

Práctica #0

Fecha	@22 de agosto de 2025
Clases y Cursos	ComputaciónDistribuida
Tipo de Evaluación	Práctica de Laboratorio
Estado	Completado
Dias Restantes	1 días

Alumno	No. Cuenta	Equipo
Paredes Zamudio Luis Daniel	318159926	#1
Reyna Méndez Cristian Ignacio	320149579	#2
Lopez Ramirez Juan Carlos	316186021	#3

Equipo #1

PopOS 22.04 LTS (NVMe), Linux Kernel 6.12.10, zsh 5.8.1, Ryzen 3 3200u, 12 GB RAM @ 2400 MT/scha

# Nodos	Tiempo 1era Ejecución	Tiempo 2nda Ejecución	Tiempo 3era Ejecución
1	691931 microsegundos	666577 microsegundos	715119 microsegundos
2	451162 microsegundos	448078 microsegundos	466256 microsegundos
3	467623 microsegundos	444738 microsegundos	430564 microsegundos
4	453448 microsegundos	434535 microsegundos	432415 microsegundos
6	505384 microsegundos	529392 microsegundos	635599 microsegundos
8	547931 microsegundos	541456 microsegundos	557191 microsegundos
10	567578 microsegundos	670724 microsegundos	593418 microsegundos
12	793871 microsegundos	880923 microsegundos	751408 microsegundos
15	795881 microsegundos	714449 microsegundos	716817 microsegundos
20	982758 microsegundos	918060 microsegundos	913020 microsegundos

Observaciones

- Existe una mejora de un ~34% al pasar de 1 a 2 nodos. Mejora el tiempo que tarda el proceso en terminar.
- Pero de 3 a 4 nodos, aunque aún se baja un poco en tiempo, la mejora ya no es tan elevada como antes.

Práctica #0

Lo que si se me hace curioso es que desde 6 hasta los 20 nodos todos los tiempos empeoran.
Por lo que busque, al usar --oversubscribe en la ejecución se permite lanzar más procesos que núcleos físicos disponibles. Esto explicaría la diferencia tan grande de tiempo entre 1 y los 20 nodos.

Equipo #2

Linux Mint 22.1 (NVMe), Kernel 6.x, zsh, Intel Core i5-6300U, 16 GB RAM

# Nodos	Tiempo 1era Ejecución	Tiempo 2nda Ejecución	Tiempo 3era Ejecución
1	6625602 microsegundos	6618374 microsegundos	6609027 microsegundos
2	6518120 microsegundos	6547085 microsegundos	6532102 microsegundos
3	6831210 microsegundos	6591936 microsegundos	6602057 microsegundos
4	6645805 microsegundos	6607337 microsegundos	6701003 microsegundos
6	6778007 microsegundos	7000738 microsegundos	6791363 microsegundos
8	6943486 microsegundos	6917043 microsegundos	6932502 microsegundos
10	7058982 microsegundos	7017032 microsegundos	7065460 microsegundos
12	7229758 microsegundos	7128873 microsegundos	7181910 microsegundos
15	7255069 microsegundos	7399721 microsegundos	7445067 microsegundos
20	7735498 microsegundos	8141539 microsegundos	7700587 microsegundos

Observaciones

- Se puede interpretar que mientras más grande es el número de nodos, más tiempo de ejecución es dado.
- Bajo estos resultados, se puede inferir que el número de operaciones (que básicamente son sumas), es bastante rápido de realizar aún con un solo nodo.
- Por lo tanto, podemos concluir que el incremento en el tiempo es debido a la comunicación entre nodos, el cuál incrementa el tiempo de ejecución más que la operación misma.

Equipo #3

Manjaro Linux (Plasma 6.1.5), Kernel 6.10.13, bash 5.2.37, Ryzen 7 3750H, 15 GB RAM @ 2400 MT/s, NVIDIA GTX 1660 Ti Mobile

# Nodos	Tiempo 1era Ejecución	Tiempo 2nda Ejecución	Tiempo 3era Ejecución
1	1322335 microsegundos	1325544 microsegundos	1329158 microsegundos
2	1248069 microsegundos	1244115 microsegundos	1265517 microsegundos
3	1230698 microsegundos	1214402 microsegundos	1229716 microsegundos
4	1227401 microsegundos	1213470 microsegundos	1216313 microsegundos
6	1218800 microsegundos	1212083 microsegundos	1220189 microsegundos
8	1235415 microsegundos	1229030 microsegundos	1226402 microsegundos

Práctica #0 2

# Nodos	Tiempo 1era Ejecución	Tiempo 2nda Ejecución	Tiempo 3era Ejecución
10	1270623 microsegundos	1272107 microsegundos	1272029 microsegundos
12	1280457 microsegundos	1283926 microsegundos	1298468 microsegundos
15	1336613 microsegundos	1336005 microsegundos	1319210 microsegundos
20	1422467 microsegundos	1440329 microsegundos	1438082 microsegundos

Observaciones

- De 1 a 4 nodos, los tiempos disminuyen
- A partir de 6 nodos los beneficios se reducen, el tiempo se mantiene estable
- De 10 en adelante usa más procesos que hilos disponibles lo que incrementa los tiempos

Práctica #0 3