SUBSTITUTE SEQUENCE LISTING

```
<110> CROCE, Carlo M.
      ISHII, Hideshi
<120> COMPOSITIONS, KITS, AND METHODS RELATING TO THE HUMAN
      FEZ1 GENE, A NOVEL TUMOR SUPPRESSOR GENE
<130> 9855-30U1 (209855.0081)
<140> NOT YET ASSIGNED
<141> 2000-02-25
<150> US 60/121,537
<151> 1999-02-25
<160> <del>60</del> <u>70</u>
<170> PatentIn Ver. 2.1
<210> 1
<211> 9048
<212> DNA
<213> Homo sapiens
<400> 1
geettteeaa gaeeetgeee ggeeetgeee cateeteage eeegagteae catgggeage 60
gtcagtagcc tcatctccgg ccacagcttc cacagcaagc actgccgggc ttcgcagtac 120
aaqctqcqca aqtcctccca cctcaagaag ctcaaccggt attccgacgg gctgctgagg 180
tttggcttct cccaggactc cggtcacggc aagtccagct ccaaaatggg caagagcgaa 240
gacttcttct acatcaaggt cagccagaaa gcccggggct cccatcaccc agattacacg 300
gcactgtcca gcggggattt agggggccag gctggggtgg actttgaccc gtccacaccc 360
cccaagctca tgcccttctc caatcagcta gaaatggtaa gcgggggtcg ctggcaaggg 420
taaqtqqqtt qqaaacqcaq qagaaaqcaa aatgggggtg gagagcctgg gggttcaggg 480
ggagtggtga cctgagcatt cagactcctc aaaaccagag cggcaggggt gccggcggaa 540
gcctgtggcc acaccgcaga gatcaaacgt ttcacaaagg aattagagca tcgctcagtc 600
cccctgaagc agaagtcttg ggtcaggcca taagcaaaga gcacagggga tatgtgagct 660
tttggagtcc cactgaaatg tagctggatt gtcaacgtag gatccaggcg tttgccaagc 720
ctcgggaagg agagggagcc ctgttctcat ctggaagcac agatgaagag gatgcaggcc 780
gggagttaac cgcttctctc cccgggagac tcgtgggggt gggtgcggtc ttctcatttg 840
ctgccctggt gtgcattagc tccttgttca agctgcgcct gggggcatct ttgaatacag 900
gctggagttt tgtcatccat ttaccagaga ctagggcaaa ggaggcccag gcactgagaa 960
atccagccct cacaccagct caagccctcg tgcgtcccac gagtggacac tgaaatcaat 1020
tttcctattc agtcctctgc cccttgccct ggggaaatga atccccggct ttgatttact 1080
aggaaagagc ctcttatgtt tgcatagagc attcagcttt tcaaattaag gggcttgtaa 1140
actgtgaagc actctaccag ggaaaattac agttttaaaa aaggatcgtg atttggagtg 1200
agcctcccaa ccctgtaagg aggccaggtc cgtgtccttg ctccaggctt aatggaagag 1260
gcagtgaaca ggaagaaggg atggacctaa agagggacag caagctcggc cagcctgatg 1320
ccctaacttg ccccacacag agacctagag caggagcctc aagatggtat ttatcacctc 1380
gggagggctg gggcaagctg gtggcaggtt gctatttcat agaacaaagt gcccaagtcg 1440
ccattagggt ttttccctcc taagagagat gacattcagc tgcttcaaag caacaggcaa 1500
ggtctgctga gacaattgac caagaggggt gctgcgtgcg ctcagagagc ccagactggc 1560
tcaaggtcgg cacgcgtgcc tggggaggga gggtgcaatg cgcgcgcagg ggaggcatga 1620
gtcaccgcgg tccttttcct ctacagggct ccgagaaggg tgcagtgagg cccacagcct 1680
tcaagcctgt gctgccacgg tcaggagcca tcctgcactc ctccccggag agtgccagcc 1740
accagctgca ccccgcccct ccagacaagc ccaaggagca ggagctgaag cctggcctgt 1800
getetgggge getgteagae teeggeegga acteeatgte eageetgeee acaeaagea 1860
```

ccagcagcag ctaccagctg gacccgctgg tcacacccgt gggacccaca agccgttttg 1920 ggggctccgc ccacaacatc acccagggca tcgtcctcca ggacagcaac atgatgagcc 1980 tgaaggetet gteettetee gaeggaggta geaagetggg ceaetegaae aaggeagaea 2040 agggcccctc gtgtgtccgc tcccccatct ccacggacga gtgcagcatc caggagctgg 2100 aggagettge etccageetg geetacgagg ageggeegeg gegetgeagg gaegagetgg 2220 agggcccgga gcccaaaggc ggcaacaagc tcaagcaggc ctcgcagaag agccagcgcg 2280 cgcagcaggt cctgcacctg caggtactgc agcttcagca ggagaagcgg cagctccggc 2340 aggagetega gageeteatg aaggageagg acetgetgga gaccaagete aggteetaeg 2400 agagggagaa gaccagcttc ggccccgcgc tggaggagac ccagtgggag gtgaggccac 2460 acagggetea tgggtttggg tggtcagegg tttggegeca gtaccecect etecttetgg 2520 tgctggccaa tagcgtgcaa acacagaccg cgcaggcaag cggggctaat gtgctggctt 2580 tatcacccaa agaaggggct ccctgcaaac catgttgggg gatcgactta catctgagct 2640 tectectgte eccaccatea eccteatgge tectagattt eagttteeca agtgageeat 2700 taaatcatga agccggaagc cagatgacca aggcccagcc aggctgtggg ctgacctccc 2760 ttccatcagc tcccaggagg ctcagaagaa gaacaagccg tgcctgagtt caggcggggc 2820 caggggccca agagagcaca gaatgcattt gttgctttgg agggagggac tgcacccact 2880 agtaagaggg accctattgg tggcaggttt cagtgatgga agtggccact ccttgctgaa 2940 gtgtaagtgg aacttctatt tggtgagctg agatggaaac ctaggagagg aagtaaagag 3000 tececeacte acacattae acacteacae acacteacte acceggteae acgtggaaat 3060 gaggcatctg tacctgaccg tgctggagaa ccccataacc tctgcatcta ttagtgggaa 3120 agcagetttt eteaceagee tggtggtetg gatgaeteat ggagtteaag eceategttg 3180 aggetettta catgetegea eccagettgg tetgtecaeg tgeetgeete acceecagtt 3240 cagagtccaa atctcagtct acacgcaaac ccctggctat gtgcaagtca acaaccagtg 3300 gtttaacttg cccactgctg gcagctgtat cacccccatt taacaccaat ggtattggtt 3360 ttggtgtcag cctgatttct gtcatcgatg tttatgccca catcctctga cctcacccct 3420 gcatgcaccc agccctcctc tctcctgtct actggagtaa agactacctc acaaattcac 3480 tgctgtaccc agtgactagt atcatgctgg cttggatgca gagcccaatc cacatctgtc 3540 aaacgaggaa tcattttctt ctcctcttgc tcttctttct ctatttccca cccctatccc 3600 ccatcaaaat ttggccaaga gcaatgatga aaaccgaagc cacaggttag acccatgtgt 3660 ctctggatct tggccatctg gggtcatggg agaccaaggc cagtctggct gaatcttaag 3720 agtgaatgaa gtccagagca tgtggctcta cagaatggat tcttggaact agcctggaag 3780 ccaccttcac atttcctttc acagtagaaa tttccccttg ccctcagtga aacactgcac 3840 agtcctggag aaaatccgac cctacccagg atgcgtgctt gggaccaaga atttcattcc 3900 aaggccaacc ctgtattcat gccacgaagg gagtgacaca gtcatggctg aggcatgggc 3960 ctggctttga acctcagctt gaccacttat gatccaggtg attgtaaata cattagccat 4020 ggtggcaatg gggtatagtg attaaactgt tgggatcaaa tctctactct tatactttat 4080 attttatata tatatata taatatatat atatattagc cctcaggctg gtcacttcac 4140 cagctgtttg ctatcataac ctctctgtgc ctcagtttca ttgatgtaaa ttgaggacta 4200 ctaatagtac ctacttcatc gggttgtaag gaatagatga gcaaatgtat ggcttggcac 4260 ttaataacac tacaaattat tagtgaaagt atgtttataa taatatactt ctgtgtggct 4320 aggegtggtg geteaegeet geaateeeag eactttggga ggeagaggea ggeagageae 4380 ttgaggtcag gaattcgaga tcagcctggc caacatgagg aaaccccgtc tctactaaaa 4440 atacaaaaat cagccaggca tggtggcagg tgtctgtaat cccagctact tgggaggctg 4500 aggcaggaga atcagagggg aggcggaggt tgcagtgagc caagatcacg ccactacacc 4560 ccagcctagg tgacaaagcg agacttctca aatattaaca ataataatat actatgtgtc 4620 attatacatg atgattatta ttttatcatt ttactatata gcctagctcg ataacctggg 4680 araaaggtca cagcaatgtt cagcttactt tcagattgga caaaggctgg aatgcctaac 4740 gggtaaggac actcacctct tggcactctg tctccacccc accctcggca ggtgtgccag 4860 aagtcaggcg agatctccct cctgaagcag cagctgaagg agtcccagac ggaggtgaac 4920 gccaaggcta gcgagatcct gggtctcaag gcacagctga aggacacgcg gggcaagctg 4980 gagggcctgg agctgaggac ccaggacctg gagggcgccc tgcgcaccaa gggcctggag 5040 ctggaggtct gtgagaatga gctgcagcgc aagaagaacg aggcggagct gctgcgggag 5100 aaggtgaacc tgctggagca ggagctgcag gagctgcggg cccaggccgc cctggcccgc 5160 gacatggggc cgcccacctt ccccgaggac gtccctgccc tgcagcggga gctggagcgg 5220 ctgcgggccg agctgcggga ggagcggcaa ggccatgacc agatgtcctc gggcttccag 5280

				**		E240
catgagcggc	tcgtgtggaa	ggaggagaag	gagaaggtga	ttcagtacca	gaaacagctg	5340
cagcagagct	acgtggccat	gtaccagcgg	aaccagcgcc	tggagaaggc	cctgcagcag	5400
ctggcacgtg	gggacagcgc	cggggagccc	ttggaggttg	acctggaagg	ggctgacatc	5460
ccctacgagg	acatcatagc	cactgagatc	tgaggggctg	cctgggaagg	cgagtctggg	5520
gacctggcac	tgggaggcag	ggctctcccg	tgcatccccc	ctgctcagca	attcagaccc	5580
ctctgagaga	cgccactccc	tgggacacag	acccaggacc	cccgagggga	gggcaggatg	5640
acctttcctt	ccctctctqa	tgtcccagtg	ctcaccagcc	ctgcagccca	ccagacgtca	5700
ggccctgact	cctctaactt	tcccaqqaqa	tgggtccagg	ggtctgtctg	ctttggttaa	5760
gggctcccta	aactttggcc	tttgttcgaa	atagatatcc	tctcccctc	ctccagggaa	5820
ggtggccaca	gcaagaacag	caactcccct	ccacttctca	tcccaacctc	tttttcctcc	5880
togacacatt	gaatactt	ggaaatagaa	agaagccata	tatgaccaga	agccttggaa	5940
cggacacact	ggaacgcccc	actattttac	tetagecaea	gaggtgtagg	ggtggaatga	6000
ccagccccac	cagaacctga	gccaccccc	cccggccgca	gaggegeagg	accacacaa	6060
geegegggga	agetggettt	gaaaccccag	ggetgtetta	gccccggcaa	gccacaggaa	6120
ggaggggaga	gacaggcagc	ccagcagtgt	ggagaccctg	ccacagccag	aggagggcag	6100
agggagaatc	caagggttga	gagccagtgg	egggtgatgg	ccagecectg	gggcccagcc	6160
cctgtttact	ggttcttgca	aatgggagct	gagcagcctc	tggacagcca	gtgacctttg	6240
acctcggtga	ccactcttct	ttaagccata	gaccctgagg	ccctgggctg	ggtgctggga	6300
agggagggtt	gaaaccaccg	tgaaccagag	ggtgtggctt	tccagkcacc	ctcagggagc	6360
ctccccatct	gtccagctgg	ggccagaggc	tgggagtccc	tacctgcttc	acgttggccg	6420
gcggctactc	tggaatgttt	ttccctcccc	agaatcaagc	ttttgcttga	tccagaagag	6480
cccatatcac	taagatggca	tatatgtgat	ctgggcattt	tcctcctctg	cctacagcca	6540
ggtttagcgg	caaacctttc	ccccttagca	ccttcagggc	tgagttctgg	gtttctagag	6600
gtcaggacgg	ctcctcagag	cqccaqqaaq	ccagagcccc	aagcaggacg	aaaaagaggc	6660
atacacacag	cagtgtgaat	agcctggcca	ccagccatcc	tccctccacc	tcaagacccc	6720
catttatacs	agactaaagg	atccagagag	cageteeett	tctcaggagc	ttgggcagtg	6780
ccccadaga	tccagggttt	ctctgcagat	atacagaaca	agaagagata	gtagagagag	6840
ataaaaaata	gagtttctct	attatttaat	traggattt	tatttttaat	tttatgagac	6900
acaaaayycy	tatatagaaa	aggetagge	gcagtggcet	gatcataget	cactgragge	6960
agggtettge		aggerggage	gcagcggcac	gaccataget	cactgcagcc	7020
teatactect	gggeteaage	aacceceeg	atttttt	taggaggg	gggactacag	7020
gtgcgcgcca	ecgtgeetgg	ctaacttttc	accelling	Lagggacggg	gtctcgtttt	7140
gttgccaaag	ctggtctcaa	acttgtggcc	tcaagcaatc	cacctgcctt	ggcctcccaa	7140
agtgctgaga	ttgcagatgt	gagccaccgt	gcctggccag	atttttctt	tattcttctt	7200
tctttttctt	ttttgctttc	ttgtcttttc	agaagcaagc	cagacctagc	aggctgttcc	7260
atgttctatt	tttgactgta	gccacagctg	ctgttctcag	gacagcatcc	cttcccacat	7320
gcctgcgcct	gctgcctgct	gagatgagga	ggggagcgtc	tgggaacttg	cgagtccaag	7380
gccagtcccc	atttctgcct	cgctcaccgc	tggcccttag	agaccccgag	gtaggggtgg	7440
ggagatgctt	ctctccttgc	ccccgccct	catgggtcct	agcccttccc	tgagtgcggg	7500
ctgaggccag	agtcaccttt	tctgtggctg	gctctacctt	cctgtccctg	aggttaaacg	7560
gtgcccatcc	tgccatcctc	aaacgacaga	ggagcttttc	tggaatttca	aaccattgct	7620
cttagtccca	agctaggett	aaacctggaa	tctacaagcc	aaaagtccct	ccctgcctga	7680
gggcagtacc	ctccattggg	cacagtccag	acccaaqtca	aagatgcccc	attccttgcg	7740
cctcagccct	cagttccttc	atttccacca	aaccatacct	tatttaaatt	tttcctccca	7800
gtgagactgc	cccacggaga	cagaggaaag	gactaactcc	ccctccccaq	gctggagacc	7860
cccccaact	ccaddaaaga	gragicagag	tccagtgctc	tacctcagac	gttgcctgag	7920
angangtaga	taccacacac	acadceagas	cctgagggg	aggetgtget	ccgccatggt	7980
aagaaguggu	etteestaes	aggggaagge	caccettete	catateteca	tggccctgtc	8040
greeeggrae	ccccacaca	cagaggagcg	castcatcata	cataccecca	ggcagatgtc	8100
ceaggeegge	teagatgigt	acceccagg	gagtgagaga	acatagaset	agaatacaaa	8160
tteeetggge	tgeeaceage	teeegeeea	gagugguua	tttastass	agaatgcaag	9220
tatcctgcga	ccttgcaacc	tcaccttect	graggratic	teteetgeee	tgtccaaaag	0220
cgccctcact	attcttggac	catgccagat	cetgeetete	cygaaagagg	ctctggacag	0200
cagaagcctc	caagcacaga	gcctggcccc	aggccccaga	cagggrgggc	ttcctgccct	0340
tccctctggg	cacgcctgct	ggccgaccca	ctgacccact	cggatggacc	aacctgctct	8400
gtccccaaag	gacgcctgca	ggagagagca	gcactccgca	tcacctcacc	aaggatcgga	8460
ctctgcccct	ggacctggga	acgactggac	tgtcacgggg	ttccctccta	gctctcccag	8520
tgaactcctg	ccaggcacac	acagccccta	tagcactgag	ctcacatggg	actgggatat	8580
gggggcatct	cttccccaga	gaggcactca	gtgagcctcc	tgtgcctggc	cccagtctgg	8640
gccatctctt	aggtgagaca	gttgcccgaa	actaagccag	gcctggctgg	aggagcagca	8700
•	55 5 5					

gcttggggag agggatttcc ctgcagacct caagccatca tgcggtgggt gctgccatga 8760 cagaggctgc accectgggc cagcggggct gctcaccac ctcttgtgca aggtggcctt 8820 tgtgctgcgc ctgcaggcag agctggagcc cccagcagag gcaggctggg acggaccagc 8880 atctggaaga tgtacatagt tattttctc tttgtggttt cttgtttggt ttggtttgct 8940 tttgacagct tcatttatt tttgacgtca ctttttgcc atgtaaacta tttgtggca 9000 ttttatgtt ttattatga ataaagaatg ccatttctca cgccctct 9048

<210> 2 <211> 5492 <212> DNA <213> Homo sapiens

<400> 2 tgagggcttt gctatgacct cagtcccctc acggagccac gactgcccct tgctgccaca 60 gcctttccaa gaccctgccc ggccctgccc catcctcagc cccgagtcac catgggcagc 120 gtcagtagcc tcatctccgg ccacagcttc cacagcaagc actgccgggc ttcgcagtac 180 aagctgcgca agtcctccca cctcaagaag ctcaaccggt attccgacgg gctgctgagg 240 tttggcttct cccaggactc cggtcacggc aagtccagct ccaaaatggg caagagcgaa 300 gacttcttct acatcaaggt cagccagaaa gcccggggct cccatcaccc agattacacg 360 gcactgtcca gcggggattt agggggccag gctggggtgg actttgaccc gtccacaccc 420 cccaagetea tgccettete caateageta gaaatggget ccgagaaggg tgcagtgagg 480 cccacagcct tcaagcctgt gctgccacgg tcaggagcca tcctgcactc ctccccggag 540 agtgccagcc accagctgca ccccgcccct ccagacaagc ccaaggagca ggagctgaag 600 cctggcctgt gctctggggc gctgtcagac tccggccgga actccatgtc cagcctgccc 660 acacacagca ccagcagcag ctaccagctg gacccgctgg tcacacccgt gggacccaca 720 agccgttttg ggggctccgc ccacaacatc acccagggca tcgtcctcca ggacagcaac 780 atgatgagcc tgaaggctct gtccttctcc gacggaggta gcaagctggg ccactcgaac 840 aaggcagaca agggcccctc gtgtgtccgc tcccccatct ccacggacga gtgcagcatc 900 caggagetgg ageagaaget gttggagagg gagggegeee tecagaaget geagegeage 960 tttgaggaga aggagettge etceageetg geetacgagg ageggeegeg gegetgeagg 1020 gacgagctgg agggcccgga gcccaaaggc ggcaacaagc tcaagcaggc ctcgcagaag 1080 agccagegeg egeageaggt cetgeacetg caggtactge agetteagea ggagaagegg 1140 cagctccggc aggagctcga gagcctcatg aaggagcagg acctgctgga gaccaagctc 1200 aggtcctacg agagggagaa gaccagcttc ggccccgcgc tggaggagac ccagtgggag 1260 gtgtgccaga agtcaggcga gatctccctc ctgaagcagc agctgaagga gtcccagacg 1320 gaggtgaacg ccaaggctag cgagatcctg ggtctcaagg cacagctgaa ggacacgcgg 1380 ggcaagctgg agggcctgga gctgaggacc caggacctgg agggcgccct gcgcaccaag 1440 ggcctggagc tggaggtctg tgagaatgag ctgcagcgca agaagaacga ggcggagctg 1500 ctgcgggaga aggtgaacct gctggagcag gagctgcagg agctgcgggc ccaggccgcc 1560 ctggcccgcg acatggggcc gcccaccttc cccgaggacg tccctgccct gcagcgggag 1620 ctggagcggc tgcgggccga gctgcgggag gagcggcaag gccatgacca gatgtcctcg 1680 ggcttccagc atgagcggct cgtgtggaag gaggagaagg agaaggtgat tcagtaccag 1740 aaacagctgc agcagagcta cgtggccatg taccagcgga accagcgcct ggagaaggcc 1800 ctgcagcagc tggcacgtgg ggacagcgcc ggggagccct tggaggttga cctggaaggg 1860 gctgacatcc cctacgagga catcatagcc actgagatct gaggggctgc ctgggaaggc 1920 gagtctgggg acctggcact gggaggcagg gctctcccgt gcatcccccc tgctcagcaa 1980 ttcagacccc tctgagagac gccactccct gggacacaga cccaggaccc ccgaggggag 2040 ggcaggatgg cctttccttc cctctctgat gtcccagtgc tcaccagccc tgcagcccac 2100 cagacgtcag gccctgactc ctctggcttt cccaggagat gggtccaggg gtctgtctgc 2160 tttggttaag ggctccctaa actttggcct ttgttcgaaa tagatatcct ctcccctcc 2220 tccagggaag gtggccacag caagaacagc ggctcccctc cgcttctcat cccaacctct 2280 ttttcctcct ggacacattg gaatgccttg gaaatagaaa gaagccatat atgaccagaa 2340

gccttggaac cagcccatc agaacctgag ctattttcct ctggccgcag aggtgtaggg 2400 gtggaatgag ccgcggggaa gctggctttg aaacctcagg gctgtcccag ccccggcaag 2460 ccacaggaag gaggggaga acaggcagcc cagcagtgtg gagaccctgc cacagcaga 2520 ggagggcaga gggagaatcc aagggttgag agccagtggc gggtgatggc cagccctgg 2580

aacccaaccc	ctatttacta	gttcttgcaa	atoggagetg	agcagcctct	ggagagggag	2640
tasastttas	cegeeeaceg	cactcttctt	taaggagteg	accetaacac	cctagactag	2700
cgacccccga	ccccggcgac	accecece	gaagecatag	atataaattt	ccedagecae	
grgergggaa	gggagggttg	aaaccaccgt	gaaccagagg	gegeggeeee	acctacttca	2820
teagggagee	tececatety	tccagctggg	taataasa	gggagteett	tttaattaat	2880
cgttggccgg	eggetaetet	ggaatgtttt	teeetteeta	gaaccaagct	cetactetas	2940
ccagaagagc	ccatatcact	aagatggcat	atatgtgatc	tgggcatttt	ceteetetge	
		aaacctttcc				3000
tttctagagg	tcaggacggc	tcctcagagc	gccaggaagc	cagagececa	agcaggacga	3060
aaaagaggca	tacacacagc	agtgtgaata	gcctggccac	cagccatcct	ccctccacct	3120
caagaccccc	atttgtccca	gactaaagga	tccagagagc	agctcccttt	ctcaggagct	3180
		ccagggtttc				3240
tagagagaga	taaaaggtgg	agtttctctg	ttgtttggtt	cagggatttt	atttttaatt	3300
ttatgagaca	gggtcttgct	ctgtccccca	ggctggagtg	cagtggcatg	atcatagctc	3360
actgcagcct	catactcctg	ggctcaagca	atcctcctgc	ctcagccttc	caactagctg	3420
		cgtgcctggc				3480
tctcgttttg	ttgccaaagc	tggtctcaaa	cttgtggcct	caagcaatcc	acctgccttg	3540
qcctcccaaa	gtgctgagat	tgcagatgtg	agccaccgtg	cctggccaga	tttttcttt	3600
		tttgctttct				
		ttgactgtag				3720
		ctgcctgctg				3780
		tttctgcctc				3840
		tctccttgcc				3900
caggggcggg	taaaaccaaa	gtcacctttt	ctataactaa	ctctaccttc	ctgtccctga	
gagtgeggge	tacacatact	gccatcctca	aacdacadad	gagetttet	ggaatttcaa	4020
aggitaaacgg	ttagtccca	gctaggctta	aacgacagag	ctacaagcca	aaagtcctc	4080
accattgete	gggagtagg	tacattagaa	acceggace	cccaactcaa	adatoccca	4140
ttaattaaaa	ggcagcaccc	tccattgggc	tttggaggag	accatacett	atttaaattt	4200
tteettgege	transatas	agttccttca	acacacac	getgegeeee	getegageee	4260
tteeteeeag	tgagaetgee	ccacggagac	agaggaaagg	getggeteet	agatasaga	
ctggagaccc	ccccaactc	caggaaagag	cagtcagagt	ccagtgetet	geetcagacg	
		gccacaccca				
cgccatggtg	teceggtace	ttccatacac	agaggagtgc	ageettetee	atatetecat	4440
ggccctgtcc	caggccggcc	cagatgtgtc	cccccaggc	ettgteetae	gtccaaggtg	4500
gcagatgtct	tccctgggct	gccaccagcc	cccgccccag	agtggcccac	cgtggcacta	4560
gaatgcaagt	atcctgcgac	cttgcaacct	caccttcctg	tgggtgttct	ttcctgccct	4620
gtccaaaagc	gccctcacta	ttcttggacc	atgccagatt	ctgcctctct	ggaaagaggc	4680
tctggacagc	agaagcctcc	aagcacagag	cctggcccca	ggccccagac	agggtgggct	4740
tcctgccctt	ccctctgggc	acgcctgctg	gccgacccac	tgacccactc	ggatggacca	4800
acctgctctg	tccccaaagg	acgcctgcag	gagagagcag	cactccgcat	cacctcacca	4860
aggatcggac	tctgcccctg	gacctgggaa	cgactggact	gtcacggggt	tccctcctag	4920
ctctcccagt	gaactcctgc	caggcacaca	cagcccctat	agcactgagc	tcacatggga	4980
ctgggatatg	ggggcatctc	ttccccagag	aggcactcag	tgagcctcct	gtgcctggcc	5040
ccagtctggg	ccatctctta	ggtgagacag	ttgcccgaaa	ctaagccagg	cctggctgga	5100
ggagcagcag	cttggggaga	gggatttccc	tgcagacctc	aagccatcat	gcggtgggtg	5160
ctgccatgac	agaggctgca	cccctgggcc	agcggggctg	ctcacccacc	tcttgtgcaa	5220
ggtggccttt	gtgctgcgcc	tgcaggcaga	gctggagccc	ccagcagagg	caggctggga	5280
cggaccagca	tctggaagat	gtacatagtt	atttttctct	ttgtggtttc	ttgtttggtt	5340
tagtttactt	ttgacagett	cattttattt	ttgacgtcac	tttttggcca	tgtaaactat	5400
ttgtggcaat	tttatqtttt	tatttatgaa	taaagaatqc	catttctcac	gccctctaaa	5460
		aaaaaaaaa				5492

<210> 3

<211> 1791

<212> DNA

<213> Homo sapiens

<400> 3 atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaagca ctgccgggct 60 toqcaqtaca aqotqoqcaa qtootoccac otcaagaago toaacoggta ttocgacggg 120 ctgctgaggt ttggcttctc ccaggactcc ggtcacggca agtccagctc caaaatgggc 180 aaqaqcgaag acttcttcta catcaaggtc agccagaaag cccggggctc ccatcaccca 240 gattacacgg cactgtccag cggggattta gggggccagg ctggggtgga ctttgacccg 300 tccacacccc ccaagctcat gcccttctcc aatcagctag aaatgggctc cgagaagggt 360 gcagtgaggc ccacagcctt caagcctgtg ctgccacggt caggagccat cctgcactcc 420 tecceggaga gtgccageca ecagetgeae ecegeceete cagacaagee caaggageag 480 gagetgaage etggeetgtg etetggggeg etgteagaet eeggeeggaa etecatgtee 540 agcctgccca cacacagcac cagcagcagc taccagctgg acccgctggt cacacccgtg 600 ggacccacaa gccgttttgg gggctccgcc cacaacatca cccagggcat cgtcctccag 660 gacagcaaca tgatgagcct gaaggctctg tccttctccg acggaggtag caagctgggc 720 cactegaaca aggeagacaa gggeeecteg tgtgteeget ecceeatete caeggaegag 780 tqcaqcatcc aggagctgga gcagaagctg ttggagaggg agggcgccct ccagaagctg 840 cagegeaget ttgaggagaa ggagettgee tecageetgg ectaegagga geggeegegg 900 cgctgcaggg acgagctgga gggcccggag cccaaaggcg gcaacaagct caagcaggcc 960 tcgcagaaga gccagcgcgc gcagcaggtc ctgcacctgc aggtactgca gcttcagcag 1020 qaqaaqcqqc aqctccqqca ggagctcgag agcctcatga aggagcagga cctgctggag 1080 accaagetea ggteetaega gagggagaag accagetteg geecegeget ggaggagaee 1140 cagtgggagg tgtgccagaa gtcaggcgag atctccctcc tgaagcagca gctgaaggag 1200 tcccagacgg aggtgaacgc caaggctagc gagatcctgg gtctcaaggc acagctgaag 1260 gacacgcggg gcaagctgga gggcctggag ctgaggaccc aggacctgga gggcgccctg 1320 cqcaccaaqq gcctggagct ggaggtctgt gagaatgagc tgcagcgcaa gaagaacgag 1380 gcggagctgc tgcgggagaa ggtgaacctg ctggagcagg agctgcagga gctgcgggcc 1440 cagegggage tggagegget gegggeegag etgegggagg ageggeaagg ceatgaceag 1560 atgtcctcgg gcttccagca tgagcggctc gtgtggaagg aggagaagga gaaggtgatt 1620 caqtaccaqa aacaqctqca qcaqaqctac gtggccatgt accagcggaa ccaqcgcctg 1680 qaqaaqqccc tqcaqcaqct ggcacgtggg gacagcgccg gggagccctt ggaggttgac 1740 ctqqaaqqqq ctgacatccc ctacgaggac atcatagcca ctgagatctg a <210> 4

```
<211> 596
<212> PRT
<213> Homo sapiens
<400> 4
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Lys
                                                          15
  1
                  5
                                      10
His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys
Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln
                              40
Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu Asp
     50
Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Pro
 65
Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Val
                                      90
```

Asp	Phe	Asp	Pro 100	Ser	Thr	Pro	Pro	Lys 105	Leu	Met	Pro	Phe	Ser 110	Asn	Gln
Leu	Glu	Met 115	Gly	Ser	Glu	Lys	Gly 120	Ala	Val	Arg	Pro	Thr 125	Ala	Phe	Lys
Pro	Val 130	Leu	Pro	Arg	Ser	Gly 135	Ala	Ile	Leu	His	Ser 140	Ser	Pro	Glu	Ser
Ala 145	Ser	His	Gln	Leu	His 150	Pro	Ala	Pro	Pro	Asp 155	Lys	Pro	Lys	Glu	Gln 160
Glu	Leu	Lys	Pro	Gly 165	Leu	Cys	Ser	Gly	Ala 170	Leu	Ser	Asp	Ser	Gly 175	Arg
Asn	Ser	Met	Ser 180	Ser	Leu	Pro	Thr	His 185	Ser	Thr	Ser	Ser	Ser 190	Tyr	Gln
Leu	Asp	Pro 195	Leu	Val	Thr	Pro	Val 200	Gly	Pro	Thr	Ser	Arg 205	Phe	Gly	Gly
Ser	Ala 210	His	Asn	Ile	Thr	Gln 215	Gly	Ile	Val	Leu	Gln 220	Asp	Ser	Asn	Met
Met 225	Ser	Leu	Lys	Ala	Leu 230	Ser	Phe	Ser	Asp	Gly 235	Gly	Ser	Lys	Leu	Gly 240
His	Ser	Asn	Lys	Ala 245	Asp	Lys	Gly	Pro	Ser 250	Cys	Val	Arg	Ser	Pro 255	Ile
Ser	Thr	Asp	Glu 260	Cys	Ser	Ile	Gln	Glu 265	Leu	Glu	Gln	Lys	Leu 270	Leu	Glu
Arg	Glu	Gly 275	Ala	Leu	Gln	Lys	Leu 280	Gln	Arg	Ser	Phe	Glu 285	Glu	Lys	Glu
Leu	Ala 290	Ser	Ser	Leu	Ala	Tyr 295	Glu	Glu	Arg	Pro	Arg 300	Arg	Cys	Arg	Asp
Glu 305	Leu	Glu	Gly	Pro	Glu 310	Pro	Lys	Gly	Gly	Asn 315	Lys	Leu	ГÀв	Gln	Ala 320
Ser	Gln	Lys	Ser	Gln 325	Arg	Ala	Gln	Gln	Val 330	Leu	His	Leu	Gln	Val 335	Leu
Gln	Leu	Gln	Gln 340	Glu	Lys	Arg	Gln	Leu 345	Arg	Gln	Glu	Leu	Glu 350	Ser	Leu
Met	Lys	Glu 355	Gln	Asp	Leu	Leu	Glu 360	Thr	Lys	Leu	Arg	Ser 365	Tyr	Glu	Arg
Glu	Lys 370	Thr	Ser	Phe	Gly	Pro 375	Ala	Leu	Glu	Glu	Thr 380	Gln	Trp	Glu	Val
Cys 385	Gln	Lys	Ser	Gly	Glu 390	Ile	Ser	Leu	Leu	Lys 395	Gln	Gln	Leu	Lys	Glu 400

								Sepi	.CIIID	JI II,	2002	_			
Ser	Gln	Thr	Glu	Val 405	Asn	Ala	Lys	Ala	Ser 410	Glu	Ile	Leu	Gly	Leu 415	Lys
Ala	Gln	Leu	Lys 420	Asp	Thr	Arg	Gly	Lys 425	Leu	Glu	Gly	Leu	Glu 430	Leu	Arg
Thr	Gln	Asp 435	Leu	Glu	Gly	Ala	Leu 440	Arg	Thr	Lys	Gly	Leu 445	Glu	Leu	Glu
Val	Cys 450	Glu	Asn	Glu	Leu	Gln 455	Arg	Lys	Lys	Asn	Glu 460	Ala	Glu	Leu	Leu
Arg 465	Glu	Lys	Val	Asn	Leu 470	Leu	Glu	Gln	Glu	Leu 475	Gln	Glu	Leu	Arg	Ala 480
Gln	Ala	Ala	Leu	Ala 485	Arg	Asp	Met	Gly	Pro 490	Pro	Thr	Phe	Pro	Glu 495	Asp
Val	Pro	Ala	Leu 500	Gln	Arg	Glu	Leu	Glu 505	Arg	Leu	Arg	Ala	Glu 510	Leu	Arg
Glu	Glu	Arg 515	Gln	Gly	His	Asp	Gln 520	Met	Ser	Ser	Gly	Phe 525	Gln	His	Glu
Arg	Leu 530	Val	Trp	Lys	Glu	Glu 535	Lys	Glu	Lys	Val	Ile 540	Gln	Tyr	Gln	Lys
Gln 545	Leu	Gln	Gln	Ser	Tyr 550	Val	Ala	Met	Tyr	Gln 555	Arg	Asn	Gln	Arg	Leu 560
Glu	Lys	Ala	Leu	Gln 565	Gln	Leu	Ala	Arg	Gly 570	Asp	Ser	Ala	Gly	Glu 575	Pro
Leu	Glu	Val	Asp 580	Leu	Glu	Gly	Ala	Asp 585	Ile	Pro	Tyr	Glu	Asp 590	Ile	Ile
Ala	Thr	Glu 595	Ile												
<211 <212	0> 5 L> 76 2> PF B> Ho	TS	sapie	ens											
)> 5 Gly	Ser	Val	Ser 5	Ser	Leu	Ile	Ser	Gly 10	His	Ser	Phe	His	Ser 15	Lys
His	Cys	Arg	Ala 20	Ser	Gln	Tyr	Lys	Leu 25	Arg	Lys	Ser	Ser	His 30	Leu	Lys
Lys	Leu	Asn 35	Arg	Tyr	Ser	Asp	Gly 40	Leu	Leu	Arg	Phe	Gly 45	Phe	Ser	Gln
Asp	Ser	Gly	His	Gly	Lys	Ala	Met	Thr	Arg	Cys	Pro	Arg	Ala	Ser	Ser

55

50

60

Met Ser Gly Ser Cys Gly Arg Arg Arg Arg Arg <210> 6 <211> 69 <212> PRT <213> Homo sapiens <400> 6 Arg Cys Arg Asp Glu Leu Glu Gly Pro Glu Pro Lys Gly Gly Asn Lys 1 Leu Lys Gln Ala Ser Gln Lys Ser Gln Arg Ala Gln Gln Val Leu His Leu Gln Val Leu Gln Leu Gln Gln Glu Lys Arg Gln Leu Arg Gln Glu Leu Glu Ser Leu Met Lys Glu Gln Asp Leu Leu Glu Thr Lys Leu Arg Ser Tyr Glu Arg Glu 65 <210> 7 <211> 68 <212> PRT <213> Homo sapiens Ile Ser Arg Arg Arg Glu Lys Glu Asn Pro Lys Glu Arg Asn Lys Met Ala Ala Lys Cys Arg Asn Arg Arg Glu Leu Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Leu Glu Asp Glu Lys Ser Ala Leu Gln 35 Thr Glu Ile Ala Asn Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe Ile 60 Leu Ala Ala His 65 <210> 8 <211> 69 <212> PRT <213> Homo sapiens Ala Trp Glu Arg Glu Leu Ala Glu Leu Arg Gln Gly Cys Ser Gly Lys

10 15 5 1 Leu Gln Gln Val Ala Arg Arg Ala Gln Arg Ala Gln Gln Gly Leu Gln 25 Leu Gln Val Leu Arg Leu Gln Gln Asp Lys Lys Gln Leu Gln Glu Glu 40 Ala Ala Arg Leu Met Arg Gln Arg Glu Glu Leu Glu Asp Lys Val Ala 55 Ala Cys Gln Lys Glu 65 <210> 9 <211> 404 <212> DNA <213> Homo sapiens <400> 9 atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaagca ctgccgggct 60 tcgcagtaca agctgcgcaa gtcctcccac ctcaagaagc tcaaccggta ttccgacggg 120 ctgctgaggt ttggcttctc ccaggactcc ggtcacggca aggccatgac cagatgtcct 180 cgggcttcca gcatgagcgg ctcgtgtgga aggaggagaa ggagaaggtg attcagtacc 240 agaaacagct gcagcagagc tacgtggcca tgtaccagcg gaaccagcgc ctggagaagg 300 ccctgcagca gctggcacgt ggggacagcg ccggggagcc cttggaggtt gacctggaag 360 404 gggctgacat cccctacgag gacatcatag ccactgagat ctga <210> 10 <211> 633 <212> DNA <213> Homo sapiens <400> 10 atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaagca ctgccgggct 60 togoagtaca agotgogoaa gtootocoac otoaagaago toaacoggta ttoogacggg 120 ctgctgaggt ttggcttctc ccaggactcc ggtcacggca agtccagctc caaaatgggc 180 aagagcgaag acttetteta cateaaggte agecagaaag eeeggggete eeateaceca 240 gattacacgg cactgtccag cggggattta gggggccagg ctggggtgga ctttgacccg 300 tccacacccc ccaagctcat gcccttctcc aatcagctag aaatgggctc cgagaagggt 360 gcagtgaggc ccacagcctt caagcctgtg ctgccacggt caggagccat cctgcactcc 420 tecceggaga gtgccageca ceagetgeae eeegeeeete cagacaagee caaggageag 480 gagetgaage etggeetgtg etetggggeg etgteagaet eeggeeggaa etecatgtee 540 agcctgccca cacacagcgc cggggagccc ttggaggttg acctggaagg ggctgacatc 600 ccctacgagg acatcatagc cactgagatc tga 633 <210> 11 <211> 1614 <212> DNA <213> Homo sapiens <400> 11 atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaagca ctgccgggct 60

tcgcagtaca agctgcgcaa gtcctcccac ctcaagaagc tcaaccggta ttccgacggg 120

ctgctgaggt	ttggcttctc	ccaggactcc	ggtcacggca	agtccagctc	caaaatgggc	180
					ccatcaccca	
					ctttgacccg	
					cgagaagggt	
					cctgcactcc	
tccccggaga	gtgccagcca	ccagctgcac	cccgcccctc	cagacaagcc	caaggagcag	480
					ctccatgtcc	
					cacacccgtg	
ggacccacaa	gccgttttgg	gggctccgcc	cacaacatca	cccagggcat	cgtcctccag	660
gacagcaaca	tgatgagcct	gaaggctctg	tccttctccg	acggaggtag	caagctgggc	720
cactcgaaca	aggcagacaa	gggcccctcg	tgtgtccgct	ccccatctc	cacggacgag	780
tgcagcatcc	aggagctgga	gcagaagctg	ttggagaggg	agggcgccct	ccagaagctg	840
cagcgcagct	ttgaggagaa	ggagcttgcc	tccagcctgg	cctacgagga	gcggccgcgg	900
cgctgcaggg	acgagctgga	gggcccggag	cccaaaggcg	gcaacaagct	caagcaggcc	960
		gcagcaggtc				1020
		ggagctcgag				1080
accaagctca	ggtcctacga	gagggagaag	accagcttcg	gccccgcgct	ggaggagacc	1140
cagtgggagg	tgtgccagaa	gtcaggcgag	atctccctcc	tgaagcagca	gctgaaggag	1200
tcccagacgg	aggtgaacgc	caaggctagc	gagatcctgg	gtctcaaggc	acagctgaag	1260
		gggcctggag				1320
cgcaccaagg	gcctggagct	ggaggtctgt	gagaatgagc	tgcagcgcaa	gaagaacgag	1380
		gcatgagcgg				1440
		gcagcagagc				1500
		gctggcacgt				1560
gacctggaag	gggctgacat	cccctacgag	gacatcatag	ccactgagat	ctga	1614

<210> 12 <211> 1512 <212> DNA <213> Homo sapiens

<400> 12

atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaagca ctgccgggct 60 tcgcagtaca agctgcgcaa gtcctcccac ctcaagaagc tcaaccggta ttccgacggg 120 ctgctgaggt ttggcttctc ccaggactcc ggtcacggca agtccagctc caaaatgggc 180 aagagcgaag acttetteta cateaaggte agecagaaag eeeggggete eeateaceca 240 gattacacgg cactgtccag cggggattta gggggccagg ctggggtgga ctttgacccg 300 tccacacccc ccaagctcat gcccttctcc aatcagctag aaatgggctc cgagaagggt 360 gcagtgaggc ccacagcett caageetgtg etgecaeggt caggageeat cetgeaetee 420 tecceggaga gtgccageca ceagetgeae eeegeeeete cagacaagee caaggageag 480 gagetgaage etggeetgtg etetggggeg etgteagaet eeggeeggaa etecatgtee 540 agectgeeca cacacageac cageageage taccagetgg accegetggt cacaceegtg 600 ggacccacaa gccgttttgg gggctccgcc cacaacatca cccagggcat cgtcctccag 660 gacagcaaca tgatgagcct gaaggctctg tccttctccg acggaggtag caagctgggc 720 cactcgaaca aggcagacaa gggcccctcg tgtgtccgct cccccatctc cacggacgag 780 tgcagcatcc aggagctgga gcagaagctg ttggagaggg agggcgccct ccagaagctg 840 cagegeaget ttgaggagaa ggagettgee tecageetgg eetacgagga geggeegegg 900 cgctgcaggg acgagctgga gggcccggag cccaaaggcg gcaacaagct caagcaggcc 960 tcgcagaaga gccagcgcgc gcagcaggtc ctgcacctgc aggtactgca gcttcagcag 1020 gagaagcggc agctccggca ggagctcgag agcctcatga aggagcagga cctgctggag 1080 accaagetea ggteetaega gagggagaag accagetteg geecegeget ggaggagaee 1140 cagtgggagg tgtgccagaa gtcaggcgag atctccctcc tgaagcagca gctgaaggag 1200 tcccagacgg aggtgaacgc caaggctagc gagatcctgg gtctcaaggc acagctgaag 1260 gacacgcggg gcaagctgga gggcctggag ctgaggaccc aggacctgga gggcgccctg 1320 cgcaccaagg gcctggagct ggaggtctgt gagaatgagc tgcagcagag ctacgtggcc 1380 atgtaccage ggaaccageg cetggagaag geeetgeage agetggeaeg tggggaeage 1440

gccggggagc ccttggaggt tgacctggaa ggggctgaca tcccctacga ggacatcata 1500 1512 gccactgaga tc <210> 13 <211> 1692 <212> DNA <213> Homo sapiens <400> 13 atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaagca ctgccgggct 60 tcgcagtaca agctgcgcaa gtcctcccac ctcaagaagc tcaaccggta ttccgacggg 120 ctgctgaggt ttggcttctc ccaggactcc ggtcacggca agtccagctc caaaatgggc 180 aagagcgaag acttetteta cateaaggte agecagaaag eeeggggete eeateaceca 240 gattacacgg cactgtccag cggggattta gggggccagg ctggggtgga ctttgacccg 300 tccacacccc ccaagctcat gcccttctcc aatcagctag aaatgggctc cgagaagggt 360 gcagtgaggc ccacagcctt caagcctgtg ctgccacggt caggagccat cctgcactcc 420 tecceggaga gtgccageca ceagetgeae ecegeceete cagacaagee caaggageag 480 gagetgaage etggeetgtg etetggggeg etgteagaet eeggeeggaa etecatgtee 540 agectgeeca cacacageac cageageage taccagetgg accegetggt cacaceegtg 600 ggacccacaa gccgttttgg gggctccgcc cacaacatca cccagggcat cgtcctccag 660 gacagcaaca tgatgagcct gaaggctctg tccttctccg acggaggtag caagctgggc 720 cactegaaca aggeagacaa gggeeeeteg tgtgteeget eeeceatete caeggaegag 780 tgcagcatcc aggagctgga gcagaagctg ttggagaggg agggcgccct ccagaagctg 840 cagcgcagct ttgaggagaa ggagcttgcc tccagcctgg cctacgagga gcggccgcgg 900 cgctgcaggg acgagctgga gggcccggag cccaaaggcg gcaacaagct caagcaggcc 960 tcgcagaaga gccagcgcgc gcagcaggtc ctgcacctgc aggtactgca gcttcagcag 1020 gagaagcggc agctccggca ggagctcgag agcctcatga aggagcagga cctgctggag 1080 accaagetea ggteetaega gagggagaag accagetteg geceegeget ggaggagaee 1140 cagtgggagg tgtgccagaa gtcaggcgag atctccctcc tgaagcagca gctgaaggag 1200 tcccagacgg aggtgaacgc caaggctagc gagatcctgg gtctcaaggc acagctgaag 1260 gacacgcggg gcaagctgga gggcctggag ctgaggaccc aggacctgga gggcgccctg 1320 cgcaccaagg gcctggagct ggaggtctgt gagaatgagc tgcagcgcaa gaagaacgag 1380 gcggagctgc tgcgggagaa ggtgaacctg ctggagcggc tgcggggccga gctgcgggag 1440 gagcggcaag gccatgacca gatgtcctcg ggcttccagc atgagcggct cgtgtggaag 1500 gaggagaagg agaaggtgat tcagtaccag aaacagctgc agcagagcta cgtggccatg 1560 taccagcgga accagcgcct ggagaaggcc ctgcagcagc tggcacgtgg ggacagcgcc 1620 ggggagccct tggaggttga cctggaaggg gctgacatcc cctacgagga catcatagcc 1680 actgagatct ga <210> 14 <211> 1722 <212> DNA <213> Homo sapiens <400> 14 atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaagca ctgccgggct 60 tcgcagtaca agctgcgcaa gtcctcccac ctcaagaagc tcaaccggta ttccgacggg 120 ctgctgaggt ttggcttctc ccaggactcc ggtcacggca agtccagctc caaaatgggc 180 aagagcgaag acttetteta cateaaggte agecagaaag eeeggggete eeateaceca 240 gattacacgg cactgtccag cggggattta gggggccagg ctggggtgga ctttgacccg 300 tccacacccc ccaagetcat gcccttctcc aatcagetag aaatgggctc cgagaagggt 360 gcagtgaggc ccacagcctt caagcctgtg ctgccacggt caggagccat cctgcactcc 420 tecceggaga gtgecageca ecagetgeae ecegeceete cagacaagee caaggageag 480 gagetgaage etggeetgtg etetggggeg etgteagaet eeggeeggaa etecatgtee 540

agcctgccca cacacagcac cagcagcagc taccagctgg acccgctggt cacacccgtg 600 ggacccacaa gccgttttgg gggctccgcc cacaacatca cccagggcat cgtcctccag 660 gacagcaaca tgatgagcct gaaggctctg tccttctccg acggaggtag caagctgggc 720 cactcgaaca aggcagacaa gggcccctcg tgtgtccgct cccccatctc cacggacgag 780 tgcagcatcc aggagctgga gcagaagctg ttggagaggg agggcgccct ccagaagctg 840 cagcgcagct ttgaggagaa ggagcttgcc tccagcctgg cctacgagga gcggccgcgg 900 cgctgcaggg acgagctgga gggcccggag cccaaaggcg gcaacaagct caagcaggcc 960 tcgcagaaga gccagcgcgc gcagcaggtc ctgcacctgc aggtactgca gcttcagcag 1020 gagaagcggc agctccggca ggagctcgag agcctcatga aggagcagga cctgctggag 1080 accaagetea ggteetacga gagggagaag accagetteg geecegeget ggaggagace 1140 cagtgggagg tgtgccagaa gtcaggcgag atctccctcc tgaagcagca gctgaaggag 1200 tcccagacgg aggtgaacgc caaggctagc gagatcctgg gtctcaaggc acagctgaag 1260 gacacgcggg gcaagctgga gggcctggag ctgaggaccc aggacctgga gggcgccctg 1320 cgcaccaagg gcctggagct ggaggtctgt gagaatgagc tgcagcgcaa gaagaacgag 1380 gcggagctgc tgcgggagaa ggtgaacctg ctggagcagg agctgcagga gctgcgggcc 1440 cagcgggagc tggagcggct cgtgtggaag gaggagaagg agaaggtgat tcagtaccag 1560 aaacagctgc agcagagcta cgtggccatg taccagcgga accagcgcct ggagaaggcc 1620 ctgcagcagc tggcacgtgg ggacagcgcc ggggagccct tggaggttga cctggaaggg 1680 qctqacatcc cctacgagga catcatagcc actgagatct ga <210> 15

<210> 15 <211> 76 <212> PRT <213> Homo sapiens

His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys 20 25 30

Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln 35 40 45

Asp Ser Gly His Gly Lys Ala Met Thr Arg Cys Pro Arg Ala Ser Ser 50 60

Met Ser Gly Ser Cys Gly Arg Arg Arg Arg Arg 65 70 75

<210> 16 <211> 210 <212> PRT <213> Homo sapiens

<400> 16
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Lys
1 5 10 15

His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys 20 25 30

Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln

								•		•					
		35					40					45			
Asp	Ser 50	Gly	His	Gly	Lys	Ser 55	Ser	Ser	Lys	Met	Gly 60	Lys	Ser	Glu	Asp
Phe 65	Phe	Tyr	Ile	Lys	Val 70	Ser	Gln	Lys	Ala	Arg 75	Gly	Ser	His	His	Pro 80
Asp	Tyr	Thr	Ala	Leu 85	Ser	Ser	Gly	Asp	Leu 90	Gly	Gly	Gln	Ala	Gly 95	Val
Asp	Phe	Asp	Pro 100	Ser	Thr	Pro	Pro	Lys 105	Leu	Met	Pro	Phe	Ser 110	Asn	Gln
Leu	Glu	Met 115	Gly	Ser	Glu	Lys	Gly 120	Ala	Val	Arg	Pro	Thr 125	Ala	Phe	Lys
Pro	Val 130	Leu	Pro	Arg	Ser	Gly 135	Ala	Ile	Leu	His	Ser 140	Ser	Pro	Glu	Ser
Ala 145	Ser	His	Gln	Leu	His 150	Pro	Ala	Pro	Pro	Asp 155	Lys	Pro	Lys	Glu	Gln 160
Glu	Leu	Lys	Pro	Gly 165	Leu	Cys	Ser	Gly	Ala 170	Leu	Ser	Asp	Ser	Gly 175	Arg
Asn	Ser	Met	Ser 180	Ser	Leu	Pro	Thr	His 185	Ser	Ala	Gly	Glu	Pro 190	Leu	Glu
Val	Asp	Leu 195	Glu	Gly	Ala	Asp	Ile 200	Pro	Tyr	Glu	Asp	Ile 205	Ile	Ala	Thr
Glu	Ile 210														
<21 <21	0> 1° 1> 5° 2> PI	37 RT	sapie	anc											
\Z1 .) N		sapi	5115											
	0> 1' Gly		Val	Ser 5	Ser	Leu	Ile	Ser	Gly 10	His	Ser	Phe	His	Ser 15	Lys
His	Cys	Arg	Ala 20	Ser	Gln	Tyr	Lys	Leu 25	Arg	Lys	Ser	Ser	His 30	Leu	Lys
Lys	Leu	Asn 35	Arg	Tyr	Ser	Asp	Gly 40	Leu	Leu	Arg	Phe	Gly 45	Phe	Ser	Gln
Asp	Ser 50	Gly	His	Gly	Lys	Ser 55	Ser	Ser	Lys	Met	Gly 60	Lys	Ser	Glu	Asp
Phe 65	Phe	Tyr	Ile	Lys	Val 70	Ser	Gln	Lys	Ala	Arg 75	Gly	Ser	His	His	Pro 80

								•							
Asp	Tyr	Thr	Ala	Leu 85	Ser	Ser	Gly	Asp	Leu 90	Gly	Gly	Gln	Ala	Gly 95	Val
Asp	Phe	Asp	Pro 100	Ser	Thr	Pro	Pro	Lys 105	Leu	Met	Pro	Phe	Ser 110	Asn	Gln
Leu	Glu	Met 115	Gly	Ser	Glu	Lys	Gly 120	Ala	Val	Arg	Pro	Thr 125	Ala	Phe	Lys
Pro	Val 130	Leu	Pro	Arg	Ser	Gly 135	Ala	Ile	Leu	His	Ser 140	Ser	Pro	Glu	Ser
Ala 145	Ser	His	Gln	Leu	His 150	Pro	Ala	Pro	Pro	Asp 155	Lys	Pro	Lys	Glu	Gln 160
Glu	Leu	Lys	Pro	Gly 165	Leu	Cys	Ser	Gly	Ala 170	Leu	Ser	Asp	Ser	Gly 175	Arg
Asn	Ser	Met	Ser 180	Ser	Leu	Pro	Thr	His 185	Ser	Thr	Ser	Ser	Ser 190	Tyr	Gln
Leu	Asp	Pro 195	Leu	Val	Thr	Pro	Val 200	Gly	Pro	Thr	Ser	Arg 205	Phe	Gly	Gly
Ser	Ala 210	His	Asn	Ile	Thr	Gln 215	Gly	Ile	Val	Leu	Gln 220	Asp	Ser	Asn	Met
Met 225	Ser	Leu	Lys	Ala	Leu 230	Ser	Phe	Ser	Asp	Gly 235	Gly	Ser	Lys	Leu	Gly 240
His	Ser	Asn	Lys	Ala 245	Asp	Lys	Gly	Pro	Ser 250	Cys	Val	Arg	Ser	Pro 255	Ile
Ser	Thr	Asp	Glu 260	Cys	Ser	Ile	Gln	Glu 265	Leu	Glu	Gln	Lys	Leu 270	Leu	Glu
Arg	Glu	Gly 275	Ala	Leu	Gln	Lys	Leu 280	Gln	Arg	Ser	Phe	Glu 285	Glu	Lys	Glu
Leu	Ala 290	Ser	Ser	Leu	Ala	Tyr 295	Glu	Glu	Arg	Pro	Arg 300	Arg	Cys	Arg	Asp
Glu 305	Leu	Glu	Gly	Pro	Glu 310	Pro	Lys	Gly	Gly	Asn 315	Lys	Leu	Lys	Gln	Ala 320
Ser	Gln	Lys	Ser	Gln 325	Arg	Ala	Gln	Gln	Val 330	Leu	His	Leu	Gln	Val 335	Leu
Gln	Leu	Gln	Gln 340	Glu	Lys	Arg	Gln	Leu 345	Arg	Gln	Glu	Leu	Glu 350	Ser	Leu
Met	Lys	Glu 355	Gln	Asp	Leu	Leu	Glu 360	Thr	Lys	Leu	Arg	Ser 365	Tyr	Glu	Arg
Glu	Lys 370	Thr	Ser	Phe	Gly	Pro 375	Ala	Leu	Glu	Glu	Thr 380	Gln	Trp	Glu	Val

385	Gln	Lys	Ser	Gly	Glu 390	Ile	Ser	Leu	Leu	Lys 395	Gln	Gln	Leu	Lys	Glu 400
Ser	Gln	Thr	Glu	Val 405	Asn	Ala	Lys	Ala	Ser 410	Glu	Ile	Leu	Gly	Leu 415	Lys
Ala	Gln	Leu	Lys 420	Asp	Thr	Arg	Gly	Lys 425	Leu	Glu	Gly	Leu	Glu 430	Leu	Arg
Thr	Gln	Asp 435	Leu	Glu	Gly	Ala	Leu 440	Arg	Thr	Lys	Gly	Leu 445	Glu	Leu	Glu
Val	Cys 450	Glu	Asn	Glu	Leu	Gln 455	Arg	Lys	Lys	Asn	Glu 460	Ala	Glu	Leu	Leu
Arg 465	Glu	Lys	His	Glu	Arg 470	Leu	Val	Trp	Lys	Glu 475	Glu	Lys	Glu	Lys	Val 480
Ile	Gln	Tyr	Gln	Lys 485	Gln	Leu	Gln	Gln	Ser 490	Tyr	Val	Ala	Met	Tyr 495	Gln
Arg	Asn	Gln	Arg 500	Leu	Glu	Lys	Ala	Leu 505	Gln	Gln	Leu	Ala	Arg 510	Gly	Asp
Ser	Ala	Gly 515	Glu	Pro	Leu	Glu	Val 520	Asp	Leu	Glu	Gly	Ala 525	Asp	Ile	Pro
Tyr		Asp	Ile	Ile	Ala		Glu	Ile							
	530					535									
<213 <213)> 18 L> 50 2> PI)4 RT	sapie	ens		535									
<213 <213 <213	0> 18 L> 50 2> PF B> Ho	04 RT omo s								***	•	n).	***	9	T
<213 <213 <213	0> 18 L> 50 2> PF B> Ho	04 RT omo s	sapie Val		Ser		Ile	Ser	Gly 10	His	Ser	Phe	His	Ser 15	Lys
<211 <211 <211 <400 Met	D> 18 L> 50 2> PP 3> Ho D> 18 Gly	04 RT DMO s Ser		Ser 5		Leu			10					15	
<211 <211 <211 <400 Met 1	D> 18 L> 50 2> PP 3> Ho D> 18 Gly	04 RT DOMO S Ser Arg	Val Ala	Ser 5 Ser	Gln	Leu Tyr	Lys	Leu 25	10 Arg	Lys	Ser	Ser	His 30	15 Leu	Lys
<21: <21: <21: <400 Met 1 His	D> 18 L> 50 2> PP 3> Ho D> 18 Gly Cys	Asn 35	Val	Ser 5 Ser Tyr	Gln Ser	Leu Tyr Asp	Lys Gly 40	Leu 25 Leu	10 Arg Leu	Lys Arg	Ser Phe	Ser Gly 45	His 30 Phe	15 Leu Ser	Lys Gln
<21: <21: <20: <400 Met 1 His	0> 18 L> 50 2> PR 3> Ho 0> 18 Gly Cys Leu Ser 50	Arg Asn 35	Val Ala 20 Arg	Ser 5 Ser Tyr	Gln Ser Lys	Leu Tyr Asp Ser 55	Lys Gly 40 Ser	Leu 25 Leu Ser	10 Arg Leu Lys	Lys Arg Met	Ser Phe Gly 60	Ser Gly 45 Lys	His 30 Phe Ser	15 Leu Ser Glu	Lys Gln Asp
<211 <212 <400 Met 1 His Lys Asp Phe 65	D> 18 L> 50 2> PP 3> Ho D> 18 Gly Cys Leu Ser 50 Phe	Arg Asn 35 Gly	Val Ala 20 Arg	Ser 5 Ser Tyr Gly Lys	Gln Ser Lys Val	Leu Tyr Asp Ser 55 Ser	Lys Gly 40 Ser	Leu 25 Leu Ser	10 Arg Leu Lys Ala	Lys Arg Met Arg 75	Ser Phe Gly 60	Ser Gly 45 Lys	His 30 Phe Ser	Leu Ser Glu	Lys Gln Asp Pro

								F		,					
			100					105					110		
Leu	Glu	Met 115	Gly	Ser	Glu	Lys	Gly 120	Ala	Val	Arg	Pro	Thr 125	Ala	Phe	Lys
Pro	Val 130	Leu	Pro	Arg	Ser	Gly 135	Ala	Ile	Leu	His	Ser 140	Ser	Pro	Glu	Ser
Ala 145	Ser	His	Gln	Leu	His 150	Pro	Ala	Pro	Pro	Asp 155	Lys	Pro	Lys	Glu	Gln 160
Glu	Leu	Lys	Pro	Gly 165	Leu	Cys	Ser	Gly	Ala 170	Leu	Ser	Asp	Ser	Gly 175	Arg
Asn	Ser	Met	Ser 180	Ser	Leu	Pro	Thr	His 185	Ser	Thr	Ser	Ser	Ser 190	Tyr	Gln
Leu	Asp	Pro 195	Leu	Val	Thr	Pro	Val 200	Gly	Pro	Thr	Ser	Arg 205	Phe	Gly	Gly
Ser	Ala 210	His	Asn	Ile	Thr	Gln 215	Gly	Ile	Val	Leu	Gln 220	Asp	Ser	Asn	Met
Met 225	Ser	Leu	Lys	Ala	Leu 230	Ser	Phe	Ser	Asp	Gly 235	Gly	Ser	Lys	Leu	Gly 240
His	Ser	Asn	Lys	Ala 245	Asp	Lys	Gly	Pro	Ser 250	Cys	Val	Arg	Ser	Pro 255	Ile
Ser	Thr	Asp	Glu 260	Cys	Ser	Ile	Gln	Glu 265	Leu	Glu	Gln	Lys	Leu 270	Leu	Glu
Arg	Glu	Gly 275	Ala	Leu	Gln	Lys	Leu 280	Gln	Arg	Ser	Phe	Glu 285	Glu	Lys	Glu
Leu	Ala 290	Ser	Ser	Leu	Ala	Tyr 295	Glu	Glu	Arg	Pro	Arg 300	Arg	Cys	Arg	Asp
Glu 305	Leu	Glu	Gly	Pro	Glu 310	Pro	Lys	Gly	Gly	Asn 315	Lys	Leu	Lys	Gln	Ala 320
Ser	Gln	Lys	Ser	Gln 325	Arg	Ala	Gln	Gln	Val 330	Leu	His	Leu	Gln	Val 335	Leu
Gln	Leu	Gln	Gln 340	Glu	Lys	Arg	Gln	Leu 345	Arg	Gln	Glu	Leu	Glu 350	Ser	Leu
Met	Lys	Glu 355	Gln	Asp	Leu	Leu	Glu 360	Thr	Lys	Leu	Arg	Ser 365	Tyr	Glu	Arg
Glu	Lys 370	Thr	Ser	Phe	Gly	Pro 375	Ala	Leu	Glu	Glu	Thr 380	Gln	Trp	Glu	Val
Cys 385	Gln	Lys	Ser	Gly	Glu 390	Ile	Ser	Leu	Leu	Lys 395	Gln	Gln	Leu	Lys	Glu 400
										_	_				_

Ser Gln Thr Glu Val Asn Ala Lys Ala Ser Glu Ile Leu Gly Leu Lys

410

415

		_		_		_ ·	_	a 3 .	~ 3		01	.	3
Ala Gln L	eu Lys 420	Asp	Thr	Arg	GIY	Lys 425	Leu	Glu	GIY	Leu	430	Leu	Arg

Thr Gln Asp Leu Glu Gly Ala Leu Arg Thr Lys Gly Leu Glu Leu Glu 435

Val Cys Glu Asn Glu Leu Gln Gln Ser Tyr Val Ala Met Tyr Gln Arg 450 455 460

Asn Gln Arg Leu Glu Lys Ala Leu Gln Gln Leu Ala Arg Gly Asp Ser 465 470 475 480

Ala Gly Glu Pro Leu Glu Val Asp Leu Glu Gly Ala Asp Ile Pro Tyr 485 490 495

Glu Asp Ile Ile Ala Thr Glu Ile 500

405

<210> 19

<211> 563

<212> PRT

<213> Homo sapiens

<400> 19

Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Lys
1 5 10 15

His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys
20 25 30

Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln 35 40 45

Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu Asp 50 55 60

Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Pro 65 70 75 80

Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Val 85 90 95

Asp Phe Asp Pro Ser Thr Pro Pro Lys Leu Met Pro Phe Ser Asn Gln
100 105 110

Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys
115 120 125

Pro Val Leu Pro Arg Ser Gly Ala Ile Leu His Ser Ser Pro Glu Ser 130 135 140

Ala Ser His Gln Leu His Pro Ala Pro Pro Asp Lys Pro Lys Glu Gln 145 150 155 160

										•					
Glu	Leu	Lys	Pro	Gly 165	Leu	Cys	Ser	Gly	Ala 170	Leu	Ser	Asp	Ser	Gly 175	Arg
Asn	Ser	Met	Ser 180	Ser	Leu	Pro	Thr	His 185	Ser	Thr	Ser	Ser	Ser 190	Tyr	Gln
Leu	Asp	Pro 195	Leu	Val	Thr	Pro	Val 200	Gly	Pro	Thr	Ser	Arg 205	Phe	Gly	Gly
Ser	Ala 210	His	Asn	Ile	Thr	Gln 215	Gly	Ile	Val	Leu	Gln 220	Asp	Ser	Asn	Met
Met 225	Ser	Leu	Lys	Ala	Leu 230	Ser	Phe	Ser	Asp	Gly 235	Gly	Ser	Lys	Leu	Gly 240
His	Ser	Asn	Lys	Ala 245	Asp	Lys	Gly	Pro	Ser 250	Cys	Val	Arg	Ser	Pro 255	Ile
Ser	Thr	Asp	Glu 260	Cys	Ser	Ile	Gln	Glu 265	Leu	Glu	Gln	Lys	Leu 270	Leu	Glu
Arg	Glu	Gly 275	Ala	Leu	Gln	Lys	Leu 280	Gln	Arg	Ser	Phe	Glu 285	Glu	Lys	Glu
Leu	Ala 290	Ser	Ser	Leu	Ala	Tyr 295	Glu	Glu	Arg	Pro	Arg 300	Arg	Cys	Arg	Asp
Glu 305	Leu	Glu	Gly	Pro	Glu 310	Pro	Lys	Gly	Gly	Asn 315	Lys	Leu	Lys	Gln	Ala 320
Ser	Gln	Lys	Ser	Gln 325	Arg	Ala	Gln	Gln	Val 330	Leu	His	Leu	Gln	Val 335	Leu
Gln	Leu	Gln	Gln 340	Glu	Lys	Arg	Gln	Leu 345	Arg	Gln	Glu	Leu	Glu 350	Ser	Leu
Met	Lys	Glu 355	Gln	Asp	Leu	Leu	Glu 360	Thr	Lys	Leu	Arg	Ser 365	Tyr	Glu	Arg
Glu	Lys 370	Thr	Ser	Phe	Gly	Pro 375	Ala	Leu	Glu	Glu	Thr 380	Gln	Trp	Glu	Val
Cys 385	Gln	Lys	Ser	Gly	Glu 390	Ile	Ser	Leu	Leu	Lys 395	Gln	Gln	Leu	Lys	Glu 400
Ser	Gln	Thr	Glu	Val 405	Asn	Ala	Lys	Ala	Ser 410	Glu	Ile	Leu	Gly	Leu 415	Lys
Ala	Gln	Leu	Lys 420	Asp	Thr	Arg	Gly	Lys 425	Leu	Glu	Gly	Leu	Glu 430	Leu	Arg
Thr	Gln	Asp 435	Leu	Glu	Gly	Ala	Leu 440	Arg	Thr	Lys	Gly	Leu 445	Glu	Leu	Glu
Val	Cys 450	Glu	Asn	Glu	Leu	Gln 455	Arg	Lys	Lys	Asn	Glu 460	Ala	Glu	Leu	Leu

Arg Glu Lys Val Asn Leu Leu Glu Arg Leu Arg Ala Glu Leu Arg Gl 465 470 475 48	
Glu Arg Gln Gly His Asp Gln Met Ser Ser Gly Phe Gln His Glu Ar 485 490 495	g
Leu Val Trp Lys Glu Glu Lys Glu Lys Val Ile Gln Tyr Gln Lys Gl 500 505 510	.n
Leu Gln Gln Ser Tyr Val Ala Met Tyr Gln Arg Asn Gln Arg Leu Gl 515 520 525	.u
Lys Ala Leu Gln Gln Leu Ala Arg Gly Asp Ser Ala Gly Glu Pro Le 530 535 540	eu
Glu Val Asp Leu Glu Gly Ala Asp Ile Pro Tyr Glu Asp Ile Ile Al 545 550 555 56	
Thr Glu Ile	
<210> 20 <211> 573 <212> PRT <213> Homo sapiens	
<400> 20	
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Ly	'S
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Ly 1 5 10 15 His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Ly 20 25 30	
1 5 10 15 His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Ly	rs
1 5 10 15 His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Ly 20 25 30 Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gl	rs .n
His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Ly 25 30 Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gly 35 40 45 Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu Asp 50 55 60 Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Page 15 15 15 15 15 15 15 15 15 15 15 15 15	rs .n
His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Ly 25 30 Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gly Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu Asp 50 Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Property of the control of th	n sp
His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Ly 25 and Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gl 45 Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu As 50 Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Pre 65 Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gly Gln Ala Gly Value Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly	n sp
His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Ly 25 Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gl 45 Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu As 50 Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Phe 65 Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Val 90 Asp Phe Asp Pro Ser Thr Pro Pro Lys Leu Met Pro Phe Ser Asn Gly Asp Phe Asp Pro Ser Asn Gly Ser Asn Gly Ser Asn Gly Phe Asp Pro Ser Thr Pro Pro Lys Leu Met Pro Phe Ser Asn Gly Ser Asn Gly Phe Ser Asn Gly P	rs .n sp
His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Ly 30 Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gl 45 Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu As 50 Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Phe 65 Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Val 85 Asp Phe Asp Pro Ser Thr Pro Pro Lys Leu Met Pro Phe Ser Asn Glou Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys Cly	rs .n .sp .co .so .al

										•					
145					150					155					160
Glu	Leu	Lys	Pro	Gly 165	Leu	Cys	Ser	Gly	Ala 170	Leu	Ser	Asp	Ser	Gly 175	Arg
Asn	Ser	Met	Ser 180	Ser	Leu	Pro	Thr	His 185	Ser	Thr	Ser	Ser	Ser 190	Tyr	Gln
Leu	Asp	Pro 195	Leu	Val	Thr	Pro	Val 200	Gly	Pro	Thr	Ser	Arg 205	Phe	Gly	Gly
Ser	Ala 210	His	Asn	Ile	Thr	Gln 215	Gly	Ile	Val	Leu	Gln 220	Asp	Ser	Asn	Met
Met 225	Ser	Leu	Lys	Ala	Leu 230	Ser	Phe	Ser	Asp	Gly 235	Gly	Ser	Lys	Leu	Gly 240
His	Ser	Asn	Lys	Ala 245	Asp	Lys	Gly	Pro	Ser 250	Cys	Val	Arg	Ser	Pro 255	Ile
Ser	Thr	Asp	Glu 260	Cys	Ser	Ile	Gln	Glu 265	Leu	Glu	Gln	Lys	Leu 270	Leu	Glu
Arg	Glu	Gly 275	Ala	Leu	Gln	Lys	Leu 280	Gln	Arg	Ser	Phe	Glu 285	Glu	Lys	Glu
Leu	Ala 290	Ser	Ser	Leu	Ala	Tyr 295	Glu	Glu	Arg	Pro	Arg 300	Arg	Cys	Arg	Asp
Glu 305	Leu	Glu	Gly	Pro	Glu 310	Pro	Lys	Gly	Gly	Asn 315	Lys	Leu	Lys	Gln	Ala 320
Ser	Gln	Lys	Ser	Gln 325	Arg	Ala	Gln	Gln	Val 330	Leu	His	Leu	Gln	Val 335	Leu
Gln	Leu	Gln	Gln 340	Glu	Lys	Arg	Gln	Leu 345	Arg	Gln	Glu	Leu	Glu 350	Ser	Leu
Met	Lys	Glu 355	Gln	Asp	Leu	Leu	Glu 360	Thr	Lys	Leu	Arg	Ser 365	Tyr	Glu	Arg
Glu	Lys 370	Thr	Ser	Phe	Gly	Pro 375	Ala	Leu	Glu	Glu	Thr 380	Gln	Trp	Glu	Val
Cys 385	Gln	Lys	Ser	Gly	Glu 390	Ile	Ser	Leu	Leu	Lys 395	Gln	Gln	Leu	Lys	Glu 400
Ser	Gln	Thr	Glu	Val 405	Asn	Ala	Lys	Ala	Ser 410	Glu	Ile	Leu	Gly	Leu 415	Lys
Ala	Gln	Leu	Lys 420	Asp	Thr	Arg	Gly	Lys 425	Leu	Glu	Gly	Leu	Glu 430	Leu	Arg
Thr	Gln	Asp 435	Leu	Glu	Gly	Ala	Leu 440	Arg	Thr	Lys	Gly	Leu 445	Glu	Leu	Glu
Val	Сув	Glu	Asn	Glu	Leu	Gln	Arg	Lys	Lys	Asn	Glu	Ala	Glu	Leu	Leu

460 450 455 Arq Glu Lys Val Asn Leu Leu Glu Glu Leu Gln Glu Leu Arg Ala 470 475 Gln Ala Ala Leu Ala Arg Asp Met Gly Pro Pro Thr Phe Pro Glu Asp 485 490 Val Pro Ala Leu Gln Arg Glu Leu Glu Arg Leu Val Trp Lys Glu Glu 505 Lys Glu Lys Val Ile Gln Tyr Gln Lys Gln Leu Gln Gln Ser Tyr Val 525 520 515 Ala Met Tyr Gln Arg Asn Gln Arg Leu Glu Lys Ala Leu Gln Gln Leu Ala Arg Gly Asp Ser Ala Gly Glu Pro Leu Glu Val Asp Leu Glu Gly 550 555 Ala Asp Ile Pro Tyr Glu Asp Ile Ile Ala Thr Glu Ile 565 570 <210> 21 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: F37 Probe <400> 21 ggactctgcc cctggacctg ggaacgactg gactgtcacg gggttccctc ctagctctcc 60 cagtgaactc ctgccaggca cacacagccc ctatagcact gagctcacat gggactggga 120 tatgggggca tctcttcccc agagaggcac tcagtgagcc tcctgtgcct ggccccagtc 180 tgggccatct cttaggtgag acagttgccc gaaactaagc caggcctggc tggaggagca 240 gcagcttggg gagagggatt tccctgcaga cctcaagcca tcatgcggtg ggtgctgcca 300 tgacagaggc tgcacccctg ggccagcggg gctgctcacc cacctcttgt gcaaggtggc 360 ctttgtgctg cgcctgcagg cagagctgga gcccccagca gaggcaggct gggacggacc 420 gcttttgaca gcttcatttt atttttgacg tcactttttg gccatgtaaa ctatttgtgg 540 caattttatg tttttattta tgaataaaga atgccatttc tcacgccctc t 591 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: FEZ1 alterable region amplificatin primer G12 <400> 22

gctgccacag cctttccaag acc

<210>	23	
<211>	23	
<212>		
<213>	Artificial Sequence .	
<220>		
<223>	Description of Artificial Sequence: FEZ1 alterable region amplificatin primer G13	
<400>	23	
taccgg	gttga gcttcttgag gtg	23
<210>	24	
<211>	23	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: FEZ1 alterable region amplification primer G14.2	
	region amplification primer G14.2	
<400>		
acagct	tcca cagcaagcac tgc	23
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: FEZ1 alterable	
	region amplification primer G15	
<400>	25	
attgga	gaag ggcatgagct t	21
<210>	26	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: FEZ1 alterable	
	region amplification primer G16	
<400>	26	
tggact	ttga cccgtccaca cc	22
<210>	27	
<211>		
<212>	DNA	

<213> Artificial Sequence

<220> <223>	Description of Artificial Sequence: FEZ1 alterable region amplification primer IntABR	
<400> gtttco		23
<210><211><212><212><213>	21	
<220> <223>	Description of Artificial Sequence: FEZ1 alterable region amplification primer IntABF	
<400> gcaggg		21
<210><211><211><212><213>	22	
<220>		
<223>	Description of Artificial Sequence: FEZ1 alterable region amplification primer G17	
<400>		22
ggcttc	aget cetgeteett gg	22
<210><211><211><212><213>	23	
<220>		
<223>	Description of Artificial Sequence: FEZ1 alterable region amplification primer G20	
<400> acaaca		23
<210><211><212><212><213>	21	
<220> <223>	Description of Artificial Sequence: FEZ1 alterable region amplification primer G21	

<400> 31 cctccagctc gtccctgcag c	21
<210> 32 <211> 23 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: FEZ1 alterable region amplification primer G32</pre>	
<400> 32 actgcagctt cagcaggaga agc	23
<210> 33 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: FEZ1 alterable region amplification primer IntBCR	
<400> 33 ctgaccaccc aaacccatga gc	22
<210> 34 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: FEZ1 alterable region amplification primer IntBCF	
<400> 34 tcacctcttg gcactctgtc tcc	23
<210> 35 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: FEZ1 alterable region amplification primer Mut6	
<400> 35 caggtcctgg gtcctcagct c	21

<211> <212> <213>		
<220> <223>	Description of Artificial Sequence: FEZ1 alterable region amplification primer G1	
<400> tgaac	36 gccaa ggctagcgag atc	23
<210><211><211><212><213>	22	
<220> <223>	Description of Artificial Sequence: FEZ1 alterable region amplification primer G2	
<400> gctcct	37 Egcag ctcctgctcc ag	22
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: FEZ1 alterable region amplification primer G75	
<400> cccaco	38 ettec eegaggaegt e	21
<210><211><211><212><213>	23	
<220> <223>	Description of Artificial Sequence: FEZ1 alterable region amplification primer G82	
<400> agccc	39 gagga catctggtca tgg	23
<210><211><211><212><213>	24	
<220>		

<223> Description of Artificial Sequence: FEZ1 alterable region amplification primer G5	
<400> 40 cctgccctgc agcgggagct ggag	24
<210> 41 <211> 23 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: FEZ1 alterable region amplification primer G6	
<400> 41 agctgctgca gggccttctc cag	23
<210> 42 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: FEZ1 alterable region amplification primer G7	
<400> 42 cagtaccaga aacagctgca gcagagc	27
<210> 43 <211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: FEZ1 alterable region amplification primer G8	
<400> 43 ccctgcctcc cagtgccagg tc	22
<210> 44 <211> 24 <212> DNA <213> Artificial Sequence	·
<220> <223> Description of Artificial Sequence: First strand of partially-double stranded adapter-linker	
<400> 44 gatctcgacg aattcgtgag acct	24

<210><211><211><212><213>	20	
	Description of Artificial Sequence: Second strand of partially-double stranded adapter-linker	
<400> tggtct	45 cacg aattcgtcga	20
<210><211><211><212><213>	23	
	Description of Artificial Sequence: Donor site sequence of truncated FEZ1 truncation region	
<400> tcccag	46 gact ccggtcacgg caa	23
<210><211><212><212><213>	21	
	Description of Artificial Sequence: Acceptor site sequence of truncated FEZ1 truncation region	
<400> gagcgg	47 Joaag gooatgacca g	21
<210><211><211><212><213>	23	
	Description of Artificial Sequence: Donor site sequence of truncated FEZ1 truncation region	
<400> agcctg	48 pccca cacacagcac cag	23
<210><211><211>	21	

	50ptom50: 11, 2002	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Acceptor site sequence of truncated FEZ1 truncation region	
<400> cagcgo	49 ceggg gageeettgg a	21
<210><211><211><212><213>	23	
<220> <223>	Description of Artificial Sequence: Donor site sequence of truncated FEZ1 truncation region	
<400> gtgaga	50 aatga gctgcagcgc aag	23
<210><211><212><212><213>	22	
<220> <223>	Description of Artificial Sequence: Acceptor site sequence of truncated FEZ1 truncation region	
<400> cagcag	51 gaget aegtggeeat gt	22
<210><211><211><212><213>	23	
<220> <223>	Description of Artificial Sequence: Donor site sequence of truncated FEZ1 truncation region	
<400> agctg	52 ctgcg ggagaaggtg aac	23
<210><211><212><212><213>	22	
<220> <223>	Description of Artificial Sequence: Acceptor site sequence of truncated FEZ1 truncation region	

<400> 53 cagcatgagc ggctcgtgtg ga	22
<210> 54 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Donor site sequence of truncated FEZ1 truncation region	
<400> 54 aggtgaacct gctggagcag gag	23
<210> 55 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Acceptor site sequence of truncated FEZ1 truncation region	
<400> 55 gagcggctgc gggccgagct gc	22
<210> 56 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Donor site sequence of truncated FEZ1 truncation region	
<400> 56 ctgcagcggg agctggagcg gctg	24
<210> 57 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Acceptor site sequence of truncated FEZ1 truncation region	
<400> 57 gagcggctcg tgtggaagga g	21

```
<210> 58
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer for
      amplifying FEZ1 cDNA
<400> 58
                                                                   27
caqatqqqca qcqtcagtag cctcatc
<210> 59
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer for
      amplifying FEZ1 cDNA
<400> 59
                                                                   24
tcagatctca gtggctatga tgtc
<210> 60
<211> 8073
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Nucleotide
      sequence of vector pQBI-AdCMV5-IRES-GFP
<400> 60
gaattcggcc ggccatcatc aataatatac cttattttgg attgaagcca atatgataat 60
gaggggtgg agtttgtgac gtggcgcggg gcgtgggaac ggggcgggtg acgtagtagt 120
gtggcggaag tgtgatgttg caagtgtggc ggaacacatg taagcgacgg atgtggcaaa 180
agtgacgttt ttggtgtgcg ccggtgtaca caggaagtga caattttcgc gcggttttag 240
gcggatgttg tagtaaattt gggcgtaacc gagtaagatt tggccatttt cgcgggaaaa 300
ctgaataaga ggaagtgaaa tctgaataat tttgtgttac tcatagcgcg taatatttgt 360
ctagggccgc cagatcgatc tccgagggat ctcgaccaaa tgatttgccc tcccatatgt 420
ccttccgagt gagagacaca aaaaattcca acacactatt gcaatgaaaa taaatttcct 480
ttattagcca gaggtcgagg tcgggggatc ctcagttgta cagttcatcc atgccatgtg 540
taatcccagc agctgttaca aactcaagaa ggaccatgtg gtctctcttt tcgttgggat 600
ctttcgaaag ggcagattgt gtggacaggt aatggttgtc tggtaaaagg acagggccat 660
cgccaattgg agtattttgt tgataatggt ctgctagttg aacgcttcca tcttcaatgt 720
tgtggcgggt cttgaagttc actttgattc cattcttttg tttgtctgcc atgatgtata 780
cattgtgtga gttatagttg tattccaatt tgtgtcccag aatgttgcca tcttccttga 840
agtcaatacc ttttaactcg attctattaa caagggtatc accttcaaac ttgacttcag 900
cacgtgtctt gtagttgccg tcatctttga agaagatggt cctttcctgt acataacctt 960
cgggcatggc actcttgaaa aagtcatgcc gtttcatatg atccgggtat cttgaaaagc 1020
attgaacacc atagcacaga gtagtgacta gtgttggcca tggaacaggc agtttgccag 1080
tagtgcagat gaacttcagg gtaagttttc cgtatgttgc atcaccttca ccctctccac 1140
tgacagagaa cttgtggccg ttaacatcac catctaattc aacaagaatt gggacaactc 1200
cagtgaagag ttcttctcct ttgctagcca tggcggatcc ggctgaacgg tctggttata 1260
```

ggtacattga	gcaactgact	gaaatgcctc	aaaatgttct	ttacgatgcc	attgggatat	1320
atcaacggtg	gtatatccag	tgatttttt	ctccatggtt	gtggcaagct	tatcatcgtg	1380
tttttcaaag	gaaaaccacg	tccccgtggt	tcggggggcc	tagacgtttt	ttaacctcga	1440
ctaaacacat	gtaaagcatg	tgcaccgagg	ccccagatca	gatcccatac	aatggggtac	1500
cttctgggca	teetteagee	ccttgttgaa	tacgcttgag	gagagccatt	tgactctttc	1560
cacaactato	caactcacaa	cgtggcactg	agattatacc	acctttacag	gtgtatctta	1620
tacaactacc	ttttaaaaaa	agaggaaceg	atagagagat	gaaaaattaa	actacctaca	1680
		agaggcacct				1740
aagggtcgct	acagacgttg	tttgtcttca	agaagettee	agaggaactg	CLECCLCAC	
gacattcaac	agaccttgca	ttcctttggc	gagagggaa	agacccctag	gaatgctcgt	1800
caagaagaca	gggccaggtt	tccgggccct	cacattgcca	aaagacggca	atatggtgga	1860
aaataacata	tagacaaacg	cacaccggcc	ttattccaag	cggcttcggc	cagtaacgtt	1920
agggggggg	gagggagagg	gcggaattcg	gagagggcgg	aattcggggc	cgcggagatc	1980
					gatgtcattg	
tcactcaagt	gtatggccag	atcgggccag	gtgaatatca	aatcctcctc	gtttttggaa	2100
actorcounge	ttagggeeg	agtcatgccc	acttttaaga	gggagtactc	accccaacag	2160
actgacaacc	ccagcgcaga	agecacgece	geeeetgaga	caactcaaca	ccacctactt	2220
ctggatetea	ageetgeeae	accidaccid	gaccacccgc	cggcccaaga	ccgcctactt	
taattacatc	atcagcagca	cctccgccag	aaacaacccc	gacegecace	cgctgccgcc	2200
cgccacggtg	ctcagcctac	cttgcgactg	tgactggtta	gacgcctttc	tcgagaggtt	2340
						2400
ttccgatccg	gtcgatgcgg	actggctcag	gteceteggt	ggeggagtae	cgttcggagg	2400
ccgacgggtt	tccgatccaa	gagtactgga	aagaccgcga	agagtttgtc	ctcaaccgcg	2460
agcccaacag	ctggccctcg	cagacagcga	tgcggaagag	agtgaggatc	tgacggttca	2520
ctaaacgagc	tctgcttata	tagacctccc	accgtacacg	cctaccgccc	atttgcgtca	2580
acqqqqqqq	gttattacqa	cattttggaa	agtcccgttg	attttggtgc	caaaacaaac	2640
toccattgac	gtcaatgggg	tagagactta	gaaatccccg	tgagtcaaac	cgctatccac	2700
acceptage	gtactgccaa	aaccgcatca	ccatogtaat	agcgatgact	aatacgtaga	2760
tatactacca	actaccasac	tcccgtaagg	tcatgtactg	ggcataatgc	caggcgggcc	2820
ettteesets	agtaggaaag	atagggggg	gagttgggat	atratacact	tgatgtactg	
acttaccgtc	actgacgtca	acayyyyycy	gacceggeae	tasataasa	atacatatta	2940
ccaagtgggc	agtttaccgt	adatactcca	cccactgacg	ccaacggaaa	gtccctattg	2000
gcgttactat	gggaacatac	gtcattattg	acgtcaatgg	geggggteg	ttgggcggtc	3000
agccaggcgg	gccatttacc	gtaagttatg	taacgcggaa	ctccatatat	gggctatgaa	3060
					caacatggcg	3120
gtcatattgg	acatgagcca	atataaatgt	acatattatg	atatagatac	aacgtatgca	3180
atggccaata	gccaatattg	atttatgcta	tataaccaat	gactaatatg	gctaattgcc	3240
aatattgatt	caatgtatag	atcgatctgg	aaggtgctga	ggtacgatga	gacccgcacc	3300
aggtgcagac	cctgcgagtg	tggcggtaaa	catattaqqa	accageetgt	gatgctggat	3360
atasccasaa	agctgaggcc	cgatcacttg	atactaacct	gcacccgcgc	tgagtttggc	3420
tetagegate	agoogaggoo	ttgaggtact	gaaatgtgtg	gacataactt	aagggtggga	
cctagegatg	aayacacaya	tettatataa	ttttatatat	attttaceac	accaccacc	3540
aagaatatat	aagguggggg	tettatgtag	ctttgtattt	geeetgeage	agccgccgcc	3600
gccatgagca	ccaactcgtt	tgatggaage	attgtgaget	Catatttgat	aacgcgcatg	3000
cccccatggg	ccggggtgcg	tcagaatgtg	atgggctcca	gcattgatgg	tcgcccgtc	3000
ctgcccgcaa	actctactac	cttgacctac	gagaccgtgt	ctggaacgcc	gttggagact	3720
gcagcctccg	ccgccgcttc	agccgctgca	gccaccgccc	gcgggattgt	gactgacttt	3780
gctttcctga	gcccgcttgc	aagcagtgca	gcttcccgtt	catccgcccg	cgatgacaag	3840
ttgacggctc	ttttggcaca	attggattct	ttgacccggg	aacttaatgt	cgtttctcag	3900
cagctgttgg	atctqcqcca	gcaggtttct	gccctgaagg	cttcctcccc	tcccaatgcg	3960
gtttaaaaca	taaataaaaa	accagactct	gtttggattt	ggatcaagca	agtgtcttgc	4020
tatattatt	taggggtttt	acacacacaa	taggccggg	accagcggtc	tcggtcgttg	4080
aggatagtat	gtatttttc		taaaggtgag	tctagatatt	cagatacatg	4140
agggttttgt	geactetee	atagaagtag	caccactoca	gagetteate	ctacagaata	4200
ggcataagcc	tgtttttggg	grygaggrag	caccaccyca	gageeeeacg	ctgcggggtg	4260
gtgttgtaga	tgatccagtc	gtagcaggag	cgccgggcgt	ggtgcctaaa	aatgtctttc	4220
agtagcaagc	tgattgccag	gggcaggccc	ttggtgtaag	tgtttacaaa	gcggttaagc	4320
tgggatgggt	gcatacgtgg	ggatatgaga	tgcatcttgg	actgtatttt	taggttggct	4380
atgttcccag	ccatatccct	ccggggattc	atgttgtgca	gaaccaccag	cacagtgtat	4440
ccggtgcact	tgggaaattt	gtcatgtagc	ttagaaggaa	atgcgtggaa	gaacttggag	4500
acgcccttgt	gacctccaag	attttccatg	cattcgtcca	taatgatggc	aatgggccca	4560
cadacaacaa	cctggqcqaa	gatatttctg	ggatcactaa	cgtcatagtt	gtgttccagg	4620
			_	_		

						4600
atgagatcgt	cataggccat	ttttacaaag	cgcgggcgga	gggtgccaga	ctgcggtata	4680
atggttccat	ccggcccagg	ggcgtagtta	ccctcacaga	tttgcatttc	ccacgctttg	4740
					ttccggggta	
ggggagatca	gctgggaaga	aagcaggttc	ctgagcagct	gcgacttacc	gcagccggtg	4860
ggcccgtaaa	tcacacctat	taccgggtgc	aactggtagt	taagagagct	gcagctgccg	4920
tcatccctga	gcaggggggc	cacttcgtta	agcatgtccc	tgactcgcat	gttttccctg	4980
accaaatccg	ccagaaggcg	ctcgccgccc	agcgatagca	gttcttgcaa	ggaagcaaag	5040
tttttcaacg	gtttgagacc	gtccgccgta	ggcatgcttt	tgagcgtttg	accaagcagt	5100
tccaggcggt	cccacagctc	ggtcacctgc	tctacggcat	ctcgatccag	catatctcct	5160
cqtttcgcgg	gttggggcgg	ctttcgctgt	acggcagtag	tcggtgctcg	tccagacggg	5220
ccaqqqtcat	gtctttccac	gggcgcaggg	tcctcgtcag	cgtagtctgg	gtcacggtga	5280
aggggtgcgc	tecagaetae	gcactaacca	agatacactt	gaggctggtc	ctgctggtgc	5340
tgaagcgctg	ccaatcttca	ccctacacat	caaccaaata	gcatttgacc	atggtgtcat	5400
					gaggcgccgc	
accaccacaca	gtgcagactt	ttgagggggt	agagettagg	cgcgagaaat	accgattccg	5520
acgaggggca	atccccccc	cadaccccac	agacggtctc	gcattccacg	agccaggtga	5580
gggagtaggt	ttcagagtca	aaaaccacct	ttccccata	ctttttgatg	cgtttcttac	5640
ctctccttc	catgaggcca	tatacaaaat	caataacaaa	aaggctgtcc	gtgtccccgt	5700
atagagagt	gagagagata	tecteasee	atacactta	gaggetgee	cccagtcagc	5760
tacttacact	gagaggcccg	catasatata	atgeceetga	ttatgactgt	cttctttatc	5820
					cttctttatc	
atgeaacteg	taggacaggt	geeggeageg	ctttgggtta	terrostet	ggaccgcttt	5000
cgctggagcg	cgacgatgat	eggeetgteg	ettgeggtat	coggaacect	gcacgccctc	5940
gctcaagcct	tegteaetgg	tecegecaee	aaacgttteg	gegagaagea	ggccattatc	6000
gccggcatgg	cggccgacgc	getgggetae	grerrgergg	egttegegae	gcgaggctgg	6060
atggccttcc	ccattatgat	tetteteget	tccggcggca	tegggatgee	cgcgttgcag	6120
gccatgctgt	ccaggcaggt	agatgacgac	catcagggac	agcttcaagg	atcgctcgcg	6180
gctcttacca	gctgagcaaa	aggccagcaa	aaggccagga	accgtaaaaa	ggccgcgttg	6240
					acgctcaagt	
cagaggtggc	gaaacccgac	aggactataa	agataccagg	cgtttcccc	tggaagctcc	6360
ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	ctttctccct	6420
					ggtgtaggtc	
					ctgcgcctta	
tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	acttatcgcc	actggcagca	6600
					gttcttgaag	
					tctgctgaag	
					caccgctggt	
					atctcaagaa	
					acgttaaggg	
attttggtca	tgagattatc	aaaaaggatc	ttcacctaga	tccttttaaa	ttaaaaatga	6960
					ccaatgctta	
atcagtgagg	cacctatctc	agcgatctgt	ctatttcgtt	catccatagt	tgcctgactc	7080
cccgtcgtgt	agataactac	gatacgggag	ggcttaccat	ctggccccag	tgctgcaatg	7140
ataccgcgag	acccacgctc	accggctcca	gatttatcag	caataaacca	gccagccgga	7200
agggccgagc	gcagaagtgg	tcctgcaact	ttatccgcct	ccatccagtc	tattaattgt	7260
tgccgggaag	ctagagtaag	tagttcgcca	gttaatagtt	tgcgcaacgt	tgttgccatt	7320
gctgcaggca	tcgtggtgtc	acgctcgtcg	tttggtatgg	cttcattcag	ctccggttcc	7380
caacgatcaa	ggcgagttac	atgatccccc	atgttgtgca	aaaaagcggt	tagctccttc	7440
ggtcctccga	tcgttgtcag	aagtaagttg	gccgcagtgt	tatcactcat	ggttatggca	7500
gcactgcata	attctcttac	tgtcatgcca	tccgtaagat	gcttttctgt	gactggtgag	7560
tactcaacca	agtcattctg	agaatagtgt	atgcggcgac	cgagttgctc	ttgcccggcg	7620
tcaacacggg	ataataccgc	gccacatagc	agaactttaa	aagtgctcat	cattggaaaa	7680
cgttcttcgg	ggcgaaaact	ctcaaggatc	ttaccgctgt	tgagatccag	ttcgatgtaa	7740
cccactcgtg	cacccaactg	atcttcagca	tcttttactt	tcaccagcgt	ttctgggtga	7800
gcaaaaacaq	gaaggcaaaa	tgccgcaaaa	aagggaataa	gggcgacacg	gaaatgttga	7860
atactcatac	tcttcctttt	tcaatattat	tgaagcattt	atcagggtta	ttgtctcatg	7920
agcggataca	tatttgaatg	tatttagaaa	aataaacaaa	taggggttcc	gcgcacattt	7980
ccccqaaaaq	tgccacctga	cgtctaaqaa	accattatta	tcatgacatt	aacctataaa	8040
				_		

aataggcgta tcacgaggcc ctttcgtctt caa	8073
<210> 61 <211> 11 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Example	
<400> 61 aaccaaaaaa a	11
<210> 62 <211> 11 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Example	
<400> 62 aaccaaaaaa t	11
<210> 63 <211> 11 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Example	
<400> 63 aaccaaaaaa c	11
<210> 64 <211> 11 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Example	
<400> 64 aaccaaaaaa g	11
<210> 65	

<211> 25	
<212> DNA	
<213> Homo sapiens	
<400> 65	•
tgcgcaagtc ctcccacctc aagaa	25
<210> 66	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 66	
gcgcaagtcc ccccacctca agaa	24
<210> 67	
<211> 27	
<212> DNA	
<213> Homo sapiens	
<400> 67	
ggctccgaga agggtgcagt gaggccc	27
440000444 	
<210> 68	
<211> 27	
<212> DNA	
<213> Homo sapiens	
4400 60	
<pre><400> 68 ggctccgagg agggtgcagt gaggccc</pre>	. 27
ggccccgagg agggcgcage gaggeoc	
<210> 69	
<211> 27	
<212> DNA	
<213> Homo sapiens	
<400> 69	27
gctccagctc ccgctgcagg gcaggga	27
~210 ~ 70	
<210> 70 <211> 27	
<212> DNA	
<213> Homo sapiens	
SWEAC WATTIA MANAGEMENT	
<400> 70	
getreagete regetacagg geaggga	27