A Ouick Recap

CMPE 322/327 - Theory of Computation Week 8: DFA Equivalence Checking & Context Free Grammars & Ambiguity

Burak Ekici

April 11-15, 2022

Outline

A Ouick Recap

•00000

- 1 A Quick Recap
- 2 Equivalence of Finite Automat
- 3 Context Free Grammar
- 4 Strongly Right-Linear Grammars
- 5 Ambiguit

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $*: K \to K$ and $+, \times: K \times K \to K$

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $*: K \to K$ and $+, \times: K \times K \to K$

Notatio

• ab for $a \times b$ a^* for *(a)

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements 0, $1 \in K$ and operations $*: K \to K$ and $+, \times: K \times K \to K$

- ab for $a \times b$ a^* for *(a)
- binding precedence: * > x > +

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that

$$a + (b + c) = (a + b) + c$$

 $a + b = b + a$
 $a + a = a$
 $a + 0 = a$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a)
- binding precedence: * > x > +

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that a(bc)

(ab)c

$$a + (b + c) = (a + b) + c$$
 $a0 = 0$
 $a + b = b + a$ $0a = 0$
 $a + a = a$ $1a = a$
 $a + 0 = a$ $a1 = a$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a)
- binding precedence: * > x > +

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that

$$a + (b + c) = (a + b) + c$$
 $a0 = 0$ $a(bc) = (ab)c$
 $a + b = b + a$ $0a = 0$ $(a + b)c = ac + bc$
 $a + a = a$ $1a = a$ $a(b + c) = ab + ac$
 $a + 0 = a$ $a1 = a$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a)
- binding precedence: * > x > +

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that

$$a + (b + c) = (a + b) + c$$
 $a0 = 0$ $a(bc) = (ab)c$ $1 + aa^* = a^*$ $a + b = b + a$ $0a = 0$ $(a + b)c = ac + bc$ $1 + a^*a = a^*$ $1a = a$ $a(b + c) = ab + ac$ $a + 0 = a$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a)
- binding precedence: * > x > +

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a) $a \le b$ for a + b = b
- binding precedence: * > x > +

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $*: K \to K$ and $+, \times: K \times K \to K$ such that (A.1) - (A.13)

$$a+(b+c) = (a+b)+c \qquad a0 = 0 \qquad a(bc) = (ab)c \qquad 1+aa^* = a^* \\ a+b = b+a \qquad 0a = 0 \qquad (a+b)c = ac+bc \qquad 1+a^*a = a^* \\ a+a = a \qquad 1a = a \qquad a(b+c) = ab+ac \qquad ac \leqslant c \Longrightarrow a^*c \leqslant c \\ a+0 = a \qquad a1 = a \qquad ca \leqslant c \Longrightarrow ca^* \leqslant c$$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a) $a \le b$ for a + b = b
- binding precedence: * > x > +

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that (A.1) - (A.13)

 $(A.14) b + ac \le c \implies a^*b \le c$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a) $a \le b$ for a + b = b
- binding precedence: * > x > +

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that (A.1) - (A.13)

$$a+(b+c) = (a+b)+c \qquad a0 = 0 \qquad a(bc) = (ab)c \qquad 1+aa^* = a^* \\ a+b = b+a \qquad 0a = 0 \qquad (a+b)c = ac+bc \qquad 1+a^*a = a^* \\ a+a = a \qquad 1a = a \qquad a(b+c) = ab+ac \qquad ac \leqslant c \Longrightarrow a^*c \leqslant c \\ a+0 = a \qquad a1 = a \qquad ca \leqslant c \Longrightarrow ca^* \leqslant c \implies ca^* \leqslant c$$

 $(A.14) b + ac \le c \implies a^*b \le c \qquad (A.15) b + ca \le c \implies ba^* \le c$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a) $a \le b$ for a + b = b
- binding precedence: * > x > +

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that (A.1) - (A.13)

$$a+(b+c) = (a+b)+c \qquad a0 = 0 \qquad a(bc) = (ab)c \qquad 1+aa^* = a^* \\ a+b = b+a \qquad 0a = 0 \qquad (a+b)c = ac+bc \qquad 1+a^*a = a^* \\ a+a = a \qquad 1a = a \qquad a(b+c) = ab+ac \qquad ac \leqslant c \Longrightarrow a^*c \leqslant c \\ a+0 = a \qquad a1 = a \qquad ca \leqslant c \Longrightarrow ca^* \leqslant c$$

(A.14)
$$b + ac \le c \implies a^*b \le c$$
 (A.15) $b + ca \le c \implies ba^* \le c$ (A.16) $(a + b)^* = (a^*b)^*a^*$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a) $a \le b$ for a + b = b
- binding precedence: * > x > +

A Ouick Recap

000000

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that (A.1) – (A.13)

$$a+(b+c) = (a+b)+c \qquad a0 = 0 \qquad a(bc) = (ab)c \qquad 1+aa^* = a^* \\ a+b = b+a \qquad 0a = 0 \qquad (a+b)c = ac+bc \qquad 1+a^*a = a^* \\ a+a = a \qquad 1a = a \qquad a(b+c) = ab+ac \qquad ac \leqslant c \Longrightarrow a^*c \leqslant c \\ a+0 = a \qquad a1 = a \qquad ac \leqslant c \Longrightarrow ca^* \leqslant c \end{cases}$$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a) $a \le b$ for a + b = b
- binding precedence: * > x > +

Theorer

A Ouick Recap

000000

 $\begin{tabular}{ll} \bf regular \ sets \ over \ some \ alphabet \ \Sigma \ form \ Kleene \ algebra \end{tabular}$

A Quick Recap

000000

regular sets over some alphabet Σ form Kleene algebra

$$\beta_a \equiv a^*b(a^*b)^*a^*+a^*$$

A Ouick Recap

000000

regular sets over some alphabet Σ form Kleene algebra

$$\beta_a \equiv a^*b(a^*b)^*a^* + a^*$$
$$= xx^*y + y$$

A Ouick Recap

000000

regular sets over some alphabet Σ form Kleene algebra

$$\beta_a \equiv a^*b(a^*b)^*a^* + a^*$$

= $xx^*y + y$ $x := (a^*b)$

A Ouick Recap

000000

regular sets over some alphabet Σ form Kleene algebra

$$\beta_a \equiv a^*b(a^*b)^*a^* + a^*$$

= $xx^*y + y$ $x := (a^*b)$ $y := (a^*)$

A Ouick Recap

000000

regular sets over some alphabet Σ form Kleene algebra

$$\begin{array}{rcl} \beta_a & \equiv & a^*b(a^*b)^*a^*+a^* \\ & = & xx^*y+y & x:=(a^*b) & y:=(a^*) \\ & \equiv & (xx^*+\varepsilon)y & \end{array}$$

A Ouick Recap

000000

regular sets over some alphabet Σ form Kleene algebra

```
\beta_a \equiv a^*b(a^*b)^*a^* + a^*
= xx^*y + y \qquad x := (a^*b) \qquad y := (a^*)
\equiv (xx^* + \varepsilon)y
\equiv x^*y
```

Theorer

A Ouick Recap

000000

regular sets over some alphabet Σ form Kleene algebra

```
\beta_{a} \equiv a^{*}b(a^{*}b)^{*}a^{*} + a^{*}
= xx^{*}y + y \qquad x := (a^{*}b) \qquad y := (a^{*})
\equiv (xx^{*} + \varepsilon)y
\equiv x^{*}y
= (a^{*}b)^{*}a^{*}
```

A Ouick Recap

000000

regular sets over some alphabet Σ form Kleene algebra

A Ouick Recap

000000

•
$$\alpha = (a+b)^*$$

start
$$\rightarrow \alpha$$

Lomm

A Ouick Recap

000000

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$

start
$$\rightarrow \alpha$$

Lemm

A Ouick Recap

000000

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$

start
$$\rightarrow (\alpha)$$
 a b

Lomm

A Ouick Recap

000000

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 ab

Lomma

A Ouick Recap

000000

• $\alpha = (a+b)^*$, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 at

• $\beta = (a^*b)^*a^*$

$$\mathsf{start} \longrightarrow \beta$$

Lemm

A Ouick Recap

000000

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 a

•
$$\beta = (a^*b)^*a^*$$
, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$

Lemm

A Ouick Recap

000000

• $\alpha = (a+b)^*$, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 a l

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$

Lemm

A Ouick Recap

000000

• $\alpha = (a+b)^*$, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 at

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$, $\beta \downarrow$

Lemm

A Ouick Recap

000000

• $\alpha = (a+b)^*$, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 at

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$, $\beta \downarrow$, $\gamma_a \equiv \gamma$

Lemm

A Ouick Recap

000000

• $\alpha = (a+b)^*$, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 at

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$, $\beta \downarrow$, $\gamma_a \equiv \gamma$, $\gamma_b \equiv \beta$

Lemm

A Ouick Recap

000000

• $\alpha = (a+b)^*$, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 at

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$, $\beta \downarrow$, $\gamma_a \equiv \gamma$, $\gamma_b \equiv \beta$, $\gamma \downarrow$

Lemm

A Ouick Recap

000000

• $\alpha = (a+b)^*$, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 at

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$, $\beta \downarrow$, $\gamma_a \equiv \gamma$, $\gamma_b \equiv \beta$, $\gamma \downarrow$

Lemma

every regular expression α can be transformed into equivalent DFA using derivatives (and 'easy' Kleene algebra axioms for simplification)

A Ouick Recap

000000

 $\textbf{bisimulation} \text{ is binary relation } \textbf{\sim} \text{ between languages over alphabet } \Sigma$

A Ouick Recap

000000

 $\textbf{bisimulation} \text{ is binary relation } \textbf{\sim} \text{ between languages over alphabet } \Sigma$

A Ouick Recap

000000

bisimulation is binary relation \sim between languages over alphabet Σ such that if $A \sim B$ then

- \bigcirc $A\downarrow \iff B\downarrow$

A Ouick Recap

000000

bisimulation is binary relation \sim between languages over alphabet Σ such that if $A \sim B$ then

- $\bigcirc A\downarrow \iff B\downarrow$

Theorem

 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

A Ouick Recap

000000

bisimulation is binary relation \sim between languages over alphabet Σ such that if $A \sim B$ then

- \bigcirc $A\downarrow \iff B\downarrow$

Theoren

 $L(\alpha) = L(\beta)$ \iff $L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Example

 $\alpha = (a+b)^*$ and $\beta = (a^*b)^*a^*$

A Ouick Recap

000000

bisimulation is binary relation \sim between languages over alphabet Σ such that if $A \sim B$ then

- \bigcirc $A\downarrow \iff B\downarrow$

Theoren

$$L(\alpha) = L(\beta)$$
 \iff $L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Example

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$

A Ouick Recap

000000

bisimulation is binary relation \sim between languages over alphabet Σ such that if $A \sim B$ then

- \bigcirc $A\downarrow \iff B\downarrow$

$$L(\alpha) = L(\beta)$$
 \iff $L(\alpha) \sim L(\beta)$ for some bisimulation \sim

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\begin{array}{c|c|c} & a & b \\ \hline \alpha & \alpha & \alpha & 1 \end{array}$$

A Ouick Recap

000000

bisimulation is binary relation \sim between languages over alphabet Σ such that if $A \sim B$ then

- \blacksquare $A_a \sim B_a$ for all $a \in \Sigma$
- \bigcirc $A\downarrow \iff B\downarrow$

$$L(\alpha) = L(\beta)$$
 \iff $L(\alpha) \sim L(\beta)$ for some bisimulation \sim

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

A Ouick Recap

000000

bisimulation is binary relation \sim between languages over alphabet Σ such that if $A \sim B$ then

- \bigcirc $A\downarrow \iff B\downarrow$

Theorem

$$L(\alpha) = L(\beta)$$
 \iff $L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Example

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

hence $\{(L(\alpha), L(\beta)), (L(\alpha), L(\gamma))\}$ is bisimulation and thus $L(\alpha) = L(\beta) = L(\gamma)$

A Ouick Recap

00000

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

A Ouick Recap

00000

$$\alpha = ab^*(a+b)^*b \text{ and } \beta = aa^*(b^*a)^*b$$

derivatives

$$\begin{array}{lll} \alpha_{a} = b^{*}(a+b)^{*}b =: \alpha_{1} & \alpha_{b} = \emptyset \\ (\alpha_{1})_{a} = (a+b)^{*}b =: \alpha_{2} & (\alpha_{1})_{b} = b^{*}(a+b)^{*}b + (a+b)^{*}b + \varepsilon =: \alpha_{3} \\ (\alpha_{2})_{a} = \alpha_{2} & (\alpha_{2})_{b} = (a+b)^{*}b + \varepsilon =: \alpha_{4} \\ (\alpha_{3})_{a} = \alpha_{2} & (\alpha_{3})_{b} = \alpha_{3} \\ (\alpha_{4})_{a} = \alpha_{2} & (\alpha_{4})_{b} = \alpha_{4} \\ \beta_{a} = a^{*}(b^{*}a)^{*}b =: \beta_{1} & \beta_{b} = \emptyset \\ (\beta_{1})_{a} = a^{*}(b^{*}a)^{*}b + (b^{*}a)^{*}b =: \beta_{2} & (\beta_{1})_{b} = b^{*}a(b^{*}a)^{*}b + \varepsilon =: \beta_{3} \\ (\beta_{2})_{a} = \beta_{2} & (\beta_{2})_{b} = \beta_{3} \\ (\beta_{3})_{a} = (b^{*}a)^{*}b =: \beta_{4} & (\beta_{3})_{b} = b^{*}a(b^{*}a)^{*}b =: \beta_{5} \\ (\beta_{4})_{a} = \beta_{4} & (\beta_{5})_{b} = \beta_{5} \end{array}$$

A Ouick Recap

00000

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

	а	b			а	b	
α	α_1	Ø	1	β	$oldsymbol{eta}_1$	Ø	1
$lpha_1$	α_2	α_3	1	$oldsymbol{eta}_1$	β_2	β_3 β_3	1
α_2	α_2	α_4	1	$oldsymbol{eta}_2$			
α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4	α_2		↓	β_4	β_4	β_3	1
Ø	Ø	Ø	↑	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

A Ouick Recap

00000

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

tables

	a	b			а	b	
α	α_1		1	β	β_1	Ø	1
α_1	α_2	α_3	1	$oldsymbol{eta}_1$	β_2	<i>β</i> ₃	1
α_2	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4	α_2	α_4	↓	eta_4	β_4	β_3	1
Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

• any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_1) \sim L(\beta_1)$

A Ouick Recap

00000

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

tables

	а	b				b	
α	α_1	Ø	1	β	β_1	Ø	1
α_1	α_2	α_3	1	$oldsymbol{eta_1}$	β_2	β 3	1
α_2	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4	α_2	α_4	↓	β_4	β_4	β_3	1
Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

• any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_3)$

A Ouick Recap

00000

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

tables

	a	b			а	b	
α	α_1	Ø	1	β		Ø	
α_1	α_2	α_3	1	$oldsymbol{eta_1}$	β_2	<i>β</i> ₃	1
α_2	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4	α_2	α_4	↓	eta_4	β_4	β_3	1
Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

• any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_5)$

A Ouick Recap

00000

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

	a	b			а	b	
α	α_1	Ø	1	β	β_1	Ø	1
α_1	α_2	α_3	1	$oldsymbol{eta}_1$	β_2	β_3	1
α_2	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
α_3	α_2	α_3	↓ ↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4	α_2	α_4	↓	β_4	β_4	β_3	1
Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

- any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_5)$
- $L(\alpha_3)\downarrow$ and $L(\beta_5)\uparrow$

A Ouick Recap

00000

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

		a	b			а	b	
Ī	α	α_1	Ø	1	β	β_1	Ø	1
	α_1	α_2	α_3	1	$oldsymbol{eta}_1$	β_2	β_3	1
	$lpha_2$	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
	α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
	α_4	α_2	α_4	↓	eta_4	β_4	β_3	1
	Ø	Ø	Ø	↑	$oldsymbol{eta}_5$	β_4	β_5	1
					Ø	Ø	Ø	1

- any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_5)$
- $L(\alpha_3)\downarrow$ and $L(\beta_5)\uparrow$

A Ouick Recap

00000

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

	a	b			а	b	
α	α_1		1	β	β_1	Ø	1
α_1	α_2	α_3	1	$oldsymbol{eta}_1$	β_2	β_3	1
α_2	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4	α_2	α_4	↓	β_4	β_4	β_3	1
Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

- any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_5)$
- $L(\alpha_3)\downarrow$ and $L(\beta_5)\uparrow$
- $L(\alpha) \neq L(\beta)$

A Ouick Recap

00000

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

	a	b			а	b	
α	α_1	Ø	1	β		Ø	
α_1	α_2	α_3	1	$oldsymbol{eta}_1$	β_2	β_3	1
α_2	α_2	α_4	1	$oldsymbol{eta}_2$		β_3	
α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4	α_2	α_4	↓	β_4		β_3	1
Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

- any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_5)$
- $L(\alpha_3)\downarrow$ and $L(\beta_5)\uparrow$
- $L(\alpha) \neq L(\beta)$ (witness: $abb \in L(\alpha) \setminus L(\beta)$)

Outline

A Ouick Recap

- 1 A Quick Recap
- 2 Equivalence of Finite Automata

•000000

000000

• bisimulation up to congruence

000000

bisimulation up to congruence

A Quick Recap

• developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

Example

Equivalence of Finite Automata

bisimulation up to congruence

000000

- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

Example

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

Example

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

Example

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

Example

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

Example

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

Example

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

Example

• bisimulation up to congruence

000000

- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

A Ouick Recap

bisimulation relates states with same observable behaviour

A Ouick Recap

bisimulation relates states with same observable behaviour

Definition

- **bisimulation** is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

A Ouick Recap

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

 - \bigcirc $\delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$

A Ouick Recap

bisimulation relates states with same observable behaviour

Definition

- **bisimulation** is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

A Ouick Recap

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

Example

• = (identity relation)

A Ouick Recap

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

Example

- = (identity relation)
- ≈ (indistinguishability relation of lecture 5)

A Ouick Recap

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

Remarks

· bisimilarity is equivalence relation

A Ouick Recap

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

Remarks

- · bisimilarity is equivalence relation
- $L(M,p) := \{x \in \Sigma^* \mid \widehat{\delta}(p,x) \in F\}$

A Ouick Recap

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

Remarks

- · bisimilarity is equivalence relation
- $L(M,p) := \{x \in \Sigma^* \mid \widehat{\delta}(p,x) \in F\}$
- $p \sim q \iff L(M,p) \sim L(M,q)$

Example

Example а а а а а start а а а start – а $a \sim f$ $b \sim g$

а а а а а start а а а а start – а $a \sim f$ $b \sim g$ c ~ h $d \sim i$

а а а а а start а а а start – a e∼i d∼i $a \sim f$ $b \sim g$ c ~ h $a \sim g$

а а а а а start а а а start a e∼i d∼i $a \sim f$ $b \sim g$ c ~ h $b \sim h$ $a \sim g$ c ~ i

 $a \sim f$

a ∼ h

b∼i

c ~ j

e ~ h

a∼i

 $b \sim j$

 $c \sim g$

 $d \sim h$

for NFAs on-the-fly determinization is incorporated

$a \sim d \wedge c \sim e + f$ $\implies a + c \sim d + e + f$

A Ouick Recap

A Ouick Recap

0000000

A Ouick Recap

A Ouick Recap

A Ouick Recap

A Ouick Recap

sets are denoted as sums of their elements; overlining indicates final state sets

start start $a \sim d$ $\implies a + b \sim d + b$ $ightarrow \overline{b+c}$ -

A Ouick Recap

sets are denoted as sums of their elements; overlining indicates final state sets

start start $a \sim d \wedge b + c \sim d$ $\Rightarrow a + b \sim d + b \sim b + c + b$

A Ouick Recap

sets are denoted as sums of their elements; overlining indicates final state sets

start start $a \sim d \wedge b + c \sim d$ $\implies a + b \sim d + b \sim b + c + b = b + c$

A Ouick Recap

sets are denoted as sums of their elements; overlining indicates final state sets

start $a \sim d \wedge b + c \sim d$ $\implies a + b \sim d + b \sim b + c + b = b + c \sim d$

A Ouick Recap

A Ouick Recap

given binary relation R on sets of states of NFA $N = (Q, \Sigma, \Delta, S, F)$

• c(R) is the smallest equivalence relation that includes R and is closed under union:

$$\frac{X_1 c(R) Y_1 X_2 c(R) Y_2}{X_1 \cup X_2 c(R) Y_1 \cup Y_2}$$

A Ouick Recap

given binary relation R on sets of states of NFA $N = (Q, \Sigma, \Delta, S, F)$

• c(R) is the smallest equivalence relation that includes R and is closed under union:

$$\frac{X_1 \text{ c(R) } Y_1 \qquad X_2 \text{ c(R) } Y_2}{X_1 \cup X_2 \text{ c(R) } Y_1 \cup Y_2}$$

binary relation R on sets of states of NFA N = (Q, Σ, Δ, S, F) is bisimulation up to congruence if for all Q₁, Q₂ ⊆ Q with Q₁R Q₂:

A Ouick Recap

given binary relation R on sets of states of NFA $N = (Q, \Sigma, \Delta, S, F)$

• c(R) is the smallest equivalence relation that includes R and is closed under union:

$$\frac{X_1 c(R) Y_1 X_2 c(R) Y_2}{X_1 \cup X_2 c(R) Y_1 \cup Y_2}$$

- binary relation R on sets of states of NFA N = (Q, Σ, Δ, S, F) is bisimulation up to congruence if for all Q₁, Q₂ ⊆ Q with Q₁ R Q₂:

A Ouick Recap

given binary relation R on sets of states of NFA $N = (Q, \Sigma, \Delta, S, F)$

• c(R) is the smallest equivalence relation that includes R and is closed under union:

$$\frac{X_1 c(R) Y_1 \qquad X_2 c(R) Y_2}{X_1 \cup X_2 c(R) Y_1 \cup Y_2}$$

- binary relation R on sets of states of NFA N = (Q, Σ, Δ, S, F) is bisimulation up to congruence if for all Q₁, Q₂ ⊆ Q with Q₁ R Q₂:

 - \bigcirc $\widehat{\Delta}(Q_1, a)$ $\stackrel{\mathsf{c}}{\mathsf{c}}(\mathsf{R})$ $\widehat{\Delta}(Q_2, a)$ for all $a \in \Sigma$

A Ouick Recap

given binary relation R on sets of states of NFA $N = (Q, \Sigma, \Delta, S, F)$

• c(R) is the smallest equivalence relation that includes R and is closed under union:

$$\frac{X_1 \text{ c(R) } Y_1 \qquad X_2 \text{ c(R) } Y_2}{X_1 \cup X_2 \text{ c(R) } Y_1 \cup Y_2}$$

- binary relation R on sets of states of NFA $N = (Q, \Sigma, \Delta, S, F)$ is bisimulation up to congruence if for all $Q_1, Q_2 \subseteq Q$ with $Q_1 R Q_2$:
- \bigcirc $\widehat{\Delta}(Q_1, a)$ c(R) $\widehat{\Delta}(Q_2, a)$ for all $a \in \Sigma$

Theorem

NFAs $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$ are equivalent \iff $S_1 \ R \ S_2$ for some bisimulation up to congruence R on $N_1 \cup N_2$

Outline

- 1 A Quick Recap
- 2 Equivalence of Finite Automat
- 3 Context Free Grammars
- 4 Strongly Right-Linear Grammar
- 6 Ambiguit

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

- context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with
 - **1** *N* : finite set of nonterminals

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

① *N* : finite set of nonterminals

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

① N : finite set of nonterminals

§ P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

1 N: finite set of nonterminals

§ P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $\textcircled{4} S \in \mathbb{N}$: start symbol

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

① N: finite set of nonterminals

6 P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $4 S \in N$: start symbol

• one step derivation relation $\frac{1}{G}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$

- $\Sigma = \{a, b\}$

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$

- $N = \{S\}$
 - $\Sigma = \{a, b\}$
 - § $P = \{S \rightarrow aSb, S \rightarrow \varepsilon\}$

$$S \xrightarrow{1}_{G} aSb$$

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$

$$0 N = \{S\}$$

$$\Sigma = \{a, b\}$$

$$S \xrightarrow{1}_{G} aSb \xrightarrow{1}_{G} ab$$

CFG $G = (N, \Sigma, P, S)$

- $\Sigma = \{a, b\}$
- $P = \{S \rightarrow aSb, S \rightarrow \varepsilon\}$

$$S \xrightarrow{1} aSb \xrightarrow{1} ab$$

$$S \xrightarrow{1} aSb \xrightarrow{1} aaSbb$$

CFG $G = (N, \Sigma, P, S)$

$$0 N = \{S\}$$

$$\Sigma = \{a, b\}$$

$$S \xrightarrow{1} aSb \xrightarrow{1} ab$$

$$S \xrightarrow{1} aSb \xrightarrow{1} aaSbb \xrightarrow{1} aabb$$

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$

 $\Sigma = \{a, b\}$

 $P = \{S \rightarrow aSb, S \rightarrow \varepsilon\} = \{S \rightarrow aSb \mid \varepsilon\}$

$$S \xrightarrow{1}_{G} aSb \xrightarrow{1}_{G} ab$$

$$S \xrightarrow{1} aSb \xrightarrow{1} aaSbb \xrightarrow{1} aabb$$

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

① *N* : finite set of nonterminals

6 P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $4 S \in N$: start symbol

• one step derivation relation $\frac{1}{G}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

6 P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $4 S \in N$: start symbol

• one step derivation relation $\frac{1}{G}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\frac{*}{G} = \bigcup_{n \ge 0} \frac{n}{G}$

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

① *N* : finite set of nonterminals

6 P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $49 S \in N$: start symbol

• one step derivation relation $\frac{1}{G}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\frac{*}{G} = \bigcup_{n \ge 0} \frac{n}{G}$

• members of the set $(N \cup \Sigma)^*$ are called strings

Strongly Right-Linear Grammars

Definitions

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

■ N : finite set of nonterminals

 \bigcirc Σ : finite set of terminals, disjoint from N

6 P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $\bigcirc S \in N$: start symbol

• one step derivation relation $\frac{1}{C}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\frac{*}{G} = \bigcup_{n \ge 0} \frac{n}{G}$

• members of the set $(N \cup \Sigma)^*$ are called strings

• string s is called a sentential form if $S \stackrel{*}{\longrightarrow} s$ (derivable from the start symbol S)

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

① *N* : finite set of nonterminals

⑤ *P*: finite set of productions of the form $A \rightarrow \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $4 S \in N$: start symbol

• one step derivation relation $\frac{1}{G}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1}_{G} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\frac{*}{G} = \bigcup_{n \ge 0} \frac{n}{G}$

• members of the set $(N \cup \Sigma)^*$ are called strings

• string s is called a sentential form if $S \xrightarrow{*}_{G} s$ (derivable from the start symbol S)

• sentential form x is called a sentence if $x \in \Sigma^*$ (consisting terminal symbols only)

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

① *N* : finite set of nonterminals

⑤ *P*: finite set of productions of the form $A \rightarrow \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $4 S \in N$: start symbol

• one step derivation relation $\frac{1}{G}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1}_{G} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\frac{*}{G} = \bigcup_{n \ge 0} \frac{n}{G}$

• members of the set $(N \cup \Sigma)^*$ are called strings

• string s is called a sentential form if $S \xrightarrow{*}_{G} s$ (derivable from the start symbol S)

• sentential form x is called a sentence if $x \in \Sigma^*$ (consisting terminal symbols only)

• language generated by G: $L(G) = \{x \in \Sigma^* \mid S \xrightarrow{*}_G x\}$

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$

- $\Sigma = \{a, b\}$
- $P = \{S \rightarrow aSb, S \rightarrow \varepsilon\} = \{S \rightarrow aSb \mid \varepsilon\}$

two derivations:

$$S \xrightarrow{1} aSb \xrightarrow{1} ab$$

$$S \xrightarrow{1} aSb \xrightarrow{1} aaSbb \xrightarrow{1} aabb$$

Lemma

$$L(G) = \{ \mathbf{a}^n \mathbf{b}^n \mid n \ge 0 \}$$

A Ouick Recap

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

① N: finite set of nonterminals

l P: finite set of productions of the form $A \to \alpha$ with A ∈ N and $\alpha ∈ (N ∪ Σ)*$

 $4 S \in N$: start symbol

• one step derivation relation $\frac{1}{G}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\frac{*}{G} = \bigcup_{n \ge 0} \frac{n}{G}$

• members of the set $(N \cup \Sigma)^*$ are called strings

• string s is called a sentential form if $S \xrightarrow{*}_{G} s$ (derivable from the start symbol S)

• sentential form x is called a sentence if $x \in \Sigma^*$ (consisting terminal symbols only)

• language generated by G: $L(G) = \{x \in \Sigma^* \mid S \xrightarrow{*}_G x\}$

• set $B \subseteq \Sigma^*$ is context-free if B = L(G) for some CFG G

Outline

- A Quick Recap
- 2 Equivalence of Finite Automat
- 3 Context Free Grammar
- 4 Strongly Right-Linear Grammars
- 5 Ambiguity

DFA M

DFA M

A Ouick Recap

strongly right-linear CFG G_M

$$1 \rightarrow a2 \mid b1$$
 $3 \rightarrow a4 \mid b1$
 $2 \rightarrow a2 \mid b3$ $4 \rightarrow a4 \mid b4 \mid \epsilon$

DFA $\begin{bmatrix} b & a & b & a & a \\ 1 & 1 & 2 & 3 & 4 & 4 \end{bmatrix} \in L(M)$

CFG $1 \rightarrow b1 \rightarrow ba2 \rightarrow bab3 \rightarrow baba4 \rightarrow babaa4 \rightarrow babaa \in L(G_M)$

A Ouick Recap

CFG
$$G = (N, \Sigma, P, S)$$
 is strongly right-linear if

$$\alpha = aB \in \Sigma N$$
 or $\alpha = \varepsilon$

for all $A \rightarrow \alpha$ in P

A Ouick Recap

CFG
$$G = (N, \Sigma, P, S)$$
 is strongly right-linear if

$$\alpha = aB \in \Sigma N$$
 or $\alpha = \varepsilon$

for all $A \rightarrow \alpha$ in P

Lemma

L is regular \iff L is generated by strongly right-linear CFG

A Ouick Recap

CFG
$$G = (N, \Sigma, P, S)$$
 is strongly right-linear if

$$\alpha = aB \in \Sigma N$$
 or $\alpha = \varepsilon$

for all $A \rightarrow \alpha$ in P

L is regular \iff L is generated by strongly right-linear CFG

Proof. (\Longrightarrow)

- DFA $M = (Q, \Sigma, \delta, s, F)$
- $L(M) = L(G_M)$ for strongly right-linear CFG $G_M = \{Q, \Sigma, P, s\}$ with

$$P = \{p \to aq \mid \delta(p, a) = q\} \cup \{q \to \varepsilon \mid q \in F\}$$

Strongly Right-Linear Grammars

00

Definition

A Ouick Recap

CFG
$$G = (N, \Sigma, P, S)$$
 is strongly right-linear if

$$\alpha = aB \in \Sigma N$$
 or $\alpha = \varepsilon$

for all $A \rightarrow \alpha$ in P

L is regular \iff L is generated by strongly right-linear CFG

Proof. (⇐=)

- strongly right-linear CFG $G = (N, \Sigma, P, S)$
- $L(G) = L(M_G)$ for NFA $M_G = (N, \Sigma, \Delta, \{S\}, F)$ with

$$\Delta(A, a) = \{B \mid A \rightarrow aB \in P\} \text{ and } F = \{A \mid A \rightarrow \varepsilon \in P\}$$

Definition

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$ is strongly right-linear if

$$\alpha = aB \in \Sigma N$$
 or $\alpha = \varepsilon$

for all $A \rightarrow \alpha$ in P

L is regular \iff L is generated by strongly right-linear CFG

every regular set is context-free

Outline

A Ouick Recap

- 1 A Quick Recap
- 2 Equivalence of Finite Automat
- 3 Context Free Gramman
- 4 Strongly Right-Linear Grammars
- 5 Ambiguity

A Quick Recap

CFG $G: S \rightarrow [S] \mid SS \mid \varepsilon$

A Ouick Recap

CFG $G: S \rightarrow [S] \mid SS \mid \varepsilon$ three derivations of [[]]:

A Ouick Recap

CFG $G: S \rightarrow [S] \mid SS \mid \varepsilon$ three derivations of [[]]:

Strongly Right-Linear Grammars

A Ouick Recap

CFG $G: S \rightarrow [S] \mid SS \mid \varepsilon$ three derivations of [[]]:

- ② $S \xrightarrow{1}_{G} [S] \xrightarrow{1}_{G} [SS] \xrightarrow{1}_{G} [S] \xrightarrow{1}_{G} [[S]] \xrightarrow{1}_{G} [[]]$
- **8** $S \xrightarrow{1}_{G} [S] \xrightarrow{1}_{G} [SS] \xrightarrow{1}_{G} [S[S]] \xrightarrow{1}_{G} [S$

CFG $G: S \rightarrow [S] \mid SS \mid \varepsilon$ three derivations of [[]]:

Definition

• in leftmost derivation always leftmost nonterminal is replaced

CFG $G: S \rightarrow [S] \mid SS \mid \varepsilon$ three derivations of [[]]:

Definition

- in leftmost derivation always leftmost nonterminal is replaced
- in rightmost derivation always rightmost nonterminal is replaced

CFG $G: S \rightarrow [S] \mid SS \mid \varepsilon$ three derivations of [[]]:

- **(S)** $S \xrightarrow{1} [S] \xrightarrow{1} [SS] \xrightarrow{1} [S[S]] \xrightarrow{1} [S[]] \xrightarrow{1} [[]]$

Definition

- in leftmost derivation always leftmost nonterminal is replaced
- in rightmost derivation always rightmost nonterminal is replaced
- parse tree is representation of derivation in which replacement order is ignored

CFG $G: S \rightarrow [S] \mid SS \mid \varepsilon$ three derivations of [[]]:

Definition

- in leftmost derivation always leftmost nonterminal is replaced
- in rightmost derivation always rightmost nonterminal is replaced
- parse tree is representation of derivation in which replacement order is ignored
- CFG is ambiguous if some string has different parse trees

A Ouick Recap

CFG $G: S \to [S] |SS| \varepsilon$

CFG $G: S \rightarrow [S] |SS| \varepsilon$

CFG $G: S \rightarrow [S] |SS| \varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

CFG G: $S \rightarrow [S] |SS| \varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

- $S \xrightarrow{1} [S] \xrightarrow{1} [SS] \xrightarrow{1} [S[S]]$

CFG G: $S \rightarrow [S] |SS| \varepsilon$

- **8** $S \xrightarrow{1}_{G} [S] \xrightarrow{1}_{G} [SS] \xrightarrow{1}_{G} [S[S]] \xrightarrow{1}_{G} [S[S]]$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

- **1** $S \xrightarrow{1}_{G} [S] \xrightarrow{1}_{G} [[S]] \xrightarrow{1}_{G} [[]]$
- ② $S \xrightarrow{1} [S] \xrightarrow{1} [SS] \xrightarrow{1} [S] \xrightarrow{1} [[S]] \xrightarrow{1} [[]]$

A Quick Recap

• CFG $G: S \rightarrow [S]|SS|_{\mathcal{E}}$

• G is ambiguous

A Ouick Recap

• CFG $G: S \rightarrow [S] |SS| \varepsilon$

• CFG G': $S \rightarrow \varepsilon \mid T$ $T \rightarrow TU \mid U$

 $U \rightarrow [] \mid [T]$

• *G* is ambiguous

A Ouick Recap

• CFG $G: S \rightarrow [S] |SS| \varepsilon$

• CFG G': $S \rightarrow \varepsilon \mid T$

 $T \to TU \mid U$

 $U \rightarrow [] \mid [T]$

• *G* is ambiguous G' is unambiguous L(G) = L(G')

A Ouick Recap

A Ouick Recap

• CFG $G: S \rightarrow S - S \mid int$

• G is ambiguous

with G 7 – 5 – 2 could be parsed as

$$(7-5)-2$$
 and $7-(5-2)$

A Ouick Recap

• CFG $G: S \rightarrow S - S \mid int$

• CFG G': $S \rightarrow S - int \mid int$

• G is ambiguous

with G 7 – 5 – 2 could be parsed as

(7-5)-2 and 7-(5-2)

A Ouick Recap

• CFG $G: S \rightarrow S - S \mid int$

• CFG G': $S \rightarrow S - int \mid int$

• G is ambiguous G' is unambiguous L(G) = L(G')

with G 7-5-2 could be parsed as (7-5)-2 and 7-(5-2)

with G' 7-5-2 could only be parsed as (7-5)-2

S - int S - int 2 | 1 int 5

A Ouick Recap

• CFG $G: S \rightarrow S - S \mid int$

• CFG G': $S \rightarrow S - int \mid int$

• *G* is ambiguous G' is unambiguous L(G) = L(G')

with G 7-5-2 could be parsed as (7-5)-2 and 7-(5-2)

with G' 7-5-2 could only be parsed as (7-5)-2

• (if applicable) one way to remove ambiguity is to benefit from associativity of binary operators

A Ouick Recap

• CFG $G: S \rightarrow S - S \mid int$

• CFG G': $S \rightarrow S - int \mid int$

 G is ambiguous G' is unambiguous L(G) = L(G')

> with G 7-5-2 could be parsed as (7-5)-2 and 7-(5-2)with G' 7-5-2 could only be parsed as (7-5)-2

• (if applicable) one way to remove ambiguity is to benefit from associativity of binary operators

• G' enforces the "-" operator to be left associative

Strongly Right-Linear Grammars

A Ouick Recap

- CFG $G: S \rightarrow S S \mid int$
- CFG G': $S \rightarrow S int \mid int$
- G is ambiguous G' is unambiguous L(G) = L(G')

with
$$G$$
 7-5-2 could be parsed as $(7-5)-2$ and $7-(5-2)$ with G' 7-5-2 could only be parsed as $(7-5)-2$

- (if applicable) one way to remove ambiguity is to benefit from associativity of binary operators
- G' enforces the "-" operator to be left associative
- CFG G": S → int S | int turns the "-" operator into a right associative one

A Ouick Recap

• CFG $G: S \rightarrow S \times S \mid S + S \mid int$

 \bullet G is ambiguous

with $G = 7 + 5 \times 2$ could be parsed as

$$7 + (5 \times 2)$$
 and $(7 + 5) \times 2$

A Ouick Recap

• CFG $G: S \rightarrow S \times S \mid S + S \mid int$

• CFG G': $S \rightarrow S + T \mid T$

 $T \rightarrow T \times U \mid U$ $U \rightarrow int \mid (S)$

• *G* is ambiguous

with $G = 7 + 5 \times 2$ could be parsed as

$$7 + (5 \times 2)$$
 and $(7 + 5) \times 2$

Strongly Right-Linear Grammars

A Ouick Recap

• CFG $G: S \rightarrow S \times S \mid S + S \mid int$

• CFG G': $S \rightarrow S + T \mid T$

 $T \rightarrow T \times U \mid U$ $U \rightarrow int \mid (S)$

• *G* is ambiguous G' is unambiguous L(G) = L(G')

with G 7 + 5 × 2 could be parsed as 7 + (5 × 2) and (7 + 5) × 2

with G' 7 + 5 × 2 could only be parsed as 7 + (5 × 2)

Example

A Ouick Recap

• CFG $G: S \rightarrow S \times S \mid S + S \mid int$

• CFG G': $S \rightarrow S + T \mid T$

operators

 $T \rightarrow T \times U \mid U$ $U \rightarrow int \mid (S)$

• *G* is ambiguous G' is unambiguous L(G) = L(G')

> with G 7 + 5 × 2 could be parsed as 7 + (5 × 2) and (7 + 5) × 2 with G' 7 + 5 × 2 could only be parsed as 7 + (5 × 2)

• (if applicable) one way to remove ambiguity is to benefit from precedence of

int int int 5

A Ouick Recap

there exist context-free sets without unambiguous grammars

A Ouick Recap

there exist context-free sets without unambiguous grammars (inherently ambiguous)

A Ouick Recap

there exist context-free sets without unambiguous grammars (inherently ambiguous)

Example

 $A = \{a^ib^jc^k \mid i = j \text{ or } j = k\}$ is context-free and inherently ambiguous

A Ouick Recap

there exist context-free sets without unambiguous grammars (inherently ambiguous)

Example

$$A = \{a^ib^jc^k \mid i = j \text{ or } j = k\}$$
 is context-free and inherently ambiguous

$$A = \{a^ib^ic^k\} \cup \{a^ib^jc^j\}$$

A Ouick Recap

there exist context-free sets without unambiguous grammars (inherently ambiguous)

Example

 $A = \{a^ib^jc^k \mid i = j \text{ or } j = k\}$ is context-free and inherently ambiguous

$$A = \{\mathbf{a}^i \mathbf{b}^i \mathbf{c}^k\} \cup \{\mathbf{a}^i \mathbf{b}^j \mathbf{c}^j\}$$

let A = L(G) such that G:

A Ouick Recap

there exist context-free sets without unambiguous grammars (inherently ambiguous)

 $T \rightarrow UV$

 $U \rightarrow aUb \mid \varepsilon$

Example

 $A = \{a^ib^jc^k \mid i = j \text{ or } j = k\}$ is context-free and inherently ambiguous

 $A = \{\mathsf{a}^i\mathsf{b}^i\mathsf{c}^k\} \cup \{\mathsf{a}^i\mathsf{b}^j\mathsf{c}^j\}$

let A = L(G) such that G:

$$S \to T \mid W$$

$$W \to XY$$

$$X \to aX \mid \varepsilon$$

A Ouick Recap

there exist context-free sets without unambiguous grammars (inherently ambiguous)

Example

 $A = \{a^{j}b^{j}c^{k} \mid i = j \text{ or } j = k\}$ is context-free and inherently ambiguous

$$A = \{\mathsf{a}^i\mathsf{b}^i\mathsf{c}^k\} \cup \{\mathsf{a}^i\mathsf{b}^j\mathsf{c}^j\}$$

let A = L(G) such that G:

$$S \to T \mid W$$

$$T \to UV \qquad W \to XY$$

$$V \to 2V \mid V = 2V$$

$$U \to aUb \mid \varepsilon \qquad \qquad X \to aX \mid \varepsilon$$

$$V \to cV \mid \varepsilon \qquad \qquad Y \to bYc \mid \varepsilon$$

the union we used has a non-empty intersection, where letters a, b and c all are in equal number

A Ouick Recap

there exist context-free sets without unambiguous grammars (inherently ambiguous)

Example

 $A = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$ is context-free and inherently ambiguous

 $A = \{\mathbf{a}^i \mathbf{b}^i \mathbf{c}^k\} \cup \{\mathbf{a}^i \mathbf{b}^j \mathbf{c}^j\}$

let A = L(G) such that G:

$$S \to T \mid W$$

$$T \to UV \qquad W \to XY$$

$$V \to 2V \mid S = X \quad Y \to 2Y \mid S \to 2Y$$

 $\begin{array}{ll} U \rightarrow aUb \mid \varepsilon & X \rightarrow aX \mid \varepsilon \\ V \rightarrow cV \mid \varepsilon & Y \rightarrow bYc \mid \varepsilon \end{array}$

the union we used has a non-empty intersection, where letters a, b and c all are in equal number

Lemm:

there is no CFG G' such that L(G') is unambiguous with L(G') = A

A Ouick Recap

lacktriangledown given an ambiguous CFG G, the language L(G) may or may not be ambiguous

A Ouick Recap

- 1 given an ambiguous CFG G, the language L(G) may or may not be ambiguous
 - one can find an unambiguous CFG G' such that L(G') = L(G)

A Ouick Recap

- 1 given an ambiguous CFG G, the language L(G) may or may not be ambiguous
 - one can find an unambiguous CFG G' such that L(G') = L(G)
- 2 there is no algorithm to convert ambiguous CFG to unambiguous CFG

A Ouick Recap

- 1 given an ambiguous CFG G, the language L(G) may or may not be ambiguous
 - one can find an unambiguous CFG G' such that L(G') = L(G)
- 2 there is no algorithm to convert ambiguous CFG to unambiguous CFG
- 3 unambiguous context free languages can be parsed by deterministic push down automata

A Ouick Recap

Thanks! & Questions?