# **SUPERVISED LEARNING - CLASSIFICATION**

JENS BAETENS

## **GLOSSARY**

- Supervised
- Unsupervised
- Reinforcement Learning
- Regression
- Overfitting
- Underfitting
- Learning Rate
- Loss Function

- Feature Engineering
- Normalisation
- Regularisation
- Trainen van een model



#### WAT IS CLASSIFICATIE?

Supervised learning

Input omzetten naar klasse

Classifier genoemd

Moolel



#### WAT IS CLASSIFICATIE?

Gezichtsherkenning

Geschriftherkenning

Lypost Brussel
Spam detectie BR US SEL

Ja / > Nea

**Kwaliteitscontroles** 

Medische diagnoses



#### TYPES CLASSIFIERS - BINARY

True Folse

Twee verschillende klassen

Voorbeeld: Goede of slechte kwaliteit, man of vrouw, Goed- of kwaadaardig



## TYPES CLASSIFIERS - MULTICLASS



N>2 verschillende klassen (maar 1 mogelijk voor elke input)

Voorbeeld: Gezichtsherkenning (1 klasse per persoon), Hondenrasherkenning, ...





B-in Class 1 -> Jal Na 2 -> Jal Na 3 -> :-

N>2 verschillende klassen maar meerdere mogelijk per input

Voorbeeld: Beeldherkenning, Meerdere genres mogelijk voor een film, ...





## KAN HET MET LINEAIRE REGRESSIE?

name diameter weight red green blue

| name       |      |              |       |        |     |    |    |
|------------|------|--------------|-------|--------|-----|----|----|
| grapefruit | 9995 | grapefruit 🕏 | 15.35 | 253.89 | 149 | 77 | 20 |
|            | 9996 | grapefruit 皮 | 15.41 | 254.67 | 148 | 68 | 7  |
|            | 9997 | grapefruit 👩 | 15.59 | 256.50 | 168 | 82 | 20 |
|            | 9998 | grapefruit 💍 | 15.92 | 260.14 | 142 | 72 | 11 |
| (          | 9999 | grapefruit 💪 | 16.45 | 261.51 | 152 | 74 | 2  |
| orange     | 0    | orange /     | 2.96  | 86.76  | 172 | 85 | 2  |
|            | 1    | orange 7     | 3.91  | 88.05  | 166 | 78 | 3  |
|            | 2    | orange 1     | 4.42  | 95.17  | 156 | 81 | 2  |
|            | 3    | orange 1     | 4.47  | 95.60  | 163 | 81 | 4  |
|            | 4    | orange 1     | 4.48  | 95.76  | 161 | 72 | 9  |

-> mreka glied vig groot KAN HET MET LINEAIRE REGRESSIE? grapefruit name grapefruit -> net tusen oan 7 orange -> gevoelig aon 2 outliers 060000 orange

## KAN HET MET LINEAIRE REGRESSIE?

Gevoelig voor outliers

Zeer breed "fuzzy" middenstuk

Komt niet overeen met een kans 🖁



## KAN HET MET LINEAIRE REGRESSIE?

Ongebalanceerde klassen

=> Geen lineaire regressie mogelijk



# **CLASSIFICATIE – LOGISTIC REGRESSION**

JENS BAETENS

## LOGISTIC REGRESSION

Logistische functie (sigmoid)

$$f(z) = \frac{1}{1 + e^{-z}}$$

Geeft een waarde terug tussen 0 en 1 - De kans het tot de klasse hoort

$$f_{\boldsymbol{w}}(x) = \frac{1}{1 + e^{-\boldsymbol{w}^T x}}$$

$$\boldsymbol{w}^T x = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_N x_N \geq \text{Uneaver regressie}$$



## LOGISTIC REGRESSION

$$L(\boldsymbol{w}) = \begin{cases} -ln(f_{\boldsymbol{w}}(x)) & \text{als } y = 1 \\ -ln(1 - f_{\boldsymbol{w}}(x)) & \text{als } y = 0 \end{cases}$$

$$L(\boldsymbol{w}) = -\frac{1}{N} \begin{bmatrix} N & \sum_{i=1}^{N} v_i \ln(f_{\boldsymbol{x}_i}(x_i)) + (1 - v_i) \ln(1 - f_{\boldsymbol{x}_i}(x_i)) \\ N & \text{otherwise} \end{cases}$$

$$L(\boldsymbol{w}) = -\frac{1}{N} \left[ \sum_{i=1}^{N} \underline{y_i} ln(f_{\boldsymbol{w}}(x_i)) + (1 - y_i) ln(1 - f_{\boldsymbol{w}}(x_i)) \right]$$

$$= oldging (maan 1 term)$$

Minimalisatie dmv Gradient Descent



## LOGISTIC REGRESSION

Linds up. lign = orange > rechts v.d. lign = sinaasaggel



## LOGISTIC REGRESSION – HIGHER ORDER FEATURES



## LOGISTIC REGRESSION – HIGHER ORDER FEATURES



## LOGISTIC REGRESSION – REGULARISATIE

Regularisatie via C-parameter
Inverse regularisatie sterkte

Hoge waarde = weinig regularisatie



```
model = LogisticRegression(C=10) # C= inverse regularisatiesterkte
model.fit(X, df_trimmed.output)
```

#### **LOGISTIC REGRESSION – EVALUATIE**



## LOGISTIC REGRESSION – MULTICLASS



# Multi-lan Cansifier bestaat uit meerdere LOGISTIC REGRESSION - ONE VS ALL Cinaire Cansifier



## LOGISTIC REGRESSION - ONE VS ONE



## LOGISTIC REGRESSION – MULTICLASS EVALUATIE



## LOGISTIC REGRESSION – MULTICLASS EVALUATIE



| Class  | Precision | Recall | F1-score |
|--------|-----------|--------|----------|
| Apple  | 0.29      | 0.64   | 0.40     |
| Orange | 0.33      | 0.17   | 0.22     |
| Mango  | 0.17      | 0.08   | 0.11     |

## LOGISTIC REGRESSION - MULTICLASS EVALUATIE

Micro – F1: Globale waarden

Macro – F1: Gemiddelde F1 – scores

Weighted F1. Gew. Gemiddelde

- Gewichten = # samples

|                                   | True Class |        |       |  |
|-----------------------------------|------------|--------|-------|--|
|                                   | Apple      | Orange | Mango |  |
| lass<br>Apple                     | 7          | 8      | 9     |  |
| Predicted Class<br>ngo Orange App | 1          | 2      | 3     |  |
| Prec<br>Mango                     | 3          | 2      | 1     |  |

| Class  | Precision | Recall | F1-score |
|--------|-----------|--------|----------|
| Apple  | 0.29      | 0.64   | 0.40     |
| Orange | 0.33      | 0.17   | 0.22     |
| Mango  | 0.17      | 0.08   | 0.11     |

https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826

## **GLOSSARY**

- Classificatie
- Binary classifier
- Multi-class classifier
- Multi-label classifier
- True/False Positive/Negative
- Accuraatheid / Specificiteit / ...

- One-vs-All
- One-vs-One
- Confusion matrix