Four - Bar Mechanism: In a four bar chain ABCD link AD is fixed and in 15 cm long. The crank AB is 4 cm long rotates at 180 rpm (cw) while link CD rotates about D is 8 cm long BC = AD and | BAD = 60°. Find angular velocity of link CD.



Configuration Diagram

## Velocity vector diagram

$$V_b = \omega r = \omega_{ba} \times AB = \frac{2\pi x \cdot 120}{60} \times 4 = 50.24 \text{ cm/sec}$$

## Choose a suitable scale

$$1 \text{ cm} = 20 \text{ m/s} = \overline{ab}$$



$$V_{cb} = \overrightarrow{bc}$$
  
 $V_c = \overrightarrow{dc} = 38 \text{ cm/sec} = V_{cd}$ 

We know that  $V = \omega R$ 

$$V_{cd} = \omega_{CD} \times CD$$
  
 $\omega_{cD} = \frac{V_{cd}}{CD} = \frac{38}{8} = 4.75 \text{ rad/sec (cw)}$ 

Step 2: Draw velocity vector diagram to a scale.

$$V_b = \omega_2 x AB$$
  
 $V_b = 10.5 \times 0.05$   
 $V_b = 0.525 \text{ m/s}$ 



Step 3: Prepare a table as shown below:

| Sl.       | 3: Prepare a table  Link | Magnitude                  | Direction            | Sense |
|-----------|--------------------------|----------------------------|----------------------|-------|
| No.<br>1. | AB                       | $f^c = \omega^2_{AB}r$     | Parallel to AB       | → A   |
|           |                          | $f^{c} = (10.5)^{2}/0.525$ | Control of the last  |       |
|           |                          | $f^c = 5.51 \text{ m/s}^2$ | -                    | →B    |
| 2.        | BC                       | $f^c = \omega^2_{BC}r$     | Parallel to BC       | 7.0   |
|           |                          | $f^{c} = 1.75$             |                      |       |
|           |                          | $f^t = \alpha r$           | ⊥ <sup>r</sup> to BC | -     |
| 3.        | CD                       | $f^c = \omega^2 cDr$       | Parallel to DC       | → D   |
|           |                          | f <sup>c</sup> = 2.75      |                      |       |
|           |                          | $f^t = ?$                  | ⊥r to DC             | -     |

Step 4: Draw the acceleration diagram.

