

PWM Controller Register Configuration

PWM Controller Registers Information :

Sr.No	Name	Address (Hex)	Width (bits)	Access (R/W)	Description
1	pwm_clock_divide	0x00	32	R/W	Clock Divider
2	pwm_duty_cycle	0x01	32	R/W	Duty Cycle
3	pwm enable	0x02	32	R/W	Enable

Detailed Explanation :

1. Clock Divider:

■ **Address** : 0x00

Description : This register is used to set frequency for the pwm

operation by using following formula.

• **clk_divide** = Oscillator Frequency – Desired Frequency

Desired Frequency

• Example :

• Oscillator Frequency = 100 MHz

• Desired Frequency = 100 KHz,

• clk_divider = 100 MHz - 100 KHz

= 999

100 KHz

• Conclusion: To get 100 KHz from 100 MHz frequency, "999" value

should be loaded in the clock divide register.

2. Duty Cycle:

■ **Address** : 0x01

Description : This register is used to set the duty cycle (on-off times

for the motor) by using following formulae.

- ON-Time of desired frequency :
 - > ON-Time = (clk divider duty cycle + 1) x (Osc clk period)
- OFF-Time of desired frequency :
 - > OFF-Time = (duty_cycle) x (Osc_clk_period)
- Example :
 - Osc_clk_period = 10 ns (i.e. for 100 MHz clock)
 - clk_divider = 999
 duty cycle = 12
 - ON-Time = $(999 12 + 1) \times (10) \text{ ns} = 9880 \text{ ns}$
 - OFF- Time = $(12) \times (10) \text{ ns} = 120 \text{ ns}$
- **Conclusion**: To rotate motor at fast speed, ON time should be more and OFF time should be less and vice-versa.

3. Enable:

■ **Address** : 0x02

Description: This is called "pwm enable register". If this " 0 " then pwm

output is "zero" and if it is " 1 " then pwm output is

according to the values set in clock divider and duty cycle

registers.