Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework *or* code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

- **1** (Murphy 12.5 Deriving the Residual Error for PCA) It may be helpful to reference section 12.2.2 of Murphy.
- (a) Prove that

$$\left\|\mathbf{x}_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j\right\|^2 = \mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \mathbf{v}_j^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{v}_j.$$

Hint: first consider the case when k = 2. Use the fact that  $\mathbf{v}_i^{\top} \mathbf{v}_j$  is 1 if i = j and 0 otherwise. Recall that  $z_{ij} = \mathbf{x}_i^{\top} \mathbf{v}_j$ .

(b) Now show that

$$J_k = \frac{1}{n} \sum_{i=1}^n \left( \mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \mathbf{v}_j^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{v}_j \right) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \lambda_j.$$

Hint: recall that  $\mathbf{v}_{j}^{\top} \mathbf{\Sigma} \mathbf{v}_{j} = \lambda_{j} \mathbf{v}_{j}^{\top} \mathbf{v}_{j} = \lambda_{j}$ .

(c) If k = d there is no truncation, so  $J_d = 0$ . Use this to show that the error from only using k < d terms is given by

$$J_k = \sum_{j=k+1}^d \lambda_j.$$

Hint: partition the sum  $\sum_{j=1}^{d} \lambda_j$  into  $\sum_{j=1}^{k} \lambda_j$  and  $\sum_{j=k+1}^{d} \lambda_j$ .

(a) Consider that  $||\vec{v}||^2 = \vec{v}^\top \vec{v}$ , we can apply the same premise here;

$$\begin{aligned} \left\| \mathbf{x}_{i} - \sum_{j=1}^{k} z_{ij} \mathbf{v}_{j} \right\|^{2} &= \left[ \mathbf{x}_{i} - \sum_{j=1}^{k} z_{ij} \mathbf{v}_{j} \right]^{\top} \left[ \mathbf{x}_{i} - \sum_{j=1}^{k} z_{ij} \mathbf{v}_{j} \right] \\ &= \mathbf{x}_{i}^{\top} \mathbf{x}_{i} - 2 \sum_{j=1}^{k} z_{ij} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} + \sum_{j=1}^{k} (z_{ij} \mathbf{v}_{j})^{\top} z_{ij} \mathbf{v}_{j} \\ &= \mathbf{x}_{i}^{\top} \mathbf{x}_{i} - 2 \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j} + \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j} \\ &= \left[ \mathbf{x}_{i}^{\top} \mathbf{x}_{i} - \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j} \right] \end{aligned}$$

(b) Lets begin a key statement that will prove useful,  $\sum x_i x_i^T = \Sigma$ , we know that the reconstruction error is;

$$J_{k} = \frac{1}{n} \sum_{i=1}^{n} \left( \mathbf{x}_{i}^{\top} \mathbf{x}_{i} - \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j} \right)$$

$$= \frac{1}{n} \left( \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} - \sum_{i=1}^{n} \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j} \right)$$

$$= \frac{1}{n} \left( \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} \right) \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \frac{1}{n} \left( \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \right) \mathbf{v}_{j}$$

$$= \frac{1}{n} \left( \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} \right) - \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{\Sigma} \mathbf{v}_{j}$$

$$= \frac{1}{n} \left( \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} \right) - \sum_{j=1}^{k} \lambda_{j}$$

(c) We saw in part b that

$$J_d = \sum_{j=1}^d \lambda_j = \frac{1}{n} \left( \sum_{i=1}^n \mathbf{x}_i^\top \mathbf{x}_i \right) - \sum_{j=1}^d \lambda_j$$

We want to find out how much error is introduced for a specific value,  $J_k$ . Th expression for this, after partitioning the sum as suggested, in terms of d will be,

$$J_k = \sum_{j=k+1}^d \lambda_j + \frac{1}{n} \left( \sum_{i=1}^n \mathbf{x}_i^\top \mathbf{x}_i \right) - \sum_{j=1}^d \lambda_j$$

This is simply  $J_k = \sum_{j=k+1}^d \lambda_j$  because  $J_d = 0$ 

## **2** ( $\ell_1$ -Regularization) Consider the $\ell_1$ norm of a vector $\mathbf{x} \in \mathbb{R}^n$ :

$$\|\mathbf{x}\|_1 = \sum_i |\mathbf{x}_i|.$$

Draw the norm-ball  $B_k = \{\mathbf{x} : \|\mathbf{x}\|_1 \le k\}$  for k = 1. On the same graph, draw the Euclidean norm-ball  $A_k = \{\mathbf{x} : \|\mathbf{x}\|_2 \le k\}$  for k = 1 behind the first plot. (Do not need to write any code, draw the graph by hand).

Show that the optimization problem

minimize:  $f(\mathbf{x})$  subj. to:  $\|\mathbf{x}\|_p \le k$ 

is equivalent to

minimize:  $f(\mathbf{x}) + \lambda ||\mathbf{x}||_p$ 

(hint: create the Lagrangian). With this knowledge, and the plots given above, argue why using  $\ell_1$  regularization (adding a  $\lambda \|\mathbf{x}\|_1$  term to the objective) will give sparser solutions than using  $\ell_2$  regularization for suitably large  $\lambda$ .

## (a) The desired norm balls



(b) The Lagrange multiplier is defined as  $\mathcal{L}(f(x),g(x))=f(x)-\lambda g(x)$  Where g(x) is

our constraint, as such we see that for this problem;

$$\mathcal{L}(f(x), g(x)) = f(x) + \lambda(\|\mathbf{x}\|_p - k)$$

We know that minimizing the Lagrangian is equivalent to minimizing the function f(x) subject to the constraint and that  $\lambda k$  is not dependent at all upon x, so we can throw this term away;

minimize 
$$\mathcal{L}(f(x), g(x)) = \text{minimize } f(x) + \lambda(\|\mathbf{x}\|_p)$$

Since we have constructed this from a function and constraint given, we can say that the two statements above are equivalent.

(c) We saw in class that an advantage of the  $\ell_1$  norm is it preference for zeros, and we can think of an optimal solution has residing on a vertex of the norm ball. The  $\ell_1$  norm will have sparser solutions than the  $\ell_2$  norm because it has fewer vertexes, and thus fewer optimal solutions.

.

**Extra Credit** (Lasso) Show that placing an equal zero-mean Laplace prior on each element of the weights  $\theta$  of a model is equivelent to  $\ell_1$  regularization in the Maximum-a-Posteriori estimate

$$\text{maximize: } \mathbb{P}(\boldsymbol{\theta}|\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D}|\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})}.$$

Note the form of the Laplace distribution is

$$Lap(x|\mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)$$

where  $\mu$  is the location parameter and b>0 controls the variance. Draw (by hand) and compare the density Lap(x|0,1) and the standard normal  $\mathcal{N}(x|0,1)$  and suggest why this would lead to sparser solutions than a Gaussian prior on each elements of the weights (which correspond to  $\ell_2$  regularization).