Computer Vision HW2 Report

Student ID: R12K41025

Name: 杜冠廷

Part 1. (10%)

• Plot confusion matrix of two settings. (i.e. Bag of sift and tiny image) (5%) Ans:

• Compare the results/accuracy of both settings and explain the result. (5%) Ans:

Accuracy				
Tiny Image	0.23			
Bag of SIFT	0.616			

As expected, the performance of Tiny Image is worse than that of Bag of SIFT because the Tiny Image approach can only capture very basic image features, such as color distribution and brightness. In contrast, Bag of SIFT can extract more detailed and discriminative features, such as textures, edges, and local shapes. The process of building the vocabulary and generating the vocab.pkl file takes a significant amount of time. To reduce this, we limited the vocabulary construction to only 1/10 of the images from the training set and extracted a maximum of 80 feature points per image.

Part 2. (25%)

• Report accuracy of both models on the validation set. (2%)

Ans:

Accuracy			
MyNet	0.7464		
ResNet18	0.9232		

• Print the network architecture & number of parameters of both models. What is the main difference between ResNet and other CNN architectures? (5%)

Ans:

Layer (type) Conv2d-1 ReLU-2 Conv2d-3 ReLU-4 Conv2d-5 ReLU-4 Conv2d-6 ReLU-7 Conv2d-8 ReLU-7 Conv2d-8 ReLU-9 Conv2d-1 ReLU-9 Conv2d-1 ReLU-9 Conv2d-1 ReLU-9 Conv2d-1 ReLU-1 Conv2d-1 ReLU-1 Conv2d-1 ReLU-7 Conv2d-8 Relu-7 Conv2d-8 Relu-9 Conv2d-9 Conv2d-10 Conv2d-10 Conv2d-10 Conv2d-11 Relu-12 Conv2d-13 Relu-14 Relu-15 Relu-15 Relu-14 Relu-16 Relu-17 Relu-18 Relu-18 Linear-19 Relu-18 Linear-19 Relu-18 Linear-19 Relu-19 Relu-19 Relu-18 Linear-19 Relu-19 Linear-19 Relu-19 Relu-18 Linear-19 Linear-19 Suppose Avance A		MyNet	
ReLU-2	Layer (type)	Output Shape	Param #
Linear-21 [-1, 312] 5,130	ReLU-2 Conv2d-3 ReLU-4 MaxPool2d-5 Conv2d-6 ReLU-7 Conv2d-8 ReLU-9 MaxPool2d-10 Conv2d-11 ReLU-12 Conv2d-13 ReLU-14 MaxPool2d-15 Flatten-16 Linear-17 ReLU-18 Linear-19 ReLU-20	[-1, 64, 224, 224] [-1, 64, 224, 224] [-1, 64, 224, 224] [-1, 64, 112, 112] [-1, 128, 112, 112] [-1, 128, 112, 112] [-1, 128, 112, 112] [-1, 128, 112, 112] [-1, 128, 28, 28] [-1, 256, 28, 28] [-1, 256, 28, 28] [-1, 256, 28, 28] [-1, 256, 28, 28] [-1, 256, 28, 28] [-1, 256, 28, 28] [-1, 256, 28, 28] [-1, 256, 28, 28] [-1, 256, 28, 28] [-1, 256, 28, 28] [-1, 256, 12, 28] [-1, 256, 28, 28] [-1, 256, 28, 28] [-1, 256, 28, 28] [-1, 512] [-1, 1024] [-1, 512]	0 36,928 0 0 73,856 0 147,584 0 295,168 0 590,080 0 0 12,846,080 0 524,800
	Input size (MB): 0.57 Forward/backward pass si Params size (MB): 55.39 Estimated Total Size (MB		

ResNet18

BatchNo	Param #	Output Shape	Layer (type)
Basic	1,728	[-1, 64, 114, 114]	-=====================================
Co	128	[-1, 64, 114, 114]	BatchNorm2d-2
BatchNo	Θ	[-1, 64, 114, 114]	ReLU-3
	Θ	[-1, 64, 57, 57]	MaxPool2d-4
Co	36,864	[-1, 64, 57, 57]	Conv2d-5
BatchNo	128	[-1, 64, 57, 57]	BatchNorm2d-6
	Θ	[-1, 64, 57, 57]	ReLU-7
Basic	36,864	[-1, 64, 57, 57]	Conv2d-8
Co	128	[-1, 64, 57, 57]	BatchNorm2d-9
BatchNo	Θ	[-1, 64, 57, 57]	ReLU-10
Datelin	Θ	[-1, 64, 57, 57]	BasicBlock-11
Co	36,864	[-1, 64, 57, 57]	Conv2d-12
	128	[-1, 64, 57, 57]	BatchNorm2d-13
BatchNo	Θ	[-1, 64, 57, 57]	ReLU-14
Co	36,864	[-1, 64, 57, 57]	Conv2d-15
BatchNo	128	[-1, 64, 57, 57]	BatchNorm2d-16
	Θ	[-1, 64, 57, 57]	ReLU-17
Basic	Θ	[-1, 64, 57, 57]	BasicBlock-18
Co	73,728	[-1, 128, 29, 29]	Conv2d-19
BatchNo	256	[-1, 128, 29, 29]	BatchNorm2d-20
	Θ	[-1, 128, 29, 29]	ReLU-21
Co	147,456	[-1, 128, 29, 29]	Conv2d-22
BatchNo	256	[-1, 128, 29, 29]	BatchNorm2d-23
2000	8,192	[-1, 128, 29, 29]	Conv2d-24
Basic	256	[-1, 128, 29, 29]	BatchNorm2d-25
AdaptiveAvgPo	9	[-1, 128, 29, 29]	ReLU-26
Adapt tveAvgPt	0	[-1, 128, 29, 29]	BasicBlock-27
Re	147,456	[-1, 128, 29, 29]	Conv2d-28
Re	256	[-1, 128, 29, 29]	BatchNorm2d-29
T-4-1	147 456	[-1, 128, 29, 29]	ReLU-30
Total params	147,456	[-1, 128, 29, 29]	Conv2d-31
Trainable par	256	[-1, 128, 29, 29]	BatchNorm2d-32 ReLU-33
Non-trainable	Θ Θ	[-1, 128, 29, 29] [-1, 128, 29, 29]	ReLU-33 BasicBlock-34
	294,912	[-1, 128, 29, 29] [-1, 256, 15, 15]	Conv2d-35
Input size (294,912	[-1, 256, 15, 15] [-1, 256, 15, 15]	BatchNorm2d-36
Forward/backy	0	[-1, 256, 15, 15]	ReLU-37
Params size	589,824	[-1, 256, 15, 15] [-1, 256, 15, 15]	Conv2d-38
Estimated To	512	[-1, 256, 15, 15]	BatchNorm2d-39
	32,768	[-1, 256, 15, 15]	Conv2d-40
	32,700	[-1, 230, 13, 13]	CONVZU-40

5110110				
BatchNorm2d-41	[-1, 256, 15, 15] [-1, 256, 15, 15] [-1, 256, 15, 15] [-1, 256, 15, 15] [-1, 256, 15, 15] [-1, 256, 15, 15] [-1, 256, 15, 15] [-1, 256, 15, 15] [-1, 256, 15, 15] [-1, 256, 15, 15] [-1, 512, 8, 8] [-1, 512, 1, 1] [-1, 10]	512 0 589,824 512 0 589,824 512 0 0 1,179,648 1,024 0 2,359,296 1,024 0 2,359,296 1,024 0 2,359,296 1,024 0 0 2,359,296 1,024 0 0 5,130 0		
Total params: 11,173,962 Trainable params: 11,173,962 Non-trainable params: 0				
Input size (MB): 0.57 Forward/backward pass size (MB): 67.01 Params size (MB): 42.63 Estimated Total Size (MB): 110.21				

 \bullet Plot four learning curves (loss & accuracy) of the training process (train/validation) for both models. Total 8 plots. (8%)

Ans:

• Briefly describe what method do you apply on your best model? (e.g. data augmentation, model architecture, loss function, etc) (10%) Ans:

Since ResNet18 is designed for classifying the large-scale dataset, I resized the images on CIFAR-10 to 224×224 to prevent excessive information loss caused by the Max Pooling layer. Additionally, due to the limited amount of training data, I applied several data augmentation techniques to prevent overfitting:

- 1. transforms.RandomResizedCrop(224, scale=(256/480, 1.0))
- 2. transforms.RandomHorizontalFlip()
- 3. transforms.RandomRotation(10)
- 4. transforms.RandomGrayscale()`