知识表示与推理 (KRR)

- 知识表示与推理概述
- 一阶逻辑 (谓词逻辑): 文法和语义
- 基于归结的推理过程

*Slides based on those of Hector Levesque and Sheila McIlraith

Intro to Al

What is KRR?

智能体所相信的命题的符号编码及其操作以生成智能体所相信的 但未显示表示的命题的表示

An example

- 显示表示的信念: GradStu(Ann), GradStu(Bob), $\forall x (GradStu(x) \rightarrow Student(x))$
- 隐式表示的信念: Student(Ann), Student(Bob), $\forall x (\neg Student(x) \rightarrow \neg GradStu(x))$

Why KRR?

我们需要知识来完成很多任务,如回答问题

Could a crocodile run a steeplechase?

[Levesque 88]

- Yes
- No

• steeplechase: 障碍赛跑

• 思考过程: 鳄鱼腿短,障碍高,因而答案是 No

Yet another example

考虑一个关于材料的问题

The large ball crashed right through the table because it was made of XYZZY. What was made of XYZZY?

- the large ball
- the table

假设你了解了关于 XYZZY 的一些事实:

- ① 它是 Dow 化学公司的产品。
- ② 它通常是白色的,但也有绿色和蓝色的。
- ◎ 它 98% 是空气,因此重量轻,浮力大
- 它最初是由一位瑞典发明家发现的。

在什么时候答案不再只是猜测?

Why KRR?

- KR 假设: 任何人工智能系统都是基于知识的
 - 人工智能在很大程度上涉及构建基于知识的系统
 - 有些, 在一定程度上, 例如, 游戏, 视觉等。
 - 有些, 在更小的程度上, 如语音, 运动控制等。
- 基于知识的系统: 具有有以下性质的结构的系统
 - 可以被解释为命题
 - 决定系统的行为

这样的结构被称为知识库 (knowledge base, KB)

Two examples

Example 1

```
printColour(snow) :- !, write("It's white.").
printColour(grass) :- !, write("It's green.").
printColour(sky) :- !, write("It's yellow.").
printColour(X) :- write("Beats me.").
```

Example 2

```
colour(snow,white).
colour(sky,yellow).
colour(X,Y) :- madeof(X,Z), colour(Z,Y).
madeof(grass,vegetation).
colour(vegetation,green).
```

基于知识的系统的优势

- 最适合开放式任务
- 可解释性和可扩展性
- 认知可渗透性, 即动作依赖于信念, 包括隐式表示的信念

Intro to Al

KRR and logic

Logic is the main tool for KRR, because logic studies

- How to formally represent agent's beliefs
- Given the explicitly represented beliefs, what are the implicitly represented beliefs

There are many kinds of logics. In this course, we will use first-order logic (FOL) as the tool for KRR

A blocks world example

- Given the scene, human can easily draw the conclusion "there is a green block directly on top of a non-green block"
- How can a machine do the same?

Formalization in FOL

- $S = \{On(a, b), On(b, c), Green(a), \neg Green(c)\}$
- $\alpha = \exists x \exists y [Green(x) \land \neg Green(y) \land On(x, y)]$
- S logically entails (逻辑蕴涵) α

An example

- Tony, Mike, and John belong to the Alpine Club.
- Every member of the Alpine Club who is not a skier is a mountain climber.
- Mountain climbers do not like rain, and anyone who does not like snow is not a skier.
- Mike dislikes whatever Tony likes, and likes whatever Tony dislikes.
- Tony likes rain and snow.
- Is there a member of the Alpine Club who is a mountain climber but not a skier?

An example (cont'd)

- Intelligence is needed to answer the question
- Can we make machines answer the question?
- A possible approach
 - First, translate the sentences and question into FOL formulas
 - This is semantic parsing, i.e., automaticly translate natural language sentences into formal expressions
 - Despite substantial research, semantic parsing remains challenging
 - Second, check if the formula of the question is logically entailed by the formulas of the sentences
 - We will show that there are ways to automate this step

Alphabet

- Individuals (constants or 0-ary functions):
 - tony, mike, john
 - rain, snow
- Types (unary predicates):
 - A(x) means that x belongs to Alpine Club
 - S(x) means that x is a skier
 - C(x) means that x is a mountain climber
- Relationships (binary predicates):
 - L(x, y) means that x likes y

Basic facts

- Tony, Mike, and John belong to the Alpine Club.
 A(tony), A(mike), A(john)
- Tony likes rain and snow.
 L(tony, rain), L(tony, snow)

Complex facts

 Every member of the Alpine Club who is not a skier is a mountain climber

$$\forall x (A(x) \land \neg S(x) \rightarrow C(x))$$

 Mountain climbers do not like rain, and anyone who does not like snow is not a skier.

$$\forall x (C(x) \to \neg L(x, rain)) \forall x (\neg L(x, snow) \to \neg S(x))$$

 Mike dislikes whatever Tony likes, and likes whatever Tony dislikes

$$\forall x (L(tony, x) \rightarrow \neg L(mike, x))$$
$$\forall x (\neg L(tony, x) \rightarrow L(mike, x))$$

 Is there a member of the Alpine Club who is a mountain climber but not a skier?

$$\exists x (A(x) \land C(x) \land \neg S(x))$$

Intro to Al

Outline

- 知识表示与推理概述
- 一阶逻辑 (谓词逻辑): 文法和语义
- 基于归结的推理过程

字母表 (Alphabet)

逻辑符号 (固定的含义和用法):

- 标点符号: (,),,,.
- 连接词 (Connectives) 和量词 (quantifiers): =,¬,∧,∨,∀,∃
- 变量 (Variables): $x, x_1, x_2, \dots, x', x'', \dots, y, \dots, z, \dots$

非逻辑符号 (含义和用法依赖于论域):

- 谓词 (Predicate) 符号
 - 维数 (arity): 参数的个数
 - 0 元谓词: 命题符号
- 函数 (Function) 符号
 - 0 元函数: 常量符号

A blocks world example

Language (Syntax)

- Constants: a,b,c,e
 - Functions:
 - No function
- Predicates:
 - on: binary
 - above: binary
 - clear: unary
 - ontable: unary

Terms (项)

- Every variable is a term
- If t_1, \ldots, t_n are terms and f is a function symbol of arity n, then $f(t_1, \ldots, t_n)$ is a term

Formulas

- If t_1, \ldots, t_n are terms and P is a predicate symbol of arity n, then $P(t_1, \ldots, t_n)$ is an atomic formula
- ullet If t_1 and t_2 are terms, then $(t_1=t_2)$ is an atomic formula
- If α and β are formulas, and ν is a variable, then $\neg \alpha, (\alpha \land \beta), (\alpha \lor \beta), \exists \nu.\alpha, \forall \nu.\alpha$ are formulas

Notation

- Occasionally add or omit (,)
- ullet Use [,] and $\{,\}$
- Abbreviation: $(\alpha \to \beta)$ for $(\neg \alpha \lor \beta)$
- Abbreviation: $(\alpha \leftrightarrow \beta)$ for $(\alpha \to \beta) \land (\beta \to \alpha)$
- Predicates: mixed case capitalized, e.g., Person, OlderThan
- Functions (and constants): mixed case uncapitalized, e.g., john, father,

Variable scope

- Free and bound occurrences of variables: An occurrence of variable x in A is bound if it is in a subformula of A of the form $\forall xB$ or $\exists xB$. Otherwise the occurrence is free.
- e.g., $P(x) \wedge \exists x [P(x) \vee Q(x)]$
- A sentence: formula with no free variables
- Substitution (代入): $\alpha[v/t]$ means α with all free occurrences of the v replaced by term t
- In general, $\alpha[v_1/t_1,\ldots,v_n/t_n]$

Interpretations

An interpretation (解释) is a pair $M = \langle D, I \rangle$

- D is the domain, can be any non-empty set
- I is a mapping from the set of predicate and function symbols
- If P is a predicate symbol of arity n, I(P) is an n-ary relation over D, i.e., $I(P) \subseteq D^n$
 - If p is a 0-ary predicate symbol, *i.e.*, a propositional symbol, $I(p) \in \{true, false\}$
- If f is a function symbol of arity n, I(f) is an n-ary function over D, i.e., $I(f):D^n\to D$
 - If c is a 0-ary function symbol, i.e., a constant symbol, $I(c) \in D$

Blocks world example

■ D =
$$\{\underline{A}, \underline{B}, \underline{C}, \underline{E}\}$$

$$\Phi(a) = \underline{A}, \Phi(b) = \underline{B}, \Phi(c) = \underline{C}, \Phi(e) = \underline{E}.$$

$$\Psi(on) = \{(\underline{A},\underline{B}),(\underline{B},\underline{C})\}$$

- Ψ(clear)={<u>A,E</u>}
- Ψ(ontable)={<u>C,E</u>}

Environment

Note: Φ and Ψ are I

Denotation (指称) of terms

- Terms denote elements of the domain
- \bullet A variable assignment μ is a mapping from the set of variables to the domain D
- $\bullet \|\mathbf{v}\|_{\mathbf{M},\mu} = \mu(\mathbf{v})$
- $||f(t_1,\ldots,t_n)||_{M,\mu} = I(f)(||t_1||_{M,\mu},\ldots,||t_n||_{M,\mu})$

Satisfaction: atomic formulas

 $M, \mu \models \alpha$ is read " M, μ satisfies (满足) α "

- $M, \mu \models P(t_1, \ldots, t_n)$ iff $\langle ||t_1||_{M,\mu}, \ldots, ||t_n||_{M,\mu} \rangle \in I(P)$
- $M, \mu \models (t_1 = t_2) \text{ iff } ||t_1||_{M,\mu} = ||t_2||_{M,\mu}$

Satisfaction: propositional connectives

- $M, \mu \models \neg \alpha \text{ iff } M, \mu \not\models \alpha$
- $M, \mu \models (\alpha \land \beta)$ iff $M, \mu \models \alpha$ and $M, \mu \models \beta$
- $\bullet \ \textit{M}, \mu \models (\alpha \vee \beta) \ \text{iff} \ \textit{M}, \mu \models \alpha \ \text{or} \ \textit{M}, \mu \models \beta$

Satisfaction: quantifiers

 $\mu[v\mapsto d]$ denotes a variable assignment just like $\mu,$ except that it maps v to d

- $M, \mu \models \exists v. \alpha \text{ iff for some } d \in D, M, \mu[v \mapsto d] \models \alpha$
- $M, \mu \models \forall v.\alpha$ iff for all $d \in D$, $M, \mu[v \mapsto d] \models \alpha$

Let α be a sentence. Then whether $M, \mu \models \alpha$ is independent of μ . Thus we simply write $M \models \alpha$

Blocks world example

- D = {<u>A</u>, <u>B</u>, <u>C</u>, <u>E</u>}
- $\Phi(a) = \underline{A}, \Phi(b) = \underline{B}, \Phi(c) = \underline{C}, \Phi(e) = \underline{E}.$
- $\Psi(\mathsf{on}) = \{(\underline{A},\underline{B}),(\underline{B},\underline{C})\}$
- Ψ(above) = {(<u>A,B</u>),(<u>B,C</u>),(<u>A,C</u>)}
- Ψ(clear)={<u>A,E</u>}
- Ψ(ontable)={<u>C,E</u>}

 $\forall X, Y. \text{ on}(X, Y) \rightarrow \text{above}(X, Y)$

 $\forall X,Y. above(X,Y) \rightarrow on(X,Y)$

Blocks world example

$$\Phi(a) = \underline{A}, \Phi(b) = \underline{B}, \Phi(c) = \underline{C}, \Phi(e) = \underline{E}.$$

■
$$\Psi$$
(on) = {(A,B),(B,C)}

- Ψ(clear)={<u>A,E</u>}
- Ψ(ontable)={<u>C,E</u>}

$\forall X \exists Y. (clear(X) \lor on(Y,X))$

- ✓ X=A
- √ X=C, Y=B
- ✓ ...

$\exists Y \forall X.(clear(X) \lor on(Y,X))$

- × Y=<u>A</u> ? No! (X=<u>C</u>)
 - × Y=<u>C</u>? No! (X=<u>B</u>)
- x Y=<u>E</u>? No! (X=<u>B</u>)
- \times Y= \underline{B} ? No! (X= \underline{B})

Satisfiability (可满足性)

- Let S be a set of sentences
- $M \models S$, read M satisfies S, if for every $\alpha \in M$, $M \models \alpha$
- If $M \models S$, we say M is a model of S
- We say that S is satisfiable if there is M s.t. $M \models S$, and
- e.g., is $\{\forall x(P(x) \rightarrow Q(x)), P(a), \neg Q(a)\}$ satisfiable?

Blocks world example

Logical entailment (逻辑蕴涵)

- $S \models \alpha$ iff for every M, if $M \models S$ then $M \models \alpha$
- $S \models \alpha$ is read: S entails α or α is a logical consequence (逻辑 推论) of S
- A special case: $\emptyset \models \alpha$, simply written $\models \alpha$, read " α is valid" (有效的)
- Note that $\{\alpha_1, \dots, \alpha_n\} \models \alpha$ iff $\alpha_1 \wedge \dots \wedge \alpha_n \to \alpha$ is valid iff $\alpha_1 \wedge \dots \wedge \alpha_n \wedge \neg \alpha$ is unsatisfiable
- Alpine Club example
 - \bullet Let KB be the set of sentences, and α be the question
 - We want to know if $KB \models \alpha$?

Blocks world example cont'd

- $S = \{On(a, b), On(b, c), Green(a), \neg Green(c)\}$
- $\alpha = \exists x \exists y [Green(x) \land \neg Green(y) \land On(x, y)]$
- We prove that $S \models \alpha$

Logical entailment: examples

- $\forall xA \lor \forall xB \models \forall x(A \lor B)$
- Does $\forall x(A \lor B) \models \forall xA \lor \forall xB$
- $\exists x(A \land B) \models \exists xA \land \exists xB$
- Does $\exists xA \land \exists xB \models \exists x(A \land B)$?
- $\exists y \forall x A \models \forall x \exists y A$
- Does $\forall x \exists y A \models \exists y \forall x A$?

The only way to prove that $KB \not\models \alpha$ is to give an interpretation satisfying KB but not α .

Alpine Club example cont'd

- Suppose that we had been told that Mike likes whatever Tony dislikes, but we had not been told that Mike dislikes whatever Tony likes.
- Can we still claim that there is a member of the Alpine Club who is a mountain climber but not a skier?
- No. We give an interpretation which satisfies the modified KB but not f as follows: Let $D = \{T, M, J, R, S\}$. Let I(tony) = T, I(mike) = M, I(john) = J, I(rain) = R, I(snow) = S. Let $I(A) = \{T, M, J\}, I(S) = \{T, M, J\}, I(C) = \emptyset, I(L) = \{(T, R), (T, S), (T, T), (M, M), (M, S), (M, J), (J, S)\}$.

Logical entailment and knowledge-based systems

- Start with KB representing explicit beliefs, usually what the agent has been told or has learned
- Implicit beliefs: $\{\alpha \mid \mathit{KB} \models \alpha\}$
- Actions depend on implicit beliefs, rather than explicit beliefs

Inference (推理) procedure

- ullet We want a mechanical procedure to check if $\mathit{KB} \models \alpha$
- Called an inference procedure
- Sound (合理的) if whenever it says yes, then $\mathit{KB} \models \alpha$
- Complete (完备的) if whenever $KB \models \alpha$, then it says yes

Inference rules commonly used by human

- 假言推理: $\phi \to \psi, \phi \models \psi$
- 假言三段论: $\phi \to \psi, \psi \to \eta \models \phi \to \eta$
- 析取三段论: φ ∨ ψ,¬φ ⊨ ψ
- 全称实例化: $\forall x P(x) \models P(c)$
- 全称一般化: $P(c) \models \exists x P(x)$
- ...

Resolution-based Inference procedure

- Resolution (归结) is a rule of inference
- Resolution-based inference procedure: refutation (反演)
- We begin with the propositional case
- Then proceed to the first-order case

Clausal form

- A literal (文字) is an atomic formula or its negation, e.g., $p, \neg p$
- A clause (子句) is a disjunction (析取) of literals, written as the set of literals
 - e.g., $p \lor \neg r \lor s$, written $(p, \neg r, s)$
- A special case: empty clause (), representing false
- A formula is a conjunction (合取) of clauses, written as the set of clauses

Resolution rule of inference

- From the two clauses $\{p\} \cup c_1$ and $\{\neg p\} \cup c_2$, infer the clause $c_1 \cup c_2$
- ullet $c_1 \cup c_2$ is called the resolvent of input clauses wrt the atom p
- e.g., (p) and $(\neg p)$ resolve to (), (w, r, q) and $(w, s, \neg r)$ resolve to (w, q, s) wrt r
- **Proposition.** $\{p\} \cup c_1, \{\neg p\} \cup c_2 \models c_1 \cup c_2$ Proof:

Derivation (推导)

A derivation of a clause c from a set S of clauses is a sequence c_1, c_2, \ldots, c_n of clauses, where $c_n = c$, and for each c_i , either

- $c_i \in S$, or
- c_i is a resolvent of two earlier clauses in the derivation

We write $S \vdash c$ if there is a derivation of c from S

Soundness of derivations

- **Theorem.** If $S \vdash c$, then $S \models c$ Proof:
 - Let c_1, c_2, \ldots, c_n be a derivation of c from S
 - We prove by induction on i that for all $1 \le i \le n$, $S \models c_i$.
- However, the converse does not hold in general e.g., $(p) \models (p,q)$, but $(p) \not\vdash (p,q)$

Soundness and completeness of refutations

Theorem. $S \vdash ()$ iff $S \models ()$ iff S is unsatisfiable We will not prove the completeness part

Resolution-based inference procedure: refutation

 $KB \models \alpha \text{ iff } KB \land \neg \alpha \text{ is unsatisfiable}$

Thus to check if $KB \models \alpha$,

- \bullet put KB and $\neg \alpha$ into clausal form to get S,
- check if $S \vdash ()$

Refutation example 1

KΒ

FirstGrade

FirstGrade ⊃ Child

Child ∧ Male ⊃ Boy

Kindergarten ⊃ Child

Child ∧ Female ⊃ Girl

Female

Show that KB |= Girl

Note \supset is another representation of \rightarrow

Refutation example 2

KΒ

 $\begin{aligned} &(Rain \lor Sun) \\ &(Sun \supset Mail) \\ &((Rain \lor Sleet) \ \supset \ Mail) \end{aligned}$

Show KB |= Mail

Similarly KB |≠ Rain

Can enumerate all resolvents given $\neg Rain$, and [] will not be generated

The first-order case

We need

- A way of converting KB and f (the query) into clausal form
- A way of doing resolution even when we have variables.
 This needs unification (合一)

Conversion to Clausal Form: 8 steps

- Eliminate Implications.
- 2 Move Negations inwards (and simplify $\neg\neg$).
- Standardize Variables.
- Skolemize.
- Convert to Prenex (前缀) Form.
- O Distribute disjunctions over conjunctions.
- Flatten nested conjunctions and disjunctions.
- Onvert to Clauses.

Skolemization

Consider $\exists y. Elephant(y) \land Friendly(y)$

- This asserts that there is some individual that is both an elephant and friendly.
- To remove the existential, we invent a name for this individual, say a. This is a new constant symbol not equal to any previous constant symbols: Elephant(a) ∧ Friendly(a)
- This is saying the same thing, since we do not know anything about the new constant a.
- It is essential that the introduced symbol *a* is new. Else we might say more than the existential formula.

Skolemization

Now consider $\forall x \exists y. Loves(x, y)$.

- This formula claims that for every x there is some y that x loves (perhaps a different y for each x).
- Replacing the existential by a new constant won't work:
 ∀x.Loves(x, a), because this asserts that there is a particular individual a loved by every x.
- To properly convert existential quantifiers scoped by universal quantifiers we must use functions not just constants.
- In this case x scopes y, so we must replace y by a function of x: $\forall x.Loves(x, g(x))$, where g is a new function symbol.
- This formula asserts that for every x there is some individual (given by g(x)) that x loves. g(x) can be different for each x.

Skolemization examples

- $\forall x, y, z \exists w. R(x, y, z, w) \Longrightarrow \forall x, y, z. R(x, y, z, h_1(x, y, z))$
- $\forall x, y \exists w. R(x, y, g(w)) \Longrightarrow \forall x, y. R(x, y, g(h_2(x, y)))$
- $\forall x, y \exists w \forall z. R(x, y, w) \land Q(z, w) \Longrightarrow \forall x, y, z. R(x, y, h_3(x, y)) \land Q(z, h_3(x, y))$

A conversion example

$$\forall x \{ P(x) \to [\forall y (P(y) \to P(f(x,y))) \land \neg \forall y (\neg Q(x,y) \land P(y))] \}$$

1. Eliminate implications using $A \rightarrow B \Leftrightarrow \neg A \lor B$

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land \neg \forall y (\neg Q(x,y) \land P(y))] \}$$

Move negations inwards

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land \neg \forall y (\neg Q(x,y) \land P(y))] \}$$

- 2. Move negations inwards using
 - $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$, $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
 - $\bullet \neg \exists x. A \Leftrightarrow \forall x. \neg A, \neg \forall x. A \Leftrightarrow \exists x. \neg A, \neg \neg A \Leftrightarrow A$

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land \exists y (Q(x,y) \lor \neg P(y))] \}$$

Y. Liu

Standardize Variables

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land \exists y (Q(x,y) \lor \neg P(y))] \}$$

3. Standardize Variables (Rename variables so that each quantified variable is unique)

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land \exists z (Q(x,z) \lor \neg P(z))] \}$$

Skolemize

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land \exists z (Q(x,z) \lor \neg P(z))] \}$$

4. Skolemize (Remove existential quantifiers by introducing new function symbols)

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \lor \neg P(g(x)))] \}$$

Convert to prenex form

$$\forall x \{ \neg P(x) \lor [\forall y (\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \lor \neg P(g(x)))] \}$$

5. Convert to prenex form. (Bring all quantifiers to the front – only universals, each with different name)

$$\forall x \forall y \{ \neg P(x) \lor [(\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \lor \neg P(g(x)))] \}$$

注意:教材中先求前束范式再 Skolem 化,这样引入的函数可能 更复杂,比如这里是 g(x,y)

Intro to Al

Disjunctions over conjunctions

$$\forall x \forall y \{\neg P(x) \lor [(\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \lor \neg P(g(x)))]\}$$

6. Disjunctions over conjunctions using

$$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$$

$$\forall x \forall y \{ (\neg P(x) \lor \neg P(y) \lor P(f(x,y))) \land (\neg P(x) \lor Q(x,g(x)) \lor \neg P(g(x))) \}$$

Convert to Clauses

$$\forall x \forall y \{ (\neg P(x) \lor \neg P(y) \lor P(f(x,y))) \land (\neg P(x) \lor Q(x,g(x)) \lor \neg P(g(x))) \}$$

8. Convert to Clauses (remove quantifiers and break apart conjunctions).

a)
$$\neg P(x) \lor \neg P(y) \lor P(f(x, y))$$

b)
$$\neg P(x) \lor Q(x, g(x)) \lor \neg P(g(x))$$

Unification

- Can the clauses (P(john), Q(fred), R(x)) and $(\neg P(y), R(susan), R(y))$ be resolved?
- Once reduced to clausal form, all remaining variables are universally quantified.
 (P(john), Q(fred), R(john)), (P(john), Q(fred), R(fred)), ...
- So there is a specialization of (P(john), Q(fred), R(x)) that can be resolved with a specialization of $(\neg P(y), R(susan), R(y))$
- In particular, (P(john), Q(fred), R(john)) can be resolved with $(\neg P(john), R(susan), R(john))$, producing (Q(fred), R(john), R(susan))

Unification

- We want to be able to match conflicting literals, even when they have variables.
- This matching process automatically determines whether or not there is a specialization that matches.
- But, we don't want to over specialize!

Unification

- Consider $(\neg P(x), S(x), Q(fred))$ and (P(y), R(y))
- We need to unify P(x) and P(y). How do we do this?
- Possible resolvants:
 - $(S(john), Q(fred), R(john))\{x = john, y = john\}$
 - $(S(sally), Q(fred), R(sally))\{x = sally, y = sally\}$
 - $(S(x), Q(fred), R(x))\{y = x\}$
- The last resolvant is most-general, the other two are specializations. We want the most general clause for use in future resolution steps.
- To define the most-general unifier, we need to define substitutions.

Substitution (置换)

- A key component of unification is substitution.
- A substitution is a finite set of equations of the form V = t where V is a variable and t is a term not containing V. (t might contain other variables).
- We can apply a substitution $\sigma = \{V_1 = t_1, \dots, V_n = t_n\}$ to a formula f to obtain a new formula $f\sigma$ by simultaneously replacing every variable V_i by term t_i .
- e.g., $P(x, g(y, z))\{x = y, y = f(a)\} \Longrightarrow P(y, g(f(a), z))$
- Note that the substitutions are not applied sequentially, *i.e.*, the first y is not subsequently replaced by f(a).

Composition of substitutions (置换的复合)

- We can compose two substitutions θ and σ to obtain a new substitution $\theta\sigma$
- Let $\theta = \{x_1 = s_1, x_2 = s_2, \dots, x_m = s_m\},\$ $\sigma = \{y_1 = t_1, y_2 = t_2, \dots, y_k = t_k\}$
- Step 1. Get $S = \{x_1 = s_1 \sigma, x_2 = s_2 \sigma, \dots, x_m = s_m \sigma, y_1 = t_1, y_2 = t_2, \dots, y_k = t_k\}$
- Step 2. Delete any identities, *i.e.*, equations of the form V = V.
- Step 3. Delete any equation $y_i = s_i$ where y_i is equal to one of the x_j in θ . Because $y_i = s_i$ is overridden

Composition example

- Let $\theta = \{x = f(y), y = z\}$, $\sigma = \{x = a, y = b, z = y\}$
- Step 1. Get $S = \{x = f(b), y = y, x = a, y = b, z = y\}$
- Step 2. Delete y = y.
- Step 3. Delete x = a.
- The result is $S = \{x = f(b), y = b, z = y\}$

Note on substitutions

- The empty substitution $\epsilon = \{\}$ is also a substitution, and we have $\theta \epsilon = \theta$.
- More importantly, substitutions when applied to formulas are associative (结合的): $(f\theta)\sigma = f(\theta\sigma)$
- Composition is simply a way of converting the sequential application of a series of substitutions to a single substitution.

Unifiers

- A unifier (合一项) of two formulas f and g is a substitution σ that makes f and g syntactically identical.
- Note that not all formulas can be unified substitutions only affect variables.
- e.g., P(f(x), a) and P(y, f(w)) cannot be unified, as there is no way of making a = f(w) with a substitution.

MGU

A substitution σ of two formulas f and g is a Most General Unifier (MGU) if

- \bullet σ is a unifier.
- For every other unifier θ of f and g there must exist a third substitution λ such that $\theta = \sigma \lambda$.

This says that every other unifier is "more specialized" than σ .

The MGU of a pair of formulas f and g is unique up to renaming.

MGU example

- P(f(x), z) and P(y, a)
- $\sigma = \{y = f(a), x = a, z = a\}$ is a unifier, but not an MGU
- $\theta = \{y = f(x), z = a\}$ is an MGU
- $\sigma = \theta \lambda$, where $\lambda = \{x = a\}$

Computing MGUs

- The MGU is the "least specialized" way of making atomic formulas with variables match.
- We can compute MGUs.
- Intuitively we line up (对齐) the two formulas and find the first sub-expression where they disagree.
- The pair of subexpressions where they first disagree is called the disagreement set (差异集).
- The algorithm works by successively fixing disagreement sets (逐项修正差异集) until the two formulas become syntactically identical.

Computing MGUs

Given two atomic formulas f and g

- **1** $\sigma = \{\}; S = \{f, g\}$
- ② If S contains an identical pair of formulas, stop and return σ as the MGU of f and g.
- **3** Else find the disagreement set $D = \{e_1, e_2\}$ of S
- If $e_1 = V$ a variable, and $e_2 = t$ a term not containing V (or vice-versa) then let $\sigma = \sigma\{V = t\}$; $S = S\{V = t\}$; Goto 2
- \odot Else stop, f and g cannot be unified.

Note: to update σ , we must compose σ with $\{V=t\}$. A common error is to just add V=t to σ .

Computing MGU examples

- **1** P(f(a), g(x)) and P(y, y): un-unifiable
- ② P(a, x, h(g(z))) and P(z, h(y), h(y))MGU: $\{z = a, x = h(g(a)), y = g(a)\}$
- **3** P(x, x) and P(y, f(y)): un-unifiable

First-order Resolution

From the two clauses $\{\rho_1\} \cup c_1$ and $\{\neg \rho_2\} \cup c_2$, where there exists a MGU σ for ρ_1 and ρ_2 , infer the clause $(c_1 \cup c_2)\sigma$

Theorem. $S \vdash ()$ iff S is unsatisfiable

A resolution example

- 1. (P(x), Q(g(x)))
- 2. $(R(a), Q(z), \neg P(a))$
- 3. $R[1a,2c]{X=a}$ (Q(g(a)), R(a), Q(z))
 - "R" means resolution step.
 - "1a" means the 1st (a-th) literal in the first clause: P(x).
 - "2c" means the 3rd (c-th) literal in the second clause: $\neg P(a)$.
 - 1a and 2c are the "clashing" literals (冲突文字).
 - $\{X = a\}$ is the MGU applied.

Refutation example 1

The 3 blocks example

$$KB = \{On(a,b), On(b,c), Green(a), \neg Green(c)\}$$

$$Query = \exists x \exists y [On(x,y) \land Green(x) \land \neg Green(y)]$$

$$[On(b,c)]$$

$$[On(b,c)]$$

$$[\neg Green(b), Green(c)]$$

$$[\neg Green(a), Green(b)]$$

$$[\neg Green(b)]$$

$$[\neg Green(b)]$$

$$[\neg Green(b)]$$

$$[Green(b)]$$

$$[Green(b)]$$

$$[Green(b)]$$

Alpine Club example

```
1. A(tony)
                                                       2. A(mike)
                                                        3. A(john)
                                                        4. L(tony, rain)
                                                        5. L(tony, snow)
                                                \Rightarrow 6. (\neg A(x), S(x), C(x))
\forall x (A(x) \land \neg S(x)) \rightarrow C(x)
\forall x (C(x) \rightarrow \neg L(x, rain))
                                                \Rightarrow 7. (\neg C(v), \neg L(v, rain))
                                                \Rightarrow 8. (L(z, snow), \neg S(z))
\forall x (\neg L(x, snow) \rightarrow \neg S(x))
\forall x (L(tony, x) \rightarrow \neg L(mike, x))
                                                \Rightarrow 9. (\neg L(tony, u), \neg L(mike, u))
\forall x (\neg L(tony, x) \rightarrow L(mike, x)) \Rightarrow 10. (L(tony, v), L(mike, v))
\neg \exists x (A(x) \land C(x) \land \neg S(x))
                                                       11. (\neg A(w), \neg C(w), S(w))
                                                \Rightarrow
```

Alpine Club example refutation

- 12. R[5, 9a]u = snow $\neg L(mike, snow)$
- 13. $R[8,12]z = mike \neg S(mike)$
- 14. R[6b, 13]x = mike $(\neg A(mike), C(mike))$
- 15. R[2,14a] *C*(*mike*)
- 16. R[8a, 12]z = mike $\neg S(mike)$
- 17. R[2,11]w=mike (¬C(mike), S(mike))
- 18. R[15, 17] S(mike)
- 19. R[16,18] ()

Refutation examples

Prove that $\exists y \forall x P(x, y) \models \forall x \exists y P(x, y)$

- $\exists y \forall x P(x, y) \Rightarrow 1.P(x, a)$
- $R[1,2]\{x=b,y=a\}()$

Exercises: Prove

- $\forall x P(x) \lor \forall x Q(x) \models \forall x (P(x) \lor Q(x))$
- $\exists x (P(x) \land Q(x)) \models \exists x P(x) \land \exists x Q(x)$

Answer extraction (答案抽取)

- We can also answer wh- questions
- Replace query $\exists x P(x)$ by $\exists x [P(x) \land \neg answer(x)]$
- Negating it, we get $\forall x [\neg P(x) \lor answer(x)]$
- Instead of deriving (), derive any clause containing just the answer predicate

Alpine Club example answer extraction

- 11. $(\neg A(w), \neg C(w), S(w), answer(w))$
- The same resolution steps as before give us answer(mike)

Disjunctive answers

A problem

以下 4 面为扩展内容

Infinite branch of resolvents

We use 0 for zero, 1 for succ(zero), 2 for succ(succ(zero)),

Undecidability in the first-order case

- There can be no procedure to decide if a set of clauses is satisfiable.
- **Theorem.** $S \vdash ()$ iff S is unsatisfiable
- However, there is no procedure to check if $S \vdash ()$, because
- ullet When S is satisfiable, the search for () may not terminate

Intractability in the propositional case

- Determining if a set of clauses is satisfiable was shown by Cook in 1972 to be NP-complete.
- Satisfiability is believed by most people to be unsolvable in polynomial time.
- Procedures have been proposed for determining satisfiability that appear to work much better in practice than Resolution.
- They are called SAT solvers as they are mostly used to find a satisfying interpretation for clauses that are satisfiable.

Implications for KRR

- In knowledge-based systems, actions depend on implicit beliefs, i.e., logical entailments of KB
- However, as we have seen, computing entailments is unsolvable in general
- The hope is that in many practical scenarios, entailments can be efficiently computed
- In case entailments are difficult to compute, we seek for other ways out

Prolog and resolution

- Prolog is a language that is useful for doing symbolic and logic-based computation
- Resolutions forms the basis of the implementation of Prolog
- When searching for (), Prolog uses a specific depth-first left-right strategy

王浩: 机器定理证明的奠基人

- 王浩 (1921 1995),美籍华裔哲学家、数理逻辑学家。
- 1921年出生在山东济南,1943年西南联合大学数学系毕业, 1945年清华大学哲学系毕业,师从著名逻辑学家金岳霖。
- 1948 年哈佛大学逻辑学博士毕业,成为哈佛的助理教授。
- 1956-1961 年任牛津大学数学哲学高级讲师。
- 1961-1967 年回到哈佛任数理逻辑与应用数学教授。
- 他在 1958 年夏天写的程序在 IBM-704 上, 只用九分钟就证明了罗素《数学原理》中一阶逻辑的全部定理。
- 在 1983 年于国际人工智能联合会议荣获首届证明自动化里程碑奖 (the first Milestone Prize for Automated Theorem-Proving)

Refutation exercise

- Some patients like all doctors.
- No patient likes any quack.
- Therefore no doctor is a quack.

Use predicates: P(x), D(x), Q(x), L(x, y)

Refutation exercise

- Whoever can read is literate.
- Dolphins are not literate.
- Flipper is an intelligent dolphin.
- Who is intelligent but cannot read.

Use predicates: R(x), L(x), D(x), I(x)