notebook

April 29, 2024

1 Lab 02: Feature extraction and embeddings

```
[1]: import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV, cross_val_score
```

1.0.1 A. Data Preparation

```
[2]: data = pd.read_csv('out.csv')
  data.drop(['Unnamed: 0'],axis=1,inplace=True)
  data
```

```
[2]:
                                                                    text author
            id26305
                    this proces however afforded me no means of as...
                                                                          EAP
            id17569 it never once occurred to me that the fumbling...
                                                                          HPL
     1
     2
            id11008 in his left hand was a gold snuff box from whi...
                                                                          EAP
     3
            id27763 how lovely is spring as we looked from windsor...
                                                                          MWS
            id12958 finding nothing else not even gold the superin...
                                                                          HPL
     19574 id17718 i could have fancied while i looked at it that...
                                                                          EAP
     19575 id08973 the lids clenched themselves together as if in...
                                                                          EAP
     19576
            id05267
                     mais il faut agir that is to say a frenchman n...
                                                                          EAP
            id17513 for an item of news like this it strikes us it...
     19577
                                                                          FAP
     19578 id00393 he laid a gnarled claw on my shoulder and it s...
                                                                          HPL
```

[19579 rows x 3 columns]

1.0.2 B. Encoding of the Target Variable

```
[3]: le = LabelEncoder()
  data['author_encoded'] = le.fit_transform(data['author'])
  data

[3]: id text author \
```

```
id26305 this proces however afforded me no means of as...
                                                                    EAP
1
       id17569 it never once occurred to me that the fumbling...
                                                                    HPL
2
       id11008 in his left hand was a gold snuff box from whi...
                                                                    EAP
3
       id27763 how lovely is spring as we looked from windsor...
                                                                    MWS
4
       id12958
                finding nothing else not even gold the superin...
                                                                    HPL
19574 id17718 i could have fancied while i looked at it that...
                                                                    EAP
      id08973 the lids clenched themselves together as if in...
19575
                                                                    EAP
19576 id05267 mais il faut agir that is to say a frenchman n...
                                                                    EAP
      id17513 for an item of news like this it strikes us it...
19577
                                                                    EAP
19578 id00393 he laid a gnarled claw on my shoulder and it s...
                                                                    HPL
```

	author_encoded
0	0
1	1
2	0
3	2
4	1
	•••
19574	0
19575	0
19576	0
19577	0
19578	1

[19579 rows x 4 columns]

1.0.3 C. Construction of Training and Testing Sets

```
[5]: print(100*y_train.tolist().count(0)/(len(y_train)))
print(100*y_test.tolist().count(0)/(len(y_test)))
```

1.0.4 D. Vectorization Methods

1. Use the lexical frequency method and one-hot encoding to vectorize the training and testing datasets.

```
[6]: from sklearn.feature_extraction.text import CountVectorizer
     # création d'un objet CountVectorizer pour effectuer la fréquence lexicale et_
      \hookrightarrow l'encodage one-hot
     # (
          si binary=False => fréquence lexicale
          si binary=True => one-hot encoding
     #)
     vectorizer = CountVectorizer(binary=False,analyzer= 'word',__
      ⇔stop_words='english')
     # ajustement du vectorizer sur le texte d'entraînement
     vectorizer.fit(X_train)
     # transformation du texte d'entraînement et de test en vecteurs one-hot
     train_cv = vectorizer.transform(X_train)
     test_cv = vectorizer.transform(X_test)
[7]: count_array_cv = train_cv.toarray()
     df = pd.DataFrame(data=count_array_cv,columns = vectorizer.
      →get_feature_names_out())
     df
                                                         abandonment
[7]:
                aback abandon abandoned
                                             abandoning
            ab
                                                                       abaout
             0
                     0
                              0
                                          0
     1
             0
                     0
                              0
                                          0
                                                       0
                                                                    0
                                                                             0
     2
             0
                     0
                                          0
                                                                    0
                                                                             0
                              0
                                                       0
     3
             0
                     0
                              0
                                          0
                                                       0
                                                                    0
                                                                             0
     4
             0
                     0
                                          0
                                                       0
                                                                    0
                              0
     15658
             0
                     0
                              0
                                                                    0
                                                                             0
                                                                    0
     15659
             0
                     0
                              0
                                          0
                                                                             0
     15660
             0
                     0
                              0
                                          0
                                                                    0
     15661
                     0
                                          0
                                                                    0
                                                                             0
             0
                              0
                                                       0
     15662
                     0
                              0
                                          0
                        abashed abashment ...
                                                zobnarian zodiac zodiacal \
            abasement
     0
                              0
                                          0
                                                        0
                                                                 0
                                                                            0
                     0
     1
                     0
                              0
                                          0
                                                        0
                                                                 0
                                                                            0
     2
                              0
                                          0
```

3		0	0		0	•••	0	() ()
4		0	0		0	•••	0	(C C)
	•••					•••	•••	•••		
15658		0	0		0		0	(C)
15659		0	0		0		0	(О С)
15660		0	0		0		0	(C)
15661		0	0		0		0	(О С)
15662		0	0		0		0	(О С)
	zoilus	zokar	zone	zones	ZO	ry	zubmizion	zuro		
0	zoilus 0	zokar 0	zone 0	zones 0	zo	ry O	zubmizion 0	zuro 0		
0					ZO	-				
0 1 2	0	0	0	0	zo	0	0	0		
1	0	0 0	0 0	0 0	ZO	0	0 0	0		
1 2	0 0 0	0 0 0	0 0 0	0 0 0	ZO	0 0 0	0 0 0	0		
1 2 3	0 0 0	0 0 0	0 0 0 0	0 0 0	z0	0 0 0	0 0 0	0 0 0		
1 2 3 4	0 0 0 0	0 0 0	0 0 0 0	0 0 0		0 0 0	0 0 0	0 0 0		

[15663 rows x 24463 columns]

0

0

0

0

0

15660

15661

15662

2 & 3. Train a TF-IDF vectorization model on the training part and vectorize it and vectorize the testing part

0

0

0

0

0

0

0

```
[8]: from sklearn.feature_extraction.text import TfidfVectorizer
# création d'un objet TfidfVectorizer pour effectuer la vectorisation TF-IDF
tfidf_vectorizer = TfidfVectorizer(analyzer= 'word', stop_words='english')

# ajustement du vectorizer sur le texte d'entraînement
tfidf_vectorizer.fit(X_train)

# transformation du texte d'entraînement et de test en vecteurs TF-IDF
train_tfidf = tfidf_vectorizer.transform(X_train)
test_tfidf = tfidf_vectorizer.transform(X_test)
```

```
[9]:
             ab aback abandon abandoned abandoning abandonment
                                                                     abaout \
            0.0
                            0.0
                                       0.0
                                                   0.0
                                                                0.0
     0
                   0.0
                                                                         0.0
     1
            0.0
                   0.0
                            0.0
                                       0.0
                                                   0.0
                                                                0.0
                                                                        0.0
```

2	0.0	0.0	0.0		0.0	0.0		0.0	0.0
3	0.0	0.0	0.0		0.0	0.0		0.0	0.0
4	0.0	0.0	0.0		0.0	0.0		0.0	0.0
		•••			•••	•••	•••		
15658	0.0	0.0	0.0		0.0	0.0		0.0	0.0
15659	0.0	0.0	0.0		0.0	0.0		0.0	0.0
15660	0.0	0.0	0.0		0.0	0.0		0.0	0.0
15661	0.0	0.0	0.0		0.0	0.0		0.0	0.0
15662	0.0	0.0	0.0		0.0	0.0		0.0	0.0
	abaseme	ent aba	ashed	abashme	nt	zobnarian	zodiac	zodia	.cal \
0		0.0	0.0		.0	0.0	0.0		0.0
1	(0.0	0.0		.0	0.0	0.0		0.0
2	(0.0	0.0		.0	0.0	0.0		0.0
3	(0.0	0.0	0	.0	0.0	0.0		0.0
4	(0.0	0.0	0	.0	0.0	0.0		0.0
•••	•••	•••			•••	•••	•••		
15658	(0.0	0.0	0	.0	0.0	0.0		0.0
15659	(0.0	0.0	0	.0	0.0	0.0		0.0
15660	(0.0	0.0	0	.0	0.0	0.0		0.0
15661	(0.0	0.0	0	.0	0.0	0.0		0.0
15662	(0.0	0.0	0	.0	0.0	0.0		0.0
	zoilus	zokar	zone	zones	zory	zubmizion	zuro		
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
•••				••					
15658	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
15659	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
15660	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
15661	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
15662	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

[15663 rows x 24463 columns]

1.0.5 E. Training

1. Create three models of the MLPClassifier type. (You can change the learning algorithm: use other scikit-learn algorithms)

```
[10]: from sklearn.neural_network import MLPClassifier

# Modèle 1 : 1 couche cachée avec 100 neurones

model1 = MLPClassifier(hidden_layer_sizes=(100,), max_iter=200, solver='adam', userandom_state=1)
```

2,3 & 4.

- Train these three models on the three vector representations.
- Predict the classes by applying the three models to the three training representations.
- Display the classification report using performance measures (accuracy, precision, recall...).

```
[12]: from sklearn.neural_network import MLPClassifier
      from sklearn.metrics import accuracy_score
      from sklearn.metrics import classification_report
      import pickle
      # création des modèles avec différentes architectures de couches cachées
      models = [
          model1,
          model2,
          model3
      ]
      # entrainement des modèles sur les différentes représentations
      representations = [(train_cv, test_cv),(train_tfidf, test_tfidf)]
      for i, model in enumerate(models):
          print(f"Model {i+1}")
          for j, rep in enumerate(representations):
              # entraînement du modèle
              model.fit(rep[0], y_train)
              # prédiction sur le jeu de train
              y_pred = model.predict(rep[0])
              # évaluation de la performance du modèle
              print(f"Representation {j+1}:")
              print(classification_report(y_train, y_pred))
```

```
# save the model to disk
filename = f'models/finalized_model{i+1}.{j+1}.sav'
pickle.dump(model, open(filename, 'wb'))
```

Model 1

Model 1				
Representation	n 1:			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	6320
1	1.00	1.00	1.00	4508
2	1.00	1.00	1.00	4835
accuracy			1.00	15663
macro avg	1.00	1.00	1.00	15663
weighted avg	1.00	1.00	1.00	15663
weighted avg	1.00	1.00	1.00	10000
Representatio	n 2.			
nepresentatio	precision	recall	f1-score	support
	precision	recarr	II SCOLE	suppor t
0	1.00	1.00	1.00	6320
1	1.00	1.00	1.00	4508
2	1.00	1.00	1.00	4835
			1 00	15000
accuracy	4 00	4 00	1.00	15663
macro avg	1.00	1.00	1.00	15663
weighted avg	1.00	1.00	1.00	15663
Model 2				
Representation	n 1:			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	6320
1	1.00	1.00	1.00	4508
2	1.00	1.00	1.00	4835
accuracy			1.00	15663
macro avg	1.00	1.00	1.00	15663
weighted avg	1.00	1.00	1.00	15663
Representation	n 2:			
-	precision	recall	f1-score	support
	•			
0	1.00	1.00	1.00	6320
1	1.00	1.00	1.00	4508
2	1.00	1.00	1.00	4835
2	1.00	1.00	1.00	1000
accuracy			1.00	15663
accuracy			1.00	10000

```
1.00
                                   1.00
                                              1.00
                                                       15663
        macro avg
     weighted avg
                         1.00
                                   1.00
                                              1.00
                                                       15663
     Model 3
     Representation 1:
                    precision
                                 recall f1-score
                                                     support
                 0
                         1.00
                                   1.00
                                              1.00
                                                        6320
                 1
                         1.00
                                   1.00
                                              1.00
                                                        4508
                 2
                         1.00
                                   1.00
                                              1.00
                                                        4835
                                              1.00
                                                       15663
         accuracy
                                              1.00
                                                       15663
        macro avg
                         1.00
                                   1.00
     weighted avg
                         1.00
                                   1.00
                                              1.00
                                                       15663
     Representation 2:
                    precision
                                 recall f1-score
                                                     support
                 0
                         1.00
                                   1.00
                                              1.00
                                                        6320
                         1.00
                                   1.00
                                              1.00
                                                        4508
                 1
                 2
                         1.00
                                   1.00
                                              1.00
                                                        4835
                                              1.00
         accuracy
                                                       15663
        macro avg
                         1.00
                                   1.00
                                              1.00
                                                       15663
     weighted avg
                         1.00
                                   1.00
                                              1.00
                                                       15663
[15]: import pickle
      from sklearn.metrics import accuracy_score
      #load the model from disk
      filename = "models/finalized_model1.2.sav"
      loaded_model = pickle.load(open(filename, 'rb'))
      y_pred = loaded_model.predict(train_cv)
```

0.9983400370299432

print(result)

result = accuracy_score(y_pred, y_train)

1.0.6 F. Testing

Pour Model N°1 et La Representation 1 (CountVect) et 2 (TF-IDF) Representation 1:

support	f1-score	recall	precision	
				_
1511	0.74	0.76	0.72	0
1084	0.72	0.73	0.70	1
1321	0.74	0.71	0.77	2
3916	0.73			accuracy
3916	0.73	0.73	0.73	macro avg
3916	0.73	0.73	0.73	weighted avg

 ${\tt Model \ 1 \ prediction \ time: \ 0.0 \ seconds}$

Representation 2:

	precision	recall	f1-score	support
0	0.76	0.78	0.77	1532
1	0.73	0.78	0.76	1054
2	0.80	0.73	0.77	1330
accuracy			0.77	3916
macro avg	0.77	0.77	0.76	3916
weighted avg	0.77	0.77	0.77	3916

Model 1 prediction time: 0.005999088287353516 seconds

Pour Model N°2 et La Representation 1 (CountVect) et 2 (TF-IDF) Representation 1:

	precision	recall	f1-score	support
0	0.74	0.75	0.75	1549
1	0.72	0.73	0.73	1104
2	0.76	0.73	0.74	1263
accuracy			0.74	3916
macro avg	0.74	0.74	0.74	3916
weighted avg	0.74	0.74	0.74	3916

Model 2 prediction time: 0.004000425338745117 seconds Representation 2:

-	precision	recall	f1-score	support
0	0.75	0.79	0.77	1501
1	0.76	0.76	0.76	1129
2	0.80	0.75	0.77	1286
accuracy			0.77	3916
macro avg	0.77	0.77	0.77	3916
weighted avg	0.77	0.77	0.77	3916

Model 2 prediction time: 0.0038728713989257812 seconds

Pour Model N°3 et La Representation 1 (CountVect) et 2 (TF-IDF) Representation 1:

	precision	recall	f1-score	support
0	0.78	0.78	0.78	1595
1	0.75	0.77	0.76	1092
2	0.77	0.76	0.77	1229
accuracy			0.77	3916
macro avg	0.77	0.77	0.77	3916
weighted avg	0.77	0.77	0.77	3916

Model 3 prediction time: 0.019878625869750977 seconds Representation 2:

precision recall f1-score support

0	0.78	0.77	0.78	1602
1	0.71	0.81	0.76	993
2	0.80	0.73	0.77	1321
accuracy			0.77	3916
macro avg	0.76	0.77	0.77	3916
weighted avg	0.77	0.77	0.77	3916

Model 3 prediction time: 0.013283014297485352 seconds

1.0.7 G. Vectorizations based on word embeddings

1.0.8 Word2Vec

1.0.9 Glove model

```
[28]: #must run this command on glove.6B.100d.txt file
#download glove.6B.100d.txt from kaggle and place it in lab2 folder

[python -m gensim.scripts.glove2word2vec -i glove.6B.100d.txt -o glove.6B.100d.

word2vec.txt
```

```
2024-04-29 12:25:13,444 - glove2word2vec - INFO - running c:\Python311\Lib\site-packages\gensim\scripts\glove2word2vec.py -i glove.6B.100d.txt -o glove.6B.100d.word2vec.txt c:\Python311\Lib\site-packages\gensim\scripts\glove2word2vec.py:125:
DeprecationWarning: Call to deprecated `glove2word2vec` (KeyedVectors.load_word2vec_format(.., binary=False, no_header=True) loads GLoVE text vectors.).

num_lines, num_dims = glove2word2vec(args.input, args.output)
2024-04-29 12:25:13,444 - keyedvectors - INFO - loading projection weights from glove.6B.100d.txt
2024-04-29 12:25:45,878 - utils - INFO - KeyedVectors lifecycle event {'msg': 'loaded (400000, 100) matrix of type float32 from glove.6B.100d.txt', 'binary': False, 'encoding': 'utf8', 'datetime': '2024-04-29T12:25:45.858322', 'gensim':
```

```
'4.3.2', 'python': '3.11.4 (tags/v3.11.4:d2340ef, Jun 7 2023, 05:45:37) [MSC v.1934 64 bit (AMD64)]', 'platform': 'Windows-10-10.0.22631-SPO', 'event': 'load_word2vec_format'}
2024-04-29 12:25:45,878 - glove2word2vec - INFO - converting 400000 vectors from glove.6B.100d.txt to glove.6B.100d.word2vec.txt
2024-04-29 12:25:46,123 - keyedvectors - INFO - storing 400000x100 projection weights into glove.6B.100d.word2vec.txt
2024-04-29 12:26:19,349 - glove2word2vec - INFO - Converted model with 400000 vectors and 100 dimensions
```

```
[26]: model_glove = KeyedVectors.load_word2vec_format('glove.6B.100d.word2vec.txt', ⊔ ⇔binary=False)
```

1.0.10 FastText

```
[29]: model_fasttext = FastText(X_train_tokens, vector_size=200, window=5, usin_count=1, workers=4)
```

1.1 H. Training / Testing

1.1.1 Visualization

```
[30]: from sklearn.decomposition import PCA

#pass the embeddings to PCA
pca = PCA(n_components=2)
result = pca.fit_transform(model_w2v_sg.wv.vectors)

#create df from the pca results
pca_df = pd.DataFrame(result, columns = ['x','y'])

#add the words for the hover effect
pca_df['word'] = model_w2v_sg.wv.index_to_key
pca_df.head()
```

```
[30]: x y word
0 0.991814 -0.135516 the
1 0.979402 0.037267 of
2 0.883758 -0.061537 and
3 1.301585 0.877599 to
4 1.027505 0.035662 a
```

```
[31]: import plotly.graph_objs as go

N = 1000000
words = list(model_w2v_sg.wv.index_to_key)
fig = go.Figure(data=go.Scattergl(
```

```
x = pca_df['x'],
y = pca_df['y'],
mode='markers',
marker=dict(
    color=np.random.randn(N),
    colorscale='Viridis',
    line_width=1
),
text=pca_df['word'],
textposition="bottom center"
))
fig.show()
```

1.1.2 Vectorizing our sentence (Sentence --> Embedding Vector) by calculating the MEAN

```
[32]: def get_mean_vector(w2v_vectors, words):
    words = [word for word in words if word in w2v_vectors]
    if words:
        avg_vector = np.mean(w2v_vectors[words], axis=0)
    else:
        avg_vector = np.zeros_like(w2v_vectors['hi'])
    return avg_vector
```

Skip-Gram

```
import numpy as np
import pandas as pd

df_data = []
for token in X_train_tokens:
          df_data.append(get_mean_vector(model_w2v_sg.wv,token))

train_embeddings = pd.DataFrame(data={'Skip-Gram':df_data})

df_data = []
for token in X_test_tokens:
          df_data.append(get_mean_vector(model_w2v_sg.wv,token))

test_embeddings = pd.DataFrame(data={'Skip-Gram':df_data})
```

Cbow

```
[34]: df_data = []
for token in X_train_tokens:
    df_data.append(get_mean_vector(model_w2v_cbow.wv,token))
```

```
train_embeddings['Cbow'] = df_data
      df_data = []
      for token in X_test_tokens:
          df_data.append(get_mean_vector(model_w2v_cbow.wv,token))
      test_embeddings['Cbow'] = df_data
     FastText
[35]: df_data = []
      for token in X_train_tokens:
          df_data.append(get_mean_vector(model_fasttext.wv,token))
      train_embeddings['FastText'] = df_data
      df_data = []
      for token in X_test_tokens:
          df_data.append(get_mean_vector(model_fasttext.wv,token))
      test_embeddings['FastText'] = df_data
[36]: train_embeddings['author'] = y_train
      test_embeddings['author'] = y_test
[37]: train_embeddings
[37]:
                                                       Skip-Gram \
             [-0.09245351, -0.13474467, -0.19422822, 0.0571...
             [-0.0138421515, -0.06436534, -0.1446154, 0.008...]
      1
      2
             [-0.016322251, -0.05566424, -0.13252683, 0.013...
      3
             [0.042666577, -0.06912962, -0.14757802, 0.0211...
      4
             [0.030173779, -0.048087917, -0.13290967, 0.019...
      15658
             [0.037498757, -0.076692045, -0.16398796, 0.024...
      15659
             [0.008315314, -0.055191915, -0.119723015, 0.03...
      15660
             [-0.003307657, -0.08177994, -0.12526338, 0.078...
      15661
             [-0.016894873, -0.02929884, -0.09387635, 0.052...
      15662 [-0.016567785, -0.052925322, -0.13258567, 0.05...
                                                             Cbow \
             [0.076555416, -0.3873256, -0.21496993, 0.16724...
      0
              \hbox{\tt [0.04013775, -0.14664431, -0.24667382, 0.26135...} 
      1
      2
             [0.047090776, -0.123674214, -0.24026245, 0.220...
      3
             [0.200636, -0.39847913, -0.19032557, 0.0736103...
      4
             [0.13835351, -0.24336997, -0.32883242, 0.23244...]
```

```
15658
             [0.14120299, -0.2590958, -0.24012192, 0.126241...
             [0.11323017, -0.2953621, -0.25744775, 0.208803...
      15659
      15660
             [0.074559696, -0.2186441, -0.22983482, 0.24306...
              [0.044977337, -0.16403587, -0.26551414, 0.2932...
      15661
             [0.069187514, -0.12838382, -0.2805442, 0.25940...]
      15662
                                                                   author
                                                         FastText
                                                                       0
      0
              [-0.64794165, -0.2699343, 0.68553156, -0.05720...
              [-0.450563, -0.1549467, 0.7243632, 0.004474306...
                                                                       2
      1
      2
                                                                       2
              [-0.4520924, -0.12596405, 0.6855266, -0.043536...
      3
              [-0.8359748, -0.5553028, 0.88246626, -0.073657...
                                                                       2
      4
              [-0.51334476, -0.28475353, 0.9356317, -0.01246...
                                                                       2
      15658
             [-0.55205256, -0.29024366, 0.69331557, -0.0324...
                                                                       2
             [-0.60343003, -0.33598742, 0.8039362, -0.03032...
                                                                       2
      15659
      15660
             [-0.5472723, -0.20986466, 0.68265975, -0.04442...
                                                                       0
             [-0.44843885, -0.1873457, 0.7674887, -0.005266...
      15661
                                                                       1
             [-0.5150041, -0.18791518, 0.8278089, -0.038176...
      15662
                                                                       0
      [15663 rows x 4 columns]
[41]: test_embeddings
[41]:
                                                       Skip-Gram \
      0
            [-0.02533995, -0.057708997, -0.1383868, 0.0334...
      1
            [-0.013364219, -0.04435305, -0.115443155, 0.04...
            [-0.038911216, -0.04846803, -0.10835905, 0.019...
      2
      3
            [0.02638327, -0.042123396, -0.106831744, 0.055...
      4
            [0.0032943068, -0.035050638, -0.14190407, 0.04...]
      3911
            [0.011293744, -0.033249523, -0.13720067, 0.045...]
            [-0.0038440789, -0.035394795, -0.12100706, 0.0...
      3912
      3913 [0.02209774, -0.057479277, -0.11369388, -0.006...
            [-0.0031537581, -0.040496238, -0.09115279, 0.0...
      3914
            [0.010578151, -0.072131395, -0.16562384, 0.015...
                                                            Cbow \
      0
            [0.08728299, -0.23488268, -0.24730948, 0.19595...
      1
            [0.1310399, -0.28475758, -0.23302014, 0.156321...
      2
            [0.041968066, -0.27902886, -0.19055352, 0.2374...
```

[0.13256206, -0.25670433, -0.25646424, 0.21515...

[0.09842654, -0.1773736, -0.29563868, 0.256905...

[0.082615644, -0.3048804, -0.23068282, 0.23892...

[0.072965354, -0.24091473, -0.29348248, 0.3058... [0.10891265, -0.24729455, -0.28157568, 0.22512...

[0.09743194, -0.21748036, -0.22617775, 0.15707...

3

4

3911

3912

3913

3914

```
3915 [0.1377265, -0.28232977, -0.23600832, 0.139908...
```

```
FastText author
0
      [-0.5960142, -0.24000153, 0.7607671, -0.057615...
                                                              0
1
      [-0.76362294, -0.40808642, 0.93084824, -0.0655...
                                                              0
      [-0.4527249, -0.21626551, 0.5690407, 0.0437042...
2
                                                              1
      [-0.5001691, -0.21661125, 0.6957603, -0.003744...
                                                              0
3
4
      [-0.6131109, -0.24261205, 0.8562926, -0.080922...
                                                              0
3911 [-0.6011191, -0.30326766, 0.7502945, -0.024315...
                                                              0
3912 [-0.5458445, -0.24774297, 0.8056308, -0.017394...
                                                              0
3913 [-0.49014255, -0.24898033, 0.73027086, -0.0010...
                                                              1
3914 [-0.529733, -0.24831183, 0.7210892, -0.0501421...
                                                              1
3915 [-0.6428726, -0.32382765, 0.76352257, -0.05812...
                                                              2
```

[3916 rows x 4 columns]

1.1.3 Train and Test

Skip-Gram with MLP's

```
Epoch 1/50
accuracy: 0.5877
Epoch 2/50
accuracy: 0.6326
Epoch 3/50
accuracy: 0.6427
Epoch 4/50
accuracy: 0.6450
Epoch 5/50
490/490 [============= ] - 1s 1ms/step - loss: 0.7897 -
accuracy: 0.6550
Epoch 6/50
accuracy: 0.6543
Epoch 7/50
accuracy: 0.6656
Epoch 8/50
accuracy: 0.6665
Epoch 9/50
accuracy: 0.6665
Epoch 10/50
accuracy: 0.6686
Epoch 11/50
accuracy: 0.6729
Epoch 12/50
accuracy: 0.6710
Epoch 13/50
accuracy: 0.6749
Epoch 14/50
accuracy: 0.6761
Epoch 15/50
490/490 [============ ] - 1s 2ms/step - loss: 0.7482 -
accuracy: 0.6780
Epoch 16/50
accuracy: 0.6828
```

```
Epoch 17/50
accuracy: 0.6782
Epoch 18/50
accuracy: 0.6774
Epoch 19/50
accuracy: 0.6794
Epoch 20/50
accuracy: 0.6881
Epoch 21/50
490/490 [============ ] - 1s 2ms/step - loss: 0.7368 -
accuracy: 0.6813
Epoch 22/50
490/490 [============== ] - 1s 2ms/step - loss: 0.7317 -
accuracy: 0.6861
Epoch 23/50
accuracy: 0.6853
Epoch 24/50
accuracy: 0.6875
Epoch 25/50
accuracy: 0.6875
Epoch 26/50
accuracy: 0.6875
Epoch 27/50
accuracy: 0.6884
Epoch 28/50
accuracy: 0.6915
Epoch 29/50
accuracy: 0.6907
Epoch 30/50
accuracy: 0.6886
Epoch 31/50
accuracy: 0.6922
Epoch 32/50
accuracy: 0.6897
```

```
Epoch 33/50
accuracy: 0.6953
Epoch 34/50
accuracy: 0.6907
Epoch 35/50
accuracy: 0.6934
Epoch 36/50
490/490 [============= ] - 1s 3ms/step - loss: 0.7167 -
accuracy: 0.6899
Epoch 37/50
accuracy: 0.6947
Epoch 38/50
accuracy: 0.6909
Epoch 39/50
accuracy: 0.6935
Epoch 40/50
accuracy: 0.6957
Epoch 41/50
accuracy: 0.6965
Epoch 42/50
accuracy: 0.6930
Epoch 43/50
accuracy: 0.6990
Epoch 44/50
accuracy: 0.6967
Epoch 45/50
accuracy: 0.6985
Epoch 46/50
accuracy: 0.6975
Epoch 47/50
accuracy: 0.6977
Epoch 48/50
accuracy: 0.6992
```

```
Epoch 49/50
   accuracy: 0.6995
   Epoch 50/50
   accuracy: 0.6999
   Chow with MLP's
[44]: #Lets try to train our data using Skip-Gram
    X_train = pd.DataFrame(list(train_embeddings['Cbow'])).reset_index(drop=True)
    y_train = pd.DataFrame(train_embeddings['author'])
[45]: import tensorflow as tf
    from tensorflow import keras
    from keras.optimizers import Adam
    from keras.losses import SparseCategoricalCrossentropy
    mlp_model = keras.models.Sequential([
      keras.layers.Flatten(input_shape=(200,)),
      keras.layers.Dense(128, activation='relu'),
      keras.layers.Dense(64, activation='relu'),
      keras.layers.Dense(3, activation='softmax')
    ])
    adam = Adam(learning_rate=0.01)
    mlp_model.compile(loss=SparseCategoricalCrossentropy(), optimizer=adam, u

→metrics=['accuracy'])
    \#adam\_history = model\_ADAM.fit(X\_train, y\_train, epochs=50, \_
    \hookrightarrow validation_data = (X_val, y_val))
    cbow_history = mlp_model.fit(X_train, y_train, epochs=50)
   Epoch 1/50
   accuracy: 0.4566
   Epoch 2/50
   accuracy: 0.4750
   Epoch 3/50
   accuracy: 0.4877
   Epoch 4/50
   accuracy: 0.4979
   Epoch 5/50
```

```
accuracy: 0.5090
Epoch 6/50
490/490 [============= ] - 1s 2ms/step - loss: 0.9920 -
accuracy: 0.5055
Epoch 7/50
accuracy: 0.5106
Epoch 8/50
accuracy: 0.5147
Epoch 9/50
490/490 [============== ] - 1s 3ms/step - loss: 0.9794 -
accuracy: 0.5154
Epoch 10/50
accuracy: 0.5193
Epoch 11/50
accuracy: 0.5211
Epoch 12/50
accuracy: 0.5218
Epoch 13/50
accuracy: 0.5219
Epoch 14/50
accuracy: 0.5237
Epoch 15/50
accuracy: 0.5264
Epoch 16/50
accuracy: 0.5277
Epoch 17/50
accuracy: 0.5257
Epoch 18/50
accuracy: 0.5293
Epoch 19/50
490/490 [============= ] - 1s 2ms/step - loss: 0.9668 -
accuracy: 0.5279
Epoch 20/50
accuracy: 0.5339
Epoch 21/50
```

```
accuracy: 0.5337
Epoch 22/50
490/490 [============= ] - 1s 2ms/step - loss: 0.9649 -
accuracy: 0.5350
Epoch 23/50
accuracy: 0.5339
Epoch 24/50
accuracy: 0.5343
Epoch 25/50
490/490 [============= ] - 1s 2ms/step - loss: 0.9612 -
accuracy: 0.5373
Epoch 26/50
accuracy: 0.5367
Epoch 27/50
490/490 [============= ] - 1s 2ms/step - loss: 0.9601 -
accuracy: 0.5389
Epoch 28/50
accuracy: 0.5383
Epoch 29/50
accuracy: 0.5341
Epoch 30/50
490/490 [============== ] - 1s 2ms/step - loss: 0.9572 -
accuracy: 0.5435
Epoch 31/50
accuracy: 0.5433
Epoch 32/50
accuracy: 0.5353
Epoch 33/50
accuracy: 0.5403
Epoch 34/50
accuracy: 0.5413
Epoch 35/50
490/490 [============= ] - 1s 2ms/step - loss: 0.9585 -
accuracy: 0.5416
Epoch 36/50
accuracy: 0.5388
Epoch 37/50
```

```
accuracy: 0.5436
  Epoch 38/50
  490/490 [============= ] - 1s 3ms/step - loss: 0.9533 -
  accuracy: 0.5423
  Epoch 39/50
  accuracy: 0.5420
  Epoch 40/50
  accuracy: 0.5452
  Epoch 41/50
  490/490 [============ ] - 1s 3ms/step - loss: 0.9516 -
  accuracy: 0.5445
  Epoch 42/50
  accuracy: 0.5442
  Epoch 43/50
  490/490 [============= ] - 1s 2ms/step - loss: 0.9511 -
  accuracy: 0.5457
  Epoch 44/50
  accuracy: 0.5441
  Epoch 45/50
  accuracy: 0.5459
  Epoch 46/50
  490/490 [============= ] - 1s 2ms/step - loss: 0.9507 -
  accuracy: 0.5440
  Epoch 47/50
  accuracy: 0.5463
  Epoch 48/50
  accuracy: 0.5493
  Epoch 49/50
  accuracy: 0.5469
  Epoch 50/50
  accuracy: 0.5473
  FastText with MLP's
[46]: #Lets try to train our data using Skip-Gram
   X_train = pd.DataFrame(list(train_embeddings['FastText'])).
   →reset_index(drop=True)
   y_train = pd.DataFrame(train_embeddings['author'])
```

```
[47]: import tensorflow as tf
    from tensorflow import keras
    from keras.optimizers import Adam
    from keras.losses import SparseCategoricalCrossentropy
    mlp_model = keras.models.Sequential([
       keras.layers.Flatten(input_shape=(200,)),
       keras.layers.Dense(128, activation='relu'),
       keras.layers.Dense(64, activation='relu'),
       keras.layers.Dense(3, activation='softmax')
    1)
    adam = Adam(learning_rate=0.01)
    mlp_model.compile(loss=SparseCategoricalCrossentropy(), optimizer=adam,_
     →metrics=['accuracy'])
    \#adam\_history = model\_ADAM.fit(X\_train, y\_train, epochs=50, \_
    \hookrightarrow validation_data = (X_val, y_val))
    fasttext_history = mlp_model.fit(X_train, y_train, epochs=50)
   Epoch 1/50
   490/490 [============ ] - 3s 4ms/step - loss: 1.0596 -
   accuracy: 0.4386
   Epoch 2/50
   490/490 [============= ] - 1s 3ms/step - loss: 1.0309 -
   accuracy: 0.4731
   Epoch 3/50
   accuracy: 0.4751
   Epoch 4/50
   accuracy: 0.4830
   Epoch 5/50
   accuracy: 0.4846
   Epoch 6/50
   accuracy: 0.4847
   Epoch 7/50
   accuracy: 0.4905
   Epoch 8/50
   490/490 [============= ] - 1s 2ms/step - loss: 1.0119 -
   accuracy: 0.4926
   Epoch 9/50
```

```
accuracy: 0.4918
Epoch 10/50
490/490 [============= ] - 1s 3ms/step - loss: 1.0099 -
accuracy: 0.4915
Epoch 11/50
accuracy: 0.4913
Epoch 12/50
accuracy: 0.4928
Epoch 13/50
490/490 [============= ] - 1s 2ms/step - loss: 1.0072 -
accuracy: 0.4905
Epoch 14/50
accuracy: 0.4925
Epoch 15/50
accuracy: 0.4932
Epoch 16/50
accuracy: 0.4931
Epoch 17/50
accuracy: 0.4958
Epoch 18/50
accuracy: 0.4956
Epoch 19/50
accuracy: 0.4961
Epoch 20/50
accuracy: 0.4961
Epoch 21/50
accuracy: 0.4944
Epoch 22/50
accuracy: 0.4988
Epoch 23/50
490/490 [============= ] - 1s 2ms/step - loss: 1.0051 -
accuracy: 0.5004
Epoch 24/50
490/490 [============= ] - 1s 2ms/step - loss: 1.0020 -
accuracy: 0.4992
Epoch 25/50
```

```
accuracy: 0.4983
Epoch 26/50
490/490 [============= ] - 1s 3ms/step - loss: 1.0015 -
accuracy: 0.4986
Epoch 27/50
accuracy: 0.5014
Epoch 28/50
accuracy: 0.4975
Epoch 29/50
490/490 [============= ] - 1s 2ms/step - loss: 1.0034 -
accuracy: 0.5012
Epoch 30/50
accuracy: 0.4993
Epoch 31/50
490/490 [============= ] - 1s 2ms/step - loss: 0.9990 -
accuracy: 0.5034
Epoch 32/50
accuracy: 0.5032
Epoch 33/50
accuracy: 0.5049
Epoch 34/50
accuracy: 0.5011
Epoch 35/50
accuracy: 0.5030
Epoch 36/50
accuracy: 0.5018
Epoch 37/50
accuracy: 0.4986
Epoch 38/50
accuracy: 0.5012
Epoch 39/50
490/490 [============= ] - 1s 3ms/step - loss: 0.9976 -
accuracy: 0.5047
Epoch 40/50
490/490 [============= ] - 1s 2ms/step - loss: 0.9969 -
accuracy: 0.5037
Epoch 41/50
```

```
accuracy: 0.5063
Epoch 42/50
490/490 [=========== ] - 1s 2ms/step - loss: 0.9962 -
accuracy: 0.5041
Epoch 43/50
accuracy: 0.5041
Epoch 44/50
accuracy: 0.5053
Epoch 45/50
490/490 [============= ] - 1s 2ms/step - loss: 0.9959 -
accuracy: 0.5046
Epoch 46/50
accuracy: 0.5084
Epoch 47/50
accuracy: 0.5026
Epoch 48/50
accuracy: 0.5084
Epoch 49/50
accuracy: 0.5040
Epoch 50/50
490/490 [============ ] - 1s 2ms/step - loss: 0.9966 -
accuracy: 0.5055
```

1.1.4 Results

