Learning the BASiCS: a Bayesian approach to single-cell RNA-seq data analysis

MLPM Summer School 2015

Catalina A. Vallejos, Nils Eling, John C. Marioni

22 September 2015

Setting up the R session

Data pre-processing

Running BASiCS

Post-processing of BASiCS results

And beyond ...

Questions?

Setting up the R session

Before we start...

Open a new session of R Studio

▶ To clean the existig R environment use

```
rm(list = ls())
```

Install BiocGenerics from BioConductor

```
source("http://bioconductor.org/biocLite.R")
biocLite("BiocGenerics")
```

Install BASiCS from Github

```
library(devtools)
install_github('catavallejos/BASiCS')
```

Before we start...

Load the libraries that will be used througout the analysis

► To perform the analysis

```
library(BASiCS)
```

For fast pre-processing of large datasets

```
# install.packages("data.table")
library(data.table)
```

Data pre-processing

Example dataset

To illustrate BASiCS, we analyse the mouse embryonic stem cell (ESC) dataset described in Islam et al (2014)¹. In these data, expression counts are recorded in terms of Unique Molecular Identifiers (UMI), removing amplification biases.

Figure 1: Illustration of the use of UMIs (source: Islam et al, 2014).

¹Islam et al (2014). Quantitative single-cell RNA-seq with unique molecular identifiers. *Nature Methods*. doi:10.1038/nmeth.2772 □ → ← ② → ← ○

Loading the example dataset

Let data.path be the directory where the data is stored, e.g.

data.path = "/Users/catalinavallejos/Documents/MRC/Projects/SCE/LaTeX/BASiCS/AnalysisMouseESC/"

The following files must be stored in the data.path directory:

- Expression counts:
 GSE46980_CombinedMoleculeCounts.tab
- Quality control information: 187_3lanes_CA.txt (provided by Sten Linnarsson).
- Input molecules of spike-in genes: SilverBulletCTRLConc.txt (provided by Sten Linnarsson).

These files are provided within the materials of this tutorial.

Loading the data

To read the matrix of expression counts (excluding metadata) use:

This dataset contains 25914 genes (one at each row) and 96 cells (one at each column).

Metadata (gene names)

Gene names are given by

Metadata (cell identifiers)

Cell identifiers are given by

What does the data look like?

```
head(Counts[, 1:10], n = 10)
##
                  A01 B01 C01 D01 E01 F01 G01 H01 A02 B02
   RNA_SPIKE_MCO1
   RNA_SPIKE_MCO2
                    0
   RNA_SPIKE_MCO4
   RNA SPIKE MCO7
   RNA_SPIKE_MC08
   RNA SPIKE MC09
   RNA_SPIKE_MC10
   RNA_SPIKE_MC14
                                5 1
                                       10
                                                        1
                                2
   RNA SPIKE MC19
  RNA_SPIKE_MC20
                                            0
                                                3
                                                        1
```

. . .

Filtering cells

We adopt the same quality control criterion as in Islam et al (2014).

We also discard 9 cells that are not ESCs (information provided by Sten Linnarsson)

```
NotESC <- c("D02", "E02", "A06", "H07", "D08", "A09", "G10", "F12", "G12")

GoodCells <- GoodCells[!(GoodCells %in% NotESC)]
```

Filtering cells

To remove cells that do not pass the inclusion criteria use

After this filter, 41 cells are left to be analysed.

Filtering of genes

To compute the total number of counts (over all cells) per gene use

```
TotCountsPerGene = rowSums(CountsQC)
sum(TotCountsPerGene == 0)
```

- ▶ We observe 10871 genes with zero counts
- Many other genes have just a few counts (in a few cells!)

Filtering of genes

Here, we only include those genes with (on average) at least 1 count per cell (i.e. when total counts are at least equal to the number of analysed cells).

```
GenesInclude = TotCountsPerGene >= 41
CountsQC = as.matrix(CountsQC[GenesInclude, ])
dim(CountsQC)
```

After this filter, 7941 genes are left to be analysed.

Running BASiCS

As an input, BASiCS requires an object of class BASiCS_Data. To create this object, we need the following elements

- ► A matrix of expression counts, whose rownames contain the associated gene names
- A logical vector indicating whether or not each gene is a technical spike
- A data.frame whose first and second columns contain the gene names assigned to the spike-in genes and the associated input number of molecules, respectively.

First, we create a variable indicating whether or not a gene is a technical spike (for every gene)

```
TechQC = grep1("SPIKE", rownames(CountsQC))
```

REMINDER: Gene names must be stored as rownames (CountsQC)

Secondly, we need the input number of spike-in molecules per cell. This is provided in SilverBulletCTRLConc.txt.

```
## Name molecules_in_each_chamber
## 1 RNA_SPIKE_MC28 4042.8912
## 2 RNA_SPIKE_MJ-1000-67 252.6807
## 3 RNA_SPIKE_MJ-500-35 2021.4456
## 4 RNA_SPIKE_TagJ 252.6807
```

NOTE: These values can be calculated using experimental information. For each spike-in gene i, we use

$$\mu_i = C_i \times 10^{-18} \times (6.022 \times 10^{23}) \times (9 \times 10^{-3}) \times D$$
 where

- $ightharpoonup C_i$ is the concentration of the spike i in the ERCC mix
- $ightharpoonup 10^{-18}$ is to convert att to mol
- ▶ 6.022×10^{23} is the Avogadro number (mol \rightarrow molecule)
- $ightharpoonup 9 imes 10^{-3}$ is the volume added into each chamber
- D is a dilution factor

This file include spike-in genes that did not pass the inclusion criteria. To remove these use

SpikeInfoQC <- SpikeInfo[SpikeInfo\$Name %in% rownames(CountsQC)[TechQC],]</pre>

Finally, to create a BASiCS_Data object use

```
## An object of class BASiCS Data
## Dataset contains 7941 genes (7895 biological and 46 technical) and 41 cells.
## Elements (slots): Counts, Tech, SpikeInput, GeneNames and BatchInfo.
## The data contains 1 batch.
##
## NOTICE: BASICS requires a pre-filtered dataset
       - You must remove poor quality cells before creating the BASiCS data object
##
##
       - We recommend to pre-filter very lowly expressed transcripts before creating the object.
         Inclusion criteria may vary for each data. For example, remove transcripts
##
             - with very low total counts across of all of the samples
##
             - that are only expressed in a few cells
##
               (by default genes expressed in only 1 cell are not accepted)
##
##
             - with very low total counts across the samples where the transcript is expressed
##
## BASiCS_Filter can be used for this purpose
```

The BASiCS model

For each gene i and cell j the model implemented in BASiCS is

$$X_{ij} | \mu_i, \phi_j, \nu_j, \rho_{ij} \sim \left\{ \begin{array}{ll} \mathsf{Poisson}(\phi_j \nu_j \mu_i \rho_{ij}), & \text{if gene i is biological;} \\ \mathsf{Poisson}(\nu_j \mu_i), & \text{if gene i is a technical spike, with} \end{array} \right.$$

$$u_j|\mathbf{s}_j, \theta \sim \mathsf{Gamma}(1/\theta, 1/(\mathbf{s}_j\theta))$$
 and $\rho_{ij}|\delta_i \sim \mathsf{Gamma}(1/\delta_i, 1/\delta_i),$

Parameters' interpretation

- $ightharpoonup \phi_i$ and s_i are cell-specific normalising constants
- $\triangleright \nu_i$ and θ capture technical noise
- $ightharpoonup \mu_i$ is the overall expression rate of a gene i
- \triangleright δ_i controls cell-to-cell biological variability of a gene i

The BASiCS model

Figure 2: Graphical representation of the model implemented on BASiCS.

Running BASiCS

The BASiCS_MCMC function runs the MCMC sampler. It receives multiple arguments, however most of them are optional. There are 4 arguments that are required to run this function:

- Data: an object of class BASiCS_Data.
- ▶ N: Total number of iterations for the MCMC sampler.
- ▶ Thin: Thining period for the MCMC sampler.
- Burn: Burn-in period for the MCMC sampler.

For more information about the BASiCS_MCMC function use

```
help("BASiCS_MCMC", package = "BASiCS")
```

Running BASiCS

For a short run of the model use

What information is printed on the console?

Running BASiCS - Console output

MCMC loop start message

MCMC sampler has been started: 100 iterations to go.

Progress report (every 2*Thin iterations)

```
MCMC iteration 80 out of 100 has been completed.

Current draws of some selected parameters are displayed below.

mu (gene 1): 113.983
delta (gene 1): 0.201707
phi (cell 1): 1.17592
s (cell 1): 0.352644
nu (cell 1): 0.264805
theta: 0.41559

Current proposal variances for Metropolis Hastings updates (log-scale).
LSmu (gene 1): -3.99
LSdelta (gene 1): -2.99
LSphi: 11.01
LSnu (cell 1): -7.24627
LStheta: -5.99
```

Running BASiCS - Console output

MCMC loop end message

```
All 100 MCMC iterations have been completed.
```

Summary of acceptace rates for Metropolis-Hastings updates

```
Please see below a summary of the overall acceptance rates.
Minimum acceptance rate amona mu[i]'s: 0.14
Average acceptance rate among mu[i]'s: 0.709282
Maximum acceptance rate among mu[i]'s: 0.98
Minimum acceptance rate amona deltaΓil's: 0.48
Average acceptance rate among delta[i]'s: 0.782353
Maximum acceptance rate among delta[i]'s: 1
Acceptance rate for phi (joint): 0.36
Minimum acceptance rate among nu[j]'s: 0.18
Average acceptance rate among nu[i]'s: 0.320976
Maximum acceptance rate amona nuΓi]'s: 0.52
Acceptance rate for theta: 0.94
```

40) 4 (A)) 4 (B)) 4

Running BASiCS - Console output

Running time

```
MCMC running time

user system elapsed
14.829 1.268 15.854
```

Output summary

```
Output

An object of class BASiCS_Chain
25 MCMC samples.
Dataset contains 7895 biological genes and 41 cells (1 batch).
Elements (slots): mu, delta, phi, s, nu and theta.
```

Running BASiCS - Optional parameters

StoreChains:

If TRUE, the slots of the generated BASiCS_Chain object are stored in separate .txt files (one iteration at each row) using RunName argument to index file names (default: StoreChains = FALSE)

StoreDir:

Directory where output files are stored (default: StoreDir = getwd())

Running BASiCS - Optional parameters

StoreChains:

If TRUE, the slots of the generated BASiCS_Chain object are stored in separate .txt files (one iteration at each row) using RunName argument to index file names (default: StoreChains = FALSE)

StoreDir:

Directory where output files are stored (default: StoreDir = getwd())

For other optional parameters refer to the documentation

Once the MCMC algorithm has run, we need to assess whether the chains converged to their stationary distribution.

- ► Combination of visual inspections and test-based diagnostics
- ► The R library coda includes several convergence diagnostics

More details in separate slides . . .

```
par(mfrow = c(2,1))
plot(MCMC_Output, Param = "mu", Gene = 1)
plot(MCMC_Output, Param = "delta", Gene = 1)
```



```
par(mfrow = c(2,1))
plot(MCMC_Output, Param = "phi", Cell = 1)
plot(MCMC_Output, Param = "s", Cell = 1)
```



```
par(mfrow = c(2,1))
plot(MCMC_Output, Param = "nu", Cell = 1)
plot(MCMC_Output, Param = "theta")
```


Clearly, N = 100 iterations is not enough. Before continuing, we load the provided pre-computed MCMC chains N = 20000 (~50 min run time)

```
## An object of class BASiCS_Chain
## 1000 MCMC samples.
## Dataset contains 7895 biological genes and 41 cells (1 batch).
## Elements (slots): mu, delta, phi, s, nu and theta.
```

```
par(mfrow = c(2,1))
plot(MCMC_Output, Param = "mu", Gene = 1)
plot(MCMC_Output, Param = "delta", Gene = 1)
```



```
par(mfrow = c(2,1))
plot(MCMC_Output, Param = "phi", Cell = 1)
plot(MCMC_Output, Param = "s", Cell = 1)
```



```
par(mfrow = c(2,1))
plot(MCMC_Output, Param = "nu", Cell = 1)
plot(MCMC_Output, Param = "theta")
```


DIY: Apply other convergence diagnostics to

- Randomly selected parameters
- Average values across groups of parameters

HINT: To return the MCMC chain related to the parameter indicated by Param (1 column per param, 1 row per iteration) use

```
displayChainBASiCS(MCMC_Output, Param = "mu")
```

DIY: Apply other convergence diagnostics to

- Randomly selected parameters
- Average values across groups of parameters

HINT: To return the MCMC chain related to the parameter indicated by Param (1 column per param, 1 row per iteration) use

```
displayChainBASiCS(MCMC_Output, Param = "mu")
```

Solution available in the provided R script

Post-processing of BASiCS results

Posterior summary

The MCMC chains generated by the BASiCS_MCMC function contain samples from the posterior distribuion of all model parameters.

How can we summarise this information?

Some commonly used summaries are:

- ▶ Posterior means, medians, modes
- Highest Posterior Density (HPD) intervals

Posterior summary - Medians and 95% HPD intervals

```
MCMC_Summary <- Summary(MCMC_Output)
head(displaySummaryBASiCS(MCMC_Summary, Param = "mu"))</pre>
```

```
##
                  Mu
                          lower
                                   upper
## Mrpl15 128.144573 111.945012 149.33075
## Lypla1
           17.550838
                      13.376970
                                22.72566
## Tcea1
           70.689610
                      62.108196
                                81.29168
          11.920986 9.458517 14.46194
## Atp6v1h
## Rb1cc1
           7.170405 4.628787
                                10.01856
## Pcmtd1
           17.853392 14.812363
                                22.06449
```

Posterior summary - Medians and 95% HPD intervals

Mrpl15

Posterior summary - Normalisation I

```
plot(MCMC_Summary, Param = "phi",
    main = "mRNA content")
```

mRNA content

- ► There is some heterogeneity in the total mRNA content per cell
- Yet, this is still a very homogeneous population of cells

Posterior summary - Normalisation II

Capture efficiency

 No amplification biases, as expected for UMI-based counts

Posterior summary - Expression vs variability

```
plot(MCMC_Summary,
    Param = "mu", Param2 = "delta",
    log = "x", col = 8)
```


- Highly expressed genes are more stable (core celullar processes)
- More variable genes concentrated on the lower end of expression

This figure changes when analysing more heterogeneous cell populations

BASiCS also provides a variance decomposition for the total variability of gene expression

$$\mathsf{Var}(X_{i,j}) = \underbrace{\phi_j s_j \mu_i}_{\mathsf{Shot noise}} + \underbrace{\theta(\phi_j s_j \mu_i)^2}_{\mathsf{Technical}} + \underbrace{\delta_i (\theta+1)(\phi_j s_j \mu_i)^2}_{\mathsf{Biological heterogeneity}}$$

Overall variance decomposition

Overall, more than 20% of the total variability is technical

We also define

$$\sigma_i = \frac{\delta_i(\theta+1)}{[(\phi s)^* \mu_i]^{-1} + \theta + \delta_i(\theta+1)}, \quad (\phi s)^* = \underset{j \in \{1, \dots, n\}}{\operatorname{median}} \{\phi_j s_j\}$$

as the proportion of variability related to biological cell-to-cell heterogeneity in a typical cell

Similar expressions can be defined for the components related to technical variability and shot noise

head(VD)

```
##
       GeneIndex
                      GeneNames BioVarGlobal TechVarGlobal ShotNoiseGlobal
## 7874
            7874
                     r_RLTR4_Mm
                                  0.9106224
                                               0.07061425
                                                               0.01876333
## 4217
            4217
                         Sprr2b
                                0.9086214
                                               0.04961512
                                                               0.04176345
## 7610
            7610 r IAPEY4 I-int
                                0.9084450
                                               0.06526786
                                                               0.02628719
## 5458
            5458
                           Dqx1
                                0.9072444
                                               0.07753175
                                                               0.01522389
## 5488
            5488
                         Ccdc48
                                0.9042831
                                               0.06370885
                                                               0.03200801
## 7682
            7682
                      r RLTR13A
                                0.9011824
                                               0.04987446
                                                               0.04894314
```

tail(VD)

#	#	GeneIndex	GeneNames	${\tt BioVarGlobal}$	TechVarGlobal	${\tt ShotNoiseGlobal}$
#	# 4111	4111	Naa15	0.11090273	0.8242483	0.0648490052
#	# 5753	5753	Rps16	0.10780109	0.8873862	0.0048127036
#	# 7255	7255	r_L1_Mur2	0.10329357	0.8902666	0.0064398243
#	# 7860	7860	r_SSU-rRNA_Hsa	0.09785355	0.9018658	0.0002806542
#	# 2891	2891	Hsp90ab1	0.05800949	0.9383036	0.0036868725
#	# 3475	3475	Mir466d	0.03972668	0.8275039	0.1327694289

Detection of highly and lowly variable genes

Highly Variable Genes (HVG)

For a given variance threshold $\gamma_{\rm H}$, and evidence threshold $\alpha_{\rm H}$, BASiCS labels a gene as HVG if:

$$\pi_i^H(\gamma_H) = P(\sigma_i > \gamma_H | \{Data\}) > \alpha_H$$

Lowly Variable Genes (LVG)

Similarly, for a given variance threshold $\gamma_{\rm L}$, and evidence threshold $\alpha_{\rm L}$, we classify as LVG those for which:

$$\pi_i^H(\gamma_t) = P(\sigma_i < \gamma_t | \{Data\}) > \alpha_t$$

Detection of highly and lowly variable genes

How to determine these thresholds?

- \blacktriangleright $\gamma_{\rm H}$ and $\gamma_{\rm L}$ have a biological meaning and therefore can be chosen by an expert
- $ightharpoonup lpha_{H}$ and $lpha_{L}$ are evidence thresholds and can be chosen by controlling the trade-off between EFDR and EFNR.

In the absence of pre-defined variance contribution thresholds, we can use a grid search by e.g. fixing EFDR = EFNR =10%

Detection of highly variable genes

```
0.8
                                                                                                       0.8
                                                                                               HVG probability
       9.0
                                                                                                       9.0
Error rate
        0.4
                                                                                                       0.4
       0.2
                                                                                                       0.2
       0.0
                                                                                                       0.0
               0.5
                            0.6
                                          0.7
                                                       0.8
                                                                    0.9
                                                                                 1.0
                                                                                                                                  50
                                                                                                                                                500
                                                                                                                                                               5000
                                                                                                                                                                             50000
                                     Evidence threshold
                                                                                                                                                \mu_i
```

```
## 90 genes classified as highly variable using:
## - Variance contribution threshold = 79 %
## - Evidence threshold = 0.8165
## - EFDR = 8.96 %
## - EFNR = 8.7 %
```

Detection of highly variable genes

head(DetectHVG\$Table)

```
GeneIndex
                      GeneNames
                                              delta
                                                       Sigma Prob HVG
## 4217
             4217
                          Sprr2b 8.068237 4.953578 0.9086214 1.000 TRUE
## 5458
             5458
                           Dqx1 29.974355 3.240290 0.9072444 1.000 TRUE
## 5488
            5488
                         Ccdc48 13.521266 3.791891 0.9042831 1.000 TRUE
## 7610
            7610 r_IAPEY4_I-int 17.314630 3.733755 0.9084450 1.000 TRUE
## 7874
            7874
                     r RLTR4 Mm 24.152601 3.526805 0.9106224 1.000 TRUE
## 118
             118
                           Mreg 19.449927 2.860096 0.8859377 0.999 TRUE
```

Detection of lowly variable genes

```
EFNR
       0.8
                                                                                                 0.8
                                                                                          LVG probability
       9.0
                                                                                                 9.0
Error rate
       0.4
       0.2
                                                                                                 0.2
       0.0
                                                                                                 0.0
              0.5
                           0.6
                                       0.7
                                                    8.0
                                                                0.9
                                                                             1.0
                                                                                                                          50
                                                                                                                                        500
                                                                                                                                                      5000
                                                                                                                                                                   50000
                                   Evidence threshold
                                                                                                                                        \mu_i
```

```
## 601 genes classified as lowly variable using:
## - Variance contribution threshold = 41 %
## - Evidence threshold = 0.7585
## - EFDR = 9.76 %
## - EFNR = 9.69 %
```

Detection of lowly variable genes

head(DetectLVG\$Table)

```
GeneIndex GeneNames
                                          delta
                                                     Sigma Prob LVG
## 2891
            2891
                 Hsp90ab1 1759.51170 0.01695337 0.05800949 1.000 TRUE
## 3475
            3475
                   Mir466d 43.03774 0.01276304 0.03972668 1.000 TRUE
## 420
            420
                    Gm6251 104.06384 0.03790647 0.11636563 0.998 TRUE
            4111
                   Naa15 80.96550 0.03664674 0.11090273 0.998 TRUE
## 4111
## 5753
            5753
                 Rps16 1227.70143 0.03211328 0.10780109 0.996 TRUE
## 7173
            7173
                    Rpl36a 166.65200 0.03641563 0.11472605 0.996 TRUE
```

And beyond ...

And beyond ...

There are many aspects of scRNA-seq and downstream analysis that were not covered by this tutorial

And beyond ... batch effects

The current implementation of BASiCS also allows batch-effect correction using batch-specific values of θ . To use this feature, the BASiCS_Data object requires an additional element. For example

```
## An object of class BASiCS Data
## Dataset contains 7941 genes (7895 biological and 46 technical) and 41 cells.
## Elements (slots): Counts, Tech, SpikeInput, GeneNames and BatchInfo.
## The data contains 2 batches
##
## NOTICE: BASICS requires a pre-filtered dataset
       - You must remove poor quality cells before creating the BASiCS data object
##
##
       - We recommend to pre-filter very lowly expressed transcripts before creating the object.
##
         Inclusion criteria may vary for each data. For example, remove transcripts
##
             - with very low total counts across of all of the samples
##
             - that are only expressed in a few cells
               (by default genes expressed in only 1 cell are not accepted)
##
##
             - with very low total counts across the samples where the transcript is expressed
##
   BASiCS_Filter can be used for this purpose
```

And beyond ... clustering

Clustering cells according to their expression profile is widely applied to scRNA-seq datasets

BASiCS will soon include clustering as a built-in analysis tool

In the meantime, you can extract **normalised and denoised** expression rates to be used for the clustering (and other downstream analyses). For each gene i and cell j, these are defined as

$$\mathsf{DR}_{ij} = \mu_i \rho_{ij}$$

And beyond . . . clustering

Posterior estimates for these quantities can be obtained using

```
DR = BASiCS_DenoisedRates(Data, MCMC_Output)

## [1] "This calculation requires a loop across the 1000 MCMC iterations"
## [1] "Please be patient ... "
##
## ## [1] "To see a progress report use PrintProgress = TRUE"
```

And beyond . . . clustering

head(round(DR[, 1:10], 1), n = 10)

18.5

26.9

Vcpip1 9.6 13.1

34.8

41.9

14.5

31.9

Rrs1

Snhg6

Cops5

```
##
            B01
                  C01
                       D01
                             C02 A03
                                       A04
                                            B04
                                                  G04
                                                       H04
                                                             A05
## Mrpl15 180.3 195.9 103.1 163.1 86.8 175.7 82.3 130.7 116.6 125.2
## Lypla1 19.2
                 8.4 17.6
                             6.6 32.6
                                       6.7 13.2
                                                 32.6 17.1
                                                            7.5
## Tcea1
           46.6
                86.5
                      40.4
                            74.9 95.3 123.1 57.0
                                                 66.6 109.6
                                                            67.1
          13.9 19.8
                     10.4
                           9.2 12.4 7.9 11.3
                                                 13.6 20.1
                                                            13.1
## Atp6v1h
## Rb1cc1
           4.6
                 4.1
                     4.2 2.2 8.2 4.4 12.1
                                                 2.2 2.4
                                                            24.4
## Pcmtd1
           20.5 17.4
                     17.7
                            21.3 19.6
                                      11.7 33.8
                                                 21.6
                                                     19.1
                                                            12.6
```

4.3 2.6

24.6 11.1 20.8

46.4 80.3 9.1 101.2 62.4 76.9 40.3 52.4 30.3

12.5 3.7 2.9 5.9

19.0 18.8

30.8 13.1

30.1

2.0

23.4 17.2

13.6

2.1

6.1

5.0

78.4

29.2

Questions?