Power Calculation & Sample Size Estimation

By: Ashok Kumar Sharma, Ph.D.

Senior Research Bioinformatician

Digestive and Liver Diseases

Cedars Sinai Medical Center

Mail: compbiosharma@gmail.com

https://github.com/ashoks773/PowerAnalysis

Introduction to power calculation

Power Calculation

- Power calculation is essential for ensuring that a study is properly designed to detect meaningful effects.
- Why it matters: Too few samples can miss real effects (underpowered), and too many can waste resources (overpowered).
- Example: Testing a new drug –
 if underpowered, we might
 falsely conclude has no effect
 when

Null Hypothesis (H₀)

- Definition: The null hypothesis is a statement that there is no effect or no difference in a statistical test. It serves as a starting point for statistical analysis, which researchers aim to test against.
- Example: In a clinical trial comparing a new drug to a placebo:
 - H_o: The new drug has no effect on patient recovery compared to the placebo.

Key Concepts

Error Types

- Type I Error (α) False Positive Rate (FPR)
- Type II Error (β) False Negative Rate (FNR)

 H_0 = The new drug has no effect on patient recovery compared to the placebo

Study rejects H_0 Study fails to rejects H_0

H_o is True

H_o is False

	True Negative Correct Outcome
True Positive Correct Outcome	

Example: If a clinical trial concludes that the new drug is affective tiwhen the actualty as hy is:

Probability of Type II Error ((β): Iff φ=0.023), there is a 52% chance of making this error.

Power of Test $(1 - \beta)$

Definition: Probability of <u>correctly rejecting</u> <u>the null hypothesis when it is false</u>. Higher power means a greater ability to detect an effect if there is one.

When True State = Null Hypothesis (H_0) is False

Example: In the context of the drug trial, if the power is 0.80, there is an 80% chance of detecting a true effect of the drug if it exists.

Effect Size; Sample Size; and Power

Effect Size (ES): The magnitude of the difference you're aiming to detect.

- Definition: Effect size is a quantitative measure of the magnitude of a phenomenon. It provides an indication of the strength of the relationship between two variables.
- Example: In comparing the effectiveness of two drugs:

If the mean recovery time for Drug A is 8 days and for Drug B is 10 days, the effect size (Cohen's d) can be calculated as:

• Effect Size (Cohen's d)= $\frac{Mean(a)-Mean(b)}{Standard\ Deviation}$

Sample Size (n): How many samples you need, based on ES, and power.

Methods for power calculation

Non-Parametric Tests: When data don't meet the assumptions of parametric tests; such as normality

- Mann-Whitney U Test & Wilcoxon Signed-Rank Test
- Kruskal-Wallis Test: For two or More groups

Regression analysis:

- Linear regression: Sample size calculations for testing the effect of predictors on a continuous outcome
- Logistic regression: For binary outcomes,
 sample size can be estimated to detect effects
 of predictors on categorical outcomes

Mixed effect models: For longitudinal or clustered data

- Linear mixed models:
- Generalized linear mixed models:

Multivariate models: For Multivariate and High-Dimensional Data

- Multivariate ANOVA (MANOVA): For studies comparing multiple outcomes simultaneously across groups.
- Principal Component Analysis
 (PCA) and Factor Analysis: when
 dimensionality reduction is essential

Advanced power calculation for longitudinal studies

What is Intra Class Correlation (ICC)

- Measures how much of the total variation in the data is due to <u>differences</u>
 <u>between subjects</u> rather than within subjects
- A higher ICC indicates that more of the variation is due to differences between subjects (e.g., individual baseline differences), which is helpful in analyzing data with repeated measures over time

Adjusting for ICC in Power Calculations

Calculating ICC:

- Random Effect Variance:

 Variance attributable to the subject
- Residual Variance: Variance within subjects
- Total Variance: Sum of random effect and residual variances.
- ICC Calculation: ICC =
 Random Effect Variance / Total

 Variance

Adjusting sample size for ICC:

Adjusted Sample Size =
 Sample Size / (1 + (Timepoints - 1) * ICC)

Removing Covariates Effects with LLM

Purpose: To isolate the effect of the primary variable of interest by adjusting for potential confounding variables (covariates).

Example formula: Outcome ~ Antibiotic_Use + Illness + Diet

Linear model to estimate the relationship between the outcome and covariates.

Interpretation: Coefficients reflect the adjusted relationship of each covariate with the outcome

Example study to check estimate the sample size based on microbiome diversity differences among CD vs non-IBD individuals – Highly imbalanced dataset

Dataset: HMP2-IBDMDB

https://github.com/ashoks773/PowerAnalysis/blob/main/data/CS_diversity.csv

Site: Cedars-Sinai

Total Patients: 21 with multiple time points

Total samples: 244

• CD: 224

• nonIBD: 22

Measure: Shannon diversity

Tasks:

- 1. Effect Size calculation
- 2. Interclass correlation coefficient (ICC) calculation
- 3. Sample size adjustment for ICC
- **4.** Estimated samples for range of powers

https://github.com/ashoks773/PowerAnalysis/blob/main/IBDMDB_dataset/IBDMDB_PowerAnalysis.ipynb

Dummy data to check estimate the sample size based on microbiome diversity differences among two CD groups

Dataset: Dummy

(https://github.com/ashoks773/PowerAnalysis/blob/main/data/df_cd_pilot_highICC.csv)

Total Patients: 50 Timepoints: 11

Total samples: 550CD (CD_flare): 278

nonIBD (CD_asymptomatic): 272

Measure: Shannon diversity

Tasks:

- 1. Effect Size calculation
- 2. Interclass correlation coefficient (ICC) calculation
- 3. Sample size adjustment for ICC
- 4. Get residuals to adjust for covariates
- **5. Estimated samples** for range of powers

Thank you

Mail: compbiosharma@gmail.com

https://github.com/ashoks773/PowerAnalysis