$1 \quad \frac{h}{2}$

Table 1: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (*d*).

	I	k(A)	E ₁	O ₁	E_{∞}	O_{∞}
	20	3.67E+02	3.96E-02	_	8.19E-02	
\mathbb{P}_1	30	8.28E+02	2.69E-02	0.96	5.56E - 02	0.96
	40	1.47E+03	2.03E-02	0.97	4.21E-02	0.97
	20	5.58E+02	1.19E-03		2.15E-03	
\mathbb{P}_2	30	1.23E+03	5.19E-04	2.05	9.37E-04	2.05
	40	2.17E+03	2.90E-04	2.03	5.21E-04	2.04
	20	6.38E+02	1.23E-04		2.34E-04	
\mathbb{P}_3	30	1.41E+03	3.72E-05	2.96	7.17E-05	2.92
	40	2.47E+03	1.58E-05	2.97	3.08E-05	2.94
	20	8.35E+02	4.86E-06		9.50E-06	
\mathbb{P}_4	30	1.82E+03	1.02E-06	3.86	2.02E-06	3.82
	40	3.17E+03	3.29E-07	3.91	6.63E-07	3.88
	20	8.96E+02	4.14E-07	_	7.98E-07	
\mathbb{P}_5	30	1.94E+03	5.71E-08	4.89	1.12E-07	4.85
	40	3.39E+03	1.39E-08	4.92	2.73E-08	4.89

Table 2: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (d+1).

	I	k(A)	E_1	O_1	E_{∞}	O_{∞}
	20	5.58E+02	1.19E-03	_	2.15E-03	_
\mathbb{P}_1	30	1.23E+03	5.19E-04	2.05	9.37E-04	2.05
	40	2.17E+03	2.90E-04	2.03	5.21E-04	2.04
	20	6.38E+02	1.23E-04		2.34E-04	
\mathbb{P}_2	30	1.41E+03	3.72E-05	2.96	7.17E-05	2.92
	40	2.47E+03	1.58E-05	2.97	3.08E-05	2.94
	20	8.35E+02	4.86E-06	_	9.50E-06	
\mathbb{P}_3	30	1.82E+03	1.02E-06	3.86	2.02E-06	3.82
	40	3.17E+03	3.29E-07	3.91	6.63E-07	3.88
	20	8.96E+02	4.14E-07	_	7.98E-07	
\mathbb{P}_4	30	1.94E+03	5.71E-08	4.89	1.12E-07	4.85
-	40	3.39E+03	1.39E-08	4.92	2.73E-08	4.89
	20	1.22E+03	1.08E-09	_	2.34E-09	
\mathbb{P}_5	30	2.55E+03	5.20E-11	7.48	1.10E-10	7.53
	40	4.37E+03	5.66E-12	7.71	1.08E-11	8.08
		· · · · · · · · · · · · · · · · · · ·				

Table 3: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (75%d, 25%d + 1).

	I	k(A)	E_1	O_1	E_{∞}	O_{∞}
	20	3.89E+02	6.48E-03	_	1.26E-02	
\mathbb{P}_1	30	8.62E+02	4.43E-03	0.94	8.50E-03	0.97
	40	1.52E+03	3.32E-03	1.01	6.13E-03	1.14
	20	5.64E+02	4.34E-04		8.49E-04	
\mathbb{P}_2	30	1.24E+03	1.95E-04	1.97	3.79E-04	1.99
	40	2.18E+03	1.14E-04	1.87	2.12E-04	2.02
	20	6.59E+02	5.70E-06	_	9.45E-06	
\mathbb{P}_3	30	1.45E+03	1.27E-06	3.71	2.19E-06	3.61
	40	2.53E+03	3.98E-07	4.03	6.96E-07	3.98
	20	8.57E+02	2.05E-06	_	4.20E-06	
\mathbb{P}_4	30	1.84E+03	7.03E-08	8.32	1.68E-07	7.93
	40	3.19E+03	6.45E-08	0.30	1.24E-07	1.05
	20	1.00E+03	4.19E-08		8.04E-08	
\mathbb{P}_5	30	2.12E+03	8.43E-10	9.64	1.86E-09	9.29
	40	3.67E+03	3.71E-10	2.86	7.40E-10	3.20

Table 4: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (5, d+1).

	I	k(A)	E_1	O_1	E_{∞}	O_{∞}
	20	3.90E+02	6.13E-03	_	1.14E-02	_
\mathbb{P}_1	30	8.62E+02	4.54E-03	0.74	9.05E-03	0.56
	40	1.52E+03	3.55E-03	0.86	7.38E-03	0.71
	20	5.63E+02	3.28E-04		6.41E-04	
\mathbb{P}_2	30	1.24E+03	1.88E-04	1.38	3.84E-04	1.26
	40	2.18E+03	1.17E-04	1.65	2.47E-04	1.54
	20	6.65E+02	6.38E-06	_	1.09E-05	
\mathbb{P}_3	30	1.45E+03	1.27E-06	3.97	2.19E-06	3.95
	40	2.53E+03	4.05E-07	3.98	7.00E-07	3.96
	20	8.54E+02	1.42E-06		2.86E-06	
\mathbb{P}_4	30	1.85E+03	3.09E-07	3.77	6.37E-07	3.71
	40	3.21E+03	1.01E-07	3.88	2.13E-07	3.81
	20	1.01E+03	3.05E-09	_	8.11E-09	
\mathbb{P}_5	30	2.13E+03	4.71E-10	4.61	1.30E-09	4.52
	40	3.64E+03	1.13E-10	4.95	3.30E-10	4.76
				•		

$2 h^2$

Table 5: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (*d*).

	I	k(A)	E_1	O_1	E_{∞}	O_{∞}
	20	3.67E+02	8.78E-03	_	2.14E-02	_
\mathbb{P}_1	30	8.28E+02	5.60E-03	1.11	1.36E-02	1.11
	40	1.47E+03	4.10E-03	1.08	9.98E-03	1.09
	20	5.31E+02	3.98E-04	_	1.01E-03	
\mathbb{P}_2	30	1.19E+03	2.08E-04	1.60	5.13E-04	1.66
	40	2.11E+03	1.26E-04	1.75	3.07E-04	1.78
	20	6.01E+02	1.01E-05		1.80E-05	
\mathbb{P}_3	30	1.35E+03	2.04E-06	3.94	3.72E-06	3.89
	40	2.40E+03	6.54E-07	3.96	1.20E-06	3.92
	20	7.54E+02	9.46E-07		2.17E-06	
\mathbb{P}_4	30	1.69E+03	2.09E-07	3.72	4.83E-07	3.70
	40	3.00E+03	6.95E-08	3.83	1.61E-07	3.81
	20	8.01E+02	3.87E-08		7.74E-08	_
\mathbb{P}_5	30	1.80E+03	4.43E-09	5.35	9.37E-09	5.21
	40	3.19E+03	9.67E-10	5.29	2.11E-09	5.19

Table 6: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (d+1).

	I	k(A)	E_1	O_1	E_{∞}	O_{∞}
	20	5.31E+02	3.98E-04	_	1.01E-03	_
\mathbb{P}_1	30	1.19E+03	2.08E-04	1.60	5.13E-04	1.66
	40	2.11E+03	1.26E-04	1.75	3.07E-04	1.78
	20	6.01E+02	1.01E-05		1.80E-05	
\mathbb{P}_2	30	1.35E+03	2.04E-06	3.94	3.72E-06	3.89
	40	2.40E+03	6.54E-07	3.96	1.20E-06	3.92
	20	7.54E+02	9.46E-07		2.17E-06	
\mathbb{P}_3	30	1.69E+03	2.09E-07	3.72	4.83E-07	3.70
	40	3.00E+03	6.95E-08	3.83	1.61E-07	3.81
	20	8.01E+02	3.87E-08		7.74E-08	
\mathbb{P}_4	30	1.80E+03	4.43E-09	5.35	9.37E-09	5.21
	40	3.19E+03	9.67E-10	5.29	2.11E-09	5.19
	20	9.54E+02	1.57E-09	_	3.42E-09	
\mathbb{P}_5	30	2.14E+03	1.40E-10	5.96	3.14E-10	5.89
	40	3.80E+03	2.49E-11	6.00	5.66E-11	5.95
				•		

Table 7: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (75%d, 25%d + 1).

	I	k(A)	E_1	O ₁	E_{∞}	O_{∞}
	20	3.70E+02	4.97E-03	_	1.00E-02	
\mathbb{P}_1	30	8.32E+02	3.73E-03	0.71	7.35E-03	0.77
	40	1.48E+03	2.91E-03	0.87	5.48E-03	1.02
	20	5.31E+02	4.88E-04		9.46E-04	
\mathbb{P}_2	30	1.19E+03	2.27E-04	1.88	4.30E-04	1.94
	40	2.11E+03	1.29E-04	1.97	2.35E-04	2.10
	20	6.01E+02	2.27E-06		2.99E-06	
\mathbb{P}_3	30	1.35E+03	4.41E-07	4.04	5.97E-07	3.98
	40	2.40E+03	1.38E-07	4.05	1.93E-07	3.93
	20	7.54E+02	8.19E-07		1.73E-06	
\mathbb{P}_4	30	1.69E+03	1.67E-07	3.93	3.41E-07	4.00
	40	3.00E+03	5.78E-08	3.68	1.11E-07	3.90
	20	8.02E+02	1.71E-08		3.27E-08	
\mathbb{P}_5	30	1.80E+03	2.09E-09	5.19	4.05E-09	5.15
	40	3.19E+03	5.38E-10	4.71	9.98E-10	4.87

Table 8: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (5, d+1).

	Ι	k(A)	E_1	O_1	E_{∞}	O_{∞}
	20	3.70E+02	4.66E-03	_	8.91E-03	_
\mathbb{P}_1	30	8.32E+02	3.85E-03	0.47	7.87E-03	0.31
	40	1.48E+03	3.15E-03	0.70	6.67E-03	0.57
	20	5.31E+02	4.57E-04	_	8.32E-04	
\mathbb{P}_2	30	1.19E+03	2.32E-04	1.67	4.57E-04	1.48
	40	2.11E+03	1.37E-04	1.82	2.83E-04	1.67
	20	6.01E+02	2.35E-06	_	3.20E-06	_
\mathbb{P}_3	30	1.35E+03	4.38E-07	4.15	5.80E-07	4.21
	40	2.40E+03	1.34E-07	4.11	1.75E-07	4.17
	20	7.54E+02	7.43E-07	_	1.49E-06	
\mathbb{P}_4	30	1.69E+03	1.84E-07	3.45	3.87E-07	3.32
	40	3.00E+03	6.35E-08	3.69	1.38E-07	3.59
	20	8.02E+02	1.37E-08	_	2.52E-08	
\mathbb{P}_5	30	1.80E+03	2.21E-09	4.51	4.44E-09	4.28
	40	3.19E+03	5.71E-10	4.70	1.20E-09	4.56