卒業論文

Reservoir Computer によるカオス時系 列予測と生体リズム研究への応用

03-210622 久野証

指導教員 郡宏教授

2024年2月

東京大学工学部計数工学科数理情報工学コース

Copyright © 2024, Sho Kuno.

目次

第1章	はじめに	1
1.1	本研究の位置付け	1
1.2	本研究の内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.3	本論文の構成	1
1.4	記法の準備	1
第2章	準備	2
2.1	多様体	2
2.2	リーマン幾何学	5
2.3	時間反転対称性	5
第3章	提案手法	6
第4章	数值実験	8
第5章	まとめと今後の課題	9
謝辞		10
参考文献		11
付録 A		12

第1章

はじめに

1.1 本研究の位置付け

機械学習,制御理論,最適化理論をはじめとしたさまざまな分野での問題において,舞台となるのはユークリッド空間である.さらに,応用においてはユークリッド空間に制約条件が備わっていることが多い.この制約をユークリッド空間の部分集合として見るのではなく,制約そのものを全体の空間として見ることも可能である (例挟んだ方がいいかも).リーマン多様体はそのような空間の表現に適しており,近年そこではさまざまな工学が展開されている.(ここからざっくり)特に機械学習とか制御で2点間の距離や,それを結ぶまっすぐな線を計算する場面がある.しかし,リーマン多様体はユークリッド空間と大きく異なり困難が伴う.うまく計算できる例もあるけど,一般的な枠組みでのアルゴリズムはあまり提案されていない.

1.2 本研究の内容

時間対称性に着目して新たなアルゴリズムを提案. いくつかのリーマン多様体上で先行研究でのアルゴリズムと比較.

1.3 本論文の構成

第2章では、以降の章を読み解くのに必要な、リーマン幾何学まわりの定義や性質と、時間反転対称性という概念を述べる。第3章では、リーマン多様体上の2点間の測地線を計算する手法を提案する。第4章では、提案手法を用いた数値実験を行い、先行研究でのアルゴリズムと比較する。第5章では、まとめと今後の課題を述べる。

1.4 記法の準備

第2章

準備

本章では、本研究の舞台となる多様体を定義し、それにまつわる重要な概念について述べる. さらに、本研究のテーマであるリーマン幾何学を概観する.後に有用になる諸概念などもこの章で述べる.

2.1 多様体

まずは多様体を定義する.

定義 2.1. (定義 6.1 松本). M を位相空間とする. M の開集合 U と写像 $\varphi:U\to\mathbb{R}^m$ が存在して、

$$\varphi: U \to \varphi(U)$$

が同相写像であるとき, (U,φ) を m 次元座標近傍といい, φ を U 上の局所座標系という.任意 の $p\in U$ に対し, $\varphi(p)$ は \mathbb{R}^m の座標を用いて,

$$\varphi(p) = (x_1, x_2, \dots, x_m)$$

とかけるが, $(x_1, x_2, ..., x_m)$ を, (U, φ) に関する p の局所座標という.

定義 2.2. (定義 6.4 松本). $r \ge 1$ を自然数または ∞ とする. 位相空間 M が以下の条件をみたすとき, M を m 次元 C^r 級多様体という.

- 1. M はハウスドルフ空間である.
- 2. M の m 次元座標近傍からなる族 $(U_{\alpha}, \varphi_{\alpha})_{\alpha \in A}$ が存在して,

$$M = \bigcup_{\alpha \in A} U_{\alpha}$$

が成立する.

3. $U_{\alpha} \cap U_{\beta} \neq \emptyset$ であるような任意の $\alpha, \beta \in A$ について, 座標変換

$$\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$$

は C^r 級である.

以後, 断らない限り, M は m 次元 C^{∞} 級多様体を指すものとする.

定義 2.3. (定義 8.1 松本) $p \in M$ における方向微分もしくは接ベクトル v とは, p の開近傍で定義された C^∞ 級関数 f に実数 v(f) を対応させる操作であって, 以下の条件をみたすものである.

- 1. $f \ge g$ が p の十分小さな開近傍上で一致すれば, v(f) = v(g).
- 2. 任意の C^{∞} 級関数 f, g と $a, b \in \mathbb{R}$ に対して,

$$v(af + bq) = av(f) + bv(q)$$

が成立する.

3. 任意の C^{∞} 級関数 f, g に対して,

$$v(fg) = v(f)g(p) + f(p)v(g)$$

が成立する.

p における方向微分全体の集合を接空間といい, T_pM とかく.

定理 2.4. (命題 8.1-8.3 と注意 松本) $p \in M$ に対して, T_pM は m 次元実ベクトル空間をなし, 座標近傍と局所座標系によらない. p のまわりの局所座標系 (x_1, x_2, \ldots, x_m) を選び, p のまわりで定義された C^{∞} 級関数 f に対して.

$$\left(\frac{\partial}{\partial x_i}\right)_p: f \mapsto \frac{\partial f}{\partial x_i}(p) \qquad (i = 1, 2, \dots, m)$$

という操作を定義する. このとき,

$$\left(\frac{\partial}{\partial x_1}\right)_p, \left(\frac{\partial}{\partial x_2}\right)_p, \dots, \left(\frac{\partial}{\partial x_m}\right)_p$$

は T_pM の基底をなす.

定義 2.5. (定義 8.3 松本) $c:(-\epsilon,\epsilon)\to M$ を C^∞ 級曲線として, c(0)=p であるとする. 曲線 c の t=0 における速度ベクトルとは

$$\left. \frac{dc}{dt} \right|_{t=0} (f) = \left. \frac{df(c(t))}{dt} \right|_{t=0}$$

で定義される接ベクトル $\frac{dc}{dt}\big|_{t=0}\in T_pM$ のことである. ただし, f は p のまわりで定義された任意の C^∞ 級関数である.

定理 2.6. (定義 8.3 の下 松本) T_pM の基底 $\left\{\left(\frac{\partial}{\partial x_1}\right)_p, \left(\frac{\partial}{\partial x_2}\right)_p, \dots, \left(\frac{\partial}{\partial x_m}\right)_p\right\}$ を用いて表すと,

$$\left. \frac{dc}{dt} \right|_{t=0} = \frac{dx_i}{dt}(0) \left(\frac{\partial}{\partial x_i} \right)_p$$

ただし, $c(t) = (x_1(t), x_2(t), \dots, x_m(t))$ は c の局所座標表示である.

4 第2章 準備

定理 2.7. (命題 9.2 松本) 任意の接ベクトル $v \in T_pM$ に対して, p を通る C^∞ 級曲線

$$c: (-\epsilon, \epsilon) \to M$$
 $(c(0) = p)$

が存在して、 $\frac{dc}{dt}\Big|_{t=0} = v$ が成立する.

定義 2.8. (定義 9.2 松本) M,N をそれぞれ m 次元, n 次元の C^∞ 級多様体, $f:M\to N$ を C^∞ 級とする. 任意の接ベクトル $v\in T_pM$ をとる. 定理 (2.7) により, $\frac{dc}{dt}\big|_{t=0}=v$ となる, p を通る C^∞ 級曲線

$$c: (-\epsilon, \epsilon) \to M$$
 $(c(0) = p)$

が存在する. この曲線を写像 f でうつすと, q = f(p) を通る C^{∞} 曲線

$$f \circ c : (-\epsilon, \epsilon) \to N$$
 $(f \circ c(0) = q)$

になる. t=0 における $f\circ c$ の速度ベクトル $\frac{d(f\circ c)}{dt}\Big|_{t=0}$ を $w\in T_qN$ とかく. このとき, w は v のみによって決まり, 曲線 c のとり方によらない. v に w を対応させれば, 写像 $T_pM\to T_qN$ が得られる. こうして得られた写像を

$$(df)_p:T_pM\to T_qN$$

とかき, p における $f: M \to N$ の微分とよぶ.

定義 2.9. (定義 7.5 松本) M,N を C^r 級多様体とする. $f:M\to N$ が以下の条件をみたすとき, f を C^s 級微分同相写像という.

- 1. $f: M \to N$ は全単射である.
- 2. $f: M \to N$ と $f^{-1}: N \to M$ は, ともに C^s 級写像である.

定義 2.10. (定義 16.1 松本) M の各 $p \in M$ に, p における接ベクトル $X_p \in T_p M$ がひとつずつ対応しているとき, その対応 $X = \{X_p\}_{p \in M}$ を M 上のベクトル場という.

定義 2.11. (松本 16.1 の下) $(U; x_1, \ldots, x_m)$ を M の座標近傍, $X = \{X_p\}_{p \in M}$ を M 上のベクトル場とする. U 上に限れば, X は

$$X = \xi_1 \frac{\partial}{\partial x_1} + \xi_2 \frac{\partial}{\partial x_2} + \dots + \xi_m \frac{\partial}{\partial x_m}$$

と, U 上の関数 $\xi_i: U \to \mathbb{R}$ によって局所座標表示される. ただし,

$$\frac{\partial}{\partial x_i} = \left\{ \left(\frac{\partial}{\partial x_i} \right)_p \right\}_{p \in U} \qquad (i = 1, 2, \dots, m)$$

である.

2.2 リーマン幾何学

定理 2.12. (2.9 do carmo). (M,g) をリーマン多様体とする. $q \in M$ に対し、ある $\epsilon_q > 0$ が存在し、 $\exp_q: B(0;\epsilon_q) \subset T_qM \to M$ が $B(0;\epsilon_q)$ から M の部分開集合への微分同相写像となる.

以下の系がただちに従う.

系 2.13. $V_q := \exp_a(B(0; \epsilon_q))$ とすると、次が成立する.

$$\exists! \ v \in B(0; \epsilon_q) \quad \text{s.t.} \quad \gamma(q, v, 1) = q', \quad \forall q' \in V_q$$
 (2.1)

2.3 時間反転対称性

定義 2.14. (時間反転対称性, official な定義なし) 変数 $t \in \mathbb{R}$ に関する常微分方程式があるとする. 任意の解 r(t) に対して, r(-t) も解であるとき, この常微分方程式は時間反転対称であるという. また, r(-t) を r(t) の時間反転解という.

事実 2.15. 測地線方程式は時間反転対称である.

証明. 測地線方程式は以下の通りである.

fff

定理 2.16. 初期値に対する解の微分可能性

第3章

提案手法

問題設定を確認する. (M,g) を測地的完備なリーマン多様体, (U,φ) を M のある座標近傍, (x_1,\ldots,x_m) をその局所座標とする. 定理 2.12 およびその系 2.13 より, $y_0\in U$ に対して, ある ϵ_{y_0} が存在して, $y_1\in V_{y_0}=\exp_{y_0}(B(0;\epsilon_{y_0}))$ に対して, $\gamma(y_0,v_0,1)=y_1$ なる $v_0\in B(0;\epsilon_{y_0})$ が一意に存在する. 今, この v_0 を計算する問題を考える. [1] 本研究では, この問題を最小化問題に還元する. まず, 目的関数 $f:\mathbb{R}^m\times\mathbb{R}^m\cong T_{y_0}M\times T_{y_1}M\to\mathbb{R}_{\geq 0}$ を以下のように定義する.

$$f(v_0, v_1) := \int_0^1 |\gamma(y_0, v_0, t) - \gamma(y_1, v_1, 1 - t)|_2 dt$$
(3.1)

次の事実を確認する.

事実 3.1. f の定義域を $B(0; \epsilon_{y_0}) \times \mathbb{R}^m$ に制限する. このとき, ただ一つの最適解 v_0^*, v_1^* が存在して, $\gamma(y_0, v_0^*, 1) = y_1$ をみたす.

証明. 定義より, $f(v_0^*, v_1^*) = 0$ は,

$$\gamma(y_0, v_0^*, t) = \gamma(y_1, v_1^*, 1 - t), \quad 0 \le \forall t \le 1$$
(3.2)

と同値である.このとき, $\gamma(y_0,v_0^*,1)=\gamma(y_1,v_1^*,0)=y_1$ であり, γ の定義より, $\gamma(y_0,v_0^*,t)$ は y_0 と y_1 を結ぶ測地線である.章冒頭の議論から,そのような v_0^* は一意に存在する.また,式 3.2 は, $\gamma(y_1,v_1^*,t)$ が $\gamma(y_0,v_0^*,t)$ の時間反転解であることを意味する.つまり, $v_1^*=-\dot{\gamma}(y_0,v_0^*,1)$ として一意に決定される.

この事実によって、 y_0 と y_1 を結ぶ測地線を計算することは、以下の最小化問題と等価である.

minimize
$$f(v_0, v_1)$$
 s.t. $||v_0||_q \leq \epsilon_{y_0}$

これを最急降下法を用いて解く. 最急降下法では,目的関数の勾配を用いる. ここで次の事実を確認する.

事実 3.2. 任意の $(v_0, v_1) \in \mathbb{R}^2 \times \mathbb{R}^2$ に対して, f の勾配 $\nabla f(v_0, v_1)$ が存在する.

証明. リーマン計量の滑らかさと定理 (2.16) より測地線は初期値で偏微分可能. 積分と交換して、ノルムも連続だから okay

よって勾配が存在するので、次のような一般的な最急降下法が適用できる. また、下記のバック

Algorithm 1 最急降下法

Input: 初期点 $(v_0^{(0)}, v_1^{(0)}) \in B(0; \epsilon_{y_0}) \times \mathbb{R}^m$, 探索幅 $\alpha > 0$, 最大反復回数 $N \in \mathbb{N}$, 許容誤差 $\eta > 0$

Output: $\Re (v_0^*, v_1^*)$

- 1: **for** i = 0, 1, ..., N-1 **do**
- if $f(v_0^{(i)}, v_1^{(i)}) < \eta$ then
- $(v_0^*, v_1^*) = (v_0^{(i)}, v_1^{(i)})$ を出力
- end if 4:
- 5: 勾配 $\nabla f(v_0^{(i)}, v_1^{(i)})$ を計算
- 6: $d_i \leftarrow -\nabla f(v_0^{(i)}, v_1^{(i)})$ 7: $(v_0^{(i+1)}, v_1^{(i+1)}) \leftarrow (v_0^{(i)}, v_1^{(i)}) + \alpha d_i$
- 8: end for

トラッキングによって探索幅を適応的に変化させるものもある.

第4章

数值実験

第5章

まとめと今後の課題

謝辞

参考文献

[1] Francisco A. Rodrigues, Thomas K. DM. Peron, Peng Ji, and Jurgen Kurths. The kuramoto model in complex networks. *Physics Reports*, Vol. 610, pp. 1–98, 2016.

付録 A