

Federated Learning on Medical Image Data: Closing Gaps to the Real-World

Master's Thesis Presentation by Marius Kempf Supervisors: Klaus Kades (DKFZ), Maximilian Zenk (DKFZ), Niklas Kühl

KARLSRUHE SERVICE RESEARCH INSTITUTE (KSRI)
INSTITUTE OF INFORMATION SYSTEMS AND MARKETING (IISM)

GERMAN CANCER RESEARCH CENTER (DKFZ)
Research Group: MEDICAL IMAGE COMPUTING (MIC)

Motivation: Medical (image) data is rare, highly sensitive and precious – accordingly, it is the main bottle-neck for deep learning applications.

From Machine Learning to Deep Learning

- Machine Learning learns from samples using various types of models (i.e. Neural Networks)
- Deep Learning is a part of ML methods using Convolutional Neural Networks (CNNs)
- Typical tasks with image data: Object Detection, Object Segmentation, ...

Need for (medical image) data

- Huge amounts of (training) samples needed
- Medical data is created and stored everyday, but...
 - Labelling medical data requires experts (in particular, segmentation-labels are expensive)
 - Medical (image) data is highly private and therefore sensitive and strictly regulated

Motivation: When applying Federated Learning (FL), models are exchanged between participants – locally available data stays local.

Sharing models instead of

data!

(Medical) Data Scientist

Klinikum Karlsruhe

Uniklinikum Heidelberg

Uniklinikum München

Motivation: Federated Learning (FL) allows the "decoupling of model training from the need for direct access to the raw training data."

Motivation: Federated Learning (FL) allows the "decoupling of model training from the need for direct access to the raw training data."

Federated Learning

- Sharing models instead of data
- Patients' data remains local & private
- Avoidance of extensive legal agreements
- "Access" to much more samples which can be used for model training
 - Better performance
 - Higher generalizability of models

Related Work: Federated Learning has been shown to be working – however, it is used little for real-world applications with medical image data.

Reference	FL Setting	FL Solution	Participants	Compute Plan	Algorithm	Task
Xu et al. (2020)	real-world	custom solution	4	FedAvg	3D-Densenet	Classification
Balachandar et al. (2020)	$_{ m simulated}$	-	4	Sequential	${\it GoogleLeNet}$	Classification
Wang et al. (2020)	real-world	NVIDIA Clara Train	2	FedAvg	C2FNAS	Segmentation
Remedios et al. (2020)	real-world	custom solution	2	Sequential	U-Net	Segmentation
Remedios et al. (2019)	real-world	custom solution	2	Sequential	CNN (Incept.)	Segmentation
Chang et al. (2018)	$_{ m simulated}$	-	4	Sequential & Ensembling	ResNet34	Classification
Kaissis et al. (2021)	$\operatorname{synthetic}$	PriMIA (based on PySyft)	3	FedAvg	ResNet18	Classification
Dou et al. (2021)	$\operatorname{synthetic}$	custom solution	3	FedAvg	CNN	Segmentation
Roth et al. (2020)	real-world	NVIDIA Clara Train	7	FedAvg	DenseNet-121	Classification
Feki et al. (2021)	$_{ m simulated}$	-	4	FedAvg	$VGG16 \ \& \ ResNet50$	Classification
Sarma et al. (2021)	real-world	NVIDIA Clara Train	3	FedAvg	3D AH Net	Segmentation
Sheller et al. (2020)	$_{ m simulated}$	-	10	FedAvg & Sequential	U-Net	Segmentation
Baheti et al. (2020)	$_{ m simulated}$	-	3	FedAvg	V-Net	Classification
Yang et al. (2021)	$\operatorname{synthetic}$	NVIDIA Clara Train	3	FedAvg	3D U-Net	Segmentation
Sheller et al. (2019)	$\operatorname{simulated}$	-	4, 6, 8, 32	FedAvg	U-Net	Segmentation
Li et al. (2019b)	$\operatorname{synthetic}$	NVIDIA Clara Train	13	FedAvg	CNN	Segmentation
Andreux et al. (2020)	$_{ m simulated}$	-	2, 5	FedAvg	CNN	Segmentation
Yan et al. (2020)	$_{ m simulated}$	-	2, 4, 8	FedAvg	CNN	Classification
Lee et al. (2021)	real-world	PySyft	6	FedAvg	$\operatorname{multiple}$	Classification
Flores et al. $(2021)^*$	real-world	NVIDIA Clara Train	20	FedAvg	ResNet34	Classification

Related Work: Federated Learning has been shown to be working – however, it is used little for real-world applications with medical image data.

T	otal:	20	articles	,
---------------------	-------	----	----------	---

Real-world: 8 articles

- Applied FL solutions:
 - **NVIDIA Clara (6)**
 - PySyft (2)
 - Custom solution (4)

Technical Solutions are required to bring FL into actual medical institutions!

Reference	FL Setting	FL Solution	Participants	Compute Plan	Algorithm	Task
Xu et al. (2020)	real-world	custom solution	4	FedAvg	3D-Densenet	Classification
Balachandar et al. (2020)	simulated	-	4	Sequential	${\it GoogleLeNet}$	Classification
Wang et al. (2020)	real-world	NVIDIA Clara Train	2	FedAvg	C2FNAS	Segmentation
Remedios et al. (2020)	real-world	custom solution	2	Sequential	U-Net	Segmentation
Remedios et al. (2019)	real-world	custom solution	2	Sequential	CNN (Incept.)	Segmentation
Chang et al. (2018)	$\operatorname{simulated}$	-	4	Sequential & Ensembling	ResNet34	Classification
Kaissis et al. (2021)	synthetic	PriMIA (based on PySyft)	3	FedAvg	ResNet18	Classification
Dou et al. (2021)	synthetic	custom solution	3	FedAvg	CNN	Segmentation
Roth et al. (2020)	real-world	NVIDIA Clara Train	7	FedAvg	DenseNet-121	Classification
Feki et al. (2021)	$\operatorname{simulated}$	-	4	FedAvg	$VGG16 \ \& \ ResNet50$	Classification
Sarma et al. (2021)	real-world	NVIDIA Clara Train	3	FedAvg	3D AH Net	Segmentation
Sheller et al. (2020)	$\operatorname{simulated}$	-	10	FedAvg & Sequential	U-Net	Segmentation
Baheti et al. (2020)	$\operatorname{simulated}$	-	3	FedAvg	V-Net	Classification
Yang et al. (2021)	synthetic	NVIDIA Clara Train	3	FedAvg	3D U-Net	Segmentation
Sheller et al. (2019)	$\operatorname{simulated}$	-	4, 6, 8, 32	FedAvg	U-Net	Segmentation
Li et al. (2019b)	synthetic	NVIDIA Clara Train	13	FedAvg	CNN	Segmentation
Andreux et al. (2020)	$\operatorname{simulated}$	-	2, 5	FedAvg	CNN	Segmentation
Yan et al. (2020)	$\operatorname{simulated}$	-	2, 4, 8	FedAvg	CNN	Classification
Lee et al. (2021)	real-world	PySyft	6	FedAvg	$\operatorname{multiple}$	Classification
Flores et al. $(2021)^*$	real-world	NVIDIA Clara Train	20	FedAvg	ResNet34	Classification

Search: "distributed learning" OR "federated learning" on EMBASE and PubMed, until May 31, 2021

Methods: The application of FL in a medical environment comes with specific requirements that should be met by the technical FL solutions.

Technical Federated Learning Solutions

- Selection of the solutions to be investigated:
 - Used or compared in previous scientific projects or reviews
 - Significant number of GitHub stars & aactive community with current contributions
- 6 FL solutions were selected and are compared (NVIDIA Clara, TFF, FedML, FATE, PaddleFL, PySyft)

Requirements

- Derived from related work in the field of FL with medical images
- Interviews & talks with three domain experts of the field of
 - Medical Image Computation
 - Federated Learning

Methods: JIP Federated is based on the Joint Imaging Platform which comes with powerful open-source technologies such as Apache Airflow.

Joint Imaging Platform

- Platform solution for cross-institutional collaboration in the field od medical image analysis
- Technological backbone is developed with open-source tools

Scherer, J. et al «Joint Imaging Platform for Federated Clinical Data Analytics» 2020

JIP Federated as part of KAAPANA on GitHub: https://github.com/kaapana/kaapana

Apache Airflow

- Scheduling & monitoring of workflows
- Accessible via its powerful API
- Workflows configured as Directed Acyclic Graphs (DAGs) consisting of multiple operators
- Each operator performs exactly one task of the workflow
- Exemplary workflow (DAG):

Methods: JIP Federated consists of two DAGs (workflows) serving as workflow on a central instance and on each participating JIP instance.

JIP Federated

- One central scheduling DAG on the central
 - Organises overall procedure
 - Aggregates model updates
- Equal DAGs on each participating institution
 - Performs model training on locally available data
 - Loads/sends model from/to central instance
- All but two experiment-specific components (operators) are fully reusable

Methods: An experiment using JIP Federated for federated brain tumor segmentation serves as use-case to show the applicability of the developed solution.

Experiment Setting

- Central instance & 3 JIP instances (each hosting the same amount of data samples)
- 3D U-Net Architecture
 - 500 federated rounds (one epoch per round)
 - Adam optimizer (reset before each new federated round) Federated Averaging
- Comparison of training behavior using centralized/pooled image data

Image Data - BraTS

- MRI brain scans containing diagnoses gliomas
- Randomly split into 3 three subsets for training & testing

Results: Existing solutions do not yet support all requirements for their application in a medical environment. JIP Federated still lacks additional privacy mechanisms.

- 9 requirements were derived
- **NVIDIA Clara & JIP Federated** provide extensive platform solutions
- NVIDIA Clara Train does not provide an open code base
- JIP Federated lacks of additional privacy mechanisms

_	Requirement	TFF	FedML	FATE	PaddleFL	PySyft	NVIDIA Clara Train	JIP Federated
Open-source		✓	✓	✓	✓	✓	×	✓
Offline installation		X	X	×	×	×	✓	✓
There of colorism	Platform Solution						✓	✓
Type of solution	Programming Framework	✓	✓	✓	✓	✓		
GDI.	Single GPU	/	✓	_	✓	×	✓	✓
GPU support	Multiple GPUs	✓	✓	-	✓	×	Train X	✓
	Non-DICOM	/	/	✓	/	✓	✓	/
Data handling	DICOM	×	×	X	×	(✓)	✓	✓
	PACS Connectivity	X	×	×	×	×	✓	✓
	_Differential Privacy	(✓)	X	X	/	✓	✓	X
Privacy mechanisms	Homomorphic Encryption	×	×	✓	×	✓	✓	X
	Secure Multi-Party Computation	X	✓	✓	✓	✓	Х	X
	PyTorch	×	✓	/	×	✓	✓	✓
DL frameworks	TensorFlow	✓	×	✓	×	✓	✓	✓
	PaddlePaddle	X	×	×	✓	×	Train X / / / / / / / / / / / /	✓
	Aggregation	/	✓	/	/	/	✓	/
Compute plans	Sequential	-	-	✓	×	✓	✓	✓
	Documentation, Tutorials, & Examples	/	/	/	/	×	/	/
Information	Community	✓	✓	✓	×	1	✓	✓

Results: While convergence is slower, FL with JIP Federated achieves comparable performance. JIP Federated can be a solution for real-world FL.

- Convergence is slower in FL setting
- Similar performance after 500 rounds
 - Centralized data: 0.7554
 - FL: 0.7447 (98.58 %)
- Shapes show similar behavior across participants

The segmentation experiments shows and proves the functionality of JIP **Federated**

Mean dice score: whole tumor (WT), enhancing tumor, tumor core (TC)

Conclusion:

JIP Federated closes some gaps and can be the basis for future

Summary

- FL can enable science to "access" more data
- FL in the medical environment needs technical solutions that fulfill specific requirements
- JIP Federated was successfully demonstrated by conducting a segmentation experiment

Limitations

- Scope of derived requirements
- Privacy mechanisms (i.e. Differential Privacy, Secure multi-party computation)
- Synthetic setting used for segmentation experiment

Contributions

- Overview of FL solutions in the healthcare environment, by comparing existing solutions based on requirements derived from the medical image domain
- Open-source solution JIP Federated to conduct real-world FL on medical images in a clinical environment

Thesis: "Federated Learning on Medical Image Data: Closing Gaps to the Real-World"

By Marius Kempf

THANK YOU!

BACKUP

BraTS – Glioma segmentation details

- A: Whole Tumor (WT)
- B: Tumor Core (TC)
- C: Tumor Core distinguished into
 - Blue: Enhancing Tumor
 - Green: cystic/necrotic components

A, B, and C also show different image modalities used (FLAIR, T2, T1c)

Data Distribution

• ...

•

BraTS Experiment – Training Behavior

ET: **Enhancing Tumor** WT: Whole Tumor

TC: **Tumor Core**

Implemented JIP Federated DAGs

