Thème : Constitution et Transformations de la matière

C4: la matière au niveau microscopique

Activité 3 : vers des entités chimiques plus stables

Objectifs:

- -Établir le lien entre stabilité chimique et configuration électronique de valence d'un gaz noble.
- -Déterminer la charge électrique d'ions monoatomiques courants à partir du tableau périodique.
- -Décrire et exploiter le schéma de Lewis d'une molécule pour justifier la stabilisation de cette entité, en référence aux gaz nobles, par rapport aux atomes isolés ($Z \le 18$).

Partie 1: des atomes aux ions

Document 1 : étude de la triade Lithium-Sodium-Potassium

Vidéo youtube : https://www.youtube.com/watch?v=jl JY7pqOM

Document 2 : des atomes aux ions

Pour plus de stabilité, les atomes tendent à ressembler au gaz noble le plus proche. Deux cas se présentent :

- -soit ils gagnent un ou plusieurs électrons, ils deviennent donc des ions chargés négativement.
- -Soit ils perdent un ou plusieurs électrons, ils sont deviennent donc des ions chargés positivement.

Questions

- 1. A votre avis, qu'arrive t'il aux atomes de Lithium, Sodium, Potassium?
- 2. Pourquoi peut-on dire que le Lithium, sodium et potassium appartiennent à la même famille chimique ?

3. A l'aide du document 2, remplir le tableau suivant :

Atome + symbole	Gaz noble le plus proche	L'atome gagne / perd un ou plusieurs électrons pour ressembler à ce gaz noble ?	Symbole de l'ion ainsi formé
Lithium			
Sodium			
Potassium			

Partie 2 : des atomes aux molécules

Document 1 : les règles du duet et de l'octet

Règle du duet : Les éléments de numéro atomique inférieur ou égal à 4 évoluent de manière à acquérir la structure électronique de l'hélium.					
Règle de l'octet : Les éléments de numéro atomique supérieur à 4 évoluent de manière à acquérir					
la structure électronique du néon	ou de l'argon				
Ils portent alors 8 électrons (un octet) sur leur couche externe					

Document 2 : tableau récapitulatif

LIGNE	Atomes	hydrogène	oxygène	carbone	azote
1	Symbole de l'élément chimique				
2	Numéro atomique Z				
3	configuration électronique				
4	Nombre d'électrons sur la couche externe				
5	Valence (= nombre de liaisons possibles)				
6	Doublets non-liants				
7	Schéma de Lewis de l'atome isolé	• H			

Document 3 : schéma de Lewis de quelques molécules

Molécule	Eau	Ammoniac	Dioxygène
Schéma de Lewis	н — <u>о</u> — н	н — <mark>N</mark> — н Н	$\langle o = o \rangle$
Quelle règle respecte chaque atome ?			

Questions

- 1. A l'aide du tableau périodique, compléter les 2 premières lignes du tableau.
- 2. Grâce au bilan cours 1, compléter les lignes 3 et 4.3. Pour compléter les 5 dernières lignes :
- - → ligne 5 : la valence, c'est le nombre d'électrons célibataires dans la dernière couche remplie. Il faut donc chercher combien d'électrons il manque pour respecter la règle du duet (ou de l'octet).
 - → ligne 6 : une fois que l'on sait combien d'électrons de la couche externe vont former des liaisons, reste t'il des électrons ? Il s'agit de doublets non-liants.
 - → ligne 7 : on représente le symbole de l'atome avec , autour de lui : un pour un électron célibataire et un — pour un doublet « non- liant ».

Une molécule, c'est la mise en commun des électrons de valence

4. Compléter le document 3.