ML1 – Introduction

Stefano Rovetta

A.y. 2023-2024

Striano Storesta MLI - Introduction

2024 1/74

Page 2

Page 3

Logic and logical reasoning

Siriato Rovetta

Ay 2023 2

Page 4

A writing automaton and the Jaquard programmable loom

ano Boretta MLI – Introduction A.y. 202

Alan M Turing (1012 - 1054

Striano Sovesta

MLI - Introduction

£ 2023-2024

Page 6

What's in our brain?

Striano Rovetta

24 6

Page 7

Page 8

More on the brain later

Striato Sovers

MLI - Introduction

123 2024

Computation meets the brain

Page 10

Page 11

Page 12

For these problems we do have algorithms

- sorting → insert sort, bubble sort, Shell sort, radix sort, heapsort, bogosort...
 spectral analysis of periodic signals → FFT
 database filtering → SQL SELECT

We have no algorithms for...

Page 14

We have no algorithms for..

Page 15

We have no algorithms for...

Page 16

We have no algorithms for...

We have no algorithms for...

Controlling a soft robotic tentacle

Striano Rovesta

MLI – Introduction

A.y. 2023-2024

17/74

Page 18

We have no algorithms for...

Build a complete self-driving ca

Striano Roverta

MLI – Introduction

10.754

Page 19

To sum up

Many interesting problems are too complex to admit an algorithmic solution or even a complete description

For these problems, only data are available

Nowadays we have LOTS OF DATA FROM LOTS OF SOURCES

Machine learning is about using data to solve problems

Striano Rovesta

di.1 – Introduction

.....

000000

Page 20

Perceptual tasks

Perceptual tasks are tasks related to perception.
They have a typical structure, based on sets of individual measurements.
It is generally difficult to write a program (an algorithm) to solve a perceptual task
LEARNING FROM DATA

Striano Sovesta

MLI - Introduction

Ay. 2023-2024

20/74

Representing perceptual tasks

NAMES:

- NAMES:

 sensors

 inputs, variables; also features

 patterns (vectors)

 experimental observation, example, instance; sometimes "sample" (cfr. statistics)

 data set

 training set

 validation set

 test set

 if data are vectors or d-dimensional points, then a data set of n observations is a n × d matrix

Page 22

A pattern as a vector

Page 23

A training set as a matrix

Page 24

Operations on vectors

Other operations are possible on real vectors.

Scalar (inner, dot-) product between two vectors: outputs a scalar and is defined as:

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i} u_i v_i$$

• (Euclidean) norm of a vector:

$$||\mathbf{u}|| = \sqrt{\sum_i u_i^2}$$

(Euclidean) distance between two vectors:

$$d_E(\mathbf{u},\mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{\sum_i (u_i - v_i)^2}$$

Page 26

Note that:

$$\|\mathbf{u}\| = \sqrt{\sum_{i}(u_{i}u_{i})} = \sqrt{\mathbf{u} \cdot \mathbf{u}}$$

- $$\begin{split} & \| \ \| \| \| \| \| \sqrt{\sum_i (u_i u_i)} = \sqrt{\mathbf{u} \cdot \mathbf{u}} \\ & \| \mathbf{u} \cdot \mathbf{v} = \| \mathbf{u} \| \| \| \mathbf{v} \| \cos \alpha \\ & \text{where } \alpha \text{ is the angle between } \mathbf{u} \text{ and } \mathbf{v}. \\ & \text{Therefore } \mathbf{u} \cdot \mathbf{v} = 0 \text{ for orthogonal vectors } (\cos \alpha = 0). \\ & \text{If } \| \mathbf{u} \| = 1 \text{ and } \| \mathbf{v} \| = 1, \text{ then } \| \mathbf{u} \mathbf{v} \|^2 = 2 2 \mathbf{v} \cdot \mathbf{u} \end{split}$$

Page 27

- $\label{eq:varphi} \begin{array}{l} \bullet \ \ u \ \mbox{is a linear combination of vectors} \ v_1, \ v_2, \ v_3, \ \dots \\ \mbox{when} \ \ u = \sum_i \alpha_i v_i \\ \bullet \ \ u \ \mbox{is a convex combination of} \ v_1, \ v_2, \ v_3, \ \dots \\ \mbox{when} \end{array}$

- when $\mathbf{u} = \sum_{i} a_{i} \mathbf{v}_{i}$ (a linear combination) $\mathbf{v} = \sum_{i} a_{i} = 1$ and $a_{i} > 0 \ \forall i$

Page 28

Typical perceptual problems

- Mapping a stimulus to a response: supervised learning
- Describing the data: unsupervised learning

In supervised tasks			
the data contain both input patt	erns and output values		
• In unsupervised tasks			
the data contain just input patte	erns		
Seriano Bovesta	ML3 – Introduction	Ay. 2023-2024	29/74

Page 30

Typical perceptual problems

- Mapping a stimulus to a response (from input to output):
 Classification
 Regression
- Describing the data (from input to a more compact representation of the input itself):
- Clustering
 Mapping in lower dimensionality

Page 31

Types of quantity we want to learn

- Real values (one or more)
- Categorical values

Page 32

- examples of categorical information:

 colour = {red, green, blue, cyan, magenta, yellow, black}

 name = {Socrates, Plato}

 truth value = {true, false}

 No natural ordering, only qualitative information

LOW- 2 DIMENSIONAL CLUSTERING MAPPING		YES	REGRESSION	CLASSIFICATION
THE PART OF THE PA	supervised	ON	and the second second second	CLUSTERING

type of output

Striano Stovesta

SLI - Introduction

2023-2024

Page 34

More detailed examples of perceptual problems

- A wall-following robot has to make decisions as to the direction to take, depending on a circular array of ultrasound sensors
- $\bullet\,$ The robot has 24 such sensors evenly spread over 360 degrees.
- Possible directions are: Sharp-Left-Turn | Slight-Left-Turn | Move-forward | Slight-Right-Turn | Sharp-Right-Turn |

Striano Rovesta

LI – Introduction

Page 35

The scitos G5 robot is a multipurpose, modular platform for robotic research and development.

https://www.metralabs.com/en/mobile-robot-scitos-g5/

Striano Rovesta

ML1 – Introduction

A.y. 2023-2024

Page 36

The ultrasonic sensor's output is available as a voltage in the range $0\dots 5V$

Striano Sovetta

MLI - Introduction

Ay 2023-202

36/74

Minimum readings from two groups of sensors, on the forward and on the left. Colors correspond to directions to take.

Page 38

- Iris (flower) recognition

 The Iris dataset has been in use since 1936

 Collected by botanist Edgar Anderson in 1935

 Used by statistician Sir Ronald A. Fisher in 1936

Used by statistician Sri Ronald A. Fisher in 1936
 Sources:
 Edgar Anderson (1935). "The irises of the Gaspe Peninsula". Bulletin of the American Iris Society 59: 25.
 Fisher, R.A. (1936). "The Use of Multiple Measurements in Taxonomic Problems". Annals of Eugenics 7: 179-188.
 Download it from the University of California - Irvine repository at: http://archive.ics.uci.edu/ml/datasets/Iris

Page 39

Page 40

180 MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS

Table I

Iris setosa				Iris versicolar			Iris virginica				
Sepal length	Sepal width	Petal length	Petal width	Sepal length	Sepal width	Petal length	Petal width	Sepal length	Sepal width	Petal length	Petal width
5-1	3-5	1.4	0-2	7-0	3.2	4-7	1-4	6-3	3-3	6-0	2.5
4-9	3.0	1.4	0.2	6-4	3.2	4-5	1.5	5.8	2.7	5-1	1-9
4-7	3.2	1.3	0.2	6-9	3-1	4-9	1.5	7-1	3-0	5-9	2-1
4-6	3-1	1.6	0.2	5-5	2-3	4-0	1.3	6-3	2.9	5-6	1.8
5-0	3-6	1.4	0-2	6.5	2.8	4-6	1.5	6.5	3-0	5-8	2.2
5-4	3.9	1/7	0-4	5.7	2-8	4.5	1.3	7-6	3-0	6.6	2-1
4-6	3-4	1-4	0-3	6.3	3-3	4.7	1.6	4.9	2.5	4.5	1.7
5-0	3-4	1.5	0-2	4-9	2-4	3.3	1.0	7.3	2.9	6.3	1.8
4-4	2.9	1.4	0-2	6-6	2.9	4.6	1.3	6.7	2.5	5-8	1.8
4.9	3-1	1.5	0-1	5.2	2.7	3-9	1.4	7.2	3-6	6-1	2.5
5-4	3.7	1.5	0-2	5-0	2-0	3-5	1.0	6.5	3.2	5.1	2.0
4.8	3-4	1.6	0.2	5-9	3-0	4.2	1.5	6-4	2.7	5-3	1.9
4-8	3-0	1.4	0.1	6-0	2.2	4.0	1.0	6.8	3.0	5.5	2.1
4-3	3-0	1.1	0.1	6-1	2-9	4.7	1-4	5.7	2.5	5-0	2.0
5-8	4.0	1.2	0.2	5-6	2.9	3-6	1.3	5.8	2.8	5-1	2-4
5-7	4.4	1.5	0.4	6-7	3-1	4.4	1-4	6.4	3.2	5-3	2.3
5-4	3-9	1.3	0.4	5-6	3-0	4.5	1.5	6.5	3.0	5-5	1.8
5-1	3-5	1.4	0.3	5-8	2-7	4-1	1.0	7.7	3.8	6-7	2.2
5-7	3.8	1.7	0.3	6-2	2-2	4.5	1.5	7.7	2.6	6-9	2.3
5-1	3.8	1.5	0.3	5-6	2.5	3.9	1.1	6-0	2.2	5-0	1.5
5-4	3-4	1.7	0.2	5-9	3.2	4.8	1.8	6-9	3.2	5-7	2.3

Page 42

Page 43

Recognizing handwritten digits

```
0000000000000000
       2222222
 333333333333333
 5 5 5 5
      S
       5
         5
          5
           5
              5
   7777
         7 7 7
             7 7
 888888
         8
          888888
 999999
         999999
```

Page 44

Preparing the data

Page 46

Data cleaning

- Change data types to make them suitable for your software (es. change strings into numerical codes)
- Remove data with out-of-range values
- Deal with missing data Several possible strategies:
 Removing observations (rows)
 Removing input variables (columns)
 Imputation of missing values
- Align timestamped data

Page 47

Feature extraction

Page 48

Learning problems

- · Representation: learn to reproduce what is in your data
- Generalization: learn to understand what your data represent

Solving the **representation** problem finds the best solution for the training set

Solving the **generalization** problem finds the best solution for any data from the same source that generated the training set

Page 50

More names

- Learning machine also "learner".

 Not necessarily a real machine! Maybe a program
- Task a problem to be solved.

 We don't have a description of the problem, but data
- Learning adjusting quantities "inside the machine" (e.g., algorithm parameters) to do a certain task

Page 51

Even more names

- Hypothesis a specific learning machine that implements a certain task
 e.g., a neural network that reads images and recognizes whether there is a known person (biometric recognition)
- Hypothesis space the set of all tasks that can be learned by a specific learning machine e.g., the set of all classifiers that can be implemented by a specific neural network by setting its internal parameters.

Hypothesis space = a learning machine before learning Hypothesis = a learning machine after learning a task

Page 52

Possible scenarios

1 (useful mostly for reasoning): not very usefull

- Learner = hypothesis space = \(\mathcal{H} \) is fixed in advance
 Data are fixed (population)
- \rightarrow Find correct learners in \mathcal{H} (a representation task)

2 (not realizable): 2 No data necessary: Probabilities are assumed to be known!

- 3 (your usual situation): 1
- Data will be stochastic but probabilities are not known
 Hypothesis space *H* fixed, chosen in advance
- → Find learners in \mathcal{H} which are correct for any possible realization of the data (a generalization task)

In this scenario, you can expect other data that is not training data.

In security risk, concepts like "risk", are introduced, where you talk about the probability of that event.

Page 54

Linear threshold classifiers

Page 55

Intuition

Page 56

Intuition

Linearly separable data

In a classification task, data are said to be linearly separable if there exists a line (or a plane if d=3, or a hyperplane if d>3) such that object of a given class are all on the same side of the line (plane, hyperplane)

Page 58

Linearly separable data

The two classes lie on opposite sides of a hyperplane.

Hyperplane:

- $\begin{tabular}{ll} \begin{tabular}{ll} \be$

Page 59

Example: data

Page 60

Example: problem statement

- $\bullet\,$ We have to encode classes into 0 and 1 $\,$ where the values 0 and 1 are cathegorical.
- We decide to solve using a separating hyperplane
 (a line in the 2-dim plane)
 Positive side → one class, negative side → the other class

Example: discussion

- Infinite lines solve the problem
- ∞°. ∞ solutions Infinite parameter sets represent each equation (we only look at the sign!)
 Even the sign is arbitrarily assigned to the classes

Page 62

Example: one possible solution

Page 63

An example without solution

It is not possible to solve this problem and separating the two set with a straight line

Page 64

A learner suited for linearly separable data

```
r = \mathbf{x} \cdot \mathbf{w} - \theta
               a=f(r) applying non linearity
{f x} is a d-dimensional vector of input values {f w} is the corresponding (d-dimensional) vector of parameters \cdot indicates scalar product r indicates the net, "integrated" input where r is 0 on the hyperplane f() is a nonlinear, monotonic activation function \theta is a threshold a indicates the output.
```

Diagram of linear-threshold classifier

Page 66

Getting rid of the threshold

Page 67

Let's call
$$\theta$$
 with another name: $\theta = -w_0x_0$, with $x_0 \equiv 1$:
$$r - \theta = \sum_{i=1}^d w_ix_i + w_0$$

$$= \sum_{i=0}^d w_ix_i + w_0$$

$$= \sum_{i=0}^d w_ix_i$$
 θ was a threshold (subtracted), w_0 is a bias (summed as an offset value).

Page 68

We like all parameters to be in one place! NOTE: now indexes for the components of **x** and **w** start at 0, not 1! $\mathbf{x} = [x_0, x_1, x_2, \dots, x_d]$ $\mathbf{w} = [w_0, w_1, w_2, \dots, w_d]$ $\bullet \ w_0 = -\theta = \text{BIAS}$ $\bullet \ x_0 \equiv 1$

Examples of activation functions f

Heaviside step (defined on $[-\infty, +\infty] \rightarrow \{0, +1\}$):

$$f(r) = \mathbf{1}(r) = \begin{cases} +1 & r \ge 0 \\ 0 & r < 0 \end{cases}$$

(ties broken arbitrarily) Signum function (defined on $[-\infty,+\infty] \to \{-1,+1\}$):

$$f(r) = \operatorname{sign}(r) = \begin{cases} +1 & r \ge 0 \\ -1 & r < 0 \end{cases}$$

The signum function is a symmetrization in the interval [-1,+1] of the Heaviside step function: $\mathrm{sign}(r)=2*1(r)-1$.

In a numerical situation where there are 2 varible

that are checked at the end if they are equals

$$x == y$$

is better to chose a value epsilon under which the two value are considered the same

$$x - y < eps$$

In some case, we want to know also the reliability of the decision and not only the decision by itself.

Page 70

Step and signum

Page 71

Sigmoid and hyperbolic tangent

to better adapt to the classification that we are doing between the two classes compared to the linear one.

Sigmoid or *logistic function* (defined on $[-\infty, +\infty] \rightarrow [0, +1]$):

$$f(r) = \sigma(r) = \frac{1}{1 + e^{-r}}$$

Hyperbolic tangent or tanh (defined on $[-\infty, +\infty] \rightarrow [-1, +1]$):

$$f(r) = \tanh(r) = \frac{1 - e^{-2r}}{1 + e^{-2r}}$$

The hyperbolic tangent function function is a symmetrization in the interval [-1,+1] of the sigmoid function: $\tanh(r)=2*\sigma(2r)-1$.

Page 72

Sigmoid and tanh

Linearly separable example

Striano Rovesta

MLI - Introduction

A.y. 2023-2024 73

Page 74

Linearly separable example

Striano Rovesta

MLI - Introduction

2023-2024 74/