

Elektron WE43

Datasheet: 467

Magnetius Die vor Ch.
HO fer 7: Rev Loui, Sertien Geschwitz 2017 260 Segand.
HO fer 7: Rev Loui, Sertien Geschwitz 2017 260 Segand.
HO feld 7: Rev Loui, Sertien Geschwitz 2017 2010
With a der verziger werzeleben im 1971 181; Like Mill 1974 25
Zelden der der Article 1647 felden im 1984 pentern Segand der Talense
Konsten der Article 1647 felden im 1984 pentern Segand der Talense
Konsten der Mille 1984 pentern Segand (d. 1984 felden 2017 1984 pentern Segand der Talense Konsten (d. 1984 pentern Segand der Talense Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

House Geschwitz (d. 1984 pentern Segand der Talense Geschwitz)

H

ELENTROP WE45 is a high stringth magnesium based do stirly any developed and patiented by Magnesium Elektron for use at temperature, by 2 (26/20). This ofley system maintains as good meta-high proparties at electron temperatures, without the use of either silver or tronview. The any is attalked for long-series electrons and the cooking to 2 (26/20).

ELEKTROR WER? has excellent to rosion resistance characteristics.

AGENT PLANTED

The excellent retention of properties at elevated temperatures will be of litterast to designers of net perights and other power systems, helicopter transvessions, missies, raping and high performance cars.

SPECIFICATIONS UNS No. MIE420 ASTM BEO AMS 4427 USAM 4427 AECIMA MG-C98002

CHEAN ALCOHOUSENON

 Ythrium
 2.7–4.3%

 Pure Earths
 2.4–4.4%

 Zirocolory
 0.4% min

 Magnesium
 Balance

HEAT TREATMENT

The alloy develops its optimism properties in the folly hear treated condition reSolution heat treat for 8 from at

\$25°C, Air cool, not water or polymer

quench, Age for 16 Hours at 250°C, Air cool,

PHYSICAL PROPERTIES Specific gravity Coefficient of 28.7 × 10¹⁶K¹¹ thermal expansion Thermal conductionly 61.3 70m X Specific hear 985 Jka 'x Electrical resistivity 145 of an Modulus of elastiony 44 x 10 MPs Poissons rano 6.27 Melano range E49-84520 Damping index 0.30 85-105

229 MPa

238

Vickers hardness DESIGN DATA

Tensile strength:

Elengation

htmmon specification tensile properties 0.2% Proof stress 172 MPs

OTHER PROPERTIES

CASTABILITY

Fine grained and pressure right with good casting characteristics.

PATTEEN MAKERS CHROTKAGE PACTEE 1 856

WELDARILITY

Fully weldable by the tungster, are meet gas (TIG) process, using filter roos of the parent alloy composition.

SAGC NUMBERS

ELECTRON WEST cast raps, like all magnesions alloy castings, macroins faster flow any other metal. Providing the geometry of the part allows. The similarity lates it the power and speed of the macroine rather than speed of the macroine rather than the quality of the tool material. The power recurse per cutter contribute of metal ventored it are a from 9 to 14 watts per initure depending on the operation.

SCHREACE TREATMENT

Source Processing Source Sourc

AMBENT TEMPERATURE MICHANICAL PROMISES A

Tripractioning operates			
9.21. Prociseless	180 MFa		
Tensile strength	250 MPa		
Elseymon.	7%		
PERMANDICUMPRESSAME PROPERTY			
5.2% Place syess	187 MPa		
Oh,mare strength	223 MPa ·		
TYPYTAL SHEAR HE WERLING			
Ultimale stress	162 MPa		

PROFES ORE TO COCHERES			
10:	15.9 MPs m		

FIG.1 Potating been faligue les:

OVELES OF STREET

FIG. 3 Scress Hims relationship for specified creep strains at 200°C

Elektron WE43 Castings

CUT UP PROPRETES OF SAMPLES TAKEN FROM ACTUAL CASHINGS

Temperature	Humber of Tests	0.2% Proof Syess (MPa)		Tensile Strength skiPa:	Exigator (a)
30%	216	Ministan:	142	205	2
		Average	176	250	7
		Washnoon	215	295	17
386*(*	58	Makan		167	2
		Average	155	211	-6
		Signinger	196	255	26

