

Tutorial 8: Evaluation

Decision Sciences & Systems (DSS)

Department of Informatics

TU München

Agenda

- Bias-Variance Tradeoff
- Evaluation of classifiers
 - Evaluation on training set
 - Holdout
 - Cross-Validation
- Metrics for classifiers
 - Confusion matrix
 - Gain Curves
 - Lift Curves
 - ROC Curves

Bias-Variance Tradeoff

Root mean squared error

Evaluation - "How good is your model on new data?"

The model classifies an instance, of which the class is already known.

Then, *compare* model's prediction *to actual class*.

Which Instances to use for testing?

Instances with known class can be used for training and testing

Competition for classified instances: training vs. testing

Evaluation using training sets

Using training data also for evaluation:

- Overfitting
- Evaluation is too optimistic, the actual error rate is way higher

Holdout

Holding out certain instances for evaluation, not for training:

- Reduces the number of training instances
- Composition (e.g. distribution of the classes) influences results

Solution: Stratified holdout

- More reliable results using stratification
- Some instances may never be used for training/testing

k-fold Cross-Validation

- Partition the data set into k complementary subsets
- Train on k-1 subsets, test on 1 subset
- Every subset is used k-1 times for training and 1 time for testing
- Stratification of subsets is possible

Leave One Out Validation

- k-fold cross validation with k = N, where N is the number of training instances
- Deterministic, a lot of time required for computing
- Extreme class distribution of test data
- Example: N = 5000
 each of which is used 4999 times for training and 1 time for testing
 5000 models need to be trained

Statistical tests - t-test

Results of a validation may be considered as random chance

· Only significant difference between classifiers is interesting

A paired t-test checks whether mean accuracy of two classifiers are significantly different

- H_0 : d = 0
- $H_1: d \neq 0$ (depend on question)

$$\overline{d} = \frac{1}{k} \sum_{i=1}^{k} d_i \qquad s_d = \sqrt{\frac{1}{k-1} \sum_{i} (d_i - \overline{d})^2} \qquad t = \frac{d}{s_d / \sqrt{k}} \sim t_{k-1}$$

Confusion Matrix

Result of an evaluation containing

- the true class
- the class predicted by the classifier

True Class	Predicted Class
1	1
1	0
0	1
0	0

True Positive False Negative False Positive True Negative

Confusion Matrix

		Predicted Class	
		Positive	Negative
Positive	True Positive	False Negative	
True Class	Negative	False Positive	True Negative

Predicting Probabilities

Classifiers can predict probabilities instead of classes

- A probability is assigned to every class
- Classify using a cutoff
- Helpful in case errors have different impacts (costs)
 - Minimize cost by selecting a suitable cutoff-value

Example:

- The cost of FN is 5 times the cost of FP
- Adjust the classifier to predict positive rather than negative
- Decrease the cutoff-value

		Predicted Class	
		Positive	Negative
True	Positive	0	5
Class	Negative	1	0

Predicting Probabilities

The probability of a positive class is displayed, instead of the predicted class (cutoff-value=0.5)

True Class	Predicted Class
0	0
0	1
1	1
1	0
0	0
1	0
0	0
1	1
0	1
1	0

True Class	Predicted Class	Probability
0	0	0.34
0	1	0.56
1	1	0.63
1	0	0.45
0	0	0.47
1	0	0.17
0	0	0.26
1	1	0.89
0	1	0.52
1	0	0.43

Predicting Probabilities

Sort by probability:

True Class	Probability
+	0.89
+	0.63
-	0.56
_	0.52
-	0.47
+	0.45
+	0.43
-	0.34
-	0.26
+	0.17

Gain Curve

To visualize results of different cutoffs

- Instances are sorted by probability (descending)
- x-axis: percentage of the data set (or number of instances)
- y-axis: percentage (or number) of positive instances in the fraction (subsample)

Lift Curve

Displays the factor between the classifier and random value for every part of the gain curve

x-axis: percentage of the data set (or number of instances)

ROC Curve

Displays the ratio of False Positive Rate and True Positive Rate

False Positive Rate

Agenda

- Bias-Variance Tradeoff
- Evaluation of classifiers
 - Evaluation on training set
 - Holdout
 - Cross-Validation
- Metrics for classifiers
 - Confusion matrix
 - Gain Curves
 - Lift Curves
 - ROC Curves