泛函分析 (作业四)

- ▶ § 2.1.2 \mathcal{X} , \mathcal{Y} 是 Banach 空间. 设 $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 求证:
 - (1) $||A|| = \sup_{\|x\| \le 1} ||Ax||$; (2) $||A|| = \sup_{\|x\| < 1} ||Ax||$.

证明: (1) $\|A\| = \sup_{x \neq \theta} \frac{\|Ax\|}{\|x\|} \geqslant \sup_{0 < \|x\| \leqslant 1} \frac{\|Ax\|}{\|x\|} \geqslant \sup_{0 < \|x\| \leqslant 1} \|Ax\| = \sup_{\|x\| \leqslant 1} \|Ax\| \geqslant \sup_{\|x\| = 1} \|Ax\| = \|A\|;$

(2) $\forall \varepsilon \in (0,1), \forall x: \|x\| \leqslant 1,$ 都有 $(1-\varepsilon)\|Ax\| = \|A((1-\varepsilon)x)\| \leqslant \sup_{\|y\|<1} \|Ay\|,$ 由 x, ε 任意性 $\Longrightarrow \sup_{\|x\|\leqslant 1} \|Ax\| \leqslant \sup_{\|y\|<1} \|Ay\|.$ 另一方面, $\sup_{\|x\|\leqslant 1} \|Ax\| \geqslant \sup_{\|y\|<1} \|Ay\|,$ 即 $\|A\| = \sup_{\|x\|<1} \|Ax\|.$

另证: 由于 $B_1 ext{ } ext{ }$

- ▶ § 2.1.3 \mathcal{X} 是 Banach 空间. 设 $f \in \mathcal{L}(\mathcal{X}, \mathbb{R}^1)$, 求证:
 - (1) $||f|| = \sup_{\|x\|=1} f(x)$; (2) $\sup_{\|x\|<\delta} f(x) = \delta ||f|| \ (\forall \, \delta > 0)$.

证明: (1) $||f|| = \sup_{\|x\|=1} |f(x)| = \max \left\{ \sup_{\|x\|=1} f(x), -\inf_{\|x\|=1} f(x) \right\} = \sup_{\|x\|=1} f(x),$ 其中由于 $-\inf_{\|x\|=1} f(x) = \sup_{\|x\|=1} f(x) = \sup_{\|x\|=1} f(-x) = \sup_{\|x\|=1} f(x);$

(2) 由 § 2.1.2 (2) 的证明知 $||f|| = \sup_{\|x\|<1} |f(x)|$, 再按照 § 2.1.3 (1) 的证明过程可

得
$$||f|| = \sup_{\|x\| < 1} f(x)$$
, 于是 $\forall \delta > 0$, $||f|| = \sup_{\left\|\frac{x}{\delta}\right\| < 1} f\left(\frac{x}{\delta}\right) = \frac{1}{\delta} \sup_{\|x\| < \delta} f(x)$.

▷ § 2.1.5 \mathcal{Z} 是 Banach 空间. 设 f 是 \mathcal{Z} 上的非零线性有界泛函, 令 d = inf { $||x|| \mid f(x) = 1$ }, 求证: ||f|| = 1/d.

证明: 一方面
$$||f|| = \sup_{x \neq \theta} \frac{|f(x)|}{||x||} \ge \sup_{f(x)=1} \frac{|f(x)|}{||x||} = \frac{1}{\inf_{f(x)=1} ||x||} = \frac{1}{d},$$

另一方面
$$\|f\| = \sup_{x \neq \theta} \frac{|f(x)|}{\|x\|} = \frac{1}{\inf_{x \neq \theta} \left\| \frac{x}{f(x)} \right\|} \stackrel{y = \frac{x}{f(x)} \Longrightarrow f(y) = 1}{\leqslant} \frac{1}{\inf_{f(y) = 1} \|y\|} = \frac{1}{d}.$$

- \triangleright § 2.1.7 \mathcal{X} , \mathcal{Y} 是 Banach 空间. 设 T: \mathcal{X} → \mathcal{Y} 是线性的,

 - (1) 若 $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 求证: N(T) 是 \mathcal{X} 的闭线性子空间.
 - (2) 问 N(T) 是 \mathcal{X} 的闭线性子空间能否推出 $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$?
 - (3) 若 f 是线性泛函, 求证: $f \in \mathcal{X}^* \iff N(f)$ 是闭线性子空间.
 - 证明: (1) $\forall x_1, x_2 \in N(T)$, $T(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 T x_1 + \alpha_2 T x_2 = \theta$, 即 N(T) 是线性空间. 取 $\{x_n\} \subset N(T)$ 且 $x_n \to x_0$, 由于 T 有界, $||Tx_0 \theta|| \le ||T|| \, ||x_0 x_n||$, 有 $x_0 \in N(T)$, 即 N(T) 是闭集.
 - (2) 反例: 取 T 为 C[a,b] 上的微分算子. N(T) 是 [a,b] 上的常值函数集, 但 $T\sin nt = n\cos nt$, T 无界.
 - (3) "⇒": (1) 问已证. "⇐": 假设线性泛函 f 无界, 即对 $\forall n \in \mathbb{N}, \exists x_n$,使得 $|f(x_n)| > n ||x_n||$. 注意到 $\forall x \notin N(f)$,令 $y = \frac{x}{f(x)}$,有 f(y) = 1,于是取 $y_n = \frac{x}{f(x)} \frac{x_n}{f(x_n)}$,则 $y_n \in N(f)$ 且 $y_n \to y$. 由于 N(f) 是闭集,则有 $y \in N(f)$,即 f(y) = 0,矛盾.
- \triangleright § 2.2.5 \mathcal{H} 是 Hilbert 空间. 设 L, M 是 \mathcal{H} 上的闭线性子空间, 求证:
 - (1) $L \perp M \iff P_L P_M = 0$;
 - (2) $L = M^{\perp} \iff P_L + P_M = I$ (恒同算子);
 - (3) $P_L P_M = P_{L \cap M} \iff P_L P_M = P_M P_L$.
 - 证明: (1) " \Longrightarrow ": $\forall x, y \in \mathcal{H}$, $P_L x \in L$, $P_M y \in M$, $L \perp M \Longrightarrow 0 = (P_L x, P_M y) = (x, P_L P_M y)$, 注意到 x, y 的任意性, 有 $P_L P_M = 0$;
 - " \iff ": $\forall x \in L$, $\forall y \in M$, $x = P_L x$, $y = P_M y$, $P_L P_M = 0 \Longrightarrow 0 = (x, P_L P_M y) = (P_L x, P_M y) = (x, y)$, 注意到 x, y 的任意性, 有 $L \perp M$;
 - (2) "⇒": $\forall x \in \mathcal{H}, x$ 有唯一正交分解 x = l + m, 其中 $l \in M^{\perp} = L, m \in M$, 由于 $l = P_L x$, $m = P_M x$, 即 $x = (P_L + P_M) x$, 注意到 x 的任意性, 有 $P_L + P_M = I$; " \leftarrow ": $\forall x \in M^{\perp}$, 由于 $x = (P_L + P_M) x = P_L x$, 则 $M^{\perp} \subset L$.

假设 $\exists x' \in L \ \ \, \exists x' \notin M^{\perp}, (P_L + P_M)x' = x' = P_L x' \Longrightarrow P_M x' = \theta \Longrightarrow x' \perp M \Longrightarrow x' \in M^{\perp}, 矛盾. 于是 <math>L = M^{\perp}$;

(3) " \Longrightarrow ": $P_L P_M = P_{L \cap M} = P_{M \cap L} = P_M P_L$;

"=": 记 $P = P_L P_M$, 则 $P^2 = P_L P_M P_L P_M = P_L P_L P_M P_M = P_L^2 P_M^2 = P_L P_M = P$; $(Px, y) = (P_L P_M x, y) = (P_M P_L x, y) = (x, P_L P_M y) = (x, Py)$, P 是正交投影算子.

考察 Px = x: $x = P_L P_M x \Longrightarrow x \in L$, $x = P_M P_L x \Longrightarrow x \in M$, 于是 $x \in L \cap M$; 而 $\forall x \in L \cap M$ 都满足 Px = x, 因此 $P = P_{L \cap M}$.

- ▶ § 2.3.4 设 \mathcal{X} , \mathcal{Y} 是 \mathcal{B}^* 空间, \mathcal{D} 是 \mathcal{X} 的线性子空间并且 \mathcal{A} : \mathcal{D} → \mathcal{Y} 是线性映射. 求证:
 - (1) 如果 A 连续且 D 是闭的, 则 A 是闭算子;
 - (2) 如果 A 连续且是闭算子, 那么 3 完备蕴含 D 闭;
 - (3) 如果 A 是单射的闭算子, 则 A^{-1} 也是闭算子;
 - (4) 如果 \mathcal{X} 完备, A 是单射的闭算子, R(A) 在 \mathcal{Y} 中稠密并且 A^{-1} 连续, 那么 $R(A) = \mathcal{Y}$.

证明: (1) D 是闭的, 任取 D 的 Cauchy 列 $x_n \to x$, $x \in D$. A 连续 \iff A 有界, 于是 Ax_n 是 \mathcal{Y} 的 Cauchy 列, 且 $||Ax_n - Ax|| \le ||A|| \, ||x_n - x||$, 即 $Ax_n \to Ax$, 则 A 是闭算子;

- (2) 任取 D 的 Cauchy 列 x_n , $\exists x \in \overline{D}$, $x_n \to x$, A 连续, 于是 Ax_n 是 \mathcal{Y} 的 Cauchy 列, \mathcal{Y} 完备, 则 $\exists y \in \mathcal{Y}$ 使得 $Ax_n \to y$. 由 A 是闭算子, $x \in D$, 因此 D 闭;
- (3) A 是单射, A^{-1} 存在. A 是闭算子, 即 $x_n \to x$, $Ax_n \to y \Longrightarrow x \in D$, y = Ax. 记 $y_n = Ax_n$, 则有 $x_n = A^{-1}y_n$, 于是 $A^{-1}y_n \to x$, $y_n \to y \Longrightarrow x = A^{-1}y$, $y \in D(A^{-1})$, 即 A^{-1} 也是闭算子;
- (4) R(A) 在 \mathcal{Y} 中稠密 $\iff \forall y \in \mathcal{Y}, \exists \{y_n\} \subset R(A)$ 使 $y_n \to y$, 即 $\{y_n\}$ 是 Cauchy 列, 当 $m, n \to \infty$ 时, 有 $||y_m y_n|| \to 0$, A^{-1} 连续, 于是 $||A^{-1}y_m A^{-1}y_n|| \to 0$, \mathcal{X} 完备, 即 $\exists x \in D$, 使 $A^{-1}y_n \to x$, 由 (3) 的结论, A^{-1} 也是闭算子, 于是有 $y \in R(A)$, 即 $R(A) = \mathcal{Y}$.
- ▷ § 2.3.11 设 \mathcal{Z} , \mathcal{Y} 是 B 空间, $A \in \mathcal{L}(\mathcal{Z}, \mathcal{Y})$ 是满射的. 求证: 如果在 \mathcal{Y} 中 $y_n \to y_0$, 则 $\exists C > 0$ 与 $x_n \to x_0$, 使得 $Ax_n = y_n$, 且 $||x_n|| \le C ||y_n||$.

证明: $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ 是满射, 对 $\forall y \in \mathcal{Y}$, 闭线性流形 $\{x \in \mathcal{X} \mid Ax = y\} \neq \emptyset$, 因此考虑映射 \widetilde{A} : $\mathcal{X}/N(A) \to \mathcal{Y}$, $[x] \mapsto Ax$. \widetilde{A} 既是单射又是满射, 且 $\widetilde{A} \in \mathcal{L}(\mathcal{X}/N(A), \mathcal{Y})$, 商空间 $\mathcal{L}/N(A)$ 是 \widetilde{B} 空间, 由 Banach 逆算子定理, $\exists \widetilde{A}^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{L}/N(A))$, 对 $Y_n \to \theta$, 有 $[X_n] = \widetilde{A}^{-1}Y_n$, 且 $\|[X_n]\| = \|\widetilde{A}^{-1}Y_n\| \leq \|\widetilde{A}^{-1}\| \|Y_n\|$, 由于 $\|[X_n]\| = \inf_{z \in [X_n]} \|z\|$, 选定 $\lambda > 1$, $\exists X_n \in [X_n]$, 使 $\|X_n\| \leq \lambda \|[X_n]\| \leq \lambda \|\widetilde{A}^{-1}\| \|Y_n\|$.

任取 \mathcal{Y} 中 $y_n \to y_0$, 选取 $x_0 \in \widetilde{A}^{-1}y_0$ 并满足 $||x_0|| \le \lambda ||\widetilde{A}^{-1}y_0||$,

令 $Y_n = y_n - y_0$, 选取 $X_n \in \widetilde{A}^{-1}Y_n$ 并满足 $||X_n|| \le \lambda ||\widetilde{A}^{-1}Y_n||$, 令 $x_n = X_n + x_0$, 这样 x_n 满足 $x_n \to x_0$ 且 $Ax_n = y_n$,

 $||x_n|| = ||X_n + x_0|| \le ||X_n|| + ||x_0||$ $\le \lambda ||\widetilde{A}^{-1}|| ||y_n - y_0|| + \lambda ||\widetilde{A}^{-1}|| ||y_0||$ $\le \lambda ||\widetilde{A}^{-1}|| ||y_n|| + 2\lambda ||\widetilde{A}^{-1}|| ||y_0||$ $\le \lambda (1 + 2\mu) ||\widetilde{A}^{-1}|| ||y_n||, \quad (\exists \mu : ||y_0|| \le \mu ||y_n||, \forall n = 1, 2, \cdots)$ 只须令 $C = \lambda (1 + 2\mu) ||\widetilde{A}^{-1}|| || 即 可.$

§ 2.4.7 给定 B^* 空间 \mathcal{L} 中 n 个线性无关的元素 x_1, x_2, \dots, x_n ,求证: $\exists f_1, f_2, \dots, f_n \in \mathcal{L}^*$,使得 $\langle f_i, x_j \rangle = \delta_{ij}$ $(i, j = 1, 2, \dots, n)$. 证明: 设 $\mathcal{L}_i = \text{span}\{x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n\}$, $\forall i = 1, 2, \dots, n$.

证明: 设 $\mathcal{X}_i = \text{span}\{x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n\}, \ \forall i = 1, 2, \dots, n$

由于 x_1, x_2, \dots, x_n 线性无关, 有 $d_i = \rho(x_i, \mathcal{X}_i) > 0$.

利用定理 2.4.7, $\exists g_i \in \mathcal{X}^*$, $g_i(x_i) = d_i$, $g_i(\mathcal{X}_i) = 0$, $||g_i|| = 1$. 令 $f_i = \frac{g_i}{d_i}$ 即可.

- § 2.5.9 设 \mathcal{H} 是 Hilbert 空间, $A \in \mathcal{L}(\mathcal{H})$ 并满足 $(Ax, y) = (x, Ay) \ (\forall x, y \in \mathcal{H})$, 求证: (1) $A^* = A$;
 - (2) 若 R(A) 在 \mathcal{H} 中稠密,则方程 Ax = y,对 $\forall y \in R(A)$ 存在唯一解.

证明: (1) $\forall x, y \in \mathcal{H}$, $(Ax, y) = (x, A^*y) = (x, Ay) \Longrightarrow (x, (A^* - A)y) = 0$, 取 $x = (A^* - A)y$, 并由 y 的任意性, 有 $A^* = A$;

- (2) 若 $Ay = \theta$, 则 $\forall x \in \mathcal{H}$, $(Ax, y) = (x, Ay) = (x, \theta) = 0 \Longrightarrow y \in R(A)^{\perp}$, 由于 R(A) 在 \mathcal{H} 中稠密, $R(A)^{\perp} = \{\theta\}$, 因此 $y = \theta$, 因此 A 是单射, $\exists A^{-1}, A^{-1}y$ 即为 Ax = y 的唯一解.
- \triangleright § 2.6.1 设 \mathcal{X} 是 B 空间, 求证: $\mathcal{L}(\mathcal{X})$ 中可逆 (有有界逆) 算子集是开的.

证明: 记 $\mathcal{L}(\mathcal{X})$ 中可逆算子集为 $M, \forall A \in M, \forall \Lambda \in \mathcal{L}(\mathcal{X})$ 满足 $\|\Lambda\| < \frac{1}{\|A^{-1}\|},$ 由引理 2.6.6, $(I + A^{-1}\Lambda)^{-1} \in \mathcal{L}(\mathcal{X})$, 并且 $\|(I + A^{-1}\Lambda)^{-1}\| \leqslant \frac{1}{1 - \|A^{-1}\Lambda\|},$ 即 $I + A^{-1}\Lambda \in M$, 于是 $A(I + A^{-1}\Lambda) \in M$, 即 $A + \Lambda \in M$, 因此 M 是开集.