Unit 4 Lecture 2: Pruning and cross-validating decision trees

November 1, 2022

Today, we will learn how to select the complexity of decision trees based on cost complexity pruning and cross-validation, as implemented in the rpart package.

First, let's load some libraries:

```
library(rpart)
library(rpart.plot)
library(tidyverse)
```

Regression trees

Like last time, we will be using the hitters data, splitting into training and testing:

```
hitters_data <- read_csv("hitters-data.csv")
set.seed(1) # set seed for reproducibility
train_samples <- sample(1:nrow(hitters_data), round(0.8 * nrow(hitters_data)))
hitters_train <- hitters_data %>% filter(row_number() %in% train_samples)
hitters_test <- hitters_data %>% filter(!(row_number() %in% train_samples))
```

As before, we fit a regression tree by calling rpart:

```
tree_fit <- rpart(Salary ~ ., data = hitters_train)</pre>
```

Tree pruning and cross validation

It turns out that in addition to growing the tree, behind the scenes rpart has already:

- used cost complexity pruning to get the nested sequence of trees
- applied 10-fold cross-validation to compute the CV estimates and standard errors for each value of α

All we need to do is call the printcp function to get a summary of all this information:

```
printcp(tree_fit)
```

```
##
## Regression tree:
## rpart(formula = Salary ~ ., data = hitters_train)
## Variables actually used in tree construction:
## [1] AtBat
               CAtBat CHits
                               CRBI
                                       Errors PutOuts Walks
##
## Root node error: 160.25/210 = 0.76309
##
## n= 210
##
           CP nsplit rel error xerror
                   0
                       1.00000 1.00411 0.072613
## 1 0.567669
## 2 0.063293
                       0.43233 0.47843 0.062225
```

```
## 3 0.060590
                       0.36904 0.45832 0.066787
## 4 0.033764
                       0.30845 0.36500 0.063361
                   3
## 5 0.029146
                       0.27468 0.38646 0.071271
## 6 0.015175
                       0.24554 0.37791 0.072805
                   5
## 7 0.011737
                   6
                        0.23036 0.35152 0.068380
## 8 0.010248
                   7
                        0.21863 0.35856 0.068482
## 9 0.010000
                   8
                        0.20838 0.36327 0.068681
```

Let's focus on the table at the bottom of this output. Each row corresponds to a tree in the sequence obtained by pruning. Let's discuss each column in turn:

- The CP column is the "complexity parameter". It is related to, but not exactly the same as, the α parameter from the slides. Be careful! The terminology "complexity parameter" is a bit misleading because higher complexity parameters correspond to less complex models (just like lambda in penalized regression).
- nsplit is the number of splits in the tree. Note that 1+nsplit is the number of terminal nodes in the tree.
- rel error is the RSS training error of the tree, normalized by the total variance of the response; equivalently, this is $1 R^2$. The training error decreases as the complexity increases.
- xerror is the cross-validation error estimate.
- xstd is the cross-validation standard error.

geom_point() +

The exact values of the complexity parameter are not so important; we might as well parameterize the trees based on the number of terminal nodes. Armed with all this information, we can produce a CV plot. The built-in function to produce the CV plot is not as nice as the one built into cv.glmnet, so we'll make our own using ggplot:

```
cp_table <- printcp(tree_fit) %>% as_tibble()
## Regression tree:
## rpart(formula = Salary ~ ., data = hitters_train)
## Variables actually used in tree construction:
## [1] AtBat
               CAtBat CHits
                               CRBI
                                        Errors PutOuts Walks
##
## Root node error: 160.25/210 = 0.76309
##
## n= 210
##
##
           CP nsplit rel error xerror
## 1 0.567669
                   0
                       1.00000 1.00411 0.072613
## 2 0.063293
                       0.43233 0.47843 0.062225
## 3 0.060590
                   2
                       0.36904 0.45832 0.066787
## 4 0.033764
                       0.30845 0.36500 0.063361
                       0.27468 0.38646 0.071271
## 5 0.029146
                   4
## 6 0.015175
                   5
                       0.24554 0.37791 0.072805
## 7 0.011737
                   6
                       0.23036 0.35152 0.068380
## 8 0.010248
                   7
                       0.21863 0.35856 0.068482
## 9 0.010000
                       0.20838 0.36327 0.068681
                   8
cp_table %>%
  ggplot(aes(
   x = nsplit + 1, y = xerror,
   ymin = xerror - xstd, ymax = xerror + xstd
  )) +
```

```
geom_line() +
geom_errorbar(width = 0.2) +
xlab("Number of terminal nodes") +
ylab("CV error") +
geom_hline(aes(yintercept = min(xerror)), linetype = "dashed") +
theme_bw()
```


Audience participation: How many terminal nodes would we choose based on the one-standard-error rule?

Unfortunately, we don't have a convenient lambda.1se field of the output to directly extract the optimal complexity parameter based on the one standard error rule. Nevertheless, we can find it pretty simply using dplyr:

```
optimal_tree_info <- cp_table %>%
  filter(xerror - xstd < min(xerror)) %>%
  arrange(nsplit) %>%
  head(1)
optimal_tree_info
```

```
## # A tibble: 1 x 5
## CP nsplit `rel error` xerror xstd
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 0.308 0.365 0.0634
```

Audience participation: What is the above code is doing? Why is nsplit two rather than three as suggested by the plot above?

Extracting the pruned tree and making predictions

To actually get the optimal pruned tree, we need to use the function **prune**, specifying the complexity parameter

```
optimal_tree <- prune(tree_fit, cp = optimal_tree_info$CP)</pre>
```

As before, we can plot this tree using rpart.plot:

```
rpart.plot(optimal_tree)
```


That is a small tree! In the bias variance trade-off, sometimes less (complexity) is more (predictive performance).

Now we can make predictions on the test data and evaluate MSE using this tree:

```
pred <- predict(optimal_tree, newdata = hitters_test)</pre>
pred
                                                 5
##
                    2
                              3
                                                          6
                                                                    7
                                                                             8
          1
## 6.660241 4.810335 4.810335 4.810335 6.056463 4.810335 6.660241 6.660241
##
          9
                   10
                            11
                                      12
                                                13
                                                         14
                                                                   15
                                                                             16
##
  6.056463 6.660241 6.660241 5.494350 6.660241 6.660241 5.494350 6.660241
##
         17
                   18
                            19
                                      20
                                                21
                                                         22
                                                                   23
                                                                             24
##
  4.810335 6.660241 6.056463 6.056463 6.660241 5.494350 6.660241 6.056463
##
         25
                   26
                            27
                                      28
                                                29
                                                         30
                                                                   31
## 6.056463 6.660241 4.810335 6.660241 6.660241 5.494350 5.494350 6.660241
##
         33
                   34
                            35
                                      36
                                                37
                                                         38
                                                                   39
                                                                             40
## 5.494350 4.810335 6.056463 6.056463 6.660241 6.660241 6.056463 6.660241
##
         41
                   42
                            43
                                      44
                                                45
                                                         46
                                                                             48
## 6.056463 6.660241 6.660241 4.810335 6.660241 6.660241 4.810335 6.660241
## 6.056463 5.494350 4.810335 6.660241 6.660241
mean((pred - hitters_test$Salary)^2)
```

[1] 0.3088943

Exercise: Classification trees

Let's continue with the heart disease data from last time:

Tree pruning and cross-validation

- 1. Produce the table of the trees in the sequence obtained from cost complexity pruning. How does nsplit vary with CP? Does this relationship make sense?
- 2. Produce the CV plot. How many terminal nodes would we choose based on the one-standard-error rule? Do we notice anything strange about the CV plot?
- 3. Extract and visualize the tree chosen by cross-validation. How many terminal nodes does the tree have?
- 4. What is the test misclassification error of this decision rule?