Principal Components Analysis (part III)

Predictive Modeling & Statistical Learning

Gaston Sanchez

CC BY-SA 4.0

More PCA

Presentation

About

In these slides we will talk about PCA in the way that is usually introduced in most multivariate statistics books.

Data Matrix

Data

The analyzed data can be expressed in matrix format X:

$$\mathbf{X}_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

- ightharpoonup n objects in the rows
- p variables in the columns
- \blacktriangleright We'll assume standardized variables (mean = 0, var = 1)

Looking for PCs

Given a set of p variables X_1, X_2, \ldots, X_p , we want to obtain new r variables Z_1, Z_2, \ldots, Z_r , called the **Principal** Components (PCs).

Looking for PCs

Looking for PCs

PC as linear combinations

We want to compute the **PCs** as linear combinations of the original variables.

$$\begin{array}{lll} \operatorname{PC}_1 & \longrightarrow & Z_1 = v_{11}X_1 + v_{12}X_2 + \cdots + v_{1p}X_p \\ \operatorname{PC}_2 & \longrightarrow & Z_2 = v_{21}X_1 + v_{22}X_2 + \cdots + v_{2p}X_p \\ & \vdots & & \vdots \\ \operatorname{PC}_r & \longrightarrow & Z_r = v_{r1}X_1 + v_{r2}X_2 + \cdots + v_{rp}X_p \end{array}$$

(i.e. linear combination = weighted sum

1st PC

Variables

2nd PC

k-th PC

PCs as linear combinations

Introductory Recap

Summarize Variation

We look to transform the original variables into a smaller set of new variables, the Principal Components, that summarize the variation in data.

PCs

The PCs are obtained as linear combinations (i.e. weighted sums) of the original variables. We look for PCs having maximum variance, and being mutually uncorrelated.

Finding PCs

Capturing variation with PCs

Variation

Looking for PCs that *capture most of the variation in the data* implies—in statistical terms—that we want to obtain **PCs** with maximum variance

In other words

We look for vectors of weights $\mathbf{v_k} = \{v_{k1}, v_{k2}, \dots, v_{kp}\}$ such that each component $\mathbf{z_k} = \mathbf{X}\mathbf{v_k}$ has maximum variance (for $k = 1, \dots, r$)

Algebraic Formulation

More formally

We want to find a vector $\mathbf{v}_{\mathbf{k}}$ such that

$$\max_{\mathbf{v}_{\mathbf{k}}} var(\mathbf{z}_{\mathbf{k}} = \mathbf{X}\mathbf{v}_{\mathbf{k}})$$

that is

$$\max_{\mathbf{v_k}} \left(\frac{1}{n-1} \right) \mathbf{v_k}^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v_k}$$

Note that:

- $ightharpoonup rac{1}{n-1} \mathbf{X}^\mathsf{T} \mathbf{X}$ is the correlation matrix
- Without constraints, the previous expression is unbounded

Maximization Constraints

Usefull Restriction

To get a feasible solution we need to impose the restriction that $\mathbf{v_k}$ is of unit norm: $\|\mathbf{v_k}\| = 1 \Rightarrow \mathbf{v_k}^\mathsf{T} \mathbf{v_k} = 1$

Criterion to be maximized

If we denote $S = \frac{1}{n-1}X^TX$, the criterion to be maximized is:

$$\max_{\mathbf{v_k}} \ \mathbf{v_k}^\mathsf{T} \mathbf{S} \mathbf{v_k}$$

subject to
$$\mathbf{v}_{\mathbf{k}}^{\mathsf{T}}\mathbf{v}_{\mathbf{k}} = 1$$
 and $\mathbf{z}_{\mathbf{k}}^{\mathsf{T}}\mathbf{z}_{\mathbf{h}} = 0$ $(k \neq h)$

Pay Attention!

$\mathbf{v}_k^\mathsf{T} \mathbf{S} \mathbf{v}_k$

This expression is of extreme importance. Why?

- ▶ It is a quadratic form
- ▶ S is a semi-positive definite matrix
- ▶ S has non-negative real eigenvalues

Finding 1st PC

Finding 1st PC

In order to find the first principal component $z_1=Xv_1$, we need to find v_1 such that

$$\max_{\mathbf{v_1}} \ \left(\frac{1}{n-1}\right) \mathbf{v_1}^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v_1}$$

subject to $\mathbf{v_1}^\mathsf{T} \mathbf{v_1} = 1$

Note that $\frac{1}{n-1}$ is just a scalar, so the criterion is sometimes reexpresed as:

$$\max_{\mathbf{v}_1} \ \mathbf{v}_1^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v}_1$$

Finding 1st PC

$$\max_{\mathbf{v}_1} \ \mathbf{v}_1^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v}_1$$

What to do?

Being a maximization problem, the typical procedure to find the solution is by using the **Lagrangian multiplier** method.

Lagrangian Multiplier

Finding 1st PC

Using Lagrange multipliers we get:

$$\mathbf{v_1}^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v_1} - \lambda (\mathbf{v_1}^\mathsf{T} \mathbf{v_1} - 1)$$

Differentiation with respect to v_1 gives:

$$\mathbf{X}^\mathsf{T}\mathbf{X}\mathbf{v}_1 - \lambda_1\mathbf{v}_1 = \mathbf{0}$$

Rearranging some terms we get:

$$\mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v_1} = \lambda_1 \mathbf{v_1}$$

Lagrangian Multiplier Solution

What does this mean?

$$\left(\frac{1}{n-1}\right) \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v}_1 = \lambda_1 \mathbf{v}_1$$

Lagrangian Multiplier Solution

What does this mean?

$$\left(\frac{1}{n-1}\right) \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v}_1 = \lambda_1 \mathbf{v}_1$$

It means that

- λ_1 is an eigenvalue of $\frac{1}{n-1}\mathbf{X}^\mathsf{T}\mathbf{X}$
- lacktriangleright and v_1 is the corresponding eigenvector

Finding 2nd PC

Finding 2nd PC

How to find the 2nd PC

In order to find the second principal component $\mathbf{z_2}=X\mathbf{v_2},$ we need to find $\mathbf{v_2}$ such that

$$\max_{\mathbf{v_2}} \left(\frac{1}{n-1} \right) \mathbf{v_2}^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v_2}$$

subject to
$$\|\mathbf{v_2}\| = 1$$
 and $\mathbf{z_1}^\mathsf{T} \mathbf{z_2} = 0$

Finding 2nd PC

Another eigenvalue-eigenvector pair

Applying the Lagrange multipliers, it can be shown that the desired \mathbf{v}_2 is such that

$$\left(\frac{1}{n-1}\right) \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v_2} = \lambda_2 \mathbf{v_2}$$

In other words

- $ightharpoonup \lambda_2$ is an eigenvalue of $\frac{1}{n-1}\mathbf{X}^\mathsf{T}\mathbf{X}$
- lacktriangleright and v_2 is the corresponding eigenvector

Matrix Decompositions

Finding all PCs

Diagonalization

All Principal Components can be found simultaneously by diagonalizing $\frac{1}{n-1}X^TX$

Eigenvalue Decomposition (EVD)

Diagonalizing a matrix is nothing more than obtaining its eigenvalue decomposition (a.k.a. spectral decomposition)

Data Decomposition

Algebraically

PCA involves an **Eigen-Value Decomposition** (EVD) of the data matrix $\frac{1}{n-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}$, that is:

$$\frac{1}{n-1}\mathbf{X}^\mathsf{T}\mathbf{X} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^\mathsf{T}$$

- V is orthonormal matrix of eigenvectors (i.e. V^TV = I)
- lacksquare Λ is a diagonal matrix of eigenvalues

EVD Approach

PCs

Principal components $\mathbf{Z} = [Z_1 | Z_2 | \dots | Z_k]$ are obtained as:

$$Z = XV$$

Note that the variance of each component turns out to be equal to its associated eigenvalue:

$$var(\mathbf{z_k}) = \frac{1}{\sqrt{n-1}} \mathbf{z_k}^\mathsf{T} \mathbf{z_k} = \lambda_k$$

PCs for approximating Data

PCA and Data Decomposition

Interestingly, we can also express ${\bf X}$ in terms of the PCs ${\bf Z}$ and the loadings (eigenvectors) ${\bf V}$ as:

$$\mathbf{X} = \mathbf{Z}\mathbf{V}^\mathsf{T}$$

PCA and Data Decomposition

Assuming that X is of full-column rank (i.e. p = rank(X))

$$\mathbf{X}_{(n,p)} = \mathbf{Z} \mathbf{V}^\mathsf{T}_{(n,p)(p,p)}$$

PCA and Data Decomposition

Assuming that X is of full-column rank (i.e. p = rank(X))

$$\mathbf{X}_{(n,p)} = \mathbf{Z} \mathbf{V}^\mathsf{T}$$

But usually we will only retain just a few PCs (i.e. $k \ll p$)

$$\mathbf{X}_{(n,p)}pprox\mathbf{Z}\mathbf{V}^{\mathsf{T}}=\hat{\mathbf{X}}_{(n,k)(k,p)}$$

(just a few PCs will optimally summarize the main structure of the data)

SVD Decomposition

SVD

Recall that any matrix ${\bf M}$ or rank p can be decomposed as a product of three simpler matrices ${\bf U}$, ${\bf D}$ and ${\bf V}$

$$M = UDV^{\mathsf{T}}$$

- $ightharpoonup \mathbf{U}_{n,p}$ (left singular vectors)
- $ightharpoonup \mathbf{D}_{p,p}$ (singular values)
- $ightharpoonup V_{p,p}$ (right singular vectors)

SVD Approach

PCA via SVD

It can be shown that PCA involves a \mathbf{SVD} based on the data matrix \mathbf{X}

$$\left(\frac{1}{\sqrt{n-1}}\right)\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T} = \mathbf{Z}\mathbf{V}^\mathsf{T}$$

where:

- $ightharpoonup {f Z} = {f U}{f D}$ is the matrix of PCs (or scores)
- ▶ V is the matrix of Loadings

Changing Scales

You can actually play with the scale of the principal components and the variable factors:

$$\left(\frac{1}{\sqrt{n-1}}\right) \mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$$

$$= (\mathbf{U}\mathbf{D})\mathbf{V}^{\mathsf{T}}$$

$$= \mathbf{U}(\mathbf{D}\mathbf{V}^{\mathsf{T}})$$

$$= (\mathbf{U}\mathbf{D}^{1/2})(\mathbf{D}^{1/2}\mathbf{V}^{\mathsf{T}})$$

$$= (\mathbf{U}\mathbf{D}^{\alpha})(\mathbf{D}^{1-\alpha}\mathbf{V}^{\mathsf{T}})$$

with $0 \le \alpha \le 1$

What does PCA look like?

PCA and its Geometrical Standpoint

PCA and EVD

We've seen that the PCA solution can be obtained with an Eigenvalue Decomposition of the matrix $\mathbf{S} = \frac{1}{n-1}\mathbf{X}^\mathsf{T}\mathbf{X}$

Now let's briefly talk about how can we give a geometric interpretation of the EVD and the concept of *change of variable*.

The main idea is that the variables in \mathbf{X} are changed into PCs \mathbf{Z} . Let's see a toy example for illustration purposes

Toy Data (in 2-dimensions)

Mean Point (center)

Mean-centering Data

First PC (view as a change of variable)

Second PC (view as a change of variable)

Before-and-After Change Comparison

Changed Variables (Rotated Data)

References

- ▶ **Principal Component Analysis** by Herve Abdi and Lynne Williams (2010). *Wiley Interdisciplinary Reviews: Computational Statistics. Volume 2(4), 433-459.*
- ► An R and S-Plus Companion to Multivariate Analysis by Brian Everitt (2004). Chapter 3: Principal Components Analysis.

 Springer.
- ▶ **Principal Component Analysis** by Ian jolliffe (2002). Springer.
- ▶ Data Mining and Statistics for Decision Making by Stephane Tuffery (2011). *Chapter 7: Factor Analysis*. Editions Technip, Paris.
- ► Exploratory Multivariate Analysis by Example Using R by Husson, Le and Pages (2010). Chapter 1: Principal Component Analysis (PCA). CRC Press.

References (French Literature)

- ➤ Statistique Exploratoire Multidimensionnelle by Lebart et al (2004). Chapter 3, section 3: Analyse factorielle discriminante. Dunod, Paris.
- ▶ Probabilites, analyse des donnees et statistique by Gilbert Saporta (2011). *Chapter 6: Analyse en Composantes Principaux*. Editions Technip, Paris.
- ► Statistique: Methodes pour decrire, expliquer et prevoir by Michel Tenenhaus (2008). Chapter 10: L'analyse discriminante. Dunod, Paris.
- ▶ Analyses factorielles simples et multiples by Brigitte Escofier et Jerome Pages (2016, 5th edition). *Chapter 2: L'analyse discriminante.* Dunod, Paris.