- **27.** $F(x, y, z) = x \mathbf{i} + 2y \mathbf{j} + 3z \mathbf{k}$, S is the cube with vertices $(\pm 1, \pm 1, \pm 1)$
- **28.** $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + 5 \mathbf{k}$, S is the boundary of the region enclosed by the cylinder $x^2 + z^2 = 1$ and the planes y = 0 and x + y = 2
- **29.** $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$, S is the boundary of the solid half-cylinder $0 \le z \le \sqrt{1 y^2}$, $0 \le x \le 2$
- **30.** $\mathbf{F}(x, y, z) = y \mathbf{i} + (z y) \mathbf{j} + x \mathbf{k}$, S is the surface of the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1)
- [AS] **31.** Evaluate $\iint_S xyz \, dS$ correct to four decimal places, where S is the surface z = xy, $0 \le x \le 1$, $0 \le y \le 1$.
- [AS] 32. Find the exact value of $\iint_S x^2 yz \, dS$, where S is the surface in Exercise 31.
- [AS] 33. Find the value of $\iint_S x^2 y^2 z^2 dS$ correct to four decimal places, where S is the part of the paraboloid $z = 3 2x^2 y^2$ that lies above the xy-plane.
- [CAS] 34. Find the flux of

$$\mathbf{F}(x, y, z) = \sin(xyz)\,\mathbf{i} + x^2y\,\mathbf{j} + z^2e^{x/5}\,\mathbf{k}$$

across the part of the cylinder $4y^2 + z^2 = 4$ that lies above the xy-plane and between the planes x = -2 and x = 2 with upward orientation. Illustrate by using a computer algebra system to draw the cylinder and the vector field on the same screen.

- **35.** Find a formula for $\iint_S \mathbf{F} \cdot d\mathbf{S}$ similar to Formula 10 for the case where S is given by y = h(x, z) and \mathbf{n} is the unit normal that points toward the left.
- **36.** Find a formula for $\iint_S \mathbf{F} \cdot d\mathbf{S}$ similar to Formula 10 for the case where S is given by x = k(y, z) and \mathbf{n} is the unit normal that points forward (that is, toward the viewer when the axes are drawn in the usual way).
- 37. Find the center of mass of the hemisphere $x^2 + y^2 + z^2 = a^2$, $z \ge 0$, if it has constant density.
- **38.** Find the mass of a thin funnel in the shape of a cone $z = \sqrt{x^2 + y^2}$, $1 \le z \le 4$, if its density function is $\rho(x, y, z) = 10 z$.

- **39.** (a) Give an integral expression for the moment of inertia I_z about the z-axis of a thin sheet in the shape of a surface S if the density function is ρ .
 - (b) Find the moment of inertia about the z-axis of the funnel in Exercise 38.
- **40.** Let S be the part of the sphere $x^2 + y^2 + z^2 = 25$ that lies above the plane z = 4. If S has constant density k, find (a) the center of mass and (b) the moment of inertia about the z-axis.
- **41.** A fluid has density 870 kg/m^3 and flows with velocity $\mathbf{v} = z \mathbf{i} + y^2 \mathbf{j} + x^2 \mathbf{k}$, where x, y, and z are measured in meters and the components of \mathbf{v} in meters per second. Find the rate of flow outward through the cylinder $x^2 + y^2 = 4$, $0 \le z \le 1$.
- **42.** Seawater has density 1025 kg/m^3 and flows in a velocity field $\mathbf{v} = y \mathbf{i} + x \mathbf{j}$, where x, y, and z are measured in meters and the components of \mathbf{v} in meters per second. Find the rate of flow outward through the hemisphere $x^2 + y^2 + z^2 = 9$, $z \ge 0$.
- **43.** Use Gauss's Law to find the charge contained in the solid hemisphere $x^2 + y^2 + z^2 \le a^2$, $z \ge 0$, if the electric field is

$$\mathbf{E}(x, y, z) = x \mathbf{i} + y \mathbf{j} + 2z \mathbf{k}$$

44. Use Gauss's Law to find the charge enclosed by the cube with vertices $(\pm 1, \pm 1, \pm 1)$ if the electric field is

$$\mathbf{E}(x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$$

- 45. The temperature at the point (x, y, z) in a substance with conductivity K = 6.5 is $u(x, y, z) = 2y^2 + 2z^2$. Find the rate of heat flow inward across the cylindrical surface $y^2 + z^2 = 6$, $0 \le x \le 4$.
- **46.** The temperature at a point in a ball with conductivity *K* is inversely proportional to the distance from the center of the ball. Find the rate of heat flow across a sphere *S* of radius *a* with center at the center of the ball.
- **47.** Let **F** be an inverse square field, that is, $\mathbf{F}(r) = c\mathbf{r}/|\mathbf{r}|^3$ for some constant c, where $r = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Show that the flux of **F** across a sphere S with center the origin is independent of the radius of S.

16.8 STOKES' THEOREM

Stokes' Theorem can be regarded as a higher-dimensional version of Green's Theorem. Whereas Green's Theorem relates a double integral over a plane region D to a line integral around its plane boundary curve, Stokes' Theorem relates a surface integral over a surface S to a line integral around the boundary curve of S (which is a space curve). Figure 1 shows

FIGURE I

Stokes' Theorem is named after the Irish mathematical physicist Sir George Stokes (1819—1903). Stokes was a professor at Cambridge University (in fact he held the same position as Newton, Lucasian Professor of Mathematics) and was especially noted for his studies of fluid flow and light. What we call Stokes' Theorem was actually discovered by the Scottish physicist Sir William Thomson (1824—1907, known as Lord Kelvin). Stokes learned of this theorem in a letter from Thomson in 1850 and asked students to prove it on an examination at Cambridge University in 1854. We don't know if any of those students was able to do so.

STOKES' THEOREM Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let F be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \text{ curl } \mathbf{F} \cdot d\mathbf{S}$$

Since

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \mathbf{F} \cdot \mathbf{T} \, ds \qquad \text{and} \qquad \iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, dS$$

Stokes' Theorem says that the line integral around the boundary curve of S of the tangential component of F is equal to the surface integral of the normal component of the curl of F.

The positively oriented boundary curve of the oriented surface S is often written as ∂S , so Stokes' Theorem can be expressed as

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{\partial S} \mathbf{F} \cdot d\mathbf{r}$$

There is an analogy among Stokes' Theorem, Green's Theorem, and the Fundamental Theorem of Calculus. As before, there is an integral involving derivatives on the left side of Equation 1 (recall that curl **F** is a sort of derivative of **F**) and the right side involves the values of **F** only on the *boundary* of S.

In fact, in the special case where the surface S is flat and lies in the xy-plane with upward orientation, the unit normal is k, the surface integral becomes a double integral, and Stokes' Theorem becomes

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \text{curl } \mathbf{F} \cdot d\mathbf{S} = \iint_{S} (\text{curl } \mathbf{F}) \cdot \mathbf{k} \, dA$$

This is precisely the vector form of Green's Theorem given in Equation 16.5.12. Thus we see that Green's Theorem is really a special case of Stokes' Theorem.

Although Stokes' Theorem is too difficult for us to prove in its full generality, we can give a proof when S is a graph and F, S, and C are well behaved.

FIGURE 2

PROOF OF A SPECIAL CASE OF STOKES' THEOREM We assume that the equation of S is z=g(x,y), $(x,y)\in D$, where g has continuous second-order partial derivatives and D is a simple plane region whose boundary curve C_1 corresponds to C. If the orientation of S is upward, then the positive orientation of C corresponds to the positive orientation of C_1 . (See Figure 2.) We are also given that $\mathbf{F}=P\mathbf{i}+Q\mathbf{j}+R\mathbf{k}$, where the partial derivatives of P, Q, and R are continuous.

Since S is a graph of a function, we can apply Formula 16.7.10 with \mathbf{F} replaced by curl \mathbf{F} . The result is

$$\boxed{2} \quad \iint_{S} \text{curl } \mathbf{F} \cdot d\mathbf{S} \\
= \iint_{D} \left[-\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \frac{\partial z}{\partial x} - \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \frac{\partial z}{\partial y} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \right] dA$$

where the partial derivatives of P, Q, and R are evaluated at (x, y, g(x, y)). If

$$x = x(t)$$
 $y = y(t)$ $a \le t \le b$

is a parametric representation of C_1 , then a parametric representation of C is

$$x = x(t)$$
 $y = y(t)$ $z = g(x(t), y(t))$ $a \le t \le b$

This allows us, with the aid of the Chain Rule, to evaluate the line integral as follows:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \left(P \frac{dx}{dt} + Q \frac{dy}{dt} + R \frac{dz}{dt} \right) dt$$

$$= \int_{a}^{b} \left[P \frac{dx}{dt} + Q \frac{dy}{dt} + R \left(\frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} \right) \right] dt$$

$$= \int_{a}^{b} \left[\left(P + R \frac{\partial z}{\partial x} \right) \frac{dx}{dt} + \left(Q + R \frac{\partial z}{\partial y} \right) \frac{dy}{dt} \right] dt$$

$$= \int_{C_{1}} \left(P + R \frac{\partial z}{\partial x} \right) dx + \left(Q + R \frac{\partial z}{\partial y} \right) dy$$

$$= \iint \left[\frac{\partial}{\partial x} \left(Q + R \frac{\partial z}{\partial y} \right) - \frac{\partial}{\partial y} \left(P + R \frac{\partial z}{\partial x} \right) \right] dA$$

where we have used Green's Theorem in the last step. Then, using the Chain Rule again and remembering that P, Q, and R are functions of x, y, and z and that z is itself a function of x and y, we get

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \left[\left(\frac{\partial Q}{\partial x} + \frac{\partial Q}{\partial z} \frac{\partial z}{\partial x} + \frac{\partial R}{\partial x} \frac{\partial z}{\partial y} + \frac{\partial R}{\partial z} \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} + R \frac{\partial^{2} z}{\partial x \partial y} \right) - \left(\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial R}{\partial y} \frac{\partial z}{\partial x} + \frac{\partial R}{\partial z} \frac{\partial z}{\partial y} \frac{\partial z}{\partial x} + R \frac{\partial^{2} z}{\partial y \partial x} \right) \right] dA$$

Four of the terms in this double integral cancel and the remaining six terms can be arranged to coincide with the right side of Equation 2. Therefore

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathbf{S}} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$$

O

YA EXAMPLE 1 Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = -y^2 \mathbf{i} + x \mathbf{j} + z^2 \mathbf{k}$ and C is the curve of intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$. (Orient C to be counterclockwise when viewed from above.)

SOLUTION The curve C (an ellipse) is shown in Figure 3. Although $\int_C {f F} \cdot d{f r}$ could be evaluated directly, it's easier to use Stokes' Theorem. We first compute

curl
$$\mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y^2 & x & z^2 \end{vmatrix} = (1 + 2y) \mathbf{k}$$

Although there are many surfaces with boundary C, the most convenient choice is the elliptical region S in the plane y + z = 2 that is bounded by C. If we orient S upward, then C has the induced positive orientation. The projection D of S on the xy-plane is the disk $x^2 + y^2 \le 1$ and so using Equation 16.7.10 with z = g(x, y) = 2 - y, we have

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \text{curl } \mathbf{F} \cdot d\mathbf{S} = \iint_{D} (1 + 2y) \, dA$$

$$= \int_{0}^{2\pi} \int_{0}^{1} (1 + 2r \sin \theta) \, r \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \left[\frac{r^{2}}{2} + 2 \frac{r^{3}}{3} \sin \theta \right]_{0}^{1} d\theta = \int_{0}^{2\pi} \left(\frac{1}{2} + \frac{2}{3} \sin \theta \right) d\theta$$

$$= \frac{1}{2} (2\pi) + 0 = \pi$$

SOLUTION To find the boundary curve C we solve the equations $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 = 1$. Subtracting, we get $z^2 = 3$ and so $z = \sqrt{3}$ (since z > 0). Thus C is the circle given by the equations $x^2 + y^2 = 1$, $z = \sqrt{3}$. A vector equation of C is

$$\mathbf{r}(t) = \cos t \,\mathbf{i} + \sin t \,\mathbf{j} + \sqrt{3} \,\mathbf{k} \qquad 0 \le t \le 2\pi$$

$$\mathbf{r}'(t) = -\sin t \,\mathbf{i} + \cos t \,\mathbf{j}$$

Therefore, by Stokes' Theorem,

so

Also, we have $\mathbf{F}(\mathbf{r}(t)) = \sqrt{3} \cos t \,\mathbf{i} + \sqrt{3} \sin t \,\mathbf{j} + \cos t \sin t \,\mathbf{k}$

 $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$ $= \int_0^{2\pi} \left(-\sqrt{3} \cos t \sin t + \sqrt{3} \sin t \cos t \right) dt$ $=\sqrt{3}\int_{0}^{2\pi}0\,dt=0$

: 3

Note that in Example 2 we computed a surface integral simply by knowing the values of F on the boundary curve C. This means that if we have another oriented surface with the same boundary curve C, then we get exactly the same value for the surface integral!

In general, if S_1 and S_2 are oriented surfaces with the same oriented boundary curve C and both satisfy the hypotheses of Stokes' Theorem, then

$$\iint_{S_1} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_C \mathbf{F} \cdot d\mathbf{r} = \iint_{S_2} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$$

This fact is useful when it is difficult to integrate over one surface but easy to integrate over the other.

We now use Stokes' Theorem to throw some light on the meaning of the curl vector. Suppose that C is an oriented closed curve and v represents the velocity field in fluid flow. Consider the line integral

$$\int_C \mathbf{v} \cdot d\mathbf{r} = \int_C \mathbf{v} \cdot \mathbf{T} \, ds$$

and recall that $\mathbf{v} \cdot \mathbf{T}$ is the component of \mathbf{v} in the direction of the unit tangent vector \mathbf{T} . This means that the closer the direction of v is to the direction of T, the larger the value of $\mathbf{v} \cdot \mathbf{T}$. Thus $\int_C \mathbf{v} \cdot d\mathbf{r}$ is a measure of the tendency of the fluid to move around C and is called the **circulation** of \mathbf{v} around C. (See Figure 5.)

Now let $P_0(x_0, y_0, z_0)$ be a point in the fluid and let S_a be a small disk with radius a and center P_0 . Then $(\operatorname{curl} \mathbf{F})(P) \approx (\operatorname{curl} \mathbf{F})(P_0)$ for all points P on S_a because $\operatorname{curl} \mathbf{F}$ is continuous. Thus, by Stokes' Theorem, we get the following approximation to the circulation around the boundary circle C_a :

$$\int_{C_a} \mathbf{v} \cdot d\mathbf{r} = \iint_{S_a} \operatorname{curl} \mathbf{v} \cdot d\mathbf{S} = \iint_{S_a} \operatorname{curl} \mathbf{v} \cdot \mathbf{n} \, dS$$

$$\approx \iint_{S_a} \operatorname{curl} \mathbf{v}(P_0) \cdot \mathbf{n}(P_0) \, dS = \operatorname{curl} \mathbf{v}(P_0) \cdot \mathbf{n}(P_0) \pi a^2$$

This approximation becomes better as $a \rightarrow 0$ and we have

$$\operatorname{curl} \mathbf{v}(P_0) \cdot \mathbf{n}(P_0) = \lim_{a \to 0} \frac{1}{\pi a^2} \int_{C_a} \mathbf{v} \cdot d\mathbf{r}$$

Equation 4 gives the relationship between the curl and the circulation. It shows that curl $\mathbf{v} \cdot \mathbf{n}$ is a measure of the rotating effect of the fluid about the axis \mathbf{n} . The curling effect is greatest about the axis parallel to curl v.

Finally, we mention that Stokes' Theorem can be used to prove Theorem 16.5.4 (which states that if curl F = 0 on all of \mathbb{R}^3 , then F is conservative). From our previous work (Theorems 16.3.3 and 16.3.4), we know that **F** is conservative if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C. Given C, suppose we can find an orientable surface S whose boundary is C. (This can be done, but the proof requires advanced techniques.) Then Stokes' Theorem gives

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \text{curl } \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{0} \cdot d\mathbf{S} = 0$$

A curve that is not simple can be broken into a number of simple curves, and the integrals around these simple curves are all 0. Adding these integrals, we obtain $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any closed curve C.

(a) $\int_C \mathbf{v} \cdot d\mathbf{r} > 0$, positive circulation

(b) $\int_C \mathbf{v} \cdot d\mathbf{r} < 0$, negative circulation

FIGURE 5

Imagine a tiny paddle wheel placed in the fluid at a point P, as in Figure 6; the paddle wheel rotates fastest when its axis is parallel to curl v.

FIGURE 6

EXERCISES

nisphere H and a portion P of a paraboloid are shown. ose F is a vector field on \mathbb{R}^3 whose components have conus partial derivatives. Explain why

$$\iint\limits_{R} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{P} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$$

Ise Stokes' Theorem to evaluate $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$.

 $(x, y, z) = 2y \cos z \mathbf{i} + e^x \sin z \mathbf{j} + xe^y \mathbf{k}$, is the hemisphere $x^2 + y^2 + z^2 = 9$, $z \ge 0$, oriented yward

 $(x, y, z) = x^2 z^2 \mathbf{i} + y^2 z^2 \mathbf{j} + xyz \mathbf{k}$, is the part of the paraboloid $z = x^2 + y^2$ that lies inside the ylinder $x^2 + y^2 = 4$, oriented upward

 $y'(x, y, z) = x^2y^3z$ **i** + $\sin(xyz)$ **j** + xyz **k**, is the part of the cone $y^2 = x^2 + z^2$ that lies between the danes y = 0 and y = 3, oriented in the direction of the positive y-axis

 $\mathbb{F}(x, y, z) = xyz \mathbf{i} + xy \mathbf{j} + x^2yz \mathbf{k}$, 5 consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward [Hint: Use Equation 3.]

 $\mathbf{F}(x, y, z) = e^{xy} \cos z \, \mathbf{i} + x^2 z \, \mathbf{j} + xy \, \mathbf{k}$, S is the hemisphere $x = \sqrt{1 - y^2 - z^2}$, oriented in the direction of the positive x-axis [Hint: Use Equation 3.]

0 Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$. In each case C is ented counterclockwise as viewed from above.

| $\mathbf{F}(x, y, z) = (x + y^2)\mathbf{i} + (y + z^2)\mathbf{j} + (z + x^2)\mathbf{k}$, C is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)

 $\mathbf{F}(x, y, z) = e^{-x} \mathbf{i} + e^{x} \mathbf{j} + e^{z} \mathbf{k},$ C is the boundary of the part of the plane 2x + y + 2z = 2 in the first octant

F $(x, y, z) = yz \mathbf{i} + 2xz \mathbf{j} + e^{xy} \mathbf{k},$ C is the circle $x^2 + y^2 = 16, z = 5$ 10. $\mathbf{F}(x, y, z) = xy\mathbf{i} + 2z\mathbf{j} + 3y\mathbf{k}$, C is the curve of intersection of the plane x + z = 5 and the cylinder $x^2 + y^2 = 9$

11. (a) Use Stokes' Theorem to evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$, where

A

$$\mathbf{F}(x, y, z) = x^2 z \,\mathbf{i} + x y^2 \,\mathbf{j} + z^2 \,\mathbf{k}$$

and C is the curve of intersection of the plane x + y + z = 1 and the cylinder $x^2 + y^2 = 9$ oriented counterclockwise as viewed from above.

(b) Graph both the plane and the cylinder with domains chosen so that you can see the curve C and the surface that you used in part (a).

(c) Find parametric equations for C and use them to graph C.

12. (a) Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = x^2 y \mathbf{i} + \frac{1}{3} x^3 \mathbf{j} + xy \mathbf{k}$ and C is the curve of intersection of the hyperbolic paraboloid $z = y^2 - x^2$ and the cylinder $x^2 + y^2 = 1$ oriented counterclockwise as viewed from above.

(b) Graph both the hyperbolic paraboloid and the cylinder with domains chosen so that you can see the curve C and the surface that you used in part (a).

 \bigcirc (c) Find parametric equations for C and use them to graph C.

13-15 Verify that Stokes' Theorem is true for the given vector field F and surface S.

13. $\mathbf{F}(x, y, z) = y^2 \mathbf{i} + x \mathbf{j} + z^2 \mathbf{k}$, S is the part of the paraboloid $z = x^2 + y^2$ that lies below the plane z = 1, oriented upward

14. $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + xyz \mathbf{k}$, S is the part of the plane 2x + y + z = 2 that lies in the first octant, oriented upward

[15.] $F(x, y, z) = y \mathbf{i} + z \mathbf{j} + x \mathbf{k}$, S is the hemisphere $x^2 + y^2 + z^2 = 1$, $y \ge 0$, oriented in the direction of the positive y-axis

16. Let C be a simple closed smooth curve that lies in the plane x + y + z = 1. Show that the line integral

$$\int_C z\,dx - 2x\,dy + 3y\,dz$$

depends only on the area of the region enclosed by C and not on the shape of C or its location in the plane.

17. A particle moves along line segments from the origin to the points (1, 0, 0), (1, 2, 1), (0, 2, 1), and back to the origin under the influence of the force field

$$\mathbf{F}(x, y, z) = z^2 \mathbf{i} + 2xy \mathbf{j} + 4y^2 \mathbf{k}$$

Find the work done.

18. Evaluate

$$\int_C (y + \sin x) dx + (z^2 + \cos y) dy + x^3 dz$$

where C is the curve $\mathbf{r}(t) = \langle \sin t, \cos t, \sin 2t \rangle$, $0 \le t \le 2\pi$. [*Hint:* Observe that C lies on the surface z = 2xy.]

- 19. If S is a sphere and F satisfies the hypotheses of Stokes' Theorem, show that $\iint_S \text{curl } \mathbf{F} \cdot d\mathbf{S} = 0$.
- **20.** Suppose S and C satisfy the hypotheses of Stokes' Theorem and f, g have continuous second-order partial derivatives. Use Exercises 24 and 26 in Section 16.5 to show the following.

(a)
$$\int_C (f \nabla g) \cdot d\mathbf{r} = \iint_S (\nabla f \times \nabla g) \cdot d\mathbf{S}$$

(b)
$$\int_C (f \nabla f) \cdot d\mathbf{r} = 0$$

(c)
$$\int_C (f \nabla g + g \nabla f) \cdot d\mathbf{r} = 0$$

WRITING

The photograph shows a stained-glass window at Cambridge University in honor of George Green.

Courtesy of the Masters and Fellows of Gonville and Caius College, University of Cambridge, England

www.stewartcalculus.com

The Internet is another source of information for this project. Click on *History of Mathematics*. Follow the links to the St. Andrew's site and that of the British Society for the History of Mathematics.

THREE MEN AND TWO THEOREMS

Although two of the most important theorems in vector calculus are named after George Green and George Stokes, a third man, William Thomson (also known as Lord Kelvin), played a large role in the formulation, dissemination, and application of both of these results. All three men were interested in how the two theorems could help to explain and predict physical phenomena in electricity and magnetism and fluid flow. The basic facts of the story are given in the margin notes on pages 1056 and 1093.

Write a report on the historical origins of Green's Theorem and Stokes' Theorem. Explain the similarities and relationship between the theorems. Discuss the roles that Green, Thomson, and Stokes played in discovering these theorems and making them widely known. Show how both theorems arose from the investigation of electricity and magnetism and were later used to study a variety of physical problems.

The dictionary edited by Gillispie [2] is a good source for both biographical and scientific information. The book by Hutchinson [5] gives an account of Stokes' life and the book by Thompson [8] is a biography of Lord Kelvin. The articles by Grattan-Guinness [3] and Gray [4] and the book by Cannell [1] give background on the extraordinary life and works of Green. Additional historical and mathematical information is found in the books by Katz [6] and Kline [7].

- 1. D. M. Cannell, George Green, Mathematician and Physicist 1793–1841: The Background to His Life and Work (Philadelphia: Society for Industrial and Applied Mathematics, 2001).
- 2. C. C. Gillispie, ed., *Dictionary of Scientific Biography* (New York: Scribner's, 1974). See the article on Green by P. J. Wallis in Volume XV and the articles on Thomson by Jed Buchwald and on Stokes by E. M. Parkinson in Volume XIII.
- I. Grattan-Guinness, "Why did George Green write his essay of 1828 on electricity and magnetism?" Amer. Math. Monthly, Vol. 102 (1995), pp. 387–396.
- 4. J. Gray, "There was a jolly miller." The New Scientist, Vol. 139 (1993), pp. 24-27.
- 5. G. E. Hutchinson, *The Enchanted Voyage and Other Studies* (Westport, CT: Greenwood Press, 1978).
- **6.** Victor Katz, *A History of Mathematics: An Introduction* (New York: HarperCollins, 1993), pp. 678–680.
- 7. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford University Press, 1972), pp. 683–685.
- 8. Sylvanus P. Thompson, The Life of Lord Kelvin (New York: Chelsea, 1976).