

Multi-Robot Path Planning and Motion Coordination

Dr. Lynne E. Parker Professor and Associate Head

Dept. of Electrical Engineering & Computer Science University of Tennessee, Knoxville USA

leparker@utk.edu
http://web.eecs.utk.edu/~parker

Multi-Robot Motion Coordination

- Objective: enable robots to navigate collaboratively to achieve spatial positioning goals
- Issues studied:
 - Multi-robot path planning
 - Traffic control
 - Formation generation
 - Formation keeping
 - Target tracking
 - Target search
 - Multi-robot docking

Kumar (UPenn), Formations

Murphy (USF), Docking

Multi-Robot Path Planning – Problem Definition

- Given: *m* robots in *k*-dimensional workspace, each with starting and goal poses
- Determine path each robot should take reach its goal, while avoiding collisions other robots and obstacles
- Typical optimization criteria:
 - Minimized total path lengths
 - Minimized time to reach goals
 - Minimized energy to reach goals
- Unfortunately, this problem is PSPACE
 - Instead, opt for locally optimal portions of path planning problem

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Taxonomy of Path Planning Techniques

1) Coupled, centralized approaches:

- Plan directly in the combined configuration space of the entire robot team
- Requires computational time exponential in the dimension of the configuration space
- Thus, only applicable for small problems

2) Decoupled approaches:

- Can be centralized or distributed
- Divide problem into parts
 - E.g., plan each robot path separately, then coordinate
 - Or, separate path planning and velocity planning

Coupled, Centralized Approaches

- Consider team a composite robot system
- Apply classical single-robot path planning algorithms, e.g.:
 - Sample-based planning
 - Potential-field techniques
 - Combinatorial methods
- Single-robot path planning:

(from Prentice and Roy, MIT)

- In stationary environments: techniques such as graph searching are guaranteed to return optimal paths in polynomial time
- In dynamic environments: Problem is PSPACE-hard, and not solvable in polynomial time

Extending Problem to Multiple Robots

Techniques become exponential in the number of robots

- Thus, centralized techniques are impractical except for small problems
- Better: reduce size of search space
 - Common technique: limit motion of robots to lie on *roadmaps* in the environment

Example Roadmap Method #1: Super-graph Method (Svestka and Overmars, 1998)

Example Roadmap Method #2: Spanning Tree Method (Peasgood, et al., 2008)

Spanning tree for the graph representation

Original planning problem

Graph-based map

Example Roadmap Method #2: Spanning Tree Method (con't.) (Peasgood, et al., 2008)

Phase 1 Phase 2a Phase 2b Phase 3

Decoupled Approaches

- Trade off solution quality for efficiency by solving parts of the problem independently
- Most common:
 - Plan individual paths for robots
 - Then, plan to avoid collisions
- Decoupled techniques lose completeness:

Two Types of Decoupled Approaches

- Prioritized planning
 - Consider robots one at a time, in priority order
 - Plan for robot i by considering previous i –1 robots as moving obstacles
- Path coordination
 - Plan independent paths for each robot
 - Plan velocities to avoid collisions

Prioritized Planning Approach

- Priorities assigned to robots
 - Randomly
 - Determined from motion constraints (i.e., more constrained robots have higher priority)
- Extend configuration space to account for time
- Plan path for first robot using any single-robot path planning approach
- Path for successive robots treats higher-priority robots as moving obstacles

Path Coordination Approach

- Decouples problem into (1) path planning and (2) velocity planning
- First, generate individual robot paths independently, using any single-robot path planner
- Then, generate velocity profiles for each robot to ensure collisions avoided

(from Guo, Parker, 2002)

Multi-Robot Motion Coordination

- Lots of types of motion coordination:
 - Relative to other robots:
 - E.g., formations, flocking, aggregation, dispersion...
 - Relative to the environment:
 - E.g., search, foraging, coverage, exploration ...
 - Relative to external agents:
 - E.g., pursuit, predator-prey, target tracking ...
 - Relative to other robots and the environment:
 - E.g., containment, perimeter search ...
 - Relative to other robots, external agents, and the environment:
 - E.g., evasion, soccer ...

Multi-Robot Motion Coordination

- Lots of types of motion coordination:
 - Relative to other robots:
 - E.g., formations, flocking, aggregation, dispersion...
 - Relative to the environment:
 - E.g., search, foraging, coverage, exploration ...
 - Relative to external agents:
 - E.g., pursuit, predator-prey, target tracking ...
 - Relative to other robots and the environment:
 - E.g., containment, perimeter search ...
 - Relative to other robots, external agents, and the environment:
 - E.g., evasion, soccer ...

Following / Swarming / Flocking / Schooling

- Natural flocks consist of two balanced, opposing behaviors:
 - Desire to stay close to flock
 - Desire to avoid collisions with flock
- Why desire to stay close to flock?
 - In natural systems:
 - Protection from predators
 - Statistically improving survival of gene pool from predator attacks
 - Profit from a larger effective search pattern for food
 - Advantages for social and mating activities

Craig Reynolds (1987) Developed Boids

 "Flocks, Herds, and Schools: A Distributed Behavioral Model", Craig Reynolds, Computer Graphics, 21(4), July 1987, pgs. 25-34.

Simulated boid flock avoiding cylindrical obstacles

How do Boids work?

Separation: steer to avoid crowding local flockmates

Alignment: steer towards average heading of local flockmates

Cohesion: steer to move
Toward the average position
of local flockmates

Boids Movie "Stanley and Stella in Breaking the Ice"

http://odyssey3d.stores.yahoo.net/comanclascli2.html

Translating these Behaviors to Code on Robots

- Work of Mataric, 1994
- General Idea:
 - Use "local" control laws to generate desired "global" behavior
- The Robots:
 - 12" long
 - 4 wheels
 - Bump sensors around body
 - Radio system for:
 - Localization
 - Communication
 - Data collection
 - "Kin" recognition

The Nerd Herd: Mataric, MIT, 1994

The Nerd Herd Approach

- Fundamental principle: Define basis behaviors as general building blocks for synthesizing group behavior
- Set of basis behaviors proposed:
 - Avoidance
 - Save-wandering
 - Following
 - Aggregation
 - Dispersion
 - Homing
- Combine basis behaviors into higher-level group behaviors:
 - Flocking
 - Foraging

Safe-Wandering Algorithm

- Avoid-Kin:
 - Whenever an agent is within d_avoid
 - If the nearest agent is on the left
 - Turn right
 - Otherwise, turn left
- Avoid-Everything-Else
 - Whenever an obstacle is within d avoid
 - If obstacle is on right only, turn left
 - If obstacle is on left only, turn right
 - After 3 consecutive identical turns, backup and turn
 - If an obstacle is on both sides, stop and wait.
 - If an obstacle persists on both sides, turn randomly and back up
- Move-Around:
 - Otherwise move forward by d_forward, turn randomly

Following Algorithm

Follow:

- Whenever an agent is within d_follow
 - If an agent is on the right only, turn right
 - If an agent is on the left only, turn left

If sufficient robot density, safe_wandering + follow yield more complex behaviors:

e.g., osmotropotaxic behavior of ants: unidirectional lanes

Dispersion Algorithm

Dispersion:

- Whenever one or more agents are within d_disperse
 - Move away from Centroid_disperse

Aggregation Algorithm

Aggregate:

- Whenever nearest agent is outside d_aggregate
 - Turn toward the local centroid_aggregate, go.
- Otherwise, stop.

Homing Algorithm

Home:

- Whenever at home
 - Stop
- Otherwise, turn toward home, go.

Generating Flocking Through Behavior Combinations

- Flock:
 - Sum weighted outputs from Safe-Wander, Disperse,
 Aggregate, and Home

Movie of Nerd Herd (~1994)

More recent "swarm" robotics (2004)

- James McLurkin, MIT and iRobot
- Developed libraries of "swarm" behaviors, such as:
 - avoidManyRobots
 - disperseFromSource
 - disperseFromLeaves
 - disperseUniformly
 - computeAverageBearing
 - followTheLeader
 - navigateGradient
 - clusterIntoGroups
 - ...

For more information: "Stupid Robot Tricks: A Behavior-Based Distributed Algorithm Library for Programming Swarms of Robots, James McLurkin, Master's thesis, M.I.T., 2004.

McLurkin's Robot Swarms

 Approach to generating behaviors is similar to Mataric's, in principle

- Primary differences:
 - Algorithms more tuned to the SwarmBot
 - More exhaustively tested
 - Parameters explored,
 - More kinds of behaviors,
 - etc.

SwarmBots in Action

Motion Coordination: Formation-Keeping

- Objective:
 - Robots maintain specific formation while collectively moving along path
- Examples:
 - Column formation:

– Line formation:

Formations

Key Issues:

- What is desired formation?
- How do robots determine their desired position in the formation?
- How do robots determine their actual position in the formation?
- How do robots move to ensure that formation is maintained?
- What should robots do if there are obstacles?
- How do we evaluate robot formation performance?

Issue in Formation Keeping: Local vs. Global Control

Local control laws:

- No robot has all pertinent information
- Appealing because of their simplicity and potential to generate globally emergent functionality
- But, may be difficult to design to achieve desired group behavior

Global control laws:

- Centralized controller (or all robots) possess all pertinent information
- Generally allow more coherent cooperation
- But, usually increases inter-agent communication

Descriptions: Global Goals, Global Knowledge, Local Control

Global Goals:

- Specify overall mission the team must accomplish
- Typically imposed by centralized controller
- May be known at compile time, or only at run-time

Global Knowledge:

- Additional information needed to achieve global goals
- E.g., information on capabilities of other robots, on environment, etc.

Local Control:

- Based upon proximate environment of robot
- Derived from sensory feedback
- Enables reactive response to dynamic environmental changes

Tradeoffs between Global and Local Control

- Questions to be addressed:
 - How static is global knowledge?
 - How difficult is it to obtain reliable global knowledge?
 - How badly will performance degrade without use of global knowledge?
 - How difficult is it to use global knowledge?
 - How costly is it to violate global goals?
- In general:
 - The more unknown the global information is, the more dependence on local control

Demonstration of Tradeoffs in Formation-Keeping

Measure of performance: Cumulative formation error:

$$\sum_{t=0}^{t_{\text{max}}} \sum_{i \neq leader} d_i(t)$$
 where $d_i(t)$ = distance robot i is from ideal formation position at time t

- Strategies to investigate:
 - Local control alone
 - Local control + global goal
 - Local control + global goal + partial global knowledge
 - Local control + global goal + more complete global knowledge

Formation Keeping Objective

Strategy I: Local Control

- Group leader knows path waypoints
- Each robot assigned local leader + position offset from local leader

 As group leader moves, individual robots maintain relative position to local leaders

Results of Strategy I

Strategy II: Local Control + Global Goal

- Group leader knows path waypoints
- Each robot assigned global leader + position offset from global leader
- As group leader moves, individual robots maintain relative position to global leader

Results of Strategy II

Strategy III: Local Control + Global Goal + Partial Global Knowledge

- Group leader knows path waypoints
- Each robot assigned global leader + position offset from global leader
- Each robot knows next waypoint

 As group leader moves, individual robots maintain relative position to global leader

Results of Strategy III

Strategy IV: Local Control + Global Goal + More Complete Global Knowledge

- Group leader knows path waypoints
- Each robot assigned global leader + position offset from global leader
- Each robot knows current and next waypoints

 As group leader moves, individual robots maintain relative position to global leader

Results of Strategy IV

Time and Cumulative Formation Error Results

```
Time Required to Complete Mission

Strategy IV

Strategy III

Strategy II

Strategy I

O 10 20 30 40 50 Time
```


Strategy IV ***
Strategy III ***

Strategy II ******* **

Strategy I ** **

0 50 100 150 200 250 300 Error

Summary of this Formation-Keeping Control Case Study

- Important to achieve proper balance between local and global knowledge and goals
- Static global knowledge ==> easy to use as global control law
- Local knowledge ==> appropriate when can approximate global knowledge
- Local control information should be used to ground global knowledge in the current situation.

Another Case Study for Formation-Keeping: Balch & Arkin's Behavior-Based Control

Applications:

- Automated scouting (military)
- Search and rescue
- Agricultural coverge
- Security patrols

Approach:

- Motor schemas
- Fully integrated obstacle avoidance

Motor Schemas Used for Formation-Keeping

- Move-to-goal
- Avoid-static-obstacle
- Avoid-robot

Formation and Obstacle Avoidance

- Barriers -- choices for handling include:
 - Move as a unit around barrier
 - Divide into subgroupcs
- Choice depends upon relative strengths of behaviors

Balch's Formation Types and Position Determination

Formations:

Position Determination:

Balch's Formation Results

- For 90 degree turns:
 - Diamond formation best with unit-center-reference
 - Wedge, line formations best with leader-reference
- For obstacle-rich environments:
 - Column formation best with either unit-center or leader-reference
- Most cases:
 - Unit-center better than leader-center
 - Except:
 - If using human leader, not reasonable to expect to use unit-center
 - Unit-center requires transmitter and receiver for all robots, whereas leader-center only requires transmitter at leader plus receivers for all robots
 - Passive sensors are difficult to use for unit-center

Coordinating Multiple Robots Through Traffic Rules (Kato et al, Japan)

- Issues:
 - Collisions
 - Deadlocks
 - Congestion
- Possible approaches:
 - Communication
 - Local collision avoidance
 - Traffic rules

Typical Problem Situation for Traffic Rules

Traffic Rule Application System (TRAS)

- "Traffic Rule": imposes a certain level of order on mobile objects, such as mobile robots and people, and work environments
- Rules constructed by considering:
 - Work environment
 - Performance of mobile objects
 - Quantity of mobile objects
- Robots must know:
 - Current position
 - Current sensory information
 - Global map information

Traffic Rules

- Keep sufficient space in front
- Keep sufficient side space
- Maintain passage zone
- Intersection crossing:
 - Preference to right turn
 - Preference toward a right-side mobile object
 - Collision avoidance
- Deadlock avoidance:
 - Preference at intersections
 - Replan if route blocked

Control of Robots in Traffic Management

- 1. Plan shortest route to goal
- 2. Extract local maps from global map for route and intersections
- 3. Move along planned path
- 4. Determine sensor-detecting range re: traffic rules
- 5. Observe workspace, using sensors
- 6. Detect obstacles
- 7. Judge, according to traffic rules, whether collision will occur
- 8. Decide how to act
- 9. Move or stop
- 10. Return to step 2

Multi-Robot Motion Coordination

- Lots of types of motion coordination:
 - Relative to other robots:
 - E.g., formations, flocking, aggregation, dispersion...
 - Relative to the environment:
 - E.g., search, foraging, coverage, exploration ...
 - Relative to external agents:
 - E.g., pursuit, predator-prey, target tracking ...
 - Relative to other robots and the environment:
 - E.g., containment, perimeter search ...
 - Relative to other robots, external agents, and the environment:
 - E.g., evasion, soccer ...

Cooperative Tracking (CMOMMT)

Cooperative Multi-robot Observation of Multiple Moving Targets

Definition:

Given: S: 2-D bounded, enclosed spatial region

V: team of m robot vehicles, v_i , i = 1, 2, ..., m, with 360° FOV sensors

O(t): set of n targets, $o_i(t)$, j = 1, 2, ..., n, such that target $o_i(t)$ is in S at t

Define
$$m \times n$$
 matrix $B(t)$:

$$B(t) = [b_{ij}(t)]_{mxn}$$
 such that $b_{ij}(t) =$

Define $m \times n$ matrix B(t): $B(t) = [b_{ij}(t)]_{\text{mxn}} \text{ such that } b_{ij}(t) = \begin{cases} 1 \text{ if robot } v_i \text{ is observing target} \\ o_j(t) \text{ in } S \text{ at time } t \\ 0 \text{ otherwise} \end{cases}$

Goal: Maximize:
$$A = \sum_{t=1}^{T} \sum_{j=1}^{n} \frac{g(B(t),j)}{T}$$

where
$$g(B(t),j) = \begin{cases} 1 & \text{if there exists an } i \text{ such that } b_{ij}(t) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Motivation for Studying Cooperative Observation

- Automatic location/tracking of:
 - Other mobile robots
 - Items in a warehouse or factory that might move during search
 - People in a search/rescue effort
 - Adversarial targets in surveillance and reconnaissance
- Monitoring automated processes:
 - In assembly workcell
 - Verifying parts or subassembly configurations
- Medical applications:
 - Moving cameras to keep designated areas (e.g. particular tissue) in continuous view

Cooperative Observation Research Issues

- Physical, sensor-based tracking
- Prediction of object movements
- Sensor fusion across robots
- Multi-robot communication
- Selection of object to track
- Distributed navigation
- Achieving adequate terrain coverage

Many possible problem variations:

- Relative numbers and speeds of robots
- Limited FOV sensors
- Availability of communication
- Robots heterogeneous in sensing and movement capabilities

Cooperative Observation Approaches

- Art Gallery Theorems -- O'Rourke, 1987; Briggs, 1995
 Works for static sensor placements
- Searchlight Scheduling and Polygon Search -- Sugihara et al., 1990; Suzuki and Yamashita, 1992; Crass et al., 1995
 Addresses fixed sensor placements; often assume one searcher
- Visibility-Based Motion Planning -- Lavalle et al., 1997
 Focuses on single robots and targest
- Multi-target tracking and/or weapons assignment -- Bar-Shalom, 1978, 1990;
 - Blackman, 1986; Fox et al., 1994 Focuses on target trajectory derivation
- Multi-Robot Surveillance -- Everett et al., 1993;
 Durfee et al., 1987; Wesson et al., 1981
 Works for static sensor placements
- CMOMMT Parker, 1999
 Uses weighted local force vectors

Summary of Motion Coordination Research

- Many issues studied by the field:
 - Multi-robot path planning
 - Traffic control
 - Formation generation
 - Formation keeping
 - Target tracking
 - Target search
 - Multi-robot docking
- Approaches are usually specific to given application

Open Issues in Multi-Robot Path Planning and Motion Coordination

- Scaling to larger numbers of robots (i.e., thousands)
- Extensions to 3 dimensions (i.e., for aerial robots)
- Handling highly stochastic environments
- Dealing with dynamic, online replanning
- Creating provably correct interaction strategies
- Incorporating practical motion and sensing constraints
- Integrating onto physical robots

For more information on multi-robot path planning and motion coordination

 Lynne E. Parker, "Path planning and motion coordination in multiple mobile robot teams", in Encyclopedia of Complexity and System Science, Robert A. Meyers, Editor-in-Chief, Springer, 2009.

Multi-Robot Communication

Objective of communication: Enable robots to exchange state and environmental information with a minimum bandwidth requirement

Issues of particular importance:

- Information content
- Explicit vs. Implicit
- Local vs. Global
- Impact of bandwidth restrictions
- "Awareness"
- Medium: radio, IR, chemical scents, "breadcrumbs", etc.
- Symbol grounding

Balch and Arkin

Jung and Zelinsky

The Nature of Communication

One definition of communication:

"An interaction whereby a signal is generated by an *emitter* and 'interpreted' by a *receiver*"

- Emission and reception may be separated in space and/or time.
- Signaling and interpretation may innate or learned (usually combination of both)
- Cooperative communication examples:
 - Pheromones laid by ants foraging food
 - Time delayed, innate
 - Posturing by animals during conflicts/mating etc.
 - Separated in space, learnt with innate biases
 - Writing
 - Possibly separated in space & time, mostly learned with innate support and scaffolding

Multi-Robot Communication Taxonomy

Put forth by Dudek (1993) (this is part of larger multi-robot taxonomy):

- Communication range:
 - None
 - Near
 - Infinite
- Communication topology:
 - Broadcast
 - Addressed
 - Tree
 - Graph
- Communication bandwidth
 - High (i.e., communication is essentially "free")
 - Motion-related (i.e., motion and communication costs are about the same)
 - Low (i.e., communication costs are very high
 - Zero (i.e., no communication is available)

Explicit Communication

- Defined as those actions that have the express goal of transferring information from one robot to another
- Usually involves:
 - Intermittent requests
 - Status information
 - Updates of sensory or model information
- Need to determine:
 - What to communicate
 - When to communicate
 - How to communicate
 - To whom to communicate
- Communications medium has significant impact
 - Range
 - Bandwidth
 - Rate of failure

"Help, I'm stuck"

Implicit Communication

- Defined as communication "through the world"
- Two primary types:
 - Robot senses aspect of world that is a side-effect of another's actions
 - Robot senses another's actions

2. Awaiting truck knows it is OK to move into position

1. Truck leaves with full load

Three Key Considerations in Multi-Robot Communication

Is communication needed at all?

- Over what range should communication be permitted?
- What should the information content be?

Is Communication Needed At All?

- Keep in mind:
 - Communication is not free, and can be unreliable
 - In hostile environments, electronic countermeasures may be in effect
- Major roles of communication:
 - Synchronization of action: ensuring coordination in task ordering
 - Information exchange: sharing different information gained from different perspectives
 - Negotiations: who does what?
- Many studies have shown:
 - Significantly higher group performance using communication
 - However, communication does not always need to be explicit

Over What Range Should Communication Be Permitted?

- Tacit assumption: wider range is better
- But, not necessarily the case
- Studies have shown: higher communication range can lead to decreased societal performance
- One approach for balancing communication range and cost (Yoshida '95):
 - Probabilistic approach that minimizes communication delay time between robots
 - Balance out communication flow (input, processing capacity, and output) to obtain optimal range

What Should the Information Content Be?

- Research studies have shown:
 - Explicit communication improves performance significantly in tasks involving little implicit communication
 - Communication is not essential in tasks that include implicit communication
 - More complex communication strategies (e.g., goals) often offer little benefit over basic (state) information → "display" behavior is a rich communication method

Summary of Multi-Robot Communication

- Many types:
 - Implicit vs. explicit
 - Local vs. global
 - Iconic vs. symbolic
 - General "awareness"
- Proper approach to communication dependent upon application:
 - Communication availability
 - Range of communication
 - Bandwidth limitations
 - Language of robots
 - Etc.

