디지털 영상 처리 (3192 - 01)

과제 1 - 영상로딩 프로그램 실습 및 컬러 변환

201512285 천민수

과제 목표 :

- 영상 입력 프로그램을 실습을 수행한 후, 이를 이용하여 컬러 변환 프로그램 구현
- 실제 얼굴 영상을 입력으로 하여 컬러 변환을 수행.
- Hue, Saturation, Intensity 값의 구간을 조정하여 얼굴의 피부색 검출이 가능한지 테스트 해보기

제출 결과물:

● 보고서 (구현과정 기술, 테스트 영상물의 결과를 자세히 기술)

개요:

- 1. 실습 방법
- 2. 구현 과정
- 3. 기본 실습 결과
- 4. 개선 과정
- 5. 개선 결과

1. 실습 방법

- A. Python, OpenCV, Numpy 사용하여 영상의 각 픽셀 RGB값을 읽어와 H S I 값을 추출한다.
- B. 사전에 정한 이미지로 추출/변환한 HSI 값을 변경시켜가면서 피부만을 검출한다.
- C. 기본 피부 검출 조건을 변경시키면서 피부 검출을 개선한다.

2. 구현 과정

A. H S I 변환 공식을 정의한다.

```
0
def rgb to hue(r, g, b):
   angle = 0
   if b != g != r:
       angle = 0.5 * ((r - g) + (r - b)) / sqrt(((r - g) ** 2) + (r - b))
       return acos(angle)
    else:
       return 2 * pi - acos(angle)
def rgb_to_intensity(r, g, b):
    val = (r + g + b) / 3.
    if val == 0:
        return 0
    else:
       return val
def rgb_to_saturity(r, g, b):
    return 1 - 3 * np.min([r, g, b]) / (r + g + b)
                                                                      fence
```

B. OpenCV의 'imread()' 함수로 image dimension 을 읽어 온 뒤, height, weight 값을 뽑아 각 순서쌍 (height, weight)에 할당된 RGB값으로부터 각 픽셀의 H S I 값을 3차원 numpy 배열에 저장한다. 그 후에 아래의 66~68번째 줄처럼 H S I 값의 범위를 각각 지정하고, 특정 범위의 값들만 사용해봄으로써 피부색 검출을 진행한다.

C. 이에 따라, https://www.photopea.com/ 에서, 아래 사진과 같이 스포이드로 RGB 영

역 중 H S I 채널 중 각각 필요하지 않은 영역과, 필요한 영역을 임의로 검출하여 공통된 부분을 범위로 지정하여 조건을 정했습니다.

이미지 이름	r	g	b	H	S	1
male_1						
검출에 필요한 색(rgb)	110	72	51	20	0.34335	0.30458
	201	129	79	24.05622	0.42054	0.53464
	109	62	42	16.90238	0.40845	0.27843
	65	34	14			
TIOOL W. I.	100	450	437	25 2027	0.0000	0.04500
필요없는 색 (rgb)	166			35.20872	0.06369	
	157			31.06696	0.11059	
	96	89	83	27.45708	0.0709	0.35033
목걸이, 배경	230	236	223	87.45708	0.02903	0.90065
수염	74	28	2	20.88877	0.94231	0.13595
수염	63	25	4	20.55504	0.86957	0.12026

D. 사용한 이미지는 6장으로 진행하였습니다.

3. <u>기본 실습 결과</u>

● <u>조건 1</u>: Hue >= 0.25 && Hue <= 0.6

그림 2

그림 3

그림 4

그림 5

그림 6

기본 조건으로 실행한 결과 :

그림 2,3,6은 피부색이 약간의 보정이 필요한 정도를 제외하고는 검출되었다고 육안으로

는 확인할 수 있었으나, 그림 1은 background 색까지 같이 검출되었으며, 그림 5는 피부색이 제대로 검출되지 않았습니다. 피부 색 중 일부만 검출이 된 것을 확인하였고, 또한 머리카락도 같이 검출된 것을 확인 가능합니다. 그림 4는 피부색에서 머리 위쪽으로는 피부를 인식하지 못했습니다.

<u>조건 2:</u> Hue >= 0.25 and Hue <= 0.6 &&

Saturity >= 0.15 and Saturity <= 0.90 &&

Intensity >= 0.15 and Intensitty <= 0.90

그림 1

그림 3

그림 4

그림 5

그림 6

조건 2로 실행한 결과: 그림 1, 3 4 에서의 background 를 검출했던 문제는 없어졌으나, 그림 2 와 6에의 피부 검출에서 피부를 검출했었던 부분을 더 이상 검출하지 못하는 문제가 생겼습니다.

위 문제를 해결하기 위해, 이번에는 RGB 검출을 한 뒤, 다시 조정을 하였습니다.

<u>조건 3:</u> Hue >= 0.05 and Hue <= 0.8 &&

Saturity >= 0.10 and Saturity <= 0.90 &&

Intensity >= 0.30 and Intensitty <= 0.90

그림 2

그림 3

그림 5

그림 6

조건 3으로 실행한 결과 :모든 그림이 상당 부분 개선된 것을 확인 할 수 있었지만.. 그럼에도 그림 3에서와 같이 머리카락 색이 피부색과 비슷할 경우, 분리하여 검출하는데 어려움을 겪었습니다. 또한, 그림 4의 목부분을 보았을 때, 특정 부분의 피부색의 검출이 이루어지지 않았습니다.

그림 3의 머리카락 색 조정 :

그림 1,2,4,5,6은 미세하게 조정이 필요하겠지만, 피부색의 검출이 원하는 그림까지 이루어졌다고 판단했고, 그림3의 머리카락색이 검출되는 것을 조정하기로 했다.

그림 3의 머리카락 색 조정을 위해 스포이드로 머리카락 색을 검출하였다.

4	A	В	С	D	E	F	G	Н
1		r	g	b	Н (radian)	S	I
2	머리카락 색	104	90	90	0	.0174533	7.216495515	38.03921596
3		204	180	150		0.628319	31.25000269	62.62
4		225	194	174	0	.4106658	45	78.23529447
5		175	155	137		0.496041	19.19192206	61.17647152
6								
7								

그림 3: male_3의 머리카락 색 RGB -> HSI

흰색이 검출되는 것은 Saturity와 관계있을것으로 판단하여, 위 그림의 S=31.2까지만을 고려하여 Saturity를 조정하여 조건 4, 조건 5를 만들기로 했다.

조건 3: Hue >= 0.05 and Hue <= 0.8 &&

Saturity >= 0.10 and Saturity <= 0.90 &&

Intensity >= 0.30 and Intensitty <= 0.90

조건 4: Hue >= 0.05 and Hue <= 0.8 &&

Saturity >= 0.20 and Saturity <= 0.90 &&

Intensity >= 0.30 and Intensitty <= 0.90

그림 1

그림3

그림4

조건 4로 실행한 결과 : 그림 3의 머리카락 색은 조건 1,2,3보다는 좋아졌으나, 그림3을 제외한 그림들은 모두 피부색 검출 측면에서 악화되었습니다.

조건 5: Hue >= 0.05 and Hue <= 0.8 &&

Saturity >= 0.30 and Saturity <= 0.90 &&

Intensity >= 0.30 and Intensitty <= 0.90

그림 2

그림3

그림 4

그림 6

조건 5로 실행한 결과: 그림 3의 머리카락 색은 조건 1,2,3, 4보다는 좋아졌으나, 그림3을 제외한 그림들은 모두 피부색 검출 측면에서 조건 4보다 악화되었습니다.

결론 :

- RGB 영상에서 HSI 조정을 통한 피부색의 검출이 가능하긴 합니다.
- 인종이나 페이스페인팅과 같은 임의로 얼굴을 가렸을 때의 피부색을 검출 역시 가능합니다.
- 영상마다, 피부색의 검출방도가 달라질 수 있음을 시사합니다.
- 반면, 피부색에 관한 통계적인 Data 없이는 수동으로 일일히 영상들의 R G B 영역을 확인 하여 H S I 변환을 한 뒤, 그 값을 수동으로 또는, 임의로 지정하여야 하며, 그렇게 수행한 결과마저 완벽에 가까운 피부색의 검출로 유도되지는 않았습니다. 따라서, Point processing 에 있어서의 픽셀의 H S I 변환 외에 추가적인 기법의 도입이 필요할 것으로 보입니다.