1) Admitir que a regulação do circuito abaixo está no limite de Vimin. Dados: Potência em RL = 0.58 W, Vi = 18 Vrms / 60 Hz, Vd = 0.56 V, C = 100.66 uF, calcule a tensão de ondulação no capacitor.
LM7806
15.9
ENVIAR
10) Admitir que a regulação do circuito abaixo

7) Admitir que a regulação do circuito abaixo está no limite de Vimin. Dados: Potência em RL = 0.58 W, Vi = 18 Vrms / 60 Hz, Vd = 0.56 V, C = 100.66 uF, calcule a tensão de ondulação no capacitor.
LM7806
15.9
ENVIAR
4) Admitir que a regulação do circuito abaixo está no limite de Vimin. Dados: Potência em RL = 0.58
W, Vi = 18 Vrms / 60 Hz, Vd = 0.56 V, C = 100.66 uF,

2) Admitir que a regulação do circuito abaixo está no limite de Vimin. Dados: Potência em RL = 0.58 W, Vi = 18 Vrms / 60 Hz, Vd = 0.56 V, C = 100.66 uF, calcule a tensão de ondulação no capacitor.
LM7806
15.9
ENVIAR
9) Admitir que a regulação do circuito abaixo está no limite de Vimin. Dados: Potência em RL = 0.58

 9) Admitir que a regulação do circuito abaixo está no limite de Vimin. Dados: Potência em RL = 0.56 W,
Vi = 18 Vrms / 60 Hz, Vd = 0.56 V, C = 100.66 uF, calcule a tensão de ondulação no capacitor.
LM7806
15.9 ENVIAR

está no limite de W, Vi = 18 Vrms / 60	regulação do circuito abaixo Vimin. Dados: Potência em RL = 0.58 Hz, Vd = 0.56 V, C = 100.66 uF, le ondulação no capacitor.
LM7806	
15.9	
ENVIAR	
2) Admitin and a co	vernile e a de cinevite cheive

3) Admitir que a regulação do circuito abaixo está no limite de Vimin. Dados: Potência em RL = 0.58 W, Vi = 18 Vrms / 60 Hz, Vd = 0.56 V, C = 100.66 uF, calcule a tensão de ondulação no capacitor.
LM7806
15.9
ENVIAR

está no limite de Vii W, Vi = 18 Vrms / 60 H	pulação do circuito abaixo min. Dados: Potência em RL = 0.58 z, Vd = 0.56 V, C = 100.66 uF, ondulação no capacitor.
LM7806	
15.9	
ENVIAR	

es W Vi) Admitir que a regulação do circuito abaixo stá no limite de Vimin. Dados: Potência em RL = 0.58 ¼, i = 18 Vrms / 60 Hz, Vd = 0.56 V, C = 100.66 uF, alcule a tensão de ondulação no capacitor.	
LN	M7806	
15.5		
EN	VIAR	