上海交通大学试卷(A卷)

课程	概	率 统 i	<u> </u>	_ 学期	月20	011 - 201	2第2号	学期	
班级号			学号			姓名			_
题号	_	=	13~16	17~20	总分		我承行	诺,我将 <i>注</i> 纪律。	严格遵
得分							承诺人:	·	
说明: 试题	中常用分	介备选数	数据附在	试卷最后	.				
一. 单项选择 1. 已知 <i>P(B)</i> :		, .			列各式中2	不正确的是	·•		
(A)	$P(A_1)$	$A_2 \mid B) = 0$	0	; 错	误 !	未 抄	え 到	引用	源。
$(B) P(A_1 \cup A_2)$	$A_2 \mid B) = B$	$P(A_1 \mid B) +$	$-P(A_2 \mid B)$	3);					
(C) $P(\overline{A})$	$\overline{A}_1\overline{A}_2\mid B)=$	=1错误!未	找到引用	源。;		(D) 错误	!未找到引	用源。。	
 设 f₁(x), F₁ 密度函数的 		. 2	分别为两	个相互独立	立的连续型	!随机变量的	杓密度函数	和分布函	数,则必为
	$(x) + f_2(x)$			(<i>B</i>)	$f_1(x)f_2($	(x);			
(<i>C</i>) <i>f</i> ₁ 3. 设随机变量	$(x)F_1(x)$	2 2			$f_1(x)F$	$f_2(x) + f_2(x)$	$(x)F_1(x)$.		
3. 以拠机又重	. A 7H I 7D.				T -	<u> </u>			
		$X \in Y$		-1 0.5	0.3	0.2			
则: P(ma	$ax(X,Y) \ge$	e (0) =	o						
(A) 0.	.75 ;	(<i>B</i>)	0.25 ;		(C) 0.	.5 ;	(<i>D</i>)	0.8 。	
4. 设 <i>X</i> ₁ , <i>X</i> ₂	$,X_{3},X_{4}$	取自总体之	$X \sim N(\mu$	$,\sigma^2)$ 的简	〕 単随机样	本,则统计	·量 <i>Q</i> =	$X_1 - X_2$	2 1
							2	$X_3 + X_4 -$	$\angle\mu$

服从____。

	(A)	N(0,1);	(B)	t(1);	(C) $\chi^2(1)$;	(D)	F(1,1) .
--	-----	---------	-----	-------	---------------------	-----	----------

5. 将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数为。

(A) -1; (B) $-\frac{1}{2}$; (C) 1; (D) $\frac{1}{2}$.

6. 设 X_1, X_2, \cdots, X_n 是取自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 μ 已知。则 σ^2 的置信度为 $1-\alpha$ 的置信区间为____。

(A) $\left(\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n)}, \frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2}}^2(n)}\right);$ (B) $\left(\frac{(n-1)S^2}{\chi_{\frac{\alpha}{3}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\frac{2\alpha}{3}}^2(n-1)}\right);$

(C) $\left(\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)}, \frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}\right);$ (D) $\left(\frac{(n-1)S^{2}}{\chi_{\frac{\alpha}{3}}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\frac{\alpha}{3}}^{2}(n-1)}\right)$

二. 填空题 (每题3分,共18分)

- 7. 设随机变量 X , Y 相互独立,且均服从 [1,3] 上的均匀分布。引入事件 $A = \{X \le \sigma\}$, $B = \{Y > \sigma\}$,若 $P(A \cup B) = \frac{3}{4} \,, \, \, \text{则} \, \sigma = \underline{\hspace{1cm}}$ 。
- 9. 设随机变量 X 的概率分布为 $P(X = k) = \frac{C}{k!}$, $k = 0,1,2,\cdots$,则 $E(X^2) = \underline{\hspace{1cm}}$ 。
- 10. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_9 是取自总体 X 的简单随机样本, \overline{X} 为样本均值, S^2 为样本方差。如果 $P(\overline{X} > \mu + kS) = 0.95$,则参数 $k = \underline{\hspace{1cm}}$ 。
- 11. 设总体 X 服从参数为 2 的指数分布,从总体 X 中抽取简单随机样本 $\left(X_{1},X_{2},X_{3}\right)$, \overline{X} 是样本均值,则 $COV(X_{1}-\overline{X},X_{2}-\overline{X})=$ _____。

三. 解答题 (每题8分,共48分)

13. 已知随机变量(X,Y)的联合分布律为:

Y	0	1	2
0	0.2	0.2	0.2
1	0.1	0.2	0.1

(1) 设 F(x, y) 为 (X, Y) 的联合分布函数,求 F(1, 1); (2) 求条件分布律 $P(Y = y_j \mid X = 1)$ 和 $P(X = x_i \mid Y = 2)$ 。

14. 设连续型随机变量 (X,Y) 在 $D = \{(x,y) | 0 \le x < 1, |y| < x \}$ 内服从均匀分布,求: (1) X 与 Y 的边缘密度函数。(2) 求 Z = X + Y 的密度函数。

15. 袋中有 6 张相同的卡片,上面分别标有数字 0,1,2,3,4,5。现从袋中任意摸出两张卡片,已知两个数字之和大于 6,试判断先摸出的一张卡片上的数字最可能是几?

16. 某保险公司多年的统计资料表明,在索赔客户中,被盗索赔客户占 20%。今随意抽查 100 个索赔客户,利用中心极限定理,求其中被盗索赔客户不少于 10 户但也不多于 30 户的概率。

17. 设
$$X_1, X_2, \dots, X_n$$
为取自总体 X 的样本,且 X 的密度函数为 $f(x) = \begin{cases} \frac{2\theta^2}{x^3}, & x > \theta \\ 0, & x \le \theta \end{cases}$,其中参数 $\theta > 0$

未知。(1) 求参数 θ 的极大似然估计量 $\hat{\theta}_L$; (2) 证明: $\hat{\theta}_L$ 不是 θ 的无偏估计。

18. 机器自动包装袋装奶粉,设每袋的净重量 $X \sim N(\mu, \sigma^2)$,规定每袋奶粉的标准重量为 $500\,g$,标准 差不超过 $5\,g$ 。某天开工后,为检验机器是否正常工作,从已经包装好的奶粉中随机抽取 9 袋,测得样本的均值 $\bar{x}=497$,样本的方差 $s^2=6.06^2$ 。问:这天自动包装机的工作是否正常?用显著性水平 $\alpha=0.05$ 检验。

四. 论述或证明题 (每题8分,共16分)

- 19. (1) 试叙述: 切贝雪夫不等式。
 - (2)设随机变量序列 X_1,X_2,\cdots 相互独立,且 $X_k\sim U(-\sqrt[3]{k},\sqrt[3]{k})$,证明: $\forall \varepsilon>0$,有

$$\lim_{n \to +\infty} P \left(\left| \frac{1}{n} \sum_{k=1}^{n} X_k - \frac{1}{n} \sum_{k=1}^{n} E(X_k) \right| \ge \varepsilon \right) = 0$$

概率统计 <u>A</u> 卷 共 <u>6</u> 页 第 <u>3</u> 页

20. 设随机变量 X 的密度函数 f(x) 为偶函数,且满足 $E(X^2) < +\infty$ 。令 Y = |X|,证明:(1) X 与 Y 不相关;(2) X 与 Y 不独立。

(备用数据: χ^2 分布、t分布的上侧 α 分位数: $\chi^2_{0.05}(8) = 15.570$, $\chi^2_{0.025}(8) = 17.535$, $\chi^2_{0.025}(9) = 19.023, \; \chi^2_{0.05}(9) = 16.919 \; ; \; \; t_{0.025}(8) = 2.3060 \; , \; \; t_{0.05}(8) = 1.8595 \; , \; \; t_{0.025}(9) = 2.262 \; ,$ $t_{0.05}(9) = 1.8331 \; , \; \; \Phi(2.5) = 0.9938 \; 。)$