig] \ &= \mathbf{E}ig[oldsymbol{q}^t\cdotoldsymbol{v}^t\ |\ oldsymbol{q}^tig]\,. \end{aligned}$$

2. what is MAB's performance?

$$\begin{aligned} \text{MAB} &= \sum_{t} \tilde{\boldsymbol{q}}^{t} \cdot \boldsymbol{v}^{t} \\ &= \sum_{t} (1 - \epsilon) \boldsymbol{q}^{t} \cdot \boldsymbol{v}^{t} + \frac{\epsilon}{k} \sum_{j} v_{j}^{t} \\ &\geq (1 - \epsilon) \sum_{t} \boldsymbol{q}^{t} \cdot \boldsymbol{v}^{t} \end{aligned}$$

3. combine:

$$\mathbf{E}[MAB] \ge (1 - \epsilon) OPT - R$$

Comment: reduction from partial-information and internal-regret to full-information external regret made possible by worst-case expert learning algorithm!

(End of Part II)

Part III: Markets and Learning Equilibria Learning

Online Pricing

"optimize a posted price to online buyers"

Model

- \bullet *n* agents arrive in sequence.
- in round i:
 - post price \hat{v}_i to agent i
 - agent i has value $v_i \in [1, h]$, buys if $v_i \ge \hat{v}_i$

Goal: optimize revenue: $\sum_{i:v_i > \hat{v}_i} \hat{v}_i$

Reduction to Multi-armed Bandit

Recall: k bandits, T rounds, payoffs in [0, h]: MAB $\geq (1 - 2\epsilon) \text{ OPT } -\frac{kh}{\epsilon^2} \ln k$.

- discretize prices: $\{(1+\epsilon)^k : k \in \{0,\dots,\lceil \log_{1+\epsilon} h \rceil\}\}$
- plug in bound: $MAB \ge (1 - 3\epsilon) OPT + \frac{h}{\epsilon^3} \ln h \ln \ln h$

Note: can improve using non-uniform MAB analysis

- payoff from posting price \hat{v} is \hat{v} or 0.
- explore price \hat{v} with probability proportional to \hat{v}

Note: can learn optimal reserve in multiagent auction similarly.

"what happens when agents play learning algorithms"

Example: first-price auction

In round t:

- if you (agent 1) bid b_1
- win if $b_1 \ge \hat{b}_1 = \max_{i \ne 1} b_i$
- payoff if win: $v_1 b_1$.

Reduction to online pricing

- optimize shaded amount: $v_1 b_1$ (cf. price to post).
- win if shaded amount $\leq v_1 \hat{b}_1$. (cf. buyer's value)
- payoff is shaded amount if win. (cf. price if buyer buys)

Correlated equilibrium

"story: a mediator chooses strategies, makes suggestion, do agents want to follow suggestion?"

Def: Actions $\boldsymbol{b} \sim \boldsymbol{G}$ (correlated) is CE if: $\mathbf{E}_{\boldsymbol{b} \sim \boldsymbol{G}}[u_i(\boldsymbol{b}) \mid b_i] \geq \mathbf{E}_{\boldsymbol{b} \sim \boldsymbol{G}}[u_i(b_i^*, \boldsymbol{b}_{-i}) \mid b_i]$

Note: CE are convex, i.e., $G = \alpha G' + (1 - \alpha)G''$

Coarse correlated equilibrium

"story: if players don't get to see recommendation, only get to choose to accept or play another action"

Def: Actions $\boldsymbol{b} \sim \boldsymbol{G}$ (correlated) is CCE if: $\mathbf{E}_{\boldsymbol{b} \sim \boldsymbol{G}}[u_i(\boldsymbol{b})] \geq \mathbf{E}_{\boldsymbol{b} \sim \boldsymbol{G}}[u_i(b_i^*, \boldsymbol{b}_{-i})]$

Fact: set of $CE \subseteq set$ of CCE.

Theorem: No regret dynamics converges to coarse correlated equilibrium.

"sequence
$$(\boldsymbol{b}^1, \dots, \boldsymbol{b}^T)$$
 is no regret"
 \iff
" $\boldsymbol{b} \sim \boldsymbol{G} = U\{\boldsymbol{b}^1, \dots, \boldsymbol{b}^T\}$ is CCE"

Theorem: No internal regret dynamics converges to correlated equilibrium.

"sequence
$$(\boldsymbol{b}^1,\dots,\boldsymbol{b}^T)$$
 is no internal regret" \iff
" $\boldsymbol{b} \sim \boldsymbol{G} = U\{\boldsymbol{b}^1,\dots,\boldsymbol{b}^T\}$ is CE"

Inference for Learning Agents

"infer fundamentals from bids of learning agents"

Recall: from BNE bid distribution can infer value of bidder from bid.

Goal: generalize to learning agents

Given bid profiles $\mathcal{B} = (\boldsymbol{b}^1, \dots, \boldsymbol{b}^T)$, infer rationalizable sets \boldsymbol{R} as

 $R_i = \{(\epsilon_i, v_i) : \mathcal{B} \text{ is } \epsilon_i \text{ regret for } i \text{ with value } v_i\}$ Construction:

• ϵ_i regret \Rightarrow for all z:

$$\sum_{t} u_i(\boldsymbol{b}^t) \ge \sum_{t} u_i(\boldsymbol{b}_{-i}^t, z) - \epsilon_i$$

- recall: $u_i(\mathbf{b}) = v_i \tilde{x}_i(\mathbf{b}) \tilde{p}_i(\mathbf{b})$
- swapping to bid z:

•
$$\Delta \tilde{x}_i(z) = \sum_t \left[\tilde{x}_i(\boldsymbol{b}_{-i}^t, z) - \tilde{x}_i(\boldsymbol{b}^t) \right]$$

•
$$\Delta \tilde{p}_i(z) = \sum_t \left[\tilde{p}_i(\boldsymbol{b}_{-i}^t, z) - \tilde{p}_i(\boldsymbol{b}^t) \right]$$

• ϵ_i regret \Rightarrow for all z:

$$v_i \Delta \tilde{x}(z) - \Delta \tilde{p}_i(z) \le \epsilon_i$$

• each z gives a linear constraint on $(\epsilon_i, v_i) \in R_i$.

Note: The region defined is convex

Welfare Analysis of Learning Agents

"bound price of anarchy for learning agents"

Def: price of anarchy: optimal welfare / welfare under learning.

Recall: $\hat{B} = \mathbf{E}[\hat{v}] = \text{expected critical value.}$

Recall: in BNE, $u(v) + \hat{B} \ge \frac{e-1}{e}v$

Lemma: in CCE, same holds.

Proof: exercise. (same argument)

Recall: auction is $\mu \geq 1$ revenue covered if, any bid dists, and feasible alloc \boldsymbol{y} ,

$$\mu \mathbf{E}[\text{Rev}] \geq \sum_{i} \hat{B}_{i} y_{i}$$

Recall: μ revenue-covered auction, BNE welfare $\geq \frac{e-1}{e\mu}$ optimal welfare.

Theorem: same holds for CCE.

Proof: exercise. (same argument)

Welfare Analysis from Data

"can improve welfare analysis with data"

Note: μ is observed in bid data.

(End of Part III)