Random Process Exam For Advanced Class

Tarfersoul

May 12, 2024

- 1. $X(t) = A\sin(\pi t) + B\cos(\pi t)$, where A and B are Gaussian random variables with mean 0 and variance σ^2 .
 - (1) Find the probability density function (PDF) of X(1/2).
 - (2) Determine $\mathbb{E}[X(t)]$.
 - (3) Determine whether X(t) is a stationary process.
- 2. Let $Y(t) = X(t) X(t+\tau)$, where X(t) is a wide-sense stationary process with zero mean.
 - (1) Find $\mathbb{E}[Y(t)]$.
 - (2) Find Var[Y(t)].
 - (3) Repeat parts (1) and (1) for $Y(t) = X(t) X(t \tau)$ and compare the results.
 - 3. Prove the following properties:
 - $(1) R_{X\hat{X}}(\tau) = -\hat{R}_X(\tau)$
 - (2) $S_{\hat{X}}(f) = S_X(f)$
 - (3) Find $S_Z(f)$ for $Z = X(t) + j\hat{X(t)}$.

where \hat{X} represents the result of the Hilbert transform of X.

- 4. Let X(t) be a random process with autocorrelation function $R_X(\tau) = \frac{\sin(\pi\tau)}{\pi\tau}$. The process is passed through a linear time-invariant system with impulse response $h_1(t) = A \mathrm{sinc}^2(t)$, the output is Y(t). The output power of Y(t) is 3 milli-Watts.
 - (1) Find $\mathbb{E}[Y]$.
 - (2) Find $R_Y(\tau)$.
 - (3) If the impulse response is changed to $h_2(t) = 2A \operatorname{sinc}^2(t)$, find the output power of $Y_2(t)$.

- (4) If the impulse response is changed to $h_3(t) = A \operatorname{sinc}^2(t-1)$, find the output power of $Y_3(t)$.
- 5. Let X(t) be a random process with autocorrelation function

$$R_X(\tau) = \begin{cases} 1 - |\tau|, & |\tau| \le 1\\ 0, & \text{otherwise} \end{cases}$$

Define $Y(t) = X(t)\cos(w_c t + \theta)$, where $\theta \sim U[-\pi, \pi]$ and θ is independent of X(t).

- (1) Find $\mathbb{E}[Y]$.
- (2) Find $R_Y(\tau)$.
- (3) Sketch $R_Y(\tau)$.
- (4) Find $S_Y(f)$.
- (5) Find the power of Y(t).
- 6. Let $Y(t) = \sum_{n=1}^{N(t)} X_n$, where X_n are i.i.d. random variables with $P(X_n = 1) = p$ and $P(X_n = 0) = 1 p$. N(t) is a Poisson process with intensity γ .
 - (1) Explain why Y(t) is a stationary process with independent increments.
 - (2) Find the characteristic function $\phi_Y(t)$.
 - (3) Find $\mathbb{E}[Y]$ and Var[Y].
- 7. Green cars arrive according to a Poisson process with rate λ_1 , and red cars arrive according to a Poisson process with rate λ_2 .
 - (1) Find the distribution of the total number of cars (green + red) that arrive.
 - (2) Find the probability that the first car to arrive is red.
- 8. Data packets are transmitted according to a Poisson process with a rate of 10 packets per second. Let X_k denote the number of data packets transmitted in the k-th hour. Each packet has a probability of 0.8% of being transmitted erroneously.
 - (1) Find the joint distribution of X_1 and X_2 .
 - (2) Find the probability that at least one packet is transmitted erroneously between 12:00 and 12:10.
 - 9. In Example 4 of Chapter 6.4 (pdf), let $p_{12} = A$.
 - (1) Calculate the value of A.

- (2) Sketch the transition diagram.
- (3) Explain why the Markov chain is ergodic.
- (4) Find the stationary distribution of the Markov chain.
- 10. There are 3 white balls and 3 black balls distributed in 2 boxes, with each box containing 3 balls. Let X_n denote the number of white balls in the first box after the n-th swap. In each step, one ball is randomly selected from each box and the two balls are swapped.
 - (1) Explain why $\{X_n\}$ is a Markov chain.
 - (2) Compute the transition probability matrix of the Markov chain.