Curs 14

Cuprins

1 Examen

Corespondenţa Curry-Howard-Lambek

Examen

Informatii generale despre examen

- □ 24 iunie
- 2 ore, fizic, în laboratoare/amfiteatre
- □ cu materialele ajutătoare de la curs/seminar/laborator
- 1 punct din oficiu
- condiția minimă pentru a promova: nota examen > 4.99

Informatii generale despre examen

- □ Trebuie să rezolvaţi atât probleme pe calculator, cât şi pe foaie
- □ Dacă doriţi să susţineţi examenul pe laptop-ul personal, vă rugăm să completaţi formularul de mai jos (primul venit, primul servit, în funcţie de numărul de locuri disponibile):
 - seria 23:
 - https://tinyurl.com/4t4y74aa
 - seria 24:
 - https://tinyurl.com/5tu5x2h7
 - seria 25:
 - https://tinyurl.com/3ymm9hsz
- ☐ Termen limită pentru completarea formularelor: 2.06.2022

Structură examen

- □ Partea teoretică (4 puncte) 3 probleme din lista de mai jos:
 □ unificare
 □ deducţie naturală
 □ puncte fixe
 □ rezoluţie
 □ arbori de execuţie şi arbori SLD
 □ paşi în semantica operaţională
 □ substituţii şi β-reduceri în lambda calcul
 □ Partea practică (5 puncte)
 - se dă sintaxa unui limbaj de programare

o problemă tipică de Prolog (2 puncte) o problemă de limbaj de programare (3 puncte)

- să se verifice dacă un şir de caractere este un program corect în limbaj
- să se implementeze un interpretor pentru limbaj

Corespondenţa Curry-Howard-Lambek

Schimbaţi perspectiva

Roger Antonsen Universitatea din Oslo

TED Talk: Math is the hidden secret to understanding the world ... ințelegerea este legată de abilitatea de a-ţi schimba perspectiva.

https://www.ted.com/talks/roger_antonsen_math_is_the_hidden_secret_to_understanding_the_world

Corespondența Curry-Howard-Lambek

Ne vom uita la nişte concepte din trei perspective diferite:

- □ Teoria Tipurilor
- □ Logică
- □ Teoria Categoriilor

```
data Point = Point Int Int
makePoint :: Int -> Int -> Point
makePoint x y = Point x y
getX :: Point -> Int
getX (Point x y) = x
getY :: Point -> Int
getY (Point x y) = y
origin :: Point
origin = makePoint 0 0
```

```
data Point = Point Int Int

makePoint :: Int -> Int -> Point

makePoint x y = Point x y

\frac{x : Int \ y : Int}{makePoint \ x \ y : Point}

getX :: Point -> Int

getX (Point x y) = x

\frac{p : Point}{getX \ p : Int}
```

```
dataPointIntIntmakePoint:: Int-> Int-> PointmakePointx : Inty : IntgetX:: Point-> IntgetX(Pointx y) = xgetY:: Point-> IntgetY:: Point-> IntgetY(Pointx y) = y
```

```
data Point = Point Int Int

makePoint :: Int -> Int -> Point

makePoint x y = Point x y

getX :: Point -> Int

getX (Point x y) = x

\frac{p : Point}{getX p : Int} (Point_{E_1})

getY :: Point -> Int

getY (Point x y) = y

\frac{p : Point}{getY p : Int} (Point_{E_2})
```

$$\frac{x: Int \quad y: Int}{makePoint \ x \ y: Point} \ (Point_{I}) \qquad \qquad \frac{a: A \quad b: B}{\langle a,b\rangle: A\times B} \ (\times_{I})$$

$$\frac{x : Int \quad y : Int}{makePoint \ x \ y : Point} \ (Point_{I})$$

$$\frac{a : A \quad b : B}{\langle a, b \rangle : A \times B} \ (\times_{I})$$

$$\frac{p : Point}{getX \ p : Int} \ (Point_{E_{1}})$$

$$\frac{p : A \times B}{fst \ p : A} \ (\times_{E_{1}})$$

$$\frac{x : Int \quad y : Int}{makePoint \ x \ y : Point} \ (Point_{I}) \qquad \qquad \frac{a : A \quad b : B}{\langle a, b \rangle : A \times B} \ (\times_{I})$$

$$\frac{p : Point}{getX \ p : Int} \ (Point_{E_{1}}) \qquad \qquad \frac{p : A \times B}{fst \ p : A} \ (\times_{E_{1}})$$

$$\frac{p : Point}{getY \ p : Int} \ (Point_{E_{2}}) \qquad \qquad \frac{p : A \times B}{snd \ p : B} \ (\times_{E_{2}})$$

$$>$$
 let f = $(\xspace x -> x * 3)$:: Int $->$ Int

```
[x:Int]
> let f = (\x -> x * 3) :: Int -> Int
\frac{x*3:Int}{\lambda x.x*3:Int \rightarrow Int}
```

> f 5

```
[x:Int]
> let f = (\x -> x * 3) :: Int -> Int
\frac{x*3:Int}{\lambda x.x*3:Int \rightarrow Int} (fun_I)
> f 5
15
\frac{f:Int \rightarrow Int}{f5:Int} (fun_E)
```

Un *\lambda*-calcul cu tipuri

$$\frac{a:A \quad b:B}{\langle a,b\rangle:A\times B} (\times_{I})$$

$$\frac{p:A\times B}{fst \ p:A} (\times_{E_{1}})$$

$$\frac{p:A\times B}{snd \ p:B} (\times_{E_{2}})$$

$$[x:A]$$

$$\vdots$$

$$b:B$$

$$\frac{b:B}{\lambda x.b:A\to B} (\to_{I})$$

$$\frac{f:A\to B \quad x:A}{f \ x:B} (\to_{E})$$

Dacă afară este întuneric atunci, dacă porcii zboară atunci este întuneric afară.

Dacă afară este întuneric atunci, dacă porcii zboară atunci este întuneric afară.

$$A = \text{afară este întuneric}$$

 $B = \text{porcii zboară}$ $A \supset (B \supset A)$

Dacă afară este întuneric atunci, dacă porcii zboară atunci este întuneric afară.

$$A = \text{afară este întuneric}$$

 $B = \text{porcii zboară}$ $A \supset (B \supset A)$

Este adevărată această afirmaţie?

Dacă afară este întuneric atunci, dacă porcii zboară atunci este întuneric afară.

$$A = \text{afară este întuneric}$$

 $B = \text{porcii zboară}$ $A \supset (B \supset A)$

Este adevărată această afirmație?

Α	В	$B\supset A$	$A\supset (B\supset A)$
false	false	true	true
false	true	false	true
true	false	true	true
true	true	true	true

Dacă afară este întuneric atunci, dacă porcii zboară atunci este întuneric afară.

$$A = \text{afară este întuneric}$$

 $B = \text{porcii zboară}$ $A \supset (B \supset A)$

Este adevărată această afirmație?

Α	В	$B\supset A$	$A\supset (B\supset A)$
false	false	true	true
false	true	false	true
true	false	true	true
true	true	true	true

Da!

Semantica

Dăm valori atomilor în mulţimea $\{0,1\}$, definim o evaluare $e: Atoms \rightarrow \{0,1\}$.

Semantica

Dăm valori atomilor în mulțimea $\{0, 1\}$, definim o evaluare $e : Atoms \rightarrow \{0, 1\}$.

Având o evaluare, putem să o extindem la formule folosind tabelele de adevăr:

$$\&: \{0,1\} \times \{0,1\} \to \{0,1\} \qquad \supset: \{0,1\} \times \{0,1\} \to \{0,1\}$$

$$\supset: \{0, 1\} \times \{0, 1\} \rightarrow \{0, 1\}$$

Α	В	A&B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	<i>A</i> ⊃ <i>B</i>
0	0	1
0	1	1
1	0	0
1	1	1

Semantica

Dăm valori atomilor în mulţimea $\{0,1\}$, definim o evaluare $e: Atoms \rightarrow \{0,1\}$.

Având o evaluare, putem să o extindem la formule folosind tabelele de adevăr:

Dacă pentru toate evaluările posibile, o formulă are valoarea de adevăr 1, atunci spunem că este mereu adevărată (este o tautologie).

Logică

Sintaxa unei logici

- Noțiunile de teoremă și demonstrabilitate
- ☐ Oferă metode de a manipula simboluri din logică (i.e., atomi, ⊃, &) pentru a stabili când o formulă este demonstrabilă (aka este teoremă).

Logică

Sintaxa unei logici

- Noţiunile de teoremă şi demonstrabilitate
- ☐ Oferă metode de a manipula simboluri din logică (i.e., atomi, ⊃, &) pentru a stabili când o formulă este demonstrabilă (aka este teoremă).

Completitudine = sintaxa şi semantica coincid
Corectitudine = sintaxa implică semantica

- ☐ Reguli pentru a manevra fiecare conector logic
- Reguli pentru introducerea si eliminarea conectorilor
- Reguli de forma

Ipoteze Concluzie

- ☐ Reguli pentru a manevra fiecare conector logic
- Reguli pentru introducerea si eliminarea conectorilor
- Reguli de forma

Ipoteze Concluzie

$$\frac{A}{A\&B}$$
 (&_I)

- ☐ Reguli pentru a manevra fiecare conector logic
- Reguli pentru introducerea si eliminarea conectorilor
- Reguli de forma

$$\frac{A}{A\&B}$$
 (&_I)

$$\frac{A\&B}{A}$$
 (&_{E1})

$$\frac{A\&B}{B}$$
 (&_{E2})

- Reguli pentru a manevra fiecare conector logic
- Reguli pentru introducerea si eliminarea conectorilor
- □ Reguli de forma

$$\frac{A}{A \& B} (\&_I)$$

$$\frac{A\&B}{A}$$
 (&_{E1})

$$\frac{A\&B}{B}$$
 (&_{E2})

- Reguli pentru a manevra fiecare conector logic
- Reguli pentru introducerea si eliminarea conectorilor
- □ Reguli de forma

$$\frac{A}{A\&B}$$
 (&_I)

$$\frac{A\&B}{A} \ (\&_{E_1})$$

$$\frac{A\&B}{B} \ (\&_{E_2})$$

$$\begin{array}{c}
[A] \\
\vdots \\
B \\
A \supset B
\end{array} (\supset_{l})$$

$$\frac{A\supset B\quad A}{B}\ (\supset_E)$$

- Reguli pentru a manevra fiecare conector logic
- Reguli pentru introducerea si eliminarea conectorilor
- Reguli de forma

$$\frac{A}{A\&B}$$
 (&_I)

$$\frac{A\&B}{A}$$
 (&_{E1})

$$\frac{A\&B}{B} \ (\&_{E_2})$$

$$\begin{bmatrix} A \\ \vdots \\ B \\ A \supset B \end{bmatrix} (\supset_{l})$$

$$\frac{A\supset B}{B} \quad A \quad (\supset_E)$$

Arată cunoscut?

Ce am văzut până acum

Un λ-calcul cu tipuri

$$\frac{a:A \quad b:B}{\langle a,b\rangle:A\times B} \ (\times_I)$$

$$\frac{p:A\times B}{fst\ p:A}\ (\times_{E_1})$$

$$\frac{p:A\times B}{snd\ p:B}\ (\times_{E_2})$$

$$\frac{b:B}{\lambda x.n:A\to B}\ (\to_I)$$

$$\frac{f:A\to B\quad x:A}{f\;x:B}\;(\to_E)$$

$$\frac{A}{A\&B}$$
 (&1)

$$\frac{A\&B}{A}$$
 (&_{E1})

$$\frac{A\&B}{B} \ (\&_{E_2})$$

$$\frac{\vdots}{B}$$

$$A \supset B \quad (\supset_I)$$

$$\frac{A\supset B\quad A}{B}\ (\supset_E)$$

Ce am văzut până acum

Un
$$\lambda$$
-calcul cu tipuri

$$\frac{a:A \quad b:B}{\langle a,b\rangle:A\times B} (\times_{I})$$

$$\frac{p:A\times B}{fst \ p:A} (\times_{E_{1}})$$

$$\frac{A \& B}{A \& B} (\&_{I})$$

$$\frac{p:A\times B}{fst \ p:A} (\times_{E_{1}})$$

$$\frac{A \& B}{A} (\&_{E_{1}})$$

$$\frac{A \& B}{A} (\&_{E_{1}})$$

$$\frac{A \& B}{A} (\&_{E_{1}})$$

$$\frac{A \& B}{A} (\&_{E_{1}})$$

$$\vdots$$

$$\vdots$$

$$b:B$$

$$\frac{b:B}{\lambda x.n:A\to B} (\to_{I})$$

$$\frac{A \supset B \ A}{B} (\to_{E})$$

Propositions are types! ♡

Un λ -calcul cu tipuri Un sistem de deducție naturală

$$\frac{a:A \quad b:B}{\langle a,b\rangle:A\times B} \ (\times_I) \qquad \qquad \frac{A \quad B}{A\&B} \ (\&_I)$$

Un λ -calcul cu tipuri Un sistem de deducție naturală

$$\frac{a:A \quad b:B}{\langle a,b\rangle:A\times B} (x_I) \qquad \frac{A \quad B}{A\&B} (\&_I)$$

Faptul că există un termen de tip A (inhabitation of type A) înseamnă că A este teoremă în logică! ♡

Un *λ*-calcul cu tipuri

Un sistem de deducție naturală

 $: A \rightarrow A$

Un *λ*-calcul cu tipuri

Un sistem de deducție naturală

 $\lambda x.x:A\to A$ (id)

Un *λ*-calcul cu tipuri

$$\lambda x.x:A\to A$$
 (id)

$$\overline{A \supset A}$$

Un λ -calcul cu tipuri	Un sistem de deducţie naturală
	[A]
$\lambda x.x:A\to A$ (id)	$\overline{A \supset A}$

Un *λ*-calcul cu tipuri

Un sistem de deducție naturală

 $\frac{A}{A \supset A}$

 $\lambda x.x:A\to A$ (id)

Un *λ*-calcul cu tipuri

$$\frac{A}{A \supset A}$$

$$\lambda x.x:A\rightarrow A$$
 (id)

$$:A\rightarrow (B\rightarrow A)$$

Un *λ*-calcul cu tipuri

$$\frac{A}{A \supset A}$$

$$\lambda x.x:A\to A$$
 (id)

$$\lambda x.(\lambda y.x): A \to (B \to A)$$
 (const)

Un *λ*-calcul cu tipuri

$$\frac{A}{A \supset A}$$

$$\lambda x.x:A\to A$$
 (id)

$$\lambda x.(\lambda y.x): A \rightarrow (B \rightarrow A)$$
 (const)

$$\overline{A\supset (B\supset A)}$$

Un *λ*-calcul cu tipuri

Un sistem de deducție naturală

$$\lambda x.x:A\to A$$
 (id)

$$\begin{array}{c}
[A] \\
A \\
\hline
A \supset A
\end{array}$$

[**A**]

$$\lambda x.(\lambda y.x):A\to (B\to A)$$
 (const)

$$\frac{B\supset A}{A\supset (B\supset A)}$$

Un *λ*-calcul cu tipuri

$$\lambda x.x:A\to A$$
 (id)

$$\frac{A}{A \supset A}$$

$$\frac{\overline{B}\supset A}{A\supset (B\supset A)}$$

$$\lambda x.(\lambda y.x):A\to (B\to A)$$
 (const)

Un *λ*-calcul cu tipuri

$$\lambda x.x:A\to A$$
 (id)

$$\frac{A}{A \supset A}$$

$$\begin{bmatrix}
A \\
B \\
A \\
B \supset A
\end{bmatrix}$$

$$A \supset (B \supset A)$$

$$\lambda x.(\lambda y.x): A \rightarrow (B \rightarrow A)$$
 (const)

Un *\lambda*-calcul cu tipuri

Un sistem de deducție naturală

$$\lambda x.x:A\to A$$
 (id)

$$\frac{A}{A \supset A}$$

$$\begin{array}{c}
[B] \\
A \\
\hline
B \supset A
\end{array}$$

$$A \supset (B \supset A)$$

$$\lambda x.(\lambda y.x): A \to (B \to A)$$
 (const)

Proofs are Terms! ♥

Demonstraţiile sunt termeni!

Corespondența Curry-Howard

Teoria Tipurilor	Logică
tipuri	formule
termeni	demonstraţii
inhabitation a tipului A	demonstrație a lui A

Corespondența Curry-Howard

Teoria Tipurilor	Logică
tipuri	formule
termeni	demonstraţii
inhabitation a tipului A	demonstraţie a lui A
tip produs	conjuncţie
tip funcţie	implicaţie

Corespondența Curry-Howard

Teoria Tipurilor	Logică
tipuri	formule
termeni	demonstraţii
inhabitation a tipului A	demonstraţie a lui A
tip produs	conjuncţie
tip funcţie	implicaţie
tip sumă	disjuncţie
tipul void	false
tipul unit	true

$$[A]$$

$$\vdots$$

$$\frac{B}{A \supset B} (\supset_{I})$$

$$\frac{A \boxtimes B}{A \boxtimes B} (\&_{I})$$

$$\frac{A \& B}{A \& B} (\&_{E_{2}})$$

$$[A]$$

$$\vdots$$

$$\frac{B}{A \supset B} (\supset_{l})$$

$$\frac{A \supseteq B \land A}{B} (\bigotimes_{l})$$

$$\frac{A \& B}{A \& B} (\&_{l})$$

$$\frac{A \& B}{A \lor B} (\lor_{l_{1}})$$

$$\frac{A \& B}{B} (\&_{E_{2}})$$

$$\frac{A \lor B \land A \supset C \land B \supset C}{C} (\lor_{E})$$

$$[A]$$

$$\vdots$$

$$\frac{B}{A \supset B} (\supset_{I})$$

$$\frac{A \otimes B}{A \otimes B} (\&_{I})$$

$$\frac{A \otimes B}{A \otimes B} (\&_{I})$$

$$\frac{A \otimes B}{A \otimes B} (\&_{I})$$

$$\frac{A \otimes B}{A \otimes B} (\lor_{I_{1}})$$

$$\frac{A \otimes B}{A \otimes B} (\lor_{I_{1}})$$

$$\frac{A \otimes B}{A \otimes B} (\lor_{I_{2}})$$

$$\frac{A \otimes B}{A \otimes B} (\lor_{I_{1}})$$

$$\frac{A \otimes B}{A \otimes B} (\lor_{I_{2}})$$

$$\frac{\perp}{A}$$
 (ex falso quodlibet)

$$[A]$$

$$\vdots$$

$$\frac{B}{A \supset B} (\supset_{I})$$

$$\frac{A \boxtimes B \land A}{B} (\bigotimes_{E_{2}})$$

$$\frac{A \boxtimes B}{A \boxtimes B} (\&_{I})$$

$$\frac{A \& B}{A} (\&_{E_{1}})$$

$$\frac{A \& B}{B} (\&_{E_{2}})$$

$$\frac{A \lor B \land A \supset C \land B \supset C}{C} (\lor_{E})$$

$$\frac{\perp}{\Delta}$$
 (ex falso quodlibet)

 $\frac{\neg \neg A}{A}$ (reductio ad absurdum)

 $(\neg A \text{ este o abreviere pentru } A \supset \bot)$

Deducţie naturală pentru logica intuiţionistă

$$[A]$$

$$\vdots$$

$$\frac{B}{A \supset B} (\supset_{I})$$

$$\frac{A \otimes B}{A \otimes B} (\&_{I})$$

$$\frac{A \otimes B}{A \otimes B} (\&_{I})$$

$$\frac{A \otimes B}{A} (\&_{E_{1}})$$

$$\frac{A \otimes B}{B} (\&_{E_{2}})$$

$$\frac{A}{A \vee B} (\vee_{I_{1}})$$

$$\frac{B}{A \vee B} (\vee_{I_{2}})$$

$$\frac{A \vee B \wedge A \supset C \wedge B \supset C}{C} (\vee_{E})$$

$$\frac{\bot}{A} \text{ (ex falso quodlibet)}$$

- Logică constructivistă
- Bazată pe noţiunea de demonstraţie
- □ Utilă deoarece demonstraţiile sunt executabile şi produc exemple
- ☐ Baza pentru *proof assistants* (e.g., Coq, Lean, Isabele, Agda, Idris)

- Logică constructivistă
- Bazată pe noţiunea de demonstraţie
- ☐ Utilă deoarece demonstraţiile sunt executabile şi produc exemple
- ☐ Baza pentru *proof assistants* (e.g., Coq, Lean, Isabele, Agda, Idris)
- Următoarele formule echivalente nu sunt demonstrabile în logica intuiționistă:
 - \square dubla negaţie: $\neg \neg A \supset A$
 - □ excluded middle: A ∨ ¬A
 - legea lui Pierce: ((A ⊃ B) ⊃ A) ⊃ A

- Logică constructivistă
- Bazată pe noţiunea de demonstraţie
- ☐ Utilă deoarece demonstraţiile sunt executabile şi produc exemple
- □ Baza pentru *proof assistants* (e.g., Coq, Lean, Isabele, Agda, Idris)
- ☐ Următoarele formule echivalente nu sunt demonstrabile în logica intuiţionistă:
 - \square dubla negaţie: $\neg \neg A \supset A$
 - □ excluded middle: A ∨ ¬A
 - legea lui Pierce: ((A ⊃ B) ⊃ A) ⊃ A
- □ Nu există semantică cu tabele de adevăr pentru logica intuiţionistă! Are semantici alternative (e.g., semantica de tip Kripke)

- Logică constructivistă
- Bazată pe noţiunea de demonstraţie
- ☐ Utilă deoarece demonstraţiile sunt executabile şi produc exemple
- ☐ Baza pentru *proof assistants* (e.g., Coq, Lean, Isabele, Agda, Idris)
- ☐ Următoarele formule echivalente nu sunt demonstrabile în logica intuiţionistă:
 - \square dubla negaţie: $\neg \neg A \supset A$
 - □ excluded middle: A ∨ ¬A
 - □ legea lui Pierce: $((A \supset B) \supset A) \supset A$
- ☐ Nu există semantică cu tabele de adevăr pentru logica intuiţionistă!
 Are semantici alternative (e.g., semantica de tip Kripke)

Iniţial, Corespondenţa Curry-Howard a fost între

şi Gentzen's natural deduction for intuitionistic logic.

Corespondența Curry-Howard în general

Teoria Tipurilor	Logică
tipuri	formule
termeni	demonstraţii
inhabitation a tipului A	demonstraţie a lui A
tip produs	conjuncţie
tip funcţie	implicaţie
tip sumă	disjuncţie
tipul void	false
tipul unit	true
dependent types	cuantificatori
call/cc operator	Peirce's law
monade	o logică modală

•••

☐ Este pur si simplu fascinant

- ☐ Este pur si simplu fascinant
- □ Nu gândiţi logica şi informatica ca domenii diferite.

- □ Este pur si simplu fascinant
- □ Nu gândiţi logica şi informatica ca domenii diferite.
- ☐ Gândind din perspective diferite ne poate ajuta să ştim ce este posibil/imposibil.

- ☐ Este pur si simplu fascinant
- □ Nu gândiţi logica şi informatica ca domenii diferite.
- ☐ Gândind din perspective diferite ne poate ajuta să ştim ce este posibil/imposibil.
- ☐ Teoria tipurilor nu ar trebui să fie o adunătură ad hoc de reguli!

Teoria categoriilor

- ☐ A category is an embarrassingly simple concept.

 Bartosz Milewski, Category Theory for Programmers
- □ Categorie = obiecte + săgeţi
- ☐ Ingredient cheie: compunerea de săgeţi

credits: Bartosz Milewski

- O categorie C constă în
 - □ Obiecte:
 - □ Săgeţi:
 - □ Compunere:

- O categorie C constă în
 - \square Objecte: notate A, B, C, ...
 - □ Săgeţi:
 - □ Compunere:

- O categorie C constă în
 - \square Objecte: notate A, B, C, \dots
 - \square Săgeți: pentru orice obiecte A și B, există o mulțime de săgeți $\mathbf{C}(A,B)$
 - □ notăm $f \in \mathbf{C}(A, B)$ cu $f : A \to B$ sau $A \stackrel{f}{\longrightarrow} B$
 - □ Compunere:

- O categorie C constă în
 - □ Objecte: notate *A*, *B*, *C*, . . .
 - \square Săgeţi: pentru orice obiecte A şi B, există o mulţime de săgeţi $\mathbf{C}(A,B)$
 - □ notăm $f \in \mathbf{C}(A, B)$ cu $f : A \to B$ sau $A \stackrel{f}{\longrightarrow} B$
 - □ Compunere: pentru orice săgeţi $f: A \to B$ şi $g: B \to C$ există o săgeată $g \circ f: A \to C$

- O categorie C constă în
 - \square Objecte: notate A, B, C, \dots
 - \square Săgeți: pentru orice obiecte A și B, există o mulțime de săgeți $\mathbf{C}(A,B)$
 - □ notăm $f \in \mathbf{C}(A, B)$ cu $f : A \to B$ sau $A \stackrel{f}{\longrightarrow} B$
 - □ Compunere: pentru orice săgeţi $f: A \rightarrow B$ şi $g: B \rightarrow C$ există o săgeată $g \circ f: A \rightarrow C$

- O categorie C constă în
 - \square Objecte: notate A, B, C, ...
 - \square Săgeţi: pentru orice obiecte A şi B, există o mulţime de săgeţi $\mathbf{C}(A,B)$
 - □ notăm $f \in \mathbf{C}(A, B)$ cu $f : A \to B$ sau $A \stackrel{f}{\longrightarrow} B$
 - □ Compunere: pentru orice săgeţi $f: A \rightarrow B$ şi $g: B \rightarrow C$ există o săgeată $g \circ f: A \rightarrow C$

$$A \xrightarrow{I} B$$

$$\downarrow g \circ f \downarrow \downarrow G$$

□ Identitate: pentru orice obiect A există o săgeată $id_A : A \rightarrow A$

- O categorie C constă în
 - \square Objecte: notate A, B, C, ...
 - \square Săgeţi: pentru orice obiecte A şi B, există o mulţime de săgeţi $\mathbf{C}(A,B)$
 - □ notăm $f \in \mathbf{C}(A, B)$ cu $f : A \to B$ sau $A \stackrel{f}{\longrightarrow} B$
 - □ Compunere: pentru orice săgeţi $f: A \rightarrow B$ şi $g: B \rightarrow C$ există o săgeată $g \circ f: A \rightarrow C$

$$A \xrightarrow{r} B$$

$$\downarrow_{g \circ f} \downarrow \downarrow$$

$$C$$

- □ Identitate: pentru orice obiect A există o săgeată $id_A : A \rightarrow A$
- Axiome: pentru orice săgeţi $f: A \to B$, $g: B \to C$ şi $h: C \to D$ $h \circ (g \circ f) = (h \circ g) \circ f \qquad f \circ id_A = f = id_B \circ f$

Exemplu - categoria de mulţimi

Categoria Set are

- □ Obiecte: mulţimi
- □ Săgeţi: funcţii
- Compunere: compunerea de funcţii
- □ Identitate: pentru orice mulţime A, funcţia identitate $id_A: A \rightarrow A$, $id_A(a) = a$
- □ Axiome: ✓

Exemplu - categoria de monoizi

Categoria Mon are

- □ Obiecte: monoizi
- Săgeţi: morfisme de monoizi
 (aka funcţii care nu "strică" operaţia de monoid)
- □ Compunerea: compunerea de morfisme de monoizi
- □ Identitatea: pentru orice obiect \mathbf{M} , $id_{\mathbf{M}}: M \to M$, $id_{\mathbf{M}}(m) = m$
- □ Axiome: ✓

Exemplu - un monoid ca o categorie

Orice monoid $\mathbf{M} = \langle M, +, e \rangle$ este o categorie cu

- □ Obiecte: un singur obiect □
- □ Săgeţi: elementele mulţimii M (i.e, $\mathbf{M}(\Box, \Box) = M$)
- Compunerea: operaţia de monoid +
- □ Identitatea: identitatea monoidului e
- ☐ Axiome:

$$h \circ (g \circ f) = (h \circ g) \circ f$$
 $f \circ id_A = f = id_B \circ f$
 $a + (b + c) = (a + b) + c$ $a + e = a = e + a$

Obiect terminal și obiect inițial

Într-o categorie C

□ un obiect T se numeşte terminal dacă pentru orice obiect A există o unică săgeată

 $\tau_A:A\to T$

Obiect terminal și obiect inițial

Într-o categorie C

□ un obiect T se numeşte terminal dacă pentru orice obiect A există o unică săgeată

$$\tau_A:A\to T$$

□ un obiect / se numeşte iniţial dacă pentru orice obiect A există o unică săgeată

$$\iota_A:I\to A$$

Putem generaliza regulile de mai devreme. De exemplu:

$$\frac{A}{A\&B}$$
 (&_I)

Putem generaliza regulile de mai devreme. De exemplu:

$$\frac{A \quad B}{A \& B} \ (\&_I) \qquad \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B} \ (\&_I)$$

Deducţie din ipotezele Γ

Putem generaliza regulile de mai devreme. De exemplu:

$$\frac{A}{A\&B}$$
 (&_I)

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B} \ (\&_I)$$

Deducţie fără ipoteze $\Gamma=\emptyset$

Deducţie din ipotezele Γ

Putem generaliza regulile de mai devreme. De exemplu:

$$\frac{A}{A\&B}$$
 (&_I)

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B} \ (\&_I)$$

Deducţie fără ipoteze

 $\Gamma = \emptyset$ (Deducţie din adevăr)

Deducţie din ipotezele Γ

Putem generaliza regulile de mai devreme. De exemplu:

$$\frac{A \quad B}{A \& B} \ (\&_{I}) \qquad \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B} \ (\&_{I})$$

Deducţie fără ipoteze $\Gamma = \emptyset$ (Deducţie din adevăr)

Deducţie din ipotezele Γ

Fie **C** o categorie cu obiect terminal *T*.

Putem generaliza regulile de mai devreme. De exemplu:

$$\frac{A \quad B}{A \& B} \ (\&_I) \qquad \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B} \ (\&_I)$$

Deducţie fără ipoteze $\Gamma = \emptyset$ (Deducţie din adevăr)

Deducţie din ipotezele Γ

Putem generaliza regulile de mai devreme. De exemplu:

$$\frac{A}{A\&B}$$
 (&_I)

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B} \ (\&_I)$$

Deducţie fără ipoteze $\Gamma = \emptyset$ (Deducţie din adevăr)

Deducţie din ipotezele Γ

Fie **C** o categorie cu obiect terminal *T*. Avem următoarele interpretări:

☐ Formulele sunt obiectele din C

Putem generaliza regulile de mai devreme. De exemplu:

$$\frac{A}{A\&B}$$
 (&_I)

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B} \ (\&_I)$$

Deducţie fără ipoteze $\Gamma = \emptyset$ (Deducţie din adevăr)

Deducţie din ipotezele Γ

- □ Formulele sunt obiectele din C
- ☐ Adevărul este obiectul terminal *T*

Putem generaliza regulile de mai devreme. De exemplu:

$$\frac{A}{A\&B}$$
 (&_I)

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B} \ (\&_I)$$

Deducţie fără ipoteze $\Gamma = \emptyset$ (Deducţie din adevăr)

Deducţie din ipotezele Γ

- ☐ Formulele sunt obiectele din C
- □ Adevărul este objectul terminal T
- \square O demonstraţie a lui A este o săgeată $f: T \rightarrow A$

Putem generaliza regulile de mai devreme. De exemplu:

$$\frac{A}{A \& B} (\&_I)$$

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B} \ (\&_I)$$

Deducţie fără ipoteze $\Gamma = \emptyset$ (Deducţie din adevăr)

Deducţie din ipotezele Γ

- ☐ Formulele sunt objectele din C
- □ Adevărul este obiectul terminal T
- \square O demonstraţie a lui A este o săgeată $f: T \rightarrow A$
- \square O demonstrație a lui A din ipoteza B este o săgeată $f: B \rightarrow A$

Fie A și B două obiecte în categoria **C**.

Fie A și B două obiecte în categoria C. Spunem că

$$A \stackrel{\pi_1}{\longleftarrow} A \times B \stackrel{\pi_2}{\longrightarrow} B$$

este produsul lui A și B

Fie A și B două obiecte în categoria C. Spunem că

$$A \stackrel{\pi_1}{\longleftarrow} A \times B \stackrel{\pi_2}{\longrightarrow} B$$

este produsul lui A și B dacă pentru orice

$$A \stackrel{f}{\longleftarrow} C \stackrel{g}{\longrightarrow} B$$

Fie A şi B două obiecte în categoria C. Spunem că

$$A \stackrel{\pi_1}{\longleftarrow} A \times B \stackrel{\pi_2}{\longrightarrow} B$$

este produsul lui A și B dacă pentru orice

$$A \stackrel{f}{\longleftarrow} C \stackrel{g}{\longrightarrow} B$$

există o unică săgeată

$$\langle f,g\rangle:C\longrightarrow A\times B$$

Fie A şi B două obiecte în categoria C. Spunem că

$$A \stackrel{\pi_1}{\longleftarrow} A \times B \stackrel{\pi_2}{\longrightarrow} B$$

este produsul lui A și B dacă pentru orice

$$A \stackrel{f}{\longleftarrow} C \stackrel{g}{\longrightarrow} B$$

există o unică săgeată

$$\langle f, g \rangle : C \longrightarrow A \times B$$

astfel încât

$$\pi_1 \circ \langle f, g \rangle = f$$
 $\pi_2 \circ \langle f, g \rangle = g$

Fie ${\bf C}$ o categorie cu obiect terminal si produse.

Fie A, B două obiecte în C.

Fie $\bf C$ o categorie cu obiect terminal si produse. Fie $\bf A, \bf B$ două obiecte în $\bf C$.

Fie **C** o categorie cu obiect terminal si produse.

Fie A, B două obiecte în C.

$$\frac{f: T \to A \quad g: T \to B}{\langle f, g \rangle : T \to A \times B}$$

Fie **C** o categorie cu obiect terminal si produse.

Fie A, B două obiecte în C.

$$\frac{f: T \to A \quad g: T \to B}{\langle f, g \rangle : T \to A \times B}$$

$$\frac{\langle f,g\rangle:T\to A\times B}{\pi_1\circ\langle f,g\rangle:T\to A}$$

Să schimbăm iar perspectiva!

Fie **C** o categorie cu obiect terminal si produse.

Fie A, B două obiecte în C.

$$\frac{f: T \to A \quad g: T \to B}{\langle f, g \rangle : T \to A \times B}$$

$$\frac{\langle f, g \rangle : T \to A \times B}{\pi_1 \circ \langle f, g \rangle : T \to A}$$

$$\frac{\langle f,g\rangle:T\to A\times E}{\pi_2\circ\langle f,g\rangle:T\to E}$$

Să schimbăm iar perspectiva!

Fie **C** o categorie cu obiect terminal si produse.

Fie A, B două obiecte în C.

$$\frac{f: T \to A \quad g: T \to B}{\langle f, g \rangle : T \to A \times B}$$

$$\frac{\langle f,g\rangle:T\to A\times B}{\pi_1\circ\langle f,g\rangle:T\to A}$$

$$\frac{\langle f, g \rangle : T \to A \times B}{\pi_2 \circ \langle f, g \rangle : T \to B}$$

Arată cunoscut?

Ce am văzut până acum

Un λ -calcul cu tipuri	Un sist. de deducţie naturală	O categorie*
$\frac{a:A b:B}{\langle a,b\rangle:A\times B} \ (\times_I)$	$\frac{A}{A\&B}$ (&1)	$\frac{f: T \to A g: T \to B}{\langle f, g \rangle : T \to A \times B}$
$\frac{p:A\times B}{fst\ p:A}\ (\times_{E_1})$	$\frac{A\&B}{A} \ (\&_{E_1})$	$\frac{\langle f,g\rangle:T\to A\times B}{\pi_1\circ\langle f,g\rangle:T\to A}$
$\frac{p:A\times B}{snd\ p:B}\ (\times_{E_2})$	$\frac{A\&B}{B}~(\&_{E_2})$	$\frac{\langle f,g\rangle:T\to A\times B}{\pi_2\circ\langle f,g\rangle:T\to B}$

 $^{^{\}star}$ O categorie cu obiect terminal T și produse

Teoria Tipurilor	Logică	Teoria categoriilor
tipuri	formule	obiecte
-		

Teoria Tipurilor	Logică	Teoria categoriilor
tipuri	formule	obiecte
termeni	demonstraţii	săgeţi

Teoria Tipurilor	Logică	Teoria categoriilor
tipuri	formule	obiecte
termeni	demonstraţii	săgeţi

tipul unit true obiect terminal T

Teoria Tipurilor	Logică	Teoria categoriilor
tipuri	formule	obiecte
termeni	demonstraţii	săgeţi
inhabitation a tipului A	demonstraţie a lui A	săgeată $f: T \rightarrow A$

tipul unit true obiect terminal T

Teoria Tipurilor	Logică	Teoria categoriilor
tipuri	formule	obiecte
termeni	demonstraţii	săgeţi
inhabitation a tipului A	demonstraţie a lui A	săgeată $f:T\to A$
tip produs	conjuncţie	produs
tipul unit	true	obiect terminal <i>T</i>

Teoria Tipurilor	Logică	Teoria categoriilor
tipuri	formule	obiecte
termeni	demonstraţii	săgeţi
inhabitation a tipului A	demonstraţie a lui A	săgeată $f:T\to A$
tip produs	conjuncţie	produs
tip sumă	disjuncţie	coprodus
tipul unit	true	obiect terminal T

Teoria Tipurilor	Logică	Teoria categoriilor
tipuri	formule	obiecte
termeni	demonstraţii	săgeţi
inhabitation a tipului A	demonstraţie a lui A	săgeată $f:T\to A$
tip produs	conjuncţie	produs
tip sumă	disjuncţie	coprodus
tipul void	false	obiect iniţial
tipul unit	true	obiect terminal T

Teoria Tipurilor	Logică	Teoria categoriilor
tipuri	formule	obiecte
termeni	demonstraţii	săgeţi
inhabitation a tipului A	demonstraţie a lui A	săgeată $f:T\to A$
tip funcţie	implicaţie	exponenţi
tip produs	conjuncţie	produs
tip sumă	disjuncţie	coprodus
tipul void	false	obiect iniţial
tipul unit	true	obiect terminal T

Referințe

 Roger Antonsen, TED Talk: Math is the hidden secret to understanding the world

 $\label{lem:https://www.ted.com/talks/roger_antonsen_math_is_the_hidden_secret_to_understanding_the_world$

 Samson Abramsky, Categories, Proofs and Processed Lecture III - The Curry-Howard-Lambek Correspondence

http://www.math.helsinki.fi/logic/sellc-2010/course/LectureIII.pdf

- □ Philip Wadler, Propositions as Types https://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/ propositions-as-types.pdf
- □ Dan Grossman, Lecture notes on The Curry-Howard Isomorphism https://courses.cs.washington.edu/courses/cse505/12au/lec12_6up.pdf

Baftă la examen!