CS & IT ENGINE

THEORY OF COMPUTATION

Mealy and Moore Machine

Lecture - 05

Recap of Previous Lecture

Topic

Topic

s closure properties of s Regular Languages

Topics to be Covered

Topic: Closure Properties of Language Families

Operation	Regular	DCFL	CFL	CSL	RecursiveRE	
Union	yes	no	yes	yes	yes	yes
Intersection	yes	no	no	yes	yes	yes
Complement	yes	yes	no	yes	yes	no
Concatenation	yes	no	yes	yes	yes	yes
Homomorphism	yes	no	yes	no	no	yes
Substitution	yes	no	yes	yes	no	yes
Inverse Homomorphism	yes	yes	yes	yes	yes	yes
Reverse	yes	no	yes	yes	yes	yes
Intersection with a regular language	yes	yes	yes	yes	yes	yes

	Regular		Regular	
O Subset op	X	(8) Intersection op		
2 Union op		9 Difference op		
(3) Concatenation		@ Prefix op		
(F) Complement		─ Suffix op		
(5) Kleene chosy	e /	13 Quotient op		LI/L= regular
(6) positive closu	R /	Substitution op		
A Reversal		(14) Homomorphism op		
		(15) I unerze Hammaphil		
		A the cross them.		

Regular Languages not closed under

Osubset	X
2) Infinite Union	X
(3) Infinite Intersection	

If (L, 11 L2) in Regular, L, in Regular
thunka? {ab} 1{a^b} a) Always Regular reg Non Reg. reg Dreed not be Regular

Horne Work If

(a) Always Regular

(6) Need not be Regulor

Quotient op Lillief
$$x \mid xy \in L_1, y \in L_2$$

$$L_1/L_2 = \frac{00}{\emptyset} = 0 = \frac{xy}{y} = x$$

$$\frac{1}{2} \frac{000}{00} = \{00\}$$

$$\frac{1}{2} \frac{000}{00} = \epsilon$$

$$\frac{1}{2} \frac{000}{00} = \epsilon$$

$$\frac{1}{2} \frac{000}{00} = \epsilon$$

$$\frac{1}{|l|} = \frac{1}{|a|} = \frac{1}$$

$$= \frac{z^{*}}{z^{*}} = \frac{(a+b)^{*}}{(a+b)^{*}} = \frac{(a+b)^{*}}{(a+b)^{*}} = \frac{\{e_{1}a_{1}b_{1}a_{1}a_{1}a_{1}b_{1}b_{1}a_{1}b_{1}b_{1}a_{1}b_{2}b_{2}--\}}{(a+b)^{*}+-+-=(a+b)^{*}}$$

$$\frac{\sum_{a+b}^{+} = (a+b)^{+}}{\sum_{a+b}^{+} = (a+b)^{+}} = \frac{(a+b)^{+}}{(a+b)^{+}}$$

$$\frac{z^{+}}{z^{+}} = \frac{z^{+}}{z^{+}} = \frac{z^{+}}{z$$

(a)
$$\frac{L_1 = 0^*1}{L_2 = (1^*0)} = 0 \quad L_1/L_2 = ?$$

- LIL2: (1) finite Automata 2,12 Finite Automata

 O starting from first state Construct total automata if this automata accepts (any string of 12) then make first state of final
- 3) Starting from 2nd state Construct total automate up this automate accept any string of L2 then make 2nd state of final
 - 3 Repeat this process for every state to decide that state up tinal (a) not.

$$\frac{L_{1}}{L_{2}} = \frac{0^{*}}{1^{*}} = \frac{0^{*}}{1$$

Substitutionop Substitution is a mapping from (E) (A) where each symbol of Z is is Replaced by Regular Language over the alphabet D D S(0)=0 (2) S(E)= € 3 S(a+p)= 2(a)+2(p) (b) S(a.b) = S(a) +S(b) $(5) S(3) = (S(a))^{2}$

$$S(t) = S(a+b)(a+b)$$

$$S(t) = S(t)$$

$$S(t) =$$

Homomorphism op:

Homomorphism is a Special case (Substitution) where
each symbol of z is Replaced by a (Single string)

Over the alphabet Δ .

.

$$\frac{\sum = \{0,1\}}{h(0) = \{0,0\}}$$

$$h(1) = \{0,1\}$$

$$h(1) =$$

closed

Inverse Homomorphism

Applying homomorphism in (reverse way) is known as inverse homomorphism

(string is replaced by symbol)

.

$$\begin{array}{c}
\Delta = \{0,b,c\} \\
h(b) = 0 \\
h(b) = 10
\end{array}$$

$$\begin{array}{c}
L = \frac{1010}{1010} \\
h(0) = 0
\end{array}$$

$$\begin{array}{c}
L = \frac{1010}{1010} \\
h(0) = 0
\end{array}$$

$$\begin{array}{c}
L = \frac{1010}{1010} \\
h(0) = 0
\end{array}$$

$$\begin{array}{c}
L = \frac{1010}{1010} \\
h(0) = 0
\end{array}$$

$$\begin{array}{c}
L = \frac{1010}{1010} \\
h(0) = 0
\end{array}$$

$$\begin{array}{c}
L = \frac{1010}{1010} \\
h(0) = 0
\end{array}$$

$$\begin{array}{c}
L = \frac{1010}{1010} \\
h(0) = 0
\end{array}$$

$$\begin{array}{c}
L = \frac{1010}{1010} \\
h(0) = 0
\end{array}$$

$$\begin{array}{c}
L = \frac{1010}{1010} \\
h(0) = 0
\end{array}$$

$$\begin{array}{c}
L = \frac{1010}{1010} \\
h(0) = 0
\end{array}$$

$$\begin{array}{c}
L = \frac{1010}{1010} \\
h(0) = 0
\end{array}$$

[MCQ]

#Q. Let R₁ and R₂ be regular sets defined over the alphabet then

(Yegular)

- $R_1 \cap R_2$ is not regular—, false
- C (Σ* R) is regular -> +γue
 Complement

Complement
Regular

regular

- B $R_1 \cup R_2$ is not regular $\rightarrow false$
- R₁* is not regular balce

#Q. If
$$L_1 = \{a^n \mid n \ge 0\}$$
 and $L_2 = \{b^n \mid n \ge 0\}$, consider

II.
$$L_1 \cdot L_2 = \{a^nb^n | n \ge 0\} \rightarrow \{a | se$$

II. $L_1 \cdot L_2 = \{a^nb^n | n \ge 0\} \rightarrow \{a\} \le 0$ Which one of the following is CORRECT?

Only II

Both I and II

Neither I nor II

Q

Consider the following two statements:

I. If all states of an NFA are accepting states then the language accepted by the NFA is Σ^* .

II. There exists a regular language A such that for all language B(A ∩ B) is regular. [2016-Set2: 2 Marks]

Which one of the following is CORRECT

- A Only I is true
- B Only II is true
- C Both I and II are true
- D Both I and II are false

Consider the following statements: $(a+b)^* \cup \{a^n b^n\}$ regular Ly $(L_1 \cup L_2)$ is regular then both L_1 and L_2 must be regular. The class of regular languages is closed under infinite union. $\int \int a |s| e^{-c}$

Which of the above statements is/are TRUE?

A Neither I nor II

[2020: 1 Mark]

- B II only
- C I only
- D Both I and II

of closed Infinite Union { L,, L2, L3 Lu--} regular

 $\frac{d}{dt} = \frac{d}{dt} = \frac{d}{dt}$

Regular danguages closed under finite Union

not closed under intinite Union

$$j_{1} \Lambda l_{2} \Lambda l_{3} \Lambda l_{4} \Lambda l_{-} = \int_{1}^{c} u l_{3} u l_{3} u l_{4} - - - \int_{1}^{c} u l_{3} u l_{3} u l_{4} - - - \int_{1}^{c} u l_{3} u l_{3} u l_{4} - - - \int_{1}^{c} u l_{3} u l_{3} u l_{4} - - - \int_{1}^{c} u l_{3} u l_{3} u l_{4} - - - \int_{1}^{c} u l_{3} u l_{3} u l_{4} - - - \int_{1}^{c} u l_{3} u l_{3} u l_{4} - - - \int_{1}^{c} u l_{3} u l_{3} u l_{4} - - - \int_{1}^{c} u l_{3} u l_{4} u l_{5} u l_{5} u l_{5} u l_{5} u l_{6} u$$

Topic: Regular expression

- Mealy Machine:
- It is a mathematical model in which output is associated
- with transition.

- Moore Machine:
- · It is a mathematical model in which output is associated
- with state.

Formal Definition $Q, \Sigma, 90, S, \Lambda, \lambda$ Q: finite 70.05 states Z input alphabet 90: initial state 8: + romsition function: \QXZ ->Q 1: output alphabet 1: output function: Mealy: 1: QXZ->A Morre: y: Q->D

[NAT]

Construct mealy machine that takes all strings of a's and b's as input and #Q. produces 1 as output if last two symbols in the input are same otherwise produces 0 as output.

#Q. Construct mealy machine that takes all strings of a's and b's as input and produces 1 as output if last two symbols in the input are different otherwise produces 0 as output.

#Q. Construct mealy machine that takes all strings of 0's and 1's as input and produces A as output if input ending with 10 or produces B as output if input ending with 11 otherwise produces output C.

#Q. Construct mealy machine that produces 1's complement of given binary number as output.

#Q. Construct mealy machine that produces 2's complement of given binary number as output.(assume we are reading string from LSB to MSB)

#Q. Construct Moore machine that takes all binary strings as input and produces Residue modulo 4 as output.

#Q. Construct Moore machine that takes all binary strings as input and produces Residue modulo 5 as output.

#Q. Construct Moore machine that takes all base 3 numbers as input and produces Residue modulo 4 as output.

[MCQ]

A Mealy machine to find 2's complement of a number

A Moore machine to find 2's complement of a number

A Mealy machine to find 1's complement of a number

A Moore machine to find 1's complement of a number

[MCQ]

#Q. A finite state machine with the following state table has a single input x and a single output z.

	Present state x = 1	Next state, z x = 0
A	D, 0	B, 0
В	B, 1	C, 1
С	B, 2	D, 1
D	B, 1	C, 0

If the initial state is unknown, then the shortest input sequence to reach the final state C is:

A

01

В

10

C

101

D

110

[MCQ]

#Q. The Finite state machine described by the following state diagram with A as starting state, where an arc label is x/y and x stands for 1-bit input and y stands for 2-bit output.

- Outputs the sum of the present and the previous bits of the input
- B Outputs a "01" whenever the input sequence contain "11"
- Outputs a "00" whenever the input sequence contains "10"
- D None of the above

$$S(0) = a \times (language)$$

$$H(0) = aq (string)$$

2 mins Summary

Topic One

Topic Two

Topic Three

Topic Four

Topic Five

THANK - YOU