Physical Chemistry (Chem 132A)

Lecture 26 Wednesday, December 8

Homework 9 (last homework) Due on Saturday, December 9 Last homework of the quarter

Reminder: FINAL EXAM, DEC. 15,

8-10AM

Please Complete the Course Evaluations

Final Exam Logistics

Final exam: Friday, December 15, 8Am

The Exam will cover Chapters 1—6, 19, 20, 21a,b

- there will be a seating chart
- same procedures as the midterms
 1 page notes allowed (use both sides)
 bring calculator
- arrive by 8Am

Material Covered Before Midterm 1

- •Important definitions extensive, intensive, state functions, equation of state, closed system, open system, isolated system, reversible, adiabatic, etc.
- Heat(q) and work(w): sign of w
- $\Delta U = q + w$, dU = dq + dw
- First Law: internal energy of an isolated system is constant

• Heat capacity
$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$
 $C_p = \left(\frac{\partial H}{\partial T}\right)_p$ $q_v = C_v \Delta T$

•
$$\mathbf{H} = \mathbf{U} + \mathbf{p}\mathbf{V}$$

$$\Delta_r H^0 = \sum_{\text{Products}} v \Delta_f H^0 - \sum_{\text{Re actants}} v \Delta_f H^0$$

Material Covered before Midterm 1—page 2—

• Joule-Thompson expansions

$$\bullet \qquad dS = \frac{dq_{reversible}}{T}$$

$$\Delta S = \int_{i}^{f} \frac{dq_{rev}}{T}$$

- Second Law: "The Entropy of an isolated system increases in the course of a spontaneous change: $\Delta S_{total} > 0$ "
- for a phase transition: $\Delta_{trs}S = \frac{\Delta_{trs}H}{T_{trs}}$
 - $\Delta \mathbf{A} = \Delta \mathbf{U} \mathbf{T} \Delta \mathbf{S}$

For constant V&T ΔA negative is spontaneous

Material Covered Before Midterm 1—page 3_

• $\Delta G = \Delta H - T\Delta S$ For constant P&T ΔG negative is spontaneous

Note: quantities are for the SYSTEM

- Maxwell's relations
- fugacity
- phase boundaries in single component phase diagrams
- phase rule: F = 3 P (for single component system
- definition of 1st order and 2nd order phase transitions
 - $\ln\left(\frac{p}{p^*}\right) = -\frac{\Delta_{vap}H}{R}\left(\frac{1}{T} \frac{1}{T^*}\right)$ Clausius—Clapeyron Equation T dependence of vapor pressure

Important Topics Up to Midterm 2 (slide 1)

• Mixtures: Limited to Binary mixtures

Phase rule: F = C-P+2

partial molar quantities:

$$V_{j} = \left(\frac{\partial V}{\partial n_{j}}\right)_{p,T,n'}$$

Gibbs-Duhem equation:

$$d\mu_B = -\frac{n_A}{n_B}d\mu_A$$

Mixing (for an ideal gas mixing is driven by delta S_{mix}) for non-ldeal systems enthalpy may play a role

Roult's Law: $p_A = x_A p_A^*$

Non-ideal behavior: Henry's Law: $p_B = x_B K_B$ B is solute

Important Topics Up to Midterm 2 (slide 2)


```
Mixtures (continued)
Colligative Properties
freezing point depression
boiling point elevation
Phase Diagrams for Binary Mixtures
distallations
azeotropes
Liquid-solid phase diagrams
cooling curves
eutectic mixtures
```

Non-ideal behavior

fugacity activities:

$$a_A = \gamma_A x_A$$

$$\mu_A = \mu_A^* + RT \ln x_A + RT \ln \gamma_A$$

Important Topics Up to Midterm 2 (slide 3) =

• Ionic Solutions **Debye-Huckel Law**

$$\log \gamma_{\pm} = -0.509 |z_{+}z_{-}| I^{1/2}$$

$$I = \frac{1}{2} \sum_{i} z_{i}^{2} \left(\frac{b_{i}}{b^{0}} \right)$$
 I is the Ionic Strength

Equilibrium Constants and Reaction Quotients

$$\Delta_r G = \Delta_r G^0 + RT \ln(Q)$$

$$\Delta G^0 = -RT \ln K$$

$$K = \frac{a_C a_D}{M}$$

 $a_{\scriptscriptstyle A}a_{\scriptscriptstyle R}$

$$a_A = \gamma_A x_A$$

$$K = K_{\gamma}K_{b}$$

Important Topics Up to Midterm 2 (slide 4)

•Electrochemical Cells
Half reactions
Balancing Redox reactions
Standard cell potentials

•Nernst Equation:

$$E_{cell} = E_{cell}^0 - \frac{RT}{vF} \ln Q$$

$$E_{cell}^0 = \frac{RT}{vF} \ln K$$

Important Topics Up to Midterm 2 (slide 5)

Temperature Dependence of K

$$\ln K_2 - \ln K_1 = -\frac{\Delta_r H^0}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\ln \frac{K_2}{K_1} = -\frac{\Delta_r H^0}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

• Le Chatelier's Principle

• Boltzmann Speed Distribution

$$\left\langle v^n \right\rangle = \int_0^n v^n f(v) dv$$

$$v_{mean} = \int_{0}^{\infty} v f(v) dv = \left(\frac{8RT}{\pi M}\right)^{1/2}$$

$$v_{rms} = \left(\int_{0}^{\infty} v^2 f(v) dv\right)^{1/2} = \left(\frac{3RT}{M}\right)^{1/2}$$

Important Topics Up to Midterm 2 (slide 6) =

- Collision cross sections
- Mean free path
- Flux

$$J(matter) = -D\frac{dN}{dz}$$

$$J(thermalenergy) = -\kappa \frac{dT}{dz}$$

Important Topics Up to Midterm 2 (slide 7)

$$D = (1/3)\lambda v_{mean}$$
 Diffusion coefficient

$$K = (1/3)vv_{mean} \lambda Nk$$
 Thermal conductivity

$$\eta = (1/3)v_{\text{mean}} \lambda mN$$
 Viscosity

These expressions provide reasonable approximations for the transport coefficients.

Important Topics Up to Midterm 2 (slide 8)

Ion Mobilities

• Diffusion Equation

$$F = -\left(\frac{\partial \mu}{\partial x}\right)_{T,p}$$

$$F = -RT \left(\frac{\partial \ln a}{\partial x} \right)_{T,p} = -RT \left(\frac{\partial \ln c}{\partial x} \right)_{T,p} = -\frac{RT}{c} \left(\frac{\partial c}{\partial x} \right)_{T,p}$$

$$\frac{\partial c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial^2 x}$$

Important Topics Since Midterm 2 (slide 1)

Kinetics

Rate Laws

Stoichiometry

Elementary Steps

Slow steps control the rate

Pre-equilibrium followed by slow step

Steady-State Approximation

Determine the rate law from initial rate data

Integrated Rate Laws

First Order, Second Order, Zeroth Order

Half Lifes

Arrhenius Equation (Activation Energy, A factor)

Important Topics Since Midterm 2 (slide 2) -

- Catalyis can increase A or decrease E_a does not change the thermodynamics!!
- Unimolecular Reactions

 Looks first order except at low concentration
- Collision Theory Model

Steric factor

encounter rate

collision energy dependence

Important Topics Since Midterm 2 (slide 3)

• Collision Theory Model for the Rate Constant

$$k_r = \left(\frac{8}{\pi \mu kT}\right)^{1/2} \left(\frac{1}{kT}\right) \int_{E_a}^{\infty} E\sigma(E) e^{-E/kT} dE$$

$$k_r = P\sigma N_A \left(\frac{8kT}{\pi\mu}\right)^{1/2} e^{-E_a/kT}$$

Diffusion Controlled Reactions

Important Topics Since Midterm 2 (slide 4)

• Photochemistry

What can happen after a molecule absorbs a photon?

• Quantum yields

Important Topics Since Midterm 2 (slide 5)

• Forster Energy Tranfer A molecular ruler

$$\eta_T = 1 - \frac{\phi_f}{\phi_{F,0}}$$

$$S^* + Q \longrightarrow S + Q^*$$

$$\eta_T = \frac{R_0^6}{R_0^6 + R^6}$$

Things to Review Prior to the Final

Everything covered this quarter

Review the midterms (answers are on the canvas site)

Discussion Section Problems

WebAssign Homework Problems

THE END

SEE YOU AT THE FINAL EXAM

FRIDAY, DECEMBER 15 8AM-10AM