Introduction to Latent Variable Models

Piyush Rai

Probabilistic Machine Learning (CS772A)

Aug 29, 2017

A Simple Generative Model

ullet All observations $\{m{x}_1,\ldots,m{x}_N\}$ generated from a distribution $p(m{x}|m{ heta})$

A Simple Generative Model

ullet All observations $\{m{x}_1,\ldots,m{x}_N\}$ generated from a distribution $p(m{x}|m{ heta})$

ullet Unknowns: Parameters heta of the assumed data distribution $p(oldsymbol{x}| heta)$

A Simple Generative Model

ullet All observations $\{m{x}_1,\ldots,m{x}_N\}$ generated from a distribution $p(m{x}| heta)$

- ullet Unknowns: Parameters heta of the assumed data distribution $p(oldsymbol{x}| heta)$
- Many ways to estimate the parameters (MLE, MAP, or Bayesian inference)

ullet Assume each observation $oldsymbol{x}_n$ to be associated with a latent variable $oldsymbol{z}_n$

- ullet In this "latent variable model" of data generation, data $oldsymbol{x}$ also depends some latent variable(s) $oldsymbol{z}$
- z_n is akin to a latent representation or "encoding" of x_n ; controls what data "looks like".

- ullet In this "latent variable model" of data generation, data $oldsymbol{x}$ also depends some latent variable(s) $oldsymbol{z}$
- z_n is akin to a latent representation or "encoding" of x_n ; controls what data "looks like".E.g,
 - $z_n \in \{1, \dots, K\}$ denotes the cluster x_n belongs to

- ullet In this "latent variable model" of data generation, data $oldsymbol{x}$ also depends some latent variable(s) $oldsymbol{z}$
- z_n is akin to a latent representation or "encoding" of x_n ; controls what data "looks like".E.g,
 - $z_n \in \{1, \ldots, K\}$ denotes the cluster x_n belongs to
 - $oldsymbol{z}_n \in \mathbb{R}^K$ denotes a low-dimensional latent representation or latent "code" for $oldsymbol{x}_n$

ullet Assume each observation $oldsymbol{x}_n$ to be associated with a latent variable $oldsymbol{z}_n$

- ullet In this "latent variable model" of data generation, data $oldsymbol{x}$ also depends some latent variable(s) $oldsymbol{z}$
- z_n is akin to a latent representation or "encoding" of x_n ; controls what data "looks like".E.g,
 - $z_n \in \{1, \ldots, K\}$ denotes the cluster x_n belongs to
 - ullet $oldsymbol{z}_n \in \mathbb{R}^K$ denotes a low-dimensional latent representation or latent "code" for $oldsymbol{x}_n$
- Unknowns: $\{z_1, \ldots, z_N\}$, and (θ, ϕ) .

- ullet In this "latent variable model" of data generation, data $oldsymbol{x}$ also depends some latent variable(s) $oldsymbol{z}$
- z_n is akin to a latent representation or "encoding" of x_n ; controls what data "looks like".E.g,
 - $z_n \in \{1, \ldots, K\}$ denotes the cluster x_n belongs to
 - ullet $oldsymbol{z}_n \in \mathbb{R}^K$ denotes a low-dimensional latent representation or latent "code" for $oldsymbol{x}_n$
- Unknowns: $\{z_1, \ldots, z_N\}$, and (θ, ϕ) . z_n 's called "local" variables; (θ, ϕ) called "global" variables

• Assume data $\{x_n\}_{n=1}^N$ was generated from a mixture of K distributions $p(x|\theta_1), \ldots, p(x|\theta_K)$

ullet Don't know mixture component generated each $oldsymbol{x}_n$

• Assume data $\{x_n\}_{n=1}^N$ was generated from a mixture of K distributions $p(x|\theta_1), \ldots, p(x|\theta_K)$

• Don't know mixture component generated each x_n (o/w it is simply generative classification)

- Don't know mixture component generated each x_n (o/w it is simply generative classification)
- Assume a latent random variable $z_n \in \{1, \dots, K\}$ denotes which component generated x_n

- ullet Don't know mixture component generated each $oldsymbol{x}_n$ (o/w it is simply generative classification)
- ullet Assume a latent random variable $oldsymbol{z}_n \in \{1,\ldots,K\}$ denotes which component generated $oldsymbol{x}_n$
- Here is a simple generative story for each x_n , n = 1, 2, ..., N

- ullet Don't know mixture component generated each $oldsymbol{x}_n$ (o/w it is simply generative classification)
- ullet Assume a latent random variable $oldsymbol{z}_n \in \{1,\ldots,K\}$ denotes which component generated $oldsymbol{x}_n$
- Here is a simple generative story for each x_n , n = 1, 2, ..., N
 - ullet First choose a mixture component $oldsymbol{z}_n \in \{1,2,\ldots,K\}$ as $oldsymbol{z}_n \sim \mathsf{multinoulli}(oldsymbol{z}|\phi)$

- Don't know mixture component generated each x_n (o/w it is simply generative classification)
- ullet Assume a latent random variable $oldsymbol{z}_n \in \{1,\ldots,K\}$ denotes which component generated $oldsymbol{x}_n$
- Here is a simple generative story for each x_n , n = 1, 2, ..., N
 - ullet First choose a mixture component $oldsymbol{z}_n \in \{1,2,\ldots,K\}$ as $oldsymbol{z}_n \sim \mathsf{multinoulli}(oldsymbol{z}|\phi)$
 - Now generate x_n from that mixture component as $x_n \sim p(x|\theta_{z_n})$

- Don't know mixture component generated each x_n (o/w it is simply generative classification)
- ullet Assume a latent random variable $oldsymbol{z}_n \in \{1,\ldots,K\}$ denotes which component generated $oldsymbol{x}_n$
- Here is a simple generative story for each x_n , n = 1, 2, ..., N
 - ullet First choose a mixture component $oldsymbol{z}_n \in \{1,2,\ldots,K\}$ as $oldsymbol{z}_n \sim \mathsf{multinoulli}(oldsymbol{z}|\phi)$
 - Now generate x_n from that mixture component as $x_n \sim \rho(x|\theta_{z_n})$
- Goal: Given data $\{x_n\}_{n=1}^N$, learn the K distributions $(\theta_1,\ldots,\theta_K)$ and latent variables $z_1\ldots,z_N$

- Don't know mixture component generated each x_n (o/w it is simply generative classification)
- ullet Assume a latent random variable $oldsymbol{z}_n \in \{1,\ldots,K\}$ denotes which component generated $oldsymbol{x}_n$
- Here is a simple generative story for each x_n , n = 1, 2, ..., N
 - First choose a mixture component $z_n \in \{1, 2, \dots, K\}$ as $z_n \sim \mathsf{multinoulli}(z|\phi)$
 - Now generate x_n from that mixture component as $x_n \sim p(x|\theta_{z_n})$
- Goal: Given data $\{x_n\}_{n=1}^N$, learn the K distributions $(\theta_1,\ldots,\theta_K)$ and latent variables $z_1\ldots,z_N$
- If each $p(x|\theta_k)$ is a Gaussian \Rightarrow Gaussian Mixture Model

- Don't know mixture component generated each x_n (o/w it is simply generative classification)
- Assume a latent random variable $z_n \in \{1, \dots, K\}$ denotes which component generated x_n
- Here is a simple generative story for each x_n , n = 1, 2, ..., N
 - ullet First choose a mixture component $oldsymbol{z}_n \in \{1,2,\ldots,K\}$ as $oldsymbol{z}_n \sim \mathsf{multinoulli}(oldsymbol{z}|\phi)$
 - Now generate x_n from that mixture component as $x_n \sim p(x|\theta_{z_n})$
- Goal: Given data $\{x_n\}_{n=1}^N$, learn the K distributions $(\theta_1,\ldots,\theta_K)$ and latent variables $z_1\ldots,z_N$
- If each $p(x|\theta_k)$ is a Gaussian \Rightarrow Gaussian Mixture Model (used for probabilistic or "soft" clustering)

ullet Assume data $oldsymbol{x}_n \in \mathbb{R}^D$ generated from a low-dimensional latent factor $oldsymbol{z}_n \in \mathbb{R}^K$

ullet The z to x map can be a linear/nonlinear transformation

- ullet The z to x map can be a linear/nonlinear transformation
- ullet Consider the following generative story for each $oldsymbol{x_n},\ n=1,2,\ldots,N$

- The z to x map can be a linear/nonlinear transformation
- ullet Consider the following generative story for each $oldsymbol{x}_n$, $n=1,2,\ldots,N$
 - ullet First generate $oldsymbol{z}_n$ from a K-dim distr. as $oldsymbol{z}_n \sim p(oldsymbol{z}|\phi)$

- The z to x map can be a linear/nonlinear transformation
- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - First generate z_n from a K-dim distr. as $z_n \sim p(z|\phi)$
 - ullet Now generate $oldsymbol{x}_n$ from a D-dim distr. as $oldsymbol{x}_n \sim p(oldsymbol{x}|oldsymbol{z}_n, heta)$

- The z to x map can be a linear/nonlinear transformation
- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - ullet First generate $oldsymbol{z}_n$ from a K-dim distr. as $oldsymbol{z}_n \sim p(oldsymbol{z}|\phi)$
 - ullet Now generate $oldsymbol{x}_n$ from a D-dim distr. as $oldsymbol{x}_n \sim p(oldsymbol{x}|oldsymbol{z}_n, heta)$
- If $p(z|\phi)$ and $p(x|z,\theta)$ are Gaussians and z to x map linear \Rightarrow factor analysis or probabilistic PCA

• State-space latent variable models (e.g., Hidden Markov Models, Kalman Filters)

• State-space latent variable models (e.g., Hidden Markov Models, Kalman Filters)

 $p(x_t|z_t,\theta)$: Observation Model

• Latent variable models for "relational data" (e.g., ratings matrix, graph, etc.)

 $p(\mathbf{R}_{nm}|\mathbf{u}_{n},\mathbf{v}_{m}\mathbf{\theta})$: Observation Model

State-space latent variable models (e.g., Hidden Markov Models, Kalman Filters)

 $p(x|z,\theta)$: Observation Model

• Latent variable models for "relational data" (e.g., ratings matrix, graph, etc.)

- Semi-supervised generative classification: Some training inputs can be unlabeled
 - These "missing" labels can be treated as latent variables and inferred

Latent Variable Models for Clustering and Density Estimation

ullet A generative model for data clustering. Assume data generated from a mixture of K Gaussians

ullet A generative model for data clustering. Assume data generated from a mixture of K Gaussians

• Let $\pi=(\pi_1,\pi_2,\ldots,\pi_K)$ with $\sum_{k=1}^K \pi_k=1$ denote the "mixing weights" of the K Gaussians

ullet A generative model for data clustering. Assume data generated from a mixture of K Gaussians

- Let $\pi = (\pi_1, \pi_2, \dots, \pi_K)$ with $\sum_{k=1}^K \pi_k = 1$ denote the "mixing weights" of the K Gaussians
- Intuitively $\pi_k \in (0,1)$ is the fraction of data "contributed" by the k-th Gaussian

ullet A generative model for data clustering. Assume data generated from a mixture of K Gaussians

- Let $\pi = (\pi_1, \pi_2, \dots, \pi_K)$ with $\sum_{k=1}^K \pi_k = 1$ denote the "mixing weights" of the K Gaussians
- Intuitively $\pi_k \in (0,1)$ is the fraction of data "contributed" by the k-th Gaussian
- π_k is the prior probability than \mathbf{z}_n comes from the k-th Gaussian (i.e., cluster id $\mathbf{z}_n = k$)

$$p(\boldsymbol{z}_n = k|\pi) = \pi_k$$

• A generative model for data clustering. Assume data generated from a mixture of K Gaussians

- Let $\pi = (\pi_1, \pi_2, \dots, \pi_K)$ with $\sum_{k=1}^K \pi_k = 1$ denote the "mixing weights" of the K Gaussians
- Intuitively $\pi_k \in (0,1)$ is the fraction of data "contributed" by the k-th Gaussian
- π_k is the prior probability than \mathbf{z}_n comes from the k-th Gaussian (i.e., cluster id $\mathbf{z}_n = k$)

$$p(\mathbf{z}_n = k|\pi) = \pi_k$$

• Same as a multinoulli prior on z, i.e., $p(z_n|\pi) = \prod_{k=1}^K \pi_k^{z_{nk}}$

• A generative model for data clustering. Assume data generated from a mixture of K Gaussians

- Let $\pi = (\pi_1, \pi_2, \dots, \pi_K)$ with $\sum_{k=1}^K \pi_k = 1$ denote the "mixing weights" of the K Gaussians
- Intuitively $\pi_k \in (0,1)$ is the fraction of data "contributed" by the k-th Gaussian
- π_k is the prior probability than \mathbf{z}_n comes from the k-th Gaussian (i.e., cluster id $\mathbf{z}_n = k$)

$$p(\mathbf{z}_n = k|\pi) = \pi_k$$

• Same as a multinoulli prior on z, i.e., $p(z_n|\pi) = \prod_{k=1}^K \pi_k^{z_{nk}}$ (note $z_{nk} = 1$ if $z_n = k$; 0 otherwise)

• A generative model for data clustering. Assume data generated from a mixture of K Gaussians

- Let $\pi = (\pi_1, \pi_2, \dots, \pi_K)$ with $\sum_{k=1}^K \pi_k = 1$ denote the "mixing weights" of the K Gaussians
- ullet Intuitively $\pi_k \in (0,1)$ is the fraction of data "contributed" by the k-th Gaussian
- π_k is the prior probability than \mathbf{z}_n comes from the k-th Gaussian (i.e., cluster id $\mathbf{z}_n = k$)

$$p(\mathbf{z}_n = k|\pi) = \pi_k$$

- Same as a multinoulli prior on z, i.e., $p(z_n|\pi) = \prod_{k=1}^K \pi_k^{z_{nk}}$ (note $z_{nk} = 1$ if $z_n = k$; 0 otherwise)
- Given $z_n = k$, we generate x_n from the k-th Gaussian.

• A generative model for data clustering. Assume data generated from a mixture of K Gaussians

- Let $\pi = (\pi_1, \pi_2, \dots, \pi_K)$ with $\sum_{k=1}^K \pi_k = 1$ denote the "mixing weights" of the K Gaussians
- ullet Intuitively $\pi_k \in (0,1)$ is the fraction of data "contributed" by the k-th Gaussian
- π_k is the prior probability than \mathbf{z}_n comes from the k-th Gaussian (i.e., cluster id $\mathbf{z}_n = k$)

$$p(\mathbf{z}_n = k|\pi) = \pi_k$$

- Same as a multinoulli prior on z, i.e., $p(z_n|\pi) = \prod_{k=1}^K \pi_k^{z_{nk}}$ (note $z_{nk} = 1$ if $z_n = k$; 0 otherwise)
- Given $z_n = k$, we generate x_n from the k-th Gaussian. Thus

$$p(\boldsymbol{x}_n|\boldsymbol{z}_n=k)=\mathcal{N}(\boldsymbol{x}_n|\mu_k,\Sigma_k)$$

• Recall that $p(\mathbf{z}_n = k | \pi) = \pi_k$ and the <u>conditional</u> distribution $p(\mathbf{x}_n | \mathbf{z}_n = k) = \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)$

- Recall that $p(\mathbf{z}_n = k | \pi) = \pi_k$ and the <u>conditional</u> distribution $p(\mathbf{x}_n | \mathbf{z}_n = k) = \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)$
- What is the marginal distribution of x_n , i.e., $p(x_n)$?

- Recall that $p(\mathbf{z}_n = k | \pi) = \pi_k$ and the <u>conditional</u> distribution $p(\mathbf{x}_n | \mathbf{z}_n = k) = \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)$
- What is the marginal distribution of x_n , i.e., $p(x_n)$?
 - ullet To get that, we must sum over all possibilities of $oldsymbol{z}_n$

$$p(x_n) = \sum_{k=1}^K p(x_n, z_n = k)$$

- Recall that $p(z_n = k|\pi) = \pi_k$ and the <u>conditional</u> distribution $p(x_n|z_n = k) = \mathcal{N}(x_n|\mu_k, \Sigma_k)$
- What is the marginal distribution of x_n , i.e., $p(x_n)$?
 - To get that, we must sum over all possibilities of z_n

$$p(x_n) = \sum_{k=1}^K p(x_n, z_n = k) = \sum_{k=1}^K p(z_n = k) p(x_n | z_n = k)$$

- Recall that $p(\mathbf{z}_n = k | \pi) = \pi_k$ and the <u>conditional</u> distribution $p(\mathbf{x}_n | \mathbf{z}_n = k) = \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)$
- What is the marginal distribution of x_n , i.e., $p(x_n)$?
 - To get that, we must sum over all possibilities of z_n

$$p(x_n) = \sum_{k=1}^{K} p(x_n, z_n = k) = \sum_{k=1}^{K} p(z_n = k) p(x_n | z_n = k)$$

• Therefore the marginal distribution of x_n will be

- Recall that $p(\mathbf{z}_n = k | \pi) = \pi_k$ and the <u>conditional</u> distribution $p(\mathbf{x}_n | \mathbf{z}_n = k) = \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)$
- What is the marginal distribution of x_n , i.e., $p(x_n)$?
 - To get that, we must sum over all possibilities of z_n

$$p(x_n) = \sum_{k=1}^K p(x_n, z_n = k) = \sum_{k=1}^K p(z_n = k) p(x_n | z_n = k)$$

• Therefore the marginal distribution of x_n will be

$$p(\mathbf{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|\mu_k, \Sigma_k)$$

- Recall that $p(\mathbf{z}_n = k | \pi) = \pi_k$ and the <u>conditional</u> distribution $p(\mathbf{x}_n | \mathbf{z}_n = k) = \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)$
- What is the marginal distribution of x_n , i.e., $p(x_n)$?
 - To get that, we must sum over all possibilities of z_n

$$p(x_n) = \sum_{k=1}^K p(x_n, z_n = k) = \sum_{k=1}^K p(z_n = k) p(x_n | z_n = k)$$

• Therefore the marginal distribution of x_n will be

$$p(\mathbf{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|\mu_k, \Sigma_k)$$

where Θ collectively denotes all the parameters of the GMM model $(\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$

- Recall that $p(\mathbf{z}_n = k | \pi) = \pi_k$ and the <u>conditional</u> distribution $p(\mathbf{x}_n | \mathbf{z}_n = k) = \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)$
- What is the marginal distribution of x_n , i.e., $p(x_n)$?
 - To get that, we must sum over all possibilities of z_n

$$p(x_n) = \sum_{k=1}^K p(x_n, z_n = k) = \sum_{k=1}^K p(z_n = k) p(x_n | z_n = k)$$

• Therefore the marginal distribution of x_n will be

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \boldsymbol{\Sigma}_k)$$

where Θ collectively denotes all the parameters of the GMM model $(\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$

• Note that GMM also defines probability density (mixture of Gaussians) for the inputs. Therefore it can be used as both a density estimation model as well as a clustering model

- Recall that $p(\mathbf{z}_n = k | \pi) = \pi_k$ and the <u>conditional</u> distribution $p(\mathbf{x}_n | \mathbf{z}_n = k) = \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)$
- What is the marginal distribution of x_n , i.e., $p(x_n)$?
 - ullet To get that, we must sum over all possibilities of z_n

$$p(x_n) = \sum_{k=1}^K p(x_n, z_n = k) = \sum_{k=1}^K p(z_n = k) p(x_n | z_n = k)$$

• Therefore the marginal distribution of x_n will be

$$oxed{
ho(oldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(oldsymbol{x}_n|\mu_k, \Sigma_k)}$$

where Θ collectively denotes all the parameters of the GMM model $(\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$

- Note that GMM also defines probability density (mixture of Gaussians) for the inputs. Therefore it
 can be used as both a density estimation model as well as a clustering model
- Goal: Learn the GMM parameters $\Theta = (\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$ (and cluster assignments $\{z_1, \dots, z_N\}$)

• Recall the marginal distribution of x_n

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \Sigma_k)$$

• Recall the marginal distribution of x_n

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \Sigma_k)$$

where $\Theta = (\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$

• Recall the marginal distribution of x_n

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \Sigma_k)$$

where $\Theta = (\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$

• Suppose we want to do MLE for Θ. The MLE objective will be

$$\sum_{n=1}^{N}\log p(\boldsymbol{x}_{n}|\Theta) = \sum_{n=1}^{N}\log \sum_{k=1}^{K}\pi_{k}\mathcal{N}(\boldsymbol{x}_{n}|\mu_{k},\Sigma_{k})$$

ullet Doing MLE on this objective is tricky due to the "log \sum " term

• Recall the marginal distribution of x_n

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \Sigma_k)$$

where $\Theta = (\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$

ullet Suppose we want to do MLE for Θ . The MLE objective will be

$$\sum_{n=1}^{N} \log p(\boldsymbol{x}_{n}|\Theta) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{n}|\mu_{k}, \Sigma_{k})$$

- ullet Doing MLE on this objective is tricky due to the "log \sum " term
 - Parameters get coupled; no closed form solution (iterative methods needed, slow convergence)

• Recall the marginal distribution of x_n

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \Sigma_k)$$

where $\Theta = (\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$

• Suppose we want to do MLE for Θ. The MLE objective will be

$$\sum_{n=1}^{N} \log p(\boldsymbol{x}_{n}|\Theta) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{n}|\mu_{k}, \Sigma_{k})$$

- ullet Doing MLE on this objective is tricky due to the "log \sum " term
 - Parameters get coupled; no closed form solution (iterative methods needed, slow convergence)
 - Expectation Maximization (EM) helps solve such problems in a clean and efficient way

• A general algorithm for doing MLE/MAP in models that contain latent variables (e.g., GMM)

- A general algorithm for doing MLE/MAP in models that contain latent variables (e.g., GMM)
- The basic (rough) idea is to do MLE/MAP not on $p(x|\Theta)$ but on $p(x,z|\Theta)$

- A general algorithm for doing MLE/MAP in models that contain latent variables (e.g., GMM)
- The basic (rough) idea is to do MLE/MAP not on $p(x|\Theta)$ but on $p(x,z|\Theta)$
- EM thinks of not just x as the data but both x and a good "guess" of z as the data

- A general algorithm for doing MLE/MAP in models that contain latent variables (e.g., GMM)
- The basic (rough) idea is to do MLE/MAP not on $p(x|\Theta)$ but on $p(x,z|\Theta)$
- EM thinks of not just x as the data but both x and a good "guess" of z as the data
- \bullet Key idea: Once z is known, the MLE/MAP becomes very simple

- A general algorithm for doing MLE/MAP in models that contain latent variables (e.g., GMM)
- The basic (rough) idea is to do MLE/MAP not on $p(x|\Theta)$ but on $p(x,z|\Theta)$
- \bullet EM thinks of not just x as the data but both x and a good "guess" of z as the data
- Key idea: Once z is known, the MLE/MAP becomes very simple
 - ullet E.g., for GMM, once we know the "labels" z, it reduces to estimating K Gaussians independently

- A general algorithm for doing MLE/MAP in models that contain latent variables (e.g., GMM)
- The basic (rough) idea is to do MLE/MAP not on $p(x|\Theta)$ but on $p(x,z|\Theta)$
- \bullet EM thinks of not just x as the data but both x and a good "guess" of z as the data
- Key idea: Once z is known, the MLE/MAP becomes very simple
 - ullet E.g., for GMM, once we know the "labels" z, it reduces to estimating K Gaussians independently
- EM alternates between the following two steps until convergence

- A general algorithm for doing MLE/MAP in models that contain latent variables (e.g., GMM)
- The basic (rough) idea is to do MLE/MAP not on $p(x|\Theta)$ but on $p(x,z|\Theta)$
- \bullet EM thinks of not just x as the data but both x and a good "guess" of z as the data
- Key idea: Once z is known, the MLE/MAP becomes very simple
 - ullet E.g., for GMM, once we know the "labels" z, it reduces to estimating K Gaussians independently
- EM alternates between the following two steps until convergence
 - Given the current estimate of Θ , make a good "guess" for z for each x

- A general algorithm for doing MLE/MAP in models that contain latent variables (e.g., GMM)
- The basic (rough) idea is to do MLE/MAP not on $p(x|\Theta)$ but on $p(x,z|\Theta)$
- EM thinks of not just x as the data but both x and a good "guess" of z as the data
- Key idea: Once z is known, the MLE/MAP becomes very simple
 - ullet E.g., for GMM, once we know the "labels" z, it reduces to estimating K Gaussians independently
- EM alternates between the following two steps until convergence
 - ullet Given the current estimate of Θ , make a good "guess" for z for each x
 - Use these guesses of z to do MLE/MAP on $p(x, z|\Theta)$ to "refine" Θ

- A general algorithm for doing MLE/MAP in models that contain latent variables (e.g., GMM)
- The basic (rough) idea is to do MLE/MAP not on $p(x|\Theta)$ but on $p(x,z|\Theta)$
- EM thinks of not just x as the data but both x and a good "guess" of z as the data
- Key idea: Once z is known, the MLE/MAP becomes very simple
 - ullet E.g., for GMM, once we know the "labels" z, it reduces to estimating K Gaussians independently
- EM alternates between the following two steps until convergence
 - Given the current estimate of Θ , make a good "guess" for z for each x
 - Use these guesses of z to do MLE/MAP on $p(x, z|\Theta)$ to "refine" Θ
- Important: EM leads to very easy param. updates if p(x|z) and p(z) are exp. family distributions

- A general algorithm for doing MLE/MAP in models that contain latent variables (e.g., GMM)
- The basic (rough) idea is to do MLE/MAP not on $p(x|\Theta)$ but on $p(x,z|\Theta)$
- \bullet EM thinks of not just x as the data but both x and a good "guess" of z as the data
- Key idea: Once z is known, the MLE/MAP becomes very simple
 - ullet E.g., for GMM, once we know the "labels" z, it reduces to estimating K Gaussians independently
- EM alternates between the following two steps until convergence
 - Given the current estimate of Θ , make a good "guess" for z for each x
 - Use these guesses of z to do MLE/MAP on $p(x, z|\Theta)$ to "refine" Θ
- Important: EM leads to very easy param. updates if p(x|z) and p(z) are exp. family distributions
- EM is guaranteed to converge to a local optima

- A general algorithm for doing MLE/MAP in models that contain latent variables (e.g., GMM)
- The basic (rough) idea is to do MLE/MAP not on $p(x|\Theta)$ but on $p(x,z|\Theta)$
- EM thinks of not just x as the data but both x and a good "guess" of z as the data
- Key idea: Once z is known, the MLE/MAP becomes very simple
 - ullet E.g., for GMM, once we know the "labels" z, it reduces to estimating K Gaussians independently
- EM alternates between the following two steps until convergence
 - Given the current estimate of Θ , make a good "guess" for z for each x
 - Use these guesses of z to do MLE/MAP on $p(x, z|\Theta)$ to "refine" Θ
- Important: EM leads to very easy param. updates if p(x|z) and p(z) are exp. family distributions
- EM is guaranteed to converge to a local optima
- More details in the next class..

