

A Linear-Time Algorithm For Finding Tree-Decompositions Of Small Treewidth

Maximilian F. Göckel - uzkns@student.kit.edu

Institut für Theoretische Informatik - Proseminar Algorithmen für NP-schwere Probleme

Motivation

Viele (NP-schwere) Graphenprobleme sind auf Graphen, bei denen eine Baumzerteilung mit Baumweite max. k (k Konstante) gegeben ist, in Linearzeit lösbar.

Tree-decomposition: Definition

Eine Baumzerteilung eines Graphen G = (V, E) ist ein Tupel (X, T) wo T = (I, F) ein Baum ist und $X = \{X_i | i \in I\}$ eine Familie von Teilmengen von V wobei jedes X_i einen Knoten in T darstellt.

- 1. $\bigcup_{i \in I} X_i = V$
- 2. $\forall (v, w) \in E : \exists i \in I : v, w \in X_i$
- 3. $\forall w \in X_i, X_j$: Jedes X_k im Pfad zwischen X_i, X_j enthält w

Tree-decomposition: Beispiel

Figure: 1

Treewidth

Jede Baumzerteilung hat eine "Baumweite" (treewidth).

- Baumweite einer Zerteilung: $\max(|X_i|_{i \in I} 1)$ ("Zerteilungsweite")
- Baumweite eines Graphen: Minimale Zerteilungsweite aller Zerteilungen

Hauptidee

Viele NP-schwere Probleme sind in Linearzeit lösbar, wenn die Baumweite des Graphen konstant ist. \rightarrow Kann man die Baumweite (für bel., festes $k \in \mathbb{N}$) in Linearzeit errechnen?

 Z_2 : $\forall k \in \mathbb{N}$: ∃ Linearzeitalgorithmus welcher für G = (V, E) prüft ob die Baumweite max. k ist und eine Zerteilung ausgibt.

Für k = 1, 2, 3, 4 existieren schon Linearzeitalgorithmen

Algorithmus

2 Schritte:

- 1. Für gegebenen Graph G = (V, E) und geg. $k \in \mathbb{N}$ eine Zerteilung mit max. Baumweite linear in k finden
- 2. Graph-Zugehörigkeit zur Klasse "Graphen mit Baumweite k" prüfen

Problem "Für einen Graph G = (V, E) und ein $k \in \mathbb{N}$: Ist die Baumweite von G maximal k?" ist NP-Vollständig für bel. k