S11L2

Usare Wireshark per Osservare l'Handshake a 3 Vie TCP

Topologia Mininet

172.16.0.0/12 R1 .1 .10.0.0.0/24 S1 .12 .13 H1 H1 H2 H3

Risorse Richieste: Macchina virtuale CyberOps Workstation

Obiettivi

- Parte 1: Preparare gli Host per Catturare il Traffico
- Parte 2: Analizzare i Pacchetti usando Wireshark
- Parte 3: Visualizzare i Pacchetti usando topdump

Contesto / Scenario

In questo laboratorio, userai Wireshark per catturare ed esaminare i pacchetti generati tra il browser del PC che utilizza il protocollo HTTP (HyperText Transfer Protocol) e un server web, come www.google.com. Quando un'applicazione, come HTTP o FTP (File Transfer Protocol), si avvia per la prima volta su un host, TCP utilizza l'handshake a tre vie per stabilire una sessione TCP affidabile tra i due host. Ad esempio, quando un PC utilizza un browser web per navigare in internet, viene avviato un handshake a tre vie e viene stabilita una sessione tra l'host del PC e il server web. Un PC può avere più sessioni TCP attive simultaneamente con vari siti web.

• Qual è il numero di porta TCP di origine?

Il numero di porta TCP di origine è 48856

г		10.0.0.11	172.16.0.40	TCP	74 48856 → 80 [SYN] Seq=0 Win=42340						
	44 16.810751	172.16.0.40	10.0.0.11	TCP	74 80 → 48856 [SYN, ACK] Seq=0 Ack=						
	45 16.810757	10.0.0.11	172.16.0.40	TCP	66 48856 → 80 [ACK] Seq=1 Ack=1 Win						
	46 16.810820	10.0.0.11	172.16.0.40	HTTP	397 GET / HTTP/1.1						
	47 16.810828	172.16.0.40	10.0.0.11	TCP	66 80 → 48856 [ACK] Seq=1 Ack=332 W						
	48 16.810899	172.16.0.40	10.0.0.11	TCP	304 80 → 48856 [PSH, ACK] Seq=1 Ack=						
	49 16.810904	10.0.0.11	172.16.0.40	TCP	66 48856 → 80 [ACK] Seq=332 Ack=239						
L	50 16.810923	172.16.0.40	10.0.0.11	HTTP	681 HTTP/1.1 200 OK (text/html)						
>	Frame 43: 74 bytes	on wire (592 bits), 74 bytes captured (592 bits)							
>	▶ Ethernet II, Src: fa:69:24:e1:77:03 (fa:69:24:e1:77:03), Dst: de:6b:ca:b9:67:da (de:6b:ca:b9:67:da)										
>	Finternet Protocol Version 4, Src: 10.0.0.11, Dst: 172.16.0.40										
-	Transmission Control Protocol, Src Port: 48856, Dst Port: 80, Seq: 0, Len: 0										

• Come classificheresti la porta di origine?

La porta di origine (48856/tcp) rientra nell'intervallo di porte effimere/dinamiche. Viene tipicamente assegnata in modo temporaneo dal sistema operativo quando un client apre una connessione tcp verso un server

• Qual è il numero di porta TCP di destinazione?

La porta TCP di destinazione è la porta 80

• Come classificheresti la porta di destinazione?

La porta di destinazione (80/tcp) rientra tra le well-known port, il servizio principale di questa porta è

• Quale flag è impostato?

Il flag impostato è il SYN, il primo dei tre passi del triple-handshake

```
Flags: 0x002 (SYN)
```

• A quale valore è impostato il numero di sequenza relativo?

Il numero di sequenza relativo è 0

Sequence Number: 0 (relative sequence number)

```
74 48856 - 80 [SYN] Seq=0 Win=42340 Len=0 MSS=1460 SACK_PERM TSval=1346012345 TSecr=0 WS...
43 16.810732
                    10.0.0.11
                                         172.16.0.40
44 16.810751
                    172.16.0.40
                                         10.0.0.11
                                                                       74 80 - 48856 [SYN, ACK] Seq=0 Ack=1 Win=43440 Len=0 MSS=1460 SACK_PERM TSval=3877695113...
66 48856 - 80 [ACK] Seq=1 Ack=1 Win=42496 Len=0 TSval=1346012345 TSecr=3877695113
45 16.810757
                    10.0.0.11
                                         172.16.0.40
                                                          TCP
46 16.810820
                    10.0.0.11
                                         172.16.0.40
                                                          HTTP
                                                                       397 GET / HTTP/1.1
                    172.16.0.40
                                                          TCP
                                                                        66 80 - 48856 [ACK] Seq=1 Ack=332 Win=43520 Len=0 TSval=3877695113 TSecr=1346012345
47 16.810828
                                         10.0.0.11
                                                                       304 80 - 48856 [PSH, ACK] Seq=1 Ack=332 Win=43520 Len=238 TSval=3877695113 TSecr=13460123...
66 48856 - 80 [ACK] Seq=332 Ack=239 Win=42496 Len=0 TSval=1346012345 TSecr=3877695113
48 16.810899
                    172.16.0.40
                                         10.0.0.11
                                                           TCP
                                         172.16.0.40
                                                          TCP
49 16.810904
                    10.0.0.11
50 16.810923
                    172.16.0.40
                                         10.0.0.11 HTTP
                                                                      681 HTTP/1.1 200 OK (text/html)
```

• Quali sono i valori delle porte di origine e destinazione?

La porta di origine è la porta 80 e la porta di destinazione è la porta 48856

• Quali flag sono impostati?

I flag impostati sono SYN, ACK. La seconda fase del triple-handshake

```
Flags: 0x012 (SYN, ACK)
```

• A quali valori sono impostati i numeri relativi di sequenza e acknowledgment?

I valori impostati ai numeri relativi di sequenza e acknowledgment è 1

```
[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: 1 (relative ack number)
```

Quale flag è impostato?

Il flag impostato è ACK, l'ultima fase del triple-handshake

Г	43 16.810732	10.0.0.11	172.16.0.40	TCP	74 48856 80 [SYN] Seq=0 Win=42340 Len=0 MSS=1460 SACK_PERM TSval=1346012345 TSecr=0 WS
+	44 16.810751	172.16.0.40	10.0.0.11	TCP	74 80 → 48856 [SYN, ACK] Seq=0 Ack=1 Win=43440 Len=0 MSS=1460 SACK_PERM TSval=3877695113
	45 16.810757	10.0.0.11	172.16.0.40	TCP	66 48856 → 80 [ACK] Seq=1 Ack=1 Win=42496 Len=0 TSval=1346012345 TSecr=3877695113
	46 16.810820	10.0.0.11	172.16.0.40	HTTP	397 GET / HTTP/1.1
	47 16.810828	172.16.0.40	10.0.0.11	TCP	66 80 → 48856 [ACK] Seq=1 Ack=332 Win=43520 Len=0 TSval=3877695113 TSecr=1346012345
	48 16.810899	172.16.0.40	10.0.0.11	TCP	304 80 → 48856 [PSH, ACK] Seq=1 Ack=332 Win=43520 Len=238 TSval=3877695113 TSecr=13460123
	49 16.810904	10.0.0.11	172.16.0.40	TCP	66 48856 → 80 [ACK] Seq=332 Ack=239 Win=42496 Len=0 TSval=1346012345 TSecr=3877695113
L	50 16.810923	172.16.0.40	10.0.0.11	HTTP	681 HTTP/1.1 200 OK (text/html)

• Cosa fa l'opzione -r?

Il flag -r in tcpdump serve a leggere i pacchetti da un file precedentemente salvato in formato pcap

```
LanalystMesoclps "1" topdump -r /home/analyst/capture.pcap top -c 3
reading from file /home/analyst/capture.pcap, link-type EMIOMB (Ethernet), snapshot length 262144
77:50:05.684567 IP secOps.48856 > 172.16.0.40.http: Flags [S], seq 2155796878, win 42340, options [mss 1460,sackOK,TS val 1346012345 ecr 0,nop ,uscale 9], length 0
77:50:05.684586 IP 172.16.0.40.http > secOps.48856: Flags [S.], seq 3496212570, ack 2155796879, win 43440, options [mss 1460,sackOK,TS val 387
7859113 ecr 1346012345, nop.uscale 9], length 0
77:50:05.684592 IP secOps.48856 > 172.16.0.40.http: Flags [.], ack 1, win 83, options [nop.nop.TS val 1346012345 ecr 387769513], length 0
```

Domande di Riflessione

 Ci sono centinaia di filtri disponibili in Wireshark. Una rete di grandi dimensioni potrebbe avere numerosi filtri e molti tipi diversi di traffico. Elenca tre filtri che potrebbero essere utili a un amministratore di rete.

Filtro per IP, ad esempio ip.addr == 192.168.1.100.

Filtro per protocollo, ad esempio HTTP, SNMP, TCP.

Filtro per numero di porta, ad esempio tcp.port == 80.

2. In quali altri modi Wireshark potrebbe essere utilizzato in una rete di produzione?

-Monitoraggio delle prestazioni

Wireshark può essere utilizzato per identificare i colli di bottiglia e i problemi di latenza della rete. Analizzando i pacchetti, è possibile calcolare il tempo di risposta dei server, il ritardo di e la quantità di perdita di pacchetti.

-Analisi della sicurezza

È un ottimo strumento per individuare attività sospette o traffico dannoso. Può rilevare:

- Scansioni di porte
- Malware o virus
- Comunicazioni in chiaro
- Attacchi DoS/DDoS

-Verifica della conformità

Wireshark aiuta a garantire che la rete sia conforme agli standard aziendali e normativi. Permette di:

- Verificare se le politiche di crittografia sono applicate correttamente (es. HTTPS, SSH).
- Assicurarsi che le applicazioni utilizzino i protocolli e le porte approvati.

-Debugging delle applicazioni

Gli sviluppatori e gli amministratori di sistema possono usare Wireshark per capire esattamente come un'applicazione sta comunicando sulla rete. È uno strumento indispensabile per il troubleshooting di applicazioni distribuite.