Course Algebra 1 : Chapter 2, \mathbf{Sets} and $\mathbf{Applications}$

Menouer Mohammed Amine

October 15, 2024

Chapter 2

Sets and Applications

2.1 Sets: Definitions, properties et examples

2.1.1 Definitions

Definition 1.

1. A **set** is a collection or gathering of distinct objects or elements. It is usually denoted by a capital letter E, F, A, B, \ldots or by enclosing its constituent elements in braces $\{\ldots\}$.

Example 1. \mathbb{R} : Set of real numbers, $\{5, 6, 7, 8, 9, 10\}$: Set of natural numbers between 5 and 10, E: Set of vectors of the plane, $\mathbf{K}[X]$: Set of polynomials with one variable X, \ldots

2. If a set is determined by enumerating its elements, we say that the set is defined in **Roster** method (in french: en extension).

Example 2. $\{0, 1, 2, 3, 4, 5\}$ is the set of natural numbers less or equal to 5.

3. If a set is determined by a characteristic property of its elements, we say that the set is defined by abstraction method (in french: en compréhension).

Example 3. $E = \{n \in \mathbb{N}, n \text{ is divisible by 2}\}$ designates the set of numbers n belonging to \mathbb{N} (natural numbers) that are divisible by 2, i.e. even numbers.

4. If a set E contains a finite number n of elements, then E is said to be a **finite set** and n is its **cardinal**, which is denoted by CardE = n.

Example 4. The set of natural numbers between 5 and 10, from the previous example has the cardinal $Card\{5, 6, 7, 8, 9, 10\} = 6$.

Definition 2.

1. If a is one of the elements making up the set E, we say that a belongs to E or that a is an element of E, and we denote $a \in E$. Otherwise, a is said not to belong to E, and we denote $a \notin E$.

Example 5. $2 \in \mathbb{N}$ because 2 is an element of \mathbb{N} . $\pi \notin \mathbb{Q}$, because π is an irrational number.

- 2. If the set E contains only one element a, i.e. $E = \{a\}$, it is called a **singleton**.
- 3. If E contains no elements, it is called an **empty set** and is denoted \varnothing or $\{\}$.

Definition 3. Given two sets E and F, if all the elements of E also belong to F, and we write :

$$\forall x \in E, x \in F$$

we then say that E is included in F or that E is a subset of F, or that E is a part of F, or that F contains E. This inclusion is denoted by

$$E \subset F$$

The negation of the inclusion is:

$$E \not\subset F$$

therefore expressed as:

$$\exists x \in E, x \notin F.$$

Example 6. $\mathbb{N} \subset \mathbb{Z}$. $\{-1, \sqrt{2}, 3\} \not\subset \mathbb{Z}$.

Properties 1.

- 1. $\forall E, \varnothing \subset E$: the empty set \varnothing is included in all sets.
- 2. $\forall E, E \subset E$: any set is included in itself.
- 3. $E = F \Leftrightarrow (E \subset F \land F \subset E)$.
- 4. $(E \subset F \land F \subset G) \implies E \subset G$: the inclusion is transitive.

Remark 1. Belonging, whose symbol is \in , of an element in a set should not be confused with inclusion, whose symbol is \subset , of a set in another set.

Example 7.

$$2 \in \mathbb{N}$$
 and $\{2\} \subset \mathbb{N}$

Definition 4. Given a set E, the **set of parts of set** E, denoted $\mathcal{P}(E)$, is defined as the set containing all the subsets of E. $card\mathcal{P}(E) = 2^n$ where n = card(E).

Example 8. Let E be the set defined by :

$$E = \{-1, 0, 2\}$$

The subsets that can be constructed from E are then:

$$\{-1\}, \{0\}, \{2\}, \{-1, 0\}, \{-1, 2\}, \{0, 2\} \text{ but also } \{-1, 0, 2\} = E, \emptyset$$

So

$$\mathcal{P}(E) = \{\{-1\}, \{0\}, \{2\}, \{-1, 0\}, \{-1, 2\}, \{0, 2\}, E, \varnothing\}$$

Clearly $card\mathcal{P}(E) = 2^3 = 8$.

Remark 2. $\mathcal{P}(E)$ is a set whose elements are also sets. We deduce that a given subset of E belongs (\in) to $\mathcal{P}(E)$. We therefore have the following relations:

$$a \in E \Leftrightarrow \{a\} \subset E \Leftrightarrow \{a\} \in \mathcal{P}(E)$$

2.1.2 Sets Operations

Diagrams representing sets can be used to make certain concepts easier to understand. Let E be a set and A, B two subsets of E. The following operations are defined :

I. Union

The union of the two sets A and B is the set C of elements belonging to A or B, written as:

$$C = A \cup B$$

we read: C equals A union B. So we write:

$$C = A \cup B = \{x \in E, x \in A \text{ or } x \in B\}$$

Figure 2.1: Diagram of Union. The set $C = A \cup B$ is the green part.

C is also a subset of E.

We have the equivalence:

$$x \in A \cup B \Leftrightarrow (x \in A \text{ or } x \in B)$$

Example 9.

Let be
$$E = \{-3, -1, 0, 2\}$$
 and $F = \{-3, 0, 5, 10, 25\}$, then $E \cup F = \{-3, -1, 0, 2, 5, 10, 25\}$.

II. Intersection

The intersection of the two sets A and B is the set D of the elements belonging to A and B, we write :

$$D = A \cap B$$

we read: D equals A inter B. We therefore write:

$$D = A \cap B = \{x \in E, x \in A \text{ and } x \in B\}$$

Figure 2.2: Diagram of the intersection. The set $D = A \cap B$ is the purple part.

D is also a subset of E.

The equivalence is:

$$x \in A \cap B \Leftrightarrow (x \in A \text{ and } x \in B)$$

Example 10.

Let be
$$E =]-\infty, -1.5[$$
 and $F = [-3, 7],$ then $E \cap F = [-3, -1.5[$.

III. Set difference

The set difference A minus B is the set F of elements that belong to A and do not belong to B, written as:

$$F = A - B \text{ or } A \backslash B$$

We read : F equals A minus B. So we write :

$$F = A - B = \{x \in E, x \in A \text{ and } x \notin B\}$$

F is also a subset of E.

The equivalence is:

Figure 2.3: Diagram of the set difference A - B. The set F = A - B is the orange part (which is not A).

$$x \in A - B \Leftrightarrow (x \in A \text{ and } x \notin B)$$

Example 11.

Let be $E = \mathbb{Z}$ and $F = \{0\}$, then $E \setminus F = \mathbb{Z}^*$.

IV. Symmetrical difference

The symmetrical difference of A and B is the set G of elements belonging to one and only one of the sets A and B, written as:

$$G = A\Delta B$$

We read : G equals the symmetrical difference between A and B. We therefore write :

$$G = A\Delta B = \{x \in E, x \in A \text{ or } x \in B \text{ and } x \notin A \cap B\}$$

G is also a subset of E.

We have the equivalence:

$$x \in A\Delta B \Leftrightarrow (x \in A \text{ or } x \in B \text{ and } x \notin A \cap B)$$

Ε

the blue part.

Example 12.

Let be E = [-5, 2] and F = [0, 10], then $E\Delta F = [-5, 0]\cup [2, 10]$.

2.1.3 The Complement

The two subsets A and B of a set E are called complementary, if their union is the set E and their intersection the empty set \emptyset , we write:

$$B = \mathbf{C}_E A$$
 or A^c or \overline{A}

We read: B equals the complement of A in E. So we write

$$B = \mathbf{C}_E A = \{x \in E, x \notin A\}$$

 $C_E A$ is also a subset of E.

We have the equivalence :

$$x \in \mathcal{C}_E A \Leftrightarrow x \notin A$$

Example 13. $\mathbb{C}_{\mathbb{Z}}\mathbb{Z}_{-}=\mathbb{Z}_{+}^{*}$.

$\mathsf{C}_E A$

Figure 2.4: Diagram of the Symmetric

Difference $A\Delta B$. the set $G = A\Delta B$ is

В

Figure 2.5: Diagram of the complement C_EA . The set $B = C_EA$ is the part in yallow colour.

2.1.4 Union and intersection of parts of a set

Definition 5. Let I be a part of \mathbb{N} and $(E_i)_{i\in I}$ a family of parts of E. We Note:

$$\bigcup_{i \in I} E_i = \{ x \in E, \exists i \in I, x \in E_i \}$$

$$\bigcap_{i \in I} E_i = \{ x \in E, \forall i \in I, x \in E_i \}$$

Example 14. Let be the set: $E = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $I = \{0, 1, 2\}$ such that:

$$E_0 = \{0, 1, 3\}, E_1 = \{3, 5, 8, 10\}, E_2 = \{3, 6\}$$

then $(E_i)_{i\in I} = \{E_0, E_1, E_2\}$ is a family of parts of E. We have then:

$$\bigcup_{i \in I} E_i = E_0 \cup E_1 \cup E_2 = \{0, 1, 3, 5, 6, 8, 10\}$$

we can see that $0, 1, 3 \in E_0, 5, 8, 10 \in E_1 \text{ and } 6 \in E_2$.

We have too:

$$\bigcap_{i \in I} E_i = E_0 \cap E_1 \cap E_2 = \{3\}$$

we can see that $3 \in E_0$, $3 \in E_1$ and $3 \in E_2$.

Remark 3. We have then, for all x of E:

$$x \in \bigcup_{i \in I} E_i \iff \exists i \in I, \ x \in E_i$$

$$x \in \bigcap_{i \in I} E_i \iff \forall i \in I, \ x \in E_i$$

Definition 6. Let I be a part of \mathbb{N} and $(E_i)_{i\in I}$ a family of non-empty parts of E. We say that this family forms a **parition** of E if:

$$\begin{cases} \bigcup_{i \in I} E_i = E \\ \forall (i, j) \in I^2, i \neq j \Longrightarrow E_i \cap E_j = \emptyset \end{cases}$$

Example 15.

1. Let be the set:

$$E = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

- The family: $\{\{0\}, \{1, 2, 3\}, \{4, 5, 6, 7, 8, 9\}\}$ forms a partition of E.
- The family: $\{\{0,1\},\{2,3,4,5\},\{6,7,8,9\}\}$ also forms a partition of E.
- 2. The part made up of even integers and the part made up of odd integers form a partition of \mathbb{Z} .

2.1.5 Some properties

Let A, B and C be subsets of E, then we have the following properties:

- 1. Commutativity $A \cup B = B \cup A$ and $A \cap B = B \cap A$.
- 2. Associativity $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$.
- 3. Distributivity $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 4. **Idempotency** $A \cup A = A$ et $A \cap A = A$.
- 5. **De Morgan's laws** $C_E(A \cup B) = C_E A \cap C_E B$ and $C_E(A \cap B) = C_E A \cup C_E B$.
- 6. $A \cap E = A$ and $A \cup E = E$.
- 7. $A \cap B = B \iff B \subset A \text{ and } A \cup B = A \iff B \subset A$
- 8. $A \subset A \cup K$ for any K subset of E.

2.1.6 Examples: Famous sets

The usual sets are denoted by a capital letter in double bar (Blackboard Bold) \mathbb{E} . If a star is added to the power \mathbb{E}^* this denotes the same set \mathbb{E} but without the null element. If the symbol + (respectively -) is added to the subscript, this denotes the subset of \mathbb{E} whose elements are of positive (resp. negative) sign or equal to zero:

 \mathbb{N} : The set of natural numbers: $0, 1, 2, 3 \dots$

 \mathbb{Z} : The set of integers: ..., -5, -4, -3, -2, -1, 0, 1, 2, 3, ...

 \mathbb{Q} : The set of rational numbers : $\left(\frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{Z}^*\right)$.

 \mathbb{R} : The set of real numbers :..., $-3.1, \ldots, -1, \ldots, 0, \ldots, \pi, \ldots, 10, \ldots$

 \mathbb{C} : The set of complex numbers: $(a+i\cdot b, a, b\in \mathbb{R})$.

2.1.7 Cartesian product

Definition 7. Let A and B be two sets. The set of pairs (a,b) where $a \in A$ and $b \in B$, is called the **Cartesian product** of sets A and B. It is denoted by:

$$A \times B$$

If $A \neq B$, then $A \times B \neq B \times A$.

If A = B then, $A \times B = A \times A = A^2$.

If A and B are finite sets, then the cardinal is: $card(A \times B) = cardA \times cardB$.

Example 16.

$$\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$

is the set of pairs (x, y) where $x \in \mathbb{R}$ and $y \in \mathbb{R}$. Similarly

$$\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} = \mathbb{R}^n$$

is the set of families with n elements (x_1, x_2, \ldots, x_n) where $x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, \ldots, x_n \in \mathbb{R}$.

2.2 Applications

Definition 8. Let E and F be two sets.

An application from E to F is any correspondence f associating each element x of E a single element y of F.

E is the starting set. An element of E, usually x, is an antecedent or a pre-image.

F is the **arrival set**. An element of F, usually y, which is associated with x by the application f is the **image** of x by f. All this is denoted by :

$$f: E \to F$$

 $x \mapsto y = f(x)$

The set of all applications from E into F is denoted by : F^E .

Figure 2.6: Schema of an application f from a set E to a set F

Remark 4.

- 1. An application is a **function** whose domain of definition is the entire starting set.
- 2. The **graph** of an application $f: E \longrightarrow F$ is the set $: \Gamma_f = \{(x, f(x)) \in E \times F, x \in E\}$

Example 17.

1. Let be the application f and its schema:

$$f: \mathbb{N} \to \mathbb{N}$$

 $n \mapsto y = f(n) = 2n$

Figure 2.7: Schema of the application f

2. The application:

$$f: E \to E$$
$$x \mapsto y = f(x) = x$$

is called the identity application in E and is denoted : Id_E .

3. Let $A \subset E$. The application :

$$f: E \to \{0, 1\}$$

$$x \mapsto \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \in \mathbb{C}_E A \end{cases}$$

is called the **indicator** or **characteristic application** of part A and is denoted by : 1_A or χ_A .

Definition 9. Let E and F be two sets and f an application from E to F.

(a) For any part A of E, the **direct image** of A by f, denoted f(A), is defined by:

$$f(A) = \{ f(x) \in F, x \in A \}$$

i.e.: the images, of all elements x of A, which belong to F. We have $f(A) \subset F$.

(b) For any part B of F, we define the **reciprocal image** of B by f, denoted $f^{-1}(B)$, by :

$$f^{-1}(B) = \{x \in E, f(x) \in B\}$$

i.e.: The elements of E (not necessarily all of them) whose images f(x) belong to B. We have $f^{-1}(B) \subset E$.

Example 18. Let f be the following application:

$$f:]-\sqrt{3}, +\infty[\rightarrow \mathbb{R}_+$$

 $x \mapsto f(x) = x^2 - 3$

- 1. Determine the direct image of the set $A = \{-\sqrt{2}, 3, 0.5, \pi, 8\}$ by the application f.
- 2. Determine the reciprocal image of the set B = [0,1] by the application f.

Solution.

(a) Direct image f(A)

(b) Reciprocal image $f^{-1}(B)$

Figure 2.8: Direct and reciprocal images

1. $f(A) = \{ f(x) \in \mathbb{R}_+, x \in A \}.$

The elements x of A being $: -\sqrt{2}, 3, 0.5, \pi, 8$ let's calculate their images by the application $f: f(-\sqrt{2}) = -1, \ f(3) = 6, \ f(0.5) = -2.75, \ f(\pi) = \pi - 3, \ f(8) = 61$ but $f(-\sqrt{2}) = -1 \notin \mathbb{R}_+$ and $f(0.5) = -2.75 \notin \mathbb{R}_+$ and all the other images belong to \mathbb{R}_+ . So:

$$f(A) = \{f(3), f(\pi), f(8)\}\$$

= \{6, \pi - 3, 61\}

2. $f^{-1}(B) = \{x \in]-\sqrt{3}, +\infty[, f(x) \in B\}.$ Let $x \in]-\sqrt{3}, +\infty[,$

$$f(x) \in B \iff f(x) \in [0,1]$$

$$\iff 0 \le f(x) \le 1$$

$$\iff 0 \le x^2 - 3 \le 1$$

$$\iff 3 \le x^2 \le 4$$

$$\iff -\sqrt{3} \le x \le -2 \text{ ou } 2 \le x \le \sqrt{3}$$

$$\iff x \in [-\sqrt{3}, -2] \cup [2, \sqrt{3}]$$

but $-\sqrt{3} \notin]-\sqrt{3}, +\infty[$ Therefore

$$f^{-1}(B) =] - \sqrt{3}, -2] \cup [2, \sqrt{3}]$$

2.2.1 Injection

Let f be an application from E to F. If for each two (distinct) elements of E there correspond, through f, two distinct elements of F, we say that f realizes an **injection** from E into F or that f is an **injective application** (also called a **one-to-one application**), then we have :

$$\forall x_1, x_2 \in E \qquad x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$

or what amounts to the same thing:

$$\forall x_1, x_2 \in E \qquad f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

The application f is **non-injective** if the negation of the previous statement is verified i.e.

$$\exists x_1, x_2 \in E$$
 $f(x_1) = f(x_2) \text{ and } x_1 \neq x_2$

Example 19.

(a) Injective application

(b) Non-injective application

Figure 2.9: In figure (b), the two elements x_1, x_2 have the same image y_1 , which makes the application f non-injective.

1. Let be the following application:

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \mapsto f(x) = x + 1$

Show that f is an injective application.

Let x_1, x_2 be any two elements of \mathbb{R} .

$$f(x_1) = f(x_2) \Longrightarrow x_1 + 1 = x_2 + 1$$

 $\Longrightarrow x_1 = x_2$

then f is injective.

2. Let be the application:

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto g(x) = x^2$$

Is q injective?

Method 1: Note that since 2 and -2 are both elements of \mathbb{R} , we can calculate $g(2) = 2^2 = 4$ and $g(-2) = (-2)^2 = 4$, hence g(2) = g(-2) and $2 \neq -2$ and this is a negation of the definition, which is $\exists x_1, x_2 \in \mathbb{R}$, $g(x_1) = g(x_2)$ and $x_1 \neq x_2$, hence g is not injective.

Method 2: Try to show that g is injective, using the definition:

Let
$$x_1, x_2 \in \mathbb{R}, g(x_1) = g(x_2)$$
.

$$g(x_1) = g(x_2) \iff x_1^2 = x_2^2$$

 $\implies x_1 = x_2 \text{ or } x_1 = -x_2$

and so g is not injective, because $x_1 = -x_2$ means that there are $x_1, x_2 \in \mathbb{R}$ which are not equal and which have the same image by g.

2.2.2 Surjection

Let f be an application from E to F. If any element of F is the image by the application f of **at** least one element of E, then we say that f is a **surjection** of E onto F or that f is a **surjective application**. Then we have :

$$\forall y \in F, \ \exists x \in E, \ y = f(x)$$

The application f is **non-surjective** if we have the negation of the previous statement:

$$\exists y \in F, \ \forall x \in E, \ y \neq f(x)$$

(a) Surjective application

(b) Non-surjective application

Figure 2.10: In figure (b), the element y_2 has no antecedent, which makes the application f non-superjective.

Example 20.

1. Let be the application:

$$f: [-1,0] \longrightarrow [0,1]$$

 $x \mapsto f(x) = \sqrt{x+1}$

Is f surjective?

Let $y \in [0,1]$, check if there is an $x \in [-1,0]$ such that y is its image by f. Let's assume that this x exists. y is the image of x by f, which means : y = f(x)

$$y = f(x) \iff y = \sqrt{x+1}$$

 $\implies y^2 = x+1 \ because \ y \ge 0$
 $\implies x = y^2 - 1 \in [-1, 0] \ because \ y \in [0, 1] \ and \ then \ y^2 \in [0, 1]$

hence f is surjective.

2. Let be the application:

$$g: \mathbb{R}^* \longrightarrow \mathbb{R}$$
$$x \mapsto \frac{1}{x}$$

Is g surjective?

Method 1: Note that:

$$\forall x \in \mathbb{R}^*, \ g(x) = \frac{1}{x} \neq 0$$

but the $0 \in \mathbb{R}$, this means that the 0has no antecedent in \mathbb{R}^* . So g is not surjective.

Method 2: Try to show that g is surjective.

Let $y \in \mathbb{R}$, check if there is an $x \in \mathbb{R}^*$ such that y is its image by g. Let's assume that this x exists. y is the image of x by g, which means : y = g(x)

$$y = g(x) \iff y = \frac{1}{x}$$

 $\implies x = \frac{1}{y} \text{ for } y \neq 0$

If y = 0 then we cannot find an $x = \frac{1}{y}$, which means that y = 0 has no antecedent, hence g is not surjective.

2.2.3 Bijection

If f is both **injective** and **surjective**, we say that f makes a **bijection** from E to F, or that f is a **bijective application**. This is expressed as:

Any element $y \in F$ is the image of a unique element $x \in E$.

$$\forall y \in F, \exists ! x \in E, y = f(x)$$

Since each element $y \in F$ can be associated with a single element $x \in E$, we can then define an application from F to E, called the **inverse** or **reciprocal application** of f and denoted f^{-1} . This application is characterised by :

$$\forall x \in E, \ \forall y \in F, \ y = f(x) \Leftrightarrow x = f^{-1}(y)$$

Remark 5. The reciprocal application f^{-1} , which only exists if f is bijective, should not be confused with the reciprocal image of a set B, $f^{-1}(B)$, which is a set and always exists.

(a) Bijective application

(b) Bijective application and its inverse

Example 21.

Let f be the following application:

$$f: \mathbb{R} \longrightarrow \mathbb{R}_+^*$$
$$x \mapsto f(x) = e^x$$

Is f bijective? If so, determine its reciprocal.

Let $y \in \mathbb{R}_+^*$, check if there is a unique $x \in \mathbb{R}$ such that y is its image by f. Assume that x exists. y is the image of x by f, which means that y = f(x).

$$y = f(x) \iff y = e^x$$

 $\iff \ln y = \ln e^x \text{ since } y > 0$
 $\iff x = \ln y \in \mathbb{R}$

hence f is bijective.

Since the application f is bijective, we can define its reciprocal application as follows:

$$f^{-1}: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$
$$y \mapsto f^{-1}(y) = \ln y.$$

Remark 6. Let $f: E \longrightarrow F$ be an application

- 1. f is surjective if and only if f(E) = F.
- 2. If f is strictly monotonic on E then it is injective.

2.2.4 Applications composition

Let $f: E \longrightarrow F$ and $g: F \longrightarrow G$ be two applications. We define the composite application:

$$g \circ f : E \longrightarrow G$$

 $x \mapsto y = (g \circ f)(x) = g(f(x))$

Figure 2.12: Applications composition

Example 22. Let be the following two applications:

$$f: \mathbb{R} \longrightarrow \mathbb{R}_+$$

$$x \longrightarrow e^x$$

$$g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$$

$$x \longrightarrow \sqrt{x}$$

then the composite application $g \circ f$ is defined as follows:

$$g \circ f : \mathbb{R} \longrightarrow \mathbb{R}_+$$

 $x \mapsto (g \circ f)(x) = g(f(x)) = \sqrt{e^x}.$

Properties 2.

1. For all applications: $f: E \longrightarrow F$, $q: F \longrightarrow G$ and $h: G \longrightarrow H$, we have:

$$(h \circ g) \circ f = h \circ (g \circ f)$$

- 2. The composite of two injective (resp. surjective) applications is an injective (resp. surjective) application.
- 3. The composite of two bijective applications is a bijective application, and we have :

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

4. For $f: E \longrightarrow F$ bijective, we have :

$$f^{-1} \circ f = Id_E$$
 and $f \circ f^{-1} = Id_F$

and
$$(f^{-1})^{-1} = f$$
.

Definition 10. The applications $f: E \longrightarrow F$, and $g: G \longrightarrow H$ are said to be equal if:

$$E = G$$
, $F = H$, and $\forall x \in E = G$, $f(x) = g(x)$.

Definition 11. Let $f: E \longrightarrow F$ be an application:

1. Let $A \subset E$ and $g : A \longrightarrow F$ an application. If for all $x \in A$, g(x) = f(x), then the application g : is the **restriction** of f to A and is denoted $f|_A$.

2. Let G be a set such that $E \subset G$ and $h: G \longrightarrow F$ an application. If for all $x \in G$, h(x) = f(x) then the application h is called: the **extension** of f to G.

Example 23. Let be the application:

$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}$$
$$x \mapsto f(x) = x^2.$$

The application:

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \mapsto f(x) = x^2.$

is the extension of the application f to \mathbb{R} , and the application

$$h: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$
$$x \mapsto f(x) = x^2.$$

is the restriction of the application f to \mathbb{R}_+^* .

Definition 12. A part A of a set E is said to be **stable** by an application $f: E \longrightarrow E$ if and only if:

$$\forall x \in A, \ f(x) \in A.$$

Properties 3. Let $f: E \longrightarrow F$ be an application

- 1. For all parts A, B of E, we have :
 - (a) $A \subset B \Longrightarrow f(A) \subset f(B)$
 - (b) $f(A \cup B) = f(A) \cup f(B)$
 - (c) $f(A \cap B) \subset f(A) \cap f(B)$
- 2. For all parts C, D of F, we have :
 - $(a) \ C \subset D \Longrightarrow f^{-1}(C) \subset f^{-1}(D)$
 - (b) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
 - (c) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$
 - (d) $f^{-1}(\mathbf{C}_F C) = \mathbf{C}_E f^{-1}(C)$

Proof.

1. Let's show the property $A \subset B \Longrightarrow f(A) \subset f(B)$

Assume that $A \subset B$ and let's show that $f(A) \subset f(B)$. Let $y \in f(A)$.

$$y \in f(A) \Longrightarrow \exists x \in A, y = f(x) \text{ from the definition of the direct image } f(A).$$

 $\Longrightarrow \exists x \in B, y = f(x) \text{ because } A \subset B$
 $\Longrightarrow y \in f(B) \text{ from the definition of the direct image } f(B).$

so
$$f(A) \subset f(B)$$
.

2. Let us show the property $f(A \cap B) \subset f(A) \cap f(B)$. Let $y \in f(A \cap B)$.

$$y \in f(A \cap B) \Longrightarrow \exists x \in (A \cap B), y = f(x)$$

$$\Longrightarrow (\exists x \in A, y = f(x)) \text{ and } (\exists x \in B, y = f(x))$$

$$\Longrightarrow (y \in f(A)) \text{ and } (y \in f(B))$$

$$\Longrightarrow y \in (f(A) \cap f(B))$$

then $f(A \cap B) \subset f(A) \cap f(B)$.

Example 24. Let the application : $f : \mathbb{R} \longrightarrow \mathbb{R}$ be defined by : $\forall x \in \mathbb{R}$, $f(x) = x^2$ and the subsets of \mathbb{R} , A = [0,1] and B = [-1,0]. We then have :

$$f(A) = f(B) = [0,1] \ hence \ f(A) \cap f(B) = [0,1], \ but \ A \cap B = \{0\}, \ hence \ f(A \cap B) = f(\{0\}) = \{0\}$$

so $f(A \cap B) \subset f(A) \cap f(B)$ only without equality.

Let us show that the inverse inclusion occurs if f is injective.

Let $y \in f(A) \cap f(B)$.

$$y \in f(A) \cap f(B) \Longrightarrow y \in f(A) \text{ and } y \in f(B)$$

 $\Longrightarrow (\exists x_1 \in A, y = f(x_1)) \text{ and } (\exists x_2 \in B, y = f(x_2)), \text{ if } f \text{ is injective then } x_1 = x_2$
 $\Longrightarrow x_1 \in B \text{ too and et } x_2 \in A \text{ too.}$
 $\Longrightarrow x_1 = x_2 \in A \cap B$
 $\Longrightarrow y = f(x_1) = f(x_2) \in f(A \cap B)$

so $f(A) \cap f(B) \subset f(A \cap B)$ if f is injective. Conclusion: If f is injective, then $f(A \cap B) = f(A) \cap f(B)$.

3. Let us show the property : $C \subset D \Longrightarrow f^{-1}(C) \subset f^{-1}(D)$. Let $x \in f^{-1}(C)$.

$$x \in f^{-1}(C) \Longrightarrow f(x) \in C$$

 $\Longrightarrow f(x) \in D \text{ because } C \subset D$
 $\Longrightarrow x \in f^{-1}(D)$

so $f^{-1}(C) \subset f^{-1}(D)$.