DISCRETE MATHEMATICS

CIE 1 QUESTION BANK

S.NO	SHORT QUESTIONS
	UNIT-1
1	Find the Contrapositive and the Converse of the conditional statement "If it is raining, then the home team wins."
2	Prove $(P \rightarrow Q) \Leftrightarrow (_{1}P^{\vee}Q)$
3	Define Contingency and Contradiction. Give one example for each
	UNIT -2
4	If $A=\{\alpha,\beta\}$, $B=\{1,2,3\}$. Find out (AxB) $U(BxA)$
5	Define binary relation . List the properties of binary relation.
6	f(x)= 2x + 3 and $g(x)= 3x + 2$. Find $(fog)(x)$
	UNIT -3
7	Define Sum Rule.
8	State Product Rule
9	How many 3 letter words can be formed using the letters a, b, c, d, e and f by using a letter only once.

S.NO	LONG QUESTIONS
	UNIT -1
1	a) Define Tautology
	b) Show that the formula $Q \lor (P \land lQ) \lor (lP \land lQ)$ is a tautology
2	a) State Rules of Inference. Show that $R \rightarrow S$, can be derived from the premises $P \rightarrow (Q \rightarrow S)$, $\neg R \lor P$ and Q
	b) Define Conjunctive Normal Form.
3	a) Define Disjunctive Normal Form.b) Obtain the principal disjunctive normal form of
	$P V (\sim P \rightarrow (Q V (\sim Q \rightarrow R)))$
	UNIT -2
4	 a) Define an Inverse Function. Give example b) If R is set of real numbers, then show that the function: f: R →R: defined by f(x)= x⁵ - 1 is one to one function.
5	Let $A=\{1,2,3\}$, $B=\{a,b,c\}$ and $C=\{x,y,z\}$. The relation R from A to B is $\{(1,b),(2,a),(2,c)\}$ and the relation S from B to C is $\{(a,y),(b,x),(c,z)\}$. Find the composition relation, RoS. SoR, RoR, SoS
6	a) Determine whether the function f from $\{a,b,c,d\}$ to $\{1,2,3,4,5\}$ with $f(a)=4$, $f(b)=5$, $f(c)=1$, and $f(d)=3$ is one-one.

	b)Compute the transitive closure of the relation $R = \{(1,1),(1,2),(1,3),(2,3),(3,1)\} \text{ defined over a set } S = \{1,2,3\}$
	UNIT -3
7	a)How many integers between 1 to 250 are divisible by 2 or 3 or 5 or 7?b) In how many ways can 30 distinguishable books be distributed among 3 people A, B and C such that A and B together receive exactly twice as many books as C.
8	a)A man has 15 close friends of whom 6 are women, in how many ways can he invite 3 or more of his friends to a party.b) Find the number of arrangements of the letters MISSISSIPPI
9	a)In how many ways can 10 people be seated in a row so that a certain pair of them are not next to each other.b) How many ways are there to pick a man and a woman who are not married from 30 married couples.