

Discente: Rodrigo Marcel Araujo Oliveira

Orientadora: Florencia Graciela Leonardi

AGENDA

Introdução

• EEG

Objetivos

Metodologia

- Análise espectral
- Análise de dados funcionais
- Regressão Logística Funcional
- Avaliação dos modelos
- Conjunto de dados
- Estratégias

Resultados

Conclusões

Considerações

Referências

Contato

- O eletroencefalograma (EEG) é o exame que registra a atividade elétrica cerebral [1].
- Técnica muito importante para avaliação neurofisiológica de pacientes com distúrbios do sono, morte cerebral, tumores, infecções cerebrais, epilepsia, etc.

Figura 1 - EEG

Brain Brain

Electroencephalogram (EEG)

Figura 2 - Sistema 10–2

Figura 3 - Ondas cerebrais de acordo com sua frequência

- Estudar técnicas de processamento de sinais, tais como as transformadas de Fourier e transformadas de Wavelet, para decomposição do sinal do EEG.
- Avaliar o desempenho de modelos de Regressão Funcional para predição de novos dados.

• A análise de dados funcionais (FDA) é um ramo da estatística preocupado com a análise de dados na forma de funções [3].

Modelo Linear Funcional:

$$Y_i = B_0 + \int X_i(t)B(t)dt + \epsilon_i \tag{1}$$

 As funções de bases (Fourier e Spline) são os blocos de construção do FDA e determinam o mecanismo pelo qual a regularização é feita.

Figura 10 - Sinais de EEG ao longo do tempo.

• A análise espectral permite a identificação de fontes de interferência e proporciona uma forma rápida e eficiente de identificar as componentes de um sinal [2].

• Transformada de Fourier:

$$S(t) = a_0 + \sum_{n \in \mathbb{N}} a_n \cos n\omega t + b_n \sin n\omega t \tag{2}$$

Transformada de Wavelet:

$$W_{s,\tau} = \frac{1}{\sqrt{s}} \int x(t) \psi^*(\frac{t-\tau}{s}) dt = \int x(t) \psi_{s,\tau}^*(t) dt$$
 (3)

• Na Regressão Logística Funcional [4] a probabilidade p_i da ocorrência de um evento binário cujo Y = 1 condicional a um preditor funcional X_i (t) e coeficiente funcional B(t) é expressa conforme a equação 3:

$$p_{i} = \mathbf{P}[\mathbf{Y} = 1 \mid \mathbf{X}_{i}(t) : t \in T] = \frac{exp\{\alpha + \int_{T} \mathbf{X}_{i}(\mathbf{t})\mathbf{B}(\mathbf{t})dt\}}{1 + exp\{\alpha + \int_{T} \mathbf{X}_{i}(\mathbf{t})\mathbf{B}(\mathbf{t})dt\}}$$
(4)

com
$$i = 1, ..., n$$

Figura 12 - Matriz cruzada

- Técnicas de amostragem: Hold-out [7].
- Matriz cruzada [7].
- Métrica de avaliação: acurácia (ACU); sensibilidade (SEN); especificidade (ESP); etc.

$egin{array}{c|c} Valor \ Predito \\ \hline Positivo & Negativo \\ \hline Valor \ Real & Positivo & n_{11} & n_{12} \\ \hline Negativo & n_{21} & n_{22} \\ \hline \end{array}$

Figura 13 - Métricas de avaliação

$$SEN = \frac{n_{11}}{n_{11} + n_{12}}$$

$$ESP = \frac{n_{22}}{n_{21} + n_{22}}$$

$$ACU = \frac{n_{11} + n_{22}}{n_{11} + n_{12} + n_{21} + n_{22}}$$

Self Regulation

- Para base SelfRegulationSCP1 [6] o experimento deste conjunto de dados consiste em avaliar se o sujeito está aumentando ou diminuindo sua lentidão cortical potencial, isto é, se o sujeito moveu o cursor para cima ou para baixo.
- A base de treino contém uma dimensão de (268, 896) para covariáveis e (1, 268) para variável resposta, já para base de teste temos respectivamente, (293, 896) e (1, 293).

Emotion

- A base Emotion [5] consiste em analisar sinais de EEG de participantes enquanto eles jogavam rodadas de jogos de azar. O objetivo será explicar os potenciais no sinal EEG para condutividade da meta correspondente ao resultado monetário (ganho ou perda).
- A base contém uma dimensão de (184, 384) para as covariáveis e (1, 184) para as variáveis categóricas. Para modelagem, separamos a base em treino (70 %) e teste (30 %).

- **Metodologia 1**: Transformada de Wavelet + Função de Base de Fourier + Regressão Logística Funcional
- **Metodologia 2**: Transformada de Wavelet + Função de Base de Spline + Regressão Logística Funcional
- **Metodologia 3**: Transformada de Fourier + Função de Base de Fourier + Regressão Logística Funcional
- **Metodologia 4**: Transformada de Fourier + Função de Base de Spline + Regressão Logística Funcional

Self Regulation: base de validação

Tabela 1 - Metodologia 1

Desempenho do Modelo						
Accuracy	0.8703	Sensitivity	0.8844			
95% CI	(0.8264, 0.9066)	Specificity	0.8844			
No Information Rate 0.5017		Pos Pred Value	0.8609			
P-Value [Acc $>$ NIR]	< 2e-16	Neg Pred Value	0.8803			
		Prevalence	0.5017			
Kappa	0.7406	Detection Rate	0.4437			
		Detection Prevalence	0.5154			
Mcnemar's Test P-Value	0.6265	Balanced Accuracy	0.8703			

• Tabela 3 - Metodologia 3

Desempenho do Modelo						
Accuracy	0.5154	Sensitivity	0.5170			
95% CI	(0.4565, 0.5739)	Specificity	0.5137			
No Information Rate	0.5017	Pos Pred Value	0.5170			
P-Value [Acc $>$ NIR]	0.3413	Neg Pred Value	0.5137			
,		Prevalence	0.5017			
Kappa	0.0307	Detection Rate	0.2594			
		Detection Prevalence	0.5017			
Mcnemar's Test P-Value	1.0000	Balanced Accuracy	0.5154			

Tabela 2 - Metodologia 2

Desempenho do Modelo						
Accuracy	0.884	Sensitivity	0.9116			
95% CI	(0.8416, 0.9183)	Specificity	0.8562			
No Information Rate	0.5017	Pos Pred Value	0.8645			
P-Value [Acc $>$ NIR]	< 2e-16	Neg Pred Value	0.9058			
,		Prevalence	0.5017			
Kappa	0.7679	Detection Rate	0.4573			
		Detection Prevalence	0.5290			
Mcnemar's Test P-Value	0.2299	Balanced Accuracy	0.8839			

Tabela 4 - Metodologia 4

Desempenho do Modelo							
Accuracy	0.5324	Sensitivity	0.5442				
95% CI	(0.4735, 0.5907)	Specificity	0.5205				
No Information Rate 0.5017		Pos Pred Value	0.5333				
P-Value [Acc $>$ NIR]	0.1603	Neg Pred Value	0.5315				
,		Prevalence	0.5017				
Kappa	0.0648	Detection Rate	0.2730				
•		Detection Prevalence	0.5119				
Mcnemar's Test P-Value	0.8643	Balanced Accuracy	0.5324				

Emotion: base de validação

Tabela 5 - Metodologia 1

Desempenho do Modelo						
Accuracy	0.6786	Sensitivity	0.7667			
95% CI	(0.5404, 0.7971)	Specificity	0.5769			
No Information Rate	0.5357	Pos Pred Value	0.6765			
P-Value [Acc $>$ NIR]	0.02122	Neg Pred Value	0.6818			
,		Prevalence	0.5357			
Kappa	0.3472	Detection Rate	0.4107			
		Detection Prevalence	0.6071			
Mcnemar's Test P-Value	0.4795	Balanced Accuracy	0.6718			

Tabela 7 - Metodologia 3

Desempenho do Modelo						
Accuracy	0.4286	Sensitivity	0.3929			
95% CI	(0.2971, 0.5678)	Specificity	0.4643			
No Information Rate	0.5000	Pos Pred Value	0.4231			
P-Value [Acc $>$ NIR]	0.8856	Neg Pred Value	0.4333			
		Prevalence	0.5000			
Kappa	-0.1429	Detection Rate	0.1964			
		Detection Prevalence	0.4643			
Mcnemar's Test P-Value	0.8597	Balanced Accuracy	0.4286			

Tabela 6 - Metodologia 2

Desempenho do Modelo						
Accuracy	0.5893	Sensitivity	0.4828			
95% CI	(0.4498, 0.719)	Specificity	0.7037			
No Information Rate	0.5179	Pos Pred Value	0.6364			
P-Value [Acc $>$ NIR]	0.1747	Neg Pred Value	0.5588			
,		Prevalence	0.5179			
Kappa	0.1848	Detection Rate	0.2500			
		Detection Prevalence	0.3929			
Mcnemar's Test P-Value	0.2109	Balanced Accuracy	0.5932			

Tabela 8 - Metodologia 4

Desempenho do Modelo							
Accuracy	0.4643	Sensitivity	0.4286				
95% CI	(0.3299, 0.6026)	Specificity	0.5000				
No Information Rate	0.5000	Pos Pred Value	0.4615				
P-Value [Acc $>$ NIR]	0.7478	Neg Pred Value	0.4667				
		Prevalence	0.5000				
Kappa	-0.0714	Detection Rate	0.2143				
		Detection Prevalence	0.4643				
Mcnemar's Test P-Value	0.8551	Balanced Accuracy	0.4643				

Tabela 9 - Comparação dos desempenhos dos modelos

	Self Regulation				Emotion	l		
Metodologias	Sensibilidade	Especificidade	Acurácia	Acurácia IC 95%	Sensibilidade	Especificidade	Acurácia	Acurácia IC 95%
1	0.88	0.88	0.87	(0.82, 0.91)	0.77	0.58	0.68	(0.54, 0.80)
2	0.91	0.86	0.88	(0.84, 0.92)	0.48	0.70	0.59	(0.45, 0.72)
3	0.52	0.51	0.52	(0.46, 0.57)	0.39	0.46	0.43	(0.30, 0.57)
4	0.54	0.52	0.53	(0.47, 0.59)	0.43	0.50	0.46	(0.33, 0.60)

- Nesse trabalho vimos que os modelos de regressão funcional com auxílio da transformada de Wavelet e transformada de Fourier são técnicas estatísticas e matemáticas promissoras para avaliação de dados de EEG.
- Comparando os resultados do conjunto Self Regulation com os obtidos em [2] utilizando modelos de aprendizado de máquina nota-se um incremento de 2 pontos percentuais no resultado da acurácia, o que indica que a abordagem de trabalhar com dados funcionais aplicando os modelos de regressão funcional para sinais de EEG é satisfatório.

• Análise disponível em: https://github.com/roaraujo/EEG-Regressao-Funcional-Wavelet-Fourier

16

- 1. I. Gannaz, 'Classification of EEG recordings in auditory brain activity via a logistic functional linear regression model.', pp. 125–130, Jun. 2014, Accessed: Aug. 26, 2022. [Online]. Available: https://hal.archivesouvertes.fr/hal-00830313.
- 2. L. Alípio, 'Unraveling the Brain: a Quantitative Study of EEG Classification Techniques', 2021.
- 3. M. Febrero-Bande and M. O. de la Fuente, 'Statistical Computing in Functional Data Analysis: The R Package fda.usc', J Stat Softw, vol. 51, no. 4, pp. 1–28, Oct. 2012, doi: 10.18637/JSS.V051.I04.
- 4. J. S. Morris, 'Functional Regression', Jun. 2014, Accessed: Aug. 26, 2022. [Online]. Available: http://arxiv.org/abs/1406.4068
- 5. 'emotion: EEG and EMG recordings in a computerised gambling study in fdboost/FDboost: Boosting Functional Regression Models'. https://rdrr.io/github/fdboost/FDboost/man/emotion.html (accessed Aug. 26, 2022).
- 6. 'Time Series Classification Website'. http://www.timeseriesclassification.com/description.php?Dataset=SelfRegulationSCP1 (accessed Aug. 26, 2022).
- 7. X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, 'An improved method to construct basic probability assignment based on the confusion matrix for classification problem', Inf Sci (N Y), vol. 340–341, pp. 250–261, May 2016, doi: 10.1016/J.INS.2016.01.033

Obrigado

Contato: rodrigo.marcel.oliveira@alumni.usp.br

