R-programmering VT2022

Föreläsning 2

Johan Alenlöv

2022-01-31

Linköpings Universitet

Föreläsning 2:

Vi kör på distans en vecka till. Föreläsning 7/2 och labbar 9/2, 11/2 på distans.

Schemaflytt på fredag är labben 8:15-10:00

- Sammanfattning Föreläsning 1
- Datastrukturer:
 - Matriser
 - Data.frame
 - Listor
- Databearbetning
- Input och output (I/O)

Sammanfattning Föreläsning 1

Variabler, vektorer och typer

- Variabler använder vi för att spara värden
 - Sätts med <- (eller ->)
- Vektorer är en samling av likadana element
 - Skapas med c()
 - Välj element med []
- Beräkningar med vektorer sker elementvis och cykliskt
- Värden kan vara av olika typer
 - Kollar typ med typeof()
 - Byter typ med as.
 - Testa typ med is.

Funktioner

- En funktion utför något
- En funktion i R är uppbyggd av
 - ett funktionsnamn, t.ex. area
 - en funktionsdefinition: function()
 - 0 eller flera argument, t.ex. hojd och bredd
 - "måsvingar" { }
 - kod, t.ex. area <- hojd * bredd
 - returnera värde, t.ex. return(area)

Logik

- Logik är vanligt i programmering
 - Används i if-satser
- I R finns de logiska värdena TRUE, FALSE, och NA
- Skapas på två olika sätt
 - Som vnaliga vektorer
 - Genom relationsoperatorer
- Kan användas för att välja element i vektorer

Logik i R

Kan skapa en vektor med värdena TRUE och FALSE

```
testVektor <- c(2,3,5,7,11,13)
boolVektor <- c(TRUE, FALSE, FALSE, TRUE, FALSE, TRUE)</pre>
```

```
testVektor[boolVektor]
```

Logik i R

Kan skapa en vektor med värdena TRUE och FALSE

```
testVektor <- c(2,3,5,7,11,13)
boolVektor <- c(TRUE, FALSE, FALSE, TRUE, FALSE, TRUE)</pre>
```

testVektor[boolVektor]

```
## [1] 2 7 13
```

Logik i R

Kan skapa en vektor med värdena TRUE och FALSE

```
testVektor <- c(2,3,5,7,11,13)
boolVektor <- c(TRUE, FALSE, FALSE, TRUE, FALSE, TRUE)</pre>
```

testVektor[boolVektor]

[1] 2 7 13

Kan också skapa vektor genom en relation

testVektor > 5

[1] FALSE FALSE FALSE TRUE TRUE TRUE

Relationsoperatorer

- Relationer används för att jämförelser
- Skapar logiska vektorer

Beskrivning	Operatorer i R
Lika med	==
Inte lika med	!=
Större än	>
Mindre än	<
Större än eller lika med	>=
Mindre än eller lika med	<=
Finns i	%in%

Logiska operatorer

- Boolsk algebra
- Operatorer:

Operator	Symbol	Operator i R
och	\wedge	&
eller	\vee	1
inte	\neg	!

Logiska operatorer

- Boolsk algebra
- Operatorer:

Operator	Symbol	Operator i R
och	\wedge	&
eller	V	1
inte	\neg	!

Symbol	A	В	$\neg A$	$A \wedge B$	$A \vee B$
i R	A	В	! A	A & B	A B
	TRUE	TRUE	FALSE	TRUE	TRUE
	TRUE	FALSE	FALSE	FALSE	TRUE
	FALSE	TRUE	TRUE	FALSE	TRUE
	FALSE	FALSE	TRUE	FALSE	FALSE

Datastrukturer

Datastrukturer

- Lagring och hantering av data
- Vi kommer att diskuttera:
 - Vektorer (Föreläsning 1)
 - Matriser
 - data.frame
 - Listor

Matriser

Matriser

- En tvådimensionell vektor
- Alla element har samma typ
- Skapas med matrix()
- +, -, *, / etc. sker elementvis
- Matrisoperationer finns, kommer prata mer om det senare
- Hitta index med ["rad" , "kolumn"]
 - Om rad eller kolumn saknas väljs hela raden/kolumnen.

Matriser, exempel

```
en_matris <- matrix(data = 5:8, ncol = 2)
en_matris

## [,1] [,2]
## [1,] 5 7
## [2,] 6 8</pre>
```

Matriser, exempel

```
en matris <- matrix(data = 5:8, ncol = 2)</pre>
en matris
## [,1] [,2]
## [1,] 5 7
## [2,] 6 8
en matris[1, ] <- en matris[2, ]
en matris
## [,1] [,2]
## [1,] 6 8
## [2,] 6 8
```

data.frame

data.frame

- Dataset i R
- Olika kolumner han ha olika datatyper
 - Varje kolumn är en vektor
- Indexering av variabler kan göras med variabelnamn ["mittNamn"]
- Kan också indexera med ["rad" , "kolumn"]
- Finns många inbyggda datasets i paketet datasets
 - ladda in med funktionen data()

Exempel på inbyggt dataset

Figure 1: New York

Ladda in och undersök data

```
data("airquality")
head(airquality)
tail(airquality)
summary(airquality)
dim(airquality)
```

Skapa en data.frame

```
minData <- data.frame(</pre>
 namn = c('Johan', 'Therese', 'Hugo'),
 vuxen = c(TRUE, TRUE, FALSE),
 langd = c(180, 172, 110))
minData
## namn vuxen langd
      Johan TRUE 180
## 1
## 2 Therese TRUE 172
## 3 Hugo FALSE 110
```

Variabler

- Varje kolumn är en vektor
- Kan välja en kolumn på olika sätt, följande tar fram samma kolumn.

```
minData$langd
minData[, "langd"]
minData[["langd"]]
minData[, 3]
minData[, colnames(minData) == "langd"]
```

Nya variabler

- Lägga till en ny vektor
- Fungerar som vektorer

```
minData$langdMeter <- c(1.8, 1.7, 1.1)
minData$rolig <- "Ja"
minData</pre>
```

```
## namn vuxen langd langdMeter rolig
## 1 Johan TRUE 180 1.8 Ja
## 2 Therese TRUE 172 1.7 Ja
## 3 Hugo FALSE 110 1.1 Ja
```

Ta bort variabler

- Byt ut variabeln till NULL
- Kan också plocka bort med negativ indexering

```
minData <- minData[, -4]
minData$rolig <- NULL
minData
```

```
## namn vuxen langd
## 1 Johan TRUE 180
## 2 Therese TRUE 172
## 3 Hugo FALSE 110
```

Variabelnamn

• Variabelnamn är text som sparas i en vektor

```
colnames(minData)
```

```
## [1] "namn" "vuxen" "langd"
```

Variabelnamn

Variabelnamn är text som sparas i en vektor

```
colnames(minData)
## [1] "namn" "vuxen" "langd"
```

• Kan byta genom att skriva över värdet

```
colnames(minData)[2] <- "Inte Barn"
minData</pre>
```

```
## namn Inte Barn langd
## 1 Johan TRUE 180
## 2 Therese TRUE 172
## 3 Hugo FALSE 110
```

Rader

- Varje rad har sitt egna ID
- Alla rad IDn är en textvektor

rownames(minData)

```
## [1] "1" "2" "3"
```

Rader

- Varje rad har sitt egna ID
- Alla rad IDn är en textvektor

```
rownames(minData)
```

```
## [1] "1" "2" "3"
```

Kan byta precis som med variabler

```
rownames(minData)[1] <- "Person 1"
minData</pre>
```

```
## namn Inte Barn langd

## Person 1 Johan TRUE 180

## 2 Therese TRUE 172

## 3 Hugo FALSE 110
```

Listor

Listor

- En lista är en samling objekt
- Tänk en vektor där varje element är en låda
 - Lådan kan innehålla "vad som helst"

Indexering i listor

minLista[1]

- Indexering g\u00f6rs med hakparanteser
 - För att komma åt ett eller flera objekt: []
 - För att komma åt innehållet i ett objekt: [[]]
- Om namngivna objekt:

[1] "Ash Ketchum"

- \texttt{minLista\$namn}
- minList[["namn"]]

```
## $namn
## [1] "Ash Ketchum"
minLista[[1]]
```

Databearbetning

Sammanfoga data

- Man vill ofta kombinera olika dataset
- Vanliga sammanslagningar
 - Kombinera rader rbind()
 - Kombinera kolumner cbind()
 - Kombinera datasets merge()
- Om man vill aggregera data används aggregate()

Input och Output

Input

- Att läsa in data
 - Från filer på datorn/nätverket (.csv .xlsx .txt .Rdata .RDS)
 - Filer från webben (httr)
 - Från databaser (SQL)
 - Via något API (rOpenGov)

Input

- Att läsa in data
 - Från filer på datorn/nätverket (.csv .xlsx .txt .Rdata .RDS)
 - Filer från webben (httr)
 - Från databaser (SQL)
 - Via något API (rOpenGov)
- För att läsa in filer i R använder vi
 - .csv och .txt
 - read.table(), read.csv() och read.csv2()
 - .Rdata
 - load()
 - RDS
 - readRDS()

Output

- Att leverera data
 - Filer
 - Databaser/API
 - Interaktiva webbdatabaser (Shiny)
 - Rapporter/analyser/texter (knitr)
 - Detta kommer i miniprojekten

Output

- Att leverera data
 - Filer
 - Databaser/API
 - Interaktiva webbdatabaser (Shiny)
 - Rapporter/analyser/texter (knitr)
 - Detta kommer i miniprojekten
- För att spara filer i R använder vi
 - .csv
 - write.table(), write.csv() och write.csv2()
 - .Rdata
 - save()
 - RDS
 - saveRDS()