problem statement

Title: Power Manager Telemetry

Subtitle: Efficient Power Management for 5G and Edge Computing

Team Name: Tech Giants

problem statement

Description

The deployment of devices across various locations has surged with the advent of 5G and edge computing, leading to increased power consumption. The government aims to achieve net-zero power consumption, pushing enterprises to optimize power usage.

Challenges

- Rising electricity costs necessitate an accurate understanding of the total power drawn by systems.
- Efficient power management is crucial to sustain the growth and deployment of new tecs

Unique Idea Brief

• Objective:

Develop a solution to monitor and collect telemetry data from key system components (CPU, memory, NIC, and TDP).

Approach:

Use python and the 'psutil' library to gather detailed power usage data.

Simulate system load to measure power utilization accurately.

Impact:

Provides insights for optimizing power consumption. Contributes to sustainability efforts by helping achieve net-zero power consumption.

Features Offered

Comprehensive Monitoring:

- •CPU Usage: Tracks the percentage of CPU utilization.
- •Memory Usage: Monitors the memory usage percentage.
- •NIC Usage: Measures the total bytes sent and received.
- •Disk I/O Usage: Collects data on read and write operations.
- •TDP Monitoring: Monitors temperatures across multiple thermal zones.

System Load Simulation:

Simulates varying levels of system load to achieve specific utilization targets, enabling accurate measurement of power consumption under different operational conditions.

Reporting:

Detailed Telemetry Data Collection:

Collects and logs comprehensive telemetry data from CPU, memory, NIC, disk I/O, and thermal design power (TDP) sensors, facilitating thorough analysis and optimization strategies.

Real-time Alerts:

Generates alerts based on predefined thresholds for CPU, memory, or network usage, allowing proactive management and immediate response to critical performance issues.

Processflow

Process Flow

Architecture Diagram

Technologies used

Programming Languages and Libraries:

Python: Main programming language used for scripting.psutil: Python library for retrieving information on system utilization (CPU, memory, disks, network, sensors).

Operating System:

Linux: Preferred OS for its extensive support for system monitoring and telemetry tools.

Containerization:

Kubernetes/Docker: Used for simulating system load using containers.

Team members and contribution:

Team members and contribution:

Team Leader : Dipak Jadhav

Contribution : Cloud Deployment

Team Leader: Shubham Gatthewar

contribution: Python Developer

Team Leader: Prathamesh Bembre

Contribution: Python Developer

Team Leader: Sahil Mukkawar

Contribution: Documentation and Research

Team Leader: Aditi Bandewar

contribution: Documentation and Research

Conclusion

• Summary:

- Highlighted the importance of efficient power management in the era of 5G and edge computing.
- Developed a comprehensive solution to monitor and collect power telemetry data.

Outcomes:

- Successfully collected detailed telemetry data from CPU, memory, NIC, disk I/O, and TDP.
- Simulated system load to measure power utilization accurately.
- Generated reports providing insights for optimizing power consumption.

• Future Directions:

- Expand the monitoring scope to include additional system components.
- Integrate machine learning algorithms to predict and optimize power usage dynamically.
- Collaborate with industry partners to implement the solution at scale.