Optimizer Cheat Sheet – Definitions, Formulas & Examples

Batch Gradient Descent

Definition: Uses the entire training dataset to compute gradients and update weights.

Formula: w = w - eta * (1/m) * gradL(w, x)

Examples:

- 1. If w=0.5, η =0.1, and ∇ L(w)=4 (full batch), then w_new = 0.5 0.1*4 = 0.1
- 2. With w=2, η =0.05, ∇ L(w)=6 \rightarrow w_new = 2 0.05*6 = 1.7
- 3. If w=1.0, η =0.2, ∇ L(w)=3 \rightarrow w_new = 1.0 0.2*3 = 0.4

Stochastic Gradient Descent (SGD)

Definition: Updates weights using one sample at a time, introducing more noise but faster updates.

Formula: w = w - eta * gradL(w, x)

Examples:

- 1. w=0.5, η =0.1, ∇ L=5 \rightarrow w_new = 0.5 0.1*5 = 0.0
- 2. w=1.2, η =0.05, ∇ L=2 \rightarrow w_new = 1.2 0.05*2 = 1.1
- 3. w=3.0, η =0.01, ∇ L=10 \rightarrow w_new = 3.0 0.01*10 = 2.9

Mini-Batch Gradient Descent

Definition: Uses small random batches of data to update weights; combines stability and speed.

Formula: w = w - eta * (1/k) * gradL(w, x) over k samples

Examples:

- 1. w=1.0, η =0.1, avg ∇ L=4 over mini-batch \rightarrow w_new = 1.0 0.1*4 = 0.6
- 2. w=2.5, η =0.01, avg ∇ L=5 \rightarrow w_new = 2.5 0.01*5 = 2.45
- 3. w=0.8, η =0.2, avg ∇ L=1.5 \rightarrow w_new = 0.8 0.2*1.5 = 0.5

AdaGrad

Definition: Adapts learning rate per parameter using cumulative squared gradients.

Formula: eta = eta / sqrt(G + epsilon)

Examples:

- 1. η =0.1, G=25 $\rightarrow \eta$ _scaled = 0.1 / sqrt(25) = 0.02
- 2. η =0.1, G=4 \rightarrow η _scaled = 0.1 / sqrt(4) = 0.05
- 3. η =0.01, G=1 \rightarrow η _scaled = 0.01 / sqrt(1) = 0.01

AdaDelta

Definition: Improves AdaGrad by using a moving window of gradient history instead of accumulating all past gradients.

Formula: Deltaw = - RMS(Deltaw) / RMS(g) * g

Examples:

- 1. Assume RMS(Δw)=1, RMS(g)=2, g=4 $\rightarrow \Delta w$ = -1/2 * 4 = -2
- 2. RMS(Δw)=0.5, RMS(g)=1, g=2 $\rightarrow \Delta w$ = -0.5/1 * 2 = -1
- 3. RMS(Δw)=2, RMS(g)=2, g=1 $\rightarrow \Delta w$ = -2/2 * 1 = -1

RMSProp

Definition: Uses exponential moving average of squared gradients to adapt learning rate.

Formula: $E[g^2]_t = beta * E[g^2]_(t-1) + (1 - beta) * g^2$

Examples:

- 1. β =0.9, E[g²]=0, g=4 \rightarrow E[g²]_new = 0.1*16 = 1.6
- 2. β =0.9, E[g²]=1, g=3 \rightarrow E[g²]_new = 0.9*1 + 0.1*9 = 0.9 + 0.9 = 1.8
- 3. β =0.99, E[g²]=2, g=2 \rightarrow E[g²]_new = 0.99*2 + 0.01*4 = 1.98 + 0.04 = 2.02

Adam

Definition: Combines momentum and RMSProp, using bias-corrected first and second moments.

Formula: $m = m / (1 - beta^t)$, $v = v / (1 - beta^t)$, w = w - eta * m / (sqrt(v) + epsilon)

Examples:

- 1. m=0.5, $\beta \blacksquare = 0.9$, t=1 \rightarrow m $\blacksquare = 0.5 / (1 0.9) = 5.0$
- 2. v=0.25, $\beta = 0.999$, $t=1 \rightarrow v = 0.25 / (1 0.999) = 250$
- 3. w=1, η =0.01, m■=5, v■=250 \rightarrow w_new = 1 0.01 * 5 / (sqrt(250)) \approx 0.99

Momentum

Definition: Adds a velocity term to accelerate updates in consistent gradient directions.

Formula: v = v + eta gradL, w = w - v

Examples:

- 1. v=0.1, γ =0.9, η =0.01, ∇ L=5 \rightarrow v_new = 0.09 + 0.05 = 0.14
- 2. v=0.2, γ =0.8, η =0.1, ∇ L=3 \rightarrow v_new = 0.16 + 0.3 = 0.46
- 3. v=0, γ =0.9, η =0.1, ∇ L=2 \rightarrow v_new = 0 + 0.2 = 0.2

Nesterov Accelerated Gradient (NAG)

Definition: Improves momentum by computing gradient at the estimated future position.

Formula: v = v + eta gradL(w - v), w = w - v

Examples:

- 1. v=0.2, γ =0.9, η =0.1, ∇ L=3 \rightarrow v_new = 0.18 + 0.3 = 0.48
- 2. v=0.1, γ =0.8, η =0.05, ∇ L=4 \rightarrow v_new = 0.08 + 0.2 = 0.28
- 3. v=0, γ =0.9, η =0.1, ∇ L=2 \rightarrow v_new = 0 + 0.2 = 0.2