Unit 5: Greedy Algorithms

- Course contents:
 - Elements of the greedy strategy
 - Activity selection
 - Knapsack problem
 - Huffman codes
 - Task scheduling

Item 1 has greatest

- Appendix: Process antenna effect fixing
- Reading:

Greedy algorithm is optimal with item 1 is not optimal! value per pound for the fractional version.

Greedy Heuristic: Vertex Cover

- A vertex cover of an undirected graph G=(V, E) is a subset $V \subseteq V$ such that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$, or both.
 - The set of vertices covers all the edges.
- The **size** of a vertex cover is the number of vertices in the cover.
- The **vertex-cover problem** is to find a vertex cover of minimum size in a graph.
- **Greedy heuristic:** cover as many edges as possible (vertex with the maximum degree) at each stage and then delete the covered edges.
- The greedy heuristic cannot always find an optimal solution!
 - The vertex-cover problem is NP-complete.

A Greedy Algorithm

- A greedy algorithm always makes the choice that looks best at the moment.
- An Activity-Selection Problem: Given a set $S = \{1, 2, ..., n\}$ of n proposed activities, with a start time s_i and a finish time f_i for each activity i, select a maximum-size set of mutually compatible activities.
 - If selected, activity i takes place during the half-open time interval $[s_i, f_i)$.
 - Activities i and j are **compatible** if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap (i.e., $s_i \ge f_i$ or $s_j \ge f_i$).

Y.-W. Chang

3

Activity Selection

- 1. Sort f_i
- 2. Select the first activity.
- 3. Pick the first activity i such that $s_i >= f_i$ where activity j is the most recently selected activity.

The Activity-Selection Algorithm

```
Greedy-Activity-Selector(s,f)

// Assume f_1 \le f_2 \le ... \le f_n.

1. n = s.length

2. A = \{1\} // a_1 in 3^{rd} Ed.

3. j = 1

4. for i = 2 to n

5. if s_i \ge f_j

6. A = A \cup \{i\}

7. j = i

8. return A
```

Time complexity excluding sorting:
 O(n)

- **Theorem:** Algorithm Greedy-Activity-Selector produces solutions of maximum size for the activity-selection problem.
 - (**Greedy-choice property**) Suppose $A \subseteq S$ is an optimal solution. Show that if the first activity in A activity $k \ne 1$, then $B = A \{k\} \cup \{1\}$ is an optimal solution.
 - (Optimal substructure) Show that if A is an optimal solution to S, then $A' = A \{1\}$ is an optimal solution to $S' = \{i \in S: s_i \ge f_1\}$.
 - Prove by induction on the number of choices made.

Optimality Proofs

(Greedy-choice property) Suppose A ⊆ S is an optimal solution.
 Show that if the first activity in A activity k ≠ 1, then
 B = A - {k} ∪ {1} is an optimal solution.

- (Optimal substructure) Show that if A is an optimal solution to S, then $A' = A \{1\}$ is an optimal solution to $S' = \{i \in S: s_i \ge f_1\}$.
 - Exp: A'= {4, 8, 11}, S'= {4, 6, 7, 8, 9, 11} in the Activity Selection example
 - Proof by contradiction: If A' is not an optimal solution to S', we can find a "better" solution A" (than A'). Then, A"U{1} would be a better solution than A'U{1} = A to S, contradicting to the original claim that A is an optimal solution to S. (Activity 1 is compatible with all the tasks in A".)

Elements of the Greedy Strategy

- When to apply greedy algorithms?
 - Greedy-choice property: A global optimal solution can be arrived at by making a locally optimal (greedy) choice.
 - Dynamic programming needs to check the solutions to subproblems.
 - Optimal substructure: An optimal solution to the problem contains within its optimal solutions to subproblems.
 - E.g., if *A* is an optimal solution to *S*, then $A' = A \{1\}$ is an optimal solution to $S' = \{i \in S: s_i \ge f_1\}$.
- Greedy *heuristics* do not always produce optimal solutions.
- Greedy algorithms vs. dynamic programming (DP)
 - Common: optimal substructure
 - Difference: greedy-choice property
 - DP can be used if greedy solutions are not optimal.

Knapsack Problem

- **Knapsack Problem:** Given n items, with ith item worth v_i dollars and weighing w_i pounds, a thief wants to take as valuable a load as possible, but can carry at most W pounds in his knapsack.
- The 0-1 knapsack problem: Each item is either taken or not taken (0-1 decision).
- The fractional knapsack problem: Allow to take fraction of items.
- Exp: \vec{v} = (60, 100, 120), \vec{w} = (10, 20, 30), W = 50

- Greedy solution by taking items in order of greatest value per pound is optimal for the fractional version, but not for the 0-1 version.
- The 0-1 knapsack problem is NP-complete, but can be solved in O(nW) time by DP. (A polynomial-time DP??)

Coding

- Is used for data compression, instruction-set encoding, etc.
- Binary character code: character is represented by a unique binary string
 - Fixed-length code (block code): a: 000, b: 001, ..., f: 101 ⇒ ace \leftrightarrow 000 010 100.
 - Variable-length code: frequent characters ⇒ short codeword; infrequent characters ⇒ long codeword

	a	ь	c	d	e	f	cost / 100 characters
Frequency	45	13	12	16	9	5	
Fixed-length codeword	000	001	010	011	100	101	300
Variable-length codeword	0	101	100	111	1101	1100	224

Binary Tree vs. Prefix Code

• **Prefix code:** No code is a prefix of some other code.

prefix code {1, 01, 000, 001}-> binary tree

Optimal Prefix Code Design

- Coding Cost of T: $B(T) = \sum_{c \in C} c \cdot freq \cdot d_T(c)$
 - c: character in the alphabet C
 - c.freq: frequency of c
 - $-d_{\tau}(c)$: depth of c's leaf (length of the codeword of c)
- Code design: Given c_1 .freq, c_2 .freq, ..., c_n .freq, construct a binary tree with n leaves such that B(T) is minimized.
 - Idea: more frequently used characters use shorter depth.

Fixed-length cost: 3 * 100 = 300 optimal code --> full binary tree!!

Variable-length cost = 224

Huffman's Procedure

• Pair two nodes with the least costs at each step.

Huffman's Algorithm

```
Huffman(C)
1. n = |C|
2. Q = C
3. for i = 1 to n - 1
4. Allocate a new node z
5. z.left = x = \text{Extract-Min}(Q)
6. z.right = y = \text{Extract-Min}(Q)
7. z.freq = x.freq + y.freq
8. Insert(Q, z)
9. return Extract-Min(Q) //return the root of the tree
```

- Time complexity: $O(n \lg n)$.
 - Extract-Min(Q) needs $O(\lg n)$ by a **heap** operation.
 - Requires initially $O(n \lg n)$ time to build a binary heap.

Huffman's Algorithm: Greedy Choice

• **Greedy choice:** Two characters *x* and *y* with the lowest frequencies must have *the same length* and differ only in the last bit.

T is an optimal tree ____ T' is an optimal tree ____ T'' is an optimal tree

Huffman's Algorithm: Optimal Substructure

• Optimal substructure: Let T be a full binary tree for an optimal prefix code over C. Let z be the parent of two leaf characters x and y. If z. freq = x. freq + y. freq, tree $T = T - \{x, y\}$ represents an optimal prefix code for $C' = C - \{x, y\} \cup \{z\}$.

Y.-W. Chang

$$B(T) = B(T') + x.freq + y.freq$$

 $(d_T(x) = d_T(y) = d_{T'}(z) + 1)$

If T' is not optimal, find T'' s.t.
$$B(T'') < B(T')$$
.

 z in $C' => z$ is a leaf of T'' .

 $Add x$, y as z 's children (T''')
 $=> B(T''') = B(T'') + x.freq + y.freq$
 $< B(T') + x.freq + y.freq$
 $= B(T)$

contradiction!!

15

Task Scheduling

- The task scheduling problem: Schedule unit-time tasks with deadlines and penalties s.t. the total penalty for missed deadlines is minimized.
 - $S = \{1, 2, ..., n\}$ of n unit-time tasks.
 - **Deadlines** $d_1, d_2, ..., d_n$ for tasks, $1 \le d_i \le n$.
 - Penalties $w_1, w_2, ..., w_n$: w_i is incurred if task i misses deadline.
- Set A of tasks is independent if ∃ a schedule with no late tasks.
- N_t(A): number of tasks in A with deadlines t or earlier,
 t = 1, 2, ..., n.
- Three equivalent statements for any set of tasks A
 - 1. A is independent.
 - 2. $N_t(A) \le t$, t = 1, 2, ..., n.
 - 3. If the tasks in *A* are scheduled in order of nondecreasing deadlines, then no task is late.

Greedy Algorithm: Task Scheduling

The optimal greedy scheduling algorithm:

- 1. Sort penalties in non-increasing order.
- 2. Find tasks of independent sets: no late task in the sets.
- 3. Schedule tasks in a maximum independent set in order of nondecreasing deadlines.
- 4. Schedule other tasks (missing deadlines) at the end arbitrarily.

		$N_1(A) = 0 <= 1$						
	1	2	3	4	5	6	7	$N_2(A) = 1 \le 2$
	4		4		1			$N_3(A) = 2 \le 3$
d _i	4	$\stackrel{2}{\frown}$		3	_	4	6	$N_4(A) = 4 <= 4$
$\mathbf{w}_{\mathbf{i}}$	(70)	(60)	(50)	40	30	20	(10)	$N_5(A) = 4 <= 5$
optimal scheduling: (2, 4, 1, 3, 7, 5, 6)								$N_6(A) = 5 \le 6$
penalty: $30+20 = 50$								$N_{\uparrow}(A) \ll t$

Appendix: Process Antenna Effect

 While the metal line is being manufactured, a long floating interconnect acts as a temporary capacitor to store charges induced from plasma etching.

The accumulated charges on the wires might damage the gate.

Antenna Effect

- Depends on length of the wire that is "unshorted" (that is, not connected to a diffusion drain area)
 - The longer the wires, the more the charge.
 - Wires are always shorted in the highest metal layer.
- Depends on the gate size
 - Aggressive down sizing makes the problem worse!
- The calculation of this design rule is different per fab.

courtesy Prof. P. Groeneveld

Jumper Insertion

- Forces a routing pattern that "shoots up" to the highest layer as soon as possible.
- Reduces the charge amount for violated nets during manufacturing.

Side effects: Delay and congestion

Jumper Insertion for Antenna Fixing/Avoidance

- Su and Chang, DAC-05 (& ISPD-06, IEEE TCAD-07).
- Formulate the problem of jumper insertion on a routing tree for antenna avoidance as a tree cutting problem.
- Problem JITA (Jumper Insertion on a Routing Tree for Antenna Avoidance): Given a routing tree T = (V, E) and an upper bound Lmax, find the minimum set C of cutting nodes, $c \neq u$ for any $c \in C$ and $u \in V$, so that $L(u) \leq Lmax$, $\forall u \in V$.
 - T = (V, E): a routing tree.
 - _ Lmax: antenna upper bound.
 - L(u): sum of edge weights (antenna strengths)
 connected to node u

Algorithm BUJI

- The exact BUJI (Bottom-Up Jumper Insertion) algorithm for jumper insertion uses a bottom-up approach to insert cutting nodes on the routing tree.
 - Step 1: Make every leaf node satisfy the antenna rule.
 - Step 2: Make every subleaf node satisfy the antenna rule, then cut the subleaf node into a new leaf node.
- Definition: A subleaf is a node for which all its children are leaf nodes, and all the edges between it and its children have antenna weights ≤ Lmax.

Step 1: Leaf Node Processing

Step 1: Prevent every leaf node from antenna violation.

Unit 5 Y.-W. Chang 23

Step 2: Subleaf Node Processing

Step 2: Prevent every subleaf node from antenna violation

• *totallen*: sum of weights of the edges between the node and its children.

totallen =
$$\sum_{i=1}^{k} I(u_i, u_p)$$

 u_p : a subleaf node

 u_i : subleaf's children, $\forall 1 \le i \le k$

 u_p u_1 u_2

Classify the subleaf nodes according to totallen.

Case 1: totallen ≤ L_{max}

— Case 2: totallen ➤ L_{max}

Case 1: totallen ≤ L_{max}

- Case 1: totallen ≤ L_{max}
 - If u_p's parent exists
 - If $totallen + I(u_p, p(u_p)) \le L_{max}$, cut u_p 's children from the tree
 - Else insert the cutting node that makes $totallen + I(u_p, c) = L_{max}$

Case 2: totallen $> L_{max}$

- Case 2: *totallen* > L_{max}
 - Step 1: Let $A[i] \leftarrow l(u_i, u_p)$, $\forall 1 \le i \le k$. Sort A in non-decreasing order.
 - _ Step 2: Find the maximum s such that $\sum_{j=1}^{s} A[j] \le L_{max}$
 - Step 3: Add cutting nodes c_{s+1}, ..., c_k.
 - Step 4: Use Case 1 to cut u_p into a leaf node.

Complexity

- Algorithm BUJI optimally solves the JITA problem in O(V lg V) time using O(V) space, where V is the number of vertices.
- With the SPLIT data structure proposed by Kundu and Misra, JITA can be done in O(V) time and space.
 - Optimal algorithm in the theoretical sense.

Resulting Layout with Obstacles

Lmax = 500 um, 1000 tree nodes (circles), 500 obstacles (rectangles), 426 jumpers (x)

