Solving recurrences

- The analysis of divide and conquer algorithms require us to solve a recurrence.
- Recurrences are a major tool for analysis of algorithms

MergeSort

A L G O R I T H M S

A L G O R

I T H M S

divide

MergeSort

MergeSort

Solve
$$T(n) = T(n/2) + T(n/2) + cn$$

Recurrence

$$T(n) = \begin{cases} c & n = 1 \\ 2T\left(\frac{n}{2}\right) + cn & n > 1 \end{cases}$$

CS 4407, Algorithms University College Cork, Gregory M. Provan

Integer Multiplication

- Let X = AB and Y = CD where A,B,C and D are n/2 bit integers
- Simple Method $XY = (2^{n/2}A+B)(2^{n/2}C+D)$
- Running Time Recurrence

$$T(n) < 4T(n/2) + 100n$$

How do we solve it?

Substitution method

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

Example:
$$T(n) = 4T(n/2) + 100n$$

- [Assume that $T(1) = \Theta(1)$.]
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) \le cn^3$ by induction.

Example of substitution

$$T(n) = 4T(n/2) + 100n$$

 $\leq 4c(n/2)^3 + 100n$
 $= (c/2)n^3 + 100n$
 $= cn^3 - ((c/2)n^3 - 100n)$ — desired — residual
 $\leq cn^3$ — desired
whenever $(c/2)n^3 - 100n \geq 0$, for
example, if $c \geq 200$ and $n \geq 1$.
residual

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:
$$T(n)$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Total =
$$n^2 \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^2 + \left(\frac{5}{16}\right)^3 + \cdots\right)$$

= $\Theta(n^2)$ geometric series

Appendix: geometric series

$$1+x+x^2+\dots+x^n = \frac{1-x^{n+1}}{1-x}$$
 for $x \neq 1$

$$1+x+x^2+\dots=\frac{1}{1-x}$$
 for $|x|<1$

The master method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Idea of master theorem

Three common cases

Compare f(n) with $n^{\log ba}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

Solution: $T(n) = \Theta(n^{\log ba})$.

leaves in recursion tree

Idea of master theorem

Three common cases

Compare f(n) with $n^{\log ba}$:

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

Solution:
$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$
.

Idea of master theorem

Three common cases (cont.)

Compare f(n) with $n^{\log ba}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log ba}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Idea of master theorem

Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
Case 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1$.
 $T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
Case 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $T(n) = \Theta(n^2 \lg n)$.

Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
Case 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$
and $4(cn/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\lg n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$
Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.

