

An Introduction to Segment Tree

Angel Gerardo Napa Bernuy

Education

Master's Degree, Pure Mathematics
Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil
Bachelor of Science, Mathematics
Pontifical Catholic University of Peru (PUCP), Lima, Peru

Selected teaching and mentoring

Current	Coaching the Peruvian IMO, Cono, & Rioplatense team Lima
Mar.2016	Training the Peruvian team that went to these olympiads
Feb.2019,	Coaching the Ecuadorian Ibero & EGMO team Guayaquil
Feb.2018	Training the Ecuadorian team that represent Ecuador in the IMO, Ibero and EGMO

Prizes and Awards

International Collegiate Programming Contest ACM-ICPC, Regionals

Algorithmic competition in teams of 3 students

- o 4th place of 252 teams (\sim 750 contestants), 2021 ICPC South America Finals
- o 1st place of 536 teams (\sim 1600 contestants), 2021 Maratona de Programação, Primera fase
- o 24th place of 165 teams (~ 500 contestants), 2014 ACM ICPC, South Finals.

International Mathematical Olympiad (IMO)

Most prestigious mathematical event in high school.

- o Silver Medal, Santa Marta, Colombia (2013)
- o Honourable Mention, Mar del Plata, Argentina (2012)

0	1	2	3	4	5
2	1	5	8	0	4

- A list of n integers
- K actions to do:

1. Sum an interval [L, R] Sum[1,4] = 1 + 5 + 8 + 0 = 14

2. Update an element of a[n]

0	1	2	3	4	5
2	1	3	8	0	4

0	1	2	3	4	5
2	1	5	8	0	4

2. Update an element of a[n]

0	1	2	3	4	5
2	1	5	8	0	4

2. Update an element of a[n]

0	1	2	3	4	5
2	1	5	8	0	4

2. Update an element of a[n]

0	1	2	3	4	5
2	1	5	8	0	4

- 1. Sum an interval [L, R]
 O(n)
- 2. Update an element of a[n]O(1)

0	1	2	3	4	5
2	1	3	8	0	4

0	1	2	3	4	5
2	1	5	8	0	4

0	1	2	3	4	5
2	3	8	16	16	20

2. Update an element of a[n]

Method 2:

0	1	2	3	4	5
2	1	5	8	0	4

0 1 2 3 4 5 2 3 8 16 16 20

- 1. Sum an interval [L, R]
- 2. Update an element of a[n]

Method 2:

0	1	2	3	4	5
2	1	3	8	0	4

0	1	2	3	4	5
2	1	5	8	0	4

Method 2:

0	1	2	3	4	5
2	3	8	16	16	20

- 1. Sum an interval [L, R] O(1)
- 2. Update an element of a[n]O(n)

0	1	2	3	4	5
2	3	6	14	14	18

0	1	2	3	4	5
2	1	5	8	0	4

Method 1

Method 2

Complexity of K tasks: O(nK)

O(nK)

0	1	2	3	4	5
2	1	5	8	0	4

Segment Tree

0	1	2	3	4	5
2	1	5	8	0	4

Segtree

Complexity of K tasks:

O(Klog₂n)


```
int n, t[4*n];

void build(int a[], int v, int tl, int tr) {
    //if leaf
    if (tl == tr) {
        t[v] = a[tl];
    }

    else {
        int tm = (tl + tr) / 2;
        //call left child
        build(a, v*2, tl, tm);
        ///call right child
        build(a, v*2+1, tm+1, tr);
        ///sum both partial sums
        t[v] = t[v*2] + t[v*2+1];
    }
}
```


[0,5] [0,2] [3,5]

_															
															!
	1	່ າ	2	4	5	6	7	0	9	10	11	12	13	14	10
	1		3	4	3	U	/	8	9	10	11	12	13	14	12

2	1	5	8	0	4
0	1	2	3	4	5

2	1	5	8	0	4
0	1	2	3	4	5

2	1	5	8	0	4
0	1	2	3	4	5

[0,5]	[0,2]	[3,5]	[0,1]	[2,2]	[3,4]	[5,5]	[0,0]	[1,1]			[3,3]	[4,4]		
				5		4	a[0]	a[1]			a[3]	a[4]		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
[0,5]	[0,2]	[3,5]	[0,1]	[2,2]	[3,4]	[5,5]	[0,0]	[1,1]			[3,3]	[4,4]		
20						_								
20	8	12	3	5	8	4	2	1			8	0		

	12																
			3	3			9										
	2 1									4 5							
	3 -1		L	2 -1				6	-2	2	5			0			
1	2	0	-1	1	1	-3	2	2	4	-2	0	3	2	1	-1		
1	2	0	-1	1	1 1 -3 2				4	-2	0	3	2	1	-1		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		

1	2	0	-1	1	1	-3	2	2	4	-2	0	3	2	1	-1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	ı	I	I	I											
1	2	0	-1	1	1	-3	2	2	4	-2	0	3	2	1	-1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1	2	0	-1	1	1	-3	2	2	4	-2	0	3	2	1	-1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
									4	4					
						-:	1					į	5		
					1									1	
		I	I	I											
1	2	0	-1	1	1	-3	2	2	4	-2	0	3	2	1	-1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

	12																
			3	3			9										
	2 1									4 5							
	3 -1		L	2 -1				6	-2	2	5			0			
1	2	0	-1	1	1	-3	2	2	4	-2	0	3	2	1	-1		
1	2	0	-1	1	1 1 -3 2				4	-2	0	3	2	1	-1		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		

1	2	0	-1	1	1	-3	2	2	4	-2	0	3	2	1	-1			
0	1	2	3	4	5	6	7	8	9	10	11	12	13	13 14				
1																		
3									9									
	2 1								4				ļ	5				
3	3	-	1	2	2	-	1	(õ		-2	į	5	()			
1	2	0	-1	1	1	-3	2	2	4	-2	0	3	2	1	-1			
	T																	
1	2	0	-1	1	1	-3	2	2	4	4	0	3	2	1	-1			
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			

1	2	0	-1	1	1	-3	2	2	4	-2	0	3	2	1	-1	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
18																
			3	3			15									
	2	2				1		10 5								
3	3	-	1	2	2	-	1	(5	4	1	Į.	5	()	
1	2	0	-1	1	1	-3	2	2	4	4	0	3	2	1	-1	
	I I															
1	2	0	-1	1	1	-3	2	2	4	4	0	3	2	1	-1	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	


```
void update(int v, int tl, int tr, int pos, int new_val) {
    //if we are in pos, update
    if (tl == tr) {
        t[v] = new_val;
    }
    else {
        int tm = (tl + tr) / 2;
        ///update child that contains the pos
        if (pos <= tm)
            update(v*2, tl, tm, pos, new_val);
        else
            update(v*2+1, tm+1, tr, pos, new_val);
        ///update node v
        t[v] = t[v*2] + t[v*2+1];
    }
}</pre>
```

¡Gracias!