Modelos de Computação Folha de trabalho n. 4

Conversão entre Autómatos Finitos e Expressões Regulares

4.1 Considera os seguintes autómatos finitos determinísticos:

Determina as expressões regulares das linguagens reconhecidas por cada autómato, pelo método de eliminação de estados e pelo método equacional.

- 4.2 Determina expressões regulares para cada uma das linguagens do exercício 2.5 da Folha 2.
- **4.3** Seja A a linguagem das palavras de alfabeto $\{0,1\}$ em que não ocorrem sequências pares de 0's imediatamente à esquerda de sequências ímpares de 1's.
 - (a) Descreve um autómato finito determinístico que reconheça esta linguagem.
 - (b) Encontra uma expressão regular para a linguagem dada.
- \star 4.4 Seja Ba linguagem das palavras de alfabeto $\{0,1\}$ que representam em binário números múltiplos de 5.
 - (a) Descreve um autómato finito determinístico que reconheça esta linguagem.
 - (b) Encontra uma expressão regular para a linguagem dada.
 - **4.5** Considera dois autómatos finitos \mathcal{A} e \mathcal{B} :

Partindo de A e B, constrói autómatos não determinísticos que reconheçam:

- (a) $L(\mathcal{A}) \cup L(\mathcal{B})$
- (b) $L(A) \cdot L(B)$
- (c) $L(\mathcal{B})^*$
- **4.6** Seja $A = \{x \in \{a,b\}^* \mid \text{em que o número de ocorrências de } ab \text{ é igual ao número de ocorrências de } ba\}$
 - (a) Descreve o autómato finito determinístico que reconhece esta linguagem.
 - (b) Encontra uma expressão regular para a linguagem dada.
- **4.7** Seja $B = \{x0y \mid x, y \in \{a, b\}^* \mid \text{a diferença entre o número de } a\text{'s em } x \text{ e o número de } b\text{'s em } y \text{ é par } \}$
 - (a) Descreve o autómato finito determinístico que reconhece esta linguagem.
 - (b) Encontra uma expressão regular para a linguagem dada.
- **4.8** Seja C a linguagem das palavras de alfabeto $\{0,1\}$ que representam em binário números múltiplos de 4 mas não múltiplos de 3.
 - (a) Descreve o autómato finito determinístico que reconhece esta linguagem.
 - (b) Encontra uma expressão regular para a linguagem dada.
- **4.9** Seja D a linguagem das palavras de alfabeto $\{0,1\}$ que representam em binário números múltiplos de 3 mas não múltiplos de 2.

- (a) Descreve o autómato finito determinístico que reconhece esta linguagem.
- (b) Encontra uma expressão regular para a linguagem dada.
- **4.10** Para cada uma das expressões regulares seguintes, constrói o autómato finito determinístico correspondente:
 - (a) $(000^* + 111^*)^*$
 - (b) $(ab^*a + a^*a)^*$
 - \star (b) $(11+0)^{\star}(00+1)^{\star}$
 - (c) (0 + 1(01*0)*1)*
 - (d) (11+0)*(00+1)*
 - (e) $(ab + a)^*$
 - (f) $(a+b)^*aba$
 - (g) $(aaa + aaaaa)^*$
 - (h) $(aa)^*bbb(bbb)^*$
- 4.11 Descreve cada uma das linguagens seguintes por uma expressão regular.
 - (a) $L_1 = \{ x \in \{a, b, c, d\}^* \mid x \text{ não têm } b$'s à direita de c's nem a's à esquerda de d's $\}$
 - (b) $L_2 = \{ xaay \mid x, y \in \{0, 1\}^* \text{ e a diferença entre o número de 0's em } x \text{ e em } y \text{ é impar } \}$
 - (c) L_3 o conjunto das palavras de alfabeto $\{0,1,2,3,4,5,6,7,8,9\}$ que são representação em decimal de inteiros não negativos múltiplos 5 ou de 10.
 - (d) $L_4 = \{ x \in \{0,1\}^* \mid x \text{ têm } 110 \text{ como subpalavra mas não } 101 \}$

Resolução de exercícios escolhidos

4.4 (a) Como se viu em na folha 2, um autómato finito determinístico que reconhece esta linguagem é:

Começamos por escrever um sistema de equações correspondente ao autómato usando as variáveis x_{α} , x_0 , x_1 , x_2 , x_3 , x_4 para representar as expressões regulares das palavras que chegam respectivamente a s_{α} , s_0 , s_1 , s_2 , s_3 e s_4 .

$$x_{\alpha} = \varepsilon$$

$$x_{0} = x_{\alpha}0 + x_{0}0 + x_{2}1$$

$$x_{1} = x_{\alpha}1 + x_{0}1 + x_{3}0$$

$$x_{2} = x_{1}0 + x_{3}1$$

$$x_{3} = x_{1}1 + x_{4}0$$

$$x_{4} = x_{2}0 + x_{4}1$$

Como único estado final é o s_0 o objectivo é obter uma expressão regular para x_0 . A primeiro passo é ver que podemos eliminar a variável x_{α} (que já tem como valor a expressão regular,

 ε) e aplicar a regra de que $\varepsilon r = r\varepsilon = r$ para qualquer expressão r.

$$\begin{array}{rcl} x_{\alpha} & = & \varepsilon \\ x_{0} & = & 0 + x_{0}0 + x_{2}1 \\ x_{1} & = & 1 + x_{0}1 + x_{3}0 \\ x_{2} & = & x_{1}0 + x_{3}1 \\ x_{3} & = & x_{1}1 + x_{4}0 \\ x_{4} & = & x_{2}0 + x_{4}1 \end{array}$$

A ordem porque eliminamos as restantes variáveis é arbitrário mas podemos usar a ordem usada no método de eliminação de estados. Começamos por aplicar o Lema de Arden a x_4 e substituir o valor resultante à equação de x_3

$$x_3 = x_1 1 + x_2 01^* 0$$

 $x_4 = x_2 01^*$

Como x_3 não depende de x_3 podemos eliminá-lo directamente nas restantes equações

$$x_0 = 0 + x_0 0 + x_2 1$$

$$x_1 = 1 + x_0 1 + (x_1 1 + x_2 01^* 0) 0$$

$$x_2 = x_1 0 + (x_1 1 + x_2 01^* 0) 1.$$

Podemos agora arranjar os termos da equação para x_2 para aplicarmos o Lema de Arden a essa equação.

$$x_2 = x_1(0+11) + x_201^*01,$$

Logo

$$x_2 = x_1(0+11)(01^*01)^*,$$

e substituindo x_2 nas restantes vem:

$$x_0 = 0 + x_0 0 + x_1 (0 + 11)(01^*01)^*1$$

$$x_1 = 1 + x_0 1 + x_1 10 + x_1 (0 + 11)(01^*01)^*01^*00.$$

Arranjando os termos para eliminar x_1 temos

$$x_0 = 0 + x_1(0+11)(01^*01)^*1 + x_00$$

$$x_1 = (1+x_01) + x_1(10+(0+11)(01^*01)^*)01^*00$$

e podemos substuir a expressão resultante na equação para x_0 :

$$x_0 = 0 + (1 + x_0 1)\alpha_1(0 + 11)(01^*01)^*1 + x_0 0$$

$$x_1 = (1 + x_0 1)(10 + (0 + 11)(01^*01)^*)^*$$

$$= (1 + x_0 1)\alpha_1$$

onde $\alpha_1 = (10 + (0 + 11)(01*01)^*)^*$. que resulta apenas uma equação para x_0 (só com essa variável)

$$x_0 = (0 + 1\alpha_1(0 + 11)(01^*01)^*1) + x_0(0 + 1\alpha_1(0 + 11)(01^*01)^*1)$$

ou seja, pelo Lema de Arden mais uma vez

$$x_0 = (0 + 1\alpha_1(0 + 11)(01^*01)^*1)(0 + 1\alpha_1(0 + 11)(01^*01)^*1)^*$$

Donde uma expressão regular equivalente ao autómato será:

$$(0+1(10+(0+11)(01*01)*)*(0+11)(01*01)*1)(0+1(10+(0+11)(01*01)*)*(0+11)(01*01)*1)*.$$

4.10 (b) Seja $r = (11 + 0)^*(00 + 1)^*$. Vamos construir um DFA equivalente pelo método das derivadas. Começamos por calcular todas as derivadas (dissimilares) $D_w r$, $\forall w \in \{0, 1\}$.

$$D_{\varepsilon}r = r = (11+0)^*(00+1)^*$$

$$D_{1}r = 1(11+0)^*(00+1)^* + (00+1)^* = r_{1}$$

$$D_{0}r = (11+0)^*(00+1)^* + 0(00+1)^* = r_{2}$$

$$D_{1}r_{1} = (11+0)^*(00+1)^* + (00+1)^* = r_{3}$$

$$D_{0}r_{1} = 0(00+1)^* = r_{4}$$

$$D_{1}r_{2} = D_{1}r = r_{1}$$

$$D_{0}r_{2} = (11+0)^*(00+1)^* + 0(00+1)^* + (00+1)^* = r_{5}$$

$$D_{1}r_{3} = D_{1}r_{1} + (00+1)^* = 1(11+0)^*(00+1)^* + (00+1)^* = r_{1}(\text{ simplificando})$$

$$D_{0}r_{3} = D_{0}r + 0(00+1)^* = r_{2}(\text{ simplificando})$$

$$D_{1}r_{4} = \emptyset = r_{7}$$

$$D_{0}r_{4} = (00+1)^* = r_{6}$$

$$D_{1}r_{5} = r_{1}$$

$$D_{0}r_{5} = r_{5}$$

$$D_{1}r_{6} = (00+1)^* = r_{6}$$

$$D_{0}r_{6} = 0(00+1)^* = r_{4}$$

$$D_{1}r_{7} = r_{7}$$

$$D_{0}r_{7} = r_{7}$$

Podemos agora construir um DFA onde o conjunto de estados é $S = \{r = r_0, r_1, r_2, r_3, r_4, r_5, r_6, r_7\}$, o estado inicial é r_0 e os estados finais são $F = S \setminus \{r_4, r_7\}$ e $\delta(r_i, \sigma) = D_{\sigma}r_i$, com $\sigma \in \{0, 1\}$ e $i \in \{0, \dots, 7\}$.