T1. Taller encuestas. Descriptivos*

VIII Jornadas R Albacete 2016**

Álvaro Hernández Vicente, Elvira Ferre Jaén, Antonio José Perán Orcajada, Ana Belén Marín Valverde, Antonio Maurandi López***

17 de noviembre de 2016

Índice

1.	Lectura de datos	1
2.	Descriptivos con paquete tables	1
	2.1. Variable sexo	2
	2.2. Variable actividadS	2
	2.3. Variable ingresos	
	2.4. Variable origen	
	2.5. Variable nivelIngles	
3.	Descriptivos con paquete likert	4
	3.1. Gráficos de barras	4
	3.2. Gráficos de densidad	
	3.3. Gráficos de calor	
4.	Correlaciones	13
	4.1. Matriz de correlaciones	13
	4.2. Gráficos de correlaciones	
Re	ferencias y bibliografía	16

1. Lectura de datos

Se leen los datos saeraq.Rdata, que provienen del fichero raq.dat utilizado en (A. Field, Miles, and Field 2012) (disponible en la web del libro).

Y

```
load( "saeraq.RData" )
```

2. Descriptivos con paquete tables

Se realizan descriptivos de cada variable con el paquete tables (Murdoch (2016)).

```
# library( tables )
op <- booktabs()</pre>
```

 $^{^*}doc: T1_descriptivos. Rmd$

^{**}http://r-es.org/8jornadasR/

^{****}Servicio de Apoyo Estadístico; alvarohv@um.es, elvira@um.es, antoniojose.peran@um.es, anabelen.marin4@um.es, amaurandi@um.es


```
# Función para imprimir tablas en latex
tablaLatex <- function( tabla, caption = NULL ){
  cat( '\begin{table} \\centering\n' )
  if( !is.null( caption ) ) cat( pasteO( '\\caption{', caption, '}\n' ) )
  latex( tt )
  cat( '\\end{table}' )
}</pre>
```

2.1. Variable sexo

```
tt <- tabular( ~ ( Sexo = sexo ) + ( Total = 1 ), data = df )
# html( tt, options = htmloptions( HTMLcaption = "Variable sexo", pad = TRUE ) )
tablaLatex( tt, caption = "Variable \\texttt{sexo}." )</pre>
```

Tabla 1: Variable sexo.								
Sexo								
Mujer	Mujer Hombre							
1927	644	2571						

2.2. Variable actividadS

```
tt <- tabular( ~ ( `Actividad S` = actividadS ) + ( Total = 1 ), data = df )
# html( tt, options = htmloptions( HTMLcaption = "Variable actividadS", pad = TRUE ) )
tablaLatex( tt, "Variable \\texttt{actividadS}." )</pre>
```

 Tabla 2: Variable actividadS. Actividad S								
Nada	Total							
613	658	669	631	2571				

2.3. Variable ingresos


```
# html( tt, options = htmloptions( HTMLcaption = "Variable ingresos", pad = TRUE ) )
tablaLatex( tt, "Variable \\texttt{ingresos}." )
```

Tabla 3: Variable ingresos.

	Ingresos								
ic1	mean	sd	ic2	median	Total				
29320	29672	9095	30024	27771	2571				

2.4. Variable origen

```
tt <- tabular( ~ ( Origen = origen ) + ( Total = 1 ), data = df )
# html( tt, options = htmloptions( HTMLcaption = "Variable origen", pad = TRUE ) )
tablaLatex( tt, "Variable \\texttt{origen}." )</pre>
```

Tabla 4: Variable origen.

	Origen		
Albacete	Murcia	Helsinki	Total
1178	1112	281	2571

2.5. Variable nivelIngles

Tabla 5: Variable nivelIngles.

Nivel de inglés	Frecuencia
Nulo	297
CasiNulo	289
A1	451
A2	455
B1	473
B2	377
C1	145
C2	79
IsabelII	3
Shakespeare	2
Total	2571

3. Descriptivos con paquete likert

Se realizan gráficos descriptivos de los datos con el paquete likert (Bryer and Speerschneider (2015)) que, al estar basados en ggplot2 (Wickham (2009)), permite modificarlos de forma sencilla.

```
# library( likert )
dfLikert <- df[ , grep( "^Q", colnames( df ) ) ]
colnames( dfLikert ) <- dicc[ grep( "^Q", dicc$item ), "spanish" ]

bloque1 <- 1:8
bloque2 <- 9:17
bloque3 <- 18:23

items1 <- likert( items = dfLikert[ , bloque1 ] )
items2 <- likert( items = dfLikert[ , bloque2 ] )
items3 <- likert( items = dfLikert[ , bloque3 ] )</pre>
```

3.1. Gráficos de barras

```
plot( items1, centered = TRUE, group.order = colnames( items1$items ),
    legend.position = "right" ) +
    theme( axis.text.x = element_text( size = 10 ),
        axis.text.y = element_text( size = 13, hjust = 0 ),
        legend.text = element_text( size = 10 ),
        legend.title = element_text( size = 10 )
```


Figura 1: Gráfico de barras de los ítems 1 a 8.

```
plot( items2, centered = TRUE, group.order = colnames( items2$items ),
    legend.position = "right" ) +
theme( axis.text.x = element_text( size = 10 ),
    axis.text.y = element_text( size = 13, hjust = 0 ),
    legend.text = element_text( size = 10 ),
    legend.title = element_text( size = 10 ) )
```


Figura 2: Gráfico de barras de los items 9 a 17.

```
plot( items3, centered = TRUE, group.order = colnames( items3$items ),
    legend.position = "right" ) +
  theme( axis.text.x = element_text( size = 10 ),
    axis.text.y = element_text( size = 13, hjust = 0 ),
    legend.text = element_text( size = 10 ),
    legend.title = element_text( size = 10 )
```


Figura 3: Gráfico de barras de los items 18 a 23.

3.2. Gráficos de densidad

```
plot( items1, type = "density" )
```


Figura 4: Gráfico de densidad de los items 1 a 8.

```
plot( items2, type = "density" )
```


Figura 5: Gráfico de densidad de los items 9 a 17.

```
plot( items3, type = "density" )
```


Figura 6: Gráfico de densidad de los items 18 a 23.

3.3. Gráficos de calor

Figura 7: Gráfico de calor de los items 1 a 8.

Figura 8: Gráfico de calor de los items 9 a 17.

Figura 9: Gráfico de calor de los items 18 a 23.

4. Correlaciones

Se estudian correlaciones con los paquetes corrr (Jackson (2016)) y correlat (Wei and Simko (2016)).

```
# library( corrr )
# library( corrplot )

dfCor <- df[ , grep( "^Q", colnames( df ) ) ]</pre>
```

4.1. Matriz de correlaciones

Se calcula la correlación con la función cor de la librería stats.

Tabla 6: Tabla de correlaciones (solo se muestran las oche
--

	Q01	Q02	Q03	Q04	Q05	Q06	Q07	Q08
Q01	1.0000000	-0.0987240	-0.3366489	0.4358602	0.4024399	0.2167340	0.3053651	0.3307376
Q02	-0.0987240	1.0000000	0.3183902	-0.1118597	-0.1193466	-0.0742097	-0.1591745	-0.0496226
Q03	-0.3366489	0.3183902	1.0000000	-0.3804602	-0.3103088	-0.2267405	-0.3819533	-0.2586342
Q04	0.4358602	-0.1118597	-0.3804602	1.0000000	0.4006722	0.2782015	0.4086150	0.3494294
Q05	0.4024399	-0.1193466	-0.3103088	0.4006722	1.0000000	0.2574601	0.3393918	0.2686270
Q06	0.2167340	-0.0742097	-0.2267405	0.2782015	0.2574601	1.0000000	0.5135805	0.2228318
Q07	0.3053651	-0.1591745	-0.3819533	0.4086150	0.3393918	0.5135805	1.0000000	0.2974970
Q08	0.3307376	-0.0496226	-0.2586342	0.3494294	0.2686270	0.2228318	0.2974970	1.0000000

Otra opción es utilizar las funciones correlate y fashion de librería corrr (Jackson 2016).

Tabla 7: Tabla de correlaciones (solo se muestran las ocho primeras)

rowname	Q01	Q02	Q03	Q04	Q05	Q06	Q07	Q08
Q01		10	34	.44	.40	.22	.31	.33
Q02	10		.32	11	12	07	16	05
Q03	34	.32		38	31	23	38	26
Q04	.44	11	38		.40	.28	.41	.35
Q05	.40	12	31	.40		.26	.34	.27
Q06	.22	07	23	.28	.26		.51	.22
Q07	.31	16	38	.41	.34	.51		.30
Q08	.33	05	26	.35	.27	.22	.30	

4.2. Gráficos de correlaciones

```
network_plot( corr2, min_cor = 0.4 )
```


Figura 10: Red de correlaciones. Valor correlación mínima

Figura 11: Matriz de correlaciones mixta

Referencias y bibliografía

Bryer, Jason, and Kimberly Speerschneider. 2015. Likert: Functions to Analyze and Visualize Likert Type Items. http://CRAN.R-project.org/package=likert.

Field, Andy, Jeremy Miles, and Zoe Field. 2012. Discovering Statistics Using R. 1st edition. Sage Publications Ltd.

Jackson, Simon. 2016. Corrr: Correlations in R. https://CRAN.R-project.org/package=corrr.

 $\label{lem:mula-Driven Table Generation. http://CRAN.R-project.org/package=tables.} \\ \text{Murdoch, Duncan. 2016. } \textit{Tables: Formula-Driven Table Generation. http://CRAN.R-project.org/package=tables.} \\$

Wei, Taiyun, and Viliam Simko. 2016. Corrplot: Visualization of a Correlation Matrix. http://CRAN.R-project.org/package=corrplot.

Wickham, Hadley. 2009. *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. http://ggplot2.org.

Xie, Yihui. 2015. Dynamic Documents with R and Knitr. Vol. 29. CRC Press.