Exercises 7, 11, 13, 14, 16, 30, 31 (expect (e)), pp. 256-260.

Problem 7. Let R be a commutative ring with 1. Prove that the principal ideal generated by x in the polynomial ring R[x] is a prime ideal if and only if R is an integral domain. Prove that (x) is a maximal ideal if and only if R is a field.

Proof. TODO

Problem 11. Assume R is commutative. Prove that if P is a prime ideal of R and P contains no zero divisors then R is an integral domain.

Proof. TODO

Problem 13. Let $\varphi: R \to S$ be a homomorphism of commutative rings.

- (a) Prove that if P is a prime ideal of S then either $\varphi^{-1}(P) = R$ or $\varphi^{-1}(P)$ is a prime ideal of R. Apply this to the special case when R is a subring of S then $P \cap R$ is either R or a prime ideal of R.
- (b) Prove that if M is a maximal ideal of S and φ is surjective then $\varphi^{-1}(M)$ is a maximal ideal of R. Give an example to show that this need not be the case if φ is not surjective.

Proof. TODO

Problem 14. TODO

Proof. TODO

Problem 16. Let $x^2 - 16$ be an element of the polynomial ring $E = \mathbb{Z}[x]$ and use the bar notation to denote passage to the quotient ring $\mathbb{Z}[x]/(x^3 - 2x + 1)$. Let $p(x) = 2x^7 - 7x^5 + 4x^3 - 9x + 1$ and let $q(x) = (x - 1)^4$.

- (a) Express each of the following elements of \overline{E} in the form $\overline{f(x)}$ for some polynomial f(x) of degree ≤ 2 : $\overline{p(x)}, \overline{q(x)}, \overline{p(x) + q(x)}$, and $\overline{p(x)}, \overline{q(x)}$.
- (b) Prove that \overline{E} is not an integral domain.
- (c) Prove that \overline{x} is a unit in \overline{E} .

Proof. $\overline{\mathbf{TODO}}$

Page 1

Problem 30. Let I be an ideal of the commutative ring R and define

rad
$$I = \{ r \in R \mid r^n \in I \text{ for some } n \in \mathbb{Z}^+ \}$$

called the *nilradical* of I. Prove that rad I is an ideal containing I and that $(\operatorname{rad} I)/I$ is the nilradical of the quotient ring R/I, i.e. $(\operatorname{rad} I/I) = \Re(R/I)$.

Proof. TODO

Problem 31. An ideal I of the commutative ring R is called a radical ideal if rad I = I.

- (a) Prove that every prime ideal of R is a radical ideal.
- (b) Let n > 1 be an integer. Prove that 0 is a radical ideal in $\mathbb{Z}/n\mathbb{Z}$ if and only if n is a product of distinct primes to the first power (i.e. n is square free). Deduce that (n) is a radical ideal of \mathbb{Z} if and only if n is a product of distinct primes in \mathbb{Z} .

Proof. TODO

Exercises 1, 2, 5 pp. 267-269.

Problem 1. An element $e \in R$ is called an *idempotent* if $e^2 = e$. Assume that e is an idempotent in R and er = re for all $r \in R$. Prove that Re and R(1-e) and two-sided ideals of R and that $R \cong Re \times R(1-e)$. Show that e and 1-e are identities for the subrings Re and R(1-e) respectively.

Proof. TODO

Problem 2. Let R be a finite Boolean ring with identity $1 \neq 0$. Prove that $R \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Proof. TODO

Problem 5. Let n_1, n_2, \dots, n_k be integers which are relatively prime in pairs: $(n_i, n_j = 1 \text{ for all } i \neq j.$

(a) Show that the Chinese Remainder Theorem implies that for any $a_1, \dots, a_k \in \mathbb{Z}$ there is a solution $x \in \mathbb{Z}$ to the simultaneous congruences

 $x \equiv a_1 \mod n_1$, $x \equiv a_2 \mod n_2$, \cdots , $x \equiv a_k \mod n_k$

and that the solution x is unique mod $n = n_1 n_2 \cdots n_k$.

Page 2

(b) Let $n'_i = n/n_i$ and t_i be the inverse of $n'_i \mod n_i$. Prove that the solution x in (a) is given by

$$x = a_1 t_1 n'_1 + a_2 t_2 n'_2 + \dots + a_k t_k n'_k \mod n.$$

(c) Solve the simultaneous system of congruences

$$x \equiv 1 \mod 8$$
, $x \equiv 2 \mod 25$, $x \equiv 3 \mod 81$

and

$$y \equiv 5 \mod 8$$
, $y \equiv 12 \mod 25$, $y \equiv 47 \mod 81$.

Proof. TODO

More to be added...? **TODO**