Einführung

Regelgröße	Ausgangsgröße der Regelstrecke, die auf einem vorgegebenen konstanten o. veränderlichen Wert gehalten werden soll,	
Führungsgröße	Von außen zugeführte Größe, der die Regelgröße folgen soll.	z REGESTRECKE X
Störgröße	Jede Größe, die auf die Regelgröße wirkt, mit Ausnahme der Stellgröße.	STORGROSSE STORGES REGELGROSSE P REGELSTREAM REGELGROSSE
Stellgröße	Ausgangsgröße des Reglers, durch deren Änderung die Regelgröße über die Regelstrecke beeinflusst werden.	STELLGRÖSSE RECLER FÖHRUNGSGRÖSSE
Regelstrecke	Gerät, Anlage o.a. , dessen Ausgangsgröße geregelt wird, indem eine oder mehrere Eingangsgrößen verändert werden.	REGELABWEICHUNG
Regler	Gerät, das Regel- und Führungsgröße bzw. Sollwert miteinander vergleicht und aus der Differenz die Stellgröße bildet	

statisches Verhalten

Eigenschaften von Regelkreisgliedern u. Regelkreisen nach Abklingen von Übergangs- u. Einschwingvorgängen Darstellungsmöglichkeiten: Kennlinie, Kennlinienfeld, Wertetabelle, Formel

Linearisierung

geg.: nichtlin. Zusammenhang (Formel, Kennlinie(nfeld))	$Y = f(U, Z_1, Z_2, \dots)$
Ansatz	$y = K_u \cdot u + K_{z1} \cdot z_1 + K_{z2} \cdot z_2 + \dots$
analytische Linearisierung	$K_u = \left[\frac{\partial Y}{\partial U}\right]_A$
graphische Linearisierung (Tangentenverfahren)	$K_u \approx \left[\frac{\Delta Y}{\Delta U}\right]_{Z_1 = Z_{10}, Z_2 = Z_{20}, \dots}$

!!!! Bei Darstellung in impliziter Form und/oder Verwendung von Zwischenvariablen folgendes Vorgehen:!!!

- 1) Mit den gegebenen nichtlinearen Beziehungen sind alle benötigten **Arbeitspunktwerte** für alle Variablen zu **ermitteln**.
- 2) **Jede** gegebene **nichtlineare** Beziehung ist durch eine vollständige **lineare** Gleichung zu **ersetzen**, die durch Linearisierung für den gegebenen Arbeitspunkt entsteht.
- 3) Durch **Zusammenfassung** mit **Elimination** von Zwischenvariablen und Umformen sind die nach 2. gewonnenen linearen Gleichungen in die gewünschte Form zu bringen.

statisches Verhalten von Regelkreisen

Dynamisches Verhalten von Übertragungsgliedern

lineare Übertragungsglieder

Beschreibung durch lineare Differentialgleichung mit konstanten Koeffizienten:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = b_0 u + b_1 \dot{u} + b_2 \ddot{u} + \dots + b_m u^{(m)}$$

 $\boxed{a_n y^{(n)} + a_{n-1} y^{(n-1)} + ... + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = b_0 u + b_1 \dot{u} + b_2 \ddot{u} + ... + b_m u^{(m)}}$ deren **homogener Teil der Lösung** (rechte Seite zu Null gesetzt) für einfache reelle Nullstellen von der Form:

$$y_h(t) = C_1 \cdot e^{\lambda_1 t} + C_2 \cdot e^{\lambda_2 t} + ... + C_n \cdot e^{\lambda_n t}$$
 ist (andere Fälle vgl. Taschenbuch S. 59)

mit λ_i als Nullstellen des **charakteristischen Polynoms**

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

Für Untersuchungen von Stabilität und Einschwingverhalten ist wichtig:

- > charakteristisches Polynom enthält die Koeffizienten der homogenen linearen DGL
- die Nullstellen λ_i bestimmen maßgeblich das Verhalten der Lösung

Verstärkungsprinzip	Eingangsgröße $c \cdot u(t) \Rightarrow$ Ausgangsgröße $c \cdot y(t)$
Überlagerungsprinzip	Eingangsgröße $u(t)=u_1(t)+u_2(t)+u_3(t) \Rightarrow Ausgangsgröße v(t)=v_1(t)+v_2(t)+v_3(t)$

Laplace-Transformation

anwendbar, wenn die Eingangsgröße für t<0 verschwindet

F(s)	f(t) für $t>0$	$(f(t) = 0 \text{für} t \le 0)$
$\frac{1}{(s-s_p)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{spt}$	$n = 1, 2, 3, \dots$
1	$\delta(t)$	
$\frac{1}{s}$	1(t)	
$\frac{1}{s^2}$	t	
$\frac{1}{1+sT}$	$\frac{1}{T}e^{-t/T}.$	
	$\frac{\omega_0}{\sqrt{1-D^2}}e^{-D\omega_0t}\sin(\sqrt{1-D^2}\omega_0t)$	D < 1
$\frac{\omega_0^2}{s^2 + 2D\omega_0 s + \omega_0^2}$	$\omega_0^2 t e^{-D\omega_0 t}$	D = 1
	$\frac{\omega_0}{\sqrt{D^2-1}}e^{-D\omega_0t}\sinh(\sqrt{D^2-1}\omega_0t)$	D > 1
$\frac{1}{(1+sT_1)(1+sT_2)}$	$\frac{1}{T_1-T_2}\left(e^{-t/T_1}-e^{-t/T_2}\right)$	$T_1 \neq T_2$
$\frac{s}{1+sT}$	$\frac{1}{T}\left(\delta(t)-\frac{1}{T}e^{-t/T}\right)$	
$\frac{s}{(1+sT_1)(1+sT_2)}$	$\frac{1}{T_1T_2(T_1-T_2)}\left(T_1e^{-t/T_2}-T_2e^{-t/T_1}\right)$	$T_1 \neq T_2$
$\frac{s\omega_0^2}{s^2 + 2D\omega_0 s + \omega_0^2}$	$\omega_0^2 e^{-D\omega_0 t} \left(\cos \omega_D t - \frac{D}{\sqrt{1-D^2}} \sin \omega_D t\right)$	$ D < 1$ $\omega_D = \sqrt{1 - D^2} \ \omega_0$
$\frac{1}{s(1+sT)}$	$1-e^{-t/T}$	
$\frac{1}{s(1+sT_1)(1+sT_2)}$	$1 - \frac{1}{T_1 - T_2} \left(T_1 e^{-t/T_1} - T_2 e^{-t/T_2} \right)$	$T_1 \neq T_2$
$\frac{\omega_0^2}{s(s^2+2D\omega_0s+\omega_0^2)}$	$1 - e^{-D\omega_0 t} \left(\cos \omega_D t + \frac{D}{\sqrt{1 - D^2}} \sin \omega_D t\right)$	$ D < 1$ $\omega_D = \sqrt{1 - D^2} \omega_0$

Rechenregeln

Operation	Zeitbereich	Bildbereich
Multiplikation mit einer Konstanten	$f(t) = a \cdot f_1(t)$	$F(s) = a \cdot F_1(s)$
Summenbildung	$f(t) = f_1(t) + f_2(t) + \dots$	$F(s) = F_1(s) + F_2(s) + \dots$
Verschiebung	$f(t) = f_1(t - T_t)$	$F(s) = F_1(s) \cdot e^{-sT_t} \qquad (T_t \ge 0)$
	$f(t) = \dot{f}_1(t)$	$F(s) = sF_1(s) - f_1(-0)$
	$f(t) = \ddot{f_1}(t)$	$F(s) = s^2 F_1(s) - s f_1(-0) - \frac{\mathrm{d}f_1}{\mathrm{d}t}(-0)$
Verallgemeinerte Differentiation	$f(t) = f_1(t)$	$F(s) = s^{n} F_{1}(s) - \sum_{k=1}^{n} s^{n-k} \frac{d^{k-1}}{dt^{k-1}} f_{1}(-0)$
		$f(-0)$ ist der Grenzwert von $f(t)$, der sich ergibt, wenn t von negativen Werten aus gegen null geht, $\frac{\mathrm{d}f}{\mathrm{d}t}(-0)$ ist der Grenzwert der gewöhnlichen Differentiation.
Integration	$f(t) = \int_{0}^{t} f_{1}(\tau) d\tau$	$F(s) = \frac{1}{s}F_1(s)$
Anfangswert	$\lim_{t\to 0} f(t)$	$\lim_{s\to\infty} s\cdot F(s)$
Endwert	$\lim_{t\to\infty}f(t)$	$\lim_{s\to 0} s \cdot F(s)$

Gesucht	Gegeben					
	Übertragungsfunktion $G(s)$	Gewichtsfunktion $g(t)$	Übergangsfunktion $h(t)$			
Übertragungsfunktion $G(s)$	-	$G(s) = \mathscr{L}\{g(t)\}$	$G(s) = \mathcal{L}\{h(t)\} s$			
Gewichtsfunktion $g(t)$	$g(t) = \mathscr{L}^{-1}\{G(s)\}$	_	$g(t) = \frac{\mathrm{d}}{\mathrm{d}t} h(t)$			
Übergangsfunktion $h(t)$	$h(t) = \mathscr{L}^{-1}\left\{\frac{G(s)}{s}\right\}$	$h(t) = \int_0^t g(\tau) d\tau$	_			

Übergangsfunktion

$$h(t) = \frac{\text{Sprungantwort}}{\text{Sprungh\"ohe}} = \frac{y(t)}{u_0}$$

Antwort bzw. Lösung der DGL für einen Einheitssprung 1(t)

Dimension:

gleich der des Übertragungsfaktors

Gewichtsfunktion

$$g(t) = \frac{\text{Impulsantwort}}{\text{Impulsflaeche}} = \frac{y(t)}{\int u \cdot dt}$$

Antwort bzw. Lösung der DGL für einen Einheitsimpuls $\delta(t)$

Dimension:

gleich der des Übertragungsfaktors dividiert durch Sekunde

Übertragungsfunktion

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + ... + b_1 s + b_0}{a_n s^n + ... a_1 s + a_0}$$

für den Fall verschwindender Anfangsbedingungen

- Y(s) und U(s) sind die Laplace-Trafos von y(t) und u(t)
- ➤ Zusammenhang mit der DGL vgl. S.53 (3.71 ff) ⇒ Differentation im Bildbereich im Fall verschwindender Anfangsbedingungen
- rafische Darstellung in der komplexen Ebene durch Pol- und Nullstellen (Satz von Vieta, vgl. S.54 (3.75f)
- gleiche Koeffizienten wie die lineare DGL
- > siehe auch Rechenregeln (S.5)

Frequenzgang

$$G(j\omega) = \frac{Y(j\omega)}{U(j\omega)} = \frac{\underline{y}(t)}{\underline{u}(t)} = \frac{Y \cdot e^{j(\omega t + \varphi)}}{U \cdot e^{j\omega t}} = \frac{\underline{y}}{\underline{u}} = \frac{Y \cdot e^{j\varphi}}{U} = \frac{b_m(j\omega)^m + \dots + b_1(j\omega) + b_0}{a_n(j\omega)^n + \dots + a_1(j\omega) + a_0} = |G(j\omega)| \cdot e^{j\varphi}$$

- unterstrichene Größen sind komplexe Zeiger
- > Zusammenhang mit der DGL vgl. S. 58 (3.82 ff) \Rightarrow Differentation im Frequenzbereich im Fall verschwindender Anfangsbedingungen (formal durch Ersetzen von s der Übertragungsfunktion durch (jω)
- > gleiche Koeffizienten wie die lineare DGL
- **Betrag** gibt das **Verhältnis der Amplituden** von Ausgangs- und Eingangsschwingung im eingeschwungenen Zustand an

graphische Ermittlung des Frequenzganges

zeitlicher Verlauf von Ausgangs- u. Eingangsgröße für eine bestimmte Frequenz Ω (vgl. auch S. 93 (4.4)-(4.7))

$$|G(j\Omega)| = \frac{Y}{U}$$
 Betrag

$$\boxed{\varphi(j\Omega) = -\frac{t_{\varphi}}{T} = \arctan\left(\frac{\operatorname{Im}\{G(j\Omega)\}}{\operatorname{Re}\{G(j\Omega)\}}\right)} \quad \text{Phase}$$

Ortskurve

- > graphische **Darstellung** des **Frequenzganges** in der komplexen Ebene, (Parameter ω)
- ➤ Punkte = Endpunkte von Zeigern des Frequenzganges
- ➤ Punkte = Zeiger der Ausgangsgröße, falls die Eingangsgröße der Einheitszeiger ist
- \triangleright Ortskurven werden immer im Uhrzeigersinn durchlaufen (mit wachsendem ω)
- vgl. S.68 (3.114 ff)

Bode-Diagramm

- graphische, logarithmische Darstellung des Frequenzgangs (Amplituden- und Phasengang)
- Aufteilung der logarithmischen Einheit (vgl. Bild)
- Tabelle mit Rechenregeln (Seite 5) gilt ebenfalls für die Übertragungsfunktion

Grenzwertsätze

Übertragungsfunktion und Übergangsfunktion

$$\lim_{s \to 0} G(s) = \lim_{t \to \infty} h(t)$$

 $\lim_{s \to \infty} G(s) = \lim_{t \to 0} h(t)$

Die Grenzwerte der Übergangsfunktion müssen existieren und endlich sein.

Frequenzgang und Übergangsfunktion

$$\lim_{\omega \to 0} G(j\omega) = \lim_{t \to \infty} h(t)$$

 $\lim_{\omega \to \infty} G(j\omega) = \lim_{t \to 0} h(t)$

Es müssen jeweils beide Grenzwerte existieren.

- ➤ Wenn $\lim G(s)$ für $s \rightarrow \infty$ existiert dann existiert meist auch $\lim h(t)$ für $t \rightarrow 0$.
- lim h(t) für t→∞ existiert, wenn G(s) bzw. G(jω) ein stabiles System beschreibt. (vgl. S. 79 ff.)

Rechenregeln für Frequenzgänge und Übertragungsfunktionen

Bez.	Frequenzgang	Wirkungsplan
Parallelschaltung	$ \underline{v}_1 = G_1 \cdot \underline{u} $ $ \underline{v}_2 = G_2 \cdot \underline{u} $ $ \underline{y} = \underline{v}_1 \pm \underline{v}_2 $ $ = (G_1 \pm G_2) \cdot \underline{u} $ $ G = \frac{\underline{y}}{\underline{u}} = G_1 \pm G_2 $	G_1 V_1 Y U_2
Reihenschaltung	$ \begin{array}{rcl} \boldsymbol{\mathcal{Z}} &=& G_2 \cdot \boldsymbol{\mathcal{U}} \\ \boldsymbol{\mathcal{U}} &=& G_1 \cdot \boldsymbol{\mathcal{U}} \\ \boldsymbol{\mathcal{Y}} &=& G_1 \cdot G_2 \cdot \boldsymbol{\mathcal{U}} \\ \boldsymbol{G} &=& \frac{\boldsymbol{\mathcal{Y}}}{\underline{\boldsymbol{\mathcal{U}}}} = G_1 \cdot G_2 \end{array} $	$u = G_1$ $v = G_2$ $y = G_2$
Rückkopplung	$ \underline{x} = G_v \cdot \underline{v} $ $ \underline{y} = G_r \cdot \underline{x} $ $ \underline{v} = \underline{z} \mp \underline{y} $ $ \underline{x} = G_v (\underline{z} \mp \underline{y}) $ $ \underline{x} = G_v \cdot \underline{z} \mp G_v G_r \cdot \underline{x} $ $ \underline{x} (1 \pm G_v G_r) = G_v \cdot \underline{z} $ $ \underline{x} = \frac{G_v}{1 \pm G_v G_r} \underline{z} $ $ G = \frac{\underline{x}}{2} = \frac{G_v}{1 \pm G_v G_r} $ $ G = \frac{G_v}{1 + G_0} $ $ G_0 = -\frac{\underline{x}_a}{\underline{x}_e} = \pm G_v G_r $	$ \begin{array}{c c} \hline z & v & G_v \\ \hline & G_r \\ & G_r \\ \hline & G_r \\ & G_r \\ \hline & G_r \\ & $

lineare Regelkreisglieder

allgemeine lineare DGL unter Berücksichtigung von Totzeitgliedern:

$$\boxed{a_n y^{(n)}(t) + a_{n-1} y^{(n-1)}(t) + \ldots + a_2 \ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t - T_t) + b_1 \dot{u}(t - T_t) + b_2 \ddot{u}(t - T_t) + \ldots + b_m u^{(m)}(t - T_t)}$$
zugehörige allgemeine Übertragungsfunktion:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots a_1 s + a_0} \cdot e^{-sT_t}$$

Bez.	Übertragungsfunktion Differentialgleichung und und Übergangsfunktion Pol- und Nullstellen- Diagramm		Bode-Diagramm Amplituden- und Phasengang	Ortskurve des Frequenzgangs	
P	y=Ku h K	G(s)=K	G(jω) K 1 ω Φ 0° ω -90° ω	lm K Re	
I	$y = K_I \int u dt$	$G(s) = \frac{K_I}{s}$ Im A Re	G(jw) 1	Im ♠ Re ♠ w	
D	y=K _D ü h	$G(s)=K_D s$ Im A	$ \begin{array}{c c} G(j\omega) \\ \hline 1 \\ \hline \frac{1}{K_D} & \omega \end{array} $	Im ω	

Anmerkungen zu den Tabellen

P	I		D
Regelstrecken, Mes	ss- u. Stellgeräte, Regler	\triangleleft	Regelstrecken, Mess- u.
			Stellgeräte, selten als Regler

	PI	PD	PID					
	Regler							
>	Parallelschaltung P- und I-Glied	Parallelschaltung P- und D-Glied	Parallelschaltung P-,I- und D-Glied					
AA	Nachstellzeit $T_n = \frac{K_R}{K_I}$ $\downarrow T_n \Rightarrow \uparrow$ Wirkung des I-Gliedes	$\varphi = \arctan(\omega T_{v})$ $\Rightarrow \text{Vorhaltzeit } T_{v} = \frac{K_{D}}{K_{R}}$ $\Rightarrow \text{für exakten Amplituden- und}$ $ \text{Phasengang Tabelle mit Korrekturwerten benutzen (PT1 und VZW)}$	Nachstellzeit $T_n = \frac{K_R}{K_I}$ Vorhaltzeit $T_v = \frac{K_D}{K_R}$ Vereinfachung S. 105 (4.31) ff beachten					

	PT ₁		I	PT ₂			PT _n	
	➤ Regelstrecken, Mess- und Stellglieder							
	>	keine Ableit			Be u(t) auf der rechten Seite			
>	Tangente im Ursprung		waagerech	te Ta	angente der Übergangsfunk	tion 1	h(t) im Ursprung	
	der Übergangsfunktion	Dämpfung	Nullstellen λ _i			➤	φ strebt gegen n·(-90°)	
	h(t) lt. Tabelle	D > 1	reell	>	2 PT ₁ -Glieder in Reihe	\triangleright	Ortskurve durchläuft n	
>	für exakten Amplituden- und	D = 1	reell identisch	~	2 PT ₁ -Glieder in Reihe (T ₁ =T ₂)	>	Quadranten Steigung von G maximal	
	Phasengang Tabelle mit Korrekturwerten benutzen	D<1	komplex	A A A	Eigenkreisfrequenz $\omega_C = \omega_0 \sqrt{1 - D^2}$ für Amplituden- und Phasengang Tabelle mit Korrekturwerten benutzen Überschwingen	>	-n LE Reihenschaltung aus PT ₁ - und PT ₂ -Gliedern	
		$\mathbf{D} = 0$	komplex, Re=0	>	Eigenkreisfrequenz ω ₀			

IT ₁			DT ₁		PIT ₁
>	Regelstrecken ohne Ausgleich und integrierend	\triangleright	nachgebendes Glied:	V	Regler
	wirkende Stellantriebe mit Verzögerung		Übergangsfunktion h(t) ist endlich		-
>	ohne Ausgleich : $h(t\rightarrow \infty)$ gegen ∞		für alle t und strebt für große t		
>	Übergangsfunktion h(t) entspricht		gegen Null		
	Rampenantwort (vgl. S. 129 ff) des PT ₁ -Gliedes	\triangleright	auch aus Parallelschaltung von P-		
	•		und PT ₁ -Glied zu erzielen		

	PDT ₁	PPT ₁		PT _t	PT_1T_t
Kompensationsglieder zur Beeinflussung des				Beschreibung	von Regelstrecken
	dynamischen Verh	altens von Regelkreisen	> r	ichtrationale Übertrag	ungsfunktion (keine Pol-
	phasenanhebendes Glied	amplitudenabsenkendes	u	nd Nullstellendarstellu	ing möglich)
	> I	Regler			2 2 /
	T <t<sub>v</t<sub>	> T>T _v			

PA_1	PAn				
Allpass: konstanter Betrag des Front	equenzganges für alle Kreisfrequenzen				
 Pole nur in der linken s-Halbebene, spiegelbi 	ldlich dazu Nullstellen in der rechten s-Halbebene				
➤ Rego	elstrecken				
\rightarrow h(t=0) < 0; für ungerade n \Rightarrow Regelstreck					
Allpassanteilen sind schlecht regelbar					
$\Rightarrow \varphi(\omega \to \infty)$ strebt gegen $2\pi \cdot (-90^{\circ})$					

Mi	nimalphasenglieder (Phasenminimumsysteme)	Nichtminimalphasenglieder		
>	alle Übertragungsglieder mit gebrochen rationaler	\triangleright	Glieder, die nebenstehende Forderung nicht erfüllen	
	Übertragungsfunktion, deren Polstellen und	\triangleright	z.B. Totzeit- und Allpassglieder	
	Nullstellen negative Realteile aufweisen	\triangleright	schlecht regelbar	
>	Frequenzgang weist einen bestimmten negativen	\triangleright	bei rationaler Übertragungsfunktion: Auffassung als	
	Mindestphasenwinkel auf		Reihenschaltung aus Minimalphasenglied u. Allpass	

Inversion und Negation

	Amplitudengang	Phasengang	Ortskurve
Negation des Re	kein Einfluss	Spiegelung an der 0° Achse	Spiegelung an der
_	Kem Emiluss	und Verschiebung um –180°	imaginären Achse
Negation des Im	kein Einfluss	Spiegelung an der 0° Achse	Spiegelung an reeller Achse
Negation von G	kein Einfluss	Verschiebung um –180°	Spiegelung an beiden Achsen ($\Delta \varphi$ = -180°)
Inversion von G	Spiegelung an G =1	Spiegelung an der 0° Achse	?

Korrekturwerte für exakten Amplituden- und Phasengang

	$\lg G - \lg Asymptote \qquad \varphi - \varphi_{Asymptote} $								
$\frac{\omega}{\omega_E}$ bzw. $\frac{\omega_E}{\omega}$		0,1	0,5 0,8 1		0,1	0,5	0,8	1	
PT ₁ ·		-0,002	-0,048	-0,107	-0,151	5,7	26,6	38,7	45,0
	D								
	1	-0,004	-0,097	-0,215	-0,301	11,4	53,1	77,3	90,0
	0,707	0,000	-0,013	-0,075	-0,151	8,1	43,4	72,3	90,0
	0,5	0,002	0,045	0,057	0,000	5,8	33,7	65,8	90,0
PT_2	0,4	0,003	0,071	0,134	0,097	4,6	28,1	60,6	90,0
	0,3	0,004	0,093	0,222	0,222	3,5	21,8	53,1	90,0
	0,2	0,004	0,110	0,317	0,398	2,3	14,9	41,6	90,0
	0,1	0,004	0,121	0,405	0,699	1,2	7,6	24,0	90,0
	0,05	0,004	0,124	0,433	1,000	0,6	3,8	12,5	90,0

Stabilität, Gütemaße und Reglereinstellung

	-
Festwertregelung	Begrenzung des Störgrößeneinflusses bei konstanter Führungsgröße; d.h.: h(t→∞) möglichst klein
	KIÇIII
Folgeregelung	Folgeverhalten der Regelgröße bzgl. Führungsgrößenverlauf; d.h. h(t) soll schnell gegen 1
	streben
	Rampenantwort ist eine häufig benutzte Kenngröße für das dynamische Verhalten (vgl. S.129)

Gütemaße

Optimierung = Minimierung des Gütemaßes

Integral- oder Flächenkriterien					
Voraussetzung: keine bleibende Regelabweichung e = x-w					
$I = \int_{0}^{\infty} e^{2} dt$ quadratische Regelfläche	$I = \int_{0}^{\infty} e \cdot t \cdot dt$	zeitbeschwerte betragslineare Regelfläche			

			Kennwerte aus der Sprungfunktion
Mein Binschwingzeit Wenn sie in diesen Bereich wieder eintritt und dauernd darin verbleibt die nach Abklingen von Einschwingvorgängen verbleibende Differenz von Führungsgröße u. Regelgröße	Tan	Anschwingzeit	
Xw∞, X∞ Regelabweichung Regelgröße Xm Überschwingweite größter Wert, um den die Regelgröße bei Führungsgrößensprung über die Führungsgröße hinaus überschwingt Xmax maximale Regelabweichung maximaler Ausschlag der Führungsgröße bei Störgrößensprung R Regelfaktor Regelfaktor Regelschwing vgl. auch statisches Verhalten	Tein	Einschwingzeit	
x_m Operschwingweite wiberschwingt überschwingt x_{max} maximale Regelabweichung maximaler Ausschlag der Führungsgröße bei Störgrößensprung R Regelfaktor $R = \frac{x_{\infty mR}}{x_{\infty oR}}$ vgl. auch statisches Verhalten Tein Tein Tein Tein Tein Tein Tein Tein	$\mathbf{x}_{\mathbf{w}\infty}, \mathbf{x}_{\infty}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X _m	Überschwingweite	
X _{woo} R X _{wo}	X _{max}		maximaler Ausschlag der Führungsgröße bei Störgrößensprung
w Xm Einschwing- toleranz Tein Tan Einschwing- toleranz X Xmax Einschwing- toleranz	R	Regelfaktor	$R = \frac{x_{\infty mR}}{x_{\infty oR}}$ vgl. auch statisches Verhalten
Führungsgrößensprung Störgrößensprung		T _{ein}	Einschwing- toleranz

Einstellregeln

al	nhand Sprungantwort der Regelstrecke							anhand	von Versuch	isergebnis	sen	
	Regler			scher Regel- erlauf		lauf mit 20% schwingen		Regler	K _R	T _n	T_{v}	
			Störung	Führung	Störung	Führung		P	$0.5 \cdot K_{R \text{ krit}}$	•	-	
	<u> </u>		0.27	0.27	0.7.7	0.7.5		PI	$0.45 \cdot K_{R \text{ krit}}$	0,85 · T _{krit}	-	
	P	K _R	$\frac{0,3}{K_S}\frac{T_g}{T_u}$	$\frac{0.3}{K_S}\frac{T_g}{T_u}$	$\frac{0,7}{K_S}\frac{T_g}{T_u}$	$\frac{0.7}{K_S}\frac{T_{\theta}}{T_u}$		PID	$0.6 \cdot K_{R \text{ krit}}$	0,5 · T _{krit}	$0,12 \cdot T_{\mathrm{krit}}$	
	PI	K _R	$\frac{0,6}{K_S}\frac{T_g}{T_u}$	$\frac{0,35}{K_S}\frac{T_g}{T_u}$	$\frac{0.7}{K_S} \frac{T_g}{T_u}$	$\frac{0.6}{K_S} \frac{T_g}{T_u}$		exp.	Bestimmung v	on K _{R krit} u	nd T _{R.krif}	ני
		T_n	4 T _u	$1,2 T_g$	$2,3 T_u$	$1~T_{\mathcal{g}}$		dazu	Veränderung gler, bis Dauer	von K _R bei '	Versuch mit	
		K _R	$\frac{0.95}{K_S} \frac{T_g}{T_u}$	$\frac{0.6}{K_S} \frac{T_g}{T_u}$	$\frac{1,2}{K_S}\frac{T_g}{T_u}$	$\frac{0.95}{K_S} \frac{T_g}{T_u}$		Rege	elungen mit un Stellgrößen			.1
	PID	Tn	$2,4 T_u$	$1 T_{\theta}$	2 T _u	$1,35 T_g$			C			
		T_{ν}	$0,42 T_u$	$0,5 T_u$	$0,42 T_u$	$0,47 T_u$						
gi Si B ui K B	nur für T _g /T _u > 3 gültig (schlecht für Strecken mit Totzeit) Bestimmung von Tg und Tu durch Konstruktion o. Berechnung der Wendetangente in der											

 $\underline{Sprungant}wort$

Stabilität

algebraische Stabilitätskriterien

ungeeignet bei Totzeitverhalten

Die Stabilität eines linearen Übertragungssystems hängt nicht von der Eingangsgröße ab

Übertragungsstabilität: Ein stabiles System muss auf eine beschränkte Eingangsgröße mit einer beschränkten Ausgangsgröße reagieren!

BIBO-Kriterium Ein Übertragungssystem ist dann stabil, wenn sämtliche Nullstellen des zu seiner Differentialgleichung gehörenden charakteristischen Polynoms bzw. sämtliche Polstellen der Übertragungsfunktion negative Realteile aufweisen

Routh Hurwitz

notwendige Bedingung:

Das System ist nur dann stabil, wenn alle Koeffizienten des charakteristischen Polynoms (bzw. der homogenen linearen DGL) $a_n \dots a_\theta$ vorhanden und positiv sind.

hinreichende Bedingung

Das System ist nur dann stabil, wenn die Routhschen Probefunktionen R_i (1. Spalte des Schemas) sämtlich größer als Null sind.

$$R_n = a_n$$
 , $R_{n-1} = a_{n-1}$, $R_{n-2} = a'_{n-2}$, ...

Ende, wenn nur noch in der 1. Spalte Elemente stehen. Bei ungerader Ordnung steht unten rechts eine Null Das System ist nur dann stabil, wenn die Hurwitzdeterminante und ihre Unterdeterminanten sämtlich größer als Null sind.

$$\begin{vmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & \dots & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & \dots & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & \dots & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & & & & & = H \\ \vdots & \vdots & \vdots & & & & & & a_3 & a_1 & 0 \\ \vdots & \vdots & \vdots & & & & & & a_4 & a_2 & a_0 \\ 0 & 0 & 0 & 0 & & & & & a_5 & a_3 & a_1 \end{vmatrix}$$

Sonderfälle

System 2. Ordnung ⇒ notwendige Bedingung ist auch hinreichend

System 3. Ordnung \Rightarrow hinreichend wenn 1. Bed. erfüllt und zusätzlich $a_1a_2 > a_0a_4$

Bei einschleifigen Regelkreisen (vgl. Einführung) reicht eine Untersuchung des aufgeschnittenen Regelkreises aus. Prüfe Nullstellen des nebenstehenden Ausdruckes.

Achtung falsche Schlüsse sind möglich, wenn in G(s) gekürzt werden kann (vgl. S.147 (5.43)f)

 $1 + G_0(s) = 0$

Stabilitätsprüfung nach Nyquist

geeignet auch bei Totzeitverhalten

- Analyse der grafischen Darstellung des aufgeschnittenen Regelkreises (Ortskurve o. Bode-Diagramm)
- > neben der Stabilität werden gleichzeitig Aussagen über die Güte und Optimiermöglichkeiten gewonnen

Betrachtung der Ortkurve

		Wenn die Übertragungsfunktion $G_0(s)$ des aufgeschnittenen Regelkreises p Pole in der rechten s-Halbebene aufweist, dann gilt: Wenn die Ortskurve des Frequenzganges $G_0(j\omega)$ beim Durchlaufen der Frequenzwerte von $-\infty$ bis ∞ den Punkt -1 auf der reellen Achse genau p Mal im mathematisch positiven Sinn umfährt, dann ist der geschlossene Regelkreis stabil. Andernfalls ist er nicht stabil.
_	~	umjunit, uum isi uei geschiossene Regeixieis siubu. Anuernjuus isi ei nichi siubu.

- Die Ortskurve ist nach den Regeln für Inversion bzw. Negation für negative ω zu ergänzen
- Beim Z\u00e4hlen der Uml\u00e4ufe einf\u00e4ch die vollst\u00e4ndigen Umdrehungen eines Zeigers betrachten, der in −1 auf der reellen Achse befestigt ist und die Ortskurve von ω = -∞ bis ω = ∞ abgetastet wird.

Nyquist	Wenn der aufgeschnittene Regelkreis stabil ist oder integrierendes Verhalten aufweist (d.h. $G_0(s)$ hat nur Pole mit negativem Realteil und bei I-Verhalten zusätzlich Pol(e) bei $s=0$), dann gilt: Wenn der Punkt -1 auf der reellen Achse im Gebiet zur Linken der in Richtung zunehmender Frequenz durchlaufenen Ortskurve des Frequenzganges $G_0(s)$ liegt, dann ist der geschlossene Regelkreis stabil. Anderenfalls ist er nicht stabil
---------	--

Nyquist	Wenn der aufgeschnittene Regelkreis stabil ist oder integrierendes Verhalten aufweist (d.h. $G_0(s)$ hat nur Pole mit negativem Realteil und bei I-Verhalten zusätzlich Pol(e) bei $s=0$) und die Ortskurve des Frequenzganges $G_0(j\omega)$ die reelle Achse nur so schneidet, dass beim Übergang vom 3. in den 2. Quadranten die Frequenz zunimmt, dann gilt: Wenn die Ortskurve des Frequenzganges $G_0(j\omega)$ die reelle Achse nur rechts vom Punkt -1 der reellen Achse schneidet, dann ist der geschlossene Regelkreis stabil. Anderenfalls ist er nicht stabil.
---------	---

Betrachtung des Bode-Diagramms

		Wenn der aufgeschnittene Regelkreis stabil ist oder integrierendes Verhalten aufweist (d.h.
		$G_0(s)$ hat nur Pole mit negativem Realteil und bei I-Verhalten zusätzlich Pol(e) bei $s=0$) und
	T •4	der Phasengang seines Frequenzgangs im Bode-Diagramm die Linien -180° -n·360° nur mit
	lyquist	negativer Steigung schneidet, dann gilt:
(ver	einfacht)	Wenn der Betrag des Frequenzgangs $ G_0(j\omega_\pi) $ bei den Frequenzwerten, für die der

Wenn der Betrag des Frequenzgangs $|G_0(j\omega_\pi)|$ bei den Frequenzwerten, für die der Phasengang $\phi_0(\omega\pi) = -180^\circ$ -n-360° kleiner ist als 1, dann ist der geschlossene Regelkreis stabil. Anderenfalls ist er nicht stabil

Gütemaße

Phasenreserve

$$\alpha_R = \varphi_0(\omega_d) + \pi$$

mit:

13

$$\frac{\varphi_0(\omega_\pi) = -\pi}{\left| G_0(j\omega_d) \right| = 1}$$

Einstellregeln

gutes Störverhalten	$1.5 < A_R < 3$	$20^{\circ} < \alpha_{\rm R} < 70^{\circ}$			
gutes Führungsverhalten	$4 < A_R < 10$	$40^{\circ} < \alpha_{\rm R} < 60^{\circ}$			
! wirkt die Störgröße am Ende der Regelstrecke ⇒ Auslegung für gutes Führungsverhalten (vgl. S.161 Bild 5-25)					

weitere Forderungen

- $ω_d$ und $ω_π$ möglichst groß \Rightarrow schnellere Reaktion auf Stör- o. Führungsgrößenänderungen
- $|G(i\omega)|$ möglichst groß (besonders für kleine ω) \Rightarrow geringer statischer Fehler der Regelung
- Realisierung durch Verwendung von Kompensationsgliedern (PDT₁, PPT₁; vgl. S.165ff)

Erfahrungsregeln

- \triangleright der Amplitudengang soll die Linie $|G(j\omega)| = 1$ mit der Steigung –1 schneiden, weil zu dieser Steigung bei Phasenminimumsystemen ein Phasenwinkel von -90° gehört
- das Kurvenstück mit der Steigung –1 sollte sich mindestens von $|G(j\omega)| = 2$ bis $|G(j\omega)| = 0.4$ erstrecken

Gerätetechnik

Klassifizierung von Regelungen

einfachste Regelungen		Einheitsregelsysteme		Prozessrechner o. –leitsysteme	
\wedge	meist einfache und billige P-Regler	A	Regel- u. Stellgröße sind genormte elektr. Einheitssignale	A	zeitdiskret u. keine parallelen
>	ohne Hilfsenergie (1 Gerät) geringe Anforderungen	>	⇒ geeignete Gerätekombinationen		Operationen ⇒ bei mehreren angeschlossenen Regelkreisen ist
	(Genauigkeit, Geschwindigkeit)		versch. Hersteller möglich (geringe		momentan immer nur ein Kreis
A	Fliehkraftpendel (S.195) Druckminderer (S.195)		Lagerhaltung)		geschlossen einfache Modifizierung durch
>	Temperaturregler (S.196)				Programmänderung

Regler

>	ohne Hilfsenergie	⇒ vgl. einfachste Regelungen
>	mit Hilfsenergie - elektrisch	Signalverstärkung durch aktiven Verstärker (mit passiver Rückführung) mit einstellbarem statischen u. dynamischen Verhalten (S.199 Bild 6-7)
	hydraulischpneumatisch	 hoher Übertragungsfaktor ⇒ stat. u. dyn. Verhalten nur abhängig von der Rückführung (vgl. S.199 (6.1)ff) keine Stabilitätsprobleme bei P-Verstärkern mit P-, D- oder PT₁-Rückführung (S.200) I-Verstärker als Regler unbrauchbar (vgl. S.200f)

hydraulische Regler

- keine Signalübertragung über große Entfernungen möglich
- Verstärker hat I-Verhalten
 - ohne Rückführung (S.202 Bild 6-9)
 - überwiegend mit starrer Rückführung (P-Verhalten)
 - Wegvergleich (S.203 Bild 6-10)
 - Kraftvergleich (S.203 Bild 6-10)
- selten nachgebende Rückführung (DT₁-Verhalten)
- für große Flüssigkeitsströme → Verwendung von Vorsteuerungen (S.203f)

elektronische Regler

- hohe Flexibilität und Vielseitigkeit
- beschalteter Differenzverstärker (S.206 Bild 6-13)
 - $I_d \approx 0$, hoher K-Faktor $\Rightarrow U_d \approx 0$
- o $U_y \sim U_x$ P-Regler (S.209 Bild 6-14)
- PI-Regler (S. 210 Bild 6-16 mit gewichteter Eingangssumme)
- **PID Regler** (S.209 Bild 6-15)
- Spannungsteiler zur <u>Veränderung des K-Faktors</u>, dessen Widerstand gegenüber der Rückführung vernachlässigbar

$$G_{\text{Re gler}}(j\omega) = \frac{\underline{u}_{y}}{\underline{u}_{x}} = -\frac{Z_{r}(\omega)}{Z_{e}(\omega)} = -\frac{G_{eingang}(j\omega)}{G_{r\"{u}ckf\"{u}hrung}(j\omega)}$$

Schaltung	Differentialgl.	Frequenzgang	kompl. Widerst.
	i = f(u, t)	$G(j\omega) = \frac{\underline{i}}{\underline{u}}$	$Z(\omega) = \frac{\underline{u}}{\underline{i}}$
u R	$i = \frac{1}{R}u$	1 R	R
u C	i = Cu	jωC	$\frac{1}{j\omega C}$
u L	$\dot{i} = \frac{1}{L}u$	<u>1</u> jωL	jωL
	RCi+i=Cu	<u>jωC</u> 1 + jωRC	$R + \frac{1}{j\omega C}$
C R	$i = \frac{1}{R}u + Cu$	$\frac{1}{R} + j\omega C$	$\frac{R}{1+j\omega RC}$

Messgeräte

Regelungen arbeiten nicht genauer als die Messgenauigkeit bei der Regelgrößenerfassung

regerangen arbeiten ment genaaer als die 14essgenaargkeit bei der regergroßenerrassang					
Messen	 mit geringem Aufwand eine zuverlässige, genaue u. reproduzierbare Erfassung der interessierende Größe inkl. Ausdruck durch eine geeignete (digitale o. analoge) Größe sowie Weiterleitung an Regler, Anzeiger o. Überwacher im engeren Sinne: Ausdruck der Messgröße als Vielfaches einer SI-Einheit (S.211) bzw. SI-Kombination 				
Messsystem	 idealisiert (S.212 Bild 6-17) fehlerbehaftet (S.2-13 Bild 6-18; vgl. auch Fehlerbegrenzungsmaßnahmen und Berücksichtigung der stabilitätsgefährdenden dynamischen Messfehler S.212 ff) erweitert (S.213 Bild 6-19) 				
Messverfahren	▶ direkt ←→ indirekt ▶ zeitlich: kontinuierlich ←→ diskontinuierlich ▶ analog←→digital ▶ Ausschlagsverfahren ←→ Kompensationsverfahren				

Tompovotuv	➤ Widerstandthermometer (S.215)					
Temperatur	➤ Thermoelement (S.215)					
Kraft	➤ Piezoaufnehmer (S.216)					
Krait	➤ Dehnungsmessstreifen (DMS S.217)					
Druck	➤ Druckmessgeräte mit Membran in Verbindung mit DMS oder Piezoelement (S. 219)					
	Piezoelement					
Beschleunigung	\Rightarrow kapazitiv \Rightarrow S.220					
	➤ DMS					
Durchfluss	➤ Düsen o. Blenden (S.220)					
Durchiuss	Coriolisprinzip (S.222)					
Was	kleine Wege: > kapazitive Weggeber					
Weg	große Wege: → optische Abtastung von Strichmaßstäben (inkremental o. absolut S.223)					
Casabarindialvait	➤ induktiv (S.223)					
Geschwindigkeit	Tachogenerator (S.223)					

Stelleinrichtungen

Stellantrieb (Steller)	Umformung der Stellgröße in eine geeignete Zwischengröße (z.B. elektro-pneumatischer Umformer)
Stellglied	direkte Beeinflussung des Prozesses bzw. der Regelstrecke (Ventile, Drosselklappen, Fördereinrichtungen, Lenkeinrichtungen, Stelltrafos)

- Berücksichtigung stabilitätsgefährdender dynamischer Eigenschaften
 häufig treten problematische Nichtlinearitäten (Ansprechschwelle, Hysterese) auf

Steller

	pneumatisch		natisch hydraulisch		elektrisch	
	geradlinige Bewegungen mit	\triangleleft	translatorische Bewegungen	\checkmark	hohe Flexibilität	
	beträchtlichen Kräften	>	Schwenk- und	\triangleright	breiterer Einsatzbereich	
			Drehbewegungen			
>	kostengünstig	\triangleleft	hohe Kräfte und Momente	\triangleleft	integrales Verhalten (vgl.	
>	gute Dynamik	>	fast immer mit Stellungsregler		Mann/Schiffelgen S.359 oben)	
>	ausreichende Genauigkeit		(steuert den Fluss von	\triangleright	fast immer mit Stellungsregler	
			Hydrauliköl, der die			
			Stellbewegung verursacht)			
>	Kolben und Zylinder	\wedge	Kolben u. Zylinder (einfach o.	>	Gleich- und Drehstrommotoren	
>	Membranantriebe (vgl. S.226		doppeltwirkend) evtl. mit		mit Getrieben und	
	Bild 6-28)		Getriebe		Gewindespindeln	
>	elektropneumatische Steller ($P_v \sim I_v$	>	Schwenk- und Drehmotoren		-	
	→ vgl. S. 225 Bild 6-27)					

lineare Abtastregelungen

- Glieder, die Größen nur zu diskreten, äquidistanten Zeitpunkten übertragen
- Regelkreis mit kontinuierlicher Regelstrecke und abtastend arbeitendem Regler
- Abtaster liefert Folge äquidistanter Impulse oder Werte
- ➤ Halteglied (0. Ordnung) hält Abtastwert über die Abtastzeit T konstant
- Regler wandelt Folge von Eingangssignalen in eine Folge von Ausgangssignalen um

Differenzengleichung	$a_0 y_k + a_1 y_{k-1} + \dots + a_n y_{k-n}$	$=b_0u_k + b_1u_{k-1}$	$++b_m u_{k-m}$ vgl. S.234 (7.3) u. (7.4)						
Rechenregeln (vgl. Bsp. PT ₁ -Glied S.235)									
Differentiation	$y = K \cdot \dot{u}$	\Rightarrow	$y_k = \frac{K}{T} \cdot (u_k - u_{k-1})$						
Integration	$y = K \cdot \int_{0}^{t} u(\tau) \cdot d\tau$	\Rightarrow	$y_k - y_{k-1} = K \cdot T \cdot u_k$						
stat. Übertragungsfaktor eines stabilen Systems		$K = b_0 + b_1 + a_1 + a_0 + a_1 + a_1 + a_2 $	$\frac{+b_m}{\cdot+a_n}$						
Frequenzgang (entspricht der z-	$G(e^{j\omega T}) = \frac{\underline{y}_k}{\underline{u}_k} = \frac{\underline{y} \cdot e^{j\alpha}}{\underline{u} \cdot e^{j\alpha}}$	$\frac{\partial^{kT}}{\partial^{kT}} = \frac{\underline{y}}{\underline{u}} = \frac{b_0 + b_1}{a_0 + a_1}$	$\frac{e^{-j\omega T} + b_2 e^{-j\omega 2T} + + b_m e^{-j\omega nT}}{e^{-j\omega T} + a_2 e^{-j\omega 2T} + + a_n e^{-j\omega nT}}$						
Übertragungsfunktion)	Das Argument von G ist per	riodisch in $\frac{2\pi}{T}$	(Bsp. D- und I-Glied S.237f)						

	Shannon-Abtast-Theorem							
Eine zeitkontinuierliche Funktion kann aus ihren Abtastwerten nur dann fehlerfrei rekonstruiert werden, wenn die höchste in dieser Funktion enthaltene Frequenz kleiner als die Shannon-Frequenz (bzw. die Abtastzeit kürzer als die Hälfte der kürzesten Periodendauer der in der abzutastenden Funktion) ist.								
	$\omega_{ ext{max}} < \omega_S = rac{\pi}{T}$ bzw. $T < rac{T_{ ext{min}}}{2}$							
Folgen von	Signalverfälschung im interessierenden, niederfrequenten Bereich							
Unterabtastung Verlust höherfrequenter Signalbereich (meist unproblematisch)								
Anti-Aliasing-Filter	Anti-Aliasing-Filter kontinuierliches, analoges Tiefpassfilter unterdrückt unerwünschte höherfrequente							
	Signalanteile die wg. Unterabtastung zu Signalverfälschungen führen							

quasikontinuierliche Abtastregelungen

Das Gesamtsystem kann als quasikontinuierlich aufgefasst werden, wenn T so klein ist, dass der Abtastvorgang das Gesamtverhalten nicht wesentlich beeinflusst.

Bedingung:

 $T < \frac{T_g}{2}$

 $(T_{\rm g}$: Ausgleichszeit der Regelstrecke, vgl. Gütemaße bzgl. Sprungantwort)

Durch Vertauschung von <u>verzögerungsfreiem</u> Regler und Halteglied können Abtaster und Halteglied für kleine ω (d.h. ω T < 1) durch ein Totzeitglied (PT_t mit T_t= 0,5 ·T) ersetzt werden \Rightarrow Ersatzregelkreis (vgl. S.231f) ! Stabilitätsprobleme durch Totzeitglied !

rekursive Rechenvorschrift zur Bestimmung der Werte der Stellgröße eines zeitdiskreten **PID**-Reglers:

$$PI \rightarrow T_v = 0$$

$$\mathbf{P} \to \mathbf{T_v} = \mathbf{T_n} = \mathbf{0}$$

$$y_{k} = y_{k-1} + K_{R} \left[(1 + \frac{T}{T_{n}} + \frac{T_{v}}{T}) \cdot u_{k} - (a + 2\frac{T_{v}}{T}) \cdot u_{k-1} + \frac{T_{v}}{T} \cdot u_{k-2} \right]$$

anhand von Schwingversuchen

Häufig in Verbindung mit **integrierenden Stellgliedern**, denen nur die Stellgrößenänderung (y_k-y_{k-1}) zugeführt wird (vgl. S.244 (7.43)) und die **bei Ausfall des Reglers den letzten Stellgrößenwert beibehalten.**

Einstellregeln (vgl. S.11)

ППАПС	Sprungantwort de	er Kegeistrecke	
Regler	K _P	K _I	K _D
P	$\frac{1}{K_S} \cdot \frac{T_{\theta}}{T_u + T}$	· -	_
PI	$\frac{0,9}{K_S} \cdot \frac{T_g}{T_u + 0,5T} - 0,5K_I$	$\frac{0,27}{K_S} \cdot \frac{T \cdot T_g}{(T_u + 0,5T)^2}$	-
PID	$\frac{1,2}{K_S} \cdot \frac{T_g}{T_u + T} - 0,5K_I$	$\frac{0,6}{K_S} \cdot \frac{T \cdot T_g}{(T_u + 0,5T)^2}$	$\frac{0.5}{K_S} \cdot \frac{T_{\theta}}{T}$

Regler	K _P	K _I	K_D
P	0, 5 <i>K</i> _{krit}	-	-
PI	$0,45K_{krit}-0,5K_{I}$	$0,54\frac{K_{\rm krit}}{T_{\rm krit}}$	-
PID	$0,6K_{\rm krit}-0,5K_I$	$1,2\frac{K_{\mathrm{krit}}}{T_{\mathrm{krit}}}$	$0,075K_{\text{krit}} \cdot \frac{T_{\text{krit}}}{T}$

Die Reglerparameter sind die eines Geschwindigkeitsalgorithmus von der Form:

$$\Delta y_k = y_k - y_{k-1} = K_P \cdot (u_k - u_{k-1}) + K_I \cdot u_k + K_D \cdot (u_k - 2u_{k-1} + u_{k-2})$$

!!! nur gültig für $T/T_u > 4$!!!

Regelungssysteme mit nichtlinearen Übertragungsgliedern

- > Betrachtung von Regelkreisen mit einem nichtlinearen, verzögerungsfreien Übertragungsglied
- Dauerschwingungen definierter Amplitude und Frequenz können als stationärer Zustand auftreten
- Die **Stabilität** kann von den Eingangsgrößen abhängen.

Folgeregelungen mit nichtlinearen Übertragungsgliedern

Regelungen mit schaltenden Reglern

- ➤ Vorteil: preiswert (Regler und Stellorgan)
- Nachteil: Arbeitsbewegung als stationärer Zustand (Ausgangsgröße kann nur wenige Werte annehmen zur Realisierung von Zwischenzuständen tritt wechselweises Schalten ein

Dreipunktregler

- häufig zur Ansteuerung integrierend wirkender Stellmotoren ⇒ keine Arbeitsbewegung wg. stetig vestellbarer Stellgröße
- ➤ Kombination aus Dreipunktregler + Stellgröße + proportionaler Rückführung ⇒ nahezu stetig wirkendes Stellglied (vgl. S.289)

Zweipunktregler

Zweipunktregler mit Hysterese

erwünschte Hysterese	unerwünschte Hysterese	
Regelstrecken ohne Tot- bzw. Verzugszeit	Regelstrecken mit Tot- oder Verzugszeit	
 Minderung der Schaltfrequenz Vermeidung von Fehlschaltungen bei Schwankungen der gemessenen Regelgröße 	 Vergrößerung von X_A (durch technisch unvermeidliche Hysterese) Abhilfe: Rückführung zur Steigerung der Schaltfrequenz u. zur Senkung von X_A (vgl. S.186 u.) 	
$X_{A} = \frac{1}{2} \cdot 2d$	$\frac{z}{2}Y_m$ PID-Glied = verzögernd $\frac{z}{2}$ PID-Glied = verzögernd nachgebend	

Zweipunktglied aus stetigem Regler und Pulslängenmodulator

Vorgehensweise zur Analyse nichtlinearer Folgesysteme

- 1) Der Arbeitsbereich des nichtlinearen Übertragungsgliedes wird in Bereiche eingeteilt, in denen eine lineare Beziehung für den Zusammenhang von Ein- und Ausgangsgröße gefunden werden kann.
- 2) Für jeden dieser Bereiche wird der funktionale Zusammenhang von Ein- und Ausgangsgröße des Gesamtsystems bestimmt. Überlegung: Handelt es sich vielleicht um einbekanntes Standardübertragungsverhalten?
- 3) Soweit möglich, wird die Eingangsgröße des nichtlinearen Übertragungsgliedes in die grafische Darstellung eingetragen, und es werden die oben bestimmten Bereiche in diesem Graphen markiert.
- 4) Die Anfangswerte aller zu zeichnenden Größen werden bestimmt. In welchem Bereich des nichtlinearen Übertragungsgliedes befindet sich das System? Der Verlauf der Größen wird mit Kenntnis der linearen Zusammenhänge für den gefundenen Bereich gezeichnet. Bei Bereichswechseln wird, mit der zugeordneten linearen Beschreibung, weitergezeichnet.

Vermaschte Regelkreise

vermaschte Regeikreise								
Vorregelung	Störgrößenaufschaltung	Hilfsstellgröße						
 Verbesserung des Störverhaltens (Störungen werden verringert, indem störende Einflussgrößen konstant gehalten werden) der Stellbereich kann verringert werden 	 → aus Störgrößenänderungen werden zweckmäßige Stellgrößenänderungen abgeleitet, die die Störwirkung (teilweise) kompensieren → bei wenigen, gut messbaren Störgrößen, wenn eine Vorregelung nicht möglich ist → bei Regelstrecken mit Totzeit (wenn die Störgröße über T₁ auf die Regelgröße wirkt) ⇒ wesentliche Verbesserung gegenüber einfacher Regelung → keine Stabilitätsbeeinflussung → bei Regler mit I-Verhalten muss das Aufschaltgerät bei zeitlich konstanter Störgröße eine verschwindende Ausgangsgröße ausgeben (→ DT₁-Glied) → bei analogen Regelkreisen vgl S.310 Bild 9-4 	Regelstrecke = Reihenschaltung mehrerer Verzögerungsglieder zusätzliche Hilfsstellgröße yh aus Unterregelkreis (mit kleinem Stellbereich) mit günstigen dynamischen Eigenschaften (yh muß in der Regelstrecke einfügbar sein) verbessertes Stör- und Führungsverhalten Stabilitätsprobleme bei Ausfall von yh Regler mit P-, PD- oder nachgebendem Verhalten (DT₁-Glied) Dynamikänderung ⇒ Übertragungsfaktor des Hauptreglers kann erhöht werden						
S S X	Z S X	<i>y y R R</i>						
Hilfsregelgröße	Kaskadenregelung	Vorsteuerung u Führungsgrößenfilter						
 Regelstrecke = Reihe von Verzögerungsgliedern + Störgrößen greifen in der Nähe des Stellgrößenangriffspunktes an Regler mit P-, PD- oder nachgebendem Verhalten (DT₁) Dynamikänderung ⇒ Übertragungsfaktor des Hauptreglers kann erhöht werden Stabilitätsprobleme bei Ausfall des Hilfsregelkreises bei analogen Regelkreisen vgl. S.314 Bild 9- 7b 	 ➢ Regelstrecke = Reihe von Verzögerungsgliedern + Störgrößen greifen in der Nähe des Stellgrößenangriffspunktes an der Hauptregler erzeugt die Führungsgröße des Hilfsreglers ⇒ unterlagerter Regelkreis gleicht alle auf vorderen Teil der Regelstrecke wirkende Störungen aus ➢ Verbesserung der Dynamik und Ausgleich von Nichtlinearitäten bestimmter Regelstreckenteile → die Dimensionierung erfolgt von innen nach außen 	Minderung dynamischer Fehler ohne nachteilige Stabilitätsbeeinflussung durch Aufschaltung der Führungsgröße bei Folgeregelungen Regelstrecke hat meist I-Verhalten mit Verzögerung (IT₁, ITₙ) ⇒ Aufschaltgerät muss mehrfach differenzieren u. gewichten ⇒ Berücksichtigung nur weniger Ableitungen möglich ⇒ keine vollständige Fehlerkompensation, daher können die Ableitungen bei bekanntem Führungsverlauf im Voraus bestimmt werden (S.318 Bild 9-12) bei Verwendung eines Führungsgrößenfilters kann dem Regelkreis ein gewünschtes Führungsverhalten eingeprägt werden, während der Regler bzgl. Störverhalten ausgelegt wird (vgl. S. 319 Bild 9-13)						
z_1 y R_h x	z_1 y x_k R R	G_A Y G_S X						

Mehrgrößenregelung

- ➤ mehrere, meist über die Regelstrecken gekoppelte Regelgrößen ⇒ Führungsgrößenänderung in einem Regelkreis = Störgröße in anderen Regelkreisen
- geschlossene Wirkungsabläufe zwischen den Regelkreisen lassen das Gesamtsystem instabil werden

positive Kopplung		negative Kopplung	
\triangleright	Ausgangsgrößen beider Koppelstrecken wirken mit gleichem	\triangleright	Ausgangsgrößen beider Koppelstrecken wirken mit gleichem
	Vorzeichen auf die Regelgrößen		Vorzeichen auf die Regelgrößen
\triangleright	Dämpfung der Einzelregelkreise steigt ⇒ Verlust an	\triangleright	Dämpfung der Einzelregelkreise sinkt
	Reglerwirksamkeit (vgl. S.321f)		
\triangleright	effektive K-Faktoren steigen		

Entkopplungsregler

- Verminderung der Auswirkungen unerwünschter Kopplungen
- > Ziel: vollständige Entkopplung, d.h. aus gekoppelten Mehrgrößensystemen sollen mehrere unabhängige Eingrößensysteme werden (vollständig kaum erreichbar, Schwierigkeiten bereiten v.a. Verzögerungsglieder höherer Ordnung sowie solche mit Totzeit- oder Allpassanteilen), daher schwerpunktmäßig
 - → Führungs- oder Störautonomie
 - → Eigenautonomie (Entkopplung des aufgeschnittenen Systems)
 - \rightarrow statische Entkopplung (nur für $\omega = 0$) liegt vollständige Entkopplung vor
- Entkopplungsregler können als Störgrößenaufschaltung aufgefasst werden, wenn die von Kopplungsgliedern eingebrachten Größen als Störgrößen betrachtet werden