Linear Algebra

Bachelor Applied Artificial Intelligence (AAI-B2) $\,$

André Herzwurm

TH Rosenheim, SoSe 2022

Literature

- S. Axler, Linear Algebra Done Right, Springer, 3rd Edition, 2015.
- G. Fischer, Lineare Algebra, Springer, 18. Auflage, 2014. (German)
- J. Liesen, V. Mehrmann, Linear Algebra, Springer, 2015.

Contents

Ι	\mathbf{A}	Algebraic Structures				
	1	Gro	oups			
		1.1	Permutations	,		
		1.2	Elementary Properties of Groups	;		
		1.3	Subgroups			
	2	Fiel	lds	,		
		2.1	Elementary Properties of Fields	(
		2.2	Pointwise Addition and Multiplication of Functions			
II	Vector Spaces and Linear Maps					
	1	Vec	etor Spaces	9		
		1.1	Subspaces	1		
		1.2	Span and Linear Combinations	1		
	2	Bas	ses and Dimension	1		
		2.1	Linear Independence	1		
		2.2	Generating Sets and Bases	1		
		2.3	Dimension of a Vector Space	1		
	3	Ma	trices	1		
		3.1	Row Space and Rank	1		
		3.2	Matrix Multiplication	2		
	4	Lin	ear Maps	2		
		4.1	Construction of Linear Maps	2		
		4.2	Coordinate Systems	2		
		4.3	Kernel and Image	2		
	5	Tra	Transformation Matrices of Linear Maps			
	6	Cha	ange of Basis	3		
		6.1	Invertible Matrices	3		
		6.2	Change of Basis Formula	3		
		6.3	Row Rank and Column Rank	3		
		6.4	Elementary Matrices and Elementary Row Operations	3		
	7	Sys	tems of Linear Equations	3		
		7.1	Geometry of the Solution Set	3		
		7.2	Existence and Uniqueness of Solutions	3		
		7.3	Gaussian Elimination	3		
		7.4	Representation of Affine Subspaces	3'		
TTT	D	otorm	inants and Eigenvalues	30		

CONTENTS	iii	

	1	Det	germinants	39				
		1.1	Characterization of Determinants	39				
		1.2	Determinant of a Linear Map	42				
	2	2 Eigenvalues						
		2.1	Eigenspaces, Eigenvalues, and Eigenvectors	43				
		2.2	Characteristic Polynomial	44				
		2.3	Zeros of Polynomial Functions	47				
		2.4	Multiplicity of Eigenvalues	47				
	3	Dia	gonalization	48				
IV	Inner Product Spaces 5							
	1	Inner Product and Orthogonality						
		1.1	Cauchy-Schwarz Inequality	52				
		1.2	Orthogonality	54				

Chapter I

Algebraic Structures

In this chapter we introduce the notion of groups and fields. We also present simple examples and elementary properties of groups and fields.

1 Groups

In the sequel let G be a non-empty set.

Definition 1. A map

$$*: G \times G \to G$$

is called operation on G. An operation is associative if¹

$$\forall a, b, c \in G: (a * b) * c = a * (b * c),$$

and commutative if

$$\forall a, b \in G : a * b = b * a.$$

Notation: Brackets may be dropped in case of an associative operation with multiple elements. Depending on the context we may also write a+b, $a\cdot b$, ab etc. instead of a*b.

Definition 2. A set G with an operation * is called *group* if * is associative and there exists $e \in G$ such that

$$\forall a \in G \colon e * a = a \tag{1}$$

and

$$\forall a \in G \ \exists a' \in G \colon a' * a = e. \tag{2}$$

Furthermore, a group is called *commutative* (abelian) if * is commutative.

Notation: We sometimes write (G, *) to emphasize the operation *.

 $^{^1\}mathrm{In}$ a definition one typically uses "if" instead of "iff" (if and only if).

I.1. Groups 2

Example 3.

- (i) Additive groups:
 - a) $(\mathbb{N}_0, +)$ is not a group since (2) does not hold.
 - b) $(\mathbb{Z}, +)$ is a commutative group with e = 0 and

$$\forall m \in \mathbb{Z} \colon (-m \in \mathbb{Z} \ \land \ (-m) + m = 0).$$

Clearly, + is associative and commutative and

$$\forall m, n \in \mathbb{Z} \colon m + n \in \mathbb{Z}.$$

- c) $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, and $(\mathbb{C}, +)$ are commutative groups.
- (ii) Multiplicative groups:
 - a) (\mathbb{Z},\cdot) is not a group since (2) does not hold. In particular, we have

$$\forall m \in \mathbb{Z} \colon m \cdot 0 = 0 \neq 1.$$

b) $(\mathbb{Q} \setminus \{0\}, \cdot)$ is a commutative group with e = 1 and

$$\forall q \in \mathbb{Q} \setminus \{0\} \colon (1/q \in \mathbb{Q} \setminus \{0\} \land 1/q \cdot q = 1).$$

Clearly, \cdot is associative and commutative and

$$\forall q_1, q_2 \in \mathbb{Q} \setminus \{0\} \colon q_1 \cdot q_2 \in \mathbb{Q} \setminus \{0\}.$$

- c) $(\mathbb{R} \setminus \{0\}, \cdot)$ and $(\mathbb{C} \setminus \{0\}, \cdot)$ are commutative groups.
- (iii) $G = \{0, 1\}$ together with

$$\begin{array}{c|cccc} * & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

is a commutative group. See Exercise 0.1.

Definition 4. Let * be an operation on G and let $\emptyset \neq G' \subseteq G$ satisfy

$$\forall a, b \in G' : a * b \in G'$$
.

Then the operation $*': G' \times G' \to G'$, defined by a *' b = a * b, is called the *induced operation* on G'.

Henceforth we do not distinguish between * and *'.

I.1. Groups 3

1.1 Permutations

Notation: The set of mappings from a set X to a set Y is denoted by Y^X .

Proposition 5. Let $X \neq \emptyset$ and

$$G = \{ f \in X^X : f \text{ bijective} \}.$$

G together with function composition \circ is a group. Moreover, G is not commutative if $|X| \geq 3$.

Definition 6. G from Proposition 5 is called the *symmetric group* of the set X. Its elements are called *permutations*.

1.2 Elementary Properties of Groups

In the sequel let G be a group.

Lemma 7. Let $e \in G$ satisfy (1) and (2) and let $a, a' \in G$. Then we have

- (i) $a'a = e \implies aa' = e$,
- (ii) ae = a.

Proof. ad (i): According to (2) there exists $a'' \in G$ such that

$$a''a' = e$$
.

Using (1) we obtain

$$aa' = eaa' = a''a'aa' = a''ea' = a''a' = e.$$

ad (ii): Let $a' \in G$ such that a'a = e. From part (i) we get

$$ae = aa'a \stackrel{\text{(i)}}{=} ea = a.$$

Proposition 8. There exists a unique $e \in G$ satisfying (1) and (2).

Proof. Let (1) and (2) be satisfied for $e = e_1$ and $e = e_2$. Then we have $e_1e_2 = e_2$ and $e_2e_1 = e_1$. Lemma 7.(i) shows $e_2e_1 = e_2$ and hence $e_1 = e_2e_1 = e_2$.

Definition 9. $e \in G$ satisfying (1) and (2) is called the *neutral element* of G.

In the sequel let e be the neutral element of G.

Proposition 10. For every $a \in G$ there exists a unique $a' \in G$ such that a'a = e.

Proof. Let $a', a'' \in G$ such that a'a = a''a = e. Lemma 7.(i) shows aa' = e. Using Lemma 7.(ii) we obtain

$$a'' \stackrel{\text{(ii)}}{=} a''e = a''aa' = ea' = a'.$$

Cf. Exercise 0.2.

I.1. Groups 4

Definition 11. For $a \in G$ the element $a' \in G$ satisfying a'a = e is called the *inverse element* of a.

Notation: $a' = a^{-1}$, a' = 1/a, or a' = -a.

Lemma 12. For $a, b, c \in G$ we have

- (i) $ab = ac \implies b = c$,
- (ii) $ba = ca \implies b = c$,
- (iii) $(a^{-1})^{-1} = a$,
- (iv) $(ab)^{-1} = b^{-1}a^{-1}$,
- (v) $e^{-1} = e$,
- (vi) $\exists_1 x \in G : ax = b$.

Proof. ad (i): Assume ab = ac. Then we have $b = eb = a^{-1}ab = a^{-1}ac = ec = c$.

ad (ii): Assume ba = ca. By Lemma 7, we have $b = be = baa^{-1} = caa^{-1} = ce = c$.

ad (iii): By Lemma 7.(ii), we have $a = ea = (a^{-1})^{-1}a^{-1}a = (a^{-1})^{-1}e = (a^{-1})^{-1}$.

ad (iv): We have $(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}eb = b^{-1}b = e$.

ad (v): We have ee = e.

ad (vi): Put $x = a^{-1}b \in G$. By Lemma 7.(i), we have $ax = aa^{-1}b = eb = b$. Uniqueness follows from part (i).

Cf. Exercise 0.3.

1.3 Subgroups

Definition 13. $G' \subseteq G$ is a *subgroup* of G if the following conditions hold:

- (i) $G' \neq \emptyset$,
- (ii) $\forall a, b \in G' : ab \in G'$,
- (iii) $\forall a \in G' : a^{-1} \in G'$.

Remark 14.

- (i) Every subgroup G' of G satisfies $e \in G'$. (Proof: Choose $a \in G'$. Then we obtain $a^{-1} \in G'$ and $e = a^{-1}a \in G'$.)
- (ii) $\{e\}$ and G are the smallest and the largest subgroup of G, respectively, i.e., every subgroup G' of G satisfies $\{e\} \subseteq G' \subseteq G$.

Example 15. (i) $G' = \mathbb{Z}$ is a subgroup of $G = \mathbb{Q}$ w.r.t. the addition.

(ii) $G' = \{q \in \mathbb{Q} : q > 0\}$ is a subgroup of $G = \mathbb{Q} \setminus \{0\}$ w.r.t. the multiplication.

(iii) Let G be the symmetric group of X. For $X_0 \subseteq X$ put

$$G' = \{ f \in G \colon \forall x \in X_0 \colon f(x) = x \}.$$

Then G' is a subgroup of G.

Proposition 16. Every subgroup of G (together with the induced operation) is a group with neutral element e.

Proof. Definition 13.(i)-(ii) ensure that the induced operation *' on a subgroup G' is well-defined. Obviously, the induced operation *' on G' inherits the associativity of * on G. According to Remark 14.(i) we have $e \in G'$, and for $a \in G'$ we have e *' a = e * a = a. Moreover, Definition 13.(iii) ensures $a^{-1} \in G'$ for $a \in G'$ such that $a^{-1} *' a = a^{-1} * a = e$.

Lemma 17. Let G_1 and G_2 be subgroups of G. Then $G_1 \cap G_2$ is a subgroup of G.

Proof. Note that $e \in G_1 \cap G_2$. Let $a, b \in G_1 \cap G_2$. Then we have $ab \in G_i$ and $a^{-1} \in G_i$ for i = 1, 2 since the G_i are subgroups of G. This shows $ab \in G_1 \cap G_2$ and $a^{-1} \in G_1 \cap G_2$.

Example 18. $G_1 = \{2k : k \in \mathbb{Z}\}$ and $G_2 = \{3k : k \in \mathbb{Z}\}$ are subgroups of $G = \mathbb{Z}$ w.r.t. the addition. We have $G_1 \cap G_2 = \{6k : k \in \mathbb{Z}\}$.

Note that $-2, 3 \in G_1 \cup G_2$, but $(-2) + 3 = 1 \notin G_1 \cup G_2$. Thus $G_1 \cup G_2$ is not a subgroup of G, cf. Exercise 0.4.

2 Fields

Definition 1. A set K together with two operations

$$+: K \times K \to K \quad (addition)$$

 $:: K \times K \to K \quad (multiplication)$

is a *field* if the following conditions hold:

- (i) (K, +) is a commutative group.
- (ii) Let 0 be the neutral element in (K, +). For $K^* = K \setminus \{0\}$ we have

$$\forall a, b \in K^* : a \cdot b \in K^*$$
,

and (K^*, \cdot) is a commutative group.

(iii)
$$\forall a, b, c \in K : (a \cdot (b+c) = a \cdot b + a \cdot c \wedge (a+b) \cdot c = a \cdot c + b \cdot c)$$
 (distributivity).

Notation: The neutral element and the inverse element of $a \in K$ in (K, +) are denoted by 0 and -a, respectively. The neutral element in (K^*, \cdot) is denoted by 1. The inverse element of $a \in K^*$ is denoted by a^{-1} or 1/a.

We often write ab instead of $a \cdot b$ and a - b instead of a + (-b) for $a, b \in K$, and a/b instead of $a \cdot b^{-1}$ for $a \in K$ and $b \in K^*$.

Convention: \cdot has precedence over +.

Remark 2. Per definition we have $0 \neq 1$ in every field.

Example 3. (i) \mathbb{Q} with the usual operations + and \cdot is a field.

(ii) $K = \{0, 1\}$ with the addition according to Example 3.(iii) and the multiplication given by

$$\begin{array}{c|cccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

is a field. Note that 1 + 1 = 0 in this case.

2.1 Elementary Properties of Fields

In the sequel let K be a field.

Lemma 4. For $a, b, c \in K$ we have

- (i) $0 \cdot a = a \cdot 0 = 0$,
- (ii) $a \cdot b = 0 \Rightarrow a = 0 \lor b = 0$,
- (iii) $a \cdot (-b) = (-a) \cdot b = -(ab),$
- (iv) $(-a) \cdot (-b) = ab$,
- (v) $a \cdot b = a \cdot c \wedge a \neq 0 \implies b = c$,
- (vi) $a \neq 0 \Rightarrow (\exists_1 x \in K : a \cdot x = b).$

Proof. ad (i): We have

$$0 + 0 \cdot a = 0 \cdot a = (0 + 0) \cdot a = 0 \cdot a + 0 \cdot a.$$

Lemma 1.12.(ii) ensures $0 = 0 \cdot a$. Analogously, we obtain $0 = a \cdot 0$. ad (ii): Note that (ii) is equivalent to (proof by contraposition)

$$a \neq 0 \land b \neq 0 \implies a \cdot b \neq 0$$
,

which is clearly satisfied since (K^*, \cdot) is a group, see Definition 1.(ii).

ad (iii): By using (i) we obtain

$$a \cdot b + a \cdot (-b) = a \cdot (b + (-b)) = a \cdot 0 \stackrel{\text{(i)}}{=} 0.$$

Hence the unique inverse element (see Proposition 1.10) is given by $-(a \cdot b) = a \cdot (-b)$. Analogously, we obtain $-(a \cdot b) = (-a) \cdot b$.

ad (iv): Using (iii) we have

$$(-a) \cdot (-b) \stackrel{\text{(iii)}}{=} -(a \cdot (-b)) \stackrel{\text{(iii)}}{=} -(-(a \cdot b)) = a \cdot b,$$

where the last equality holds due to Lemma 1.12.(iii).

ad (v): Assume $a \cdot b = a \cdot c$. Using (iii) we thus have

$$a \cdot (b - c) = a \cdot b + a \cdot (-c) \stackrel{\text{(iii)}}{=} a \cdot b - a \cdot c = 0.$$

According to (ii) we obtain $a = 0 \lor (b - c) = 0$.

ad (vi): Let $a \neq 0$. If b = 0, then (ii) implies x = 0, and according to (i) we have

$$a \cdot x = a \cdot 0 \stackrel{\text{(i)}}{=} 0 = b$$

i.e., x = 0 is the unique solution to ax = b. If $b \neq 0$, then $x = a^{-1}b$ is the unique solution to ax = b in K^* , see Lemma 1.12.(vi). Moreover, note that x = 0 is not a solution to ax = b in this case due to (i).

Cf. Exercise 1.1.
$$\Box$$

Remark 5. Due to Lemma 4.(i) the multiplication is associative and commutative on $K = K^* \cup \{0\}$ and

$$\forall a \in K : 1 \cdot a = a.$$

Note that 0 does not have an inverse element w.r.t. the multiplication.

2.2 Pointwise Addition and Multiplication of Functions

In the sequel let $X \neq \emptyset$.

Definition 6. Addition and multiplication on K^X are defined as follows: For $f, g \in K^X$ and $x \in X$ we put

$$(f+g)(x) = f(x) + g(x)$$

and

$$(f \cdot g)(x) = f(x) \cdot g(x).$$

Terminology: pointwise addition (or sum) and pointwise multiplication (or product) of functions, respectively.

Lemma 7.

- (i) $(K^X, +)$ is a commutative group with neutral element $0 \in K^X$.
- (ii) The multiplication is associative and commutative on K^X , and for $1 \in K^X$ we have

$$\forall f \in K^X \colon 1 \cdot f = f.$$

- (iii) Distributivity holds.
- (iv) For all $f \in K^X$ we have

$$(\exists g \in K^X : g \cdot f = 1) \Leftrightarrow (\forall x \in X : f(x) \neq 0).$$

$$Proof.$$
 Exercise.

Notation: f-g instead of f+(-g) for $f,g\in K^X$ and f/g instead of $f\cdot h$ for $f\in K^X$ and $g\in K^X$ provided that $g(x)\neq 0$ and $h(x)=(g(x))^{-1}$ for all $x\in X$.

Chapter II

Vector Spaces and Linear Maps

Vector spaces and linear maps are the fundamental objects of linear algebra. In this context we study, for instance, systems of linear equations.

1 Vector Spaces

In the sequel let K be a field. We use the standard notation and conventions in the context of fields, see Definition I.2.1.

Definition 1. A set V together with two mappings

is a K-vector space (vector space over K) if the following conditions hold:

- (i) (V, \oplus) is a commutative group.
- (ii) For all $\lambda, \mu \in K$ and $v, w \in V$ we have

$$(\lambda + \mu) \odot v = \lambda \odot v \oplus \mu \odot v,$$

$$\lambda \odot (v \oplus w) = \lambda \odot v \oplus \lambda \odot w,$$

$$\lambda \odot (\mu \odot w) = (\lambda \cdot \mu) \odot w,$$

$$1 \odot v = v.$$

The elements of V are called *vectors* and the elements of K are called *scalars*. Notation: **0** for the neutral element and $\ominus v$ for the inverse element of $v \in V$ in (V, \oplus) . Convention: \odot has precedence over \oplus .

Example 2 (Coordinate space). For $n \in \mathbb{N}$ let

$$V = K^n = \{(x_1, \dots, x_n) \colon x_i \in K \text{ for } i \in \{1, \dots, n\}\}.$$

Define

$$(x_1, \dots, x_n) \oplus (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n),$$

$$\lambda \odot (x_1, \dots, x_n) = (\lambda \cdot x_1, \dots, \lambda \cdot x_n)$$
(1)

for $\lambda \in K$ and $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in V$. Then V is a K-vector space, see Exercise 1.2. In particular, V = K is a K-vector space.

Convention: If not stated otherwise we regard $V = K^n$ as a K-vector space with the vector space operations \oplus and \odot defined in (1).

Example 3 (Function spaces). Let $X \neq \emptyset$ and $V = K^X$ (set of mappings from X to K). Define

$$(f \oplus g)(x) = f(x) + g(x),$$

$$(\lambda \odot f)(x) = \lambda \cdot f(x)$$
(2)

for $f, g \in K^X$, $\lambda \in K$ and $x \in X$. Note that the vector addition is given by the pointwise addition from Definition I.2.6. Then V is a K-vector space, see Exercise 1.3. Special cases:

- (i) For $K = \mathbb{R}$ and X = [0,1] we obtain the \mathbb{R} -vector space $\mathbb{R}^{[0,1]}$ of real-valued mappings on the unit interval [0,1].
- (ii) For $K = \mathbb{R}$ and $X = \mathbb{N}$ we obtain the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{N}}$ of real-valued sequences.

Convention: We always regard $V = K^X$ as a K-vector space with the vector space operations \oplus and \odot defined in (2).

In the sequel let V be a K-vector space.

Lemma 4. For $v \in V$ and $\lambda \in K$ we have

- (i) $0 \odot v = 0$,
- (ii) $\lambda \odot \mathbf{0} = \mathbf{0}$,
- (iii) $\lambda \odot v = \mathbf{0} \Rightarrow \lambda = 0 \lor v = \mathbf{0}$,
- (iv) $(-1) \odot v = \ominus v$.

Proof. ad (i): We have $0 \odot v = (0+0) \odot v = 0 \odot v \oplus 0 \odot v$.

ad (ii): We have $\lambda \odot \mathbf{0} = \lambda \cdot (\mathbf{0} \oplus \mathbf{0}) = \lambda \odot \mathbf{0} \oplus \lambda \odot \mathbf{0}$.

ad (iii): From $\lambda \odot v = \mathbf{0}$ and $\lambda \neq 0$ we obtain using (ii) that

$$v = 1 \odot v = (\lambda^{-1} \cdot \lambda) \odot v = \lambda^{-1} \odot \mathbf{0} = \mathbf{0}.$$

ad (iv): Using (i) we obtain

$$v \oplus (-1) \odot v = 1 \odot v \oplus (-1) \odot v = (1 + (-1)) \odot v = \mathbf{0}.$$

Notation: Henceforth we use 0, +, and \cdot instead of $\mathbf{0}, \oplus$, and \odot , respectively. Moreover, we often use λv instead of $\lambda \cdot v$ for $\lambda \in K$ and $v \in V$.

1.1 Subspaces

Definition 5. $U \subseteq V$ is a subspace (linear subspace, vector subspace) of V if the following conditions hold:

- (i) $U \neq \emptyset$,
- (ii) $\forall v, w \in U : v + w \in U$,
- (iii) $\forall \lambda \in K \ \forall v \in U : \lambda \cdot v \in U$.

Remark 6. (i) Every subspace U of V satisfies $0 \in U$.

(ii) $\{0\}$ and V are the smallest and the largest subspace of V, respectively, i.e., every subspace U of V satisfies $\{0\} \subseteq U \subseteq V$.

Cf. Remark I.1.14.

Example 7. (i) For $a \in \mathbb{R}^n$ und $b \in \mathbb{R}$ put

$$U = \left\{ x \in \mathbb{R}^n \colon \sum_{i=1}^n a_i \cdot x_i = b \right\}.$$

U is a subspace of \mathbb{R}^n if and only if b=0, see Exercise 1.4.

- (ii) The set of convergent sequences in \mathbb{R} is a subspace of $\mathbb{R}^{\mathbb{N}}$.
- (iii) The set C([0,1]) of continuous functions from [0,1] to \mathbb{R} is a subspace of $\mathbb{R}^{[0,1]}$, see Exercise 1.3.

Proposition 8. Every subspace of V (together with the induced vector addition and the induced scalar multiplication) is a K-vector space.

Proof. Analogous to subgroups, see Proposition I.1.16.

Lemma 9. Let U_1 and U_2 be subspaces of V. Then $U_1 \cap U_2$ is a subspace of V.

Proof. Analogous to subgroups, see Lemma I.1.17. $\hfill\Box$

Remark 10. The analogue of Lemma 9 for the union of subspaces is false, see Exercise 1.4.

1.2 Span and Linear Combinations

Definition 11. For $W \subseteq V$ let

$$\mathfrak{U} = \{U \colon U \text{ subspace of } V, W \subseteq U\}.$$

 $\bigcap_{U \in \mathfrak{U}} U$ is called span (linear span, linear hull) of W. Notation:

$$\mathrm{span}(W) = \bigcap_{U \in \Omega} U.$$

12

Remark 12. span(W) is the smallest subspace of V that contains W. In particular, span(\emptyset) = {0}.

Definition 13. For $n \in \mathbb{N}$ we call $v \in V$ a linear combination of $v_1, \ldots, v_n \in V$ if

$$\exists \lambda_1, \dots, \lambda_n \in K \colon v = \sum_{i=1}^n \lambda_i v_i.$$

Notation: $L(v_1, \ldots, v_n)$ is the set of all linear combinations of v_1, \ldots, v_n .

Example 14. For $V = \mathbb{R}^2$ and $v_1 = (1,0)$, $v_2 = (0,1)$, and $v_3 = (3,2)$ we have

$$L(v_1, v_2) = L(v_1, v_3) = L(v_2, v_3) = L(v_1, v_2, v_3) = \mathbb{R}^2.$$

Lemma 15. $L(v_1, \ldots, v_n)$ is a subspace of V for all $n \in \mathbb{N}$ and $v_1, \ldots, v_n \in V$.

Proof. We have $0 \in L(v_1, \ldots, v_n)$. For $v, w \in L(v_1, \ldots, v_n)$ there exist $\lambda_1, \ldots, \lambda_n \in K$ and $\mu_1, \ldots, \mu_n \in K$ such that

$$v = \sum_{i=1}^{n} \lambda_i v_i, \qquad w = \sum_{i=1}^{n} \mu_i v_i.$$

Hence we get

$$v + w = \sum_{i=1}^{n} (\lambda_i + \mu_i) v_i \in L(v_1, \dots, v_n)$$

and

$$\lambda v = \sum_{i=1}^{n} \lambda \lambda_i v_i \in L(v_1, \dots, v_n)$$

for all $\lambda \in K$.

Proposition 16. For $\emptyset \neq W \subseteq V$ we have

$$\operatorname{span}(W) = \bigcup_{n \in \mathbb{N}} \bigcup_{(v_1, \dots, v_n) \in W^n} L(v_1, \dots, v_n).$$

Corollary 17. For $n \in \mathbb{N}$ and $v_1, \ldots, v_n \in V$ we have

$$\mathrm{span}(\{v_1,\ldots,v_n\})=L(v_1,\ldots,v_n).$$

Proof. " \supseteq ": We have $\{v_1, \ldots, v_n\} \subseteq \text{span}(\{v_1, \ldots, v_n\})$. Since $\text{span}(\{v_1, \ldots, v_n\})$ is a subspace of V, see Remark 12, we obtain $L(v_1, \ldots, v_n) \subseteq \text{span}(\{v_1, \ldots, v_n\})$.

" \subseteq ": We have $\{v_1, \ldots, v_n\} \subseteq L(v_1, \ldots, v_n)$. Moreover, $L(v_1, \ldots, v_n)$ is a subspace according to Lemma 15, and hence span $(\{v_1, \ldots, v_n\}) \subseteq L(v_1, \ldots, v_n)$.

Example 18. Let $V = \mathbb{R}^3$ and $v_1, v_2 \in V$. Corollary 17 shows

$$\operatorname{span}(\{v_1\}) = \{\lambda v_1 \colon \lambda \in \mathbb{R}\}.$$

If $v_1 \neq 0$, span($\{v_1\}$) is the straight line passing through 0 and v_1 . Furthermore, we have

$$\operatorname{span}(\{v_1, v_2\}) = \{\lambda v_1 + \mu v_2 \colon \lambda, \mu \in \mathbb{R}\}.$$

If $v_1 \neq 0$ and $v_2 \notin \text{span}(\{v_1\})$, $\text{span}(\{v_1, v_2\})$ is the plane passing through 0, v_1 , and v_2 .

Example 19. Let $V = \mathbb{R}^{\mathbb{R}}$. Define $v_i \in V$ for $i \in \{0, 1, 2, 3\}$ by $v_i(x) = x^i$ for $x \in \mathbb{R}$. Then span($\{v_i : i \in \{0, 1, 2, 3\}\}$) is the subspace of polynomial functions where the degree is at most 3.

2 Bases and Dimension

In the sequel let V be a K-vector space and $(v_i)_{i\in I}$ be a family in V for a set I. We put $V_0 = \{v_i : i \in I\}$. If $I \neq \emptyset$ is finite, we may assume w.l.o.g. that $I = \{1, \ldots, n\}$. Notation: Often (v_1, \ldots, v_n) or $(v_i)_{i\in\{1,\ldots,n\}}$ instead of $(v_i)_{i\in I}$.

2.1 Linear Independence

Definition 1. A family (v_1, \ldots, v_n) is linearly independent if for all $(\lambda_i)_{i \in \{1, \ldots, n\}} \in K^n$ it holds

$$\sum_{i=1}^{n} \lambda_i v_i = 0 \implies (\forall i \in \{1, \dots, n\} : \lambda_i = 0).$$

Otherwise the family (v_1, \ldots, v_n) is linearly dependent. The empty family $(v_i)_{i \in \emptyset}$ is linearly independent.

Remark 2.

- (i) The family (v_1) is linearly independent if and only if $v_1 \neq 0$.
- (ii) If $v_i = 0$ for some $i \in \{1, ..., n\}$, then $(v_1, ..., v_n)$ is linearly dependent. (Proof: $1 \cdot v_i = 0$.)
- (iii) If $v_i = v_j$ for $i \neq j$, then (v_1, \ldots, v_n) is linearly dependent. (Proof: $1 \cdot v + (-1) \cdot v = 0$.)
- (iv) For $J \subseteq \{1, ..., n\}$ it holds: $(v_i)_{i \in \{1, ..., n\}}$ linearly independent $\Rightarrow (v_i)_{i \in J}$ linearly independent.

Lemma 3. Let $n \geq 2$. The following statements are equivalent:

- (i) (v_1, \ldots, v_n) linearly dependent,
- (ii) $\exists i \in \{1, \dots, n\} : v_i \in L((v_j)_{j \in \{1, \dots, n\} \setminus \{i\}}).$

Proof. "(i) \Rightarrow (ii)": There exist $(\lambda_j)_{j \in \{1,\dots,n\}} \in K^n$ and $i \in \{1,\dots,n\}$ such that $\sum_{j=1}^n \lambda_j v_j = 0$ and $\lambda_i \neq 0$. This shows

$$v_i = \sum_{j \in \{1,\dots,n\} \setminus \{i\}} (-\lambda_j/\lambda_i) \cdot v_j \in L((v_j)_{j \in \{1,\dots,n\} \setminus \{i\}}).$$

"(ii) \Rightarrow (i)": There exist $i \in \{1, \dots, n\}$ and $(\lambda_j)_{j \in \{1, \dots, n\} \setminus \{i\}} \in K^{n-1}$ such that $v_i = \sum_{j \in \{1, \dots, n\} \setminus \{i\}} \lambda_j v_j$. Put $\lambda_i = -1$ to obtain

$$\sum_{j=1}^{n} \lambda_j v_j = \lambda_i v_i + \sum_{j \in \{1, \dots, n\} \setminus \{i\}} \lambda_j v_j = -v_i + v_i = 0.$$

Example 4.

(i) Consider the situation from Example 1.14. Then (v_1, v_2) , (v_1, v_3) , and (v_2, v_3) are linearly independent. E.g., for (v_1, v_3) we have

$$\lambda_1 v_1 + \lambda_3 v_3 = 0 \iff \lambda_1 \cdot (1,0) + \lambda_3 \cdot (3,2) = 0 \iff \begin{cases} \lambda_1 + 3\lambda_3 = 0 \\ 2\lambda_3 = 0 \end{cases}$$

for $\lambda_1, \lambda_3 \in \mathbb{R}$, and hence $\lambda_1 = \lambda_3 = 0$. Furthermore, (v_1, v_2, v_3) is linearly dependent since $v_3 = 3v_1 + 2v_2$.

(ii) Consider the situation from Example 1.19 with $v_0(x) = 1$ and $v_1(x) = x$ for $x \in \mathbb{R}$. Then (v_0, v_1) is linearly independent. To see this, let $\lambda_0 v_0 + \lambda_1 v_1 = 0$ for $\lambda_0, \lambda_1 \in \mathbb{R}$. At the evaluation sites x = 0 and x = 1 we then have

$$0 = (\lambda_0 v_0 + \lambda_1 v_1)(0) = \lambda_0 \cdot v_0(0) + \lambda_1 \cdot v_1(0) = \lambda_0 \cdot 1 + \lambda_1 \cdot 0 = \lambda_0,$$

$$0 = (\lambda_0 v_0 + \lambda_1 v_1)(1) = \lambda_0 \cdot v_0(1) + \lambda_1 \cdot v_1(1) = \lambda_0 \cdot 1 + \lambda_1 \cdot 1 = \lambda_0 + \lambda_1,$$

and hence $\lambda_0 = \lambda_1 = 0$.

Cf. Exercise 2.2 and Exercise 2.4.

Proposition 5. The following statements are equivalent:

- (i) (v_1, \ldots, v_n) is linearly independent,
- (ii) for all $v \in \text{span}(\{v_1, \dots, v_n\})$ there exists a unique $(\lambda_i)_{i \in \{1, \dots, n\}} \in K^n$ such that

$$v = \sum_{i=1}^{n} \lambda_i v_i.$$

Proof. "(i) \Rightarrow (ii)": Existence follows from Corollary 1.17. Moreover, the fact

$$\sum_{i=1}^{n} \lambda_i v_i = \sum_{i=1}^{n} \mu_i v_i \iff \sum_{i=1}^{n} (\lambda_i - \mu_i) v_i = 0$$

for $(\lambda_i)_{i\in\{1,\dots,n\}}$, $(\mu_i)_{i\in\{1,\dots,n\}}\in K^n$ and the linear independence of (v_1,\dots,v_n) shows uniqueness.

"(ii) \Rightarrow (i)": The unique representation of v = 0 corresponds to $\lambda_1 = \ldots = \lambda_n = 0$. \square

2.2 Generating Sets and Bases

Terminology: For a finite index set I we call $(v_i)_{i\in I}$ finite and |I| the length of $(v_i)_{i\in I}$. For an infinite index set I we call $(v_i)_{i\in I}$ infinite.

Definition 6.

(i) $(v_i)_{i\in I}$ is a generating set (spanning set) of V if $V = \text{span}(\{v_i : i \in I\})$.

- (ii) A linearly independent generating set of V is called basis of V.
- (iii) V is finitely generated if there exists a finite generating set of V.

Example 7. Let $V = \mathbb{R}^n$ and $e_1, \ldots, e_n \in \mathbb{R}^n$ be given by

$$e_i(j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{else,} \end{cases}$$

where $e_i(j)$ denotes the j-th component of e_i for $i, j \in \{1, ..., n\}$. Clearly, $(e_1, ..., e_n)$ is linearly independent and every $x \in \mathbb{R}^n$ can be expressed by

$$x = (x_1, \dots, x_n) = \sum_{i=1}^{n} x_i \cdot e_i.$$

Hence (e_1, \ldots, e_n) is a basis of \mathbb{R}^n . It is called the *standard basis* or the *canonical basis* of the coordinate space \mathbb{R}^n .

Proposition 8. Let $n \in \mathbb{N}$. The following statements are equivalent:

- (i) (v_1, \ldots, v_n) is a basis of V.
- (ii) (v_1, \ldots, v_n) is a generating set of V, and $(v_j)_{j \in \{1, \ldots, n\} \setminus \{i\}}$ is not a generating set of V for every $i \in \{1, \ldots, n\}$.
- (iii) For all $v \in V$ there exists a unique $(\lambda_1, \ldots, \lambda_n) \in K^n$ such that $\sum_{i=1}^n \lambda_i v_i = v$.
- (iv) (v_1, \ldots, v_n) is linearly independent and every family (v_1, \ldots, v_n, v) in V with $v \in V$ is linearly dependent.

Proof. We consider the non-trivial case $n \geq 2$.

"(i) \Rightarrow (ii)": Proof by contradiction: Let $i \in \{1, \ldots, n\}$ such that $(v_j)_{j \in \{1, \ldots, n\} \setminus \{i\}}$ is a generating set of V. Then we have $v_i \in L((v_j)_{j \in \{1, \ldots, n\} \setminus \{i\}})$, see Corollary 1.17. Lemma 3 shows that (v_1, \ldots, v_n) is linearly dependent, which is a contradiction to (i). "(ii) \Rightarrow (iii)": Existence is obvious. Proof by contradiction to show uniqueness: Let $(\lambda_1, \ldots, \lambda_n), (\mu_1, \ldots, \mu_n) \in K^n$ and $i \in \{1, \ldots, n\}$ such that $\lambda_i \neq \mu_i$ and

$$\sum_{j=1}^{n} \lambda_j v_j = \sum_{j=1}^{n} \mu_j v_j.$$

Then we have $v_i \in L((v_j)_{j \in \{1,\dots,n\} \setminus \{i\}})$, see Proposition 5 and Lemma 3, and hence $L(v_1,\dots,v_n) = L((v_j)_{j \in \{1,\dots,n\} \setminus \{i\}})$, which is a contradiction to (ii).

"(iii) \Rightarrow (iv)": The linear independence of (v_1, \ldots, v_n) follows from Proposition 5, the linear dependence of (v_1, \ldots, v_n, v) follows from Lemma 3 since $v \in L(v_1, \ldots, v_n)$.

"(iv) \Rightarrow (i)": It remains to show $V \subseteq \text{span}(\{v_1, \ldots, v_n\})$. For $v \in V$ there exist $(\lambda_1, \ldots, \lambda_n) \in K^n$ and $\lambda \in K$ such that $\sum_{i=1}^n \lambda_i v_i + \lambda v = 0$ and additionally $(\lambda_1, \ldots, \lambda_n, \lambda) \neq 0 \in K^{n+1}$. Since (v_1, \ldots, v_n) is linearly independent, we have $\lambda \neq 0$ and hence

$$v = -1/\lambda \cdot \sum_{i=1}^{n} \lambda_i v_i \in \operatorname{span}(\{v_1, \dots, v_n\}).$$

Corollary 9 ("Basisauswahlsatz"). Let $(v_i)_{i\in I}$ be a finite generating set of V. Then there exists $I_0 \subseteq I$ such that $(v_i)_{i\in I_0}$ is a basis of V. In particular, every finitely generated vector space has a basis.

Proof. We consider the non-trivial case $V \neq \{0\}$. Let $V = L((v_i)_{i \in I})$ with a finite set $I \neq \emptyset$.

If |I| = 1, then $(v_i)_{i \in I}$ is a basis, see Remark 2.(i). If $|I| \ge 2$, we either have

$$\forall i \in I : L((v_i)_{i \in I \setminus \{i\}}) \neq V,$$

which implies that $(v_i)_{i\in I}$ is a basis according to Proposition 8, or there exists $i\in I$ such that

$$L((v_i)_{i \in I \setminus \{i\}}) = V.$$

In this case we consider $(v_i)_{i \in I \setminus \{i\}}$ and start over.

2.3 Dimension of a Vector Space

Lemma 10 ("Basisaustauschlemma"). Let $n \in \mathbb{N}$ and let (v_1, \ldots, v_n) be a basis of V. Moreover, let $w = \sum_{j=1}^n \lambda_j v_j$ with $(\lambda_1, \ldots, \lambda_n) \in K^n$ such that $\lambda_i \neq 0$ for some $i \in \{1, \ldots, n\}$. Then $(\tilde{v}_1, \ldots, \tilde{v}_n)$ given by

$$\tilde{v}_j = \begin{cases} v_j, & \text{if } j \neq i, \\ w, & \text{if } j = i, \end{cases}$$

is also a basis of V.

Proposition 11. If V has a finite basis, then every basis of V is finite and the lengths of all bases coincide.

Definition 12. If V has a finite basis, the length of a basis of V is called *dimension* of V and V is called *finite-dimensional*. Otherwise, V is called *infinite-dimensional*. Notation: dim V for the dimension of V.

Example 13. For $n \in \mathbb{N}$ we have dim $\mathbb{R}^n = n$, see Example 7.

Definition 14. A subspace U of \mathbb{R}^n is a *(straight) line* passing through zero if $\dim U = 1$. A subspace U of \mathbb{R}^n is a *plane* passing through zero if $\dim U = 2$.

Corollary 15. Let V be finitely generated and let U be a subspace of V. Then we have

- (i) $\dim U \leq \dim V$,
- (ii) $\dim U = \dim V \implies U = V$.

Corollary 16 ("Basisergänzungssatz"). Let V be finite-dimensional with dim $V = n \geq 2$. Moreover, let (w_1, \ldots, w_r) be linearly independent with $r \in \{1, \ldots, n-1\}$. Then there exist $w_{r+1}, \ldots, w_n \in V$ such that (w_1, \ldots, w_n) is a basis of V.

Proposition 17. Let U_1, U_2 be finite-dimensional subspaces of V. Then we have

$$\dim(U_1 \cap U_2) + \dim(U_1 + U_2) = \dim(U_1) + \dim(U_2).$$

Proof. According to Corollary 15 the subspace $U_1 \cap U_2$ of U_1 is finitely generated and hence there exists a basis (u_1, \ldots, u_n) of $U_1 \cap U_2$ due to Corollary 9. Using Corollary 16 we may extend the basis (u_1, \ldots, u_n) of $U_1 \cap U_2$ to a basis $(u_1, \ldots, u_n, u'_1, \ldots, u'_m)$ of U_1 and a basis $(u_1, \ldots, u_n, u''_1, \ldots, u''_n)$ of U_2 for $m, p \in \mathbb{N}_0$.

We show that $(u_1, \ldots, u_n, u'_1, \ldots, u'_m, u''_1, \ldots, u''_p)$ is a basis of $U_1 + U_2$: Since, by construction, $(u_1, \ldots, u_n, u'_1, \ldots, u'_m, u''_1, \ldots, u''_p)$ is a generating set of $U_1 + U_2$, it remains to show the linear independence. Let $\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_m, \nu_1, \ldots, \nu_p \in K$ such that

$$\sum_{i=1}^{n} \lambda_i u_i + \sum_{i=1}^{m} \mu_i u_i' + \sum_{i=1}^{p} \nu_i u_i'' = 0$$

Then we have

$$\underbrace{\sum_{i=1}^{n} \lambda_i u_i + \sum_{i=1}^{m} \mu_i u_i'}_{\in U_1} = \underbrace{-\sum_{i=1}^{p} \nu_i u_i''}_{\in U_2} \in U_1 \cap U_2.$$

Hence there exist $\lambda'_1, \ldots, \lambda'_n \in K$ such that

$$\sum_{i=1}^{n} \lambda_i u_i + \sum_{i=1}^{m} \mu_i u_i' = \sum_{i=1}^{n} \lambda_i' u_i.$$

Since $(u_1, \ldots, u_n, u'_1, \ldots, u'_m)$ is a basis of U_1 , Proposition 8.(iii) shows

$$\forall i \in \{1, \dots, n\} : \lambda_i = \lambda'_i \quad \land \quad \forall i \in \{1, \dots, m\} : \mu_i = 0.$$

This yields

$$\sum_{i=1}^{n} \lambda_i u_i + \sum_{i=1}^{p} \nu_i u_i'' = 0.$$

Since $(u_1, \ldots, u_n, u_1'', \ldots, u_p'')$ is a basis of U_2 , we obtain

$$\forall i \in \{1, \dots, n\} : \lambda_i = 0 \quad \land \quad \forall i \in \{1, \dots, p\} : \nu_i = 0,$$

i.e., $(u_1, \ldots, u_n, u'_1, \ldots, u'_m, u''_1, \ldots, u''_p)$ is linearly independent and hence a basis of $U_1 + U_2$. Finally, we obtain

$$\dim(U_1 \cap U_2) + \dim(U_1 + U_2) = n + (n + m + p)$$
$$= (n + m) + (n + p) = \dim(U_1) + \dim(U_2). \quad \Box$$

Outlook 18. Based on Zorn's lemma (axiom of choice) one can show that every vector space has a basis.

3 Matrices

In the sequel let K be a field and $m, n, p \in \mathbb{N}$.

Given: $v_1, \ldots, v_m \in K^n$.

Aim: Find a basis of span($\{v_1, \ldots, v_m\}$), cf. Corollary 2.9 (Basisauswahlsatz).

Definition 1. An $m \times n$ -matrix $A = (a_{i,j})_{1 \leq i \leq m, 1 \leq j \leq n}$ (over K) is a rectangular array of elements of K. Its elements $a_{i,j} \in K$ are called *entries* of A.

Notation: $K^{m \times n}$ denotes the set of all $m \times n$ -matrices over K. We write

$$A = (a_{i,j})_{1 \le i \le m, \ 1 \le j \le n} = (a_{i,j})_{i,j} \in K^{m \times n}.$$

Henceforth we identify K^m with $K^{m\times 1}$. We put ("transposed")

$$(x_1, \dots, x_m)^{\top} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} \in K^m$$

and

$$\begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}^{\top} = (x_1, \dots, x_m) \in K^{1 \times m}$$

for $x_1, \ldots, x_m \in K$.

Definition 2.

- (i) For $a_1, \ldots, a_n \in K^m$, $A = (a_1, \ldots, a_n) \in K^{m \times n}$, and $1 \leq j \leq n$ we call a_j the j-th column of A.
- (ii) For $a_1, \ldots, a_m \in K^n$,

$$A = \begin{pmatrix} a_1^\top \\ \vdots \\ a_m^\top \end{pmatrix} \in K^{m \times n},\tag{1}$$

and $1 \leq i \leq m$ we call $a_i^{\top} \in K^{1 \times n}$ the *i-th row* of A.

3.1 Row Space and Rank

Definition 3.

(i) For A according to (1) the row space of A is given by

$$RS(A) = span(\{a_1, \dots, a_m\}) \subseteq K^n.$$

The rank of A is given by rank $A = \dim RS(A)$.

¹Elements of K^m are "column vectors".

(ii) $A \in K^{m \times n}$ is in row echelon form if there exists $r \in \{0, \dots, \min(m, n)\}$ such that:

- (a) $\forall 1 \leq i \leq r \ \exists 1 \leq j \leq n \colon a_{i,j} \neq 0$,
- (b) $\forall r < i \le m \ \forall 1 \le j \le n : a_{i,j} = 0$,
- (c) if $r \ge 2$, we have $j_1 < \cdots < j_r$ for $j_i = \min\{j : a_{i,j} \ne 0\}$.

The leading non-zero entries a_{i,j_i} for $i \in \{1, ..., r\}$ are called *pivots*.

Example 4. Consider the matrix $A \in \mathbb{R}^{4 \times 6}$ given by

$$A = \begin{pmatrix} 0 & 2 & -3 & 0 & 1 & 0 \\ 0 & 0 & -1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then, A is in row echolon form with m = 4, n = 6, r = 3, $j_1 = 2$, $j_2 = 3$, and $j_3 = 6$, see Definition 3.(ii). Moreover, the pivots are $a_{1,2} = 2$, $a_{2,3} = -1$, and $a_{3,6} = 3$.

Remark 5. Let A be given by (1) and in row echolon form, and let r be according to Definition 3.(ii). Then we have $r = \operatorname{rank} A$. Moreover, if r > 0, we have $\operatorname{RS}(A) = \operatorname{span}(\{a_1, \ldots, a_r\})$, and (a_1, \ldots, a_r) is a basis of the subspace $\operatorname{RS}(A)$.

Definition 6. There are three types of elementary row operations, which can be applied to $A \in K^{m \times n}$ with $\lambda \in K \setminus \{0\}$:

- (i) multiplication of a row of A by λ (type I),
- (ii) addition of the λ -fold of a row of A to another row of A (type II),
- (iii) switching two rows within A (type III).

Lemma 7. Let $\tilde{A} \in K^{m \times n}$ result from finitely many elementary row operations applied to $A \in K^{m \times n}$. Then we have $RS(\tilde{A}) = RS(A)$.

Proof. For a single elementary row operation we clearly have $RS(\tilde{A}) \subseteq RS(A)$. Since every elementary row operation is reversible using an elementary row operation of the same type, we also obtain $RS(A) \subseteq RS(\tilde{A})$. The general case follows by induction. \square

Proposition 8. Every matrix $A \in K^{m \times n}$ can be transformed into row echelon form by using fintely many elementary row operations.

Proof. Gaussian elimination for $A = (a_1, \ldots, a_n) = (a_{i,j})_{i,j} \in K^{m \times n}$:

- 1.) If A = 0 or m = 1: STOP.
- 2.) Let $j^* = \min\{j \in \{1, \dots, n\} : a_j \neq 0\}$.
- 3.) Choose $i \in \{1, ..., m\}$ such that $a_{i,j^*} \neq 0$.
- 4.) If $i \neq 1$: Switch rows 1 and i.

- 5.) For i = 2, ..., m: Subtract the $a_{i,j^*}/a_{1,j^*}$ -fold of row 1 from row i.
- 6.) If $j^* = n$: STOP.
- 7.) Remove row 1 and columns $1, \ldots, j^*$. Take the resulting submatrix and continue with step 1.).

By induction, this algorithm transforms every $A \in K^{m \times n}$ into row echelon form. \square

Example 9. For m = n = 3 we consider $v_1, v_2, v_3 \in \mathbb{R}^3$ given by

$$v_1 = (0, 0, 1)^{\mathsf{T}}, \quad v_2 = (0, 1, 0)^{\mathsf{T}}, \quad v_3 = (0, 1, 1)^{\mathsf{T}}.$$

Gaussian elimination for A consisting of the rows $v_1^{\top}, v_2^{\top}, v_3^{\top}$ yields²

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{(I) \leftrightarrow (II)} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{(III') = (III) - (I)} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & 1 \end{pmatrix} \xrightarrow{(II') = (II) - (I)} \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence we get rank A = 2 and

$$\operatorname{span}(\{v_1, v_2, v_3\}) = \operatorname{span}(\{(0, 1, 0)^\top, (0, 0, 1)^\top)\}) = \{x \in \mathbb{R}^3 \colon x_1 = 0\}.$$

Moreover, $((0,1,0)^{\mathsf{T}},(0,0,1)^{\mathsf{T}})$ is a basis of this subspace.

3.2 Matrix Multiplication

Remark 10. $K^{m \times n}$ is a K-vector space with the coordinatewise operations from Example 1.2. We have dim $K^{m \times n} = \dim K^{m \cdot n} = m \cdot n$, see Example 2.13.

Definition 11. The matrix product $C = (c_{i,j})_{i,j} \in K^{m \times p}$ of two matrices $A = (a_{i,\ell})_{i,\ell} \in K^{m \times n}$ and $B = (b_{\ell,j})_{\ell,j} \in K^{n \times p}$ is defined by

$$c_{i,j} = \sum_{\ell=1}^{n} a_{i,\ell} \cdot b_{\ell,j}, \qquad 1 \le i \le m, \ 1 \le j \le p.$$

²The elementary row operation, e.g., of type II where the "new" third row results from the sum of the previous third row and the λ -fold of the first row is indicated by "(III')=(III)+ λ ·(I)".

The matrix product can be illustrated by the following scheme:

Notation: $C = A \cdot B$ or C = AB.

Convention: \cdot has precedence over +.

Remark 12. The matrix multiplication is associative, see Exercise 4.2. However, it is neither commutative nor does AB = 0 imply A = 0 or B = 0, see, e.g.,

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Remark 13. Let

$$A = \begin{pmatrix} a_1^\top \\ \vdots \\ a_m^\top \end{pmatrix} \in K^{m \times n}, \qquad B = (b_1, \dots, b_p) \in K^{n \times p}.$$

Then we have

$$A \cdot B = (A \cdot b_1, \dots, A \cdot b_p) = \begin{pmatrix} a_1^\top \cdot B \\ \vdots \\ a_m^\top \cdot B \end{pmatrix}.$$

Special cases:

(i) For $A = (a_1, ..., a_n) = (a_{i,j})_{i,j} \in K^{m \times n}$ and $x = (x_1, ..., x_n)^{\top} \in K^n$ we have

$$Ax = \begin{pmatrix} \sum_{\ell=1}^{n} a_{1,\ell} \cdot x_{\ell} \\ \vdots \\ \sum_{\ell=1}^{n} a_{m,\ell} \cdot x_{\ell} \end{pmatrix} = \sum_{\ell=1}^{n} x_{\ell} \cdot a_{\ell} \in K^{m}.$$

(ii) For $y \in K^n$ and

$$B = \begin{pmatrix} b_1^\top \\ \vdots \\ b_n^\top \end{pmatrix} = (b_{i,j})_{i,j} \in K^{n \times p}$$

we have

$$y^{\top} \cdot B = \left(\sum_{\ell=1}^{n} y_{\ell} \cdot b_{\ell,1}, \dots, \sum_{\ell=1}^{n} y_{\ell} \cdot b_{\ell,p}\right) = \sum_{\ell=1}^{n} y_{\ell} \cdot b_{\ell}^{\top} \in K^{1 \times p}.$$

ar Mads 22

Definition 14. $E_n = (e_{i,j})_{i,j} \in K^{n \times n}$ given by

$$e_{i,j} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{else,} \end{cases}$$

is called $n \times n$ -identity matrix.

Lemma 15. For $A, A_1, A_2 \in K^{m \times n}$, $B, B_1, B_2 \in K^{n \times p}$, and $\lambda \in K$ we have³

- (i) $(A_1 + A_2) \cdot B = A_1 \cdot B + A_2 \cdot B$,
- (ii) $A \cdot (B_1 + B_2) = A \cdot B_1 + A \cdot B_2$,
- (iii) $(\lambda \cdot A) \cdot B = A \cdot (\lambda \cdot B) = \lambda \cdot (A \cdot B),$
- (iv) $A \cdot E_n = A$ and $E_n \cdot B = B$.

Proof. Exercise.

Notation: Due to Remark 12 and Lemma 15.(iii) we may omit brackets in the context of scalar and matrix multiplication.

4 Linear Maps

In the sequel let U, V, and W be K-vector spaces.

Definition 1. A map $F: V \to W$ is linear if

- (i) $\forall v, w \in V : F(v+w) = F(v) + F(w)$,
- (ii) $\forall v \in V \ \forall \lambda \in K \colon F(\lambda v) = \lambda F(v)$.

F is a linear isomorphism if F is linear and bijective. Two vector spaces V and W are isomorphic if there exists a linear isomorphism from V to W.

Example 2.

(i) For $A \in K^{m \times n}$ let $\mathcal{F}_A \colon K^n \to K^m$ be given by

$$\mathcal{F}_A(v) = Av, \qquad v \in K^n.$$

According to Lemma 3.15.(ii) and (iii) we have

$$\mathcal{F}_A(v+w) = A(v+w) = Av + Aw = \mathcal{F}_A(v) + \mathcal{F}_A(w),$$

 $\mathcal{F}_A(\lambda v) = A(\lambda v) = \lambda Av = \lambda \mathcal{F}_A(v)$

for all $v, w \in K^n$ and $\lambda \in K$. Hence \mathcal{F}_A is a linear map from K^n to K^m .

 $[\]overline{{}^{3}(K^{n\times n},+,\cdot)}$ is a ring with unity E_{n} .

23

(ii) For $a, b \in \mathbb{R}$ with a < b let $F : C([a, b]) \to \mathbb{R}$ be given by

$$F(v) = \int_a^b v(x) dx, \qquad v \in C([a, b]).$$

Note that

$$F(v+w) = \int_a^b v(x) + w(x) dx = \int_a^b v(x) dx + \int_a^b w(x) dx = F(v) + F(w),$$
$$F(\lambda v) = \int_a^b \lambda \cdot v(x) dx = \lambda \cdot \int_a^b v(x) dx = \lambda F(v)$$

for all $v, w \in C([a, b])$ and $\lambda \in \mathbb{R}$, see Analysis I. Hence F is a linear map from C([a, b]) to \mathbb{R} .

(iii) For $x \in [0,1]$ let $F: \mathbb{R}^{[0,1]} \to \mathbb{R}$ be given by

$$F(\varphi) = \varphi(x), \qquad \varphi \in \mathbb{R}^{[0,1]}.$$

Note that

$$F(\varphi + \psi) = (\varphi + \psi)(x) = \varphi(x) + \psi(x) = F(\varphi) + F(\psi),$$

$$F(\lambda \varphi) = (\lambda \varphi)(x) = \lambda \cdot \varphi(x) = \lambda F(\varphi)$$

for all $\varphi, \psi \in \mathbb{R}^{[0,1]}$ and $\lambda \in \mathbb{R}$, see Definition I.2.6. Hence F is a linear map from $\mathbb{R}^{[0,1]}$ to \mathbb{R} . It is called function evaluation at x.

Lemma 3. Let $F: V \to W$ be linear. Then we have:

- (i) F(0) = 0.
- (ii) F is injective if and only if $F(v) \neq 0$ for all $v \in V \setminus \{0\}$.
- (iii) $F(\sum_{i=1}^n \lambda_i v_i) = \sum_{i=1}^n \lambda_i F(v_i)$ for $\lambda_1, \dots, \lambda_n \in K$ and $v_1, \dots, v_n \in V$.
- (iv) If (v_1, \ldots, v_n) is linearly dependent in V, then $(F(v_i), \ldots, F(v_n))$ is also linearly dependent in W.
- (v) If V' is a subspace of V, then F(V') is a subspace of W.
- (vi) If W' is a subspace of W, then $F^{-1}(W')$ is a subspace of V.
- (vii) If V is finite-dimensional, then F(V) is also finite-dimensional and dim $F(V) \leq \dim V$.

Proof. ad (i): $F(0) = F(0 \cdot 0) = 0 \cdot F(0) = 0$.

ad (ii): For $v, w \in V$ we have F(v - w) = F(v) - F(w) and hence

$$F(v - w) = 0 \iff F(v) = F(w).$$

Thus F is injective if and only if

$$F(v-w) = 0 \Leftrightarrow F(v) = F(w) \Leftrightarrow v-w = 0.$$

ad (iii): Induction.

ad (iv): There exists $i \in \{1, ..., n\}$ such that

$$v_i = \sum_{j \in \{1, \dots, n\} \setminus \{i\}} \lambda_j v_j$$

for $\lambda_i \in K$, see Lemma 2.3. According to part (iii) we obtain

$$F(v_i) = \sum_{j \in \{1,\dots,n\} \setminus \{i\}} \lambda_j F(v_j).$$

According to Lemma 2.3 the family $(F(v_i), \ldots, F(v_n))$ is linearly dependent in W. Cf. Exercise 5.1.

ad (v): We have $0 = F(0) \in F(V')$. Moreover, for $v, w \in V'$ and $\lambda \in K$ we have $v + w \in V'$ and $\lambda v \in V'$. Hence we get $F(v) + F(w) = F(v + w) \in F(V')$ and $\lambda F(v) = F(\lambda v) \in F(V')$. Cf. Exercise 5.1.

ad (vi): We have $F(0) = 0 \in W'$. Moreover, for $v, w \in V$ with $F(v), F(w) \in W'$ and $\lambda \in K$ we have $F(v) + F(w) \in W'$ and $\lambda F(v) \in W'$. Hence we get $F(v + w) = F(v) + F(w) \in W'$ and $F(\lambda v) = \lambda F(v) \in W'$.

ad (vii): Let (v_1, \ldots, v_n) be a basis of V. Then $(F(v_1), \ldots, F(v_n))$ is a generating system of F(V) according to part (iii). Apply Corollary 2.9 (Basisauswahlsatz). \square

Remark 4. Let $F: V \to W$.

(i) F is linear if and only if $F(\lambda v + w) = \lambda F(v) + F(w)$ for all $v, w \in V$ and $\lambda \in K$, cf. Exercise 5.2.

Proof: " \Rightarrow ": Let F be linear. We have

$$F(\lambda v + w) = F(\lambda v) + F(w) = \lambda F(v) + F(w)$$

for $v, w \in V$ and $\lambda \in K$.

"\(= \)": For $w \in V$ we have

$$F(w) = F(1 \cdot 0 + w) = 1 \cdot F(0) + F(w) = F(0) + F(w),$$

which shows F(0) = 0. Hence we have

$$F(v + w) = F(1 \cdot v + w) = 1 \cdot F(v) + F(w) = F(v) + F(w)$$

and

$$F(\lambda v) = F(\lambda v + 0) = \lambda F(v) + F(0) = \lambda F(v),$$

respectively, for $v, w \in V$ and $\lambda \in K$.

(ii) If F is a linear isomorphism, then F^{-1} is also linear. Proof: Let $w, w' \in W$ and $\lambda \in K$. For $v = F^{-1}(w)$ and $v' = F^{-1}(w')$ we have

$$F(\lambda v + v') = \lambda w + w'$$

and thus

$$\lambda F^{-1}(w) + F^{-1}(w') = \lambda v + v' = F^{-1}(\lambda w + w').$$

Proposition 5. Let $F: V \to W$ be linear and $n \in \mathbb{N}$.

- (i) If F is injective and (v_1, \ldots, v_n) is a linearly independent family in V, then $(F(v_1), \ldots, F(v_n))$ is a linear independent family in W.
- (ii) If F is surjective and (v_1, \ldots, v_n) is a generating set of V, then $(F(v_1), \ldots, F(v_n))$ is a generating set of W.
- (iii) If F is a linear isomorphism and V is finite-dimensional, then $\dim V = \dim W$.

Proof. ad (i): Let $\sum_{i=1}^{n} \lambda_i F(v_i) = 0$ for $\lambda_1, \ldots, \lambda_n \in K$. Then we have $F(\sum_{i=1}^{n} \lambda_i v_i) = 0$ and thus $\sum_{i=1}^{n} \lambda_i v_i = 0$ since F is injective, see Lemma 3.(ii). The linear independence of (v_1, \ldots, v_n) implies $\lambda_i = 0$ for all $i \in \{1, \ldots, n\}$.

ad (ii): Let $w \in W$. By assumption, there exist $v \in V$ and $\lambda_1, \ldots, \lambda_n \in K$ such that F(v) = w and $v = \sum_{i=1}^n \lambda_i v_i$. Then we have $w = \sum_{i=1}^n \lambda_i F(v_i)$.

ad (iii): Let (v_1, \ldots, v_n) be a basis of V. According to (i) and (ii) the family $(F(v_1), \ldots, F(v_n))$ is a basis of W.

4.1 Construction of Linear Maps

In the sequel let $n, m \in \mathbb{N}$ and $\mathcal{A} = (v_1, \dots, v_n)$ be a basis of V.

Lemma 6. For linear maps $F, G: V \to W$ we have

$$F = G \iff \forall i \in \{1, \dots, n\} \colon F(v_i) = G(v_i).$$

Proof. " \Rightarrow ": Obvious.

" \Leftarrow ": Let $v \in V$. Since \mathcal{A} is a basis of V and thus a generating set of V, there exist $\lambda_1, \ldots, \lambda_n \in K$ such that $v = \sum_{i=1}^n \lambda_i v_i$. By using Lemma 3.(iii) we obtain

$$F(v) = F\left(\sum_{i=1}^{n} \lambda_i v_i\right) = \sum_{i=1}^{n} \lambda_i F(v_i) = \sum_{i=1}^{n} \lambda_i G(v_i) = G\left(\sum_{i=1}^{n} \lambda_i v_i\right) = G(v). \quad \Box$$

Proposition 7. Let (w_1, \ldots, w_n) be a family in W. Then there exists a unique linear map $F: V \to W$ such that

$$\forall i \in \{1, \dots, n\} \colon F(v_i) = w_i.$$

Moreover, F is injective if and only if (w_1, \ldots, w_n) is linearly independent, and F is surjective if and only if (w_1, \ldots, w_n) is a generating set of W.

Proof. "Uniqueness": See Lemma 6.

"Existence": For $v \in V$ there exist unique $\lambda_1, \ldots, \lambda_n \in K$ such that $v = \sum_{i=1}^n \lambda_i v_i$. We define $F: V \to W$ by

$$F(v) = \sum_{i=1}^{n} \lambda_i w_i.$$

For $w \in V$ there exist unique $\mu_1, \ldots, \mu_n \in K$ such that $w = \sum_{i=1}^n \mu_i v_i$ and hence $v + w = \sum_{i=1}^n (\lambda_i + \mu_i) v_i$. This shows

$$F(v+w) = \sum_{i=1}^{n} (\lambda_i + \mu_i) w_i = \sum_{i=1}^{n} \lambda_i w_i + \sum_{i=1}^{n} \mu_i w_i = F(v) + F(w).$$

Moreover, for $\lambda \in K$ we have $\lambda v = \sum_{i=1}^{n} (\lambda \cdot \lambda_i) v_i$ and hence

$$F(\lambda v) = \sum_{i=1}^{n} (\lambda \cdot \lambda_i) w_i = \lambda \cdot \sum_{i=1}^{n} \lambda_i w_i = \lambda F(v).$$

This shows that F is linear.

"Injectivity": By Lemma 3.(ii), F is injective if and only if

$$F(v) = 0 \Rightarrow v = 0.$$

Finally, note that $F(v) = \sum_{i=1}^{n} \lambda_i w_i$, $v = \sum_{i=1}^{n} \lambda_i v_i$, and

$$v = 0 \Leftrightarrow (\forall i \in \{1, \dots, n\} : \lambda_i = 0),$$

since A is a basis and thus linearly independent.

"Surjectivity": Obvious.

Example 8. Let $V = W = \mathbb{R}^2$.

(i) For $\alpha \in \mathbb{R}$ let

$$v_{1} = (\cos(0), \sin(0))^{\top} = (1, 0)^{\top},$$

$$v_{2} = (\cos(\pi/2), \sin(\pi/2))^{\top} = (0, 1)^{\top},$$

$$w_{1} = (\cos(\alpha), \sin(\alpha))^{\top},$$

$$w_{2} = (\cos(\pi/2 + \alpha), \sin(\pi/2 + \alpha))^{\top} = (-\sin(\alpha), \cos(\alpha))^{\top}.$$

The unique linear map $F: \mathbb{R}^2 \to \mathbb{R}^2$ satisfying $F(v_1) = w_1$ and $F(v_2) = w_2$ represents a rotation of α (counterclockwise).

(ii) Let $v_1 = (1,1)^{\top}$ and $v_2 = (-1,1)^{\top}$. The unique linear map $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ satisfying $F(v_1) = v_1$ and $F(v_2) = -v_2$ represents a reflection through the axis span($\{v_1\}$).

Corollary 9. Let V and W be finite-dimensional. V and W are isomorphic if and only if dim $V = \dim W$.

Proof. " \Rightarrow ": See Proposition 5.(iii).

" \Leftarrow ": Choose bases (v_1, \ldots, v_n) and (w_1, \ldots, w_n) of V and W, respectively, and apply Proposition 7.

4.2 Coordinate Systems

Example 10. Consider the standard basis $\mathcal{E} = (e_1, \dots, e_n)$ of \mathbb{R}^n , see Example 2.7, and let $\mathcal{A} = (v_1, \dots, v_n)$ be a basis of the \mathbb{R} -vector space V. According to Proposition 7 we define a linear isomorphism $\Phi_{\mathcal{A}} \colon \mathbb{R}^n \to V$ by

$$\Phi_{\mathcal{A}}(e_i) = v_i.$$

For $(\lambda_1, \dots, \lambda_n)^{\top} \in \mathbb{R}^n$ we have

$$\Phi_{\mathcal{A}}\left((\lambda_1,\ldots,\lambda_n)^{\top}\right) = \Phi_{\mathcal{A}}\left(\sum_{i=1}^n \lambda_i e_i\right) = \sum_{i=1}^n \lambda_i v_i.$$

Definition 11. $\Phi_{\mathcal{A}}$ from Example 10 is the *coordinate system* in V that is induced by \mathcal{A} , and $\Phi_{\mathcal{A}}^{-1}(v)$ is the *family of coordinates* of $v \in V$ w.r.t. \mathcal{A} .

Corollary 12. Every finite-dimensional K-vector space $V \neq \{0\}$ is isomorphic to K^n for $n = \dim V$.

Example 13. Consider the \mathbb{R} -vector space V of polynomial functions where the degree is at most 3, i.e.,

$$V = \operatorname{span}(\{v_0, \dots, v_3\}) \subseteq \mathbb{R}^{\mathbb{R}}$$

with $v_i(x) = x^i$ for $x \in \mathbb{R}$ and $i \in \{0, 1, 2, 3\}$, see Example 1.19. Moreover, the family $\mathcal{A} = (v_0, \dots, v_3)$ is linearly independent, see Example 2.4.(ii) for (v_0, v_1) . Hence \mathcal{A} is a basis and dim V = 4. By Corollary 12, V is isomorphic to \mathbb{R}^4 . The polynomial function $v \in V$ given by

$$v(x) = 4x^3 - 2x^2 + x - 7,$$
 $x \in \mathbb{R},$

satisfies $v = -7v_0 + 1v_1 - 2v_2 + 4v_3$ such that the family of coordinates of v w.r.t. the basis \mathcal{A} is given by $\Phi_{\mathcal{A}}^{-1}(v) = (-7, 1, -2, 4)^{\top} \in \mathbb{R}^4$.

4.3 Kernel and Image

In the sequel let $F: V \to W$ be linear.

Definition 14. The *kernel* of F is defined by

$$\ker F = F^{-1}(\{0\}) = \{v \in V : F(v) = 0\}.$$

The image of F is defined by

$$\operatorname{im} F = F(V) = \{ F(v) \colon v \in V \}.$$

Remark 15.

(i) $\ker F$ and $\operatorname{im} F$ are subspaces of V and W, respectively, see Lemma 3.(v)-(vi).

(ii) F is injective if and only if $\ker F = \{0\}$, see Lemma 3.(ii).

Definition 16. If im F is finite-dimensional, the rank of F is given by rank $F = \dim \operatorname{im} F$.

Example 17. For $V = W = \mathbb{R}^2$ and $A = (a_1, a_2) \in \mathbb{R}^{2 \times 2}$ with $a_1 = (2, 1)^{\top}$ and $a_2 = (-2, -1)^{\top}$ let $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ be given by F(x) = Ax for $x = (x_1, x_2)^{\top} \in \mathbb{R}^2$. Then we have

$$Ax = x_1 a_1 + x_2 a_2 = (x_1 - x_2) a_1,$$

see Remark 3.13, such that im $F = \text{span}(\{a_1\})$, which implies rank F = 1, and $\ker F = \text{span}(\{(1,1)^{\top}\})$.

Notation: For $u \in V$ and $V_0 \subseteq V$ let

$$u + V_0 = \{u + v_0 : v_0 \in V_0\}.$$

It describes a translation of V_0 in direction u.

Definition 18. $X \subseteq V$ is an affine subspace of V if $X = \emptyset$ or if there exists a subspace V_0 of V and $u \in V$ such that $X = u + V_0$. If V_0 is finite-dimensional, the dimension of X is defined by dim $X = \dim V_0$ and X is called finite-dimensional. Otherwise X is called infinite-dimensional.

Definition 19. An affine subspace X of \mathbb{R}^n is a *(straight) line* if dim X=1. An affine subspace X of \mathbb{R}^n is a *plane* if dim X=2.

Proposition 20. Let $w \in W$. Then $F^{-1}(\{w\})$ is an affine subspace of V. If $w \in \operatorname{im} F$ we have

$$F^{-1}(\{w\}) = u + \ker F$$

for every $u \in F^{-1}(\{w\})$.

Proof. If $w \notin \text{im } F$, we have $F^{-1}(\{w\}) = \emptyset$. Let $w \in \text{im } F$ and $u \in F^{-1}(\{w\})$, i.e., F(u) = w. For $v \in V$ we have v = u + (v - u) and F(v) = F(u) + F(v - u). Hence we get

$$v \in F^{-1}(\{w\}) \iff u - v \in \ker F.$$

Example 21. Consider the situation from Example 17. For every $\lambda \in \mathbb{R}$ we have $\lambda a_1 \in \operatorname{im} F$ and

$$F^{-1}(\{\lambda a_1\}) = \{v \in V : F(v) = \lambda a_1\} = \lambda \cdot (1,0)^{\top} + \{\mu \cdot (1,1)^{\top} : \mu \in \mathbb{R}\}\$$
$$= \{\lambda \cdot (1,0)^{\top} + \mu \cdot (1,1)^{\top} : \mu \in \mathbb{R}\}.$$

Proposition 22. Let $k, p \in \mathbb{N}_0$, let (v_1, \ldots, v_k) be a basis of ker F, and let (w_1, \ldots, w_p) be a basis of im F. Moreover, let $v_{k+j} \in F^{-1}(\{w_j\})$ for $j \in \{1, \ldots, p\}$. Then (v_1, \ldots, v_{k+p}) is a basis of V.

Proof. If p = 0, we have im $F = \{0\}$. This shows F = 0 and $\ker F = V$. In the following let $p \in \mathbb{N}$.

We show that the family (v_1, \ldots, v_{k+p}) is linearly independent: Let $\sum_{i=1}^{k+p} \lambda_i v_i = 0$ for $\lambda_1, \ldots, \lambda_{k+p} \in K$. Applying F shows

$$0 = F(0) = F\left(\sum_{i=1}^{k+p} \lambda_i v_i\right) = \sum_{i=1}^{k+p} \lambda_i F(v_i) = \sum_{i=1}^{p} \lambda_{k+i} w_i$$

and thus $\lambda_{k+1} = \ldots = \lambda_p = 0$ since (w_1, \ldots, w_p) is a basis of im F. If $k \in \mathbb{N}$, we have $\sum_{i=1}^k \lambda_i v_i = 0$, which implies $\lambda_1 = \ldots = \lambda_k = 0$ since (v_1, \ldots, v_k) is a basis of ker F. Let $v \in V$. We show $v \in \text{span}(\{v_1, \ldots, v_{k+p}\})$: There exists $w = \sum_{i=1}^p \lambda_i w_i$ such that F(v) = w. Proposition 20 shows

$$v \in F^{-1}(\{w\}) = u + \text{span}(\{v_1, \dots, v_k\})$$

with
$$u = \sum_{i=1}^{p} \lambda_i v_{k+i} \in \text{span}(\{v_{k+1}, \dots, v_{k+p}\}).$$

Example 23. Consider the situation of Example 17. Then $((1,1)^{\top},(1,0)^{\top})$ is a basis of \mathbb{R}^2 according to Proposition 22.

Corollary 24 (Rank-Nullity Theorem). Let V be finite-dimensional. Then we have

$$\dim V = \dim \ker F + \dim \operatorname{im} F$$
.

Corollary 25. Let V and W be finite-dimensional with dim $V = \dim W$. Then, F is injective if and only if F is surjective.

Proof. " \Rightarrow ": Let F be injective. Corollary 24 shows dim $W = \dim V = 0 + \dim \operatorname{im} F$ and thus $W = \operatorname{im} F$ by Corollary 2.15.

"\(\neq\)": Let F be surjective. Corollary 24 shows dim ker F=0 and thus ker $F=\{0\}$.

Notation: Let L(V, W) be the set of all linear maps from V to W.

Proposition 26. For $F \in L(V, W)$ and $G \in L(U, V)$ we have $F \circ G \in L(U, W)$.

Proof. See Exercise 5.4 a).
$$\Box$$

5 Transformation Matrices of Linear Maps

In the sequel let V and W K-vector spaces with $\dim V = n \in \mathbb{N}$ and $\dim W = m \in \mathbb{N}$. Moreover, let $\mathcal{A} = (v_1, \ldots, v_n)$ and $\mathcal{B} = (w_1, \ldots, w_m)$ be bases of V and W, respectively, and let $\mathcal{E} = (e_1, \ldots, e_n)$ and $\tilde{\mathcal{E}} = (\tilde{e}_1, \ldots, \tilde{e}_m)$ be the standard bases of K^n and K^m , respectively, see Example 2.7.

Remark 1. For every linear map $F: V \to W$ there exists a unique matrix $A = (a_{i,j})_{i,j} \in K^{m \times n}$ such that

$$\forall 1 \le j \le n \colon F(v_j) = \sum_{i=1}^{m} a_{i,j} w_i, \tag{1}$$

see Proposition 2.8.(iii). For $1 \le j \le n$ we have

$$\begin{pmatrix} a_{1,j} \\ \vdots \\ a_{m,j} \end{pmatrix} = \Phi_{\mathcal{B}}^{-1}(F(v_j)).$$

Definition 2. The matrix $A \in K^{m \times n}$ from Remark 1 is denoted by $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F)$ and is called transformation matrix of $F \in L(V, W)$ w.r.t. the bases \mathcal{A} and \mathcal{B} .

Example 3. Consider the situation from Example 4.8.(ii). Since $e_1 = 1/2 \cdot (v_1 - v_2)$ and $e_2 = 1/2 \cdot (v_1 + v_2)$, we have

$$F(e_1) = 1/2 \cdot (v_1 + v_2) = e_2,$$

$$F(e_2) = 1/2 \cdot (v_1 - v_2) = e_1.$$

Hence we get

$$\mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(F) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

For $\mathcal{A} = (v_1, v_2)$ we have

$$\mathcal{M}_{\mathcal{A}}^{\mathcal{A}}(F) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Proposition 4. For $F \in L(V, W)$ and $v \in V$ we have

$$F(v) = \Phi_{\mathcal{B}} \big(\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) \cdot \Phi_{\mathcal{A}}^{-1}(v) \big).$$

Commutative diagram:

$$\begin{array}{ccc}
V & \xrightarrow{F} & W \\
 & & & \uparrow^{\Phi_{\mathcal{B}}} \\
K^{n} & \xrightarrow[x \mapsto \mathcal{M}_{\mathcal{B}}^{A}(F) \cdot x]{} & K^{m}
\end{array}$$

Proof. The map $G: V \to W$ given by

$$G(v) = \Phi_{\mathcal{B}} (\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) \cdot \Phi_{\mathcal{A}}^{-1}(v))$$

is linear due to Example 4.2.(i), Remark 4.4.(ii), and Proposition 4.26. It remains to show that $F(v_j) = G(v_j)$ for all $1 \le j \le n$, see Lemma 4.6. Indeed we have

$$G(v_j) = \Phi_{\mathcal{B}} \left(\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) \cdot e_j \right) = \Phi_{\mathcal{B}} \left(\Phi_{\mathcal{B}}^{-1}(F(v_j)) \right) = F(v_j).$$

Remark 5.

(i) For $A, B \in K^{m \times n}$ we have

$$(\forall x \in K^n : Ax = Bx) \Rightarrow A = B.$$

(ii) For every $F \in L(V, W)$ there exists a unique matrix $A \in K^{m \times n}$ such that $F = \Phi_{\mathcal{B}} \circ \mathcal{F}_A \circ \Phi_A^{-1}$.

In the sequel let U be a finite-dimensional K-vector space with dim $U = p \in \mathbb{N}$ and basis $\mathcal{C} = (u_1, \dots, u_p)$.

Proposition 6. For $F \in L(V, W)$ and $G \in L(W, U)$ we have

$$\mathcal{M}_{\mathcal{C}}^{\mathcal{A}}(G \circ F) = \mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(G) \cdot \mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F).$$

Proof. Let $v \in V$. Remark 3.12 and Proposition 4 show

$$G \circ F(v) = G\left(\Phi_{\mathcal{B}}(\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) \cdot \Phi_{\mathcal{A}}^{-1}(v))\right)$$

$$= \Phi_{\mathcal{C}}\left(\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(G) \cdot \Phi_{\mathcal{B}}^{-1}\left(\Phi_{\mathcal{B}}\left(\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) \cdot \Phi_{\mathcal{A}}^{-1}(v)\right)\right)\right)$$

$$= \Phi_{\mathcal{C}}\left(\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(G) \cdot \mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) \cdot \Phi_{\mathcal{A}}^{-1}(v)\right).$$

Apply Remark 5.(ii).

6 Change of Basis

In the sequel let $n, m \in \mathbb{N}$ and K be a field. Moreover, let $V \neq \{0\}$ and $W \neq \{0\}$ be finite-dimensional K-vector spaces.

6.1 Invertible Matrices

Definition 1. $A \in K^{n \times n}$ is *invertible* if there exists $A' \in K^{n \times n}$ such that $A'A = E_n$. Notation: $Gl(n, K) = \{A \in K^{n \times n} : A \text{ invertible}\}.$

Lemma 2. For $A = (a_1, \ldots, a_n) \in K^{n \times n}$ the following statements are equivalent:

- (i) A is invertible.
- (ii) $\mathcal{F}_A \colon K^n \to K^n$ is bijective.
- (iii) (a_1, \ldots, a_n) is a basis of K^n .

Proof. Put $F = \mathcal{F}_A$.

"(i) \Rightarrow (ii)": Let $x \in K^n$ such that F(x) = 0, and let $A' \in K^{n \times n}$ such that $A'A = E_n$. Then we have

$$x = E_n x = A' A x = A' 0 = 0.$$

Hence F is injective and thus bijective due to Corollary 4.25.

"(ii) \Rightarrow (i)": Remark 4.4.(ii) shows $F^{-1} \in L(K^n, K^n)$. According to Exercise 5.3 a) there exists $A' \in K^{n \times n}$ such that

$$\forall x \in K^n \colon F^{-1}(x) = A'x.$$

This yields

$$E_n x = x = F^{-1}(F(x)) = A'Ax$$

for all $x \in K^n$. Remark 5.5.(i) shows $A'A = E_n$.

"(ii)
$$\Leftrightarrow$$
 (iii)": See Proposition 4.7.

Proposition 3. Let $F: V \to W$ be linear. The following statements are equivalent:

- (i) F is a linear isomorphism.
- (ii) For all bases \mathcal{A} and \mathcal{B} of V and W, respectively, the matrix $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F)$ is invertible.
- (iii) There exist bases \mathcal{A} and \mathcal{B} of V and W, respectively, such that the matrix $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F)$ is invertible.

Proof. "(i) \Rightarrow (ii)": Due to Proposition 5.4 we have

$$\mathcal{F}_{\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F)} = \Phi_{\mathcal{B}}^{-1} \circ F \circ \Phi_{\mathcal{A}}.$$

In particular, $\mathcal{F}_{\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F)}$ is bijective since it is the composition of bijective maps. Apply Lemma 2.

- "(ii) \Rightarrow (iii)": Obvious.
- "(iii) \Rightarrow (i)": Due to Proposition 5.4 we have

$$F = \Phi_{\mathcal{B}} \circ \mathcal{F}_{\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F)} \circ \Phi_{\mathcal{A}}^{-1},$$

and $\mathcal{F}_{\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F)}$ is bijective according to Lemma 2. Hence F is bijective since it is the composition of bijective maps.

Proposition 4. $(Gl(n, K), \cdot)$ is a group with neutral element E_n .

Notation: A^{-1} is the inverse matrix of $A \in Gl(n, K)$ w.r.t. ..

Remark 5. For $A, B \in Gl(n, K)$ we have $A \cdot A^{-1} = E_n$, $(A^{-1})^{-1} = A$, and $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$, see Lemma I.1.7 and Lemma I.1.12.

Lemma 6. Let $F: V \to W$ be a linear isomorphism, and let \mathcal{A} and \mathcal{B} be bases of V and W, respectively. Then we have

$$\mathcal{M}_{\mathcal{A}}^{\mathcal{B}}(F^{-1}) = \left(\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F)\right)^{-1}.$$

Proof. Proposition 5.6 shows $\mathcal{M}_{\mathcal{A}}^{\mathcal{B}}(F^{-1}) \cdot \mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) = \mathcal{M}_{\mathcal{A}}^{\mathcal{A}}(\mathrm{id}_{V}) = E_{n}.$

6.2 Change of Basis Formula

Definition 7. For bases \mathcal{A} and \mathcal{B} of V the transformation matrix $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(\mathrm{id}_{V})$ is called *change-of-basis matrix* from the basis \mathcal{A} to the basis \mathcal{B} .

Notation: $\mathcal{T}_{\mathcal{B}}^{\mathcal{A}} = \mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(\mathrm{id}_{V}).$

Remark 8. Let $\mathcal{A} = (v_1, \ldots, v_n)$ and $\mathcal{B} = (u_1, \ldots, u_n)$ be bases of $V = K^n$. Put $A = (v_1, \ldots, v_n) \in K^{n \times n}$ and $B = (u_1, \ldots, u_n) \in K^{n \times n}$. For $x \in K^n$ we then obtain

$$\Phi_{\mathcal{A}}(x) = Ax, \qquad \Phi_{\mathcal{B}}(x) = Bx.$$

Lemma 2 ensures $A, B \in Gl(n, K)$ such that $\Phi_A^{-1}(y) = A^{-1}y$ and $\Phi_B^{-1}(y) = B^{-1}y$ for $y \in K^n$. Hence we have

$$\mathcal{T}_{\mathcal{B}}^{\mathcal{A}} = B^{-1}A, \qquad \mathcal{T}_{\mathcal{A}}^{\mathcal{B}} = A^{-1}B.$$

Example 9. For the basis $\mathcal{A} = ((1,1)^{\top}, (-1,1)^{\top})$ and the standard basis $\mathcal{B} = \mathcal{E} = (e_1, e_2)$ of $V = \mathbb{R}^2$ we have $B = B^{-1} = E_2$ such that

$$\mathcal{T}_{\mathcal{E}}^{\mathcal{A}} = A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

Since $e_1 = 1/2 \cdot (v_1 - v_2)$ and $e_2 = 1/2 \cdot (v_1 + v_2)$, we obtain

$$\mathcal{T}_{\mathcal{A}}^{\mathcal{E}} = \frac{1}{2} \cdot \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right) = \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right)^{-1}.$$

Cf. Example 5.3.

Proposition 10 (Change-of-basis formula). Let $\mathcal{A}, \mathcal{A}'$ be bases of V and let $\mathcal{B}, \mathcal{B}'$ be bases of W. For $F \in L(V, W)$ we have

$$\mathcal{M}_{\mathcal{B}'}^{\mathcal{A}'}(F) = \mathcal{T}_{\mathcal{B}'}^{\mathcal{B}} \cdot \mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) \cdot \left(\mathcal{T}_{\mathcal{A}'}^{\mathcal{A}}\right)^{-1}.$$

Proof. According to Proposition 5.6 we have $\mathcal{M}_{\mathcal{B}'}^{\mathcal{A}'}(F) = \mathcal{M}_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{id}_W) \cdot \mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) \cdot \mathcal{M}_{\mathcal{A}}^{\mathcal{A}'}(\mathrm{id}_V)$. Lemma 6 shows $\mathcal{M}_{\mathcal{A}}^{\mathcal{A}'}(\mathrm{id}_V) = \left(\mathcal{M}_{\mathcal{A}'}^{\mathcal{A}}(\mathrm{id}_V)\right)^{-1}$.

Example 11. Consider the situation from Example 5.3 and Example 9. Put $\mathcal{A} = \mathcal{B}$ and $\mathcal{A}' = \mathcal{B}' = \mathcal{E}$. Then we have

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(F) = \mathcal{T}_{\mathcal{E}}^{\mathcal{A}} \cdot \mathcal{M}_{\mathcal{A}}^{\mathcal{A}}(F) \cdot \left(\mathcal{T}_{\mathcal{E}}^{\mathcal{A}}\right)^{-1}$$
$$= \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Definition 12. Two matrices $A, B \in K^{m \times n}$ are equivalent if there exist $S \in Gl(m, K)$ and $T \in Gl(n, K)$ such that $B = S \cdot A \cdot T^{-1}$.

Remark 13. $A, B \in K^{m \times n}$ are equivalent if and only if there exist bases $\mathcal{A}, \mathcal{A}'$ of K^n , bases $\mathcal{B}, \mathcal{B}'$ of K^m , and a linear map $F \colon K^n \to K^m$ with $\mathcal{M}^{\mathcal{A}}_{\mathcal{B}'}(F) = A$ and $\mathcal{M}^{\mathcal{A}'}_{\mathcal{B}'}(F) = B$.

6.3 Row Rank and Column Rank

Definition 14. For $A = (a_{i,j})_{1 \le i \le m, 1 \le j \le n} \in K^{m \times n}$ the matrix

$$A^{\top} = (a_{i,i})_{1 \le i \le n, 1 \le j \le m} \in K^{n \times m}$$

is called the $transposed\ matrix\ of\ A.$

Lemma 15.

- (i) For $A \in K^{m \times n}$ we have $(A^{\top})^{\top} = A$.
- (ii) For $A \in K^{m \times n}$ and $B \in K^{n \times p}$ we have $(AB)^{\top} = B^{\top}A^{\top}$.
- (iii) For $A \in Gl(n, K)$ we have $A^{\top} \in Gl(n, K)$ and $(A^{\top})^{-1} = (A^{-1})^{\top}$.

Proof. ad (i): Obvious.

ad (ii): This is an immediate consequence of Definition 3.11 and Definition 14.

ad (iii): Using (ii) we get
$$(A^{-1})^{\top}A^{\top} = (AA^{-1})^{\top} = E_n^{\top} = E_n$$
.

Proposition 16. For $A \in K^{m \times n}$ we have⁴

$$\operatorname{rank} A = \operatorname{rank} A^{\top}$$
.

Moreover, $A \in K^{n \times n}$ is invertible if and only if rank A = n.

Corollary 17. Let \mathcal{A} and \mathcal{B} be bases of V and W, respectively. For $F \in L(V, W)$ we have

$$\operatorname{rank} F = \operatorname{rank} \mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F).$$

Corollary 18. Let $A, B \in K^{m \times n}$. The following statements are equivalent:

- (i) A and B are equivalent.
- (ii) $\operatorname{rank} A = \operatorname{rank} B$.

6.4 Elementary Matrices and Elementary Row Operations

Definition 19. For $i, j \in \{1, ..., m\}$ with $i \neq j$ and $\lambda \in K \setminus \{0\}$ the elementary matrices

$$S_i(\lambda) = (s_{k,\ell})_{k,\ell} \in K^{m \times m}, \qquad Q_i^j(\lambda) = (q_{k,\ell}) \in K^{m \times m}, \qquad P_i^j = (p_{k,\ell}) \in K^{m \times m}$$

 $^{^4}$ rank A^{\top} is called column rank of A.

are defined by

$$s_{k,\ell} = \begin{cases} \lambda, & \text{if } k = \ell = i, \\ 1, & \text{if } k = \ell \neq i, \\ 0, & \text{else}, \end{cases}$$

$$q_{k,\ell} = \begin{cases} \lambda, & \text{if } k = i \text{ and } \ell = j, \\ 1, & \text{if } k = \ell, \\ 0, & \text{else}, \end{cases}$$

$$p_{k,\ell} = \begin{cases} 1, & \text{if } k = \ell \in \{1, \dots, m\} \setminus \{i, j\} \text{ or } \{k, \ell\} = \{i, j\}, \\ 0, & \text{else}. \end{cases}$$

Remark 20. Let $A \in K^{m \times n}$. Left multiplication of A by an elementary matrix represents an elementary row operation.

- (i) $S_i(\lambda) \cdot A$ results from A by multiplying the *i*-th row by λ (type I),
- (ii) $Q_i^j(\lambda) \cdot A$ results from A by adding λ times the j-th row to the i-th row (type II),
- (iii) $P_i^j \cdot A$ results from A by switching the *i*-th and the *j*-th row (type III).

See Exercise 4.3.a).

Moreover, we have $S_i(\lambda), Q_i^j(\lambda), P_i^j \in \mathrm{Gl}(m, K)$ with

$$(S_i(\lambda))^{-1} = S_i(1/\lambda), \qquad (Q_i^j(\lambda))^{-1} = Q_i^j(-\lambda), \qquad (P_i^j)^{-1} = P_i^j.$$

Proposition 21. Every invertible matrix is the product of finitely many elementary matrices.

Proof. Let $A \in K^{n \times n}$. According to Proposition 3.8 and Remark 20 there exist $k \in \mathbb{N}$ and elementary matrices $C_1, \ldots, C_k \in K^{n \times n}$ such that

$$\tilde{A} = C_k \cdot \ldots \cdot C_1 \cdot A$$

is in row echolon form. Lemma 3.7 shows rank $\tilde{A} = \operatorname{rank} A$ such that $A \in \operatorname{Gl}(n, K)$ is equivalent to rank $\tilde{A} = n$, see Proposition 16. In case of rank A = n there exist $\ell \in \mathbb{N}$ and elementary matrices $C_{k+1}, \ldots, C_{k+\ell} \in K^{n \times n}$ such that

$$C_{k+\ell} \cdot \ldots \cdot C_{k+1} \cdot C_k \cdot \ldots \cdot C_1 \cdot A = E_n$$

and hence $A^{-1} = C_{k+\ell} \cdot \ldots \cdot C_1$ as well as $A = C_1^{-1} \cdot \ldots \cdot C_{k+\ell}^{-1}$.

Remark 22. The proof of Proposition 21 yields an algorithm to check whether $A \in K^{n \times n}$ is invertible and, if so, to the computation of A^{-1} . Let $A = (a_1, \ldots, a_n)$ and $E_n = (e_1, \ldots, e_n)$. Put

$$(A | E_n) = (a_1, \dots, a_n, e_1, \dots, e_n) \in K^{n \times 2n}.$$

Using the notation from the proof of Proposition 21 we have in case of rank $\tilde{A}=n$ that

$$C_{k+\ell} \cdot \ldots \cdot C_1 \cdot (A \mid E_n) = (E_n \mid A^{-1}),$$

see Exercise 4.3.b).

7 Systems of Linear Equations

In the sequel let K be a field, $m, n \in \mathbb{N}$, $A \in K^{m \times n}$, and $b \in K^m$. Moreover, let $r = \operatorname{rank} A$ and $F = \mathcal{F}_A$.

Definition 1. The set

$$\mathfrak{L}(A,b) = \{ x \in K^n \colon Ax = b \}$$

is called solution set of the system of linear equations Ax = b. Such a system of linear equations is homogeneous if b = 0, and inhomogeneous if $b \neq 0$.

Notation: The matrix A is called coefficient matrix⁵.

7.1 Geometry of the Solution Set

Proposition 2.

- (i) $\mathfrak{L}(A,0)$ is a subspace of K^n with dimension n-r.
- (ii) $\mathfrak{L}(A,b)$ is either empty or an affine subspace of K^n with dimension n-r. If $x \in \mathfrak{L}(A,b)$, then

$$\mathfrak{L}(A,b) = x + \mathfrak{L}(A,0).$$

Proof. Remark 4.15.(i) shows that $\ker F = \mathfrak{L}(A,0)$ is a subspace of K^n . Moreover, Corollary 6.17 shows rank $A = \operatorname{rank} F$.

ad (i): Corollary 4.24 (Rank-Nullity Theorem) yields dim $\mathfrak{L}(A,0) = n - r$.

ad (ii): We have
$$\mathfrak{L}(A,b) = F^{-1}(\{b\})$$
. Apply Proposition 4.20.

7.2 Existence and Uniqueness of Solutions

Notation: Augmented matrix $(A, b) = (a_1, \dots, a_n, b) \in K^{m \times (n+1)}$ if $A = (a_1, \dots, a_n)$.

Proposition 3. We have $\mathfrak{L}(A,b) \neq \emptyset$ if and only if

$$rank(A, b) = rank A. (1)$$

Proof. Due to Corollary 2.15 and Proposition 6.16 we have (1) if and only if

$$\mathrm{span}(\{a_1,\ldots,a_n,b\})=\mathrm{span}(\{a_1,\ldots,a_n\}).$$

The latter is equivalent to $b \in \text{span}(\{a_1, \dots, a_n\})$.

Proposition 4.

- (i) rank $A = m \Leftrightarrow \forall b \in K^m \colon \mathfrak{L}(A, b) \neq \emptyset$.
- (ii) $\operatorname{rank} A = n \iff \forall \, b \in K^m \colon |\mathfrak{L}(A,b)| \le 1.$

Proof. F is surjective if and only if rank A = m, and F is injective if and only if rank A = n.

⁵Common notation: $\ker A = \mathfrak{L}(A,0)$.

7.3 Gaussian Elimination

Remark 5. For an application of Proposition 3 one can transform (A, b) into row echelon form using elementary row operations, see Lemma 3.7 and Proposition 3.8.

Lemma 6. Let (\tilde{A}, \tilde{b}) result from finitely many elementary row operations applied to (A, b). Then we have $\mathfrak{L}(\tilde{A}, \tilde{b}) = \mathfrak{L}(A, b)$.

Proof. Apply Remark 6.20.

Proposition 7 (Back substitution). Let (A, b) be in row echolon form. If $\operatorname{rank}(A, b) = \operatorname{rank} A = n$, we have $\mathfrak{L}(A, b) = \{x\}$ for $x \in K^n$ given by

$$x_n = b_n/a_{n,n}$$

and

$$x_i = \left(b_i - \sum_{j=i+1}^n a_{i,j} \cdot x_j\right) / a_{i,i}$$

for i = n - 1, ..., 1.

Example 8. Let $c, d \in \mathbb{R}$ and let $A \in \mathbb{R}^{3 \times 3}$ and $b \in \mathbb{R}^3$ be given by

$$A = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & c \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} -1 \\ 0 \\ d \end{pmatrix}.$$

Then we have

$$\operatorname{rank} A = 3 \iff c \neq 0.$$

If $c \neq 0$, Proposition 4 shows $|\mathfrak{L}(A,b)| = 1$ for all $b \in \mathbb{R}^3$, and we obtain

$$\mathfrak{L}(A,b) = \{(-1/2,0,d/c)^{\top}\},\,$$

see Proposition 7. If c = 0, Proposition 3 shows that $\mathfrak{L}(A, b) \neq \emptyset$ if and only if d = 0. If c = d = 0, we have rank $A = \operatorname{rank}(A, b) = 2$, $\mathfrak{L}(A, 0) = \operatorname{span}(\{e_3\})$, and

$$\mathfrak{L}(A,b) = (-1/2,0,0)^{\top} + \text{span}(\{e_3\})$$

see Proposition 2.

7.4 Representation of Affine Subspaces

Proposition 9. Let $n \in \mathbb{N}$ and $p \in \mathbb{N}_0$ with $p \leq n - 1$, and let $X \subseteq K^n$. Then the following statements are equivalent:

- (i) X is a p-dimensional affine subspace of K^n .
- (ii) There exist $A \in K^{(n-p) \times n}$ and $b \in K^{n-p}$ such that

$$\operatorname{rank} A = \operatorname{rank}(A, b) = n - p \ \land \ X = \mathfrak{L}(A, b).$$

Proof. "(ii) \Rightarrow (i)": Proposition 3 ensures $\mathfrak{L}(A, b) \neq \emptyset$ and $\mathfrak{L}(A, b)$ is a p-dimensional affine subspace of K^n according to Proposition 2.(ii).

"(i) \Rightarrow (ii)": If p = 0, choose $A = E_n$ and b = x for $X = \{x\}$.

Let $p \geq 1$. At first, we consider the case of a p-dimensional subspace $U \subseteq K^n$ and choose a basis (v_1, \ldots, v_p) of U. Let $A \in K^{r \times n}$ with $r = n - p \in \{1, \ldots, n - 1\}$. Then, $\mathfrak{L}(A, 0) = U$ is equivalent to

$$\forall 1 \le i \le p \colon Av_i = 0 \tag{2}$$

and

$$p = n - \operatorname{rank} A,\tag{3}$$

see Corollary 2.15 and Proposition 2.(i). Clearly, (3) is equivalent to rank A = r. Put $B = (v_1, \ldots, v_p) \in K^{n \times p}$. Then, (2) is equivalent to

$$B^{\top}A^{\top} = 0,$$

and we have dim $\mathfrak{L}(B^{\top},0)=r$. In sum, conditions (2) and (3) hold if and only if the columns of A^{\top} form a basis of $\mathfrak{L}(B^{\top},0)$.

Consider the general case of X = x + U with $x \in K^n$ and U as above. For A with (2) and (3) we define b by Ax = b to get $\mathfrak{L}(A, b) = X$.

Example 10. Consider the situation from Proposition 9 with $K = \mathbb{R}$, n = 5 and

$$U = \operatorname{span}(\{(1, 0, 1, 1, 1)^{\top}, (1, 2, 0, 2, 0)^{\top}, (3, 1, 1, 1, 1)^{\top}\}).$$

We obtain

$$B^{\top} = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 2 & 0 \\ 3 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

By using elementary row operations we can transform B^{\top} into

$$\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & 1 \\
0 & 2 & -1 & 1 & -1 \\
0 & 0 & -3 & -5 & -3
\end{array}\right),$$

which yields dim $U = \operatorname{rank} B^{\top} = 3$ and a basis $((0, 0, -1, 0, 1)^{\top}, (2, -4, -5, 3, 0)^{\top})$ of $\mathfrak{L}(B^{\top}, 0)$. Hence we obtain

$$A = \left(\begin{array}{cccc} 0 & 0 & -1 & 0 & 1 \\ 2 & -4 & -5 & 3 & 0 \end{array}\right)$$

and b = 0 for the case X = U.

Chapter III

Determinants and Eigenvalues

Given a finite-dimensional vector space V and a linear map $F: V \to V$ we try to find bases \mathcal{A} such that the transformation matrix $\mathcal{M}_{\mathcal{A}}^{\mathcal{A}}(F)$ has a simple form. To this end we first discuss the concept of determinants.

1 Determinants

1.1 Characterization of Determinants

In the sequel let $n \in \mathbb{N}$ and K be a field.

Definition 1 (Weierstrass axioms). A map¹ det: $K^{n \times n} \to K$ is called *determinant* if the following conditions hold:

(i) For all $1 \leq i \leq n, a_1, \dots, a_n, b_i \in K^{1 \times n}$, and $\lambda \in K$ we have

$$\det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ a_i + b_i \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix} = \det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ a_i \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix} + \det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ b_i \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix}$$

and

$$\det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ \lambda \cdot a_i \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix} = \lambda \cdot \det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ a_i \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix}.$$

¹ Notation: $\det A$ or $\det(A)$.

III.1. Determinants 40

- (ii) For all $A \in K^{n \times n}$ with two identical rows we have det A = 0.
- (iii) We have $\det E_n = 1$.

Proposition 2. Every determinant det: $K^{n \times n} \to K$ has the following properties:

(i) For all $A \in K^{n \times n}$ and $\lambda \in K$ we have

$$\det(\lambda \cdot A) = \lambda^n \cdot \det A.$$

- (ii) For all $A \in K^{n \times n}$ with a zero row we have det A = 0.
- (iii) Let $A \in K^{n \times n}$ and $\lambda \in K$. If $B \in K^{n \times n}$ results from an elementary row operation of type II (adding λ times a row to another row) applied to A, then we have det $B = \det A$.
- (iv) If $B \in K^{n \times n}$ results from an elementary row operation of type III (switching two rows) applied to A, then we have $\det B = -\det A$.
- (v) Let $A \in K^{n \times n}$ with $a_{i,j} = 0$ for all $1 \le j < i \le n$. Then we have

$$\det A = \prod_{i=1}^{n} a_{i,i}.$$

- (vi) For $A \in K^{n \times n}$ we have det A = 0 if and only if rank A < n.
- (vii) For $A, B \in K^{n \times n}$ we have

$$\det(A \cdot B) = \det A \cdot \det B$$
.

(viii) For $A \in Gl(n, K)$ we have

$$\det(A^{-1}) = (\det A)^{-1}.$$

Proof. ad (i), (ii): This follows immediately from Definition 1.(i). ad (iii): For $i \neq j$ we have

$$\det \begin{pmatrix} \vdots \\ a_i + \lambda a_j \\ \vdots \\ a_j \\ \vdots \end{pmatrix} = \det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_j \\ \vdots \end{pmatrix} + \lambda \cdot \det \begin{pmatrix} \vdots \\ a_j \\ \vdots \\ a_j \\ \vdots \end{pmatrix} = \det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_j \\ \vdots \end{pmatrix}.$$

ad (iv): For $i \neq j$ we have

$$\det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_j \\ \vdots \end{pmatrix} + \det \begin{pmatrix} \vdots \\ a_j \\ \vdots \\ a_i \\ \vdots \end{pmatrix} = \det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_i + a_j \\ \vdots \end{pmatrix} + \det \begin{pmatrix} \vdots \\ a_j \\ \vdots \\ a_i + a_j \\ \vdots \end{pmatrix} = \det \begin{pmatrix} \vdots \\ a_i + a_j \\ \vdots \\ a_i + a_j \\ \vdots \end{pmatrix} = 0.$$

²Such matrices are called *upper triangular*.

III.1. Determinants 41

ad (v): If $\prod_{i=1}^n a_{i,i} \neq 0$, elementary row operations of type II and part (iii) show

$$\det A = \det \begin{pmatrix} a_{11} & 0 \\ & \ddots & \\ 0 & a_{nn} \end{pmatrix} = \prod_{i=1}^{n} a_{i,i} \cdot \det E_n = \prod_{i=1}^{n} a_{i,i}.$$

If $\prod_{i=1}^{n} a_{i,i} = 0$, elementary row operations of type II lead to matrix with a zero row such that det A = 0 according to part (ii).

ad (vi): Use elementary row operations of type II and type III as well as parts (iii), (iv), and (v).

ad (vii): If rank A < n, we have rank $(A \cdot B) < n$ such that $\det A \cdot \det B = 0$ and $\det(A \cdot B) = 0$ due to part (vi).

Let rank A = n. According to Proposition II.6.21 there exist elementary matrices $C_1, \ldots, C_k \in K^{n \times n}$ such that $A = C_k \cdots C_1$. Definition 1.(i) shows for elementary matrices C_I of type I (multiplying a row by $\lambda \in K \setminus \{0\}$)

$$\det(C_{\mathbf{I}} \cdot B) = \lambda \cdot \det B.$$

For elementary matrices $C_{\rm II}$ and $C_{\rm III}$ of types II and III, respectively, we have

$$\det(C_{\mathrm{II}} \cdot B) = \det B,$$

see (iii), and

$$\det(C_{\text{III}} \cdot B) = -\det B$$

see (iv). By Definition 1.(iii) we have $\det C_{\rm I} = \lambda$, $\det C_{\rm II} = 1$, and $\det C_{\rm III} = -1$. Hence we get $\det(C \cdot B) = \det C \cdot \det B$ for all elementary matrices C. The general case follows by induction.

ad (viii): We have

$$\det(A^{-1}) \cdot \det A = \det(A^{-1} \cdot A) = \det E_n = 1,$$

according to (vii) and Definition 1.(iii).

Remark 3. Determinants can be calculated by using elementary row operations, see Definition 1 and Proposition 2

Example 4.

$$\det \begin{pmatrix} 0 & 1 & 2 \\ 0 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix} = \det \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & -2 & -2 \end{pmatrix} = \det \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} = 2.$$

Proposition 5. There exists a unique map det: $K^{n \times n} \to K$.

Proof sketch. Uniqueness follows from the proof of Proposition 2. Existence can be shown, e.g., via the Leibniz formula. \Box

Notation: det A is called the determinant of $A \in K^{n \times n}$.

III.1. Determinants 42

Example 6. For $a_{1,1}, a_{1,2}, a_{2,1}, a_{2,2} \in K$ we have

$$\det \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} = a_{1,1} \cdot a_{2,2} - a_{1,2} \cdot a_{2,1}.$$

For

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \in K^{3 \times 3}$$

we have

$$\det A = a_{1,1} \cdot a_{2,2} \cdot a_{3,3} + a_{1,2} \cdot a_{2,3} \cdot a_{3,1} + a_{1,3} \cdot a_{2,1} \cdot a_{3,2} - a_{1,3} \cdot a_{2,2} \cdot a_{3,1} - a_{1,2} \cdot a_{2,1} \cdot a_{3,3} - a_{1,1} \cdot a_{2,3} \cdot a_{3,2}.$$

Lemma 7. For $a \in K$, $b \in K^{1 \times n}$, and $A \in K^{n \times n}$ we have

$$\det \left(\begin{array}{cc} a & b \\ 0 & A \end{array} \right) = a \cdot \det(A).$$

Proof. Use elementary row operations and Proposition 2.

Proposition 8. For $A \in K^{n \times n}$ we have

$$\det A = \det(A^{\top}).$$

Remark 9. According to Proposition 8 we may use "elementary column operations" to calculate the determinant.

1.2 Determinant of a Linear Map

In the sequel let V be a finite-dimensional K-vector space with $n = \dim V \in \mathbb{N}$ and let $F: V \to V$ be linear.

Notation: $\mathcal{M}_{\mathcal{A}}(F)$ instead of $\mathcal{M}_{\mathcal{A}}^{\mathcal{A}}(F)$ for bases \mathcal{A} of V.

Remark 10. For bases \mathcal{A} and \mathcal{B} of V we have

$$\mathcal{M}_{\mathcal{B}}(F) = \mathcal{T}_{\mathcal{B}}^{\mathcal{A}} \cdot \mathcal{M}_{\mathcal{A}}(F) \cdot (\mathcal{T}_{\mathcal{B}}^{\mathcal{A}})^{-1},$$

see Proposition II.6.10 (change-of-basis formula).

Definition 11. $A, B \in K^{n \times n}$ are similar if there exists $S \in Gl(n, K)$ such that

$$B = S \cdot A \cdot S^{-1}.$$

Remark 12. Two matrices $A, B \in K^{n \times n}$ are similar if and only if there exist bases \mathcal{A} and \mathcal{B} of K^n and a linear map $F \colon K^n \to K^n$ with $\mathcal{M}_{\mathcal{A}}(F) = A$ and $\mathcal{M}_{\mathcal{B}}(F) = B$, cf. Remark II.6.13.

Proof of " \Rightarrow ": Choose the standard basis \mathcal{E} of K^n and \mathcal{B} given by the columns of S^{-1} . Then we have $\mathcal{M}_{\mathcal{E}}(\mathcal{F}_A) = A$ und $\mathcal{T}_{\mathcal{E}}^{\mathcal{B}} = S^{-1}$. Apply Remark 10. III.2. Eigenvalues 43

Lemma 13. For similar matrices $A, B \in K^{n \times n}$ we have det $A = \det B$.

Proof. According to Proposition 2.(vii) and (viii) we have

$$\det(S \cdot A \cdot S^{-1}) = \det S \cdot \det A \cdot \det(S^{-1}) = \det S \cdot \det A \cdot (\det S)^{-1} = \det A$$

for every
$$S \in Gl(n, K)$$
.

According to Lemma 13 the following definition is well-defined.

Definition 14. Let \mathcal{A} be a basis of V. The *determinant* of a linear map F is defined by det $\mathcal{M}_{\mathcal{A}}(F)$. *Notation*: det F.

Corollary 15. The following statements are equivalent:

- (i) F is injective,
- (ii) F is surjective,
- (iii) $\det F \neq 0$.

Proof. "(i) \Leftrightarrow (ii)": See Corollary II.4.25.

"(i)/(ii) \Leftrightarrow (iii)": Proposition II.6.3, Proposition II.6.16, and Proposition 2.(vi) show that F is a linear isomorphism if and only if det $F \neq 0$.

2 Eigenvalues

In the sequel let V be a K-vector space, let $F: V \to V$ be linear, and let $\lambda \in K$.

2.1 Eigenspaces, Eigenvalues, and Eigenvectors

Definition 1.

$$\operatorname{Eig}(F,\lambda) = \{ v \in V \colon F(v) = \lambda v \}$$

is called *eigenspace* of F w.r.t. λ .

Remark 2.

- (i) $\operatorname{Eig}(F,\lambda)$ is a subspace of V.
- (ii) For $\lambda, \mu \in K$ with $\lambda \neq \mu$ we have $\text{Eig}(F, \lambda) \cap \text{Eig}(F, \mu) = \{0\}.$

Definition 3.

- (i) λ is an eigenvalue of F if $\text{Eig}(F, \lambda) \neq \{0\}$. Notation: $\sigma(F)$ denotes the set of all eigenvalues of F.
- (ii) For $\lambda \in \sigma(F)$ the elements of $\text{Eig}(F,\lambda) \setminus \{0\}$ are called *eigenvectors* of F corresponding to λ .

Definition 4. For $A \in K^{n \times n}$ with $n \in \mathbb{N}$ the set

$$\operatorname{Eig}(A,\lambda) = \operatorname{Eig}(\mathcal{F}_A,\lambda)$$

is called eigenspace of A w.r.t. λ , and λ is an eigenvalue of A if Eig $(A, \lambda) \neq \{0\}$.

Notation: $\sigma(A)$ denotes the set of all eigenvalues of A.

For $\lambda \in \sigma(A)$ the elements of $\text{Eig}(A,\lambda) \setminus \{0\}$ are called *eigenvectors* of A corresponding to λ .

Example 5. Let $K = \mathbb{R}$, $V = \mathbb{R}^2$, and

$$A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

with $\alpha \in [0, 2\pi[$. Recall that \mathcal{F}_A represents a rotation of α , see Example II.4.8.(i). If $\alpha = 0$, we have $\sigma(A) = \{1\}$ and $\operatorname{Eig}(A, 1) = \mathbb{R}^2$. If $\alpha = \pi$, we have $\sigma(A) = \{-1\}$ and $\operatorname{Eig}(A, -1) = \mathbb{R}^2$. If $\alpha \in [0, 2\pi[\setminus \{0, \pi\}]$, we have $\sigma(A) = \emptyset$, see Example 12 below.

Lemma 6. Let $k \in \mathbb{N}$, and let $v_1, \ldots, v_k \in V$ be eigenvectors of F corresponding to pairwise distinct eigenvalues. Then (v_1, \ldots, v_k) is linearly independent.

Proof. Induction: For k=1 the statement is obviously true. Let $k \geq 2$, and let $F(v_{\ell}) = \lambda_{\ell} v_{\ell}$ for $\ell = 1, \ldots, k$ with pairwise distinct eigenvalues $\lambda_1, \ldots, \lambda_k \in K$. Moreover, let $\sum_{\ell=1}^k \mu_{\ell} v_{\ell} = 0$ for $\mu_1, \ldots, \mu_k \in K$. Applying F and multiplying this equation by λ_k yields

$$\sum_{\ell=1}^{k-1} \lambda_{\ell} \mu_{\ell} v_{\ell} + \lambda_{k} \mu_{k} v_{k} = 0, \qquad \sum_{\ell=1}^{k-1} \lambda_{k} \mu_{\ell} v_{\ell} + \lambda_{k} \mu_{k} v_{k} = 0,$$

respectively, and hence

$$\sum_{\ell=1}^{k-1} (\lambda_{\ell} - \lambda_{k}) \mu_{\ell} v_{\ell} = 0.$$

Since $\lambda_{\ell} - \lambda_{k} \neq 0$ for all $\ell = 1, \dots, k - 1$, the induction hypothesis shows $\mu_{\ell} = 0$ for $\ell = 1, \dots, k - 1$, and hence $\mu_{k} = 0$.

2.2 Characteristic Polynomial

In the sequel let K be a field and $n \in \mathbb{N}$.

We define $P_A : K \to K$ for $A \in K^{n \times n}$ by

$$P_A(\lambda) = \det(A - \lambda E_n).$$

Proposition 7.

(i) For $A \in K^{n \times n}$ we have

$$\sigma(A) = \{ \lambda \in K \colon P_A(\lambda) = 0 \}.$$

(ii) For similar matrices $A, B \in K^{n \times n}$ we have $P_A = P_B$.

Proof. ad (i): For $x \in K^n$ we have

$$Ax = \lambda x \iff (A - \lambda E_n)x = 0.$$

This shows $\lambda \in \sigma(A)$ if and only if $\operatorname{rank}(A - \lambda E_n) < n$, see Proposition II.7.2.(i). Moreover, Proposition 1.2.(vi) shows

$$\operatorname{rank}(A - \lambda E_n) < n \iff P_A(\lambda) = \det(A - \lambda E_n) = 0.$$

ad (ii): Let $B = SAS^{-1}$ for $S \in Gl(n, K)$. Then we have

$$B - \lambda E_n = SAS^{-1} - S\lambda E_n S^{-1} = S \cdot (A - \lambda E_n) \cdot S^{-1},$$

see Lemma II.3.15. Thus $B - \lambda E_n$ and $A - \lambda E_n$ are also similar, and similar matrices have the same determinant, see Lemma 1.13.

In the sequel let $K = \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

Proposition 8. For all $A = (a_{i,j})_{i,j} \in \mathbb{K}^{n \times n}$ there exists $Q_A \in \Pi_{n-2}$ such that³

$$P_A(\lambda) = (-1)^n \cdot \lambda^n + (-1)^{n-1} \left(\sum_{i=1}^n a_{i,i} \right) \cdot \lambda^{n-1} + Q_A(\lambda)$$

for all $\lambda \in \mathbb{K}$. In particular, $P_A \colon \mathbb{K} \to \mathbb{K}$ is a polynomial function of degree n.

Corollary 9. For $A \in \mathbb{K}^{n \times n}$ we have $|\sigma(A)| \leq n$.

Proof. Apply Proposition 7 and Proposition 8, and note that a (non-zero) polynomial function of degree n has at most n roots.

Definition 10. P_A is called *characteristic polynomial* of $A \in \mathbb{K}^{n \times n}$.

According to Proposition 7.(ii) the following definition is well-defined.

Definition 11. Let $V \neq \{0\}$ be finite-dimensional with basis \mathcal{A} , and let $F: V \to V$ be linear. The *characteristic polynomial* of F is defined by $P_{\mathcal{M}_{\mathcal{A}}(F)}$. Notation: P_F .

Example 12. For A according to Example 5 with $\alpha \in [0, 2\pi[$ and $\lambda \in \mathbb{R}$ we have

$$P_A(\lambda) = (\cos(\alpha) - \lambda)^2 + \sin^2(\alpha).$$

Proposition 7.(i) shows

$$\sigma(A) = \begin{cases} \{1\} & \text{if } \alpha = 0, \\ \{-1\} & \text{if } \alpha = \pi, \\ \emptyset & \text{else.} \end{cases}$$

 $^{{}^{3}\}sum_{i=1}^{n} a_{i,i}$ is called *trace* of A

Example 13. For

$$A = \left(\begin{array}{rrr} 0 & -1 & 1 \\ -3 & -2 & 3 \\ -2 & -2 & 3 \end{array}\right)$$

and $\lambda \in \mathbb{K}$ we obtain using Lemma 1.7

$$P_{A}(\lambda) = \det \begin{pmatrix} -\lambda & -1 & 1 \\ -3 & -2 - \lambda & 3 \\ -2 & -2 & 3 - \lambda \end{pmatrix} = \det \begin{pmatrix} 2 & 2 & \lambda - 3 \\ -3 & -2 - \lambda & 3 \\ -\lambda & -1 & 1 \end{pmatrix}$$

$$= \det \begin{pmatrix} 2 & 2 & \lambda - 3 \\ 0 & 1 - \lambda & 3/2(\lambda - 1) \\ 0 & \lambda - 1 & 1 + \lambda/2(\lambda - 3) \end{pmatrix}$$

$$= 2 \cdot (1 - \lambda) \cdot \det \begin{pmatrix} 1 & -3/2 \\ \lambda - 1 & 1 + \lambda/2(\lambda - 3) \end{pmatrix}$$

$$= (1 - \lambda) \cdot (\lambda^{2} - 1)$$

$$= -(\lambda - 1)^{2} \cdot (\lambda + 1),$$

and hence $\sigma(A) = \{1, -1\}.$

Let $x \in \mathbb{K}^3$. For $\lambda_1 = 1$ elementary row operations show that $(A - \lambda_1 E_3)x = 0$ is equivalent to

$$\left(\begin{array}{ccc} -1 & -1 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right) x = 0.$$

We obtain

$$\operatorname{Eig}(A, \lambda_1) = \operatorname{span}(\{(1, 0, 1)^\top, (-1, 1, 0)^\top\}).$$

For $\lambda_2 = -1$ elementary row operations show that $(A - \lambda_2 E_3)x = 0$ is equivalent to

$$\left(\begin{array}{ccc} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & 0 \end{array}\right) x = 0.$$

We obtain

$$Eig(A, \lambda_2) = span(\{(1, 3, 2)^{\top}\}).$$

Example 14. For

$$A = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right)$$

and $\lambda \in \mathbb{K}$ we obtain

$$P_A(\lambda) = \det \begin{pmatrix} -1 - \lambda & 0 & 0 \\ 0 & -\lambda & -1 \\ 0 & 1 & -\lambda \end{pmatrix} = -(\lambda + 1) \cdot (\lambda^2 + 1).$$

Case $\mathbb{K} = \mathbb{R}$: We have $\sigma(A) = \{-1\}$ and $\text{Eig}(A, -1) = \text{span}(\{(1, 0, 0^{\top})\})$. Case $\mathbb{K} = \mathbb{C}$: We have $\sigma(A) = \{-1, i, -i\}$ and $\text{Eig}(A, -1) = \text{span}(\{(1, 0, 0)^{\top}\})$, $\text{Eig}(A, i) = \text{span}(\{(0, i, 1)^{\top}\})$, and $\text{Eig}(A, -i) = \text{span}(\{(0, -i, 1)^{\top}\})$.

2.3 Zeros of Polynomial Functions

Remark 15. Let $P: \mathbb{K} \to \mathbb{K}$ be a polynomial function with $P \neq 0$. For $\lambda \in \mathbb{K}$ let $P(\lambda) = 0$. Then there exists $r \in \mathbb{N}$ and a polynomial function $Q: \mathbb{K} \to \mathbb{K}$ such that

- (i) $P(t) = (t \lambda)^r \cdot Q(t)$ for all $t \in \mathbb{K}$,
- (ii) $Q(\lambda) \neq 0$.

Moreover, r and Q are uniquely determined by (i) and (ii).

Definition 16. Consider the situation of Remark 15. $\lambda \in \mathbb{K}$ is root of P with multiplicity $r \in \mathbb{N}$. Notation: $\mu(P, \lambda) = r$.

Proposition 17. Every polynomial function $P \in \Pi_n \setminus \{0\}$ with pairwise distinct roots $\lambda_1, \ldots, \lambda_k$ satisfies

$$\sum_{\ell=1}^{k} \mu(P, \lambda_{\ell}) \le n.$$

Definition 18. A polynomial function P decomposes into linear factors if $P \in \Pi_0$ or if $P \in \Pi_n \setminus \Pi_{n-1}$ and there exist $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ and $a \in \mathbb{K}$ such that

$$\forall t \in \mathbb{K} : P(t) = a \cdot \prod_{i=1}^{n} (t - \lambda_i).$$

Proposition 19 (Fundamental theorem of algebra). Every polynomial function $P: \mathbb{C} \to \mathbb{C}$ decomposes into linear factors.

Corollary 20. For $A \in \mathbb{C}^{n \times n}$ we have $\sigma(A) \neq \emptyset$ and

$$\sum_{\lambda \in \sigma(A)} \mu(P_A, \lambda) = n.$$

Proof. Apply Proposition 7, Proposition 8, and Proposition 19.

2.4 Multiplicity of Eigenvalues

In the sequel let $V \neq \{0\}$ be finite-dimensional.

Lemma 21. For $\lambda \in \sigma(F)$ we have⁴

$$1 \le \dim \operatorname{Eig}(F, \lambda) \le \mu(P_F, \lambda) \le n.$$

Proof. By definition, we have $1 \leq \dim \operatorname{Eig}(F, \lambda) \leq n$ for all $\lambda \in \sigma(F)$. Moreover, Proposition 17 implies $\mu(P_F, \lambda) \leq n$.

⁴dim Eig(F, λ) and $\mu(P_F, \lambda)$ are called *geometric multiplicity* and *algebraic multiplicity* of the eigenvalue $\lambda \in \mathbb{K}$, respectively.

Put $m = \dim \operatorname{Eig}(F, \lambda)$ such that $1 \leq m \leq n$. Choose a basis $\mathcal{A} = (v_1, \dots, v_n)$ of V such that $F(v_i) = \lambda v_i$ for $i = 1, \dots, m$, see Corollary II.2.16 (Basisergänzungssatz). Then we have

$$\mathcal{M}_{\mathcal{A}}(F) = \left(\begin{array}{cc} D & B \\ 0 & C \end{array}\right)$$

for some $B \in \mathbb{K}^{m \times (n-m)}$, $C \in \mathbb{K}^{(n-m) \times (n-m)}$, and

$$D = \left(\begin{array}{ccc} \lambda & & 0 \\ & \ddots & \\ 0 & & \lambda \end{array}\right).$$

Iterative application of Lemma 1.7 shows

$$P_F(t) = P_{\mathcal{M}_A(F)}(t) = \det(\mathcal{M}_A(F) - tE_n) = (\lambda - t)^m \cdot \det(C - tE_{n-m}),$$

for $t \in \mathbb{K}$, and hence $\mu(P_F, \lambda) \geq m$.

Example 22. Consider the situation from Example 13. We have dim Eig $(A, \lambda) = \mu(P_A, \lambda)$ for all $\lambda \in \sigma(A) = \{1, -1\}$. For

$$B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

we have $P_B(\lambda) = (1 - \lambda)^2$ and dim $Eig(B, 1) = 1 \le 2 = \mu(P_B, 1)$.

3 Diagonalization

In the sequel let V be a finite-dimensional K-vector space with $n = \dim V \in \mathbb{N}$, and let $F: V \to V$ be linear.

Definition 1. F is diagonalizable if there exists a basis of V consisting of eigenvectors of F.

Remark 2. If $|\sigma(F)| = n$, then F is diagonalizable, see Lemma 2.6.

Definition 3. $A = (a_{i,j})_{i,j} \in K^{n \times n}$ is a diagonal matrix if $a_{i,j} = 0$ for all $i, j \in \{1, \ldots, n\}$ with $i \neq j$. Notation: For $\lambda_1, \ldots, \lambda_n \in K$ let

$$\operatorname{diag}(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 \\ \ddots & \\ 0 & \lambda_n \end{pmatrix} \in K^{n \times n}.$$

Remark 4. F is diagonalizable if and only if there exists a basis \mathcal{A} of V such that $\mathcal{M}_{\mathcal{A}}(F)$ is a diagonal matrix.

In the sequel let $A \in K^{n \times n}$.

Definition 5. A is diagonalizable if \mathcal{F}_A is diagonalizable.

Lemma 6. Let $\mathcal{A} = (v_1, \ldots, v_n)$ be a basis of K^n , $S = (v_1, \ldots, v_n) \in K^{n \times n}$, and $\lambda_1, \ldots, \lambda_n \in K$. Then the following statements are equivalent:

- (i) $\mathcal{M}_{\mathcal{A}}(\mathcal{F}_A) = \operatorname{diag}(\lambda_1, \dots, \lambda_n),$
- (ii) $\forall 1 \leq i \leq n : Av_i = \lambda_i v_i$,
- (iii) diag $(\lambda_1, \ldots, \lambda_n) = S^{-1} \cdot A \cdot S$.

Proof. "(i) \Leftrightarrow (ii)": Obvious. "(ii) \Leftrightarrow (iii)": Note that

$$S \cdot \operatorname{diag}(\lambda_1, \dots, \lambda_n) = (\lambda_1 v_1, \dots, \lambda_n v_n) \wedge AS = (Av_1, \dots, Av_n).$$

Remark 7. $A \in K^{n \times n}$ is diagonalizable if and only if A is similar to a diagonal matrix, see Lemma 6.

Example 8. Consider the situation from Example 2.14.

Case $\mathbb{K} = \mathbb{R}$: A is not diagonalizable since every eigenvector lies in span($\{(1,0,0)^{\top}\}$). Case $\mathbb{K} = \mathbb{C}$: A is diagonalizable, and the family $((1,0,0)^{\top},(0,i,1)^{\top},(0,-i,1)^{\top})$ of eigenvectors is a basis of \mathbb{C}^3 , see Remark 2.

Example 9. Consider the matrix $A \in \mathbb{K}^{3\times 3}$ from Example 2.13, and put

$$S = (v_1, v_2, v_3) = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 3 \\ 1 & 0 & 2 \end{pmatrix}$$

consisting of the corresponding eigenvectors v_1, v_2, v_3 of A. It can be readily checked that (v_1, v_2, v_3) is linearly independent and thus a basis of \mathbb{K}^3 . Lemma 6 shows

$$\mathcal{M}_{\mathcal{A}}(\mathcal{F}_A) = \operatorname{diag}(1, 1, -1) = S^{-1} \cdot A \cdot S.$$

In the sequel let V be a \mathbb{K} -vector space, i.e., $K = \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

Proposition 10. The following statements are equivalent:

- (i) F is diagonalizable,
- (ii) P_F decomposes into linear factors (over \mathbb{K}) and

$$\forall \lambda \in \sigma(F): \dim \operatorname{Eig}(F,\lambda) = \mu(P_F,\lambda). \tag{1}$$

Proof. "(i) \Rightarrow (ii)": Let (v_1, \ldots, v_n) be a basis of V consisting of eigenvectors of F, and let $F(v_i) = \lambda_i v_i$ with $\lambda_i \in \mathbb{K}$ for $i = 1, \ldots, n$. Then we have

$$\sum_{\lambda \in \sigma(F)} \dim \operatorname{Eig}(F, \lambda) \ge \sum_{\lambda \in \sigma(F)} |\{i \in \{1, \dots, n\} : v_i \in \operatorname{Eig}(F, \lambda)\}| \ge n.$$

Combining Proposition 2.17 and Lemma 2.21 shows (1). Moreover, for $\mathcal{A} = (v_1, \dots, v_n)$ we have

$$\mathcal{M}_{\mathcal{A}}(F) = \operatorname{diag}(\lambda_1, \dots, \lambda_n),$$

and hence

$$\forall t \in \mathbb{K} \colon P_F(t) = \prod_{i=1}^n (\lambda_i - t).$$

"(ii) \Rightarrow (i)": From (ii) we obtain

$$\sum_{\lambda \in \sigma(F)} \dim \operatorname{Eig}(F,\lambda) = \sum_{\lambda \in \sigma(F)} \mu(F,\lambda) = n.$$

Hence there exist $k \in \{1, \ldots, n\}$, pairwise distinct eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$, and bases $(v_{i,1}, \ldots, v_{i,j_i})$ of $\text{Eig}(F, \lambda_i)$ for $1 \leq i \leq k$ such that $\sum_{i=1}^k j_i = n$. We will show that the family $(v_{1,1}, \ldots, v_{1,j_1}, \ldots, v_{k,1}, \ldots, v_{k,j_k})$ consisting of n eigenvectors of F is linearly independent and hence a basis of V.

Let $\sum_{i=1}^k \sum_{j=1}^{j_i} \mu_{i,j} v_{i,j} = 0$ for $\mu_{1,1}, \dots, \mu_{k,j_k} \in \mathbb{K}$. Since $\sum_{j=1}^{j_i} \mu_{i,j} v_{i,j} \in \text{Eig}(F, \lambda_i)$ for all $1 \leq i \leq k$, Lemma 2.6 implies

$$\forall i \in \{1, \dots, k\} : \sum_{i=1}^{j_i} \mu_{i,j} v_{i,j} = 0.$$

Moreover, since $(v_{i,1}, \ldots, v_{i,j_i})$ is a basis of $\text{Eig}(F, \lambda_i)$ and thus linearly independent for all $1 \leq i \leq k$, we obtain $\mu_{i,j} = 0$ for all $i \in \{1, \ldots, k\}$ and all $j \in \{1, \ldots, j_i\}$.

Remark 11. Algorithm to diagonalize a matrix A and to find a basis of \mathbb{K}^n consisting of eigenvectors of A:

- 1. Compute P_A and its roots.
- 2. If $\sigma(A) = \emptyset$ or $\sum_{\lambda \in \sigma(A)} \mu(P_A, \lambda) < n$: STOP A is not diagonalizable.
- 3. Determine (by using elementary row operations) dim Eig(A, λ) for $\lambda \in \sigma(A)$. If dim Eig(A, λ) < $\mu(P_A, \lambda)$ for some $\lambda \in \sigma(A)$: STOP A is not diagonalizable.
- 4. Determine (by solving the corresponding homogeneous systems of linear equations) bases of $\text{Eig}(A, \lambda)$ for all $\lambda \in \sigma(A)$ and build up the change-of-basis matrix S such that $S^{-1} \cdot A \cdot S = \text{diag}(\lambda_1, \ldots, \lambda_n)$.

Example 12. In Example 9 we have n = 3, P_A decomposes into linear factors, and we have

$$\dim \text{Eig}(A, -1) = 1 = \mu(P_A, -1), \qquad \dim \text{Eig}(A, 1) = 2 = \mu(P_A, 1).$$

As seen before, A is diagonalizable.

Chapter IV

Inner Product Spaces

We consider vector spaces over \mathbb{R} with an inner product. This leads to geometrical properties as the length of a vector or the angle between two vectors. In the sequel let V be a \mathbb{R} -vector space.

1 Inner Product and Orthogonality

Definition 1. $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ is an *inner product* (scalar product) on V if

$$\forall v, v', w \in V : \langle v + v', w \rangle = \langle v, w \rangle + \langle v', w \rangle, \tag{1}$$

$$\forall v, w \in V \ \forall \lambda \in \mathbb{R} \colon \langle \lambda v, w \rangle = \lambda \langle v, w \rangle, \tag{2}$$

$$\forall v, w \in V : \langle v, w \rangle = \langle w, v \rangle, \tag{3}$$

$$\forall v \in V \setminus \{0\} \colon \langle v, v \rangle > 0. \tag{4}$$

 $(V, \langle \cdot, \cdot \rangle)$ is called inner product space over \mathbb{R} (or Euclidean vector space). Notation: Sometimes $\langle \cdot, \cdot \rangle_V$.

Remark 2. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space.

(i) Conditions (1)–(3) imply¹

$$\forall v, w, w' \in V : \langle v, w + w' \rangle = \langle v, w \rangle + \langle v, w' \rangle, \tag{5}$$

$$\forall v, w \in V \ \forall \lambda \in \mathbb{R} \colon \langle v, \lambda w \rangle = \lambda \langle v, w \rangle. \tag{6}$$

(ii) We have²

$$\forall v \in V : (\langle v, v \rangle \ge 0 \land (\langle v, v \rangle = 0 \Leftrightarrow v = 0)). \tag{7}$$

Let V be a K-vector space. Then, $\langle \cdot, \cdot \rangle \colon V \times V \to K$ satisfying (1), (2), (5), and (6) is called a bilinear form on V. If $\langle \cdot, \cdot \rangle \colon V \times V \to K$ satisfies (1), (2), and (3), it is called a symmetric bilinear form on V.

²This property is called *positive-definiteness*.

Remark 3. The field \mathbb{R} can be replaced by \mathbb{C} in Definition 1. In this case the symmetry condition (3) is replaced by the conjugate symmetry condition

$$\forall v, w \in V \colon \langle v, w \rangle = \overline{\langle w, v \rangle}.$$

 $(V, \langle \cdot, \cdot \rangle)$ is then called inner product space over \mathbb{C} (or unitary vector space).

Example 4 (Dot product). Let $n \in \mathbb{N}$. The function $\langle \cdot, \cdot \rangle \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot y_i, \qquad x, y \in \mathbb{R}^n,$$

is an inner product on \mathbb{R}^n . It is called the *canonical inner product* (or *dot product*) on \mathbb{R}^n . We have $\langle x, y \rangle = x^\top y$.

Analogously, the canonical inner product (or dot product) $\langle \cdot, \cdot \rangle \colon \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ on \mathbb{C}^n is defined by

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot \overline{y_i}, \qquad x, y \in \mathbb{C},$$

and we have $\langle x, y \rangle = x^{\top} \overline{y}$ where $\overline{A} = (\overline{a_{i,j}}) \in \mathbb{C}^{m \times n}$ for $A = (a_{i,j}) \in \mathbb{C}^{m \times n}$ and $m, n \in \mathbb{N}$.

Notation: In the sequel let $\langle \cdot, \cdot \rangle$ denote the canonical inner product on \mathbb{R}^n (resp. \mathbb{C}^n) if not stated otherwise.

Example 5 (Inner product on function space). Let $a, b \in \mathbb{R}$ with a < b and let V = C([a, b]). For $f, g \in V$ we have $f \cdot g \in V$. We define $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ by

$$\langle f, g \rangle = \int_a^b f(x) \cdot g(x) \, dx, \qquad f, g \in V.$$

Then, $\langle \cdot, \cdot \rangle$ is an inner product on V, see Exercise 12.2.

1.1 Cauchy-Schwarz Inequality

Proposition 6 (Cauchy-Schwarz inequality). Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. For $v, w \in V$ we have

$$|\langle v, w \rangle| \le \langle v, v \rangle^{1/2} \cdot \langle w, w \rangle^{1/2}. \tag{8}$$

In (8) we have equality if and only if (v, w) is linearly dependent.

Proof. We consider the non-trivial case $w \neq 0$.

For $\lambda, \mu \in \mathbb{R}$ we have

$$0 \le \langle \lambda v + \mu w, \lambda v + \mu w \rangle = \lambda^2 \langle v, v \rangle + 2\lambda \mu \langle v, w \rangle + \mu^2 \langle w, w \rangle.$$

Put $\lambda = \langle w, w \rangle$ and $\mu = -\langle v, w \rangle$. Note that $\lambda > 0$. We obtain

$$0 \le \langle \lambda v + \mu w, \lambda v + \mu w \rangle = \lambda \cdot (\langle w, w \rangle \cdot \langle v, v \rangle - 2\langle v, w \rangle^2 + \langle v, w \rangle^2)$$
$$= \lambda \cdot (\langle w, w \rangle \cdot \langle v, v \rangle - \langle v, w \rangle^2)$$

and hence

$$0 < \langle w, w \rangle \cdot \langle v, v \rangle - |\langle v, w \rangle|^2$$

which yields (8). Moreover, according to (7) we have $|\langle v, w \rangle| = \langle v, v \rangle^{1/2} \cdot \langle w, w \rangle^{1/2}$ if and only if $\lambda v + \mu w = 0$, which shows the linear dependence of (v, w).

Let (v, w) be linearly dependent. Then there exists $\lambda \in \mathbb{R}$ such that $v = \lambda w$. Hence we get $|\langle v, w \rangle| = |\lambda| \langle w, w \rangle$ and $\langle v, v \rangle^{1/2} \cdot \langle w, w \rangle^{1/2} = |\lambda| \langle w, w \rangle$.

Definition 7. $\|\cdot\|:V\to\mathbb{R}$ is a *norm* on V if

$$\forall v, w \in V \colon \|v + w\| \le \|v\| + \|w\| \quad (triangle inequality), \tag{9}$$

$$\forall v \in V \ \forall \lambda \in \mathbb{R} \colon \|\lambda v\| = |\lambda| \cdot \|v\|, \tag{10}$$

$$\forall v \in V : (\|v\| > 0 \land (\|v\| = 0 \Leftrightarrow v = 0)). \tag{11}$$

 $(V, \|\cdot\|)$ is called normed vector space. Notation: Sometimes $\|\cdot\|_V$.

Proposition 8. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then

$$||v|| = \langle v, v \rangle^{1/2}, \qquad v \in V,$$

defines a norm on V. $\|\cdot\|$ is called the norm that is *induced* by $\langle\cdot,\cdot\rangle$.

Proof. Remark 2.(ii) shows (11). Using (2) and (6) we obtain

$$\|\lambda v\| = \left(\lambda^2 \langle v, v \rangle\right)^{1/2} = |\lambda| \cdot \|v\|.$$

Moreover, we have

$$||v + w||^2 = \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle$$
$$= \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$
$$\leq \langle v, v \rangle + 2 |\langle v, w \rangle| + \langle w, w \rangle.$$

Proposition 6 (Cauchy-Schwarz inequality) yields $||v + w||^2 \le (||v|| + ||w||)^2$.

Notation: In the sequel let $\|\cdot\|$ denote the induced norm on an inner product space $(V, \langle \cdot, \cdot \rangle)$ if not stated otherwise.

Lemma 9 (Polarization identity). Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{R} . For $v, w \in V$ we have

$$\langle v, w \rangle = 1/4 \cdot (\|v + w\|^2 - \|v - w\|^2).$$

In particular, the induced norm uniquely determines the inner product.

Remark 10. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{R} . For $v, w \in V \setminus \{0\}$ we have

$$-1 \le \frac{\langle v, w \rangle}{\|v\| \cdot \|w\|} \le 1,$$

see Proposition 6 (Cauchy-Schwarz inequality). Recall that $\arccos: [-1,1] \to [0,\pi]$ is continuous and monotonically decreasing.

Definition 11. Consider the situation from Remark 10. The *angle* between v and w is defined by

$$\angle(v, w) = \arccos(\langle v, w \rangle / (\|v\| \cdot \|w\|)).$$

Remark 12. For $\alpha, \beta \in [0, 2\pi[$ and $x, y \in \mathbb{R}^2]$ with

$$x = (\cos(\alpha), \sin(\alpha))^{\mathsf{T}}, \qquad y = (\cos(\beta), \sin(\beta))^{\mathsf{T}}$$

we have

$$\langle x, y \rangle = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) = \cos(\alpha)\cos(-\beta) - \sin(\alpha)\sin(-\beta)$$
$$= \cos(\alpha - \beta) = \cos(|\alpha - \beta|).$$

Moreover, $\cos(x) = \cos(2\pi - x)$ for $x \in \mathbb{R}$ shows

$$\angle(x,y) = \begin{cases} |\alpha - \beta|, & \text{if } |\alpha - \beta| \le \pi, \\ 2\pi - |\alpha - \beta|, & \text{if } \pi < |\alpha - \beta| < 2\pi. \end{cases}$$

1.2 Orthogonality

In the sequel let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space.

Definition 13.

- (i) $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$. Notation: $v \perp w$.
- (ii) A family $(v_i)_{i\in I}$ in V is orthogonal if $v_i \perp v_j$ for all $i, j \in I$ with $i \neq j$. A family $(v_i)_{i\in I}$ in V is orthonormal if the family is orthogonal and $||v_i|| = 1$ for all $i \in I$.
- (iii) Let V be finite-dimensional. A basis of V that is orthonormal is called $orthonormal\ basis$.

Example 14.

- (i) The canonical basis of \mathbb{R}^n is an orthonormal basis.
- (ii) $((1,1,1)^{\top}, (0,-1,1)^{\top}, (-2,1,1)^{\top})$ is orthogonal in \mathbb{R}^3 .
- (iii) Let $V = C([0, 2\pi])$ and $\langle \cdot, \cdot \rangle$ be given according to Example 5. Put

$$v_0(x) = 1/\sqrt{2\pi}, \qquad v_k(x) = 1/\sqrt{\pi} \cdot \sin(kx), \qquad v_{-k}(x) = 1/\sqrt{\pi} \cdot \cos(kx)$$

for $x \in [0, 2\pi]$ and $k \in \mathbb{Z} \setminus \{0\}$. Then $(v_k)_{k \in \mathbb{Z}}$ is orthonormal, cf. Exercise 12.x.

Lemma 15. Let (v_1, \ldots, v_n) be an orthogonal family in V for $n \in \mathbb{N}$, and let $v_i \neq 0$ for all $i \in \{1, \ldots, n\}$. Then we have

- (i) $(1/\|v_i\| \cdot v_i)_{i \in \{1,\dots,n\}}$ is orthonormal,
- (ii) $(v_i)_{i \in \{1,\dots,n\}}$ is linearly independent.

Proof. ad (i): For $i, j \in \{1, ..., n\}$ we have

$$\langle 1/||v_i|| \cdot v_i, 1/||v_j|| \cdot v_j \rangle = \frac{\langle v_i, v_j \rangle}{||v_i|| \cdot ||v_j||} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{else.} \end{cases}$$

ad (ii): Let $\sum_{i=1}^{n} \lambda_i v_i = 0$. For all $j \in \{1, \dots, n\}$ we have

$$0 = \langle \sum_{i=1}^{n} \lambda_i v_i, v_j \rangle = \sum_{i=1}^{n} \lambda_i \langle v_i, v_j \rangle = \lambda_j \cdot ||v_j||^2,$$

and hence $\lambda_i = 0$.

Example 16. $(1/\sqrt{3}\cdot(1,1,1)^{\top},1/\sqrt{2}\cdot(0,-1,1)^{\top},1/\sqrt{6}\cdot(-2,1,1)^{\top})$ is an orthonormal basis of \mathbb{R}^3 , see Example 14.(ii) and Lemma 15.

In the sequel let $m \in \mathbb{N}$ and $v_1, \ldots, v_m \in V$.

Proposition 17 (Pythagoras). For an orthogonal family (v_1, \ldots, v_m) we have

$$\left\| \sum_{i=1}^{m} v_i \right\|^2 = \sum_{i=1}^{m} \|v_i\|^2.$$

Proof. We have

$$\left\| \sum_{i=1}^{m} v_i \right\|^2 = \sum_{i,j=1}^{m} \langle v_i, v_j \rangle = \sum_{i=1}^{m} \langle v_i, v_i \rangle = \sum_{i=1}^{m} \left\| v_i \right\|^2.$$

Definition 18. Let $U \subseteq V$. The *orthogonal complement* of U is defined by

$$U^{\perp} = \{ v \in V \colon v \perp u \text{ for all } u \in U \}.$$

Remark 19.

- (i) For $U_1 \subseteq U_2 \subseteq V$ we have $U_2^{\perp} \subseteq U_1^{\perp}$. In particular, we have $\{0\}^{\perp} = V$ and $V^{\perp} = \{0\}$.
- (ii) U^{\perp} is a subspace of V for every $U \subseteq V$, and $U^{\perp} = (\operatorname{span} U)^{\perp}$.

Proof: See Exercise 12.3.

For $\emptyset \neq U \subseteq V$ and $v \in V$ we define $\Delta_{U,v} : U \to \mathbb{R}$ by

$$\Delta_{U,v}(u) = ||v - u||, \qquad u \in U.$$

Proposition 20 (Orthogonal projection). Let (v_1, \ldots, v_m) be an orthonormal family. Put $U = \text{span}(\{v_1, \ldots, v_m\})$ and define $F \colon V \to V$ by

$$F(v) = \sum_{i=1}^{m} \langle v, v_i \rangle v_i, \qquad v \in V.$$

Then we have

- (i) F is 3 linear and satisfies $F^2=F,$ im F=U, and ker $F=U^\perp,$
- (ii) for every $v \in V$ the function $\Delta_{U,v}$ attains its global minimum at F(v) with

$$\min_{u \in U} ||v - u||^2 = ||v - F(v)||^2 = ||v||^2 - \sum_{i=1}^m |\langle v, v_i \rangle|^2.$$

Proof. ad (i): Obviously, F is linear. Lemma 15.(ii) and Remark 19.(ii) show

$$\ker F = \left\{ v \in V : \sum_{i=1}^{m} \langle v, v_i \rangle v_i = 0 \right\} = \{v_1, \dots, v_m\}^{\perp} = U^{\perp}.$$

Since $F(v_i) = v_i$ for all i = 1, ..., m, we obtain im F = U. For $v \in V$ and $j \in \{1, ..., m\}$ we have

$$\langle F(v), v_j \rangle = \sum_{i=1}^m \langle \langle v, v_i \rangle v_i, v_j \rangle = \sum_{i=1}^m \langle v, v_i \rangle \langle v_i, v_j \rangle = \langle v, v_j \rangle,$$

and hence

$$F^{2}(v) = \sum_{j=1}^{m} \langle F(v), v_{j} \rangle v_{j} = F(v).$$

ad (ii): Let $u \in U$ and $v \in V$. By using (i) we have $F(v - F(v)) = F(v) - F^2(v) = 0$, and thus $v - F(v) \in U^{\perp}$, and $F(v) - u \in U$. Proposition 17 (Pythagoras) yields

$$||v - u||^2 = ||v - F(v) + F(v) - u||^2 = ||v - F(v)||^2 + ||F(v) - u||^2.$$
 (12)

According to (i) we have $F(v) \in U$ and hence

$$\min_{u \in U} \|v - u\|^2 = \|v - F(v)\|^2 + \min_{u \in U} \|F(v) - u\|^2 = \|v - F(v)\|^2.$$

Moreover, (12) shows $||v||^2 = ||v - F(v)||^2 + ||F(v)||^2$, and Proposition 17 (Pythagoras) yields

$$||F(v)||^2 = \sum_{i=1}^m ||\langle v, v_i \rangle v_i||^2 = \sum_{i=1}^m |\langle v, v_i \rangle|^2.$$

Corollary 21. Let (v_1, \ldots, v_m) orthonormal. For all $v \in \text{span}(\{v_1, \ldots, v_m\})$ we have

$$v = \sum_{i=1}^{m} \langle v, v_i \rangle v_i$$

and

$$||v||^2 = \sum_{i=1}^m |\langle v, v_i \rangle|^2.$$

Proposition 22 (Gram-Schmidt orthonormalization). Let (w_1, \ldots, w_m) be a linearly independent family in V. There exists an orthonormal family (v_1, \ldots, v_m) in V such that

$$\forall 1 \le k \le m : \text{span}(\{w_1, \dots, w_k\}) = \text{span}(\{v_1, \dots, v_k\}).$$

³Let V be a K-vector space. A linear map $F: V \to V$ satisfying $F^2 = F$ is called projection.

Proof. Induction: For m = 1 we put $v_1 = w_1/||w_1||$. Let (w_1, \ldots, w_{m+1}) be a linearly independent family, and let (v_1, \ldots, v_m) be orthonormal with span $(\{w_1, \ldots, w_m\})$ = span $(\{v_1, \ldots, v_m\})$. Put

$$\tilde{v}_{m+1} = w_{m+1} - \sum_{i=1}^{m} \langle w_{m+1}, v_i \rangle v_i.$$

Proposition 20 (Orthogonal projection) shows $\tilde{v}_{m+1} \in \text{span}(\{v_1, \dots, v_m\})^{\perp}$. Note that the linear independence of (w_1, \dots, w_{m+1}) implies $\tilde{v}_{m+1} \neq 0$. Put

$$v_{m+1} = \tilde{v}_{m+1} / \|\tilde{v}_{m+1}\|$$

such that $||v_{m+1}|| = 1$. By the induction hypothesis, (v_1, \ldots, v_{m+1}) is orthonormal. The induction hypothesis together with $\tilde{w}_{m+1}, v_{m+1} \in \text{span}(\{v_1, \ldots, v_{m+1}\})$ yields $\text{span}(\{w_1, \ldots, w_{m+1}\}) \subseteq \text{span}(\{v_1, \ldots, v_{m+1}\})$. Applying Corollary II.2.15 completes the proof.

Corollary 23. Every finite-dimensional inner product space has an orthonormal basis.

Proof. According to Corollary II.2.9 (Basisauswahlsatz) every finite-dimensional vector space has a basis. Apply Proposition 22 (Gram-Schmidt orthonormalization). \Box

Corollary 24. Let $U \subseteq V$ be a finite-dimensional subspace. For all $v \in V$ there exists a unique minimizer of $\Delta_{U,v}$, which depends linearly on v.

Proof. Apply Corollary 23 and Proposition 20.

Definition 25. Let $U \subseteq V$ be a finite-dimensional subspace and let $v \in V$. The unique minimizer in Corollary 24 is called *orthogonal projection of* v *onto* U. The corresponding linear map is called *orthogonal projection onto* U.

Example 26. Consider the situation from Example 14.(iii) and put

$$U = \operatorname{span}(\{v_{-m}, \dots, v_m\})$$

for $m \in \mathbb{N}$. The orthogonal projection of $f \in C([0, 2\pi])$ onto U is given by

$$F(f) = 1/(2\pi) \cdot \int_0^{2\pi} f(t) dt + 1/\pi \cdot \sum_{k=1}^m \int_0^{2\pi} \sin(kt) f(t) dt \cdot \sin(k \cdot) + 1/\pi \cdot \sum_{k=1}^m \int_0^{2\pi} \cos(kt) f(t) dt \cdot \cos(k \cdot).$$

Keyword: Fourier series.

Remark 27. Let V be finite-dimensional and let $U \subseteq V$.

(i) We have $(U^{\perp})^{\perp} = \operatorname{span} U$.

(ii) If U is a subspace, we have $V=U+U^{\perp}$ and $U\cap U^{\perp}=\{0\}$, and thus dim $U^{\perp}=\dim V-\dim U$.

Proof: See Exercise 12.3.

Example 28. Let $V = \mathbb{R}^3$, $v_1 = (0, -1, 1)^{\top}$, $v_2 = (1, 0, -1)^{\top}$, and $U = \{v_1, v_2\}$. Since dim span U = 2, we obtain dim $U^{\perp} = 1$, see Remark 19.(ii) and Remark 27.(ii). Let $v_3 = (1, 1, 1)^{\top}$. Since $\langle v_1, v_3 \rangle = \langle v_2, v_3 \rangle = 0$, we have $v_3 \in U^{\perp}$ and hence $U^{\perp} = \text{span}(\{v_3\})$ and span $U = \{v_3\}^{\perp}$.