Math 55b: Honors Real and Complex Analysis

Homework Assignment #7 (20 March 2017): Univariate integral calculus

Bitte ve[r]giß alles, was Du auf der Schule gelernt hast; denn Du hast is nicht gelernt. $Emil\ Landau^1$

Admittedly that's a bit extreme, but it is true that for many of you Stieltjes integrals, especially of vector-valued functions, are a new path in the familiar territory of integration, and might require a different kind of thinking. This problem set consists of only eight problems including four from Rudin, but most are geared towards developing such "new kinds of thinking", and a few are somewhat open-ended to suggest further directions in analysis that we won't pursue in Math 55.

The first few problems are from Rudin pages 138–139:²

- 1. [Rudin #3] Define functions $\beta_j: \mathbf{R} \to \mathbf{R}$ (i=1,2,3) as follows: for each j, set $\beta_j(x)=0$ for x<0 and $\beta_j(x)=1$ for x>0; but $\beta_1(0)=0$, $\beta_2(0)=1$, $\beta_3(0)=1/2$. Let $f:[-1,1]\to\mathbf{R}$ be any bounded function.
 - a) Prove that $f \in \mathcal{R}(\beta_1)$ iff $f(0) = \lim_{x \to 0+} f(x)$, and then $\int_{-1}^{1} f d\beta_1 = f(0)$;
 - b) State and prove a similar result for $\mathcal{R}(\beta_2)$;
 - c) Prove that $f \in \mathcal{R}(\beta_3)$ iff f is continuous at 0, in which case $\int_{-1}^{1} f \, d\beta_j = f(0)$ for each j = 1, 2, 3.
- 2. [Rudin #8; "integral test" for convergence of a positive series $\sum_{n>n_0} f(n)$] Let $\alpha:[a,\infty)\to\mathbf{R}$ be any increasing function. Suppose $f:[a,\infty)$ is in $\mathscr{R}(\alpha)$ on [a,b] for each b>a. The "improper Riemann-Stieltjes integral" $\int_a^\infty f(x)\,d\alpha(x)$ is then defined as $\lim_{b\to\infty}\int_a^b f(x)\,d\alpha(x)$ if the limit exists [and is finite]. In that case we say the integral converges; we say it converges absolutely if $\int_a^\infty |f(x)|\,d\alpha(x)$ also converges. Naturally the "improper Riemann integral" is the special case of this where $\alpha(x)=x$ for all x. [Likewise for $\int_{-\infty}^a$; and $\int_{-\infty}^\infty f\,d\alpha$ converges to $\int_{-\infty}^0 f\,d\alpha+\int_0^\infty f\,d\alpha$ if both integrals converge.] Suppose further that $f(x)\geq 0$ and f is monotone decreasing on $x\geq 1$. Prove that $\int_1^\infty f(x)\,dx$ converges if and only if $\sum_{n=1}^\infty f(n)$ converges.
- 3. [Integration by parts for improper integrals] Show that in some cases integration by parts can be applied to the "improper" integrals defined in the previous problem; that is, state appropriate hypotheses, formulate a theorem, and prove it. Your hypotheses should be applicable in the following special case: the improper integrals $\int_0^\infty \cos(x) \, dx/(x+1)$ and $\int_0^\infty \sin(x) \, dx/(x+1)^2$ converge and are equal. Show that one of these two integrals (which one?) conerges absolutely, but the other does not.

¹Quote taken from Chapter 10 of M. Artin's *Algebra*. It roughly translates as "Please forget all that you have learned in school, for you haven't [really] learned it." Don't complain about the German transcription, which is presumably of some local dialect — even I recognize that this isn't the the German we auf der Schule lernen.

²For the first of these, cf. also Rudin #1: Suppose $\alpha:[a,b]\to\mathbf{R}$ is increasing, and continuous at x_0 . Define $f:[a,b]\to\mathbf{R}$ by f(x)=0 if $x\neq x_0$ and $f(x_0)=1$. Then $f\in\mathcal{R}(\alpha)$ [i.e. f is integrable with respect to α], and $\int_a^b f(x)\,d\alpha=0$.

- 4. [Bernoulli polynomials]³ Prove that for each positive integer m there exists a polynomial B_m such that $\sum_{i=1}^n i^{m-1} = B_m(n)$ for all positive integers n. [Hint: What must the polynomial $B_m(x) B_m(x-1)$ be? The map taking any polynomial P(x) to the polynomial Q(x) := P(x) P(x-1) is linear.] Determine the leading coefficient of B_m , and deduce the value of $\int_0^b x^{m-1} dx$ for any b > 0 (and thus also of $\int_a^b x^{m-1} dx$) without using the Fundamental Theorem of Calculus. Beyond the leading term, what further patterns can you detect in the coefficients of B_m ? Can you prove any of these patterns? (You may need to go at least to m=6 or m=7 to see what's going on; a computer algebra system could help to handle the linear algebra manipulations.)
- 5. [Fermat] Prove using the Riemann-sum definition of the integral that $\int_a^b x^{r-1} dx = (b^r a^r)/r$ for every nonzero rational number r and all real a, b such that 0 < a < b. [Note: since Fermat predated Newton, the solution cannot use the Fundamental Theorem of Calculus. Besides the special case that r is a positive integer, addressed in the previous problem, you might also find a solution for the special case that 1/(r-1) is a positive integer but this will not directly lead you to a solution of the general case.]
- 6. In the vint handout on integration of vector-valued functions, you might have expected a theorem to the effect that such a function is integrable (as defined there) with integral I if and only if for each ε > 0 there exists a partition P all of whose Riemann sums differ from I by vectors of norm at most ε. Certainly the existence of such P is a consequence of integrability, but in fact the converse implication does not hold! Prove this by finding a normed vector space V and a function f: [0,1] → V such that Δ(P) = 1 for any partition P (and thus f ∉ R), but nevertheless for each ε there exist partitions P such that every Riemann sum R(P, t) for ∫₀¹ f(x) dx has norm at most ε. [Hints: f cannot be continuous or even nearly (e.g. piecewise) continuous, because then our vector version of Thm. 6.8 would yield integrability; in fact the function I have in mind is discontinuous everywhere. Moreover, V cannot be finite dimensional. Thus the example is rather pathological but it is also simple enough that it can be described and proved in a short paragraph.]

Finally, (indefinite) integration of arbitrary rational functions:⁴

- 7. [Partial fractions] Let k be an algebraically closed field. Let K = k(x), the field of rational functions in one variable x with coefficients in k. Show that the following elements of K constitute a basis for K as a vector space over k: x^n for $n = 0, 1, 2, 3, \ldots$, and $1/(x-x_0)^n$ for $x_0 \in k$ and $n = 1, 2, 3, \ldots$ (Linear independence is easy. To prove that the span is all of K, consider for any polynomial $Q \in k[x]$ the subspace $V_Q := \{P/Q : P \in k[x], \deg(P) < \deg(Q)\}$ of K, and compare its dimension with the number of basis vectors in V_Q .)
- 8. Prove that the integral of any $f \in \mathbf{R}(x)$ is a rational function plus a linear combination of functions of the form $\log |x x_0|$, $\log((x x_0)^2 + c)$, and $\tan^{-1}(ax + b)$ $(x_0, a, b, c \in \mathbf{R}, c > 0)$.

This problem set due Monday, 27 March, at the beginning of class.

³Not that it matters for our purposes, but the "Bernoulli polynomials" usually seen in the literature differ from our B_m by an additive constant.

⁴Along the way we again encounter a natural example of a vector space with an uncountable algebraic basis (assuming k is uncountable, e.g. $k = \mathbf{C}$).