ZADANIE 1.

Udowodnić wzór włączeń i wyłączeń

$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}\left(A_i\right) - \sum_{1 \leq i < j \leq n} \mathbb{P}\left(A_i \cap A_j\right) + ... + (-1)^{n+1} \mathbb{P}\left(\bigcap_{i=1}^n A_i\right)$$

Indukcja po n. Jeżeli mamy tylko A_1 , A_2 , to

$$\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1 \cup (A_2 \setminus (A_1 \cap A_2))) = \mathbb{P}(A_1) + \mathbb{P}(A_2 \setminus (A_1 \cap A_2)) = \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2)$$

Teraz załóżmy, że wzorek działa dla dowolnego ciągu długości n i weźmy ciąg długości (n + 1). Mamy

$$\begin{split} \mathbb{P}(A_1 \cup ... \cup A_n \cup A_{n+1}) &= \mathbb{P}\left((A_1 \cup ... \cup A_n) \cup (A_{n+1} \setminus (A_1 \cup ... \cup A_n))) = \\ &= \mathbb{P}\left(A_1 \cup ... \cup A_n \right) + \mathbb{P}\left(A_{n+1} \setminus ((A_1 \cup ... \cup A_n) \cap A_{n+1}) \right) = \\ &= \mathbb{P}\left(A_1 \cup ... \cup A_n \right) + \mathbb{P}\left(A_{n+1} \right) - \mathbb{P}\left(A_{n+1} \cap (A_1 \cup ... \cup A_n) \right) = \\ &= \mathbb{P}\left(A_1 \cup ... \cup A_n \right) + \mathbb{P}\left(A_{n+1} \right) - \mathbb{P}\left((A_{n+1} \cap A_1) \cup ... \cup (A_{n+1} \cap A_n) \right) = \\ &= \sum_{i \leq n+1} \mathbb{P}\left(A_i \right) - \sum_{i < j \leq n} \mathbb{P}\left(A_i \cap A_j \right) + ... (-1)^{n+1} \mathbb{P}\left(\bigcap_{i = 1}^n A_i \right) + \\ &- \left(\sum_{i \leq n} \mathbb{P}\left(A_{n+1} \cap A_i \right) - \sum_{i < j \leq n} \mathbb{P}\left((A_{n+1} \cap A_i) \cap (A_{n+1} \cap A_i) \right) + ... + (-1)^{n+1} \mathbb{P}\left(\bigcap_{i \leq n} (A_{n+1} \cap A_i) \right) \right) \\ &= \sum_{i \leq n+1} \mathbb{P}\left(A_i \right) - \sum_{i < i \leq n+1} \mathbb{P}\left(A_i \cap A_j \right) + ... + (-1)^{n+2} \mathbb{P}\left(\bigcap_{i \leq n+1} A_i \right) \end{split}$$

ZADANIE 2.

(Nierówności Boole'a) *Udowodnij nierówności* [te na niebiesko]

$$\mathbb{P}\left(\bigcup_{i \leq n} A_i\right) \leq \sum_{i \leq n} \mathbb{P}\left(A_i\right)$$

Może tutaj też indukcją? Dla A_1 , A_2 jest to dość oczywiste, bo

$$\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2) \leq \mathbb{P}(A_1) + \mathbb{P}(A_2)$$

 $\overline{\operatorname{gd}}$ yż $\overline{\mathbb{P}}(A_1 \cap A_2) \geq 0$.

To teraz załóżmy, że śmiga dla dowolnego ciągu n zbiorów i weźmy ciąg (n + 1)-elementowy.

$$\begin{split} \mathbb{P}\left(\bigcup_{i\leq n+1}A_i\right) &= \mathbb{P}\left(\bigcup_{i\leq n}A_i\cup A_{n+1}\right) = \\ &= \mathbb{P}\left(\bigcup_{i\leq n}A_i\right) + \mathbb{P}(A_{n+1}) - \mathbb{P}\left(A_{n+1}\cap\bigcap_{i\leq n}A_i\right) \leq \\ &\leq \mathbb{P}(A_{n+1}) + \mathbb{P}\left(\bigcup_{i\leq n}A_i\right) \leq \\ &\leq \mathbb{P}(A_{n+1}) + \sum_{i\leq n}\mathbb{P}(A_i) = \\ &= \sum_{i\leq n+1}\mathbb{P}(A_i) \end{split}$$

Pierwsza nierówność tak samo jak wcześniej, a druga nierówność z założenia indukcyjnego.

$$\mathbb{P}\left(\bigcap_{i\leq n}A_i\right)\geq 1-\sum_{i\leq n}\mathbb{P}\left(A_i^c\right)$$

To śmiga na podstawie poprzedniej nierówności:

$$\mathbb{P}\left(\bigcap \mathsf{A}_{i}\right) = \mathbb{P}\left(\left(\bigcup \mathsf{A}_{i}\right)^{c}\right) = 1 - \mathbb{P}\left(\bigcup \mathsf{A}_{i}\right) \geq 1 - \sum \mathbb{P}\left(\mathsf{A}_{i}\right)$$

ZADANIE 3.

Pokaż, że jeżeli
$$\mathbb{P}(A_i) = 1$$
 dla $i \geq 1$, to $\mathbb{P}\left(\bigcap_{i=1}^{\infty} A_i\right) = 1$

Rozważmy ciąg B_n taki, że $B_n = \bigcap_{i \le n} A_i$. Jak wygląda prawdopodobieństwo takiego osła?

$$\mathbb{P}\left(B_{n}\right)=\mathbb{P}\left(\bigcap_{i\leq n}A_{i}\right)\geq1-\sum_{i\leq n}\mathbb{P}\left(A_{i}^{c}\right)=1-\sum_{i\leq n}[1-\mathbb{P}\left(A_{i}\right)]=1-\sum_{i\leq n}0=1$$

Skoro $\mathbb{P}(B_n) \geq 1$, to musi być równe 1.

Skorzystamy teraz z twierdzenia o ciągłości, które mówi, że dla zstępującego ciągu B_n (jakim on jest, bo to widać) mamy

$$\mathbb{P}\left(\bigcap\mathsf{B}_{\mathsf{n}}\right)=\mathsf{lim}\,\mathbb{P}\left(\mathsf{B}_{\mathsf{n}}\right)=\mathsf{1}$$

a ponieważ

$$\bigcap B_n = \bigcap \bigcap_{i < n} A_i = \bigcap A_n$$

to śmiga.

ZADANIE 4.

Rzucamy symetryczną kostką do gry do chwili otrzymania szóstki. Zdefiniuj odpowiednią przestrzeń probabilistyczną. Jaka jest szansa, że liczba rzutów będzie podzielna przez 6?

Dziwne to zadanko. Ω to ciągi liczb 1, 2, ..., 5 które na końcu mają 6. Nas interesuje ich długość. Może zróbmy tak, że rzucamy 6n razy kostką i zapisujemy kolejne wyniki. Zdarzenia sprzyjające to rzuty, w których 6 pojawia się po raz pierwszy na pozycji podzielnej przez 6?

To będzie ciąg rzeczy wstępujących. Dla n = 1 prawdopodobieństwo to po prostu

$$\left(\frac{5}{6}\right)^5\cdot\frac{1}{6}=\frac{5^5}{6^6}.$$

Dka n = 2 jest już troszkę ciężej, ale prawdopodobieństwo to

$$\left(\frac{5}{6}\right)^5 \cdot \frac{1}{6} + \left(\frac{5}{6}\right)^{11} \cdot \frac{1}{6},$$

czyli wyrzuci 6 w 6 ruchu lub wyrzuci 6 w 12 ruchu. Uogólnić to można do

$$p_n = \sum_{i \le n} \left(\frac{5}{6}\right)^{6i-1} \frac{1}{6} = \frac{1}{6} \cdot \frac{6}{5} \sum_{i \le n} \left(\frac{5}{6}\right)^{6i} = \frac{1}{5} \cdot \frac{5^6}{6^6} \cdot \frac{(5/6)^{6n} - 1}{(5/6)^6 - 1} = \frac{5^5 \cdot ((5/6)^{6n} - 1)}{5^6 - 1}$$

Nie chce mi się liczyć, ale na oko to jest jakieś

$$\frac{5^5}{5^6 - 1}$$

ZADANIE 5.

Na odcinku [0, 1] umieszczono losowo punkty L i M. Obliczyć prawdopodobieństwo, że:

a) środek odcinka LM należy do $[0, \frac{1}{4}]$

Żeby ich środek był w $[0, \frac{1}{3}]$, to ich średnia arytmetyczna musi być mniejsza niż $\frac{1}{3}$, czyli

$$\frac{x+y}{2} \le \frac{1}{3}$$

$$x + y \le \frac{2}{3}$$

No i coś takiego na płaszczyźnie to jest trójkącik

Czyli szukane prawdopodobieństwo to pole tego trójkącika, a więc $\frac{2}{9}$.

b) z L jest bliżej do M niż do zera.

Czyli |L – M| > L, znowu ładnie to się zaprezentuje w dwóch wymiarach. Po co oni dali zadanie o prostej, które się robi płaszczyzną?

Dla L \geq M mam |L - M| = L - M > L, czyli 0 > M co tak średnio śmiga. Dla L < M mam z kolei |L - M| = M - L > L, czyli M > 2L

Czyli tutaj prawdopodobieństwo to $\frac{1}{4}$.

ZADANIE 6.

Z przedziału [0,1] wybrano losowo dwa punkty, które podzieliły go na trzy odcinki. Obliczyć prawdopodobieństwo, że z tych odcinków można skonstruować trójkąt.

Osz kurwa, to będzie duuużo liczenia. Moje odcinki mają długość x, y, 1 - y - x. Potrzebuję spełnić następujące warunki na raz:

1.
$$x + y > 1 - y - x$$
, czyli $2x + 2y > 1$, $y > \frac{1}{2} - x$

2.
$$x + 1 - x - y > y$$
, czyli $1 > 2y$, $\frac{1}{2} > y$

3.
$$y + 1 - x - y > x$$
, czyli $1 > 2x$, $\frac{1}{2} > x$

ROZRYSUJMY TO!

Czyli to gdzie wszystkie są spełnione to ten trójkącik w środku o polu $\frac{1}{8}$.

ZADANIE 7.

Wybrano losowy punkt (x, y) z kwadratu $[0, 1]^2$. Oblicz prawdopodobieństwo, że a) x jest liczbą wymierną.

To po prostu miara $\lambda(\mathbb{Q}) = 0$

b) obie liczby x i v są niewymierne.

 A^c to co najmniej jedna liczba jest wymierna. Czyli mam $A^c = x$ wymierny + y wymierny + oba wymierne. Oba wymierne mają prawdopodobieństwo 0, tak samo to, że x jest wymierny i że y jest wymierny też ma prawdopodobieństwo 0, czyli A^c wydaje się mieć prawdopodobieństwo 0, a więc $\mathbb{P}(A) = 1$?

c) spełniona jest nierówność $x^2 + y^2 < 1$

Czyli punkt ma wylądować w środku ćwiartki koła o promieniu 1, a więc $\mathbb{P}(A) = \frac{\pi}{4}$.

d) spełniona jest równość $x^2 + y^2 = 1$.

No to też jest miary zero? Bo ograniczam od góry przez koło o promieniu $1 + \varepsilon$ i od dołu przez $1 - \varepsilon$. Miara to ich różnica i jest dowolnie mała.

ZADANIE 8.

W kwadracie [0, 1]² wybrano losowo dwa punkty A i B. Zdefiniuj odpowiednią przestrzeń probabilistyczną. Oblicz prawdopodobieństwo, że

a) odcinek AB przecina przekątną łączącą wierzchołki (0,0) i (1,1)

To ten, wybieram A w dolnym trójkącie, to będzie $\frac{1}{2}$ i każę B być w górnym, to też jest $\frac{1}{2}$. Jest symetryczne, więc całość to dwa razy $2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$.

b) odległość punktu A od (1, 1) jest mniejsza niż 1, a odległość punktu B od (1, 1) jest większa niż 1

Czy to będzie wybieram A, jakie jest prawdopodobieństwo, że A będzie w środku ćwiartki koła jednostkowego. Potem wybieram B, jakie jest prawdopodobieństwo, że B nie będzie w środku tej ćwiartki. Mnożę i ta da? Czyli

$$\frac{\pi}{4} \cdot (1 - \frac{\pi}{4})$$

c) oba punkty leżą pod parabolą y = -x(x - 1)

To akurat to jest chyba pole pod parabolą do kwadratu?

$$\int_0^1 x(1-x)dx = \int_0^1 x - \int_0^1 x^2 dx = 1 - \frac{1}{2} = \frac{1}{2}$$

czyli całość to $\frac{1}{4}$.

ZADANIE 9.

Igłę o długości l rzucono na podłogę z desek o szerokości $a \ge l$. Znajdź prawdopodobieństwo, że igła przetnie krawędź deski.

Zgaduję, że tutaj będą zdarzenia wstępujące i rozważam n desek, ale mi się bardzo nie chce.

ZADANIE 10.

Niech (Ω, \mathcal{F}) będzie przestrzenią mierzalna. Uzasadnij, że σ -ciało \mathcal{F} nie może być nieskończoną przeliczalną rodziną zbiorów.

A to akurat robiłam jako pracę domową na MiC XD.

Mogę wziąć sobie dowolny $A_1 \in \mathscr{F}$. Zdefiniujmy teraz \mathscr{F}_1 jako tylko te zbiory z σ -algebry, które są zawarte w A_1^c . Wyciągnijmy nowy zbiór $A_2 \in \mathscr{F}_1$. Od razu widzimy, że zawsze $A_2 \cap A_1 = \emptyset$. Możemy tak lecieć dalej, zwężając za każdym razem sigma algebrę do dopełnienia A_n i brać A_{n+1} z tego zwężenia, zawsze zbiory będą parami rozłączne, bo schodzimy coraz to niżej. Ładnie to można narysować.

MÓJ NA SZYBKO DOWODZIK:

Weźmy Ω o mocy ω .

Cały dowód to skonstruowanie sobie ciągu rozłącznych zbiorów, ich różne sumy zawsze będą różne, a tych sum możemy wybrać na 2^{ω} , czyli \mathscr{F} jest nieprzeliczalne.

To lecimy. Weźmy sobie dowolny ciąg $A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq ... \in \Omega$ oraz $\mathbb{P}(A_1) < 1$. Możemy tak zrobić, choćby dlatego, że biorą kolejno sumę coraz to większej liczby singletonów dostaję nowego pyśka. Zdefiniujmy teraz ciąg $B_1 \subseteq A_1$, $B_2 \subseteq A_2 \setminus A_1$ i ogólniej

$$B_n \subseteq A_n \setminus \bigcup_{i < n} A_i$$

No i teraz B_n są rozłączne.

ZADANIE 11.

Oznaczmy przez \mathcal{B}_0 ciało składające sie ze skończonych sum rozłącznych przedziałów (a, b] zawartych w odcinku (0, 1]. Określmy na \mathcal{B}_0 funkcję P taką, że P(A) = 1 lub 0, w zależności od tego, czy zbiór A zawiera przedział postaci $(\frac{1}{2}, \frac{1}{2} + \varepsilon]$ dla pewnego $\varepsilon > 0$, czy też nie. Pokaż, że P jest miarą addytywną, ale nie przeliczalnie addytywną.

Skończoną addytywność śmignie się za chwilę, najpierw uwalmy przeliczalną addytywność.

Rozważmy ciąg zbiorów zdefiniowany:

$$A_n = (\frac{1}{2} + \frac{1}{2n+1}, \frac{1}{2} + \frac{1}{2n}]$$

Oczywiście A = $\bigcup A_n = (\frac{1}{2}, 1)$, czyli P(A) = 1. Czy one są już rozłączne? Ej no są XD

$$\mathsf{A}_{\mathsf{i}}\cap\mathsf{A}_{\mathsf{i}+1}=(\frac{1}{2}+\frac{1}{2^{\mathsf{i}+1}},\frac{1}{2}+\frac{1}{2^{\mathsf{i}}}]\cap(\frac{1}{2}+\frac{1}{2^{\mathsf{i}+2}},\frac{1}{2}+\frac{1}{2^{\mathsf{i}+1}}]=\emptyset$$

Dla dowolnego n P(A_n) = 0, bo nie zawiera odcinka $(\frac{1}{2}, \frac{1}{2} + \varepsilon]$, ale już suma go zabiera, więc nie jest to funkcja przeliczalnie addytywna.

W sumie skończona addytywność jest widoczna od razu. Weźmy dowolny skończony ciąg rozłącznych pyśków.