

1) Последовательность Показательных Импульсов

(6)

(9)

$$a := 0.8$$
 $T := 6$

2) Косинусоидальное Колебание

$$n := 0 ... T \underset{\text{xp}(n)}{\text{xp}(n)} := \cos\left(2 \cdot \frac{\pi n}{T}\right)$$

$$k := 0.. T - 1$$
 $Xp(T, k) := (\frac{1}{2}) \cdot \sum_{n=0}^{T-1} e^{-i \cdot 2 \cdot \frac{\pi n \cdot (k-1)}{T}} +$

$$e^{-i\cdot 2\cdot \frac{\pi n\cdot (k-1)}{T}} + \left(\frac{1}{2}\right)\cdot \sum_{n=0}^{T-1} e^{-i\cdot 2\cdot \frac{\pi n\cdot (k+1)}{T}}$$

(3)

n

3) Последовательность Прямоугольных Импульсов

$$n:=0\,..\,T\quad k:=0\,..\,T-1$$

$$\underset{\text{MM}}{\text{MM}}(T,k) := e^{-i \cdot \pi \cdot \frac{k \cdot \left(ni-1\right)}{T}} \cdot \frac{sin\left(\pi \cdot k \cdot \frac{ni}{T}\right)}{\pi \cdot \frac{k}{T}}$$

$$0 := \begin{cases} 1 & \text{if } 0 \le n \le \left(\frac{1}{2} - 1\right) \\ 1 & \text{if } T \le n \le \left(T - 1\right) \end{cases}$$

$$k := 0..T - 1$$
 $Xp(T, k) := \sum_{n=0}^{T-1} \left(xp(T, n) \cdot e^{-i \cdot 2 \cdot \frac{\pi n \cdot k}{T}} \right)$

(1)

$$n := 0 ... T \quad k := 0 ... T - 1$$

2007(c)regruppa.ru ErliZz (Sutkovoy Sergey) e-mail: erlizz@list.ru

Исследование Непериодических Сигналов

$$\begin{tabular}{ll} $M:=8$ & $n:=0...N$ \end{tabular}$$

$$\delta(n) := \begin{bmatrix} 1 & \text{if } n = 0 \\ 0 & \text{otherwise} \end{bmatrix}$$

$$Xp(N,k) := \sum_{n=0}^{N-1} \left(\delta(n) \cdot e^{-i \cdot 2 \cdot \frac{\pi n \cdot k}{N}} \right)$$

(1)

9) Показательный Импульс

$$a := 0.6$$
 $M := 6$ $n := 0..$ N $L := 12$

$$\exp(a,n) := \begin{bmatrix} a^n & \text{if } 0 \le n \le 1 \end{bmatrix}$$

$$a^n$$
 if $0 \le n \le N - 1$ $k := 0...L$ 0 otherwise

$$Xp(N,k) := \sum_{n=0}^{N-1} \left(exp(a,n) \cdot e^{-i \cdot 2 \cdot \frac{\pi n \cdot k}{L}} \right)$$

9) Прямоугольный Импульс

5

3

n

0.32

-0.12 -0.56

0

10.5

21

31.5

42

6