

LINIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

	General Certificate of Education Or		NO.
CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			5070/4
Paper 4 Altern	native to Practical	Oct	ober/November 201
	nswer on the Question Paper. Materials are required.		1 hou
READ THESE	INSTRUCTIONS FIRST		
•	ntre number, candidate number and nam	e on all the work you hand in.	

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

The number of marks is given in brackets [] at the end of each question or part question.

At the end of the examination, fasten all your work securely together.

For Examiner's Use

This document consists of 15 printed pages and 1 blank page.

BLANK PAGE

1 What is the volume of liquid in the measuring cylinder?

	cm ³ 50	
	- 40 	
	- 30	
	- -20	
	<u>-</u> 10	
_		

..... cm³ [1]

[Total: 1]

- 2 A student does some tests on hydrochloric acid to investigate its properties.
 - (a) A few drops of litmus solution are added to hydrochloric acid. An excess of aqueous sodium hydroxide is added. What colour change is seen?

The colour changes from to [1]

(b) A small piece of magnesium is added to hydrochloric acid. A gas is produced. Name and give a test for this gas.

name

test

observation[2]

- **(c)** Some powdered calcium carbonate is added to hydrochloric acid.
 - (i) What does the student observe?

.....[1]

(ii) Name and give a test for the gas which is evolved.

name

observation[2]

A student does an experiment to find the formula of magnesium oxide.
 A 10 cm length of magnesium is loosely coiled and placed in a weighed crucible.

For Examiner's Use

The crucible is heated for several minutes during which the crucible lid is raised from time to time. The magnesium changes to magnesium oxide.

(a) mass of crucible + magnesium = 14.33 g mass of crucible = 13.85 g

Calculate the mass of magnesium.

	g	[1]
--	---	----	---

- **(b)** Describe the appearance of
 - (i) magnesium,

.....

(ii) magnesium oxide.

.....[2]

(c) After cooling, the crucible is weighed. It is reheated, cooled and reweighed. Why is this done?

......[1]

(d)	10		
	Calculate		
	(i)	the mass of magnesium oxide,	
		g	
	(ii)	the mass of oxygen which reacts with the magnesium.	
		g [2]	
(e)		ng your answers to (a) and (d)(ii) , calculate the formula of magnesium oxide. O,16; Mg, 24]	
	لہ.	O, 10, Mg, 24]	
		[2]	
(f)	(i)	Give an equation for a reaction in which magnesium oxide reacts with an acid.	
		[1]	
			
	(ii)	By referring to your equation, state whether magnesium oxide can be classed as an acidic, basic or amphoteric oxide.	
		[1]	
		[Total: 10]	

In questions 4 to 8 inclusive, place a tick (\checkmark) in the box against the correct answer.

For Examiner's Use

4 Ammonia cannot be collected by displacement of water and is, in fact, collected by the method shown in the diagram.

What deductions can you make about the properties of ammonia?

	density	solubility in water	
(a)	more dense than air	soluble	
(b)	less dense than air	insoluble	
(c)	less dense than air	soluble	
(d)	more dense than air	insoluble	

[1]

5 In which of the following would the bulb **not** light?

(a)

(b)

(c)

(d)

For Examiner's Use

[1]

6

(d) $80 \, \text{cm}^3$

(e) $100 \, \text{cm}^3$

For Examiner's Use

		copper		
10	0 80 60 40 20 A	heat	20 40 60 80 100	
copper until the vol The gas is cooled t	lume of gas forced batto room temperature.	ack into the syringe A		
(a) 20 cm ³				
(b) 40 cm ³				
(c) 60 cm ³				

7 A student carries out a single experiment to determine the speed of reaction between calcium carbonate and an excess of hydrochloric acid.

Which of the following does **not** change during the course of the reaction?

(a) concentration of the hydrochloric acid solution
(b) mass of calcium carbonate
(c) volume of carbon dioxide evolved
(d) volume of the hydrochloric acid solution

[1]

[1]

8 A student does experiments to find how the solubility of potassium nitrate and ammonium sulfate varies with temperature.

For Examiner's Use

The results are shown on the graph below.

Which one of the following conclusions is correct?

(a) Both salts are insoluble at 0 °C.

(b) Potassium nitrate is more soluble than ammonium sulfate above 50 °C.

(c) Potassium nitrate is more soluble than ammonium sulfate at all temperatures.

(d) Ammonium sulfate is less soluble than potassium nitrate below 50 °C.

[1]

9 A student is asked to determine the percentage purity of a sample of impure magnesium carbonate.

For Examiner's Use

(a) The sample is added to a previously weighed container, which is then reweighed.

mass of container + impure magnesium carbonate = 8.20 g mass of container = 6.98 g

Calculate the mass of impure magnesium carbonate used in the experiment.

..... g [1]

(b) The sample is placed in a volumetric flask and 50.0 cm³ of 1.00 mol/dm³ hydrochloric acid, an excess, is added. The stopper is placed in the top of the flask and the mixture is allowed to react.

Why should this reaction have been done in a beaker rather than in a volumetric flask?

......[1]

(c) When the reaction has finished the solution is made up to $250\,\mathrm{cm}^3$ with distilled water. This is solution **T**.

25.0 cm³ of **T** is transferred to a conical flask and a few drops of methyl orange indicator are added.

0.100 mol/dm³ sodium hydroxide is added to the solution from a burette until an end-point is reached.

What is the colour change of the methyl orange at the end-point?

The colour changes from to [1]

(d) The student does three titrations. The diagrams below show parts of the burette with the liquid levels at the beginning and end of each titration.

Use the diagrams to complete the following results table.

For Examiner's Use

titration number		1	2	3	
	final burette reading/cm ³				
	initial burette reading/cm ³				
	volume of 0.100 mol/dm ³ sodium hydroxide/cm ³				
	best titration results (✓)				
mmary					

	Summary
	Tick (\checkmark) the best titration results.
	Using these results, the average volume of 0.100 mol/dm ³ sodium hydroxide required is
	cm ³ . [4]
(e)	Calculate the number of moles of sodium hydroxide in the average volume of 0.100mol/dm^3 sodium hydroxide in (d) .
	moles [1]
(f)	Using the equation and your answer to (e) , deduce the number of moles of hydrochloric acid in 25.0 cm ³ of T .
	NaOH + HC $l \rightarrow$ NaC $l + H_2O$
	moles [1]
(g)	Calculate the number of moles of hydrochloric acid in 250 cm ³ of T .
	moles [1]
(h)	
	hydrochloric acid?
	moles [1]

For Examiner's Use

(i)		subtracting your answer in (g) from your answer in (h) , calculate the number of moles ydrochloric acid that reacts with the sample of magnesium carbonate.
(j)	Wri acid	moles [1] te the equation for the reaction between magnesium carbonate and hydrochloric d.
(k)	Usi	ng the equation and your answer (i) deduce the number of moles of magnesium conate that reacts with hydrochloric acid.
(1)	(i)	moles [1] Calculate the relative formula mass of magnesium carbonate. [A_r : C,12; O,16; Mg, 24.]
	(ii)	Using your answers to (k) and (l)(i) calculate the mass of magnesium carbonate in the sample.
	(iii)	Using your answers to (a) and (I)(ii) calculate the percentage purity of the sample of magnesium carbonate.
		% [1] [Total: 17]

10 A student is given a sample of compound **S**. The table below shows the tests the student does on **S**.

For Examiner's Use

Complete the table by adding the conclusion for (a), the observations for tests (b) and (c) and both the test and observation which lead to the conclusion for test (d).

		test	observations	conclusions
(a)	and divi	dissolved in water I the resulting solution ded into three parts test (b), (c) and (d).	A green solution is formed.	
(b)		To the first part aqueous sodium hydroxide is added until a change is seen. An excess of aqueous sodium hydroxide is added to the mixture from (i).		S contains Cu ²⁺ ions.
(c)		To the second part aqueous ammonia is added until a change is seen. An excess of aqueous ammonia is added to the mixture from (i).		The presence of Cu ²⁺ ions is confirmed.
(d)				S contains C <i>l</i> ⁻ ions.

The formula for S is	

Conclusion:

[Total: 9]

11 A student investigates the temperature change produced when different amounts of powdered iron are added to 50 cm³ of aqueous copper(II) sulfate in a beaker as shown in the diagram below.

For Examiner's Use

The initial temperature in each case is 25.0 °C.

The diagrams below show parts of the thermometer stem when the thermometer records the highest temperature reached after each addition of iron.

(a) Use these diagrams to complete the table below.

volume of copper(II) sulfate/cm ³	mass of iron /g	maximum temperature /°C	temperature rise/°C
50	0.2		
50	0.4		
50	0.6		
50	0.8		
50	1.0	31.2	6.2

[2]

For

Use

[Turn over

(b) Plot the temperature rise against the mass of iron on the grid below and connect the points with two intersecting straight lines. Examiner's 10 temperature rise/°C 0.4 0.2 0.6 8.0 1.0 mass of iron/g [3] Use your graphs to determine the mass of iron required to produce a temperature rise of 3.0 °C. g [1] Deduce from your graphs the mass of iron required to react completely with 50 cm³ of aqueous copper(II) sulfate. Write the equation for the reaction between iron and copper(II) sulfate. (iv) What type of reaction is this?

5070/41/O/N/11

© UCLES 2011

For Examiner's Use	of the aqueous solution of copper(II) sulfate used in the experiment. [A _r : Fe, 56]	
	mol/dm ³ [2]	
	State one observation, other than a rise in temperature, which can be made when iron reacts with aqueous copper(II) sulfate.	(d)
	[1]	
	[Total: 12]	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.