CS6190: Probabilistic Modeling Homework 0

Gopal Menon

13 January, 2018

1. Let X and Y be continuous real-valued random variables. Prove the following:

(a)
$$E[E[X|Y]] = E[X]$$

$$\begin{split} E\left[E\left[X|Y\right]\right] &= \int_{-\infty}^{\infty} E\left[X|Y=y\right] p_Y(y) dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \; p_{X|Y=y}(x) dx \; p_Y(y) dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \; p_{X|Y=y}(x) p_Y(y) dx dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \; p_{XY}(x,y) dx dy \\ &= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} p_{XY}(x,y) dy \; dx \\ &= \int_{-\infty}^{\infty} x \; p_X(x) dx \\ &= E\left[X\right] \end{split}$$

Here $p_X(x)$, $p_Y(y)$ and $p_{X|Y=y}(x)$ are the probability density functions for X, Y, and the conditional probability of X given the value of Y. $p_{XY}(x,y)$ is the joint probability distribution function of X and Y. I needed to look up the proof [1] as I was not aware that the first step shown above could be done and due to this, I was getting an extra y in the final result. The result I got before I looked up the proof was yE[X].

(b)
$$Var(X) = E[Var(X|Y)] + Var(E[X|Y])$$

$$\begin{split} E\left[Var(X|Y)\right] + Var(E\left[X|Y\right]) &= E\left[E\left[X^{2}|Y\right] - E\left[X|Y\right]E\left[X|Y\right]\right] \\ &+ E\left[E\left[X|Y\right]E\left[X|Y\right]\right] - E\left[E\left[X|Y\right]\right]E\left[E\left[X|Y\right]\right] \\ &= E\left[E\left[X^{2}|Y\right]\right] - E\left[E\left[X|Y\right]E\left[X|Y\right]\right] \\ &+ E\left[E\left[X|Y\right]E\left[X|Y\right]\right] - E\left[X\right]E\left[X\right] \\ &= E\left[X^{2}\right] - E\left[X\right]E\left[X\right] \\ &= Var(X) \end{split}$$

Before I worked out the solution above, I was using the definition $Var(X) = E[X^2] - \mu_X^2$ and that did not help. After I realized that $\mu_X = E[X]$, the solution fell in place.

2. Consider random variables X and Y with joint pdf

$$p(x,y) = \begin{cases} x+y, & \text{for } 0 \le x \le 1, \text{and } 0 \le y \le 1\\ 0, & \text{otherwise} \end{cases}$$

(a) What is the marginal pdf p(x)?

$$\begin{split} p(x) &= \int_{-\infty}^{\infty} p(x,y) dy \\ &= \begin{cases} \int_{0}^{1} (x+y) dy, \text{for } 0 \leq x \leq 1, \text{and } 0 \leq y \leq 1 \\ 0, \text{otherwise} \end{cases} \\ &= \begin{cases} \left(\frac{1}{2}x^2 + xy\right) \Big|_{0}^{1}, \text{for } 0 \leq y \leq 1 \\ 0, \text{otherwise} \end{cases} \\ &= \begin{cases} \frac{1}{2} + y, \text{for } 0 \leq y \leq 1 \\ 0, \text{otherwise} \end{cases} \end{split}$$

(b) What is the conditional pdf p(y|x)?

$$\begin{split} p(y|x) &= \frac{p(x,y)}{p(x)} \\ &= \begin{cases} \frac{x+y}{\frac{1}{2}+y}, \text{for } 0 \leq x \leq 1, \text{and } 0 \leq y \leq 1 \\ 0, \text{otherwise} \end{cases} \end{split}$$

- (c) What is the conditional expectation E[Y|X]?
- (d) What is the covariance Cov(X, Y)?

References

[1] Conditional Expectation, www.statlect.com/fundamentals-of-probability/conditional-expectation.