HIGH-VOLTAGE MIXED-SIGNAL IC

WG1604

65x192 STN Controller-Driver

ES Specifications IC Version: c_A
Datasheet Revision: 0.6 July 22, 2010

The Coolest LCD Driver, Ever!

?1999~2010

65x192 STN Controller-Driver

Table of Content

Introduction	3
MAIN APPLICATIONS	3
FEATURE HIGHLIGHTS	3
Ordering Information	4
BLOCK DIAGRAM	5
PIN DESCRIPTION	6
RECOMMENDED COG LAYOUT	8
Control Registers	9
COMMAND TABLE	11
COMMAND DESCRIPTION	12
LCD VOLTAGE SETTING	19
V _{LCD} QUICK REFERENCE	20
LCD DISPLAY CONTROLS	22
ITO LAYOUT AND LC SELECTION	23
Host Interface	25
DISPLAY DATA RAM (DDRAM)	34
Reset & Power Management	36
Multi-Time Program NV Memory	40
MTP OPERATION FOR LCM MAKERS	41
ESD CONSIDERATION	45
ABSOLUTE MAXIMUM RATINGS	46
SPECIFICATIONS	47
AC CHARACTERISTICS	48
PHYSICAL DIMENSIONS	54
ALIGNMENT MARK INFORMATION	55
PAD COORDINATES	56
TRAY INFORMATION	60
REVISION HISTORY	61

UC1604

Single-Chip, Ultra-Low Power 65COM by 192SEG Passive Matrix LCD Controller-Driver

INTRODUCTION

UC1604c is an advanced high-voltage mixed-signal CMOS IC, especially designed for the display needs of ultra-low power hand-held devices.

This chip employs UltraChip 's unique DCC (Direct Capacitor Coupling) driver architecture to achieve near crosstalk free images.

In addition to low power column and row drivers, the IC contains all necessary circuits for high-V LCD power supply, bias voltage generation, timing generation and graphics data memory.

Advanced circuit design techniques are employed to minimize external component counts and reduce connector size while achieving extremely low power consumption.

MAIN APPLICATIONS

? Cellular Phones, Smart Phones, PDA, and other battery operated palm top devices or portable Instruments

FEATURE HIGHLIGHTS

- ? Single chip controller-driver support 65x192 graphics STN LCD panels.
- ? Support both row ordered and column ordered display buffer RAM access.
- ? A software-readable ID pin to support configurable vender identification.
- ? Support both row-ordered and column-ordered display buffer RAM access.

- ? Support industry standard 8-bit parallel bus (8080 or 6800 mode), 4-wire and 3-wire serial buses (S8 and S9), and 2-wire I ²C serial interface.
- ? Ultra-low power consumption under all display patterns.
- ? Fully programmable Mux Rate, partial display, Bias Ratio and Frame Rate allow many flexible power management options.
- ? Software programmable frame rates at 76, 95, 132 and 168 Hz.
- ? Four software programmable temperature compensation coefficients.
- ? 7-x internal charge pump with on-chip pumping capacitor requires only 3 external capacitors to operate.
- ? On-chip Power-ON Reset makes RST pin optional.
- ? Very low pin count (10-pin) allows exceptional image quality in COG format on conventional ITO glass.
- ? Flexible data addressing/mapping schemes to support wide ranges of software models and LCD layout placements.
- ? VDD (digital) range (Typ.): 1.8V ~ 3.3V
 VDD (analog) range (Typ.): 2.7V ~ 3.3V
 VLCD range: 4.8V ~ 11.5V
- ? Available in gold bump dies
- COM/SEG bump information
 Bump pitch: 27.6 μ M
 Bump gap: 12 μ M
 Bump surface: 2028 μ M

ORDERING INFORMATION

Part Number	MTP	I ² C	Description
UC1604cGAA Yes		Yes	Gold Bumped Die

General Notes

APPLICATION INFORMATION

For improved readability, the specification contains many application data points. When application information is given, it is advisory and does not form part of the specification for the device.

USE OF I²C

The implementation of I^2C is already included and tested in all silicon.

BARE DIE DISCLAIMER

All die are tested and are guaranteed to comply with all data sheet limits up to the point of. There is no post waffle saw/pack testing performed on individual die. Although the latest modern processes are utilized for wafer sawing and die pick-&-place into waffle pack carriers, UltraChip has no control of third party procedures in the handling, packing or assembly of the die. Accordingly, it is the responsibility of the customer to test and qualify their application in which the die is to be used. UltraChip assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of the die.

LIFE SUPPORT A PPLICATIONS

These devices are not designed for use in life support appliances, or systems where malfunction of these products can reasonably be expected to result in personal injuries. Customer using or selling these products for use in such applications do so at their own risk.

CONTENT DISCLAIMER

UltraChip believes the information contained in this document to be accurate and reliable. However, it is subject to change without notice. No responsibility is assumed by UltraChip for its use, nor for infringement of patents or other rights of third parties. No part of this publication may be reproduced, or transmitted in any form or by any means without the prior consent of UltraChip Inc. UltraChip 's terms and conditions of sale apply at all times.

CONTACT DETAILS

UltraChip Inc. (Headquarter) 4F, No. 618, Recom Road, Neihu District, Taipei 114, Taiwan, R. O. C.

Tel: +886 (2) 8797-8947 Fax: +886 (2) 8797-8910

Sales e-mail: sales@ultrachip.com
Web site: http://www.ultrachip.com

BLOCK DIAGRAM

PIN DESCRIPTION

Name Ty _l	е	Pins	Description
			MAIN POWER SUPPLY
V dd V dd2 V dd3	PWR	5 7 5	VDD supplies for Display Data RAM and digital logic, V DD2 supplies for V LCD and VD generator, VDD3 supplies for V BIAS and other analog circuits. VDD2/VDD3 should be connected to the same power source. But V DD can be connected to a source voltage no higher than V DD2/VDD3. Please maintain the following relationship: VDD+1.3V VDD2/3 VDD ITO trace resistance needs to be minimized for V DD2/VDD3.
Vss Vss2	GND	6 6	Ground. Connect V ss and V ss2 to the shared GND pin. In COG applications, minimize the ITO resistance for both V ss and V ss2.
			LCD Power Supply & Voltage Control
V B1+ V B1- V B0+ V B0-	PWR	4 4 4 4	LCD Bias Voltages. These are the voltage sources to provide SEG driving currents. These voltages are generated internally. Connect capacitors of C BX value between V BX+ and V BX See the "LCD Voltage Setting" section for more details. In COG application, the resistance of these ITO traces directly affects the SEG driving strength of the resulting LCD module. Minimize these trace resistance is critical in achieving high quality image.
VLCDIN VLCDOUT	PWR	4 4	Main LCD Power Supply. When internal V LCD is used, connect these pins together. When external V LCD source is used, connect external V LCD source to V LCDIN pins and leave V LCDOUT open. Capacitor C L should be connected between V LCD and V SS. In COG applications, keep the ITO trace resistance around 70 ? .

? Recommended capacitor values:

C_B: 2.2 μ F/5V or 300x(LCD load capacitance), whichever is higher.

CL: 330nF/25V is appropriate for most applications.

U =.			riate for most app											
				Host	INTERFACE									
			1	Bus mode: The interface bus mode is determined by BM[1:0] and D[7] by the following relationship:										
			BM[1:0]	D[7]	Remark									
BM0		1	11	Data	6800/8-bit									
BM1	l	1	10	Data	8080/8-bit									
			00		4-wire SPI w/ 8-bit token	(S8: conventional)								
			01	0	3-wire SPI w/ 9-bit token	(S9: conventional)								
			01	1	2-wire serial (I ² C)									
CS1/A3 CS0/A2	I	1 1	D[7:0] will be o	Chip Select. Chip is selected when CS1= $^{\circ}$ H" and CS0 = $^{\circ}$ L". When the chip is not selected will be of high impedance.										
					cifies bits 3~2 of UC1604c	\								
RST I		1	1		isters are re-initialized by their defa Γ pin is not required for proper chip									
					on-chip. There is no need for externate to V DD.	al RC noise filter. When								
CDI		1	CD to V ss wh	ect Control data or Display data for read/write operation. In S9, CD pin is not used. Connect to V ss when not used.										
				rol data "H": D	· ·									
ID I 1			1	ed for production id										
			Connect ID to	V DD for "H"	scerfor "L".									

Name Type		Pins					Descriptio	n						
WR0		1	WR [1:0] controls the details.	ne read/w	rite opera	ation of th	e host inte	erface. Se	ee Host In	terface s	ection for			
WR1	'	1	In parallel mode, the meaning of WR[1:0] depends on which interface it is in, 6800 or 8080 mode. In serial interface modes, these two pins are not used, Connect them to V ss.											
			Bi-directional bus for	or both se	erial and p	parallel ho	st interfac	es.						
			In serial modes, co	nnect D[()] to SCK	, D[5:3] to	SDA.							
				D7	D6	D5	D4	D3	D2	D1	D0			
			8-bit (BM=1x)	D7	D6	D5	D4	D3	D2	D1	D0			
D7~D0 I/O		8	s8 (BM=00)			SDA *	SDA*	SDA			SCK			
01~00 1/9		O	S9 (BM=01)	0		SDA *	SDA*	SDA			SCK			
			I ² C (BM=01)	1		SDA *	SDA*	SDA			SCK			
			* D[5:3] : SDA-re	ad; D[3]	: SDA-wr	ite								
			For better drive abi	lity, conn	ect D[5:3]] together	when usir	ng read fu	ınction.					
			Always connect un	used pins	to either	· V ss	or V DD.							
			Hic	SH VOLTA	GE LCD	DRIVER (TUPUT							
SEG1 ~ SEG192	HV 192		, , , , , , , , , , , , , , , , , , , ,	G (column) driver outputs. Support up to 192 pixels. ave unused SEG drivers open-circuit.										
			COM (row) driver of	outputs. S	Support u	o to 64 rov	WS.							
COM1 ~ COM64	HV 64		When designing L0 64, set CEN to be	CM, alwa	ys start fr	om COM1	I. If the LC		•	ixel rows	and N is	less than		
CIC	HV	2	Icon driver outputs	. Leave it	open if n	ot used.								
	,		'		MISC . F	PINS								
Manage		_	Auxiliary V DD. This chip configurations	-			in V do	bus with	in the IC.	It	's provi	ided to facili		
V DDX		5	There 's no need		ct V _{DDX} t	to main V	_{DD} exterr	nally and	it should	<u>NOT</u> Ł	oe used to p	orovide		
TST4 I		4	TST4 is used as or COG designs, plea		_	•		-	_	•	ion. For			
TST2	I/O	2	Test I/O pins. Leav	e these p	ins open	during no	rmal use.							
POR		1	Connect the POR " L " : Power-C	ower-ON Reset control. onnect the POR pin to V DD for "H"; to Vss for "L" to control the POR register. "L": Power-ON Reset Enable. "H": Power-ON Reset Disabled.										
Dummy		<u> </u>												
Dummy		25	Dummy pins are N	OT CONN	ectea insi	ue the IC.								

Note: Several control registers will specify "0 based index" for COM and SEG electrodes. In those situations, COM x will correspond to index X-1, and the value range for those index register will be 0~63 for COM and 0~191 for SEG.

RECOMMENDED COG LAYOUT

NOTES FOR VDD WITH COG:

The operation condition, V DD=1.8V (typical), should be satisfied under all operating conditions. UC1604c ' DD+3daourrent (I be up to ~15mA during high speed data-write to UC1604c ' on-chip SRAM. Such high pulsing current mandates very careful design of V DD and V SS ITO trances in COG modules. When V DD and V SS trace resistance is not low enough, the pulsing I DD current can cause the actual on-chip V DD to drop to below 1.65V and cause the IC to malfunction.

CONTROL REGISTERS

UC1604c contains registers, which control the chip operation. The following table is a summary of these control registers, a brief description and the default values. These registers can be modified by commands, which will be described in the next two sections, Command Table and Command Description.

Name: The Symbolic reference of the register. Note that, some symbol name refers to bits (flags) within another register.

Default: Numbers shown in Bold font are default values after Power-Up-Reset and System-Reset.

Name	Bits	Default	Description
SL 6		00H	Scroll Line. Scroll the displayed image up by SL rows. The valid SL value is between 0 (for no scrolling) and (64). Setting SL outside of this range causes undefined effect on the displayed image.
CA 8		00H	Display Data RAM Column Address. Value range is 0 ~ 191.
			(Used in Host to Display Data RAM access)
PA 4		0H	Display Data Page Row Address. Value range is 0 ~ 8.
			(Used in Host to Display Data RAM access)
BR	2	3H	Bias Ratio. The ratio between V LCD and V D.
			00b: 6 01b: 7 10b: 8 11b: 9
TC	2	0H	Temperature Compensation (per °C)
			00b: -0.00% 01b: -0.05% 10b: -0.10% 11b: -0.15%
PM	8	49H	Electronic Potentiometer to fine tune V D and V LCD
PMO 6		00H	PM offset.
PC	3	6H	Power Control.
			PC[1:0]: low pump charge current select
			00b: 0.6mA
			PC[2]: to program the build-in charge pump stages
			0b: External V LCD 1b: Internal V LCD (7x charge pump)
AC	3	1H	Address Control:
			AC[0]: WA: Automatic column/row Wrap Around (Default 1: ON)
			AC[1]: Auto-Increment order
			0: Column (CA) first 1: Page (PA) first
			AC[2]: RID: RA (row address) auto increment direction (L:+1 H:-1)
DC 3		0H	Display Control:
			DC[0]: PXV: Pixels Inverse. Bit-wise data inversion. (Default 0: OFF)
			DC[1]: APO: All Pixels ON (Default 0: OFF)
			DC[2]: Display ON/OFF (Default 0: OFF)
LC	6	H80	LCD Control:
			LC[0]: Reserved (always set to 0)
			LC[1]: MX, Mirror X. SEG/Column sequence inversion (Default: 0:OFF)
			LC[2]: MY, Mirror Y. COM/Row sequence inversion (Default: 0:OFF)
			LC[4:3]: Line Rate (Klps: Kilo-Line-per-second)
			00b: 76 fps 01b: 95 fps 10b: 132 fps 11b: 168 fps
			LC[5]: Partial Display.
			0b: Disabled . Mux-Rate = CEN+1 (DST, DEN not used)
		1	1b: Enabled. Mux-Rate = DEN-DST+1

Name	Bits	Default	Description
			· · · · · · · · · · · · · · · · · · ·
CEN DST	6	3FH 00H	COM scanning end (last COM with full line cycle, 0-based index)
DEN	6	3FH	Display start (first COM with active scan pulse, 0-based index)
			Display end (last COM with active scan pulse, 0-based index)
			Please maintain the following relationship:
			CEN = " the actual number of pixel rows on the LCD " - 1
			CEN DEN DST+ 9
MTPC	5	00H	MTP Programming Control:
			MTPC[2:0] : MTP command
			000 : Idle 001 : Read
			010 : Erase 011 : Program
			1XX : For UltraChip debug use only
			MTPC[3] : MTP Enable (automatically cleared after each MTP command)
			MTPC[4]: Ignore/Use MTP.
			0: Ignore 1: Use
MTPM	6	00H	MTP Write Mask. For each bit, Bit =1: program, Bit=0: no action.
APC		N/A	Advanced Program Control. For UltraChip only. Please do not use.
			Status Registers
ОМ	2	_	Operating Modes (Read only)
			00b: Reset 01b: (Not used)
			10b: Sleep 11b: Normal
ID	1	PIN	Access the connected status of ID pins.
POR	1	PIN	Power-ON Reset control.
			Controlled by the POR pin.
			" L " : Power-ON Reset Enable.
			" H" : Power-ON Reset Disabled.

UC1604 C_A0.6

?1999~2010 65x192 STN Controller-Driver

COMMAND TABLE

The following is a list of host commands supported by UC1604c

C/D: 0: Control, 1: Data W/R: 0: Write Cycle, 1: Read Cycle

Useful Data bits - Don ' t Care

6. Set Power Control 0 0 0 0 10 1 # # Set PC[2:0] 110b 7. Set Adv. Program Control (double-byte command) 0 0 0 1 1 0 0 R R Set APC[R][7:0], R = 0~3 8. Set Scroll Line 0 0 0 1 # # # # # # # Set SL[5:0] 0		Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Action	Default
Set Status	1.	Write Data Byte	1	0	##;	####	##						Write 1 byte	N/A
Set Status		•	1	1	##;	###	##						,	N/A
Set Column Address LSB		· ·		1	ID	MX	MY	WA	DE	WS	MD	MS		NI/A
1. Set Column Address MSB 0	3. G	et Status	0	1	VER	POR	#	#	#	#	#	#	PMO[5:0]	IN/A
Set Column Address MSB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	Set Column Address LSB	0	0	000	0 # #	##						Set CA [3:0]	0
8. Set Power Control 0 0 0 0 0 1 # # #	4.	Set Column Address MSB 0		0	000	1##	##						Set CA [7:4]	0
7. Set Adv. Program Control (double-byte command) 8. Set Scroll Line 9. Set Page Address 9. Set LG[2:1] 9. Set Page Address 9. Set LG[2:1] 9. Set LG[2:3] 9. Set CIC[2:4] 9. Set LG[2:1] 9. Set LG[2:4] 9. Set DG[1] 9. Set LG[2:4] 9. Set LG	5.	Set Temp. Compensation	0	0	00	001	##						Set TC[1:0]	00b
Mathematical Companish Mathematical Compan	6.	Set Power Control	0	0	00	01#	##						Set PC[2:0]	110b
Manual Company Manu	7	Set Adv. Program Control			0	0	1	1	0	0	R	R	Set APC[R][7:0],	N1/A
Set Page Address	١٠.	(double-byte command)			#	#	#	#	#	#	#	#		I N/A
10	8.	Set Scroll Line	0	0	01#	####	##						Set SL[5:0]	0
10	9.	Set Page Address	0	0	10	1##	##						Set PA[3:0]	0
(double-byte command)	40	Set V BIAS Potentiometer	00		1	0	0	0	0	0	0	1	Cat DM[7:0]	4011
12. Set RAM Address Control 0 0 1 0 0 1 # #	10.	(double-byte command)			#	#	#	#	#	#	#	#	Set Pivi[7:0]	491
12. Set RAM Address Control 0 0 1 0 0 0 1 # # # Set AC[2:0] 001b 13. Set Frame Rate 0 0 1 0 1 0 0 0 # # Set LC[4:3] 01b 14. Set All-Pixel-ON 0 0 1 0 1 0 0 0 # # Set LC[4:3] 01b 15. Set Inverse Display 0 0 1 0 1 0 0 1 # Set DC[0] 0b 15. Set Inverse Display 0 0 1 0 1 0 1 1 # Set DC[0] 0b 16. Set Display Enable 0 0 1 0 0 0 1 # Set DC[2] 0b 17. Set LCD Mapping Control 0 0 1 1 0 0 0 # # Set LC[2:1] 00b 18. System Reset 0 0 1 1 0 0 0 # Set LC[2:1] 00b 19. NOP 0 0 1 1 0 0 0 1 No operation N/A 19. NOP 0 0 1 1 1 0 0 0 1 No operation N/A 19. NOP 0 0 1 1 0 0 0 1 Set DC[0] N/A 10. Set LCD Bias Ratio 0 0 1 1 0 1 0 # Set DC[0] Set BR[1:0] 11b: 9 10. Set LCD Bias Ratio 0 0 1 1 1 0 1 0 1 Set DEN[5:0] G3D 22. Set COM End 0 0 1 1 1 0 0 1 Set DEN[5:0] G3D 23. Set Partial Display Start 0 0 1 1 1 1 0 0 1 Set DEN[5:0] G3D 24. Set Partial Display End 0 0 1 1 1 1 0 0 1 Set DEN[5:0] G3D 25. Set MTP Operation Control 0 0 1 1 1 1 1 0 0 1 Set MTPC[4:0] O0H 26. Set WTP Vrite Mask 0 0 1 1 1 1 1 0 0 1 Set WTPT[7:0] N/A 27. Set V MTP1 Potentiometer 0 0 1 1 1 1 1 0 1 0 1 Set WTPT[7:0] N/A 28. Set V MTP2 Potentiometer 0 0 1 1 1 1 1 0 1 1	11.	Set Partial Display Control 0		0	100	001	0 #						Set LC[5]	0b
14. Set All-Pixel-ON	12.	Set RAM Address Control	0	0	100	01#	##							001b
15. Set Inverse Display	13.	Set Frame Rate	0	0	10	000	##						Set LC[4:3]	01b
15. Set Inverse Display	14.	Set All-Pixel-ON	0	0	10	001	0 #						Set DC[1]	0b
16. Set Display Enable	15.	Set Inverse Display	0	0	101	001	1 #							0b
18. System Reset			0	0	10	011	1 #							0b
18. System Reset	17.	Set LCD Mapping Control	0	0	11(00#	# 0						Set LC[2:1]	00b
19. NOP 20. Set Test Control (double-byte command) 21. Set LCD Bias Ratio 22. Set COM End 23. Set Partial Display Start 24. Set Partial Display End 25. Set MTP Operation Control 26. Set MTP Write Mask 27. Set V MTP1 Potentiometer 28. Set V MTP2 Potentiometer 29. Set MTP Write Timer 30. Set MTP Read Timer 30. Set MTP Read Timer 31. Set Status 31. Set			0	0	11	000	1 0						System Reset	N/A
Set Test Control (double-byte command)			0	0	111	000	1 1						·	N/A
Companied Comp	00	Set Test Control			1	1	1	0	0	1	Т	Т	·	NI/A
22. Set COM End 0 0 1 1 1 1 1 0 0 0 0 1 Set CEN[5:0] 63D 23. Set Partial Display Start 0 0 1 1 1 1 0 0 0 0 1 Set DST[5:0] 0 24. Set Partial Display End 0 0 1 1 1 1 0 0 0 1 1 Set DST[5:0] 63D 25. Set MTP Operation Control 0 0 11 1 1 0 0 0 1 1 Set MTPC[4:0] 00H 26. Set MTP Write Mask 0 0 1 1 1 1 1 0 0 0 1 Set MTPM[5:0] 0 27. Set V MTP1 Potentiometer 0 0 1 1 1 1 1 0 0 1 Set VMTP1[7:0] N/A 28. Set V MTP2 Potentiometer 0 0 1 1 1 1 0 1 0 1 Set VMTP2[7:0] N/A 29. Set MTP Write Timer 0 0 1 1 1 1 0 1 1 Set MTPWT[7:0] N/A Set MTP Read Timer 0 0 1 1 1 1 1 0 1 1 Set MTPRT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 0 0 1 1 1 1 1 1 0 MX MY WA DE WS MD MS Get Status N/A	20.	(double-byte command)			#	#	#	#	#	#	#	#		N/A
22. Set COM End 0 0 1 1 1 1 1 0 0 0 0 1 Set CEN[5:0] 63D 23. Set Partial Display Start 0 0 11 1 1 0 0 0 0 1 Set DST[5:0] 0 24. Set Partial Display End 0 0 1 1 1 0 0 0 1 1 Set DST[5:0] 63D 25. Set MTP Operation Control 0 0 11 1 1 0 0 0 1 1 Set MTPC[4:0] 00H 26. Set MTP Write Mask 0 0 1 1 1 1 1 0 0 0 1 Set MTPM[5:0] 0 27. Set V MTP1 Potentiometer 0 0 1 1 1 1 0 0 1 Set VMTP1[7:0] N/A 28. Set V MTP2 Potentiometer 0 0 1 1 1 1 0 0 1 Set VMTP2[7:0] N/A 29. Set MTP Write Timer 0 0 1 1 1 1 0 1 1 1 Set MTPWT[7:0] N/A 30. Set MTP Read Timer 0 0 1 1 1 1 1 0 1 1 1 Set MTPRT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 0 1 1 1 1 1 1 0 MX MY WA DE WS MD MS Get Status N/A	21.	Set LCD Bias Ratio	0	0	11	010	##						Set BR[1:0]	11b: 9
23. Set Partial Display Start 0 0 11 10010 24. Set Partial Display End 0 0 1 1 1 0 0 0 1 1 Set DEN[5:0] 25. Set MTP Operation Control 26. Set MTP Write Mask 0 0 1 1 1 1 0 0 0 1 Set MTPC[4:0] 27. Set V MTP1 Potentiometer 0 0 1 1 1 1 0 0 0 1 Set VMTP1[7:0] 28. Set V MTP2 Potentiometer 0 0 1 1 1 1 0 0 1 0 Set VMTP2[7:0] 29. Set MTP Write Timer 0 0 1 1 1 0 1 0 1 Set MTPWT[7:0] 30. Set MTP Read Timer 0 0 1 1 1 0 1 0 1 1 Set MTPMT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 31. Get Status N/A	00				1	1	1	1	0	0	0	1		000
24. Set Partial Display Start 0	22.	Set COM End	0	0			#	#	#	#	#	#	Set CEN[5:0]	63D
24. Set Partial Display End 0 0 1 1 1 0 0 1 1 Set DEN[5:0] 63D 25. Set MTP Operation Control 0 0 11 11 0 0 0 1 Set MTPC[4:0] 00H 26. Set MTP Write Mask 0 0 1 1 1 1 0 0 0 1 Set MTPM[5:0] 0 27. Set V MTP1 Potentiometer 0 0 11 1 0 1 0 1 Set VMTP1[7:0] N/A 28. Set V MTP2 Potentiometer 0 0 1 1 1 0 1 0 1 Set VMTP2[7:0] N/A 29. Set MTP Write Timer 0 0 1 1 1 0 1 0 1 Set VMTP2[7:0] N/A 30. Set MTP Read Timer 0 0 1 1 1 1 1 0 1 1 1 Set MTPWT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 31. Get Status 0 1 ID MX MY WA DE WS MD MS Get Status N/A	22	Cat Dantial Diamles Ctant			11	100	1 0						Cot DOTIC:01	0
24. Set Partial Display End 0 0 0 # # # # # # # # # Set DEN[5:0] 63D 25. Set MTP Operation Control 0 0 11 1 10 0 0 1 Set MTPC[4:0] 00H 26. Set MTP Write Mask 0 0 1 1 1 1 1 0 0 1 Set MTPM[5:0] 0 27. Set V MTP1 Potentiometer 0 0 11 1 10 10 0 Set VMTP1[7:0] N/A 28. Set V MTP2 Potentiometer 0 0 1 1 1 1 0 1 0 1 Set VMTP2[7:0] N/A 29. Set MTP Write Timer 0 0 1 1 1 1 0 1 0 Set MTPWT[7:0] N/A 30. Set MTP Read Timer 0 0 1 1 1 1 1 0 1 1 1 1 Set MTPWT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 31. Set Status 0 1 DMX MY WA DE WS MD MS Get Status N/A	23.	bet Partial Display Start	0	0		####	##						Set DS 1[5:0]	
25. Set MTP Operation Control 0 0 11 11000	0.4	Cat Daniel Dianley Fuel			1	1	1	1	0	0	1	1	0 - 4 DENIE-01	COD
26. Set MTP Write Mask 27. Set V MTP1 Potentiometer 28. Set V MTP2 Potentiometer 29. Set MTP Write Timer 20. Set MTP Write Timer 20. Set MTP Read Timer 20. Set MTP Read Timer 21. Set Status 22. Set MTP Write Mask 23. Set Status 24. Set V MTP1 Potentiometer 25. Set MTP Write Mask 26. Set MTP Write Mask 27. Set V MTP1 Potentiometer 28. Set V MTP2 Potentiometer 29. Set MTP Write Timer 29. Set MTP Write Timer 20. O 1 1 1 1 1 0 1 0 1 Set VMTP2[7:0] N/A 29. Set MTP Read Timer 20. O 1 1 1 1 1 0 1 1 1 Set MTPWT[7:0] N/A 29. Set MTP Read Timer 20. O 1 1 1 1 1 0 1 1 1 Set MTPRT[7:0] N/A 29. Set MTP Read Timer 20. O 1 1 1 1 1 0 1 1 1 Set MTPRT[7:0] N/A 20. Set MTP Read Timer 20. O 1 1 1 1 1 1 0 1 1 1 Set MTPRT[7:0] N/A 20. Set MTP Read Timer 20. O 1 1 1 1 1 1 0 1 1 1 1 Set MTPRT[7:0] N/A 20. Set MTP Read Timer 20. O 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	24.	bet Partiai Display End	U	U			#	#	#	#	#	#	Set DEN[5:0]	63D
26. Set MTP Write Mask 0 0 1 1 1 1 1 0 0 1 Set MTPM[5:0] 0 27. Set V MTP1 Potentiometer 0 0 1 1 1 0 0 1 Set VMTP1[7:0] N/A 28. Set V MTP2 Potentiometer 0 0 1 1 1 0 1 0 1 Set VMTP2[7:0] N/A 29. Set MTP Write Timer 0 0 1 1 1 0 1 0 1 Set MTPWT[7:0] N/A 30. Set MTP Read Timer 0 0 1 1 1 1 0 1 1 1 Set MTPWT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 31. Get Status 0 1 ID MX MY WA DE WS MD MS Get Status N/A	25	Cat MTD On a ration Control			111	110	0 0						Cot MTDC(4:01	0011
26. Set MTP Write Mask 0 0 0 # # # # # # # # # Set MTPM[5:0] 0 27. Set V MTP1 Potentiometer 0 0 11 1 0 1 0 0	25.	Set MTP Operation Control	U	U		- # # #	##						Set WITPC[4:0]	UUH
27. Set V MTP1 Potentiometer 0 0 11110100	00	Dat NATIONALIA NATIONALIA			1	1	1	1	1	0	0	1	O-LATDAIF O	
27. Set V MIP1 Potentiometer 0 0 0 ####### # Set VMTP1[7:0] N/A 28. Set V MTP2 Potentiometer 0 0 1 1 1 1 0 1 0 1 Set VMTP2[7:0] N/A 29. Set MTP Write Timer 0 0 1 1 1 1 0 1 0 Set MTPWT[7:0] N/A 30. Set MTP Read Timer 0 0 1 1 1 1 1 Set MTPRT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 31. Get Status 0 1 ID MX MY WA DE WS MD MS Get Status N/A	26.	Set MTP Write Mask	U	U			#	#	#	#	#	#	Set MTPM[5:0]	0
28. Set V MTP2 Potentiometer 0 0 1 1 1 1 0 1 0 1 Set VMTP2[7:0] N/A 29. Set MTP Write Timer 0 0 1 1 1 0 1 0 1 Set MTPWT[7:0] N/A 30. Set MTP Read Timer 0 0 1 1 1 1 0 1 1 Set MTPRT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 31. Get Status 0 1 ID MX MY WA DE WS MD MS Get Status N/A	07	Cat V MTD4 Datastiassatas			11	101	0 0						Co+ \/MTD4[7:0]	NI/A
28. Set V MTP2 Potentiometer 0 0 # # # # # # # # # # # # Set VMTP2[7:0] N/A 29. Set MTP Write Timer 0 0 # # # # # # # # # # Set MTPWT[7:0] N/A 30. Set MTP Read Timer 0 0 1 1 1 1 0 1 1 1 Set MTPRT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 31. Get Status 0 1 D MX MY WA DE WS MD MS Get Status N/A	21.	Set V MIP1 Potentiometer	0	U	##;	####	##						Set VIVITP1[7:0]	IN/A
# # # # # # # # # # # # # # # # # # #		Data dia matan			1	1	1	1	0	1	0	1	0-4 \ / \ ATD0[7-0]	N1/A
29. Set MTP Write Timer 0 0 ####### Set MTPWT[7:0] N/A 30. Set MTP Read Timer 0 0 1 1 1 1 0 1 1 1 Set MTPRT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 31. Get Status 0 1 ID MX MY WA DE WS MD MS Get Status N/A	28.	Set V MTP2 Potentiometer	U	0	#	#	#	#	#	#	#	#	Set VMTP2[7:0]	N/A
30. Set MTP Read Timer 0 0 1 1 1 1 0 1 1 1 Set MTPRT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 0 0 11111110 0 1 Set Status 0 0 1 1 1 1 1 0	00				111	101	1 0						0 (1470)4/7/7 01	N1/A
30. Set MTP Read Timer 0 0 1 1 1 1 0 1 1 1 Set MTPRT[7:0] N/A Serial Read Command (Enabled only in S8/S9 mode) 31. Get Status 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0	29.	Set MTP Write Timer	\mathbf{L}^{0}										Set MTPWT[7:0]	N/A
# # # # # # # # # # # # # #	00	C-4 MTD D 4 T			1	1	1	1	0	1	1	1	Oat MTDDTIT 61	N1/A
Serial Read Command (Enabled only in S8/S9 mode) 0	30.	bet MTP Read Timer			#	#	#	#		#	#	#	Set MTPRT[7:0]	N/A
0 0 11111110 Get Status 31. Get Status 0 1 ID MX MY WA DE WS MD MS Get Status N/A														
31. Get Status O 1 ID MX MY WA DE WS MD MS Get Status N/A			$\overline{}$											
01	31.	Get Status						WA	DF	WS	MD	MS	Get Status	N/A
<u> </u>			01										1	

Any bit pattern other than those listed above may result in NOP (No Operation).

UC1604 C_A0.6

?1999~2010 65x192 STN Controller-Driver

COMMAND DESCRIPTION

1. Write Data Byte to Memory

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Write data	1	0	8-bit data write to SRAM							

2. Read Data Byte from Memory

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Read data	1	1			8-bit	t data read	from SRAM	Л		

Write/Read Data Byte (Command 1,2) access Display Data RAM based on Page Address (PA) register and Column Address (CA) register. To minimize bus interface cycles, PA and CA will increase or decrease automatically after each bus cycle, depending on the setting of Access Control (AC) registers. PA and CA can also be programmed directly by issuing

Set Page Address and Set Column Address commands.

If <u>Wrap-Around</u> (WA) is OFF (AC[0] = 0), CA will stop increasing after reaching the end of the page, and system programmers need to set the values of PA and CA explicitly. If WA is ON (AC[0]=1), when CA reaches the end of the page, CA will be reset to 0 and PA will increase or decrease by 1, depending on the setting of Page Increment Direction (PID, AC[2]). When PA reaches the boundary of RAM, PA will be wrapped around to the other end of RAM and continue.

3. Get Status

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Cat Status	0	1	ID	MX MY	WA DE W	S MD MS				
Get Status	0 1		VER	POR PN	IO5	PMO4	PMO3	PMO2	PMO1	PMO0

Status1 definitions:

ID: Provide access to ID pins connection status.

MX : Status of register LC[1], mirror X.

MY: Status of register LC[2], mirror Y.

WA: Status of register AC[0]. Automatic column/row wrap around.

DE: Display Enable flag. DE=1 when display is enabled.

WS: MTP Operation succeeded

MD: MTP Option (1 for MTP version, 0 for non-MTP version)

MS: MTP action status

Status2 definitions:

Ver: IC Version, 0~1.

POR: Power-ON Reset control.

PMO[5:0]: PM offset value. Default: 00H

4. Set Column Address

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Column Address LSB CA[3:0]	0	0	000)			CA3 CA	2 CA1 CA)	
Set Column Address MSB CA[7:4]	0	0	000				CA7 CA	6 CA5 CA	4	

Set the SRAM column address before Write/Read memory from host interface.

CA value range: 0~191

UC1604 C_A0.6

?1999~2010 65x192 STN Controller-Driver

5. Set Temperature Compensation

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Temperature Comp. TC[1:0]	0	0	0010	0 1					TC1 TC	0

Set V BIAS temperature compensation coefficient (%-per-degree-C)

Temperature compensation curve definition:

00b = -0.00%/ $^{\circ}C$ 01b = -0.05%/ $^{\circ}C$ 10b = -0.10%/ $^{\circ}C$ 11b = -0.15%/ $^{\circ}C$

6. Set Power Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Power Control PC[2:0]	0	0	0010) 1				PC2 PC	1 PC0	

PC[1:0]: to select low-pump charge current

00b: 0.6mA 01b: 1.0mA 10b: 1.4mA 11b: 2.3mA

Set PC[2]: to program the build-in charge pump stages.

Ob: External V LCD 1b: Internal V LCD (7x charge pump)

7. Set Advanced Program Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Adv. Program Control APC[R][7:0]	0 0		001	0 0					RR	
(Double-byte command)	0 0	APC7		APC6	APC5	APC4	APC3 A	PC2 APC1		APC0

For UltraChip only. Please Do NOT use.

8. Set Scroll Line

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Scroll Line SL[5:0]	0	0	0 1		SL5 SL	4 SL3 SL2				

Set the scroll line number.

Scroll line setting will scroll the displayed image up by command.

SL rows. Icon output CIC will not be affected by Set Scroll Line

9. Set Page Address

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Page Address PA[3:0]	0	0	101				PA3 PA	2 PA1 PA0		

Set the SRAM page address before write/read memory from host interface. Each page of SRAM corresponds to 8 COM lines on LCD panel, except for the last page. The last page corresponds to the icon output CIC.

Possible value = $0 \sim 8$.

UC1604 C_A0.6

?1999~2010 65x192 STN Controller-Driver

10. Set VBIAS Potentiometer

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set V BIAS Potentiometer PM [7:0]	0 0		1000	0001						
(Double-byte command)	0	0	PM7 PN	l6 PM5 PM	4 PM3 PM	2 PM1 PM				

Program V BIAS Potentiometer (PM[7:0]). See section

LCD Voltage Setting

for more detail.

Effective range: 0 ~ 255 (Default: 49H)

11. Set Partial Display Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Partial Display Enable LC [5]	0	0	1000	010						LC5

This command is used to enable partial display function.

LC[5]: 0b: Disable Partial Display , Mux-Rate = CEN+1 (DST, DEN not used.)

1b: Enable Partial Display, Mux-Rate = DEN-DST+1

12. Set RAM Address Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set AC [2:0]	0	0	1000) 1				AC2 AC	1 AC0	

Program registers AC[2:0] for RAM address control. It controls the auto-increment behavior of CA and PA.

AC[0] - WA, Automatic column/page wrap around.

0: CA or PA (depends on AC[1]= 0 or 1) will stop increasing after reaching boundary

1: CA or PA (depends on AC[1]= 0 or 1) will restart, and CA or PA will increase by one.

AC[1] - Auto-Increment order

0 : column (CA) increasing (+1) first until CA reach CA boundary, then PA will increase by (+/-1).

1 : page (PA) increasing (+/-1) first until PA reach PA boundary, then CA will increase by (+1).

AC[2] – PID, page address (PA) auto increment direction (0/1 = +/-1)

When WA=1 and CA reaches CA boundary, PID controls whether page address will be adjusted by +1 or -1.

13. Set Frame Rate

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Frame Rate LC [4:3]	0	0	1010	00					LC4 LC	1.5

Program LC [3] for frame rate setting

00b: 76 fps 01b: 95 fps 10b: 132 fps 11b: 168 fps

(fps: frame-per-second)

14. Set All Pixel ON

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set All Pixel ON DC [1]	0	0	1010	010						DC1

Set DC[1] to force all SEG drivers to output ON signals. This function has no effect on the existing data stored in display RAM. (Default: 0)

15. Set Inverse Display

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Inverse Display DC [0]	0	0	1010	011						DC0

Set DC[0] to force all SEG drivers to output the inverse of the data (bit-wise) stored in display RAM. This function has no effect on the existing data stored in display RAM. (Default: 0)

16. Set Display Enable

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Display Enable DC[2]	0	0	1010	111						DC2

This command is for programming register DC[2]. When DC[2] is set to 1, UC1604c will first exit from sleep mode, restore the power and then turn on COM drivers and SEG drivers. (Default: 0)

17. Set LCD Mapping Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set LCD Control LC[2:1]	0	0	110(0				MY MX		0

Set LC[2:1] for COM (row) mirror (MY), SEG (column) mirror (MX). (Default: 00b)

MY is implemented by reversing the mapping order between RAM and COM (row) electrodes. The data stored in RAM is not affected by MY command. MY will have immediate effect on the display image.

MX is implemented by selecting the CA or 63-CA as write/read (from host interface) display RAM column address so this function will only take effect after rewriting the RAM data.

18. System Reset

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
System Reset	0	0	111(0010						

This command will activate the system reset.

Control register values will be reset to their default values. Data store in RAM will not be affected.

19. NOP

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
No Operation	0	0	111(0011						

This command is used for " no operation "

20. Set Test Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set TT	0 0		111(0 1					Т	Т
(Double byte command)	0	0				For tes	st only			

This command is used for UltraChip production testing. Please do <u>NOT</u> use.

21. Set LCD Bias Ratio

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Bias Ratio BR [1:0]	Τo	0	111(10					BR1 BR	0

Bias ratio definition:

 $00 + 6 \quad 01b = 7 \quad 10b = 8 \quad 11b = 9$

22. Set COM End

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set CEN [5:0]	0 0		111	0001						
(Double-byte command)	0.0		-	-		CE	EN register	paramete	r	

This command programs the ending COM electrode. CEN defines the number of used COM electrodes, and it should correspond to the number of pixel-rows in the LCD. When the LCD has less than 64 pixel rows, the LCM designer should set CEN to N-1 (where N is the number of pixel rows) and use COM1 through COM- N as COM driver electrodes. (Default: 63)

23. Set Partial Display Start

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set DST [5:0]	0 0		111	0010						
(Double-byte command)	0 0		-	-		D:	ST register	parameter	•	

This command programs the starting COM electrode, which has been assigned a full scanning period and will output an active COM scanning pulse.

24. Set Partial Display End

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set DEN [5:0]	0 0		111	0011						
(Double-byte command)	0 0		-	- DEN			registe	r paramete	r	

This command programs the ending COM electrode, which has been assigned a full scanning period and will output an active COM scanning pulse.

CEN, DST, and DEN are 0-based index of COM electrodes. They control only the COM electrode activity, and do not affect the mapping of display RAM to each COM electrodes. The image displayed by each pixel row is therefore not affected by the setting of these three registers.

When LC[5]=1b, the Mux-Rate is narrowed down to DEN — DST + 1. When MUX rate is reduced, reduce the frame rate accordingly to reduce power. Changing MUX rate also require BR and V LCD to be reduced.

For minimum power consumption, set LC[5]=1b, set (DST, DEN, CEN) to minimize Mux rate, use slowest frame rate which satisfies the flicker requirement, set PC[0]=0b, and use lowest BR, lowest V LCD which satisfies the contrast requirement. When Mux-Rate is under 16, it is recommended to set BR=6 for optimum power saving.

In either case, DST/DEN defines a small subsection of the display which will remain active while shutting down all the rest of the display to conserve energy.

Keep CEN DEN DST+ 9

Display	Funct	ion Set	ting	Image in DDRAM	Display	Func	tion Set	ting	Image in DDRAM
Data Direction	AIO AC[1]	MX LC[1]	RID AC[2]	(Physical origin: upper left corner)	Data Direction	AIO AC[1]	MX LC[1]	RID AC[2]	(Physical origin: upper left corner)
Normal 0 0	0				X-Y Exchange	100)		
Y-mirror 0		0	1		X-Y Exchange Y-mirror	101			
X-mirror 0		1	0		X-Y Exchange X-mirror	110)		
X-mirror Y-mirror	01				X-Y Exchange X-mirror Y-mirror	111			

25. Set MTP Operation Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTPC [4:0]	0 0		111	1000						
(Double-byte command)	0 0		-	-	- MTF	C4	MTPC3	MTPC2	MTPC1	MTPC0

This command is for MTP operation control: (MTPC[4:0] : default: D0H)

MTPC[2:0]: MTP command

000 : Sleep 001 : MTP Read 010 : MTP Erase 011 : MTP Program

1xx: For UltraChip use only.

MTPC[3]: MTP Enable (automatically cleared each time after MTP command is done)

MTPC[4]: MTP value valid (set H to active MTP value)

DC[2] and MTPC[3] are mutually exclusive. Only one of these two control flags can be set to ON at any time. In other words, when DC[2] is ON, all MTP operations will be blocked, and, when MTP operation is active, set DC[2] to 1 will be blocked.

" appears to b

?1999~2010 65x192 STN Controller-Driver

26. Set MTP Write Mask

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTPM [5:0]	0 0		1111	1001						
(Double-byte command)	0 0		-	- MTF	M[5:0]					

This command enables Write to each of the individual MTP bits. When MTPM[x]=1, the x-th bit of the MTP memory will be programmed to "1". MTPM[x]=0 means no Write action for x-th bit. And the content of this bit will not change.

The amount of "programming current" increases with the number of 1 's in MTPM. If the "programming current high for the LCM design (e.g. TST4 ITO trace is not wide enough to supply the current), use multiple write cycles and distribute the 1 's evenly into these cycles.

MTPM[5:0] : Set PMO value (Default: 00H)

27. Set VMTP1 Potentiometer

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set VMTP1 [7:0]	0 0		111	0100						
(Double-byte command)	0.0					VMTP	1[7:0]			

This command is for fine tuning V OPT1 setting (with BR=00).

28. Set VMTP2 Potentiometer

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set VMTP2 [7:0]	0 0		111	0101						
(Double-byte command)	0 0					VMTP:	2[7:0]			

This command is for fine tuning V MTP2 setting (with BR=11).

29. Set MTP Write Timer

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTPWT [7:0]	0 0		111	0110						
(Double-byte command)	0 0					MTPW	T[7:0]			

This command is only valid when MTPC[3]=1.

30. Set MTP Read Timer

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTPRT [7:0]	0 0		111	0111						
(Double-byte command)	0 0					MTPR	T[7:0]			

This command is only valid when MTPC[3]=1.

Serial Read Command (Enable only in S8/S9 mode):

31. Get Status

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
	0 0		111	1110						
Get Status	0	1	ID	MX MY	WA DE W	S MD MS				
	0 1		VER	POR PN	IO5	PMO4	PMO3	PMO2	PMO1	PMO0

See command 3.

LCD VOLTAGE SETTING

MULTIPLEX RATES

Multiplex Rate is completely software programmable in UC1604c via registers CEN, DST, DEN, and partial display control flags LC[5].

Combined with low power partial display mode and a low bias ratio of 6, UC1604c can support wide variety of display control options. For example, when a system goes into stand-by mode, a large portion of LCD screen can be turned off to conserve power.

BIAS RATIO SELECTION

Bias Ratio (BR) is defined as the ratio between V = LCD and V_D , i.e.

where V D = V B1+ - V B1- = V B0+ - V B0-.

The theoretical optimum Bias Ratio can be estimated by $\sqrt{\text{Mux}}$ +1. BR of value 15~20% lower/higher than the optimum value calculated above will not cause significant visible change in image quality.

UC1604c supports four BR as listed below. BR can be selected by software program.

BR	0	1	2	3
Bias Ratio	678			9

Table 1: Bias Ratios

TEMPERATURE COMPENSATION

Four different temperature compensation coefficients can be selected via software. The four coefficients are given below:

TC	0	1	2	3
% per C	- 0.00	- 0.05	- 0.10	- 0.15

Table 2: Temperature Compensation

VLCD GENERATION

 V_{LCD} may be supplied either by internal charge pump or by external power supply. The source of V LCD is controlled by PC[2].

When V LCD is generated internally, the voltage level of V LCD is determined by three control registers: BR (Bias Ratio), PM (Potentiometer), and TC (Temperature Compensation), with the following relationship:

$$V_{LCD} = (C_{V0} + C_{PM} \times PM) \times (1 + (T - 25) \times C_{T} \%)$$

where

 C_{V0} and C_{PM} are two constants, whose value depends on the setting of BR register, as illustrated in the table on the next page,

PM is the numerical value of PM register,

T is the ambient temperature in C, and

C_T is the temperature compensation coefficient as selected by TC register.

VLCD FINE TUNING

Black-and-white STN LCD is sensitive to even a 1% mismatch between IC driving voltage and the V $\,$ op of LCD. However, it is difficult for LCD makers to guarantee such high precision matching of parts from different venders. It is therefore necessary to adjust V $\,$ LCD to match the actual V $\,$ op of the LCD.

For the best result, software based approach for V LCD adjustment or MTP is the recommended method for V LCD fine-tuning. System designers should always consider the contrast fine tuning requirement before finalizing on the LCM design.

LOAD DRIVING STRENGTH

The power supply circuit of UC1604c is designed to handle LCD panels with loading up to ~24nF using 20- ? /Sq ITO glass with V DD2/3 2.6V. For larger LCD panels, use lower resistance ITO glass packaging.

VLCD QUICK REFERENCE

VLCD Programming Curve.

BR	C vo (V)	CPM (mV)	PM	V ^{LCD} Range (V)
6 4.800		12.24	0 4.80	
0 4.600		12.24	255 7.92	
7 5.600		14.28	0 5.60	
7 3.000		14.20	255 9.24	
8 6.400		16.32	0 6.40	
8 0.400		10.32	255 10.56	
0.7.200		10.26	0 7.20	
9 7.200		18.36	234 11.50	

Note:

- 1. For good product reliability, keep V LCD under 11.5V over all temperature.
- 2. The integer values of BR above are for reference only and may have slight shift.

HI-V GENERATOR AND BIAS REFERENCE CIRCUIT

FIGURE 1: Reference circuit using internal Hi-V generator circuit

Note

Sample component values: (The illustrated circuit and component values are for reference only. Please optimize for specific requirements of each application.)

 C_{Bx} : 2.2 μ F/5V or 300x LCD load capacitance, whichever is higher.

CL: 330nF(25V) is appropriate for most applications.

RL: 3.3M~10M ? to act as a draining circuit when V DD is shut down abruptly .

ULTRA CHIP UC1604 C_A0.6

?1999~2010 65x192 STN Controller-Driver

LCD DISPLAY CONTROLS

CLOCK & TIMING GENERATOR

UC1604c contains a built-in system clock. All required components for the clock oscillator are built-in. No external parts are required.

4 different frame rates are provided for system design flexibility. The frame rate is controlled by register LC[4:3]. When Mux-Rate is above 45, Frame rate: 76fps, 95fps, 132fps, and 168 fps.

When Mux-Rate is lowered to 44, 33, 22, and 17, frame rate will be scaled down automatically by 1.5, 2, 3, and 4 times to reduce power consumption.

Choose lower frame rate for lower power, and choose higher frame rate to improve LCD contrast and minimize flicker.

DRIVER MODES

COM and SEG drivers can be in either Idle mode or Active mode, controlled by Display Enable flag (DC[2]). When SEG and COM drivers are in idle mode, they will be connected together to ensure zero DC condition on the LCD.

DRIVER ARRANGEMENTS

The naming conventions are: COM x, where x = 1~64, refers to the row driver for the x-th row of pixels on the LCD panel.

The mapping of COM(x) to LCD pixel rows is fixed and it is not affected by SL, CEN, DST, DEN, MX or MY settings.

DISPLAY CONTROLS

There are three groups of display control flags in the control register DC: Driver Enable (DE), All-Pixel-ON (APO) and Inverse (PXV). DE has the overriding effect over PXV and APO.

DRIVER ENABLE (DE)

Driver Enable is controlled by the value of DC[2] via Set Display Enable command. When DC[2] is set to OFF (logic "0"), both COM and SEG drivers will become idle and UC1604c will put itself into Sleep Mode to conserve power.

When DC[2] is set to ON, the DE flag will become UC1604c will first exit from Sleep Mode, restore the power (V_{LCD}, V_D etc.) and then turn on COM and SEG drivers.

" 1 " ,and

ALL PIXELS ON (APO)

When set, this flag will force all SEG drivers to output ON signals, disregarding the data stored in the display buffer.

This flag has no effect when Display Enable is OFF and it has no effect on data stored in RAM.

INVERSE (PXV)

When this flag set to ON, SEG drivers will output the inverse of the value it received from the display buffer RAM (bit-wise inversion). This flag has no impact on data stored in RAM.

PARTIAL DISPLAY

UC1604c provides flexible control of Mux Rate and active display area. Please refer to commands Set COM End , Set Partial Display Start , and Set Partial Display End for more detail.

ITO LAYOUT AND LC SELECTION

Since COM scanning pulses of UC1604c can be as short as 91 μ S, it is critical to control the RC delay of COM and SEG signal to minimize crosstalk and maintain good mass production consistency.

COM TRACES

Excessive COM scanning pulse RC decay can cause fluctuation of contrast and increase COM direction crosstalk.

Please limit the worst case of COM signals RC delay (RC MAX) as calculated below

$$(R_{ROW} / 2.7 + R_{COM}) \times C_{ROW} < 9.23 \mu S$$

where

CROW: LCD loading capacitance of one row of pixels. It can be calculated by C LCD/Mux-Rate, where C LCD is

the LCD panel capacitance.

RROW: ITO resistance over one row of pixels within the

active area

R COM: COM routing resistance from IC to the active area

+ COM driver output impedance.

In addition, please limit the min-max spread of RC decay to be:

$$|RCMAX - RQiN| < 2.76 \mu S$$

so that the COM distortions on the top of the screen to the bottom of the screen are uniform.

(Use worst case values for all calculations)

SEG TRACES

Excessive SEG signal RC decay can cause image dependent changes of medium gray shades and sharply increase the crosstalk of SEG direction.

For good image quality, please minimize SEG ITO trace resistance and limit the worst case of SEG signal RC delay as calculated below.

$$(R_{COL}/2.7 + R_{SEG}) \times C_{COL} < 6.30 \mu S$$

where

CCOL: LCD loading capacitance of one pixel column. It

can be calculated by C LCD / (# of column), where

CLCD is the LCD panel capacitance.

RCOL: ITO resistance over one column of pixels within the

active area

RSEG: SEG routing resistance from IC to the active area +

SEG driver output impedance.

(Use worst case values for all calculations)

SELECTING LIQUID CRYSTAL

The selection of LC material is crucial to achieve the optimum image quality of finished LCM.

When (V 90-V 10)/V 10 is too large, image contrast will deteriorate, and images will look murky and dull.

When (V 90-V10)/V10 is too small, image contrast will become too strong, and crosstalk will increase.

For the best result, it is recommended the LC material has the following characteristics:

$$(V_{90}-V_{10})/V_{10} = (V_{ON}-V_{OFF})/V_{OFF} \times 0.72 \sim 0.80$$

where V $_{90}$ and V $_{10}$ are the LC characteristics, and V $_{ON}$ and V $_{OFF}$ are the ON and OFF V $_{RMS}$ voltage produced by LCD driver IC at the specific Mux-rate.

Two examples are provided below:

Duty	Bias	Von/Voff -1	x0.80	x0.72
1/65	1/9 13.	3%	10.6%	9.6%
1/65	1/8 13.	1%	10.5%	9.5%

FIGURE 2: COM and SEG Electrode Driving Waveform

HOST INTERFACE

As summarized in the table below, UC1604c supports 2 8-bit parallel bus protocols and 3 serial bus protocols. Designers can choose either the 8-bit parallel bus to achieve high data transfer rate, or use serial bus to create compact LCD modules and minimize connector pins.

				Bus Type		
		8080	6800	S8(4-wire)	S9(3-wire)	I ² C(2-wire)
	Width 8-bit		8-bit		Serial	
	Access	Read /	Write	Read (statu	ıs) / Write	R/W
	BM[1:0]	10 11 00 ()1 01			
s p P	D[7] Data		Data		0	1
	CS[1:0] Chip		,	Select		A[3:2]
a D	CD Control/Da	ta			()
& 0	WR0	WR	R/W		0	
f no C	WR1	RD	EN		0	
Č	D[6,2,1] Data					
	D[5:3], D[0]	Da	nta	D[5:	3]=SDA, D[0]=SC	K

Connect unused control pins and data bus pins to V DD for "H" ser for "L"

	CS Disable Bus Interface	CS Init. Bus State	RESET Init. Bus State
8-bit	9	_	9
S8 or S9	9	9	9
I ² C -		_	9

- ? CS disable bus interface
- CS can be used to disable Bus Interface Write / Read Access.
- ? RESET can be pin reset / soft reset / power on reset.

Table 3: Host interfaces Summary

PARALLEL INTERFACE

The timing relationship between UC1604c internal control signal RD, WR and their associated bus actions are shown in the figure below.

The Display RAM read interface is implemented as a twostage pipeline. This architecture requires that, every time memory address is modified, either in parallel mode or serial mode, by either Set CA or Set PA command, a dummy read cycle need to be performed before the actual data can propagate through the pipeline and be read from data port D[7:0].

There is no pipeline in write interface of Display RAM. Data is transferred directly from bus buffer to internal RAM on the rising edges of write pulses.

Figure 3: Parallel Interface & Related Internal Signals

SERIAL INTERFACE

UC1604c supports three serial modes, one 4-wire SPI mode (S8), one 3-wire SPI mode (S9) and one 2-wire SPI mode (I interface mode is determined by the wiring of the BM[1:0] and D[7]. See table in last page for more detail.

²C). Bus

S8 (4-WIRE) INTERFACE

Pins CS[1:0] are used for chip select and bus cycle reset. Pin CD is used to determine the content of the data been transferred. During each write cycle, 8 bits of data, MSB first, are latched on eight rising SCK edges into an 8-bit data holder.

If CD=0, the data byte will be decoded as command. If CD=1, these 8 bits will be treated as data and transferred to proper address in the Display Data RAM on the rising edge of the last SCK pulse. Pin CD is examined when SCK is pulled low for the LSB (D0) of each token.

FIGURE 4.a: 4-wire Serial Interface (S8) - Read

Figure 4.b: 4-wire Serial Interface (S8) - Write

S9 (3-WIER) INTERFACE

Pins CS[1:0] are used for chip select and bus cycle reset. On each write cycle, the first bit is CD, which determines the content of the following 8 bits of data, MSB first. These 8 command or data bits are latched on rising SCK edges into an 8-bit data holder. If CD=0, the data byte will be decoded as command. If CD=1, this 8-bit will be treated as data and

transferred to proper address in the Display Data RAM at the rising edge of the last SCK pulse.

By sending CD information explicitly in the bit stream, control pin CD is not used, and should be connected to either V DD or Vss. The toggle of CS0 (or CS1) for each byte of data/command is recommended but optional.

FIGURE 5.a: 3-wire Serial Interface (S9) - Read

Figure 5.b: 3-wire Serial Interface (S9) — Write

"S" (Start)

" A"

?1999~2010 65x192 STN Controller-Driver

1²C (2- WIRE) INTERFACE

When BM[1:0] is set to "LH" and D[7:6] is set to UC1604c is configured as an I C bus signaling protocol compliant slave device. Please refer to I C standard for details of the bus signaling protocol, and AC Characteristic section for timing parameters of UltraChip implementation.

In this mode, pins CS[1:0] become A[3:2] and is used to configure UC1604c ' device address. Proper wiring to V DD or Vss is required for the IC to operate properly for I C mode.

HH", Each UC1604c I ²C interface sequence starts with a from the bus master, followed by a sequence header, containing a device address, the mode of transfer (CD, 0:Control, 1:Data), and the direction of the transfer (RW, 0:Write, 1:Read).

Since both WR and CD are expressed explicitly in the header byte, the control pins WR[1:0] and CD are not used in I C mode and should be connected to V ss.

After receiving the header, the UC1604c will send out a (Acknowledge signal, pull to "L"). Then, depends on the setting of the header, the transmitting device (either the bus master or UC1604c) will start placing data bits on SDA, MSB to LSB, and the sequence will repeat until a STOP signal (P, in WRITE mode), or an N (Not Acknowledged, in READ mode) is sent by the bus master.

UC1604 C_A0.6

?1999~2010 65x192 STN Controller-Driver

When using I ²C serial mode, if command System Reset is to be written, the writing sequence must be finished (STOP) before succeeding data or commands start. The flow chart on the right shows a writing sequence with a "System Reset" command.

Note that, for data read (CD=1), the first byte of data transmitted will be dummy.

HOST INTERFACE REFERENCE CIRCUIT

FIGURE 6: 8080/8bit parallel mode reference circuit

FIGURE 7: 6800/8bit parallel mode reference circuit

FIGURE 8: Serial-8 serial mode reference circuit

FIGURE 9: Serial-9 serial mode reference circuit

FIGURE 10: 1²C serial mode reference circuit

Note

- ? The ID pins are for production control. The connection will affect the content of D[7] of the 1-st byte of the command. Connect to V DD for "H" sor for "L".
- ? RST pin is optional. When the RST pin is not used, connect it to V
- ? When using I ²C serial mode, CS1/0 are user configurable and affect A[3:2] of device address.
- ? R1, R2: 2k ~ 10k ?, use lower resistor for bus speed up to 3.6MHz, use higher resistor for lower power.

UC1604 C A0.6

?1999~2010 65x192 STN Controller-Driver

DISPLAY DATA RAM (DDRAM)

DATA ORGANIZATION

The input display data is stored to a dual port static DDRAM (DDRAM, for Display Data RAM) organized as 65x192.

After setting CA and RA, the subsequent data write cycle will store the data for the specified pixel to the proper memory location.

Please refer to the map in the following page between the relation of COM, SEG, SRAM, and various memory control registers.

DISPLAY DATA RAM ACCESS

The Display RAM is a special purpose dual port RAM which allows asynchronous access to both its column and row data. Thus, RAM can be independently accessed both for Host Interface and for display operations.

DISPLAY DATA RAM ADDRESSING

A Host Interface (HI) memory access operation starts with specifying Row Address (RA) and Column Address (CA) by issuing Set Row Address and Set Column Address commands.

If wrap-around (WA, AC[0]) is OFF (0), CA will stop increasing after reaching the end of row (191), and system programmers need to set the values of PA and CA explicitly.

If WA is ON (1), when CA reaches end of page, CA will be reset to 0 and PA will increase or decrease, depending on the setting of row Increment Direction (RID, AC[2]). When PA reaches the boundary of RAM (i.e. PA = 0 or 7), PA will be wrapped around to the other end of RAM and continue.

MX IMPLEMENTATION

Column Mirroring (MX) is implemented by selecting either (CA) or (191 – CA) as the RAM column address. Changing MX affects the data written to the RAM.

Since MX has no effect of the data already stored in RAM, changing MX does not have immediate effect on the displayed pattern. To refresh the display, refresh the data stored in RAM after setting MX.

ROW MAPPING

COM electrode scanning orders are not affected by Start Line (SL), Fixed Line (FLT & FLB) or Mirror Y (MY, LC[2]). Visually, register SL having a non-zero value is equivalent to scrolling the LCD display up or down (depends on MY) by SL rows.

RAM ADDRESS GENERATION

The mapping of the data stored in the display SRAM and the scanning electrodes can be obtained by combining the fixed Rm scanning sequence and the following RAM address generation formula.

During the display operation, the RAM line address generation can be mathematically represented as following:

```
For the 1-st line period of each field
Line = SL
Otherwise
Line = Mod(Line +1, 64)
```

Where Mod is the modular operator, and Line is the bit slice line address of RAM to be outputted to column drivers. Line 0 corresponds to the first bit-slice of data in RAM.

The above Line generation formula produce the "loop around effect as it effectively resets Line to 0 when Line+1 reaches 64.

MY IMPLEMENTATION

Row Mirroring (MY) is implemented by reversing the mapping order between row electrodes and RAM, i.e. the mathematical address generation formula becomes:

```
For the 1 st line period of each field

Line = Mod(SL + MR -1 , 64)

Otherwise

Line = Mod(Line-1 , 64)
```

Visually, the effect of MY is equivalent to flipping the display upside down. The data stored in display RAM is not affected by MY.

PA[3:0]	0	Line Address	Г															٦	Panel Location	SL=0	Y=0 SL=16	MY SL=0	/=1 SL=16
	D0	R0	1		0	Т												ıŀ	COM1	R0	R16	R63	R 15
l	D1	R1	1		0	\vdash	-			\vdash	\vdash		\vdash		Н	Н	Н	H	COM2	R1	R17	R62	R 14
l	D2	R2	1				-			\vdash	-		\vdash		-	Н	Н	ı	СОМЗ	R2	R18	R61	R 13
0000	D3	R3	1							${}^{-}$	${}^{-}$	Page 0	\vdash					11	COM4	R3	R19	R60	R 12
	D4	R4	1			Т						192 2						1 1	COM5	R4	R20	R59	R11
l	D5	R5	1		0													1 1	СОМ6	R5	R21	R58	R 10
l	D6	R6]															l [COM7	R6	R22	R57	R9
	D7	R7	1															П	COM8	R7	R23	R56	R8
l	D0	R8	1	ш	lacksquare					lacksquare	$ldsymbol{ldsymbol{eta}}$				┙			П	COM9	R8	R24	R55	R7
l	D1 D2	R9 R10	1	ш	_	╙	╙	_	\vdash	_	_		ш		ш	ш		П	COM10 COM11	R9 R10	R25 R26	R54 R53	R6 R5
l	D3	R11	1	ш	┡	⊢	⊢	├	_	_	_		\vdash		ш	Н	Н	H	COM11	R11	R27	R52	R4
0001	D4	R12	ł	\vdash	⊢	₩	⊢	-	-	\vdash	\vdash	Page 1	\vdash		Н	Н	Н	H	COM13	R12	R28	R51	R3
l	D5	R13	1	Н	⊢	\vdash	-	-		⊢	-		\vdash		\vdash	Н	Н	H	COM14	R13	R29	R50	R2
l	D6	R14	ł	\vdash	⊢	\vdash	-	-	-	\vdash	\vdash		\vdash		\vdash	Н	Н	łł	COM15	R14	R30	R49	R1
l	D7	R15	ł	\vdash	\vdash	\vdash	\vdash	-	\vdash	⊢	\vdash		\vdash		\vdash	Н	\vdash	łł	COM16	R15	R31	R48	R0
\vdash	DO	R16	1	\vdash	⊢	\vdash	_	-	-	\vdash	-				\vdash	Н	Н	łł	COM17	R16	R32	R47	R 63
l	D1	R17	1	\vdash	\vdash	\vdash	_			\vdash	-		-		\vdash	Н	Н	łł	COM18	R17	R33	R46	R 62
l	D2	R18	1	\vdash	Н	\vdash	_			\vdash	-		-		-	Н	Н	ı	COM19	R18	R34	R45	R 61
0010	D3	R19	1	Н	Н					Т	Н	Page 2	Н		Н	Н	Н		COM20	R19	R35	R44	R 60
0010	D4	R20	1	Н	\vdash	\vdash	\vdash	\vdash		✝			Н		Н	Н	М	l l	COM21	R20	R36	R43	R 59
l	D5	R21	1	П						Г									COM22	R21	R37	R42	R 58
l	D6	R22	1																COM23	R22	R38	R41	R 57
	D7	R23	1															1 1	COM24	R23	R39	R40	R 56
	D0	R24]																COM25	R24	R40	R39	R 55
l	D1	R25]] [COM26	R25	R41	R38	R 54
l	D2	R26]															1 [COM27	R26	R42	R37	R 53
0011	D3	R27	1	ш	lacksquare					$ldsymbol{ldsymbol{ldsymbol{eta}}}$		Page 3	\Box					П	COM28	R27	R43	R36	R 52
l	D4	R28	1	ш	_	┞	╙	_	_	_	_		\vdash		ш	ш	Щ	H	COM29	R28	R44	R35	R 51
l	D5	R29	1	ш	L	⊢	₩	—	_	Ь	_		\vdash		ш	ш	Щ	H	COM30	R29	R45	R34	R 50
l	D6 D7	R30 R31	1	⊢	⊢	₩	⊢	-	-	⊢	⊢		\vdash		\vdash	Н	Н	H	COM31 COM32	R30 R31	R46 R47	R33 R32	R 49 R 48
	D0	R32	ł	⊢	⊢	-	-	-	-	⊢	-		-		\vdash	\vdash	Н	H	COM33	R32	R48	R31	R 47
l	D1	R32	ł	\vdash	⊢	\vdash	-	\vdash	\vdash	\vdash	\vdash		\vdash		\vdash	Н	Н	H	COM34	R32	R46	R30	R 46
l	D2	R34	ł	\vdash	⊢	\vdash	-	\vdash	\vdash	⊢	\vdash		\vdash		\vdash	Н	Н	H	COM35	R34	R50	R29	R 45
l	D3	R35	ł	\vdash	⊢	\vdash	-	-	-	\vdash	\vdash	_	\vdash		\vdash	Н	Н	H	COM36	R35	R51	R28	R 44
0100	D4	R36	ł	\vdash	\vdash	\vdash	-	-	\vdash	\vdash	\vdash	Page 4	\vdash		\vdash	Н	\vdash	łł	COM37	R36	R52	R27	R 43
l	D5	R37	1	\vdash	\vdash	\vdash	-	-		\vdash			\vdash				Н	łł	COM38	R37	R53	R26	R 42
l	D6	R38	1	\vdash	\vdash	\vdash	-	-		\vdash			Н		\vdash		Н	łł	COM39	R38	R54	R25	R 41
l	D7	R39	1	Н	\vdash	\vdash	-	-	-	\vdash			Н		\vdash	Н	Н	lł	COM40	R39	R55	R24	R 40
	D0	R40	1	\blacksquare														1 1	COM41	R40	R56	R23	R 39
l	D1	R41	1															1 1	COM42	R41	R57	R22	R 38
l	D2	R42	1	П														1 1	COM43	R42	R58	R21	R 37
0101	D3	R43	1									Page 5						ll	COM44	R43	R59	R20	R 36
""	D4	R44]									l age 5						l [COM45	R44	R60	R19	R 35
l	D5	R45]															ΙI	COM46	R45	R61	R18	R 34
l	D6	R46	1	\square											\Box	\Box		Ιĺ	COM47	R46	R62	R17	R 33
	D7	R47	1	$ldsymbol{ldsymbol{ldsymbol{eta}}}$											\Box	\Box		Ιĺ	COM48	R47	R63	R16	R 32
	D0	R48	1	\square														H	COM49	R48	R0	R15	R 31
l	D1	R49	1	Щ	\vdash	_	—	—	_	—	\vdash		\vdash		\vdash	\vdash	\vdash	H	COM50	R49	R1	R14	R 30
l	D2	R50	1	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash		\vdash	\vdash	\vdash	H	COM51	R50	R2	R13	R 29
0110	D3	R51	1	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash	Page 6	\vdash		\vdash	\vdash	\vdash	H	COM52	R51	R3	R12	R 28
l	D4	R52	ł	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash		\vdash	\vdash	\vdash	H	COM53	R52	R4 R5	R11	R 27
l	D5 D6	R53 R54	ł	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash		\vdash	\vdash	\vdash	H	COM54 COM55	R53 R54	R5 R6	R10 R9	R 26 R 25
l	D7	R54 R55	1	\vdash	\vdash	\vdash				\vdash	\vdash		\vdash		\vdash	Н	\vdash	H	COM56	R55	R7	R8	R 24
$\vdash \vdash$	D0	R56	1	\vdash	\vdash										\vdash	Н		H	COM57	R56	R8	R8 R7	R 23
l	D1	R56 R57	1	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash		\vdash		\vdash	Н	\vdash	H	COM57 COM58	R57	R8 R9	R/ R6	R 23
l	D2	R57	1	Н	\vdash	\vdash	\vdash	\vdash		\vdash			\vdash		\vdash	Н		H	COM59	R58	R10	R5	R 21
6444	D3	R59	1	Н	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash		\vdash	Н	\vdash	H	COM60	R59	R11	R4	R 20
0111	D4	R60	1	П	\vdash	\vdash	\vdash	\vdash		\vdash	Г	Page 7	П		П	П	П	I	COM61	R60	R12	R3	R 19
l	D5	R61	1	П	Г	\vdash				Г	Г		П		П	П	П	I	COM62	R61	R13	R2	R 18
l	D6	R62	1	П	Г					Г								l l	COM63	R62	R14	R1	R 17
	D7	R63	1																COM64	R63	R15	R0	R 16
1000	D0	R64]									Page 8						l	CIC	R64	R64	R64	R 64
				\equiv	_	Ξ	_	_		_	_												
			<u>0</u> X M	1 GEIS	2 GES	3GEES	4 GES	5GES	6СШО	7 GES	∞Сшо		® 1 G±s	ov—Gπo	OM-OTIO	1 ₩-СШО	CHS CHS						
				-	—	-	ON GEN	897 GES	え T GES	_	574-CILO		5 5 EU EU S	o 4GLLO	s ЭGEIS	2 GES	5 1GES						
			M	Ę	Š	E S	ĬĔ S	E S	Ę	Ē	Ē		Ş	5	5	5	5						

Example for memory mapping: let MX = 0, MY = 0, SL = 0, according to the data shown in the above table:

Page 0 SEG 1 (D7-D0): 0001 1111bPage 0 SEG 2 (D7-D0): 1100 1100b

RESET & POWER MANAGEMENT

TYPES OF RESET

UC1604c has two different types of Reset:

Power-ON-Reset and System-Reset .

Power-ON-Reset is performed right after V DD is connected to power. Power-On-Reset will first wait for about ~5mS,

System Reset can also be activated by connecting the RST pin to ground.

In the following discussions, Reset means System Reset .

The differences between pin reset and software reset are

Procedure (Restoring to default value)	Pin Reset	Software
Procedure (Nestoring to default value)	(Power On Reset)	Reset
Column Address : CA[7:0]=0	V	V
Page Address : PA[3:0]=0	V	V
RAM Address Control : AC[2:0]=001b	V	V
Temp. Compensation : TC[1:0]=00b	V	X
Power Control : PC[2:0]=110b	V	X
Scroll Line : SL[5:0]=0	V	X
Vbias Potentiometer : PM[7:0]=49h	V	X
Partial Display Control : LC[5]=0b	V	X
Frame Rate : LC[4:3]	V	X
All-Pixel-On : DC[1]=0b	V	X
Inverse Display : DC[0]=0b	V	X
Display Enable : DC[2]=0b	V	X
LCD Mapping Control : LC[2:1]=00b	V	X
Test Control	V	X
LCD Bias Ratio : BR[1:0]=11b	V	X
COM End : CEN[6:0]=63d	V	X
Partial Display Command	V	X
MTP Function Control	V	X

RESET STATUS

When UC1604c enters RESET sequence:

- ? Operation mode will be
- " Reset "
- ? All control registers are reset to default values. Refer to Control Registers for details of their default values.

OPERATION MODES

UC1604c has three operating modes (OM): Reset, Sleep, Normal.

For each mode, the related statuses are as below:

Mode	Reset	Sleep	Normal
OM 00		10	11
Host Interface	Active	Active	Active
Clock OFF		OFF	ON
LCD Drivers	OFF	OFF	ON
Charge Pump	OFF	OFF	ON
Draining Circuit	ON	ON	OFF

Table 4: Operating Modes

CHANGING OPERATION MODE

In addition to Power-ON-Reset, two commands will initiate OM transitions:

Set Display Enable , and System Reset .

When DC[2] is modified by Set Display Enable , OM will be updated automatically. There is no other action required to enter Sleep mode.

OM changes are synchronized with the edges of UC1604c internal clock. To ensure consistent system states, wait at least 10 $\,\mu$ S after issuing the Set Display Enable command or triggering System Reset .

Action	Mode	ОМ
RST_ pin pulled "L" Power ON reset	Reset 00	
Set Driver Enable to	0 Sleep	10
Set Driver Enable to '	1Normal	11

Table 5: OM changes

Both Reset mode and Sleep mode drain the charges stored in the external capacitors C BO, CB1, and C L. When entering Reset mode or Sleep mode, the display drivers will be disabled.

The difference between Sleep mode and Reset mode is that Reset mode clears all control registers and restores them to default values, while Sleep mode retains all the control registers values set by the user.

It is recommended to use Sleep Mode for Display OFF operations as UC1604c consumes very little energy in Sleep mode (typically under 5 μ A).

EXITING SLEEP MODE

UC1604c contains internal logic to check whether V LCD and VD are ready before releasing COM and SEG drivers from their idle states. When exiting Sleep or Reset mode, COM and SEG drivers will not be activated until UC1604c internal voltage sources are restored to their proper values.

POWER -UP SEQUENCE

FIGURE 11: Reference Power-Up Sequence

There 's no delay needed while turning ON V DD and V DD2/3, and either one can be turned ON first.

Figure 12: Power Off-On Sequence

ENTER /E XIT SLEEP MODE SEQUENCE

UC1604c enters Sleep mode from Display mode by issuing Set Display OFF command. To exit Sleep mode, Set Display ON.

Figure 13: Enter/Exit Sleep Mode Sequence

Power-Down Sequence

To prevent the charge stored in capacitor C L causing abnormal residue horizontal line on display when V DD is switched off, use Reset mode to enable the built-in charge draining circuit to discharge these external capacitors.

When internal V LCD is not used, UC1604c will NOT drain V LCD during RESET. System designers need to make sure external VLCD source is properly drained off before turning off V DD.

FIGURE 14: Reference Power-Down Sequence

MULTI-TIME PROGRAM NV MEMORY

OVERVIEW

MTP feature is available for UC1604c such that LCM makers can record an PM offset value in non-volatile memory cells, which can then be used to adjust the effective V LCD value, in order to achieve high level of consistency for LCM contrast across all shipments.

To accomplish this purpose, three operations are supported by UC1604c:

MTP-Erase, MTP-Program, MTP-Read.

MTP-Program requires an external power source supplied to TST4 pin. MTP allows to program at least 10 times and should be performed only by the LCM makers.

MTP-Read is facilitated by the internal DC-DC converter builtin on UC1604c, no external power source is required, and it is performed automatically after hardware RESET (power-ON and pin RESET).

OPERATION FOR THE SYSTEM USERS

For the MTP version of UC1604c, the content of the NV memory will be read automatically after the power-on and hardware pin RESET. There is no user intervention or external power source required. When set up properly, the VLCD will be fine tuned to achieve high level of consistency for the LCM contrast.

The MTP-READ is a relatively slow process and the time required can vary quite a bit. For a successful MTP-READ operation, the MS and WS bits in the Read Status commands will exhibit the following waveforms.

As illustrated above, the {MS, WS} will go through a {0,0}? {1,0}? {1,1}? {0,1} transition. When the {MS, WS}={0,1} state is reached, it means the LCM is ready to be turned on.

Although user can use Read Status command in a polling loop to make sure {MS, WS}={0, 1} before proceeding with the normal operations, however, it may be simpler to just issue Set Display Enable command every 0.5~2 second, repeatedly, together with other LCM optimization settings, such as BR, CEN, TC, etc.

The above "Periodical re-initializing" approach is also an effective safeguard against accidental display off events such as

? ESD strikes

? Mechanical shocks causing LCM connector to malfunction temporarily

HARDWARE VS . SOFTWARE RESET

The auto-MTP-READ is only performed for hardware RESET (power-ON and RST pin), but not for software RESET command. This enables the lcs to turn on display faster without the delay caused by MTP-READ.

It is recommended to use software RESET for normal operation control purpose and hardware RESET only during the event of power up and power down.

O PERATION FOR THE LCM MAKERS

Always ERASE the MTP NV memory cells, before starting the Write process.

MTP OPERATION FOR LCM MAKERS

1. High voltage supply and timer setting

In MTP Program operation, two different high voltages are needed. In chip design, one high voltage is generated by internal charge pump (V LCD), the other high voltage must be input from TST4 by external voltage source.

VLCD value is controlled by register MTP3 and MTP2. The default values of these two registers are appropriate for most applications.

External TST4 power source is required for MTP Program operation. MTP Programming speed depends on the TST4 voltage. Considering the ITO trace resistance in COG modules, it is recommended to program the MTP cells one at a time, so that the required 10V at TST4 can be maintained with proper consistency.

No external power source is required for MTP Erase and Read operation. For these MTP operations, TST4 should be open, or connected to V_{DD3} .

	V _{LCD}	TST4 (external input)
Program	MTP3 : FFh (12V)	10V (1mA per bit)
Erase	MTP3 : FFh (12V)	Floating or V DD3
Read	MTP2 : 64h (6.4V)	Floating or V DD3

Note: Do Erase before Program and program one bit at a time.

2. Read MTP status bits

With normal Get Status method (CD=0, W/R=1), MTP operation status can be monitored in the real time. There are 3 status bits (WS, MD, MS) in status register. MTP control circuit will read to verify if the operation (program, erase) success or not. If the operation succeeded, and current

operation will be ended with WS=1. If it failed, last operation will be automatically retried two more times. If it fails 3 times, WS will be set to 0 and the operation is aborted. MD is MTP ID, which is either 1 for MTP IC. No transition.

MTP status bits, TST4 & V LCD Waveform

3. MTP Cell Value Usage

There are 6 MTP cell bits. They are divided into two groups for different purpose.

MTP[5:0]: V LCD Trim

When PMO[5]=1: PM with trim = PM — PMO[4:0] When PMO[5]=0: PM with trim = PM + PMO[4:0]

?1999~2010 65x192 STN Controller-Driver

MTP COMMAND SEQUENCE SAMPLE CODES

The following tables are examples of command sequence for MTP Program and Erase operations. These are only to demonstrate some typical, generic "scenarios. Designers are encouraged to study related sections of the datasheet and find out what the best parameters and control sequences are for their specific design needs.

MTP operations (Erase, Program, Read) and Set Display ON is mutual exclusive. There is no harm done to the IC or the LCM if this is violated. However, the violating commands will be ignored.

Type Required: These items are required

<u>C</u>ustomized: These items are not necessary if customer parameters are the same as default <u>A</u>dvanced: We recommend new users to skip these commands and use default values.

Optional: These commands depend on what users want to do.

C/D The type of the interface cycle. It can be either Command (0) or Data (1)

W/R The direction of dataflow of the cycle. It can be either Write (0) or Read (1).

MTP Program Sample Code

Type	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip Action	Comments
R											Set RST pin Low	Wait 3uS after RST is Low
R											Set RST pin High	Wait 150mS
R	0 0	1010	0 0 1							1	Set Line Rate	Set LC[4: 3] 11b
R	0.0	1111	010							0	Set VMTP1 Potentiometer	Set MTP V LCD
R	00	0110	010							0		MTP2: 64h(6.4V)
R	0 0	1111	010							1	Set VMTP2 Potentiometer	Set MTP V LCD
R	0 0	1111	111							1		MTP3: FFh(12V)
R	0 0	1111	0 1 1							0	Set MTP Write Timer	Set MTP Timer
R	00	0000	0 0 1							0		MTP4: 02h(100mS)
R	0 0	1111	011							1	Set MTP Read Timer	Set MTP Timer
R	00	0000	0 0 1							0		MTP5: 02h(10mS)
R	0	0	1	0	1	1	1	0	0	1	Set MTP Write Mask	Set MTP Bit Mask
С	000	0000	0 0 0							1	МТРМ	Ex: To program MTPM[0] to be 1, set the value to 00000001b *
R												Apply TST4 voltage Program: 10V
R	0.0	1011	100							0	Set MTP Control	Set MTPC[긝 1
R	00			- 0 (0101					1		Set MTPC[2:⊕] 011
R	0	1	-	-	-	-	-	WS	-	MS	Get Status & PM	Check MTP Status until MS=0, WS=1
R												Remove TST4 voltage
R								=			V _{DD} 0V Power	OFF

^{*} It is recommended that users program one bit at a time.

?1999~2010 65x192 STN Controller-Driver

MTP Erase Sample Code

Туре	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R											Set RST pin Low	Wait 3uS after RST is Low
R											Set RST pin High	Wait 150mS
R 0		0 1	0100	0					1	1	Set Line Rate	Set LC[4:3] 11b
R 0		0 1	1110	1					0	0	Set VMTP1 Potentiometer	Set MTP V LCD
R 0		0 0	1100	1					0	0		MTP2: 64h(6.4V)
R 0		0 1	1110	1					0	1	Set VMTP2 Potentiometer	Set MTP V LCD
R 0		0 1	1111	1					1	1		MTP3: FFh(12V)
R 0		0 1	1110	1					1	0	Set MTP Write Timer	Set MTP Timer
R 0		0 0	0000	0					1	0		MTP4: 02h(100mS)
R 0		0 1	1110	1					1	1	Set MTP Read Timer	Set MTP Timer
R 0		0 0	0000	0					1	0		MTP5: 02h(10mS)
R	0	0	1	0	1	1	1	0	0	1	Set MTP Write Mask	Set MTP Bit Mask
C 0		0 0	0 0 0 1	1					1	1	MTPM1	Ex: To erase MTPM[3:0], set the value to 00001111b
R	0	0	1	0	1	1	1	0	0	0	Set MTP Control	Set MTPC[3]=1
R 0		0 -		- 0 (10				1	0		Set MTPC[2:⊕] 010
R	0	1						ws	-	MS	Get Status & PM	Check MTP Status until MS=0 WS=1
R								=			VDD OV Power	OFF

Note: It is recommended that users clear first all the bits to be programmed.

UC1604 C_A0.6

?1999~2010 65x192 STN Controller-Driver

SAMPLE COMMAND SEQUENCES FOR POWER MANAGEMENT

The following tables are examples of command sequence for power-up, power-down and display ON/OFF operations.

These are only to demonstrate some typičal, generic "scenarios. Designers are encouraged to study related

sections of the datasheet and find out what the best parameters and control sequences are for their specific design needs.

Type Required: These items are required

<u>C</u>ustomized: These items are not necessary if customer parameters are the same as default <u>A</u>dvanced: We recommend new users to skip these commands and use default values.

Optional: These commands depend on what users want to do.

C/D The type of the interface cycle. It can be either Command (0) or Data (1)

W/R The direction of data flow of the cycle. It can be either Write (0) or Read (1).

POWER -UP

Type	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R											Turn on V DD and V DD2/3	Wait until V DD, V DD2/3 are stable
R											Wait <= 3 mS	
R											Set RST pin Low	Wait 3 uS after RST is Low
R											Set RST pin High	Wait 150mS after RST is High
C 0		0 0	0100	1#						#	Set Temp. Compensation	Set up LCD format specific
R 0		0 1	1000) # #						#	Set LCD Mapping Control	parameters, MX, MY, etc.
A 0		0 1	0100	00						#	Set Frame Rate	Fine tune for power, flicker, contrast.
R 0		0 1	1101	0 #						#	Set LCD Bias Ratio	
R	0	0	1	0	0	0	0	0	0	1	Set V BIAS Potentiometer	LCD specific operating voltage setting
	0	0	#	#	#	#	#	#	#	#	Cot v Bine i otoritioniotor	
R	0	0	1	0	1	1	1	0	0	0	Set MTP function	Set MTP use & MTP read
	0	0	0	0	0	1	1	0	0	1		
R											Wait <= 50 mS	
	1	0	#	#	#	#	#	#	#	#		
	Write display RAM	Set up display image
	Trino display to tivi	Cot up diopiay image
	1	0	#	#	#	#	#	#	#	#		
R 0		0 1	0101	11						1	Set Display Enable	

POWER -DOWN

Туре	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R											Set RST pin Low	Wait 3 uS after RST is Low
R											Set RST pin High	
R											Draining capacitor	Wait ~3mS before V _{DD} OFF

DISPLAY -OFF

Type	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R 0		0 1	0101	11						0	Set Display Disable	
C 1	1	0 0	#	# #		Set up display image (Image update is optional. Data in the RAM is retained through the SLEEP state.)						
R 0		0 1	0101	11						1	Set Display Enable	

ESD CONSIDERATION

UC1600 series products usually are provided in bare die format to customers. This makes the product particularly sensitive to ESD damage during handling and manufacturing process. It is, therefore, highly recommended that LCM makers strictly follow the "JESD 625-A Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices "when manufacturing LCM.

The following pins in UC1604c require special

" ESD Sensitivity " consideration	n ir	n particular:	
-----------------------------------	------	---------------	--

	Test Mode	Machine	e Mode	Human Body Mode			
Pins		V_{DD}	V _{SS}	V _{DD}	V _{SS}		
LCD [Driver	150V	150V	1.5KV	1.5KV		
LCM Digital	Interface	300V 300V		3.0KV	3.0KV		
	TST1/2/4	300V 250V		3.0KV	3.0KV		
LCM HV	Св pins	300V 300V		3.0KV	3.0KV		
Interface	VLCDIN	200V 200V		3.0KV	3.0KV		
VLCDOUT		300V 300V		3.0KV	3.0KV		
PWR/	GND -		300V	-	3.0KV		

According to UltraChip 's Mass Production experiences, the ESD tolerance conditions are believed to be very stable and can produce high yield in multiple customer sites. However, special care is still required during handling and manufacturing process to avoid unnecessary yield loss due to ESD damages.

ABSOLUTE MAXIMUM RATINGS

In accordance with IEC134 – notes 1, 2 and 3.

Symbol	Parameter	Min.	Max.	Unit
Vdd	Logic Supply voltage	-0.3	+4.0	V
V DD2	LCD Generator Supply voltage	-0.3	+4.0	V
V DD3	Analog Circuit Supply voltage	-0.3	+4.0	V
V dd2/3-V dd	Voltage difference between V DD and V DD2/3		1.2	V
VLCD	LCD Generated voltage	-0.3	+13.2	V
V IN / V OUT Any	input/output	-0.4 V	DD + 0.3	V
Topr Operating	temperature range	-30	+85	°C
Tstr Storage	temperature	-55 +125		°C

Notes

- 1. V $_{DD}$ is based on V $_{SS} = 0V$
- 2. Stress values listed above may cause permanent damages to the device.

UC1604 C_A0.6

?1999~2010 65x192 STN Controller-Driver

SPECIFICATIONS

DC CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Supply for digital circuit		1.65	1.8~3.3	3.6	V
V DD2/3	Supply for bias & pump		2.6	2.7~3.3	3.6	V
VLCD	Charge pump output	V _{DD2/3} 2.4V, 25 ^O C	4.8~11.	5	11.5	V
VD	LCD data voltage	VDD2/3 2.4V, 25 °C	0.80 1.32			V
VIL	Input logic LOW				0.1V dd V	
Vıн	Input logic HIGH		0.9V dd			V
Vol	Output logic LOW				0.2V DD V	
Vон	Output logic HIGH		0.8V DD			V
lı∟	Input leakage current				1.5	μA
IsB Stand	dby current	$V_{DD} = V_{DD2/3} = 3.3V,$ $T_{emp} = 85$ °C			50	μΑ
CIN Input	capacitance			5	10	PF
Cout Out	out capacitance			5	10	PF
Ro(SEG)	SEG output impedance	VLCD = 11.5V		2000	3000	?
R 0(СОМ)	COM output impedance	VLCD = 11.5V		2000	3000	?
FFR	Average Frame Rate	LC[4:3] = 01b	-10%	95	+10%	Hz

POWER CONSUMPTION

 $\begin{array}{lll} \text{VDD} = 2.7\text{V}, & \text{Bias Ratio} = 11\text{b}, & \text{PM} = 73, \\ \text{V}_{\text{LCD}} = 8.54\text{V} & \text{Frame Rate} = 01\text{b}, & \text{PMO} = 00\text{H}, \\ \text{Mux Rate} = 65, & \text{Bus mode} = 6800, & \text{C}_{\text{B}} = 2.2 \ \mu\text{F}, \\ \end{array}$

Temperature = 25 $^{\circ}$ C, C $_{\perp}$ = 330nF, All outputs are open circuit.

<u> </u>		·	· .
Display Pattern	Conditions	Тур.	Max.
All-ON	Bus = idle	175	(TBD)
All-OFF	Bus = idle	175	(TBD)
2-pixel checker	Bus = idle	196	(TBD)
-	Bus = idle (standby current)	-	5

AC CHARACTERISTICS

FIGURE 15: Parallel Bus Timing Characteristics (for 8080 MCU)

Symbol	Signal	Description	Condition	Min.	Max.	Unit
$(2.5V V_{DD} < 3.3V,$	Ta= - 30 to	+86)		(Read / Write)		
t AS80 t _{AH80}	CD	Address setup time Address hold time		0 10	-	nS
tCSSA80 tCSH80	CS1, CS0	Chip select setup time Chip select hold time		5 5	– nS	
tCY80 tPWR80 / tPWW80 tHPW80	WR0, WR1	System Cycle time Pulse width High pulse width		120 / 80 60 / 40 60 / 40	-	nS
t DS80 t DH80	D7~D0 (Write)	Data setup time Data hold time		30 0	– nS	
tACC80 tod80	D7~D0 (Read)	Read access time Output disable time	C∟= 100pF	– 15	60 30	nS
(1.65V V DD < 2.5V	′, Ta= - 30	to +86)		(Read / Write)		
t AS80 t AH80	CD	Address setup time Address hold time		0 10	-	nS
tcssa80 tcsh80	CS1, CS0	Chip select setup time Chip select hold time		5 5	– nS	
tCY80 tPWR80 / tPWW80 tHPW80	WR0, WR1	System cycle time Pulse width High pulse width		240 / 160 120 / 80 120 / 80	_	nS
t DS80	D7~D0 (Write)	Data setup time Data hold time		60 0	– nS	
tACC80 tOD80	D7~D0 (Read)	Read access time Output disable time	C _L = 100pF	– 15	60 30	nS

Symbol	Signal	Description	Condition	Min.	Max.	Unit		
(2.5V V DD < 3.3V,	$(2.5V \ V DD < 3.3V, Ta = -30 \text{ to } +8 \bigcirc)$ (Read / Write)							
t AS68	CD	Address setup time		0	_	nS		
t AH68	0.2	Address hold time		10				
tcssa68	CS1, CS0	Chip select setup time		5	– nS			
tCSH68	001, 000	Chip select hold time		5	110			
t CY68		System cycle time		120 / 80				
tpwr68 / t pww68	WR1	Pulse width		60 / 40	-	nS		
t HPW68		High pulse width		60 / 40				
t DS68	D7~D0	Data setup time		30	~C			
t DH68	(Write)	Data hold time		0	– nS			
tacc68	D7~D0	Read access time	O 400mF	-	60	-0		
t OD68	(Read)	Output disable time	C _L = 100pF	15	30	nS		
(1.65V V DD < 2.5V	∕, Ta= − 30	o +86)		(Read / Write)				
t AS68	CD	Address setup time		0		2		
t AH68	CD	Address hold time		10	_	nS		
t _{CSSA68}	004 000	Chip select setup time		5	0			
tcsH68	CS1, CS0	Chip select hold time		5	– nS			
tCY68		System cycle time		240 / 160				
tpwR68 / t pww68	WR1	Pulse width		120 / 80	-	nS		
t _{HPW68}		High pulse width		120 / 80				
† DS68	D7~D0	Data setup time		60				
t _{DH68}	(Write)	Data hold time		0	– nS			
tACC68	D7~D0	Read access time	0 400.5	_	60	. 0		
tod68	(Read)	Output disable time	CL = 100pF	15	30	nS		

FIGURE 17: Serial Bus Timing Characteristics (for S8)

Symbol	Signal	Description	Condition	Min.	Max.	Unit
(2.5V V DD < 3.3V,	Ta= - 30 to	+8 ©)		(Read / Write)		
t ASS8	CD	Address setup time		0		nS
t AHS8	CD	Address hold time		10		113
tcssas8	CS1, CS0	Chip select setup time		5	– nS	
tcshs8	031, 030	Chip select hold time		5	- 113	
t _{CYS8}		System Cycle time		100 / 30		
t LPWS8	SCK	Low pulse width		50 / 15	-	nS
thpws8		High pulse width		50 / 15		
t DSS8	SDA	Data setup time		12	– nS	
t DHS8	(Write)	Data hold time		0	- 113	
$(1.65V V_{DD} < 2.5V)$, Ta= - 30	to +8 6)		(Read / Write)		
t ASS8	0.0	Address setup time		0		
t AHS8	CD	Address hold time		10		nS
tCSSAS8	004 000	Chip select setup time		10	"C	
tcsHs8	CS1, CS0	Chip select hold time		10	– nS	
tcys8		System Cycle time		130 / 60	-	nS
tlpws8	SCK	Low pulse width		65 / 30	_	nS
tHPWS8		High pulse width		65 / 30	_	nS
t _{DSS8}	SDA	Data setup time		24		
t DHS8	(Write)	Data hold time		0	– nS	

FIGURE 18: Serial Bus Timing Characteristics (for S9)

Symbol	Signal	Description	Condition	Min.	Max.	Unit
(2.5V V DD < 3.3V,	(2.5V V DD < 3.3V, Ta= − 30 to +85) (Read / Write)					
tCSSAS9	CS1, CS0	Chip select setup time		5		nS
tcsHS9	031, 030	Chip select hold time		5	_	110
tCYS9		System cycle time		100 / 30		
tLPWS9	SCK	Low pulse width		50 / 15	– nS	
thpws9		High pulse width		50 / 15		
tDSS9	SDA	Data setup time		12		20
t DHS9	(Write)	Data hold time		0	I	nS
(1.65V V DD < 2.5V	, Ta= - 30	o +86)		(Read / Write)		
tcssas9	004 000	Chin a class action times		10		C
tcshs9	CS1, CS0	Chip select setup time		10	_	nS
tCYS9		System cycle time		130 / 60		
tLPWS9	SCK	Low pulse width		50 / 30	- nS	
tHPWS9		High pulse width		50 / 30		
tDSS9	SDA	Data setup time		24		20
t DHS9	(Write)	Data hold time		0	_	nS

FIGURE 19: Serial bus timing characteristics (for I ²C)

$(2.5V V_{DD} < 3.3V, Ta = -30 to +85C)$

Symbol	Signal	Description	Condition	Min.	Max.	Unit
(2.5V V DD < 3.3V,	Ta= - 30 to	+8 ©)		(Read / Write)		
t CYI2C		SCK cycle time		580 / 275		
t _{HPWI2C}	SCK	High pulse width		290 / 110	-	nS
tLPWI2C		Low pulse width		290 / 165		
tsstai2c		Setup time - START		28		
thstai2c	COK	Hold time - START		55		
tsdai2C	SCK SDA	Setup time – Data		28	– nS	
tHDAI2C	ODA	Hold time – Data		11		
tsstoi2C		Setup time - STOP		28		
tbuf	SDA	Bus Free time between STOP and START		165	-	nS
(1.65V V _{DD} < 2.5V	/, Ta= - 30	to +86)		(Read / Write)		
tcYI2C		SCK cycle time		750 / 330		
t _{HPWI2C}	SCK	High pulse width		375 / 130	-	nS
t LPWI2C		Low pulse width		375 / 200		
tsstai2C		Setup time - START		28		
thstai2C	SCK	Hold time - START		65		
tSDAI2C	SDA	Setup time – Data		55	– nS	
t _{HDAI2C}		Hold time – Data		11		
tsstoi2c		Setup time - STOP		28		
tbur	SDA	Bus Free Time between STOP and START		220	-	nS

FIGURE 20: Reset Characteristics

 $(1.65V V_{DD} < 3.3V, Ta = -30 \text{ to } + 85)$

Symbol	Signal	Description	Condition	Min.	Max.	Unit
trw	RST	Reset low pulse width		3	_	μS
tr	RST, Internal Status	Reset to Internal Status pulse delay		6	_	mS

Note:

For each mode, the signal 's rising and fall

's rising and falling times (tr, tf) are stipulated to be equal to or less than 15nS each.

UC1604 C_A0.6

?1999~2010 65x192 STN Controller-Driver

PHYSICAL DIMENSIONS

Circuit / Bump View:

Die Size: 7480 μ M x 652 μ **M** 40 μ M

Die Thickness: 400 μ M± 20 μ M

Die TTV: $(D_{MAX} - D_{IN})$ within die 2 μ M

Hardness: 90 Hv ± 25 Hv

Bump Height: 15 μ M± 3 μ M

 $(H_{MAX} - M_{IN})$ within die 2 μ M

Bump Size: 15.6 μM x 130 μM

Bump Pitch: 27.6 μ M Bump Area: 2028 μ M Coordinate origin: Chip center

Pad reference: Pad center

ALIGNMENT MARK INFORMATION

Shape of the alignment mark:

Coordinates:

	D-Left Mark (+)		D-Right Mark (+)	
Point	X	Y	X	Υ
1 -3489.5		-245.5 3454	.5 -245.5	
2 -3474.5		-280.5 3469	.5 -280.5	
3 -3499.5		-255.5 3444	.5 -255.5	
4 -3464.5		-270.5 3479	.5 -270.5	
C -3482		-263	3462	-263

Top Metal and Passivation:

?1999~2010 65x192 STN Controller-Driver

PAD COORDINATES

# Pad	X	Υ	W	Н
1 DUMMY	-3676	-255	50 73	
2 DUMMY	-3611	-255	50 73	
3 DUMMY	-3546	-255	50 73	
4 DUMMY	-3414.75	-255	50 73	
5 DUMMY	-3349.75	-255	50 73	
6 CS0	-3284.75	-255	50	73
7 CS1	-3219.75	-255	50	73
8 VDDX	-3154.75	-255	50	73
9 RSTB	-3089.75	-255	50	73
10 CD	-3024.75	-255	50	73
11 WR0	-2959.75	-255	50	73
12 VDDX	-2894.75	-255	50	73
13 WR1	-2829.75	-255	50	73
14 D0	-2761.35	-255	50	73
15 D1	-2674.65	-255	50	73
16 D2	-2609.65	-255	50	73
17 D3	-2522.95	-255	50	73
18 D4	-2457.95	-255	50	73
19 D5	-2371.25	-255	50	73
20 D6	-2306.25	-255	50	73
21 VDDX	-2241.25	-255	50	73
22 D7	-2176.25	-255	50	73
23 BM0	-2107.85	-255	50	73
24 VDDX	-2042.85	-255	50	73
25 BM1	-1977.85	-255	50	73
26 ID	-1912.85	-255	50	73
27 VDDX	-1847.85	-255	50	73
28 POR	-1782.85	-255	50	73
29 vdd	-1717	-255	50	73
30 DUMMY -1627.5		-255	50	73
31 DUMMY -1562.5		-255	50	73
32 DUMMY -1497.5		-255	50	73
33 vdd	-1408	-255	50	73
34 vdd	-1343	-255	50	73
35 vdd	-1278	-255	50	73
36 vdd	-1213	-255	50	73
37 vdd2 -1126.3		-255	50	73
38 vdd2 -1061.3		-255	50	73
39 vdd2	-996.3	-255	50	73
40 vdd2	-931.3	-255	50	73
41 DUMMY	-849.3	-255	50	73
42 DUMMY	-784.3	-255	50	73
43 vdd2	-702.3	-255	50	73
44 vdd2	-637.3	-255	50	73
45 vdd2	-572.3	-255	50	73
46 vdd3	-507.3	-255	50	73
47 vdd3	-442.3	-255	50	73
48 vdd3	-377.3	-255	50	73
49 vdd3	-312.3	-255	50	73
50 vdd3	-247.3	-255	50	73
51 DUMMY -178.15		-255	50	73
52 DUMMY -113.15		-255	50	73
53 DUMMY	-48.15	-255	50	73
20 2 2	10110	_50		. 0

#	Pad	Х	Υ	W	Н
54	vss 21		-255	50	73
55	vss 86		-255	50	73
56	vss 151		-255	50	73
57	vss 216		-255	50	73
58	vss 281		-255	50	73
59	vss 346		-255	50	73
60	vss2 411		-255	50	73
61	vss2 476		-255	50	73
62	vss2 541		-255	50	73
63	vss2 606		-255	50	73
64	vss2 671		-255	50	73
65	vss2 736		-255	50	73
66	DUMMY 801		-255	50	73
67	TST4 903		-255	50	73
68	TST4 968		-255	50	73
69	TST4 1044		-255	50	73
70	TST4 1109		-255	50	73
71	TST2 1174		-255	50	73
72	TST2 1275.4	5	-255	50	73
73	VB0- 1395.3	•	-255	50	73
74	VB0- 1460.3	5	-255	50	73
75	VB0- 1535.5		-255	50	73
76	VB0- 1600.5		-255	50	73
77	VB0+ 1665.5		-255	50	73
78	VB0+ 1730.5		-255	50	73
79	VB0+ 1805.6	5	-255	50	73
80	VB0+ 1870.6	5	-255	50	73
81	VB1- 1952.6	5	-255	50	73
82	VB1- 2017.6	5	-255	50	73
83	VB1- 2092.8		-255	50	73
84	VB1- 2157.8		-255	50	73
85	VB1+ 2222.8		-255	50	73
86	VB1+ 2287.8		-255	50	73
87	VB1+ 2362.9	5	-255	50	73
88	VB1+ 2427.9	5	-255	50	73
89	VLCDIN 2511.	95	-255	50	73
90	VLCDIN 2576.	95	-255	50	73
91	VLCDIN 2673.	95	-255	50	73
92	VLCDIN 2738.	95	-255	50	73
93	VLCDOUT 2803	.95	-255	50	73
94	VLCDOUT 2868	.95	-255	50	73
95	VLCDOUT 2944	.95	-255	50	73
96	VLCDOUT 3009	.95	-255	50	73
97	DUMMY 3074.	95	-255	50	73
98	DUMMY 3139.	95	-255	50	73
99	DUMMY 3204.	95	-255	50	73
100	DUMMY 3269.	95	-255	50	73
101	DUMMY 3334.	95	-255	50	73
102	DUMMY 3399.	95	-255	50	73
103	DUMMY 3546		-255	50	73
104	DUMMY 3611		-255	50	73
105	DUMMY 3676		-255	50	73
106	DUMMY 3694.	2	225.5	15.6	130

?1999~2010 65x192 STN Controller-Driver

# Pad	X	Υ	W	Н
107 SEG192	3666.6	225.5	15.6	130
108 SEG190	3639	225.5	15.6	130
109 SEG188	3611.4	225.5	15.6	130
110 SEG186	3583.8	225.5	15.6	130
111 SEG184	3556.2	225.5	15.6	130
112 SEG182	3528.6	225.5	15.6	130
113 SEG180	3501	225.5	15.6	130
114 SEG178	3473.4	225.5	15.6	130
115 SEG176	3445.8	225.5	15.6	130
116 SEG174	3418.2	225.5	15.6	130
117 SEG172	3390.6	225.5	15.6	130
118 SEG170	3363	225.5	15.6	130
119 SEG168	3335.4	225.5	15.6	130
120 SEG166	3307.8	225.5	15.6	130
121 SEG164	3280.2	225.5	15.6	130
122 SEG162	3252.6	225.5	15.6	130
123 SEG160	3225	225.5	15.6	130
124 SEG158	3197.4	225.5	15.6	130
125 SEG156	3169.8	225.5	15.6	130
126 SEG154	3142.2	225.5	15.6	130
127 SEG152	3114.6	225.5	15.6	130
128 SEG150	3087	225.5	15.6	130
129 SEG148	3059.4	225.5	15.6	130
130 SEG146	3031.8	225.5	15.6	130
131 SEG144	3004.2	225.5	15.6	130
132 SEG142	2976.6	225.5	15.6	130
133 SEG140	2949	225.5	15.6	130
134 SEG138	2921.4	225.5	15.6	130
135 SEG136	2893.8	225.5	15.6	130
136 SEG134	2866.2	225.5	15.6	130
137 SEG132	2838.6	225.5	15.6	130
138 SEG130	2811	225.5	15.6	130
139 SEG128	2783.4	225.5	15.6	130
140 SEG126	2755.8	225.5	15.6	130
141 SEG124	2728.2	225.5	15.6	130
142 SEG122	2700.6	225.5	15.6	130
143 SEG120	2673	225.5	15.6	130
144 SEG118	2645.4	225.5	15.6	130
145 SEG116	2617.8	225.5	15.6	130
146 SEG114	2590.2	225.5	15.6	130
147 SEG112	2562.6	225.5	15.6	130
148 SEG110	2535	225.5	15.6	130
149 SEG108	2507.4	225.5	15.6	130
150 SEG106	2479.8	225.5	15.6	130
151 SEG104	2452.2	225.5	15.6	130
152 SEG102	2424.6	225.5	15.6	130
153 SEG100	2397	225.5	15.6	130
154 SEG98	2369.4	225.5	15.6	130
155 SEG96	2341.8	225.5	15.6	130
156 SEG94	2314.2	225.5	15.6	130
157 SEG92	2286.6	225.5	15.6	130
158 SEG90	2259	225.5	15.6	130
159 SEG88	2231.4	225.5	15.6	130
160 SEG86	2203.8	225.5	15.6	130

#	Pad	X	Υ	W	Н
161	SEG84 2176.2	2	225.5	15.6	130
162	SEG82 2148.6		225.5	15.6	130
163	SEG80 2121		225.5	15.6	130
164	SEG78 2093.4		225.5	15.6	130
165	SEG76 2065.8	3	225.5	15.6	130
166	SEG74 2038.2	2	225.5	15.6	130
167	SEG72 2010.6)	225.5	15.6	130
168	SEG70 1983		225.5	15.6	130
169	SEG68 1955.4		225.5	15.6	130
170	SEG66 1927.8	3	225.5	15.6	130
171	SEG64 1900.2	2	225.5	15.6	130
172	SEG62 1872.6)	225.5	15.6	130
173	SEG60 1845		225.5	15.6	130
174	SEG58 1817.4		225.5	15.6	130
175	SEG56 1789.8	3	225.5	15.6	130
176	SEG54 1762.2	2	225.5	15.6	130
177	SEG52 1734.6)	225.5	15.6	130
178	SEG50 1707		225.5	15.6	130
179	SEG48 1679.4		225.5	15.6	130
180	SEG46 1651.8	}	225.5	15.6	130
181	SEG44 1624.2	2	225.5	15.6	130
182	SEG42 1596.6	5	225.5	15.6	130
183	SEG40 1569		225.5	15.6	130
184	SEG38 1541.4		225.5	15.6	130
185	SEG36 1513.8	}	225.5	15.6	130
186	SEG34 1486.2	<u> </u>	225.5	15.6	130
187	SEG32 1458.6)	225.5	15.6	130
188	SEG30 1431		225.5	15.6	130
189	SEG28 1403.4		225.5	15.6	130
190	SEG26 1375.8	}	225.5	15.6	130
191	SEG24 1348.2	2	225.5	15.6	130
192	SEG22 1320.6)	225.5	15.6	130
193	SEG20 1293		225.5	15.6	130
194	SEG18 1265.4		225.5	15.6	130
195	SEG16 1237.8	}	225.5	15.6	130
196	SEG14 1210.2	2	225.5	15.6	130
197	SEG12 1182.6	}	225.5	15.6	130
198	SEG10 1155		225.5	15.6	130
199	SEG8 1127.4		225.5	15.6	130
200	SEG6 1099.8		225.5	15.6	130
201	SEG4 1072.2		225.5	15.6	130
202	SEG2 1044.6		225.5	15.6	130
203	COMS 898.5		225.5	15.6	130
204	COM64 870.9		225.5	15.6	130
205	COM63 843.3		225.5	15.6	130
206	COM62 815.7		225.5	15.6	130
207	COM61 788.1		225.5	15.6	130
208	COM60 760.5		225.5	15.6	130
209	COM59 732.9		225.5	15.6	130
210	COM58 705.3		225.5	15.6	130
211	COM57 677.7		225.5	15.6	130
212	COM56 650.1		225.5	15.6	130
213	COM55 622.5		225.5	15.6	130
214	COM54 594.9		225.5	15.6	130

?1999~2010 65x192 STN Controller-Driver

# Pad	X	Υ	W	Н
215 COM53	567.3	225.5	15.6	130
216 COM52	539.7	225.5	15.6	130
217 QOM51	512.1	225.5	15.6	130
218 COM50	484.5	225.5	15.6	130
219 COM49	456.9	225.5	15.6	130
220 COM48	429.3	225.5	15.6	130
221 COM47	401.7	225.5	15.6	130
222 COM46	374.1	225.5	15.6	130
223 COM45	346.5	225.5	15.6	130
224 COM44	318.9	225.5	15.6	130
225 COM43	291.3	225.5	15.6	130
				130
226 COM42	263.7	225.5	15.6	
227 COM41	236.1	225.5 225.5	15.6	130
228 COM40	208.5		15.6	130
229 COM39	180.9	225.5	15.6	130
230 COM38	153.3	225.5	15.6	130
231 COM37	125.7	225.5	15.6	130
232 COM36	98.1	225.5	15.6	130
233 COM35	70.5	225.5	15.6	130
234 COM34	42.9	225.5	15.6	130
235 COM33	15.3	225.5	15.6	130
236 COM32	-12.3	225.5	15.6	130
237 COM31	-39.9	225.5	15.6	130
238 COM30	-67.5	225.5	15.6	130
239 COM29	-95.1	225.5	15.6	130
240 COM28	-122.7	225.5	15.6	130
241 COM27	-150.3	225.5	15.6	130
242 COM26	-177.9	225.5	15.6	130
243 COM25	-205.5	225.5	15.6	130
244 COM24	-233.1	225.5	15.6	130
245 COM23	-260.7	225.5	15.6	130
246 COM22	-288.3	225.5	15.6	130
247 COM21	-315.9	225.5	15.6	130
248 COM20	-343.5	225.5	15.6	130
249 COM19	-371.1	225.5	15.6	130
250 COM18	-398.7	225.5	15.6	130
251 COM17	-426.3	225.5	15.6	130
252 COM16	-453.9	225.5	15.6	130
253 COM15	-481.5	225.5	15.6	130
254 COM14	-509.1	225.5	15.6	130
255 COM13	-536.7	225.5	15.6	130
256 COM12	-564.3	225.5	15.6	130
257 COM11	-591.9	225.5	15.6	130
258 COM10	-619.5	225.5	15.6	130
259 COM9	-647.1	225.5	15.6	130
260 COM8	-674.7	225.5	15.6	130
261 COM7	-702.3	225.5	15.6	130
262 COM6	-729.9	225.5	15.6	130
263 COM5	-757.5	225.5	15.6	130
264 COM4	-785.1	225.5	15.6	130
265 COM3	-812.7	225.5	15.6	130
266 COM2	-840.3	225.5	15.6	130
267 COM1	-867.9	225.5	15.6	130
268 COMS	-895.5	225.5	15.6	130
200 900	1 000.0		. 5.0	.55

#	Pad	X	Υ	W	Н
269	SEG1 -1045.1		225.5	15.6	130
270	SEG3 -1072.	/	225.5	15.6	130
271	SEG5 -1100.	3	225.5	15.6	130
272	SEG7 -1127.	9	225.5	15.6	130
273	SEG9 -1155.	5	225.5	15.6	130
274	SEG11 -1183.	1	225.5	15.6	130
275	SEG13 -1210.	7	225.5	15.6	130
276	SEG15 -1238.	3	225.5	15.6	130
277	SEG17 -1265.	9	225.5	15.6	130
278	SEG19 -1293.	5	225.5	15.6	130
279	SEG21 -1321.	1	225.5	15.6	130
280	SEG23 -1348.	7	225.5	15.6	130
281	SEG25 -1376.	3	225.5	15.6	130
282	SEG27 -1403.	9	225.5	15.6	130
283	SEG29 -1431.	5	225.5	15.6	130
284	SEG31 -1459.	1	225.5	15.6	130
285	SEG33 -1486.	7	225.5	15.6	130
286	SEG35 -1514.	3	225.5	15.6	130
287	SEG37 -1541.	9	225.5	15.6	130
288	SEG39 -1569.	5	225.5	15.6	130
289	SEG41 -1597.	1	225.5	15.6	130
290	SEG43 -1624.	7	225.5	15.6	130
291	SEG45 -1652.	3	225.5	15.6	130
292	SEG47 -1679.	9	225.5	15.6	130
293	SEG49 -1707.	5	225.5	15.6	130
294	SEG51 -1735.	1	225.5	15.6	130
295	SEG53 -1762.	7	225.5	15.6	130
296	SEG55 -1790.	3	225.5	15.6	130
297	SEG57 -1817.	9	225.5	15.6	130
298	SEG59 -1845.	5	225.5	15.6	130
299	SEG61 -1873.	1	225.5	15.6	130
300	SEG63 -1900.	7	225.5	15.6	130
301	SEG65 -1928.	3	225.5	15.6	130
302	SEG67 -1955.	9	225.5	15.6	130
303	SEG69 -1983.	5	225.5	15.6	130
304	SEG71 -2011.	1	225.5	15.6	130
305	SEG73 -2038.	7	225.5	15.6	130
306	SEG75 -2066.	3	225.5	15.6	130
307	SEG77 -2093.	9	225.5	15.6	130
308	SEG79 -2121.		225.5	15.6	130
309	SEG81 -2149.	1	225.5	15.6	130
310	SEG83 -2176.		225.5	15.6	130
311	SEG85 -2204.		225.5	15.6	130
312	SEG87 -2231.	9	225.5	15.6	130
313	SEG89 -2259.	5	225.5	15.6	130
314	SEG91 -2287.		225.5	15.6	130
315	SEG93 -2314.		225.5	15.6	130
316	SEG95 -2342.		225.5	15.6	130
317	SEG97 -2369.		225.5	15.6	130
318	SEG99 -2397.		225.5	15.6	130
319	SEG101 -2425		225.5	15.6	130
320	SEG103 -2452		225.5	15.6	130
321	SEG105 -2480		225.5	15.6	130
322	SEG107 -2507	.9	225.5	15.6	130

?1999~2010

65x192 STN Controller-Driver

#	Pad	X	Y	W	Н
323 S	EG109	-2535.5	225.5	15.6	130
324 S	EG111	-2563.1	225.5	15.6	130
325 S	EG113	-2590.7	225.5	15.6	130
326 S	EG115	-2618.3	225.5	15.6	130
327 S	EG117	-2645.9	225.5	15.6	130
328 S	EG119	-2673.5	225.5	15.6	130
329 S	EG121	-2701.1	225.5	15.6	130
330 S	EG123	-2728.7	225.5	15.6	130
331 S	EG125	-2756.3	225.5	15.6	130
332 S	EG127	-2783.9	225.5	15.6	130
333 S	EG129	-2811.5	225.5	15.6	130
334 S	EG131	-2839.1	225.5	15.6	130
335 S	EG133	-2866.7	225.5	15.6	130
336 S	EG135	-2894.3	225.5	15.6	130
337 S	EG137	-2921.9	225.5	15.6	130
338 S	EG139	-2949.5	225.5	15.6	130
339 S	EG141	-2977.1	225.5	15.6	130
340 S	EG143	-3004.7	225.5	15.6	130
341 S	EG145	-3032.3	225.5	15.6	130
342 S	EG147	-3059.9	225.5	15.6	130
343 S	EG149	-3087.5	225.5	15.6	130
344 S	EG151	-3115.1	225.5	15.6	130
345 S	EG153	-3142.7	225.5	15.6	130
346 S	EG155	-3170.3	225.5	15.6	130
347 S	EG157	-3197.9	225.5	15.6	130
348 S	EG159	-3225.5	225.5	15.6	130
349 S	EG161	-3253.1	225.5	15.6	130
350 S	EG163	-3280.7	225.5	15.6	130
351 S	EG165	-3308.3	225.5	15.6	130
352 S	EG167	-3335.9	225.5	15.6	130
353 S	EG169	-3363.5	225.5	15.6	130
354 S	EG171	-3391.1	225.5	15.6	130
355 S	EG173	-3418.7	225.5	15.6	130
356 S	EG175	-3446.3	225.5	15.6	130
357 S	EG177	-3473.9	225.5	15.6	130
358 S	EG179	-3501.5	225.5	15.6	130
359 S	EG181	-3529.1	225.5	15.6	130
360 S	EG183	-3556.7	225.5	15.6	130
$\overline{}$	EG185	-3584.3	225.5	15.6	130
\vdash	EG187	-3611.9	225.5	15.6	130
363 S	EG189	-3639.5	225.5	15.6	130
	EG191	-3667.1	225.5	15.6	130
365 D	UMMY	-3694.7	225.5	15.6	130

TRAY INFORMATION

Z	-< :	×	₹	Ψ.	ТРу	Ų	TP×	Dχ	М	Τ	₹2	Ś	
OI C	0±0.05 €2	0.78±0.05 (31)	8.90±0.05 (350)	2.04±0.05 (80)	35.60±0.10(1402)	7.55±0.05 (297)	42.84±0.10(1687)	3,93±0,05 (155)	2,20±0.05 (87)	3.95±0.10 056>	45.70±0.10 (1799)	50.70±0.10 (1996)	Spec

- ISTANCE: 10 e 7~10 e 11 phm/sq S WITH ESD PROTECTION, COLOR: BLACK D FOREIGN MATERIAL(OIL) DN SURFACE OF GH IIP TRAY SHOULD CLEAN THE SURFACE OF ON MAX. 0.1mm

REVISION HISTORY

Revision	Contents	Date
0.1	N/A	Sep. 3, 2009
	(1) V DD 2/3 (Typical) range is adjusted: 2.5V~3.3V ? 2.7V~3.3V V DD 2/3 (Minimum) is adjusted: 2.4V ? 2.6V	Jul. 22, 2010
	(2) The drawing of COG Layout presents.	
0.6	(3) The sample codes for Power Up are updated.	
	(4) Data of ESD consideration present.	
	(5) V IH (Min.) is adjusted: 0.8V DD ? 0.9V DD	
	V ⊩ (Max) is adjusted: 0.2V DD ? 0.1V DD]
	(6) The Power Consumption data present.]
	(7) The tray drawing presents.	