- The resistor nominal value is encoded in the color code in Powers of Ten notation.

How to determine the nominal value and tolerance from color codes:

- How do we know which color corresponds to which number?

- Resistor color code table:

Ì	Color	Digit	Multiplier	Tolerance
	Black	0	$10^{\circ} = 1$	
	Brown	1	$10^1 = 10$	±1%
	Red	2	$10^2 = 100$	±2%
	Orange	3	$10^3 = 1,000$	
	Yellow	4	$10^4 = 10,000$	
	Green	5	105=100,000	
	Blue	6	$10^6 = 1,000,000$	
	Violet	7	$10^7 = 10,000,000$	
	Gray	8	$10^8 = 100,000,000$	
	White	9	$10^9 = 1,000,000,000$	
	Silver		$10^{-2} = 0.01$	±10%
	Gold		$10^{-1} = 0.1$	±5%
	No band			±20%

Example: Determine the normal resistance value and the tolerance for the resistance shown below:

Tolerance = 5%

Example: Determine nominal value and tolerance

- What is minimum value of sexistor?
- What is maximum value of resistor?

Tolerance = ±5%

- Minimum resistance value:

Multiply the nominal value by the tolerance and then subtract this from the nominal value:

Min value = Nom value - (Nom value x talerance)

= 47 kR - (47kR x 0.05)

= 47 kr - 2.35 kr

= 44.65 KSZ

- Maximum resistance value:

Multiply the nominal value by the talerance and then add this to

Max value = Nom value + (Nom value x talerance)

= 47 ks + 2.35 ks

= 49.35 k D.

- 5 Band resistors :

- For resistors with ±1% or ±2% tolerance, color codes consists of 5 bands:

- Mounting Technology:

Pin - Through holed (PTH)
components

- Bond wires contribute parasitic inductance
- For multiple components, PCB may have mechanical problems.

- Good Thermal reliability

- Surface Mount Technology:

Surface Mount

- Smaller in size
- Higher density
 No PTH needed, good mechanical strength.
 Can be mounted both sides
- Higher speed

- Thermal problems
- Manual design is difficult High precision PCB needed.

Surface Mount Inductors and Capacitors:

SMD Inductor

SMD Capacitors

Through - hale vs Surface Mount IC Packages:

