第一章 实数系的基本定理

1.1 Cauthy 收敛准则

定义 1.1. 基本数列

称数列 $\{x_n\}$ 为基本数列 (或 Cauthy 数列), 如果对每个 $\varepsilon>0$, 存在 N, 使得对每一对正整数 n,m>N, 成立估计式 $|a_n-a_m|<\varepsilon$.

定理 1.1. Cauthy 收敛准则

数列收敛的充分必要条件是该数列为基本数列.

\odot

定义 1.2. 压缩映射

设函数 f 在区间 [a,b] 上定义, $f([a,b]) \subset [a,b]$, 并存在一个常数 k, 满足 0 < k < 1, 使得对一切 $x,y \in [a,b]$ 成立不等式 $|f(x)-f(y)| \leq k|x-y|$, 则称 f 是 [a,b] 上的一个压缩映射, 称常数 k 为压缩常数.

定理 1.2. 压缩映射原理

设 f 是 [a,b] 上的一个压缩映射,则

- (1) f 在 [a,b] 中存在唯一的不动点 $\xi = f(\xi)$;
- (2) 由任何初始值 $a_0 \in [a, b]$ 和递推公式 $a_{n+1} = f(a_n), n \in N_+$ 生成的数列 $\{a_n\}$ 一定收敛于 \mathcal{E} ;
- (3) 成立估计式 $|a_n \xi| \le \frac{k}{1-k} |a_n a_n 1|$ 和 $|a_n \xi| \le \frac{k^n}{1-k} |a_1 a_0|$ (即事后估计与先验估计).

C

1.1.1 思考题

- 例 1.1 Cauthy 收敛准则在有理数集 ℚ 中不不成立.
- 解原因和上一节相同,都是可能存在在实数系中的极限但是不在有理数集中.

这个链接有更加专业的解释,可以参考下图.

完备空间上,比如Hilbert空间、Euclid空间等,已经被证明的一个重要的性质就是基本序列 (Cauchy序列)都在相同的度量空间内存在极限。

而在非完备集上,以数集为例,整数集,有理数集中的基本序列的极限也可能存在于不同的度量空间中,所以非完备集中情况就复杂一些,同时这也是实数系扩充的方法之一。

1.1.2 练习题

- △ 练习 1.1 满足以下条件的数列 $\{x_n\}$ 是否一定是基本数列? 若回答" 是", 请做出证明; 若回答" 不一定是", 请举出反例:
 - (1) 对每个 $\varepsilon>0$, 存在 N, 当 n>N 是, 成立 $|x_n-x_N|<\varepsilon$; 解 是. 对于任意 $\varepsilon>0$, 由题设知可以得到 N, 使得当 n>N 时成立 $|x_n-x_N|<\frac{\varepsilon}{2}$, $|x_m-x_N|<\frac{\varepsilon}{2}$, 则 $|x_n-x_m|<|x_n-x_N|+|x_m-x_N|<\varepsilon$.

- (2) 对所有 $n, p \in N_+$, 成立不等式 $|x_{n+p} x_n| \leq \frac{p}{n}$;
 - 解 不一定是. 显然基本数列满足这个条件, 但例如 $a_n = \sum_{i=1}^n \frac{1}{i}$, 显然成立题设条件, 甚至我们可以直接得到估计, 但是我们知道 $\lim_{n \to \infty} a_n = +\infty$, 所以这不一定是基本数列.
- (3) 对所有 $n, p \in N_+$, 成立不等式 $|x_{n+p} x_n| \leq \frac{p}{n^2}$; 解 是. 根据题设, 我们可以得到更精确的估计: $|x_{n+p} x_n| < |x_{n+p} x_{n+p-1}| + \cdots + |x_{n+1} x_n| \leq \sum_{i=n}^{n+p-1} \frac{1}{i^2}$. 根据我们之前得到的结论, $S_n = \sum_{i=1}^{\infty} \frac{1}{i^2}$ 收敛, 所以只需 N 足够大就可以得到 $|x_{n+p} x_n| < S_{n+p} S_n < \varepsilon$.
- (4) 对每个正整数 p, 成立 $\lim_{n\to\infty}(x_n-x_{n+p})=0$. 解 不一定是.