

MODELING With UML DIAGRAMS

Here is where we begin

TABLE OF CONTENTS

"Simplification of reality" – high level logical.

IT'S representation of a system (from a perspective)

- Permits you to specify the structure or behavior of a system.
- Helps you to visualize a system
- Helps to understand complex system part by part
- Document the decisions that you have made

UNIFIED MODELLING LANGUAGE is not a programming language it's a graphical language to visualize and specify the boundary, structure, and the behavior of the system and the objects within it.

UML used to model a diverse range of systems - Like

"Enterprise Info. System, Web-based application,

Mobile Apps, Embedded systems"

ABOUT THE UML DIAGRAMS

UML Diagrams are used to create different types of Models and diagrams that represent different views of the system.

Diagram is a graphical presentation of a set of UML

Elements, Drawn as connected graph of vertices (things) and Arcs (relationships)

RELATION between UML DIAGRAMS and MODELS

- UML Diagram used to create a model of system
- E.g. UML Use case diagram is used to create the Requirements model of the system.
- No real-life complex system can be completely understood from only 1 perspective
- Different diagrams-different views of system

DIFFERENT TYPES of MODELS/VIEWS in UML

Structural View

Class Diagram

Object Diagram

Composite Structure Diagram

(Package Diagram)

Behavioral View

Sequence Diagram

Communication Diagram

State Diagram

Activity Diagram

Interaction Overview Diagram

Timing Diagram

Implementation View

Component Diagram
Composite Structure Diagram

Use Case View

Use Case Diagram

Environment View

Deployment Diagram

MOST WIDELY USED UML DIAGRAMS

USE-CASE DIAGRAM

- •Shows a set of use-cases & actors & their relationships
- •Used to create requirements view for end users/customers

USE-CASE DIAGRAM

•Components =

- <u>Actors</u>: A role that a user plays with respect to the system, including human users and other systems. e.g., inanimate physical objects (e.g. robot); an external system that needs some information from the current system
- <u>Use case:</u> A set of scenarios/features that describe an interaction between a user and a system.
- <u>System boundary</u>: rectangle diagram representing the boundary between the actors and the system.

Class DIAGRAM

- •Used to create Structural Model and to describe structure and behavior in the use-cases
- •Represents static-design view of system,
- •Shows building blocks and relationships between them in an object-oriented system.
- •Provide a conceptual model of the system in terms of entities and their relationships
- •Detailed class diagrams are used for developers

Class DIAGRAM

•Components = entity (name, attribute, operation/method) - relation.

ACTIVITY DIAGRAM

- •Activity is a UML behavior diagram that represents the workflow of stepwise activities of the system
- •Shows flow of control from activity to activity within system (similar to Flow-chart with symbols while flowchart is a graphical diagram that represents the sequence of steps in one way to solve a problem)
- •Represent high-level business processes, explain logic involved in system
- •Activity diagram is used to represent the execution of the process.

ACTIVITY DIAGRAM

•Components = start & end node - action/activity - decision - control flow - forks & join - swimlanes.

SEQUENCE DIAGRAM

- •Represents Interaction among Objects (when system is running)
- •Sequence diagrams are mainly used to represent the time order of a process.
- •The vertical arrangement of messages exchanged among set of objects (having links) indicates their order
- •Used to created dynamic/behavioral model.

SEQUENCE DIAGRAM

•Components = timeline/lifeline - activation bar - actor - object - message - object flow.

REFERENCE LINKS

- https://www.slideshare.net/KhushbuWadhwani/unified-modeling-language-59411901AUTHOR (YEAR). Title of the publication.
 Publisher
- https://www.slideshare.net/KhushbuWadhwani/unified-modelinglanguage-59411901AUTHOR (YEAR). Title of the publication.
 Publisher
- https://www.slideshare.net/hoosfoos/software-engineeringmodels-presentationAUTHOR (YEAR). Title of the publication.
 Publisher
- https://www.linkedin.com/learning/software-design-modelingwith-uml/uml-modeling-tools?autoplay=true