Outline

- Why do we need digital communications?
- Semi-digital communication of analog signals
 - Sampling: digitalization in time domain
 - Analog pulse modulation schemes: PAM, PDM, PPM
- Generation, detection and analysis of PPM
- Digital communication of analog signals
 - Quantization: digitalization in signal scale
 - Quantization noise
 - Digital modulation schemes: PCM, DM

Page 12

From Analog to Digital

Recap: Sampling

- Sampling: discretize the analog signal in time domain
- Nyquist Rate: the sampling frequency should be larger than twice of the signal bandwidth
 - Otherwise, <u>aliasing</u> occurs (<u>undersampling</u>)

Page 14

Recap: Reconstruction

 Reconstruction filter: a lowpass filter to recover the original signal from the sampled version

Analog Pulse Modulation

- Sampled signal maintains all the information of original signal (Sampling Freq. > Nyquist Rate)
- Instead of whole analog signal, it is sufficient to deliver the sampled signal values
- Analog pulse modulation: Use analog pulses to represent the sampled signal values
- Schemes:
 - Pulse Amplitude Modulation (PAM)
 - Pulse Duration Modulation (PDM)
 - Pulse Position Modulation (PPM)

Page 16

Pulse Amplitude Modulation

 PAM: sampled signal value is represented by the amplitude of pulses

Page 17

 Within the bandwidth of analog signal, the frequency response of the equalizer H_e(f) should satisfy

$$|H_e(f)| = \frac{1}{|H(f)|} = \frac{\pi f}{\sin(\pi f T)}$$

Page 18

Time-Frequency Tradeoff

· Larger bandwidth vs. Stronger capability of time-division multiplexing

Page 19

Pulse Duration Modulation

横坡的

PDM: sampled signal value is represented by the duration of pulses

Page 20

Pulse Position Modulation

• PPM: use the position of pulses to represent to the sampled signal

Discussion

- Is PAM, PDM or PPM better for wireless or wired communications? Why?
- Wired communications
- But they can be made wirelessly.
- Are they digital signals or analog signals?
- In previous examples, they are analog
- But they can deliver digital signals

Page 22

Outline

- Why do we need digital communications?
- Semi-digital representation of analog signals
 - Sampling: digitalization in time domain
 - Analog pulse modulation schemes: PAM, PDM, PPM
- Generation, detection and analysis of PPM
- Digital communication of analog signals
 - Quantization: digitalization in signal scale
 - Quantization noise
 - Digital modulation schemes: PCM, DM

PPM Generation

Page 24

Sawtooth Wave

Idea: sawtooth wave can transfer the amplitude information to the x-axis position

- 1. Given one period sawtooth wave
- 3. The offset is proportional to the amplitude

Zero-Order Hold + Sawtooth Wave

Threshold Detector

Threshold Detector: generate a pulse when signal crosses zero in negative-going direction

Generation Block diagram

Page 28

PPM Signal Detection

How to recover the amplitude information from the pulse position?

Locate Peak Position

Page 30

Transfer Position to Amplitude

Ultra-Wideband (PPM) → 起榜等

- Ultra-wideband (UWB) is a radio technology which may be used at a very low energy level for short-range, high-bandwidth communications using a large portion of the radio spectrum (how?)
- Use Gaussian monocycle as pulse shape

 $v(t) = A \frac{t}{\tau} e^{-6\pi \left(\frac{t}{\tau}\right)^2}$

Short pulse can distribute power over large spectrum, leading to low power spectrum density

Page 32

Visible Light Communication

- · Light emitting diode (LED) can transfer the electricity to light
- LED output light power is linear with the drive current

VLC system with LED and photodetector (PD) as the transmitter and receiver, respectively

Transfer the light power to electric power

IEEE Std 802.15.7, Short-Range Wireless Optical Communication Using Visible Light, 2011

Above the turn-on voltage, current increases with the voltage

H. Elgala, R. Mesleh, and H. Haas, An LED Model for Intensity-Modulated Optical Communication Systems, IEEE Photo. Tech. Lett., 2011

Visible Light Communication

- Variable pulse position modulation (VPPM) is used as one modulation scheme in IEEE802.15.7
- Pulse duration can be adjusted according to the requirement of illumination

S. Rajagopal, R. D. Roberts, and S. Y. Lim, *IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support*, IEEE Comm. Mag., 2012

Page 34

Homework #D2

• D2.1

Plot the spectrum of a PAM wave produced from the following modulating signal

$$m(t) = A_m \cos(2\pi f_m t)$$

assuming $f_m=0.2Hz$, PAM sampling period $T_{\rm S}=1s$, and pulse duration T=0.45s.