Abstract Algebra Homework 1

Zachary Meyner

2. Which of the following multiplication tables defined on the set $G = \{a, b, c, d\}$ form a group? Support your answer in each case.

Theorem 1. Let $a, b, c \in G$. Given a is the Identity element of the set G, then $a \circ (b \circ c) = (a \circ b) \circ c$, $\forall b, c \in G$.

Proof. Let $d \in G$ with $b \circ c = d$. Then $a \circ (b \circ c) \implies a \circ d = d$. We also have $(a \circ b) \circ c \implies b \circ c = d$. $\therefore a \circ (b \circ c) = (a \circ b) \circ c$.

(b) Closure: Every element in the Cayley Table is in the set G, so it is closed.

c	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	a	b
Closure: Every element in the Cayley Table is in the set G, so it is closed.				

Identity: taking any element and multiplying it by a returns that element. So a is the indentity element.

Inverse: A diagonal is formed in the table with the identity

element a, so every element is its own inverse. Associative: Because a is the identity element it is associative

Associative: Because a is the identity element it is associative with every set of two elements by Theorem 1. Because every

element $p_{ij} = p_{ji}$ it is commutative as well, so only one permutation of the elements b, c, d needs to be tested for associativity. We have

 $(b \circ c) \circ d = a$, and $b \circ (c \circ d) = a$, so $(b \circ c) \circ d = b \circ (c \circ d)$.

Therefore this Cayley Table is a group.

d c

This Cayley Table is the same as the Cayley Table for the group $(\mathbb{Z}_4,+)$ where $a=0,\ b=1,\ c=2,\ d=3,$ so This Cayley Table must be a group.

The identity element of this Cayley Table is a. There is no inverse for d where $d \circ p = a$ in this Cayley Table. Therefore this Cayley Table is not a Group.

13. Show that $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ is a group under the operation of multiplication. Let $a, b, c \in \mathbb{R}^*$

Closure: Multiplying two real numbers will always return result in a real number.

Associativity: The Field Axioms of real numbers state a * (b * c) = (a * b) * c, so it is Associative as well.

Identity: The multiplicative identity for \mathbb{R}^* is 1 because $a \cdot 1 = a \ \forall a \in \mathbb{R}^*$.

Inverse: The multiplicative inverse for \mathbb{R}^* is $\frac{1}{a}$ because $a \cdot \frac{1}{a} = \frac{a \cdot 1}{a} = \frac{a}{a} = 1 \ \forall a \in \mathbb{R}^*$.

27. Prove that the inverse of $g_1g_2 \dots g_n$ is $g_n^{-1}g_{n-1}^{-1}\dots g_1^{-1}$.

Proof by induction. Base Case (n = 1):

$$g_1g_1^{-1} = e$$

Inductive Hypothesis (n = k):

= e

$$(g_1g_2\dots g_k)(g_1^{-1}g_2^{-1}\dots g_k^{-1})=e$$

Inductive Step (n = k + 1) (WTS: $(g_1 g_2 \dots g_{k+1})(g_1^{-1} g_2^{-1} \dots g_{k+1}^{-1}) = e$)

$$(g_1g_2 \dots g_{k+1})(g_1^{-1}g_2^{-1} \dots g_{k+1}^{-1})$$

$$= (g_1g_2 \dots g_kg_{k+1})(g_1^{-1}g_2^{-1} \dots g_k^{-1}g_{k+1}^{-1})$$

$$= (g_1g_2 \dots g_k)(g_{k+1})(g_1^{-1}g_2^{-1} \dots g_k^{-1})(g_{k+1}^{-1}) \qquad \text{(Associative Property)}$$

$$= (g_1g_2 \dots g_k)(g_1^{-1}g_2^{-1} \dots g_k^{-1})(g_{k+1}g_{k+1}^{-1}) \qquad \text{(Commutative Property)}$$

$$= (e)(g_{k+1}g_{k+1}^{-1}) \qquad \text{(Inductive Hypothesis)}$$

$$= g_{k+1}g_{k+1}^{-1}$$