Math H104 Homework 3

Aniruddh V.

September 2023

Exercise 16 1

Solution We have the following commutative diagram:

$$Z_{1} \longleftarrow^{\phi_{1}} Y_{1} \twoheadleftarrow^{\chi_{1}} X_{1}$$

$$\downarrow^{\gamma}$$

$$Z_{2} \longleftarrow^{\phi_{2}} Y_{2} \longleftarrow^{\chi_{2}} X_{2}$$

Since χ_1 is injective, it has a left inverse χ_1^{-1} such that $\chi_1^{-1} \circ \chi_1 = id_{X_1}$. Similarly, since ϕ_2 is surjective, it has a right inverse ϕ_2^{-1} such that $\phi_2 \circ \phi_2^{-1} = id_{Z_2}$. Now suppose there are β_1 and β_2 such that the diagram below commutes.

$$Z_{1} \longleftarrow^{\phi_{1}} Y_{1} \twoheadleftarrow^{\chi_{1}} X_{1}$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta_{1}} \qquad \downarrow^{\beta_{2}} \qquad \downarrow^{\gamma}$$

$$Z_{2} \longleftarrow^{\phi_{2}} Y_{2} \longleftarrow^{\chi_{2}} X_{2}$$

With the inverses added in, the diagram looks as follows:

From these diagrams we can read off the following relations: $\alpha \circ \phi_1 = \phi_2 \circ \beta_1$ and $\beta_2 \circ \chi_1 = \chi_2 \circ \gamma$. Now using applying the left and right inverses gives $\beta_1 = \phi_2^{-1} \circ \alpha \circ \phi_1$ and $\beta_2 = \chi_2 \circ \gamma \circ \chi_1^{-1}$. But by the commutativity of the first diagram, we have $\alpha \circ \phi_1 \circ \chi_1 = \phi_2 \circ \chi_2 \circ \gamma$, and applying inverses gives $\phi_2^{-1} \circ \alpha \circ \phi_1 = \chi_2 \circ \gamma \circ \chi_1^{-1}$. But then we have

$$\beta_1 = \phi_2^{-1} \circ \alpha \circ \phi_1 = \chi_2 \circ \gamma \circ \chi_1^{-1} = \beta_2$$

so $\beta_1 = \beta_2 := \beta$ is unique, as desired.

Exercise 27 2

Solution The functions from $\mathscr{PP}X \to \mathscr{PP}Y$ are $f_{**}, f_{!*}, f_{*!}, f_{!!}$ and f^{**} .

3 Exercise 33

Solution The properties that are inherited by $\phi^* \rho$ are reflexivity, transitivity, and symmetricity

4 Exercise 35

Solution We want to show the following diagram commutes:

Equivalently, we must show that for any set $A \in \mathscr{P}X$, $g_*RA \subseteq Rf_*A$. The set g_*RA is given by

$$g_*RA = \{g(y) : \rho(x,y) \forall x \in A\}$$

and the set Rf_*A is given by

$$Rf_*A = \{y' : \rho'(f(x), y') \forall x \in A\}$$

But since (f,g) is a morphism of binary relations, we have $(f,g)^*\rho'=\rho'\circ (f,g)$, so if $\rho(x,y)$ holds, then so does $\rho'(f(x),g(y))$. Thus, if $y'=g(y)\in g_*RA$, then $y'\in Rf_*A$, and we have $g_*R\subseteq Rf_*$.

Now consider the following diagram:

We want to show that for any $B \in \mathscr{P}Y$, $f_*LB \subseteq Lg*B$. The set f_*LB is given by

$$f_*LB = \{ f(x) : \rho(x, y) \forall y \in B \}$$

and the set Lg_*B is given by

$$Lq_*B = \{x' : \rho'(x', q(y)) \forall y \in B\}$$

But (f,g) is a morphism of binary relations, so $(f,g)^*\rho'=\rho'\circ (f,g)$, so if $\rho(x,y)$ holds, then so does $\rho'(f(x),g(y))$. Thus, if $x'=f(x)\in f_*LB$, then $x'\in Lg_*B$, and we have $f_*L\subseteq Lg_*$.

5 Exercise 39

The relations \leq and \geq are both antisymmetric transitive reflexive relations, in other words they are order relations.

6 Exercise 40

Solution Suppose $\rho \in \text{Rel}_2(X)$ and $\rho \Longrightarrow \leq$. This means that if $\rho(x, x')$, then $\langle x | \subseteq \langle x' |$. Clearly $\langle x | \subseteq \langle x |$, so $\rho(x, x)$ must hold, and ρ must be reflexive. Next, if $\langle x | \subseteq \langle x' |$ and $\langle x' | \subseteq \langle x'' |$, then $\langle x | \subseteq \langle x'' |$, so $\rho(x, x'), \rho(x', x'') \Longrightarrow \rho(x, x'')$, and so ρ is transitive. Finally, ρ must be weakly antisymmetric, since if $\langle x | \subseteq \langle x' |$ and $\langle x' | \subseteq \langle x |$, then $\langle x | = \langle x' |$. Thus ρ must be an order relation.

7 Exercise 41

Solution Suppose $\rho \in \text{Rel}_2(X)$ and $\leq \Longrightarrow \rho$. This means that if $\langle x | \subseteq \langle x' |$, then $\rho(x, x')$ holds. But \subseteq is an order relation, so then ρ must also be an order relation.

8 Exercise 43

Solution Let $y \in \cap R_* \mathscr{A}$. Then for all $A \in \mathscr{A}$, we have $y \in R_* A$, so clearly there is $x \in X$ such that $\rho(x,y)$ holds for each $x \in A \in \mathscr{A}$ so clearly $x \in \cup \mathscr{A}$. Thus $y \in R(\cup \mathscr{A})$. On the other hand, suppose $y \in R(\cup \mathscr{A})$. Then for all $x \in A \in \mathscr{A}$, the relation $\rho(x,y)$ holds, so for all $A \in \mathscr{A}$, $y \in R_* A$, and thus $y \in \cap R_* \mathscr{A}$.

9 Exercise 44

a. Solution By definition, we have

$$RX = \{ y \in Y | \forall x \in X, \rho(x, y) \}$$

But by definition, if $\rho(x,y)$ holds for all $x \in X$, then y is a terminal element of Y. Thus we have

$$RX = \{ y \in Y | y \text{ is a terminal element of } Y \}$$

Similarly, if $\rho(x,y)$ holds for all $y \in Y$, then x is an initial element of X, so we have

$$LY = \{x \in X | x \text{ is an initial element of } X\}$$

b. Solution Suppose $\xi \in X$ is a supremum of X. Then we have $RX = |\xi\rangle$, which means ξ is the least element of a preordered set (X, \geq) . Now suppose ξ is a smallest element of (X, \geq) . Then we have $RX = |\xi\rangle$, so $\xi \in X$ is a supremum of X

Suppose $\nu \in Y$ is a supremum of Y. Then we have $LY = \langle \nu |$, which means ν is the least element of a preordered set (Y, \leq) . Now suppose ν is a smallest element of (Y, \leq) . Then we have $LY = \langle \nu |$, so $\nu \in Y$ is a supremum of Y