The University of Texas at Austin Department of Electrical and Computer Engineering

EE381K: Large Scale Optimization — Fall 2015

PROBLEM SET TWO SOLUTIONS

Constantine Caramanis

Matlab and Computational Assignments.

 This problem illustrates how the gradient descent algorithm behaves in different levels of strong convexity. To begin with, download the file: http://users.ece.utexas.edu/~cmcaram/ EE381V_2012F/ps1_matlab.zip, which contains a matlab file that will generate the data for the problem.

We have a simple unconstrained optimization problem:

$$\min_{\beta \in \mathbb{R}^n} \ f(\beta) \triangleq \frac{1}{2} \beta^T X \beta$$

where $X \in \mathbb{R}^{n \times n}$ is a symmetric and positive definite matrix. In the matlab file, you can find three matrices for the problem, in which (a) all eigenvalues are one, (b) a half of the eigenvalues are one and the other half of them are very small, (c) all other than a few very large eigenvalues are one.

We want to run the gradient descent algorithm which iteratively computes

$$\beta^{(n+1)} = \beta^{(n)} - \gamma \nabla f(\beta^{(n)})$$

where γ is a constant step size. The initial $\beta^{(0)}$ is the all-one vector.

For each matrix, find the range of γ that the solution converges to zero and the range of γ that the algorithm diverges, and explain why. Take example values of γ to illustrate the two behaviors, convergence to zero and divergence. Plot $f(\beta^{(n)})$ over n for the two of your values.

Solution Since X is symmetric and positive definite, there always exists an eigendecomposition $X = U\Lambda U^T$ where $U \in \mathbb{R}^{m \times m}$ is a unitary matrix and $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ is a diagonal matrix with positive eigenvalues $\lambda_1 \geq \dots \geq \lambda_m > 0$.

The gradient descent algorithm iteratively runs

$$\beta^{(n+1)} = \beta^{(n)} - \gamma \nabla f(\beta^{(n)})$$

$$= \beta^{(n)} - \gamma X \beta^{(n)}$$

$$= \beta^{(n)} - \gamma U \Lambda U^T \beta^{(n)}$$

$$= U(I - \gamma \Lambda) U^T \beta^{(n)}$$

Let $\hat{\beta} = U^T \beta$. Then we get

$$\hat{\beta}^{(n)} = (I - \gamma \Lambda)^n \hat{\beta}^{(0)},$$

and thus for each component $i \in \{1, 2, ..., m\}$ we also get

$$\hat{\beta}_i^{(n)} = (1 - \gamma \lambda_i)^n \hat{\beta}_i^{(0)}. \tag{1}$$

It follows that if $|1 - \gamma \lambda_i| < 1$ for all i then the solution converges. The constant step size γ must be smaller than $2/\lambda_1$.

	convergence	divergence
(a)	$\gamma < 2$	$\gamma > 2$
(b)	$\gamma < 2$	$\gamma > 2$
(c)	$\gamma < 0.02$	$\gamma > 0.02$

This is a simple example of the convergence condition for the constant step size that we learned in class: If $\nabla^2 f(\beta) \leq MI$, then gradient descent with constant step size $\gamma < 2/M$ converges. Since the Hessian $\nabla^2 f(\beta)$ is equal to $X \leq \lambda_1 I$ for any β in this problem, we get the above condition.

2. Take $\gamma = 1$, and plot $f(\beta^{(n)})$ over n for the second matrix (b) of the above three. Explain the convergence behavior of the solution based on the plot.

Solution The objective function can also be written as $f(\beta) = \frac{1}{2}\beta^T X \beta = \frac{1}{2}\hat{\beta}^T \Lambda \hat{\beta} = \sum_{i=1}^m \lambda_i \hat{\beta}_i^2$, so the convergence behavior of the objective function also depends on $\hat{\beta}$.

If we set $\gamma = 1$ for the second matrix (b), we get

$$\hat{\beta}_i^{(n)} = (1 - 1 \cdot 1)^n \hat{\beta}_i^{(0)} = 0 \text{ for } 1 \le i \le 50,$$

$$\hat{\beta}_i^{(n)} = (1 - 1 \cdot 0.01)^n \hat{\beta}_i^{(0)} = (0.99)^n \hat{\beta}_i^{(0)} \text{ for } 51 \le i \le 100.$$

This behavior is shown in the figure below. There is a big drop at the first iteration because of the first 50 components of $\hat{\beta}$ vanishing at once. The following linear convergence to zero after the first iteration is due to the second 50 components of $\hat{\beta}$ decreasing geometrically with a factor of 0.99.

Written Problems

1. Various properties of orthogonal subspaces: Let V be a finite dimensional vector space with an inner produce, and let $U \subseteq V$ be a subspace. Recall that the space U^{\perp} is defined as:

$$U^{\perp}=\{v\in V\,:\, \langle v\,,\,u\rangle=0,\; \forall u\in U\}.$$

(a) Show that if U is a subspace, then so is U^{\perp} .

Solution It is sufficient to show that U^{\perp} is closed under linear combination. Consider two different vectors $u_1^{\perp}, u_2^{\perp} \in U^{\perp}$. By definition, we have $\langle u_1^{\perp}, u \rangle = \langle u_2^{\perp}, u \rangle = 0$ for any $u \in U$. Then we get $\langle \lambda_1 u_1^{\perp} + \lambda_2 u_2^{\perp}, u \rangle = \lambda_1 \langle u_1^{\perp}, u \rangle + \lambda_2 \langle u_2^{\perp}, u \rangle = 0$, and so $\lambda_1 u_1^{\perp} + \lambda_2 u_2^{\perp} \in U^{\perp}$. This proves that U^{\perp} is a subspace.

In fact, U^{\perp} is a subspace even if U is not a subspace. Note that any properties of subspaces are not used in the proof.

(b) Show that $(U^{\perp})^{\perp} = U$.

Solution Let us first prove $U \subseteq (U^{\perp})^{\perp}$ by showing that every vector $u \in U$ is also in $(U^{\perp})^{\perp}$. A vector $u \in U$ satisfies that $\langle u, u^{\perp} \rangle = 0$ for every $u^{\perp} \in U^{\perp}$, otherwise such u^{\perp} cannot be in U^{\perp} . Then it follows that $u \in (U^{\perp})^{\perp}$ by definition.

Now we prove $U \supseteq (U^{\perp})^{\perp}$ using the property in Problem 1(e). Consider a vector $v \in (U^{\perp})^{\perp}$. It can be written uniquely as $v = u + u^{\perp}$ where $u \in U$ and $u^{\perp} \in U^{\perp}$. Then we have

$$0 = \langle v, u^\perp \rangle = \langle u + u^\perp, u^\perp \rangle = \langle u, u^\perp \rangle + \langle u^\perp, u^\perp \rangle = \langle u^\perp, u^\perp \rangle$$

which implies $u^{\perp} = 0$ and v = u. Therefore, we get $v \in U$.

(c) Show that if $U, W \subseteq V$ are subspaces of V, then

$$U \subseteq W \Leftrightarrow U^{\perp} \supseteq W^{\perp}.$$

Solution Let us first prove $U \subseteq W \Rightarrow U^{\perp} \supseteq W^{\perp}$. Suppose $U \subseteq W$. Then any $w^{\perp} \in W^{\perp}$ satisfies $\langle w^{\perp}, u \rangle = 0$ for all $u \in U \subseteq W$ by definition, and thus it is included in U^{\perp} . This proves $U \subseteq W$. For the converse, we use the property in Problem 1(b) so that we get $U^{\perp} \supseteq W^{\perp} \Rightarrow (U^{\perp})^{\perp} = U \subseteq (W^{\perp})^{\perp} = W$.

(d) Suppose now that $X \subseteq V$ is just a subset, i.e., not necessarily a subspace of V. Show that the definition X^{\perp} still makes sense, and that X^{\perp} is a subspace. Next show that $(X^{\perp})^{\perp} \supseteq X$, and it is defined as the smallest subspace that contains the set X.

Solution It is sufficient to show that for any subspace V containing X also contains $(X^{\perp})^{\perp}$. Note that $U \subseteq W \Rightarrow U^{\perp} \supseteq W^{\perp}$ in Problem 1(c) holds if U and W are just subsets, not subspaces. Then for any subspace $V \supseteq X$, we have $V^{\perp} \subseteq X^{\perp}$, and also $V = (V^{\perp})^{\perp} \supseteq (X^{\perp})^{\perp}$. Since $(X^{\perp})^{\perp}$ is a subspace, it is the smallest subspace that contains X.

3

(e) Show that when U is a subspace of V, then V is the direct product of U and U^{\perp} (denoted $V = U \oplus U^{\perp}$). That is, show that any $v \in V$ can be written uniquely as

$$v = u + u^{\perp},$$

where $u \in U$, and $u^{\perp} \in U^{\perp}$.

Solution Suppose there are two different representations of $v \in V$, such that

$$v = u_1 + u_1^{\perp} = u_2 + u_2^{\perp},$$

where $u_1, u_2 \in U$, $u_1 \neq u_2$, and $u_1^{\perp}, u_2^{\perp} \in U^{\perp}$, $u_1^{\perp} \neq u_2^{\perp}$. Then we have

$$u_1 - u_2 = u_2^{\perp} - u_1^{\perp}.$$

Since U and U^{\perp} are subspaces and so closed under addition, it follows that $u_1 - u_2 = U$ and $u_2^{\perp} - u_1^{\perp} \in U^{\perp}$. Then $U \cap U^{\perp} = \{0\}$ implies that $u_1 - u_2 = u_2^{\perp} - u_1^{\perp} = 0$, which is a contradiction. Therefore, v can be written uniquely as $v = u + u^{\perp}$ where $u \in U$ and $u^{\perp} \in U^{\perp}$.

2. (Boyd and Vandenberghe, Ex. 2.10) Consider the set

$$C = \{ x \in \mathbb{R}^n : x^{\top} A x + b^{\top} x + c \le 0 \},$$

where $A \in \mathbb{S}^n$, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

(a) Show that if $A \in \mathbb{S}^n_+$ (i.e., A is positive semidefinite) then the set C is convex. **Solution** Let $f(x) = x^{\top} A x + b^{\top} x + c$, and consider two different vectors $x_1, x_2 \in C$, i.e., $f(x_1) \leq 0$ and $f(x_2) \leq 0$. Then we want to show

$$f(\lambda x_1 + (1 - \lambda)x_2) \le 0$$

for any $\lambda \in [0,1]$. We first have

$$\lambda f(x_1) + (1 - \lambda)f(x_2) - f(\lambda x_1 + (1 - \lambda)x_2)$$

$$= \lambda x_1^{\top} A x_1 + (1 - \lambda)x_2^{\top} A x_2 - (\lambda x_1 + (1 - \lambda)x_2)^{\top} A(\lambda x_1 + (1 - \lambda)x_2)$$

$$= \lambda (1 - \lambda)x_1^{\top} A x_1 + \lambda (1 - \lambda)x_2^{\top} A x_2 + 2\lambda (1 - \lambda)x_1^{\top} A x_2$$

$$= \lambda (1 - \lambda)(x_1 + x_2)^{\top} A(x_1 + x_2)$$

$$> 0$$

where the inequality follows from $A \in \mathbb{S}^n_+$. Therefore, we get

$$f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2) < 0.$$

This proves $\lambda x_1 + (1 - \lambda)x_2 \in C$.

(b) Consider the set obtained by intersecting C with a hyperplane:

$$C_1 = C \cap \{x : g^{\top}x + h = 0\}.$$

Show that C_1 is convex if there exists $\lambda \in \mathbb{R}$ such that $(A + \lambda gg^{\top}) \in \mathbb{S}^n_+$.

Solution Suppose there exists $\lambda \in \mathbb{R}$ such that $(A + \lambda gg^{\top}) \in \mathbb{S}^n_+$. Then C_1 can be equivalently described as

$$C_1 = \{x : x^{\top}(A + \lambda gg)x + b^{\top}x + (c - \lambda h^2) \le 0\} \cap \{x : g^{\top}x + h = 0\}.$$

It follows from $(A + \lambda gg^{\top}) \in \mathbb{S}_+^n$ that the above two sets are convex. Since the intersection of two convex sets is convex, C_1 is convex.

3. (Boyd and Vandenberghe, Ex. 2.21) For $C, D \subseteq \mathbb{R}^n$ disjoint convex sets, let

$$\mathcal{S} = \{(a, b) : a^{\top} x \le b \ \forall x \in C, \ a^{\top} x \ge b \ \forall x \in D\}$$

be the set of separating hyperplanes. Show that S is convex.

Solution Let (a_1, b_1) and (a_2, b_2) be two different hyperplanes each of which separates C and D. Since we have for $\lambda \in [0, 1]$

$$(\lambda a_1 + (1 - \lambda)a_2)^{\top} x = \lambda a_1^{\top} x + (1 - \lambda)a_2^{\top} x \le \lambda b_1 + (1 - \lambda)b_2, \quad \forall x \in C, (\lambda a_1 + (1 - \lambda)a_2)^{\top} x = \lambda a_1^{\top} x + (1 - \lambda)a_2^{\top} x \ge \lambda b_1 + (1 - \lambda)b_2, \quad \forall x \in D,$$

 $(\lambda a_1 + (1-\lambda)a_2, \lambda b_1 + (1-\lambda)b_2)$ also separates C and D. This proves that S is convex.

- 4. (?) In class we claimed that there are several natural operations on sets, that preserve convexity. Convince yourselves that the following all preserve convexity.
 - (a) Cartesian product: If $C_1, \ldots, C_m \subseteq \mathbb{R}^d$ are convex sets, then the set

$$C = C_1 \times \cdots \times C_m = \{(x_1, \dots, x_m), \ x_i \in C_i\}$$

is convex.

Solution For every $x = (x_1, \ldots, x_m), y = (y_1, \ldots, y_m) \in C$ and $\lambda \in [0, 1],$

$$\lambda x + (1 - \lambda)y = (\lambda x_1 + (1 - \lambda)y_1, \dots, \lambda x_m + (1 - \lambda)y_m) \in C$$

because $\lambda x_i + (1 - \lambda)y_i \in C_i$ for every $1 \le i \le m$.

(b) Affine and inverse maps: For $C \subseteq \mathbb{R}^n$ convex, and $A : \mathbb{R}^n \to \mathbb{R}^m$ a linear operator (i.e., an $m \times n$ matrix) then show that the following two sets are convex:

$$D_1 = \{Ax : x \in C\}$$

$$D_2 = \{x : Ax \in C\}.$$

Solution Affine map: For every $y_1, y_2 \in D_1$, there exist $x_1, x_2 \in C$ such that $y_1 = Ax_1$ and $y_2 = Ax_2$. Since C is convex, we have

$$\lambda x_1 + (1 - \lambda)x_2 \in C$$

for $\lambda \in [0,1]$, and thus

$$\lambda y_1 + (1 - \lambda)y_2 = \lambda Ax_1 + (1 - \lambda)Ax_2 = A(\lambda x_1 + (1 - \lambda)x_2) \in D_1.$$

Inverse map: For every $x_1, x_2 \in D_2$, we have $Ax_1, Ax_2 \in C$. Since C is convex, we have

$$\lambda Ax_1 + (1 - \lambda)Ax_2 = A(\lambda x_1 + (1 - \lambda)x_2) \in C$$

for $\lambda \in [0,1]$, and thus

$$\lambda x_1 + (1 - \lambda)x_2 \in D_2.$$

(c) Minkowski sum: If $C_1, C_2 \subseteq \mathbb{R}^n$ are convex, show that

$$C = C_1 + C_2 = \{x = x_1 + x_2 : x_1 \in C_1, x_2 \in C_2\}$$

is convex.

Solution For every $x = x_1 + x_2, y = y_1 + y_2 \in C, x_1, y_1 \in C_1$, and $x_2, y_2 \in C_2$, we have

$$\lambda x_1 + (1 - \lambda)y_1 \in C_1, \ \lambda x_2 + (1 - \lambda)y_2 \in C_2,$$

for $\lambda \in [0, 1]$, and thus

$$\lambda x + (1 - \lambda)y = (\lambda x_1 + (1 - \lambda)y_1) + (x_2 + (1 - \lambda)y_2) \in C.$$

5. (?) Boyd and Vandenberghe, Ex. 2.26.

Solution If C = D, their support functions are equal by definition. What is left is to show that C = D if their support functions are equal.

Suppose $S_C(y) = S_D(y)$ but $C \neq D$. Let us assume that, without loss of generality, there is a point $\hat{x} \in C$ but $\hat{x} \notin D$. Since both the singleton set $\{\hat{x}\}$ and D are closed and convex, there exists a hyperplane $\{x|\hat{y}^Tx=c\}$ strictly separating \hat{x} and D, i.e., we can find \hat{y} and c such that $\hat{y}^T\hat{x} > c$ but $\hat{y}^Tx < c$ for every $x \in D$. This contradicts $S_C(\hat{y}) = S_D(\hat{y})$. C and D must be identical.

6. (?) Boyd and Vandenberghe, Ex. 2.35.

Solution Let K be the set of $n \times n$ copositive matrices. K is a proper cone if it satisfies the following conditions. (Read Section 2.4.1 in Boyd and Vandenberghe for the definition of a proper cone)

• K is convex : Let $X_1, X_2 \in K$. We have

$$z^{T}(\lambda X_{1} + (1 - \lambda)X_{2})z = \lambda z^{T}X_{1}z + (1 - \lambda)z^{T}X_{2}z \ge 0$$

for any $z \geq 0$ and $\lambda \in [0,1]$. Therefore, K is a convex set.

• K is closed: It is sufficient to prove that K^c is open. For this solution, we just provide a sketch of proof. To prove that K^c is open, we want to show that for every $X \in K^c$ any sufficiently small δX maintains $(X + \delta X) \in K^c$. Since $X \in K^c$, there exists $z \geq 0$ such that $z^T X z < 0$. For this z, if δX is so small that $|\delta X_{ij}| < |z^T X z|/n^2 (\max_i |z_i|)^2$, we get

$$z^{T}(X + \delta X)z = z^{T}Xz + z^{T}\delta Xz \le z^{T}Xz + n^{2}(\max_{i,j}|\delta X_{ij}|)(\max_{i}|z_{i}|)^{2} < z^{T}Xz + |z^{T}Xz| = 0$$

This shows that $(X + \delta X) \in K^c$. K^c is open, and equivalently K is closed.

• K has nonempty interior : Since K has the set of positive-definite matrices as a subset, K has nonempty interior.

• K is pointed, i.e., if $X, -X \in K$ then X = 0: If $X, -X \in K$, we have

$$z^T X z \ge 0, -z^T X z \ge 0 \implies z^T X z = 0$$

for any $z \geq 0$. This satisfies only if X = 0.

The dual cone of K is defined as

$$K^* = \{Y | \langle X, Y \rangle > 0 \text{ for all } X \in K\}$$

We will show that $K^* = P$ where P is the set of completely positive matrices, i.e.,

$$P = \{Y = BB^T | B_{ij} \ge 0, \ \forall i, j \}.$$

 $(P \subseteq K^*)$ Suppose there exists a nonnegative matrix B such that $Y = BB^T$. Let N and B_i denote the number of columns of B and the ith column of B, respectively. For any $X \in K$, We have

$$\langle X, Y \rangle = \langle X, BB^T \rangle = \sum_{i=1}^N \langle X, B_i B_i^T \rangle = \sum_{i=1}^N \operatorname{Tr}(B_i B_i^T X) = \sum_{i=1}^N B_i^T X B_i \ge 0$$

where the inequality follows from that $z^TXz \ge 0$ for any $z \ge 0$. Therefore, $Y = BB^T \in K^*$. $(K^* \subseteq P)$ Note that P is a proper cone. It is sufficient to show that $P^* \subseteq K$, i.e., every matrix X in the dual cone of P belongs to K. If it is shown, we get $K^* \subseteq (P^*)^* = P$. (Convince yourselves that the dual cone of the dual cone of a proper cone is the proper cone itself.)

Consider a matrix $X \notin K$. There exists $z \geq 0$ such that $z^T X z < 0$, so we have

$$z^T X z = \operatorname{Tr}(z z^T X) = \langle X, z z^T \rangle < 0.$$

This shows that $X \notin P^*$ because $zz^T \in P$. Therefore, we have $P^* \subseteq K$, and also $K^* \subseteq P$.

7. Consider two points, $v_1, v_2 \in \mathbb{R}^n$. Show that there exist $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ (and find them!) such that

$${x : ||x - v_1|| \le ||x - v_2||} = {x : c^{\top} x \le d}.$$

Thus, you are showing that the set of points in \mathbb{R}^n that are closer to point v_1 than to point v_2 , form a half-space.

Solution We can see geometrically that a hyperplane, perpendicular to (v_2-v_1) and lying on $(v_1+v_2)/2$, separates two half-spaces $\{x: ||x-v_1|| \le ||x-v_2||\}$ and $\{x: ||x-v_1|| \ge ||x-v_2||\}$ (See the figure below). Then we get $c=(v_2-v_1)$ and $d=(||v_2||^2-||v_1||^2)/2$.

We can prove $\{x: ||x-v_1|| \le ||x-v_2||\} = \{x: (v_2-v_1)^T x \le (||v_2||^2 - ||v_1||^2)/2\}$ as follows.

$$\{x : \|x - v_1\| \le \|x - v_2\|\} = \{x : \|x - v_1\|^2 \le \|x - v_2\|^2\}$$

$$= \{x : \|x\|^2 - 2v_1^T x + \|v_1\|^2 \le \|x\|^2 - 2v_2^T x + \|v_2\|^2\}$$

$$= \{x : 2v_2^T x - 2v_1^T x \le \|v_2\|^2 - \|v_1\|^2\}$$

$$= \{x : (v_2 - v_1)^T x \le (\|v_2\|^2 - \|v_1\|^2)/2\}$$

8. Let A be an $n \times m$ real matrix, and B a $k \times m$ real matrix. Suppose that for every $x \in \mathbb{R}^m$, Ax = 0 only if Bx = 0, that is,

$$Ax = 0 \Rightarrow Bx = 0.$$

Show that there exists a $k \times n$ real matrix C such that CA = B.

Solution The assumption $Ax = 0 \Rightarrow Bx = 0$ implies that $\text{Null}(A) \subseteq \text{Null}(B)$. Since the two null spaces are subspaces, we use the property in Problem 1(c) to get $\text{Range}(A^{\top}) \supseteq \text{Range}(B^{\top})$. This means that for each $b \in \text{Range}(B^{\top})$ there exists $c \in \mathbb{R}^n$ such that $A^{\top}c = b$, so it is also true for each columns of B^{\top} . This proves that there exists a $k \times n$ real matrix C such that $A^{\top}C^{\top} = B^{\top}$, and equivalently CA = B.