

Fundamental Mathematics Elementary Geometry

Classifying quadrilaterals

➤ How can we classify the quadrilaterals of the picture?

Which quadrilaterals are convex?

Attend the

Definition: A quadrilateral is **convex** if all line segment joining two vertices are contained in the quadrilateral.

we can say that the quadrilaterals A, B, C, D, E, F, G, H and J are convex. Quadrilaterals I and K are non-convex.

➤ Which quadrilaterals are kites?

Attend the

Definition: A **kite** is a quadrilateral with two pairs of consecutive sides congruent.

we can say that the quadrilaterals F, J and K are kites.

Fundamental Mathematics Elementary Geometry

Which quadrilaterals are trapezoids?

Attend the

Definition: A **trapezoid** is a quadrilateral with at least one pair of parallel sides.

we can say that the quadrilaterals B, C, D, E, G, H and J are trapezoids.

Observation 1: Some authors consider one slightly different definition, this is, a Trapezoid is a quadrilateral with exactly one pair of parallel sides (exclusive definition). In this case, only the quadrilaterals C, E and H are trapezoids.

Observation 2: Within the scope of MathE we consider the first definition (inclusive definition) of trapezoid and the others indicated below.

Particular cases of trapezoids:

- If the non-parallel sides are congruent **Isosceles trapezoids**
 - o Quadrilateral E
- If the non-parallel sides are not congruent **Scalene trapezoids**
 - Quadrilateral H
- If one of the opposing non-parallel sides is perpendicular to the bases –
 Right trapezoids
 - Quadrilateral C

Attend to the number of the pairs of parallel sides, we have:

- Trapezoids with exactly one pair of parallel sides Non-parallelograms
 - o Quadrilaterals C, E and H
- Trapezoids with two pairs of parallel sides Parallelograms
 - o Quadrilaterals B, D, G and J

Fundamental Mathematics Elementary Geometry

➤ How can we classify the parallelograms?

Considering the congruence of the internal angles:

- Parallelograms with all congruent angles **Rectangles**
 - o Quadrilaterals B and G
- Parallelograms with exactly two pairs of congruent angles Non-rectangles (oblique parallelograms)
 - o Quadrilateral D and J

Considering the congruence of the sides:

- Parallelograms with all congruent sides **Rhombus**
 - o Quadrilaterals B and J
- Parallelograms with exactly two pairs of congruent sides Non-rhombus
 - o Quadrilaterals D and G

Considering the congruence of the angles and the sides:

- Parallelograms with all angles congruent and all sides congruent **Squares** (**regular quadrilaterals**)
 - o Quadrilateral B

Note: A **regular polygon** is a polygon with all internal angles congruent and all sides congruent.

To think: What other criteria can we use to classify the quadrilaterals?