

Sequential Circuit Latch & Introduction of SR Flip-flop

PRESENTED BY NABANITA DAS

Digital Circuits

- Combinational Circuits
 - The outputs depend only on the current input values
 - It uses only logic gates
- Sequential Circuits
 - ▶ The outputs depend on the current and past input values.
 - It uses logic gates and storage elements.
 - Sequential Logic circuits remember past inputs and past circuit state.
 - Outputs from the system are "fed back" as new inputs with gate delay and wire delay.
 - The storage elements are circuits that are capable of storing binary information: memory.

Sequential Circuits

Synchronous vs. Asynchronous

There are two types of sequential circuits:

- **Synchronous** sequential circuit: circuit output changes only at some discrete instants of time. This type of circuits achieves synchronization by using a timing signal called the *clock*.
 - Example: Flip-Flop are useful for synchronous sequential circuits.
- Asynchronous sequential circuit: circuit output can change at any time (clockless).
 - Example: Latches are useful for asynchronous sequential circuits.

Memory Devices

Latches A latch is a memory element whose excitation signals control the state of the device. A latch has two stages set and reset. Set stage sets the output to 1. Reset stage set the output to 0.

Flip-flops A *flip-flop* is a memory device that has clock signals control the state of the device.

Flip-flop

SR Latch

SR Latch

The SR latch is the basic memory element consists of two cross-coupled NOR gates. It has two input signals, S set signal and R reset signal. It also has two outputs Q and Q; and two states, a set state when Q = 1 and a reset state when Q = 0 (Q' = 1)

S	R	Q	Q'
1	0	1	0
0	0	1	0
0	1	0	1
0	0	0	1
1	1	0	0

S	R	Q
0	0	no change
0	1	0 reset
1	0	1 set
1	1	unstable

The SR Latch (NOR version)

▶ The SR (Set-Reset) Latch

And its operation

S	R	Q	Q′	
1	0 0	1 1	0 0	Set Q Hold
0 0	1	0	1 1	Clear
1	1	0	0	Undefined

S	R	Q
0	0	hold
0	1	0 reset
1	0	1 set
1	1	unstable

The SR Latch (NAND version)

Timing Diagram of SR-Latch

SR Flip-Flop

- Flip-flop is a memory element which change its condition based on clock signal
- The flip-flops are constructed from latches.
- They are useful for synchronous sequential circuits.

SR Flip-Flop

Let 8=1 & 8=0 NANDI = 1 , NAND2=0 NAND 3 input = 11=0/9:0 NANDY input = 01= output = 1=1 1. Bn+1=0, Bn+1=1. Again Reset.

anti

Case-3 S=1, R=0 & CLK=1

Let & D_E O, & D_E 1

L. NANDI= O, NAND 2=1

NAND 3 imput= 01 = 0 without=1

NAND 4 imput= 10, output=1

Let state

Case of S=1, R=1 & CUK=1

Let Qn=0, Qn=1

!. NAND1=0, NAND2=0

NAND3 input = 01, output=1

NAND4 input = 00=1, output=1

both Qn+1 & Qn+1 in

same state which is not possible.

Let Op 1, Op 0. 1. NAND1 = 0 , NAND2=1 NAND3 input=00: NAND3 output = 1 = Set State NAND4 mput=11 = 0 NAND4 output= 11=0 Snt1=1, Snt1=01 S21, R21 Let One 1, On= 0 - NAND 1 = 0, NAND 2 = 0 NAND3 input = OK NAND3 output=1 NAND 4 mput = 01=1 NAND 4 Output = 01=1 Again Britis Briti are

State Transition Diagram of SR Flip Flop

SR Flip-Flop

Characteristic Table of an S-R Flip Flop.

Flip-fle	op inputs	Present output	Next output
S	R	Q_n	Q_{n+1}
0	0	0	0
0	O	1	1
o	1	0	0
o	1	1	0
1	0	0	1
1	O	1	1
1	1	0	X
1	1	1	x

Now we will find out the characteristic equation of the S-R flip-flop from the characteristic table with the help of the Karnaugh map:-

From the Karnaugh map above we find the expression for Q_{n+1} as

$$\mathbf{Q}_{n+1} = \mathbf{S} + \mathbf{R'} \mathbf{Q}_n$$