

YILDIZ TEKNİK ÜNİVERSİTESİ GEMİ İNŞAATI VE DENİZCİLİK FAKÜLTESİ GEMİ İNŞAATI VE GEMİ MAKİNELERİ MÜHENDİSLİĞİ

GEMİ HAREKETLERİ DERSİ ÖDEV RAPORU

Hazırlayanlar:
190A1058-ÖMER CAN DEMİR
190A1049-EMRE CAN ÇAKIR
210A1608-MEHDİ DİVLE

Dr. Öğr. Üyesi Ferdi ÇAKICI

İçindekiler

1.Ödeve Ait Verilen Temel Bilgiler:	
2. Soru 1'in Çözüm Adımları:	
2.1 Froude-Krylov Kuvveti Hesabı:	
2.2 F3Kuvetinin Difraksiyon Kuvveti Hesabı:	<u> </u>
2.3 Froude-Krylov F5RFKHesabi:	15
2.4 F5 Kuvetinin Difraksiyon Kuvveti Hesabı:	
3 Soru 2'in Çözümü:	19
4. Soru 3'ün Çözümü:	21
4.1 RAO z Grafiği Çizimi	21
4.2 RAO & Grafiği Cizimi:	2/

Resim 1: İstenilen Sonuçlar.	4
Resim 2: Dalga boyu/Uzunluk Oranı Hesabı.	5
Resim 3: Dalga Numarası Hesabı.	5
Resim 4: Dalga Frekansı Hesabı.	
Resim 5: Dalga Numarası ve Frekansı Phyton Kodları	
Resim 6: F3 Kuvvetinin Hesabı.	7
Resim 7: Hız Potansiyeli Hesabı.	
Resim 8: Froude-Krylov Değeri Hesabı ve Formülü.	7
Resim 9: F3Fk Hesabı.	
Resim 10: Parçacık Hızı ve İvmesi Hesabı	9
Resim 11: Grim Grafikleri	
Resim 12: F3RD, F3ID ve F3Kuvvetlerinin Hesabı.	
Resim 13: az Değeri Hesabı ve B/T Grafîği Çizdirme Kodu	11
Resim 14: az B/T=2 Grafiği.	12
Resim 15: bz Değeri Hesabı ve B/T Grafiği Çizdirme Kodu	
Resim 16: bz B/T=2 Grafiği.	13
Resim 17: F3RD, F3ID ve F3Kuvvetlerinin Hesabı	14
Resim 18: Difraksiyon Kuvvetleri Hesabı	14
Resim 19: F3 Kuvvetinin Hesabı	14
Resim 20: Froude-Krylov F5RFK İntegral Çözümü	15
Resim 21: F5RFK Değeri Hesaplanması	16
Resim 22: F5R D ve F5I D Kuvvetlerinin İntegral Hesabı	17
Resim 23: F5 D Kuvveti Hesabi	17
Resim 24: Verilen Ek Kütle ve Sönüm Formülleri	19
Resim 25: Ek Kütle-Sönüm İntegral Çözümleri	19
Resim 26:Ek Kütle-Sönüm İntegral Çözümleri	
Resim 27: Ek-Kütle Sönüm Değerlerinin Hesaplanması	20
Resim 28:Ek-Kütle Sönüm Değerleri	21
Resim 29: Tek Serbestlik Dalıp Çıkma Hareketi Formülü	22
Resim 30: Matris Çözme Kodu	22
Resim 31: Zr ve Zı Değerlerinin Çözümü	23
Resim 32: RAO z Grafiğini Çizdirme Kodu.	24
Resim 33: RAO z-l/L Grafiği	24
Resim 34: Jirasyon Kabulü	24
Resim 35: Teta Değeri Hesabı (Diğer ek kütle ve sönüm değerleri yukarıda hesaplandı)	25
Resim 36: Teta ve Z Değerleri	25
Resim 37:S(w),S(z) ve Toplam Değerleri Hesabı	27
T11 1 W 1 D > 1	4
Tablo 1: Verilen Değerler.	
Tablo 2: λ/L , ω , k ve λ Sonuçları.	
Tablo 3: λ/L , ω , k ve λ ve $F3Fk$ Sonuçları	
Tablo 4: az ve bz değerleri hesabı.	
Tablo 5:F3 Kuvveti Hesabı için Gerekli Parametreler ve Hesabı	
Tablo 6: F5RFK Sonuçları	
Tablo 7:1. Soru Tüm Değerler	
Tablo 8:S ve Sz Değerlerinin Sonuçları	
Tablo 9: m0, m1, m2 ve m4 değerlerinin hesabı ve toplamı.	
Tablo 10: Soru 4 cevapları	28

1.Ödeve Ait Verilen Temel Bilgiler:

Sabit dikdörtgen kesitli bir dubaya baştan düzenli dalgalar gönderilmektedir. Gemi durgun durumda iken dalgaları baştan almaktadır. Resim 1'de gösterilen değerleri Tablo 1'deki değerler ile birlikte çözülmüştür.

- a) Gemiye etki eden dalga kuvvetlerini $(F_3^{FK}, F_3^D, F_5^{FK}, F_5^D)$,farklı dalga boyları için hesaplayınız (15p).
- b) Kesit için ek kütle ve sönüm katsayılarını aşağıdaki grafiklerden okuyarak farklı dalga boyları için hesaplayınız. Ödeviniz olan gemi boyutları için verilen osilasyon frekansı aralığı aşağıda yer alan grafiğin (Ek kütle & sönüm grafiği) dışına taşarsa (soldan ya da sağdan) grafikte yer alan en son limit değerleri alınız (15p
- c) Geminizin farklı dalga boylarına göre (λ/L=0.25'ten λ/L=6.00'ya kadar 0.25 artımlarla) dalıp çıkma RAO ve baş kıç vurma RAO grafiklerini elde ediniz. (50p)

$$RAO_z = \frac{z}{A}$$
 $RAO_\theta = \frac{\theta}{Ak}$

d) Gemi boyu 60 m ile 120 m arası olanlar Deniz Durumu 3 Gemi boyu 130 m ile 180 m olanlar Deniz Durumu 4 Gemi boyu 180 m ile 240 m olanlar Deniz Durumu 5 için geminizin dalıp çıkma hareketi genlik RMS, T1, Tz ve Tc değerlerini hesaplayınız. Karışık denizi Pierson Moskowitz spektumu ile ifade edilebilirsiniz. (20p)

Resim 1: İstenilen Sonuçlar.

L	110 m
В	13 m
Т	6,5 m
Α	1m
g	9,81 m/s^2
ρ	1,025 kg/m^3
B/T	2

Tablo 1: Verilen Değerler.

2. Soru 1'in Çözüm Adımları:

2.1 Froude-Krylov Kuvveti Hesabı:

Hesaplama işlemine başlamadan önce bizlere verilen $\lambda | L$ oranlarından yola çıkarak 0.25 ile 6 arasında 0.25 artımlar ile tüm oran değerleri Resim 2'deki phyton kodu ile hesaplanmıştır.

dizi=np.arange(0.25,6.25,0.25) #6 nin dahil olmasi için 6.25 girildi lamda=dizi*L

Resim 2: Dalga boyu/Uzunluk Oranı Hesabı.

Array olarak dizi listesine atılan $\lambda | L$ oranından dalga boyunu çekmek için tüm dizi listesindeki değerler L ile çarpıldı. Elde edilen dalga boyları aşağıdaki ampirik formüllerde kullanılarak ω , k ve λ değerleri bulundu.

$$k = \frac{2\pi}{\lambda}$$

Resim 3: Dalga Numarası Hesabı.

$$\omega^2 = gk$$

Resim 4: Dalga Frekansı Hesabı.

Yukarıda gösterilen formüller aşağıdaki gibi koda eklenmiştir. Ve hesaplanan değerler tabulate kütüphanesi kullanılarak tablo haline getirilmiştir. Tablo2'de gösterilmiştir.

```
k = (2 * np.math.pi) / lamda #dalga numarası rad/m
w = np.sqrt(k*g) #dalgafreakansı hz
```

Resim 5: Dalga Numarası ve Frekansı Phyton Kodları.

lamda/L	lamda(m)	k(1/m)	w(Rad/sn)
0.25	27.5	0.228479	1.49713
0.5	55	0.11424	1.05863
0.75	82.5	0.0761598	0.864366
1	110	0.0571199	0.748563
1.25	137.5	0.0456959	0.669535
1.5	165	0.0380799	0.611199
1.75	192.5	0.0326399	0.56586
2	220	0.0285599	0.529314
2.25	247.5	0.0253866	0.499042
2.5	275	0.0228479	0.473433
2.75	302.5	0.0207709	0.4514
3	330	0.01904	0.432183
3.25	357.5	0.0175753	0.415228
3.5	385	0.01632	0.400124
3.75	412.5	0.015232	0.386556
4	440	0.01428	0.374281
4.25	467.5	0.01344	0.363106
4.5	495	0.0126933	0.352876
4.75	522.5	0.0120252	0.343464
5	550	0.011424	0.334767
5.25	577.5	0.01088	0.326699
5.5	605	0.0103854	0.319188
5.75	632.5	0.00993389	0.312172
6	660	0.00951998	0.305599

Tablo 2: λ/L , ω , k ve λ Sonuçları.

Yukarıdaki sonuçlar yardımı ile F_3^{Fk} değeri aşağıdaki formüller ile hesaplanmıştır.

$$F_{3R} = F_{3R}^{FK} + F_{3R}^{D}; F_{3I} = F_{3I}^{FK} + F_{3I}^{D}; \ F_{3} = \sqrt{F_{3R}^{2} + F_{3I}^{2}}$$

Resim 6: F3 Kuvvetinin Hesabi.

Yukarıdaki formülü daha sade hale getirmek için aşağıdaki adımlar uygulandı:

$$\mbox{Hiz Potansiyeli:} \qquad \Phi_w = \frac{igA}{\omega} e^{-ik(x cos\mu + y sin\mu)} e^{kz} e^{i\omega t} \label{eq:potansiyeli}$$

$$P_D = -\rho \frac{\partial \Phi_w}{\partial t} = \rho g A e^{-ik(x cos\mu + y sin\mu)} e^{kz} e^{i\omega t}$$

$$P_D = -\rho \frac{\partial \Phi_w}{\partial t} = \rho g A e^{-ik(x cos\mu + y sin\mu)} e^{-kT} e^{i\omega t}$$

Resim 7: Hız Potansiyeli Hesabı.

Burada z olarak maksimum draft değerini almamızın sebebi, en dipteki normal yönde oluşan kuvvetlerdir. Daha yukarılarda normal yönde bir kuvvet oluşmamaktadır. Gelen dalga kaynaklı düşey yönlü kuvvet:

$$\begin{split} F_3^1 &= F_3^{1K}; \text{FK}: \text{Froude-Krylov} \\ F_3^{FK} &= \iiint_s P_d \overrightarrow{nds} = \iint_s \rho g A e^{-ik(x\cos u + y\sin u)} e^{-kT} e^{i\omega t} \, ds \\ F_3^{FK} &= \rho g A e^{-kT} e^{i\omega t} \int_{-B/2}^{B/2} \int_{-1/2}^{1/2} e^{-ik(x\cos u + y\sin u)} e^{-kT} e^{i\omega t} \, ds \\ F_3^{FK} &= \rho g A e^{-kT} e^{i\omega t} \int_{-B/2}^{B/2} dy \int_{-L/2}^{L/2} (\cos kx + i\sin kx) dx \\ F_3^{FK} &= \rho g A e^{-kT} e^{i\omega t} B \left[\int_{-L/2}^{L/2} \cos kx dx + \int_{-L/2}^{L/2} i\sin kx dx \right] \\ F_3^{FK} &= \rho g A e^{-kT} e^{i\omega t} B \left[\frac{1}{k} \sin kx \Big|_{-L/2}^{L/2} - \frac{i}{k} \cos kx \Big|_{-L/2}^{L/2} \right] \\ &- \frac{i}{k} \cos kx \Big|_{-L/2}^{L/2} de geri \cos fonksiyonu \ cift \ karakterli \ olduğu \ için \ 0 \ olur. \\ F_3^{FK} &= \rho g A e^{-kT} e^{i\omega t} B \left[\frac{2}{k} \sin \left(\frac{kL}{2} \right) \right] \end{split}$$

Resim 8: Froude-Krylov Değeri Hesabı ve Formülü.

Yukarıdaki Froude-Krylov formülünden de anlaşılacağı üzere sadece reel kısım hesaba katılmaktadır imajınal kısım 0 olmaktadır. F_3^{Fk} Değeri aşağıdaki phyton kodu ile hesaplanmıştır. Ve Tablo 3 'te tüm değerler ile gösterilmiştir. İmajinal kısım 0'dır. Bu yüzden: $F_3^{Fk} = F_{3R}^{Fk}$

F3RFk=(p*g*A*np.e**(-k*T)*B*2/k*np.sin(k*L/2))

Resim 9: F_3^{Fk} Hesabı.

lamda(m)	k(1/m)	w(Rad/sn)	F3Fk(kN)
27.5	0.228479	1.49713	-1.26944e-13
55	0.11424	1.05863	-2.66748e-13
82.5	0.0761598	0.864366	-1812.08
110	0.0571199	0.748563	3.86674e-13
137.5	0.0456959	0.669535	2498.69
165	0.0380799	0.611199	4641.99
192.5	0.0326399	0.56586	6316.11
220	0.0285599	0.529314	7603.03
247.5	0.0253866	0.499042	8599.02
275	0.0228479	0.473433	9380.53
302.5	0.0207709	0.4514	10003.3
330	0.01904	0.432183	10507.1
357.5	0.0175753	0.415228	10920.4
385	0.01632	0.400124	11263.9
412.5	0.015232	0.386556	11552.7
440	0.01428	0.374281	11798.1
467.5	0.01344	0.363106	12008.6
495	0.0126933	0.352876	12190.7
522.5	0.0120252	0.343464	12349.4
550	0.011424	0.334767	12488.7
577.5	0.01088	0.326699	12611.9
605	0.0103854	0.319188	12721.4
632.5	0.00993389	0.312172	12819.2
660	0.00951998	0.305599	12907
	27.5 55 82.5 110 137.5 165 192.5 220 247.5 275 302.5 330 357.5 385 412.5 440 467.5 495 522.5 550 577.5 605 632.5	27.5 0.228479 55 0.11424 82.5 0.0761598 110 0.0571199 137.5 0.0456959 165 0.0380799 192.5 0.0326399 220 0.0285599 247.5 0.0253866 275 0.0228479 302.5 0.0207709 330 0.01904 357.5 0.0175753 385 0.01632 412.5 0.015232 440 0.01428 467.5 0.01344 495 0.0126933 522.5 0.0120252 550 0.011424 577.5 0.01088 605 0.0103854 632.5 0.00993389	27.5 0.228479 1.49713 55 0.11424 1.05863 82.5 0.0761598 0.864366 110 0.0571199 0.748563 137.5 0.0456959 0.669535 165 0.0380799 0.611199 192.5 0.0326399 0.56586 220 0.0285599 0.529314 247.5 0.0253866 0.499042 275 0.0228479 0.473433 302.5 0.0207709 0.4514 330 0.01904 0.432183 357.5 0.0175753 0.415228 385 0.01632 0.400124 412.5 0.015232 0.386556 440 0.01428 0.374281 467.5 0.01344 0.363106 495 0.0126933 0.352876 522.5 0.0120252 0.343464 550 0.01424 0.334767 577.5 0.01088 0.326699 605 0.0103854 0.319188 632.5 0.009993389 0.312172

Tablo 3: λ/L , ω , k ve λ ve F_3^{Fk} Sonuçları.

2.2 F₃ Kuvetinin Difraksiyon Kuvveti Hesabı:

Difraksiyon kuvvetine hem ek kütle hem sönüm katkı vereceği için akışkan parçacığının hız ve ivmesinin bulunması gerekir.

$$\begin{split} & \text{Parçacık Hızı: } \frac{\partial \Phi_w}{\partial_z} \qquad \qquad \text{Parçacık İvmesi(FPA): } \frac{\partial}{\partial_t} \left(\frac{\partial \Phi_w}{\partial_z} \right) \\ & \frac{\partial}{\partial_t} \left(\frac{\partial \Phi_w}{\partial_z} \right) = \frac{\partial}{\partial_t} \left(\frac{i k g A}{\omega} \, e^{i k x} e^{-k T} e^{i \omega t} \right) = - \omega^2 A e^{i k x} e^{-k T} e^{i \omega t} \\ & \frac{\partial \Phi_w}{\partial_z} \text{=i} \omega A e^{i k x} e^{-k T} e^{i \omega t} \end{split}$$

Resim 10: Parçacık Hızı ve İvmesi Hesabı

Resim 11: Grim Grafikleri

Haskind Teoremi gereği, difraksiyon kuvveti ek kütle ve sönüm yardımıyla hesaplanır. Grim grafikleri yardımıyla (Resim 11) az ve bz değerleri okunur. Bu değerler ile difraksiyon kuvvetinin gerçek ve sanal kısımları bulunur. Toplam dalga kuvveti ise Froude-Krylov ve difraksiyon kuvvetleri yardımıyla bulunur. Toplam kuvvetin gerçek ve sanal kısımları arasındaki açı ise faz açısıdır.

$$\begin{split} F_3^D &= \int a_z(x) FPA dx + \int b_z(x) FPV dx \\ F_3^D &= \int_{-L/2}^{L/2} -a_z(x) \omega^2 A e^{ikx} e^{-kT} e^{i\omega t} \, dx + \int_{-L/2}^{L/2} i b_z(x) \omega A e^{ikx} e^{-kT} e^{i\omega t} \, dx \\ F_3^D &= \left[-a_z \omega^2 A e^{-kT} e^{i\omega t} + \int_{-L/2}^{L/2} (\cos kx + i \sin kx) \, dx \right] + \left[i b_z \omega A e^{-kT} e^{i\omega t} + \int_{-L/2}^{L/2} (\cos kx + i \sin kx) \, dx \right] \end{split}$$

$$\begin{split} F_{3R}^{D} &= -2a_{z}gAe^{-kT}e^{i\omega t}\sin\left(\frac{kL}{2}\right) \\ F_{3I}^{D} &= \frac{2b_{z}\omega Ae^{-kT}e^{i\omega t}}{k}\sin\left(\frac{kL}{2}\right) \\ F_{3R} &= F_{3R}^{FK} + F_{3R}^{D}; \ F_{3I} = F_{3I}^{FK} + F_{3I}^{D}; \ F_{3} = \sqrt{F_{3R}^{\ 2} + F_{3I}^{\ 2}} \\ \epsilon &= arctan\left(\frac{F_{3I}}{F_{3R}}\right) \end{split}$$

Resim 12: F_{3R}^D , F_{3I}^D ve F_3 Kuvvetlerinin Hesabı.

 $\omega = \omega$ Değerleri gemi ilerleme hızının sıfır olması sebebiyle eşittir. Grim grafiklerinde okunan düşey değerler aşağıdaki Tablo 4'te verilmiştir. Kuvvetlerin hesabı için gerekli olan az ve bz değerlerini bulmak için B/T=2 şartını sağlayan polinom ve grafik phytonda oluşturulmuştur. Her 2 Polinom oluşturulurken x eksenine denk gelen y değerleri aşağıda gösterilmiştir. 9. Dereceden bir polinom oluşturulmuştur. Ve oluşturulan polinom üzerinden Grim grafiğinde hesaplanan x eksenindeki değeler ile y eksenindeki değerler bulunmuştur. Daha sonra az ve bz değerleri formülleri koda yazılarak hesaplanmıştır.

$$\omega_e \sqrt{\frac{B}{2g}}$$

Buradaki formül ile grim grafiğindeki x eksenindeki değerler hesaplanmıştır.

$$\frac{a_z}{\rho A}$$

Buradaki formüle de az grim grafiğinde hesaplanan x ekseninde denk gelen y değerleri eşitlenerek az değeri bulundu.

$$\frac{b_z}{\rho A} \sqrt{\frac{B}{2g}}$$

Son olarak da bu formül kullanılarak bz grim grafiğinde x eksenine karşılık gelen y değerleri eşitlenerek bz değeri bulunmuştur. (Al=B*T'ye eşittir.)

```
Grim_x=w*np.sqrt(B/(2*g))
# Verileri tanımlayalım B/T=2 için grafik çizdirdim ve değerleri okudum
x1 = [0.075, 0.25, 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2]
y1 = [3.75, 1.5, 0.90, 0.75, 0.80, 0.90, 0.93, 0.95, 1]
# 9. dereceden polinom fitinin katsayilari
katsayilar = np.polyfit(x1, y1, 9)
polinom1 = np.poly1d(katsayilar)
# 0.1 araiklarla yeni bir x ekseni
x_polinom1 = np.linspace(x1[0], x1[-1], 1000)
y_polinom1= polinom1(x_polinom1)
# Grafik cizimi
plt.plot(x1, y1, 'o')
plt.plot(x_polinom1, y_polinom1,'-.')
plt.ylabel('y')
plt.xlabel('x')
plt.title("B/T=2 azz")
plt.xlim(min(x1) - 0.075, max(x1))
plt.ylim(min(y1) - 0.5, max(y1) + 1.5)
plt.show()
Grim_az_y = polinom1(Grim_x)
az=Grim az y*p*Al
```

Resim 13: az Değeri Hesabı ve B/T Grafiği Çizdirme Kodu

Resim 14: az B/T=2 Grafiği.

Aynı işlem adımları bz değerini bulmak için tekrar edildi.

```
#bzz değerleri bulundu
Grim_x=w*np.sqrt(B/(2*g))
# Verileri tanımlayalım B/T=2 için grafik çizdirdim ve deperleri okudum
x2 = [0, 0.25, 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2]
y2 = [0,0.30,0.40,0.25,0.125,0.0625,0.03125,0,0]
# 9. dereceden polinom fitinin katsayilari
katsayilar = np.polyfit(x2, y2, 9)
polinom2 = np.poly1d(katsayilar)
# 0.1 araiklarla yeni bir x ekseni
x_polinom2 = np.linspace(x2[0], x2[-1], 1000)
y_polinom2= polinom2(x_polinom2)
# Grafik cizimi
plt.plot(x2, y2, 'o')
plt.plot(x_polinom2, y_polinom2, '-. ')
plt.ylabel('y')
plt.xlabel('x')
plt.title("B/T=2 bzz")
Grim_bz_y = polinom2(Grim_x)
plt.xlim(min(x2) , max(x2))
plt.ylim(min(y2), max(y2) + 1.5)
plt.show()
bz=p*Al/(np.sqrt(B/(2*g)))*Grim_bz_y
```

Resim 15: bz Değeri Hesabı ve B/T Grafiği Çizdirme Kodu

Resim 16: bz B/T=2 Grafiği.

Daha sonra Grim eksenindeki x ve y konumları ile az ve bz değerleri aşağıdaki Tablo 4'te gösterilmiştir.

lamda/L	w(Rad/sn)	Grim_x	Grim_az_y	Grim_bz_y	az(ton/m)	bz(ton/ms)
0.25	1.49713	1.21865	0.891775	0.0683849	77.2389	7.27644
0.5	1.05863	0.861718	0.750869	0.184192	65.0346	19.5988
0.75	0.864366	0.70359	0.762732	0.280921	66.0622	29.8911
1	0.748563	0.609327	0.810953	0.344046	70.2387	36.6079
1.25	0.669535	0.544998	0.859018	0.38099	74.4017	40.5389
1.5	0.611199	0.497513	0.902472	0.400829	78.1653	42.6499
1.75	0.56586	0.460608	0.94234	0.409874	81.6184	43.6123
2	0.529314	0.430859	0.97997	0.412123	84.8776	43.8516
2.25	0.499042	0.406218	1.01628	0.410082	88.0226	43.6344
2.5	0.473433	0.385372	1.0518	0.405338	91.0994	43.1296
2.75	0.4514	0.367438	1.08682	0.398908	94.1323	42.4455
3	0.432183	0.351795	1.12146	0.391458	97.1326	41.6528
3.25	0.415228	0.337994	1.15577	0.383427	100.105	40.7982
3.5	0.400124	0.325699	1.18976	0.375105	103.048	39.9128
3.75	0.386556	0.314655	1.22341	0.366689	105.963	39.0172
4	0.374281	0.304663	1.25669	0.358308	108.845	38.1255
4.25	0.363106	0.295567	1.28957	0.350049	111.693	37.2467
4.5	0.352876	0.287239	1.32204	0.341969	114.505	36.3869
4.75	0.343464	0.279578	1.35406	0.334103	117.278	35.5499
5	0.334767	0.272499	1.38561	0.326472	120.012	34.738
5.25	0.326699	0.265932	1.4167	0.319089	122.704	33.9524
5.5	0.319188	0.259818	1.44729	0.311957	125.354	33.1935
5.75	0.312172	0.254107	1.4774	0.305076	127.961	32.4613
6	0.305599	0.248757	1.50701	0.298443	130.526	31.7555

Tablo 4: az ve bz değerleri hesabı.

Tüm bu değerler bulunduktan sonra F_{3R}^D , F_{3I}^D , F_3 difraksiyon kuvvetleri Resim 17' de gösterilen formüller kullanılarak yazılan phyton kodu ile hesaplandı. Ve phyton tablo çıktısı alındı. (Tablo 5)

$$\begin{split} F_{3R}^{D} &= -2a_{z}gAe^{-kT}e^{i\omega t}\sin\!\left(\frac{kL}{2}\right) \\ F_{3I}^{D} &= \frac{2b_{z}\omega Ae^{-kT}e^{i\omega t}}{k}\sin\!\left(\frac{kL}{2}\right) \\ F_{3R} &= F_{3R}^{FK} + F_{3R}^{D}; \ F_{3I} = F_{3I}^{FK} + F_{3I}^{D}; \ F_{3} = \sqrt{{F_{3R}}^{2} + {F_{3I}}^{2}} \\ \epsilon &= arctan\!\left(\frac{F_{3I}}{F_{3R}}\right) \end{split}$$

Resim 17: F_{3R}^D , F_{3I}^D ve F_3 Kuvvetlerinin Hesabi

```
F3RD=-2*az*g*A*np.e**(-k*T)*np.sin(k*L/2)
F3ID=2*bz*w*A*np.e**(-k*T)*np.sin(k*L/2)/k
F3D=F3RD+F3ID
```

Resim 18: Difraksiyon Kuvvetleri Hesabı

Daha sonra F_3 kuvvetinin reel ve imajinal kısmı aşağıdaki gibi hesaplandı. F_{3I}^{FK} Değerinin 0 olduğunu söylemiştik. Dolayısıyla F_3 kuvvetini imajinal kısmında sadece F_{3I}^D kuvveti olacaktır. Reel kısmında ise F_{3R}^{FK} ve F_{3R}^D kuvvetleri vardır. Aşağıdaki phyton kodu ile bu değerler hesaplandı. Ve Tablo 5'te gösterildi.

```
135 F3R=F3RFk+F3RD

136 F3I=F3ID+F3IFK

137 F3=np.sqrt(F3R**2+F3I**2)

138 e=np.arctan(F3I/F3R)
```

Resim 19: F3 Kuvvetinin Hesabi

F3RD(kN)	F3ID(kN)	F3Fk(kN)	F3R(kN)	F3I(kN)	F3(kN)	e(Radyan)
1.68123e-13	-1.05792e-14	-1.26944e-13	4.11794e-14	-1.05792e-14	4.25166e-14	-0.251467
1.48729e-13	-4.23387e-14	-2.66748e-13	-1.18019e-13	-4.23387e-14	1.25384e-13	0.344444
684.21	-358.164	-1812.08	-1127.87	-358.164	1183.38	0.307485
-1.16424e-13	8.10609e-14	3.86674e-13	2.70251e-13	8.10609e-14	2.82146e-13	0.291408
-637.536	518.825	2498.69	1861.15	518.825	1932.11	0.271863
-1036.93	925.697	4641.99	3605.07	925.697	3722.02	0.251346
-1262.76	1192.43	6316.11	5053.36	1192.43	5192.14	0.231729
-1383.15	1350.05	7603.03	6219.88	1350.05	6364.71	0.213738
-1442.05	1432.45	8599.02	7156.97	1432.45	7298.91	0.197537
-1465.29	1465.29	9380.53	7915.25	1465.29	8049.73	0.183051
-1467.81	1466.22	10003.3	8535.49	1466.22	8660.51	0.170119
-1458.3	1446.97	10507.1	9048.8	1446.97	9163.76	0.158564
-1441.88	1415.24	10920.4	9478.55	1415.24	9583.63	0.148215
-1421.62	1376.13	11263.9	9842.32	1376.13	9938.06	0.138917
-1399.35	1332.96	11552.7	10153.4	1332.96	10240.5	0.130536
-1376.2	1287.92	11798.1	10421.9	1287.92	10501.2	0.122955
-1352.85	1242.44	12008.6	10655.7	1242.44	10727.9	0.116074
-1329.72	1197.45	12190.7	10860.9	1197.45	10926.7	0.109809
-1307.04	1153.53	12349.4	11042.3	1153.53	11102.4	0.104087
-1284.97	1111.04	12488.7	11203.8	1111.04	11258.7	0.0988435
-1263.57	1070.19	12611.9	11348.3	1070.19	11398.7	0.094026
-1242.88	1031.09	12721.4	11478.5	1031.09	11524.7	0.0895877
-1222.9	993.767	12819.2	11596.3	993.767	11638.8	0.0854882
-1203.62	958.212	12907	11703.4	958.212	11742.6	0.0816924

Tablo 5:F3 Kuvveti Hesabı için Gerekli Parametreler ve Hesabı

2.3 Froude-Krylov F_{5R}^{FK} Hesabı:

Resim 20: Froude-Krylov F_{5R}^{FK} İntegral Çözümü

Froude-Krylov F_{5R}^{FK} hesabı yapılmadan önce ödev dosyasında paylaşılan yardımcı formüllerden hesaplanmıştır. Yukarıdaki Resim 20'de gösterilen formül elde edilmiştir. Bu formül aşağıdaki gibi phytonda yazıldı ve hesaplandı. F_{5I}^{FK} Değeri imajinal kısım olduğu için 0'dır.

F5Fk=p*g*A*np.e**(-k*T)*B*((-k*L*np.cos(k*L/2)+2*np.sin(k*L/2))/k**2)

Resim 21: \mathbf{F}_{5R}^{FK} Değeri Hesaplanması

F5Fk(kN)
-14252.9
-59899.4
33748.2
173659
243834
269305
272797
266213
255329
242928
230343
218199
206769
196146
186336
177304
168995
161346
154299
147794
141780
136208
131036
126224

Tablo 6: F_{5R}^{FK} Sonuçları

2.4 F₅ Kuvetinin Difraksiyon Kuvveti Hesabı:

$$F_5^D = \left[-a_{33}\omega\omega_e A e^{-kT} \int_{-L/2}^{L/2} \left(\cos kx + i\sin kx\right) x dx \right] e^{i\omega_e t} + \left[ib_{33}\omega A e^{-kT} \int_{-L/2}^{L/2} \left(\cos kx + i\sin kx\right) x dx \right] e^{i\omega_e t}$$

Resim 22: F_{5R}^D ve F_{5I}^D Kuvvetlerinin İntegral Hesabı

$$F_{5}^{D} = \begin{bmatrix} -a_{33} \text{ wwe } A e^{-kT} \int (\cos kx + i \sin kx) x dx \end{bmatrix} e^{i\omega t} + \begin{bmatrix} ib_{33} \text{ w} A e^{-kT} \int (\cos kx + i \sin kx) x dx \end{bmatrix} e^{i\omega t}$$

$$Sobit-1$$

$$Sobit-1$$

$$-a_{2} \cdot w - b_{2} \cdot A \cdot w \cdot \left(2 \cdot \sin \left(\frac{k \cdot L}{2}\right)\right) - \left(L \cdot k \cdot \cos \left(\frac{k \cdot L}{2}\right)\right) \cdot e^{-k \cdot T}$$

Yukarıda integral çözümü verilen F5D kuvveti aşağıdaki phyton koduna yazılarak çözülmüştür. Ve aşağıdaki F5D çözümün

Resim 23: F^D₅ Kuvveti Hesabı

az(ton/m)	bz(ton/ms)	F3RD(kN)	F3ID(kN)	F5D(kN)	F3D(kN)	F3Fk(kN)	F5Fk(kN)
77.2389	7.27644	1.68123e-13	-1.05792e-14	20064.2	1.57544e-13	-1.26944e-13	-14252.9
65.0346	19.5988	1.48729e-13	-4.23387e-14	42905.1	1.0639e-13	-2.66748e-13	-59899.4
66.0622	29.8911	684.21	-358.164	-19413.2	326.047	-1812.08	33748.2
70.2387	36.6079	-1.16424e-13	8.10609e-14	-88692.2	-3.53628e-14	3.86674e-13	173659
74.4017	40.5389	-637.536	518.825	-112843	-118.711	2498.69	243834
78.1653	42.6499	-1036.93	925.697	-113861	-111.228	4641.99	269305
81.6184	43.6123	-1262.76	1192.43	-106041	-70.33	6316.11	272797
84.8776	43.8516	-1383.15	1350.05	-95700.5	-33.1043	7603.03	266213
88.0226	43.6344	-1442.05	1432.45	-85352.1	-9.60276	8599.02	255329
91.0994	43.1296	-1465.29	1465.29	-75893.4	0.0050079	9380.53	242928
94.1323	42.4455	-1467.81	1466.22	-67561.1	-1.585	10003.3	230343
97.1326	41.6528	-1458.3	1446.97	-60333.2	-11.3341	10507.1	218199
100.105	40.7982	-1441.88	1415.24	-54097.2	-26.6406	10920.4	206769
103.048	39.9128	-1421.62	1376.13	-48719	-45.4882	11263.9	196146
105.963	39.0172	-1399.35	1332.96	-44070	-66.3891	11552.7	186336
108.845	38.1255	-1376.2	1287.92	-40036.9	-88.2775	11798.1	177304
111.693	37.2467	-1352.85	1242.44	-36523.1	-110.407	12008.6	168995
114.505	36.3869	-1329.72	1197.45	-33447.7	-132.265	12190.7	161346
117.278	35.5499	-1307.04	1153.53	-30743.5	-153.511	12349.4	154299
120.012	34.738	-1284.97	1111.04	-28354.9	-173.925	12488.7	147794
122.704	33.9524	-1263.57	1070.19	-26235.7	-193.374	12611.9	141780
125.354	33.1935	-1242.88	1031.09	-24347.5	-211.785	12721.4	136208
127.961	32.4613	-1222.9	993.767	-22658.4	-229.131	12819.2	131036
130.526	31.7555	-1203.62	958.212	-21141.6	-245.411	12907	126224

Tablo 7:1. Soru Tüm Değerler

3. Soru 2'in Çözümü:

$$\begin{split} A_{33} &= \int_{-L/2}^{L/2} a_z dx \quad , \ B_{33} = \int_{-L/2}^{L/2} b_z dx \quad , \ C_{33} = \rho g \int_{-L/2}^{L/2} b dx \\ A_{35} &= -\int_{-L/2}^{L/2} a_z x dx - \frac{V}{\omega_e^2} B_{33} \quad , \quad B_{35} = -\int_{-L/2}^{L/2} b_z x dx + V A_{33} \\ C_{35} &= C_{53} = -\rho g \int_{-L/2}^{L/2} b x dx \, , \qquad A_{55} = \int_{-L/2}^{L/2} x^2 a_z dx + \frac{V^2}{\omega_e^2} A_{33} \\ B_{55} &= \int_{-L/2}^{L/2} x^2 b_z dx + \frac{V^2}{\omega_e^2} B_{33} \, , \quad C_{55} = \rho g \int_{-L/2}^{L/2} b x^2 dx \end{split}$$

$$A_{53} = -\int_{-L/2}^{L/2} a_z x dx + \frac{V}{\omega^2} B_{33}$$
, $B_{53} = -\int_{-L/2}^{L/2} b_z x dx - V A_{33}$

Resim 24: Verilen Ek Kütle ve Sönüm Formülleri

Yukarıdaki verilen ek kütle ve sönüm değerleri formülleri aşağıdaki gibi el ile çözülerek ampirik formül haline getirilmiştir.

Resim 25: Ek Kütle-Sönüm İntegral Çözümleri

Resim 26:Ek Kütle-Sönüm İntegral Çözümleri

```
sonuclar4=[]
     V=0
13 B33 = bz * L
C33 = p * g * L * B
A35 = 0 \# (-V / w ** 2) * B33
116 B35 = 0 #V * A33
117 C35 = 0
118 C53 = 0
119 A55 = (L ** 3) / 12 * az
120 B55 = (L ** 3) / 12 * bz
121 C55 = p * g * B * (L ** 3) / 12
122 A53 = 0 #V * B33 / w ** 2
123 B53 = 0 #-V * A33
     for i in range(len(dizi)):
         row = [az[i], bz[i], A33[i], B33[i], C33, A35, B35, C35, C53, A55[i], B55[i], C55, A53, B53]
         sonuclar4.append(row)
     headers4 = ["az(ton/m)", "bz(ton/ms)", "A33(ton)", "B33(ton/s)", "C33", "A35(ton)", "B35(ton/s)", "C35", "C53", "A55(ton)", "B55(ton/s)", "C55", "A53(ton)", "B53(ton/s)"]
     table4 = tabulate(sonuclar4, headers4, tablefmt="fancy_grid")
     with open("table4.txt", "w", encoding="utf-8") as file:
         file.write(table4)
```

Resim 27: Ek-Kütle Sönüm Değerlerinin Hesaplanması

az(ton/m)	bz(ton/ms)	A33(ton)	B33(ton/s)	C33	A35(ton)	B35(ton/s)	C35	C53	A55(ton)	B55(ton/s)	C55	A53(ton)	B53(ton/s)
77.2389	7.27644	8496.28	800.408	14379	0	0	0	0	8.56708e+06	807078	1.44988e+07	0	0
65.0346	19.5988	7153.81	2155.87	14379	0	0	0	0	7.21342e+06	2.17383e+06	1.44988e+07	0	0
66.0622	29.8911	7266.84	3288.02	14379	0	0	0	0	7.32739e+06	3.31542e+06	1.44988e+07	0	0
70.2387	36.6079	7726.25	4026.86	14379	0	0	0	0	7.79064e+06	4.06042e+06	1.44988e+07	0	0
74.4017	40.5389	8184.18	4459.28	14379	0	0	0	0	8.25239e+06	4.49644e+06	1.44988e+07	0	0
78.1653	42.6499	8598.19	4691.49	14379	0	0	0	0	8.66984e+06	4.73058e+06	1.44988e+07	0	0
81.6184	43.6123	8978.02	4797.35	14379	0	0	0	0	9.05284e+06	4.83733e+06	1.44988e+07	0	0
84.8776	43.8516	9336.54	4823.68	14379	0	0	0	0	9.41435e+06	4.86388e+06	1.44988e+07	0	0
88.0226	43.6344	9682.49	4799.79	14379	0	0	0	0	9.76318e+06	4.83979e+06	1.44988e+07	0	0
91.0994	43.1296	10020.9	4744.25	14379	0	0	0	0	1.01044e+07	4.78379e+06	1.44988e+07	0	0
94.1323	42.4455	10354.6	4669	14379	0	0	0	0	1.04408e+07	4.70791e+06	1.44988e+07	0	0
97.1326	41.6528	10684.6	4581.81	14379	0	0	0	0	1.07736e+07	4.61999e+06	1.44988e+07	0	0
100.105	40.7982	11011.5	4487.8	14379	0	0	0	0	1.11033e+07	4.5252e+06	1.44988e+07	0	0
103.048	39.9128	11335.3	4390.4	14379	0	0	0	0	1.14298e+07	4.42699e+06	1.44988e+07	0	0
105.963	39.0172	11655.9	4291.89	14379	0	0	0	0	1.1753e+07	4.32766e+06	1.44988e+07	0	0
108.845	38.1255	11973	4193.8	14379	0	0	0	0	1.20727e+07	4.22875e+06	1.44988e+07	0	0
111.693	37.2467	12286.3	4097.13	14379	0	0	0	0	1.23886e+07	4.13128e+06	1.44988e+07	0	0
114.505	36.3869	12595.5	4002.56	14379	0	0	0	0	1.27005e+07	4.03591e+06	1.44988e+07	0	0
117.278	35.5499	12900.6	3910.49	14379	0	0	0	0	1.30081e+07	3.94308e+06	1.44988e+07	0	0
120.012	34.738	13201.3	3821.18	14379	0	0	0	0	1.33113e+07	3.85302e+06	1.44988e+07	0	0
122.704	33.9524	13497.4	3734.76	14379	0	0	0	0	1.36099e+07	3.76588e+06	1.44988e+07	0	0
125.354	33.1935	13788.9	3651.28	14379	0	0	0	0	1.39038e+07	3.68171e+06	1.44988e+07	0	0
127.961	32.4613	14075.7	3570.75	14379	0	0	0	0	1.4193e+07	3.6005e+06	1.44988e+07	0	0
130.526	31.7555	14357.8	3493.11	14379	0	0	0	0	1.44775e+07	3.52222e+06	1.44988e+07	0	0

Resim 28:Ek-Kütle Sönüm Değerleri

4. Soru 3'ün Çözümü:

4.1 RAO z Grafiği Çizimi

Tek serbestlik dereceli dalıp çıkma hareketinin hesaplanma adımları şu şekildedir:

$$\begin{split} &\left(M+A_{33}\right)\overset{\cdot}{z}+B_{33}\overset{\cdot}{z}+C_{33}z=F_{3}e^{i\omega_{e}t}e^{i\epsilon}\\ &z\left(t\right)=\overline{z_{A}}e^{i\omega_{e}t}\\ &\dot{z}\left(t\right)=i\omega_{e}\overline{z_{A}}e^{i\omega_{e}t}\\ &\ddot{z}\left(t\right)=-\omega_{e}^{2}\overline{z_{A}}e^{i\omega_{e}t} \end{split}$$

$$z(t) = i\omega_e z_A e^{i\omega_e t}$$

$$\ddot{z}(t) = -\omega_e^2 \overline{z_A} e^{i\omega_e t}$$

Burada önemli iki husus vardır. Birincisi, denklemin sağ tarafındaki dalga kuvveti mutlak değerdir ve faz açısı içermektedir. Buradaki faz dalga kuvvetiyle dalga

pozisyonu arasındaki açıdır. $\overline{z_A}$ ise doğrudan hareketin kompleks genliğidir ve faz açısı içermemektedir. O halde $\overline{z_A}$ yerine $z_R + i z_I$ yazılabilir. Dalga kuvveti yerine ise $F_3 \cos \epsilon + i F_3 \sin \epsilon$ yazılır. Bütün denklemde yer alan harmonik terim $e^{i \omega_e t}$ birbirini götürdükten sonra tek serbestlik dereceli dalıp-çıkma hareket denklemi aşağıdaki hali alır.

 $-\big(M+A_{33}\big)\omega_e^2z_R-i\big(M+A_{33}\big)\omega_e^2z_1+iB_{33}\omega_ez_R-B_{33}\omega_ez_1+C_{33}z_R+iC_{33}z_1=F_3\cos\epsilon+il$ Gerçek ve sanal kısımlar ayrıklaştırılırsa aşağıdaki şekilde iki bilinmeyenli iki denklem elde edilir.

$$\begin{split} &- \big(M + A_{33} \big) \omega_e^{\ 2} z_R - B_{33} \omega_e z_I + C_{33} z_R = F_3 \cos \epsilon \\ &- i \big(M + A_{33} \big) \omega_e^{\ 2} z_I + i B_{33} \omega_e z_R + i C_{33} z_I = i F_3 \sin \epsilon \\ & \big[F \big] = \big[A \big] \big[z \big] \\ & inv \big(A \big) \cdot \big(F \big) = \big(z \big) \\ & \left[\begin{matrix} F_3 \cos \epsilon \\ F_3 \sin \epsilon \end{matrix} \right] = \begin{bmatrix} - \big(M + A_{33} \big) \omega_e^{\ 2} + C_{33} & - B_{33} \omega_e \\ B_{33} \omega_e & - \big(M + A_{33} \big) \omega_e^{\ 2} + C_{33} \end{bmatrix} \! \left[\begin{matrix} z_R \\ z_I \end{matrix} \right] \end{split}$$

Resim 29: Tek Serbestlik Dalıp Çıkma Hareketi Formülü

```
M=L*B*T*p
X=-(M+A33)*(w**2)+C33
Y=B33*w
Z=F3*np.cos(e)
T=F3*np.sin(e)

X = -(M + A33) * (w ** 2) + C33
Y = B33 * w
Z = F3 * np.cos(e)
T = F3 * np.sin(e)

ZR = (Z * X + T * Y) / (X ** 2 + Y ** 2)
ZI = (Z * Y - T * X) / (X ** 2 + Y ** 2)
b=np.arctan(ZR/ZI)
Z=ZR+ZI
sonuclar6 = []
for i in range(len(dizi)):
    row = [ZR[i],ZI[i],Z[i],b[i]]
    sonuclar6.append(row)
headers6 = ["ZR(m", "ZI[m]", "Z(m)", "b(radyan)"]
table6 = tabulate(sonuclar6, headers6, tablefmt="fancy_grid")
with open("table6.txt", "w", encoding="utf-8") as file:
    file.write(table6)
```

Resim 30: Matris Çözme Kodu

ZR(m)	ZI[m]	Z(m)	b(radyan)
-1.59801e-18	-3.32999e-19	1.63233e-18	1.36535
-1.73162e-17	1.89687e-17	2.56839e-17	-0.739886
0.269745	0.223012	0.349995	0.879954
4.85135e-17	1.38349e-17	5.04476e-17	1.29299
0.268636	0.0439836	0.272213	1.40851
0.45507	0.0498408	0.457792	1.46171
0.582956	0.046144	0.58478	1.49181
0.672625	0.0403925	0.673836	1.51082
0.737235	0.0347525	0.738054	1.52369
0.785029	0.0298021	0.785594	1.53285
0.821228	0.0256189	0.821627	1.53961
0.849224	0.0221288	0.849512	1.54474
0.871276	0.0192239	0.871488	1.54874
0.888929	0.0167999	0.889088	1.5519
0.903262	0.0147678	0.903383	1.55445
0.915047	0.0130544	0.91514	1.55653
0.924846	0.0116009	0.924919	1.55825
0.933077	0.0103605	0.933134	1.55969
0.940053	0.00929555	0.940099	1.56091
0.946013	0.00837605	0.94605	1.56194
0.951144	0.00757782	0.951175	1.56283
0.955591	0.00688132	0.955616	1.5636
0.959469	0.00627064	0.95949	1.56426
0.96287	0.00573278	0.962888	1.56484

Resim 31: Zr ve Zı Değerlerinin Çözümü

Aşağıdaki kod yardımı ile RAO z grafiği Resim 32'deki kod ile çizdirilmiştir.


```
RAOz=Z/A

x3=dizi
y3=RAOz
plt.plot(x3, y3,'o-')
plt.xlabel('l/L ekseni')
plt.ylabel('RAOz ekseni')
plt.title('RAOZ DALIP-ÇIKMA')
plt.xlim(min(x3)-0.2 , max(x3)+0.5)
plt.ylim(min(y3) , max(y3) + 1.5)
plt.show()
```

Resim 32: RAO z Grafiğini Çizdirme Kodu.

Resim 33: RAO z-l/L Grafiği

4.2 RAO θ Grafiği Çizimi:

Kütle atalet momenti hesabında baş kıç vurma jirasyon yarıçapı için aşağıdaki gibi bir kabul yapıldı.

```
kyy = 0.25 * L
I = M * kyy**2
```

Resim 34: Jirasyon Kabulü

Daha sonra F5 kuvvetlerine bağlı olarak aşağıdaki matris oluşturuldu ve RAOteta grafiği elde edildi.

Resim 35: Teta Değeri Hesabı (Diğer ek kütle ve sönüm değerleri yukarıda hesaplandı)

I/L		Z(m)	Teta
	0.25	1,63E-13	0.001181165
	0.50	2,57E-12	0.024237275
	0.75	0.349995	0.008615870
	1	5,04E-12	0.029308864
	1,25	0.272213	0.033303031
	1,50	0.457792	0.032389209
	1,75	0.58478	0.030846002
	2	0.673836	0.028597222
	2,25	0.738054	0.026285534
	2,5	0.785594	0.024134770
	2,75	0.821627	0.022207195
	3	0.849512	0.020504121
	3,25	0.871488	0.019005642
	3,5	0.889088	0.017686363
	3,75	0.903383	0.016521434
	4	0.91514	0.015488641
	4,25	0.924919	0.014568877
	4,5	0.933134	0.013745989
	4,75	0.940099	0.013006424
	5	0.94605	0.012338827
	5,25	0.951175	0.011733677
	5,5	0.955616	0.011182965
	5,75	0.95949	0.010679932
	6	0.962888	0.010229520

Resim 36: Teta ve Z Değerleri

5. Soru 4'ün Çözümü:

Denizciler (gemi inşaatı mühendisleri), gözlemlenebilir dalga yüksekliği (Hs) kullanarak bu spektrumu U yerine revize etmiştir. Deniz durumunun şiddeti (Sea State Code), Hs değeriyle ifade edilir. Örneğin, Deniz Durumu 3 için Hs=0,88 metre, Deniz Durumu 4 için Hs=1,88 metre ve Deniz Durumu 5 için Hs=3,25 metre olarak temsil edilir. Pierson Spektrumu kullanılarak aşağıdaki formül koda aktarılmıştır. Gemimizin boyu 110m olduğu için deniz durumu 3 kullanıldı.

$$S(\omega) = \frac{A}{\omega^5} \cdot exp\left(\frac{-B}{\omega^4}\right)$$

 $A=8.1 \times 10^{-3} g^2, B = 0.032 \frac{g^2}{H_{1/3}^2}$

w(rad/sn)	Sw Sz		
1.49713	0.0469632	1.25134e-37	
1.05863	0.0247176	1.63053e-35	
0.864366	0.00130124	0.000159398	
0.748563	1.0478e-05	2.66661e-38	
0.669535	1.47427e-08	1.09243e-09	
0.611199	3.84594e-12	8.06005e-13	
0.56586	1.91995e-16	6.56561e-17	
0.529314	1.86914e-21	8.48694e-22	
0.499042	3.59207e-27	1.95668e-27	
0.473433	1.37407e-33	8.48017e-34	
0.4514	1.05247e-40	7.10493e-41	
0.432183	1.62125e-48	1.17001e-48	
0.415228	5.03936e-57	3.82735e-57	
0.400124	3.16888e-66	2.50492e-66	
0.386556	4.03953e-76	3.29666e-76	
0.374281	1.04561e-86	8.75681e-87	
0.363106	5.50313e-98	4.70779e-98	
0.352876	5.8957e-110	5.13362e-110	
0.343464	1.28693e-122	1.13737e-122	
0.334767	5.7281e-136	5.12672e-136	
0.326699	5.20235e-150	4.70673e-150	
0.319188	9.64655e-165	8.80925e-165	
0.312172	3.65384e-180	3.3638e-180	
0.305599	2.82827e-196	2.62224e-196	

Tablo 8:S ve Sz Değerlerinin Sonuçları

Trapez yöntemi ile m₀, m₁, m₂ değerleri hesaplandı. Kullanılan bağıntılar aşağıda verilmiştir.

$$\begin{split} \mathbf{m}_0 &= \sum_{i=1} \frac{\left(\omega_i - \omega_{i+1}\right) \mathbf{x} \left(\mathbf{S}_{\mathbf{z},i} + \mathbf{S}_{\mathbf{z},i+1}\right)}{2} \\ \mathbf{m}_1 &= \sum_{i=1} \frac{\left(\omega_i - \omega_{i+1}\right) \mathbf{x} \left[\left(\omega \mathbf{x} \, \mathbf{S}_{\mathbf{z}}\right)_i + \left(\omega \mathbf{x} \, \mathbf{S}_{\mathbf{z}}\right)_{i+1}\right)\right]}{2} \\ \mathbf{m}_2 &= \sum_{i=1} \frac{\left(\omega_i - \omega_{i+1}\right) \mathbf{x} \left[\left(\omega^2 \, \mathbf{x} \, \mathbf{S}_{\mathbf{z}}\right)_i + \left(\omega^2 \, \mathbf{x} \, \mathbf{S}_{\mathbf{z}}\right)_{i+1}\right)\right]}{2} \end{split}$$

```
n=len(w)-1
wfark result = -np.diff(w)
wfark = np.array(wfark_result[:n])
Sztoplam result = Sz[:-1] + Sz[1:]
Sz_toplam = np.array(Sztoplam_result)
m0 = Sz_toplam * (wfark / 2)
Mt0=np.sum(m0)
Szwtoplam_result = Sz[:-1] * w[:-1] + Sz[1:] * w[1:]
m1 = Szwtoplam result * (wfark / 2)
Mt1=np.sum(m1)
Szwtoplam_result_kareli = Sz[:-1] * w[:-1]**2 + Sz[1:] * w[1:]**2
m2 = Szwtoplam_result_kareli * (wfark / 2)
Mt2=np.sum(m2)
Szwtoplam_result_4üslü = Sz[:-1] * w[:-1]**4 + Sz[1:] * w[1:]**4
m4 = Szwtoplam_result_4üslü * (wfark / 2)
Mt4=np.sum(m4)
```

Resim 37:S(w),S(z) ve Toplam Değerleri Hesabı

Ödev kapsamında bizden istenen RMS, T1, Tz ve Tc değerleri aşağıdaki formüllerle hesaplanmıştır.

$$\begin{split} &H_{RMS} = 2 \; x \; \sqrt{m_0} & \qquad T_{c=2\pi} \sqrt{\frac{m_2}{m_4}} \\ &T_1 = 2 \; x \; \pi \; x \; \frac{m_0}{m_1} & \qquad \sqrt{\frac{m_2}{m_4}} \\ &T_2 = 2 \; x \; \pi \; x \; \sqrt{\frac{m_0}{m_2}} & \qquad T_{c=2\pi} \sqrt{\frac{m_2}{m_4}} \\ &T_{c=2\pi} p.pi*Mt0/Mt1 \\ &T_{c=2\pi} p.pi*mp.sqrt(Mt0/Mt2) \\ &T_{c=2\pi} p.pi*np.sqrt(Mt0/Mt4) \end{split}$$

w(rad/sn)	m0	m1	m2	m4
1.49713	1.55997e-19	1.72512e-19	1.9366e-19	2.59252e-19
1.05863	4.42362e-05	3.82363e-05	3.30501e-05	2.46927e-05
0.864366	2.637e-05	2.27934e-05	1.97018e-05	1.47198e-05
0.748563	1.58575e-10	1.06172e-10	7.10855e-11	3.1866e-11
0.669535	1.17107e-10	7.84039e-11	5.24923e-11	2.35297e-11
0.611199	3.9915e-14	2.43959e-14	1.49107e-14	5.57005e-15
0.56586	2.05165e-18	1.16095e-18	6.56932e-19	2.10348e-19
0.529314	1.90637e-23	1.00907e-23	5.34114e-24	1.49644e-24
0.499042	3.39467e-29	1.69408e-29	8.45419e-30	2.10545e-30
0.473433	1.18915e-35	5.62983e-36	2.66534e-36	5.97406e-37
0.4514	8.30902e-43	3.75069e-43	1.69306e-43	3.44982e-44
0.432183	1.16758e-50	5.0461e-51	2.18084e-51	4.07341e-52
0.415228	3.3167e-59	1.37719e-59	5.71846e-60	9.85944e-61
0.400124	1.91126e-68	7.64738e-69	3.0599e-69	4.89886e-70
0.386556	2.23968e-78	8.65762e-79	3.34666e-79	5.00076e-80
0.374281	5.34663e-89	2.00114e-89	7.4899e-90	1.04923e-90
0.363106	2.60361e-100	9.45388e-101	3.43276e-101	4.52596e-102
0.352876	2.58892e-112	9.13567e-113	3.22376e-113	4.01426e-114
0.343464	5.26081e-125	1.8069e-125	6.20605e-126	7.32112e-127
0.334767	2.18602e-138	7.31808e-139	2.44985e-139	2.74553e-140
0.326699	1.85843e-152	6.07149e-153	1.98355e-153	2.1171e-154
0.319188	3.23381e-167	1.03219e-167	3.29464e-168	3.35661e-169
0.312172	1.15215e-182	3.59669e-183	1.12279e-183	1.09417e-184
Toplam	7.061e-05	6.103e-05	5.275e-05	3.941e-05

Tablo 9: m0, m1, m2 ve m4 değerlerinin hesabı ve toplamı.

RMS	7.0606e-05
T1	7.269 s
Тс	8.4098 s
Tz	7.269 s

Tablo 10: Soru 4 cevapları

