

Unisoc Confidential For hiar

UDS710_UDX710

Camera LSC调试指导手册

WWW.UNISOC.COM

紫 光 展 锐 科 技

修改历史

		- "hiar
版本号	日期fidentia	注释
V1.0 LINISOC	2021/01/08	第一次正式发布。
V1.1	2021/03/01	8M的Grid值由64修改为96

关键字: Camera、LSC、LNC

Unisoc Confidential For hiar

Unisoc**自录**fidential For hiar 01 概述

02 调试流程

03 功能确认

04 Debug分析流程

05 调试案例

06 参数列表

概述 1/2

- ●LSC (Lens Shading Correction): 镜头阴影校正, 其原理如下左图所示, LSC前后的图片如下右图所示。
- ●ALSC (Auto Lens Shading Correction): 自动镜头阴影校正。
- ●Lens Shading分为luma shading(亮度阴影)和color shading(色彩偏差)。
 - ▶luma shading产生的原因是镜头通光量从中心到边角依次减少,导致图像看起来,中间亮度正常,四周偏暗。
 - ➤ color shading称作色彩不均匀性,在不同色温下RGB三原色的透射能力不同,在拍照时表现为图像色彩不均匀。

概述 2/2

●LSC作用

根据标准光源的raw图生成相应的LSC table,以补偿该光源下的中心到四周的亮度阴影和色彩偏差。

●ALSC作用

自动计算生成适合当前场景的LSC table,以消除该场景下的中心到四周的亮度阴影和色彩偏差。

●Post gain作用

根据BV/GAIN动态地压制LSC gain, 从而抑制噪声。

调试流程 — 调试确认项 1/5

1. BLC确认

BLC会影响LSC table值,调试前请确认BLC正确设置。

2. mode确认

- ➤ mode 的size 是full size 、binning size 、1/4 binning size 、720P和1080P。
- ▶一般项目配置full size和binning size的mode, binning size 必须是full size的一半。

fidentia

例如,如右上图所示。

- \checkmark common/cap_0/pre_0/video_0: full size = 4656 x 3492.
- \checkmark cap_1/pre_1/video_1: binning size = 2328 x 1744.
- ✓ cap_2/pre_2/video_2: 1/4 binning size = 1164 x 872 、 1080P = 1920 x 1080、 720P = 1280 x 720。

3. Block确认

确认除common mode外,其它mode不添加LNC Block。

4. 算法版本确认

ISP → ALSC → spd_ver 设置为6,如右下图所示。

MODE ID	MO	DE NAME	IMAGE SIZE		FPS	
<u> </u>	С	ommon	4656x3492		0	
<u>1</u>		prv_0	4656x3492		0	
2		prv_1	2328x1744		0	
<u> </u>		cap_0	4656x3492		0	
BLOCK	ISP	EXIF				
NAME			HEX		DEC	
- @ prv_1	Parame	ter				
-∭ ver	rsion_id		0x00090007	į	589831	
param_modify_time		0x7784CBDE	200	05191646	5	
+ 🎃 BY	PASS					
± 🎃 SN	MART					
+ <u>□</u> BLC						
+ 🗀 LSC_2D						
+ 🛅 BIN						
+ 🗀 AE	М					

BLOCK ISP	EXIF	1	
NAME		HEX	DEC
⊨ 🔄 ALSC			
− ≡ spd_ver		0x06	6

调试流程 — 调试确认项 2/5

5. Grid确认

请参考下表进行Grid的确认。				
Uni	Sensor size	Grid	Lpf Radius	
	0.3M	32	12	
	720P	32	12	
	1080P	48	12	
	2M	32	12	
	5M	64	12	
	8M	96	16	
	12M	96	16	
	13M	96	16	
	16M	128	20	
	32M	192	20	

调试流程 — 调试确认项 3/5

确认OTP

- a. 生成otp bin文件。
- ① 依次执行下面adb命令。ential For hiar adb root adb remount adb shell setprop debug.camera.save.otp.raw.data 1
 - ② 重新进入相机。 保存otp bin文件到手机data/vendor/cameraserver目录。
 - ③ 执行下面命令,导出otp bin文件到本地。 adb pull data/vendor/cameraserver/xxx_otp_dump.bin path (path: 本地路径)。

调试流程 — 调试确认项 4/5

6. 确认OTP

- b. 导入otp bin文件,并拷贝碗状图数据。 hial
 - ① 选择IspTool → Tool → Otp Bin Tool, 打开 "OTP Bin" 页面。
 - ② 单击 "Open Bin" 按钮, 打开之前生成的otp bin文件。
 - ③ 选择 "Sensor-Shading" 页签。
 - ④ 新建excel, 将对应的Gr Gain、R Gain、Gb Gain、B Gain数据, 分区域拷贝到excel中保存。

调试流程 — 调试确认项 5/5

6. 确认OTP

- c. 生成碗状图, 如右图所示。
 - ① 将excel中选每个gain的数据选中,分别作下面操作。
 - ② 菜单项选择"插入"。
 - ③ 选择制作"曲面图"。
 - ④ 选择第一个,生成"三维曲面图"。
 - ⑤ 检查生成碗状图是否平滑,如下图所示,平滑则正常, 否则需要检查OTP烧录是否正确。

调试流程 — 拍摄标定图

在DNP/A/TL84/D65/CWF/H光源下,在镜头上覆盖Diffuser,拍摄均匀图像,步骤如下:

- 1. 使用Shading golden模组调试。在手机镜头前使用黑胶带固定毛玻璃,使毛玻璃的雾面紧贴镜头,如下图所示。
- 2. 光源使用和产线相同的光源,设置光源亮度为最大亮度。
- 3. 确保raw图中心亮度约为最大亮度的80%且无flicker,通过手动曝光调试。 (如: 10bit raw 255 × 80%=204; 14bit raw 1024 × 80%=820)
 - ▶手动曝光命令为:

adb shell setprop persist.vendor.isp.ae. exp_gain "0 xxx 128"

- ✓xxx表示曝光时间(单位us),例如,20帧曝光时间=1/20s=0.05s=0.05 × 1000000=50000us
- ✓128表示gain (128为1倍, LSC拍图使用1倍gain)
- ➤关闭手动曝光命令为: adb shell setprop persist.vendor.isp.ae. exp_gain ""
- 4. 在A/TL84/D65/CWF/H/DNP 灯下重复上述拍照手法并保存mipi_raw图。
- ●注意

调试LSC只需要拍全尺寸raw图即可。

调试流程 — 生成第0~7组LSC table

- ① 使用Isp Tool导入调试参数 (确认BLC调试完成)。
- ② 单击"BYPASS",在弹出的BYPASS页面取消 2D_LSC的勾选,使能LNC模块。
- ③ 单击 "LNC" 人打开LNC参数调试模块。
- ④ 在 "Color Temp" 下拉框选择调试色温 (DNP、A、TL84、D65、CWF、H、RESERVE1、RESERVE2、OTP) 。
- ⑤ 设置对应的Grid 和Lpf Radius,请参照第11页Grid表。
- ⑥ 单击 "Open Image" 导入调试对应色温的raw图。
- ⑦ 调整 "Light" 值,使四角的Y值百分比达到预期要求。
- ⑧ 单击 "Calculate Image" , 生成对应LSC table数据。
- ⑨ 单击 "Save" 保存参数。
- ⑩ 按照④至⑨的操作完成其它色温的标定(RESERVE1和 RESERVE2请使用DNP的raw图,OTP标定参考下一 页)。完成所有色温标定后,最后保存参数。

调试流程 — 生成第8组LSC table

小 紫光展锐

● OTP调试

- ➤ Sensor端OTP: 使用DNP光源的raw图片标定生成参数,参数不起作用, light设置99, 仅为参数对齐。
- ▶平台端OTP: 需要OTP bin生成第8组参数。

● OTP加载

- ① 单击 "Get Otp Table",打开LNC OTP参数调试界面。
- ② 在LNC OTP界面,单击"Open"导入xxx_otp_dump.bin,根据实际的otp map填入数据,如otp map数据如下图所示,填入数据如右上图所示(LNC OTP的参数说明如右下表所示)。

Category	Item	Byte	Start address	Data	Note
LSC version	Shading version	1	0x0000 0073	0x00	Shading version
Shading setting	Raw Width (Low)	1	0x0000_0084	0x30	width is 4656
Shading setting	Raw Width (High)	1	0x0000_0085	0x12	width is 4656
Shading setting	Raw Height (Low)	1	0x0000_0086	0xA4	height is 3492
Shading setting	Raw Height (High)	1	0x0000_0087	0x0D	height is 3492
Shading setting	Shading table grid	1	0x0000 0088	0x80	grid is 128
LSC table	R channel gain table	442	0x0000_0089		Library Output, LSC
LSC table	Gr channel gain table	442	0x0000_0243		Library Output, LSC
LSC table	Gb channel gain table	442	0x0000_03FD		Library Output, LSC
LSC table	B channel gain table	442	0x0000_05B7		Library Output, LSC
Checksum	Section checksum	1	0x0000_0771		sum[(Current sectio

- ③ 单击 "Gen tab" , 从xxx_otp_dump.bin解析LSC table。
- ④ 单击 "Save Table", 将OPT LSC table保存到LSC参数第8组。

参数	说明
lsc_otp_table_address	LSC OTP table起始地址
single_channel_bytes	单通道字节数
lsc_otp_table_grid	grid值
raw_bayer_pattern	raw image bayer pattern
otp_raw_width	对应OTP数据使用的width
otp_raw_height	对应OTP数据使用的height

调试流程 — ALSC参数 1/2

Debug

▶Debug: 启debug mode, 只输出表Tab BaseIndex, 默认不打开。

▶Tab BaseIndex: debug模式下调用的index表,根据需要修改。

●Control (建议使用默认值)

▶OTP Bypass:不使用,取消勾选。

▶ Frequency:每几帧调用一次计算。

▶IIR_Weight: Table表参数平滑因子。

● Table Smooth

参数不使用。

调试流程 — ALSC参数 2/2

- Color Compensation (侦测未消除的shading功能,建议使用默认值)
 - ➤ Level_R: 侦测红色shading 区块功能,根据R/G值(红的色差程度)来 判断该区块红色是否为shading。
 - ✓R/G值越大,会认为大部分红色区块是shading。
 - ✓R/G值越小,会认为只有少部份的红色区块是shading。
 - ▶Level_B:为蓝色部分,意义和Level_R同理。
- ●Comp.strength (调整侦测的色块做调整的强度,建议使用默认值)
 - ▶Weight_R:补偿侦测出的红色区块的强度,Weight_R越大,会将补偿区块补的更红或更绿。
 - ✓该红色区域不够红,则算法会将其补红。
 - ✓该红色区块过红,则算法会将其补绿。
 - ▶Weight_B:为蓝色部分,意义和Level_R同理。

调试流程 — Post gain参数

●作用

设置不同gain下的shading补偿比例,抑制噪声。hial 说明

●说明

▶spd_ver: 设置值为6。

▶bv2gainw_en: 使能bv2gainw功能, 1表示开启, 0表示关闭。

▶bv2gainw_p_bv_gain: 设置BV或gain, 分6档。

▶bv2gainw_b_gainw:设置对应档位下的比例,中间线性插值,如

下示意图所示。

▶补偿比例=设置值/1024。

●注意

建议直接从图像调整对应的点。

BLOCK ISP EXIF		
NAME	HEX	DEC
∃ ⊜ ALSC		
-∭ spd_ver	0x06	6
−≣ alg_mode	0x00	0
−≣ table_base_index	0x02	2
−≣ user_mode	0x00	0
─≣ freq	0x03	3
–∭ iir_weight	0x05	5
−≌ vote_length	0x0A	10
− ≡ vote_threshold	0x08	8
– <u>≡</u> smart_iir	0x02	2
–≝ init_skip_frame	0x05	5
–⊞ level_r	0x0A	10
–≝ level_b	0x0A	10
–≌ weight_r	0x28	40
–≌ weight_b	0x28	40
-≝ bv2gainw_en	0x01	1
bv2gainw_p_bv_gain		
<u>−</u> ੰ [0]	0x0F94	3988
– ≝ [1]	0x0C38	3128
[2]	0x0B79	2937
-≌ [3]	0x0954	2388
– ≝ [4]	0x0640	1600
<u>[</u> [5]	0x80	128
∃		
<u>−</u> ≌ [0]	0x0247	583
-∭ [1]	0x0247	583
-∭ [2]	0x02DC	732
- [3]	0x0364	868
[4]	0x0400	1024
<u>'</u> ≝ [5]	0x0400	1024
flash_post_gain_weight	0x0400	1024

调试流程 — ALSC调试步骤

- ① 使用Isp Tool导入调试参数。
- ② 单击 "ALSC" , 打开ALSC参数调试模块。
- ③ 根据前面 "ALSC参数" 说明,设置 ALSC参数。
- ④ 根据前面 "Post gain参数" 说明,设置Post gain值。
- ⑤ 单击 "Save" 保存参数。

调试流程 — Flash ALSC

●作用

解决闪光灯打闪拍照四角偏暗,由于Flash光心不在图像中心,导致的左右补偿不均匀问题。

●参数 (如右上图所示)

- ▶flash_post_gain_weight: 用来抑制预闪时的LSC gain。
- ▶flash_enhance_ratio: 四角LSC gain 提升的百分比, Flash LSC gain是个碗状加强亮度的gain, 如右中图示意图所示, 若设置 flash_enhance_ratio为50, 表示对四角提亮50%。
- ▶flash_center_shiftx和flash_center_shifty: 设置提升四角LSC gain 的位置,如右下图所示,将手机横着摆放,摄像头在左侧的情况,设置Flash LSC gain 的坐标如下,中心设置为 "(flash_center_shiftx,flash_center_shifty) = (100, 100)",右界坐标为(150, 100),左界坐标为(50, 100),上界为(100, 50),下界为(100, 150)。

●注意

只要有任一参数为0,则代表关闭Flash LSC gain。

− <u>≡</u> flash_post_gain_weight	0x0400	1024
−∭ flash_enhance_ratio	0x00	0
− <u>≡</u> flash_center_shiftx	0x64	100
flash_center_shifty	0x64	100

功能确认

- 1. 进相机前,执行如下命令开启手动cmd,设置命令重新进入相机生效。 adb shell setprop debug.isp.alsc.cmd.enable 1 //1表述开启手动cmd, 0表示关闭手动cmd
- 2. 执行如下adb 命令,设置特殊的LSC table,重新进入相机观察界面是否符合预期。
 - ▶adb shell setprop debug.isp.alsc.table.pattern 1000 //预览显红R
 - ▶adb shell setprop debug.isp.alsc.table.pattern 0100 //预览显黄绿Gr
 - ▶adb shell setprop debug.isp.alsc.table.pattern 0010 //预览显蓝绿Gr
 - ➤adb shell setprop debug.isp.alsc.table.pattern 0001 //预览显蓝B
 - ▶adb shell setprop debug.isp.alsc.table.pattern 0011 //左边亮右边暗
 - ▶adb shell setprop debug.isp.alsc.table.pattern 1100 //左边暗右边亮
- 3. 执行如下adb 命令,设置调用特定的table,重新进入相机观察界面是否符合预期。 adb shell setprop debug.isp.alsc.table.index 0 //独立调用固定table[0-8],9是恢复自动 (在对应的色温下设置其他色温相差较大的table,会出现明显的shading现象)

●注意

- ▶以上adb命令需重新打开相机后生效。
- ▶如果现象不符合请联系驱动工程师支持。

Debug分析流程 — 通过adb命令确认LSC相关问题

- 1. 确认拍的raw图。 把raw图导入工具确认是否正常。
- 2. 确认tuning 参数设置,如Grid和Lpf Radius。 打开tuning 参数,确认grid和Lpf Radius设置是否符合规则。
- 3. 确认OTP
 - ▶通过如下命令关闭LSC算法计算,确认现象是否与LSC 相关。 adb shell setprop debug.isp.alsc.cmd.enable 1 adb shell setprop debug.isp.alsc.bypass 1
 - ▶通过如下命令关闭LSC OTP计算,确认现象是否与LSC OPT相关。 adb shell setprop debug.isp.alsc.bypass.otp 1
 - ▶确认OTP bin文件中LSC部分数据是否合理。
 - ✓导出4通道数据,做碗状图是否正常,出现线条,条状现象,观察OTP数据过渡是否平滑。
 - ✓4个通道之间的值差异不可过大,容易产生color shading。
- 4. 固定table index,确认现象。 通过如下命令固定table表,确认是否某一组table 异常。 adb shell setprop debug.isp.alsc.table.index 0 //独立调用固定table[0-8],9是恢复自动

Debug分析流程 — 通过Isp Tool确认LSC table是否正常

● 进入Debug Tool的LSC界面

IspTool \rightarrow Tool \rightarrow Debug Tool \rightarrow LSC.

●验证步骤

- ① 单击 "Open" ,选择导入标定图。
- ② 确认raw图信息。
- ③ 勾选 "Proc LNC" 复选框,使能LNC table,选择raw图对应色温的table index (0:DNP, 1:A, 2:TL84, 3:D65, 4:CWF, 5:H)。
- ④ 单击 "Process" , 得到对应的结果。
- ⑤ 判断结果是否符合客观标准。

Y < 15, R-G < 6, B-G < 6, P-P < 10

- ▶ Y为四角亮度差异,四角亮度越均匀,该值越小,为相对值,与强度无关。
- ➤ R-G为R channel与G channel差异量,R越重合G曲线,则值越小。
- ▶ B-G为B channel, 意义同R-G。
- ▶ P-P为R channel和B channel与G channel综合差异量,若R和B两两越重合G曲线,则该值越小。

Debug分析流程 — 通过EXIF查看LSC信息

- 1. 导入jpg图片到Isp Tool工具中。
- 2. 选择右侧 "EXIF" 页签, 查看LSC信息。

●LSC信息

▶lsclib_version: 当前算法版本时间。

▶gain_width: LSC table的宽。

▶gain_height: LSC table的高。

▶gain_pattern: 0为Gr、1为R、2为B、3为Gb。

▶grid: 对应图像使用的grid值。

➤ erro_x10000: 对应9组table算法中间值。

➤ eratio_before_smooth_x10000: 同上

➤eratio_after_smooth_x10000: 同上

➤ final_ratio_x10000: final_index第二位所用比例。

➤ final_index: 图像使用两组的table的index。

▶lsc_calc_result: 图像经过LSC后使用的table。

▶lsc_post_gain: post gain后最终使用的table。

Debug分析流程 — 通过Mlog查看LSC信息

- 1. 打开Mlog。
- 3. 进入预览查看LSC信息,fidential For hiar

●LSC信息 NISOU

- ▶VERSION: ALSC VERSION: 算法版本号。
- ▶final_index: 图像使用两组的table的index。
- ▶final_ratio_x10000: final_index第二位所用比例。
- ▶bv: 环境的亮度。
- ▶bv_gain: 使用的gain。
- ▶image_size: 计算使用的width和height。
- ▶grid: 对应图像使用的grid值。
- ➤ gain_size: 使用的LSC table size。
- ➤ gain_pattern: 0为Gr、1为R、2为B、3为Gb。
- ▶Front_cam: 0为主摄、1为前摄、2为后摄广角、3为后摄长焦。
- ▶cam_id: 1为单Camera工作; 2为sbs模式(此模式目前很少使用)。
- ▶TAB_outer: 当前不使用。 ▶TAB_inner: 当前不使用。

调试案例 — OTP grid差异 1/2

●问题描述

ifidential For hiar 图像出现异常,如右图所示。

●问题分析

- 1. 拍raw图,在工具中观察,图像是正常的。
- 2. 确认tuning参数设置Grid和Lpf Radius,数值正常。
- 3. 通过命令关闭LSC确认现象是否与LSC相关。 adb shell setprop debug.isp.alsc.cmd.enable 1 adb shell setprop debug.isp.alsc.bypass 1 //问题现象消失
- 4. 通过命令关闭LSC OTP确认现象是否与LSP OTP相关。 adb shell setprop debug.isp.alsc.bypass.otp 1 //问题现象消失
- 5. 当前判断问题在OTP部分,检查下面两部分数据正常。
 - ▶导出4通道数据,做碗状图是否正常, 出现线条,条状现象,观察OTP数据过渡是否平滑。
 - ▶4个通道之间的值差异不可过大,容易产生color shading。

●原因

确认OTP烧录数据,发现烧录的Grid 和tuning中不一致,OTP中烧录192, tuning参数gen table设置成了128, 导致第8组table表大小和随机模组table不对应。Tuning参数第8组参数grid设置错误。

调试案例 — OTP grid差异 2/2

●改善方法

正确设置tuning参数gen table,使第8组table表大小和随机模组table一致。

Unisoc Confidential 修改前

修改前

调试案例 — LSC补偿比例太低 1/2

●问题描述

भागा fidential For hiar 图像四角过暗,如右上图所示。

●问题分析

- 1. 用imatest测试图像,测试数据发现shading补偿只有60%。
- 2. 确认当前图片色温,如右下图所示,从EXIF信息分析使用 index 2和0 (即TL84 和DNP) 的组合。
 - ➤DNP占比: 2215/10000=22.15%。
 - ➤TL84占比: 1-22.15%=77.85%。
- 3. 从index对应占比例,确认TL84色温下table占比大,TL84补偿 比例太低引起问题。

●原因

shading补偿比例太低,导致四角偏暗。

-3	final_ratio_x10000	0x08A7	2215
-=	final_index	0x14	20

调试案例 — LSC补偿比例太低 2/2

●改善方法

重新导入对应色温raw图, 调整Light,提高补偿比例,重新生成table。

调试案例 — 四角偏红 1/2

●问题描述

拍黑色物体,四角偏红,噪声大,如右图所示。 fidentia

●问题分析

- 1. 关闭LSC,问题消失,确认是LSC引起问题。
- 2. 问题主要是在四角, 所以尝试降低补偿问题改善。
- 3. post gain可以控制不同亮度下的LSC 补偿比例,降低补偿比例。

●原因

在暗环境下,本身补偿的gain就较大,在加入LSC gain补偿,出 现四角补偿过高,R通道表现更明显,引起四角偏红。

调试案例 — 四角偏红 2/2

●改善方法

ALSC调试Post gain, 降低在暗环境下的补偿比例。

White the state of the s

修改后

0x01	1
0x0F94	3988
0x0C38	3128
0x0B79	2937
0x0954	2388
0x0640	1600
0x80	128
0x64	100
0x0258	600
0x0320	800
0x0384	900
0x0400	1024
0x0400	1024
0x0400	1024
	0x0F94 0x0C38 0x0B79 0x0954 0x0640 0x80 0x64 0x0258 0x0320 0x0384 0x0400 0x0400

参数列表 — LNC参数

参数	说明 For hiar	范围	默认值
Grid	根据表格填写合适的grid值,用于生产table大小	[0, 128]	根据需要设置
Lpf Radius IniSOC	滤波半径	[0, 20]	根据需要设置
Color TEMP	色温选择	[0, 8]	根据需要设置
Light	调试对应色温下的补偿比例	[0, 100]	78
Get Otp Table	标定OTP数据的模块	N/A	N/A
Satistic Area	设定对应区域	N/A	N/A
Operator	基本操作	N/A	N/A
Y	显示Y shading补偿比例	N/A	N/A
R/G	显示color shading补偿比例	N/A	N/A
B/G	显示color shading补偿比例	N/A	N/A

参数列表 — ALSC界面参数 1/2

参数	说明 For hiar	范围	默认值
Debug Hnisoc Confi	勾选Debug将打开 Debug 模式 (当前已不支持)	0/1	0
Tab BaseIndex	只用Table Base Index 的表作 Shading 补偿 (已不适用)	[0, 8]	2
OTP Bypass	勾选OTP,要确保Sensor有LSC Table, 这里指ISP OTP,不是Sensor OTP	0/1	0
Frequency	调用算法频率	[1, 16]	3
IIR_Weight	Table表参数平滑因子	[0, 16]	5
Vote Length	算法前Vote Length次计算的色温中考虑是否切换table,越小越易切换	[3, 16]	10

参数列表 — ALSC界面参数 2/2

参数	说明 For hia!	范围	默认值
Vote Threshold	切换LSC table阈值,值越小越易切换	[3, 16]	8
TAB_IIR UNISOU OG:	LSC table滤波强度	[0, 16]	2
Level_R	R通道color shading补偿范围,值越大补偿范围越大;值为0不补偿	[0, 100]	10
Level_B	B通道color shading补偿范围,值越大补偿范围越大;值为0不补偿	[0, 100]	10
Weight_R	R通道color shading补偿强度,值越大补偿越强;值为0不补偿	[0, 100]	40
Weight_B	B通道color shading补偿强度,值越大补偿越强;值为0不补偿	[0, 100]	40

参数列表 — ALSC Isp参数 1/3

参数	说明 For hiar	范围	默认值
	ALSC版本号	[0, 6]	6
alg_mode Unisoc	reserved	0/1	0
table_base_index	已不适用	[0, 8]	2
user_mode	0表明使用sprd lsc otp; 1表明bypass sprd lsc otp	0/1	0
Freq	调用算法频率	[1, 16]	3
iir_weight	Table表参数平滑因子	[0, 16]	5
Vote Length	算法前Vote Length次计算的色温中考虑是否切换table,越小越易切换	[3, 16]	10

参数列表 — ALSC Isp参数 2/3

参数	说明 For hia!	范围	默认值
Vote Threshold	切换LSC table阈值,值越小越易切换	[3, 16]	8
smart_iir Unisoc Oct.	LSC table滤波强度	[0, \]	2
init_skip_framesmart_iir	初始化跳帧数	[0, 16]	5
level_r	R通道color shading补偿范围,值越大补偿范围越大	[0, 100]	10
level_b	B通道color shading补偿范围,值越大补偿范围越大	[0, 100]	10
weight_r	R通道color shading补偿强度,值越大补偿越强	[0, 100]	40
weight_b	B通道color shading补偿强度,值越大补偿越强	[0, 100]	40

参数列表 — ALSC Isp参数 3/3

参数	说明 For hiar	范围	默认值
bv2gainw_en	Post gain使能开关	0/1	1
bv2gainw_p_bv [0-5]	spd_ver=4:表示BV生效 spd_ver=5:表示BV_gain生效	[-3000, 3000]	根据需求设置
bv2gainw_b_gainw [0-5]	设置对应的调整比例1024为1倍	[0, 1024]	根据需求设置
init_post_gain	调整基础gain值	1024	1024
flash_enhance_ratio	闪光灯调整的比例	[0, 100]	0
flash_center_shiftx	闪光灯下对应图像的X方向的偏移	[50, 150]	0
flash_center_shifty	闪光灯下对应图像的Y方向的偏移	[50, 150]	0

Unisoc Confidential For hiar

谢谢

小紫光展锐

