

11: Mapping III

DEPARTMENT OF MECHANICAL ENGINEERING

Instructor:

DR. ALEX RAMIREZ-SERRANO

Office: MEB 523 Phone: 220-3632 E-mail: aramirez@ucalgary.ca

CANADA

COMPONENTS

OUTLINE

- The GraphSLAM algorithm
 - Derivation of feature-based optimization problem
 - Derivation of scan-based optimization problem
 - Discussion of solution methods
 - Implementation and Results

TWO MAIN SLAM APPROACHES

- Online SLAM (have discussed this: use <u>new information</u> in estimate)
 - Filter version of the SLAM problem, maximize

$$p(x_t|y_{1:t},u_{1:t})$$

- Process new information as it is received
- Generate current best estimate, rely on Markov assumption and linearity to trust this is the best you can do, and use the solution in subsequent steps
- EKF SLAM, FastSLAM, Occupancy Grid SLAM, etc.
- Full SLAM (use the entire history of the information collected)
 - Smoothing version of the SLAM problem, maximize

$$p(x_{0:t}|y_{1:t},u_{1:T})$$

- Store all information as collected, only resolve into poses and map when needed
- Work on all information, allows for re-linearization during the optimization process
- Can resolve correspondence as well, allowing for a more robust solution

FULL SLAM PROBLEM

Full SLAM - Features

• Simulation determine the robot pose history and static feature location in the environment.

$$x_{t}^{r} = \begin{pmatrix} X_{t} \\ Y_{t} \\ Z_{t} \\ \phi_{t} \\ \psi_{t} \end{pmatrix}, \quad m_{i} = \begin{pmatrix} m_{i,X} \\ m_{i,Y} \\ m_{i,Z} \end{pmatrix}, \quad m = \begin{pmatrix} m_{1} \\ \vdots \\ m_{M} \end{pmatrix}, \quad x_{0:t} = \begin{pmatrix} x_{0}^{r} \\ x_{1}^{r} \\ \vdots \\ x_{t}^{r} \\ m \end{pmatrix}, \quad x_{t} \begin{pmatrix} x_{t}^{r} \\ m \end{pmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$Robot State \qquad i^{th} feature \qquad Feature \qquad Full robot \qquad Full state (robot at time "t")$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$Robot State \qquad i^{th} feature \qquad Feature \qquad full robot \qquad full state (robot at time "t")$$

FULL SLAM PROBLEM

- Available information
 - Inputs & Motion model

$$u_{0:t}, x_t^r = g(x_{t-1}^r, u_t) + \delta_t$$

Measurements & Measurement model

$$y_{1:t}, y_t = h(x_t^r, m) + \varepsilon_t$$

• Again, we'll assume good correspondence information, but this is an important part of GraphSLAM, can include correspondence as part of the optimization

ILLUSTRATION OF THE CONSTRAINT GRAPH

We are interested in finding the maximum likelihood state estimation

$$\max_{x_{0:t}} p(x_{0:t}|y_{1:t}, u_{1:t})$$

Apply Bayes rule to separate out the current measurements

$$p(x_{0:t}|y_{1:t}, u_{1:t}) = \eta \ p(y_t|x_{0:t}, u_{1:t}) \ p(x_{0:t}|y_{1:t-1}, u_{1:t})$$
$$= \eta \ p(y_t|x_t) \ p(x_{0:t}|y_{1:t-1}, u_{1:t})$$

Next, separate out the motion through factoring of the probabilities of second term, since y_t is not present

$$p(x_{0:t}|y_{1:t-1}, u_{1:t})$$

$$= p(x_t^r|x_{0:t-1}, u_{1:t}) p(x_{0:t-1}|y_{1:t-1}, u_{1:t})$$

$$= p(x_t^r|x_{t-1}, u_t) p(x_{0:t-1}|y_{1:t-1}, u_{1:t})$$

o These steps we repeat until the beginning of time to get

$$p(x_{0:t}|y_{1:t}, u_{1:t}) = \eta \ p(x_0) \prod_{\tau=1}^{t} p(x_{\tau}^r|x_{\tau-1}^r, u_{\tau}) p(y_{\tau}|x_{\tau})$$
$$= \eta \ p(x_0) \prod_{\tau=1}^{t} p(x_{\tau}^r|x_{\tau-1}^r, u_{\tau}) \prod_{i} p(y_{\tau}^i|x_{\tau})$$

If there is no prior information about the map, use $p(x_0^r)$

• We can redefine our optimization problem as:

$$\max_{x_{0:t}} p(x_{0:t}|y_{1:t}, u_{1:t})$$

$$\max_{x_{0:t}} \eta \ p(x_0) \prod_{\tau=1} \left(p(x_{\tau}^r|x_{\tau-1}^r, u_{\tau}) \prod_{i} p(y_{\tau}^i|x_{\tau}) \right)$$

$$\min_{x_{0:t}} -\ln \left(\eta \ p(x_0) \prod_{\tau=1} \left(p(x_{\tau}^r|x_{\tau-1}^r, u_{\tau}) \prod_{i} p(y_{\tau}^i|x_{\tau}) \right) \right)$$

• We can redefine our optimization problem as

$$\min -\ln \left(\eta \ p(x_0) \prod_{\tau=1} \left(p(x_\tau^r | x_{\tau-1}^r, u_\tau) \prod_i p(y_\tau^i | x_\tau) \right) \right)$$

$$\min_{\mathbf{x}_{0:t}} \mathbf{J} = \text{const.} - \ln(p(x_0))$$

$$-\sum_{\tau=1}^{t} \left(\ln \left(p(x_{\tau}^{r} | x_{\tau-1}^{r}, u_{t}) \right) \right) - \sum_{\tau=1}^{t} \sum_{i} \ln \left(p(y_{t}^{i} | x_{t}) \right)$$

- The assumption about additive Gaussian noise and disturbances means that the motion and measurement models can be expressed as Gaussian distributions
 - Motion:

$$p(x_t^r | x_{t-1}^r, u_t) = \eta e^{-\frac{1}{2} [x_t^r - g(x_{t-1}^r, u_t)]^T R^{-1} [x_t^r - g(x_{t-1}^r, u_t)]}$$

Measurement:

$$p(y_t^i|x_t) = \eta e^{-\frac{1}{2}[y_t^i - h(x_t)]^T Q^{-1}[y_t^i - h(x_t)]}$$

• Prior: $p(x_0) = \eta e^{-\frac{1}{2}[x_0 - \mu_0]^T \Sigma_0^{-1}[x_0 - \mu_0]}$

$$\mu_0 = 0, \qquad \Sigma_0 = 0, \qquad \Sigma_0^{-1} = \infty I$$

- The negative log likelihoods therefore all take the *Mahalonobis distance* form
 - Motion:

$$-\ln p(x_t^r | x_{t-1}^r, u_t) = const. + [x_t^r - g(x_{t-1}^r, u_t)]^T R^{-1} [x_t^r - g(x_{t-1}^r, u_t)]$$

Measurement:

$$-\ln p(y_t^i|x_t) = const. + [y_t^i - h(x_t)]^T Q^{-1} [y_t^i - h(x_t)]$$

• Prior:

$$-\ln p(x_0) = const. + [x_0 - \mu_0]^T \Sigma_0^{-1} [x_0 - \mu_0]$$

• The final form of optimization is now

$$\begin{aligned} \min_{z_{0:t}} J &= const. + [x_0 - \mu]^T \; \Sigma_0^{-1} [x_0 - \mu_0] \\ &+ \sum_{t=1}^t [x_t^r - g(x_{t-1}^r, u_t)]^T \; R^{-1} [x_t^r - g(x_{t-1}^r, u_t)] \\ &+ \sum_{t=1}^{t=1} \sum_i \left[y_t^i - h(x_t) \right]^T Q^{-1} [y_t^i - h(x_t)] \end{aligned}$$

- O This is an unconstrained nonlinear optimization problem, which now needs to be solved somehow.
 - There is a lot of structure to the problem, because of the sequential nature of the motion constraints and the measurement of features at only a few instances in time.

GRAPH CONSTRAINTS

- The constraints on the graph can now be thought of in a least squares sense.
 - Over-determined set of constraints, optimization aims to minimize the total violation of the full set of constraints
 - Can be considered a weighted distance minimization
 - Errors minimized together based on inverse of covariance weighting (*information matrix*)
 - o Motion:

$$[x_t^r - g(x_{t-1}^r, u_t)]^T R^{-1}[x_t^r - g(x_{t-1}^r, u_t)] = 0$$

o Measurement:

$$[y_t^i - h(x_t, c_t)]^T Q^{-1} [y_t^i - h(x_t, c_t)] = 0$$

ILLUSTRATION OF THE CONSTRAINT GRAPH

- o For standard nonlinear optimization packages, you must provide
 - Cost function

$$J = const. + [x_0 - \mu]^T \sum_{t=1}^{T} [x_0 - \mu_0] + \sum_{t=1}^{t} [x_t^r - g(x_{t-1}^r, u_t)]^T R^{-1} [x_t^r - g(x_{t-1}^r, u_t)]$$

$$\sum_{t=1}^{T-1} \sum_{i} [y_t^i - h(x_t)]^T Q^{-1} [y_t^i - h(x_t)]$$

Gradient function

$$\frac{\partial J}{\partial x_0} = [x_0 - \mu_0]^T \ \Sigma_0^{-1} + [x_1^r - g(x_0^r, u_t)]^T \ R^{-1} \frac{-\partial}{\partial x_0} [g(x_0^r, u_t)]$$

$$\frac{\partial J}{\partial x_t^r} = -[x_{t+1}^r - g(x_t^r, u_{t+1})]^T \ R^{-1} \frac{\partial}{\partial x_t^r} [g(x_t^r, u_{t+1}) + [x_t^r - g(x_{t-1}^r, u_t)]^T \ R^{-1}$$

$$-\sum_i [y_t^i - h(x_t)]^T Q^{-1} \frac{\partial}{\partial x_t^r} [h(x_t)]$$

$$\frac{\partial y}{\partial x} = -\sum_i [y_t^i - h(x_t)]^T Q^{-1} \frac{\partial}{\partial x_t^m} [h(x_t)]$$

• Initial Estimate of compete state (from odometry, other sensors)

$$\tilde{x}_{0:t}$$

GRAPHSLAM PRELIMINARY RESULTS

- o Example (video)
 - GraphSLAM: No collision avoidance implemented

Results: Robot going on circles performing GraphSLAM.

GRAPHSLAM PRELIMINARY RESULTS

GRAPHSLAM

- GraphSLAM by *Thrun and Montemerlo* [2006]
 - Many interesting customizations to make optimization tractable
 - Linearization of models to form locally quadratic problem
 - Factorization of map into robot poses to reduce graph size
 - Scan points used as features with correspondence updated inside optimization
 - Full details in *Chap 11 of Probabilistic Robotics*

OUTLINE

- The GraphSLAM algorithm
 - Derivation of feature-based optimization problem
 - Derivation of scan-based optimization problem
 - Discussion of solution methods
 - Implementation and Results

- GraphSLAM Scan Registration
 - No map elements are included in the state vector.
 - Instead, all scans are converted into relative pose measurement through registration

$$x_{t}^{r} = \begin{pmatrix} x_{t} \\ Y_{t} \\ Z_{t} \\ \phi_{t} \\ \theta_{t} \\ \psi_{t} \end{pmatrix}, \qquad x_{0:t} = \begin{pmatrix} x_{0}^{r} \\ x_{1}^{r} \\ \vdots \\ \vdots \\ x_{t}^{r} \end{pmatrix}$$

$$Robot State at time "t" Full state$$

 True, odometry motion and resulting scans, can choose to include motion model constraint

ICP scan match is a measurement between current and previous pose

- Available information
 - Inputs and Motion model

$$u_{0:t}, x_t^r = g(x_{t-1}^r, u_t) + \delta_t$$

• Measurement and measurement model (*surrogates of the motion model*)

$$y_{1:t}, \quad y_t = h(x_t^r, x_{t-1}^r) + \varepsilon_t = x_t^r - R_t^* x_{t-1}^r - t_t^*$$

- \circ where $y_t = 0$
- The scan registration process, therefore, changes the measurement model into a motion model
 - Depends on the current and previous robot state only
 - Can choose to include regular motion model too, and will be weighted based on relative uncertainty

GRAPHSLAM DERIVATION (Lu / Milios)

• Thus, the resulting negative log likelihood measurement constraint for each ICP match is:

$$-\ln p(y_t|x_{t-1:t}) = const. + [y_t - h(x_{t-1:t})]^T Q^{-1}[y_t - h(x_{t-1:t})]$$

• In general, if loop closure is detected from scan *i* to scan *j*, we can add a measurement constraint between any two poses

$$-\ln p(y_{i,j}|x_{i,j}) = const. + [y_{i,j} - h(x_{i,j})]^T Q^{-1}[y_{i,j} - h(x_{i,j})]$$

 The full set of constraints collected are once again formed into a large optimization problem

GRAPHSLAM DERIVATION (Lu / Milios)

 Again, we take the negative log likelihood version of the cost function

$$\min_{x_{0:t}} J = const. + \sum_{i,j} \left[y_{i,j} - h(x_{i,j}) \right]^T Q_{i,j}^{-1} \left[y_{i,j} - h(x_{i,j}) \right]$$
Registered pairs of individual scans

- o Then solve the quadratic program however we'd like
 - Pseudo-inverse
 - Gauss-Newton
 - Levenberg-Marquardt

RESULTS FROM Lu AND Milios

 Example: Odometry only, and with GraphSLAM, using Sick Lidar [Lu, Milios at York in 1997]

GRAPHSLAM RESULTS

Example: Same idea applied on the Stanford University campus [S. Thrun and M. Montemerlo at Stanford in 2006, Intl. J. of Robotic Research, Vol. 25, Issue 5-6, pp. 403-429]

GRAPHSLAM RESULTS

OGPS / Odometry map of Stanford (600m x 600m)

GRAPHSLAM RESULTS

Corrected using GraphSLAM

EXTENSIONS

- 3D GraphSLAM [Nuchter 2008]
 - Extension is actually taking the derivation for linearization and moving it to 3D. Looked a lot at what the best way is for numerical stability of the solution when formulating the problem as a sequence of 3DOF inertial poses.
 - Euler angles
 - O Quaternions
 - Helical motion
 - Rotation Linearization
 - ICP related improvements using KD-trees
 - Global Relaxation, a method for revisiting scan matching given the results of GraphSLAM

RESULTS FROM NUTCHER

Large scale outdoor campus mapping without Loop Closure

RESULTS FROM NUTCHER

Large scale outdoor campus mapping with Loop Closure

EXTENSIONS BY OLSON

- Re-parameterization [*Olson 2009*]
 - Most work uses a sequence of transformations between global poses to capture the motion of the robot
 - Olson uses an addition of differences in the pose parameters
 - This is inexact, but much faster

Stochastic Gradient Descent

- Do forever:
 - Pick a constraint
 - Descend in direction of constraint's gradient
 - Scale gradient magnitude by alpha/iteration
 - o Clamp step size
- Iteration ++
- Alpha/iteration $\rightarrow 0$ as $\rightarrow \infty$
- Robustness to local concavities
 - O Hop around the state space, "stick" in the best one
- Good solution very fast "perfect" solution only as $t \to \infty$

RESULTS FROM OLSON

EXTENSIONS

- O Grisetti further modified the structure of the optimization by reorganizing the nodes of the graph into a tree with extra loop closing links. [*Grisetti 2010*]
 - A direct extension of Olson's formulation

RESULTS FROM TORO

o Example: 1000 nodes less than a second to compute

We saw the video on the same environment that took several minutes to generate (see Mapping II slides, Slide 69 – Occupancy Grid SLAM)

RESULTS FROM TORO

Fig. 4. Results of Olson's algorithm (first row) and our approach (second row) after 1, 10, 50, 100, 300 iterations for a network with 64k constraints. The black areas in the images result from constraints between nodes which are not perfectly corrected after the corresponding iteration (for timings see Figure 6).

RESULTS FROM TORO

Original

Parking Garage

Optimized

CURRENT STANDARD -G2O (Graphics Based Optimizer -

open source)

- Fast Backend Solver[Grisetti, 2011]
- Takes the best of previous methods
- Works on wide range of problems
- Uses standard linear algebra packages
- Easily extensible, modifiable
- Available on OpenSLAM
- Integrated into ROS

RESULTS FROM NASA SAMPLE RETURN

- o Example (video)
 - NASA Sample return mission

- Individual robot position where a scan was taken
- Scan registration pair between two individual robot scans during its motion though the terrain

Results: Test before the rover was sent to Mars.

STATE OF THE ART [Oxford Dynamic Robotic Systems Group, 2019]

- Example (*video*)
 - Real-time large scale dense loop closure with volumetric mapping

Online LiDAR-SLAM for Legged Robots with Robust Registration & Deep-Learned Loop Closure.