LA FONCTION INVERSE

I Définition et étude de la fonction inverse

Définition n°1.

La fonction inverse est la fonction
$$g: \begin{cases} \mathbb{R}^* \to \mathbb{R}^* \\ x \mapsto \frac{1}{x} \end{cases}$$

Rappel:
$$\mathbb{R}^* =]-\infty$$
; $0[\cup]0$; $+\infty[$

Propriété n°1.

La fonction inverse est impaire

preuve:

Notons g la fonction inverse.

Soit
$$x \in \mathbb{R}^*$$
 (car $D_g = \mathbb{R}^*$)

$$g(-x) = \frac{1}{-x} = -\frac{1}{x} = -g(x)$$

Ainsi g est impaire.

Propriété n°2.

Variations de la fonction inverse

La fonction est strictement décroissante sur $]-\infty$; 0[et strictement décroissante sur $]0; +\infty[$

preuve:

■ Démontrons la stricte décroissante sur
$$]-\infty$$
; $0[$ Soit $a \in]-\infty$; $0[$ et $b \in]-\infty$; $0[$ tels que $a < b$

$$\frac{1}{a} - \frac{1}{b} = \frac{b - a}{ab}$$

Or:
$$a < b \Leftrightarrow a-b < 0 \Leftrightarrow b-a > 0$$

Et comme a et b sont de même signe ab > 0

D'après la règle des signes :
$$\frac{b-a}{ab} > 0$$

Nous venons de montrer que $\frac{1}{a} > \frac{1}{b}$, ce qui prouve la stricte décroissance sur $|-\infty$; 0|

• La stricte décroissance sur]0; $+\infty[$ se démontre de la même façon et est laissée à titre d'exercice.

Remarque n°1.

Attention, la fonction inverse n'est pas strictement décroissante sur $\mathbb{R}^* =]-\infty$; $0[\cup]0$; $+\infty[$

Propriété n°3. La représentation graphique de la fonction inverse

La représentation graphique de la fonction inverse est une **hyperbole**.

II Equations et inéquations quotients

Exemple n°1.

Résolvons dans \mathbb{R} l'inéquation suivante :

$$\frac{(4x-7)(5-2x)}{3x+2} \le 0$$

Commençons par résoudre les inéquations suivantes :

$$4x-7>0 \Leftrightarrow 4x>7 \Leftrightarrow x>\frac{7}{4}$$

$$5-2x>0 \Leftrightarrow -2x>-5 \Leftrightarrow x<\frac{5}{2}$$

$$3x+2>0 \Leftrightarrow 3x>-2 \Leftrightarrow x>\frac{-2}{3}$$

« >0 » Nous indique où mettre les « + » dans le tableau de signes

Pour la dernière ligne, on utilise la règle des signes.

Dressons à présent le tableau de signe suivant :

x	- ∞		$-\frac{2}{3}$		$\frac{7}{4}$		<u>5</u> 2		+ ∞
4 <i>x</i> –7		_		_	0	+		+	
5-2 x		+		+		+	0	_	
3 <i>x</i> +2		_	0	+		+		+	
$\frac{(4x-7)(5-2x)}{3x+2}$		+		_	0	+	0	_	

On signale les valeurs interdites

En notant S l'ensemble des solutions :

$$S = \left[-\frac{2}{3} ; \frac{7}{4} \right] \cup \left[\frac{5}{2} ; +\infty \right]$$

Remarque n°2.

La méthode est la même quelque soit le nombre de facteurs au numérateur ou au dénominateur.

III Complément de cours

Définition n°2. Fonctions homographiques

Soient a, b, c et d quatre nombres réels tels que $ad - bc \neq 0$. La fonction $x \mapsto \frac{ax+b}{cx+d}$ est appelée fonction homographique.

Remarque n°3.

Le domaine de définition est $\mathbb{R} \setminus \left\{ \frac{-d}{c} \right\} = \left[-\infty ; \frac{-d}{c} \right] \cup \left[\frac{-d}{c} ; +\infty \right]$

Propriété n°4. (admise)

Quand $c \neq 0$:

• Si ad-bc < 0 alors la fonction est strictement décroissante sur : $\left|-\infty; \frac{-d}{c}\right| \quad \text{et sur} \quad \left|\frac{-d}{c}; +\infty\right|$

ad - bc < 0 avec $c \neq 0$

$$ad - bc < 0$$
 avec $c = 0$

