Computing All Squares in Compressed Texts

Lesha Khvorost[†]

†Institute of Mathematics and Computer Science Ural Federal University

26th September RuFiDiM 2012

Two research directions are popular now:

To improve classic string algorithms to process huge inputs (I/O efficient algorithms);

ATLAS project at CERN produces 70Tb/s of valuable information.

Two research directions are popular now:

To improve classic string algorithms to process huge inputs (I/O efficient algorithms);

ATLAS project at CERN produces 70Tb/s of valuable information

Two research directions are popular now:

To improve classic string algorithms to process huge inputs (I/O efficient algorithms);

ATLAS project at CERN produces 70Tb/s of valuable information.

Two research directions are popular now:

To improve classic string algorithms to process huge inputs (I/O efficient algorithms);

ATLAS project at CERN produces 70Tb/s of valuable information.

Features of algorithms on compressed representations

- We save storage space and measure the complexity of the algorithm in terms of compressed input;
- By default we work with preprocessed data.

Features of algorithms on compressed representations

- We save storage space and measure the complexity of the algorithm in terms of compressed input;
- By default we work with preprocessed data.

A straight-line program (SLP) $\mathbb S$ is a sequence of assignments of the form:

$$\mathbb{S}_1 = expr_1, \ \mathbb{S}_2 = expr_2, \dots, \mathbb{S}_n = expr_n,$$

where S_i are **rules** and *expr_i* are expressions of the form:

- $expr_i \in \Sigma$ (**terminal** rules), or
- $expr_i = \mathbb{S}_{\ell} \cdot \mathbb{S}_r \ (\ell, r < i) \ (nonterminal rules).$

Example (the SLP that derives the 6th Fibonacci word

$$\mathbb{F}_0 \rightarrow b, \ \mathbb{F}_1 \rightarrow a, \ \mathbb{F}_2 \rightarrow \mathbb{F}_1 \cdot \mathbb{F}_0, \ \mathbb{F}_3 \rightarrow \mathbb{F}_2 \cdot \mathbb{F}_1$$

 $\mathbb{F}_4 \rightarrow \mathbb{F}_3 \cdot \mathbb{F}_2, \ \mathbb{F}_5 \rightarrow \mathbb{F}_4 \cdot \mathbb{F}_3, \ \mathbb{F}_6 \rightarrow \mathbb{F}_5 \cdot \mathbb{F}_4.$

A straight-line program (SLP) $\mathbb S$ is a sequence of assignments of the form:

$$\mathbb{S}_1 = expr_1, \ \mathbb{S}_2 = expr_2, \dots, \mathbb{S}_n = expr_n,$$

where S_i are **rules** and *expr_i* are expressions of the form:

- $expr_i \in \Sigma$ (terminal rules), or
- $expr_i = \mathbb{S}_{\ell} \cdot \mathbb{S}_r \ (\ell, r < i) \ (nonterminal rules).$

Example (the SLP that derives the 6th Fibonacci word)

$$\mathbb{F}_0 \rightarrow b$$
, $\mathbb{F}_1 \rightarrow a$, $\mathbb{F}_2 \rightarrow \mathbb{F}_1 \cdot \mathbb{F}_0$, $\mathbb{F}_3 \rightarrow \mathbb{F}_2 \cdot \mathbb{F}_1$, $\mathbb{F}_4 \rightarrow \mathbb{F}_3 \cdot \mathbb{F}_2$, $\mathbb{F}_5 \rightarrow \mathbb{F}_4 \cdot \mathbb{F}_3$, $\mathbb{F}_6 \rightarrow \mathbb{F}_5 \cdot \mathbb{F}_4$.

Example (the parse of the SLP that derives the 6th Fibonacci word)

Tools

 Collecting some information from children (Pattern Matching, Longest Common Substring);

Sometimes count operations are extremely expensive (**Hamming Distance**, **Levenstein Distance**).

Are there other tools for SLPs processing?

Tools

 Collecting some information from children (Pattern Matching, Longest Common Substring);

Sometimes count operations are extremely expensive (**Hamming Distance**, **Levenstein Distance**).

Tools

 Collecting some information from children (Pattern Matching, Longest Common Substring);

Sometimes count operations are extremely expensive (**Hamming Distance**, **Levenstein Distance**).

Tools

 Collecting some information from children (Pattern Matching, Longest Common Substring);

Sometimes count operations are extremely expensive (**Hamming Distance**, **Levenstein Distance**).

Are there other tools for SLPs processing?

A string is called a square if it can be obtained by concatenating two copies of some string.

For example, $abc \cdot abc$. We say that abc is the root of the square.

CAS Problem

INPUT: an SLP \mathbb{S} that derives the text S;

OUTPUT: the S-table that holds information about all squares in S.

Main difficulties:

- The text may contains exponentially many squares (in length of a compressed representation)
 (aⁿ contains O(n²) squares and has a log n representation);
- It is hard to collect information from children.

A string is called a square if it can be obtained by concatenating two copies of some string.

For example, $abc \cdot abc$. We say that abc is the root of the square.

CAS Problem

INPUT: an SLP $\mathbb S$ that derives the text $\mathcal S$;

OUTPUT: the S-table that holds information about all squares in S.

Main difficulties

- The text may contains exponentially many squares (in length of a compressed representation)
 (aⁿ contains O(n²) squares and has a log n representation);
- It is hard to collect information from children.

A string is called a square if it can be obtained by concatenating two copies of some string.

For example, $abc \cdot abc$. We say that abc is the root of the square.

CAS Problem

INPUT: an SLP $\mathbb S$ that derives the text $\mathcal S$;

OUTPUT: the S-table that holds information about all squares in S.

Main difficulties:

- The text may contains exponentially many squares (in length of a compressed representation)
 (aⁿ contains O(n²) squares and has a log n representation);
- It is hard to collect information from children

A string is called a square if it can be obtained by concatenating two copies of some string.

For example, $abc \cdot abc$. We say that abc is the root of the square.

CAS Problem

INPUT: an SLP $\mathbb S$ that derives the text $\mathcal S$;

OUTPUT: the S-table that holds information about all squares in S.

Main difficulties:

- The text may contains exponentially many squares (in length of a compressed representation)
 (aⁿ contains O(n²) squares and has a log n representation);
- It is hard to collect information from children.

A string S is called a palindrome if $S = S^R$ (for example *ababa*).

Computing All Palindromes Problem

INPUT: an SLP \mathbb{S} that derives the text S;

OUTPUT: a data structure that holds information about all palindromes in S

Theorem [W. Matsubara, S. Inenaga et al] (2008)

Computing all palindromes problem can be solved in $O(|\mathbb{S}|^4)$ time with $O(|\mathbb{S}|^2)$ space.

A string S is called a palindrome if $S = S^R$ (for example *ababa*).

Computing All Palindromes Problem

INPUT: an SLP \mathbb{S} that derives the text S;

OUTPUT: a data structure that holds information about all palindromes

in S.

Theorem [W. Matsubara, S. Inenaga et al] (2008)

Computing all palindromes problem can be solved in $O(|\mathbb{S}|^4)$ time with $O(|\mathbb{S}|^2)$ space.

A string S is called a palindrome if $S = S^R$ (for example *ababa*).

Computing All Palindromes Problem

INPUT: an SLP \mathbb{S} that derives the text S;

OUTPUT: a data structure that holds information about all palindromes in S.

Theorem [W. Matsubara, S. Inenaga et al] (2008)

Computing all palindromes problem can be solved in $O(|\mathbb{S}|^4)$ time with $O(|\mathbb{S}|^2)$ space.

Main result

Theorem

There is an algorithm that solves CAS using $O(|\mathbb{S}|^4 \cdot \log^2 |S|)$ time and $O(|\mathbb{S}| \cdot \max(|\mathbb{S}|, \log |S|))$ space.

The *S-table* is a rectangular table $S(\mathbb{S})$ of size $(\lfloor \log |S| \rfloor + 1) \times (|\mathbb{S}| + 1)$ that stores families of squares.

There are three types of families:

- Simple family, parameterized by $\{|x|, c_{\ell}, c_r\}$;
- Two types of complex families.

Example (Simple family of squares)

S = bbabbabb, family: $\{3,3,5\}$, squares: $\{(bba)^2, (bab)^2, (abb)^2\}$

The *S-table* is a rectangular table $S(\mathbb{S})$ of size $(\lfloor \log |S| \rfloor + 1) \times (|\mathbb{S}| + 1)$ that stores families of squares. There are three types of families:

- Simple family, parameterized by $\{|x|, c_{\ell}, c_r\}$;
- Two types of complex families.

Example (Simple family of squares)

S = bbabbabb, family: $\{3,3,5\}$, squares: $\{(bba)^2, (bab)^2, (abb)^2\}$

The *S-table* is a rectangular table $S(\mathbb{S})$ of size $(\lfloor \log |S| \rfloor + 1) \times (|\mathbb{S}| + 1)$ that stores families of squares. There are three types of families:

- Simple family, parameterized by $\{|x|, c_{\ell}, c_r\}$;
- Two types of complex families.

Example (Simple family of squares)

S = bbabbabb, family: $\{3,3,5\}$, squares: $\{(bba)^2, (bab)^2, (abb)^2\}$

The *S-table* is a rectangular table $S(\mathbb{S})$ of size $(\lfloor \log |S| \rfloor + 1) \times (|\mathbb{S}| + 1)$ that stores families of squares. There are three types of families:

- Simple family, parameterized by $\{|x|, c_{\ell}, c_r\}$;
- Two types of complex families.

Example (Simple family of squares)

S = bbabbabb, family: $\{3,3,5\}$, squares: $\{(bba)^2, (bab)^2, (abb)^2\}$.

Problems solvable by usage of S-table

For a given \mathbb{S} that derives a text \mathbb{S}

- to check whether S is a square or not (O(1));
- to find information about all squares of fixed length (O(|S|));
- to check whether on not a text S is square-free $(O(|S|\log|S|))$;
- to compute total number of squares that are contained in S $(O(|S|\log |S|));$
- to find a maximal by length square that occurs in S $(O(|S| \log |S|));$
- to find information about all squares that starts from a fixed position $i(O(|S|\log |S|))$.

Open problem

For a given \mathbb{S} that derives a text S to construct an SLP that derives concatenation of all squares that contain in S.

Problems solvable by usage of S-table

For a given \mathbb{S} that derives a text \mathbb{S}

- to check whether S is a square or not (O(1));
- to find information about all squares of fixed length (O(|S|));
- to check whether on not a text S is square-free $(O(|S| \log |S|))$;
- to compute total number of squares that are contained in S $(O(|S|\log |S|));$
- to find a maximal by length square that occurs in S $(O(|S| \log |S|));$
- to find information about all squares that starts from a fixed position $i(O(|S|\log |S|))$.

Open problem

For a given $\mathbb S$ that derives a text S to construct an SLP that derives concatenation of all squares that contain in S

Problems solvable by usage of S-table

For a given \mathbb{S} that derives a text \mathbb{S}

- to check whether S is a square or not (O(1));
- to find information about all squares of fixed length (O(|S|));
- to check whether on not a text S is square-free $(O(|S| \log |S|))$;
- to compute total number of squares that are contained in S $(O(|S| \log |S|));$
- to find a maximal by length square that occurs in S $(O(|S| \log |S|));$
- to find information about all squares that starts from a fixed position $i(O(|S|\log |S|))$.

Open problem

For a given $\mathbb S$ that derives a text S to construct an SLP that derives concatenation of all squares that contain in S.

Problems solvable by usage of S-table

For a given \mathbb{S} that derives a text \mathbb{S}

- to check whether S is a square or not (O(1));
- to find information about all squares of fixed length (O(|S|));
- to check whether on not a text S is square-free $(O(|S| \log |S|))$;
- to compute total number of squares that are contained in S $(O(|S| \log |S|))$;
- to find a maximal by length square that occurs in S $(O(|S| \log |S|));$
- to find information about all squares that starts from a fixed position $i(O(|S|\log |S|))$.

Open problem

For a given $\mathbb S$ that derives a text S to construct an SLP that derives concatenation of all squares that contain in S.

Problems solvable by usage of S-table

For a given \mathbb{S} that derives a text \mathbb{S}

- to check whether S is a square or not (O(1));
- to find information about all squares of fixed length (O(|S|));
- to check whether on not a text S is square-free $(O(|S| \log |S|))$;
- to compute total number of squares that are contained in S $(O(|S| \log |S|))$;
- to find a maximal by length square that occurs in S $(O(|S| \log |S|));$
- to find information about all squares that starts from a fixed position $i(O(|S|\log |S|))$.

Open problem

For a given \mathbb{S} that derives a text S to construct an SLP that derives concatenation of all squares that contain in S.

Problems solvable by usage of S-table

For a given $\mathbb S$ that derives a text $\mathbb S$

- to check whether S is a square or not (O(1));
- to find information about all squares of fixed length (O(|S|));
- to check whether on not a text S is square-free $(O(|S| \log |S|))$;
- to compute total number of squares that are contained in S $(O(|S| \log |S|))$;
- to find a maximal by length square that occurs in S $(O(|S| \log |S|));$
- to find information about all squares that starts from a fixed position $i(O(|S|\log |S|))$.

Open problem

For a given $\mathbb S$ that derives a text S to construct an SLP that derives concatenation of all squares that contain in S.

Problems solvable by usage of S-table

For a given \mathbb{S} that derives a text \mathbb{S}

- to check whether S is a square or not (O(1));
- to find information about all squares of fixed length (O(|S|));
- to check whether on not a text S is square-free $(O(|S| \log |S|))$;
- to compute total number of squares that are contained in S $(O(|S| \log |S|))$;
- to find a maximal by length square that occurs in S $(O(|S| \log |S|))$;
- to find information about all squares that starts from a fixed position $i(O(|S|\log |S|))$.

Open problem

For a given $\mathbb S$ that derives a text S to construct an SLP that derives concatenation of all squares that contain in S.

Detecting squares

Detecting squares

Detecting squares

Detecting squares

Conclusion

- We present the algorithm of 6th power that solves CAS Problem
- We present the new way of SLPs processing

Open problem

Is it possible to improve the algorithm's complexity?

stroduction SLPs Background CAS Problem Conclusion

Conclusion

- We present the algorithm of 6th power that solves CAS Problem
- We present the new way of SLPs processing

Open problem

Is it possible to improve the algorithm's complexity?

Conclusion

- We present the algorithm of 6th power that solves CAS Problem
- We present the new way of SLPs processing

Open problem

Is it possible to improve the algorithm's complexity?

Let $|S_i| = 2^n$. Lengths of roots :{1}, {2}, {3, 4}, ..., $\{2^{n-2} + 1, ..., 2^{n-1}\}$.

