Tarea 14

Hecho por

DAVID GÓMEZ

UNIVERSIDAD

Estudiante de Matemáticas
Escuela Colombiana de Ingeniería Julio Garavito
Colombia
18 de noviembre de 2022

Tarea 14

Sección 7.3 (Lemas al final)

Índice

Punto 1																3
a b																3 3
Punto 2																3
Punto 3																4
Punto 4																4
Punto 5																4
Punto 6																5
Punto 7																5
Punto 8																6
Punto 9																6
Punto 10																7
Punto 12																7
Punto 13																7
Punto 16																8
Punto 17																8
Lemas																9
Lema 7.3.1																9
Lema 7.3.2 Lema 7.3.3																9 10

 \mathbf{a}

Si hay alguien que pague impuestos...

$$I(x) := "x \text{ paga impuestos"}$$

 $P(x) := "x \text{ es político"}$
 $F(x) := "x \text{ es filántropo"}$

0.
$$(\exists x \mid : I(x) \to (\forall y \mid P(y) : I(y)))$$
 Suposición
1. $(\exists x \mid : F(x) \to (\forall y \mid I(y) : F(y)))$ Suposición
2. $\exists x I(x) \to \forall y (P(y) \to I(y))$ Azúcar sintáctico(p0)
3. $\exists x F(x) \to \forall y (I(y) \to F(y))$ Azúcar sintáctico(p1)
4. $\exists x I(x) \land \exists x F(x) \to \forall y (P(y) \to I(y))$ Lema 7.3.1(p3, p2)
5. $\exists x (\exists x I(x) \land F(x)) \to \forall y (P(y) \to I(y))$ Dist. $(\exists x, \land)$

b

Si hay alguien que pague impuestos...

```
0. (\exists x \mid : I(x) \to (\forall y \mid P(y) : I(y))) Suposición

1. (\exists x \mid : F(x) \to (\forall y \mid I(y) : F(y))) Suposición

2. \exists x I(x) \to \forall y (P(y) \to I(y)) Azúcar sintáctico(p0)

3. \exists x F(x) \to \forall y (I(y) \to F(y)) Azúcar sintáctico(p1)

4. \exists x I(x) \land \exists x F(x) \to \forall y (P(y) \to I(y)) \land \forall y (I(y) \to F(y)) Lema 7.3.2(p3, p2)

5. \exists x (\exists x I(x) \land F(x)) \to \forall x ((P(y) \to I(y)) \land (I(y) \to F(y))) Dist(\exists x, \land), Dist(\forall x, \land) (p4)

6. \exists x (\exists x I(x) \land F(x)) \to \forall x (P(y) \to F(y)) Transitividad(\to)
```

Punto 2

$$\vdash_{\mathrm{DS}(\mathcal{L})} \exists x true \equiv true$$

$$\exists xtrue$$

$$\equiv \langle \operatorname{Def.}(\exists x\phi) \rangle$$

$$\neg \forall x \neg true$$

$$\equiv \langle \neg true \equiv false \rangle$$

$$\neg \forall xfalse$$

$$\equiv \langle \forall xfalse \equiv false \rangle$$

$$\neg false$$

$$\equiv \langle \neg false \equiv true \rangle$$

$$true$$

Por metateorema de derivación se demuestra que $\vdash_{\mathrm{DS}(\mathcal{L})} \exists xtrue \equiv true$


```
\exists x false \\ \equiv \langle \operatorname{Def.}(\exists x \phi) \rangle \\ \neg \forall x \neg false \\ \equiv \langle \neg false \equiv true \rangle \\ \neg \forall x true \\ \equiv \langle \forall x true \equiv true \rangle \\ \neg true \\ \equiv \langle \neg true \equiv false \rangle \\ false
Por metateorema de derivación se demuestra que \vdash_{\operatorname{DS}(\mathcal{L})} \exists x false \equiv false
```

Punto 4

```
\exists x \exists x \phi
\equiv \langle \operatorname{Def.}(\exists x \phi) \rangle
\neg \forall x \exists x \phi
\equiv \langle \operatorname{Generalización}, x \text{ no libre en } \exists x \phi \rangle
\neg \neg \exists x \phi
\equiv \langle \operatorname{Doble negación} \rangle
\exists x \phi
Por metateorema de derivación se demuestra que \exists x \exists x \phi \equiv \exists x \phi
```

```
\vdash_{\mathrm{DS}(\mathcal{L})} \phi[x:=t] \equiv \exists x \phi, \ t \ \text{libre para} \ x \ \text{en} \ \phi \phi[x:=t] \equiv \ \langle \ \text{Generalización, x no aparece libre en} \ \phi[x:=t] \ \rangle \forall x \phi[x:=t] \Rightarrow \ \langle \ \text{Lema} \ 7.3.3 \ \rangle \exists x \phi[x:=t]
```



```
\exists x \phi \lor \exists x \psi
\equiv \langle \operatorname{Def.}(\exists x \phi) \rangle
\neg \forall x \neg \phi \lor \neg \forall x \neg \psi
\equiv \langle \operatorname{Dist.}(\neg, \wedge) \rangle
\neg (\forall x \neg \phi \land \forall x \neg \psi)
\equiv \langle \operatorname{Dist.}(\forall x, \wedge) \rangle
\neg \forall x (\neg \phi \land \neg \psi)
\equiv \langle \operatorname{Def.}(\exists x \phi) \rangle
\exists x \neg (\neg \phi \land \neg \psi)
\equiv \langle \operatorname{Dist.}(\neg, \wedge) \rangle
\exists x \neg (\neg \phi \land \neg \psi)
\exists x \neg (\neg \phi \land \neg \psi)
\exists x \neg (\neg \phi \land \neg \psi)
```

```
\vdash_{\mathrm{DS}(\mathcal{L})} \psi \vee \exists x \phi \equiv \exists x (\psi \vee \phi), x \text{ no libre en } \psi
                                                                          \exists x(\psi \lor \phi)
                                                                      \equiv \langle \operatorname{Def.}(\exists x \phi) \rangle
                                                                           \neg \forall x \neg (\psi \lor \phi)
                                                                      \equiv \langle \text{ Dist.}(\neg, \vee) \rangle
                                                                          \neg \forall x (\neg \psi \land \neg \phi)
                                                                       \equiv \langle \text{ Dist.}(\forall x, \wedge) \rangle
                                                                          \neg(\forall x\neg\psi\wedge\forall x\neg\phi)
                                                                       \equiv \langle Generalización, x no libre en \psi \rangle
                                                                           \neg(\neg\psi\wedge\forall x\neg\phi)
                                                                      \equiv \langle \text{ Dist.}(\neg, \wedge) \rangle
                                                                          \psi \vee \neg \forall x \neg \phi
                                                                       \equiv \langle \operatorname{Def.}(\exists x \phi) \rangle
                                                                          \psi \vee \exists x \phi
   Por Conmutativa (\equiv) y metateorema de derivación se demuestra que \vdash_{DS(\mathcal{L})} \psi \lor \exists x \phi \equiv \exists x (\psi \lor \phi),
   x no libre en \psi
```



```
 \exists x(\psi \land \phi) 
 \equiv \langle \operatorname{Def.}(\exists x\phi) \rangle 
 \neg \forall x \neg (\psi \land \phi) 
 \equiv \langle \operatorname{Dist.}(\neg, \wedge) \rangle 
 \neg \forall x(\neg \psi \lor \neg \phi) 
 \equiv \langle \operatorname{Dist.}(\forall x, \lor), x \text{ no libre en } \psi \rangle 
 \neg (\neg \psi \lor \forall x \neg \phi) 
 \equiv \langle \operatorname{Dist.}(\neg, \lor) \rangle 
 \neg (\neg \psi \lor \forall x \neg \phi) 
 \equiv \langle \operatorname{Dist.}(\neg, \lor) \rangle 
 \psi \land \neg \forall x \neg \phi 
 \equiv \langle \operatorname{Def.}(\exists x\phi) \rangle 
 \psi \land \exists x\phi 
 \text{Por Conmutativa}(\equiv) \text{ y metateorema de derivación se demuestra que } \vdash_{\operatorname{DS}(\mathcal{L})} \psi \land \exists x\phi \equiv \exists x(\psi \land \phi), x \text{ no libre en } \psi
```

```
 \exists x(\psi \to \phi) 
 \equiv \langle (\text{alt.}) \text{Def.}(\to) \rangle 
 \exists x(\neg \psi \lor \phi) 
 \equiv \langle (\text{Dist.}(\lor, \exists x), x \text{ no libre en } \psi) \rangle 
 \neg \psi \lor \exists x \phi 
 \equiv \langle (\text{alt.}) \text{Def.}(\to) \rangle 
 \neg \psi \lor \exists x \phi 
 \equiv \langle (\text{alt.}) \text{Def.}(\to) \rangle 
 \psi \to \exists x \phi 
Por Conmutativa(\equiv y metateorema de derivación se demuestra que \vdash_{\text{DS}(\mathcal{L})} \psi \to \exists x \phi \equiv \exists x (\psi \to \phi), x \text{ no libre en } \psi
```



```
 | \exists x \mid false : \phi) \equiv false 
 (\exists x \mid false : \phi) 
 \equiv \langle \text{Az\'ucar sint\'actico} \rangle 
 \exists x (false \land false) 
 \equiv \langle false \land \phi \equiv false \rangle 
 \exists xfalse 
 \equiv \langle \exists xfalse \equiv false \rangle 
 false 
Por metateorema de derivación se demuestra que \vdash_{\text{DS}(\mathcal{L})} (\exists x \mid false : \phi) \equiv false
```

Punto 12

```
 \vdash_{\mathrm{DS}(\mathcal{L})} (\exists x \,|\, \psi \vee \tau : \phi) \equiv (\exists x \,|\, \psi : \phi) \vee (\exists x \,|\, \tau : \phi)   \equiv \langle \operatorname{Az\'{u}car} \operatorname{sint\'{a}ctico} \rangle   \exists x ((\psi \vee \tau) \wedge \phi)   \equiv \langle \operatorname{Dist.}(\wedge, \vee) \rangle   \exists x ((\psi \wedge \phi) \vee (\tau \wedge \phi))   \equiv \langle \operatorname{Dist.}(\exists x, \vee) \rangle   \exists x (\psi \wedge \phi) \vee \exists x (\tau \wedge \phi)   \equiv \langle \operatorname{Az\'{u}car} \operatorname{sint\'{a}ctico} \rangle   (\exists x \,|\, \psi : \phi) \vee (\exists x \,|\, \tau : \phi)  Por metateorema de derivación se demuestra que \vdash_{\mathrm{DS}(\mathcal{L})} (\exists x \,|\, \psi \vee \tau : \phi) \equiv (\exists x \,|\, \psi : \phi) \vee (\exists x \,|\, \tau : \phi)
```

```
\vdash_{\mathrm{DS}(\mathcal{L})} \exists x \phi \equiv \exists y (\phi[x:=y]), y \text{ no libre en } \phi \exists x \phi \equiv \langle \operatorname{Def.}(\exists x \phi) \rangle \neg \forall x \neg \phi \equiv \langle \forall x \phi \equiv \forall y (\phi[x:=y]), y \text{ no libre en } \phi \rangle \neg \forall y \neg (\phi[x:=y]) \equiv \langle \operatorname{Def.}(\exists x \phi) \rangle \exists y (\phi[x:=y]) Por metateorema de derivación se demuestra que \vdash_{\mathrm{DS}(\mathcal{L})} \exists x \phi \equiv \exists y (\phi[x:=y]), y \text{ no libre en } \phi
```



```
 \exists x\psi \to \phi \\ \equiv \langle (\text{alt.}) \text{Def.}(\to) \rangle \\ \neg \exists x\psi \lor \phi \\ \equiv \langle (\text{alt.}) \text{Def.}(\to) \rangle \\ \neg \exists x\psi \lor \phi \\ \equiv \langle \neg \exists x\phi \equiv \forall x \neg \phi \rangle \\ \forall x \neg \psi \lor \phi \\ \equiv \langle \text{Dist.}(\forall x, \lor), x \text{ no libre en } \phi \rangle \\ \forall x (\neg \psi \lor \phi) \\ \equiv \langle (\text{alt.}) \text{Def.}(\to) \rangle \\ \forall x(\psi \to \phi)  Por metateorema de derivación se demuestra que \vdash_{\text{DS}(\mathcal{L})} \exists x\psi \to \phi \equiv \forall x(\psi \to \phi), x \text{ no libre en } \phi
```

```
 \exists x(\phi \to \psi) \\ \equiv \langle \operatorname{Def.}(\exists x\phi) \rangle \\ \neg \forall x \neg (\phi \to \psi) \\ \equiv \langle \operatorname{Dist.}(\neg, \to) \rangle \\ \neg \forall x (\phi \land \neg \psi) \\ \equiv \langle \operatorname{Dist.}(\forall, \land) \rangle \\ \neg (\forall x\phi \land \forall x \neg \psi) \\ \equiv \langle \operatorname{Dist.}(\neg, \land) \rangle \\ \neg (\forall x\phi \land \forall x \neg \psi) \\ \equiv \langle \operatorname{Dist.}(\neg, \land) \rangle \\ \neg \forall x\phi \lor \neg \forall x \neg \psi \\ \equiv \langle \operatorname{Def.}(\exists x\phi) \rangle \\ \neg \forall x\phi \lor \exists x\psi \\ \equiv \langle (\operatorname{alt.}) \operatorname{Def.}(\to) \rangle \\ \forall x\phi \to \exists x\psi  Por metateorema de derivación se demuestra que \vdash_{\operatorname{DS}(\mathcal{L})} \exists x(\phi \to \psi) \equiv \forall x\phi \to \exists x\psi, x \text{ no libre en } \phi
```


Lemas

Lema 7.3.1

$$\Gamma = \{\phi \to \psi, \tau \to \xi\}$$

$$0. \ \phi \to \psi \qquad \Gamma$$

$$1. \ \tau \to \xi \qquad \Gamma$$

$$2. \ \neg (\phi \land \tau \to \psi) \qquad \text{Intento por reducción al absurdo}$$

$$3. \ \phi \land \tau \land \psi \qquad \text{Dist.}(\neg, \to)(\text{p2})$$

$$4. \ \phi \qquad \qquad \text{Debilitamiento}(\text{p3})$$

$$5. \ \neg \psi \qquad \qquad \text{Debilitamiento}(\text{p3})$$

$$6. \ \psi \qquad \qquad \text{MPP}(\text{p4, p0})$$

$$7. \ \neg \psi \land \psi \qquad \qquad \text{Unión}(\text{p6, p5})$$

$$8. \ \text{false} \qquad \qquad (\text{p7})$$

$$\text{Dado que } \Gamma = \{\phi \to \psi, \tau \to \xi\} \cup \{\neg(\phi \land \tau \to \psi)\} \vDash \text{false se demuestra que}$$

$$(\phi \to \psi) \land (\tau \to \xi) \to (\phi \land \tau \to \psi)$$

Lema 7.3.2

$$\Gamma = \{\phi \rightarrow \psi, \tau \rightarrow \xi\}$$

$$\Gamma = \{\phi \rightarrow \psi, \tau \rightarrow \xi\}$$

$$0. \ \phi \rightarrow \psi \qquad \Gamma$$

$$1. \ \tau \rightarrow \xi \qquad \Gamma$$

$$2. \ \neg (\phi \land \tau \rightarrow \psi \land \xi) \qquad \text{Intento por reducción al absurdo}$$

$$3. \ \phi \land \tau \land \neg (\psi \land \xi) \qquad \text{Dist.}(\neg, \rightarrow)$$

$$4. \ \phi \qquad \qquad \text{Debilitamiento}(\text{p3})$$

$$5. \ \tau \qquad \qquad \text{Debilitamiento}(\text{p3})$$

$$6. \ \psi \qquad \qquad \text{MPP}(\text{p4, p0})$$

$$7. \ \xi \qquad \qquad \text{MPP}(\text{p5, p1})$$

$$8. \ \psi \land \xi \qquad \qquad \text{Unión}(\text{p7, p6})$$

$$9. \ \psi \land \xi \land \neg (\psi \land \xi) \qquad \text{Unión}(\text{p8, Debilitamiento}(\text{p3}))$$

$$10. \ \text{false} \qquad (\text{p9})$$

$$\text{Dado que } \Gamma = \{\phi \rightarrow \psi, \tau \rightarrow \xi\} \cup \{\neg (\phi \land \tau \rightarrow \psi \land \xi)\} \vDash \text{false se demuestra que}$$

$$(\phi \rightarrow \psi) \land (\tau \rightarrow \xi) \rightarrow (\phi \land \tau \rightarrow \psi \land \xi)$$

Página 9

Tarea 14

Lema 7.3.3

$$\forall x\phi \to \exists x\phi$$

$$\equiv \langle (\text{alt.})\text{Def.}(\to) \rangle$$

$$\neg \forall x\phi \lor \exists x\phi$$

$$\equiv \langle \neg \forall x\phi \equiv \exists x\neg \phi \rangle$$

$$\exists x\neg \phi \lor \exists x\phi$$

$$\equiv \langle \text{Dist.}(\exists x, \lor) \rangle$$

$$\exists x(\neg \phi \lor \phi)$$

$$\equiv \langle \neg \phi \lor \phi \equiv true \rangle$$

$$\exists xtrue$$

$$\equiv \langle \exists xtrue \equiv true \rangle$$

$$true$$
Por Identidad(\equiv) y metateorema de derivación se demuestra que $\forall x\phi \to \exists x\phi$