# Division of Continuing Education

Module 1: Why Use Concurrency?

Topic 1.3: Power Wall

## Power/Temperature Problem

- Transistors consume power when they switch
- Increasing transistor density leads to increased power consumption
  - Small transistors use less power, but density scaling is faster
- High power leads to high temperature
- Air cooling
  (fans) can only
  remove so much
  heat





#### **Dynamic Power**

- $P = \alpha * CFV^2$
- α is percent of time switching
- C is capacitance (related to size)
- F is the clock frequency
- V is voltage swing (from low to high)
- Voltage is important
- 0 to 5V uses much more power than 0 to 1.3 V



## **Dennard Scaling**

- Voltage should scale with transistor size
- Keeps power consumption, and temperature, low
- Problem: Voltage can't go too low
  - Must stay above threshold voltage
  - Noise problems occur
- Problem: Doesn't consider leakage power
- Dennard scaling must stop



# **Multi-Core Systems**

- $P = \alpha * CFV^2$
- Cannot increase frequency
- Can still add processor cores, without increasing frequency
  - Trend is apparent today
- Parallel execution is needed to exploit multi-core systems
- Code made to execute on multiple cores
- Different programs on different cores

