Algebra III

April 1, 2024

Chapter 0: Review

Definition: Category

A category $\mathcal C$ consists of the following data:

- 1. A class of objects, Obj(C).
- 2. For any pair of objects $X, Y \in \text{Obj}(\mathcal{C})$, a set of morphisms $\text{Mor}_{\mathcal{C}}(X, Y)$, $\text{Hom}_{\mathcal{C}}(X, Y)$ or $\mathcal{C}(X, Y)$.
- 3. For any triple of objects $X, Y, Z \in Obj(\mathcal{C})$, a map

$$\operatorname{Hom}_{\mathcal{C}}(Y,Z) \times \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(Y,Z)$$

 $(g,f) \mapsto g \circ f$

called compositions subject to the following axioms:

- 1. Associativity: $f \circ (g \circ h) = (f \circ g) \circ h$ whenever this makes sense.
- 2. For every object $X \in \text{Obj}(\mathcal{C})$, there exists a morphism $\text{id}_X \in \text{Hom}_{\mathcal{C}}(X,X)$ such that

$$id_X \circ f = f$$
 and $g \circ id_X = g$, $\forall f \in Hom_{\mathcal{C}}(W, X), g \in Hom_{\mathcal{C}}(X, W)$

Example 1

Let E be a set (or a class).

Define
$$\mathcal{C}$$
 by taking $\operatorname{Obj}(\mathcal{C}) = E$ and $\operatorname{Hom}_{\mathcal{C}}(X,Y) = \begin{cases} \emptyset & \text{if } x \neq y \\ \{\operatorname{id}_X\} & \text{if } x = y \end{cases}$.

Example 2

Let C = Set the category of all sets with set functions acting as morphisms.

Let C = Grp the category of all groups with group homomorphisms acting as morphisms.

Abelian Rings: Ab, Rings: Ring, Commutative Rings: CRing, Vector Spaces over F: Vect $_F$, Topological Spaces: Top, etc.

Example 3

Let G be a group (or more generally a monoid).

Define
$$Obj(\mathcal{C}) = \{*\}, Hom_{\mathcal{C}}(*, *) = G$$
 and

$$\operatorname{Hom}_{\mathcal{C}}(*,*) \times \operatorname{Hom}_{\mathcal{C}}(*,*) \to \operatorname{Hom}_{\mathcal{C}}(*,*)$$

the group operator.

Let (E, \leq) be a preordered set (i.e. reflexive and transitive). Define \mathcal{C} by $\mathsf{Obj}(\mathcal{C}) = E$,

$$\operatorname{Hom}_{\mathcal{C}}(x,y) = \begin{cases} \emptyset & \text{if } x \nleq y \\ \{f_{xy}\} & \text{if } x \leq y \end{cases}$$

Notation

If $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ we write $X \xrightarrow{f} Y$ in \mathcal{C} .

Definition: Isomorphism

A morphism $f: X \to Y$ in \mathcal{C} is an isomorphism if $\exists g: Y \to X$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$.

Definition: Endomorphism

A morphism on X with $f: X \to X$.

Definition: Automorphism

An automorphism on X is just an isomorphism $f: X \tilde{\to} X$ from X to itself. Note that $\operatorname{Aut}_{\mathcal{C}}(X) \subseteq \operatorname{End}_{\mathcal{C}}(X) = \operatorname{Hom}_{\mathcal{C}}(X,X)$.

Remark:

The collection of all endomorphisms on *X* form a monoid.

The collection of all automorphisms on X forms a group called the automorphism group of X.

Example 1

Let
$$C = \text{Set}$$
, $X = \{1, ..., n\}$. Then $\text{Aut}_{\text{Set}}(\{1, ..., n\}) = \text{Perm}(X) = S_n$.

Example 2

Let $C = \text{Vect}_F$, $X = F^n$. Then $\text{Aut}_{\text{Vect}_F}(F^n) = \text{GL}_n(F)$.

Definition: Functors

Let \mathcal{C} and \mathcal{D} be categories.

A functor $F: \mathcal{C} \to \mathcal{D}$ from \mathcal{C} to \mathcal{D} consists of the following data

- 1. For each object $X \in \mathsf{Obj}(\mathcal{C})$, a chosen object $F(X) \in \mathsf{Obj}(\mathcal{D})$.
- 2. For each pair of objects $X, Y \in \mathsf{Obj}(\mathcal{C})$, a function

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{D}(F(X),F(Y))$$

 $f \mapsto F(f)$

2

such that

- 1. For any two composable morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in C, we have $F(g \circ f) = F(g) \circ F(f)$.
- 2. For each object $X \in \text{Obj}(\mathcal{C})$, $F(\text{id}_X) = \text{id}_{F(X)}$.

Example 1

For $\mathcal{D} := \mathcal{C}$, $\operatorname{Id} : \mathcal{C} \to \mathcal{C}$, $X \mapsto X$, $f \mapsto f$.

Example 2: Forgetful Functors

 $\mathcal{U}: \mathsf{Grp} \to \mathsf{Set} \ \mathsf{given} \ \mathsf{as} \ (G, \cdot) \mapsto G.$ Ring $\to \mathsf{Ab} \ \mathsf{given} \ \mathsf{as} \ (R, +, \cdot) \mapsto (R, +).$

Example 3: Tensors

Let R be a commutative ring, $M \in Mod_R$.

Then $\otimes_R M : \mathsf{Mod}_R \to \mathsf{Mod}_R$ and $\mathsf{Hom}_R(M, -) : \mathsf{Mod}_R \to \mathsf{Mod}_R$.

Definition:

Let X be an object in a category \mathcal{C} and G a group. An action of G on X is a group homomorphism $G \to \operatorname{Aut}_{\mathcal{C}}(X)$.

Example 1

Let C = Set.

A G-set is a set $X \in Set$ equipped wit a group homomorphism

$$G \rightarrow \mathsf{Perm}(X) = \mathsf{Aut}_{\mathsf{Set}}(X)$$

Exercise 1

A G-set is the same thing as a functor $G \to \text{Set}, * \mapsto X, \text{Hom}_{\mathcal{C}}(*,*) \to \text{Hom}_{\text{Set}}(X,X)$ $(G \to \text{Aut}_{\text{Set}}(X)).$

Definition: Adjunctions

Let \mathcal{C} and \mathcal{D} be categories and $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{C}$ be functors.

We say that F is left adjoint to G (and that G is right adjoint to F, and that we have a pair of adjoint functors) if for each object $X \in \text{Obj}(\mathcal{C})$ and $Y \in \text{Obj}(\mathcal{D})$, we have a bijection

$$\operatorname{Hom}_{\mathcal{D}}(F(X), Y) \tilde{\rightarrow} \operatorname{Hom}_{\mathcal{C}}(X, G(Y))$$

which is "natural in X and Y":

For any $f: X \to X'$ in \mathcal{C} ,

$$\operatorname{Hom}_{\mathcal{D}}(F(X'),Y) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{\mathcal{C}}(X',G(Y))$$

$$\downarrow^{-\circ F(f)} \qquad \qquad \downarrow^{-\circ f}$$

$$\operatorname{Hom}_{\mathcal{D}}(F(X),Y) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{\mathcal{C}}(X,G(Y))$$

and for every $g: Y \to Y'$ in \mathcal{D}

$$\operatorname{Hom}_{\mathcal{D}}(F(X),Y) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{C}}(X,G(Y))$$

$$\downarrow^{-\circ F(f)} \qquad \qquad \downarrow^{-\circ f}$$

$$\operatorname{Hom}_{\mathcal{D}}(F(X),Y') \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{C}}(X,G(Y'))$$

$$\stackrel{\mathcal{C}}{\downarrow^{\circ}_{G}}$$

$$\stackrel{\mathcal{D}}{\mathcal{D}}$$
We write

For $M \in Mod_R$ we have

$$\mathsf{Mod}_R$$
 $-\otimes_R M$
 $\mathsf{Hom}_R(M,-)$
 Mod_R where

$$\operatorname{Hom}_R(M_1 \otimes M_2, N) \cong \operatorname{Hom}_R(M_1, \operatorname{Hom}_R(M, \operatorname{Hom}_R(M_2, N)))$$

 $f \mapsto (x \mapsto (y \mapsto f(x \otimes y)))$

Example 2

Let $R \stackrel{\phi}{\longrightarrow} S$ be a ring homomorphism. We can regard an S-module N as an R-module via

$$r \cdot x := \phi(r)x, \quad \forall r \in R, ; x \in N$$

This defines a functor $Mod_S \to Mod_R$ called a "restriction of scalars", which has a left adjoint called "extension of scalars."

$$\operatorname{\mathsf{Mod}}_R$$
 $\operatorname{\mathsf{S}} \otimes_R - \bigcup \uparrow$
 $\operatorname{\mathsf{Mod}}_R$

Recall

For commutative ring R, $\rightsquigarrow \text{Mod}_R$. e.g. R = F a field, $\text{Mod}_R \equiv \text{Vect}_F$; $R = \mathbb{Z}$, $\text{Mod}_R \equiv \text{Ab}$.

Definition: R-Algebra

An R-algebra is an Abelian group (A, +) that has both the structure of

- 1. an R-module and
- 2. a ring

which are compatible in that

$$r(ab) = (ra)b = a(rb), \quad \forall r \in R, a, b \in A$$

The polynomial ring R[x] is an R-algebra.

Example 2

The ring of $n \times n$ matrices $M_n(R)$ is an R-algebra.

Example 3

If $R \xrightarrow{\phi} S$ is a homomorphism of commutative rings, then S is an R-algebra via $r := \phi(r)a$, $\forall r \in R$, $a \in S$.

Example 4

 $\mathbb{R} \hookrightarrow \mathbb{C}$. So \mathbb{C} is an \mathbb{R} -algebra.

$$R \hookrightarrow R[x].$$

More generally, $R[x_1, x_2, ..., x_n]$ is an R-algebra.

Commutative R-Algebras

An R-algebra is commutative if it is commutative as a ring. $\mathsf{CAlg}_R \subset \mathsf{Alg}_R.$

Question: Why are polynomials important?

An algebraic perspective: they are the "free commutative algebras."

Recall

For R a commutative ring, we have the notion of a free R-module – one that admits a basis. Categorically, we have an adjunction.

Set

$$f \downarrow \uparrow \mathcal{U}$$

 Mod_R

The left adjoint of the forgetful functor sends a set I to the free R-module with basis I.

$$F(I) = R^{(I)} = \bigoplus_{i \in I} R$$

The adjunction says that for any set I and R-module M,

$$\begin{aligned} &\operatorname{Hom}_{\operatorname{Mod}_R}(R^{(I)},M)\tilde{\to}\operatorname{Hom}_{\operatorname{Set}}(I,M)\\ \exists !R\text{-linear map}_{\substack{f:R^{(I)}\to M\\e_i\mapsto x_i}} &\hookleftarrow \{x_i\}_{i\in I} \end{aligned}$$

Similarly, the forgetful functor $\mathcal{U}: CAlg_R \to Set$ has a left adjoint

Set

$$f \downarrow \uparrow \mathcal{U}$$

 $CAlg_R$

which sends a set I to the "free commutative R-algebra on I."

Explicitly, $F(I) = R[\{x_i\}_{i \in I}]$ the polynomial algebra with an indeterminate x_i for each $i \in I$.

$$I = \{*\} \rightsquigarrow F(\{*\}) = R[x].$$

$$I = \{1, \dots, n\} \rightsquigarrow F(\{1, \dots, n\}) = R[x_1, \dots, x_n].$$

$$I = \mathbb{N} \rightsquigarrow F(\mathbb{N}) = R[x_1, x_2, \dots].$$

Adjunction

For any set I and commutative R-algebra $A \in CAlg_R$, we have a bijection

$$\operatorname{Hom}_{\operatorname{CAlg}_R}(R[\{x_i\}_{i\in I},A)\cong\operatorname{Hom}_{\operatorname{Set}}(I,A)\\ \exists !R\text{-algebra homomorphism}_{R[\{x_i\}_{i\in I}]\to A} \hookleftarrow \{a_i\}_{i\in I}$$

Exmple 1

Let A be a commutative R-algebra.

For any $a \in A$, there exists a unique R-algebra homomorphism $R[x] \to A$ which sends $X \mapsto a$. Explicitly, $f(x) \mapsto f(a)$.

Corollary

Let $R \xrightarrow{\phi} S$ be a homomorphism of commutative rings.

For any $a \in S$, there is a unique ring $R[x] \xrightarrow{\overline{\phi}} S$ such that $\overline{\phi}|_R = \phi$ and $\overline{\phi}(X) = a$.

Example 1

Let $R \subseteq S$ be a subring.

For each $a \in S$, there is a unique ring homomorphism $R[x] \xrightarrow{\phi} S$ such that $\phi|_R = \operatorname{id}$ and $\phi'(X) = a$. We call this the "evaluation at a."

$$R[x] \xrightarrow{\operatorname{ev}_a} S$$
$$f \mapsto f(a)$$

Definition: Subalgebra

Let A be a commutative R-algebra, and let $S \subset A$ be a subset.

The subalgebra of A generated by S, denoted R[S], is the intersection of all subalgebras of A which contain S. Explicitly,

$$R[S] = \{a \in A : \exists n \ge 1, s_1, \dots, s_n \in S, f \in R[x_1, \dots, x_n], a = f(s_1, \dots, s_n)\}$$

Example 1

Let A = R[x]. Then A = R[x]. That is, A is generated by $\{x\}$ as an algebra. Similarly, $R[x_1, ..., x_n]$ is generated as an algebra by $\{x_1, ..., x_n\}$.

Example 2

If R[x]/I with $I \subset R[x]$ an ideal, and $x := \overline{X} \in A$, then A = R[x]. That is, A is generated by $x = \overline{X}$ as an algebra. More generally, if $I \subset R[x_1, \dots, x_n]$ an ideal, then $R[x_1, \dots, x_n]/I$ is generated by $\{\overline{x}_1, \dots, \overline{x}_n\}$.

Proposition

If $A \in \mathsf{CAlg}_R$ is a finitely generated, commutative R-algebra, then $A \cong R[x, ..., x_n]/I$ for some $n \ge 1$ and ideal $I \subset R[x_1, ..., x_n]$.

April 3, 2024

Definition: Symmetric Polynomials

Let R be a commutative ring.

A polynomial $f \in R[x_1, ..., x_n]$ is symmetric if $f(x_{\sigma(1)}, ..., x_{\sigma(n)} = f(x_1, ..., x_n)$ for all $\sigma \in S_n$. In more detail: the smmetric group S_n acts on $R[x_1, ..., x_n]$ by R-algebra homomorphism. $\sigma \in S_n \to R[x_1, ..., x_n] \to R[x_1, ..., x_n]$ given by $x_i \mapsto x_{\sigma(i)}$.

The canonical action of S_n on $\{1, ..., n\}$ is

$$S_n \to \operatorname{Set} \xrightarrow{F} \operatorname{CAlg}_R$$

 $* \mapsto \{1, \dots, n\} \mapsto R[x_1, \dots, x_n]$

Exercise 1

The symmetric polynomials form a subalgebra of $R[x_1,...,x_n]$.

Example 1

Consider the polynomial

(*)
$$(t-x_1)(t-x_2)\cdots(t-x_n) \in R[x_1,\ldots,x_n][t]$$

Write

$$t^{n} - s_{1}t^{n-1} + s_{2}t^{n-2} + \cdots + (-1)^{n}s_{n}$$

where $s_1, \ldots, s_n \in R[x_1, \ldots, x_n]$.

Examples

Let n = 2.

$$(t-x_1)(t-x_2) = t^2 - \underbrace{(x_1+x_2)}_{s_1} t + \underbrace{x_1x_2}_{s_2}$$

Let n = 3.

$$(t-x_1)(t-x_2)(t-x_3) = t^3 - \underbrace{(x_1+x_2+x_3)}_{s_1} t^2 + \underbrace{(x_1x_2+x_2x_3+x_1x_3)}_{s_2} t - \underbrace{x_1x_2x_3}_{s_3}$$

Exercise 2

Show that the polynomials $s_1, ..., s_n \in R[x_1, ..., x_n]$ are symmetric using the fact that (*) is unchanged by permuting the x_i s.

Definition: Elementary Symmetric Polynomials

The polynomials $s_1, ..., s_n \in R[x_1, ..., x_n]$ are the elementary symmetric polynomials in n variables. Explicitly,

$$s_1 = x_1 + x_2 + \dots + x_n$$

$$s_2 = \sum_{1 \le i \le j \le n} x_i x_j$$

$$\vdots$$

$$s_k = \sum_{1 \le i_1 \le \dots \le i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

$$\vdots$$

$$s_k = x_1 x_2 \cdots x_n$$

Theorem: Fundamental Theorem on Symmetric Polynomials

Every symmetric polynomial $f \in R[x_1,...,x_n]$ can be expressed in a unique way as a polynomial in the elementary symmetric polynomials.

In particular, $R[s_1,...,s_n] \subseteq R[x_1,...,x_n]$ is the subalgebra of symmetric polynomials.

Recall: Group of Units

If R is a ring, then $U(R) = R^{\times} = \{a \in R : a \text{ is invertible}\}.$ This is the multiplicative group of units in R.

Exercise 3

This determines a functor Ring → Grp.

Definition: Field

A field is a nonzero commutative ring F in which every nonzero element is invertible (i.e. $F^{\times} = F \setminus \{0\}$).

Remarks:

A field has no nontrivial ideals.

A commutative ring R is a field if and only if (0) is a maximal ideal.

If $I \subset R$ is an ideal in a commutative ring then $R \setminus I$ is a field if and only if I is a maximal ideal.

Definition: Domain

A (integral) domain is a nonzero commutative ring R such that $\forall a, b \in R, ab = 0 \implies a = 0$ or b = 0.

Remarks:

A commutative ring R is a domain if and only if (0) is a prime ideal.

If $I \subset R$ is an ideal in a commutative ring, then $R \setminus I$ is a domain if and only if I is a prime ideal.

Every field is a domain.

In fact, every subring of a field is a domain.

Conversely, domains can be characterized as the subrings of fields.

Definition: Field of Fractions

Let R be a domain.

Its field of fractions, Frac(R), is the set of all "formal fractions"

$$\operatorname{Frac}(R) = \left\{ \frac{a}{b} : a, b \in R, b \neq 0 \right\}$$

More precisely, $Frac(R) = (R \times (R \setminus \{0\})) / \sim \text{ where}$

$$(a_1, b_1) \sim (a_2, b_2) \iff a_1 b_2 = a_2 b_1$$

and we define $\frac{a}{b} := [(a, b)]$. It is a field under addition and multiplication of fractions

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_2}$$
 and $\frac{a_1}{b_1} \frac{a_2}{b_2} = \frac{a_1a_2}{b_1b_2}$

We have an injective ring homomorphism

$$R \hookrightarrow \operatorname{Frac}(R)$$
$$a \mapsto \frac{a}{1}$$

Example 1

 $\mathbb{Q} = \operatorname{Frac}(\mathbb{Z}).$

Remark:

 \mathbb{Z} is a domain.

Its ideals are $n\mathbb{Z}$ for n = 0, 1, 2, ...

Its prime ideals are (0) and $p\mathbb{Z}$ for p prime.

Definition: Root

Let *R* be a commutative ring and $f \in R[x]$.

A root or zero of f is an element $r \in R$ such that f(a) = 0.

$$R[x] \xrightarrow{\operatorname{ev}_a} R$$
$$f \longmapsto 0$$

The kernel is (x - a).

That is f(a) = 0 if and only if $f \in (x - a)$, if and only if $x - a \mid f$, if and only if f(x) = (x - a)g(x) for some $g \in R[x]$.

Proposition:

Let R be a domain. Then

- 1. R[x] is a domain.
- 2. deg(fg) = deg(f) + deg(g).
- 3. $R[x]^{\times} = R^{\times}$ (i.e. $f \in R[x]^{\times} \iff f(x) = b_0$ with $b_0 \in R^{\times}$).

Example 1

If R = F a field, $F[x]^{\times}$ = the nonzero constant polynomials.

Remark:

If R a domain and $a \in R$ a root of $f \in R[x]$, then

$$f(x) = (x - a)^m g(x)$$

with $g(a) \neq 0$. The m is uniquely determined and called the multiplicity of the root. Roots of multiplicity 1 are called simple roots.

Remark:

If R is a domain, a polynomial $f \in R[x]$ of degree d has at most d roots. In fact, at most d roots counted with multiplicity.

Definition: Formal Derivative

The formal derivative of a polynomial

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_2 x^2 a_1 x + a_0 \in R[x]$$

is the polynomial $Df = f' \in R[x]$ defined by

$$f'(x) = da_d x^{d-1} + \dots + 2a_2 x + a_1$$

Remark: Properties

$$(f+g)' = f'+g'$$
 $R[x] \to R[x]$ is R -linear $(af)' = af'$ for $a \in R$ $(fg)' = fg' + f'g$ (Leibniz Formula)

Proposition:

 $a \in R$ is a multiple root of $f \in R[x]$ if and only if f(a) = 0 and f'(a) = 0.

Proof

$$f(x) = (x-a)^m g(x), g(a) \neq 0.$$

Therefore, by Lebniz, $f'(x) = m(x-a)^{m-1} g(x) + (x-a)^m g'(x).$

Recall:

For a field F, the polynomial ring F[x] is a PID. \mathbb{Z} is also a PID.

Proposition:

Let R be a PID.

Every nonzero prime ideal is maximal.

Proof

Let $0 \neq p$ be a nonzero prime ideal.

Suppose $p \subseteq I$. Then p = (p) and I = (a) for some $a \in R$ and prime element $p \in R$.

Then $(p) \subseteq (a)$ and p = ab for some $b \in R$. So $p \mid a$ or $p \mid b$.

If $p \mid a$, then p = I. If, instead, b = pc for some $c \in R$, then

$$p = acp \implies 1 = ac \implies a \in R^{\times} \implies (a) = R$$

Example 1

If $f \in F[x]$ is an irreducable polynomial then F[x]/(f) is a field. For example, $R[x]/(x^2+1)$ is a field ($\cong \mathbb{C}$).

Also, $\mathbb{F}_p = \mathbb{Z}/pz$ is a field.

Example 2

On the other hand,

$$(\mathbb{Z}/n)^{\times} = \{ a \in \mathbb{Z}/n : \gcd(a, n) = 1 \}$$

 $|(\mathbb{Z}/n)^{\times}| = |\{ 0 \le k \le n - 1 : \gcd(k, n) = 1 \}| = \phi(n)$

Euler's Totient Function.

Remark

Later in the course, we will prove the Fundamental Theorem of Algebra which states that every nonconstant complex polynomial $f \in \mathbb{C}[x]$ has a root.

This implies that if $f \in \mathbb{C}[x]$ is a monic polynomial with complex coefficients then $f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$ with $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$.

Write it as

$$f(x) = x^d + a_1 x^{d-1} + \dots + a_n$$

with coefficients $a_1, \ldots, a_n \in \mathbb{C}$. Then

$$a_1 = -s_1(\alpha_1, \dots, \alpha_n) = -(\alpha_1 + \dots + \alpha_n)$$

$$a_k = (-1)^k s_k(\alpha_1, \dots, \alpha_n)$$

$$a_n = (-1)^n \alpha_1 \dots \alpha_n$$

Example 1

$$f(x) = x^2 + bx + c = (x - \alpha_1)(x - \alpha_2)$$

where
$$\alpha_1=\frac{-b+\sqrt{b^2-4ac}}{2}$$
 and $\alpha_2=\frac{-b-\sqrt{b^2-4ac}}{2}$. So $\alpha_1+\alpha_2=-b$ and $\alpha_1\alpha_2=c$.

Bottom Line

The coefficients of a monic polynomial are very simple expressions of the roots of the polynomial.

Motivating Question

Can we go the other around?

Can we find simple expressions of the roots of a polynomial in terms of the coefficients.

April 8, 2024

Chapter 1: Field Theory

Definition: Field Homomorphism

If F and K are fields, a field homomorphism $F \xrightarrow{\phi} K$ is just a ring homomorphism.

Remark

The kernel of a field homomorphism $\phi: F \to K$ is an ideal of F.

Hence, it is either (0) or *F*. Since $\phi(1_F) = 1_K \neq 0$, $\ker(\phi) = (0)$.

Thus every field homomorphism is automatically injective and embeds F as a subfield of K.

Notation

If $F \subseteq K$ is a subfield, we say that K is an extension of F or that K/F is a field extension.

Remark

The ring of integers \mathbb{Z} is the initial object in the category of rings.

That is, given any ring R, there is a unique ring homomorphism $\mathbb{Z} \to R$ given by $n \mapsto n1_R = \begin{cases} \frac{n}{1_R + \dots + 1_R} & \text{if } n \ge 0 \\ -\underbrace{\left(1_R + \dots + 1_R\right)}_{n} & \text{if } n < 0 \end{cases}$

The kernel of an ideal of \mathbb{Z} . We have three possibilities

1. $\ker = \mathbb{Z} \implies 1_R = 0 \text{ in } R \implies R = 0.$

2. $\ker = (0) \Longrightarrow \mathbb{Z} \hookrightarrow R$.

3. $\ker = n\mathbb{Z}$ for some $n \ge 2 \implies \mathbb{Z}/n\mathbb{Z} \hookrightarrow R$.

Proposition

Let F be a field and consider the unique ring homomorphism $\mathbb{Z} \xrightarrow{\phi} F$. Then the kernel of ϕ is either (0) or $p\mathbb{Z}$ for some prime number p.

Proof

Note that $\mathbb{Z}/n\mathbb{Z} \hookrightarrow F$, but all subrings of fields are domains and $\mathbb{Z}/n\mathbb{Z}$ is a domain if and only if $n\mathbb{Z}$ is a prime ideal of \mathbb{Z} .

Corollary

Let F be a field. It contains precisely one of the following as a subfield

1. Q or

2. \mathbb{F}_p for p prime.

Proof

The proposition implies either $\mathbb{Z} \hookrightarrow F$ or $\mathbb{Z}/p\mathbb{Z} \hookrightarrow F$ for p prime.

If $\mathbb{Z} \hookrightarrow F$ then this extends to an embedding $\mathbb{Q} \hookrightarrow F$ by the universal property of the field of fractions.

On the other hand, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ by definition.

Claim: we can't have more than one such field as a subfield of F.

Observe that if *F* has a subfield isomorphic to \mathbb{F}_p , then $p \cdot 1 = 0$ in *F*.

On the other hand, if $\mathbb{Q} \subseteq F$ then $p \cdot 1 \neq 0$ for all p.

Finally, if $p \neq q$ primes and $\mathbb{F}_p \subseteq F$ and $\mathbb{F}_q \subseteq F$, then $p \cdot 1 = 0$ and $q \cdot 1 = 0$ in F.

By Bezout's, this means that $a, b \in \mathbb{Z}$: ap + bq = 1. So

$$1 = 1 \cdot 1 = (ap + bq) \cdot 1 = (ap)1 + (bq)1 = a(p \cdot 1) + b(q \cdot 1) = 0 + 0 = 0$$

which cannot be true.

Definition: Field Characteristic

We define the characteristic of a field F by $\operatorname{char}(F) = \begin{cases} 0 & \text{if } \mathbb{Q} \subseteq F \\ p & \text{if } \mathbb{F}_p \subseteq F \end{cases}$.

Remark

Note that the kernel of $\mathbb{Z} \to F$ is $char(F)\mathbb{Z} \subseteq \mathbb{Z}$.

The characteristic of *F* is the smallest positive integer *n* such that $n \cdot 1 = 0$ in *F* or 0 if $n \cdot 1 \neq 0$ in *F* for all $n \geq 1$.

Remark

If K/F is a field extension, then K and F have the same characteristic. $n \cdot 1 = 0$ in F if and only if $n \cdot 1 = 0$ in K. Observe that the composition $\mathbb{Z} \to F \hookrightarrow K$ requires matching kernels.

Aside

In math, one sometimes passes between characteristic zero and characteristic p through the integers.

Examples

 \mathbb{Q} , \mathbb{R} , \mathbb{C} have characteristic 0.

 $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ has characteristic p.

 $\mathbb{C}(t) := \operatorname{Frac}(\mathbb{C}[t]).$

 $\mathbb{F}_p(t) := \operatorname{Frac}(\mathbb{F}_p[t])$ is an infinite field of characteristic p.

Remark

If R is a domain, then R[t] is a domain and

$$R(t) := \operatorname{Frac}(R[t]) = \left\{ \frac{f}{g} : f, g \in R[t], g \neq 0 \right\}$$

the field of rational functions.

More generally, $R[t_1, ..., t_n]$ is a domain and

$$R(t_1,\ldots,t_n) := \operatorname{Frac}(R[t_1,\ldots,t_n])$$

is the field of rational functions in n variables.

Definition: Degree of a Field Extension

Let K/F be a field extension.

We can regard K as a vector space over F (restriction of scalars $F \hookrightarrow K$).

The degree of the field extension K/F is dim of the F-vector space K.

Notation

$$[K:F] := \dim_F(K)$$
.

Example

 \mathbb{C}/\mathbb{R} is a degree 2 extension. An \mathbb{R} -basis for \mathbb{C} is $\{1, i\}$.

Remark

K/F has degree 1 if and only if K = F.

Terminology

A degree 2 extension K/F is a quadratic extension. A degree 3 extension K/F is a cubic extension.

Etc.

Definition: Finite Extension

A field extension K/F is said to be a finite extension if [K:F] is finite.

Example

F(t)/F, noting $F \subseteq F[t] \subseteq F(t)$, is an infinite etension. Write $[F(t):F] = \infty$.

Proposition

```
Let L/K/F be field extensions.
Then [L:F] = [L:K][K:F].
```

Proof (Sketch)

Idea: if $\{a_i\}_{i\in I}$ is a basis for L/K and $\{b_j\}_{j\in J}$ ia s a basis for K/F, then $\{a_ib_j\}_{(i,j)\in I\times J}$ is a basis for L over F. Note that $|I\times J|=|I||J|$.

Definition: Algebraic and Transcendental Elements

Let K/F be a field extension.

An element $a \in K$ is said to be algebraic over F if it is a root of a nonzero polynomial with coefficients in F. Otherwise, we say that a is transcendental over F.

Example

```
Consider \mathbb{C}/\mathbb{Q}.

\sqrt{2} \in \mathbb{C} is algebraic over \mathbb{Q} since t^2 - 2 \in \mathbb{Q}[t].

i \in C is algebraic over \mathbb{Q} since t^2 + 1 \in \mathbb{Q}[t].

\omega_n = e^{2\pi i/n} \in \mathbb{C} is algebraic over \mathbb{Q} since t^n - 1 \in \mathbb{Q}[t].
```

Remark

Whether or not an element is algebraic or transcendental depends a lot on the ground field F. e.g. every element $a \in K$ is algebraic over K, since it is a root of $t - a \in K[t]$.

Remark

Often the terms "algebraic number" and "transcendental number" mean a complex number which is algebraic or transcendental over \mathbb{Q} .

Theorem: (Hermite 1873)

e is a transcendental number.

Theorem: (Lindemann 1882)

 π is a transcendental number.

Exercise (Cantor)

There are only countably many algebraic numbers.

Remark

Whether $a \in K$ is algebraic or transcendental over F is described by the evaluation homomorphism

$$F[t] \xrightarrow{\operatorname{ev}_a} K$$
$$f \longmapsto f(a)$$

That is, a is transcendental if and only if $ker(ev_a) = (0)$.

Then a is algebraic if and only if $ker(ev_a) \neq (0)$.

F[t] is PID, so if $a \in K$ is algebraic over F then $ker(ev_a)$ is a nonzero principal ideal of F[t].

A generator of this principal ideal is only determined up to association (that is up to multiplication by a nonzero constant polynomial).

We can pin it down by requiring the generator to be monic.

Definition: Minimal Polynomial

The unique monic polynomial f of lowest degree with coefficients in F such that f(a) = 0 is called the minimal polynomial of a over F.

Notation

 $m_a(t) \in F[t].$

Remark

It generates $\ker(\operatorname{ev}_a)$. For any $f \in F[t]$, f(a) = 0 if and only if $m_a \mid f$.

Note

 $F[t]/(m_a(t))$ is isomorphic to a subring of K. So $F[t]/(m_a(t))$ is a domain and $m_a \in F[t]$ is an irreducible polynomial.

Exercise

The minimal polynomial of $a \in K$ over F is the unique, monic, irreducible polynomial $f \in F[t]$ such that f(a) = 0.

Example

Take $\sqrt{2} \in \mathbb{C}$, the root of $t^2 - 2 \in \mathbb{Q}[t]$. This is the minimal polynomial of $\sqrt{2}$ over \mathbb{Q} since it is irreducible. $i \in \mathbb{C}$ is a root of $t^2 + 1 \in \mathbb{Q}[t]$ which is also irreducible and hence the minimal polynomial of i over \mathbb{Q} . $a = \frac{1+i}{2} \in \mathbb{C}$ (\sqrt{i}) is a root of $t^4 + 1 \in \mathbb{Q}[t]$, irreducible and therefore minimal of a over \mathbb{Q} .

Consider $F = \mathbb{Q}[i] = \{\alpha + i\beta : \alpha, \beta \in \mathbb{Q}\}$. Observe that $t^4 + 1 = (t^2 - i)(t^2 + i) \in F[t]$. We can show that the minimal polynomial of a over F is $t^2 - i$.

Definition: Generated Subring

Let K/F be a field extension and let $S \subseteq K$ be a subset.

The subring generated by S over F is defined to be F[S] := the intersection of all subrings of K which contain F and S. That is, the F-subalgebra generated by S.

Exercise

$$F[S] = \{a \in K : a = f(s_1, ..., s_n) \text{ for some } n \ge 0, f \in F[x_1, ..., x_n], s_1, ..., s_n \in S\}.$$

Notation

$$S = \{a\} \rightsquigarrow F[a].$$

$$S = \{a_1, ..., a_n\} \rightsquigarrow F[a_1, ..., a_n].$$
Note that $F[a] = \operatorname{im}(F[t] \xrightarrow{\operatorname{ev}_a} K)$ and $F[a_1, ..., a_n] = \operatorname{im}(F[t_1, ..., t_n] \xrightarrow{\operatorname{ev}_a} K).$

Definition: Generated Subfield

Let K/F be a field extension and let $S \subseteq K$ be a subset.

Then the subfield generated by S over F is defined to be F(S) := the intersection of all subfields of K which contain F and S.

Observe that $F[S] \subset F(S)$.

Exercise

$$F(S) = \left\{ a \in K : a = \frac{\alpha}{\beta} \text{ for } \alpha, \beta \in F[S] \right\} = \text{Frac}(F[S]).$$

Notation

$$S = \{a\} \rightsquigarrow F(a).$$

$$S = \{a_1, \dots, a_n\} \rightsquigarrow F(a_1, \dots, a_n).$$

Definition: Finitely Generated Field Extension

A field extension K/F is finitely generated if K = F(S) for some $S \subset K$ finite.

That is, finitely generated as a field over F not as an algebra over F or a vector space over F.

Example

F(t)/F is a finitely generated field extension but is not finitely generated as an F-algebra (exercise) nor as an F-vector space.

Example

In F(t)/F, the indeterminant $t \in F(t)$ is transcendental over f. The evaluation homomorphism $F[t] \hookrightarrow F(t)$.

April 10, 2024

Last time: K/F, $S \subset K$, $F[S] \subset F(S)$. Example: $S, T \subset K \rightsquigarrow F(S)(T) = F(S \cup T)$. $F(a_1, ..., a_n) = F(a_1, ..., a_{n-1})(a_n)$.

Remark

Let K/F be a field extension.

If $a \in K$ is transcendental over F, then

$$F[t] \xrightarrow{\operatorname{ev}_a} F[a]$$

is an isomorphism. Hence,

$$F(a) \simeq \operatorname{Frac}(F[t]) = F(t)$$

the field of rational functions.

Thus, the field extensions F(a) for $a \in K$ transcendental over F are all isomorphic.

Example

 $\mathbb{Q}(\pi) \simeq \mathbb{Q}(e)$ are isomorphic fields.

Bottom Line

Transcendental elements behave like indeterminates t.

The prototypical example is F(t)/F.

Proposition

Let K/F be a field extension.

If $a \in K$ is algebraic over F, then $F[a] \simeq F[t]/(m_a(t))$ where $m_a(t) \in F[t]$ is the minimal polynomial of a over F.

Moreover, F[a] is a field. Hence F[a] = F(a).

Also, $\lceil F(a) : F \rceil = \deg(m_a(t))$.

An explicit *F*-basis of F(a) is $\{1, a, a^2, ..., a^{d-1}\}$ where $d := \deg(m_a(t))$.

Proof

$$F[t] \xrightarrow{\operatorname{ev}_a} K$$

$$\downarrow \qquad \uparrow$$

$$F[t]/m_a(t) \xrightarrow{\sim} F[a]$$

Now $m_a(t)$ is irreducible, so $(m_a(t))$ is a nonzero prime ideal.

F[t] is PID, therefore every nonzero prime ideal is maximal.

Hence $F[t]/(m_a(t))$ is a field.

Also, $\dim_F(F[t]/(f(t))) = \deg(f)$.

A basis $\{\overline{1},\overline{t},\overline{t^2},...,\overline{t^{d-1}}\}$.

Suppose
$$a_0T + a_1\overline{t} + \dots + a_{d-1}\overline{t^{d-1}} = 0 = a_0 + a_1 + \dots + a_{d-1}\overline{t^{d-1}}$$
. That is, $g(t) = a_0 + a_1t + \dots + a_{d-1}t^{d-1} \in (f(t))$.

So f divides g but deg(f) = d > d - 1. Then g = 0 in the new polynomial.

That is $a_0 = a_1 = \dots = a_{d-1} = 0$.

What is the span? $g(t) = b_0 + b_1 + \cdots + b_n t^n = b_0 + b_1 t + \cdots + b_{d-1} t^{d-1} + t^d (\cdots)$.

In F[t]/(f(t)), f(t) = 0, $f(t) = t^d = a_{d-1} + \cdots + a_0$, $t^d = (a_{d-1}t^{d-1} + \cdots + a_0)$ where g(t) is some polynomial of degree less than d.

Finally, note that $F[t]/(\underline{m_a}(t)) \xrightarrow{\sim} F[a]$ is given by $\overline{f(t)} \mapsto f(a)$. Then $\overline{1} \mapsto 1$, $\overline{t} \mapsto a, \dots, \overline{t^{d-1}} \mapsto a^{d-1}$.

Remark

This proposition explains the choice of the term "degree" for [K : F]. If K = F(a) is generated by a single, algebraic element $a \in K$, then the [F(a) : F] is the degree of the minimal polynomial of a over F.

Example 1

 $\mathbb{Q}(i) = \mathbb{Q}[i] = \{a+bi : a,b \in \mathbb{Q}\} \text{ (since the minimal polynomial } t^2+1 \text{ of } i \text{ over } \mathbb{Q} \text{ has degree 2)}.$ $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[\sqrt{2}] = \{a+b\sqrt{2} : a,b \in \mathbb{Q}\}.$

Example 2

 $\xi_p := e^{2\pi i/p} \in \mathbb{C}$ for a prime p is a root of unity for

$$x^{p} - 1 = (x - 1)(x^{p-1} + x^{p-2} + \dots + x + 1)$$

Since $\xi_p \neq 1$, ξ_p is a root of $\Phi_p(x)$.

Eisenstein's Criterion applied to $\Phi_p(x+1)$ that $\Phi_p(x)$ is irreducible over \mathbb{Z} and hence over \mathbb{Q} .

Hence $\Phi_p(x)$ is the minimal polynomial of ξ_p over \mathbb{Q} .

Thus,
$$\mathbb{Q}(\xi_p) = \mathbb{Q}[\xi_p] = \{a_0 + a_1 \xi_p + a_2 \xi_p^2 \cdots + a_{p-2} \xi_p^{p-2} : a_i \in \mathbb{Q}\}.$$

Example

Let
$$p = 3$$
. $\mathbb{Q}(\xi_3) = \{a_0 + a_1 \xi_3 : a_0, a_1 \in \mathbb{Q}\}$.
So $\mathbb{Q}(\xi_3) = \mathbb{Q}(\sqrt{3}i) = \mathbb{Q}(\sqrt{-3}) = \{a + b\sqrt{-3} : a, b \in \mathbb{Q}\}$.

Example 3

$$\mathbb{R}(i) = \mathbb{R}[i] = \{a + bi : a, b \in \mathbb{R}\} = \mathbb{C}.$$

$$\mathbb{R}[i] \simeq \mathbb{R}[t]/(t^2 + 1).$$

To Study:

Eisenstein's Criterion Gauss' Lemma

Remark

Given a field extension K/F, an element $a \in K$ is algebraic over F if and only if $[F(a):F] < \infty$.

The above proposition gives the \Longrightarrow direction.

On the other hand, if a is transcendental then $F(a) \simeq F(t)$ and $[F(t):F] = \infty$.

Proposition

Let K/F be a finite extension of degree n.

Every element of K is algebraic over F and has degree dividing n.

Proof

$$[K:F] = [K:F(a)][F(a):F]$$

Corollary

Every irreducible polynomial $f \in \mathbb{R}[x]$ has degree 1 or 2.

Proof

(Assuming the FTA)

Let $f \in \mathbb{R}[x]$ be irreducible. Then $K : \mathbb{R}[x]/(f)$ is a field.

By the Fundamental Theorem of Algebra, f has a root $a \in \mathbb{C}$.

So $\mathbb{R} \hookrightarrow \mathbb{R}[x]/(f) \hookrightarrow \mathbb{C}$, and

$$2 = [\mathbb{C} : \mathbb{R}] = [\mathbb{C} : \mathbb{R}[x]/(f)][\mathbb{R}[x]/(f) : \mathbb{R}]$$

Therefore $[R[x]/(f):\mathbb{R}] = \deg(f)$ is either 1 or 2.

Definition: Algebraic Extension

A field extension K/F is said to be an algebraic extension if every element of K is algebraic over F.

Example

We showed above that every finite extension is an algebraic extension.

Theorem:

Let L/K/F be field extensions.

Then L/F is algebraic if and only if L/K is algebraic and K/F is algebraic.

Proof

 (\Longrightarrow) trivial.

 (\Longrightarrow) Let $a \in L$. Then f(a) = 0 for some nonzero polynomial $f(t) \in K[t]$. Write

$$f(t) = b_0 + b_1 t + \dots + b_d t^d$$

with $b_0, \ldots, b_d \in K$.

Each of these b_i is algebraic over F. Hence $E := F(b_0, b_1, ..., b_d)$ is a finite extension of F.

$$F(b_0,...,b_d)/F(b_0,...,b_{d-1})/.../F(b_0)/F$$

Note that $f(t) \in E[t]$ and f(a) = 0, so $a \in L$ is algebraic over E. Observe

$$[E(a):F] = \underbrace{[E(a):E]}_{\text{finite}} \underbrace{[E:F]}_{\text{finite}}$$

so E(a)/F is finite, hence an algebraic extension.

Therefore $a \in L$ is algebraic over F.

Corollary

Let K/F be a field extension.

The elements of K which are algebraic over F form a subfield of K.

Proof

Let $a, b \in K$ be algebraic over F.

Then F(a,b)/F factors as F(a,b)/F(a)/F.

So F(a,b)/F is a finite, hence algebraic, extension.

Therefore a + b, a - b, ab, a^{-1} (for $a \ne 0$) are algebraic over F.

Example

Apply to \mathbb{C}/\mathbb{Q} to see that the collection of all algebraic numbers forms a subfield of \mathbb{C} .

 $\overline{\mathbb{Q}}$ is defined as the field of algebraic numbers.

Recall: Theorem (Cantor), $\overline{\mathbb{Q}}$ is countable.

Exercise: $\overline{\mathbb{Q}}/Q$ is an infinite extension.

Adjoining Elements

Let *F* be a field and $f(x) \in F[x]$ be irreducible.

Then K := F[x]/(f) is a field extension of degree deg(f).

Note: K = F(a) when $a := \overline{x}$.

Note also that a is a root of f(x).

$$f(a) = f(\overline{x}) = \overline{f(x)} = 0$$

in K.

Example 1

We could define $\mathbb{C} := \mathbb{R}[x]/(x^2+1)$ and define $i := \overline{x}$.

Example 2

Let F be a field.

Suppose $a \in F$ which does not have a square root in F (i.e. $\not\equiv \delta \in F$ such that $\delta^2 = a$).

Then $x^2 - a \in F[x]$ is irreducible.

Then $K := F[x]/(x^2 - a)$ is a degree 2 extension.

Setting $\delta := \overline{x} \in K$, $K = F(\delta)$ and $\delta^2 = a \in F$.

In fact, every quadratic extension arises in this way – adjoining a square root.

Let F be a field of characteristic \neq 2.

Let K/F be a quadratic extension (i.e. [K:F] = 2).

Let $\delta \in K$ be an element such that $\delta \notin F$, then $K = F(\delta) (K/F(\delta)/F)$.

So the minimal polynomial of δ over F is a quadratic polynomial.

$$m_{\delta}(t) = t^2 + bt + c \in F[t]$$

Consider $\Delta := b^2 - 4c \in F$.

Claim: Δ does not have a square root in F. Otherwise

$$m_{\delta}(t) = \left(t - \frac{-b + \sqrt{\Delta}}{2}\right) \left(t - \frac{-b - \sqrt{\Delta}}{2}\right)$$

would not be irreducible.

Note: $2\delta + b = \pm \sqrt{\Delta}$. So

$$K = F(\delta) = F(2\delta + b) = F(\sqrt{\Delta})$$