

# **Learning Properties of Physical Systems from Quantum Circuit Data**

Andi Gu, mentored by Andrew Arrasmith

Diego García-Martín, Marco Cerezo, Lukasz Cincio and Patrick Coles

Quantum Computer Summer School 2021

August 13, 2021



Given access to a physical system that we can write a Hamiltonian for, how can **efficiently** characterize system's ground state?



### **VQE**

• Variational principle:  $\langle \psi | H | \psi \rangle \geq E_0 \quad \forall \psi \in \mathcal{H}$ 

- Encode  $\psi$  in a quantum circuit fast evaluation of  $C(\theta) \coloneqq \langle \psi(\theta) | H | \psi(\theta) \rangle$
- VQE:  $E_0 \sim \min_{\theta} C(\theta)$





## Minimizing $f(\theta)$

- Simple! Use gradient descent:  $\theta^{(k+1)} = \theta^{(k)} \alpha \nabla f$
- Shot noise means we only have access to a noisy estimate of  $f(\theta)$

$$E[\mathcal{G}] = \left(\alpha - \frac{L\alpha^2}{2}\right) \|\nabla f\|^2 - \frac{L\alpha^2}{2} \sum_{i=1}^{\infty} \frac{\sigma_i^2}{s_i} = \mathbf{Signal} - \mathbf{Noise}$$

How can we get the most bang for our buck?



## **Adaptive Shots**

- Intuition: want few shots in the beginning, many shots at end
- Figure of merit:

$$\gamma_i \coloneqq \frac{E[\mathcal{G}_i]}{s_i} \text{ vs. } \gamma \coloneqq \frac{E[\mathcal{G}]}{\sum s_i}$$

Individual CANS vs. Global CANS

(CANS = Coupled Adaptive Number of Shots)

gCANS rule:

$$s_i = \frac{2L\alpha}{2 - L\alpha} \frac{\sigma_i \sum_j \sigma_j}{\|\nabla f\|_2^2}$$





# Why gCANS?

- Only one free hyperparameter
- Provable convergence guarantees:  $f(\theta^{(k)}) - f^* \sim \epsilon^{-k}$
- Does better with higher learning rate → fewer iterations, fewer circuit compilations





If we can observe the time evolution of a physical system, how can we characterize the underlying Hamiltonian?



#### **Classical QLE**

Idea: use a Trotterized quantum circuit as an ansatz  $\widehat{H}(\theta)$  for true Hamiltonian H

- 1. Pick an initial state  $\psi_0$ , Pauli matrix P, evolution time t
- 2. Evolve  $\psi_{true}=e^{-iHt}|\psi_0\rangle$  and  $\psi_{cand}=e^{-i\widehat{H}t}|\psi_0\rangle$
- 3. Record measurement outcomes of P for  $\psi_{true}$  and  $\psi_{cand}$
- 4. Optimize closeness of measurement outcomes





#### But is it scalable?

Showed there is a barren plateau for classical flavor of Hamiltonian learning:

$$E_{\psi_0}[\mathcal{L}] \sim \frac{\left\| e^{iHt} e^{-i\widehat{H}t} \right\|_F + C}{4^n}; \left\| e^{iHt} e^{-i\widehat{H}t} \right\| \sim \mathcal{O}(2^n)$$

- Information extracted about system vanishes with  $2^{-n}$
- Origin of unfavorable scaling?  $E_{\psi_0}[\mathcal{L}]$  causes  $\frac{1}{4\pi}$
- Intuition:

$$\langle \psi_{true} | P | \psi_{true} \rangle - \langle \psi_{cand} | P | \psi_{cand} \rangle \sim \mathcal{O}(N\epsilon)$$
but
 $\langle \psi_{true} | \psi_{cand} \rangle \sim \mathcal{O}(\epsilon^{-N})$ 



#### How to fix QLE?

- Want to restrict ourself to a smaller subset of input states  $\psi_0$
- Does this fail to constrain our learned Hamiltonian? Not for short times
- Study subsystems of the Hamiltonian





## **Next Steps**

- For optimizers:
  - Can we design an adaptive optimizer that requires zero a priori knowledge (i.e., dynamically set learning rate)?
- For Hamiltonian learning:
  - Is there quantum advantage for short time evolution?
  - Can we circumvent the scaling problem with weak measurement?

