Wydział: FiIS	Imię i nazwisko: 1. Piotr Moszkowicz 2. Wiktor Jasiński		Rok: Drugi	Grupa: PN 14:40	Zespół:
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Zależność okresu drgań wahadła od amplitudy				Nr ćwiczenia: 02
Data wykonania: 8.04.2019	Data oddania: 15.04.2019	Zwrot do popr.	Data oddania:	Data zaliczenia	OCENA

Ćwiczenie nr 02: Zależność okresu drgań wahadła od amplitudy

Cel ćwiczenia:

Zapoznanie się z ruchem drgającym i parametrami opisującymi ten ruch. Wyznaczenie zależności okresu drgań od amplitudy dla układu zbliŜonego do wahadła matematycznego. Doświadczalne badanie funkcji gęstości prawdopodobieństwa dla błędów przypadkowych. [1]

1. Aparatura

W ćwiczeniu posługujemy się wahadłem podobnym do matematycznego (rys. w1).

Rys. w1. Sposób uruchomienia wahadła

Zawieszenie kulki wahadła na dwóch niciach ułatwia wprawianie go w ruch drgający dokładnie w jednej płaszczyźnie (patrz rys. 3). W płaszczyźnie drgań umieszczony jest kątomierz, na którym odczytuje się kąt wychylenia. Okres wahań mierzy się sekundomierzem o rozdzielczości 0,001 s czyli 1 ms.

A. Badanie zależności okresu drgań wahadła od amplitudy

A1. Wykonanie ćwiczenia i opracowanie wyników

- 1. Uruchomić wahadło tak, by drgania odbywały się w płaszczyźnie równoległej do płaszczyzny katomierza (rys.w1).
- 2. Wyznaczyć okres wahadła T_0 przy najmniejszej amplitudzie wychylenia, która nie powinna przekraczać 3°. Okres T_0 należy wyznaczyć dokładniej niż pozostałe. Zwiększenie dokładności realizujemy przez 6-krotne powtarzanie pomiaru 40 50 okresów.
- 3. Następnie kontynuować pomiary dla różnych wartości $\theta_m^{(1)}$. Odczytać amplitudę początkową $\theta_m^{(1)}$ na kątomierzu. W celu uniknięcia błędu paralaksy odczyt kąta wykonać dla pozycji oka, przy której obie linki wahadła pokrywają się.
- 4. Gdy wahadło już wykonało 1–2 drgania, uruchomić sekundomierz. Po wykonaniu określonej liczby m okresów (od 30 do 50) okresów zatrzymać sekundomierz (przy tym samym położeniu wahadła), a następnie odczytać amplitudę końcowa $\theta_m^{(2)}$.
- 5. Pomiar ustalonej liczby m okresów wykonujemy dla kilkunastu różnych kątów wychylenia w zakresie od 5° do 60°. Wyniki notujemy odpowiednio w poniższych tabelach. Na podstawie rezultatów dla najmniejszej amplitudy wychyleń obliczyć średni okres T_0 oraz niepewności standardowe pojedynczego pomiaru i średniej.
- 6. Sporządzić wykres zależności względnej zmiany okresu wahadła $(T-T_0)/T_0$ (z zaznaczeniem niepewności pomiaru) od średniej amplitudy $\overline{\theta}_m = (\theta_m^{(1)} + \theta_m^{(2)})/2$, z zaznaczeniem odcinków niepewności
- 7. Na ten sam wykres nanieść krzywa teoretyczna (5).
- 8. Dokonać oceny zgodności krzywej teoretycznej z punktami eksperymentalnymi.

B2. Opracowanie wyników

Zagadnienie opracowania wyników przedstawia szerzej punkt B2 w dodatku B. Aby pozostać przy zastosowanych w nim oznaczeniach, wyniki n pomiarów czasu oznaczamy jako x_i .

- 1. Obliczyć wartość średnią \bar{x} i odchylenie standardowe pojedynczego pomiaru s. Ze względu na dużą liczbę pomiarów skorzystać z programu komputerowego, który ponadto szereguje uzyskane wartości x_i od najmniejszej do największej, co ułatwia przygotowanie danych do wykonania histogramu.
- 2. Podzielić przedział zmiennej x na równe przedziały o szerokości Δx równej 0,03, 0,04 lub 0,05 s. Policzyć liczby pomiarów n_i jakie trafiły do każdego przedziału. Sprawdzić, czy $\sum n_i = n$.
- 3. Wykonać histogram doświadczalny.
- 4. Obliczyć przeskalowaną krzywą Gaussa (Dodatek B, wzór (B1) i nanieść na histogram doświadczalny.
- 5. Dokonać oceny zgodności eksperymentu z rozkładem normalnym przez
 - (a) jakościowe porównanie histogramu i krzywej teoretycznej,
 - (b) wykorzystując uporządkowany (przez komputer) zbiór danych ustalić, ile wyników x_i znalazło się poza przedziałem $(\bar{x}-s, \bar{x}+s)$, oraz poza przedziałem $(\bar{x}-2s, \bar{x}+2s)$ Porównać z przewidywaniami teoretycznymi dla rozkładu normalnego.

Wnioski:

3 Wstęp teoretyczny

3.1 Ruch drgający i parametry, które go opisują

W ruchu drgającym ciało wychyla się okresowo w jedną i w drugą stronę od położenia równowagi. W położeniu równowagi siły działające na ciało równoważą się.

Wielkości charakteryzujące ruch falowy:

- amplituda największe wychylenie z położenia równowagi
- okres czas trwania jednego pełnego drgania
- częstotliwość ilość drgań zachodzących w ciągu 1 sekundy.

3.2 Kiedy ruch drgający nazywamy harmonicznym?

Ruch drgający odbywa się, gdy na ciało działa siła proporcjonalna do wychylenia ciała z położenia równowagi (na wykresie wychelenia możemy wtedy zaobserwować krzywą harmoniczną np. sinusoidę).

3.3 Zasady stosowalności przybliżenia $sin(\theta) = \theta$. Jak skonkretyzować warunek, że kąt wychylenia jest mały?

O sensowności stosowania przybliżenia $sin(\alpha) = \alpha$ informuje nas różnica pomiędzy sinusem, a wartością kąta w radianach. Poniżej możemy zaobserwować tabelkę, która przedstawia te zależności, dzięki niej możemy wywnioskować, iż przybliżenie ma sens do około 5 - 7 stopni:

α	α (rad)	$sin(\alpha)$
40	0,698132	0,642788
30	0,523599	0,500000
20	0,349066	0,342020
10	0,174533	0,173648
5	0,087266	0,087156
2	0,034907	0,034899
1	0,017453	0,017452

4 Wyniki pomiarów

	Liczba okresów k	czas t trwania m okresów [s]	okres $T = t/m [s]$
	40	51.503	1.287575
	40	51.826	1.29565
İ	40	51.598	1.28995
İ	40	51.792	1.2948
	40	51.748	1.2937

Tabela 1: Pomiar okresu T_0 dla małej amplitudy drgań

θ_1 [°]	θ_2 [°]	mT [s]	$\frac{(\theta_1+\theta_2)}{2}$ [°]	T [s]	$\frac{T-T_0}{T_0}$
5	4.0	38.612	4.50	1.287067	-0.004077
8	6.5	38.712	7.25	1.290400	-0.001497
12	10.5	38.803	11.25	1.293433	0.000850
15	13.5	38.874	14.25	1.295800	0.002681
17	14.5	38.936	15.75	1.297867	0.004280
20	17.5	38.897	18.75	1.296567	0.003274
23	20.5	39.049	21.75	1.301633	0.007195
25	22.0	39.104	23.50	1.303467	0.008614
30	26.5	39.241	28.25	1.308033	0.012147

Tabela 2: Pomiar zależności okresu od amplitudy

5 Opracowanie wyników

5.1 Zależność okresu od średniej amplitudy

5.2 Pomiary czasu dla małej amplitudy

mT_i [s]	T_i [s]	Odchylenie standardowe [s]
3.75	1.25	0.04293666666666662
3.7569999999999997	1.252333333333333333	0.0406033333333333355
3.765	1.25500000000000001	0.03793666666666651
3.767	1.25566666666666667	0.037269999999999914
3.78	1.26	0.032936666666666614
3.784	1.26133333333333333	0.031603333333333343
3.79600000000000003	1.265333333333333334	0.027603333333333202
3.802	1.267333333333333334	0.0256033333333333
3.802	1.267333333333333334	0.0256033333333333
3.803	1.26766666666666667	0.025269999999999904
3.805	1.26833333333333333	0.024603333333333333
3.806	1.268666666666666	0.024270000000000014
3.812	1.2706666666666666	0.022270000000000012
3.812	1.2706666666666666	0.022270000000000012
3.813	1.27100000000000001	0.021936666666666493
3.8169999999999997	1.272333333333333333	0.020603333333333337
3.823	1.27433333333333333	0.01860333333333333355
3.823	1.27433333333333333	0.01860333333333333355
3.824	1.2746666666666666	0.018270000000000001
3.828999999999997	1.276333333333333333	0.01660333333333333333
3.8310000000000004	1.27700000000000001	0.015936666666666488
3.842	1.280666666666666	0.0122700000000000003
3.842	1.280666666666666	0.0122700000000000003
3.843	1.281	0.011936666666666707
3.844	1.2813333333333333	0.01160333333333341
3.845	1.28166666666666667	0.011269999999999891
3.845	1.28166666666666667	0.01126999999999999999

2 949000000000000	1 2020000000000000	0.010260000000000
3.8480000000000003 3.848999999999999	1.282666666666668 1.283	0.01026999999999978 0.009936666666666705
3.85	1.283333333333333334	0.009603333333333186
3.85	1.283333333333333334	0.009603333333333186
3.852	1.284	0.00893666666666593
3.8539999999999996	1.284666666666666	0.00827
3.8539999999999996	1.284666666666666	0.00827
3.855	1.285	0.007936666666666703
3.855	1.285	0.007936666666666703
3.8569999999999998	1.285666666666666	0.00727000000000011
3.858	1.286	0.006936666666666591 0.006603333333333294
3.859 3.86	1.2863333333333333 1.28666666666666666	0.00626999999999999
3.865	1.28833333333333333	0.0046033333333333293
3.866	1.288666666666666	0.00426999999999999
3.867	1.289	0.00393666666666699
3.86800000000000003	1.28933333333333334	0.0036033333333331807
3.868999999999998	1.2896666666666665	0.003270000000000106
3.868999999999998	1.2896666666666665	0.003270000000000106
3.877	1.2923333333333333	0.00060333333333332891
3.878999999999999	1.293	6.33333333333415e-05
3.878999999999999 3.8789999999999999	1.293 1.293	6.33333333333415e-05
3.88100000000000000	1.293666666666666666666666666666666666666	6.333333333333415e-05 0.00073000000000001194
3.8810000000000000002	1.29366666666666667	0.000730000000001194
3.885	1.295	0.002063333333333336
3.886	1.295333333333333334	0.002396666666668246
3.887	1.2956666666666667	0.0027300000000001212
3.89	1.296666666666666	0.003730000000000011
3.89	1.296666666666666	0.003730000000000011
3.891	1.297	0.004063333333333338
3.897	1.299	0.0060633333333333395
3.897	1.299	0.00606333333333333395
3.897 3.898999999999999	1.299 1.299666666666666	0.00606333333333333995 0.006729999999999993
3.9	1.299000000000000	0.007063333333333421
3.901999999999999	1.300666666666666	0.007730000000000015
3.903	1.301	0.008063333333333311
3.903	1.301	0.008063333333333311
3.904	1.3013333333333333	0.00839666666666668
3.906	1.302	0.009063333333333423
3.908	1.302666666666666	0.009730000000000016
3.908	1.302666666666666	0.009730000000000016
3.91	1.3033333333333333	0.010396666666666832
3.91 3.9130000000000003	1.303333333333333 1.30433333333333333	0.010396666666666832 0.011396666666666722
3.915	1.3045555555555	0.0120633333333333355
3.92	1.306666666666666	0.0127300000000000000000000000000000000000
3.9219999999999997	1.3073333333333333	0.014396666666666613
3.9219999999999997	1.3073333333333333	0.014396666666666613
3.923	1.307666666666668	0.014730000000000132
3.924	1.308	0.0150633333333333428
3.925	1.3083333333333333	0.015396666666666725
3.925	1.3083333333333333	0.015396666666666725
3.925	1.3083333333333333	0.015396666666666725
3.927 3.931	1.309	0.01606333333333333
3.931	1.3103333333333333 1.311000000000000002	0.017396666666666727 0.0180633333333333542
3.935	1.311666666666666	0.018730000000000135
3.93600000000000004	1.312	0.0190633333333333432
3.937	1.31233333333333334	0.01939666666666673
3.938	1.3126666666666666	0.0197300000000000025
3.94	1.3133333333333333	0.0203966666666662
3.943	1.31433333333333334	0.02139666666666673
3.945	1.315	0.022063333333333324
3.9539999999999997	1.3179999999999998	0.025063333333333215
3.966	1.322	0.02906333333333344
3.971	1.3236666666666668	0.030730000000000146
3.97600000000000004 3.992	1.3253333333333333 1.330666666666666667	0.03239666666666685 0.03773000000000004
3.997	1.332333333333333334	0.039396666666666746
4.01399999999999	1.3379999999999999	0.0450633333333333333
4.016	1.3386666666666666	0.045730000000000005
	Pomiar zależności okres	

Tabela 3: Pomiar zależności okresu od amplitudy

6 Bibliografia

 $[1] \ \ http://www.fis.agh.edu.pl/~pracownia_fizyczna/cwiczenia/02_wykon.pdf$