

Chapter 6: Simple and Multiple Linear Regression

An Online Course

Sponsored by The Georgia & School

Presented by Geoffrey S. Hubona

How Old Is The Universe?

- Using Hubble Space Telescope, Freedman et al. (2001) gave relative velocity and distance of 24 galaxies.
 - Velocities are assessed by measuring the Doppler red shift in the spectrum of light observed from the galaxies concerned.
- Obtain scatterplot of velocity and distance. Fit a regression model to the data:

velocity = β_1 distance + ϵ

- Known as Hubble's Law, β₁ known as Hubble's constant
 - $\circ \beta_1^{-1}$ gives an approximate age of the universe.

How Old Is The Universe?

- 24 Galaxies (observations), 3 Data Variables:
 - o Galaxy: Identification number;
 - Velocity: Velocity of galaxy;
 - Distance: Distance of galaxy.

Cloud Seeding

- Weather modification, or *cloud seeding*, is the treatment of individual clouds or storm systems with various inorganic and organic materials in the hope of achieving an increase in rainfall.
- Data collected in summer of 1975 in an experiment using massive quantities of silver iodide.
 - 24 days deemed suitable for seeding when S-Ne was not less than 1.5. (large 'Seedability'; small rainfall)
- Question of interest: How is rainfall related to the explanatory variables? How effective is seeding?
 - Multiple linear regression.

Cloud Seeding

- 24 Observations, 2 Data Variables:
 - Seeding: a factor indicating whether seeding occurred;
 - Time: number of days after the first day of the experiment.
 - Cloudcover: the percentage cloud cover in the experimental area, measured using radat.
 - Prewetness: the total rainfall in the target area one hour before seeding.
 - Echomotion: factor showing whether the radar echo was moving or stationary.
 - Rainfall: the amount of rain in cubic metres.
 - Sne: Suitability criterion.

Multiple Linear Regression

Assume y_i represents the value of the response variable on the ith individual, and that $x_{i1}, x_{i2}, \ldots, x_{iq}$ represents the individual's values on q explanatory variables, with $i = 1, \ldots, n$.

The multiple linear regression model is given by

$$y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_q x_{iq} + \varepsilon_i.$$

The residual or error terms ε_i , $i=1,\ldots,n$, are assumed to be independent random variables having a normal distribution with mean zero and constant variance σ^2 .

Multiple Linear Regression

Consequently, the distribution of the random response variable, y, is also normal with expected value given by the linear combination of the explanatory variables

$$\mathsf{E}(y|x_1,\ldots,x_q)=\beta_0+\beta_1x_1+\cdots+\beta_qx_q$$

and with variance σ^2 .

The parameters of the model β_k , $k=1,\ldots,q$, are known as regression coefficients with β_0 corresponding to the overall mean.

The multiple linear regression model can be written most conveniently for all n individuals by using matrices and vectors as

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Inference

 \hat{y}_i is the predicted value of the response variable for the *i*th individual $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \cdots + \hat{\beta}_q x_{q1}$ and $\bar{y} = \sum_{i=1}^n y_i/n$ is the mean of the response variable.

The mean square ratio

$$F = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 / q}{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2 / (n - q - 1)} \sim F_{q, n - q - 1}$$

provides an F-test of the general hypothesis

$$H_0: \beta_1 = \cdots = \beta_q = 0.$$

Variance Estimation

An estimate of the variance σ^2 is

$$\hat{\sigma}^2 = \frac{1}{n-q-1} \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

Individual regression coefficients can be assessed by using the ratio t-statistics $t_j = \hat{\beta}_j / \sqrt{\text{Var}(\hat{\beta})_{jj}}$, although these ratios should only be used as rough guides to the 'significance' of the coefficients.