B555: Midterm 2 (110 pts)

- 1. Suppose we have collection of d-dimensional observations x_1, \ldots, x_n and would like to estimate a Gaussian mixture model, p(x), with K mixture components. For notation we let π_1, \ldots, π_K be the probabilities of the K mixture components, and let μ_k, Σ_k $k = 1, \ldots, K$ be the mean and covariance for the kth component.
 - (a) (5 pts) Give the parametric form of p(x) according to the GMM.
 - (b) (5 pts) Suppose that we want to use the EM algorithm to estimate the GMM model and let π_k^{old} , μ_k^{old} , Σ_k^{old} be the current parameter estimates. To do this we assume unobserved variables c_i , $i = 1, \ldots, n$ giving the true mixture component for each x_i . Show explicitly how to compute $P(c_i = k|x_i)$?
 - (c) (10 pts) Give update equations for π_k^{new} , μ_k^{new} , Σ_k^{new} in terms of the $\{x_i\}$, the parameters $\{\pi_k^{\text{old}}, \mu_k^{\text{old}}, \Sigma_k^{\text{old}}\}$, and anything else you need to derive from these quantities.
- 2. Suppose we have data $(x_1, c_1), \ldots, (x_n, c_n)$ where each x_i has 100 binary components and each c_i is one of K possible classes. We would like build a classifier that will classify new data according to these K classes.
 - (a) (5 pts) What are the quantities (parameters, distributions, etc.) that must be estimated to approximate the Bayes classifier?
 - (b) (5 pts) What are the quantities that must be estimated to approximate the Naive Bayes classifier?
 - (c) (5 pts) Suppose that we wish to distinguish K cities, and $x_i = x_{i,1}, \ldots, x_{i,100}$ is created by sampling (at random) 100 voters from the city and asking one of 100 different yes-or-no questions. For the jth voter it is known that we will ask the jth question we use the questions in order. Say how you would model the class-conditional distributions, p(x|City = k) where x is the vector of 100 binary answers.
- 3. Suppose we have a sequence of observations $(t_1, y_1), \ldots, (t_n, y_n)$, where t_i measures the time aging a particular sample of cheese and y_i measures the content of a certain compound after the aging process. We would like to build a model that estimates y as a Mth order polynomial in t:

$$\hat{y}(t) = \hat{\alpha}_M t^M + \hat{\alpha}_{M-1} t^{M-1} + \dots + \hat{\alpha}_1 t + \hat{\alpha}_0$$

- (a) (10 pts) Explain, in detail, how to estimate the $\hat{\alpha}$ parameters using linear regression, giving an explicit formula.
- (b) (5 pts) Give the statistical model for regression that relates the y's to the t's in this case, stating the assumed distribution of all random quantities.
- (c) (5 pts) Suppose that we believe the statistical model for regression. Is the linear regression estimate, $\hat{\alpha}_0$, unbiased for the true value, α_0 ? Explain in detail what is meant by unbiasedness in this case.
- (d) (5 pts) Suppose that we want to estimate the model according to *ridge* regression with penalty parameter λ . Explain, in detail, how to estimate the vector, α in this case.
- (e) (5 pts) Is $\hat{\alpha}_0$ obtained from ridge regression unbiased? Explain why or why not?
- 4. Suppose we have $(w_1, f_1, s_1), \ldots, (w_n, f_1, s_n)$ where each w_i and f_i measure the amount of water and fertilizer a given tomato plant receives, and s_i measures the sugar content of the plant. Suppose we want to create a regression model that tries to predict future values of s from observed (w, f) values. We would like to do this by generalizing the idea of classification trees to the regression scenario. A natural impurity measure for a collection of real values s_1, \ldots, s_n is

$$I(s_1,\ldots,s_n) = \sum_i (s_i - \bar{s})^2$$

where $\bar{s} = \frac{1}{n} \sum_{i} s_i$ is the sample mean. $I(s_1, \dots, s_n)$ will be small when the s's are clustered close together and large when they are spread out.

- (a) (6 pts) Give a formula for choosing the first split of your regression tree by greedily minimizing your impurity measure.
- (b) (6 pts) Suppose that a terminal node of your regression tree is associated with the subsample of size m of the original data given by $(w_{i_1}, f_{i_1}, s_{i_1}), \ldots, (w_{i_m}, f_{i_m} s_{i_m})$. What single number should you choose to predict s if you arrive at this terminal node in your tree? Say why you would choose this number.
- 5. Suppose we want to perform K-class logistic regression on a d-dimensional data vector, x, in an effort to predict the class of x.
 - (a) (5 pts) What is the form of P(Class = k|x) according to the logistic regression model in terms of the weight vectors w_1, \ldots, w_K ?

- (b) (5 pts) Suppose our data are $(x_1, c_1), \ldots, (x_n, c_n)$ where the $\{x_i\}$ are K-dimensional vectors and the $\{c_i\}$ are the classes. Express the optimal values, $\hat{w}_1, \ldots, \hat{w}_K$ as the solution to a minimization problem.
- (c) (5 pts) Suppose we solve for the weight vectors numerically using a data set of training examples, as is usual for logistic regression, and suppose $\hat{w}_1, \ldots, \hat{w}_K$ are the locally-optimal values that result. Express this local optimality in terms of an equation that the $\hat{w}_1, \ldots, \hat{w}_K$ satisfy.
- (d) (5 pts) Suppose that the assumptions of logistic regression are known to be true, and we have been given the true weight vectors w_1, \ldots, w_K . Suppose we would like to compute the class-conditional distributions: p(x|Class = k). Explain how to do this using only the weight vectors, or why, in detail, it is not possible?