Green's theorem: - Let C be a plecewhe smooth smple closed curve bounding a segron R. If f, g, of and og are continuous on R, then $\oint_C f(x,y) dx + g(x,y) dy = \iint_C \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}\right) dx dy$ the integration being carried in the positive direction Prob! - D Evaluate & (2+47) dn + (4+2x)dy, where C & the boundary of the region in the first quadrant that is bounded by the curves $y^2 = x$ and $x^2 = y$. Sol! - We have $f(x,y) = x^2 + y^2$ and g(x,y) = y + 2xY:x->sx $x:0 \rightarrow 1$ Using the gararen's thm, we obtain \$ (x+x+)dn + (y+2x)dy $=\int_{0}^{1}\int_{0}^{\sqrt{\chi}}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right)dydx$ $= \int_{0}^{1} \int_{22}^{\sqrt{2}} (2-2y) \, dy \, dx = \int_{0}^{1} [2y-y]^{-1} \int_{22}^{\sqrt{2}} dx$ $= \int (2\sqrt{x} - x - 2x^2 + x^4) dx = \frac{4}{3} - \frac{1}{2} - \frac{2}{3} + \frac{1}{5} = \frac{11}{30}.$

inmoving a paroticle along the closed path C containing the curve x+y=0, $x^2+y^2=16$ and y=x in the first and fourth quadrants.

Solution: The work done by the force i's giventy $W = \oint \vec{F} \cdot d\vec{r} = \oint (x^2 y^3) dx + (x + y) dy$ $\gamma':0\rightarrow 4$ 0:-17- $\cdot \cdot \hat{W} = \iint (1+34)^2 dx dy$ changing into polen coordi. $W = \int_{0}^{1/4} \int_{0}^{4} \left(1 + 3 r^{2} sm^{2} \theta\right) r dr d\theta$ $= \frac{174}{2} \circ \int_{0}^{\pi/4} \left[\frac{x^{2}}{2} + \frac{3}{4} x^{4} \sin^{2}\theta \right] d\theta = \int_{0}^{\pi/4} (8 + 1928 \sin^{2}\theta) d\theta$ $= \int_{-\pi}^{\pi/4} [8+96(1-6820)]d\theta = \int_{-\pi/4}^{\pi/4} (104-9660120)d\theta$ $= 104 \left(\frac{1}{2} \right) - 2 \times 48 \left[2 \ln 10 \right]^{17/4} = 52 \pi - 96$

Evaluate f (x2+9-) dx + (y+2x) dy, Based on Green's theorem C: first quadrant, had by-the cerver if = x, x'= y
by creen's thm. We have f(m,9) = 22py-, g(x1y) = 4+2x $\frac{\partial f}{\partial y} = 2y, \qquad \frac{\partial g}{\partial x} = 2$ Limit of bodd region 4:x2- 52 x:0 -> 1 Using the Green's thim, we obtain $\oint_C (x^2 + y^2) dn + (y + 2n) dy = \iint_{2x} (\frac{39}{3x} - \frac{2f}{7y}) dn dy$ $= \int \left[\int \left(2 - 2y \right) dy \right] dx = \left[\left[2y - y^2 \right] dx \right]$ $= \int \left\{ (2\sqrt{x} - x) - (2002x^2 - x^4) \right\} dx$ $=\int \left(2(x-x-2x^2+x^4)dx\right)$ $= \left[\frac{2 x^{3/2}}{3 \sqrt{3}} - \frac{x^2}{2} - \frac{2x^3}{3} + \frac{x^5}{5} \right]_0^{1/2}$ $= \frac{4}{3} - \frac{1}{2} - \frac{2}{3} + \frac{1}{5} = \frac{11}{30}$

32. Find Workdom $F = (x^2y^3)^2 + (x+y)^3$ C: $x^2y^2 = 16$, x+y=0, x-y=0In 1st & 4th quadrant by Green's thm. let $\vec{r} = \chi \hat{i} + y\hat{j}$. Then $W = \int_{C}^{'} \overrightarrow{P} \cdot d\overrightarrow{r}^{2} = \int_{C}^{'} (2^{2}y^{3}) dn + (nty) dy - (1)$ $ve \leq \int_{C}^{'} \overrightarrow{P} \cdot d\overrightarrow{r}^{2} = \int_{C}^{'} (2^{2}y^{3}) dn + (nty) dy - (1)$ Workedone by the Force We have $f(x,y) = x^2y^3$, g(x,y) = x+y $\frac{\partial f}{\partial y} = -3y^2, \quad \frac{\partial g}{\partial x} = 1$ 0 By using Green's theorem, we get $W = \int (x^2 + y^3) dx + (x + y) dy = \int (1 + 3y^2) dx dy$ Changing into polar Coordinate x=rano,y=rsino 06854, 一年 50 5 7/4 From@; we get $W = \int \frac{1}{1+3r^2 sn^2 o} r dr do$ v = -r $= \int_{0}^{\pi/4} \left(\frac{x^{2}}{2} + \frac{3}{4} x^{4} s m^{2} o \right) do = \int_{0}^{\pi/4} (8 + 192 s m^{2} o) do$ $=2\sqrt{8+96(1-6s20)}d0=2\sqrt{74+(104-966s20)}d0$ $=2[1040-488m20]^{1/4}=59\pi-96$. Am

33. Evaluate $\phi(\bar{e}^{\gamma}\sin y) dx + (\bar{e}^{\alpha}\cos y) dy$ Square. C: (0,元), (况,0), (况,况), (0,元) The long integral $f(\alpha_1y) = e^{\alpha_1} Sin y, g(\alpha_1y) = e^{\alpha_1} (0, \pi)$ $f(\alpha_1y) = e^{\alpha_1} Sin y, g(\alpha_1y) = e^{\alpha_1} (0, \pi)$ $\frac{\partial f}{\partial y} = e^{\chi} \omega_{i} y, \frac{\partial g}{\partial x} = -e^{\chi} \omega_{i} y$ Using Green's theorem, $\oint (e^x smy) dn + (e^x cory) dy = \iint \left(\frac{2g}{m} - \frac{2f}{m} \right) dn dy$ = If (-excosy-excosy) andy $= \int_{0}^{\pi} \int_{0}^{\pi} (-2e^{x}(\omega y) dx dy)$ $=-2\int_{0}^{11/2} Cory \left(\int_{e}^{e} x dn \right) dy = 2\int_{0}^{11/2} Cory \left(\frac{e}{e} x\right) dy$ $=2\left(e^{\frac{\pi}{2}}\right)\int_{0}^{\frac{\pi}{2}}\cos y\,dy=2\left(e^{\frac{\pi}{2}}\right)\left(\frac{3\pi y}{3}\right)^{\frac{\pi}{2}}$ = 2 (e^m=1) (1-0) = 2(e⁻¹) Aw 34 6 3x2ydn-2xy2dy; C: $\chi^2 + y^2 \leq 16$, $\chi 7, 0, 47, 0$. Hore, $f(\pi, y) = 3\pi^2 y'$, $g(\pi, y) = -2\pi y^2$ $\frac{\partial f}{\partial y} = 3x^2 ; \frac{\partial g}{\partial x} = -2y^2$ $\oint_{C} 3n^{2}ydn - 2xy^{2}dy = \iint_{C} (-2y^{2}-3x^{2})dndy$ Using Ereen's theorem.

x=r God, y=rsind _ dndy=rardo $\gamma:0\to 4,0:0\to 7/2 (2620)(800)$. $\int (3x^2y dx - 2xy^2) dy = 0$ $= \int_{0}^{\pi} \int_{0}^{4} \frac{4}{(-2 r^{2} sm0 - 3 r^{2} cor^{2} o) r dr do}$ $= \int_{0}^{\pi} \int_{0}^{4} \frac{4}{r^{2} sm^{2} o r dr do} - 3 \int_{0}^{\pi} \int_{0}^{4} \frac{4}{r^{2} r dr do}$ $= \int_{0}^{\pi} \int_{0}^{4} \frac{4}{r^{2} sm^{2} o r dr do} - 3 \int_{0}^{\pi} \int_{0}^{4} \frac{4}{r^{2} r dr do}$ $=\frac{1}{4}\int_{0}^{\pi/2} 8m^{2} \sqrt{3} \sqrt{3} dx - \frac{3}{4}\int_{0}^{\pi/4} \sqrt{3} dx - \frac{3}{4}\int_{0}^{\pi/4} \sqrt{3} dx + \frac$ $=256 \left(\frac{11-(0120)}{1-(0120)} d0 - 64x3 \right) \sqrt[3]{30} \sqrt{\frac{15}{20}} = 1-\frac{(0120)}{2}$ $=32(7/2)-64\times3\times17/2$ $=\frac{16\pi-48\pi}{1}$ $16\pi-9696\pi=-80\pi$. $\int_{0}^{1} (2x^{2}+y^{2}) dx + (5x^{2}-3y) dy$ C: $\chi^2 = 4y$, y = 4. Here, $f(\pi_1 y) = \pi^2 y^2$, $g(\pi_1 y) = 5 \chi^2 = 3y$. $\frac{\partial f}{\partial t} = 2y, \frac{\partial f}{\partial x} = 10x$ x=-4 $\chi^2 = 4y = 4xy$ UmaGreen'thm of (5x2-3y) dy $\alpha = \pm 4$ $= \int \int (10x-2y) dx dy$ $= \int_{-4}^{4} \int_{x^{2}}^{4} \int_{x^{2}}^{8} \int_{x^{2}}^{8} \int_{x^{2}}^{4} \int_{x^{2}}^{4} \int_{x^{2}}^{8} \int_{x^{2}}^{4} \int_{x^{2}}^{8} \int_{x^{2}}^{8} \int_{x^{2}}^{4} \int_{x^{2}}^{8} \int$

36 Evaluate
$$\int xy^2 dx + 5x^3 dy$$
;
C: rectangle vertices (-1,0), (2,0), (2,2), (-1,2)
 $\chi:-1 \to 2$
 $y:0 \to 2$
Here, $\int (x,y) = xy^2$, $\int (x,y) = 5x^3$
 $\frac{\partial f}{\partial y} = 2xy$, $\frac{\partial g}{\partial x} = 15x^2$ (-1,0)
 $\int (2,0)$
 $\int (2,0)$