Homework 10 Advanced Algebra I

Homework 10

ALECK ZHAO

November 28, 2016

Section 3.4: Homomorphisms

- 3. Show that a general ring homomorphism $\theta: \mathbb{Z} \to \mathbb{Z}$ is either a ring isomorphism or $\theta(k) = 0$ for all $k \in \mathbb{Z}$.
- 4. Determine all onto ring homomorphisms $\mathbb{Z}_{12} \to \mathbb{Z}_6$.
- 20. If n > 0 in \mathbb{Z} , describe all the ideals of \mathbb{Z} that contain $n\mathbb{Z}$.

Section 4.1: Polynomials

- 2. (c) Compute $(1+x)^5$ in $\mathbb{Z}_5[x]$.
- 4. (a) Find all roots of (x-4)(x-5) in \mathbb{Z}_6 ; in \mathbb{Z}_7 .
- 13. Divide $x^3 4x + 5$ by 2x + 1 in $\mathbb{Q}[x]$. Why is it impossible in $\mathbb{Z}[x]$?
- 24. If R is a commutative ring, a polynomial f in R[x] is said to **annihilate** R if f(a) = 0 for every $a \in R$.
 - (a) Show that $x^p x$ annihilates \mathbb{Z}_p .

Section 4.2: Factorization of Polynomials over a Field

- 5. (a) Determine whether the polynomial x^2-3 is irreducible over each of the fields $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_7$.
- 9. Show that an odd degree polynomial has a real root.
- 10. Find all monic irreducible cubics in $\mathbb{Z}_2[x]$.