

Tartalom

- Rendezési feladat specifikáció
- > Algoritmusok
 - Egyszerű cserés rendezés
 - Minimum-kiválasztásos rendezés
 - <u>Buborékos rendezés</u>
 - Javított buborékos rendezés
 - Beillesztéses rendezés
 - Javított beillesztéses rendezés
 - Szétosztó rendezés
 - Számlálva szétosztó rendezés
 - Számláló rendezés
- <u>Rendezések hatékonysága</u> idő

Rendezési feladat

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{H}^N$

 $\leq : H \times H \rightarrow L$

 \succ Kimenet: $X' \in H^N$

➤ Előfeltétel: Rendezés(≤) és

Rendezett $E_{\leq}(H)$

> Utófeltétel:RendezettE≤(X') és

 $X' \in Permutáció(X)$

> Jelölések:

o X': az X kimeneti (megálláskori) értéke

o Rendezett $E_{<}(X/H)$: X/H rendezett-e a \leq -ra?

x'∈Permutáció(X): X' az X elemeinek egy

permutációja-e?

Rendezések (fontos új fogalmak, jelölések)

> Aposztróf a specifikációban:

Ha egy adat előfordul a bemeneten és kimeneten is, akkor az UF-ben együtt kell előfordulnia az adat bemenetkori és kimenetkori értéket. Megkülönböztetésül a kimeneti értéket "megaposztrofáljuk".

Pl.: Z':=a Z kimeneti (megálláskori) értéke.

- > A ≤ reláció **rendezés**, ha
 - 1. reflexiv: $\forall h \in H: h \leq h$
 - 2. antiszimmetrikus:

 $\forall h, i \in H: h \leq i \text{ és } i \leq h \rightarrow h = i$

3. tranzitív: $\forall h,i,j \in \mathbb{H}$: $h \le i \text{ és } i \le j \rightarrow h \le j$

Rendezések (fontos új fogalmak, jelölések)

> H (teljesen) rendezett halmaz:

Rendezett $E(H):= \forall h, i \in H: h \le i \ vagy \ i \le h$

> Rendezett sorozat:

RendezettE(Z):= $\forall i(1 \le i \le N-1)$: $Z_i \le Z_{i+1}$

> Permutációhalmaz:

Permutáció(Z):=a Z∈H^N sorozat elemeinek összes permutációját tartalmazó halmaz; amelynek tehát egyik eleme a kívánt rendezettségű sorozat...

Egyszerű cserés rendezés

A lényeg:

- Hasonlítsuk az első elemet az összes mögötte levővel, s ha kell, cseréljük meg!
- Ezután ugyanezt csináljuk a második elemre!
- > ...
- Végül az utolsó két elemre!

A pirossal jelöltek már a helyükön vannak

Egyszerű cserés rendezés

Algoritmus:

i=1..N-1

$$j=i+1..N$$

X[i]>X[j] S:=X[i]

X[i]:=X[j]

X[j]:=S

Változó i,j:Egész

S:TH

- > Hasonlítások száma: $1+2+..+N-1=N \cdot \frac{N-1}{2}$
- > Mozgatások száma: $0 \dots 3 \cdot N \cdot \frac{N-1}{2}$

Minimum-kiválasztásos rendezés

A lényeg:

- Határozzuk meg az 1..N elemek minimumát, s cseréljük meg az 1.-vel!
- Ezután ugyanezt tegyük a 2..N elemre!
- **>** ...
- ➤ Végül az utolsó két (N–1..N) elemre!

A pirossal jelöltek már a helyükön vannak

Minimum-kiválasztásos rendezés

Algoritmus:

Változó
MinI,
i,j:**Egész**S:TH

i=1N-1		
MinI:=i		
j=i+1.	N	
X[Min	I]>X[j]	
MinI:=j		
S:=X[i]		
X[i]:=X[MinI]		
X[MinI]:=S		

- > Hasonlítások száma: $1+2+..+N-1=N \cdot \frac{N-1}{2}$
- ➤ Mozgatások száma: 3·(N–1)

Minimum-kiválasztásos rendezés

Algoritmus:

Változó MinI, i,j:**Egész** S:TH

$$\begin{array}{c|c} MinI:=i \\ & j=i+1..N \\ & X[MinI]>X[j] \\ & MinI:=j \\ & -- \\ S:=X[i] \\ & X[i]:=X[MinI] \\ & X[MinI]:=S \end{array}$$

- > Hasonlítások száma: $1+2+..+N-1=N \cdot \frac{N-1}{2}$
- ➤ Mozgatások száma: 3·(N–1)

Minimum-kiválasztásos rendezés

Változó

Algoritmus:

$$i=1..N-1$$

MinI:=i j = i + 1..NX[MinI]>X[j]

MinI:=i

S:=X[i]

X[i]:=X[MinI]

X[MinI]:=S

> Hasonlítások száma:
$$1+2+..+N-1=N \cdot \frac{N-1}{2}$$

➤ Mozgatások száma: 3·(N–1)

Buborékos rendezés

A lényeg:

- Hasonlítsunk minden elemet a mögötte levővel, s ha kell, cseréljük meg!
- Ezután ugyanezt csináljuk az utolsó elem nélkül!
- **>** ...
- Végül az első két elemre!

A maximum a "felső" végére kerül.

A többiek is tartanak a helyük felé.

A pirossal jelöltek már a helyükön vannak

Buborékos rendezés

Algoritmus:

i=N..2, -1-esével

$$j=1..i-1$$

X[j]>X[j+1]

S:=X[j]

X[j]:=X[j+1]

X[j+1]:=S

Változó i,j:Egész

S:TH

- > Hasonlítások száma: $1+2+..+N-1=N \cdot \frac{N-1}{2}$
- > Mozgatások száma: $0 \dots 3 \cdot N \cdot \frac{N-1}{2}$

Megfigyelések:

- ➤ Ha a belső ciklusban egyáltalán nincs csere, akkor be lehetne fejezni a rendezést.
- ➤ Ha a belső ciklusban a K. helyen van az utolsó csere, akkor a K+1. helytől már biztosan jó elemek vannak, a külső ciklusváltozóval többet is léphetünk.

i=N2, -1-esével			
	j=1i-	-1	
	X[j]>X[j+1]		
	S:=X[j]		
	X[j]:=X[j+1]	_	
	X[j+1]:=S		

i=N2, -1-esével		
j=1i_1		
X[j]>X[j+1]		
S:=X[j]		
X[j]:=X[j+1] —		
X[j+1]:=S		

Átírás 'amíg'-os

ciklussá

i≥2

S:=X[j]

X[j]:=X[j+1]X[j+1] := S

feljegyzése

Az utolsó cserehely

i=1..i-1X[j]>X[j+1]

i:=N

Javított buborékos rendezés


```
i = N
                    i≥2
     cs:=0
                    j=1..i-1
                    X[j]>X[j+1]
          S:=X[j]
          X[j] := X[j+1]
          X[j+1]:=S
          cs:=\frac{1}{2}
     i:=cs
```


Beillesztéses rendezés

A lényeg:

- > Egy elem rendezett.
- A másodikat vagy mögé, vagy elé tesszük, így már *ketten* is *rendezettek*.
- **>** ...
- Az i-ediket a kezdő, i–1 rendezettben addig hozzuk előre **cserékkel**, amíg a helyére nem kerül; így már *i darab rendezett* lesz.
- > ...
- Az utolsóval ugyanígy!

Beillesztéses rendezés

Algoritmus:

i=2...N

j>0 és X[j]>X[j+1]

$$S:=X[j]$$

$$X[j]:=X[j+1]$$

$$X[j+1] := S$$

$$j := j-1$$

- > Hasonlítások száma: N-1 ... N $\cdot \frac{N-1}{}$
- > Mozgatások száma: $0 \dots 3 \cdot N \cdot \frac{N-1}{}$

Javított beillesztéses rendezés

A lényeg:

- > Egy elem rendezett.
- A másodikat vagy mögé, vagy elé tesszük, így már ketten is rendezettek.

- Az i-ediknél a nála nagyobbakat **tologassuk**hátra, majd illesszük be
 eléjük az i-ediket; így már *i darab rendezett* lesz.
- > ...
- Az utolsóval ugyanígy!

Javított beillesztéses rendezés

Algoritmus:

Változó

i,j:Egész S:TH

$$\frac{i=2..N}{S:=X[i]}$$

j>0 és X[j]>S

$$X[j+1]:=X[j]$$

$$j := j-1$$

$$X[j+1] := S$$

> Hasonlítások száma: N-1 ...
$$N \cdot \frac{N-1}{2}$$

> Mozgatások száma: $2 \cdot (N-1) \dots (N+4) \cdot \frac{N-1}{N-1}$

Javított beillesztéses rendezés

Algoritmus:

Változó

i,j:Egész S:TH

$$j := i-1$$

Elem-mozgatás, nem csere!

i=2...N

$$X[j+1]:=X[j]$$

$$j := j-1$$

$$X[j+1] := S$$

Hasonlítások száma: N
$$-1$$
 ... N $\cdot \frac{N-1}{2}$
Mozgatások száma: 0 ... $3 \cdot N \cdot \frac{N-1}{2}$

Hasonlítások száma: N-1 ... N· $\frac{N-1}{2}$ Hasonlítások száma: N-1 ... N· $\frac{N-1}{2}$

Mozgatások száma: $2 \cdot (N-1) \dots (N+4) \cdot \frac{N-1}{N-1}$

2015.04.27. 5:43

Szétosztó rendezés

A lényeg:

Ha a rendezendő sorozatról speciális tudásunk van, akkor megpróbálkozhatunk más módszerekkel is.

Specifikáció – rendezés N lépésben:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{Z}^{\mathbb{N}}$

 \triangleright Kimenet: $Y \in \mathbb{Z}^N$

➤ Előfeltétel: X ∈ Permutáció(1,...,N)

> Utófeltétel:RendezettE(Y) és

Y∈Permutáció(X)

Szétosztó rendezés

Algoritmus:

Változó i:Egész

Y[X[i]]:=X[i]

▶ Persze ezt írhattuk volna így is: Y[i]:=i! ^② Azaz a feladat akkor érdekes, ha X[i] egy rekordként ábrázolható, amelynek csak egyik mezője (kulcsa) az 1 és N közötti egész szám: X,Y:Tömb[1..N:Rekord(kulcs:1..N,...)]

Algoritmus:

Változó i:Egész

Y[X[i].kulcs]:=X[i]

i=1..N

Számlálva szétosztó rendezés

Előfeltétel:

a rendezendő értékek 1 és M közötti egész számok, ismétlődhetnek.

Specifikáció:

 \triangleright Bemenet: N,M \in N, X \in Z^N

 \triangleright Kimenet: $Y \in \mathbb{Z}^N$

> Előfeltétel: M≥1 és

 $\forall i (1 \le i \le N): 1 \le X_i \le M$

➤ Utófeltétel:RendezettE(Y) és

Y∈Permutáció(X)

Számlálva szétosztó rendezés

A lényeg:

- Első lépésben számláljuk meg, hogy melyik értékből hány van a rendezendő sorozatban!
- Ezután adjuk meg, hogy az első "i" értéket hova kell tenni:
 - ez pontosan az i-nél kisebb számok száma a sorozatban +1!
- Végül nézzük végig újra a sorozatot, s az "i" értékű elemet tegyük a helyére, majd módosítsunk: az első i értékű elemet ettől kezdve eggyel nagyobb helyre kell tenni.

Első[i]: hol az i. elsője?

Számlálva szétosztó rendezés

Algoritmus:

 $\begin{array}{c} \textbf{V\'altoz\'o} \\ \textbf{Db}[1..M]\text{:=}0 \\ \textbf{i=1..N} \\ \end{array} \qquad \begin{array}{c} \textbf{V\'altoz\'o} \\ \textbf{i:Eg\'esz} \\ \textbf{Db,} \\ \textbf{Els\~o:T\"omb}[...] \\ \end{array}$

Db[1M]:=0		
	i=1N	
	Db[X[i]]:=Db[X[i]]+1	
Első[1]:=1		
i=2M		
	Első[i]:=Első[i–1]+Db[i–1]	
i=1N		
	Y[Első[X[i]]]:=X[i]	
	Első[X[i]]:=Első[X[i]]+1	

- Mozgatások száma: N
- ➤ Additív műveletek száma: 3·M–3+2·N

Számlálva szétosztó rendezés

Algoritmus:

 $\begin{array}{c} \textbf{V\'altoz\'o} \\ \textbf{Db[1..M]:=0} \\ \textbf{i=1..N} \\ \end{array} \qquad \begin{array}{c} \textbf{V\'altoz\'o} \\ \textbf{i:Eg\'esz} \\ \textbf{Db,} \\ \textbf{Els\~o:T\"omb[...]} \\ \end{array}$

Az alaphalmaz a **Z**, így a többi értékadást –mint mozgatást– is beleszámíthatjuk!

- Db[X[i]] = Db[X[i]] + 1Első[1]:=1 i=2..MElső[i]:=Első[i-1]+Db[i-1] i=1..NY[Első[X[i]]]:=X[i] Első[X[i]] := Első[X[i]] + 1
- ➤ Mozgatások száma: N+1+M+2·N=M+3·N
- ➤ Additív műveletek száma: 3·M–3+2·N

Számláló rendezés

A lényeg:

- ➤ Ha nem megy a szétosztó rendezés (ismeretlen az M, vagy »N²), akkor először számláljunk (határozzuk meg a sorrendet), csak azután osszunk szét (tegyünk helyre...)!
- > Ehhez használhatjuk a legegyszerűbb cserés rendezés elvét.
- Jelentse Db[i] az i. elemnél kisebb, vagy az i.kel egyenlő, de tőle balra levő elemek számát!

A Db[i]+1 használható az i. elemnek a rendezett sorozatbeli indexeként.

- > Ehhez használhatjuk a legegyszerűbb, cserés rendezés elvét.

i,j:Egész S:TH

Az egyszerű cserés

rendezés elvén működő számlálás.

i=1..N-1

S:=X[i]

X[i]:=X[j]X[i]:=S

i=i+1..NX[i]>X[j]

Jelentse Db[i] az i. elemnél kisebb, vagy az i.-kel egyenlő, de tőle balra levő elemek számát! Számláló rendezés

Algoritmus:

Db[1..N] := 0

$$i=1..N-1$$

$$i=1..N$$

$$Y[Db[i]+1]:=X[i]$$

$$j=i+1..N$$

$$X[i]>X[j]$$

$$Db[i]:=Db[i]+1$$

$$Db[j]:=Db[j]+1$$

$$\vdots=1.NI$$

> Hasonlítások száma:
$$1+2+..+N-1=N \cdot \frac{N-1}{2}$$

- Mozgatások száma: N
- Additív műveletek száma: ~hasonlítások száma

Db:Tömb[.

Rendezések hatékonysága

N² idejű rendezések:

- > Egyszerű cserés rendezés
- > Minimum-kiválasztásos rendezés
- > Buborékos rendezés
- > Javított buborékos rendezés
- > Beillesztéses rendezés
- > Javított beillesztéses rendezés
- > Számláló rendezés

Rendezések hatékonysága

N (N+M) idejű rendezések:

(de speciális feltétellel)

> Szétosztó rendezés

> Számlálva szétosztó rendezés

<u>5</u>

Kitekintés: (Algoritmusok tantárgy)

- ► Lesznek N·log(N) idejű rendezések.
- Nem lehet N·log(N)-nél jobb általános rendezés!
- http://cow.ceng.metu.edu.tr/Courses/download_c ourseFile.php?id=5451
 - http://www.sorting-algorithms.com/

Az évfolyamZh

Tudnivalók:

- > a main.cpp fájlt egy web-es felületen kell beküldeni (akár többször is, legfeljebb 99-szer), és ott lehet megnézni a kapott értékelést;
- ▶ ide a zh-t író a laborokban érvényes kódjával léphet majd be a saját jelszavával;
- > a program standard inputról olvas, standard outputra ír, a tesztelést be- és kimenet átirányítással oldjuk meg;
- > a bemenet biztosan helyes, ellenőrizni nem kell;
- a kimenetre csak az eredményeket szabad kiírni, semmi egyebet nem;
- a bemenet és a kimenet szintaxisa és sorrendje is rögzített, attól eltérni nem szabad.

Az évfolyamZh

Edzeni való:

➤ A zh-ra — technikailag — fel lehet készülni az alábbi linken keresztül: http://biro.inf.elte.hu/

1. Belépés Biró Feladatértékelő FÖTVÖS LORÁND TUDOMÁNYEGYETEM Informatikai Kar (ik) Felhasználó: , Téma: Nem választott témát KILÉP/BELÉP Bejelentkezés Azonosító: Jelszó: BELÉP

Az évfolyamZh

2. Témaválasztás

zamZh

2. Témaválasztás

Edzeni --14

> Néhány, j

2. Témaválasztás

Edzeni való:

> Néhány, jellegzetes lépés:

Edzeni való:

> Néhány, jellegzetes lépés:

Edzoni woló. 3. Feladatválasztás

Edzeni

> Néhány,

EÖTVÖS LORÁND TUDOMÁNYEGYETEM

Informatikai Kar (ik)

STINE NSIS DE ROLANDO BOTVOS A

Felhasználó: Szlávi Péter, Téma: Progalap Gyakorló, Határidő: 2014-

Edzeni való: 3. Feladatválasztás

> Néhány, jellegzetes lépés:

32/36

4. Feladatbeadás

LETÖLT

Visszatölt Beadottak Főoldal

KILÉP/BELÉP

Edzeni v

> Néhány, jel

Eötvös Loránd Tudományegyetem

Informatikai Kar (k)

Edzeni való: 4. Feladatbeadás

> Néhány, jellegzetes lépés:

STIMENSIS DE ROLA,

5. Feladatértékelés

Edzeni va

> Néhány, jell

Felhasználó: Szlávi Péter, Téma: Progalap Gyakorló

Feladat: Időjárás

Eredmény megtekintés

TÉMAVÁLTÁS

BEAD

EREDMÉNY

LETÖLT

VISSZATÖLT

BEADOTTAK

FŐOLDAL

KILÉP/BELÉP

Összpont: 0/100					
Teszt#	Pont	Üzenet	Futási idő		
1.1	0/1	Hiba, nincs kimeneti fájl	sec		
2.1	0/1	Hiba, nincs kimeneti fájl sec			
3.1	0/1	Hiba, nincs kimeneti fájl	sec		
4.1	0/1	Hiba, nincs kimeneti fájl	sec		
5.1	0/1	Futási hiba	0.000 sec		
6.1	0/1	Futási hiba	0.000 sec		
7.1	0/1	Futási hiba	0.000 sec		
8.1	0/1	Futási hiba	0.000 sec		
9.1	0/1	Futási hiba	0.000 sec		
10.1	0/1	Futási hiba	0.000 sec		
Beadva	: 2014	4-11-23 10:09:32.0			

▼ Próba: 12. probálkozás ▼

2015.04.27. 5:43

Kii ép/Bei ép

2.1

Az évfolyamZh

Edzeni való: 5. Feladatértékelés

> Néhány, jellegzetes lépés:

Felhasználó: Szlávi Péter, Téma: Progalap Gyakorló

0/1

Hibás kimenet | 0.000 sec

Edzeni való: 5. Feladatértékelés

> Néhány, jellegzetes lépés:

elhasználó: Szlávi Péter, Téma: Progalap Gyakorló

TÉMAVÁLTÁS

BEAD

EREDMÉNY

LETÖLT

VISSZATÖLT

BEADOTTAK

Főoldal

Kilép/Belép

Eredmény me	egtekintés
-------------	------------

Feladat: Időjárás 🔻 Próba: 8. probálkozás 🔻

Összpont: 37/100

leszt#	Pont	Uzenet	Futasi ido
1.1	1/1	Helyes	0.000 sec
1.2	0/2	Hibás kimenet	0.000 sec
1.3	3/3	Helyes	0.000 sec
1.4	0/4	Hibás kimenet 0.000	
2.1	1/1	Helyes 0.000 se	
2.2	0/2	Hibás kimenet 0.000 s	
2.3	3/3	Helyes 0.000 se	

Edzeni val

> Néhány, jel

Eötvös Loránd Tudományegyetem

Informatikai Kar (ik)

STINE NSIS DE ROLANDO BÖTVÖS

Felhasználó: Szlávi Péter, Téma: Progalap Gyakorló

Eredmény megtekintés

Feladat: Időjárás 🔻 Próba: 9. probálkozás 🔻

Összpont: 100/100

Teszt#	Pont	Uzenet	Futási idő
1.1	1/1	Helyes	0.000 sec
1.2	2/2	Helyes	0.000 sec
1.3	3/3	Helyes	0.000 sec
1.4	4/4	Helyes	0.000 sec
2.1	1/1	Helyes	0.000 sec
2.2	2/2	Helyes	0.000 sec
2.3	3/3	Helyes	0.000 sec

Edzeni való: 5. Feladatértékelés

> Néhány, jellegzetes lépés:

Felhasználó: Szlávi Péter, Téma: Progalap Gyakorló, Határidő: 2014-06-30 12:00:00

Témaváltás

BEAD

EREDMÉNY

LETÖLT

Visszatölt

BEADOTTAK

Főoldal

Kilép/Belép

Beadott feladatok listája

Feladat	Próba	Pont	Dátum
Időjárás	1	0	2014-04-29 11:25:57.0
Időjárás	2	100	2014-04-29 13:20:48.0
Időjárás	3	0	2014-04-29 13:25:17.0
Időjárás	4	0	2014-04-29 13:28:27.0
Időjárás	5	7	2014-04-29 13:28:45.0
Időjárás	6	7	2014-04-29 13:31:40.0
Időjárás	7	7	2014-04-29 13:32:20.0
Időjárás	8	37	2014-04-29 13:32:34.0
Időjárás	9	100	2014-04-29 13:34:38.0

