

DIPARTIMENTO DI ELETTRONICA
INFORMAZIONE E BIOINGEGNERIA

1D discrete signals analysis

1D signals(t)

• x-axis represents time $\rightarrow y = f(t)$ is a time-variant signal

From continuous to discrete-time signals

- If we sample y = f(t) every T_s time istant
- $t \rightarrow n \cdot T_s$, with n = 0, 1, 2, ...
- $y_n = f(t_n)$
- T_S = sampling time or sampling period

- $f_S = \frac{1}{T_S}$ = sampling frequency or sample rate
- We can represent y_n and t_n as two arrays with same # of elements and use MATLAB to process these signals

From continuous to discrete-time signals

1D discrete impulse

$$\delta[n] = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$$

1D discrete unit step

$$\mathbf{u}[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

1D discrete exponential step

•
$$a = 1.2$$

• a = 0.8

1D discrete periodic signals

$$x(n) = x(n + kT) \ \forall k \in \mathbb{Z}$$

$$T = 10$$

1D continuous-time sinusoids

0-

•
$$y(t) = A \cdot \cos(2\pi f_o t + \phi)$$

- A = amplitude
- f_0 = frequency
- ϕ = phase

1D discrete-time sinusoids

• $y(t) = A \cdot \cos(2\pi f_o t + \phi) \rightarrow y(n) = A \cdot \cos(2\pi f_o T_s n + \phi)$

- $t = n \cdot T_s$
- n = 0, 1, 2, ... N =samples
- T_S = sampling time or sampling period
- $\frac{1}{f_0}$ = period of the sinusoid

1D discrete-time sinusoids

• NB:

$$y(t) = A \cdot \cos(2\pi f_o t + \psi) \rightarrow y(n) = A \cdot \cos(2\pi f_o T_s n + \phi)$$
OR

$$y(t) = A \cdot \cos(2\pi f_0 t + \phi) \rightarrow y(n) = A \cdot \cos(2\pi \tilde{f}_0 n + \phi)$$

- $t = n \cdot T_s$
- n = 0, 1, 2, ... N =samples
- \tilde{f}_o = normalized frequency = f_o/F_s = $f_o \cdot T_s$

```
close all
clearvars
clc
```

% parameters T s = .001; % sampling time $T_f = .5$; % temporal duration [seconds] f_0 = 20; % sinusoid frequency phi = .2; % phase A = 1.3; % amplitude **% temporal axis** $t = 0:T_s:T_f;$ % y-axis $y = A*cos(2*pi*f_0*t + phi);$ % plot figure(1); % open new figure and call it Figure 1 plot(t, y); % --> NB: dimensions must be consistent! grid; % insert a grid title('Sinusoid'); % title xlabel('Time [seconds]'); % label of x-axis set(gca, 'fontsize', 18) % increase fontsize

• Use 'plot(x-axis, y-axis)' or 'plot(y-axis) for a continuous line

• Use 'stem(x-axis, y-axis)' or 'plot(y-axis)' for highlighting the single samples

'hold on' allows to insert multiple plots into the same figure

```
figure(1); % open new figure and call it Figure 1
plot(t, y); % --> NB: dimensions must be consistent!
grid; % insert a grid
title('Sinusoids'); % title
xlabel('Time [seconds]'); % label of x-axis
set(gca, 'fontsize', 18) % increase fontsize
hold on,
plot(t, y + 1);
```


- Once a Figure has been opened, you can insert whatever you want:
 - 'xlabel' and 'ylabel'
 - 'title'
 - 'legend'
 - grid
 - markers, colors, linestyle etc...
- You can put multiple non-overlapping plots inside the same figure: 'subplot(#rows, #cols, #plot index)

```
figure(2)
subplot(1, 2, 1)
plot(t)
title('Time axis');
set(gca, 'fontsize', 18)
subplot(1, 2, 2)
plot(t, y)
title('Sinusoid');
set(gca, 'fontsize', 18)
```


DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

Exercises

Exercise 1: discrete-time sinusoids

- Build a signal x(n) as the sum of three different sinusoids $\sin(2\pi ft)$ at the normalized frequencies $\omega_1=0.11, \omega_2=0.09, \omega_3=0.3$. The sampling period is T = 0.3 seconds, and the signal is defined for t in [0, 100] seconds.
- Plot the signal as a function of time.
- Compute the period P for each of the three sinusoids.
- Check: build the signal x1(n) as the sum of the three sinusiods, written as $sin(2\pi t/P)$.
- Plot x1 in the same figure. Are the signals totally overlapped?

Exercise 2: exam 7/11/2018 [3pts]

- Given the signal $x(t) = A\cos(2\pi f t)$
 - Write the script 'es2.m' to create the signal x(n) as x(t) from 0 to 0.5 seconds, sampled at Fs (sampling rate) = 1000Hz; A = 0.8, f = 50Hz.
 - 2. Write the function 'sinusoid.m' which takes as input the time-axis, the amplitude, the frequency, the phase of a discrete sinusoid and return the signal.
 - 3. Generate the same signal as 1. with 'sinusoid.m'
 - 4. In 'es2.m', plot the signal as a function of n.
 - 5. In 'es2.m', plot the signal as a function of time samples.

Exercise 3: exam 10/09/2018 [3pts]

Generate 5 cosine tones with the following parameters:

	Amplitude	Frequency [Hz]	Phase [deg]
x1	1.0	220	0
x2	0.75	440	45
x3	0.5	660	90
x4	0.25	880	135
x5	0.125	1100	180

- All 5 signals have a duration of 1 second and a sampling rate of 8000 Hz
- Generate the signal x6 as the sum of the five signal generated in point 1

Exercise 4: signal shift

- Generate the signal $x(n) = (0.8)^n u(n), n = 1:20$
- Generate the signal y1(n) = x(n-5), n = 1:20
- Generate the signal y2(n) = x(n+5), n = 1:20
- Hint: Consider using 'circshift' instead of for loops.
- Plot the signals in the same figure.

Exercise 5: periodic sequences

- Generate the signal x(n) = u(n-5) -u(n-10), considering n =
 1:15.
- Generate the periodic signal xp(n) with period N = 15, considering n = 1:200.
- Hint: Consider using 'repmat' instead of for loops.
- Plot the periodic signal xp(n) considering only 8 periods.

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

Random sequences

How to generate random variables

- Uniformly distributed random variables
 - 'rand(matrix size)' full of $\sim U(0, 1)$ variables
- Gaussian distributed random variables
 - 'randn(matrix size)' full of $\sim N(0, 1)$ variables

Histograms are directly related to the probability density function of variables (PDF)

How to generate random sequences

• Generate 100000 random variables with pdf $\sim U(0, 1)$

```
A = rand(1, 1e5);
h = histogram(A);
```


How to generate random sequences

• Generate 100000 random variables with pdf $\sim N(0, 1)$

```
A = randn(1, 1e5);
h = histogram(A);
```


Exercise 6: listening to random noise

- Generate noise(n) as a set of uniformly distributed random variables between -A and A, A=0.05. The time axis has a 2 seconds duration with Fs=11.025 KHz.
- Generate x(n) as sinusoidal sequence with frequency 220 Hz
- Generate the signal y(n) = x(n) + noise(n)
- Normalize the signal in [-1, 1]
- Play y(n), testing different values of A

Exercise 7: Gaussian pdf

- Generate g(n) as a set of 10000 realizations of random variables distributed as $\sim N(0, 1)$.
- Estimate the mean and the variance
- Hint: you can use 'mean' and 'var'
- Create h(n) = a * g(n) + b, with a = 0.1; b = 4.
 - Is h(n) still distributed as $\sim N(\mu, \sigma^2)$?
 - Estimate the mean and the variance of h(n).

DIPARTIMENTO DI ELETTRONICA
INFORMAZIONE E BIOINGEGNERIA

Linear Time-Invariant Systems (LTI)

Definition of LTI

- The defining properties of any LTI system are linearity and time invariance.
 - Linearity = input-output relationship is LINEAR
 - Time invariance = the output does not depend on the
 particular time the input is applied. If the output due to
 x(t) is y(t), the output due to x(t-k) is y(t-k).
- The system can be completely characterized by its impulse response h(t).

Output of LTI discrete systems

• The output of LTI discrete systems is always the convolution between the input signal and the impulse response h(n).

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

Discrete signal convolution

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

NB: $h(n-k) = h(-(k-n)) \rightarrow \text{Operation order}$:

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

Properties of convolution

- Commutativity: x(n) * y(n) = y(n) * x(n)
- Associativity: (x(n) * y(n)) * z(n) = x(n) * (y(n) * z(n))
- Distributivity: (x(n) + y(n)) * z(n) = x(n) * z(n) +y(n) * z(n)
- Convolution by pulse: $x(n) * \delta(n) = x(n)$
- Convolution by a shifted pulse : $x(n) * \delta(n-k) = x(n-k)$

Exercise 8: Convolution

- , 2] , n in [-3, 3]
- Given x(n) = [3, 11, 7, 0, -1, 4, 2], n in [-3, 3]
- Given h(n) = [2, 3, 0, -5, 2, 1], n in [-1, 4]
- Define both signals for n in [-7,7].
- Compute y(n) as x(n) convolved with h(n), n in [-7, 7].
- Use also the MATLAB function 'conv'.
- Which is the support of the convolution?

Operations on signals

• Discrete delay $\rightarrow y(n) = x(n-k)$

• Moving average
$$\rightarrow y(n) = \frac{1}{M} \sum_{m=0}^{M-1} x(n-m)$$

y(n) can be seen as the output of LTI systems

Exercise 9: LTI systems

- Given x(n) = [3, 11, 7, 0, -1, 4, 2], n in [-3, 3]
- Create y(n) = x(n 5), n in [0, 10], without using 'circshift' or 'for' loops.
- Create $y(n)=\frac{1}{3}\sum_{m=0}^{2}x(n-m),$ n in [0, 10], without using 'circshift' or 'for' loops.
- Hint: y(n) has the form of a convolution... (you can use MATLAB function 'conv').