Support Vector Machine

Mengye Ren

(Slides credit to David Rosenberg, He He, et al.)

NYU

September 24, 2024

CSCI-GA 2565 1/72

Slides

CSCI-GA 2565 2 / 72

Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?

(Perceptron does not return a unique solution.)

CSCI-GA 2565 3 / 72

Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points

- Geometric margin: smallest distance between the hyperplane and the points
- Maximum margin: largest distance to the closest points

CSCI-GA 2565 4 / 72

Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.

Let's formalize the problem.

Definition (separating hyperplane)

We say (x_i, y_i) for i = 1, ..., n are linearly separable if there is a $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $v_i(w^Tx_i+b)>0$ for all i. The set $\{v\in\mathbb{R}^d\mid w^Tv+b=0\}$ is called a separating hyperplane.

Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.

Let's formalize the problem.

Definition (separating hyperplane)

We say (x_i, y_i) for i = 1, ..., n are linearly separable if there is a $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y_i(w^Tx_i+b)>0$ for all i. The set $\{v\in\mathbb{R}^d\mid w^Tv+b=0\}$ is called a separating hyperplane.

Definition (geometric margin)

Let H be a hyperplane that separates the data (x_i, y_i) for i = 1, ..., n. The geometric margin of this hyperplane is

$$\min_{i} d(x_i, H),$$

the distance from the hyperplane to the closest data point.

Distance between a Point and a Hyperplane

CSCI-GA 2565 6 / 72

We want to maximize the geometric margin:

maximize $\min_{i} d(x_i, H)$.

CSCI-GA 2565 7 / 72

We want to maximize the geometric margin:

maximize
$$\min_{i} d(x_i, H)$$
.

Given separating hyperplane
$$H = \{v \mid w^T v + b = 0\}$$
, we have

maximize
$$\min_{i} \frac{y_i(w^T x_i + b)}{\|w\|_2}$$
.

We want to maximize the geometric margin:

maximize
$$\min_{i} d(x_i, H)$$
.

Given separating hyperplane $H = \{v \mid w^T v + b = 0\}$, we have

maximize
$$\min_{i} \frac{y_i(w^T x_i + b)}{\|w\|_2}$$
.

Let's remove the inner minimization problem by

maximize
$$M$$

subject to $\frac{y_i(w^Tx_i+b)}{\|w\|_2} \geqslant M$ for all i

CSCI-GA 2565 7 / 72

We want to maximize the geometric margin:

maximize
$$\min_{i} d(x_i, H)$$
.

Given separating hyperplane $H = \{v \mid w^T v + b = 0\}$, we have

maximize
$$\min_{i} \frac{y_i(w^T x_i + b)}{\|w\|_2}$$
.

Let's remove the inner minimization problem by

maximize
$$M$$

subject to $\frac{y_i(w^Tx_i+b)}{\|w\|_2} \geqslant M$ for all i

Note that the solution is not unique (why?).

CSCI-GA 2565 7 / 72

Let's fix the norm $||w||_2$ to 1/M to obtain:

CSCI-GA 2565 8 / 72

Let's fix the norm $||w||_2$ to 1/M to obtain:

maximize
$$\frac{1}{\|w\|_2}$$

subject to $y_i(w^Tx_i+b)\geqslant 1$ for all i

It's equivalent to solving the minimization problem

Note that $y_i(w^Tx_i + b)$ is the (functional) margin. The optimization finds the minimum norm solution which has a margin of at least 1 on all examples.

CSCI-GA 2565 8 / 72

Not linearly separable

What if the data is *not* linearly separable?

For any w, there will be points with a negative margin.

CSCI-GA 2565 9 / 72

Soft Margin SVM

Introduce slack variables ξ 's to penalize small margin:

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|w\|_2^2 + \frac{C}{n}\sum_{i=1}^n \xi_i \\ \text{subject to} & y_i(w^Tx_i + b) \geqslant 1 - \xi_i \quad \text{for all } i \\ & \xi_i \geqslant 0 \quad \text{for all } i \end{array}$$

- If $\xi_i = 0 \ \forall i$, it's reduced to hard SVM.
- What does $\xi_i > 0$ mean?
- What does C control?

Slack Variables

 $d(x_i, H) = \frac{y_i(w^T x_i + b)}{\|w\|_2} \geqslant \frac{1 - \xi_i}{\|w\|_2}$, thus ξ_i measures the violation by multiples of the geometric margin:

- $\xi_i = 1$: x_i lies on the hyperplane
- $\xi_i = 3$: x_i is past 2 margin width beyond the decision hyperplane

Perceptron Loss

$$\ell(x, y, w) = \max(0, -yw^T x)$$

If we do ERM with this loss function, what happens?

CSCI-GA 2565 13 / 72

Hinge Loss

- SVM/Hinge loss: $\ell_{\text{Hinge}} = \max\{1-m, 0\} = (1-m)_+$
- Margin m = yf(x); "Positive part" $(x)_+ = x\mathbb{1}[x \ge 0]$.

Hinge is a convex, upper bound on 0-1 loss. Not differentiable at m=1. We have a "margin error" when m<1.

CSCI-GA 2565 14 / 72

• The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$
$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$

CSCI-GA 2565 15 / 72

• The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$
$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$

which is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant \max(0, 1 - y_i [w^T x_i + b]) \text{ for } i = 1, \dots, n.$$

CSCI-GA 2565 15 / 72

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \geqslant \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n.$$

CSCI-GA 2565 16 / 72

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \geqslant \max(0, 1 - y_i [w^T x_i + b]) \text{ for } i = 1, \dots, n.$$

Move the constraint into the objective:

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

CSCI-GA 2565 16 / 72

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \geqslant \max(0, 1 - y_i [w^T x_i + b]) \text{ for } i = 1, \dots, n.$$

Move the constraint into the objective:

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

- The first term is the L2 regularizer.
- The second term is the Hinge loss.

CSCI-GA 2565 16 / 72

Support Vector Machine

Using ERM:

- Hypothesis space $\mathcal{F} = \{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.$
- l₂ regularization (Tikhonov style)
- Hinge loss $\ell(m) = \max\{1 m, 0\} = (1 m)$
- The SVM prediction function is the solution to

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

Summary

Two ways to derive the SVM optimization problem:

- Maximize the margin
- Minimize the hinge loss with ℓ_2 regularization

Both leads to the minimum norm solution satisfying certain margin constraints.

- Hard-margin SVM: all points must be correctly classified with the margin constraints
- Soft-margin SVM: allow for margin constraint violation with some penalty

CSCI-GA 2565 18 / 72

SVM Optimization Problem

SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) + \lambda ||w||^2.$$

CSCI-GA 2565 19 / 72

SVM Optimization Problem

SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) + \lambda ||w||^2.$$

• Not differentiable... but let's think about gradient descent anyway.

SVM Optimization Problem

SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) + \lambda ||w||^2.$$

- Not differentiable... but let's think about gradient descent anyway.
- Hinge loss: $\ell(m) = \max(0, 1-m)$

$$\nabla_{w}J(w) = \nabla_{w}\left(\frac{1}{n}\sum_{i=1}^{n}\ell(y_{i}w^{T}x_{i}) + \lambda||w||^{2}\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}\nabla_{w}\ell(y_{i}w^{T}x_{i}) + 2\lambda w$$

"Gradient" of SVM Objective

• Derivative of hinge loss $\ell(m) = \max(0, 1-m)$:

$$\ell'(m) = egin{cases} 0 & m>1 \ -1 & m<1 \ ext{undefined} & m=1 \end{cases}$$

CSCI-GA 2565 20 / 72

"Gradient" of SVM Objective

• Derivative of hinge loss $\ell(m) = \max(0, 1-m)$:

$$\ell'(m) = egin{cases} 0 & m>1 \ -1 & m<1 \ ext{undefined} & m=1 \end{cases}$$

By chain rule, we have

$$\nabla_{w}\ell(y_{i}w^{T}x_{i}) = \ell'(y_{i}w^{T}x_{i})y_{i}x_{i}$$

$$= \begin{cases} 0 & y_{i}w^{T}x_{i} > 1\\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1\\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{cases}$$

20 / 72 CSCI-GA 2565

"Gradient" of SVM Objective

$$\nabla_{w} \ell \left(y_{i} w^{T} x_{i} \right) = \begin{cases} 0 & y_{i} w^{T} x_{i} > 1 \\ -y_{i} x_{i} & y_{i} w^{T} x_{i} < 1 \\ \text{undefined} & y_{i} w^{T} x_{i} = 1 \end{cases}$$

So

$$\nabla_{w}J(w) = \nabla_{w}\left(\frac{1}{n}\sum_{i=1}^{n}\ell\left(y_{i}w^{T}x_{i}\right) + \lambda||w||^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) + 2\lambda w$$

$$= \begin{cases} \frac{1}{n}\sum_{i:y_{i}w^{T}x_{i}<1}\left(-y_{i}x_{i}\right) + 2\lambda w & \text{all } y_{i}w^{T}x_{i} \neq 1\\ \text{undefined} & \text{otherwise} \end{cases}$$

Gradient Descent on SVM Objective?

• The gradient of the SVM objective is

$$\nabla_w J(w) = \frac{1}{n} \sum_{i: y_i w^T x_i < 1} (-y_i x_i) + 2\lambda w$$

when $y_i w^T x_i \neq 1$ for all i, and otherwise is undefined.

Potential arguments for why we shouldn't care about the points of nondifferentiability:

- If we start with a random w, will we ever hit exactly $y_i w^T x_i = 1$?
- If we did, could we perturb the step size by ε to miss such a point?
- Does it even make sense to check $y_i w^T x_i = 1$ with floating point numbers?

CSCI-GA 2565 22 / 72

Subgradient

First-Order Condition for Convex, Differentiable Function

• Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable Then for any $x, y \in \mathbb{R}^d$

$$f(y) \geqslant f(x) + \nabla f(x)^T (y - x)$$

• The linear approximation to f at x is a global underestimator of f:

• This implies that if $\nabla f(x) = 0$ then x is a global minimizer of f.

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3

CSCI-GA 2565 24 / 72

Subgradients

Definition

A vector $g \in \mathbb{R}^d$ is a subgradient of a *convex* function $f : \mathbb{R}^d \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z-x).$$

Blue is a graph of f(x).

Each red line $x \mapsto f(x_0) + g^T(x - x_0)$ is a global lower bound on f(x).

CSCI-GA 2565 25 / 72

Properties

Definitions

- The set of all subgradients at x is called the **subdifferential**: $\partial f(x)$
- f is subdifferentiable at x if \exists at least one subgradient at x.

For convex functions:

- f is differentiable at x iff $\partial f(x) = {\nabla f(x)}.$
- Subdifferential is always non-empty $(\partial f(x) = \emptyset \implies f$ is not convex)
- x is the global optimum iff $0 \in \partial f(x)$.

For non-convex functions:

• The subdifferential may be an empty set (no global underestimator).

CSCI-GA 2565 26 / 72

Subdifferential of Absolute Value

• Consider f(x) = |x|

• Plot on right shows $\{(x,g) \mid x \in R, g \in \partial f(x)\}$

Subgradient Descent

• Move along the negative subgradient:

$$x^{t+1} = x^t - \eta g$$
 where $g \in \partial f(x^t)$ and $\eta > 0$

• This can increase the objective but gets us closer to the minimizer if f is convex and η is small enough:

$$||x^{t+1}-x^*|| < ||x^t-x^*||$$

- Subgradients don't necessarily converge to zero as we get closer to x^* , so we need decreasing step sizes.
- Subgradient methods are slower than gradient descent.

CSCI-GA 2565 28 / 72

Subgradient descent for SVM

SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) + \lambda ||w||^2.$$

Pegasos: stochastic subgradient descent with step size $\eta_t = 1/(t\lambda)$

```
Input: \lambda > 0. Choose w_1 = 0, t = 0
While termination condition not met
 For j = 1, \ldots, n (assumes data is randomly permuted)
   t = t + 1
   \eta_t = 1/(t\lambda);
   If y_i w_t^T x_i < 1
     w_{t+1} = (1 - \eta_t \lambda) w_t + \eta_t y_i x_i
   Else
     w_{t+1} = (1 - \eta_t \lambda) w_t
```

29 / 72 CSCI-GA 2565

Summary

- Subgradient: generalize gradient for non-differentiable convex functions
- Subgradient "descent":
 - General method for non-smooth functions
 - Simple to implement
 - Slow to converge

CSCI-GA 2565 30 / 72

The Dual Problem

- In addition to subgradient descent, we can directly solve the optimization problem using a Quadratic Programming (QP) solver.
- For convex optimization problem, we can also look into its dual problem.

CSCI-GA 2565 31 / 72

SVM as a Quadratic Program

• The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \leqslant 0 \quad \text{for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \quad \text{for } i = 1, \dots, n$$

- Differentiable objective function
- n+d+1 unknowns and 2n affine constraints.
- A quadratic program that can be solved by any off-the-shelf QP solver.
- Let's get more insights by examining the dual.

32 / 72 CSCI-GA 2565

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$

CSCI-GA 2565 33 / 72

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to
$$f_i(x) \leq 0, i = 1, ..., m$$

Definition

The Lagrangian for this optimization problem is

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

33 / 72

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$

Definition

The Lagrangian for this optimization problem is

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

• λ_i 's are called **Lagrange multipliers** (also called the dual variables).

CSCI-GA 2565 33 / 72

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$

Definition

The Lagrangian for this optimization problem is

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

- λ_i 's are called Lagrange multipliers (also called the dual variables).
- Weighted sum of the objective and constraint functions

CSCI-GA 2565 33 / 72

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$

Definition

The Lagrangian for this optimization problem is

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

- λ_i 's are called **Lagrange multipliers** (also called the **dual variables**).
- Weighted sum of the objective and constraint functions
- ullet Hard constraints o soft penalty (objective function)

CSCI-GA 2565 33 / 72

Definition

The Lagrange dual function is

$$g(\lambda) = \inf_{x} L(x, \lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right)$$

CSCI-GA 2565 34 / 72

Definition

The Lagrange dual function is

$$g(\lambda) = \inf_{x} L(x, \lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right)$$

• $g(\lambda)$ is concave

CSCI-GA 2565 34 / 72

Definition

The Lagrange dual function is

$$g(\lambda) = \inf_{x} L(x, \lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right)$$

- $g(\lambda)$ is concave
- Lower bound property: if $\lambda \succeq 0$, $g(\lambda) \leq p^*$ where p^* is the optimal value of the optimization problem.

34 / 72

Definition

The Lagrange dual function is

$$g(\lambda) = \inf_{x} L(x, \lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right)$$

- \bullet $g(\lambda)$ is concave
- Lower bound property: if $\lambda \succeq 0$, $g(\lambda) \leq p^*$ where p^* is the optimal value of the optimization problem.
- $g(\lambda)$ can be $-\infty$ (uninformative lower bound)

34 / 72

The Primal and the Dual

• For any primal form optimization problem,

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$,

there is a recipe for constructing a corresponding Lagrangian dual problem:

maximize
$$g(\lambda)$$

subject to $\lambda_i \ge 0, i = 1, ..., m$,

• The dual problem is always a convex optimization problem.

CSCI-GA 2565 35 / 72

Weak Duality

We always have **weak duality**: $p^* \geqslant d^*$.

Plot courtesy of Brett Bernstein.

CSCI-GA 2565 36 / 72

Strong Duality

For some problems, we have **strong duality**: $p^* = d^*$.

For convex problems, strong duality is fairly typical.

Plot courtesy of Brett Bernstein.

CSCI-GA 2565 37 / 72

Complementary Slackness

• Assume strong duality. Let x^* be primal optimal and λ^* be dual optimal. Then:

$$f_0(x^*) = g(\lambda^*) = \inf_x L(x, \lambda^*)$$
 (strong duality and definition)
 $\leqslant L(x^*, \lambda^*)$
 $= f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*)$
 $\leqslant f_0(x^*).$

Each term in sum $\sum_{i=1}^{\infty} \lambda_i^* f_i(x^*)$ must actually be 0. That is

$$\lambda_i > 0 \implies f_i(x^*) = 0$$
 and $f_i(x^*) < 0 \implies \lambda_i = 0 \quad \forall i$

This condition is known as complementary slackness.

CSCI-GA 2565 38 / 72

The SVM Dual Problem

SVM Lagrange Multipliers

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$-\xi_i \leqslant 0 \quad \text{for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \quad \text{for } i = 1, \dots, n$$

Lagrange Multiplier	Constraint
λ_i	$-\xi_i \leqslant 0$
α_i	$\left(1-y_{i}\left[w^{T}x_{i}+b\right]\right)-\xi_{i}\leqslant0$

$$L(w, b, \xi, \alpha, \lambda) = \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} \xi_i + \sum_{i=1}^{n} \alpha_i \left(1 - y_i \left[w^T x_i + b \right] - \xi_i \right) + \sum_{i=1}^{n} \lambda_i \left(-\xi_i \right)$$

CSCI-GA 2565 40 / 72

Strong Duality by Slater's Constraint Qualification

The SVM optimization problem:

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

Slater's constraint qualification:

- Convex problem + affine constraints ⇒ strong duality iff problem is feasible
- Do we have a feasible point?
- For SVM, we have strong duality.

41 / 72 CSCI-GA 2565

SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

$$g(\alpha, \lambda) = \inf_{w, b, \xi} L(w, b, \xi, \alpha, \lambda)$$

$$= \inf_{w, b, \xi} \left[\frac{1}{2} w^{T} w + \sum_{i=1}^{n} \xi_{i} \left(\frac{c}{n} - \alpha_{i} - \lambda_{i} \right) + \sum_{i=1}^{n} \alpha_{i} \left(1 - y_{i} \left[w^{T} x_{i} + b \right] \right) \right]$$

$$\partial_w L = 0$$

$$\partial_b L = 0$$

$$\partial_{\xi_i} L = 0$$

42 / 72

SVM Dual Function

- Substituting these conditions back into *L*, the second term disappears.
- First and third terms become

• Putting it together, the dual function is

CSCI-GA 2565 43 / 72

SVM Dual Problem

The dual function is

$$g(\alpha, \lambda) = \begin{cases} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_j^T x_i & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ -\infty & \text{otherwise.} \end{cases}$$

• The dual problem is $\sup_{\alpha,\lambda \succeq 0} g(\alpha,\lambda)$:

$$\sup_{\alpha,\lambda} \qquad \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} + \lambda_{i} = \frac{c}{n} \quad \alpha_{i}, \lambda_{i} \geqslant 0, \ i = 1, \dots, n$$

44 / 72

KKT Conditions

For convex problems, if Slater's condition is satisfied, then KKT conditions provide necessary and sufficient conditions for the optimal solution.

- Primal feasibility: $f_i(x) \leq 0 \quad \forall i$
- Dual feasibility: $\lambda \succeq 0$
- Complementary slackness: $\lambda_i f_i(x) = 0$
- First-order condition:

$$\frac{\partial}{\partial x}L(x,\lambda)=0$$

CSCI-GA 2565 46 / 72

The SVM Dual Solution

• We found the SVM dual problem can be written as:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Given solution α^* to dual, primal solution is $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$.
- The solution is in the space spanned by the inputs.
- Note $\alpha_i^* \in [0, \frac{c}{n}]$. So c controls max weight on each example. (Robustness!)
 - What's the relation between c and regularization?

CSCI-GA 2565 47 / 72

Complementary Slackness Conditions

• Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier	Constraint
λ_i	$-\xi_i \leqslant 0$
α_i	$(1-y_if(x_i))-\xi_i\leqslant 0$

- Recall first order condition $\nabla_{\xi_i} L = 0$ gave us $\lambda_i^* = \frac{c}{\pi} \alpha_i^*$.
- By strong duality, we must have **complementary slackness**:

$$\alpha_i^* \left(1 - y_i f^*(x_i) - \xi_i^* \right) = 0$$
$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^* \right) \xi_i^* = 0$$

CSCI-GA 2565 48 / 72

Consequences of Complementary Slackness

By strong duality, we must have complementary slackness.

$$\alpha_i^* \left(1 - y_i f^*(x_i) - \xi_i^*\right) = 0$$
$$\left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0$$

Recall "slack variable" $\xi_i^* = \max(0, 1 - y_i f^*(x_i))$ is the hinge loss on (x_i, y_i) .

- If $y_i f^*(x_i) > 1$ then the margin loss is $\xi_i^* = 0$, and we get $\alpha_i^* = 0$.
- If $y_i f^*(x_i) < 1$ then the margin loss is $\xi_i^* > 0$, so $\alpha_i^* = \frac{c}{n}$.
- If $\alpha_i^* = 0$, then $\xi_i^* = 0$, which implies no loss, so $y_i f^*(x) \ge 1$.
- If $\alpha_i^* \in (0, \frac{c}{n})$, then $\xi_i^* = 0$, which implies $1 y_i f^*(x_i) = 0$.

49 / 72

Complementary Slackness Results: Summary

If α^* is a solution to the dual problem, then primal solution is

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$
 where $\alpha_i^* \in [0, \frac{c}{n}]$.

Relation between margin and example weights (α_i 's):

$$\alpha_{i}^{*} = 0 \implies y_{i}f^{*}(x_{i}) \geq 1$$

$$\alpha_{i}^{*} \in \left(0, \frac{c}{n}\right) \implies y_{i}f^{*}(x_{i}) = 1$$

$$\alpha_{i}^{*} = \frac{c}{n} \implies y_{i}f^{*}(x_{i}) \leq 1$$

$$y_{i}f^{*}(x_{i}) < 1 \implies \alpha_{i}^{*} = \frac{c}{n}$$

$$y_{i}f^{*}(x_{i}) = 1 \implies \alpha_{i}^{*} \in \left[0, \frac{c}{n}\right]$$

$$y_{i}f^{*}(x_{i}) > 1 \implies \alpha_{i}^{*} = 0$$

CSCI-GA 2565

Support Vectors

• If α^* is a solution to the dual problem, then primal solution is

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$

with $\alpha_i^* \in [0, \frac{c}{n}]$.

- The x_i 's corresponding to $\alpha_i^* > 0$ are called **support vectors**.
- Few margin errors or "on the margin" examples \implies sparsity in input examples.

51 / 72 CSCI-GA 2565

Dual Problem: Dependence on x through inner products

SVM Dual Problem:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Note that all dependence on inputs x_i and x_j is through their inner product: $\langle x_i, x_i \rangle = x_i^T x_i$.
- We can replace $x_i^T x_i$ by other products...
- This is a "kernelized" objective function.

52 / 72 CSCI-GA 2565

Feature Maps

The Input Space ${\mathfrak X}$

- ullet Our general learning theory setup: no assumptions about ${\mathcal X}$
- But $\mathcal{X} = \mathbb{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines

CSCI-GA 2565 54 / 72

The Input Space \mathfrak{X}

- ullet Our general learning theory setup: no assumptions about χ
- But $\mathcal{X} = \mathbb{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
- Our hypothesis space for these was all affine functions on R^d :

$$\mathcal{F} = \left\{ x \mapsto w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

54 / 72

The Input Space $\mathfrak X$

- ullet Our general learning theory setup: no assumptions about ${\mathfrak X}$
- But $\mathcal{X} = \mathbb{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
- Our hypothesis space for these was all affine functions on R^d :

$$\mathcal{F} = \left\{ x \mapsto w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

• What if we want to do prediction on inputs not natively in R^d ?

CSCI-GA 2565 54 / 72

The Input Space $\mathfrak X$

- Often want to use inputs not natively in R^d:
 - Text documents
 - Image files
 - Sound recordings
 - DNA sequences

CSCI-GA 2565 55 / 72

The Input Space $\mathfrak X$

- Often want to use inputs not natively in R^d:
 - Text documents
 - Image files
 - Sound recordings
 - DNA sequences
- They may be represented in numbers, but...
- The *i*th entry of each sequence should have the same "meaning"
- All the sequences should have the same length

CSCI-GA 2565 55 / 72

Feature Extraction

Definition

Mapping an input from \mathfrak{X} to a vector in \mathbb{R}^d is called **feature extraction** or **featurization**.

Raw Input

Feature Vector

$$\mathcal{X} \xrightarrow{x} \overset{\text{Feature}}{\Longrightarrow} \frac{\phi(x)}{\text{Extraction}}$$

Linear Models with Explicit Feature Map

- Input space: \mathfrak{X} (no assumptions)
- Introduce feature map $\phi: \mathcal{X} \to \mathbb{R}^d$
- The feature map maps into the feature space R^d .

CSCI-GA 2565 57 / 72

Linear Models with Explicit Feature Map

- Input space: \mathfrak{X} (no assumptions)
- Introduce feature map $\phi: \mathcal{X} \to \mathbb{R}^d$
- The feature map maps into the feature space R^d.
- Hypothesis space of affine functions on feature space:

$$\mathcal{F} = \left\{ x \mapsto w^T \phi(x) + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

57 / 72 CSCI-GA 2565

Geometric Example: Two class problem, nonlinear boundary

- With identity feature map $\phi(x) = (x_1, x_2)$ and linear models, can't separate regions
- With appropriate featurization $\phi(x) = (x_1, x_2, x_1^2 + x_2^2)$, becomes linearly separable .

• Video: http://youtu.be/3liCbRZPrZA

CSCI-GA 2565 58 / 72

Expressivity of Hypothesis Space

- For linear models, to grow the hypothesis spaces, we must add features.
- Sometimes we say a larger hypothesis is more expressive.
 - (can fit more relationships between input and action)
- Many ways to create new features.

CSCI-GA 2565 59 / 72

Handling Nonlinearity with Linear Methods

Example Task: Predicting Health

- General Philosophy: Extract every feature that might be relevant
- Features for medical diagnosis
 - height
 - weight
 - body temperature
 - blood pressure
 - etc...

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Feature Issues for Linear Predictors

- For linear predictors, it's important how features are added
 - The relation between a feature and the label may not be linear
 - There may be complex dependence among features

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Feature Issues for Linear Predictors

- For linear predictors, it's important how features are added
 - The relation between a feature and the label may not be linear
 - There may be complex dependence among features
- Three types of nonlinearities can cause problems:
 - Non-monotonicity
 - Saturation
 - Interactions between features

From Percy Liang's "Lecture 3" slides from Stanford's CS221. Autumn 2014.

Non-monotonicity: The Issue

- Feature Map: $\phi(x) = [1, temperature(x)]$
- Action: Predict health score $y \in R$ (positive is good)
- Hypothesis Space $\mathcal{F}=\{affine functions of temperature\}$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Non-monotonicity: The Issue

- Feature Map: $\phi(x) = [1, temperature(x)]$
- Action: Predict health score $y \in R$ (positive is good)
- Hypothesis Space \mathcal{F} ={affine functions of temperature}
- Issue:
 - Health is not an affine function of temperature.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Non-monotonicity: The Issue

- Feature Map: $\phi(x) = [1, temperature(x)]$
- Action: Predict health score $y \in R$ (positive is good)
- Hypothesis Space \mathcal{F} ={affine functions of temperature}
- Issue:
 - Health is not an affine function of temperature.
 - Affine function can either say
 - Very high is bad and very low is good, or
 - Very low is bad and very high is good,
 - But here, both extremes are bad.

From Percy Liang's "Lecture 3" slides from Stanford's CS221. Autumn 2014.

Non-monotonicity: Solution 1

• Transform the input:

$$\phi(x) = \left[1, \{\text{temperature(x)-37}\}^2\right],$$

where 37 is "normal" temperature in Celsius.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Non-monotonicity: Solution 1

• Transform the input:

$$\phi(x) = \left[1, \{\text{temperature}(x) - 37\}^2\right],$$

where 37 is "normal" temperature in Celsius.

- Ok, but requires manually-specified domain knowledge
 - Do we really need that?
 - What does $w^T \phi(x)$ look like?

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Non-monotonicity: Solution 2

• Think less, put in more:

$$\phi(x) = \left[1, \text{temperature}(x), \{\text{temperature}(x)\}^2\right].$$

More expressive than Solution 1.

General Rule

Features should be simple building blocks that can be pieced together.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

• Setting: Find products relevant to user's query

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

• Setting: Find products relevant to user's query

• Input: Product x

• Output: Score the relevance of x to user's query

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

- Setting: Find products relevant to user's query
- Input: Product x
- Output: Score the relevance of x to user's query
- Feature Map:

$$\phi(x) = [1, N(x)],$$

where N(x) = number of people who bought x.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

- Setting: Find products relevant to user's query
- Input: Product x
- Output: Score the relevance of x to user's query
- Feature Map:

$$\phi(x) = [1, N(x)],$$

where N(x) = number of people who bought x.

• We expect a monotonic relationship between N(x) and relevance, but also expect diminishing return.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

$$\phi(x) = [1, \log\{1 + N(x)\}]$$

 \bullet $\log\left(\cdot\right)$ good for values with large dynamic ranges

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

$$\phi(x) = [1, \log\{1 + N(x)\}]$$

- ullet log (\cdot) good for values with large dynamic ranges
- Discretization (a discontinuous transformation):

$$\phi(x) = (1[0 \leqslant N(x) < 10], 1[10 \leqslant N(x) < 100], \ldots)$$

Small buckets allow quite flexible relationship

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Interactions: The Issue

- Input: Patient information x
- Action: Health score $y \in R$ (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Interactions: The Issue

- Input: Patient information x
- Action: Health score $y \in R$ (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

• Issue: It's the weight *relative* to the height that's important.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Interactions: The Issue

- Input: Patient information x
- Action: Health score $y \in R$ (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

- Issue: It's the weight *relative* to the height that's important.
- Impossible to get with these features and a linear classifier.
- Need some interaction between height and weight.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula:

$$\mathsf{weight}(\mathsf{kg}) = 52 + 1.9 \left[\mathsf{height}(\mathsf{in}) - 60 \right]$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula:

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52 + 1.9 [h(x) - 60] - w(x))^{2}$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula:

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52 + 1.9 [h(x) - 60] - w(x))^{2}$$

WolframAlpha for complicated Mathematics:

$$f(x) = 3.61h(x)^2 - 3.8h(x)w(x) - 235.6h(x) + w(x)^2 + 124w(x) + 3844$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

• Just include all second order features:

$$\phi(x) = \left[1, h(x), w(x), h(x)^2, w(x)^2, \underbrace{h(x)w(x)}_{\text{cross term}}\right]$$

More flexible, no Google, no WolframAlpha.

General Principle

Simpler building blocks replace a single "smart" feature.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

CSCI-GA 2565 70 / 72

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

• Suppose we start with $x = (1, x_1, ..., x_d) \in \mathbb{R}^{d+1} = \mathfrak{X}$.

CSCI-GA 2565 71 / 72

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

- Suppose we start with $x = (1, x_1, \dots, x_d) \in \mathbb{R}^{d+1} = \mathfrak{X}$.
- Consider adding all **monomials** of degree M: $x_1^{p_1} \cdots x_d^{p_d}$, with $p_1 + \cdots + p_d = M$.
 - Monomials with degree 2 in 2D space: x_1^2 , x_2^2 , x_1x_2

CSCI-GA 2565 71 / 72

Big Feature Spaces

This leads to extremely large data matrices

• For d = 40 and M = 8, we get 314457495 features.

CSCI-GA 2565 72 / 72

Big Feature Spaces

This leads to extremely large data matrices

• For d = 40 and M = 8, we get 314457495 features.

Very large feature spaces have two potential issues:

- Overfitting
- Memory and computational costs

CSCI-GA 2565 72 / 72

Big Feature Spaces

This leads to extremely large data matrices

• For d = 40 and M = 8, we get 314457495 features.

Very large feature spaces have two potential issues:

- Overfitting
- Memory and computational costs

Solutions:

- Overfitting we handle with regularization.
- **Kernel methods** can help with memory and computational costs when we go to high (or infinite) dimensional spaces.

CSCI-GA 2565 72 / 72