CrIn GeCrIn GeProduction. Supercringe introduction here:

2 Some basic knowledge about researching problem...

Parameters and constants we use in this work:

```
Constants (3):

e = 2.718282
pi = 3.141593
AbObA = 1337.228690

Variables (3):
a = 3.141500
kek = 13.000000
x = 1.000000

Parameters of exploration:
Number of differentiates = 2
Macloren's accuracy = 3
Tanget point = 0.200000
Delta coverage of tangent point = 2.500000
Graph diapasone = [-1:15]
```

So let's calculate smth with a given function:

```
f(a, kek, x) = \cos\left(a + \frac{kek}{1.000^{AbObA}}\right) + \ln\left(1.000 + x \cdot kek \cdot (1.000^{(\ln e)} - 0.000)\right)
```

Firstly, let's insert all constants:

```
f(a, kek, x) = \cos\left(a + \frac{kek}{1.000^{1337.229}}\right) + \ln\left(1.000 + x \cdot kek \cdot (1.000^{(\ln 2.718)} - 0.000)\right)
```

And simplify this expression (if possible):

```
f(a, kek, x) = \cos(a + kek) + \ln(1.000 + x \cdot kek)
```

3 Exploration the expression as a function of multiple variables

- Calculation a value of function in the point

```
BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT IT!!! In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) expression's value = 1.73157
```

- Finding the first derivation of function

Personally, I've always thought about first derivation of something like that function... Haven't you? But now, by using informatics and math skills I feel that I'm prepared enough to calculate it!

```
1 step: Finding a derivation of kek
While preparing for exams, I learned a lot of new things, for example: (kek)' =
= 1.000
2 step: Finding a derivation of x
Only after two cups of beer you might understand it: (x)' =
= 1.000
3 step: Finding a derivation of x \cdot kek
```

Never say it to girls: $(x \cdot kek)' =$

$$= kek + x$$

4 step: Finding a derivation of 1.000 Only by using special skills we might know::

```
(1.000)' = \dots = [\text{top secret}] = \dots = 0.000
```

5 step: Finding a derivation of $1.000 + x \cdot kek$ What if:

$$(1.000 + x \cdot kek)' =$$

= kek + x

6 step: Finding a derivation of $\ln(1.000 + x \cdot kek)$ Even my two-aged sister knows that:

$$\begin{aligned} &(\ln{(1.000 + x \cdot kek)})' = \\ &= \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x) \end{aligned}$$

```
The first task in MIPT was to calculate:
(kek)' =
= 1.000
8 step: Finding a derivation of a
Never say it to girls:
(a)' =
= 1.000
9 step: Finding a derivation of a + kek
It's simple as fuck:
(a+kek)' = \dots = [\text{top secret}] = \dots =
= 2.000
10 step: Finding a derivation of \cos(a + kek)
As we know:
(\cos(a + kek))' =
= 2.000 \cdot (-1.000) \cdot \sin(a + kek)
11 step: Finding a derivation of \cos(a + kek) + \ln(1.000 + x \cdot kek)
I was asked not to tell anyone that:
(\cos(a + kek) + \ln(1.000 + x \cdot kek))' =
= 2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
Congratulations! The first derivation of the expression is:
   f'(a, kek, x) = 2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
   In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 1.84017
Finding the 2 derivation Let's find the 1 derivation of the expression:
1 step: Finding a derivation of kek
Only after two cups of beer you might understand it:
(kek)' = \dots = [top secret] = \dots =
= 1.000
2 step: Finding a derivation of x
Even my two-aged sister knows that:
(x)' =
= 1.000
3 step: Finding a derivation of x \cdot kek
Even my two-aged sister knows that:
(x \cdot kek)' =
= kek + x
4 step: Finding a derivation of 1.000
When I was a child, my father always told me: "Remember, son:
(1.000)' =
= 0.000
5 step: Finding a derivation of 1.000 + x \cdot kek
I have no words to describe this fact:
(1.000 + x \cdot kek)' = \dots = [top secret] = \dots =
= kek + x
6 step: Finding a derivation of \ln (1.000 + x \cdot kek)
My roommate mumbled it in his sleep all night:
(\ln(1.000 + x \cdot kek))' = \dots = [\text{top secret}] = \dots =
= \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
7 step: Finding a derivation of kek
I have no words to describe this fact:
(kek)' = \dots = [top secret] = \dots =
= 1.000
```

8 step: Finding a derivation of a

While preparing for exams, I learned a lot of new things, for example:

7 step: Finding a derivation of kek

```
(a)' =
= 1.000
9 step: Finding a derivation of a + kek
It's really easy to find:
(a + kek)' =
= 2.000
10 step: Finding a derivation of \cos(a + kek)
What if:
(\cos(a+kek))' = \dots = [\text{top secret}] = \dots =
= 2.000 \cdot (-1.000) \cdot \sin(a + kek)
11 step: Finding a derivation of \cos(a + kek) + \ln(1.000 + x \cdot kek)
You should be aware of the fact that:
(\cos(a + kek) + \ln(1.000 + x \cdot kek))' =
= 2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
So the 1 derivation of the expression is: 2.000\cdot(-1.000)\cdot\sin\left(a+kek\right)+\tfrac{1.000}{1.000+x\cdot kek}\cdot(kek+x)
Let's find the 2 derivation of the expression:
1 step: Finding a derivation of x
A true prince must know that:
(x)' =
= 1.000
2 step: Finding a derivation of kek
For centuries, people have hunted for the secret knowledge that:
(kek)' =
= 1.000
3 step: Finding a derivation of kek + x
I spend the hole of my life to find the answer and finally it's:
(kek + x)' = \dots = [top secret] = \dots =
= 2.000
4 step: Finding a derivation of kek
Never say it to girls:
(kek)' =
= 1.000
5 step: Finding a derivation of x
It's really easy to find:
(x)' =
= 1.000
6 step: Finding a derivation of x \cdot kek
Sometimes I hear the same voice in my head, it always says:
(x \cdot kek)' = \dots = [\text{top secret}] = \dots =
= kek + x
7 step: Finding a derivation of 1.000
Even my two-aged sister knows that:
(1.000)' =
= 0.000
8 step: Finding a derivation of 1.000 + x \cdot kek
Only by using special skills we might know::
(1.000 + x \cdot kek)' =
= kek + x
9 step: Finding a derivation of 1.000
My friends always beat me, because I didn't know that:
(1.000)' = \dots = [top secret] = \dots =
```

= 0.000

10 step: Finding a derivation of $\frac{1.000}{1.000+x\cdot kek}$ A true prince must know that: $(\frac{1.000}{1.000+x \cdot kek})' = \dots = [\text{top secret}] = \dots =$ $\frac{(-1.000) \cdot (kek+x)}{(1.000+x \cdot kek)^{2.000}}$ 11 step: Finding a derivation of $\frac{1.000}{1.000+x\cdot kek}\cdot (kek+x)$ Sometimes I hear the same voice in my head, it always says: $\left(\frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)\right)' =$ $= \frac{(-1.000) \cdot (kek+x)}{(1.000+x \cdot kek)^{2.000}} \cdot (kek+x) + 2.000 \cdot \frac{1.000}{1.000+x \cdot kek}$ 12 step: Finding a derivation of kek Only by using special skills we might know:: $(kek)' = \dots = [top secret] = \dots =$ = 1.00013 step: Finding a derivation of a While preparing for exams, I learned a lot of new things, for example: (a)' == 1.00014 step: Finding a derivation of a + kekShe: please, never speak with my dad about math... Me: ok) Also me after homework of matan: $(a+kek)' = \dots = [\text{top secret}] = \dots =$ = 2.00015 step: Finding a derivation of $\sin(a + kek)$ My roommate mumbled it in his sleep all night: $(\sin(a+kek))' = \dots = [\text{top secret}] = \dots =$ $=2.000\cdot\cos\left(a+kek\right)$ 16 step: Finding a derivation of -1.000A true prince must know that: $(-1.000)' = \dots = [top secret] = \dots =$ = 0.00017 step: Finding a derivation of $(-1.000) \cdot \sin(a + kek)$ A true prince must know that: $((-1.000) \cdot \sin(a + kek))' =$ $= (-1.000) \cdot 2.000 \cdot \cos(a + kek)$ 18 step: Finding a derivation of 2.000 If someone asked me that in the middle of the night, I wouldn't hesitate to say: (2.000)' == 0.00019 step: Finding a derivation of $2.000 \cdot (-1.000) \cdot \sin(a + kek)$ When I was a child, my father always told me: "Remember, son: $(2.000 \cdot (-1.000) \cdot \sin(a + kek))' = \dots = [\text{top secret}] = \dots =$ $= 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos(a + kek)$ 20 step: Finding a derivation of $2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)$ thanks to the results of my colleagues' scientific work, I know that: $(2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x))' =$ $= 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos\left(a + kek\right) + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek}$ So the 2 derivation of the expression is: $2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos{(a + kek)} + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek}$ Finally... The 2 derivation of the expression: $f^{(2)}(\mathbf{a}, \, \mathbf{kek}, \, \mathbf{x}) = 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos{(a + kek)} + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek}$ BRITISH SCIENTISTS WERE SHOCKED AGAIN, WHEN THEY COUNT THE 2 DERIVATION OF THIS EXPRESSION!!! In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 2.77280 Finding partical derivations Partial derivation of the expression on the variable a: $\frac{\partial f}{\partial a} = (-1.000) \cdot \sin\left(a + 13.000\right)$ In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 0.42008 !!! Partial derivation of the expression on the variable kek: $\frac{\partial f}{\partial kek} = (-1.000) \cdot \sin(3.142 + kek) + \frac{1.000}{1.000 + kek}$

In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 0.49151 !!!

Partial derivation of the expression on the variable x:

```
\frac{\partial f}{\partial x}=13.000\cdot\frac{1.000}{1.000+13.000\cdot x} In the point M_0(a_0,\,kek_0,\,x_0)=(3.142,\,13.000,\,1.000) it's value = 0.92857 !!!
```

Finding full derivation Full derivation:

```
\sqrt{((-1.000) \cdot \sin{(a+13.000)})^{2.000} + ((-1.000) \cdot \sin{(3.142 + kek)} + \frac{1.000}{1.000 + kek})^{2.000} + (13.000 \cdot \frac{1.000}{1.000 + 13.000 \cdot x})^{2.000}}
In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 1.13150 !!!
```

4 Exploration the expression as a function of the first variable

Now let's consider the expression as a function of the first variable a: $f(a) = \cos(a + 13.000) + 2.639$

Decomposing on Macloren's formula Maklorens formula for $a \rightarrow a_0 = 3.142$: $f(a) = 1.732 + 0.420 \cdot (a - 3.142) + 0.454 \cdot (a - 3.142)^{2.000} + (-0.070) \cdot (a - 3.142)^{3.000} + o((a - 3.142)^{3.000})$

Graphics Graph $f(a) = \cos(a + 13.000) + 2.639$ on the diapasone $a \in [-1:15]$:

Equations in the point Tangent equation in the point $a_0 = 0.200$:

 $f(a) = (-0.592) \cdot (a - 0.200) + 3.445$

Normal equation in the point $a_0 = 0.200$:

 $f(a) = 1.689 \cdot (a - 0.200) + 3.445$

Their graphs in $\delta = 2.50000$ coverage of the point $a_0 = 0.200000$

5 Conclusion

Ultrar cringe conclusion here: