Chapitre 2 : Le métamorphisme et sa relation avec la tectonique des plaques

Introduction:

Le métamorphisme est l'ensemble des modifications minéralogiques et texturales d'une roche préexistante, à l'état solide et sous l'effet de la température, et de la pression, il donne des roches métamorphiques .

- Quelles sont les caractéristiques des roches métamorphiques ?
- Quelles sont les conditions de la formation des roches métamorphiques? Et quelle est sa relation avec les chaines de montagnes ?
- I. Les caractéristiques minéralogiques et structurales des roches métamorphiques des zones de collision :
 - 1. Observations de rches métamorphiques dans les chaines de collision :

- 1- Décrivez la répartition des roches métamorphiques dans la région
- 2- Dégagez à partir du doc b et c les caractéristiques structurales des roches métamorphiques.

2. Structure microscopique et composition minéralogique des roches métamorphiques :

Composition chimique de quelques roches métamorphiques et formules chimiques de quelques minéraux qu les composent.

-17	Ro	ches métamorphique	ues
Eléments	Schiste	Micaschiste	Gneiss
chimiques	The state of the s	60,9	68,7
SiO ₂	60,2	19,1	16,2
Al ₂ O ₃	20,9	1,2	0,7
Fe ₂ O ₃	2,8	4,1	4,1
FeO	3,7	1,4	1,3
MgO	0,85	1.7	1,8
CaO	0,55	2,1	3,8
Na ₂ O	2,45	3,7	3
V 0	4,1		

chaudes et du chlorite de couleur

Composition chimique de roches métamorphiques (en %)

Roche métamorphique : roche qui a subi une transformation minéralogique et structurale à l'état solide suite à l'élévation des conditions de la température et de la pression en profondeur.

Minéraux	Formule chimique
Plagioclase	(Na,Ca)(Si,Al₃)O ₈
Augite	(Ca,Mg,Fe)₂(Si,Al)₂O ₆
Epidote	Ca ₂ FeAl ₂ (Si ₂ O ₇)(SiO ₄)(O,OH
Glaucophane	Na ₂ (Mg,Fe ²⁺) ₃ Al ₂ Si ₈ O ₂₂ (OH) ₂
Jadéite	Na,Al (Si₂ O ₆)
Grenat	(Fe, Mg,Ca) Si ₃ Al ₂ O ₁₂

clairs de quartz et de feldspaths,

Quelques minéraux de silicates d'alumine² des roches métamorphiques et leurs formules chimiques : ces minéraux sont caractérisés par leur composition chimique générale Al₂SiO₅ d'où leur nomination de silicates d'alumine

 Comparez les microstructures et la composition des 3 roches. Dégagez le caractère commun des roches métamorphiques et punt hypothèse sur leur origine. 	roposez une

- II. Les caractéristiques minéralogiques et structurales des roches métamorphiques des zones de subduction :
 - 1. Les ophiolites métamorphisées des Alpes :

1- Décrivez la répartition des roches métamorphiques dans cette région.

2. Structure microscopique et composition minéralogique des roches métamorphiques dans les zones de subduction:

2- Dégagez le caractère commun des roches métamorphiques .														

		• • •								• •		• •			• • •				٠.	٠.				 ٠.					٠.		 		• • •		٠.		· • •								•
• • •					• • •	• • •	• • •				• • •		• • •		• •	• •	• •				• •	• •	• • •	 	• •	• •	• • •		• •	• •	 • •		• •			• •		• •		• • •		• • •	• • •	• • •	
• • •				• • •	• • •	• • •		• • •	• • •	• • •	• • •		• • •		• •	• •	• •	• • •		• • •	٠.	٠.	• •	 	٠.	• •	• • •		٠.	• •	 • •	٠	• •	• • •		• •	• • •	• •	• • •	• •	• • •	• • •	• • •	• • •	
•	· · · ·		- • •	• • •	• • •	- • •		·	•••	• • •	•••	• • •	• •	•	•	•	•			•	•	•	•	 •	•	••	- • •	•	•	••	 •	- • •	•	• • •	• • •	•	•	••	·	•	.	• • •	•	•	

III. Les facteurs du métamorphisme:

2- Expliquer l'effet de la température sur les roches en se basant sur le doc b. 3- Définissez le domaine de stabilité (température et pression) de chaque minéral. 4- Donner une définition au métamorphisme. 5- Définissez un minéral index ou indicateur.

1- Expliquer l'effet de la pression sur les roches en se basant sur le doc a.

2. La série et la séquence métamorphique :

3. Faciès métamorphiques :

2-	Définis	sez le fac	iés méta	morphi	que.			
						 •	 	
						 •	 	
						 •	 	
						 •	 	
						 •	 	

4. Le gradient géothermique :

IV. Les types de métamorphisme:

1. Métamorphisme dynamique (métamorphisme de subduction) :

a. Exercice intégré:

Dans une chaine de montagne on a trouvé des affleurements des roches métamorphiques de métagabbro1 et métagabbro2 au sein d'un complexe ophiolitique, la figure1 montre la composition minéralogique de ces deux roches, et la figure 2 montre les faciès métamorphiques :

Roche	Composition minéralogique
Métagabbro 1	plagioclase Epidote glaucophane
Métagabbro 2	grenat jadéite glaucophane quartz

Figure 1

- 1- Déterminer les facies de métagabbro 1 et métagabbro 2, et déduisez les conditions de formation de métagabbro 1 et métagabbro 2 ?
- 2- En passant de métagabbro 1 au métagabbro 2 déterminer le type de métamorphisme, et quelle est le cadre géologique de formation de ces roches ?

• • • • •		 			 		 	 			
		 	• • • • • • • • •		 	• • • • • • • • • • • • • • • • • • • •	 	 			
	• • • • • • •	 		• • • • • • • •	 		 	 		• • • • • • • •	
		 	• • • • • • • •		 		 	 	• • • • • • • • • • • • • • • • • • • •		
		 	• • • • • • • •		 		 	 	• • • • • • • • • • • • • • • • • • • •		
		 		• • • • • • • • • • • • • • • • • • • •	 		 	 			
		 		• • • • • • • • • • • • • • • • • • • •	 		 	 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
		 	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •	 	 			
		 	• • • • • • • •		 		 	 	• • • • • • • • • • • • • • • • • • • •		

b. Conclusion:

		 	 		 				 		 		 				 			 	 ٠.	 	 ٠.	 	 		 	 	 ٠.	
• • •	•••	 • •	 • • •	• •	 • •	• •	• • •	• •	 • • •	• • •	 • •	• •	 	• •	• •	• •	 • •	• •	• •	 • •	• • •	 • •	 • •	 • •						

2. Métamorphisme thermodynamique : (métamorphisme régional) :

Dans les zones de collision les unités géologiques se chevauchent les uns sur les autre, se qui entraine un enfouissement de certaines unités, au cours de son enfouissement les roches se métamorphisent. Lorsque les forces aux limites compressives ne s'exercent plus, cette croûte épaissie est en déséquilibre gravitaire et s'amincit par érosion, et les roches métamorphisé en profondeur se retrouver a la surface (La figure 1). La figure 2 montre le trajet P.T.t d'une roche R.

Fig. 1 Les étapes de la formation des roches métamorphiques dans la zone de collision

Fig. 2 → Trajet pression-température-temps (P-T-t) de la roche R

3. Métamorphisme thermique : (métamorphisme de contact) :

 	• •						

4. Bilan:

