

شبكههاي عصبي مصنوعي

جلسه پنجم:

پرسپترون چند لایه (۱) (Multi-Layer Perceptron = MLP)

Rumelhart

Hinton

Williams

پرسپترون چندلایه (Multi-Layer Perceptron) توسط روملهارت، هینتون و ویلیامز در سال ۱۹۸۶ ابداع شد.

D.E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating error, *Nature*, vol. 323, pp. 533-536, 1986.

Rumelhart

Hinton

Williams

پرسپترون چندلایه (Multi-Layer Perceptron) توسط روملهارت، هینتون و ویلیامز در سال ۱۹۸۶ ابداع شد.

D.E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating error, *Nature*, vol. 323, pp. 533-536, 1986.

• این شبکه عصبی در ابتدا با نام شبکه پیشخورد چندلایه (Multi-layer feedforward network) معرفی شد.

Rumelhart

Hinton

Williams

پرسپترون چندلایه (Multi-Layer Perceptron) توسط روملهارت، هینتون و ویلیامز در سال ۱۹۸۶ ابداع شد.

D.E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating error, *Nature*, vol. 323, pp. 533-536, 1986.

- این شبکه عصبی در ابتدا با نام شبکه پیشخورد چندلایه (Multi-layer feedforward network) معرفی شد.
 - نوع یادگیری در این نوع شبکه از نوع یادگیری با نظارت است.

Rumelhart

Hinton

Williams

پرسپترون چندلایه (Multi-Layer Perceptron) توسط روملهارت، هینتون و ویلیامز در سال ۱۹۸۶ ابداع شد.

D.E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating error, *Nature*, vol. 323, pp. 533-536, 1986.

- این شبکه عصبی در ابتدا با نام شبکه پیشخورد چندلایه (Multi-layer feedforward network) معرفی شد.
 - نوع یادگیری در این نوع شبکه از نوع یادگیری با نظارت است.
 - الگوریتم یادگیری در شبکه از نوع یادگیری تصحیح خطا است که در اینجا به آن «الگوریتم پس-انتشار خطا» (Error back-propagation) می گویند.

- این الگوریتم که در واقع فرم تعمیم یافته الگوریتم «کمترین میانگین مربعات» (LMS) است، از دو فاز متمایز از هم تشکیل میشود:

- این الگوریتم که در واقع فرم تعمیم یافته الگوریتم «کمترین میانگین مربعات» (LMS) است، از دو فاز متمایز از هم تشکیل میشود:

۱– فاز پیشگذر (Forward pass):

که در آن بردار سیگنالها به لایه ورودی اعمالشده و اثر آن در شبکه، لایه-به-لایه محاسبه شده تا در نهایت پاسخ شبکه بهدستآید. در این مرحله، وزنهای شبکه ثابت است.

- این الگوریتم که در واقع فرم تعمیم یافته الگوریتم «کمترین میانگین مربعات» (LMS) است، از دو فاز متمایز از هم تشکیل میشود:

۱– فاز پیشگذر (Forward pass):

که در آن بردار سیگنالها به لایه ورودی اعمالشده و اثر آن در شبکه، لایه-به-لایه محاسبه شده تا در نهایت پاسخ شبکه بهدستآید. در این مرحله، وزنهای شبکه ثابت است.

۲- فاز پسگذر (Backward pass):

که در آن تفاضل بین پاسخ شبکه و پاسخ دلخواه بهعنوان خطای شبکه محاسبهشده و این سیگنال خطا از خروجی به ورودی، بهصورت لایه-به-لایه انتشار مییابد. دراین حالت وزنهای شبکه تنظیم شده تا پاسخ شبکه به پاسخ دلخواه نزدیکشود.

- بنابراین، خطا از سمت خروجی بهسمت ورودی در شبکه انتشار یافته و بههمین دلیل نام «پس انتشار خطا» به آن نهاده شده است.

- بنابراین، خطا از سمت خروجی بهسمت ورودی در شبکه انتشار یافته و بههمین دلیل نام «پس انتشار خطا» به آن نهاده شده است.

→ Function signals

---- Error signals

- سلولها در لایه پنهان (سلولهای پنهان) بهعنوان آشکارسازی ویژگیهای عمل میکنند. در واقع نقش این سلولها در عملکرد MLP بسیار حیاتی است.

- بنابراین، خطا از سمت خروجی بهسمت ورودی در شبکه انتشار یافته و بههمین دلیل نام «پس انتشار خطا» به آن نهاده شده است.

→ Function signals

---- Error signals

- سلولها در لایه پنهان (سلولهای پنهان) بهعنوان آشکارسازی ویژگیهای عمل میکنند. در واقع نقش این سلولها در عملکرد MLP بسیار حیاتی است.

- این کار توسط تبدیل غیرخطی دادههای ورودی بهفضایی جدیدی به نام «فضای ویژگی» صورت می گیرد.

- بنابراین، خطا از سمت خروجی بهسمت ورودی در شبکه انتشار یافته و بههمین دلیل نام «پس انتشار خطا» به آن نهاده شده است.

→ Function signals

---- Error signals

- سلولها در لایه پنهان (سلولهای پنهان) بهعنوان آشکارسازی ویژگیهای عمل میکنند. در واقع نقش این سلولها در عملکرد MLP بسیار حیاتی است.

- این کار توسط تبدیل غیرخطی دادههای ورودی بهفضایی جدیدی به نام «فضای ویژگی» صورت می گیرد.

- بهواقع، شکلگیری این فضا است که عملکرد MLP را از پرسپترون روزنبلات متمایز میکند.

- بهمنظور بهتر متوجهشدن اهمیت «فضای ویژگی»، مثال XOR را بهخاطر بیاورید.

- دادهها در فضای ورودی بهطور خطی جداپذیر نبودند. ولی پس از تبدیل غیرخطی در لایه پنهان، در فضای ویژگی (فضای پنهان) بهطور خطی جداپذیر شدند.

سلولها در MLP:

سلولها در MLP:

• هر سلول MLP دارای تابع غیرخطی در خروجیاش است که به آن تابع فعالسازی (Activation function) می گویند.

سلولها در MLP:

- هر سلول MLP دارای تابع غیرخطی در خروجیاش است که به آن تابع فعالسازی (Activation function) می گویند.
 - این توابع از نوع Sشکل (Sigmoid) است.

سلولها در MLP:

- هر سلول MLP دارای تابع غیرخطی در خروجیاش است که به آن تابع فعالسازی (Activation function) می گویند.
 - این توابع از نوع Sشکل (Sigmoid) است.

مثالهایی از توابع S شکل:

سلولها در MLP:

- هر سلول MLP دارای تابع غیرخطی در خروجیاش است که به آن تابع فعالسازی (Activation function) می گویند.
 - این توابع از نوع Sشکل (Sigmoid) است.

1.0 0.5 -4 -2 2 4

-1.0

مثالهایی از توابع S شکل:

۱- تابع تانژانت هیپربولیک

$$y_j = \frac{1 - e^{-av_j}}{1 + e^{-av_j}}$$

سلولها در MLP:

- هر سلول MLP دارای تابع غیرخطی در خروجیاش است که به آن تابع فعالسازی (Activation function) می گویند.
 - این توابع از نوع S شکل (Sigmoid) است.

مثالهایی از توابع S شکل:

۲- تابع لجستیکی (Logistic function)

$$y_j = \frac{1}{1 + e^{-av_j}}$$

سلولها در MLP:

- هر سلول MLP دارای تابع غیرخطی در خروجیاش است که به آن تابع فعالسازی (Activation function) می گویند.
 - این توابع از نوع Sشکل (Sigmoid) است.

مثالهایی از توابع S شکل:

۳- تابع خطا (Error function)

$$y_{j} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{v_{j}} e^{-\frac{t^{2}}{2}} dt$$

سلولها در MLP:

- هر سلول MLP دارای تابع غیرخطی در خروجیاش است که به آن تابع فعالسازی (Activation function) می گویند.
 - این توابع از نوع Sشکل (Sigmoid) است.

مثالهایی از توابع S شکل:

۴- تابع وارون تانژانت

$$y_j = \frac{2}{\pi} \tan^{-1}(v_j)$$

نواحی مختلف توابع S شکل

نواحی مختلف توابع S شکل

نواحی مختلف توابع S شکل

نواحی مختلف توابع S شکل

تمرین: چنانچه از توابع خطی به جای توابع غیر خطی در MLP استفاده شود، در این صورت چه نتیجهای می توانید بگیرید؟

الگوريتم پسانتشار خطا:

الگوريتم پسانتشار خطا:

- این الگوریتم را برای شبکه زیر با دو لایه پنهان اجرا میکنیم. اگرچه برای هر تعداد لایه پنهان توسعه پذیر است.

الگوريتم پسانتشار خطا:

- این الگوریتم را برای شبکه زیر با دو لایه پنهان اجرا میکنیم. اگرچه برای هر تعداد لایه پنهان توسعه پذیر است.

الگوريتم پسانتشار خطا:

الگوريتم پسانتشار خطا:

الگوريتم پسانتشار خطا:

ابتدا، نمادهای زیر را تعریف می کنیم:

مرحله تکرار nام است (اعمال الگوی آموزش nام به شبکه) n

الگوريتم پسانتشار خطا:

- ه مرحله تکرار nام است (اعمال الگوی آموزش nام به شبکه) n
- n مراحل تمام مراحل $\mathscr{E}(n)$ برای تمام مراحل و جمع لحظه ای مربعات خطا و میانگین مقادیر مراحل $\mathscr{E}(n)$

الگوريتم پسانتشار خطا:

- مرحله تکرار nام است (اعمال الگوی آموزش nام به شبکه) مرحله تکرار n
- n مراحل تمام مراحل $\mathscr{E}_{\mathrm{av}}$ میانگین مقادیر عات خطا و مربعات خطا و جمع لحظه ای مربعات خطا و $\mathscr{E}_{\mathrm{av}}$
 - اندیسهای j ، i و k برای سلولهای مختلف در شبکه j سلول i در سمت راست سلول i و سلول j در سمت راست سلول j

الگوريتم پسانتشار خطا:

- مرحله تکرار nام است (اعمال الگوی آموزش nام به شبکه) n
- n مراحل تمام مراحل $\mathscr{E}_{\mathrm{av}}$ میانگین مقادیر عات خطا و مربعات خطا و جمع لحظه ای مربعات خطا و $\mathscr{E}_{\mathrm{av}}$
 - اندیسهای j ، i و k برای سلولهای مختلف در شبکه j سلول i در سمت راست سلول i در سمت راست سلول i
- و $y_k(n)$ و $y_k(n)$ به تر تیب خطای سیگنال خروجی، خروجی دلخواه و خروجی واقعی سلول kام در لایه خروجی

الگوريتم پسانتشار خطا:

- مرحله تکرار nام است (اعمال الگوی آموزش nام به شبکه) n
- n برای تمام مراحل $\mathscr{E}_{\mathrm{av}}$ میانگین مقادیر \mathscr{E}_{n} برای تمام مراحل n
 - اندیسهای j ، i و k برای سلولهای مختلف در شبکه j سلول i در سمت راست سلول i در سمت راست سلول i
- و قعی الله خروجی و به ترتیب خطای سیگنال خروجی، خروجی دلخواه و خروجی واقعی $y_k(n)$ و $d_k(n)$ ، $e_k(n)$ سلول kام در لایه خروجی
 - n وزن اتصالی بین سلول i و سلول $w_{ji}(n)$ •

الگوريتم پسانتشار خطا:

- مرحله تکرار nام است (اعمال الگوی آموزش nام به شبکه) n
- n برای تمام مراحل $\mathscr{E}_{\mathrm{av}}$ میانگین مقادیر $\mathscr{E}_{\mathrm{av}}$ برای تمام مراحل n
 - اندیسهای j ، i و k برای سلولهای مختلف در شبکه j سلول i در سمت راست سلول i در سمت راست سلول i
- و $y_k(n)$ به تر تیب خطای سیگنال خروجی، خروجی دلخواه و خروجی واقعی سلول kام در لایه خروجی سلول kام در الیه خروجی
 - n وزن اتصالی بین سلول i و سلول $w_{ji}(n)$ •
 - ($y_0 = +1$ مقدار آستانه سلول j در مرحله n (متصل به ورودی ثابت $w_{j0}(n)$ •

الگوريتم پسانتشار خطا:

- مرحله تکرار nام است (اعمال الگوی آموزش nام به شبکه) n
- n برای تمام مراحل $\mathscr{E}_{\mathrm{av}}$ میانگین مقادیر \mathscr{E}_{n} برای تمام مراحل n
 - اندیسهای j ، i و k برای سلولهای مختلف در شبکه j سلول i در سمت راست سلول i در سمت راست سلول i
- و $y_k(n)$ و $y_k(n)$ به تر تیب خطای سیگنال خروجی، خروجی دلخواه و خروجی واقعی سلول kام در لایه خروجی
 - n وزن اتصالی بین سلول i و سلول و در مرحله $w_{ji}(n)$ •
 - ($y_0 = +1$ مقدار آستانه سلول j در مرحله n (متصل به ورودی ثابت $w_{j0}(n)$
 - n در مرحله j در مرحله $v_j(n)$ های ورودی به سلول $v_j(n)$

الگوريتم پسانتشار خطا:

- مرحله تکرار nام است (اعمال الگوی آموزش nام به شبکه) n
- n برای تمام مراحل $\mathscr{E}_{\mathrm{av}}$ میانگین مقادیر \mathscr{E}_{n} برای تمام مراحل n
 - اندیسهای j ، i و k برای سلولهای مختلف در شبکه j سلول i در سمت راست سلول i در سمت راست سلول i
- و $y_k(n)$ و $y_k(n)$ به تر تیب خطای سیگنال خروجی، خروجی دلخواه و خروجی واقعی سلول kام در لایه خروجی
 - n وزن اتصالی بین سلول i و سلول $w_{ji}(n)$ •
 - ($y_0 = +1$ مقدار آستانه سلول j در مرحله n (متصل به ورودی ثابت $w_{j0}(n)$
 - n در مرحله j در مرحله $v_j(n)$ های ورودی به سلول $v_j(n)$
 - n عابع فعال سازی (تابع غیر خطی) سلول $q_j(v_j(n))$ •

الگوريتم پسانتشار خطا:

- مرحله تکرار nام است (اعمال الگوی آموزش nام به شبکه) n
- n برای تمام مراحل $\mathscr{E}_{\mathrm{av}}$ میانگین مقادیر \mathscr{E}_{n} برای تمام مراحل n
 - اندیسهای j ، i و j برای سلولهای مختلف در شبکه j سلول i در سمت راست سلول i در سمت راست سلول i
- و $y_k(n)$ و $y_k(n)$ به تر تیب خطای سیگنال خروجی، خروجی دلخواه و خروجی واقعی سلول kام در لایه خروجی
 - n وزن اتصالی بین سلول i و سلول و در مرحله $w_{ji}(n)$ •
 - ($y_0 = +1$ مقدار آستانه سلول j در مرحله n (متصل به ورودی ثابت $w_{j0}(n)$
 - n در مرحله j در مرحله $v_j(n)$ های ورودی به سلول $v_j(n)$
 - n مرحله j تابع فعال سازی (تابع غیرخطی) سلول $\phi_j(v_j(n))$
 - n ورودی iام به شبکه درمرحله $x_i(n)$ •

الگوريتم پسانتشار خطا:

- مرحله تکرار nام است (اعمال الگوی آموزش nام به شبکه) n
- n برای تمام مراحل $\mathscr{E}_{\mathrm{av}}$ میانگین مقادیر \mathscr{E}_{n} برای تمام مراحل n
 - اندیسهای j ، i و k برای سلولهای مختلف در شبکه j سلول i در سمت راست سلول i در سمت راست سلول i
- $d_k(n)$ و $y_k(n)$ به تر تیب خطای سیگنال خروجی، خروجی دلخواه و خروجی واقعی سلول kام در لایه خروجی
 - n وزن اتصالی بین سلول i و سلول $w_{ji}(n)$ •
 - ($y_0 = +1$ مقدار آستانه سلول j در مرحله n (متصل به ورودی ثابت $w_{j0}(n)$
 - n در مرحله j در مرحله $v_j(n)$ های ورودی به سلول $v_j(n)$
 - n عابع فعال سازی (تابع غیرخطی) سلول $q_j(v_j(n))$ تابع فعال سازی $q_j(v_j(n))$
 - n ورودی iام به شبکه درمرحله $x_i(n)$
 - η ضریب آموزش η