Midterm

1. Read and review Section 3.4. Do Problem 3.10.

a.

in Example 2-2. Mx dentes cardiovascular mortality
Tt denotes temperature.
Pt denotes the particulate levels.

Xt represents the cardiovascular mortality series.

Therefore, based on the results of AR(>) using linear regression SE. t. |2

$$\phi_{1}: 0.4286$$
 0.0398
 0.077
 $\phi_{2}: 0.4418$
 0.0398
 11.10
 $0.11.45$
 0.398
 0.78

mean: 2.394.
$$\sigma^2$$
: 32.32 , $n = 508$

$$\therefore \hat{X}_{t} = 11.45 + 0.4286 X_{t_1} + 0.4418 X_{t_{-2}}$$

Since all t-statistics exceed the critical value of 1-16, we reject the null hypothesis that the coefficients are Zew, which means all prior lassed values have a highly statistically significant on the arrest value.

Also, the plots of residuals show that almost all ACF and PACF fall in the 95% significance boundaries, which mans the remains errors are close to white noise.

b.

Horizon <int></int>	Forecast <dbl></dbl>	Lower_95 <dbl></dbl>	Upper_95 <dbl></dbl>	
1	87.59986	76.45777	98.74196	
2	86.76349	74.64117	98.88581	
3	87.33714	73.35431	101.31997	
4	87.21350	72.33079	102.09621	

m	Hej	presents weeks to	forecast.
	m	Xnem	9th cI
	1	87.5899	76-4578, 98-7420
	2	86-7635	746412 , 88.8858
	3	87. 3371	77. 3343 , 601. 3200
	4.	87-735	72.3308, 102.0962

2. Read Section 3.5 and Example 3.27, do Problem 3.17.

a.

```
[,2]
        [,1]
Method
       "OLS (linear)" "Yule-Walker"
phi_1
       "0.4285906"
                      "0.4339481"
       "0.4417874"
                      "0.4375768"
phi_2
                      "32.84056"
Sigma2 "32.31749"
SE_phi1 "0.03979433"
                      "0.04001303"
SE_phi2 "0.03976163"
                      "0.04001303"
```

b. The standard errors from both methods are highly similar in this question. This confirms the expectations from large-sample theory. Since the sample size (n=508) is quite large, the standard errors derived from OLS and those from the asymptotic distribution used by Yule-Walker converge.

3. Follow Example 3.30 to find the MLE for the AR(2) model in fitting the cardiovascular mortality series (cmort).

```
> regmle = ar.mle(cmort, order=2)
> regmle$x.mean
[1] 88.6993
> regmle$ar
[1] 0.4300667 0.4424522
> sqrt(diag(regmle$asy.var.coef))
[1] 0.03972621 0.03972621
> regmle$var.pred
[1] 32.37144
```

 $\hat{X}t = 88.6993 + 0.4301(x_{t-1} - 88.6993) + 0.4425(x_{t-2} - 88.6993)$

4. Problem 4.2.

а

	Current question	Example question
Sample size	128	100
Frequencie	0.06; 0.1; 0.4	0.06; 0.1; 0.4
S		
Calculation	Highly composite (2 ⁷), may be	Not highly composite
	computed quickly using the fast	
	Fourier transform	
	Time (t) Frequency 1	0=6/100 A ² =13 0=10/100 A ² =41 5 7 9 10 10 10 10 10 10 10 10 10
	Time (f) Series x_t (re128) 2 0 0 40 60 80 100 120 Time (f)	α = 40/100 Λ² = 85 2 0 15 10 15 15 15 16 17 10 17 10 10 10 10 10 10 10

b.

The periodogram perfectly identifies and separates the three true underlying frequencies (0.06, 0.1, and 0.4) used to generate the series. Since there is no noise added, it is concentrated solely at these frequency points, resulting in a clean and flat periodogram. The contribution for f=0.4 is the largest.

c.

Periodogram of Signal with noise (n=100)

Unlike the pure signal, which has a flat baseline, this plot (noise added) shows a fluctuate background. For the periodogram, it still has three peaks (f=0.06, 0.1, and 0.4), which means the contributions are still focused on these frequency points. However, when comparing the height of three peaks, it seems that more contribution has shifted from f=0.1 to f=0.4, which may be caused by the difference in noise sensitivity (f=0.1 peak is more robust).