toysimlm

Toy microsimulation of labour mismatch: a brief model description and demonstration

Vsevolod lakovlev

Heriot-Watt University

March 28, 2024

General framework

Two-sided matching formulation by Zinn et al. (2012) adopted to static labour setting. Define

- ▶ a set of n workers i and a set of m jobs j (posted by the firms)
- \triangleright s_i and r_i (respective elements of S and R) as **sets of attributes**
- **a compatibility measure** representing the quality of a match $c_{ij} = C(s_i, r_j)$, where $C : S \times R \rightarrow [0, 1]$; options:
 - a distance function (selected)
 - empirical likelihood of matching
- a matching rule; options:
 - Stable (selected), e.g. Gale and Shapley's (1962) deferred acceptance procedure
 - Stochastic, e.g. agents' c_{ij} has to be higher than randomly assigned "aspiration level" (i.e. expectations) for the match to occur

Preliminary demonstration (pre-alpha version) I

Monte Carlo simulation

- Data is generated using simple DGPs
- **Symmetric sets:** n = m = 100
- 1,000 repetitions
- Two attributes:

$$s_i = \{education, skill\}, r_j = \{required \ education, required \ skill\}$$

- **Same** $C(s_i, r_j)$ for both agent sets defined using a **distance function** that values the attributes equally
- Decision rule: an agent accepts the match if

$$U(c_{ij}, selectivity) \equiv c_{ij} - selectivity \ge 0$$
 (1)

where *selectivity* (aspiration in Zinn et al. (2012)) serves as a minimum compatibility threshold

Preliminary demonstration (pre-alpha version) II

Specifications:

- *S*₀ **Control:** DGPs specified below
- **S...** Education policy (stylized):
 - S_1 Workers have a 25% chance to increase their **skill** by $2\sigma_{skill}$
 - S_2 Workers have a 25% chance to increase their **education** by $2\sigma_{education}$
- **5...** Change in labour demand (stylized):
 - S_3 25% chance a firm increases its **skill requirement** by $2\sigma_{skill}$
 - S_2 25% chance a firm increases its **education requirement** by $2\sigma_{education}$

Workers I

Attributes (inputs in compatibility measure)

- **Education:** mimics ISCO skill level, 4 categories, $\sim N(2.7, 0.9^2)$
- **Skill:** mimics PIAAC literacy scores, 500 points scale, $\sim N(272, 46^2)$

Other variables (used for matching procedure)

▶ **Selectivity:** \in [0,1], arbitrary, \sim N(0.5,0.1)

Workers II

Jobs (Firms) I

Attributes (inputs in compatibility measure)

- ▶ Required education: mimics ISCO skill level, 4 categories, $\sim N(2.7, 0.9^2)$
- ▶ Required skill: mimics PIAAC literacy scores, 500 points scale, $\sim N(272, 46^2)$

Other variables (used for matching procedure)

- ▶ **Selectivity:** \in [0,1], arbitrary, \sim N(0.5,0.1)
- ► Wage: mimics hourly earnings including bonuses (USD PPP) ~ LogNormal(2.45, 0.71²)

Jobs (Firms) II

Matching procedure I

In each iteration of the algorithm

- 1. Generate **network** a subset of $k \sim N(n/2, (n/10)^2)$ jobs, of which the worker is aware
- 2. **Worker applies** for the highest-paying (if possible) unmatched job in their network
- 3. **Compatibility** of the potential match is calculated using a form of an exponential distance function (Perese, 2002)

$$C = \exp \left[-1.4 \times \sqrt{\left(\frac{edu - edu.req}{max_{edu}}\right)^2 + \left(\frac{skill - skill.req}{max_{skill}}\right)^2} \right]$$
 (2)

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Matching procedure II

- 4. Match occurs if $U(c_{ij}, selectivity_i) \ge 0$ and $U(c_{ij}, selectivity_j) \ge 0$, i.e. compatibility is **greater than both** worker's **and** firm's selectivity
- 5.1 If match occurs, then move on to the next worker
- 5.2 If match fails because
 - firm rejects worker, then the worker's selectivity is reduced by 0.05
 - worker rejects firm, then the firm's selectivity is reduced by 0.05
 - rejection is mutual, then both worker's and firm's selectivity levels are reduced by 0.05
- and the worker applies for the next job in the network
 - or the algorithm moves on to the **next worker** if there are no unapplied jobs left in the network

The procedure terminates when all workers are matched

Matching procedure III

Special cases

- ▶ If either worker or job is already matched, then they use compatibility of the current match (instead of selectivity) to compare with the compatibility of the potential match
- If worker matches with a matched firm, the worker who is currently "employed" in that firm is "let go" and no longer matched
- ▶ When there are less than 10% of **unmatched jobs left**, they are guaranteed to be in a worker's network and their selectivity is reduced by an additional 0.05

Labour mismatch measures

▶ Realised Matches (RM): worker is well-educated if their education is within \pm one standard deviation from the mode of education for their occupation group

where **occupation**: 3 categories, function of skill, \sim *Beta*(α, β) with

•
$$\alpha = 5 - (skill - \mu_{skill})/\sigma_{skill} \times 5$$

•
$$\beta = 5 + (skill - \mu_{skill})/\sigma_{skill} \times 5$$

- ► Indirect Self-Assessment (ISA): worker is well-educated if their education matches firm's requirement
- ▶ Pellizzari and Fichen (2017) (PF): worker is well-skilled if their skill is within the 5th and 95th percentiles of the "well-matched" workers' skill distribution for their occupation group

where "well-matched": binary, $1(compatibility \ge \mu_{compatibility}^{S_0})$

	μ_{skill}	percent
High-skill occupation	319	33.8
Mid-skill occupation	271	34
Low-skill occupation	224	32.2

$\mu_{ extsf{compat.}}$	percent
0.89	34.4
0.66	65.6
	0.89

Mismatch measures output: Control (S_0)

Treatments

Education policy: skill \uparrow (S_1)

Education policy: education \uparrow (S_2)

Change in labour demand: required skill \uparrow (S_3)

Change in labour demand: required education \uparrow (S_4)

References I

- Gale, D. and Shapley, L. S. (1962). College admissions and the stability of marriage. *The American Mathematical Monthly*, 69(1):9–15.
- Pellizzari, M. and Fichen, A. (2017). A new measure of skill mismatch: theory and evidence from PIAAC. *IZA Journal of Labor Economics*, 6(1):1–30.
- Perese, K. (2002). *Mate matching for microsimulation models*. Congressional Budget Office.
- Zinn, S. et al. (2012). A mate-matching algorithm for continuous-time microsimulation models. *International journal of microsimulation*, 5(1):31–51.