COMP5310: Principles of Data Science
W6: Hypothesis Testing and Evaluation

Presented by

Maryam Khanian
School of Computer Science

Based on slides by previous lecturers of this unit of study

Last week: Querying and summarising data

Objective

 To be able to extract a data set from a database, as well as to leverage on the SQL capabilities for in-database data summarisation and analysis.

Lecture

- Data gathering reprise.
- SQL querying.
- Summarising data with SQL.
- Statistic functions support in SQL.

Readings

Data Science from Scratch: Ch 24.

Exercises

- Data Loading.
- SQL Querying.
- Python DB Querying.
- Data Summarization using SQL.

TO-DO in W5

- Finish Ed Lessons Python modules.
- Finish Ed Lessons SQL modules.

Goal of today's lecture

High-level overview of statistical tests (not a deep dive)

 Provide some guidance on selecting appropriate statistical tests for evaluating a predictive model, and justifying the choice of tool, in Assignment Stage 2A

 Help you seek details of how to use a statistical method or tool in the data analytic process

TYPES OF STATISTICAL STUDIES

Types of statistical studies

Observational Study

- Simply observing what happens.
- Records information about subjects without applying any treatments to subjects (passive participation of researcher).

Experimental Study

 Records information about subjects while applying treatments to subjects and controlling study conditions to some degree (active participation of researcher).

Observational studies

Sample survey

- Provide information about a population based on a sample at a specific point in time.
- Only establish correlation not causality!

- Study 1: Tanning and Skin Cancer.
 - The observational study involved 1,500 people.
 - Selected a group of people who had skin cancer and another group of people who did not have skin cancer.
 - Asked all participants whether they used tanning beds.
 - Wanted to see if there was an association between tanning beds and skin cancer prevalence.

Observational studies

- Study 2: Average Computer Time vs Blood Pressure.
 - Enrol 100 individuals in the observational study.
 - Ask them about the average computer time they spent each day.
 - Measure their blood pressure.

Experimental studies

- Strong hypotheses, sample size for desired power and controlled data collection per specified protocols.
- Establish causality.
- Example: randomized control trials.
 - 100 subjects.
 - Factor: Average Computer Time.
 - Treatments:
 - Control group (computer time: max. 30 minutes).
 - Treatment group (computer time: 2 hours).
 - 50 subjects randomly assigned to each treatment.
 - Response: we measure the blood pressure for each group.

which statistical study looks more suitable to apply in your assignment

Experimental vs observational

- Main difference between observational studies and experiments
 - Most experiments use random assignment while observational studies do not.
- Observational studies typically only establish correlation but not causality

Experimental studies establish causality

STATISTICAL SIGNIFICANCE TESTING

Types of variables

Dependent variable

Measure of interest.

Independent variable

 Manipulated to observe the effect on dependent variable

Controlled variables

 Materials, measurements and methods that don't change.

http://edtech2.boisestate.edu/angelacovil/506/procedure.html

Research question

Research question (Q)

- Asks whether the independent variable has an effect.
- "If there is a change in the independent variable, will there also be a change in the dependent variable?"

Null hypothesis (HO)

- The assumption that there is no effect.
- "There is no change in the dependent variable when the independent variable changes."

Hypothesis testing

- We use hypothesis testing to specify whether to accept or reject a claim about a population depending on the evidence provided by a sample of data.
- A hypothesis test examines two opposing hypotheses about a population parameter (e.g. the mean):
 - The null hypothesis and the alternative hypothesis.
 - The null hypothesis represents our initial assumption about the parameter, and we collect evidence to possibly reject the null hypothesis in favour of the alternative hypothesis.
- Example: Determine whether the mean of a population differs significantly (this has a special meaning) from a specific value or from the mean of another population.

Testing reliability with p-values

Test results

_	Most tests calculate a p-value for
	measuring observation extremity, to
	measure whether or not the Null
	Hypothesis (H_0) is correct.

- Compare to significance level threshold α .
 - α is the probability of (wrongly)
 rejecting H₀ given that it is true (Type I error rate, i.e., false positive).
 - Commonly use α of 5% or 1%.

		Accept H ₀	Reject H ₀
Condition	H ₀ (H ₀ is True) - No difference	Right Decision	Type I error
Actual C	H ₁ (H ₀ is False) - Difference exists	Type II error	Right Decision

P-value	Indicates	Reject H ₀ ?
<α	Strong evidence against the null hypothesis	Yes
>α	Weak evidence against the null hypothesis	No
=α	Marginal	NA

General idea

- Suppose we have two normal random variables X and Y with the same known variance, we want to test whether they have the same mean
 - Sample 100 random numbers from X, and calculate its mean \bar{x}
 - Sample 100 random numbers from Y, and calculate its mean \bar{y}
 - Let μ_{χ} and μ_{γ} be the mean of X and Y, respectively
 - How do we conclude whether $\mu_{\chi}=\mu_{y}$ from the value of $\bar{\chi}-\bar{y}$
- null hypothesis: $\mu_{\chi} = \mu_{\gamma}$
- alternative hypothesis: $\mu_{\chi} \neq \mu_{\gamma}$
- P-value: probability of generating two sets of samples of 100 each such that the difference between their empirical means is at least $|\bar{x} \bar{y}|$, under the assumption that the null hypothesis is true

Standard normal distribution

Not every test result is correct

- α =0.05 will erroneously reject H₀ 5% of the time
- Perform enough tests and you will get a false result (p-hacking)
- Good science:
 - Determine hypotheses before looking at data
 - Perform hypothesis-agnostic data cleaning
 - Remember that p-values do not replace common sense
- https://sites.uw.edu/stlab/2016/03/09/the-arbitrary-magic-of-p-0-05/

One-side test

- Suppose we want to test whether $\mu_\chi > \mu_\gamma$
 - null hypothesis: $\mu_{\chi}=\mu_{y}$
 - alternative hypothesis: $\mu_{\chi} > \mu_{V}$
 - P-value: probability of generating two sets of samples of 100 each such that the difference between their empirical means is at least $\bar{x}-\bar{y}$, under the assumption that the null hypothesis is true
- P-value (in general):
 - P(observed or more extreme outcome | H0 true)

Standard normal distribution

TESTING WHICH APPROACH IS BETTER BETWEEN SUBJECTS

Scenario: Comparing visual layouts

Grid view

●●●○○ AT&T 중 5:08 PM 44% -+ sportsauthority.com STORES CART Q SEARCH SHOP CATEGORIES + SHOP BRANDS + Home > Athl... > Me... > Training 18 Total Items View: Sort: Top Seller: Filter Your Results > NIKE Men's Free Trainer 5.0 **Cross-Training** Shoes \$95.00 More Colors Available 会会会会会 Free Returns on Shoes!** ▲ Top

List view

https://www.nngroup.com/articles/image-vs-list-mobile-navigation/

Research question

Do users prefer grid view?

Data/Measurement: User ratings of layouts

respons

Page is easy to use.

Page gives good overview.

Page gives sufficient detail.

Data/Measurement: User ratings of layouts

Page is easy to use.

Page gives good overview.

Page gives sufficient detail.

Generate ratings data

- We assume different subject groups for each condition.
- Each subject sees one of the layouts and is asked to rate on a 5-point Likert scale how strongly he agree or disagree with the statement:
- Question to subjects: Page gives a good overview?
- 1=strongly agree; 2=agree; 3=neutral; 4=disagree; 5=strongly disagree.
 - **G_data** = [1, 3, 3, 2, 4, 2, 3, 3, 1, 5, 2, 3, 4, 2, 1, 3, 2, 2, 1, 3, 2, 3, 4, 2, 1, 3, 2, 2, 1, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 5]
 - L_data = [4, 5, 2, 4, 4, 3, 5, 4, 3, 5, 1, 4, 5, 3, 4, 4, 2, 3, 4, 5, 1, 4, 5, 3, 4, 4, 2, 3, 4, 5, 1, 4, 5, 3, 4, 4, 2, 3, 4, 5, 1, 4, 5, 3, 4, 4, 4, 5, 3, 4, 5, 4, 5, 2, 4, 4, 3, 5, 4, 3, 5]
- G_data corresponds to ratings from users that see the grid view.
- L_data corresponds to ratings from users that see the list view.

Visualise ratings data

Setup: Comparing two versions of a display

- Subjects are users of the display (or summary, interface, etc).
 - Dependent variable is user rating (or comprehension, etc).
 - Independent variable is the version of the display.
- Problem: Find out which version of a display is better.
- Question: Do users prefer Grid view?
- Null hypothesis (H₀): there is no difference between Grid view and List view.

Significance: Unpaired Student's t-test

- Tests the null hypothesis that two population means are equal.
- Assumptions:
 - The samples are independent.
 - Populations are normally distributed.
 - Standard deviations are equal (by default).
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.
 html#scipy.stats.ttest_ind

Significance: Mann-Whitney U test

- Nonparametric version of unpaired t-test.
 - Test the null hypothesis that the distribution underlying sample x is the same as the distribution underlying sample y.

– Assumptions:

- The samples are independent.

Note

- N should be at least 20.
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu
 neyu.html#scipy.stats.mannwhitneyu

Exercise: Comparing visual layouts

- Test for difference
 - Run the code cell under "Test whether grid view is preferred"
 - Do users prefer grid view?

TESTING WHETHER MULTI-GROUPS DIFFER

Scenario: Mobile use by generation

https://ihumanmedia.com/2015/09/14/gen-x-millennials-vs-baby-boomer-real-estate-baby-work-travel-politics-shopping/

Research question

Does mobile use differ across generations?

Data/Measurement: Survey of mobile use

- May be collected by survey or user data.
- Dependent variable:
 - Number of texts per day.
- Independent variable:
 - Generation {B,G,M}.

Texting survey

1. What year were you born?

2. How many texts do you send per day?

Significance: Analysis of variance (ANOVA)

 Tests the null hypothesis two or more groups have the same population mean.

– Assumptions:

- The samples are independent.
- Populations are normally distributed.
- Standard deviations are equal.
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway
 y.html#scipy.stats.f_oneway

Significance: Kruskall-Wallis H-test

- Nonparametric version of ANOVA.
 - Test the null hypothesis that the population median of all of the groups are equal

– Assumptions:

- Samples are independent.

- Note:

- Not recommended for samples smaller than 5.
- Not as statistically powerful as ANOVA.
- Both ANOVA and Kruskall-Wallis H-test are extensions of the Unpaired Student's t-test and Mann-Whitney test used to compare the means of more than two populations.
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.ht
 ml#scipy.stats.kruskal

Setup: Comparing behaviour across groups

- Subjects are rows of data.
 - Dependent variable is number of texts per day.
 - Independent variable is generation {B,G,M}.
- Q: Is there any difference between groups?
- H₀: Group means (or medians, for nonparametric methods) are the same

Generate generation data

- Imagine we conducted a survey of 200 baby boomers (born 1945-1960),
 200 generation Xers (born 1961-1980) and 200 millennials (born 1981-1995).
- For the purposes of this exercise, let's generate some simulated samples. We assume:
 - Baby Boomers send 5 texts per day on average with standard deviation 2.
 - GenXers send 12 texts per day on average with standard deviation 3.
 - Millennials send 20 texts per day on average with standard deviation 5.

Visualise generation data

Exercise: Comparing mobile behaviour

- Test for difference
 - Run the code cell under "Testing for differences"
 - Does the data satisfy ANOVA assumptions?

TESTING WHICH APPROACH IS BETTER WITHIN SUBJECTS

Example scenario: Comparing classifiers

http://playground.tensorflow.org/

Research question

Does my new model perform better?

Task: Spam/ham detection

- Let's assume our classifiers predict whether an email is:
 - 1: spam.
 - 0: ham.
- Features are words, e.g.:
 - .P.a.Y.p.a.l, bitcoin_up, iphone.14.Pro, winner, Settlement4U.

Measurement: Model evaluation

- Need to measure accuracy of system output S.
- Compare to gold-standard labelling G.
- Define evaluation measure: score(S, G).
- https://scikit-learn.org/stable/modules/model_evaluation.html

Measurement: Accuracy, precision, recall, f1

Model prediction

	Spam (s=1)	Ham (s=0)
Spam (g=1)	TP (true positives)	FN (false negatives)
Ham (g=0)	(false positives)	TN (true negatives)

 Accuracy: percentage of correct over all instances.

 Precision: percentage of correct system predictions.

$$-$$
 TP $/$ (TP+FP)

Recall: percentage of correct gold labels.

$$-$$
 TP $/$ (TP+FN)

 F1: Harmonic mean of Precision and Recall.

$$-$$
 2PR $/$ (P+R)

Confusion matrix for more than two classes

E.g. iris data classification - confusion matrix:

	Setosa +	Versicolor-	Virginica-
Setosa+	50 tp	0 <u>fn</u>	0 <u>fn</u>
Versicolor-	0 fp	44	6
Virginica-	0 <u>fp</u>	3	47

accuracy =?

accuracy =
 (50+44+47)/(50+0+0+0+44+6+0+3+47)
 =141/150 =94%

Evaluating classifier accuracy: Holdout & cross-validation methods

Holdout method

- Splits the data randomly into two independent sets.
 - Training set (e.g., 2/3) for model construction.
 - Test set (e.g., 1/3) for accuracy estimation.
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained.

Cross-validation (k-fold, where k = 10 is most popular)

- Randomly partition the data into k mutually exclusive subsets, each approximately equal size.
- Leave-One-Out is a particular form of cross-validation:
 - k folds where k = # of tuples, for small sized data.

Data: Cross validation

Final Accuracy = Average(Round 1, Round 2, ...)

https://chrisjmccormick.wordpress.com/2013/07/31/k-fold-cross-validation-with-matlab-code/

Significance: Paired Student's t-test

Tests the null hypothesis that two population means are equal.

- Assumptions:

- The samples are paired (e.g. before and after a treatment).
- Populations are normally distributed.
- Standard deviations are equal.
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.h
 tml#scipy.stats.ttest_rel

Significance: Paired tests for non-parametric data

- Nonparametric version of paired t-test.
- Assumptions:
 - The samples are paired.
- Note:
 - Often used for ordinal data, e.g., Likert ratings.
 - N should be large, e.g., ≥ 20 .
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.
 html#scipy.stats.wilcoxon

Generate gold and classifier labellings

- We generate 10,000 gold labels.
 - Marking approximately 20% as spam (1) based on a random number generator and the rest as ham (0).
 - 0: 8000 and 1: 2000

The University of Syd

- System 1 incorrectly marks 5% of ham as spam and fails to detect 20% of actual spam.
- System 2 incorrectly marks 10% of ham as spam and fails to detect 10% of actual spam.

System 1		PREDICTED		Santana O		PREDICTED		
		1	0	System 2		1	0	
UAL	1	1600 (TP)	400 (FN)	TUAL	1	1800	200	
P ACT	0	400 (FP)	7600 (TN)	ACT	0	800	7200	51

Setup: Comparing classifiers

- Subjects correspond to cross-validation folds.
 - Dependent variable is some measure of accuracy (precision, recall, f1, etc).
 - Independent variable is the algorithm, feature set, etc.
- Q: Is my shiny, new model better?
- H_0 : Accuracy is not better for the new model.

Exercise: Comparing models

Generate data

- Run the code cell under "Generate gold and classifier labelling"
- Run the code cell under "Split data into folds"

Calculate accuracy

- Run the code cell under "Calculate classifier accuracy"
- Run the code cell under "Calculate scores across folds"

Test for differences

- Run the code cell under "Compute significance for sys1 and sys2"
- How can we manage reliability?

REVIEW

Tips and tricks

- Statistical hypothesis testing ensures results are reliable.
- Experimental design includes:
 - Formulating a research question and null hypothesis.
 - Designing and running experiments.
 - Analysing results using appropriate statistics.
- Use textbooks and documentation to find the right stats.
- Sample representatively; Report p-value; Don't hack p-value.
- Report precision, recall, f-score and significance.

Additional reading (not examinable)

Some great online resources:

- Hypothesis testing, power, sample sizes
 - https://online.stat.psu.edu/stat415/
- What does it all even mean?
 - https://plato.stanford.edu/entries/statistics/