Problem Set 1

Advanced Microeconomics III

Spring 2022

Problem 1 Based on MWG 13.B.3.

Consider a positive selection version of the adverse selection model in which $r(\cdot)$ is continuous and strictly decreasing. Also assume that F has a strictly positive density on $[\theta, \bar{\theta}]$

a. Show that the *more capable* workers are the ones choosing to work for any given wage.

Solution: A worker accepts the job if

$$w > r(\theta)$$

If θ accepts the job, then $\theta' > \theta$ also accepts the job.

$$w > r(\theta) > r(\theta')$$

The first inequality holds since θ accepts the job and the second because r is decreasing.

b. Show that if $r(\theta) > \theta$ for all θ , then the resulting competitive equilibrium is Pareto efficient.

Solution:

$$r(\theta) \geq r(\bar{\theta}) > \bar{\theta}$$

So, there cannot be an equilibrium in which workers do work. If a worker works the wage has to be larger than $\bar{\theta}$ but then firms are loosing money.

Thus, an equilibrium wage $w^* \in (\bar{\theta}, r(\bar{\theta}))$ with $\Theta^* = \emptyset$.

This is Pareto efficient since each worker does the most productive activity. ■

- c. Show that in any competitive equilibrium the trading activity is inefficiently high if the following assumption is satisfied:
 - there exists $\hat{\theta} \in (\underline{\theta}, \overline{\theta})$ such that $r(\theta) < \theta$ for all $\theta > \hat{\theta}$ and $r(\theta) > \theta$ for all $\theta < \hat{\theta}$.

Solution: Let's assume that $w \leq \hat{\theta}$. Then

$$E[\theta|r(\theta) \le w] = E[\theta|\theta \ge r^{-1}(w)] > r^{-1}(w) \ge r^{-1}(\hat{\theta}) = \hat{\theta} \ge w$$
$$E[\theta|r(\theta) > w] > w$$

Thus, in every competitive equilibrium $w > \hat{\theta}$. This implies that, in every competitive equilibrium, $[\hat{\theta}, \bar{\theta}] \subset \Theta^*$.

Problem 2 Based on MWG 13.B.6 and Wilson (1980).

Consider the following extension of the adverse selection model. There is a mass N' of buyers, each of which wants to buy at most one car. The buyers differ in their willingness to pay for the car: a buyer of type γ has the willingness to pay $\gamma\theta$ for a car bought from a seller of type θ . Be aware that now each seller has some private information θ and each buyer has some private information γ . Assume that γ is distributed with a strictly positive density function g on $[0, \infty)$; let G denote the corresponding cumulative distribution function.

a. Let $z(p, \mu)$ denote the aggregate demand for cars when the price is p and the average quality of cars offered at price p is μ . Derive an expression for the function z in terms of G.

Solution: A buyer would be willing to buy a car iff $E[\gamma \theta - p | \text{car offered}] \ge 0$, i.e. if $\gamma \mu - p \ge 0$, or $\gamma \ge p/\mu$.

$$z(p,\mu) = N \cdot [1 - G(p/\mu)]$$

b. Let $\mu(p) = E[\theta|r(\theta) \le p]$ and define the aggregate demand for cars by $z^*(p) = z(p, \mu(p))$. Assuming that μ is differentiable, show that z^* is strictly increasing around a point \bar{p} if, at $p = \bar{p}$, the elasticity of μ with respect to p exceeds 1, and is strictly decreasing if the elasticity is below 1. Interpret!

Solution:

$$z^*(p) = N \cdot \left[1 - G\left(\frac{p}{\mu(p)}\right)\right]$$

Then

$$\frac{\partial z^{*}(p)}{\partial p} = -N \cdot g \left(\frac{p}{\mu(p)} \right) \cdot \left[\frac{1}{\mu(p)} - \frac{p}{\mu(p)^{2}} \cdot \frac{\partial \mu(p)}{\partial p} \right]$$
$$= -N \cdot g \left(\frac{p}{\mu(p)} \right) \cdot \frac{1}{\mu(p)} \cdot \left[1 - \varepsilon_{\mu}(p) \right]$$

Where $\varepsilon_{\mu}(p)$ is the elasticity of μ with respect to p. Interpretation: when the elasticity is greater than 1, an increase in the price is more than compensated by an increase in quality μ , and thus the demand increases with price.

c. Assume that r is strictly increasing and continuous. Let $s(p) = N \cdot F(r^{-1}(p))$ denote the aggregate supply of cars, and define a competitive equilibrium price p^* by the equation $z^*(p^*) = s(p^*)$. Show that if there are multiple competitive equilibria, then the one with the highest price Pareto dominates all others.

Solution:

- For sellers, it is immediate to see that they are weakly better off with a higher price.
- For buyers not so clear: higher quality, but pay higher price. Let p_L and p_H be two competitive equilibrium prices with $p_H > p_L$. Since r() is strictly increasing, s(p) is increasing in p. Thus, $z^*(p_H) > z^*(p_L)$. There must be some buyers that were not willing to buy at the low price that are willing to but at the high price. I.e. there exists a γ such that

$$p_L/\mu(p_L) \ge \gamma \ge p_H/\mu(p_H)$$

This implies that $p_L/\mu(p_L) \ge p_H/\mu(p_H)$.

- Every type γ that was not buying at the low price either is not buying at the high price or is buying (in both cases it must be better off).
- We want to prove that if a buyer was buying at the low price $(\gamma \ge p_L/\mu(p_L))$, they have a higher payoff at the high price $(\gamma \mu(p_H) p_H) \ge \gamma \mu(p_L) p_L$.

• We know that $p_L/\mu(p_L) \ge p_H/\mu(p_H)$. Rearranging and substracting $p_L\mu(p_L)$ side by side,

$$p_L\mu(p_H) - p_L\mu(p_L) \ge p_H\mu(p_L) - p_L\mu(p_L)$$

• Or,

$$\frac{p_L}{\mu(p_L)} \ge \frac{p_H - p_L}{\mu(p_H) - \mu(p_L)}$$

- So, $\gamma > \frac{p_L}{\mu(p_L)}$ implies $\gamma \geq \frac{p_H p_L}{\mu(p_H) \mu(p_L)}$. Rearranging we get the desired result.
- **d.** Consider a game-theoretic model in which buyers make simultaneous price offers. Show that (1) only the highest competitive equilibrium price can arise as a SPNE and (2) the highest-price competitive equilibrium p^* is a SPNE if and only if $z^*(p) \le z^*(p^*)$ for all $p > p^*$.

Solution:

- 1. Consider two competitive prices p_L and p_H with $p_H > p_L$. We want to show that p_L cannot arise as a SPNE.
 - Suppose the equilibrium is p_L . There are nonowners that would be willing to purchase at p_H but not at p_L .
- 2. Suppose there is a $p > p^*$ such that $z^*(p) > z^*(p^*)$. Then again there are nonowners willing to buy at p that were not buying at p^* . This cannot be an equilibrium. If there is no such p, then all buyers are happy: if they choose a lower price they will not buy and that is strictly worse, if they choose a higher price they also do worse (requires proof).

Problem 3

Consider the adverse selection model and assume that the distribution of θ is exponential with parameter λ .

a. Write down an expression for $E[\theta|\theta < \hat{\theta}]$.

Solution:

$$\begin{split} E[\theta] &= Pr(\theta < \hat{\theta}) E[\theta|\theta < \hat{\theta}] + Pr(\theta > \hat{\theta}) E[\theta|\theta > \hat{\theta}] \\ &\frac{1}{\lambda} = (1 - e^{-\lambda \hat{\theta}}) E[\theta|\theta < \hat{\theta}] + e^{-\lambda \hat{\theta}} \left(\hat{\theta} + \frac{1}{\lambda}\right) \\ &E[\theta|\theta < \hat{\theta}] = \frac{1}{\lambda} - \frac{e^{-\lambda \hat{\theta}} \hat{\theta}}{1 - e^{-\lambda \hat{\theta}}} \end{split}$$

- **b.** Assume that $r(\theta) = \alpha \theta$.
 - i. For which α there exists a CE involving a complete market breakdown?
 - ii. For which α there exists a CE without a complete market breakdown?

Solution:

$$E[\theta|r(\theta) < p] = E[\theta|\alpha\theta < p] = E[\theta|\theta < p/\alpha] = \frac{1}{\lambda} - \frac{p/\alpha}{e^{\lambda p/\alpha} - 1}$$

First derivative:

$$-\frac{\alpha(e^{\lambda p/\alpha}-1)-\lambda p e^{\lambda p/\alpha}}{\alpha^2(e^{\lambda p/\alpha}-1)^2}$$

The limit to p = 0 is indeterminate. We use l'Hopital's rule:

$$\frac{-\alpha\frac{\lambda}{\alpha}(e^{\lambda p/\alpha}) + \lambda e^{\lambda p/\alpha} + \lambda p\frac{\lambda}{\alpha}e^{\lambda p/\alpha}}{\alpha^2 2(e^{\lambda p/\alpha} - 1)\frac{\lambda}{\alpha}e^{\lambda p/\alpha}} = \frac{\lambda p\frac{\lambda}{\alpha}e^{\lambda p/\alpha}}{2\alpha\lambda(e^{\lambda p/\alpha} - 1)e^{\lambda p/\alpha}} = \frac{\lambda pe^{\lambda p/\alpha}}{2\alpha^2(e^{\lambda p/\alpha} - 1)e^{\lambda p/\alpha}}$$

The limit to p = 0 continues to be indeterminate. We use l'Hopital's rule again:

$$\frac{\lambda[e^{\lambda p/\alpha}+p\frac{\lambda}{\alpha}e^{\lambda p/\alpha}]}{2\alpha^2(\frac{2\lambda p}{\alpha}e^{2\lambda/\alpha}-\frac{\lambda}{\alpha}e^{\lambda p/\alpha})}$$

Evaluating at zero:

$$\frac{\lambda}{2\alpha^2(\frac{\lambda}{\alpha})} = \frac{1}{2\alpha}$$

Thus, if $\alpha > 1/2$ there is complete market breakdown, whereas if $\alpha < 1/2$ there is some trade.