LIMIT (Bagian 2)

Pertemuan: 2

Dosen: Wahyu Hidayat, M.Si.

Materi:

- 4. Limit dengan Fungsi Trigonometri
- 5. Limit di Tak Hingga dan Limit Tak Berhingga
- 6. Kontinuitas Fungsi

Kompetensi Khusus: Mahasiswa diharapkan mampu menggunakan teoema limit untuk nilai menghitung limit.

Sumber Materi: Dale Varberg, Edwin J. Purcell, Steven E. Rigdon.(2010).Kalkulus, Jilid 1.9 (Sembilan).Erlangga,Jakarta

4. Limit dengan Fungsi Trigonometri

TEOREMA APIT

Berikut adalah teorema apit:

Jika f, g, dan h adalah fungsi sehingga untuk setiap x mendekati c berlaku $f(x) \leq g(x) < h(x)$, kemudian $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$ maka $\lim_{x \to c} g(x) = L$

Contoh:

Akan ditunjukkan $\lim_{x\to 0} \left(x\sin\left(\frac{1}{x}\right)\right) = 0$ menggunakan teorema apit.

Perhatikan bahwa

$$-1 \le \sin\left(\frac{1}{x}\right) \le 1$$
$$-x \le x \sin\left(\frac{1}{x}\right) \le x$$

Karena

$$\lim_{x \to 0} (-x) = -0 = 0 \text{ dan}$$

$$\lim_{x \to 0} (x) = 0$$

maka menurut teorema apit

$$\lim_{x \to 0} \left(x \sin \left(\frac{1}{x} \right) \right) = 0$$

LIMIT FUNGSI TRIGONOMETRI

Seperti halnya pada teorema substitusi, hal yang sama berlaku pula pada fungsi trigonometri (silakan baca buktinya pada sumber buku tercantum di atas).

Teorema A (Limit fungsi trigonometri)

Jika c adalah sebarang bilangan real, maka

1)
$$\lim_{x \to c} \sin x = \sin c$$

$$2) \lim_{n \to \infty} \cos x = \cos c$$

3)
$$\lim_{x \to c} \tan x = \sin c$$

4)
$$\lim_{x \to c} \sec x = \sec c$$

5)
$$\lim_{x \to c} \csc x = \csc c$$

6)
$$\lim_{x \to c} \cot x = \cot c$$

Contoh:

1)
$$\lim_{x \to \pi/6} \sin x = \sin \pi/6 = \sin 30^\circ = 1/2$$
 (ingat kembali π radian = 180°)

2)
$$\lim_{x \to 150^{\circ}} \cos x = \cos 150^{\circ} = -\cos(180 - 150^{\circ}) = -\cos 30^{\circ} = -\frac{1}{2}\sqrt{2}$$

3)
$$\lim_{x \to c} \sin 2x = \lim_{2x \to 2c} \sin 2x = \lim_{y \to 2c} \sin y = \sin 2c$$
 (Misalkan $y = 2x$)

Melalui contoh 3), berikutnya jika bertemu kasus untuk sebarang fungsi trigonometri f(x)

$$\lim_{x \to c} f(2x) = f(2c)$$

4)
$$\lim_{x \to \pi/2} \sec 2x = \sec 2(\frac{\pi}{2}) = \frac{1}{\cos \pi} = \frac{1}{\cos 180^o} = \frac{1}{-\cos(180^o - 180^o)} = \frac{1}{-\cos 0^o} = \frac{1}{-1} = -1$$

LIMIT TRIGONOMETRI KHUSUS

Berikut adalah sifat dari limit trigonometri khusus yang sering dipakai dalam berbagai bentuk limit trigonometri (Bukti silakan dipelajari pada sumber tercantum di atas).

Teorema B (Limit trigonometri khusus)

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

2)
$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

2

Contoh:

1)
$$\lim_{x \to 0} \frac{x}{\sin x} = \lim_{x \to 0} \frac{\frac{x}{x}}{\frac{\sin x}{x}} = \frac{1}{\lim_{x \to 0} \frac{\sin x}{x}} = \frac{1}{1} = 1$$

2)
$$\lim_{x \to 0} \frac{x + \sin x}{3x + \sin x} = \lim_{x \to 0} \frac{\frac{x}{x} + \frac{\sin x}{x}}{\frac{3x}{x} + \frac{\sin x}{x}} = \frac{1+1}{3+1} = \frac{2}{4} = \frac{1}{2}$$

3)
$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\frac{\sin x}{\cos x}}{x} = \lim_{x \to 0} \frac{\sin x}{x \cos x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \cdot \frac{1}{\cos x} \right) = 1 \cdot \frac{1}{\cos 0} = 1 \cdot \frac{1}{1} = 1$$

4)
$$\lim_{x \to 0} \frac{1 - \cos^2 x}{x^2} = \lim_{x \to 0} \frac{\sin^2 x}{x^2} = \lim_{x \to 0} \left(\frac{\sin x}{x} \cdot \frac{\sin x}{x} \right) = 1 \cdot 1 = 1$$
 (ingat $\sin^2 x + \cos^2 x = 1$)

5)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin^2 \frac{1}{2}x}{x^2} = \lim_{x \to 0} \left(\frac{2 \sin \frac{1}{2}x}{x} \cdot \frac{\sin \frac{1}{2}x}{x} \right) = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$$
 (ingat $1 - \cos kx = 2 \sin^2 \frac{1}{2}x$)

6)
$$\lim_{x \to 0} \frac{1 - \cos x}{\sin x} = \lim_{x \to 0} \frac{\frac{1 - \cos x}{x}}{\frac{\sin x}{x}} = \frac{\lim_{x \to 0} \frac{1 - \cos x}{x}}{\lim_{x \to 0} \frac{\sin x}{x}} = \frac{0}{1} = 0$$

7)
$$\lim_{x \to 0} \frac{\sin ax}{bx} = \lim_{ax \to 0} \frac{\sin ax}{b \cdot \frac{ax}{a}} = \lim_{y \to 0} \frac{\sin y}{\frac{b}{a} \cdot y} = \frac{1}{\frac{b}{a}} = \frac{a}{b}$$

Melalui contoh 6), maka dapat digunakan kasus berikut

$$\lim_{x \to 0} \frac{\sin ax}{bx} = \frac{a}{b}$$

8)
$$\lim_{x \to 0} \frac{\sin 2x}{3x} = \frac{2}{3}$$

9)
$$\lim_{x \to 2} \frac{\sin(2x-4)}{(x-2)} = \lim_{x-2 \to 2-2} \frac{\sin 2(x-2)}{(x-2)} = \lim_{y \to 0} \frac{\sin 2y}{y} = \frac{2}{1} = 2$$
 (misalkan $y = x - 2$)

5. Limit di Tak Hingga dan Limit Tak Hingga

LIMIT DI TAK HINGGA

Perhatikan grafik fungsi $f(x) = \frac{1}{x}$ berikut.

Dapat dilihat pada grafik bahwa jika x semakin besar $(x \to \infty)$, nilai 1/x semakin menuju 0:

x	f(x)
1	1/1 = 1
2	1/2 = 0.5
3	1/3 = 0.33
÷	:
1000000	1/1000000 = 0,000001
1	\

∞	0

Ini menunjukkan bahwa nilai limit dari fungsi f(x) di tak hingga adalah 0, atau dapat dituliskan

$$\lim_{x \to \infty} \frac{1}{x} = \frac{1}{\infty} = 0$$

Kembali lagi bahwa penulisan di atas hanyalah berlaku untuk limit, yang artinya secara operasi biasa hal di atas tidak dapat dilakukan yakni

 $\frac{1}{\infty}$ tidak terdefinisi

Karena jika berlaku

$$\frac{1}{\infty} = 0$$

$$1 = \infty \cdot 0$$

$$1 = 0 \quad (tidaklah \ benar)$$

Sebaliknya pun sama bahwa jika x semakin kecil $(x \to -\infty)$, nilai 1/x semakin menuju ke 0 $(x \to 0)$:

x	f(x)
-∞	-0 = 0
1	1
-1000000	-1/1000000
:	:
-3	-1/3
-2	-1/2
-1	-1

Ini menunjukkan bahwa nilai limit dari fungsi f(x) di minus tak hingga adalah 0, yakni dituliskan

$$\lim_{x \to -\infty} \frac{1}{x} = \frac{1}{-\infty} = 0$$

Bukti secara formal bahwa limit di tak hingga di atas memiliki nilai (dalam contoh di atas adalah 0), berikut diberikan definisi berikut.

Definisi (Limit di Tak Hingga)

Misalkan f adalah fungsi yang terdefinisi pada interval $[c, \infty)$, dikatakan

$$\lim_{x\to\infty}f(x)=L$$

Jika untuk setiap $\epsilon > 0$, terdapat suatu bilangan M sehingga untuk setiap x > M berlaku

$$|f(x) - L| < \epsilon$$

Interpretasi dari definisi di atas adalah

Jika x menuju tak hingga

: arti dari notasi untuk setiap x>M, yang menunjukkan bahwa untuk semua bilangan yang lebih besar dari suatu bilangan M, tentunya tak akan terbatas menuju tak hingga)

maka f(x) akan sangat dekat dengan L

: arti dari $|f(x)-L|<\epsilon$, yang mana mengartikan f(x) dan L sangatlah dekat, karena ϵ adalah setiap bilangan

yang > 0 sehingga 0,00000001 bahkan lebih kecil dari itu pun termasuk

Contoh

Akan dibuktikan secara formal bahwa $\lim_{x \to \infty} \frac{1}{x} = 0$

Misalkan $\epsilon > 0$ sebarang, pilih $M = 1/\epsilon$

Untuk setiap x > M, Perhatikan bahwa

$$|f(x) - L| = \left| \frac{1}{x} - 0 \right| = \left| \frac{1}{x} \right| < \frac{1}{M} = \frac{1}{1/\epsilon} = \epsilon$$

Jadi, $|f(x) - L| < \epsilon$.

Artinya berdasarkan definisi limit di tak hingga, terbukti benar bahwa $\lim_{x \to \infty} \frac{1}{x} = 0$

Sebaliknya, berikut definisi limit di minus tak hingga.

Definisi (Limit di Minus Tak Hingga)

Misalkan f adalah fungsi yang terdefinisi pada interval $(-\infty, c]$, dikatakan

$$\lim_{x \to -\infty} f(x) = L$$

Jika untuk setiap $\epsilon > 0$, terdapat suatu bilangan M sehingga untuk setiap x < M berlaku

$$|f(x) - L| < \epsilon$$

Interpretasi dari definisi di atas adalah

Jika x menuju minus tak hingga

: arti dari notasi untuk setiap x < M, yang menunjukkan bahwa untuk semua bilangan yang kurang dari suatu bilangan M, tentunya tak akan terbatas menuju minus tak hingga)

maka f(x) akan sangat dekat dengan L

: arti dari $|f(x)-L|<\epsilon$, yang mana mengartikan f(x) dan L sangatlah dekat, karena ϵ adalah setiap bilangan yang > 0 sehingga 0,00000001 bahkan lebih kecil dari itu pun termasuk

Contoh

Akan dibuktikan secara formal bahwa $\lim_{x \to -\infty} \frac{1}{x} = 0$

Misalkan $\epsilon > 0$ sebarang, pilih $M = -1/\epsilon$

Untuk setiap $x < M = -1/\epsilon$, artinya x bilangan negatif, dengan demikian |x| = -x. Perhatikan

$$|f(x) - L| = \left| \frac{1}{x} - 0 \right| = \left| \frac{1}{x} \right| = \frac{1}{-x} < \frac{1}{-(-1/\epsilon)} = \epsilon$$

Jadi, $|f(x) - L| < \epsilon$.

Artinya berdasarkan definisi limit di tak hingga, terbukti benar bahwa $\lim_{x\to -\infty}\frac{1}{x}=0$

Sekarang perhatikan bentuk ∞/∞ . Tentu bentuk ini tidaklah terdefinisi. Seperti halnya 0/0 yang nilainya tak tentu, bentuk ∞/∞ juga tak tentu. Perhatikan contoh berikut.

Contoh

1)
$$\lim_{x \to \infty} \frac{3x^2 + 1}{x^2 + 5} = \lim_{x \to \infty} \frac{\frac{3x^2}{x^2} + \frac{1}{x^2}}{\frac{x^2}{x^2} + \frac{5}{x^2}} = \lim_{x \to \infty} \frac{3 + \left(\frac{1}{x}\right)^2}{1 + 5 \cdot \left(\frac{1}{x}\right)^2} = \frac{3 + \left(\frac{1}{\infty}\right)^2}{1 + 5 \cdot \left(\frac{1}{x}\right)^2} = \frac{3 + 0}{1 + 0} = 3$$

2)
$$\lim_{x \to \infty} \frac{3x^2 + 1}{x^3 + 5} = \lim_{x \to \infty} \frac{\frac{3x^2}{x^3} + \frac{1}{x^3}}{\frac{x^3}{x^3} + \frac{5}{x^3}} = \lim_{x \to \infty} \frac{3 \cdot \frac{1}{x} + \left(\frac{1}{x}\right)^3}{1 + 5 \cdot \left(\frac{1}{x}\right)^3} = \frac{3 \cdot \frac{1}{\infty} + \left(\frac{1}{\infty}\right)^3}{1 + 5 \cdot \left(\frac{1}{\infty}\right)^3} = \frac{0 + 0}{1 + 0} = \frac{0}{1} = 0$$

3)
$$\lim_{x \to -\infty} \frac{3x^3 + 1}{x^2 + 5} = \lim_{x \to -\infty} \frac{\frac{3x^3}{x^3} + \frac{1}{x^3}}{\frac{x^2}{x^3} + \frac{5}{x^3}} = \lim_{x \to -\infty} \frac{3 + \left(\frac{1}{x}\right)^3}{\frac{1}{x} + 5 \cdot \left(\frac{1}{x}\right)^3} = \frac{3 + \left(\frac{1}{-\infty}\right)^3}{\frac{1}{-\infty} + 5 \cdot \left(\frac{1}{-\infty}\right)^3} = \frac{3 + 0^-}{0^- + 0^-} = \frac{3}{0^-} = -\infty$$

4)
$$\lim_{x \to \infty} \frac{3x^3 + 1}{x^2 + 5} = \lim_{x \to \infty} \frac{\frac{3x^3}{x^3} + \frac{1}{x^3}}{\frac{x^2}{x^3} + \frac{5}{x^3}} = \lim_{x \to \infty} \frac{3 + \left(\frac{1}{x}\right)^3}{\frac{1}{x} + 5 \cdot \left(\frac{1}{x}\right)^3} = \frac{3 + \left(\frac{1}{\infty}\right)^3}{\frac{1}{\infty} + 5 \cdot \left(\frac{1}{\infty}\right)^3} = \frac{3}{0^+ + 0^+} = \frac{3}{0^+} = \infty$$

5)
$$\lim_{x \to -\infty} \frac{3x^4 + x}{x^2 + 5x} = \lim_{x \to -\infty} \frac{\frac{3x^4}{x^4} + \frac{x}{x^4}}{\frac{x^2}{x^4} + \frac{5x}{x^4}} = \lim_{x \to -\infty} \frac{3 + \left(\frac{1}{x}\right)^3}{\left(\frac{1}{y}\right)^2 + 5 \cdot \left(\frac{1}{y}\right)^3} = \frac{3 + \left(\frac{1}{-\infty}\right)^3}{\frac{1}{\omega} + 5 \cdot \left(\frac{1}{-\omega}\right)^3} = \frac{3 + 0^-}{0^+ + 0^-} = \frac{3}{0^+} = \infty$$

Mengapa $0^+ + 0^-$ di atas menjadi 0^+ ? Karena berasal dari $\left(\frac{1}{-\infty}\right)^2 + \left(\frac{1}{-\infty}\right)^3$

Sebagai ilustrasi, misalkan $-\infty$ diwakili oleh -1000, maka

$$\left(\frac{1}{-1000}\right)^2 + \left(\frac{1}{-1000}\right)^3 = 0,000001 - 0,000000001 = 0,000000999 \to 0^+$$

Berdasarkan contoh di atas dapat digeneralisasi oleh teorema sebagai berikut.

Teorema (Bentuk ∞/∞)

1)
$$\lim_{x \to \infty} \frac{a_1 + a_2 x + \dots + a_n x^n}{b_1 + b_2 x + \dots + b_n x^m} = \begin{cases} \frac{a_n}{b_n} & \text{ jika } n = m \\ 0 & \text{ jika } n < m \\ \infty & \text{ jika } n > m \end{cases}$$

1)
$$\lim_{x \to \infty} \frac{a_1 + a_2 x + \dots + a_n x^n}{b_1 + b_2 x + \dots + b_n x^m} = \begin{cases} \frac{a_n}{b_n} & \text{ jika } n = m \\ 0 & \text{ jika } n < m \\ \infty & \text{ jika } n > m \end{cases}$$
2)
$$\lim_{x \to -\infty} \frac{a_1 + a_2 x + \dots + a_n x^n}{b_1 + b_2 x + \dots + b_n x^m} = \begin{cases} \frac{a_n}{b_n} & \text{ jika } n = m \\ 0 & \text{ jika } n < m \\ -\infty & \text{ jika } n > m \text{ dan } (n - m) \text{ ganjil} \\ \infty & \text{ jika } n > m \text{ dan } (n - m) \text{ genap} \end{cases}$$

1)
$$\lim_{x \to \infty} \frac{3x^2 + 1}{x^2 + 5} = \frac{3}{1} = 3$$
 (karena $n = m = 2$)

2)
$$\lim_{x \to \infty} \frac{3x^2 + 1}{x^3 + 5} = 0$$
 (karena $n = 2 < m = 3$)

1)
$$\lim_{x \to \infty} \frac{3x^2 + 1}{x^2 + 5} = \frac{3}{1} = 3$$
 (karena $n = m = 2$)
2) $\lim_{x \to \infty} \frac{3x^2 + 1}{x^3 + 5} = 0$ (karena $n = 2 < m = 3$)
3) $\lim_{x \to -\infty} \frac{3x^3 + 1}{x^2 + 5} = -\infty$ (karena $n = 3 > m = 2$ dan $n - m = 3 - 2 = 1$ ganjil)

4)
$$\lim_{x \to \infty} \frac{3x^3 + 1}{x^2 + 5} = \infty$$
 (karena $n = 3 > m = 2$)

5)
$$\lim_{x \to -\infty} \frac{3x^4 + x}{x^2 + 5x} = \infty$$
 (karena $n = 4 > m = 2$ dan $n - m = 4 - 2 = 2$ genap)

Bentuk tak tentu berikutnya adalah $\infty - \infty$. Tentu bentuk ini tidaklah terdefinisi. Seperti halnya 0/0 yang nilainya tak tentu, bentuk $\infty - \infty$ juga tak tentu. Perhatikan contoh berikut.

Contoh

1)
$$\lim_{x \to \infty} \sqrt{4x^2 - 5x + 7} - \sqrt{4x^2 + 2x + 9}$$

$$= \lim_{x \to \infty} (\sqrt{4x^2 - 5x + 7} - \sqrt{4x^2 + 2x + 9}) \times \frac{(\sqrt{4x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9})}{(\sqrt{4x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9})}$$

$$= \lim_{x \to \infty} \frac{4x^2 - 5x + 7 - (4x^2 + 2x + 9)}{\sqrt{4x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{-7x - 2}{\sqrt{4x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{-7x - 2}{\sqrt{4x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{-7 - \frac{2}{x}}{\sqrt{4x^2 - 5x^2 + 7} + \sqrt{4x^2 + 2x + 9}} = \frac{-7}{\sqrt{4} + \sqrt{4}} = -\frac{7}{4}$$
2)
$$\lim_{x \to \infty} \sqrt{5x^2 - 5x + 7} - \sqrt{4x^2 + 2x + 9}$$

$$= \lim_{x \to \infty} \frac{5x^2 - 5x + 7}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{5x^2 - 5x + 7}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{5x^2 - 5x + 7}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{5x^2 - 5x + 7}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{5x^2 - 5x + 7}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{5x^2 - 5x + 7}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{x^2 - 7x - 2}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \frac{1 - \frac{7}{2} - \frac{2}{2}}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \frac{1 - \frac{7}{2} - \frac{2}}{\sqrt{5x^2 - 5x + 7} + \sqrt{4x^2 + 2x + 9}}$$

$$= \frac{1 - \frac{7}{2} - \frac{7}$$

3)
$$\lim_{x \to \infty} \sqrt{4x^2 - 5x + 7} - \sqrt{5x^2 + 2x + 9}$$

$$= \lim_{x \to \infty} \left(\sqrt{4x^2 - 5x + 7} - \sqrt{5x^2 + 2x + 9} \right) \times \frac{\left(\sqrt{4x^2 - 5x + 7} + \sqrt{5x^2 + 2x + 9} \right)}{\left(\sqrt{4x^2 - 5x + 7} + \sqrt{5x^2 + 2x + 9} \right)}$$

$$= \lim_{x \to \infty} \frac{4x^2 - 5x + 7 - (5x^2 + 2x + 9)}{\sqrt{4x^2 - 5x + 7} + \sqrt{5x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{-x^2 - 7x - 2}{\sqrt{4x^2 - 5x + 7} + \sqrt{5x^2 + 2x + 9}}$$

$$= \lim_{x \to \infty} \frac{-\frac{x^2}{x^2} - \frac{7x}{x^2} - \frac{2}{x^2}}{\sqrt{\frac{4x^2}{x^4} - \frac{5x}{x^4} + \frac{7}{x^4} + \sqrt{\frac{5x^2}{x^4} + \frac{2x}{x^4} + \frac{9}{x^4}}}}$$

$$= \lim_{x \to \infty} \frac{-1 - \frac{7}{x} - \frac{2}{x^2}}{\sqrt{\frac{4}{x^2} - \frac{5}{x^3} + \frac{7}{x^4} + \sqrt{\frac{5}{x^2} + \frac{2}{x^3} + \frac{9}{x^4}}}}$$

$$= \frac{-1 - \frac{7}{\infty} - \frac{2}{\infty^2}}{\sqrt{\frac{4}{\infty^2} - \frac{5}{\infty^3} + \frac{7}{\infty^4} + \sqrt{\frac{5}{\infty^2} + \frac{2}{\infty^3} + \frac{9}{\infty^4}}}} = \frac{-1}{\sqrt{0^+ + \sqrt{0^+}}} = \frac{-1}{0^+} = -\infty$$

Berdasarkan contoh di atas dapat digeneralisasi oleh teorema sebagai berikut.

Teorema (Bentuk ∞/∞)

$$\lim_{x \to \infty} \lim_{x \to \infty} \sqrt{ax^2 + bx + c} - \sqrt{px^2 + qx + r} = \begin{cases} \frac{b - q}{2\sqrt{a}} & \text{ jika } a = p \\ \infty & \text{ jika } a > p \\ -\infty & \text{ jika } a$$

Contoh

1)
$$\lim_{x \to \infty} \sqrt{4x^2 - 5x + 7} - \sqrt{4x^2 + 2x + 9} = \frac{-5 - 2}{2\sqrt{4}} = -\frac{7}{2 \cdot 2} = -7/4$$
 (karena $a = p = 4$)

2)
$$\lim_{x \to \infty} \sqrt{5x^2 - 5x + 7} - \sqrt{4x^2 + 2x + 9} = \infty$$
 (karena $a = 5 > p = 4$)

3)
$$\lim_{x \to \infty} \sqrt{4x^2 - 5x + 7} - \sqrt{5x^2 + 2x + 9} = -\infty$$
 (karena $a = 4)$

LIMIT TAK HINGGA

Perhatikan grafik fungsi $f(x) = \frac{1}{x}$ berikut.

Dapat dilihat pada grafik bahwa jika x semakin menuju 0 dari kanan ($x \to 0^+$), nilai 1/x semakin menuju ∞ ($\frac{1}{x} \to \infty$):

х	f(x)
0	8
1	1
1/1000000	1000000
:	:
1/4	4
1/3	3
1/2	2
2/3	3/2
1	1

Ini menunjukkan bahwa jika x mendekati 0^+ maka f(x)=1/x memiliki nilai limit tak hingga, atau dapat dituliskan

$$\lim_{x \to 0^+} \frac{1}{x} = \frac{1}{0^+} = \infty$$

Sedangkan sebaliknya, jika x semakin menuju 0 dari kiri ($x \to 0^-$), nilai 1/x semakin menuju $-\infty$ (yaitu $\frac{1}{x} \to -\infty$):

x	f(x)
-1	-1
-1/2	-2
-1/3	-3
:	:
-1/1000000	-1000000
↓	↓
0	-∞

Ini menunjukkan bahwa jika x mendekati 0^- maka f(x)=1/x memiliki nilai limit minus tak hingga, atau dapat dituliskan

$$\lim_{x \to 0^{-}} \frac{1}{x} = \frac{1}{0^{-}} = -\infty$$

Bukti secara formal bahwa suatu fungsi dapat memiliki nilai tak hingga akan diberikan definisi berikut.

Definisi (Limit di Tak Hingga)

Dapat dikatakan

$$\lim_{x \to c^+} f(x) = \infty$$

Jika untuk setiap bilangan positif M, terdapat $\delta>0$ sehingga untuk setiap $0<|x-c|<\delta$ berlaku

Interpretasi dari definisi di atas adalah

Jika x menuju tak hingga

: arti dari notasi untuk setiap x > M, yang menunjukkan bahwa untuk semua bilangan yang lebih besar dari suatu bilangan M, tentunya tak akan terbatas menuju tak hingga)

maka f(x) akan sangat dekat dengan L

: arti dari $|f(x)-L|<\epsilon$, yang mana mengartikan f(x) dan L sangatlah dekat, karena ϵ adalah setiap bilangan yang > 0 sehingga 0,00000001 bahkan lebih kecil dari itu pun termasuk

Contoh

Akan dibuktikan secara formal bahwa $\lim_{x \to \infty} \frac{1}{x} = 0$

Misalkan $\epsilon>0$ sebarang, pilih $M=1/\epsilon$

Untuk setiap x > M, Perhatikan bahwa

$$|f(x) - L| = \left| \frac{1}{x} - 0 \right| = \left| \frac{1}{x} \right| < \frac{1}{M} = \frac{1}{1/\epsilon} = \epsilon$$

Jadi, $|f(x) - L| < \epsilon$.

Artinya berdasarkan definisi limit di tak hingga, terbukti benar bahwa $\lim_{x \to \infty} \frac{1}{x} = 0$