

Fachbereich Mathematik

Automorphe Formen

Wintersemester 2018/2019

Vorlesung gehalten von Prof. Nils Scheithauer

Inhaltsverzeichnis

1	Absolutbeträge	3
2	Die p-adischen Zahlen	5
3	Integration	12
4	Adele	17

Einleitung

Sei G eine Gruppe, die auf einem topologischen Raum X operiert. Eine Funktion $f \colon X \to \mathbb{C}$ heißt automorphe Form auf X, wenn

$$f(gx) = \Psi(g, x)f(x)$$

für alle $g \in G, x \in X$ für eine geeignete Funktion $\Psi \colon G \times X \to \mathbb{C}$ gilt. Häufig werden noch weitere Bedingungen zum Beispiel an das Wachstum gefordert. Einer automorphen Form kann man eine automorphe Darstellung zuordnen und dieser wiederum eine L-Reihe. Es wird vermutet, dass diese automorphen L-Reihen dieselben sind, die man in der arithmetischen algebraischen Geometrie findet (Langlands-Programm). Ein Spezialfall dieser Korrespondenz ist der Modularitätssatz:

Satz 0.1 (Breuil, Conrad, Diamond, Taylor (2001), Wiles (1995) vermutet von Taniyama und Shimura (1958)). Sei E eine rationale elliptische Kurve mit Führer N. Dann gibt es eine Neuform $f \in S_2(\Gamma_0(N))$ mit

$$L_f = L_E$$
.

In dieser Vorlesung betrachten wir automorphe Formen auf $GL(n, A_{\mathbb{Q}})$ für n = 1 und wenn es die Zeit erlaubt für n = 2.

Literatur

Goldfeld, Hundley: Automorphic representations and L-functions for the general linear group, Cambridge University Press.

Skript von Herrn Brunier

1 Absolutbeträge

Definition 1.1. Sei K ein Körper. Ein Absolutbetrag auf K ist eine Abbildung $|\cdot|:K\to\mathbb{R}$ mit

- i) $|x| \ge 0$ und $|x| = 0 \Leftrightarrow x = 0$,
- ii) |xy| = |x| |y|,
- iii) $|x + y| \le |x| + |y|$

für alle $x, y \in K$. Gilt zusätzlich

$$|x + y| \le \max(|x|, |y|),$$

so heißt $|\cdot|$ nicht-archimedisch. Ist $|\cdot|$ ein Betrag auf K, so definiert

$$d(x,y) \coloneqq |x-y|$$

eine Metrik auf K. Zwei Absolutbeträge heißen $\ddot{a}quivalent$, wenn sie dieselbe Topologie auf K erzeugen.

 $\mathbf{Satz}\ \mathbf{1.2.}\ Seien\ \left|\cdot\right|_{1},\left|\cdot\right|_{2}\ zwei\ Absolutbetr\"{a}ge\ auf\ K.\ Dann\ sind\ \"{a}quivalent$

- $i)\ \left|\cdot\right|_1\ und\ \left|\cdot\right|_2\ sind\ \ddot{a}quivalent,$
- $ii) \ \ es \ existiert \ c>0 \ \ mit \ |x|_1=|x|_2^c \ f\"ur \ alle \ x\in K.$

Satz 1.3. Sei $|\cdot|$ ein Absolutbetrag auf K. Dann sind die folgenden Abbildungen stetig:

- $i) K \to \mathbb{R}, x \mapsto |x|,$
- $ii) K \to K, x \mapsto -x,$
- iii) $K \times K \to K, (x, y) \mapsto x + y,$

$$iv) K^* \to K^*, x \mapsto x^{-1},$$

$$v) \ K \times K \to K, (x,y) \mapsto xy.$$

Satz 1.4. Sei K ein Körper mit Absolutbetrag $|\cdot|$. Dann gibt es eine Körpererweiterung \hat{K}/K und eine Fortsetzung von $|\cdot|$ auf \hat{K} , sodass K dicht in \hat{K} und \hat{K} vollständig bezüglich $|\cdot|$ ist. Ist \tilde{K} ein weiterer Erweiterungskörper von K mit obigen Eigenschaften, so existiert genau ein Körperisomorphismus $\tilde{K} \to \hat{K}$, der auf K die Identität ist und die Absolutbeträge ineinander überführt.

Beweis. Sei $K' := \{(x_n)_{n \in \mathbb{N}} \subseteq K \mid (x_n)_{n \in \mathbb{N}} \text{ Cauchy-Folge bezüglich } |\cdot| \}$ die Menge der Cauchy-Folgen in K. Dann ist K' ein kommutativert Ring mit 1 und $N := \{(x_n)_{n \in \mathbb{N}} \mid (x_n)_{n \in \mathbb{N}} \text{ Nullfolge} \}$ ein maximales Ideal. Somit ist $\hat{K} = K'/N$ ein Körper. Die Abbildung

$$K \to \hat{K}$$

 $x \mapsto (x) + N$

ist ein Körperhomomorphismus und somit injektiv. Der Absolutbetrag auf \hat{K} wird definiert durch

$$|(x_n)| = \lim_{n \to \infty} |x_n|$$

wobei $|x_n|$ aufgrund der umgekehrten Dreiecksungleichung eine Cauchy-Folge in \mathbb{R} ist. Dieser ist wohldefiniert, \hat{K} ist vollständig und K ist dicht in \hat{K} . Die Einbettung $K \hookrightarrow \hat{K}$ ist auf einer dichten Teilmenge von \tilde{K} definiert. Da die Einbettung die Absolutbeträge erhält, ist sie stetig und lässt sich somit eindeutig zu einer stetigen Abbildung $\tilde{K} \to \hat{K}$ fortsetzen. Diese Abbildung ist ein Isomorphismus, der die Absolutbeträge erhält. Die Eindeutigkeit ist aus der Konstruktion klar.

Bemerkung 1.5. Im Gegensatz ist der algebraische Abschluss nicht eindeutig bis auf eindeutigen Isomorphismus.

2 Die p-adischen Zahlen

Für $x \in \mathbb{Q}$ definieren wir

$$|x|_{\infty} := \begin{cases} x & \text{falls } x \ge 0, \\ -x & \text{falls } x < 0. \end{cases}$$

Dann ist $|\cdot|_{\infty}$ ein Absolutbetrag.

Sei p>0 eine Primzahl. Wir schreiben $x\in\mathbb{Q}^*$ als $x=p^n\frac{a}{b}$ mit $p\nmid ab$ und definieren

$$|x|_p \coloneqq p^{-n}$$

und setze $|0|_p=0$. Dann ist der p-adische Betrag $|\cdot|_p$ ein nicht-archimedischer Absolutbetrag auf $\mathbb Q$. Es gilt

$$|x + y|_p \le \max(|x|_p, |y|_p).$$

Ist $|x|_p \neq |y|_p$ so gilt Gleichheit.

Beispiel 2.1. i) Die Folge $1, p, p^2, \ldots$ konvergiert p-adisch gegen 0, da $d_p(0, p^n) = p^{-n} \to 0$.

ii) Die Folge 1, $\frac{1}{10},\frac{1}{10^2},\dots$ ist keine Cauchy-Folge bezüglich $\left|\cdot\right|_p.$

Theorem 2.2 (Ostrowski). Ein Absolutbetrag auf \mathbb{Q} ist äquivalent zu $|\cdot|_{\infty}$ oder zu einem $|\cdot|_p$ für eine Primzahl p.

Satz 2.3 (Produktformel). Sei $x \in \mathbb{Q}^*$. Dann gilt

$$|x|_{\infty} \prod_{p} |x|_{p} = 1.$$

Bemerkung 2.4. Die Primzahlen $2, 3, \ldots$ werden als endliche Primzahlen bezeichnet und ∞ als unendliche Primzahl. Wir bezeichnen endliche Primzahlen meist mit p und beliebige Primzahlen mit ν .

Definition 2.5. Wir fixieren eine endliche Primzahl p und definieren

$$K(x,r) := \{ y \in \mathbb{Q} \mid d_p(x,y) < r \},$$

$$\overline{K}(x,r) := \{ y \in \mathbb{Q} \mid d_p(x,y) \le r \}$$

als offener beziehungsweise abgeschlossener Ball bezüglich $\left|\cdot\right|_p$ um xmit Radius r.

Satz 2.6. Sei $x \in \mathbb{Q}$ und $r \in \mathbb{R}, r > 0$.

(i) $F\ddot{u}r \ x' \in K(x,r)$ gilt

$$K(x',r) = K(x,r).$$

(ii) Für hinreichend kleines $\varepsilon > 0$ gilt

$$K(x,r) = \overline{K}(x,r-\varepsilon),$$

 $\overline{K}(x,r) = K(x,r+\varepsilon).$

(iii) $F\ddot{u}r \ r \in \mathbb{R} \setminus \{p^n \mid n \in \mathbb{Z}\}\ gilt$

$$K(x,r) = \overline{K}(x,r).$$

(iv) Sei $r = p^n$ für ein $n \in \mathbb{Z}$. Dann gilt

$$K(x, p^n) = \overline{K}(x, p^{n-1}).$$

Außerdem gibt es $x_1, \ldots, x_{p-1} \in \overline{K}(x, p^n)$ mit

$$\overline{K}(x,p^n) = \overline{K}(x,p^{n-1}) \cup \overline{K}(x_1,p^{n-1}) \cup \dots \cup \overline{K}(x_{p-1},p^{n-1})$$

wobei die Vereinigungen disjunkt sind.

Beweis. (i) Sei $x' \in K(x,r)$ beliebig. Dann gilt für jedes $y \in K(x,r)$, dass

$$|x' - y|_p = |(x' - x) * (x - y)|_p$$

 $\leq \max(|x' - x|_p, |x - y|_p) < r.$

Also folgt $y \in K(x',r)$ und somit $K(x,r) \subseteq K(x',r)$. Die umgekehrte Inklusion folgt analog.

(ii) and (iii) Die Distanzfunktion $d_p(x,y) = |x-y|_p$ nimmt höchstens abzählbar viele Werte an, nämlich p^n für ein $n \in \mathbb{Z}$ oder 0. Also gilt für r > 0 und hinreichend kleines $\varepsilon > 0$, dass

$$|x - y|_p < r \Leftrightarrow |x - y|_p \le r - \varepsilon,$$

 $|x - y|_p \le r \Leftrightarrow |x - y|_p < r + \varepsilon.$

Falls r nicht von der Form p^n für ein $n \in \mathbb{Z}$ ist, dann gilt

$$|x - y|_p < r \Leftrightarrow |x - y|_p \le r.$$

Dies beweist (ii) und (iii).

(iv) Nach Definition der Norm gilt

$$|x - y|_p < p^n \Leftrightarrow |x - y|_p \le p^{n-1}$$
.

Die restliche Aussage verbleibt als Übung.

Satz 2.7. Sei $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{Q}$ eine p-adische Cauchyfolge, die nicht p-adisch gegen 0 konvergiert. Dann existiert ein $N\in\mathbb{N}$, sodass $|x_n|_p$ konstant für alle n>N ist.

Beweis. Sei $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge bezüglich $|\cdot|_p$ also folgt, dass $(|x_n|_p)$ eine Cauchyfolge in \mathbb{R} ist. Daher ist $(|x_n|_p)$ konvergent in \mathbb{R} . Da es keine Nullfolge ist, muss sie stationär werden.

Definition 2.8. Wir definieren \mathbb{Q}_p als die Vervollständigung von \mathbb{Q} bezüglich $|\cdot|_p$. Die obigen Eigenschaft von $|\cdot|_p$ setzen sich auf \mathbb{Q}_p fort.

Beispiel 2.9. Sei $x \in \mathbb{Q}_p^*$. Dann gilt $|x|_p = p^n$ für ein $n \in \mathbb{Z}$.

Als nächstes beweisen wir den Satz von Bolzano-Weierstraß für p-adische Zahlen.

Theorem 2.10. Jede beschränkte Folge in \mathbb{Q}_{ν} hat einen Häufungspunkt.

Beweis. Für $\nu = \infty$ ist dies die Aussage des Satzes von Bolzano-Weierstraß. Sei also $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{Q}_p$ eine beschränkte Folge in \mathbb{Q}_p . Nach Definition ist jedes x_n eine Cauchyfolge in \mathbb{Q} bezüglich $|\cdot|_p$. Für jedes $n \in \mathbb{N}$ wählen wir $x'_n \in \mathbb{Q}$ sodass

$$|x_n - x_n'| < p^{-n}$$

gilt, dies geht aufgrund der Dichtheit von \mathbb{Q} in \mathbb{Q}_p . Die Folge $(x'_n) \subseteq \mathbb{Q}$ ist beschränkt in $|\cdot|_p$. Wir werden zeigen, dass (x'_n) eine Teilfolge besitzt, die Cauchy ist. Diese Teilfolge definiert eine Zahl $x' \in \mathbb{Q}_p$. Die zugehörige Teilfolge von (x_n) wird ebenfalls gegen x konvergieren. Wir konstruieren die Cauchy Teilfolge von (x'_n) folgendermaßen. Da (x'_n) beschränkt ist, existieren $y \in \mathbb{Q}$ und $m \in \mathbb{Z}$ mit $(x'_n) \subseteq \overline{K}(y, p^m)$. Dieser zerfällt in endlich viele (p Stück) disjunkte abgeschlossene Bälle mit Radius p^{m-1} . Mindestens einer dieser Bälle muss unendlich viele Folgenglieder (x'_n) enthalten. Beginnend mit x_1 entfernen wir alle Elemente der Folge, die nicht in diesem Ball liegen. Dieser Ball zerfällt erneut und so weiter. Dadurch erhalten wir eine Teilfolge (x''_n) von (x'_n) mit der Eigenschaft, dass alle x''_i für alle $i \geq N$ in einem abgeschlossen Ball mit Radius p^{m-N} liegen. Damit folgt

$$\left| x_i'' - x_j'' \right|_p \le p^{m-N}$$

für alle $i, j \geq N$. Somit wir haben unsere gewünschte Cauchyfolge konstruiert. \square

Korollar 2.11. Eine Menge ist genau dann in \mathbb{Q}_p kompakt, wenn sie beschränkt und abgeschlossen ist.

Definition 2.12. Wir definieren die p-adischen ganzen Zahlen durch

$$\mathbb{Z}_p \coloneqq \{x \in \mathbb{Q}_p \mid |x|_p \le 1\}.$$

Dies ist ein Unterring von \mathbb{Q}_p .

Satz 2.13. Die p-adischen ganzen Zahlen \mathbb{Z}_p sind beschränkt, abgeschlossen und offen. Insbesondere ist \mathbb{Z}_p kompakt.

Satz 2.14. Sei $x \in \mathbb{Z}_p$ und $n \in \mathbb{N}_{\geq 1}$. Dann existiert ein eindeutiges $\alpha \in \mathbb{Z}$ mit $0 \leq \alpha < p^n$ und

$$|x - \alpha|_p \le p^{-n}.$$

Beweis. Da Q dicht in \mathbb{Q}_p ist, existiert $t \in \mathbb{Q}$ mit $|t-x|_p \leq p^{-n}$. Dann gilt

$$|t|_p = |(t-x) + x|_p \le \max(|t-x|_p, |x|_p) \le 1,$$

das heißt $t \in \mathbb{Z}_p$ und $t = \frac{a}{b}$ mit $a, b \in \mathbb{Z}, (a, b) = 1$ und (p, b) = 1. Wähle $b' \in \mathbb{Z}$ mit $bb' = 1 \mod p^n$. Dann gilt

$$|t - ab'|_p = \left| \frac{a}{b} - ab' \right|_p$$

$$= \left| \frac{a}{b} (1 - bb') \right|_p$$
$$= \left| \frac{a}{b} \right|_p |1 - bb'|_p.$$

Für $\alpha \in \mathbb{Z}$ mit $\alpha = ab' \mod p^n$ und $0 \le \alpha < p^n$ gilt

$$|t - \alpha|_p \leq p^{-n}$$
,

sowie

$$\begin{aligned} |x - \alpha|_p &= |(x - t) + (t - \alpha)|_p \\ &\leq \max(|x - t|_p, |t - \alpha|_p) \leq p^{-n}. \end{aligned}$$

Sei β ein anderes solches Element. Dann gilt $|\alpha - \beta| \leq p^{-n}$, was $p^n \mid (\alpha - \beta)$ und somit $\alpha = \beta$ impliziert.

Korollar 2.15. Es gilt $\overline{Z} = \mathbb{Z}_p$, insbesondere für jedes $x \in \mathbb{Z}_p$ existiert eine Folge $(\alpha_n)_{n \in \mathbb{N}} \subseteq \mathbb{Z}$ mit $0 \le \alpha_n < p^n$, $\alpha_n = \alpha_{n-1} \mod p^{n-1}$ und $|x - \alpha_n| \le p^{-n}$. Darüber hinaus ist diese Folge eindeutig.

Sei umgekehrt $(\alpha_n)_{n\in\mathbb{N}}\subseteq\mathbb{Z}$ eine Folge mit $0\leq\alpha_n< p^n$ sowie $\alpha_n=\alpha_{n-1}\mod p^{n-1}$. Dann ist $(\alpha_n)_{n\in\mathbb{N}}$ eine Cauchyfolge und konvergiert gegen ein $x\in\mathbb{Z}_p$.

Definition 2.16. Eine Folge von Restklassen $(\alpha_n)_{n\in\mathbb{N}}$ wobei $\alpha_n \in \mathbb{Z}/p^n\mathbb{Z}$ ist, die $\alpha_n = \alpha_{n-1} \mod p^{n-1}$ erfüllt, heißt kompatibles System. Die Menge aller kompatiblen System heißt projektiver Limes des Systems. Der projektive Limes $\lim_{\leftarrow} \mathbb{Z}/p^n\mathbb{Z}$ ist ein Ring bezüglich punktweiser Addition und Multiplikation.

Theorem 2.17. Die Abbildung

$$\mathbb{Z}_p \to \lim_{\leftarrow} \mathbb{Z}/p^n \mathbb{Z}$$

 $x \mapsto (\alpha_n)_{n \in \mathbb{Z}}$

ist ein Ringisomorphismus. Weiterhin ist die Abbildung

$$\mathbb{Z}_p \to \mathbb{Z}/p^n\mathbb{Z}$$
$$x \mapsto \alpha_n$$

ist surjektiv und ihr Kern ist durch $p^n\mathbb{Z}_p$ gegeben. Also folgt

$$\mathbb{Z}_p/p^n\mathbb{Z}_p \cong \mathbb{Z}/p^n\mathbb{Z}$$

aufgrund des Homomorphiesatzes.

Lemma 2.18. Sei $x \in \mathbb{Q}_p$ mit $|x|_p = p^n$ für ein n > 0. Dann gilt $|p^n x|_p = 1$, sodass $p^n x \in \mathbb{Z}_p$ folgt. Dies impliziert

$$\mathbb{Q}_p = \bigcup_{n=1}^{\infty} p^{-n} \mathbb{Z}_p$$

sodass \mathbb{Q}_p der Quotientenkörper von \mathbb{Z}_p ist.

Für $x \in \mathbb{Q}_p^*$ gilt $|x^{-1}|_p = \frac{1}{|x|_p}$ und somit auch

$$\mathbb{Z}_p^* = \{ x \in \mathbb{Z}_p \mid |x|_p = 1 \}.$$

Proposition 2.19. Jedes $x \in \mathbb{Z}_p$ hat eine Darstellung der Form

$$x = \sum_{i=0}^{\infty} b_i p^i$$

 $mit \ b_i \in \{0, \dots, p-1\}$. Weiterhin ist diese Darstellung eindeutig.

Beweis. Für $x \in \mathbb{Z}_p$ gibt es eine eindeutige Folge $(\alpha_n)_{n \in \mathbb{N}} \subseteq \mathbb{Z}$ mit $0 \le \alpha_n < p^n$, $\alpha_n = \alpha_{n-1} \mod p^{n-1}$ und $|x - \alpha_n| \le p^{-n}$. Insbesondere lassen sich die α_n schreiben durch

$$\alpha_n = \sum_{i=0}^{n-1} b_i p^i$$

wobei $b_i \in \{0, \dots, p-1\}$ gilt.

Proposition 2.20. Sei $x \in \mathbb{Q}_p$ mit $|x|_p = p^n$. Dann hat x eine eindeutige Darstellung der Form

$$x = b_{-n}p^{-n} + b_{-n+1}p^{-n+1} + \dots,$$

wobei $b_i \in \{0, ..., p-1\}$ und $b_{-n} \neq 0$.

Bemerkung 2.21. Die Elemente in \mathbb{Z}_p^* sind von der Form

$$x = b_0 + b_1 p + \dots$$

 $mit \ b_0 \neq 0.$

Definition 2.22. Ein Hausdorffraum heißt *lokal kompakt*, falls jeder Punkt eine kompakte Umgebung hat.

Beispiel 2.23. (i) Ein kompakter Hausdorffraum ist lokal kompakt.

(ii) $(\mathbb{R}=\mathbb{Q}_{\infty},\left|\cdot\right|_{\infty})$ ist lokal kompakt.

Proposition 2.24. \mathbb{Q}_p ist lokal kompakt.

Beweis. Sei $x \in \mathbb{Q}_p$ und wähle r > 0. Dann ist $\overline{K}(x,r)$ eine kompakte Umgebung von x.

Proposition 2.25. $\mathbb{Q}_p^* = \mathbb{Q}_p \setminus \{0\}$ ist lokal kompakt.

Wir haben bereits gesehen, dass \mathbb{Z}_p offen, abgeschlossen und kompakt ist.

Proposition 2.26. \mathbb{Z}_p^* ist offen, abgeschlossen und kompakt.

Beweis. Dies folgt aus der Stetigkeit von $|\cdot|: \mathbb{Q}_p \to \mathbb{R}$.

Proposition 2.27. $(\mathbb{Q}_p, +)$, $(\mathbb{Z}_p, +)$, (\mathbb{Z}_p^*, \cdot) , (\mathbb{Z}_p^*, \cdot) sind lokal kompakte topologische Gruppen

3 Integration

Definition 3.1. Sei X ein Hausdorffraum. Die Borel σ -Algebra $\sigma(X)$ von X ist die kleinste σ -Algebra, die die offenen Mengen von X enthält. Ein $Radonma\beta$ auf X ist ein Maß $\mu \colon \sigma(X) \to [0, \infty]$ sodass

- i) μ ist lokal endlich, das heißt für jedes $x \in X$ existiert eine offene Umgebung U von x die endliches Maß hat.
- ii) μ ist regulär von innen, das heißt

$$\mu(A) = \sup \{ \mu(K) \mid K \subset A \text{ kompakt } \}$$

gilt für alle $A \in \sigma(X)$.

Beispiel 3.2. Das Lebesguemaß auf \mathbb{R}^n ist ein Radonmaß.

Theorem 3.3 (Riesz). Sei X ein lokal kompakter Hausdorffraum und

$$I: C_c(X) \to \mathbb{C}$$

eine positive lineare Form, das heißt $I(f) \geq 0$ für alle $0 \leq f \in \mathbb{C}_c(X)$. Dann existiert ein eindeutiges Radonmaß $\mu \colon \sigma(X) \to [0, \infty]$ mit $I(f) = \int_X f \ d\mu$. Außerdem gilt für kompakte Mengen K

$$\mu(K) = \inf\{I(f) \mid f \in \mathbb{C}_c(X), f \ge \chi_K\}$$

sowie

$$\mu(A) = \sup \{ \mu(K) \mid K \subseteq A \ kompakt \}$$

für alle $A \in \sigma(X)$.

Beweis. Elstrodt, Kapitel 8 von Maß- und Integrationstheorie.

Theorem 3.4 (Haar). Sei G eine lokal kompakte Hausdorffgruppe. Dann gibt es ein linksinvariantes Radonmaß μ auf G. Dieses ist eindeutig bis auf positive Konstanten und heißt Haarmaß auf G.

Beispiel 3.5. i) Auf einer diskreten Gruppe ist das Zählmaß ein Haarmaß.

- ii) Auf $(\mathbb{R}^n, +)$ ist das Lebesguemaß ein Haarmaß.
- iii) Auf (\mathbb{R}^*,\cdot) ist $\frac{dx}{|x|}$, wobei dx das Lebesguemaß auf \mathbb{R} ist, ein Haarmaß.
- iv) Ein Haarmaß auf $GL(2, \mathbb{R})$ ist durch

$$\frac{\mathrm{d}x_{11}\mathrm{d}x_{12}\mathrm{d}x_{21}\mathrm{d}x_{22}}{\left|\det(M)\right|^{2}}$$

gegeben. (M wie man es erwartet).

Theorem 3.6. Sei G eine lokal kompakte Hausdorffgruppe und $K \subseteq G$ kompakt. Dann gibt es ein eindeutiges Haarma β μ auf G, das $\mu(K) = 1$ erfüllt.

Definition 3.7. Sei G eine lokal kompakte Hausdorffgruppe und μ ein Haarmaß auf G. Dann definiert für $x \in G$

$$\mu_x(A) = \mu(Ax)$$

ein links invariantes Maß auf G.

Definition 3.8. Die Eindeutigkeit impliziert $\mu_x = \delta(x)\mu$ für ein $\delta(x) \in \mathbb{R}_{\geq 0}$. Insbesondere ist $\delta(x)$ unabhängig von der Wahl von μ . Die Funktion

$$\delta \colon G \to \mathbb{R}_{\geq 0}$$

$$x \mapsto \delta(x)$$

heißt modulare Funktion von G.

Proposition 3.9. Die Abbildung δ ist ein Morphismus topologischer Gruppen.

Beweis. Für $x, y \in G$ gilt

$$\delta(xy)\mu(A) = \mu_{xy}(A) = \mu(Axy)$$
$$= \mu_y(Ax) = \delta(y)\delta(x)\mu(A).$$

Der Rest verbleibt als Übungsaufgabe.

Beispiel 3.10. Man kann zeigen, dass jeder stetiger Gruppenhomomorphismus $h \colon \mathrm{SL}(2,\mathbb{R}) \to \mathbb{R}_{\geq 0}$ konstant sein muss. Daraus folgt, dass jedes Haarmaß auf $\mathrm{SL}(2,\mathbb{R})$ auch rechts invariant ist.

Wir betrachten nun die lokal kompakten Hausdorffgruppen \mathbb{Q}_p sowie \mathbb{Q}_p^* . Wir normieren das Haarmaß μ auf \mathbb{Q}_p durch die Forderung $\mu(\mathbb{Z}_p) = 1$.

Proposition 3.11. Für eine messbare Menge $A \subseteq \mathbb{Q}_p$ und $x \in \mathbb{Q}_p^*$ gilt

$$\mu(xA) = |x|_p \, \mu(A).$$

Beweis. Für $x \in \mathbb{Q}_p^*$ definiert

$$\mu_x(A) = \mu(xA)$$

ein Radonmaß auf \mathbb{Q}_p . Dies ist links invariant, da

$$\mu_x(y+A) = \mu((y+A)x) = \mu(yx+Ax) = \mu_x(A)$$

gilt. Also folgt aus der Eindeutigkeit, dass $\mu_x(A) = c(x)\mu(A)$ mit $c(x) \in \mathbb{R}_{\geq 0}$ unabhängig von A gilt. Sei zunächst $|x|_p = p^{-n}$ für ein n > 0. Dann gilt $x\mathbb{Z}_p = p^n\mathbb{Z}_p$ sowie

$$\mathbb{Z}_p = \bigcup_{j=0}^{p^n - 1} (j + p^n \mathbb{Z}_p)$$

als disjunkte Vereinigung. Aus σ -Additivität folgt daher

$$\mu(\mathbb{Z}_p) = \sum_{j=0}^{p^n - 1} \mu(j + p^n \mathbb{Z}_p)$$
$$= p^n \mu(p^n \mathbb{Z}_p),$$

was $|x|_p \mu(\mathbb{Z}_p) = \mu(x\mathbb{Z}_p \text{ impliziert. Also ist in diesem Fall } c(x) = |x|_p$. Als nächstes betrachten wir den Fall $|x|_p = p^n \text{ mit } n > 0$. Dann gilt $\mu(A) = \mu(x^{-1}xA) = |x^{-1}|_p \mu(xA)$, also folgt $\mu(xA) = |x|_p \mu(A)$.

Korollar 3.12. Sei f integrierbar. Dann gilt für $a \in \mathbb{Q}_n^*$

$$\int_{\mathbb{Q}_p} f(a^{-1}x) \ \mathrm{d}\mu(x) = |a|_p \int_{\mathbb{Q}_p} f(x) \ \mathrm{d}\mu(x).$$

Beweis. Wir wollen die letzte Proposition verwenden Es gilt

$$\int_{\mathbb{Q}_p} f(a^{-1}x) d\mu(x) = \int_{\mathbb{Q}_p} f(x) d\mu_a(x)$$
$$= |a|_p \int_{\mathbb{Q}_p} f(x) d\mu(x).$$

Wir werden das normierte Haarmaß auf \mathbb{Q}_p mit dx notieren.

Beispiel 3.13. Wir können jetzt das Volumen von $\mathbb{Z}_p^* = \bigcup_{j=1}^{p-1} (j+p\mathbb{Z}_p)$ berechnen. Es gilt

$$\mu_{\mathrm{d}x}(\mathbb{Z}_p^*) = \sum_{j=1}^{p-1} \mu_{\mathrm{d}x}(j + p\mathbb{Z}_p)$$
$$= (p-1)\mu_{\mathrm{d}x}(p\mathbb{Z}_p)$$
$$= \frac{p-1}{p}\mu_{\mathrm{d}x}(\mathbb{Z}_p)$$
$$= \frac{p-1}{p}.$$

Wir konstruieren nun ein Haarmaß auf \mathbb{Q}_p^* . Für $A\subseteq\mathbb{Q}_p^*\subseteq\mathbb{Q}_p$ definieren wir

$$\mu_{\frac{\mathrm{d}x}{|x_p|}}(A) := \int_{\mathbb{Q}_p} \chi_A(x) \frac{\mathrm{d}x}{|x_p|}.$$

Da dies in 0 nicht definiert ist, setzen wir den Integranden in diesem Punkt auf 0. Dann gilt für $y\in \mathbb{Q}_p^*$, dass

$$\mu_{\frac{\mathrm{d}x}{|x_p|}}(yA) = \int_{\mathbb{Q}_p} \chi_{yA}(x) \frac{\mathrm{d}x}{|x|_p}$$

$$= |y^{-1}|_p \int_{\mathbb{Q}_p} \chi_A(y^{-1}x) \frac{\mathrm{d}x}{|y^{-1}x|_p}$$

$$= \int_{\mathbb{Q}_p} \chi_A(x) \frac{\mathrm{d}x}{|x|_p}$$

$$= \mu_{\frac{\mathrm{d}x}{|x_p|}}(A).$$

Also ist $\mu_{\frac{\mathrm{d}x}{|x_p|}}$ links invariant. Das Volumen von \mathbb{Z}_p^* bezüglich $\mu_{\frac{\mathrm{d}x}{|x_p|}}$ ist

$$\mu_{\frac{\mathrm{d}x}{|x_p|}}(\mathbb{Z}_p^*) = \int_{\mathbb{Q}_p} \chi(\mathbb{Z}_p^*) \frac{\mathrm{d}x}{|x|_p}$$
$$= \int_{\mathbb{Q}_p} \chi(\mathbb{Z}_p^*) \, \mathrm{d}x = \mu_{\mathrm{d}x}(\mathbb{Z}_p^*)$$
$$= \frac{p-1}{p}.$$

Theorem 3.14. $\frac{dx}{|x_p|}$ definiert ein Haarmaß auf \mathbb{Q}_p^* . Das normierte Haarmaß

$$d^*x = \frac{p}{p-1} \frac{\mathrm{d}x}{|x_p|}$$

erfüllt $\mu_{d^*x}(\mathbb{Z}_p^*) = 1$.

Für $a \in \mathbb{R}_{\geq 0}$ und $s \in \mathbb{C}$ setzen wir

$$a^s = e^{s \log(a)}$$
.

Die Riemannsche ζ -Funktion ist durch

$$\zeta(s) \coloneqq \sum_{n=1}^{\infty} \frac{1}{n^s}$$

definiert. Die Reihe konvergiert für Re(s) > 1 und besitzt eine meromorphe Fortsetzung auf C mit einer Polstelle vom Grad 1 in s = 1. Für Re(s) > 1 gilt

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-2}}.$$

Für Re(s) > 0 werden wir

$$\int_{\mathbb{Z}_n \setminus \{0\}} |x|_p^s \, \mathrm{d}^* x$$

berechnen. Wir können das Integrationsgebiet durch

$$\mathbb{Z}_p \setminus \{0\} = \bigcup_{k=0}^{\infty} p^k \mathbb{Z}_p^*$$

in disjunkte Mengen zerlegen. Somit gilt

$$\int_{\mathbb{Z}_p \setminus \{0\}} |x|_p^s \, d^*x = \sum_{k=0}^{\infty} \int_{p^k \mathbb{Z}_p^*} |x|_p^s \, d^*x$$

$$= \sum_{k=0}^{\infty} \left(p^{-k} \right)^s \int_{p^k \mathbb{Z}_p^*} d^*x$$

$$= \sum_{k=0}^{\infty} \left(p^{-k} \right)^s = \sum_{k=0}^{\infty} \left(p^{-2} \right)^k$$

$$= \frac{1}{1 - p^{-s}}.$$

Dies scheint zunächst "zufällig" zu sein, aber wir werden später sehen, dass es hier einen tieferen Zusammenhang gibt.

4 Adele

Wir wollen alle Vervollständigungen von \mathbb{Q} gleichzeitig betrachten. Dafür betrachten wir den lokal kompakten Ring

$$\mathbb{A}_Q = \{(x_{\infty}, x_2, x_3, x_5 \dots,) \mid x_{\nu} \in \mathbb{Q}_{\nu} \text{ und } x_p \in \mathbb{Z}_p \text{ a.e.} \}$$

von Adelen.

Sei $(X_i)_{i\in I}$ eine Familie topologischer Räume. Die Produkttopologie auf $\prod_{i\in I} X_i$ ist die gröbste Topologie auf $\prod_{i\in I} X_i$, bezüglich der alle Projektionen stetig sind. Eine Basis für diese Topologie ist durch $\{\prod_{i\in I} O_i\}$ gegeben, wobei O_i für alle $i\in I$ offen ist und $O_i=X_i$ für fast alle $i\in I$ gilt.

Mengen dieser Form heißen offene Rechtecke.

Wir benötigen folgenden klassischen Satz aus der Topologie.

Theorem 4.1 (Tychonoff). Sei $(X_i)_{i\in I}$ eine Familie von topologischen Räumen. Dann ist das Produkt der X_i genau dann kompakt, wenn alle X_i kompakt sind.

Theorem 4.2. Sei $(X_i)_{i \in I}$ eine Familie von Hausdorffräumen. Dann ist $\prod_{i \in I} X_i$ lokal kompakt genau dann wenn alle X_i lokal kompakt und alle bis auf endlich viele sogar kompakt sind.

Beweis. " \Rightarrow ": Da die Projektionen p_j : $\prod_{i \in I} X_i \to X_j$ stetig sind, folgt, dass alle X_i lokal kompakt sind. Sei $x = (x_i)_{i \in I} \in \prod_{i \in I} X_i$ und $C = (C_i)_{i \in I}$ eine kompakte Umgebung von x. C enthält eine Vereinigung offener Rechtecke. Da alle bis auf endlich viele Komponenten eines offenen Rechtecks der ganze Raum sind, gilt das gleich auch für C, das heißt

$$\pi_i(C) = X_i$$

für alle bis auf endlich viele $i \in I$. " \Leftarrow ": Da mit $J = \{i \in I \mid x_i \text{ compact }\}$, die Menge $I \setminus J$ endlich ist, folgt mit

$$X = \prod_{i \in J} X_i \times \prod_{i \in I \setminus J} X_i,$$

dass X als Produkt einer kompakten und einer lokal kompakten Menge lokal kompakt ist.

Beispiel 4.3. $\prod_{p<\infty} \mathbb{Q}_p$ ist nicht lokal kompakt und deswegen wissen wir nicht, ob es ein Haarmaß gibt.

Definition 4.4. Sei $(x_i)_{i\in I}$ eine Familie lokal kompakter Hausdorffräume und für jedes $i\in I$ sei $K_i\subseteq X_i$ eine kompakte offene Menge. Dann definieren wir das eingeschränkte Produkt

$$X = \hat{\prod}_{i \in I}^{K_i} X_i := \{ (x_i)_{i \in I} \in \prod_{i \in I} X_i \mid x_i \in K_i \text{ für fast alle } i \in I \}.$$

Falls K_i aus dem Kontext klar ist, lassen wir diese in der Schreibweise weg. Ein eingeschränktes offenes Rechteck ist eine Menge der Form

$$\prod_{i \in I} U_i$$

wobei $U_i \subseteq X_i$ offen ist und $K_i = U_i$ für alle bis auf endlich viele $i \in I$ gilt. Eine Teilmenge $U \subseteq X$ heißt offen, wenn es eine Vereinigung solcher Mengen ist. Die dazugehörige Topologie heißt die eingeschränkte Produkttopologie.

Proposition 4.5. Sei $(X_i)_{i \in I}$ eine Familie lokal kompakter Hausdorffräume. Für jedes $i \in I$ sei $K_i \subseteq X_i$ eine kompakte offene Menge. Dann ist

$$X = \hat{\prod}_{i \in I}^{K_i} X_i$$

ausgestattet mit der eingeschränkten Produkttopologie ein lokal kompakter Hausdorffraum.

Beweis. Sei $x = (x_i)_{i \in I} \in X$. Definiere $J = \{i \in I \mid x_i \in K_i\}$. Dann ist $I \setminus J$ endlich. Für jedes $i \in I \setminus J$ wählen wir eine kompakte Umgebung U_i von x_i . Dann ist

$$\prod_{i\in I\setminus J} U_i \times \prod_{i\in J} K_i$$

eine kompakte Umgebung von x. Die Hausdorffeigenschaft verbleibt als Übung. \square

Definition 4.6. Der Ring

$$\mathbb{A}_f \coloneqq \widehat{\prod_{p < \infty}} \mathbb{Z}_p \mathbb{Q}_p$$

heißt der Ring der endlichen Adele. Nach dem letzten Satz ist \mathbb{A}_f ein lokal kompakter Hausdorffraum.

Proposition 4.7. Der Ring \mathbb{A}_f ist ein topologischer Raum, das heißt, die Ringverknüpfungen sind stetig.

Proposition 4.8. Die Menge

$$\hat{\mathbb{Z}} = \prod_{p < \infty} \mathbb{Z}_p \subseteq \mathbb{A}_f$$

ist kompakt und offen.

Sei $N \in \mathbb{Z}$ sowie N > 0. Dann gilt

$$N = \prod_{p < \infty} p^{\nu_p}$$

und $\nu_p = 0$ für alle bis auf endlich viele p. Weiterhin haben wir, dass

$$N\hat{\mathbb{Z}} = \prod_{p < \infty} p^{\nu_p} \mathbb{Z}_p$$

eine kompakte offene Umgebung der $0 \in \mathbb{A}_f$. Eine beliebige offene Umgebung der $0 \in \mathbb{A}_f$ ist eine Vereinigung von Mengen der Form

$$\prod_{i \in I \setminus J} U_i \times \prod_{j \in J} K_j$$

wobei $I \setminus J$ endlich ist und die U_i für $i \in I \setminus J$ offen sind. In \mathbb{Q}_p gilt $K(0, p^m) = p^{-m} \mathbb{Z}_p$ für alle $m \in \mathbb{Z}$.

Proposition 4.9. Jede offene Umgebung der $0 \in \mathbb{A}_f$ enthält eine Menge der Form $N\hat{Z}$ für ein $N \in \mathbb{Z}$ mit N > 0.

Proposition 4.10. Die Einbettung $\mathbb{Q} \hookrightarrow \mathbb{A}_f$ hat dichtes Bild.