Name: Prerna Sunil Jadhav

Sap 10: 60004220127

Batch: 622

course: Advance Algorithm lab

EXP 1C

AIM: Perform Amortized Analysis using Potential Method.

THEORY: According to computational complexity theory, the potential method is defined as:

A method implemented to analyze the amortized time and space complexity of a data smichne, a measure of its performance over sequence of operations that diminates the cost of infrequent but expensive operations.

from the algorithm's or data smcture's present State.

The potential technique chooses a function of that changes the data smowner states into non-negetive values.

Junchion should be able to maintain the brack of the prechanged time.

an be saved up to cover expensive operation

- Intriguingly, though it simply depends on of the history of the computation that led to that state. - we then define the amortized time of an operation as: 1/49 $c + \phi(a) - \phi(a)$, where is the original cost of the operation and a and a' are the states of the data smoture before and after the operation, Mind of respectively to considerate example it a As a result, the amorbized time is calculated as the actual time plus the prospective time and space complexity of spans smit -> The amortized time of each operation should ideally se low when defined conclusion: Hence, we studied the potential oursent powherd, brothord, tradeulated theretage . The petential technique chooses a fulction of that charges the data showness states into ? At each stage in the computation, the fotonical of unchion should be able to maintee a the hack of the predomed time. It calculates the amount of it me that can be saved up to cover expensive sounding

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Academic Year: 2022-2023

Name:	Prerna Sunil Jadhav
Sap Id:	60004220127
Class:	T. Y. B. Tech (Computer Engineering)
Course:	Advance Algorithm Laboratory
Course Code:	DJ19CEL602
Experiment No.:	01-C

AIM: Perform Amortized Analysis of Multipop / Dynamic Tables / Binary Counter using Aggregate, Accounting and Potential method. (Amortized Analysis)

1C) Amortized Analysis (Potential method)

CODE:

```
def potential(n):
    size = 1
    total = 0
    dcost = 0
    icost = 0
    bank = 0
    phi = 0
    ci = 0
    phi_prev = 0
    print("Elements\tDoubling Copying Cost\tInsertion Cost\tTotal
Cost\t\tBank\t\tSize\t\tPhi\t\tCi")
    for i in range(1, n + 1):
        icost = 1
        if i > size:
            size *= 2
            dcost = i - 1
        total = icost + dcost
        phi = 2 * i - size
        ci = total + phi - phi_prev
        bank += (3 - total)
        print(i, "\t\t\t", dcost, "\t\t", icost, "\t", total, "\t\t\t",
bank, "\t\t", size, "\t\t", phi, "\t\t", ci)
        icost = 0
        dcost = 0
        phi_prev = phi
potential(10)
```


Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Academic Year: 2022-2023

OUTPUT:

CONCLUSION: Hence we studied amortized analysis-Potential method.