Combinational Logic Technologies

- Standard gates
 - gate packages
 - cell libraries
- Regular logic
 - multiplexers
 - decoders
- Two-level programmable logic
 - PALs
 - PLAs
 - ROMs

Random logic

- Transistors quickly integrated into logic gates (1960s)
- Catalog of common gates (1970s)
 - Texas Instruments Logic Data Book the yellow bible
 - all common packages listed and characterized (delays, power)
 - typical packages:
 - in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates
- Today, very few parts are still in use
- However, parts libraries exist for chip design
 - designers reuse already characterized logic gates on chips
 - same reasons as before
 - difference is that the parts don't exist in physical inventory created as needed

Random logic

- Too hard to figure out exactly what gates to use
 - map from logic to NAND/NOR networks
 - determine minimum number of packages
 - slight changes to logic function could decrease cost
- Changes to difficult to realize
 - need to rewire parts
 - may need new parts
 - design with spares (few extra inverters and gates on every board)

Regular logic

- Need to make design faster
- Need to make engineering changes easier to make
- Simpler for designers to understand and map to functionality
 - harder to think in terms of specific gates
 - better to think in terms of a large multi-purpose block

Making connections

- Direct point-to-point connections between gates
 - wires we've seen so far
- Route one of many inputs to a single output --- multiplexer
- Route a single input to one of many outputs --- demultiplexer

Mux and demux

- Switch implementation of multiplexers and demultiplexers
 - can be composed to make arbitrary size switching networks
 - used to implement multiple-source/multiple-destination interconnections

Mux and demux (cont'd)

Uses of multiplexers/demultiplexers in multi-point connections

Multiplexers/selectors

- Multiplexers/selectors: general concept
 - □ 2ⁿ data inputs, n control inputs (called "selects"), 1 output
 - used to connect 2ⁿ points to a single point
 - control signal pattern forms binary index of input connected to

output

$$Z = A' I_0 + A I_1$$

 $\begin{array}{c|c} \hline 0 & I_0 \\ 1 & I_1 \\ \hline \end{array}$ functional form logical form

two alternative forms for a 2:1 Mux truth table

Ζ

0

Multiplexers/selectors (cont'd)

- 2:1 mux: $Z = A'I_0 + AI_1$
- 4:1 mux: $Z = A'B'I_0 + A'BI_1 + AB'I_2 + ABI_3$
- 8:1 mux: $Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7$
- In general: $Z = \sum_{k=0}^{2^{n}-1} (m_k I_k)$
 - □ in minterm shorthand form for a 2ⁿ:1 Mux

Gate level implementation of muxes

2:1 mux

4:1 mux

Cascading multiplexers

Large multiplexers can be made by cascading smaller ones

control signals B and C simultaneously choose one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the upper or lower mux's output to gate to Z

Multiplexers as general-purpose logic

- A 2ⁿ:1 multiplexer can implement any function of n variables
 - with the variables used as control inputs and
 - the data inputs tied to 0 or 1
 - □ in essence, a lookup table
- Example:

□
$$F(A,B,C) = m0 + m2 + m6 + m7$$

= $A'B'C' + A'BC' + ABC' + ABC$
= $A'B'C'(1) + A'B'C(0)$
+ $A'BC'(1) + A'BC(0)$
+ $AB'C'(0) + AB'C(0)$
+ $ABC'(1) + ABC(1)$

$$Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7$$

Multiplexers as general-purpose logic (cont'd)

- A 2ⁿ⁻¹:1 multiplexer can implement any function of n variables
 - with n-1 variables used as control inputs and
 - the data inputs tied to the last variable or its complement

Example:

□
$$F(A,B,C) = m0 + m2 + m6 + m7$$

= $A'B'C' + A'BC' + ABC' + ABC$
= $A'B'(C') + A'B(C') + AB'(0) + AB(1)$

Multiplexers as general-purpose logic (cont'd)

Generalization

 n-1 mux control variables

 single mux data variable

four possible configurations of truth table rows can be expressed as a function of I_n

Example: G(A,B,C,D) can be realized by an 8:1 MUX

choose A,B,C as control variables

				_
Α	В	С	D	G
0	0	0	0	1 1
0	0	0	1	1 '
0	0	1	0	0
0 0 0 0 0	0	1	1	1 D
0	1	0	0	TO _
0	1	0	1	$\begin{bmatrix} 0 \end{bmatrix}^0$
0	1	1	0	1 1
0	1	1	1	1 '
1	0	0	0	1
1	0	0	1	0 D,
1	0	1	0	0
1	0	1	1	1 D
1	1	0	0	<u></u>
1	1	0	1	0
1	1	1	0	1 D'
1	1	1	1	
				•

Activity

Realize F = B'CD' + ABC' with a 4:1 multiplexer and a minimum of other gates:

Demultiplexers/decoders

- Decoders/demultiplexers: general concept
 - single data input, n control inputs, 2ⁿ outputs
 - control inputs (called "selects" (S)) represent binary index of output to which the input is connected
 - data input usually called "enable" (G)

1:2 Decoder:	3:8 Decoder:					
$O0 = G \bullet S'$	$O0 = G \bullet S2' \bullet S1' \bullet S0'$					
$O1 = G \bullet S$	$O1 = G \bullet S2' \bullet S1' \bullet S0$					
	$O2 = G \bullet S2' \bullet S1 \bullet S0'$					
2:4 Decoder:	$O3 = G \bullet S2' \bullet S1 \bullet S0$					
$O0 = G \bullet S1' \bullet S0'$	$O4 = G \bullet S2 \bullet S1' \bullet S0'$					
$O1 = G \bullet S1' \bullet S0$	$O5 = G \bullet S2 \bullet S1' \bullet S0$					
$O2 = G \bullet S1 \bullet S0'$	$O6 = G \bullet S2 \bullet S1 \bullet S0'$					
$O3 = G \bullet S1 \bullet S0$	$O7 = G \bullet S2 \bullet S1 \bullet S0$					

Gate level implementation of demultiplexers

1:2 decoders active-high enable

IV - Combinational Logic Technologies

Demultiplexers as general-purpose logic

- A n:2ⁿ decoder can implement any function of n variables
 - with the variables used as control inputs
 - the enable inputs tied to 1 and
 - the appropriate minterms summed to form the function

demultiplexer generates appropriate minterm based on control signals (it "decodes" control signals)

Demultiplexers as general-purpose logic (cont'd)

F1 = A'BC'D + A'B'CD + ABCDF2 = ABC'D' + ABC→A'B'C'D' F3 = (A' + B' + C' + D')→A'B'C'D 2 →A'B'CD' F1 3 → A'B'CD 4 →A'BC'D' 5 → A'BC'D 6 →A'BCD' → A'BCD 4:16 Enable →AB'C'D' **DEC** F2 9 →AB'C'D 10 →AB'CD' 11 →AB'CD 12 →ABC'D' 13 →ABC'D →ABCD¹ 14 15 →ABCD ABCD

Cascading decoders

Programmable logic arrays

- Pre-fabricated building block of many AND/OR gates
 - actually NOR or NAND
 - "personalized" by making/breaking connections among the gates
 - programmable array block diagram for sum of products form

Enabling concept

Shared product terms among outputs

example:
$$F0 = A + B' C'$$

 $F1 = A C' + A B$
 $F2 = B' C' + A B$
 $F3 = B' C + A$

personality matrix

inputs			outputs			
Α	В	С	F0	F1	F2	F3
1	1	_	0	1	1	0 🛌
_	0	1	0	0	0	1
1	_	0	0	1	0	0
_	0	0	1	0	1	0 👡
1	_	_	1	0	0	1
				.	.	.

input side:

1 = uncomplemented in term

0 = complemented in term

– = does not participate

output side:

1 = term connected to output

0 = no connection to output

reuse of terms

Before programming

- All possible connections are available before "programming"
 - in reality, all AND and OR gates are NANDs

After programming

- Unwanted connections are "blown"
 - fuse (normally connected, break unwanted ones)
 - anti-fuse (normally disconnected, make wanted connections)

Alternate representation for high fan-in structures

- Short-hand notation so we don't have to draw all the wires
 - × signifies a connection is present and perpendicular signal is an input to gate

notation for implementing

$$F0 = A B + A' B'$$

 $F1 = C D' + C' D$

Programmable logic array example

Multiple functions of A, B, C

$$\Rightarrow$$
 F1 = ABC

$$\Box$$
 F6 = A xnor B xnor C

Α	В	C	F1	F2	F3	F4	F5	F6
0	0	0	0 0 0 0 0 0	0	1	1	0	0
0	0	1	0	1	0	1	1	1
0	1	0	0	1	0	1	1	1
0	1	1	0	1	0	1	0	0
1	0	0	0	1	0	1	1	1
1	0	1	0	1	0	1	0	0
	Τ	U	U	T	U	T	U	U
1	1	1	1	1	0	0	1	1

full decoder as for memory address

PALs and PLAs

- Programmable logic array (PLA)
 - what we've seen so far
 - unconstrained fully-general AND and OR arrays
- Programmable array logic (PAL)
 - constrained topology of the OR array
 - innovation by Monolithic Memories
 - faster and smaller OR plane

a given column of the OR array has access to only a subset of the possible product terms

PALs and PLAs: design example

BCD to Gray code converter

Α	В	C	D	W	X	Υ	Z
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	1	1	1	0
0	1	1	0	1	0	1	0
0	1	1	1	1	0	1	1
1	0	0	0	1	0	0	1
1	0	0	1	1	0	0	0
1	0	1	_	_	_	_	_
1	1	_	_	_	_	_	_
				•			

minimized functions:

$$W = A + BD + BC$$

 $X = BC'$
 $Y = B + C$
 $Z = A'B'C'D + BCD + AD' + B'CD'$

PALs and PLAs: design example (cont'd)

Code converter: programmed PLA

minimized functions:

not a particularly good candidate for PAL/PLA implementation since no terms are shared among outputs

however, much more compact and regular implementation when compared with discrete AND and OR gates

PALs and PLAs: design example (cont'd)

Code converter: programmed PAL

4 product terms per each OR gate

PALs and PLAs: design example (cont'd)

- Code converter: NAND gate implementation
 - loss or regularity, harder to understand
 - harder to make changes

PALs and PLAs: another design example

Magnitude comparator

Α	В	C	D	EQ	NE	LT	GT
0	0	0	0	1	0	0	0
0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	0
0	0	1	1	0	1	1	0
0	1	0	0	0	1	0	1
0	1	0	1	1	0	0	0
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	0	1
1	0	1	0	1	0	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	1	0	1
1	1	0	1	0	1	0	1
1	1	1	0	0	1	0	1
1	$\bar{1}$	$\overline{1}$	1	1	Ō	Ö	Ō
•	_	_	-		-	-	-

minimized functions:

EQ = A'B'C'D' + A'BC'D + ABCD + AB'CD'

LT = A'C + A'B'D + B'CD
IV - Combinational Logic

$$NE = AC' + A'C + B'D + BD'$$

 $GT = AC' + ABC + BC'D'$

Activity

- Map the following functions to the PLA below:
 - W = AB + A'C' + BC'
 - \square X = ABC + AB' + A'B
 - Y = ABC' + BC + B'C'

Activity (cont'd)

Read-only memories

- Two dimensional array of 1s and 0s
 - entry (row) is called a "word"
 - □ width of row = word-size
 - index is called an "address"
 - address is input
 - selected word is output

internal organization

bit lines (normally pulled to 1 through resistor – selectively connected to 0 by word line controlled switches)

word lines (only one

is active – decoder is just right for this)

ROMs and combinational logic

Combinational logic implementation (two-level canonical form) using a ROM

Α	В	C	F0	F1	F2	F3
0	0	0	0	0	1	0
0	0	1	1	1	1	0
0	1	0	0	1	0	0
0	1	1	0	0	1 1 0 0 1 0	1
1	0	0	1	0	1	1
1	0	1	1	0	0	0
1	1	0	0	0	0	1
1	1	1	0	0	0	0
			'			

truth table

ROM structure

- Similar to a PLA structure but with a fully decoded AND array
 - completely flexible OR array (unlike PAL)

ROM vs. PLA

- ROM approach advantageous when
 - design time is short (no need to minimize output functions)
 - most input combinations are needed (e.g., code converters)
 - little sharing of product terms among output functions
- ROM problems
 - size doubles for each additional input
 - can't exploit don't cares
- PLA approach advantageous when
 - design tools are available for multi-output minimization
 - there are relatively few unique minterm combinations
 - many minterms are shared among the output functions
- PAL problems
 - constrained fan-ins on OR plane

Regular logic structures for two-level logic

- ROM full AND plane, general OR plane
 - cheap (high-volume component)
 - can implement any function of n inputs
 - medium speed
- PAL programmable AND plane, fixed OR plane
 - intermediate cost
 - can implement functions limited by number of terms
 - high speed (only one programmable plane that is much smaller than ROM's decoder)
- PLA programmable AND and OR planes
 - most expensive (most complex in design, need more sophisticated tools)
 - can implement any function up to a product term limit
 - slow (two programmable planes)

Regular logic structures for multi-level logic

- Difficult to devise a regular structure for arbitrary connections between a large set of different types of gates
 - efficiency/speed concerns for such a structure
 - in 467 you'll learn about field programmable gate arrays (FPGAs)
 that are just such programmable multi-level structures
 - programmable multiplexers for wiring
 - lookup tables for logic functions (programming fills in the table)
 - multi-purpose cells (utilization is the big issue)
- Use multiple levels of PALs/PLAs/ROMs
 - output intermediate result
 - make it an input to be used in further logic

Combinational logic technology summary

- Random logic
 - Single gates or in groups
 - conversion to NAND-NAND and NOR-NOR networks
 - transition from simple gates to more complex gate building blocks
 - reduced gate count, fan-ins, potentially faster
 - more levels, harder to design
- Time response in combinational networks
 - gate delays and timing waveforms
 - hazards/glitches (what they are and why they happen)
- Regular logic
 - multiplexers/decoders
 - ROMs
 - PLAs/PALs
 - advantages/disadvantages of each