Brendan Morgenstern CUS 1188

Problem Set 5

1.
$$2T(\frac{n}{2}) + 1000n \ \forall n \ge 2$$

Base case:

$$n = 2$$

Assume O(nlog(n)); prove 2T
$$(\frac{2}{2})$$
 + 1000(2) \leq c((2)log(2)) 2+2002 \leq c(2)

$$c = 1001$$

Substitution:

$$2T\left(\frac{n}{2}\right) + 1000n \le c(n\log(n))$$

Values smaller than n can be assumed $\leq c(n\log(n))$, so it's substituted in for $(\frac{n}{2})$

$$2c(\frac{n}{2})log(\frac{n}{2}) + 1000n$$

 $\log(\frac{n}{2})$ due to the division rule can be expanded like so

$$2c(\frac{n}{2})\log(n)-1 + 1000n$$

The multiplication and division of 2 can be cancelled and the cn term can be distributed

$$cnlogn - (cn + 1000n)$$

Because the cn+1000n can be assumed to be a positive value, the whole term must be

$$\leq$$
 c(nlog(n)) therefore 2T $(\frac{n}{2}) + 1000n \leq$ c(nlog(n)) for any c and the recursion ϵ O(nlog(n))

2.
$$7T(\frac{n}{2}) + 18n^2 \ \forall n \ge 2$$

Base case:

$$n = 2$$

Assume O(n^3); prove $7(\frac{2}{2}) + 18(2)^2 \le c(2)^3$ $79 \le c8$ c = 10

Substitution:

$$7(\frac{n}{2}) + 18(n)^2 \le c(n)^3$$

Values smaller than n can be assumed $\leq cn^3$, so it's substituted in for $(\frac{n}{2})$

$$7\frac{cn^3}{2} + 18n^2 \le cn^3$$

The conjugate of $7\frac{n^3}{2}$ is added and subtracted to remove the denominator from the n^3 term

$$7cn^3 - 7\frac{cn^3}{2} + 18n^2 \le cn^3$$

The 7 coefficient is cancelled through division

$$cn^3 - (\frac{cn^3}{2} - \frac{18}{7}(n^2))$$

The $\frac{cn^3}{2} - \frac{18}{7}(n^2)$ term can be assumed to be positive, therefore $cn^3 - (\frac{cn^3}{2} - \frac{18}{7}(n^2)) \le cn^3$

3.

```
public int recursive(int n) {
    int sum=0;
    for (int i=1; i<= n; i++){}
        sum= sum +1;
    }
    if (n>1) {
        return recursive(n/2);
    }
    else {
        return 1
    }
}
```

The initial for loop iterates from 1 to n, or n times and completes $\frac{n}{2}$ recursions; therefore $T(n) \approx T(\frac{n}{2}) + n$.

Similar to the above problem, if we assume $O(n\log(n))$, we can substitute n for $n\log(n)$ for all values < n

$$c((\frac{n}{2})log(\frac{n}{2})) + n$$

Like above, expand the log and the add and subtract the conjugate

$$cnlogn - (\,\frac{cnlogn}{2} + cn - n)$$

Again the term being subtracted is positive and therefore

$$cnlogn - (\frac{cnlogn}{2} + cn - n) \le cnlogn$$