1. Problem Session Cryptographic Hash Functions (Summer Term 2014)

Bauhaus-Universität Weimar, Chair of Media Security

Prof. Dr. Stefan Lucks, Jakob Wenzel

URL: http://www.uni-weimar.de/de/medien/professuren/mediensicherheit/teaching/

Date: 08.04.2014 (15:15)

Task 1 (6 Credits)

Let h(X) be a hash function which uses the division method (see Slide 8 of Section 1.1). Solve the following tasks, where m = 1 and p = 2857.

- a) Find X with h(X) = 1.
- b) Given $X = (00110011001100)_2$, find h(X).
- c) Find any $X' \neq X$ with h(X) = h(X').
- d) Find X with h(X) = 0.
- e) Find X with h(X) = 5.
- f) Find a 2nd-Preimage of h(1001011) with p = 17.

Task 2 (6 Credits)

Let $h: \{0,1\}^* \to \{0,1\}^n$ be a cryptographically secure hash function (see Slide 11 of Section 1.2). Say for each of the following hash function constructions h' if it is **collision resistant**, **preimage resistant**, **or 2nd-preimage resistant**. If a construction does not satisfy one or more of these requirements, provide a **simple attack**, each.

a)
$$h'(X) = h(X) || X$$

b)
$$h'(X) = h(X) \mid\mid const$$

c)
$$h'(X) = h(X) \oplus \overline{h(X)}$$

d)
$$h'(X) = h(X \oplus 1^n)$$

e)
$$h'(X) = h(const)$$

f)
$$h'(X,Y) = h(X) \oplus h(Y)$$

Note that $X \mid\mid Y$ denotes the concatenation of the values X and Y, const denotes a fixed constant value, and \overline{X} the inverse of X.

Task 3 (4 Credits)

Show that the following hash function is **not collision resistant**, *i.e.*, find two pairs (a, x) and (a', x'), so that h(a, x) = h(a', x').

$$h(a, x) = x^a \bmod n,$$

where x describes the input message with $x \in \mathbb{Z}_n^*$, n is an arbitrarily large number with n > 2, and the value a is chosen so that x > a and 2 < a < n hold.