Assignment 1 - Thomas Boyko - 30191728

1. Given $x \in \mathbb{R}$ define the set of rational numbers $C_x = \{r \in \mathbb{Q} : r < x\}$. Prove that

$$x = \sup C_x$$
.

More precisely, prove that

(a) C_x is non-empty and bounded above, and x is an upper bound of C_x .

Proof. Take x - 1 < x, so that $x \in C_x$. Then by the density of the rationals in the reals (Rudin theorem 1.20), there must exist some $q \in \mathbb{Q}$ so that x - 1 < q < x. So $q \in C_x$ and C_x is nonempty.

Of course x is an upper bound of C_x since for any $r \in C_x$, r < x by definition of C_x .

(b) x is the least upper bound of C_x .

Proof. Suppose by way of contradiction that y < x is the least upper bound for C_x . By theorem 1.20 from Rudin, the density of \mathbb{Q} in \mathbb{R} , we know that since y < x, there must exist some $q \in \mathbb{Q}$, where y < q < x. But q < x so $q \in C_x$, and since q > y, y cannot be an upper bound. And we have found our contradiction. So x is the least upper bound for C_x .

2. A sequence of rational numbers $\{r_j\}_{j=1}^{\infty} = \{r_1, r_2, r_3, \ldots\}$ is said to be a Cauchy sequence if given any $n \in \mathbb{N}$ there exists $N \in \mathbb{N}$ such that if $j, k \geq N$ then $|x_j - x_k| < \frac{1}{n}$.

Let C denote the set of all Cauchy sequences in \mathbb{Q} , if $\mathbf{r} = \{r_j\}_{j=1}^{\infty}$ and $\mathbf{q} = \{q_k\}_{k=1}^{\infty}$ are in C, we say that \mathbf{r} is equivalent to \mathbf{q} and write $\mathbf{r} \sim \mathbf{q}$ if the sequence $\mathbf{r} - \mathbf{q} = \{r_j - q_j\}_{j=1}^{\infty}$ converges to zero, that is, if for every $n \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that

$$j \ge N \implies |r_j - q_j| < \frac{1}{n}.$$

Prove that \sim is an equivalence relation in C. That is, prove that the relation is Reflexive, Symmetric, Transitive.

Proof. (a) Reflexive:

Let **r** be a Cauchy sequence, and $n \in \mathbb{N}$. Then for any $j \ge n$, $|r_j - r_j| = 0 < 1/n$ since n > 0. **r** ~ **r** and ~ is reflexive.

(b) Symmetric:

Let $\mathbf{r} \sim \mathbf{q}$ be Cauchy sequences. Then for any $n \in \mathbb{N}$, there exists some $N \in \mathbb{N}$ such that $j \geq N \implies |r_j - q_j| < \frac{1}{n}$.

But
$$|r_i - q_i| = |-(r_i - q_i)| = |q_i - r_i| < \frac{1}{n}$$

So $\mathbf{q} \sim \mathbf{r}$ and \sim is symmetric.

(c) Transitive

Take $n \in \mathbb{N}$. Let $\mathbf{r} \sim \mathbf{q}$, $\mathbf{q} \sim \mathbf{s}$. Then for $2n \in \mathbb{N}$, there exists some $N_1, N_2 \in \mathbb{N}$, so that (Letting $N = \max\{N_1, N_2\}$ so that $N \geq N_1$ and $N \geq N_2$), we can write:

$$j \ge N \implies |r_j - q_j| < \frac{1}{2n}$$
 $j \ge N \implies |q_j - q_j| < \frac{1}{2n}$

$$j \ge N \implies |q_j - s_j| < \frac{1}{2n}$$

And by the triangle inequality,

$$|r_j - s_j| = |(r_j - q_j) + (q_- s_j)| \le |(r_j - q_j)| + |(q_- s_j)| < \frac{1}{2n} + \frac{1}{2n} = \frac{2}{2n} = \frac{1}{n}.$$

In particular, $|r_j - s_j| < \frac{1}{n}$ and $\mathbf{r} \sim \mathbf{s}$, hence \sim is transitive.