

FACULTAD DE INGENIERÍA Y CIENCIAS AGROPECUARIAS INGENIERÍA EN PRODUCCIÓN INDUSTRIAL EIP 546 y Mecanismos Período 2018-1

A. Identificación

Número de sesiones: 48

Número total de horas de aprendizaje: 48 presenciales + 72 h de estudio autónomo = 120

h total

Docente: Omar Flor

Correo electrónico del docente: omar.flor@udla.edu.ec

Coordinador: Ing. Christian Chimbo

Campus: Queri

Pre-requisito: EIP 445 / EIP430 Co-requisito: N/A

Paralelo: 1

B. Descripción del curso

Este curso generará en el estudiante el criterio básico para el diseño y/o selección de elementos mecánicos elementales, para formar un sistema complejo y compuesto que permita solucionar necesidades planteadas.

C. Resultados de aprendizaje (RdA) del curso

- Identifica los tipos de mecanismos empleados en la industria, su funcionalidad y método de análisis.
- 2. Diseña y dimensiona mecanismos para aplicaciones industriales.

D. Sistema y mecanismos de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje institucionales, de cada carrera y de cada asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

	Progreso 1	Progreso	Progreso 3
		2	
Participación *	10%	12.5%	15%
Tareas*	5%	10%	10%
Evaluación	10%	12.5%	15%
escrita			
Total	25	35	40

E. Asistencia

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo

académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia.

F. Metodología del curso

El curso promoverá en el escenario de aprendizaje presencial la participación activa del estudiante, quien podrá exponer sus inquietudes, ideas y hallazgos tanto en las sesiones presenciales como también a través de los foros y espacios de aula virtual, componentes del escenario de aprendizaje virtual.

Las lecturas, reflexión e investigación, componentes del escenario de aprendizaje autónomo, son imprescindibles para que el estudiante desarrolle de manera integral los resultados de aprendizaje planteados.

G. Planificación alineada a los RdA

Planificación	Fechas	RdA 1	RdA 2
Unidad 1	Semanas 1-6		
Fundamentos del análisis y diseño de mecanismos			
2. Simuladores de Mecanismos			
Tipos de Mecanismos Inversión cinemática			
5. Criterio de Grashof			
5. Cherio de diasiloi			
Lecturas			
Lectura No.1: Fundamentos del análisis y diseño de mecanismos	Semana 1	X	
Lectura No.2: Tipos de Mecanismos	Semana 2	Х	
Lectura No.3: Criterio de Grashof	Semana 2		
Actividades			
Simulaciones de mecanismos de 4 barras	Semana 2	Х	
Simulaciones de varios casos de inversión cinemática	Semana 3	X	
Simulación de casos según criterios de Grashof	Semana 4	Х	
Evaluaciones			
Entrega de Simulaciones de mecanismos según temas: 2, 3, 4 y 5	Semana 4	Х	
Prueba de control semanal	Cada semana	Х	
Examen De progreso 1	Semana 6	Х	
Proyecto inicial: entrega de prototipo 1	Semana 6	х	
Unidad 2	Semanas 7-10		
6. Análisis de mecanismos			
6.1 Mecanismos Biela manivela			
6.2 Mecanismos de 4 barras			
6.2 Mecanismos de más de 4 barras			
7. Síntesis de Mecanismos			
7.1 Generador de función			
7.1 Generador de Trayectorias			

Lecturas			
Lectura No.4: Análisis de Mecanismos	Semana 7	X	X
Lectura No.5: Sintesis de Mecanismos	Semana 8	Х	X
Lectura No.6. Generador de funciones y Trayectorias	Semana 9	Х	Х
Actividades			
Simulación y diseño de un Mecanismos Biela Manivela	Cada semana	X	X
Simulación y diseño de un Mecanismos cognado de 4 barras	Semana 7 y 8	Х	Х
Simulaciones y diseño de síntesis de mecanismos	Semana 9	X	
Evaluaciones			
Control escrito de lectura	Cada semana	Х	Х
Entrega de simulaciones según temas: 6 y 7	Semana 9	Х	Х
Examen del progreso 2	Semana 10	Х	Х
Unidad 3	Semanas 11-16		
8. Levas y Engranajes 9. Transmisión mediante elementos mecánicos flexibles 10. Juntas permanentes y no permanentes Lecturas			
Lectura No.7: Aplicaciones de levas y engranajes	Semana 11	X	
Lectura No.8: Transmisiones mecánicas flexibles	Semana 12	X	
Lectura No.9: Juntas mecánicas permanentes y no permanentes	Semana 13	X	
Actividades			
Diseño y simulación de engranajes	Semana 12		Χ
Diseño y simulación de Levas	Semana 13		Χ
Exposición de aplicaciones de juntas permanentes y no permanentes	Semana 14		Х
Evaluaciones			
Entrega de simulaciones de temas 8 y 9	Semana 15	1	Х
Prueba de control semanal	Cada semana		Х
Examen final	Semana 16	Х	Х
Proyecto final: entrega una máquina de producción continua (trabajo grupal)	Semana 16	Х	Х

11. Normas y procedimientos para el aula

Rigen los derechos y obligaciones del estudiante, los cuales constan en el Reglamento General de Estudiantes, disponible en http://www.udla.edu.ec/wp-content/uploads/2016/06/R_General-de-estudiantes.v2.pdf

12. Referencias

Principales.

Myszka, David H.. (2012). *Máquinas y Mecanismos*. (4ta ed.). México. Pearson Educación.

Complementarias.

Norton, Robert L. (2013). *Diseño de Maquinaria: síntesis y análisis de máquinas y mecanismos*. México, México: McGraw-Hill

E book: Roda, B. A., Amela, M., & Albelda, V. J. (2016). Máquinas y mecanismos. Valencia, ESPAÑA: Editorial de la Universidad Politécnica de Valencia. Retrieved from http://www.ebrary.com

Perfil del docente

Omar Flor Unda

"Maestría en Automática, Robótica y Telemática (Escuela Técnica de Ingenieros, Sevilla-España), Ingeniero Mecánico (Escuela Politécnica del Ejército).

Experiencia en:

- 1. Diseño de estructuras, elementos de máquina y simulación.
- 2. Sistemas Neumáticos e hidráulicos
- 3. Automatización, Robótica y programación.
- 4. Selección de Materiales de ingeniería.
- 5. Educación Superior: ESPE-UIDE-UDLA

Publicaciones:

- Sistema de control automático para el Sistema de Aire acondicionado de un Data Center- CENACE
- Prótesis robótica de mano y antebrazo diestro con mando mioeléctrico para personas con amputación de mano.

Desarrollos:

- Implementación de sistemas de visión artificial para control de calidad
- Desarrollo de Interfaz de monitoreo tipo SCADA para procesos automatizados