

Systemtherapien 2

molekulare Präzisionstherapie - Signaltransduktionsinhibition

Stefan Balabanov

Klinik für Medizinische Onkologie und Hämatologie

USZ

Medizinische Fakultät

Systemtherapie 2 (molekulare Präzisionstherapie - Signaltransduktionsinhibition u.a. mit Fallbeispielen)

Lernziele der Lektion

- 1. Sie können beschreiben was "zielgerichtete" (targeted) Therapie bedeutet (Ein TKI hemmt eine molekulare Struktur).
- 2. Sie können das Vorgehen bei Hämatotoxizität beschreiben (Anämie: Epo und TF, Neutropenie: G-CSF, Thrombopenie: TF).
- 3. Sie können beschreiben was Mabs (Monoklonakle Antikörper) und was Nibs (Inhibitoren) sind, und wo sie wirken (Mabs extrazellulär, Nibs intrazellulär).
- 4. Sie können den Baum der Tyrosin-Kinasen erklären (Nibs sind meist TKI, Tyrosin-Kinase-Inhibitoren).
- 5. Sie können die Hauptnebenwirkungen von Multikinasen-Inhibitoren nennen (Hauttoxizität, GI-Toxizität).

15.11.2021 Stefan Balabanov Seite 2

Medizinische Fakultät

Mindmap

UZH Medizanische Fakultät (CC BY.NC)

Fallbeispiel 1

Anamnese:

- 53 jährige Patientin
- bekannte art. Hypertonie

Klinische Symptome:

- seit 3-4 Monaten zunehmende Müdigkeit und Abgeschlagenheit
- · Schmerzen im li. Oberbauch
- Vorstellung bei HA => BB Kontrolle

	Eingangs Datum	15.04.15
	Wochentag Zeit	Mi 15:48
Bemerkungen		
Klinischen Angaben		neue AL
Blutstatus		
<u>Hämoglobin</u>	g/1 117-153	* 102
<u>Hämatokrit</u>	1/1 0.350-0.460	* 0.321
Erythrozyten	T/1 3.9-5.2	* 3.86
MCV	f1 80-100	83.0
MCH	pg 26-34	25.5
MCHC	g/1 310-360	319
Mikrozyten	¥ 0-2.0	* 4.3
Makrozyten	% 0 − 2 . 0	0.1
Hypochrone Ec	% 0-2.0	* 7.8
Hyperchrone Ec.	% 0−2.0	1.5
RDW	% 11.0-14.8	* 16.9
Retikulozytem (automatisch)	% 0.4-2.5	* 2.81
Retikulozytem (automatisch)	G/1 27.0-132.0	108
RetiMFR (automatisch)	₹ 1-11	* 16
RetiHFR (automatisch)	₹ 0 – 2	* 23
RET-He	pg 30.5-35.5	* 27.8
Thrombozyten (automatisch)	G/1 143-400	365
MPV	f1 7.2-11.1	
POWA	fl	
PCT	R	
Vd. L-SHIFT (automatisch)	+ Keine (0)	+++
<u>Leukozyten</u>	G/1 3.0-9.6	* 204.70
Blutbild		
Neutrophile (automatisch)	G/1 1.40-8.00	* 181.30
Monozyten (automatisch)	G/1 0.16-0.95	* 4.13
Eosinophile (automatisch)	G/1 0.00-0.70	* 4.14
Basophile (automatisch)	G/1 0.00-0.15	* 20.83
Lymphozyten (automatisch)	G/1 1.50-4.00	* 9.92
LUC (automatisch)	₹ 0.0-4.0	2.6

Labor-Untersuchungen – peripheres Blut

Mikroskopisches Blutbild

Normales Blutbild:

Blutbild der Patientin:

massiv gesteigerte und linksverschoben Myelopoiese

Labor-Untersuchungen – peripheres Blut

1) Genetische Untersuchung

Zytogenetik - Karyotyp

Qualitative PCR für Bcr-Abl

Diagnose: chronische myeloische Leukämie (CML)

CML - Pathopysiologie

- CML ist charakteriziert durch eine spezifische chromosomale Veränderung: Philadelphia (Ph) chromosome
- die daraus entstehende Tyrosinkinase ist dauerhaft aktiviert und fördert das Wachstum von hämatopoietischen Zellen

Funktion von Tyrosinkinasen in normalen und malignen Zellen

Funktion:

- 1. Survival
- 2. Proliferation
- 3. Metabolismus
- 4. Immunität
- 5. Angiogenese
- 6. Migration und Mobilität
- 7. DNA Reparatur

518 Kinasen werden im humanen Genome kodiert

Aktivierung von Kinasen in malignen Erkrankungen

	Mechanismus	Kinasen
	Punktmutationen	ACVR1B, ACVR2B, AKT1, ALK, ALPK2, ATM, BRAF,CDK12,CDK4,EGFR,EPHA2,ERBB2,ERBB3,FGFR1,FGFR2,FGFR3,FGFR4,FLT3, JAK2, KIT, MAP2K1, MAP3K1, MAP4K3, MET, MTOR, PIK3CA,SGK1,STK19,TGFBR2
V	Genamplifikationen der Kinasen	CDK4,CDK6,CRKL,EGFR,ERBB2,FGFR1,FGFR2,FGFR3,FLT 3, IGF1R, KIT, MET, PAK1, PDGFRA, PIK3CA, PRKCI
	Genamplifikationen der Liganden	FGF19 (FGFR4), HGF(MET), NRG1 (ERBB3),VEGFA (VEGFR)
X	Genfusionen	ALK, ABL1, BRAF,EGFR,FGFR1,FGFR2,FGFR3,FGR, JAK2, MET, NTRK1, NTRK2, NTRK3, PDGFRA, PDGFRB, PIK3CA, PRKACA, PRKCA, PRKCB, RAF1, RET, ROS1,SYK

Kinasen als Angriffspunkt für Therapien

Kinasen als Angriffspunkt für Therapien

Antikörper

Small Molecules

Mabs (Monoklonakle Antibodies)

Nibs (Inhibitors)

Fallbeispiel 1

Frage: Wie sind die Chancen der Patientin bzgl. des Langzeitüberlebens?

5-Jahresüberleben von CML Patienten in den letzten 40 Jahren

Deutliche Verbesserung des Überlebens von CML-Patienten in den letzten 20 Jahren

Relatives Überleben von CML Paienten

Imatinib (Glivec®) - Wirkmechanismus-

Selectivity of Glivec IC50[µM] **Kinase** 0,1-0,3v-ABL p210bcr-abl 0,25 p190bcr-abl 0,25 0,1 PDGF R 0,1 c-kit

Wirkungsmechanismus von TKI

Typ I:

- bindet die aktive Kinase

kompetitive TKI

Typ II:

 bindet und stabilisiert die inaktive Kinase

Typ III:

- bindet in der unmittelbaren Nähe der Kinasedomäne

Typ IV:

 bindet entfernt von der Kinasedomäne allosterische TKI

Zugelassene TKIs – Stand 2021

Zugelassene TKIs – Stand 2021

Spezifität der TKI

Einsatz von Tyrosinkinaseinhibitoren in der Onkologie

Fallbeispiel: CML

Start Imatinib 400 mg 1-0-0 p.o. ab dem 27.04.2015

- sehr gute Verträglichkeit -

	Eingangs Datum	27.04.15	06.05.15	12.05.15	28.05.15
	Wochentag Zeit	Mo 14:05	Mi 14:15	Di 10:54	Do 08:56
Benerkungen		(11)	(11)	(11)	
Klinischen Angaben		3.77		1	
Blutstatus					
Hämoglobin	g/1 117-153	* 106	* 106	* 105	* 115
Hämatokrit	1/1 0.350-0.460	* 0.326	* 0.327	* 0.325	0.358
Erythrozytem	T/1 3.9-5.2	3.97	* 3.86	* 3.84	4.20
MCV	f1 80-100	82.2	84.6	84.7	85.4
MCH	pg 26-34	26.8	27.4	27.4	27.4
MCHC	g/1 310-360	327	324	323	321
Mikrozytem	₹ 0-2.0	* 5.5	* 4.6	* 4.9	* 5.1
Makrozyten	% 0-2.0	1.0	1.9	2.0	0.8
Hypochrone Ec	* 0-2.0	* 7.7	* 9.4	* 10.7	* 9.2
Hyperchrome Ec	% 0−2.0	1.8	1.5	1.6	1.9
RDW	* 11.0-14.8	* 18.2	* 19.0	* 19.5	* 18.9
Retikulozytem (automatisch)	% 0.4-2.5				
Retikulozytem (automatisch)	6/1 27.0-132.0				
RetiMFR (automatisch)	% 1-11				
RetiHFR (automatisch)	₹ 0-2				
RET-He	pg 30.5-35.5				
Thrombozytem (automatisch)	G/1 143-400	* 459	* 569	280	148
MPV	f1 7.2-11.1	-	-	_	
PDWA	fl				
PCT	8				
Vd. L-SHIFT (automatisch)	+ Keine (0)	111	11	+	0
Leukozytem	G/1 3.0-9.6	* 129.80	* 84.28	* 38.28	5.89
Blutbild					
Meutrophile (automatisch)	G/1 1.40-8.00	* 109.60	* 71.42	* 32.01	4.11
Monozyten (automatisch)	G/1 0.16-0.95	* 3.45	* 3.23	* 1.28	* 0.15
Eosinophile (automatisch)	G/1 0.00-0.70	* 2.41	* 1.10	0.59	0.16
Basophile (automatisch)	G/1 0.00-0.15	* 10.99	* 4.58	* 1.00	0.08
Lymphozyten (automatisch)	G/1 1.50-4.00	* 10.26	* 7.04	2.94	* 1.28
LUC (automatisch)	% 0.0-4.0	3.1	1.8	1.2	1.9

Molekulares Monitoring der CML

CML: Ansprechparameter und ELN Kriterien

BCR-ABL % International Scale (IS)

Perfektes Ansprechen auf die TKI Therapie

Schlechtes Ansprechen auf die Therapie

Mutationsanalyse der Kinasedomäne

Therapiewechsel bei Identifikation einer Mutation

Bcr-Abl	Imatinib (nM)	Nilotinib (nM)	Dasatinib (nM)
Wildtyp	260	13	0.8
M244V	2000	38	1.3
G250E	1350	48	1.8
Q252H	1325	70	3,4
Y253F	3475	125	1.4
Y253H	>6400	450	1.3
E255K	5200	200	5.6
E255V	>6400	430	11
V299L	540	n.a.	18
F311L	480	23	1.3
T315A	971	61	125
T315I	>6400	>2000	>200
F317L	1050	50	7.4
F317V	350	n.a.	53
M351T	880	15	1.1
E355G	2300	n.a.	1.8
F359V	1825	175	2.2
V379I	1630	51	0.8
L387M	1000	49	2.0
H396P	850	41	0.6
H396R	1750	41	1.3

Schlechtes Ansprechen auf die Therapie

Schlechtes Ansprechen auf die Therapie

Fallbeispiel 2:

75 jähriger Patient

	Abnahme Datum Wochentag Zeit	01.02.16 Mo 02:15
	Eingangs Datum	01.02.16
	Wochentag Zeit	Mo 15:34
Bemerkungen		
Blutstatus		
<u>Hämoqlobin</u>	<u>q/1</u> <u>134-170</u>	* 126
<u>Hämatokrit</u>	1/1 0.400-0.500	* 0.386
Hämatokrit zentrifugiert	1/1 0.420-0.520	
Erythrozyten	T/1 4.2-5.7	* 4.16
MCV	f1 80-100	92.8
MCH	pg 26-34	30.2
MCHC	g/1 310-360	325
Mikrozyten	<u> </u>	0.6
Makrozyten	% 0-2.0	1.4
Hypochrome Ec	% 0-2.0	1.9
Hyperchrome Ec	% 0-2.0	0.5
RDW	% 11.0-14.8	14.2
Thrombozyten (automatisch)	<u>6/1</u> <u>143-400</u>	<u>157</u>
Vd. L-SHIFT (automatisch)	+ Keine (0)	0
<u>Leukozyten</u>	<u>G/1</u> 3.0-9.6	<u>* 76.98</u>
Blutbild		
Neutrophile (automatisch)	<u>6/1</u> <u>1.40-8.00</u>	<u>7.26</u>
Monozyten (automatisch)	G/1 0.16-0.95	* 1.27
Eosinophile (automatisch)	G/1 0.00-0.70	0.15
Basophile (automatisch)	G/1 0.00-0.15	* 0.77
Lymphozyten (automatisch)	G/1 1.50-4.00	* 57.53
LUC (automatisch)	% 0.0-4.0	* 13.0

Peripheres Blut

DIAGNOSE: CLL (chronische lymphatische Leukämie)

Aktivierte Kinasen in lymphatischen Neoplasien

Brutons Kinase Inhibitor - Ibrutinib

Pharmakologie

- selectiver und irreversibler Inhibitor of BTK
- kovalent Bindung an Cystein-481
- Inhibiert auch andere Kinasen mit einem Cystein in der Kinasedomäne (e.g. EGFR, HER2)

Nebenwirkungen

- Insgesamt gut toleriert (47% grade 1-2 and 2% grade 3-4)
- Fatigue ist die häufigste Nebenwirkung (30%)
- Blutungen
- Kardiale Rhythmusstörungen

Ansprechen auf die Therapie

Brutons Kinase Inhibitor - Ibrutinib

Daten aus klinischen Studien

CLL

- Effektiv in Patienten mit einem CLL Rezidiv¹: RR 71%, 83%OS after 2 y
- Effektive in Patienten mit neudiagnostizierten CLL²: ORR 71%, 96% PFS after 2 y
- Effektiv in CLL Patienten die schlecht auf Chemotherapie ansprechen³: 18-mt PFS was 78%, for p53+ 72.4%

Mantelzelllymphom

Effektiv in Patienten mit einem Rezidiv⁴: RR 68%, CR 21%, PFS 14 mt³

Andere Lymphome

Ibrutinib kann die Effektivität einer Immunchemotherapie erhöhen⁴

Brutons Kinase Inhibitor - Ibrutinib

Randomized phase 3 trial, Ibrutinib vs. Ofatumumab in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia (RESONATE)

Brutons Kinase Inhibitor – 2. Generation

Acalabrutinib (Calquence®)

Zanubrutinib (Brukinsa®)

- 2 weitere irreversible (non-covalent) BTK Inhibitoren
- höhere Selektivität für BTK und weniger off-target Kinaseinhibition
- Weniger Nebenwirkungen bzgl. Rhythmusstörungen und Blutungen

Bernstein et al, JACI, 2024

Resistenzen gegenüber Ibrutinib

Whole exome sequencing of Ibrutinib refractary patients

Brutons Kinase Inhibitor – Pirtubrutinib

Effektivität nach Versagen einer vorgängigen Therapie mit einem BTK Inhibitor

Mato et al., NEJM, 2023

- 1. 56 jährige Nichtraucherin
- 2. Diagnose EGFR-mutiertes Bronchialkarzinom
- 3. Start einer Therapie mit Erlotinib

- 1. Nachweis einer Resistenz-vermittelnden Mutation (T790E)
- 2. Wechsel auf einen 3.-Generationsinhibitor (Osimertinib)

ALK Kinase

Schneider et a., Nature Cancer, 2023

Patientenfall ALK positives Bronchialkarzinom

- 38 jährige Patientin
- Unproduktiver Husten seit ein paar Monaten

Metastasiertes Bronchialkarzinom (ALK positiv)

Therapie: Alectinib 2x 600mg

ALK Kinase Inhibitoren Resistenzen

Liquid Biopsy

Zielgerichtete Therapie beim Bronchialkarzinom

Inhibition von RAS in der Onkologie

Häufigkeit und Verteilung von RAS Mutationen in Tumoren

Aktivierende RAS Mutationen in Tumoren

Inhibition von RAS in der Onkologie

Medikamentöse Inhibition des RAS Signalwegs

KRAS^{G12C} Inhibition with Sotorasib in Advanced Solid Tumors

Inhibiton von RAS in Lungentumoren zeigt klinische Aktivität

Hong et al., NEJM; 2020

Nebenwirkungen

Nebenwirkungen

- klinisch relevant ab Hb < 100 g/l
- Therapie-bedürftig meist erst ab Hb < 60-80 g/l
- Therapie:
 - Transfusion von Erythrozytenkonzentraten
 - Gabe von Erythropoietin

- klinisch relevant ab Neutrophile < 1.0 G/l
- Therapie:
 - Gabe von G-CSF (z.B. Zarzio)

- klinisch relevant ab Thrombozyten < 30 g/l
- Therapie-bedürftig meist erst ab Hb < 10 g/l
- Therapie:
 - Transfusion von Thrombozytenkonzentraten

Präzisionsmedizin beim Pankreaskarzinom

Know Your Tumor (KYT) program

Pankreaskarzinom

- häufiger Tumor mit zunehmender Inzidenz
- medianes «Overall Survival» in der metastasierten Situation ca. 12 Monaten
- ca. 25% der Patienten haben genetische Veränderungen die sich als Ziel für eine Therapie eignen («actional molecular alterations»)

<u>Studiendesign</u>

- 677 Patienten f
 ür die finale Auswertung
- bei allen Patienten erfolgte eine NGS Analyse
- 189 Patienten mit «actional molecular alterations»

46 Patienten erhielten
Eine zielgerichtet Therapie

143 Patienten erhielten
trotz Mutationen keine
zielgerichtet Therapie

<u>Fazit:</u> Eine molekular-genetisch gesteuerte Therapie kann das Überleben von Patienten mit einem Pankraskarzinom positiv beeinflussen.

- 37 jähriger Patient, keine Vorerkrankungen
- vor ca. 1 Diagnose einen Magenkarzinoms
- Z.n. totaler Gastrektomie und neo-adjuanter und adjuvanter Chemotherapie
- ca. 6 Monate später Frührezidiv mit ausgedehnter Metastasierung

Biopsie zur Sicherung der Rezidivdiagnose und für einer NGS Analyse zur Suche nach «actional molecular alterations»

Amplifikation einer Tyrosinkinase

> Molekulares Tumorboard Empfehlung: Start einer Therapie mit Erdafitinib (FGFR2 Inhibitor)

- 30 jähriger Patient, keine Vorerkrankungen
- Diagnose eines peritoneal metastasierten Kolonkarzinoms
- Molekulare Analyse: <u>BRAF-V600E mutiert</u>
- Start einer Chemotherapie mit FOLFOXIRI

4. Zyklen FOLFOXIRI

Progress der Lebermetastasen

Encorafenib 300mg/d p.o – BRAF Inhibitor Binimetinib 2x 45mg/d p.o. – MEK Inhibitor Cetuximab 250 mg/m2 weekly i.v. – Anti-EGFR-Antikörper

CT nach 5 Monaten Triple Therapie

Progress der Lebermetastasen

MET Amplifikation als Resistenzmechnismus

Capmatinib – MET Inhibitor

Start Capmatinib 2x400 mg

8 Wochen

gutes Ansprechen

Zusammenfassung

- Tyrosinkinasen sind häufige mutiert in Tumor und besitzen onkogene Aktivität
- TKI sind hoch effektive Medikamente f
 ür die Behandlung von malignen Erkrankungen
- TKI ermöglichen eine zielgerichtete Therapie
- Resistenzen sind ein häufiges Phänomen
- 2.- und 3.-Linien TKIs können helfen diese Resistenzen zu umgehen
- viele neue TKIs und auch Inhibitoren anderer Signalwege (z.B. RAS Inhibitoren)

befinden sich für unterschiedlichen Tumorarten in klinischer Testung