Stats 315a: Statistical Learning Problem Set 1

Dong-Bang Tsai*

Department of Applied Physics, Stanford University, Stanford, California 94305, USA

(Dated: January 25, 2012)

Problem 1

(a)

MATLAB is used for this homework instead of R; I already asked professor if we can use MATLAB, and he said it's okay. My teammates are Jin Chen, and Wenqiong Guo. Basically, the code will generate a training sample of size 100 for each class, as well as a test sample of 5,000 per class. Then, we use linear regression and K-nearest neighbour (trained with training sample) to do the classification on test sample.

Problem 2 (ESL 2.4)

The squared distance from any sample point to the origin has a χ_p^2 distribution with mean p; therefore, since a prediction point x_0 is drawn from this distribution, it will have a expected squared distance p from the origin.

Because $z_i = a^T x_i$, and a is independent from x_i , we can conclude that $z_i \sim N$, normal distribution. Now, let's calculate the expectation value of z_i . We know that for a p dimensional vector a

$$E(z) = E(a^{T}x) = a^{T}E(x) = 0$$
(1)

The co-variant can be given by

$$Cov(a^T x) = a^T a = 1 (2)$$

As a result, we get $z_i \sim N(0,1)$, and the expected squared distance will be $E(z^2) = 1$.

Problem 3 (ESL 2.7)

(a)

For linear regression, the exact solution can be given by

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \tag{3}$$

therefore, the predicted value for a given input will be

$$\hat{f}(x_0) = x_0^T \hat{\beta} \tag{4}$$

Compare with the desired form of the estimator,

$$\hat{f}(x_0) = \sum_{i=1}^{N} l_i(x_0; \mathbf{X}) y_i \tag{5}$$

^{*}Electronic address: dbtsai@stanford.edu

it's found that

$$l_i(x_0; \mathbf{X}) = x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_i^T \tag{6}$$

Therefore, linear regression is the member of this class of estimators.

For k-nearest-neighbour regression, the estimator is

$$\hat{f}(x_0) = \frac{1}{k} \sum_{x_i \in N_k(x_0)} y_i \tag{7}$$

where $N_k(x_0)$ is the neighbourhood of x_0 defined by the k closest points x_i in the training sample. Now, compare with the desired estimator form, it's found that

$$l_i(x_0; \mathbf{X}) = \begin{cases} 0 & x_i \notin N_k(x_0) \\ \frac{1}{k} & x_i \in N_k(x_0) \end{cases}$$
 (8)

Therefore, k-nearest-neighbour regression is the member of this class of estimators.

(b)

Using Eq. (2.25) in the textbook, the conditional mean squared error can be rewritten as

$$E_{\mathbf{y}|\mathbf{x}}(f(x_0) - \hat{f}(x_0))^2 = E_{\mathbf{y}|\mathbf{x}}(\hat{f}(x_0) - E_{\mathbf{y}|\mathbf{x}}\hat{f}(x_0))^2 + (E_{\mathbf{y}|\mathbf{x}}\hat{f}(x_0) - f(x_0))^2$$

$$= Var_{\mathbf{y}|\mathbf{x}}(\hat{f}(x_0)) + Bias_{\mathbf{y}|\mathbf{x}}^2(\hat{f}(x_0))$$
(9)

Substitute Eq. (5) into Eq. (9), we have

$$Var_{\mathbf{y}|\mathbf{x}}(\hat{f}(x_0)) = Var_{\mathbf{y}|\mathbf{x}} \left(\sum_{i=1}^{N} l_i(x_0; \mathbf{X}) y_i \right)$$

$$= \sum_{i=1}^{N} l_i(x_0; \mathbf{X}) Var_{\mathbf{y}|\mathbf{x}} (y_i)$$

$$= \sum_{i=1}^{N} l_i(x_0; \mathbf{X}) \sigma^2$$
(10)

and

$$Bias_{\mathbf{y}|\mathbf{x}}(\hat{f}(x_0)) = Bias_{\mathbf{y}|\mathbf{x}} \left(\sum_{i=1}^{N} l_i(x_0; \mathbf{X}) y_i \right)$$

$$= E_{\mathbf{y}|\mathbf{x}} \sum_{i=1}^{N} l_i(x_0; \mathbf{X}) y_i - f(x_0)$$

$$= \sum_{i=1}^{N} l_i(x_0; \mathbf{X}) f(x_i) - f(x_0)$$
(11)

(c)

For the unconditional mean squared error, we have

$$E_{\mathbf{y},\mathbf{x}}(f(x_0) - \hat{f}(x_0))^2 = Var_{\mathbf{y},\mathbf{x}}(\hat{f}(x_0)) + Bias_{\mathbf{y},\mathbf{x}}^2(\hat{f}(x_0))$$
(12)

Therefore, the variance will be

$$Var_{\mathbf{y},\mathbf{x}}(\hat{f}(x_0)) = E_{\mathbf{y},\mathbf{x}}(\hat{f}(x_0) - E_{\mathbf{y},\mathbf{x}}\hat{f}(x_0))^2$$

$$= E_x E_{\mathbf{y}|\mathbf{x}} \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) y_i - E_x \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) f(x_i)\right)\right)^2$$

$$= E_x \left[E_{\mathbf{y}|\mathbf{x}} \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) y_i\right)^2 - 2E_{\mathbf{y}|\mathbf{x}} \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) y_i\right) \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) f(x_i)\right)\right]$$

$$+ E_x \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) f(x_i)\right) \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) f(x_i)\right)\right]$$

$$= E_x E_{\mathbf{y}|\mathbf{x}} \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) y_i - \sum_{i=1}^N l_i(x_0; \mathbf{X}) f(x_i)\right)^2 + E_x \left(E_x \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) f(x_i)\right) - \sum_{i=1}^N l_i(x_0; \mathbf{X}) f(x_i)\right)^2$$

$$= E_x Var_{\mathbf{y}|\mathbf{x}}(\hat{f}(x_0)) + Var_x \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) f(x_i)\right)$$

$$= E_x \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) \sigma^2\right) + Var_x \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) f(x_i)\right)$$

$$(13)$$

The Bias will be

$$Bias_{y,x}(\hat{f}(x_0) = E_{\mathbf{y},\mathbf{x}}\hat{f}(x_0) - E_x f(x_0)$$

$$= E_x (E_{y|x}\hat{f}(x_0) - f(x_0))$$

$$= E_x (\sum_{i=1}^N l_i(x_0; \mathbf{X}) f(x_i) - f(x_0))$$

$$= E_x Bias_{y|x}(\hat{f}(x_0))$$
(14)

(d)

Compare the result in (b), and (c), we find that the unconditional squared bias is the expected value respected to X of conditional squared bias. $E_x Bias_{y|x}(\hat{f}(x_0)) = Bias_{x,y}(\hat{f}(x_0))$

The unconditional variance will be the expected value respected to X of conditional variance with extra variance term.

$$Var_{y,x}(\hat{f}(x_0)) = E_x Var_{y|x}(\hat{f}(x_0)) + Var_x \left(\sum_{i=1}^N l_i(x_0; \mathbf{X}) f(x_i) \right)$$

Problem 4

(a)

Let $\hat{\beta}$ be the least squares estimation over a set of training data $(x_1, y_1), ..., (x_n, y_n)$ using

$$R_{tr}(\hat{\beta}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{\beta}^T x_i)^2$$
 (15)

, while $\tilde{\beta}$ is the least squares estimation over another set of training data $(\tilde{x}_1, \tilde{y}_1), ..., (\tilde{x}_n, \tilde{y}_n)$ drawn at random from the same population as the first training data using

$$R_{te}(\tilde{\beta}) = \frac{1}{M} \sum_{i=1}^{M} (\tilde{y}_i - \tilde{\beta}^T \tilde{x}_i)^2$$
(16)

Since both training data are drawn from the same population, if they are randomly picked up, we can say

$$E[R_{tr}(\hat{\beta})] = E[R_{te}(\tilde{\beta})] \tag{17}$$

, which can be formally proven by

$$E[R_{tr}(\hat{\beta})] = E[\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{\beta}^T x_i)^2]$$

$$= \frac{1}{N} E[\sum_{i=1}^{N} (y_i - \hat{\beta}^T x_i)^2]$$

$$= \frac{1}{M} E[\sum_{i=1}^{M} (y_i - \hat{\beta}^T x_i)^2]$$

$$= \frac{1}{M} E[\sum_{i=1}^{M} (\tilde{y}_i - \tilde{\beta}^T \tilde{x}_i)^2]$$

$$= E[R_{te}(\tilde{\beta})]$$
(18)

Also, $\tilde{\beta}$ is the least squares estimation over $(\tilde{x}_1, \tilde{y}_1), ..., (\tilde{x}_n, \tilde{y}_n)$, so

$$\frac{1}{M} \sum_{1}^{M} (\tilde{y}_{i} - \tilde{\beta}^{T} \tilde{x}_{i})^{2} \leq \frac{1}{M} \sum_{1}^{M} (\tilde{y}_{i} - \hat{\beta}^{T} \tilde{x}_{i})^{2}$$

$$\Rightarrow R_{te}(\tilde{\beta}) \leq R_{te}(\hat{\beta})$$

$$\therefore E[R_{te}(\tilde{\beta})] \leq E[R_{te}(\hat{\beta})] \tag{19}$$

With Eq. (17) and Eq. (20), we get

$$\therefore E[R_{tr}(\hat{\beta})] \le E[R_{te}(\hat{\beta})] \tag{20}$$

Problem 5 (ESL 3.2)

Method 1

For each point x_0 , forming a 95% confidence interval implies that we need to know the confidence interval for $\hat{\beta}$, and using linear function $a^T\hat{\beta}$ to construct the 95% confidence band. Since $\hat{\beta} \sim N(\beta, (\mathbf{X}^T\mathbf{X})^{-1}\sigma^2))$, we can obtain the $1-2\alpha$ confidence interval for β as

$$\left(\hat{\beta} - z^{(1-\alpha)}\sqrt{(\mathbf{X}^T\mathbf{X})^{-1}}\sigma, \hat{\beta} + z^{(1-\alpha)}\sqrt{(\mathbf{X}^T\mathbf{X})^{-1}}\sigma\right)$$
(21)

where $z^{(1-\alpha)}$ is the $1-\alpha$ percentile of the normal distribution. (Note that if we replace the α to known value $\hat{\alpha}$, the distribution will become t distribution, and it normally become negligible as the sample increases; therefore, we typically use the normal quartiles.) As a result, the confidence interval from each input point x_0 will be

$$\left(a^{T}\hat{\beta} - z^{(1-\alpha)}\sqrt{a^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}a}\sigma, \hat{\beta} + z^{(1-\alpha)}\sqrt{a^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}a}\sigma\right)$$
(22)

where $y_0 = a^T \hat{\beta} = \sum_{j=0}^{3} \hat{\beta}_j x_0^j$. For 95%, α is 0.025.

Method 2

From Eq. (3.15) from textbook, the confidence set for β can be given by

$$C_{\beta} = \left\{ \beta | (\hat{\beta} - \beta)^T \mathbf{X}^T \mathbf{X} (\hat{\beta} - \beta) \le \sigma^2 \chi_4^{2(1 - 2\alpha)} \right\}$$
(23)

Therefore, the 95% confidence band from each input point x_0 will be

$$\left(a^T\hat{\beta} - \sqrt{a^T(\mathbf{X}^T\mathbf{X})^{-1}a\chi_4^{2(1-2\alpha)}}\sigma, \hat{\beta} + \sqrt{a^T(\mathbf{X}^T\mathbf{X})^{-1}a\chi_4^{2(1-2\alpha)}}\sigma\right)$$
(24)

where α is 0.025, and $\chi_l^{2^{(1-\alpha)}}$ is the chi-squared distribution on l degrees of freedom. (Similar to the discussion in method 1, if we don't know the α , but we know $\hat{\alpha}$ which can be calculated from training set, the chi-squared distribution will be replaced by $F_{p_1-p_0,M-p_1-1}$ distribution.)

According to simulation result shown in the figure, it's observed that Method 2 has wider confidence band.

```
% HW1, Q5 (ESL3.2)
% Dong-Bang Tsai
clear all;
```

N = 200; % N of training set

```
alpha = (1-0.95)/2; % 95% confidence interval
sigma = 0.2;
                    % Gaussian random noise
% The training set
beta = randn(4,1);
x_{points} = rand(N,1);
X = [ones(N,1),x_points,x_points.^2,x_points.^3];
y = X*beta + normrnd(0,sigma,N,1);
% Learned hypothesis
hat\_beta = ((X'*X))\backslash X'*y;
% Plot array
N_{plot} = 50;
x_plot_points = [1/N_plot:1/N_plot:1]';
a = [ones(N_plot,1),x_plot_points,x_plot_points.^2,x_plot_points.^3];
% Compute the confidence band
hat\_sigma = sqrt( 1/(N-4)*sum( (X*beta-y).^2 ) );
delta1 = norminv(1-alpha)*sqrt(diag(a*((X'*X)\a')))*hat_sigma;
delta2 = sqrt(diag(a*((X'*X)\a'))*chi2inv(1-2*alpha,4))*hat_sigma;
plot(x_points,y(:,1),'mx');
hold on;
plot(x_plot_points,a*beta,'k-');
plot(x_plot_points,a*beta + delta1,'r--');
plot(x_plot_points,a*beta - delta1,'r-.');
plot(x_plot_points,a*beta + delta2,'b--');
plot(x_plot_points,a*beta - delta2,'b-.');
xlabel('x'); ylabel('y');
legend('Training set', 'Linear least squares fitting', 'Method 1 Upper bound', 'Method 1 Lower bound', 'Method
hold off;
```

Problem 6

(a)

When $p \gg N$, the columns of X are not lineraly independent which implies X isn't of full rank. Therefore, the solution of least squares given by $\hat{\beta} = (X^T X)^{-1} X^T y$ will not be uniquely defined since $X^T X$ is singular, and the residuals of the solution will be 0. The solution is unique only if X has a full column rank, and $X^T X$ is positive definite.

(b)

In the ridge regression approach, the equation we are trying to solve is

$$(X^T X + \lambda I)\beta = X^T y \tag{25}$$

The solution can be given by $\hat{\beta}_{\lambda} = (X^TX + \lambda I)^{-1}X^Ty$. We add positive constant to diagonal of X^TX ; therefore, $(X^TX + \lambda I)^{-1}$ is non-singular, even if X^TX is not of full rank. As a result, the solution always exists, and is unique.

(c)

As we show that the solution of ridge regression is $\hat{\beta}_{\lambda} = (X^T X + \lambda I)^{-1} X^T y$, if we try to get the λ smaller, it will eventually become least squares solution which is $\hat{\beta}_{\lambda} = (X^T X)^{-1} X^T y$.

(d)

Using $X = UDV^T$

$$\hat{\beta}_{\lambda} = (X^T X + \lambda I)^{-1} X^T y$$

$$= (V D^T U^T U D V^T + \lambda I) V D U^T y$$

$$= V (D^2 + \lambda I) V^T D U^T y$$

$$= V (D^2 + \lambda I) D U^T y$$
(26)