МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формирования исполнительного адреса.

Студент гр. 0383	 Куликов А. В.
Преподаватель	Ефремов М. А.

Санкт-Петербург

Цель работы.

Изучить режимы адресации и формирования исполнительного адреса.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Выполнение работы.

Bap. 9

vec1 31,32,33,34,38,37,36,35

vec2 50,60,-50,-60,70,80,-70,-80

matr -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2

- 1. Программа была протранслирована со следующими ошибками:
 - 1. mov mem3, [bx] lab2.asm(42): error A2052: Improper operand type. Попытка переместить данные из одной ячейки памяти в другую. Перемещать данные можно только между регистрами или регистрами и ячейками памяти.
 - 2. mov cx,vec2[di] ab2.asm(49): warning A4031: Operand types must match. Попытка поместить данные размером в 1 байт в регистр размером 2 байта.

- 3. mov cx,matr[bx][di] lab2.asm(53): warning A4031: Operand types must match. Попытка поместить данные размером в 1 байт в регистр размером 2 байта.
- 4. mov ax,matr[bx*4][di] lab2.asm(54): error A2055: Illegal register value. Недопустимое значение регистра.
- 5. mov ax,matr[bp+bx] lab2.asm(73): error A2046: Multiple base registers. Попытка использовать несколько базовых регистров для адресации.
- 6. mov ax,matr[bp+di+si] lab2.asm(74): error A2047: Multiple index registers. Попытка использовать несколько индексных регистров для адресации.
- 2. Строки с ошибками были закомментированы, новый файл lab2_fix.asm протранслирован без ошибок, создан диагностический файл lab2_fix.lst и объектный файл lab2_fix.obj. lab2_fix.obj был слинкован без ошибок, получен исполняемый файл lab2_fix.exe. Он был запущен в отладчике afdpr.

$$(CS) = 1A0A$$

$$(DS) = 19F5$$

$$(ES) = 19F5$$

$$(SS) = 1A05$$

$$(CX) = 00B0$$

$$(BP) = 0000$$

$$(DX) = 0000$$

Табл. 1

Адрес	Символический	16-ричный	Содержимое регистров и ячеек памяти		
команды	код команды	код команды	До выполнения.	После выполнения.	
			(AX) = 0000	(AX) = 0000	
			(DS) = 19F5	(DS) = 19F5	
0000	PUSH DS	1E	(IP) = 0000	(IP) = 0001	
			(SP) = 0018	(SP) = 0016	
			STACK+0 0000	STACK+0 19F5	

	= 0000
0001 SUB AX, AX $2BC0$ $(DS) = 19F5$ (DS)	= 19F5
(IP) = 0001 $(IP) = 0001$	= 0003
$(AY) 0000 \qquad (AX)$	= 0000
(AX) = 0000 (DS)	= 19F5
(DS) = 19F5 $(IP) = 0003$	= 0004
0003 PUSH AX 50 (IP) = 0003 (SP)	= 0014
(SP) = 0016 STAC	CK+0 0000
STACK+0 19F5 STAC	CK+2 19F5
(AX) = 0000 (AX)	= 1A07
0004 MOV AX, $1A07$ B0871A (DS) = 19F5 (DS)	= 19F5
(IP) = 0004 $(IP) = 0004$	= 0007
$(AX) = 1A07 \qquad (AX)$	= 1A07
0007 MOV DS, AX 8ED8 $(DS) = 19F5$ (DS)	= 1A07
(IP) = 0007 $(IP) = 0007$	= 0009
$(AX) = 1A07 \qquad (AX)$	= 01F4
0009 MOV AX, $01F4$ B8F401 (DS) = $1A07$ (DS)	= 1A07
(IP) = 0009 $(IP) = 0009$	= 000C
$(AX) = 01F4 \qquad (AX)$	= 01F4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	= 1A07
$(CX) = 00B0 \qquad (CX)$	= 01F4
(IP) = 000C $(IP) = 000C$	= 000E
$(AX) = 01F4 \qquad (AX)$	= 01F4
000E MOV BL, 24 B324 (DS) = 1A07 (DS)	= 1A07
(BX) = 0000 (BX)	= 0024
$(IP) = 000E \qquad (IP)$	= 0010
$(AX) = 01F4 \qquad (AX)$	= 01F4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	= 1A07
BX = 0024 (BX)	= CE24
(IP) = 0010 (IP)	= 0012
$(AX) = 1A07 \qquad (AX)$	= 1A07
0012 MOV [0002], C7060200CE (DS) = 1A07 (DS)	= 1A07
FFCE $ $ FF $ $ (IP) = 0012 $ $ (IP) =	= 0018
DATA SEG +2 DAT	A SEG +2

			0000	CEFF
			(AX) = 1A07	(AX) = 1A07
0018	MOV BX, 0006	BB0600	(DS) = 1A07 $(DY) = CE24$	(DS) = 1A07
			(BX) = CE24	(BX) = 0006
			(IP) = 0018	(IP) = 001B
			(AX) = 01F4	(AX) = 01F4
0015	1.011.000001 111	. 20000	(DS) = 1A07	(DS) = 1A07
001B	MOV [0000], AX	A30000	(IP) = 001B	(IP) = 001E
			DATA SEG +0	DATA SEG +0
			0000	F401
			(AX) = 01F4	(AX) = 011F
001E	MOV AL, [BX]	8A07	(DS) = 1A07	(DS) = 1A07
			(IP) = 001E	(IP) = 0020
	MOV AX, [BX+03]	8A4703	(AX) = 011F	(AX) = 0122
0020			(DS) = 1A07	(DS) = 1A07
			(IP) = 0020	(IP) = 0023
			(AX) = 0122	(AX) = 0122
0023	MOV CX, [BX+03]	8B4F03	(DS) = 1A07	(DS) = 1A07
0023		8 D 41'03	(CX) = 01F4	(CX) = 2622
			(IP) = 0023	(IP) = 0026
			(AX) = 0122	(AX) = 0122
0026	MOV DI, 0002	DE0200	(DS) = 1A07	(DS) = 1A07
0020	WIO V DI, 0002	BF0200	(DI) = 0000	(DI) = 0002
			(IP) = 0026	(IP) = 0029
			(AX) = 0122	(AX) = 01CE
0020	MOV AL,	0.4.050500	(DS) = 1A07	(DS) = 1A07
0029	[000E+DI]	8A850E00	(DI) = 0002	(DI) = 0002
			(IP) = 0029	(IP) = 002D
			(AX) = 01CE	(AX) = 01CE
007-		BB0300	(DS) = 1A07	(DS) = 1A07
002D	MOV BX, 0003		(BX) = 0006	(BX) = 0003
			(IP) = 002D	(IP) = 0030
			<u> </u>	, ,

			(AX) = 01CE	(AX) = 01FF
	MOV AL.	8A811600	(DS) = 1A07	(DS) = 1A07
0030			(BX) = 0003	(BX) = 0003
	[0016+BX+DI]		(DI) = 0002	(DI) = 0002
			(IP) = 0030	(IP) = 0034
			(AX) = 01FF	(AX) = 1A07
0034	MOV AX, 1A07	B8071A	(DS) = 1A07	(DS) = 1A07
			(IP) = 0034	(IP) = 0037
			(AX) = 1A07	(AX) = 1A07
0027	MONTEGAN	oF.Go	(DS) = 1A07	(DS) = 1A07
0037	MOV ES, AX	8EC0	(ES) = 19F5	(ES) = 1A07
			(IP) = 0037	(IP) = 0039
			(AX) = 1A07	(AX) = 00FF
0020	MOV AX,	268B07	(DS) = 1A07	(DS) = 1A07
0039	ES:[BX]		(ES) = 1A07	(ES) = 1A07
			(IP) = 0039	(IP) = 003C
		B80000	(AX) = 00FF	(AX) = 0000
003C	MOV AX, 0000		(DS) = 1A07	(DS) = 1A07
			(IP) = 003C	(IP) = 003F
		8EC0	(AX) = 0000	(AX) = 0000
003F	MOV ES, AX		(DS) = 1A07	(DS) = 1A07
003F			(ES) = 1A07	(ES) = 0000
			(IP) = 003F	(IP) = 0041
			(AX) = 0000	(AX) = 0000
			(DS) = 1A07	(DS) = 1A07
0041	PUSH DS	1E	(IP) = 0041	(IP) = 0042
			(SP) = 0014	(SP) = 0012
			STACK +0 0000	STACK +0 1A07
			(AX) = 0000	(AX) = 0000
			(DS) = 1A07	(DS) = 1A07
0042	POP ES	07	(IP) = 0042	(IP) = 0043
0042	FORES	07	(SP) = 0012	(SP) = 0014
			(ES) = 0000	(ES) = 1A07
			STACK +0 1A07	STACK +0 0000

			(AX) = 0000	(AX) = 0000
	MOV CX,		(DS) = 1A07	(DS) = 1A07
0043			(IP) = 0043	(IP) = 0047
	ES:[BX-01]	268B4FFF	(ES) = 1A07	(ES) = 1A07
			(BX) = 0003	(BX) = 0003
			(CX) = 2622	(CX) = FFCE
			(AX) = 0000	(AX) = FFCE
			(DS) = 1A07	(DS) = 1A07
0047	XCHG AX, CX	91	(IP) = 0047	(IP) = 0048
			(CX) = FFCE	(CX) = 0000
			(AX) = FFCE	(AX) = FFCE
00.40	1.011.51.000	D	(DS) = 1A07	(DS) = 1A07
0048	MOV DI, 0002	BF0200	(IP) = 0048	(IP) = 004B
			(DI) = 0002	(DI) = 0002
	MOV ES:[BX+DI], AX 268901		(AX) = FFCE	(AX) = FFCE
		268901	(DS) = 1A07	(DS) = 1A07
			(IP) = 004B	(IP) = 004E
004D			(DI) = 0002	(DI) = 0002
0048			(BX) = 0003	(BX) = 0003
			(ES) = 1A07	(ES) = 1A07
			DATA SEG +5 00	DATA SEG +5 CE
			1F	FF
			(AX) = FFCE	(AX) = FFCE
			(DS) = 1A07	(DS) = 1A07
004E	MOV BP, SP	8BEC	(IP) = 004E	(IP) = 0050
			(BP) = 0000	(BP) = 0014
			(SP) = 0014	(SP) = 0014
			(AX) = 0000	(AX) = 0000
			(DS) = 1A07	(DS) = 1A07
0050	PUSH [0000]	FF360000	(IP) = 0050	(IP) = 0054
			(SP) = 0014	(SP) = 0012
			STACK +0 0000	STACK +0 01F4
0071	DIJOH 10000	DE2 < 0.2.0.0	(AX) = 0000	(AX) = 0000
0054	PUSH [0002]	FF360200	(DS) = 1A07	(DS) = 1A07

0058	MOV BP, SP	8BEC	(IP) = 0054 (SP) = 0012 STACK +0 01F4 (AX) = FFCE (DS) = 1A07 (IP) = 0058 (BP) = 0014 (SP) = 0010	(IP) = 0058 (SP) = 0010 STACK +0 FFCE (AX) = FFCE (DS) = 1A07 (IP) = 005A (BP) = 0010 (SP) = 0010
005A	MOV DX, [BP+02]	8B5602	(AX) = FFCE (DS) = 1A07 (IP) = 005A (BP) = 0010 (DX) = 0000 STACK +0 FFCE STACK +2 01F4	(AX) = FFCE (DS) = 1A07 (IP) = 005D (BP) = 0010 (DX) = 01F4 STACK +0 FFCE STACK +2 01F4
005D	RET FAR 0002	CA0200	(AX) = FFCE (DS) = 1A07 (IP) = 005D (SP) = 0010 STACK +0 FFCE STACK +2 01F4	(AX) = FFCE (DS) = 1A07 (IP) = FFCE (SP) = 0016 STACK +0 19F5

Из последней строки таблицы видно, что программа, которая должна была завершиться, не завершилась, так как на стэк были записаны ненужные данные. Чтобы программа завершалась корректно, необходимо либо закомментировать две строки, которые добавляют значения на стэк, либо дописать две строки, которые будут извлекать данные со стэка. Данная ошибка не выявляется компилятором, из-за этого не была исправлена в п. 2 данной работы.

Выводы.

В данной лабораторной работе были изучены режимы адресации и формирования исполнительного адреса.

приложение а

Тексты исходных файлов программ

lab2.asm

```
; Программа изучения режимов адресации процессора IntelX86
```

EOL EQU '\$'

ind EQU 2

n1 EQU 500

n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

mem1 DW 0

mem2 DW 0

mem3 DW 0

vec1 DB 31,32,33,34,38,37,36,35

vec2 DB 50,60,-50,-60,70,80,-70,-80

matr DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS

sub AX,AX

```
push AX
     mov AX,DATA
     mov DS,AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
     mov ax,n1
     mov cx,ax
     mov bl,EOL
     mov bh,n2
; Прямая адресация
     mov mem2,n2
     mov bx,OFFSET vec1
     mov mem1,ax
; Косвенная адресация
     mov al,[bx]
     mov mem3,[bx]
; Базированная адресация
     mov al, [bx]+3
     mov cx,3[bx]
; Индексная адресация
     mov di,ind
     mov al, vec2[di]
     mov cx,vec2[di]
; Адресация с базированием и индексированием
     mov bx,3
     mov al,matr[bx][di]
     mov cx,matr[bx][di]
     mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
```

```
; ----- вариант 1
     mov ax, SEG vec2
     mov es, ax
     mov ax, es:[bx]
     mov ax, 0
; ----- вариант 2
     mov es, ax
     push ds
     pop es
     mov cx, es:[bx-1]
     xchg cx,ax
; ----- вариант 3
     mov di,ind
     mov es:[bx+di],ax
; ----- вариант 4
     mov bp,sp
     mov ax,matr[bp+bx]
     mov ax,matr[bp+di+si]
; Использование сегмента стека
     push mem1
     push mem2
     mov bp,sp
     mov dx,[bp]+2
     ret 2
Main ENDP
CODE ENDS
     END Main
lab2_fix.asm
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
```

```
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
     DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 31,32,33,34,38,37,36,35
vec2 DB 50,60,-50,-60,70,80,-70,-80
matr DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2
DATA ENDS
; Код программы
CODE SEGMENT
     ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
     push DS
     sub AX,AX
     push AX
     mov AX,DATA
     mov DS,AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
     mov ax,n1
```

```
mov cx,ax
     mov bl,EOL
     mov bh,n2
; Прямая адресация
     mov mem2,n2
     mov bx,OFFSET vec1
     mov mem1,ax
; Косвенная адресация
     mov al,[bx]
     ;mov mem3,[bx]
; Базированная адресация
     mov al,[bx]+3
     mov cx, 3[bx]
; Индексная адресация
     mov di,ind
     mov al, vec2[di]
     ;mov cx,vec2[di]
; Адресация с базированием и индексированием
     mov bx,3
     mov al,matr[bx][di]
     ;mov cx,matr[bx][di]
     ;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
     mov ax, SEG vec2
     mov es, ax
     mov ax, es:[bx]
     mov ax, 0
; ----- вариант 2
```

```
mov es, ax
     push ds
     pop es
     mov cx, es:[bx-1]
     xchg cx,ax
; ----- вариант 3
     mov di,ind
     mov es:[bx+di],ax
; ----- вариант 4
     mov bp,sp
     ;mov ax,matr[bp+bx]
     ;mov ax,matr[bp+di+si]
; Использование сегмента стека
     push mem1
     push mem2
     mov bp,sp
     mov dx,[bp]+2
     ret 2
Main ENDP
CODE ENDS
     END Main
```

приложение б

Тексты файлов диагностических сообщений программ

lab2.lst

MICROSOFT (R) MACRO ASSEMBLER VERSION 5.10 9/29/21 11:45:48

PAGE 1-1

; ПРОГРАММА ИЗУЧЕНИЯ РЕЖИМОВ

АДРЕСАЦИИ ПРОЦЕССО

PA INTELX86
= 0024
= 0002
= 01F4
=-0032
EOL EQU '\$'
IND EQU 2
N1 EQU 500
N2 EQU -50
; CTEΚ ΠΡΟΓΡΑΜΜЫ

0000 ASTACK SEGMENT STACK 0000 000C[DW 12 DUP(?)

1000 000C ????

0018 ASTACK ENDS

]

; ДАННЫЕ ПРОГРАММЫ

0000 DATA SEGMENT

; ДИРЕКТИВЫ ОПИСАНИЯ ДАННЫХ

0000 0000 MEM1 DW 0 0002 0000 MEM2 DW 0 0004 0000 MEM3 DW 0

0006 1F 20 21 22 26 25 VEC1 DB 31,32,33,34,38,37,36,35

24 23

000E 32 3C CE C4 46 50 VEC2 DB 50,60,-50,-60,70,80,-70,-80

BA B0

0016 FC FD 07 08 FE FF MATR DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2 05 06 F8 F9 03 04

FA FB 01 02

0026 DATA ENDS

; КОД ПРОГРАММЫ

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:ASTACK

; ГОЛОВНАЯ ПРОЦЕДУРА

0000 MAIN PROC FAR 0000 1E PUSH DS

0001 2B C0 SUB AX,AX 0003 50 **PUSH AX** 0004 B8 ---- R MOV AX, DATA 0007 8E D8 MOV DS,AX ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ ; РЕГИСТРОВАЯ АДРЕСАЦИЯ 0009 B8 01F4 MOV AX,N1 000C 8B C8 **MOV CX,AX** 000E B3 24 MOV BL, EOL 0010 B7 CE MOV BH,N2 ; ПРЯМАЯ АДРЕСАЦИЯ 0012 C7 06 0002 R FFCE MOV MEM2,N2 0018 BB 0006 R **MOV BX,OFFSET VEC1** 001B A3 0000 R MOV MEM1,AX ; КОСВЕННАЯ АДРЕСАЦИЯ 001E 8A 07 MOV AL,[BX] MOV MEM3,[BX] LAB2.ASM(42): ERROR A2052: IMPROPER OPERAND TYPE ; БАЗИРОВАННАЯ АДРЕСАЦИЯ 0020 8A 47 03 MOV AL, [BX]+30023 8B 4F 03 MOV CX,3[BX] ; ИНДЕКСНАЯ АДРЕСАЦИЯ MICROSOFT (R) MACRO ASSEMBLER VERSION 5.10 9/29/21 11:45:48 PAGE 1-2 0026 BF 0002 MOV DI,IND 0029 8A 85 000E R MOV AL, VEC2[DI] 002D 8B 8D 000E R MOV CX, VEC2[DI] LAB2.ASM(49): WARNING A4031: OPERAND TYPES MUST MATCH ; АДРЕСАЦИЯ С БАЗИРОВАНИЕМ И ИНДЕКСИРОВАНИЕМ 0031 BB 0003 MOV BX,3 0034 8A 81 0016 R MOV AL, MATR[BX][DI] MOV CX,MATR[BX][DI] 0038 8B 89 0016 R LAB2.ASM(53): WARNING A4031: OPERAND TYPES MUST MATCH 003C 8B 85 0022 R MOV AX,MATR[BX*4][DI] LAB2.ASM(54): ERROR A2055: ILLEGAL REGISTER VALUE ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ ; ПЕРЕОПРЕДЕЛЕНИЕ СЕГМЕНТА

; ----- ВАРИАНТ 1

0040	B8 R	MOV AX, SEG VEC2	
0043	8E C0	MOV ES, AX	
0045	26: 8B 07	MOV AX, ES:[BX]	
0048	B8 0000	MOV AX, 0	
		; ВАРИАНТ 2	
004B	8E C0	MOV ES, AX	
004D	1E	PUSH DS	
004E	07	POP ES	
004F	26: 8B 4F FF	MOV CX, ES:[BX-1]	
0053	91	XCHG CX,AX	
		; ВАРИАНТ 3	
0054	BF 0002	MOV DI,IND	
0057	26: 89 01	MOV ES:[BX+DI],AX	
		; ВАРИАНТ 4	
005A	8B EC	MOV BP,SP	
005C	3E: 8B 86 0016	R MOV AX,MATR[BP+BX]	
LAB2	.ASM(73): ERRO	OR A2046: MULTIPLE BASE REGISTERS	
0061	3E: 8B 83 0016	R MOV AX,MATR[BP+DI+SI]]
LAB2	.ASM(74): ERRO	OR A2047: MULTIPLE INDEX REGISTERS	
		; ИСПОЛЬЗОВАНИЕ СЕГМЕНТА СТЕКА	
0066	FF 36 0000 R	PUSH MEM1	
006A	FF 36 0002 R	PUSH MEM2	
006E	8B EC	MOV BP,SP	
0070	8B 56 02	MOV DX,[BP]+2	
0073	CA 0002	RET 2	
0076		MAIN ENDP	
LAB2	` '	OR A2006: PHASE ERROR BETWEEN PASSES	S
0076		CODE ENDS	
		END MAIN	
MIC	ROSOFT (R) M	ACRO ASSEMBLER VERSION 5.10	9/29/21
11:45:	48		
		SYMBOLS-1	

SEGMENTS AND GROUPS:

NAME	LENGTH	ALIGN	COMBINE CLASS
ASTACK	0076 PAR	A NO	NE
SYMBOLS:			

NAME	TYPE	VALUE	ATTR
EOL	NUMBER	0024	
IND	NUMBER	0002	
MAIN	L BYTE L WORD L WORD	0016 DATA 0000 DATA 0002 DATA	A A
N1 NUM N2 NUM			
VEC1			
@CPU	TEX'	Γ LAB2	

83 SOURCE LINES

83 TOTAL LINES

19 SYMBOLS

47828 + 461479 BYTES SYMBOL SPACE FREE

2 WARNING ERRORS

5 SEVERE ERRORS

lab2_fix.lst

11:57:51

PAGE 1-1

; ПРОГРАММА ИЗУЧЕНИЯ РЕЖИМОВ

АДРЕСАЦИИ П	ІРОЦЕССО	
	PA INTELX86	
= 0024	EOL EQU '\$'	
= 0002	IND EQU 2	
= 01F4	N1 EQU 500	
=-0032	N2 EQU -50	

; СТЕК ПРОГРАММЫ

0000 ASTACK SEGMENT STACK 0000 000C[DW 12 DUP(?)

????

1

0018 ASTACK ENDS

: ДАННЫЕ ПРОГРАММЫ

0000 DATA SEGMENT

; ДИРЕКТИВЫ ОПИСАНИЯ ДАННЫХ

0000 0000 MEM1 DW 0 0002 0000 MEM2 DW 0 0004 0000 MEM3 DW 0

0006 1F 20 21 22 26 25 VEC1 DB 31,32,33,34,38,37,36,35

24 23

000E 32 3C CE C4 46 50 VEC2 DB 50,60,-50,-60,70,80,-70,-80

BA B0

0016 FC FD 07 08 FE FF MATR DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2 05 06 F8 F9 03 04 FA FB 01 02

0026 DATA ENDS

: КОД ПРОГРАММЫ

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:ASTACK

; ГОЛОВНАЯ ПРОЦЕДУРА

0000 MAIN PROC FAR 0000 1E PUSH DS

0001 2B C0 SUB AX,AX

0003 50 PUSH AX

0004 B8 ---- R MOV AX,DATA 0007 8E D8 MOV DS,AX ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ

СМЕЩЕНИЙ

; РЕГИСТРОВАЯ АДРЕСАЦИЯ

 0009
 B8 01F4
 MOV AX,N1

 000C
 8B C8
 MOV CX,AX

 000E
 B3 24
 MOV BL,EOL

 0010
 B7 CE
 MOV BH,N2

; ПРЯМАЯ АДРЕСАЦИЯ

0012 C7 06 0002 R FFCE MOV MEM2,N2 0018 BB 0006 R MOV BX,OFFSET VEC1

001B A3 0000 R MOV MEM1,AX

; КОСВЕННАЯ АДРЕСАЦИЯ

001E 8A 07 MOV AL,[BX]

;MOV MEM3,[BX]

; БАЗИРОВАННАЯ АДРЕСАЦИЯ

0020 8A 47 03 MOV AL,[BX]+3 0023 8B 4F 03 MOV CX,3[BX] ; ИНДЕКСНАЯ АДРЕСАЦИЯ 11:57:51

PAGE 1-2

0026 BF 0002 MOV DI,IND MOV AL, VEC2[DI] 0029 8A 85 000E R ;MOV CX,VEC2[DI] ; АДРЕСАЦИЯ С БАЗИРОВАНИЕМ И ИНДЕКСИРОВАНИЕМ 002D BB 0003 MOV BX.3 MOV AL, MATR[BX][DI] 0030 8A 81 0016 R ;MOV CX,MATR[BX][DI] ;MOV AX,MATR[BX*4][DI] ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ ; ПЕРЕОПРЕДЕЛЕНИЕ СЕГМЕНТА ; ----- ВАРИАНТ 1 0034 B8 ---- R MOV AX, SEG VEC2 MOV ES, AX 0037 8E C0 0039 26: 8B 07 MOV AX, ES:[BX] 003C B8 0000 MOV AX, 0 ; ----- ВАРИАНТ 2 003F 8E C0 MOV ES, AX 0041 1E **PUSH DS** 0042 07 POP ES 0043 26: 8B 4F FF MOV CX, ES:[BX-1] 0047 91 XCHG CX,AX ; ----- ВАРИАНТ 3 0048 BF 0002 **MOV DI,IND** 004B 26: 89 01 MOV ES:[BX+DI],AX ; ----- ВАРИАНТ 4 004E 8B EC MOV BP,SP ;MOV AX,MATR[BP+BX] ;MOV AX,MATR[BP+DI+SI] ; ИСПОЛЬЗОВАНИЕ СЕГМЕНТА СТЕКА 0050 FF 36 0000 R PUSH MEM1 0054 FF 36 0002 R **PUSH MEM2** MOV BP,SP 0058 8B EC 005A 8B 56 02 MOV DX,[BP]+2005D CA 0002 RET 2 0060 MAIN ENDP 0060 CODE ENDS

END MAIN

11:57:51

SYMBOLS-1

SEGMENTS AND GROUPS:

NAME	LENGTH	ALIC	GN	COM	BINE CLASS
ASTACK	0060 PARA	4	NON	E	
SYMBOLS:					
NAME	TYPE	VAL	UE	ATT	R
EOL	NUMBER	0024			
IND	NUMBER	0002			
MAIN	L BYTE L WORD L WORD	0016 0000 0002	DATA DATA DATA	A A A	LENGTH = 0060
N1 NUM N2 NUM		2			
VEC1					
@CPU	TEXT	ΓLAI	B2_FI	X	

83 SOURCE LINES

83 TOTAL LINES

19 SYMBOLS

47800 + 461507 BYTES SYMBOL SPACE FREE

- $0 \ WARNING \ ERRORS$
- 0 SEVERE ERRORS