Dysolve

Mathis Beaudoin

Sessions d'hiver-été 2025

Table des matières

1	Équ	nations maîtres	1
	1.1	Équation de Schrödinger et opérateur d'évolution	1
	1.2	Système fermé et hamiltonien statique	1
	1.3	Système fermé et hamiltonien dynamique	1
		1.3.1 Les hamiltoniens commutent	2
		1.3.2 Les hamiltoniens ne commutent pas	2
		1.3.3 Écriture alternative	5
2	App	plication à un drive oscillant	6
	2.1	Préliminaires	6
	2.2	Dérivation (partie 1)	7
	2.3	Dérivation (partie 2)	7
	2.4	Dérivation (partie 3)	8
	2.5	Dérivation (partie 4)	8
	2.6	Dérivation (dernière partie)	9
	2.7	Calcul de l'ordre 0	10
	2.8	Calcul de l'ordre 1	10
	2.9	Calcul de l'ordre n	12
		2.9.1 Notation	12
		2.9.2 Formule pour l'ordre n	13
	2.10	Reconstruire l'opérateur d'évolution	13
3	Alg	orithme Dysolve	14
\mathbf{R}	Références		

1 Équations maîtres

1.1 Équation de Schrödinger et opérateur d'évolution

L'évolution temporelle d'un système quantique est décrit par la célèbre équation de Schrödinger où on pose ici $\hbar = 1$:

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle = H(t)|\psi(t)\rangle \tag{1.1}$$

En définissant un opérateur d'évolution $U(t,t_0)$ qui amène un état du temps t_0 au temps t, c'est-à-dire que $|\psi(t)\rangle = U(t,t_0)|\psi(t_0)\rangle$, on peut l'injecter dans (1) afin d'avoir

$$i\frac{\mathrm{d}}{\mathrm{d}t}U(t,t_0)|\psi(t_0)\rangle = H(t)U(t,t_0)|\psi(t_0)\rangle \implies i\frac{\partial}{\partial t}U(t,t_0) = H(t)U(t,t_0)$$
(1.2)

Ici, la dérivée totale devient partielle par la règle de dérivation en chaîne pour les fonctions multivariables. Par ailleurs, il va de soi que $U(t,t) = \mathbb{I}$ pour tout temps t, car il n'y a alors, selon notre définition, aucune évolution qui a lieu. Dans ce cas, comme rien ne se passe, il faut que l'opérateur d'évolution soit l'identité. Aussi, on peut décomposer une évolution $U(t,t_0)$ en plusieurs évolutions une à la suite de l'autre de manière à avoir $U(t,t_0) = U(t,t_1)U(t_1,t_0)$ par exemple. Il pourrait y en avoir autant qu'on veut.

1.2 Système fermé et hamiltonien statique

Pour un système fermé avec un hamiltonien statique (donc indépendant du temps), (1.2) devient

$$i\frac{\partial}{\partial t}U(t,t_{0}) = HU(t,t_{0}) \implies \int_{U(t_{0},t_{0})}^{U(t,t_{0})} \frac{dU'}{U'} = -iH \int_{t_{0}}^{t} dt' \implies U(t,t_{0}) = e^{-iH(t-t_{0})}$$
 (1.3)

1.3 Système fermé et hamiltonien dynamique

Sachant la forme de l'opérateur d'évolution lorsque l'hamiltonien est constant, on peut approximer l'opérateur d'évolution dans le cas où l'hamiltonien est dynamique. En effet, pour une variation infinitésimale de temps δt , l'hamiltonien change à peine de sa forme de départ et on peut le considérer comme étant constant sur ce petit intervalle. Lorsqu'on dit constant, on veut plutôt dire que l'hamiltonien est évalué à un point fixe à quelque part dans le petit intervalle de temps et ce pour toute la durée de ce fragment d'évolution. Ainsi,

$$U(t + \delta t, t) \approx e^{-iH(t)\delta t}$$

Ici, on évalue l'hamiltonien à t, car de toute manière $\delta t \to 0$ ce qui en fait un choix pratique. Cependant, on aimerait avoir une forme explicite pour l'opérateur d'évolution sur une plus grande période de temps. On sait qu'on peut découper l'évolution, par exemple, en N sous-intervalles égaux de temps $\epsilon = \frac{t-t_0}{N}$ pour que

$$U(t, t_0) = \prod_{k=1}^{N} U(t_0 + k\epsilon, t_0 + (k-1)\epsilon)$$

Dans la limite où $\epsilon \to 0$ (donc où $N \to \infty$), les sous-intervalles deviennent infiniment petits et dès lors on peut se dire avec la précédente approximation que

$$U(t_0 + k\epsilon, t_0 + (k-1)\epsilon) \approx e^{-i\epsilon H(t_0 + (k-1)\epsilon)}$$

Alors,

$$U(t, t_0) = \lim_{\epsilon \to 0} \prod_{k=1}^{N} U(t_0 + k\epsilon, t_0 + (k-1)\epsilon) = \lim_{\epsilon \to 0} \prod_{k=1}^{N} e^{-i\epsilon H(t_0 + (k-1)\epsilon)}$$

On serait très tenté de combiner les exponentielles en sommant leur argument, mais on travaille avec des matrices et il faut alors faire attention. Effectivement, on peut combiner deux exponentielles contenant une matrice uniquement lorsque ces matrices commutent. Autrement, il faudrait utiliser la formule de Baker-Campbell-Hausdorff et personne ne veut avoir à l'utiliser. On distingue alors deux cas.

1.3.1 Les hamiltoniens commutent

D'abord, en supposant que tous les $H(t_i)$ dans les exponentielles commutent entre eux, donc que $[H(t_i), H(t_j)] = 0 \ \forall i, j$, il est possible de combiner toutes les exponentielles de la manière suivante :

$$U(t,t_0) = \lim_{\epsilon \to 0} e^{-i\sum_{k=0}^{N-1} H(t_0 + k\epsilon)\epsilon} = e^{-i\int_{t_0}^t H(t')dt'}$$
(1.4)

On voit clairement que si l'hamiltonien est constant, alors il peut être sorti de l'intégrale redonnant ainsi (1.3).

1.3.2 Les hamiltoniens ne commutent pas

On utilise ici une approche itérative. Depuis (1.2), on peut écrire

$$\int_{U(t_0,t_0)}^{U(t,t_0)} dU^{'} = -i \int_{t_0}^{t} H(t^{'})U(t^{'},t_0)dt^{'} \implies U(t,t_0) = \mathbb{I} - i \int_{t_0}^{t} H(t^{'})U(t^{'},t_0)dt^{'}$$

Il ne s'agit pas d'une solution, car on trouve $U(t,t_0)$ des deux côtés de l'équation. Par contre, avec ce fait, on peut remplacer l'équation dans elle-même en prenant soin de changer la notation un peu maladroite pour ce qu'on s'apprête à faire.

$$\begin{split} U(t,t_0) &= \mathbb{I} - i \int_{t_0}^t H(t_1) U(t_1,t_0) dt_1 = \mathbb{I} - i \int_{t_0}^t H(t_1) \left(\mathbb{I} - i \int_{t_0}^{t_1} H(t_2) U(t_2,t_0) dt_2 \right) dt_1 \\ &= \mathbb{I} - i \int_{t_0}^t H(t_1) dt_1 - \int_{t_0}^t \int_{t_0}^{t_1} H(t_1) H(t_2) U(t_2,t_0) dt_2 dt_1 \end{split}$$

On répète le processus à l'infini afin d'obtenir

$$U(t,t_0) = \mathbb{I} + \sum_{n=1}^{\infty} (-i)^n \int_{t_0}^t \int_{t_0}^{t_1} \dots \int_{t_0}^{t_{n-1}} H(t_1)H(t_2)\dots H(t_n)dt_n\dots dt_2dt_1$$

$$= \sum_{n=0}^{\infty} (-i)^n \int_{t_0}^t \int_{t_0}^{t_1} \dots \int_{t_0}^{t_{n-1}} H(t_1)H(t_2)\dots H(t_n)dt_n\dots dt_2dt_1$$
(1.5)

ce qu'on appelle communément une série de Dyson. Par construction, les variables d'intégration respectent $t_1 \geq t_2 \geq ... \geq t_n$ et il est aussi hautement non-trivial de montrer que (1.5) converge bien vers $U(t,t_0)$. De plus, la notation peut sembler être bizarre pour le terme n=0 et n=1 avec une borne d'intégration t_{-1} et une intégrale de t_0 à t_0 respectivement. En tant que tel, à cause de $\int_{t_0}^{t_1} ... \int_{t_0}^{t_{n-1}}$, on comprend implicitement que ça n'a de sens que pour $n\geq 2$. Pour le terme n=0 et n=1, on fait un abus de notation pour les inclure et avoir une équation plus propre.

Il peut être difficile de voir comment (1.5) se réduit à (1.4) ou à (1.3) avec un changement approprié des conditions. On introduit alors l'opérateur de produit chronologique \mathcal{T} qui réordonne un produit matriciel de manière à ce que l'argument en temps des matrices dans le produit soit décroissant de la gauche vers la droite. Autrement dit,

$$\mathcal{T}[H(t_1)H(t_2)...H(t_n)] = H(t_{i_1})H(t_{i_2})...H(t_{i_n}) \text{ où } t_{i_1} \ge t_{i_2} \ge ... \ge t_{i_n}$$
(1.6)

Évidemment, si tous les hamiltoniens commutent entre eux, alors \mathcal{T} ne sert à rien. Pour clarifier l'utilisation de l'opérateur de produit chronologique, on revient à (1.5) en s'attardant à J_2 l'intégrale du terme n=2 de la somme.

$$J_2 = \int_{t_0}^t \int_{t_0}^{t_1} H(t_1)H(t_2)dt_2dt_1$$

Il est important de conserver le même ordre pour la multiplication matricielle, car par hypothèse les hamiltoniens ne commutent pas. Dans cette dernière équation, l'ordre d'intégration fait en sorte que $t_1 \ge t_2$, ce qu'on peut voir en représentant la région d'intégration (qui est la moitié de l'aire d'un carré de côté t, voir figure 1 (A)). Ainsi, on peut directement incorporer l'opérateur de produit chronologique dans J_2 .

$$J_2 = \int_{t_0}^{t} \int_{t_0}^{t_1} H(t_1)H(t_2)dt_2dt_1 = \int_{t_0}^{t} \int_{t_0}^{t_1} \mathcal{T}[H(t_1)H(t_2)]dt_2dt_1$$

Sans changer la valeur de J_2 , on peut changer l'ordre d'intégration de la manière suivante :

$$J_2 = \int_{t_0}^{t} \int_{t_2}^{t} H(t_1)H(t_2)dt_1dt_2$$

En représentant cette nouvelle région d'intégration, on voit qu'elle reste la même sauf que maintenant l'intégration se fait "horizontalement" au lieu de "verticalement" (voir figure 1 (B)). On peut ensuite procéder à un changement de variables (qui ne change toujours pas la valeur de J_2) où $t_1 \Leftrightarrow t_2$.

$$J_2 = \int_{t_0}^t \int_{t_1}^t H(t_2)H(t_1)dt_2dt_1$$

La région d'intégration fait alors une réflexion par rapport à l'axe de la droite $t_1 = t_2$ et correspond alors à la moitié restante de l'aire du carré de côté t (voir figure 1 (C)). Dans ce cas, $t_2 \ge t_1$ et on écrit

$$J_2 = \int_{t_0}^{t} \int_{t_1}^{t} H(t_2)H(t_1)dt_2dt_1 = \int_{t_0}^{t} \int_{t_1}^{t} \mathcal{T}\left[H(t_1)H(t_2)\right]dt_2dt_1$$

Si on résume, on vient de trouver 2 formes différentes pour J_2 .

$$J_2 = \int_{t_0}^t \int_{t_0}^{t_1} \mathcal{T}[H(t_1)H(t_2)] dt_2 dt_1 = \int_{t_0}^t \int_{t_1}^t \mathcal{T}[H(t_1)H(t_2)] dt_2 dt_1$$
 (1.7)

On remarque qu'en sommant ensemble chacune des formes, on peut avoir une formule pour J_2 où les bornes d'intégration ne dépendent plus des t_i . On peut ensuite l'incorporer dans (1.5).

$$2J_{2} = \int_{t_{0}}^{t} \int_{t_{0}}^{t_{1}} \mathcal{T}[H(t_{1})H(t_{2})] dt_{2}dt_{1} + \int_{t_{0}}^{t} \int_{t_{1}}^{t} \mathcal{T}[H(t_{1})H(t_{2})] dt_{2}dt_{1} = \int_{t_{0}}^{t} \int_{t_{0}}^{t} \mathcal{T}[H(t_{1})H(t_{2})] dt_{2}dt_{1}$$

$$\implies J_{2} = \frac{1}{2} \int_{t_{0}}^{t} \int_{t_{0}}^{t} \mathcal{T}[H(t_{1})H(t_{2})] dt_{2}dt_{1}$$

$$(1.8)$$

FIGURE 1 – Changements de la région d'intégration pour J_2

En général, pour J_n , il existera n! façons différentes de l'écrire (pour les n! façons d'organiser les n hamiltoniens qui seront présents \to les n! changements de variables possibles). Par la suite, en sommant ces n! équations, toutes les dépendances sur les t_i partiront et la somme correspondra à $n!J_n$. Finalement, on isole J_n pour obtenir

$$J_n = \frac{1}{n!} \int_{t_0}^t \int_{t_0}^t \dots \int_{t_0}^t \mathcal{T}[H(t_1)H(t_2)\dots H(t_n)] dt_n \dots dt_2 dt_1$$
(1.9)

qu'on remplace dans (1.5) donnant ainsi

$$U(t,t_0) = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t \int_{t_0}^t \dots \int_{t_0}^t \mathcal{T}[H(t_1)H(t_2)\dots H(t_n)] dt_n \dots dt_2 dt_1$$
(1.10)

De là, si les hamiltoniens commutent (\mathcal{T} ne fait rien), on voit qu'on peut retomber sur (1.4).

$$U(t,t_0) = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t \int_{t_0}^t \dots \int_{t_0}^t H(t_1)H(t_2)\dots H(t_n)dt_n \dots dt_2 dt_1 = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \left(\int_{t_0}^t H(t')dt'\right)^n$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(-i \int_{t_0}^t H(t')dt'\right)^n = e^{-i \int_{t_0}^t H(t')dt'}$$

Dans les ouvrages, (1.10) se note souvent

$$U(t,t_0) = \mathcal{T}e^{-i\int_{t_0}^t H(t')dt'} = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t \int_{t_0}^t \dots \int_{t_0}^t \mathcal{T}[H(t_1)H(t_2)\dots H(t_n)] dt_n \dots dt_2 dt_1$$
(1.11)

1.3.3 Écriture alternative

Il peut être parfois plus logique d'écrire (1.5) selon l'ordre d'application des hamiltoniens sur un état (ce que certains auteurs préfèrent). On veut dire par là qu'on aimerait avoir l'indice t_1 pour l'hamiltonien le plus à droite, t_2 pour celui à sa gauche et t_n pour l'hamiltonien le plus à gauche. Autrement dit, on veut renverser l'ordre d'écriture de (1.5). On part depuis

$$U(t,t_0) = \mathbb{I} - i \int_{t_0}^t H(t_1) U(t_1,t_0) dt_1$$

Auparavant, en remplaçant l'équation dans elle-même, on aurait

$$U(t,t_0) = \mathbb{I} - i \int_{t_0}^t H(t_1)dt_1 - \int_{t_0}^t \int_{t_0}^{t_1} H(t_1)H(t_2)U(t_2,t_0)dt_2dt_1$$

Pour respecter la nouvelle notation, on a ici seulement besoin de renommer les variables du terme tout à droite.

$$U(t,t_0) = \mathbb{I} - i \int_{t_0}^t H(t_1)dt_1 - \int_{t_0}^t \int_{t_0}^{t_2} H(t_2)H(t_1)U(t_1,t_0)dt_1dt_2$$

En continuant le processus et en renommant les variables comme il faut, on obtient une forme générale pour cette notation alternative. Ici, $t_n \ge t_{n-1} \ge ... \ge t_2$.

$$U(t,t_0) = \sum_{n=0}^{\infty} (-i)^n \int_{t_0}^t \int_{t_0}^{t_n} \dots \int_{t_0}^{t_2} H(t_n) \dots H(t_1) dt_1 \dots dt_{n-1} dt_n = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t \dots \int_{t_0}^t \mathcal{T} \left[H(t_n) \dots H(t_1) \right] dt_1 \dots dt_n$$

$$\tag{1.12}$$

2 Application à un drive oscillant

2.1 Préliminaires

Un drive est un laser qu'on envoie sur un transmon afin de manipuler son état. Contrairement à un pulse qui ne dure qu'un bref instant, un drive est appliqué plus longtemps de manière à avoir une rentrée d'énergie prolongée. Ici, le drive oscille et son application occasionne au transmon des changements de niveaux d'énergie. Le qubit évolue donc avec un hamiltonien dépendant du temps. Dans un tel contexte, ce dernier correspond à

$$H(t) = H_0 + V(t) \tag{2.1}$$

où, dans sa base d'états propres, $H_0 = \sum_k \lambda_k |k\rangle \langle k|$ correspond aux énergies du transmon quand on le laisse tranquille et $V(t) = X \cos(\omega t)$, pour un opérateur quelconque X, correspond à la modification due au drive. En décomposant le cosinus en exponentielles complexes,

$$H(t) = H_0 + X\left(\frac{e^{i\omega t} + e^{-i\omega t}}{2}\right)$$

On s'attarde à l'opérateur d'évolution dans cette situation. Pour une variation infime de temps et en utilisant (2.1), on trouve (et ça fait peur)

$$U(t+\delta t,t) = \sum_{n=0}^{\infty} (-i)^n \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} H(t_n) \dots H(t_1) dt_1 \dots dt_n$$

$$= \sum_{n=0}^{\infty} (-i)^n \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (H_0 + V(t_n)) \dots (H_0 + V(t_1)) dt_1 \dots dt_n$$

$$= \sum_{n=0}^{\infty} (-i)^n \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (H_0 \dots H_0 + H_0 \dots H_0 V(t_1) + \dots + V(t_n) H_0 \dots H_0 + \dots + V(t_n) \dots V(t_1)) dt_1 \dots dt_n$$

$$= \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (-i)^n H_0 \dots H_0 dt_1 \dots dt_n + \dots + \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (-i)^n V(t_n) \dots V(t_1) dt_1 \dots dt_n$$

$$= \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (-i)^n H_0 \dots H_0 dt_1 \dots dt_n + \dots + \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (-i)^n V(t_n) \dots V(t_1) dt_1 \dots dt_n$$

$$= \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (-i)^n H_0 \dots H_0 dt_1 \dots dt_n + \dots + \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (-i)^n V(t_n) \dots V(t_1) dt_1 \dots dt_n$$

$$= \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (-i)^n H_0 \dots H_0 dt_1 \dots dt_n + \dots + \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (-i)^n V(t_n) \dots V(t_1) dt_1 \dots dt_n$$

$$= \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (-i)^n H_0 \dots H_0 dt_1 \dots dt_n + \dots + \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (-i)^n V(t_n) \dots V(t_1) dt_1 \dots dt_n$$

$$= \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (-i)^n H_0 \dots H_0 dt_1 \dots dt_n + \dots + \sum_{n=0}^{\infty} \int_t^{t+\delta t} \int_t^{t_n} (-i)^n V(t_n) \dots V(t_1) dt_1 \dots dt_n$$

On peut voir que la distribution des termes correspond à l'ensemble des combinaisons de n opérateurs où on choisit soit H_0 ou V(t) pour chacun d'eux. Il y a donc au total 2^n termes, chacun de n opérateurs et pouvant alterner entre des suites de H_0 ou de V(t) de différentes longueurs. Graphiquement, on peut représenter la génération des combinaisons par la figure 2 où chacune d'entre elles correspond à une branche différente de l'arbre.

FIGURE 2 – Arbre permettant de générer l'ensemble des combinaisons

2.2 Dérivation (partie 1)

On considère maintenant n comme étant le nombre de V(t) présents dans chaque terme de (2.2) et on omet temporairement les indices $V(t_j)$ pour éviter de se mélanger avec l'ancienne écriture. Il ne s'agit plus du même n que dans (2.2) et il faut alors un nouveau moyen d'écrire tout cela avec ce changement de variables. Pour se faire, on introduit les m_i qui indiquent combien d'applications de H_0 il y a avant une application d'un V(t). Par exemple,

$$H_0V(t)H_0H_0 = (H_0)^1V(t)(H_0)^2 = (H_0)^{m_1}V(t)(H_0)^{m_0} \implies m_0 = 2, m_1 = 1$$

 $V(t)V(t) = (H_0)^0V(t)(H_0)^0V(t)(H_0)^0 \implies m_0 = m_1 = m_2 = 0$

En général, ils sont indexés de m_0 à m_n , car pour un nombre n de V(t), on peut avoir jusqu'à n+1 blocs $H_0...H_0$ ayant des longueurs différentes.

$$H_0H_0V(t)$$
: 1 bloc, $H_0V(t)H_0$: 2 blocs, $V(t)H_0H_0$: 1 bloc

Cependant, chaque terme de (2.2) a une somme infinie. Ainsi, ces blocs peuvent être arbitrairement longs, faisant en sorte que les m_i peuvent prendre des valeurs entre 0 et l'infini. Il est plus concis de les mettre dans un vecteur $\mathbf{m} = [m_n, ..., m_0] \in \mathbb{Z}_+^{n+1}$. Ainsi, on peut écrire toute chaîne d'opérateurs comme

$$(H_0)^{m_n}V(t)(H_0)^{m_{n-1}}V(t)...(H_0)^{m_1}V(t)(H_0)^{m_0}$$
(2.3)

dont on obtient sa longueur M (le nombre total d'opérateurs) grâce à

$$M = \left(\sum_{i=0}^{n} m_i\right) + n \tag{2.4}$$

2.3 Dérivation (partie 2)

La prochaine étape est maintenant de retrouver les indices dans les V(t) avec notre nouvelle notation. On sait déjà qu'il y aura n opérateurs V(t), mais on doit pouvoir retrouver leur positionnement dans la chaîne d'opérateurs. On peut simplement compter combien il y a de H_0 et d'autres V(t) avant celui qui nous intéresse. Par exemple, pour n = 2, on pourrait avoir la chaîne

$$H_0V(t)H_0V(t)H_0 \implies m = [1, 1, 1]$$

Le premier V(t) s'applique nécessairement après $m_0 = 1$ opérateur H_0 . Le deuxième s'applique nécessairement après $m_0 = 1$ opérateur H_0 , un V(t) puis $m_1 = 1$ opérateur H_0 . Si $p \in [1..n]$ est une variable qui passe au travers des n opérateurs V(t), alors il est facile d'avoir l'indexage $V(t_{l(p)})$ où

$$l(p) = \left(\sum_{j=0}^{p-1} m_j\right) + p \tag{2.5}$$

Pour reprendre l'exemple,

$$H_0V(t_{l(2)})H_0V(t_{l(1)})H_0 = H_0V(t_{m_1+m_0+2})H_0V(t_{m_0+1})H_0 = H_0V(t_4)H_0V(t_2)H_0$$

comme on aurait dans (2.2).

2.4 Dérivation (partie 3)

Ensuite, on étend les $V(t_{l(p)})$ selon leur définition qu'on rappelle ici.

$$V(t_{l(p)}) = X\left(\frac{e^{i\omega t_{l(p)}} + e^{-i\omega t_{l(p)}}}{2}\right)$$

Toujours avec le même exemple,

$$\begin{split} H_0V(t_4)H_0V(t_2)H_0 &= \left(\frac{e^{i\omega t_4} + e^{-i\omega t_4}}{2}\right) \left(\frac{e^{i\omega t_2} + e^{-i\omega t_2}}{2}\right) H_0XH_0XH_0 \\ &= \frac{1}{2^2} \left(e^{i\omega t_2}e^{i\omega t_4} + e^{i\omega t_2}e^{-i\omega t_4} + e^{-i\omega t_2}e^{i\omega t_4} + e^{-i\omega t_2}e^{-i\omega t_4}\right) H_0XH_0XH_0 \end{split}$$

On introduit maintenant le vecteur à n dimensions ω_n dont chacun de ses éléments peut soit être $+\omega$ ou $-\omega$. On peut aller chercher l'élément i par $\omega_n[i]$. Pour un n donné, on voit qu'il en existe 2^n différents qu'on rassemble dans $\{\omega_n\}$. Par exemple,

$$\{\boldsymbol{\omega}_2\} = \{[+\omega, +\omega], [+\omega, -\omega], [-\omega, +\omega], [-\omega, -\omega]\}$$

On peut alors réécrire

$$H_0V(t_4)H_0V(t_2)H_0 = \frac{1}{2^2} \sum_{\{\omega_2\}} \left(\prod_{p=1}^2 e^{i\omega_2[p]t_{l(p)}} H_0XH_0XH_0 \right)$$

Ainsi, pour une chaîne arbitraire, (2.3) peut être réécrit de la manière suivante.

$$\frac{1}{2^n} \sum_{\{\boldsymbol{\omega}_n\}} \left(\prod_{p=1}^n e^{i\boldsymbol{\omega}_n[p]t_{l(p)}} (H_0)^{m_n} X ... X (H_0)^{m_0} \right)$$
(2.6)

2.5 Dérivation (partie 4)

Il est maintenant temps de remettre les précédentes parties dans le contexte de (2.2). On reconstruit partie par partie. D'abord, en ne considérant que les intégrales d'un seul terme, on se retrouve grâce à notre précédente trouvaille avec

$$\int_{t}^{t+\delta t} \int_{t}^{t_{M}} \dots \int_{t}^{t_{2}} (-i)^{M} \left(\frac{1}{2^{n}} \sum_{\{\boldsymbol{\omega}_{n}\}} \left(\prod_{p=1}^{n} e^{i\boldsymbol{\omega}_{n}[p]t_{l(p)}} (H_{0})^{m_{n}} X \dots X (H_{0})^{m_{0}} \right) \right) dt_{1} \dots dt_{M}$$

$$=\frac{1}{2^n}\sum_{\{\boldsymbol{\omega}_n\}}\left(\int_t^{t+\delta t}\int_t^{t_M}...\int_t^{t_2}(-iH_0)^{m_n}X...X(-iH_0)^{m_0}\cdot(-i)^n\prod_{p=1}^ne^{i\boldsymbol{\omega}_n[p]t_{l(p)}}dt_1...dt_M\right)$$

Il y a ensuite une somme infinie pour chaque terme qu'on absorbe dans les différentes longueurs m_i . On doit donc ajouter

$$\frac{1}{2^n} \sum_{\{\boldsymbol{\omega}_n\}} \sum_{\boldsymbol{m} \in \mathbb{Z}_{\perp}^{n+1}} \left(\int_t^{t+\delta t} \int_t^{t_M} \dots \int_t^{t_2} (-iH_0)^{m_n} X \dots X (-iH_0)^{m_0} \cdot (-i)^n \prod_{p=1}^n e^{i\boldsymbol{\omega}_n[p]t_{l(p)}} dt_1 \dots dt_M \right)$$

Puis, on doit sommer la précédente équation pour tous les nombres n de V(t).

$$U(t+\delta t,t) = \sum_{n=0}^{\infty} \sum_{\{\boldsymbol{\omega}_n\}} \frac{1}{2^n} \sum_{\boldsymbol{m} \in \mathbb{Z}_+^{n+1}} \left(\int_t^{t+\delta t} \int_t^{t_M} \dots \int_t^{t_2} (-iH_0)^{m_n} X \dots X (-iH_0)^{m_0} \cdot (-i)^n \prod_{p=1}^n e^{i\boldsymbol{\omega}_n[p]t_{l(p)}} dt_1 \dots dt_M \right)$$

2.6 Dérivation (dernière partie)

Finalement, on procède simplement à un changement de variables $t_{i}^{'}=t_{i}-t$. Ainsi,

$$dt'_{i} = dt_{i} - dt = dt_{i}$$
$$t_{i} = t'_{i} + t$$
$$t_{i} \in [t, t_{j}] \implies t'_{i} \in [0, t'_{j}]$$

nous donnent tout ce qu'il faut pour faire le changement de variables.

$$\begin{split} &U(t+\delta t,t) = \sum_{n=0}^{\infty} \sum_{\{\boldsymbol{\omega}_n\}} \frac{1}{2^n} \sum_{\boldsymbol{m} \in \mathbb{Z}_+^{n+1}} \left(\int_0^{\delta t} \int_0^{t_M'} \dots \int_0^{t_2'} (-iH_0)^{m_n} X \dots X (-iH_0)^{m_0} \cdot (-i)^n \prod_{p=1}^n e^{i\boldsymbol{\omega}_n[p](t_{l(p)}' + t)} dt_1' \dots dt_M' \right) \\ &= \sum_{n=0}^{\infty} \sum_{\{\boldsymbol{\omega}_n\}} \left(\prod_{p=1}^n e^{i\boldsymbol{\omega}_n[p]t} \right) \frac{1}{2^n} \sum_{\boldsymbol{m} \in \mathbb{Z}_+^{n+1}} \left(\int_0^{\delta t} \int_0^{t_M'} \dots \int_0^{t_2'} (-iH_0)^{m_n} X \dots X (-iH_0)^{m_0} \cdot (-i)^n \prod_{p=1}^n e^{i\boldsymbol{\omega}_n[p]t_{l(p)}'} dt_1' \dots dt_M' \right) \\ &= \sum_{n=0}^{\infty} \sum_{\{\boldsymbol{\omega}_n\}} e^{i\sum_{p=1}^n \boldsymbol{\omega}_n[p]t} \frac{1}{2^n} \sum_{\boldsymbol{m} \in \mathbb{Z}_+^{n+1}} \left(\int_0^{\delta t} \int_0^{t_M'} \dots \int_0^{t_2'} (-iH_0)^{m_n} X \dots X (-iH_0)^{m_0} \cdot (-i)^n \prod_{p=1}^n e^{i\boldsymbol{\omega}_n[p]t_{l(p)}'} dt_1' \dots dt_M' \right) \end{split}$$

Ce n'est pas très beau, alors on définit

$$S_{\mathbf{m}}^{(n)}(\boldsymbol{\omega}_{n},\delta t) = \int_{0}^{\delta t} \int_{0}^{t'_{M}} \dots \int_{0}^{t'_{2}} (-iH_{0})^{m_{n}} X \dots X (-iH_{0})^{m_{0}} \cdot (-i)^{n} \prod_{n=1}^{n} e^{i\boldsymbol{\omega}_{n}[p]t'_{l(p)}} dt'_{1} \dots dt'_{M}$$

$$(2.7)$$

$$S^{(n)}(\boldsymbol{\omega}_n, \delta t) = \frac{1}{2^n} \sum_{\boldsymbol{m} \in \mathbb{Z}_+^{n+1}} S_{\boldsymbol{m}}^{(n)}(\boldsymbol{\omega}_n, \delta t)$$
(2.8)

$$U^{(n)}(t+\delta t,t) = \sum_{\{\boldsymbol{\omega}_n\}} e^{i\sum_{p=1}^n \boldsymbol{\omega}_n[p]t} S^{(n)}(\boldsymbol{\omega}_n, \delta t)$$
(2.9)

de sorte que

$$U(t + \delta t, t) = \sum_{n=0}^{\infty} U^{(n)}(t + \delta t, t)$$
 (2.10)

2.7 Calcul de l'ordre 0

On calcule explicitement l'ordre 0, soit $U^{(0)}(t + \delta t, t)$ la branche la plus à gauche dans la figure 2 où la chaîne d'opérateurs ne contient que des H_0 . Ici, $\mathbf{m} = [m_0]$ et $\{\boldsymbol{\omega}_0\}$ est vide. Dès lors,

$$\begin{split} S_{\boldsymbol{m}}^{(0)}(\boldsymbol{\omega}_{0},\delta t) &= \int_{0}^{\delta t} \int_{0}^{t'_{m_{0}}} \dots \int_{0}^{t'_{2}} (-iH_{0})^{m_{0}} dt_{1}^{'} \dots dt_{m_{0}}^{'} &= \frac{(-iH_{0})^{m_{0}}}{m_{0}!} \int_{0}^{\delta t} \dots \int_{0}^{\delta t} dt_{1}^{'} \dots dt_{m_{0}}^{'} &= \frac{(-iH_{0}\int_{0}^{\delta t} dt^{'})^{m_{0}}}{m_{0}!} \\ &= \frac{(-iH_{0}\delta t)^{m_{0}}}{m_{0}!} \end{split}$$

où on a utilisé le même truc qu'avec les J_n pour changer les bornes d'intégration. Par la suite,

$$S^{(0)}(\boldsymbol{\omega}_0, \delta t) = \frac{1}{2^0} \sum_{\boldsymbol{m} \in \mathbb{Z}_+^{0+1}} S_{\boldsymbol{m}}^{(0)}(\boldsymbol{\omega}_0, \delta t) = \sum_{m_0 = 0}^{\infty} \frac{(-iH_0\delta t)^{m_0}}{m_0!} = e^{-iH_0\delta t}$$

Comme $\{\omega_0\}$ est vide, on obtient finalement

$$U^{(0)}(t+\delta t,t) = e^{-iH_0\delta t}$$

Le résultat a du sens, car on a seulement des opérateurs indépendants du temps. Donc, on s'attend à ce que l'opérateur d'évolution soit de la même forme que (1.3), ce qui est le cas. De manière équivalente, on peut aussi faire le précédent calcul avec la définition $H_0 = \sum_k \lambda_k |k\rangle \langle k|$. Ce qui suit est évident, car H_0 est diagonal dans sa base d'états propres.

$$S^{(0)}(\boldsymbol{\omega}_{0},\delta t) = \sum_{m_{0}=0}^{\infty} \frac{(-iH_{0}\delta t)^{m_{0}}}{m_{0}!} = \sum_{m_{0}=0}^{\infty} \frac{(-i\sum_{k}\lambda_{k}|k\rangle\langle k|\delta t)^{m_{0}}}{m_{0}!} = \sum_{k}\sum_{m_{0}=0}^{\infty} \frac{(-i\lambda_{k}\delta t)^{m_{0}}}{m_{0}!}|k\rangle\langle k| = \sum_{k} e^{-i\lambda_{k}\delta t}|k\rangle\langle k|$$

2.8 Calcul de l'ordre 1

On s'attarde ici aux branches avec un seul V(t) à quelque part dans la séquence d'opérateurs, ce qu'on calcule par $U^{(1)}(t+\delta t,t)$. On sait que $\boldsymbol{m}=[m_1,m_0]$ et que $\{\boldsymbol{\omega}_1\}=\{[+\omega],[-\omega]\}$. Ainsi,

$$S_{\pmb{m}}^{(1)}(\pmb{\omega}_1,\delta t) = -i \int_0^{\delta t} \int_0^{t_M'} \dots \int_0^{t_2'} (-iH_0)^{m_1} X (-iH_0)^{m_0} e^{i\pmb{\omega}_1[1]t_{l(1)}'} dt_1' \dots dt_M'$$

$$=-i\int_{0}^{\delta t}\int_{0}^{t'_{M}}\dots\int_{0}^{t'_{2}}(-iH_{0})^{m_{1}}X(-iH_{0})^{m_{0}}e^{i\boldsymbol{\omega}_{1}[1]t'_{m_{0}+1}}dt'_{1}...dt'_{M}$$

$$=-i\int_{0}^{\delta t}dt'_{M}\int_{0}^{t'_{M}}dt'_{M-1}...\int_{0}^{t'_{m_{0}+3}}dt'_{m_{0}+2}\int_{0}^{t'_{m_{0}+2}}(-iH_{0})^{m_{1}}Xe^{i\boldsymbol{\omega}_{1}[1]t'_{m_{0}+1}}(-iH_{0})^{m_{0}}dt'_{m_{0}+1}\int_{0}^{t'_{m_{0}+1}}dt'_{m_{0}}...\int_{0}^{t'_{2}}dt'_{1}dt'_{1}...dt'_{2}dt'_$$

De là,

$$\begin{split} S^{(1)}(\boldsymbol{\omega}_{1},\delta t) &= \\ &= \frac{-i}{2} \sum_{m_{1}=0}^{\infty} \int_{0}^{\delta t} dt_{M}^{'} ... \int_{0}^{t_{m_{0}+3}^{'}} dt_{m_{0}+2}^{'} \int_{0}^{t_{m_{0}+2}^{'}} (-iH_{0})^{m_{1}} X e^{i\boldsymbol{\omega}_{1}[1]t_{m_{0}+1}^{'}} (-iH_{0})^{m_{0}} dt_{m_{0}+1}^{'} \int_{0}^{t_{m_{0}+1}^{'}} dt_{m_{0}}^{'} ... \int_{0}^{t_{2}^{'}} dt_{1}^{'} \\ &= \frac{-i}{2} \sum_{m_{1}=0}^{\infty} \int_{0}^{\delta t} dt_{M}^{'} ... \int_{0}^{t_{m_{0}+2}^{'}} dt_{m_{0}+2}^{'} \int_{0}^{t_{m_{0}+2}^{'}} (-iH_{0})^{m_{1}} X e^{i\boldsymbol{\omega}_{1}[1]t_{m_{0}+1}^{'}} dt_{m_{0}+1}^{'} \sum_{m_{0}=0}^{\infty} \frac{(-iH_{0})^{m_{0}}}{m_{0}!} \left(\int_{0}^{t_{m_{0}+1}^{'}} dt\right)^{m_{0}} \\ &= \frac{-i}{2} \sum_{m_{1}=0}^{\infty} \int_{0}^{\delta t} dt_{M}^{'} ... \int_{0}^{t_{m_{0}+3}^{'}} dt_{m_{0}+2}^{'} \int_{0}^{t_{m_{0}+2}^{'}} (-iH_{0})^{m_{1}} X e^{i\boldsymbol{\omega}_{1}[1]t_{m_{0}+1}^{'}} e^{-iH_{0}t_{m_{0}+1}^{'}} dt_{m_{0}+1}^{'} \end{split}$$

où le truc des J_n est utilisé pour simplifier les intégrales à droite de l'exponentielle. On souhaite simplifier davantage en faisant une manipulation similaire avec les H_0 restants. Cependant, l'ordre des intégrales imbriquées nous ne permet de faire cela directement. Pour y remédier, on se rappelle des démarches pour J_2 où on pouvait l'écrire de deux manières différentes, soit en intégrant "horizontalement" ou "verticalement" (voir figure 1 (A) et (B)). Ainsi, on pouvait inverser l'ordre d'intégration avec de nouvelles bornes appropriées. Dans notre cas, on trouverait pour un tel changement

$$\begin{split} S^{(1)}(\boldsymbol{\omega}_{1},\delta t) &= \frac{-i}{2} \sum_{m_{1}=0}^{\infty} \int_{0}^{\delta t} (-iH_{0})^{m_{1}} X e^{i\boldsymbol{\omega}_{1}[1]t'_{m_{0}+1}} e^{-iH_{0}t'_{m_{0}+1}} dt'_{m_{0}+1} \int_{t'_{m_{0}+1}}^{\delta t} dt'_{m_{0}+2} ... \int_{t'_{M-1}}^{\delta t} dt'_{M} \\ &= \frac{-i}{2} \sum_{m_{1}=0}^{\infty} \int_{0}^{\delta t} (-iH_{0})^{m_{1}} X e^{i\boldsymbol{\omega}_{1}[1]t'_{m_{0}+1}} e^{-iH_{0}t'_{m_{0}+1}} dt'_{m_{0}+1} \frac{(\delta t - t'_{m_{0}+1})^{m_{1}}}{m_{1}!} \\ &= \frac{-i}{2} \int_{0}^{\delta t} \sum_{m_{1}=0}^{\infty} \frac{(-iH_{0}(\delta t - t'_{m_{0}+1}))^{m_{1}}}{m_{1}!} X e^{i\boldsymbol{\omega}_{1}[1]t'_{m_{0}+1}} e^{-iH_{0}t'_{m_{0}+1}} dt'_{m_{0}+1} \\ &= \frac{-i}{2} \int_{0}^{\delta t} e^{-iH_{0}(\delta t - t'_{m_{0}+1})} X e^{i\boldsymbol{\omega}_{1}[1]t'_{m_{0}+1}} e^{-iH_{0}t'_{m_{0}+1}} dt'_{m_{0}+1} \end{split}$$

où le truc des J_n est encore utilisé. Par la suite, on peut remplacer la définition de H_0 .

$$\begin{split} S^{(1)}(\pmb{\omega}_{1},\delta t) &= \frac{-i}{2} \int_{0}^{\delta t} \left(\sum_{k^{(1)}} e^{-i\lambda_{k^{(1)}}(\delta t - t_{m_{0}+1}^{'})} \left| k^{(1)} \right\rangle \left\langle k^{(1)} \right| \right) X e^{i\pmb{\omega}_{1}[1]t_{m_{0}+1}^{'}} \left(\sum_{k^{(0)}} e^{-i\lambda_{k^{(0)}}t_{m_{0}+1}^{'}} \left| k^{(0)} \right\rangle \left\langle k^{(0)} \right| \right) dt_{m_{0}+1}^{'} \\ &= \frac{-i}{2} \sum_{k^{(1)}} \sum_{k^{(0)}} \int_{0}^{\delta t} e^{-i\lambda_{k^{(1)}}(\delta t - t_{m_{0}+1}^{'})} e^{i\pmb{\omega}_{1}[1]t_{m_{0}+1}^{'}} e^{-i\lambda_{k^{(0)}}t_{m_{0}+1}^{'}} dt_{m_{0}+1}^{'} \left\langle k^{(1)} \left| X \left| k^{(0)} \right\rangle \left| k^{(1)} \right\rangle \left\langle k^{(0)} \right| \right. \\ &= \frac{-i}{2} \sum_{k^{(1)}} \sum_{k^{(0)}} e^{-i\lambda_{k^{(1)}}\delta t} \int_{0}^{\delta t} e^{i(\lambda_{k^{(1)}} + \pmb{\omega}_{1}[1] - \lambda_{k^{(0)}})t_{m_{0}+1}^{'}} dt_{m_{0}+1}^{'} \left\langle k^{(1)} \left| X \left| k^{(0)} \right\rangle \left| k^{(1)} \right\rangle \left\langle k^{(0)} \right| \end{split}$$

*À enlever/modifier

$$= \frac{-i}{2} \sum_{k,k'} \frac{1}{i(\lambda_k - \lambda_{k'} + \boldsymbol{\omega}_1[1])} \left(e^{i\delta t(\lambda_k - \lambda_{k'} + \boldsymbol{\omega}_1[1])} - 1 \right) e^{-i\lambda_k \delta t} \langle k | X | k' \rangle | k \rangle \langle k' |$$

$$= \frac{-i}{2} \sum_{k,k'} \frac{1}{-i(\lambda_k - (\lambda_{k'} - \boldsymbol{\omega}_1[1]))} \left(e^{-i\lambda_k \delta t} - e^{-i\delta t(\lambda_{k'} - \boldsymbol{\omega}_1[1])} \right) \langle k | X | k' \rangle | k \rangle \langle k' |$$

$$= \frac{-i\delta t}{2} \sum_{k,k'} \frac{i}{\lambda_k \delta t - (\lambda_{k'} - \boldsymbol{\omega}_1[1]) \delta t} \left(e^{-i\lambda_k \delta t} - e^{-i\delta t(\lambda_{k'} - \boldsymbol{\omega}_1[1])} \right) \langle k | X | k' \rangle | k \rangle \langle k' |$$

$$= \frac{-i\delta t}{2} \sum_{k,k'} f(\lambda_k \delta t, (\lambda_{k'} - \boldsymbol{\omega}_1[1]) \delta t) \langle k | X | k' \rangle | k \rangle \langle k' |$$

$$(2.11)$$

où on pose

$$f(\lambda_k \delta t, (\lambda_{k'} - \boldsymbol{\omega}_1[1]) \delta t) = \frac{i}{\lambda_k \delta t - (\lambda_{k'} - \boldsymbol{\omega}_1[1]) \delta t} \left(e^{-i\lambda_k \delta t} - e^{-i\delta t(\lambda_{k'} - \boldsymbol{\omega}_1[1])} \right)$$
(2.12)

On remarque qu'autant pour $S^{(0)}(\boldsymbol{\omega}_0, \delta t)$ que $S^{(1)}(\boldsymbol{\omega}_1, \delta t)$, ils ne dépendent pas du temps actuel t dans l'évolution, mais seulement de l'écart de temps δt . Cette observation sera aussi vrai pour les ordres supérieurs.

Par ailleurs, il se pourrait que $\lambda_k \delta t - (\lambda_{k'} - \boldsymbol{\omega}_1[1]) \delta t = 0$, résultant en une division par 0 dans (2.13). Pour contourner ce problème, on peut calculer à l'aide de la règle de l'Hôpital la limite quand $\lambda_k \delta t \to (\lambda_{k'} - \boldsymbol{\omega}_1[1]) \delta t$ de (2.13). De manière équivalente, on peut revenir plus haut dans les calculs de (2.12) pour simplifier.

$$\begin{split} S^{(1)}(\boldsymbol{\omega}_{1},\delta t) &= \frac{-i}{2} \sum_{k,k'} \int_{0}^{\delta t} e^{i(\lambda_{k} - \lambda_{k'} + \boldsymbol{\omega}_{1}[1])t'_{M-m_{1}}} dt'_{M-m_{1}} e^{-i\lambda_{k}\delta t} \left\langle k \mid X \mid k' \right\rangle |k\rangle \left\langle k' \mid \\ &= \frac{-i}{2} \sum_{k,k'} \int_{0}^{\delta t} e^{0} dt'_{M-m_{1}} e^{-i\lambda_{k}\delta t} \left\langle k \mid X \mid k' \right\rangle |k\rangle \left\langle k' \mid = \frac{-i\delta t}{2} \sum_{k,k'} e^{-i\lambda_{k}\delta t} \left\langle k \mid X \mid k' \right\rangle |k\rangle \left\langle k' \mid \\ &\Longrightarrow \lim_{\lambda_{k}\delta t \to (\lambda_{k'} - \boldsymbol{\omega}_{1}[1])\delta t} f(\lambda_{k}\delta t, (\lambda_{k'} - \boldsymbol{\omega}_{1}[1])\delta t) = e^{-i\lambda_{k}\delta t} \end{split}$$

2.9 Calcul de l'ordre n

2.9.1 Notation

Avant de donner une formule générale pour l'ordre n, on doit d'abord introduire quelques notations. Premièrement, il n'est pas pratique d'utiliser des apostrophes pour spécifier les n+1 sommes sur les états propres de H_0 , car on aura de plus en plus de sommes et la notation sera horrible. Pour se faire, on introduit $\mathbf{k}_n = (k^{(0)}, ..., k^{(n)})$ qui sera un ensemble d'indices pour spécifier ces n+1 sommes sur les états propres.

Deuxièmement, on spécifiera les énergies propres de chacune des sommes par $\lambda_n(\mathbf{k}_n) = (\lambda_{k^{(0)}},...,\lambda_{k^{(n)}})$ où, pour préciser, $H_0 |k^{(j)}\rangle = \lambda_{k^{(j)}} |k^{(j)}\rangle$.

Troisièmement, on pose un "vecteur cumulatif" qui facilitera la généralisation.

$$\boldsymbol{c}(\boldsymbol{\omega_n}) = \left(\sum_{p=0}^{n-1} \boldsymbol{\omega}_n[n-p], \sum_{p=0}^{n-2} \boldsymbol{\omega}_n[n-p], ..., \boldsymbol{\omega}_n[n], 0\right)$$

Finalement, lorsqu'on verra \sum_{k_n} , on voudra dire $\sum_{k^{(n)}} \sum_{k^{(n-1)}} \dots \sum_{k^{(0)}}$.

2.9.2 Formule pour l'ordre n

Par récurrence et en s'inspirant des démarches pour l'ordre 0 et 1, on pourrait montrer que l'ordre n s'écrit

$$S^{(n)}(\boldsymbol{\omega}_{n}, \delta t) = \left(\frac{-i\delta t}{2}\right)^{n} \sum_{\boldsymbol{k}_{n}} f(\boldsymbol{\lambda}_{n}(\boldsymbol{k}_{n})\delta t - \boldsymbol{c}(\boldsymbol{\omega}_{n})\delta t) \left\langle k^{(n)} \middle| \boldsymbol{X} \middle| k^{(n-1)} \right\rangle \dots \left\langle k^{(1)} \middle| \boldsymbol{X} \middle| k^{(0)} \right\rangle \left\langle k^{(0)} \middle|$$
(2.13)

Faisons sens de cela. Tout d'abord, $(-i/2)^n$ provient simplement de (2.7) et (2.8) qu'on garde en facteur tout au long des calculs. Par la suite, les différents éléments de matrice $\langle k^{(j+1)} | X | k^{(j)} \rangle$ de X avec le ket-bra $|k^{(n)}\rangle \langle k^{(0)}|$ viennent des différentes exponentielles complexes contenant H_0 qu'on réécrit de cette manière sachant que H_0 est diagonal. C'est d'ailleurs pour cela qu'on doit faire une \sum_{k_n} . Quant à $(\delta t)^n$ et $f(\lambda_n(k_n)\delta t - c(\omega_n)\delta t)$, ils arrivent de la généralisation (qu'on ne détaillera pas, voir plutôt le paper) de (2.13). En fait, il existe une relation de récursion pour f où pour un vecteur a

$$f(\boldsymbol{a}) = i \frac{f(\boldsymbol{g}(\boldsymbol{a})) - f(\boldsymbol{g}^2(\boldsymbol{a}) \cup \boldsymbol{a}[n])}{\boldsymbol{a}[n-1] - \boldsymbol{a}[n]}$$
(2.14)

Ici, g(a) retourne a sans son élément tout à gauche, $g^2(a) = g(g(a))$ et \cup ajoute un élément à la gauche complètement du vecteur de sorte que $a = g(a) \cup a[n]$.

2.10 Reconstruire l'opérateur d'évolution

Si on fait une évolution sur un temps $T = P\delta t$ où P est un certain entier, alors

$$U(T,0) = \mathcal{T} \prod_{p=0}^{P} U((p+1)\delta t, p\delta t) = \mathcal{T} \prod_{p=0}^{P} U_p = \mathcal{T} \prod_{p=0}^{P} \left(\sum_{n=0}^{\infty} U_p^{(n)} \right) \approx \mathcal{T} \prod_{p=0}^{P} \left(\sum_{r=0}^{n} U_p^{(r)} \right)$$

où on a tronqué la somme infinie. L'opérateur de produit chronologique ne fait qu'ordonner le produit de manière ascendante par rapport au temps de droite à gauche.

3 Algorithme Dysolve

Références