Homework 2

蒋翌坤 20307100013

Problem 1

We know that $\bar{X} \sim N(\mu, \sigma^2/n)$. Since X_{n+1} is independent of X_1, \ldots, X_n , it is independent of \bar{X} , so $X_{n+1} - \bar{X} \sim N(0, \frac{n+1}{n}\sigma^2)$. We also know that $\frac{nS_n^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$, X_{n+1}, \bar{X} are also independent of S_n . Therefore,

$$\frac{X_{n+1} - \bar{X}}{S_n} \sqrt{\frac{n-1}{n+1}} = \frac{X_{n+1} - \bar{X}}{\sqrt{\frac{n+1}{n}\sigma^2}} / \sqrt{\frac{nS_n^2}{(n-1)\sigma^2}} \sim \frac{N(0,1)}{\sqrt{\chi_{n-1}^2/(n-1)}} \sim t_{n-1}$$

Problem 2

Let
$$Y_i = \frac{X_i}{\sigma_i} \sim N(0, 1)$$
 and $\alpha_i = \frac{1}{\sigma_i}$, we have

$$\begin{split} \xi &= \sum_{i=1}^{n} \frac{(X_i - Z)^2}{\sigma_i^2} = \sum_{i=1}^{n} \left(Y_i - \frac{\alpha_i}{\sum_{j=1}^{n} \alpha_j^2} \sum_{j=1}^{n} \alpha_j Y_j \right)^2 \\ &= \sum_{i=1}^{n} \left(Y_i^2 - 2 \frac{\alpha_i Y_i}{\sum_{j=1}^{n} \alpha_j^2} \sum_{j=1}^{n} \alpha_j Y_j + \left(\frac{\alpha_i}{\sum_{j=1}^{n} \alpha_j^2} \sum_{j=1}^{n} \alpha_j Y_j \right)^2 \right) \\ &= \sum_{i=1}^{n} Y_i^2 - 2 \frac{\sum_{i=1}^{n} \alpha_i Y_i}{\sum_{j=1}^{n} \alpha_j^2} \sum_{j=1}^{n} \alpha_j Y_j + \frac{\sum_{i=1}^{n} \alpha_i^2}{\left(\sum_{j=1}^{n} \alpha_j^2\right)^2} \left(\sum_{j=1}^{n} \alpha_j Y_j \right)^2 \\ &= \sum_{i=1}^{n} Y_i^2 - 2 \frac{\left(\sum_{i=1}^{n} \alpha_i Y_i\right)^2}{\sum_{i=1}^{n} \alpha_i^2} + \frac{\left(\sum_{i=1}^{n} \alpha_i Y_i\right)^2}{\sum_{i=1}^{n} \alpha_i^2} \\ &= \sum_{i=1}^{n} Y_i^2 - \frac{\left(\sum_{i=1}^{n} \alpha_i Y_i\right)^2}{\sum_{i=1}^{n} \alpha_i^2} \end{split}$$

Let
$$\delta = \sqrt{\sum_{i=1}^{n} \alpha_i^2}$$
, $\mathbf{A} = \begin{pmatrix} \frac{\alpha_1}{\delta} & \frac{\alpha_2}{\delta} & \cdots & \frac{\alpha_n}{\delta} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$ and \mathbf{A} is orthogonal. Let $\mathbf{W} = \mathbf{AY}$, where $\mathbf{Y} = \mathbf{AY}$

 $(Y_1,\ldots,Y_n)'$ and $\mathbf{W}=(W_1,\ldots,W_n)'$. Therefore, we have $\mathbf{W}'\mathbf{W}=\mathbf{Y}'\mathbf{A}'\mathbf{A}\mathbf{Y}=\mathbf{Y}'\mathbf{Y}$, and $W_1^2=\left(\frac{\sum_{i=1}^n\alpha_iY_i}{\delta}\right)^2=\frac{(\sum_{i=1}^n\alpha_iY_i)^2}{\sum_{i=1}^n\alpha_i^2}$. So,

$$\xi = \sum_{i=1}^{n} Y_i^2 - W_1^2 = \mathbf{Y}'\mathbf{Y} - W_1^2 = \mathbf{W}'\mathbf{W} - W_1^2 = \sum_{i=2}^{n} W_i^2$$

When $i, j \geq 2, i \neq j$, we have

$$E(W_i) = \sum_{j=1}^n a_{ij} E(Y_j) = 0, \quad Var(W_i) = \sum_{j=1}^n a_{ij}^2 Var(Y_j) = \sum_{j=1}^n a_{ij}^2 = 1, \quad Cov(W_i, W_j) = \sum_{k=1}^n a_{ik} a_{jk} = 0$$

Here, W_i 's are multivariate normal, so covariance equals to 0 implies that W_i 's are independent. Therefore, $\xi = \sum_{i=2}^{n} W_i^2 \sim \chi_{n-1}^2$.

Problem 3

Here, let $\hat{\lambda} = \bar{X}$. Using CLT, we have $\hat{\lambda} \stackrel{d}{\to} N(\lambda, \frac{\lambda}{n})$. So, $\frac{\hat{\lambda} - \lambda}{\sqrt{\lambda/n}} \stackrel{d}{\to} N(0, 1)$. Then, using LLN, we know that $\frac{\lambda}{\hat{\lambda}} \stackrel{p}{\to} 1$ and $\sqrt{\frac{\lambda}{\hat{\lambda}}} \stackrel{p}{\to} 1$. Using Slusky's theorem, we have $\frac{\bar{X} - \lambda}{\sqrt{\bar{X}/n}} = \frac{\hat{\lambda} - \lambda}{\sqrt{\hat{\lambda}/n}} = \frac{\hat{\lambda} - \lambda}{\sqrt{\lambda/n}} \cdot \sqrt{\frac{\lambda}{\hat{\lambda}}} \stackrel{d}{\to} N(0, 1)$.

Problem 4

(a) We can differenciate $\int f(x|\boldsymbol{\theta})dx = \int h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^k w_i(\boldsymbol{\theta})t_i(x)\right)dx$ with respect to θ_j . Note that the integral range is not related to $\boldsymbol{\theta}$, so we can take the partial derivative into the integral. Then,

$$\begin{split} \frac{\partial}{\partial \theta_{j}} \int f(x|\boldsymbol{\theta}) dx &= \frac{\partial}{\partial \theta_{j}} \Big\{ c(\boldsymbol{\theta}) \int h(x) \exp \Big(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x) \Big) dx \Big\} \\ &= \frac{\partial}{\partial \theta_{j}} c(\boldsymbol{\theta}) \int h(x) \exp \Big(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x) \Big) dx + c(\boldsymbol{\theta}) \frac{\partial}{\partial \theta_{j}} \Big\{ \int h(x) \exp \Big(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x) \Big) dx \Big\} \\ &= \frac{\partial}{\partial \theta_{j}} c(\boldsymbol{\theta}) \int h(x) \exp \Big(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x) \Big) dx + c(\boldsymbol{\theta}) \int h(x) \frac{\partial}{\partial \theta_{j}} \Big\{ \exp \Big(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x) \Big) \Big\} dx \\ &= \frac{\partial}{\partial \theta_{j}} c(\boldsymbol{\theta}) \int h(x) \exp \Big(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x) \Big) dx \\ &+ \int h(x) c(\boldsymbol{\theta}) \exp \Big(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x) \Big) \Big(\sum_{i=1}^{k} \frac{\partial}{\partial \theta_{j}} w_{i}(\boldsymbol{\theta}) t_{i}(x) \Big) dx \\ &= \frac{\partial}{\partial \theta_{j}} c(\boldsymbol{\theta}) \int h(x) \exp \Big(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x) \Big) dx + \operatorname{E} \Big(\sum_{i=1}^{k} \frac{\partial w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} t_{i}(X) \Big) \\ &= 0 \end{split}$$

We know that

$$\int f(x|\boldsymbol{\theta})dx = \int h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^k w_i(\boldsymbol{\theta})t_i(x)\right)dx = c(\boldsymbol{\theta}) \int h(x) \exp\left(\sum_{i=1}^k w_i(\boldsymbol{\theta})t_i(x)\right)dx = 1$$

Then,

$$\int h(x) \exp\left(\sum_{i=1}^{k} w_i(\boldsymbol{\theta}) t_i(x)\right) dx = \frac{1}{c(\boldsymbol{\theta})}$$

Therefore,

$$E\left(\sum_{i=1}^{k} \frac{\partial w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} t_{i}(X)\right) = -\frac{\partial}{\partial \theta_{j}} c(\boldsymbol{\theta}) \int h(x) \exp\left(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x)\right) dx$$
$$= -\frac{\partial}{\partial \theta_{j}} c(\boldsymbol{\theta}) \frac{1}{c(\boldsymbol{\theta})}$$
$$= -\frac{\partial}{\partial \theta_{j}} \log c(\boldsymbol{\theta})$$

(b) Similar to (a), we take the second partial derivative. Let $g(x, \theta) = \sum_{i=1}^{k} w_i(\theta)t_i(x)$ to simplify a bit.

$$\begin{split} \frac{\partial^2}{\partial \theta_j^2} \int f(x|\boldsymbol{\theta}) dx &= \frac{\partial}{\partial \theta_j} \left\{ \frac{\partial}{\partial \theta_j} c(\boldsymbol{\theta}) \int h(x) \exp \Big(g(x,\boldsymbol{\theta}) \Big) dx + \int h(x) c(\boldsymbol{\theta}) \exp \Big(g(x,\boldsymbol{\theta}) \Big) \Big(\frac{\partial}{\partial \theta_j} g(x,\boldsymbol{\theta}) \Big) dx \right\} \\ &= \frac{\partial}{\partial \theta_j} \left\{ \frac{\partial}{\partial \theta_j} c(\boldsymbol{\theta}) \int h(x) \exp \Big(g(x,\boldsymbol{\theta}) \Big) dx \right\} + \frac{\partial}{\partial \theta_j} \left\{ c(\boldsymbol{\theta}) \int h(x) \exp \Big(g(x,\boldsymbol{\theta}) \Big) \Big(\frac{\partial}{\partial \theta_j} g(x,\boldsymbol{\theta}) \Big) dx \right\} \\ &= \frac{\partial^2}{\partial \theta_j^2} c(\boldsymbol{\theta}) \int h(x) \exp \Big(g(x,\boldsymbol{\theta}) \Big) dx \\ &+ \frac{\partial}{\partial \theta_j} c(\boldsymbol{\theta}) \int h(x) \exp \Big(g(x,\boldsymbol{\theta}) \Big) \Big(\frac{\partial}{\partial \theta_j} g(x,\boldsymbol{\theta}) \Big) dx \\ &+ c(\boldsymbol{\theta}) \int h(x) \Big\{ \exp \Big(g(x,\boldsymbol{\theta}) \Big) \Big(\frac{\partial}{\partial \theta_j} g(x,\boldsymbol{\theta}) \Big) dx \\ &= \frac{\partial^2}{\partial \theta_j^2} c(\boldsymbol{\theta}) \frac{1}{c(\boldsymbol{\theta})} + \frac{2}{c(\boldsymbol{\theta})} \frac{\partial}{\partial \theta_j} c(\boldsymbol{\theta}) E \Big(\sum_{i=1}^k \frac{\partial w_i(\boldsymbol{\theta})}{\partial \theta_j} t_i(X) \Big) \\ &+ E \Big(\Big(\sum_{i=1}^k \frac{\partial w_i(\boldsymbol{\theta})}{\partial \theta_j} t_i(X) \Big)^2 \Big) + E \Big(\sum_{i=1}^k \frac{\partial^2 w_i(\boldsymbol{\theta})}{\partial \theta_j^2} t_i(X) \Big) \\ &= \frac{\partial^2}{\partial \theta_j^2} c(\boldsymbol{\theta}) \frac{1}{c(\boldsymbol{\theta})} - \frac{2}{c(\boldsymbol{\theta})} \frac{\partial}{\partial \theta_j} c(\boldsymbol{\theta}) \frac{\partial}{\partial \theta_j} \log c(\boldsymbol{\theta}) + E \Big(\Big(\sum_{i=1}^k \frac{\partial w_i(\boldsymbol{\theta})}{\partial \theta_j} t_i(X) \Big)^2 \Big) + E \Big(\sum_{i=1}^k \frac{\partial^2 w_i(\boldsymbol{\theta})}{\partial \theta_j^2} t_i(X) \Big) \\ &= \frac{\partial^2}{\partial \theta_j^2} \log c(\boldsymbol{\theta}) - \Big(\frac{\partial}{\partial \theta_j} \log c(\boldsymbol{\theta}) \Big)^2 + E \Big(\Big(\sum_{i=1}^k \frac{\partial w_i(\boldsymbol{\theta})}{\partial \theta_j} t_i(X) \Big)^2 \Big) + E \Big(\sum_{i=1}^k \frac{\partial^2 w_i(\boldsymbol{\theta})}{\partial \theta_j^2} t_i(X) \Big) \\ &= 0 \end{aligned}$$

Then,

$$E\left(\left(\sum_{i=1}^{k} \frac{\partial w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} t_{i}(X)\right)^{2}\right) = \left(\frac{\partial}{\partial \theta_{j}} \log c(\boldsymbol{\theta})\right)^{2} - \frac{\partial^{2}}{\partial \theta_{j}^{2}} \log c(\boldsymbol{\theta}) - E\left(\sum_{i=1}^{k} \frac{\partial^{2} w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}^{2}} t_{i}(X)\right)$$

Therefore, we have

$$\begin{aligned} \operatorname{Var} \Bigl(\sum_{i=1}^k \frac{\partial w_i(\boldsymbol{\theta})}{\partial \theta_j} t_i(X) \Bigr) &= \operatorname{E} \Bigl(\Bigl(\sum_{i=1}^k \frac{\partial w_i(\boldsymbol{\theta})}{\partial \theta_j} t_i(X) \Bigr)^2 \Bigr) - \operatorname{E} \Bigl(\sum_{i=1}^k \frac{\partial w_i(\boldsymbol{\theta})}{\partial \theta_j} t_i(X) \Bigr)^2 \\ &= \Bigl(\frac{\partial}{\partial \theta_j} \log c(\boldsymbol{\theta}) \Bigr)^2 - \frac{\partial^2}{\partial \theta_j^2} \log c(\boldsymbol{\theta}) - \operatorname{E} \Bigl(\sum_{i=1}^k \frac{\partial^2 w_i(\boldsymbol{\theta})}{\partial \theta_j^2} t_i(X) \Bigr) - \Bigl(\frac{\partial}{\partial \theta_j} \log c(\boldsymbol{\theta}) \Bigr)^2 \\ &= - \frac{\partial^2}{\partial \theta_j^2} \log c(\boldsymbol{\theta}) - \operatorname{E} \Bigl(\sum_{i=1}^k \frac{\partial^2 w_i(\boldsymbol{\theta})}{\partial \theta_j^2} t_i(X) \Bigr) \end{aligned}$$