1118c014.m Temperature Monitor GS70 (btmonitor_ssdhb)

Cell Specification Document Ver. 0.1

Note: Any functions and/or specifications not explicitly listed in this document are not guaranteed to be implemented in the circuit.

	Originator	Approver	
Name	Kartik Shenoy	Rajesh Yadav	
Date	27 th Apr 2011		

TI - Proprietary Information -

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

DO NOT COPY

PAGE: 1/8

HISTORY

Version	Date	Author	Notes
Ver. 0.1	27 th Apr 2011	Kartik Shenoy	1

NOTES:

1. Creation.

SUMMARY

1	Re	ference Documents	4
2	Gle	ossary	4
3	Sc	ope	4
4	Pu	rpose for Development	4
5	Op	erational Requirements	5
	5.1	Truth table	5
		Functionality	5
6	Аp	pendix	6
	6.1	Schematic	6
	6.2	Ideality factor (n) as a function of PVT and bias current	7
	6.3	Effect of I-R drop on temperature sense diode performance	8

TI - Proprietary Information -

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

DO NOT COPY

PAGE: 3/8

1 Reference Documents

- http://www.india.ti.com/~gateway/products/gs70/docs/diffio/tmonitor_integration.pdf
- Maxim-IC MAX1617A Data Sheet http://pdfserv.maxim-ic.com/en/ds/MAX1617A.pdf

2 Glossary

3 Scope

The purpose of this document is to specify new macros needed for the GS70 library.

Any functions or specs not specifically listed in this document are not guaranteed to be in the circuit.

4 Purpose for Development

Several customers are using external chips to monitor and control the temperature in their systems. These designs require that ASICs have a diode that is accessible to their monitoring chips. One such monitoring chip is listed above (Maxim). TI needs to provide a macro that contains a diode designed to work with these specific vendors (and their families of monitoring chips) as well as others that might follow similar methods.

TI - Proprietary Information -

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

DO NOT COPY

PAGE: 4/8

5 Operational Requirements

5.1 Truth table

N/A

5.2 Functionality

The macro is a PNP bipolar transistor. The padp port is the emitter (anode) and the padn port is the base (cathode). The collector terminal of the PNP is internally connected to the substrate (vss). A 1.8V supply is required to provide ESD protection for the input pads. A 3.3V/2.5V/1.5V/1V supplies may also be used, but care should be taken to ensure pad voltage doesn't exceed the supply voltage, as it could introduce a measurement error due to forward biasing of the ESD diodes in normal operation.

There are four varieties of the temperature monitor macro available to accommodate a variety of placement options:

btmonitor_ssdhb: ssd form factor IO (placed in the IO periphery)

5.2.1 Operational conditions and characteristics

Item #	Subject:	Requirement:
1	Process	1118C014.M (GS70)
2	Nominal IO power supply	3.3V/2.5V/1.8 V (recommended) / 1.5 V/1V
3	btmonitorg: Form Factor/ Size	300um x 80um (Y*X)
4	Vf @ 1uA	>0.25v
5	Vf @ 100uA	<0.95v
6	Input current (max)	+/-600uA ¹
7	Maximum padn/padp voltage	3.6V/2.8V/2V/1.65V/1.1V depending on the supply voltage.
8	Fail safe / non-fail safe (yes/no)	Non-failsafe
9	BIDI Requirements	None
10	Load [capacitive (pF) or transmission line (ohms)]	None

1 – DC EM limitation.

TI - Proprietary Information -

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

DO NOT COPY

PAGE: 5/8

5.2.2 Operating Conditions

Item #	Subject:	Requirement:
1	Temperature range	-40° C to 125° C
2	Core Supply range (max/nom/min)	N/A
3	IO Supply Range (max/nom/min)	1.98V/1.8V/1.62V (recommended) 1.65V/1.5V/1.35V 2.75V/2.5V/2.35V 3.63V/3.3V/3V 1.1V/1V/0.9V
4	Load Description	N/A

6 Appendix

6.1 Schematic

Note: btmonitor_ssdhb are IO macros with 2 PAD connections: padn and padp

TI - Proprietary Information -

PAGE: 6/8

Strictly Private

PRELIMINARY information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

documents

UNDER NON DISCLOSURE AGREEMENT

DO NOT COPY

6.2 Ideality factor (n) as a function of PVT and bias current

IL=10uA, IH=100uA

Model s	Actual Temp.[°C]	VBE @IL= 10uA	VBE @IH= 100uA	• VBE[mV]	Ideality (n)	Temp. meas[°C]	Temp. error[°C]
Weak	25	0.5958	0.6580	62.209	1.051	37.6	12.6
Nominal Nominal	25	0.5659	0.6265	60.556	1.023	29.3	4.3
Strong Strong	25	0.5330	0.5918	58.766	0.992	20.4	-4.6

IL=1uA, IH=10uA

Models	Actual Temp.[°C]	VBE @IL= 1uA	VBE @IH= 10uA	VBE[mV]	Ideality (n)	Temp. meas[°C]	Temp. error[°C]
Weak	25	0.5338	0.5958	62.012	1.047	36.6	11.6
Nominal Nominal	25	0.5056	0.5659	60.317	1.019	28.2	3.2
Strong	25	0.4745	0.5330	58.517	0.988	19.2	-5.8

IL=1uA, IH=200uA

Models	Actual Temp.[°C]	VBE @IL= 1uA	VBE @IH= 200uA	• VBE[mV]	Ideality (n)	Temp. meas[°C]	Temp. error[°C]
Weak	25	0.5338	0.6770	143.162	1.051	37.6	12.6
Nominal Nominal	25	0.5056	0.6449	139.320	1.023	29.3	4.3
Strong	25	0.4745	0.6097	135.191	0.992	20.3	-4.7

IL=20uA, IH=10uA

Models	Actual Temp.[°C]	VBE @IL= 20uA	VBE @IH= 10uA	• VBE[mV]	Ideality (n)	Temp. meas[°C]	Temp. error[°C]
Weak	25	0.6145	0.5958	-18.678	1.048	36.8	11.8
Nominal Nominal	25	0.5841	0.5659	-18.177	1.020	28.5	3.5
Strong	25	0.5507	0.5330	-17.638	0.990	19.5	-5.5

IL=20uA, IH=200uA

Models	Actual Temp.[°C]	VBE @IL= 20uA	VBE @IH= 200uA	VBE[mV]	Ideality (n)	Temp. meas[°C]	Temp. error[°C]
Weak	25	0.6145	0.6770	62.47153	1.055	38.9	13.9
Nominal Nominal	25	0.5841	0.6449	60.82667	1.027	30.7	5.7
Strong Strong	25	0.5507	0.6097	59.03564	0.997	21.8	-3.2

TI - Proprietary Information -

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

DO NOT COPY

PAGE: 7/8

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

6.3 Effect of I-R drop on temperature sense diode performance

The resistance of the routes connected to padn and padp traces will further degrade the accuracy of the temperature sense diode. The total route resistance includes all package parasitic R as well as board traces.

Guideline:

Temperature error due to parasitic resistance on both padn and padp routes = 0.8 to 2.0 degC/ohm

These values are from simulations using the min and max spec values given in the MAX1617A and ADM1032 datasheets. This is in addition to any error from ideality factors of both the local and remote temperature sense diodes.

example: rpadn = rpadp = 10ohms would give a temperature error between 8C and 20C

TI - Proprietary Information -

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

DO NOT COPY

PAGE: 8/8