GR5205 Section 4 - Homework 4:

Due date: 10/10 by 7:25pm EST.

1. Chapter 5, page 212 5.25.

No need to work on b., i.e., only work on a and c below

- *5.25. Refer to Airfreight breakage Problems 1.21 and 5.6.
 - a. Using matrix methods, obtain the following: (1) $(X'X)^{-1}$, (2) b, (3) e, (4) H, (5) SSE, (6) $s^2\{b\}$, (7) \hat{Y}_h when $X_h = 2$, (8) $s^2\{\hat{Y}_h\}$ when $X_h = 2$.
 - b. From part (a6), obtain the following: (1) $s^2\{b_1\}$; (2) $s\{b_0, b_1\}$; (3) $s\{b_0\}$.
 - c. Find the matrix of the quadratic form for SSR.

Chapter 6, page 251 6.15.

Only need to work on b, c, d, e, f, g

You can use Im directly

Chapter 6 Multiple Regression I 251

level (X_3 , an index). The administrator randomly selected 46 patients and collected the data presented below, where larger values of Y, X_2 , and X_3 are, respectively, associated with more satisfaction, increased severity of illness, and more anxiety.

_i:	1	2	3		44	45	46
X_{i1} :	50	36	40		45	37	28
X_{i2} :	51	46	48		51	53	46
X_{I3} :	2.3	2.3	2.2	•••	2.2	2.1	1.8
Y_i :	48	57	66		68	59	92

4

- a. Prepare a stem-and-leaf plot for each of the predictor variables. Are any noteworthy features revealed by these plots?
- Obtain the scatter plot matrix and the correlation matrix. Interpret these and state your principal findings.
- c. Fit regression model (6.5) for three predictor variables to the data and state the estimated regression function. How is b₂ interpreted here?
- d. Obtain the residuals and prepare a box plot of the residuals. Do there appear to be any outliers?
- e. Plot the residuals against \hat{Y} , each of the predictor variables, and each two-factor interaction term on separate graphs. Also prepare a normal probability plot. Interpret your plots and summarize your findings.
- f. Can you conduct a formal test for lack of fit here?
- g. Conduct the Breusch-Pagan test for constancy of the error variance, assuming $\log \sigma_i^2 = \gamma_0 + \gamma_1 X_{i1} + \gamma_2 X_{i2} + \gamma_3 X_{i3}$; use $\alpha = .01$. State the alternatives, decision rule, and conclusion.