Predicting Pedestrian Irregular Behavior Using Talchum Data

Big Data 2024 2nd Semester

2024.12.22.

김서희

. .

Contents

01. Project Overview

03. Model Development

02. Data Analysis

04. Conclusion

01. Project Overview

- 프로젝트 배경 및 동기
- 문제 정의 및 목표

프로젝트 배경 및 동기

"보행자가 상대적 교통약자인 점, 차량은 일시정지의 의무가 있는 점을 고려"

- ✔ 한국의 경우 전체 교통사고 사망자 중 보행자 사망자 비율이 38.9%로 OECD 평균(19.3%)의 두 배 (일본도 36.6%로 높은 편)
- ✓ 미국 뉴욕시는 2024년 10월 무단횡단 금지법을 폐지하여 무단횡단을 합법화 → 보행자 사고 증가 가능성 존재
- ✔ 글로벌 자율주행차 시장은 2024년 약 411억 달러에서 연평균 성장률(CAGR) 22.75% 증가 (2029년 1,145억 달러 추정)

문제 정의 및 목표

Predicting Pedestrian Irregular Behavior Using Talchum Data

Problem Definition

높은 보행자 사고율

정책 변화와 글로벌 동향

자율주행 시장 성장

비정형 보행자 행동 탐지 기술 부족

탈춤 데이터의 가능성

Objectives

핵심 패턴을 반영한 탈춤 데이터 정제

보행자 비정형 행동 탐지 향상

YOLO와 Mask R-CNN을 활용한 보행자 탐지

02. Data Analysis

- 데이터 수집
- 데이터 분석

데이터 수집

메타데이터 구조표

- AlHub 탈춤 동작 데이터와 라벨링 데이터 수집
- Class ID HC(핵심 전승자), MC(숙련자), LC(비숙련자)
- MC(숙련자) 클래스 선택
 - a. 41,507/126,728 (32.75%)
 - b. 43.91GB (raw), 59.97MB (labeled)
- HC(핵심 전승자)는 지나치게 정교하고 규칙적이고 LC(비숙련자)는 일관성이 부족한 반면 MC(숙련자)는 실제 보행자의 행동 패턴에 더 가까운 움직임을 보일 것으로 판단

데이터 분석 1

1. Word Cloud

- a. 빈도수
 - i. 배김사위, 좌, 머리, 들고 etc.
- b. 도로위 보행자 돌발행동 관련 표현
 - i. 뛰다: 무단횡단 시 도로로 급히 뛰어드는 행동과 유사
 - ii. **돌다**, **돌림**: 갑작스러운 방향 전환
 - iii. 움직임: 비정형적인 보행자 행동 포괄
 - iv. 뿌리다: 손이나 팔의 예상치 못한 움직임(ex. 손 흔들기)

🦁 [Insight] 탈춤 데이터의 비정형 동작(뛰다, 돌다, 뿌리다 등)은 무단횡단 같은 보행자의 돌발행동 즉, 비정형적인 패턴 탐지에 효과가 있을 것으로 예측 됨.

데이터 분석 2

2. Top 10 Words

- a. 배김사위, 좌, 머리, 들고, 양팔을, 우를, 보는 ...
- b. 메타데이터 내 "Talchum_info" 속성 확인

"Talchum_info": {

"Talchum_important": "배김사위, 앞배김새, 뒷배김새, 겨드랑배김새 동작이 강하여 뛰어서 땅을 내려 누르듯이 힘차게 착지하는 동작."}

c. 배김사위

- i. 531번 등장
- ii. 위로 뛰어오르면서 들어 올렸던 발을 아래로 내리찍듯이 뛰어 앞으로 하고 반대 발을 뒤로 길게 뻗는 동작

♀ [Insight] 배김사위와 같은 탈춤의 하체 중심 비정형 동작은 보행자의 돌발 행동을 학습하고 감지하는 데 유용한 데이터를 제공할 수 있을 것으로 예측 됨.

데이터 분석 3

- 1. 데이터 준비 및 정리
 - a. 결측치 **11.2%**(x,y 좌표데이터) → linear 보간법
 - b. 'filtered_keypoints.csv' 추출
- 2. EDA
 - a. Keypoint Analysis for Anomalous Behavior Detection
 - i. **손 (left wrist, right wrist)** : 갑작스러운 흔들림, 불규칙적인 움직임
 - ii. 어깨 (left shoulder, right shoulder) : 상체의 전체적인 움직임
 - iii. 무릎 (left_knee, right_knee), 발목 (left_ankle, right_ankle) : 방향 전환 및 빠른 속도
 - b. 'filtered_keypoints_interpolated.csv' 추출
 - c. Correlation Analysis between Keypoints and Height
 - i. 무용수 키와 (x,y) 좌표간 상관관계는 매우 낮음
 - ii. 좌표 데이터가 프레임 중심의 상대적 위치를 표현하기 때문에, 신체 크기(height)와 직접적인 상관성이 낮음 (상세 내용 step2_EDA_correlatioin.ipynb 참고)

3. Correlation Between Keypoints

- a. 보행자 행동의 물리적 특성 이해 \rightarrow 상/하체 분리
- b. Upper Body Correlation, Lower Body Correlation 추출
- c. Upper Body
 - i. left shoulder ↔ right shoulder: 0.92 ~ 0.94
 - ii. left wrist ↔ right wrist : 0.83 ~ 0.85
 - iii. shoulder ↔ wrist relationship : 0.64 ~ 0.78
 - iv. 손을 흔들거나 갑자기 팔을 올리는 행동 탐지
- d. Lower Body
 - i. left_knee ↔ right_knee,
 left_ankle ↔ right_ankle : 0.77 ~ 0.92
 - ii. ankle ↔ knee relationship: 0.58 ~ 0.77
 - iii. 도로에 빠르게 뛰어들거나 이동 속도가 급격히 변하는 상황
- e. Mixed Body
 - i. Upper body (shoulders, wrists) ↔
 Lower body (knees, ankles) : 0.1 ~ 0.3

4. Keypoint Selection and Velocity Pattern Analysis

- a. 시간에 따른 키포인트의 속도 변화 \rightarrow 그 지점을 돌발행동이라고 지정
- b. (x,y) 좌표로 유클리드 거리 기반 속도 계산 \rightarrow 카운팅
- c. Upper Body
 - i. Normal: 117,681 (85%)
 - ii. High Speed: 22,127 (15%)
 - iii. Irregular : 576 (0.4%)
- d. Lower Body
 - i. Normal: 40,874 (59%)
 - ii. High Speed: 28,558 (40%)
 - iii. Irregular: 760 (1.2%)
 - iv. 하체의 고속 비율 이 높아 이동 관련 행동에 중요한 역할
- e. Mixed Body
 - i. Normal: 99,103 (69%)
 - ii. High Speed: 40,285 (29%)
 - iii. Irregular : 996 (2.4%)

5. Labeling for Model Training

- a. Median: 250 ~ 300
- b. Upper Whisker : 1000, beyond values → Outliers
- c. Outliers (velocity > 1000) → Irregular
- d. Labeling Criteria
 - i. Normal (0): 0-500 pixels/frame
 - ii. High Speed (1): 500-1000 pixels/frame
 - iii. Irregular (2): Above 1000 pixels/frame
- e. velocity, acceleration, motion_category(0~2), group(lower/upper/mixed) column 추가

- f. [참고] 메타 데이터 세부 내용('Clip_info')
 - i. 어노테이션 : 각 움직임에 대한 키포인트 위치가 60 FPS
 - ii. 해상도: 4K (3840x2160 픽셀)로 촬영

6. Group vs Motion Category CrossTab

a. output

motion_category	U	1	2
group			
lower	61031	212	8949
mixed	68071	149	1972
upper	136976	290	3118

b. Normal (0)

i. Upper: 98 %ii. Lower: 87 %iii. Mixed: 97%

c. High Speed (1)

i. 모든 그룹에서 고속 움직임 비율은 극히 적음(0%)

d. Irregular (2)

i. Upper: 2%ii. Lower: 3%iii. Mixed: 13%

03. Model Development

- Train Tutorial

Model Development

Train Tutorial

- 1. YOLO Data Preparation
 - a. '.txt' 파일로 Class ID, Bounding Box 추출
- 2. Mask R-CNN Data Preparation
 - a. 모델 학습 위한 하나의 COCO JSON 포맷 추출(Bounding Box, Segmentation Masks, Class ID)
- 3. Special Features
 - a. 속도 변화가 큰 프레임 : 'acceleration' 태그 추가
 - b. 비정상적 패턴 탐지: 'irregular' 태그 추가
 - c. #02. Data Analysis 참고
- 4. Data Augmentation
 - a. flipping, rotation, cropping, brightness changing etc.

04. Conclusion

- Trouble Shooting (Limitation)
- Future Plan

Trouble Shooting

🚧 [limitation] 비정형 데이터 탐지의 어려움은 탈춤 데이터와 보행자의 실제 돌발 행동 간의 유사성을 어느 정도로 설정하느냐에 따라 발생하는 본질적인 한계

1. 데이터의 일반화 가능성

- a. 탈춤 데이터는 비정형적 움직임 패턴을 제공한다는 판단하에 진행했지만 보행자의 비정상적 행동의 완벽 대응은 무리임
- b. 이를 보완하기 위해 무단횡단 CCTV 영상 등 현실 데이터를 일부 추가하여 모델 검증 수행 필요함

2. 속도/가속도 기준 정의 모호

- a. 라벨링 위한 threshold 설정에 어려움을 겪음
- b. Motion Category Distribution의 비율이 극단적 현상을 보였음
- c. IQR을 이용해 평균 범위*로 진행한 바, 향후 모델 학습 시에는 데이터 불균형을 완화할 필요가 있음
 - * Normal Range: {normal_min} ~ {normal_max}

04

Future Plan

₩ [Future] 이미지 데이터 포함 YOLO 기반 보행자 탐지 모델 학습 진행

- 1. YOLO 기반 학습: 이미지 데이터를 활용한 보행자 탐지 모델 개발
- 2. 비정형 행동 초점: 하체 및 혼합 그룹 데이터를 포함하여 비정형 패턴 탐지 향상
- 3. Accuracy, Precision, Recall, F1-Score 등 돌발 행동 탐지 성능 측정
 - a. 상체/하체/혼합 데이터별 예측 성능 비교

