EXAMEN WISKUNDE 1 (eerste zittijd academiejaar '20-'21, reeks B) Opleiding industrieel ingenieur

UNIVERSITEIT GENT

Omcirkel: Eerste bachelor / Schakelprogramma

Naam: /40

Schrijf netjes. Vul in op de opengelaten plaatsen. Geen rekenmachine, gsm, smartphone, Geef uitleg bij de open vragen. Veel succes!

FACULTEIT INGENIEURSWETENSCHAPPEN

1. Een rechthoek heeft 1 zijde met lengte L langs de X-as en de andere zijde reikt tot aan de grafiek van $y=a-x^2$ zoals op de tekening.

(a) Voor welke afmetingen van de rechthoek is de oppervlakte van de grijze zone minimaal als a = 4?

 \sqrt{a} \sqrt{a} \sqrt{a} \sqrt{a} \sqrt{a} \sqrt{a}

/8

$$0 = 2 \int (4-x^{2}) dx - L(4-\frac{L^{2}}{4})$$

$$= 2(4x-\frac{x^{3}}{3})|_{0}^{2}-4L+\frac{L^{3}}{4} = 2(8-\frac{8}{3})-4L+\frac{L^{3}}{4}$$

$$= \frac{L^{3}}{4}-4L+\frac{32}{7}$$

 $\frac{d0}{dL} = 0 \iff \frac{3}{4}L^{2} = 4 \iff L = \frac{4}{\sqrt{3}}$ (L>0)

 $\frac{L \mid 0 \quad \frac{4}{63} \quad 2}{\frac{d0}{dL} \quad -0 \quad +}$ $L \quad \text{Vanin} \quad P$

(b) Voor welke waarde van a is de oppervlakte van de grijze zone maximaal als L=2?

 $0 = 2 \int_{0}^{\sqrt{a}} (a - \chi^{2}) d\alpha - 2 (a - 1) = 2(a \sqrt{a} - \frac{a^{3/2}}{3}) - 2a + 2 = \frac{4}{3} a^{3/2} - 2a + 2$ $\frac{d\Omega}{d\alpha} = 0 \iff 2 \sqrt{a} = 2 \iff \alpha = 1$ Zie tekening;

Zie tekening; $Va > \frac{L}{2} \iff Va > 1 \iff a > 1$ L=2

Als a=1, is er geen reechthæk want His dan O.

(ach 2)- a sh 2

2. Bereken de zijdelingse oppervlakte van de ruimtefiguur die ontstaat door wenteling van het deel van de kromme $y = a \operatorname{ch} \frac{x}{a} \ (a \in \mathbb{R}_0^+) \ \operatorname{voor} \ x \in [-a, a] \ \operatorname{om} \ \operatorname{de} \ X$ -as.

$$y = \operatorname{ach}_{a}^{2} = \frac{a}{2} \left(e^{2x} a + e^{-2x} a \right)$$

$$7 = \operatorname{ach}_{a}^{2} = \frac{a}{2} \left(e^{2x} a + e^{-2x} a \right)$$

$$7 = \operatorname{ach}_{a}^{2} = \frac{a}{2} \left(e^{2x} a + e^{-2x} a \right)$$

$$= 4\pi a \int_{0}^{2} \operatorname{ach}_{a}^{2} \operatorname{ach}_{$$

• VA; lim
$$\frac{2x^2}{\sqrt{x^2-4^2}} = \frac{8}{0^+} = +\infty => \alpha = 2$$
 is een VA
eim $\frac{2x^2}{\sqrt{x^2-4^2}} = \frac{8}{0^+} = +\infty => \alpha = -2$ is een VA

$$\lim_{\chi \to 1/40} (y - 2\chi) = \lim_{\chi \to 1/40} \frac{2\chi^2}{\sqrt{\chi^2 - 4}} - 2\chi \frac{\sqrt{\chi^2 - 4}}{\sqrt{\chi^2 - 4}} = \frac{100 - 00}{100}$$

=
$$\lim_{\chi \to +\infty} \frac{2\chi^2 - 2\chi \sqrt{\chi^2 - 4}}{\sqrt{\chi^2 - 4}} \cdot \frac{(2\chi^2 + 2\chi \sqrt{\chi^2 - 4})}{(2\chi^2 + 2\chi \sqrt{\chi^2 - 4})}$$

$$= \lim_{\chi \to 100} \frac{4\chi' - 4\chi'' + 16\chi^2}{2\chi' \sqrt{\chi^2 - 4} + 2\chi(\chi^2 - 4)} = \lim_{\chi \to 100} \frac{16\chi^2}{14\chi^3} = 0 \text{ eR}$$

$$= y = 2\chi \text{ en } y = -2\chi \text{ sign sH}$$

=>
$$y=2x$$
 en $y=-2x$ zýn sA

4. Vul in onderstaande tabel met een hoofdletter de juiste oplossing aan. Er is telkens exact 1 juiste oplossing. Duid bij elke vraag een antwoord aan want standard setting wordt toegepast bij de evaluatie.

vraag	1	2	3	4	5	6	7	8
antwoord								

(1) Voor welke van onderstaande θ -waarden bereikt de poolkromme $K: r = \frac{1}{(1-2\sin\theta)^2}$ een buigpunt t.o.v. de pool?

(3) Wat is de som van de lengtes van de intervallen die tot het domein behoren van $y = \operatorname{Bgcos}(\sin x + \frac{1}{2})$ en waarbij $x \in [-\pi, \pi]$?

B. $\frac{7\pi}{6} (=) -\frac{3}{2} \le \sin \chi \le \frac{1}{2}$ C. 2π D. $\frac{\pi}{6}$ $(=) \chi \in \mathcal{V} [-\frac{11}{6} + 2k\pi]$

A.
$$r = 4(\cos \theta - \sin \theta)$$

B) $r = 4(\cos \theta + \sin \theta)$

C.
$$r = \sqrt{2} (\cos \theta - \sin \theta)$$

D.
$$r = \sqrt{2} (\cos \theta + \sin \theta)$$

 $(x-2)^2+(y-2)^2=8$ $(=) x^2+y^2-4x-4y+8=8$ $(=) x^2-4ncon9-4nsin9=0$

$$(=)$$
 $n=0$ V $n=4(con\theta+sin\theta)$

(6) Welke uitspraken zijn waar?

*: Er zijn geen zuiver imaginaire derdemachtswortels van $-2 = 2e^{\int \overline{x}} + 2k\overline{x}$ **: $-|z\overline{z}| = z\overline{z}e^{j\pi}$ A. zowel * als ** $2\overline{z} = |z|$ A. zowel * als ** $2\overline{z} = |z|$

Ro

- A. zowel * als **

 B. enkel **

 C. enkel *

 D. geen van beiden

 -1= ext
- (7) De inhoud van het parallellepipedum opgespannen door $\vec{u} = \{1, -1, 0\}$, $\vec{v} = \{0, 3, 4\}$ en $\vec{w} = \{2, -8, -1\}$ is

 A. 37
 B. $\frac{7}{2}$ B. $\frac{7}{2}$ 37

- (8) De parabool $\mathcal{P}: \left\{ \begin{array}{ll} x=\frac{7}{8}-\frac{t^2}{2} \\ y=1+t \end{array} \right.$ met $t\in\mathbb{R}$ heeft
 - A. $\left(\frac{5}{8}, 1\right)$ als brandpunt en heeft een symmetrie-as evenwijdig met de X-as.
 - (B) $(\frac{3}{8}, 1)$ als brandpunt en heeft een symmetrie-as evenwijdig met de X-as.
 - C. $\left(\frac{7}{8}, \frac{3}{4}\right)$ als brandpunt en heeft een symmetrie-as evenwijdig met de Y-as.
 - D. $\left(\frac{7}{8}, \frac{1}{2}\right)$ als brandpunt en heeft een symmetrie-as evenwijdig met de Y-as.

t elimineren;
$$\frac{7}{8} - \frac{(y-1)^2}{2} = x \iff -4(y-1)^2 = 8x - 7 \iff (y-1)^2 = 2(x-\frac{7}{8})$$

 $t : (\frac{7}{8} - \frac{4}{2}, 1) = (\frac{3}{8}, 1)$

$$= 3\frac{2}{2} = \frac{2}{2}$$