TCP/IP Simulator Project Report Final Submission

Anvi Verma (2021BITE023)

Rohinish K Singh (2021BITE074)

June 19, 2024

Introduction

This simulation is a tool designed to simulate TCP/IP networks, offering users a comprehensive way to explore networking concepts and protocols. From designing custom network topologies to simulating data transmission, the application provides a practical and educational platform for understanding TCP/IP networks.

Key Features

• Topology Design:

Users can create custom network topologies. Network components like endpoints (stations/devices), switches, and routers can be added, connected, and configured to design the ideal network layout.

Network Components:

The application features a wide range of network components, including endpoints (stations/devices), switches, hubs, and bridges, simulating real-world networking devices and their functionalities.

Encoding and Decoding:

Data is shared between devices in the form of bits, transmitted in a specific frame size (set to 8 in this simulation).

Access Control:

The CSMA - CD(Carrier Sense Multiple Access - Collision Detection) protocol is implemented, allowing devices to exchange data only when the medium is free or idle. If the medium is busy, other stations are prevented from transmitting data.

Error Control:

A simple parity check (even parity) is implemented for error control. If an error is detected in a frame, it is discarded, and no acknowledgment (ACK) is sent for that frame.

• Flow Control:

Whenever a frame is received, an ACK is sent back to the sender, ensuring that the frame has been successfully received without errors.

Application Layer:

Two services, ping and file transfer, are implemented, allowing the creation of messages.

• Transport Layer:

Port numbers are assigned, and segments are created.

Network Layer:

A routing table is maintained, IP addresses are assigned to devices, and packets are created.

Data Link Layer:

MAC addresses are assigned, an ARP table is maintained, frames are created, ACKs are generated, error control (parity check) is implemented, and an access control protocol (CSMA/CD) is employed.

• Physical Layer:

Connections can be added and removed.

• Graphical User Interface (GUI):

The application features a user-friendly GUI developed using the Tkinter library, allowing users to interact with the simulation and visualize the network topology and connections.

Conclusion

The TCP/IP Simulator offers a practical and educational platform for understanding TCP/IP networks and related concepts. By providing users with tools to design, simulate, and analyze networks, the application enhances learning and experimentation in the field of networking.

Tools Used

- Python
- Tkinter library
- Matplotlib library

How to Run the Script

- Clone the codebase to your local device by downloading the files from the ZIP file.
- 2. Install the required libraries: Tkinter (pip3/pip install tkinter) and matplotlib (pip3/pip install matplotlib).
- 3. Run the command python3 main.py in the terminal.

References

- Tkinter official documentation
- Matplotlib library documentation
- Python documentation
- Claude by Anthropic
- Class notes
- Cisco Packet Tracer