Coordination of Robotic Networks: On Task Allocation and Vehicle Routing

Francesco Bullo

Center for Control,
Dynamical Systems & Computation
University of California at Santa Barbara
http://motion.me.ucsb.edu

Electrical and Computer Engineering Department Carnegie Mellon University April 30, 2009

Acknowledgements

Stephen L. Smith

SLS, FB: "Monotonic target assignment for robotic networks," *IEEE Trans Automatic Ctrl*, 54 (10), 2009

SLS, SDB, FB: "Finite-time pursuit of translating targets in a dynamic and stochastic environment," *Proc CDC*, Shanghai, 2009, submitted

Shaunak D. Bopardikar

SDB, SLS, FB, JH: "Dynamic vehicle routing for translating demands," *IEEE Trans Automatic Ctrl.* 2009. submitted

Applications of autonomous systems

- Unmanned vehicles
- Equipped with suite of sensors
- Inaccessible environments

Civilian applications:

- Environmental monitoring:
 - Measure weather systems
 - Observe animal species
 - Detect and assess wildfires
- Search and rescue missions
- Space exploration
- Monitoring infrastructure

Slocum glider

NASA - next generation Mars rover

Applications of autonomous systems

Military applications:

- Surveillance
- Reconnaissance missions
- Perimeter defense and security
- Expenditures of \$60 billion over next 10 years

The future of autonomy

Current missions (typical scenario):

- single vehicle or few decoupled vehicles
- pre-specified task
- tightly coupled with human control

Future missions

- Fleets (swarms) of networked vehicles
- Complex sets of tasks that evolve during execution
- Increased autonomy, humans as supervisors

Requires real-time task allocation and vehicle routing

Task allocation

Given:

- a group of vehicles, and
- a set of tasks

Task example: take a picture at a location

Task allocation

Decide which vehicles should perform which tasks.

- Centralized: operator assigns vehicles to tasks (requires vehicle positions, workloads, etc.)
- Distributed: vehicles divide tasks among themselves

Task allocation

Given:

- a group of vehicles, and
- a set of tasks

Task example: take a picture at a location

Task allocation

Decide which vehicles should perform which tasks.

- Centralized: operator assigns vehicles to tasks (requires vehicle positions, workloads, etc.)
- Distributed: vehicles divide tasks among themselves

Given:

An allocation of tasks to vehicles

Vehicle routing

- Task A is of higher priority than task B
- A task requires multiple vehicles: vehicles need to rendezvous
- Task locations are not stationary

Given:

An allocation of tasks to vehicles

Vehicle routing

- Task A is of higher priority than task B
- A task requires multiple vehicles: vehicles need to rendezvous
- Task locations are not stationary

Given:

An allocation of tasks to vehicles

Vehicle routing

- Task A is of higher priority than task B
- A task requires multiple vehicles: vehicles need to rendezvous
- Task locations are not stationary

Given:

An allocation of tasks to vehicles

Vehicle routing

- Task A is of higher priority than task B
- A task requires multiple vehicles: vehicles need to rendezvous
- Task locations are not stationary

Given:

An allocation of tasks to vehicles

Vehicle routing

- Task A is of higher priority than task B
- A task requires multiple vehicles: vehicles need to rendezvous
- Task locations are not stationary

Dynamic and distributed aspects

Distributed:

Vehicles have only local information

Dynamic

- Existing tasks evolve over time
- New tasks arise in real-time
- Number of vehicles changes

Complete solution cannot be computed off-line.

As new information becomes available, vehicles must

- re-allocate tasks
- re-plan paths

Technical approach: structure, fundamental limits, efficient algorithms

For a distributed/dynamic problem:

- 2 Determine fundamental limits on performance
- Obesign provably efficient algorithms

The remainder of the talk

Illustrate

problem structure, fundamental limits, efficient algorithms

via two scenarios:

- Distributed Task Allocation motivated by a surveillance application
- Dynamic Vehicle Routing motivated by a perimeter defense application

Distributed task allocation

A distributed task allocation problem

- n omnidirectional vehicles
 - limited comm. range and bandwidth
- $m \le n$ task locations
 - once task is reached by a vehicle, vehicle is forever engaged

Two problem scenarios:

- Supervisor broadcasts all task locations to each vehicle
- Vehicles search for task locations with limited range sensor

Problem: distributed algorithm to

- allow group of vehicles to divide tasks among themselves
- minimize time until last task location is reached

A distributed task allocation problem

- n omnidirectional vehicles
 - limited comm. range and bandwidth
- $m \le n$ task locations
 - once task is reached by a vehicle, vehicle is forever engaged

Two problem scenarios:

- Supervisor broadcasts all task locations to each vehicle
- Vehicles search for task locations with limited range sensor

Problem: distributed algorithm to

- allow group of vehicles to divide tasks among themselves
- minimize time until last task location is reached

A distributed task allocation problem

- n omnidirectional vehicles
 - limited comm. range and bandwidth
- m < n task locations
 - once task is reached by a vehicle, vehicle is forever engaged

Two problem scenarios:

- Supervisor broadcasts all task locations to each vehicle
- Vehicles search for task locations with limited range sensor

Problem: distributed algorithm to

- allow group of vehicles to divide tasks among themselves
- minimize time until last task location is reached

Centralized solution

In the centralized setting, problem is matching in a bipartite graph

Specifically, bottleneck matching: find a matching *M* which minimizes

$$\max_{M} d_{i,j}$$

Solvable in polynomial time

Distributed challenges

Multi-vehicle task allocation work:

- Auction based (Moore and Passino, 2007)
- Game theoretic (Arslan et al., 2007)
- Auction and consensus (Brunet, Choi and How, 2008)

Today, combination of key challenges:

- range constraint and lack of connectivity
- 2 tight bandwidth constraint

and novel goals:

- determine fundamental limits on scalability
- develop provably efficient algorithms

Underlying structure: environment size regimes

If # of vehicles increases $(n \to +\infty)$

Then area A(n) must increase to "make room"

Dense: $A(n)/n \rightarrow 0^+$

Sparse: $A(n)/n \to +\infty$

Critical: $A(n)/n \rightarrow \text{constant}$

Fundamental limits on completion time

Worst-case completion time

- # of tasks = # of vehicles (m = n)
- Broadcast or search scenario

	$ Sparse \\ (A(n) \gg n) $	Critical $(A(n) \approx n)$	
Fundamental limit	$\Omega(\sqrt{nA(n)})$	$\Omega(n)$	$\Omega(A(n))$

Asymptotic notation: $T \in \Omega(n)$ implies there is C > 0 such that

T lower bounded by Cn

Two allocation algorithms

The Ring algorithm

- Compute common ring
- Broadcast scenario

Two allocation algorithms

The Ring algorithm

The Grid algorithm

- Compute common ring
- Broadcast scenario

- Elect leader in each cell
- Broadcast or search

Algorithms match fundamental limit

Worst-case time, (# of tasks m) = (# of vehicles n)

	Sparse	Critical	Dense
Fundamental limit	$\Omega(\sqrt{nA(n)})$	$\Omega(n)$	$\Omega(A(n))$
Ring Alg	$O(\sqrt{nA(n)})$	O(n)	$O(\sqrt{nA(n)})$
Grid Alg	O(A(n))	O(n)	O(A(n))

Efficient algorithms

- Ring Alg in sparse and critical environments
- Grid Alg in dense and critical environments

Additional stochastic results have been obtained

Summary of distributed task allocation

Distributed task allocation with communication constraints

The results:

- problem structure: sparse/critical/dense
- fundamental limits on completion time
- efficient algorithms in all three regimes

The technical approach utilizes:

- Distributed algorithms and networking
- Combinatorial optimization
- Random geometric graphs

Distributed Control of Robotic Networks

A Mathematical Approach to Motion Coordination Algorithms

Francesco Bullo Jorge Cortés Sonia Martínez

- intro to distributed algorithms (graph theory, synchronous networks, and averaging algos)
- geometric models and geometric optimization problems
- model for robotic, relative sensing networks, and complexity
- algorithms for rendezvous, deployment, boundary estimation

Status: Freely downloadable at http://coordinationbook.info with tutorial slides & software libraries. Shortly on sale by Princeton Univ Press

Dynamic vehicle routing

Prior work on dynamic vehicle routing

Dynamic traveling repairperson problem

- Tasks arrive sequentially in time
- Each task location is randomly distributed in service region
- Each task requires on-site service

Key references

Key references

- Shortest path (Beardwood, Halton and Hammersly, 1959)
- Formulation on a graph (Psaraftis, 1988)
- Euclidean plane (Bertsimas and Van Ryzin, 1990–1993)

Recent developments in dynamic vehicle routing:

- Nonholonomic UAVs (Savla, Frazzoli, FB: TAC, (53)6 '08)
- Adaptation and decentralization (Pavone, Frazzoli, FB: TAC, sub '09)
- Distinct-priority targets (SLS, Pavone, FB, Frazzoli: SICON, sub '09)
- Heterogeneous vehicles and teaming (SLS, FB: SCL, sub '08)
- Moving targets (SBD, SLS, FB: CDC & TAC, sub '09)

A perimeter defense / boundary guarding problem

- Single vehicle with unit speed
- Task locations (targets):
 - arrive sequentially on a segment
 - move vertically with speed v
- Task completed if target captured before reaching deadline

Goal

Design policies that maximize expected fraction of targets captured

Assume that task arrivals are:

- Poisson in time with rate $\lambda \implies \mathbb{E}[N(\Delta t)] = \lambda \Delta t$
- uniformly distributed on line segment

Underlying problem structure

For fixed W, problem parameters are

• speed ratio v:

$$v = \frac{\text{target speed}}{\text{vehicle speed}}$$

- ullet arrival rate λ
- deadline distance L

	$L = +\infty$	L is finite	
	Stabilize queue	Maximize capture fraction	
v < 1	translational path policy	translational path policy	
$v \ge 1$	Not possible for any $\lambda > 0$	longest path policy	

Underlying problem structure

For fixed W, problem parameters are

• speed ratio v:

$$v = \frac{\text{target speed}}{\text{vehicle speed}}$$

- ullet arrival rate λ
- deadline distance L

	$L = +\infty$	L is finite
	Stabilize queue	Maximize capture fraction
v < 1	translational path policy	translational path policy
$v \ge 1$	Not possible for any $\lambda>0$	longest path policy

Underlying problem structure

For fixed W, problem parameters are

• speed ratio v:

$$v = \frac{\text{target speed}}{\text{vehicle speed}}$$

- ullet arrival rate λ
- deadline distance L

	$L = +\infty$	L is finite
	Stabilize queue	Maximize capture fraction
v < 1	translational path policy	translational path policy
$v \ge 1$	Not possible for any $\lambda > 0$	longest path policy

Fundamental limits for $L=+\infty$ and $\nu<1$

For every policy:

$$\lambda \leq \frac{4}{vW}$$
, for stability

Fundamental limits for $L=+\infty$ and v<1

For every policy:

$$\lambda \leq \frac{4}{vW}$$
, for stability

As $v \rightarrow 1^-$, for stability

$$\lambda \leq \frac{3\sqrt{2}}{W\sqrt{-\log(1-\nu)}}$$

Example of proof techniques

For stability, $\lambda \leq \frac{4}{vW}$

- **1** Distribution of unserviced targets in region of area *A*:
 - Number is Poisson distributed with parameter $\lambda A/(vW)$
 - Conditioned on number, targets are uniform
- 2 Targets reachable in time T from (X, Y) are

$$\{(x,y) \mid (X-x)^2 + ((Y-vT)-y)^2 \le T^2\}$$

ullet Probability that closest target is not reachable in ${\mathcal T}$ seconds

$$\geq \exp(-\lambda \pi T^2/(vW))$$

Expected time to travel between targets

$$\mathbb{E}\left[\mathsf{travel\ time}\right] \geq \frac{1}{2} \sqrt{\frac{vW}{\lambda}}$$

5 To capture all, $\lambda \mathbb{E}$ [travel time] ≤ 1

Translational path for v < 1

Shortest translational path policy

Input: Optimal location p*

- If no targets, then move to p*
- Else, capture all targets via shortest translational path
- Repeat

Can compute \mathbf{p}^* to minimize:

- worst-case capture time
- expected capture time

Translational path for v < 1

speed ratio of 0.2

Shortest path computation (Hammar and Nilsson, 2002):

Order: scaled shortest static path Motion: intercept on straight line

Stability of translational path for v < 1

Stability for $L = +\infty$

Stability of translational path for v < 1

Stability for $L = +\infty$

Stability of translational path for v < 1

Stability for $L = +\infty$

Maximize capture fraction for v < 1

Modify translational path policy

Fundamental limit

cap fraction
$$\leq \min\left\{1, \frac{2}{\sqrt{\nu\lambda W}}\right\}$$

To analyze policy, assume

- ullet speed ratio v is small
- ullet arrival rate λ is large

Then, capture fraction

$$\geq \min\left\{1, \frac{1.4}{\sqrt{\nu\lambda W}}\right\}$$

Factor 1.42 of optimal

Numerical results suggest good performance away from limit

Where are we?

	$L=+\infty$ Stabilize queue	L is finite Maximize capture fraction
v < 1	translational path policy	modified trans. path policy
v ≥ 1	Not possible for any $\lambda>0$	

Where are we?

	$L = +\infty$	L is finite
	Stabilize queue	Maximize capture fraction
v < 1	translational path policy	modified trans. path policy
$v \ge 1$	Not possible for any $\lambda>0$	

Where are we?

	$L = +\infty$	L is finite
	Stabilize queue	Maximize capture fraction
v < 1	translational path policy	modified trans. path policy
$v \ge 1$	Not possible for any $\lambda>0$?

For $v \ge 1$, it is optimal to remain on deadline

Reachability graph is directed and acyclic

Fundamental limit for $v \geq 1$

Noncausal information = a priori knowledge of arrival time and location of every future target

Optimal performance with noncausal information

- Compute infinite reachability graph of all future targets
- 2 Compute longest path in graph
- Capture each target on path

Consequences for algorithm performance (capture fraction)

- noncausal performance can be computed
- noncausal performance is upper bound on causal performance

Capture fraction with $v \ge 1$: Longest path policy

Longest path (LP) policy

- Compute the reachability graph of all unserviced targets
- 2 Compute longest path in graph
- Capture first target on path by intercepting on deadline
- Repeat

Capture fraction for L > vW:

Factor $\left(1 - \frac{vW}{L}\right)$ of optimal

Numerical capture fraction for $v \ge 1$

Environment with W = 2 and L = 5.

v = 2 and thus L > vW

v = 5 and thus L < vW

Numerical capture fraction for $v \ge 1$

Environment with W = 2 and L = 5.

v = 2 and thus L > vW

v = 5 and thus L < vW

Summary of boundary guarding

The results:

- Identified four regimes
- Derived fundamental limits on capture fraction
- Developed provably efficient algorithms

	$L = +\infty$	L is finite
	Stabilize queue	Maximize capture fraction
v < 1	translational path policy	translational path policy
$v \ge 1$	Not possible for any $\lambda>0$	longest path policy

The technical approach utilizes:

- Stochastic processes and queueing
- Combinatorial optimization

Summary of boundary guarding: policies

Summary

Future autonomous missions

- Fleets (swarms) of networked vehicles
- Complex sets of tasks that evolve during execution
- Increased autonomy, humans as supervisors

Enabling technology: real-time task allocation and vehicle routing

Technical approach: Fundamental theory and algorithms

- underlying problem structure
- 2 fundamental limits on performance
- 3 simple, provably efficient algorithms