Методы оптимизации Лекция 3: Выпуклые функции

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

26 сентября 2022 г.

На прошлой лекции

- ▶ Двойственный конус
- ▶ Самосопряжённые конусы
- ▶ Автоматическое дифференцирование

Выпуклая функция (convex function)

Определение

```
Функция f:\mathcal{X}\subset\mathbb{R}^n\to\mathbb{R} называется выпуклой (строго выпуклой), если \mathcal{X} — выпуклое множество и для \forall \mathbf{x}_1,\mathbf{x}_2\in\mathcal{X} и \alpha\in[0,1] (\alpha\in(0,1)) выполнено: f(\alpha\mathbf{x}_1+(1-\alpha)\mathbf{x}_2)\leq(<)~\alpha f(\mathbf{x}_1)+(1-\alpha)f(\mathbf{x}_2)
```

Выпуклая функция (convex function)

Определение

```
Функция f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R} называется выпуклой (строго выпуклой), если \mathcal{X} — выпуклое множество и для \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X} и \alpha \in [0,1] (\alpha \in (0,1)) выполнено: f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq (<) \ \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)
```

Определение

Функция f вогнута (concave), если функция -f выпукла.

Выпуклая функция (convex function)

Определение

```
Функция f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R} называется выпуклой (строго выпуклой), если \mathcal{X} — выпуклое множество и для \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X} и \alpha \in [0,1] (\alpha \in (0,1)) выполнено: f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq (<) \ \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)
```

Определение

Функция f вогнута (concave), если функция -f выпукла.

Примеры выпуклых функций

- $ightharpoonup x^p$ для $x \geq 0$ и $p \geq 1$
- $ightharpoonup x \log x$, где x > 0
- $ightharpoonup \max\{x_1,\ldots,x_n\}$
- **▶** ||**x**||
- $ightharpoonup \log \left(\sum_{i=1}^n e^{x_i}\right)$
- lacksquare $-\log\det\mathbf{X}$ для $\mathbf{X}\in\mathbf{S}^n_{++}$

Определение

Множество $\operatorname{epi} f = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ называется надграфиком (эпиграфом) функции f.

Определение

Множество $\operatorname{epi} f = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ называется надграфиком (эпиграфом) функции f.

Теорема

Функция f выпукла $\Leftrightarrow \operatorname{epi} f$ выпуклое множество.

Определение

Множество $\operatorname{epi} f = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ называется надграфиком (эпиграфом) функции f.

Теорема

Функция f выпукла $\Leftrightarrow \operatorname{epi} f$ выпуклое множество.

Определение

Множество ${\rm epi}\; f=\{({\bf x},t)\in \mathbb{R}^{n+1}\;|\; t\geq f({\bf x})\}\;$ называется надграфиком (эпиграфом) функции f.

Теорема

Функция f выпукла $\Leftrightarrow \operatorname{epi} f$ выпуклое множество.

Доказательство

1. Пусть f выпуклая функция

Определение

Множество $\operatorname{epi} f = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ называется надграфиком (эпиграфом) функции f.

Теорема

Функция f выпукла $\Leftrightarrow \operatorname{epi} f$ выпуклое множество.

- 1. Пусть f выпуклая функция
 - Рассмотрим две точки из эпиграфа $({f x}_1,t_1)$ и $({f x}_2,t_2)$, где $t_1\geq f({f x}_1)$ и $t_2\geq f({f x}_2)$

Определение

Множество ${
m epi}\ f=\{({\bf x},t)\in \mathbb{R}^{n+1}\mid t\geq f({\bf x})\}$ называется надграфиком (эпиграфом) функции f.

Теорема

Функция f выпукла $\Leftrightarrow \operatorname{epi} f$ выпуклое множество.

- 1. Пусть f выпуклая функция
 - Рассмотрим две точки из эпиграфа (\mathbf{x}_1,t_1) и (\mathbf{x}_2,t_2) , где $t_1\geq f(\mathbf{x}_1)$ и $t_2\geq f(\mathbf{x}_2)$
 - ▶ Проверим принадлежность эпиграфу точки $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$

Определение

Множество $\operatorname{epi} f = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ называется надграфиком (эпиграфом) функции f.

Теорема

Функция f выпукла $\Leftrightarrow \operatorname{epi} f$ выпуклое множество.

- 1. Пусть f выпуклая функция
 - Рассмотрим две точки из эпиграфа (\mathbf{x}_1,t_1) и (\mathbf{x}_2,t_2) , где $t_1\geq f(\mathbf{x}_1)$ и $t_2\geq f(\mathbf{x}_2)$
 - ▶ Проверим принадлежность эпиграфу точки $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$
 - В силу выпуклости функции $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$

Определение

Множество ${
m epi}\ f=\{({\bf x},t)\in \mathbb{R}^{n+1}\ |\ t\geq f({\bf x})\}$ называется надграфиком (эпиграфом) функции f .

Теорема

Функция f выпукла $\Leftrightarrow \operatorname{epi} f$ выпуклое множество.

- 1. Пусть f выпуклая функция
 - Рассмотрим две точки из эпиграфа $({f x}_1,t_1)$ и $({f x}_2,t_2)$, где $t_1\geq f({f x}_1)$ и $t_2\geq f({f x}_2)$
 - ▶ Проверим принадлежность эпиграфу точки $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$
 - В силу выпуклости функции $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$
- 2. Пусть надграфик выпуклое множество

Определение

Множество $\operatorname{epi} f = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ называется надграфиком (эпиграфом) функции f.

Теорема

Функция f выпукла $\Leftrightarrow \operatorname{epi} f$ выпуклое множество.

- 1. Пусть f выпуклая функция
 - Рассмотрим две точки из эпиграфа (\mathbf{x}_1,t_1) и (\mathbf{x}_2,t_2) , где $t_1\geq f(\mathbf{x}_1)$ и $t_2\geq f(\mathbf{x}_2)$
 - ▶ Проверим принадлежность эпиграфу точки $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$
 - В силу выпуклости функции $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$
- 2. Пусть надграфик выпуклое множество
 - $(\mathbf{x}_1, f(\mathbf{x}_1))$ и $(\mathbf{x}_2, f(x_2)) \in \mathrm{epi}\ f$, то $(\alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2, \alpha f(\mathbf{x}_1) + (1 \alpha) f(\mathbf{x}_2)) \in \mathrm{epi}\ f$

Определение

Множество ${
m epi}\ f=\{({\bf x},t)\in \mathbb{R}^{n+1}\mid t\geq f({\bf x})\}$ называется надграфиком (эпиграфом) функции f.

Теорема

Функция f выпукла \Leftrightarrow $\operatorname{epi} f$ выпуклое множество.

- 1. Пусть f выпуклая функция
 - Рассмотрим две точки из эпиграфа $({f x}_1,t_1)$ и $({f x}_2,t_2)$, где $t_1\geq f({f x}_1)$ и $t_2\geq f({f x}_2)$
 - ▶ Проверим принадлежность эпиграфу точки $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$
 - В силу выпуклости функции $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$
 - 2. Пусть надграфик выпуклое множество
 - $(\mathbf{x}_1, f(\mathbf{x}_1))$ и $(\mathbf{x}_2, f(x_2)) \in \text{epi } f$, то $(\alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2, \alpha f(\mathbf{x}_1) + (1 \alpha) f(\mathbf{x}_2)) \in \text{epi } f$
 - ightharpoonup Из определения надграфика следует выпуклость f

Сильно выпуклая функция (strongly convex function)

Определение

 Φ ункция $f:\mathcal{X}\subset\mathbb{R}^n o\mathbb{R}$ называется сильно выпуклой c константой m>0, если \mathcal{X} — выпуклое множество и для $\forall \mathbf{x}_1,\mathbf{x}_2\in\mathcal{X}$ и $\alpha\in[0,1]$ выполнено: $f(\alpha\mathbf{x}_1+(1-\alpha)\mathbf{x}_2)\leq \alpha f(\mathbf{x}_1)+(1-\alpha)f(\mathbf{x}_2)-\frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1-\mathbf{x}_2\|_2^2$

Сильно выпуклая функция (strongly convex function)

Определение

Функция $f:\mathcal{X}\subset\mathbb{R}^n o\mathbb{R}$ называется сильно выпуклой с константой m>0, если \mathcal{X} — выпуклое множество и для $\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$ и $\alpha \in [0, 1]$ выполнено: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$

$$f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) - \frac{\kappa}{2}\alpha(1-\alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$$

Выпуклость \supset строгая выпуклость \supset сильная выпуклость

Сильно выпуклая функция (strongly convex function)

Определение

Функция $f:\mathcal{X}\subset\mathbb{R}^n\to\mathbb{R}$ называется сильно выпуклой с константой m>0, если \mathcal{X} — выпуклое множество и для $\forall \mathbf{x}_1,\mathbf{x}_2\in\mathcal{X}$ и $\alpha\in[0,1]$ выполнено: $f(\alpha\mathbf{x}_1+(1-\alpha)\mathbf{x}_2)\leq \alpha f(\mathbf{x}_1)+(1-\alpha)f(\mathbf{x}_2)-\frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1-\mathbf{x}_2\|_2^2$

- ▶ Выпуклость ⊃ строгая выпуклость ⊃ сильная выпуклость
- Для сильно выпуклых функций многие утверждения о методах оказываются более сильными, чем просто для выпуклых функций: пример о сходимости градиентного спуска.

Будем считать выпуклую функцию сильно выпуклой с m=0.

Будем считать выпуклую функцию сильно выпуклой с m=0.

Теорема

Пусть функция $f(\mathbf{x})$ дифференцируема и определена на выпуклом множестве $\mathcal{X}\subseteq\mathbb{R}^n$. Тогда $f(\mathbf{x})$ сильно выпукла с константой $m\geq 0$ в том и только том случае, если

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle + \frac{m}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2, \quad \forall \mathbf{x}, \mathbf{x}^* \in \mathcal{X}.$$

Будем считать выпуклую функцию сильно выпуклой с m=0.

Теорема

Пусть функция $f(\mathbf{x})$ дифференцируема и определена на выпуклом множестве $\mathcal{X}\subseteq\mathbb{R}^n$. Тогда $f(\mathbf{x})$ сильно выпукла с константой $m\geq 0$ в том и только том случае, если

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle + \frac{m}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2, \quad \forall \mathbf{x}, \mathbf{x}^* \in \mathcal{X}.$$

Доказательство: пусть f выпукла

По определению:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

Будем считать выпуклую функцию сильно выпуклой с m=0.

Теорема

Пусть функция $f(\mathbf{x})$ дифференцируема и определена на выпуклом множестве $\mathcal{X}\subseteq\mathbb{R}^n$. Тогда $f(\mathbf{x})$ сильно выпукла с константой $m\geq 0$ в том и только том случае, если

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle + \frac{m}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2, \quad \forall \mathbf{x}, \mathbf{x}^* \in \mathcal{X}.$$

Доказательство: пусть f выпукла

▶ По определению:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

Перепишем в виде

$$f(\mathbf{x}_2 + lpha(\mathbf{x}_1 - \mathbf{x}_2)) \le f(\mathbf{x}_2) + lpha(f(\mathbf{x}_1) - f(\mathbf{x}_2))$$
 или
$$\frac{f(\mathbf{x}_2 + lpha(\mathbf{x}_1 - \mathbf{x}_2)) - f(\mathbf{x}_2)}{lpha} \le f(\mathbf{x}_1) - f(\mathbf{x}_2)$$

Будем считать выпуклую функцию сильно выпуклой с m=0.

Теорема

Пусть функция $f(\mathbf{x})$ дифференцируема и определена на выпуклом множестве $\mathcal{X}\subseteq\mathbb{R}^n$. Тогда $f(\mathbf{x})$ сильно выпукла с константой $m\geq 0$ в том и только том случае, если

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle + \frac{m}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2, \quad \forall \mathbf{x}, \mathbf{x}^* \in \mathcal{X}.$$

Доказательство: пусть f выпукла

- ▶ По определению:
 - $f(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 \alpha)f(\mathbf{x}_2)$
- ▶ Перепишем в виде

$$f(\mathbf{x}_2 + lpha(\mathbf{x}_1 - \mathbf{x}_2)) \le f(\mathbf{x}_2) + lpha(f(\mathbf{x}_1) - f(\mathbf{x}_2))$$
 или $rac{f(\mathbf{x}_2 + lpha(\mathbf{x}_1 - \mathbf{x}_2)) - f(\mathbf{x}_2)}{f(\mathbf{x}_2 - \mathbf{x}_2)} \le f(\mathbf{x}_1) - f(\mathbf{x}_2)$

ightharpoonup При lpha o 0 получим

$$\langle f'(\mathbf{x}_2), \mathbf{x}_1 - \mathbf{x}_2 \rangle \le f(\mathbf{x}_1) - f(\mathbf{x}_2)$$

▶ Рассмотрим $\mathbf{z} = \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2$

- ▶ Рассмотрим $\mathbf{z} = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2$
- lacktriangle Запишем два неравенства для ${f z},{f x}_1$ и ${f z},{f x}_2$

$$f(\mathbf{x}_1) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_1 \rangle \mid \cdot \alpha$$

$$f(\mathbf{x}_2) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_2 \rangle \mid \cdot (1 - \alpha)$$

- ▶ Рассмотрим $\mathbf{z} = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2$
- lacktriangle Запишем два неравенства для ${f z},{f x}_1$ и ${f z},{f x}_2$

$$f(\mathbf{x}_1) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_1 \rangle \mid \cdot \alpha$$

$$f(\mathbf{x}_2) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_2 \rangle \mid \cdot (1 - \alpha)$$

Сложим эти равенства

$$f(\mathbf{z}) = f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

- ▶ Рассмотрим $\mathbf{z} = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2$
- lacktriangle Запишем два неравенства для ${f z},{f x}_1$ и ${f z},{f x}_2$

$$f(\mathbf{x}_1) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_1 \rangle \mid \cdot \alpha$$

$$f(\mathbf{x}_2) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_2 \rangle \mid \cdot (1 - \alpha)$$

Сложим эти равенства

$$f(\mathbf{z}) = f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

- Рассмотрим $\mathbf{z} = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2$
- lacktriangle Запишем два неравенства для ${f z},{f x}_1$ и ${f z},{f x}_2$

$$f(\mathbf{x}_1) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_1 \rangle \mid \cdot \alpha$$

$$f(\mathbf{x}_2) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_2 \rangle \mid \cdot (1 - \alpha)$$

Сложим эти равенства

$$f(\mathbf{z}) = f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

Сильно выпуклый случай

Для случая сильной выпуклости необходимо применить аналогичные выкладки к функции $f(\mathbf{x}) - \frac{m}{2} \|\mathbf{x}\|_2^2.$

- ▶ Рассмотрим $\mathbf{z} = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2$
- lacktriangle Запишем два неравенства для ${f z},{f x}_1$ и ${f z},{f x}_2$

$$f(\mathbf{x}_1) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_1 \rangle \mid \cdot \alpha$$

$$f(\mathbf{x}_2) \ge f(\mathbf{z}) + \langle f'(\mathbf{z}), \mathbf{z} - \mathbf{x}_2 \rangle \mid \cdot (1 - \alpha)$$

▶ Сложим эти равенства

$$f(\mathbf{z}) = f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

Сильно выпуклый случай

Для случая сильной выпуклости необходимо применить аналогичные выкладки к функции $f(\mathbf{x}) - \frac{m}{2} \|\mathbf{x}\|_2^2.$

Упражнение

Покажите, что f сильно выпукла $\Leftrightarrow f(\mathbf{x}) - rac{m}{2} \|\mathbf{x}\|_2^2$ выпукла.

Дважды непрерывно дифференцируемая функция f выпукла $\Leftrightarrow f''(\mathbf{x}) \succeq m\mathbf{I}$

Дважды непрерывно дифференцируемая функция f выпукла $\Leftrightarrow f''(\mathbf{x}) \succeq m\mathbf{I}$

Доказательство

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})(\mathbf{y} - \mathbf{x}) \rangle$$

Дважды непрерывно дифференцируемая функция f выпукла $\Leftrightarrow f''(\mathbf{x}) \succeq m\mathbf{I}$

Доказательство

Разложение в ряд Тейлора до второго порядка

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})(\mathbf{y} - \mathbf{x}) \rangle$$

lacktriangle Если $f''(\mathbf{x}) \succeq m\mathbf{I}$, то $\frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})(\mathbf{y} - \mathbf{x}) \rangle \geq \frac{m}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$, и по критерию первого порядка f выпукла

Дважды непрерывно дифференцируемая функция f выпукла $\Leftrightarrow f''(\mathbf{x}) \succeq m\mathbf{I}$

Доказательство

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})(\mathbf{y} - \mathbf{x}) \rangle$$

- ▶ Если $f''(\mathbf{x}) \succeq m\mathbf{I}$, то $\frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}_{\alpha})(\mathbf{y} \mathbf{x}) \rangle \geq \frac{m}{2} \|\mathbf{y} \mathbf{x}\|_2^2$, и по критерию первого порядка f выпукла
- ightharpoonup Если найдётся точка ${f z}$ такая, что $f''({f z}) \not\succeq m{f I}$, тогда найдётся направление ${f d}$ такое, что ${f d}^{ op}f''({f z}){f d} < m\|{f d}\|_2^2$

Дважды непрерывно дифференцируемая функция f выпукла $\Leftrightarrow f''(\mathbf{x}) \succeq m\mathbf{I}$

Доказательство

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})(\mathbf{y} - \mathbf{x}) \rangle$$

- ▶ Если $f''(\mathbf{x}) \succeq m\mathbf{I}$, то $\frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}_{\alpha})(\mathbf{y} \mathbf{x}) \rangle \geq \frac{m}{2} \|\mathbf{y} \mathbf{x}\|_2^2$, и по критерию первого порядка f выпукла
- ightharpoonup Если найдётся точка \mathbf{z} такая, что $f''(\mathbf{z}) \not\succeq m\mathbf{I}$, тогда найдётся направление \mathbf{d} такое, что $\mathbf{d}^{\top} f''(\mathbf{z}) \mathbf{d} < m \|\mathbf{d}\|_2^2$
- ▶ Пусть $\mathbf{y} = \mathbf{x} + \varepsilon \mathbf{d}$ для некоторого $\varepsilon > 0$

Дважды непрерывно дифференцируемая функция f выпукла $\Leftrightarrow f''(\mathbf{x}) \succeq m\mathbf{I}$

Доказательство

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})(\mathbf{y} - \mathbf{x}) \rangle$$

- ▶ Если $f''(\mathbf{x}) \succeq m\mathbf{I}$, то $\frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}_{\alpha})(\mathbf{y} \mathbf{x}) \rangle \geq \frac{m}{2} \|\mathbf{y} \mathbf{x}\|_2^2$, и по критерию первого порядка f выпукла
- ightharpoonup Если найдётся точка \mathbf{z} такая, что $f''(\mathbf{z}) \not\succeq m\mathbf{I}$, тогда найдётся направление \mathbf{d} такое, что $\mathbf{d}^{\top} f''(\mathbf{z}) \mathbf{d} < m \|\mathbf{d}\|_2^2$
- ▶ Пусть $\mathbf{y} = \mathbf{x} + \varepsilon \mathbf{d}$ для некоторого $\varepsilon > 0$
- ▶ При ε достаточно малом, \mathbf{x}_{α} и \mathbf{y} так близки к \mathbf{x} , что $\mathbf{d}^{\top}f''(\mathbf{x}_{\alpha})\mathbf{d} < m\|\mathbf{d}\|_2^2$ в силу непрерывности гессиана

Дважды непрерывно дифференцируемая функция f выпукла $\Leftrightarrow f''(\mathbf{x}) \succeq m\mathbf{I}$

Доказательство

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}, f''(\mathbf{x}_{\alpha})(\mathbf{y} - \mathbf{x}) \rangle$$

- lacktriangle Если $f''(\mathbf{x}) \succeq m\mathbf{I}$, то $\frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}_{\alpha})(\mathbf{y} \mathbf{x}) \rangle \geq \frac{m}{2} \|\mathbf{y} \mathbf{x}\|_2^2$, и по критерию первого порядка f выпукла
- ightharpoonup Если найдётся точка ${f z}$ такая, что $f''({f z}) \not\succeq m{f I}$, тогда найдётся направление ${f d}$ такое, что ${f d}^{ op}f''({f z}){f d} < m\|{f d}\|_2^2$
- ▶ Пусть $\mathbf{y} = \mathbf{x} + \varepsilon \mathbf{d}$ для некоторого $\varepsilon > 0$
- ▶ При ε достаточно малом, \mathbf{x}_{α} и \mathbf{y} так близки к \mathbf{x} , что $\mathbf{d}^{\top}f''(\mathbf{x}_{\alpha})\mathbf{d} < m\|\mathbf{d}\|_{2}^{2}$ в силу непрерывности гессиана
- ightharpoonup В таком случае в силу критерия первого порядка f невыпукла противоречие

lacktriangle Если $f(\mathbf{x})$ — выпукла, то $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ также выпукла

- lacktriangle Если $f(\mathbf{x})$ выпукла, то $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ также выпукла
- $f(\mathbf{x})$ выпукла iff $g(t)=f(\mathbf{x}+t\mathbf{y})$ выпукла как функция скалярного аргумента при условии что $\mathbf{x}+t\mathbf{y}\in\mathrm{dom}\ f$

- lacktriangle Если $f(\mathbf{x})$ выпукла, то $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ также выпукла
- $m F({f x})$ выпукла iff $g(t)=f({f x}+t{f y})$ выпукла как функция скалярного аргумента при условии что ${f x}+t{f y}\in {
 m dom}\ f$
- lacktriangle Если f_i выпуклы, то $\max_{i=1,\dots,m} f_i$ также выпукла

- lacktriangle Если $f(\mathbf{x})$ выпукла, то $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ также выпукла
- $f(\mathbf{x})$ выпукла iff $g(t)=f(\mathbf{x}+t\mathbf{y})$ выпукла как функция скалярного аргумента при условии что $\mathbf{x}+t\mathbf{y}\in\mathrm{dom}\ f$
- lacktriangle Если f_i выпуклы, то $\max_{i=1,\dots,m} f_i$ также выпукла
- Сумма выпуклых функций с неотрицательными коэффициентами выпуклая функция

- lacktriangle Если $f(\mathbf{x})$ выпукла, то $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ также выпукла
- $f(\mathbf{x})$ выпукла iff $g(t)=f(\mathbf{x}+t\mathbf{y})$ выпукла как функция скалярного аргумента при условии что $\mathbf{x}+t\mathbf{y}\in\mathrm{dom}\ f$
- lacktriangle Если f_i выпуклы, то $\max_{i=1,\dots,m} f_i$ также выпукла
- Сумма выпуклых функций с неотрицательными коэффициентами выпуклая функция
- lacktriangle Скалярная композиция $h(f(\mathbf{x}))$

- lacktriangle Если $f(\mathbf{x})$ выпукла, то $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ также выпукла
- $f(\mathbf{x})$ выпукла iff $g(t)=f(\mathbf{x}+t\mathbf{y})$ выпукла как функция скалярного аргумента при условии что $\mathbf{x}+t\mathbf{y}\in\mathrm{dom}\ f$
- lacktriangle Если f_i выпуклы, то $\max_{i=1,\dots,m} f_i$ также выпукла
- Сумма выпуклых функций с неотрицательными коэффициентами выпуклая функция
- ightharpoonup Скалярная композиция $h(f(\mathbf{x}))$
- lacktriangle Перспективное преобразование: если $f({f x})$ выпукла, то $g({f x},t)=tf({f x}/t)$, где t>0 и ${f x}/t\in {
 m dom}\ f$ также выпукла

- lacktriangle Если $f(\mathbf{x})$ выпукла, то $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ также выпукла
- $f(\mathbf{x})$ выпукла iff $g(t)=f(\mathbf{x}+t\mathbf{y})$ выпукла как функция скалярного аргумента при условии что $\mathbf{x}+t\mathbf{y}\in\mathrm{dom}\ f$
- lacktriangle Если f_i выпуклы, то $\max_{i=1,\dots,m} f_i$ также выпукла
- Сумма выпуклых функций с неотрицательными коэффициентами выпуклая функция
- ightharpoonup Скалярная композиция $h(f(\mathbf{x}))$
- lacktriangle Перспективное преобразование: если $f({f x})$ выпукла, то $g({f x},t)=tf({f x}/t)$, где t>0 и ${f x}/t\in {
 m dom}\ f$ также выпукла

Упражнение

Покажите, какие условия должны быть выполнены, чтобы функция $g(f_1(\mathbf{x}),\dots,f_k(\mathbf{x})):\mathbb{R}^k o \mathbb{R}$ оказалась выпуклой.

- lacktriangle Если $f(\mathbf{x})$ выпукла, то $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ также выпукла
- $f(\mathbf{x})$ выпукла iff $g(t)=f(\mathbf{x}+t\mathbf{y})$ выпукла как функция скалярного аргумента при условии что $\mathbf{x}+t\mathbf{y}\in\mathrm{dom}\ f$
- lacktriangle Если f_i выпуклы, то $\max_{i=1,\dots,m} f_i$ также выпукла
- Сумма выпуклых функций с неотрицательными коэффициентами выпуклая функция
- ightharpoonup Скалярная композиция $h(f(\mathbf{x}))$
- lacktriangle Перспективное преобразование: если $f({f x})$ выпукла, то $g({f x},t)=tf({f x}/t)$, где t>0 и ${f x}/t\in {
 m dom}\ f$ также выпукла

Упражнение

Покажите, какие условия должны быть выполнены, чтобы функция $g(f_1(\mathbf{x}),\dots,f_k(\mathbf{x})):\mathbb{R}^k o \mathbb{R}$ оказалась выпуклой.

Важность этих правил

Приведённые правила (и ещё некоторые другие) образуют аппарат исчисления выпуклых функций, то есть способ проверки функции на выпуклость.

Теорема

Если f выпуклая функция и \mathbf{x}^* локальный минимум, то \mathbf{x}^* — глобальный минимум.

Теорема

Если f выпуклая функция и \mathbf{x}^* локальный минимум, то \mathbf{x}^* — глобальный минимум.

Доказательство от противного

lacktriangle Пусть $\mathbf{y}^*
eq \mathbf{x}^*$ — глобальный минимум: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$

Теорема

Если f выпуклая функция и \mathbf{x}^* локальный минимум, то \mathbf{x}^* — глобальный минимум.

Доказательство от противного

- lacktriangle Пусть $\mathbf{y}^*
 eq \mathbf{x}^*$ глобальный минимум: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$
- lackbox По определению локального минимума: $f(\mathbf{x}^*) \leq f(\mathbf{x})$, где $\|\mathbf{x}^* \mathbf{x}\|_2 \leq \delta$

Теорема

Если f выпуклая функция и \mathbf{x}^* локальный минимум, то \mathbf{x}^* — глобальный минимум.

Доказательство от противного

- lacktriangle Пусть ${f y}^*
 eq {f x}^*$ глобальный минимум: $f({f y}^*) < f({f x}^*)$
- lacktriangle По определению локального минимума: $f(\mathbf{x}^*) \leq f(\mathbf{x})$, где $\|\mathbf{x}^* \mathbf{x}\|_2 \leq \delta$
- lacktriangle Выберем достаточно малое $lpha\in(0,1)$ и рассмотрим точку $\mathbf{z}=(1-lpha)\mathbf{x}^*+lpha\mathbf{y}^*$ такую что $\|\mathbf{z}-\mathbf{x}^*\|_2\leq\delta$

Теорема

Если f выпуклая функция и \mathbf{x}^* локальный минимум, то \mathbf{x}^* — глобальный минимум.

Доказательство от противного

- lacktriangle Пусть $\mathbf{y}^*
 eq \mathbf{x}^*$ глобальный минимум: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$
- lacktriangle По определению локального минимума: $f(\mathbf{x}^*) \leq f(\mathbf{x})$, где $\|\mathbf{x}^* \mathbf{x}\|_2 \leq \delta$
- lacktriangle Выберем достаточно малое $lpha\in(0,1)$ и рассмотрим точку $\mathbf{z}=(1-lpha)\mathbf{x}^*+lpha\mathbf{y}^*$ такую что $\|\mathbf{z}-\mathbf{x}^*\|_2\leq\delta$
- $f(\mathbf{x}^*) \le f(\mathbf{z}) \le \alpha f(\mathbf{y}^*) + (1 \alpha)f(\mathbf{x}^*) < f(\mathbf{x}^*)$

Пример сложной выпуклой задачи

Определение

Множество $C^n = \{ \mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} \ge 0, \ \mathbf{x} \ge 0 \}$ называется copositive cone.

Пример сложной выпуклой задачи

Определение

Множество $C^n = \{ \mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} \ge 0, \ \mathbf{x} \ge 0 \}$ называется copositive cone.

- $ightharpoonup \mathcal{C}^n$ выпукло
- $ightharpoonup \mathbf{S}_{+}^{n} \subset \mathcal{C}^{n}$
- ightharpoonup Задача проверки $\mathbf{X}
 ot\in \mathcal{C}^n$ является со-NP полной!
- ightharpoonup Задача конической оптимизации с конусом \mathcal{C}^n является NP-трудной

Пример сложной выпуклой задачи

Определение

Множество $C^n = \{ \mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} \ge 0, \ \mathbf{x} \ge 0 \}$ называется copositive cone.

- $ightharpoonup \mathcal{C}^n$ выпукло
- $ightharpoonup \mathbf{S}_{+}^{n} \subset \mathcal{C}^{n}$
- lacktriangle Задача проверки $\mathbf{X}
 ot\in \mathcal{C}^n$ является со-NP полной!
- ightharpoonup Задача конической оптимизации с конусом \mathcal{C}^n является NP-трудной

Пример¹

Задача определения максимального независимого множества вершин графа сводится к задаче оптимизации на множестве \mathcal{C}^n .

¹De Klerk, Etienne, and Dmitrii V. Pasechnik. "Approximation of the stability number of a graph via copositive programming."SIAM Journal on Optimization 12.4 (2002): 875-892.

Дана матрица $\mathbf{Q} \in \mathbf{S}^n_{++}$.

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^\top \mathbf{Q} \mathbf{x}$$
 s.t. $\|\mathbf{x}\|_2 = 1$

Дана матрица $\mathbf{Q} \in \mathbf{S}^n_{++}.$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^\top \mathbf{Q} \mathbf{x}$$
 s.t. $\|\mathbf{x}\|_2 = 1$

Допустимое множество невыпукло

Дана матрица $\mathbf{Q} \in \mathbf{S}^n_{++}.$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^\top \mathbf{Q} \mathbf{x}$$
 s.t. $\|\mathbf{x}\|_2 = 1$

- ▶ Допустимое множество невыпукло
- Целевая функция выпукла

Дана матрица $\mathbf{Q} \in \mathbf{S}^n_{++}.$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^\top \mathbf{Q} \mathbf{x}$$
 s.t. $\|\mathbf{x}\|_2 = 1$

- ▶ Допустимое множество невыпукло
- Целевая функция выпукла

 ${f Q}$: какая интерпретация у ${f x}^*$ и $f({f x}^*)$?

lackbox Так как $\mathbf{Q}\in\mathbf{S}^n_{++}$, то существует ортогональный базис из собственных векторов $\mathbf{v}_1,\dots,\mathbf{v}_n$ таких что $\|\mathbf{v}_i\|_2=1$ и $\langle\mathbf{v}_i,\mathbf{v}_j
angle=0$ для i
eq j

- lackbox Так как $\mathbf{Q}\in\mathbf{S}^n_{++}$, то существует ортогональный базис из собственных векторов $\mathbf{v}_1,\dots,\mathbf{v}_n$ таких что $\|\mathbf{v}_i\|_2=1$ и $\langle\mathbf{v}_i,\mathbf{v}_j\rangle=0$ для $i\neq j$
- lacktriangle Будем искать решение в виде $\mathbf{x}_* = \sum_{i=1}^n lpha_i \mathbf{v}_i$

- lackbox Так как $\mathbf{Q}\in\mathbf{S}^n_{++}$, то существует ортогональный базис из собственных векторов $\mathbf{v}_1,\dots,\mathbf{v}_n$ таких что $\|\mathbf{v}_i\|_2=1$ и $\langle\mathbf{v}_i,\mathbf{v}_j\rangle=0$ для $i\neq j$
- lacktriangle Будем искать решение в виде $\mathbf{x}_* = \sum_{i=1}^n lpha_i \mathbf{v}_i$
- lacktriangle Тогда $\mathbf{x}_*^{ op} \mathbf{Q} \mathbf{x}_* = \sum_{i=1}^n \alpha_i^2 \lambda_i$, где $\lambda_1 \geq \ldots \geq \lambda_n > 0$

- lackbox Так как $\mathbf{Q}\in\mathbf{S}^n_{++}$, то существует ортогональный базис из собственных векторов $\mathbf{v}_1,\dots,\mathbf{v}_n$ таких что $\|\mathbf{v}_i\|_2=1$ и $\langle\mathbf{v}_i,\mathbf{v}_j\rangle=0$ для $i\neq j$
- lacktriangle Будем искать решение в виде $\mathbf{x}_* = \sum_{i=1}^n lpha_i \mathbf{v}_i$
- lacktriangle Тогда $\mathbf{x}_*^{ op}\mathbf{Q}\mathbf{x}_* = \sum_{i=1}^n lpha_i^2 \lambda_i$, где $\lambda_1 \geq \ldots \geq \lambda_n > 0$
- lackbox Ограничение $\|\mathbf{x}_*\|_2=1$ даёт ограничения на $lpha_i$: $\sum_{i=1}^n lpha_i^2=1$

- lackbox Так как $\mathbf{Q} \in \mathbf{S}^n_{++}$, то существует ортогональный базис из собственных векторов $\mathbf{v}_1,\dots,\mathbf{v}_n$ таких что $\|\mathbf{v}_i\|_2=1$ и $\langle \mathbf{v}_i,\mathbf{v}_j \rangle=0$ для $i \neq j$
- lacktriangle Будем искать решение в виде $\mathbf{x}_* = \sum_{i=1}^n lpha_i \mathbf{v}_i$
- lacktriangle Тогда $\mathbf{x}_*^{ op}\mathbf{Q}\mathbf{x}_* = \sum_{i=1}^n lpha_i^2 \lambda_i$, где $\lambda_1 \geq \ldots \geq \lambda_n > 0$
- lackbox Ограничение $\|\mathbf{x}_*\|_2=1$ даёт ограничения на $lpha_i$: $\sum_{i=1}^n lpha_i^2=1$
- lacktriangle Получим оценку снизу $\sum_{i=1}^n lpha_i^2 \lambda_i \geq \lambda_{\min} \sum_{i=1}^n lpha_i^2 = \lambda_{\min}$

- lackbox Так как $\mathbf{Q}\in\mathbf{S}^n_{++}$, то существует ортогональный базис из собственных векторов $\mathbf{v}_1,\dots,\mathbf{v}_n$ таких что $\|\mathbf{v}_i\|_2=1$ и $\langle\mathbf{v}_i,\mathbf{v}_j\rangle=0$ для $i\neq j$
- lacktriangle Будем искать решение в виде $\mathbf{x}_* = \sum_{i=1}^n lpha_i \mathbf{v}_i$
- lacktriangle Тогда $\mathbf{x}_*^{ op}\mathbf{Q}\mathbf{x}_* = \sum_{i=1}^n lpha_i^2 \lambda_i$, где $\lambda_1 \geq \ldots \geq \lambda_n > 0$
- lackbox Ограничение $\|\mathbf{x}_*\|_2=1$ даёт ограничения на $lpha_i$: $\sum_{i=1}^n lpha_i^2=1$
- lacktriangle Получим оценку снизу $\sum_{i=1}^n lpha_i^2 \lambda_i \geq \lambda_{\min} \sum_{i=1}^n lpha_i^2 = \lambda_{\min}$
- Эта оценка достигается на коэффициентах

$$\alpha_i = \begin{cases} 0, & i \neq n \\ 1, & i = n \end{cases}$$

Теорема

Если функция
$$f$$
 выпукла, то $f\left(\sum\limits_{i=1}^k \alpha \mathbf{x}_i\right) \leq \sum\limits_{i=1}^k \alpha_i f(\mathbf{x}_i)$, где

Теорема

Если функция
$$f$$
 выпукла, то $f\left(\sum\limits_{i=1}^k \alpha \mathbf{x}_i\right) \leq \sum\limits_{i=1}^k \alpha_i f(\mathbf{x}_i)$, где $\sum\limits_{i=1}^k \alpha_i = 1, \; \alpha_i \geq 0.$

Доказательство по индукции

ightharpoonup База k=2 выполнена в силу определения

Теорема

Если функция
$$f$$
 выпукла, то $f\left(\sum\limits_{i=1}^k \alpha \mathbf{x}_i\right) \leq \sum\limits_{i=1}^k \alpha_i f(\mathbf{x}_i)$, где $\sum\limits_{i=1}^k \alpha_i = 1, \; \alpha_i \geq 0.$

Доказательство по индукции

- ▶ База k=2 выполнена в силу определения
- Пусть неравенство выполнено для k=m-1: $f\left(\sum_{i=1}^{m-1}\alpha\mathbf{x}_i\right)\leq \sum_{i=1}^{m-1}\alpha_i f(\mathbf{x}_i) \text{ и } \sum_{i=1}^{m-1}\alpha_i=1,\ \alpha_i\geq 0$

Теорема

Если функция
$$f$$
 выпукла, то $f\left(\sum\limits_{i=1}^k \alpha \mathbf{x}_i\right) \leq \sum\limits_{i=1}^k \alpha_i f(\mathbf{x}_i)$, где $\sum\limits_{i=1}^k \alpha_i = 1, \; \alpha_i \geq 0.$

Доказательство по индукции

- ▶ База k=2 выполнена в силу определения
- Пусть неравенство выполнено для k=m-1: $f\left(\sum_{i=1}^{m-1}\alpha\mathbf{x}_i\right)\leq \sum_{i=1}^{m-1}\alpha_i f(\mathbf{x}_i) \text{ и } \sum_{i=1}^{m-1}\alpha_i=1,\ \alpha_i\geq 0$

Рассмотрим
$$k=m$$
: $f\left(\sum\limits_{i=1}^{m}\hat{\alpha}_{i}\mathbf{x}_{i}\right)=f\left(\sum\limits_{i=1}^{m-1}\hat{\alpha}\mathbf{x}_{i}+\hat{\alpha}_{m}\mathbf{x}_{m}\right)=f\left((1-\hat{\alpha}_{m})\sum\limits_{i=1}^{m-1}\frac{\hat{\alpha}_{i}}{1-\hat{\alpha}_{m}}\mathbf{x}_{i}+\hat{\alpha}_{m}\mathbf{x}_{m}\right)\leq$
$$(1-\hat{\alpha}_{m})f\left(\sum\limits_{i=1}^{m-1}\frac{\hat{\alpha}_{i}}{1-\hat{\alpha}_{m}}\mathbf{x}_{i}\right)+\hat{\alpha}_{m}f(\mathbf{x}_{m})\leq\sum_{i=1}^{k}\alpha_{i}f(\mathbf{x}_{i})$$

Следствия и обобщения

ightharpoonup Запись неравенства Йенсена для функции $-\log x$

$$\frac{1}{m} \sum_{i=1}^{m} x_i \ge \sqrt[m]{x_1 \cdot \ldots \cdot x_m}$$

Следствия и обобщения

lacktriangle Запись неравенства Йенсена для функции $-\log x$

$$\frac{1}{m} \sum_{i=1}^{m} x_i \ge \sqrt[m]{x_1 \cdot \ldots \cdot x_m}$$

Неравенство Гёльдера

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q},$$

где
$$\frac{1}{p}+\frac{1}{q}=1$$
 и $p,q\geq 1$

Следствия и обобщения

lacktriangle Запись неравенства Йенсена для функции $-\log x$

$$\frac{1}{m} \sum_{i=1}^{m} x_i \ge \sqrt[m]{x_1 \cdot \ldots \cdot x_m}$$

Неравенство Гёльдера

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q},$$

где
$$\frac{1}{p}+\frac{1}{q}=1$$
 и $p,q\geq 1$

 Обобщение на непрерывный случай даёт неравенство для выпуклой функции от матожидания

$$f(\mathbb{E}(\mathbf{x})) \le \mathbb{E}(f(\mathbf{x}))$$

Выпуклые функции и их свойства

- Выпуклые функции и их свойства
- ▶ Операции, сохраняющие выпуклость

- Выпуклые функции и их свойства
- Операции, сохраняющие выпуклость
- Сложная задача выпуклой оптимизаци и простая невыпуклая задача

- Выпуклые функции и их свойства
- Операции, сохраняющие выпуклость
- Сложная задача выпуклой оптимизаци и простая невыпуклая задача
- ▶ Неравенство Йенсена