

C: NS22

المركز الوطنى للتقويم والامتحانات

الامتحان الوطني الموحد للبكالوريا -الدورة العادية 2008-الموضوع

7	المعامل:	الرياضيات الرياضيات
3س3	مدة الإنجاز:	الشعب (ة): شعبة العلوم التجريبية بمسائكها وشعبة العلوم والتكنولوجيات بمسلكيها

(يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة)

التمرين الأول (3ن)

نعتبر ، في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر $\left(O,i^T,j^T,k^T
ight)$ ، النقطتين $A\left(0,-1,1
ight)$ و $B\left(1,-1,0
ight)$

- . $x^2 + y^2 + z^2 2x 4z + 2 = 0$ التي معادلتها (S) التي
- Λ بين أن مركز الفلكة Λ هي النقطة $\Omega(1,0,2)$ وأن شعاعها هو $\sqrt{3}$ و تحقق من أن Λ تنتمي إلى Λ .
- (OAB) وبين أن x+y+z=0 هي معادلة ديكارتية للمستوى (OAB).
 - . A النقطة (S) مماس للفلكة (S) في النقطة (OAB) بين أن المستوى

التمرين الثاني (3)

- C و B و A النقط C و B و A النقط C التي ألحاقها C و التي ألحاقها C التي ألحاقها C المستوى و C التي ألحاقها على التوالي هي C المستوى و C و C C اليكن C الحق C المستوى و C الحق C النقطة C النقط
 - ا- بين أن z'=z+4-2i ثم تحقق من أن النقطة C هي صورة النقطة z'=z+4-2i .
 - . $\frac{b-c}{a-c} = 2i$: بين أن **0,5**

0,75

1

. BC = 2AC ج- استنتج أن المثلث ABC قائم الزاوية وأن 0,75

التمرين الثالث (3)

يحتوي صندوق على ست كرات حمراء وثلاث كرات خضراء (لا يمكن التمييز بين الكرات باللمس) .

- 1) نسحب عشوائيا وفي آن واحد ثلاث كرات من الصندوق .
- أ- احسب احتمال الحصول على كرتين حمر اوين وكرة خضراء .
- . $\frac{16}{21}$ هو الأقل هو $\frac{16}{21}$ بين أن احتمال الحصول على كرة خضراء واحدة على الأقل هو
- 1) نعتبر في هذا السؤال التجربة التالية: نسحب عشوائيا بالتتابع وبدون إحلال ثلاث كرات من الصندوق. احسب احتمال الحصول على ثلاث كرات حمراء.

الصفحة 2 الموحد للبكالوريا 2 (المتحان الوطني الموحد للبكالوريا 2 (المدرة 2008)	مادة: الرياضيات	
(الدورة العادية 2008) الموضوع C: NS22	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الث
		_
. $g(x) = x - 2 \ln x$: بما يلي $(x) = x - 2 \ln x$	$rac{ m annih ar h}{ m L}$ (11 ن g الدالة العددية المعرفة على المجال g	
.]0,+	∞ [احسب $g'(x)$ لكل g من المجال $g'(x)$	0,5
	ب- بین أن g تناقصیة علی $[0,2]$ و تزایدیا g	0,5
-	∞ [استنتج أن $g(x) > 0$ لكل x من المجال (2	0,5
. $f(x) = x - (\ln x)^2$: بما يلي $]0, +\infty$	المعرفة على المجال f المعرفة على المجال $-II$	
$.$ $(\mathrm{O},i^{\dot{i}},j^{\dot{j}}$) متعامد ممنظم	ليكن (C) المنحنى الممثل للدالة f في معلم ه	
	. احسب $\lim_{\begin{subarray}{c} x \to 0 \\ x > 0 \end{subarray}} f(x)$ احسب (1)	0,75
$\lim_{t \to +\infty} \frac{\ln t}{t} = 0$: نذکر أن $t = \sqrt{x}$	اً- بین أن: $0=\frac{\left(\ln x\right)^2}{x}=0$ يمكنك وض (2	0,5
($f(x) = x \left(1 - \frac{(\ln x)^2}{x}\right)$: لاحظ أن $\lim_{x \to +\infty} \frac{f(x)}{x} = \frac{1}{x}$	$\lim_{x \to +\infty} f(x) = +\infty$ ب - استنتج أن $\lim_{x \to +\infty} f(x) = +\infty$	0,75
المنحنى (C) يقبل ، بجوار ∞ ، فرعا شلجميا اتجاهه (C)	ج – احسب $\lim_{x \to \infty} (f(x) - x)$ ثم استنتج أن	0,5
	$y = x$ المستقيم (Δ) الذي معادلته	
. (Δ) ۾	د - بين أن المنحنى (C) يوجد تحت المستقب	0,25
$0,+\infty$ و بين أن f تزايدية قطعا على $0,+\infty$	$[y'(x) = \frac{g(x)}{x} : $ لك $f'(x) = \frac{g(x)}{x} $ كا الك الك الك الك الك الك الك الك الك	0,75
	. f الدالة ب صع جدول تغيرات الدالة	0,25
. 1 أس المنحنى (C) في النقطة التي أفصولها	ج- بین أن $y=x$ هي معادلة ديكارتية لمما	0, 5
في 0 ,+ ∞ وأن $\alpha<\frac{1}{2}$ وأن $\alpha<\alpha$	بين أن المعادلة $f\left(x ight)=0$ تقبل حلا وحيدا $oldsymbol{4}$	
	$.((\ln 2)^2 < \frac{1}{2}$	0, 5
علم $I(e,e-1)$ نقطة انعطاف (O,i,j) علم علم انعطاف	ر (C) أنشئ المستقيم (Δ) و المنحنى (C) في الم للمنحنى (C) و نأخذ $e \approx 2.7$.	1
$]0,+\infty[$ على المجال ا $\ln:x$ a $\ln x$		0,5
	$. \qquad \int_{1}^{e} \ln x \ dx = 1 $ ثم بین أن:	

. $\int_{1}^{e} (\ln x)^{2} dx = e - 2$: بين أن ، بين أن بالأجزاء ، بين أن

. $I\!N$ من $u_{n+1}=f\left(u_{n}\right)$ و $u_{0}=2$: المعرفة بما يلي المعرفة بما يلي - III المعرفة بما يلي المعرفة بما يلي - III

ج- احسب مساحة حيز المستوى المحصور بين المنحنى (C) والمستقيمين اللذين

0,75

0,5

. x = e **9** x = 1

. (f(x)

الصفحة 3	الامتحان الوطني الموحد للبكالوريا	الرياضيات	المادة:
 الامتحان الوطني الموحد للبكالوريا (الدورة المعادية 2008) الموضوع الموضوع	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعب(ة):	
. (استعمال نتيجة السؤال II-3) أ-)	أن $2 \le u_n \le 1$ لكل n من N (يمكنك أن المتتالية (u_n) تناقصية. نج أن (u_n) متقاربة ثم حدد نهايتها.	0,5 بين
			·

التمريك الأول:

$$B\left(1,-1,0
ight)$$
 و $A\left(0,-1,1
ight)$ النقطتين $\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}
ight)$ عقبر في الفضاء المنسوب لإلى معلم متعامد ممنظم ومباشر ومباشر $\left(S,\overrightarrow{j},\overrightarrow{k}
ight)$ التي معادلتها $\left(S,\overrightarrow{j},\overrightarrow{k}
ight)$ التي معادلتها $\left(S,\overrightarrow{j},\overrightarrow{k}
ight)$

$$x^2 + y^2 + z^2 - 2x - 4z + 2 = 0 \Leftrightarrow (x - 1)^2 + y^2 + (z - 2)^2 = \sqrt{3}^2$$
 .1

.
$$A \in (S \)$$
 بنن $\Omega^2 + (-1)^2 + 1^2 - 2 \times 0 - 4 \times 1 + 2 = 0$. ولدينا $R = \sqrt{3}$ وشعاعها $\Omega(1,0,2)$. ولدينا والدين والدين والدينا والدين الدين والدين الدين والدين الدين والدين والدين الدين والدين وال

$$\overrightarrow{OA} \wedge \overrightarrow{OB} = \begin{vmatrix} -1 & -1 \\ 1 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 0 & 1 \\ -1 & -1 \end{vmatrix} \overrightarrow{k} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} \quad \text{: ومنه فإن : } \overrightarrow{OA} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \text{ } \xrightarrow{OB} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \text{ : } \underbrace{OB} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \text{ . 2.}$$

. $\overrightarrow{OA} \wedge \overrightarrow{OB}$ (1,1,1) : وبالتالي فإن

3. لدينا : $\overrightarrow{OA} \wedge \overrightarrow{OB} (1,1,1)$ متجهة منظمية على المستوى \overrightarrow{OA} المستوى $\overrightarrow{OA} \wedge \overrightarrow{OB} (1,1,1)$ دينا : الدينا : $\overrightarrow{OA} \wedge \overrightarrow{OB} (1,1,1)$ (OAB) ، وبما أن $O\in (OAB)$ ، فإن O=(OAB) ، فإن x+y+z=0 ، وبما أن x+y+z+d=0

$$d\left(\Omega,(OAB)\right) = \frac{\left|1+0+2\right|}{\sqrt{1^2+1^2+1^2}} = \frac{3}{\sqrt{3}} = \sqrt{3} = R$$
 : $\left(OAB\right)$: $\left(OAB\right)$ عن المستوى :

 $A\in (OAB)$ و عليه فإن المستوى $A\in (S)$ مماس للفلكة $A\in (S)$ في النقطة A على اعتبار أن

التمرين الثانــــى:

. $\Delta = \left(-3\right)^2 - 1 \times 34 = 9 - 34 = -25 = \left(5i\right)^2$. مميز هذه المعادلة هو : $z^2 - 6z + 34 = 0$. المعادلة : $z^2 - 6z + 34 = 0$. مميز هذه المعادلة هو : $z^2 - 6z + 34 = 0$ وبالتالى فإن للمعادلة السابقة حلين عقديين متر افقين هما:

$$z_2 = \frac{-b' - i\sqrt{-\Delta'}}{a} = \frac{-(-3) - 5i}{1} = \boxed{\frac{3 - 5i}{1}}$$
 و بالنالي فإن مجموعة حلول المعادلة هي : $z_1 = \frac{-b' + i\sqrt{-\Delta'}}{a} = \frac{-(-3) + 5i}{1} = \boxed{\frac{3 + 5i}{1}}$

2. في المستوى العقدي المنسوب إلى معلم متعامد ممنظم ومباشر $(O,\overrightarrow{e_1},\overrightarrow{e_2})$ ، نعتبر النقط A و B و B التي ألحاقها على التوالي و u المتجهة u دات المتجهة u و u دات المتجهة u4-2i لحقها

$$M' = T(M) \Leftrightarrow \overline{MM'} = \overrightarrow{u} \Leftrightarrow z' = z + aff(\overrightarrow{u}) \Leftrightarrow \boxed{z' = z + 4 - 2i}$$
: الدينا

وبما أن : C=T هي صورة A بالازاحة C=T ، فإن: C=T هي صورة A بالازاحة C=T

$$.\frac{b-c}{a-c} = \frac{3-5i-7-3i}{3+5i-7-3i} = \frac{-4-8i}{-4+2i} = \frac{2i\left(-4+2i\right)}{-4+2i} = \boxed{\frac{2i}{2i}}$$
: ب

$$\begin{array}{lcl} \overline{\left(\overrightarrow{CA},\overrightarrow{CB}\right)} & \equiv & \arg\left(\frac{b-c}{a-c}\right) & \left[2\pi\right] \\ \hline \overline{\left(\overrightarrow{CA},\overrightarrow{CB}\right)} & \equiv & \frac{\pi}{2} & \left[2\pi\right] \end{array} \hspace{3cm} : \dot{b} - \frac{b-c}{a-c} = 2i = \left[2,\frac{\pi}{2}\right] : \dot{a} - c = 2i = \left[2,\frac{\pi}{2}\right]$$

.
$$\boxed{BC=2AC}$$
 : إذن $\frac{CB}{CA}=\left|\frac{b-c}{a-c}\right|=2$ ولدينا C ولدينا C ولدينا C ومنه فإن C مثلث قائم الزاوية في C ولدينا C

التمرين الثالــــث:

يحتوي صندوق على ست كرات حمراء وثلاث كرات خضراء (لا يمكن التمييز بينها باللمس)

1. نسحب عشوائيا وفي أن واحد (الترتيب غير مهم) ثلاث كرات من الصندوق. تثبيت الصنف : الله الم الترتيب غير مهم) ثلاث كرات من الصندوق. تثبيت الصنف : الله الم الترتيب غير مهم) ثلاث كرات من الصندوق. تثبيت الصنف :

.
$$\frac{C_6^2 \times C_3^1}{C_9^3} = \frac{15 \times 3}{84} = \frac{15}{28}$$
 : هو RRV هو غلى كرتين حمر اوين وكرة خضراء

يقة 1 : احتمال الحصول على كرة خضراء واحدة على الأقل RRV أو RVV هو :

$$.\frac{C_6^2C_3^1 + C_6^1C_3^2 + C_3^3}{C_9^3} = \frac{15 \times 3 + 6 \times 3 + 1}{84} = \boxed{\frac{16}{21}}$$

طريقة 2 : نضع الحدث $A: \ll 1$ الحصول على كرة خضراء واحدة على الأقل M .

الحدث المضاد للحدث A هو : $\overline{A}: >\!\!\!>: \overline{A}$ الحصول على ثلاث كرات حمراء - RRR - $>\!\!\!>:$

$$p(A) = 1 - p(\overline{A}) = 1 - \frac{C_6^3}{C_9^3} = 1 - \frac{20}{84} = \frac{64}{84} = \frac{16}{21}$$
 : البينا

2. نسحب عشوائيا بالنَّابِ عموائيا بالنَّابِ عمورات من الصندوق.

 $A_n^{\,p}:$ تثبیت الصنف $rac{| oldsymbol{b}|^p}{| oldsymbol{b}|^p}$ تثبیت الصنف

$$\frac{A_6^3}{A_9^3} = \frac{120}{504} = \frac{5}{21}$$
 : هو اعلى ثلاث كرات حمراء هو

...

التمرين الرابـــع:

الجزء الأول:

. $g(x) = x - 2\ln x$: يما يلي $g(x) = x - 2\ln x$ الدالة العددية المعرفة على المجال $g(x) = x - 2\ln x$

.
$$g'(x) = (x - 2\ln x)' = 1 - \frac{2}{x} = \frac{x-2}{x}$$
 : اليكن $x \in (0, +\infty)$. 1

.
$$\frac{x-2}{x}$$
 . إذن إشارة $g'(x)$ على المجال $g'(x)=\frac{x-2}{x}$. إذن إشارة $g'(x)=\frac{x-2}{x}$. إذن إشارة والمجال أن المجال أ

: ولاينا :
$$x \in [2,+\infty[\Rightarrow x \ge 2 \Rightarrow x - 2 \ge 0]$$
 و $x \in]0,2]$ ين

: خلاصة على المجال
$$[0,2]$$
 وتزايدية على المجال على المجال على المجال يتناقصية على المجال المجال على المجال المجا

х	0 2 +∞
g'(x)	- o +
g (x)	$g(2) = 2(1 - \ln 2)$

.
$$g(2) = 2(1 - \ln 2) > 0$$
 : فإن $e > 2 \Rightarrow 1 > \ln 2 \Rightarrow 1 - \ln 2 > 0$: 2. بما أن : 2

ولدينا :
$$g(2)=2(1-\ln 2)$$
 عند العدد g قيمة دنوية مطلقة للدالة والمجال يا على المجال والعدد ومنه فإن

$$\forall x \in]0,+\infty[$$
: $g(x) \ge g(2) > 0$

الجزء الثاني:

. $f\left(x\right)=x-\left(\ln x\right)^{2}$: بما يلي $\left[0,+\infty\right]$ بالمعرفة على المعرفة على المجال المعرفة على المعرفة على

.
$$\lim_{\substack{x \to 0 \\ x > 0}} \ln x = -\infty$$
 : لاينا : $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} x - (\ln x)^2 = \boxed{-\infty}$: 1.

. x=0 المنحنى ($\mathscr C$) يقبل مقاربا عموديا معادلته

: فإن : $\lim_{t\to+\infty}\frac{\ln t}{t}=0$. وحيث أن $t=\sqrt{x}$. فإن : $t=\sqrt{x}$. فإن : 2

$$\lim_{x \to +\infty} \frac{\left(\ln x\right)^2}{x} = \lim_{x \to +\infty} \left(\frac{\ln x}{\sqrt{x}}\right)^2 = \lim_{t \to +\infty} \left(\frac{\ln\left(t^2\right)}{t}\right)^2 = \lim_{t \to +\infty} \left(2 \times \frac{\ln t}{t}\right)^2 = 0$$

$$\lim_{x \to +\infty} \frac{\left(\ln x\right)^2}{x} = 0 : \text{ iim } f\left(x\right) = \lim_{x \to +\infty} x - \left(\ln x\right)^2 = \lim_{x \to +\infty} x \left(1 - \frac{\left(\ln x\right)^2}{x}\right) = \boxed{+\infty} : \text{ i.i. } f\left(x\right) = \lim_{x \to +\infty} x - \left(\ln x\right)^2 = \lim_{x \to +\infty} x \left(1 - \frac{\left(\ln x\right)^2}{x}\right) = \boxed{+\infty} : \text{ i.i. } f\left(x\right) = \lim_{x \to +\infty} x - \left(\ln x\right)^2 = \lim_{x \to +\infty} x - \left(\ln x\right)^2$$

.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 - \frac{(\ln x)^2}{x} \right) = \boxed{1} :$$
ولدينا

جـ- لدينا : $\lim_{x \to +\infty} f\left(x\right) - x = \lim_{x \to +\infty} x - (\ln x)^2 - x = \lim_{x \to +\infty} - (\ln x)^2 = \boxed{-\infty}$ ، وحسب السؤال السابق ، فإن المنحنى جـ- لدينا : y = x . y = x . y = x . y = x . y = x .

.
$$(\Delta)$$
 يوجد تحت المستقيم (\mathscr{C}) يوجد تحت المستقيم $\forall x \in]0,+\infty[$: $f(x)-x=-(\ln x)^2 \leq 0$: د- لدينا

$$.f'(x) = (x - (\ln x)^2)' = 1 - 2ln'(x) \ln x = 1 - \frac{2\ln x}{x} = \frac{x - 2\ln x}{x} = \frac{g(x)}{x}$$
 : ليكن $x \in (0, +\infty)$.3

.]0,+∞ في الجزء الأول ، لدينا : f'(x)>0 : f'(x)>0 الذينة على]0,+∞ في الجزء الأول ، لدينا : g(x)

f : f الدالة

х	0 +∞
f'(x)	+
f(x)	+∞

. حيث : f معرفة من المجال J0, $+\infty$. إذن: f تقبل دالة عكسية f^{-1} معرفة من المجال J0, حيث :

نحو المجال
$$I=\left]0,+\infty\right[$$
 نحو المجال $J=f\left(\left]0,+\infty\right[\right)=\lim_{\substack{x\to 0\\x>0}}f\left(x\right),\lim_{\substack{x\to +\infty}}f\left(x\right)\left[=\left]-\infty,+\infty\right[=\mathbb{R}$

. $I=\left]0,+\infty\right[$ المعادلة α في المجال $f\left(x\right)=0$ المعادلة

.(
$$\left(\ln 2\right)^2 < \frac{1}{2}$$
 و بما أن : $f\left(\frac{1}{2}\right) = \frac{1}{2} - \left(\ln 2\right)^2 > 0$ و بما أن : $f\left(\frac{1}{e}\right) = \frac{1}{e} - 1 = \frac{1-e}{e} < 0$: وبما أن

. $\frac{1}{e}$ < lpha < الدينا ، فإنه حسب مبر هنة القيم الوسيطية

.epprox2,7 . (\mathscr{C}) . نقطة انعطاف المنحنى $I\left(e,e-1
ight)$. lphapprox0,4948664145

 (\mathscr{C}) . انشاء المنحنى

 $H: x \mapsto x \ln x - x$. إذن : $\forall x \in]0, +\infty[$: $H'(x) = (x \ln x - x)' = x' \ln x + x \ln x' - 1 = \ln x$. إذن : $h: x \mapsto \ln x$. ولدينا : $h: x \mapsto \ln x$. ولدينا :

$$\int_{1}^{e} \ln(x) dx = \left[H(x) \right]_{1}^{e} = H(e) - H(1) = 0 - (-1) = \boxed{1}$$

ب- باستعمال المكاملة بالأجزاء، لدينا:

$$\int_{1}^{e} \ln(x)^{2} dx = \int_{1}^{e} H'(x) \ln(x) dx = \left[H(x) \ln(x) \right]_{1}^{e} - \int_{1}^{e} H(x) \ln'(x) dx$$

$$= H(e) \ln(e) - H(1) \ln(1) - \int_{1}^{e} \frac{x \ln x - x}{x} dx$$

$$= -\int_{1}^{e} (\ln(x) - 1) dx = -\int_{1}^{e} \ln(x) dx + (e - 1) = e - 2$$

- حسب السؤال أعلاه -

$$x=e$$
 و $x=1$ والمستقيمين المعرفين بالمعادلتين $x=e$ و المستقيم المعرفين بالمعادلتين $x=e$ و المستقيمين المعرفين بالمعادلتين $x=e$

$$\mathscr{A} = \int_{1}^{e} |f(x) - x| dx = \int_{1}^{e} (x - f(x)) dx = \int_{1}^{e} (\ln x)^{2} dx = \boxed{e - 2} \approx 0,7(u.a.)$$

الجزء الثالث:

$$\begin{cases} u_0=2\\ u_{n+1}=f\left(u_n\right) \;\;;\quad n\in\mathbb{N} \end{cases}$$
 : نعتبر المتتالية العددية
$$(u_n)_{n\in\mathbb{N}}$$

. $\forall n \in \mathbb{N} : 1 \leq u_n \leq 2$: نبين بالترجع أن $n \in \mathbb{N}$

.
$$1 \le u_0 \le 2$$
 : اذن $u_0 = 2$ ، لدينا $n = 0$ من أجل \checkmark

. $n \in \mathbb{N}$ ليكن

 $1 \le u_n \le 2$: نفترض أن

 $1 \le u_{n+1} \le 2$: لنبين أن 4

$$1 \leq u_n \leq 2 \Rightarrow f(1) \leq f(u_n) \leq f(2) \Rightarrow 1 \leq u_{n+1} \leq 2$$
 : نعلم أن f تزايدية على المجال $0,+\infty$ إذن $0,+\infty$ الأن $f(2)-2=-\left(\ln 2\right)^2 \leq 0 \Rightarrow f(2) \leq 2$: لأن

. $\forall n \in \mathbb{N} : 1 \leq u_n \leq 2$ وبالتالي فإن \checkmark

. ليكن
$$n\in\mathbb{N}$$
 . ليكن u_n . ليكن u_n . ليكن u_n . الدينا u_n . متتالية تناقصية . u_n . عنتالية تناقصية . u_n

3. بما أن $(u_n)_{n\in\mathbb{N}}$ متتالية تناقصية ومصغورة بالعدد 1 ، فإنها متقاربة.

. [1,2] دالة متصلة على المجال f

$$f\left(2\right) \leq 2$$
 : لأن $f\left(\left[1,2\right]\right) = \left[f\left(1\right),f\left(2\right)\right] \subset \left[1,2\right]$ ، لأن $f\left(\left[1,2\right]\right) = \left[f\left(1\right),f\left(2\right)\right] \subset \left[1,2\right]$

$$u_0 = 2 \in [1,2]$$

. l متتالیة متقاربة نهایتها $\left(u_{n}\right)_{n\in\mathbb{N}}$

. $l\in [1,2]$ و $f\left(l\right)\!=\!l$: حسب مصادیق النقارب

ولدينا :
$$f(l) = l \Leftrightarrow l - (\ln(l))^2 = l \Leftrightarrow \ln(l) = 0 \Leftrightarrow l = 1$$
 ولدينا : ولدينا

انتہ____ی

Maple 7 باستعمال x=e و x=1 المعادلتين المعادلتين (\mathscr{E}) و المستقيم المستقيم ((\mathscr{E}) و المستقيم المعادلتين (x=e) باستعمال (x=e)0 المستقيم المعادلتين (x=e)1 باستعمال (x=e)2 باستعمال (x=e)3 باستعمال (x=e)4 باستعمال (x=e)4 باستعمال (x=e)5 باستعمال (x=e)6 باستعمال (x=e)8 باستعمال (x=e)9 باستعم

$$f := x \to x - \ln(x)^2$$

> A:=Int(abs('f'(x)-x),x=1..exp(1))=int(abs(f(x)-x),x=1..exp(1));

$$A := \int_{1}^{\mathbf{e}} |-\mathbf{f}(x) + x| dx = \mathbf{e} - 2$$

>A:=evalf(rhs(A),20);

A := .7182818284590452354

