Zadanie 11

Jakub Kędra

Gr. 4

Spis treści

Informacje techniczne	2
Zadanie	2
Krok 1. Wzór rekurencyjny	2
Opracowanie	2
Wykresy:	4
Krok 2. Szereg Taylora	6
Opracowanie	6
Krok 3: Obliczenie kolejnych wyrazów ciągu za pomocą odwróconego wzoru	9
Opracowanie	
Wykresy	
Komentarze i wnioski	. 12
Spis tabel	
Tabela 1. Informacje techniczne	2
Tabela 2. Kolejne wyrazy ciągu obliczone za pomocą wzoru rekurencyjnego dla 3 różnych typów	_
danych Tabela 3. Kolejne wyrazy ciągu obliczone za pomocą odwróconego wzoru rekurencyjnego dla 3 rożnych typów	
Tabela 4. Zestawienie otrzymanych wartości obu wzorów rekurencyjnych dla long double	
Spis wykresów	
Wykres 1. Wzór rekurencyjny - float	4
Wykres 2. Wzór rekurencyjny - double	4
Wykres 3. Wzór rekurencyjny - long double	5
Wykres 4. Wzór rekurencyjny - porównanie wszystkich typów	5
Wykres 5. Odwrócony wzór rekurencyjny - float	
Wykres 6. Odwrócony wzór rekurencyjny - double	. 10
Wykres 7. Odwrócony wzór rekurencyjny - long double	
Wykres 8. Odwrócony wzór rekurencyjny - zestawienie wszystkich typów	
Wykres 9. Porównanie wykresów obu wzorów rekurencyjnych	. 13

Informacje techniczne

Poniższa tabela zawiera informacje sprzętowe

System operacyjny	Windows 10 Home (64bit, kompilacja 19045)
Procesor	i7 9750h
Język programowania	C++
Kompilator	MinGW (g++) 9.2.0

Tabela 1. Informacje techniczne

Zadanie

Niech

$$x_n = \int_0^1 \frac{t^n}{t+5} dt$$

Całka powyższa może być obliczona za pomocą wzoru rekurencyjnego:

$$x_n = \frac{1}{n} - 5x_{n-1}$$

przy czym:

$$x_0 = ln6 - ln5 = ln1.2$$

Krok 1. Wzór rekurencyjny

Opracowanie

Stosując wzór rekurencyjny obliczamy $x_0, x_1, ..., x_{20}$. W poniższej tabeli znajdują się wyniki obliczeń dla 3 różnych typów zmiennych:

n	float	double	long double
0	1,82322E-01	1,82322E-01	1,82322E-01
1	8,83922E-02	8,83922E-02	8,83922E-02
2	5,80391E-02	5,80389E-02	5,80389E-02
3	4,31379E-02	4,31387E-02	4,31387E-02
4	3,43104E-02	3,43063E-02	3,43063E-02
5	2,84481E-02	2,84684E-02	2,84684E-02
6	2,44263E-02	2,43249E-02	2,43249E-02
7	2,07257E-02	2,12326E-02	2,12326E-02
8	2,13717E-02	1,88369E-02	1,88369E-02
9	4,25280E-03	1,69265E-02	1,69265E-02
10	7,87360E-02	1,53676E-02	1,53676E-02
11	-3,02771E-01	1,40713E-02	1,40713E-02
12	1,59719E+00	1,29766E-02	1,29766E-02
13	-7,90902E+00	1,20399E-02	1,20399E-02
14	3,96165E+01	1,12290E-02	1,12290E-02
15	-1,98016E+02	1,05218E-02	1,05218E-02
16	9,90142E+02	9,89117E-03	9,89115E-03
17	-4,95065E+03	9,36767E-03	9,36778E-03
18	2,47533E+04	8,71720E-03	8,71665E-03
19	-1,23767E+05	9,04559E-03	9,04834E-03
20	6,18833E+05	4,77203E-03	4,75829E-03

Tabela 2. Kolejne wyrazy ciągu obliczone za pomocą wzoru rekurencyjnego dla 3 różnych typów danych

Możemy zauważyć, że w powyższej tabeli dla typu float, począwszy od x_{11} co drugi wynik jest ujemny. Dodatkowo można zauważyć, że od x_{10} rzędy wielkości otrzymanych wyników w przypadku typu float zaczęły znacząco odbiegać od rzędów wielkości wyników dwóch pozostałych typów.

Typ float jest typem małej precyzji (w g++ jest on zapisany tylko na 4 bajtach). Ze względu na to, że różnica pomiędzy tymi wyrazami stawała się coraz mniejsza, typ float nie posiadał wystarczająco długiej mantysy, żeby pomieścić cały ułamek, a co za tym idzie, posiada on najmniejszą precyzję.

Odpowiadając na pytanie zawarte w poleceniu – nie, nie powinno być żadnych wartości ujemnych.

Wykresy:

Wykres 1. Wzór rekurencyjny - float

Wykres 2. Wzór rekurencyjny - double

Wykres 3. Wzór rekurencyjny - long double

Wykres 4. Wzór rekurencyjny - porównanie wszystkich typów

Krok 2. Szereg Taylora

Opracowanie

Korzystając z szeregu Taylora zadanego wzorem:

$$f(x) = \sum_{k=0}^{\infty} \frac{(x-a)^k}{k!} f^{(k)}(a)$$

Dla otoczenia (a,b). W naszym przypadku otoczeniem tym jest przedział (0,1), tak więc szereg naszej funkcji podcałkowej przyjmuje taki wzór:

$$f(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} f^{(k)}(0)$$

Musimy obliczyć za pomocą tego wzoru x_{20} . Tak więc nasza funkcja podcałkowa wygląda następująco:

$$f(x) = \frac{x^{20}}{x+5}$$

A tak wygląda jej wykres

Ze względu na to, że 19 początkowych pochodnych f(x) zawiera w sobie x, który dla f(0) zeruje nam całe wyrażenie, konstruowanie szeregu zaczniemy od k = 20

Dopiero od k = 20 otrzymujemy pierwszy wyraz wolny, poniżej dla przykładu dla 20-krotnej pochodnej:

$$\frac{d^{20}}{dx^{20}} \left(\frac{x^{20}}{x+5}\right) = \frac{2432902008176640000 \, x^{20}}{(x+5)^{21}} - \frac{48658040163532\,800000 \, x^{19}}{(x+5)^{20}} + \frac{462251381553561600000 \, x^{18}}{(x+5)^{19}} - \frac{2773508289321369600000 \, x^{17}}{(x+5)^{18}} + \frac{11787410\,229615\,820\,8000000 \, x^{16}}{(x+5)^{17}} - \frac{37719712734770\,626560000 \, x^{15}}{(x+5)^{16}} + \frac{94299\,281\,836\,926566\,400\,000 \, x^{14}}{(x+5)^{15}} - \frac{188598563\,673\,853\,132\,800\,000 \, x^{13}}{(x+5)^{14}} + \frac{306\,472\,665\,970\,011\,340\,800\,000 \, x^{12}}{(x+5)^{13}} - \frac{408\,630\,221\,293\,348\,454\,400\,000 \, x^{11}}{(x+5)^{12}} + \frac{449\,493\,243\,422\,683\,299\,840\,000 \, x^{10}}{(x+5)^{1}} - \frac{408\,630\,221\,293\,348\,454\,400\,000 \, x^{1}}{(x+5)^{10}} + \frac{306\,472\,665\,970\,011\,340\,800\,000 \, x^{10}}{(x+5)^{9}} - \frac{188\,598\,563\,673\,853\,132\,800\,000 \, x^{7}}{(x+5)^{8}} + \frac{306\,472\,665\,970\,011\,340\,800\,000 \, x^{8}}{(x+5)^{9}} - \frac{37719712\,734770\,6265\,600000 \, x^{5}}{(x+5)^{6}} + \frac{94299\,281\,836\,926\,566\,400\,000 \, x^{6}}{(x+5)^{7}} - \frac{37719712\,734770\,626\,500000 \, x^{5}}{(x+5)^{6}} + \frac{11787\,410\,229\,615\,820\,800\,000 \, x^{4}}{(x+5)^{5}} - \frac{2773\,508\,289\,321\,369\,600\,000 \, x^{3}}{(x+5)^{4}} + \frac{462\,251\,381\,553\,561\,600\,000 \, x^{2}}{(x+5)^{3}} - \frac{48\,658\,040\,163\,532\,800\,000 \, x}{(x+5)^{2}} + \frac{2432\,902\,008\,176\,640\,000}{x+5}$$

Po usunięciu zbędnych zerowych wyrazów, nasza funkcja dla $n \geq 20$ wygląda następująco

$$f^{(n)}(x) = (-1)^n \frac{n!}{(x+5)^{(n-19)}} + g(x)$$

Gdzie: g(x) – stanowi początkowy szereg zerujących się wyrazów w x = 0

Podstawiając x = 0 otrzymujemy:

$$f^{(n)}(0) = (-1)^n \frac{n!}{5^{(n-19)}}$$

Stad:

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} f^{(n)}(0) =$$

$$= \sum_{n=20}^{\infty} \frac{x^n}{n!} f^{(n)}(0) =$$

$$= \sum_{n=20}^{\infty} \frac{x^n}{n!} \frac{n!}{5^{(n-19)}} (-1)^n =$$

$$= \sum_{n=20}^{\infty} \frac{x^n}{5^{(n-19)}} (-1)^n =$$

$$=\sum_{n=0}^{\infty} \frac{x^{(n+20)}}{5^{(n+1)}} (-1)^n$$

Stąd nasza funkcja podcałkowa przyjmuje wzór

$$F(X) = \int f(x)dx = \int \sum_{n=0}^{\infty} (-1)^n \frac{x^{(n+20)}}{5^{(n+1)}} dx =$$

$$= \sum_{n=0}^{\infty} \int (-1)^n \frac{x^{(n+20)}}{5^{(n+1)}} dx =$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n+21} \frac{x^{(n+21)}}{5^{(n+1)}} dx$$

 x_n jest określony za pomocą całki oznaczonej, stąd:

$$x_n = \int_0^1 f(x) dx = F(1) - F(0)$$

Ponieważ

$$F(0) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+21} \frac{0^{(n+21)}}{5^{(n+1)}} = 0$$

 x_{20} przyjmuje wartość:

$$x_{20} = F(1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+21} \frac{1^{(n+21)}}{5^{(n+1)}} =$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n+21} \frac{1}{5^{(n+1)}}$$

Czyli ostatecznie:

$$x_{20} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{5^n (n+20)}$$

Krok 3: Obliczenie kolejnych wyrazów ciągu za pomocą odwróconego wzoru Opracowanie

Następnie odwróćmy rekurencyjny wzór:

$$x_{n-1} = \frac{1}{n} - \frac{x_n}{5} \iff x_n = \frac{1}{n+1} - \frac{x_{n+1}}{5}$$

I obliczmy kolejne wyrazy ciągu od x_0 do x_{20}

n	float	double	long double
0	6,77172E-01	6,77172E-01	6,77172E-01
1	3,22828E-01	3,22828E-01	3,22828E-01
2	1,77172E-01	1,77172E-01	1,77172E-01
3	1,56161E-01	1,56161E-01	1,56161E-01
4	9,38386E-02	9,38386E-02	9,38386E-02
5	1,06161E-01	1,06161E-01	1,06161E-01
6	6,05052E-02	6,05052E-02	6,05052E-02
7	8,23519E-02	8,23519E-02	8,23519E-02
8	4,26481E-02	4,26481E-02	4,26481E-02
9	6,84630E-02	6,84630E-02	6,84630E-02
10	3,15370E-02	3,15370E-02	3,15370E-02
11	5,93721E-02	5,93721E-02	5,93721E-02
12	2,39612E-02	2,39612E-02	2,39612E-02
13	5,29619E-02	5,29619E-02	5,29619E-02
14	1,84667E-02	1,84667E-02	1,84667E-02
15	4,82000E-02	4,82000E-02	4,82000E-02
16	1,43000E-02	1,43000E-02	1,43000E-02
17	4,45235E-02	4,45235E-02	4,45235E-02
18	1,10321E-02	1,10321E-02	1,10321E-02
19	4,15995E-02	4,15995E-02	4,15995E-02
20	8,40050E-03	8,40050E-03	8,40050E-03

Tabela 3. Kolejne wyrazy ciągu obliczone za pomocą odwróconego wzoru rekurencyjnego dla 3 rożnych typów

Możemy zauważyć, że tym razem nasza tabela nieco się różni od poprzedniej tabeli. Nie posiada już żadnych wartości ujemnych oraz początkowe wyrazy x_0 się różnią.

Wartość x_0 z wykorzystaniem pierwszego wzoru wyniosła 0,182322, natomiast wartość z wykorzystaniem odwróconego wzoru rekurencyjnego wyniosła 0,677172. Obie wartości różnią się niemal trzykrotnie, lecz pomiędzy nimi został zachowany odpowiedni rząd wielkości.

Wykresy

Wykres 5. Odwrócony wzór rekurencyjny - float

Wykres 6. Odwrócony wzór rekurencyjny - double

Wykres 7. Odwrócony wzór rekurencyjny - long double

Wykres 8. Odwrócony wzór rekurencyjny - zestawienie wszystkich typów

Komentarze i wnioski

Analizując obie tabele z wynikami, łatwo możemy zauważyć, że otrzymane wartości różnią się. Występuje zróżnicowanie wyników ze względu na użyty typ danych do obliczenia – im mniej dokładny typ danych (na mniejszej ilości bitów zapisany), tym wyniki są niedokładniejsze.

Dodatkowo, występują różnice w wynikach obliczonych za pomocą pierwotnego wzoru rekurencyjnego oraz za pomocą odwróconego wzoru rekurencyjnego. Różnice te są również wynikiem problemów z dokładnością liczb zmiennoprzecinkowych zapisanych na bitach.

n	rekurencja	odwrotna rekurencja
0	1,82322E-01	6,77172E-01
1	8,83922E-02	3,22828E-01
2	5,80389E-02	1,77172E-01
3	4,31387E-02	1,56161E-01
4	3,43063E-02	9,38386E-02
5	2,84684E-02	1,06161E-01
6	2,43249E-02	6,05052E-02
7	2,12326E-02	8,23519E-02
8	1,88369E-02	4,26481E-02
9	1,69265E-02	6,84630E-02
10	1,53676E-02	3,15370E-02
11	1,40713E-02	5,93721E-02
12	1,29766E-02	2,39612E-02
13	1,20399E-02	5,29619E-02
14	1,12290E-02	1,84667E-02
15	1,05218E-02	4,82000E-02
16	9,89115E-03	1,43000E-02
17	9,36778E-03	4,45235E-02
18	8,71665E-03	1,10321E-02
19	9,04834E-03	4,15995E-02
20	4,75829E-03	8,40050E-03

Tabela 4. Zestawienie otrzymanych wartości obu wzorów rekurencyjnych dla long double

Wykres 9. Porównanie wykresów obu wzorów rekurencyjnych