1 Hamiltonians and EOM

1.1 Toy Problem

Consider simplest spin Hamiltonian $H = -\vec{B} \cdot \vec{s}$. It's clear that if we set up initial conditions \vec{s} misaligned from \vec{B} , it will simply spin around \vec{B} , which is fixed. Thus, let $\hat{B} \cdot \hat{s} = \cos \theta$ the angle between the two, and let ϕ measure the azimuthal angle.

We claim that $\cos\theta$, ϕ are canonical variables. Since ϕ is ignorable, immediately $\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\mathrm{d}\cos\theta}{\mathrm{d}t} = -\frac{\partial H}{\partial \phi} = 0$, while $\frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{\partial H}{\partial(\cos\theta)} = Bs$ tells us the rate at which the spin precesses around \vec{B} .

1.2 Cassini State Hamilttonian

This Hamiltonian is Kassandras Eq. 13, in the co-rotating frame with the perturber's angular momentum:

$$\mathcal{H} = \frac{1}{2} (\hat{s} \cdot \hat{l})^2 - \eta (\hat{s} \cdot \hat{l}_p). \tag{1}$$

In this frame, we can choose $\hat{l} \equiv \hat{z}$ fixed, and $\hat{l}_p = \cos I \hat{z} + \sin I \hat{x}$ fixed as well. Then

$$\hat{s} = \cos\theta \hat{z} - \sin\theta (\sin\phi \hat{y} + \cos\phi \hat{x}).$$

We can choose the convention for $\phi = \phi$ azimuthal angle requiring $\phi = 0, \pi$ mean coplanarity between $\hat{s}, \hat{l}, \hat{l}_p$ in the \hat{x}, \hat{z} plane such that \hat{l}_p, \hat{s} lie on the same side of \hat{l} . Then we can evaluate in coordinates

$$\begin{split} \hat{s} \cdot \hat{l} &= \cos \theta, \\ \hat{s} \cdot \hat{l}_p &= \cos \theta \cos I - \sin I \sin \theta \cos \phi, \\ \mathcal{H} &= \frac{1}{2} \cos^2 \theta - \eta \bigl(\cos \theta \cos I - \sin I \sin \theta \cos \phi \bigr). \end{split}$$

Note that if we take $\cos \theta$ to be our canonical variable, $\sin \theta = \sqrt{1 - \cos^2 \theta}$ can be used.

1.3 Equation of Motion

The correct EOM comes from Kassandra's Eq. 12:

$$\begin{split} \frac{\mathrm{d}\hat{s}}{\mathrm{d}t} &= \big(\hat{s} \cdot \hat{l}\big) \big(\hat{s} \times \hat{l}\big) - \eta \big(\hat{s} \times \hat{l}_p\big), \\ &= \big(s_y s_z - \eta s_y \cos(I)\big) \hat{x} - \big(s_x s_z + \eta (s_x \cos I - s_z \sin I)\big) \hat{y} + \eta s_y \sin(I) \hat{z}. \end{split}$$

Alternatively, consider Hamilton's equations applied to the Hamiltonian:

$$\frac{\partial \phi}{\partial t} = \frac{\partial \mathcal{H}}{\partial (\cos \theta)} = \cos \theta - \eta (\cos I + \sin I \cot \theta \cos \phi), \tag{2}$$

$$\frac{\partial(\cos\theta)}{\partial t} = -\frac{\partial\mathcal{H}}{\partial\phi} = +\eta \sin I \sin\theta \sin\phi. \tag{3}$$

This produces the same trajectories as the Cartesian EOM, so this is correct. However, since $\frac{\partial \phi}{\partial t} \propto 1/\sin\theta$, this is not a desirable system of equations to use, as they are very stiff near $\theta \approx 0$.

1.4 Tidal Dissipation

We can add a tidal dissipation term; we write it in form $\left(\frac{d\hat{s}}{dt}\right)_{tide} = \epsilon \hat{s} \times (\hat{l} \times \hat{s})$. Expanding,

$$\left(\frac{\mathrm{d}\hat{s}}{\mathrm{d}t}\right)_{tide} = \epsilon(\hat{z} - s_z \hat{s}),$$

$$= \epsilon\left(-s_z s_x \hat{x} - s_z s_y \hat{y} + \left(1 - s_z^2\right)\hat{z}\right).$$
(4)

We run numerical simulations for weaker $\epsilon \ll \eta \ll 1$ and stronger $\epsilon \lesssim \eta \ll 1$. We can seek equilibria of the the system including tides, which requires

$$0 = s_y s_z - \eta s_y \cos I - \epsilon s_z s_x,$$

$$0 = -s_x s_z - \eta (s_x \cos I - s_z \sin I) - \epsilon s_z s_y,$$

$$0 = \eta s_y \sin(I) + \epsilon (1 - s_z^2).$$

We expect at least two equilibria, based on the simulations: one near $s_z \approx 1$ and one $s_z \approx 0$.

For near alignment/near Cassini state 1, $1 - s_z \sim 1 - s_\perp^2$, so we can set $s_z = 1$ to first order: $s_y - \epsilon s_x - \eta s_y \cos I = -s_x - \eta (s_x \cos I - \sin I) - \epsilon s_y = \eta s_y \sin I = 0$. This can be satisfied if we set $s_x = \tan(I) \ll 1$, $s_y = \mathcal{O}(\epsilon s_x)$; this coarsely corresponds to Cassini state 1.

The other solution should be near Cassini state 2, where $s_x \approx 1$; dropping second order terms forces $\eta s_y + \epsilon s_z = -s_z - \eta(\cos I - s_z \sin I) = \eta s_y \sin(I) + \epsilon = 0$. This can thus be satisfied for $s_y \approx -\frac{\epsilon}{\eta \sin(I)}$. Thus, this explains why as ϵ is increased, we first start to get points that don't converge to Cassini state 2 in the absence of tides, before starting to see points that fail to converge to Cassini state 1.