Prova parziale Ottimizzazione Combinatoria

19 settembre 2006

Cognome	
Nome	
Matricola	

Domanda 1

Sia A un abbinamento e v un vertice esposto rispetto ad A. Cosa si può affermare se non esiste un cammino aumentante che parte da v? [Argomentare la risposta]

Domanda 2

Disegnare un grafo G = (V, E) con le seguenti caratteristiche:

- 1. G è connesso
- 2. G non contiene cicli dispari
- 3. $\rho + \tau = 9$
- 4. $\alpha = 5$

Domanda 3

Dato il problema di knapsack

$$\max\{\sum_{j=1}^{n} c_{j} x_{j} \mid \sum_{j=1}^{n} a_{j} x_{j} \le b; \ x_{j} \in \{0,1\} \text{ per } j = 1, ..., n\}$$

Descrivere un algoritmo per il calcolo del suo rilassamento lineare e dimostrarne la correttezza.

Esercizio 1

La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

	1	2	3	4	5	6	7
1	-	2	9	3	12	4	11
2	2	-	6	5	7	8	12
3	9	6	-	5	11	12	6
4	3	5	5	_	3	2	12
5	12	7	11	3	_	4	2
6	4	8	12	2	4	-	7
7	11	12	6	12	2	7	_

Calcolare

- 1. Il valore del rilassamento che si ottiene determinando l'1-albero di costo minimo.
- 2. Una soluzione euristica S ottenuta tramite l'algoritmo Nearest Neighbor.
- 3. Una soluzione euristica S ottenuta tramite l'algoritmo Double Tree.

Esercizio 2

Determinare, sul grafo di figura, il massimo matching e il minimo vertex cover a partire dall'abbinamento evidenziato in grassetto e spiegando nel dettaglio i passi degli algoritmi utilizzati.

Cognome	
Nome	
Matricola	

2