

Department of Information Engineering (DEI)

Master degree on ICT for Internet and Multimedia Engineering (MIME)

Internet of Things and Smart Cities 05 – Bluetooth Low Energy (BLE)

Marco Giordani (marco.giordani@unipd.it)

Department of Information Engineering (DEI) – SIGNET Research Group University of Padova – Via Gradenigo 6/B, 35131, Padova (Italy)

Bluetooth

Overview

- Bluetooth is a wireless technology designed to connect devices of different functions such as telephones, notebooks, computers (desktop and laptop), cameras, printers, when they are at a short distance from each other.
 - Initially proposed by Ericsson.
 - Standardized as IEEE 802.15.1.
 - Originally thought as a solution to replace wired connections within computers.
- 3 classes of Bluetooth:
 - Bluetooth Classic (Basic Rate / Enhanced Data Rate BR/EDR).
 - Bluetooth High Speed.
 - Bluetooth Low Energy.

Bluetooth

Applications

Bluetooth Classic (Basic Rate / Enhanced Data Rate – BR/EDR)

- Audio streaming (headphones, speakers, car audio systems, ...).
- Peripheral devices (keyboards, mice, printers, ...).
- File transfers (sending files between phones, computers, and other devices).

Bluetooth High Speed

- (High-resolution) video streaming.
- Tethering (for sharing internet connections between devices).

Bluetooth Low Energy

- Wearables
- Beacons (utilized in proximity marketing and location-based service)
- Smart Home devices

Topology

- Units connect in small networks called piconets (that can be combined to form what is called a scatternet).
 - Each piconet can host from 2 to 8 active devices.
 - Up to 255 in sleep (**parked**) state: synchronized but cannot take part in communication until it is moved to the active state.
 - One unit acts as Master, the others as Slaves.
 - Master manages the channel access by using a polling algorithm.

masteractive slaveparked slavestandby

Frame

- Access code: Synchronization bits and piconet ID.
- Header: 18-bit pattern repeated 3 times.
 - Address (3 bits for $2^3-1=7$ possible destinations in the piconet).
 - Type of message.
 - F: Flow (=1 is receiver cannot accept packets).
 - A: Acknowledgment (Stop and Wait, 1 bit is enough).
 - S: Sequence number (Stop and Wait, 1 bit is enough).
 - HEC: header error correction.

Layers

Radio Layer

- Roughly equivalent to the PHY layer in LANs.
- Three different modulation schemes:
 - Gaussian Frequency Shift Keying (GFSK) with Gaussian Filtering: 1 Mbit/s.
 - **п/4-DQPSK**: 2 Mbit/s.
 - **8-DQPSK**: 3 Mbit/s.

Radio Layer

- Operate in the 2.4 GHz ISM band, divided into 79 channels of 1 MHz each.
- The range depends on the transmission power (up to ~100 m).
- Frequency-Hopping Spread Spectrum (FHSS): Bluetooth hops 1600 times/s frequency used for only 625 μs (dwell time) before it hops to another frequency.
 - This is also to reduce interference, since ISM bands are very crowded.

Radio Layer – FHSS

<u>Problem</u>: where/how to hop? How can two devices know what is the next frequency to hop to? → Bluetooth needs **coordination** and **link establishment** (we'll see.....).

https://www.youtube.com/watch?v=6qNWQxRKoss

Baseband Layer

- Roughly equivalent to the MAC layer in LANs.
- Time Division Duplex (TDD), with slots of 625 μs.
 - Bi-directional data transmission is realized by alternating slots in the two directions.
 - Master to a slave (EVEN slots) or slave to the master (ODD slots).
- Each transmission occurs on a different 1-MHz RF channel, according to a frequency-hopping pattern that is different for each piconet (this is similar to walkie-talkies using different carrier frequencies) → WHERE and HOW?

Baseband Layer: Connection procedure

PHASE 1: Inquiry

- Master initializes the communication link.
- Master establishes the pseudo-random hopping sequence for the piconet.
- Terminals go in sleep mode.

PHASE 2: Paging (it may take a lot of time)

- The Master pages another Slave.
- The Slave sends a reply to the source (Device Access Code (DAC)).
- The Master sends the list of future planned hops of frequency.
- The Slave sends a second DAC to the source.

L2CAP

- Logical Link Control and Adaptation Protocol (L2CAP) is used for multiplexing, segmentation, reassembly, QoS and group management.
- Supports two types of communication:
 - Synchronous Connection Oriented (SCO) (latency more important than integrity).
 - Synchronous, symmetric, connection-oriented service.
 - MAC is deterministic: slots reserved to voice traffic at regular time intervals.
 - Asynchronous Connection-Less (ACL) (integrity is more important than latency).
 - Packet oriented, asymmetric, asynchronous.
 - If a payload encapsulated in the frame is corrupted, it is retransmitted.
 - Packets can be 1, 3 or 5 slot long.
 - Carrier frequency does not change during the transmission in a multislot.
 - Multislot packets reduce overhead due to header and guard time (\sim 259 μ s).

L2CAP ACL

Packets can be 1, 3 or 5 slot long.

Profiles

- Profiles: different application-specific protocol stacks.
- Nearly 40 profiles.
- Some profiles have a quite narrow application score (e.g., headset profile).
- Some profiles support more flexible and general applications (e.g., PAN).
- The networking capability of BR/EDR depends on the profile.

List of Bluetooth profiles

https://en.wikipedia.org/wiki/List of Bluetooth profiles

BLE

Overview

- Bluetooth Low Energy (BLE) is a more recent extension meant specifically for sensors or low-power IoT devices.
- Some differences wrt BR/EDR:
 - Fewer channels: 40 (2 MHz) instead of 79 (1 MHz).
 - 3 (out of 40) advertisement channels for special use.
 - GPSK modulation only.
 - Data rate up to 2 Mbit/s (vs. 1 Mbit/s in GPSK-BR/EDR).
 - Higher data rate results in shorter transmission times → less energy consumption.
 - Lower power consumption.
 - Different codes for error protection.
 - Dwell time for frequency hopping is only determined during connection establishment.

BLE

Communication modes

- In BLE the nodes can assume 4 roles (vs. 2 in BR/EDR):
 - **Broadcaster**: a node which periodically transmits advertisements, but does not allow connections to be established (e.g., iBeacon).
 - **Observer**: a node that just listens for advertisements and does not attempt to open connections (e.g., smartphone with an active localization App).
 - Peripheral: a node which transmits advertisements and may accept connection requests, acting as a Slave.
 - Central: a node which may open connection towards a peripheral, acting as the Master
 once the information relative to a peripheral has been received through advertisements.

BLE

New profiles

- New profiles: Heart Rate, Internet Protocol Support Profile, Mesh Profile...
- Mesh Profile: it allows the creation and management of mesh networks.
 - Some nodes may act as relays.
 - Low Power Nodes: sleep for some time, and wake up periodically to talk with Friend Nodes nearby, which store the message that they could not receive while sleeping.
 - Managed flooding mechanisms to avoid loops.

RN: relay node

GN: gateway node

LPN: low power node

FN: friend node

BR/EDR vs. BLE

Comparison

Feature	BR/EDR	BLE
Power consumption	Higher	Lower
Data rate	Up to 3 Mbps (8-DPSK)	Up to 2 Mbps (GFSK)
Latency	Lower	Higher
Connection Type	Point-to-point	Point-to-point, broadcast, mesh
Use case	Audio, peripherals,	IoT, wearables, sensors
Compatibility	Classic Bluetooth devices	Bluetooth 4.0 and newer