Elements of Information Theory

Bilingual course (Chinese taught course) Information and Communication Eng. Dept. Deng Ke

Entropy

- Entropy is associated with a set, such as source
- Entropy is the first-order statistics of the information, is the mathematical expectation
- Example, the simplest source, can only send 0 and 1
 - Source 1: $P_0 = P_1 = 0.5$
 - Source 2: $P_0 = 0.1 P_1 = 0.9$

Xi'an Jiaotong University

Entropy

- · The understanding of entropy
 - $-H_1=1$ bit, $H_2=0.469$ bit $H_1>H_2$
 - entropy is associated with the number of the microstates of a system. Obviosly, source 1 has more microstates
- For a given n, the maximum H(X) is equal to $\log n$, when $p(x_i)=1/n$, $\forall i$
- First, we demonstrate: $\ln z \le z-1$ (z>0)"=" if and only if z=1

Consider $f(z)=\ln z-(z-1)$, All we need are $f(z) \le 0$

Xi'an Jiaotong University

Outline

- Entropy
- Source
- Joint entropy and conditional entropy
- · Chain rule
- Channel
- · Mutual information
- · Some Inequalities
- Summary

Ki'an Jiaotong University

Entropy

• *Definition:* The *entropy H(X)* of a discrete random variable *X* is defined by

$$H(X) = -\sum p(x)\log p(x)$$

 X be a discrete random variable with alphabet _X and probability mass function

$$p(x) = \Pr(X = x), x \in X$$

· Expectation interpretation

$$H(X) = E_p \left[\log \frac{1}{p(X)} \right] = -\sum p(x) \log p(x)$$

• Entropy is the expectation of the information

Xi'an Jiaotong University

Entropy

· And we have

$$f'(z) = 1/z - 1$$
 $f''(z) = -1/z^2 < 0$

- Then f(z) has the maximum number at f'(z)=0, i.e. z=1
- The maximum number is

$$f(z) \le f(z)|_{z=1} = \ln 1 - (1-1) = 0$$

Entropy

$$\begin{split} H\left(X\right) - \log K &= \sum_{i} p(x_{i}) \log \frac{1}{p(x_{i})} - \sum_{i} p(x_{i}) \log K \\ &= \log e \sum_{i} p(x_{i}) \ln \frac{1}{p(x_{i})K} \\ &\leq \log e \sum_{i} p(x_{i}) \left(\frac{1}{p(x_{i})K} - 1\right) \\ &= \log e \left[\sum_{i} \frac{1}{K} - \sum_{i} p(x_{i})\right] = \log e (1 - 1) = 0 \end{split}$$

Xi'an Jiaotong University

Entropy

- K>2
- When K=2, let P(1)=p, then P(0)=1-p

$$H(X) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p} \le \log 2$$

- Denote $H(X)=\Omega(p)$
- Actually, the notion of entropy comes from Thermo-dynamics.

$$S = k (\ln \Omega)$$
Boltzmann's constant Number of random microstates

Xi'an Jiaotong University

Entropy

Xi'an Jiaotong University

Entropy

Unit conversion

1nat=log₂e bit ≈1.44bit 1bit=ln2 nat ≈0.69nat

- The entropy of a fair coin toss is 1 bit
 The origin of "bit" in computer science
- Example

• Let
$$X = \begin{cases} a & p(a) = 1/2 \\ b & p(b) = 1/4 \\ c & p(c) = 1/8 \end{cases}$$

• Then $H(X) = -\frac{1}{2}\log \frac{1}{2} - \frac{1}{4}\log \frac{1}{4} - \frac{1}{8}\log \frac{1}{8} - \frac{1}{8}\log \frac{1}{8} = 1.75 \text{ bits}$

Xi'an Jiaotong Universit

Source

- · The Kind of Source
- Explanation
 - Discrete: Finite possibilities, finite number of elements
 - Memoryless: The statistics independence of sending symbols
- Example

Xi'an Jiaotong University

Source

- 10 black balls and 10 white balls in a bag. once a ball, put it back, memoryless; do not put it back, memory
- The entropy of a discrete memoryless source

$$H(X) = \sum_{i} p_{i} \log \frac{1}{p_{i}}$$

 The describe of discrete memory source requires the conditional entropy and the joint entropy

Source Coding

- Text
 - ASCII, 128 symbols, 7 bits
 - GB2312, 6763 characters, at least 13 bits, actually 14 bits, 2 bytes (2¹³=8192>6763> 2¹²=4096)
 - GBK, GB2312+BIG5, >30000 characters, occupies 15 bits (2¹⁵=32768)
 - _ Unicode
 - _ UTF-8
 - _ UTF-16

Xi'an Jiaotong University

Joint Entropy

- · Joint Entropy
 - Extend the definition form a single random variable to a pair of random variables
 - Single is simple; double is trouble; triple is terrible.
- Definition: The joint entropy H(X,Y) of a pair of discrete random variables (X,Y) with a joint distribution p(x,y) is defined as

$$H(X,Y) = -\sum_{x} \sum_{y} p(x,y) \log p(x,y)$$

Xi'an Jiaotong University

Conditional Entropy

• *Definition:* If $(X,Y) \sim p(x,y)$, the *conditional entropy* H(Y|X) is defined as

$$H(Y \mid X) = \sum_{x} p(x)H(Y \mid X = x)$$

$$= -\sum_{x} p(x) \sum_{y} p(y \mid x) \log p(y \mid x)$$

$$= -\sum_{x} \sum_{y} p(x, y) \log p(y \mid x)$$

$$= -E \log p(Y \mid X)$$

Xi'an Jiaotong University

Source Coding

- Voice
 - CD
- _ MP3
- Image
- JPGVideo
 - MPEG1 VCD 1.5M bps
 - MPEG2 DVD 12M bps
 - RMVB 225K, 350K, 450K bps

Xi'an Jiaotong University

Joint Entropy

· which can also be expressed as

$$H(X,Y) = -E[\log p(x,y)]$$

- In this definition (X, Y) can be considered to be a single vector-valued random variable.
- Conditional entropy
 - Define the conditional entropy of a random variable given another as --the expected value of the entropies of the conditional distributions, averaged over the conditioning random variable.

Xi'an Jiaotong University

Example

 Let one discrete memory source has the probability

$$\mathbf{X}: a_1, a_2, a_3$$

 $P(\mathbf{X}): \frac{11}{36} \frac{4}{9} \frac{1}{4}$

• and the conditional probability P(a/a),

Ħ					
T		a_j			
			a_1	a_2	a ₃
	a_l	a_1	9/11	2/11	0
		a_2	1/8	3/4	1/8
		a ₃	0	2/9	7/9

Please compute H(X2)

Example

- · According to the definition of joint entropy $H(\mathbf{X}^2) = -\sum_{i=1}^{3} \sum_{j=1}^{3} P(a_i a_j) \log P(a_i a_j)$
- The joint probability can be computed as

 $P(a_1a_1)=P(a_1)P(a_1|a_1)=(11/36)\times(9/11)=1/4$ $P(a_1a_2)=P(a_1)P(a_2|a_1)=(11/36)\times(2/11)=1/18$

 $P(a_3a_3)=P(a_3)P(a_3|a_3)=(1/4)\times(7/9)=7/36$ $H(X^2)=2.412$ bits

· Also, we have

Example

$$\begin{split} H\left(\mathbf{X}\right) &= -\sum_{i=1}^{3} P(a_{i}) \log P(a_{i}) = 1.542 \quad \text{ bits/symbo} \quad 1 \\ H\left(X_{2} \mid X_{1}\right) &= -\sum_{i=1}^{3} \sum_{j=1}^{3} P(a_{i}a_{j}) \log P(a_{j} \mid a_{i}) = 0.870 \quad \text{bits/symbo} \quad 1 \end{split}$$

- $H(X) + H(X_2|X_1) = 2.412$ bits
- Now, $H(X^2) = H(X) + H(X_2|X_1)$
- $H(X) > H(X_2|X_1)$
- $H(X^2) \leq 2H(X)$

Discrete Memory Source

- K-order memory: If the symbol correlates with K transmitted symbols, the source is K-order discrete memory source.
- 1-order memory:
- 1-order memory: $P(U|Q) \approx 1$ Two conclusions from the example
 - _ Chain rule
 - information
 - $H(X^2) \leq 2H(X)$

Chain rule

- The entropy of a pair of random variables is the entropy of one plus the conditional entropy of the other.
- Joint entropy = entropy + conditional
- joint probability = marginal probability * conditional probability p(x, y)=p(x)p(y|x)
- Theorem 2.2.1 (Chain rule)

$$H(X,Y) = H(X) + H(Y \mid X)$$

Scramble

· In real communications, memory source can be transformed to memoryless source, with scrambling

- P(X=1)=P(D=0,M=1)+P(D=1,M=0)=P(D=0)*1/2+P(D=1)*1/2=1/2
- P(X=0)=1-P(X=1)=1/2

Channel Model

· The Model of Binary Discrete Memoryless Channel (BDMC)

The explaination of forward transition probability

 $P(b_1/a_1)$ The probability of sending a_1 and receiving b_1 $P(b_1/a_2)$ The probability of sending a_2 and receiving b_1 and so on.....

Channel Model

· Example 1: Binary Symmetric Channel: BSC $P(b_1/a_1) = P(b_2/a_2) = 1$ -ε ε:error rate

 $P(b_1/a_2) = P(b_1/a_2) = \varepsilon$

When $\varepsilon=1/2$, the input is independent with the output, completely-noisy-channel(CNC)

When $\varepsilon=0$, noiseless channel _a

CNC can not transmit

the information

Xi'an Jiaotong University

Mutual Information

- · Meaning: The information of once transmission
- · Some equations

Let the channel input $X \in \{a_1, a_2, ..., a_K\}$, the channel output $Y \in \{b_1, b_2, ..., b_J\}$, The joint probablity $P(a_k,b_i)$. Then the input $P(a_k) = \sum P(a_k,b_i)$

 $P(b_j) = \sum_{i} P(a_k, b_j)$

Forward transition: $P(b_j | a_k) = \frac{P(a_k, b_j)}{P(a_k)}$

Backward transition : $P(a_k | b_j) = \frac{P(a_k, b_j)}{P(b_j)}$

Xi'an Jiaotong University

Mutual Information

When the channel is noiseless

The source sends a_k , and the sink get its all information,then

$$I(a_k; b_j) = I(a_k)$$

Channel Model

• Ex. 2: Binary erasure channel Ex. 3: Common model

Xi'an Jiaotong University

Mutual Information

The computation of mutual information

- If the input of channel is a_k , the information
- before transmission is $I(a_k) = \log \frac{1}{p(a_k)}$ The output of channel is b_j , then the information after transmission about a_{ν}^{j} is

 $I(a_{\iota}\mid b_{j})=\log\frac{1}{p(a_{\iota}\mid b_{j})}$ • The information of a_{k} changes before and after transmission, then the transmission information is

$$I\left(a_k;b_j\right) \equiv I\left(a_k\right) - I\left(a_k \mid b_j\right) = \log \frac{1}{p\left(a_k\right)} - \log \frac{1}{p\left(a_k \mid b_j\right)} = \log \frac{p\left(a_k \mid b_j\right)}{p\left(a_k\right)}$$

Xi'an Jiaotong University

Mutual Information

· The average of mutual information

$$I(X;Y) = \underset{XY}{E}[I(x;y)] = \sum_{k,j} p(a_k,b_j)I(a_k;b_j) = \sum_{k,j} p(a_k,b_j)\log \frac{p(a_k|b_j)}{p(a_k)}$$

 $I(X;Y) = I(Y;X) = \sum_{x,y} p(x,y)I(x;y)$ $= \sum_{x,y} p(x,y) \log \frac{p(x|y)}{p(x)} = \sum_{x,y} p(x,y) \log \frac{p(y|x)}{p(y)}$

• I(x;y) may be positive, negative, or zero : but I(X;Y) is non-negative -

Mutual Information

• Summary :
$$I(X;Y) = I(Y;X)$$

$$= \sum_{x,y} p(x,y)I(x,y) = \sum_{x,y} p(x,y)I(y,x)$$

$$= \sum_{x,y} p(x,y)\log \frac{p(x|y)}{p(x)} = \sum_{x,y} p(x,y)\log \frac{p(y|x)}{p(y)}$$

$$= \sum_{x,y} p(x,y)\log \frac{p(x,y)}{p(x)p(y)}$$

$$= H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X)$$

$$= H(Y) - H(Y,Y)$$

 $H(X \cdot Y)$ is the joint entropy, and H(Y|X) is the conditional entropy.

Xi'an Jiaotong University

Mutual Information

- · Examples of mutual information computation
- Example 1: Noiseless channel

 $\begin{array}{c|cccc} \textbf{Channel model} & & & & & & \\ & p(a_k \mid b_j) = p(b_j \mid a_k) = \begin{cases} 1 & & k = j \\ 0 & & k \neq j \end{cases} & & & \\ \textbf{X} & & & \textbf{Y} \\ \textbf{Mutual information} & 1 & & & & 1 \\ \textbf{I(X;Y)=H(X)} & 2 & & & & 2 \\ \vdots & & & & & \vdots \\ & J & & & & K \\ \end{array}$

Xi'an Jiaotong University

Mutual Information

Example 3: BSC -

$$a_1$$
 ε
 b_1
 a_2
 b_2

Please demonstrate:

$$\begin{split} H(Y \mid X) &= \Omega(\varepsilon) \\ I(X;Y) &= \Omega(\varepsilon + p - 2\varepsilon p) - \Omega(\varepsilon) \\ \text{where} \quad \Omega(x) &= x \log \frac{1}{x} + (1-x) \log \frac{1}{1-x} \end{split}$$

Xi'an Jiaotong University

Mutual Information

· Two circles

Xi'an Jiaotong University

Mutual Information

 Example 2: completely noisy channel Channel model

$$p(y \mid x) = p(y)$$
Mutual information I(X;Y)=0
$$I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(y \mid x)}{p(y)}$$

$$= \sum_{x,y} p(x,y) \log \frac{p(y)}{p(y)}$$

$$= \sum_{x,y} p(x,y) \log 1$$

Xi'an Jiaotong University

Mutual Information

$$\begin{split} H(\mathbf{Y} \mid \mathbf{X}) &= -\sum_{\mathbf{XY}} P(xy) \log P(y \mid x) \\ &= -P(0)P(0 \mid 0) \log P(0 \mid 0) - P(0 \mid P(1 \mid 0) \log P(1 \mid 0) \\ &- P(1)P(0 \mid 1) \log P(0 \mid 1) - P(1)P(1 \mid 1) \log P(1 \mid 1) \\ &= -(1 - \varepsilon) \log(1 - \varepsilon) - \varepsilon \log \varepsilon = \Omega(\varepsilon) \\ H(\mathbf{Y}) &= \Omega[p(b_1)] \\ p(b_1) &= \sum_{i} p(a_i, b_i) = p(a_i, b_i) + p(a_2, b_i) \\ &= p(a_1)p(b_1|a_1) + p(a_2)p(b_1|a_2) \\ &= p(1 - \varepsilon) + (1 - p)\varepsilon \\ &= p + \varepsilon - 2\varepsilon p \end{split}$$

 $H(\mathbf{Y}) = \Omega[p(b_1)] = \Omega(p + \varepsilon - 2\varepsilon p)$

Mutual Information

 $\therefore I(X;Y) = \Omega(\varepsilon + p - 2\varepsilon p) - \Omega(\varepsilon)$

· Special cases

 ε = 0 Noiseless Channel I(X;Y)= $\Omega(0+p-0)$ - Ω (0)=H(X)

Just like example 1

 ε = 1/2 CNC I(X;Y)= $\Omega(1/2+p-2 \bullet 1/2 \bullet p)$ - $\Omega(1/2)$ = $\Omega(1/2)$ - $\Omega(1/2)$ =0

Just like example 2

Xi'an Jiaotong University

Some Inequalities

- · Convexity
- Convex function(cup)

Definition A function f(x) is said to be *convex* over an interval (a,b) if for every $x_1, x_2 ∈ (a,b)$ and $0 ≤ \lambda ≤ 1$

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

A function f is said to be $strictly\ convex$ if equality holds only if $\lambda = 0$ or $\lambda = 1$.

- Concave function(cap)
 - A function f is concave if -f is convex.

Xi'an Jiaotong University

Convexity

- · Examples
 - Cup functions x^2 , |x|, e^x
 - Cap functions logx, -x²
- Theorem 2.6.1: If the function f has a second derivative which is no-negative (positive) everywhere, then the funtion is convex(strictly convex). (cup)

Xi'an Jiaotong University

Mutual Information

• The Nonnegativity of mutual information

For any two discrete random variables *X, Y*,

 $I(X;Y) \ge 0$

with equality if and only if X and Y are independent $I(X;Y)=H(X)-H(X|Y)=H(Y)-H(Y|X)\geq 0$ $H(X)\geq H(X|Y)$ $H(Y)\geq H(Y|X)$

Xi'an Jiaotong University

Concave Function

 Cup: if it always lies below any chord

 Cap: if it always lies <u>above</u> any chord.

Xi'an Jiaotong University

Jensen's inequality

• Theorem 2.6.2 (*Jensen's inequality*) *If f is a convex function and X is a random variable*,

 $Ef(X) \ge f(EX)$

- Moreover, if f is strictly convex, the equality in (2.76) implies that X=EX with probability 1 (i.e. X is a constant)(cup)
- The expectation of a cup function of a random variable is larger or equal to the cup function of the expectation of the random variable.

Jensen's inequality

- If the function is a cap function, then we have:
 The expectation of a cap function of a random variable is less or equal to the cap function of the expectation of the random variable.
- Proof: Mathematical induction
 For a two-mass-point distribution

$$p_1 f(x_1) + p_2 f(x_2) \ge f(p_1 x_1 + p_2 x_2),$$

Suppose that the theorem is true for distributions with k-1 mass points.

Xi'an Jiaotong University

Jensen's inequality

- · Uniform distribution maximizes entropy
- Theorem 2.6.4 H(X)≤log /x/, where /x/ denotes the number of elements in the range of X, with equality if and only if X has a uniform distribution over x.
- Proof: let u(x)=1//x/ be the uniform probability mass function over \(\chi \) And \(p(x) \) be the probability mass function for \(X, \) Then

$$\begin{split} &-\sum_{x}p(x)\log\frac{u(x)}{p(x)}\geq-\log\sum_{x}p(x)\frac{u(x)}{p(x)}=-\log\sum_{x}u(x)=0\\ &=\sum_{x}p(x)\log\frac{p(x)}{u(x)}=\log|\mathcal{X}|-H(X) & \longrightarrow H(X)\leq\log|\mathcal{X}| \end{split}$$

Xi'an Jiaotong University

The convexity of entropy

- The sum of cap(cup) functions is also a cap(cup) fucntion.
- · The entropy of a random variable is a cap function

• Proof
$$X$$
 $P = \{p_1, p_2, \dots p_n\}$ $H(X) = -\sum_i p_i \log p_i$ Let $f(p) = -p \log p$ Then $f'(p) = (-\log e)(\ln p + 1)$ $f''(p) = -\log e^{\frac{1}{p}} < 0$

- f(p) is a cup function
- H(X) is also a cup function

Xi'an Jiaotong University

Jensen's inequality

$$\begin{split} \sum_{i=1}^{k} p_{i} f(x_{i}) &= p_{k} f(x_{k}) + (1 - p_{k}) \sum_{i=1}^{k-1} p'_{i} f(x_{i}) \\ &\geq p_{k} f(x_{k}) + (1 - p_{k}) f\left(\sum_{i=1}^{k-1} p'_{i} x_{i}\right) \\ &\geq f\left(p_{k} x_{k} + (1 - p_{k}) \sum_{i=1}^{k-1} p'_{i} x_{i}\right) \\ &= f\left(\sum_{i=1}^{k} p_{i} x_{i}\right), \end{split}$$

Xi'an Jiaotong University

Jensen's inequality

$$I(X;Y) \geq 0$$

• Proof:

$$-I(X;Y) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x)p(y)}{p(x,y)}$$

$$\leq \log \sum_{x} \sum_{y} p(x,y) \frac{p(x)p(y)}{p(x,y)} = \log \sum_{x} \sum_{y} p(x)p(y) = 0$$

• Equation holds when $\frac{p(x)p(y)}{p(x,y)} = c \Rightarrow p(x,y) = p(x)p(y)$

Xi'an Jiaotong University

The convexity of mutual information

• Theorem 2.7.4 Let $(X,Y) \sim p(x,y)$. The mutual information I(X;Y) is a cap function of p(x).

$$\overline{Q} = [Q(1), \dots Q(K)] \quad I(X;Y) = \sum_{x,y} Q(x)p(y \mid x) \log \frac{p(y \mid x)}{\sum_{z} Q(z)p(y \mid z)}$$
• Proof: Let $I(X;Y) = f(\overline{Q})$

• Two distributions $\overline{Q}_1,\overline{Q}_2$ $P_1(x,y)=Q(x)p(y|x)$ $P_2(x,y)=Q(x)p(y|x)$

$$P_{1}(y) = \sum_{y} P_{1}(x, y) \qquad P_{2}(y) = \sum_{y} P_{2}(x, y)$$
• Define a new distribution $\overline{Q} = \theta \overline{Q}_{1} + (1-\theta) \overline{Q}_{2}$

$$P(x, y) = Q(x) p(y | x) = \theta P_{1}(x, y) + (1-\theta) P_{2}(x, y)$$

· We need to prove

$$\theta f(\overline{Q}_1) + (1-\theta) f(\overline{Q}_2) \le f[\theta \overline{Q}_1 + (1-\theta)\overline{Q}_2]$$

The convexity of mutual information

$$\begin{split} \mathcal{G}(\overline{Q}) + (1-\theta)f(\overline{Q}) - f(\overline{Q}) &= \sum_{x,y} P_1(x,y) \log \frac{p(y|x)}{P_1(y)} + \sum_{x,y} (1-\theta)P_2(x,y) \log \frac{p(y|x)}{P_2(y)} \\ &- \sum_{x,y} \left[\theta P_1(x,y) + (1-\theta)P_2(x,y)\right] \log \frac{p(y|x)}{P(y)} \\ &= \theta \sum_{x,y} P_1(x,y) \log \frac{P(y)}{P_1(y)} + (1-\theta) \sum_{x,y} P_2(x,y) \log \frac{P(y)}{P_2(y)} \\ &\leq 0 \end{split}$$

Xi'an Jiaotong University

Summary

Entropy

$$H(X) = -\sum_{x} p(x) \log p(x)$$

- Source
- · Joint entropy and conditional entropy

$$H(X,Y) = -\sum_{x} \sum_{y} p(x,y) \log p(x,y)$$

 $H(Y \mid X) = \stackrel{x}{-} E \log p(Y \mid X)$

• Chain rule

$$H(X,Y) = H(X) + H(Y \mid X)$$

Xi'an Jiaotong University

The convexity of mutual information

- · Another proof
- $I(X;Y)=H(Y)-H(Y|X)=H(Y)-\sum p(x)H(Y|X=x)$
- Because p(y|x) is fixed, p(y) is a linear function of p(x)
- H(Y) is a cup function of p(y), is also a cap function of p(x).
- -H(Y|X) is a linear function of p(x).
- Hence, I(X;Y) is a cap function of p(x).

Xi'an Jiaotong University

Summary

- Channel
- Two circles
- · Mutual information

$$I(X;Y) = \sum_{x} \sum_{y} p(x, y) \log \frac{p(y \mid x)}{p(y)}$$

- · Some Inequalities
 - Jensen's inequality $Ef(X) \ge f(EX)$
 - $H(X) \le \log |x|$ $I(X;Y) \ge 0$
 - -H(X) is a cap function of p(x)
 - -I(X;Y) is a cap function of p(x)