RS/Conference2019

San Francisco | March 4-8 | Moscone Center

SESSION ID: CRYP-R09

Quantum Chosen-Ciphertext Attacks against Feistel Ciphers

Gembu Ito

Nagoya University

Joint work with Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki and Tetsu Iwata

 3-round Feistel construction is a PRP, 4-round is an SPRP [LR88]

Rounds	2	3	4
Classic		CPA secure [LR88] CCA insecure	CCA secure [LR88]

- insecure: efficient distinguishing attacks
- secure: indistinguishable from a random permutation

[[]LR88] Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 1988.

• 3-round Feistel construction is not secure against quantum CPAs [KM10]

Rounds	2	3	4
Classic		CPA secure [LR88] CCA insecure	CCA secure [LR88]
Quantum		QCPA insecure [KM10]	

- insecure: efficient distinguishing attacks
- secure: indistinguishable from a random permutation

[KM10] Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. ISIT 2010.

• 4-round Feistel construction is not secure against quantum CCAs

Rounds	2	3	4
Classic	CPA insecure	CPA secure [LR88] CCA insecure	CCA secure [LR88]
Quantum		QCPA insecure [KM10]	QCCA insecure

• 4-round Feistel construction is not secure against quantum CCAs

Rounds	2	3	4
Classic		CPA secure [LR88] CCA insecure	CCA secure [LR88]
Quantum		QCPA insecure [KM10]	QCCA insecure

• Extend to practical designs of Feistel ciphers $K_i \rightarrow \Phi$ (including key recovery attacks)

Outline

- 1. Introduction
- 2. Previous Quantum Distinguisher
- 3. Quantum CCAs against Feistel Constructions
 - Quantum Distinguisher against 4-round Feistel Constructions
 - Formalization of Quantum Distinguishers
 - Quantum CCAs against Practical Designs of Feistel Constructions
- 4. Concluding Remarks

Outline

- 1. Introduction
- 2. Previous Quantum Distinguisher
- 3. Quantum CCAs against Feistel Constructions
 - Quantum Distinguisher against 4-round Feistel Constructions
 - Formalization of Quantum Distinguishers
 - Quantum CCAs against Practical Designs of Feistel Constructions
- 4. Concluding Remarks

Feistel Ciphers

Feistel-F Construction

• n-bit state is divided into n/2-bit halves a_i and b_i , then

$$b_{i+1} \leftarrow a_i \oplus F_{K_i}(b_i), \qquad a_{i+1} \leftarrow b_i$$

• F_{K_i} is a keyed function taking a subkey K_i as input

Practical Designs of Feistel Ciphers

Feistel-KF Construction

DES, Camellia

Feistel-FK Construction

Piccolo, Simon, Simeck

Feistel-KF

8/49 Feistel-FK

RSAConference2019

Main Tool: Simon's algorithm [Sim97]

Problem

Given $f: \{0,1\}^n \to \{0,1\}^n$ such that there exists a non-zero period s with

$$f(x) = f(x') \Leftrightarrow x' = x \oplus s$$

for any distinct $x, x' \in \{0,1\}^n$, the goal is to find s

- $O(2^{n/2})$ queries in the classical setting
- ullet Simon's algorithm [Sim97] can find s with $oldsymbol{O}(n)$ quantum queries

[Sim97] Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),1474–1483 (1997)

Main Tool: Simon's algorithm [Sim97]

- Many polynomial-time attacks using Simon's algorithm
 - 3-round Feistel construction [KM10]
 - Even-Mansour [KM12]
 - LRW, various MACs, and CAESAR candidates [KLL+16]
 - AEZ [Bon17]

— ...

[KM12] H. Kuwakado and M. Morii. Security on the Quantum-Type Even-Mansour Cipher. ISITA 2012.

[KLL+16] M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia. Breaking Symmetric Cryptosystems using Quantum Period Finding. CRYPTO 2016.

[Bon17] Bonnetain, X.: Quantum Key-Recovery on Full AEZ. SAC 2017.

Outline

- 1. Introduction
- 2. Previous Quantum Distinguisher
- 3. Quantum CCAs against Feistel Constructions
 - Quantum Distinguisher against 4-round Feistel Constructions
 - Formalization of Quantum Distinguishers
 - Quantum CCAs against Practical Designs of Feistel Constructions
- 4. Concluding Remarks

Overview of the Distinguisher

- Given an oracle O which is $O = E_K$ or a random permutation $\Pi \in \text{Perm}(n)$, distinguish the two cases
 - The adversary can make superposition queries to O

Distinguisher

- 1. Construct a function f^O that
 - has a period s when O is E_K , and
 - does not have any period when O is Π
- 2. Check if f^O has a period or not by using Simon's algorithm

• $\alpha_0, \alpha_1 \in \{0,1\}^{n/2}$: arbitrary distinct constants

$$f^{O}: \{0,1\} \times \{0,1\}^{n/2} \to \{0,1\}^{n/2}$$

 $(\beta \parallel x) \mapsto c \oplus \alpha_{\beta}$

- F_3 does not contribute to f^0
- Orange line and α_{β} cancel each other

ullet f^{O} has a period $oldsymbol{s} = \left(\mathbf{1} \parallel F_{\mathbf{1}}(lpha_{\mathbf{0}}) \oplus F_{\mathbf{1}}(lpha_{\mathbf{1}})
ight)$

$$f^{O}(\beta \parallel x) = F_{2} \left(x \oplus F_{1} \left(\alpha_{\beta} \right) \right)$$

$$= F_{2} \left(x \oplus F_{1}(\alpha_{0}) \oplus F_{1}(\alpha_{1}) \oplus F_{1}(\alpha_{\beta \oplus 1}) \right)$$

$$= f^{O} \left(\beta \oplus 1 \parallel x \oplus F_{1}(\alpha_{0}) \oplus F_{1}(\alpha_{1}) \right)$$

Key Recovery Attacks

- Distinguisher can be extended to key recovery attacks
- Key recovery attacks against Feistel-KF [HS18,DW17]
 - Combining Grover search [Gro96] and the distinguisher
 - Leander and May developed this technique [LM17]

[HS18] Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks: Applications to 6-round generic Feistel constructions. SCN 2018.

[DW17] Dong, X., Wang, X.: Quantum key-recovery attack on Feistel structures. IACR Cryptology ePrint Archive 2017.

[Gro96] Grover, L.K.: A fast quantum mechanical algorithm for database search. STOC 1996.

[LM17] Leander, G., May, A.: Grover meets Simon - Quantumly attacking the FX-construction. ASIACRYPT 2017.

Outline

- 1. Introduction
- 2. Previous Quantum Distinguisher
- 3. Quantum CCAs against Feistel Constructions
 - Quantum Distinguisher against 4-round Feistel Constructions
 - Formalization of Quantum Distinguishers
 - Quantum CCAs against Practical Designs of Feistel Constructions
- 4. Concluding Remarks

• $\alpha_0, \alpha_1 \in \{0,1\}^{n/2}$: arbitrary distinct constants

$$f^{O}: \{0,1\} \times \{0,1\}^{n/2} \to \{0,1\}^{n/2}$$
$$(\beta \parallel x) \mapsto b \oplus \alpha_{\beta}$$

- F_4 has no effect
- Last F_1 does not contribute to f^0

- Computation after $Z_{\beta \parallel x}$ does not depend on β , x
- $Z_{\beta \parallel x}$ has a period $s = (1 \parallel F_1(\alpha_0) \oplus F_1(\alpha_1))$

- α_{β} cancels each other
- $\{\alpha_0, \alpha_0 \oplus \alpha_0 \oplus \alpha_1\} = \{\alpha_1, \alpha_1 \oplus \alpha_0 \oplus \alpha_1\} = \{\alpha_0, \alpha_1\}$

- α_{β} cancels each other
- $\{\alpha_0, \alpha_0 \oplus \alpha_0 \oplus \alpha_1\} = \{\alpha_1, \alpha_1 \oplus \alpha_0 \oplus \alpha_1\} = \{\alpha_0, \alpha_1\}$
- Computation after $Z_{\beta \parallel x}$ does not depend on β , x

• $Z_{\beta\parallel x}$ has a period $s=\left(1\parallel F_1(\alpha_0)\oplus F_1(\alpha_1)\right)$ since

$$Z_{(0||x) \oplus s} = x \oplus F_1(\alpha_0) \oplus F_1(\alpha_1) \oplus F_1(\alpha_1)$$
$$= x \oplus F_1(\alpha_0)$$
$$= Z_{(0||x)}$$

- We know that $f(x) = f(x') \Leftarrow x' = x \oplus s$
- $f(x) = f(x') \Rightarrow x' = x \oplus s$ may or may not hold
- We formalize a sufficient condition to eliminate the need to prove it

- Simon's Algorithm uses the circuit S_f that returns a vector y_i that is orthogonal to all periods $s_1, s_2, ...$
- To recover s from $y_1, y_2, ..., f$ has to satisfy

$$f(x) = f(x') \Rightarrow x' = x \oplus s$$

- In distinguisher
 - If f has a period s, we obtain $y_i \cdot s \equiv 0 \pmod{2}$ (other periods can exist) \Rightarrow dimension of the space spanned by $y_1, y_2, ...$ is at most n 1
 - If f doesn't have a period, y_i can take any value of $\{0,1\}^n$
 - \Rightarrow dimension can reach n

[[]SS17] Santoli, T., Schaffner, C.: Using Simon's algorithm to attack symmetric-key cryptographic primitives. Quantum Information & Computation 2017.

- In distinguisher
 - If f has a period s, we obtain $y_i \cdot s \equiv 0 \pmod{2}$ (other periods can exist) \Rightarrow dimension of the space spanned by $y_1, y_2, ...$ is at most n-1
 - If f doesn't have a period, y_i can take any value of $\{0,1\}^n$ \Rightarrow dimension can reach n
- Checking the dimension of the space spanned by $y_1, y_2, ...$
- Similar observation is pointed out in [SS17]
 - We formalized a sufficient condition

[[]SS17] Santoli, T., Schaffner, C.: Using Simon's algorithm to attack symmetric-key cryptographic primitives. Quantum Information & Computation 2017.

- $\epsilon_f^{\pi} = \max_{t \in \{0,1\}^l \setminus \{0^l\}} \Pr_x[f^{\pi}(x) = f^{\pi}(x \oplus x)]$ (π is a fixed permutation)
- $\operatorname{irr}_f^\delta = \{\pi \in \operatorname{Perm}(n) \mid \epsilon_f^\pi > 1 \delta\}$ (δ is a small constant $0 \le \delta < 1$)
- Checking the dimension of the space spanned by $y_1, y_2, ..., y_\eta$
- Success probability is at least

$$1 - \frac{2^l}{e^{\delta \eta/2}} - \Pr_{\Pi}[\Pi \in \operatorname{irr}_f^{\delta}]$$

[SS17] Santoli, T., Schaffner, C.: Using Simon's algorithm to attack symmetric-key cryptographic primitives. Quantum Information & Computation 2017.

Outline

- 1. Introduction
- 2. Previous Quantum Distinguisher
- 3. Quantum CCAs against Feistel Constructions
 - Quantum Distinguisher against 4-round Feistel Constructions
 - Formalization of Quantum Distinguishers
 - Quantum CCAs against Practical Designs of Feistel Constructions
- 4. Concluding Remarks

Quantum Attacks against Practical Designs

- The same distinguishing attack against Feistel-F can be used against Feistel-KF
- Extend to quantum distinguishing attacks against 6-round Feistel-FK
- Key recovery attacks against 7-round Feistel-KF and 9-round Feistel-FK

$$f^{O}: \{0,1\} \times \{0,1\}^{n/2} \to \{0,1\}^{n/2}$$

 $(\beta \parallel x) \mapsto a \bigoplus F(b) \bigoplus \alpha_{\beta}$

$$f^{O}: \{0,1\} \times \{0,1\}^{n/2} \to \{0,1\}^{n/2}$$
$$(\beta \parallel x) \mapsto a \oplus F(b) \oplus \alpha_{\beta}$$

• F in gray and K_6 has no effect

Connect 2 figures

Almost the same as the 4-round distinguisher

- Almost the same as the 4-round distinguisher
 - Replace α_{β} with $\alpha_{\beta} \oplus K_1$
 - Replace $F_i(x)$ with $F(x) \oplus K_{i+1}$
- $s = (1 \parallel F(\alpha_0 \oplus K_1) \oplus F(\alpha_1 \oplus K_1))$

1. Implement a quantum circuit ${\mathcal E}$ that

- takes the subkey for the first (r-3) round and the value after the first (r-3) round as input, and
- returns the oracle output

• If the guess is correct

- 2. For each guess, apply the distinguisher to ${\cal E}$
- 3. If the distinguisher returns that "this is a random permutation", then judge the guess is wrong, otherwise the guess is correct.

- Exhaustive search of the first (r-3) round : $O\left(\sqrt{2^{(r-3)n/2}}\right)$ by Grover search
- 3-round distinguisher : O(n) for each subkeys guess

Combining Grover search and the distinguisher

7-round Feistel-KF Construction

• Recover 7n/2-bit key with $O(2^{(r-4)n/4}) = O(2^{3n/4})$ (CCAs)

9-round Feistel-FK Construction

• Recover 9n/2-bit key with $O(2^{(r-6)n/4}) = O(2^{3n/4})$ (CCAs)

8-round Feistel-FK Construction

• Recover 8n/2-bit key with $O\left(2^{(r-5)n/4}\right) = O(2^{3n/4})$ (CPAs)

Outline

- 1. Introduction
- 2. Previous Quantum Distinguisher
- 3. Quantum CCAs against Feistel Constructions
 - Quantum Distinguisher against 4-round Feistel Constructions
 - Formalization of Quantum Distinguishers
 - Quantum CCAs against Practical Designs of Feistel Constructions
- 4. Concluding Remarks

Concluding Remarks

Rounds	3	4
Classic	CPA secure [LR88]	CCA secure [LR88]
Quantum	QCPA insecure [KM10]	QCCA insecure

Construction	Feistel-KF	Feistel-FK
Distinguish	4-round	6-round
Key Recovery	7-round	9-round (and 8-round QCPA)

Open Questions

- Tight bound on the number of rounds that we can attack Feistel-F
- Improving the complexity or extending the number of rounds of the attacks against Feistel-KF and Feistel-FK