Miejsce na naklejkę z kodem szkoły

dys	leks	ja

MMA-P1A1P-062

EGZAMIN MATURALNY Z MATEMATYKI

Arkusz I

POZIOM PODSTAWOWY

Czas pracy 120 minut

MAJ ROK 2006

ARKUSZ I

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania 1-11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 10. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem ■ i zaznacz właściwe.

Za rozwiązanie wszystkich zadań można otrzymać łącznie

50 punktów

Życzymy powodzenia!

	Wypełnia zdający przed rozpoczęciem pracy								
TOZPOCZĘCIEM Pracy									
	PESEL ZDAJĄCEGO								

Zadanie 1. (*3 pkt*)

Dane są zbiory: $A = \{x \in R : |x-4| \ge 7\}$, $B = \{x \in R : x^2 > 0\}$. Zaznacz na osi liczbowej:

- a) zbiór A,
- b) zbiór B,
- c) zbiór $C = B \setminus A$.

a)

b)

c)

	Nr czynności	1.1.	1.2.	1.3.
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 2. (3 pkt)

W wycieczce szkolnej bierze udział 16 uczniów, wśród których tylko czworo zna okolicę. Wychowawca chce wybrać w sposób losowy 3 osoby, które mają pójść do sklepu. Oblicz prawdopodobieństwo tego, że wśród wybranych trzech osób będą dokładnie dwie znające okolicę.

	Nr czynności	2.1.	2.2.	2.3.
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 3. (*5 pkt*)

Kostka masła produkowanego przez pewien zakład mleczarski ma nominalną masę 20 dag. W czasie kontroli zakładu zważono 150 losowo wybranych kostek masła. Wyniki badań przedstawiono w tabeli.

Masa kostki masła (w dag)	16	18	19	20	21	22
Liczba kostek masła	1	15	24	68	26	16

- a) Na podstawie danych przedstawionych w tabeli oblicz średnią arytmetyczną oraz odchylenie standardowe masy kostki masła.
- b) Kontrola wypada pozytywnie, jeśli średnia masa kostki masła jest równa masie nominalnej i odchylenie standardowe nie przekracza 1 dag. Czy kontrola zakładu wypadła pozytywnie? Odpowiedź uzasadnij.

	Nr czynności	3.1.	3.2.	3.3.
Wypełnia	Maks. liczba pkt	2	2	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 4. (*4 pkt*)

Dany jest rosnący ciąg geometryczny, w którym $a_1 = 12$, $a_3 = 27$.

- a) Wyznacz iloraz tego ciągu.
- b) Zapisz wzór, na podstawie którego można obliczyć wyraz a_n , dla każdej liczby naturalnej $n \ge 1$.
- c) Oblicz wyraz a_6 .

	Nr czynności	4.1.	4.2.	4.3.
Wypełnia	Maks. liczba pkt	2	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 5. (*3 pkt*)

Wiedząc, że $0^{\circ} \le \alpha \le 360^{\circ}$, $\sin \alpha < 0$ oraz $4 \text{ tg } \alpha = 3 \sin^2 \alpha + 3 \cos^2 \alpha$

- a) oblicz $tg\alpha$,
- b) zaznacz w układzie współrzędnych kąt α i podaj współrzędne dowolnego punktu, różnego od początku układu współrzędnych, który leży na końcowym ramieniu tego kata.

aggaminatori	Nr czynności	5.1.	5.2.	5.3.
	Maks. liczba pkt	1	1	1
	Uzyskana liczba pkt			

Zadanie 6. (7 *pkt*)

Państwo Nowakowie przeznaczyli 26000 zł na zakup działki. Do jednej z ofert dołączono rysunek dwóch przylegających do siebie działek w skali 1:1000. Jeden metr kwadratowy gruntu w tej ofercie kosztuje 35 zł. Oblicz, czy przeznaczona przez państwa Nowaków kwota wystarczy na zakup działki P₂.

	Nr czynności	6.1.	6.2.	6.3.	6.4.	6.5.	6.6.	6.7.
Wypełnia	Maks. liczba pkt	1	1	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt							

Zadanie 7. *(5 pkt)*

Szkic przedstawia kanał ciepłowniczy, którego przekrój poprzeczny jest prostokątem. Wewnątrz kanału znajduje się rurociąg składający się z trzech rur, każda o średnicy zewnętrznej 1 m. Oblicz wysokość i szerokość kanału ciepłowniczego. Wysokość zaokrąglij do 0,01 m.

	Nr czynności	7.1.	7.2.	7.3.	7.4.
Wypełnia	Maks. liczba pkt	1	1	2	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 8. (*5 pkt*)

Dana jest funkcja $f(x) = -x^2 + 6x - 5$.

- a) Naszkicuj wykres funkcji f i podaj jej zbiór wartości.
- b) Podaj rozwiązanie nierówności $f(x) \ge 0$.

	Nr czynności	8.1.	8.2.	8.3.	8.4.	8.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 9. (6 pkt)

Dach wieży ma kształt powierzchni bocznej ostrosłupa prawidłowego czworokątnego, którego krawędź podstawy ma długość 4 m. Ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 60° .

- a) Sporządź pomocniczy rysunek i zaznacz na nim podane w zadaniu wielkości.
- b) Oblicz, ile sztuk dachówek należy kupić, aby pokryć ten dach, wiedząc, że do pokrycia 1 m² potrzebne są 24 dachówki. Przy zakupie należy doliczyć 8% dachówek na zapas.

	Nr czynności	9.1.	9.2.	9.3.	9.4.	9.5.
Wypełnia	Maks. liczba pkt	1	1	1	2	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 10. (6 pkt)

Liczby 3 i –1 są pierwiastkami wielomianu $W(x) = 2x^3 + ax^2 + bx + 30$.

- a) Wyznacz wartości współczynników a i b.
- b) Oblicz trzeci pierwiastek tego wielomianu.

	Nr czynności	10.1.	10.2.	10.3.	10.4.	10.5.	10.6.
Wypełnia	Maks. liczba pkt	1	1	1	1	1	1
egzaminator	Uzyskana liczba pkt						

Zadanie 11. (3 pkt)

Sumę $S = \frac{3}{1 \cdot 4} + \frac{3}{4 \cdot 7} + \frac{3}{7 \cdot 10} + ... + \frac{3}{301 \cdot 304} + \frac{3}{304 \cdot 307}$ można obliczyć w następujący sposób:

a) sumę S zapisujemy w postaci

$$S = \frac{4-1}{4\cdot 1} + \frac{7-4}{7\cdot 4} + \frac{10-7}{10\cdot 7} + \dots + \frac{304-301}{304\cdot 301} + \frac{307-304}{307\cdot 304}$$

b) każdy składnik tej sumy przedstawiamy jako różnice ułamków

$$S = \left(\frac{4}{4 \cdot 1} - \frac{1}{4 \cdot 1}\right) + \left(\frac{7}{7 \cdot 4} - \frac{4}{7 \cdot 4}\right) + \left(\frac{10}{10 \cdot 7} - \frac{7}{10 \cdot 7}\right) + \dots + \left(\frac{304}{304 \cdot 301} - \frac{301}{304 \cdot 301}\right) + \left(\frac{307}{307 \cdot 304} - \frac{304}{307 \cdot 304}\right)$$

$$\text{stad } S = \left(1 - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{7}\right) + \left(\frac{1}{7} - \frac{1}{10}\right) + \dots + \left(\frac{1}{301} - \frac{1}{304}\right) + \left(\frac{1}{304} - \frac{1}{307}\right)$$

$$\text{wiec } S = 1 - \frac{1}{4} + \frac{1}{4} - \frac{1}{7} + \frac{1}{7} - \frac{1}{10} + \dots + \frac{1}{301} - \frac{1}{304} + \frac{1}{304} - \frac{1}{307}$$

c) obliczamy sumę, redukując parami wyrazy sąsiednie, poza pierwszym i ostatnim $S=1-\frac{1}{307}=\frac{306}{307}$.

Postępując w analogiczny sposób, oblicz sumę $S_1 = \frac{4}{1 \cdot 5} + \frac{4}{5 \cdot 9} + \frac{4}{9 \cdot 13} + \dots + \frac{4}{281 \cdot 285}$.

Wypełnia egzaminator!	Nr czynności	11.1.	11.2.	11.3.	
	V 1	Maks. liczba pkt	1	1	1
	egzaminator!	Uzyskana liczba pkt			

BRUDNOPIS