

Enhancing Data Workflows and Reproducibility with LLM Agents

How effective are LLMs with RAG and Agents in improving data analysis pipelines in terms of effectiveness and accuracy in astrophysics?

- Enrico T. L. Strauß / Bachelor Colloquium / 14.03.2025
- Supervisors: Prof. Dr. rer. nat. André Grüning, Dr. rer. nat. Arman Khalatyan
- https://github.com/etlstrauss/bachelor-thesis-public

Table of Contents

- 1. Introduction
- 2. Key Terms and Concepts
- 3. Methods
- 4. Results
- 5. Outlook / Limitations

Goal: The new art of interaction with computer using LLMs

- Chat with data
- Can LLM improving data analysis
- Can we improve reproducibility

For Example

Goals

- Ask Computer to generate or adjust data analysis pipelines
- Add the new information source to the knowledge base
- Validate results
- Run data analysis using the workflow engines
- Create a git repository and provide it as a final result

To achieve this

Can we use modern LLMs for this tasks

Benefits	Disadvantages
• Faster	Security concerns
Simple setup and use	• Costs
Probably more reliable	Reproducibility
Less internal responsibility	Full control of chain of thoughts
	Limited customizations

Key Terms and Concepts

- Large Language Models (LLMs) [WALMCS24]
- Quantization [EgaAtEl24,LinAtEl24]
- GGML and GGUF Formats [IGGUF24, HFGG24]
- Retrieval-Augmented Generation (RAG) [GaoEtAl24]
- Agents [IWAA24, FLSA24]

REANA (1/2)

Reproducible research data analysis platform

Flexible

Run many computational workflow engines.

Support for remote compute clouds.

Reusable

Containerise once, reuse elsewhere. Cloud-native.

Free

Free Software. MIT licence. Made with ♥ at CERN.

[REA25]

REANA (2/2)

Workflow example: reana.yaml

```
inputs:
  files:
    - helloworld.py
workflow:
  type: serial
  specification:
    steps:
      - environment: 'docker.io/library/python:3.10-
bookworm
        kubernetes_memory_limit: '100Mi'
        kubernetes_job_timeout: 60 # seconds
        commands:
        - python helloworld.py
```

[P4NR24]

What are Sequential Agents?

Methods

- Human evaluation as sub form of "Benchmarking"
- Store responses of LLMs in a database and grade them
- Compare runtime of different implementations

Results

- Selection of tools
- Final prototype
- Evaluation of final prototype

Open Weight Models

Model names / sizes [L2]		General information
hf.co/matteogeniaccio/phi- 4:F16	32 GB	 15 practical and theoretical questions related to REANA Each response evaluated by hand Matches the question very well No standardize format as output Did not represent the overall performance of this models Division of the questions into 3 category Own knowledge base
llama3.3:70b-instruct-q4_K_M	46 GB	
llama3.1:70b	44 GB	
mistral-small:22b-instruct- 2409-fp16	48 GB	
qwen2.5-coder:32b-instruct- q8_0	37 GB	

Model Evaluation: no RAG vs RAG (1/2)

Model Evaluation (2/2)

Application Components

- Reana, python files
- . Workflow execution
- . Gitlab repo

- . LLMs
- Agents
- . Tools

- Flowise
- RAG
- Tool container

Infratstrucute

Infrastructure, Containers, Software Stack

REANA Generation Workflow

Open WebUI Endpoint Workflow

Open WebUI Pipeline

```
API URL = "http://***:8000/api/v1/prediction/bddddad9-3b09-44f1-af80-e6788a58d906"
headers = { "Content-Type": "application/json"}
if(len(messages) > 1):
        user_message = user_message + "\n History:\n" + messages[len(messages)-2].get("content")
payload = { "question": user_message,}
       r = requests.post( url=API_URL, json=payload, headers=headers, stream=True, )
```

Custom Tools (1/2)

```
@app.route('/validate', methods=['POST'])
def validate():
  try:
     data = request.get json()
     reana file = data.get('reana file')
print(len(rcv.validate reana yaml(yaml.safe load(reana file))))
if(len(rcv.validate reana yaml(yaml.safe load(reana file)))<1):</pre>
       return jsonify({'validation': True})
       return jsonify({'validation': False})
  except Exception as e:
     return jsonify({'validation': False})
```

Custom Tools (2/2)

```
const fetch = require('node-fetch');
const url = "http://***:5000/validate";
const data = {
 "reana file": Sreana file,
const options = {
 method: "POST",
 headers: {
  "Content-Type": "application/json",
 body: JSON stringify(data),
try {
      const response = await fetch(url,
options);
      const text = await response.text();
      return text:
} catch (error) {
      console.error(error);
       return ";}
```

Evaluation of final Prototype (1/3)

Evaluation of final Prototype (2/3)

Evaluation of final Prototype (3/3)

Outlook and Achievements

Outlook	Achievements
Adaptive learning	Proof of concept
Integrate existing infrastructure	Usable prototype
Distributed AI architectures	Storing all data locally
Security mechanisms	Partial control of chain of thoughts

Sources

[LvZFl24] L. van Zvl. Flowise AI (2024) Tutorial - YouTube. [Online]. Available: https://www.voutube.com/playlist? list=PL4HikwTaYE0H7wBxhvOgxYcKOkZ4O3zXh (visited on 01/06/2025). [OH24]Home — Open WebUI, [Online], Available: https://docs.openwebui.com/ (visited on 11/04/2024).

[AKG24]Dr. Arman Khalatyan, The problem of creating REANA workflows.

[AKP24]Dr. Arman Khalatyan, Solution approach for generating REANA wokrlfows.

[REA25] https://reana.io

[WALMcs24] What are large language models (LLMs)? — Microsoft Azure. [Online]. Available:

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-are-large-language-models-llms (visited on 01/01/2025).

[EgaAtEl24]K. Egashira, M. Vero, R. Staab, J. He, and M. Vechev, Exploiting LLM Quantization, arXiv:2405.18137[cs], Nov. 2024, doi:

10.48550/arXiv,2405.18137. [Online]. Available: http://arxiv.org/abs/2405.18137 (visited on 01/02/2025).

[LinAtEl24] J. Lin et al., "AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration," en,

[IGGUF24] GGUF versus GGML — IBM. [Online]. Available: https://www.ibm.com/think/topics/gguf-versus-ggml (visited on 01/02/2025).

[HFGG24] Introduction to ggml. [Online]. Available: https://huggingface.co/blog/introduction-to-ggml (visited on 01/28/2025).

[GaoEtAl24]Y. Gao et al., Retrieval-Augmented Generation for Large Language Models: A Survey, arXiv:2312.10997[cs], Mar. 2024. [Online]. Available: http://arxiv.org/abs/2312.10997 (visited on 11/18/2024).

[IWAA24] What Are AI Agents? — IBM. [Online]. Available: https://www.ibm.com/think/topics/ai-agents (visited on 01/02/2025).

[FLSA24]Sequential Agents — FlowiseAl. [Online]. Available: https://docs.flowiseai.com/using-flowise/agentflows/sequential-agents (visited on 01/02/2025).

Usage Example

Usage Example: REANA workflow monitoring interface, green-success

REANA Generation Workflow

Open WebUI Endpoint Workflow

Evaluation of final Prototype (2/2)

	Time (in s)	Number of letters in response (round)
Direct Ollama call	33.04	2200
Simple RAG call	12.09	600
FlowiseAI call	64.03	320

Model Evaluation

Model evaluation: FlowiseAI Workflow

FlowiseAI Workflow: Example process

What is **R**etrival **A**ugmented **G**eneration?

Adding missing information into the LLM:

- fine tune(extrem expensive)
- RAG
 - Simple way to add missing information
 - Using small models
 - Knowledge base is manageable

