MA256 Reference Sheet

R Guide and Distribution Characteristics

Getting Help

?mean

Get help for a particular function.

help(mean)

Search the help files for a word or phrase.

Vectors					
c(2, 4, 6)	2 4 6	Join elements into a vector			
2:6	23456	An integer sequence			
seq(2,3,by=0.5)	2.0 2.5 3.0	A complex sequence			
rep(1:2, times=3)	121212	Repeat a vector			
rep(1:2, each=3)	111222	Repeat elements of a vector			

Working Directory

getwd()

Find the current working directory.

setwd('C://file/path') Change the current working directory.

Tools-GlobalOptions-C:\\vourRdirectory-Apply Make your folder the working directory everytime you start R-Studio.

Statistics and Regression

Function Name	Arguments
t.test()	x, y(if needed), alternative, mu, paired, conf.level
lm()	y~x (simple) y~x1+x2+ (multiple)
summary()	object or model (This command summarizes the model or data set.)

Function Name	Arguments
t.test()	x, y(if needed), alternative, mu, paired, conf.level
lm()	y~x (simple) y~x1+x2+ (multiple)
summary()	object or model (This command summarizes the model or data set.)

plot(x)	Values of x in order.
plot(x, y)	Values of x against y.
hist(x)	Histogram of x

Function

function name <- function(var){ Do something }

Reading File

- 1. Save file as .csv.
- 2. Input command:
 - a. data=read.csv("filename.csv", header=T) (or F if no header)
 - b. data=read.csv(file.choose(),header=T) (if you want to select the file)
- 3. The data is now read in as a data frame.
- 4. You can index into sections of the data frame using the \$ operator (e.g., data\$column1).

Plotting

Selecting Vector

Elements

The fourth element

Elements two to four

Elements one and five

Elements equal to 10

All elements less than zero

All but the fourth

By Position

By Value

x[4]

x[-4]

x[2:4]

x[c(1, 5)]

x[x == 10]

x[x < 0]

Math Functions

log(x)	Natural log	sum(x)	Sum
exp(x)	Exponential.	mean(x)	Mean
max(x)	Largest element	median(x)	Median
min(x)	Smallest element	quantile(x)	Percentile or quantile
round(x,n)	Round to n decimal	var(x)	The variance
round(x)m	places	sd(x)	The standard deviation
sig.fig(x, n)	Round to n sig figs	length(x)	# of elements in vect
cor(x, y)	Correlation	rank(x)	Rank of elements

Probability Functions in R

Distribution Names	Random Variates	Density Function	Cumulative Distribution	Quantile	Arguments	
Binomial	rbinom	dbinom	pbinom qbinom		x/q, size, prob	
Poisson	rpois	dpois	ppois	qpois	x/q, lambda (same as Devore's μ)	
Uniform	runif	dunif	punif	qunif	x/q, min, max	
Normal	rnorm	dnorm	pnorm	qnorm	x/q, mean, sd	
Exponential	rexp	dexp	рехр	qexp	x/q, rate (same as Devore's λ)	
Gamma	rgamma	dgamma	pgamma	qgamma	x/q, shape, scale (same as Devore's α and β)	
t	rt	dt	pt	qt	x/q, df	
Chi-Square	rchisq	dchisq	pchisq	qchisq	x/q, df	

Conditions	a == b	Are equal	a > b	Greater than	a >= b	Greater than or equal to	is.na(a)	Is missing
Conditions	a != b	Not equal	a < b	Less than	a <= b	Less than or equal to	is.null(a)	Is null

PMF Characteristics

Characteristic 1: The pmf must be greater than or equal to zero for all x. $p(x) \ge 0 \quad \forall x$

Characteristic 2: The sum of probabilities of x, p(x), over all possible values of x must be one. $\sum p(x) = 1$

of x

Characteristic 3: For a discrete random variable X, the probability that X is equal to a specific value, c, is: P(X = c) = p(c)

Characteristic 4: Given the pmf p(x) for random variable X, we define the

cumulative distribution function (CDF) F(x) as follows:

$$F(x) = P(X \le x) = \sum_{y:y \le x} p(y)$$

Characteristic 5: Find the probability that X is between **a** and **b** using the PMF: $P(a \le X \le b) = \sum_{i=1}^{n} p(x_i)$

Characteristic 6: Find the probability that X is between **a** and **b** using the CDF: $P(a \le X \le b) = F(b) - F(a-b)$

Characteristic 7: The expected value of X: $E(X) = \mu_X = \sum x \cdot p(x)$

Characteristic 8: The variance of X: $V(X) = \sigma_X^2 = \sum_{x} (x - \mu_x)^2 \cdot p(x)$ or $E[X^2] - (E[X])^2$

Characteristic 9: The (100p)th percentile of the discrete random variable X is the min value of X such that $F(x) \ge p$.

PDF Characteristics

Characteristic 1: The pdf must be greater than or equal to zero for all x. $f(x) \ge 0 \quad \forall x$

Characteristic 2: The total area under f(x) must equal one. $\int_{-\infty}^{\infty} f(x)dx = 1$

Characteristic 3: For a continuous random variable X, the probability that X is equal to a specific value, c, is: P(X=c)=0

Characteristic 4: Given the pdf f(x) for random variable X, we define the cumulative distribution function (CDF) F(x) as follows:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y)dy$$

Characteristic 5: Find the probability that X is between **a** and **b** using the pdf: $P(a \le X \le b) = \int_{a}^{b} f(x)dx$

Characteristic 6: Find the probability that X is between **a** and **b** using the CDF: $P(a \le X \le b) = F(b) - F(a)$

Characteristic 7: The expected value of X: $E(X) = \mu_X = \int_0^{\infty} x \cdot f(x) dx$

Characteristic 8: The variance of X: $V(X) = \sigma_X^2 = \int_0^\infty (x - \mu_X)^2 \cdot f(x) dx$

Characteristic 9: The (100p)th percentile of the continuous random variable X: $x^* = F^{-1}(p)$