空间滤波和空间滤波器的定义

• 在 $M \times N$ 的图像**f**上,使用 $m \times n$ 的滤波器:

$$g(x,y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

其中, m=2a+1, n=2b+1,

w(s,t)是滤波器系数,f(x,y)是图像值

• 空间滤波的简化形式:

$$R = w_1 z_1 + w_2 z_2 + ... + w_{mn} z_{mn} = \sum_{i=1}^{mn} w_i z_i$$

其中,w是滤波器系数,z是与该系数对应的图像灰度值,mn为滤波器中包含的像素点总数

三、线性空间滤波

空间滤波基础

- 三、线性空间滤波
- 线性空间滤波有时也称为图像与掩模的卷积
- 滤波器也称卷积模板
- · 对于3x3掩模,可简化写成:

$$R = \sum_{i=1}^{9} w_i z_i$$

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

四、模板卷积

- 模板卷积编程极为方便
- 只需要一个固定的卷积程序
- 改变不同模板(即3x3或5x5数组中的值),
 即可适应不同的滤波要求
- 模板卷积在图像 预处理中得到非 常广泛的应用

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0				

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10				

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

0	10	20	30	30		

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30		

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

均值滤波器

均值滤波器

- 包含在滤波器领域内像素的平均值,也称为均值滤波器
- 作用
 - 减小图像灰度的"尖锐"变化,减小噪声
 - 由于图像边缘是由图像灰度尖锐变化引起的, 所以也存在边缘模糊的问题

均值滤波器

图a是标准的像素平均值

图b是像素的加权平均,表明一些像素更为重要

$$g(x,y) = \frac{\sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s,t)}$$

一、平滑线性空间滤波器[计算举例]

1	1	1	1	1		1	1	1	1	1
1	9	9	9	1	1 2 1	1	5	6	4	1
1	9	1	1	1	1/16 x 2 4 2 1 2 1	1	6	4	3	1
1	9	1	1	1		1	4	3	1	1
1	1	1	1	1		1	1	1	1	1

均值滤波器——例1

模板尺寸对过滤器效果的影响 模板尺寸越大,图像越模糊,图像细节丢越多

均值滤波器——例3

图像的邻域平均法 (a) 原始图像 (b) 邻域平均后的结果

均值滤波器——例2

平滑空域滤波的缺点和问题 如果图像处理的目的是去除噪音,那么,平滑滤波在去除 噪音的同时也钝化了图像的边和尖锐的细节 3×3模板 9x9 模板

线性滤波器——例4

提取感兴趣物体而模糊图像

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 × 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

?

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

No change

0	0	0	0	0
0	0	0	0	0
0	0	0	0	1
0	0	0	0	0
0	0	0	0	0

?

0	0	0	0	0
0	0	0	0	0
0	0	0	0	1
0	0	0	0	0
0	0	0	0	0

Shift right by 2 pixel

- 平滑空间滤波器的作用
 - 模糊处理:去除图像中一些不重要的细节
 - 减小噪声
- 平滑空间滤波器的分类
 - 线性滤波器:均值滤波器
 - 非线性滤波器
 - 最大值滤波器
 - 中值滤波器
 - 最小值滤波器

统计排序滤波器

- 什么是统计排序滤波器?
 - 是一种非线性滤波器
 - 基于滤波器所在图像区域中像素的排序,由排序结果 决定的值代替中心像素的值

分类

- 中值滤波器: 用像素领域内的中间值代替该像素
- 最大值滤波器:用像素领域内的最大值代替该像素
- 最小值滤波器:用像素领域内的最小值代替该像素

统计排序滤波器

- 中值滤波器
 - ✓ 主要用途: 去除噪声
 - ✓ 计算公式: R = mid {z_k | k = 1,2,...,n}
- 最大值滤波器
 - ✓ 主要用途: 寻找最亮点
 - ✓ 计算公式: R = max {z_k | k = 1,2,...,n}
- 最小值滤波器
 - ✓ 主要用途: 寻找最暗点
 - ✓ 计算公式: R = min {z_k | k = 1,2,...,n}

- 中值滤波的原理
 - ✓ 用模板区域内像素的中间值,作为结果值

$$R = mid \{z_k \mid k = 1, 2, ..., n\}$$

✓ 强迫突出的亮点(暗点)更象它周围的值, 以消除孤立的亮点(暗点)

• 中值滤波算法的实现

✓将模板区域内的像素排序,求出中间值

例如: 3x3的模板, 第5大的是中值,

5x5的模板,第13大的是中值,

7x7的模板,第25大的是中值,

9x9的模板,第41大的是中值。

✓对于同值像素,连续排列。

如(10,15,20,20,<mark>20</mark>,20,20,25,100)

二维中值滤波的窗口形状和尺寸对滤波效果影响较大,不同的图像内容和不同的应用要求,往往采用不同的窗口形状和尺寸。常用的二维中值滤波窗口有线状、方形、圆形、十字形以及圆环形等。窗口尺寸一般先用3×3,再取5×5逐渐增大,直到滤波效果满意为止。就一般经验来讲,对于有缓变的较长轮廓线物体的图像,采用方形或圆形窗口为宜。对于包含有尖顶物体的图像,用十字形窗口,而窗口大小则以不超过图像中最小有效物体的尺寸为宜。如果图像中点、线、尖角细节较多,则不宜采用中值滤波。

- 中值滤波算法的特点
 - 在去除噪音的同时,可以比较好地保留边的锐度和图像的细节(优于均值滤波器)
 - 能够有效去除脉冲噪声: 以黑白点叠加在图像 上

原图

3x3均值滤波

3x3中值滤波

abc

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

1	1	1	1	1
1	3	4	9	1
1	0	3	4	1
1	4	3	3	1
1	1	1	1	1

1	1	1	1	1
1	1	3	1	1
1	3	3	3	1
1	1	3	1	1
1	1	1	1	1

第六节 图像平滑化处理

- 二、统计排序滤波器[最大值滤波]
- 最大值滤波器取统计排序结果的最大值作为新 图像的像素值
- · 例如: 3x3掩模覆盖的图像区域值为:
- 排序后: 2, 2, 3, 3, 3, 4, 4, 8, 9
- 取最大值9代替原来的像素值8

3

第六节 平滑空间滤波器

- 二、统计排序滤波器[最大值滤波一计算举例]
- 左边图像经最大值滤波器处理后,得到右边图像

1	1	1	1	1		1	1	1
1	3	4	9	1		1	4	9
1	0	3	4	1	最大值滤波	1	4	9
1	4	3	3	1		1	4	4
1	1	1	1	1	去掉"胡椒"噪声	1	1	1

9

第六节 图像平滑化处理

- 二、统计排序滤波器[最大值滤波—效果举例]
- 最大值滤波器对处理暗脉冲(胡椒)噪声最为有效

盐椒噪声污染图像

3x3最大值滤波

最大值滤波器

第六节 图像平滑化处理

- 二、统计排序滤波器[最小值滤波]
- 最小值滤波器取统计排序结果的最小值作为新 图像的像素值
- · 例如: 3x3掩模覆盖的图像区域值为:
- 排序后: 2, 2, 3, 3, 3, 4, 4, 8, 9
- 取最小值2代替原来的像素值8

3

第六节 平滑空间滤波器

- 二、统计排序滤波器[最小值滤波--计算举例]
- 左边图像经最小值滤波器处理后,得到右边图像

1	1	1	1	1	
1	3	4	9	1	
1	0	3	4	1	
1	4	3	3	1	
1	1	1	1	1	

第六节 图像平滑化处理

- 二、统计排序滤波器[最小值滤波—效果举例]
- 最小值滤波器对处理亮脉冲(盐)噪声最为有效

盐椒噪声污染图像

3x3最小值滤波

最小值滤波器

Gaussian平滑滤波器

$$G(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$
 (Recall 1D Gaussian)

$$5 \times 5$$
, $\sigma = 1$

$$H_2 = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

- 椒盐噪声 (Salt and Pepper Noise)
 - 出现位置随机,噪声幅值基本相同
 - 亮噪声
 - -暗噪声
- 高斯噪声 (Gaussian Noise)
 - -每个像素
 - -噪声的幅值随机,服从高斯正态分布

Salt-and-pepper noise

Median filtered

MATLAB: medfilt2(image, [h w])

Image Noise

$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Meal Image}} + \overbrace{\eta(x,y)}^{\text{Notes process}}$$

Gaussian I.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

Original

Impulse noise

Salt and pepper noise

Gaussian noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

What's wrong with the results?

高斯滤波,**σ**²=1

高斯滤波,**σ**²=3

Original image

Add pepper noise

 3×3 Gaussian filter, $\sigma = 0.5$

3×3 Median filter

