INTRODUCTION TO PATTERN RECOGNITION

WHAT IS A PATTERN?

 A pattern is an abstract object, such as a set of measurements describing a physical object

EXAMPLES OF PATTERNS

EXAMPLE PROBLEM: HANDWRITTEN DIGIT RECOGNITION

PATTERN RECOGNITION

- Typical application areas
 - Machine vision
 - Character recognition (OCR)
 - Computer aided diagnosis
 - Speech recognition
 - Face recognition
 - Biometrics
 - Image Data Base retrieval
 - Data mining
 - Bionformatics
- The task: Assign unknown objects patterns into the correct class. This is known as classification.

OBJECT DETECTION \ RECOGNITION

Find objects in the image, determine what they are Eg: Face detection and

recognition:

ROLE OF MACHINE LEARNING

- "Big Four" Problems of Machine Learning
- Classification
- Density Estimation
- Clustering
- Regression

CLASSIFICATION

An example:

- Supervised unsupervised pattern recognition:
 The two major directions
 - **Supervised**: Patterns whose class is known a-priori are used for training.
 - **Unsupervised**: The number of classes is (in general) unknown and no training patterns are available.

FEATURES

- Features: These are measurable quantities obtained from the patterns, and the classification task is based on their respective values.
- Feature vectors: A number of features

$$X_1, ..., X_l,$$

constitute the feature vector

$$\underline{x} = \left[x_1, ..., x_l\right]^T \in R^l$$

Feature vectors are treated as random vectors.

CLASSIFICATION SYSTEM

 \diamond The classifier consists of a set of functions, whose values, computed at χ , determine the class to which the corresponding pattern belongs

ADDRESS INTERPRETATION PROBLEM

- Pattern recognition tasks
- object recognition (address vs non-address)
- two-class discrimination
- few class recognition (digits)
- Many classes, but cataloged (postal directory)

CLASSFICATION

DENSITY ESTIMATION

CLUSTERING

