

CSE211 - Formal Languages and Automata Theory

U2L10_Simplification of CFG

Dr. P. Saravanan
School of Computing
SASTRA Deemed University

Outline

- Recap of previous class
- Properties of CGL
- Substitution rule
- Simplification of CFG
 - Eliminating useless production
 - Eliminating e-production
 - Eliminating unit production
- Reason for Simplication

Properties of CFL

- CFG's may be simplified to fit certain special forms, like
 - Chomsky Normal Form (CNF) and
 - Greiback Normal Form (GNF).
- Some, but not all, properties of RL's are also possessed by the CFL's.
- Unlike the RL, many computational problems about the CFL cannot be answered.
- That is, there are many undecidable problems about CFL's.

A Substitution Rule

$$S \rightarrow aB$$
 $A \rightarrow aaA$
 $A \rightarrow abBc$
 $B \rightarrow aA$

 $S \rightarrow aB \mid ab$ $A \rightarrow aaA$ Substitute $B \rightarrow b$ $A \rightarrow abBc \mid abbc$ $B \rightarrow aA$

 $B \rightarrow b$

In general

$$A \rightarrow xBz$$

$$B \rightarrow y_1$$

Substitute

$$B \rightarrow y_1$$

$$A \rightarrow xBz \mid xy_1z$$

Simplification of CFG

 Every CFG can be transformed into an equivalent grammar in Chomsky Normal Form, after simplifying the CFG in the following ways:

- eliminating useless symbols (which do not appear in any derivation from the start symbol);
- eliminating ε-productions (of the form $A \rightarrow \varepsilon$);
- eliminating *unit productions* (of the form $A \rightarrow B$);

- We say symbol X is useful for a grammar G = (V, T, P, S) if there is some derivation of the form
 - $-S \stackrel{*}{=} aXb \stackrel{*}{=} w \text{ with } w \in T^*.$
- A symbol is said to be useless if not useful.
- Omitting useless symbols obviously will not change the language generated by the grammar.
- There are two types of usefulness ----
 - X is generating if $X_{-}^* w$;
 - X is reachable if $S \stackrel{*}{=} aXb$.

Eliminating Useless Symbols

Example 1

- Eliminate useless symbols in a grammar with the following productions:
 - $-S \rightarrow AB \mid a$
 - $-A \rightarrow b$.
- *B* is *not generating*, and is so eliminated at first, resulting in $S \rightarrow a$, $A \rightarrow b$, in which A is *not reachable*
- and so eliminated too, with S → a as the only production left.
- The order of eliminations is essential: eliminate nongenerating symbols at first.

Eliminating Useless Symbols

Thorem

- Let G = (V, T, P, S) be a CFG, and assume that $L(G) \neq \emptyset$, i.e., assume that G generates at least one string. Let $G_1 = (V_1, T_1, P_1, S)$ be the grammar obtained by the following steps in order:
 - eliminate non-generating symbols and all related productions, resulting in grammar G_2 ;
 - eliminate all symbols not reachable in G2.
- Then, G_1 has no useless symbol and $L(G_1) = L(G)$.

Computing Generating and Reachable Symbols

- How to compute generating symbols?
- Basis: Every terminal symbol is generating.
- Induction: if every symbol in a in A → a is generating, then A is generating.

- How to compute reachable symbols?
- Basis: the start symbol S is reachable.
- *Induction*: if nonterminal A is reachable, then all the symbols in $A \rightarrow a$ are reachable.

- A definition --- a nonterminal A is said to be nullable if
 - A => ε.
- A Theorem --- We want to prove that
 - if a language L has a CFG, then the language $L \{\varepsilon\}$ can be generated by a CFG without ε -production.
- Two steps for the above proof:
 - find "nullable" symbols;
 - transform productions into ones which generate no empty string using the nullable symbols.

Given a grammar with productions as follows:

$$S \rightarrow AB$$

 $A \rightarrow aAA \mid \varepsilon$
 $B \rightarrow bBB \mid \varepsilon$

- then, we can see the following facts:
 - A and B are nullable because they derive empty strings;
 - S is also nullable because A and B are nullable.

- How to find nullable symbols systematically?
- Algorithm 1 ---
- Basis: if $A \rightarrow \varepsilon$ is a production, then A is nullable
- Induction: if all C_i in $B \to C_1 C_2 ... C_k$ are nullable, then B is nullable, too.

- How to transform productions into ones which generate no empty string?
- Algorithm 2 ---
- For each production $A \rightarrow X_1 X_2 ... X_k$, in which m of the k X_i 's are nullable, then generate accordingly 2m versions of this production where
 - (1) the nullable X_i 's in all possible combinations are present or absent; and
 - (2) if $A \rightarrow \varepsilon$ is in the 2m ones, eliminate it.

- For $S \rightarrow AB$, $A \rightarrow aAA \mid \varepsilon$, $B \rightarrow bBB \mid \varepsilon$:
 - We know S, A, B are nullable.
 - From $S \rightarrow AB$, we get $S \rightarrow AB \mid A \mid B \mid \varepsilon$ where $S \rightarrow \varepsilon$ should be eliminated.
 - From $A \rightarrow aAA$, we get $A \rightarrow aAA \mid aA \mid aA \mid a$ where the repeated $A \rightarrow aA$ should be removed.
 - And from $B \rightarrow bBB$, similarly we get $B \rightarrow bBB \mid bB \mid$ b. S → AB | A | B
 - Overall result: $A \rightarrow aAA \mid aA \mid a$ $B \rightarrow bBB \mid bB \mid b$

Summary

- Recap of previous class
- Properties of CGL
- Substitution rule
- Simplification of CFG
 - Eliminating useless production
 - Eliminating e-production
 - Eliminating unit production
- Reason for Simplication

References

- John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

Chomsky Normal Form (CNF) THANK YOU