Devoir surveillé n°8 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $f \in \mathscr{C}^0([0,1],\mathbb{R})$ telle que $\int_0^1 f(t) dt = \frac{1}{2}$. Montrer qu'il existe $a \in]0,1[$ telle que f(a)=a.

II. Une fonction définie par une intégrale.

Soit G la fonction définie sur \mathbb{R}^+ par $G(x) = \int_x^{x^2} e^{-t^2} dt$.

- 1) Établir que G est dérivable sur \mathbb{R}_+ et donner sa dérivée.
- 2) En déduire que G est décroissante sur un intervalle $[M, +\infty[$, pour un certain $M \in \mathbb{R}$ que l'on ne déterminera pas.
- 3) Montrer que G admet une limite L quand x tend vers $+\infty$ (on ne demande pas la valeur de L).
- 4) Le but de cette question est de déterminer L.
 - a) Soit $F: x \mapsto \int_0^x e^{-t^2} dt$. Montrer que F croît sur \mathbb{R}_+ .
 - **b)** En écrivant F(x) sous la forme $F(x) = \int_0^1 e^{-t^2} dt + \int_1^x e^{-t^2} dt$, et en utilisant que pour tout $t \ge 1$, on a $t^2 \ge t$, montrer que F est majorée.
 - c) Exprimer G(x) en fonction de F et de x. En déduire la valeur de L.

III. Les matrices magiques.

L'objectif de cet exercice est d'étudier certaines propriétés des matrices dites magiques.

Une matrice réelle $M = \begin{pmatrix} a & b & c \\ r & s & t \\ x & y & z \end{pmatrix}$ est dite magique si les sommes de ses coefficients selons ses

trois lignes, ses trois colonnes et ses deux diagonales sont égales. Plus précisément, cette matrice M est magique si toutes les sommes

$$\ell_1(M) = a + b + c$$

$$\ell_2(M) = r + s + t$$

$$\ell_3(M) = x + y + z$$

$$c_1(M) = a + r + x$$

$$c_2(M) = b + s + y$$

$$c_3(M) = c + t + z$$

$$d_1(M) = a + s + z$$

$$d_2(M) = x + s + c$$

sont égales. On note alors $\Sigma(M)$ la valeur de ces sommes, que l'on appelle somme de la matrice M.

On note \mathcal{M} l'ensemble des matrices réelles magiques de dimension 3. On notera aussi \mathcal{M}_0 l'ensemble des matrices réelles magiques de dimension 3 et de somme nulle.

On note usuellement $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices réelles carrées de dimension 3. On identifiera \mathbb{R}^3 à $\mathcal{M}_{3,1}(\mathbb{R})$, l'espace des vecteurs colonnes de dimension 3.

On introduit aussi les trois matrices particulières suivantes:

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}, \ J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- 1) Parmi les matrices A, B et J, dire lesquelles sont magiques et donner la somme de chacune de ces dernières.
- 2) Montrer que ℓ_1 est une forme linéaire sur $\mathcal{M}_3(\mathbb{R})$.

On montrerait de même que ℓ_2, \ldots, d_2 dont des formes linéaires sur $\mathcal{M}_3(\mathbb{R})$.

- 3) Montrer que \mathcal{M} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- 4) Montrer que Σ est une forme linéaire sur \mathcal{M} .
- 5) Quel lien peut-on établir entre \mathcal{M}_0 et Σ ? Que peut-on en déduire de simple sur \mathcal{M}_0 ?
- 6) Soit M une matrice magique, montrer que M^{\top} est aussi une matrice magique. Quelle est la somme de M^{\top} ?
- 7) Soit $M \in \mathcal{M}$, déterminer un réel λ tel que $M \lambda J \in \mathcal{M}_0$. A-t-on unicité d'un tel λ ?
- 8) Soit $M \in \mathcal{M}_0$. Montrer qu'il existe deux uniques matrices S_1 et S_2 telles que
 - S_1 est symétrique;
 - S_2 est antisymétrique;
 - $--M = S_1 + S_2.$

On explicitera notamment S_1 et S_2 en fonction de M.

9) Avec les matrices introduites précédemment, montrer que S_1 et S_2 sont magiques, et de somme nulle.

- 10) En écrivant les coefficients de S_2 , montrer qu'il existe $\mu \in \mathbb{R}$ tel que $S_2 = \mu B$.
- 11) En procédant de même pour S_1 , montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $S_1 = \lambda A$.
- 12) En déduire une base de \mathcal{M}_0 , puis montrer que (A, B, J) est une base de \mathcal{M} .

On cherche maintenant à compter le nombre de matrices magiques à coefficients entiers naturels, de somme fixée.

Soit donc M une matrice magique de dimension 3, que l'on écrit

$$M = aA + bB + cJ$$
.

- 13) On suppose que les coefficients de M sont entiers naturels.
 - a) Montrer que a, b et c sont entiers relatifs et exprimer $\Sigma(M)$ en fonction de c.
 - b) Montrer que l'on a les relations $|a+b| \le c$ et $|a-b| \le c$.
- 14) Montrer réciproquement que si a, b, c sont entiers et vérifient $|a + b| \le c$ et $|a b| \le c$, alors les coefficients de M sont entiers naturels.
- 15) Si l'on fixe c, on en vient donc à compter le nombre de points à coordonnées entières dans le carré de sommets (0,c), (c,0), (0,-c) et (-c,0) (voir la figure 1, où l'on a représenté en grisé le carré pour c=2). On note p_c ce nombre. On pourra remarquer que $p_2=13$.
 - a) Que valent p_0 et p_1 ?
 - **b)** En utilisant la figure, justifier que si $n \ge 1$: $p_{n+1} = p_n + 4(n+1)$.
 - c) En déduire la valeur de p_n pour tout $n \in \mathbb{N}$.
- 16) Combien y a-t-il de matrices magiques de dimension 3 et à coefficients entiers naturels, dont la somme vaut 12?

Figure 1 – Représentation des carrés

— FIN —