Boletín Colombiano de Biología Evolutiva

Volumen 9 • Número 1 • 2021

ISSN 2500-6762 (En línea) Bogotá, Colombia

Editores

Fabián C. Salgado-Roa University of Melbourne

Maria Camila Jaramillo Moncada Universidad de Caldas

Comité Científico

Alejandra Vasco Botanical Research Institute of Texas

Alejandro Berrío Duke University

Ana L. Caicedo University of Massachusetts Amherst

Andrés L. Cárdenas-Rozo Universidad EAFIT

Andrés Cortés Göteborgs Universitet

Andrew J. Crawford Universidad de los Andes

Bibiana Rojas University of Jyväskylä

Camilo Salazar Universidad del Rosario

Carlos F. Arias Mejia Smithsonian Tropical Research Institute

Carlos Daniel Cadena Universidad de los Andes

Carlos E. Guarnizo Universidad de los Andes

Carlos A. Machado University of Maryland

Carlos A. Navas Universidade de São Paulo

Carolina Pardo-Díaz Universidad del Rosario

Catalina Pimiento Museum für Naturkunde Berlin

Daniel R. Matute University of North Carolina, Chapel Hill

Daniel Rafael Miranda-Esquivel Universidad Industrial de Santander

Daniel Ortiz-Barrientos University of Queensland

Federico D. Brown Universidade de São Paulo

Felipe Zapata University of California Los Angeles

Fernando Díaz University of Arizona

Gustavo A. Bravo Harvard University

Héctor E. Ramírez-Chavez Universidad de Caldas

Hernán Burbano Max Planck Institute for Developmental Biology

Iván Darío Soto-Calderón Universidad de Antioquia

Ivania Cerón Souza CORPOICA

Javier Alejandro Maldonado Ocampo Pontificia Universidad Javeriana

Jeffrey Wilson Mantilla University of Michigan

Jose Tavera Universidad del Valle

Juan C. Chacón-Duque University College London

Juan Diego Gaitán-Espitia University of Hong Kong

Juan M. Daza Universidad de Antioquia

Juan Nicolás Malagón University of Toronto

Juan Sebastián Escobar Centro de Investigación Vidarium

Julián Aguirre-Santoro Instituto Humboldt

Mailyn A. Gonzalez Instituto Humboldt

Margarita M. López-Uribe Pennsylvania State University

María Ángela Echeverry-Galvis Pontificia Universidad Javeriana

María del Rosario Castañeda Instituto Humboldt

Maryam Chaib De Mares

Rijksuniversiteit Groningen

Mauricio Rivera-Correa

Universidad de Antioquia

Mónica Medina Pennsylvania State University

Natalia Pabón Mora Universidad de Antioquia

Natasha I. Bloch University College London

Rafael F. Guerrero Indiana University

Raul Sedano Universidad del Valle

Ricardo Mallarino University of Princeton

Santiago Herrera Lehigh University

Santiago Ramírez University of California Davis

Sergio A. Muñoz-Gómez Dalhousie University

Simon Uribe-Convers University of Michigan

Tatiana Arias Corporación para Investigaciones Biológicas

Víctor Hugo García Merchan Universidad del Quindío

Y. Franchesco Molina Henao Harvard University Universidad de Caldas

Edición Gráfica

Maria Camila Jaramillo Moncada

Portada: Ericaceae Sthepany Quintero, 2021

Contenido

Nota Editorial	6
Bienvenida nueva Junta Directiva	6
Editorial Nacional	7
Los fósiles faltantes en la evolución de la biota Neotropical	7
Editorial internacional	9
Science in Brazil: a call for resistance	9
Ciencia en Brasil: Un llamado a la resistencia	11
Reconocimientos	13
Ciencia Criolla	14
Una inusual simbiosis doblemente fotosintética	14
¿Cómo hacer que un roedor sea gigante?	17
Investigar en Colombia	19
Re-expedición Colombia – Un sueño compartido	19
Biodiversidad	.23
Medio siglo después, un nuevo roedor endémico fue descubierto en las montañas	de
Colombia	.23
Una nueva planta fósil para Colombia	24
Desarrollos Computacionales	.25
Phylogenetic Permulations: Midiendo asociaciones estadísticas en un contexto filogenético	25

¿Son los genes linaje-específicos realmente nuevos?	25
Artículos Recomendados	27
Evolución humana	27
Evolución del comportamiento	27
Ecología Evolutiva	28
EvoDevo	29
Genética Evolutiva	29
Sistemática	30
Paleontología Evolutiva	31
Eventos Académicos	32
Population, Evolutionary, and Quantitative Genetics Conference 2022	32
Evolution Meeting 2022	32
Society for Molecular Biology and Evolution Meeting 2022	32
Congress of the European Society for Evolutionary Biology 2022	32

Nota Editorial

Bienvenida nueva Junta Directiva

Fabián C. Salgado-Roa 🔰 University of Melbourne

Este año COLEVOL tuvo un cambio mayor: se renovó la Junta Directiva. Aquella que vio crecer la asociación después de verla nacer como red. Es inevitable (y necesario) que estos cambios sucedan, y en nombre de los demás miembros de la junta queremos agradecer a

todos los miembros por el apoyo recibido en las actividades que gestionamos para promover el estudio de la biología evolutiva. Felicitamos y deseamos muchos éxitos a los nuevos miembros de la junta, listados a continuación:

Junta Directiva Asociación Colombiana de Biología Evolutiva 2022

Presidente: Sebastián C. Espejo Agudelo 🔰

Secretario: Edwin A. Hurtado Pimiento

Tesorero: Héctor M. Martínez Arango

Vocales: Maria del Rosario Castañeda Prada 🔰

Karen Amparo Meneses

Lina Peña

Editorial Nacional

Los fósiles faltantes en la evolución de la biota Neotropical

Edwin Cadena 🔰 Universidad del Rosario

El registro fósil de plantas y animales en el norte de Suramérica son claves para entender el origen de la actual biodiversidad, así como su evolución a través del tiempo geológico. En las dos últimas décadas los nuevos descubrimientos fósiles y la publicación de estos ha mostrado un incremento significativo en nuestro país, todo esto resultado de un aumento en el número de paleontólogos colombianos desarrollando una actividad continua y altamente productiva en el país. Todo este esfuerzo y producción académica nos ha mostrado un nuevo y fascinante conocimiento: como es el caso de un mejor entendimiento del origen del bosque Neotropical durante el Paleoceno (artículo resaltado en la sección artículos recomendados), los cambios faunísticos producto de eventos como la extinción del Cretácico-Paleogeno, el levantamiento de los Andes, y el cierre del Istmo de Panamá; así como el descubrimiento de especies extintas con morfologías sorprendentes como los enormes

ojos del cangrejo *Callichimaera perplexa* y los masivos cuernos del caparazón de la gigante tortuga *Stupendemys geographicus*.

todos de estos recientes pesar descubrimientos, muchos de ellos dados localidades fosilíferas como nuevas Castilletes en la Guajira, y en los alrededores de Bogotá y en lugares con un reconocimiento paleontológico previo como la Tatacoa en el Huila, Zapatoca en Santander, Villa de Leyva en Boyacá y Pubenza en Cundinamarca; hay intervalos del tiempo geológico que siguen siendo un enigma o pobremente conocidos en cuanto a su registro fósil, y se convierten en piezas faltantes para poder completar el rompecabezas de la evolución de la biota Neotropical, particularmente durante el Cenozoico (los últimos 66 millones de años). El primero de estos grandes vacíos corresponde al registro fósil del Oligoceno (33.9 a 23.03 millones de años), un intervalo durante el cual el planeta experimentó un enfriamiento considerable y cuyo efecto sobre las faunas del norte de Suramérica sigue siendo totalmente desconocido. Preguntas sin una respuesta clara incluyen: ¿Cuál fue el efecto de este enfriamiento global sobre gigantismo de los reptiles tropicales evidenciado durante el Paleoceno y Eoceno? ¿Fueron estos vertebrados resilientes y mantuvieron la tendencia?, o ¿Por el contrario redujeron su tamaño o incluso se extinguieron? ¿Puede la diversidad de mamíferos observada durante el Mioceno en lugares como la Tatacoa, Castilletes, y Urumaco en Venezuela tener ancestralidad oligocénica?

Un segundo intervalo que deberá seguir siendo prioritario en la actividad paleontológica colombiana, es la búsqueda de nuevas localidades y fósiles del Plioceno (5.33 a 2.58 millones de años). Estos posibles descubrimientos serán claves no solo para soportar todo lo que la biología evolutiva nos ha enseñado y propuesto sobre el Great American Biotic Interchange (GABI); sino también para entender la respuesta que la fauna y flora tropical tuvieron ante uno de los eventos de calentamiento global más similares al que actualmente vive nuestro planeta y que ocurrió

hace 3 millones de años; tiempo para el cual el Istmo de Panamá, los Andes colombianos y las cuencas de los grandes ríos Amazonas, Orinoco y Magdalena ya tenían la configuración actual.

Respuestas interrogantes arriba los mencionados y a muchas otras preguntas sobre la biota Neotropical durante el Oligoceno y Plioceno esperan por ser develadas, y esfuerzos por explorar regiones con rocas de estas edades particularmente en la Cuenca del Río Magdalena y la región Caribe deberán incrementarse, aprovechando por ejemplo, el desarrollo de infraestructura vial o la actividad minera que usualmente exponen secuencias de roca previamente cubiertas por vegetación, intentando obtener un beneficio científico de actividades que sin duda tienen una dualidad en su actuar. Un mejor conocimiento de las faunas y floras oligocénicas y pliocénicas podrá abrir la puerta a nuevos estudios macroevolutivos de la biota Neotropical con una mejor evidencia basada en el registro fósil. Así que animo a todos los paleontólogos y biólogos evolutivos a proponer proyectos y desarrollar expediciones en rocas de estas edades.

Melastomataceae guerinii Sthepany Quintero, 2021

Editorial internacional

Science in Brazil: a call for resistance

Defunding, negationism and discrediting of the scientific method now threaten the future of a community that has worked for decades to achieve high international prestige.

Vera Nisaka Solferini 🔰 Universidade Estadual de Campinas

Accepting the invitation to write an overview about budgets for Science in Brazil meant facing two very difficult tasks. The first one, was to summarize our current scenario and working environment; the second one, even more daunting, was assessing the consequences this poses to our future.

Science workers are used to analyzing data, so my first step was to look into numbers that help paint a picture of what science is facing in Brazil today.

In summary, for a long time we have been defunded. The budget allocated for investments from our Ministry of Science, Technology and Innovation was dramatically cut - dropping from around 11,5 billion reais in 2013, to 6,5 billion in 2017 and to mere 1,87 billion in 2021 (numbers corrected according to inflation rates).

The cut reflects directly into the budget of Brazil's main funding agency, CNPQ. With the scarcity of resources, the agency has struggled to pay ongoing projects and fellowships, hardly being able to support new proposals. Another important funding agency, FINEP, which manages the FNDCT (funds from different economic activities such as petroleum, energy, health, etc), had more than 90% of its funds blocked by the government.

Sadly, budget limitations are only part of a much bigger problem compromising the performance of scientific efforts in Brazil: the overall discrediting of science.

For years now, scientific and academic institutions in our country have been the target of smearing comments from our government. Universities have been described by high authorities as places housing mainly "illegal and immoral activities" and where students are "indoctrinated" to "inappropriate topics" such as "socialism",

gender discussions and freedom of thinking.

The Covid-19 pandemic has aggravated this already absurd scenario of negationism of scientific evidence. Fake news, mostly regarding the virus and the vaccine, are echoed by some of our highest governmental authorities and endorsed by a handful of doctors and professors. They have been spreading like quickfire.

The future of our academia is also jeopardized. At CAPES, the agency that regulates and evaluates graduate courses in Brazil, recently 114 professionals resigned - including area coordinators that academics - due to several difficulties in the process of course evaluation. It is redundant to mention how crucial graduate courses are for Brazilian academic and scientific production.

Despite all this, science in Brazil has been resilient; in the ranking of scientific publications Brazil occupies the 13st position, which means 3% of the world's scientific production in the period of 2015-2020. Of course, this is the result of decades of investments in science and technology that promoted the consolidation of research institutions and regulatory and funding agencies.

Now, we keep asking ourselves: what will the consequences of these times be? And for how long will science resist?

Main sources:

https://revistapesquisa.fapesp.br/ciencia-a-mingua/

https://jornal.usp.br/universidade/politicascientificas/dados-mostram-que-cienciabrasileira-e-resiliente-mas-esta-no-limite/

Ranitomeya toraro Km 10 Leticia **Marco Gonzáles Santoro**, 2021

Ciencia en Brasil: Un llamado a la resistencia

La desfinanciación, el negacionismo y el descrédito del método científico amenazan ahora el futuro de una comunidad que ha trabajado durante décadas para alcanzar un gran prestigio internacional.

Aceptar la invitación para escribir una reseña sobre los presupuestos para la Ciencia en Brasil significó enfrentar dos tareas muy difíciles. La primera, fue resumir nuestro escenario y entorno de trabajo actuales; la segunda, aún más desalentadora, fue evaluar las consecuencias que esto supone para nuestro futuro.

Los trabajadores de la ciencia están acostumbrados a analizar datos, así que mi primer paso fue buscar en los números que ayudan a pintar un cuadro de lo que la ciencia está enfrentando en Brasil hoy.

En resumen, durante mucho tiempo hemos estado desfinanciados. El presupuesto asignado a las inversiones de nuestro Ministerio de Ciencia, Tecnología e Innovación se recortó drásticamente, pasando de unos 11.500 millones de reales en 2013, a 6.500 millones en 2017 y a apenas 1.870 millones en 2021 (cifras corregidas según las tasas de inflación).

El recorte se refleja directamente en el presupuesto del principal organismo de financiación de Brasil, el CNPQ. Con la escasez de recursos, la agencia ha tenido

problemas para pagar los proyectos en curso y las becas, y apenas ha podido apoyar nuevas propuestas de investigación. Otra importante agencia de financiación, FINEP, que gestiona el FNDCT (fondos procedentes de diferentes actividades económicas como el petróleo, la energía, la sanidad, etc.), tuvo más del 90% de sus fondos bloqueados por el gobierno.

Lamentablemente, las limitaciones presupuestarias son sólo una parte de un problema mucho mayor que compromete el desempeño de los esfuerzos científicos en Brasil: el descrédito general de la ciencia.

Desde hace años, las instituciones científicas y académicas de nuestro país son objeto de comentarios difamatorios por parte de nuestro gobierno. Las universidades han sido descritas por las altas autoridades como lugares que albergan principalmente "actividades ilegales e inmorales" y donde los estudiantes son "adoctrinados" en "temas inapropiados" como el "socialismo", las discusiones de género y la libertad de pensamiento.

La pandemia del Covid-19 ha agravado este

ya absurdo escenario de negacionismo de la evidencia científica. Las noticias falsas, en su mayoría relacionadas con el virus y la vacuna, tienen el eco de algunas de nuestras más altas autoridades gubernamentales y el respaldo de un puñado de médicos y profesores. Se han extendido como un fuego rápido.

El futuro de nuestro mundo académico también está en peligro. En la CAPES, la agencia que regula y evalúa los cursos de posgrado en Brasil, recientemente renunciaron 114 profesionales - incluyendo coordinadores de área que académicos - debido a varias dificultades en el proceso de evaluación de los cursos. Es redundante mencionar lo crucial que son los cursos de posgrado para la producción académica y científica brasileña. A pesar de todo esto, la ciencia en Brasil ha resistido; en el ranking de publicaciones científicas Brasil ocupa la 13^a posición, lo que significa el 3% de la producción científica mundial en el período 2015-2020. Por supuesto, esto es el resultado de décadas de inversiones en ciencia y tecnología que promovieron la consolidación de las instituciones de investigación y los organismos de regulación y financiación.

Ahora, nos seguimos preguntando: ¿cuáles serán las consecuencias de estos tiempos? ¿Y durante cuánto tiempo resistirá la ciencia?

*Traducción hecha por los editores de este boletín

Florisuga mellivora Lia Altamirano, 2021

Boletín Colombiano de Biología

Reconocimientos

Juan David Carrillo 💆

Juan David Carrillo recibió el premio Jackson-Knowlton, entregado por el Instituto Smithsonian, por su investigación sobre el origen de los mamíferos sudamericanos explorando fósiles asociados al Gran Intercambio Biótico Americano después de la formación del istmo de Panamá.

Stefany Moreno Gamez

Stefany Moreno Gamez fue galardonada con el premio John Maynard Smith Prize 2021 por la European Society for Evolutionary Biology (ESEB). Este premio le fue otorgado por su investigación sobre las dinámicas ecológicas y evolutivas de comunidades bacterianas en respuesta a antibióticos.

Ciencia Criolla

Una inusual simbiosis doblemente fotosintética

Sergio A. Muñoz-Gómez **W** Université Paris-Saclay

La simbiosis es 'el vivir juntos' o la asociación física a largo plazo de dos o más organismos de diferentes especies. Es un fenómeno relativamente común en la naturaleza. Los seres humanos, al igual que muchos otros animales con intestinos, tenemos una microbiota o 'flora' intestinal que nos ayuda a digerir alimentos consumidos o producir algunas vitaminas que necesitamos. Muchas plantas terrestres tienen sus raíces asociadas llamados hongos consorcios con en 'micorrizas'. En estas asociaciones, la planta transfiere azúcares al hongo, mientras que el hongo le provee minerales, como fósforo, a la planta. Algunas simbiosis ocurrieron hace tanto tiempo, y resultaron en tal nivel de integración entre los 'compañeros', que eventualmente llevaron al origen de organelas celulares, como la mitocondria y los cloroplastos.

Las plantas y algas actuales, ambas compuestas de células eucarióticas, son organismos fotosintéticos cuyos ancestros heterotróficos domesticaron una cianobacteria. Los ecosistemas terrestres y la mayoría de los ecosistemas acuáticos actuales dependen de la fotosíntesis oxigénica realizada por las cianobacterias, algas y plantas. La fotosíntesis les permite a estos organismos utilizar la energía de la luz solar para producir su propio alimento en forma de azúcares, y liberar oxígeno al ambiente como desecho. Sin embargo, existen varios grupos de bacterias anaeróbicas que realizan fotosíntesis anoxigénica (por ejemplo, bacterias púrpuras y verdes del azufre), es decir, extraen energía de la luz solar pero no liberan oxígeno como desecho. Mientras (foto)simbiosis con fotosintetizadores las oxigénicos son bien conocidas y están ampliamente distribuidas ambientes en diversos, aquellas con fotosintetizadores anoxigénicos son extremadamente raras.

La única (foto)simbiosis que se conoce entre un eucariota heterotrófico y una bacteria fotosintética anoxigénica fue descrita por los ecólogos Tom Fenchel y Catherine Bernard en 1993 y publicada en las páginas de la revista Nature. Estos autores encontraron que un protista ciliado llamado Strombidium purpureum, que se encuentra en las 'playas púrpuras' de la bahía de Nivå en Dinamarca, tenía un color púrpura debido a la presencia de simbiontes bacterianos en su citoplasma (Fenchel & Bernard, 1993). Fenchel y Bernard sugirieron que esta simbios ispodría en señarnos algo sobre el origen de la mitocondria, ya que algunos autores habían previamente sugerido que la mitocondria evolucionó a partir de una bacteria púrpura dentro de un hospedero anaeróbico (vease Muñoz-Gómez et al., 2017). Esta es la razón por la que inicialmente me interesé en simbiosis púrpuras durante mis estudios doctorales sobre el origen de la mitocondria en Dalhousie University en Canadá. Sebastian Hess, un amigo y colega alemán que se encontraba haciendo una estancia postdoctoral en Dalhousie University, me comentó sobre la existencia de un consorcio simbiótico aún más inusual que S. purpureum. Este otro protista ciliado, llamado Pseudoblepharisma tenue, fue descubierto por el profesor de colegio y naturalista Alfred Kahl en 1926 (Kahl, 1926). Lo más curioso acerca de esta (foto)simbiosis es que es una combinación

de bacterias púrpuras y algas verdes dentro de un mismo hospedero. Esta combinación de simbiontes es algo paradójica ya que las algas verdes liberan oxígeno como desecho fotosintético, mientras las bacterias púrpuras solo pueden realizar su fotosíntesis anoxigénica en la ausencia de oxígeno. ¿Cómo hace *P. tenue* para hospedar dos (endo)simbiontes fotosintéticos con fisiologías tan diferentes?

Para responder a esta pregunta decidimos combinar microscopía óptica, microscopía electrónica. análisis metagenómicos inferencias metabólicas (Muñoz-Gómez et al., 2021). Nuestros análisis revelaron que el hospedero hace parte de un grupo de ciliados Heterotrichea cuyos miembros, llamado además de respirar aeróbicamente, tienen capacidad de realizar fermentación mitocondrial en condiciones de poco oxígeno; el simbionte verde pertenece al género Chlorella de algas verdes, bien conocido por ser contener simbiontes de otros eucariotas, y poseer una gran versatilidad metabólica que incluye fotosíntesis, respiración aeróbica y fermentación; el simbionte púrpura evolucionó a partir de un linaje de bacterias púrpuras del azufre, el grupo Chromatiaceae, y ha perdido la capacidad de oxidar sulfuro de hidrógeno como fuente de electrones. En cambio, el simbionte púrpura puede obtener electrones a partir de compuestos orgánicos de bajo peso molecular excretados por el hospedero, o del hidrógeno liberado por el simbionte verde. La versatilidad metabólica preexistente de cada compañero simbiótico y la reducción y especialización metabólica del simbionte púrpura fue crucial para la coexistencia armoniosa de estos tres organismos. Estas observaciones metabólicas, junto a las observaciones de los microambientes que *P. tenue* prefiere, nos permitieron concluir que *P. tenue* combina fotosíntesis anoxigénica y depredación fagotrófica en sedimentos pobres en oxígeno (Muñoz-Gómez et al., 2021).

Nuestro estudio representa el primer paso para entender a este inusual consorcio simbiótico tripartito. Sin embargo, varias preguntas permanecen sin responder. Por ejemplo, ¿Por qué son las (foto)simbiosis púrpuras tan extraordinariamente raras en la naturaleza? o ¿Cómo evolucionó la simbiosis púrpura de *P. tenue*? Actualmente nos encontramos estudiando la fisiología de *P. tenue* bajo diferentes condiciones ambientales, al igual que especies cercanamente relacionadas a *P. tenue* recientemente descubiertas que nos podrían informar sobre el origen evolutivo de este inusual consorcio simbiótico.

Referencias

Fenchel, T., & Bernard, C. (1993). A purple protist. Nature, 362(6418), 300–300. https://doi.org/10.1038/362300a0

Kahl, A. (1926). Neue und wenig bekannte Formen der holotrichen und heterotrichen Ciliaten. Archiv. Protistenk., 55, 197–438.

Muñoz-Gómez, S. A., Kreutz, M., & Hess, S. (2021). A microbial eukaryote with a combination unique of purple bacteria endosymbionts. and green algae as Science Advances. 7(24),eabg4102. https://doi.org/10.1126/sciadv.abg4102

Muñoz-Gómez, S. A., Wideman, J. G., Roger, A. J., & Slamovits, C. H. (2017). The Origin of Mitochondrial Cristae from Alphaproteobacteria. Molecular Biology and Evolution, 34(4), 943–956. https://doi.org/10.1093/molbev/msw298

¿Cómo hacer que un roedor sea gigante?

Santiago Herrera-Alvarez Vuniversity of Chicago

El tamaño corporal es uno de los rasgos con mayor variación en la naturaleza. En mamíferos, por ejemplo, el tamaño corporal varía en cerca de 8 órdenes de magnitud. Sin embargo, los mecanismos genéticos y ontogenéticos que causan la variación en el tamaño corporal permanecen desconocidos para la mayoría de las especies.

Uno de los extremos de la variación en tamaño corporal particularmente interesante es el gigantismo pues la existencia de animales gigantes representa una paradoja evolutiva. Por un lado, animales grandes tienen más células que animales pequeños. Esto sugiere que los animales grandes deberían tener un riesgo más elevado de cáncer y por lo tanto una tasa de mortalidad individual más alta que animales pequeños.

Por otro lado, el tamaño corporal promedio de una especie está correlacionado negativamente con el tamaño poblacional, es decir, especies de tamaño grande suelen tener poblaciones pequeñas. En poblaciones pequeñas la deriva genética predomina sobre la selección natural

purificadora causando que las mutaciones levemente deletéreas se acumulen a una tasa más alta que en poblaciones grandes. Esta acumulación de mutaciones deletéreas se conoce como carga mutacional y hace a las poblaciones vulnerables a extinguirse.

Dada esta aparente contradicción, quisimos abordar la siguiente pregunta: ¿Cuáles son los procesos genéticos, ontogenéticos y poblacionales asociados a la evolución de tamaños corporales extremos? Para responderla nuestro estudio se enfocó en la evolución del gigantismo en el chigüiro, el roedor vivo más grande del mundo, mediante una perspectiva filogenética y genómica.

Primero, encontramos que el chigüiro posiblemente evolucionó de una especie ancestral (~18 MA) que pesaba alrededor de 1 kg y posteriormente ocurrió un incremento en la tasa de evolución del tamaño corporal resultando en el tamaño extremo actual de 55 kg.

Para entender las consecuencias poblacionales del rápido incremento en el tamaño corporal,

estimamos la carga mutacional a lo largo del genoma para 15 especies de roedores. Encontramos que la carga mutational aumenta con el tamaño corporal, y el chigüiro presenta la carga mutacional más alta, sugiriendo que el aumento en el tamaño corporal causa una reducción en el tamaño efectivo poblacional, afectando las tasas de substitución genómica.

En cuanto al tamaño corporal, nuestro estudio reveló posibles mecanismos genéticos y ontogenéticos relacionados con el aumento en el tamaño corporal en el chigüiro. Identificamos varios genes que controlan la regulación del crecimiento óseo postnatal y el desarrollo musculo-esquelético, que son claves para las modificaciones anatómicas y ontogenéticas requeridas para generar

un aumento del tamaño corporal. Además, nuestros análisis sugieren que los mecanismos involucrados en la evolución y regulación del tamaño corporal también están asociados al cáncer pues ambos procesos comparten un mecanismo básico: proliferación celular. En efecto, encontramos también una posible nuevo mecanismo anti-cáncer que implica la supresión de tumores por medio del sistema inmune, ofreciendo una posible resolución al aumento del riesgo de cáncer en este linaje.

Finalmente, nuestro estudio proporciona una visión a nivel genómico de la evolución de un fenotipo complejo y extremo, ofreciendo una perspectiva sobre cómo la interacción entre procesos poblacionales y ontogenéticos moldean la diversidad fenotípica.

Investigar en Colombia

Re-expedición Colombia - Un sueño compartido

Natalia Ocampo-Peñuela University of California Santa Cruz www.nocampopenuela.com

Hace más de un siglo andaban a caballo, de a pie, y en barco por los territorios colombianos estudiando las aves los expedicionarios estadounidenses liderados por el curador de aves del Museo Americano de Historia Natural (AMNH por sus siglas en inglés) Frank M. Chapman (Chapman 1917). El equipo estaba compuesto en su totalidad por hombres blancos y poco reconocimiento fue dado a los incontables colombianos que participaron informalmente en estas expediciones como ornitólogos locales, colectores de aves, entre otros. La información recopilada por estas expediciones históricas es valiosísima y ha permitido la descripción de nuevas especies, la identificación de patrones biogeográficos y evolutivos, y el estudio del estado de conservación de nuestras aves (e.g. Kattan 1994, Gómez et al 2021A), entre muchas otras ideas (Kattan et al. 2016).

Esos mismos caminos ahora son recorridos por el equipo de las "Expediciones BIO Alas, cantos y colores" en seis localidades de Colombia. Pero los expedicionarios modernos son muy distintos a aquellos de 1900s. Mujeres y hombres colombianos, expertos locales, ornitólogos en entramiento, y profesionales sociales conforman el equipo contemporáneo. Contrario a las expediciones helicóptero que hace un siglo llegaban al territorio, extraían especímenes, y partían; nuestras

expediciones son más inclusivas y completas. Son lideradas por científicas y científicos colombianos de instituciones nacionales e incluyen un componente de colaboración con organizaciones estadounidenses. Hemos diseñado expediciones que pueden ser un modelo a seguir por otros colombianos y extranjeros. Éstas incluyen una presalida con énfasis social, una expedición respetuosa de su entorno y comunidades, unos talleres de diálogo y apropiación social, y un modelo comunitario de aviturismo que brindará una alternativa económica a algunas comunidades de las

localidades estudiadas (Gómez et al. 2021B).

El sueño de hacer estas re-expediciones en nuestro territorio, que empezó con las andanzas e investigaciones del profesor Gustavo Kattan QEPD, hoy tiene un hogar en el programa "Re-expedición Colombia". Este programa pretende ser una sombrilla para las incontables ideas e investigaciones que surgen del privilegio de tener datos históricos para comparar con aquellos recopilados en el presente, y para programar futuras expediciones de manera estandarizada. Las

"Expediciones BIO Alas, cantos y colores" son el segundo proyecto que vive bajo este dosel de "Re-expedición Colombia" y nos ha permitido explorar un poco de la inmensa diversidad de aves de nuestra Colombia.

Las expediciones que hemos hecho en el bosque andino y alto-andino, el bosque seco, y la selva húmeda tropical han sido inolvidables. En algunos lugares, como en Barbacoas (Nariño) encontramos bosques que se asemejan a aquellos estudiados por los expedicionarios de hace un siglo. Pero esta situación es la menos común. En la mayoría de las localidades, requerimos de intensivas exploraciones para buscar remanentes del ecosistema original, y encontramos pequeños fragmentos que sobreviven en una matriz de paisaje transformado. La información que recopilamos durante estas expediciones nos permite investigar cómo han cambiado las poblaciones de aves en respuesta a más de un siglo de transformaciones de sus hábitats y el clima. Este entendimiento nos permitirá evaluar el estado de conservación de las aves en el presente y planear mejores estrategias para su conservación en el futuro.

Personalmente me siento afortunada de poder investigar las aves de nuestro país en alianza

con ornitólogos colombianos, expertos locales, habitantes de las localidades, y colaboradores internacionales. Este sueño nos ha llevado a explorar lugares que son remotos y de difícil acceso, así como aquellos que están cerca y accesibles. Las incontables aves y experiencias que hemos vivido nos recuerdan que habitamos un país megadiverso, que tenemos una gran oportunidad de descubrir sus secretos naturales, así como una gran responsabilidad de conservar esta biodiversidad para los futuros habitantes. Esperamos también que estas expediciones inspiren las nuevas generaciones de científicas, expedicionarios, jy aprendices de las aves!

Enlaces recomendados

Documental "El país de las aves": https://www.youtube.com/watch?v=0sSVYa5HiQM&t=32s

Página web Colombia Resurvey Project: https://colombiaresurveyproject.com/

Referencias

Chapman, F. M. 1917. The distribution of bird life in Colombia. Bulletin of the American Museum of Natural History, 36, 1-169.

Gómez, C., Tenorio, E.A. and Cadena, C.D. 2021A. Change in avian functional fingerprints of a Neotropical montane forest over 100 years as

an indicator of ecosystem integrity. Conservation Biology, 35: 1552-1563. https://doi.org/10.1111/cobi.13714.

Gómez, C., C. D. Cadena, A. M. Cuervo, J. Díaz-Cárdenas, F. García-Cardona, N. Niño-Rodríguez, N. Ocampo-Peñuela, D. Ocampo, G. Seeholzer, A. Sierra-Ricaurte & J. Soto-Patiño. 2021B. Re-expedición Colombia: Entender el pasado para empoderar acciones que fortalezcan el conocimiento y conservación de las aves. Biota Colombiana (in press).

Kattan, G. H., Álvarez-López, H. & Giraldo, M. 199). Forest fragmentation and bird extinctions: San Antonio eighty years later. Conservation Biology, 8(1), 138-146.

Kattan, G. H., Tello, I. A. A., Giraldo, M. & Cadena, C. D. 2016. Neotropical bird evolution and 100 years of the enduring ideas of Frank M. Chapman. Biological Journal of the Linnean Society, 117(3), 407-413.

Biodiversidad

Medio siglo después, un nuevo roedor endémico fue descubierto en las montañas de Colombia

Neacomys serranensis es la nueva especie de roedor descrita para Colombia. El biólogo Javier Colmenares del Grupo de Estudios en Biodiversidad de la Universidad Industrial de Santander (UIS) encontró el espécimen durante las expediciones Santander BIO y Colombia científica realizadas en la Serranía de los Yarigüíes, un macizo aislado en el valle del Magdalena jurisdicción del departamento de Santander.

Al examinarlo corroboró la pertenencia al género *Neacomys*, que hasta el momento solo presentaba una especie presente para la región (*N. tenuipes* Thomas, 1900). Pero análisis morfológicos y filogenéticos indicaron la nueva identidad taxonómica del individuo. *N. serranensis* se caracteriza externamente por tener unos parches amplios de color naranja ocráceo en los lados del hocico y un pelaje ventral de color beige ocráceo de base gris, que lo diferencia de sus congéneres cuyo pelaje es de base blanco, además tiene la cola más larga que la longitud de la cabeza y el cuerpo juntas.

La especie se constituye así en un nuevo habitante de Nacional este Parque Natural. caracterizado alto por SU número especies de endémicas para Colombia, lo que confirma su fragilidad y lo hace merecer especial cuidado para su conservación dada su alta riqueza natural.

Referencias

Colmenares-Pinzón, JE. 2021. Calling for a reassessment of rodent diversity in Colombia: description of a new species of Neacomys (Cricetidae: Oryzomyini) from the Magdalena Valley, with a new phylogenetic hypothesis for the genus and comments on its diversification. Zootaxa 4920, 4:2. DOI: https://doi.org/10.11646/zootaxa.4920.4.1

Carlos Jiménez-Rivillas Instituto de Biología Integrativa de Sistemas, Universitat de València

Una nueva planta fósil para Colombia

Melastomataceae es una familia diversa en el Neotrópico con un registro fósil escaso. La distribución actual y las interpretaciones biogeográficas han propuesto el origen de la familia en Laurasia. Los autores describen *Xystonia simonae* con base en hojas fósiles del Paleoceno de Colombia. El epíteto específico honra a Simona Amaya, una heroína de la independencia, quien, vistiendo de hombre, comandó y murió en la Batalla del Pantano de Vargas. Estas hojas tienen un patrón de venación acródromo, característico de la subfamilia Melastomatoideae. La edad

y la ubicación Neotropical de *X. simonae* rechazan un origen laurasiático para esta subfamilia y entra en conflicto con edades obtenidas a partir de estimaciones moleculares. Este nuevo registro muestra que Melastomataceae era parte del Bosque lluvioso Neotropical desde el Paleoceno. Los daños foliares en *X. simonae* evidencian interacciones bióticas especializadas desde la evolución temprana de este linaje.

Alejandra Rodríguez-Abaúnza Ciencias Marinas y Limnología, Universidad Nacional Autónoma de México

Desarrollos Computacionales

Phylogenetic Permulations: Midiendo asociaciones estadísticas en un contexto filogenético

En la era genómica, uno de los principales objetivos es identificar asociaciones entre cambios genéticos y rasgos fenotípicos. La evolución convergente de fenotipos es una excelente oportunidad para detectar estas asociaciones genotipo-fenotipo. Sin embargo, la estructura filogenética, calidad del genoma, interacciones de genes, entre otros, pueden crear sesgos sistemáticos resultando en asociaciones incorrectas. Para solucionar no-independencia la estadística, Saputra et al. desarrollaron un método híbrido basado en permutaciones + simulaciones ("permulaciones") donde se crean distribuciones nulas de asociaciones genotipo-fenotipo, manteniendo la estructura filogenética original. Estas distribuciones nulas empíricas pueden luego utilizarse para calcular la significancia estadística de la asociación genotipo-fenotipo observada. Los métodos para detectar asociaciones genotipo-fenotipo y utilizar las permulaciones están implementados en el paquete de R RERconverge (https:// github.com/nclark-lab/RERconverge)

Saputra, E., Kowalczyk, A., Cusick, L., Clark, N., & Chikina, M. (2021). Phylogenetic Permulations: a statistically rigorous approach to measure confidence in associations in a phylogenetic context. Molecular Biology and Evolution, 38(7), 3004-3021.

¿Son los genes linaje-específicos realmente nuevos?

Los genes que solo pueden detectarse en un linaje, es decir, que no tienen secuencias homólogas en otros grupos, se denominan linaje-específicos. Usualmente, la presencia de estos genes se interpreta como el resultado de evolución "de novo" dentro de un linaje particular, sin embargo, Weisman et al., desarrollaron una hipótesis nula alternativa: los linaje-específicos SÍ tienen genes secuencias homólogas en otros grupos, pero su secuencia ha divergido lo suficiente para ser indetectables bajo los parámetros estándar para inferir homología. De hecho, los autores muestran que la medida de similitud de dos secuencias decae exponencialmente como función del tiempo de divergencia. Este modelo simple es suficiente para explicar la mayoría

de los genes linaje-específicos, y permite identificar casos especiales donde realmente ha ocurrido evolución de novo. Además, este método tiene implicaciones importantes para análisis filogenómicos pues permitiría incorporar matrices de datos más completas.

Weisman, C. M., Murray, A. W., & Eddy, S. R. (2020). Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS biology, 18(11), e3000862.

Santiago Herrera-Alvarez University of Chicago

Odocoileus virginianus Isabella Valencia, 2021

Boletín Colombiano de Brasilia Evolutiva Vol. 9

Artículos Recomendados

Evolución humana

Bonfante, B., Faux, P., Navarro, N., Mendoza-Revilla, J., Dubied, M., Montillot, C., ... Claudia Jaramillo, William Arias ... Gabriel Bedoya ... & Ruiz-Linares, A. (2021). A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan introgressed region in facial variation. Science Advances, 7(6), eabc6160. DOI: 10.1126/sciadv.abc6160

Usando datos del Consorcio para el Análisis de la Diversidad y Evolución de Latinoamérica (CANDELA), Bonfante colaboradores caracterizaron las bases genéticas de los rasgos faciales en Latinoamericanos. Los 59 rasgos faciales evaluados estuvieron asociados con 32 regiones genómicas, muchas de ellas situadas en regiones reguladoras del desarrollo craneofacial tardío. Uno de los hallazgos fue que el grosor de los labios está fuertemente influenciado por un fragmento de ADN, de origen Denisovano, que ha mostrado señales introgresión adaptativa humanos modernos. Este fragmento presenta una frecuencia baja en europeos, alta en asiáticos del este y está casi fija en amerindios.

Evolución del comportamiento

Carvaja-Castro JD, Vargas-Salinas F, Casas-Cardona S, Rojas B, Santos JC. Aposematism facilitates the diversification of parental care strategies in poison frogs. Scientific reports. DOI: 10.1038/s41598-021-97206-6

El cuidado parental en ranas ha evolucionado múltiples veces en diferentes grupos de manera independiente. Dentro de estos, se destacan las ranas venenosas de la familia Dendrobatidae, un linaje muy diverso en el que se encuentran numerosas especies con una gama de colores que va desde opacos poco llamativos, es decir crípticos, hasta especies muy coloridas o aposemáticas, que con sus colores indican una señal de peligro ante depredadores. Carvajal y colaboradores estudiaron cómo el aposematismo en las ranas de esta familia, les ha permitido desarrollar muy comportamientos reproductivos complejos, como el transporte de renacuajos a plantas que retienen agua (fitotelmas), cuidado parental por ambos progenitores y una reducción en el tamaño de postura, entre otros.

Ecología Evolutiva

Valencia-Montoya, W.A., Flaven, E., Pouzadoux, J., Imbert, E. and Cheptou, P.-O. (2021), Rapid divergent evolution of an annual plant across a latitudinal gradient revealed by seed resurrection. Evolution, 75: 2759-2772. https://doi.org/10.1111/evo.14364

En todo el planeta los ecosistemas están sufriendo diferentes cambios ambientales a una tasa acelerada, lo que se espera afecte a corto plazo la evolución de las poblaciones naturales de muchas especies. Valencia-Montoya y colaboradores exploraron si el reciente declive de polinizadores ha promovido la evolución de caracteres reproductivos y de crecimiento de la planta europea *Cyanus segetum*. Encontraron que en los últimos 20 años ha habido cambios en el tamaño de las plantas y las flores en respuesta a cambios ambientales. Esto sugiere que las poblaciones respondieron a selección natural en corto tiempo, siendo este un ejemplo de evolución contemporánea.

Christian C Morales, Juan P Gómez, Juan L Parra, Patterns of morphological differentiation within Manacus manacus (Aves: Pipridae) in Colombia: revisiting hypotheses of isolation and secondary contact, Biological Journal of the Linnean Society, Volume 134, Issue 4, December 2021, Pages 987–1002, https://doi.org/10.1093/biolinnean/blab106

Las zonas de contacto secundario son áreas geográficas donde especies estrechamente relacionadas se encuentran luego de divergir y estar aisladas. Morales y colaboradores exploraron la variación de distintas medidas morfológicas de las subespecies coloridas del ave Manacus manacus. Contrario a lo esperado, encontraron que la morfología no sigue una variación en forma de clina en las zonas de contacto, lo que sugiere que las subespecies no divergieron en morfología. Sin embargo, encontraron que la variación morfológica es explicada por la variación climática. Concluyendo que otros factores como dispersión y adaptación local pueden ser los responsables de diferenciación la entre subespecies.

EvoDevo

Zumajo-Cardona C., Pabon-Mora N., Ambrose B.A. 2021. The Evolution of euAPETALA2 Genes in Vascular Plants: From Plesiomorphic Roles in Sporangia to Acquired Functions in Ovules and Fruits. Molecular Biology and Evolution. DOI: https://doi.org/10.1093/molbev/msab027

APETALA2 (AP2 / ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR) es uno de los linajes de genes clave en el desarrollo flores, frutos y semillas. Zumajo-Cardona y colaboradores reconstruyeron la evolución del linaje euAPETALA2 (euAP2) en plantas vasculares y realizaron análisis de expresión espaciotemporal de sus homólogos en helechos. gimnospermas, angiospermas y Eudicotiledóneas temprano-divergentes basales. Las autoras proponen que los genes euAP2contribuyeron originalmente al desarrollo de esporas y esporangios, y posteriormente fueron reclutados para el desarrollo de óvulos, frutos y órganos florales. Además, como las proteínas euAP2 se encuentran altamente conservadas, los cambios funcionales de los homólogos en diferentes grupos de plantas durante el desarrollo posiblemente se deban a cambios en las regiones reguladoras.

Gutiérrez-Valencia J., Hughes PW., Berdan EL, Slotte T. 2021. The Genomic Architecture and Evolutionary Fates of Supergenes. Genome Biology and Evolution. DOI: https://doi.org/10.1093/gbe/evab057

Los supergenes son regiones genómicas que contienen conjuntos de loci estrechamente ligados que controlan polimorfismos fenotípicos de rasgos múltiples bajo selección equilibrada. Los autores hacen una síntesis de los trabajos más recientes, y gracias a simulaciones y comparaciones entre datos teóricos y empíricos demuestran cómo la arquitectura genómica de los supergenes afecta su destino evolutivo y la tasa de degeneración de los haplotipos de supergenes. Además, ejemplifican algunos supergenes involucrados en la formación de las colonias de hormigas, el desarrollo del mimetismo en mariposas y el desarrollo de la heterostilia en angiospermas.

Genética Evolutiva

Singhal, S., Derryberry, G.E., Bravo, G.A., Derryberry, E.P., Brumfield, R.T. and Harvey, M.G. (2021), The dynamics of introgression across an avian radiation. Evolution Letters, 5: 568-581. https://doi.org/10.1002/evl3.256

La hibridación puede causar un rol constructivo o destructivo en la evolución de la diversidad biológica. Homogenizando la

variación genética previniendo la especiación o facilitando nuevas combinaciones de genes de linajes divergentes. Singhal y colaboradores exploraron la prevalencia de la introgresión durante de la diversificación de más de 1300 especies de aves, evaluando su asociación con variables geográficas y climáticas. Encontraron que las señales de hibridación son más comunes entre linajes con distribuciones geográficas cercanas y en regiones que han sufrido variación climática desde Pleistoceno. Este estudio resalta la importancia de la introgresión en la evolución de la diversidad y su relación con factores climáticos y geográficos.

Medina, R., Wogan, G. O. U., Bi, K., Termignoni-García, F., Bernal, M. H., Jaramillo-Correa, J. P., Wang, I. J., & Vázquez-Domínguez, E. (2021). Phenotypic and genomic diversification with isolation by environmental ongelevational gradients in a neotropical treefrog. Molecular Ecology, 30, 4062–4076. https://doi.org/10.1111/mec.16035

La variación ecológica y geográfica pueden ser factores determinantes en los patrones locales de variación genética. Las montañas y los valles Andinos se caracterizan por tener paisajes heterogéneos en áreas reducidas. Medina y colaboradores evaluaron si el gradiente ambiental de la cordillera central de Colombia afecta las características genéticas, comportamentales y ecológicas de la rana

platanera *Boana platanera*. Hallaron que a mayores elevaciones sobre el nivel del mar esta especie es más grande y tiene llamados más largos. Estas diferencias fenotípicas se asocian con variantes genéticas que cambian en forma clina en relación con la elevación.

Sistemática

Calderón-Acevedo, C. A., Bagley, J. C., & Muchhala, N. (2021). Genome-wideultraconserved elements resolve phylogenetic relationships and biogeographic history among Neotropical leafnosed bats in the genus Anoura (Phyllostomidae). Molecular Phylogenetics and Evolution, 107356

El género Anoura se caracteriza por tener especies de murciélagos nectarívoros de las cuáles no se conocen bien sus límites o validez, y además las relaciones filogenéticas dentro del género han sido exploradas. Calderón-Acevedo poca colaboradores muestrearon múltiples variantes de nucleótidos simples (SNPs) de regiones genómicas ultra conservadas para resolver las relaciones filogenéticas dentro del género Anoura. Hallaron que la mayoría de las especies dentro del género comenzaron a diferenciarse hace 4 millones de años, que las especies de tamaños pequeños forman un grupo monofilético, y encontraron evidencia que sugiere que múltiples taxa no se pueden considerar como especies.

Paleontología Evolutiva

Shi G, Herrera F, Herendeen PS, Clark EG, Crane PR. 2021. Mesozoic cupules and the origin of the angiosperm second integument. Nature DOI: 10.1038/s41586-021-03598-w

Las plantas con cúpulas del Mesozoico son cruciales para comprender el origen de las angiospermas. Los autores analizan cúpulas fósiles encontradas en Mongolia (China) del Cretácico Inferior (125 millones de años). Este estudio plantea que las cúpulas dieron origen al segundo integumento, una capa que resguarda las semillas y que es una estructura única en las angiospermas actuales. Además, sugiere que los parientes fósiles más cercanos de las angiospermas (angiófitas) presentaban una considerable diversidad reproductiva.

Carvalho MR, Jaramillo C, De la Parra F, Caballero-Rodríguez D, Herrera F, Wing S, Turner BL, D'Apolito C, Romero-Báez M, Narváez P, Martínez C, Gutierrez M, Labandeira C, Rueda M, Paez-Reyes M, Cárdenas D, Duque A, Bayona G, Crowley JL, Santos C, Silvestro D. 2021. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science 372 (6537): 63–68 DOI: 10.1126/science.abf1969

El origen de las selvas tropicales modernas se

remonta al impacto del meteorito a finales del Cretácico (~ 66 millones de años). Los autores utilizaron polen y hojas fósiles para cuantificar la extinción de las plantas, caracterizar las interacciones entre plantas e insectos, y analizar los cambios en la composición y estructura de los bosques de Colombia. El evento catastrófico de finales del Cretácico desencadenó un largo intervalo de baja diversidad de plantas en el Neotrópico y la subsecuente evolución del bosque tropical moderno, el ecosistema terrestre más diverso en la actualidad.

Camilo MoralesUniversidad del Tolima

Camila Zapata Hernández Universidad de Caldas

Alejandra Rodriguez-Abaunza Universidad Nacional Autónoma de México

Fabián García Oviedo Universidade Federal do Pará

Yesenia Madrigal Universidad de Antioquia

Eventos Académicos

Population, Evolutionary, and Quantitative Genetics Conference 2022

7 - 10 de junio de 2022

Pacific Grove CA, USA

https://genetics-gsa.org/peqg-2022/

Congress of the European Society for Evolutionary Biology 2022

14 - 19 de agosto de 2022

Praga, República Checa

https://www.eseb2022.cz/

Evolution Meeting 2022

24 - 28 de junio de 2022

Cleveland OH, USA

https://www.evolutionmeetings.org/

Society for Molecular Biology and Evolution Meeting 2022

10 - 14 de julio de 2022

Auckland, Nueva Zelanda

http://smbe2020.org

