

Hands-on altimetry tutorial

Laura Gómez Navarro IMEDEA (UIB-CSIC); Utrecht University laura.gomez@uib.es

Paul Hargous IMEDEA (UIB-CSIC) hargous@imedea.uib-csic.es

slides credits: Antonio Sánchez-Román and Ananda Pascual

The role of satellites for the Global Ocean Observing System

Contribution of satellites

- Provide long-term, continuous, global, high space and time resolution data
- Key ocean parameters: sea level and surface currents, ocean colour, sea ice, waves ...
- Assimilation and/or validation of ocean models
- Data can be directly used for applications (e.g. marine safety, water quality ...)

movie courtesy of R. Escudier

The role of satellites for the Global Ocean Observing System

Contribution of satellites

- Provide long-term, continuous, global, high space and time resolution data
- Key ocean parameters: sea level and surface currents, ocean colour, sea ice, waves ...
- Assimilation and/or validation of ocean models
- Data can be directly used for applications (e.g. marine safety, water quality ...)

movie courtesy of R. Escudier

SARAL-AltiKa

Agencies: CNES - ISRO

Orbit characteristics

(Sun synchronous) Altitude: 781 km Repeat: 35 days

Inclination: 98.55 degrees

Track spacing: 75 km at Equator

Jason-class

Agencies: CNES - NASA - NOAA -**EUMETSAT**

Orbit characteristics

Altitude: 1336 km Repeat: 10 days

Inclination: 66 degrees

Track spacing: 315 km at Equator

credits: CNES/AVISO

Mallorca Summer School, 20-26 October 2024

DORIS receiver

isro

SARAL-AltiKa

Agencies: CNES – ISRO

Orbit characteristics

(Sun synchronous) **Altitude:** 781 km **Repeat:** 35 days

Inclination: 98.55 degrees

Track spacing: 75 km at Equator

Jason-class

Agencies: CNES – NASA – NOAA – EUMETSAT

Orbit characteristics

Altitude: 1336 km Repeat: 10 days

Inclination: 66 degrees

Track spacing: 315 km at Equator

credits: CNES/AVISO

Satellite altimetry coverage characteristics

Spatial coverage

- Global
- Homogeneous
- Nadir (not swath)

Satellite altimetry coverage characteristics

Spatial coverage

- Global
- Homogeneous
- Nadir (not swath)

Temporal coverage

Repeat period varying for the different missions:

- 10 days: T/P, Jason
- 27 days: Sentinel
- 35 days: ERS,ENVISAT, SARAL-AltiKa

Providing accurate sea level data since 1993!!

Principles of radar altimetry: sea surface height measurements

- Altimeters send microwave radar pluses vertically towards the ocean surface.
- → Measure altimeter range
- Variables:
- sea surface height,
- wind speed and direction,
- wave spectra,
- sea ice cover,
- surface roughness.

Orbit

→ What the altimeter measures

We know the altitude of the satellite (h)

Sea Surface Height (SSH) = h - R

SLA: Sea Surface Height **SLA**: Sea Level Anomaly

MDT: Mean Dynamic Topography

ADT: Absolute Dynamic Topography

MSS: Mean Sea Surface

credits: Adapted from: Tranchant, (2022)

Mallorca Summer School. 20-26 October 2024

Orbit

R: Range

→ What the altimeter measures

We know the altitude of the satellite (h)

Sea Surface Height (SSH) = h - R

SLA: Sea Surface Height **SLA**: Sea Level Anomaly

MDT: Mean Dynamic Topography

ADT: Absolute Dynamic Topography

MSS: Mean Sea Surface

credits: Adapted from: Tranchant, (2022)

credits: AVISO

SLA: Sea Level Anomaly

ADT = SLA + MDT

credits: AVISO

SLA: Sea Level Anomaly

ADT: Absolute Dynamic Topography

MDT: Mean Dynamic Topography

from along-track (level 3) to gridded multi-mission maps (level 4)

Mans of SLA

Mans of SLA

Purpose: construct regular gridded data merging along-track SLA from different missions

Method: objective analysis

Sea Level Anomaly on May, 12-14th (cm) from Jason-2, SARAL-AltiKa, Cryosat2 and HY2A

credits: CNES/CLS

https://marine.copernicus.eu

FREE-TEXT SEARCH Free text TIME RANGE A dd/mm/yyyy dd/mm/yyyy C Covering full interval WITH DEPTH 14 DEPTH RANGE A

UNIVERSE ABlue Ocean 50
White Ocean 5
Green Ocean 8

MAIN VARIABLES A Carbonate system 1 Mixed layer thickness 13 Nutrients 1

Oxygen 8 Plankton 8 Salinity 20

Sea ice 5 Sea surface height 51 Temperature 20 Velocity 25

Wave 8

AREA
Global Ocean 19

Arctic Ocean 8

Atlantic: Iberia-Biscay-Ireland 11 Atlantic: NW European Shelf 10 Atlantic: North 15

Baltic Sea 15 Black Sea 9 Furope 4

Mediterranean Sea 9

Products 51

Global Ocean Physics Analysis and Forecast

GLOBAL_ANALYSISFORECAST_PHY_001_024
Models

Global, 0.083° × 0.083° × 50 levels

1 Jan 2019 to 29 Jul 2024, hourly, daily, monthly Temperature, salinity, **sea surface height**, velocity, mixed layer thickness. wave, sea ice

Baltic Sea Physics Analysis and Forecast

BALTICSEA_ANALYSISFORECAST_PHY_003_00
Models

Baltic, 2 × 2 km × 56 levels

1 Nov 2021 to 25 Jul 2024, sub-hourly, hourly,...
Temperature, salinity, sea surface height, velocity, mixed layer thickness, sea ice

Global Ocean Physics Reanalysis

GLOBAL_MULTIYEAR_PHY_001_030 Models Global, 0.083° × 0.083° × 50 levels 1 Jan 1993 to 26 Mar 2024, daily, monthly Temperature, salinity, sea surface height, velocity,

Baltic Sea Physics Reanalysis

mixed laver thickness, sea ice

BALTICSEA_MULTIYEAR_PHY_003_011 Models

Baltic, 2 × 2 km × 56 levels 1 Jan 1993 to 31 Dec 2021, daily, monthly, yearly Temperature, salinity, sea surface height, velocity, mixed layer thickness, sea ice

Global Ocean Ensemble Physics Reanalysis

GLOBAL_MULTIYEAR_PHY_ENS_001_031 Models

Global, 0.25° × 0.25° × 75 levels
1 Jan 1993 to 31 Dec 2022, daily, monthly
Temperature, salinity, sea surface height, velocity,
mixed laver thickness, sea ice

Black Sea Physics Analysis and Forecast

BLKSEA_ANALYSISFORECAST_PHY_007_001

Black Sea, 0.025° × 0.025° × 121 levels

1 Nov 2021 to 28 Jul 2024, sub-hourly, hourly,... Temperature, salinity, sea surface height, velocity, mixed layer thickness

- SEALEVEL products
- Reprocessed (REP or DT)
 covering the whole altimetry
 period (1993 present)
- Near real Time (NRT) covering the last two years (2022 – present)
- Level 3 (along-track) and Level 4 (gridded)
- Global & regional products
- Products based on models and in situ observations also available

https://resources.marine.copernicus.eu

i Description
Notifications
▲ Data access
□ Contact
DOCUMENTATION
User Manual
Quality Information Document
Synthesis Quality Overview
Licence
☐ How to cite
DOI
10.48670/moi-00141

Data access and mapping services

There are multiple ways to download data from this product:

- If you prefer a graphical tool, click on the top-right button: ...
- Subset: The most intuitive graphical approach for subsetting data in time, space and/or variables. For a programming approach (WCS-like), prefer the Copernicus Marine Toolbox: CLI or Python API.
- Files: The fastest graphical approach to get original files (FTP-like). For a programming approach, prefer the Copernicus Marine Toolbox: CLI or Python API.
- Maps: The standard mapping service for GIS approach (QGIS or similar tools).
- If you are looking for a lazy-loading data access (xarray/OPeNDAP-like), copy the dataset ID and use it with the Copernicus Marine Toolbox: Python API.

Dataset ID Output Dataset ID Dataset I	Subset 1	Files 1	Maps ①
cmems_obs-sl_eur_phy-ssh_my_allsat-I4-duacs-0.125deg_P1D	Form	Browse	WMTS
cmems_obs-sl_eur_phy-ssh_myint_allsat-l4-duacs-0.125deg_P1D	Form	Browse	WMTS

Metadata

Click here to fetch the most up-to-date raw metadata for this product from the Catalogue Service for the Web (CSW) service:

Download metadata

https://resources.marine.copernicus.eu

There are also other websites and platforms to obtain these dates like:

- Copernicus Climate: https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
- PODAAC from NASA: https://podaac.jpl.nasa.gov/
- AVISO: https://www.aviso.altimetry.fr/en/data.html

- Launch: November 2022
- SAR interferometry
- Provide water elevation maps
 - Oceanography
 - Hydrology

Morrow et al. EOS 2019

The new SWOT mission

- Measure SSH in 2D at a high resolution
- Primary objective: observe the ocean mesoscale and sub-mesoscale circulation at spatial resolutions of 15 km and larger
- Observe coasts and highlatitudes

References

- Brown, G. S. (1977) The Average Impulse Response of a rough surface and its applications, IEEE Trans. Antennas Propag., 25. https://10.1109/TAP.1977.1141536
- J. Aublanc, J., T. Moreau, P. Thibaut, F. Boy, F. Rémy, N. Picot, Evaluation of SAR altimetry over the antarctic ice sheet from CryoSat-2 acquisitions, Advances in Space Research, Volume 62, Issue 6, 2018, Pages 1307-1323, ISSN 0273-1177, https://doi.org/10.1016/j.asr.2018.06.043
- Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019
- Dufau, C., M. Orsztynowicz, G. Dibarboure, R. Morrow, and P.-Y. Le Traon (2016), Mesoscale resolution capability of altimetry: Present and future, J. Geophys. Res. Oceans, 121, 4910–4927, https://doi.org/10.1002/2015JC010904
- International Altimetry team, (2021). Altimetry for the future: Building on 25 years of progress. Advances in SpaceResearch, https://doi.org/10.1016/j.asr.2021.01.022
- Tonani, M., Sykes, P., King, R.R., McConnell, N., Pe'quignet, A.C.,O'Dea, E., Graham, J.A., Polton, J., Siddorn, J., 2019. The impact of anew high-resolution ocean model on the Met Office North-WestEuropean Shelf forecasting system. Ocean Sci. 15, 1133–1158 https://doi.org/10.5194/os-15-1133-2019
- Pascual, A., Boone, C., Larnicol, G., & Le Traon, P. Y. (2009). On the quality of real-time altimeter gridded fields: Comparison with in situ data. *Journal of Atmospheric and Oceanic Technology*, 26(3), 556-569. https://doi.org/10.1175/2008/TECH0556.1
- Carret, A., Birol, F., Estournel, C., Zakardjian, B., and Testor, P. (2019) Synergy between in situ and altimetry data to observe and study Northern Current variations (NW Mediterranean Sea), Ocean Sci., 15, 269–290, https://doi.org/10.5194/os-15-269-2019.
- Gommenginger, C., Thibaut, P., Fenoglio-Marc, L., Quartly, G., Deng, X., Gómez-Enri, J., ... & Gao, Y. (2011). Retracking altimeter waveforms near the coasts: A review of retracking methods and some applications to coastal waveforms. *Coastal altimetry*, 61-101. https://doi.org/10.1007/978-3-642-12796-0_4
- S. Vignudelli, et al. (Eds.), Coastal Altimetry, Springer, Berlin Heidelberg (2011), pp. 61-101, https://doi.org/10.1007/978-3-642-12796-0_4
- Sánchez-Román, A.; Pascual, A.; Pujol, M.-I.; Taburet, G.; Marcos, M.; Faugère, Y. Assessment of DUACS Sentinel-3A Altimetry Data in the Coastal Band of the European Seas: Comparison with Tide Gauge Measurements. *Remote Sens.* 2020, *12*, 3970. https://doi.org/10.3390/rs12233970
- Bonaduce, A., Benkiran, M., Remy, E., Le Traon, P. Y., and Garric, G. (2018) Contribution of future wide-swath altimetry missions to ocean analysis and forecasting, Ocean Sci., 14, 1405–1421, https://doi.org/10.5194/os-14-1405-2018
- Gómez-Navarro, L., Fablet, R., Mason, E., Pascual, A., Mourre, B., Cosme, E., & Le Sommer, J. (2018). SWOT spatial scales in the western Mediterranean Sea derived from pseudo-observations and an ad hoc filtering. *Remote Sensing*, 10(4), 599. https://doi.org/10.3390/rs10040599
- Barceló-Llull, B., Pascual, A., Sánchez-Román, A., Cutolo, E., d'Ovidio, F., Fifani, G., ... & Muñoz, C. (2021). Fine-scale ocean currents derived from in situ observations in anticipation of the upcoming SWOT altimetric mission. *Frontiers in Marine Science*, *8*, 679844. https://doi.org/10.3389/fmars.2021.679844
- -Yann-Treden Tranchant. Vers une meilleure exploitation de l'altimétrie côtière : apports combinés de la modélisation hydrodynamique à haute-résolution et des nouvelles techniques de cartographie du niveau marin par GNSS. Sciences de la Terre. Université de La Rochelle, 2022. Français. NNT : 2022LAROS014. tel-03942913

Let's look at some data!

You Will work in groups: see participants_groups.pdf

Abel	Dechenne	África	Núñez García	Alejandro	Alegría Rodríguez	Alina	Hillinger
Ana	Amaral Wasielesky	Eliana	Ferretti	Irene	Gregori	Gloria	Mozzi
Constanze	Hammerl	Maria João	Lima	Marijana	Balić	Juan Manuel Lopez Contreras	
Mathilde	Couteyen Carpaye	Nicola	Wilson	Roman	Isaac	Marc	Gost
Veronica	Relano	Sophia Laura Bergeler		valeria	hidalgo-ruz		
Andriana	Koutsandrea	Ariadna	Nocera	Barbara	Pizarro Cisternas	Buse	Uysaler
Diego	Vega	Elisabet	Verger Miralles	Diana Lorena	Rico-Velez	Davide	Bruno
Kenn	Papadopoulo	matteo	vergani	Erin	van Rheenen	Isobel	Stemp
Mariam	Tsetskhladze	Savannah	Hartman	Luis	Lizcano-Sandoval	Mar	Roca Mora
Silvia	Malagoli	Srilaxmi	Srilaxmi	Martina	Marianetti	Nakita	Daniel

List of tutorials:

- 1.Altimetric_data_visualization.ipynb
- 2.Basic_análisis.ipynb
- 3.Calculation of derived variables.ipynb
- 4.Plastics_simulation.ipynb

(also in html format which will open in your browser even without jupyter installed)