# ML-Based Imputation Methods in R Package VIM

Performance and Considerations

**Alexander Kowarik** 

Alexander.Kowarik@statistik.gv.at

**Johannes Gussenbauer** 

Johannes.Gussenbauer@statistik.gv.at

**Nina Niederhametner** 

Nina.Niederhametner@statistik.gv.at

useR! 2024 Salzburg, 04.04.2024

www.statistik.at





### Outline

Short introduction to R-package VIM

• Recent methodological additions to the package

Simulation study

Outlook



### R-Package VIM

- VIM: Visualization and Imputation of Missing Value
- Developed for the use of tabular data
  - Records ~ rows
  - Variables ~ columns
- Contains various imputation methods



- Available on CRAN and actively developed
  - https://cran.r-project.org/web/packages/VIM/index.html
  - https://github.com/statistikat/VIM

### Visualization of missing values



## Visualization of imputed values



### Imputation methods available

Donor based method

```
library(VIM)
data(sleep) # example data from package

kNN(sleep, variable = ..., k = 5, dist_var = ..., ...)
hotdeck(sleep, variable = ..., ord_var = ..., domain_var = ..., ...)
matchImpute(sleep, variable = ..., match_var = ..., ...)
```

### Imputation methods available

Model based methods

```
regressionImp(formula = ..., data = sleep, family = ..., robust = ..., ...)
# Iterative robust model-based imputation
irmi(x = sleep, maxit = 100, noise = ..., robust = ..., ...)
rangerImpute(formula = ..., data = sleep, ...)
```

- Option to add random noise
- Sample from predicted probabilities for categorical variables

### Impute with XGBoost (Chen and Guestrin 2016)

- Gradient Tree boosting
- Available for R and Python
- Parallelisation
- Strong out of the box method



### Impute with transformers

Impute missing values with Large Language Models:

- → Convert tabular data to text
- → Train a Transformer Model with the text inputs of observations that do not contain missing values for the target variable
- → Transformer generates the missing values based on the given variable values

| Age | Country | Salary     |
|-----|---------|------------|
| 30  | Austria | 40,300.03  |
| 54  | Germany | 107,000.40 |
| 24  | Spain   | 38,000.55  |
| 40  | Austria | NA         |



Transformer



Salary

"40, Austria, **68000**"

www.statistik.at Folie 10

Country

Age

30

54

24

40

### Text pre-processing & Tokenization

- Categorical variables: one token per category
- Numeric variables: one token per digit, additionally "-" and "." if applicable

Identical tokens from different columns are assigned different Token IDs

|   | Tokenizer |          |         |  |  |
|---|-----------|----------|---------|--|--|
|   | Token     | Token ID | Column  |  |  |
|   | Austria   | 1        | Country |  |  |
|   | Germany   | 2        | Country |  |  |
|   | Spain     | 3        | Country |  |  |
|   | 0         | 4        | Age     |  |  |
| * | 1         | 5        | Age     |  |  |
|   |           | <b></b>  |         |  |  |
|   | 9         | 13       | Age     |  |  |
| 7 | 1         | 14       | Salary  |  |  |
|   | 2         | 15       | Salary  |  |  |
|   |           |          |         |  |  |

| Age | Country | Salary     |
|-----|---------|------------|
| 30  | Austria | 40,300.03  |
| 54  | Germany | 107,000.40 |
| 24  | Spain   | 38,000.55  |



"30" "Austria" "040300.03"
"54" "Germany" "107000.40"
"24" "Spain" "038005.55"



"30, Austria, 040300.03" "54, Germany, 107000.40" "24, Spain, 038005.55"



#### XGBoost and transformer in VIM

```
xgboostImpute(formula = ..., data = ..., ...)

transformerImpute(data = sleep, target = ..., cat_vars = NULL, ...)
```

- xgboostImpute() already available for latest CRAN release
- transformerImpute() not yet fully implemented (based on R packages keras, transformer)



### **Simulation Study**

- Aim: Test multiple methods against each other, including xgboost and transformer
- Data: Richframe ~ housing register containing all registered persons in Austria living in private households
  - Variety of variable: Geographic variables, variables on household structure,
     sociodemographic variables, ...

| HID | NUTS2 | age | sex | Citizenship | Education      | Yearly Income |
|-----|-------|-----|-----|-------------|----------------|---------------|
| 1   | AT13  | 30  | m   | AT          | Post-Secondary | 25000         |
| 2   | AT32  | 56  | m   | EU          | Secondary      | 28000         |
| 2   | AT32  | 52  | f   | AT          | Tertiary       | 32000         |
| 2   | AT32  | 18  | f   | AT          | Secondary      | 0             |

### **Simulation Study**

- Take sample from Richframe → add missing values for a specific variable → apply imputation method → compare results
- Apply different missing mechanisms
  - MCAR: randomly draw position of missing values
  - MAR: Occurence of missing value depends on other observed variables
  - MNAR: Occurence of missing values depends on the variables itself
- Simulate MAR or MNAR we derived occurrence of missing value from typical non response patterns
  - Higher response rates: rural areas, higher education, higher yearly income
  - Lower response rates: urban areas, lower education, migration background, low or very high income

# Simulation Study Parameter Setup

Test methods
 kNN(), hotdeck(), rangerImpute(), xgboostImpute(), transformerImputer()

• Sample n 500, 1000, 5000, 20000, 100000

- Missing rate r
   0.01, 0.05, 0.1, 0.2
- Variables to impute
   Education, Citizenship, Yearly Income
- Missing mechanism
   MCAR, MNAR, MAR
- → Repeat many times

### **Results - Education**



# Results - Education Difference in distribution of classes

#### **MCAR**



Average Difference to expected distribution

WWW.STatistik.at Folie 18

# Results - Education Difference in distribution of classes



# Results - Education Difference in distribution of classes











### Results - Runtime



#### Conclusions and outlook

Work in progress and potential to improve

Trade of between accuracy and biased estimates

- Plan to further develop VIM package
  - harmonise model based imputation methods (and imputation interface in general)
  - Include predictive mean matching
  - Use of pretrained (BERT?) models as starting point for transformerImpute



