Brute Force and Exhaustive Search

Science is as far removed from brute force as this sword from a crowbar.

—Edward Lytton (1803–1873), Leila, Book II, Chapter I

Doing a thing well is often a waste of time.

-Robert Byrne, a master pool and billiards player and a writer

fter introducing the framework and methods for algorithm analysis in the preceding chapter, we are ready to embark on a discussion of algorithm design strategies. Each of the next eight chapters is devoted to a particular design strategy. The subject of this chapter is brute force and its important special case, exhaustive search. Brute force can be described as follows:

Brute force is a straightforward approach to solving a problem, usually directly based on the problem statement and definitions of the concepts involved.

The "force" implied by the strategy's definition is that of a computer and not that of one's intellect. "Just do it!" would be another way to describe the prescription of the brute-force approach. And often, the brute-force strategy is indeed the one that is easiest to apply.

As an example, consider the exponentiation problem: compute a^n for a nonzero number a and a nonnegative integer n. Although this problem might seem trivial, it provides a useful vehicle for illustrating several algorithm design strategies, including the brute force. (Also note that computing $a^n \mod m$ for some large integers is a principal component of a leading encryption algorithm.) By the definition of exponentiation,

$$a^n = \underbrace{a * \cdots * a}_{n \text{ times}}$$

This suggests simply computing a^n by multiplying 1 by a n times.

We have already encountered at least two brute-force algorithms in the book: the consecutive integer checking algorithm for computing gcd(m, n) in Section 1.1 and the definition-based algorithm for matrix multiplication in Section 2.3. Many other examples are given later in this chapter. (Can you identify a few algorithms you already know as being based on the brute-force approach?)

Though rarely a source of clever or efficient algorithms, the brute-force approach should not be overlooked as an important algorithm design strategy. First, unlike some of the other strategies, brute force is applicable to a very wide variety of problems. In fact, it seems to be the only general approach for which it is more difficult to point out problems it *cannot* tackle. Second, for some important problems—e.g., sorting, searching, matrix multiplication, string matching—the brute-force approach yields reasonable algorithms of at least some practical value with no limitation on instance size. Third, the expense of designing a more efficient algorithm may be unjustifiable if only a few instances of a problem need to be solved and a brute-force algorithm can solve those instances with acceptable speed. Fourth, even if too inefficient in general, a brute-force algorithm can still be useful for solving small-size instances of a problem. Finally, a brute-force algorithm can serve an important theoretical or educational purpose as a yardstick with which to judge more efficient alternatives for solving a problem.

3.1 Selection Sort and Bubble Sort

In this section, we consider the application of the brute-force approach to the problem of sorting: given a list of n orderable items (e.g., numbers, characters from some alphabet, character strings), rearrange them in nondecreasing order. As we mentioned in Section 1.3, dozens of algorithms have been developed for solving this very important problem. You might have learned several of them in the past. If you have, try to forget them for the time being and look at the problem afresh.

Now, after your mind is unburdened of previous knowledge of sorting algorithms, ask yourself a question: "What would be the most straightforward method for solving the sorting problem?" Reasonable people may disagree on the answer to this question. The two algorithms discussed here—selection sort and bubble sort—seem to be the two prime candidates.

Selection Sort

We start selection sort by scanning the entire given list to find its smallest element and exchange it with the first element, putting the smallest element in its final position in the sorted list. Then we scan the list, starting with the second element, to find the smallest among the last n-1 elements and exchange it with the second element, putting the second smallest element in its final position. Generally, on the

*i*th pass through the list, which we number from 0 to n-2, the algorithm searches for the smallest item among the last n-i elements and swaps it with A_i :

$$A_0 \leq A_1 \leq \cdots \leq A_{i-1} \mid A_i, \dots, A_{min}, \dots, A_{n-1}$$
 in their final positions the last $n-i$ elements

After n-1 passes, the list is sorted.

Here is pseudocode of this algorithm, which, for simplicity, assumes that the list is implemented as an array:

```
ALGORITHM SelectionSort(A[0..n-1])

//Sorts a given array by selection sort

//Input: An array A[0..n-1] of orderable elements

//Output: Array A[0..n-1] sorted in nondecreasing order

for i \leftarrow 0 to n-2 do

min \leftarrow i

for j \leftarrow i+1 to n-1 do

if A[j] < A[min] min \leftarrow j

swap A[i] and A[min]
```

As an example, the action of the algorithm on the list 89, 45, 68, 90, 29, 34, 17 is illustrated in Figure 3.1.

The analysis of selection sort is straightforward. The input size is given by the number of elements n; the basic operation is the key comparison A[j] < A[min]. The number of times it is executed depends only on the array size and is given by the following sum:

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i).$$

FIGURE 3.1 Example of sorting with selection sort. Each line corresponds to one iteration of the algorithm, i.e., a pass through the list's tail to the right of the vertical bar; an element in bold indicates the smallest element found. Elements to the left of the vertical bar are in their final positions and are not considered in this and subsequent iterations.

Since we have already encountered the last sum in analyzing the algorithm of Example 2 in Section 2.3, you should be able to compute it now on your own. Whether you compute this sum by distributing the summation symbol or by immediately getting the sum of decreasing integers, the answer, of course, must be the same:

$$C(n) = \sum_{i=0}^{n-2} \sum_{i=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} (n-1-i) = \frac{(n-1)n}{2}.$$

Thus, selection sort is a $\Theta(n^2)$ algorithm on all inputs. Note, however, that the number of key swaps is only $\Theta(n)$, or, more precisely, n-1 (one for each repetition of the i loop). This property distinguishes selection sort positively from many other sorting algorithms.

Bubble Sort

Another brute-force application to the sorting problem is to compare adjacent elements of the list and exchange them if they are out of order. By doing it repeatedly, we end up "bubbling up" the largest element to the last position on the list. The next pass bubbles up the second largest element, and so on, until after n-1 passes the list is sorted. Pass i $(0 \le i \le n-2)$ of bubble sort can be represented by the following diagram:

$$A_0, \ldots, A_j \overset{?}{\leftrightarrow} A_{j+1}, \ldots, A_{n-i-1} \mid A_{n-i} \leq \cdots \leq A_{n-1}$$
 in their final positions

Here is pseudocode of this algorithm.

```
ALGORITHM BubbleSort(A[0..n-1])

//Sorts a given array by bubble sort

//Input: An array A[0..n-1] of orderable elements

//Output: Array A[0..n-1] sorted in nondecreasing order

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-2-i do

if A[j+1] < A[j] swap A[j] and A[j+1]
```

The action of the algorithm on the list 89, 45, 68, 90, 29, 34, 17 is illustrated as an example in Figure 3.2.

The number of key comparisons for the bubble-sort version given above is the same for all arrays of size n; it is obtained by a sum that is almost identical to the sum for selection sort:

89

$$\stackrel{?}{\leftrightarrow}$$
 45
 68
 90
 29
 34
 17

 45
 89
 $\stackrel{?}{\leftrightarrow}$
 68
 90
 29
 34
 17

 45
 68
 89
 $\stackrel{?}{\leftrightarrow}$
 90
 $\stackrel{?}{\leftrightarrow}$
 29
 34
 17

 45
 68
 89
 29
 34
 90
 $\stackrel{?}{\leftrightarrow}$
 17

 45
 68
 89
 29
 34
 17
 90

 45
 $\stackrel{?}{\leftrightarrow}$
 89
 $\stackrel{?}{\leftrightarrow}$
 29
 34
 17
 90

 45
 68
 29
 89
 $\stackrel{?}{\leftrightarrow}$
 34
 17
 90

 45
 68
 29
 34
 89
 $\stackrel{?}{\leftrightarrow}$
 17
 90

 45
 68
 29
 34
 89
 $\stackrel{?}{\leftrightarrow}$
 17
 90

 45
 68
 29
 34
 17
 90

 45
 68
 29
 34
 17
 90

 45
 68
 29
 34
 17
 90

FIGURE 3.2 First two passes of bubble sort on the list 89, 45, 68, 90, 29, 34, 17. A new line is shown after a swap of two elements is done. The elements to the right of the vertical bar are in their final positions and are not considered in subsequent iterations of the algorithm.

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2-i} 1 = \sum_{i=0}^{n-2} [(n-2-i) - 0 + 1]$$
$$= \sum_{i=0}^{n-2} (n-1-i) = \frac{(n-1)n}{2} \in \Theta(n^2).$$

The number of key swaps, however, depends on the input. In the worst case of decreasing arrays, it is the same as the number of key comparisons:

$$S_{worst}(n) = C(n) = \frac{(n-1)n}{2} \in \Theta(n^2).$$

As is often the case with an application of the brute-force strategy, the first version of an algorithm obtained can often be improved upon with a modest amount of effort. Specifically, we can improve the crude version of bubble sort given above by exploiting the following observation: if a pass through the list makes no exchanges, the list has been sorted and we can stop the algorithm (Problem 12a in this section's exercises). Though the new version runs faster on some inputs, it is still in $\Theta(n^2)$ in the worst and average cases. In fact, even among elementary sorting methods, bubble sort is an inferior choice, and if it were not for its catchy name, you would probably have never heard of it. However, the general lesson you just learned is important and worth repeating:

A first application of the brute-force approach often results in an algorithm that can be improved with a modest amount of effort.

Exercises 3.1

- **1. a.** Give an example of an algorithm that should not be considered an application of the brute-force approach.
 - **b.** Give an example of a problem that cannot be solved by a brute-force algorithm.
- **2. a.** What is the time efficiency of the brute-force algorithm for computing a^n as a function of n? As a function of the number of bits in the binary representation of n?
 - **b.** If you are to compute $a^n \mod m$ where a > 1 and n is a large positive integer, how would you circumvent the problem of a very large magnitude of a^n ?
- **3.** For each of the algorithms in Problems 4, 5, and 6 of Exercises 2.3, tell whether or not the algorithm is based on the brute-force approach.
- **4. a.** Design a brute-force algorithm for computing the value of a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

at a given point x_0 and determine its worst-case efficiency class.

- **b.** If the algorithm you designed is in $\Theta(n^2)$, design a linear algorithm for this problem.
- **c.** Is it possible to design an algorithm with a better-than-linear efficiency for this problem?
- **5.** A network topology specifies how computers, printers, and other devices are connected over a network. The figure below illustrates three common topologies of networks: the ring, the star, and the fully connected mesh.

fully connected mesh

You are given a boolean matrix A[0..n-1, 0..n-1], where n > 3, which is supposed to be the adjacency matrix of a graph modeling a network with one of these topologies. Your task is to determine which of these three topologies, if any, the matrix represents. Design a brute-force algorithm for this task and indicate its time efficiency class.

6. Tetromino tilings Tetrominoes are tiles made of four 1×1 squares. There are five types of tetrominoes shown below:

Is it possible to tile—i.e., cover exactly without overlaps—an 8×8 chessboard with

- a. straight tetrominoes?
- **b.** square tetrominoes?
- c. L-tetrominoes?
- **d.** T-tetrominoes?
- **e.** Z-tetrominoes?

- **7.** A stack of fake coins There are n stacks of n identical-looking coins. All of the coins in one of these stacks are counterfeit, while all the coins in the other stacks are genuine. Every genuine coin weighs 10 grams; every fake weighs 11 grams. You have an analytical scale that can determine the exact weight of any number of coins.
 - **a.** Devise a brute-force algorithm to identify the stack with the fake coins and determine its worst-case efficiency class.
 - **b.** What is the minimum number of weighings needed to identify the stack with the fake coins?
- **8.** Sort the list E, X, A, M, P, L, E in alphabetical order by selection sort.
- **9.** Is selection sort stable? (The definition of a stable sorting algorithm was given in Section 1.3.)
- **10.** Is it possible to implement selection sort for linked lists with the same $\Theta(n^2)$ efficiency as the array version?
- **11.** Sort the list E, X, A, M, P, L, E in alphabetical order by bubble sort.
- **12. a.** Prove that if bubble sort makes no exchanges on its pass through a list, the list is sorted and the algorithm can be stopped.
 - **b.** Write pseudocode of the method that incorporates this improvement.
 - **c.** Prove that the worst-case efficiency of the improved version is quadratic.
- **13.** Is bubble sort stable?

14. Alternating disks You have a row of 2n disks of two colors, n dark and n light. They alternate: dark, light, dark, light, and so on. You want to get all the dark disks to the right-hand end, and all the light disks to the left-hand end. The only moves you are allowed to make are those that interchange the positions of two neighboring disks.

Design an algorithm for solving this puzzle and determine the number of moves it takes. [Gar99]

3.2 Sequential Search and Brute-Force String Matching

We saw in the previous section two applications of the brute-force approach to the sorting porblem. Here we discuss two applications of this strategy to the problem of searching. The first deals with the canonical problem of searching for an item of a given value in a given list. The second is different in that it deals with the string-matching problem.

Sequential Search

else return -1

We have already encountered a brute-force algorithm for the general searching problem: it is called sequential search (see Section 2.1). To repeat, the algorithm simply compares successive elements of a given list with a given search key until either a match is encountered (successful search) or the list is exhausted without finding a match (unsuccessful search). A simple extra trick is often employed in implementing sequential search: if we append the search key to the end of the list, the search for the key will have to be successful, and therefore we can eliminate the end of list check altogether. Here is pseudocode of this enhanced version.

```
ALGORITHM SequentialSearch2(A[0..n], K)

//Implements sequential search with a search key as a sentinel

//Input: An array A of n elements and a search key K

//Output: The index of the first element in A[0..n-1] whose value is

// equal to K or -1 if no such element is found

A[n] \leftarrow K

i \leftarrow 0

while A[i] \neq K do

i \leftarrow i+1

if i < n return i
```

Another straightforward improvement can be incorporated in sequential search if a given list is known to be sorted: searching in such a list can be stopped as soon as an element greater than or equal to the search key is encountered.

Sequential search provides an excellent illustration of the brute-force approach, with its characteristic strength (simplicity) and weakness (inferior efficiency). The efficiency results obtained in Section 2.1 for the standard version of sequential search change for the enhanced version only very slightly, so that the algorithm remains linear in both the worst and average cases. We discuss later in the book several searching algorithms with a better time efficiency.

Brute-Force String Matching

Recall the string-matching problem introduced in Section 1.3: given a string of n characters called the **text** and a string of m characters ($m \le n$) called the **pattern**, find a substring of the text that matches the pattern. To put it more precisely, we want to find i—the index of the leftmost character of the first matching substring in the text—such that $t_i = p_0, \ldots, t_{i+j} = p_j, \ldots, t_{i+m-1} = p_{m-1}$:

$$t_0 \quad \dots \quad t_i \quad \dots \quad t_{i+j} \quad \dots \quad t_{i+m-1} \quad \dots \quad t_{n-1} \quad \text{text } T$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

If matches other than the first one need to be found, a string-matching algorithm can simply continue working until the entire text is exhausted.

A brute-force algorithm for the string-matching problem is quite obvious: align the pattern against the first m characters of the text and start matching the corresponding pairs of characters from left to right until either all the m pairs of the characters match (then the algorithm can stop) or a mismatching pair is encountered. In the latter case, shift the pattern one position to the right and resume the character comparisons, starting again with the first character of the pattern and its counterpart in the text. Note that the last position in the text that can still be a beginning of a matching substring is n-m (provided the text positions are indexed from 0 to n-1). Beyond that position, there are not enough characters to match the entire pattern; hence, the algorithm need not make any comparisons there.

```
ALGORITHM BruteForceStringMatch(T[0..n-1], P[0..m-1])

//Implements brute-force string matching

//Input: An array T[0..n-1] of n characters representing a text and

// an array P[0..m-1] of m characters representing a pattern

//Output: The index of the first character in the text that starts a

// matching substring or -1 if the search is unsuccessful

for i \leftarrow 0 to n-m do

j \leftarrow 0

while j < m and P[j] = T[i+j] do

j \leftarrow j+1

if j = m return i
```

An operation of the algorithm is illustrated in Figure 3.3. Note that for this example, the algorithm shifts the pattern almost always after a single character comparison. The worst case is much worse: the algorithm may have to make all m comparisons before shifting the pattern, and this can happen for each of the n-m+1 tries. (Problem 6 in this section's exercises asks you to give a specific example of such a situation.) Thus, in the worst case, the algorithm makes

FIGURE 3.3 Example of brute-force string matching. The pattern's characters that are compared with their text counterparts are in bold type.

m(n-m+1) character comparisons, which puts it in the O(nm) class. For a typical word search in a natural language text, however, we should expect that most shifts would happen after very few comparisons (check the example again). Therefore, the average-case efficiency should be considerably better than the worst-case efficiency. Indeed it is: for searching in random texts, it has been shown to be linear, i.e., $\Theta(n)$. There are several more sophisticated and more efficient algorithms for string searching. The most widely known of them—by R. Boyer and J. Moore—is outlined in Section 7.2 along with its simplification suggested by R. Horspool.

Exercises 3.2

- 1. Find the number of comparisons made by the sentinel version of sequential search
 - a. in the worst case.
 - **b.** in the average case if the probability of a successful search is p ($0 \le p \le 1$).
- **2.** As shown in Section 2.1, the average number of key comparisons made by sequential search (without a sentinel, under standard assumptions about its inputs) is given by the formula

$$C_{avg}(n) = \frac{p(n+1)}{2} + n(1-p),$$

where p is the probability of a successful search. Determine, for a fixed n, the values of p ($0 \le p \le 1$) for which this formula yields the maximum value of $C_{avg}(n)$ and the minimum value of $C_{avg}(n)$.

3. Gadget testing A firm wants to determine the highest floor of its *n*-story headquarters from which a gadget can fall without breaking. The firm has two identical gadgets to experiment with. If one of them gets broken, it cannot be repaired, and the experiment will have to be completed with the remaining gadget. Design an algorithm in the best efficiency class you can to solve this problem.

4. Determine the number of character comparisons made by the brute-force algorithm in searching for the pattern GANDHI in the text

Assume that the length of the text—it is 47 characters long—is known before the search starts.

- **5.** How many comparisons (both successful and unsuccessful) will be made by the brute-force algorithm in searching for each of the following patterns in the binary text of one thousand zeros?
 - **a.** 00001 **b.** 10000 **c.** 01010
- **6.** Give an example of a text of length *n* and a pattern of length *m* that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input?
- **7.** In solving the string-matching problem, would there be any advantage in comparing pattern and text characters right-to-left instead of left-to-right?
- **8.** Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA.
 - **a.** Design a brute-force algorithm for this problem and determine its efficiency class.
 - **b.** Design a more efficient algorithm for this problem. [Gin04]
- 9. Write a visualization program for the brute-force string-matching algorithm.

10. Word Find A popular diversion in the United States, "word find" (or "word search") puzzles ask the player to find each of a given set of words in a square table filled with single letters. A word can read horizontally (left or right), vertically (up or down), or along a 45 degree diagonal (in any of the four directions) formed by consecutively adjacent cells of the table; it may wrap around the table's boundaries, but it must read in the same direction with no zigzagging. The same cell of the table may be used in different words, but, in a given word, the same cell may be used no more than once. Write a computer program for solving this puzzle.

11. Battleship game Write a program based on a version of brute-force pattern matching for playing the game Battleship on the computer. The rules of the game are as follows. There are two opponents in the game (in this case, a human player and the computer). The game is played on two identical boards (10 × 10 tables of squares) on which each opponent places his or her ships, not seen by the opponent. Each player has five ships, each of which occupies a certain number of squares on the board: a destroyer (two squares), a submarine (three squares), a cruiser (three squares), a battleship (four squares), and an aircraft carrier (five squares). Each ship is placed either horizontally or vertically, with no two ships touching each other. The game is played by the opponents taking turns "shooting" at each other's ships. The

result of every shot is displayed as either a hit or a miss. In case of a hit, the player gets to go again and keeps playing until missing. The goal is to sink all the opponent's ships before the opponent succeeds in doing it first. To sink a ship, all squares occupied by the ship must be hit.

3.3 Closest-Pair and Convex-Hull Problems by Brute Force

In this section, we consider a straightforward approach to two well-known problems dealing with a finite set of points in the plane. These problems, aside from their theoretical interest, arise in two important applied areas: computational geometry and operations research.

Closest-Pair Problem

The closest-pair problem calls for finding the two closest points in a set of n points. It is the simplest of a variety of problems in computational geometry that deals with proximity of points in the plane or higher-dimensional spaces. Points in question can represent such physical objects as airplanes or post offices as well as database records, statistical samples, DNA sequences, and so on. An air-traffic controller might be interested in two closest planes as the most probable collision candidates. A regional postal service manager might need a solution to the closest-pair problem to find candidate post-office locations to be closed.

One of the important applications of the closest-pair problem is cluster analysis in statistics. Based on *n* data points, hierarchical cluster analysis seeks to organize them in a hierarchy of clusters based on some similarity metric. For numerical data, this metric is usually the Euclidean distance; for text and other nonnumerical data, metrics such as the Hamming distance (see Problem 5 in this section's exercises) are used. A bottom-up algorithm begins with each element as a separate cluster and merges them into successively larger clusters by combining the closest pair of clusters.

For simplicity, we consider the two-dimensional case of the closest-pair problem. We assume that the points in question are specified in a standard fashion by their (x, y) Cartesian coordinates and that the distance between two points $p_i(x_i, y_i)$ and $p_i(x_i, y_i)$ is the standard Euclidean distance

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}.$$

The brute-force approach to solving this problem leads to the following obvious algorithm: compute the distance between each pair of distinct points and find a pair with the smallest distance. Of course, we do not want to compute the distance between the same pair of points twice. To avoid doing so, we consider only the pairs of points (p_i, p_j) for which i < j.

Pseudocode below computes the distance between the two closest points; getting the closest points themselves requires just a trivial modification.

ALGORITHM BruteForceClosestPair(P)

```
//Finds distance between two closest points in the plane by brute force //Input: A list P of n (n \ge 2) points p_1(x_1, y_1), \ldots, p_n(x_n, y_n) //Output: The distance between the closest pair of points d \leftarrow \infty for i \leftarrow 1 to n-1 do for j \leftarrow i+1 to n do d \leftarrow \min(d, sqrt((x_i-x_j)^2+(y_i-y_j)^2)) //sqrt is square root return d
```

The basic operation of the algorithm is computing the square root. In the age of electronic calculators with a square-root button, one might be led to believe that computing the square root is as simple an operation as, say, addition or multiplication. Of course, it is not. For starters, even for most integers, square roots are irrational numbers that therefore can be found only approximately. Moreover, computing such approximations is not a trivial matter. But, in fact, computing square roots in the loop can be avoided! (Can you think how?) The trick is to realize that we can simply ignore the square-root function and compare the values $(x_i - x_j)^2 + (y_i - y_j)^2$ themselves. We can do this because the smaller a number of which we take the square root, the smaller its square root, or, as mathematicians say, the square-root function is strictly increasing.

Then the basic operation of the algorithm will be squaring a number. The number of times it will be executed can be computed as follows:

$$C(n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2 = 2 \sum_{i=1}^{n-1} (n-i)$$
$$= 2[(n-1) + (n-2) + \dots + 1] = (n-1)n \in \Theta(n^2).$$

Of course, speeding up the innermost loop of the algorithm could only decrease the algorithm's running time by a constant factor (see Problem 1 in this section's exercises), but it cannot improve its asymptotic efficiency class. In Chapter 5, we discuss a linearithmic algorithm for this problem, which is based on a more sophisticated design technique.

Convex-Hull Problem

On to the other problem—that of computing the convex hull. Finding the convex hull for a given set of points in the plane or a higher dimensional space is one of the most important—some people believe the most important—problems in computational geometry. This prominence is due to a variety of applications in which

this problem needs to be solved, either by itself or as a part of a larger task. Several such applications are based on the fact that convex hulls provide convenient approximations of object shapes and data sets given. For example, in computer animation, replacing objects by their convex hulls speeds up collision detection; the same idea is used in path planning for Mars mission rovers. Convex hulls are used in computing accessibility maps produced from satellite images by Geographic Information Systems. They are also used for detecting outliers by some statistical techniques. An efficient algorithm for computing a diameter of a set of points, which is the largest distance between two of the points, needs the set's convex hull to find the largest distance between two of its extreme points (see below). Finally, convex hulls are important for solving many optimization problems, because their extreme points provide a limited set of solution candidates.

We start with a definition of a convex set.

DEFINITION A set of points (finite or infinite) in the plane is called *convex* if for any two points p and q in the set, the entire line segment with the endpoints at p and q belongs to the set.

All the sets depicted in Figure 3.4a are convex, and so are a straight line, a triangle, a rectangle, and, more generally, any convex polygon, a circle, and the entire plane. On the other hand, the sets depicted in Figure 3.4b, any finite set of two or more distinct points, the boundary of any convex polygon, and a circumference are examples of sets that are not convex.

Now we are ready for the notion of the convex hull. Intuitively, the convex hull of a set of n points in the plane is the smallest convex polygon that contains all of them either inside or on its boundary. If this formulation does not fire up your enthusiasm, consider the problem as one of barricading n sleeping tigers by a fence of the shortest length. This interpretation is due to D. Harel [Har92]; it is somewhat lively, however, because the fenceposts have to be erected right at the spots where some of the tigers sleep! There is another, much tamer interpretation of this notion. Imagine that the points in question are represented by nails driven into a large sheet of plywood representing the plane. Take a rubber band and stretch it to include all the nails, then let it snap into place. The convex hull is the area bounded by the snapped rubber band (Figure 3.5).

A formal definition of the convex hull that is applicable to arbitrary sets, including sets of points that happen to lie on the same line, follows.

DEFINITION The *convex hull* of a set S of points is the smallest convex set containing S. (The "smallest" requirement means that the convex hull of S must be a subset of any convex set containing S.)

If S is convex, its convex hull is obviously S itself. If S is a set of two points, its convex hull is the line segment connecting these points. If S is a set of three

By "a triangle, a rectangle, and, more generally, any convex polygon," we mean here a region, i.e., the set of points both inside and on the boundary of the shape in question.

FIGURE 3.4 (a) Convex sets. (b) Sets that are not convex.

FIGURE 3.5 Rubber-band interpretation of the convex hull.

points not on the same line, its convex hull is the triangle with the vertices at the three points given; if the three points do lie on the same line, the convex hull is the line segment with its endpoints at the two points that are farthest apart. For an example of the convex hull for a larger set, see Figure 3.6.

A study of the examples makes the following theorem an expected result.

THEOREM The convex hull of any set S of n > 2 points not all on the same line is a convex polygon with the vertices at some of the points of S. (If all the points do lie on the same line, the polygon degenerates to a line segment but still with the endpoints at two points of S.)

FIGURE 3.6 The convex hull for this set of eight points is the convex polygon with vertices at p_1 , p_5 , p_6 , p_7 , and p_3 .

The **convex-hull problem** is the problem of constructing the convex hull for a given set S of n points. To solve it, we need to find the points that will serve as the vertices of the polygon in question. Mathematicians call the vertices of such a polygon "extreme points." By definition, an **extreme point** of a convex set is a point of this set that is not a middle point of any line segment with endpoints in the set. For example, the extreme points of a triangle are its three vertices, the extreme points of a circle are all the points of its circumference, and the extreme points of the convex hull of the set of eight points in Figure 3.6 are p_1 , p_5 , p_6 , p_7 , and p_3 .

Extreme points have several special properties other points of a convex set do not have. One of them is exploited by the *simplex method*, a very important algorithm discussed in Section 10.1. This algorithm solves *linear programming* problems, which are problems of finding a minimum or a maximum of a linear function of *n* variables subject to linear constraints (see Problem 12 in this section's exercises for an example and Sections 6.6 and 10.1 for a general discussion). Here, however, we are interested in extreme points because their identification solves the convex-hull problem. Actually, to solve this problem completely, we need to know a bit more than just which of *n* points of a given set are extreme points of the set's convex hull: we need to know which pairs of points need to be connected to form the boundary of the convex hull. Note that this issue can also be addressed by listing the extreme points in a clockwise or a counterclockwise order.

So how can we solve the convex-hull problem in a brute-force manner? If you do not see an immediate plan for a frontal attack, do not be dismayed: the convex-hull problem is one with no obvious algorithmic solution. Nevertheless, there is a simple but inefficient algorithm that is based on the following observation about line segments making up the boundary of a convex hull: a line segment connecting two points p_i and p_j of a set of p_i points is a part of the convex hull's boundary if and

only if all the other points of the set lie on the same side of the straight line through these two points.² (Verify this property for the set in Figure 3.6.) Repeating this test for every pair of points yields a list of line segments that make up the convex hull's boundary.

A few elementary facts from analytical geometry are needed to implement this algorithm. First, the straight line through two points (x_1, y_1) , (x_2, y_2) in the coordinate plane can be defined by the equation

$$ax + by = c$$
,

where $a = y_2 - y_1$, $b = x_1 - x_2$, $c = x_1y_2 - y_1x_2$.

Second, such a line divides the plane into two half-planes: for all the points in one of them, ax + by > c, while for all the points in the other, ax + by < c. (For the points on the line itself, of course, ax + by = c.) Thus, to check whether certain points lie on the same side of the line, we can simply check whether the expression ax + by - c has the same sign for each of these points. We leave the implementation details as an exercise.

What is the time efficiency of this algorithm? It is in $O(n^3)$: for each of n(n-1)/2 pairs of distinct points, we may need to find the sign of ax + by - c for each of the other n-2 points. There are much more efficient algorithms for this important problem, and we discuss one of them later in the book.

Exercises 3.3 -

- **1.** Assuming that *sqrt* takes about 10 times longer than each of the other operations in the innermost loop of *BruteForceClosestPoints*, which are assumed to take the same amount of time, estimate how much faster the algorithm will run after the improvement discussed in Section 3.3.
- **2.** Can you design a more efficient algorithm than the one based on the brute-force strategy to solve the closest-pair problem for n points x_1, x_2, \ldots, x_n on the real line?
- **3.** Let $x_1 < x_2 < \cdots < x_n$ be real numbers representing coordinates of n villages located along a straight road. A post office needs to be built in one of these villages.
 - **a.** Design an efficient algorithm to find the post-office location minimizing the average distance between the villages and the post office.
 - **b.** Design an efficient algorithm to find the post-office location minimizing the maximum distance from a village to the post office.

For the sake of simplicity, we assume here that no three points of a given set lie on the same line. A modification needed for the general case is left for the exercises.

4. a. There are several alternative ways to define a distance between two points $p_1(x_1, y_1)$ and $p_2(x_2, y_2)$ in the Cartesian plane. In particular, the *Manhattan distance* is defined as

$$d_M(p_1, p_2) = |x_1 - x_2| + |y_1 - y_2|.$$

Prove that d_M satisfies the following axioms, which every distance function must satisfy:

- i. $d_M(p_1, p_2) \ge 0$ for any two points p_1 and p_2 , and $d_M(p_1, p_2) = 0$ if and only if $p_1 = p_2$
- **ii.** $d_M(p_1, p_2) = d_M(p_2, p_1)$
- iii. $d_M(p_1, p_2) \le d_M(p_1, p_3) + d_M(p_3, p_2)$ for any p_1, p_2 , and p_3
- **b.** Sketch all the points in the Cartesian plane whose Manhattan distance to the origin (0, 0) is equal to 1. Do the same for the Euclidean distance.
- **c.** True or false: A solution to the closest-pair problem does not depend on which of the two metrics— d_E (Euclidean) or d_M (Manhattan)—is used?
- 5. The *Hamming distance* between two strings of equal length is defined as the number of positions at which the corresponding symbols are different. It is named after Richard Hamming (1915–1998), a prominent American scientist and engineer, who introduced it in his seminal paper on error-detecting and error-correcting codes.
 - **a.** Does the Hamming distance satisfy the three axioms of a distance metric listed in Problem 4?
 - **b.** What is the time efficiency class of the brute-force algorithm for the closest-pair problem if the points in question are strings of *m* symbols long and the distance between two of them is measured by the Hamming distance?
- **6.** Odd pie fight There are $n \ge 3$ people positioned on a field (Euclidean plane) so that each has a unique nearest neighbor. Each person has a cream pie. At a signal, everybody hurls his or her pie at the nearest neighbor. Assuming that n is odd and that nobody can miss his or her target, true or false: There always remains at least one person not hit by a pie. [Car79]
- 7. The closest-pair problem can be posed in the k-dimensional space, in which the Euclidean distance between two points $p'(x'_1, \ldots, x'_k)$ and $p''(x''_1, \ldots, x''_k)$ is defined as

$$d(p', p'') = \sqrt{\sum_{s=1}^{k} (x'_s - x''_s)^2}.$$

What is the time-efficiency class of the brute-force algorithm for the *k*-dimensional closest-pair problem?

- **8.** Find the convex hulls of the following sets and identify their extreme points (if they have any):
 - a. a line segment

- **b.** a square
- **c.** the boundary of a square
- d. a straight line
- **9.** Design a linear-time algorithm to determine two extreme points of the convex hull of a given set of n > 1 points in the plane.
- **10.** What modification needs to be made in the brute-force algorithm for the convex-hull problem to handle more than two points on the same straight line?
- **11.** Write a program implementing the brute-force algorithm for the convex-hull problem.
- **12.** Consider the following small instance of the linear programming problem:

maximize
$$3x + 5y$$

subject to $x + y \le 4$
 $x + 3y \le 6$
 $x > 0, y > 0$.

- **a.** Sketch, in the Cartesian plane, the problem's *feasible region*, defined as the set of points satisfying all the problem's constraints.
- **b.** Identify the region's extreme points.
- c. Solve this optimization problem by using the following theorem: A linear programming problem with a nonempty bounded feasible region always has a solution, which can be found at one of the extreme points of its feasible region.

3.4 Exhaustive Search

Many important problems require finding an element with a special property in a domain that grows exponentially (or faster) with an instance size. Typically, such problems arise in situations that involve—explicitly or implicitly—combinatorial objects such as permutations, combinations, and subsets of a given set. Many such problems are optimization problems: they ask to find an element that maximizes or minimizes some desired characteristic such as a path length or an assignment cost.

Exhaustive search is simply a brute-force approach to combinatorial problems. It suggests generating each and every element of the problem domain, selecting those of them that satisfy all the constraints, and then finding a desired element (e.g., the one that optimizes some objective function). Note that although the idea of exhaustive search is quite straightforward, its implementation typically requires an algorithm for generating certain combinatorial objects. We delay a discussion of such algorithms until the next chapter and assume here that they exist.

We illustrate exhaustive search by applying it to three important problems: the traveling salesman problem, the knapsack problem, and the assignment problem.

Traveling Salesman Problem

The *traveling salesman problem (TSP)* has been intriguing researchers for the last 150 years by its seemingly simple formulation, important applications, and interesting connections to other combinatorial problems. In layman's terms, the problem asks to find the shortest tour through a given set of *n* cities that visits each city exactly once before returning to the city where it started. The problem can be conveniently modeled by a weighted graph, with the graph's vertices representing the cities and the edge weights specifying the distances. Then the problem can be stated as the problem of finding the shortest *Hamiltonian circuit* of the graph. (A Hamiltonian circuit is defined as a cycle that passes through all the vertices of the graph exactly once. It is named after the Irish mathematician Sir William Rowan Hamilton (1805–1865), who became interested in such cycles as an application of his algebraic discoveries.)

It is easy to see that a Hamiltonian circuit can also be defined as a sequence of n+1 adjacent vertices $v_{i_0}, v_{i_1}, \ldots, v_{i_{n-1}}, v_{i_0}$, where the first vertex of the sequence is the same as the last one and all the other n-1 vertices are distinct. Further, we can assume, with no loss of generality, that all circuits start and end at one particular vertex (they are cycles after all, are they not?). Thus, we can get all the tours by generating all the permutations of n-1 intermediate cities, compute the tour lengths, and find the shortest among them. Figure 3.7 presents a small instance of the problem and its solution by this method.

An inspection of Figure 3.7 reveals three pairs of tours that differ only by their direction. Hence, we could cut the number of vertex permutations by half. We could, for example, choose any two intermediate vertices, say, b and c, and then consider only permutations in which b precedes c. (This trick implicitly defines a tour's direction.)

This improvement cannot brighten the efficiency picture much, however. The total number of permutations needed is still $\frac{1}{2}(n-1)!$, which makes the exhaustive-search approach impractical for all but very small values of n. On the other hand, if you always see your glass as half-full, you can claim that cutting the work by half is nothing to sneeze at, even if you solve a small instance of the problem, especially by hand. Also note that had we not limited our investigation to the circuits starting at the same vertex, the number of permutations would have been even larger, by a factor of n.

Knapsack Problem

Here is another well-known problem in algorithmics. Given n items of known weights w_1, w_2, \ldots, w_n and values v_1, v_2, \ldots, v_n and a knapsack of capacity W, find the most valuable subset of the items that fit into the knapsack. If you do not like the idea of putting yourself in the shoes of a thief who wants to steal the most

FIGURE 3.7 Solution to a small instance of the traveling salesman problem by exhaustive search.

valuable loot that fits into his knapsack, think about a transport plane that has to deliver the most valuable set of items to a remote location without exceeding the plane's capacity. Figure 3.8a presents a small instance of the knapsack problem.

The exhaustive-search approach to this problem leads to generating all the subsets of the set of n items given, computing the total weight of each subset in order to identify feasible subsets (i.e., the ones with the total weight not exceeding the knapsack capacity), and finding a subset of the largest value among them. As an example, the solution to the instance of Figure 3.8a is given in Figure 3.8b. Since the number of subsets of an n-element set is 2^n , the exhaustive search leads to a $\Omega(2^n)$ algorithm, no matter how efficiently individual subsets are generated.

Thus, for both the traveling salesman and knapsack problems considered above, exhaustive search leads to algorithms that are extremely inefficient on every input. In fact, these two problems are the best-known examples of so-called *NP-hard problems*. No polynomial-time algorithm is known for any *NP*-hard problem. Moreover, most computer scientists believe that such algorithms do not exist, although this very important conjecture has never been proven. More-sophisticated approaches—backtracking and branch-and-bound (see Sections 12.1 and 12.2)—enable us to solve some but not all instances of these and

Subset	Total weight	Total value
Ø	0	\$ 0
{1}	7	\$42
{2}	3	\$12
{3}	4	\$40
{4}	5	\$25
{1, 2}	10	\$54
{1, 3}	11	not feasible
{1, 4}	12	not feasible
{2, 3}	7	\$52
{2, 4}	8	\$37
$\{3, 4\}$	9	\$65
{1, 2, 3}	14	not feasible
$\{1, 2, 4\}$	15	not feasible
$\{1, 3, 4\}$	16	not feasible
$\{2, 3, 4\}$	12	not feasible
$\{1, 2, 3, 4\}$	19	not feasible
	(b)	

FIGURE 3.8 (a) Instance of the knapsack problem. (b) Its solution by exhaustive search. The information about the optimal selection is in bold.

similar problems in less than exponential time. Alternatively, we can use one of many approximation algorithms, such as those described in Section 12.3.

Assignment Problem

In our third example of a problem that can be solved by exhaustive search, there are n people who need to be assigned to execute n jobs, one person per job. (That is, each person is assigned to exactly one job and each job is assigned to exactly one person.) The cost that would accrue if the ith person is assigned to the jth job is a known quantity C[i, j] for each pair $i, j = 1, 2, \ldots, n$. The problem is to find an assignment with the minimum total cost.

A small instance of this problem follows, with the table entries representing the assignment costs C[i, j]:

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

It is easy to see that an instance of the assignment problem is completely specified by its cost matrix C. In terms of this matrix, the problem is to select one element in each row of the matrix so that all selected elements are in different columns and the total sum of the selected elements is the smallest possible. Note that no obvious strategy for finding a solution works here. For example, we cannot select the smallest element in each row, because the smallest elements may happen to be in the same column. In fact, the smallest element in the entire matrix need not be a component of an optimal solution. Thus, opting for the exhaustive search may appear as an unavoidable evil.

We can describe feasible solutions to the assignment problem as n-tuples $\langle j_1,\ldots,j_n\rangle$ in which the ith component, $i=1,\ldots,n$, indicates the column of the element selected in the ith row (i.e., the job number assigned to the ith person). For example, for the cost matrix above, $\langle 2,3,4,1\rangle$ indicates the assignment of Person 1 to Job 2, Person 2 to Job 3, Person 3 to Job 4, and Person 4 to Job 1. The requirements of the assignment problem imply that there is a one-to-one correspondence between feasible assignments and permutations of the first n integers. Therefore, the exhaustive-search approach to the assignment problem would require generating all the permutations of integers $1,2,\ldots,n$, computing the total cost of each assignment by summing up the corresponding elements of the cost matrix, and finally selecting the one with the smallest sum. A few first iterations of applying this algorithm to the instance given above are shown in Figure 3.9; you are asked to complete it in the exercises.

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$

$$\begin{array}{c} <1, 2, 3, 4> & \cos t = 9 + 4 + 1 + 4 = 18 \\ <1, 2, 4, 3> & \cos t = 9 + 4 + 8 + 9 = 30 \\ <1, 3, 2, 4> & \cos t = 9 + 3 + 8 + 4 = 24 \\ <1, 3, 4, 2> & \cos t = 9 + 3 + 8 + 6 = 26 \\ <1, 4, 2, 3> & \cos t = 9 + 7 + 8 + 9 = 33 \\ <1, 4, 3, 2> & \cos t = 9 + 7 + 1 + 6 = 23 \\ \end{array}$$

$$\begin{array}{c} <1, 2, 3, 4> & \cos t = 9 + 4 + 1 + 4 = 18 \\ <1, 3, 4, 2> & \cos t = 9 + 3 + 8 + 4 = 24 \\ <1, 3, 4, 2> & \cos t = 9 + 7 + 8 + 9 = 33 \\ <1, 4, 3, 2> & \cos t = 9 + 7 + 1 + 6 = 23 \\ \end{array}$$

FIGURE 3.9 First few iterations of solving a small instance of the assignment problem by exhaustive search.

Since the number of permutations to be considered for the general case of the assignment problem is n!, exhaustive search is impractical for all but very small instances of the problem. Fortunately, there is a much more efficient algorithm for this problem called the *Hungarian method* after the Hungarian mathematicians König and Egerváry, whose work underlies the method (see, e.g., [Kol95]).

This is good news: the fact that a problem domain grows exponentially or faster does not necessarily imply that there can be no efficient algorithm for solving it. In fact, we present several other examples of such problems later in the book. However, such examples are more of an exception to the rule. More often than not, there are no known polynomial-time algorithms for problems whose domain grows exponentially with instance size, provided we want to solve them exactly. And, as we mentioned above, such algorithms quite possibly do not exist.

Exercises 3.4

- **1. a.** Assuming that each tour can be generated in constant time, what will be the efficiency class of the exhaustive-search algorithm outlined in the text for the traveling salesman problem?
 - **b.** If this algorithm is programmed on a computer that makes ten billion additions per second, estimate the maximum number of cities for which the problem can be solved in
 - i. 1 hour. ii. 24 hours. iii. 1 year. iv. 1 century.
- **2.** Outline an exhaustive-search algorithm for the Hamiltonian circuit problem.
- **3.** Outline an algorithm to determine whether a connected graph represented by its adjacency matrix has an Eulerian circuit. What is the efficiency class of your algorithm?
- **4.** Complete the application of exhaustive search to the instance of the assignment problem started in the text.
- **5.** Give an example of the assignment problem whose optimal solution does not include the smallest element of its cost matrix.

- **6.** Consider the *partition problem*: given *n* positive integers, partition them into two disjoint subsets with the same sum of their elements. (Of course, the problem does not always have a solution.) Design an exhaustive-search algorithm for this problem. Try to minimize the number of subsets the algorithm needs to generate.
- **7.** Consider the *clique problem*: given a graph *G* and a positive integer *k*, determine whether the graph contains a *clique* of size *k*, i.e., a complete subgraph of *k* vertices. Design an exhaustive-search algorithm for this problem.
- **8.** Explain how exhaustive search can be applied to the sorting problem and determine the efficiency class of such an algorithm.

- **9.** Eight-queens problem Consider the classic puzzle of placing eight queens on an 8×8 chessboard so that no two queens are in the same row or in the same column or on the same diagonal. How many different positions are there so that
 - **a.** no two queens are on the same square?
 - **b.** no two queens are in the same row?
 - c. no two queens are in the same row or in the same column?

Also estimate how long it would take to find all the solutions to the problem by exhaustive search based on each of these approaches on a computer capable of checking 10 billion positions per second.

- **10.** Magic squares A magic square of order n is an arrangement of the integers from 1 to n^2 in an $n \times n$ matrix, with each number occurring exactly once, so that each row, each column, and each main diagonal has the same sum.
 - **a.** Prove that if a magic square of order n exists, the sum in question must be equal to $n(n^2 + 1)/2$.
 - **b.** Design an exhaustive-search algorithm for generating all magic squares of order n.
 - **c.** Go to the Internet or your library and find a better algorithm for generating magic squares.
 - **d.** Implement the two algorithms—the exhaustive search and the one you have found—and run an experiment to determine the largest value of *n* for which each of the algorithms is able to find a magic square of order *n* in less than 1 minute on your computer.

11. Famous alphametic A puzzle in which the digits in a correct mathematical expression, such as a sum, are replaced by letters is called *cryptarithm*; if, in addition, the puzzle's words make sense, it is said to be an *alphametic*. The most well-known alphametic was published by the renowned British puzzlist Henry E. Dudeney (1857–1930):

$$\begin{array}{c} S E N D \\ + M O R E \\ \hline M O N E Y \end{array}$$

Two conditions are assumed: first, the correspondence between letters and decimal digits is one-to-one, i.e., each letter represents one digit only and different letters represent different digits. Second, the digit zero does not appear as the left-most digit in any of the numbers. To solve an alphametic means to find which digit each letter represents. Note that a solution's uniqueness cannot be assumed and has to be verified by the solver.

- **a.** Write a program for solving cryptarithms by exhaustive search. Assume that a given cryptarithm is a sum of two words.
- **b.** Solve Dudeney's puzzle the way it was expected to be solved when it was first published in 1924.

3.5 Depth-First Search and Breadth-First Search

The term "exhaustive search" can also be applied to two very important algorithms that systematically process all vertices and edges of a graph. These two traversal algorithms are *depth-first search (DFS)* and *breadth-first search (BFS)*. These algorithms have proved to be very useful for many applications involving graphs in artificial intelligence and operations research. In addition, they are indispensable for efficient investigation of fundamental properties of graphs such as connectivity and cycle presence.

Depth-First Search

Depth-first search starts a graph's traversal at an arbitrary vertex by marking it as visited. On each iteration, the algorithm proceeds to an unvisited vertex that is adjacent to the one it is currently in. (If there are several such vertices, a tie can be resolved arbitrarily. As a practical matter, which of the adjacent unvisited candidates is chosen is dictated by the data structure representing the graph. In our examples, we always break ties by the alphabetical order of the vertices.) This process continues until a dead end—a vertex with no adjacent unvisited vertices—is encountered. At a dead end, the algorithm backs up one edge to the vertex it came from and tries to continue visiting unvisited vertices from there. The algorithm eventually halts after backing up to the starting vertex, with the latter being a dead end. By then, all the vertices in the same connected component as the starting vertex have been visited. If unvisited vertices still remain, the depth-first search must be restarted at any one of them.

It is convenient to use a stack to trace the operation of depth-first search. We push a vertex onto the stack when the vertex is reached for the first time (i.e., the

FIGURE 3.10 Example of a DFS traversal. (a) Graph. (b) Traversal's stack (the first subscript number indicates the order in which a vertex is visited, i.e., pushed onto the stack; the second one indicates the order in which it becomes a dead-end, i.e., popped off the stack). (c) DFS forest with the tree and back edges shown with solid and dashed lines, respectively.

visit of the vertex starts), and we pop a vertex off the stack when it becomes a dead end (i.e., the visit of the vertex ends).

It is also very useful to accompany a depth-first search traversal by constructing the so-called *depth-first search forest*. The starting vertex of the traversal serves as the root of the first tree in such a forest. Whenever a new unvisited vertex is reached for the first time, it is attached as a child to the vertex from which it is being reached. Such an edge is called a *tree edge* because the set of all such edges forms a forest. The algorithm may also encounter an edge leading to a previously visited vertex other than its immediate predecessor (i.e., its parent in the tree). Such an edge is called a *back edge* because it connects a vertex to its ancestor, other than the parent, in the depth-first search forest. Figure 3.10 provides an example of a depth-first search traversal, with the traversal stack and corresponding depth-first search forest shown as well.

Here is pseudocode of the depth-first search.

ALGORITHM DFS(G)

```
//Implements a depth-first search traversal of a given graph //Input: Graph G = \langle V, E \rangle //Output: Graph G with its vertices marked with consecutive integers // in the order they are first encountered by the DFS traversal mark each vertex in V with 0 as a mark of being "unvisited" count \leftarrow 0 for each vertex v in V do if v is marked with 0 dfs(v)
```

```
dfs(v)

//visits recursively all the unvisited vertices connected to vertex v

//by a path and numbers them in the order they are encountered 
//via global variable count

count \leftarrow count + 1; mark v with count

for each vertex w in V adjacent to v do

if w is marked with 0

dfs(w)
```

The brevity of the DFS pseudocode and the ease with which it can be performed by hand may create a wrong impression about the level of sophistication of this algorithm. To appreciate its true power and depth, you should trace the algorithm's action by looking not at a graph's diagram but at its adjacency matrix or adjacency lists. (Try it for the graph in Figure 3.10 or a smaller example.)

How efficient is depth-first search? It is not difficult to see that this algorithm is, in fact, quite efficient since it takes just the time proportional to the size of the data structure used for representing the graph in question. Thus, for the adjacency matrix representation, the traversal time is in $\Theta(|V|^2)$, and for the adjacency list representation, it is in $\Theta(|V| + |E|)$ where |V| and |E| are the number of the graph's vertices and edges, respectively.

A DFS forest, which is obtained as a by-product of a DFS traversal, deserves a few comments, too. To begin with, it is not actually a forest. Rather, we can look at it as the given graph with its edges classified by the DFS traversal into two disjoint classes: tree edges and back edges. (No other types are possible for a DFS forest of an undirected graph.) Again, tree edges are edges used by the DFS traversal to reach previously unvisited vertices. If we consider only the edges in this class, we will indeed get a forest. Back edges connect vertices to previously visited vertices other than their immediate predecessors in the traversal. They connect vertices to their ancestors in the forest other than their parents.

A DFS traversal itself and the forest-like representation of the graph it provides have proved to be extremely helpful for the development of efficient algorithms for checking many important properties of graphs.³ Note that the DFS yields two orderings of vertices: the order in which the vertices are reached for the first time (pushed onto the stack) and the order in which the vertices become dead ends (popped off the stack). These orders are qualitatively different, and various applications can take advantage of either of them.

Important elementary applications of DFS include checking connectivity and checking acyclicity of a graph. Since dfs halts after visiting all the vertices con-

The discovery of several such applications was an important breakthrough achieved by the two American computer scientists John Hopcroft and Robert Tarjan in the 1970s. For this and other contributions, they were given the Turing Award—the most prestigious prize in the computing field [Hop87, Tar87].

nected by a path to the starting vertex, checking a graph's connectivity can be done as follows. Start a DFS traversal at an arbitrary vertex and check, after the algorithm halts, whether all the vertices of the graph will have been visited. If they have, the graph is connected; otherwise, it is not connected. More generally, we can use DFS for identifying connected components of a graph (how?).

As for checking for a cycle presence in a graph, we can take advantage of the graph's representation in the form of a DFS forest. If the latter does not have back edges, the graph is clearly acyclic. If there is a back edge from some vertex u to its ancestor v (e.g., the back edge from d to a in Figure 3.10c), the graph has a cycle that comprises the path from v to u via a sequence of tree edges in the DFS forest followed by the back edge from u to v.

You will find a few other applications of DFS later in the book, although more sophisticated applications, such as finding articulation points of a graph, are not included. (A vertex of a connected graph is said to be its *articulation point* if its removal with all edges incident to it breaks the graph into disjoint pieces.)

Breadth-First Search

If depth-first search is a traversal for the brave (the algorithm goes as far from "home" as it can), breadth-first search is a traversal for the cautious. It proceeds in a concentric manner by visiting first all the vertices that are adjacent to a starting vertex, then all unvisited vertices two edges apart from it, and so on, until all the vertices in the same connected component as the starting vertex are visited. If there still remain unvisited vertices, the algorithm has to be restarted at an arbitrary vertex of another connected component of the graph.

It is convenient to use a queue (note the difference from depth-first search!) to trace the operation of breadth-first search. The queue is initialized with the traversal's starting vertex, which is marked as visited. On each iteration, the algorithm identifies all unvisited vertices that are adjacent to the front vertex, marks them as visited, and adds them to the queue; after that, the front vertex is removed from the queue.

Similarly to a DFS traversal, it is useful to accompany a BFS traversal by constructing the so-called *breadth-first search forest*. The traversal's starting vertex serves as the root of the first tree in such a forest. Whenever a new unvisited vertex is reached for the first time, the vertex is attached as a child to the vertex it is being reached from with an edge called a *tree edge*. If an edge leading to a previously visited vertex other than its immediate predecessor (i.e., its parent in the tree) is encountered, the edge is noted as a *cross edge*. Figure 3.11 provides an example of a breadth-first search traversal, with the traversal queue and corresponding breadth-first search forest shown.

FIGURE 3.11 Example of a BFS traversal. (a) Graph. (b) Traversal queue, with the numbers indicating the order in which the vertices are visited, i.e., added to (and removed from) the queue. (c) BFS forest with the tree and cross edges shown with solid and dotted lines, respectively.

Here is pseudocode of the breadth-first search.

```
ALGORITHM BFS(G)
```

```
//Implements a breadth-first search traversal of a given graph
//Input: Graph G = \langle V, E \rangle
//Output: Graph G with its vertices marked with consecutive integers
          in the order they are visited by the BFS traversal
mark each vertex in V with 0 as a mark of being "unvisited"
count \leftarrow 0
for each vertex v in V do
    if v is marked with 0
        bfs(v)
bfs(v)
//visits all the unvisited vertices connected to vertex v
//by a path and numbers them in the order they are visited
//via global variable count
count \leftarrow count + 1; mark v with count and initialize a queue with v
while the queue is not empty do
    for each vertex w in V adjacent to the front vertex do
        if w is marked with 0
             count \leftarrow count + 1; mark w with count
             add w to the queue
    remove the front vertex from the queue
```


FIGURE 3.12 Illustration of the BFS-based algorithm for finding a minimum-edge path. (a) Graph. (b) Part of its BFS tree that identifies the minimum-edge path from *a* to *g*.

Breadth-first search has the same efficiency as depth-first search: it is in $\Theta(|V|^2)$ for the adjacency matrix representation and in $\Theta(|V|+|E|)$ for the adjacency list representation. Unlike depth-first search, it yields a single ordering of vertices because the queue is a FIFO (first-in first-out) structure and hence the order in which vertices are added to the queue is the same order in which they are removed from it. As to the structure of a BFS forest of an undirected graph, it can also have two kinds of edges: tree edges and cross edges. Tree edges are the ones used to reach previously unvisited vertices. Cross edges connect vertices to those visited before, but, unlike back edges in a DFS tree, they connect vertices either on the same or adjacent levels of a BFS tree.

BFS can be used to check connectivity and acyclicity of a graph, essentially in the same manner as DFS can. It is not applicable, however, for several less straightforward applications such as finding articulation points. On the other hand, it can be helpful in some situations where DFS cannot. For example, BFS can be used for finding a path with the fewest number of edges between two given vertices. To do this, we start a BFS traversal at one of the two vertices and stop it as soon as the other vertex is reached. The simple path from the root of the BFS tree to the second vertex is the path sought. For example, path a - b - c - g in the graph in Figure 3.12 has the fewest number of edges among all the paths between vertices a and g. Although the correctness of this application appears to stem immediately from the way BFS operates, a mathematical proof of its validity is not quite elementary (see, e.g., [Cor09, Section 22.2]).

Table 3.1 summarizes the main facts about depth-first search and breadth-first search.

	DFS	BFS	
Data structure	a stack	a queue	
Number of vertex orderings	two orderings	one ordering	
Edge types (undirected graphs)	tree and back edges	tree and cross edges	
Applications	connectivity, acyclicity, articulation points	connectivity, acyclicity, minimum-edge paths	
Efficiency for adjacency matrix	$\Theta(V^2)$	$\Theta(V^2)$	
Efficiency for adjacency lists	$\Theta(V + E)$	$\Theta(V + E)$	

TABLE 3.1 Main facts about depth-first search (DFS) and breadth-first search (BFS)

Exercises 3.5

1. Consider the following graph.

- **a.** Write down the adjacency matrix and adjacency lists specifying this graph. (Assume that the matrix rows and columns and vertices in the adjacency lists follow in the alphabetical order of the vertex labels.)
- **b.** Starting at vertex *a* and resolving ties by the vertex alphabetical order, traverse the graph by depth-first search and construct the corresponding depth-first search tree. Give the order in which the vertices were reached for the first time (pushed onto the traversal stack) and the order in which the vertices became dead ends (popped off the stack).
- 2. If we define sparse graphs as graphs for which $|E| \in O(|V|)$, which implementation of DFS will have a better time efficiency for such graphs, the one that uses the adjacency matrix or the one that uses the adjacency lists?
- **3.** Let G be a graph with n vertices and m edges.
 - **a.** True or false: All its DFS forests (for traversals starting at different vertices) will have the same number of trees?
 - **b.** True or false: All its DFS forests will have the same number of tree edges and the same number of back edges?
- **4.** Traverse the graph of Problem 1 by breadth-first search and construct the corresponding breadth-first search tree. Start the traversal at vertex *a* and resolve ties by the vertex alphabetical order.

- **5.** Prove that a cross edge in a BFS tree of an undirected graph can connect vertices only on either the same level or on two adjacent levels of a BFS tree.
- **6. a.** Explain how one can check a graph's acyclicity by using breadth-first search.
 - **b.** Does either of the two traversals—DFS or BFS—always find a cycle faster than the other? If you answer yes, indicate which of them is better and explain why it is the case; if you answer no, give two examples supporting your answer.
- 7. Explain how one can identify connected components of a graph by using
 - a. a depth-first search.
 - **b.** a breadth-first search.
- **8.** A graph is said to be *bipartite* if all its vertices can be partitioned into two disjoint subsets *X* and *Y* so that every edge connects a vertex in *X* with a vertex in *Y*. (One can also say that a graph is bipartite if its vertices can be colored in two colors so that every edge has its vertices colored in different colors; such graphs are also called **2-colorable**.) For example, graph (i) is bipartite while graph (ii) is not.

- a. Design a DFS-based algorithm for checking whether a graph is bipartite.
- **b.** Design a BFS-based algorithm for checking whether a graph is bipartite.
- **9.** Write a program that, for a given graph, outputs:
 - a. vertices of each connected component
 - **b.** its cycle or a message that the graph is acyclic

- **10.** One can model a maze by having a vertex for a starting point, a finishing point, dead ends, and all the points in the maze where more than one path can be taken, and then connecting the vertices according to the paths in the maze.
 - a. Construct such a graph for the following maze.

b. Which traversal—DFS or BFS—would you use if you found yourself in a maze and why?

11. Three Jugs Siméon Denis Poisson (1781–1840), a famous French mathematician and physicist, is said to have become interested in mathematics after encountering some version of the following old puzzle. Given an 8-pint jug full of water and two empty jugs of 5- and 3-pint capacity, get exactly 4 pints of water in one of the jugs by completely filling up and/or emptying jugs into others. Solve this puzzle by using breadth-first search.

SUMMARY

- Brute force is a straightforward approach to solving a problem, usually directly based on the problem statement and definitions of the concepts involved.
- The principal strengths of the brute-force approach are wide applicability and simplicity; its principal weakness is the subpar efficiency of most brute-force algorithms.
- A first application of the brute-force approach often results in an algorithm that can be improved with a modest amount of effort.
- The following noted algorithms can be considered as examples of the brute-force approach:
 - definition-based algorithm for matrix multiplication
 - selection sort
 - sequential search
 - straightforward string-matching algorithm
- Exhaustive search is a brute-force approach to combinatorial problems. It suggests generating each and every combinatorial object of the problem, selecting those of them that satisfy all the constraints, and then finding a desired object.
- The *traveling salesman problem*, the *knapsack problem*, and the *assignment problem* are typical examples of problems that can be solved, at least theoretically, by exhaustive-search algorithms.
- Exhaustive search is impractical for all but very small instances of problems it can be applied to.
- Depth-first search (DFS) and breadth-first search (BFS) are two principal graph-traversal algorithms. By representing a graph in a form of a depth-first or breadth-first search forest, they help in the investigation of many important properties of the graph. Both algorithms have the same time efficiency: $\Theta(|V|^2)$ for the adjacency matrix representation and $\Theta(|V| + |E|)$ for the adjacency list representation.