Arithmetic and Logical Unit

Multiplication algorithm

- ☐ **Booth's algorithm** (signed Number Multiplication):
- Treats both positive and negative operands uniformly.

Algorithm:

Let A Accumalator

Q – Multiplier register

M- Multiplicand

n iterations to be performed where n- no. of bits in the multiplier.

Initialization:

Initialize A to 0

Append a 0-bit in Q₁ position.

Do n times

- Examine bits Q₀Q₁
- 2 If $Q_0Q_1=01$ then
 - a) Perform A=A+M
- b) RS(A.Q)

If $Q_0Q_1=10$ then

- a) Perform A=A-M
- b) RS(AQ)

If $Q_0Q_1=00/11$ then

a) RS(A₋Q)

After n iterations discard the LSB of Q register.

Product-A.Q

Flowchart for Booth's algorithm

Example of Booth's Algorithm

```
1. 5x2
 (0101) X (010)
        M
       0101
                                      0100
                       0000
       1. RS
                       0000
                                      0010
       2. A=A-M
                        1011
                                      0010
          RS
                        1101
                                      1001
                                         1001
        3. A=A+M
                        0010
         RS
                        0001
                                       0100 -- Discard
```

Product 0001 010 = (10)

Example of Booth's Algorithm

2.	5×5		
(010	01) (0101)		
	M	A	Q
	0101	0000	010 <u>10</u>
	1. A=A-M	1011	01010
	2. A=A+M	0010	10101
	RS	1101	1001
	3. A=A-M	1100	01010
	RS	1110	00101
	4. A=A+N	l 0011	00101
	RS	0001	10010 Discard
			Product 00011001

Example of Booth's Algorithm

35 x 4			
(1011) (0100)			
M	A	Q	
1011	0000	01000	
1. RS	0000	00100	
2. RS	0000	00010	
3. A=A-M	0101	00010	
RS	0010	10001	
4. A=A+M	1101	10001	
RS	1110	11000	Discard
			Product 1110 1100

Efficiency of Booth's algorithm

Booth's algorithm is efficient when the multiplier Q contains a series of 1's or 0's since it minimizes on addition and subtraction operations.

Booth's recoding algorithm

- -1 times the shifted multiplicand is selected when moving from 0 to 1
- +1 times the shifted multiplicand is selected when moving from 1 to 0

as the multiplier is scanned from right to left

```
1. +7 x +8
(00111) (01000)
Multiplicand Multiplier
```

```
+8— 0 1 0 0 0 0 Implied zero
+1 -1 0 0 0 (Recoded multiplier)
2's complement of +7 ---- 11001
```

```
0 0 1 1 1
         +1 -1 0 0 0
       0000000000
       00000000x
       0000000xx
       1111001xxx
       0001111xxxx
       0 0 0 0 1 1 1 0 0 0 (+56)
Discard
```

Product

2. +5 x +10 (00101) (01010) Multiplicand Multiplier

+10— 0 1 0 1 0 0 Implied zero +1-1 +1 -1 0 (Recoded multiplier) 2's complement of +5 ---- 11011

Product

Discard

3. +13 x -6 (01101) (11010) Multiplicand Multiplier

-6--- 1 1 0 1 0 0 Implied zero 0-1 +1 -1 0 (Recoded multiplier)

2's complement of +13 ---- 10011

Product

Discard

4.-5 x -5 (1011) (1011) Multiplicand Multiplier

2's complement of -5 ---- 0101

Discard

Product

Unsigned number Multiplication Example

```
1011 Multiplier (13) Partial

1011product(PP)

0000 PP

1011 PP

1011 PP

10001111 Product (143)
```

- Note: if multiplier bit is 1 copy multiplicand otherwise zero
- □ Note: need double length result

Unsigned Number multiplication

Algorithm: M=1011 Q= 1101

Let a variable x be initialized to 0000[4 bit binary number]

1. Since the bit q0 of multiplier is 1

$$x=x+1011=0000+1011=1011$$

Right shift x ---- 0 1 0 1 | 1

2. Since the bitq1 of multiplier is 0

$$x=x+0000=0101$$

Right shift x ---- 0010 | 11

3. Since the bitq2 of multiplier is 1

$$x=x+1011=$$
 $0010|11$
 1011
 $1101|11$

Unsigned number Multiplication

```
Right shift x ---- 011 0 | 111
4. Since the bit q3 of multiplier is 1
x=x+1011=0110 | 111
1011
10001 | 111
Right shift x---- 1000 | 1111
Product - 1000 | 1111
```

Unsigned number Multiplication

2. 10 x 5 1010 101 (M) (Q) X=0000

1. Since q0 is 1

$$X=X+1010=1010$$

RS---- 0101 | 0

2. Since q0 is 0

$$X=X+0000=0101 \mid 0$$

RS---- 0010 | 10

3. Since q0 is 1

RS---- 0110 | 010

Product - 0110010 (50)

Flowchart for Unsigned Binary Multiplication

Division algorithms

```
1010
1010 | 110 10 0 1
      - 110 <u>1</u>
    0110
  - 1010
                   1 101
                   1 010
                      1100
                    1010
                       0101
                     - 1010
                       1011
                      +1010
                       0 1 0 1 ---- Remainder
```

- □ Positive divisor --- □ Reg. M
- □ Positive dividend -□ Reg Q
- Reg A-□0
- After division is complete

Quotient ---- Q

Remainder ---- A

A 0 bit is added at the left end of both A and M to serve as a sign bit for subtraction.

Algorithm:

Do n times (n-- no. of bits in Q)

- 1. Shift A and Q left one binary position.
- 2 Subtract M from A, placing the answer back in A (A=A-M)
- 3 If the sign of A is 1 set qo to 0 and add M back to A (restore A), otherwise set quite 1.

```
1. 9
      / 5
  1001 101
      M
                              Q
     0101
                   0000
                             1001
           1. Sh
                   0001
                             001
        Sub (A=A-M) 1100
                             0010
                 +0101
                  0001
          2. Sh
                  0010
                             010
        Sub (A=A-M) 1101
                              0100
                  +0101
                   0010
```

M Α Q 0101 100 **3.** Sh 0100 Sub (A=A-M) 1111 1000 +0101 0100 **4.** Sh 1001 000 Sub (A=A-M) 0100 0001 Remainder Quotient

```
2 12 / 10
  1100 1010
                                     Q
      M
                 00000
                                    1100
    01010
          1. Sh 00001
                                    100
        Sub (A=A-M) 10111
                                    1000
         Restore 00001
         2 Sh
                 00011
                                    000
        Sub (A=A-M) 11001
                                     0000
                 00011
         Restore
```


Non Restoring division algorithm

- If A is (+) we shift left and subtract M from A
 - i.e 2A-M
- If A is (-)
 - 1. Restore A---- A+M
 - 2. Left Shift 2(A+M)
 - 3. Subtract M from A
 - 2(A+M)-M=2A+M

Algorithm:

1. Do n times (n—no. of bits in Q)

If the sign of A is 0, shift A and Q left one binary position and subtract M from A, otherwise shift A and Q left and add M to A.

If the sign of A is 0, set q0 to 1 else set q0 to 0.

2. After n iterations, if the sign of A is 1, add M to A

Non Restoring division algorithm

/3		
	A	Q
	000	1000
1. Sh	001	000
Sub	110	0000
2. Sh	100	000 —
Add	111	0000
3. Sh	110	000 —
Add	001	0001
4. Sh	010	001
Sub	111	0010
	111	Quotient
	+011	
	010—Remainder	
	Sub 2. Sh Add 3. Sh Add 4. Sh	000 1. Sh 001 Sub 110 2. Sh 100 Add 111 3. Sh 110 Add 001 4. Sh 010 Sub 111 111 +011

Non Restoring division algorithm

Eg: 15/3		
M	A	Q
011	000	1111
1. Sh	001	111 —
Sub	1 10	1110
2 Sh	101	110
Add	000	1101
3. Sh	001	101
Sub	110	1 <mark>010</mark> 010
4. Sh	101	
Add	000	0101
		Quotient

Floating point number representation

2 ways of representing decimal nos:

1. Fixed point representation

The usual way of representating numbers is to write the number with the decimal point fixed in it's correct position between the 2 appropriate digits eg: 13.75 or 345.78

This is called fixed point representation.

Drawback:

This representation becomes cumbersome when dealing with several very large or very small numbers.

eg: 0.0000001375

or 1375000000000

2. Floating point representation

Three numbers associated with a floating point number are:

- a. Mantissa M
- **b.** Exponent E
- c. Base B

These three numbers together represent the real number MXBE

Eg: 1.0 x 10¹⁸

- 1.0- Mantissa
- 18- Exponent
- 10- Base

Base B - constant,

Therefore a floating point number is stored as (M,E)

An Example

Suppose that M and E are both 3-bit sign and magnitude integers and B=2

- □ M and E each can assume the values +/-0 , +/-1, +/-2 and +/-3.
- All binary words of the form (M,E) = (x00,xxx) represent zero where x denotes either 0/1.
- The smallest non zero positive number is:

$$(001,111)=1 \times 2^3=0.125$$

The smallest non zero negative number is:

$$(101,111) = -1 \times 2^3 = -0.125$$

The largest representable positive number is:

$$(011,011)=3\times2^3=24$$

The largest representable negative number is:

$$(111,011) = -3 \times 2^2 = -24$$

Note: The left most bit which is the sign of the mantissa is also the sign of the floating point number

Normalization of floating point numbers

```
1.0 x 10<sup>8</sup>
0.1 x 10<sup>9</sup>
1000000 x 10<sup>2</sup>
```

 0.000001×10^{24}

- ---- All represent the same number
- Floating point representation is redundant i.e. the same no can be represented in more than one way.
- It is generally desirable to have a unique/normal form for each representable number in a floating point system.
- The mantissa is said to be normalized if the digit to the right of the binary point is non zero.

eg: 0.1bbbbbb x2 ^{⋆∈}

Hence 0.1 \times 10% is the unique normal form of 1.0 \times 10%

Signed number representations

- Basically, there are two common signed number representations:
- 1. Sign and magnitude

```
000 +0
```

001 +1

010 +2

011 +3

100 -0

101 -1

110 -2

111 -3

Drawback: 2 representations for number 0 (+0 and -0)

Signed number representations

2. Two's complement representation

```
000 +0
001 +1
010 +2
011 +3
100 -4/+4
101 -3
110 -2
111 -1
```

Hence for a 3-bit number (+3 to -4) Or (-3 to +4)

24-1 to -24 -24+1 to 24

An 8 bit register holds numbers in 2's complement form with leftmost bit as the sign bit.

- 1. What is the largest (+) number that can be stored? Express the answer in decimal and binary format.
- 2. What is the largest (-) number that can be stored? Express the answer in decimal and binary format.

```
2<sup>n</sup>-1 to-2<sup>n</sup>
127 to-128
01111111 10000000
Or
-2<sup>n</sup>1+1 to 2<sup>n</sup>
-127 to +128
```

1000000 10000000

An example of a floating point number in binary format (32 bit)

Assumptions:

- Implied base 2.
- 2 7-bit signed exponent is expressed as a 2's complement integer.
- 3 Left most bit represents sign of the number (0 means + ,1 means -)

32 bit

The 24 bit mantissa is considered to be a fraction with the binary point at it's left end.

To retain as many significant bits as possible, the fraction al mantissa is kept in a normalized form i.e it's leftmost bit is always 1.

Eg:

Unnormalized value

Binary Normalization example

□ Hence a 7-bit 2's complement exponent has a range of -- □

```
2<sup>rd</sup>-1 to -2<sup>rd</sup>
2<sup>cd</sup>-1 to -2<sup>cd</sup>
+63 to -64
```

- Some computers employ a different type of representation for exponents i.e. biased exponent representation
- □ Here the n-bit exponent is expressed in excess 2^m format.
- Hence the 7-bit exponent is expressed in excess 64 format.
- In this representation the sign bit is removed from being a separate entity.
- A (+) no. called bias (64) is added to each exponent as the floating point number is formed, so that internally all exponents are positive.

```
□ E' —new exponent
\Box E' = E + 64
Since -64 ≤ E ≤ +63
           0 ≤ E' ≤ +127
      -64 is represented as ----- 0000000
  -63 is represented as ----- 0000001
      -62 is represented as ----- 0000010
        1 is represented as ----- 1000000
        2 is represented as ----- 1000001
      +63 is represented as ----- 1111111
```

IEEE 754 Floating point number format

- The IEEE Standard for Floating- Point Arithmetic (IEEE 754) is a <u>technical standard</u> established by the <u>Institute of Electrical and Electronics Engineers</u> (IEEE) and the most widely used standard for <u>floating-point</u> computation, followed by many <u>CPU</u>.
- IEEE 754 defines 2 standards
 - 1. Single precision no. (32 bits)
 - 2. Double precision no. (64 bits)

IEEE 754 Floating point number format(Single precision)

- The standard for a 32 bit floating point number is ----
- 1. Sign bit S
- 2. 8 bit exponents field E'

(in excess 127 representation) i.e the bias added here is 21-1

- 3. 23-bit mantissa field M
- 4. Base 2

IEEE 754 Floating point number format(Single precision)

```
Since E varies from
  -2<sup>n1</sup>+1 to 2<sup>n1</sup>
□ ie -127 ≤ E ≤ +128
\Box E' = E + 127
             0 \leq E' \leq +255
             E
                         E
          -127
                         00000000
                                           represents the floating point no. zero
          -126
                          00000001
                         01111111
                          10000000
                          111111111 represents ∞
          +128
```

IEEE 754 Floating point number format(Single precision)

Normalization in IEEE 754

- In IEEE 754 format the mantissa is actually of the form 1.M where 1 is to the left of the binary point.
- This I is implicit/hidden and is not stored along with the number but assumed to be there.
- □ Use of hidden 1 means that the precision of a normalized number is effectively increased by 1 bit.

□ Eg :

0 00101000

001010.....0

Value represented ---□

M= 1.001010

E'= 40

E=E'-127 = 40 - 127 = -87

1.001010... X 2-87

Hence in IEEE 754 format the actual value of N

N= (-1) 2 5427 X (1.M)

IEEE 754 Floating point number format(Double precision)

Convert the following nos. in IEEE- 754 single precision format. 1. 10.58

(1010.100101)₂

1.010100101 x 23

E'=127+3= 130=10000010

S=0

M=010100101

0 10000010 0101001

2.
$$-8.08 = -(1000.000101)$$

 $-(1.000000101 \times 2^3)_2$

S=1

M = 0000000	M04-		
	IUI		
	1	10000010	000000101
	-	10000010	
	•	10000010	

```
3. 1.5
(1.1)<sub>2</sub>
```

1.1 x 2º

01111111

10....0

```
4. 21
21 = (10101)<sub>2</sub>
= 1.0101 x 2<sup>4</sup>
E' = 127 + 4 = 131
M= 0101....
S=0
```

0 10000011 010100	
-------------------	--

```
5.

0.021=

0.00000011001

= 1.1001 x2<sup>7</sup>

E'= 127-7= 120

M= 1001

S= 0
```

 Give the value represented by the following IEEE single precision no.

1 10000001 0 1 0

```
E'= 10000001 = 129

E= E' -127 = 129-127 = 2

(1.01)_2 = (1.25)_{10}

X= -1.25 x 2'= -5
```

Convert the following no. in IEEE- 754 double precision format.

$$(0.0625)_{10} =$$
 $0.0625 \times 2 = 0.125 - 0$
 $0.125 \times 2 = 0.25 - 0$
 $0.25 \times 2 = 0.5 - 0$
 $0.5 \times 2 = 1 - 1$
 $(0.0625)_{10} = (0.0001)_{2} = 1.0 \times 2^{4}$
 $E' = E + 1023 = (1019)_{10}$
 $M = 000000...$
 $S = 0$

- \Box X= 0.3 x 10 ²
- □ Y=0.2 x 10³
- \Box X+Y = (0.03 x 10³) + (0.2 x 10³)= 0.23 x 10³
- \Box X-Y= (0.03 x 10³)- (0.2 x 10³)= -0.17 x 10³

- Floating point arithmetic with binary numbers:
- 1) 1.10101 x 2⁴ + 1.00101 x 2⁶
- $(0.0110101 \times 2^6 + 1.00101 \times 2^6)$
- $= 1.1001001 \times 2^{6}$
- 2) 1.10011 x 2⁴ + 1.00101 x 2⁴
 - = 10.11000 x 24 (significand/mantissa overflow)

Normalize the result 1.011000 x 25

3) 1.00110x 2²⁵⁴ + 1.10001 x 2²⁵⁴

10.10111 x 2²⁵⁴

1.010111 x 2²⁵⁵

exponent =255 signifies exponent overflow

```
4) 1.11011 \times 2^6 - 1.11001 \times 2^6
= 0.00011 \times 2^6
```

Normalize the result -1.1×2^2

When decrementing the exponent check for exponent underflow

- 5) 1.00111 x2¹⁰ + 1.10111 x 2³⁵ 0.000000000000000000000000000111 x 2³⁵ + 1.10111 x 2³⁵
- =1.1011100000000000000000000100111x 2³⁵ (significand underflow)

Result= 1.10111 x 235

□ Floating-point subtraction example:

Difference

Floating point arithmetic (+/-)

- Check for zeros
- Align significands (adjusting exponents)
- □ Add or subtract significands
- Normalize result

Flowchart for floating point addition and subtraction

FP Arithmetic x/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

- □ Eg: Multiply 21.44 by 7.24
- Convert into IEEE 754 format
- 21.44 = 10101.0111 x 2^0 = 1.01010111 x 2^4
 - M= 01010111 E'= 131
- 7.24=111.0011 x 2^0 =1.110011 x 2^2

M= 110011

E'= 129

register A 21.44

register B 7.24

8	ign	exponent	significand
	0	10000011	01010111000010101010001
	0	10000001	11001111010111000010100

For multiplication- Add the exponents and multiply the corresponding mantissas

Step 1 : Add exponents

- **129+131= 260**
- When the exponents are added the resulting exponents is doubly biased.
- Hence correct the resulting sum by subtracting one bias from the resulting exponent.
- **260-127=133.**

Step 2: Multiply the mantissa.

- Considering only the first 4 digits of the mantissas
- □ 1.010 x 1.110 = 10.001100

Step 3: Normalize the mantissa

 \Box 1.0001100 x 2 ^ 134

□ Points to Note:

1. Exponent overflow

$$Xe = 120$$

$$Ye = 122$$

$$X'e= 120 + 127 = 247$$

$$X'e + Y'e = 496$$

Subtract a bias: 496-127 = 369

Range of E' from 0 to 255

Hence there is an exponent overflow

2. Exponent underflow

$$Xe = -60$$

$$Ye = -74$$

$$X'e = -60 + 127 = 67$$

$$X'e + Y'e = 120$$

Subtract a bias 120-127 = -7

Range of E' from 0 to 255

Hence there is an exponent underflow

- For division :
- X=Xm x2^Xe
- Y=Ymx2^Ye

 $Z=(Xm/Ym) \times 2^{(Xe-Ye)}$

Note when the divisor exponent (Xe+127) is subtracted from dividend exponent (Ye+127), it removes the bias which must be added back in

i.e ((Xe+127) - (Ye+127)) = Xe-Ye

Hence correction-□ (Xe-Ye) +127

Case 1 : Assume Xe= 120 , Ye= - 2

Xe'= 147 Ye'= +125

Xe'-Ye'=272

Floating Point Division

