VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT on

Machine Learning (23CS6PCMAL)

Submitted by

Supriya S (1BM22CS350)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING

(Autonomous Institution under VTU)
BENGALURU-560019
Feb-2025 to June-2025

B.M.S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Machine Learning (23CS6PCMAL)" carried out by **Supriya S (1BM22CS350)**, who is bonafide student of **B.M.S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements in respect of an Machine Learning (23CS6PCMAL) work prescribed for the said degree.

Lab Faculty Incharge	
Name: Sunayana S	Dr. Kavitha Sooda
Assistant Professor	Professor & HOD
Department of CSE, BMSCE	Department of CSE, BMSCE

Index

Sl. No.	Date	Experiment Title	Page No.
1	21-2-2025	Write a python program to import and export data using Pandas library functions	4
2	3-3-2025	Demonstrate various data pre-processing techniques for a given dataset	7
3	10-3-2023	Implement Linear and Multi-Linear Regression algorithm using appropriate dataset	10
4	17-3-2025	Build Logistic Regression Model for a given dataset	15
5		Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample	20
6	7-4-2025	Build KNN Classification model for a given dataset	22
7	21-4-2025	Build Support vector machine model for a given dataset	25
8	5-5-2025	Implement Random forest ensemble method on a given dataset	28
9	5-5-2025	Implement Boosting ensemble method on a given dataset	32
10	12-5-2025	Build k-Means algorithm to cluster a set of data stored in a .CSV file	36
11		Implement Dimensionality reduction using Principal Component Analysis (PCA) method	39

Github Link:

https://github.com/SupriyaS26/6THSEMMLLAB

Program 1

Write a python program to import and export data using Pandas library functions


```
Code:
#1. Initializing values directly into DataFrame
data= {
'USN': ['1BM22CS450','1BM22CS451','1BM22CS452','1BM22CS453','1BM22CS454'],
'Name': ['Sita','Rita','Meena','Manya','Keerthi'],
'Marks': [94,89,87,86,84]
}
df=pd.DataFrame(data)
print("Data:")
print(df)
#2. Importing datasets from sklearn.datasets
from sklearn.datasets import load_diabetes
db=load_diabetes()
df=pd.DataFrame(db.data)
print(df.head())
#3. Importing datsets from a specific .csv file
file_path='sample_sales_data.csv'
df=pd.read_csv(file_path)
print(df.head())
#4. Downloading datasets from existing dataset repositories like Kaggle, UCI, Mendely, KEEL, ETC
file_path='DatasetofDiabetes .csv'
df=pd.read_csv(file_path)
print(df.head())
import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
tickers = ["HDFCBANK.NS", "ICICIBANK.NS", "KOTAKBANK.NS"]
# Fetch historical data for the last 1 year
```

```
data = yf.download(tickers, start="2024-01-01", end="2024-12-30", group_by='ticker')
# Display the first 5 rows of the dataset
print("First 5 rows of the dataset:")
print(data.head())
hdfc_data = data['HDFCBANK.NS']
# Calculate daily returns
hdfc_data['Daily Return'] = hdfc_data['Close'].pct_change()
icici_data = data['ICICIBANK.NS']
# Calculate daily returns
icici_data['Daily Return'] = icici_data['Close'].pct_change()
kotak_data = data['KOTAKBANK.NS']
# Calculate daily returns
kotak_data['Daily Return'] = kotak_data['Close'].pct_change()
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
hdfc_data['Close'].plot(title="Hdfc Bank - Closing Price")
plt.subplot(2, 1, 2)
hdfc_data['Daily Return'].plot(title="Hdfc Bank - Daily Returns", color='orange')
plt.tight_layout()
plt.show()
```

Demonstrate various data pre-processing techniques for a given dataset

Screenshot

education, maintal-status, occupation housing cer : Demo of various data fire-import pandas as pd processing technique relationship, race, gender, native. country and income as categorical of = pd. nead cen ("housing cour") firint (" Information of all columns: ") column perint (df. info()) Using Ordinal Encades we can print ("In Statistical information of all encode categorical numerical columns: 1) pount (of describe ()) 3. What us the difference blw fruit (df [Ocean Procinity ?] value confe Min - Max Scaling and Standardy missing values = df. isnull() sum() -trong When would you use one one col = missing values [missing values so] Min - Max Scaling - teransforms point (col) data to fit. neith a specific 2. Dialietes dataset erange (usually o to) 1. Which columns in the dataset had missing values! How did you Standardization scales data by handle them? sulderacting mean and duriding None ofthecolumns had missing values by S.D. with mean as o and but if were present then numerical S.D as 1 column's NaN can be replaced with median and categorical columns Use Min-Max scaling when you'reed hull can be replaced with mode to preserve the relative relationsh 2 Which categorical columns did you blw values within a feature and identify in the dataset? How did use standardization when your you encode them ? algorithm is sensitive The dialetes dataset had gender, or assumes a normal distribution and class as categorical column and adult dataset had workclass

Code

```
#Handling Missing Values, Handling categorical data, Handling Outliers
   import pandas as pd
   df=pd.read_csv('Dataset of Diabetes .csv')
   missing_values=df.isnull().sum()
   print(missing_values[missing_values > 0])
   # Data Transformations: Min-max Scaler/Normalization, Standard Scaler
   import pandas as pd
   import numpy as np
   from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, StandardScaler
   file_path = "Dataset of Diabetes .csv"
   df = pd.read_csv(file_path)
   df["Gender"] = df["Gender"].str.upper()
   ordinal_encoder = OrdinalEncoder(categories=[["M", "F"]])
   df["Gender_Encoded"] = ordinal_encoder.fit_transform(df[["Gender"]])
   onehot_encoder = OneHotEncoder(sparse_output=False, drop="first")
   encoded_class = onehot_encoder.fit_transform(df[["CLASS"]])
   encoded_class_df = pd.DataFrame(encoded_class,
columns=onehot_encoder.get_feature_names_out(["CLASS"]))
   df_encoded = pd.concat([df, encoded_class_df], axis=1)
   df_encoded.drop(["Gender", "CLASS"], axis=1, inplace=True)
   num_cols = ["AGE", "Urea", "Cr", "HbA1c", "Chol", "TG", "HDL", "LDL", "VLDL", "BMI"]
   scaler = StandardScaler()
   df_encoded[num_cols] = scaler.fit_transform(df_encoded[num_cols])
```

```
print(df_encoded.head())
df_encoded.to_csv("cleaned_diabetes_dataset.csv", index=False)
normalizer = MinMaxScaler()
df_encoded[['BMI']] = normalizer.fit_transform(df_encoded[['BMI']])
df_encoded.head()
df_encoded_copy1=df_encoded
df_encoded_copy2=df_encoded
df_encoded_copy3=df_encoded
Q1 = df_encoded_copy1['BMI'].quantile(0.25)
Q3 = df_encoded_copy1['BMI'].quantile(0.75)
IQR = Q3 - Q1
lower\_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df_encoded_copy1['BMI'] = np.where(df_encoded_copy1['BMI'] > upper_bound, upper_bound,
np.where(df_encoded_copy1['BMI'] < lower_bound, lower_bound, df_encoded_copy1['BMI']))
print(df_encoded_copy1.head())
```

Implement Linear and Multi-Linear Regression algorithm using appropriate dataset

9-3-25 1 De mession	Research Control of the Control of t
4 Gonsider a binary classification protection between the mant to foredict whether student will pass or fail based on their study hours. The logis	a1 = (xy-mean - x-mean * y-mean) / (x2-mean - x-mean * * 2) a0 = y-mean - a1 * x-mean
1. Gunen fine neeks' sales data (in Thousands); apply linear regression technique to fredet the 7th and 4th neek sales (Neek) (Sales in Thousands) 1.2	print of "ao = {ao3, a1 = {a13}}) x-infut = int (infut ("Enter the value of x:") yposed = ao * a1 * 2 infut
1 1.2 2 1.8 3 2.6 4 3.2 5 3.8 import pandas as pol import mathlotlile byfilot as pt	ptt scatter (x, y, color="blue"; label bt plot (x, I a 0 + a 1 * xi for xi inx
x=[1,2,3,4,5] y=[1.2,18,2.6,3.2,3.8] df=pd. Data Frame(f'x': x, 'y': y) xy=[] z2=[]	ptt vlabel ('x') ptt vlabel ('x') ptt vlabel ('y') ptt tible ('dinear Regression')
for i, in zip (x,y): ty append (i * j) for i in x: 12 append (i * * 2) There are sum (x) (10 - 5 - 5)	ptt legend() ptt grid (Ione) ptt show() 0/P:- a0 = 0 54, a1 = 0.48
ymean = sum(y) / len(y) ty-mean = sum(xy) / len(xy) xz-mean = sum(x2) / len (x2)	Predicted y for x =7 is :5:16

ptt . x label = (x2) xt=ax.T A = np dot (xt sax) ptt. ylaliel = ('y) plt title (Tinear Regression) det A = np linaly det (A) if det-Al = 0: ptt. legend(). A inv = np lindly inv(A) ptt goud (Joure) a = np dot (A_inv, np dot plt show () (xt;ay) 01Pneturn a flatter () else eveturn "Innerse doesn't exists n = int (input ()) x = [int (infut (f" Enler)) for 1 in range (n)] Slope Caid = 2.2 , Intercept Card=+ y = [int (input ()) for i un grange (n)] Linear Regeression = matina (x, y, n) isinstance (eres, sta). if operint (res) a0, a1 = 9es forint (f" Slope (a1) = faig. Intercept (a0)= fao]: 3 pt scatter (x, yxolor = blue) Salvel = 'Data Points') plt. filot (x, ao +a1 * np. aereray(x) color = 'ered'; tallet = (Regression Line?)

Code

```
import pandas as pd
import matplotlib.pyplot as plt
# Data
x = [1, 2, 3, 4, 5]
y = [1.2, 1.8, 2.6, 3.2, 3.8]
df = pd.DataFrame(\{'x': x, 'y': y\})
# Calculate required values
xy = []
x2 = []
for i, j in zip(x, y):
xy.append(i * j)
for i in x:
x2.append(i ** 2)
x_mean = sum(x) / len(x)
y_mean = sum(y) / len(y)
xy_mean = sum(xy) / len(xy)
x2_mean = sum(x2) / len(x2)
# Calculate coefficients a0 and a1
a1 = (xy_mean - x_mean * y_mean) / (x2_mean - x_mean ** 2)
a0 = y_mean - a1 * x_mean
# Output the coefficients
print(f''a0 = \{a0\}, a1 = \{a1\}'')
# Predict y for a given x value
```

```
x_input = int(input("Enter the value of x: "))
y_pred = a0 + a1 * x_input
print(f"Predicted y for x = {x_input} is: {y_pred}")
# Plotting
plt.scatter(x, y, color='blue', label='Data Points') # Scatter plot for the data points
plt.plot(x, [a0 + a1 * xi for xi in x], color='red', label='Regression Line') # Regression line
plt.xlabel('x')
plt.ylabel('y')
plt.title('Linear Regression')
plt.legend()
plt.grid(True)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
def matrix\_operations(x, y, n):
ax = np.ones((n, 2))
ax[:, 1] = x
ay = np.array(y).reshape(-1, 1)
xt = ax.T
A = np.dot(xt, ax)
det_A = np.linalg.det(A)
if det_A != 0:
A_{inv} = np.linalg.inv(A)
a = np.dot(A_inv, np.dot(xt, ay))
```

```
return a.flatten() # Returns [a0, a1]
else:
return "Inverse doesn't exist"
# Input
n = int(input("Enter the number of elements: "))
x = [int(input(f"Enter the value of x[{i+1}]:")) for i in range(n)]
y = [int(input(f"Enter the value of y[{i+1}]:")) for i in range(n)]
# Perform matrix operation
result = matrix\_operations(x, y, n)
if isinstance(result, str):
print(result)
else:
a0, a1 = result
print(f"Slope (a1) = {a1}, Intercept (a0) = {a0}")
# Plotting
plt.scatter(x, y, color='blue', label='Data Points')
plt.plot(x, a0 + a1 * np.array(x), color='red', label='Regression Line')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Linear Regression')
plt.legend()
plt.grid(True)
plt.show()
```

Build Logistic Regression Model for a given dataset

Screenshot

Logistic Regression
1. Consider a binary classification problem where we want to fredict whether a student will pass or fail based on their study hours. The logistic regression model has been trained, and the learned parameters are a =-5. (intercept) and a 1-0.8 (coefficient for study
hows). a. Write the logistic regression equation for this forolder. $P(y=1 x) = \frac{1}{1+e^{-(a_0+a_1x)}} = \frac{1}{1+e^{-t5+08x^2}}$
b. Calculate the probability that a student who studies for 7
horors will hass $P = (y = 1/7) = \frac{1}{1 + e^{-65} + 0.8(7)} = \frac{1}{1 + e^{-0.6}}$
= 0.6457 07 6457%
c. Determine the peredicted class (frass of fail) for this student based on a threshold of O.S
Since P= (y=117) = 64.57%. alrone 0.5 03 50%. préedicted class is pass

P(y=3/z) =

```
Code
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
# Step 1: Load the dataset
df = pd.read_csv("HR_comma_sep.csv")
# Step 2: Exploratory Data Analysis
print(df.head())
print(df.info())
print(df['left'].value_counts())
# Correlation heatmap
# Only include numeric columns for correlation matrix
numeric_df = df.select_dtypes(include=['number'])
# Correlation heatmap
sns.heatmap(numeric_df.corr(), annot=True, cmap="coolwarm")
plt.title("Correlation Matrix")
plt.show()
# Salary vs Retention
sns.countplot(x='salary', hue='left', data=df)
```

plt.title("Impact of Salary on Retention")

```
plt.show()
# Department vs Retention
sns.countplot(x='Department', hue='left', data=df)
plt.xticks(rotation=45)
plt.title("Department vs Retention")
plt.show()
# Step 3: Data Preprocessing
df_processed = df.copy()
le = LabelEncoder()
df_processed['salary'] = le.fit_transform(df_processed['salary'])
df_processed['Department'] = le.fit_transform(df_processed['Department'])
# Features selected based on correlation and EDA
features = ['satisfaction_level', 'last_evaluation', 'number_project',
'average_montly_hours', 'time_spend_company',
'Work_accident', 'promotion_last_5years',
'salary', 'Department']
X = df_processed[features]
y = df_processed['left']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy:.2f}")
```

Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample

11 11 + === 11 1 0	
Implement ID3 (Sterature Dichotomien	from Skleam model selection importantest split
algorithm on Tennis Weather dataset	train test split
import pandas as pd	
data = pd. readcen ('tennis. com)	x train, x test, y train, y test=
print (data)	traintest split (x, y, text size =0,)
from sklearn preprocessing import dalillread	from skleann torce import
from sklearn preprocessing import talillred outlook = LabelEncoder()	Oining To Chairling
temp = habelEncoder()	Decision Tree Classifier
humidity = LabelEncoder ()	classifier = Decision Tree Classifier (criterion
weind = Label Encoder()	= 'entropy'
play = LahelEncoder()	classifier fit (z train, y train)
data Coutlante? Touth he lit	classifier · predict (x test)
olata [outlook] = outlook fit transform	doistie to the lite
data [temp] = temp fit transform	classifier score (x-test, y-test)
temp fit transform	elf = Decision Tree Classifier (criterion
data [humidity] = humidity. fit towardon	elf fit (x, y) = "entropy")
mara [humidity] = humidity. fit translo	of fit (x, y)
(data [humidity]	importances - clf. feature inhorts
data ["windy] = wind . fit_ transform	feature importance of = pd. Data Frame.
(colata [c windy])	16 Cd State and pd. Lata Frama
doto [1/2]	If 'Feature': x columns,
may = play fot transform	Information lines
data ['play'] = play fit transforms (data ['play']) print (data)	3) Information Gain importance
features cots = ['outlook', 'temp', 'humidate,	feature importance of = feature
"awindy"]	provide at sort-value (by
The state of the s	Information Gain?
y=data Hay	ascending = Jakes
hount (x)	fruit (flature interestance of)
mune(y)	from sklearn import teree tree that large (classifier)
	tree that tree (classifier)


```
Code
import pandas as pd
data=pd.read_csv('tennis.csv')
data
from sklearn.preprocessing import LabelEncoder
outlook=LabelEncoder()
temp=LabelEncoder()
humidity=LabelEncoder()
wind=LabelEncoder()
play=LabelEncoder()
data['outlook']=outlook.fit_transform(data['outlook'])
data['temp']=temp.fit_transform(data['temp'])
data['humidity']=humidity.fit_transform(data['humidity'])
data['windy']=wind.fit_transform(data['windy'])
data['play']=play.fit_transform(data['play'])
data
features_cols=['outlook','temp','humidity','windy']
x=data[features_cols]
y=data.play
print(x)
print()
print(y)
from sklearn.model_selection import train_test_split
```

```
x_train, x_test, y_train,y_test=train_test_split(x,y,test_size=0.2)
from sklearn.tree import DecisionTreeClassifier
classifier=DecisionTreeClassifier(criterion='entropy')
classifier.fit(x_train,y_train)
classifier.predict(x_test)
classifier.score(x_test,y_test)
clf = DecisionTreeClassifier(criterion='entropy') # Using entropy to calculate information gain
clf.fit(x, y)
importances = clf.feature_importances_
# Create a DataFrame to see the feature importances
feature_importance_df = pd.DataFrame({
'Feature': x.columns,
'Information Gain': importances
})
# Sort by importance
feature_importance_df = feature_importance_df.sort_values(by='Information Gain', ascending=False)
print(feature_importance_df)
```

Build KNN Classification model for a given dataset

Build KNN Classification model for dealetes a given classet Consider the following dataset, for K = 3 and test data (X,35,100) as (Person, Age, Salaryk) solve using Knn classifier model and bredict the target. Person Age Salaryk Jarget Euclidea A 18 50 B 23 55 C 24 70 N 31 9 D 41 60 E 43 70 X 38 40 X 38 100 G J (Age, -Age, 32 + (Balaryk, - Salaryk) (41,60) 31.1 Y (24,570) 31.9 N (41560) 40.5 Y C 24,570 31.9 N (41560) 40.5	3. Evaluate accuracy and every rate for each k. 4. Plot accuracy = Number of core predictions Sotal peredictions Loveror rate = 1 - accuracy. 4. Plot accuracy vs k or error rate us k and select k with the highest accuracy or lowest error rate. 3. Evaluate accuracy is known for some accuracy properties accuracy for lowest error rate. 4. Plot accuracy vs k or error rate accuracy or lowest error rate. 4. Plot accuracy vs k or error rate accuracy or lowest error rate.
(24,570) 31.9 N (41,560). 40.5 y Since majority is y (35, 100) Jarget is y 2 For bris dataset How to choose the k value? Demonstrate using accuracy erate and error rate 1. Split the data into training and testing sets. 2. Jaain the model with various values of k (e.g. 1,33,5,7,79)	Scaling rensures fairness. Using standardization (z-score normalization).

```
Code
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import seaborn as sns
import matplotlib.pyplot as plt
print("\n--- IRIS DATASET ---")
# Load iris dataset
iris = pd.read_csv("iris.csv")
print("Iris Dataset Shape:", iris.shape)
# Features and target
X_iris = iris.drop(columns='species')
y_iris = iris['species']
# Split data
X_train, X_test, y_train, y_test = train_test_split(X_iris, y_iris, test_size=0.2, random_state=42)
# Instantiate and train KNN
```

knn_iris = KNeighborsClassifier(n_neighbors=5)

```
knn_iris.fit(X_train, y_train)
   # Predict and evaluate
   y_pred = knn_iris.predict(X_test)
   print("Accuracy Score (Iris):", accuracy_score(y_test, y_pred))
   # Confusion matrix
   cm_iris = confusion_matrix(y_test, y_pred)
   sns.heatmap(cm_iris, annot=True, fmt='d', cmap='Blues', xticklabels=knn_iris.classes_,
yticklabels=knn_iris.classes_)
   plt.title("Confusion Matrix - IRIS")
   plt.xlabel("Predicted")
   plt.ylabel("Actual")
   plt.show()
   print("\nClassification Report (Iris):")
   print(classification_report(y_test, y_pred))
```

Build Support vector machine model for a given dataset

Expressed learning algorithm used for classification and suggression tasks, also called as Maximum Margin classifier lyinen Rositively labeled data points $\{(\frac{3}{1}), (\frac{6}{1}), (\frac{6}{1}), (\frac{6}{1})\}$ Negatively labeled data points $\{(\frac{1}{0}), (\frac{6}{1}), (\frac{6}{1}), (\frac{6}{1})\}$ $\{(\frac{1}{0}), (\frac{6}{1}), (\frac{6}{1}), (\frac{6}{1})\}$ $\{(\frac{1}{0}), (\frac{6}{1}), (\frac{6}{1}), (\frac{6}{1})\}$ $\{(\frac{1}{0}), (\frac{1}{0}), (\frac{6}{1})\}$ $\{(\frac{1}{0}), (\frac{1}{0}), (\frac{1}{0})\}$	Given Positively labeled data points $ \begin{cases} \binom{3}{1} > \binom{3}{-1} > \binom{6}{1} > \binom{4}{-1} \end{cases} $ Negatively labeled data points $ \binom{1}{0} > \binom{0}{1} > \binom{0}{-1} > \binom{0}{0} \end{cases} $ $ \binom{1}{0} > \binom{1}{0} > \binom{1}{0} > \binom{1}{0} > \binom{1}{0} \end{cases} $ $ \binom{1}{0} > \binom{1}{$
---	--

```
Code
   import pandas as pd
   import matplotlib.pyplot as plt
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import StandardScaler
   from sklearn.svm import SVC
   from sklearn.metrics import accuracy_score
   df = pd.read_csv("diabetes.csv")
   X = df[["Glucose", "BMI"]]
   y = df["Outcome"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
   scaler = StandardScaler()
   X_train_scaled = scaler.fit_transform(X_train)
   X_{test\_scaled} = scaler.transform(X_{test})
   model = SVC(kernel='linear')
   model.fit(X_train_scaled, y_train)
y_pred = model.predict(X_test_scaled)
   print("Accuracy:", accuracy_score(y_test, y_pred))
   # Plotting decision boundary
   import numpy as np
```

```
# Create meshgrid
   x_{min}, x_{max} = X_{train\_scaled}[:, 0].min() - 1, X_{train\_scaled}[:, 0].max() + 1
   y_min, y_max = X_train_scaled[:, 1].min() - 1, X_train_scaled[:, 1].max() + 1
   xx, yy = np.meshgrid(np.linspace(x_min, x_max, 200),
   np.linspace(y_min, y_max, 200))
   # Predict for each point in the grid
   Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
   Z = Z.reshape(xx.shape)
   # Plot
   plt.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.3)
   plt.scatter(X_train_scaled[:, 0], X_train_scaled[:, 1], c=y_train, cmap=plt.cm.coolwarm,
edgecolors='k')
   plt.xlabel("Glucose (scaled)")
   plt.ylabel("BMI (scaled)")
   plt.title("Linear SVM Decision Boundary")
   plt.show()
```

Implement Random Forest ensemble method on a given dataset

Implement Random Forest ensemble -	(Interactiverses)
Draw the Decision tree considering	11/4
CGPA as eroot node	Ljol Brace Knowledge Aug .
0 11 0	the agent
SNo. CGPA Interactiveness Comminication Brace fol	White Bython Coole to implement
SNo. CGPA Interactiveness Comminication Bac fol Skills Know offer 1. 29 Yes Good Good Yes. 2. <9 No Made to the Ma	Build a RF classifier to classify
I vove are your y	INIS flower marase
3. 29 No Moderate Ang No	Import pandas as pol from skleann ensemble import
4. 29 No Moderate Aug No.	0 1 9 1 11 11
5. 29 Yes Hoderate God yes	from sklearin model selection import traintest split
Hass Entropy for the target class	tris = load inis ()
Hote Olden?	Xu= 101 dd
29 (CGPA).	X train . X test , y train , y test = traintest split (X, y, test size 03; random state
29/49	traintest split (x, y, test size - 03,
. *	V5 - Rando TI 1 01
Interactiveness yes	If = Fandom Frest Classifier (n_ estimate If fil (X train y train)
yes No	- g-ream)
Jes 1965	
19es No	pount (* Accuracy with so theres . ")
Sample 52	OIP:
5. No. CGPA Interactiveness Commi Brac Jole Skills Know offer Moderate Good Jes	According with 10 stress 1
2. <9 No Moderate Good yes 3. >9 No Hoolerate Aug No	But accuracy
3. ≥ 9 No Hoderate Ang No Hoderate Ang No	Best accuracy Score :1.
5. 29 yes " Good yes	TP FP FN TN
5. 29 Yes 11 Good yes	FN TN

```
Code
```

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Step 1: Load dataset
iris = pd.read_csv("iris.csv")
# Step 2: Features and labels
X = iris.drop(columns='species')
y = iris['species']
# Step 3: Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 4: Train RF with default n_estimators=10
rf_default = RandomForestClassifier(n_estimators=10, random_state=42)
rf_default.fit(X_train, y_train)
y_pred = rf_default.predict(X_test)
print("\nRandom Forest with 10 trees:")
```

```
print("Accuracy:", accuracy_score(y_test, y_pred))
   print("Classification Report:\n", classification_report(y_test, y_pred))
   # Step 5: Confusion Matrix
   cm = confusion_matrix(y_test, y_pred)
   sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=rf_default.classes_,
yticklabels=rf_default.classes_)
   plt.title("Confusion Matrix (10 Trees)")
   plt.xlabel("Predicted")
   plt.ylabel("Actual")
   plt.show()
   # Step 6: Fine tune number of trees
   scores = []
   trees\_range = range(1, 51)
   for n in trees_range:
      rf = RandomForestClassifier(n_estimators=n, random_state=42)
      rf.fit(X_train, y_train)
      score = rf.score(X_test, y_test)
      scores.append(score)
   # Step 7: Plot results
   plt.figure(figsize=(10, 5))
   plt.plot(trees_range, scores, marker='o')
```

```
plt.title("Random Forest Accuracy vs Number of Trees")
plt.xlabel("Number of Trees")
plt.ylabel("Accuracy")
plt.grid(True)
plt.show()

# Step 8: Best score and corresponding number of trees
best_n = trees_range[scores.index(max(scores))]
print(f"\nBest Accuracy: {max(scores):.2f} using {best_n} trees")
```

Implement Boosting ensemble method on a given dataset

		Boosting Algorithm		
atteilu	te CGPA	1000 Ba	- LODGE S	200
CG PA	Interacti	vieness Prac	Comm	Sp.
>=9	Yes		Good	
<9	No		Moderate	
>=9	No	Ang	31	N
<9	0	н	yood you	27
>=9	Yes	Good	Moderate	y
>-9	11	n)(71
X mitio	l seight	= 1/4 (dg) Wt(dg		
y grand	2 July	16		
01	AJ=1 FI;	(d) NE(dy)	
800	DA = /2x	1 = 0.3	33	
		1 (1 - ECGIF		

	$Z_{LG+A} = \frac{1}{4} \times 4 \times e^{-0.347} + \frac{1}{6} \times 2 \times e^{+0.347} = 0.9428$
	W+ (dj) = 1/6 × e-0.347 = 0.124
	0.9428
	for incorrect instance
	= 1/ xe+0.347
- 1	$= \frac{1}{200000000000000000000000000000000000$
	CGPA. Initial Upolated
	Weight Weight
	7=9 1/6 0.1249
	29 1/6. 0.2501
	>=9 /6 . 0.1249
	<9 1/6 0.2501
	>=9 1/6 0.1249
	>=9 1/6 0.1249
	Best accuracy score = 1
	honfusion matrix
	TN P
	FN TP

```
Code
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Load the dataset
df = pd.read_csv("income.csv")
# Features and target
X = df.drop(columns='income_level')
y = df['income_level']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train AdaBoost with default n_estimators=10
ab_default = AdaBoostClassifier(n_estimators=10, random_state=42)
ab_default.fit(X_train, y_train)
y_pred = ab_default.predict(X_test)
```

```
print("\nAdaBoost Classifier with 10 Trees")
print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
# Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title("Confusion Matrix (10 Trees)")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
# Fine-tune number of estimators
scores = []
trees\_range = range(1, 101)
for n in trees_range:
  ab = AdaBoostClassifier(n_estimators=n, random_state=42)
  ab.fit(X_train, y_train)
  score = ab.score(X_test, y_test)
  scores.append(score)
```

Plot accuracy vs. number of trees

```
plt.figure(figsize=(10, 5))
plt.plot(trees_range, scores, marker='o')
plt.title("AdaBoost Accuracy vs Number of Trees")
plt.xlabel("Number of Trees (n_estimators)")
plt.ylabel("Accuracy")
plt.grid(True)
plt.show()

# Best accuracy and corresponding number of trees
best_n = trees_range[np.argmax(scores)]
print(f"\nBest Accuracy: {max(scores):.4f} using {best_n} trees")
```

Build k-Means algorithm to cluster a set of data stored in a .CSV file

Code import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler iris = pd.read_csv("iris.csv") X = iris[['petal_length', 'petal_width']] plt.figure(figsize=(6, 4)) sns.scatterplot(x='petal_length', y='petal_width', hue=iris['species'], data=iris) plt.title("Original Iris Petal Data") plt.show() scaler = StandardScaler() $X_scaled = scaler.fit_transform(X)$ inertia = [] $k_range = range(1, 11)$ for k in k_range: km = KMeans(n_clusters=k, random_state=42, n_init=10) km.fit(X_scaled) inertia.append(km.inertia_) plt.figure(figsize=(8, 5)) plt.plot(k_range, inertia, marker='o') plt.title("Elbow Plot for Optimal k") plt.xlabel("Number of Clusters (k)")

```
plt.ylabel("Inertia (Within-cluster Sum of Squares)")

plt.grid(True)

plt.show()

optimal_k = 3

kmeans = KMeans(n_clusters=optimal_k, random_state=42, n_init=10)

clusters = kmeans.fit_predict(X_scaled)

plt.figure(figsize=(6, 4))

sns.scatterplot(x=X['petal_length'], y=X['petal_width'], hue=clusters, palette='Set2')

plt.title(f"K-Means Clustering with k={optimal_k}")

plt.xlabel("Petal Length")

plt.ylabel("Petal Width")
```

Implement Dimensionality reduction using Principal Component Analysis (PCA) method

Screenshot

Code

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler, LabelEncoder

from sklearn.decomposition import PCA

from sklearn.metrics import accuracy_score

```
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
# Load dataset
df = pd.read_csv('heart.csv')
# Step 1: Encode categorical features
df_{encoded} = df.copy()
label_cols = ['Sex', 'ChestPainType', 'RestingECG', 'ExerciseAngina', 'ST_Slope']
# Apply label encoding for binary columns, one-hot encoding for others
for col in label_cols:
if df_encoded[col].nunique() == 2:
df_encoded[col] = LabelEncoder().fit_transform(df_encoded[col])
else:
df_encoded = pd.get_dummies(df_encoded, columns=[col], drop_first=True)
# Step 2: Split features and target
X = df_{encoded.drop(columns='HeartDisease')}
y = df_encoded['HeartDisease']
# Step 3: Feature Scaling
scaler = StandardScaler()
```

```
X_scaled = scaler.fit_transform(X)
# Step 4: Train-test split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# Step 5: Train classifiers
models = {
'SVM': SVC(),
'Logistic Regression': LogisticRegression(max_iter=1000),
'Random Forest': RandomForestClassifier()
}
print("Accuracy Before PCA:")
for name, model in models.items():
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f"{name}: {acc:.4f}")
# Step 6: Apply PCA to retain 95% variance
pca = PCA(n\_components=0.95)
X_train_pca = pca.fit_transform(X_train)
X_{test_pca} = pca.transform(X_{test})
```

```
print("\nAccuracy After PCA:")
for name, model in models.items():
model.fit(X_train_pca, y_train)
y_pred_pca = model.predict(X_test_pca)
acc_pca = accuracy_score(y_test, y_pred_pca)
print(f"{name} (PCA): {acc_pca:.4f}")

# Optional: Display PCA variance ratios
print("\nPCA Explained Variance Ratios:")
print(np.round(pca.explained_variance_ratio_ * 100, 2))
```