Ausgabe: 05.12.2023

Abgabe: 11.12.2023

Aufgabe 1

Die Zufallsvariablen X_1, \dots, X_n seien unabhängig und jeweils $\mathcal{N}(0; \theta)$ -verteilt, dabei ist $\theta > 0$ unbekannt. Die Dichte von X_1 ist also gegeben durch

$$f(x,\theta) = \frac{1}{\sqrt{2\pi\theta}} \cdot e^{-\frac{x^2}{2\theta}}, \quad x \in \mathbb{R}.$$

- a) Bestimmen Sie den Maximum-Likelihood-Schätzer für den Parameter θ .
- b) Welcher der beiden Schätzer

$$i. S_n = \frac{1}{n} \cdot \sum_{i=1}^n X_i^2$$

ii.
$$T_n = \frac{1}{n-1} \cdot \sum_{i=1}^n X_i^2$$

ist erwartungstreu, welcher ist asymptotisch erwartungstreu (d.h. Betrachtung des Grenzwert vom Erwartungswert der Schätzfunktion)?

Lösung 1

Aufgabe 2

Die durchschnittliche Länge von Metallstiften soll geschätzt werden. Eine Stichprobe vom Umfang 36 liefert eine mittlere Länge von $\overline{X}=38,5$ mm. Aus früheren Untersuchungen sei bekannt, dass die Länge der Metallstifte normalverteilt ist und die produzierende Maschine mit einer Standardabweichung von $\sigma=1,8$ mm arbeitet.

- a) Geben Sie ein Konfidenzintervall zum Niveau 0,95 für die erwartete Metallstiftlänge an.
- b) Welchen Umfang muss eine Stichprobe haben, damit das Konfidenzintervall zum Niveau 0,95 für die mittlere Stiftlänge halb so breit ist, wie das unter a) berechnete?

Lösung 2

Aufgabe 3

Das Umweltreferat einer Großstadt will Aufschluss darüber gewinnen, wie viele Asbestfasern pro Kubikmeter Luft im Freien in ca. einem Meter Abstand von asbestzementhaltigen Gebäudeteilen zu erwarten sind. Bei n=14 diesbezüglichen Messungen traten die Werte

Stochastik	Hausaufgaben	Ausgabe: 05.12.2023
WiSe 2023/2024	Blatt 09	Abgabe: 11.12.2023

auf, die als Ergebnisse unabhängiger normalverteilter Stichprobenvariablen angesehen werden.

- a) Führen Sie für den Erwartungswert μ der Anzahl X der unter den obigen Bedingungen vorhandenen Asbestfasern eine Intervallschätzung zum Konfidenzniveau 0.95 durch.
- b) Wie müsste das Konfindezniveau gewählt sein, damit die Länge des entstehenden Schätzintervalls gleich 500 ist?

Lösung 3

Aufgabe 4

Bei der Anlieferung von Bauteilen mit einem Drehgewinde werden einige Teile zufällig ausgewählt und deren Gewindedurchmesser vermessen. Die Abweichung (in μm) von der untersten zulässigen Durchmessergrenze, das so genannte Spiel, werden wie folgt notiert:

Das Spiel eines Drehgewindes kann durch eine normalverteilte Zufallsgröße beschrieben werden.

- a) Bestimmen Sie ein zweiseitiges Konfidenzintervall für die Varianz des Spiels zum 80% Niveau.
- b) Bestimmen Sie ein einseitig nach oben begrenztes Konfidenzintervall für die Varianz des Spiels zum 95% Niveau.

Lösung 4

Aufgabe 5

Messungen des systolischen Blutdrucks bei n=10 Personen ergaben folgende Werte in mm Hg :

Unter der Annahme, dass der Blutdruck normalverteilt ist, bestimmen Sie jeweils zum Niveau 90%

- a) ein einseitig nach oben begrenztes Konfidenzintervall für den Erwartungswert μ .
- b) ein zweiseitiges Konfidenzintervall für die Standardabweichung σ .

Lösung 5