Microbial Systematics

Haloquadratum walsbyi

Complexity of Bacteria

Wu et al (2009)

Phylogeny

 Evolutionary ties between organisms by analyzing changes occurring in different organisms during evolution

Understand relationships between an ancestral sequence and its descendants

 Estimate time of divergence between a group of organisms that share a common ancestor

Evolutionary Process

Mutations

- Changes in the nucleotide sequence of an organism's genome
- Occur because of errors in replication, UV radiation, and other factors
- Adaptative mutations improve fitness of an organism, increasing its survival
- Other genetic changes include gene duplication, horizontal gene transfer, and gene loss

Phylogeny

- Evolutionary history of a group of organisms
- Inferred indirectly from nucleotide sequence data

• Molecular clocks (chronometers)

- Certain genes and proteins that are measures of evolutionary change
- Major assumptions of this approach are that nucleotide changes occur at a constant rate, are generally neutral, and are random

- The most widely used molecular clocks are small subunit ribosomal RNA (SSU rRNA)
 - Found in all domains of life
 - 16S rRNA in prokaryotes and 18S rRNA in eukaryotes
 - Functionally constant
 - Sufficiently conserved (change slowly)
 - random sequence changes are a more accurate measure of time (evolution)
 - Sufficient length
 - Multiple copies (E. coli- 7 copies of rRNA)

Prokaryotic Ribosome

Nature Reviews | Microbiology

16S rRNA

- 16S rRNA molecule present in all bacteria
- Broad range primers: amplification of universal regions
- ~66% variability in the first 500 bases
- Total sequence- distinct between related taxa/strains
 - description of new species
- 97% cut off-bacterial taxon delineation

nearly universal	
intermediate	
hypervariable	•••••

Carl Woese

- Pioneered the use of SSU rRNA for phylogenetic studies in 1970s
- Established the presence of three domains of life:
 - Bacteria, Archaea, and Eukarya
- Provided a unified phylogenetic framework for *Bacteria*

- The Ribosomal Database Project (RDP)
 - A large collection of rRNA sequences
 - Currently contains >3,356,809 sequences
 - Provides a variety of analytical programs

RDP Database

SILVA Database

Home SILVAngs Browser Search ACT Download Documentation Projects FISH & Probes Jobs Contact

SILVA

Welcome to the SILVA rRNA database project

A comprehensive on-line resource for quality checked and aligned ribosomal RNA sequence data.

SILVA provides comprehensive, quality checked and regularly updated datasets of aligned small (165/185, SSU) and large subunit (235/285, LSU) ribosomal RNA (rRNA) sequences for all three domains of life (Bacteria, Archaea and Eukarva).

SILVA are the official databases of the software package ARB.

For more background information → Click here

SILVAngs

Check out our service for Next Generation Amplicon data

SILVA Alignment, Classification and Tree (ACT) Service

The SILVA ACT service combines alignment, search and classify as well as reconstruction of trees in a

News

20.12.2022

Merry XMas and a Happy New Year

The SILVA Team wishes you a Merry Christmas & Happy New Year. Many thanks for using SILVA and all your support to improve SILVA and SILVAngs. Looking forward to see you again in 2023.

18,11,2022

de.NBI Quarterly Newsletter

Annual Meeting of the de.NBI Industrial Forum - de.NBI Cloud User Meeting - 2022 - BioHackathon Germany

07.10.2022

SILVA.DSMZ.Permanent

Great news today! SILVA is now part of the integrated data platform DSMZ Digital Diversity. This cooperation will

guaranty the long-term sustainability of SILVA. We are now entering a transition phase to migrate SILVA to our new host the Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, which is one of the largest biological resource centers worldwide.

07.03.2022

Update on SILVA taxonomy

This news provides an overview on the latest developments regrading the SILVA project and its taxonomy.

Evolutionary Analysis: Analytical Methods

- Comparative rRNA sequencing is a routine procedure that involves the following:
 - Amplification of the region or marker encoding SSU rRNA
 - Sequencing of the amplified region or marker
 - Analysis of sequence in reference to other sequences

Microbial Phylogeny

• Domain Bacteria

- Contains at least 80 major evolutionary groups (phyla)
- Many groups defined from environmental sequences alone—i.e., there are no cultured representatives
- Many groups are phenotypically diverse—i.e.,
 physiology and phylogeny not necessarily linked

Microbial Phylogeny

- Eukaryotic organelles originated within Bacteria
 - Mitochondria arose from Proteobacteria
 - Chloroplasts arose from the cyanobacteria
- Domain *Archaea* consists of two major groups:
 - Crenarchaeota
 - Euryarchaeota
- Each of the three domains of life can be characterized by various phenotypic properties

Genotypic Analysis

- Several methods of genotypic analysis are available:
 - DNA-DNA hybridization
 - DNA profiling
 - Multilocus sequence typing (MLST)
 - GC ratio

Genotypic Analysis

- Multilocus sequence typing (MLST)
 - Method in which several different "housekeeping genes" from an organism are sequenced
 - Has sufficient resolving power to distinguish between very closely related strains

Multilocus sequence analysis- based on concatenation of sequences representing key genes