Topology PhD Qualifying Exam August 19, 2022 Mohammad Farajzadeh, Keiko Kawamuro

Part A

- 1. Prove that for every group $G = \langle g_1, \dots, g_k \mid r_1, \dots, r_k \rangle$ there is a 2-dimensional cell complex X_G with $\pi_1(G) \simeq G$.
- 2. (a) Let α be an oriented closed loop in a topological space X. Let $x_0 \in X$ and $p, q \in \alpha$ be points. (They are possibly the same points.) Let γ (resp. δ) be an oriented path in X that starts at x_0 and ends at p (resp. q).
 - Show that homotopy classes $[\gamma * \alpha * \bar{\gamma}]$ and $[\delta * \alpha * \bar{\delta}]$ in $\pi_1(X, x_0)$ are conjugate to each other.
 - (b) Let x_0 and x_0' be points in X. Show that $\pi_1(X,x_0)$ and $\pi_1(X,x_0')$ are group isomorphic.
- 3. Let D be the unit disk in \mathbb{R}^2 . Show that every continuous map $h:D\to D$ has a fixed point.
- 4. Let i=1,2. Let $h_i:D^2\times S^1\to A_i$ be a homeomorphism. The boundary of A_i is a torus $\partial A_i=\partial D\times S^1=S^1\times S^1$. We define two curves on ∂A_i , a meridian m_i and a longitude l_i , as follows: Fix points $x\in\partial D^2$ and $y\in S^1$. The meridian is defined by $m_i=h_i(\partial D^2\times\{y\})$ and the longitude is defined by $l_i=h_i(\{x\}\times S^1)$.
 - Let (p,q) be coprime integers. Let $\phi: \partial A_1 \to \partial A_2$ be a homeomorphism that takes the meridian m_1 to a simple closed curve whose homotopy type is equal to $p[m_1] + q[l_2]$. Construct a space X gluing the solid tori A_1 and A_2 along their boundary using the map ϕ .

Using the van Kampen theorem, compute the fundamental group of the space X.

- 5. Let $X = S^1 \vee S^1$.
 - (a) Find a 3 : 1 (non-trivial) normal covering of X and find the corresponding normal subgroup of $\pi_1(X)$.
 - (b) Find a 3:1 non-normal covering of X.
 - (c) Describe the universal covering of X.
- 6. (a) Describe a cell-complex structure on the *n*-dimensional real projective space $\mathbb{R}P^n$ where $n \geq 2$.
 - (b) Find a non-trivial covering of $\mathbb{R}P^n$ and compute its deck transformation group.

Part B

- 1. Let S be the unit sphere in \mathbb{R}^3 . Find a C^{∞} atlas on S that consists of two charts.
- 2. State the regular level set theorem, then show that the unit sphere S is a 2-dimensional manifold.
- 3. Let U be an open subset of \mathbb{R}^n . Show that the exterior derivative $d: \Omega^*(U) \to \Omega^*(U)$ satisfies the cocycle condition; that is, $d^2 = 0$.
- 4. (a) Show that the map $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$\phi(x, y, z) = (2y, -x, -xy + z)$$

is a diffeomorphism.

- (b) Let $X=x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}$ be a vector field on \mathbb{R}^3 . Compute $\phi_*(X)$ at p=(x,y,z).
- (c) Let $\alpha = dz ydx$ be a 1-form on \mathbb{R}^3 . Compute the pullback $\phi^*(\alpha)$ at p = (x, y, z).
- 5. Let ω be a 2-form on the unit sphere S in \mathbb{R}^3 defined by:

$$\omega = \begin{cases} \frac{dy \wedge dz}{x} & \text{for } x \neq 0, \\ \frac{dz \wedge dx}{y} & \text{for } y \neq 0, \\ \frac{dx \wedge dy}{z} & \text{for } z \neq 0. \end{cases}$$

Show that this ω is well-defined. (In other words, if $x, y, z \neq 0$ then the three expressions give the same 2-form.) Then compute the integral $\int_S \omega$.

6. Let O(n) be the orthogonal group, the group of linear transformations of \mathbb{R}^n that preserve distance. In other words, the group of $n \times n$ matrices such that $AA^T = I$ where A^T is the transpose of A and I is the identity matrix. Show that O(n) is a manifold of dimension n(n-1)/2.