$$F(x) = x-5$$

$$x+6$$

Let
$$f(x) = \sqrt{x}$$
, $g(x) = x-5$
 $x+6$

$$F(x) = f \circ g(x)$$

a is a rational function

it is continuous at every point in its domain by theorem 25

f is of the form $\sqrt[n]{x}$ where n=2.: It is continuous for all x>0by Theorem 26 (2)

... $\not\vdash$ is continuous for all x such that g(x) > 0

Investigate intervals with 5 and -6 as critical values:

			$\alpha(x) = \frac{x-5}{}$
	x - 5	x +6	30.7- ×+6
× < -6	_	_	+
× = -6	_	0	UNDETINED
-6 <x<5< td=""><td><u>~</u></td><td>+</td><td>_</td></x<5<>	<u>~</u>	+	_
x = 5	0	+	+
× > 5	+	+	+
			l

... Fis continuous at
$$(-\infty, -6) \cup [5, +\infty)$$

Investigate x = -6:

f(-6) does not exist

.. F is discontinuous at x = -6

Investigate
$$x = 5$$
:
$$f(5) = 0$$

$$\lim_{x \to 5^{+}} f(x) = 0 = f(5)$$

$$\lim_{x \to 5^{+}} f(x) = 0 = f(5)$$

.. Fis continuous at the open interval $(-\infty, -6)$ and the half-open interval $[5, +\infty)$