Analysis of Energy and Performance of Code Transformations for PGAS-based Data Access Patterns

Siddhartha Jana (UH), Joseph Schuchart (TU-D), Barbara Chapman (UH)

> PGAS, 2014 Oct 10, 2014

Why Talk About Energy?

Engineering FLOPs is not a design constraint – data movement presents the most daunting engineering and computer architecture challenge

Source: "Exascale Computing Technology Challenges", John Shalf, Sudip Dosanjh, and John Morrison

Outline

- Motivation
- Energy Cost Factors Across the H/W S/W Stack
- Design of Data Access Patterns
- Access Pattern Transformations
- Analysis of Empirical Results
- Conclusions and Future Work

Motivation

- Energy savings is clearly a concern
 - DVFS techniques to achieve energy savings
 - Vishnu et al. (2013)
 - Energy study of point-to-point and collective operations
 - Venkatesh et al., Jana et al. (2013~14)
- What kernel characteristics should we be looking into?
- What layer within the software stack should we target?

Impact across the hardware-software stack

Intra-node Constraints e.g. Cache sizes, set-associativity, cache-coherency protocol memory bandwidth, Hyperthreading, page-replacement	Inter-node Constraints e.g. router-switch, organization, network topology, reliability, latency, peak-bandwidth

Impact across the hardware-software stack

Implementation Details Flow / Congestion control e.g. Polling, registration of memory, e.g. routing protocols, reliability, reusability of memory, deadlock handling, caching, memory management, load-balancing, quality-of-service fault-tolerance Intra-node Constraints Inter-node Constraints e.g. Cache sizes, set-associativity, e.g. router-switch, organization, cache-coherency protocol network topology, memory bandwidth, reliability, latency, Hyperthreading, page-replacement peak-bandwidth

Impact across the hardware-software stack

Choice of Transport Layer e.g. TCP, OpenFabrics, shared memory	Communication Protocols e.g. Message passing (Eager, Rendezvous) or Direct access
Implementation Details e.g. Polling, registration of memory, reliability, reusability of memory, caching, memory management, fault-tolerance	Flow / Congestion control e.g. routing protocols, deadlock handling, load-balancing, quality-of-service
Intra-node Constraints e.g. Cache sizes, set-associativity, cache-coherency protocol memory bandwidth, Hyperthreading, page-replacement	Inter-node Constraints e.g. router-switch, organization, network topology, reliability, latency, peak-bandwidth

Impact across the hardware-software stack

Communication Kernel Characteristics

e.g. total size of the data-payload transferred, the number of calls initiated to service the transfers

Choice of Transport Layer

e.g. TCP, OpenFabrics, shared memory

Communication Protocols

e.g. Message passing (Eager, Rendezvous) or Direct access

Implementation Details

e.g. Polling, registration of memory, reliability, reusability of memory, caching, memory management, fault-tolerance

Flow / Congestion control

e.g. routing protocols, deadlock handling, load-balancing, quality-of-service

Intra-node Constraints

e.g. Cache sizes, set-associativity, cache-coherency protocol memory bandwidth, Hyperthreading, page-replacement

Inter-node Constraints

e.g. router-switch, organization, network topology, reliability, latency, peak-bandwidth

Impact across the hardware-software stack

Choice of	programming	model constructs
-----------	-------------	------------------

Communication Kernel Characteristics

e.g. total size of the data-payload transferred, the number of calls initiated to service the transfers

Choice of Transport Layer

e.g. TCP, OpenFabrics, shared memory

Communication Protocols

e.g. Message passing (Eager, Rendezvous) or Direct access

Implementation Details

e.g. Polling, registration of memory, reliability, reusability of memory, caching, memory management, fault-tolerance

Flow / Congestion control

e.g. routing protocols, deadlock handling, load-balancing, quality-of-service

Intra-node Constraints

e.g. Cache sizes, set-associativity, cache-coherency protocol memory bandwidth, Hyperthreading, page-replacement

Inter-node Constraints

e.g. router-switch, organization, network topology, reliability, latency, peak-bandwidth

Factors impacting energy consumption Impact across the hardware-software stack

Scope of this work	*		
	Choice of programming model constructs		
	Communication Kernel Characteristics e.g. total size of the data-payload transferred, the number of calls initiated to service the transfers		
Past work <	Choice of Transport Layer e.g. TCP, OpenFabrics, shared memory	Communication Protocols e.g. Message passing (Eager, Rendezvous) or Direct access	
	Implementation Details e.g. Polling, registration of memory, reliability, reusability of memory, caching, memory management, fault-tolerance	Flow / Congestion control e.g. routing protocols, deadlock handling, load-balancing, quality-of-service	
	Intra-node Constraints e.g. Cache sizes, set-associativity, cache-coherency protocol memory bandwidth, Hyperthreading, page-replacement	Inter-node Constraints e.g. router-switch, organization, network topology, reliability, latency, peak-bandwidth	

Impact across the hardware-software stack

Choice of programming model constructs

Characteristics of a communication kernel

Characteritics of individual RDMA PUTs

Characteristics of a Communication Kernel

Consider the following case:

This can be transferred as:

Costs Associated With RDMA Write Operations

Costs Associated With RDMA Write Operations In terms of OpenSHMEM

Experimental Setup

- CPU: Intel Sandy Bridge E5-2690
- NIC: Mellanox MT27500 : Connect-X
- One process (OpenSHMEM PE) per node
- Mellanox Scalable SHMEM

Infiniband (Mellanox)

- Use of Voltage Regulators + FPGA
- Power measured at various levels of granularity
 - CPU, DRAM, Blade
 - 1KHz granularity

Peformance Characteristics of Data Access Patterns

Lower is better

For medium ~ bulk transfers:

MPQMPQ ~ PQPQ > MPMPQ ~ PPQ > MMPQAMM

Blocking versions > Non-blocking semantics > Aggregation

Total size of data payload = 0.5MB Number of fragments (N) = Number of discrete user buffers Size of a data buffer = 0.5MB/ N Measurements in log-scale

Peformance Characteristics of Data Access Patterns

Higher is better

For medium ~ bulk transfers:

MPQMPQ ~ PQPQ < MPMPQ ~ PPQ < MMPQAMM

Blocking versions < Non-blocking semantics < Aggregation

Total size of data payload = 0.5MB Number of fragments (N) = Number of discrete user buffers Size of a data buffer = 0.5MB/ N Measurements in log-scale

Cost Savings Using Non-blocking operations

Case1: With unregistered buffers

Case2: With registered buffers

Impact of Using Non-blocking operations

Costs Savings Using NIC-Registered Buffers

Case1: With blocking PUTs

Case2: With non-blocking PUTs

The Impact of Using NIC-Registered Buffers

Costs Savings Using Aggregated Source Buffers

The Impact of Using Aggregated Source Buffers

Conclusions and Future Work

- Energy-based metrics similar to latency based results
- Analysis of different data access patterns
 - Aggregation
 - Blocking
 - Buffer registration
- Potential cost savings in converting in transformation of these patterns

Analysis of Energy and Performance of Code Transformations for PGAS-based Data Access Patterns

Speaker: Siddhartha Jana (UH)

Contact: sidjana@cs.uh.edu

University of Houston

