Valuing Companies

Finance Theory II (15.402) - Spring 2003 - Dirk Jenter

The Big Picture: Part II - Valuation

A. Valuation: Free Cash Flow and Risk

April 1 Lecture: Valuation of Free Cash Flows

April 3 Case: Ameritrade

B. Valuation: WACC and APV

April 8 Lecture: WACC and APV 1
April 10 Lecture: WACC and APV 2
April 15 Case: Dixon Corporation 1
April 17 Case: Dixon Corporation 2
April 24 Case: Diamond Chemicals

• C. Project and Company Valuation

April 29 Lecture: Real Options

May 1 Case: MW Petroleum Corporation
 May 6 Lecture: Valuing a Company
 May 8 Case: Cooper Industries, Inc.

May 13
 Case: The Southland Corporation

Two Complementary Valuation Methods:

- 1) Discounted Cash Flow Analysis
 - \rightarrow WACC
 - $\rightarrow APV$
- 2) Comparables
 - ightarrow Cash flow based Value Multiples
 - ightarrow Cash flow based Price Multiples
 - \rightarrow Asset-based Multiples

Finance Theory II (15.402) – Spring 2003 – Dirk Jenter

Discounted Cash Flow Analysis

- WACC method:
 - \rightarrow Forecast expected FCF
 - → Estimate WACC
 - \rightarrow Compute PV
- APV method:
 - \rightarrow Forecast expected FCF
 - \rightarrow Estimate k_A
 - \rightarrow Compute PV
 - → Add PV(Tax Shield)

Terminal Values

- In valuing long-lived projects or ongoing businesses, we cannot forecast every year of cash flow forever.
- Forecast FCF until it is reasonable to think that the project or company is in "steady state."
- · Typically, assume:
 - \rightarrow either the company is liquidated;
 - → or FCF is a growing, flat, or declining perpetuity;
- · Note: The forecast horizon will depend on firm and industry.

Finance Theory II (15.402) - Spring 2003 - Dirk Jenter

-

Terminal Value in Liquidation:

- 1) Salvage value (SV):
- · CF that the firm receives from liquidating its assets

SV = Liquidation price - Liquidation costs

• The firm is taxed on (SV – PPE) so that overall it gets

SV*(1-t) + t*PPE

- 2) Net Working Capital
- Recouped NWC at project end (i.e., last ΔNWC = last NWC)

MUSICAN

Remarks on Liquidation Values:

- In principle, you would like NWC's actual value, not book value.
- These might differ for several reasons:
 - → cannot recoup the A/R fully
 - → Inventory may sell above or below book value
 - \rightarrow etc.
- Note that differences between actual and book value of NWC will have tax implications.
- Liquidation value tends to underestimate TV unless liquidation is likely. Useful as a <u>lower bound</u>.

Finance Theory II (15.402) - Spring 2003 - Dirk Jenter

7

Terminal Value as Perpetuity:

• **No-growth perpetuity:** PV in year t of a flat perpetuity starting in year (t+1) with first payment C, and discount rate k is **C/k**.

$$\rightarrow$$
 TV = FCF_{T+1} / k

• For a no-growth firm, we often assume (for simplicity)

FCF = EBIT(1-t) + Depreciation – CAPX –
$$\Delta$$
NWC 0 0

8

 $TV = (1-t)EBIT_{T+1} / k$

Terminal Value as Growing Perpetuity:

- PV in year t of a perpetuity starting in year (t + 1) with first payment C, growth rate g, and discount rate k is C/(k - g)
- \rightarrow TV = FCF_{T+1} / (k g)
- For a growing perpetuity, we often assume (for simplicity)

FCF = EBIT(1-t) + Depreciation – CAPX –
$$\Delta$$
NWC

$$-\Delta NA = -g^*NA_{prior year}$$

$$TV = [(1-t)EBIT_{T+1} - g*NA_T] / (k - g)$$

$$(1+g)(1-t)EBIT_T$$

Finance Theory II (15.402) - Spring 2003 - Dirk Jenter

a

Remarks

- Growing perpetuity assumptions:
 - $\rightarrow\!$ Net assets grow at the same rate as profits.
 - $\rightarrow\!\Delta\text{NA}$ is a good measure of replacement costs.
- Don't forget to discount TV further to get PVTV.
- · In WACC method, k=WACC.
- IN APV method, k=k_A for FCF and appropriate rate for TS.

Milisioan

When is Growth Valuable?

Need to compare the terminal value <u>with</u> growth to the value <u>without</u> growth:

TV (with growth) > TV (w/o growth)

$$\frac{(1+g) \cdot EBIT(1-t) - g \cdot NA}{k - g} > \frac{EBIT(1-t)}{k}$$

$$\frac{(1+g) \cdot EBIT(1-t) - g \cdot NA}{k - g} > \frac{EBIT(1-t)}{k}$$

$$\frac{(1+g) \cdot EBIT(1-t) - g \cdot NA}{k - g} > \frac{EBIT(1-t)}{k}$$

$$\frac{(1+g) \cdot EBIT(1-t) - g \cdot NA}{k - g} > \frac{EBIT(1-t)}{k}$$

$$\frac{EBIT(1-t)}{NA} > \frac{k}{1+k} \approx k$$

Finance Theory II (15.402) - Spring 2003 - Dirk Jenter

Economic Value Added (EVA):

EVA = EBIT*(1 - t) - k*NA

Intuition: Growth is good when the cost of increasing NA is more than compensated by the capitalized increase in EBIT*(1 - t).

MITSIoan

EVA: Some remarks

 EVA is a snap shot measure, disregards future cash flow implications.

Use EVA as...

- ... a simple measure to determine whether the business is generating value and whether growth is enhancing value.
- · ... as a way of setting goals to enhance value.

Beware of EVA for...

- · ... young companies.
- ... companies in rapidly changing business environments.
- ... companies where book values are not accurate measures of replacement costs.

Finance Theory II (15.402) - Spring 2003 - Dirk Jenter

13

DCF Analysis: Pros and Cons

Strengths

- · CF comes from specific forecasts and assumptions.
- · Can see impact of changes in strategies.
- · Valuation tied to underlying fundamentals.

Weaknesses

- · CF only as good as your forecasts/assumptions.
- · Might "forget something".
- · Need to forecast managerial behavior (unless you're in control).
- Need to estimate the discount rate using a theory (e.g. CAPM) that may be incorrect or imprecise in this particular case.

Valuation by Multiples:

- Assess the firm's value based on that of publicly traded comparables.
- · Cash-flow-based Value multiples:
 - → MV of firm/Earnings, MV of firm /EBITDA, MV of firm /FCF
- · Cash-flow-based Price multiples:
 - → Price/Earnings (P/E), Price/EBITDA, Price/FCF
- · Asset-based multiples:
 - ightarrow MV of firm/BV of assets, MV of equity/BV of equity

Finance Theory II (15.402) - Spring 2003 - Dirk Jenter

15

Procedure

- **Hope:** Firms in the same business should have similar multiples (e.g. P/E).
- STEP 1: Identify firms in same business as the firm you want to value.
- STEP 2: Calculate P/E ratio for comps and come up with an estimate of P/E for the firm you want to value (e.g. take the average of comps' P/E).
- **STEP 3:** Multiply the estimated P/E by the actual Net Income of the firm you want to value.

Remarks

- · For firms with no earnings or limited asset base (e.g. hi-tech),
 - → price-to-patents multiples,
 - → price-to-subscribers multiples,
 - → or even price-to-PhD. multiples!
- For transactions, can also use multiples for comparable transactions (e.g. similar takeovers).
- Multiples based on equity value (or stock price, e.g., P/E) as opposed to total firm value ignore effect of leverage on the cost of equity (or assume the firms have similar leverage) => Beware if comps have very different leverage.

Finance Theory II (15.402) - Spring 2003 - Dirk Jenter

17

Motivation for Multiples?

- · If the firm's actual FCF are a perpetuity:
- MV firm = FCF/(WACC-g) => MV firm/FCF = 1/(WACC-g)
- ⇒ Comps will have a similar MV firm/FCF provided:
 - \rightarrow their FCFs are also a perpetuity
 - → they have the same WACC (requires similar D/(D+E))
 - \rightarrow they are growing at a similar rate
- Since these are rough approximations (at best), you may want to check if using different multiples give you similar answers. If not, find out why not.

Comparables: Pros and Cons

Pros:

- Incorporates a lot of information from other valuations in a simple way.
- Embodies market consensus about discount rate and growth rate.
- · Free-ride on market's information.
- Can provide discipline in valuation process by ensuring that your valuation is in line with other valuations.

Cons:

- Implicitly assumes all companies are alike in growth rates, cost of capital, and business composition. Hard to find true comps.
- Hard time incorporating firm specific information. Particularly problematic if operating changes are going to be implemented.
- Accounting differences, particularly with earnings and equity-based measures. Multiples of FCF and EBITDA preferable for this reason.
- · Book values can vary across firms depending on age of PPE.
- · If everyone uses comps, who actually does fundamental analysis?

Finance Theory II (15.402) - Spring 2003 - Dirk Jenter

19

APPENDIX

Example

• You are considering the acquisition of XYZ Enterprises. XYZ's balance sheet looks like this as of today (year 0).

Assets		Liabilities	
Current assets	50	Current liabilities	20
Plant	50	Debt	30
		Net worth	50
Total	100	Total	100

Projections:

	Year 1	Year 2	Year 3	Year 4	Year 5
Sales	200	217	239	270	293
EBIT	20	22	25	26	30
NWC	33	37	41	44	48
Depreciation	5	5	6	7	8
CAPX	10	10	15	6	20

Finance Theory II (15.402) - Spring 2003 - Dirk Jenter

21

Example (cont.)

- Assuming tax rate t = 34% and WACC = 13%, what is the value of XYZ's stock under the following assumptions past year 5:
- 1) XYZ is liquidated after year 5 (assuming zero salvage value).
- 2) Sales growth slows to g = 5% and EBIT/Sales remains about 10%.
- 3) Sales stop growing (g = 0), and EBIT/Sales remains around 10%.
- 4) Sales growth slows to g = 5%, and EBIT/Sales drop to 5%.
- 5) Sales stop growing (g = 0), and EBIT/Sales drop to 5%.

Finance Theory II (15.402) – Spring 2003 – Dirk Jenter

Example (cont.)

Start by estimating FCF over 5 years:

• NWC(year 0) = Current assets - current liabs = 50-20=30

FCF = EBIT(1 - t) + Dep - CAPX -
$$\Delta$$
NWC

	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
EBIT		20	22	25	26	30
EBIT(1-t)		13.2	14.52	16.5	17.16	19.8
NWC	30	33	37	41	44	48
ΔNWC		3	4	4	3	4
Depreciation		5	5	6	7	8
CAPX		10	10	15	6	20
FCF		5.2	5.52	3.5	15.16	3.8
PV @ 13%	22.7					

Finance Theory II (15.402) - Spring 2003 - Dirk Jenter

Example (cont.)

1) Liquidation value (LV)

t*PPE(year 5) + NWC(year5)

PPE(year 5) = PPE(year 0) + all CAPX - all Dep from year 0 to 5 ==> PPE = 50+(10+10+15+6+20)-(5+5+6+7+8) = 80 ==> PPE * t = 80 * 34% = 27.2

Firm value = 22.7 + 40.8 = 63.5Equity value = Firm value - MV of Debt = 63.5 - 30 = 33.5

Example (cont.)

For 2) to 5), we need EBIT (year 6) and NA (year 5) to apply $[\mathsf{EBIT}(\mathsf{year}\ 6)(1-\mathsf{t})-\mathsf{g}^*\mathsf{NA}(\mathsf{year}\ 5)]/[\mathsf{k}-\mathsf{g}]$

EBIT(year 6) = fraction α of Sales(year 6) = $\alpha^*(1 + g)^*$ Sales(year 5)= $\alpha^*(1 + g)^*$ 293

NA(year 5)= NA(year 0) +all CAPX -all Dep +all \triangle NWC from 0 to 5 = (100-20) + (10+10+15+6+20) - (5+5+6+7+8) +(3+4+4+3+4)

= 128 $TV = [\alpha^*(1 + g)^*293^*(1-34\%) - g^*128] / (13\%-g) \text{ and PVTV=} TV/(1.13)^5$

Finance Theory II (15.402) – Spring 2003 – Dirk Jenter

25

Example (cont.)

	α	g	TV	PVTV	Firm	Equity
2)	10%	5%	173.8	94.3	117.0	87.0
3)	10%	0%	148.8	80.7	103.4	73.4
4)	5%	5%	46.9	25.5	48.2	18.2
5)	5%	0%	74.4	40.4	63.1	33.1