

What Changes Can Large-scale Language Models Bring? Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers

유런 5기 고급심화팀 황채원







### In-context Learning

: 언어 모델이 지시문, 예제 등 입력 문서(context, prompt)의 의미를 파악해 요약, 번역, 대화 등 구체적인 과제(downstream task)를 해결하는 패러다임

- 파인 튜닝(fine-tuning) 등과는 달리 모델을 업데이트하지 않는다.



### Zero-shot, one-shot, few-shot





BLEU, ROUGE, PPL

**BLEU(Bilingual Evaluation Understudy)** 

: Generated Sentence의 단어가 Reference Sentence에 포함되는 정도

ROUGE(Recall-Oriented Understudy for Gisting Evaluation)

: Reference Setence의 단어가 Generated Sentence에 포함되는 정도

PPL(Perplexity)

: 언어 모델의 성능을 평가하는 정량 지표. 언어 모델이 테스트 문장이 나타날 확률을 높게 예측할수록 PPL이 작아진다. 대개 PPL이 작으면 언어 모델의 성능이 좋은 것으로 알려져 있다.



# #01 Introduction





### #01 Introduction

### GPT-3 의 이슈

- 1. 학습 corpus의 92.7퍼센트가 영어에 치우쳤다. 따라서 다른 언어들의 태스크를 수행하기 어렵다.
- 2. 13B, 175B 사이즈의 모델에 대한 정보만 있고 다른 사이즈의 모델에 대해선 모른다. 다양한 사이즈의 모델과 그 계산 비용에 대해 아는 것이 LLM의 사용에 유용할 것이라 여겨진다.
- 3. In-context LLM에서 프롬프트 기반의 학습과 튜닝이 시도된 적 없다.



### #01 Introduction

### Hyper CLOVA를 통해 제안하고자 하는 것

- 한국어 in-context LLM, 820억 개의 파라미터
- 1. 특정 언어에 적합한 tokenization 기법이 non-English LLM의 학습에 미치는 영향을 파악함. 한국어에 적합한 tokenization strategy 사용.
- 2. 중간 사이즈의 모델에 zero-shot, few-shot을 이용했고 프롬프트 기반의 튜닝을 향상시킬 수 있음을 제시함.
- 3. No Code Al Hyper CLOVA 스튜디오를 통해 ML 전문가가 아니더라도 모델을 쉽게 이용할 수 있도록 하여, 소통으로 인한 비용을 대폭 절감할 수 있는 가능성을 보임.



# #02 Previous Work





### **#02 Previous Work**

### **Prompt Optimization**

- 1. Discrete: 직관적인 해석에는 용이하지만 최적의 결과를 내지 못할 수 있다.
- 2. Continuous: 가상의 임베딩 벡터를 설정하여 더 좋은 성능을 낼 수 있다.

#### **Discrete Prompt**

This movie is not worth watching.

I feel [MASK]

#### **Continuous Prompt**

This movie is not worth watching.

0.90,0.33,0.2,.







### **Data Description**



| Name           | Description                 | Tokens |  |
|----------------|-----------------------------|--------|--|
| Blog           | Blog corpus                 | 273.6B |  |
| Cafe           | Online community corpus     | 83.3B  |  |
| News           | News corpus                 | 73.8B  |  |
| Comments       | Crawled comments            | 41.1B  |  |
| KiN            | Korean QnA website          | 27.3B  |  |
| Modu           | Collection of five datasets | 6.0B   |  |
| WikiEn, WikiJp | Foreign wikipedia           | 5.2B   |  |
| Others         | Other corpus                | 51.5B  |  |
| Total          |                             | 561.8B |  |

Table 1: Descriptions of corpus for HyperCLOVA



#### 데이터 전처리에서 흥미로웠던 부분

- 각 문서의 퀄리티를 측정하기 위해 LR 모델을 학습시킴.
- high qualit ≥ encyclopedia documents -> positive
- crawled web documents -> negative
- 중복된 문서 삭제를 위해 해시함수로 유사도를 측정함.
- 리뷰타입의 문서는 반복된 표현이 과도하게 많았음.
- 뉴스 문서는 구독자의 감정적 동요를 불러일으키는, 불필요한 표현들을 삭제
- Data Anonymization : 주민번호, 이메일 주소, 전화번호 등의 개인정보는 마스킹.
- 그러나, 개인을 특정할 수 없는 [주민번호의 지역과 나이, 성별을 나타내는 부분], [이메일 주소의 도메인], [전화번호의 다이얼 코드] 등의 정보는 남겨놓았음.



#### Korean tokenization

### 토큰화(tokenization)란?

- 주어진 코퍼스(corpus)에서 토큰(token)이라 불리는 단위로 나누는 작업

엘리스는

엘리스가

엘리스에게

수 교착어인 한국어에서 단어는 의미적 기능을 하는 부분과 문법적 기능을 하는 부분이 나뉜다.

먹다

먹었다

먹는다



#### Korean tokenization

- 세 종류의 토큰화 작업 중 형태소(morpheme) 단위의 토큰화를 선택









### 평가 대상 과제

- 1, NSMC 영화리뷰감성분석
- 2. KorQuAD 문서독해
- 3. AiHub Ko->En 한영번역
- 4. AiHub En->Ko 영한번역
- 5. KLUE-YNAT 뉴스제목분류



| Baseline | NSMC<br>(Acc) | KorQuAD<br>(EA / F1) |       | AI Hub (BLEU)<br>Ko→En En→Ko |       | YNAT<br>(F1) | KLUE-STS<br>(F1) |
|----------|---------------|----------------------|-------|------------------------------|-------|--------------|------------------|
|          | 89.66         | 74.04                | 86.66 | 40.34                        | 40.41 | 82.64        | 75.93            |
| 137M     | 73.11         | 8.87                 | 23.92 | 0.80                         | 2.78  | 29.01        | 59.54            |
| 350M     | 77.55         | 27.66                | 46.86 | 1.44                         | 8.89  | 33.18        | 59.45            |
| 760M     | 77.64         | 45.80                | 63.99 | 2.63                         | 16.89 | 47.45        | 52.16            |
| 1.3B     | 83.90         | 55.28                | 72.98 | 3.83                         | 20.03 | 58.67        | 60.89            |
| 6.9B     | 83.78         | 61.21                | 78.78 | 7.09                         | 27.93 | 67.48        | 59.27            |
| 13B      | 87.86         | 66.04                | 82.12 | 7.91                         | 27.82 | 67.85        | 60.00            |
| 39B      | 87.95         | 67.29                | 83.80 | 9.19                         | 31.04 | 71.41        | 61.59            |
| 82B      | 88.16         | 69.27                | 84.85 | 10.37                        | 31.83 | 72.66        | 65.14            |

- 모델 사이즈가 커짐에 따라 성능도 좋아진다. 그러나 large scale이 아니더라도 프롬프트 엔지니어링을 이용한다면 성능을 충분히 개선할 수 있다.
- 단, 한영 번역과 KLUE의 경우 베이스라인 모델에 비해 성능이 확연히 떨어지는 결과가 나왔다.
- 이에 대해 논문에서는 영어 코퍼스 학습량의 부족을 그 원인으로 예측했고, 프롬프트 엔 지니어링으로 성능을 향상시킬 수 있는 부분이라고 이야기했다.



#### **Effect of Tokenization**

### 00V란? Out-Of-Vocabulary

- 모델이 사전훈련 중에 접하지 못한 단어나 구
- 1. 00V가 있다면 모델은 해당 문장의 의미를 완전히 이해하지 못할 수 있다.
- 2. 00V는 모델의 어휘사전에 없기 때문에 해당 단어를 대체하거나 무시하면서 정보의 손실이 발생할 수 있다.
- 3. 언어는 계속 변화하는데, 새로운 표현이 00V로 처리되어 언어의 변화가 모델에 반영되지 못한다.



#### **Effect of Tokenization**

- : Char-level, byte-level, morpheme-aware byte-level 비교
- 영어에서는 char-level, byte-level이 주로 사용된다. 그러나 한국어에서 char-level BPE의 사용은 00V를 발생시킨다.
- YNAT에서 보이는 char-level과 byte-level의 격차. 이는 뉴스 기사 헤드라인에 쓰인 단어들을 char-level로 토큰화 할 때 문제가 발생하기 때문.
- 해당 언어에 맞는 토큰화 방식을 사용하는 것이 모델의 성능에 영향을 미친다는 결과가 도출되었다.

|                | KorQuAD<br>(EA / F1) |       | AI Hub (BLEU) |       | YNAT  | KLUE-STS |
|----------------|----------------------|-------|---------------|-------|-------|----------|
| Ours           |                      |       | Ko→En         | En→Ko | (F1)  | (F1)     |
|                | 55.28                | 72.98 | 3.83          | 20.03 | 58.67 | 60.89    |
| byte-level BPE | 51.26                | 70.34 | 4.61          | 19.95 | 48.32 | 60.45    |
| char-level BPE | 45.41                | 66.10 | 3.62          | 16.73 | 23.94 | 59.83    |



#### **Effect of Tokenization**

sentence

마감이 잘 안돼서 옆부분이 안맞은게 불편했고 흰색이라 어쩔 수 없긴 하지만 때도 잘타요.

#### sentence

마감이 잘 안돼서 옆부분이 안맞은게 불편했고 흰색이라 어쩔 수 없긴 하지만 때도 잘타요.

#### tokenized by Character-level BPE Tokenizer

['마감이</w>', '잘</w>', '안돼서</w>', '옆', '부분이</w>', '안', '맞은', '게</w>', '불편', '했고</w>', '흰색', '이라</w>', '어', '<unk>', '수</w>', '없', '긴</w>', '하지만</w>', '때도</w>', '잘', '타', '요.</w>']

#### tokenized by Byte-level BPE tokenizer

['ēşl', 'e'lile'', 'Ġill', 'Ġiklei¼iHl'', 'Ġill', 'elgelHile'', 'Ġikleşl', 'ilg', 'e'l', 'Ġellil', 'ikle'l', 'Ġik'iklesl'', 'Ġik'iok', 'Ġill', 'Ġill', 'e','', 'ĠiklişGeşl', 'Ġekleill', 'Ġill', 'ihg', 'ilk', '.']

#### tokenized by Morpheme-Aware Byte-level BPE tokenizer

['ēṣĪē°IJ', 'iL'', 'Ġitl', 'ĠiţĪēı¼iĦl'', 'Ġitl', 'ĕļĢēŢĦ', 'iL'', 'Ġiţl', 'ĕşliŁĢ', 'ĕ'Ţ', 'ĠēŢĪitl', 'iĸĪē'F, 'Ġiٰiĥr', 'iL'ĕټ', 'Ġiĸ 'i©Ķ', 'ĠiĬl', 'ĠiĹĨē\_'', 'ĠiţliṣĢēşţ', 'Ġēţl', 'ēiĦ', 'Ġitl', 'iĥG', 'ilK', '.']

#### tokenized by Character-level BPE Tokenizer

['마감이</w>', '잘</w>', '안돼서</w>', '옆', '부분이</w>', '안', '맞은', '게</w>', '불편', '했고</w>', '흰색', '이라</w>', '어', '<unk>', '수</w>', '없', '긴</w>', '하지만</w>', '때도</w>', '잘', '타', '요.</w>']

#### tokenized by Byte-level BPE tokenizer

▶ ['마', '감이', '잘', '안돼서', '옆', '부분이', '안맞', '은', '게', '불편', '했고', '흰색', '이라', '어쩔', '수', '없', '긴', '하지만', '때도', '잘', '타', '요', '']

#### tokenized by Morpheme-Aware Byte-level BPE tokenizer

['마감', '이', ' 잘', ' 안돼서', ' 옆', '부분', '이', ' 안', '맞은', '게', ' 불편', '했고', ' 흰색', '이라', ' 어쩔', ' 수', ' 없긴', ' 하지만', ' 때', '도', ' 잘', '타', '요', '.']



# #05 Discussion on Industrial Impacts





## #05 Discussion on Industrial Impacts

#### 기존 파이프라인의 문제

- LLM을 이용한 플랫폼을 개발하기 위해서는, 프로그래밍 지식이 없는 사람들과의 소통이 필수적이며 이 과정에서 큰 비용이 발생한다.

Hyper CLOVA Studio는 GUI와 API를 제공하여 ML 엔지니어의 개입을 최소화한다. No Coding으로AI 기반 서비스의 프로토타입을 빠르게 완성할 수 있도록 돕는다.



- 문제정의
- ② 데이터 수집과 요약
- ③ 모델 학습 및 평가
- 4 MLOps
- ⑤ 모니터링 및 유지관리



## #05 Discussion on Industrial Impacts

- 1. Rapidly Prototyping Chatbots with Personalities 캐릭터성을 가진 챗봇 프로토타입 생성
- 2. Zero-shot Transfer Data Augmentation 제로샷 전이 데이터 증강. 사용자의 의도에 맞는 발화 생성.
- 3. Event Title Generation 이벤트 문구 생성

#### (a) Character bot

Child: How about Penguin? Penguin: Hey, I'm the best, ahem. (...)

Child: I'm happy because I didn't go to school because of corona Penguin: Still, you have to study because you're young! That way, you will be cool like me!

Child: Did you eat tuna yester? Penguin: Ah~ That's a secret...

#### (b) Zero-shot transfer data augmentation

intent: Reservation inquiry

#1: Will it be reserved for a room?
#2: If you don't have a seat, it's okay to sit outside.

#3: Is it possible for a group seat? #4: What is the most common menu for dinner?

#5: You want to make a reservation for the weekend, but do you have a lot of customers? #6: Do I have to order by number of people?

#### (c) Title of promoting event

tag: Toggle Bar Necklace, Half and Half Chain Necklace, Cubic Earrings, Gemstone Earrings, Drop Earrings, One Touch Ring Earrings, Chain Silver Ring, Onyx Earrings, Pearl Earrings, Heart Earrings

time: December 19th

Title: Jewelry for you who shines brightly



# #06 Conclusion





### #06 Conclusion

### LMs concerning issues

- 1. LLM의 오용 이루다 사례와 같은 사생활 침해, 혐오 발언
- 2. 공정성, 편향, 대표성 훈련 데이터의 편향이 LLM에도 영향을 미친다. 편항을 줄이기 위한 데이터 전처리, 혹은 문장 생성 시의 필터링이 필요하다.
- 3. 과도한 에너지 소비 LLM의 훈련에는 많은 에너지가 소모된다. 효율적인 하드웨어의 사용이 요구된다.

#### 긍정적 방향으로 나아가기 위한 노력

No/Low Code AI의 가능성 - AI에 대한 접근성을 높여 많은 이들에게 AI의 혜택을 가져 다 줄 수 있다.







### 발견 1: 말뭉치에 따라 성능이 크게 달라지며, PPL이 낮다고 성능이 꼭 좋은 것은 아니다







### 발견 2: 말뭉치를 잘 섞으면 없던 능력이 생기기도 한다

- 말뭉치를 잘 섞으면 인컨텍스트 러닝 능력이 생기는 경우를 발견





발견 3: 과제와 비슷한 말뭉치가 사전 훈련에 포함된다고 해서 높은 성능을 보장하지는 않 는다

- 뉴스제목을 바탕으로 토픽을 예측하는 과제에서 뉴스가 많이 배운 모델의 성능이 높지 않았다.



