Super resolution implementation on FPGA

Diksha Moolchandani **Mentors:** Prof. Kolin Paul, Prof. Anshul Kumar 9 Dec, 2015

STAGE 1

```
for i = 1 : conv1_filters
    conv1_data(:,:,i) = imfilter(im_b, weights_conv1(:,:,i), 'same',
    'replicate');
    conv1_data(:,:,i) = max(conv1_data(:,:,i) + biases_conv1(i), 0);
end
```

```
STAGE 2
```

```
for i = 1 : conv2_filters
    for j = 1 : conv1_filters
        conv2_data(:,:,i) = conv2_data(:,:,i) + weights_conv2(j,:,i) *
conv1_data(:,:,j);
    end
    conv2_data(:,:,i) = max(conv2_data(:,:,i) + biases_conv2(i), 0);
end
```

```
STAGE 3
```

```
for i = 1 : conv2_filters
    conv3_subfilter = reshape(weights_conv3(i,:), conv3_patchsize,
    conv3_patchsize);
    conv3_data(:,:) = conv3_data(:,:) + imfilter(conv2_data(:,:,i),
    conv3_subfilter, 'same', 'replicate');
end
```

Synchronization scheme

Each stage or sub-stage in the pipeline consistently has the following control signals

- 1. reset: in
- 2. clk: in
- 3. sync minor in: in
- 4. start in: in
- 5. sync_minor_out : out
- 6. start_out : out

Specifications of these signals are given in the following slides

Signals start_in, start_out

- These signals have one pulse for each image frame, coinciding with the first sync_minor pulse of the frame.
- The ON duration of these pulses coincides with one clk period, indicating start of the 'frame'.
- start_in (start_out) = 1 indicates availability of the first value of data_in (data_out) for the current frame.
- start_out may be delayed with respect to start_in by an integral number of minor cycles plus an integral number of clk periods. Each of these two numbers may be zero or more.

TOP Level Super_Resolution block diagram

Stage1 block diagram

Stage2 block diagram

Stage3 block diagram

DDR3 INTERFACE

Data flow path from host to DDR3 SDRAM

UBER Design

- In the Uber design, there are two things that can access the DDR3 SDRAM on the card:
 - The host, via the MPTL interface. The host can access any of the 4 banks by using the appropriate OCP address.
 - The RAM "blk_mem_app", since it is multiplexed via the OCP interface to the module accessing 4 banks of DDR3.

IN-built protocols in UBER Design

OCP Protocol

MIG Protocol

- Everything is OCP protocol *except* that inside "blk_mem_if", OCP signals are converted to MIG native interface protocol (app_* signals). The black is when the CPU accesses RAM. The red is when a DMA engine accesses RAM
- To access the DDR3 SDRAM from an algorithm inside the FPGA, changes have been done in "blk_mem_app" (but we have used OCP protocol, not MIG native interface protocol). This data path is marked in green.
- If we really have to use MIG native interface protocol, then we will have to make bigger changes to the structure of the Uber design. For example, we have to find a way to multiplex two MIG native interface channels together so that both channels can access a bank of DDR3 SDRAM.
- Therefore, OCP protocol has been chosen that will govern the access of DDR3 to the super_resolution module via BRAM. The blk_dma_switch module is a module that multiplexes two or more OCP channels onto one OCP channel.

DATA-PATHS IN UBER

- Host Direct Slave (MPTL interface) <--OCP--> DDR3 SDRAM bank 0 (blk_mem_if)
- Host Direct Slave (MPTL interface) <--OCP--> DDR3 SDRAM bank 1 (blk_mem_if)
- Host Direct Slave (MPTL interface) <--OCP--> DDR3 SDRAM bank 2 (blk_mem_if)
- Host Direct Slave (MPTL interface) <--OCP--> DDR3 SDRAM bank 3 (blk_mem_if)

- our convolver (blk_mem_app) <--OCP--> DDR3 SDRAM bank 0 (blk_mem_if)
- our convolver (blk_mem_app) <--OCP--> DDR3 SDRAM bank 1 (blk_mem_if)
- our convolver (blk_mem_app) <--OCP--> DDR3 SDRAM bank 2 (blk_mem_if)
- our convolver (blk_mem_app) <--OCP--> DDR3 SDRAM bank 3 (blk_mem_if)

OCP Burst Write

Figure 3 : Burst Write

OCP Burst Read

Figure 4 : Burst Read

Top level block diagram of blk mem_app

DEVICE UTILIZATION SUMMARY

Device Utilization Summary (estimated values)				<u>[-1</u>
Logic Utilization	Used	Available	Utilization	
Number of Slice Registers	48	595200		0%
Number of Slice LUTs	64	297600		0%
Number of fully used LUT-FF pairs	32	80		40%
Number of bonded IOBs	42	600		7%
Number of BUFG/BUFGCTRLs	1	32		3%
Number of DSP48E1s	2	2016		0%

PΕ

Device Utilization Summary (estimated values)				[-]
Logic Utilization	Used	Available	Utilization	
Number of Slice Registers	73	595200		0%
Number of Slice LUTs	300	297600		0%
Number of fully used LUT-FF pairs	53	320		16%
Number of bonded IOBs	600	600		100%
Number of BUFG/BUFGCTRLs	1	32		3%

DEVICE UTILIZATION SUMMARY (Contd..)

Device Utilization Summary (estimated values)			
Logic Utilization	Used	Available	Utilization
Number of Slice Registers	3772	595200	0%
Number of Slice LUTs	11044	297600	3%
Number of fully used LUT-FF pairs	3752	11064	33%
Number of bonded IOBs	42	600	7%
Number of Block RAM/FIFO	18	1064	1%
Number of BUFG/BUFGCTRLs	1	32	3%
Number of DSP48E1s	128	2016	6%

Parallel to Serial Converter (PISO)

Device Utilization Summary (estimated values)				[-]
Logic Utilization	Used	Available	Utilization	
Number of Slice Registers	48	595200		0%
Number of Slice LUTs	64	297600		0%
Number of fully used LUT-FF pairs	32	80		40%
Number of bonded IOBs	42	600		7%
Number of BUFG/BUFGCTRLs	1	32		3%
Number of DSP48E1s	2	2016		0%

DEVICE UTILIZATION SUMMARY (Contd..)

Device Utilization Summary (estimated values)				
Logic Utilization	Used	Available	Utilization	
Number of Slice Registers	1837	595200	0%	
Number of Slice LUTs	3256	297600	1%	
Number of fully used LUT-FF pairs	1410	3683	38%	
Number of bonded IOBs	600	600	100%	
Number of Block RAM/FIFO	32	1064	3%	
Number of BUFG/BUFGCTRLs	1	32	3%	
Number of DSP48E1s	64	2016	3%	

STAGE 1

Device Utilization Summary (estimated values)			
Logic Utilization	Used	Available	Utilization
Number of Slice Registers	1758	595200	0%
Number of Slice LUTs	4984	297600	1%
Number of fully used LUT-FF pairs	1748	4994	35%
Number of bonded IOBs	662	600	110%
Number of Block RAM/FIFO	8	1064	0%
Number of BUFG/BUFGCTRLs	1	32	3%
Number of DSP48E1s	64	2016	3%

DEVICE UTILIZATION SUMMARY (Contd..)

Device Utilization Summary (estimated values)			
Logic Utilization	Used	Available	Utilization
Number of Slice Registers	183	595200	0%
Number of Slice LUTs	510	297600	0%
Number of fully used LUT-FF pairs	180	513	35%
Number of bonded IOBs	42	600	7%
Number of Block RAM/FIFO	2	1064	0%
Number of BUFG/BUFGCTRLs	1	32	3%

STAGE 3

Device Utilization Summary (estimated values)			
Logic Utilization	Used	Available	Utilization
Number of Slice Registers	29472	595200	4%
Number of Slice LUTs	77012	297600	25%
Number of fully used LUT-FF pairs	26684	79800	33%
Number of bonded IOBs	162	600	27%
Number of Block RAM/FIFO	232	1064	21%
Number of BUFG/BUFGCTRLs	2	32	6%
Number of DSP48E1s	1024	2016	50%

SUPER_RESOLUTION