Generative Models

- Generative Models
- **Task:** Given a dataset of images {X1,X2...} can we learn the distribution of X?
- Generative models are typically meant for modelling P(X).
- Often applications seek for models which we can sample from.
 - Models that can generate random examples that follow the distribution of P(X).

Taxonomy of Generative Models

Generative Models: GAN

• Remember that explicit form of P(X|z) is not needed with input z in the latent space (features).

 But it is difficult to map back to the latent variable given a desired form of an output (an image).

Reconstruction from latent space variable is difficult

• Prior to GAN, variational autoencoders (VAEs) were meant for explicit Modelling of P(X|z) with the given model parameters.

• $z \sim P(z)$, which can be sampled from Gaussian distribution.

$$P(X) = \int P(X|z;\theta)P(z)dz$$

Can we sample from a Gaussian Distribution to reconstruct the input?

VS.

Smile (discrete value)

Smile (probability distribution)

Source: https://www.jeremyjordan.me/variational-autoencoders/

- Maximum Likelihood --- Find the model parameters to maximize P(X), where X is the data.
- Approximate with samples of z

$$P(X) \approx \frac{1}{n} \sum_{i=0}^{n} P(X|z_i)$$

- So one requires large number of samples of z.
- For most of them $P(X|z) \approx 0$.
- Not practical computationally.

Approximate with samples of z: We want Accurate Reconstruction

Is it possible to know which z will generate P(X|z) >> 0?

• It amounts to learning a distribution Q(z), where $z \sim Q(z)$ generates P(X|z) >> 0.

Suppose we can learn a distribution Q(z), where z ~ Q(z) generates
P(X|z) >> 0.

- We want to learn P(X) such that $P(X) = E_{Z \sim P(Z)} P(X|Z)$
 - not so practical. Why?
- We will compute $E_{z\sim Q(z)}P(X|z)$ which is a more practical approach.

• How can we relate $E_{z\sim Q(z)}P(X|z)$ with P(X) ?

• To know the relation, we first define Kullback–Leibler (KL) Divergence also known as relative entropy (measure).

$$D(Q(z)||P(z|X)) = E_{z \sim Q(z)}[\log Q(z) - \log P(z|X)]$$

By Bayes rule

$$P(z|X) = \frac{P(X|z)P(z)}{P(X)}$$

Apply logarithm on both sides

$$\log P(z|X) = \log P(X|z) + \log P(z) - \log P(X)$$

By definition of KL divergence

$$D(Q(z)||P(z|X)) = E_{z\sim Q(z)}[\log Q(z) - \log P(z|X)]$$

• Substitute for $\log P(z|X)$ in the above expression.

$$\log P(z|X) = \log P(X|z) + \log P(z) - \log P(X)$$

KL divergence

$$D(Q(z)||P(z|X)) = E_{z \sim Q(z)}[\log Q(z) - \log P(X|z) - \log P(z) + \log P(X)]$$

• By the properties of expectation function

$$E_{z \sim Q(z)}[Y + constant] = E_{z \sim Q(z)}[Y] + constant$$

Therefore

$$D(Q(z) || P(z|X)) = E_{z \sim Q(z)} [\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$D(Q(z) || P(z|X)) = E_{z \sim Q(z)} [\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

Rearrange terms

$$\log P(X) - D(Q(z) || P(z|X)) = E_{z \sim Q(z)} [\log P(X|z)] - E_{z \sim Q(z)} [\log Q(z) - \log P(z)]$$

$$\log P(X) - D(Q(z) || P(z|X)) = E_{z \sim Q(z)} [\log P(X|z)] - D(Q(z) || P(z))$$

Lower Bound on Log Probability

- Recall we want to maximize P(X) with respect to model parameters.
- But we can not maximize P(X) as we have no control \mechanism to maximize this probability from the latent variables.
- Now we have

$$\log P(X) - D(Q(z) || P(z|X)) = E_{z \sim Q(z)} [\log P(X|z)] - D(Q(z) || P(z))$$

• KL divergence D in the above expression is always > 0. This means

$$\log P(X) > \log P(X) - D[Q(z) || P(z|X)].$$

• So we maximize the lower bound on $\log P(X)$.

Lower Bound on Log Probability

• Hence the problem boils down to maximizing the following expression (lower bound on $\log P(X)$)

$$E_{z \sim Q(z)}[\log P(X|z)] - D(Q(z)||P(z))$$

Remember the assumption that

"we can learn a distribution Q(z), where $z \sim Q(z)$ generates P(X|z) >> 0." How do we get Q(z)?

How to get Q(z)?

- Model Q(z|X) with a neural network.
- Assume Q(z|X) to be a Gaussian

$$N(\mu, c \cdot I)$$

- Neural network **outputs** the **mean** μ , and a diagonal covariance matrix $\mathbf{c} \cdot \mathbf{l}$.
- Input: Image
- Output: Distribution: Two vectors μ and c.
- Call Q(z|X) the 'Encoder'.

Variational Autoencoder – Loss Function

$$\log P(X) - D(Q(z) || P(z|X)) = E_{z \sim Q(z)} [\log P(X|z)] - D(Q(z) || P(z))$$

- Let us convert the lower bound to a loss function:
- Model P(X|z) with a neural network.
- Let f(z) be the network output.
- Assume X to be independent identically distributed random variable in a Gaussian distribution.
 - $X = f(z) + \eta$, where $\eta \sim N(0,I)$.
- Then the problem is reduced to minimizing the error of regression

$$||X - f(z)||^2$$

Call P(X|z) the Decoder.

Variational Autoencoder – Loss Function ...

• If $P(z) \sim N(0,1)$ then D[Q(z|X) || P(z)] has a closed form solution.

So the loss function can be viewed as

$$L = ||X - f(z)||^2 - \alpha D[Q(z|X) || P(z)]$$

- Note that the model is stochastically generating output which means that even for the same input, mean and standard deviations, the actual encoding may vary slightly on every single pass.
- This is due to random sampling from the encoder's output.

- If only $||X f(z)||^2$ is chosen for optimization on a dataset, it results in creation of distinct clusters for different image classes.
- Therefore, the decoder is not able to produce any variance from an input image, it learns to replicate the input, as in standard autoencoder.

- If only KL loss D[Q(z|X) || P(z)] is chosen for optimization, it results in encoded vectors that are densely placed near the center of the latent space
- The decoder is not able to infer properly due to denseness in the latent space with not much variation.

- Optimizing the two together helps in generation of a latent space which maintains the similarity of nearby encoded vectors by clustering them together.
- And is very dense near the latent space origin.
- So the decoder is able to learn enough about variances in encoded vectors.

 Training the Decoder is easy using the standard backpropagation.

 Training of encoder requires a better thinking. How to get the distribution?

Reparameterization

- How to effectively backpropagate through the z samples to the Encoder?
- Reparametrization Trick
- z ~ N(μ , σ) is equivalent to μ + σ · ϵ , where ϵ ~ N(0, 1)
- Once this is done, we can easily backpropagate the loss to the Encoder.

- Given a dataset of examples X = {X1, X2...}
- Initialize parameters for Encoder and Decoder
- Repeat till convergence:
- Take a random minibatch XM of M examples from X
- ε <-- Sample M noise vectors from N(0, I)
- Compute the loss $L(XM, \varepsilon, \theta)$ after a forward pass in the neural network.
- Use gradient descent on L to update Encoder and Decoder.

Testing

• To evaluate the performance of VAE on generating a new sample.

• Sample z $\sim N(0,I)$ and pass it through the Decoder.

 No role of encoder as the latent variable itself is passed through the decoder.

No good measure, relies on visual inspection.

VAE on MNIST Dataset

- As you see, distinct digits smoothly transform from one digit to another.
- This smooth transformation is useful when we want to interpolate between two observations, like a smiling face and a laughing face, a face without and with spectacles.

A Comprehensive Repository of Generative Model Codes

https://github.com/wiseodd/generative-models

VAE and GAN: Comparison

VAE and GAN: Comparison

Combined VAE + GAN

Results

VAE_{Disl}: Train a GAN first, then use the discriminator of GAN to train a VAE.

VAE/GAN: GAN and VAE trained together.

Acknowledgement

 Sincere thanks to Prof. S. Lazebnik and her team from Illinois University for permitting to use their course material for lecture slides.