12 July 2021 Report

Brad Burkman

9 July 2021

Contents

1	Activities this Week							
2	Scikit-Learn Code							
	2.1 Average Precision	1						
	2.2 Defining Your Own Metric	2						
	2.3 "Support"	2						
	2.4 Definitions of Metrics Functions	2						
	2.5 Adding New Metrics	2						
	2.6 Implementation of <i>Accuracy</i> in base.py	2						
	2.7 Implementation of Penalty in RandomForestClassifier $\ldots \ldots \ldots \ldots$	3						
3	Implementing Different Metrics in Perceptron							
4	${ m Class_Weight}$							
	4.1 Models and class_weight = "balanced" Parameter	3						
1	1 Activities this Week							
	•							

2 Scikit-Learn Code

2.1 Average Precision

There's something called *average precision*, but it's just Precision with weighted=macro, which is the average of the precision of random samples, I think. It's definitely not the balanced precision I'm thinking of.

In _ranking.py, the comments define it as average_precision_score : Area under the precision-recall curve.

2.2 Defining Your Own Metric

```
In _scorer.py:
sklearn.metrics.make_scorer(
    score_func,
    greater_is_better=True,
    needs_proba=False,
    needs_threshold=False, **kwargs)
```

2.3 "Support"

From imblearn.metrics:

"The support is the number of occurrences of each class in y_true."

2.4 Definitions of Metrics Functions

Accuracy, precision, and recall are defined in sklearn/metrics/_classification.py. When you import it from metrics, it looks in _classification.py.

2.5 Adding New Metrics

How do they do it in Imbalanced-Learn?

2.6 Implementation of Accuracy in base.py

A stackoverflow site implied that changing this metric from *accuracy* to *recall* would change how the model works. In fact, it only changes how the model reports its score, not how it finds its prediction.

```
In sklearn/base.py, in class ClassifierMixin,
    """Mixin class for all classifiers in scikit-learn."""
    Here's where we can switch the metric.
    In the function
    def score(self, X, y, sample_weight=None):

from .metrics import accuracy_score
return accuracy_score(y, self.predict(X), sample_weight=sample_weight)
```

I added a print statement in this function, and it appeared exactly once when I ran each classifier, so it's only calling that for the final report. I want to find where it calculates the loss function in each iteration of the model.

2.7 Implementation of Penalty in RandomForestClassifier

In metrics, __init__.py imports RandomForestClassifier from _forest.py

In _forest.py, the class class RandomForestClassifier(ForestClassifier)

The actual splits in the tree are done by DecisionTreeClassifier(), which is in sklearn/tree/_classes.py.

There is a class_weights parameter in DecisionTreeClassifier(). I need to see some examples to figure out what it does. I tried, but didn't get anything interesting.

The important parameter may be criterion, which has two options, gini and entropy.

3 Implementing Different Metrics in Perceptron

```
sklearn -> linear_model -> __init__.py -> _perceptron.py
```

Perceptron is just a particular implementation of BaseSGDClassifier.

sklearn -> linear_model -> stochastic_gradient.py -> class BaseSGDClassifier

The loss function for Perceptron is called Hinge with argument (Hinge, 0,0). Hinge is defined in a cpython function that is already compiled, _sgd_fast.cpython-38-darwin.so, so I can't see how it works.

4 Class_Weight

Made these changes in Crash_Data_06_10_2021_Attempt.ipynb.

There's a file test_class_weight.py that illustrates what class_weights does.

Many models have a class_weight parameter, some don't.

4.1 Models and class_weight = "balanced" Parameter

In the table below,

- cw tells whether the model has a class_weight parameter.
- PB tells whether using the class_weight parameter gives a significant performance boost.
- bf1 is the balanced f1 score.
- Two bf1 scores indicates without → with class_weight = "balanced"
- MLPClassifier gets this good result with these parameters:

 MLPClassifier(alpha=1e-05, hidden_layer_sizes=(5, 2), random_state=1, solver='lbfgs')

Type	CW	Model	РВ	bf1	Comments
Ensemble	No	AdaBoostClassifier		37%	
	No	BaggingClassifier		48%	
	Yes	${\bf ExtraTreesClassifier}$	Yes	$5 \to 15\%$	
	No	${\bf Gradient Boosting Classifier}$		51%	
	Yes	${\bf Random Forest Classifier}$	Yes	$\mathrm{nan} \to 8\%$	
		StackingClassifier			Stacks several classifiers together. Not its own classifier.
		VotingClassifier			Same
Linear	Yes	LogisticRegression	Yes	$47 \to 89\%$	
	Yes	Perceptron	Yes	$80 \rightarrow 88\%$	
	Yes	RidgeClassifier	YES	$\mathrm{nan} \to 89\%$	
	Yes	${\bf Ridge Classifier CV}$	YES	$\mathrm{nan} \to 89\%$	
	Yes	SGDClassifier	YES	$37 \rightarrow 90\%$	
Naive Bayes	No	GaussianNB		66%	
Neighbors	No	KNeighborsClassifier		8%	
No KNeighborsClassifier(n_neighbors=3)				=3) 6%	
	No RadiusNeighborsClassifier				Error: No neighbors
					found within radius.
					Perhaps not applicable for binary?
Neural Network	No	MLPClassifier		63%	
SVM	Yes	LinearSVC	YES	$34 \rightarrow 86\%$	
	Yes	NuSVC			"Specified nu is infea-
					sible."
	Yes	SVC	Yes	$\mathrm{nan} \to 72\%$	
Tree	Yes	DecisionTreeClassifier	NO	$57 \rightarrow 48\%$	
	Yes	${\bf ExtraTreeClassifier}$	NO	$31 \to 27\%$	