x'(t) - a(x)x(t) = 0. Обозначим за A(t) интеграл $A(t) = \int_{0}^{t} a(s)ds$, $\frac{dA}{dt} = a(t)$. $x'(t)e^{-A(t)}-e^{-A(t)}a(x)x(t)=0.$ $\frac{d}{dt}\Big(xe^{-A(t)}\Big)=0.$ $x(t)=Ce^{A(t)}$ — общее решение.

Условие $\overline{\lim_{t\to +\infty}} A(t) < +\infty$ равносильно ограниченности сверху этой функции, то есть

тому, что существует такое α , что $A(t) \leqslant \alpha$ при всех $t \geqslant t_0$.

Далее за $\varphi(t) = 0$ обозначено нулевое решение; $t_0 = 0$.

Необходимость. Пусть A(t) сверху неограничена при $t \ge 0$. Покажем, что решение $\varphi(t)$ неустойчиво.

Пусть $\varepsilon = 1, \delta > 0$ – произвольное и $|x(0) - \varphi(0)| = |C| < \delta, |C| \neq 0$. A(t) неограничена, значит найдётся такое $t_1>0$, что $A(t_1)\geqslant \ln\!\left(\frac{\varepsilon}{|C|}\right)$. В таком случае $\left|x(t_1)-\varphi(t_1)\right|=$ = $|C|e^{A(t_1)} \geqslant \varepsilon$. Последнее означает, что решение неустойчиво.

Достаточность. Пусть теперь A(t) ограничена сверху числом α . Покажем устойчивость решения.

Пусть $\varepsilon>0$ и $\delta(\varepsilon)=\frac{\varepsilon}{e^{\alpha}}$. Потребуем, чтобы $\left|x(0)-\varphi(0)\right|=|C|<\delta$. Из этого следует, что для всех $t \ge 0$

$$|x(t) - \varphi(t)| = |C|e^{A(t)} < \delta e^{\alpha} = \varepsilon.$$

Таким образом, устойчивость решения установлена. Теорема полностью доказана.