

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10307776 A

(43) Date of publication of application: 17.11.98

(51) Int. CI

G06F 13/00 G06F 9/06

(21) Application number: 09115634

(22) Date of filing: 06.05.97

(71) Applicant:

NEC NIIGATA LTD

(72) Inventor:

YOKOYAMA MASATOSHI

(54) COMPUTER VIRUS RECEPTION MONITOR DEVICE AND ITS SYSTEM

(57) Abstract:

PROBLEM TO BE SOLVED: To automatically prevent a reception-side device from being infected with a computer virus through data communication between computers by making a computer virus check on communication data and informing the reception-side device that a computer virus has been detected in such a case.

SOLUTION: When a transmission-side device 1 sends communication data 10 to the reception-side device 2, the computer virus reception monitor device 5 receives it through a receiving process means 6 before the reception-side device 2 receives the communication data 10. The communication data 10 taken in by the computer virus reception monitor device 5 are checked by a receive data check process means 7 as to a computer virus. If the communication data 10 are infected with a computer virus and illegal, a receive data check process means 7 discards the communication data 10 and informs the reception-side device 2 that the infected illegal data has been sent.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-307776

(43)公開日 平成10年(1998)11月17日

(51) Int.Cl. ⁶		識別記号
G06F	13/00	351
	9/06	550

FΙ G06F 13/00

351Z

9/06

5 5 0 Z

審査請求 有 請求項の数4 OL (全 5 頁)

(21)出願番号	特願平9-115634	(71)出願人	
(22)出顧日	平成9年(1997)5月6日		新潟日本電気株式会社 新潟県柏崎市大字安田7546番地
		(72)発明者	横山 正敏 新潟県柏崎市大字安田7546番地 新潟日本 電気株式会社内
		(74)代理人	弁理士 山下 穣平

(54)【発明の名称】 コンピュータウイルス受信監視装置及びそのシステム

(57)【要約】

【課題】 コンピュータ回線網に接続されている受信側 装置がコンピュータウイルスに感染した通信データを受 信しないようにして、受信側装置のコンピュータウイル スによる感染を未然に防ぐ。

【解決手段】 コンピュータ回線網からデータを受信す る受信処理手段と、前記受信処理手段により受信した受 信データがコンピュータウイルスに感染しているかどう かを診断する受信データ処理手段と、前記受信データが 前記コンピュータウイルスに感染している場合に、これ を示す感染信号を受信側装置に知らせる受信側装置間通 信処理手段と、前記受信データが前記コンピュータウイ ルスに感染していない場合に、前記受信データを前記受 信側装置に送信する送信処理手段とを備えるコンピュー タウイルス受信監視装置をコンピュータ回線網と受信側 装置との間に介在させる。

10

【特許請求の範囲】

【請求項1】 コンピュータ回線網と前記コンピュータ 回線網を通して送られてくる送信側装置からのデータを 受信する受信側装置との間にあり、前記コンピュータ回 線網から前記データを受信する受信処理手段と、

前記受信処理手段により受信した受信データがコンピュ ータウイルスに感染しているかどうかを診断する受信デ ータ処理手段と、

前記受信データが前記コンピュータウイルスに感染して いる場合に、これを示す感染信号を前記受信側装置に知 らせる受信側装置間通信処理手段と、

前記受信データが前記コンピュータウイルスに感染して いない場合に、前記受信データを前記受信側装置に送信 する送信処理手段とを備えることを特徴とするコンピュ ータウイルス受信監視装置。

【請求項2】 前記受信データを一時記憶する作業用記

前記コンピュータウイルスのパターンを記憶する不正デ ータパターン記憶部と、

制御処理装置とを備え、

前記診断は、前記作業用記憶部に一時記憶されている前 記受信データと前記不正データパターン記憶部に記憶さ れている前記コンピュータウイルスの前記パターンとを 前記制御処理装置において比較することによりおこなう ことを特徴とする請求項1に記載のコンピュータウイル ス受信監視装置。

【請求項3】 請求項1又は2に記載のコンピュータウ イルス受信監視装置より前記感染信号を受信したときに は受信データを受信しないことを特徴とする受信側装 置。

【請求項4】 請求項1又は2に記載のコンピュータウ イルス受信監視装置及び請求項3に記載の受信側装置よ り構成されることを特徴とするコンピュータウイルス受 信監視システム。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、コンピュータネッ トワークにおける送信側装置と受信側装置との間のデー タ通信を制御する通信制御装置、及びそれを含むシステ ムに関するものであり、特に、コンピュータウィルス受 40 信監視装置、及びそれを含むシステムに関するものであ る。

[0002]

【従来の技術】図4は特開平6-311144号公報に 掲載の従来の通信制御方法を用いた処理システムの構成 を示すブロック図である。図4において、401は例え ばコンピュータなどの送信側装置、402は例えばコン ピュータなどの受信側装置、403は送信側装置401 内の送信処理を行う送信処理手段、404は受信処理装 置402内の受信処理を行う受信処理手段、405は送 50 ータウイルスに感染している場合に、これを示す感染信

信処理手段403から受信処理手段404へ送信される 固定長通信データ、406,407はチェック用パリテ イ、409は受信データチェック処理手段、410は通 信初期化処理手段である。

【0003】次に動作について説明する。固定長通信デ ータ405にエラーチェック用パリティ406、407 を設ける。送信処理手段403からの固定長通信データ 405は、受信処理手段404で受信され、受信データ エラーチェック処理手段409でそのデータ405のチ エック用パリティ406、407をチェックすることに より正しいか否かが判定される。その固定長通信データ 4 0 5 が不正であった場合、通信関係の処理系は通信初 期化処理手段410で初期化され、これにより通信が復 旧される。

[0004]

【発明が解決しようとする課題】従来の通信制御方法 は、受信側装置402が固定長通信データの欠除を検出 することにより、送信側装置401に通信データの再送 を要求する、或いは、受信側装置402の再初期化を行 うことにより通信データの正常性を保証するものであ り、通信データが送信側装置401や受信側装置402 にとって本当に無害なものかどうかをこの通信制御方法 によってチェックすることができず、コンピュータウイ ルスに感染された通信データを受信側装置402が取り 込んでしまう可能性がある。また、受信側装置402が 受信したデータがコンピュータウイルスに感染している かどうかを確認する為には、受信データに含まれるデー タやプログラムを使用したり実行したりする前に、それ らをコンピュータウイルスチェックプログラムによって 30 調べなければならない。

【0005】 [発明の目的] この発明は上記のような問 題を解決するためになされたものであり、通信データが 受信側装置で受信される前に、通信データに対してコン ピュータウイルスチェックをかけて、コンピュータウイ ルスが検出された場合に、受信側装置にコンピュータウ イルスが検出されたことを通知することにより、コンピ ユータ間のデータ通信による受信側装置のコンピュータ ウイルス感染を自動的に防止することができるコンピュ ータウイルス受信監視装置、及びそれを含むシステムを 提供することを目的とする。

[0006]

【課題を解決するための手段】本発明によるコンピュー タウイルス受信監視装置は、コンピュータ回線網と前記 コンピュータ回線網を通して送られてくる送信側装置か らのデータを受信する受信側装置との間にあり、前記コ ンピュータ回線網から前記データを受信する受信処理手 段と、前記受信処理手段により受信した受信データがコ ンピュータウイルスに感染しているかどうかを診断する 受信データ処理手段と、前記受信データが前記コンピュ

号を前記受信側装置に知らせる受信側装置間通信処理手 段と、前記受信データが前記コンピュータウイルスに感 染していない場合に、前記受信データを前記受信側装置 に送信する送信処理手段とを備えることを特徴とする。

【0007】また、本発明によるコンピュータウイルス 受信監視装置は、前記受信データを一時記憶する作業用 記憶部と、前記コンピュータウイルスのパターンを記憶 する不正データパターン記憶部と、制御処理装置とを備 え、前記診断は、前記作業用記憶部に一時記憶されてい る前記受信データと前記不正データパターン記憶部に記 10 憶されている前記コンピュータウイルスの前記パターン とを前記制御処理装置において比較することによりおこ なうことを特徴とする。

【0008】更に、本発明による受信側装置は、上記コ ンピュータウイルス受信監視装置より前記感染信号を受 信したときには受信データを受信しないことを特徴とす

【0009】更に、本発明によるコンピュータウイルス 受信監視システムは、上記コンピュータウイルス受信監 視装置及び上記受信側装置より構成されることを特徴と する。

【0010】 [作用] 受信側装置が通信データを受信す る前にコンピュータウイルス受信監視装置が自動的にコ ンピュータウイルスチェックを行う。このため、受信側 装置は受信データにコンピュータウイルスチェックをか けることなく、受信した直後に受信データに含まれるデ ータやプログラムを使用できる。また、コンピュータウ イルスに感染した通信データは受信側装置に到達する前 に破棄されるので、受信側装置はコンピュータウイルス に感染されない。さらに、コンピュータウイルスに感染 30 した通信データがチェック機能により検出され破棄され ても、受信データがコンピュータウィルスに感染してい るためにデータ破棄したことを受信側装置に通知するの で、通信エラーとの区別が容易である。

[0011]

【発明の実施の形態】次に、本発明の実施の形態につい て図面を参照して詳細に説明する。本発明の最良の実施 の形態は図1を参照すると以下のようになる。コンピュ ータウイルス受信監視装置5は、送信側装置1と送信側 装置1からの通信データ10を受信する受信側装置2と 40 の間にある。コンピュータウイルス受信監視装置5は送 信側装置1からの通信データ10を受信する受信処理手 段6をもつ。また、通信データ10のコンピュータウイ ルス感染をチェックする受信データチェック処理手段7 をもつ。送信処理手段8は受信側装置2に通信データ1 0を送信するためのものである。受信側装置間通信処理 手段9は、受信した通信データ10がコンピュータウイ ルスに感染していることがコンピュータウイルスチェッ クにより判明した場合に、受信側装置2にコンピュータ

を通知する為のものである。

【0012】次に図1のブロック図および図2の動作フ ローチャートを参照してこの実施形態の動作について説 明する。送信側装置1が受信側装置2に向けて、通信デ ータ10を送信すると、受信側装置2が通信データ10 を受信する前に、受信処理手段6によりコンピュータウ イルス受信監視装置5がこれを受信する(ステップS 1)。コンピュータウイルス受信監視装置5に取り込ま れた通信データ10は、受信データチェック処理手段7 によりコンピュータウイルスチェックされる(ステップ S2)。チェックの結果、通信データ10にコンピュー タウイルスの感染が認められなかった場合、コンピュー タウイルス受信監視装置5は送信処理手段8により通信 データ10を受信処理手段4を備える受信側装置2へ送 る(ステップS3)。これにより受信側装置2は通信デ ータ10をコンピュータウイルスに感染していない通常 のデータとして受信する。受信データ10がコンピュー タウイルスに感染している心配がないので、ウイルスチ エックをしないでデータにアクセスできる。通信データ 10がコンピュータウイルスに感染していて不正であっ た場合、コンピュータウイルス受信監視装置5は受信デ ータチェック処理手段7により通信データ10を破棄し (ステップS4)、受信側装置間通信手段9により受信 側装置2にコンピュータウイルスに汚染されている不正 データが送信されてきたことを通知する(ステップS 5)。通信データ10がコンピュータウイルスに汚染さ れている不正データであった場合は、コンピュータウイ ルス受信監視装置5より受信側装置2に対して受信側装 置間通信処理手段9による通知があるので、単純な通信 エラーとの区別は容易である。受信側装置2は、この通 知があったときには通信データを受信しない。

【0013】なお、本実施形態においては、送信側装置 1と受信側装置2とをそれぞれ送信専用或いは受信専用 として説明したが、送信側装置1と受信側装置2との両 方の機能を持つ送受信装置が一般的な形態の装置であ

【0014】また、本実施形態の受信装置は、パソコン 通信などのサーバに使用することもできる。

[0015]

【実施例】次に、本発明の実施例について図面を参照し て詳細に説明する。

【0016】図3はコンピュータウイルス受信監視装置 5及びその周辺の一実施例を示すブロック図である。コ ンピュータ回線網301を通して、図1の送信側装置1 から受信側装置2にデータが送信される。制御処理装置 305は図1における受信処理手段6、受信データチェ ック処理手段7、送信処理手段8、および受信側装置間 通信手段9を制御する為のものでMPU等により構成さ れている。制御命令記憶部303は制御処理装置305 ウイルスに感染している通信データの受信があったこと 50 の制御命令を記憶する為のもので、コンピュータウイル

5

スの影響を排除する為にROM(Read Only Memory)により構成されている。作業用記憶部304はコンピュータ回線網301より受信した通信データ10の一時的に記憶する為に使用する為のものでRAM(Random Access Memory)により構成されている。不正データパターン記憶部302は既知のコンピュータウイルスのデータパターンを記憶しておく部分でデータパターンの追加を考慮して、PROM(Programmable Read Only Memory)により構成されている。不正データパターン記憶部302は図1の受信データチェック処理手段7として使用される。また、作業用記憶部304は図1の受信処理手段6、送信処理手段8、受信側装置間通信手段9を使用する際にも利用する。

【0017】次に図3のブロック図および図2の動作フ ローチャートを参照して本実施例の動作について説明す る。送信側装置1がコンピュータ回線網301を通して 受信側装置2に向けて、通信データ10を送信すると、 受信側装置2が通信データ10を受信する前に制御命令 記憶部303に記憶されているデータ受信を行う命令を 制御処理装置305が実行する。その実行の度にコンピ 20 ユータウイルス受信監視装置5は通信データ10を作業 用記憶部304に記憶する(ステップS1)。制御処理 装置305が制御命令記憶部303に記憶されている命 令により不正データパターン記憶部302の不正データ パターンと作業用記憶部304に記憶された通信データ 10を比較する (ステップS2)。比較の結果、不正デ ータパターンと共通のデータパターンが通信データ10 に認められない場合には、コンピュータウイルスの感染 はないものとして、制御処理装置305は制御命令記憶 部303に記憶されている受信側装置2への通信データ 30 10の受け渡し命令を実行し、通信データ10を送信す る (ステップS3)。不正データパターンと共通のデー タパターンが通信データ10が認められた場合には、通 信データ10がコンピュータウイルスに感染していると して通信データ10を破棄し(ステップS4)、制御処 理装置305は制御命令記憶部303に記憶されている 本体システム2への通知命令を実行し、受信側装置2に 不正データが送信されてきたことを通知する(ステップ S5)。

[0018]

【発明の効果】以上説明したように本発明によれば、送信側装置から受信側装置に通信データが送信された場

合、受信側装置に通信データが届く前にコンピュータウイルス受信監視装置がそのデータを受信し、コンピュータウイルスチェックを行い、コンピュータウイルスに感染されていない通信データのみを受信側装置に送信する

染されていない通信データのみを受信側装置に送信する 為、受信側装置のデータ通信によるコンピュータウイル ス感染を未然に防げる。また、コンピュータウイルスチェックをデータ受信時に自動的に行っていることで受信 側装置がデータ受信後に改めてチェックする必要がなく

10 【図面の簡単な説明】

なる。

【図1】本発明によるコンピュータウイルス受信監視装置、及びそれを含むデータ送受信システムの構成を示す第1のブロック図である。

【図2】本発明によるコンピュータウイルス受信監視装置の制御処理を示すフローチャートである。

【図3】本発明によるコンピュータウイルス受信監視装置、及びそれを含むデータ送受信システムの構成を示す第2のブロック図である。

【図4】従来の通信制御方法を用いたデータ送受信シス テムの構成を示すブロック図である。

【符号の説明】

- 1 送信側装置
- 2 受信側装置
- 3 送信処理手段
- 4 受信処理手段
- 5 コンピュータウイルス受信監視装置
- 6 受信処理手段
- 7 受信データチェック処理手段
- 8 送信処理手段
- 30 9 受信側装置間通信処理手段
 - 10 通信データ
 - 301 コンピュータ回線網
 - 302 不正データパターン記憶部
 - 303 制御命令記憶部
 - 304 作業用記憶部
 - 305 制御処理装置
 - S1 データ受信処理
 - S2 受信データチェック処理
 - S3 データ送信処理
- 0 S4 受信データ破棄処理
 - S5 不正データ受信通知処理

10-307776 [0011]

[Embodiments] Next, an embodiment of the present invention will be described with reference to the drawings. preferable embodiment of the present invention will be described with reference to Fig. 1. Namely, a computer virus reception monitoring device 5 is interposed between a transmitting-side device 1 and a receiving-side device 2 that receives communication data 10 from the transmitting-side The computer virus reception monitoring device 5 includes a receiving means 6 that receives the communication data 10 sent from the transmitting-side device 1. the computer virus reception monitoring device 5 includes a received data checking means 7 that checks if the communication data 10 is infected with a computer virus. transmitting means 8 transmits the communication data 10 to the receiving-side device 2. If the computer virus check reveals that the received communication data 10 has been infected with a computer virus, a communicating-withreceiving-side device means 9 notifies the receiving-side device 2 that communication data infected with a computer virus has been received.

[0012] Next, the actions to be performed according to the present embodiment will be described with reference to the block diagram of Fig. 1 and the flowchart of Fig. 2. When the transmitting-side device 1 transmits communication data 10 to the receiving-side device 2, and before the receiving-side device 2 receives the communication data 10, the receiving means 6 included in the computer virus reception monitoring device 5 receives the communication data 10 (step S1). The received data checking means 7 checks if the communication data 10 fetched into the computer virus reception monitoring device 5 is infected with a computer virus (step S2). If the result of the check demonstrates that infection of the communication data 10 with a computer virus is not recognized, the transmitting means 8 included in the computer virus reception monitoring device 5 transmits

the communication data 10 to the receiving-side device 2 that includes the receiving means 4 (step S3). Consequently, the receiving-side device 2 receives the communication data 10 as normal data uninfected with a computer virus. receiving-side device 2 need not care about whether the received data 10 is infected with a computer virus, the receiving-side device 2 can access the data without performing a virus check. If the communication data 10 is infected with a computer virus and is regarded as illegal data, the received data checking means included in the computer virus reception monitoring device 5 discards the communication data 10 (step S4). The communicating-withreceiving-side device means 9 notifies the receiving-side device 2 that illegal data contaminated with a computer virus has arrived (step S5). If the communication data 10 is illegal data contaminated with a computer virus, the communicating-with-receiving-side device means 9 included in the computer virus reception monitoring device 5 notifies the receiving-side device of the fact. A simple communication error can therefore be readily discriminated. When the receiving-side device 2 receives the notification, the receiving-side device 2 receives no communication data. [0013] According to the present embodiment, the transmitting-side device 1 and receiving-side device 2 are dedicated to transmission or reception. Transmitterreceivers having the capabilities of both the transmittingside device 1 and receiving-side device 2 are generally adopted as the devices.

[0014] Moreover, the receiving-side device employed in the present embodiment may be adopted as a server on a network on which personal computers communicate with one another.

[Examples] Next, an example of the present invention will be described with reference to the drawings.

[0016] Fig. 3 is a block diagram showing an example of the computer virus reception monitoring device 5 and its peripherals. The transmitting-side device 1 shown in Fig. 1

transmits data to the receiving-side device 2 shown therein over a computer network 301. A control unit 305 is formed with an MPU or the like in order to control each of the receiving means 6, received data checking means 7, transmitting means 8, and communicating-with-receiving-side device means 9. A control instruction sent from the control unit 305 is stored in a control instruction memory 303. control instruction memory 303 is formed with a read-only memory (ROM) in an effort to remove the adverse effect of a computer virus. A working memory 304 is used to temporarily store communication data 10 received from the computer network 301, and formed with a random access memory (RAM). Data patterns of known computer viruses are stored in an illegal data pattern memory 302 that is formed with a programmable read-only memory (PROM) in consideration of the possibility that other data pattern may be added. illegal data pattern memory 302 is used as the received data checking means 7 shown in Fig. 1. Moreover, the working memory 304 is utilized at the time of using the receiving means 6, transmitting means 8, and communicating-withreceiving-side device means 9.

Next, actions to be performed in the present example will be described with reference to the block diagram of Fig. 3 and the flowchart of Fig. 2. The transmitting-side device 1 transmits communication data 10 to the receiving-side device 2 over the computer network 301. Before the receiving-side device 2 receives the communication data 10, the control unit 305 executes a data reception instruction that is stored in the control instruction memory 303. time the instruction is executed, the computer virus reception monitoring device 5 stores the communication data 10 in the working memory 304 (step S1). In response to a instruction stored in the control instruction memory 303, the control unit 305 compares the communication data 10 stored in the working memory 304 with the illegal data patterns stored in the illegal data pattern memory 303 (step S2). result of the comparison demonstrates that no data pattern

identical to any of the illegal data patterns is detected in the communication data 10, the control unit 305 judges that the communication data 10 is not infected with a computer The control unit 305 then executes an instruction that the communication data 10 should be handed to the receiving-side device 2 which is stored in the control instruction memory 303, and transmits the communication data 10 accordingly (step S3). If a data pattern identical to any of the illegal data patterns is detected in the communication data 10, it is judged that the communication data 10 has been infected with a computer virus. The communication data 10 is therefore discarded (step S4). The control unit 305 executes an instruction that the main system 2 should be notified which is stored in the control instruction memory 303. control unit notifies the receiving-side device 2 that illegal data has arrived (step S5).

[0018]

[Advantages] As described above, according to the present invention, when communication data is transmitted from a transmitting-side device to a receiving-side device, before the communication data reaches the receiving-side device, a computer virus reception monitoring device receives the data and checks the data for a computer virus. Only communication data uninfected with a computer virus is transmitted to the receiving-side device. Consequently, the receiving-side device can be prevented from being infected with a computer virus through data communication. Moreover, as the computer virus check is automatically performed at the time of data reception, the receiving-side device need not check for a computer virus after receiving the data.