Age-Length Key勉強会

ALKの理論とRパッケージ

漁業情報解析部 資源解析グループ 濵邉昂平

発表内容

ALKについて

• ALKのサンプリングと原理

- ALKのRパッケージについて
 - ALKr
 - FSA

- 今日の発表内容は浜辺の GitHub上にアップしています。 ご参考にしてください
- https://github.com/KoheiHA MABE/ALK_seminar

年齢組成を知る方法

• Length frequency analysis 混合正規分布を仮定して齢構成を推定

- deterministic ALK
 成長モデルに対応する体長級から年齢を推定
 成長モデルの不確実性を考慮できない
- Age-Length Key (ALK) ←今日のテーマ

ALKについて

年齢と体長の関係表 ⇒ 年齢別漁獲尾数の推定に利用

あまり研究テーマとしての馴染みはない・・・

- Technical reportやgray paperレベルが多い
- 背景にある過程が十分でない
- 他の機関の範疇で行われる (沿資)
- 職人芸(隣接県のデータを借りるなど) (沿資)
- ・浜辺の勝手な感覚

ALKの種類

Forward ALK (浜辺)体長から年齢を推測する方法

- Inverse ALK (真鍋)年齢から体長を推測する方法
- Combined forward-inverse ALK (真鍋)
 上2つの合わせ技。強そう。

各ALKの長短

- Forward ALK (浜辺)
 - +) 推定精度は高い
 - -) データ収集方法に厳しい要件がある

- Inverse ALK (真鍋)
 - +) データ収集が容易(体長だけでよくなるから?)
 - -)精度が悪い??

体長測定のみが行われる

photol

https://images.app.g

Age-length サブサンプル

体長測定の他に、 年齢査定も行う

※間違っていたら教えてください!

ALKの原理

• Age-lengthサブサンプルから以下のような年齢と体長級の関係表が得られる

	0歳	1歳	• •	J歳
~70 (i=1)	$n_{1,0}$	$n_{1,1}$	• •	$n_{1,J}$
~80 (i=2)			• •	$n_{2,J}$
• • •				
~200 (i=I)	$n_{I,0}$	$n_{I,1}$	• •	$n_{I,J}$

	0歳	1歳	• •	J歳
~70 (i=1)	$p_{0 1}$	$p_{1 1}$	• •	$p_{J 1}$
~80 (i=2)	$p_{0 2}$	$p_{1 2}$	• •	$p_{J 2}$
• • •				
~200 (i=I)	$p_{0 I}$	$p_{1 I}$	• •	$p_{J I}$

ALK

ALKの原理

• Length frequencyサンプルからは体長階級の割合が出る

	尾数	割合
~70 (i=1)	x_1	l_1
~80 (i=2)	x_2	l_2
• • •		
~200 (i=I)	x_I	l_I

ALKの原理

• 体長階級の出現頻度 l_i と各年齢各体長階級の確率 $p_{j|i}$ をかけて、体長階級について足し合わせると、各年齢の確率が求まる

ALKの原理の例

簡単な例

	尾数	割合
61~70	20	0.2
71~80	50	0.5
81~90	30	0.3

	0歳	1歳	
61~70	5 (1)	0 (0)	
71~80	5 (0.5)	5 (0.5)	
81~90	1 (0.2)	4 (0.8)	

0歳: 0.2*1+0.5*0.5+0.3*0.2=0.51

1歳: 0.2*0+0.5*0.5+0.3*0.8=0.49

Forward ALKのポイント

Length frequencyサンプルとAge-Lengthサンプルが同一の統計 集団でないといけない

- ある年のforward keyは他の年には使えない
 - \Rightarrow 卓越年級などで $p_{j|i}$ が年で大きく変動する
- ある海域のforward keyは他の海域では使えない
 - ⇒海域間で齢構成が異なる場合
- 選択率の異なる漁具間でも共有化
 - ⇒length frequencyサンプルをそれぞれでとれば

ALKの問題点

- サブサンプル内の組成が変
- 年齢データが入手できない年がある
 - ⇒隣接年や隣接地域のデータを借りてくる (原理的には本来ダメ!)

個人的関心

ALKの予測をモデルでできないかな?

• 環境変数や漁場の情報をうまく組み込めないか

ALK推定のできるRパッケージ

ALKr

- Forward ALKだけでなくInverse ALK、各人の手法などが 関数一つで計算可能
- CRANから削除されていて、開発も7年前に止まっている

FSA

- Ogleが作った基本的な資源計算のパッケージ
- 作図関数なども付随
- 本も併せて発売されていて、コードが使いやすい

ご清聴ありがとうございました

- Ogle, D. H. (2016) Introductory Fisheries Analyses with R. CRC Press, UK.
- Ailloud, L. E. & Hoenig, J. M.(2019) A general theory of age-length keys: combining the forward and inverse keys to estimate age composition from incomplete data. *ICES Journal of Marine Science*, 76: 1515-1523.
- Murta, A. G., Loff, J. F., Neves, M., and Wise, L.(2016) ALKr: A R package of methods based on age-length keys to estimate the age structure of fish populations.
 https://www.iccat.int/GBYP/Docs/Modelling_Phase_3_R_Package_ALKr.pdf
- Gerritsen, H. D., McGrath, D., and Lordan, C. 2006. A simple method for comparing age-length keys reveals significant regional differences within a single stock of haddock (*Melanogrammus aeglefinus*). *ICES Journal of Marine Science*, 63: 1096-1100.
- 田中昌一(1985) 水産資源学総論. 恒星社厚生閣. 東京.