TEXT BOOK:

1. John E Hopcroft and Jeffery D Ullman, "Introduction to Automata Theory, Languages and Computations", Narosa Publishing House, 2002.

REFERENCES:

- 1. J. Martin, "Introduction to Languages and the Theory of Computation", Third Edition, Tata McGraw Hill, 2003.
- 2. Micheal Sipser, "Introduction of the Theory and Computation", Thomson Brokecole, 1997.
- 3. H.R. Lewis and C.H. Papadimitriou, "Elements of the Theory of Computation", Second Edition, Pearson Education, 2003.

EVALUATION PATTERN:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory	40	20	40

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓									✓		
CO2		✓	√								✓	
CO3											✓	√
CO4					✓				✓	✓		
CO5	√									√		√

CS 6301

MACHINE LEARNING

OBJECTIVES:

- To understand the need for machine learning for various types of problem solving
- To know the mathematics involved in various machine learning algorithms
- To study the various supervised, semi-supervised and unsupervised learning algorithms in machine learning
- To learn about probabilistic models in machine learning
- To have a glimpse of the latest developments in machine learning

CS 6301	MACHINE LEARNING	L	Т	Р	EI	TOTA	L CREDITS
		3	0	4	3		6
MODULE I:		•		L	Т	Р	EL
				6	0	4	3

Learning – Types of Machine Learning – Supervised Learning - The Brain and the Neuron – Design a Learning System – Perspectives and Issues in Machine Learning- Concept Learning task – Concept Learning as Search - Finding a Maximally Specific Hypothesis – Version Spaces and the Candidate Elimination Algorithm

SUGGESTED ACTIVITIES:

- EL Fundamentals of Predictive Analytics, Study of tools for data mining like WEKA, KNIME, Rapidminer, etc
- Practical Study of tools like WEKA, KNIME and the UCI repository datasets

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE II:	L	Т	Р	EL
	3	0	4	3

Neural Networks - Perceptron - Linear Separability - Linear Regression

SUGGESTED ACTIVITIES:

- In-class activity practical problems and the need for machine learning algorithms
- EL Working with tools and standard data sets
- Practical Implementation of the Candidate Elimination Algorithm

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Practical demonstrations

MODULE III:	L	Т	Р	EL
	3	0	4	3

The Multi-Layer Perceptron – Back Propagation of Error-Multi-layer Perceptron in Practice – Deriving Back Propagation – Applications of MLP

SUGGESTED ACTIVITIES:

- Flipped classroom and activity
- EL Applications of MLP
- Practical Implementation of the Neural Network perceptron algorithm and enhancing it to other variations
- Proposal for Mini Project

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Approval of Mini project based on the reference papers, abstract and design

MODULE IV:	L	Т	Р	EL
	3	0	4	3

Radial Basis Function Network - Concepts - Training - Interpolation and Basis Functions - Solutions using RBF

SUGGESTED ACTIVITIES:

- Flipped Class room
- EL –Applications of RBF Networks
- Practical Implementation of Multi-layer Perceptron

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Practical demonstrations

MODULE V:	L	Т	Р	EL
	3	0	4	3

Dimensionality Reduction –Linear Discriminant Analysis-Principal Component Analysis-Factor Analysis-Independent Component Analysis-Locally Linear Embedding-Isomap

SUGGESTED ACTIVITIES:

- EL Probabilistic PCA and Factor analysis concepts
- Practical –Implementation of Independent Component Analysis(ICA) algorithm
- Practical Mini-project design completion

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Practical demonstrations

MODULE VI:	L	T	Р	EL
	6	0	4	3

Probabilistic Learning-Gaussian Mixture Models-Nearest Neighbor Models-Support Vector Machines-Optimal Separation-Kernels-The Support Vector Machine Algorithm-Extensions to the SVM

SUGGESTED ACTIVITIES:

- EL Application of SVM, Nearest Neighbor concepts and other regression models on various datasets
- Practical –Implementation of Support Vector Machines with various kernel models, Nearest Neighbor models
- Continuation of mini project, minimum 40% implementation

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Practical demonstration of algorithms and mini project

MODULE VII:	L	T	Р	EL
	3	0	4	3

Evolutionary Learning-The Genetic Algorithm-Genetic Operators-Using Genetic Algorithms-Genetic Programming - Applications

SUGGESTED ACTIVITIES:

- Flipped Classroom for applications
- EL Applications of Evolutionary algorithms
- Practical Implementation of GA, Continuation of mini-project

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Practical demonstrations

MODULE VIII	L	Т	Р	EL
	3	0	4	3

Reinforcement Learning – Markov Decision Processes - Values-The difference between SARSA and Q-Learning

SUGGESTED ACTIVITIES:

- Flipped Classroom for applications
- EL Applications of Evolutionary algorithms
- Practical Continuation of mini-project

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Practical demonstrations

MODULE IX	L	Т	Р	EL
	3	0	4	3

Learning with Trees-Using Decision trees-Constructing Decision Trees-Classification and regression trees-Classification example-Decision by committee: Ensemble Learning-Boosting-Bagging-Random Forests-Different ways to combine classifiers

SUGGESTED ACTIVITIES:

- EL Applications of Decision tree, CART
- Practical –Implementation of Decision Trees, Bagging, Boosting and EM algorithms Continuation of mini-project

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Practical demonstrations, Mini project 80% completion

MODULE X	L	Т	Р	EL
	3	0	4	3

Unsupervised Learning-The K-Means Algorithm-Vector Quantization-The self-organizing feature map

SUGGESTED ACTIVITIES:

- Combinations of in Class & Flipped class rooms
- EL –K-Means algorithm applications
- Practical Implementations of K-Means algorithm

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems

Practical demonstrations				
MODULE XI	L	Т	Р	EL
	3	0	4	3

Deep learning introduction - CNN - RNN

SUGGESTED ACTIVITIES:

- EL Survey of deep learning network models
- Practical Mini-project demonstration

SUGGESTED EVALUATION METHODS:

• Mini project final evaluation

OUTCOMES:

Upon completion of the course, the students will be able to

- Differentiate between supervised, unsupervised, semi-supervised machine learning approaches
- Choose and implement classification or regression algorithms for an application using an open source tool
- Implement probabilistic, discriminative and generative algorithms for an application and analyze the results
- Use a tool to implement typical clustering algorithms for different types of applications
- Create potential solutions for real time applications using machine learning techniques

TEXT BOOKS

- 1. Stephen Marsland, "Machine Learning An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 2. Tom M Mitchell, "Machine Learning", McGraw Hill Education, 2013.

REFERENCES:

- 1. Peter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", First Edition, Cambridge University Press, 2012.
- 2. Jason Bell, "Machine learning Hands on for Developers and Technical Professionals", First Edition, Wiley, 2014.
- 3. Ethem Alpaydin, "Introduction to Machine Learning", Third Edition, Adaptive Computation and Machine Learning Series, MIT Press, 2014.

EVALUATION METHOD:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory Integrated with Practical	15(T) + 25 (P)	20	40

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓	✓									
CO2	✓	✓	✓	✓	✓				✓			✓
CO3	✓	✓	✓	✓	✓				✓		✓	✓
CO4	✓	✓	✓	✓	✓				✓			✓
CO5	✓	✓	✓	✓	✓				✓		✓	✓

CS6302 PROGRAMMING PARADIGMS

Prerequisites for the course: Data Structures and Algorithms

OBJECTIVES:

- To introduce the major programming paradigms with the principles and the techniques involved in the design and implementation of modern programming languages
- To introduce the framework for specifying and reasoning about programming languages
- To analyse a given program from the perspective of good programming practices
- To compare and contrast the range of programming paradigms
- To evaluate programming language features critically with respect to the way they support good software engineering practices
- To discuss the appropriateness of the use of a given programming paradigm within a given environment

		L	T	Р	EL	. CI	REDITS			
CS6302	PROGRAMMING PARADIGMS	3	0	0	3		4			
00.15050/50										
OBJECTIVES:										
MODULE I:			L	T	Р	EL				
						0	5			
The art of Language	e design – Programming language spe	ctrum	1 - C	ompil	latio	n and Int	erpretation-			
Evaluation of Progra	amming languages									
SUGGESTED ACTI	VITIES:									
 Activity base 	d learning - brain storming quizzes and	puzz	les o	f pro	gran	nming lan	guages			
-					_					
SUGGESTED EVALUATION METHODS:										
 Quizzes 										
MODULE II:				L	T	Р	EL			
Languages – Syntax	and Semantics of language C-lite - Na	mes -	-	4	0	0	5			
Types - Type Syste	ms - Binding - Scope - Static - Dynami	ic –								
Abstract Data types										
SUGGESTED ACTI	SUGGESTED ACTIVITIES :									

Using peer learning- Interaction and group discussion about data types