Analysis Problems and Solutions

Problem 1

(a)

This part proves that if a non-negative real number a is less than any positive ϵ , then a must be zero.

Proof. Proof by Contradiction: The proof assumes the opposite, i.e., a > 0.

Choosing ϵ : If a > 0, then ϵ can be chosen as a/2, which is also positive.

Contradiction: By the initial hypothesis $(a < \epsilon)$, it would follow that a < a/2, which simplifies to 1 < 1/2. This is a false statement, thus creating a contradiction.

Conclusion: Since the assumption (a > 0) leads to a contradiction, it must be false. Therefore, a must be 0.

(b)

This section solves the inequality |x-1| > |x+1| by considering different cases based on the values of x that make the expressions inside the absolute values change signs.

Case 1: $x \ge 1$

- In this case, both (x-1) and (x+1) are non-negative.
- The inequality becomes x 1 > x + 1, which simplifies to -1 > 1. This is a false statement, meaning there are no solutions in this range.

Case 2: $-1 \le x < 1$

- In this case, (x 1) is negative, so |x 1| = -(x 1) = 1 x.
- (x+1) is non-negative, so |x+1| = x+1.
- The inequality becomes 1 x > x + 1, which simplifies to -2x > 0, and further to x < 0.
- Combining this with the case condition $(-1 \le x < 1)$, the solution for this case is $-1 \le x < 0$.

Case 3: x < -1

- In this case, both (x-1) and (x+1) are negative.
- The inequality becomes -(x-1) > -(x+1), which is 1-x > -x-1. This simplifies to 1 > -1. This statement is always true.
- Combining this with the case condition (x < -1), the solution for this case is x < -1.

Overall Solution: Combining the valid ranges from all cases (x < 0 from Case 2 and x < -1 from Case 3), the complete solution is x < 0.

(c)

This part finds the supremum (sup) and infimum (inf) for two sets.

(i) For $\{\cos(\frac{n\pi}{2}) : n \in \mathbb{N}\}\$ Values: By substituting n = 1, 2, 3, 4, 5, ..., the sequence of values is $\cos(\pi/2) = 0$, $\cos(\pi) = -1$, $\cos(3\pi/2) = 0$, $\cos(2\pi) = 1$, $\cos(5\pi/2) = 0$, $\cos(3\pi) = -1$, and so on.

Supremum: The largest value that the set approaches or contains is 1.

Infimum: The smallest value that the set approaches or contains is -1.

(ii) For $\{\frac{x+2}{3}: x > 3\}$ Lower Bound: If x > 3, then x + 2 > 5, so $\frac{x+2}{3} > \frac{5}{3}$.

Infimum: The infimum is $\frac{5}{3}$.

Supremum: As x can be arbitrarily large (since x > 3), the values of $\frac{x+2}{3}$ can also be arbitrarily large. Therefore, the supremum does not exist.

(d)

This part proves that 1 is the least upper bound (supremum) of the set $S = \{1 - \frac{1}{n} : n \in \mathbb{N}\}$.

Proof. 1 as an Upper Bound: As $n \in \mathbb{N}$, $\frac{1}{n}$ is always positive, so $1 - \frac{1}{n}$ will always be less than 1. Thus, 1 is clearly an upper bound.

1 as the Least Upper Bound: To show it's the least upper bound:

- Choose $n > 1/\epsilon$ (which is always possible due to the Archimedean property).
- Then, $\frac{1}{n} < \epsilon$.
- This implies $-\frac{1}{n} > -\epsilon$.
- Adding 1 to both sides gives $1 \frac{1}{n} > 1 \epsilon$.
- Since $1 \frac{1}{n}$ is an element of S, this shows that for any $\epsilon > 0$, there's an element in S larger than 1ϵ , proving 1 is the least upper bound.

Problem 2

(a)

This part proves the property that $\inf S = -\sup\{-s : s \in S\}$.

Proof. Definition of Infimum: Let $\alpha = \inf S$. This means $\alpha \leq s$ for all $s \in S$.

Relationship with -s: From $\alpha \leq s$, it follows that $-\alpha \geq -s$ for all $s \in S$. This implies that $-\alpha$ is an upper bound for the set $\{-s : s \in S\}$.

Definition of Supremum: Let $\beta = \sup\{-s : s \in S\}$. Since $-\alpha$ is an upper bound for $\{-s\}$, by the definition of supremum, $\beta \le -\alpha$.

Proof by Contradiction for Equality: Suppose for contradiction that $\beta < -\alpha$.

- If $\beta < -\alpha$, then it means that $\alpha < -\beta$.
- Since β is the supremum of $\{-s\}$, for any $\epsilon' > 0$, there exists a $-s_0 \in \{-s\}$ such that $\beta \epsilon' < -s_0$.
- This implies $s_0 < -\beta + \epsilon'$.
- If we choose ϵ' small enough such that $-\beta + \epsilon' < \alpha$, then $s_0 < \alpha$, which would contradict α being the lower bound for S.

Conclusion: Therefore, β must be equal to $-\alpha$, so inf $S = -\sup\{-s : s \in S\}$.

(b)

Archimedean Property

Theorem 1. For any real number x, there exists a natural number n such that n > x.

Proof. Proof by Contradiction:

- Assume the opposite: \mathbb{N} is bounded above by some real number x.
- Completeness Property: By the completeness property of real numbers, if a non-empty set is bounded above, it has a supremum (least upper bound). Let this supremum be s.
- Contradiction Derivation: Since s is the least upper bound, s-1 cannot be an upper bound (as it's smaller than the least upper bound).
- Therefore, there must exist some natural number $m \in \mathbb{N}$ such that m > s 1.
- Rearranging this, we get m+1>s.
- However, since $m \in \mathbb{N}$, then m+1 is also a natural number. This means we found a natural number (m+1) that is greater than s, which contradicts our initial assumption that s is an upper bound for \mathbb{N} (and specifically the least upper bound).

Conclusion: The initial assumption that \mathbb{N} is bounded above must be false. Hence, the Archimedean property is true.

(c)

This part finds the infimum and supremum for the set $S = \{\frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N}\}$. **Infimum**: To make $\frac{1}{n} - \frac{1}{m}$ as small as possible:

- We want $\frac{1}{n}$ to be small, so n should be large (approaching infinity). In the limit, $\frac{1}{n} \to 0$.
- We want $\frac{1}{m}$ to be large, so m should be small. The smallest natural number for m is 1.
- Thus, the infimum is approximately $0 \frac{1}{1} = -1$.

Supremum: To make $\frac{1}{n} - \frac{1}{m}$ as large as possible:

- We want $\frac{1}{n}$ to be large, so n should be small. The smallest natural number for n is 1.
- We want $\frac{1}{m}$ to be small, so m should be large (approaching infinity). In the limit, $\frac{1}{m} \to 0$.
- Thus, the supremum is approximately $\frac{1}{1} 0 = 1$.

(d)

Convergence of a Sequence and Uniqueness of Limit.

Theorem 2. The limit of a convergent sequence is unique.

Proof. Definition of Convergence: A sequence (x_n) converges to a limit L if for every $\epsilon > 0$, there exists a natural number N such that for all $n \geq N$, the absolute difference $|x_n - L|$ is less than ϵ .

Uniqueness Proof:

- Assumption: Assume that a sequence (x_n) converges to two different limits, L and L', where $L \neq L'$.
- Choosing ϵ : Let $\epsilon = \frac{|L-L'|}{2} > 0$.
- Applying Definition of Convergence:
 - For $\epsilon/2$, exists N_1 such that for all $n \geq N_1$, $|x_n L| < \epsilon/2$.
 - For $\epsilon/2$, exists N_2 such that for all $n \geq N_2$, $|x_n L'| < \epsilon/2$.
- Triangle Inequality: For any $n \ge \max\{N_1, N_2\}$: $|L L'| = |L x_n + x_n L'| \le |L x_n| + |x_n L'| < \epsilon/2 + \epsilon/2 = \epsilon$.
- But this contradicts our choice of $\epsilon = |L L'|/2$ since |L L'| < |L L'|/2 implies 1 < 1/2.

Conclusion: Therefore, the limit of a convergent sequence must be unique.

Problem 3

(a)

This part involves proving the limit of a sequence using the $\epsilon-N$ definition.

The Sequence and Proposed Limit: $x_n = \frac{2n+3}{3n-7}$, limit is $\frac{2}{3}$.

Proof. We need to show that for any $\epsilon > 0$, there exists an N such that if $n \geq N$, then $\left|\frac{2n+3}{3n-7} - \frac{2}{3}\right| < \epsilon$.

- Simplify the expression: $\left| \frac{2n+3}{3n-7} \frac{2}{3} \right| = \left| \frac{23}{3(3n-7)} \right| = \frac{23}{3(3n-7)}$ (for $n \ge 3$)
- We want $\frac{23}{3(3n-7)} < \epsilon$.
- Solve for n: $\frac{23}{3\epsilon} < 3n 7 \Rightarrow n > \frac{23}{9\epsilon} + \frac{7}{3}$.

Choosing N: Let N be any integer greater than $\frac{23}{9\epsilon} + \frac{7}{3}$. Then for all $n \geq N$, the inequality holds.

(b)

This part proves the limit of $n^{1/n}$ as $n \to \infty$.

Proof. Rewriting the Expression: $n^{1/n} = e^{\ln(n^{1/n})} = e^{\frac{\ln n}{n}}$.

Limit of the Exponent: $\lim_{n\to\infty} \frac{\ln n}{n} = \lim_{n\to\infty} \frac{1/n}{1} = 0$ (by L'Hôpital's Rule).

Conclusion: Since e^x is continuous, $\lim_{n\to\infty} n^{1/n} = e^{\lim_{n\to\infty} \frac{\ln n}{n}} = e^0 = 1$.

(c)

Sandwich Theorem (Squeeze Theorem).

Theorem 3. If $a_n \le b_n \le c_n$ for all $n \ge N_0$, and $\lim a_n = \lim c_n = L$, then $\lim b_n = L$.

Proof. For any $\epsilon > 0$, there exists:

- N_1 such that for $n \ge N_1$, $L \epsilon < a_n < L + \epsilon$
- N_2 such that for $n \ge N_2$, $L \epsilon < c_n < L + \epsilon$

Let $N = \max\{N_0, N_1, N_2\}$. Then for $n \ge N$: $L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$, so $|b_n - L| < \epsilon$.

(d)

Monotone Convergence Theorem for Increasing Sequences.

Theorem 4. If (x_n) is increasing and bounded above, then it converges.

Proof. Let $L = \sup\{x_n\}$. For any $\epsilon > 0$, exists $x_N > L - \epsilon$ (since L is least upper bound). By monotonicity, for all $n \ge N$: $L - \epsilon < x_N \le x_n \le L < L + \epsilon$, so $|x_n - L| < \epsilon$.

Problem 4

(a)

Analyze the convergence of $x_n = \sqrt{2 + x_{n-1}}$ with $x_1 = \sqrt{2}$.

Monotonicity and Boundedness:

- By induction, $x_n < 2$ for all n:
 - Base case: $x_1 = \sqrt{2} < 2$
 - If $x_k < 2$, then $x_{k+1} = \sqrt{2 + x_k} < \sqrt{4} = 2$
- Sequence is increasing:
 - $-x_1 = \sqrt{2} \approx 1.414$
 - $-x_2 = \sqrt{2 + \sqrt{2}} \approx 1.847 > x_1$
 - If $x_k > x_{k-1}$, then $x_{k+1} = \sqrt{2 + x_k} > \sqrt{2 + x_{k-1}} = x_k$

Convergence: By Monotone Convergence Theorem, the sequence converges to L satisfying: $L = \sqrt{2+L} \Rightarrow L^2 = 2+L \Rightarrow (L-2)(L+1) = 0$.

Since $L \ge \sqrt{2} > 0$, we have L = 2.

(b)

Prove that Cauchy sequences are bounded.

Proof. Take $\epsilon=1$ in the Cauchy definition. There exists N such that for all $n,m\geq N,$ $|x_n-x_m|<1.$

Fix m = N. Then for all $n \ge N$: $|x_n| \le |x_n - x_N| + |x_N| < 1 + |x_N|$. Let $M = \max\{|x_1|, |x_2|, ..., |x_{N-1}|, 1 + |x_N|\}$. Then $|x_n| \le M$ for all n.

(c)

Prove the divergence of the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$.

Proof. Integral Test Proof: Compare to $\int_1^\infty \frac{1}{x} dx = \lim_{b \to \infty} \ln b = \infty$.

Since the integral diverges and the terms are positive decreasing, the series diverges.

Grouping Terms Proof:

$$1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \dots$$
$$> 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots \to \infty$$

(d)

Find lim sup and lim inf for:

- (i) $x_n = (-2)^n (1 + \frac{1}{n})$ For even n = 2k: $x_{2k} = 4^k (1 + \frac{1}{2k}) \to +\infty$ For odd n = 2k 1: $x_{2k-1} = -2 \cdot 4^{k-1} (1 + \frac{1}{2k-1}) \to -\infty$ $\lim \sup x_n = +\infty, \lim \inf x_n = -\infty$
- (ii) $x_n = (-1)^n \frac{1}{n}$ For even n: $x_n = \frac{1}{n} \to 0$ For odd n: $x_n = -\frac{1}{n} \to 0$ $\limsup x_n = \liminf x_n = 0$

Problem 5

(a)

Geometric Series $\sum_{n=0}^{\infty} ar^n$. Partial Sums: $S_n = a \frac{1-r^n}{1-r}$ for $r \neq 1$.

Convergence:

- If |r| < 1, converges to $\frac{a}{1-r}$ (since $r^n \to 0$)
- If $|r| \ge 1$:
 - $-r=1: S_n=na\to\infty \text{ (unless } a=0)$
 - -r = -1: Oscillates, diverges (unless a = 0)
 - $-\ |r|>1$: $|r^n|\to\infty$, terms don't tend to zero

(b)

Telescoping Series $\sum_{n=1}^{\infty} \frac{1}{(n+a)(n+a+1)}$.

Partial Fractions: $\frac{1}{(n+a)(n+a+1)} = \frac{1}{n+a} - \frac{1}{n+a+1}$ Partial Sum: $S_N = \left(\frac{1}{1+a} - \frac{1}{2+a}\right) + \cdots + \left(\frac{1}{N+a} - \frac{1}{N+a+1}\right) = \frac{1}{1+a} - \frac{1}{N+a+1}$ Sum: As $N \to \infty$, $S_N \to \frac{1}{1+a}$.

(c)

Convert repeating decimal $0.\overline{15}$ to fraction.

Method 1 (Algebra):

$$x = 0.\overline{15}$$

$$100x = 15.\overline{15}$$

$$100x - x = 15 \Rightarrow x = \frac{15}{99} = \frac{5}{33}$$

Method 2 (Series):
$$0.\overline{15} = \frac{15}{100} + \frac{15}{100^2} + \dots = \frac{15/100}{1-1/100} = \frac{15}{99} = \frac{5}{33}$$

(d)

Test convergence:

- (i) $\sum \frac{1}{\log n}$ For $n \ge 2$, $\log n < n \Rightarrow \frac{1}{\log n} > \frac{1}{n}$. Since $\sum \frac{1}{n}$ diverges, by comparison $\sum \frac{1}{\log n}$ diverges.
- (ii) $\sum \tan^{-1}(\frac{1}{n})$ Limit compare to $\sum \frac{1}{n}$: $\lim_{n\to\infty} \frac{\tan^{-1}(1/n)}{1/n} = \lim_{x\to 0} \frac{\tan^{-1}x}{x} = 1$ (by L'Hôpital's). Since $\sum \frac{1}{n}$ diverges, $\sum \tan^{-1}(\frac{1}{n})$ diverges.

Problem 6

(a)

Ratio Test: For $\sum a_n$, let $L = \lim \left| \frac{a_{n+1}}{a_n} \right|$.

- If L < 1: converges absolutely
- If L > 1: diverges
- If L = 1: inconclusive
- (i) $\sum \frac{n!}{n^n} \frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \frac{n^n}{(n+1)^n} = \frac{1}{(1+1/n)^n} \to \frac{1}{e} < 1$ Thus converges.
- (ii) $\sum \frac{n!}{e^n} \frac{a_{n+1}}{a_n} = \frac{n+1}{e} \to \infty > 1$ Thus diverges.

(b)

Test convergence:

- (i) $\sum \frac{\log n}{n^2}$ For large n, $\log n < n^{0.5}$, so $\frac{\log n}{n^2} < \frac{1}{n^{1.5}}$. $\sum \frac{1}{n^{1.5}}$ converges (p = 1.5 > 1), so by comparison, original converges.
- (ii) $\sum \frac{-n^{n^2}}{(n+1)^{n^2}}$ Consider absolute convergence: $|a_n|^{1/n} = \left(\frac{n}{n+1}\right)^n = \frac{1}{(1+1/n)^n} \to \frac{1}{e} < 1$ By Root Test, converges absolutely.

(c)

Absolute Convergence.

Definition: $\sum_{n=0}^{\infty} a_n$ converges absolutely if $\sum_{n=0}^{\infty} |a_n|$ converges. **Implications**:

- Absolute convergence \Rightarrow convergence
- Converse false: e.g., alternating harmonic series $\sum (-1)^n/n$ converges but not absolutely

(d)

Classify convergence:

- (i) $\sum (-1)^{n+1} \frac{n}{n^2+1}$ Alternating Series Test:
 - $b_n = \frac{n}{n^2 + 1} > 0$
 - Decreasing for $n \ge 1$ (check derivative)
 - $b_n \to 0$

Thus converges.

Absolute Convergence: Compare $\sum \frac{n}{n^2+1}$ to $\sum \frac{1}{n}$ (diverges), so converges conditionally.

(ii) $\sum (-1)^n \frac{1}{n^2 + (-1)^n}$ Absolute Convergence: Compare $\sum \frac{1}{n^2 + (-1)^n}$ to $\sum \frac{1}{n^2}$ (converges), so converges absolutely.