Building a Bayesian Network

1. Chain Rule for Joint Distributions

Set of Random Variables $\{X_1, X_2, \dots, X_n\}$

$$P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | X_{i-1}, X_{i-2}, \dots, X_1)$$

2. Conditional Independence

In a Bayesian network, each variable X_i is conditionally independent of its non-descendants, given its parents.

$$P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | \text{Parents}(X_i))$$

3. Construct the network

(a) Nodes

Order the set of variables of the domain in a way that causes precede effects. $\{X_1, X_2, \dots, X_n\}$

- (b) Choose a minimal set of parents $C_i \subset \{X_1, \dots, X_{i-1}\}$ for each variable X_i .
- 3. Insert links for each parent of X_i

4. Conditional Probability Tables (CPT)

$$P(X_i|Parents(X_i))$$

For each variable X_i .

Example: Alarm Network

• B: Burglary

• E: Earthquake

• A: Alarm

• J: JohnCalls

• M: MaryCalls

Step 1: Node ordering

Possible Order $\{B, E, A, J, M\}$

Step 2: Links

For A: Parents are B and E

 $B \to A$ and $E \to A$

For J:

 $A \to J$

For M:

 $A \to M$

Step 3: CPT

P(B): Prob. of burglary

P(E): Prob. of Earthquake

 $P(A|B,E):\mbox{Prob.}$ of a larm given burglary and earthquake

$$P(J|A)$$
 and $P(M|A)$

Joint Dist.

$$P(B,E,A,J,M) = P(B) \cdot P(E) \cdot P(A|B,E) \cdot P(J|A) \cdot P(M|A)$$

$$P(M|J, A, E, B) = P(M|A)$$