אינפי 3 - גליון בית 6 - אביב תשע"ז

- 1. תהי $S\subset\mathbb{R}^3$ את המשטח המתקבל מסיבוב גרף הפונקציה $f:[a,b]:\mathbb{R}^+$.1 גזירה ברציפות. נסמן ב־ $S\subset\mathbb{R}^3$ את המשטח המתקבל מסיבוב גרף הפונקציה .1 גוירה ביציר ה־S (כלומר, נקודה S (כלומר, נקודה S ביב ציר ה־S הוא S הוא S הוא שהשטח של S הוא S הוא S הוא שהשטח של S הוא הפונקציה ברציפות.
- את הספירה $S\left(r;p_0\right)=\partial B\left(r;p_0\right)$ ב נסמן בי $p_0\in\mathbb{R}^3$ ו־0 לכל לכל הרציפות. לכל $f:\mathbb{R}^3\to\mathbb{R}$ את הספירה ברדיוס $p_0\in\mathbb{R}^3$ את הספירה ברדיוס p_0
- (א) הראו כי הפונקציה f על f על (כלומר, הממוצע של f על (כלומר, g (כלומר, g (כלומר, g (כאשר הנורמל פונה g (כאשר הנורמל פונה החוצה). g (כאשר הנורמל פונה החוצה).
 - $\lim_{r \to 0^+} g\left(r\right)$ את (ב)
 - f לכל $g\left(r
 ight)=f\left(p_{0}
 ight)$ אז א $\Delta f=0$ ו ו־ $f\in C^{2}$ אכל (ג) הראו כי אם הרמונית (כלומר,
 - (ד) הוכיחו שלפונקציה הרמונית אין נקודות קיצון (אלא אם הן קבועות מקומית).
- 3. יהי S משטח סגור וחלק שהוא השפה של R^3 , ויהי $R \in \mathbb{R}^3$. לכל $R \in \mathbb{R}^3$, נסמן ב־ $R \in \mathbb{R}^3$ את הזווית שבין הנורמל ל־ $R \in \mathbb{R}^3$ ובין $R \in \mathbb{R}^3$ חשבו את $R \in \mathbb{R}^3$ חשבו את פריע הנורמל ל־ $R \in \mathbb{R}^3$ ויהי $R \in \mathbb{R}^3$ חשבו את פריע הזווית