TIME SERIES ANALYSIS

ABHISHEK SINGH (21060641002) SANIKA MHAMUNKAR (21060641042) SAYALI BORA (21060641045)

CONTENTS

ABOUT THE DATASET

TIME SERIES PLOT

HOLT & WINTER'S
TRIPLE EXPONENTIAL
SMOOTHING

4 5 6

ACF AND PACF PLOTS SEASONAL ARIMA RESULTS & CONCLUSION

PROBLEM STATEMENT

Using the Walmart data for (store 2 department 16), the objective here is to forecast weekly sales.

ABOUT THE DATASET

- The dataset is based on historical sales from 45 Walmart locations across the country.
- There are numerous departments in each store.
- For time series analysis, we choose Store 2 department 16 from among these departments.

OBSERVATIONS WITH HOLIDAY

Store	Dept	Date	Weekly_Sales	IsHoliday
2	16	11-02-2011	12075.76	TRUE
2	16	09-09-2011	16794.46	TRUE
2	16	25-11-2011	9528.26	TRUE
2	16	30-12-2011	6120.69	TRUE

TIME SERIES PLOT

- Visible decreasing trend.
- Seasonality present.

HOLT AND WINTER'S TRIPLE EXPONENTIAL SMOOTHING

KPSS TEST FOR STATIONARITY

The KPSS test, short for, Kwiatkowski-Phillips-Schmidt-Shin (KPSS), is a type of Unit root test that tests for the stationarity of a given series around a deterministic trend.

Null Hypothesis (H₀): Series is trend stationary or series has no unit root.

Alternate Hypothesis(H_A): Series is non-stationary or series has a unit root.

If Test statistic < Critical Value and p-value > 0.05 – Fail to Reject Null Hypothesis(HO) i.e., time series does not have a unit root, meaning it is trend stationary.

Results

```
> st$p.value
[1] 0.06688851
```

Here, the p value is greater than 0.05 so we fail to reject the null hypothesis and conclude that the series is stationary.

ACF AND PACF PLOTS

ACF AND PACF PLOTS WITH DIFFERENCING

SEASONAL ARIMA MODEL

- seasonal Arima order (1,1,1)
- seasonal (0,1,1)
- With differencing of order 1

RESULTS

Holt-Winter's Triple Exponential Smoothing

Seasonal Arima Model

```
> accuracy(aa_m)

ME RMSE MAE MPE MAPE MASE ACF1

Training set -546.5133 5341.613 2326.585 -1.696656 8.481877 0.4300485 0.005704768
```

CONCLUSION

For the chosen dataset, the best model suggested will be Holt Winter's Triple exponential Smoothing.

From the model we predict that the sales will have a sudden increase in the months of March to July.

Our Recommendation

- We recommend the store manager to increase the stocks in the inventory during the months of March to July.
- Spend marketing, offers can be raised during this period.

REFERENCES

https://www.pluralsight.com/guides/time-series-forecasting-using-r

https://www.analyticsvidhya.com/blog/2021/06/statistical-tests-to-c heck-stationarity-in-time-series-part-1/

https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/

THANK YOU!