# Filtro Elíptico

Danilo Souza Hugo Santos Welton Araújo

<sup>1</sup>Universidade Federal do Pará

03 de Julho de 2012

#### **Agenda**

- **1** Introdução
- 2 Filtro Elíptico
  - Projeto de Filtros Elípticos
    - Projeto do filtro
    - Tranformação em Frequência
    - Tranformação Bilinear
- A Implementação
  - Resultados
    - Filtro I
    - Filtro II

# **Filtros Digitais**

- Filtros FIR
- Filtros IIR
  - Mapemamento de filtros analógicos
  - Menor ordem
  - Mais difíceis de projetar
  - Problemas com Estabilidade

## Filtro Elíptico

- Maior declive na banda de transição
- Menor ordem que outros filtros IIR
- Não possui fase linear
- Projetado somente em termos de magnitude

#### **Abordagens**

- Duas abordagens
- Abordagem I
  - Projetar filtro Passa-Baixa analógico
  - Realizar transformação em frequência (s → s)
  - Aplicar transformação do filtro (s → z)
- Abordagem II
  - Projetar filtro Passa-Baixa analógico
  - Aplicar transformação do filtro (s → z)
  - Realizar transformação em frequência (z → z)

Projeto de Filtros Elípticos

#### Projeto dos filtros

- ullet Encontrar a frequência digital  $\omega$
- Encontrar a frequência distorcida Ω
  - É preciso encontrar algumas constantes para calcular a ordem do filtro

• Filtro passa-baixa

$$s' \leftrightarrow \frac{1}{a} \frac{s}{\Omega_p}$$
 (1)

Filtro rejeita-faixa

$$s' \leftrightarrow \frac{1}{a} \frac{B_s}{s^2 + \Omega_0^2} \tag{2}$$

Mapear o plano s para o plano z

 $s = \frac{1 + z(T/2)}{1 - z(T/2)}$ 

- Mapear o eixo jw para a circunferência de raio unitário
- Mapear o lado esquerdo do plano s para o interior da circunferência de raio unitário
- Mapear o lado direto do plano s para o exterior da circunferência de raio unitário
- Compressão das frequências (warping)
- $-\infty < \Omega < \infty$  para  $-\pi < \omega < \pi$

## **Requisitos dos filtros**

| $A_p$                  | 1 dB    |
|------------------------|---------|
| $A_r$                  | 40 dB   |
| $\Omega_p$             | 1000 Hz |
| $\Omega_r$             | 1290 Hz |
| $\Omega_{\mathcal{S}}$ | 3000 Hz |
|                        |         |

| $A_p$        | 0,5 aB    |
|--------------|-----------|
| $A_r$        | 60 dB     |
| $\Omega_p$ 1 | 40 rad/s  |
| $\Omega_r$ 1 | 50 rad/s  |
| $\Omega_r 2$ | 70 rad/s  |
| $\Omega_p$ 2 | 80 rad/s  |
| Ως           | 240 rad/s |

# Resposta em magnitude - Filtro I



# Resposta em Fase - Filtro I



## Resposta ao Impulso - Filtro I



## Diagrama de polos e zeros - Filtro I



# Resposta em magnitude - Filtro II



# Resposta em Fase - Filtro II



# Resposta ao Impulso - Filtro II



## Diagrama de polos e zeros - Filtro II

