

What questions about Large Language Models would you like covered today?

Please put this in the Q&A

Sentence embeddings with Cohere (demo)

https://docs.google.com/spreadsheets/d/1B2pHHq
CD4tQbua_UIRWK2ec2QX6Q4UjUvos7dAg9mQ0/edi
t?usp=sharing

The more similar two words or sentences are, the larger their Dot Product

O.

Can we have a similarity score between 0 and 1?

What are some applications for multilingual embeddings?

0

O.

- · Sentiment Analysis: Analyze customer sentiment in any language.
- Content Moderation: Tackle spam and hate-speech in international communities like online gaming.
- Intent Recognition: Classify the user's intent based on a set of predefined intents (e.g., booking a flight, ordering food, etc.).

Challenges and Shortcomings of GPT-3

Recommendation from Chinchilla paper:

For a 10 fold increase in computational budget, the model size and the number of training tokens should be scaled in equal proportions.

For a given FLOP budget, what is the optimal parameter count?

Ο.

•		_			Ο.
Date	Model name	What we learned	Num. of parameters	Training tokens	Company
Date May-20		What we learned Few-shot learning with large model			Company
	GPT-3		parameters	tokens	
May-20 Dec-21	GPT-3	Few-shot learning with large model	parameters 175B	tokens 300B	OpenAl
May-20 Dec-21 Jan-22	GPT-3 GLaM	Few-shot learning with large model Reduce training/inference costs using a sparse mixture of experts model.	parameters 175B 1.2T	300B 280B+	OpenAl Google Microsoft

-		<u> </u>			-O.	
Date	Model name	What we learned	Num. of parameters	Training tokens	Compa	
May-20	GPT-3	Few-shot learning with large model	175B	300B	OpenAl	
Dec-21	GLaM	Reduce training/inference costs using a sparse mixture of experts model.	1.2T	280B+	Google	
Jan-22	MT NLG	Larger model with parallelism across compute and memory	530B	270B	Microso Nvidia	
Jan-22	Gopher	Model performance across a range of model sizes and tasks. In general larger models perform better except for logical and mathematical reasoning tasks	280B	300B	DeepM	
Apr-22	Chinchilla	Current Large Language models are significantly under-trained.	70B	1.4T	DeepM	
Apr-22	PaLM	Model trained on Pathways hardware infrastructure. Best overall performance on benchmarks to date.	540B	780B	Google	
May 22 Jul 22	OPT	Meta made the 175B model available to research organisations and smaller models openly available.	175B	180B	Meta	
	BLOOM	Trained on 59 different languages (46 natural languages, 13 programming). First 1008+ model for many languages. Dataset, checkpoints and model freely available.	176B	350B	Huggin	

Falcon - Falcon LLM is a foundational large language model (LLM) with 40 billion parameters trained on one trillion tokens. - Developed by the Technology Innovation Institute in Abu

What can it be used for?

O,

- Generate creative text and solve complex problems.
- Used in chatbots, customer service operations, virtual assistants, language translation, content generation, and sentiment analysis.
- Apache 2.0 license

Dhabi.

https://huggingface.co/blog/falcon

Running LLMs in production: Operational considerations

Language Model Scaling Laws Bigger models are more data efficient. Fewer samples to reach the same performance Optimal loss target grows smoothly with size Test Loss 10 Test Loss 10 Towns Processed Kaplan, Jared, et al. "Scaling laws for neural language models." arXiv preprint arXiv:2001.00061 (2000).

O'
Software Framework
Optimizations

Algorithmic Optimizations

