SBOL 2.0: Vision and Structure

Nicholas Roehner, Chris J. Myers
University of Utah

SBOL Workshop 10: UC Berkeley

Current Capabilities of SBOL 1.0

Specification of DNA components

Current Capabilities of SBOL 1.0

- Specification of DNA components
- Hierarchical composition of DNA components

Goals for SBOL 2.0

- Increase the range of biological structure and function that we may specify.
- Provide an extensible basis for composition of function.

RNA components (mRNA, tRNA, siRNA)

- RNA components
- Protein components (TFs, enzymes)

- RNA components
- Protein components
- Small molecules (inducers)

 Physical Entities (all of the above plus complexes, light, pressure, pH, temp)

Increasing Functional Range

 Devices (logic gates, latches, oscillators, sensors, transducers)

Increasing Functional Range

- Devices
- Interactions (activation, repression, complexation, transcription, translation, phosphorylation)

Basis for Functional Composition

Ports

Basis for Functional Composition

- Ports
- Instantiation

Basis for Functional Composition

- Ports
- Instantiation
- Port Mapping and Mixed Hierarchy

UML Conventions

- Inheritance
- Composition
- Aggregation
- Association
- Class

Data Model: DNA Component

Data Model: Instance

Example: DNA Components

DnaComponent

-id: "BBa_R0010" -name: "pLac" -types: promoter

DnaComponent

-id : "BBa_J61120"

-types: ribosome entry site

DnaComponent

-id: "BBa_C0040" -name: "TetR CDS" -types: coding sequence

DnaComponent

-id: "ECK120033736" -types: terminator

DnaComponent

-id : "Lacl_Inverter"-types : gene

Example: Sequence Annotations

DnaComponent

-id: "BBa_R0010" -name: "pLac" -types: promoter

DnaComponent

-id: "BBa_J61120"

-types: ribosome entry site

DnaComponent

-id : "BBa_C0040" -name : "TetR CDS"

-types : coding sequence

DnaComponent

-id: "ECK120033736" -types: terminator

Example: Instantiation

Data Model: RNA Component

Example: RNA Component

-types: mRNA

Data Model: Protein Component

Example: Protein Components

Data Model: Small Molecule

Example: Small Molecule

Data Model: Device

Example: Device

PhysicalEntity

-id: "IPTG_Lacl_Complex"

-types : complex

ProteinComponent

-id: "TetR"

-types: transcription factor

RnaComponent

-id: "TetR mRNA"

-types : mRNA

Device

-id : "Lacl_Inverter" -types : inverter

SmallMolecule

-id : "IPTG"

-types : inducer

ProteinComponent

-id : "Lacl"

-types: transcription factor

DnaComponent

-id: "BBa R0010"

-name : "pLac"

-types : promoter

DnaComponent

-id: "BBa C0040"

-name : "TetR CDS"

-types : coding sequence

Example: Instantiation

Data Model: Interactions

Example: Interactions

Example: Interactions

Functional Composition Pt. 1

Data Model Revisited: DNA Component

Data Model Revisited: DNA Component

Data Model: Ports

Example: Ports

Example: Instantiation

Example: Port Mapping

Functional Composition Pt. 2

Data Model Revisited: Device

Example: Ports

Example: Instantiation

Example: Port Mapping

Toggle Switch Composed

Dark Sensor (Tabor et al. 2009)

Dark Sensor (Tabor et al. 2009)

Dark Sensor: Instantiation

Dark Sensor: Interactions

Extensions Update: Modeling

Extensions Update: Context

Canonical EX: Repressilator

Measurement Device Zeiss Axiovert 135TV microscope

Environment

The temperature of the samples was maintained at

30–32 °C by using Peltier devices (Melcor)

Container

coverslip and microscope slide

Medium

minimal media

1 ml of liquid 2% SeaPlaque low-melt agarose

(FMC) in media

100 uM IPTG inducer

antibiotic 20 g ml-1 kanamycin or 20 g ml -1

ampicillin)

minimum initial cell density OD = 0.1

Host

E. coli lac- strain MC4100

Composition

Genome, Repressilator and Reporter plasmids

Summary UML

