60

Figura 1.4.8 (a) Vectores ortonormales \mathbf{e}_r , \mathbf{e}_θ y \mathbf{e}_z asociados con las coordenadas cilíndricas. El vector \mathbf{e}_r es paralelo a la recta r. (b) Vectores ortonormales \mathbf{e}_ρ , \mathbf{e}_θ y \mathbf{e}_ϕ asociados con las coordenadas esféricas.

rios más adelante cuando usemos coordenadas cilíndricas y esféricas en cálculos vectoriales.

Ejercicios

- **1.** Hallar las coordenadas esféricas del punto cartesiano $(\sqrt{2}, -\sqrt{6}, -2\sqrt{2})$.
- **2.** Hallar las coordenadas esféricas del punto cartesiano $(\sqrt{6}, -\sqrt{2}, -2\sqrt{2})$.
- **3.**(a) Los siguientes puntos están dados en coordenadas cilíndricas; expresar cada uno de ellos en coordenadas rectangulares y coordenadas esféricas: $(1,45^{\circ},1), (2,\pi/2,-4), (0,45^{\circ},10), (3,\pi/6,4), (1,\pi/6,0)$ y $(2,3\pi/4,-2)$.
 - (b) Expresar cada uno de los puntos siguientes dados en coordenadas rectangulares en coordenadas esféricas y cilíndricas: $(2,1,-2), (0,3,4), (\sqrt{2},1,1), (-2\sqrt{3},-2,3).$
- **4.** Describir el significado geométrico de las siguientes aplicaciones en coordenadas cilíndricas:
 - (a) $(r, \theta, z) \mapsto (r, \theta, -z)$
 - (b) $(r, \theta, z) \mapsto (r, \theta + \pi, -z)$
 - (c) $(r, \theta, z) \mapsto (-r, \theta \pi/4, z)$
- **5.** Describir el significado geométrico de las siguientes aplicaciones en coordenadas esféricas:
 - (a) $(\rho, \theta, \phi) \mapsto (\rho, \theta + \pi, \phi)$
 - (b) $(\rho, \theta, \phi) \mapsto (\rho, \theta, \pi \phi)$
 - (c) $(\rho, \theta, \phi) \mapsto (2\rho, \theta + \pi/2, \phi)$
- 6. Dibujar los siguientes sólidos:
 - (a) $r \in [0, 1], \ \theta \in [0, \pi], \ z \in [-1, 1]$
 - (b) $r \in [0, 2], \ \theta \in [0, \pi/2], \ z \in [0, 4]$
 - (c) $\rho \in [0, 1], \ \theta \in [0, 2\pi], \ \phi \in [0, \pi/4]$

- (d) $\rho \in [1, 2], \ \theta \in [0, 2\pi], \ \phi \in [0, \pi/2]$
- 7. Dibujar las siguientes superficies:
 - (a) $z = r^2$
 - (b) $\rho = 4 \csc \phi \sec \theta$
 - (c) $r = 4 \operatorname{sen} \theta$
 - (d) $\rho \operatorname{sen} \phi = 2$
- **8.**(a) Describir las superficies $r = \text{constante}, \theta = \text{constante}$ y z = constante en el sistema de coordenadas cilíndricas.
 - (b) Describir las superficies $\rho=$ constante, $\theta=$ constante y $\phi=$ constante en el sistema de coordenadas esféricas.
- **9.** Demostrar que para representar cualquier punto en \mathbb{R}^3 mediante coordenadas esféricas, basta con tomar valores de θ entre 0 y 2π , valores de ϕ entre 0 y π y valores de $\rho \geq 0$. ¿Son únicas estas coordenadas si admitimos que $\rho \leq 0$?
- Describir los siguientes sólidos empleando desigualdades. Indicar el sistema de coordenadas utilizado.
 - (a) Un armazón cilíndrico de 8 unidades de longitud, un diámetro interno de 2 unidades y un diámetro externo de 3 unidades.
 - (b) Un armazón esférico con un radio interno de 4 unidades y un radio externo de 6 unidades.
 - (c) Una semiesfera con diámetro de 5 unidades.