Secure Hybrid Encryption from Hard Learning Problems in the Standard Model

Xavier Boyen

QUT

Malika Izabachène

Cosmian, Paris

Qinyi Li

Griffith University

PQCrypto 2021

Our Results

 CCA2-Secure hybrid encryption systems in the standard model under LWE/Low-noise LPN

 A KEM w/o CCA2 security plus a CCA-secure DEM (à la Kurosawa-Desmedt system [KD04])

 Outperform known standard model CCA2-secure PKE (with assumptions that symmetric primitives are secure, e.g., AES, HMAC)

Hybrid Encryption

- Public-key encryption (PKE)
 - No need to pre-share secret keys
 - Inefficient when encrypting long messages
- Symmetric-key (secret-key) encryption (SKE)
 - Efficient when encrypting long messages
 - Requires shared secret keys
- Hybrid encryption (HE)
 - Combine the merits of PKE and SKE
 - Use PKE to warp a random session key k, which is short
 - Use SKE with k to encrypt the actual message.

Key Encapsulation Mechanism (KEM)

- Key generation:
 - $(pk, sk) \leftarrow KEM.Gen(1^{\lambda})$
 - Generates public key pk and private key sk
- Key encapsulation:
 - $(c, k) \leftarrow KEM.Enc(pk)$
 - Wraps secret session keys k into ciphertexts c using pk
- Decapsulation:
 - \perp or k \leftarrow KEM.Dec(sk, c)
 - Recovers secret keys k from ciphertexts c
- Correctness:
 - For honestly generated pk, sk, and c, decapsulation works
 - $Pr[k \leftarrow KEM.Dec(sk, c)] \ge 1 negl(\lambda)$
- Security:
 - (KEM.Enc(pk), k) \approx_c KEM.Enc(pk), r) where r is a random session key
 - Under chosen-plaintext attacks or chosen ciphertext attacks

Data Encapsulation Mechanism (DEM)

- Data encapsulation:
 - c \leftarrow DEM.Enc(k,M)

- Decapsulation:
 - \perp or M \leftarrow DEM.Dec(k, c)

- Security: for random k
 - DEM.Enc(k, M_0) \approx_c DEM.Enc(k, M_1)
 - Under chosen-plaintext attack or chosen ciphertext attack

Hybrid Encryption: Syntax

- Keygen (1^{λ}) : Key generation
 - $(pk, sk) \leftarrow KEM.Gen(1^{\lambda})$
 - Generates public key Pk = pk and private key Sk = sk
- Enc(Pk, M): Encryption
 - $(c, k) \leftarrow KEM.Enc(Pk), c' \leftarrow KEM.Enc(k,M)$
 - Return Ct = (c, c')
- Dec(Pk, Sk, Ct): Decryption
 - Parse Ct = (c,c')
 - k ← KEM.Dec(sk, c), M← DEM.Dec(k,c')
- Correctness
 - Correctness of KEM and DEM

Hybrid Encryption: CCA2 Security

- Preparation phase
 - Challenger $\mathcal C$ generates (Pk, Sk) and gives the adversary $\mathcal A$ Pk
- Attacking phase 1
 - \mathcal{A} adaptively sends chosen ciphertexts Ct_1 , ..., Ct_ℓ to \mathcal{C}
 - C replies Dec(Sk, Ct_i)
- Challenge phase
 - \mathcal{A} sends M_0 , M_1 to \mathcal{C}
 - \mathcal{C} flips a fair coin b \in {0,1}, and sends Ct* \leftarrow Enc(Pk, M_b) to \mathcal{A}
- Attacking phase 2
 - \mathcal{A} adaptively sends chosen ciphertexts $\mathsf{Ct}_{\ell+1}$, ..., $\mathsf{Ct}_{\ell'}$ to \mathcal{C}
 - Restriction: Ct_i ≠ Ct*
 - C replies Dec(Sk, Ct_i)
- Guessing phase
 - \mathcal{A} outputs b' and wins if b' = b
- Secure if adv = $|Pr[b'=b] \frac{1}{2}|$ is negligible

How to Obtain CCA2-Secure HE in the Standard Model?

- Generic security composition: A CCA2-secure KEM plus a CCA-secure DEM give CCA2-secure HE [CS03]
 - CCA2-secure DEM (simple and efficient):
 - CCA2-secure KEM (non-trivial and less efficient):
 - Naor-Young paradigm, lossy trapdoor function, hash proof systems, TBE/IBE plus BCHK transformation.....
- Kurosawa-Desmedt system [KD04] based on decisional Diffie-Hellman (DDH) problem:
 - A more efficient KEM without CCA2 security
 - Combining with DEM gives a more efficient HE system
 - Post-quantum examples? (This work)

Our HE Constructions

- KEM: uses the state-of-the art tag-based encryption (TBE)
 - LWE TBE from [MP12] and low-noise LPN TBE from [KMP14] (which are not CCA2-secure by themselves)
- DEM: standard construction, very efficient
 - An unforgeable MAC plus a CPA-secure symmetric cipher
- Exploit properties of LWE/LPN and their trapdoors
- Proof ideas stem from Boneh-Katz transformation
 - BK-transformation uses universal hash-based commitment + MAC
 - Ours uses LWE/LPN ciphertext as commitment

Computational Problem

- Decisional learning with errors (LWE) problem [Reg05]
 - Let χ be a (noise) distribution over \mathbb{Z}_q
 - $s \leftarrow \mathbb{Z}_q^n$, $A \leftarrow \mathbb{Z}_q^{n \times m}$, $e \leftarrow \chi^m$, $b \leftarrow \mathbb{Z}_q^m$ (m>n)
 - (A, sA + e) \approx_c (A, b)
- Viewing LWE as a kind of commitment of the secret s
 - Computational hiding: (A, sA + e) ≈_c (A, b)
 - Statistical binding: for m> n sA+e uniquely determines s
- LPN problem has similar properties.

Gadget Trapdoors [MP12]

- Defining matrix F = [A|AR + TG]
 - A: random, wide matrix
 - R: low-norm, sufficiently unpredictable matrix
 - G: gadget matrix from [PM12]
 - T: square matrix, called tag
- If T full rank (invertible over \mathbb{Z}_q)
 - Efficiently recover s, e_0 , e_1 from $y = sF + e = s[A|AR+TG] + [e_0|e_1]$
- If T=0
 - sF+ e = s[A|AR] + $[e_0|e_1]$ is pseudorandom under LWE

Efficient TBE/CCA1-PKE [MP12]

- $pk = (A, A_1)$; sk = R
 - Wide, random matrix A, low-norm unpredictable matrix R, $A_1 = AR$
- Enc(pk,m)
 - Choose random full rank T*
 - LWE samples

$$y = [y_0|y_1] = s[A |A_1 + T*G] + [e_0|e_1],$$

 $z = sU + e_2 + m [q/2]$

- Ciphertext c = (y, z, T*)
- Dec(sk, c)
 - $y = s[A|AR + T*G] + [e_0|e_1]$
 - Recovers s, e₀ and e₁ using trapdoor R
 - Recover the message m from z
- CCA1 security notion:
 - Decryption query before seeing the challenge ciphertext
 - No decryption query after

Security of MP12

- In simulation, pk = (A, A₁ = AR T*G); sk = R
 - T* will be used for challenge ciphertext
 - A₁ completely hides T*
 - Any decryption query with T ≠ T*, can be answered
- Challenge ciphertext
 - $Ct^* = (y^*, z^*, T^*)$
 - $y^* = s[A|A_1 + T^*G] + [e_0|e_1] = s[A|AR] + [e_0|e_1]$
 - $Z^* = sU + e_2 + m [q/2]$
 - y*, z* are pseudorandom under LWE
- CCA1 security
 - Decryption query T ≠ T* before Ct* = (y*, T*) revealed
- CCA2 insecurity
 - Decryption query (y, T*) where y ≠y* can't be answered

Our Construction

- Pk = (A, A₁, U); Sk = R
 - $A_1 = AR$
- Enc(Pk, m)
 - Choose k, s, e_0 , e_1 , e_2 , and compute $y_0 = sA + e_0$, $z = sU + e_2 + k$ (encapsulating k)
 - Compute $T = H(sA+e_0, sU+e_2+k)$
 - Set $y = [y_0|y_1] = [y_0|s(A_1 + TG) + e_1] = s[A|A_1 + TG] + [e_0|e_1]$
 - $(k_1, k_2) = KDF(k)$, $\psi = SKE.Enc(k_1, m)$, $\tau = MAC(k_2, y||z||\psi)$
 - Ct = $(y, z, \frac{\psi}{\tau}, \tau)$
- Dec(Sk, Ct)
 - Set $T = H(y_0, z)$
 - $y = [y_0|y_1] = s[A|AR + TG] + [e_0|e_1]$; Recovers s, e_0 , e_1 and k using trapdoor R
 - $(k_1, k_2) = KDF(k), m = SKE.Dec(k_1, \psi)$
 - Return m if $\tau = MAC(k_2, y||z||\psi)$.

Our Construction

```
KEM Part
             MP12 encryption: y = [y_0|y_1] = s[A|A_1 + TG] + [e_0|e_1]
       Enc(Pk, m)
                                                                 z = sU + e_2 + k (encapsulating k)
          • Choose k, s, e_0, e_1, e_2, and compute y_0
          • Compute T = H(sA + e_0, sU + e_2 + k)
          • Set y = [y_0|y_1] = y_0|s(A_1 + TG) + e_1] = s[A|A_1 + TG] + [e_0|e_1]
          • (k_1,k_2) = KDF(\psi) = SKE.Enc(k_1, m), \tau = MAC(k_2,y||z||\psi)
          • Ct = (y, z, \psi)
    Dec(Sk, Ct)
                                                   DEM Part
                                                   Symmetric encryption: \psi = SKE.Enc(k_1, m)
                                                    MAC: \tau = MAC(k_2, y||z||\psi)
Commitment of session key k
                                   FTG] + [e₀
          • (k_1, k_2) = KDF(k), m = SKE.Dec(k_1, \psi)
```

• Return m if $\tau = MAC(k2,y||z||\psi)$.

CCA2 Security (Idea)

- Challenge Ciphertext:
 - $y = [y_0|y_1] = [y_0|s(A_1 + TG) + e_1] = s[A|A_1 + TG] + [e_0|e_1]; z = sU + e_2 + k[q/2]$
 - $(k_1,k_2) = KDF(k)$, $\psi = SKE.Enc(k_1, m)$, $\tau = MAC(k_2,y||z||\psi)$
- Preventing adversary from crafting the challenge ciphertext to a valid decryption query
- $T = H(sA+e_0, sU+e_2+k \lfloor q/2 \rfloor) = H(y_0, z)$
 - **LWE statistical binding**: modifying k changes T => can answer decryption queries
 - LWE computational hiding: k is hidden
 - Without knowing k, modifying y, z, ψ , $\tau => a$ MAC forgery
 - So, decryption queries are not helpful

Summary

- Constructions of hybrid encryption for LWE/LPN
 - CCA2 security in standard model
 - Avoid generic transformation
 - Non-CCA2-secure KEMs
- Techniques
 - Explore that LWE/LPN are commitment schemes (statistical binding and computational hiding)

Thank you!