

UNIVERSITY OF JAFFNA FACULTY OF ENGINEERING

MID SEMESTER EXAMINATION- MAY 2023

MC 3010 -	DIFFERENTIAL	EQUATIONS	AND	NUMERICAL	METHODS
Date: 22/05/20	23			Duration:	ONE Hour

Instructions

(a) 20.173

1.	This paper contains TWENTY	(20) questions:	
_		기급이용하다. 그런 그는 그는 그림을 것	

- 2. Each question in this paper is a multiple choice with four answer choices. Read each question and answer carefully and choose the ONE best answer.
- 3. This examination accounts for 30% of module assessment. Total maximum mark attainable is 100.

1. If $f(x)$ is a real continuous furthere is (are) in the domain	ction in [a,b], and $f(a)f(b) < 0$, then for $f(x) = 0$, [a,b].
(a) one root	(c) no root
(b) an undeterminable numb	er of roots (d) at least one root

- 2. Assuming an initial bracket of [1,5], the second (at the end of 2 iterations) iterative value of the root of $te^{-t} 0.3 = 0$ using the bisection method is
 - (a) 0 (b) 1.5 (c) 2 (d) 3 1.5/2
- 3. The following data of the velocity of a body is given as a function of time.

Time(s)	10	15	18	22	24	
Velocity (m/s)	22	24	37	25	123	

A quadratic Lagrange interpolant is found using three data points, t=15. 18 and 22. From this information, at what of the times given in seconds is the velocity of the body 26m/s during the time interval of t=15 to t=22 seconds.

(c) 21.667

(d) 22.020

				4711-71-11-1	or and										
4.	Given	$3\frac{dy}{dx}$	+5y=2	x, y(0.3)	= 5	and	using	a step	size	of I	ı =	0.3 ,	the	value	of
	10 01	u.u		True Berrior							400				

y(0.6) using the Runge-Kutta 4th order method is most nearly

(a) 3.1067 (c) 4.2587

(b) 3.2067 (d) none of the above

(b) 21.858

- 5. The equation in Question 4 with the same step size, the value of y(0.9) using Eulers method is most nearly
 - (a) 1.3
- (b) 1.2
- (c) 1.5
- (d) 1.4

- 6. Truncation error is caused by approximating
 - (a) irrational numbers

(c) rational numbers

(b) fractions

(d) exact mathematical procedures

7. $\int_0^1 \frac{\sin t}{t} dt$ is exactly

(a)
$$\int_{-1}^{1} \frac{\sin(\frac{x+1}{2})}{x+1} dx$$

(c)
$$\int_{-1}^{1} \frac{\sin(x+1)}{x+1} dx$$

(b)
$$\int_0^1 \frac{x+1}{x+1} dx$$

(d)
$$\int_0^1 \frac{\sin(x+1)}{x+1} dx$$

8. Consider the second-order initial value problem

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 5x = 0, x(0) = 3, \frac{dx(0)}{dt} = -5$$

write down the equivalent system of two first-order equations

(a)
$$\frac{dx}{dt} = y$$
, $\frac{dy}{dt} = -x - 4y$, $x(0) = 3$, $y(0) = -3$

(b)
$$\frac{dx}{dt} = y$$
, $\frac{dy}{dt} = -5x - 4y$, $x(0) = 3$, $y(0) = -5$

(c)
$$\frac{dx}{dt} = y$$
, $\frac{dy}{dt} = -x - 4y$, $x(0) = 2$, $y(0) = -5$

(d)
$$\frac{dx}{dt} = y$$
, $\frac{dy}{dt} = -x - 4y$, $x(0) = 3$, $y(0) = -5$

9. In a circuit with an inductor of inductance L, a resistor with resistance R, and a variable voltage source E(t) = L(di/dt) + Ri. The current i, is measured at several values of time as

If L = 0.98 H and $R = 0.142 \Omega$, the most accurate expression for E(1.00) is

(a)
$$0.98 \left(\frac{3.24 - 3.10}{0.1}\right) + (0.142)(3.10)$$
 (c) $0.98 \left(\frac{3.12 - 3.10}{0.01}\right) + (0.142)(3.10)$ (d) $0.98 \left(\frac{3.12 - 3.10}{0.01}\right)$

10. Using the forward divided difference approximation with a step size of 0.2, the derivative of the function at x = 2 is given as

 x 1.8
 2.0
 2.2
 2.4
 2.6

 f(x) 6.0496
 7.3890
 9.0250
 11.023
 13.464

	(a) 6.697	(b) 7.389	(c) 7.438	(d) 8.180	
			ls) so that the error proximation $\int_{2}^{5} \frac{dx}{x^{2}}$		
1	$f^{(4)}(i)$ taken over	[2,5] occurs at the	$f_2 = x^2$ end point $x = 2$. [Hi $\frac{a)^5}{m)^4} f^{(4)}(\hat{t}) = -\frac{b-a}{180}$	nt:The Error form	
,	simpson rule is giv	en by $E_{\bullet} = -\frac{180(2)}{180(2)}$			
	(a) 448	(b) 449	(c) 224	(d) 225	159/158
			te to decimal figures first approximation		quation
	(a) 2.76	(b) 2.75	(c) 2.74	(d) 2.73	
13.	Find the value of	$\int_{0}^{1} \sin \sqrt{x} dx \text{ by usin}$	g trapezoidal rule wi	th $h = 0.5$ is mos	t nearly
	(a) 2.140745	(b) 1.070037		(d) 0.5378	
14.	Find the absolute	error, use question	(13) and assume tru	e value as 0.60233	37
	(a) 0.067151	(b) 0.064519	(c) 0.467700	(d) 0.0046	77
15.	Find $\frac{\partial^2 f}{\partial y \partial x}$ of $f(x)$ (a) $3e^{x+5y}$	$(y)=e^{x+5y}$			1 = 1
	(a) $3e^{x+5y}$	(b) $6e^{x+5y}$	(c) $6e^{2x+5y}$	(d) $3e^{2x+y}$	- 5e ^{π+5} y
16.		tion $w(x, y) = 4x^2$ re $x = r \cos \theta$, $y = r$	$+3y^2$ and find the v $\sin \theta$.		
	(a) 5r	(b) 50r	(c) 25r ²	(d) 50 6r	+2rcos20
17.	If $Z = f(x, y)$ and	$Z=4-x^3+y^2, v$	write the total differen	ential, dz	
	$(a) -2x^2dx + 4y$	dy	(c) $-3x^2dx +$	2ydy	
	$(b) -2x^3dx + 2y$	dy	(c) $-3x^2dx +$ (d) none of the	ne above.	
18.	Find the work do	ne by the force F(z between point (1, 1,	$(x, y, z) = (y^2, xy, 0)$ in (0) and point (2, 2, 0)	n moving an obje at constant spee	ect along d in unit

time.

(a) 7/3 (b) 29/3 (c) 15/2 (d) 14/3

19. The temperature T at the point (x,y) is T(x,y) and it is measured using the Celsius scale. A fly crawls so that its position after t seconds is given by $x=t^2$ and $y=2+\frac{1}{3}t$ where x and y are measured in centimeters. The temperature function satisfies $\frac{\partial T}{\partial x}(2,3)=4$ and $\frac{\partial T}{\partial y}(2,3)=3$. How fast is the temperature increasing on the flys path after 3s

(a) 2 (b) 8 (c) 9 (d) 2.5 25

20. The motion of a point is described by $r(t) = (cost, sint, t^2)$ Find the speed of the motion.

(a) $\sqrt{t^2+1}$ (b) $\sqrt{4t^4+1}$ (c) $\sqrt{4t^2+\cos^2 t}$ (d) \cos^{2t} $\sqrt{1+4+2}$

Formula sheet

1. Newton's iteration formula: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

aratomis report.

2. Trapezoidal rule: $\int_a^b f(x)dx \approx h\left[\frac{1}{2}f_0 + f_1 + \ldots + f_{n-1} + \frac{1}{2}f_n\right]$, where $h = \frac{(b-a)}{n}$. The x_i 's and a and b are called notes.

3. Eulers method: $y_{k+1} = y_k + hf(t_k, y_k), t_{k+1} = t_k + h \text{ for } k = 0, 1, ..., M-1$

4. Runge-Kutta method of order N=4: $y_{k+1}=y_k+\frac{h(f_1+2f_2+2f_3+f_4)}{6}$, where $f_1=f\left(t_k,y_k\right),\ f_2=f\left(t_k+\frac{h}{2},y_k+\frac{h}{2}f_1\right),\ f_3=f\left(t_k+\frac{h}{2},y_k+\frac{h}{2}f_2\right),\ f_4=f\left(t_k+h,y_k+hf_3\right).$

5. Quadratic Lagrange Polynomial $P_2(x) = l_0 f_0 + l_1 f_1 + l_2 f_2$ where, $l_0 = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}$, $l_1 = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$, $l_2 = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$

6. 2-point forward difference- $f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$, 2-point backward- $f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$

---- End of Examination ----