Mathematics		Summer
	Random Graphs	
	a first course	
Authors: Shaleen Baral		

Contents

1. Introduction to Asymptotics

Definition 1.1 Asymptotic Equivalence. We say that f(n) is asymptotically equivalent to g(n) and write $f(n) \sim g(n)$ if $f(n)/g(n) \to 1$ as $n \to \infty$.

Definition 1.2. We write $f(n) \in O(g(n))$ when there is a C > 0 such that for all sufficiently large n,

$$|f(n)| \le C|g(n)|$$
.

Definition 1.3. We write $f(n) = \Omega(g(n))$ when there is a c > 0 such that for all sufficiently large n,

$$|f(n)| \ge c|g(n)|$$
.

Lemma 1.1: Equivalently, f(n) = O(g(n)) iff $\limsup_{n \to \infty} |f(n)|/|g(n)| < \infty$.

Proof: For convenionce let Q(n) = |f(n)|/|g(n)|. First, the foward direction. We note that we have $0 \le Q(n) \le C$. As Q(n) is bounded $\limsup Q(n)$ clearly exists and is finite (the sequence $\{\sup_{n \ge k} Q(n)\}_{k \in N}$ is decreasing and as it is bounded by below, must converge).

Conversely, assume $\limsup Q(n) < \infty$. Let $C = \max(\limsup Q(n) + 1, 1)$. As $C > \limsup Q(n)$, it is an eventual upper bound for Q(n). That is to say, there exists $N \in \mathbb{N}_{>0}$ such that for all $n \geq N$

$$|f(n)| \le C|g(n)|.$$

Lemma 1.2: Equivalently, $f(n) = \Omega(g(n))$ iff $\liminf_{n \to \infty} |f(n)|/|g(n)| < \infty$.

Proof: Same idea as above.

Definition 1.1. We write $f(n) = \Theta(g(n))$ when there are constants c, C > 0 such that

$$c|g(n)| \le f(n) \le C|g(n)|.$$

Equivalently, $f(n) = \Theta(g(n))$ iff $f(n) = \Omega(g(n))$ and f(n) = O(g(n)).

Lemma 1.3: If $f_1, f_2 \in O(g)$ then $f_1 + f_2 = O(g)$.

Proof: There exists $C_1, C_2, N_1, N_2 > 0$ such that for $n > N_1$ and $n > N_2$

$$|f_1| \le C_1|g|$$

$$|f_2| \le C_2|g|.$$

Then, for $N = \max(N_1, N_2)$, we can say that if n > N then

$$|f_1 + f_2| \le (C_1 + C_2) |g|.$$

Lemma 1.4: If $f_1, f_2 \in \Omega(g)$ then $f_1 + f_2 \in \Omega(g)$ too.

Proof: Same idea as above.

Lemma 1.5: If $f_1, f_2 \in \Theta(g)$ then $f_1 + f_2 \in \Theta(g)$ too.

Proof: Follows from prior two lemmas and definition of Θ .

Definition 1.2 . We write f(n) = o(g(n)) (or $f(n) \ll g(n)$) if $f(n)/g(n) \to 0$ as $n \to \infty$.

Definition 1.3 . We write f(n) = o(g(n)) (or $f(n) \ll g(n)$) if $f(n)/g(n) \to 0$ as $n \to \infty$.

Definition 1.4 . We write f(n) = o(g(n)) (or $f(n) \ll g(n)$) if $f(n)/g(n) \to 0$ as $n \to \infty$.