# Teoria dei sistemi. Stability

Luigi Palopoli

November 28, 2017

## Table of contents

BIBO stability of linear systems
The Routh-Hurwitz Criterion

Other notions of stability

# Theorem on stability of LTI systems

#### Theorem

#### Theorem

Consider a LTI system  $\Sigma$  with impulse response h(t).

- ▶ DT: it is BIBO stable if and only if there exists a constant S such that  $\sum_{-\infty}^{\infty} |h(t)| = S < \infty$ .
- ▶ CT: it is BIBO stable if and only if there exist a constant S such that  $\int_{-\infty}^{\infty} |h(\tau)| d\tau = S < \infty$ .

From the discussion in the past lecture, we know that this has much to do with the poles.

# BIBO stability form the transfer function

#### **Theorem**

#### **Theorem**

Consider a CT LTI system with transfer function:

$$H(s)=\frac{n(s)}{d(s)}.$$

Assume that no cancellation between poles and zero takes place:  $\exists p : n(p) = d(p) = 0$ . The system is BIBO stable if and only if all of its poles have negative real part.

• We know that the system is BIBO stable iff  $\int_0^\infty |h(t)| dt = L < +\infty$ 

## Necessity

Let  $p_i$  be a pole with **Real**  $(p_i) \ge 0$  with multiplicity 1. Then  $H(s) = \frac{A_i}{s-p_i} + \ldots$  with  $A_i \ne 0$  because

$$A_{i} = \frac{n(p_{i})}{(p_{i} - p_{1}) \dots (p_{i} - p_{i-1})(p_{i} - p_{i+1}) \dots (p_{i} - p_{n})},$$

and by our assumption  $n(p_i) \neq 0$ .

This fraction will give rise to an exponential function in h(t) whose integral grows in an unbounded way.

## Sufficiency

If 
$$H(s) = \mathcal{L}(h(t))$$
, then  $h(t) = \sum_{h=1}^{H} F_h h_h(t)$ , with  $h_h(t)$  given by:

$$h_h(t) = \begin{cases} e^{p_h t} & \text{Real root (single or multiple)} \\ e^{\text{Real}(p_h)t} \cos\left(\text{Imag}\left(p_h\right)t + \phi_h\right) & \text{Complex single or multiple root} \\ t^{n_h} e^{p_h t} & \text{Real multiple root} \\ t^{n_h} e^{\text{Real}(p_h)t} \cos\left(\text{Imag}\left(p_h\right)t + \phi_h\right) & \text{Complex multiple root,} \end{cases}$$

which can be interpreted as

$$|h_h(t)| \leq H_h(t) = egin{cases} e^{p_h t} & ext{Real root (single or multiple)} \ e^{ ext{Real}(p_h)t} & ext{Complex single or multiple root} \ t^{n_h} e^{p_h t} & ext{Real multiple root} \ t^{n_h} e^{ ext{Real}(p_h)t} & ext{Complex multiple root}, \end{cases}$$

## Sufficiency

```
 \begin{cases} \lim_{K \to \infty} \frac{e^{p_h K} - 1}{p_h}, & \text{For real roots} \\ \lim_{K \to \infty} \frac{e^{\text{Real}(p_h)K} - 1}{\text{Real}(p_h)}, & \text{For complex roots} \\ \lim_{K \to \infty} \sum_{k=0}^{n_h} (-1)^{n_h - k} \frac{n_h!}{k! p_h^{n_h - k}} K^k e^{p_h K} - (-1)^{n_h} \frac{1}{p_h^{n_h}}, & \text{Real multiple root} \\ \lim_{K \to \infty} \sum_{k=0}^{n_h} (-1)^{n_h - k} \frac{n_h!}{k! p_h^{n_h - k}} K^k e^{\text{Real}(p_h)K} - (-1)^{n_h} \frac{1}{\text{Real}(p_h)^{n_h}}, & \text{Complex note in the proof of the p
```

## Sufficiency

If  $Real(p_h)$  is smaller than 0 for all poles, this leads to

$$\int_0^\infty H_h(t)dt = \begin{cases} \frac{-1}{p_h} & \text{For real roots} \\ \frac{-1}{\text{Real}(p_h)} & \text{For complex roots} \\ -\frac{(-1)^{n_h}}{p_h^{n_h}} & \text{Real multiple root} \\ -\frac{(-1)^{n_h}}{\text{Real}(p_h)^{n_h}} & \text{Real multiple root}. \end{cases}$$

In other words we can find a constant F that upper bounds all  $H_h(t)$  for all h.

$$\int_0^\infty |h(t)|dt \le |F_h| \int_0^\infty \sum |H_h(t)|dt \le FM.$$

Second order example

**Transfer Function:** 

$$H(s)=\frac{s-1}{s^2+3s+2}.$$

## Second order example

**Transfer Function:** 

$$H(s)=\frac{s-1}{s^2+3s+2}.$$

Poles:

$$p_{1,2} = \frac{-3 \pm \sqrt{9 - 8}}{2} = \begin{cases} -2\\ -1 \end{cases} .$$

## Second order example

**Transfer Function:** 

$$H(s) = \frac{s-1}{s^2 + 3s + 2}.$$

Poles:

$$p_{1,2} = \frac{-3 \pm \sqrt{9-8}}{2} = \begin{cases} -2\\ -1 \end{cases} .$$

Conclusions: Both roots are negative. Hence, the system is BIBO stable.

## General Case

## Characteristic Polynomial and Equation

#### Definition

The polynomial d(s) at the denominator of the transfer function is said *characteristic polynomial* and the equation d(s) = 0 is called *characteristic equation*.

### Rationale

▶ If we are only interested system's stability we do not need to compute the poles

### Rationale

- ▶ If we are only interested system's stability we do not need to compute the poles
- ▶ All we need to compute is the sign of the real part

### Rationale

- ▶ If we are only interested system's stability we do not need to compute the poles
- ▶ All we need to compute is the sign of the real part
- ▶ we can do this by through the Routh-Hurwitz criterion

## The Routh-Hurwitz Criterion

▶ Let the characteristic equation d(s) be:

$$a_ns^n+a_{n-1}s^{n-1}+\ldots a_0.$$

## The Routh-Hurwitz Criterion

▶ Let the characteristic equation d(s) be:

$$a_ns^n+a_{n-1}s^{n-1}+\ldots a_0.$$

Form the Routh Table

## Routh Table

$$b_{1} = \frac{a_{n-1}a_{n-2} - a_{n}a_{n-3}}{a_{n-1}}$$

$$b_{2} = \frac{a_{n-1}a_{n-4} - a_{n}a_{n-5}}{a_{n-1}}$$

$$b_{3} = \frac{a_{n-1}a_{n-6} - a_{n}a_{n-7}}{a_{n-1}}$$

$$\cdots$$

$$c_{1} = \frac{b_{1}a_{n-3} - b_{2}a_{n-1}}{b_{1}}$$

$$c_{2} = \frac{b_{1}a_{n-5} - b_{3}a_{n-1}}{b_{1}}$$

$$c_{2} = \frac{b_{1}a_{n-7} - b_{4}a_{n-1}}{b_{1}}$$

. . . .

## The Routh-Hurwitz Theorem

#### **Theorem**

#### **Theorem**

Suppose that the Routh table can be built as:

Assume that the first column  $(a_n, a_{n1}, b_1, c_1, \ldots, q)$  does not contain 0 elements. Then the number of sign changes in the first column corresponds to the number of poles in the right half of the complex plan.

## The Routh-Hurwitz Theorem

#### **Theorem**

#### **Theorem**

Assume that the first column of the Routh table does not contain 0, a necessary and sufficient condition for all roots to be in the left a half plan is that all coefficients  $a_i$  be positive and that all the elements of the first column be positive.

Second Order Systems
Consider the classic second order equation:

$$a_2s^2 + a_1s + a_0$$
.

Second Order Systems
Consider the classic second order equation:

$$a_2s^2 + a_1s + a_0$$
.

The Routh table is given by

$$\begin{array}{c|ccc}
s^2 & a_2 & a_0 \\
s & a_1 & 0 \\
s^0 & a_0.
\end{array}$$

Second Order Systems

Consider the classic second order equation:

$$a_2s^2 + a_1s + a_0$$
.

The Routh table is given by

$$\begin{array}{c|cccc}
s^2 & a_2 & a_0 \\
s & a_1 & 0 \\
s^0 & a_0.
\end{array}$$

Hence, in order for the system to be stable, all coefficients have to be positive.

Second Order Systems – continued

This can be seen by considering that if the roots are negative, we can write the polynomial as

$$(s+r_1)(s+r_2) = s^2 + (r_1+r_2)s + r_1r_2$$

So if  $r_1$  and  $r_2$  are positive (meaning that the roots are negative) if and only if  $(r_1 + r_2)$  and  $r_1r_2$  are positive in their turn.

Third Order Systems

Consider the thrid degree characteristic equation

$$a_3s^3 + a_2s^2 + a_1s + a0 = 0.$$

## Third Order Systems

Consider the thrid degree characteristic equation

$$a_3s^3 + a_2s^2 + a_1s + a0 = 0.$$

The Routh table is given by:

## Third Order Systems

Consider the thrid degree characteristic equation

$$a_3s^3 + a_2s^2 + a_1s + a0 = 0.$$

The Routh table is given by:

Hence, along with  $a_i > 0$ , BIBO stability will also require  $a_2 a_1 - a_3 a_0 > 0$ .

# Simplified Table

## Simplified Routh Table

## Proposition

If we multiply an entire row of the Routh table by a positive constant Theorem 5 still holds.

1. The first element of a row is 0, thus preventing to derive the following row (which requires the division by the first element),

- The first element of a row is 0, thus preventing to derive the following row (which requires the division by the first element),
- 2. An entire row is 0.

- 1. The first element of a row is 0, thus preventing to derive the following row (which requires the division by the first element),
- 2. An entire row is 0.

## **Imaginary Roots**

Both cases reveal the presence of roots on the imaginary axis or in the positive half plan and therefore the loss of BIBO stability.

- The first element of a row is 0, thus preventing to derive the following row (which requires the division by the first element),
- 2. An entire row is 0.

## **Imaginary Roots**

- Both cases reveal the presence of roots on the imaginary axis or in the positive half plan and therefore the loss of BIBO stability.
- Still we can use Routh criterion to identify the number of stable and unstable roots.

## The case of 0 in the first element of the column

### The first problem is solved by:

- **Proof.** perturbing the 0 element (setting it to  $\epsilon$ ) and
- ightharpoonup evaluating the number of changes and permanence both for positive and negative  $\epsilon$ .

## The case of 0 in the first element of the column

The first problem is solved by:

- **Proof.** perturbing the 0 element (setting it to  $\epsilon$ ) and
- ightharpoonup evaluating the number of changes and permanence both for positive and negative  $\epsilon$ .

We see this by an example

Third order example with missing term Consider the polynomial

$$s^3 + s - 1$$
.

Third order example with missing term Consider the polynomial

$$s^3 + s - 1$$
.

Its associated table is

Third order example with missing term

Perturbed table:

Third order example with missing term

Perturbed table:

 $\epsilon \to 0^+$ : one sign change.

Third order example with missing term

Perturbed table:

 $\epsilon \to 0^+$ : one sign change.  $\epsilon \to 0^-$ : one sign change.

Third order example with missing term

Perturbed table:

 $\epsilon \to 0^+$ : one sign change.

 $\epsilon \to 0^-$ : one sign change.

Therefore we have got one root in the right half plan and two roots in the negative half plan.

#### Case of entire row 0

- ▶ When an entire row is null, two rows are proportional
- the characteristic polynomial d(s) can be divided by the polynomial associated with the row immediately above the null row.
- ▶ The divisor polynomial is called "auxiliary polynomial" and call it p(s).
- the auxiliary polynomial has roots that are symmetrical with respect to the imaginary axis.
- ► The number of changes above the line with zeros accounts for the stability of the roots of the "remainder" polynomial.

#### Case of entire row 0

- ► Strategy to complete the construction of the Routh table: to replace the null line with  $\frac{dp(s)}{ds}$  and then continue.
- Looking the first column of the modified Routh table, the number of sign changes is still equal to the number of roots with positive real part.
- From the null row down, each sign change indicates a root with positive real part.
- Since roots are symmetric, there is be a corresponding root in the negative half plan.
- ▶ All roots not accounted in this way (i.e., no sign changes) are on the imaginary axis.

#### Example with known roots

$$d(s) = (s^{2} + 1)(s + 1)(s + 3)$$
$$= s^{4} + 4s^{3} + 4s^{2} + 4s + 3$$

Two stable roots and a pair of imaginary roots.

▶ The first two rows of the Routh table are:

▶ We divide the third row by 3 and find:

- ► The three positive elements of the first rows reveal two roots with negative real part.
- ► The auxiliary polynomial is given by  $s^2 + 1$  and its derivative is 2s.

▶ Therefore we can complete the construction as:

► The two new elements are positive. This means no changes and two roots on the imaginary axis.

## Back to state space

- ► The notion of stability that we have introduced so far has to do with the Input/Output behaviour.
- A different notion of stability can be introduced "opening" the box and evaluating the internal workings of the system. This is what we have defined state space representation.
- We need a small digression in the realm of the state space representation.

## Equilibrium point

Consider a generic state space representation:

$$\dot{x}=f(x,u,t),$$

which can be simplified to

$$\dot{x} = f(x, u), \tag{1}$$

for time invariant systems.

#### Equilibrium Point

#### Definition

Consider the system in Equation (1). An equilibrium is a constant solution of the differential equation, i.e., a solution  $\bar{x}, \bar{u}$  such that

$$f(\bar{x},\bar{u})=0$$



#### Equilibrium Point

Mass Spring

Consider the usual mass spring system.

$$m\ddot{x} + c\dot{x} + kx = u \tag{2}$$

We can easily obtain a state space representation,  $x_1 = x$ ,  $x_2 = \dot{x}$ :

$$\dot{x_1} = x_2$$
 $\dot{x_2} = \ddot{x} = (u - c\dot{x} - kx)/m$ 
 $\dot{x_2} = (u - cx_2 - kx_1)/m$ 

By setting  $\dot{x1} = 0$ ,  $\dot{x_2} = 0$ , we find:

$$\bar{x}_2 = 0$$
 $\bar{u} = k\bar{x}_1$ 

#### Stability

#### Stability

#### Definition

Consider the autonomous system  $\dot{x} = f(x)$ . Consider an equilibrium condition  $\bar{x}$  such that

$$f(\bar{x})=0.$$

The Equilibrium is said stable if starting from an initial state  $\bar{x} + \delta x$ , for  $\delta x$  small enough, the trajectory remains close to the equilibrium:  $\forall \epsilon > 0, \exists \delta x$  such that

$$x(0) = \bar{x} + \delta x \rightarrow |x(t) - \bar{x}| \le \epsilon$$
 for all  $t$ , where  $x(t) = \phi(\bar{x} + \delta x)$ .

The Equilibrium is asymptotically stable of it is stable and if  $\lim_{t\to\infty}\phi(\bar x+\delta x)=\bar x$ , i.e., the trajectory eventually converges to the equilibrium.

# Stability of an Equilibrium



Stable Equilibrium



Asymptoically Stable Equilibrium

#### Mass Spring

Consider the usual mass spring system and suppose u(t) = 0. The equation is:

$$\dot{x_1} = x_2$$
  
 $\dot{x_2} = (-cx_2 - kx_1)/m$ 

Let us consider the equilibrium  $(x_1 = 0, x_2 = 0)$ . Let us make a perturbation  $(x_1 = 0.1, x_2 = 0.1)$ . We can write it in matrix form:

$$\begin{bmatrix} \dot{x}_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k/m & -c/m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

#### Mass Spring

Consider the usual mass spring system and suppose u(t) = 0.

$$\begin{bmatrix} \dot{x}_1 \\ x_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

We can apply the differentiation rule on the entire state vector:

$$s \begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} - \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = A \begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix}$$
$$\begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} = (sI - A)^{-1} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$$

Mass Spring

Suppose 
$$m = 1$$
,  $k = 4$   $c = 5$ ,  $(x_1 = 0.1, x_2 = 0.2)$ .

$$(sI - A)^{-1} = \begin{bmatrix} s & -1 \\ k/m & s + c/m \end{bmatrix}^{-1}$$

$$= \frac{1}{s^2 + (c/m)s + k/m} \begin{bmatrix} s + c/m & 1 \\ -k/m & s \end{bmatrix}$$

$$\begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} = \begin{bmatrix} \frac{(s+c/m)x_1(0)}{s^2 + (k/m)s + c/m} + \frac{x_2(0)}{s^2 + (c/m)s + k/m} \\ -\frac{(k/m)x_1(0)}{s^2 + (c/m)s + k/m} + \frac{sx_2(0)}{s^2 + (c/m)s + k/m} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{0.1(s+5)}{s^2 + 5s + 4} + \frac{0.2}{s^2 + 5s + 4} \\ -\frac{0.4}{s^2 + 5s + 4} + \frac{0.2s}{s^2 + 5s + 4} \end{bmatrix}$$

# Mass Spring Inversion

$$X(s) = \begin{bmatrix} \frac{0.1(s+5)}{(s+1)(s+4)} + \frac{0.2}{(s+1)(s+4)} \\ -\frac{0.4}{(s+1)(s+4)} + \frac{0.2s}{(s+1)(s+4)} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{15} \cdot \frac{1}{s+1} - \frac{1}{30} \cdot \frac{1}{s+4} + \frac{1}{15} \cdot \frac{1}{s+1} - \frac{1}{15} \cdot \frac{1}{s+4} \\ \frac{2}{15} \cdot \frac{1}{s+4} - \frac{2}{15} \cdot \frac{1}{s+1} + \frac{4}{15} \cdot \frac{1}{s+4} - \frac{1}{15} \cdot \frac{1}{s+1} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{5} \cdot \frac{1}{s+1} - \frac{1}{10} \cdot \frac{1}{s+4} \\ \frac{2}{5} \cdot \frac{1}{s+4} - \frac{1}{5} \cdot \frac{1}{s+1} \end{bmatrix}$$

$$x(t) = \begin{bmatrix} \mathbf{1}(t) \left( \frac{1}{5}e^{-t} - \frac{1}{10}e^{-4t} \right) \\ \mathbf{1}(t) \left( \frac{2}{5}e^{-4t} - \frac{1}{5}e^{-t} \right) \end{bmatrix}$$



## Stability as a local property

Generally speaking, a trajectory's stability is a local property: if we make small perturbation around the trajectory, we will remain close enough and we will eventually converge to the trajectory. In general it is possible to define a region around the equilibrium called *region of asymptotic stability*, shuch that for any intial state within this region the trajectory will converge to the equilibrium.

#### **Trajectories**

In the same way in which we evaluate the stability of an equilibrium, we can evaluate the stability of a trajectory.

Let  $(\bar{x}(t), \bar{u}(t))$  be an equilibrium trajectory:  $f(\bar{x}(t), \bar{u}(t)) = 0$ . If we perturb the intitial state, we will have a new evolution for  $x(t) = \bar{x}(t) + \delta x(t)$ :

$$\dot{x}(t) = f(x, \bar{u}(t))$$

$$\dot{\bar{x}}(t) + \dot{\delta x}(t) = f(\bar{x} + \delta x, \bar{u})$$

$$\dot{\delta x}(t) = f(\bar{x} + \delta x, \bar{u}) - f(\bar{x} + \delta x, \bar{u})$$

$$= f(\bar{x} + \delta x, \bar{u})$$

$$= h(\delta x)$$

#### **Fact**

Consider a state space system  $\dot{x}=f(x,u)$  and let  $\bar{x}(t),\bar{u}(t)$  an equilibrium trajectory. The the stability around this trajectory can be studied as the sability of the origin of a new autonomous system  $\dot{\delta x}=h(\delta x)$  where  $h(\delta x)=f(\bar{x}+\delta x,\bar{u})$ .

# Stability of Trajectories



Stable Trajectory



Asymptotically Stable Trajectory

# Stability of Linear and Time Invariant System

For a general system, stability is a property of a specific equilibrium point (or trajectories). Not so for Linear and Time Invariant systems.

#### Theorem

For a Linear and Time Invariant system,

- if an equilibrium point (or trajectory) is stable or asymptotically stable, then all the possible equilibrium points or trajectories are. In other words, stability (or asymptotic stability) is a property of the system.
- ▶ If a sytem is stable, then for any equilibrium the region of asymptotic stability consists of the whole state space (in other word stability is a global property).

#### Mass Spring

Consider the usual mass spring system and suppose u(t) = 10N/kg, c/m = 1, k/m = 10 The equation is:

$$\dot{x_1} = x_2$$
  
 $\dot{x_2} = -x_2 - 10x_1 + u(t)$ 

Let us consider the equilibrium  $(x_1=0,x_2=0)$ . Let us make a perturbation  $(x_1=100,x_2=-1000)$ . We can write it in matrix form:

$$\begin{bmatrix} \dot{x}_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -10 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot 10 \cdot \mathbf{1}(t)$$

The Laplace Transform is given by:

$$\begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} = \left( sI - \begin{bmatrix} 0 & 1 \\ -10 & -1 \end{bmatrix} \right)^{-1} \left( \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{10}{s} \end{bmatrix} \right)$$

Mass Spring Which is equal to:

$$\begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} = \begin{bmatrix} \frac{(s+1)100}{s^2+s+10} + \frac{\frac{10}{5}+1000}{s^2+s+10} \\ \frac{s(\frac{10}{5}+1000)}{s^2+s+10} - \frac{1000}{s^2+s+10} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{49.5-168.05j}{s+0.5-3.1225j} + \frac{49.5+168.05j}{s+0.5+3.1225j} + \frac{1}{s} \\ \frac{500+238.59j}{s+0.5-3.1225j} + \frac{500+239.59j}{s+0.5+3.1225j} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{175.1929e^{-1.2843j}}{s+0.5-3.1225j} + \frac{175.1929e^{+1.2843j}}{s+0.5+3.1225j} + \frac{1}{s} \\ \frac{554.0087e^{0.4452j}}{s+0.5-3.1225j} + \frac{554.0087e^{-0.4452j}}{s+0.5+3.1225j} \end{bmatrix}$$

#### Mass Spring

... in time domain, for  $t \ge 0$  ..

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} \mathbf{1}(t) \left( 2 \cdot 175.1929 e^{-0.5t} \cos \left( 3.1225 t - 1.2843 \right) + 1 \right) \\ \mathbf{1}(t) \left( 2 \cdot 554.0087 e^{-0.5t} \cos \left( 3.1225 t + 0.4452 \right) \right) \end{bmatrix}$$



Behaviour for large values of t....



#### Mass Spring

Consider the usual mass spring system and suppose u(t) = 10N/kg, c/m = 0, k/m = 10 (no damping). The equation is:

$$\dot{x_1} = x_2$$
  
 $\dot{x_2} = -10x_1 + u(t)$ 

Let us consider the equilibrium  $(x_1=0,x_2=0)$ . Let us make a perturbation  $(x_1=100,x_2=-1000)$ . We can write it in matrix form:

$$\begin{bmatrix} \dot{x}_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -10 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot 10 \cdot \mathbf{1}(t)$$

The Laplace Transform is given by:

$$\begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} = \left( sI - \begin{bmatrix} 0 & 1 \\ -10 & -0 \end{bmatrix} \right)^{-1} \left( \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{10}{s} \end{bmatrix} \right)$$

#### Mass Spring

... which corresponds to ...

$$\begin{split} \begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} &= \begin{bmatrix} \frac{100s}{s^2+10} + \frac{\frac{10}{s}+1000}{s^2+10} \\ \frac{s(\frac{10}{s}+1000)}{s^2+10} - \frac{1000}{s^2+10} \end{bmatrix} \\ &= \begin{bmatrix} \frac{49.5-158.11j}{s-3.1623j} + \frac{49.5+158.11j}{s+3.1623j} + \frac{1}{s} \\ \frac{500+156.53j}{s-3.1623j} + \frac{500-156.53j}{s+3.1623j} \end{bmatrix} \\ &= \begin{bmatrix} \frac{165.6812e^{-1.2674j}}{s-3.1623j} + \frac{165.6812e^{+1.2674j}}{s+3.1623j} + \frac{1}{s} \\ \frac{523.93e^{0.3034j}}{s-3.1623j} + \frac{523.93e^{-0.3034j}}{s+3.1623j} + \frac{1}{s} \end{bmatrix} \end{split}$$

#### Mass Spring

... in time domain, for  $t \ge 0$  ..

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} \mathbf{1}(t) \left( 2 \cdot 165.6812 \cos \left( 3.1623t - 1.2674 \right) + 1 \right) \\ \mathbf{1}(t) \left( 2 \cdot 523.93 \cos \left( 3.1623t + 0.3034 \right) \right) \end{bmatrix}$$



#### Lessons Learned

- ► The Laplace transform can be used to study the trajectories of LTI in the state space
- A key role is played by the matrix  $(sI A)^{-1}$  and in particular by the denominator of its components det(sI A)
- ► The roots of this denominator, which is the characteristic polynomial, are the matrix's eigenvalue
- Such eigenvalues give rise to exponential dyanmics and we call them pole

# Stability of linear and time invariant systems

It is possible to show the following:

#### Theorem

#### **Theorem**

Consider a state space CT LTI system:

$$\dot{x} = Ax + Bu$$
$$v = Cx + Du$$

Let  $p_i$  be the roots of det(sI - A). Then the following are true:

- ▶ If for all  $p_i$ , we have Real  $(p_1)$  < 0 then the system is asymptotically stable
- ▶ If for all  $p_i$ , we have  $\mathbf{Real}(p_1) \leq 0$  and if in the partial fraction expansion of all poles  $p_j$  such that  $\mathbf{Real}(p_j) = 0$  the terms  $\frac{1}{(s-p_i)^h}$  appear only with h = 1, then the system is stable.
- In all other cases the system is unstable.

# Stability of linear and time invariant systems – Discrete time counter part

It is possible to show the following:

#### Theorem

#### **Theorem**

Consider a state space CT LTI system:

$$x(t+1) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Let  $p_i$  be the roots of det(sI - A). Then the following are true:

- ▶ If for all  $p_i$ , we have  $|p_1| < 1$  then the system is asymptotically stable
- ▶ If for all  $p_i$ , we have  $|p_1| \le 1$  and if in the partial fraction expansion of all poles  $p_j$  such that  $|p_j| = 1$  the terms  $\frac{1}{(s-p_i)^h}$  appear only with h = 1, then the system is stable.
- In all other cases the system is unstable.



#### Observation

- We have seen two notions of stability: BIBO stability and Structural Stability (als said Lyapunov stability) for LTI systems.
- ▶ BIBO stability hinges on the position of the roots of the denominator of the transfer function G(s), called poles.
- ▶ Lyapunov stability hinges on the positon of the roots of the roots of det(sI A), which we call....well....poles
- Any connection???

#### Transfer function from state space

Consider a SISO LTI system with state space representation:

$$\dot{x} = Ax + bu$$
$$y = cx + du$$

 Suppose we want to compute the forced evolution. We can resour to the Laplace Transform (assuming zero initial condition)

$$sX(s) = AX(s) + bU(s)$$
$$Y(s) = cX(s) + dU(s)$$

which leads to

$$Y(s) = c(sI - A)^{-1}bU(s)$$
  
$$Y(s) = G(s)U(s)$$

► Hence,  $G(s) = c(sI - A)^{-1}b$ .



#### Conclusions

- From  $G(s) = c(sI A)^{-1}b$ , it follows that the poles of G(s) are actually a subset of the eigenvalues of A (i.e., the poles of the state space representation)
- ▶ It could happen that the multiplication by *c* and *b* cancels some pole with a zero
- We call this event "loss of structural properties", which has to do with observability and controllability....a long story, which we do not have time to tell
- Essetially, when no such cancellation occurs, asymptotic stability amounts to BIBO stability.