Internet Programming & Protocols Lecture 14

TCP models

TCP measurement

midterm assignment 6

3

www.cs.utk.edu/~dunigan/ipp/

Plan of attack

- Network overview ✓
- BSD sockets and LIDP √
- TCP ✓
 - Socket programming
 - Reliable streams
 - Header and states
 - Flow control and bandwidth-delay
 - Measuring performance
 - Historical evolution (Tahoe ...SACK)
 - Congestion control
- Network simulation (ns)
- TCP accelerants
- TCP implementations
- TCP over wireless, satellite, ...

LECTURES

- 14 Models and measurement
- 15 emulation and simulation
- 17 S-TCP, HSTCP BI-TCP
- 18 Bandwidth estimation
- 19 Vegas, fast, westwood
- AQM, RED, ECN. XCP Satellite and asymmetric channels
- 22 Wireless
- 23 Parallel streams, rate based
- Kernel implementation
- 25 Web100 and offload engines 26 Cluster TCP, zero copy
- 27 review

Evaluating the performance of TCP

- Experimental
 - Standalone testbeds
 - Emulator testbeds
 - Live tests on the Internet
 - Active tools (iperf, ping, traceroute) / passive tools (tcpdump/netflows)
 - Collect flow packet trace, full traffic traces
 - Instrumented kernels (Web100)
- Theoretical
 - Analytical models to characterize a TCP flow
 - Stochastic/statistical models to characterize flow interactions (background)
 - Queuing models to characterize router behavior
- Linear feedback (control) systems to characterize optimal solutions
- Simulation
- Repeatable, flexible, instrumented

111

IPP Lecture 14 - 3

Performance metrics

- NOC issues: capacity management
 - Utilization (peak, daily, hourly) trends
 - Traffic mix (services), UDP vs TCP
 - Link errors
- · Bulk traffic characteristics
 - Statistical distribution (smooth, bursty)
 - Correlations, patterns
 - Interpacket arrival times, packet size distribution
 - RTT jitter/distributions
- · Single flow characteristics
 - Jitter
 - Data rate
 - Fair
 - "friendly"
 - duration

IPP Lecture 14 - 4

Motivation for TCP modeling

- TCP operating scale is very large
- Models are required to gain deeper understanding of TCP dynamics
- Uncertainties can be modeled as stochastic processes
- Drive the design of TCP-friendly algorithms for multimedia applications
- Optimize TCP performance

Some network models:

aggregate traffic models queuing models control system models single-flow models

Modeling Internet traffic

- To design congestion control protocols and provide "realistic" data for network simulations, it is desirable to be able to characterize the "background traffic" of the internet
- Collect traffic traces at the core routers
 - Huge data sets
 - Several sites with data sets available
 - Traffic characteristics evolve over the years
 - telnet \rightarrow email \rightarrow http \rightarrow streaming video \rightarrow gaming
 - . More hosts, faster links
- . Long flows? Short flows?
- Are packet arrival rates Poisson? Service rates uniform?
- No, Internet traffic is bursty, heavy-tailed distributions, self-similar

Elephants & mice

·Lots of tiny flow 78% < 10 pkts

Heavy tailed distribution Not nice bell-shaped curves Heavy tails Correlated In your testing/simulation, your background traffic needs to mimic this behavior Packet delay distribution Distribution of file sizes on a computer system is also heavy-tailed. IPP Lecture 14 - 7

IPP Lecture 14 - 8

Queuing models Network congestion can be viewed as classic queuing problem $\bullet~$ Packets enter router at some arrival rate $\lambda~$ (packets/sec), router tries to forward them on at some (server) rate μ . Queue can build even if $\lambda = \mu$ - Server rate == transmission delay, e.g 200kbs link, 40 ms to put 1 KB pkt on wire 10 pkts in queue ahead of you, your RTT increases by 10*40 == 400 ms Analytical queuing models allow us to predict queuing times, mean number of packets in the queue, loss rates as function of μ and λ • For M/M/1 queues, assumptions are service times are exponential, arrival rates are Poisson (they're not), and infinite queues! $\mathop{\otimes}$ But the basic principles apply, throughput increases with the arrival rate, but delay increases as the queues build. IPP Lecture 14 - 11

Selecting a rate adjustment algorithm • linear vs non-linear $- x_i(t+1) = a x_i(t) + b$ $- x_i(t+1) = x_i(t) + a x_i(t)^k$ • Critera - Efficient - operating just under capacity line - Fair• Roughly, N users should each get 1/N of the capacity • $(\sum_i)^2/(n(\sum_i)^2) = 1$ fair - Converges quickly (responsiveness) and smoothly to an equilibriumTotal load on network

We have already developed several models to characterize a single network flow in a steady-state based on window size, segment size, and RTT Bandwidth = windowsize/RTT BW(t) = W(t)/RTT Latency = transmission delay + propagation delay Bandwidth-delay product

- Given path RTT and capacity C (bits/second), for sliding-window flow control, user must provide RTT*C bits of buffer space at both ends in order to run at "full speed"

IPP Lecture 14 - 15

Models of TCP congestion control • TCP slow-start - Data rate (cwnd) doubles for each arriving ACK - To reach window size of N segments, takes log₂(N) RTT's - After k RTT's, instantaneous data rate is (2^{k+1} – 1)MSS/RTT • TCP AIMD - Cut sending rate in half if congestion is detected (packet loss) - Cwnd increased by 1 each RTT • In one second we will add (1/RTT) segments • So at end of that second we will have sped up by MSS/RTT² bits/sec • If you double the RTT, it will take 4 times as long to reach data rate

 $MSS\sqrt{3/2}$ $RTT\sqrt{p}$ Inverse square root p law

- If path has RTT of 200 ms and a loss probability of 0.05, then average data rate with MSS of 1500 bytes is
 - 1500/0.2 sqrt(1.5/0.05) = 41 Kbytes/sec
- For a satellite path, RTT 590 ms and BER 10-5, max data rate is 8
- Looking at it the other way: if you want to sustain a data rate of 10 gbs over a 100 ms RTT path, your loss rate must be less than 10^{-14}
 - Can even fiber do this?
- As always, longer RTT aggravates the problem, and a bigger MSS (MTU) can improve performance

5/5 IPP Lecture 14 - 19

Long Fat Networks (LFN)

TCP linear recovery on paths with high bandwidth and long RTT - Takes cwnd/2 RTT's and slope of line is MSS/RTT²/sec bits/sec - 10 Gig, 100 ms RTT needs window of 83,333 segments • Recovering from cwnd/2 takes 4,166 seconds - over an hour! Some not so TCP-friendly proposals to speed recovery for LFNs Floyd's HS TCP (a.b) a function of current cwnd (table lookup) - Scalable TCP (1%,1/8), increase cwnd by 1% each ACK - Virtual MSS (k. 1/2), increase cwnd by k/cwnd for each ACK . Jumbo frame (MTU=9000) is k=6 with added benefits Easy to experiment with AIMD in ns \$tcp set decrease_num_ 0.875 \$tcp set increase_num_ 32 IPP Lecture 14 - 23

Experimental measurements

Things to consider for both test beds and simulations

- · Learn about good experimental design
 - Adequate tests and confidence intervals
 - Random start times, re-order experiments
 - Anecdotal (illustrate a point) vs prove a point
 - Steady-state, test duration
- Selecting and configuring your flavor of TCP
 - Tahoe, Reno, Newreno, SACK, FACK ...
 - Window sizes, RTT, timer tick resolution, delayed ACK, Nagle
 - Knowing what your OS is doing: timestamps, window-scaling, Linux
 - Router queue sizes and management (droptail, RED, WFQ, ECN)
- Selecting competing traffic
 - Bottleneck links
 - Realistic traffic? (bursty, Pareto)
 - Traffic on the reverse path

IPP Lecture 14 - 24

Real tests or simulations

- Live internet tests
 - See results in ultimate environme
 - Real TCP stacks/OS, traffic
 - Vary time and host/paths
- Worry about impact?
- Test beds
 - Controlled traffic, but real OS
- Usually LAN based, no queuing
- Repeatable
- Not very good for cross-traffic
- **Emulators**
 - Same as testbed
 - Plus control delay, loss, data rates, dup's, out-of-order
 - Easy to reconfigure
- Need tools to probe and measure

Utilization of SLAC ESnet link Sep-Nov '03

Simulations

- Easily reconfigured
 - Complex topology
 - Vary TCP flavor
- Repeatable
- Detailed feedback/instrumentation
- Add delay, loss, cross-traffic, queues
- Randomness for confidence
- Investigate "new" networks/prote
- cheap - Can be slow
- Not real TCP

IPP Lecture 14 - 25

Live Internet tests

SLAC/s TCP stack tests 2003

- Series of tests of different TCP stacks (NewReno, HSTCP, STCP, Westwood, FAST, BI-TCP) over the wide area
- Test nodes across US, Europe
 - Different pairs participating at different times
 - GigE interfaces, 0C12 bottleneck (622 mbs)
- Used iperf, ping, UDP (competing traffic), some parallel streams too
 - Vary background traffic, window size (RCVBUF/SNDBUF)
 - Measure datarate and RTT (from concurrent ping)
 - Measure stability in face of UDP background
 - Measure fairness with competing TCP stacks

IPP Lecture 14 - 26

Measurements 20 minute tests, long enough to see stable patterns Iperf reports incremental and cumulative throughputs at 5 second intervals Ping interval about 100ms Ping traffic goes to $\ensuremath{\mathsf{TCP_r}}$ when also running cross-traffic SLA Otherwise goes to X, UDP or TCP cross-traffic bottleneck Remote site TCP, ping [ICMP/ping traffic Over a thousand 20 600 Mbps capacity minute measurements or 300 hours

Fairness (F)

Avg Fairness from								
SLAC to UFI. Cross-	Reno							
traffic=>	TCP	S-	Fast	HS-	Bic-	Н	HSTCP-	ŀ
Source	16	TCP	TCP	TCP	TCP	TCP	LP	Avg
P-TCP	1.00	0.92	0.89	0.90	0.95	0.94	0.69	0.90
S-TCP	0.92	1.00	0.87	0.90	0.91	0.92	0.78	0.90
Fast TCP	0.89	0.87	1.00	0.92	0.93	0.99	0.78	0.9
HS-TCP	0.90	0.90	0.92	0.97	0.95	0.94	0.95	0.93
Bic-TCP	0.95	0.91	0.93	0.95	1.00	0.99	0.93	0.9
H-TCP	0.94	0.92	0.99	0.94	0.99	1.00	0.95	0.96
HSTCP-LP	0.69	0.78	0.78	0.95	0.93	0.95	1.00	0.8
Average	0.90	0.90	0.91	0.93	0.95	0.96	0.87	0.9

- Most have good intra-protocol fairness (diagonal elements), except HS-TCP
 Worse for larger RTT (Caltech F~0.999+-0.004, U Florida F~0.995+-0.14, Manchester F~0.95+-0.05)
- Inter protocol Bic & H appear more fair against others
 Worst fairness are HSTCP-LP, P-TCP, S-TCP, Fast, HSTCP-LP
- But cannot tell who is aggressive and who is timid

55

IPP Lecture 14 - 31

Next time ...

- Network emulation
- Network simulation (ns)

IPP Lecture 14 - 33

Preliminary Conclusions (SLAC)

- Advanced stacks behave like TCP-Reno single stream on short distances for up to Gbits/s paths, especially if window size limited
- TCP Reno single stream has low performance and is unstable on long distances
- P-TCP is very aggressive and impacts the RTT badly
- HSTCP-LP is too gentle, this can be important for providing scavenger service without router modifications. By design it backs off quickly, otherwise performs well
- Fast TCP is very handicapped by reverse traffic
- S-TCP is very aggressive on long distances
- HS-TCP is very gentle, like H-TCP has lower throughput than other protocols
- BI-TCP performs very well in almost all cases

IPP Lecture 14 - 32