第八章 数字系统设计基础

- 8.1 数字系统概述
- 8.2 ASM图表
- 8.3 数字系统设计

第八章 数字系统设计基础

§ 8.1 数字系统概述

数字系统

控制器

数据处理器

关系:

结果作为状态变量反馈给控制器

§ 8.2 算法状态机 — ASM 图表

ASM:

数字系统控制过程的算法流程图

与通常算法流程图不同, ASM 图表示了准确的时间序列

特性:

- 1. 操作按时间序列进行
- 2. 操作取决于某一判断 (外输入及反馈信号)

8.2.1 ASM图表符号

三种基本符号

{ 状态框 判断框 条件框

1. 状态框 (矩形)

在 T1 状态, 代码 001, 输出 Z = 0, 下一个 CLK到来, 数据处理器实现无 条件操作A+1.

在状态框中的操作是无条件操作,是此状态下将要实现的操作,将会在下一个CLK来临时完成。

 $A \leftarrow A+1$

寄存器传输语言

寄存器 广义 寄存器組織器

R ← SR (R 向右转换)

 $A \leftarrow 0$ (A 清零)

 $F \leftarrow 1$ (F 置1)

2. 判断框 (菱形) 0 条件 Φ 11 $\mathbf{X}\mathbf{Y}$ 00 11 X MN 10 T1 T_3 **▼** 01 T3 **★** 10 T4 2 输出 3输出 4输出

控制器根据判断框内容(条件)决定下一个 CLK 到时 状态转换

3. 条件框 (椭圆)

条件框内的操作为条件操作入口只能接判断框的分支

例:分析以下ASM图

系统: 状态 T_1 ,

输出: START

如果输入E=1, 下一个*CLK*来临 R复位(清零), 否则 R 不改变, 新状态 T₂

8.2.2 ASM块

ASM 分解 ASM块

规则:

一个ASM块包含且只包含一个状态框,并且和一些判断框或者条件框相连接。

练习

ASM块 $\left\{ egin{array}{ll} - \land \chi \& \pi \\ \hline \phi & \chi & \chi \\ - \uparrow & \chi & \chi \end{array} \right.$

划分 ASM 块的意义:

一个ASM块定义数字系统的一个时序, 即一个ASM块内的操作在一个CLK周期完成。

T_0 状态,

下一个CLK 到来:

数据处理器

控制器

 $A \leftarrow A+1$

(无条件操作)

 $A \leftarrow A+1$

与下面三 个操作中 的一个 时完成

If
$$E = 0$$
, $F = 0$,
 $E = 0$, $F = 1$,

状态
$$T_0 \rightarrow T_3$$

$$T_0 \rightarrow T_1$$

$$T_0 \rightarrow T_2$$

一个ASM块中的不同器件在一个CLK内各自完成各自的操作(同一器件不能同时做两件事)

E, F: 外部输入, 已知,

不是 To 完成后的第二步, 同时判断并操作。

 T_0 在前一个CLK形成。

从波形图(时序图)加 深理解

现态 T_0 与状态框内的操作不是在同一个CLK内

关系: ASM~状态图

ASM → 状态图

	ASM	状态图	
状态转换	√	✓	1
转换条件	√	√	相同
数据处理器操作	√	X	7
描述	系统	控制器	

例1.纠错

(1)

错误:

条件框的入口 只能接判断框

改变为:

(在两个CLK的操作)

错误:

R 在一个*CLK* 中运行两次(一个 **ASM**块)

把一个操作 移向另外一个 框中

8.2.3 ASM图表的建立

例1

状态 T_0 ,如果控制输入X=0,Y=1,寄存器R 左移,状态 T_0 变为 T_1 . 画出ASM图。

ASM:

例 2

用数字系统记录并显示车场内的存车数目,入口出口都有光电元件,每 当有汽车进入车场时,光线有变化,信号Y由1→0;汽车离开车场时,出口信 号Z由1→0;信号Y,Z与时钟同步,记录车场车辆数目的数据处理器是一可 逆计数器,画出该数字系统的ASM图表.

$$\mathcal{L}$$
电传感器 $\{ \hat{A} \}$ $\{ Y = 1 \ \mathcal{L} \}$ $\{ Y = 1$

假设N:当前在公园中车的数量

$$S:$$
启动信号
$$\begin{cases} S=1 \text{ 开始} \\ S=0 \text{ 不变} \end{cases}$$

ASM

A: 计数器

操作 $A \leftarrow N$ 需要一个CLK,一个状态框

输入, Y = 1没有车进入 Y = 0有车进入

输入, $Z \begin{cases} Z = 1 没有车离开 \\ Z = 0 有车离开 \end{cases}$

例3

设计一个有三个4位寄存器 X, Y, Z 的数字系统, 实现功能如下:

- (1). 启动信号S 出现, 传送两个4 位二进制数 N_1 、 N_2 , 给寄存器 X、Y;
- (2). 若 X > Y, 左移X, 结果送给Z;
- (3). 若X < Y, 右移X, 结果送给Z;
- (4). 若X=Y, 传送X 或 Y 给 Z.

例:

一个数字系统, 在状态 T_1 , 如果启动信号 S=0, 状态没 有改变; 若 S=1, 操作 $A \leftarrow N_1$ 和 $B \leftarrow N_2$, 状态改变为 T_2 . 在状态 T_2 , 下一个 CLK 到来 , 操作 $B \leftarrow B$ -1, 如果 M=0, 到下一个操作 P 右移, 状态 T, 变为 T_3 ; 若 M=1, 状态 T_3 $\rightarrow T_{\Delta} \rightarrow T_{1}$. 画出此系统的ASM图

§ 8.3 数字系统设计

8.3.1 设计步骤

- 1. 分析
- 2. 画出ASM
- 3. 设计控制器

状态转换

- 4. 设计数据处理器 有条件或无条件操作
- 5. 电路图

8.3.2 数字系统设计举例

例1

设计三种图案彩灯控制系统的控制器,三种图案彩灯依次 循环亮,其中苹果形图案灯亮16s,香蕉形图案亮12s,葡萄形 图案亮9s。

1. 分析

输入:

计时信号 { 16s: X=1 12s: Y=1 9s: Z=1

定时启动 $\begin{cases} =1 \text{ 计时开始} \\ =0 \text{ 否则} \end{cases}$

输出:

灯亮

苹果形: A=1

香蕉形: B=1

葡萄形: G=1

高电平有效

2. 画出ASM

3. 控制器设计

$$(X, Y, Z \rightarrow T_0, T_1, T_2)$$

方法1:

每个状态一个触发器

状态数=触发器个数

选择D触发器, $Q^{n+1} = D$

$$\mathbf{D_i} = \mathbf{D} \ Q = \mathbf{T_i}$$

根据ASM图,各个状态的输入条件作为D触发器的控制输入方程 在任何时候,只有一种状态 = 1, 其他状态 = 0

3个状态,3个D触发器,输入D,输出 T_i

4. 电路

$$T_0=1,$$
 $D_0=T_0\overline{X}+T_2Z$
 $T_1=1,$ $D_1=T_0X+T_1\overline{Y}$
 $T_2=1,$ $D_2=T_1Y+T_2\overline{Z}$

例2.十字路口交通灯管理系统

在主干道 A 和小道 B 的十字交叉路口,设置交通灯管理系统。小道 B 路口设有传感器 M, 小道有车M=1, 否则 M=0. 主干道通车最短16s, 超过16s, 若小道有车 (M=1), 主干道绿灯灭黄灯亮3s, 然后红灯亮. 小道绿灯 (通车) 最长时间16s, 在16s内,只要小道无车 (M=0), 小道由绿灯变黄灯 (3s) 后变红灯, 主干道红灯变绿灯. 16s 和3s 定时信号由加法计数器完成, 时间到, t=1, 计数器清0, 重新计时下一个定时时间.

BG

BR

主干道 A

1. 分析:

定时启动
$$\mathbf{t}$$
 $\begin{cases} =1 \text{ 计时开始} \\ =0 \text{ 其他} \end{cases}$

计时信号
$$Y = 1$$
 16s 以上
= 0 其他Z $= 1$ 3s 以上
= 0 其他

输出:

AG, AY, AR, BG, BY, BR = 1 亮

输入和输出都是高电平有效 (=1)

系统需要几部分:

2. 画出ASM

3. 控制器设计

(用 M, Y, Z 得到: T_0, T_1, T_2, T_3)

方法2: 使用数据选择器, D触发器, 译码器设计控制器

根据ASM: 4个状态 T_0 , T_1 , T_2 , T_3

输出: 高电平有效2-4译码器

其入口接两个 D触发器 的出口 Q_0, Q_1

D触发器的入口各接一个4-1 数据选择器

4-1 数据选择器入口接M, Y, Z, 实现

状态图, 找到 Q_1^{n+1} , Q_0^{n+1} (即 D_1 , D_0) 与总输入 M, Y, Z 的关系从ASM图:

状态符号	现 Q _l n	态 Q ₀ ⁿ	输 入 Y Z M	次 态 Q_1^{n+1} Q_0^{n+1}	输 出 T ₀ T ₁ T ₂ T ₃
T_0	0	0	0 Ф Ф 1 Ф 0 1 Ф 1	$ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 \end{array} $ YM	1 0 0 0
T_1	0	1	Ф 0 Ф Ф 1 Ф	$\mathbf{Z} \left\{ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right\} \ \mathbf{\overline{Z}}$	0 1 0 0
T_2	1	0	0 Ф 1 0 Ф 0 1 Ф Ф	$ \begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array} \mathbf{Y} + \overline{\mathbf{Y}} \overline{\mathbf{M}} \\ \mathbf{Y} + \overline{\mathbf{M}} $	0 0 1 0
T_3	1	1	Ф 0 Ф Ф 1 Ф	$\mathbf{\bar{z}} \left\{ \begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix} \right\} \; \mathbf{\bar{z}}$	0 0 0 1

4-1MXU的输入即转换条件,也就是 D-FF 的输入变量方程,用引入变量 卡诺图 (VEM),把 M,Y,Z 作引入变量.

四个小格分别为4-1MUX的输入端变量

电路

$$T_0$$
 状态($T_0T_1T_2T_3 = 1000$), $Q_1Q_0 = 00$, 使 $A_1A_0 = 00$, (4-1选 D_0 ')
$$D_1 = W_1 = 0, \quad D_0 = W_0 = MY,$$

下一个CLK 到来, $Q_1^{n+1} = D_1 = 0$, $Q_0^{n+1} = D_0 = MY$.

(若MY = 0, 即
$$\left\{ \begin{array}{c} \stackrel{\bullet}{\text{sign}} \stackrel{\bullet}{\text{sign}} \stackrel{\bullet}{\text{sign}} Q_1 Q_0 = 00, \text{ 保持状态 } T_0 \end{array} \right\}$$

当 MY = 1 (支路有车, 16s 到), $Q_1Q_0 = 01$, 输出新状态 T_1 (0100);

$$T_1 \Leftrightarrow Q_1Q_0 = 01, A_1A_0 = 01, D_1 = W_1 = Z, D_0 = W_0 = Z,$$

下一个*CLK* 到来,
$$Q_1^{n+1} = D_1 = Z$$
, $Q_0^{n+1} = D_0 = \overline{Z}$

当 Z=1 (3s 到), Z=0, $Q_1Q_0=10$, 输出新状态 T_2 (0010).

4. 数据处理器设计

(1) 灯的电路

$$AG = T_0$$

$$AY = T_1$$

$$AR = T_2 + T_3$$

PC - T	BR AG AY BG BY AR
$BG = T_2$	
$BY = T_3$	
$BR = T_0 + T_1$	≥ 1 ≥ 1
驱动电路	
V= // C I	To T1 T2 T3
	2-4译码器

状态

 T_0

 T_1

 T_2

 T_3

AG AY AR BG BY BR

0 1 0 0 0

(2) 定时启动电路

(产生
$$t=1$$
)

定时启动: t=1

ASM: t = 1 条件

$$\mathbf{t} = \mathbf{T}_0 \mathbf{Y} \mathbf{M} + \mathbf{T}_1 \mathbf{Z} + \mathbf{T}_2 \mathbf{Y} + \mathbf{T}_2 \mathbf{\overline{Y}} \mathbf{\overline{M}} + \mathbf{T}_3 \mathbf{Z}$$

= $\mathbf{T}_0 \mathbf{Y} \mathbf{M} + (\mathbf{T}_1 + \mathbf{T}_3) \mathbf{Z} + \mathbf{T}_2 (\mathbf{Y} + \mathbf{\overline{M}})$

(3) 计时电路

(产生Y, Z)

两个计数器 Y:16s, Z:3s. 用74161实现: M-16 (Y) 和M-3 (Z) 74161驱动要求

控制信号	操作	驱动条件 CLR LD CNT CNP D ₃ D ₂ D ₁ D ₀
下降沿 丁	清0	0 Ф Ф Ф Ф Ф
t	启动 (预置)	1 0 1 1 0 0 0 0

Y和Z输出

ASM 分析,

什么状态下计时16s, 3s?

$$Y = (T_0 + T_2)CO = 1$$

即 T_0 或 T_2 状态, $CO = 1 (Q_3Q_2Q_1Q_0 = 1111)$ Y = 1;

$$Z = (T_1 + T_3)Q_1 = 1$$

即 T_1 或 T_3 状态, $Q_3Q_2Q_1Q_0 = 0010$ Z = 1.

系统

注:① 整个系统用一个CLK 脉冲(控制器和计数器)

② 整个系统用一个 \overline{CLR} (包括 R_D) \Box

小结

- ASM图表及生成
 - · ASM图与程序流程图、状态图之间的区别
 - ASM图与状态图之间的转换
- 数字系统的设计
 - 理解控制器设计
 - •了解数据处理器设计

课后作业:

8.3

8.5

8.7

8.8

8.9