Listing of Claims

Claim 1 (Currently amended): A system comprising:

a network server, to provide media content on request through a wireline network;

a wireless host, to request media content through a wireless network; and

a network gateway, coupled to each of the server and the wireless host, to establish

a communication channel from the server to the wireless host through both the wireline

network and the wireless network, wherein the communication channel includes a

transport layer protocol with control parameters for each of the wireline network and the

wireless network, wherein the protocol includes a fading parameter which, when asserted,

provides a receiving network element with an indication that a communicatively coupled

wireless host just emerged from a fading condition.

Claim 2 (Original): A system according to claim 1, wherein the transport layer

protocol of the communication channel enables the network gateway to distinguish

transmission problems occurring within either network component of the communication

channel.

Claim 3 (Original): A system according to claim 1, wherein the network

server comprising:

a transmission rate controller to receive media content from an application and control transmission over the wireline network; and

a congestion controller, to receive congestion control indications from the network gateway in the transport protocol, estimate the available bandwidth over the network, and to instruct the transmission rate controller to adjust the transmission rate accordingly.

Claim 4 (Original): A system according to claim 1, the network server further comprising:

an application error control interface, to receive a bit-error rate (BER) control parameter from the network gateway via the transport protocol denoting the bit-error rate (BER) experienced at the wireless host; and

a partial checksum generator, responsive to the application error control interface, to generate checksum of a dynamically selected amount of the requested content for inclusion in at least a subset of transmitted frames for error control purposes based, at least in part, on the received BER control parameter.

Claim 5 (Original): A system according to claim 4, wherein the partial checksum generator includes more data in the partial checksum when the BER increases, less data when the BER decreases.

Claim 6 (Original): A system according to claim 1, the wireless host comprising:

a fading timeout monitor, to identify degradation in transmission quality in the wireless network component resulting from fading and/or multipath conditions, and to issue a fading condition control parameter to the network gateway via the transport layer protocol.

Claim 7 (Original): A system according to claim 6, wherein the fading condition control parameter includes an indication to the network gateway of what frame to commence retransmission of content lost due to fading and/or multipath.

Claim 8 (Original): A system according to claim 1, the wireless host comprising:

a header analyzer, to analyze at least a partial checksum in a header of a received frame of media content to determine whether an accurate frame was received; and

a bit-error rate (BER) controller, coupled to the header analyzer, to generate a BER control parameter for the network gateway via the transport layer protocol denoting a running average of accurately received frames.

Claim 9 (Original): A system according to claim 1, the network gateway comprising:

a congestion monitor, to monitor congestion of the communication channel, and to issue a congestion control parameter to the network server via the transport layer protocol.

Claim 10 (Original): A system according to claim 1, the network gateway comprising:

a buffer, to receive frames of media content from the network server via the wireline network component of the communication channel, and to selectively provide frames of the received media content to the wireless host via the wireless network component of the communication channel.

Claim 11 (Original): A system according to claim 10, the network gateway further comprising:

a weighted scheduling module, coupled to the buffer, to schedule delivery of media content from the buffer to the wireless host based on their priority.

Claim 12 (Original): A system according to claim 10, the network gateway further comprising:

one or more retransmission modules, coupled to the buffer, to receive one or more of a negative acknowledgment (NACK) control parameter and/or a fading control parameter and determine whether the requested retransmission of one or more frames can be accommodated.

Claim 13 (Original): A system according to claim 12, wherein the one or more retransmission modules determine whether the requested retransmission may occur by determining whether a start frame, identified within the received control parameter, is available within the buffer.

Claim 14 (Original): A system according to claim 1, wherein the transport layer protocol comprises:

a congestion control parameter, generated by the network gateway in response to congestion detected along the communication channel.

Claim 15 (Original): A system according to claim 14, wherein the congestion control parameter is sent to the server for purposes of throttling transmission of the media content.

Claim 16 (Original): A system according to claim 1, wherein the transport layer protocol comprises:

a fading control parameter, generated by a wireless host to provide an indication to the network gateway that the wireless host has just concluded a period of fading.

Claim 17 (Original): A system according to claim 16, wherein the network gateway retransmits one or more frames of media content commencing at a frame denoted by a received fading control parameter.

Claim 18 (Original): A system according to claim 1, wherein the transport layer protocol comprises:

a negative acknowledgment (NACK) control parameter, generated by the wireless host to denote one or more frames of media content received with an unacceptably high bit-error rate (BER).

Claim 19 (Original): A method comprising:

receiving a request from a wireless host for content available from a network server;

establishing a communication channel to service the request between the wireless host and the network server over a wireless network and a wireline network coupled to the server; and

adjusting transmission characteristics in one or more of the wireline network and/or the wireless network to improve transmission quality based, at least in part, on one or more control parameters of a transport layer protocol of the communication channel which distinguish wireline transmission problems from wireless transmission problems, wherein a parameter of the transport layer protocol is a fading parameter..

Claim 20 (Original): A method according to claim 19, wherein the transport layer protocol includes a control parameter to denote congestion in the communication channel.

Claim 21 (Original): A method according to claim 20, further comprising: instructing a server of the requested content to reduce transmission rate to alleviate congestion identified in the wired network component in response to receiving a

congestion control parameter.

Claim 22 (Original): A method according to claim 19, wherein the transport layer protocol includes a control parameter to denote a fading condition in a wireless network component of the communication channel.

Claim 23 (Original): A method according to claim 22, further comprising: calculating a delay measure when a fading condition control parameter is received; and

retransmitting content from a buffer to the wireless host starting at a frame denoted by the fading condition control parameter if the delay measure does not exceed a threshold.

Claim 24 (Original): A method according to claim 23, wherein calculating the delay measure comprises:

identifying the start time of the frame denoted in the fading condition control parameter; and

subtracting the start time from the current project time to quantitatively measure what kind of delay would be incurred by retransmitting frames lost during the fading condition.

Claim 25 (Original): A method according to claim 19, wherein the transport layer protocol includes a negative acknowledgment (NACK) control parameter to denote that a frame was dropped due to a high bit-error rate (BER) condition.

Claim 26 (Original): A method according to claim 25, further comprising: identifying whether the frame denoted in the NACK control parameter is still available in a buffer of received media content;

calculating a delay measure when a NACK control parameter is received; and

retransmitting the frame from the buffer to the wireless host if it is identified within the buffer;

the delay measure not exceeding a threshold.

Claim 27 (Original): A method according to claim 25, wherein calculating the delay measure comprises:

identifying the start time of the frame denoted in the NACK control parameter; and

subtracting the start time from the current project time to quantitatively measure what kind of delay would be incurred by retransmitting the lost frames.

Claim 28 (Canceled)

Claim 29 (Canceled)

Claim 30 (Currently amended): A transport layer protocol stored on computer readable storage medium, to facilitate streaming of media content across heterogeneous networks, the protocol comprising:

a congestion parameter, which provides a receiving network element with an measure of congestion incurred in transmission within the network;

a fading parameter which, when asserted, provides a receiving network element with an indication that a communicatively coupled wireless host just emerged from a fading condition; and

a BER parameter, which provides a receiving network element with an measure of bit error rate incurred in transmission within a wireless network.

Claim 31 (Canceled)

Claim 32 (Canceled)

Claim 33 (Currently amended): A transport layer protocol stored on computer readable storage medium, to facilitate streaming of media content across heterogeneous networks, the protocol generated in accordance with the following acts:

providing a server computer in a communications with a communications network;

receiving data using the protocol by way of the communications network, the protocol comprising:

- a congestion parameter, which provides a receiving network element with an measure of congestion incurred in transmission within the network;
- a fading parameter which, when asserted, provides a receiving network element with an indication that a communicatively coupled wireless host just emerged from a fading condition; and
- a BER parameter, which provides a receiving network element with an measure of bit error rate incurred in transmission within a wireless network.