

UNIVERSITÀ DEGLI STUDI DI TRENTO

DIPARTIMENTO DI INGEGNERIA CIVILE, AMBIENTALE E MECCANICA Corso di Laurea in Ingegneria Civile

CONFRONTO PRESTAZIONALE TRA DIVERSE SOLUZIONI EDILIZIE

 $Analisi\ termo-igrometrica\ in\ regime\ stazionario\ e\ dinamico\ di\ alcuni\ pacchetti\ perimetrali\ composti\ da\ differenti\ materiali\ secondo\ la\ normativa\ di\ riferimento$

Supervisore Rossano Albatici Laureando Nicola Meoli 186100

Da un precedente lavoro di gruppo...

... si era visto come la scelta di differenti materiali per le pareti esterne di una casa a schiera, volesse dire costi di costruzione-manutenzione e tempi di messa in opera estremante diversi.

Ora si vuole confrontare gli stessi materiali da un punto di vista termo-igrometrico in regime stazionario e dinamico, con un occhio di riguardo al comfort abitativo e al dispendio di energia.

Regime stazionario

Rischio di condensazione interstiziale

Metodologia secondo:

- UNI EN ISO 13788:2003
- diagramma di Glaser

consistente nell'avere per ogni punto:

$$p_{\text{SAT.}} < p$$

Regime stazionario

Rischio di condensazione interstiziale

Metodologia secondo:

- UNI EN ISO 13788:2003
- diagramma di Glaser

consistente nell'avere per ogni punto:

$$p_{\text{SAT.}} < p$$

Occorre calcolare l'andamento delle due pressioni e controllare il non superamento graficamente.

Per ogni strato è necessario conoscere:

- spessore: s [m]
- conducibilità termica: λ [W m⁻² K⁻¹]
- permeabilità al vapore: μ [-]

Verifica condensa interstiziale

Temperatura

Ipotesi di flusso del calore stazionario, ovvero la quantità in entrata è uguale alla quantità in uscita.

Verifica condensa interstiziale

Temperatura

Ipotesi di **flusso** del calore **stazionario**, ovvero la quantità in entrata è uguale alla quantità in uscita.

Calcolo della temperatura per ogni strato a partire dalla temperatura interna:

$$\Delta \vartheta = \vartheta_{\text{int.}} - \vartheta_{\text{est.}}$$

$$\vartheta^{(1)} = \vartheta_{\text{int.}}$$

$$\vartheta^{(k)} = \vartheta_{\text{int.}} - \frac{\Delta \vartheta}{R_{tot}} \left(R_{\text{s,int.}} + \sum_{i=1}^{k} R^{(i)} \right)$$

$$\vartheta^{(N)} = \vartheta_{\text{est.}} \quad [^{\circ}C]$$

dove
$$R^{(k)} = \frac{s^{(k)}}{\lambda^{(k)}} \quad [\text{m}^2 \,\text{K} \,\text{W}^{-1}]$$

Verifica condensa interstiziale

Pressioni

Calcolo della pressione di saturazione a partire dalla temperatura appena trovata:

$$p_{\text{SAT.}}^{(k)} = \begin{cases} 610.5 \exp\left(\frac{17.269 \, \vartheta^{(k)}}{237.3 + \vartheta^{(k)}}\right) & \text{per } \vartheta^{(k)} \ge 0 \,^{\circ}\text{C} \\ 610.5 \exp\left(\frac{21.875 \, \vartheta^{(k)}}{265.5 + \vartheta^{(k)}}\right) & \text{per } \vartheta^{(k)} \le 0 \,^{\circ}\text{C} \end{cases}$$
[Pa]

Calcolo della pressione del vapore a partire da quella interna:

$$p^{(1)} = p_{\text{int.}} = p_{\text{int.}}^{\text{SAT.}} \cdot UR_{\text{int.}}$$

$$p^{(N)} = p_{\text{est.}} = p_{\text{est.}}^{\text{SAT.}} \cdot UR_{\text{est.}}$$

$$\Delta p = p_{\text{int.}} - p_{\text{est.}}$$

$$p^{(k)} = p_{\text{int.}} - \frac{\Delta p}{Sd_{tot}} \left(\sum_{i=1}^{k} Sd^{(i)} \right)$$
 [Pa]

dove
$$S_d^{(k)} = s^{(k)} \cdot \mu^{(k)}$$
 [m]

Parete solo mattone pieno (0a)

Strati	Spessori s [m]	Conducibilità termica λ [W m ⁻² K ⁻¹]	Permeabilità al vapore μ $[-]$
Mattone pieno	1,0	0,78	10,0

Parete solo mattone pieno (0a)

Strati	Spessori s [m]	Conducibilità termica λ [W m ⁻² K ⁻¹]	Permeabilità al vapore μ [-]
Mattone pieno	1,0	0,78	10,0

Parete solo isolante (0b)

Strati	Spessori s [m]	Conducibilità termica λ [W m ⁻² K ⁻¹]	Permeabilità al vapore μ [-]
Isolante VentirockDuo	0,12	0,035	1,0

Spessore parete (m)

Spessore equivalente Sd (m)

Parete in laterizio con isolante interno (1a)

Strati	Spessori s [m]	Conducibilità termica λ [W m ⁻² K ⁻¹]	Permeabilità al vapore μ [-]
Intonaco	0,015	0,600	6,0
Isolante VentirockDuo	0,120	0,035	1,0
Laterizio semipieno	0,200	0,530	10,0
Intonaco	0,015	0,900	8,0

Parete in laterizio con isolante esterno (1b)

Strati	Spessori s [m]	Conducibilità termica λ [W m ⁻² K ⁻¹]	Permeabilità al vapore μ [-]	
Intonaco	0,015	0,600	6,0	
Laterizio semipieno	0,200	0,530	10,0	
Isolante VentirockDuo	0,120	0,035	1,0	
Intonaco	0,015	0,900	8,0	

Parete in muratura Poroton con isolante esterno (2a)

Strati	Spessori s [m]	Conducibilità termica λ [W m ⁻² K ⁻¹]	Permeabilità al vapore μ [-]	
Intonaco	0,015	0,600	6,0	
Laterizio Poroton	0,200	0,230	10,0	
Isolante VentirockDuo	0,110	0,035	1,0	
Intonaco	0,015	0,900	8,0	

Parete in X-LAM con isolante bassa densità (3a)

Strati	Spessori s [m]	Conducibilità termica λ [W m ⁻² K ⁻¹]	Permeabilità al vapore μ [-]
Gessofibra	0,015	0,210	5,0
X-LAM KLH	0,096	0,130	25,0
Isolante bassa densità	0,120	0,038	1,0
Intonaco calce	0,015	0,900	20,0

Parete in X-LAM con isolante bassa densità lana di roccia (3b)

Strati	Spessori s [m]	Conducibilità termica λ [W m ⁻² K ⁻¹]	Permeabilità al vapore μ $[-]$
Gessofibra	0,015	0,210	5,0
X-LAM KLH	0,096	0,130	25,0
Isolante VentirockDuo	0,110	0,035	1,0
Intonaco calce	0,015	0,900	20,0

Parete in X-LAM con isolante alta densità fibra di legno (3c)

Strati	Spessori s $[m]$	Conducibilità termica λ [W m ⁻² K ⁻¹]	Permeabilità al vapore μ $[-]$
Gessofibra	0,015	0,210	5,0
X-LAM KLH	0,096	0,130	25,0
Isolante alta densità	0,130	0,043	5,0
Intonaco calce	0,015	0,900	20,0

Come risolvere per i punti in cui si ha condensa?

- \bullet Utilizzare isolanti differenti (es: sughero) e/o fare in modo di non avere bruschi cali di temperatura
- Utilizzare freni o barriere al vapore nel lato caldo
- Controllare l'umidità attraverso la ventilazione
- Utilizzare materiali a cambiamento di fase PCM

Matrici di trasferimento secondo la UNI EN ISO 13786:2007

In aggiunta a quanto visto prima, è necessario conoscere per ogni materiale:

- densità del materiale: ρ [kg m⁻³]
- calore specifico: $c \quad [J kg^{-1} K^{-1}]$

Per ogni singolo strato k-esimo va calcolata la matrice di trasferimento:

$$\mathbf{Z}^{(k)} = \begin{bmatrix} Z_{11}^{(k)} & Z_{12}^{(k)} \\ Z_{21}^{(k)} & Z_{22}^{(k)} \end{bmatrix}$$

Matrici di trasferimento secondo la UNI EN ISO 13786:2007

In aggiunta a quanto visto prima, è necessario conoscere per ogni materiale:

- densità del materiale: ρ [kg m⁻³]
- calore specifico: $c = [J kg^{-1} K^{-1}]$

Per ogni singolo strato k-esimo va calcolata la matrice di trasferimento:

$$\mathbf{Z}^{(k)} = \begin{bmatrix} Z_{11}^{(k)} & Z_{12}^{(k)} \\ Z_{21}^{(k)} & Z_{22}^{(k)} \end{bmatrix}$$

dove le componenti della matrice $\mathbf{Z}^{(\mathbf{k})}$ sono:

$$\begin{split} &Z_{11}^{(k)} = Z_{22}^{(k)} = \cosh\left(\xi^{(k)}\right)\cos\left(\xi^{(k)}\right) + \mathrm{i}\left[\sinh\left(\xi^{(k)}\right)\sin\left(\xi^{(k)}\right)\right] \\ &Z_{12}^{(k)} = -\frac{\delta^{(k)}}{2\lambda^{(k)}} \Big\{\sinh\left(\xi^{(k)}\right)\cos\left(\xi^{(k)}\right) + \cosh\left(\xi^{(k)}\right)\sin\left(\xi^{(k)}\right) + \mathrm{i}\left[\cosh\left(\xi^{(k)}\right)\sin\left(\xi^{(k)}\right) - \sinh\left(\xi^{(k)}\right)\cos\left(\xi^{(k)}\right)\right]\Big\} \\ &Z_{21}^{(k)} = \frac{\lambda^{(k)}}{\delta^{(k)}} \Big\{\sinh\left(\xi^{(k)}\right)\cos\left(\xi^{(k)}\right) - \cosh\left(\xi^{(k)}\right)\sin\left(\xi^{(k)}\right) + \mathrm{i}\left[\sinh\left(\xi^{(k)}\right)\cos\left(\xi^{(k)}\right) + \cosh\left(\xi^{(k)}\right)\sin\left(\xi^{(k)}\right)\right]\Big\} \\ & \text{e dove } \delta^{(k)} = \sqrt{\frac{\lambda^{(k)}T}{\pi\,\rho^{(k)}\,c^{(k)}}} \,\, [\text{m}] \,\, \text{\`e la profondit\`a di penetrazione e } \xi^{(k)} = \frac{s^{(k)}}{\delta^{(k)}} \,\, [-] \,\, \text{\'e il rapporto} \end{split}$$

delle due lunghezze.

Matrici di trasferimento

Moltiplicando scalarmente le matrici di trasferimento di ogni singolo strato (a partire da quello più esterno) si ottiene la matrice di trasferimento dell'intero componente edilizio relativa agli N strati:

$$\mathbf{Z} = \mathbf{Z}_N \cdot \mathbf{Z}_{N-1} \cdot \ldots \cdot \mathbf{Z}_2 \cdot \mathbf{Z}_1$$

Matrici di trasferimento

Moltiplicando scalarmente le matrici di trasferimento di ogni singolo strato (a partire da quello più esterno) si ottiene la matrice di trasferimento dell'intero componente edilizio relativa agli N strati:

$$\mathbf{Z} = \mathbf{Z}_N \cdot \mathbf{Z}_{N-1} \cdot \ldots \cdot \mathbf{Z}_2 \cdot \mathbf{Z}_1$$

Pre e post moltiplicando per le matrici di trasferimento degli strati laminari

$$\mathbf{Z}_{\mathrm{int.}} = \begin{bmatrix} 1 & -R_{\mathrm{s,int.}} \\ 0 & 1 \end{bmatrix} \qquad \mathbf{Z}_{\mathrm{est.}} = \begin{bmatrix} 1 & -R_{\mathrm{s,est.}} \\ 0 & 1 \end{bmatrix}$$

si ottiene la matrice di trasferimento da lato a lato:

$$\mathbf{Z}_{\mathrm{ee}} = \mathbf{Z}_{\mathrm{est.}} \cdot \mathbf{Z} \cdot \mathbf{Z}_{\mathrm{int.}}$$

Matrici di trasferimento

Moltiplicando scalarmente le matrici di trasferimento di ogni singolo strato (a partire da quello più esterno) si ottiene la matrice di trasferimento dell'intero componente edilizio relativa agli N strati:

$$\mathbf{Z} = \mathbf{Z}_N \cdot \mathbf{Z}_{N-1} \cdot \ldots \cdot \mathbf{Z}_2 \cdot \mathbf{Z}_1$$

Pre e post moltiplicando per le matrici di trasferimento degli strati laminari

$$\mathbf{Z}_{\mathrm{int.}} = \begin{bmatrix} 1 & -R_{\mathrm{s,int.}} \\ 0 & 1 \end{bmatrix} \qquad \mathbf{Z}_{\mathrm{est.}} = \begin{bmatrix} 1 & -R_{\mathrm{s,est.}} \\ 0 & 1 \end{bmatrix}$$

si ottiene la matrice di trasferimento da lato a lato:

$$\mathbf{Z}_{\mathrm{ee}} = \mathbf{Z}_{\mathrm{est.}} \cdot \mathbf{Z} \cdot \mathbf{Z}_{\mathrm{int.}}$$

Nel regime dinamico si è nell'ipotesi che il **flusso non si conserva** tra strato a strato. Questo perchè una parte di esso viene assorbito dal materiale, accumolandosi al suo interno.

Calcolo delle proprietà di nostro interesse dalla Z_{ee}

Trasmittanza termica periodica, attenuazione, sfasamento

Dall'elemento 12 della matrice \mathbf{Z}_{ee} si ricava la trasmittanza termica periodica Y_{12} tramite il modulo della parte reale e immaginaria

$$Y_{12} = \left| -\frac{1}{Z_{\text{ee},12}} \right|$$

e il fattore di attenuazione f

$$f = -\frac{Y_{12}}{U}$$

Lo sfasamento riferito al tempo iniziale si ottiene come:

$$\Delta \tau = \frac{T}{2\pi} \arg \left(Z_{\text{ee},12} \right) + \frac{T}{2}$$

Calcolo delle proprietà di nostro interesse dalla \mathbf{Z}_{ee}

Trasmittanza termica periodica, attenuazione, sfasamento

Dall'elemento 12 della matrice \mathbf{Z}_{ee} si ricava la trasmittanza termica periodica Y_{12} tramite il modulo della parte reale e immaginaria

$$Y_{12} = \left| -\frac{1}{Z_{\text{ee},12}} \right|$$

e il fattore di attenuazione f

$$f = -\frac{Y_{12}}{U}$$

Lo sfasamento riferito al tempo iniziale si ottiene come:

$$\Delta \tau = \frac{T}{2\pi} \arg \left(Z_{\text{ee},12} \right) + \frac{T}{2}$$

Calcolo delle proprietà di nostro interesse dalla \mathbf{Z}_{ee}

Trasmittanza termica periodica, attenuazione, sfasamento

La trasmittanza termica periodica Y_{12} indica perciò la capacità di una parete opaca (sottoposta ad un flusso termico sinusoidale) a sfasare ed attenuare l'onda di temperatura.

Valori ottimali definiti dalla normativa:

Sfasamento [ore]	Attenuazione	Prestazioni
S > 12	$f_d < 0.15$	ottime
10 < S < 12	$0.15 < f_d < 0.30$	buone
8 < S < 10	$0.30 < f_d < 0.40$	medie
6 < S < 8	$0.40 < f_d < 0.60$	sufficienti
S < 6	$f_d > 0.60$	mediocri

$$\begin{cases} Y_{12} < 0.10 \,\mathrm{W}\,\mathrm{m}^{-2}\,\mathrm{K}^{-1} \\ \mathrm{oppure} \\ M_s > 230 \,\mathrm{kg}\,\mathrm{m}^{-2} \end{cases}$$

Calcolo delle proprietà di nostro interesse dalla \mathbf{Z}_{ee}

Ammettanze termiche, capacità termica periodica

Dagli elementi 11 e 22 si ricavano riispettivamente l'ammettanza termica interna ed esterna

$$Y_{\text{ii}} = Y_{11} = \left| -\frac{1}{Z_{\text{ee},11}} \right|$$
 $Y_{\text{ee}} = Y_{22} = \left| -\frac{1}{Z_{\text{ee},22}} \right|$

Un'altra quantità molto utile è la capacità termica periodica interna per unità di superficie. È definita dalla normativa come $k_1 = \frac{T}{2\pi} |Y_{11} - Y_{12}|$ la quale, sostituendo i termini in funzione dalla matrice di trasfermento, si può riscrivere come:

$$k_1 = \frac{T}{2\pi} \left| \frac{Z_{\text{ee},11} - 1}{Z_{\text{ee},12}} \right| .$$

Indica la capacità di accumolare calore della parete.

Altre proprietà importanti

Diffusività ed effusività termica

La diffusività termica α è un indicatore della velocità di reazione di un materiale alla variazione di temperatura

$$\alpha^{(k)} = \frac{\lambda^{(k)}}{c^{(k)} \cdot \rho^{(k)}} \quad [10^{-7} \,\mathrm{m}^2 \,\mathrm{s}^{-1}]$$

L'effusività termica β è invece l'attitudine di un materiale a lasciar passare il calore

$$\beta^{(k)} = \sqrt{\lambda^{(k)} \cdot c^{(k)} \cdot \rho^{(k)}} \quad \left[\mathrm{W} \, \mathrm{s}^{0.5} \, \mathrm{m}^{-2} \, \mathrm{K}^{-1} \right]$$

Parete solo mattone pieno (0a)

C	essori Densità	Calore	Massa	Profondità di	Rapporto	Capacità	Diffusività	Effusività	
Strati	Spessori		specifico	superficiale	penetrazione δ	ξ	termica areica	termica	Termica
	[m]	$\left[\mathrm{kg}\mathrm{m}^{-3}\right]$	$[J kg^{-1} K^{-1}]$	$\left[\mathrm{kg}\mathrm{m}^{-2}\right]$	[m]	[-]	$[kJ m^{-2} K^{-1}]$	$\left[10^{-7}\mathrm{m}^2\mathrm{s}^{-1}\right]$	$\left[{ m W}{ m s}^{0,5}{ m m}^{-2}{ m K}^{-1} ight]$
Mattone pieno	1,0	1700,0	940,0	1700,0	0,116	8,631	1598,0	4,88	1116,4

Massa superficiale totale $M_s = 1700.0 \,\mathrm{kg}\,\mathrm{m}^{-2}$

Sfasamento $\Delta \tau = 8,43 \,\mathrm{h}$

Fattore di attenuazione fd = 0.002

Trasmittanza termica periodica $Y_{12} = 0.001 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica interna $Y_{11} = 4,601 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica esterna $Y_{22} = 7{,}338 \,\mathrm{W m^{-2} K^{-1}}$

Capacità termica periodica interna $k_1 = 63,28 \,\mathrm{kJ} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}$

Parete solo isolante (0b)

Strati	Spessori [m]	Densità [kg m ⁻³]	Calore specifico [J kg ⁻¹ K ⁻¹]	Massa superficiale [kg m ⁻²]	Profondità di penetrazione δ [m]	Rapporto ξ $[-]$	Capacità termica areica [kJ m ⁻² K ⁻¹]	Diffusività termica $\left[10^{-7} \text{ m}^2 \text{ s}^{-1}\right]$	Effusività Termica $\left[W s^{0.5} m^{-2} K^{-1}\right]$
Isolante VentirockDuo	0,12	70,0	1030,0	8,4	0,116	1,039	8,7	4,85	50,2

Massa superficiale totale $M_s = 8.4 \,\mathrm{kg}\,\mathrm{m}^{-2}$

Sfasamento $\Delta \tau = 1.49 \,\mathrm{h}$

Fattore di attenuazione fd = 0.97

Trasmittanza termica periodica $Y_{12} = 0.27 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica interna $Y_{11} = 0.364 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica esterna $Y_{22} = 0.373 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Capacità termica periodica interna $k_1 = 4.1 \,\mathrm{kJ} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}$

Parete in laterizio con isolante interno (1a)

Strati	Spessori [m]	Densità $\left[\text{kg m}^{-3} \right]$	$\begin{array}{c} {\rm Calore} \\ {\rm specifico} \\ \left[{\rm Jkg^{-1}K^{-1}} \right] \end{array}$	specifico superficiale penetrazione		Rapporto ξ $[-]$	Capacità termica areica $\left[\mathrm{kJm^{-2}K^{-1}}\right]$	Diffusività termica $\begin{bmatrix} 10^{-7}\mathrm{m}^2\mathrm{s}^{-1} \end{bmatrix}$	Effusività Termica $\begin{bmatrix} Ws^{0,5}m^{-2}K^{-1} \end{bmatrix}$
Intonaco	0,015	1500,0	1000,0	22,5	0,105	0,143	22,5	4,00	948,7
Isolante VentirockDuo	0,120	70,0	1030,0	8,4	0,116	1,039	8,7	4,85	50,2
Laterizio semipieno	0,200	1000,0	840,0	200,0	0,132	1,518	168,0	6,31	667,2
Intonaco	0,015	1800,0	1000,0	27,0	0,117	0,128	27,0	5,00	1272,8

Massa superficiale totale $M_s = 257.9 \,\mathrm{kg} \,\mathrm{m}^{-2}$

Sfasamento $\Delta \tau = 9.09 \, \text{h}$

Fattore di attenuazione fd = 0.352

Trasmittanza termica periodica $Y_{12} = 0.088 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica interna $Y_{11} = 1,744 \,\mathrm{W m^{-2} K^{-1}}$

Ammettanza termica esterna $Y_{22} = 5,991 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Capacità termica periodica interna $k_1 = 25,09 \,\mathrm{kJ} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}$

Parete in laterizio con isolante esterno (1b)

Strati	Spessori [m]	Densità $\left[\text{kg m}^{-3} \right]$	$\begin{array}{c} {\rm Calore} \\ {\rm specifico} \\ \left[{\rm Jkg^{-1}K^{-1}} \right] \end{array}$	$\begin{array}{c} {\rm Massa} \\ {\rm superficiale} \\ {\rm \left[kgm^{-2}\right]} \end{array}$	Profondità di penetrazione δ [m]	$\begin{array}{c} \operatorname{Rapporto} \\ \xi \\ [-] \end{array}$	Capacità termica areica [kJ m ⁻² K ⁻¹]	Diffusività termica $\begin{bmatrix} 10^{-7}\mathrm{m}^2\mathrm{s}^{-1} \end{bmatrix}$	Effusività Termica $\begin{bmatrix} Ws^{0.5}m^{-2}K^{-1} \end{bmatrix}$	
Intonaco	0,015	1500,0	1000,0	22,5	0,105	0,143	22,5	4,00	948,7	
Laterizio semipieno	0,200	1000,0	840,0	200,0	0,132	1,518	168,0	6,31	667,2	
Isolante VentirockDuo	0,120	70,0	1030,0	8,4	0,116	1,039	8,7	4,85	50,2	
Intonaco	0,015	1800,0	1000,0	27,0	0,117	0,128	27,0	5,00	1272,8	

Massa superficiale totale $M_s = 257.9 \,\mathrm{kg} \,\mathrm{m}^{-2}$

Sfasamento $\Delta \tau = 9{,}44 \,\mathrm{h}$

Fattore di attenuazione fd = 0.252

Trasmittanza termica periodica $Y_{12} = 0.063 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica interna $Y_{11} = 3,925 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica esterna $Y_{22} = 2{,}157 \,\mathrm{W m^{-2} K^{-1}}$

Capacità termica periodica interna $k_1 = 54,82 \,\mathrm{kJ} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}$

Parete in muratura Poroton con isolante esterno (2a)

Strati	Spessori [m]	Densità $\left[\text{kg m}^{-3} \right]$	$\begin{array}{c} {\rm Calore} \\ {\rm specifico} \\ \left[{\rm Jkg^{-1}K^{-1}} \right] \end{array}$	$\begin{array}{c} {\rm Massa} \\ {\rm superficiale} \\ {\rm \left[kgm^{-2}\right]} \end{array}$	Profondità di penetrazione δ [m]	$\begin{array}{c} \text{Rapporto} \\ \xi \\ [-] \end{array}$	Capacità termica areica [kJ m ⁻² K ⁻¹]	Diffusività termica $\begin{bmatrix} 10^{-7}\mathrm{m}^2\mathrm{s}^{-1} \end{bmatrix}$	Effusività Termica $\begin{bmatrix}Ws^{0.5}m^{-2}K^{-1}\end{bmatrix}$	
Intonaco	0,015	1500,0	1000,0	22,5	0,105	0,143	22,5	4,00	948,7	
Laterizio Poroton	0,200	860,0	840,0	172,0	0,094	2,137	144,5	3,18	407,6	
Isolante VentirockDuo	0,110	70,0	1030,0	7,7	0,116	0,952	7,9	4,85	50,2	
Intonaco	0,015	1800,0	1000,0	27,0	0,117	0,128	27,0	5,00	1272,8	

Massa superficiale totale $M_s = 229.2 \,\mathrm{kg} \,\mathrm{m}^{-2}$

Sfasamento $\Delta \tau = 11,25 \, \mathrm{h}$

Fattore di attenuazione fd = 0.182

Trasmittanza termica periodica $Y_{12} = 0.043 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica interna $Y_{11} = 3{,}171 \,\mathrm{W m^{-2} K^{-1}}$

Ammettanza termica esterna $Y_{22} = 2{,}154 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Capacità termica periodica interna $k_1 = 44,15 \,\mathrm{kJ} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}$

Parete in X-LAM con isolante bassa densità (3a)

Strati	Spessori [m]	Densità $\left[\text{kg m}^{-3} \right]$	specifico superfic		Profondità di penetrazione δ [m]	Rapporto ξ $[-]$	Capacità termica areica $\left[\mathrm{kJ}\mathrm{m}^{-2}\mathrm{K}^{-1}\right]$	Diffusività termica $\left[10^{-7} \mathrm{m}^2 \mathrm{s}^{-1}\right]$	Effusività Termica $\left[\mathrm{W}\mathrm{s}^{0.5}\mathrm{m}^{-2}\mathrm{K}^{-1}\right]$	
Gessofibra	0,015	1150,0	1100,0	17,25	0,068	0,222	19,0	1,66	515,4	
X-LAM KLH	0,096	500,0	1600,0	48,00	0,067	1,436	76,8	1,62	322,5	
Isolante bassa densità	0,120	50,0	2100,0	6,00	0,100	1,203	12,6	3,62	63,2	
Intonaco calce	0,015	1800,0	1000,0	27,00	0,117	0,128	27,0	5,00	1272,8	

Massa superficiale totale
$$M_s = 98,25 \,\mathrm{kg} \,\mathrm{m}^{-2}$$

Sfasamento
$$\Delta \tau = 9.33 \,\mathrm{h}$$

Fattore di attenuazione
$$fd = 0.334$$

Trasmittanza termica periodica
$$Y_{12} = 0.08 \,\mathrm{W \, m^{-2} \, K^{-1}}$$

Ammettanza termica interna
$$Y_{11} = 2,651 \,\mathrm{W \, m^{-2} \, K^{-1}}$$

Ammettanza termica esterna
$$Y_{22} = 2,257 \,\mathrm{W \, m^{-2} \, K^{-1}}$$

Capacità termica periodica interna
$$k_1 = 37,56 \,\mathrm{kJ} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}$$

Parete in X-LAM con isolante bassa densità lana di roccia (3b)

Strati	Spessori [m]	Densità $\left[\text{kg m}^{-3} \right]$	Calore specifico $[J kg^{-1} K^{-1}]$	$\begin{array}{c} {\rm Massa} \\ {\rm superficiale} \\ {\rm \left[kgm^{-2}\right]} \end{array}$	Profondità di penetrazione δ [m]	Rapporto ξ $[-]$	Capacità termica areica $\left[kJm^{-2}K^{-1}\right]$	Diffusività termica $\left[10^{-7}\mathrm{m}^2\mathrm{s}^{-1}\right]$	Effusività Termica $\begin{bmatrix} Ws^{0,5}m^{-2}K^{-1} \end{bmatrix}$
Gessofibra	0,015	1150,0	1100,0	17,25	0,068	0,222	19,0	1,66	515,4
X-LAM KLH	0,096	500,0	1600,0	48,00	0,067	1,436	76,8	1,62	322,5
Isolante VentirockDuo	0,110	70,0	1030,0	7,70	0,116	0,952	7,9	4,85	50,2
Intonaco calce	0,015	1800,0	1000,0	27,00	0,117	0,128	27,0	5,00	1272,8

Massa superficiale totale $M_s = 99,95 \,\mathrm{kg} \,\mathrm{m}^{-2}$

Sfasamento $\Delta \tau = 8,58 \, \mathrm{h}$

Fattore di attenuazione fd = 0.356

Trasmittanza termica periodica $Y_{12} = 0.086 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica interna $Y_{11} = 2,659 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica esterna $Y_{22} = 2{,}161 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Capacità termica periodica interna $k_1 = 37,71 \,\mathrm{kJ} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}$

Parete in X-LAM con isolante alta densità fibra di legno (3c)

Strati	Spessori [m]	Densità $\left[\text{kg m}^{-3} \right]$	Calore specifico $\left[J \mathrm{kg}^{-1} \mathrm{K}^{-1}\right]$	$\begin{array}{c} {\rm Massa} \\ {\rm superficiale} \\ {\rm \left[kgm^{-2}\right]} \end{array}$	Profondità di penetrazione δ [m]	Rapporto ξ $[-]$	Capacità termica areica $\left[\mathrm{kJ}\mathrm{m}^{-2}\mathrm{K}^{-1}\right]$	Diffusività termica $\left[10^{-7} \text{ m}^2 \text{ s}^{-1}\right]$	Effusività Termica $\left[\mathrm{W}\mathrm{s}^{0.5}\mathrm{m}^{-2}\mathrm{K}^{-1}\right]$
Gessofibra	0,015	1150,0	1100,0	17,25	0,068	0,222	19,0	1,66	515,4
X-LAM KLH	0,096	500,0	1600,0	48,00	0,067	1,436	76,8	1,62	322,5
Isolante alta densità Naturalia Diffuterm	0,130	190,0	2100,0	24,70	0,054	2,388	51,9	1,08	131,0
Intonaco calce	0,015	1800,0	1000,0	27,00	0,117	0,128	27,0	5,00	1272,8

Massa superficiale totale $M_s = 116,95 \,\mathrm{kg} \,\mathrm{m}^{-2}$

Sfasamento $\Delta \tau = 13,78 \, \mathrm{h}$

Fattore di attenuazione fd = 0.177

Trasmittanza termica periodica $Y_{12} = 0.044 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica interna $Y_{11} = 2,613 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Ammettanza termica esterna $Y_{22} = 2.73 \,\mathrm{W \, m^{-2} \, K^{-1}}$

Capacità termica periodica interna $k_1 = 36,21 \,\mathrm{kJ} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}$

