5. Übung Maß- und Wahrscheinlichkeitstheorie 1 SS2019

1. Gegeben ist die Mengenfolge

$$A_n = B(\frac{(-1)^n}{n}, 0, 1),$$

wobei

$$B(a,b,r) = \{(x,y) \in \mathbb{R}^2 : (x-a)^2 + (y-b)^2 \le r^2\}$$

die Kreisscheibe um (a,b) mit Radius r ist. Bestimmen Sie $\limsup_n A_n$ und $\liminf_n A_n$.

2. \mathfrak{S} sei eine Sigmaalgebra über Ω , die alle einpunktigen Mengen $\{\omega\}, \omega \in \Omega$ enthält. Wir nennen ein Maß μ auf dem Messraum (Ω, \mathfrak{S}) diskret, wenn es eine abzählbare Menge $A \in \mathfrak{S}$ gibt, für die $\mu(A^C) = 0$ ist, und stetig, wenn für jedes $\omega \in \Omega$ $\mu(\{\omega\}) = 0$ gilt. Zeigen Sie, dass jedes endliche Maß in ein diskretes und ein stetiges Maß zerlegt werden kann, also

$$\mu = \mu_d + \mu_c$$

mit μ_c stetig und μ_d diskret (Zeigen Sie, dass $D = \{\omega \in \Omega : \mu(\{\omega\}) > 0\}$ abzählbar ist, und betrachten Sie $\mu(A \cap D)$ und $\mu(A \setminus D)$).

3. Die Ereignisse A, B, C im Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, \mathbb{P})$ erfüllen

$$\mathbb{P}(A) = 0.7, \mathbb{P}(B) = 0.6, \mathbb{P}(C) = 0.5,$$

$$\mathbb{P}(A\cap B)=0.4, \mathbb{P}(A\cap C)=0.3, \mathbb{P}(B\cap C)=0.2, \mathbb{P}(A\cap B\cap C)=0.1.$$

Bestimmen Sie $\mathbb{P}(A|B \cup C)$ und $\mathbb{P}(A|B \setminus C)$.

- 4. Ein Würfel wird zweimal geworfen (d.h., wir befinden uns in einem Laplace-Raum auf $\Omega = \{1, 2, 3, 4, 5, 6\}^2$).
 - (a) Stellen Sie die Ereignisse A "die erste Augenzahl ist 6", B "die zweite Augenzahl ist 6" und C "die Summe der Augenzahlen ist 7" als Mengen dar.
 - (b) Zeigen Sie, dass A, B, und C zwar paarweise, aber nicht vollständig unabhängig sind.
- 5. Die Ereignisse $A,\,B$ und C sind unabhängig. Zeigen Sie, dass auch $A^C,\,B^C$ und C^C unabhängig sind.
- 6. μ und ν seien zwei endliche Maße auf der Sigmaalgebra $\mathfrak{S}.$ Zeigen Sie, dass

$$\mathfrak{D} = \{ A \in \mathfrak{S} : \mu(A) = \nu(A) \}$$

ein Dynkin-System (im weiteren Sinn) ist. Wenn μ und ν Wahrscheinlichkeitsmaße sind, dann ist $\mathfrak D$ ein Dynkin-System im engeren Sinn.

7. Pólya's Urnenmodell: In einer Urne befinden sich a weiße und b schwarze Kugeln. Es wird jeweils eine Kugel zufällig gezogen, und danach werden c Kugeln derselben Farbe in die Urne zurückgelegt (c=0 entspricht dem Ziehen ohne Zurücklegen, c=1 Ziehen mit Zurücklegen). Bestimmen Sie die Wahrscheinlichkeit, dass bei der zweiten bzw. dritten Ziehung eine weiße Kugel gezogen wird.