

**This Page Is Inserted by IFW Operations
and is not a part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of
The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- **BLACK BORDERS**
- **TEXT CUT OFF AT TOP, BOTTOM OR SIDES**
- **FADED TEXT**
- **ILLEGIBLE TEXT**
- **SKEWED/SLANTED IMAGES**
- **COLORED PHOTOS**
- **BLACK OR VERY BLACK AND WHITE DARK PHOTOS**
- **GRAY SCALE DOCUMENTS**

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPS)

09/830223

PCT/JP99/05866

日本国特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

25.10.99

△△△

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application:

1999年 5月14日

出願番号
Application Number:

平成11年特許願第134878号

出願人
Applicant(s):

東洋紡績株式会社

PRIORITY
DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

1999年11月26日

特許庁長官
Commissioner,
Patent Office

近藤 隆

出証番号 出証特平11-3081756

【書類名】 特許願

【整理番号】 P99086TB

【提出日】 平成11年 5月14日

【あて先】 特許庁長官 殿

【国際特許分類】 C08F 04/00

【発明者】

【住所又は居所】 滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社総合研究所内

【氏名】 中嶋 孝宏

【発明者】

【住所又は居所】 滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社総合研究所内

【氏名】 形舞 祥一

【発明者】

【住所又は居所】 滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社総合研究所内

【氏名】 田口 裕朗

【特許出願人】

【識別番号】 000003160

【住所又は居所】 大阪府大阪市北区堂島浜二丁目2番8号

【氏名又は名称】 東洋紡績株式会社

【代理人】

【識別番号】 100092266

【住所又は居所】 大阪府大阪市淀川区西中島7丁目2番7号大西ビル

【弁理士】

【氏名又は名称】 鈴木 崇生

【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100097386

【住所又は居所】 大阪府大阪市淀川区西中島7丁目2番7号大西ビル

【弁理士】

【氏名又は名称】 室之園 和人

【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100104422

【住所又は居所】 大阪府大阪市淀川区西中島7丁目2番7号大西ビル

【弁理士】

【氏名又は名称】 梶崎 弘一

【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100105717

【住所又は居所】 大阪府大阪市淀川区西中島7丁目2番7号大西ビル

【弁理士】

【氏名又は名称】 尾崎 雄三

【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100104101

【住所又は居所】 大阪府大阪市淀川区西中島7丁目2番7号大西ビル

【弁理士】

【氏名又は名称】 谷口 俊彦

【電話番号】 06-6838-0505

【手数料の表示】

【予納台帳番号】 074403

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 ポリエステル重合触媒およびこれを用いて製造されたポリエスチル並びにポリエステルの製造方法

【特許請求の範囲】

【請求項 1】 インジウムまたはその化合物と、下記一般式（1）及び／または（2）の構造を含む化合物からなる群より選ばれる一種以上の化合物とからなるポリエステル重合触媒。

【化 1】

【化 2】

(式（1）、（2）中、Arはアリール基を表す。)

【請求項 2】 一般式（1）及び／または（2）の構造を含む化合物がそれぞれ下記一般式（3）及び／または（4）で表される構造を含む化合物である請求項 1 記載のポリエステル重合触媒。

【化3】

【化4】

(式(3)、(4)中、Arはアリール基を表し、X¹、X²、X³はそれぞれ独立に水素、炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表す。)

【請求項3】前記一般式(3)および(4)のArが下記一般式(5)から(12)からなる群より選ばれることを特徴とする請求項2記載のポリエステル重合触媒。

【化5】

【化6】

【化7】

【化8】

【化9】

【化10】

【化11】

【化12】

【請求項4】前記一般式（3）及び／または（4）で表される構造を含む化合物が、下記一般式（13）、（14）で表されるような直線状フェノール化合物、直線状アニリン化合物およびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化13】

【化14】

(式(13)、(14)中、各R¹は同じかまたは異なり、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各R²は同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、各Yは同じかまたは異なり、直接結合、

C1からC10のアルキレン基、-(アルキレン)-O-、-(アルキレン)-S-、-O-、-S-、-SO₂-、-CO-、-COO-を表し、nは1から100の整数を表し、aおよびcは1から3の整数を表し、bおよびdは0または1から3の整数を表す。ただし、1≤a+b≤5、1≤c+d≤4である。各dは同じでも異なってもよい。)

【請求項5】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記一般式(15)および(16)で表されるような枝分かれ線状フェノール化合物、枝分かれ線状アニリン化合物およびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化15】

【化16】

(式(15)～(16)中、各R¹は同じかまたは異なり、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各R²は同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、各Yは同じかまたは異なり、直接結合、C1からC10のアルキレン基、-(アルキレン)-O-、-(アルキレン)-S-、-O-、-S-、-SO₂-、-CO-、-COO-を表し、各nは同じかまたは異なり、1から100の整数を表し、各cは同じかまたは異なり、1か

ら3の整数を表し、各dは同じかまたは異なり、0または1から3の整数を表す。ただし、 $1 \leq c + d \leq 4$ である。)

【請求項6】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記一般式(17)および(18)で表されるような環状フェノール化合物、環状アニリン化合物およびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化17】

【化18】

(式(17)、(18)中、各R¹は同じかまたは異なり、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロ

ゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、各Yは同じかまたは異なり、直接結合、C1からC10のアルキレン基、-(アルキレン)-O-、-(アルキレン)-S-、-O-、-S-、-SO₂-、-CO-、-COO-を表し、nは1から100の整数を表し、cは1から3の整数を表し、dは0または1から3の整数を表す。ただし、1≤c+d≤4である。各dは同じでも異なってもよい。)

【請求項7】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記一般式(19)および(20)で表されるクマリン誘導体、または下記一般式(21)および(22)で表されるクロモン誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化19】

【化20】

【化21】

【化22】

(式(19)～(22)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、jおよびbは0または1から3の整数を表し、mおよびdは0または1から2の整数を表す。ただし、 $0 \leq j + b \leq 4$ 、 $0 \leq m + d \leq 2$ 、 $1 \leq j + m \leq 5$ である。)

【請求項8】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記一般式(23)および(24)で表されるジヒドロクマリン誘導体、下記一般式(25)および(26)で表されるクロマノン誘導体、または下記一般式(27)および(28)で表されるイソクロマノン誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化 2 3】

【化 2 4】

【化25】

【化26】

【化27】

【化28】

(式(23)～(28)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシリル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシリル基、アルキルチオ基、スルホニルを含

基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、aは1から3の整数を表し、bは0または1から3の整数を表し、pおよびqは0または1から2の整数を表す。ただし、 $1 \leqq a + b \leqq 4$ 、 $0 \leqq p + q \leqq 2$ である。)

【請求項9】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記一般式(29)および(30)で表されるクロマン誘導体、または下記一般式(31)および(32)で表されるイソクロマン誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒

【化29】

【化30】

【化31】

【化32】

(式(29)～(32)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、aは1から3の整数を表し、bは0または1から3の整数を表し、cおよびdは0または1から3の整数を表す。ただし、 $1 \leq a + b \leq 4$ 、 $0 \leq c + d \leq 3$ である。)

【請求項10】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記一般式(33)および(34)で表されるようなナフタレン誘導体、または下記一般式(35)および(36)で表されるようなビスナフチル誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化33】

【化34】

(式(33)、(34)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基

またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、j、b、c、およびdは0または1から3の整数を表す。ただし、 $0 \leq j + b \leq 4$ 、 $0 \leq c + d \leq 4$ 、 $1 \leq j + c \leq 6$ である。)

【化35】

【化36】

(式(35)、(36)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基

またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、Yは直接結合、C1からC10のアルキレン基、-(アルキレン)-O-、-(アルキレン)-S-、-O-、-S-、-SO₂-、-CO-、-COO-を表し、j、b、c、d、e、f、g、およびhは0または1から3の整数を表す。ただし、0≤j+b≤4、0≤c+d≤3、0≤e+f≤4、0≤g+h≤3、1≤j+c+e+g≤12である。)

【請求項11】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記一般式(37)および(38)で表されるようなアントラセン誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化37】

【化38】

(式(37)、(38)中、各Rは同じかまたは異なり、C1からC20の

炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、j、b、e、およびfは0または1から3の整数を表し、pおよびqは0または1から2の整数を表す。ただし、 $0 \leq j + b \leq 4$ 、 $0 \leq p + q \leq 2$ 、 $0 \leq e + f \leq 4$ 、 $1 \leq j + p + e \leq 8$ である。)

【請求項12】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記一般式(39)および(40)で表されるようなベンゾキノン誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化39】

【化40】

(式(39)、(40)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、k、l、p、およびqは0または1から2の整数を表す。ただし、 $0 \leqq k+1 \leqq 2$ 、 $0 \leqq p+q \leqq 2$ 、 $1 \leqq l \leqq k+p \leqq 4$ である。)

【請求項13】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記一般式(41)および(42)で表されるようなナフトキノン誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化41】

【化42】

(式(41)、(42)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエスチル、ホルミル基、アシル基、(アシ

ル) -O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、kおよびlは0または1から2の整数を表し、cおよびdは0または1から3の整数を表す。ただし、 $0 \leq k + l \leq 2$ 、 $0 \leq c + d \leq 4$ 、 $1 \leq k + c \leq 5$ である。)

【請求項14】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記一般式(43)および(44)で表されるようなアントラキノン誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化43】

【化44】

(式(43)、(44)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシ

ル) -O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、水酸基またはハロゲン基を有するC1からC20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、j、b、c、およびdは0または1から3の整数を表す。ただし、 $0 \leq j + b \leq 4$ 、 $0 \leq c + d \leq 4$ 、 $1 \leq j + c \leq 6$ である。)

【請求項15】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記式(45)で表される2,2'-ビスフェノール、または下記式(46)で表される2-アミノビフェニルおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2に記載のポリエステル重合触媒。

【化45】

【化46】

【請求項16】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記式(47)で表される2, 2' -ジヒドロキシジフェニルエーテル、下記式(48)で表される2, 2' -チオビス(4-tert-オクチルフェノール)、または下記式(49)で表される2, 2' -メチレンビス(6-tert-ブチル-p-クレゾール)およびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化47】

【化48】

【化49】

【請求項17】前記一般式（3）及び／または（4）で表される構造を含む化合物が、下記式（50）で表されるメチレン架橋直線状フェノール化合物（2から100量体までの混合物）、または下記式（51）で表されるメチレン架橋直線状p-tert-ブチルフェノール化合物（2から100量体までの混合物）およびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化50】

(式（50）中、nは1から99の任意の整数を表す。)

【化51】

(式(51)中、nは1から99の任意の整数を表す。)

【請求項18】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記式(52)で表されるカリックス[4]アレン、下記式(53)で表されるカリックス[6]アレン、下記式(54)で表されるカリックス[8]アレン、下記式(55)で表されるp-tert-ブチルカリックス[4]アレン、下記式(56)で表されるp-tert-ブチルカリックス[6]アレン、または下記式(57)で表されるp-tert-ブチルカリックス[8]アレンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化52】

【化53】

【化54】

【化55】

【化56】

【化57】

【請求項19】前記一般式（3）及び／または（4）で表される構造を含む化合物が、下記式（58）で表されるエスクレチン、または下記式（59）で表される7-アミノ-4-メチルクマリンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化58】

【化59】

【請求項20】前記一般式（3）及び／または（4）で表される構造を含む化合物が、下記式（60）で表されるクリシン、下記式（61）で表されるモリン、または下記式（62）で表される2-アミノクロモンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化60】

【化61】

【化62】

【請求項21】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記式(63)で表されるエピカテキン、または下記式(64)で表されるエピガロカテキンガレートおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化63】

【化64】

【請求項22】前記一般式（3）及び／または（4）で表される構造を含む化合物が、下記式（65）で表される4, 5-ジヒドロキシナフタレン-2, 7-ジスルホン酸二ナトリウム、下記式（66）で表される1, 8-ジアミノナフタレン、下記式（67）で表されるナフトールAS、下記式（68）で表される1, 1' -ビ-2-ナフトール、または下記式（69）で表される1, 1' -ビナフチル-2, 2' -ジアミンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化65】

【化66】

【化67】

【化68】

【化69】

【請求項23】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記式(70)で表されるアンスラロビン、下記式(71)で表され

る 9, 10-ジメトキシアントラセン、または下記式(72)で表される 2-アミノアントラセンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項 2 記載のポリエステル重合触媒。

【化 70】

【化 71】

【化72】

【請求項24】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記式(73)で表される2,5-ジヒドロキシベンゾキノンおよびその誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化73】

【請求項 25】前記一般式（3）及び／または（4）で表される構造を含む化合物が、下記式（74）で表される 5, 8-ジヒドロキシ-1, 4-ナフトキノンまたは下記式（75）で表される 2-アミノナフトキノンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項 2 記載のポリエステル重合触媒。

【化 74】

【化75】

【請求項26】前記一般式(3)及び/または(4)で表される構造を含む化合物が、下記式(76)で表されるキナリザリン、下記式(77)で表されるアリザリン、下記式(78)で表されるキニザリン、下記式(79)で表されるアントラルフィン、下記式(80)で表されるエモジン、下記式(81)で表される1,4-ジアミノアントラキノン、下記式(82)で表される1,8-ジアミノ-4,5-ジヒドロキシアントラキノン、または下記式(83)で表されるアシッドブルー25およびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項2記載のポリエステル重合触媒。

【化76】

【化77】

【化78】

【化79】

【化 8 0】

【化 8 1】

【化 8 2】

【化 8 3】

【請求項 27】 請求項 1～26 のいずれかに記載のポリエステル重合触媒を使用して製造されたポリエステル。

【請求項 28】 請求項 1～26 のいずれかに記載のポリエステル重合触媒を使用することを特徴とするポリエステルの製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明はポリエステル重合触媒およびこれを用いて製造されたポリエステルに関するものであり、さらに詳しくは、アンチモン化合物を用いずに、インジウムまたはその化合物を用いるポリエステル重合触媒、およびこれを用いて製造されたポリエステルに関するものである。

【0002】

【従来の技術】

ポリエステル、特にポリエチレンテレフタレート（以下、P E Tと略す）は、機械的特性および化学的特性に優れており、多用途への応用、例えば、衣料用や産業資材用の繊維、包装用や磁気テープ用などの各種フィルムやシート、ボトルやエンジニアリングプラスチックなどの成形物への応用がなされている。

【0003】

P E Tは、工業的にはテレタル酸もしくはテレタル酸ジメチルとエチレングリコールとのエステル化もしくはエステル交換によってビス（2-ヒドロキシエチル）テレフタレートを製造し、これを高温、真空中で触媒を用いて重縮合することで得られる。重縮合時に用いられる触媒としては、三酸化アンチモンが広く用いられている。三酸化アンチモンは、安価で、かつ優れた触媒活性をもつ触媒であるが、重縮合時に金属アンチモンが析出するため、P E Tに黒ずみや異物が発生するという問題点を有している。また、最近環境面からアンチモンの安全性に対する問題が指摘されている。このような経緯で、アンチモンを含まないポリエステルが望まれている。

【0004】

重縮合触媒として、三酸化アンチモンを用いて、かつP E Tの黒ずみや異物の発生を抑制する試みが行われている。例えば、特許第2666502号においては、重縮合触媒として三酸化アンチモンとビスマスおよびセレンの化合物を用いることで、P E T中の黒色異物の生成を抑制している。また、特開平9-291141号においては、重縮合触媒としてナトリウムおよび鉄の酸化物を含有する三酸化アンチモンを用いると、金属アンチモンの析出が抑制されることを述べて

いる。ところが、これらの重縮合触媒では、結局アンチモンを含まないポリエス
テルという目的は達成できない。

【0005】

三酸化アンチモンの代わりとなる重縮合触媒の検討も行われている。特に、テ
トラアルコキシチタネートがすでに提案されているが、この化合物を用いて製造
されたP E Tは著しく着色すること、ならびに熱分解を容易に起こすという問題
がある。

【0006】

このような、テトラアルコキシチタネートを重縮合触媒として用いたときの問
題点を克服する技術として、例えば、特開昭55-116722号においては、
テトラアルコキシチタネートをコバルト塩およびカルシウム塩と同時に用いる方
法が提案されている。また、特開平8-73581号においては、重縮合触媒と
してテトラアルコキシチタネートとコバルト化合物とを用い、かつ蛍光増白剤を
添加する方法が提案されている。これらの技術によれば、テトラアルコキシチタ
ネートを重縮合触媒として用いたときのP E Tの着色という問題は抑制されるが
、P E Tの熱分解の効果的な抑制は達成されていない。

【0007】

三酸化アンチモンに代わる重縮合触媒であって、テトラアルコキシチタネート
を用いたときの問題点を克服した重縮合触媒としては、ゲルマニウム化合物が実
用化されている。しかし、この触媒は非常に高価であるという問題点や、重合中
に反応系から外へ留出しやすいために反応系の触媒濃度が変化し、その結果重合
の制御が困難になるという問題を有している。

【0008】

【発明が解決しようとする課題】

本発明は、アンチモン化合物及びテトラアルコキシチタネート以外の新規の重
縮合触媒、およびこれを用いて製造されたポリエステル、並びにその製造方法を
提供するものである。

【0009】

【課題を解決するための手段】

本願の発明者らは、上記課題の解決を目指して銳意検討を重ねた結果、インジウムまたはその化合物はそれ自体は重縮合触媒としての活性は十分ではないが、驚くべき事にある種の添加剤を共存させることによって、活性がより高められ、重縮合触媒として十分実用的な活性を示すことを見いだした。

【0010】

本発明の重縮合触媒を用いた製造方法によると、アンチモン化合物などの触媒とは異なったインジウム化合物触媒のポリエステルを得ることができる。

【0011】

本発明のポリエステル重合触媒は、インジウムまたはその化合物及び添加剤として下記一般式(84)及び/または(85)の構造を含む化合物からなる群より選ばれる少なくとも一種の化合物より構成される。

【0012】

【化84】

【化85】

(式(84)～(85)中、Arはアリール基を表す。)

本発明の添加剤は、一般式(84)、(85)の双方を備えた、例えばアミノフェノール類等のような芳香環にNとOの双方が結合された化合物やその誘導体であってもよい。

【0013】

【発明の実施の形態】

本発明は、アンチモン化合物以外の新規の重縮合触媒、およびこれを用いて製造されたポリエステルを提供するものである。本発明の重縮合触媒は、インジウムまたはその化合物からなる触媒であり、詳しくは、インジウムまたはその化合物と特定の有機化合物とからなる触媒である。

【0014】

本発明におけるインジウムまたはその化合物としては、インジウム金属の他、ギ酸、酢酸、プロピオン酸、酪酸、蔥酸などの飽和脂肪族カルボン酸のインジウム塩、アクリル酸、メタクリル酸などの不飽和脂肪族カルボン酸のインジウム塩、安息香酸などの芳香族カルボン酸のインジウム塩、トリクロロ酢酸などのハロゲン合有カルボン酸のインジウム塩、乳酸、クエン酸、サリチル酸などのヒドロキシカルボン酸のインジウム塩、炭酸、硫酸、硝酸、リン酸、ホスホン酸、炭酸水素、リン酸水素、硫酸水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸などの無機酸のインジウム塩、1-プロパンスルホン酸、1-ペンタンスルホン酸、ナフタレンスルホン酸などの有機スルホン酸のインジウム塩、ラウリル硫酸などの有機硫酸のインジウム塩、メトキシ、エトキシ、n-ブロボキシ、iso-ブロボキシ、n-ブトキシ、tert-ブトキシなどのインジウムのアルコキサイド、インジウムのアセチルアセトネートなどのキレート化合物、インジウムの酸化物、水酸化物などが挙げられ、これらのうち飽和脂肪族カルボン酸のインジウム塩が好ましく、さらにインジウムの酢酸塩がとくに好ましい。

【0015】

これらインジウムまたはその化合物の使用量としては、得られるポリエステルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ユニットのモル数に対して $1 \times 10^{-6} \sim 0.1$ モルが好ましく、更に好ましくは $5 \times 10^{-6} \sim 0.05$ モルである。

【0016】

本発明のポリエステル重合触媒において、添加剤として使用される前記一般式(84)及び/または(85)、即ちAr-O-X¹及び/またはAr-N(-

X^2) - X^3 の構造を含む化合物としては、詳しくは、下記一般式(86)及び／または(87)の構造を含む化合物からなる群より選ばれる一種以上の化合物が好ましい。

【0017】

【化86】

【化87】

式(86)、(87)中、 X^1 、 X^2 、 X^3 はそれぞれ独立に水素、炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、Arは下記一般式(88)から(95)などに例示されるアリール基を表す。

【0018】

【化88】

【化 89】

【化 90】

【化 91】

【化92】

【化93】

【化94】

【化95】

Ar が一般式 (88) で表される $\text{Ar}-\text{O}-\text{X}^1$ 及び／または $\text{Ar}-\text{N}(-\text{X}^2)-\text{X}^3$ の構造を含む化合物としては、例えば、下記一般式 (96) および (97) で表されるような直線状フェノール化合物、直線状アニリン化合物並びにおよびそれらの誘導体、下記一般式 (98) および (99) で表されるような枝分かれ線状フェノール化合物、枝分かれ線状アニリン化合物およびそれらの誘導

体、または下記一般式(100)および(101)で表されるような環状フェノール化合物、環状アニリン化合物およびそれらの誘導体などが挙げられ、これらのなかでも直線状フェノール化合物、直線状アニリン化合物、または環状フェノール化合物およびそれらの誘導体が好ましい。さらに、直線状フェノール化合物または環状フェノール化合物およびそれらの誘導体のなかでも、下記式(102)で表される2, 2'-ビスフェノール、下記式(103)で表される2-アミノビフェニル、下記式(104)で表される2, 2'-ジヒドロキシジフェニルエーテル、下記式(105)で表される2, 2'-チオビス(4-tert-オクチルフェノール)、下記式(106)で表される2, 2'-メチレンビス(6-tert-ブチル-p-クレゾール)、下記式(107)で表されるメチレン架橋直線状フェノール化合物(2から100量体までの混合物)、下記式(108)で表されるメチレン架橋直線状p-tert-ブチルフェノール化合物(2から100量体までの混合物)、下記式(109)で表されるカリックス[4]アレーン、下記式(110)で表されるカリックス[6]アレーン、下記式(111)で表されるカリックス[8]アレーン、下記式(112)で表されるp-tert-ブチルカリックス[4]アレーン、下記式(113)で表されるp-tert-ブチルカリックス[6]アレーン、または下記式(114)で表されるp-tert-ブチルカリックス[8]アレーンおよびそれらの誘導体が特に好ましい。

【0019】

【化96】

【化97】

【化98】

【化99】

【化100】

【化101】

式(96)～(101)中、各 R^1 は同じかまたは異なり、C1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各 R^2 は同じかまたは異なり、水素、C1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水

素基、アシリル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、各Yは同じかまたは異なり、直接結合、C1からC10のアルキレン基、-(アルキレン)-O-、-(アルキレン)-S-、-O-、-S-、-SO₂-、-CO-、-COO-などを表し、各nは同じかまたは異なり、1から100の整数を表し、aは1から3の整数を表し、bは0または1から3の整数を表し、各cは同じかまたは異なり、1から3の整数を表し、各dは同じかまたは異なり、0または1から3の整数を表す。ただし、 $1 \leq a + b \leq 5$ 、 $1 \leq c + d \leq 4$ である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。

【0020】

【化102】

【化103】

【化104】

【化105】

【化106】

【化107】

(式(107)中、 n は1から99の任意の整数を表す。)

【化108】

(式(108)中、 n は1から99の任意の整数を表す。)

【化109】

【化110】

【化111】

【化112】

【化113】

【化114】

Arが一般式(88)で表されるAr-O-X¹及び/またはAr-N(-X²)-X³の構造を含む化合物のその他の例としては、下記一般式(115)および(116)で表されるようなクマリン誘導体、下記一般式(117)および(118)で表されるようなクロモン誘導体、下記一般式(119)および(120)で表されるようなジヒドロクマリン誘導体、下記一般式(121)および

(122)で表されるようなクロマノン誘導体、下記一般式(123)および(124)で表されるようなイソクロマノン誘導体、下記一般式(125)および(126)で表されるようなクロマン誘導体、下記一般式(127)および(128)で表されるようなイソクロマン誘導体などの複素環式化合物などが挙げられ、これらのうちクマリン誘導体、クロモン誘導体、またはクロマン誘導体が好ましい。クマリン誘導体、クロモン誘導体、またはクロマン誘導体のなかでも、下記式(129)で表されるエスクレチン、下記式(130)で表される7-アミノ-4-メチルクマリン、下記式(131)で表されるクリシン、下記式(132)で表されるモリン、下記式(133)で表される2-アミノクロモン、下記式(134)で表されるエピカテキン、または下記式(135)で表されるエピガロカテキンガレートおよびそれらの誘導体がとくに好ましい。

【0021】

【化115】

【化116】

【化117】

【化118】

式(115)～(118)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、jおよびbは0または1から3の整数を表し、mおよびdは0または1から2の整数を表す。ただし、 $0 \leq j + b \leq 4$ 、 $0 \leq m + d \leq 2$ 、 $1 \leq j + m \leq 5$ である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。

【0022】

【化 119】

【化 120】

【化121】

【化122】

【化123】

【化124】

式(119)～(124)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、ハロゲン基、カルボキシリル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシリル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを

含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、aは1から3の整数を表し、bは0または1から3の整数を表し、cおよびdは0または1から2の整数を表す。ただし、 $1 \leq a + b \leq 4$ 、 $0 \leq c + d \leq 2$ である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。

【0023】

【化125】

【化126】

【化127】

【化128】

式(125)～(128)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、aは1から3の整数を表し、bは0または1から3の整数を表し、cおよびdは0または1から3の整数を表す。ただし、 $1 \leqq a + b \leqq 4$ 、 $0 \leqq c + d \leqq 3$ である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。

【0024】

【化129】

【化130】

【化131】

【化132】

【化133】

【化134】

【化135】

Ar が一般式 (89) で表される $\text{Ar}-\text{O}-\text{X}^1$ 及び／または $\text{Ar}-\text{N}(-\text{X}^2)-\text{X}^3$ の構造を含む化合物としては、例えば、下記一般式 (136) および (137) で表されるようなナフタレン誘導体、または下記一般式 (138) および (139) で表されるようなビスナフチル誘導体などが挙げられ、これらのなかでも、下記式 (140) で表される 4, 5-ジヒドロキシナフタレン-2, 7-ジスルホン酸二ナトリウム、下記式 (141) で表される 1, 8-ジアミノナフタレン、下記式 (142) で表されるナフトールAS、下記式 (143) で表される 1, 1'-ビ-2-ナフトール、または下記式 (144) で表される 1, 1'-ビナフチル-2, 2'-ジアミンおよびそれらの誘導体が好ましく、さらにこれらの中でも、4, 5-ジヒドロキシナフタレン-2, 7-ジスルホン酸二ナトリウムまたは 1, 8-ジアミノナフタレンおよびそれらの誘導体がとくに好ましい。

【0025】

【化 136】

【化 137】

式(136)、(137)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、ハロゲン基、カルボキシリル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシリル基、アルキルチオ基、

スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、j、b、c、およびdは0または1から3の整数を表す。ただし、 $0 \leq j + b \leq 4$ 、 $0 \leq c + d \leq 4$ 、 $1 \leq j + c \leq 6$ である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。

【0026】

【化138】

【化139】

式(138)、(139)中、各Rは同じかまたは異なり、C1からC20の

炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル) -O- で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、Yは直接結合、C1からC10のアルキレン基、-(アルキレン)-O-、-(アルキレン)-S-、-O-、-S-、-SO₂-、-CO-、-COO-などを表し、j、b、c、d、e、f、g、およびhは0または1から3の整数を表す。ただし、0≤j+b≤4、0≤c+d≤3、0≤e+f≤4、0≤g+h≤3、1≤j+c+e+g≤12である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。

【0027】

【化140】

【化141】

【化142】

【化143】

【化144】

Arが一般式(90)または(91)で表されるAr-O-X¹及び/または
Ar-N(-X²)-X³の構造を含む化合物としては、例えば、下記一般式(

145) および (146) で表されるようなアントラセン誘導体などが挙げられ、これらのなかでも、下記式 (147) で表されるアンスラロビン、下記式 (148) で表される9, 10-ジメトキシアントラセン、または下記式 (149) で表される2-アミノアントラセンおよびそれらの誘導体が好ましく、さらにこれらの中でも、アンスラロビンおよびその誘導体がとくに好ましい。

【0028】

【化145】

【化146】

式 (145)、(146) 中、各 R は同じかまたは異なり、C 1 から C 20 の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O- で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各 X は同じかまたは異なり、水素、C 1 から C 20 の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、または

エーテル結合を有する炭化水素基などを表し、j、b、e、およびfは0または1から3の整数を表し、pおよびqは0または1から2の整数を表す。ただし、 $0 \leq j + b \leq 4$ 、 $0 \leq p + q \leq 2$ 、 $0 \leq e + f \leq 4$ 、 $1 \leq j + p + e \leq 8$ である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。

【0029】

【化147】

【化148】

【化149】

Arが一般式(92)で表されるAr-O-X¹及び/またはAr-N(-X²)-X³の構造を含む化合物としては、例えば、下記一般式(150)および(151)で表されるようなベンゾキノン誘導体などが挙げられ、これらのなかでも、下記式(152)で表される2,5-ジヒドロキシベンゾキノンおよびその誘導体が好ましい。

【0030】

【化150】

【化151】

式(150)、(151)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを

含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、k、l、p、およびqは0または1から2の整数を表す。ただし、 $0 \leq k + l \leq 2$ 、 $0 \leq p + q \leq 2$ 、 $1 \leq k + p \leq 4$ である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。

【0031】

【化152】

Arが一般式(93)または(94)で表されるAr-O-X¹及び/またはAr-N(-X²)-X³の構造を含む化合物としては、例えば、下記一般式(153)および(154)で表されるようなナフトキノン誘導体などが挙げられ、これらのなかでも、下記式(155)で表される5,8-ジヒドロキシ-1,4-ナフトキノンまたは下記式(156)で表される2-アミノナフトキノンおよびそれらの誘導体が好ましい。

【0032】

【化153】

【化154】

式(153)～(154)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミ

ノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、kおよびlは0または1から2の整数を表し、cおよびdは0または1から3の整数を表す。ただし、 $0 \leq k+1 \leq 2$ 、 $0 \leq c+d \leq 4$ 、 $1 \leq k+c \leq 5$ である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。

【0033】

【化155】

【化156】

Arが一般式(95)で表されるAr-O-X¹及び/またはAr-N(-X²)-X³の構造を含む化合物としては、例えば、下記一般式(157)および(158)で表されるようなアントラキノン誘導体などが挙げられ、これらの中でも、下記式(159)で表されるキナリザリン、下記式(160)で表されるアリザリン、下記式(161)で表されるキニザリン、下記式(162)で表されるアントラルフィン、下記式(163)で表されるエモジン、下記式(164)で表される1,4-ジアミノアントラキノン、下記式(165)で表される1,8-ジアミノ-4,5-ジヒドロキシアントラキノン、または下記式(166)で表されるアシッドブルー25およびそれらの誘導体が好ましく、さらにこれらの中でも、キナリザリンまたは1,4-ジアミノアントラキノンおよびそれらの誘導体がとくに好ましい。

【0034】

【化157】

【化158】

式(157)、(158)中、各Rは同じかまたは異なり、C1からC20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、水ルミル基、アシル基、(アシル)-O-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、C1からC20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、j、b、c、およびdは0または1から3の整数を表す。ただし、 $0 \leq j + b \leq 4$ 、 $0 \leq c + d \leq 4$ 、 $1 \leq j + c \leq 6$ である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。

【0035】

【化159】

【化160】

【化161】

【化162】

【化163】

【化164】

【化165】

【化166】

このような添加剤の使用量としては、共存するインジウムまたはその化合物のモル数に対して0.01～100モルが好ましく、更に好ましくは0.05～50モルである。

【0036】

本発明によるポリエステルの製造は、従来公知の方法で行うことができる。例

えば、テレフタル酸とエチレングリコールとのエステル化後、重縮合する方法、もしくは、テレフタル酸ジメチルなどのテレフタル酸のアルキルエステルとエチレングリコールとのエステル交換反応を行った後、重縮合する方法のいずれの方法でも行うことができる。また、重合の装置は、回分式であっても、連続式であってもよい。

【0037】

本発明の触媒は、重縮合反応のみならずエステル化反応およびエステル交換反応にも触媒活性を有する。テレフタル酸ジメチルなどのジカルボン酸のアルキルエステルとエチレングリコールなどのグリコールとのエステル交換反応による重合は、通常マンガンもしくは亜鉛などのエステル交換触媒の存在下で行われるが、これらの触媒に代えて本発明の触媒を用いることもできる。また、本発明の触媒は、溶融重合のみならず固相重合や溶液重合においても触媒活性を有する。

【0038】

本発明の重縮合触媒の添加時期は、重縮合反応の開始前が望ましいが、エステル化反応もしくはエステル交換反応の開始前および反応途中の任意の段階で反応系に添加することもできる。

【0039】

本発明の重縮合触媒の添加方法は、粉末状での添加であってもよいし、エチレングリコールなどの溶媒のスラリー状もしくは溶液状での添加であってもよく、特に限定されない。また、インジウムまたはその化合物と添加剤とを予め混合したものをおいてもよいし、これらを別々に添加してもよい。

【0040】

本発明の重縮合触媒は、アンチモン化合物、チタン化合物、ゲルマニウム化合物などの他の重縮合触媒を共存させて用いてもよい。

【0041】

本発明に言うポリエステルとは、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種または二種以上とグリコールを含む多価アルコールから選ばれる一種または二種以上とから成るもの、またはヒドロキシカルボン酸およびこれらのエステル形成性誘導体から成るもの、または環

状エステルから成るものという。

[0042]

ジカルボン酸としては、テルペニン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ビメリン酸、スペリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、3-シクロブantanジカルボン酸、1, 3-シクロpentantanジカルボン酸、1, 2-シクロヘキサンジカルボン酸、1, 3-シクロヘキサンジカルボン酸、1, 4-シクロヘキサンジカルボン酸、2, 5-ノルボルナンジカルボン酸、ダイマー酸などに例示される飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸などに例示される不飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、5-(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1, 3-ナフタレンジカルボン酸、1, 4-ナフタレンジカルボン酸、1, 5-ナフタレンジカルボン酸、2, 6-ナフタレンジカルボン酸、2, 7-ナフタレンジカルボン酸、4, 4'-ビフェニルジカルボン酸、4, 4'-ビフェニルスルホンジカルボン酸、4, 4'-ビフェニルエーテルジカルボン酸、1, 2-ビス(フェノキシ)エタン-p, p'-ジカルボン酸、パモイン酸、アントラセンジカルボン酸などに例示される芳香族ジカルボン酸またはこれらのエステル形成性誘導体が挙げられ、これらのジカルボン酸のうちテレフタル酸およびイソフタル酸が好ましい。

[0043]

これらジカルボン酸以外の多価カルボン酸として、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3, 4, 3', 4' -ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体などが挙げられる。

[0 0 4 4]

グリコールとしてはエチレングリコール、1, 2-プロピレングリコール、1, 3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1, 2-ブチレングリコール、1, 3-ブチレングリコール、2, 3-ブチレ

ングリコール、1, 4-ブチレングリコール、1, 5-ペンタンジオール、ネオペンチルグリコール、1, 6-ヘキサンジオール、1, 2-シクロヘキサンジオール、1, 3-シクロヘキサンジオール、1, 4-シクロヘキサンジオール、1, 2-シクロヘキサンジメタノール、1, 3-シクロヘキサンジメタノール、1, 4-シクロヘキサンジメタノール、1, 4-シクロヘキサンジエタノール、1, 10-デカメチレングリコール、1, 12-ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例示される脂肪族グリコール、ヒドロキノン、4, 4'-ジヒドロキシビスフェノール、1, 4-ビス(β-ヒドロキシエトキシ)ベンゼン、1, 4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1, 2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2, 5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加されたグリコール、などに例示される芳香族グリコールが挙げられ、これらのグリコールのうちエチレングリコールおよび1, 4-ブチレングリコールが好ましい。

【0045】

これらグリコール以外の多価アルコールとして、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオールなどが挙げられる。

【0046】

ヒドロキカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、またはこれらのエステル形成性誘導体などが挙げられる。

【0047】

環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチドなどが挙げられる。

【0048】

多価カルボン酸もしくはヒドロキシカルボン酸のエステル形成性誘導体としては、これらのアルキルエステル、酸クロライド、酸無水物などが挙げられる。

【0049】

本発明のポリエステルは、主たる繰り返し単位がアルキレンテレフタレートからなるポリエステルが好ましい。ここで言う主たる繰り返し単位がアルキレンテレフタレートからなるポリエステルとは、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体、主たるグリコール成分がアルキレングリコールからなるものである。ここで言うアルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいても良い。

【0050】

酸成分として亜酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、1, 3-シクロブタンジカルボン酸、1, 3-シクロヘキサンジカルボン酸、1, 2-シクロヘキサンジカルボン酸、1, 3-シクロヘキサンジカルボン酸、1, 4-シクロヘキサンジカルボン酸、2, 5-ノルボルナンジカルボン酸、ダイマー酸などに例示される飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸などに例示される不飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、5-(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1, 3-ナフタレンジカルボン酸、1, 4-ナフタレンジカルボン酸、1, 5-ナフタレンジカルボン酸、2, 6-ナフタレンジカルボン酸、2, 7-ナフタレンジカルボン酸、4, 4'-ビフェニルジカルボン酸、4, 4'-ビフェニルスルホンジカルボン酸、4, 4'-ビフェニルエーテルジカルボン酸、1, 2-ビス(フェノキシエタン-*p*, *p*'-ジカルボン酸、パモイン酸、アントラセンジカルボン酸などに例示される芳香族ジカルボン酸またはこれらのエステル形成性誘導体、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3, 4, 3', 4'-ビフェニルテトラカルボン

酸などに例示される多価カルボン酸およびこれらのエステル形成性誘導体などを共重合成分として含むこともできる。また、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシクロヘキサンカルボン酸などに例示されるヒドロキシカルボン酸またはそのエステル形成性誘導体を含むこともできる。また、 ϵ -カプロラクトン、 β -プロピオラクトン、 β -メチル- β -プロピオラクトン、 δ -バレロラクトン、グリコリド、ラクチドなどに例示される環状エステルを含むこともできる。

【0051】

主たるグリコール成分のアルキレングリコールとしては、1, 2-プロピレングリコール、1, 3-プロピレングリコール、1, 2-ブチレングリコール、1, 3-ブチレングリコール、2, 3-ブチレングリコール、1, 4-ブチレングリコール、1, 5-ペンタンジオール、ネオペンチルグリコール、1, 6-ヘキサンジオール、1, 2-シクロヘキサンジオール、1, 3-シクロヘキサンジオール、1, 4-シクロヘキサンジオール、1, 2-シクロヘキサンジメタノール、1, 3-シクロヘキサンジメタノール、1, 4-シクロヘキサンジメタノール、1, 4-シクロヘキサンジエタノール、1, 10-デカメチレングリコール、1, 12-ドデカンジオール等があげられる。これらは同時に2種以上を使用しても良い。また、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例示される脂肪族グリコール、ヒドロキノン、4, 4'-ジヒドロキシビスフェノール、1, 4-ビス(β -ヒドロキシエトキシ)ベンゼン、1, 4-ビス(β -ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1, 2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2, 5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加されたグリコール、などに例示される芳香族グリコール、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオールなどに例示される

多価アルコール等を含むことができる。

【0052】

本発明のポリエステルとしてはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリ(1,4-シクロヘキサンジメチレンテレフタレート)、ポリエチレンナフタレート、ポリブチレンナフタレート、およびこれらの共重合体が特に好ましく、これらのうちポリエチレンテレフタレートがさらに好ましい。

【0053】

本発明のポリエステル中には他の任意の重合体や安定剤、酸化防止剤、制電剤、消泡剤、染色性改良剤、染料、顔料、艶消剤、蛍光増白剤、その他の添加剤が含有されていてもよい。

【0054】

インジウムまたはその化合物はもともとポリエステル重縮合触媒としての活性は十分ではないが、本発明の添加剤を共存させることによって触媒活性がより高められ、重縮合触媒として十分実用的な活性を持つようになり、既存のアンチモン化合物などの触媒とは異なったインジウム化合物触媒により製造されたポリエステルを得ることができる。

【0055】

【実施例】

以下、本発明を実施例により説明するが本発明はもとよりこれらの実施例に限定されるものではない。なお、各実施例および比較例においてポリエステルの固有粘度(I V)は、フェノール/1,1,2,2-テトラクロロエタンの6/4混合溶媒(重量比)を用いて得られたポリエステルを溶解し、温度30℃で測定した。

【0056】

(実施例1)

ビス(2-ヒドロキシエチル)テレフタレート8900重量部に対して濃度が5g/Lの酢酸インジウムのエチレングリコール溶液を0.46容量部添加し、次いで1,1'-ビナフチル-2,2'-ジアミン(A)をポリエステル中の酸

成分に対して0.1モル%加え、常圧下に245℃にて10分間攪拌した。次いで50分を要して275℃まで昇温しつつ反応系を徐々に減圧して0.1torr (mmHg) とし、275℃、0.1torrにて180分間重縮合反応を行い、ポリエステルを得た。

【0057】

(実施例2)

1, 1' -ビナフチル-2, 2' -ジアミンに代えて1, 1' -ビ-2-ナフトール (B) を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0058】

(実施例3)

1, 1' -ビナフチル-2, 2' -ジアミンに代えて7-アミノ-4-メチルクマリン (C) を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0059】

(実施例4)

1, 1' -ビナフチル-2, 2' -ジアミンに代えてモリン (D) を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0060】

(実施例5)

1, 1' -ビナフチル-2, 2' -ジアミンに代えて2-アミノクロモン (E) を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0061】

(実施例6)

1, 1' -ビナフチル-2, 2' -ジアミンに代えてエピガロカテキンガレート (F) を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0062】

(実施例7)

1, 1' -ビナフチル-2, 2' -ジアミンに代えてエピカテキン (G) を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0063】

(実施例8)

1, 1' -ビナフチル-2, 2' -ジアミンに代えてカリックス[8]アレン(H)を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0064】

(実施例9)

1, 1' -ビナフチル-2, 2' -ジアミンに代えてp-t e r t -ブチルカリックス[8]アレン(I)を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0065】

(実施例10)

1, 1' -ビナフチル-2, 2' -ジアミンに代えてアリザリン(J)を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0066】

(実施例11)

1, 1' -ビナフチル-2, 2' -ジアミンに代えてアントラルフィン(K)を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0067】

(実施例12)

1, 1' -ビナフチル-2, 2' -ジアミンに代えてエモジン(L)を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0068】

(実施例13)

1, 1' -ビナフチル-2, 2' -ジアミンに代えて1, 4-ジアミノアントラキノン(M)を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0069】

(実施例14)

1, 1' -ビナフチル-2, 2' -ジアミンに代えて1, 8-ジアミノ-4,

5-ジヒドロキシアントラキノン（N）を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0070】

(実施例15)

1, 1' -ビナフチル-2, 2' -ジアミンに代えて5, 8-ジヒドロキシー1, 4-ナフトキノン（O）を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0071】

(実施例16)

1, 1' -ビナフチル-2, 2' -ジアミンに代えてアンスラロビン（P）を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0072】

(実施例17)

1, 1' -ビナフチル-2, 2' -ジアミンに代えて4, 5-ジヒドロキシナフタレン-2, 7-ジスルホン酸二ナトリウム（Q）を使用した以外は実施例1と全く同様にしてポリエステルを得た。

【0073】

(実施例18)

1, 1' -ビナフチル-2, 2' -ジアミンに代えて1, 8-ジアミノナフタレン（R）を使用した点以外実施例1と全く同様にしてポリエステルを得た。

【0074】

(比較例1)

1, 1' -ビナフチル-2, 2' -ジアミン（A）を添加しなかったこと以外は実施例1と全く同様にしてポリエステルを得た。

【0075】

(比較例2)

酢酸インジウムのエチレングリコール溶液を加えなかったこと以外は実施例1と全く同様にしてポリエステルを得た。

【0076】

実施例1～18並びに比較例1、2にて得られたポリエステルの固有粘度の測定結果を表1にまとめて示した。

【0077】

【表1】

	金属化合物	添加剤	I V (dl/g)
実施例 1	酢酸インジウム	A	0.57
実施例 2		B	0.56
実施例 3		C	0.57
実施例 4		D	0.57
実施例 5		E	0.59
実施例 6		F	0.53
実施例 7		G	0.51
実施例 8		H	0.63
実施例 9		I	0.65
実施例 10		J	0.55
実施例 11		K	0.51
実施例 12		L	0.59
実施例 13		M	0.55
実施例 14		N	0.57
実施例 15		O	0.51
実施例 16		P	0.58
実施例 17		Q	0.59
実施例 18		R	0.53
比較例 1		—	0.39
比較例 2	—	A	0.25

【発明の効果】

本発明によれば、アンチモン化合物以外の新規の重縮合触媒、およびこれを用いて製造されたポリエステルが提供される。本発明のポリエステルは、衣料用纖維、産業資材用纖維、各種フィルム、シート、ボトルやエンジニアリングプラスチックなどの各種成形物、および塗料や接着剤などへの応用が可能である。

【書類名】 要約書

【要約】

【課題】 アンチモン化合物及びテトラアルコキシチタネート以外の新規なポリエスチル重合触媒、及び該ポリエスチル重合触媒を用いて製造されたポリエスチル、並びにポリエスチルの製造方法を提供する。

【解決手段】 インジウムまたはその化合物と下記一般式（1）及び／または（2）の構造を含む化合物からなる群より選ばれる少なくとも一種の化合物より構成される触媒とする。

(1) Ar-O-

(2) Ar-N<

(式(1)、(2)中、Arはアリール基を表す。)

【選択図】 なし

認定・付加情報

特許出願の番号 平成11年 特許願 第134878号
受付番号 59900458063
書類名 特許願
担当官 兼崎 貞雄 6996
作成日 平成11年 5月26日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000003160

【住所又は居所】 大阪府大阪市北区堂島浜2丁目2番8号

【氏名又は名称】 東洋紡績株式会社

【代理人】

【識別番号】 100092266

【住所又は居所】 大阪府大阪市淀川区西中島7丁目2番7号 大西

ビル 鈴木合同国際特許事務所

【氏名又は名称】 鈴木 崇生

【選任した代理人】

【識別番号】 100097386

【住所又は居所】 大阪府大阪市淀川区西中島7丁目2番7号 大西

ビル 鈴木合同国際特許事務所

【氏名又は名称】 室之園 和人

【選任した代理人】

【識別番号】 100104422

【住所又は居所】 大阪府大阪市淀川区西中島7丁目2番7号 大西

ビル 鈴木合同国際特許事務所

【氏名又は名称】 梶崎 弘一

【選任した代理人】

【識別番号】 100105717

【住所又は居所】 大阪府大阪市淀川区西中島7丁目2番7号 大西

ビル 鈴木合同国際特許事務所

【氏名又は名称】 尾崎 雄三

【選任した代理人】

【識別番号】 100104101

【住所又は居所】 大阪市淀川区西中島7丁目2番7号 大西ビル

鈴木合同国際特許事務所

次頁有

特平11-134878

認定・付加情報（続巻）

【氏名又は名称】 谷口 俊彦

次頁無

出願人履歴情報

識別番号 [000003160]

1. 変更年月日 1990年 8月10日

[変更理由] 新規登録

住 所 大阪府大阪市北区堂島浜2丁目2番8号
氏 名 東洋紡績株式会社