CLAIMS

7

8

9

10

- 1 1. A method for managing a service across an optical network over a dedicated circuit
 2 between a first and second service termination points, the method comprising:
 3 generating a service performance report message at each of the service
 4 termination points, each service performance report message having information related
 5 to a performance of the service as determined by the service termination point generating
 6 that service performance report message; and
 - transmitting the service performance report message generated by one of the service termination points to the other service termination point over a service management channel to enable an assessment of the performance of the service based on the service performance report messages from both service termination points.
- The method of claim 1, further comprising monitoring the service management channel from an intermediate network element that is in the dedicated circuit between the service termination points to determine a status of the service.
- The method of claim 1, further comprising determining from the performance assessment whether the service is performing in accordance with terms of a service level agreement governing the service.
- 1 4. The method of claim 1, wherein the step of generating a PRM is a scheduled event.
- The method of claim 1, further comprising monitoring the PRMs generated by the termination points at an intermediate network element connected to the dedicated circuit between the termination points.

- 1 6. The method of claim 1, further comprising transmitting a service query command to each of the service termination points over the service management channel.
- The method of claim 1, further comprising receiving a service report having service
 configuration information over the service management channel from each of the service
 termination points in response to the service query commands.
- 1 8. The method of claim 1, further comprising transmitting a command message over the
 2 service management channel to one of the service termination points to change a state of
 3 that service termination point.
- 1 9. The method of claim 8, wherein the state of the service termination point is a loopback
 2 condition, and further comprising transmitting a test signal to that one service termination
 3 point to verify connectivity.
- 1 10. An optical network for supporting a service provided by a service provider over a
 2 dedicated circuit between service termination points, the optical network comprising first
 3 and second network elements each disposed in the dedicated circuit of the service, the
 4 first network element sending a message to the second network element over an optical
 5 transport facility using a service management channel capable of carrying the message
 6 across a network-to-network interface, the messages conveying information related to a
 7 performance of the service over the dedicated circuit.
- 1 11. The optical network of claim 10, wherein the service management channel includes a byte of a path overhead of an optical transmission frame.

15632ROUS02U (NOR-034)

3

	10	
1	12.	The optical network of claim 10, wherein the service management channel includes a
2		field in a Generic Framing Procedure client management frame.
1	13.	The optical network of claim 10, wherein the message is one of a command message, a
1	15.	The optical network of claim to, wherein the message is one of a command message, a
2		response to a command message, a service performance report message, and a priority
3		code message.
1	14.	The optical network of claim 10, wherein the first and second network elements are edge
2		service switches.
1	15.	The optical network of claim 10, wherein one of the first and second network elements is
2		a core service switch.
1	16.	The optical network of claim 10, wherein the service is one of an asynchronous service, a
2		synchronous service, a local area network service, a storage area network service, and a
3		managed wavelength service.
1	17.	The optical network of claim 10, wherein the first network element is in a first network
2		managed by a first service provider and the second network element is in a second
3		
3		network managed a second service provider.
1	18.	The optical network of claim 10, wherein the first and second network elements are in a
2		network managed by the service provider.
2		network managed by the service provider.
1	19.	A network element connected at one end of a dedicated circuit used to carry customer
2		traffic associated with a service, the network element comprising:
2		traine associated with a service, the hetwork element comprising:

a client interface receiving client signals from a client network;

15632ROUS02U (NOR-034)

4		a service management channel entity deriving from the client signals information
5	rel	ated to a performance of the service and generating a message in response to the
6	seı	rvice performance information; and
7		a transport interface for mapping and adapting the client signals to an optical
8	tra	insport facility, the transport interface transmitting the message to a network element at
9	the	e other end of the dedicated service over a service management channel capable of
10	ca	rrying the message across a network-to-network interface.
1	20. A	network element connected between service termination points located at opposite
2	en	ds of a dedicated circuit used to carry customer traffic associated with a service over a
3	tra	ansport facility, the network element comprising:
3	tra	ansport facility, the network element comprising: a transport interface receiving customer traffic associated with the service; and
	tra	•
4		a transport interface receiving customer traffic associated with the service; and