Review: Deep Learning for Population Genetic Inference

(Sheehan & Song)

Presented by Kartik Sawhney, Patrick O'Grady, Rishab Mehra, Thomas Liu & Alexandra Bourdillon

Population Genetics

Population Genetics

Darwinian Evolution

The Hardy-Weinberg Principle

Evolution stagnates when...

- No mutations
- Random mating only
- No immigration/emigration
- No natural selection factors
- Large population

Mendelian Genetics

Statistical Inference

- Genealogy provides insight about evolutionary + demographic forces
- Evolutionary forces include:
 - Mutation, recombination, types of selection
- Demographic forces include:
 - Changes in population size, migration, isolation

Our History

Types of Positive Selection

- Hard Sweep: A beneficial mutation
 - Rare but frequency increases rapidly from single copy
- **Soft Sweep:** A previously neutral mutation becomes favorable due to environmental change
 - Multiple copies contribute to genetic spike
- Balancing Selection: Higher than expected ratio of gene is maintained
 - i.e. due to heterozygote advantage
 - Allows for genetic polymorphism
- Researchers also used * Neutral Selection

Core Challenge

- **Joint inference of natural selection and demography** (in the form of a population size change history)
- Separate the **global nature of demography** from the **local nature of genetic selection** without needing sequential / distinct steps

Core Challenge

- **Joint inference of natural selection and demography** (in the form of a population size change history)
- Separate the global nature of demography from the local nature of genetic selection without needing sequential / distinct steps
- Computational & theoretical constraints due to complex population genetic models
- Relatively unexplored applications of DL in population genomics
- Demography and selection can leave similar genomic signals.
- Lack of existing research focus on joint inference of these two factors

Current Landscape

- Existing machine learning focus on selective forces only; particularly on classifying genome into neutral vs. selected regions
- Methods highlighting robustness to various demographic scenarios, not inferring anything about selection or demography
- Implicit assumption about the irrelevance of selection on demography

Core Challenge

African Drosophila melanogaster

Core Challenge

African Drosophila melanogaster

- Pervasive selection of their genome confounds demographic analysis; vice versa
- Existing literature and research of their demography to serve as benchmark and basis of comparison for deep learning models

Methods

Approximate Bayesian Computation (ABC)

Deep Learning

Approximate Bayesian Computation (ABC)

- Simulate many datasets under a prior for the desired parameters of interest
- Reduce datasets to vector of summary statistics
- Find closest summary statistics to that of target dataset
- Use corresponding parameters to find the posterior distribution

Advantages and Disadvantages of ABC

Advantages

- Easy to use
- Returns a posterior distribution

Disadvantages

- Curse of dimensionality
- Uses rejection algorithm
- Challenging to use for a combination of continuous parameters and categorical distributions

Deep Learning

Why Deep Learning?

- Makes full use of datasets
- Handles correlation between summary statistics
- Produces interpretable features

Dataset

3 Population Sizes:

- Recent Effective Population (N1)
- Bottleneck (N2)
- Ancient (N3)

4 Selection Classes:

- No Selection (Neutral)
- Positive Directional Selection (Hard Sweep)
- Selection on standing Variation (Soft Sweep)
- Balancing Selection

Simulations

- Used msms to simulate demographic histories
- Downsampled the Zambia Drosophila Melnogaster dataset
- Repeated 2500 times
- Sampled 160 regions for each demographic history
- This led to a total of 400,000 datasets

Pre-training using autoencoders

Why?

Random initialization leads to falling into local minimas

Details

- Activation Function: Logistic Function
- Sparsity Constraint
- Used the learned weights as initial weights of the first layer

Training Details

Output: 2 response variables

Layers: 4

Activation Function: Logistic

Function

Loss: L2 squared

Output Layer:Linear activation function for population size and Softmax for selection

Input: 5 statistics from each dataset Optimization Technique: BFGS (Newton Method Variant)

Testing

Effective Population Sizes:

- Average stat: we average the statistics for each region within the dataset (corresponding to the same demography), then run this average through the trained network.
- Final: we run the statistics for each region through the trained network separately, then average the results.
- Neutral regions: we use the same method as Final, but instead of using all the regions, we only use the ones we predict as being neutral.

Selection class prediction:

We obtain a probability distribution over the classes for each region, then select the class with the highest probability.

Results

Datacat

Final prediction

Neutral regions prediction

Wethou	N ₁ error	N ₂ error	N ₃ error
ABCtoolbox	0.062	0.043	0.218
Deep learning	0.044	0.028	0.221
ABCtoolbox	0.161	0.035	0.311
Deep learning	0.065	0.055	0.319
N ₁ e	rror	N ₂ error	N ₃ error
0.051		0.074	0.487
	ABCtoolbox Deep learning ABCtoolbox Deep learning N ₁ e	ABCtoolbox 0.062 Deep learning 0.044 ABCtoolbox 0.161 Deep learning 0.065 N ₁ error	ABCtoolbox 0.062 0.043 Deep learning 0.044 0.028 ABCtoolbox 0.161 0.035 Deep learning 0.065 0.055 N ₁ error N ₂ error

0.098

0.072

N. arror

N- arror

0.077

0.083

N. arror

0.569

0.566

Method

Results (Cont.)

Initialization Type	N ₁ error	N ₂ error	N ₃ error
Random	0.429	0.421	0.710
Autoencoder	0.061	0.166	0.577

	Neutral	Called Class		
True Class		Hard Sweep	Soft Sweep	Balancing
		Random Ir	nitialization	
Neutral	1.000	0.000	0.000	0.000
Hard Sweep	0.978	0.007	0.000	0.015
Soft Sweep	1.000	0.000	0.000	0.000
Balancing	1.000	0.000	0.000	0.000
		Autoencoder	Initialization	
Neutral	1.000	0.000	0.000	0.000
Hard Sweep	0.145	0.831	0.004	0.021
Soft Sweep	0.011	0.001	0.987	0.000
Balancing	0.030	0.028	0.001	0.941

doi:10.1371/journal.pcbi.1004845.t006

Runtime

Task	ABCtoolbox	Deep Learning	
Simulating data	370 hrs (10 ~ 15 cores)	370 hrs (10 ~ 15 cores)	
Computing summary statistics	1800 hrs (1 core)	1800 hrs (1 core)	
Demography only (1000 × 160 datasets)			
Training and testing (filtered statistics)	114 hrs (1 core)	3.75 hrs (20 cores)	
Training and testing (unfiltered)	336 hrs (1 core)	11 hrs (20 cores)	
Demography & selection (2500 × 160 datasets)			
Training	N/A	74 hrs (20 cores)	
Testing	N/A	3 min (1 core)	

Summary

<u>Goal of Paper:</u> Demonstrate potential of deep learning in population genomic analysis

Why?:

- Can build model to interpret complex population model better than direct statistical inference (difficult theoretically and computationally)
- Distinguish uninformative and informative summary statistics

Takeaways

- Could combine with other methods to compare results
- Using deep learning to classify regions as neutral or selected is very appealing for subsequent analysis
- Deep learning can make efficient use of even a limited number of simulated datasets

Future Work

- Learn how various summary statistics better relate to parameters
- Incorporate datasets with wider range of selection onset times
- Effect of ratio of recombination to mutation rate on simulations
- Use ABC MCMC to simulate data
- Use deep learning to select informative statistics for ABC
- Apply techniques to population structure and splits

Future Work (cont.)

- Use deep learning for continuous parameter inference in population genetics and other fields
- Combine "black-box" models with coalesent modeling we know to be realistic

Citations

Sheehan, Sara, and Yun S. Song. "Deep learning for population genetic inference." PLoS Comput Biol 12.3 (2016): e1004845.

Zhou H, Hu S, Matveev R, Yu Q, Li J, Khaitovich P, et al. A Chronological Atlas of Natural Selection in the Human Genome during the Past Half-million Years; 2015. BioRxiv preprint, http://dx.doi.org/10. 1101/018929.

For Icons: https://thenounproject.com