آزمایشگاه سیستم های دیجیتال2

آزمایش 1

نمایشگر هفت قسمتی

Decoder

Seven segment

• Structure

	شگر	كاراكتر	سگمنتهای نمایشگر							كاراكتر					
a	b	с	d	е	f	g	متناظر	a	b	с	d	е	f	g	متناظر
×	×	×	×	×	×		0	×	×	×	×	×	×	×	8
	×	×					1	×	×	×	×		×	×	9
×	×		×	×		×	2	×	×	×		×	×	×	A
×	×	×	×			×	3			×	×	×	×	×	b
	×	×			×	×	4	×			×	×	×		С
×		×	×		×	×	5		×	×	×	×		×	d
×		×	×	×	×	×	6	×			×	×	×	×	Е
×	×	×					7	×				×	×	×	F

Binary Coded Decimal(BCD)

دهدهی	٠	باينري	گوی	11	BCD	دهدهی	٠	باينري	BCD		
المالي المالي	8	4	2	1	ВСВ	المالي ا	8	4	2	1	BCD
О	0	0	0	0	0	8	1	0	0	0	8
1	0	0	0	1	1	9	1	О	0	1	9
2	0	0	1	0	2	10	1	О	1	0	Invalid
3	0	0	1	1	3	11	1	О	1	1	Invalid
4	0	1	0	0	4	12	1	1	0	0	Invalid
5	0	1	0	1	5	13	1	1	0	1	Invalid
6	0	1	1	0	6	14	1	1	1	0	Invalid
7	0	1	1	1	7	15	1	1	1	1	Invalid

BCD decoding to seven segment

Nested Condition Operations Describing a Decoder

Nested Condition Operations Describing a Decoder

endmodule

Nested Condition Operations

Test for Decoder

```
module test dcd;
    // Inputs
    reg a;
    reg b;
   // Outputs
    wire d0;
    wire d1;
    wire d2;
    wire d3;
    // Instantiate the Unit Under Test
    dcd2 4 uut (
        .a(a),
        .b(b),
        .d0(d0),
        .d1(d1),
        .d2(d2),
        .d3(d3)
```

```
initial begin
    // Initialize Inputs
    a = 0;
    b = 0;
    #50 a = 0; b = 1;
    #50 a = 1; b = 0;
    #50 a = 1; b = 1;
    // Wait 100 ns for global reset
    #100;
    // Add stimulus here
end
endmodule
```

Procedural case statement Decoder Using case Statement

```
module dcd2 4 (input a, b, output reg d0, d1, d2, d3);
   always @(a, b) begin
      case ( { a, b } )
         2'b00 : { d3, d2, d1, d0 } = 4'b0001;
         2'b01 : { d3, d2, d1, d0 } = 4'b0010;
         2'b10 : { d3, d2, d1, d0 } = 4'b0100;
         2'b11 : { d3, d2, d1, d0 } = 4'b1000;
         default: { d3, d2, d1, d0 } = 4'b0000;
      endcase
   end
endmodule
```

Procedural case statement Decoder Using case Statement

```
module test dcd;
    // Inputs
    reg a;
                                               initial begin
    reg b;
                                                   // Initialize Inputs
    // Outputs
                                                   a = 0;
    wire d0;
                                                   b = 0;
    wire d1;
                                                   #50 a = 0; b = 1;
    wire d2;
                                                   #50 a = 1; b = 0;
    wire d3;
                                                   #50 a = 1; b = 1;
    // Instantiate the Unit Under Test
                                                   // Wait 100 ns for global reset
    dcd2 4 uut (
                                                   #100;
        .a(a),
                                                   // Add stimulus here
        .b(b),
                                                end
        .d0(d0),
                                           endmodule
        .d1(d1),
        .d2(d2),
        .d3(d3)
```