${\it Class 11-Physics-JEE-Mains-Formulas}$

October 18, 2025

Chapter	Concept	Formula / Key Point
Physical World & Measurement	SI Units	Length (m), Mass (kg), Time (s), Current (A), Temperature (K)
	Dimensional Formula	E.g., Force: $[MLT^{-2}]$
Kinematics	Equations of Motion (Constant Acceleration)	$v = u + at$, $s = ut + \frac{1}{2}at^2$, $v^2 = u^2 + 2as$
	Projectile Motion	$R = \frac{u^2 \sin 2\theta}{g}, H = \frac{u^2 \sin^2 \theta}{2g}$
Laws of Motion	— Newton's Second Law	$\overrightarrow{ec{F}}=mec{a}$
	Momentum	${ec{p}}=mec{v}$
	Impulse	$\vec{J} = \Delta \vec{p} = \vec{F} \Delta t$
Work, Energy & Power	Work Done	$W = \vec{F} \cdot \vec{s} = Fs \cos \theta$
	Kinetic Energy	$KE = \frac{1}{2}mv^2$
	Potential Energy (Gravitational)	PE = mgh
	— Power	$P = \frac{W}{t} = Fv\cos\theta$
System of Particles & Rotational Motion	— Centre of Mass	$x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$, similarly for y, z
	— Moment of Inertia	$I - \sum_{m} r^2$
	_	$I = \sum m_i r_i^2$
	Torque —	$ec{ au} = ec{r} imes ec{F}$

Chapter	Concept	Formula / Key Point
	Angular Momentum	$ec{L} = I ec{\omega}$
Gravitation	Universal Law of Gravitation	$\overline{F} = G \frac{m_1 m_2}{r^2}$
	Acceleration due to Gravity	$g = \frac{GM}{R^2}$
	Orbital Velocity	$v = \sqrt{\frac{GM}{r}}$
	Escape Velocity	$v_e = \sqrt{2gR}$
Properties of Matter	Stress & Strain	Stress = $\frac{F}{A}$, Strain = $\frac{\Delta L}{L}$
	Young's Modulus	${Y} = rac{ ext{Stress}}{ ext{Strain}} = rac{FL}{A\Delta L}$
	Bulk Modulus	$B = -V \frac{\Delta P}{\Delta V}$
	Surface Tension	$\overline{F} = T \times \text{length}, P = \frac{2T}{r}$
Thermodynamics	First Law of Thermodynamics	$\overline{\Delta U} = Q - W$
	Work Done in Isothermal Process	$W = nRT \ln \frac{V_f}{V_i}$
	Work Done in Adiabatic Process	$PV^{\gamma} = \text{constant}, W = \frac{P_i V_i - P_f V_f}{\gamma - 1}$
Kinetic Theory of Gases	— Ideal Gas Equation	$\overline{PV} = nRT$
	RMS Speed	$v_{rms} = \sqrt{\frac{3RT}{M}}$
Oscillations & Waves	Simple Harmonic Motion (SHM)	$x = A\sin(\omega t + \phi)$
	— Angular Frequency	$\omega = 2\pi f = \sqrt{\frac{k}{m}}$
	— Time Period	$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$
	Wave Speed	$v = f\lambda$