Vertiefung Analysis Hausaufgabenblatt Nr. 12

Jun Wei Tan* and Lucas Wollmann

Julius-Maximilians-Universität Würzburg

(Dated: February 3, 2024)

Problem 1. (Parametrisierung) Sei $M \subseteq \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit der Klasse C^{α} und $f \in \mathcal{L}^1(\lambda_M)$. Außerdem existieren offene Mengen $U, V \subseteq \mathbb{R}^k$ und lokale Parameterdarstellungen $\varphi: U \to \mathbb{R}^n$ und $\psi: V \to \mathbb{R}^n$ von M mit $\varphi(U) \cup \psi(V) = M$ und $\varphi(U) = M \setminus A$, wobei $A = \psi(N)$ mit einer λ_k -Nullmenge $N \subseteq V$ gilt. Zeigen Sie, dass A messbar ist und

$$\int_M f \, \mathrm{d}\lambda_M = \int_{M \setminus A} f \, \mathrm{d}\lambda_M = \int_U f \circ \varphi \cdot \sqrt{\det \varphi'^T \varphi'} \, \mathrm{d}\lambda_k \,.$$

Problem 2. (Nullmengen) Sei $M \subseteq \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit.

- (a) Sei $N \in \mathcal{L}_m$ mit $\lambda_M(N) = 0$. Dann gilt $\lambda_{M,V}(N) = 0$ für alle in M offenen Mengen $V \subseteq \mathbb{R}^n$ für die eine lokale Parameterdarstellung $\varphi : T \to V$, mit $T \subseteq \mathbb{R}^k$ offen, existiert.
- (b) Zeigen Sie, dass M eine λ_n -Nullmenge ist.

Hinweis: Satz 3.5

Proof. (a) Sei (φ_j) , $\varphi_j: T_j \to V_j$ eine abzählbare Atlas von M und V beliebig, aber wie in Aufgabenstellung. Da $\lambda_M(N) = 0$, gilt, für eine Folge von Mengen $(A_j), j \in 1, \ldots$,

$$\sum_{j=1}^{\infty} \lambda_{M,V_j}(A_j) = 0.$$

Jetzt fügen wir die Menge V hinzu, mit $V_0 := V$, also jetzt ist (φ_j) , $j = 0, \ldots$ ein abzählbarer Atlas. Wir setzen $A_0' = A \cap V$ und $A_j' = A_j \cap V^c$ sonst, wobei die A_j hier die vorherigen A_j sind. Es gilt dann

$$0 = \sum_{j=0}^{\infty} \lambda_{M,V_j}(A_j')$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

$$= \lambda_{M,V}(A_0') + \sum_{i=1}^{\infty} \lambda_{M,V_i}(A_i')$$

Aber $A'_j \subset A_j$ für $j \in \mathbb{N}$, also

$$\sum_{j=1}^{\infty} \lambda_{M,V_j}(A_j') \le \sum_{j=1}^{\infty} \lambda_{M,V_j}(A_j) = 0.$$

Da das Maß positiv ist, muss der Ausdruck Null sein. Daraus folgt:

$$\lambda_{M,V}(A_0') = \lambda_{M,V}(A \cap V) = 0.$$

(b) Wir brauchen zunächst ein

Lemma 1. $\lambda_n(E_k) = 0$ für k < n.

Proof. Sei d=r-k. Da E_k offensichtlich diffeomorph zu \mathbb{R}^k ist, gibt es eine Überdeckung von Mengen $A_j\subseteq\mathbb{R}^k$ mit $\lambda_k(A_j)<\infty$ und $A_j\times(a,b)^d\subseteq\mathbb{R}^n$. Weil \mathbb{R}^p σ -endlich für alle $p\in\mathbb{N}$ ist, ist das Maß

$$\lambda_n(A_i \times (a,b)^d) = \lambda_k(A) \cdot (b-a)^d$$

Sei jetzt $\epsilon > 0$. Wir betrachten die Folge von Mengen

$$B_{j} = \begin{cases} A_{j} \times (-1,1)^{d} & \lambda_{k}(A_{j}) = 0 \\ A_{j} \times \left(-\frac{\epsilon}{2^{j}\lambda_{k}(A_{j})}, \frac{\epsilon}{2^{j}\lambda_{k}(A_{j})}\right) & \lambda_{k}(A_{j}) > 0 \end{cases}.$$

Damit ist $\lambda_n(B_j) \leq \frac{2\epsilon}{2^j}$ und außerdem $E_k \subseteq \bigcup_{j \in \mathbb{N}} B_j$. Daraus folgt:

$$\lambda_n(E_k) \le \sum_{j=1}^{\infty} \lambda_n(B_i)$$

$$\le \sum_{i=1}^{\infty} \frac{2\epsilon}{2^i}$$

$$= 2\epsilon$$

Da ϵ beliebig war, ist $\lambda_n(E_k) = 0$.

Wir nutzen jetzt Satz 3.5, um eine abzählbare Überdeckung von Mengen U_j zu finden, so dass $\bigcup_{j\in\mathbb{N}} U_j \supseteq M$ und ein C^{α} Diffeomorphismus F existiert, so dass für jedes j eine $V_j \subseteq \mathbb{R}^n$ existiert mit $M \cap U_j = F(E_k \cap V_j)$

Daraus folgt für alle $i \in \mathbb{N}$:

$$\lambda_n(M \cap U_i) = \int_{M \cap U_i} 1 \, d\lambda_n$$

$$= \int_{E_k \cap V_i} |\det F'| \, d\lambda_n$$

$$\leq \int_{E_l \cap V_i} \infty \, d\lambda_n$$

$$= \infty \int_{E_k \cap V_i} d\lambda_k$$

$$= \infty \lambda_n(E \cap V_i)$$

$$\leq \infty \lambda_n(E_k)$$

$$= \infty \cdot 0$$

$$= 0$$

Dann ist

$$\lambda_n(M) \le \sum_{i=1}^{\infty} \lambda_n(U_i)$$

$$= \sum_{i=1}^{\infty} 0$$

$$= 0$$

Problem 3. Seien 0 < r < R und

$$T := \left\{ (x, y, z) \in \mathbb{R}^3 | (R - \sqrt{x^2 + y^2})^2 + z^2 - r^2 = 0 \right\}$$

die 2-dimensionale Untermannigfaltigkeit aus Präzenzaufgabe 10.1. Definiere außerdem die Funktion

$$\varphi: U := (0, 2\pi) \times (0, 2\pi) \to \mathbb{R}^3, \varphi(\alpha, \beta) := \begin{pmatrix} \cos \alpha \cdot (R + r \cos \beta) \\ \sin \alpha \cdot (R + r \cos \beta) \\ r \sin \beta \end{pmatrix}.$$

- (a) Zeigen Sie, dass eine Menge $A \subseteq T$, eine offene Menge $V \subseteq \mathbb{R}^2$, ein Homömorphismus $\psi: V \to \psi(V) \subseteq T$ und eine λ_2 -Nullmenge $N \subseteq V$ existiert, sodass $\varphi: U \to T \setminus A$ ein Homömorphismus ist und $\psi(N) = A$ gilt.
- (b) Zeigen Sie, dass $\lambda_T(T) = 4\pi^2 Rr$ gilt.

Proof. (a) Sei $x, y, z \in T$. Es gilt

$$(R - \sqrt{x^2 + y^2})^2 + z^2 - r^2 = 0$$
$$\frac{(R - \sqrt{x^2 + y^2})^2}{r^2} + \frac{z^2}{r^2} = 0$$

Da das Punkt

$$\left(\frac{(R-\sqrt{x^2+y^2})}{r}, \frac{z}{r}\right)$$

auf dem Einheitskreis liegt, gibt es bekanntermaßen genau eine Winkel $\beta \in (0, 2\pi)$, so dass

$$z = r \sin \beta$$
$$R - \sqrt{x^2 + y^2} = r \cos \beta.$$

Da $0 \neq \beta \neq 2\pi$, ist der Fall (1,0) ausgeschlossen, also der Fall

$$R - \sqrt{x^2 + y^2} = r$$
$$z = 0$$

ist ausgeschlossen. Sei jetzt β fest. Es gilt

$$x^2 + y^2 = (R - r\cos\beta)^2.$$

Daher liegt das Punkt

$$\left(\frac{x}{R - r\cos\beta}, \frac{y}{R - r\cos\beta}\right)$$

auch auf dem Einheitskreis, und noch einmal gibt es genau eine $\alpha \in (0, 2\pi)$

$$x = \cos\alpha \cdot (R + r\cos\beta)$$

$$y = \sin \alpha \cdot (R + r \cos \beta)$$

Noch einmal ist der Fall $\alpha = 0$, also ist

$$x = R + r \cos \beta$$

$$y = 0$$

ausgeschlossen. Wir definieren dann

$$A = \left\{ \begin{pmatrix} R + r \cos \beta \\ 0 \\ r \sin \beta \end{pmatrix}, \beta \in (0, 2\pi) \right\}$$

$$\cup \left\{ \begin{pmatrix} \cos \alpha \cdot (R+r) \\ \sin \alpha \cdot (R+r) \\ 0 \end{pmatrix}, \alpha \in (0, 2\pi) \right\}$$

Jetzt definieren wir den gewünschten Homö
omorphmus ψ ähnlich wie φ

(b) Nach 2 gilt

$$\lambda_T(T) = \int_T 1 \, d\lambda_T$$

$$= \int_{T \setminus A} 1 \, d\lambda_T$$

$$= \int_U \sqrt{\det \varphi'^T \varphi'} \, d\lambda_M.$$

Es gilt

$$\varphi' = \begin{pmatrix} -\sin\alpha \cdot (R + r\cos\beta) & -r\cos\alpha\sin\beta \\ \cos\alpha \cdot (R + r\cos\beta) & -r\sin\alpha\sin\beta \\ 0 & r\cos\beta \end{pmatrix}.$$

Daraus folgt: $\det(\varphi'^T\varphi') = r^2(R + r\cos\beta)^2$ und daher

$$\lambda_T(T) = \int_U r(R + r \cos \beta) \, d\lambda_2$$

$$= \int_0^{2\pi} \int_0^{2\pi} r(R + r \cos \beta) \, d\alpha \, d\beta$$

$$= \int_0^{2\pi} 2\pi r(R + r \cos \beta) \, d\beta$$

$$= 2\pi r \left[R\beta + r \sin \beta\right]_0^{2\pi}$$

$$= 2\pi r (2\pi R)$$

$$= 4\pi^2 r R$$

wobei wir den Satz von Fubini benutzt haben, um das Integral als Doppelintegral zu schreiben, weil \mathbb{R}^2 σ -endlich ist.