

PhraseMap: Attention-based Keyphrases Recommendation for Information Seeking

Han-Wei Shen^[1]

Phrases in Scientific Papers

We propose InSituNet, a

deep learning based

surrogate model to support

parameter space exploration

for ensemble simulations

that are visualized in situ.

Phrases capture concise and precise information compared to sentence-level and word-level information.

Phrases recommendation can help users to locate information of interest during information seeking process.

Challenges of Phrase-based Retrieval

- Challenge1: Modeling relationships among phrases.
 - Encode relationships as the distance between the phrase embeddings fail to link phrases that are highly relevant but dissimilar in semantics, e.g., volume rendering & transfer function.
- Challenge2: Human-in-the-loop retrieval is crucial but challenging.
 - The information of corpus can be large and complex.
- **Goal**: An intuitive visualization interface with an intelligent phrase-recommending system that can communicate with users.

Approach Overview

Self-Attention Mechanism

Self-Attention Mechanism

Self-Attention Mechanism

What is PhraseMap?

We propose InSituNet, a

deep learning based

surrogate model to support

parameter space exploration

for ensemble simulations

that are visualized in situ.

One document

Corresponding PhraseMap

Attention Tuning

Fine-tuned on domain datasets to capture the relationships of domain-specific words better.

Attention Tuning

Fine-tuned on domain datasets to capture the relationships of domain-specific words better.

Attention Extraction

For each document, average over the attention heads in the last layer to obtain the token relationships

Attention Tuning

Fine-tuned on domain datasets to capture the relationships of domain-specific words better.

Attention Extraction

For each document, average over the attention heads in the last layer to obtain the token relationships

Attention Refinement

Rule-based method for phrase extraction, and aggregate attentions into phrase-level based on it.

Attention Tuning

Fine-tuned on domain datasets to capture the relationships of domain-specific words better.

Attention Extraction

For each document, average over the attention heads in the last layer to obtain the token relationships

Attention Refinement

Rule-based method for phrase extraction, and aggregate attentions into phrase-level based on it.

Attention Tuning

Fine-tuned on domain datasets to capture the relationships of domain-specific words better.

Attention Extraction

For each document, average over the attention heads in the last layer to obtain the token relationships

Attention Refinement

Rule-based method for phrase extraction, and aggregate attentions into phrase-level based on it.

Attention Aggregation

We merge the graphs of all documents in a corpus to create the PhraseMap in an iterative manner.

PhraseMap Navigation Algorithm

How to enable efficient query over the PhraseMap?

Key: Relevance score of each phrase to users' interests.

PhraseMap Navigation Algorithm

How to enable efficient query over the PhraseMap?

Key: Relevance score of each phrase to users' interests.

Initialized by BERT-QA

PhraseMap Navigation Algorithm

How to enable efficient query over the PhraseMap?

Key: Relevance score of each phrase to users' interests.

Initialized by BERT-QA +Updated by Attention Score

PhraseMap Visualization

- Requirements of mapping PhraseMap to 2D grids :
 - 1. Phrases with similar semantics should be assigned to neighboring grids.
 - 2. One-to-one mapping to avoid visual clutter.
- Method: Resource-controlled Self-Organizing Map (RC-SOM)

Default Coloring

Color based on users' interests.

• We propose a *visual analytics framework* to enable interactive information seeking over the PhraseMap.

• We propose a *visual analytics framework* to enable interactive information seeking over the PhraseMap.

Query

• We propose a *visual analytics framework* to enable interactive information seeking over the PhraseMap.

Query

Recommend

• We propose a *visual analytics framework* to enable interactive information seeking over the PhraseMap.

Query

Recommend

Explore

• We propose a *visual analytics framework* to enable interactive information seeking over the PhraseMap.

Query

Recommend

Explore

• We propose a *visual analytics framework* to enable interactive information seeking over the PhraseMap.

Query

Recommend

Explore

Case Study

Evaluation

- Usage Scenarios:
 - Information Seeking in the Visualization Field
 - Cross-domain Analysis of ML Literature
 - Interactive Retrieval of COVID-19 papers
- Comparison Analysis:
 - Contextual Attention vs. Semantic Similarity
 - Evaluation of Resource Controlled-SOM
 - T-SNE & RC-SOM
 - RC-SOM & SOM

Thank You!

Yamei Tu

Email: tu.253@osu.edu

