10 Байесовский анализ

- 1. $X_1, ..., X_n \sim Bern(\theta), \theta \sim R[0, 1]$. Посчитать апостериорную плотность и построить ее график.
 - а) для выборок размера n=5,10,20,50,100 для $\theta=1/2,\,\theta=1/3;$
 - б) вместо генерации выборки положите $\sum_{i=1}^{n} X_i$ равной 9n/10 или 99n/100.
- 2. Пусть $X_1, ..., X_n \sim \mathcal{N}(\theta, 1)$, $\theta \sim \mathcal{N}(\mu, \sigma^2)$. Апостериорную плотность можно не считать, а взять из таблицы. Посмотрим, как влияют параметры априорного распредления на итоговый результат. Для этого будем генерировать выборки для какого-то одного фиксированного θ (возьмите любое число из [0, 1], а также посмотрите на какое-нибудь θ , близкое к 0 или 1).
 - (а) Сравнить (визуально на графике) апостериорные плотности для нескольких разных значений (μ, σ^2) .
 - (b) Построить пример, когда при n=10000 оценка θ достаточно сильно отличается от настоящего значения несмотря на размер выборки.
 - (c) Сравнить байесовские оценки для квадратичного риска при разных (μ, σ^2) .
- 3. $X_1, ..., X_n \sim \mathcal{N}(\theta, 1)$. Построить (на листочке) байесовский криретерий для проверки $H_0: \theta = 0$ против $H_1: \theta = 1$, если априорная вероятность $\mathbf{P}(\theta = 0) = p$. Построить графики зависимости ошибок 1-го и 2-го рода от p.
- 4. * Пусть $X_i \sim \exp(\theta)$, а $\theta \sim Gamma(a,b)$. а) Построить байесовские оценки для абсолютной и квадратичной функций потерь и сравнить у таких оценок среднюю а) квадратичную б) абсолютную ошибку. б) Построить байесовский доверительный интервал уровня 95% и эмпирически исследовать ее уровень доверия.