Fundamentals of Audio

Objectives

- Understanding sound wave and digitization
- Adding sound to multimedia project.

Fundamentals of Digital Audio

THE NATURE OF SOUND WAVE

Sound

- A wave that is generated by vibrating objects in a medium such as air
- Sound waves vary in sound pressure level (amplitude) and in frequency or pitch
- 'Acoustics' is the branch of physics that studies sound
- Examples of vibrating objects:
 - vocal cords of a person
 - guitar strings
 - tuning fork

So how is vibration turned into sound we can hear or record with a microphone?

An illustration of how the propagating sound wave formed by changes of the air pressure reaches the microphone

An illustration of how the propagating sound wave formed by changes of the air pressure reaches the microphone

Let's step through the process slowly

The changes of pressure in the propagating sound wave reaching the recorder are captured as changes of electrical signals over time.

The sound wave can be represented graphically with the changes in air pressure or electrical signals plotted over time—a waveform.

Be careful...

 NOT to interpret sound as a wave that has crests and troughs

- NOT to interpret the waveform as a representation of the sound wave in space
 - i.e. air molecules are not going up and down

Frequency of Sound Wave

 Refers to the number of complete back-andforth cycles of vibrational motion of the medium particles per unit of time

Unit for frequency: Hz (Hertz)

1 Hz = 1 cycle/second

A Cycle

Frequency

Frequency = 2 Hz (i.e., 2 cycles/second)

Frequency

Frequency = 4 Hz (i.e., 4 cycles/second) Higher frequency than the previous waveform.

Pitch of Sound

Sound frequency

Higher frequency: higher pitch

 human ear can hear sound ranging from 20 Hz to 20,000 Hz

Sound Intensity vs. Loudness

Sound intensity:

- an objective measurement
- can be measured with auditory devices
- in decibels (dB)
 - A dB measurement is actually the ratio b/w a chosen reference point on a logarithmic scale and the level that is actually experienced.

Loudness:

- a subjective perception
- measured by human listeners
- human ears have different sensitivity to different sound frequency
- in general, higher sound intensity means louder sound

A Simple Sine Wave Waveform

A single sine wave waveform A single tone

Adding Sound Waves

A single sine wave waveform A single tone

A second single sine wave waveform A second single tone

A more complex waveform A more complex sound

Waveform Example

A waveform of the spoken word "one"

Waveform Example

Let's zoom in to take a closer look

Waveform Example

A closer look

Which of the following gives a correct illustration of the sound wave propagation?

C. Both are correct; it depends on the type of sound.

A sound with higher ____ is perceived to have a higher pitch.

- A.decibels
- **B.**frequency
- C.fidelity
- D.sampling rate
- E. bit depth

The unit used for measuing ____ is Hertz (Hz).

- A.amplitude
- **B.**frequency
- C. dynamic range
- D.sampling rate
- E. bit depth

A waveform is a graphical representation of the ____ fluctuations of a sound wave.

- A.pressure-time
- B.space-time
- C. pressure-space

The horizontal axis of a waveform is ____.

- A.pressure
- **B.**distance
- C.time

The vertical axis of a waveform is ____.

- A.pressure
- **B.**distance
- C.time

True/False: Zero decibel is when there is absence of sound or no sound wave.

The ____ of a sound relates to the sound intensity or loudness.

- A.amplitude
- **B.**frequency
- C. sampling rate
- D.bit depth
- E. dynamic range

Fundamentals of Digital Audio

DIGITIZING SOUND

In this lecture, you will find answers to these questions:

- What does digitizing audio mean?
- How is sound sampled and quantized in the digitization process?
- How are sampling rate, bit depth, and resolution related to sampling and quantizing?
- How do the choices of the sampling rate and bit depth affect the sound fidelity and details?

Suppose we want to digitize the sound wave:

When the sound is needed to be used in any computer application, we need to converts the air vibrations of sound into an electrical signal, which is called digital signal- a stream of 0's and 1's. The process of conversing analog signals to digital signals is called digitizing.

Step 1. Sampling

The sound wave is sampled at a specific rate into discrete samples of amplitude values.

Step 1. Sampling

The sound wave is sampled at a specific rate into discrete samples of amplitude values.

Suppose we sample the waveform 10 times a second, i.e., sampleing rate = 10 Hz.

The sound wave is sampled at a specific rate into discrete samples of amplitude values.

Suppose we sample the waveform 10 times a second, i.e., sampleing rate = 10 Hz.

We get 10 samples per second.

The sound wave is sampled at a specific rate into discrete samples of amplitude values.

Reconstructing the waveform using the discrete sample points.

What if we sample 20 times a second, i.e., sampling rate = 20 Hz?

What if we sample 20 times a second, i.e., sampling rate = 20 Hz?

We get 20 samples per second.

What if we sample 20 times a second, i.e., sampling rate = 20 Hz?

Reconstructing the waveform using the discrete sample points.

Effects of Sampling Rate

original waveform

sampling rate = 10 Hz

sampling rate = 20 Hz

Effects of Sampling Rate

Higher sampling rate:

The reconstructed wave looks closer to the original wave

More sample points, and thus larger file size

Sampling Rate Examples

- 11,025 Hz AM Radio Quality/Speech
- 22,050 Hz Near FM Radio Quality (high-end multimedia)
- 44,100 Hz CD Quality
- 48,000 Hz DAT (digital audio tape) Quality
- 96,000 Hz DVD-Audio Quality
- 192,000 Hz DVD-Audio Quality

Sampling Rate vs. Sound Frequency

Both uses the unit Hz

BUT:

- sampling rate ≠ sound frequency
- Sample rate: a setting in the digitization process
- Sound frequency: NOT a setting in the digitization process
- Sound frequency: the pitch characteristic of sound
- Higher sampling rate: NOT the pitch characteristic of sound

- Each of the discrete samples of amplitude values obtained from the sampling step are mapped and rounded to the nearest value on a scale of discrete levels.
- The number of levels in the scale is expressed in bit depth-the power of 2.
- An 8-bit audio allows $2^8 = 256$ possible levels in the scale
- CD-quality audio is 16-bit (i.e., 2¹⁶ = 65,536 possible levels)

Suppose we are quantizing the samples using 3 bits (i.e. $2^3 = 8$ levels).

Suppose we are quantizing the samples using 3 bits (i.e. $2^3 = 8$ levels).

Now, round each sample to the nearest level.

Now, reconstruct the waveform using the quantized samples.

Effects of Quantization

- Data with different original amplitudes may be quantized onto the same level
 - \Rightarrow loss of subtle differences of samples

 With lower bit depth, samples with larger differences may also be quantized onto the same level.

Bit Depth

 Bit depth of a digital audio is also referred to as resolution.

 For digital audio, higher resolution means higher bit depth.

Dynamic Range

 The range of the scale, from the lowest to highest possible quantization values

In the previous example:

Smaller than the Full Range

The ____ of a digitized sound affects the accuracy of the sampled amplitudes being stored.

- A.amplitude
- **B.**frequency
- C. sampling rate
- D.bit depth
- E. dynamic range

In digital audio, the number of sample points taken per second is called ____.

- A.amplitude
- **B.**frequency
- C. sampling rate
- D.bit depth
- E. dynamic range

In digital audio, higher resolution means higher .

A.amplitude

B.frequency

C. sampling rate

D.bit depth

E. dynamic range

The unit used for measuring ____ is Hertz (Hz).

- A.amplitude
- **B.**frequency
- C. sampling rate
- D.bit depth
- E. dynamic range

How many levels of amplitude values does a 8-bit sound allow?

How many levels of amplitude values does a 16-bit sound allow?

Generally, audio CD music sampling rate is ____ and bit depth is ____.

Fundamentals of Digital Audio

FILE SIZE, FILE COMPRESSION, AND FILE TYPES OF DIGITAL AUDIO

In this lecture, you will learn:

 The effects of sampling rate, bit depth, and number of channels on the audio file size

The general strategies to reduce audio file size

How to choose sampling rate and bit depth

How to choose an audio file type

Choices of Sampling Rate and Bit Depth

Higher sampling rate and bit depth:

- deliver better fidelity of a digitized file
- result in a larger file size (undesirable)

Let's estimate the file size of a 1-minute CD-quality audio file

1-minute CD Qualtiy Audio

- Sampling rate = 44100 Hz
 (i.e., 44,100 samples/second)
- Bit depth = 16 (i.e., 16 bits/sample)
- Stereo
 (i.e., 2 channels: left and right channels)

File Size of 1-min CD-quality Audio

- 1 minute = 60 seconds
- Total number of samples
 = 60 seconds × 44,100 samples/second
 = 2,646,000 samples
- Total number of bits required for these many samples = 2,646,000 samples × 16 bits/sample = 42,336,000 bits
 This is for one channel.
- Total bits for two channels
 = 42,336,000 bits/channel × 2 channels
 = 84,672,000 bits

File Size of 1-min CD-quality Audio

```
84,672,000 bits

= 84,672,000 bits / (8 bits/byte)

= 10,584,000 bytes

= 10,584,000 bytes / (1024 bytes/KB)

≅ 10336 KB

= 10336 KB / (1024 KB/MB)

≅ 10 MB
```

Estimate Network Transfer Time

Suppose you are using 1.5Mbps (mega bits per second) broadband to download this 1-minute audio.

- The time is no less than 84,672,000 bits / (1.5 Mbps)
- = 84,672,000 bits / (1,500,000 bits/seconds)
- \approx 56 seconds

File Size of 1-hour CD-quality Audio

- \cong 10 MB/minute \times 60 minutes/hour
- = 600 MB/hour

General Strategies to Reduce Digital Media File Size

- Reduce sampling rate
- Reduce bit depth
- Apply compression

- For digital audio, these can also be options:
 - reducing the number of channels
 - shorten the length of the audio

Reduce Sampling Rate

- Sacrifices the fidelity of the digitized audio
- Need to weigh the quality against the file size
- Need to consider:
 - human perception of the audio
 (e.g., How perceptibe is the audio with lower sampling rate?)
 - how the audio is used
 - music: may need higher sampling rate
 - short sound clips such as explosion and looping ambient background noise: may work well with lower sampling rate

Sampling Rate Examples

- 11,025 Hz AM Radio Quality/Speech
- 22,050 Hz Near FM Radio Quality (high-end multimedia)
- 44,100 Hz CD Quality
- 48,000 Hz DAT (digital audio tape) Quality
- 96,000 Hz DVD-Audio Quality
- 192,000 Hz DVD-Audio Quality

Estimate Thresholds of Sampling Rate Based on Human Hearing

Let's consider these two factors:

- 1. Human hearing range
- 2. A rule called Nyquist's theorem

Human Hearing Range

- Human hearing range: 20 Hz to 20,000 Hz
- Most sensitive to 2,000 Hz to 5,000 Hz

Nyquist Theorem

We must sample <u>at least 2 points</u> in each sound wave cycle to be able to reconstruct the sound wave satisfactorily.

⇒Sampling rate of the audio ≥ twice of the audio frequency (called a *Nyquist rate*)

⇒Sampling rate of the audio is higher for audio with higher pitch

Choosing Sampling Rate

Given the human hearing range (20 Hz to 20,000 Hz) and Nyquist Theorem, why do you think the sampling rate (44,100 Hz) for the CD-quality audio is reasonable?

Choosing Sampling Rate

If we consider human ear's most sensitive range of frequency (2,000 Hz to 5,000 Hz), then what is the lowest sampling rate may be used that still satisfies the Nyquist Theorem?

- A. 11,025 Hz AM Radio Quality/Speech
- B. 22,050 Hz Near FM Radio Quality (high-end multimedia)
- C. 44,100 Hz CD Quality
- D. 48,000 Hz DAT (digital audio tape) Quality
- E. 96,000 Hz DVD-Audio Quality
- F. 192,000 Hz DVD-Audio Quality

Effect of Sampling Rate on File Size

File size = duration × sampling rate × bit depth × number of channels

 File size is reduced in the same proportion as the reduction of the sampling rate

 Example: Reducing the sampling rate from 44,100 Hz to 22,050 Hz will reduce the file size by half.

Effect of Bit Depth on File Size

File size = duration × sampling rate × bit depth × number of channels

 File size is reduced in the same proportion as the reduction of the bit depth

• Example: Reducing the bit depth from 16-bit to 8-bit will reduce the file size by half.

Most Common Choices of Bit Depth

- 8-bit
 - usually sufficient for speech
 - in general, too low for music
- 16-bit
 - minimal bit depth for music
- 24-bit
- 32-bit

Audio File Compression

- Lossless
- Lossy
 - gets rid of some data, but human perception is taken into consideration so that the data removed causes the least noticeable distortion
 - e.g. MP3 (good compression rate while preserving the <u>perceivably high</u> quality of the audio)

Effect of Number of Channels on File Size

File size = duration × sampling rate × bit depth × number of channels

 File size is reduced in the same proportion as the reduction of the number of channels

 Example: Reducing the number of channels from 2 (stereo) to 1 (mono) will reduce the file size by half.

Midi Audio

- MIDI is a shorthand representation of music stored in numeric form.
- It is not digitized sound.
- A sequencer software and sound synthesizer is required in order to create MIDI scores.
- MIDI is device dependent.
- Length of a MIDI file can be changed without affecting the pitch of the music or degrading audio quality.
- Working with MIDI requires knowledge of music theory.

MIDI Versus Digital Audio

- MIDI is device dependent while digitized audio is device independent.
- MIDI files are much smaller than digitized audio.
- MIDI files sound better than digital audio files when played on a high-quality MIDI device.
- With MIDI, it is difficult to playback spoken dialog, while digitized audio can do so with ease.
- MIDI does not have consistent playback quality while digital audio provides consistent playback quality.
- One requires knowledge of music theory in order to run MIDI, while digital audio does not have this requirement.

Common Audio File Types

File Type	Acronym For	Originally Created By	File Info & Compression	Platforms
.wav		IBM Microsoft	Compressed or uncompressedOne of the HTML5 audio formats	 Windows Plays in Web browsers that support the .wav format of HTML5 audio (Firefox, Safari, Chrome, and Opera)
.mp3	MPEG audio layer 3	Moving Pictures Experts Group	 Good compression rate with perceivably high quality sound One of the HTML5 audio formats 	 Cross-platform Plays in Web browsers that support the .wav format of HTML5 audio (Safari and IE)
.m4a	MPEG-4 format without the video data	Moving Pictures Experts Group	•AAC compression; same compression as the MPEG-4 H.264 without the video data • One of the HTML5 audio formats	Plays in Web browsers that support the AAC format of HTML5 audio (Safari, IE, and Chrome)

Common Audio File Types

File Type	Acronym For	Originally Created By	File Info & Compression	Platforms
.ogg or .oga		Xiph.Org Foundation	 Usually referred to as Ogg Vorbis format One of the HTML5 audio formats 	Plays in Web browsers that support the Ogg Vorbisformat of HTML5 audio (Firefox, Chrome, and Opera)
.mov	QuickTime movie	Apple	 Not just for video supports audio track and a MIDI track a variety of sound compressors files can be streamed "Fast Start" technology 	Cross-platform; requires QuickTime player

Common Audio File Types

File Type	Acronym For	Originally Created By	File Info & Compression	Platforms
.aiff	Audio Interchange File Format	Apple	compressed, uncompressed	Mac, Windows
.au .snd		Sun	compressed	Sun, Unix, Linux
.ra .rm	Real Audio	Real Systems	compressed; can be streamed with Real Server	Cross-platform; requires Real player
.wma	Window Media Audio	Microsoft		

Choosing an Audio File Type

Determined by the intended use

- File size limitation
- Intended audience
- Whether as a source file

File Size Limitations

- Is your audio used on the Web?
 - file types that offer high compression
 - streaming audio file types

Intended Audience

 What is the equipment that your audience will use to listen to your audio?

- If they are listening on computers, what are their operating systems?
 - cross-platform vs. single platform

Whether as a Source File

If you are keeping the file for future editing, choose a file type:

- uncompressed
- allows lossless compression

True/False: 8-bit is generally considered to be adequate for recording music.

True/False: MP3 is a good file format to keep as a source file for further editing.

Which of the following file extensions indicate audio files?

BMP

WAV

JPEG

AIFF

MP3

GIF

JPG

PSD

TIFF

WMF

According to Nyquist's theorem, we must sample at least ____ points in each sound wave cycle to be able to reconstruct the sound wave satisfactorily.

In other words, the sampling rate of the audio must be at least ____ of the audio frequency.

The reduction of a digital audio file size can be achieved by ____.

- A.reducing the sampling rate
- B. reducing the pitch of the audio
- C. reducing the bit depth
- D.reducing the amplitude of the audio
- E. applying file compression techniques

Higher ____ will result in larger file size.

- A.amplitude
- **B.**frequency
- C. sampling rate
- D.bit depth
- E. dynamic range

Reducing the bit depth from 16-bit to 8-bit will

____•

- A.have no effect on the file size
- B. decrease the file size by half
- C. decrease the file size to 1/8-th
- D.decrease the file size to 1/16-th

Reducing the sampling rate from 44,100 Hz to 22,050 Hz will ____.

- A.have no effect on the file size
- B. decrease the file size by half
- C. decrease the file size to about 1/22-th
- D.decrease the file size to about 1/44-th

Reducing the number of channels from 2 (stereo) to 1 (mono) will ____.

- A.have no effect on the file size
- B. decrease the file size by half
- C. decrease the file size to about 1/5-th
- D.decrease the file size to about 1/10-th

Adding Sound to Multimedia Project

- File formats compatible with multimedia authoring software being used along with delivery mediums, must be determined.
- Sound playback capabilities offered by end user's system must be studied.
- The type of sound, whether background music, special sound effects, or spoken dialog, must be decided.
- Digital audio or MIDI data should be selected on the basis of the location and time of use.

Reference:

- Wong, Y.L. (2013), Digital Media Primer,
 Pearson Education, Chapter 5
- Vaughan, T (2011), Multimedia: Making it work, McGraw-Hill, USA, 8th Ed, Chapter 5.
- https://www.pacdv.com/sounds/