- 实验目的
- ▼ 实验过程和核心代码
 - SlideConvolution 滑窗法
 - Im2col & GEMM
 - cuDNN
- 实验结果
- 实验感想

中山大学计算机学院

本科生实验报告

(2025学年春季学期)

课程名称: 并行程序设计

实验	CUDA 卷积计算	专业(方向)	计算机科学与技术
学号		姓名	
Email		完成日期	2025.6.9

实验目的

- 通过CUDA实现直接卷积
- 使用im2col结合实现的通用矩阵乘法实现卷积操作
- 使用cuDNN提供的卷积方法进行卷积操作

实验过程和核心代码

在获取了input大小后, 我们先初始化input和kernel数据

```
int in_elements = channel * in_size * in_size;
int k_elements = channel * k_size * k_size;

// host分配内存
float* h_in = new float[in_elements];
float* h_k = new float[k_elements];

randomInit(h_in, in_elements);

// 初始化卷积核为1, 便于验证各案
oneInit(h_k, k_elements);

// cuda分配内存
float* d_in;
float* d_k;
cudaMalloc(8d_in, in_elements * sizeof(float));
cudaMalloc(8d_k, k_elements * sizeof(float));
cudaMemcpy(d_in, h_in, in_elements * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_k, h_k, k_elements * sizeof(float), cudaMemcpyHostToDevice);
```

随后使用一个循环来分别运行stride为1,2,3的卷积计算. 在得到确定的stride数据后, 我们采用 SAME Padding 策略来计算需要的padding大小. SAME Padding 策略指的是使输出大小等于输入大小除以步长:

$$Output = \lceil \frac{Input}{S} \rceil$$

所以我们可以根据输入大小与步长来计算出输出大小,根据输出大小与下面的公式来计算padding值:

$$\mathrm{Output} = \frac{\mathrm{Input} - K + 2P}{S} + 1$$

注意, padding 计算过程中有除2操作, 可能导致 padding 的计算结果代入上式后计算出的 output 大小不一致, 所以使用计算得到的padding根据上式重新计算 output 大小作为最终的 output 大小. 计算代码如下:

```
// 采用SAME Padding策略(输出大小约等于输入大小除以步长),根据input_size和stride计算padding
int out_size = ceil(in_size / (float)stride);
int padding = ((out_size - 1) * stride + k_size - in_size) / 2;
// 计算出的结果可能无法被2整除,使用对称padding,所以还需要根据padding重新计算输出大小
out_size = (in_size - k_size + 2 * padding) / stride + 1;
```

得到所需的参数后, 为输出分配内存. 然后运行 runConv 函数. 该函数主要通过一个循环来依次调用不同的卷积方式, 并输出结果与运行时间.

SlideConvolution 滑窗法

该实现方法相关代码主要在文件 SlideConvolution.cu 中

滑窗法的实现思路很简单:每个线程负责计算一个位置的结果值. 所以线程数量要匹配 output 大小. 在 slide 函数中, 根据线程块大小, 计算出 grid 大小, 并调用滑 窗法核函数. 并添加计时逻辑.

滑窗法核函数的思路是通过一个循环来累加不同通道的计算结果. 在某个通道的计算中通过双层循环来遍历计算 kernel 与对应位置 input 的乘积. 核心在于根据线 程负责计算的 output 位置与 kernel 位置来获取对应 input 的位置.

假设线程负责计算 output 的位置为(i, j), kernel 的位置为 (K_i, K_i) .

由卷积定义可知 output 位置代表 kernel 移动步数, 乘以步长就可以得到对应在 input 的滑动距离, 所以 kernel 滑动距离为(i imes S, j imes S). 由于我们padding没有实际加到input中, 所以还需要减去padding值, 最后加上 kernel 的位置即可得到最终结果:

$$\mathrm{In}_i = i imes S - P + K_i \ \mathrm{In}_i = j imes S - P + K_j$$

在获取到 In_i 和 In_i 后, 由于我们使用一维数组来存储数据, 所以还需要根据通道值 C 来将 (C, In_i, In_i) 转换为一维下标:

$$idx = (C \times H_{in} + In_i) \times W_{in} + In_j$$

实现代码如下

```
// 本线程负责计算output的位置(row, col)
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
if(row >= out_size || col >= out_size) {
   return;
float sum = 0.0f;
// 每个channel计算的值累加
for(int c = 0; c < channel; ++c) {</pre>
   // 计算 c 通道下 kernel 每个位置与对应input位置的值的结果
    for(int k_row = 0; k_row < k_size; ++k_row) {</pre>
       for(int k_col = 0; k_col < k_size; ++k_col) {</pre>
           // kernel 在(k_row, k_col) 对应 input 的位置(in_row, in_col)计算
           int in_row = row * stride - padding + k_row;
           int in_col = col * stride - padding + k_col;
           // 处于padding区域, 值为0, 无需进行后续计算
           if(in\_row < 0 \mid | in\_row >= in\_size \mid | in\_col < 0 \mid | in\_col >= in\_size) {
           // 由于使用一维数组,将 (c, in_row, in_col) 转换为一维下标
           int in_idx = (c * in_size + in_row) * in_size + in_col;
           int k idx = (c * k size + k row) * k size + k col;
           sum += d in[in idx] * d k[k idx];
// 输出(row,col)转换为一维下标
int out_idx = row * out_size + col;
d_out[out_idx] = sum;
```

Im2col & GEMM

该实现方法相关代码主要在文件 Im2colConvolution.cu 中

im2col重点在于将 input 转换为 col 矩阵, 将 kernel 展开为一维后直接与 col 矩阵做矩阵乘法就能得到最终的结果.

首先计算 col 矩阵的维度, 高度 H_{col} 与展开后的 kernel 长度相同, 宽度 W_{col} 为结果 output 矩阵的元素个数, 计算公式如下:

$$H_{col} = K \times K \times C_k$$

$$W_{col} = H_{out} \times W_{out}$$

为 col 矩阵在 cuda 上分配内存, 并根据设置的线程块与 col 矩阵维度计算 grid 的大小, 使每个线程负责计算 col 矩阵一个位置的值

接着使用 im2colKernel 核函数完成 im2col 过程.

im2col过程的核心在于获取线程负责 col 矩阵(x, y)位置对应 input 位置的值, 并赋值到 col 矩阵的(x, y)位置.

Image to column operation (im2col)

Slide the input image like a convolution but each patch become a column vector.

观察im2col的示例图

我们容易知道(x,y)位置对应 input 的 channel 为:

$$\lfloor rac{x}{H_k imes W_k}
floor$$

然后通过 x 的值计算当前位于展开一维 kernel 的哪个位置:

$$index_k = x\%(H_k \times W_k)$$

再转换为二维 kernel 的坐标 (x_k, y_k) :

$$x_k = \text{index}_k / / W_k$$
$$y_k = \text{index}_k \% W_k$$

至此我们通过 x 的值计算出了 y=0 时, 第一个 kernel 的 (x_k,y_k) 位置, 此时 y=0, 则我们需要的 input 位置也为 (x_k,y_k) . 接下来考虑 y!= 0 带来的影响.

y 代表 kernel 的移动步数, 而 kernel 的移动会影响 kernel 的 (x_k,y_k) 位置 对应原 input 的位置. 显然, 我们只需要计算出 kernel 在x,y方向的移动步数, 再乘以步长即可得到移动偏移(offset $_x$, offset $_y$). 而 output 的 W_{out} 就代表 kernel 在 y 方向最多的移动步数, 所以:

$$ext{offset}_x = y / / W_{out} imes S \ ext{offset}_y = y \% W_{out} imes S$$

同理, 我们没有对 input 进行实际的 padding, 所以最后还需要减去 padding带来的偏移, 最终对应 input 的位置 $(\mathrm{in}_c,\mathrm{in}_x,\mathrm{in}_y)$ 计算如下:

$$egin{aligned} & ext{in}_c = x / / (H_k imes W_k) \ & ext{in}_x = x_k + ext{offset}_x - P \ & ext{in}_y = y_k + ext{offset}_y - P \end{aligned}$$

将 (in_c, in_x, in_y) 转换为一维坐标然后将值赋值给 col 矩阵 (x, y) 位置即可代码实现如下:

```
int x = blockIdx.y * blockDim.y + threadIdx.y;
int y = blockIdx.x * blockDim.x + threadIdx.x;
if(x >= col_x || y >= col_y) {
   return;
int k_col = k_size * k_size;
// col (x,y) 位置对应 im (in_c, in_x, in_y) 位置的值
int in_c = x / k_col;
// x % k_col / k_size: 第一个 kernel 的 x 位置; y /out_size * stride: kernel 向下移动偏移, padding: padding移
int in_x = x % k_col / k_size + y / out_size * stride -padding;
// x % k_col % k_size: 第一个 kernel 的 y 位置; y %out_size * stride: kernel 向右移动偏移: padding8
int in_y = x % k_col % k_size + y % out_size * stride -padding;
// 处于padding部分,赋值为0
if(in_x < 0 \mid | in_x >= in_size \mid | in_y < 0 \mid | in_y >= in_size) {
   d_{col}[x * col_y + y] = 0.0f;
} else {
// (in_c, in_x, in_y) 转换为一维下标
    d_{col}[x * col_y + y] = d_{in}[(in_c * in_size + in_x) * in_size + in_y];
```

im2col 完成后在进行通用矩阵乘法的核函数,注意计算之前要重新计算 grid 的维度,因为通用矩阵乘法的结果维度为 $(1,H_{out} imes W_{out})$,每个线程负责一个结果位置计算:

```
// 任务变化, GEMM结果维度为(1, out_size * out_size), 重新计算gridDim
gridDim.x = (1 + blockDim.x - 1) / blockDim.x;
gridDim.y = (out_size * out_size + blockDim.y - 1) / blockDim.y;

GEMM<<<gridDim, blockDim>>>(d_k, d_col, d_out, 1, channel * k_size * k_size, col_y);
```

通用矩阵乘法采用上次实验中的共享内存版本, 但是也结合了循环展开, 即在计算子块乘法的结果时也采用循环展开来进一步优化:

```
float4 sum = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
// 循环处理分块
for(int tile = 0; tile < tile_count; ++tile) {</pre>
   __syncthreads();
    // 循环展开 计算子块乘法结果
   int floor4 = (blockDim.x & (~3));
    for(int i = 0; i < floor4; i += 4) {</pre>
      sum.x += sharedTileA[ty][i] * sharedTileB[i][tx];
       sum.y += sharedTileA[ty][i + 1] * sharedTileB[i + 1][tx];
      sum.z += sharedTileA[ty][i + 2] * sharedTileB[i + 2][tx];
       sum.w += sharedTileA[ty][i + 3] * sharedTileB[i + 3][tx];
// 不足4列的部分
    for(int i = floor4; i < blockDim.x; ++i) {</pre>
     sum.x += sharedTileA[ty][i] * sharedTileB[i][tx];
    __syncthreads();
}
```

cuDNN

通过阅读文档来实现 cuDNN. 首先创建 cuDNN Handle, 然后创建并设置张量描述符、卷积核描述符和卷积描述符. 最后设置卷积算法, 并调用cuDNN的卷积计算函数.

```
cudnnHandle_t cudnn;
checkCUDNN(cudnnCreate(&cudnn));
// 创建描述符
cudnnTensorDescriptor_t in_desc, out_desc;
cudnnFilterDescriptor_t kernel_desc;
cudnnConvolutionDescriptor_t conv_desc;
checkCUDNN(cudnnCreateTensorDescriptor(&in_desc));
checkCUDNN(cudnnCreateTensorDescriptor(&out_desc));
checkCUDNN(cudnnCreateFilterDescriptor(&kernel desc));
checkCUDNN(cudnnCreateConvolutionDescriptor(&conv_desc));
// 设置描述符
\label{local_control_control_control} check \texttt{CUDNN} (cudnn \texttt{SetTensor4dDescriptor} (in\_desc, \texttt{CUDNN\_TENSOR\_NCHW}, \texttt{CUDNN\_DATA\_FLOAT}, \ \ 1, \ channel, \ in\_size, \ in\_size)); \\
check \verb|CUDNN| (cudnnSetTensor4dDescriptor(out\_desc, CUDNN\_TENSOR\_NCHW, CUDNN\_DATA\_FLOAT, 1, channel, out\_size, out\_size)); \\
\verb|checkCUDNN| (cudnnSetFilter4dDescriptor(kernel\_desc, CUDNN\_DATA\_FLOAT, CUDNN\_TENSOR\_NCHW, 1, channel, k\_size, k\_size))|; \\
checkCUDNN(cudnnSetConvolution2dDescriptor(conv_desc, padding, padding, stride, stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT));
float alpha = 1.0f, beta = 0.0f;
cudnnConvolutionFwdAlgo_t algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM;
cudaEvent_t start, end;
cudaEventCreate(&start);
cudaEventCreate(&end);
cudaEventRecord(start);
cudnnConvolutionForward(
    cudnn,
    &alpha,
    in desc, d in,
    kernel_desc, d_k,
    conv desc,
    algo,
    nullptr, 0,
    &beta,
    out_desc, d_out
cudaEventRecord(end);
cudaEventSynchronize(end);
cudaEventElapsedTime(&time, start, end);
```

实验结果

完整输出 output 结果见 result_full 文件夹输出部分 output 结果见 result 文件夹文件最后的数字代表输入规模

block size 为 32 的运行结果如下:

时间单位: ms

Input Size	Stride	Slide	im2col+GEMM	cuDNN
32	1	0.163232	0.056064	0.137504
32	2	0.064416	0.056544	0.011904
32	3	0.045632	0.059680	0.017920
-	3	*******		
64	1	0.158176	0.115360	0.082624
64	2	0.067360	0.059136	0.008832
64	3	0.048992	0.051968	0.008384
128	1	0.169792	0.234656	0.093088

Input Size	Stride	Slide	im2col+GEMM	cuDNN
128	2	0.065344	0.108864	0.008160
128	3	0.050496	0.067264	0.009440
256	1	0.331520	0.811232	0.080672
256	2	0.084192	0.234048	0.018912
256	3	0.049664	0.126016	0.008832
512	1	0.611680	2.968800	0.087904
512	2	0.198528	0.787904	0.009888
512	3	0.115616	0.374112	0.008736

可以看到, 只有在 input size 为 32, stride 为 1 时 im2col 方法的运行时间最短, 其他情况下都是 cuDNN 的运行时间最短.

另外,在 input size 较小时, stride 较大时, im2col 方法的性能略微比 slide 方法更快. 但是 随着 input size 增加, im2col + GEMM 性能对比其他方法差距很大,尤其在 input size 为 512 并且 stride 为 1 时. 这是由于 **im2col + GEMM 方法中,转换的 col 矩阵大小与 output 大小有关,即受到 input size 和 stride 的影响**. 而 im2col 的过程需要从全局内存中取矩阵元素个数次数据,导致运行运行时间显著增加.

在 cuDNN 的实现中,我选用的是 CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM 算法,Implicit GEMM 算法与 im2col + GEMM 相似,**但是没有进行显示的 im2col 转换,矩阵的转换发生在计算当中**. 在 GEMM 的过程中进行输入输出的坐标映射进行卷积计算. 另外在 GEMM 的实现中也可能使用了更高效的实现方式,从而使卷积计算整体的运行速度非常快.

可能的改进方案: 对于 im2col + GEMM, 可以考虑实现上述的 Implicit GEMM 算法, 不直接将输入转换为 col 矩阵, 而是在 GEMM 的计算过程通过坐标映射来进行计算. 另外可以考虑实现更高效的 GEMM 算法, 例如流水并行化(Double Buffering). 在实现过程中充分利用共享内存可能有更好的效果.

实验感想

在本次实验中, 我使用 cuda 编程实现了滑动窗口卷积计算与 im2col + GEMM 卷积计算. 同时应用了 cuDNN 提供的卷积计算操作并与自己实现的方式性能进行了对比.

在这次实验中涉及非常多的坐标映射,在进行坐标映射的计算中要充分理解算法的原理并进行清晰的推导,不然非常容易出错.

另外,在实现某些算法的过程中,如果想要提高性能,可以对于现有的高效算法进行分析理解,提取出其高效的原因并应用到自己的实现中.