Competitive Programming Notebook

Daniel Santiago Lopez Daza dlopezd@unal.edu.co

Tomás David Rodriguez Agudelo trodrigueza@unal.edu.co

Last updated: July 8, 2024

Eduard Joel Ostos Castro eostos@unal.edu.co

${\bf Contents}$

1 Snippets	3
2 Template	4
3 Macros	5
4 Container Classes and Initialization	6
5 Functions	7
6 Greedy	8
7 Two Pointers	9
8 Search	10
9 Sorting	13
10 Array and Range Sums	14
11 Dynamic Programming	15
12 Number Theory	16
13 Graph Theory	17

1 Snippets

2 Template

3 Macros

4 Container Classes and Initialization

1. Vector:

(a) Class:

```
template < class T,
class Alloc = allocator<T>> class vector;
```

- (b) Initialization:
 - i. vector<int> v: Declares a vector of integers.
 - ii. vector<int> v(n): Declares a vector of integers of size n.
 - iii. vector<int> v(n, x): Declares a vector of integers of size n, with all elements initialized to x.
 - iv. vector<int> v = $\{1, 2, 3, 4\}$: Declares a vector of integers with the elements 1, 2, 3 and 4.
 - v. vector<int> v {1, 2, 3, 4}: Declares a vector of integers with the elements 1, 2, 3 and 4.

2. **Set:**

(a) Class:

```
template < class T,
class Compare = less<T>, \\ View Interesting Classes Chapter
   for more information
class Alloc = allocator<T>> class set;
```

- (b) Initialization:
 - i. set<int> s: Declares a set of integers.
 - ii. set<int> s {1, 2, 3, 4}: Declares a set of integers with the elements 1, 2, 3 and 4.
 - iii. $set<int> s = \{1, 2, 3, 4\}$: Declares a set of integers with the elements 1, 2, 3 and 4.

5 Functions

Containers Functions

- 1. Vector:
- 2. **Set:**
 - (a) insert(x): Insert element x in the set. ej:

```
set < int > s;
s.insert(5);
// New value of s = {5}
```

Note: Complexity of $O(log_2n)$.

(b) erase(x): Erase element x from the set. ej:

```
set < int > s ({5, 6, 7});
s.erase(5);
// New value of s = {6, 7}
```

Note: Complexity of $O(log_2n)$.

(c) find(x): Find element x in the set. ej:

```
set < int > s;
s.find(5);
// Will return s.end() if x is not in the set
```

Note: Complexity of $O(log_2n)$.

(d) lower_bound(x): Find the first element that is not less than x. ej:

```
set <int > s ({5, 6, 7});
s.lower_bound(6);
// Will return an iterator to the element 6
```

Note: Complexity of $O(log_2n)$. **Note:** Uses Binary Search under the hood.

(e) upper_bound(x): Find the first element that is greater than x. ej:

```
set < int > s ({5, 6, 7});
s.upper_bound(6);
// Will return an iterator to the element 7
```

Note: Complexity of $O(log_2n)$. **Note:** Uses Binary Search under the hood.

6 Greedy

7 Two Pointers

8 Search

Binary Search

Ternary Search

9 Sorting

10 Array and Range Sums

11 Dynamic Programming

12 Number Theory

13 Graph Theory