6 机器学习发展历史

人工智能是基于数据处理来做出决策和预测 机器学习利用经验来改善自身的性能

66 机器学习基础概念

术语 terms	房价预测案例		
数据 (raw data)	房子1,房子2,房子3,房子4		
特征	卧室个数, 地理位置, 朝向,/不具有可解释性		
模型	支持向量机,神经网络,		
参数	可学习的,根据目标函数进行优化的		
模型输出	预测的房价		
目标	真实的房价		
目标函数 (损失函数)			
训练集	用于训练模型的数据集		
测试集	用于评估已训练模型的数据集		
泛化	衡量模型对未见过数据样本的分类能力		

66 机器学习基础概念

术语 terms	案例			
超参数	模型外部的变量			
误差	模型输出与目标的差值			
欠拟合	在训练集、测试集上均表现不佳			
过拟合	在训练集上表现很好,在测试集上表现不佳			
验证集	用于模型自身性能评估及超参数调整			
性能度量	准确率,错误率,查全率,查准率			
偏差	模型在样本上的输出与真实值之间的误差,衡量模型拟合训练数据的能力			
方差	模型每一次输出结果与模型输出期望之间的误差,衡量模型的稳定性			
噪声	描述了在当前任务上任何学习算法所能达到的期望泛化误差的下界,即刻画了学习问题本身的难度			

6 机器学习简单例子

学习目标

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

6 机器学习简单例子

$$y(x, \mathbf{w}) = \sum_{j=0}^{M} w_j x^j$$

• 问题1: 如何学习参数 w

拟合偏差

$$y(x_n, \mathbf{w}) - t_n$$

w 应该最小化拟合错误:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

6 机器学习简单例子

• 问题2: 如何决定多项式阶次M

$$y(x, \mathbf{w}) = \sum_{j=0}^{M} w_j x^j$$

最小化误差 = 最好的模型 ?

过拟合 (Overfitting)
⇒ 泛化能力差

6 机器学习简单例子

• 问题2: 如何决定多项式阶次M

过拟合

过拟合、欠拟合的直观类比

6 机器学习主要分类

- 监督学习 (Supervised learning)
 - 训练数据有目标向量 (标签)
 - 分类、回归...
- 非监督学习 (Unsupervised learning)
 - 训练数据没有目标向量 (标签)
 - 聚类、密度估计、可视化...
- 强化学习 (Reinforcement learning)
 - 和环境存在交互
 - · situation, action, reward

66 监督学习:回归与分类

Francis Galton,英国生物学家,他研究了父母身高与子女身高之间关系后得出,若父母身高高于平均大众身高,则其子女身高倾向于倒退生长,即会比其父母身高矮一些而更接近于大众平均身高,则其子女身高倾向于向上生长,以更接近于大众平均身高。此现象,被Galton称之为回归现象,即regression.

弗朗西斯·高尔顿(Francis Galton,1822年2月16日-1911年1月17日)

≤ 监督学习:回归与分类

1855年, 高尔顿、卡尔•皮尔逊 《遗传的身高向平均数方向的回归》

Y= 0.8567+0.516*X

从左图中可以看到, 后代的身高倾向于 "回归"到一个平均 值。

■ 监督学习:回归与分类

例:房价估计

训练样本

Size (feet-)	bedrooms	floors	(years)	Price (\$1000)	
2104	5	1	45	460	
1416	3	2	40	232	
1534	3	2	30	315	
852	2	1	36	178	
	•••		•••	***	

测试样本

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
1500	3	2	30	?

≤ 监督学习:回归与分类

例:房价估计

训
练
样
本

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
x_1	x_2	x_3	x_4	y	
2104	5	1	45	460	
1416	3	2	40	232	
1534	3	2	30	315	$igsqcup_N$
852	2	1	36	178	1 1
••••					

监督学习

回归问题

N: 训练样本个数

x: 输入变量/"特征"

y: 输出变量/目标变量

【 监督学习: 回归与分类

- 给定数据集 $D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\}$ 其中 $\boldsymbol{x}_i = (x_{i1}; x_{i2}; \dots; x_{id})$, $y_i \in \mathbb{R}$
- 线性回归 (linear regression) : 学得一个线性模型以尽可能准确地预测实值输出标记

$$f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + b$$

 $\mathbf{x} = (x_1; x_2; \dots; x_d)$ 是描述特征,其中 x_i 是 \mathbf{x} 的第 i 类特征取值

• 向量形式

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$$

 $\boldsymbol{w} = (w_1; w_2; \dots; w_d)$

【 监督学习:回归与分类

• 最小化均方误差

$$(w^*, b^*) = \underset{(w,b)}{\operatorname{arg min}} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$
$$= \underset{(w,b)}{\operatorname{arg min}} \sum_{i=1}^{m} (y_i - wx_i - b)^2$$

• 梯度下降优化算法

$$w_j^t = w_j^{t-1} - \alpha \frac{\partial}{\partial w_j} J(\mathbf{w})$$

■ 监督学习:回归与分类

- 线性回归: $z = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b$
- 二分类: $y \in \{0,1\}$
- 如何建立分类与线性回归的联系?
 - 最理想的函数——单位阶跃函数

$$y = \begin{cases} 0, & z < 0; \\ 0.5, & z = 0; \\ 1, & z > 0, \end{cases}$$

缺点: 不连续

• 单调可微、任意阶可导——逻辑函数 (logistic function)

$$y = \frac{1}{1 + e^{-z}}$$

