Probabilités IV

MINES ParisTech

2 décembre 2022 (#524f182)

Question 1 (réponse multiple)	Soit $(X_n)_{n\in\mathbb{N}^*}$	une suite	de v.a.	i.i.d.	de loi
$\Gamma(\alpha, \theta)$ et $M_n = \frac{1}{n} \sum_{i=1}^n X_i$					
\square A: $M_n \to \frac{\alpha}{\theta}$ p.s. quand $n \to$	$-\infty$				

$$\square$$
 A: $M_n \to \frac{\alpha}{\theta}$ p.s. quand $n \to \infty$

$$\square B: M_n \xrightarrow[n \to \infty]{\theta} \frac{\alpha}{\theta}$$

$$\square \ C : \sqrt{n}(M_n - \frac{\alpha}{\theta}) \xrightarrow[n \to \infty]{\mathcal{L}} Y \sim \mathcal{N}(0, \frac{\alpha}{\theta^2})$$

$$\square D: M_n \xrightarrow[n \to \infty]{\mathcal{L}^1} \xrightarrow[\theta]{\alpha}$$

Question 2 (réponse multiple) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de v.a. i.i.d. de même loi qu'une variable X de fonction de répartition F et $a \in]0,1[$

$$\square$$
 A: $X_n^a \to \mathbb{E}(X^a)$ p.s. quand $n \to \infty$

$$\square$$
 C: $\mathbb{P}(X_n \leq a) \to 0$ quand $n \to \infty$

$$\square \ \mathcal{D} : \mathbb{E}(1_{a,+\infty}[(X)) = 1 - F(a)$$

Question 3 (réponse multiple) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de v.a. indépendantes de loi $\mathcal{E}(\lambda_n)$ où λ_n est une suite réelle qui converge vers 1.

$$\square$$
 A: $X_n \xrightarrow{\mathbb{P}} \mathbb{I}$

$$\Box \ \mathbf{A} : X_n \xrightarrow[n \to \infty]{\mathbb{P}} 1$$

$$\Box \ \mathbf{B} : \frac{1}{n} \sum_{i=1}^{n} X_i \to 1 \text{ p.s. quand } n \to \infty$$

$$\Box \ \mathbf{C} : \mathbb{E}(X_n) \to 1 \text{ quand } n \to \infty$$

$$\Box \ \mathbf{D} : X_n \xrightarrow[n \to \infty]{\mathcal{L}} Y \sim \mathcal{E}(1)$$

$$\square$$
 C: $\mathbb{E}(X_n) \to 1$ quand $n \to \infty$

$$\square \ \mathrm{D}: X_n \xrightarrow[n \to \infty]{\mathcal{L}} Y \sim \mathcal{E}(1)$$

Question 4 (réponse multiple) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de v.a. indépendantes de loi de Cauchy, dont on rappelle la densité $f(x) = \frac{1}{\pi(1+x^2)}, x \in \mathbb{R}$.

$$\Box \ \mathbf{A} : \frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - 1 \right) \xrightarrow[n \to \infty]{\mathcal{L}} Y \sim \mathcal{N}(0, 1)$$

\(\Bigcap \mathbf{B} : \frac{1}{n} \sum_{i=1}^{n} X_i \to 0 \text{ p.s. quand } n \to \infty
\(\Bigcap \mathbf{C} : \mathbf{E}(X_n) \to +\infty \text{ quand } n \to \infty

$$\square$$
 B: $\frac{1}{n} \sum_{i=1}^{n} X_i \to 0$ p.s. quand $n \to \infty$

$$\square$$
 C: $\mathbb{E}(X_n) \to +\infty$ quand $n \to \infty$

Question 5 (réponse multiple) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de v.a. indépendantes et une v.a. X, toutes définies sur le même espace probabilisé, telles que $\forall \varepsilon > 0, \, \mathbb{P}(|X_n - X| > \varepsilon) \le \frac{1}{\varepsilon^2 n^2}.$

- $\Box A: X_n \xrightarrow[n \to \infty]{\mathcal{L}} X$ $\Box B: X_n \xrightarrow[n \to \infty]{\mathbb{P}} X$ $\Box C: X_n \xrightarrow[n \to \infty]{\mathbb{P}} X \text{ p.s.}$ $\Box D: \text{Rien de tout cela}$