Cours N°C5 : Transformations associées aux réactions acide-base en solution aqueuse –Titrages acido-basiques

Introduction: Le pH de l'eau d'un aquarium doit être maintenu entre 6,5 et 7,5 ; car la diminution du pH favorise la multiplication du nombre de quelques bactérie qui consomme le dioxygène dissout dans l'eau et l'augmentation du pH favorise la sédimentation du carbonate de calcium sur les feuilles des plantes qui existent dans l'aquarium.

- Comment ces valeurs peuvent-elles être ajustées ?

I. Autoprotolyse de l'eau

Activité 1 : Mesurons la conductivité d'une solution d'eau distillée (qui à priori ne contient pas d'ions). La mesure de conductivité obtenue n'est pas nulle, à 25°C, la conductivité de l'eau distillée est de 5,5 .10⁻⁶ S/m.

L'eau H_2O : une base pour le couple H_2O / OH et acide pour le couple H_3O^+ / H_2O . L'eau, espèce amphotère,

joue donc un double rôle d'acide et de base, selon l'équation :

 $2 H_2 O_{(1)} = H_3 O^+_{(aq)} + OH^-_{(aq)}$: Cette réaction est appelée autoprotolyse de l'eau.

Exemple: On considère 1,0 L d'eau, on donne la masse volumique de l'eau $\rho_0 = 10^3 g/L$

Equation de la réaction		$2 H_2 O_{(l)} = H_3 O_{(aq)}^{\dagger} + O H_{(aq)}^{\dagger}$							
Etat	Avancement	Quantités de matières en mol							
Etat initial	0	n		0	0				
Etat en cours de transformation	x	n -2x		X	X				
Etat final	χ_f	n-2x _f		Xf	Xf				

Quantité de matière initiale n :	Détermination de x _{max} :	Détermination de x _f :

Détermination de τ:		
La réaction d'autoprotolyse de l'eau est ur	ne transformation	
2- Le produit ionique de l'eau :		
Le produit ionique de l'eau : c'est la cons	stante d'équilibre associée à l'équation	d'autoprotolyse de l'eau. Cette
constante est notée $\mathbf{K_e}$.		
-1 K _e s'exprime sans unité et les concentrati	ons sont exprimées en mol.L .	
- La constante d'équilibre est indépendar	nte de l'état initial (de la concentration	initiale) et ne dépend que de la

température.

- Pour toute solution aqueuse à 25°C, K_e = 1,0.10⁻¹⁴. (K_e croît lorsque la température augmente).

	Exemples
On note:	

	Température (°C)	0	25	50
Ī	Ke		1,0.10 ^{- 14}	5,5.10 - 14
	$pKe = - log K_e$	15	14	

On prend le logarithme de la relation	$K_e = [H_3O^+].[HO^-]. \Rightarrow log K_e = log$	$[H_3O^{\dagger}] + \log[HO^{\dagger}]$
- pH des solutions aqueuses :		
e pH des solutions aqueuses usuelles	s'étend de 0 à 14.	
Solution aqueuse acide	Solution aqueuse neutre	Solution aqueuse basique
$[H_{3}O^{+}] > [OH^{-}]$ $[H_{3}O^{+}] . [H_{3}O^{+}] > [OH^{-}] . [H_{3}O^{+}]$ $[H_{3}O^{+}]^{2} > K_{c}$ $-log[H_{3}O^{+}]^{2} < -logK_{c}$ $pH < \frac{p\kappa_{c}}{2}$		[H_3O^+]<[OH'] [H_3O^+].[H_3O^+]<[OH'].[H_3O^-] [H_3O^+] ² < K_c -log[H_3O^+] ² >-log K_e pH> $\frac{pK_c}{2}$
A 25°C; pH<7		A 25°C; pH>7
Echelle de pH :	Milieu_neutre	
☐H₃O+]>[OH	7 Mill H⁻] [H₃O⁺]=[OH⁻] [H	ieu basique 14 pH 30 ⁺]<[OH ⁻]
I. Constante d'acidité K _A	ide	ieu basique 14 pH ₃ O ⁺]<[OH ⁻]
I. Constante d'acidité K _A) Constante d'acidité K _A		
I. Constante d'acidité K _A) Constante d'acidité K _A	nte d'équilibre associée à l'équation de la	
I. Constante d'acidité K_A Constante d'acidité K_A a constante d'acidité K_A est la constante d'acidité K_A	nte d'équilibre associée à l'équation de la q) + $\mathrm{H_3O}^+_{(\mathrm{aq})}$	
I. Constante d'acidité K_A Constante d'acidité K_A a constante d'acidité K_A est la constant quation: $AH_{(aq)} + H_2O_{(l)} = A^*_{(al)}$ Constante d'acidité:	nte d'équilibre associée à l'équation de la q) + H ₃ O ⁺ _(aq) En géné	réaction d'un acide avec l'eau
I. Constante d'acidité K_A Constante d'acidité K_A a constante d'acidité K_A est la constant quation: $AH_{(aqq)} + H_2O_{(l)} = A^*_{(aqq)}$ Constante d'acidité: Le pK_A est défini par la relation:	nte d'équilibre associée à l'équation de la q) + H ₃ O ⁺ _(aq) En géné	réaction d'un acide avec l'eau rale :
I. Constante d'acidité K_A Constante d'acidité K_A a constante d'acidité K_A est la constant quation: $AH_{(aqq)} + H_2O_{(l)} = A^*_{(aqq)}$ Constante d'acidité: Le pK_A est défini par la relation:	nte d'équilibre associée à l'équation de la q) + H ₃ O ⁺ _(aq) En géné	réaction d'un acide avec l'eau rale :
I. Constante d'acidité K_A Constante d'acidité K_A a constante d'acidité K_A est la constant quation: $AH_{(aq)} + H_2O_{(l)} = A^*_{(al)}$ Constante d'acidité: Le pK_A est défini par la relation: Exemple	nte d'équilibre associée à l'équation de la q) + H ₃ O ⁺ (aq) En géné	réaction d'un acide avec l'eau rale:
I. Constante d'acidité K_A Constante d'acidité K_A a constante d'acidité K_A est la constant quation : $AH_{(aq)} + H_2O_{(l)} = A^*_{(a}$ Constante d'acidité :	nte d'équilibre associée à l'équation de la q) + H ₃ O ⁺ (aq) En géné ou	réaction d'un acide avec l'eau rale:
I. Constante d'acidité K_A Constante d'acidité K_A a constante d'acidité K_A est la constant quation : $AH_{(aq)} + H_2O_{(l)} = A^*_{(a}$ Constante d'acidité :	nte d'équilibre associée à l'équation de la q) + H ₃ O ⁺ (aq) En géné ou	réaction d'un acide avec l'eau rale :
I. Constante d'acidité K_A Constante d'acidité K_A a constante d'acidité K_A est la constant quation : $AH_{(aq)} + H_2O_{(l)} = A^*_{(a}$ Constante d'acidité :	nte d'équilibre associée à l'équation de la q) + H ₃ O ⁺ (aq) En géné ou	réaction d'un acide avec l'eau rale :

3-Comparaison le comportement d	'acide et	base er	solution						
3-1-Comparaison des solutions aci	des.								
Activité 2:On considère deux solutions ac	eides (S ₁) et	(S ₂) de 1	même conce	ntrations (C= 1,0.	10 ⁻² mol.L ⁻¹	à tempé	rature 2	25°C
(S₁): solution d'acide éthanoïque CH₃COC									
(S_2) : solution d'acide méthanoïque HCOO	$OH_{(aq)} de p$	$k_{A2}=3,8$	$et pH_2 = 2$	2,6					
1. Calculer le taux d'avancement final	t de chaque	e solutio	n. Quel est	l'acide le	plus s	oluble dans	l'eau ?		
Le tableau d'avancement d'un acide AH a	vec l'eau es	st:							
	Equation	de la réa	ction H	$A_{(aq)}$ +	H_2O_0	$A_{(a)} \rightleftharpoons A_{(a)}^{-}$	$_{(q)}+I$	$I_3O^+_{(aq)}$)
	Etat du système	(mol)							
	Etat initial	Х	= 0	C.V	En	excès	0	0	
	Etat final	Х	té q (C.V- xé <i>q</i>	En	excès	xé q	xé q	1
Pour des solutions d'acides de mêmes est celui dont le taux d'avancement fina ou de celui de pKA	concentra al d la consta	tions, <u>1'</u>	acide le plus	s fort (: c	ıui disa pour le	equel le pH			- 1
Exemple: L'acide est plus fort que	e l'acide	·· L'a	cide	τ	pН	C(mol/L)	pK_A	K	A
3-2-Comparaison des solutions bas	sigues.	A_1 :	: C ₆ H ₅ COOl	H 13%	3,1	10 ⁻²	4,20	6,3.1	0^{-5}
Activité 3	3141000	A_2	: CH ₃ COOH	I 4%	3,4	10-2	4,75	1,8.1	.0-5
On considère deux solutions basiques (S ₁)	et (S ₂) de m	ême con	centration C	$= 1,0.10^{-2}$	mol.I	-1 à tempéra	ature 25	°C.	
- (S_1) : solution d'ammoniac $NH_{3(aq)}$ de - (S_2) : solution de méthyle-amine CH_3I Données: $K_* = [H_3O^+]_{eq} \cdot [HO^-]_{eq}$	$ m NH_{2(aq)}$ de $ m pK_0$	$pk_{A2} = 1$ $= 14$	0,7 et pH	2=11,4					
1.Calculer le taux d'avancement final Le tableau d'avancement d'une base B av	-		ion. Quelle	est la bas	se le p	olus soluble	e dans l	'eau ?	
	E	quation o	le la réaction	$B_{(aa)}$	+H	$C_2O_{(I)} \rightleftarrows$	$BH_{(aa}^+$, + H	$O_{(aa)}^-$
		at du tème	Avancemen	130000		antité de ma	1.5 55 67	\$77	1033
	···· Eta	at initial	x = 0	C	:.V	En excès		0	0
	Eta	at final	xé q	C.V	- xé q	En excès		xé q	xé q
➤ La base le plus soluble da	ans l'eau, e	st							
Prof: NIDAL NACEIRI MRABTI	/2 BAC	BIOF C	ours-Activit	tés- Exerc	cices /	,	Pa	ge 127	_

est celle dont le taux d'avancement final est	ions, <u>la base le plu</u>	_		_		ıns l'eau)
ou de celle de pK _A est			•	-		.).
Exemple : La base est plus fort que la base						
Exemple: La vasc est plus fort que la vasc	La base	τ	pН	C(mol/L)	pK _A	K _A
	$B_1: CH_3NH_2$	25%	11,4	10-2	10,7	2.10 ⁻¹¹
	$B_2: NH_3$	4%	10,6	10 ⁻²	9,20	6,3.10 ⁻¹⁰
III. Diagramme de prédominance des esp 1. Diagramme de prédominance : Relation liant le pH et le pK _A est $pH = p$ $Si pH = pK_A log \frac{B}{A} = o \Rightarrow \frac{B}{A} = 1$ $Si pH < pK_A log \frac{B}{A} = o \Rightarrow \frac{B}{A} = 1$ $Si pH > pK_A log \frac{B}{A} = 0$ $Si $	$pK_A + \log \frac{[B]_{eq}}{[A]}$ $1 \Rightarrow [B] = [A]$ $pH = pK_A$ $A = [B]$ solution d'acide m	domaine de la b	de pré ase B	dominance		
2. Diagramme de répartition : On considère une solution contenant l'acide A et sa base. On appelle pourcentage de l'acide A dans la solution. On appelle pourcentage de la base B dans la solution.	, la grandeur :	30 40	2 a Aprédor	%A 6 0 pK 3 3 5	U prédo	B H H

2	Amulianting		llin dia ataur	aalamá
٦.	Application	CAS HE	r maicateur	colore.
\sim	Tippiicution	cub uc.	I III aI catear	COIOI C.

Les indicateurs colorés acido-basique sont constitués par des couples acide/base : HIn/In dont les espèces conjuguées ont des teintes différentes dans une solution aqueuse.

L'équation de la réaction de **HIn** avec l'eau est :

$$Hln + H_2O$$
 \longrightarrow $ln^- + H_3O^+$

$$In^{-} + H_{3}O^{+}$$

Elle se caractérise par une constante d'acidité :

- La solution prend la teinte de la forme basique In

La solution prend la teinte de la forme acide HIn

Dans le cas où [HIn] = [In⁻] aucune forme ne prédomine, la solution prendra une couleur appelée teinte sensible (mélange des couleurs dues à la forme acide et à la forme basique), si :.....

Remarque: On appelle cette zone $pK_{A,Ind} - 1 < pH < pK_{A,Ind} + 1$: zone de virage de l'indicateur coloré.

Exemple : Diagramme de prédominance pour l'hélianthine:

Exemples

Indicateur	Coule	eur	nV	Zama da simura
mulcalcur	Acide Base		pK _{Alnd}	Zone de virage
Hélianthine	Jaune orangé	rouge	3,7	3,1 – 4,4
Vert de Bromocrésol	jaune	bleu	4.7	3.8 - 5.4
Rouge de Méthyle	jaune	rouge	5.1	4.8 - 6.0
Bleu de Bromothymol	jaune	bleu	7.0	6.0 - 7.6
phénolphtaléine	incolore	rose-violet	9.4	8.2 - 10.0

IV- Constante d'acidité associée à une réaction acido-basique.

Soit une réaction acido-basique entre l'acide A_1H d'un couple A_1H/A_1 de constante d'acidité K_{A1} et la base A_2 d'un couple A₂H/A₂ de constante d'acidité K_{A2}

Equation de la réaction :

$$A_1H + A_2^- = A_1^- + A_2H$$

Déterminons la constante d'équilibre de cette réaction :

Exercice d'application Soit une équation de réactions entre l'acide éthanoïque et l'ammoniac est :

$$CH_3COOH_{(aq)} + NH_{3(aq)} = NH_{4(aq)}^+ + CH_3COO_{(aq)}^-$$

Déterminer la constante d'équilibre associée à la réaction

.....

La valeur de la constante : $\frac{NH_{4}^{+}}{NH_{3}}$; $pK_{32} = 9.2$; $\frac{CH_{3}COOH}{CH_{3}COO}$; $pK_{31} = 4.7$ donc K=3,1.10⁴

V-Titrages acido-basiques :

1- Qu'est-ce qu'un titrage acido-basique?

Le dosage (ou titrage) consiste à déterminer <u>la concentration d'une espèce chimique</u> présente dans une solution dite solution titrée en faisant réagir cette solution avec une solution de concentration connue dite solution titrante.

La réaction du dosage doit être :

- Rapide : C'est à dire que l'état final du système doit être atteint dans une courte durée.
- **Totale :** C'est à dire que le réactif limitant est toujours entièrement consommé.
- Unique : la réaction entre l'espèce titrant et l'espèce titré,

VI- Titrage pH-métrique d'une réaction acido-basique:

1 -Dispositif d'un titrage acido-basique suivi par pH-métrie

Pour réaliser le titrage d'un acide par une méthode pH-métrique, on réalise un montage permettant, tout au long du titrage, de mesurer le pH de la solution contenue dans le bécher ainsi que le volume de soude versé.

Activité 1

- On introduit dans un bécher un volume V_A=20cm³, mesuré à la pipette jaugée, de solution d'acide éthanoïque CH₃COOHde concentration inconnue C_A
- La burette graduée contient de la soude de concentration $C_B = 0.020 \; \mathrm{mol} \; / \; \mathrm{L}.$
- Un pH-mètre, préalablement étalonné, permet de suivre le pH de la solution après chaque ajout d'hydroxyde de sodium.
- Toutes les mesures sont faites à 25 °C.

On verse progressivement la soude (Hydroxyde de sodium $(Na^+_{(aq)} + OH^-_{(aq)})$) et, après chaque ajout, on mesure le pH de la solution. On obtient les résultats suivants :

		1															15	
V _B	3,3	3,8	4,1	4,4	4,7	5	5,2	5,4	5,6	6,2	6,5	8,3	10,1	10,6	10,8	11	11,2	11,3

La courbe de titrage pH-métrique est la courbe donnant les variations du pH en fonction du volume V_B de solution

titrant versée. La courbe présente 3 parties distinctes :

- Pour V_B variant de 0 à 12mL, le pH varie peu, le réactif limitant est OH^- , le réactif en excès CH_3COOH impose un pH acide.

- Pour V_B variant de 12 à 13mL, on observe une importante variation de pH, la courbe change de concavité.
- **Pour V**_B **supérieur à 16mL**, le pH augmente lentement vers la valeur pH = 12 (correspondant au pH de la solution de soude ajoutée). Le réactif limitant est CH₃COOH, le réactif en excès est OH $^{-}$. Le milieu est de plus en plus basique.

3- L'équivalence

Définition:

- A l'équivalence, les réactifs (réactif titrant et le réactif titré) sont intégralement consommés.
- L'équivalence est atteinte lorsque le mélange devient stœchiométrique.
 - -Avant l'équivalence, c'est le **réactif titrant** qui est limitant.
 - Après l'équivalence, c'est le **réactifs titré** qui est limitant

<u>La suite d'activité 1</u>: Titrage l'acide éthanoïque CH₃COOH_{(aq} par l'hydroxyde de sodium (Na⁺(aq) + OH⁻ (aq))

1. Ecrire l'équation de la réaction du titrage.

2. Compléter le tableau d'avancement ci-dessous :

Equation de la réaction		$CH_3COOH_{(aq)} + OH^{(aq)}> CH_3COO^{(aq)} + H_2O_{(l)}$								
Etat	Avancement Quantités de matières en (mol)									
Etat initial	0	•••••								
Etat en cours de transformation	Х		•••••		• • • • •					
Etat d'équivalence	X_E		••••		••••					

3. Déterminer la relation d'équivalence, et en déduire l'expression concentration de C_{A} .					
4- Détermination du point équivalent.					
Le point E d'équivalence est un point d'inflexion pour la courbe pH=f(V) autour duquel la courbe est symétrique					
A partir de la courbe $pH = f(V_B)$, (ci-dessous). Déterminer le points d'équivalence $(V_{BE}; pH_E)$. Puis calculer la concentration C_A .					

La méthode des tangentes	d'inflexion en mathématiques). En ce point, le coefficient directeur de la tangente passe par un maximum.		
la méthode des tangentes parallèles (schéma ci- dessous): Les droites T ₁ et T ₂ , parallèles, sont tangentes à la courbe. La droite T ₂ est équidistantes de T ₁ et T ₂ . Le point d'équivalence E est le point d'intersection de la courbe et de la droite T ₃			
12 pH (Y ₁) 10 pH (Y ₁) 10 pH (Y ₂) 10 pH (Y ₃) 10 pH	12 pH 10 8 6 4 2 0 5 10 15		

VIII- -Suivi colorimétrique d'un titrage acido-basique :

1-Principe

- S'il s'agit uniquement de repérer V_E, on peut utiliser un indicateur coloré acido-basique convenablement choisi. Cela évitera de mesurer le pH tout au long du titrage.
- Dans un titrage colorimétrique, l'équivalence est repérée par le changement de couleur d'un indicateur coloré ajouté dans la solution titrée.

2- Choix de l'indicateur

On choisit un indicateur coloré tel que le point équivalent se situe dans sa zone de virage de couleur (la zone de virage contient le pH_E du point équivalent). La zone de virage de l'indicateur coloré qui contient la valeur du pH de l'équivalence est l'indicateur convenable pour le titrage colorimétrique.

<u>Exemple</u>: D'après l'Activité 1 et le tableau suivant. Choisir, en justifiant la réponse, l'indicateur coloré convenable pour le repérer l'équivalence dans le titrage colorimétrique.

Indicateur coloré	Rouge de crésol	BBT	phénolphtaléine
zone de virage	7,2 - 8,8	7,6 - 6,0	10,0 - 8,2

3-Taux d'avancement final des réactions de titrage

On met dans un bécher un volume $V_A=20,0$ mL de solution d'acide éthanoïque de concentration $C_A=10,0$ mmol.l⁻¹. On y ajoute un volume $V_B=5,0$ mL de solution d'hydroxyde de sodium de concentration $C_B=20,0$ mmol.l⁻¹.

L'équation de la réaction de titrage est : $CH_3COOH_{(aq)} + OH_{(aq)}^- \rightarrow CH_3COO_{(aq)}^- + H_2O_{(l)}^-$

- 1. A partir de la courbe $pH = f(V_B)$ d'activité 1, déterminer la valeur de pH à volume $V_B=5,0mL$.
- 2. En comparant le volume V_B avec V_{BE} : et précisé le réactif limitant dans ce cas.

3.	Compléter	Le tableau	d'avancement	ci-dessous:
----	-----------	------------	--------------	-------------

Equation de la réaction		CH ₃ COOH (a)	q) + OH ⁻ (aq)	->	CH ₃ COO (aq)	+ H ₂ O _(l)
Etat	Avancement	Qı	uantités de mat	ièr	es en (mol)	
Etat initial	0					
Etat intermédiaire		•••••	•••••		••••	•••••
Etat						

4	A l'aide du tableau d'avancement montrer que $ au=1-rac{(VA+VB)}{2}$. $10^{(pH-pKe)}$
	$C_B.V_B$
• • • •	
• • • •	
• • • •	
• • • •	
• • • • •	
• • • • •	
Cn g	énérale :
	aux d'avancement final de la réaction de titrage pour des différentes volumes $V_B < V_{BE}$ on obtient $\tau = 1$ c'e
	e que la transformation associée à la réaction de titrage acido-basique est toujours totale
	osage d'une base par acide
	vité: Dosage d'une solution d'ammoniac $NH_{3(aq)}$ de concentration C_b et de volume $V_b=10ml$, par une solution
'aci	ide chlorhydrique, de concentration $C_a=10^{-2}$ mol.L ⁻¹ Et on trace le graphe pH=f(V _A) (voir la figure ci-dessous
1 É	Carina 126 arration de la récetion de tituaca.
1-0	crire l'équation de la réaction de titrage:
• • • •	
2-1	Détérminer la concentration C _b
	$pH = f(V_{\bullet})$
	pH (-)
	10 (T ₁) dpH
•••••	dV _e

 $V_A(ml)$

Remarque pH à l'équivalence :

Titrage d'une solution d'acide faible AH par une solution de base forte avec l'ion HO:

L'équation de la réaction est : AH_(aq) + HO^{*}_(aq) →A^{*}_(aq) + H₂O_(l)

La réaction étant totale, à l'équivalence les espèces AH et HO ont totalement disparu.

La solution ne contient alors que la base A' et H_2O . pH > 7.

Titrage d'une solution de base faible A par une solution d'acide fort avec l'ion H₃O⁺:

L'équation de la réaction est : $A^{-}_{(aq)} + H_3O^{+}_{(aq)} \rightarrow AH_{(nq)} + H_2O_{(1)}$

La réaction étant totale, à l'équivalence les espèces A et H₃O ont totalement disparu.

La solution ne contient alors que l'acide AH et H₂O . pH < 7.

Titrage d'une solution d'acide fort (ou base forte) par une solution de base forte (ou acide fort)

L'équation de la réaction est : HO (aq) + H₃O (aq) → 2 H₂O(1)

La réaction étant totale, à l'équivalence les espèces HO et H₃O ont totalement disparu.

La solution ne contient alors que H_2O . pH = 7.

Série N°C5: Transformations associées aux réactions acide-base en solution aqueuse –Titrages acido-basiques

Exercice 1 : Une solution aqueuse d'acide méthanoïque HCO₂H de concentration apportée C = 3, 0×10^{-2} mol/L a un pH égale à 2, 65 à 25°C.

- 1. Écrire l'équation de la réaction de l'acide méthanoïque avec l'eau.
- 2. Déterminer les concentrations des ions oxonium, des ions éthanoates et de l'acide méthanoïque.
- 3. En déduire les valeurs de la constante d'acidité K_A et du pK_A du couple considéré à 25°C.

Exercice 2:

- 1. Écrire les équations de réaction entre :
 - (a) L'acide lactique CH₃CHOHCO₂H et l'ion nitrite NO²⁻;
 - (b) L'acide formique HCO₂H et l'ion hydroxyde HO⁻
- 2. Calculer la constante d'équilibre associée à chacune de ces réactions à 25°C.
- 3. En déduire les valeurs de la constante d'acidité K_A et du pK_A du couple considéré à 25°C.

Données à 25°C:

_		
	$pK_a(CH_3CHOHCO_2H/CH_3CHOHCO^{2-}) = 3, 9$	$pK_a(HCO_2H/HCO^{2-}) = 3, 8$
	$pK_a (HNO_2/NO^{2-}) = 3, 3$	$pK_a(H_2O/HO^-)=14, 0 = pKe$

Exercice3: Acide acétylsalicylique, ou aspirine C₉H₈O₄, noté HA est l'acide conjugué de l'ion acétylsalicylate, C₉H₇O₄⁻ noté A⁻. Le pKa de ce couple vaut 3,5 à 37°C. À cette température, le pH est égal à environ 1, 5 dans l'estomac, 6, 0 au niveau de duodénum et 7, 4 dans le sang.

- 1-Quelle est l'espèce prédominante du couple HA/A dans l'estomac, le duodénum et le sang ?
- 2- Exprimer puis Calculer le rapport $\frac{[A^-]}{[HA]}$ dans l'estomac

Exercice 4 : Le document ci-dessous représente le diagramme de distribution d'un mélange d'acide benzoïque , C_6H_5COOH (aq) , noté HA et d'ion benzoate , $C_6H_5COO^-_{(aq)}$ noté A- à 25°C. il indique les pourcentages d'acide benzoïque et d'ion benzoate en solution , en fonction du pH. La concentration molaire totale apportée en acide et base conjugué = 10 mmol/L . À partir du diagramme :

- 1. Déterminer la valeur du pKa du couple.
- 2. Déterminer les concentrations molaires en acide et base conjugués dans une solution de pH = 5,0.

