Class Quiz 5

CMPSC 360

Kinner Parikh March 3, 2022

Question 5: For all real numbers x and y, if $x + y \ge 2$, then either $x \ge 1$ or $y \ge 1$

Proof:

Assume that $x, y \in \mathbb{R}$

For sake of proof by contradiction, prove that if $x+y\geq 2$, then x<1 and y<1 Assume for the sake of argument that the maximum value of x and y is 1.

So, x + y = 2.

However, applying the bounding rules, we know that x + y < 2.

We have arrived at a contradiction.

Therefore, for all real numbers x and y, if $x + y \ge 2$, then either $x \ge 1$ or $y \ge 1$.

Question 6: A relation \mathbb{R} is defined on integers as follows: $\forall a, b \in \mathbb{Z}, a \mathbb{R}$ $b \leftrightarrow 3 \mid (a^2 - b^2)$. Determine if R is an equivalence relation.

```
Proof:
```

Assume that $\forall a, b \in \mathbb{Z} \ 3 \mid (a^2 - b^2)$

By definition of divides, $a^2 - b^2 = 3t$ for some $t \in \mathbb{Z}$

An equivalence relation must be reflexive, symmetric, and transitive

Case 1: Reflexive

Assume that b = a

So,
$$a^2 - b^2 = a^2 - a^2$$
 plugging in a for b
= 0 Subtraction

This means that 0 = 3t. This statement is true.

Therefore, this relation is reflexive.

Case 2: Symmetric

Suppose $a^2 - b^2 = 3t$ for some (a, b)

To prove symmetry, take the case (b, a)

So,
$$3 | b^2 - a^2$$

By definition of divides $b^2 - a^2 = 3k$ for some $k \in \mathbb{Z}$

Rearranging, $-(a^2 - b^2) = 3k$ for some $k \in \mathbb{Z}$

So, k = -t. Therefore, the relation is valid for (a, b) and (b, a)

Therefore, the relation is symmetric.

Case 3: Transitive

Proof for transitivity: $\exists a, b, c \ (a, b), (b, c) \in \mathbb{R} \to (a, c) \in \mathbb{R}$

Suppose $x, y, z \in \mathbb{Z}$

We can say that $3 \mid (x^2 - y^2)$ and $3 \mid (y^2 - z^2)$

By definition of divides, $x^2 - y^2 = 3p$ and $y^2 - z^2 = 3q$ such that $p, q \in \mathbb{Z}$

By algebra, $x^2 = 3p + y^2$ and $z = y^2 - 3q$ So for the case (x, z) we get $3 \mid (x^2 - z^2)$ $= 3 \mid (3p + y^2 - y^2 - 3q)$ $= 3 \mid (3p - 3q)$

$$= 3 \mid (3p + y^2 - y^2 - 3q)$$

= 3 | 3(p-q)

 $= 3 \mid 3t \text{ such that } t \in \mathbb{Z} \text{ where } t = p - q$

So, by definition of divides, we know that this is divisible by 3.

Therefore, the relation is transitive.

Since the relation is reflexive, symmetric, and transitive, we know that R is an equivalence relation.