

Week7 Mac Sub-Layer and Network Layer

COMP90007 Internet Technology

Prepared by: Chenyang Lu (Luke)

Chenyang Lu (Luke)

- Email: chenyang.lu@unimelb.edu.au

- Workshop Slides: https://github.com/LuChenyang3842/Internet-technology-teaching-material

Day	Time	Location
Tue	18:15	Bouverie st –B114
Wed	10:00	Elec Engineering -122
Wed	17:15	Bouverie-sr 132

MAC Sub-Layer

Mac-sub Layer

TCP/IP Model

Application

Transport

Network

Data Link

MAC SUB-Layer

Physical

Question: What is MAC Sub-Layer and what is the function of MAC Sub-Layer

Mac-sub Layer

TCP/IP Model

Application

Transport

Network

Data Link

MAC SUB-Layer

Physical

Medium Access Control Sub-Layer:

- Lives near the bottom of data link layer
- Control how we can allocate multiple users over a single shared channel in a broadcast

Mac-sub Layer

TCP/IP Model

Application

Transport

Network

Data Link

MAC SUB-Layer

Physical

- 1. Contention
 - ALOHA
 - Carrier Sense Multiple Access (CSMA)
- 2. Collision Free
 - CSMA/CD Binary Countdown
 - CSMA/CD bit map
- 3. Limited Contention
 - CSMA/CD Adaptive Tree Walk Protocol
- 4. MACA/MACAW (for Wireless LANs)

Wireless LAN protocol

Hidden Terminal problem

- A sends data to B, C cannot hear A
- C wants to send data to B, C senses a "free" medium and starts transmitting
- Collision at B occurs
- A and C are hidden terminals, when both of them are sending data to B

Exposed Terminal problem

- B sends to A. C wants to send to another terminal D.
- C senses the carrier and detects that the carrier is busy.
- C postpones its transmission until B stops sending data
- But A is outside radio range of C, waiting is not necessary
- B and C are exposed terminals when B --> A, C--> D

MACA(Multi Access with Collision Avoidance)

MACA used in wireless LAN

MACA protocol grants access for A (sender) to send to B (receiver):

- A sends RTS (Request to Send) to B [left]
- B replies with CTS (Clear To send) [right]
- A can send with exposed but no hidden terminals

Question 1 MACA

Six stations, A through F, communicate using the MACA protocol. Is it possible that two transmissions take place simultaneously? Explain your answer.

Answer:

Yes. Imagine that they are in a straight line and that each station can reach only its nearest neighbours. Then A can send to B while E is sending to F.

TCP/IP Model

Question:

- 1. What is the protocol used in network layer
- 2. Function of that protocol?

TCP/IP Model

TCP/IP Model

Application

Transport

Network (Internet Protocol)

Data Link

Physical

- 1. Routing Method
 - Virtual-Circuit subnet (Connection Oriented)
 - Datagram subnet (Connectionless)
- 2. IPV4
 - Datagram
 - ★• IP address and subnetting (important!)
- 3. Fragmentation
- 4. Routing algorithm (Manage Routing Table)
 - Adaptive
 - Non-adaptive
 - Hierarchical Routing
 - Broadcasting Routing
 - Multicasting Routing

Routing with Virtual Circuit subnet

- **Telephone network model**
- Build a fixed channel before data transmission
- Routed through tag name (not a full address but unique at a given link)
- All packet take the same route
- Connection oriented

14

Routing with Datagram subnet

Dest. Line

- Post office model
- Packet routed individually
- Packet can take different route
- Connectionless

Question 2

If there are *n* independent paths between two nodes in a network, and the probability that an individual path is working is *p*, what is the probability of these two nodes being connected? Assume path failures are independent.

Hint: first try to calculate what is the probability that all paths have failed

Answer:

 $= 1 - (1 - p)^n$

```
Pr(nodes connected)
= 1 - Pr(no connection)
= 1 - Pr(all paths failed)
= 1 - Pr(individual path failure)<sup>n</sup> (assuming independent events)
= 1 - [1 - Pr(individual path working)]<sup>n</sup>
```


IP4 Datagram Structure

> Can be represent in decimal or binary

• Convert IP Address: 11000001.01010010.11010010.00001111 to dot-decimal notation

ans. 193.82.210.15

• Convert IP address: 240.68.10.10 to binary format? ans. 1111 0000 . 0100 0100 . 0000 1010 . 0000 1010

IP address and subnetting

Major focus in this subject

- > IP address = Network portion + Host portion
 - ☐ Classful addressing (old Deign)
 - Class A, B, C, D and E
 - ☐ Classless inter-domain notation (CIDR)

The notation is constructed from an IP address, a <u>slash</u> ('/') character, and a decimal number. e.g. 192.168.5.130/24

	Binary Form	Dot-decimal
IP address	11000000.10101000.00000101.10000010	192.168.5.130/24
Subnet mask	11111111.111111111111111111100000000	255.255.255.0
Network prefix (Network Address)	11000000.10101000.00000101.00000000	192.168.5.0/24
Number of hosts	$2^8 = 256 \text{ hosts}$	

IP address and subnetting

Subnet mask: all 1s in the network portion.

Network prefix: For network portion, keep them same as original IP address. For host portion, change them all to zero.

Suffix of Ip address: an integer represent the length of network portion

Number of host: 2^{length of host portion}

Question 3 subnet Mask

A network on the Internet has a subnet mask of 255.255.240.0. What is the maximum number of hosts that it can handle?

Answer:

The mask is 20 bits long, so the network part is 20 bits. The remaining 12 bits are for the host, so 4096 host addresses exist.

Question 5 Subnet mask

A router an entry in its table that can be represented with mask as 135.46.56.0/21. What is the maximum number of hosts that this network can represent?

Ans. 21 bits means network has 21 bits reserved and remaining 11 bits are for hosts.

Hence maximum number of hosts is $2^11 = 2048$

Question 4 IPV6

IPv6 uses 16 bytes addresses. If a block of 1 million addresses is allocated every picosecond, how long will the addresses last? (1 picosecond = 10^{-12} second)

Answer:

Total number of bits: 16 *8 = 128 bits

Total number of address: 2¹²⁸

Allocating rate: $10^6/10^{-12} = 10^{18}$ addresses per second.

Times it takes to run out the IP addresses: 2^{128} / $10^{18} = 3.4 \times 10^{20}$ seconds = 10^{13} years.

This number is 1000 times the age of the universe.

Fragmentation

- All networks have a maximum size for packets
- Fragmentation (division of packets into fragments) allows network gateways to meet size constraints

Type of fragmentation

1. Transparent – packets fragmented / reassembled in each network. Route constrained, more work

2. Non-transparent – fragments are reassembled at destination. Less work (IP works this way) –packet number, byte offset, end of packet flag

Question 6 fragmentation

What are the benefits and disadvantages of Transparent fragmentation in Network Layer?

Benefits

- Good design paradigm and encapsulation of fragmentation within each network
- Easy to implement and use

Disadvantage

- Router must know when it has received all packets, so either a count or "end of packet" bit must be provided
- All fragments must exit via the same router so they can be reassembled.
- Router need to buffer all the fragments as they arrive, and decide when to throw them away if not all fragments arrive
- Some of this work may be wasteful. The packet may pass through a series of small packet network and repeatedly fragmented and reassembled.

Some extra questions for IP Address and subnetting

	Binary Form Dot-decimal				
IP address	?		118.217.110.149/10		
Subnet mask	?		?		
Network prefix	?	?			
Number of hosts	?				
	Binary Form		Dot-decimal		
IP address	?		?		
Subnet mask	?		?	O_2	
Network prefix	?		192.0.2.0/23	~-	
Number of hosts	?				
	Binary Form		Dot-decimal		
IP address	?		?		
Subnet mask	11111111.11111111111111111.00000000		?		
Network prefix	?		?		
Number of hosts	?				
If the network portion of Ip address is 15, what is the subnet mask? What is the number of host?				$\mathbf{Q}^{3}4$	

	Binary Form		Dot-decimal		
IP address	01110110.11011001.01101110.10010101 118.217.110		217.110.149/10		Q1
Subnet mask	11111111.11000000.000000000000000000000		5.192.0.0		
Network prefix	01110110.11000000.000000000000000000000		92.0.0/1	0	
Number of hosts	2^22				
	Binary Form			Dot-decimal	
IP address	N/A			N/A	
Subnet mask	11111111.1111111111110.00000000			255.255.254.0	Q2
Network prefix	11000000.000000000010.00000000			192.0.2.0/23	
Number of hosts	2^9				
	Binary Form Dot		Dot-dec	cimal	
IP address	N/A		N/A		Q3
Subnet mask	11111111.11111111111111111.00000000		255.255.255.0		
Network prefix	N/A		N/A		
Number of hosts	2^8				
If the network portion of Ip address is 15, subnet mask: 255.254.0.0, number of host: 2^17				$\mathbf{Q}^{9}4$	