# Chapter 7: Microprogrammed Control

### **Control Unit Implementation**

#### Hardwired



#### Microprogrammed



### Microprogrammed Control Unit

- Control signals
  - Group of bits used to select paths in multiplexers, decoders, arithmetic logic units
- Control variables
  - Binary variables specify microoperations
    - Certain microoperations initiated while others idle
- Control word
  - String of 1's and 0's represent control variables

### Microprogrammed Control Unit

- Control memory
  - Memory contains control words
- Microinstructions
  - Control words stored in control memory
  - Specify control signals for execution of microoperations
- Microprogram
  - Sequence of microinstructions

### **Control Memory**

- Read-only memory (ROM)
- Content of word in ROM at given address specifies microinstruction
- Each computer instruction initiates series of microinstructions (microprogram) in control memory
- These microinstructions generate microoperations to
  - Fetch instruction from main memory
  - Evaluate effective address
  - Execute operation specified by instruction
  - Return control to fetch phase for next instruction



# Microprogrammed Control Organization



- Control memory
  - Contains microprograms (set of microinstructions)
  - Microinstruction contains
    - · Bits initiate microoperations
    - Bits determine address of next microinstruction
- Control address register (CAR)
  - Specifies address of next microinstruction

# Microprogrammed Control Organization

- Next address generator (microprogram sequencer)
  - Determines address sequence for control memory
- Microprogram sequencer functions
  - Increment CAR by one
  - Transfer external address into CAR
  - Load initial address into CAR to start control operations

# Microprogrammed Control Organization

- Control data register (CDR)- or pipeline register
  - Holds microinstruction read from control memory
  - Allows execution of microoperations specified by control word simultaneously with generation of next microinstruction
- Control unit can operate without CDR



### Microprogram Routines

- Routine
  - Group of microinstructions stored in control memory
- Each computer instruction has its own microprogram routine to generate microoperations that execute the instruction

### Mapping of Instruction

- Each computer instruction has its own microprogram routine stored in a given location of the control memory
- Mapping
  - Transformation from instruction code bits to address in control memory where routine is located

### Microprogram Routines

#### Subroutine

 Sequence of microinstructions used by other routines to accomplish particular task

#### Example

- Subroutine to generate effective address of operand for memory reference instruction
- Subroutine register (SBR)
  - Stores return address during subroutine call

## Address Sequencing

- Address sequencing capabilities required in control unit
  - Incrementing CAR
  - Unconditional or conditional branch, depending on status bit conditions
  - Mapping from bits of instruction to address for control memory
  - Facility for subroutine call and return

## Address Sequencing



cpe 252: Computer Organization

### **Conditional Branching**

- Branching from one routine to another depends on status bit conditions
- Status bits provide parameter info such as
  - Carry-out of adder
  - Sign bit of number
  - Mode bits of instruction
- Info in status bits can be tested and actions initiated based on their conditions: 1 or 0
- Unconditional branch
  - Fix value of status bit to 1

### Mapping of Instruction

- Example
  - Mapping 4-bit operation code to 7-bit address



## Microprogram Example

Computer Configuration



### Microprogram Example

#### **Computer instruction format**



#### Four computer instructions

|   | Symbol          | OP-code    | Description             |
|---|-----------------|------------|-------------------------|
| I | ADD 0000        | AC ←NAC    | + M[EA]                 |
| ı | BRANCH (        | 001 if (AC | < 0) then (PC ←🛭 EA)    |
| ı | STORE 001       | ) M[EA] ←[ | AC                      |
| l | <b>EXCHANGE</b> | 0011 A     | C ←⊠ M[EA], M[EA] ←⊠ AC |

EA is the effective address

#### **Microinstruction Format**

| _ | 3  | 3  | 3  | 2  | 2  | 7  |
|---|----|----|----|----|----|----|
| ĺ | F1 | F2 | F3 | CD | BR | AD |

F1, F2, F3: Microoperation fields

CD: Condition for branching

BR: Branch field AD: Address field

#### Microinstruction Fields

| F1 N | licrooperation Symbol |
|------|-----------------------|
| 000  | None NOP              |
| 001  | AC Ø AC + DR ADD      |
| 010  | AC 0 CLRAC            |
| 011  | AC Ø AC + 1 INCAC     |
| 100  | AC N DR DRTAC         |
| 101  | AR Ø DR(0-10) DRTAR   |
| 110  | AR N PC PCTAR         |
| 111  | M[AR] ĭ DR WRITE      |
|      |                       |

| F2 N | licrooperation Symbol |
|------|-----------------------|
| 000  | None NOP              |
| 001  | AC Ø AC - DR SUB      |
| 010  | AC AC DR OR           |
| 011  | AC AC DR AND          |
| 100  | DR ⋈ M[AR] READ       |
| 101  | DR⊠AC ACTDR           |
| 110  | DR⊠DR+1 INCDR         |
| 111  | DR(0-10) BPC PCTDR    |
|      |                       |

| F3 N | licrooperation | Symbol |
|------|----------------|--------|
| 000  | None NOP       |        |
| 001  | AC 🛭 AC 🖺 DR   | XOR    |
| 010  | AC AC' CC      | M      |
| 011  | AC 🛭 shl AC    | SHL    |
| 100  | AC 🛭 shr AC    | SHR    |
| 101  | PC 8 PC + 1    | INCPC  |
| 110  | PC AR AR       | TPC    |
| 111  | Reserved       |        |
|      |                |        |

#### Microinstruction Fields

| CD Conditio |        |            |            |
|-------------|--------|------------|------------|
| 00 Always = | :1U Un | conditiona | l branch   |
| 01 DR(15) I |        |            | <b>bit</b> |
| 10 A¢(15) S |        |            |            |
| 11 AC = 0 Z | Zero v | alue in AC |            |

| BR | Symbol    | Function                                                 |
|----|-----------|----------------------------------------------------------|
| 00 | JMP       | CAR ← AD if condition = 1                                |
|    | CAR ← CAI | R+1 if condition = 0                                     |
| 01 | CALL      | CAR ← AD, SBR ← CAR + 1 if condition = 1                 |
|    | CAR ← CAR | + 1 if condition = 0                                     |
| 10 | RET       | CAR ← SBR (Return from subroutine)                       |
| 11 | MAP       | $CAR(2-5) \leftarrow DR(11-14), CAR(0,1,6) \leftarrow 0$ |
|    |           |                                                          |
|    |           |                                                          |

### Symbolic Microinstruction

- Sample Format Label: Micro-ops CD BR AD
- Label may be empty or may specify symbolic address terminated with colon
- Micro-ops consists of 1, 2, or 3 symbols separated by commas
- CD one of {U, I, S, Z}
  - U: Unconditional Branch
  - I: Indirect address bit
  - S: Sign of AC
  - Z: Zero value in AC
- BR one of {JMP, CALL, RET, MAP}
- AD one of {Symbolic address, NEXT, empty} cpe 252: Computer Organization

#### Fetch Routine

#### Fetch routine

- Read instruction from memory
- Decode instruction and update PC

#### Microinstructions for fetch routine:

```
AR ← \( \text{MPC} \)
DR ← \( \text{M}[AR], PC ← PC + 1 \)
AR ← DR(0-10), CAR(2-5) ← DR(11-14), CAR(0,1,6) ← 0
```

#### Symbolic microprogram for fetch routine:

|        | ORG 64                 |
|--------|------------------------|
| FETCH: | PCTAR U JMP NEXT       |
|        | READ, INCPC U JMP NEXT |
|        | DRTAR U MAP            |

#### Binary microporgram for fetch routine:

| Binary<br>address | F1  | F2  | F3  | CD | BR | AD      |
|-------------------|-----|-----|-----|----|----|---------|
| 1000000           | 110 | 000 | 000 | 00 | 00 | 1000001 |
| 1000001           | 000 | 100 | 101 | 00 | 00 | 1000010 |
| 1000010           | 101 | 000 | 000 | 00 | 11 | 0000000 |

## Symbolic Microprogram

Control memory: 128 20-bit words

• First 64 words: Routines for 16 machine instructions

• Last 64 words: Used for other purpose (e.g., fetch routine and other subroutines)

Mapping: OP-code XXXX into 0XXXX00, first address for 16 routines are

0(0 0000 00), 4(0 0001 00), 8, 12, 16, 20, ..., 60

#### Partial Symbolic Microprogram

| Label     | Microopo     | CD B       | R A       | <u> </u>          |
|-----------|--------------|------------|-----------|-------------------|
| Label     | Microops     | СО В       | K A       | <u> </u>          |
| 400       | ORG 0        |            | 0.4.1.1   | INDRAT            |
| ADD:      | NOP          |            | CALL      | INDRCT            |
|           | READ         | U          | JMP       | NEXT              |
|           | ADD          | U          | JMP       | FETCH             |
|           | ORG 4        |            |           |                   |
| BRANCH:   | NOP          | c          | IMD       | OVER              |
| BRANCH:   |              | S          | JMP       | ~                 |
| OV/ED.    | NOP          | Ų          | JMP       | FETCH             |
| OVER:     | NOP          | !          | CALL      | INDRCT            |
|           | ARTPC        | U          | JMP       | FETCH             |
|           | ORG 8        |            |           |                   |
| STORE:    | NOP          | 1          | CALL      | INDRCT            |
| STORL.    | ACTDR        | Ú          | JMP       | NEXT              |
|           | WRITE        | Ü          | JMP       | FETCH             |
|           | WKIIL        | U          | JIVIP     | FEIGH             |
|           | ORG 12       |            |           |                   |
| EXCHANGE: | NOP          | Ī          | CALL      | INDRCT            |
|           | READ         | Ü          | JMP       | NEXT              |
|           | ACTDR, DRTAC | Ü          | JMP       | NEXT              |
|           | WRITE        | Ŭ          | JMP       | FETCH             |
|           |              | _          |           |                   |
|           | ORG 64       |            |           |                   |
| FETCH:    | PCTAR        | U          | JMP       | NEXT              |
|           | READ. INCPC  | U          | JMP       | NEXT              |
|           | DRTAR cne 2! | 52. Column | ut MAP ra | anization         |
| INDRCT:   | READ         |            | JMP 9     | anization<br>NEXT |
|           | DRTAR        | U          | RET       |                   |

## Binary Microprogram

|     | Address Binary Microinstruction |     |      |      |      |        |        |             |     |     |     |     |     |     |      |    |      |         |     |   |    |
|-----|---------------------------------|-----|------|------|------|--------|--------|-------------|-----|-----|-----|-----|-----|-----|------|----|------|---------|-----|---|----|
|     | Micro                           | Rοι | ıtin | е    | Dec  | imal I | 3inary |             | F1  |     | F2  |     | F3  |     | CD   |    | BR   | AD      | ١   |   |    |
| AD  | D                               | 0   | (    | 0000 | 000  | 000    | 000    |             | 000 |     | 01  | 0,  | 1   | 100 | 0011 |    |      |         |     |   |    |
|     |                                 |     |      | 1    | 00   | 000001 |        | 000         |     | 100 |     | 000 | 00  |     | 00   |    | 000  | 0010    |     |   |    |
|     |                                 |     |      | 2    | 00   | 000010 |        | 001         |     | 000 |     | 000 | 00  |     | 00   |    | 100  | 0000    |     |   |    |
|     |                                 |     |      | 3    | 00   | 000011 |        | 000         |     | 000 |     | 000 |     | 00  | (    | 00 |      | 1000000 | )   |   |    |
| BR  | ANCH                            |     | 4    | 0    | 0001 | 00     | 000    |             | 000 |     | 000 | 1   | 10  |     | 00   | (  | 0000 | )110    |     |   |    |
|     |                                 |     |      | 5    | 00   | 000101 |        | 000         |     | 000 |     | 000 |     | 00  | (    | 00 |      | 1000000 | )   |   |    |
|     |                                 |     |      | 6    | 00   | 000110 |        | 000         |     | 000 |     | 000 |     | 01  | (    | 01 |      | 1000011 |     |   |    |
|     |                                 |     |      | 7    | 00   | 000111 |        | 000         |     | 000 |     | 110 |     | 00  |      | 00 |      | 1000000 | )   |   |    |
|     | STORE                           |     | 8    | 0    | 0010 | 00     | 000    |             | 000 |     | 000 |     | 01  | 1   | 01   | •  | 1000 | 011     |     |   |    |
|     |                                 |     |      | 9    | 00   | 001001 |        | 000         |     | 101 |     | 000 |     | 00  |      | 00 |      | 0001010 |     |   |    |
|     |                                 |     |      |      | 10   | 0001   |        |             | 111 |     | 00  |     | 00  |     | 00   |    | 00   | 1000    |     |   |    |
|     |                                 |     |      |      | 11   | 0001   |        |             | 000 |     | 00  |     | 00  |     | 00   |    | 00   | 1000    | 000 |   |    |
| EX  | CHANG                           | E   |      | 12   |      | 01100  |        | 000         |     | 000 |     | 000 |     | 01  |      | 1  |      | 000011  |     |   |    |
|     |                                 |     |      |      | 13   | 0001   |        |             | 001 |     | 00  |     | 00  |     | 00   |    | 00   | 0001    |     |   |    |
|     |                                 |     |      |      | 14   | 0001   |        |             | 100 |     | 01  |     | 00  |     | 00   |    | 00   | 0001    |     |   |    |
|     |                                 |     |      |      | 15   | 0001   | 111    |             | 111 | 0   | 00  | C   | 000 |     | 00   |    | 00   | 1000    | 000 |   |    |
|     |                                 |     |      |      |      |        |        |             |     |     |     |     |     |     | _    | _  |      |         |     |   |    |
| FE  | TCH                             |     |      | 64   |      | 00000  |        | 110         |     | 000 |     | 000 |     | 00  |      | 0  |      | 000001  |     |   |    |
|     |                                 |     |      |      | 65   | 1000   |        |             | 000 |     | 00  |     | 01  |     | 00   |    | 00   | 1000    |     |   |    |
|     | L                               |     |      |      | 66   | 1000   |        |             | 101 |     | 00  |     | 000 |     | 00   | _  | 11   | 0000    | 000 |   |    |
| INI | PRCT                            |     |      | 67   |      | 00011  |        | 000         |     | 100 |     | 000 |     | 00  |      | 0  |      | 000100  |     |   |    |
|     |                                 |     |      |      | 68   | 1000   | 100    | 1           | 101 | 0   | 00  | C   | 000 |     | 00   |    | 10   | 0000    | UUU |   |    |
|     |                                 |     |      |      |      |        |        | <u>050.</u> | Com |     |     |     | 4:  |     |      |    |      |         |     | _ | :3 |

### Design of Control Unit



cpe 252: Computer Organization

### Microprogram Sequencer

