Description of Bot Tau

Frans Englich fenglich@fastmail.fm

August 21, 2025

Contents

1	Introduction	1
2	Trading Plan	1
3	The Dataset	2
4	Strategy	2
5	Features 5.1 Multicollinearity	2 4
6	Targets	4
7	Model	4
8	Back Test 8.1 Drawdown	6
9	Live Performance 9.1 Performance Report	8 8

1 Introduction

This document describes Bot Tau's trading strategy. Notice that this is one strategy, which is part of a portfolio.

2 Trading Plan

Table 1: Specifics of the trading plan.

Assets	Currently undecided		
Overnight?	We close positions at end of each trading day, because we don't		
	want overnight exposure.		
Number of trades per day	Currently undecided		
Performance			
	• Yearly return > ?		
	• Sharp Ratio > ?		
	• Calmar Ratio > ?		
Over-fitting	How many times can the strategy be adjusted? How many back tests?		

Risk management conditions:

- If we have more than 3 losing trades per day, we stop the algorithm for the day.
- \bullet We stop the algorithm after X % loss in one month.
- We stop the algorithm if the drawdown in live trading becomes times higher than the drawdown in incubation.

3 The Dataset

The dataset stretches from $1999-11-01\ 00:00:00$ to $2000-03-23\ 00:00:00$.

4 Strategy

- Entry signal
- Exit signal
- Position sizing. Is it static or dynamic in some manner? For instance, percentage of current total capital.

5 Features

Some form of property, typically derived from the OLHCV. An example is volatility. The features used are as follows.

Heatmap of Pearson correlation matrix of features

Heatmap of Spearman correlation matrix of features

5.1 Multicollinearity

See:

- https://www.geeksforgeeks.org/python/detecting-multicollinearity-with-vif-python/
- https://en.wikipedia.org/wiki/Variance_inflation_factor

Interpretation:

- Values near 1 mean predictors are independent.
- ullet Values between 1 and 5 shows moderate correlation which is sometime acceptable.
- Values above 10 signal problematic multicollinearity requiring action.

Table 2: Variance Inflation Factors (VIF).

Feature	VIF
pct_close_futur	1.08
var	7.76
parkinsons_var	7.6

6 Targets

7 Model

OLS Regression Results

Dep. Variable:	target_future_returns_sign	R-squared:	0.023
Model:	OLS	Adj. R-squared:	0.013
Method:	Least Squares	F-statistic:	2.308
Date:	Thu, 21 Aug 2025	Prob (F-statistic):	0.132
Time:	13:28:50	Log-Likelihood:	-71.235
No. Observations:	100	AIC:	146.5
Df Residuals:	98	BIC:	151.7
Df Model:	1		

Covariance Type: nonrobust

const 0.5408 0.050 10.743 0.000 0.441 0.641 signal 0.5408 0.356 1.519 0.132 -0.166 1.247		coef	std err	t	P> t	[0.025	0.975]
Prob(Omnibus): 0.000 Jarque-Bera (JB): 16.336 Skew: -0.165 Prob(JB): 0.000284						***	
	Prob(Omnibus): Skew:		0.0	000 Jarqu 165 Prob(e-Bera (JB): JB):		16.336 0.000284

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

8 Back Test

8.1 Drawdown

Maximum drawdown is 1.97%. We consider 20% an acceptable maximum.

8.2 Returns

This is the returns of our trading strategy.

Table 3: Statistics of returns.

Mean returns	0.0084%	
Standard deviation (SD)	0.0035	
Sharpe Ratio (SR)	0.3843	
Calmar Ratio (CR)	0.0042	

The cumulative returns are not compounding, while the annualized returns are. However, we close the position, meaning compounding isn't relevant.

The transaction cost, C, is calculated using the formula, where t is the trade amount:

$$C = 0.02 * t + spread/2 \tag{1}$$

8.3 Further Robustness Tests

9 Live Performance

The plan is to paper trade in a one-month incubation period.

TODO compare return dist to back test return using Kolmogorov statistical test.

9.1 Performance Report

(Copy Discord report.)

9.2 Trading Journal

No trading have taken place, so nothing here yet.