2) Show that p and $\neg(\neg p)$ are logically equivalent.

p and $\neg(\neg p)$ have the same truth values in the above truth table. Therefore, they are logically equivalent.

5) Use a truth table to verify the Distributive Law.

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

$\mid p$	q	$\mid r \mid$	$(q \vee r)$	$ (p \wedge (q \vee r))$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	F	F
F	Т	Т	Т	F
F	Т	F	Т	F
F	F	Т	T	F
F	F	F	F	F

p	q	$\mid r \mid$	$(p \wedge q)$	$(p \wedge r)$	$ \mid ((p \land q) \lor (p \land r)) $
T	Т	T	T	Т	Т
T	Т	F	T	F	Т
T	F	Т	F	Т	Т
T	F	F	F	F	F
F	Т	Т	F	F	F
F	Т	F	F	F	F
F	F	Т	F	F	F
F	F	F	F	F	F

The final columns are identical, thus the distributive law is verified and both sides of the statement are logical equivalent.

10) Show that each of these conditional statements is a tautology by using truth tables.

a)
$$[\neg p \land (p \lor q)] \to q$$

	p	$\mid q \mid$	$\neg p$	$(p \lor q)$	$(\neg p \land (p \lor q))$	$ ((\neg p \land (p \lor q)) \to q) $
	Т	T	F	Т	F	T
Ì	Т	F	F	Т	F	Т
Ì	F	Т	Т	Т	T	Т
Ì	F	F	Т	F	F	Т

The final row is all true thus the conditional statement is a tautology.

b)
$$[(p \to q) \land (q \iff r)] \to (p \to r)$$

p	q	r	$(p \to q)$	$(q \rightarrow r)$	$ \mid ((p \to q) \land (q \to r)) $	$(p \to r)$	$ (((p \to q) \land (q \to r)) \to (p \to r)) $
T	$\mid T \mid$	$\mid T \mid$	T	T	T	Γ	T
Т	Т	F	Т	F	F	F	T
Т	F	T	F	Т	F	Т	T
Т	F	F	F	Т	F	F	T
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	F	Т	T
F	F	Т	Т	Т	Т	Т	T
F	F	F	Т	Т	T	Т	T

The final row is all true thus the conditional statement is a tautology.

c)
$$((p \land (p \to q)) \to q)$$

p	$\mid q \mid$	$(p \rightarrow q)$	$(p \land (p \to q))$	$((p \land (p \to q)) \to q)$
Τ	T	Т	${ m T}$	T
Т	F	F	F	T
F	Т	Т	F	Т
F	F	Т	F	Т

The final row is all true thus the conditional statement is a tautology.

d)
$$((p \land q) \land (p \rightarrow r) \land (q \rightarrow r)) \rightarrow r)$$

$\mid p$	q	r	$p \lor q$	$(p \rightarrow r)$	$(q \rightarrow r)$	$ \mid ((p \to r) \land (q \to r)) \mid $	$ \mid ((p \lor q) \land ((p \to r) \land (q \to r))) $	$ (((p \lor q) \land ((p \to r) \land (q$
T	T	T	Т	Т	Т	T	Т	Т
Т	T	F	Т	F	F	F	F	Т
T	F	T	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	F	F	Т
F	T	T	Т	Т	Т	Т	Т	Т
F	T	F	Т	Т	F	F	F	Т
F	F	T	F	Т	Т	Т	F	T
F	F	F	F	Т	Т	T	F	T

The final row is all true thus the conditional statement is a tautology.

14) Determine whether $(\neg p \wedge (p \rightarrow q)) \rightarrow \neg q)$ is a tautology.

p	$\mid q \mid$	$\neg p$	$(p \rightarrow q)$	$(\neg p \land (p \to q))$	$\neg q$	$ ((\neg p \land (p \to q)) \to \neg q) $
T	T	F	Т	F	F	Т
Т	F	F	F	F	Т	Т
F	Т	Т	Т	Т	F	F
F	F	Τ	Т	T	Т	T

The last column in the above truth table has one false value, thus it is <u>not</u> a tautology.

18) Show that $p \to q$ and $\neg q \to \neg p$ are logically equivalent.

p	$\mid q \mid$	$(p \rightarrow q)$
Τ	T	T
Т	F	F
F	Т	Т
F	F	Т

q	$p \mid p$	$\neg q$	$ \neg p $	$(\neg q \to \neg p)$
T	T	F	F	T
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	T

The above truth tables have the same truth values in the final column, thus $p \to q$ and $\neg q \to \neg p$ are logically equivalent.

31) Show that $(p \to q) \to r$ and $p \to (q \to r)$ are not logically equivalent.

$\mid p$	q	$\mid r \mid$	$(p \to q)$	$((p \to q) \to r)$
Т	Т	Т	Т	Т
Т	Т	F	Т	F
Т	F	Т	F	Т
T	F	F	F	Т
F	Т	T	Т	Т
F	Т	F	Т	F
F	F	Т	Т	Т
F	F	F	Т	F

	p	q	r	$(q \rightarrow r)$	$(p \to (q \to r))$
ſ	Τ	Т	T	Т	T
	Т	Т	F	F	F
	Т	F	Т	Т	Т
	Τ	F	F	Т	Т
	F	Т	Т	Т	Т
	F	Т	F	F	Т
ſ	F	F	Т	Т	Т
ſ	F	F	F	T	T

The above truth tables have differing values in the final column, thus $(p \to q) \to r$ and $p \to (q \to r)$ are not logically equivalent.

The following exercises involve the logical operators NAND and NOR. The proposition p NAND q is true when either p and q, or both, are false; and it is false when both p and q are true. The proposition p NOR q is true when both p and q are false, and it is false otherwise. The propositions p NAND q and p NOR q are denoted by p - q and $p \downarrow q$ respectively.

46) Construct the truth table for the logical operator NAND

p	$\mid q \mid$	(pNANDq)
T	Т	F
Т	F	Т
F	Т	Т
F	F	Т

** The NAND gate is an inverted AND. It is false only when both p and q are True.

47) Show that p|q is logically equivalent to $\neg(p \land q)$

** I will reuse the table used in problem 46 to represent the p NAND q table.

p	$\mid q \mid$	$(p \wedge q)$	$\neg (p \land q)$
Т	T	T	F
Т	F	F	Τ
F	Т	F	Τ
F	F	F	Τ

The final column in the p NAND q table used for problem 46 is identical to the final column of the $\neg(p \land q)$ truth table. Thus, p NAND q and $\neg(p \land q)$ are logically equivalent.

48) Construct a truth table for the logical operator NOR.

p	$\mid q \mid$	(pNORq)
T	T	F
Т	F	F
F	T	F
F	F	Т

** The is the truth table for the NOR operator. It is an inverted OR table. The table is only True when both p and q are false.

49) Show that $p \downarrow q$ is logically equivalent to $\neg (p \lor q)$

** I will reuse my NOR table from problem 48 for brevity.

	p	q	$(p \lor q)$	$\neg (p \lor q)$
	Τ	T	Т	F
ĺ	Т	F	Т	F
ĺ	F	Т	Т	F
Ì	F	F	F	T

The final column in the truth table for NOR matches the final column in the truth table for $\neg(p \lor q)$ thus, p NOR q and $\neg(p \lor q)$ are logically equivalent.