Laboratorio di Informatica Lezione 1

Cristian Consonni 16 settembre 2015

Outline

- 1 Intro
 - Informazioni generali
- 2 Java
 - Cos'è Java
 - Altri linguaggi
- 3 Variabili
 - Definizione ed esempi
 - Dichiarazione e assegnamento
- 4 Operatori
 - Definizione
 - Operatori aritmetici e booleani
- 5 Eclipse
 - Installazione
 - Creazione progetto
- 6 Istruzioni Condizionali
 - Definizione
- 7 Esericizi
 - Esercizi

Outline for section 1

- 1 Intro
 - Informazioni generali
- 2 Java
 - Cos'è Java
 - Altri linguaggi
- 3 Variabil
 - Definizione ed esempi
 - Dichiarazione e assegnamento
- 4 Operator
 - Definizione
 - Operatori aritmetici e booleani
- 5 Eclipse
 - Installazione
 - Creazione progetto
- 6 Istruzioni Condizionali
 - Definizione
- 7 Esericiz
 - Esercizi

Chi sono

Cristian Consonni

- DISI Dipartimento di Ingegneria e Scienza dell'Informazione
- Pagina web del laboratorio: http://disi.unitn.it/~consonni/teaching
- Email: cristian.consonni@unitn.it
- Ufficio: Povo 2 Open Space 9
 - Per domande: scrivetemi una mail
 - Ricevimento: su appuntamento via mail

Obiettivi del laboratorio

Obiettivi del laboratorio:

- Apprendere i fondamenti di un vero linguaggio di programmazione (Java)
- Svolgere il progetto

Obiettivi del laboratorio

- Fare esperienza in laboratorio
- 2 Raggiungere una buona manualità nell'uso degli strumenti standard
- 3 Esercizi

Manualità (I)

https://xkcd.com/519/

Manualità (II)

How to Teach Yourself Programming: 1

Days 1 - 10 Teach yourself variables, constants, arrays, strings, expressions, statements, functions,...

Days 11 - 21 Teach yourself program flow. pointers, references, classes, objects, inheritance, polymor-

Days 22 - 697

Do a lot of recreational programming. Have fun hacking but remember to learn from your mistakes.

Davs 698 - 3648 Interact with other programmers. Work on programming projects together. Learn from them.

Days 3649 - 7781 Teach yourself advanced theoretical physics and formulate a consistent theory of quantum gravitv.

Days 7782 - 14611 Teach yourself biochemistry, molecular biology, genetics....

Day 14611 Use knowledge of biology to make an age-reversing potion.

Day 14611 Use knowledge of physics to build flux capacitor and go back in time to day 21.

Day 21 Replace younger self.

As far as I know, this is the easiest way to "Teach Yourself C++ in 21 Days".

¹http://abstrusegoose.com/249

Slides

Info sulle slide:

- le slide del corso saranno rese disponibili sul sito;
- segnalate pure eventuali errori;
- cercherò di pubblicare le slide in anticipo rispetto alla lezione;
- queste slide sono prodotte con LATEX Beamer (usate LATEX!);

Segnalazioni di materiale:

- Materiale da voi prodotto;
- Cose interessanti che trovate online;
- Possiamo valutare insieme se riutilizzarle;

Outline for section 2

- 1 Intro
 - Informazioni generali
- 2 Java
 - Cos'è Java
 - Altri linguaggi
- 3 Variabil
 - Definizione ed esempi
 - Dichiarazione e assegnamento
- 4 Operator
 - Definizione
 - Operatori aritmetici e booleani
- 5 Eclipse
 - Installazione
 - Creazione progetto
- 6 Istruzioni Condizionali
 - Definizione
- 7 Esericiz
 - Esercizi

Cos'è Java (I)

```
Java Language Specification (788 pagg.)<sup>2</sup>

«The Java® programming language is a general-purpose, [...] class-based, object-oriented language.»

Java è:

un linguaggio (grammatica, vocabolario, sintassi, ecc.);

linguaggio di programmazione;

general-purpose (vs domain-specific, e.g. SQL);

orientato agli oggetti (attributi, metodi);

class-based (classe, ereditarietà);
```

²https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf

Cos'è Java (II)

Altre caratteristiche di Java:

imperativo (vs. funzionale vs. logico);

Paradigma imperativo

I linguaggi imperativi si fondano sull'idea di eseguire comandi che modificano lo stato del calcolatore.

Esempi:

C, C++, Java, C#, Python, Perl, Pascal, Ada, Fortran, JavaScript/ECMAScript, . . .

- esistenza di uno stato, constantemente modificato
- il valore delle "variabili" può essere modificato dai comandi
- uso frequente dell'iterazione (ripetizione di un comando)
- spesso è possibile definire "funzioni", che però assumono un significato un po' diverso da quello usuale
- ragionamento equazionale arduo: $f(x) + f(x) \neq 2 * f(x)$ in generale, perché f(x) può modificare lo stato.
- molto usati nell'industria, in ogni ambito

Cos'è Java (II)

Altre caratteristiche di Java:

- imperativo (vs. funzionale vs. logico);
- compilato (vs. interpretato);
- fortemente tipizzato, strongly typed (vs. debolmente tipizzato)
- Molto usato in svariati ambiti;
- ...

Altri linguaggi

Esistono moltissimi altri linguaggi:

- ad es. linguaggi di markup (e.g. HTML, XML, TeX)
- altri linguaggi di programmazione: C, C++, python, go, Scala, Prolog, Perl, ...

Altri linguaggi (II)

C:

```
1 #include <stdio.h>
2  int main(){
4   printf("Hello, World!\n");
5   return 0;
6 }
```

Altri linguaggi (III)

Python:

```
1 #!/usr/env python
2
3 if __name__ == "__main__":
4
5     print("Hello, World!");
exit(0)
```

Altri linguaggi (IV)

Java:

```
public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello, World");
    }
}
```

Altri linguaggi (V)

C:

```
[/tmp/hello]$ gcc -Wall hello.c -o hello
[/tmp/hello]$
[/tmp/hello]$ ./hello
Hello, World!
[/tmp/hello]$
```

Altri linguaggi (VI)

Python:

```
[/tmp/hello]$ python3 hello.py
Hello, World!
[/tmp/hello]$
```

Altri linguaggi (VII)

Java:

```
[/tmp/hello]$
[/tmp/hello]$ javac HelloWorld.java
[/tmp/hello]$
[/tmp/hello]$ java HelloWorld
Hello, World
[/tmp/hello]$
```

Altri linguaggi (VIII)

C (bynary):

Altri linguaggi (IX)

Java (bytecode):

Pseudocodice

Per esprimere un algoritmo senza adottare una sintassi legata ad un particolare linguaggio si usa lo **pseudocodice**:

```
1: sum \leftarrow 0

2: for i \leftarrow 1 to N do

3: for j \leftarrow 0 to i do

4: if i \mod 2 = 0 then

5: sum \leftarrow sum + 1

6: end if

7: end for

8: end for
```

Pseudocodice (II)

```
Per esprimere un algoritmo senza adottare una sintassi legata ad un
particolare linguaggio si usa lo pseudocodice:
(Esempio di dichiarazione di funzioni)
    function InsertionSort(Array x)
         for i \leftarrow \text{length of } A \text{ do}
             value \leftarrow A[i]
            i \leftarrow i - 1
             while j > 0 \land A[j] > value do
                 A[i+1] \leftarrow A[i]
                i \leftarrow j - 1
             end while
         end for
    end function
```

Outline for section 3

- 1 Intro
 - Informazioni generali
- 2 Java
 - Cos'è Java
 - Altri linguaggi
- 3 Variabili
 - Definizione ed esempi
 - Dichiarazione e assegnamento
- 4 Operator
 - Definizione
 - Operatori aritmetici e booleani
- 5 Eclipse
 - Installazione
 - Creazione progetto
- 6 Istruzioni Condizionali
 - Definizione
- 7 Esericiz
 - Esercizi

Variabile³:

³da https://en.wikipedia.org/wiki/Variable_(computer_science)

Variabile³:

³da https://en.wikipedia.org/wiki/Variable_(computer_science)

Variabile³:

³da https://en.wikipedia.org/wiki/Variable_(computer_science)

Variabile³:

³da https://en.wikipedia.org/wiki/Variable_(computer_science)

Esempi:

1 un intero:

- int i = 0; Pseudocodice $i \leftarrow 0$
- 2 un numero con la virgola:

```
■ double pi = 3.14;
■ (usate Math.PI per \pi)
```

un (singolo) carattere:

```
char k = 'c';
```

4 un valore booleano:

```
bool val1 = true;
bool val2 = false;
```

5 una *stringa* di caratteri:

```
■ String yoda = "There is no try!";
```

Esempi:

- 1 un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- 2 un numero con la virgola:

```
double pi = 3.14;
(usate Math.PI per \pi)
```

un (singolo) carattere:

```
char k = 'c';
```

4 un valore booleano:

```
bool val1 = true;
bool val2 = false
```

5 una *stringa* di caratteri:

```
■ String yoda = "There is no try!";
```

Esempi:

- 1 un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- un numero con la virgola:

```
double pi = 3.14;
(usate Math.PI per \pi)
```

un (singolo) carattere:

```
char k = 'c';
```

```
4 un valore booleano:
```

```
bool val1 = true;
bool val2 = false;
```

5 una *stringa* di caratteri:

```
■ String yoda = "There is no try!";
```

Esempi:

- 1 un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- 2 un numero con la virgola:
 - double pi = 3.14;
 - lacksquare (usate Math.PI per π)
- un (singolo) carattere
 - char k = 'c';

- 4 un valore booleano
 - bool val1 = true;
 - bool val2 = false;
- 5 una *stringa* di caratteri:
 - String yoda = "There is no try!";

Esempi:

- 1 un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- 2 un numero con la virgola:
 - double pi = 3.14;
 - (usate Math.PI per π)
- un (singolo) carattere
 - \blacksquare char k = 'c';

- 4 un valore booleano:
 - bool val1 = true
 - bool val2 = false;
- 5 una *stringa* di caratteri:
 - String yoda = "There is no try!";

Esempi:

- 1 un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- 2 un numero con la virgola:
 - double pi = 3.14;
 - (usate Math.PI per π)
- un (singolo) carattere
 - char k = 'c':

- 4 un valore booleano
 - bool val1 = true;
 - bool val2 = false;
- 5 una *stringa* di caratteri:
 - String yoda = "There is no try!";

- 1 un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- un numero con la virgola:
 - double pi = 3.14;
 - (usate Math.PI per π)
- **un** (singolo) carattere:
 - char k = 'c';

- 4 un valore booleano
 - bool val1 = true;
 - bool val2 = false;
- 5 una *stringa* di caratteri:
 - String yoda = "There is no try!";

- un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- 2 un numero con la virgola:
 - double pi = 3.14;
 - (usate Math.PI per π)
- **3** un (singolo) carattere:
 - char k = 'c';

- 4 un valore booleano
 - bool val1 = true;
 - bool val2 = false;
- 5 una *stringa* di caratteri:
 - String yoda = "There is no try!";

- 1 un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- 2 un numero con la virgola:
 - double pi = 3.14;
 - (usate Math.PI per π)
- **3** un (singolo) carattere:
 - char k = 'c';

- 4 un valore booleano:
 - bool val1 = true;
 - bool val2 = false;
- 5 una *stringa* di caratteri:
 - String yoda = "There is no try!";

Esempi:

- 1 un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- 2 un numero con la virgola:
 - double pi = 3.14;
 - (usate Math.PI per π)
- **3** un (singolo) carattere:
 - char k = 'c';

- 4 un valore booleano:
 - bool val1 = true;
 - bool val2 = false;
- 5 una *stringa* di caratteri:

ni

- 1 un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- 2 un numero con la virgola:
 - double pi = 3.14;
 - lacksquare (usate Math.PI per π)
- **3** un (singolo) carattere:
 - char k = 'c';

- 4 un valore booleano:
 - bool val1 = true;
 - bool val2 = false;
- una *stringa* di caratteri:

- 1 un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- 2 un numero con la virgola:
 - double pi = 3.14;
 - (usate Math.PI per π)
- **3** un (singolo) carattere:
 - char k = 'c';

- 4 un valore booleano:
 - bool val1 = true;
 - bool val2 = false;
- 5 una stringa di caratteri:
 - String yoda = "There is no try!";

- 1 un intero:
 - int i = 0;
 - Pseudocodice $i \leftarrow 0$
- 2 un numero con la virgola:
 - double pi = 3.14;
 - (usate Math.PI per π)
- **3** un (singolo) carattere:
 - char k = 'c';

- 4 un valore booleano:
 - bool val1 = true;
 - bool val2 = false;
- una stringa di caratteri:
 - String yoda = "There is no try!";

Una variable:

- Sono un "contenitore" di informazioni (= un certo numero di bytes allocati nella memoria volatile del computer (RAM));
- Contraddistinte da un identificatore, negli esempi di prima i, pi, yoda, . . . (case sensitive pippo ≠ Pippo ≠ PIPPO);
- Nei linguaggi fortemente tipizzati hanno un tipo, negli esempi di prima int, double, String, ...;

Dichiarazione e assegnamento

Le Variabilo possono essere create con la **dichiarazione**:

- dichiarazione: int i; (specifica il tipo di un identificatore);
- assegnamento: i = 1; (assegna un valore a un identificatore);
- inizializzazione: primo assegnamento int i = 1; (dichiarazione + inizializzazione);

Outline for section 4

- 1 Intro
 - Informazioni generali
- 2 Java
 - Cos'è Java
 - Altri linguaggi
- 3 Variabil
 - Definizione ed esempi
 - Dichiarazione e assegnamento
- 4 Operatori
 - Definizione
 - Operatori aritmetici e booleani
- 5 Eclipse
 - Installazione
 - Creazione progetto
- 6 Istruzioni Condizionali
 - Definizione
- 7 Esericiz
 - Esercizi

Operatori (I)

Definizione:4

«[Operator are] constructs which behave generally like functions, but which differ syntactically or semantically from usual functions»

⁴da https://en.wikipedia.org/wiki/Operator_(computer_programming)

Operatori (II)

Gli operatori:

- funzioni disponibili in maniera predefinita all'interno di un linguaggio (ce ne sono molte altre);
- ritornano un risultato che avrà un certo tipo;
- notazione infissa (infix notation) operatore inserito tra gli operandi, ad es. 2 + 2;
- arietà (o adicità) (numero di argomenti, v. funzione variadica):
 - binari: + (addizione), > (maggiore), <= (minore uguale), & (bitwise and), = (assegnamento), [] (bitwise and);</p>
 - unari: (sottrazione), (negazione), ++ (decremento);
 - (in alcuni linguaggi ma non in Java tramite l'overload possono essere estese le funzionalità di un operatore);

Operatori aritmetici

Date tre variabili:

- int x = 12;
- int y = 5;
- int z = 0;

- \blacksquare +, -, * funzionano come vi aspettate
- / attenzione! k = x / y;
- % modulo (resto della divisione)

Operatori aritmetici

Date tre variabili:

- int x = 12;
- int y = 5;
- int z = 0;

- \blacksquare +, -, * funzionano come vi aspettate
- / attenzione! k = x / y;
- % modulo (resto della divisione)

Operatori aritmetici

Date tre variabili:

- int x = 12;
- int y = 5;
- int z = 0;

- +, -, * funzionano come vi aspettate
- / attenzione! k = x / y;
- % modulo (resto della divisione)

Operatori booleani

Anche in questo caso funziona tutto normalmente:

р	q	$\neg p$ (!p)	$p \wedge q$ (p && q)	$\begin{array}{c c} p \lor q \\ (p \mid l \mid q) \end{array}$
T	T	F	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	F

- **attenzione!** ai valori di verità delle variabili non booleane;
- == operatore di confronto;
- a.equals(b) confronto tra stringhe (String);

Operatori booleani

Anche in questo caso funziona tutto normalmente:

р	q	$\neg p$ (!p)	$p \wedge q$ (p && q)	$p \lor q$ $(p \mid q)$
T	T	F	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	F

- **attenzione!** ai valori di verità delle variabili non booleane;
- == operatore di confronto;
- a.equals(b) confronto tra stringhe (String);

Operatori booleani

Anche in questo caso funziona tutto normalmente:

р	q	$\neg p$ (!p)	$p \wedge q$ (p && q)	$p \lor q$ $(p \mid q)$
T	T	F	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	F

- **attenzione!** ai valori di verità delle variabili non booleane;
- == operatore di confronto;
- a.equals(b) confronto tra stringhe (String);

Outline for section 5

- 1 Intro
 - Informazioni generali
- 2 Java
 - Cos'è Java
 - Altri linguaggi
- 3 Variabil
 - Definizione ed esempi
 - Dichiarazione e assegnamento
- 4 Operator
 - Definizione
 - Operatori aritmetici e booleani
- 5 Eclipse
 - Installazione
 - Creazione progetto
- 6 Istruzioni Condizionali
 - Definizione
- 7 Esericiz
 - Esercizi

Eclipse (I)

Eclipse è un **ambiente di sviluppo integrato** (*IDE*) multi-linguaggio e multipiattaforma.

Eclipse (II)

Eclipse è un **ambiente di sviluppo integrato** (*IDE*) multi-linguaggio e multipiattaforma.

- software libero e open source;
- versione 1.0 rilasciata nel 2001, versione stabile 4.5.0 Mars (giugno 2015), voi avete 4.4.0 Luna;
- multipiattaforma;
- estendibile con plugins;

Scaricare e installare Eclipse

- Scaricare Java JDK (Java Development Kit) http://www.oracle.com/technetwork/java/javase/downloads/index.html;
- Scaricare Eclipse https://www.eclipse.org/downloads/;
 - https://www.cs.umd.edu/eclipse/

Verificare che l'installazione di Java è andata a buon fine

```
Aprendo un terminale (o shell) (*nix) o "prompt dei comandi" (Windows):

$ java -version
java version "1.8.0_60"

Java(TM) SE Runtime Environment (build 1.8.0_60-b27)

Java HotSpot(TM) 64-Bit Server VM (build 25.60-b23, mixed mode)
```

Altre IDE

Esistono molte altre IDE:

- NetBeans: https://netbeans.org/
- IntelliJ IDEA: https://www.jetbrains.com/idea/

Avvio di Eclipse (I)

Workspace

Workspace:

Eclipse Java EE IDE for Web Developers

Overview

Get an overview of the features

Tutorials

Go through tutorials

Samples

Try out the samples

What's New

Find out what is new

Blocchi (I)

Blocchi (II)

Outline for section 6

- 1 Intro
 - Informazioni generali
- 2 Java
 - Cos'è Java
 - Altri linguaggi
- 3 Variabil
 - Definizione ed esempi
 - Dichiarazione e assegnamento
- 4 Operator
 - Definizione
 - Operatori aritmetici e booleani
- 5 Eclipse
 - Installazione
 - Creazione progetto
- 6 Istruzioni Condizionali
 - Definizione
- 7 Esericiz
 - Esercizi

Istruzione if

Le **istruzioni condizionali** permettono di effettuare operazioni diverse a seconda dei valori delle variabili.

- 1: if condizione then
- 2: istruzione 1
- 3: **else**
- 4: istruzione 2
- 5: end if

condizione deve essere una espressione booleana.

Istruzione if

In Java:

```
if (condizione) {
  comando1
  } else {
  comando2
  }
```

Outline for section 7

- 1 Intro
 - Informazioni generali
- 2 Java
 - Cos'è Java
 - Altri linguaggi
- 3 Variabil
 - Definizione ed esempi
 - Dichiarazione e assegnamento
- 4 Operator
 - Definizione
 - Operatori aritmetici e booleani
- 5 Eclipse
 - Installazione
 - Creazione progetto
- 6 Istruzioni Condizionali
 - Definizione
- 7 Esericizi
 - Esercizi

Consigli vari

- Iniziate dai programmi più semplici;
- I commenti sono importanti (ma ci sono 2 scuole di pensiero);
- la leggibilità del codice è importante
 (https://www.python.org/dev/peps/pep-0020/);

Esercizi

- Dichiarare e inizializzare un intero e stampare a video se è pari o dispari;
- Definire un programma che dati tre numeri a, b e x stabilisca se $x \in [a, b]$;
- 3 Definire un programma che dati tre numeri a, b e c stabilisca quale è il massimo;
- Definire un programma che dati tre numeri a, b e c li stampi in ordine crescente;
- 5 Definire un programma che dati due numeri a, b restituisca la divisione (intera) a/b ed il resto di tale divisione;