$H = \begin{bmatrix} A & C \\ O & B \end{bmatrix}$, $A \not\in m$ 阶, $B \not\in n$ 阶的可逆矩阵. 问:H可逆吗?若行,求其逆。 $\rightarrow H$ 是否有说?

只有当 $|H| \neq 0$ 时,即它的面积没有压缩成零维时,它才能 ctrl + z 做恢复。即才有"逆"在 所以,我们就来检查一下它的行列式,即|H|=?

 $\begin{vmatrix} A & C \\ O & B \end{vmatrix} = |A||B| \neq 0$,说明H可逆.

设其逆阵 $H^{-I} = \underbrace{ \begin{bmatrix} X_I & X_{\mathcal{I}} \\ X_{\mathcal{I}} & X_{\mathcal{I}} \end{bmatrix}}_{ X_{\mathcal{I}} \leftarrow \text{ 这里设成}} \leftarrow \text{ 这里设成} \begin{bmatrix} X_I & X_{\mathcal{I}} \\ X_{\mathcal{I}} & X_{\mathcal{I}} \end{bmatrix}$ 也行.

 $\mathbb{Q} \mid HH^{-1} = E$

 $\mathbb{P}\left[\frac{A \cdot C}{O \cdot B}\right] \left[\begin{array}{c|c} X_I & X_3 \\ X_A & X_A \end{array} \right] = E$

 $\begin{bmatrix} AX_1 + CX_4 & AX_3 + CX_2 \\ OX_1 + BX_4 & OX_3 + BX_2 \end{bmatrix} = E$ $= \begin{bmatrix} E & O \\ O & E \end{bmatrix}$

 $\mathbb{E}\left[\begin{matrix} AX_1 + CX_4 & AX_3 + CX_2 \\ O + BX_4 & O + BX_2 \end{matrix} \right] = \left[\begin{matrix} E & O \\ O & E \end{matrix} \right]$ $\begin{cases} AX_1 + CX_4 = E & \textcircled{1} \\ AX_3 + CX_2 = O & \textcircled{2} \\ O + BX_4 = O & \textcircled{3} \rightarrow 得到 \ BX_4 = O \leftarrow 对它两边同时乘上<math>B$ 逆

 $O+BX_2=E$ $\mathscr{Q}\leftarrow$ 这说明 B和 X_2 互逆. 即 $X_2=B^{-1}$. \leftarrow 代入 \mathscr{Q} $AX_3+CB^{-1}=O$ $AX^3=-CB^{-1}\leftarrow$ 然后两边同时左乘 A^{-1}

因此, $H^{-1} = \underbrace{\begin{bmatrix} X_1 & X_3 \\ X_4 & X_2 \end{bmatrix}} = \begin{bmatrix} A^{-1} & A^{-1} \cdot (-CB^{-1}) \\ O & B^{-1} \end{bmatrix}$

 $\underbrace{A^{-1} \cdot A}_{=E} X^{\beta} = A^{-1} \cdot - CB^{-1}$

 $\underbrace{B^{-1} \cdot B}_{\text{Kijiff}, = E} X_4 = B^{-1} \cdot O$ 所以 $X_i = O$,代入① 就得到: $AX_1 + \underbrace{CO}_{\text{零矩阵}} = E$

即 $AX_t = E \leftarrow$ 这说明A 和 X_t 互逆,

即 $X_1 = A^{-1}$

 \rightarrow 求H的逆