Вибіркові характеристики

- 1. Знайти вибіркові середню та дисперсію напряму та методом умовних варіант. Порівняти результати.
- 2. Знайти вибіркові моду та медіану.

Варіант 7										
91	95	85	85	96	87	98	92	90	89	
98	97	117	88	91	119	85	77	94	89	
79	108	94	112	96	93	98	112	97	88	
107	95	99	101	104	81	102	117	105	104	
103	107	100	85	105	112	93	92	106	108	
84	113	118	98	120	94	92	85	101	108	
119	96	94	92	102	109	113	99	98	115	
105	86	87	92	96	89	97	115	100	99	
119	97	89	99	90	79	91	103	109	108	
88	91	98	99	77	72	99	84	82	96	

Рішення

- 1.1) Знайдемо середнє і дисперсію напряму.
- а) Для середнього знайдемо суму усіх чисел і поділимо на їх кількість.

Використаємо для цього програмне забезпечення (скрипт на мові пайтон)

```
def average(xs: Sequence[N]) -> float:
  length = len(xs)
  if not length:
     return 0
  else:
     return sum(xs) / length
Отримане значення: 97.52
```

б) Для дисперсії скористаємось формулою та вирахуємо її написаною функцією

$$D^*x = \frac{1}{n} \sum_{j=1}^{n} (x_j - \overline{x})^2$$

def dispersion(xs: List[N]) -> float: length = len(xs)avg = average(xs)res = sum([(x - avg)**2 for x in xs]) / length

Отримане значення: 114.54

- 1.2) Знайдемо середнє і дисперсію методом умновних варіант
- а) Згрупуємо вибірку таким чином

$$u_i = \frac{1}{h}(z_i - C), i = 1, 2, ..., k,$$

де h – довжина інтервалу групування, C – середина інтервалу з найбільшою частотою. Тоді вибіркові середнє \bar{x} та D^*x пов'язані з середнім \bar{u} та дисперсією D^*u наступним чином:

Ĭ

$$\overline{x} = h \cdot \overline{u} + C$$
, $D^*x = h^2 \cdot D^*u$.

б) h знайдемо за формулою Стерджеса

```
def distance sturges(xs: Sequence[N]) -> int:
  """ Return h of selection """
  n = len(xs)
  m = 1 + 1.322 * math.log(n, 10)
  h = (max(xs) - min(xs)) / m
  return int(h)
```

```
в) вибірку з и знайдемо за формулами вище
def u(interval: List[N], C: float) -> float:
  diff = max(interval) - min(interval)
  if int(diff) == 0:
     h = 1
  else:
     h = int(diff)
  res = (average(interval) - C) / h
  return res
```

```
def list u(intervals: Sequence[List[N]]) -> List[float]:
  C = median longest(intervals)
  return [u(interval, C) for interval in intervals]
г) Знаючи це, можемо знаходити дисперсію і середнє значеня
def dispersion U(xs: List[N], h: Optional[int] = None) -> float:
  if h is None:
     h = distance sturges(xs)
  list_intervals = intervals(xs, h)
  list_of_u = list_u(list_intervals)
  average_u_sqr = average([u**2 for u in list_of_u])
  average u = average(list of u)
  return h**2 * average_u_sqr - average_u ** 2
def average U(xs: Sequence[N], h: Optional[int] = None) -> float:
  if h is None:
     h = distance sturges(xs)
  list intervals = intervals(xs, h)
  C = median longest(list intervals)
  average_u = average(list_u(list_intervals))
  return h * average u + C
Отримані таким чином значення:
x середн\varepsilon = 93.70833333333334
        (h за Стерджесом)
Dx^* = 107.16040274591104
        (h за Стерджесом)
Значення трохи відхиляються від прямих обрахунків, але не сильно. (Якщо зменшувати h — відстань в
інтервалах – то середнє значення наближується до прямих обрахунків)
2) Медіана і мода
а) Медіана це значення у вибірці, що ділить вибірку на дві рівни части. Якщо вибірка має непарну кількість
значень, то ми беремо значення по середині, якщо парну – то беремо середне від двух центральних
значень.
Це зображено у цьому коді.
def median(xs: List[N]) -> float:
  length = len(xs)
  if length == 1:
     return xs[0]
  elif length % 2 != 0:
     center = int((length + 1) / 2) - 1
     return float(xs[center])
  else:
     first idx = int(length / 2) - 1
```

second_idx = int(length / 2 + 1) - 1 return (xs[first idx] + xs[second idx]) / 2

б) Мода це значення, що зустрічається найчастіше.

Таке значення – 97.

Таке значення – 98.

def moda(xs: List[N]) -> N:

return max(xs, key=xs.count)