Datos Atípicos

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Definición

 Valores atípicos (también llamados anomalías, o outliers) corresponden a datos que son considerablemente diferentes del resto de los datos.

 La noción de valor atípico es altamente subjetiva y depende del dominio.

• La mayoría de las definiciones se basan en la definición de una distribución normal.

Tipos de anomalías

- Datos de diferentes clases
- Variación natural
- Errores de medición y recopilación de datos

Anomalías puntuales

Una entidad de datos individual es anómala con respecto a los datos.

¿Cual es el mínimo numero de datos aislados que son considerados anomalías?

Anomalías de contexto

Anomalías puntuales dentro de un contexto especifico.

Requiere una noción de contexto y también se conoce como anomalías condicionales.

Anomalías colectivas

- Es una colección de instancias de datos anómalas relacionadas.
- Requiere una relación entre entidades, como por ejemplo: datos secuenciales, espaciales, gráficos.
- Las instancias individuales dentro de una anomalía colectiva no son anómalas por sí solas.

Desafíos

- ¿Cuántos atributos se utilizan para definir un valor atípico?
- ¿Cuántos valores atípicos hay en los datos?
- Las etiquetas de las clases son costosas
- Distribución de clases sesgada (encontrar agujas en un pajar)
- ¿cual es el conjunto mínimo de datos aislados considerados anómalos?

Algunas aplicaciones

- Detección de fraude / intrusión
- Perturbaciones del ecosistema
- Monitoreo del sistema
- Bio vigilancia / salud pública
- Preprocesamiento de datos

2D

Ejemplo: Distribución del ingreso

Enfoques

Hay tres enfoques principales para la detección de datos atípicos

- Sin supervisión: No se asumen etiquetas. Se basa en la suposición de que las anomalías son muy raras en comparación con los datos normales.
- Supervisado: Etiquetas disponibles tanto para datos normales como para anomalías. Esto es similar a la clasificación con clases desequilibradas.
- **Semi supervisado:** Etiquetas disponibles solo para datos normales

Métodos sin supervisión

Método general:

- Cree un perfil de comportamiento "normal" basado en estadísticas descriptivas de la población en general.
- Utilice desviaciones de lo "normal" para detectar anomalías.

Tipos de métodos

- Visual y estadístico
- Basado en distancia
- Basado en modelos

Método visual

Según los gráficos de los datos se detectan los valores atípicos.

Estos métodos requieren mucho tiempo y son subjetivos para el usuario.

Métodos estadísticos

- Se utiliza un modelo paramétrico que describa la distribución de los datos
- Se aplica una prueba estadística para determinar ubicación de los valores en la distribución, basándose en parámetros de distribución como la media y la varianza.
- La mayoría de las pruebas son para la distribución de un solo atributo y es posible que la distribución de datos no se conozca o sea difícil de estimar (especialmente en multivariantes).
- La Prueba de Grubb's es la mas utilizada para datos univariados

$$G=rac{\displaystyle\max_{i=1,...,n}|x_i-\overline{X}|}{S_X} \qquad \qquad G>rac{N-1}{\sqrt{N}}\sqrt{rac{t_{lpha/(2N),N-2}^2}{N-2+t_{lpha/(2N),N-2}^2}}$$

Si se cumple, Xi se considera un valor atípico

Métodos estadísticos: Múltiples atributos

Para las distribuciones gaussianas multivariadas se calcula la probabilidad de un punto con respecto a la distribución estimada, señalando los puntos con baja probabilidad como anómalos.

Métodos de distancia

Sin supervisión

Utiliza una medida de distancia (comúnmente la distancia Mahalanobis) para considerar la covarianza entre los atributos.

Calcula la distancia de cada punto al centroide, e identifica puntos con mayor distancia.

$$d_{MH}(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T \Sigma^{-1} (\mathbf{x} - \mathbf{y})}$$

Ejemplo distancia Mahalanobis

Ejemplo distancia Euclidiana

Mismo proceso con distancia euclidiana

Vecino más cercano

El método del vecino más cercano calcula la distancia entre cada par de puntos y permite definir valores atípicos basado en diferentes criterios:

- Los p puntos cuya distancia mínima a sus k vecinos más cercanos es mayor
- Los p puntos cuya distancia promedio a sus k vecinos más cercanos es mayor
- Puntos para los que hay menos de p puntos vecinos a una distancia D
- otros criterios ...

Vecino más cercano

Los p puntos cuya distancia promedio a sus k vecinos más cercanos es mayor

Puntajes atípicos basados en el 5^{to} Vecino más cercano

Ejemplo vecino más cercano

Aplicando el primer criterio con K = 4

Ejemplo vecino más cercano

Aplicando el segundo criterio con K = 4

Ejemplo vecino más cercano

Aplicando el tercer criterio con K = 4

Agrupación

- Agrupa los datos en grupos de diferente densidad
- Elige puntos en un grupo pequeño como candidato
- Si un punto candidato está lejos (basado en la distancia) de todos los demás puntos no candidatos, es un valor atípico.

Figure 10.9. Distance of points from closest centroid.

Método de densidad

- Encuentra los K vecinos más cercanos de cada punto
- Calcula la distancia máxima a los K más cercanos
- Calcula la distancia de alcance entre todos los puntos.

reachability-distance_{$$k$$}(A,B)=max{ k -distance(B), d(A,B)}

 Calcula la densidad de su vecindario local de k vecinos

$$\operatorname{Ird}_{k}(A) := 1/(\frac{\sum_{B \in N_{k}(A)} \operatorname{reachability-distance}_{k}(A, B)}{|N_{k}(A)|})$$

$$LOF_k(A) := \frac{\sum_{B \in N_k(A)} \frac{\operatorname{lrd}_k(B)}{\operatorname{lrd}_k(A)}}{|N_k(A)|} = \frac{\sum_{B \in N_k(A)} \operatorname{lrd}_k(B)}{|N_k(A)| \cdot \operatorname{lrd}_k(A)}$$

• LOF (x) >> 1 indica valores atípicos.

Illustration of the reachability distance. Dijects B and C have the same reachability distance (k=3), while D is not a k nearest neighbor

Basic idea of LOF: comparing the local density of a point with the densities of its neighbors. A has a much lower density than its neighbors.

Método de densidad

Método de densidad

Datos Atípicos

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2