Discrete Mathematics

Review - Chapter 2, Basic Structures: Sets, Functions, Sequences, Sums, and Matrices Part 1

Sets

- A set is an unordered collection of objects (= elements, members).
 - $a \in A$: a is a member of the set A.
 - $a \notin A : a$ is not a member of the set A

- Roaster Method
 - V = {a,e,i,o,u} vowels in English alphabet
 - $O = \{1,3,5,7,9\}$ odd positive integers less than 100
- Set-Builder Notation
 - $S = \{x \mid x \text{ is a positive integer less than } 100\}$
 - $\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = p/q, \text{ for some positive integers } p,q\}$ Positive rational numbers

Set properties

- Two sets are equal if and only if they have the same elements.
 - $\forall x (x \in A \leftrightarrow x \in B)$ or $\forall x [(x \in A \rightarrow x \in B) \land (x \in B \rightarrow x \in A)]$
 - $A \subseteq B$ and $B \subseteq A$
- The set A is a *subset* of B, if and only if every element of A is also an element of B.
 - $\forall x (x \in A \rightarrow x \in B)$ or $A \subseteq B$
 - $\emptyset \subseteq S$ and $S \subseteq S$ for every set S.
- If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subseteq B$.
 - $\forall x(x \in A \rightarrow x \in B) \land \exists x(x \in B \land x \notin A)$
- The *cardinality* of a finite set A, denoted by |A|, is the number of (distinct) elements of A.
- power set P(A) of A is the set of all subsets of a set A
 - Given $A = \{a,b\}$ $P(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$
 - |A| = 2, |P(A)| = 4

Set operations

- Union
- Intersection
- Complement
- Difference
- Symmetric Difference

$$A \cup B = \{x | x \in A \lor x \in B\}$$

$$A \cap B = \{x | x \in A \land x \in B\}$$

$$\bar{A} = \{ x \in U | x \notin A \} = U - A$$

$$A - B = \{x | x \in A \land x \notin B\} = A \cap \overline{B}$$

$$A \oplus B = (A - B) \cup (B - A)$$

• Note that $|A \cup B| = |A| + |B| - |A \cap B|$

Set Identities

Name	Identity			
Identity laws	$A \cup \emptyset = A$	$A \cap U = A$		
Domination laws	$A \cup U = U$	$A \cap \emptyset = \emptyset$		
Idempotent laws	$A \cup A = A$	$A \cap A = A$		
Complementation laws	$\left(\overline{\bar{A}}\right) = A$			
Commutative laws	$A \cup B = B \cup A$	$A \cap B = B \cap A$		
Associative laws	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$			
Distributive laws	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$			
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$		
Absorption laws	$A \cup (A \cap B) = A$	$A\cap (A\cup B)=A$		
Complement laws	$A \cup \overline{A} = U$	$A \cap \overline{A} = \emptyset$		

Proving Set Identities

Different ways to prove set identities:

- 1. Subset method. Prove that each set (side of the identity) is a subset of the other.
- 2. Membership Tables. Verify that elements in the same combination of sets always either belong or do not belong to the same side of the identity. Use 1 to indicate it is in the set and a 0 to indicate that it is not
- 3. Apply existing identities. Start with one side, transform it into the other side using a sequence of steps by applying an established identity

Membership Table

Example: Construct a membership table to show that the distributive law holds.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

A	В	С	<i>B</i> ∩ <i>C</i>	<i>A</i> ∪ <i>(B</i> ∩ <i>C)</i>	A ∪ B	A ∪ C	<i>(A∪B)</i> ∩ <i>(A∪C)</i>

Proof of Second De Morgan Law₁

Example: Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

We prove this identity by showing that:

1)
$$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$$
 and

2)
$$\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$$

Proof of Second De Morgan Law 2

These steps show that: $\overline{A \cap B} \subset \overline{A} \cup \overline{B}$

$$x \in A \cap B$$

 $x \notin A \cap B$

$$\neg ((x \in A) \land (x \in B))$$

$$\neg(x \in A) \lor \neg(x \in B)$$

$$x \notin A \lor x \notin B$$

$$x \in \overline{A} \lor x \in \overline{B}$$

$$x \in \overline{A} \cup \overline{B}$$

by assumption

defn. of complement

 $\neg((x \in A) \land (x \in B))$ by define of intersection

1st De Morgan law for Prop Logic

defn. of negation

defn. of complement

by defn. of union

Proof of Second De Morgan Law₃

These steps show that: $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

$$x \in \overline{A} \cup \overline{B}$$

$$\left(x \in \overline{A}\right) \vee \left(x \in \overline{B}\right)$$

$$(x \notin A) \lor (x \notin B)$$

$$\neg(x \in A) \lor \neg(x \in B)$$

$$\neg ((x \in A) \land (x \in B))$$

$$\neg(x \in A \cap B)$$

$$x \in \overline{A \cap B}$$

by assumption

by defn. of union

defn. of complement

defn. of negation

1st De Morgan law for Prop Logic

defn. of intersection

defn. of complement

Set-Builder Notation: Second De Morgan Law

$$\overline{A \cap B} = x \in \overline{A \cap B}$$
 by defn. of complement
$$= \left\{ x \mid \neg (x \in (A \cap B)) \right\} \text{ by defn. of does not belong symbol}$$

$$= \left\{ x \mid \neg (x \in A \land x \in B) \right\} \text{ by defn. of intersection}$$

$$= \left\{ x \mid \neg (x \in A) \lor \neg (x \in B) \right\} \text{ by 1st De Morgan law for}$$

$$= \left\{ x \mid x \notin A \lor x \notin B \right\} \text{ by defn. of not belong symbol}$$

$$= \left\{ x \mid x \in \overline{A} \lor x \in \overline{B} \right\} \text{ by defn. of complement}$$

$$= \left\{ x \mid x \in \overline{A} \lor \overline{B} \right\} \text{ by defn. of union}$$

$$= \overline{A} \cup \overline{B} \text{ by meaning of notation}$$

Exercise

Let A, B, and C be sets. Show that

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

Solution?

$$\overline{A \cup (B \cap C)} =$$

Functions₁

A function f from A to B, denoted $f: A \rightarrow B$ is an assignment of each element of A to exactly one element of B. (Nonempty set A and B)

Mapping:
$$\forall x [x \in A \rightarrow \exists y [y \in B \land (x, y) \in f]]$$

Uniqueness: $\forall x, y_1, y_2 [[(x, y_1) \in f \land (x, y_2) \in f] \rightarrow y_1 = y_2]$

A: domain of f B: codomain of f

 \boldsymbol{a} : preimage of \boldsymbol{b} : image of \boldsymbol{a} under \boldsymbol{f}

One-to-One and Onto functions

Injections	Surjections	Bijections
One-to-one	Onto	One-to-One correspondence
f(a1) = f(a2) implies that $a1 = a2$ for all $a1$ and $a2$ in the domain of f	for every element $b \in B$ there is an element $a \in A$ with $f(a) = b$	Both one-to-one and onto
A B	A B	A B

Inverse Functions 1

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted f^{-1} is the function from B to A defined as $f^{-1}(y) = x$ iff f(x) = y No inverse exists unless f is a bijection. Why?

Composition₁

Definition: Let $g: A \rightarrow B$ and $f: B \rightarrow C$,

The *composition of f with g*, denoted $f \circ g$ is the function from A to C defined by $f \circ g(x) = f(g(x))$

