Lab 7

DSGA-1014: Linear Algebra and Optimization

CDS at NYU Zahra Kadkhodaie

Fall 2021

Diagonalization

Let A be a square $n \times n$ matrix with n linearly independent eigenvectors. Then A is called diagonalizable and we can write

$$A = Q \Lambda Q^{-1}$$

where Q consists of eigenvectors of A and Λ is a diagonal matrix consists of eigenvalues of A. Note that Q^{-1} exits, because eigenvectors are linearly independent, so Q is invertible.

Diagonalization

Not all square matrices are diagonalizable:

- 1. If A has n distinct eigenvalues, then all the n eigenvectors are independent and A is diagonalizable. That is, $\dim(E_{\lambda_i}(A)) = 1$ for $\forall i$
- 2. If A has repeated eigenvalues, then it *might* be the case that A does not have n linearly independent eigenvectors. That is for some λ_i , $\dim(E_{\lambda_i}(A)) < \text{number of times } \lambda_i$ is repeated. In this case, A is not diagonalizable, because Q does not have an inverse.
- 3. If A is symmetric, then it is guaranteed that A has n linearly independent eigenvectors and is diagonalizable (even if some eigenvalues are repeated!). Moreover, not only eigenvectors are independent, but they are orthogonal too. So

$$A = Q \Lambda Q^T$$

This is referred to as Spectral Theorem.

- 1. Let $P \in \mathbb{R}^{n \times n}$ be a projection matrix.
- (a) Show that P is always diagonalizable.
- (b) What are the eigen values?
- (c) Is P orthogonal? NO counter example
- (d) Define $P = \begin{bmatrix} .2 & .4 & 0 \\ .4 & .8 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. For each eigen value, give the dimension
- of corresponding eigen space, $E_{\lambda}(P)$.

 A) $P = VV^{T}$ Columns of V: K orthogonal vectors $V \in \mathbb{R}$
- b) It is an orthogonal basis for projection subspace.

 We define I as an orthogonal basis for the complement.

 Concatinate I and I to get an orthogonal basis for R.

Define Q as concatination of V and J. Define Λ as a diagonal matrix, with $\lambda_i = 1$ for $1 \le i \le K$ and $\lambda_i = 0$ for $K \le i \le n$:

$$P = VV = Q \wedge Q =$$

d) rank (P) = 2 =>
$$\lambda_1 = \lambda_2 = 1$$
 and $\lambda_3 = 0$
dim (E₁(P)) = 2 dim (E₂(P)) = 1

Alternatively use: $T(P) = Z \lambda_i$ $0.2 + 0.8 + 1 = 2 = \lambda_1 + \lambda_2 + \lambda_3$ from (b) we know that λ is either 1 or zero. So $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = 0$ 2. What matrix A has eigenvalues $\lambda = 1, -1$ and eigenvectors $\lambda = 2$ $v_1 = (\cos \theta, \sin \theta)$ and $v_2 = (-\sin \theta, \cos \theta)$? Which of these properties hold? $A = A^T$, $A^2 = I$, $A^{-1} = A$.

\(\vert_1, \vert_2 \rangle = 0 \)
 \(\vert_2, \vert_2 \rangle = 0 \)
 \(\v

 $= A = Q \wedge Q^{-1} = Q \wedge Q^{T} = (Q \wedge Q^{T})^{T} = A^{T}$ => A=AT symmetric

 $A^2 = Q \Lambda Q \overline{Q} \Lambda Q = Q \Lambda Q = Q I Q$ because $\lambda = 1, -1$ $\Rightarrow A^{2} = I$ $A^{-1} = (Q \wedge Q) = Q \wedge Q = Q \wedge Q \text{ becouse } \lambda = 1,-1$ =7 A = A

A = A => A is orthogonal. Also we showed it is symmetric.

Symmetric orthogonal matrices are very restricted. Their

eigenvalues are
$$\lambda$$
: -1-1-17.

If
$$\lambda_1 = \lambda_2 = 1$$
 => $A = \begin{bmatrix} (0) & -\sin \\ \sin & \cos \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} (a) & \sin \\ -\sin & (\omega) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$

or a rotation with
$$\theta = 0$$

The $\lambda = \lambda = -1 \Rightarrow A = \begin{bmatrix} 0 & -\sin \\ -\sin \end{bmatrix} \begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} \omega & \sin \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \end{bmatrix}$

If
$$\lambda_1 = \lambda_2 = -1 \implies A = \begin{bmatrix} (0) & -\sin \\ \sin & \cos \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} (0) & \sin \\ -\sin & (\omega) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

A is a rotation with
$$\theta = R$$
 Symme

A is a rotation with
$$\theta = \mathbb{R}$$

Symmetric & orthogonal

If $\lambda_1 = 1$, $\lambda_2 = -1$ $\Rightarrow A = \begin{bmatrix} (0) & -\sin \\ \sin & \cos \end{bmatrix} \begin{bmatrix} -1 & 0 \\ \sin & \cos \end{bmatrix} \begin{bmatrix} (a) & \sin \\ \sin & \cos \end{bmatrix} = \begin{bmatrix} (a)20 & \sin 2\theta \\ \sin & \cos \end{bmatrix}$

A is reflection around first eigen vection

rotation $\theta=\pi$ vectors in span(v₁) are reversed. vectors in span(v₂) are reversed.

reflection around first eigenvector:
vectors in span(v,) are unchanged.
vectors in span(v₂) are reversed.

- 3. Define $x_1 = (4,1), x_2 = (-3,1), \text{ and } x_3 = (1,1)$
- (a) Give a one-dimensional affine subspace of R^2 that best approximates these three points.
- (b) Use this to represent each point using a single number (i.e., reduce the dimension from 2 to 1).
- (c) Describe the eigen decomposition of the covariance matrix without computing it directly.

mean-centered data
$$A = \begin{bmatrix} -2(-\mu - 7) \\ -2(-\mu - 7) \\ -2(-\mu - 7) \end{bmatrix} = 5 = AF$$

$$3\chi^{2} = 7 = 3$$

A= \begin{align*} & \tau_{2} & \tau_{1} & \tau_{2} & \tau_{2} & \tau_{1} & \tau_{2} & \t

is equal to the original samples (lossless). That is variance in the direction of
$$\vec{e}_2 = 0$$

 $S = Q D Q^T$ $\lambda_1 > 0$ variance along e_1 $\lambda_2 = 0$ first eigenvector $v_1 = \overline{e_1}$

12 = es

4. Suppose $A \in \mathbb{R}^{n \times n}$ has a linearly independent list of n eigenvectors $v_1, ..., v_n$ with real eigenvalues $\lambda_1, ..., \lambda_n$. Can we factor A in a way similar to the spectral decomposition? Show that if $v_1, ..., v_n$ are orthonormal, then A has to be symmetric.

We can write
$$A = V \wedge V'$$
 $V = V = V'$

A = $V \wedge V'$
 $V = V = V'$
 $V = V = V'$
 $V = V \wedge V'$
 $V = V \wedge V' = V \wedge V' = V \wedge V' = V \wedge V' = V \wedge V'$

Symmetric A.

5. Let A and B be diagonalizable matrices. Also assume that α is an eigenvalue of A and β is an eigenvalue of B. Under what condition $\alpha\beta$ is an eigenvalue of AB?

If A and B share the eigen vector associated with d and B: ABV = ABV = BAV = BAV

Note: Generally if A and B commute then they shone eigenvector.