Vanishing Gradient & Exploding Gradient

- One of the problems of Gradient Desent
 - Gradient Desent (minimize loss function)
 - Composition:

- Feedforword propagation to feed network with training dataset
- Backpropagation to update the parameters (include weights, bias)
- Types
 - Batch Gradient Desent
 - All samples of data are taken into consideration when computing gradient
 - Evaluation
 - Pros
 - computational efficiency, cuz updates only once in each epoch
 - the estimates of gradient is more accurate for using all data, getting a stable convergence
 - Cons
 - slower and hard to be fitted for the memory if the dataset is large
 - Stochastic Gradient Desent(SGD)
 - only a single row of data will be used in computation
 - Evaluation
 - Pros
 - faster in converging, cuz the updates happen more frequentaly
 - Considering only one single point, the updates of weights are nosiy, avoiding getting suboptimal local minimum
 - Cons
 - time consuming for the number of iterations is large

- the weight updates have noise, maybe not come to the local minimum actually
- Mini-batch Gradient Desent
 - Divide training datasets into manageable groups and updates each separately
 - Evaluation: 结合SGD and Batch Gradient Desent. Give the balance of computational efficiency and durable.
- Challenge
 - Difficult to find a global minimum for nonconvex issue
 - Solution: Adam
 - Vanishing and Exploding Gradient
 - Vanishing Gradient:
 - the gradient keeps updating smaller and smaller, then comes to 0
 - converge to a non-optimal solution too earlier. i.e.:never converge to the optimum
 - Exploding Gradient:
 - gradient keeps on getting larger and larger, causing very large weight updates and causes the gradient descent to diverge
- Vanishing Gradient
 - Recognization(both forward/backward directions)
 - parameters of high layers change significantly, while that of low layers do not change so much
 - model weights become 0 during training
 - model learns slowly
- Exploding Gradient
 - Recognization(both forward/backward directions)
 - model parameters exponential growth
 - model weights become NaN
 - model gets a avalance learning
- Solution
 - 1. Proper Weight Initialization
 - If the inital weights are too small or lacking variance, it causes vanishing gradient.
 - Choose different weight initialization scheme for different activation functions
 - Strategies
 - The default is "zeros", but not to set all weights =0;
 - glorot_uniform for Tanh, Softmax, Logistic active functions
 - He for ReLU and its variants

- LeCun for SELU
- initalize randomly
- don't initalize weight too large
- 2. Using Different Activation Functions
 - if a gradient of an activation function is small, then following chain rule and multiplying the gradient to the input layer may cause vanishing. (like Sigmoid, tanh)
 - Hence, using <u>non-saturating Activitation function</u> is important. (eg: ReLU, Leakly ReLU, Parametric Leaky ReLU, Exponential Linear Unit(ELU), Scaled ELU(SELU))
 - Coding:

```
layer=keras.layers.Dense(10,activation="selu",kernel_initalizer="
lecun_normal")
```

- 3. Using Different/faster Optimizers and Learning Rates
 - Faster Optimizers: Momentum optimization, Nesterov Acceler-ated Gradient, AdaGrad, RMSProp, Adam and Nadam optimization.
- 4. Batch Normalization
 - Coding
 - model=keras.models.Sequential([
 - keras.layers.Flattern(input_shape[28,28]),
 - keras.layers.BatchNormalization(),
 - keras.layers.Dense(300,activation='elu',kernel_initalizer='he_normal'),
 - ...
 - Rule: Just add a BatchNormalization layer <u>before or after</u> each hidden layer's
 activationfunction, and optionally add a BN layer as well as the first layer in your
 model.
- 4. Gradient Clipping for Exploding Gradient
 - clip the gradients during backpropagation so that they never exceed some threshold
 - clip every component of gradient (all the partial derivatives of the loss) to range: [-1.0, 1.0]
 - Coding: by setting clipvalue or clipnorm
 - optimizer = keras.optimizers.SGD(clipvalue=1.0)
 - model.compile(loss="mse", optimizer=optimizer)
- 5. Reusing Pretrained Layers(Transfer Learning)

References

- How to deal with vanishing and exploding gradients? https://medium.com/geekculture/
 how-to-deal-with-vanishing-and-exploding-gradients-in-neural-networks-24eb00c80e84
- The challenge of vanishing/exploding gradients in deep neural networks. https://www.a nalyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-exploding-gradients-in-de

ep-neural-networks/

- Gradient Descent Algorithms. https://medium.com/datadriveninvestor/gradient-descent-algorithm-b4c5afb4eb98
- Hands-On Machine Learning with Scikit-Learn and TensorFlow. https://www.knowledgeisle.com/wp-content/uploads/2019/12/2-Aur%C3%A9lien-G%C3%A9ron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-O%E2%80%99Reilly-Media-2019.pdf

以上内容整理于 幕布文档