I/O Ports:

- → I/O device are conneted to the compiler through I/O circuits.

 → I/O circuits contains several registers

 called I/O ports.
- -> I/O ports are used for data and control commands.
- → I/O ports have addresses known as

 I/O addresses.

 → I/O ports one connected to the
- bus system and can only be used in input or output instructions

 > I/O ports functions as transfer
- points between the CPU/ and I/O devices.
- 3 Data to be input from an I/O device and sent to a
 - post where they can be read by the JCPU.
- output, the CPU writes data on I/O port. The I/O circuit transmits the data to

I/O device

· There are two types of Ports: -) Serial -) Parallel
Serial and Parallel Ports:
+ A port that transfer 1 bit at a time between an. I/O port and
10 device is serial Dast
Slow devices like the keyboards always connect to a social post A post that transfer 8 or 16 bit at a time between an
poir and an 1/0 device
A parallel port requires more vising connections
rousing Connections rest devices, like the disk devices, always connect to a
paeallel port
on connect to either a Serial or a parallel port.

Instruction Execution:

> A machine instruction has two parts: An operade and operands

The operation

The operation

The operands are often memory

addresses to the data to be operated on

to the CPU goes through the following steps to execute a machine instruction (the fetchexecute cycle).

Add ax [0]

> Fetch an instruction from memory
> Decade the instruction to delernine

the operation.

Teich data from memory if receivery

Execute:

-> Perform the operation on the obda

-> Store the result in memory

Fetch the instruction:

- To start the cyle, the BIU places a memory read request on the control bus and the address of the instruction on the address bus.
- -> Memory responds by sending the contents of the Jordian specifies namely, the instruction code just given over the data bas.
 - Because the instruction code is
 four bytes and the 8086 can only
 read a word at a times this
 involves two read operations.
 - The CPU accepts the data and adds four to the IP so that the IP will contain the address of the next instruction.

Decode the instruction and Fetch Data from Memory:

on secessing the instructions a decoder circuit in the EU decodes the instruction and determines that it is an ADD operation involving the word at address 0.

> The EU informs the BIU to got the contents of memory world of.

The BIU sends address o over the achivess bus and a memory read request is again sent over 7 The contents of memory word of once sent back over the data bus to the Eu and are placed in a holding register Perform the Operation and Store the Result: The contents of the holding segister and the Ax register are sent to the ALU circuit, which performs the required addition and holds the sum + The EU directs the BIU to store the sum at address o. > BIU sends out a memory write request over the control bus, the cooldress o over the address bus, and the sun to be stored over the data bug. o are overwitten by the sum

Timing: → A clock circuit controls the processor

by generating a train of clock

pulses.

→ Time interval between two pulses is known as a clock poeted > Number of pulses per sound is called the clock that or clock speed, measured in megahortz (MHz). → Time 14 period +1 -> Computer circuits are activated by the clock pulses. -> Circuits perform on operation only when a clock pulse is present Each step in the instruction feith execution cycle requires one or more clock periods. 8086 takes four clock periods to do a memory read

Multiplication operation may take

more than severtly clock periods