Algorithm: VF TwoStep Self-Training 过程

Algorithm 1 VF_TwoStep Self-Training 过程

Require: • $\mathcal{D}_L = \{(\mathbf{x}_i^A, \mathbf{x}_i^B, y_i)\}_{i=1}^n$ (已标注数据)

- $\mathcal{D}_U = \{(\mathbf{x}_i^A, \mathbf{x}_i^B)\}_{i=1}^m$ (未标注数据)
- f_{clf}, f_{reg} (分类器与回归器)
- $k \in (0,1]$ (每轮选取的比例)
- min confidence ≥ 0
- convergence threshold > 0
- max iter $\in \mathbb{N}^+$

Ensure: 未标注数据在最终模型上的预测结果

- 1: 根据 \mathbf{y}_L 判断任务类型: 分类或回归
- 2: if 分类 then
- 3: 初始化分类器 fclf 并训练
- 4: else
- 5: 初始化回归器 freg 并训练
- 6: end if
- 7: epoch $\leftarrow 1$
- 8: **while** epoch \leq max_iter **do**
- 9: 对 \mathcal{D}_U 执行预测并估计置信度 $\{\alpha_j\}_{j=1}^m$
- 10: 从 \mathcal{D}_U 中选取置信度最高的前 k% 或 $\alpha_i \geq \min$ confidence
- 11: **if** 选中样本数 < convergence threshold **then**
- 12: **break**
- 13: **end if**
- 14: 将选中样本 S 的伪标签加入 \mathcal{D}_L , 从 \mathcal{D}_U 中移除
- 15: 利用更新后的 \mathcal{D}_L 重新训练相应模型
- 16: $epoch \leftarrow epoch + 1$
- 17: end while
- 18: 对剩余的未标注数据执行最终预测,得到最终预测结果
- 19: **return** $\{\hat{y}_j\}_{j=1}^m$