Question 1:

1) a) $4x = 1$ $2 + iy - 2i$ $2 + i(y - 2)$ $2 + i(y + i)$
[h+i(y-2)][h-i(y+n)] - i [h+i(y+n)][h-i(y+n)]
$= \frac{\lambda^{2} - i \times (5 + i) + i(5 - 2) \times + (5 - 2)(5 + i)}{\lambda^{2} + (5 + i)^{2}}$
$= \frac{(2+66-2)(4+3)+i[(4+2)a-n(4+1)]}{(4+1)^2}$
$=\frac{-\left[\left(\frac{1}{3}-2\right)\lambda-\lambda\left(\frac{1}{3}+\lambda\right)\right]+i\left[\lambda^{2}+\left(\frac{1}{3}-2\right)\left(\frac{1}{3}+\lambda\right)}{\lambda^{2}+\left(\frac{1}{3}+\lambda\right)^{2}}$
$= \frac{-(24-2\lambda-24-\lambda)}{\lambda^2+(3+1)^2} + \frac{\lambda^2+1^2+4-24-2}{\lambda^2+(3+1)^2}$
$\frac{3\lambda}{\lambda^{2}+(5+1)^{2}}+\frac{\lambda^{2}+\lambda^{2}-5-2}{\lambda^{2}+(5+1)^{2}}$
$(4) \forall \in \mathbb{R} \Leftrightarrow \mathcal{I}(bs) = 0$
$(4) h + 4y^{2} - 4 - 2 = 0$ $(5) h + (4^{2} - 2\frac{1}{2}) + \frac{1}{4} = 2 + \frac{1}{4}$
$ \left(\frac{1}{2} + \left(\frac{1}{2} - \frac{2}{3}\right)^{\frac{1}{2}} + \frac{3}{4}\right) $ $ \left(\frac{1}{2} + \left(\frac{1}{2} - \frac{2}{3}\right)^{\frac{1}{2}} + \frac{3}{4}\right) $
Tet li circle (de Cuntu el (0, 1/2) et de rayon R= 3/2 prive de bonit A(0,-1)

Question 3:

	160 + 840 + 171 - 75 16	- z - font	3009
	7076		2018
2-1,	,47		
le joren	plad in mogenne 1/2	ttelvos bar	zen.
le que et	du c difevorell an	Johans.	

h(h,4) € 1 (=) 7t∈R to [3λ+(t-t)y-3t=0 (0) (=) (1-t)n-39 =0 (2) E) le 1 grien (I) porsid an unis un Soluti E & R (2) = T2-f2-34=0 = f2= 52-34 1) h. h. to clors (2) => t= 12-34 EA-ama at ext & galement Nolent is da (3)? fu & 3a + (+234 - +)9-3 -34 -0 | n+. = 312 + (th-34-th)4-3(th-34)= = 312-342-3(Th-34)=0 El 12-92-11+39=0 2) h h=0 clors (2) (=) t.0=-39 2,11) 6 4=0 alors tatt & R est solution d(2) Ext-um boran at il yer a an mass in fin at explanent sol of (a)? (1) => 3.0+(t-1).0-3t=0 => t=0 m. ALC 0(1,0) EL! 2,) L. yto clovs (2) L' a las d soluta !

