Wednesday, Jan 19

Summary Measures of a Distribution — Continued

A couple of properties of a distribution that we often want to measure are location and variability.

Measures of Variability

The variance for a sample of observations can be written as

$$s^{2} = \frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n - 1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1}.$$

Example: Consider the following sample of observations: 1, 1, 7. The mean is $\bar{x} = 3$ and the variance is

$$s^{2} = \frac{(1-3)^{2} + (1-3)^{2} + (7-3)^{2}}{3-1} = 12.$$

A related measure is the standard deviation which is the square root of the variance, so it can be written as

$$s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n - 1}} = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n - 1}}.$$

Note that the symbol for the variance is s^2 because the variance equals the square of the standard deviation (s).

Another measure is the **range** which is simply defined as the difference between the largest and smallest values,

range =
$$\max(x_1, x_2, \dots, x_n) - \min(x_1, x_2, \dots, x_n)$$
,

and the interquartile range which we will discuss later.

Cumulative Distributions

The cumulative distribution shows the relationship between the value of the variable and cumulative relative frequency.

Example: The following is a hypothetical set of observations of examination scores.

5, 6, 6, 6, 7, 7, 8, 8, 8, 10

x	Frequency	Relative Frequency	Cumulative Relative Frequency
5	1	0.1	0.1
6	3	0.3	0.4
7	2	0.2	0.6
8	3	0.3	0.9
10	1	0.1	1.0

We can graph the cumulative distribution using a step function.

Example: Consider the cumulative distribution of the sample of observations of eruption duration of Old Faithful.

Time	Frequency	Relative Frequency	Cumulative Relative Frequency
1.6	1	0.004	0.004
1.7	3	0.011	0.015
1.8	22	0.081	0.096
1.9	18	0.066	0.162
2	16	0.059	0.221
:	<u>:</u>	:	:
5.1	2	0.007	1

Note: The relative and cumulative relative frequencies above have been rounded.

Finding Percentiles Using a Cumulative Distribution

The Pth **percentile** is the value of the variable such that P% of the observations are less than that value.

Finding Percentiles: Finding percentiles from a set of observations is surprisingly complex! Consider the following distribution.

Here are a couple of examples.

- 1. What is the 60th percentile? Several values of x would qualify! Any x such that $7 < x \le 8$ has 60% of the observations that are less than it.
- 2. What is the 70th percentile? No values of x would qualify! The percent of observations less than 8 is 60%, and the percent of observations for any x > 8 is 90% or more.

x	Frequency	Relative Frequency	Cumulative Relative Frequency		
5	1	0.1	0.1		
6	3	0.3	0.4		
7	2	0.2	0.6		
8	3	0.3	0.9		
10	1	0.1	1.0		

One solution is to use the *midpoint in the first case*, and the smallest value of x that has more than P% of observations less than it in the second case. This is easier to explain/do using a graph of the cumulative distribution.

Finding Percentiles Using the Cumulative Distribution: To find the approximate percentile using a graph of the cumulative relative distribution, find the value where the step function crosses the cumulative relative frequency of P/100. If more than one value crosses value, use the midpoint (i.e., average of the two values).

Example: We can confirm that the 25th, 40th, 50th, 60th, and 70th percentiles for the distribution show below are 6, 6.5, 7, 7.5, and 8, respectively.

Example: We can use the following plot to approximate the 25th, 50th, and 75th percentiles "by eye" (the actual percentiles are 2.15, 4, and 4.45).

Box Plots

A **box plot** is a graphical representation of a distribution of a quantitative variable that uses what is called a **five-number summary**:

- 1. minimum
- 2. first quartile (Q_1) i.e., 25th percentile
- 3. second quartile (Q_2) i.e., 50th percentile and median
- 4. third quartile (Q_3) i.e., 75th percentile
- 5. maximum

Comment: Because there is more than one way to approximate a percentile and thus a quartile, there is more than one way to draw a boxplot. For consistency we will use the approximation given earlier for finding percentiles.

Example: Box plot based on an earlier example.

Note that the five number summary is 5, 6, 7, 8, and 10.

 $\mathbf{Example} :$ Box plot of the Old Faithful data.

Note that the five number summary is 1.6, 2.15, 4, 4.45, and 5.1.

A box plot visually depicts three summary measures: the **median** (i.e., Q_2), **range** (i.e., maximum – minimum), and **interquartile range** (i.e., $Q_3 - Q_1$).

Example: Cumulative distributions and box plots of the data from the study on creativity and motivation.

Example: Distribution of examination scores from Stat 251, Fall 2016.

Example: Distribution of response times for 11 non-schizophrenic individuals and six schizophrenic individuals.

Example: Distributions of samples of observations of the weights of gold sovereigns collected from circulation in Manchester, England.

Age	e n	mean	sd	\min	Q1	Q2	Q3	max	IQR
5	24	7.873	0.0535	7.773	7.842	7.864	7.913	7.986	0.0708
4	17	7.896	0.0406	7.845	7.871	7.883	7.920	7.990	0.0492
3	32	7.928	0.0343	7.877	7.902	7.920	7.952	8.001	0.0501
2	78	7.950	0.0227	7.906	7.934	7.948	7.964	8.020	0.0297
1	123	7.973	0.0141	7.936	7.963	7.972	7.981	8.007	0.0183

Distribution Shapes

Some terms we use to describe the shape of the distribution of a quantitative variable: symmetric, uniform, left-skewed, right-skewed, uni-modal, bi-modal.

Example: Uniform and symmetric.

Example: Uni-modal and symmetric.

Example: Bi-modal and symmetric.

$\textbf{Example:} \ \, \textbf{Left-skewed and uni-modal.}$

Example: Right-skewed and uni-modal.

