

WHAT IS CLAIMED IS:

- 1 1. A method comprising the steps of:
2 coupling a patient to an energy source via a universal electrode suitable for
3 use upon both adults and children;
4 electronically determining whether the patient requires defibrillation; and
5 delivering an electrical waveform characterized by less than or equal to
approximately 150 Joules of energy to the patient.
- 1 2. The method of claim 1 further comprising the step of:
2 determining whether the patient is a child.
- 1 3. The method of claim 1,
2 wherein the universal electrode comprises an electrode having a foil layer with
3 an opening disposed therein.
- 1 4. The method of claim 1 further comprising the step of:
2 compensating for patient-dependent impedance during electrical waveform
3 delivery,
4 wherein the universal electrode comprises an electrode having a foil layer with
5 an opening disposed therein.
- 1 5. A method comprising the steps of:
2 coupling a patient to a universal electrode suitable for use upon both adults
3 and children;
4 electronically determining whether the patient requires defibrillation; and
5 delivering a first electrical waveform characterized by greater than
6 approximately 25 Joules and less than approximately 50 Joules of energy to the
7 patient.
- 1 6. The method of claim 5, further comprising the step of:
2 determining whether a patient is a child.
- 1 7. The method of claim 5 further comprising the step of determining
2 whether defibrillation was successful.
- 1 8. The method of claim 5 further comprising the steps of:
2 determining whether defibrillation was successful; and

3 delivering a second electrical waveform characterized by an energy greater
4 than that associated with the first electrical waveform to the patient.

1 9. The method of claim 5 further comprising the steps of:
2 determining whether defibrillation was successful; and
3 delivering a second electrical waveform characterized by an energy greater
4 than that associated with the first electrical waveform to the patient,
5 wherein the second electrical waveform is characterized by an energy greater
6 than 50 Joules.

1 10. The method of claim 5,
2 wherein the universal electrode comprises an electrode having a foil layer with
3 an opening disposed therein.

1 11. A method comprising the steps of:
2 electronically determining whether a patient requires defibrillation;
3 delivering a first electrical waveform characterized by an energy greater than
4 approximately 25 Joules and less than approximately 50 Joules to the patient;
5 determining whether defibrillation was successful; and
6 successively delivering higher-energy electrical waveforms to the patient until
7 a delivery of an electrical waveform characterized by a maximum energy target
8 occurs.

1 12. The method of claim 11, wherein the step of successively delivering
2 higher-energy electrical waveforms to the patient is performed according to an energy
3 increment plan.

1 13. The method of claim 11, wherein the maximum energy target equals
2 approximately 100 Joules.

1 14. The method of claim 11 further comprising the step of coupling the
2 patient to an energy source via a universal electrode suitable for use upon both
3 adults and children.

1 15. The method of claim 11 further comprising the step of coupling the
2 patient to an energy source via a universal electrode suitable for use with both adults

3 and children, wherein the universal electrode comprises an electrode having a foil
4 layer with an opening disposed therein.

1 16. A method comprising the steps of:

2 coupling a patient to an energy source via a universal electrode suitable for
3 use upon both adults and children;

4 determining whether the patient is an adult or a child;

5 electronically determining whether the patient requires defibrillation;

6 delivering a first electrical waveform characterized by an energy level
7 appropriate for an adult in the event that the patient is an adult; and

8 delivering a second electrical waveform characterized by an energy level
9 appropriate for a child in the event that the patient is a child.

1 17. The method of claim 16, wherein the first electrical waveform is
2 characterized by an energy of approximately 150 Joules.

1 18. The method of claim 16, wherein the second electrical waveform is
2 characterized by an energy of approximately 50 Joules.

1 19. An automated external defibrillation system comprising:

2 an energy source;

3 an electrode interface;

4 an electrode signal management unit coupled to the energy source and the
5 electrode interface;

6 a control unit coupled to the electrode signal management unit;

7 an adult/pediatric mode control that indicates whether the automated external
8 defibrillation system is to operate in an adult mode or a pediatric mode; and

9 a set of universal electrodes suitable for use upon both adults and children,
10 the universal electrodes coupled to the electrode interface.

1 20. The automatic external defibrillation system of claim 19,

2 wherein the universal electrode comprises an electrode having a foil layer with
3 an opening disposed therein.

1 21. An automated external defibrillation system comprising:

2 an energy source;

3 an electrode interface;
4 an electrode signal management unit coupled to the energy source and the
5 electrode interface;
6 a control unit coupled to the electrode signal management unit; and
7 a set of universal electrodes suitable for use upon both adults and children,
8 the universal electrodes coupled to the electrode interface.

1 22. The automated external defibrillation system of claim 21,
2 wherein the system is configured to deliver approximately 150 Joules of energy to the
3 universal electrodes.

1 23. The automated external defibrillation system of claim 21,
2 wherein the system is configured to deliver less than 150 Joules of energy to the
3 universal electrodes.