

Process Dynamics & Control

For GATE-2019 Chemical Engineering

Anuj Chaturvedi

M.Tech. in Process Modeling and

Simulation. Research Scholar @ IIT

BHU, and a teacher by heart, ranked

304 in GATE 2018, a badminton freak.

https://unacademy.com/user/anujchem09

Process Dynamics & Control

Lesson 21

Multi-capacity

System- Part 1

#My Courses on Unacademy #

Process Calculations for GATE (Chemical Engineering)-2019

Preparation Strategy for GATE (Chemical Engineering)-2019 with most important topics.

Heat Exchangers

Radiation Heat Transfer for GATE-2019 exam.

Transportation and Metering of Fluids for PSU Interviews -2018.

Non-Ideal Reactors for GATE-2019.

Mass Transfer Equipment for PSU Interviews -2018.

Chemical Reaction Engineering- Part 1

How to get Best Rank in GATE 2019 Chemical Engineering

Target Audience

All undergraduate Chemical Engineering Students

GATE- (Chemical Engineering) aspirants

Non-Interacting Systems:

Applying balances,
$$F_1 - F_2 = A_1 \frac{dh_1}{dt} - for tank \quad \boxed{1}$$

We also know that, & F3 = h2/R2 F2 = h1/R1

$$F_2 - \frac{h_2}{R_2} = A_2 \frac{dh_2}{dt} \Rightarrow$$

$$\frac{F_2 - h_2}{R_2} = A_2 \frac{dh_2}{dt} \Rightarrow A_2 R_2 \frac{dh_2}{dt} = F_2 R_2 - h_2 - 49$$

from (3): $T_{P_1} \frac{dh_1}{dt} + h_1 = F_1 R_1$ writing down equations in terms of deviation variables.

We get
$$\frac{F_2(s)}{F_1(s)} = \frac{1}{G_1s+1}$$
 — G

Similarly for tank (2), we get,

$$\frac{H_2(s)}{R_2(s)} = \frac{R_2}{T_{e_2}s+1}$$

Combining (5) & (6), we get.

$$\frac{H_2(s)}{R_1(s)} = \frac{R_2}{(\tau_{p_1}s+1)(\tau_{p_2}s+1)} = \frac{R_2}{\tau_{p_1}\tau_{p_2}s^2+(\tau_{p_1}+\tau_{p_2})s+1}$$

Comparing the equation with 2nd order T.F., Natural Period $T^2 = T_P, T_{P2} \implies T = \sqrt{T_P, T_{P2}}$ of oscillation.

T for non-interacting systems is the G.M. of time constants

Also, $23T = Tp_1 + Tp_2$ # $3 = \frac{Tp_1 + Tp_2}{2T} = \frac{A \cdot M \cdot G \cdot M}{G \cdot M}$ of time constants: #

A·M·7 G·M (Always)

YZI (Hence, Y can not be less than I)
because if overdamped system is present, it can
remain overdamped or witically to damped but
comit change the domain).

Thanks!

You can find me at:

https://unacademy.com/user/anujchem09

Any questions?

