

Ocean Tides, Part II:

A Hydrodynamical Interpolation Model,

U.S. Naval Surface Weapons Center
Dahlgren, Virginia

(11) 1989)

The strictly mathematical ocean tide model developed in Part I of this paper is modified in order to include realistic hydrodynamical barrier effects of narrow ocean ridges and other large bottom irregularities. This modification begins with a hydrodynamical redefinition of the ocean bathymetry at over 3,000 grid points, increasing simultaneously the depth data range to: 10m → 7,000m. In a second step a unique hydrodynamical interpolation technique is developed that incorporates into the model over 2,000 empirical tide data collected around the world at continental and island stations. This interpolation is accomplished by a controlled cell-wise adjustment of the bottom friction coefficient and by allowing a monitored in- or out-flow across the mathematical ocean boundary and so, redefining a more physical shoreline. Extensive computer experiments were conducted to study the characteristics of the novel friction laws and hydrodynamical interpolation methods. The computed Matide data along with all (specially labeled) empirical constants are tabulated in map form for four typical 30° by 50° ocean areas. It is estimated that the tabulated tidal charts permit a prediction of the M<sub>2</sub>-tide elevation of the ocean surface over the geoidal level with an accuracy of better than 5 cm anywhere

Marine Geodesy, Volume 3 0149-0419/80/0131-0219 \$02.00/0 Copyright © 1980, Crane, Russak & Co., Inc.

JOB

411567

80

26

019

3

A 089900

in the open ocean and with somewhat less accuracy near rough shorelines. With the forthcoming construction of the lesser  $S_2$ ,  $N_2$ , and  $K_2$ ;  $K_1$ ,  $O_1$ ,  $P_1$ , and  $Q_1$ ; and Mf, Mm, and  $S_2$  sa tidal constituents, the total tide-prediction error can be kept below the 10-cm bound posed by applied researchers of today.

In Part I of this paper (Schwiderski, 1979) a purely hydrodynamical ocean tide model has been developed and tested. This model has been applied to compute a preliminary M<sub>2</sub> ocean tidal chart (Schwiderski, 1976, I). (References listed in Part I are indicated by the added, I, after the year specification.) The results were found encouraging and satisfactory for some applications. However, significant shortcomings still persisted, especially over narrow ocean ridges. The remaining deficiencies were attributed to local distortions and retardations of the tidal waves due to hydrodynamical barrier effects of ocean ridges and other bottom irregularities.

In the following Part II of the paper, an attempt will be made to eliminate the shortcomings of the purely theoretical model by using a hydrodynamically defined bathymetry of the oceans and by incorporating directly empirically known tide data into the discrete tide model described in Part I. The latter modification will be accomplished by a controlled local adjustment of the bottom friction coefficient and by allowing a monitored in- or out-flow across the mathematical ocean boundary, and thus redefining implicitly a more physical shoreline. A detailed discussion of the quality of the new M<sub>2</sub> ocean tidal charts will be given in the sections, "Quality of the Ocean-Tide Model" and "Conclusions."

The complete M<sub>2</sub> ocean tide is published in tabulated map form in Schwiderski (1979c I). Similar charts for the S<sub>2</sub>, N<sub>2</sub>, K<sub>2</sub>, O<sub>1</sub>, P<sub>1</sub>, Q<sub>1</sub>, Mf, Mm, and Ssa ocean tides (see Part I, Table 1) are under construction and will be published in additional papers. A separate tabulation of the new hydrodynamically defined ocean bathymetry may be found in Schwiderski (1978a I). All tidal and bathymetry data will be available in tape form at the Naval Surface Weapons Center, Dahlgren, Virginia 22448.

## Hydrodynamically Defined Ocean Bathymetry

A reinspection of the bathymetric data revealed clearly that even a 1° by 1° grid scheme falls far short in representing a narrow ocean ridge in a hydrodynamically proper fashion. The defect is particularly compounded when the narrow ridge parallels a deep trench. The reason for this deficiency is obviously the purely hydrostatic character of the averaging principles employed by Smith et al. (1966 I) in order to assign a depth value at the center of a mesh cell that is supposed to be representative for the entire cell. For instance, if the area of a mesh cell is (by subjective sight) more than half land, then it is called a "land cell," and the cell is given (for the present purpose) the depth value "zero." In the alternative case, the cell is declared "oceanic," and a depth value is assigned that conserves the estimated actual water mass. Because of those hydrostatic principles, cells were found that contained elongated islands crossing even several cells, but every cell was declared oceanic. Moreover, an oceanic trench portion of the cell with some 7,000-m true depth produced an average depth of more than 3,500 m. Clearly, for ocean current models the entire cell represents an impassable wall, and the depth value should be "zero" instead of 3,500 m.

In order to eliminate the shortcomings of the bathymetric data compiled by Smith *et al.* (1966 I), the depth values were revised by using the following "hydrodynamical" principles:

- (a) Boundary cells at or near continental shorelines consisting of more than half oceanic areas of depths larger than 5 m were designated ocean cells, and the average oceanic depth values were assigned as the "hydrodynamically" averaged depths to the entire cells. The new depth value is preferable to the "hydrostatically" averaged depth, which preserves the actual water mass but ascribes artificially a shallow shelf character to the cell.
- (b) Island cells were declared terrestrial cells with depths zero if either the island areas were larger than half the mesh

areas or the (elongated) island lengths exceeded the mesh diameters.

- (c) Island cells that remained oceanic cells were assigned depth values less than the hydrostatically averaged values. In this case and in situations of submerged seamounts or narrow ocean ridges (e.g., Aleutian, Marianas, and Caribbean), the hydrodynamical depths depended on the assessed "barrier" effects of the obstacles: the longer and/or higher the barrier, the lesser the depth. In general, the average "ridge depth" was assigned to the entire cell.
- (d) The assigned minimum depth (Part I, Equation 50) was lowered to

$$H_{m} = \min H(\lambda, \theta) = 20 \text{ m}, \tag{1}$$

which is further lowered to 10 m by the averaging Equations 65 in Part I. (All notations of Part I are used unchanged in the present paper.)

The hydrodynamically justified principles (a) to (c) are, naturally, quite subjective and by no means free of any error. Nevertheless, some computational experiments indicated only very minor effects of isolated depth data changes. More than 3,000 depth values were changed, but only very few of those required additional readjustments in order to keep some limitation on the first and second derivatives of  $H(\lambda,\theta)$ ; i.e., on the relative differences given by Equation 65 in Part I. Furthermore, the hydrodynamical interpolation of empirical tidal data (section, "Hydrodynamical Interpolation of Empirical Tide Data") known at continental and island stations greatly diminishes the need for precise boundary-depth data. The revised depth data bank used in the new tidal computations are published in Schwiderski (1978a I).

# **Empirical Tide Data**

The new tide model incorporates, by a unique hydrodynamical interpolation procedure (next section), empirical tidal data observed and harmonically analyzed at numerous continental and island stations. These data were taken from publications by the National Ocean Survey (1942), the International Hydrographic Bureau (1966), the British Admiralty (1977 I), and by Pekeris and Accad (1969 I), Zahel (1970 I, 1973 I), Cartwright (1971), and Luther and Wunsch (1975 I). Unfortunately, the most recent publication by the British Admiralty lists harmonic constants only for the four major tide components M<sub>2</sub>, S<sub>2</sub>, K<sub>1</sub>, and O<sub>1</sub> and excludes the European waters completely.

The voluminous data banks had to be screened in order to eliminate observations that are meaningless or unreliable for the present ocean-tide investigations. For example, tidal constants were excluded that were listed for stations deep inside estuaries or narrow bays (e.g., Hudson River, Bay of Fundy), at the mouths of large rivers (e.g., Amazon), between sheltering islands (e.g., Alexander Archipelago, Solomon Islands), and inside sheltering reefs (e.g., Great Barrier Reef).

About 2,500 stations were selected for further examination of their data concerning locally restricted distortions. For instance, some data taken over short distances along a coastline displayed rather drastically alternating times of high water, which are obviously meaningless for oceanic tidal studies. At many stations, different tables give different tidal constants. Some of those discrepancies at island stations are shown for the M2-tide in Table 1. Similarly, for some mesh cells, several different station data were available, and only one representative average had to be chosen. This situation is illustrated in Table 2 for the M2-tide around Bermuda. Many of those differences can probably be explained as simple errors in printing or computing. For instance, the phase difference of about 1 hr at Port Galets on La Reunion Island (Table 1) seems to be due to some error in observing the correct reference time, which varies from listing to listing. Most differences, such as those shown for Bermuda stations in Table 2, are definitely true local variations. In this connection, the important tidal measurements by Gallagher et al. (1971) at Fanning Atoll in the central Pacific may be mea-

Table 1 Empirical M.-tide differences.

| Station                                      |            | RAT  | /77 h | N.O.S | 1421 | Othe | re Inli | ieled              |
|----------------------------------------------|------------|------|-------|-------|------|------|---------|--------------------|
| Latitude, Longitude                          |            |      | 8°(°) |       | a(°) | um)  | a(°)    | / <del>4/0</del> 0 |
| Tenerife, Canary Island                      | (A)        | 0.67 |       |       |      | 0.69 |         | Z•                 |
| 28°29'N 16°14'W                              |            |      | 18    |       |      |      | 30      |                    |
| Port Praia, Cape Verde I.<br>14°55'N 23°31'W | (A)        | 0.42 | 244   |       |      | 0.43 | 220     | Z•                 |
| Ascension Island                             | (A)        | 0.33 | •••   |       |      | 0.51 |         | P,/Z               |
| 7°55'S 14°25'W                               | <b>(</b> ) |      | 177   |       |      |      | 174     | .,_                |
| St. Helena Island                            | (A)        | 0.32 | • • • |       |      | 0.34 | •••     | P,Z                |
| 15°55′S 5°42′W                               | • •        |      | 81    |       |      |      | 87      | •                  |
| Tristan da Cunha island                      | (A)        | 0.23 |       |       |      | 0.34 |         | P,Z                |
| 37°02'S 12°18'W                              | • •        |      | 12    |       |      |      | 354     | •                  |
| Agalega Island                               | <b>(I)</b> | 0.29 |       |       |      | 0.29 |         | Z                  |
| 10°26'S 56°40'E                              | • •        |      | 350   |       |      |      | 290     |                    |
| Port Galets, La Reunion I.                   | (1)        | 0.16 |       | 0.14  |      | 0.14 |         | Z                  |
| 20°56'8 55°17'E                              |            |      | 302   |       | 328  |      | 328     |                    |
| Mawson, Antarctica                           | <b>(I)</b> | 0.04 |       |       |      | 0.04 |         | Z                  |
| 67°36'S 62°53'E                              |            |      | 232   |       |      |      | 155     |                    |
| Wilkes Station, Antarctica                   | <b>(I)</b> | 0.28 |       |       |      | 0.38 |         | Z                  |
| 66°15′S 110°31′E                             |            |      | 162   |       |      |      | 140     |                    |
| Welles Harbor, Midway I.                     | (P)        | 0.11 |       |       |      | 0.11 |         | P,Z                |
| 28°12'N 117°22'W                             |            |      | 82    |       |      |      | 91      |                    |
| Eniwetok Atoli, Marshall I.                  | (P)        | 0.36 |       | 0.36  |      |      |         |                    |
| 11°21′N 162°21′E                             |            |      | 127   |       | 137  |      |         |                    |
| Hes Wallis, Fiji Island                      | (P)        | 0.53 |       | 0.52  |      |      |         |                    |
| 13°22'S 176°11'W                             |            |      | 178   |       | 154  |      |         |                    |
| Suva Harbor, Viti Levu,                      |            |      |       |       |      |      |         |                    |
| Fiji Island                                  | (P)        | 0.56 |       | 0.50  |      |      |         |                    |
| 18°09'8 178°29'E                             |            |      | 195   |       | 212  |      |         |                    |

<sup>6</sup> B.A.T.(77) = British Admiralty Tables (1977 I).

tioned. Tides outside and inside the small stoll's lagoon differed by about 50% (20 cm) in amplitude and by a phase lag of about 50° (1 hr, 40 min.).

In general, the most recent listings in the British Admiralty Tide

b  $\xi=$  tidal amplitude.  $\sigma_{\delta}=$  tidal phase relative to Greenwich.  $\sigma_{\delta}=$  N.O.S. (42) = National Ocean Survey (1942).  $\sigma_{\delta}=$  2 = Zahel (1970 I). / P = Peterle and Accad (1980 I).

さること ないのかない こうさ

Tables (1977 I) were chosen over older tabulations as the most reliable. The selection of the data was further aided by earlier and subsequent tidal computations. Altogether, some 1,700 M<sub>2</sub>-tide data were selected and assigned to the centers of their respective mesh cells. Using linear interpolation and tidal computations, the total number of prescribed tide data used in the M<sub>2</sub>-tide construction was increased to more than 2,000. Essentially all continental boundary cells carry empirically supported tide data. The empirical coverage is only marginal at arctic and antarctic shorelines. Most empirical tide data known at island stations are also included in the tide model.

Naturally, it must be remembered that the selection of representative, empirical tidal data (compare depth data, section before "Hydrodynamically Defined Ocean Bathymetry") is not at all free of subjective judgment and may be somewhat erratic. Obviously, only future additional tidal measurements can improve this model

Table 2

Bermuda M.-tide observations

| Station<br>Latitude, Longitude | t*(cm) | <b>₽</b> √°) | Reference                    |
|--------------------------------|--------|--------------|------------------------------|
| St. George's Island            | 36     |              |                              |
| 32.56N, 04.70W                 | •      | 359          | British Admiralty (1977 I)   |
| St. Devid's Island             | 34     |              |                              |
| 32.37N, 64.65W                 | Ψ.     | 366          | British Admiralty (1977 I)   |
| Great Sound                    | 3€     |              |                              |
| 32.32N, <b>64.83</b> W         |        | 6            | British Admiralty (1977 I)   |
| St. George's leland            | 35     |              | • • •                        |
| <b>32.37N, 64.70W</b>          |        | 0            | National Ocean Survey (1942) |
| St. George's leland            | 37     |              | • • •                        |
| <b>32.40N, 64.70W</b>          |        | 0            | Pekeris and Accad (1989 I)   |
| St. George's leland            | 36     |              |                              |
| <b>32.</b> 37N, 64.70W         |        | 360          | Zahel (1970 I)               |
| St. George's Island            | 36     |              |                              |
| <b>32.40N, 64.70W</b>          |        | 368          | Zettler et al. (1975)        |
| Deep See (GOSI IV)             | 36     |              |                              |
| <b>32.20N, 94.50W</b>          |        | 11           | J. T. Kuo Letter (1977)      |

e a se tidal escalibade.

<sup>\$ 5 =</sup> tidal phase relative to Greenwich

in this respect. Nevertheless, according to the instruction notes accompanying the British Admiralty Tide Tables (1977 I), it can probably be assumed that almost all important tide data selected carry an accuracy that is at least as high as the desired 10 cm. In any case, computational experiments showed that isolated reasonable variations of the boundary-tide data do not affect significantly the adjacent oceanic tides. It was also found insignificant to the overall quality of the tide model whether the empirical data were assigned to the centers or to the shore boundaries of the respective cells.

Attempts were made to incorporate also recent deep-sea tidal measurements into the present model. Since the hydrodynamical interpolation of empirical data is essentially based on bottom and boundary irregularities (see next section (a)-(d)), no physically valid justification was found to include distant offshore deep-sea measurements into the model. However, some deep-sea measurements near rough shore and bottom areas were included. Fortunately, without exception, all excluded offshore deep-sea measurements known to the author agree very well with the computed M2-tide data (see Table 3).

Table 3a Deep-sea  $M_2$ -tide data for the Gulf of Mexico and Caribbean Sea.

| Station                   | Obse  | rved  | Mod   | tel . | Error  |           |  |  |  |
|---------------------------|-------|-------|-------|-------|--------|-----------|--|--|--|
| Latitude, Longitude       | ₽(cm) | 99(°) | €(cm) | a(°)  | ∆€(cm) | 48(°)     |  |  |  |
| W. Florida Shelf St.      | 7     |       | 7     |       | 0      |           |  |  |  |
| 26.71N, 84.25W            |       | 97    |       | 92    |        | <b>-5</b> |  |  |  |
| Deep Gulf St.             | 1.3   |       | 1.6   |       | +0.3   |           |  |  |  |
| 24.77N, 89.65W            |       | 226   |       | 225   |        | -1        |  |  |  |
| Misteriosa Bank           | 8     |       | 9     |       | +1     |           |  |  |  |
| 18.88N, 83.81W            |       | 84    |       | 89    |        | +5        |  |  |  |
| Rosalind Bank             | 7     |       | 8     |       | +1     |           |  |  |  |
| 16.61N, 80.34W            |       | 107   |       | 102   |        | -5        |  |  |  |
| East Carib. St. (6-month) | 0.5   |       | 1.6   |       | +1     |           |  |  |  |
| 16.54N, 64.88W            |       | 156   |       | 151   |        | 5         |  |  |  |
| East Carib. St. (1-month) | 0.6   |       | 1.5   |       | 0.9    |           |  |  |  |
| 16.52N, 64.91W            |       | 153   |       | 148   |        | -5        |  |  |  |

<sup># =</sup> tidel emplitude.

<sup>&</sup>gt; = tidal phase relative to Greenwich.

Table 3b Deep-sea M<sub>2</sub>-tide data for the Pacific and Atlantic oceans.

| Station                     | Obse  | rved        | Mod         | Model |        |       |  |  |  |  |
|-----------------------------|-------|-------------|-------------|-------|--------|-------|--|--|--|--|
| Latitude, Longitude         | ۼ(cm) | 80(°)       | K(cm)       | &(°)  | Δξ(cm) | 48(°) |  |  |  |  |
| Pacific St. 1 (Middleton)   | 110   |             | included    |       |        |       |  |  |  |  |
| 58.76N, 145.71W             |       | 284         |             |       |        |       |  |  |  |  |
| Pacific St. 3 (Tofino)      | 99    |             | included    |       |        |       |  |  |  |  |
| 48.97N, 127.29W             |       | 239         |             |       |        |       |  |  |  |  |
| Pacific St. (San Francisco) | 54    |             | included    |       |        |       |  |  |  |  |
| 38.16N, 124.91W             |       | 227         |             |       |        |       |  |  |  |  |
| Pacific St. (Josie II)      | 27    |             | 27          |       | 0      |       |  |  |  |  |
| 34.00N, 144.99W             |       | <i>2</i> 67 |             | 273   |        | +6    |  |  |  |  |
| Pacific St. (Flicki)        | 43    |             | included    |       |        |       |  |  |  |  |
| 32.24N, 120.86W             |       | 149         |             |       |        |       |  |  |  |  |
| Pacific St. (Josie I)       | 43    |             | included    |       |        |       |  |  |  |  |
| 31.03N, 119.80W             |       | 142         |             |       |        |       |  |  |  |  |
| Pacific St. (Kathy)         | 29    |             | 27          |       | -2     |       |  |  |  |  |
| 27.75N, 124.37W             |       | 128         |             | 130   |        | +2    |  |  |  |  |
| Pacific St. (Filloux)       | 19    |             | 18          |       | -1     |       |  |  |  |  |
| 24.78N, 129.02W             |       | 107         |             | 105   |        | -2    |  |  |  |  |
| Atlantic St. 1 (N.Y. Bight) | 44    |             | included    |       |        |       |  |  |  |  |
| 39.32N, 64.36W              |       | 350         |             |       |        |       |  |  |  |  |
| Atlantic St. (N.C. St. 1)   | 48    |             | 46          |       | -2     |       |  |  |  |  |
| 32.69N, 75.62W              |       | 356         |             | 358   |        | +2    |  |  |  |  |
| Atlantic St. (Savannah B)   | 88    |             | included    |       |        |       |  |  |  |  |
| 31.95N, 80.68W              |       | 15          |             |       |        |       |  |  |  |  |
| Atlantic St. (Scope)        | 45    |             | 46          |       | +2     |       |  |  |  |  |
| 30.43N, 76.42W              |       | 358         |             | 3     |        | +5    |  |  |  |  |
| Atlantic St. (AOML 1)       | 34    |             | <b>3</b> 5  |       | +1     |       |  |  |  |  |
| 28.14N, 69.75W              |       | 1           |             | 6     |        | +5    |  |  |  |  |
| Atlantic St. (AOML 3)       | 34    |             | 34          |       | 0      |       |  |  |  |  |
| 28.24N, 67.54W              |       | 359         | -           | 4     |        | +5    |  |  |  |  |
| Atlantic St. (MERT)         | 34    |             | 34          |       | 0      | •     |  |  |  |  |
| 27.99N, 69.67W              |       | 360         | -           | 6     | •      | +6    |  |  |  |  |
| Atlantic St. (REIKO)        | 35    |             | 34          | -     | -1     | , -   |  |  |  |  |
| 27.97N, 69.67W              |       | 1           | -           | 6     |        | +5    |  |  |  |  |
| Atlantic St. (EDIE-May)     | 32    |             | 32          | _     | 0      | •     |  |  |  |  |
| 26.46N, 69.33W              |       | 3           |             | 7     | -      | +4    |  |  |  |  |
| Atlantic St. (EDIE-March)   | 31    | _           | 32          | =     | +1     | , -   |  |  |  |  |
| 28.45N, 69.32W              |       | 1           | <del></del> | 7     | • •    | +6    |  |  |  |  |

<sup>•</sup>  $\xi$  = tidal amplitude. •  $\delta$  = tidal phase relative to Greenwich.

Of course, the continuity gap (Equation 4) can be attributed to the following major causes which are physically plausible:

- (a) The bottom-friction coefficient, b (in A<sup>4</sup> and B<sup>4</sup> of Equations 62 in Part I), which is most effective in boundary cells, depends on local shore features such as true cell size and bottom slope and roughness.
- (b) The boundary cells are idealized by definition of strictly mathematical boundaries (see Figure 1).
- (c) The depth data of boundary cells are subjectively defined and, hence, faulty (section, "Hydrodynamically Defined Ocean Bathymetry").
- (d) The empirical tidal constants in Equation 3 are also faulty to some degree because of inaccurate measurements, harmonic analyses, and subjective selections and assignments to the centers of the boundary cells (preceding section).
- (e) The discrete ocean-tide model is certainly not an exact description of the true oceanic tide; e.g., at boundaries, non-linear inertial terms assume significance.

Obviously, the last two (hopefully minor) faults can be reduced only through continued future observations and modeling. However, the first two faults, (a) and (b), can be weakened by "hydrodynamically interpolating" the empirical tidal elevations (Equation 3) into the tidal model and narrowing the continuity gap (Equation 4) to an acceptable level as follows:

- (A) Adjusting the velocity field by a locally controlled implicit variation of the bottom-friction coefficient, b, in Equations 62 Part I.
- (B) Lifting the strict condition of no-flow across the mathematical ocean boundary and allowing for a monitored in- or out-flow by implicitly defining a more physical ocean boundary (Figure 1).

As was pointed out in Part I, section, "The Discrete Ocean-Tide Equations (DOTEs)," due to the choice of the finite-difference





Figure 1. Boundary cell in- and out-flow illustration: (a) and (a), also (b) and (b) are half-periods apart. (Shaded region is land area.)

parameter  $\kappa=1$ , the bottom friction coefficient, b, in A<sup>4</sup> and B<sup>4</sup> of the momentum equations (Part I, Equations 60) can be considered implicitly varied in the mesh cell  $S_{m,n}$  by directly replacing the velocity components in Equation 2 as follows:

$$U_{m,n}^{j+1} \to U_{m,n}^{j+1} + |U_{m,n}^{j+1}| (wu_1 + \overline{w}\overline{u}_1),$$

$$U_{m+\mu,n}^{j+1} \to U_{m+\mu,n}^{j+1} + |U_{m+\mu,n}^{j+1}| (wu_2 + \overline{w}\overline{u}_2),$$

$$V_{m,n}^{j+1} \to V_{m,n}^{j+1} + |V_{m,n}^{j+1}| (wv_1 + \overline{w}\overline{v}_1),$$
(5)

and

$$V_{m,n-1}^{j+1} \rightarrow V_{m,n-1}^{j+1} + \left| V_{m,n-1}^{j+1} \right| (wv_2 + wv_2),$$

provided  $\xi_{m,n} \neq 0$ ; i.e., provided an empirical tidal amplitude is available for the considered mesh cell. In Equation 5, the consistency and scale parameters (u,u) and (v,v) are defined by

$$\begin{cases} u_1 = 1, u_1 = 0 & \text{for } \Delta \zeta_{m,n}^{j+1} \cdot U_{m,n}^{j+1} < 0, \\ u_1 = 0, u_1 = A_{m,n}^4 & \text{otherwise, but} \\ u_1 = 0, u_1 = 0 & \text{if } \tilde{\xi}_{m-\mu,n} \neq 0; \end{cases}$$
 (6a)

$$\begin{cases} u_{2} = 1, u_{2} = 0 & \text{for } \Delta \zeta_{m,n}^{j+1} \cdot U_{m-\mu,n}^{j+1} > 0, \\ u_{2} = 0, u_{2} = A_{m+\mu,n}^{4} & \text{otherwise;} \end{cases}$$

$$\begin{cases} v_{1} = 1, v_{1} = 0 & \text{for } \Delta \zeta_{m,n}^{j+1} \cdot V_{m,n}^{j+1} < 0, \\ v_{1} = 0, v_{1} = B_{m,n}^{4} & \text{otherwise;} \end{cases}$$
(6c)

$$\begin{cases} \mathbf{v}_1 = 1, \, \mathbf{v}_1 = 0 & \text{for } \Delta \zeta_{\mathbf{m},n}^{j+1} \cdot V_{\mathbf{m},n}^{j+1} < 0, \\ \mathbf{v}_1 = 0, \, \mathbf{v}_1 = B_{\mathbf{m},n}^4 & \text{otherwise;} \end{cases}$$

$$(6c)$$

and

$$\begin{cases} v_3 = 1, \, \nabla_2 = 0 & \text{for } \Delta \xi_{m,n}^{j+1} \cdot V_{m,n-1}^{j+1} > 0, \\ v_3 = 0, \, \nabla_2 = B_{m,n-1}^4 & \text{otherwise, but} \\ v_2 = 0, \, \nabla_2 = 0 & \text{if } \xi_{m,n-1} \neq 0. \end{cases}$$
(6d)

The continuity gap (Equation 4) will be narrowed when the "control parameters" w and W are determined successively by:

$$w = \begin{cases} \Delta \zeta_{m,n}^{l+1}/\zeta & \text{for } \zeta \neq 0, \\ 0 & \text{for } \zeta = 0 \end{cases}$$
 (7a)

with the first "control limit"

$$|w| \leq k_1 \tag{7b}$$

and

$$w = \begin{cases} \left[\Delta \zeta_{m,n}^{j+1} - w\zeta\right]/\overline{\zeta} & \text{for } \overline{\zeta} \neq 0, \\ 0 & \text{for } \overline{\zeta} = 0 \end{cases}$$
 (8a)

with the second control limit

$$|w| \leq k_1 \tag{8b}$$

where (see Equation 3)

$$\zeta = C_n^1 \left[ u_1 \left| U_{m,n}^{j+1} \right| + u_2 \left| U_{m+\mu,n}^{j+1} \right| \right] + v_1 C_n^2 |V_{m,n}^{j+1}| + v_2 C_n^3 |V_{m,n-1}^{j+1}|$$
and
$$\overline{\zeta} = C_n^1 \left[ \overline{u}_1 \left| U_{m,n}^{j+1} \right| + \overline{u}_2 \left| U_{m+\mu,n}^{j+1} \right| \right] + \overline{v}_1 C_n^2 |V_{m,n}^{j+1}| + \overline{v}_2 C_n^8 |V_{m,n-1}^{j+1}|.$$
(9)

It is important to note that  $u_1 \cdot \overline{u}_1 = 0$  and  $v_1 \cdot \overline{v}_1 = 0$  for i = 1, 2. Accordingly, both control limits,  $k_1$  and  $k_2$ , which are at one's disposal, regulate the allowed decrease or, respectively, increase of the velocity components in Equations 5; i.e., the implicitly permitted corresponding increase or decrease of the local bottom-friction coefficients. Since the integration sweeps across the ocean from  $m = \mu$  to 360 and n = 4 to 168, the special choice of  $u_1 = \overline{u}_1 = 0$  and  $v_2 = \overline{v}_2 = 0$  in Equations 6a and 6d excludes possible double adjustments of the velocity components. Also, if  $u_1 \neq \overline{u}_1$  and/or  $v_2 \neq \overline{v}_2$ , backward adjustments of the tidal elevations via the corresponding Equation 2 must be made. This requires the replacements

$$\begin{array}{c}
\zeta_{m-\mu n}^{j+1} \to \zeta_{m-\mu,n}^{j+1} - C_n^{j} |U_{m,n}^{j+1}| (wu_1 + Wu_1) \\
\text{and} \\
\zeta_{m,n-1}^{j+1} \to \zeta_{m,n-1}^{j+1} - C_n^{2} |V_{m,n-1}^{j+1}| (wv_2 + Wv_2).
\end{array}$$
(10)

Analogous substitutions in the forward directions of m and n follow automatically in the integration process.

İ

The velocity replacements in Equations 5 may be illustrated by the example

$$U_{m,n}^{j+1} > 0, U_{m+\mu,n}^{j+1} > 0, V_{m,n}^{j+1} > 0, V_{m,n-1}^{j+1} \ge 0,$$

$$\Delta \zeta_{m,n}^{j+1} > \tilde{\xi}_{m-\mu n} = 0, \tilde{\xi}_{m-\mu n} \neq 0.$$
(11)

One finds w > 0,  $w \ge 0$ , and

$$U_{m,n}^{j+1} \to U_{m,n}^{j+1} (1 + \overline{w} A^{4}),$$

$$U_{m+\mu,n}^{j+1} \to U_{m+\mu,n}^{j+1} (1 - w),$$

$$V_{m,n}^{j+1} \to V_{m,n}^{j+1} (1 + \overline{w} B_{m,n}^{4}),$$
(12)

and

At this point, it must be mentioned that attempts were explored to lift the conrol limits prescribed by 
$$k_1$$
 and  $k_2$  in Equations 7b and 8b in an effort to close the continuity gap completely. However, since the bottom-friction coefficient, b, is rather small the control limits,  $k_1$  and  $k_2$ , had to be kept small to achieve best results. Computations conducted with large control limits  $k_1$  (excessive bottom friction) seemed to close the continuity gap, but the tidal and velocity fields in the open oceans assumed unrealistically small values. Large control limits  $k_2$  (insufficient bottom friction) produced strong instabilities as anticipated from the analysis in the section, "Stability Analysis," of Part I. To safely check the possible instability, the second control parameter  $w$  (Equations 5, 6, and 12) was defined in units of  $v$  =  $v$  =

 $\zeta_{m-n}^{j+1} \rightarrow \zeta_{m-n}^{j+1} - C_n^1 U_n^{j+1} \overline{w} A_n^4$ 

After some trial-and-error computations, the following control limits were chosen for the m<sub>s</sub>-tide model:

$$k_1 = 0.03, k_2 = 0.06.$$
 (13)

These moderate values reflect the well-known fact that the magnitude of bottom friction has a strong effect on the motions considered. Indeed, with some minor improvements of the tidal field, significant improvements of the continuity gap, velocity field, and convergence of the integration were achieved. This procedure was applied to all oceanic cells with known empirical tide data (Equation 3), provided these cells bordered terrestrial cells or contained small islands or other bottom irregularities. No meaningful reason was seen to apply the same bottom-friction adjustment procedure to distant offshore oceanic cells with available deep-sea tide measurements.

In order to implement the second step (B) of the hydrodynamical interpolation procedure, the following velocity replacements in oceanic mesh cells bordering terrestrial cells were defined:

$$U_{m,n}^{j+1} \to \widetilde{w}\widetilde{u}_1 U_{m+\mu,n}^{j+1},$$

$$U_{m+\mu,n}^{j+1} \to \widetilde{w}\widetilde{u}_2 U_{m,n}^{j+1},$$

$$V_{m,n}^{j+1} \to \widetilde{w}\widetilde{v}_1 V_{m,n-1}^{j+1}$$

$$V_{m,n-1}^{j+1} \to wv_2 V_{m,n}^{j+1},$$

$$(14)$$

and

provided  $\tilde{\xi} \neq 0$  in Equation 3. The parameters ( $\tilde{u}\tilde{v}$ ) are mutually consistent by definition:

$$\widetilde{u}_1 = 1 \text{ if } U_{m,n}^{j+1} = 0, \text{ otherwise } \widetilde{u}_1 = 0,$$

$$\widetilde{u}_2 = 1 \text{ if } U_{m+\mu,n}^{j+1} = 0, \text{ otherwise } \widetilde{u}_2 = 0,$$

$$\widetilde{v}_1 = 1 \text{ if } V_{m,n}^{j+1} = 0, \text{ otherwise } \widetilde{v}_1 = 0,$$
(15)

and

$$\tilde{\mathbf{v}}_1 = 1$$
 if  $V_{m,n-1}^{j+1} = 0$ , otherwise  $\tilde{\mathbf{v}}_2 = 0$ .

The remaining continuity gap will be further narrowed when the control parameter  $\tilde{\mathbf{w}}$  is determined to be in agreement with Equations 2, 4, 7, 8, and 9 by

$$\widetilde{w} = \begin{cases} \left[ \Delta \xi_{m,n}^{j+1} - w \zeta - W \overline{\xi} \right] / \widetilde{\zeta} & \text{for } \widetilde{\zeta} \neq 0 \\ 0 & \text{for } \widetilde{\zeta} = 0 \end{cases}$$
 (16a)

with the third control limit

$$|\widetilde{w}| \le k_3,\tag{16b}$$

where

$$\tilde{\xi} = C_n^1 [\tilde{u}_1 U_{m+\mu,n}^{i+1} - \tilde{u}_2 U_{m,n}^{i+1}] + \tilde{v}_1 C_n^2 V_{m,n-1}^{i+1} - \tilde{v}_2 C_n^2 V_{m,n}^{i+1}.$$
 (17)

Obviously, the substitutions (Equations 14) specify consistent in- or out-flows across the mathematical boundaries of oceanic coastal cells, as illustrated in Figure 1, without explicitly fixing the physical boundary line. Again, no complete removal of the continuity gap was possible. The most satisfactory results for the Matide were achieved by setting the third control limit (Equation 16b) at

$$k_s = 0.5$$
: (18)

While the improvement of the tidal field was again moderate, the remaining continuity gaps and nearshore velocity distortions assumed uniformly satisfactory levels. The remaining small short-comings of the model can easily be attributed to the boundary inaccuracies (c), (d), and (e) listed above, but for which no simple remedies were found.

It may be emphasized that the rather significant change in the nearshore velocity field permitted by the in- and out-flow specifications (Equations 14) affected the tidal field only in a minor fashion. This important phenomenon is in agreement with the well-known fact that the pressure distribution in a fluid motion is very insensitive to large but local velocity variations. For instance, it is perhaps the most important postulate in Prandtl's boundary-layer theory (see, e.g., Schlichting, 1968 I), and it is the basis of the hydro-

static-pressure assumption invoked here and in the section, "The Continuous Ocean-Tide Equations (COTEs)," of Part I for the present tidal model.

The hydrodynamical interpolation technique considerably accelerated the convergence of the integration procedure toward the steady state amplitudes and phases. In fact, the computation of the new M<sub>2</sub>-tide model (sections, "Quality of the Ocean-Tide Model" and "Conclusions") was terminated when the amplitudes and phases over all open ocean areas differed by less than 1 cm and 1°, respectively. Obviously, this improved convergence feature goes significantly beyond the same property described in Part I, section, "Lateral-Boundary, Initial and Final Data," for the purely mathematical model.

## Quality of the Ocean-Tide Model

Since the present tide model incorporates essentially all known empirical data by hydrodynamical interpolation (preceding section), no direct comparison of observed and computed data is feasible. Nevertheless, a comprehensive appraisal of the reality of the present tide model is possible by inspecting the quality of hydrodynamical interpolation; i.e., by evaluating the "smoothness" with which the computed tide "accepts or rejects" the empirical tidal data. In fact, the smoothness characteristics of the novel hydrodynamical interpolation technique are distinctly different from those of other direct interpolation procedures using power or trigonometric polynomials. In the latter case, smoothness of the interpolation can be carried up to any desired degree by simple design. The adjustment of hydrodynamical parameters (preceding section) in the former method does not imply any smoothness of the interpolation, unless both the empirical input data and the hydrodynamical tide model are compatible with each other.

As is well known, local tidal distortions, caused by an isolated roughness (seamount or small island) in the bottom relief, affect the surrounding ocean tide very little. The major level of ocean tides is shaped by continental shorelines and large (in area and/or length) islands and ridges. In contrast to ordinary polynomial in-

terpolations, an important feature of the new hydrodynamical interpolation method is that it preserves those significant properties of ocean tidal currents without any essential alterations.

Extensive computer experiments were conducted to test the important smoothness characteristics of the hydrodynamical interpolation procedure. Faulty input data were deliberately inserted and quickly recognized as rejected by the computed surrounding tide. Indeed, the first computations, which included empirical tidal data, revealed immediately several input errors in the data. Vice versa, smoothly accepted empirical tidal data were randomly deleted to test their backlash reaction on the computed tide. As anticipated, no significant modifications were detected. Consequently, the hydrodynamical interpolation technique permits a check of the reality of both the tide model and the empirical tidal input data. If an input value is rejected by the computed tide, then one or the other or both are defective. Fortunately, only very few discrepancies between the different sources of observed M<sub>2</sub>-tide data (see section, "Empirical Tide Data") have been discovered that way.

The new discrete tide-model has been applied to compute the global M<sub>s</sub> ocean tide. A complete discussion and tabulation of all amplitudes and phases is presented in Schwiderski (1979c I). In order to display the quality of the tidal model, the computed amplitudes (in cm) and phases (in degrees) along with their adjacent empirical values have been tabulated in "30° by 50° map form" for four typical ocean areas (Tables 4–7). All empirically supported input data along continental shores and at island stations are underlined in the tables. All nearshore deep-sea measurements included in the model are labeled by subbrackets. As was explained in the preceding section, all distant offshore deep-sea measurements are not included in the tide model. However, their approximate locations are marked by wavy underlines, and their corresponding observed data are listed in Table 3. Land points are left blank.

In the evaluation of the tidal accuracy, one must remember that the ocean tide at any fixed location is determined by two harmonic constants. If  $(\xi_0, \xi_0)$  and  $(\xi, \xi)$  denote the respective local amplitudes and phases of the "true" and "computed" tides

$$\zeta_0 = \xi_0 \cos(\sigma t - \delta_0), \ \zeta = \xi \cos(\sigma t - \delta), \tag{19}$$

then their time-dependent error is

$$\tilde{\zeta} = \zeta_0 - \zeta = \tilde{\xi} \cos(\sigma t - \tilde{\delta}) \tag{20}$$

with the standard deviation

$$rms(\tilde{\xi}) = \frac{1}{2}\sqrt{2\tilde{\xi}}, \tag{21}$$

where

$$\tilde{\xi}^{3} = \xi_{0}^{2} - 2\hat{\xi}_{0}\hat{\xi}\cos(\delta_{0} - \delta) + \xi^{3} \tag{22}$$

and

$$\tan \tilde{\delta} = \frac{\xi_0 \sin \delta_0 - \xi \sin \delta}{\xi_0 \cos \delta_0 - \xi \cos \delta}.$$
 (23)

Some maximum errors are

$$\tilde{\xi}_{H} = \tilde{\xi}_{H} = \xi_{0} + \xi \text{ for } \xi_{0} - \delta = 180^{\circ}, \tag{24}$$

$$\tilde{\xi}_{M} = \tilde{\xi}_{M} = \xi_{0} - \xi \text{ for } \delta_{0} - \delta = 0^{\circ}. \tag{25}$$

$$\tilde{\xi}_M = \tilde{\xi}_M = 2\xi \sin \frac{1}{2} (\delta_0 - \delta) \text{ for } \xi = \xi_0, \tag{26}$$

and

$$\tilde{\xi}_{H} = \tilde{\xi}_{H} = \xi \text{ for } \xi = \xi_{0} \text{ and } \delta_{0} - \delta = 60^{\circ}. \tag{27}$$

Equation 27 expresses the important fact that a 60° phase error results in an amplitude error equal to the tidal amplitude and, hence, renders the computed tidal prediction completely useless. Of course, in regions of sufficiently small amplitudes, any phase error is acceptable.

Tables 4A and 4B depict the tidal amplitudes and phases, respectively, of the northwestern Atlantic Ocean including the eastern Caribbean Sea. As can be verified by earlier tide models, this

entire area was very difficult to model, because its rough bottom topography has a strong effect on the tidal currents that sweep over or across various barriers with rapidly changing water levels. There is the broad and shallow continental shelf along the whole North American shoreline, with Cape Hatteras, Long Island, Cape Cod, Nova Scotia, and Newfoundland all protruding into the ocean basin. Furthermore, there are the Grand Banks, the Bahama Banks, and the long and narrow Caribbean Ridge. Obviously, all of the corresponding local tidal features could not be realistically captured by the tide model without a proper representation of the bathymetry (section, "Hydrodynamically Defined Ocean Bathymetry") and without the hydrodynamical interpolation (preceding section) of the locally collected tidal observations.

Now, if one scans the tidal amplitudes and phases (Tables 4A and 4B) from the north to the south, one gathers the impression that the whole computed ocean tide is completely locked into the array of empirical (underlined) tidal data everywhere along the continental coast and along the many aligned islands separating the Atlantic Ocean from the Gulf of Mexico and the Caribbean Sea. It is particularly impressive to see the observed tide data at the offshore islands (Sable—SI, Barbados—BB, and even as far as Bermuda—BI) and at the included nearshore (subbrackets), deep-sea stations all realistically well-accepted by the computed surrounding tide. Moreover, one finds the excluded offshore deep-sea measurements (locations marked by wavy underlines) in the Atlantic and Caribbean Sea fully verified by the independent tide model.

As can be seen in the special listing of Table 3, the measured and computed amplitudes and phases at the Atlantic stations agree within 2 cm and 6°, respectively. The remaining discrepancy is probably within the experimental error due to short observation times and the use of the distant reference station Bermuda (Zettler et al., 1975), which exhibits even larger gaps between the various tidal observations listed in Table 2.

Attention may be drawn to the existence of considerable slopes between the empirical boundary data and the computed ocean-tide

values in the high-amplitude ranges from Nova Scotia to Cape Cod and from Cape Hatteras to Florida's coast. Yet, these rapid tidal variations can be considered as realistic because throughout the same sections the empirical data, among themselves, display exactly the same roughness. This only substantiates clearly the fundamental difference between polynomial and hydrodynamical interpolation techniques pointed out above.

In the complete report (Schwiderski, 1979c I), the same tidal roughness will be recognized in several similar coastal places around the world. From this typical phenomenon, one can draw the fortunate conclusion that, while some empirical data may be lacking high accuracy (see Table 1 and the British Admiralty Tide Tables, 1977 I), the computed adjacent ocean tide may retain its high quality.

In order to gain a deeper insight into the detailed tidal phenomena from the enclosed table charts (e.g., Tables 4A and 4B), it is helpful to recall the physical meaning of the tabulated tidal constants. The local tidal amplitude,  $\xi$ , is defined as half the tidal "range," which measures the total variation of the water level from high to low. Lines of constant amplitudes are called "corange lines." The local phase,  $\delta$ , specifies the tidal cresting time (in degrees) after the moon's (or sun's) passage over the Greenwich meridian. For the present M<sub>2</sub>-tide one has the following time conversions:

Lines of constant phases (simultaneous cresting times) are called "cotidal lines." In particular, at the  $0^{\circ} = 360^{\circ}$  cotidal lines, which are conspicuously visible in the phase charts (Tables 4B to 7B), the tide crests simultaneously with the moon's passage over the Greenwich meridian. The tidal crest advances with time normal to the cotidal lines toward larger phases. A point of zero amplitude  $(\ell = 0)$  around which the tidal crest rotates from  $0^{\circ}$  to  $360^{\circ}$  is called an "amphidromic point"; it is marked in the tables by a circled star  $\bigcirc$ .

### Key to M2-tide Tables 4-7.

M = Longitude east (°).

N = Colatitude (°).

★ = Amphidromic point.

- = Subbars mark empirical input data.

= Subbrackets mark input nearshore deep-sea measurements.

~ = Wavy underlines mark offshore deep-sea tide gauge stations with excluded measurements listed in Table 3a, b.

```
The transfer of the state of th
                      $223H
                      2223
                     2323
                   252
 3
î
 21
 Ē
 ì
                                                                                                                                                                                                                                                     33495 $ $ 7 7 7 # AM, AM _ AT
                                                                                                                                                                                                                                                                                                #12.22/22.14 · #2# 24
```

Date of the last

|                         |                                                                 |       |     |              |          |          |            |          |      |            | <b>.</b> . |         |             |        |            |              |                     |            |                |     |            |             |               |               |          |            |              |          |              |
|-------------------------|-----------------------------------------------------------------|-------|-----|--------------|----------|----------|------------|----------|------|------------|------------|---------|-------------|--------|------------|--------------|---------------------|------------|----------------|-----|------------|-------------|---------------|---------------|----------|------------|--------------|----------|--------------|
|                         | 9                                                               | 246   | 2.2 |              | ===      | 25       | 3          | 5        | ;    | 6          |            |         | •~ -        |        |            | -            | = =                 |            |                |     |            | 2           | - 5           | 2;            | 2        |            | ~ ~          | 35       |              |
|                         | 7                                                               | ZZZ   | 522 | ;;           | 27.      | 5 12     | E          | ř        | ž    | 3          | ,          | -       | ~ •         | ~      | ۰.         |              | ÷                   |            | î î            | 3 3 | 7          | 126         | ? <b>;</b>    |               | ž        | Ē          | 2            |          | 25           |
|                         | 64                                                              | 228   | 200 | 35           | 316      | 2        | 华          | 5        | 3,5  | 4          |            | •       | ٠.          | · •    | ۰.         | -            | <u>.</u>            | 5          | 100            |     |            |             |               |               |          |            |              | 7 5      | 55           |
|                         | 106 3.07                                                        | 2 2 2 |     |              |          | . •      |            | 8        | _    |            |            |         | ٠.          |        | <b>~</b> - | , ,          |                     |            |                |     |            |             |               | 200           |          | 23.2       |              |          | 25           |
|                         | 388                                                             | 7.5   |     |              | _        | 101      |            | S        |      | 2          | ::         | · •     |             |        |            |              |                     | F          |                | r   |            |             |               |               |          |            | ***          |          | ~            |
|                         | ā                                                               | -     |     | <b>1</b> = 1 |          | 3.       |            |          |      | ~ ;        | i. 5       |         | • •         |        | <b></b>    |              |                     | _          |                | _   |            |             |               |               |          |            |              |          | 6, 6.<br>- 0 |
|                         | 101 101                                                         | 702   | - : |              |          | -        | r:         | 1        |      |            |            |         |             |        | <b>~</b> - |              | - 0                 | 5          |                | 2   |            |             |               |               |          |            | 22.0         |          | 22           |
|                         | 5                                                               | 200   | •   |              | 45       |          | 肾星         | 5        | Š    | ¥ !        | Š          | *       |             |        |            | _            |                     | 3          | 5              | ,   | 2          |             |               |               |          | 5          |              | -        | 22           |
|                         | 202                                                             |       | 뉡   |              | 35       | 5.       |            | 5        |      | 5          |            |         | •           |        |            |              | _                   | -          |                | , i |            |             |               | 222           |          |            |              | 23       | 22           |
| Í                       | 181                                                             | 407   | 25  |              | 75       | 7        |            | 3        | ŧ    | 357        | Ċ          | Š       | ₩.          | ,, ,,, | ~ ~        |              | -                   |            | ź              | ,   | 5          |             | , in          | 321           | 2        | įį         | :4           |          | 22           |
| ilic Ocean              | :                                                               | 822   |     |              | 5        | 5.       | المخ       | 1        | 5    | 2 2        | e 9        |         | - A         |        | ۸ ۸        | •            | ٠,                  | ٠.         | . ب            | P 6 |            |             | ;             | 2 :           | -        | 2          | 2            | 1        | 23           |
| 1                       |                                                                 | 扫된    | •   |              | ï        | 12       | 計          | 3        | 33   | 157        | ŗ          | ا ميد د | <b>~</b> •  | •      |            | •            | <b>N</b> , <b>V</b> | ٠.         | · -            |     |            | 2           | ž ž           | 3 2           | Ž        | 13         | H            |          |              |
| ŧ                       | 60c 862 262 96c                                                 |       |     |              | ĩ        | =        | 計。<br>計。   | 1        |      | 9          | -<br>-     | • • •   | ~ •         | u PO   | <b>~</b> 4 | -            | n ~                 | <b>"</b>   | · ~            | ~ ~ | . ~ .      | ~ ~         | ,             | m <u>y</u>    |          | • •        |              | 2 3      | !            |
| Į                       | *                                                               |       |     |              |          | 非        |            | 3        |      | 6.         | - ~        | ,       | <b>-</b> ~  | -      |            | 1            |                     |            |                |     |            |             | e =           | -<br>2 2      | ٤:       | . 2        | 22           | . =      |              |
| j                       | <u>د</u>                                                        |       |     |              |          | 42.245   |            | idi<br>L | · 'n | je<br>pa 1 |            |         |             | . پي   | v -e       | 4            | ~ .                 |            |                | , , | ٠.         |             | <b>.</b> .    |               | þ        | 2          | <br>         | . A      | -d           |
| I                       |                                                                 |       |     |              |          | 2        | Į          | 2        | 7    | <b>.</b>   |            |         | ٠.          |        |            | ٠            | n 2                 |            |                |     |            | · - ·       |               |               | 8        | *          |              | 77       | 3            |
| Ž                       |                                                                 | Ì     |     |              |          |          |            | ***      | i in | Γ.         |            |         |             |        |            |              |                     |            |                | •   | _          |             |               | مَّ مَا<br>ما |          |            |              |          | 4            |
| <b>30</b> (3) <b>30</b> | 2                                                               |       |     |              |          |          | ,          |          | 15   | Ξ.         | •          |         |             |        |            |              | ••                  |            | ₹              | , , |            |             | -             | =(            | -        | 3          |              |          | ₹ 5          |
| <u>ٿ</u>                | E į                                                             | য     |     |              |          | /        |            | 4:       |      | 2          | -          | , ar    | * *         | • •    | # #        | er i         | r w                 |            | 1.             |     | 2:         | : = :       | 2 %           | 2 2           | F        |            |              | <u> </u> | _            |
| I                       | 2                                                               | •     |     |              |          | /        |            | •        | ×    | 2          | · •        | •       | <b>19</b> P |        | m 4        | •            | ٠.                  | ~ #        |                | •   | =:         | :::         | 5 2           | <u>=ا</u> ,   | 7        | :::        | 16           | 13       |              |
| 1                       | 162                                                             |       |     |              |          | •        |            | :        | *    | 9:         | -          |         | ۰.          | . ~    | <b>~</b> ~ | 4            | •                   | ~ 4        | <del>{ {</del> | f   | 2:         | 12          | 2 %           | ::            | #        |            |              | 4        | W .          |
| 1                       | Ē.                                                              |       |     |              |          |          |            | -        | 4    |            | +          | ~       | -           |        | ~ ~        | •            | •                   | •          | •              | : : | -          |             | 2 2           |               |          | : ::       |              | 4        | -            |
| *                       | 2                                                               |       | _   |              |          |          |            | coo      | 7    | ¥;         | K          | ::      | -           | •      | <b>~</b>   | <b>p</b> ~ 1 | , L                 | •          | •              | ==  | 2          | 2           | 2 2           | •             | 캎        | 52         | 131          | Ī        |              |
| #                       | •                                                               |       | ~   |              | <b>o</b> |          |            |          |      |            |            | -       | _           |        | <b>-</b> - |              | ٠,                  | ے د        |                | n N | <b>M</b> P |             | : :           |               | 4        |            |              | •        | 0 0 1 1 1    |
| į                       | 2                                                               |       | -   |              | 4        | 3        |            | 3473     |      | 20.        | 7          | 2       |             |        | }<br>}     |              |                     |            | . 🛥 .          | 4 m |            | ·           | ام م<br>أها ه |               |          |            |              | ٠.       | 0            |
| -                       | 2                                                               |       | •   |              | •        | _        |            |          |      |            |            | _       | _           |        | 56         | _            |                     |            |                | -   |            |             |               | )<br>기        | 3        | 12         |              | 3        | •            |
|                         | 92                                                              |       | 2   |              |          | -        |            |          |      |            |            | #       |             |        | ? ;        |              |                     | _          |                | -   |            | 70:         | -             | <u> </u>      | -        | =          |              | 3        |              |
|                         | \$ £                                                            |       | •   |              |          | <b>U</b> | •          |          |      |            |            |         | Ž           | Ħ      | 355        | 3            | ٠                   | * *<br>}   | 2              | -   | Ħ.         | *           | 4             | ::            | 3        | =          | 128          |          | 7            |
|                         | ž                                                               |       | U   |              |          |          | _          |          |      |            |            |         | CAPE        | 3      | *          |              |                     | -          | =              | ٠,  | •          | 4::         | 4             | ᅓ             | K:       | 3          | 12:          | 12       | 13           |
|                         | 243                                                             |       |     |              |          |          | W          |          |      |            |            |         | 1           | 5      | 2          | F.           | • •                 | w 0        | =              | •   | 1 :        | 컮           | •             | #             | <b>*</b> | =          | 22           |          | 22           |
|                         | 246 241 202 243 264 265 267 267 268 269 290 291 292 291 294 295 |       |     |              |          |          |            | -        |      |            |            |         | •           | Š      | 35.5       | 13.          | ٠.                  | -:         | : :: :         | 45  | #          |             | ងំ            | 5             | ::       |            |              |          | 23           |
|                         |                                                                 |       |     |              |          |          |            | _        |      |            |            |         |             |        | -1         | 4            | ٠.                  | =:         | : ::           |     |            | <b>,</b> `: | *             | <u> </u>      |          | 3          |              |          | <br>3}       |
|                         | 7                                                               |       |     |              |          |          |            |          | *    |            |            |         |             |        |            | į            | 'n                  | ٠,         | ď              | •   | <br>:kr    |             | . <b>L</b>    |               | •        | Ł          |              |          |              |
|                         | Ñ<br>Ŋ                                                          |       |     |              |          |          |            |          | _    | 9          |            |         | _           |        | _          | •            | 37<br>7 /           | "          | 0 -            | , 4 | 47-        | , ,         | -4-           | ~ •           | - 5      | <b>#</b> : | <b>: :</b> : | . 2      | 3            |
|                         | - 4                                                             | 224   | rr  | 7,5          | ;;       | 77       | <b>;</b> ; | ;;       | ;    | 7:         | 3          | 2       | : :         |        | 25         | 3            | :3                  | <b>5</b> ? | 3:             | 5   | 33         | 3;          | : =           | 2 2           | 2 4      | Z:         | :::          | :2:      | 15           |

```
ž
                                                į
                                                3
                                                                                                                                                                                                                                                                                                         UNITED
                                                Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  31333222222222222222
                                     184 286 227 228 229 219 219 219 235 234 235 237 239 248 249 249 248
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Special descent the special sections of the section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      time to the contract the contra
                                                                                                                                                                                                                                                                                                                                 analating operation at a correspondence
        100
                                                                                                                                                                                            Man seperation of the second o
  ď
3
                                       22.7
```

```
218 219 220 221 222 229 224 225 226 226 227 220 220 231 232 235 236 236 236 236 236 248 248 248 248 248 248 249
                                                               FRANCISCO
                                             STATES
                                       UNITED
                  9
                  2
```

Table 58 M, Mdal phases 3 (°) of the northeastern Pacific Ocean.

TENENS SERVICES SERVI 28.4 **出たとなるよどのなどのないのようではないのとのとれたにはないにしたこれが、心にいられていた** 112 And appropriate the state of th Muser of the transmission 2 - Contratingual - Contrating 

```
200
                                          12
                                                    S wind # wind was was was a substant was was was a substant which was a substant was a substant with a substant was a substant
                     \begin{array}{c} n & \text{if } 1 & \text{if } 1 \\ \text{otherwise} \\ \text{o
 \begin{array}{lll} & \text{the state of the s
 \begin{array}{c} \mathbf{v} \\ \mathbf
 A A SERVICE TO THE SERVICE AS A ```

ž

P TONY NOT DOTHER TANK NOT THE TONE OF THE - Brung Clarksaka berregisiyarararan di bakarar 23345344 - armakaryara parakaran karan ka TANKE PARTE TO THE PROPERTY OF ana da tan ang kan ang nang kan ang gawang da tan Estana na kan anning terester and the contraction of the contract 222 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 244 - 

Alto 7.8. M. Otto constitutes ( feed of the constant Beautie Over

No 78 Mg, tidal phases 8 (°) of the central Pacific Ocean.

In the area of Tables 4A and 4B, a major amphidromic point is visible in the Caribbean Sea southeast of the island of Puerto Rico (PRI) near the marked deep-sea gauge station. The loosely connected Caribbean and Atlantic tides rotate counterclockwise around this point with the  $0^{\circ} = 360^{\circ}$  cotidal line running northeastward. As a result of this rotation, the whole Caribbean Sea appears to be trapped and unable to develop any significant M2-tide. In agreement with the observations, the M2 tidal crest sweeps across the Caribbean Sea essentially from north to south with very little variation in water level.

If one follows the tidal crest around the amphidromic point from the Atlantic Ocean to the Caribbean Sea and back to the Atlantic, one recognizes a major tidal distortion caused by ocean ridges, which has long been discovered by practical tidalists (see, e.g., Harris, 1904 I; Bogdanov, 1961 I; Defant, 1961 I; and Luther and Wunsch, 1974 I). As the tide crosses the ridge between the islands, it suffers a distinct amplitude jump and a significant phase shift. For example, north of Puerto Rico (PRI) and Hispaniola and in the southeast around Barbados (BB), the computed and empirical Atlantic tide data display a higher water level and an earlier or, respectively, a delayed cresting time than the adjacent tide data on the Caribbean side. In particular, in full agreement with the observations, the tidal retardation time can easily exceed 30° (~1 hour). The distortion seems to depend on the angle with which the tidal crest spills over the ridge. Maximum distortion appears to be associated with a normal crossing. It may be pointed out that the realistic resolution of tidal distortions by ocean ridges (see below) constitutes probably the most significant improvement of the new model over all earlier hydrodynamical models.

The Atlantic portion of the Caribbean-Atlantic amphidromic rotation is opposed by a southward advancing tide from about Newfoundland in the north and by an eastward progressing tide from about Cape Cod to Cape Hatteras in the west. As a result of this interaction of three opposing tidal waves, the middle latitudes (around  $n = 60^{\circ}$ ) of the Atlantic display very small variations in tidal amplitudes and phases. In the high-amplitude sections be-

tween Nova Scotia and Cape Cod and between Cape Hatteras and Florida's coast, the Caribbean-Atlantic rotation wave seems to be less affected by the opposing tidal waves and progresses frontally against the corresponding shallow coastal corners.

Since the tide-generating M<sub>2</sub>-potential is a single progressing wave from east to west, the ocean responds with amphidromic tidal waves that cannot reverse their directions. Thus, at shore points tidal waves are either incoming or outgoing without reversals. In the first case tidal crests always move from sea to shore. In the second case tides always swell to their crests at the shore first and then move out to sea. The incoming tide between Nova Scotia and Cape Cod seems to produce high and rough waters. The outgoing tide between Cape Cod and Cape Hatteras is distinctly lower.

Although the computed tide in the Gulf of St. Lawrence displays the well-known amphidromic point (Defant, 1961 I), the grid system is much too crude to attach a high accuracy to the tidal constants in this border sea. For the same reason, the tidal data listed between Florida, Cuba, and the Bahamas are naturally less accurate than those in the open oceans.

Tables 5A and 5B illustrate the smoothness with which the computed tide of the northeastern Pacific Ocean attaches itself to the empirical tide data along the North American west coast. The tidal constants observed at the islands of Guadalupe (GI) and Farallon (FI), at the Cobb Seamount (CS), and at the included nearshore deep-sea stations fit realistically well into the computed surrounding tide. The amplitudes and phases of the excluded offshore deep-sea measurements in the Pacific agree within 2 cm and 6°, respectively, with the computed data (Table 3), which is just the same accuracy as in the Atlantic.

Perhaps the most prominent feature of this area is the amphidromic point , around which the M<sub>2</sub>-tide rotates counterclockwise. This amphidromic system was predicted by Munk et al. (1970) and Irish et al. (1971) in almost identical geographical position. Earlier hydrodynamical tide models failed to resolve this system on proper location, although several models matched the empirical data along the coast quite well. Since the northeastern

Pacific falls short in major bottom and coastal irregularities when compared to the northwestern Atlantic, the indicated rapid loss of quality in westerly direction seemed disappointing. Yet, as will be demonstrated below, this shortcoming could have been concluded from the obvious failure of those models to reasonably reproduce the tide over most of the north and central Pacific Ocean.

As was mentioned before, the author's preliminary tide model (Schwiderski, 1976 I) used a bathymetry that failed to represent the hydrodynamical barrier effects of the Marianas, Nampo, Kuril, Aleutian, and Hawaiian ridges, as well as of other seamount chains. Consequently, the M<sub>2</sub>-tide of almost the whole central, western. and northern Pacific area was modeled as a single huge amphidromic system, as pictured by the similar maps of other numerical tidalists such as Zahel (1971 I) and Estes (1975 I, 1977 I). The clockwise-rotating Pacific tide was free to sweep undisturbed into the Philippine, Okhotsk, and Bering seas. By the time the computed tidal crest reached the Aleutian Islands, it was just about 180° out of phase. When the original bathymetry was replaced by hydrodynamically defined depth data (section, "Hydrodynamically Defined Ocean Bathymetry"), the entire Pacific Ocean resembled a whirlpool after some continued computations over several guarter periods. The amphidromic system weakened, and its center slipped slowly southward, but drastically improved phases appeared gradually along the Aleutian Ridge, confirming the anticipated effect of ocean ridges.

The complete turnaround of the Pacific M<sub>2</sub> tide near the Aleutian Islands was speeded up when the empirical tidal constants were introduced into the model. In fact, a repeat of the same computations settled the Pacific Ocean tide into its final position in a rather dramatic fashion. Striking improvements were registered over the whole Pacific and, of course, also over the Atlantic and Indian oceans.

As is depicted in Tables 6A and 6B for the north-central Pacific, the amphidromic system is replaced by a low-amplitude tide. It appears to be locked in between the Aleutian and Hawaiian ridges in the north and south and also between the Emperor Seamount

chain in the west and the high-amplitude tide in the east, which progresses in a westerly direction from the west coast of North America (Tables 5A and 5B). The amplitude topography of this area resembles the low-amplitude tide in the Caribbean Sea (Table 4A). When the westward-advancing tidal wave enters the region between the Aleutian and Hawaiian ridges, it suffers a remarkable, almost symmetric retardation at both ridges. In fact, as the visible (0° = 360°) cotidal line in Table 6B reveals, the crest front of the tidal wave assumes the shape of an almost symmetric wedge. If one traces the 0° phase line westward beginning at both ridges, one can infer a definite idea about the realistic reproduction of the tide in this region. At both ends, the 0° phase is in full agreement with the empirical data. As the observed phases grow westward along both ridges, so grow proportionally the distances of the 0° phase line from the ridges.

The new computed M<sub>2</sub>-tide model no longer indicates any symptoms of the original phase problems at the Aleutian and Hawaiian ridges. The computed amplitudes and phases approach the empirical tidal constants from both sides of the ridges as smoothly as could be desired. As the tidal wave spills over both ridges in northwestward or southwestward directions, respectively, it suffers a tidal distortion similar to that found before at the Caribbean Ridge. Amplitude jumps and major phase shifts are again in complete agreement with observations (see the remarks of Luther and Wunsch, 1974 I). It is particularly gratifying to find the phase shift well developed along the whole length of the Hawaiian Ridge from the island of Hawaii to Midway, even though only few stations of data were used at both ends. Also, it may be noticed that the observed tidal constants at the distant and isolated island stations of Pribilof (PF), Midway (MW), and Johnston (JI) are all realistically well integrated by the surrounding computed tide.

Ironically, the old and new M<sub>2</sub>-tide maps constructed by Bogdanov (1961 I) and Luther and Wunsch (1974 I) by pure intuition and simple rules of thumb from empirical data came closest to the present charts. Indeed, their maps display no amphidromic system in the north-central Pacific. As is verified in Schwiderski

(1979c I), the computed amphidromic points between the Cook and Society islands and near the southern edge of the Solomon Islands are both in almost identical positions with those charted by the same authors. Nevertheless, their detailed distribution of amplitudes and phases is still significantly different from the present one.

Perhaps the most spectacular display of the high quality of both the computed and the observed tidal data is brought out by Tables 7A and 7B depicting the high-amplitude tide of the central Pacific. Indeed, unlike any other open ocean area, the tabulated region is dotted with numerous tide-gauge stations at island groups and at scattered isolated islands. In addition to the fully listed island chains, there are the isolated islands: Johnston (JI), Wake (WI), Kudaie (KI), Ocean (OI), Funafuti (FI), Wallis (WI), Niue (NI), and Norfolk (NF). The corresponding observed tidal constants listed in nongeographical arrangement appeared incoherent and, hence, uncorrelated, giving rise to doubt their true value. Yet, the computed tidal wave sweeps across the whole area in a southwesterly direction with little variation of its high amplitude. As the wave crest passes through the many checkpoints with correct height and in right time, it integrates and correlates without a single exception all the empirical data into one coherent unity.

### **Conclusions**

The quality evaluation of the constructed M<sub>2</sub> ocean tide model described in Parts I and II of this paper leads to the conclusion that it is now possible to compute detailed and accurate global ocean tides which fulfill the application requirements of contemporary researchers. In fact, it is estimated that the computed M<sub>2</sub>-tide charts permit an M<sub>2</sub>-tide prediction anywhere in the open oceans with an accuracy of better than 5 cm. This accuracy leaves ample room for superposable errors due to the additional smaller tidal constituents listed in Table 1 of Part I, which are presently under construction with equivalent relative accuracy. When all those partial tides become available, the total tide-prediction error is expected to fall well below the 10-cm limit needed in many applications.

Naturally, the achieved high accuracy of the M2-tide in the open

oceans drops somewhat near continental or island stations where empirical data are missing or are less accurate themselves (see the introduction to the British Admiralty Tide Tables, 1977 I). This is particularly true near Antarctica and in the Arctic Ocean, where reliable measurements of ocean tides and depths are sparse. Also, less accurate predictions must be anticipated in small border seas, bays, estuaries, and channels where the 1° by 1° grid system precludes a sufficient resolution. To improve the present tide model in those areas, significantly improved observations will be needed along with a locally refined network and corresponding bathymetric data.

## **Acknowledgments**

It is the author's most pleasant obligation to acknowledge the sustained and generous sponsorship by Mr. Ralph A. Niemann, Head, Strategic Systems Department, Mr. R. J. Anderle, Head of the Astronautics and Geodesy Division, and his Associate, Dr. C. Oesterwinter, who followed the slowly progressing work with patience and confidence. In the current two years this project is supported by the NAVSWC Independent Research Fund and by a grant from the National Geodetic Survey/NOS/NOAA. The author wishes to thank his colleagues, Dr. C. J. Cohen and Dr. B. Zondek, for many critical and stimulating discussions and suggestions. Special acknowledgment must be extended to the author's programmer, Mr. L. Szeto, for his competent and effective preparation of all the involved computer programs and his untiring cooperation in carrying out seemingly unending program changes, many of which could not be mentioned in this treatise.

Excerpts of this paper were presented at the International Symposium on Interaction of Marine Geodesy and Ocean Dynamics, held from Oct. 10 to 13, 1978, at the Rosenstiel School of Marine and Atmospheric Science, Miami, Florida 33149.

### References

Cartwright, D. E., 1971, Tides and Waves in the Vicinity of St. Helena. Phil. Trans. Roy. Soc., London, Ser. A, 270, p. 603.

- Gallagher, B. S., Shimada, K. M., Gonzales, F. L., Jr., and Stroup, E. D., 1971, Tides and Currents in Fanning Atoll Lagoon. Pacific Sci., 25, p. 191.
- International Hydrographic Bureau, 1966, Tides, Harmonic Constants. Spec. Publ., No. 26, Monaco.
- Irish, J., Munk, W. H., and Snodgrass, R., 1971, M. Amphidrome in the Northeast Pacific. Geophys. Fluid. Dyn., 2, p. 355.
- Munk, W. H., Snodgrass, F., and Wimbush, M., 1970, Tides Offshore: Transition from California Coastal to Deep-Sea Waters. Geophys. Fluid. Dyn., 1, p. 161.
- National Ocean Survey, 1942, Tidal Harmonic Constants. U.S. Coast and Geodetic Survey, Washington, D.C.
- Schwiderski, E. W., 1979, Ocean Tides, Part I: Global Ocean Tidal Equations. Marine Geodesy, Vol. 3.
- Zetler, B., Munk, W., Mofjeld, H., Brown, W., and Dormer, F., 1975, MODE Tides. J. Phys. Oceanogr., 5, p. 430.

