Chapter 6

POWER-FACTOR-CORRECTION (PFC) CIRCUITS AND DESIGNING THE FEEDBACK CONTROLLER

6-1	Introduction
6-2	Single-Phase PFCs
6-3	Control of PFCs
6-4	Designing the Inner Average-Current-Control Loop
6-5	Designing the Outer Voltage Loop
6-6	Example of Single-Phase PFC Systems
6-7	Simulation Results
6-8	Feedforward of the Input Voltage
	References
	Problems

Implementation of PFC

☐ Use a boost dc-dc converter to shape the rectified current

Figure 6-1 PFC circuit and waveforms.

Figure 6-2 Average model and waveforms.

Figure 6-2 Average model and waveforms.

$$d(t)=1-\frac{\hat{V}_{s}\left|\sin(\omega t)\right|}{V_{o}}$$

$$\overline{i}_{d}=\underbrace{\frac{1}{2}\frac{\hat{V}_{s}}{V_{d}}\hat{I}_{L}}_{I_{d}}-\underbrace{\frac{1}{2}\frac{\hat{V}_{s}}{V_{d}}\hat{I}_{L}\cos 2\omega t}_{i_{d2}(t)}$$

Figure 6-3 Current division in the output stage.

$$v_{d2} = -\frac{1}{\omega C} \frac{\hat{I}_L}{2} \frac{\hat{V}_s}{V_d} \int \cos 2\omega t \cdot d(\omega t) = -\left(\frac{\hat{I}_L \hat{V}_s}{4\omega C V_d}\right) \sin 2\omega t$$

$$\hat{V}_{d2} = \frac{I_L}{4\omega C} \frac{V_s}{V_d}$$
© Ned Mohan, 2003

CONTROL OF PFCs

Figure 6-4 PFC control loops.

DESIGNING INNER AVERAGE-CURRENT-CONTROL LOOP

Figure 6-5 PFC current loop.

PWM-IC:
$$\frac{d(s)}{\tilde{v}_c(s)} = \frac{1}{\hat{V}_r}$$

Power-Stage:
$$\frac{\tilde{i}_L(s)}{\tilde{d}(s)} = \frac{V_d}{sL_d}$$

Controller:
$$G_i(s) = \frac{k_c}{s} \frac{1 + s/\omega_z}{1 + s/\omega_p}$$

$$K_{boost} = \tan(45^o + \frac{\phi_{boost}}{2})^{\text{phase boost}}$$

$$f_z = \frac{f_{ci}}{K_{boost}}$$
 $f_p = K_{boost} f_{ci}$ $k_c = \omega_z |G_C(s)|_{f_c}$

DESIGNING THE OUTER VOLTAGE LOOP

$$G_{v}(s) = \frac{k_{v}}{1 + s / \omega_{cv}}$$

Figure 6-6 Voltage control loop.

$$\left| \frac{k_v}{1 + s / \omega_{cv}} \frac{1}{2} \frac{\hat{V}_s}{V_d} \frac{R}{1 + sRC} \right|_{s = j\omega_{cv}} = 1$$

$$\frac{k_{v}}{1+s/\omega} = \frac{\hat{I}_{L2}}{\hat{V}_{d2}}$$
So Ned Wholk aff. \$\times 2003\$

EXAMPLE OF SINGLE-PHASE PFC SYSTEMS

Table 6-1
Parameters and Operating Values

Nominal input ac source voltage, $V_{s,rms}$	120 <i>V</i>
Line frequency, f	60 Hz
Output Voltage, V_d	250V (dc)
Maximum Power Output	250W
Switching Frequency, f_s	100 <i>kHz</i>
Output Filter capacitor, C	$220\mu F$
ESR of the Capacitor, r	$100m\Omega$
Inductor, L_d	1 <i>mH</i>
Full-Load Equivalent Resistance, R	250Ω

Design of the Current Loop

$$\hat{V}_r = 1 \qquad \phi_{PM} = 60^0 \qquad \omega_{ci} = 2\pi \times 10^4$$

$$G_i(s) = \frac{k_c}{s} \frac{1 + s/\omega_z}{1 + s/\omega_p}$$

$$\phi_{phase boost}$$

$$k_c = 4212$$

$$\omega_z = 1.68 \times 10^4 \, rad \, / s$$

 $\omega_p = 2.34 \times 10^5 \, rad \, / \, s$

DESIGNING THE OUTER VOLTAGE LOOP

$$G_{v}(s) = \frac{k_{v}}{1 + s / \omega_{cv}}$$

In this example at full-load, the plant transfer function given by Eq. 6-15 has a pole at the frequency of 18.18 rad/s (2.89 Hz). At full-load, $\hat{I}_L = 2.946\,A$, and in Eq. 6-8, $\hat{V}_{d2} = 6.029\,V$. Based on the previous discussion, the second-harmonic component is limited to 1.5 percent of \hat{I}_L , such that $\hat{I}_{L2} = 0.0442\,A$. Using these values, from Eq. 6-17 and 6-18, the parameters in the voltage controller transfer function of Eq. 6-16 are as follows: $k_v = 0.0722$, and $\omega_{cv} = 76.634\,rad\,/s$ (12.2 Hz).

$$G_{v}(s) = \frac{k_{v}}{1 + s / \omega_{cv}}$$

Figure 6-7 Op-amp circuit to implement transfer function $G_{\nu}(s)$.

$$R_1 = 100 k\Omega$$

$$R_2 = 7.2 k\Omega$$

$$C_1 = 1.8 \mu F$$

PSpice Modeling: C:\FirstCourse_PE_Book03\pfc__Avg_opm.sch

Simulation Results

FEEDFORWARD OF THE INPUT VOLTAGE

Figure 6-10 Feedforward of the input voltage.