# Plotting for Exploratory data analysis (EDA)

```
In [1]: from google.colab import drive
    drive.mount('/gdrive')
    %cd /gdrive
```

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client\_i d=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redi rect\_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response\_type=code&scope=email%20h ttps%3a%2f%2fwww.googleapis.com%2fauth%2fdcs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly (https://accounts.google.com/o/oauth2/auth?client\_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect\_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response\_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdcs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.photos.photos.photos.photos.photos.photos.photos.photos.photos.photos.p

```
Enter your authorization code:
.....
Mounted at /gdrive
/gdrive
```

### **Importing Library**

```
In [0]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas.util.testing as tm
```

#### Importing Haberman Dataset

```
In [5]: haberman = pd.read_csv('/content/haberman.csv')
    print(haberman.head())
```

|   | age | year | nodes | status |
|---|-----|------|-------|--------|
| 0 | 30  | 64   | 1     | 1      |
| 1 | 30  | 62   | 3     | 1      |
| 2 | 30  | 65   | 0     | 1      |
| 3 | 31  | 59   | 2     | 1      |
| 4 | 31  | 65   | 4     | 1      |

#### How many data-points and features?

```
In [0]: print(haberman.shape)
(306, 4)
```

#### What are the column names in our dataset?

#### How many data points for each class are present?

#### Observation

1. This is an Imbalanced dataset as one Class object is more than the other

## Checking for Missing Values in the dataset

```
In [0]: haberman.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 306 entries, 0 to 305
        Data columns (total 4 columns):
             Column Non-Null Count Dtype
         0
             age
                     306 non-null
                                     int64
                     306 non-null
                                     int64
         1
             year
         2
             nodes
                     306 non-null
                                     int64
         3
             status 306 non-null
                                     int64
        dtypes: int64(4)
        memory usage: 9.7 KB
```

Calculating MEAN, STD DEV, Percentiles, MIN and MAX

In [0]: haberman.describe()

Out[53]:

|       | age        | year       | nodes      | status     |
|-------|------------|------------|------------|------------|
| count | 306.000000 | 306.000000 | 306.000000 | 306.000000 |
| mean  | 52.457516  | 62.852941  | 4.026144   | 1.264706   |
| std   | 10.803452  | 3.249405   | 7.189654   | 0.441899   |
| min   | 30.000000  | 58.000000  | 0.000000   | 1.000000   |
| 25%   | 44.000000  | 60.000000  | 0.000000   | 1.000000   |
| 50%   | 52.000000  | 63.000000  | 1.000000   | 1.000000   |
| 75%   | 60.750000  | 65.750000  | 4.000000   | 2.000000   |
| max   | 83.000000  | 69.000000  | 52.000000  | 2.000000   |

## **Observations**

- 1.From the above results we can observe that MEAN & MEDIAN for AGE and age are almost equal
- 2. There is notably a large difference between 75th %tile and max values of NODES
- 3.MEDIAN & MEAN for NODES are significantly different as there are OUTLIERS in the NODES data which can be visualized using BOX Plot

### Plotting Heat Map to understand correlation b/w independent variables

In [0]: sns.heatmap(haberman.corr(), annot = True);
plt.show()



### **Observations**

# 1.From the below Heat MAp we can see that NODES is negatively correlated with YEAR & AGE

## Performing Univariate Analysis using Histogram/PDF Plots



```
In [7]: sns.FacetGrid(haberman, hue="status", height=5) \
    .map(sns.distplot, "year") \
    .add_legend();
plt.title('Histogram of Year')
plt.show();
```



```
In [8]: sns.FacetGrid(haberman, hue="status", height=5) \
    .map(sns.distplot, "nodes") \
    .add_legend();
plt.title('Histogram of Nodes')
plt.show();
```



### **Observations from Histogram/PDF**

1.The Status class is clearly overlapping w.r.t all the three variables and we cannot predict the STATUS based on one variable

2. For nodes the data is left skewed i.e. Negatively Skewed

#### **Plotting CDF Plots**

```
In [0]: counts, bin_edges = np.histogram(haberman['age'], bins=10, density = True)

pdf = counts/(sum(counts))
    print(pdf);
    print(bin_edges);
    cdf = np.cumsum(pdf)
    plt.plot(bin_edges[1:],pdf);
    plt.plot(bin_edges[1:], cdf)
    plt.xlabel('Age')
    plt.ylabel('Ratio')
    plt.title('CDF/PDF')
    plt.show();
```

```
[0.05228758 0.08823529 0.1503268 0.17320261 0.17973856 0.13398693 0.13398693 0.05882353 0.02287582 0.00653595]
[30. 35.3 40.6 45.9 51.2 56.5 61.8 67.1 72.4 77.7 83.]
```



#### **Observations**

1. From above we can see that the 50% of records are less than age 55 and 90% records are less than age 67

```
In [0]: counts, bin_edges = np.histogram(haberman['year'], bins=20, density = True)

pdf = counts/(sum(counts))
print(pdf);
print(bin_edges);
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf);
plt.plot(bin_edges[1:], cdf)
plt.xlabel('year')
plt.ylabel('Ratio')
plt.title('CDF/PDF')
plt.show();
```

```
[0.11764706 0.08823529 0. 0.09150327 0. 0.08496732 0. 0.0751634 0. 0.09803922 0.10130719 0. 0.09150327 0. 0.08169935 0. 0.04248366 0.03594771]
[58. 58.55 59.1 59.65 60.2 60.75 61.3 61.85 62.4 62.95 63.5 64.05 64.6 65.15 65.7 66.25 66.8 67.35 67.9 68.45 69. ]
```



```
In [0]: counts, bin_edges = np.histogram(haberman['nodes'], bins=20, density = True)

pdf = counts/(sum(counts))
print(pdf);
print(bin_edges);
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf);
plt.plot(bin_edges[1:], cdf)
plt.xlabel('Nodes')
plt.ylabel('Ratio')
plt.title('CDF/PDF')
plt.show();
```

```
[0.64379085 0.12745098 0.04575163 0.05228758 0.01960784 0.03921569 0.00980392 0.01633987 0.02287582 0.00653595 0.00326797 0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.0.00326797 0.
```



## **Plotting Box Plots**

```
In [10]: plt.figure(1)
    sns.boxplot(x='status',y='age', data=haberman)
    plt.title('Age vs Status')
    plt.show()

    plt.figure(2)
    sns.boxplot(x='status',y='year', data=haberman)
    plt.title('Year vs Status')
    plt.show()

    plt.figure(3)
    sns.boxplot(x='status',y='nodes', data=haberman)
    plt.title('Nodes vs Status')
    plt.show()
```







### **Observations**

- 1.From the above BOX PLOT we can conculde that there are OUTLIERS in NODES and is above the 3rd Quartile
- 2. These OUTLIERS have to be treated to get proper classification

Bivariant Analysis using Pair Plot

In [0]: sns.set\_style("whitegrid");
sns.pairplot(haberman, hue="status", height=2.5);
plt.show()



## **Final Observations from EDA**

- 1.Imbalanced dataset. Status Class 1 > Class 2
- 2. We cannot use only one variable to classify STATUS
- 3.No two variables can be used to classify STATUS
- 4. There are OUTLIERS in the NODES data which has to be treated to get better classification
- 5.Age column is Normally distributed
- 6. From the Heat MAp we can see that NODES is negatively correlated with YEAR & AGE