1. By calculating the limit

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

find the derivatives of the following functions at x = a:

(a)
$$f(x) = \frac{1}{x}$$
 for $a \neq 0$.

(b)
$$f(x) = \sqrt{x}$$
 for $a \neq 0$.

(c)
$$f(x) = \frac{1}{\sqrt{x}}$$
 for $a \neq 0$.

(d)
$$f(x) = x^3 - 3x + 5$$
.

(e)
$$f(x) = x^{1/4}$$
.

(f) *
$$f(x) = \sin(x^2)$$
.

[Hint: For (f) you can use that as h approaches 0, $\sin h \approx h$ and $\cos h \approx 1 - h^2$]

GROUP WORK 1, SECTION 2.7

Follow that Car

The distance travelled by a car is given by $d(t) = 8(t^3 - 6t^2 + 12t)$, where d is in miles and t is in hours.

1. Draw a graph of d(t) from t = 0 to t = 3.

2. Does the car ever stop?

3. What is the average velocity over [1, 3]? over [1.5, 2.5]? over [1.9, 2.1]?

4. Estimate the instantaneous velocity at t = 2. Give a physical interpretation of your answer.

1. We know that
$$\delta(t) = 8(t^2 - 6t^2 + 12t)$$

now factorize = $8t(t^2 - 6t + 12)$
 $6(-6t + 12)$

$$t^{2}-6t+12 = (t-3)^{2}+3$$

d(2) = 64d(3) = 72

so its graph looks like

(Check this on desmos.com)

3. average velocity = \(\Delta \) distance 1 time

• on [1.3]: \triangle distance = J(3)-J(0)=20

 $\Delta time = 3 - 1 = 2$

average velocity = 20 = 10 miles/hour

On [1.5,2.5]: \triangle distance = J(2.5) - J(1.5) = 2

2 time = 25-1.5 = 1

average velocity = $\frac{2}{1} = 2$ miles/how

On [1.9,2.1]: \triangle distance = $\partial(21) - \partial(1.9) = 0.016$

 $\Delta \text{ time} = 21 - 1.9 = 0.2$ average velocity = $\frac{0.016}{0.2} = 0.8 \text{ miles hour}$

Looks like as we get closer to t=2, the average velocity approaches O. So the instantaneous velocity at t=2 is O miles /hour. That means the car stops momentarily.

GROUP WORK 3, SECTION 2.7

Connect the Dots

A company does a study on the effect of production value p of an advertisement on its consumer approval rating A. After interviewing eight focus groups, they come up with the following data:

Production Value	Consumer Approval	
\$1000	32%	
\$2000	33%	
\$3000	46%	
\$3500	55%	
\$3600	61%	
\$3800	65%	
\$4000	69%	
\$5000	70%	

Assume that A(p) gives the consumer approval percentage as a function of p.

1. Estimate A' (\$3500). Is this likely to be an overestimate or an underestimate?

We can estimate
$$A'(3500) \cong \frac{A(3600) - A(3500)}{3600 - 3500} = \frac{61 - 65}{100} = 0.07$$

It looks like around 3500, A is increasing at a Sucreasing rate and 360073500 so this is likely an underestimate.

2. Interpret your answer to Problem 1 in real terms. What does your estimate of A' (\$3500) tell you?

It means roughly that every \$1 of extra production value will increase consumer approved by 0.07%

3. What are the units of A'(p)?

4. Estimate A' (\$3550). Is your estimate better or worse than your estimate of A' (\$3500)? Why? Based on the information given, our best estimate is still 0.07 and we expect it to give a slightly better estimate since A'(3500) was likely an underestimate.

GROUP WORK 1, SECTION 2.8

Tangent Lines and the Derivative Function

The following is a graph of $g(x) = x \ln x$.

It is a fact that the derivative of this function is $g'(x) = \ln x + 1$.

1. Sketch the line tangent to g(x) at x = 2 on the graph above.

 $g'(z) = \ln(z) + 1$ and $g(z) = 2\ln(z)$. So the line has slope $\ln(z) + 1$ and passes through the point $(2, 2\ln(z))$. So it has equation $y = (\ln(2) + 1) \propto -2$.

3. Now sketch the line tangent to g(x) at $x = \frac{1}{e} \approx 0.368$.

4. Find an equation of the tangent line at $x = \frac{1}{c}$.

Note: lnte) = -ln(e) = -1.

This line has slope g(= = In(=)+1 = 0 and passes through (te, glt) = (te, te) so it has equetion y==t.

GROUP WORK 3, SECTION 2.8

The Derivative Function

The graphs of several functions f are shown below. For each function, estimate the slope of the graph of f at various points. From your estimates, sketch graphs of f'.

	/				
	/				
	/				
	· · · · · · · · · · · · ·				
. /					
Graph 1		Graph 2			
Carantir .		5804 N. Z.			
	1				
	<u>.</u>				
	/				
	/				
	/				
Graph 3 Graph 4					
(.570,	pris i i i i i i i i				

.

 <u> </u>	/			
 / . /				
 √.				
			6 1 1 1 1 Gr	sph 6 mm m
 Graph	5			
 (2 whi				
 	,			
 · · · · · /			· · · · · · · · · · · · · · · · · · ·	 .
 /	/			
 	 	 . <u>_</u>	<u>., </u>	<u> </u>
 /	/			
 · / · · ·				
 				/
 · · · <u>·</u>				
 , , Gro	ph.7		Gr	oph 8

1. By calculating the limit

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

find the derivatives of the following functions at x = a:

(a)
$$f(x) = \frac{1}{x}$$
 for $a \neq 0$.

(b)
$$f(x) = \sqrt{x}$$
 for $a \neq 0$.

(c)
$$f(x) = \frac{1}{\sqrt{x}}$$
 for $a \neq 0$.

(d)
$$f(x) = x^3 - 3x + 5$$
.

(e)
$$f(x) = x^{1/3}$$
.

(f)
$$f(x) = \sin(x^2)$$
.

[Hint: For (f) you can use that as h approaches 0, $\sin h \approx h$ and $\cos h \approx 1 - h^2$]

Solution

(a) $\lim_{h \to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \lim_{h \to 0} \frac{-h}{ha(a+h)} = \lim_{h \to 0} \frac{-1}{a(a+h)} = \frac{-1}{a^2}$

$$\lim_{h \to 0} \frac{\sqrt{a+h} - \sqrt{a}}{h}$$

multiply top and bottom by $\sqrt{a+h} + \sqrt{a}$ gives

$$\lim_{h \to 0} \frac{h}{h(\sqrt{a+h} + \sqrt{a})} = \lim_{h \to 0} \frac{1}{\sqrt{a+h} + \sqrt{a}} = \frac{1}{2\sqrt{a}}$$

(c)
$$\lim_{h \to 0} \frac{\frac{1}{\sqrt{a+h}} - \frac{1}{\sqrt{a}}}{h} = \lim_{h \to 0} \frac{\sqrt{a} - \sqrt{a+h}}{h\sqrt{a+h}\sqrt{a}}$$

again, multiply top and bottom by $\sqrt{a} + \sqrt{a+h}$ gives

$$\lim_{h \to 0} \frac{-h}{h\sqrt{a+h}\sqrt{a}(\sqrt{a+h}+\sqrt{a})} = \frac{-1}{2\sqrt{a}^3}$$

$$\lim_{h \to 0} \frac{(a+h)^3 - 3(a+h) + 5 - a^3 + 3a - 5}{h} = \lim_{h \to 0} \frac{3a^2h + 3ah^2 + h^3 - 3h}{h} = \lim_{h \to 0} 3a^2 + 3ah + h^2 - 3 = 3a^2 - 3$$

$$\lim_{h \to 0} \frac{(a+h)^{1/4} - a^{1/4}}{h}$$

Now multiply top and bottom by $(a+h)^{2/3} + (a+h)^{1/3}a^{1/3} + a^{2/3}$. This gives,

$$\lim_{h \to 0} \frac{h}{h((a+h)^{2/3} + (a+h)^{1/3}a^{1/3} + a^{2/3})} = \lim_{h \to 0} \frac{1}{(a+h)^{1/3}a^{1/3} + a^{2/3}} = \frac{1}{3a^{2/3}}$$

$$\lim_{h \to 0} \frac{\sin(a^2 + 2ah + h^2) - \sin(a^2)}{h}$$

then we use the formula $\sin(x+y) = \sin x \cos y + \cos x \sin y$ with $x=a^2$, $y=2ah+h^2$.

$$\lim_{h \to 0} \sin(a^2) \left[\frac{\cos(h(2a+h)-1)}{h} \right] + \cos(a^2) \left[\frac{\sin(h(2a+h))}{h} \right]$$

now applying the hint and expanding this is equal to

$$2a\cos(a^2)$$