

第6章 单片机的中断与定时系统

- 6.1 MCS-51单片机中断系统
- 6.2 MCS-51单片机的定时器/计数器
- 6.3 外部中断源的扩展
- 6.4 定时/计数器与中断的应用举例:时钟计时

6.1 MCS-51单片机中断系统

一、中断技术概述

中断技术: 一个CPU面对多项任务,采用中断技术可解决资源共享问题,使CPU分时操作。

中断技术实现的功能: CPU与外设速度配合,实时控制,故障检测与处理,人机联系,多机系统等。

中断处理流

单

机

图 6.3 中断服务流程图

8051共5个中断源

外部中断0: /INTO (P3.2), 电平方式(低电平有 效)或脉冲方式(负跳变有效);入口0003H 单 外部中断1: /INT1 (P3.3), 电平方式 (低电平有 片效)或脉冲方式(负跳变有效);入口0013H 机 定时中断0: 技术溢出时发出中断; 入口000BH 基 定时中断1: 技术溢出时发出中断; 入口001BH 础 串行中断: 串行口接收或发送完一组数据时发出 中断。入口0023H

8051共5个中断源(图)

图 6.1 MCS-51 的中断汇集

MCS-51的中断控制

与中断控制有关的寄存器有4个:

定时控制寄存器(TCON); 中断允许控制寄存器(IE); 中断优先控制寄存器(IP); 串行口控制寄存器(SCON)。

单

机

基

础

定时控制寄存器 (TCON)

工作

0

停止

软件设置

,

位地址	8FH	8EH	8DH	8CH	8BH	8AH	89H	88H
位符号	TF ₁	TR ₁	TF_{0}	TR₀	IE ₁	IT ₁	IE ₀	IT _o

查询方式时软件清 0, 1 运行控制位 1 溢出标志位 工作 0 停止 中断方式时硬件清 0 软件设置

「 0 运行控制位 查询方式时软件清 0 0 溢 出 标志位 中 断方式时硬件清

外中 外 电 断 断 方 式 1请求标志 1 方式控 0 脉冲 制 位 位 方式

外 电平方式 中 断 0 方式控 0 请求标志 脉冲 制 方式 位 位

串行口控制寄存器 (SCON)

位地址	9FH	9EH	9DH	9CH	9BH	9AH	99H	98H
位符号	SM _o	SM ₁	SM ₂	REN	TB ₈	RB ₈	TI	RI
			多	允	发送	接	串	串

工作方式选择

多机通信控制位

允许接收位

数据位8

接收数据位8

串行口发送中断请求标志位串行口接收中断请求标志位

斤 机 基 计

单

机

中断允许控制寄存器 (IE)

位地址	0AFH	0AEH	0ADH	0ACH	0ABH	OAAH	0 A 9H	0 A 8H
位符号	EA	/	/	ES	ET ₁	EX ₁	ET ₀	EX ₀

中断允许总控制位 0

个中断允许位 个中断允许位 个中断允许位 外中断 0 允许位

中断优先级控制寄存器 (IP)

	位地址	0BFH	0BEH	0BDH	0BCH	0BBH	0BAH	0B9H	0B8H
. [位符号	/	/	/	PS	PT ₁	PX ₁	PT ₀	PX ₀

0: 优先级低

1: 优先级高

串行中断优先级设定

T1中断优先级设定外中断 1 优先级设定

TO中断优先级设定

单片机基

一础

单片机基

中断优先级控制原则

- 1、低级不能打断高级,但高级可以打断低级;
- 2、一个中断已被响应,则同级中断响应将被禁止;
- 3、多个同级中断同时出现,则按CPU查 询次序: INTO→TO→INT1→T1→S。

机

础

中断响应过程

外部中断 请求采样 中断查询

中断响应

(CPU在每个机器周期的S5P2对/INT0和/INT1进行采样,将识别后的外部中断请求信号锁定在TCON中)

(CPU在每个机器周期的S6按优先级顺序对中断请求进行查询,当标志位为1时,从下个机器周期的S1开始响应)

(由硬件生成一条LCALL指令,转向中断相应的入口地址)

共3~8个机器周期

中断请求的撤除

中断响应后,应将TCON、SCON中的请求标志位清除。

定时中断: 硬件自动撤除;

串行中断:不自动清零,中断响应后,要判断接收还是发送,然后进行软件撤除;

外部中断:

脉冲请求方式:自动撤除;电平请求方式:中断标志自动撤除+中断请求信号的强制撤除。

中断请求信号的强制撤除

图 6.2 电平方式外部中断请求的撤销电路

6.2 MCS-51单片机的定时器/计数器

一、定时方法:软件定时,硬件定时,可 编程定时(对系统时钟脉冲进行计数) 二、定时/计数器的定时功能和计数功能 计数: T0(P3.4)、T1(P3.5)可以对外来脉冲 进行计数,负跳变有效,计数器加1; 定时:每个机器周期(12个振荡周期)产 生一个计数脉冲, 计数器加1。 三、定时/计数器的控制寄存器: 有3个控 制寄存器有关

单

机

础

TCON (定时控制寄存器)

外

断

1请求标志

位

位地址	8FH	8EH	8DH	8CH	8BH	8AH	89 H	88H
位符号	TF ₁	TR ₁	TF_0	TR₀	IE ₁	IT,	IE ₀	IT _o

查询方式时软件清 0, 1运行控制位 1 溢出标志位 工作 0 停止 中断方式时硬件清 0 软件设置

「 0 运行控制位 查询方式时软件清 0 0 溢 工作 出标志位 0 停止 中断方式时硬件清 , 软件设置

电 方 式 1方式控制 0 脉冲 位 方式

电平方式 0 方式控 0 脉冲 制 . 方式 位

外

断

请求标志

位

单

机

础

TMOD (工作方式控制寄存器)

. 位 序	B ₇	$\mathrm{B}_{\scriptscriptstyle{6}}$	B ₅	B_4	B_3	B_2	B ₁	B_0
位符号	GATE	C/T	Mı	M _o	GATE	C/\overline{T}	M_1	M _o

定时/计数器1

定时/计数器 0

1:以外中断启动 门控位。0:以TR启动。 定时。1:计数 0

方式 対应于

机

IE(中断允许控制寄存器)

位地址	0AFH	0 AE H	0ADH	0ACH	0ABH	OAAH	0 A 9H	0 A 8H
位符号	EA	/	/	ES	ET ₁	EX ₁	ET ₀	EX ₀

中断允许总控制位总允许1,总禁止0

个许1,禁止0 个许1,禁止0 外中断 0 允许位允许 1,禁止 0

-

机

定时工作方式0(13位加法计数器)

图 6.4 定时器/计数器 0 的工作方式 0 逻辑结构

计数: 1~2¹³ (8192)

定时: (213一计数初值)×晶振周期×12

[例 6.1] 设单片机晶振频率为 6 MHz,使用定时器 1 以方式 0 产生周期为 500 μs 的等宽正方波连续脉冲,并由 $P_{1.0}$ 输出。以查询方式完成。

	程序设计	†		
		MOV	TMOD, #00H	;设置 T1 为工作方式 0
		MOV	TH ₁ , # 0FCH	;设置计数初值
		MOV	$TL_1, #03H$	
生		MOV	IE, #00H	;禁止中断
L 	LOOP:	SETB	TR_1	;启动定时
		JBC	TF ₁ , LOOP1	;查询计数溢出
ţ		AJMP	LOOP	
	LOOP1:	MOV	TH_1 , # 0FCH	;重新设置计数初值
		MOV	$TL_1, #03H$	
		CLR	TF ₁	;计数溢出标志位清"0"
		CPL	P _{1.0}	;輸出取反
	.,,,,	AJMP	LOOP	;重复循环

单

机机

基

付辻

定时工作方式1(16位加法计数器)

结构同方式0

计数: 1~2¹⁶ (65536)

定时: (216一计数初值) ×晶振周期×12

[例 6.2] 题目同[例 6.1],但以中断方式完成。即单片机晶振频率为 6 MHz,使用定时器 1 以工作方式 1 产生周期为 500 μ s 的等宽连续正方波脉冲,并在 $P_{1.0}$ 端输出。

1. 计算计数初值

$$TH_1 = 0FFH$$
 $TL_1 = 83H$

2. TMOD 寄存器初始化

$$TMOD=10H$$

3. 程序设计

単片

机 基

3. 程序设计

主程序:

	MOV	TMOD, # 10H	;定时器1工作方式1
	MOV	TH ₁ , # 0FFH	;设置计数初值
	MOV	$TL_1, #83H$	
	SETB	EA	;开中断
	SETB	ET ₁	;定时器1允许中断
LOC	P: SETB	TR_1	;定时开始
HEF	RE: SJMP	\$;等待中断
中断	服务程序:		
	MOV	TH_1 , $\# 0FFH$;重新设置计数初值
	MOV	TL_1 , #83H	
	CPL	$P_{1.0}$;输出取反
	RETI		;中断返回

定时工作方式2:8位自动加载的加法计数器

图 6.5 定时器/计数器 0 的工作方式 2 逻辑结构

可以作为串行通信的波特率发生器用。

[例 6.3] 使用定时器 0 以工作方式 2 产生 $100~\mu s$ 定时,在 $P_{1.0}$ 输出周期为 $200~\mu s$ 的连续正方波脉冲。已知晶振频率 fosc=6 MHz。

程序设计(查询方式)

	MOV	IE,#00H	;禁止中断
	MOV	TMOD, #02H	;设置定时器 0 为工作方式 2
	MOV	THo, # OCEH	;保存计数初值
	MOV	TLo, # OCEH	;设置计数初值
	SETB	TR_0	;启动定时
LOOP:	JBC	TF ₀ , LOOP1	;查询计数溢出
	AJMP	LOOP	
LOOP1:	CPL	P _{1.0}	;输出方波
,	AJMP	LOOP	;重复循环

程序设计(中断方式)

主程序:

单

机

基

础

MOV TMOD, # 02H

MOV TH_0 , # 0CEH

MOV TL_0 , #0CEH

SETB EA

SETB ET₀

LOOP: SETB TR₀

HERE: SJMP \$

中断服务中断:

CPL $P_{1,0}$

RETI

;设置定时器 0 为工作方式 2

;保存计数初值

;设置计数初值

;开中断

;定时器 0 允许中断

;开始定时

;等待中断

;输出方波

;中断返回

定时工作方式3

TO:拆成2个独立的8位计数器TLO(可以计数或定时)和THO(只能定时,借用T1的TR1和TF1)。

T1: 只能工作在方式0、1、2, 计数溢出送给串行口。这时没有TR₁和TF₁。

(a) T1方式1(或 0)

定时/计数器与中断的应用举例

设计一个以时分秒为单位的计时程序

基本方法

1. 计数初值计算:

 $(2^{16}-X)\times 2=125\times 10^3$, X=3036D=0CDCH

软件计数实现 定时方式1实现

设晶振为 **6MHz**

- 2. 采样中断方式,每次溢出中断计数1次,8次为1秒;
- 3. 秒→分,分→时由软件累加、数值比较实现;
- 4. 设置显示缓冲区:时分秒共设6个单元缓冲区:

图 6.10 LED 显示器的缓冲单元

片 机

基

主程序流程

图 6.11 时钟计时主程序流程

中 断 服务程序流程

图 6.12 中断服务程序流程

加1子程序流程

机

图 6.13 加 1 子程序流程

单

机

础

ORG 8000H START: AJMP MAIN

800BH

PITO

ORG

AJMP

MOV

A, 30H

程序清单

		•	
	ORG	8100H	
MAIN:	MOV	SP, #60H	;确立堆栈区
	MOV	R_0 , #79H	;显示缓冲区首地址
	MOV	R_7 , #06H	;显示位数
ML1:	MOV	@ R_0 , #00H	;显示缓冲单元清"0"
	INC	R_0	
	DJNZ	R_7 , $ML1$	
	MOV	TMOD, #01H	;设置定时器 () 为工作方式 1
	MOV	TL_0 , $\# 0DCH$;装计数器初值
	MOV	TH_0 , # 0CH	
	SETB	8CH	;TR₀置"1",定时开始
	SETB	AFH	;EA 置"1",中断总允许
	SETB	A9H	;ETo置"1",定时器 0 中断允许
	MOV	30H,#08H	;要求的计数溢出次数,即循环次数
ML0:	LCALL	SMXS	;调用显示子程序
	SJMP	ML0	
PITO:	PUSH	PSW	;中断服务程序,现场保护
	PUSH	ACC	
	SETB	PSW. 3	$RS_1RS_0 = 01$,选 1 组通用寄存器
	MOV	TL_0 , #0DCH	;计数器重新加载
	MOV	TH₀,#0CH	

;循环次数减1

单

机

@R₀, A

MOV

RET

;个位数缓冲单元清"0"

:返回

单

机