

Statistical learning with Sparsity – The LASSO and generalisations.

Chapter 6: Inference. Plus some other considerations.

Menelaos Pavlou

Department of Statistical Science, UCL, UK

Overview

- Development and validation of risk models for predicting continuous, binary or survival outcomes. Some simulations regarding the practical application of Lasso.
- Early approaches to inference
 - Bayesian Lasso
 - Bootstrap
- Recent approaches to inference
 - The covariance test.
 - Extensions (The Spacing Test, briefly).
- Discussion

Prediction models

Stage 1: Model Development (Training)

For *independent* binary outcomes, developing a prediction model can be as simple as fitting a multivariable logistic regression model

$$\begin{aligned} & \operatorname{logit}(P(Y_i|\boldsymbol{X}_i) = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \dots + \beta_p \ X_{i,p} = \boldsymbol{\beta} \ \boldsymbol{X_i} \\ & \operatorname{regression coefficients:} \boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \dots, \beta_p)^T \\ & \operatorname{predictors:} \ \boldsymbol{X_i} = (X_{i,1}, X_{i,2}, \dots, X_{i,p})^T, i = 1, \dots, N \end{aligned}$$

Stage 2: Model Validation (Testing)

Predictive performance needs assessing before the model is used in practice.

Common measures are: Predictive accuracy (Brier Score or Predictive Mean Squared Error in Simulations), Calibration (calibration slope as a measure of overfitting), Discrimination (C-statistic, AUC for binary outcomes).

Simulations Binary Outcome - Calibration

Simulations Binary Outcome - Predictive MSE

Simulations Binary – Number of selected variables

Simulations Binary – Bias on a large coefficient

The bootstrap

- In fitting a model using lasso we obtain we typically obtain *point* estimates of the regression coefficients, $\hat{\beta}(\hat{\lambda}_{CV})$, some of which may be zero. For a different partition in the crossvalidation it is likely that different coefficients are set to zero.
- It is desirable to get a feeling about the sampling distribution of $\widehat{\beta}(\hat{\lambda}_{CV})$
- One way of doing this is using the bootstrap.

Algorithm: (Non parametric) Bootstrap

- 1. Create a 'new' dataset, i, by sampling with replacement from the original dataset.
- 2. Fit Lasso to the bootstrapped dataset to obtain $\widehat{\boldsymbol{\beta}_i}(\hat{\lambda}_{CV})$.
- 3. Go to 1 and repeat B times (e.g. 1000 times).
- 4. Assess the sampling distribution of $\widehat{\boldsymbol{\beta}}(\hat{\lambda}_{CV})$.

Parametric bootstrap

Bayesian Lasso

For regression coefficients:

Laplace (double exponential prior)

$$\beta_k | \sigma^2 \sim N(0, \sigma^2)$$

$$\sigma^2 | \lambda \sim \text{Exp}(0.5 \lambda)$$

$$\lambda \sim \text{Gamma}(\alpha, \beta)$$

- Assess variability of estimates using the entire posterior distribution.
- Relation to frequentist Lasso (for fixed λ).
- Variable selection using hard-shrinkage of the regression coefficients.
- Sensitivity to the selection of hyper-parameters?

Bootstrap vs Bayesian Lasso

- Both provide a way to assess variability of Lasso estimates.
- Bootstrap is faster for larger problems seems to scale closer to $\mathcal{O}(p)$ while Bayesian lasso to $\mathcal{O}(p^2)$.

Table 6.1 Timings for Bayesian lasso and bootstrapped lasso, for four different problem sizes. The sample size is N = 400.

p	Bayesian Lasso	Lasso/Bootstrap
10	$3.3 \mathrm{\ secs}$	163.8 secs
50	184.8 secs	374.6 secs
100	28.6 mins	$14.7 \mathrm{mins}$
200	4.5 hours	18.1 mins

- For GLMs the computational complexities for Bayesian Lasso grow.
- Bayesian approach leans more heavily on parametric assumptions?
- For bootstrap, the sampling distribution for coefficients close to zero maybe non-normal posing issues to valid inference (e.g.Kyung et al. (2010)).

Example: The crimes data (I)

Crimes data

Table 2.1 Crime data: Crime rate and five predictors, for N = 50 U.S. cities.

city	funding	hs	not-hs	college	college4	crime rate
1	40	74	11	31	20	478
2	32	72	11	43	18	494
3	57	70	18	16	16	643
4	31	71	11	25	19	341
5	67	72	9	29	24	773
:	:	:	:	:		
50	66	67	26	18	16	940

Continuous outcome: Crime. 5 Continuous predictors.

	Least squares	LASSO lambda.min	LASSO lambda.1se	Bayesian Lasso
funding	10.98	9.80	1.93	4.56
Hs	-6.09	-2.72	0.00	-1.01
not.hs	5.48	3.25	0.00	2.74
college	0.38	0.00	0.00	-0.23
college4	5.50	0.00	0.00	0.19

Example: The crimes data - Bootstrap

```
#Bootstrap
p<-5
B<-100000
n < -nrow(x)
beta.1se.bs<-matrix(NA,B,p)
beta.min.bs<-matrix(NA,B,p)
for (i in 1:B) {
  ind<-sample(n,replace=TRUE)</pre>
  data.bs<-data[ind,]</pre>
  x.bs < -x[ind,]
  y.bs<-y[ind]
  fit<-glmnet(x.bs,y.bs,alpha=1,lambda=lambda.se)</pre>
  #fit<-cv.glmnet(x.bs,y.bs,alpha=1)</pre>
  beta.1se.bs[i,]<-as.vector(coef(fit,s="lambda.1se"))[-1]
  fit<-glmnet(x.bs,y.bs,alpha=1,lambda=lambda.min)</pre>
  #fit<-cv.glmnet(x.bs,y.bs,alpha=1)</pre>
  beta.min.bs[i,] <-as.vector(coef(fit,s="lambda.min"))[-1]
  print(i)
```

Example: The crimes data – Bayesian Lasso

```
#Bayesian lasso

#require(monomvn)

fit<- blasso(x,y,T=3000,RJ=FALSE)
plot(fit,ylim=c(-40,40))
beta.blasso<-fit$beta
beta.blasso.mean<-colMeans(fit$beta)
beta.blasso.se<-sqrt(apply(fit$beta,2,var))
beta.blasso.ci=cbind(beta.blasso.mean-1*beta.blasso.se,
beta.blasso.mean+1*beta.blasso.se)
cbind(beta.blasso.mean,beta.blasso.ci)</pre>
```

Example: The crimes data (II)

Post-selection inference for Lasso and other methods

- Significance testing from Linear Modelling
- What's wrong with Forward Stepwise regression
- The covariance Test
 - The test
 - Example
 - Contrast with forward stepwise selection.
- Extensions (briefly).

Significance testing for Linear Modelling

- Linear regression setting:
 - N observations, N-dimensional outcome vector Y.
 - $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, $\boldsymbol{\varepsilon} \sim N(0, \sigma^2 \mathbf{I}_{N \times N})$
 - p-dimensional vector of regression coefficients.
- Let M and $M \cup j$ be fixed subsets of $\{1, \ldots, p\}$
- Let $RSS_{M \cup j}$ and RSS_M be the residual sum of squares *(RSS)* from regression on $M \cup j$ and M.
- For nested models such as the ones above one uses the chi-square test:

Test Statistic:
$$R_j = (RSS_{M \cup j} - RSS_M)/\sigma^2$$
. (*) and compare it to the χ_1^2 distribution.

* If σ^2 is unknown estimate it from the data and use *F*-test.

What's wrong with forward stepwise regression (I)?

- Standard forward stepwise selection: repeated comparison of nested models.
 - → Enters predictors one at a time, in a stepwise manner, comparing nested models as described earlier.
 - → Chooses the predictor that reduces most the residual sum of squares, after checking all available predictors
- \blacksquare RSS_k: residual sum of squares for the model with k predictors
- Similarly as before , form the test-statistic:

$$R_k = 1/\sigma^2 (RSS_{k-1} - RSS_k)$$

and compare it to the χ_1^2 distribution.

What's wrong with forward stepwise regression (II)?

■ This significance testing is alright when comparing nested models that are fixed. In stepwise regression, the sets we are comparing *are not fixed*, but a result of an adaptive procedure.

This adaptivity invalidates the use of the ${\chi_1}^2$ null distribution for the

statistic.

• R_1 , refers to the addition of the *first* predictor in a model (Figure 6.8 example with 10 predictors).

• Using simulation, we see that the theoretical quantiles of the assumed distribution do not agree with the quantiles of R_1 .

Connection to degrees of freedom (later).

What's wrong with forward stepwise regression (III)?

- Reason: The chi-square statistic assumes that the models are prespecified and not data-driven.
- The fact that the strongest predictor is chosen among all available predictors given the data, yields a larger drop (improvement) in RSS that it is actually expected. As a results the p-values are biased downward. The method is too 'liberal'.
- One solution would be to perform this form of variable selection on a different sample (split sample), so assess the drop in RSS in new data.
 That would entail a loss of information.
- Target of recent work: Derive a test that accounts for adaptivity in model selection.

The Covariance Test (I)

- Based on the LAR algorithm of Efron et al. (2004) which traces the solutions as λ decreases from ∞ to 0.
- Consider the knots returned by the LAR algorithm

$$\lambda_1 > \lambda_2 > \cdots > \lambda_K$$
.

'knots' = the values of the regularization parameter where there is a change in the set of active predictors.

- **Proposal**: A test statistic for the significance of predictor added at the k^{th} step, at λ_{κ} .
- Notation
- A: set of predictors with non-zero coefficients just before step k (active set).
- Predictor j enters at λ_{κ} .
- $\widehat{\beta}(\lambda_{\kappa+1})$: the solution at the *next knot* with active set $A \cup \{j\}$.
- Refit Lasso, with $\lambda = \lambda_{\kappa+1}$ just using predictors in A. Gives $\widetilde{\beta}_A(\lambda_{\kappa+1})$.

The Covariance Test (II)

Covariance Test statistic:

$$T_{\kappa} = \frac{1}{\sigma^2} \left(\langle y, X \widehat{\beta}(\lambda_{\kappa+1}) \rangle - \langle y, X_A \widetilde{\beta}_A(\lambda_{\kappa+1}) \rangle \right)$$

(Lockhart et al. (2014). As significance test for the Lasso), The Annals of Statistics, 42(2), 413-468.

Notes:

- → Covariance between outcome and fitted model can be attributed to the predictor just added.
- ightharpoonup Intuitively: The larger the covariance of \mathbf{y} with $X\widehat{\boldsymbol{\beta}}$ compared to that with X_A $\widetilde{\boldsymbol{\beta}}_A$, the more important the role of predictor j in the model $A \cup \{j\}$.
- \rightarrow Why evaluate solution at $\lambda = \lambda_{\kappa+1}$?

The Covariance Test (III)

Covariance Test statistic:

$$T_{\kappa} = \frac{1}{\sigma^2} \left(\langle y, X \widehat{\beta}(\lambda_{\kappa+1}) \rangle - \langle y, X_A \widetilde{\beta}_A(\lambda_{\kappa+1}) \rangle \right)$$

- Choice of this form? Other choices?
- $-T_{\kappa} \stackrel{d}{\to} Exp(1).$
- Exp(1) is the analogue of χ_1^2 distribution for adaptive fitting.
- Quantile-quantile plots we saw earlier.

The Covariance Test (IV)

Covariance Test statistic:

$$T_{\kappa} = \frac{1}{\sigma^2} \left(\langle y, X \widehat{\beta}(\lambda_{\kappa+1}) \rangle - \langle y, X_A \widetilde{\beta}_A(\lambda_{\kappa+1}) \rangle \right)$$

Conditions:

- On data matrix X: signal variables (with non-zero coefficients) are not too highly correlated with the noise variables.
- On the outcome: it is normally distributed.
- $N, p \rightarrow \infty$
- non-zero coefficients are large enough in magnitude.

Interpretation – important!

The p-values at each row are conditional on the variables in the active set at a given knot!

Covariance Test – Diabetes example

Table 6.2 Results of forward stepwise regression and LAR/lasso applied to the diabetes data introduced in Chapter 2. Only the first ten steps are shown in each case. The p-values are based on (6.4), (6.5), and (6.11), respectively. Values marked as 0 are < 0.01.

Forward Stepwise			LAR/lasso		
Step	Term	p-value	Term	p-value	
				Covariance	Spacing
1	bmi	0	bmi	0	0
2	ltg	0	ltg	0	0
3	map	0	map	0	0.01
4	age:sex	0	hdl	0.02	0.02
5	bmi:map	0	bmi:map	0.27	0.26
6	hdl	0	age:sex	0.72	0.67
7	sex	0	glu^2	0.48	0.13
8	glu^2	0.02	bmi ²	0.97	0.86
9	age^2	0.11	age:map	0.88	0.27
10	tc:tch	0.21	age:glu	0.95	0.44
			I		

Covariance Test – Example

Implementation in R

```
#Covariance test
require(covTest)
fit<-lars(x,y)
covTest(fit,x,y)</pre>
```

Covariance Test: Practical issues

- Lasso entered a predictor into the active set at each step. Possibility of a
 predictor entering active set more than once along the lasso path (since it
 may leave it at some point). Each entry is treated as separate problem.
 Discuss.
- 2. By design the covariance test is applied in sequential manner, estimating p-values for every predictor as it enters the lasso path. A more difficult problem is to test the significance of any of the active predictors at some arbitrary value of the tuning parameter.
 - → Proposed extensions

Connection to the degrees of freedom

- Connection between the covariance test and degrees of freedom of fitting procedure.
- Linear regression setting the definition of df is:

$$df(\hat{y}) = 1/\sigma^2 \sum_{i=1}^{n} Cov(y_i, \hat{y}_i)$$

- The more adaptive a procedure is, the higher the covariance is, the more the degrees of freedom. With *k* predictors in the model, *a forward stepwise procedure* uses substantially *more* than k degrees of freedoms.
- What changes with Lasso?
 - \rightarrow For a model with k predictors, the degrees of freedom for a Lasso fit is equal k (in expectation or exactly).
 - \rightarrow Reason is *shrinkage*! Chooses adaptively *but also shrinks*. As a result the cost in extra degrees of freedom induced by adaptivity is balanced out by shrinking non-zero coefficients (by a right amount so the df is totally k).

The Spacing Test (briefly)

- More general scheme that can be applied for
 - exact p-values and confidence intervals in the Gaussian case.
 - for finite N and p.
 - works for any X.
- It can be applied to any procedure where the selection event can be seen as a set of inequalities in y.
 - to successive steps of the LAR algorithm
 - to Lasso at a fixed choice of the tuning parameter λ .
 - to forward stepwise regression. See: Loftus and Taylor (2014). A significance test for forward stepwise model selection, arXiv:1405.3920v1.
- R-package selectiveInference

Conclusions

- Bootstrap and Bayesian lasso early approaches to inference for Lasso coefficients. No studies regarding the coverage properties of Confidence/ Credible Intervals?
- More recent approaches include the Covariance Test, Spacing Test.
- Ongoing line of research- not limiting to Gaussian Outcomes (Ref).
- Relevant to Inference and explanation. Thoughts about presentation of results for prediction modelling?