Algebraic Topology, Exercises 1

2019 Spring Semester

Youngwan Kim

April 10, 2019

Recall. Recall that a map $f: X \to Y$ is **homotopic** to a map $g: X \to Y$ if there is a map $F: X \times [0,1] \to Y$ such that F(x,0) = f and F(x,1) = g for $\forall x \in X$. (no relative conditions)

Problem 1. Show that if the topological spaces X and Y are homeomorphic and X is simply connected, then so is Y.

Proof. If $X \cong Y$ then $\pi_1(X) \simeq \pi_1(Y)$. As $\pi_1(X) = 0$ and $\pi_1(X) \simeq \pi_1(Y)$ it implies that $\pi_1(Y) = 0$.

Problem 2. Let n be a positive integer. Let $f: X \to S^n$ and $g: X \to S^n$ be maps. Suppose that $f(x) \neq -g(x)$ for any $x \in X$. Show that f is homotopic to g.

Proof. Define a map $F: X \times [0,1] \to S^n$ such that

$$F(x,t) = \frac{(1-t) \cdot f(x) + t \cdot g(x)}{|(1-t) \cdot f(x) + t \cdot g(x)|}$$

then we can check that

$$\begin{cases} F(x,0) = \frac{f(x)}{|f(x)|} = f(x) \\ F(x,1) = \frac{g(x)}{|g(x)|} = g(x) \end{cases}$$

1

as $f(x), g(x) \in S^n$. Also as $f(x) \neq -g(x)$ for all $x \in X$, such F(x,t) is well defined as $|(1-t)\cdot f(x)+t\cdot g(x)|\neq 0$ for all $(x,t)\in X\times [0,1]$.

П

Remark. The trick of normalizing line segments are well used as a method of constructing a homotopy between maps which maps to S^n , due to its property.

Problem 3. Let $X = \{x \in \mathbb{R}^n : 1 \le |x| \le 2\}$. Let $f: X \to X$ be a map defined by f(x) = x/|x|. Show that f is homotopic to the identity map $id: X \to X$.

Proof. Let $F: X \times [0,1] \to X$ as

$$F(x,t) = (1-t) \cdot \frac{x}{|x|} + t \cdot x$$

Then F(x,0) = f and F(x,1) = id, thus as there exists such homotopy $F, f \simeq id$.

Remark. For the above problem, $F(x,t) = \frac{x}{|x|^t}$ is also a homotopy.

Problem 4. Show that $\pi_1(X \times Y, (x_0, y_0))$ is isomorphic to the direct product $\pi_1(X, x_0) \times \pi_1(Y, y_0)$.

Proof. Let $p_X: X \times Y \to X$ and $p_Y: X \times Y \to Y$ be projections, i.e, for $\forall (x,y) \in X \times Y$, the maps are defined as $p_X(x,y) = x$ and $p_Y(x,y) = y$. Now let $\phi: \pi_1(X \times Y, (x_0,y_0)) \to \pi_1(X,x_0) \times \pi_1(Y,y_0)$ for all $[\alpha] \in \pi_1(X \times Y, (x_0,y_0))$ which maps as,

$$\phi([\alpha]) = ([p_X \circ \alpha], [p_Y \circ \alpha])$$

 ϕ is well defined. Such ϕ is obviously a bijection, as we can define $\phi^{-1}: \pi_1(X, x_0) \times \pi_1(Y, y_0) \to \pi_1(X \times Y, (x_0, y_0))$. We just have to show that it is a homomorphism. For any $[\beta], [\gamma] \in \pi_1(X \times Y, (x_0, y_0))$

$$\phi([\alpha][\beta]) = \phi([\alpha\beta]) = ([p_X \circ \alpha\beta], [p_Y \circ \alpha\beta])$$

$$= ([p_X \circ \alpha][p_X \circ \beta], [p_Y \circ \alpha][p_Y \circ \beta])$$

$$= ([p_X \circ \alpha], [p_Y \circ \alpha])([p_X \circ \beta], [p_Y \circ \beta])$$

$$= \phi([\alpha])\phi([\beta])$$

Problem 5. Prove that the product of simply connected spaces is simply connected.

Proof. Using the results of **Problem 4**, if $\pi_1(X) = 0$ and $\pi_1(Y) = 0$ then $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y) = 0$. Also as both X, Y are path connected, $X \times Y$ is also path connected, as there exists any path $\gamma(s) = (\alpha(s), \beta(s))$ for all $(x_0, y_0), (x_1, y_1) \in X$ such that $\gamma(0) = (x_0, y_0)$ and $\gamma(1) = (x_1, y_1)$, where the existence of α and β is guranteed as X, Y are path connected. Thus as $\pi_1(X \times Y) = 0$ and $X \times Y$ is path connected, it is simply connected.

Problem 6. Prove that if $n \geq 3$, then $\mathbb{R}^n \setminus \{0\}$ is simply connected. (Hint: use the fact that S^{n-1} is simply connected.)

Proof. For any $[\alpha] \in \mathbb{R}^n \setminus \{0\}$, by some homotopy, let it F, $\alpha \simeq \frac{\alpha}{|\alpha|} \in S^{n-1}$. In S^{n-1} , $\alpha/|\alpha| \simeq 1$ by a homotopy, let it G as S^{n-1} is simply connected. As $S^{n-1} \subset \mathbb{R}^n$, F, G are both a homotopy in

Problem 7. Let A be a subspace of X and $j: A \hookrightarrow X$ be the inclusion map. Let a map $r: X \to A$ be a retraction of X onto A, that is $r \circ j = id_A$. Prove the following,

- (a) $j_*: \pi_1(A,b) \to \pi_1(X,b)$ is one-to-one.
- (b) $r_*: \pi_1(X, b) \to \pi_1(A, b)$ is onto.
- (c) If X is simply connected, then so is A.

Proof. As $r \circ j = id_A$, $(r \circ j)_* = (id_A)_* \implies r_* \circ j_* = id_{\pi_1(A)}$. This implies (a) and (b). Also assuming X is simply connected, i.e, $\pi_1(X,b) = 0$ then due to (a) and (b), so does $\pi_1(A) = 0$. Path connectedness of A is also guranteed as $r : X \to A$ is a continuous map and X is simply connected.