Quantum Logic Gates and Quantum Circuits

What are Quantum Logic Gates?

- Quantum Logic Gates are essentially Linear Maps or Matrix Transformations
- These Gates Preserve the Total Probability of a State
- Quantum Logic Gates are reversible

Quantum Logic Gates VS Classical Logic Gates

- All Quantum Gates are reversible
- Classical Logic Gates are not always reversible
- Output of a Quantum Logic Gate is Measured
- Output of a Classical Logic Gate is Mapped
- Quantum Logic Gates take advantage of Quantum Phenomenon
- Classical Logic Gates can only make use of Boolean Logic

1-Qubit Logic Gates

• 1-Qubit Logic Gates apply on single qubits only

• All 1-Qubit Logic Gates are rotations on the Bloch Sphere

Identity Gate

The identity gate turns $|0\rangle$ into $|0\rangle$ and $|1\rangle$ into $|1\rangle$, hence doing nothing:

$$| | 0 \rangle = | 0 \rangle$$

 $| | 1 \rangle = | 1 \rangle$

This is a classical reversible gate (the identity gate), so it keeps states normalized and is a valid quantum gate.

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Pauli X-Gate

The Pauli X gate, or NOT gate, turns $|0\rangle$ into $|1\rangle$, and $|1\rangle$ into $|0\rangle$:

$$X|0\rangle = |1\rangle$$

 $X|1\rangle = |0\rangle$

This is a classical reversible gate (the NOT gate), so it keeps states normalized and is a valid quantum gate.

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Pauli Y-Gate

The Pauli Y gate turns $|0\rangle$ into $i|1\rangle$, and $|1\rangle$ into -

$$Y |0\rangle = i|1\rangle$$

$$Y |0\rangle = i|1\rangle$$

 $Y |1\rangle = -i|0\rangle$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Pauli Z-Gate

he Pauli Z gate keeps $|0\rangle$ as $|0\rangle$ and turns $|1\rangle$ into $-|1\rangle$:

$$Z|0\rangle = |0\rangle$$

$$Z|0\rangle = |0\rangle$$

 $Z|1\rangle = -|1\rangle$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Phase Gate

Phase gate is the square root of the Z gate (i.e., $S^2 = Z$):

$$S|0\rangle = |0\rangle$$

$$S|0\rangle = |0\rangle$$

 $S|1\rangle = i|1\rangle$

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

T Gate

T gate (also called $\pi/8$ gate) is the square root of the S gate (i.e., $T^2 = S$) or fourth root of the Z gate:

$$T |0\rangle = |0\rangle$$

$$T |1\rangle = e^{i\pi/4}|1\rangle$$

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

Hadamard Gate

The Hadamard gate turns $|0\rangle$ into $|+\rangle$, and $|1\rangle$ into $|-\rangle$:

$$H|0\rangle = 1/\sqrt{2} (|0\rangle + |1\rangle) = |+\rangle$$

$$H|1\rangle = 1/\sqrt{2} (|0\rangle - |1\rangle) = |-\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Multi-Qubit Gates

- These Logic Gates operate on Multiple Qubits
- These often involve controlled operations
- They can create and manipulate entanglement in Qubits

CNOT Gate

The CNOT gate or controlled-NOT gate inverts the right qubit if the left qubit is 1:

$$CNOT|00\rangle = |00\rangle$$

 $CNOT|01\rangle = |01\rangle$
 $CNOT|10\rangle = |11\rangle$
 $CNOT|11\rangle = |10\rangle$

Thus, CNOT is a quantum XOR gate. Also, since the X gate is the NOT gate, the CNOT gate is also called the CX gate or controlled-X gate.

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

SWAP Gate

The SWAP gate simply swaps the two qubits:

$$SWAP|00\rangle = |00\rangle$$

$$SWAP|01\rangle = |10\rangle$$

$$SWAP | 10 \rangle = | 01 \rangle$$

$$SWAP|11\rangle = |11\rangle$$

In other words,

$$SWAP|a\rangle|b\rangle = |b\rangle|a\rangle$$

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Toffoli Gate

A three-qubit gate that often appears in quantum computing is the Toffoli gate, or controlled-controlled-NOT gate. It flips the right qubit if the left and middle qubits are 1:

Toffoli
$$|000\rangle = |000\rangle$$

Toffoli $|001\rangle = |001\rangle$
Toffoli $|010\rangle = |010\rangle$
Toffoli $|011\rangle = |011\rangle$
Toffoli $|100\rangle = |100\rangle$
Toffoli $|101\rangle = |101\rangle$
Toffoli $|110\rangle = |111\rangle$
Toffoli $|111\rangle = |110\rangle$

In other words,

Toffoli
$$|a\rangle|b\rangle|c\rangle = |a\rangle|b\rangle|ab \oplus c\rangle$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Quantum Circuits

 Quantum Circuits are essentially consecutive linear mapping performed on Qubits

- They are made by arranging the gates in a specific order $c \Rightarrow$
- The order and arrangement of gates determine the quantum computation performed by the circuit

Quantum Circuits and Classical Circuits

- Quantum Circuits perform transformations on Qubits
- Classical Circuits perform operations on Bits
- Quantum Circuits outputs are *probabilistic*
- Classical Circuits outputs are deterministic
- Quantum Circuits are better at computations that require large-scale parallelism, quantum algorithms, and certain types of optimization problems
- Classical Circuits are better at computations that require serial processing, Large-Scale Data Processing and involve classical logic and arithmetic

Half Adders: A Comparative Case Study

