COMP 3331/9331:

Computer Project Examples and happalications

WeCharicestutions

Network Security

Reading Guide: Chapter 8: 8.1 – 8.5

Complete your my Experience and shape the futimenofited vication at Helpi SW.

Click the Experience link in Moodle

WeChat: cstutorcs or login to myExperience.unsw.edu.au

(use z1234567@ad.unsw.edu.au to login)

The survey is confidential, your identity will never be released Survey results are not released to teaching staff until after your results are published

Network Security: Overview

Our goals:

- understand principles of network security:
 - cryptography and the many weet beyond "fontidentiality"
 - authentication https://tutorcs.com
 - message integrity

WeChat: cstutorcs

Network Security: roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Message integrityment Project Exam Help
- 8.4 Authentication https://tutorcs.com
- 8.5 Securing email WeChat: cstutorcs
- 8.6 8.9 SSL, IPSec, Firewall/IDS not covered.

There are several security electives offered

What is network security?

confidentiality: only sender, intended receiver should "understand" message contents

- sender encrypts message Assignment Project Exam Help
- receiver decrypts message

authentication: sender, receiver want to confirm identity of each other

WeChat: cstutorcs

message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection

access and availability: services must be accessible and available to users

Friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- Bob, Alice want to communicate "securely"
- Trudy (intruder) may intercept, delete, add messages
 Assignment Project Exam Help

Who might Bob, Alice be?

- ... well, real-life Bobs and Alices!
- Web browser/server for electronic transactions (e.g., on-line punchase) roject Exam Help
- on-line banking client/server https://tutorcs.com
- DNS servers
- routers exchanging routing table updates
- etc.

There are bad guys (and girls) out there!

Q: What can a "bad guy" do?

A: A lot!

- eavesdrop: intercept messages
 Assignment Project Exam Help
 actively insert messages into connection
- impersonatibates in impersonatibates in packet (or any field in packet)
 We Chat: cstutores

 hijacking: "take over" ongoing connection by
- removing sender or receiver, inserting himself in place
- denial of service: prevent service from being used by others (e.g., by overloading resources)

Network Security: roadmap

- 8.1 What is network security?

- 8.4 Authentication https://tutorcs.com
- 8.5 Securing email WeChat: cstutorcs

The language of cryptography

m plaintext message $K_A(m) \text{ ciphertext, encrypted with key } K_A$ $m = K_B(K_A(m))$

Symmetric key cryptography

WeChat: cstutorcs

symmetric key crypto: Bob and Alice share same (symmetric) key: K_S

Q: how do Bob and Alice agree on key value?

Simple encryption scheme

substitution cipher: substituting one thing for another

- monoalphabetic cipher: substitute one letter for another
- Ceaser Cipher: replace each letter of the alphabet with the letter standingstipgenplagepfujteber Edown Ithe palphabet.

```
Plain: a b c d e fithsi. j/kutores. com s t u v w x y z cipher: d e f g h i j k i m n o p q r s t u v w x y z a b c
```

WeChat: cstutorcs
Plaintext: meet me after the party e.g.:

ciphertext: phhw ph diwhu wkh sduwb

Encryption key: $c = (p+3) \mod 26$ Each plaintext letter p substituted by the ciphertext letter c In general, we have c = (p+k) mode 26 where k is in range 1 to 25

Simple encryption scheme

- With only 25 possible keys, the Caeser cipher is vulnerable to brute force cryptanalysis
- Cipher can be any permutation of the 26 alphabet characters Assignment Project Exam Help

```
plaintext: abcdefghijklmnopqrstuvwxyz https://tutorcs.com/ciphertext: mnbvcxzasdfghjklpoiuytrewq
```

WeChat: cstutorcs

e.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

Encryption key: mapping from set of 26 letters to set of 26 letters

We have 26! (> 4 x 10²⁶) possible keys

Breaking an encryption scheme

- cipher-text only attack:
 known-plaintext attack: Trudy has ciphertext she
 - Trudy has (part of) plaintext can analyze Assignment Project Exam Help to ciphertext
- two approaches:
- e.g., in monoalphabetic brute force: search: //tutorcs.compher, Trudy determines
 - through all kewseChat: cstutorcs pairings for a,l,i,c,e,b,o,b
 - statistical analysis

chosen-plaintext attack: Trudy can get ciphertext for chosen plaintext

Breaking an encryption scheme

Frequency Histogram Analysis for letters in English language

Monoalphabetic ciphers are easy to break because they reflect the frequency data of the original alphabet

A more sophisticated encryption approach

- Polyalphabet ciphers
- \bullet n substitution ciphers, $M_1, M_2, ..., M_n$
- cycling pattern:
 - Assignment Project Exam Help
 e.g., n=4: and key is M₁,M₃,M₄,M₃,M₂; M₁,M₃,M₄,M₃,M₂; ...
- * for each new plaintext symbol, use subsequent substitution patterning cyclic pattern
 - dog: d from M₁, o from M₃, g from M₄

Encryption key: n substitution ciphers, and cyclic pattern

Two types of symmetric ciphers

Stream ciphers

- encrypt one bit at time
- * Block cipheisnment Project Exam Help
 - Break plaintextmessageoinegualisize blocks
 - Encrypt each block as a unit WeChat: cstutorcs

Stream Ciphers

- * Combine each bit of plaintext to get bit of ciphertext WeChat: cstutorcs
- m(i) = ith bit of message
- ks(i) = ith bit of keystream
- c(i) = ith bit of ciphertext
- \star c(i) = ks(i) \oplus m(i) (\oplus = exclusive or)
- * m(i) = ks(i) \oplus c(i)

RC4 Stream Cipher

- * RC4 is a popular stream cipher
 - Extensively analyzed and considered good
 - Key can be signment Projecte Exam Help
 - Used in WEP for 802 II
 tutorcs.com
 - Known to have vulnerabilities
 - Many other alternatives: ChaCha, SOBER, SEAL, ...

Block Cipher

- Ciphertext processed as k bit blocks
- I-to-I mapping is used to map k-bit block of plaintext to k-bit block of ciphertext
 Assignment Project Exam Help

 E.g. k=3 (see table)
- - 010110001111 tttps: 99941d998.com
- ❖ Possible permutations = 8! (40,320)
- * To prevent brute force attacks
 - Choose large K (64, 128, etc)
- Full-table block ciphers not scalable
 - E.g., for k = 64, a table with 2^{64} entries required
 - instead use function that simulates a randomly permuted table

Input	Output
000	110
111	001
001	111
010	101
011	100
100	011
101	010
110	000

Block Cipher (contd.)

loop for n rounds

If only a single round, then one bit of input output

In 2nd round, the 8 affected bits get scattered and inputted We Chat: cstutorcs into multiple substitution boxes

- How many rounds?
 - How many times do you need to shuffle cards
 - Becomes less efficient as n increases

Symmetric key crypto: DES

DES: Data Encryption Standard

- US encryption standard [NIST 1993]
- ❖ 56-bit symmetric key, 64-bit plaintext input
- * block cipher with appear Brojech Exam Help
- how secure is DES?//tutorcs.com
 - DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day using distributed computing
 - no known good analytic attack
- making DES more secure:
 - 3DES: encrypt 3 times with 3 different keys

Symmetric key crypto: DES

DES operation

initial permutationsignment Project Exam Help

16 identical "rounds" of https://tutorcs.com function application,

each using differe Wet8hat: cstutores

bits of key

final permutation

AES: Advanced Encryption Standard

- symmetric-key NIST standard, replaced DES (Nov 2001)
- * processes datignment Breisto Exam Help
- * 128, 192, or 256 point/keyscs.com
- * brute force degraption (try each key) taking I sec on DES, takes 149 trillion years for AES

Cipher Block Chaining

cipher block: if input block repeated, will produce same cipher text:

• Use random number of the Service of ith input block, m(i) and random number r(i) and hat: cstutores apply block-cipher encryption algorithm

- $C(i) = Ks(m(i) \oplus r(i))$
- Send across c(i) and r(i)

CBC Example

- Plaintext: 010 010 010
- If no CBC, sent txt: 101 101 101
 - I-to-I mappingital huend Project Exam Help
- Lets use the following random bits
 - rl: 001, r2: 111, https://tutorcs.com
 - XoR the plaintext with these random bits
 - 010 XoR 001 = 011
 - Now do table lookup for 011 -> 100
- * We get c(1)=100, c(2)=010 and c(3)=000, although plaintext is the same (010)
- Need to transmit twice as many bits (c(i) as well as r(i))

Input	Output
000	110
111	001
001	111
010	101
011	100
100	011
101	010
110	000

Cipher Block Chaining

• cipher block chaining: send
only one random value
alongwith the very first
message block Amdghement Project Exam Help
have the sender and receiver
use the computed cipher
block in place of the VeChat: cstutorcs
subsequent random number

- XOR ith input block, m(i), with previous block of cipher text, c(i-1)
 - c(0) is an initialisation vector (random) transmitted to receiver in clear

cipher

Cipher Block Chaining (CBC)

- CBC generates its own random numbers
 - Have encryption of current block depend on result of previous block
 - c(i) = K_s(m(i) ⊕ c(i-1)) Project Exam Help
 - $m(i) = K_s(c(i)) \Re t \frac{dist}{dist} / tutorcs.com$
- How do we encrypt first block?
 Initialization vector (V): random block = c(0)
 - IV does not have to be secret
- Change IV for each message (or session)
 - Guarantees that even if the same message is sent repeatedly, the ciphertext will be completely different each time

Cipher Block Chaining (CBC)

Public Key Cryptography

symmetric key crypto

- requires sender, receiver know shared seesigheyent Project Franch Epsfie-
- * Q: how to agree on key in tutorcs.com

 'sularly if sender, receiver do not never "met")? WeChat: ¢stutohare secret key

public key crypto

- radically different
- public encryption key known to all
- private decryption key known only to receiver

Public key cryptography

Public key encryption algorithms

requirements:

- 1 need K⁺(-) and K⁻(-) such that https://kitelphose.com m
- given public key K_B, it should be impossible to compute private key K_B

RSA: Rivest, Shamir, Adelson algorithm

Prerequisite: modular arithmetic

- x mod n = remainder of x when divide by n
- facts:

```
[(a mod n) A stigmodern) Project = E(xath) Help n
[(a mod n) - (b mod n)] mod n = (a-b) mod n
[(a mod n) * (b mod n)] mod n = (a*b) mod n
```

- thus WeChat: cstutorcs
 (a mod n)^d mod n = a^d mod n
- * example: x=14, n=10, d=2: $(x \mod n)^d \mod n = 4^2 \mod 10 = 6$ $x^d = 14^2 = 196 \quad x^d \mod 10 = 6$

Note: You don't need to know this for the exam

RSA: getting ready

- message: just a bit pattern
- bit pattern can be uniquely represented by an integer number
 Assignment Project Exam Help
- thus, encrypting a message is equivalent to encrypting a https://tutorcs.com

example: WeChat: cstutorcs

- m= 10010001. This message is uniquely represented by the decimal number 145.
- to encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext).

RSA: Creating public/private key pair

- 1. choose two large prime numbers p, q. (e.g., 1024 bits each)
- 2. compute Assignment (Project-Exam Help
- 3. choose e (withtersn)/thatchasono common factors with z (e, z are "relatively prime").
- 4. choose d such that ed-1 is exactly divisible by z. (in other words: ed mod z = 1).
- 5. public key is (n,e). private key is (n,d).

RSA: encryption, decryption

- 0. given (n,e) and (n,d) as computed above
- I. to encrypt message m (< n), compute Assignment Project Exam Help $c = m^e \mod n$ https://tutorcs.com
- 2. to decrypt received bit pattern, c, compute $m = c^d \mod n$

magic
$$m = (m^e \mod n)^d \mod n$$
 happens!

RSA example:

```
Bob chooses p=5, q=7. Then n=35, z=24.
              e=5 (so e, z relatively prime).
              d=29 (so ed-1 exactly divisible by z).
encrypting 8-bit messages. Assignment Project Exam Help
                   https://tutorcs.com
                                                 c = m^e \mod n
           bit pattern m m m weChat: cstutores
encrypt:
                                248832
decrypt:
```

RSA: another important property

The following property will be very useful later:

```
K (KAs(rig))mentr/Project Ekkin (He))

https://tutorcs.com

use public key first, use private key followed by first, followed by private key public key
```

result is the same!

Why is RSA secure?

- suppose you know Bob's public key (n,e). How hard is it to determine d?
- * essentially need to find factors of n without knowing the two factors p and q
 - fact: factoring a big number is hard

WeChat: cstutorcs

RSA in practice: session keys

- exponentiation in RSA is computationally intensive
- * DES is at least 100 times faster than RSA
- * use public key crypto to establish secure https://tutorcs.com connection, then establish second key symmetric session key establish secure connection then establish secure at the connection of the connectio

session key, K_S

- ❖ Bob and Alice use RSA to exchange a symmetric key K_S
- once both have K_S, they use symmetric key cryptography

Network Security: roadmap

- 8.1 What is network security?

- 8.4 Authentication https://tutorcs.com
- 8.5 Securing email WeChat: cstutorcs

Authentication

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap 1.0: Alice says "I am Alice" Help

https://tutorcs.com

Failure scenario??

Note: In some applications, both end points may need to authenticate each other

Authentication

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap 1.0: Alice says "I am Alice" Help

https://tutorcs.com

in a network,
Bob can not "see" Alice,
so Trudy simply declares
herself to be Alice

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Assignment Project Exam Help

Failure scenario??

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Assignment Project Exam Help

https://tutorcs.com

Trudy can create
a packet
"spoofing"
Alice's address

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Assignment Project Exam Help

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Assignment Project Exam Help

Protocol ap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Assignment Project Exam Help

Failure scenario??

Protocol ap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Assignment Project Exam Help

record and playback still works!

Goal: avoid playback attack

nonce: number (R) used only once-in-a-lifetime

ap4.0: to prove Alice "live", Bob sends Alice nonce, R. Alice must ignife, Projected with shared secret key

Authentication: ap5.0

ap4.0 requires shared symmetric key

can we authenticate using public key techniques?

ap5.0: use nonce, public key cryptography Assignment Project Exam Help

ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

difficult to detect: cstutorcs

- Bob receives everything that Alice sends, and vice versa. (e.g., so Bob, Alice can meet one week later and recall conversation!)
- problem is that Trudy receives all messages as well!

Network Security: roadmap

- 8.1 What is network security?

- 8.4 Authentication https://tutorcs.com
- 8.5 Securing email WeChat: cstutorcs

Confidentiality vs Integrity

- Confidentiality: message private and secret
- Integrity: protection against message tampering
- * Encryption Asking may Proteguarante Himpegrity
 - Attacker can modify message under encryption https://tutorcs.com
 without learning what it is
- * Public Key Crypto Standard (PKCS)
 - "RSA encryption is intended primarily to provide confidentiality It is not intended to provide integrity"
- Both confidentiality and integrity are needed for security

Digital signatures

cryptographic technique analogous to hand-written signatures:

- * sender (Bob) eigitally signs document, establishing he is document owner/quates.com
- * verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

Digital signatures

simple digital signature for message m:

❖ Bob signs m by encrypting with his private key K_B, creating "signed" message, K_B(m) Assignment Project Exam Help

Digital signatures

- * suppose Alice receives msg m, with signature: m, $K_B(m)$
- Alice verifies m signed by Bob by applying Bob's public key K_B^+ to K_B^- (m) then checks K_B^+ (K_B^- (m)) = m.
- * If K_B(K_B(m) signment Project Fxam Helpave used Bob's private key. https://tutorcs.com

Alice thus verifies that: cstutorcs

- ✓ Bob signed m
- √ no one else signed m
- ✓ Bob signed m and not m'

non-repudiation:

✓ Alice can take m, and signature $K_B(m)$ to court and prove that Bob signed m

Message digests

computationally expensive to public-key-encrypt long messages Assignment Project Exam Help

goal: fixed-length, easy-to-tutores. Hash function properties: compute digital many-to-l

"fingerprint" WeChat: cstutorcs produces fixed-size msg

apply hash function H to m, get fixed size message digest, H(m).

digest (fingerprint)

large

message

m

given message digest x, computationally infeasible to find m such that x = H(m)

H: Hash

Function

H(m)

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:

- ✓ produces fixed length digest (16-bit sum) of message
- √ is many-to-one

Assignment Project Exam Help

But given message with given hash value, it is easy to find another message with samethash/tutorcs.com

<u>message</u>	ASCII format	cstutorcs message	ASCII format
I O U 1	49 4F 55 31	I O U <u>9</u>	49 4F 55 <u>39</u>
00.9	30 30 2E 39	00. <u>1</u>	30 30 2E <u>31</u>
9 B O B	39 42 D2 42	9 B O B	39 42 D2 42
	B2 C1 D2 AC — (different messages	B2 C1 D2 AC
	but identical checksums!		

Hash function algorithms

- MD5 hash function widely used (RFC 1321)
 - computes 128-bit message digest in 4-step process.
 - arbitrary 128 hitstring to jappears difficult to construct msg m whose MD5 hash is equal to x
- * SHA-I is also used https://tutorcs.com
 - US standard WAST, FAIPS PETRI 1/80CF]
 - I 60-bit message digest
- SHA-2 and SHA-3 (recent standard) are better security

Digital signature = signed message digest

 $K_B(H(m))$

Bob sends digitally signed Alice verifies signature, integrity message: of digitally signed message: large H: Hash message encrypted ent Project Exam Help function m msg digest $K_{B}^{-}(H(m))$ tpsigitautores.comarge signature private message Bob's digital (encrypt) cstutores m public signature key (decrypt) H: Hash encrypted function msg digest

H(m)

equal

H(m)

Message Authentication Code (MAC)

Digital signatures use asymmetric key crypto MAC allows a way to sign a message but using symmetric key Requires a shared secret key Examples: UMAC-VMAC, SipHash, Poly1305-AES

Recall: ap5.0 security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

Public-key certification

- motivation: Trudy plays pizza prank on Bob
 - Trudy creates e-mail order: Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank you, Bob Project Exam Help
 - Trudy signs onderswithther private key

 - Trudy sends order to Pizza Store
 WeChat: cstutorcs
 Trudy sends to Pizza Store her public key, but says it's Bob's public key
 - Pizza Store verifies signature; then delivers four pepperoni pizzas to Bob
 - Bob doesn't even like pepperoni

Certification authorities

- * certification authority (CA): binds public key to particular entity, E.
- E (person, router) registers its public key with CA.
 E provides proof of identity to CA.

 - CA creates certificate binding E to its public key.
 - certificate containing E's public key digitally signed by CA CA says "this is E's welcker" cstutorcs

Certification authorities

- when Alice wants Bob's public key:
 - gets Bob's certificate (Bob or elsewhere).
 - apply CA's public key to Bob's certificate, get Bob's public keyssignment Project Exam Help

A certificate contains:

- Serial number (unique to issuer)
- info about certificate owner, including algorithm and key value itself (not shown)

info about certificate issuer valid dates digital signature by issuer

Certificates: summary

- Primary standard X.509 (RFC 2459)
- Certificate contains:
 - Issuer namesignment Project Exam Help
 - Entity name, address, tdomain name, etc.

 - Entity's public key.
 WeChat: cstutorcs
 Digital signature (signed with issuer's private key)
- Public-Key Infrastructure (PKI)
 - Certificates and certification authorities
 - Often considered "heavy"

Quiz

- Suppose Bob wants to send Alice a digital signature for the message m. To create the digital signature
 - a) Bob applies a hash function to m and encrypts the result with historiest Exam Help result with historiest Exam Help and encrypts the
 - b) Bob applies a hash function to m and encrypts the result with Alice's public key
 - c) Bob encrypts m with his private key and then applies a hash function to the result
 - d) Bob applies a hash function to m and encrypts the result with his public key

Answer: A

*Suppose a CA creates Bob's certificate, which binds Bob's public key to Bob. This certificate is signed with Exam Help

https://tutorcs.comAnswer: C

- a) Bob's private key WeChat: cstutorcs
- b) Bob's public key
- c) The CA's private key
- d) The CA's public key
- e) Donald Trump's key

Network Security: roadmap

- 8.1 What is network security?

- 8.4 Authentication https://tutorcs.com
- 8.5 Securing e-mailWeChat: cstutorcs

Secure e-mail

❖ Alice wants to send confidential e-mail, m, to Bob.

Alice:

- generates random symmetric session key, K_S
- encrypts message with K_S (for efficiency)
- ❖ also encrypts K_S with Bob's public key
- \bullet sends both $K_S(m)$ and $K_B^+(K_S)$ to Bob

Secure e-mail

❖ Alice wants to send confidential e-mail, m, to Bob.

Bob:

- uses his private key to decrypt and recover K_S
- \bullet uses K_S to decrypt $K_S(m)$ to recover m

Secure e-mail (continued)

* Alice wants to provide sender authentication, message integrity

- Alice digitally signs message
- sends both message (in the clear) and digital signature

Secure e-mail (continued)

Alice wants to provide confidentiality, sender authentication, message integrity.

Alice uses three keys: her private key, Bob's public key, newly created symmetric key

Secure E-mail: PGP

- De-factor standard for email encryption
- On installation PGP creates public, private key pair
 - Public kex posted on user's webpage of placed in a public key server
 - Private key protected by password
- Option to digitally sign themessage, encrypt the message or both
- MD5 or SHA for message digest
- CAST, triple-DES or DEA for symmetric key encryption
- RSA for public key encryption

Secure E-mail: PGP

```
----BEGIN PGP SIGNED MESSAGE----
 Hash: SHA1
 Bob:
 Can I see you tonight?
 Passionately yours, Alice
 version: PGP for Sersonal Project Exam Help
 Charset: noconv
 yhHJRHhGJGhgg/12EhJtlo8gE/4vB3mgJbFEvZB9t6n7G6m5Gw2
 Figure 8.22 • A PGP signed message CStutorcs
----BEGIN PGP MESSAGE----
Version: PGP for Personal Privacy 5.0
u2R4d+/jKmn8Bc5+hgDsqAewsDfrGdszX68liKm5F6Gc4sDfcXyt
RfdS10juHgbcfDssWe7/K=lKhnMikLo0+1/BvcX4t==Ujk9PbcD4
Thdf2awQfgHbnmKlok8iy6gThlp
----END PGP MESSAGE
Figure 8.23 • A secret PGP message
```

Network Security: Conclusion

- What is security?
- Symmetric and Asymmetric cryptography
- Encryption Assignment Project Exam Help
- Authentication
 https://tutorcs.com
- Message Integrity
 WeChat: cstutorcs
 - Digital Signatures
 - MAC
- Secure E-mail
 - Putting it all together