

Licence d'Informatique 3 AD Programmeur (C5–160512-INFO) TD 4 – Classification Supervisée

Carl FRÉLICOT – Dpt Info / Lab MIA

Soient n=11 points en mode supervisé (X,Y), dont le nuage en dimension p=2 est représenté ci-contre :

n^o :	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	\overline{x}	s^2
${}^{t}X = $	0	2	2	4	2	6	10	4	4	6	6	4.18	6.88
Λ –	2	0	6	4	4	7	4	0	2	0	2	2.82	5.23
Y =	1	1	1	1	2	2	2	3	3	3	3	m=3	3

$1.\ Nearest-Prototype\ Rule$

- 1-1) On souhaite prédire le groupe auquel associer un/des nouveau/x point/s à l'aide de la règle du *Plus Proche Prototype* au sens de la distance euclidienne. De quoi a-t-on besoin ?
- 1-2) Faites les calculs nécessaires afin de prédire le groupe pour $^tx = (3,2)$.
- 1-3) Visuellement, pensez-vous qu'on obtiendrait les mêmes résultats avec la distance de Manahattan ?
- (HW) Refaites les calculs nécessaires au classement des points $^ty = (10, 2)$ et $^tz = (5, 3)$ pour ces deux distances.
- (HW) De même avec la distance de Chebychev (à la main et/ou avec vos fonctions python)

Ci-contre, les distances des points x,y et z aux données de X.

- 2-1) Donnez les prédictions par la règle du *Plus Proche Voisin* pour au moins une distance, vous le ferez chez vous pour celle/s qui reste/nt.
- 2-2) Recommencez avec la règle des 5-PPV. Vous donnerez les vecteurs d'étiquettes (ce qu'on appelle abusivement des "probabilités", ex. Orange).
- 2-3) On lit dans certains ouvrages spécialisés (ou dans des cours) qu'il vaut mieux prendre K impair. Qu'en pensez-vous?

Je	ius a	VCC 16	t dis	UCLIIV	oc u	LC IV	iana	1100	ocur.	•				
($(10,2)$ et $^{t}z=(5,3)$ pour ces deux distances.													
e	ec vos fonctions python).													
	$d_1:$	(1)	(2)	(3) (4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	
	x	3	3	5		3	3	8	9	3	1	5	3	
	y	10	10	1:	2	8	10	9	2	8	6	6	4	
	z	6	6	6	;	2	4	5	6	4	2	4	2	
	d_2^2 :	(1)	(2)	(3) (4)	(5)	(6)	(7)	(8)) (9	9)	(10)	(11)
	\boldsymbol{x}	9	5	1'	7	5	5	34	53	5		1	13	9
	y	100	68	80) 4	40	68	41	4	40	3	36	20	16
	z	26	18	18	3	2	10	17	26	10)	2	10	2
	d_{∞} : (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)													
	x	3	2	4	2	2	5	7	2	1	3	3		
	71	10	8	8	6	8	5	2	6	6	4	4		

(6)

(7)

12

(3)

(5)

(2)

(1)

(4)

(9)

(8)

(11)

(10)

3. Évaluation de Règle de Classification

- 3-1) Composez, selon les règles de l'art, un ensemble de test (X_{test}, Y_{test}) et un ensemble d'apprentissage (X_{learn}, Y_{learn}) en holdout à 30% (à peu près).
- (HW) Recommencez en holdout à 50% (à peu près). Serez-vous en mesure d'avoir le résultat de la 2-validation croisée?
- 3-2) Quelle autre stratégie est la plus recommandée pour ces données ?
- 3-3) Réalisez visuellement les prédictions par la règle du 3-NN avec la distance de Manhattan selon cette stratégie. Vous donnerez la matrice de confusion (table de contingence $C = [c_{ij}]_{i,j=1,m}$ croisant Y_{test} et Y_{pred}), en déduirez la Classification Accuracy , puis les scores de Recall, Precision, et Classification Accuracy par classe^(a), puis globaux. $R_j = \frac{TP}{TP+FN}$, $P_j = \frac{TP}{TP+FP}$, $FA_j = \frac{FP}{TP+FP} = 1 P_j$, $F1_j = 2 \frac{R_j \times P_j}{R_j + P_j}$, $A_j = \frac{TP+TN}{TP+FN+FP+TN}$
- (HW) Calculez les autres scores.
- (HW) Pourquoi est-ce plus difficile de réaliser visuellement les prédictions par la règle du NP selon cette stratégie?
 - 3-4) Évaluez la règle du NP au sens de la distance euclidienne par reclassement de l'ensemble d'apprentissage.
 - 3-5) Pourquoi n'est-ce pas une bonne stratégie d'évaluation?

(HW) Dans un espace réduit

Soit le tableau de données du ressenti de 10 apprenants sur l'utilisation de logiciels (Blue et Yellow) de *Machine Learning* et leur association Green du TD précédent. On donne ci-contre les vecteurs directeurs des 2 premiers (seuls ?) axes discriminants.

- 3-1) Projetez les 10 apprenants dans l'espace discriminant.
- 3-2) Vérifiez que les centres des groupes sont bien ceux donnés ci-contre.
- 3-3) Á l'aide de la règle NP ou 1-NN, prédisez le mode d'utilisation d'un nouvel apprenant qui aurait donné comme évaluation $^tx = (10, 10, 10)$.

-0.0656	0.5379	0.8404	$ ^t u_i$
0.8693	-0.4441	0.2172	$ tu_2$

- ${}^{t}\overline{x}_{Blue} = (11.23, -1.58)$
- ${}^{t}\overline{x}_{Green} = (21.87, 6.83)$
- ${}^{t}\overline{x}_{Yellow} = (7.73, 11.20)$