Lista 1

Técnicas Computacionais em Estatística

Tailine J. S. Nonato

April 1, 2025

Lista 1 - Geração de NPA's (Números Pseudo-Aleatórios)

```
# preparação do ambiente
set.seed(345)
```

Exercício 1

A distribuição Laplace padrão tem densidade $f(x)=\frac{1}{2}e^{-|x|},\,x\in\mathbb{R}.$ Use o método da transformada inversa para gerar uma amostra aleatória de tamanho 1000 dessa distribuição. Plote um histograma.

Resolução

A função de distribuição acumulada (cdf) da distribuição Laplace padrão é dada por:

$$F(x) = \begin{cases} \frac{1}{2}e^x, & x < 0\\ 1 - \frac{1}{2}e^{-x}, & x \ge 0 \end{cases}$$

Para $u \leq \frac{1}{2}$:

$$u = \frac{1}{2}e^x \Rightarrow x = \log(2u)$$

Para $u > \frac{1}{2}$:

$$u = 1 - \frac{1}{2}e^{-x} \Rightarrow x = -\log(2(1-u))$$

Logo, a inversa da cdf é dada por:

$$F^{-1}(u) = \begin{cases} \log(2u), & u \leq \frac{1}{2} \\ -\log(2(1-u)), & u > \frac{1}{2} \end{cases}$$

Assim,

```
n <- 1000
u <- runif(n)
x <- ifelse(u <= 0.5, log(2*u), -log(2*(1 - u)))

t <- seq(-10, 10, 0.01)
hist(x, probability = TRUE, main = "", breaks = 30)
lines(t, 0.5 * exp(-abs(t)), col = "red")</pre>
```


Exercício 2

Dada a densidade $f(x\mid\theta)$ e a densidade a priori $\pi(\theta)$, se observamos $x=x_1,\dots,x_n$, a distribuição a posteriori de θ é dada por:

$$\pi(\theta \mid x) = \pi(\theta \mid x_1, \dots, x_n) \propto \prod_i f(x_i \mid \theta) \pi(\theta),$$

onde $\prod_i f(x_i \mid \theta) = L(\theta \mid x_1, \dots, x_n)$ é a função de verossimilhança. Para estimar uma média normal, uma priori robusta é a Cauchy. Para $X_i \sim N(\theta,1), \; \theta \sim \mathrm{Ca}(0,1),$ a distribuição a posteriori é:

$$\pi(\theta \mid x) \propto \frac{1}{\pi} \frac{1}{1+\theta^2} \frac{1}{(2\pi)^{n/2}} \prod_{i=1}^n e^{-(x_i-\theta)^2/2}.$$

Seja $\theta_0=3,\ n=10,$ e gere $X_1,\ldots,X_n\sim N(\theta_0,1).$ Use o algoritmo da Aceitação-Rejeição com uma candidata $\mathrm{Ca}(0,1)$ para gerar uma amostra da distribuição a posteriori. Avalie quão bem o valor θ_0 é recuperado. Estenda o código de maneira que n=10,25,50,100. Assuma que $M=L(\hat{\theta}\mid x_1,\ldots,x_n),$ ou seja, M é a função de verossimilhança avaliada no estimador de máxima verossimilhança.

Resol	

Exercício 3

Gere 200 observações aleatórias de uma distribuição normal multivariada de dimensão 3 com vetor de médias $\mu = (0, 1, 2)^{\top}$ e matriz de covariância:

$$\Sigma = \begin{bmatrix} 1.0 & -0.5 & 0.5 \\ -0.5 & 1.0 & -0.5 \\ 0.5 & -0.5 & 1.0 \end{bmatrix}.$$

Use o método de decomposição de Cholesky.

Resolução

Exercício 4

Considere o artigo "Bivariate Birnbaum–Saunders distribution and associated inference" (Kundu et al., 2010), disponível em PDF, onde os autores apresentam uma formulação para a distribuição bivariada de Birnbaum–Saunders (BVBS). A geração de dados desta distribuição é descrita na equação (8) do artigo. Utilize a parametrização apresentada no artigo para simular 1.000 observações de um vetor aleatório bivariado (T_1, T_2) com distribuição BVBS $(\alpha_1 = 0.5, \alpha_2 = 0.8, \beta_1 = 1.0, \beta_2 = 2.0, \rho = 0.7)$. Apresente um gráfico de dispersão dos dados gerados.

Resolução