Chapitre 2

Géométrie plane

I. Colinéarité de deux vecteurs

1) Vecteurs colinéaires

Définition:

Soit \vec{u} et \vec{v} deux vecteurs non nuls.

Les vecteurs \vec{u} et \vec{v} sont **colinéaires** si l'un est le produit de l'autre par un réel non nul.

 \vec{u} et \vec{v} colinéaires $\Leftrightarrow \exists k \neq 0$ tel que $\vec{u} = k \vec{v}$

k est le coefficient de colinéarité

Remarques:

- Deux vecteurs non nuls sont colinéaires s'ils ont même direction.
- Par convention, le vecteur nul $\vec{0}$ est colinéaire à tout vecteur.

2) <u>Décomposition de vecteurs</u>

Définition:

On appelle base du plan vectoriel tout couple de deux vecteurs non colinéaires.

Deux vecteurs \vec{u} et \vec{v} non colinéaires forment une base notée (\vec{u}, \vec{v}) .

Exemple:

Les côtés d'un triangle ABC quelconque, non aplati, permettent de former des bases.

Remarques:

- Soit A, B, C trois points non alignés du plan. On dit que $(A; \overrightarrow{AB}, \overrightarrow{AC})$ est un repère du plan.
- M(x; y) dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AC})$ signifie que $\overrightarrow{AM} = x \overrightarrow{AB} + y \overrightarrow{AC}$.
- M(x;y) dans le repère (O;I,J) signifie que $\overrightarrow{OM} = x \overrightarrow{OI} + y \overrightarrow{OJ}$.

Théorème:

Soit \vec{u} et \vec{v} deux vecteurs **non colinéaires** du plan.

Pour tout vecteur \vec{w} du plan, il existe un couple unique de réel $\begin{pmatrix} a \\ b \end{pmatrix}$

$$\vec{w} = a \vec{u} + b \vec{v}$$

Le couple $\begin{bmatrix} a \\ b \end{bmatrix}$ est appelé couple des coordonnées du vecteur \vec{w} dans la base (\vec{u}, \vec{v}) .

Démonstration :

• Existence:

Dans un repère (O; I, J) du plan, soit les points I', J'et *M* tels que :

$$\vec{u} = \vec{OI}', \ \vec{v} = \vec{OJ}' \text{ et } \vec{w} = \vec{OM}$$
.

Les points O, I' et J' ne sont pas alignés, car \vec{u} et \vec{v} ne sont pas colinéaires.

Ainsi (O; I', J') est un repère du plan.

Notons (a;b) les coordonnées de M dans ce repère.

On a alors : $\overrightarrow{OM} = a \overrightarrow{OI}' + b \overrightarrow{OJ}'$.

• Unicité :

Alors
$$(a-a')\vec{u}=(b'-b)\vec{v}$$
.

Si
$$a-a'\neq 0$$
, on obtient : $\vec{u} = \frac{b'-b}{a-a'}\vec{v}$. C'est impossible, car \vec{u} et \vec{v} ne sont pas colinéaires.

On a donc:
$$a-a'=0$$
, d'où $a=a'$.

Le même raisonnement conduit à l'égalité b=b'.

Par conséquent, on a
$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a' \\ b' \end{pmatrix}$$
.

Remarque:

$$\vec{w} \begin{pmatrix} x \\ y \end{pmatrix}$$
 dans le repère $(A; \vec{u}, \vec{v})$ signifie que $\vec{w} = x \vec{u} + y \vec{v}$.

Les coordonnées d'un vecteur dépendent de la base (\vec{u}, \vec{v}) , tandis que les coordonnées d'un point dépendent du repère $(A; \vec{u}, \vec{v})$.

Exemple:

Soit ABCD le parallélogramme de centre O.

On veut exprimer le vecteur \overline{AB} en fonction de \overline{AO} et \overline{AD} .

On a: $\overrightarrow{AB} = 2\overrightarrow{AO} - \overrightarrow{AD}$.

Donc, dans la base $(\overrightarrow{AO}, \overrightarrow{AD})$, les coordonnées de \overrightarrow{AB} sont

3) Caractérisation analytique de la colinéarité

Propriété:

Soit $(O; \vec{i}, \vec{j})$ un repère du plan, \vec{u} et \vec{v} ont pour coordonnées respectives $\begin{pmatrix} x \\ y \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \end{pmatrix}$. \vec{u} et \vec{v} sont **colinéaires** si et seulement si xy'-x'y=0.

Démonstration :

- Énoncé direct : $si \ \vec{u} \ et \ \vec{v} \ sont \ colinéaires \ alors \ xy'-x'y=0$.
 - o Si l'un des vecteurs est nul alors la relation est immédiate.
 - Si les deux vecteurs sont non nuls :

$$\vec{u}$$
 et \vec{v} colinéaires $\Rightarrow \vec{u} = k\vec{v}$ (avec $k \neq 0$) $\Rightarrow \begin{cases} x = kx' \\ y = ky \end{cases}$ (avec $k \neq 0$). $\Rightarrow x y' - x' y = kx' y' - x' ky' = kx' y' - kx' y' = 0$

- Réciproque : si xy' x'y = 0 alors \vec{u} et \vec{v} sont colinéaires
 - $\circ 1^{\text{er}} \text{ cas} : \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ Alors } \vec{u} \text{ et } \vec{v} \text{ sont colinéaires.}$
 - $2^{\text{ème}}$ cas: l'un au moins des couples $\begin{pmatrix} x \\ y \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \end{pmatrix}$ est non nul.

On suppose \vec{u} non nul et, en particulier, $x \neq 0$. On peut alors définir le réel $k = \frac{x'}{x}$.

- 1^{er} cas : k=0 alors x'=0 et \vec{u} et \vec{v} sont colinéaires (ils ont même direction).
- $2^{\text{ème}} \text{ cas}: k \neq 0 \text{ et } xy' x'y = 0 \Rightarrow y' = \frac{x'}{x}y = ky \text{ (avec k} \neq 0) \Rightarrow \begin{cases} y' = ky \\ x' = kx \end{cases} \text{ (avec k} \neq 0)$ $\Rightarrow \vec{v} = k\vec{u} \text{ (avec k} \neq 0) \text{ donc } \vec{u} \text{ et } \vec{v} \text{ sont colinéaires.}$

3

Exemple:

Soit
$$\vec{u} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $\vec{v} \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} \frac{3}{2} \\ \frac{3}{4} \end{pmatrix}$.

 \vec{u} et \vec{v} ne sont pas colinéaires car $2 \times (-2) - 1 \times 4 \neq 0$

 \vec{u} et \vec{w} sont colinéaires car $2 \times \frac{3}{4} - 1 \times \frac{3}{2} = 0$. Plus précisément on a : $\vec{w} = \frac{3}{4} \vec{u}$.

II. Caractérisation analytique d'une droite

1) Vecteur directeur d'une droite

Définition:

Soit *d* une droite du plan.

On appelle **vecteur** directeur de d tout vecteur non nul \vec{u} qui possède la même direction que la droite d.

Remarques:

• Le choix de deux points distincts quelconques de *d* définit un vecteur directeur de *d*.

• Si \vec{u} est un vecteur directeur de d alors tout vecteur (non nul) colinéaire à \vec{u} est aussi un vecteur directeur de d.

 \overrightarrow{AB} , \overrightarrow{BC} ou \overrightarrow{AC} sont des vecteurs directeurs de d. \overrightarrow{u} et \overrightarrow{v} sont des vecteurs directeurs de d.

• Le parallélisme de deux droites *d* et *d'* se traduit par le fait que tout vecteur directeur de l'une est vecteur directeur de l'autre.

Exemple:

La droite d: y=-2x+1 passe par les points A(-1;3) et B(1;-1). d admet comme vecteur directeur $\overrightarrow{AB} \begin{bmatrix} 2 \\ -4 \end{bmatrix}$ ou $\overrightarrow{v} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

2) Équations cartésiennes d'une droite

Théorème:

Toute droite d du plan admet une équation de la forme :

$$ax + by + c = 0$$

où a, b et c sont des réels avec $(a;b)\neq(0;0)$.

Cette équation est une **équation cartésienne** de la droite d.

Démonstration:

Soit une droite d passant par un point $A(x_A; y_A)$ et de vecteur directeur (non nul) $\vec{u} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.

Pour tout point M(x; y) du plan,

$$M \in d \Leftrightarrow \overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$$
 et $\overrightarrow{u} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ sont colinéaires.

d M A

$$\Leftrightarrow \beta \times (x - x_A) - \alpha (y - y_A) = 0 \Leftrightarrow \beta x - \alpha y + (-\beta x_A + \alpha y_A) = 0 \text{ et } (\beta; -\alpha) \neq (0; 0) \text{ car } \vec{u} \neq \vec{0}.$$

Exemple:

Soit d la droite passant par A(-2;3) et dirigée par $\vec{u} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.

$$M(x;y) \in d \Leftrightarrow \overrightarrow{AM} \begin{pmatrix} x+2 \\ y-3 \end{pmatrix}$$
 et $\overrightarrow{u} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ sont colinéaires $\Leftrightarrow 5(x+2)-2(y-3)=0$
 $\Leftrightarrow 5x-2y+16=0$

d admet pour équation cartésienne : 5x-2y+16=0

Remarque:

Une droite *d* admet une infinité d'équations cartésiennes.

En effet, si ax + by + c = 0 est une équation de d, alors pour tout réel k non nul, kax + kby + kc = 0 est également une équation de d.

Propriété:

L'ensemble des points M(x;y) vérifiant l'équation ax + by + c = 0, avec $(a;b) \neq (0;0)$, est une droite de vecteur directeur $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$.

Démonstration:

Soit \mathscr{P} le plan muni du repère $(O; \vec{i}, \vec{j})$ et Γ l'ensemble des points M(x; y) tel que ax + by + c = 0 avec $(a; b) \neq (0; 0)$.

 $(a;b)\neq(0;0)$ donc on peut supposer $a\neq0$.

$$M \in \Gamma \Leftrightarrow ax + by + c = 0 \Leftrightarrow ax - (-by) + a\left(\frac{c}{a}\right) = 0 \Leftrightarrow a\left(x + \frac{c}{a}\right) - (-by) = 0$$

Considérons le point $A\left(-\frac{c}{a};0\right)$ et le vecteur $\vec{u}\left(-\frac{b}{a}\right)$.

Le vecteur \overrightarrow{AM} a pour coordonnées $\begin{pmatrix} x + \frac{c}{a} \\ y \end{pmatrix}$ et on a donc \overrightarrow{AM} et \overrightarrow{u} qui sont colinéaires.

 Γ est donc la droite passant par le point A et de vecteur directeur \vec{u} .

Exemple:

La droite d d'équation 3x + 4y - 10 = 0 admet comme vecteur directeur $\vec{u} \begin{pmatrix} -4 \\ 3 \end{pmatrix}$.

Propriété:

Les droites d'équations ax + by + c = 0 et a'x + b'y + c' = 0 sont parallèles si et seulement si ab' - a'b = 0.

Démonstration:

Soit d la droite d'équation ax + by + c = 0 et d' la droite d'équation a'x + b'y + c' = 0.

Un vecteur directeur de d est $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ et un vecteur directeur de d' est $\vec{u'} \begin{pmatrix} -b' \\ a' \end{pmatrix}$. d et d' sont parallèles $\Leftrightarrow \vec{u}$ et $\vec{u'}$ sont colinéaires $\Leftrightarrow -ba' - a(-b') = 0 \Leftrightarrow ab' - a'b = 0$

Exemple:

Soit les droites d:2x-y+3=0; d':-4x+2y+1=0 et d'':2x+3y+2=0. d et d' sont parallèles car $2\times 2-(-4)\times (-1)=0$ ($\begin{pmatrix} 1\\2 \end{pmatrix}$ et $\begin{pmatrix} -2\\-4 \end{pmatrix}$ sont proportionnels). d et d'' ne sont pas parallèles car $2\times 3-2\times (-1)\neq 0$.

3) Équations cartésiennes et équations réduites

	Cas où $b=0$ et $a \neq 0$	Cas où $a=0$ et $b \neq 0$	Cas où $a \neq 0$; $b \neq 0$; $c = 0$	Cas où $a \neq 0$; $b \neq 0$; $c \neq 0$
Équation cartésienne	$ax + 0 + c = 0$ $donc x = \frac{-c}{a}$	$0 + by + c \neq 0$ $donc y = \frac{-c}{b}$	$ax + by + 0 = 0$ $donc y = \frac{-a}{b}x$	$ax + by + c = 0$ $donc$ $y = \frac{-a}{b}x + \frac{-c}{b}$
Équation réduite	x = constante $y = constante$	y = mx	y = mx + p	
			m est le coefficient directeur p est l'ordonnée à l'origine	
	Représentation graphique d'une fonction affine		nction affine	
Représentation graphique	y	y	y	y x x

Remarque:

Si d a pour équation réduite y=mx+p, une équation cartésienne de d est mx-1 y+p=0. Un vecteur directeur de d est alors $\begin{pmatrix} 1 \\ m \end{pmatrix}$, m est ainsi le coefficient directeur.