

Discriminative Model Features

Making features from text for discriminative NLP models

Christopher Manning

Features

- In these slides and most maxent work: features f are elementary pieces of evidence that link aspects of what we observe d with a category c that we want to predict
- A feature is a function with a bounded real value: $f: C \times D \to \mathbb{R}$

Features

- In these slides and most maxent work: features f are elementary pieces of evidence that link aspects of what we observe d with a category c that we want to predict
- A feature is a function with a bounded real value

Example features

- $f_1(c, d) = [c = \text{LOCATION } \land w_{-1} = \text{"in"} \land \text{isCapitalized}(w)]$
- $f_2(c, d) = [c = LOCATION \land hasAccentedLatinChar(w)]$
- $f_3(c, d) = [c = DRUG \land ends(w, "c")]$

PERSON saw Sue

- Models will assign to each feature a weight:
 - A positive weight votes that this configuration is likely correct
 - A negative weight votes that this configuration is likely incorrect

Example features

- $f_1(c, d) = [c = \text{LOCATION } \land w_{-1} = \text{"in"} \land \text{isCapitalized}(w)]$
- $f_2(c, d) = [c = LOCATION \land hasAccentedLatinChar(w)]$
- $f_3(c, d) = [c = DRUG \land ends(w, "c")]$

LOCATION in Arcadia

LOCATION in Québec

DRUG taking Zantac saw Sue

PFRSON

- Models will assign to each feature a weight:
 - A positive weight votes that this configuration is likely correct
 - A negative weight votes that this configuration is likely incorrect

Feature Expectations

- We will crucially make use of two expectations
 - actual or predicted counts of a feature firing:
 - Empirical count (expectation) of a feature:

empirical
$$E(f_i) = \sum_{(c,d) \in \text{observed}(C,D)} f_i(c,d)$$

Model expectation of a feature:

$$E(f_i) = \sum_{(c,d) \in (C,D)} P(c,d) f_i(c,d)$$

Features

- In NLP uses, usually a feature specifies (1) an indicator function

 a yes/no boolean matching function of properties of the input and (2) a particular class
 - $f_i(c, d) = [\Phi(d) \land c = c_j]$ [Value is 0 or 1]
 - They pick out a data subset and suggest a label for it.
- We will say that $\Phi(d)$ is a feature of the data d, when, for each c_j , the conjunction $\Phi(d) \wedge c = c_j$ is a feature of the data-class pair (c, d)

Features

- In NLP uses, usually a feature specifies
 - an indicator function a yes/no boolean matching function of properties of the input and
 - 2. a particular class

$$f_i(c, d) = [\Phi(d) \land c = c_i]$$
 [Value is 0 or 1]

Each feature picks out a data subset and suggests a label for it

Feature-Based Models

 The decision about a data point is based only on the features active at that point.

```
Data
BUSINESS: Stocks
hit a yearly low ...
```

```
Label: BUSINESS
Features
{..., stocks, hit, a, yearly, low, ...}
```

Text Categorization

```
Data
... to restructure
bank:MONEY debt.
```

```
Label: MONEY
Features
\{..., w_{-1} = \text{restructure}, w_{+1} = \text{debt}, L=12, ...\}
```

Word-Sense Disambiguation

```
Data DT JJ NN ...
The previous fall ...

Label: NN Features \{w=\text{fall}, t_{-1}=\text{JJ} w_{-1}=\text{previous}\}
```

POS Tagging

Example: Text Categorization

(Zhang and Oles 2001)

- Features are presence of each word in a document and the document class (they do feature selection to use reliable indicator words)
- Tests on classic Reuters data set (and others)

Naïve Bayes: 77.0% F₁

• Linear regression: 86.0%

• Logistic regression: 86.4%

Support vector machine: 86.5%

Paper emphasizes the importance of regularization (smoothing) for successful
use of discriminative methods (not used in much early NLP/IR work)

Other Maxent Classifier Examples

- You can use a maxent classifier whenever you want to assign data points to one of a number of classes:
 - Sentence boundary detection (Mikheev 2000)
 - Is a period end of sentence or abbreviation?
 - Sentiment analysis (Pang and Lee 2002)
 - Word unigrams, bigrams, POS counts, ...
 - PP attachment (Ratnaparkhi 1998)
 - Attach to verb or noun? Features of head noun, preposition, etc.
 - Parsing decisions in general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)

Discriminative Model Features

Making features from text for discriminative NLP models

Christopher Manning