TOPOLOGÍA I

13 de febrero de 2013

1. En $\mathbb R$ se define la siguiente familia de subconjuntos:

$$\mathcal{T} = \{O \subseteq \mathbb{R} \mid \mathbb{R} - O \text{ es compacto en } (\mathbb{R}, \mathcal{T}_u)\} \cup \{\phi\}$$

- (a) Demostrar que $\mathcal T$ es una topología sobre $\mathbb R$.
- (b) Comparar \mathcal{T} con la topología usual \mathcal{T}_u .
- (c) Calcular interior, adherencia y frontera de $A=[0,1]\cup[2,3]$ y $B=]0,\infty[$ en (\mathbb{R}, T) .
- 2. Sea $f:(X,T)\longrightarrow (Y,T')$ una aplicación biyectiva. Probar que son equivalentes:
 - (a) f es continua y abierta.
 - (b) $f(\overline{A}) = \overline{f(A)}, \ \forall A \subset X.$
- 3. (a) Razonar si puede existir una biyección abierta del plano (\mathbb{R}^2, T_u) en la esfera (\mathbb{S}^2 , $(T_n)_{\mathbb{S}^2}$).

- (b) Probar que si B es una base de (\mathbb{R}^2, T_u) , entonces las componentes conexas de los elementos de $\mathcal B$ forman otra base de $(\mathbb R^2,\mathcal I_u)$.
- Razonar si los siguientes subespacios de (R³, T_u) son homeomorfos:
 - (a) $(\mathbb{S}^1 \times \{0\}) \bigcup (\{0\} \times \mathbb{S}^1)$,

 - (b) S²,
 (c) S² {N, S},
 (d) S¹ × ℝ,

Puntuación: todos igual.

Tiempo: 3 horas.

