OJENS E. HOEKENDIJK 6265 San Anselmo Avenue San Francisco, CA 94127

7415) 753-3516

\$\frac{1}{2}\ssistant commissioner for patents **BOX PATENT APPLICATION**

Washington, DC 20231

Attorney Docket No 003-005-CP

Express Mail Label No.: EK113453841US

Date of Deposit: February 18, 2000

I hereby certify that this is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.1

on the date indicated below and is addressed to the Commissioner of Patents and Trademarks,

Washington, DC. 20231

Loni M. Cummink

Sir:

This application is a continuation-in-part of application Serial No. 09/356,476, filed July 19, 1999, which is a continuation-in-part of application Serial No. 09/157,824, filed September 21, 1998, which is a continuation-in-part of application Serial No. 08/943,683, filed October 15, 1997, which is a continuation-in-part of application Serial No. 08/735,036, filed October 22, 1996.

Inventor(s):

SCOTT C. ANDERSON, JONATHAN L. PODMORE, ROXANNE L. RICHMAN, MATTHIAS

VASKA, DAVID A. GALLUP, JOHN E. CROWE, JACK E. ULSTAD, JR and BENJAMIN PLESS

For:

[X]

APPARATUS AND METHOD FOR ABLATING TISSUE

Enclosed are:

Specification(48 pages); 74 claims on pages 37-47; Abstract of the Disclosure. [X]

44 sheet(s) of informal drawing(s). [X]

An assignment of the invention to EPICOR, INC. (with Recordation Form Cover Sheet) [X]

A signed Declaration & Power of Attorney. [X]

A Power of Attorney by Assignee with Certificate Under 37 C.F.R. Section 3.73(b). [X]

A Verified Statement Claiming Small Entity Status under 37 C.F.R. 1.9 and 37 C.F.R. 1.27.

The filing fee has been calculated as shown below:

	NO. FILED		NO. EXTRA	SMALL ENTITY RATE	FEES
TOTAL CLAIMS	74-20 =	-	54	x9	\$ 486
INDEP. CLAIMS	12-3 =	-	9	x39	\$ 351
BASIC FEE				\$345	\$ 345
				TOTAL	\$1,182

Enclosed is a check in the amount of \$1,182.00 to cover the cost of: [X]

The filing fee of \$345.00. [X]

The total cost of claims in the amount of \$837.00. [X]

Please charge any additional fees or credit any overpayment to Deposit Account [X] No. 08-1510.

An extra copy of this sheet is enclosed. [X]

Respectfully submitted,

ttorney for Applicant

ij 4

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY STATUS (37 CFR 1.9(f) & 1.27(c))- SMALL BUSINESS CONCERN

Applicant or Patentee: Scott C. Anderson, Jonathan L. Podmore, Roxanne L. Richman, Matthias Vaska,

David A. Gallup, John E. Crowe, Jack E. Ulstad, Jr., and Benjamin Pless

Unassigned Application No.:

Herewith Filed Or Issued:

APPARATUS AND METHOD FOR ABLATING TISSUE Title:

I hereby declare that I am an official of the small business concern empowered to act on behalf of the concern identified below:

EPICOR, INC. NAME OF SMALL BUSINESS CONCERN:

173 Jefferson Drive ADDRESS OF SMALL BUSINESS CONCERN:

Menlo Park, CA 94025

I hereby declare that the above identified small business concern qualifies as a small business concern as defined in 13 CFR 121.12, and reproduced in 37 CFR 1.9(d), for purposes of paying reduced fees to the United States Patent and Trademark Office, in that the number of employees of the concern, including those of its affiliates, does not exceed 500 persons. For purposes of this statement, (1) the number of employees of the business concern is the average over the previous fiscal year of the concern of the persons employed on a full-time, parttime or temporary basis during each of the pay periods of the fiscal year, and (2) concerns are affiliates of each other when either, directly or indirectly, one concern controls or has the power to control the other, or a third party or parties controls or has the power to control both.

I hereby declare that rights under contract or law have been conveyed to and remain with the small business concern identified above with regard to the invention, entitled: APPARATUS AND METHOD FOR ABLATING TISSUE by inventors Scott C. Anderson, Jonathan L. Podmore, Roxanne L. Richman, Matthias Vaska, David A. Gallup, John E. Crowe, Jack E. Ulstad, Jr., and Benjamin Pless, described in the specification filed herewith.

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b)).

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

NAME OF PERSON SIGNING: TITLE OF PERSON IF OTHER THAN OWNER:

ADDRESS OF PERSON SIGNING:

Matthias Vaska V.P. of Research

173 Jefferson Drive Menlo Park, CA 94025

Signature: At Vah

Date: 2/17/00

10

15

20

25

30

APPARATUS AND METHOD FOR ABLATING TISSUE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of application Serial No. 09/356,476, filed July 19, 1999, which is a continuation-in-part of application Serial No. 09/157,824, filed September 21, 1998, which is a continuation-in-part of application Serial No. 08/943,683, filed October 15, 1997, which is a continuation-in-part of application Serial No. 08/735,036, filed October 22, 1996, the complete disclosures of which are hereby incorporated herein by reference for all purposes.

FIELD OF THE INVENTION

This invention relates generally to devices and methods for ablating tissue. The diagnosis and treatment of electrophysiological diseases of the heart, and more specifically to devices and methods for epicardial mapping and ablation for the treatment of atrial fibrillation, are described in connection with the devices and methods of the present invention.

BACKGROUND OF THE INVENTION

Atrial fibrillation results from disorganized electrical activity in the heart muscle, or myocardium. The surgical maze procedure has been developed for treating atrial fibrillation and involves the creation of a series of surgical incisions through the atrial myocardium in a preselected pattern so as to create conductive corridors of viable tissue bounded by scar tissue.

As an alternative to the surgical incisions used in the maze procedure, transmural ablation of the heart wall has been proposed. Such ablation may be performed either from within the chambers of the heart (endocardial ablation) using endovascular devices (e.g. catheters) introduced through arteries or veins, or from outside the heart (epicardial ablation) using devices introduced into the chest. Various ablation technologies have been proposed, including cryogenic, radiofrequency (RF), laser and microwave. The ablation devices are used to create elongated transmural lesions—that is, lesions extending through a sufficient thickness of the myocardium to block electrical conduction—which form the boundaries of the conductive corridors in

10

15

20

25

30

the atrial myocardium. Perhaps most advantageous about the use of transmural ablation rather than surgical incisions is the ability to perform the procedure on the beating heart without the use of cardiopulmonary bypass.

In performing the maze procedure and its variants, whether using ablation or surgical incisions, it is generally considered most efficacious to include a transmural incision or lesion that isolates the pulmonary veins from the surrounding myocardium. The pulmonary veins connect the lungs to the left atrium of the heart, and join the left atrial wall on the posterior side of the heart. This location creates significant difficulties for endocardial ablation devices for several reasons. First, while many of the other lesions created in the maze procedure can be created from within the right atrium, the pulmonary venous lesions must be created in the left atrium, requiring either a separate arterial access point or a transeptal puncture from the right atrium. Second, the elongated and flexible endovascular ablation devices are difficult to manipulate into the complex geometries required for forming the pulmonary venous lesions and to maintain in such positions against the wall of the beating heart. This is very time-consuming and can result in lesions which do not completely encircle the pulmonary veins or which contain gaps and discontinuities. Third, visualization of endocardial anatomy and endovascular devices is often inadequate and knowing the precise position of such devices in the heart can be difficult, resulting in misplaced lesions. Fourth, ablation within the blood inside the heart can create thrombus which, in the right chambers, is generally filtered out by the lungs rather than entering the bloodstream. However, on the left side of the heart where the pulmonary venous lesions are formed, thrombus can be carried by the bloodstream into the coronary arteries or the vessels of the head and neck, potentially resulting in myocardial infarction, stroke or other neurologic sequelae. Finally, the heat generated by endocardial devices which flows outward through the myocardium cannot be precisely controlled and can damage extracardiac tissues such as the pericardium, the phrenic nerve and other structures.

What are needed, therefore, are devices and methods for forming lesions that isolate the pulmonary veins from the surrounding myocardium which overcome these problems. The devices and methods will preferably be utilized epicardially to avoid the need for access into the left chambers of the heart and to minimize the risk of producing thrombus.

Additional aspects of the present invention are directed to devices and methods for ablating tissue. Ablation of heart tissue and, specifically, ablation of tissue for treatment of atrial fibrillation is developed as a particular use of these other aspects of the present invention.

5

10

15

20

25

30

SUMMARY OF THE INVENTION

The present invention meets these and other objectives by providing epicardial ablation devices and methods useful for creating transmural lesions that electrically isolate the pulmonary veins for the treatment of atrial fibrillation.

In a first embodiment, a method of forming a transmural lesion in a wall of the heart adjacent to the pulmonary veins comprises the steps of placing at least one ablation device through a thoracic incision and through a pericardial penetration so that

at least one ablation device is disposed in contact with an epicardial surface of the heart wall; positioning

at least one ablation device adjacent to the pulmonary veins on a posterior aspect of the heart while leaving the pericardial reflections intact; and ablating the heart wall with at least one ablating device to create at least one transmural lesion adjacent to the pulmonary veins. While the method may be performed with the heart stopped and circulation supported with cardiopulmonary bypass, the method is preferably performed with the heart beating so as to minimize morbidity, mortality, complexity and cost.

In another aspect of the invention, an apparatus for forming a transmural lesion in the heart wall adjacent to the pulmonary veins comprises, in a preferred embodiment, an elongated flexible shaft having a working end and a control end; an ablation device attached to the working end for creating a transmural lesion in the heart wall; a control mechanism at the control end for manipulating the working end; and a locating device near the working end configured to engage one or more of the pulmonary veins, or a nearby anatomical structure such as a pericardial reflection, for positioning the working end adjacent to the pulmonary veins. The locating device may comprise a catch, branch, notch or other structure at the working end configured to engage one or more of the pulmonary veins or other anatomical structure such as the inferior vena cava, superior vena cava, aorta, pulmonary artery, left atrial

appendage, right atrial appendage, or one of the pericardial reflections. The ablation device may be a radiofrequency electrode, microwave transmitter, cryogenic element, laser, ultrasonic transducer or any of the other known types of ablation devices suitable for forming transmural lesions. Preferably, the apparatus includes a plurality of such ablation devices arranged along the working end in a linear pattern suitable for forming a continuous, uninterrupted lesion around or on the pulmonary veins.

The working end may additionally include one or more movable elements that are manipulated from the control end and which may be moved into a desired position after the working end has been located near the pulmonary veins. Slidable, rotatable, articulated, pivotable, bendable, pre-shaped or steerable elements may be used. Additional ablation devices may be mounted to these movable elements to facilitate formation of transmural lesions. The movable elements may be deployed to positions around the pulmonary veins to create a continuous transmural lesion which electrically isolates the pulmonary veins from the surrounding myocardium.

In addition, a mechanism may be provided for urging all or part of the working end against the epicardium to ensure adequate contact with the ablation devices. This mechanism may be, for example, one or more suction holes in the working end through which suction may be applied to draw the working end against the epicardium, or an inflatable balloon mounted to the outer side of the working end such that, upon inflation, the balloon engages the inner wall of the pericardium and forces the working end against the epicardium. This also functions to protect extracardiac tissues such as the pericardium from injury by retracting such tissues away from the epicardial region which is being ablated, and, in the case of the balloon, providing an insulated barrier between the electrodes of the ablation probe and the extracardiac tissues.

The apparatus may be either a single integrated device or two or more devices which work in tandem. In either case, the apparatus may have two or more tips at the working end which are positioned on opposing sides of a tissue layer such as a pericardial reflection. A device may be provided for approximating the two free ends on opposing sides of the tissue layer, such as an electromagnet mounted to one or both of the free ends. In this way, a continuous lesion may be created in the myocardium from one side of the pericardial reflection to the other without puncturing or cutting away the pericardial reflection.

10

15

20

25

30

The apparatus may further include a working channel through which supplemental devices may be placed to facilitate visualization, tissue manipulation, supplementary ablation, suction, irrigation and the like.

The apparatus and methods of the invention are further useful for mapping conduction pathways in the heart (local electrograms) for the diagnosis of electrophysiological diseases. Any of the electrodes on the apparatus may be individually selected and the voltage may be monitored to determine the location of conduction pathways. Alternatively, the apparatus of the invention may be used for pacing the heart by delivering current through one or more selected electrodes at levels sufficient to stimulate heart contractions.

Additionally, although the ablation apparatus and methods of the invention are preferably configured for epicardial use, the principles of the invention are equally applicable to endocardial ablation catheters and devices. For example, an endocardial ablation apparatus according to the invention would include a locating device configured to engage an anatomical structure accessible from within the chambers of the heart such as the coronary sinus (from the right atrium), pulmonary artery (from the right ventricle), or the pulmonary veins (from the left atrium), and the ablation device would be positionable in a predetermined location relative to the locating device. The endocardial apparatus could further include suction holes, expandable balloons, or other mechanisms for maintaining contact between the ablation device and the interior surface of the heart wall.

In another aspect of the present invention, an anchor is used to hold part of the device while displacing another part of the device. The anchor is preferably a balloon but may also be tines, a suction port or a mechanically actuated device. After actuating the anchor, a proximal portion of the device may be moved by simply manipulating the device or by advancement or withdrawal of a stylet.

The present invention is also related to a method of creating a continuous ablation lesion in tissue underlying a pericardial reflection without penetrating the pericardial reflection. First and second ablating devices are introduced into the space between the pericardium and the epicardium. The first ablating device is positioned on one side of the pericardial reflection and the second ablating device is positioned on the other side of the pericardial reflection. Tissue beneath the pericardial reflection is then ablated with one or both of the devices to create a continuous lesion beneath

10

15

20

25

30

the pericardial reflection. The devices may be aligned across the pericardial reflection by any suitable method such as with magnetic force, use of an emitter and sensor, or by marking the pericardial reflection on one side and locating the mark from the other side of the pericardial reflection. The emitter and sensor may work with electromagnetic radiation such as light, ultrasound, magnetic field, and radiation.

In yet another aspect of the invention, the ablating device may have a guide portion which aligns the device between the pericardium and epicardium. The guide portion may be a continuous strap or a number of discrete guide portions. The guide portions may be fins, wings or one or more laterally extending elements such as balloons. The guide portions may be individually actuated to align the device and ablate discrete locations of the tissue along the ablating device.

The ablating device may also be advanced into position over a guide. The guide is preferably a guidewire but may be any other suitable structure. The guide may also lock into position with a coaxial cable or locking arm. The guide is advanced ahead of the ablation device and positioned along the desired ablation path. The ablating device is then advanced or retracted along the guide. The ablating device preferably includes a device for locating previously formed lesions so that subsequent lesions will merge with a previously formed lesion to create a continuous, transmural lesion. The device for locating previously created lesions may be pacing and sensing electrodes or electrodes which simply measure electrical impedance.

Although cutting through the pericardial reflections has certain risks, the methods and devices of the present invention may, of course, be practiced while cutting through the pericardial reflections. After penetrating through the pericardial reflection, the ablating device may interlock with another part of the same device or with a separate device.

In another method and device of the present invention, another ablating device is provided which may be used to ablate any type of tissue including heart tissue for the reasons described herein. The ablating device has a suction well and an ablating element. The suction well adheres the device to the tissue to be ablated. The device is preferably used to ablate cardiac tissue from an epicardial location to form a transmural lesion. The device preferably includes a number of cells which each have a suction well and at least one ablating element. The cells are coupled together with flexible sections which permit the cells to displace and distort relative to one another.

10

15

20

25

30

The device preferably has about 5-30 cells, more preferably about 10-25 cells and most preferably about 16 cells. The suction well has an inner lip and an outer lip. The inner lip forms a closed wall around the ablating element.

The device also has a fluid inlet and a fluid outlet for delivering and withdrawing fluid from within the closed wall formed by the inner lip. The fluid is preferably a conductive fluid, such as hypertonic saline, which conducts energy from the ablating element, such as an RF electrode, to the tissue. The fluid is preferably delivered along a short axis of the ablating element so that the temperature change across the ablating element is minimized.

The ablating elements are preferably controlled by a control system. One or more temperature sensors on the device are coupled to the control system for use as now described. The control system may control ablation in a number of different ways. For example, the control system may activate one or more pairs of adjacent cells to form continuous lesions between the adjacent cells. After ablation at the one or more adjacent cells, another pair of adjacent cells is activated to form another continuous ablation segment. This process is continued until a continuous lesion of the desired geometry is produced. In another mode of operation, the control system may activate every other or every third cell. Still another mode of operation is to activate only the ablating elements which have low temperatures by using a multiplexer coupled to the temperature sensors.

The control system may also conduct a thermal response analysis of the tissue to be ablated to determine the appropriate ablation technique. The tissue to be ablated is heated, or cooled, and the temperature response of the tissue over time is recorded. The temperature response is then analyzed to determine the appropriate ablation technique. The analysis may be a comparison of the temperature response against a database of temperature responses or may be a calculation which may require user input as described below.

Other aspects and advantages of the invention are disclosed in the following detailed description and in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A is side view of a left ablation probe according to the invention.

15

20

25

30

Figure 1B is a side view of a right ablation probe according to the invention.

Figures 2A-2F are side views of a working end of the left ablation probe of Figure 1A in various configurations thereof.

Figure 3 is a side cross-section of the working end of the left ablation probe of Figure 1A.

Figure 4 is a transverse cross-section of the shaft of the left ablation probe of Figure 1A.

Figures 5A-C are partial side cross-sections of the working end of the left ablation probe of Figure 1A, showing the deployment of a superior sub-probe and inner probe thereof.

Figure 6 is a side view of the left ablation probe of Figure 1A.

Figure 7 is a partial side cross-section of the handle of the left ablation probe of Figure 1A.

Figure 8 is an anterior view of the thorax of a patient illustrating the positioning of the left and right ablation probes according to the method of the invention.

Figure 9 is a side view of the interior of a patient's thorax illustrating the positioning of the left and right ablation probes according to the method of the invention.

Figure 10 is a posterior view of a patient's heart illustrating the use of the left and right ablation probes according to the method of the invention.

Figure 11 is a posterior view of a patient's heart illustrating a transmural lesion formed according to the method of the invention.

Figures 12 and 13 are side views of the left ablation probe of the invention positioned on a patient's heart, showing a balloon and suction ports, respectively, on the inner probe.

Figure 14A shows the ablating device having a pre-shaped distal portion.

Figure 14B shows an alternative anchor.

Figure 14C shows another anchor.

Figure 14D shows still another anchor.

Figure 15 shows the ablating device having a flexible distal portion which is shaped with a stylet.

10

15

20

25

30

Figure 16 is a cross-sectional view of the ablating device of Figures 14 and 15 with three chambers of the balloon inflated.

Figure 17 is a cross-sectional view of the ablating device of Figures 14 and 15 with two chambers of the balloon inflated.

Figure 18 shows the ablating device advanced into the transverse pericardial sinus with the balloon deflated.

Figure 19 shows the ablating device advanced into the transverse pericardial sinus with the balloon inflated.

Figure 20 shows the ablating device extending between the left and right inferior pulmonary veins and another ablating device having an end superior to the right superior pulmonary vein.

Figure 21 shows the ablating device moved toward the right superior and right inferior pulmonary veins.

Figure 22 shows one of the ablating devices having an emitter and the other ablating device having a sensor for aligning the devices across a pericardial reflection.

Figure 23 shows the ablating device having a needle to deliver a marker which is located on the other side of the pericardial reflection.

Figure 24 shows the ablating device having a number of discrete guide portions.

Figure 25 shows the guide portions being inflatable balloons.

Figure 26 shows selective inflation of the balloons for selective ablation along the ablating device.

Figure 27A shows the guide portions used when ablating around the pulmonary veins.

Figure 27B shows the guide portions being inflatable when ablating around the pulmonary veins.

Figure 28 is a bottom view of another ablating device which is advanced over a guide.

Figure 29 is a top view of the ablating device of Fig. 28.

Figure 30 is a cross-sectional view of the ablating device of Figs. 28 and 29 along line A-A of Fig. 29.

Figure 31 is another cross-sectional view of the ablating device of Figs. 28 and 29 along line B-B of Fig. 29.

10

15

20

25

30

Figure 32 shows the guide advanced to a desired location with the balloon deflated.

Figure 33 shows the ablating device advanced over the guide and creating a first lesion.

Figure 34 shows the ablating device creating a second lesion continuous with the first lesion.

Figure 35 shows the ablating device creating a third lesion continuous with the second lesion.

Figure 36 shows another ablating device having an expandable device movable thereon.

Figure 37 is a cross-sectional view of the ablating device of Figure 36.

Figure 38 is an enlarged view of the cross-sectional view of Figure 37.

Figure 39 shows the ablating device with a piercing element in a retracted position.

Figure 40 shows the ablating device aligned across the pericardial reflection.

Figure 41 shows the ablating device interlocked with another ablating device on opposite sides of the pericardial reflection.

Figure 42 shows a mechanism for locking the first and second ablating devices together.

Figure 43 shows the piercing element engaging a lock on the other ablating device.

Figure 44 shows the ablating device passing through the pericardial reflection and interlocking with itself.

Figure 45 shows the ablating devices interlocked across the pericardial reflections.

Figure 46 shows the ablating device adhered to a pericardial reflection with suction.

Figure 47 shows the penetrating element penetrating the pericardial reflection.

Figure 48 shows the ablating device passing through the pericardial reflection.

Figure 49 shows another ablating device.

Figure 50 shows a buckle for forming a closed loop with the ablating device.

Figure 51 shows another buckle for forming the closed loop with the ablating device.

15

20

25

30

Figure 52 shows a bottom side of the ablating device of Fig. 49.

Figure 53A is a cross-sectional view of the ablating device along line C-C of Fig. 52.

Figure 53B is an alternative cross-sectional view of the ablating device along line C-C of Fig. 52.

Figure 54 is a cross-sectional view of the ablation device along line D-D of Fig. 53A showing a fluid inlet manifold.

Figure 55 is a cross-sectional view of an alternative embodiment of the device. Figure 56 shows a system for controlling the ablation device of Fig 55.

Figure 57 shows the device having two sets of lumens extending from each end of the device toward the middle of the device.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Figures 1A-1B illustrate a first embodiment of the apparatus of the invention. In this embodiment, the apparatus comprises a left ablation probe 20, shown in Figure 1A, and a right ablation probe 22, shown in Figure 1B, which work in tandem to form a transmural lesion isolating the pulmonary veins from the surrounding myocardium. Left ablation probe 20 has a flexible shaft 21 extending to a working end 24 configured for insertion into the chest cavity through a small incision, puncture or access port. Opposite working end 24, shaft 21 is attached to a control end 26 used for manipulating the working end 24 from outside the chest. Shaft 21 is dimensioned to allow introduction through a small incision in the chest, preferably in a subxiphoid location, and advanced to the pulmonary veins on the posterior side of the heart. Preferably, shaft 21 is configured to be flexible about a first transverse axis to allow anterior-posterior bending and torsional flexibility, but relatively stiff about a second transverse axis perpendicular to the first transverse axis to provide lateral bending stiffness. In an exemplary embodiment, shaft 21 has a length in the range of about 10-30 cm, and a guide portion 25 having a rectangular cross-section with a width-toheight ratio of about 2-5, the cross-sectional width being about 6-35 mm and the cross-sectional height being about 3-17 mm. The guide portion 25 aligns the device between the epicardium and pericardium to ablate tissues as described below. Shaft 21 is made of a flexible biocompatible polymer such as polyurethane or silicone, and

10

15

20

25

30

preferably includes radiopaque markers or a radiopaque filler such as bismuth or barium sulfate.

Working end 24 includes a plurality of ablating elements 27. The ablating elements 27 are preferably a plurality of electrodes 28 for delivering radiofrequency (RF) current to the myocardium so as to create transmural lesions of sufficient depth to block electrical conduction. Electrodes 28 may be partially-insulated solid metal rings or cylinders, foil strips, wire coils or other suitable construction for producing elongated lesions. Electrodes 28 are spaced apart a distance selected so that the lesions created by adjacent electrodes contact or overlap one another, thereby creating a continuous, uninterrupted lesion in the tissue underlying the electrodes. In an exemplary embodiment, electrodes 28 are about 2-20 mm in length and are spaced apart a range of 1-6 mm. It is understood that the term electrodes 28 as used herein may refer to any suitable ablating element 27. For example, as an alternative to RF electrodes, the ablating elements 27 may be microwave transmitters, cryogenic element, laser, heated element, ultrasound, hot fluid or other types of ablation devices suitable for forming transmural lesions. The heated element may be a self-regulating heater to prevent overheating. Electrodes 28 are positioned so as to facilitate lesion formation on the three-dimensional topography of the left atrium. For example, lateral electrodes 28a face medially to permit ablation of the myocardium on the lateral side of the left inferior pulmonary vein and medial electrodes 28b face anteriorly to permit ablation of the posterior surface of the myocardium adjacent to the left inferior pulmonary vein.

Working end 24 further includes a locating mechanism which locates the working end at one of the pulmonary veins and helps to maintain it in position once located. In a preferred embodiment, working end 24 is bifurcated into two branches 30, 32, and the locating mechanism is a notch 34 disposed between the two branches. Notch 34 tapers into a concave surface 36 so as to receive one of the pulmonary veins between branches 30, 32 and to atraumatically engage the pulmonary vein against concave surface 36. In an exemplary embodiment, notch 34 is about 10 to 30 mm in width at its widest point between branches 30, 32 and tapers toward concave surface 36 which has a radius of curvature of about 4 to 15 mm, so as to conform to the outer curvature of the pulmonary vein. Preferably, notch 34 is sized and positioned for placement against the left inferior pulmonary vein, as described more fully below.

10

15

20

25

30

Alternatively, the locating mechanism may be configured to engage another anatomic structure such as the inferior vena cava, superior vena cava, pericardial reflections, pulmonary vein, aorta, pulmonary artery, atrial appendage, or other structure in the space between the pericardium and the myocardium. The various shapes of the ablating devices described and shown herein are, of course, useful in locating various structures to position the ablating elements against predetermined tissues to be ablated.

Working end 24 further includes a superior sub-probe 38 and an inferior sub-probe 40 which are slidably extendable from working end 24, as further described below.

Control end 26 includes a handle 42 and a plurality of slidable actuators 44A-44E, which are used to extend superior sub-probe 38 and inferior sub-probe 40 from working end 24, and to perform other functions as described below. An electrical connector 46 suitable for connection to an RF generator is mounted to handle 42 and is electrically coupled to electrodes 28 at working end 24. Also mounted to handle 42 are a working port 48 in communication with a working channel 92, described below, and a connector 50 for connection to a source of inflation fluid or suction, used for purposes described below.

Right ablation probe 22 has a flexible shaft 52 extending from a control end 54 to a working end 56. Working end 56 has a cross-member 58 to which are mounted a plurality of electrodes 60. Cross member 58 preferably has tips 59 which are preshaped or deflectable into a curve so as to conform to the right lateral walls of the right pulmonary veins, and which are separated by a distance selected so that the two right pulmonary veins may be positioned between them, usually a distance of about 20-50 mm. Electrodes 60 are sized and positioned so as to create a continuous lesion along the right side (from the patient's perspective) of the pulmonary veins as described more fully below. In an exemplary embodiment, electrodes 60 are about 2-20 mm in length, and are spaced apart about 1-6 mm. Shaft 52 is dimensioned to allow introduction through a small incision in the chest, preferably in a subxiphoid location, and advanced to the pulmonary veins on the posterior side of the heart. Shaft 52 will have dimensions, geometry and materials like those of shaft 21 of left ablation probe 20, described above.

10

15

20

25

30

Control end 54 includes a handle 62. An electrical connector 64 adapted for connection to an RF generator is attached to handle 62 and is electrically coupled to electrodes 60 at working end 56. An inflation or suction connector 65 is mounted to handle 62 and adapted for connection to a source of inflation fluid or suction, for purposes described below. Handle 62 may further include a working port (not shown) like working port 48 described above in connection with left ablation probe 20.

Figures 2A-2E illustrate the deployment of the various components of working end 24 of left ablation probe 20. Superior sub-probe 38 is slidably extendable from working end 24 as shown in Figure 2B. A plurality of electrodes 66 are mounted to superior sub-probe 38 and are sized and positioned to create a continuous lesion along the left side of the pulmonary veins. Superior sub-probe 38 has an articulated or steerable section 68 which can be selectively shaped into the position shown in Figure 2C, with its distal tip 70 pointing in a lateral direction relative to the more straight proximal portion 72.

As shown in Figure 2D, an inner probe 74 is slidably extendable from superior sub-probe 38 and is directed by steerable section 68 in a lateral direction opposite notch 34. Inner probe 74 is separated from notch 34 by a distance selected such that inner probe 74 may be positioned along the superior side of the pulmonary veins when the left inferior pulmonary vein is positioned in notch 34. In an exemplary embodiment, the maximum distance from concave surface 36 to inner probe 74 is about 20-50 mm. A plurality of electrodes 76 are mounted to inner probe 74 and positioned to enable the creation of a continuous transmural lesion along the superior side of the pulmonary veins as described more fully below.

Referring to Figure 2E, inferior sub-probe 40 is slidably extendable from working end 24. Its distal tip 78 is attached to a tether 80 extending through a lumen in shaft 21. Tether 80 may be selectively tensioned to draw distal tip 78 away from inner probe 74 (toward control end 26), imparting a curvature to inferior sub-probe 40. Inferior sub-probe 40 is constructed of a resilient, bendable plastic which is biased into a straight configuration. When inferior sub-probe 40 has been advanced sufficiently, tether 80 may be released, whereby the resiliency of inferior sub-probe 40 causes it to conform to the pericardial reflection and the medial and/or inferior sides of the four pulmonary veins. Inferior sub-probe 40 further includes a plurality of electrodes 82 sized and positioned to produce a continuous transmural lesion in the

10

15

20

25

30

myocardium along the inferior side of the pulmonary veins, as described more fully below.

Referring to Figures 3 and 4, superior sub-probe 38 is slidably disposed in a first lumen 84 and inferior sub-probe 40 is slidably disposed in a second lumen 86 in shaft 21. Electrodes 28 along notch 34 are coupled to wires 88 disposed in a wire channel 90 running beneath electrodes 28 and extending through shaft 21. Each electrode is coupled to a separate wire to allow any electrode or combination of electrodes to be selectively activated. Shaft 21 also includes a working channel 92 extending to an opening 94 in working end 24 through which instruments such as endoscopes, suction/irrigation devices, mapping and ablation devices, tissue retraction devices, temperature probes and the like may be inserted. Superior sub-probe 38 has an inner lumen 96 in which inner probe 74 is slidably disposed. Electrodes 76 on inner probe 74 are coupled to wires 98 extending through inner probe 74 to connector 46 on handle 42, shown in Figure 1A. Similarly, electrodes 66 on superior sub-probe 38 are coupled to wires 99 (Figure 4) and electrodes 82 on inferior sub-probe 40 are coupled to wires 100, both sets of wires extending to connector 46 on handle 42. Tether 80 slidably extends through tether lumen 102 in shaft 21.

The distal end of inner probe 74 has a tip electrode 104 for extending the transmural lesion produced by electrodes 76. Preferably, inner probe 74 further includes a device for approximating the tip of inner probe 74 with the superior tip 106 of right ablation probe 22 (Figure 1B) when the two are separated by a pericardial reflection. In a preferred embodiment, a first electromagnet 108 is mounted to the distal end of inner probe 74 adjacent to tip electrode 104. First electromagnet 108 is coupled to a wire 110 extending to handle 42, where it is coupled to a power source and a switch (not shown) via connector 46 or a separate connector. Similarly, a second electromagnet 112 is mounted to distal tip 78 of inferior sub-probe 40, adjacent to a tip electrode 114, which are coupled to wires 116, 118 extending to a connector on handle 42. As shown in Figure 1B, a third electromagnet 120 is mounted to superior tip 106 of right ablation probe 22, and a fourth electromagnet 122 is mounted to inferior tip 124 of right ablation probe 22. Electromagnets 120, 122 are coupled to wires (not shown) extending to a connector on handle 62 for coupling to a power source and switch. In this way, superior tip 106 and inferior tip 124 may be

10

15

20

25

30

approximated with inner probe 74 and inferior sub-probe 40 across a pericardial reflection by activating electromagnets 108, 112, 120, 122.

It should be noted that thermocouples, thermistors or other temperature monitoring devices may be mounted to the working ends of either left or right ablation probes 20, 22 to facilitate temperature measurement of the epicardium during ablation. The thermocouples may be mounted adjacent to any of the electrodes described above, or may be welded or bonded to the electrodes themselves. The thermocouples will be coupled to wires which extend through shafts 21, 52 alongside the electrode wires to connectors 46, 64 or to separate connectors on handles 42, 62, facilitating connection to a temperature monitoring device.

Figures 5A-5C illustrate the operation of superior sub-probe 38. Superior sub-probe 38 has a pull wire 126 movably disposed in a wire channel 128 in a sidewall adjacent to inner lumen 96. Pull wire 126 is fixed at its distal end 130 to steerable section 68 of superior sub-probe 38. Steerable section 68 is constructed of a flexible, resilient plastic such that by tensioning pull wire 126, steerable section 68 may be deformed into a curved shape to direct inner probe 74 in a transverse direction relative to the straight proximal portion 72, as shown in Figure 5B. Once in this curved configuration, inner probe 74 may be slidably advanced from superior sub-probe 38 as shown in Figure 5C.

Referring to Figure 6, actuator 44D is slidably disposed in a longitudinal slot 132 in handle 42 and is coupled to the proximal end of inferior sub-probe 40. Actuator 44E is slidably disposed in a longitudinal slot 134 in handle 42 and is coupled to the proximal end of tether 80. When sub-probe 40 is to be deployed, actuator 44D is slid forward, advancing inferior sub-probe 40 distally. Actuator 44E may be allowed to slide forward as well, or it may be held in position to maintain tension on tether 80, thereby bending sub-probe 40 into the curved shape shown in Figure 2E. When sub-probe 40 has been fully advanced, actuator 44E may be released, allowing distal end 78 of sub-probe 40 to engage the pericardial reflection along the inferior surfaces of the pulmonary veins, as further described below.

Actuators 44A-C are slidably disposed in a longitudinal slot 136 in handle 42, as more clearly shown in Figure 7. Actuator 44A is attached to the proximal end of superior sub-probe 38, and may be advanced forward to deploy the sub-probe from working end 24, as shown in Figure 2A. Actuator 44B is attached to inner probe 74,

which is frictionally retained in inner lumen 96 such that it is drawn forward with superior sub-probe 38. Actuator 44C is attached to pull wire 126 which is also drawn forward with superior sub-probe 38. In order to deflect the steerable section 68 of superior sub-probe 38, actuator 44C is drawn proximally, tensioning pull wire 126 and bending steerable section 68 into the configuration of Figure 2C. Finally, to deploy inner probe 74, actuator 44B is pushed forward relative to actuators 44A and 44C, advancing inner probe 74 from superior sub-probe 38 as shown in Figure 2D.

The slidable relationship between the shafts and probes 74, 40, 38 helps to guide and direct the probes to the tissues to be ablated. The shafts have various features, including the ablating elements 27, however, the shafts may be simple sheaths which locate structures and/or direct the probes into various regions of the pericardial space.

Referring now to Figures 8-11, a preferred embodiment of the method of the invention will be described. Initially, left ablation probe 20 and right ablation probe 22 are connected to an RF generator 140. RF generator 140 will preferably provide up to 150 watts of power at about 500 kHz, and will have capability for both temperature monitoring and impedance monitoring. A suitable generator would be, for example, a Model No. EPT-1000 available from the EP Technologies Division of Boston Scientific Corp. of Natick, MA. Retraction, visualization, temperature monitoring, suction, irrigation, mapping or ablation devices may be inserted through working port 142. Left ablation probe 20 may further be connected to a source of suction or inflation fluid 144, for reasons described below. If electromagnets are provided on left and right ablation probes 20, 22 as described above, an additional connection may be made to a power supply and switch for operating the electromagnets, or power may be supplied by RF generator 140 through connectors 46, 64.

A subxiphoid incision (inferior to the xiphoid process of the sternum) is made about 2-5 cm in length. Under direct vision through such incision or by visualization with an endoscope, a second small incision is made in the pericardium P (Figure 9). Left ablation probe 20 is introduced through these two incisions and advanced around the inferior wall of the heart H to its posterior side under fluoroscopic guidance using fluoroscope 146. Alternative methods of visualization include echocardiography, endoscopy, transillumination, and magnetic resonance imaging. Left ablation probe

10

15

20

25

30

20 is positioned such that left inferior pulmonary vein LI is disposed in notch 34 as shown in the posterior view of the heart in Figure 10.

Superior sub-probe 38 is then advanced distally from working end 24 until its steerable section 68 is beyond the superior side of the left superior pulmonary vein LS. Steerable section 68 is then deflected into the curved configuration shown in Figure 10 such that its distal end 70 is superior to the left superior pulmonary vein LS and pointing rightward toward the right superior pulmonary vein RS. Inner probe 74 is then advanced toward the right until its distal tip is very close to or contacting the pericardial reflection PR superior to the right superior pulmonary vein RS.

Inferior sub-probe 40 is next advanced from working end 24 while maintaining tension on tether 80 such that the inferior sub-probe engages and conforms to the shape of the pericardial reflection PR between the left inferior and right inferior pulmonary veins. When inferior sub-probe 40 has been fully advanced, tension is released on tether 80 so that distal tip 78 moves superiorly into engagement with the right inferior pulmonary vein RI adjacent to pericardial reflection PR inferior thereto.

Right ablation probe 22 is placed through the subxiphoid incision and pericardial incision and advanced around the right side of the heart as shown in Figure 8. Under fluoroscopic guidance, right ablation probe 22 is positioned such that crossmember 58 engages the right superior and inferior pulmonary veins, as shown in Figure 10. In this position, superior tip 106 and inferior tip 124 should be generally in opposition to distal tip 75 of inner probe 74 and distal tip 78 of inferior sub-probe 40, respectively, separated by pericardial reflections PR. In order to ensure close approximation of the two tip pairs, electromagnets 108, 120, 114, 122 may be energized, thereby attracting the tips to each other across the pericardial reflections RS.

It should be noted that the pericardium P attaches to the heart at the pericardial reflections PR shown in Figures 10-11. Because of the posterior location of the pulmonary veins and the limited access and visualization available, cutting or puncturing the pericardial reflections in the vicinity of the pulmonary veins poses a risk of serious injury to the heart or pulmonary veins themselves. The apparatus and method of the present invention avoid this risk by allowing the pericardial reflections to remain intact, without any cutting or puncturing thereof, although the pericardial reflections may also be cut without departing from the scope of the invention.

RF generator 140 is then activated to deliver RF energy to electrodes 28, 60, 66, 76, 82, 104, and 112 on left and right ablation probes 20, 22, producing the transmural lesion L shown in Figure 11. Preferably, power in the range of 20-150 watts is delivered at a frequency of about 500 kHz for a duration of about 30-180 seconds, resulting in localized myocardial temperatures in the range of 45-95 °C. Ultrasound visualization may be used to detect the length, location and/or depth of the lesion created. Lesion L forms a continuous electrically-insulated boundary encircling the pulmonary veins thereby electrically isolating the pulmonary veins from the myocardium outside of lesion L.

Ablation probes 20, 22 may further be used for mapping conduction pathways in the heart (local electrocardiograms) for the diagnosis of electrophysiological abnormalities. This is accomplished by selecting any of the electrodes on the ablation probes and monitoring the voltage. A commercially available electrophysiology monitoring system is utilized, which can select any electrode on the ablation probes and monitor the voltage. Various electrodes and various locations on the heart wall may be selected to develop a map of potential conduction pathways in the heart wall. If ablation treatment is then required, the steps outlined above may be performed to create transmural lesions at the desired epicardial locations.

During any of the preceding steps, devices may be placed through working port 142 and working channel 92 to assist and supplement the procedure. For example, a flexible endoscope may be introduced for visualization to assist positioning. Ultrasound probes may be introduced to enhance visualization and for measuring the location and/or depth of transmural lesions. Suction or irrigation devices may be introduced to clear the field and remove fluid and debris. Tissue manipulation and retraction devices may be introduced to move and hold tissue out of the way. Cardiac mapping and ablation devices may also be introduced to identify conduction pathways and to supplement the ablation performed by left and right ablation probes 20, 22.

Furthermore, mapping and ablation catheters, temperature monitoring catheters, and other endovascular devices may be used in conjunction with the left and right ablation probes of the invention by introducing such devices into the right atrium or left atrium either through the arterial system or through the venous system via the right atrium and a transeptal puncture. For example, an ablation catheter may be

10

15

20

25

30

introduced into the left atrium to ablate any region of the myocardium not sufficiently ablated by left and right ablation probes 20, 22 in order to ensure complete isolation of the pulmonary veins. Additionally, ablation catheters may be introduced into the right chambers of the heart, or epicardial ablation devices may be introduced through incisions in the chest, to create other transmural lesions.

In some cases, it may be desirable to actively ensure adequate contact between the epicardium and the electrodes of left and right ablation probes 20, 22. For this purpose, left ablation probe 20 and/or right ablation probe 22 may include one or more expandable devices such as balloons which are inflated in the space between the heart and the pericardium to urge the ablation probe against the epicardial surface. An exemplary embodiment is shown in Figure 12, in which a balloon 150 is mounted to the outer surface of inner probe 74 opposite electrodes 76 on left ablation probe 20. Inner probe 74 further includes an inflation lumen 152 in communication with an opening 154 within balloon 150 and extending proximally to inflation fitting 50 on handle 42, through which an inflation fluid such as liquid saline or gaseous carbondioxide may be delivered. When inflated, balloon 150 engages the inner surface of the pericardium P and urges inner probe 74 against the epicardial surface of heart H. This ensures close contact between electrodes 76 and the epicardium, and protects extracardiac tissue such as the pericardium and phrenic nerve from injury caused by the ablation probes. Balloons or other expandable devices may similarly be mounted to superior sub-probe 38, inferior sub-probe 40, or right ablation probe 22 to ensure sufficient contact between the epicardium and the electrodes on those components.

Alternatively or additionally, suction ports may be provided in the ablation probes of the invention to draw the electrodes against the epicardium, as shown in Figure 13. In an exemplary embodiment, suction ports 156 are disposed in inner probe 74 between or adjacent to electrodes 76. Suction ports 156 are in communication with a suction lumen 158 which extends proximally to suction fitting 48 on handle 42. In this way, when suction is applied through suction port 156, inner probe 74 is drawn tightly against the heart, ensuring good contact between electrodes 76 and the epicardium. In a similar manner, superior sub-probe 38, inferior sub-probe 40 and right ablation probe 22 may include suction ports adjacent to the electrodes on those components to enhance contact with the epicardium.

10

15

20

25

30

Referring to Figs. 14A, 15, 16 and 17, the ablating device 20 is shown with various features described above. The embodiments are specifically referred to as ablating device 20A and like or similar reference numbers refer to like or similar structure. The ablating device 20A may have any of the features of the ablating devices 20, 22 described above and all discussion of the ablating devices 20, 22 or any other ablating device described herein is incorporated here. As mentioned above, the ablating device 20A may have a pre-shaped portion 160 or a flexible or bendable portion 162 as shown in Figs. 14 and 15, respectively. A stylet 164 or sheath (not shown) is used to shape the ablating device 20A as described below. The stylet 164 passes through a working channel 166 which may receive other devices as described above. The working channel 166 may also be coupled to a source of fluid 169, such as fluoroscopic contrast, which may be used for visualization. The contrast may be any suitable contrast including barium, iodine or even air. The fluoroscopic contrast may be introduced into the pericardial space to visualize structures in the pericardial space.

Referring to Fig. 14A, the pre-shaped portion 160 has a curved or L-shape in an unbiased position. The distal portion of the device 20A may have any other shape such as a hook or C-shape to pass the device 20A around a structure. The stylet 164 holds the pre-shaped portion 160 in any other suitable geometry, such as dotted-line 167, for introduction and advancement of the ablating device 20A. The stylet 164 may also be malleable. When the ablating device 20A is at the appropriate position, the stylet 164 is withdrawn thereby allowing the distal end 160 to regain the angled or curved shape. The device 20A may also be shaped with a sheath (not shown) through which the device 20A passes in a manner similar to the manner of Figs. 2 and 5.

Referring to Fig. 15, the ablating device 20A has the flexible distal portion 162 which is shaped by the stylet 164 into the dotted line 168 position. The pre-shaped portion 160 may be used to position or advance the ablating device 20A between the epicardium and pericardium. Fig. 18 shows the pre-shaped portion positioned around the left superior pulmonary vein as described below. A number of different stylets 164 may be used to shape the flexible portion 162 around various structures.

The ablating device 20A also has an anchor 170 to anchor a portion of the device 20A while moving another part of the device 20A. When the anchor 170 is the balloon 150, the balloon may have a number of chambers 171, preferably three, which

10

15

20

25

30

can be inflated as necessary to position the device as shown in Figs. 16 and 17. The chambers 171 are coupled to a source of inflation fluid 173 via inflation lumens 175. The anchor 170 is preferably an expandable element 172 such as the balloon 150, but may also be tines which grab the epicardium, pericardium or pericardial reflection.

The anchor 170 may also be one or more suction ports 156, as described above (see Fig. 13). The suction ports 156 may be used to anchor the device to the pericardium, epicardium, pericardial reflection or any other structure in the space between the pericardium and epicardium. Although only one anchor 170 is located at the distal end, the anchor 170 may be positioned at any other location and more than one anchor 170 may be provided without departing from the scope of the invention.

Referring to Figs. 18-21, a specific use of the ablating device 20A is now described. The ablating devices described herein may, of course, be used to ablate other tissues when positioned in the space between the epicardium and pericardium. The ablating device 20A is preferably introduced in the same manner as the ablating device 20 or in any other suitable manner. When the ablating device 20A is at the entrance to the transverse pericardial sinus, the ablating device 20A may be given the angled or curved shape by advancing or withdrawing the stylet 164 (see Figs. 14 and 15) or with the sheath (see Figs. 2 and 5). The device 20A is then advanced until the tip meets the pericardial reflection at the end of the sinus as shown in Fig. 18. The anchor 170, such as the balloon 150, is then actuated to resist movement of the distal end when displacing other parts of the ablating device 20A (Fig. 19). At this time, the ablating device 20A may be used to ablate tissue in the manner described above from a position superior to the right superior pulmonary vein, around the left superior pulmonary vein and to the left inferior pulmonary vein. Thus, the ablating device 20A is similar to the ablating device 20 described above in that the device 20A extends through the transverse pericardial sinus and to the left inferior pulmonary vein.

The ablating device 20A, like the ablating device 20, may also have a portion 176 which is moved to ablate tissue inferior to the left and right inferior pulmonary veins. Stated another way, the portion 176 is moved to a position inferior to the inferior pulmonary veins. The portion 176 is moved into the position shown in Fig. 20 by simply pushing the device 20A to displace the portion 176 or by advancing or withdrawing the stylet 164. After the ablating device 20A is properly positioned, the ablating elements 27 are activated as described above to create transmural lesions.

Still referring to Fig. 20, another ablating device 22A may also be used to ablate tissue in the same manner as the ablating device 22 described above. The ablating device 22A is introduced in the manner described above and is advanced until distal end 177 is positioned at a desired location. Fig 20 shows the distal end 177 superior to the right superior pulmonary vein adjacent to the pericardial reflection. A portion 179 of the ablating device 20A is then moved to the position of Fig. 21 in any manner described above such as by introduction or withdrawal of the stylet 164. The ablating device 20A is then used to ablate tissue as described above.

The ablating device 20A, 22A are also similar to the ablating devices 20, 22 in that the ablating devices 20A, 22A create continuous lesions on both sides of the pericardial reflections extending between the vena cava and the right superior and right inferior pulmonary veins. Tissue beneath the pericardial reflections is ablated using at least one of the ablating devices 20A, 22A. The ablating devices 20A, 22A may be approximated using any suitable technique or device such as with magnetic force described above. Other methods and devices for creating a continuous lesion beneath a pericardial reflection are described below.

Referring now to Fig. 22, another system and method for approximating the ablating devices 20, 22 and 20A, 22A is now described. An energy emitter 180, such as a light source 182, emits energy from the ablating device 20A which is received by a sensor 184 on the other ablating device 22A to determine when the devices 20A, 22A are positioned on opposite sides of a pericardial reflection. The emitter 180 and sensor 184 preferably pass through the working channel 166 but may also be integrated into the devices 20A, 22A. When the ablating devices 20A, 22A are aligned across the pericardial reflection, the sensor 184 detects proper alignment so that the lesion may be formed continuously on both sides of the pericardial reflection.

Yet another method to make sure that the ablating devices 20A, 22A are aligned across a pericardial reflection is to mark a location on the pericardial reflection where a lesion has been created as shown in Fig. 23. The device 20A has a needle 185 introduced through the working channel 166. The needle 185 delivers a marker 186, such as a radioopaque dye, which can be visualized. The device 20A may also deliver a solid marker such as a platinum wire. An advantage of using the marker 186 is that both ablating devices 20A, 22A do not need to be positioned on opposite sides of the pericardial reflection at the same time. Thus, only one ablating

10

15

20

25

30

device 20A may be necessary to create a continuous lesion beneath the pericardial reflection since the same device 20A can mark the pericardial reflection on one side, locate the mark 186 on the other side, and continue the lesion on the other side of the pericardial reflection.

Referring again to Fig. 10, the ablating device 20 has the guide portion 25. As mentioned above, the guide portion 25 preferably has a width to height ratio of about 2 to 5. The guide portion 25 aligns the ablating element 27 against a predetermined structure, such as the pulmonary veins, to ablate tissue. The relatively flat configuration of the guide portion 25 aligns the device 20 between the epicardium and the pericardium so that the ablating elements 27 are directed toward the myocardium.

Referring now to Fig. 24, an ablating device 20B is shown which has a number of discrete guide portions 25A. Four guide portions 25A are shown in Fig. 24 with each guide portion 25A being shaped similar to a fin 29. The ablating device 20A may also have a beaded or scalloped appearance. The ablating device 20A preferably has flexible sections 188 between the guide portions 25A which provide torsional flexibility so that the guide portions 25A can rotate relative to one another. The guide portions 25A may be positioned between the pulmonary veins as shown in Fig. 27A. The ablating device 20B may have any of the features of the other ablating devices 20, 20A described herein.

Referring to Fig. 25, another ablating device 20C is shown which has guide portions 25B which may also be deployed after the ablating device 20C has been positioned so that the guide portion 25B does not interfere with advancement and placement. The guide portion 25B has one or more expanding elements 192, such as the balloons 150, which may be expanded during advancement or after the device 20A is at the desired location. The expanding elements 192 are positioned on opposite sides of the ablating device 20C, however, the expanding elements 192 may be positioned only on one side of the device 20C. The guide portions 25A may be positioned between the pulmonary veins as shown in Fig. 27B. The expanding elements 192 may also be mechanically actuated elements such as bending arms or an expandable mesh.

The expanding elements 192 may also be inflated at selected locations corresponding to discrete ablation sites as shown in Fig. 26. An advantage of individual expansion of the expanding elements 192 is that other portions of the

10

15

20

25

30

device 20C may rotate and displace as necessary to provide good contact at the desired ablation site 193.

Another ablating device 20D is now described with reference to Figs. 28-31. The ablating device 20D is advanced over a guide 200 which is advanced ahead of the device 199. The guide 200 is preferably a guidewire 202 having the anchor 170 to anchor an end 204 of the guide 200. The guide 200 is advanced and positioned along the intended ablation path. The ablating device 20D is then retracted or advanced along the guide 200 to create a continuous lesion along the intended ablation path. The guide 200 may also be locked into a desired orientation with a coaxial cable or with a mechanism similar to locking arms used to hold surgical devices. The ablating device 20D has an expanding device 201, such as the balloon 150, to move the ablating element 27 into contact with the tissue to be ablated. The balloon 150 preferably has a number of chambers 203, preferably at least two, coupled to inflation lumens 205, 207 which are coupled to the source of inflation fluid 173 (Fig. 14A). Electrodes 191, 193 are coupled to wires 209, 211 passing through the device 20D. The guide 200 passes through the working channel 166. Wires 213 are also provided to steer, rotate and position the device 20D.

The ablating device 20D and/or the guide 200 preferably includes a device 206 for aligning the ablating element with a previously created lesion. The aligning device 206 may be electrodes 191, 193 which simply measure electrical impedance. When the electrodes 191, 193 measure a large increase in electrical impedance an ablation is positioned beneath the electrodes 191, 193. In this manner, the ablating element 27 can be aligned and positioned to create a continuous lesion through the tissue. Referring to Fig. 29, the electrodes 191, 193 may also be used to locate the previously created lesion 195 as shown in Fig. 29. The electrode 191 will sense a higher amplitude of activity than the electrode 193 since the electrode is positioned over the previously created lesion while the electrode 191 is not.

Still referring to Fig. 28, the ablating device 20D may have first and second electrodes 194, 196 on opposite sides of the ablating element 27. The first electrode 194 may be a pacing electrode 195 which emits an electrical impulse and the second electrode 196 may be a sensing electrode 197 which receives electrical impulses. When the first electrode 194 emits a stimulus, launching a cardiac impulse, the impulse is transmitted through tissue to the sensing electrode 197 if a discontinuity

exists in the lesion. A number of sensing electrodes 197 may be positioned along the ablating device 20A which may be used to determine the location of a discontinuity. Both electrodes 194, 196 may also be sensing electrodes 197 with both electrodes 194, 196 merely sensing normal activity. When only one of the electrodes 194, 196 senses the activity an effective, continuous, transmural lesion has been created. The electrodes described herein may be coupled to any suitable device including an ECG with electrogram amplitudes being measured.

The electrodes 194, 196 may also be used to locate the end of a previously created lesion. The time between emission of the pacing stimulus to receipt of the cardiac impulse at the sensing electrode increases when a transmural ablation has been created between the electrodes 194, 196. When such an increase is detected, it is known that the previously created lesion is positioned between the electrodes 194, 196. The time between emission and receipt of the cardiac impulse may also be used in simple time of flight analysis to determine the location of a discontinuity in the ablation. For example, the electrodes 194, 196 are positioned at a discontinuity in an ablation when the time of flight is lowest.

A method of using the device is shown in Figs. 32-35. The guide 200 is advanced to a desired location and the anchor 170 is actuated. The ablating device 20D is then advanced over the guide 200, the balloon 150 is inflated, and a first ablation 215 is performed. The balloon 150 is then deflated and the ablating device 20C is then moved to another location. The electrodes 191, 193 or 194, 196, or other suitable aligning device, is used to position and align the ablating device 20D and a second ablation 217 is then performed which is continuous with the first ablation 215. The device 20D is then moved again and a third ablation 219 is formed continuous with the second ablation 217.

Referring to Figs. 36-38, another ablating device 210 is shown wherein the same or similar reference numbers refer to the same or similar structure. The ablating device 210 has an expandable structure 209, preferably a balloon 150A, movable along the ablating device 210 to selectively anchor and align the device 210. An advantage of the system of Figs. 36-38 is that the structure 209 can be moved to various locations on the ablating device 210 for moving various ablating elements into contact with tissue to be ablated. The ablating device 210 also has the anchor 170, such as the balloon 150B, to anchor a part of the ablating device 210 and to move the

10

15

20

25

30

ablating elements 27 into contact with the tissue to be ablated. The balloon 150B is coupled to a source of inflation fluid 211 via inflation lumen 223.

The expandable device 209 is mounted to a body 211 having a scalloped appearance to provide flexibility although any other suitable design may be used. The body 211 has a C-shaped cross-section which engages a flange 221 on the ablating device 210. The expandable device 209 is preferably the balloon 150A but may be a mechanically actuated device. For example, the expandable device 209 can be an extendable arm, a wire loop or an expandable mesh. The anchor 170 may be selectively expandable to guide, rotate, and move the ablating device 210 as necessary. The balloon 150A preferably has at least two separately inflatable chambers 212 and Fig. 38 shows the balloon 150A having three independently inflatable chambers 212. The chambers 212 are coupled to inflation lumens 219 which are coupled to a source of inflation fluid 213. The chambers 212 may be inflated as necessary to move and rotate the ablating device 210 and press the ablating element 27 against the tissue to be ablated. The expandable structure 209 is moved to various positions along the ablating device 210 to move various ablating elements 27 into contact with the tissue. The body 211 may also have pull wires 218 for further manipulation of the ablating device 210.

As mentioned above, penetrating the pericardial reflections carries inherent risks. However, the methods and devices of the invention may, of course, be used when penetrating the pericardial reflections. The ablating devices 20, 22, 20A, 22A may have a penetrating element 220 as shown in Figs. 39-43 for penetrating the pericardial reflections. The penetrating element 220 is movable from a retracted position (Fig. 40) to an extended position (Fig. 41). The penetrating element 220 passes through the working channel 166 of the ablating device 20A. The penetrating element 220 is preferably positioned in the working channel 166 but may also be integrated into the ablating device 20A or may be a separate device altogether. The first and second ablating devices 20A, 22A are positioned on opposite sides of the pericardial reflection as shown in Fig. 40 using the emitter and sensor arrangement described above in connection with Fig. 22 although any other devices or techniques may be used. The penetrating element 220 is then used to penetrate the pericardial reflection and the two devices 20A, 22A are interlocked as shown in Figs. 41.

10

15

20

25

30

Referring to Figs. 42 and 43, the ablating device 22A has a locking mechanism 224 which holds the penetrating element 220. The locking mechanism 224 has a stationary jaw 230 and a movable jaw 231. The movable jaw 231 is movable in the direction of arrow 223 for releasing the device 20A. The locking mechanism 224 is also positioned in the working channel 166 of the ablating device 22A but may be integral with the device 22A. The penetrating element 220 preferably has a conical tip 222 or other cutting element for piercing the pericardial reflection but may also be a laser, ultrasonic dissector, or electrosurgical device. The penetrating element 220 may also be a blade, needle or other structure for cutting or piercing the pericardial reflection. After ablating tissue, the locking mechanism 224 is released, the penetrating element 220 is retracted and the ablating devices 20A, 22A are removed. The ablating devices 20A, 22A may have any other interlocking configuration and the ablating device 22A may interlock with some other structure other than the penetrating element 220. Referring to Fig. 48, the ablating devices 20, 22 may interlock with one another in the manner described above. Referring to Fig. 44, the ablating device 20 may penetrate through one or more pericardial reflections and interlock with another part of the ablating device 20. Referring to Fig. 45, the ablating device 20 and the ablating device 22 may also interlock across the pericardial reflections using the penetrating element 220 or other suitable device.

Referring to Figs. 46-49, another method of penetrating and advancing through the pericardial reflection is shown. The end of the ablating device 20A may be adhered to the pericardial reflection using suction through the working channel 166. The penetrating element 220 is then advanced through the working channel 166 while suction is maintained so that the piercing element is guided directly to the pericardial reflection. The penetrating element 220 is then used to penetrate the pericardial reflection as shown in Fig. 45. The ablating device 20A is then advanced through the pericardial reflection as shown in Fig. 46.

Referring to Fig. 14B, another anchor 170A for anchoring the device is shown. Any of the anchors described herein may be used with any of the devices described herein without departing from the scope of the invention. The anchor 170A is a relatively flat balloon having a thickness of about 1 cm and a width of about 0.3 cm when the balloon is inflated. Referring to Fig. 14C, yet another inflatable anchor 170B is shown which forms a hook-shaped element 171 which can engage a vessel

such as the aorta, superior or inferior vena cava or any other vessel mentioned herein. Referring to Fig. 14D, still another anchor 170C is shown which has a mechanically expanding coiled section 173. As mentioned above, the anchors of the present invention are expanded to hold the devices at a particular location. For example, the anchors may be used to anchor a part of the device between blood vessels such as the superior vena cava and the aorta. When positioned between blood vessels or when engaging a vessel with the hook-shaped element of Fig. 14C, tension may be applied to the device to wrap the device around a vessel or vessels, such as the pulmonary veins, in the manner described above.

Referring to Fig. 49-54, another device 300 for ablating tissue, such as cardiac tissue, is shown. The device 300 may also be used in any manner described herein and may have the features and dimensions of other devices described herein without departing from the scope of the invention. The device 300 encircles the pulmonary veins and is particularly suited for conventional open chest surgery but may also be used in less and minimally invasive procedures. Although ablation of tissue around the pulmonary veins is described as a specific use of the device 300, the device 300 may be used on other parts of the heart and in other areas of the body.

The device 300 has a body 302 having a length of 5-12 inches, preferably about 10 inches, and a width of 0.2-0.5 inch preferably about 0.375 inch. The body 302 is preferably made of an elastomeric material such as silicone or urethane and is formed by injection molding although any suitable material and method may be used to form the body 302. The body 302 has a number of cells 304 coupled together by integrally formed hinges 303 in the body 302. Of course, the cells 304 may be coupled together with mechanical connections rather than the integrally formed hinges 303 without departing from the scope of the invention. The device 300 preferably has 5-30 cells, more preferably 10-25 cells and most preferably about 16 cells although any number of cells 304 may be used depending upon the specific application. For example, the device 300 may be used to extend around a single vessel, such as the aorta, pulmonary vein, SVC or IVC in which case the device 300 preferably has 4-12 cells 304 and preferably about 8 cells 304.

The device 300 has a locking mechanism 306, preferably a buckle 308, which engages another part of the device 300 to form a closed loop 307. Referring to Fig. 49, the device 300 extends around the pulmonary veins with the locking mechanism

306 to form the closed loop 307 around the pulmonary veins. The buckle 308 forms a side-by-side (Figure 50) or one on top of the other (Figure 51) locking engagement with another part of the device 300. Although the buckle 308 is preferred, the locking mechanism 306 may have any other suitable structure for locking one part of the device 300 to another part of the device 300.

Referring now to Figs. 49, 52, 53A and 54, the cells 304 have a suction well 310 for adhering the device to the tissue to be ablated. The suction well 310 may take any form and is preferably formed between an inner lip 312 and an outer lip 314. The suction well 310 has a suction port 316 coupled to a vacuum source 318 through a lumen 320. The vacuum source 318 is activated to cause the suction well 310 to hold the cell 304 against the tissue to be ablated. The lumen 320 is preferably formed by a separate tube 322 bonded to the body 302. The lumen 320 may, of course, be formed integral with the rest of the body 302. The upper surface of the cells 304 has three longitudinal recesses 324 in which the tubes 322, 326, 328 are positioned. The tubes 322, 326, 328 have slack between the cells 304 to permit the cells 304 to wrap around structures without significant resistance from the tubes 322, 326, 328.

The suction port 316 preferably has a cross-sectional size which is no more than 10 % of the cross-sectional size of the lumen 320. In this manner, if suction is lost at one of the cells 304, suction can be maintained at the other cells 304 since the relatively small suction port 316 produces low flow. Of course, another part of the vacuum flow path 317 other than the suction port 316 may be sized small to reduce losses through cells 304 not adhered to the tissue.

An ablating element 311 is positioned within a closed wall 319 formed by the inner lip 312 so that the ablating element 311 is surrounded by the suction well 310. The ablating element 311 may be any ablating element mentioned herein and a preferred element is an RF electrode 330. The RF electrode 330 is coupled to an RF generator 332 which transmits RF energy to the electrode. The RF electrode 330 is preferably a stainless steel or gold plated copper electrode although any suitable electrode may be used. The ablating element 311 preferably has a width of 1-6 mm, preferably about 3 mm, and a length of 2-25 mm, preferably about 12 mm. When the ablating element 311 is the RF electrode, the ablating element 311 is preferably spaced apart from the target tissue, or from a bottom of the inner lip 312, by a distance of 0.5-3 mm and more preferably about 1.5 mm. The locking mechanism 306

10

15

20

25

30

preferably has at least one ablating element 311 to create a continuous lesion in tissue beneath the locking mechanism 306.

The ablating elements 311 are coupled to a control system 334 with wires 345. The control system 334 controls ablation in the manner described below. The RF generator 332 may form part of the control system 334 or may be separate from the control system 334. One or more temperature sensors 336, preferably thermocouples 338, are positioned within recesses in the inner and/or outer lips 312, 314 to measure temperature. The temperature sensors 336 are coupled to the control system 334 for use as described below. Wires 340 extending through the tube 326 couple the temperature sensors 336 to the control system 334.

Fluid is delivered to cool the tissue and/or conduct energy from the ablating element 311 to the tissue. Fluid is supplied from a source of fluid 342 to an inlet lumen 344 formed by tube 328. Fluid is withdrawn through the lumen 320 in the tube 322 so that the lumen 320 produces suction at the suction well 310 and withdraws fluid. As mentioned above, the lumens 344, 346 are preferably formed by the tubes 322, 328 but may be integrally formed with the rest of the body 302. The fluid is preferably a conductive solution, such as saline or hypertonic saline, which conducts RF energy from the electrode 330 to the tissue to be ablated.

Referring to Figs. 53A and 54, fluid flows from the inlet lumen 344 into an inlet manifold 350 which distributes fluid along the length of the ablating element 311 as shown in the cross-sectional view of Figure 54. Fluid then flows into a fluid chamber 348 formed between the ablating element 311, inner lip 312 and tissue. Fluid passes across the fluid chamber 348 and is received at a fluid outlet manifold 352. The fluid outlet manifold 352 is coupled to the lumen 320 so that the lumen 320 withdraws fluid and provides suction for the suction well 310 as mentioned above.

The fluid inlet and outlet 350, 352 are preferably positioned on opposite sides of the short axis of the fluid chamber 348, however, the fluid inlet and fluid outlet 350, 352 may be positioned anywhere within the fluid chamber 348 without departing from the scope of the invention. Fluid is preferably supplied at an average flow rate of at least 0.24 cc/sec, more preferably at least 0.50 cc/sec and most preferably at least 1.0 cc/sec to each cell 304 although lower or higher flows may be used. Fluid is preferably delivered to the inlet lumen 344 at a set pressure which results in the desired average flow rate through the cells 304. The fluid may be cooled, or even

10

15

20

25

30

heated, by passing the fluid through a heat exchanger 354. The fluid is preferably delivered at a temperature of no more than 40°C and more preferably no more than 20°C to cool the tissue and/or ablating element 311. A fluid permeable, porous structure, such as gauze (not shown), may be positioned in the fluid chamber 348 to hold the fluid and prevent direct contact between the ablating element 311 and tissue.

Referring to Fig. 53B, the device 300E may also provide cooling to a backside 353 of the ablating element 311. Fluid from the inlet lumen 344 passes across the backside 353 of the ablating element 311 and is removed on the other side through the lumen 320. The embodiment of Fig. 53B may include any of the features and advantages of the embodiment of Fig. 35, for example, the fluid flow rate and temperature may be the same as described in relation to Fig. 53A. The inlet lumen 344 is also coupled to the suction well 310 via a conduit 355 for supplying fluid to the suction well 310. In this manner, the fluid may also be used to cool tissue adjacent to the ablating element 311. Fluid introduced into the suction well 310 is withdrawn through the lumen 320 in the manner described above. Although the fluid in the suction well 310 is exposed to the near surface NS of the tissue, the cooling fluid may also be contained within a closed circuit so that the near surface NS of the tissue is not in direct contact with the fluid. Furthermore, the fluid preferably cools tissue around the entire ablating element 311 but may also cool tissue only along one side of the device or only on the two lateral sides of the device without departing from the scope of the invention.

Referring to Figs. 55 and 56, another device 300E is shown where the same or similar reference numbers refer to the same or similar structure. Use and dimensions of the device 300 are equally applicable for the device 300E. The device 300E has a lumen 356 contained within a cavity 358 in the body 302E. The lumen 356 carries the wires 340, 345 for the temperature sensors 336 and ablating elements 311. The lumen 356 is coupled to the control system 334 for control in the manner described below. The lumen 346 is a dedicated lumen for withdrawing fluid so that the fluid can be recycled as shown in Fig. 56. The system of Fig. 56 is described in greater detail below in connection with use of the devices 300, 300E. The lumen 356, wires 340, 345, ablating elements 311, and temperature sensors 336 form a strip 359 which is bonded to the rest of the body 302, preferably with an interlocking engagement.

A pair of wires 360, 362 is positioned across a gap 361 in suction path 363 (shown in dotted-line) to determine when the inner lip 312 is not adequately adhered to the tissue. When the inner lip 312 is not adequately adhered to the tissue, fluid leaks under the inner lip 312 and is drawn into the vacuum outlet 316. The fluid, which is preferably cooled hypertonic saline, conducts electricity across the gap 361 thereby indicating that the inner lip 312 may not be adequately sealed. The wires 360, 362 may be embedded in the body 302E or may travel through one or more of the lumens.

Referring to Figure 57, another device 300F is shown which has two sets of lumens 364, 368 extending from both ends of the device 300F. The two sets of lumens 364, 368 perform the same functions as the lumens described above and all discussion of the device 300 is equally applicable here. An advantage of using two sets of lumens 364, 368 is that suction and/or fluid containment does not need to be maintained at all cells 304 at the same time. Connectors 370 at the buckle 308 are disconnected to wrap the device 300F around the pulmonary veins and are then reconnected to form the closed loop. Each set of lumens 364, 368 terminates near the middle of the device 300F at ends 372. Valves 374 are provided to selectively couple the lumens 362, 368 to the vacuum source 318 and/or fluid supply 342.

Referring to Figs. 49 and 52-57 the control system 334 is coupled to the temperature sensors 336, ablating elements 311, fluid source 342 and vacuum source 318 for controlling the devices 300, 300E, 300F. The control system 334 may also be coupled to a pressure sensor 376 and/or a flow rate sensor 378 positioned along the inlet line of the vacuum source 318 (Figs. 56 and 57). The pressure and/or flow rate sensors 376, 378 determine when the cells 304 are adequately secured to the tissue. If suction is not adequate, the pressure and/or flow rate will be higher than expected. Fluid flow indicators 380 can also be used to measure fluid flow into and out of the devices 300E, 300F to determine whether fluid is leaking from the cells 304 which also indicates a poor seal.

The cells 304 are preferably numbered and the control system 334 indicates whether each cell 304 is adequately adhered to the tissue. In this manner, the user may apply manual pressure to a particular cell 304 if an adequate seal is not present. The readout may be a digital readout 377 or lights 379 for each cell 304. The control

system 334 also preferably has a temperature display 335 and a timer 337 for timing the duration of ablation.

The control system 334 preferably activates the ablating elements 311 in a predetermined manner. In one mode of operation, ablation is carried out at adjacent cells 304. Ablation may also be carried out at a number of pairs of adjacent cells such as the first and second cells 304 and the fifth and sixth cells 304. After ablation is carried out at these adjacent cells 304, another pair or pairs of adjacent cells are activated such as the third and fourth cells 304 and the seventh and eighth cells 304. The continuity of the ablation between the adjacent cells 304 may be confirmed in any suitable manner including those described herein. In another mode of operation, the control system 334 energizes every other cell, every third cell or a limited number of cells 304 such as no more than four. The control system 334 may also activate less than 50% and even less than 30% of the total ablation area at one time. For the device 300, a percentage of the total ablation area is essentially a percentage of the total number of ablation elements 311.

The ablation at each cell 304 may be controlled based on temperature measured at the temperature sensors 336. For example, the control system 334 may be configured to maintain a near surface NS temperature of 0-80°C, more preferably 20-80°C and most preferably 40-80°C. The temperature can be adjusted by changing the fluid flow rate and temperature and/or the power delivered to the ablating element 311. The control system 334 may also have a multiplexer 333 which delivers energy to only the cells 304 having a temperature below the threshold temperature. Alternatively, the multiplexer 333 may deliver energy to only the coldest cells 304 or only a number of cells 304 which register the coolest temperatures.

The control system 334 may also be configured to measure a temperature response of the tissue to be ablated. The temperature response of the tissue is measured to provide a tissue characterization which can be used to select the appropriate ablation technique. The ablation technique is primarily selected to produce a temperature of at least 50°C at the far surface FS of the tissue. When ablating cardiac tissue, for example, the control system 334 determines the ablation technique required to form a transmural lesion which requires a far surface FS temperature of 50-80°C and more preferably 50-60°C. Measuring temperature at the far surface FS is somewhat difficult so the temperature of the near surface NS is used

in conjunction with the methods and devices described herein. Of course, the temperature of the far surface FS may be measured to determine when the ablation is complete rather than using the temperature response described below.

The temperature response of the tissue is performed in the following manner. The tissue to be ablated is heated or cooled and the temperature response over time is measured with the temperature sensors 336. The temperature response over time at the near surface NS provides a rough indication of the thermal properties of the tissue to be ablated. The thermal properties of the tissue is affected by a number of variables including tissue thickness, amount of fat and muscle, blood flow through the region and blood flow and temperature at the far surface FS. These factors all play a role in the temperature response of the tissue. The tissue thickness, for example, affects the temperature response in the following manner. When a thin tissue layer is heated, the temperature at the near surface will generally increase more slowly than with a thick layer since the flow of blood at the far surface will draw heat away quicker with the thin tissue layer. The control system preferably measures the temperature response for at least two temperature sensors 336 for each ablating element with one of the temperature sensors being positioned laterally spaced to measure the temperature change at adjacent portions of the tissue.

After measuring the temperature change over time, the temperature response is then analyzed to determine the appropriate ablation technique. The analysis may be a comparison of the temperature response with temperature response curves of known tissue types. The temperature response curves may be developed empirically or may be calculated. The temperature response may also consider other variables input by the user including blood temperature and flow rate and the presence and amount of fat. When assessing the temperature response during heating with the ablating element, the amount of energy delivered to the tissue may also be used to characterize the tissue.

Using the results of the temperature response assessment, the control system 334 determines the appropriate ablation technique to produce the desired far surface FS temperature. In one mode of operation, the control system 334 determines the amount of time required to reach a desired far surface FS temperature when the near surface NS is maintained at a temperature of less than 60°C. The control system 334 preferably maintains an adequate flowrate and temperature of fluid to maintain the

10

15

desired near surface NS temperature. The control system 334 monitors the temperature of the near surface NS with temperature sensors 336. After the period of time has elapsed, the control system 334 automatically stops ablating. Alternatively, the ablation may take place until the near surface NS reaches a target temperature. The continuity of the ablation may then be checked in any manner described herein.

In use, the devices 300, 300E, 300F are wrapped around a structure, such as the pulmonary veins, with the locking mechanism 306 to form the closed loop 307. The vacuum source 318 is then activated to adhere the cells 304 to the epicardium. Manual pressure can be applied to cells 304 which are not sufficiently adhered to the tissue. The control system 334 then ablates tissue while delivering fluid to cool the tissue and conduct RF energy to the tissue. The continuity of ablation is then assessed by any suitable method including those described herein.

While the above is a complete description of the preferred embodiments of the invention, various alternatives, substitutions and modifications may be made without departing from the scope thereof, which is defined by the following claims. For example, any of the ablating devices described herein may have the anchor, fins, lateral balloons, sensors, and/or electrodes without departing from the scope of the invention.

WHAT IS CLAIMED IS:

1	1. A method of ablating cardiac tissue, comprising the steps of:		
2	providing an ablating device having an ablating element and a suction well, th		
3	suction well surrounding the ablating element, the suction well being coupled to a		
4	suction line which is coupled to a vacuum source;		
5	positioning the ablating device against the patient's epicardium;		
6	adhering the ablating device to the epicardium with the suction well; and		
7	ablating tissue with the ablating element after the adhering step.		
1	2. The method of claim 1, wherein:		
2	the ablating step is carried out to form a transmural lesion without penetrating		
3	the epicardium.		
1	The method of claim 1, wherein:		
2	the providing step is carried out with the device having means for determinin		
3	when the suction well is adequately adhered to the epicardium.		
1	4. The method of claim 1, wherein:		
2	the providing step is carried out with the device having a temperature sensor		
3	positioned to measure the temperature of the tissue during the ablating step.		
1	5. The method of claim 4, wherein:		
. 2	the providing step is carried out with the temperature sensor being positioned		
3	between adjacent ablating elements.		
1	6. The method of claim 1, wherein:		
2	the providing step is carried out with the suction well having an inner lip and		
3	an outer lip, the inner lip forming a closed wall around the ablating element, the		
4	device also having a fluid inlet and a fluid outlet for passing fluid into and out of a		
5	fluid chamber defined between the inner lip, the ablating element and the tissue.		

1	7.	The method of claim 6, further comprising the step of:
2	deliv	ering a conductive fluid to the fluid inlet.
1	8.	The method of claim 7, wherein:
2	the de	elivering step is carried out with the conductive fluid being hypertonic
3	saline.	
1	9.	The method of claim 6, further comprising the step of:
2	deliv	ering the fluid at a temperature of no more than 40°C.
1	10.	The method of claim 9, wherein:
2	the d	elivering step is carried out with an average flow rate of fluid across each
3	of a plurality of the ablating elements of at least 0.25 cc/sec.	
1	11.	The method of claim 10, wherein:
2	the d	elivering step is carried out with the average flow rate of fluid across each
3	of the plural	ity of ablating elements is at least 0.50 cc/sec.
1	12.	The method of claim 1, wherein:
2	the p	roviding step is carried out with the ablating element having a width of
3	0.2-0.5 inch and a length of 5-12 inches.	
1	13.	The method of claim 1, wherein:
2	the p	ositioning step is carried out with the ablating element being positioned
3	0.5-3 mm fr	om the tissue.
1	14.	The method of claim 1, wherein:
2	the p	providing step is carried out with the device having a plurality of cells,
3	each cell ha	ving a suction well and at least one ablating element.
1	15.	The method of claim 14, wherein:
2	the p	providing step is carried out with the device having 5-30 cells.

1	16. The method of claim 15, wherein:	
2	the providing step is carried out with the device having 10-25 cells.	
1	17. The method of claim 14, wherein:	
1		
2	the providing step is carried out with the device having means for determining	
3	whether each of the cells is adequately adhered to the tissue.	
1	18. The method of claim 1, wherein:	
2	the providing step is carried out with the device having a locking mechanism;	
3	the method further comprising the steps of wrapping the device around the pulmonary	
4	veins and forming a closed loop by locking one part of the device to another part of	
5	the device with the locking mechanism.	
1	19. A device for ablating tissue comprising:	
2	a body having a plurality of cells, at least one suction well for adhering the	
3	cells to tissue to be ablated; and	
4	at least one ablating element contained within the suction well.	
1	20. The device of claim 19, wherein:	
2	the body has a plurality of suction wells and a suction lumen coupled to the	
3	plurality of suction wells.	
3	plurancy of suction wens.	
1	21. The device of claim 19, wherein:	
2	the body has 10-25 cells.	
1	22. The device of claim 19, further comprising:	
2	a fluid inlet positioned to deliver fluid within the suction well; and	
3	a fluid outlet which receives fluid from the fluid inlet.	
1	23. The device of claim 22, wherein:	
2	the ablating element has a long axis and a short axis; and	
3	the fluid inlet and fluid outlet are positioned on opposite sides of the ablating	
4	element along the short axis.	

1	24. The device of claim 13, wherein:	
2	the fluid inlet is coupled to a source of conductive fluid.	
1	25. The device of claim 9, wherein:	
2	the ablating element is an RF electrode.	
~	the dolating element is an ite electrode.	
1	26. The device of claim 18, wherein:	
2	the RF electrode has a length of 2-25 mm and a width of 1-6 mm.	
1	A device for oblighing carding tiggue, comprising:	
1 2	27. A device for ablating cardiac tissue, comprising:a body;	
3	an ablating element coupled to the body;	
4	a sensor positioned to measure a parameter at tissue ablated by the ablating	
5	element; and	
6	a control system coupled to the sensor and the ablating element, the control	
7	system receiving parameter measurements from the sensor, the control system being	
8	operably coupled to the ablating element and delivering energy to the ablating element	
9	in response to the parameter measurements to create a lesion in the tissue.	
1	28. The device of claim 27, wherein:	
2	the sensor is a temperature sensor; and	
3	the control system receives temperature change measurements over a period of	
4	time.	
1	29. The device of claim 28, wherein:	
2	the control system delivers energy to the ablating element until the temperature	
3	sensor measures a temperature below a threshold temperature.	
	20 The leader of chine 20 miles in	
1	30. The device of claim 28, wherein: the control system delivers energy to the oblighing element for a selected period	
2	the control system delivers energy to the ablating element for a selected period of time while maintaining the temperature of a near surface of the tissue between 0-	
<i>3</i> 1	80°C	

1	31. The device of claim 28, further comprising:	
2	a plurality of ablating elements; and	
3	a plurality of temperature sensors, wherein at least two temperature sensors	
4	correspond to each ablating element; and	
5	the control system receives the temperature change measurements from the at	
6	least two temperature sensors for each ablating element.	
1	32. The device of claim 31, wherein:	
2	each of the plurality of temperature sensors corresponds to one of the ablating	
3	elements; and	
4	the control system delivers energy to at least one of the ablating elements for	
5	which the corresponding temperature sensor measures a lowest temperature.	
1	33. The device of claim 27, wherein:	
2	the body has a locking mechanism for locking one part of the body to another	
3	part of the body to form a closed loop.	
1	34. A method of delivering energy to ablate tissue, comprising the steps of:	
2	providing a device having an ablating element;	
3	positioning the device at a tissue site, the tissue site having a near surface and	
4	a far surface;	
5	measuring a temperature change at the tissue site over a period of time;	
6	analyzing the temperature change to provide a tissue characterization; and	
7	ablating the tissue in response to the tissue characterization.	
1	35. The method of claim 34, wherein:	
2	the analyzing and ablating steps are controlled by a control system;	
3	the positioning step is carried out with the tissue site having a near surface and	
4	a far surface; and	
5	the ablating step being carried out by maintaining the near surface temperature	
6	at a temperature of 0-80°C during the ablating step.	

1	36. The method of claim 34, wherein:	
2	the providing step is carried out with the device having an ablating ele	ement;
3	and	
4	the method also including the step of changing the temperature of the	tissue
5	with the ablating element; and	
6	the ablating step is carried out with the ablating element.	
1	37. The method of claim 34, wherein:	
2	the positioning step is carried out with the device being in contact wit	h the
3	epicardium.	
1	38. The method of claim 34, wherein:	
2	the ablating step is carried out using the results of the measuring step	to
3	approximate when the far surface achieves a target temperature.	
1	39. The method of claim 34, wherein:	
2	the ablating step is carried out with input of at least one variable from	a list of
3	variables consisting of presence of fat, amount of fat, flow rate of blood, tissu	ie
4	thickness and temperature of blood.	
1	40. The method of claim 34, wherein:	
2	the ablating step is carried out with a plurality of ablating elements, w	herein
3	no more than 50% of the ablating elements are activated at one time.	
1	41. The method of claim 34, wherein:	
2	the providing step is carried out with the device having a plurality of	suction
3	wells, at least one of the ablating elements being positioned in each of the suc	ction
4	wells.	
1	42. A device for ablating tissue, comprising:	
2	an elongate body having an end, the elongate body having at least one	ablating
3	element; and	

4	a plurality of suction wells in the body, the suction wells being positioned	
5	along the length of the body.	
1	43. The device of claim 42, wherein:	
2	the elongate body has a plurality of ablating elements.	
1	44. The device of claim 43, wherein:	
2	the suction wells are coupled to a suction lumen.	
1	45. The device of claim 47, further comprising:	
2	a second suction lumen coupled to another plurality of suction wells.	
1	46. The device of claim 46, wherein:	
2	the suction lumen is formed by a tube attached to the body.	
1	47. The device of claim 42, wherein:	
2	the suction well surrounds the ablating element.	
1	48. The device of claim 44, wherein:	
2	the suction well is formed by an inner lip and an outer lip;	
3	the device further comprising a fluid inlet and a fluid outlet, the fluid inlet and outlet	
4	being configured to pass a fluid into and out of a space bounded by the inner lip.	
1	49. The device of claim 46, wherein:	
2	the fluid outlet is coupled to a suction lumen which is also coupled to at least	
3	one of the suction wells.	
1	50. A method of creating a continuous ablation lesion in heart tissue,	
2	comprising the steps of:	
3	providing a first ablating section and a second ablating section, the first and	
4	second ablating sections each having an end and an ablating element;	
5	positioning the first and second ablating sections in contact with the	
6	epicardium;	

7	wrapping the first and second ablating sections around at least one vessel;		
8	interlocking the first and second sections to form a closed loop around the at		
9	least one vessel.		
1	51. A method of creating a continuous lesion in tissue, comprising the		
2	steps of:		
3	providing an ablating device having an ablating element;		
4	positioning the ablating device in contact with the epicardium;		
5	ablating tissue to create a first lesion;		
6	moving the ablating device to a location adjacent the first lesion;		
7	ablating tissue with the ablating element to create a second lesion which is		
8	continuous with the first lesion.		
1	52. A method of creating a lesion from an epicardial location, comprising		
2	the steps of:		
3	providing a first device and a second device slidably coupled to the first		
4	device, at least one of the first and second devices having an ablating element;		
5	introducing the first and second devices into the pericardial space;		
6	ablating tissue to form a first lesion with the ablating element;		
7	moving at least one of the first and second devices relative to the other; and		
8	forming a second lesion after the moving step.		
1	53. A method of ablating cardiac tissue, comprising the steps of:		
2	providing an ablating device having an ablating element and a suction well, the		
3	suction well being coupled to a suction line which is coupled to a vacuum source, the		
4	ablating device also having means for determining when the suction well is adhered to		
5	the epicardium;		
6	positioning the ablating device against the patient's epicardium;		
. 7	adhering the ablating device to the epicardium with the suction well; and		
8	ablating tissue with the ablating element after the adhering step.		
1	54. The method of claim 53, wherein:		

2	the providing step is carried out with the determining means being a sensor	
3	selected from the group of sensors consisting of a flow rate sensor, a pressure sensor	
4	and an electric circuit.	
1	55. A device for ablating epicardial tissue, comprising:	
2	a body;	
3	an ablating element mounted to the body;	
4	a suction well on the body for adhering the body to the epicardium; and	
5	means for determining when the suction well is adhered to the epicardium;	
1	56. The method of claim 55, wherein:	
2	the determining means is a sensor selected from the group of sensors	
3	consisting of a flow rate sensor, a pressure sensor and an electric circuit.	
1	57. A method of ablating cardiac tissue, comprising:	
2	providing an ablating device having an ablating element, a fluid inlet, and a	
3	fluid outlet;	
4	positioning the ablating element in contact with a patient's epicardium;	
5	flowing fluid through the fluid inlet and fluid outlet to cool tissue laterally	
6	spaced from the ablating element; and	
7	ablating tissue with the ablating element.	
1	58. The method of claim 57, wherein:	
2	the providing step is carried out with the ablating device having a vacuum	
3	lumen, the fluid outlet being coupled to the fluid outlet; and	
4		
5		
1	59. The method of claim 57, wherein:	
2	the providing step is carried out with the fluid also flowing along a backside	
3	the ablating element.	

2	the providing step is carried out with the ablating device having at least one		
3	suction well; and		
4	the method further including the step of adhering the ablating device to the		
5	epicardium with the suction well.		
1	61.	The method of claim 61, wherein:	
2	the fl	owing step is carried out with the fluid cooling an area on the epicardium	
3	adjacent to the ablating element.		
1	62.	A device for ablating tissue, comprising:	
2	a boo	ly having a plurality of cells, each cell having an ablating element; and	
3	a number of hinges positioned between the cells.		
1	63.	The device of claim 62, wherein:	
2	the b	ody is formed of a material and the hinges are formed by integrally	
3	formed portions of the material.		
1	64.	The device of claim 62, wherein:	
2	the b	ody has at least 5-30 cells.	
1	65.	The device of claim 62, wherein:	
2	the b	ody has at least one suction well and a suction lumen coupled to the	
3	suction well		
1	66.	The device of claim 65, wherein:	
2	the b	ody has 5-30 suction wells, a number of the suction wells being coupled	
3	to the suction	n lumen.	
1	67.	The device of claim 66, wherein:	
2	the b	ody has two suction lumens extending around the device, the plurality of	
3	suction well	s being coupled to at least one of the two suction lumens.	

The method of claim 57, wherein:

60.

1

1	68. The dev	vice of claim 66, wherein:
2	the body has a	fluid inlet and a fluid outlet, the fluid inlet and fluid outlet.
1	69. The dev	vice of claim 68, wherein:
2	each of the cell	s has a fluid inlet and a fluid outlet.
1	70. The dev	vice of claim 68, wherein:
2	the fluid inlet a	and fluid outlet are positioned to deliver fluid across a backside
3	of the ablating element.	
1	71. The de	vice of claim 68, wherein:
2	the fluid inlet	and fluid outlet are positioned to deliver fluid across a frontside
3	of the ablating element and in contact with the tissue being ablated.	
1	72. The de	vice of claim 62, further comprising:
2	a fluid conduit	which receives a coolant, the fluid conduit directing the fluid to
3	a position on the tissue adjacent to the ablating element.	
1	73. The de	vice of claim 72, wherein:
2	the fluid conduit direc	ts the fluid to at least two lateral sides of the ablating element.
1	74 The de	vice of claim 62 wherein:

the body is made of an elastomeric material.

10

APPARATUS AND METHOD FOR ABLATING TISSUE

ABSTRACT OF THE DISCLOSURE

The invention provides apparatus and methods for ablating tissue and is particularly useful for creating lesions in the heart wall for the treatment of atrial fibrillation. The apparatus has a suction well which is adhered to the tissue to be ablated. The ablating element is surrounded by the suction well. A fluid is delivered to the ablating element to conduct RF energy to the tissue and/or to cool the tissue. The device is preferably formed with a number of cells with each cell having a suction well and at least one ablating element. The device also preferably has a locking mechanism for locking one part of the device to another part of the device to form a closed loop for ablating around structures such as the pulmonary veins.

FIG. 3

FIG. 6

FIG. 7

FIG. 8

FIG. 10

FIG. 12

FIG. 13

F16.14B

F16. 14D

FIG. 16

FIG. 17

FIG. 20

FIG. 27B

FIG. 32

FIG. 35

FIG. 39

FIG. 40

FIG. 41

FIG. 44

F16.53B

F16.55

DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I declare that:

My residence, post office address and citizenship are as stated below next to my name; I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural inventors are named below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

APPARATUS AND METHOD FOR ABLATING TISSUE

the specification of which is attached herewith.

I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, Section 1.56. I claim foreign priority benefits under Title 35, United States Code, Section 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application(s) for patent or inventor's certificate having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s)

Application No.	<u>Country</u>	Date of Filing	Priority Claimed
			<u>Under 35 USC 119</u>

I hereby claim the benefit under Title 35, United States Code § 119(e) of any United States provisional application(s) listed below:

Application No. <u>Filing Date</u> <u>Status</u>

I claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, Section 1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

Application Serial No.	Date of Filing	<u>Status</u>
09/356,476	07/19/99	Pending
09/157,824	09/21/98	Pending
08/943,683	10/15/97	Pending
08/735,036	10/22/96	Abandoned

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

Jens E. Hoekendijk, Reg. No. 37,149

Send Correspondence to: Direct Telephone Calls to: Jens E. Hoekendijk Jens E. Hoekendijk 265 San Anselmo Avenue Reg. No. 37,149 San Francisco, CA 94127 Telephone: (415) 753-3516 I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon. Full name of sole or one joint inventor: Scott C. Anderson Inventor's signature: Date: Residence & Post Office Address: 548 Cashmere Court Sunnyvale, CA 94087 **United States** Citizenship: Full name of sole or one joint inventor: Jonathan L. Podmore Inventor's signature: 2/11/00 Date: 444 15th Avenue #307 Residence & Post Office Address: San Francisco, CA 94118 Citizenship: United States Full name of sole or one Roxanne L. Richman joint inventor: Inventor's signature: Date: 2-11-00 588 Vasona Avenue #A Residence & Post Office Address: Los Gatos, CA 95032

United States

Citizenship:

Full name of sole or one joint inventor:	Matthias Vaska
Inventor's signature:	/ July
Date: Residence & Post Office Address:	2/U/00 805 Colorado Avenue Palo Alto, CA 94303
Citizenship:	United States
Full name of sole or one joint inventor:	David A. Gallup
Inventor's signature:	
Date: Residence & Post Office Address:	2720 Tribune Avenue Hayward, CA 94542
Citizenship:	United States
Full name of sole or one joint inventor:	John E. Crowe
Inventor's signature:	John E. Cours
Date: Residence & Post Office Address:	// Feb, 2000 1601 Mariposa Blvd. Palo Alto, CA 94306
Citizenship:	United States
Full name of sole or one joint inventor:	Jack E. Ulstad, Jr.
Inventor's signature:	Jay (tust fr
Date: Residence & Post Office Address:	2 - 11 - 00 14945 Two Bar Road Boulder Creek, CA 95006
Citizenship:	United States
Full name of sole or one joint inventor:	Banjamin Pless
Inventor's signature:	The Plass
Date: Residence & Post Office Address:	7-15-2000 5 Ridgeview Drive Atherton, CA 94027

United States

Citizenship:

POWER OF ATTORNEY BY ASSIGNEE

EPICOR, INC., a Delaware corporation, located at 173 Jefferson Drive, Menlo Park, California 94025, is the Assignee of the invention entitled: **APPARATUS AND METHOD FOR ABLATING TISSUE**, the specification of which is filed herewith

The Assignment accompanying this Power of Attorney has been reviewed by the undersigned. The undersigned certifies that to the best of the undersigned's knowledge and belief, title is in the Assignee.

Assignee hereby appoints the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

Jens E. Hoekendijk, Reg. No. 37,149

Send Correspondence to:	Direct Telephone Calls to:
Jens E. Hoekendijk	
265 San Anselmo Avenue	Jens E. Hoekendijk
San Francisco, CA 94127	Reg. No. 37,149
Telephone: 415-753-3516	Telephone: (415) 753-3516

EPICOR, INC.

Date: 2/17/00

Matthias Vaska V.P. of Research