Voltage source with pulse train of exponentials vpulseexp

Figure 1: Independent Voltage Source Element.

Form:

vpulseexp: $\langle instance name \rangle \ n_1 \ n_2 \ \langle parameter list \rangle$

 n_1 is the positive element node,

 n_2 is the negative element node.

Parameters:

Parameter	Type	Default value	Required?
v1: Initial value (A)	DOUBLE	0	no
v2: Pulsed value (A)	DOUBLE	0	no
td: Delay time (s)	DOUBLE	0	no
tr: Rise Time (s)	DOUBLE	0	no
tf: Fall Time (s)	DOUBLE	0	no
pw: Pulse width (s)	DOUBLE	0	no
per: Period (s)	DOUBLE	0	no

Example:

vpulseexp:vsignal 8 0 v1=0.1 v2=0.8 td=1ns tr=0.5ns tf=1ns pw=2ns per=5ns tcf=1

Description:

The exponential transient is a periodic event with each pulse specified by two exponentials.

Figure 2: Voltage source transient exponential waveform.

 $\begin{array}{c} Version:\\ 2003.08.28\end{array}$

Credits: Name

Frank Hart

Name Affiliation I

NC State University

Date Links August 2003 NC STAT

NC STATE UNIVERSITY

www.ncsu.edu