NATURAL LANGUAGE PROCESSING

WITH DEEP LEARNING

Lecturer: Javad PourMostafa

NLP981

Introduction to NLP

MAIN APPROACHES

- I. Rule-based Methods
 - I. Regular Expression
 - 2. CFG
 - 3. ...
- 2. Traditional ML algorithms and Probabilistic modeling
 - I. Likelihood Maximization
 - 2. Supervised/Non-supervised algorithms
 - 3. ...
- 3. Deep Learning
 - I. RNN
 - 2. CNN
 - 3. ...

SEMANTIC SLOT FILLING: CFG

- What are Context Free Grammar?
 - A formal grammar
 - Every production rule is of the form V → w
 - V is a single nonterminal symbol and w is a string of terminals and/ or non-terminals
- Context Free Grammar:
 - SHOW → show me | i want | can i see | ...
 - FLIGHTS \rightarrow (a) flight | flights
 - ORIGIN → from CITY
 - DESTINATION → to CITY
 - CITY → Rasht | Tehran | Dubai | Isfahan | Istanbul

SEMANTIC SLOT FILLING: CFG (CONT.'S)

- Advantages vs. Disadvantages?
 - Usually done manually
 - Time Consuming
 - High Precision
 - Low Recall

CONFUSION MATRIX

- Machine Learning Fundamental
- Dividing data into Training set and Testing set
- Summarize performance on the Testing data
- Create confusion matrix

Actual Values

Positive (1) Negative (0)

FP

TN

Predicted Values

Positive (1)	TP
Negative (0)	FN

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

SEMANTIC SLOT FILLING: CRF

- A Probabilistic Graphical Model
- Training Corpus:

ORIG DEST DATE

Show me flights from Rasht to Tehran on friday.

- Some Feature Engineering:
 - Is the word in a list of city names?
 - What is the previous slot?
 - Is the word capitalized?
 -

SEMANTIC SLOT FILLING: CRF (CONT'D)

Define your Conditional Random Field model:

P(tags | words) = ...

Parameters 0

 $P(tags \mid words) \longrightarrow Max by \Theta$

Inference/Evaluation/Test:

Training:

 $tags^* = argmax P(tags | words)$

SEMANTIC SLOT FILLING: LSTM

- Deep Learning Approach
- Long-term Sequences
- No feature generation
- Defining Model, Train and Inference

DEEP LEARNING VS. TRADITIONAL NLP

- WHY DL?
 - State-of-the-art performance in subtasks
 - Sentiment Analysis
 - MT
 - Look fancy and has upward trend
 - Most research is happening (ACL, EMNLP, arxiv, etc.)
- Our strategy?
 - Mainly work on DL approaches
 - However study traditional ones

NLP PYRAMID

MORPHOLOGY

- Analyses how words formed
- What is their origin
- Mostly deal with:
 - Prefixes/suffixes
 - Gender detection
 - Lemmatization
 - Spell checking
- Operations are at word level (viewed as a sequence of chars)

SYNTAX

- Underlying structure of a sentence
- Refer to grammar
- Most researched branch of CL
- Tasks:
 - POS tagging
 - Building Syntax Trees
 - Building Dependency Trees
- Usually works on sentences (viewed as sequence of words)

SEMANTIC

- Derives meaning from text
- Known problems
 - Name Entity Recognition
 - Relation Extraction
 - Semantic Role Labeling (shallow semantic parsing)
 - Word Sense Disambiguation
- Works on sentences (viewed as a sequence of words)

PRAGMATICS

- Analyses the text as a whole
- Tasks:
 - Summarization
 - Topic Segmentation
 - Coreference / Anaphora resolution (find out what word refers what.)
- Works on a text (viewed as a sequence of sentences)

Text Classification

SCENARIO OF TEXT CLASSIFICATION

- Task : Sentiment Analysis
- Input: IMDB movie reviews dataset
- Output: Polarity
- Pos example:
 - "I've seen this story before but my kids haven't.

Boy with troubled past joins military, faces his past, falls in love and becomes a man."

- Neg example:
 - "I feel about DARLING LILI. This massive musical is so peculiar and over blown, over produced and must have "

WHAT'S TEXT?

- A sequence of
 - Characters
 - ✓ Words
 - Phrases
 - Sentences
 - Paragraphs
 - **...**
- Seems natural to think of a text as a sequence of words!
- How to find the boundaries of words?
 - Punctuation or spaces

TOKENIZATION

- Task of chopping given a defined doc unit up into pieces, called tokens.
- A good example of simple whitespace tokenizer in python:
 - NLTK package for English :
 - nltk.tokenize.WhitespaceTokenizer,
 - nltk.tokenize.TreebankWordTokenizer()
 - nltk.tokenize.WordPuncTokenizer()
 - Hazm package for Persian:
 - word_tokenize()

TOKEN NORMALIZATION

- Stemming: Find the root form of the word called the stem
 - by removing and replacing suffixes
 - Porter's stemmer
- Lemmatization: Return the base of dictionary form of a word known lemma
 - WordNet lemmatizer
- Like:
 - wolves → wolf
 - $talks \rightarrow talk$

PORTER'S STEMMER

- An algorithm for suffix stripping
- Using 5 heuristic phases for word reduction
- Applied sequentially
- Example of phase one rules:
 - SSES \rightarrow SS caresses \rightarrow caress
 - IES \rightarrow I ponies \rightarrow poni
 - $SS \rightarrow SS$. caress \rightarrow caress
 - \blacksquare S \rightarrow cats \rightarrow cats
- Problem with irregular forms, produce non-words

nltk.stem.PorterStemmer examples:

- -feet → feet
- -wolves → wolv
- -cats \rightarrow cats
- -talked → talk

WORDNET LEMMATIZER

- Uses the WordNet database to lookup lemmas
- Only removes affixes if the resulting word is in its dic
- nltk.stem.WordNetLemmatizer
- Not all forms are reduced!

nltk.stem.WordNetLemmatizer examples:

- -feet → foot
- -wolves → wolf
- -cats \rightarrow cat
- -talked → talked

OTHER NORMALIZATION

- Normalization capital letters
 - approaches:
 - Lowercasing the beginning of the sentence
 - Lowercasing words in titles
 - Leave mid-sentence words as they are
 - Use ML to retrieve true casing
- Acronyms
 - Frequently use in text msg and chats
 - eta, e.t.a., E.T.A. \rightarrow E.T.A.
 - Write regular expressions, however it's hard!

BAG OF WORDS (BOW)

- Count the occurrence of a specific token in our text
- For each token we'll have a feature column called
 - Text Vectorization
- Example:
 - Sentence 1:1 like to play tennis
 - Sentence 2: Did you go outside to play tennis
 - Sentence 3: John and I play tennis

Sentences	like	play	tennis	go	outside
#I	1	1	1	0	0
#2	0	1	I	1	I
#3	0	1	1	0	0

- Disadvantages?
 - Careful design in vocabulary
 - Sparsity
 - Discard word order in the context (This is interesting vs. Is this interesting?)

PRESERVE SOME ORDERING: N-GRAMS

- Solution: using n-grams technique
- Like: 2-grams for token pairs and so forth.
- Example:
 - Sentence I:I like to play tennis
 - Sentence 2: Did you go outside to play tennis
 - Sentence 3: John and I play tennis

Disadvantages	?
---------------------------------	---

Too many text vectorizations

Sentences	like to	play tennis	tennis	go outside	outside
#I	1	I	I	0	0
#2	0	I	I	I	I
#3	0	I	I	0	0

REMOVE SOME N-GRAMS

- There are 3 types of n-grams based on their occurrence in documents:
- High Frequency
 - Articles, prepositions, etc.
 - Called Stop-words → Remove them
- Low Frequency
 - Typos and rare n-grams → remove them
 - If we like to overfit our model, then it will be a good choice
- Medium Frequency
 - Good n-grams → Sustainable

TF-IDF

- There are numerous medium frequency n-grams
- Filtering out bad n-grams is useful
- Would be better if we set a ranking system for medium frequency n-grams
- Idea: n-grams with smaller frequency can be more discriminating
- Cause: capture a specific issue in the review

TERM FREQUENCY (TF)

- *tf*(*t*, *d*)
- Frequency for term or n-gram t in the document d
- Variants:

Weighting scheme	TF weight
binary	0, 1
Raw count	$f_{t, d}$
Term frequency	$f_{t,d} / \sum_{t' \in d} f_{t',d}$
Log normalization	$1 + \log(f_{t,d})$

INVERSE DOCUMENT FREQUENCY (IDF)

- \blacksquare N = |D| total num of documents in corpus
- $|\{d \in D: t \in d\}|$ num of documents where term t appears
- $\bullet idf(t,D) = \log \frac{N}{|\{d \in D: t \in d\}|}$
- TF-IDF:

• tfidf(t,d,D) = tf(t,d).idf(t,D)

Achievement:

We will find high frequent term in the given document but low frequent term in the whole collection of documents.

TF-IDF EXAMPLE

- Doc I: I like to play tennis
- Doc 2: Did you go outside to play tennis
- Doc 3: John and I play tennis outside
- Replace counters with TF-IDF values
- tf-idf(like to, doc 1):
 - $1/3 \times \log(3/1) =$
 - $0.33 \times 0.47 \cong 0.15$
- tf-idf(outside, doc 2):
 - $1/3 \times \log (3/2) =$
 - $0.33 \times 0.176 \cong 0.058$

documents	like to	play tennis	tennis	outside
#I	0.15			
#2				0.05
#3				

LINEAR MODEL FOR CLASSIFICATION

- Task: Sentiment Classification
- Dataset: IMDB movie reviews dataset
- http://ai.stanford.edu/~amaas/data/sentiment/acllmdb_vl.tar.gz

- 25000 reviews from IMDB
- Contain an even num of pos and negative reviews
- Randomly guessing yields, how many accuracy?
 - 50 percent
- A negative review has a score <= 4: label 0 and A positive review has a score >=7: label 1

BINARY LOGISTIC REGRESSION

- Data split: 50/50
- Evaluation metric: accuracy
- Features: bag of I-grams with TF-IDF values
- Extremely sparse feature matrix (25K rows and 74849 columns for TS)
- 99.8% are zeros
- Suggested Model for training: Logistic Regression
 - In statistics, uses to model probabilities of a certain class
 - Lose/win, pass/fail, alive/dead
 - Linear classification model
 - Handle sparse data
 - Weights can be interpreted

SIGMOID ACTIVATION FUNCTION

- In order to map predicted values to probabilities
- Maps any real values into another value between 0 and 1

- $S(\zeta)$ = output between 0 and I (probability estimate)
- ζ = input to the function (your algorithm's prediction e.g. mx + b)
- e = base of natural log

- In order to map discrete class, we select a threshold like:
 - $P \ge 0.5, class = 1 \text{ and } P < 0.5, class = 0$

GRADIENT DESCENT

- An optimization algorithm
- Find the parameters that minimize cost functions
- Parameters mean coefficients in linear regression and weights in neural networks
- In ML use it to update the parameters of our model.
- Iteratively moving in the direction of steepest descent
- Learning rate = step size
- E.g.: Given cost function:

•
$$f(m,b) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

Gradient can be calculated from the partial derivatives.

GRADIENT DESCENT EXAMPLE

- We need to update m and b called weights
- y = mx + b
- h(x) = mx + b
- h(x) = y, h(x) called hypothesis in ML but this y is not actual value
- This is predicted y from our hypothesis
- Assumption: b = 1 and m = 0.5 and x = 10
- Then $h(x) = 0.5 \times 10 + 1$
- 1, 1, 61, 71, 1, 1

	predicted y is 6 but actual value is 5
	$error = (h(x) - y)^2 = (6 - 5)^2 = 1$
•	Expo 2 used to get rid of negative values

X	Y
10	5
12	6.6
12	6.6
3	I

Repeat for all data points in our DS and sum up all of them called cost function

BETTER IMPROVEMENTS

- Add 2-grams feature extraction (156821 columns)
- Throw away n-grams seen less than 5 times (min_frequency)
- Use special token like emoticons (;-))
- Adding stemming and lemmatization
- Apply different models
- Instead of using TF-IDF, use deep learning for word embedding

ANOTHER SCENARIO

- N-gram → feature index
- What if, when there are **2 TB** of texts?
- Problem on distributed systems
- Hold a very large vocabulary dictionary in memory
- So what's the solution?
 - Using hashing trick for squeezing
 - N-gram \rightarrow hash(n-gram) % 2^b
 - Related paper: Feature Hashing for Large Scale Multitask Learning
 - https://arxiv.org/pdf/0902.2206.pdf

HASHING FEATURES

- Using a hashing function
- Maps any n-grams to a number range
- No need to save n-grams in a dictionary
- Might map any n-grams to the same number
 - Collision
- The larger range then less chance of collisions

