ГУАП

КАФЕДРА № 44

	О.О. Жаринов
подпись, дата	инициалы, фамилия
ІАБОРАТОРНОЙ РА	БОТЕ №4
импульсной последо в зованием языков опи	вательности с заданными исания аппаратуры
урсу: СХЕМОТЕХНИР	ΚA
	К.С. Некрасов
подпись, дата	инициалы, фамилия
[импульсной последо ьзованием языков опи

Цель работы

Разработать проект формирователя импульсной последовательности с заданными свойствами в среде программирования Quartus, используя языки описания аппаратуры.

Индивидуальное задание. Вариант 3

Индивидуальное задание:

$$K_{nach} = 2$$

$$K_1 = 1$$

$$K_0 = 16$$

Решение

Таблица истинности

Таблица 1 – Таблица истинности

n	Dsi	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

$$Dsi = \bar{Q}_0 \wedge \bar{Q}_1 \wedge \bar{Q}_2 \wedge \bar{Q}_3 \wedge \bar{Q}_4 \wedge \bar{Q}_5 \wedge \bar{Q}_6 \wedge \bar{Q}_7 \wedge \bar{Q}_8 \wedge \bar{Q}_9 \wedge \bar{Q}_{10} \wedge \bar{Q}_{11} \wedge \bar{Q}_{12} \wedge \bar{Q}_{13} \wedge \bar{Q}_{14} \wedge \bar{Q}_{15}$$

Verilog код

Для реализации регистра сдвига в коде на каждом такте синхронизации мы вычисляем сигнал dsi, а затем записываем его со сдвигом в регистр q.

Для создания задержки в 2 такта, на выходной контакт сигнал мы подаём с первого бита регистра q;

```
module fourth(input c, output reg out, output reg[15:0] q);
reg dsi;
always @ (negedge c)
begin
  dsi = \sim q[0]
    გ ~q[1]
    გ ~q[2]
    & ~q[3]
    გ ~q[4]
    & ~q[5]
    8 ~q[6]
    & ~q[7]
    გ ~d[8]
    8 ~q[9]
    გ ~q[10]
    გ ~q[11]
    გ ~q[12]
    გ ~q[13]
    & ~q[14]
    & ~q[15];
  q \le \{q[15:0], dsi\};
  out = q[0];
end
endmodule
```

Результат

Рисунок 1 – Временная диаграмма

Top View MAX II - EPM570ZM256C7

Рисунок 2 - ПЛИС

Вывод

Разработан проект формирователя импульсной последовательности с заданными свойствами в среде программирования Quartus, используя языки описания аппаратуры.