Theorem 1 (Factorization Theorem). Let $(\mathcal{X}, \mathcal{A})$ be a measurable space, and let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be a family of probability measures on $(\mathcal{X}, \mathcal{A})$. Suppose there exists a σ -finite measure μ on $(\mathcal{X}, \mathcal{A})$ such that each P_{θ} is absolutely continuous with respect to μ , and let $p_{\theta}(x) = \frac{dP_{\theta}}{d\mu}(x)$ denote the Radon-Nikodym derivative.

A statistic $T: \mathcal{X} \to \mathcal{Y}$ is sufficient for θ if and only if there exist measurable functions $u: \mathcal{Y} \times \Theta \to [0, \infty)$ and $v: \mathcal{X} \to [0, \infty)$ such that for all $x \in \mathcal{X}$ and all $\theta \in \Theta$,

$$p_{\theta}(x) = u(T(x), \theta) v(x).$$

Proof. We will prove both directions of the equivalence.

(\Rightarrow) Sufficiency implies factorization:

Assume that T is sufficient for θ . By the definition of sufficiency, the conditional distribution of X given T(X) = t does not depend on θ . Formally, for any measurable set $B \in \mathcal{A}$ and for all $\theta \in \Theta$,

$$P_{\theta}(X \in B \mid T(X) = t) = P(X \in B \mid T(X) = t),$$

where the right-hand side is independent of θ .

Consider the conditional density of X given T(X) = t, which we denote by $k(x \mid t)$. Since this density does not depend on θ , we can write

$$p_{\theta}(x) = P_{\theta}(X = x) = P_{\theta}(T(X) = t, X = x) = P_{\theta}(X = x \mid T(X) = t) P_{\theta}(T(X) = t).$$

However, in continuous settings, we need to be careful with densities. Instead, we can use the following approach.

Let $f_{T,\theta}(t)$ be the marginal density of T(X) under P_{θ} , and let $k(x \mid t)$ be the conditional density of X given T(X) = t, which does not depend on θ due to sufficiency. Then,

$$p_{\theta}(x) = f_{T,\theta}(t) k(x \mid t).$$

Since $k(x \mid t)$ does not depend on θ , we can let

$$v(x) = k(x \mid t)$$

and since t = T(x), v(x) is a function of x alone.

Now, define

$$u(t,\theta) = f_{T,\theta}(t).$$

Therefore, we have

$$p_{\theta}(x) = u(T(x), \theta) v(x).$$

(\Leftarrow) Factorization implies sufficiency:

Assume that there exist measurable functions u and v such that

$$p_{\theta}(x) = u(T(x), \theta) v(x).$$

We need to show that T is sufficient for θ .

Consider any measurable set $B \in \mathcal{A}$. We aim to show that the conditional distribution of X given T(X) = t does not depend on θ .

First, compute the conditional probability density of X given T(X) = t under P_{θ} :

$$P_{\theta}(X \in B \mid T(X) = t) = \frac{\int_{B \cap T^{-1}(t)} p_{\theta}(x) \, d\mu(x)}{\int_{T^{-1}(t)} p_{\theta}(x) \, d\mu(x)}.$$

Substitute $p_{\theta}(x) = u(T(x), \theta) v(x)$:

$$P_{\theta}(X \in B \mid T(X) = t) = \frac{\int_{B \cap T^{-1}(t)} u(t, \theta) \, v(x) \, d\mu(x)}{\int_{T^{-1}(t)} u(t, \theta) \, v(x) \, d\mu(x)}.$$

Since $u(t,\theta)$ is constant with respect to x over $T^{-1}(t)$, it can be factored out:

$$P_{\theta}(X \in B \mid T(X) = t) = \frac{u(t, \theta) \int_{B \cap T^{-1}(t)} v(x) d\mu(x)}{u(t, \theta) \int_{T^{-1}(t)} v(x) d\mu(x)}.$$

The $u(t, \theta)$ terms cancel out:

$$P_{\theta}(X \in B \mid T(X) = t) = \frac{\int_{B \cap T^{-1}(t)} v(x) \, d\mu(x)}{\int_{T^{-1}(t)} v(x) \, d\mu(x)}.$$

This expression is independent of θ , which means that the conditional distribution of X given T(X) = t does not depend on θ . Therefore, T is sufficient for θ .