

本章 总 近

(CPU的功能和结构 对应这些功能需要有哪些结构?

指令周期的概念: 一条指令的执行分为不同的阶段
数据流: 不同阶段要求依次访问的数据序列
指令执行方案: 如何安排多条指令的执行?

如何设置部件之间的连接路径?
如何设置部件之间的连接路径?
描述指令执行过程中信号和数据在这些路径上的传输
控制器的功能和工作原理
控制器的设计
硬布线
控制器的设计
一模布线
微程序

为什么引入流水线的结构?
有哪些结构?
会产生什么问题?

硬布线控制器的设计 设计步骤: 1. 分析每个阶段的微操作序列(取值、间址、执行、中断四个阶段) 假设采用同步控制方 2. 选择CPU的控制方式 式(定长机器周期), 一个机器周期内安排3 3. 安排微操作时序 个节拍。 4. 电路设计 安排,必须安排 王道考研/CSKAOYAN.COM

安排微操作时序的原则

原则一 微操作的 先后顺序不得 随意 更改
原则二 被控对象不同 的微操作
尽量安排在 一个节拍 内完成
原则三 占用 时间较短 的微操作
尽量 安排在 一个节拍 内完成
并允许有先后顺序

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

(1) PC \rightarrow MAR

(2) 1 \rightarrow R 存储器空闲即可

(3) M (MAR) \rightarrow MDR 在(1)之后

(4) MDR → IR 在(3)之后

(5) OP (IR) → ID 在(4)之后

(6) (PC) + 1 \rightarrow PC 在(1)之后

王道考研/CSKAOYAN.COM

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

(1) PC \rightarrow MAR

 T_0 (2) 1 \rightarrow R

存储器空闲即可

 T_1 (3) M (MAR) \rightarrow MDR 在(1)之后

(6) (PC) + 1 \rightarrow PC

在(1)之后

(4) MDR \rightarrow IR

在(3)之后

(5) OP (IR) \rightarrow ID

在(4)之后

M(MAR)→MDR 从主存取数据,用时较长,因此必须一个时钟周期才能保证微操作的完成

两个微操作占用时 间较短,根据原则 三安排在一个节拍

MDR → IR 是CPU内部寄存器的数据传送,速度很快,因此在一个时钟周期内可以紧接着完成 OP(IR) → ID。 也就是可以一次同时发出两个微命令。

王道考研/CSKAOYAN.COM

安排微操作时序-间址周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在一个节拍 内完成

并允许有先后顺序

(1) $Ad(IR) \rightarrow MAR$

(2) 1 \rightarrow R

(3) M (MAR) \rightarrow MDR T_1

(4) MDR \rightarrow Ad(IR)

王道考研/CSKAOYAN.COM

安排微操作时序-执行周期 原则一 微操作的 先后顺序不得 随意 更改 ① CLA T_0

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

 $\mathsf{T_1}$ clear T_2 $0 \rightarrow AC$ ACC清零

② **COM** T_0

complement T_1 ACC取反 $\overline{AC} \rightarrow AC$ T_2

③ SHR T_0 T_1

shift $L(AC) \rightarrow R(AC)$ T_2 算术右移 $AC_0 \rightarrow AC_0$

4 CSL T_0

 T_1 cyclic shift

 $T_2 R(AC) \rightarrow L(AC), AC_0 \rightarrow AC_n$ 循环左移 ⑤ STP T_0

 T_1 stop T_2 0 \rightarrow G 停机

王道考研/CSKAOYAN.COM

安排微操作时序-中断周期

原则一 微操作的 先后顺序不得 随意 更改 原则二 被控对象不同 的微操作

尽量安排在 一个节拍 内完成

原则三 占用 时间较短 的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

1. 分析每个阶段的微操作序列

2. 选择CPU的控制方式

3. 安排微操作时序

 T_0 (1) a \rightarrow MAR

 T_0 (2) 1 \rightarrow W

T₀ (3) 0 → EINT 硬件关中断

版件人个

T₁ (4)(PC)→ MDR 内部数据通路空闲即可

存储器空闲即可

T₂ (5) MDR → M(MAR) 在(3)之后

T₂ (6) 向量地址 → PC 在(3)之后

这些操作由中断隐指令完成

注:中断隐指令不是一条指令,而是指一条指令的中断周期由硬件完成的一系列操作

中断周期的三个任务:

1. 保存断点

2. 形成中断服务程序的入口地址

3. 关中断

王道考研/CSKAOYAN.COM

14

王道考研/cskaoyan.com

设计步骤:

4. 电路设计

组合逻辑设计 设计步骤: 非访存指令 1. 列出操作时间表 工作 状态 周期 节拍 微操作命令信号 ADD STA LDA JMP BAN CLACOM SHR CSLSTP 条件 标记 $PC \longrightarrow MAR$ T_0 $1 \rightarrow R$ $M(MAR) \rightarrow MDR$ T_1 $(PC)+1 \longrightarrow PC$ FE 取指 $MDR \rightarrow IR$ $OP(IR) \rightarrow ID$ T_2 $1 \rightarrow IND$ Ι Ī $1 \rightarrow EX$ 间址特征 王道考研/CSKAOYAN.COM

				设计步骤: . 列出操作时间表										
工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN	
	T ₀	7 /	$Ad(IR) \rightarrow MAR$						1	1	1	1	1	
IND			1→ R						1	1	1	1	1	
间址	T_1		$M(MAR) \rightarrow MDR$						1	1	1	1	1	
			MDR→Ad (IR)			C.			1	1	_ 1	1	1	
	T ₂	ĪND	$1 \longrightarrow EX$			O			1	1	1	1	1	
间址	间址周期标志													

组合逻辑设计 设计步骤: 1. 列出操作时间表 工作 2. 写出微 操作命令的 最简表达式 状态 周期 节拍 微操作命令信号 CLA COM ADD STA LDA JMP BAN 条件 标记 $Ad(IR) \rightarrow MAR$ 1 1 1 T_0 $1 \rightarrow R$ 1 $1 \longrightarrow W$ 1 $M(MAR) \rightarrow MDR$ 1 T_1 EX 1 $AC \longrightarrow MDR$ 执行 $(AC)+(MDR)\rightarrow AC$ 1 $MDR \rightarrow M(MAR)$ 1 $MDR \rightarrow AC$ T_2 $0 \longrightarrow AC$ $\overline{AC} \rightarrow AC$ 1 $Ad(IR) \rightarrow PC$ 1 1 $Ad(IR) \rightarrow PC$ 王道考研/CSKAOYAN.COM

					微操	作信	号综	合						
厚	工作 問期 示记	节拍	状态 条件	微操作命令信号	CLA	COM	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
		т	-7/3	$PC \longrightarrow MAR$	1	1	1	1	1	1	1	1	1	1
	FE	T_0		1 → R	1	1	1	1	1	1	1	1	1	1
取	双指	T ₁		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1
I	ND			1 X						-	-	<u> </u>	_	-
ij	旬址 │	T_1		$M(MAR) \longrightarrow MDR$						1	1	1	1	1
	1 0 - 1 - 1						I	I	ı			1		
	EX				1	$1 \longrightarrow W$)				1			
			-7/	执行 T ₁	M(M	AR)→	MDR			1		1		
	M (FE·T =T ₁ {	MAR) 1+IN FE+IN) →M D·T₁(<mark>/</mark> JD(AD	DR微操作命令的逻 ADD+STA+LDA+JM D+STA+LDA+JMP	辑表达 IP+BA +BAN	式: (N) + E)+EX(A	X·T ₁ (<mark>/</mark>	ADD+L LDA)}	DA)				1	

19

硬布线控制器的设计

设计步骤:

- 1. 分析每个阶段的微操作序列
- 2. 选择CPU的控制方式
- 3. 安排微操作时序
- 4. 电路设计
 - (1) 列出操作时间表
 - (2)写出微操作命令的最简表达式
 - (3)画出逻辑图

硬布线控制器的特点:

指令越多,设计和实现就越复杂,因此一般用于 RISC (精简指令集系统)如果扩充一条新的指令,则控制器的设计就需要大改,因此扩充指令较困难。由于使用纯硬件实现控制,因此执行速度很快。微操作控制信号由组合逻辑电路即时产生。

王道考研/CSKAOYAN.COM

21

@王道论坛

@王道计算机考研备考

@王道咸鱼老师-计算机考研

@王道楼楼老师-计算机考研

@王道计算机考研

知乎

₩ 微信视频号

@王道计算机考研

@王道计算机考研

@王道在线