Advanced Algorithm for Enhancement of Fashion Imagery

By Jean-Luc Peloquin Final Project: CS 469/669

Spring 2024

Outline

- Introduction
- Methodology
- Results and Analysis
- Conclusion
- References and Questions

Introduction

Problem

 Reverse image searching results either pretty accurate or too broad

Reason

 Image quality on blurry images with distracting backgrounds

Solution

 Create an application to automatically upscale and improve clarity on given image(s) with a focus on speed and no user interaction

Methodology

Upscaling

Lanczos algorithm

Detail Enhancement

- High-pass filtering
- Unsharp Masking

Background Removal

rembg() ML algorithm

Cropping and Conversion

 Contour-based cropping of transparent empty space (to .png)

Dataset

 Web scraped from Grailed.com

Results and Analysis

Higher Res = More Computational Time (Lanczos Upscaling) Improves all images regardless of results

- All enhanced in quality w/ background removal Limitations
- Images with complex backgrounds / shadows
- Images with initial poor image quality do not get enhanced as well as medium-high quality
 - Less sample size for pixels to enhance

Conclusion

- Faster than Photoshop (6 sec per image average)
- Larger size image takes much longer (prob doesn't need processing anyways)
- Easy to use GUI with minimal input
- Quality of initial image results in better or worse results
 - ex: smaller images become much clearer, but background removal is more variable
- Accuracy in reverse image searching only improves
 - At very worst does nothing
 - At best increases results

References and Questions

```
[1] Adobe, "Smooth enhance fabric with generative fill," Adobe Photoshop Tutorials,
2024. [Online]. Available:
https://creativecloud.adobe.com/learn/photoshop/web/smooth-enhance-fabricgenerative-fill. [Accessed: Apr. 28, 2024].
[2] "Lanczos resampling," Wikipedia, 2024. [Online]. Available:
https://en.wikipedia.org/wiki/Lanczos_resampling. [Accessed: Apr. 28, 2024].
[3] "High-pass filter," Wikipedia, 2024. [Online]. Available:
https://en.wikipedia.org/wiki/High-pass_filter. [Accessed: Apr. 28, 2024].
[4] Cambridge in Colour, "Unsharp mask," 2024. [Online]. Available:
https://www.cambridgeincolour.com/tutorials/unsharp-mask.html. [Accessed: Apr. 28,
2024].
5
[5] "rembg," PyPI, 2024. [Online]. Available: https://pypi.org/project/rembg/.
[Accessed: Apr. 28, 2024].
[6] "Image background removal," YouTube, uploaded by D. Gatis, 2024. [Online].
Available: https://www.youtube.com/watch?v=2X9rxzZbYqq. [Accessed: Apr. 28,
2024].
[7] Grailed, "Grailed," 2024. [Online]. Available: https://www.grailed.com/. [Accessed:
Apr. 28, 2024].
[8] Data to Fish, "How to convert JPEG to PNG in Python," 2024. [Online]. Available:
https://datatofish.com/jpeg-to-png-python/. [Accessed: Apr. 28, 2024].
[9] "Plyer documentation," Read the Docs, 2024. [Online]. Available:
https://plyer.readthedocs.io/en/latest/. [Accessed: Apr. 28, 2024].
[10] "Pillow documentation," Read the Docs, 2024. [Online]. Available:
https://pillow.readthedocs.io/en/stable. [Accessed: Apr. 28, 2024].
[11] D. Gatis, "rembg," GitHub, 2024. [Online]. Available:
https://github.com/danielgatis/rembg. [Accessed: Apr. 28, 2024].
[12] "NumPy documentation," NumPy, 2024. [Online]. Available:
https://numpy.org/doc/. [Accessed: Apr. 28, 2024].
```

[13] "OpenCV documentation," OpenCV, 2024. [Online]. Available:

https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html. [Accessed: Apr. 28, 2024]