Download from finelybook www.finelybook.com

you a *feature map*, which highlights the areas in an image that are most similar to the filter. During training, a CNN finds the most useful filters for its task, and it learns to combine them into more complex patterns (e.g., a cross is an area in an image where both the vertical filter and the horizontal filter are active).

Figure 13-5. Applying two different filters to get two feature maps

Stacking Multiple Feature Maps

Up to now, for simplicity, we have represented each convolutional layer as a thin 2D layer, but in reality it is composed of several feature maps of equal sizes, so it is more accurately represented in 3D (see Figure 13-6). Within one feature map, all neurons share the same parameters (weights and bias term), but different feature maps may have different parameters. A neuron's receptive field is the same as described earlier, but it extends across all the previous layers' feature maps. In short, a convolutional layer simultaneously applies multiple filters to its inputs, making it capable of detecting multiple features anywhere in its inputs.

The fact that all neurons in a feature map share the same parameters dramatically reduces the number of parameters in the model, but most importantly it means that once the CNN has learned to recognize a pattern in one location, it can recognize it in any other location. In contrast, once a regular DNN has learned to recognize a pattern in one location, it can recognize it only in that particular location.

Download from finelybook www.finelybook.com

Moreover, input images are also composed of multiple sublayers: one per *color chan-nel*. There are typically three: red, green, and blue (RGB). Grayscale images have just one channel, but some images may have much more—for example, satellite images that capture extra light frequencies (such as infrared).

Figure 13-6. Convolution layers with multiple feature maps, and images with three channels

Specifically, a neuron located in row i, column j of the feature map k in a given convolutional layer l is connected to the outputs of the neurons in the previous layer l-1, located in rows $i \times s_w$ to $i \times s_w + f_w - 1$ and columns $j \times s_h$ to $j \times s_h + f_h - 1$, across all feature maps (in layer l-1). Note that all neurons located in the same row i and column j but in different feature maps are connected to the outputs of the exact same neurons in the previous layer.

Equation 13-1 summarizes the preceding explanations in one big mathematical equation: it shows how to compute the output of a given neuron in a convolutional layer.

Download from finelybook www.finelybook.com

It is a bit ugly due to all the different indices, but all it does is calculate the weighted sum of all the inputs, plus the bias term.

Equation 13-1. Computing the output of a neuron in a convolutional layer

$$z_{i,j,k} = b_k + \sum_{u=1}^{f_h} \sum_{v=1}^{f_w} \sum_{k'=1}^{f_{n'}} x_{i',j',k'} \cdot w_{u,v,k',k} \quad \text{with } \begin{cases} i' = u \cdot s_h + f_h - 1 \\ j' = v \cdot s_w + f_w - 1 \end{cases}$$

- $z_{i,j,k}$ is the output of the neuron located in row i, column j in feature map k of the convolutional layer (layer l).
- As explained earlier, s_h and s_w are the vertical and horizontal strides, f_h and f_w are the height and width of the receptive field, and $f_{n'}$ is the number of feature maps in the previous layer (layer l-1).
- $x_{i',j',k'}$ is the output of the neuron located in layer l-1, row i', column j', feature map k' (or channel k' if the previous layer is the input layer).
- b_k is the bias term for feature map k (in layer l). You can think of it as a knob that tweaks the overall brightness of the feature map k.
- $w_{u,v,k',k}$ is the connection weight between any neuron in feature map k of the layer l and its input located at row u, column v (relative to the neuron's receptive field), and feature map k'.

TensorFlow Implementation

In TensorFlow, each input image is typically represented as a 3D tensor of shape [height, width, channels]. A mini-batch is represented as a 4D tensor of shape [mini-batch size, height, width, channels]. The weights of a convolutional layer are represented as a 4D tensor of shape $[f_n, f_w, f_n, f_n]$. The bias terms of a convolutional layer are simply represented as a 1D tensor of shape $[f_n]$.

Let's look at a simple example. The following code loads two sample images, using Scikit-Learn's load_sample_images() (which loads two color images, one of a Chinese temple, and the other of a flower). Then it creates two 7×7 filters (one with a vertical white line in the middle, and the other with a horizontal white line), and applies them to both images using a convolutional layer built using TensorFlow's conv2d() function (with zero padding and a stride of 2). Finally, it plots one of the resulting feature maps (similar to the top-right image in Figure 13-5).