

PRISM WORLD

Std.: 10 (Marathi) <u>विज्ञान आणि तंत्रज्ञान - १</u>

Chapter: 2

Q.1 बहुपर्यायी प्रश्न (कृति)

अल्कधर्मी मृदा धातूंची संयुजा 2 आहे. म्हणजे त्यांची आधुनिक आवर्तसारणीतील जागा मध्ये आहे.

अ. गण २ ब. गण १६ क. आवर्त २ इ. डी-खंड

Ans पर्याय - अ

अधिनक आवर्तसारणीत अधातू कोणत्या खंडात आहेत?

अ. s- खंड ब. p- खंड क. d- खंड ड. f- खंड

Ans पर्याय - ब

3 मूलद्रव्य X च्या क्लोराइडचे रेणुसूत्र XCI आहे. हे संयुग उच्च द्रवणांक असलेला स्थायू आहे.
X हे मूलद्रव्य आवर्तसारणीच्या ज्या गणात असेल त्या गणात पढीलपैकी कोणते मूलद्रव्य असेल?

अ. Na ब. Mg क. Al ड. Si

Ans पर्याय अ.

Q.2 टीपा लिहा

आधुनिक आवर्तसारणीची रचना.

Ans i. आधुनिक आवर्तसारणीमध्ये सात आडव्या ओळींना <mark>आवर्त</mark> म्हणतात आणि अठरा उभ्या स्तंभांना गण म्हणतात.

- ii. आवर्त व गण यांच्या रचनेतून चौकटी तयार होतात. <mark>प्रत्येक</mark> चौकट ही एका मूलद्रव्याची जागा आहे.
- iii. सात ओळींव्यतिरिक्त आवर्तसारणीच्या तळाशी आणखी दोन ओळी स्वतंत्रपणे दाखविलेल्या आहेत. त्यांना अनुक्रमे लॅन्थॅनाइड श्रेणी आणि ॲक्टिनाइड श्रेणी असे म्हणतात.
- iv. संपूर्ण आवर्तसारणी एस-खंड, पी-खंड, डी-खंड व एफ-खंड अशा चार खंडामध्ये विभागली आहे.
- v. आवर्तसारणीच्या पी-खडांमध्ये एक नागमोडी रेषा दर्शविता येते. रेषेच्या डाव्या बाजूला सर्व धातू असून उजव्या बाजूला सर्व अधातू आहेत.
- 2 मेंडेलीव्हची आर्वतसारणीचा नियम.
- Ans i. मूलद्रव्यांच्या भौतिक व रासायनिक गुणधर्मानुसार मेंडेलीव्हने मूलद्रव्यांच्या आवर्तसारणीची रचना केली.
 - आवर्तसारणीची रचना करताना, मेंडेलीव्हने मूलद्रव्यांच्या हायड्रोजन व ऑक्सीजन बरोबर झालेल्या हायड्रोइड व ऑक्साइड
 - ii. संयुगांची रेणूसूत्रे हे रासायनिक गुणधर्म द्रवणांक, उत्कलनांक व घनता हे भौतिक गुणधर्म विचारात घेतले.
 - iii. त्याकाळी ज्ञात असलेली ६३ मूलद्रव्ये त्यांच्या अणुवस्तुमानांच्या चढत्या क्रमाने मांडली.
 - त्यात त्याला असे दिसून आले की ठराविक अवधीनंतर भौतिक व रासायनिक गुणधर्मांमध्ये सारखेपणा असलेल्या मूलद्रव्यांची ^{v.} पनरावत्ती होते.
 - या शोधाच्या आधारे त्यांनी असे सांगितले की मूलद्रव्यांचे गुणधर्म हे त्याच्या अणूवस्तूमानाचा ठराविक कालावधी असतो. यालाच v. मेंडेलीव्हचा आवर्तसारणीचा नियम म्हणतात.

Q.3 फरक स्पष्ट करा.

1 मेंडेलीव्हची आवर्त सारणी व आधुनिक आवर्त सारणी

Ans

3		मेंडेलीव्हची आवर्त सारणी	आधुनिक आवर्त सारणी
	i.	मूलद्रव्यांची मांडणी त्यांच्या अणुवस्तुमानांच्या चढत्या क्रमाने केलेली आहे.	मूलद्रव्यांची मांडणी त्यांच्या अणुअंकाच्या चढत्या क्रमाने केलेली आहे.
	ii.	पूर्णांकी अणुवस्तुमान समान असलेली मूलद्रव्ये, दुर्मिळ मृदा मूलद्रव्ये, समस्थानिके यांच्या निश्चित जागांबद्दल खात्री देवू शकत नाही.	पूर्णांकी अणुवस्तुमान समान असलेली मूलद्रव्ये, दुर्मिळ मृदा मूलद्रव्ये, समस्थानिके यांच्या निश्चित जागांबद्दल खात्री देवू शकते.

Q.4 गुणधर्म / वैशिष्ट्ये / लक्षणे / फायदे / तोटे / परिणाम लिहिणे.

- मेंडेलीव्हची आवर्त सारणी व आधुनिक आवर्त सारणी यामध्ये समस्थानिकांची जागा यावर टीप लिहा.
- Ans i. मेंडेलीव्हच्या आवर्त सारणीमध्ये मूलद्रव्यांची मांडणी त्यांच्या अणुवस्तुमानांच्या आधारे केलेली आहे. मेंडेलीव्हने आवर्त सारणी मांडल्यानंतर खूप काळाने समस्थानिकांचा शोध लागला. समस्थानिकांचे रासायनिक गुणधर्म समान असले तरी अणुवस्तुमाने भिन्न असल्यामुळे त्यांना मेंडेलीव्हच्या आवर्त सारणीत जागा देणे कठीण झाले.
 - ii.आधुनिक आवर्त सारणीमध्ये मूलद्रव्यांची मांडणी त्यांच्या अणुअंकाच्या आधारे केलेली आहे. समस्थानिकांचे अणुअंक समान असल्याने आधुनिक आवर्त सारणीमध्ये सर्व समस्थानिकांना एकाच ठिकाणी जागा देणे शक्य झाले.

Q.5 शास्त्रीय कारणे लिहा.

- आवर्ता मध्ये डावीकडून उजवीकडे जाताना अणुत्रिज्या कमी होत जाते.
- Ans एका आवर्ता मध्ये डावीकडून उजवीकडे जाताना अणुअंक एक-एकाने वाढत जातो. म्हणजेच अणुकेंद्रकात केंद्रीय प्रभार व बाह्य कवचात एक इलेक्ट्रॉन वाढत जातो. त्यामुळे केंद्रकावरील धनप्रभार एकेक एककाने वाढत जातो. मात्र भर पडलेला इलेक्ट्रॉन हा असलेल्याच बाह्यतम कवचामध्ये जमा होतो. वाढीव केंद्रकीय धनप्रभारामुळे इलेक्ट्रॉन केंद्रकाकडे अधिक प्रमाणात ओढले जातात. त्यामुळे अणुचे आकारमान, म्हणजेच अणुत्रिज्या, कमी होत जाते.
- गणामध्ये वरून खाली जाताना अणुत्रिज्या वाढत जाते.
- Ans अणूचे आकारमान त्याच्या त्रिज्येने दर्शवतात. अणुत्रिज्या म्हणजे अणुकेंद्रक व बाह्यतम कवच यामधील अंतर. गणात वरून खाली जाताना नवीन कवचाची भर पडत जाते. त्यामुळे अणुकेंद्रक व बाह्यतम कवच यामधील अंतर वाढत जाते. म्हणजेच अणुत्रिज्या वाढत जाते. म्हणून गणामध्ये वरून खाली जाताना अणुत्रिज्या वाढत जाते.
- 3 तिसऱ्या कवचाची इलेक्ट्रॉन धारकता 18 असूनही तिसऱ्या आवर्तामध्ये फक्त आठ मूलद्रव्ये आहेत.
- Ans पहिल्या तीन आवर्तांमधील मूलद्रव्यांची संख्या ही कवचांची इलेक्ट्रॉन धारकता व इलेक्ट्रॉन अष्टकाचा नियम आवर्त 1 व 2 मध्ये इलेक्ट्रॉन धारकतेनुसार अनुक्रमे 2 व 8 मूलद्रव्ये आहेत. अष्टकाच्या नियमानुसार बाह्यतम कवचात 8 इलेक्ट्रॉन असले पाहिजेत. यानुसार तिसऱ्या आवर्तामध्ये, त्याची इलेक्ट्रॉन धारकता 18 असूनही फक्त आठच इलेक्ट्रॉन आहेत. म्हणून तिसऱ्या आवर्तामध्ये फक्त आठ मूलद्रव्ये आहेत.यावरून ठरते.
- 4 एकाच गणामधील मूलद्रव्यांची संयुजा समान असते.
- Ans मूलद्रव्याच्या अणूच्या संयुजा-कवचातील संयुजा-इलेक्ट्रॉन्सच्या संख्येस मूलद्रव्याची संयुजा म्हणतात. एका गणातील सर्व i. मूलद्रव्यांच्या संयुजा-कवचातील संयुजा-इलेक्ट्रॉन्सची <mark>संख्या</mark> समान असते. म्हणून एकाच गणामधील मूलद्रव्यांची संयुजा समान असते.

Q.6 जास्तीचे प्रश्न (Not to be Use)Colours of your Dreams

- 1 एका मूलद्रव्याचे इलेक्ट्रॉन संरूपण 2,8,2 असे आहे. यावरून खालील प्रश्नांची उत्तरे लिहा.
 - अ. या मूलद्रव्याचा अणुअंक किती?
 - ब. या मूलद्रव्याचा गण कोणता?
 - क. हे मुलद्रव्य कोणत्या आवर्तात आहे?
 - ड. या मूलद्रव्याचे रासायनिक गुणधर्म खालीलपैकी कोणत्या मूलद्रव्यासारखे असतील?
 - N (7), Be (4), Ar (18), CI (17) (कंसात अणुअंक दिले आहेत)
- Ans अ. या मूलद्रव्याचा अणुअंक 12
 - ब. या मूलद्रव्याचा गण 2
 - क. हे मुलद्रव्य तिसऱ्या आवर्तात आहे
 - ड. या मूलद्रव्याचे रासायनिक गुणधर्म Be (4) मूलद्रव्यासारखे असतील
- अावर्तामध्ये डावीकडून उजवीकडे जाताना मूलद्रव्याचा धातु-गुणधर्म अधातु-गुणधर्मामध्ये बदलत जातो.
- Ans अणूतील सर्वच इलेक्ट्रॉन हे धनप्रभारी केंद्रकाच्या आकर्षण बलामुळे अणूमध्ये धरून ठेवले जातात. डावीकडील मूलद्रव्यांमध्ये कमी अणुअंकामुळे संयुजा इलेक्ट्रॉनांची संख्या कमी (1 ते 3) असते. ह्या संयुजा इलेक्ट्रॉनांवर प्रयुक्त होणारा केंद्रकीय धनप्रभार कमी असतो. त्यामुळे या मूलद्रव्यांमध्ये संयुजा-इलेक्ट्रॉन गमावून धनायन बनण्याची प्रवृत्ती असते. म्हणून ही मूलद्रव्ये धातु-गुणधर्म दाखवतात. आवर्तामध्ये डावीकडून उजवीकडे जाताना अणुअंक व केंद्रकीय धनप्रभार वाढतो, अणुत्रिज्या कमी होते. संयुजा इलेक्ट्रॉनांवर प्रयुक्त होणारा केंद्रकीय धनप्रभार वाढत जातो व संयुजा इलेक्ट्रॉन अधिकाधिक आकर्षणबलाने धरून ठेवले जातात. त्यामुळे या मूलद्रव्यांमध्ये बाहेरून इलेक्ट्रॉन स्वीकारून ऋणायन बनण्याची प्रवृत्ती वाढत जाते. म्हणून ही मूलद्रव्ये अधातु-गुणधर्म दाखवतात. म्हणून आवर्तामध्ये डावीकडून उजवीकडे जाताना मूलद्रव्याचा धातु-गुणधर्म अधातु-गुणधर्मामध्ये बदलत जातो.
- गणात वरून खाली जाताना मूलद्रव्याचा धातु-गुणधर्म वाढतो.

8

- Ans एका गणात वरून खाली जाताना नव्या कवचाची भर पडते. केंद्रक व संयुजा इलेक्ट्रॉन यांच्यातील अंतर वाढत जाते. संयुजा इलेक्ट्रॉनांवर प्रयुक्त केंद्रकीय प्रभार कमी होऊन संयुजा इलेक्ट्रॉनांवरील आकर्षण बल कमी होते. त्यामुळे मूलद्रव्यांमध्ये संयुजा-इलेक्ट्रॉन गमावून स्थिर धनायन बनवण्याची प्रवृत्ती वाढत जाते. म्हणजेच धातु-गुणधर्म वाढत जातो. म्हणून गणात वरून खाली जाताना मूलद्रव्याचा धातु-गुणधर्म वाढतो.
- 4 दिलेल्या मूलद्रव्यापैकी तिसऱ्या आवर्तातीला मूलद्रव्य कोणते? त्याचे इलेक्ट्रोन संरुपण लिहा. 3^{Li} , 14^{Si} , 2^{He} , 15^{P}

Ans i. तिसऱ्या आवर्तातील मूलद्रव्ये 14^S, 15^P

ii. इलेक्ट्रोन संरुपण 14^S : 2, 8 , 5

15^P: 2, 8, 5

Q.7 दिलेल्या विधानांचा वापर करून स्पष्टीकरण लिहिणे.

- 1 एका मूलद्रवयाचे इलेक्ट्रॉन संरूपण 2, 8, 2 असे आहे. यावरून खालील प्रश्नांची उत्तरे लिहा.
 - i. या मूलद्रवयाचा अणुअंक किती?
 - ii. या मूलद्रव्याचा गण कोणता ?
 - iii.हे मूलद्रव्य कोणत्या आवर्तनात आहे ?
 - iv. या मूलद्रव्याचे रासायनिक गुणधर्म खालील पैकी कोणत्या मूलद्रव्यासारखे असतील ?

7N, 4Be, 18Ar, 17Cl

Ans i. अणुअंक 12

ii. गण 2

iii.आवर्तन 3

iv.₄Be

Q.8 उत्तरे स्पष्टीकरणासह लिहिणे.

- 1 दिलेल्या अणुअंकाच्या आधारे खालील मूलद्रव्यांचे इलेक्ट्रॉन संरुपण लिहा. त्यावरून प्रश्नांची उत्तरे स्पष्टीकरणासहीत लिहा.
 - अ. ₃Li, ₁₄Si, ₂He, ₁₁Na, ₁₅P यांच्यापैकी तिस-या आवर्तातील मूलद्रव्ये कोणती ?
 - ब. 1H, 7N, 20Ca, 16S, 4Be, 18Ar यांच्यापैकी दुस-या गणामधील मूलद्रव्ये कोणती ?
 - क. 7N, 6C, 8O, 13A1 यांच्यापैकी सर्वाधिक विद्युतऋण मूलद्रव्य कोणते?

SM Our Dreams

Ans

अ.	मुलद्ध	इलेक्ट्रॉन संरुपण
	₃ Li	2, 1
	₁₄ Si	2, 8, 4
	₂ He	2
	₁₁ Na	2, 8, 1
	₁₅ P	2, 8, 5

तिस-या आवर्तातील मूलद्रव्ये ₁₄Si, ₁₁Na आणि ₁₅P आहेत.

ब.	मुलद्रव्य	इलेक्ट्रॉन संरुपण
	₁ H	1
	₇ N	2, 5
	₂₀ Ca	2, 8, 8, 2
	₁₆ S	2, 8, 6
	₄ Be	2, 2
	₁₈ Ar	2, 8, 8

20Ca आणि 4Be हे दुस-या आवर्तातील मूलद्रव्ये आहेत तसेच त्यांच्याजवळ दोन संयुजा इलेक्ट्रॉन आहेत.

क.	मुलद्रव्य	इलेक्ट्रॉन संरुपण
	₇ N	2, 5
	₆ C	2, 4
	O ₈	2, 6
	₅ B	2, 3
	₁₃ Al	2, 8, 3

80 हा सर्वात विद्युतऋण मूलद्रव्य आहे.

दे दिलेल्या अणुअंकाच्या आधारे खालील मूलद्रव्यांचे इलेक्ट्रॉन संरुपण लिहा. त्यावरून प्रश्नांची उत्तरे स्पष्टीकरणासहीत लिहा.

- अ. ₄Be, ₆C, ₈O, ₅B, ₁₃A1 यांच्यापैकी सर्वाधिक विद्युतधन मूलद्रव्य कोणते?
- ब. ₁₁Na, ₁₅P, ₁₇Cl, ₁₄Si, ₁₂Mg यांच्यापैकी सर्वाधिक आकारमान असलेला अणु कोणता?
- क. $_{19}$ K, $_{3}$ Li, $_{11}$ Na, $_{4}$ Be यांच्यापैकी सर्वात कमी अणुत्रिज्या असलेला अणु कोणता?

Ans

अ.	मुलद्ध	अणुअंक	इलेक्ट्रॉन संरुपण
	Ве	4	2, 2
	С	6	2, 4
	0	8	2, 6
	В	5	2, 3
	Al	13	2, 8, 3

सर्वाधिक विद्युतधन मुलद्रव्य ₁₃A1 आहे.

ब.	मुलद्रव्य	अणुअंक	इलेक्ट्रॉन संरुपण
	Na	11	2, 8, 1
	Р	15	2, 8, 5
	CI	17	2, 8, 7
	Si	14	2, 8, 4
	Mg	12	2, 8, 2

सर्वाधिक आकारमान असलेला अणु ₁₁Na आहे.

क.	मुलद्रव्य	अणुअंक	इलेक्ट्रॉन संरुपण
	K	19	2, 8, 8, 1
	Li	3	2, 1
	Na	11	2, 8, 1
	Be	4	2, 2

सर्वात कमी अणुत्रिज्या असणारे मुलद्रव्य 4Na आहे.

