linalge Basic Gaussian Elimination Troblom solve square system AZ = 5 Here A & TR"×n, ZETR", BETR" Reduce problem to solution of A systems. 1) Backward substitution (upper A systems) Forward substitution (lower △ system) linalg1Slides.pdf Page 2 of 7

Upper triangular system
$$U \stackrel{?}{\times} = \stackrel{?}{\downarrow}$$

(un dir ung lar system $U \stackrel{?}{\times} = \stackrel{?}{\downarrow}$

(ust equation: $u_{33} \times_3 = b_3 \Rightarrow x_3 = b_3/u_{33}$ known

Middle equation: $u_{22} \times_2 + u_{23} \times_3 = b_2$ known

 $\Rightarrow x_2 = (b_2 - u_{23} \times_3)$
 u_{22}

(ast equation: $u_{11} \times_1 + u_{12} \times_2 + u_{13} \times_3 = b_1$
 $\Rightarrow x_1 = (b_1 - u_{12} \times_2 + u_{13} \times_3)$

linalg1Slides.pdf Page 3 of 7

General algorithm in
$$U = J \iff J' = J, 2, ..., n$$
 $U = J \iff J' = J, 2, ..., n$

Since U upper Δ ,

 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $k < j$
 $U \neq k = 0$ if $U \neq k =$

Similar algorithm for
$$L \times = \vec{b}$$

2 lower Δ

LU factorization

Find P, L, U s.T. $PA = LU$

Then $A \times = \vec{b} \Rightarrow PA \times = P\vec{b} \Rightarrow LU \times = P\vec{b}$
 $\Rightarrow \times = U^{-1}L^{-1}P\vec{b}$ Uses forward, then $b \in E = U = U$

linalg1Slides.pdf Page 5 of 7

EXAMPLE
$$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & -2 & 2 \\ -4 & -4 & 1 \end{pmatrix}$$
 $R_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $R_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}$
 $R_1 A = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 0 & -4 \\ -4 & -4 & 1 \end{pmatrix}$, $R_2 R_1 A = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 0 & -4 \\ 0 & -8 & 13 \end{pmatrix}$

Created with Doceri

linalg1Slides.pdf Page 6 of 7

$$M = R_2 R_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & -2 & 2 \\ -4 & -4 & 1 \end{pmatrix}$$

$$MA = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 0 & -4 \\ 0 & -8 & 13 \end{pmatrix}$$

$$PMA = \begin{pmatrix} 1 & -1 & 3 \\ 0 & -8 & 13 \end{pmatrix}$$

$$PMA = \begin{pmatrix} 1 & -1 & 3 \\ 0 & -8 & 13 \\ 0 & -8 & 13 \end{pmatrix}$$
Created with Doceri

linalg1Slides.pdf Page 7 of 7

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
-2 & 1 & 6 \\
4 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -1 & 3 \\
2 & -2 & 2 \\
-4 & -4 & 1
\end{pmatrix} = \begin{pmatrix}
1 & -1 & 3 \\
0 & -8 & 13 \\
0 & 0 & -4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
4 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
2 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
2 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
2 & 0 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
-4 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 &$$