

Época Normal 28-01-2009

N.º	Nome

Parte Teórica 70% – 75 minutos

- 1. A visualização, no ecrã de um vulgar computador, de um gráfico descrito no formato SVG (Scalable Vector Graphics)
 - a. Não é de todo possível, pois as representações vectoriais não são compatíveis com os dispositivos matriciais
 - b. Requer a prévia realização de uma operação de rasterização
 - c. Requer técnicas sofisticadas de reconhecimento de padrões
 - d. Só é possível em sistemas cuja arquitectura contempla um processador gráfico (GPU)
- 2. As arquitecturas dotadas de processador gráfico (GPU)
 - a. Recorrem a técnicas de paralelismo para aumentar o desempenho
 - b. Chamam a si a realização de algumas tarefas tais como as transformações e projecções
 - c. Normalmente usam memória separada da do sistema
 - d. Todas as anteriores
- 3. Uma transformação linear afim
 - a. Transforma necessariamente a origem na própria origem
 - b. Preserva necessariamente as dimensões e os ângulos dos objectos
 - c. Transforma necessariamente os segmentos de recta em segmentos de recta
 - d. Nenhuma das anteriores
- 4. As coordenadas homogéneas [1, 2, 3, 4]^T designam
 - a. Um ponto de coordenadas x = 1, y = 2, z = 3
 - b. Um vector de componentes x = 1, y = 2, z = 3
 - c. Um ponto de coordenadas x = 0.25, y = 0.5, z = 0.75
 - d. Um vector de componentes x = 0.25, y = 0.5, z = 0.75
 - e. Um ponto de coordenadas x = 4, y = 8, z = 12
 - f. Um vector de componentes x = 4, y = 8, z = 12
- 5. Considere dois pontos genéricos P e Q (não coincidentes) e o ponto R = P + α * (Q P)
 - a. Se $0 < \alpha < 1$ então o ponto R não pertence ao segmento PQ
- Р
- b. Se $\alpha = 0$ então o ponto R coincide com o ponto Q
- c. Se α = 0.5 então o ponto R coincide com o ponto médio do segmento PQ
- d. Se α = 1 então o ponto R coincide com o ponto P

Q

6. Complete a seguinte frase:

No pipeline de transformações do OpenGL as coordenadas correspondente	es aos	vértices dos	S
objectos são multiplicadas pela,	dando	origem às	s
coordenadas de olho. Segue-se a multiplicação pela		, da qua	il
resultam as correspondentes coordenadas de recorte. Em seguida, realiza	ı-se a	operação de	9
, obtendo-se assim as coordenadas	s norn	nalizadas de	5
dispositivo. Por último, efectua-se a	_ e a	consequente	9
determinação das coordenadas de janela.			

- 7. A modelação por malha de arame (wireframe)
 - a. Pode gerar modelos ambíguos
 - b. Fornece a descrição matemática das superfícies que delimitam o objecto
 - c. Contém informação sobre o fecho e a conectividade dos objectos modelados
 - d. Nenhuma das anteriores
- 8. Para iluminar uma cena com uma fonte de luz pontual que radie em todas as direcções, deverá
 - a. Activar o modelo de iluminação do OpenGL
 - b. Especificar para a posição um conjunto de coordenadas tal que w ≠ 0
 - c. Especificar para o ângulo de *cutoff* o valor de 180º
 - d. Todas as anteriores
- 9. A contribuição dada pela componente de iluminação difusa do modelo de Phong
 - a. Não depende da geometria do objecto iluminado
 - b. Depende do co-seno do ângulo de incidência da luz
 - c. Depende da posição do observador
 - d. Nenhuma das anteriores
- 10. No mapeamento de texturas em OpenGL, o processo de filtragem designado por GL_LINEAR_MIPMAP_LINEAR
 - a. Escolhe o *texel* que mais se aproxima do centro do pixel no *mipmap* que melhor se adegua ao contexto de minificação existente
 - b. Calcula uma média pesada da matriz de 2 x 2 *texels* que mais se aproxima do centro do pixel no *mipmap* que melhor se adequa ao contexto de minificação existente
 - c. Escolhe o *texel* que mais se aproxima do centro do pixel em cada um dos dois *mipmaps* que melhor se adequam ao contexto de minificação existente; em seguida, efectua uma interpolação linear destes dois valores
 - d. Calcula uma média pesada da matriz de 2 x 2 *texels* que mais se aproxima do centro do pixel em cada um dos dois *mipmaps* que melhor se adequam ao contexto de minificação existente; em seguida efectua uma interpolação linear destes dois valores

Época Normal 28-01-2009

N.º	Nome

Parte Teorico-Prática 70% – 75 minutos

1. Supondo que possui um método paralelepipedo (L, A, P) que desenha um paralelepípedo centrado na origem com largura L, altura A e profundidade P (figura 2):

Figura 1 Figura 2

a. Desenhe a árvore de cena com os nós correspondentes aos objectos e às transformações necessárias para desenhar o objecto da figura 1.

		b.	Escr		sequên	cia de	instruç	ões O	penGI	neces	sárias	para	desenh	ar o	objecto	o da
2.	Co	mple	ete a s	seguir	nte frase:	<u>.</u>										
				que	m prog trata do escreve	dese	nho, o			que	trata	dos	evento	s de	entrad	a, o
de					program					c a _			que	uell	110 03 10	Біаз

1-2009

N.º	Nome

3. Indique as normais (não unitárias) identificadas pelos vectores A e B dos polígonos descritos na seguinte figura:

- 4. Se estiver a usar uma projecção do tipo perspectiva e pretender simular um efeito de *zoom* na cena, que função do OpenGL deve usar e qual o parâmetro que deve variar?
- 5. O seguinte conjunto de instruções costuma ser colocado em que *callback* do GLUT?

```
glViewport(0, 0, (GLint) width, (GLint) height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, LARGURA_CAMPO, 0, ALTURA_CAMPO);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
```

- a. glutReshapeFunc
- b. glutDisplayFunc
- c. glutTimerFunc
- $d. \quad \mathsf{glut} \mathsf{Keyboard} \mathsf{Func}$

- 6. Qual dos seguintes vectores define uma luz direccional perpendicular ao solo se este for definido no plano XZ?
 - a. (0, 1, 0, 0)
 - b. (0, 0, 1, 0)
 - c. (0, 1, 0, 1)
 - d. (0, 0, 1, 1)
- 7. Complete o seguinte programa de forma a animar a rotação de um cubo em torno do eixo dos YY. Suponha que as reticências correspondem ao código OpenGL que normalmente se encontraria nessa função e preencha apenas as linhas com o código para efectuar a animação (nem todas as linhas necessitam ser preenchidas).

```
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <GL/glut.h>
typedef struct {
}Modelo t;
Modelo_t modelo;
void Init(void)
{
}
void Reshape(int width, int height)
{
}
void desenhaCubo(void) { ... }
```


Época Normal 28-01-2009

N.º	Nome	
void	Draw(void)	
l	<pre>glClear(GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT);</pre>	
	<pre>desenhaCubo();</pre>	
	<pre>glFlush();</pre>	
}		
<pre>void {</pre>	Timer(int value)	
•	<pre>glutTimerFunc(estado.delay, Timer, 0);</pre>	
	// redesenhar o ecra	
1	<pre>glutPostRedisplay();</pre>	
}		
\\ \{	<pre>main(int argc, char **argv)</pre>	
	•••	
	<pre>Init();</pre>	
	•••	
	<pre>glutMainLoop();</pre>	