Universal Style Transfer

Via feature transforms

Presentation Agenda

What is "Universal Style Transfer?"

Previous Works

Optimization based method

- Minimizes style & content loss
- Can generalize
- Very slow style transfer

Trained Feed Forward method

- It will adjust mean & variance
- Faster style transfer
- Limited to fixed number of styles

Trade off between Generalization, Quality & Efficiency

Previous Works

Optimization based method

Proposed Algorithm

- Reconstruction decoder
- Whitening & Coloring Transform
- Multi level stylization

Reconstruction Decoder

VGG Architecture

- Network is trained on Microsoft COCO dataset.
- Transfer Learning used in our implementation.
- Encoder & Decoder weights are obtained from author's published repository.

Loss function

$$L = ||I_o - I_i||_2^2 + \lambda ||\Phi(I_o) - \Phi(I_i)||_2^2$$

Loss of network = Reconstruction Loss + Feature Loss

- I(0) = Reconstructed Output Image
- I(i) = Input Image
- Phi = Features extracted from image
- Lambda = Weight to balance the two loss

Whitening & Coloring Transforms

Whitening

$$f_c \ f_c^ op = E_c D_c E_c^ op.$$
 and $(\hat{f}_c \hat{f}_c^ op = I)$

$$\hat{f}_c = E_c D_c^{-\frac{1}{2}} E_c^{\top} f_c ,$$

Coloring

$$(\hat{f_{cs}} \, \hat{f_{cs}}^{\top} = f_s \, f_s^{\top})$$
 $\hat{f_{cs}} = \hat{f_{cs}} + m_s$

$$\hat{f_{cs}} = E_s D_s^{\frac{1}{2}} E_s^{\top} \hat{f_c}$$

Multi Level Stylization

Multi Level Stylization

Multi Level Stylization

Textures & Masks

Our Work

Style Transfer

Content Image

Style Image

Style Transfer

Masking

Original Content Image

Masked Output

Texture Transformation

Noise Image

Style Image

Texture Image

Thank you,

Goutham 20172063 Sathis 20172092 Sai Charan 20172086 Sai Alekhya 20172102