

Hyak Training Session

October 25, 2019 Andrew Wildman

Outline

I. Hyak overview

- A. Hyak architecture
- B. Logging on to Hyak

II. Navigating Hyak

- A. Basic shell commands
- B. Transferring files
- C. Important locations

III. Loading software

- A. Modules
- B. Containers

IV. Slurm

- A. Commands
- B. Examples

V. Other resources

- A. Topics outside of this tutorial
- B. Places to get help

Hyak overview

Hyak is a "condominium" supercomputing cluster:

- Groups own nodes in <u>partitions</u>.
- In addition to our partitions, groups have access to the build and ckpt partitions
- ~10,000 cores in total

Two clusters: ikt (retiring) and mox (current)

Mox nodes:

- 28 cores
- 128 GB RAM
- 92 regular nodes stf partition
- 2 interactive regular nodes stf-int partition
- 9 GPU nodes stf-gpu partition
- 1 interactive GPU node stf-int-gpu partition

Hyak architecture

- All nodes share the same filesystem (except /tmp)
- Login nodes
 - Transfer files
 - Submit jobs
 - **NOT** for heavy processing
- Compute nodes
 - High performance
 - Interactive or batch
- Build nodes
 - Can't take a whole node
 - Access internet
 - Just for compiling software

Logging on to Hyak

Mac/Linux:

ssh:

ssh <uwnetid>@mox.hyak.uw.edu

Windows:

- PuTTY
- GitBash
- Windows Subsytem for Linux
- WinSCP (just for transfering files)
- cmder
- ... and probably more!

Browser (still in beta):

http://ondemand.hyak.uw.edu/

- Need to be on campus (or Husky OnNet VPN)
- Terminal emulator
- Interactive apps
 - Jupyter notebooks
 - R Studio
 - Xfce for GUI programs

I'm in

... Now what?

Basic shell (bash) commands

File system manipulation:

- ls "List" files in current directory (folder)
 - cd
 - "Change directory"
- pwd "Print working (current) directory"
- mkdir
 - "Make directory"
- ΜV

 - Move (rename) file or directory

"Remove" files and/or directories (-r)

- ср "Copy" files and/or directories (-r)

 - rm

Other editors: vim, emacs, etc. tar Compress for a "tape archive"

File editing and compression:

Edit files

- zip (and unzip)
- Compress via zip algorithm
 - Windows friendly

Many, many more

nano

- - chmod man
 - find curl
 - top grep
 - - sed

Transferring files

- Mac/Linux
 - o To: scp <path/to/file> <username>@mox.hyak.uw.edu:<path/to/dest>
 - From: scp <username>@mox.hyak.uw.edu:<path/to/file> <path/to/dest>
- Windows
 - WinSCP: https://winscp.net/eng/index.php

Lolo:

- Magnetic tape archive (lolo archive)
- For long term storage only store compressed large files!
- STF location: /archive/hyak/stf
- Transfer files the same as between local and Hyak

Important locations on Hyak

- /gscratch/stf
 - Main work location for stf users
 - Any files untouched for >30 days will be scrubbed!!
- /usr/lusers/<username>
 - Home directory
 - Only 10 GB of storage per user
- /tmp
 - Node local storage
- /sw
 - All software installs
- /sw/contrib
 - User installed software
- /sw/modules-1.775/modulefiles/contrib
 - User added modulefiles

Loading software: the modules system

- module avail
 - Show all available modules
- module load <module> | module unload <module>
 - o (Un)load a given module
 - Must be full name up to non-ambiguity (e.g. contrib/git or contrib/git/2.19.1)
- module list
 - List loaded modules
- module purge
 - Unload all modules
- module help
 - Print help with commands

Advanced user's note:

The modules system works by keeping track of and modifying environment variables (e.g. PATH, LD_LIBRARY_PATH, CPATH, etc.)

https://modules.readthedocs.io/en/latest/

Loading software: Singularity containers

Hyak's containerization system is Singularity (**not Docker**)

https://sylabs.io/guides/3.4/user-guide/

- Can create singularity images from docker images
- Permissions are same as for user (not root)
- Containers are "high performance"
- Same benefits as other container tools (reproducibility, mobility, etc.)

Slurm: Hyak's job scheduler

https://slurm.schedmd.com/

- Ensures fair share between users
- Run interactive or batch jobs
- Allows for running on the ckpt queue

Advanced users:

- Manages cluster locality for multi-node jobs
- Handles MPI and other communication protocols through srun

Slurm: Commands

- srun
 - Submits job for interactive use or initiate job steps inside batch script
- sbatch <script>
 - Submits a script for non-interactive use
- squeue
 - Get status of jobs in batch queue
- scancel <jobid>
 - Cancels an unfinished job
- sinfo
 - Get state of partitions and nodes
- sacct
 - Gets accounting information about active and completed jobs

You'll typically use these most often

Slurm docs and man <slurm-command> are very useful!

Slurm: Example - Interactive job

```
srun -p stf-int -A stf --ntasks=8 --mem=20G --pty /bin/bash -1
```

- Partition
- Account
- Number of processes (*)
- Amount of RAM
- Command

Be aware of difference between:

- Number of tasks (processes, MPI)
 - --ntasks (-n)
 - --ntasks-per-node
- Number of cpus per task (threads, OpenMP)
 - --cpus-per-task (-c)

https://slurm.schedmd.com/srun.html man srun

Slurm: Example - Batch job

```
sbatch [options] test.sh
```

Examples of options:

```
-p <partition>
-A <account>
-n <ntasks>
-J <job name>
etc...
```

GPU option:

--gres=gpu:P100:1

All sbatch options have options that can be specified in batch script

Anatomy of a batch script

- 1. SBATCH directives
 - All options have a directive
 - Directives start with #SBATCH
 - Comments are ## lines
- 2. Set up environment (modules, containers)
- 3. Compute!
- 4. Clean up

Notes:

- Directive order doesn't matter
- Bash scripts don't exit on command failure - always check!

```
1 #!/bin/bash
 2 ## First line has to be this to be a bash script
 5 ## **** sbatch options *****
 6 ##
         Accounting information
 9 #SBATCH --partition=stf-gpu
10 #SBATCH --account=stf
11 #SBATCH --job-name=multi_param_en2_0
         Location / output options
14 #SBATCH --verbose
15 #SBATCH --chdir=/gscratch/stf/<USERNAME>/path/to/directory
         Requested resources
18 #SBATCH --nodes=1
19 #SBATCH --time=8:00:00
20 #SBATCH --mem=120G
21 #SBATCH --gres=gpu:P100:1
24 ## **** Running begins here ****
27 ## Load modules and environment
28 module load contrib/cuda-9.0_cudnn-7.0.5
29 module load anaconda3_4.3.1
30 source activate anaconda_environment || exit 1
32 ## Do work
33 python gpu_script.py
35 ## Clean up
36 source deactivate
37 exit 0
```

Checkpoint queue - special case

The checkpoint queue allows any user to run on other groups' unused nodes!

- Partition: ckpt
- Account: <group>-ckpt (stf-ckpt)
- Jobs can be interrupted at any time
- Jobs will be interrupted after 4 contiguous hours
- Jobs will be resubmitted after interruption (if under total requested time limit)
- Your code must be checkpointed to take advantage of this
 - Save a binary file containing state of some objects, restart from logs, etc.
 - Your script should also account for any checkpointing that is done

Topics not covered

- How to install new software
 - Installation and build systems
 - Writing your own modulefiles
- How to parallelize your code
 - Different paradigms for parallelism
 - Data locality and contiguity
 - GPU parallelization
 - Parallel patterns
- Anything with the cloud (This is the Hyak training session!)
- General architecture of HPC systems
 - Interconnectivity and node locality
 - Physical infrastructure

Where to get help

- Documentation (man or webpages)
- Hyak wiki:
 https://wiki.cac.washington.edu/display/hyakusers/WIKI+for+Hyak+users
- Slack channel: https://uw-rcc.slack.com/
- Website: https://depts.washington.edu/uwrcc/
- Emails: hpcc@uw.edu or uwrcc@uw.edu
- Office hours: Alternating Tuesdays and Fridays from 1-3 pm

Happy computing!

Endorse STF Proposal: https://uwstf.org/proposals/2020/21