Lista 1

Problem 1 Let G(k, n) be the set of dimension k vector subspaces of \mathbb{R}^n . Construct a smooth structure on G(k, n) and compute its dimension.

Solution. (Proof in [GG74].) First we topologize G(n,k) as follows. We identify it with the quotient W/\sim , the set of k-frames (sets of k linearly independent vectors of \mathbb{R}^n) modulo the equivalence relation of spanning the same vector space. Since $W \subset (\mathbb{R}^n)^k$ it has a subspace topology, and G(n,k) has a quotient topology.

Now fix $V \in G(n, k)$. To construct a chart consider the set

$$W_V = \{U \in G(n, k) : \text{orthogonal projection } U \rightarrow V \text{ is bijective} \}$$

and the function

$$\rho_{V}: W_{V} \longrightarrow \operatorname{Hom}(V, V^{\perp})$$

$$U \longmapsto \pi_{U, V^{\perp}} \circ \pi_{U, V^{\perp}}^{-1}$$

where $\pi_{X,Y}$ is the orthogonal projection from X to Y. Since the set $Hom(V,V^{\perp})$ is the spaces of matrices of $\dim V \times \dim V^{\perp} = k(n-k)$, we may write $Hom(V,V^{\perp}) = \mathbb{R}^{k(n-k)}$.

To complete the proof we must confirm several facts: (1) G(n, k) is Hausdorff and second countable, (2) W_V is open for all V, (3) ρ_V is a homeomorphism for all V, (4) transition maps $\rho_V \circ \rho_V^{-1}$ are smooth.

- 1. By thm 7.7 in [Tu10], it's enough to show that the quotient projection $q:W\to W/\sim$ is an open map and that the graph of \sim is closed.
- 2. To see that W_V is open define \widetilde{W}_V to be the set of k-frames $\{u_i\}_{i=1}^k$ of \mathbb{R}^n such that the orthogonal projection from $\text{span}(u_i)$ onto V is bijective. Then $\widetilde{W}_V/\sim=W_V$. Since $G(n,k)=W/\sim$ is equipped with the quotient topology, it's enough to show that $q^{-1}\left(q\left(\widetilde{W}_V\right)\right)=\widetilde{W}_V$ is open, where $q:W\to W/\sim$ is the quotient map.

Fix $\{u_i\}_{i=1}^n \in \widetilde{W}_V$. It is clear from elementary properties of euclidean space that there is a neighbourhood of every u_i such that the vector space obtained by choosing one vector in each of these neighbourhoods orthogonally-projects bijectively onto V. Since we are using the product topology on W, it follows that \widetilde{W}_V is open.

3.

4.

Problem 2 Let M and N be manifolds of dimension m and n, respectively, and let $f: M \to N$ be a smooth function whose rank is k for every point in an open set $\tilde{U} \subset M$. Prove that for each point $p \in \tilde{U}$, there exist charts (U, φ) and (V, ψ) centered at p and f(p) such that $f(U) \subset V$ and

$$\psi \circ f \circ \phi^{-1}(x_1, \dots, x_k, x_{k+1}, \dots, x_m) = (x_1, \dots, x_k, 0, \dots, 0).$$

Solution. (Adapted from the proof of thm B.4 in [Tu10].) Since $D_p f$ has rank k at p, we may assume the first k columns are linearly independent. Define a locally invertible map of \mathbb{R}^m to itself by

$$G(x_1,...,x_k,y_1,...,y_{m-k}) = (f_1(x,y),...,f_k(x,y),y).$$

where f_i are the coordinate functions of f for some charts of p and f(p). G is locally invertible since it has nonsingular derivative at p. Notice that $f \circ G^{-1}$ maps

$$(x,y)\mapsto \Big(x,f_{k+1}\circ G^{-1}(x,y),\ldots,f_{\mathfrak{n}}\circ G^{-1}(x,y)\Big).$$

Notice that $f \circ G^{-1}$ does not depend on y in a neighbourhood of p: since G is locally a diffeomorphism, the rank of $f \circ G^{-1}$ must be the same as that of f, and its derivative is

$$D_q(f\circ G^{-1}) = \begin{pmatrix} Id & 0 \\ \frac{\partial (f\circ G^{-1})_i}{\partial x^j} & \frac{\partial (f\circ G^{-1})_i}{\partial y^j} \end{pmatrix}, \quad \text{ for } k\leqslant i\leqslant n$$

so that the matrix $\frac{\partial (f \circ G^{-1})_i}{\partial y^j}$ must be singular **for all** q **in a neighbourhood of** p (here we use that f has **constant** rank k). This allows us to define the function of R^n to itself

$$F(x,y) = \left(x,y_1-f_{k+1}\circ G^{-1}(x),\ldots,y_n-f_n\circ G^{-1}(x)\right)$$

which is locally invertible: its derivative is

$$D_{f(p)}F(x,y) = \begin{pmatrix} Id & 0 \\ * & Id \end{pmatrix}$$

using that $f_i \circ G^{-1}$ does not depend on y near p. Thus we may restrict our domains as necessary to obtain open sets $U \ni p$ and $V \ni f(p)$ such that

$$F\circ\hat{f}\circ G^{-1}(x,y)=F\Big(x,f_{k+1}\circ G^{-1}(x,y),\ldots,f_{\mathfrak{n}}\circ G^{-1}(x,y)\Big)=(x,0)$$

where $\hat{f} = (f_1, ..., f_n)$ is the coordinate representation of f with which we started.

Problem 3 Let M be a compact manifold. Prove that does not exist a submersion $F: M \to \mathbb{R}^k$, k > 0.

Solution. Since M is compact any real-valued function is bounded, so the composition of F with the modulus function $\|\cdot\| \circ F$ is bounded and so is F. Now let $x_0 \in M$ a point such that $\|F(x)\|$ is maximum over M.

Let γ be the curve in \mathbb{R}^k given by $\gamma(t) = F(x_0) + tF(x_0)$. It corresponds to a vector at $F(x_0)$ pointing in the direction of $F(x_0)$, so that the norm of points on γ for positive t is larger than that of $F(x_0)$

Since $D_{x_0}F$ is surjective, there is a vector such that its image under $D_{x_0}F$ is $[\gamma]$. Namely, $[F^{-1}\circ\gamma]$ for some local inverse of F. (Indeed: $F_*[F^{-1}\circ\gamma] = \frac{d}{dt}\Big|_{t=0}F\circ F^{-1}\circ\gamma$.)

Now let $x_1 := F^{-1} \circ \gamma(t_1)$ for some $t_1 > 0$. Then $F(x_1)$ has a bigger norm than $F(x_0)$:

$$\|F(x_1)\| = \|\gamma(t_1)\| = \|F(x_0) + t_1F(x_0)\| > \|F(x_0)\|$$

but $||F(x_0)||$ is maximum.

References

- [GG74] M. Golubitsky and V. Guillemin. *Stable Mappings and Their Singularities*. Graduate texts in mathematics. Springer, 1974.
- [Tu10] L.W. Tu. An Introduction to Manifolds. Universitext. Springer New York, 2010.