AKAD Bachelor of Science (Wirtschaftsinformatik) Modulzusammenfassung

WIM04

Formelsammlung

Daniel Falkner Rotbach 529 94078 Freyung daniel.falkner@akad.de 1. März 2013

Inhaltsverzeichnis

1	Folg	en	4
	1.1	arithmetische Folgen	4
		1.1.1 Bildungsgesetz	4
		1.1.2 Grenzwerte	4
	1.2	geometrische Folgen	4
		1.2.1 Bildungsgesetz	4
		1.2.2 Grenzwerte	4
2	Reił	en	5
	2.1	arithmetische Reihen	5
		2.1.1 Bildungsgesetz	5
		2.1.2 Grenzwerte	5
	2.2	geometrische Reihen	5
		2.2.1 Bildungsgesetz	5
		2.2.2 Grenzwerte	5
3	Voll	ständige Induktion	6
4	Det	erminanten	7
•	4.1	Regel von Sarrus	7
	1.1	4.1.1 Für 2 x 2	7
		4.1.2 Für 3 x 3	7
	4.2	CRAMER'sche Regel	8
5	Mat	rizen	9
,	5.1	Transponierte Matrix	9
	5.2	Addition	9
	0.2	5.2.1 vom selben Typ	9
	5.3	Multiplikation	9
	0.0	5.3.1 mit einer reellen Zahl (Skalar)	9
		5.3.2 zweier Matrizen	9
		5.3.3 spezielle Matrixprodukte	9
	5.4	Inverse	9
			10
		9	10
6	Aus	sagenlogik 1	l 1
	6.1		11
		1 0	11
			11
			11
			11
		,	12
		- /- /- /- /- /- /- /- /- /- /- /- /- /-	12
	6.2		12

	6.3	Norma	alformen	12
		6.3.1	Minterme	12
		6.3.2	Maxterme	13
		6.3.3	Kanonische disjunktive Normalform	13
		6.3.4	Kanonische konjunktive Normalform	13
7	Sch	altalge	bra	14
	7.1	Gesetz	ze	14
	7.2	Norma	alformen	14
		7.2.1	Minterme	14
		7.2.2	Maxterme	14
		7.2.3	Kanonische disjunktive Normalform	14
		7.2.4	Kanonische konjunktive Normalform	14
	7.3	Logik	gatter	16
		7.3.1	UND	16
		7.3.2	ODER	16
		7.3.3	NICHT	16

1 Folgen

Eine Serie von Zahlen oder Größen

$$(a_n) = a_1, a_2, a_3, ..., a_n$$

1.1 arithmetische Folgen

- $\bullet \ a_{n+1} = a_n + d$
- 7, 11, 15, 19, 23, 27, ...
- $\bullet \mapsto d = 4$

1.1.1 Bildungsgesetz

$$a_n = a_1 + d * (n-1)$$

1.1.2 Grenzwerte

Eine arithmetische Folge divergiert immer (wird beliebig groß), wenn $d \neq 0$

1.2 geometrische Folgen

- $an + 1 = a_n * q$
- 2, 6, 18, 54, 162, 486, ...
- $\bullet \mapsto q = 3$

1.2.1 Bildungsgesetz

$$a_n = a_1 * q^{n-1} \Leftrightarrow q = \sqrt[n-1]{\frac{a_n}{a_1}}$$

1.2.2 Grenzwerte

Das Verhalten einer geometrischen Folge $n \mapsto a_n$ für wachsendes n hängt vom Quotienten q ab

- Falls |q| < 1, streben die Flieder a_n der Folge gegen 0. Grenzwert 0 (konvergiert gegen 0)
- Falls |q| > 1, werden für $a_1 \neq 0$ die $|a_n|$ beliebig groß, die Folge divergiert

2 Reihen

Aus einer Folge ergibt sich eine Reihe

$$(s_n) = s_1, s_2, s_3, ..., s_n$$

$$(s_n) = a_1 + a_2 + a_3 + \dots + a_n = \sum_{j=1}^n a_j$$

2.1 arithmetische Reihen

- $(a_n) = 7, 11, 15, 19, ... \mapsto a_1 = 7, d = 4$
- $(s_n) = 7, 18, 33, 52, \dots$

2.1.1 Bildungsgesetz

$$s_n = \frac{n}{2} * (a_1 + a_n) = \frac{n}{2} * (2a_1 + (n-1)d)$$

2.1.2 Grenzwerte

Eine notwendige, aber nicht hinreichende Bedingung für die Konvergenz einer unendlichen Reihe (s_n) ist $\lim_{n\to\infty} a_n = 0$. Die Folge (a_n) muss also eine so genannte Nullfolge sein.

2.2 geometrische Reihen

- $(a_n) = 2, 6, 18, 54, \dots \mapsto a_1 = 2, q = 3$
- $(s_n) = 2, 8, 26, 80, \dots$

2.2.1 Bildungsgesetz

$$s_n = a_1 * \frac{q^n - 1}{q - 1}, q \neq 1$$

2.2.2 Grenzwerte

Eine unendliche geometrische Reihe (s_n) mit $s_n = \sum_{k=1}^n a_1 q^{k-1}$ konvergiert genau gegen den Grenzwert $S = \frac{a_1}{1-q}$ wenn |q| < 1 ist.

3 Vollständige Induktion

Am Beispiel $2 + 4 + 6...2 * n = n + n^2$

1. Zeigen das die Formel
n für $\mathbf{n}=1$ gelten

•
$$s_1 = 2 * n = 2 * 1 = 2$$

•
$$s_1 = n + n^2 = 1 + 1^2 = 2$$

- 2. Zeigen das die Formeln für n+1 gelten
 - a) Induktionsannahme (zu beweisende Formel) festhalten

$$\bullet \ s_n = n + n^2$$

b) Die zubeweisende Formel für n+1 herleiten

•
$$s_{n+1} = (n+1) + (n+1)^2 = n^2 + 3n + 2$$

c) Die Induktionsnahme + Ursprungsformel für n+1 herleiten

•
$$s_{n+1} = n + n^2 + 2(n+1) = n^2 + 3n + 2$$

4 Determinanten

4.1 Regel von Sarrus

4.1.1 Für 2 x 2

$$\det(A) = \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - cb.$$

4.1.2 Für 3 x 3

$$\det(A) = \det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - ceg - afh - bdi$$

4.2 CRAMER'sche Regel

Satz: (Cramersche Regel)

LGS mit zwei Variablen und zwei Gleichungen

Ist die Determinante D der Koeffizientenmatrix des LGS

$$a_1x + b_1y = c_1$$
 ungleich Null, so hat das LGS genau eine Lösung $a_2x + b_2y = c_2$

$$(x \mid y) = \left(\frac{D_x}{D} \mid \frac{D_y}{D}\right) \text{ mit}$$

$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}, D_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}, D_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$$

Ist D = 0, so hat das LGS keine oder unendlich viele Lösung(en).

LGS mit drei Variablen und drei Gleichungen

Ist die Determinante D der Koeffizientenmatrix des LGS

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$ ungleich Null, so hat das LGS genau eine Lösung

$$a_3x + b_3y + c_3z = d_3$$

$$(x | y | z) = \left(\frac{D_x}{D} \left| \frac{D_y}{D} \right| \frac{D_z}{D} \right) \text{mit}$$

$$\mathbf{D} = \left| \begin{array}{c} \mathbf{a}_1 \ \mathbf{b}_1 \ \mathbf{c}_1 \\ \mathbf{a}_2 \ \mathbf{b}_2 \ \mathbf{c}_2 \\ \mathbf{a}_3 \ \mathbf{b}_3 \ \mathbf{c}_3 \end{array} \right|, \ \mathbf{D}_{\mathbf{x}} = \left| \begin{array}{c} \mathbf{d}_1 \ \mathbf{b}_1 \ \mathbf{c}_1 \\ \mathbf{d}_2 \ \mathbf{b}_2 \ \mathbf{c}_2 \\ \mathbf{d}_3 \ \mathbf{d}_3 \ \mathbf{c}_3 \end{array} \right|, \ \mathbf{D}_{\mathbf{y}} = \left| \begin{array}{c} \mathbf{a}_1 \ \mathbf{d}_1 \ \mathbf{c}_1 \\ \mathbf{a}_2 \ \mathbf{d}_2 \ \mathbf{c}_2 \\ \mathbf{a}_3 \ \mathbf{d}_3 \ \mathbf{c}_3 \end{array} \right|, \ \mathbf{D}_{\mathbf{z}} = \left| \begin{array}{c} \mathbf{a}_1 \ \mathbf{b}_1 \ \mathbf{d}_1 \\ \mathbf{a}_2 \ \mathbf{b}_2 \ \mathbf{d}_2 \\ \mathbf{a}_3 \ \mathbf{b}_3 \ \mathbf{d}_3 \end{array} \right|.$$

Ist D = 0, so hat das LGS keine oder unendlich viele Lösung(en).

 D_x (bzw. D_y , D_z) ist die Determinante der Matrix, die aus der Koeffizientenmatrix entsteht, wenn anstelle der Spalte, die die Koeffizienten der Variablen x (bzw. y, z) enthält, die rechte Seite des LGS eingesetzt wird.

Abbildung 1: AKAD WIM01 Mathematische Grundlagen, Lerneinheit 4, Seite 46

5 Matrizen

5.1 Transponierte Matrix

 ${\cal A}^T$ entsteht durch Vertauschen der Zeilen mit den Spalten von ${\cal A}$

Beispiel:

$$A_{(2,3)} = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 4 & -1 \end{bmatrix} A_{(3,2)}^T = \begin{bmatrix} 1 & -2 \\ 2 & 4 \\ 3 & -1 \end{bmatrix}$$

5.2 Addition

5.2.1 vom selben Typ

die gleichstehenden Elemente addieren und zu einer neuen Matrix zusammenfassen

5.3 Multiplikation

5.3.1 mit einer reellen Zahl (Skalar)

alle Elemente der Matrix mit der Zahl multiplizeren

5.3.2 zweier Matrizen

Zwei Matrizen sind multiplikationsverträglich wenn die Spaltenanzahl von A mit der Zeilanzahl von B übereinstimmt. Eine Hilfe bietet das Falk-Schema ¹

5.3.3 spezielle Matrixprodukte

- Zeilenvektor * Spaltenvektor = Skalar
- Spaltenvektor * Zeilenvekor = Matrix

5.4 Inverse

- A vom Typ (n,n) ist regulär, d.h. A^{-1} (Inverse Matrix) existiert. Dann ist die Matrixgleichung A * X = B eindeutig lösbar.
- Eine quadratische Matrix A ist genau dann invertierbar, wenn ihre Determinate |A| ungleich Null ist

¹ http://de.wikipedia.org/wiki/Falksches_Schema

5.4.1 Bestimmung der inversen Matrix

ullet Die Inverse A^{-1} lässt sich mit dem Gauß-Jordan-Verfahren 2 ermitteln

5.4.2 mit Hilfe der Adjunktion

- 1. Determinante bestimmen und prüfen ob A^{-1} existiert
- 2. Unterdeterminaten ³ bestimmen
- 3. Kofaktorenmatrix cof(A) anhand der Unterdeterminanten aufstellen. Bei ungeraden Indizies das Vorzeichen ändern
- 4. adjungierte Matrix aufstellen, indem die Kofaktorerenmatrix transponiert wird. $adj(A) = [cof(A)]^T$
- 5. adjungierte Matrix mit dem Kehrwert der Determinate multiplizieren.

$$\frac{1}{D} * adj(A)$$

² http://de.wikipedia.org/wiki/Gau%DF-Jordan-Algorithmus

³ http://de.wikipedia.org/wiki/Minor_(Mathematik)

6 Aussagenlogik

6.1 Verknüpfungen

6 1 1 Negation

6.1.2 Konjunktion (und)

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline w & w & w \\ w & f & f \\ f & w & f \\ f & f & f \end{array}$$

6.1.3 Disjunktion auch Adjunktion (oder)

Die Verknüpfung durch das ausschließende oder (XOR) heißt Alternative oder Antivalenz

6.1.4 Subjunktion (wenn dann)

$$\begin{array}{cccc} p & q & p \rightarrow q \\ \hline w & w & w \\ w & f & f \\ f & w & w \\ f & f & w \end{array}$$

$$\neg p \lor q \text{ ist gleich mit } p \to q$$

6.1.5 Bijunktion (genau dann, wenn)

$$\begin{array}{c|ccc} p & q & p \leftrightarrow q \\ \hline w & w & w \\ w & f & f \\ f & w & f \\ f & f & w \end{array}$$

$$(p \to q) \land (q \to p)$$
 ist gleich mit $p \leftrightarrow q$
 $(p \land q) \lor (\neg p \land \neg q)$ ist gleich mit $p \leftrightarrow q$

6.1.6 Sonderformen

- Ist die Aussage r für alle Belegungen p und q wahr, so heißt r eine **Tautlogie**.
- Ist die Aussage r für alle Belegungen von p und q falsch, so heißt r eine Kontradiktion.
- Ist die Aussage r weder eine Tautologie noch eine Kontradiktion, so heißt r eine Kontingenz oder Neutralität.

6.2 Gesetze

Verknüpfung ∧	Gesetze	Verknüpfung ∨
$p \wedge q \Leftrightarrow q \wedge p$	Kommutativgesetz	$p \lor q \Leftrightarrow q \lor p$
$(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$	Assoziativgesetz	$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$
$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$	Distributivgesetz	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
$p \wedge p \Leftrightarrow p$	Idempotenzgesetz	$p \lor p \Leftrightarrow p$
$p \land (p \lor q) \Leftrightarrow p$	Absorptionsgesetz	$p \lor (p \land q) \Leftrightarrow p$
$p \wedge (w) \Leftrightarrow p$	Neutrales Element	$p \lor (f) \Leftrightarrow p$
$p \wedge (f) \Leftrightarrow (f); p \wedge \neg p \Leftrightarrow (f)$	Kontradiktion	
	Trautologie	$p \lor (w) \Leftrightarrow (w); p \lor \neg p \Leftrightarrow (w)$
$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$	Regeln von de Morgen	

6.3 Normalformen

6.3.1 Minterme

Minterme sind genau diejenigen Konjunktionsterme, die den Wert 'w' nur einmal annehmen und mit dem Junktor ∧ verknüpft sind.

6.3.2 Maxterme

Maxterme sind genau diejenigen Disjunktionsterme, die den Wert 'f' nur einmal annehmen und mit dem Junktor ∨ verknüpft sind.

6.3.3 Kanonische disjunktive Normalform

Ein Disjungat (Junktor \vee) paarweise verschiedener Minterme heißt Kanonische disjunktive Normalform

6.3.4 Kanonische konjunktive Normalform

Ein Konjungat (Junktor \wedge) paarweiter verschiedener Maxterme heißt Kanonische konjunktive Normalform

7 Schaltalgebra

7.1 Gesetze

Verknüpfung +	Gesetze	Verknüpfung *
a+b=b+a	Kommutativgesetz	a * b = b * a
a + (b * c) = (a+b)(a+c)	Distributivgesetz	a * (b + c) = (a * b) + (a * c)
a + 0 = 0 + a = a	Neutrales Element	a * 1 = 1 * a = a
$a + \overline{a} = 1$	Inverses Element	$a*\overline{a}=0$
(a+b)+c=a+(b+c)	Assoziativgesetz	(a*b)*c = a*(b*c)
a + (a * b) = a	Absorptionsgesetz	a * (a + b) = a
a + 1 = 1	Trautologie	
	Kontradiktion	a * 0 = 0
a + a = a	Idempotenzgesetz	a * a = a
$\overline{a+b} = \overline{a} * \overline{b}$	Regeln von de Morgen	$\overline{a*b} = \overline{a} + \overline{b}$

7.2 Normalformen

7.2.1 Minterme

Minterme sind genau diejenigen vollständigen Produkte, die den Leitwert 1 genau dann annehmen, wenn jeder Faktor den Leitwert 1 annimmt.

7.2.2 Maxterme

Maxterme sind genau diejenigen vollständigen Summen, die den Leitwert 0 genau dann annehmen, wenn jeder Summand den Leitwert 0 annimmt.

7.2.3 Kanonische disjunktive Normalform

Die Summe der Minterme ergibt die Schaltfunktion in kanonischer disjunktiver Normalform

a
 b
 c
 f

 1
 1
 1
 0

 1
 1
 0
 1
 ergibt den Minterm
$$a*b*\overline{c}$$

 ...
 ...
 ...

7.2.4 Kanonische konjunktive Normalform

Das Produkt der Maxterme ergibt die Schaltfunktion in kanonischer konjunktiver Normalform

Α	В	С	x	
1	1	1	0	ergibt den Maxterm $\overline{a} + \overline{b} + \overline{c}$
1	1	0	1	

7.3 Logikgatter

7.3.1 UND

Abbildung 2: Wikipedia http://de.wikipedia.org/wiki/Logikgatter

7.3.2 ODER

Abbildung 3: Wikipedia http://de.wikipedia.org/wiki/Logikgatter

7.3.3 NICHT

Abbildung 4: Wikipedia http://de.wikipedia.org/wiki/Logikgatter