Naïve Bayes Classification

Things We'd Like to Do

- Spam Classification
 - Given an email, predict whether it is spam or not
- Medical Diagnosis
 - Given a list of symptoms, predict whether a patient has disease X or not
- Weather
 - Based on temperature, humidity, etc... predict if it will rain tomorrow

- The relationship between attribute set and the class variable is non-deterministic.
- Even if the attributes are same, the class label may differ in training set even and hence can not be predicted with certainty.
- Reason: noisy data, certain other attributes are not included in the data.

- Example: Task of predicting whether a person is at risk for heart disease based on the person's diet and workout frequency.
- So need an approach to model probabilistic relationship between attribute set and the class variable.

Bayesian Classification

- Problem statement:
 - Given features $X_1, X_2, ..., X_n$
 - Predict a label Y

Another Application

Digit Recognition

- $X_1,...,X_n \in \{0,1\}$ (Black vs. White pixels)
- $Y \in \{5,6\}$ (predict whether a digit is a 5 or a 6)

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability: $P(C \mid A) = \frac{P(A,C)}{P(A)}$ $P(A \mid C) = \frac{P(A,C)}{P(C)}$

Bayes theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Example of Bayes Theorem

Given:

- A doctor knows that Cold causes fever 50% of the time
- Prior probability of any patient having cold is 1/50,000
- Prior probability of any patient having fever is 1/20
- If a patient has fever, what's the probability he/she has cold?

$$P(C \mid F) = \frac{P(F \mid C)P(C)}{P(F)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian Classifiers

Consider each attribute and class label as random variables

- Given a record with attributes (A₁, A₂,...,A_n)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes $P(C \mid A_1, A_2,...,A_n)$

 Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$
- How to estimate P(A₁, A₂, ..., A_n | C)?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j)... P(A_n | C_j)$
 - Can estimate $P(A_i | C_j)$ for all A_i and C_j .
 - New point is classified to C_j if $P(C_j)$ Π $P(A_i | C_j)$ is maximum.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class: $P(C) = N_c/N$

$$-$$
 e.g., $P(No) = 7/10$, $P(Yes) = 3/10$

• For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}|/N_C$$

- where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
- Examples:

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{-(A_{i}-\mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
```

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
    P(X|Class=No) = P(Refund=No|Class=No)
        × P(Married| Class=No)
        × P(Income=120K| Class=No)
        = 4/7 × 4/7 × 0.0072 = 0.0024
```

P(X|Class=Yes) = P(Refund=No| Class=Yes)
 × P(Married| Class=Yes)
 × P(Income=120K| Class=Yes)
 = 1 × 0 × 1.2 × 10⁻⁹ = 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)Therefore P(No|X) > P(Yes|X)=> Class = No

Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero

• Probability estimation: Original :
$$P(A_i | C) = \frac{N_{ic}}{N_c}$$

Laplace:
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate :
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

c: number of classes

p: prior probability

m: parameter

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals
$$P(A | M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

=> Mammals

Naïve Bayes (Summary)

Robust to isolated noise points

 Handle missing values by ignoring the instance during probability estimate calculations

Robust to irrelevant attributes

- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief
 Networks (BBN)

The Bayes Classifier

Use Bayes Rule!

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$
Normalization Constant

 Why did this help? Well, we think that we might be able to specify how features are "generated" by the class label

The Bayes Classifier

Let's expand this for our digit recognition task:

$$P(Y = 5|X_1, ..., X_n) = \frac{P(X_1, ..., X_n|Y = 5)P(Y = 5)}{P(X_1, ..., X_n|Y = 5)P(Y = 5) + P(X_1, ..., X_n|Y = 6)P(Y = 6)}$$

$$P(Y = 6|X_1, ..., X_n) = \frac{P(X_1, ..., X_n|Y = 6)P(Y = 6)}{P(X_1, ..., X_n|Y = 5)P(Y = 5) + P(X_1, ..., X_n|Y = 6)P(Y = 6)}$$

 To classify, we'll simply compute these two probabilities and predict based on which one is greater

Model Parameters

 For the Bayes classifier, we need to "learn" two functions, the likelihood and the prior

 How many parameters are required to specify the prior for our digit recognition example?

Model Parameters

- The problem with explicitly modeling $P(X_1,...,X_n|Y)$ is that there are usually way too many parameters:
 - We'll run out of space
 - We'll run out of time
 - And we'll need tons of training data (which is usually not available)

The Naïve Bayes Model

- The Naïve Bayes Assumption: Assume that all features are independent given the class label Y
- Equationally speaking:

$$P(X_1, ..., X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

(We will discuss the validity of this assumption later)

• Now that we've decided to use a Naïve Bayes classifier, we need to train it with some data:

- Training in Naïve Bayes is easy:
 - Estimate P(Y=v) as the fraction of records with Y=v

$$P(Y = v) = \frac{Count(Y = v)}{\# records}$$

- Estimate $P(X_i=u \mid Y=v)$ as the fraction of records with Y=v for which $X_i=u$

$$P(X_i = u | Y = v) = \frac{Count(X_i = u \land Y = v)}{Count(Y = v)}$$

- In practice, some of these counts can be zero
- Fix this by adding "virtual" counts:

$$P(X_i = u | Y = v) = \frac{Count(X_i = u \land Y = v) + 1}{Count(Y = v) + 2}$$

This is called Smoothing

 For binary digits, training amounts to averaging all of the training fives together and all of the training sixes together.

Naïve Bayes Classification

Another Example of the Naïve Bayes Classifier

The weather data, with counts and probabilities													
outlook			tem	perati	ure	hu	midity			windy		pl	ay
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny	2	3	hot	2	2	high	3	4	false	6	2	9	5
overcast	4	0	mild	4	2	normal	6	1	true	3	3		
rainy	3	2	cool	3	1								
sunny	2/9	3/5	hot	2/9	2/5	high	3/9	4/5	false	6/9	2/5	9/14	5/14
overcast	4/9	0/5	mild	4/9	2/5	normal	6/9	1/5	true	3/9	3/5		
rainy	3/9	2/5	cool	3/9	1/5								

		A new day		
outlook	temperature	humidity	windy	play
sunny	cool	high	true	?

Likelihood of yes

$$= \frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14} = 0.0053$$

Likelihood of no

$$= \frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14} = 0.0206$$

Therefore, the prediction is No

The Naive Bayes Classifier for Data Sets with Numerical Attribute Values

 One common practice to handle numerical attribute values is to assume normal distributions for numerical attributes.

The numeric weather data with summary statistics													
outlook			tem	perati	ıre	ł	humidity		windy			 play	
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny	2	3		83	85		86	85	false	6	2	9	5
overcast	4	0		70	80		96	90	true	3	3		
rainy	3	2		68	65		80	70					
				64	72		65	95					
				69	71		70	91					
				75			80						
				75			70						
				72			90						
				81			75						
sunny	2/9	3/5	mean	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/14
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5		
rainy	3/9	2/5											

• Let $x_1, x_2, ..., x_n$ be the values of a numerical attribute in the training data set.

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$f(w) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(w-\mu)^2}{\sigma^2}}$$

For examples,

$$f(\text{temperature} = 66 | \text{Yes}) = \frac{1}{\sqrt{2\pi}(6.2)} e^{-\frac{(66-73)^2}{2(6.2)^2}} = 0.0340$$

• Likelihood of Yes =
$$\frac{2}{9} \times 0.0340 \times 0.0221 \times \frac{3}{9} \times \frac{9}{14} = 0.000036$$

• Likelihood of No =
$$\frac{3}{5} \times 0.0291 \times 0.038 \times \frac{3}{5} \times \frac{5}{14} = 0.000136$$

Outputting Probabilities

- What's nice about Naïve Bayes (and generative models in general) is that it returns probabilities
 - These probabilities can tell us how confident the algorithm is
 - So... don't throw away those probabilities!

Recap

- We defined a *Bayes classifier* but saw that it's intractable to compute $P(X_1,...,X_n | Y)$
- We then used the Naïve Bayes assumption that everything is independent given the class label Y

 A natural question: is there some happy compromise where we only assume that some features are conditionally independent?

Conclusions

- Naïve Bayes is:
 - Really easy to implement and often works well
 - Often a good first thing to try
 - Commonly used as a "punching bag" for smarter algorithms