Alpaydin Chapter 2, Mitchell Chapter 7

- Alpaydin slides are in turquoise.
 - Ethem Alpaydin, copyright: The MIT Press, 2020.
 - alpaydin@boun.edu.tr
 - https://mitpress.mit.edu/books/
 introduction-machine-learning-fourth-edition
- All other slides are based on Mitchell.

Learning a Class from Examples

- Class C of a "family car"
 - Prediction: Is car x a family car?
 - Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

Input representation:

 x_1 : price, x_2 : engine power

Training Set ${\mathcal X}$

Class $\mathcal C$

Hypothesis Class ${\cal H}$

S,G, and the Version Space

Computational Learning Theory (from Mitchell Chapter 7)

 Theoretical characterization of the difficulties and capabilities of learning algorithms.

Questions:

- Conditions for successful/unsuccessful learning
- Conditions of success for particular algorithms

• Two frameworks:

- Probably Approximately Correct (PAC) framework: classes of hypotheses that can be learned; complexity of hypothesis space and bound on training set size.
- Mistake bound framework: number of training errors made before correct hypothesis is determined.

Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target concept is approximated
- Manner in which training examples presented

Specific Questions

- Sample complexity: How many training examples are needed for a learner to converge?
- Computational complexity: How much computational effort is needed for a learner to converge?
- Mistake bound: How many training examples will the learner misclassify before converging?

Issues: When to say it was successful? How are inputs acquired?

Sample Complexity

How many training examples are sufficient to learn the target concept?

- 1. If learner proposes instances, as queries to teacher
 - Learner proposes instance x, teacher provides c(x)
- 2. If teacher (who knows c) provides training examples
 - ullet teacher provides sequence of examples of form $\langle x,c(x)\rangle$
- 3. If some random process (e.g., nature) proposes instances
 - instance x generated randomly, teacher provides c(x)

True Error of a Hypothesis

Instance space X

Definition: The **true error** (denoted $error_{\mathcal{D}}(h)$) of hypothesis h with respect to target concept c and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances

True error of hypothesis h with respect to c

• How often $h(x) \neq c(x)$ over future random instances

Our concern:

- Can we bound the true error of h given the training error of h?
- ullet First consider when training error of h is zero (i.e., $h \in VS_{H,D}$)

Exhausting the Version Space

Hypothesis space H

(r = training error, error = true error)

Definition: The version space $VS_{H,D}$ is said to be ϵ -exhausted with respect to c and \mathcal{D} , if every hypothesis h in $VS_{H,D}$ has error less than ϵ with respect to c and \mathcal{D} .

$$(\forall h \in VS_{H,D}) \ error_{\mathcal{D}}(h) < \epsilon$$

How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m\geq 1$ independent random examples of some target concept c, then for any $0\leq\epsilon\leq 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

$$|H|e^{-\epsilon m}$$

This bounds the probability that any consistent learner will output a hypothesis h with $error(h) \geq \epsilon$

If we want this probability to be below δ

$$|H|e^{-\epsilon m} \le \delta$$

then

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Proof of ϵ **-Exhasting Theorem**

Theorem: Prob. of $VS_{H,D}$ not being ϵ -exhausted is $\leq |H|e^{-\epsilon m}$. Proof:

- Let $h_i \in H$ (i=1..k) be those that have true error greater than ϵ wrt c $(k \le |H|)$.
- We fail to ϵ -exhaust the VS iff at least one h_i is consistent with all m sample training instances (note: they have true error greater than ϵ).
- ullet Prob. of a single hypothesis with error $>\epsilon$ is consistent for one random sample is at most $(1-\epsilon)$.
- \bullet $\,$ Prob. of that hypothesis being consistent with m samples is $(1-\epsilon)^m$.
- Prob. of at least one of k hypotheses with error $> \epsilon$ is consistent with m samples is $k(1-\epsilon)^m$.
- Since $k \leq |H|$, and for $0 \leq \epsilon \leq 1$, $(1 \epsilon) \leq e^{-\epsilon}$:

$$k(1-\epsilon)^m \le |H|(1-\epsilon)^m \le |H|e^{-\epsilon m}$$

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions $\mathcal D$ over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1-\delta)$ output a hypothesis $h\in H$ such that $error_{\mathcal{D}}(h)\leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

Agnostic Learning

So far, we assumed that $c \in H$. What if it is not the case?

Agnostic learning setting: don't assume $c \in H$

- What do we want then?
 - The hypothesis h that makes fewest errors on training data
- What is sample complexity in this case?

$$m \ge \frac{1}{2\epsilon^2} (\ln|H| + \ln(1/\delta))$$

derived from Hoeffding bounds:

$$Pr[error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h) + \epsilon] \le e^{-2m\epsilon^2}$$

Shattering a Set of Instances

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

Three Instances Shattered

Instance space X

Each closed contour indicates one dichotomy. What kind of hypothesis space ${\cal H}$ can shatter the instances?

The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

Note that |H| can be infinite, while VC(H) finite!

VC Dim. of Linear Decision Surfaces

- ullet When H is a set of lines, and S a set of points, VC(H)=3.
- (a) can be shattered, but (b) cannot be. However, if at least one subset of size 3 can be shattered, that's fine.
- Set of size 4 cannot be shattered, for any combination of points (think about an XOR-like situation).

VC Dimension: Another Example

 $S = \{3.1, 5.7\}$, and hypothesis space includes intervals a < x < b.

- Dichotomies: both, none, 3.1, or 5.7.
- Are there intervals that cover all the above dichotomies?

What about $S=x_0,x_1,x_2$ for an arbitrary x_i ? (cf. collinear points).

Sample Complexity from VC Dimension

How many randomly drawn examples suffice to ϵ -exhaust $VS_{H,D}$ with probability at least $(1-\delta)$?

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

VC(H) is directly related to the sample complexity:

- ullet More expressive H needs more samples.
- ullet More samples needed for H with more tunable parameters.

Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before convergence?

 This is an interesting question because some learning systems may need to start operating while still learning.

Let's consider similar setting to PAC learning:

- ullet Instances drawn at random from X according to distribution \mathcal{D} .
- Learner must classify each instance before receiving correct classification from teacher.
- Can we bound the number of mistakes learner makes before converging?

Mistake Bounds: Halving Algorithm

Consider the Halving Algorithm:

- Learn concept using version space *Candidate-Elimination* or *List-Then-Eliminate* algorithm (no need to know details about these algorithms).
- Classify new instances by majority vote of version space members.

How many mistakes before converging to correct h?

- ... in worst case?
- ... in best case?

Mistake Bound of Halving Algorithm

- Start with version space = H.
- ullet Mistake is made when more than half of the $h\in H$ misclassified.
- In that case, at most half of $h \in VS$ will be eliminated.
- ullet That is, each **mistake** reduces the VS by half.
- Initially |VS|=|H|, and each mistake halves the VS, so it takes $\log_2 |H|$ mistakes to reduce |VS| to 1.
- Actual worst-case bound is $\lfloor \log_2 |H| \rfloor$.

Optimal Mistake Bounds

Let $M_A(C)$ be the max number of mistakes made by algorithm A to learn concepts in C. (maximum over all possible $c \in C$, and all possible training sequences)

$$M_A(C) \equiv \max_{c \in C} M_A(c)$$

Definition: Let C be an arbitrary non-empty concept class. The **optimal mistake bound** for C, denoted Opt(C), is the minimum over all possible learning algorithms A of $M_A(C)$.

$$Opt(C) \equiv \min_{A \in learning \ algorithms} M_A(C)$$

Mistake Bounds and VC Dimension

Littlestone (1987) showed:

$$VC(C) \le Opt(C) \le M_{Halving}(C) \le \log_2(|C|)$$

Noise and Model Complexity

Use the simpler one because

- Simpler to use (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance Occam's razor)

Multiple Classes, $C_i, i = 1, ..., K$

Regression

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- ullet The need for inductive bias, assumptions about ${\mathcal H}$
- Generalization: How well a model performs on new data
- Overfitting: \mathcal{H} more complex than C or f
- Underfitting: \mathcal{H} less complex than C or f

Model Selection & Generalization

$$\mathcal{X} = \{x^{t}, r^{t}\}_{t=1}^{N}
r^{t} \in \Re
r^{t} = f(x^{t}) + \varepsilon$$

$$g(x) = w_{1}x + w_{0}$$

$$g(x) = w_{2}x^{2} + w_{1}x + w_{0}$$

$$E(g \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^{t} - g(x^{t})]^{2}$$

$$E(w_{1}, w_{0} \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^{t} - (w_{1}x^{t} + w_{0})]^{2}$$

$$x \text{ milage}$$

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} , $c(\mathcal{H})$,
 - 2. Training set size, N,
 - 3. Generalization error, E, on new data
- \square As $N\uparrow$, $E\downarrow$
- \square As $c(\mathcal{H})\uparrow$, first $E\downarrow$ and then $E\uparrow$

Cross-Validation

1. Model: $g(\mathbf{x} | \theta)$

- 2. Loss function: $E(\theta \mid X) = \sum_{t} L(r^{t}, g(\mathbf{x}^{t} \mid \theta))$
- 3. Optimization procedure:

$$\theta^* = \operatorname{argmin}_{\theta} \operatorname{nE}(\theta \mid X)$$

Dimensions of Supervised Learning

- To estimate generalization error, we need data unseen during training. We split the data as
 - Training set (50%)
 - Validation set (25%)
 - Test (publication) set (25%)
- Resampling when there is few data