Predicting Pothole Repair Times for the City of Seattle

Richard Anderson

Obtain Data

Department of Transportation

Obtain Data Geocode Locations

Obtain Data **Geocode Locations**

Obtain Data **Geocode Locations**

Engineer Features

Obtain Data **Geocode Locations**

Engineer Features

Obtain Data **Geocode Locations**

Engineer Features

Additional Features

- Cumulative Number of unrepaired potholes
- Minimum Distance to closest prominent city landmark
- Number of months until end of fiscal year
- Seattle Neighborhood
- Closest Street Features

Obtain Data **Geocode Locations**

Engineer Features Implement ML Models

Exploratory
Data Analysis

Models and Algorithms

Scatterplots

Numerical Features

Categorical Features

Logistic Regression

Random Forest Classifier

130 features

Parameter search

Obtain Data **Geocode Locations**

Engineer Features

Implement ML Models

Draw Conclusions

Obtain Data Geocode Locations **Engineer Features** Implement ML Models

Draw Conclusions

Obtain Data Geocode Locations **Engineer Features** Implement ML Models

Draw Conclusions

Future Work:

- Challenge is to find variables that are both independent and add the most information to the model
- Careful investigation of whether median home value is really driving repair times.