Exercice 1 (7 points)

- 1) Étudier la valeur de vérité des propositions suivantes :
- 1pt $P: \forall x \in \mathbb{R}, x < x^2$
- 1pt $Q: \exists x \in \mathbb{R}, \ x^2 4 = 0$
 - 2) Donner la négation des propositions suivantes :
- 1pt $P: (\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}), y \leq x^2$
- 1pt $Q: (\exists x \in \mathbb{R}) (\exists y \in \mathbb{R}), x = 3 \text{ ou } y = -4 \text{ ou } 4x 3y + xy \neq 12$
 - 3) En utilisant le raisonnement par contraposé. Montrer que :
- 1.5pts $\forall x, y \in \mathbb{R} : x \neq y \text{ et } xy \neq 2 \implies \frac{x}{x^2 + x + 2} \neq \frac{y}{y^2 + y + 2}$
 - 4) En utilisant le raisonnement par récurrence .Montrer que :
- 1.5pts $\forall n \in \mathbb{N}^*; 1+2+3+\dots+n = \frac{n(n+1)}{2}$

Exercice 2 (6 points)

On considère les deux fonctions numériques f et g définies par

$$f(x) = \frac{2x-2}{-x+2}$$
 et $g(x) = \frac{2x^3}{3}$

- 0.5pt | 1) Déterminer D_f et D_g les ensembles de définition de f et g respectivement.
- 1pt (2) Dresser le tableau de variations de f.
- 1pt $| 3 \rangle$ Dresser le tableau de variations de g.
- 0.5pt | 4) Résoudre dans] $-\infty$, 2[l'équation f(x) = 0, en déduire une interprétation géométrique du résultat obtenu.
- 2pts | 5) Tracer les courbes (C_f) et (C_g) dans un même repère orthonormé (O, \vec{i}, \vec{j}) .
- 1pt | 6) Déterminer graphiquement l'ensemble de solutions de l'inéquation

$$f(x) \le g(x)$$
. sur $\mathbb{R}^* \setminus \{2\}$

(On admet que $x \simeq -\frac{5}{4}$ et $x \simeq \frac{3}{2}$ sont les solution de l'équation f(x) = g(x))

Exercice 3 (7 points)

Soient f une fonction numérique définie par $f(x) = \frac{2x+3}{x-1}$

- 0.5pt | 1) Déterminer D_f l'ensemble de définition de f.
- 1pt 2) Dresser le tableau de variations de f

On considère la fonction numérique g définie par $\forall x \in \mathbb{R} : g(x) = x^2 + 2$.

- 1pt | 3) Soient $x, y \in \mathbb{R}$ tel que $x \neq y$ montrer que le taux de variation de $g: T_{(x,y)} = x + y$.
- 1pt 4) Déduire les variations de g sur $[0; +\infty[$ et $]-\infty; 0]$
- 1pt | 5) Déterminer $D_{g \circ f}$ l'ensemble de définition de $g \circ f$
- 1pt | 6) Montrer que $g \circ f(x) = \frac{6x^2 + 8x + 11}{x^2 2x + 1}$
- 1pts | 7) Déduire que $g \circ f$ est décroissante sur $]1, +\infty[$, croissante sur $[-\frac{3}{2}, 1[$ et décroissante sur $]-\infty; -\frac{3}{2}]$.
- 0.5pt | 8) Déterminer les extremums de $g \circ f$

Année scolaire :2024-2025