Steady-state Lumped Parameter Analysis

• 123 Thermal via (0.3mm diameter) , 6 Layer PCB, R_{jc} = 0.5 Ω , R_{cpb} = 4.5 Ω (1.6mm & 6 layer), R_{TIM} = 1.5 Ω

https://www.myheatsinks.com/calculate/thermal-resistance-plate-fin/

Your Input: Parametric Values

Material: Aluminum (extruded)

Width: 172 mm Length: 240 mm Height: 40 mm Base Thickness: 5 mm Fin Thickness: 4 mm Number of Fins: 17

Calculation Result: Thermal Resistance & Pressure Drop

Airflow Rate	Thermal Resistance	Pressure Drop
0.5 m/s (~100 LFM)	0.31 °C/W	1.8 Pa (0.007 inH ₂ O)
1.0 m/s (~200 LFM)	0.22 °C/W	4.7 Pa (0.019 inH ₂ O)
1.5 m/s (~300 LFM)	0.18 °C/W	8.3 Pa (0.033 inH ₂ O)
2.0 m/s (~400 LFM)	0.16 °C/W	13.2 Pa (0.053 inH ₂ O)
2.5 m/s (~500 LFM)	0.15 °C/W	18.6 Pa (0.074 inH ₂ O)
3.0 m/s (~600 LFM)	0.14 °C/W	24.6 Pa (0.099 inH ₂ O)
3.5 m/s (~700 LFM)	0.13 °C/W	31.2 Pa (0.125 inH ₂ O)
4.0 m/s (~800 LFM)	0.12 °C/W	38.5 Pa (0.155 inH ₂ O)
4.5 m/s (~900 LFM)	0.12 °C/W	46.5 Pa (0.186 inH ₂ O)
5.0 m/s (~1,000 LFM)	0.11 °C/W	55.0 Pa (0.221 inH ₂ O)

Please note some assumptions were made in the calculation:

- 1. No flow bypassing;
- 2. Uniform heat spreading over base plate.
- The results changes between R_{th (heatsink)}= 0.25 0.45 °C/W

FEA Analysis (Steady State)

If you think that GanFET is a black box with $0.5\ R_{jc}$;

- L is the thickness (m) (thickness of the package and the thermal pad);
- A is the effective contact area (m²) (Area of the thermal pad);
- k is the conductivity of the box (W/(m*K))

$$R = \frac{L}{A.k}$$
 (1)
$$k = \frac{L}{A.R} = \frac{0.440 \times 10^{-3}}{2.667 \times 10^{-3} \times 0.5} = 32.99 \ W/(m.K)$$

- For the most accurate Heat convection coefficients CFD analysis required.

3D Design Engineers are divided into 2 groups;

- MCAD Design engineer (Mechanical)
- ECAD Design Engineer (Electronic)
- > These engineers share the common file that is in IDF, EMN or STEP format.
- Each format has different features. (Based on the PCB layout and holes)
- > IDF is the most common.

Following weeks;

- More accurate results
- FEA Transient Analysis