

WHAT IS CLAIMED IS

1 A method for forming a layer on a substrate disposed in a
2 processing chamber, said method comprising:
3 forming a nucleation layer by serially exposing said substrate to first and
4 second reactive gases; and
5 forming atop of said nucleation layer, a bulk deposition layer employing
6 vapor deposition to subject said nucleation layer to a bulk deposition of a compound
7 contained in one of said first and second reactive gases.

1 2. The method as recited in claim 1 wherein forming atop of said
2 nucleation layer includes forming said bulk deposition layer employing chemical vapor
3 deposition.

1 3. The method as recited in claim 1 wherein forming atop of said
2 nucleation layer includes forming said bulk deposition layer employing physical vapor
3 deposition.

1 4. The method as recited in claim 1 wherein forming a nucleation
2 layer further includes introducing said first and second gases therein so as to purge said
3 processing chamber of said first reactive gas by introducing a purge gas therein, before
4 exposing said substrate to said second reactive gas.

1 5. The method as recited in claim 1 wherein forming a nucleation
2 layer further includes purging said processing chamber of said first reactive gas by
3 pumping said processing chamber clear of all gases disposed therein before introducing
4 said second reactive gas.

1 6. The method as recited in claim 1 wherein forming a nucleation
2 layer further includes purging said processing chamber of said first reactive gas by
3 introducing a purge gas subsequently pumping said processing chamber clear of all gases
4 disposed therein before exposing said substrate to said second reactive gas.

1 7. The method as recited in claim 1 wherein forming a nucleation layer
2 includes forming alternating layers of a boron-containing compound and a refractory metal
3 compound onto said substrate.

1 8. The method as recited in claim 7 wherein the boron-containing
2 compound is diborane B₂H₆.

1 9. The method as recited in claim 7 further including subject said
2 substrate to a purge gas following formation of each of said alternating layers.

1 10. A method for forming a layer on a substrate, said method comprising:
2 serially exposing said substrate to first and second reactive gases, while said
3 substrate is disposed in a processing chamber, to form a nucleation layer;
4 removing from said processing chamber said first reactive gas before exposing
5 said substrate to said second reactive gas;
6 forming said layer adjacent to said nucleation layer by chemical vapor
7 deposition while said substrate is disposed in said processing chamber by concurrently
8 exposing said nucleation layer to said second reactive gas and a reducing agent.

1 11. The method of claim 10 wherein said second reactive gas includes a
2 refractory metal and said reducing agent includes silane.

1 12. The method of claim 11 wherein said refractory metal is selected from
2 the group consisting of titanium (Ti) and tungsten (W).

1 13. The method of claim 10 wherein removing from said processing
2 chamber further includes introducing a purge gas into said processing chamber and pumping
3 said first processing chamber clear of all gases present therein.

1 14. The method as recited in claim 10 wherein said nucleation layer has a
2 thickness in the range of 10 to 100 Å.

1 15. A processing system for processing a substrate in a processing
2 chamber, said system comprising:
3 means for forming a nucleation layer by serially exposing said substrate to
4 first and second reactive gases; and

5 means for forming, atop of said nucleation layer, a bulk deposition layer
6 employing vapor deposition to subject said nucleation layer to a bulk deposition of a
7 compound contained in one of said first and second reactive gases.

1 16. A processing system for a substrate, said system comprising:
2 a body defining a processing chamber;
3 a holder, disposed within said processing chamber, to support said substrate;
4 a gas delivery system in fluid communication with said processing chamber;
5 a temperature control system in thermal communication with said processing
6 chamber;
7 a pressure control system in fluid communication with said processing
8 chamber;
9 a controller in electrical communication with said gas delivery system, said
10 temperature control system, and said pressure control system; and
11 a memory in data communication with said controller, said memory
12 comprising a computer-readable medium having a computer-readable program embodied
13 therein, said computer-readable program including a first set of instructions for controlling
14 said gas delivery system to form a nucleation layer by serially exposing said substrate to first
15 and second reactive gases, and a second set of instructions to control said gas delivery system
16 to form, top of said nucleation layer, a bulk deposition layer by subjecting said nucleation
17 layer to vapor deposition of a compound contained in one of said first and second reactive
18 gases.

1 17. The processing system as recited in claim 16 wherein said computer-
2 readable program includes an additional set of instructions to purge said processing chamber
3 of said reactive gas before introducing said second reactive gas by introducing a purge gas
4 therein.

1 18. The processing system as recited in claim 16 wherein said computer-
2 readable program includes an additional set of instructions to purge said processing chamber
3 of said first reactive gas before introducing said second reactive gas by pumping said first
4 processing chamber clear of all gases disposed therein.

1 19. The processing system as recited in claim 16 wherein said first reactive
2 gas includes a boron compound and said second reactive gas includes a refractory metal

3 compound with said refractory metal compound being from the group consisting of titanium
4 and tungsten and said purge gas being from the group consisting of nitrogen, hydrogen and
5 argon.

1 20. The processing system as recited in claim 16 wherein said computer-
2 readable program includes an additional set of instructions to purge said processing chamber
3 of said first reactive gas before introducing said second reactive gas by introducing a purge
4 gas therein and subsequently pumping said first processing chamber clear of all gases
5 disposed therein.