(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

T COLOC CINTERNAL ELECTRICA INCLESION BOLLONGO PROPRIO DE LA COLOCA DE LA COLOCA DE LA COLOCA DE LA COLOCA DE L

(43) International Publication Date 26 July 2001 (26.07.2001)

PCT

(10) International Publication Number WO 01/53079 A1

(51) International Patent Classification7:

_ _

- B32B 27/32
- (21) International Application Number: PCT/US01/02396
- (22) International Filing Date: 24 January 2001 (24.01.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 60/177,781
 24 January 2000 (24.01.2000)
 US

 60/211,048
 12 June 2000 (12.06.2000)
 US

 60/232,977
 14 September 2000 (14.09.2000)
 US

 60/257,513
 22 December 2000 (22.12.2000)
 US

- (71) Applicant (for all designated States except US): THE DOW CHEMICAL COMPANY [US/US]; 2030 Dow Center, Midland, MI 48674 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): FALLA, Daniel, James [CA/CA]; 2105 Blackwell Road, Sarnia, Ontario N7T 7K7 (CA). FERNANDEZ, Tomas, A. [SV/CH]; Neudorfstrasse 43, CH-8810 Horgen (CH). SAAVEDRA, Jose, V. [US/US]; 203 Dogwood, Lake Jackson, TX 77566 (US). TAU, Li-Min [US/US]; 113 Poinciana Street, Lake Jackson, TX 77566 (US). VAN VOLKENBURGH, William, R. [US/US]; 126 Sequoia, Lake Jackson, TX 77566 (US).

- (74) Agent: MCKINNEY, Osborne, K.; Intellectual Property, B-1211, 2301 Brazosport Boulevard, Freeport, TX 77541 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MULTILAYER BLOWN FILM STRUCTURE WITH POLYPROPYLENE NON-SEALANT LAYER AND POLYETHYLENE SEALANT LAYER

(57) Abstract: The present invention pertains to a multilayer blown film structure having a blended polypropylene layer and at least one polyethylene sealant layer. In particular, the invention relates to a multilayer brown film comprising a non-sealant layer made from a propylene-rich polypropylene polymer blended with at least one ethylene-rich ethylene interpolymer and a sealant layer made from at least one ethylene interpolymer, wherein the ethylene-rich ethylene interpolymer comprises ethylene interpolymerized with at least one other comonomer other than propylene. The novel multilayer film structure exhibits excellent interlayer adhesion (especially at the blended non-sealant/sealant interface when adjacent to one another) and toughness (for example, excellent trouser tear) with acceptable optical properties and surprising sealing properties. The novel structure is preferably made using an air-quenched coextrusion fabrication technique and is particularly suited for use in making pouches for flowable materials, heavy-duty shipping sacks and overwrap films.

MULTILAYER BLOWN FILM STRUCTURE WITH POLYPROPYLENE NON-SEALANT LAYER AND POLYETHYLENE SEALANT LAYER

5

10

15

20

25

The present invention pertains to a multilayer blown film structure having a blended polypropylene layer and at least one polyethylene sealant layer. In particular, the invention relates to a multilayer blown film comprising a non-sealant layer made from a propylene-rich polypropylene polymer blended with at least one ethylene-rich ethylene interpolymer and a sealant layer made from at least one ethylene interpolymer, wherein the ethylene-rich ethylene interpolymer comprises ethylene interpolymerized with at least one other comonomer other than propylene. The novel multilayer film structure exhibits excellent interlayer adhesion (especially at the blended non-sealant/sealant interface) and toughness (for example, excellent trouser tear) with acceptable optical properties and surprising sealing properties. The novel structure is preferably made using an air-quenched coextrusion fabrication technique and is particularly suited for use in making pouches for

In today's consumer packaging market, the trend is toward more environmentally friendly packages. Conventionally, many types of containers have been used to package flowable materials such as milk, juice, soup, nuts, ground meats, oil, and relishes. Conventional containers include glass bottles, paper cartons, high density polyethylene jugs, metal cans and PET bottles. Conventional containers consumed large amounts of natural resources to manufacture, require a significant landfill space, use substantial storage space and consume appreciable energy for contained-product temperature control (due to the heat transfer properties of the container). Conversely, packaging flowable materials in pouches

made from thin polyethylene films reduces the above problems associated with

flowable materials, heavy-duty shipping sacks and overwrap films.

conventional containers. Specifically, relative to conventional containers, a polyethylene pouch consumes less natural resources, requires less space in landfill, is recyclable and reusable, requires less storage space, uses less energy for storage (due to heat transfer properties of the thin film) and can be incinerated.

5

10

15

20

25

Most overwrap films used today are made from polyethylene and are used to package and protect soft goods such as toweling, toilet paper, napkins, straws, stir sticks, cutlery, hotel room glasses, and coffee condiment packages for retail trade. Aesthetics is an important property for overwrap film as the film must bear the advertisements of the distributor and allow the consumer to observe the packaged contents. Another important property of overwrap film is its crispness and its ability provide tamper evidence. Additionally, good stiffness is required to facilitate easy conversion through high speed packaging equipment.

Polypropylene resins have a number of useful properties that make them highly suitable for flowable material pouches, heavy-duty shipping sacks, overwrap films and packaging applications. But polypropylene resins generally exhibit low melt strength and as such (unlike polyethylene resins) polypropylene resins typically are not used to prepare air-quenched blown films, especially air-quenched blown films.

US Patent No. 5,206,075 (Hodgson, Jr.) discloses a laminar polyolefin film having a base layer comprising a blend of a polypropylene polymer and a very low density ethylene/alpha monoolefin copolymer and at least one heat sealable layer comprising a very low density copolymer of ethylene and a different alpha monoolefin. Hodgson discloses that the base layer may be extruded into film using a flat die or blown extruded into film using a tubular die, and the heat seal layer may be formed on the base layer by solvent deposition, lamination or coextrusion

techniques. A preferred method is described as "coextrusion wherein a molten layer of the heat seal material is applied to the surface of an extruded cast film of the base layer." Similarly, the examples reported by Hodgson are prepared by "coextrusion" on a compounding extruder and the heat seal layer is referred to as the "coating layer". That is, there is no specific description of preparation of the film by a blown coextrusion technique wherein the base layer and the heat seal layer are simultaneously extruded from a multi-channel annular, circular or tubular die to form a tube that is blown-up or inflated to form a bubble. Also, while Hodgson's examples allegedly show improved sealing properties where the comparative sealing layer is different, Hodgson does not teach improved sealing properties where the comparative sealing layer is the same.

10

15

20

25

US Patent No. 4,643,928 (Kimura et al.) discloses a coextruded multilayer tubular two-layer film comprising an outer layer which comprises a linear ethylene α -olefin copolymer and an inner layer made of a polypropylene-base resin or a resin composition comprising a polypropylene-base resin and an ethylene α -olefin copolymer. The film is preferably fabricated by a water-quenched blown film technique and in addition to using a single linear low density ethylene α -olefin copolymer, a mixture of copolymers having different densities or melt indexes or both can be used. But examples reported therein make it clear that the polypropylene inner layer is the sealant layer and the polyethylene outer layer is the non-sealant layer of the described film. Further, Kimura et al. indicate that various fabrication techniques can be use, including water- and air-cooling inflation, yet the air-cooling blown film (inflation) technique is described as deficient due to bubble stability problems at high speeds and the inability to achieve satisfactory optical properties.

US Patent No. 5,874,139 (Bosiers et al.), discloses a multilayer structure having a sealant layer and a polypropylene layer wherein the sealant layer comprises as a polymer mixture of (A) from 5 to 95 weight percent, based on the total weight of the polymer mixture, of at least one first ethylene polymer which is a homogeneously branched substantially linear ethylene polymer or a homogeneously branched linear ethylene polymer, and (B) from 5 to 95 weight percent, based on the total weight of the polymer mixture, of at least one second ethylene polymer which is a homogeneously branched ethylene polymer or a heterogeneously branched linear ethylene polymer wherein the second ethylene polymer is characterized as having a density in the range of 0.89 g/cc to 0.965 a/cc, wherein the polymer mixture is characterized as having a density of from 0.89 g/cc to 0.93 g/cc and an l₂ melt index in the range of from 1 g/10 minutes to 5 g/10 minutes and wherein the molecular weight of the at least one first polymer is higher than the molecular weight of the at least one second polymer. US Patent 5,874,139 also discloses that the blown film process technique is suitable for fabricating the multilayer structure. But the examples reported in US Patent 5.874.139 are all cast film structures and there is no specific description nor examples of polypropylene blended with any other polymer.

5

10

Dr. Wout Luyten, in "Polypropylene Blown Film for Packaging", Specialty

Plastic Films '99 World Congress, Zurich, Switzerland (December 13-15, 199)

teaches that polypropylene resins made using Montell's proprietary Catalloy

process and sold under the designations Adflex and Adsyl are useful for airquenched blown film applications as blend components for polypropylene

homopolymers and heterophasic copolymers as well as in pure form. Dr. Luyten

describes Adflex resins as low melt flow rate soft PP materials and as ex-reactor

blends of ethylene and propylene. and Adsyl resins as low melt flow rate terpolymers. Adflex is described as an adhesion promoter as well as imparting improved bubble stability and impact and tear resistance to PP films. Adsyl resins are described as having a non-fusion quality with PE, good shrinkage and excellent seal properties where a high sealability grade is specifically described as providing improved hot tack properties when used in coextruded sealing layers. Adsyl and Adflex are amorphous polypropylene resins that are characteristically rubbery, soft material.

5

15

20

JP 58140248 discloses a co-extruded PP/LLDPE film structure that allegedly

10 has enhanced heat sealing properties.

JP 60006457 discloses a tubular polyethylene/polypropylene film with allegedly improved transparency.

WO 9837142 discloses a heat sealable metallocene-catalyzed polyethylene/polypropylene film.

US Patent No. 4,297,411 (Weiner) discloses a heat sealable multilayer film comprising a polypropylene substrate and ethylene/olefin copolymer blend surface layer. The polypropylene substrate can be polypropylene, polypropylene copolymer or a blend of polypropylene homopolymer or copolymer and up to 40 weight percent of a compatible polyolefin or polyolefin blend. The surface layer is a blend of a copolymer of ethylene and higher olefin having 4 or more carbon atoms and a different copolymer of an alpha olefin having 2 or more carbon atoms and higher olefin. Extrusion coating and coextrusion are described as suitable fabrication methods for producing the film. But here is no specific description of producing the film using a blown film technique.

US Patent No. 4,303,709 (Olson) discloses a two-layer coextruded bag consisting of an outer layer of polypropylene and an inner (sealant) layer of polyethylene, preferably high density polyethylene (HDPE). The bag is made using conventional blown tubular film coextrusion techniques. But there is no specific description of the polypropylene layer being blended.

JP 57064550 discloses a two-layer coextruded film with layer (A) made of polypropylene and layer (B) made of an ethylene/alpha-olefin copolymer.

5

10

15

20

US Patent No. 4,565,738 (Purdy) discloses multilayer film comprising a propylene polymer base layer and a receptive layer is comprised of a blend of propylene-ethylene end block copolymer and an ethylene-monoalphaolefin random copolymer. Fabrication of the film is described to preferably consist of using a coextrusion bubble technique with a multi-channel annular die. But the propylene polymer base layer is not described as being blended with any other polymer.

WO 9744178 discloses a coextruded blown film comprising at least one layer of a metallocene-catalyzed polyethylene and at least one layer of an impact grade polypropylene resin. The impact grade polypropylene is described as having about 8-15 percent by weight ethylene. There is no specific description of blending the impact grade polypropylene with any other polymer.

Edward P. Moore, Jr., <u>Polypropylene Handbook</u>, Hanser, New York (1996), at page 5 teaches impact grade polypropylenes are heterophasic copolymers usually containing up to 40 percent ethylene-propylene rubber (EPR) intimately dispersed in a polypropylene matrix, usually homopolymer polypropylene. At page 92, Hanser teaches impact grade polypropylenes are made by a two-step sequential polymerization wherein a propylene homopolymer (or a slightly modified

copolymer) is synthesized in the first step and a mixture of ethylene and propylene is copolymerized with the same catalyst system in the second step.

WO 9837142 discloses a heat sealable film comprising at least one layer of polyethylene (preferably a metallocene-catalyzed polyethylene) and a layer of polypropylene. The polyethylene and the polypropylene can be blended with ethylene polymers. There is description that the polyethylene layer can be multilayer, coextruded and fabricated by the tubular process. The polyethylene is used as the sealing layer. But all the examples reported therein involve adhesive or extrusion lamination and there is no specific description that the polyethylene layer and the polypropylene layer being simultaneously coextruded.

Overwrap films made using polymer blends consisting of metallocenecatalyzed LLDPE are described by R. Halle, <u>Tappi Polymer, Laminations and</u> <u>Coating Conference</u>, Volume 2, pp.901-911, Tappi Press, Atlanata, GA (1999).

10

15

20

25

Laminated overwrap films are described in Canadian Patent Nos. 944914 and 940439.

Several documents describe pouches for packaging flowable foods and nonfood items, including US Patent No. 4,503,102 (Mollison); US Patent No. 4,521,437 (Storms); US Patent No. 5,288,531 (Falla); US Patent No. 5,364,486, (Falla); US Patent No. 5,360,648 (Falla); US Patent No. 5,508,051 (Falla); US Patent No. 5,721,025 (Falla); US Patent No. 5,879,768 (Falla); US Patent No. 5,942,579 (Falla); WO 98/29249 (Breck); and WO 99/10430 (Climenhage).

While there is a wealth of teaching directed to film structures comprising a polyethylene layer and a polypropylene layer, there exists a need for a blown film multilayer structure that exploits the favorable characteristics of semi-crystalline polypropylene as an core or dimensional layer as well as the favorable

characteristics of polyethylene resins as sealant layers. That is, there is a need for structures and polymer combinations that solve the low melt strength/poor bubble stability problems of polypropylene resins generally associated with air-quenched blown film fabrication while providing good interlayer adhesion, toughness properties and sealing properties. Obtaining improved blown film structures will give converters and packagers more package design flexibility and offer certain productivity enhancements.

We have discovered an improved multilayer film structure having at least one polypropylene-rich layer and at least one polyethylene-rich layer. The broad aspect of the invention is a coextruded air-quenched multilayer blown film structure comprising (A) a non-sealant layer comprised of a propylene-rich polypropylene polymer blended with at least one ethylene-rich ethylene interpolymer and (B) a sealant layer comprised of at least one second ethylene interpolymer, wherein the ethylene-rich ethylene interpolymer comprises ethylene interpolymerized with at least one other comonomer other than propylene and the structure has a maximum hot tack strength of greater than 5.0 Newton/25 millimeter, (more preferably greater than or equal to 6.0 N/25 mm and most preferably greater than or equal to 7.0 N/25 mm up to 25.0 N/25 mm) when fabricated at 1.0 thickness and tested using a JB Instrument (formerly Topwave) Hot Tack Tester set at a 0.5 second dwell, 0.2 second delay time, 40 psi seal bar pressure and 250 mm/second peel rate.

10

15

20

25

Another aspect of the invention is a pouch made from a coextruded airquenched multilayer blown film structure which in tubular form has transversely
heat sealed ends, the multilayer film structure comprising (A) a non-sealant layer
comprised of a propylene-rich polypropylene polymer blended with at least one first
ethylene-rich ethylene interpolymer and (B) a sealant layer comprised of at least

one second ethylene interpolymer, wherein the ethylene-rich ethylene interpolymer comprises ethylene interpolymerized with at least one other comonomer other than propylene and the structure has a maximum hot tack strength of greater than or equal to 5.0 Newton/25 millimeter, when fabricated at 1.0 mil total film thickness and measured using a JB Instrument Hot Tack Tester set at a 0.5 second dwell, 0.2 second delay time, 40 psi seal bar pressure and 250 mm/second peel rate.

Another aspect of the invention is an overwrap film made from a coextruded air-quenched multilayer blown film structure comprising (A) a non-sealant layer comprised of a propylene-rich polypropylene polymer blended with at least one first ethylene-rich ethylene interpolymer and (B) a sealant layer comprised of at least one second ethylene interpolymer, wherein the ethylene-rich ethylene interpolymer comprises ethylene interpolymerized with at least one other comonomer other than propylene and the structure has a maximum hot tack strength of greater than or equal to 5.0 Newton/25 millimeter, when fabricated at 1.0 mil total film thickness and measured using a JB Instrument Hot Tack Tester set at a 0.5 second dwell, 0.2 second delay time, 40 psi seal bar pressure and 250 mm/second peel rate.

10

15

20

25

Another aspect of the invention is a heavy-duty shipping sack made from a coextruded air-quenched multilayer blown film structure comprising (A) a non-sealant layer comprised of a propylene-rich polypropylene polymer blended with at least one first ethylene-rich ethylene interpolymer and (B) a sealant layer comprised of at least one second ethylene interpolymer, wherein the ethylene-rich ethylene interpolymer comprises ethylene interpolymerized with at least one other comonomer other than propylene and the structure has a maximum hot tack strength of greater than or equal to 5.0 Newton/25 millimeter, when fabricated at 1.0 mil total film thickness and measured using a JB Instrument Hot Tack Tester set

at a 0.5 second dwell, 0.2 second delay time, 40 psi seal bar pressure and 250 mm/second peel rate.

5

10

15

20

25

The inventive film structure is characterized by surprisingly improved sealing properties. In particular, the inventive structure exhibits substantial better sealing properties than comparative structures comprised of a polyethylene core layer and the same sealant layer(s) as the inventive film structure. The sealing improvements include higher maximum hot tack strength and a broader heat seal window. These results are considered surprising and unexpected because one would not expect the non-sealant layer (that is the outer or core layer) to directly affect the sealing performance of the sealant layer.

The term "coextruded blown film" is used herein to mean at least two polymer melt streams (especially the polymer melt stream of the non-sealant layer and the polymer melt stream of the sealant layer) are simultaneously extruded through a multi-channel tubular, annular or circular die to form a tube which is blown-up, inflated or cooled or a combination thereof with air (or a combination of gases) to form a film.

The term "compounded" is used herein to mean the blending or mixing of a polypropylene polymer and an ethylene polymer occurs outside of any reactor system. That is, the term pertains to ex-reactor blending and excludes in situ preparation (in-reactor blending) of a polypropylene/ethylene polymer composition. Compounding includes melt mixing, extrusion compounding and tumble blending prior to blown film extrusion. The term "blended" encompasses in situ (in-reactor) preparation as well as compounding. Preferably, the non-sealant polypropylene layer comprises a polypropylene resin compounded with at least one first ethylene interpolymer without propylene interpolymerized therein.

The term "propylene-rich" as used herein means the polypropylene polymer comprises greater than 50 weight percent propylene.

The term "ethylene-rich" as used herein means the ethylene interpolymer comprises greater than 50 weight percent ethylene.

5

10

15

20

25

The term "air-quenched blown film" is used herein to refer to fabrication of film using an annular die (also known as "circular die" or "tubular die") to form a molten tube and then using air to blow-up (inflate) and cool the tube. The term is inclusive as to conventional hot blown simple bubble, double-bubble and trapped bubble techniques and is exclusive as to water-quenched and spray cooled blown film fabrication unless the latter also include air-quenching. The term also encompasses the use of inert gases; that is blow-up, inflation or cooling air or a combination thereof may be combined with inert gases such as CO₂, nitrogen, argon and helium. Coextruded air-quenched blown films refers to simultaneous extrusion of at least to polymer melt stream from a multi-channel annular, circular or tubular die to form a tube that is blown-up, inflated or cooled of a combination thereof with air (or a combination of gases) to form a film.

The term "ethylene polymer composition" is used herein to refer to an ethylene polymer or blend of an ethylene polymer and another polymer.

The term "ethylene polymer" is used herein to refer to a polymer that is manufactured with ethylene as monomer or comonomer.

The term "sealant layer" is used herein to refer to that film layer that is heat sealable and is actually heat sealed (usually to itself) in over-wrapping and in the construction of a bag, sack or pouch. For instance, in bag, sack or pouch making, the sealant layer forms the inside of the bag, sack or pouch. The term refers to the film's physical structure.

The term "non-sealant layer" is used herein to refer to that film layer that may be heat sealable but is not directly heat sealed. For instance, in bag, sack or pouch making, the non-sealant layer forms the outside of the bag, sack or pouch when a two-layer film structure is used or a core layer of the bag, sack or pouch is when a three-layer film structure is used.

5

10

15

20

25

The polypropylene layer of the present invention comprises at least one polypropylene polymer. The at least one polypropylene polymer can be a homopolymer, copolymer or terpolymer, including random and impact copolymer. Preferably, the at least one polypropylene polymer isotactic (that is not atactic or syndiotactic) such that it is crystalline or semi-crystalline with good barrier properties.

A crystalline polypropylene polymer is a polymer with at least 90 mole percent of its repeating units derived from propylene, preferably at least 97 percent, more preferably at least 99 percent. The term "crystalline" is used herein to mean isotactic polypropylene having at least 93 percent isotactic triads as measured by ¹³C NMR, preferably at least 95 percent, more preferably at least 96 percent. Syndiotactic polypropylene is suitable for use in the polypropylene layer.

The at least one polypropylene polymer can be homopolymer polypropylene or propylene polymerized with one or more other monomers addition polymerizable with propylene. The other monomers are preferably olefins, more preferably alpha olefins, most preferably ethylene or an olefin having a structure RCH=CH₂ where R is aliphatic or aromatic and has at least two and preferably less than 18 carbon atoms. Hydrocarbon olefin monomers within the skill in the art, include hydrocarbons having one or more double bonds at least one of which is polymerizable with the alpha olefin monomer.

Suitable alpha olefins for polymerizing with propylene include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-nonene, 1-decene, 1-unidecene, 1-dodecene as well as 4-methyl-1-pentene, 4-methyl-1-hexene, 5-methyl-1-hexene, vinylcyclohexane, styrene. The preferred alpha olefins include 1-hexene, and 1-octene.

5

10

15

20

25

Optionally, but not in the most preferred embodiment of the present invention, the polypropylene polymer comprises monomers having at least two double bonds which are preferably dienes or trienes. Suitable diene and triene comonomers include 7-methyl-1,6-octadiene, 3,7-dimethyl-1,6-octadiene, 5,7-dimethyl-1,6-octadiene, 3,7,11-trimethyl-1,6,10-octatriene, 6-methyl-1,5-heptadiene, 1,3-butadiene, 1,6-heptadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, 1,10-undecadiene, norbornene, tetracyclododecene, or mixtures thereof, preferably butadiene, hexadienes, and octadienes, most preferably 1,4-hexadiene, 1,9-decadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, dicyclopentadiene, and 5-ethylidene-2-norbornene.

The polypropylene polymer is selected such that the inventive film has a 1 percent machine direction secant modulus of at least 70,000 psi, more preferably of at least 85,000 psi up to 200,000 psi. Accordingly, the polypropylene polymer is not rubbery (such as ethylene-propylene rubber) or elastomeric (such as typical impact copolymer grades). More preferably, the at least one polypropylene polymer does not contain ethylene or butene interpolymerized therein. Most preferably, the at least one polypropylene polymer a crystalline polypropylene polymer.

The polypropylene layer is polypropylene-rich (that is contains greater than 50 weight percent of a propylene-rich polypropylene polymer) but preferably

comprises from 60 to 98 weight percent of the at least one polypropylene polymer, more preferably from 70 to 98 weight percent; and preferably from 2 to 40 weight percent, more preferably from 2 to 30 weight percent of the ethylene-rich ethylene interpolymer.

5

10

15

20

25

Suitable polypropylenes are formed by means within the skill in the art, for example, using single site catalysts or Ziegler Natta catalysts. The propylene and optional alpha-olefin monomers are polymerized under conditions within the skill in the art, for instance as disclosed by Galli, et al., <u>Angew. Macromol. Chem.</u>, Vol. 120, . 73 (1984), or by E. P. Moore, et al. in <u>Polypropylene Handbook</u>, Hanser Publishers, New York, 1996, particularly pages 11-98.

The polypropylene polymer used in the present invention is suitably of any molecular weight distribution (MWD). Polypropylene polymers of broad or narrow MWD are formed by means within the skill in the art. For film toughness, generally a narrower MWD is preferred (for example, a M_w/M_n ratio or polydispersity of less than or equal to 3). Polypropylene polymers having a narrow MWD can be advantageously provided by visbreaking or by manufacturing reactor grades (non-visbroken) using single-site catalysis or both.

Polypropylene polymers for use in the present invention preferably have a weight average molecular weight as measured by gel permeation chromatography (GPC) greater than 100,000, preferably greater than 115,000, more preferably greater than 150,000, most preferably greater than 250,000 to obtain desirably high mechanical strength in the final product.

Preferably, the polypropylene polymer has a melt flow rate (MFR) in the range of 0.01 to 30 grams/10 minutes, more preferably in range of 0.1 to 10 grams/10 minutes, as measured in accordance with ASTM D1238 at 230°C/2.16

kg. In particular, a high molecular weight, high melt strength polypropylene polymer is preferred, thus a MFR less than 1 g/10 minutes, measured in accordance with ASTM D1238 at 230°C/2.16 kg, is most preferred.

Suitable polypropylene polymers are made using methods and procedures well known in the art using various catalyst systems including traditional Ziegler-Natta catalyst systems as well as metallocene (constrained geometry) catalyst systems. Suitable commercial materials include Shell's KF 6100 homopolymer polypropylene; Solvay 's KS 4005 polypropylene copolymer; Solvay's KS 300 polypropylene terpolymer; and INSPIRE polypropylene resins supplied by The Dow Chemical Company.

5

10

15

20

The at least one polypropylene polymer can be reactor-grade, visbroken, branched or coupled to provide increased nucleation and crystallization rates. The term "coupled" is used herein to refer to polypropylene polymers which are rheology-modified such that they exhibit a change in the resistance of the molten polymer to flow during extrusion (for example, in the extruder immediately prior to the annular die). Whereas "visbroken" is in the direction of chain-scission, "coupled" is in the direction of crosslinking or networking. An example of coupling is where a couple agent (for example, an azide compound) is added to a relatively high melt flow rate polypropylene polymer such that after extrusion the resultant polypropylene polymer composition attains a substantially lower melt flow rate than the initial melt flow rate. Preferably, for coupled or branched polypropylene (which is the preferred polypropylene polymer used in the present invention) the ratio of subsequent MFR to initial MFR is less than or equal to 0.7:1, more preferably less than or equal to 0.2:1.

Suitable branched polypropylene for use in the present invention is commercially available for instance from Montell North America under the trade designations Profax PF-611 and PF-814. Alternatively, suitable branched or coupled polypropylene can be prepared by means within the skill in the art such as by peroxide or electron-beam treatment, for instance as disclosed by DeNicola et al. in U.S. Patent No. 5,414,027 (the use of high energy (ionizing) radiation in a reduced oxygen atmosphere); EP 0 190 889 to Himont (electron beam irradiation of isotactic polypropylene at lower temperatures); US Patent No. 5,464,907 (Akzo Nobel NV); EP 0 754 711 Solvay (peroxide treatment); and US Patent Application No. 09/133,576, filed August 13, 1998 (azide coupling agents).

The ethylene-rich ethylene interpolymer that is blended with the propylene-rich polypropylene polymer does not contain any propylene, as ethylene-propylene polymers tend to be highly elastomeric and substantially reduce the modulus of the modified polypropylene polymer. The ethylene polymer of the sealant layer may be the same or different from the ethylene-rich ethylene interpolymer that is blended with the propylene-rich polypropylene polymer to provide the non-sealant layer.

10

15

20

25

Suitable ethylene-rich ethylene interpolymers (and suitable ethylene polymers for the sealant layer) include, for example, high density polyethylene (HDPE), heterogeneously branched linear low density polyethylene (LLDPE), heterogeneously branched ultra low density polyethylene (ULDPE), homogeneously branched linear ethylene polymers, homogeneously branched substantially linear ethylene polymers (that is homogeneously branched long chain branched ethylene polymers), ethylene vinyl or vinylidene aromatic monomer interpolymers, ethylene/acrylic acid (EAA) interpolymers, ethylene/methacrylic acid (EMAA) interpolymers and

combinations thereof. The sealant layer can comprise a homopolymer polyethylene such as low density polyethylene (LDPE) made under high-pressure, free-radical polymerization conditions, providing the homopolymer is blended with a suitable ethylene-rich ethylene interpolymer.

5

10

15

20

Heterogeneously branched linear low density polyethylene (LLDPE) and a blend of a heterogeneously branched linear low density polyethylene (LLDPE) with a homogeneously branched ethylene interpolymer are most preferred for blending with the propylene-rich polypropylene polymer (that is the non-sealant layer). Conversely, homogeneously branched ethylene interpolymers and blends of a homogeneously branched ethylene interpolymer with a heterogeneously branched ethylene polymer are most preferred for the sealant layer (due to the improved sealing polymers as well as dramatically improved tear properties).

The high density polyethylene (HDPE), heterogeneously branched linear low density polyethylene (LLDPE), heterogeneously branched ultra low density polyethylene (ULDPE), homogeneously branched linear ethylene polymers, or homogeneously branched substantially linear ethylene polymer that is blended with the polypropylene layer can be an interpolymer of ethylene with at least one C_4 - C_{20} α -olefin. The term "interpolymer" used herein indicates the polymer can be a copolymer, a terpolymer or any polymer having more than one polymerized monomer. Monomers usefully copolymerized with ethylene to make the interpolymer include the C_4 - C_{20} α -olefins especially 1-pentene, 1-hexene, 4-methyl-1-pentene, and 1-octene. Especially preferred comonomers include 1-pentene, 1-hexene and 1-octene. Copolymers of ethylene and a C_4 - C_{20} α -olefin are especially preferred.

Suitable ethylene polymers for use in the sealant layer and non-sealant layer preferably have an l_2 melt index less than or equal to 10 grams/10 minutes, preferably less than 5 g/ 10 minutes, more preferably less than or equal to 3 g/10 minutes, most preferably less than or equal to 2.5 g/10 minutes, especially in the range of from 0.1 to 2 g/10 minutes, measured in accordance with ASTM D1238, Condition 190°C/2.16 kg.

5

10

15

20

25

Commercial examples of suitable ethylene-rich ethylene interpolymers are sold under the designations ATTANE, AFFINITY, DOWLEX, ELITE by The Dow Chemical Company; and Exceed and Exact by Exxon Chemical Company.

The propylene-rich polypropylene polymer and the ethylene-rich ethylene interpolymer can be blended with other polymers as long as such other polymers do not disturb the unique features of the film, nor significantly reduce the modulus of the polypropylene layer.

The term "substantially linear" means that the polymer backbone is substituted with 0.01 long chain branches/ 1000 carbons to 3 long chain branches/1000 carbons, more preferably from 0.01 long chain branches/ 1000 carbons to I long chain branches/ 1000 carbons, and especially from 0.05 long chain branches/1000 carbons to 1 long chain branches/1000 carbons.

Long chain branching is defined herein as a branch having a chain length greater than that of any short chain branches which are a result of comonomer incorporation. The long chain branch can be as long as about the same length as the length of the polymer back-bone.

Long chain branching can be determined by using ¹³C nuclear magnetic resonance (NMR) spectroscopy and is quantified using the method of Randall (Rev. Macromol. Chem. Phys., C29 (2&3), p. 275-287).

Substantially linear ethylene polymers are characterized as having:

- a) a melt flow ratio, I_{10}/I_2 , ≥ 5.63 ,
- b) a molecular weight distribution, M_w/M_n , defined by the equation:

Mw/ Mn \leq (I_{10}/I_2) - 4.63, and

5

a critical shear stress at onset of gross melt fracture greater than 4 x 10^6 dynes/cm² or a critical shear rate at onset of surface melt fracture at least 50 percent greater than the critical shear rate at the onset of surface melt fracture of either a homogeneously or heterogeneously branched linear ethylene polymer having the same I_2 and M_w/M_n or both.

10

15

Also substantially linear ethylene polymers are manufactured using constrained geometry catalyst systems. Exemplary constrained geometry catalysts for use in polymerizing the homogeneously branched substantially linear ethylene polymers preferentially include those constrained geometry catalysts as disclosed in U.S. Application Serial Nos.: 545,403, filed July 3, 1990; 758,654, now US Patent No. 5,132,380; 758,660, now abandoned, filed September 12, 1991; and 720,041, now abandoned, filed June 24,1991, and in US Patent No. 5,272,236 and US Patent No. 5,278,272.

20

25

In contrast to substantially linear ethylene polymers, linear ethylene polymers lack long chain branching, that is, they have less than 0.01 long chain branches/1000 carbons. The term "linear ethylene polymers" thus does not refer to high pressure branched polyethylene, ethylene/vinyl acetate copolymers, or ethylene/vinyl alcohol copolymers which are known to those skilled in the art to have numerous long chain branches.

Linear ethylene polymers include, for example, the traditional heterogeneously branched linear low density polyethylene polymers or linear high density polyethylene polymers made using Ziegler polymerization processes (for example, US Patent No. 4,076,698 (Anderson et al.)), or homogeneous linear polymers (for example, US Patent No. 3,645,992 (Elston).

5

10

15

20

25

Both the homogeneously branched linear and the substantially linear ethylene polymers have homogeneous branching distributions. The term "homogeneously branching distribution" means that the comonomer is randomly distributed within a given molecule and that substantially all of the copolymer molecules have the same ethylene/ comonomer ratio. The homogeneous ethylene/ α -olefin polymers used in this invention essentially lack a measurable "high density" fraction as measured by the TREF technique (that is, the homogeneous branched ethylene/ α -olefin polymers are characterized as typically having less than 15 weight percent, preferably less than 10 weight percent, and more preferably less than 5 weight percent of a polymer fraction with a degree of branching less than or equal to 2 methyls/1000 carbons).

The homogeneity of the branching distribution can be measured variously, including measuring the SCBDI (Short Chain Branch Distribution Index) or CDBI (Composition Distribution Branch Index). SCBDI or CDBI is defined as the weight percent of the polymer molecules having a comonomer content within 50 percent of the median total molar comonomer content. The CDBI of a polymer is readily calculated from data obtained from techniques known in the art, such as, for example, temperature rising elusion fractionation (abbreviated herein as "TREF) as described, for example, in Wild et al, <u>Journal of Polymer Science</u>, <u>Poly. Phys. Ed.</u>, Vol. 20, p. 441 (1982), US Patent No. 5,008,204 (Stehling). The technique for

calculating CDBI is described in US Patent No. 5,322,728 (Davey et al.) and in US Patent No. 5,246,783 (Spenadel et al.). The SCBDI or CDBI for homogeneously branched linear and substantially linear ethylene polymers is typically greater than 30 percent, and is preferably greater than 50 percent, more preferably greater than 60 percent, even more preferably greater than 70 percent, and most preferably greater than 90 percent.

5

10

20

The homogeneous branched ethylene polymers useful in the present invention will preferably have a single melting peak, as measured using differential scanning calorimetry (DSC), in contrast to heterogeneously branched linear ethylene polymers, which have 2 or more melting peaks, due to the heterogeneously branched polymer's broad branching distribution.

Homogeneously branched linear ethylene interpolymers are a known class of polymers which have a linear polymer backbone, no long chain branching and a narrow molecular weight distribution. Such polymers are interpolymers of ethylene and at least one α-olefin comonomer of from 3 to 20 carbon atoms, and are preferably copolymers of ethylene with a C₄-C₂₀ α-olefin, and are most preferably copolymers of ethylene with 1-butene, 1-hexene, 4-methyl-1-pentene or 1-octene. This class of polymers is disclosed for example, by Elston in US Patent No. 3,645,992 and subsequent processes to produce such polymers using metallocene catalysts have been developed, as shown, for example, in EP 0 129 368, EP 0 260 999, US Patent No. 4,701,432; US Patent No. 4,937,301; US Patent No. 4,935,397; US Patent No. 5,055,438; and WO 90/07526, and others. The polymers can be made by conventional polymerization processes (for example, gas phase, slurry, solution, and high pressure).

The molecular weight distributions of are determined by gel permeation chromatography (GPC) on a Waters 150C high temperature chromatographic unit equipped with a differential refractometer and three columns of mixed porosity. The columns are supplied by Polymer Laboratories and are commonly packed with pore sizes of 10³, 10⁴, 10⁵ and 10⁶Å. The solvent is 1,2,4-trichlorobenzene, from which 0.3 percent by weight solutions of the samples are prepared for injection. The flow rate is 1.0 milliliters/ minute, the unit operating temperature is 140°C, and the injection size is 100 microliters.

The molecular weight determination with respect to the polymer backbone is deduced by using narrow molecular weight distribution polystyrene standards (from Polymer Laboratories) in conjunction with their elution volumes. The equivalent polyethylene molecular weights are determined by using appropriate Mark-Houwink coefficients for polyethylene and polystyrene (as described by Williams and Ward in <u>Journal of Polymer Science Polymer Letters</u>, Vol. 6, p. 621, 1968) to derive the following equation:

10

15

20

25

$$M_{polyethylene} = a * (M_{polystyrene})^b$$
.

In this equation, a=0.4316 and b=1.0. Weight average molecular weight, Mw, is calculated in the usual manner according to the following formula: $M_j=(\Sigma w_i(M_i^j))^j$; where w_i is the weight fraction of the molecules with molecular weight M_i eluting from the GPC column in fraction i and j=1 when calculating M_m and j=-1 when calculating M_n . Preferred ethylene-rich ethylene interpolymers have a M_w/M_n less than or equal to 3.3, preferably less than or equal to 3, and especially in the range of from 2.5 to 1.5.

As indicated above, substantially random ethylene/vinyl aromatic interpolymers are useful as the ethylene-rich ethylene interpolymer.

Representative of substantially random ethylene/vinyl aromatic interpolymers are substantially random ethylene/ styrene interpolymers preferably containing at least 20, more preferably equal to or greater than 30, and most preferably equal to or greater than 50 weight percent interpolymerized styrene monomer.

5

10

15

20

25

A substantially random interpolymer comprises in polymerized form i) one or more α -olefin monomers and ii) one or more vinyl or vinylidene aromatic monomers, or one or more sterically hindered aliphatic cycloaliphatic vinyl or vinylidene monomers, or one or more cycloaliphatic vinyl or vinylidene monomers, or a combination thereof and optionally iii) other polymerizable ethylenically unsaturated monomer(s).

The term "substantially random" in the substantially random interpolymer resulting from polymerizing i) one or more α -olefin monomers and ii) one or more vinyl or vinylidene aromatic monomers, or one or more sterically hindered aliphatic vinyl or vinylidene monomers, or one or more cycloaliphatic vinyl or vinylidene monomers, or a combination thereof and optionally iii) other polymerizable ethylenically unsaturated monomer(s) as used herein generally means that the distribution of the monomers of said interpolymer can be described by the Bernoulli statistical model or by a first or second order Markovian statistical model, as described by J. C. Randall in <u>Polymer Sequence Determination, Carbon-13 NMR Method</u>, Academic Press New York, 1977, pp. 71-78. Preferably, the substantially random interpolymer resulting from polymerizing one or more α -olefin monomers and one or more vinyl or vinylidene aromatic monomers, and optionally other polymerizable ethylenically unsaturated monomer(s), does not contain more than 15 percent of the total amount of vinyl or vinylidene aromatic monomer in blocks of vinyl or vinylidene aròmatic monomer of more than 3 units. More preferably, the

interpolymer is not characterized by a high degree of either isotacticity or syndiotacticity. This means that in the carbon-13 NMR spectrum of the substantially random interpolymer, the peak areas corresponding to the main chain methylene and methine carbons representing either meso diad sequences or racemic diad sequences should not exceed 75 percent of the total peak area of the main chain methylene and methine carbons.

By the subsequently used term "substantially random interpolymer" it is meant a substantially random interpolymer produced from the above-mentioned monomers.

Suitable α -olefin monomers which are useful for preparing the substantially random interpolymer include, for example, α -olefin monomers containing from 2 to 20, preferably from 2 to 12, more preferably from 2 to 8 carbon atoms. Preferred such monomers include ethylene, propylene, butene-1, 4-methyl-1-pentene, hexene-1 and octene-1. Most preferred are ethylene or a combination of ethylene with C_3 - C_8 α -olefins. These α -olefins do not contain an aromatic moiety.

Suitable vinyl or vinylidene aromatic monomers which can be employed to prepare the substantially random interpolymer include, for example, those represented by the following formula 1:

20

15

5

10

Ar
' |

$$(CH_2)_n$$

|
 $R^1 - C = C(R^2)_2$
(formula 1)

25

wherein R¹ is selected from the group of radicals consisting of hydrogen and alkyl radicals containing from 1 to 4 carbon atoms, preferably hydrogen or methyl; each R² is independently selected from the group of radicals

consisting of hydrogen and alkyl radicals containing from 1 to 4 carbon atoms, preferably hydrogen or methyl; Ar is a phenyl group or a phenyl group substituted with from 1 to 5 substituents; selected from the group consisting of halo, C_1 - C_4 -alkyl, and C_1 - C_4 -haloalkyl; and n has a value from zero to 4, preferably from zero to 2, most preferably zero. Particularly suitable such monomers include styrene and lower alkyl- or halogen-substituted derivatives thereof. Exemplary monovinyl or monovinylidene aromatic monomers include styrene, vinyl toluene, α -methylstyrene, t-butyl styrene or chlorostyrene, including all isomers of these compounds. Preferred monomers include styrene, α -methyl styrene, the lower alkyl-(C_1 - C_4) or phenyl-ring substituted derivatives of styrene, such as for example, ortho-, meta-, and para-methylstyrene, the ring halogenated styrenes, para-vinyl toluene or mixtures thereof. A more preferred aromatic monovinyl monomer is styrene.

By the term "sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene monomers", it is meant addition polymerizable vinyl or vinylidene monomers corresponding to the formula:

$$A^{1}$$

$$I$$

$$R^{1} - C = C(R^{2})_{2}$$

20

25

15

10

wherein A¹ is a sterically bulky, aliphatic or cycloaliphatic substituent of up to 20 carbons, R¹ is selected from the group of radicals consisting of hydrogen and alkyl radicals containing from 1 to 4 carbon atoms, preferably hydrogen or methyl; each R² is independently selected from the group of radicals consisting of hydrogen and alkyl radicals containing from 1 to 4 carbon atoms, preferably hydrogen or methyl; or alternatively R¹ and A¹ together form a ring system.

By the term "sterically bulky" is meant that the monomer bearing this substituent is normally incapable of addition polymerization by standard Ziegler-Natta polymerization catalysts at a rate comparable with ethylene polymerizations.

5

10

15

20

25

α-Olefin monomers containing from 2 to 20 carbon atoms and having a linear aliphatic structure such as propylene, butene-1, hexene-1 and octene-1 are not considered as sterically hindered aliphatic monomers. Preferred sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene compounds are monomers in which one of the carbon atoms bearing ethylenic unsaturation is tertiary or quaternary substituted. Examples of such substituents include cyclic aliphatic groups such as cyclohexyl, cyclohexenyl, cyclooctenyl, or ring alkyl or aryl substituted derivatives thereof, tert-butyl or norbornyl. Most preferred sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene compounds are the various isomeric vinyl-ring substituted derivatives of cyclohexene and substituted cyclohexenes, and 5-ethylidene-2-norbornene. Especially suitable are 1-, 3-, and 4-vinylcyclohexene.

The substantially random interpolymers usually contain from 0.5 to 65, preferably from 1 to 55, more preferably from 2 to 50 mole percent of at least one vinyl or vinylidene aromatic monomer, or sterically hindered aliphatic vinyl or vinylidene monomer, or cycloaliphatic vinyl or vinylidene monomer and from 35 to 99.5, preferably from 45 to 99, more preferably from 50 to 98 mole percent of at least one aliphatic α-olefin having from 2 to 20 carbon atoms.

Other optional polymerizable ethylenically unsaturated monomer(s) include strained ring olefins such as norbornene and C_1 - C_{10} -alkyl or C_6 - C_{10} -aryl substituted norbornenes, with an exemplary substantially random interpolymer being ethylene/styrene/norbornene.

The most preferred substantially random interpolymers are interpolymers of ethylene and styrene and interpolymers of ethylene, styrene and at least one α -olefin containing from 3 to 8 carbon atoms.

The number average molecular weight (M_n) of the substantially random interpolymers is usually greater than 5,000, preferably from 20,000 to 1,000,000, more preferably from 50,000 to 500,000. The glass transition temperature (T_g) of the substantially random interpolymers is preferably from -40°C to +35°C, preferably from 0°C to +30°C, most preferably from +10°C to +25°C, measured according to differential mechanical scanning (DMS).

5

10

15

The substantially random interpolymers may be modified by typical grafting, hydrogenation, functionalizing, or other reactions well known to those skilled in the art. The polymers may be readily sulfonated or chlorinated to provide functionalized derivatives according to established techniques. The substantially random interpolymers may also be modified by various chain extending or crosslinking processes including, but not limited to peroxide-, silane-, sulfur-, radiation-, or azide-based cure systems. A full description of the various crosslinking technologies is described in copending US Patent Application Nos. 08/921,641 and 08/921,642, both filed on August 27,1997, the entire contents of both of which are herein.

Dual cure systems, which use a combination of heat, moisture cure, and radiation steps, may also be effectively employed. Dual cure systems are disclosed and claimed in US Patent Application Serial No. 536,022, filed on September 29, 1995, in the names of K. L. Walton and S. V. Karande. For instance, it may be desirable to employ peroxide crosslinking agents in conjunction with silane crosslinking agents, peroxide crosslinking agents in conjunction with radiation,

sulfur-containing crosslinking agents in conjunction with silane crosslinking agents, etc.

The substantially random interpolymers may also be modified by various crosslinking processes including, but not limited to the incorporation of a diene component as a termonomer in its preparation and subsequent crosslinking by the aforementioned methods and further methods including vulcanization via the vinyl group using sulfur for example as the cross linking agent.

5

10

15

One suitable method for manufacturing substantially random ethylene/vinyl aromatic interpolymers includes polymerizing a mixture of polymerizable monomers in the presence of one or more metallocene or constrained geometry catalysts in combination with various cocatalysts, as described in EP-A-0,416,815 by James C. Stevens et al. and US Patent No. 5,703,187 by Francis J. Timmers. Preferred operating conditions for such polymerization reactions include pressures from atmospheric up to 3000 atmospheres and temperatures from -300°C to 200°C. Polymerizations and unreacted monomer removal at temperatures above the autopolymerization temperature of the respective monomers may result in formation of some amounts of homopolymer polymerization products resulting from free radical polymerization.

Examples of suitable catalysts and methods for preparing the substantially random interpolymers are disclosed in U.S. Application No. 702,475, filed May 20, 1991 (EP-A-514,828); as well as U.S. Patent Nos.: 5,055,438; 5,057,475; 5,096,867; 5,064,802; 5,132,380; 5,189,192; 5,321,106; 5,347,024; 5,350,723; 5,374,696; 5,399,635; 5,470,993; 5,703,187; and 5,721,185.

The substantially random ethylene/ vinyl aromatic interpolymers can also be prepared by the methods described in JP 07/278230 employing compounds shown by the general formula

Where Cp¹ and Cp² are cyclopentadienyl groups, indenyl groups, fluorenyl groups, or substituents of these, independently of each other; R¹ and R² are hydrogen atoms, halogen atoms, hydrocarbon groups with carbon numbers of 1-12, alkoxyl groups, or aryloxyl groups, independently of each other; M is a group IV metal, preferably Zr or Hf, most preferably Zr; and R³ is an alkylene group or silanediyl group used to crosslink Cp¹ and Cp².

5

10

15

20

The substantially random ethylene/ vinyl aromatic interpolymers can also be prepared by the methods described by John G. Bradfute et al. (W. R. Grace & Co.) in WO 95/32095; by R. B. Pannell (Exxon Chemical Patents, inc.) in WO 94/00500; and in <u>Plastics Technology</u> p. 25 (September 1992).

Also suitable are the substantially random interpolymers which comprise at least one α -olefin/vinyl aromatic/vinyl aromatic/ α -olefin tetrad disclosed in U. S. Application No. 08/708,869, filed September 4,1996, and WO 98/09999, both by Francis J. Timmers et al. These interpolymers contain additional signals in their carbon-13 NMR spectra with intensities greater than three times the peak to peak noise. These signals appear in the chemical shift range 43.70 - 44.25 ppm and 38.0 -38.5 ppm. Specifically, major peaks are observed at 44.1, 43.9, and 38.2 ppm. A proton test NMR experiment indicates that the signals in the chemical shift region 43.70 - 44.25 ppm are methylene carbons and the signals in the region 38.0 - 38.5 ppm are methylene carbons.

It is believed that these new signals are due to sequences involving two head-to-tail vinyl aromatic monomer insertions preceded and followed by at least one α -olefin insertion, for example an ethylene/styrene/styrene/ethylene tetrad wherein the styrene monomer insertions of said tetrads occur exclusively in a 1,2 (head to tail) manner. It is understood by one skilled in the art that for such tetrads involving a vinyl aromatic monomer other than styrene and an α -olefin other than ethylene that the ethylene/vinyl aromatic monomer/vinyl aromatic monomer/ethylene tetrad will give rise to similar carbon-13 NMR peaks but with slightly different chemical shifts.

These interpolymers can be prepared by conducting the polymerization at temperatures of from -30°C to 250°C in the presence of such catalysts as those represented by the formula:

10

15

20

$$(ER_2)_m$$
 MR'_2

wherein each Cp is independently, each occurrence, a substituted cyclopentadienyl group π-bound to M; E is C or Si; M is a group IV metal, preferably Zr or Hf, most preferably Zr; each R is independently, each occurrence, H, hydrocarbyl, silahydrocarbyl, or hydrocarbylsilyl, containing up to 30, preferably from 1 to 20, more preferably from 1 to 10 carbon or silicon atoms; each R' is independently, each occurrence, H, halo, hydrocarbyl, hyrocarbyloxy, silahydrocarbyl, hydrocarbylsilyl containing up to 30, preferably from 1 to 20, more preferably from 1 to 10 carbon or silicon atoms or two R' groups together can be a C₁-C₁₀ hydrocarbyl substituted 1,3-butadiene; M is 1 or 2; and optionally, but preferably in the presence of an activating cocatalyst.

Particularly, suitable substituted cyclopentadienyl groups include those illustrated by the formula:

5

10

15

wherein each R is independently, each occurrence, H, hydrocarbyl, silahydrocarbyl, or hydrocarbylsilyl, containing up to 30, preferably from 1 to 20, more preferably from 1 to 10 carbon or silicon atoms or two R groups together form a divalent derivative of such group. Preferably, R independently each occurrence is (including where appropriate all isomers) hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, benzyl, phenyl or silyl or (where appropriate) two such R groups are linked together forming a fused ring system such as indenyl, fluorenyl, tetrahydrofluorenyl, or octahydrofluorenyl.

Particularly preferred catalysts include, for example, racemic-(dimethylsilanediyl)-bis-(2-methyl-4-phenylindenyl) zirconium dichloride, racemic-(dimethylsilanediyl)-bis-(2-methyl-4-phenylindenyl) zirconium 1,4diphenyl-1,3-butadiene, racemic-(dimethylsilanediyl)-bis-(2-methyl-4-phenylindenyl) zirconium di- C_1 - C_4 alkyl, racemic-(dimethylsilanediyl)-bis-(2-methyl-4-phenylindenyl) zirconium di- C_1 - C_4 alkoxide, or any combination thereof .

It is also possible to use the following titanium-based constrained geometry catalysts, [n-(1,1-dimethylethyl)-1,1-dimethyl-I-[(1,2,3,4,5-η)-1,5,6,7-tetrahydro-s-indacen-I-yl]silanaminato(2-)-n]titanium dimethyl; (1-indenyl)(tert-butylamido)dimethyl-silane titanium dimethyl; ((3-tert-butyl)(1,2,3,4,5-η)-I-indenyl)(tert-butylamido) dimethylsilane titanium dimethyl; and ((3-iso-propyl)(1,2,3,4,5-η)-I-indenyl)(tert-butyl amido)dimethylsilane titanium dimethyl, or any combination thereof.

5

10

20

25

Further preparative methods for the interpolymers used in the present invention have been described in the literature. Longo and Grassi (Makromol. Chem. Volume 191, pages 2387 to 2396 [1990]) and D'Anniello et al. (Journal of Applied Polymer Science, Volume 58, pages 1701-1706 [1995]) reported the use of a catalytic system based on methylalurnoxane (MAO) and cyclopentadienyltitanium trichlorlde (CpTiC1₃) to prepare an ethylene-styrene copolymer. Xu and Lin (Polymer Preprints Am. Chem. Soc., Div. Polym. Chem.), Volume 35, pages 686,687 [1994]) have reported copolymerization using a MgCl₂/TiCl₄/NdCl₃/ Al(iBu)₃ catalyst to give random copolymers of styrene and propylene. Lu et al (Journal of Applied Polymer Science, Volume 53, pages 1453 to 1460 [1994]) have described the copolymerization of ethylene and styrene using a TiC1₄/NdCl₃/MgCl₂ /al(Et)₃ catalyst. Sernetz and Mulhaupt, (Macromol. Chem. Phys., V. 197, pp. 1071-1083, 1997) have described the influence of polymerization conditions on the copolymerization of styrene with ethylene using Me₂Si(Me₄Cp)(n-tertbutyl)TiCl₂/Methylaluminoxane Ziegler-Natta catalysts. Copolymers of ethylene and styrene produced by bridged metallocene catalysts have been described by Arai, Toshiaki and Suzuki (Polymer Preprints Am. Chem. Soc., Div. Polym. Chem.), Volume 38, pages 349, 350 [1997]) and in U.S. Patent No. 5,652,315, issued to Mitsui Toatsu Chemicals, Inc. The manufacture of α -olefin/vinyl aromatic monomer interpolymers such as propylene/styrene and butene/styrene are described in U.S. Patent No. 5,244,996, issued to Mitsui Petrochemical Industries Ltd. or U.S. Patent No. 5,652,315 also issued to Mitsui Petrochemical Industries Ltd. or as disclosed in DE 197 11339 A1 to Denki Kagaku Kogyo KK. Also, although of high isotacticity and therefore not "substantially random", the random copolymers of ethylene and styrene as disclosed in Polymer Preprints, Vol. 39, no.

1, March 1998 by Toru Aria et al. can also be employed as the ethylene polymer of the present invention.

While preparing the substantially random interpolymer, an amount of atactic vinyl aromatic homopolymer may be formed due to homopolymerization of the vinyl aromatic monomer at elevated temperatures. The presence of vinyl aromatic homopolymer is in general not detrimental for the purposes of the present invention and can be tolerated. The vinyl aromatic homopolymer may be separated from the interpolymer, if desired, by extraction techniques such as selective precipitation from solution with a non-solvent for either the interpolymer or the vinyl aromatic homopolymer. Nevertheless, for the purpose of the present invention, it is preferred that no more than 20 weight percent, preferably less than 10 weight percent (based on the total weight of the interpolymers) of atactic vinyl aromatic homopolymer be is present.

10

15

20

25

The polypropylene and ethylene polymers may be produced via a continuous (as opposed to a batch) controlled polymerization process using at least one reactor for each polymer. But the inventive polymer blend composition itself (or a blend comprising or constituting the polypropylene polymer or a separate blend comprising or constituting the ethylene polymer or a combination of both) can also be produced using multiple reactors (for example, using a multiple reactor configuration as described in US Patent No. 3,914,342 (Mitchell) with the polypropylene polymer being manufactured in one reactor and the ethylene polymer being manufactured in at least one other reactor. The multiple reactors can be operated in series or in parallel.

In general, the continuous polymerization useful for making the ethylene polymers used in the present invention may be accomplished at conditions well

known in the prior art for Ziegler-Natta or Kaminsky-Sinn type polymerization reactions, that is, temperatures from 0 to 250°C and pressures from atmospheric to 1000 atmospheres (100 MPa).

The compounding disclosed herein can be accomplished by any convenient method, including dry blending the individual components and subsequently melt mixing or by pre-melt mixing in a separate extruder (for example, a Banbury mixer, a Haake mixer, a Brabender internal mixer, or a twin (or single) screw extruder, including pelletization extrusion). Preferably, for efficiency, compounding to provide the non-sealant layer is accomplished by tumble-blending the propylene-rich polypropylene polymer and the ethylene-rich ethylene interpolymer together and subsequently directly feeding the dry blend into a coextrusion blown film unit.

5

10

15

20

Another suitable technique for making the non-sealant layer blend is *in-situ* polymerization such as provided in pending USSN 08/010,958, entitled "Ethylene Interpolymerizations", which was filed January 29, 1993 in the names of Brian W. S. Kolthammer and Robert S. Cardwell. USSN 08/010,958 describes, *inter alia*, interpolymerizations of ethylene and C₃-C₂₀ alpha-olefins using a homogeneous catalyst in at least one reactor and a heterogeneous catalyst in at least one other reactor and this method can be adapted to employ a polypropylene polymerization reactor as a substitute for the heterogeneous catalyzed ethylene polymerization reactor or as an additional reactor. That is, the *in situ* polymerization can comprise at least three reactors where at least two reactors provide the ethylene polymer (as a polymer blend composition) and at least one reactor provide the reactor grade polypropylene polymer. For *in situ* polymerizations, the multiple reactors can be operated sequentially or in parallel. But preferably, when *in situ* polymerization is

used it is only employed to provide suitable ethylene polymers (or ethylene polymer blend compositions) and not the inventive composition itself.

5

15

20

25

Additives, such as antioxidants (for example, hindered phenolics, such as IRGANOX™ 1010 or IRGANOX™ 1076 supplied by Ciba Geigy), phosphites (for example, IRGAFOS™ 168 also supplied by Ciba Geigy), cling additives (for example, PIB), SANDOSTAB PEPQ™ (supplied by Sandoz), pigments, colorants. fillers, anti-stats, processing aids, may also be included in the polymer mixture of the present invention or in films formed from the same. Although generally not required, films, coatings and moldings formed from the polymer mixture of the present invention may also contain additives to enhance antiblocking, mold release and coefficient of friction characteristics including, but not limited to, untreated and treated silicon dioxide, talc, calcium carbonate, and clay, as well as primary, secondary and substituted fatty acid amides, release agents, silicone coatings, etc. Still other additives, such as quaternary ammonium compounds alone or in combination with ethylene-acrylic acid (EAA) copolymers or other functional polymers, may also be added to enhance the antistatic characteristics of films. coatings and moldings formed from the polymer mixture of the invention and permit the use of these polymer mixtures in, for example, the heavy-duty packaging of electronically sensitive goods.

The polypropylene layer and especially the sealant layer may further include recycled and scrap materials and diluent polymers, to the extent that the improved sealant properties are maintained. Exemplary diluent materials include, for example, elastomers, rubbers and anhydride modified polyethylenes (for example, polybutylene and maleic anhydride grafted LLDPE and HDPE) as well as with high pressure polyethylenes such as, for example, low density polyethylene (LDPE).

ethylene/acrylic acid (EAA) interpolymers, ethylene/vinyl acetate (EVA) interpolymers and ethylene/methacrylate (EMA) interpolymers, and combinations thereof.

5

10

15

20

25

In preferred embodiments where LDPE is used as a blend component as to the ethylene polymer in either the sealant layer or the polypropylene layer or both, the LDPE is characterized as having a high strength. In these embodiments, the melt strength of the LDPE is preferentially greater than 10 cN as determined using a Gottfert Rheotens unit at 190°C, more preferably from 13 to 40 cN, and most preferably 15 to 25 cN. Further, in certain preferred embodiments, where the ethylene-rich ethylene interpolymer and the second ethylene polymer are blended with a LDPE, the melt strength of these blends is greater than 5 cN as determined using Gottfert Rheotens unit at 190°C, preferably from 15 to 70 cN, and most preferably 15 to 50 cN.

The multilayer film may find utility in a variety of applications. Preferred applications, which make use of the film's improved sealing properties and good stiffness, include, pouches for packaging flowable material (especially pouches made using vertical form-fill-seal equipment), heavy-duty shipping sacks and overwrap film. Other applications include, but are not limited to, multilayer packaging structures where the structure is oriented (preferably biaxially oriented) for shrink film and barrier shrink applications, cook-in packaged foods, liners, gaskets and lidding stock.

The multilayer film structure comprises two, three or more layers. In a preferred embodiment, the multilayer film structure is a three layer structure with the polypropylene layer interposed between the sealant layer and an outer layer. The outer may comprise an ethylene polymer and the this ethylene polymer may be

the same as either ethylene-rich ethylene interpolymer or the second ethylene interpolymer.

The multilayer film structure of the invention may any thickness required in its intended use. Preferably, however, the total thickness is in the range of from 0.25 mil to 15 mils, more preferably in the range of from 0.5 mil to 4 mils. The sealant layer (and an outer layer if present such as in a three layer structure) may preferably constitute from 2 to 50 percent of the total thickness, more preferably from 10 to 45 percent.

5

10

15

20

25

Although not required, adhesion promoting tie layers (such as PRIMACOR™ ethylene-acrylic acid (EAA) copolymers available from The Dow Chemical Company, or ethylene-vinyl acetate (EVA) copolymers or both), as well as additional structural layers (such as AFFINITY™ polyolefin plastomers, available from The Dow Chemical Company, ENGAGE™ polyolefin elastomers, available from Dupont Dow Elastomers, DOWLEX™ LLDPE, available from The Dow Chemical Company, ATTANE™ ULDPE, available from The Dow Chemical Company, or blends of any of these polymers with each other or with another polymer, such as EVA) may be optionally employed.

Other layers including but are not limited to barrier layers, tie layers, or structural layers or a combination thereof may be added to the multilayer film structure by coextrusion or by lamination techniques. Various materials can be used for these layers, with some of them being used as more than one layer in the film structure. Representative materials include: foil, nylon, ethylene/vinyl alcohol (EVOH) copolymers, polyvinylidene chloride (PVDC), polyethylene terepthalate (PET), oriented polypropylene (OPP) (more especially, biaxially oriented polypropylene), ethylene/vinyl acetate (EVA) copolymers, ethylene/acrylic acid

(EAA) copolymers, ethylene/methacrylic acid (EMAA) copolymers, ULDPE, LLDPE, HDPE, MDPE, LMDPE, LDPE, ionomers, graft-modified polymers (for example, maleic anhydride grafted polyethylene), and paper. Generally, the multilayer structure of the present invention may comprise from 2 to 7 layers.

Cook-in packaged foods are foods which are prepackaged and then cooked. The packaged and cooked foods go directly to the consumer, institution, or retailer for consumption or sale. A package for cook-in must be structurally capable of withstanding exposure to cook-in time and temperature conditions while containing a food product. Cook-in packaged foods are typically employed for the packaging of ham, turkey, vegetables, processed meats, etc.

5

10

15

20

Vertical form/fill/seal packages are typically utilized for the packaging of flowable materials, such as milk, wine, powders, etc. In a vertical form/fill/seal (VFFS) packaging process, a sheet of the plastic film structure is fed into a VFFS machine where the sheet is formed into a continuous tube by sealing the longitudinal edges of the film together by lapping the plastic film and sealing the film using an inside/outside seal or by fin sealing the plastic film using an inside/inside seal. Next, a sealing bar seals the tube transversely at one end to form the bottom of a pouch. The flowable material is then added to the formed pouch. The sealing bar then seals the top end of the pouch and either burns through the plastic film or a cutting device cuts the film, thus separating the formed completed pouch from the tube. The process of making a pouch with a VFFS machine is generally described in U.S. Patent Nos. 4,503,102 and 4,521,437. Because of the improved sealing properties and good stiffness, the inventive multilayer film structure is well-suited for cook-in and vertical form/fill/seal packaging applications:

Multilayer film manufacturing techniques are described in The Encyclopedia of Chemical Technology, Kirk-Othmer, Third Edition, John Wiley & Sons, New York, 1981, Vol. 16, pp. 416-417 and Vol. 18, pp. 191-192; Packaging Foods With Plastics, by Wilmer A. Jenkins and James P. Harrington (1991), pp. 19-27;

"Coextrusion Basics" by Thomas I. Butler, Film Extrusion Manual: Process, Materials, Properties pp. 31-80 (published by TAPPI Press (1992)); "Coextrusion For Barrier Packaging," by W.J. Schrenk and C.R. Finch, Society of Plastics Engineers RETEC Proceedings, June 15-17 (1981), pp. 211-229; K.R. Osborn and W.A. Jenkins; and Plastic Films, Technology and Packaging Applications

(Technomic Publishing Co., Inc. (1992)).

After fabrication, the multilayer film of the present invention may be oriented (off-line or in a continuous operation) using methods and procedures well known in the art. Biaxial orientation processes such as tenter frames, "trapped bubble" and "double bubble" processes can be used to orient the film. Suitable techniques are described in US Patent No. 3,456,044 (Pahlke); U.S. Patent No. 4,865,902 (Golike et al.); U.S. Patent 4,352,849 (Mueller); U.S. Patent 4,820,557 (Warren); U.S. Patent 4,927,708 (Herran et al.); U.S. Patent 4,963,419 (Lustig et al.); and U.S. Patent 4,952,451 (Mueller).

20 Examples

15

25

In an evaluation to develop an improved multilayer film structure, a three layer film structure was made and compared to commercial film structures. The three layer film structure was made on a blown film coextrusion line where Layer "A" (the sealant layer comprising a blend of 20 weight percent LDPE 503 with 80 weight percent DOWLEX LLDPE 2070D) was extruded using a 2.5 inch (6.4 cm)

diameter Egan extruder equipped with a single flighted screw having two Egan-type mixing sections; layer "B" (the core layer comprising a tumble blend of 20 weight percent DOWLEX LLDPE 2045 with 80 weight percent SR 256M Polypropylene) was extruded using a 2.5 inch (6.4) diameter Egan extruder equipped with a single flighted screw having two Maddock type mixing sections; and layer "C" (the outer layer comprising a blend of 20 weight percent LDPE 503 with 80 weight percent DOWLEX LLDPE 2070D) was extruded using a 2 inch (5.1 cm) diameter Egan extruder equipped with a single flighted screw having one Maddock type mixing section. The total configuration was set for a target output of 150 pounds/hour.

The weight output ratios of the extruders were targeted at 15percent/70percent/15percent for the A/B/A extruders. Polymer melt temperatures were targeted at 415F/450F/425F (239 C/261 C/246 C) for layers A/B/A, respectively. A 70 mil die gap was used for the eight inch (20.3 cm) multichannel annular die. Films were air blown to a 2.5:1 blow-up ratio (BUR) and airquenched to produce the three layer A/B/A multilayer film. Frost line height was 20 inches (51 cm) and the film (Inventive Example 1) exhibited excellent bubble stability at the targeted output rate.

10

15

20

25

Various other films were prepared using the same procedure as described for Example 1.

Table 1 provides the description of the polymers used to prepare Example 1 as well as the other films. The physical properties of Example 1, various commercial films and the other films were determined using standardized test method. Gloss, haze, and clarity were tested in accordance with ASTM D-1746, ASTM D-1003, and ASTM D-2457, respectively. Puncture resistance was tested in accordance with ASTM D3763. Dart Impact was determined in accordance with

ASTM D1709, Method A. Elmendorf tear resistance was determined in accordance with ASTM D1922. Tensile properties and the secant modulus were determined in accordance with ASTM D882.

The hot tack strength of the films was measured using the "JB Instrument

Hot Tack Test Method," which measures the force required to separate a heat seal before the seal has had a chance to fully cool (crystallize). This test simulates the filling of material into a pouch or bag before the seal has had a chance to completely cool.

The "JB Instrument Hot Tack Test Method" is a test method using a JB Instrument Hot Tack Tester according to the following conditions:

Specimen Width:

Sealing Time:

Sealing Pressure:

Delay Time:

Delay Time:

Peel Speed:

25.4 mm

0.5 seconds

0.27 N/mm/mm

0.2 seconds

250 mm/seconds

Number of Samples per

Temperature

10

Temperature Increments: 5°C

The heat seal strength of sample films was measured using the "JB Instrument Heat Seal Strength Test Method," which is designed to measure the force required to separate a seal after the material has completely cooled to 23°C.

The film samples were exposed to a relative humidity of 50 percent and a temperature of 23°C for a minimum of 24 hours prior to testing.

Table 1

Ethylene Polymers	Description	Density g/cc	I ₂ Melt index at 190°C(g/10 min.)	Supplier
AFFINITY PL1880	Polyolefin Plastomer made using CGCT	0.902	1.0	The Dow Chemical Company
XU59900.20	Enhanced LLDPE made using CGCT	0.940	0.8	The Dow Chemical Company
ELITE 5101	Enhanced LLDPE made using CGCT	0.921	6.0	The Dow Chemical Company
ELITE 5400	Enhanced LLDPE made using CGCT	0.916	0.1	The Dow Chemical Company
Exceed 350D60	MLLDPE	0.917	1.0	Exxon Chemical Company
XUS61528.20	Linear Low Density Polyethylene	0.920	0.5	The Dow Chemical Company
DOWLEX 2037	Linear Low Density Polyethylene	0.935	2.5	The Dow Chemical Company
DOWLEX 2045	Linear Low Density Polyethylene	0.920	1.0	The Dow Chemical Company
DOWLEX 2038	Linear Low Density Polyethylene	0.935	1.0	The Dow Chemical Company
LDPE 420R	Low Density Polyethylene	0:930	3.2	The Dow Chemical Company
LDPE 503	Low Density Polyethylene	0.923	<u>6.</u>	The Dow Chemical Company

mLLDPE denotes metallocene linear low density ethylene polymer CGCT denotes constrained geometry catalyst technology

Polypropylene	Description	Density	Melt f	Supplier
			(g/10 mln.)	
INSPIRE DC108	Impact Copolymer Polypropylene	6.0	8.0	The Dow Chemical Company
INSPIRE C105-02	Impact Copolymer Polypropylene	6.0	2	The Dow Chemical Company
PROFAX SR256M	Random Copolymer Polypropylene	6.0	. 2	Montell
PROFAX H700-12	Homopolymer Polypropylene	6.0	12	Montell
EPQ30RF	Impact Copolymer Polypropylene	0.9	9.0	Montell

The "JB Instrument Heat Seal Strength Test Method" uses a JB Instrument Hot Tack Tester, wherein the heat seal portion of the tester is used, according to the following conditions:

> Specimen Width: Sealing Time: Sealing Pressure:

25.4 mm 0.5 seconds 0.27 N/mm/mm

Number of Samples/Temperature Temperature Increments:

5 5°C

5 The seal strength of the film samples was determined using an Instron Tensile Tester Model #1122 according to the following test conditions:

Direction of Pull:

90° to seal

Crosshead Speed:

500 mm/minute

Full Scale Load:

5 kg

Number of Samples/Threshold:

1 percent of FSL 80 percent

Break Criterion: Gauge Length:

10

2.0 inches

(50.8 millimeters) Sample Width:

1.0 inch

(25.4 millimeters)

The films shown in Table 2 were taken from paper towel roll packs or toilet tissue packs purchased from local grocery stores. These show a large variation in physical properties. For example, the haze properties of the comparative samples ranged from a value of 8.6 to 26.5 percent. Conversely, Example 1 exhibited a dramatically improved haze value of 4.5 percent. Low haze is a desirable attribute by the consumer so that the contents of the package can easily be seen.

High gloss results in a shiny surface, again, a highly desirable feature for the 15 looks of the package. Example 1 was found to have a much higher surface gloss than any of the comparative films. Also, the clarity of Example 1 was much higher than any of the comparative films.

Modulus is an indicator of the stiffness of a film. High speed packaging lines require films to be high in stiffness, this is the most common limiting factor to high packaging line speeds and is referenced in Richard Halle's report "Downgauge Paper Overwrap Films Using mLLDPE Blends". Furthermore, low stiffness films result in printing problems with respect to registration and poor roll conformity.

Table 2 shows that the downgauged Example 1 has much higher secant modulus than any of commercial comparative films.

5

10

15

20

Ideally, for application such as soft goods overwrap, the packaging film should have high puncture resistance to prevent the package from failing before its intended use; however, once the film has been punctured it should be easily opened by tearing. This is also referenced in Richard Halle's report "Downgauge Paper Overwrap Films Using mLLDPE Blends". Table 2 shows that all of the comparative films had low puncture resistance and high tear resistance relative to Example 1, thus Example 1 is more ideal for overwrap packaging than some commercial films.

Fast packaging lines speeds also require that the seal remain intact during the initial seconds after sealing. The hot tack test simulates the stresses that are placed on the hot molten seal before it is cooled. High hot tack strength is required for fast packaging speeds. Example 1 had 2.5 times the hot tack strength of Comparative 4.

Physical properties (including hot tack and heat seal strength performance) of the various other three-layer (A/B/A) films are reported in Tables 3 and 4 below.

Table 2

	Comp.	Сошр.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	
	Example	Example Example		Example	m	Example	Example	Example	Example Example Example	Example
	1	2	က	4	ß	9	7	8	6	-
Films	Bounty	Branwny	Sparkle	125 Blancas	4 Pack	6 Pack	Charmin	Charmin Angel Soft Coronet	Coronet	A/B/A coex
	Paper Towels	Paper Towels	Paper Towels	Napkins	Paper Towels	Paper Towels	Toilet Tissue	Toilet Tissue	Toilet Tissue	6
Avg Thickness, mils	2.0	1.7	1.6	1.7	1.8	1.9	1.2	1.5	1.6	1.0
microns	51	B	41	43	46	48	30	38	41	25
Avg Haze Value, %	23	13	11.2	8.6	13.1	9.2	26.5	16.5	12.6	4.5
Avg Gloss 45 Deg, %	41	68.2	64.9	99	65.2	71.8				78
Avg Clarity, transm.				91.5	91	93.7				96
		100	77.2	70000	74.000	04004				070 70
MD-Avg 1% SECANT, psi	38,801	59,554	116,29	35,021	93.4	237				584
THE THEORY OF THE	72 280	75 270	53 000	35 113	56.910	56 825				89 501
SACTION OF CAME, DA	47,400	13,312	360,00	242	30,05	30,02				617
MD Avg 2% SECANT psi	32.512	50.284	51.758	30.542	40.413	40.904	60.670	25.423	52472	66,238
MPa	224	347	357	211	279	282	418	175	362	457
CD-Avg 2% SECANT, psi	39,118	60,370	45,011	29,183	47,120	47,366	72,900	28,757	47217	69,931
MPa	270	416	310	201	325	327	503	198	326	482
Avg Elmendorf Type B MD,	314	37		429	638	763	437	137	63	6
Avg Elmendorf Type B CD,	355	936		397	1,157	790	472	506	175	720
gms										i
Dart impact, gms	76	32					46	113	54	9/
Avg PUNCTURE, ft-lb/in3	17	23					7	25	8	1
Joules/cm3	1.411	1.909					0.913	2.075	0.664	9.047
Maximum Heat Seal Strength (lb/ln)	(ul/di) r		•	2.9	2.1	1.0				
g/mm				52	38	. 18				
Maximum Hot Tack Strength (N/25mm)	(N/25mm)			1.7	1.	1.6				5.02
* No polypropylene was detected in any of the commercial samples via NMR or DSC	cted in any of	the commer	cial samples	via NMR or	DSC					
A (20%) = 20% LDPE 503										
80% DOWLEX 2070D										
B(60%) = 20% Dowlex 2045										
80% PP SR 256M										

Comp. Example Comp. Example Comp. Example Sample S			<u> ï</u>	Table 3					
Comp. Example Example Comp. Example Sample	Structure								
20% 20% 20% 10		Comp. Example 10	Example 2	Comp. Example 11	Example 3	Comp. Example 12	Example 4	Comp. Example 13	Example 6
20% 20% 20% 20% 80% 100%	A Layer (20%)								
90% 80% 80% 80% 100% 1100% 1100% 1	LDPE 503	50%	70%	20%	%0Z				
100% 100% <td< td=""><td>DOWLEX 2070D</td><td>80%</td><td>%08</td><td>80%</td><td>. %08</td><td></td><td></td><td></td><td></td></td<>	DOWLEX 2070D	80%	%08	80%	. %08				
100% 80% 80% 100% 20% 20% 20% 100% 20% 20% 20% 100% 20% 20% 20% 1.0 1.0 1.0 1.6 1.8 1.0 1.7 25 25 41 46 26 26 43 5.7 4.5 7.4 73 71 56.4 76 85 36.7 38.7 38.4 38.8 11 5.9 85 36.7 38.7 38.8 11 56.9 358 60.318 84.308 56.167 82.402 57.392 74.787 51.882 60.318 84.308 56.167 82.402 57.392 74.787 51.882 60.318 84.308 56.167 82.402 57.884 56.028 56.18 52.963 66.77 495 5.46 5.66 58.6 56.6 53.54 4.57 7.33 4	ELITE 5101					100%	100%	100%	100%
100% 80% 100%	R aver (core) (60%)								
80% 80% 80% 80% 20% 20% 20% 20% 1.0 1.0 1.6 1.8 1.0 1.7 2.5 2.5 4.4 4.6 2.5 2.6 4.3 2.5 2.5 4.5 7.5 6.3 8.8 11 5.9 4.5 7.6 7.6 7.4 4.6 2.5 2.5 4.3 5.7 4.5 7.5 6.3 8.8 1.1 5.9 4.8 60,316 8.4,308 56,167 8.2,402 5.73,92 74,79 51,882 416 5.81 38.7 5.68 3.96 51,67 5.8 50,063 66,167 8.2,402 5.73 74,78 5.18 50,063 66,167 8.45 3.9 4.47 4.75 50,063 66,167 8.46 8.8 4.7 4.7 50,063 66,167 8.46 8.8 4.7 4.7	DOWI EX 2038	100%		100%		100%		100%	
1,0 1,0 1,6 1,8 1,0 1,0 1,7 1,0 1,0 1,0 1,0 1,0 1,0 1,7 2,5 2,5 2,5 4,7 6,3 8,8 1,6 7,7 6,3 5,7 7,5 6,3 8,8 1,6 7,7 6,4 7,7 6,4 9,4 9,6 9,4 9,6 9,4 7,7 6,4 7,7,5 9,4 9,2 9,4 7,7 9,4 9,2 9,4 7,7 9,4 9,2 9,4 7,7 9,4 9,2 9,4 7,1 7,1 7,1 8,4 7,1 8,4 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 8,4 7,1 8,4	SR 256M		%08		%08		%08		%08
25 25 41 46 26 25 43 5.7 4.5 7.5 6.3 8.8 11 5.9 7.7 7.4 7.4 7.4 7.4 7.4 7.4 7.7 7.4 7.4 7.3 7.1 56.4 77.9 7.7 7.4 7.3 7.1 56.4 77.9 9.6 8.5 96.7 95.4 9.6 94 92.6 94 8.5 96.7 95.4 9.6 94 92.6 94 8.6 66.318 8.6 1.7 1.4 7.7 1.89 6.0,316 8.6 1.7 1.3 4.7 1.4 1.88 6.0,316 6.1 7.7 7.7 7.7 4.7 7.7 1.88 5.963 66,138 48,343 66,049 48,884 58,092 60,236 5.7 5.863 457 333 425 36 451	DOWLEX 2045		20%		20%		20%		20%
1.0 1.0 1.6 1.8 1.0 1.1 25 25 41 46 26 26 43 25 25 47 46 26 26 43 5.7 4.5 7.5 6.3 8.8 11 5.9 76 78.7 7.4 7.3 4.8 9.6 77 89 7.8 7.7 6.3 8.8 11 5.9 89 89 56.1 9.4 92.6 94 416 581 387 568 396 516 358 60.318 84,308 56.160 48 45.26 36 36 358 60.318 84,308 56.160 48 48,525 76,778 58 52,963 667 34 36 36 46 36 36 46 36 36 46 47 47 47 47 47 47 47 <	Physical Properties								
25 25 41 46 25 25 43 76 4,5 7,5 6,3 8,8 11 5,9 76 76 7,4 7,4 73 71 56,4 34 56,9 76 78,7 95,4 96 94 92,6 94 56,9 34 56,9 36 34 56,9 36 34 56,9 36 34 35,6 35,8 36,9 36 34 32,6 36	Avg Thickness, mils	1.0	1.0	9.1	1.8	1.0	1.0	1.7	1.8
5.7 4,5 7,5 6.3 8,8 11 5.9 76 78,7 74 73 71 56.4 77.5 95 96.7 96.7 96.4 78 77 56.4 77.5 60,318 94.308 56,167 82,402 57,392 74,797 51,892 51,892 51,892 51,892 51,892 51,892 51,892 51,892 52,992 66,238 366 366 566 583 529 52,962 56,714 49.5 566 366 566 583 529 52.9 47.5 47.5 47.5 47.5 47.5 47.5 42.5 47.1 42.5	microns	25	25	41	46	25	25	43	46
76 78.7 74 73 71 56.4 77.5 95.7 95.4 96.4 96.7 96.4 96.9 94 92.6 94 95.3 96.7 96.4 96.4 96.9 96.6 94 92.6 94 97.6 94 95.6 94 95.6 94 95.6 94 95.6 94 95.6 94 95.6 94 95.6 94 95.6 94 95.6 94 95.6 94 95.6 94 95.6 94 95.6 94 96.6 94 96.6 94 96.6 94 96.6 96	Ava Haze Value, %	5.7	4.5	7.5	6.3	8.8	11	6'9	11.6
95 96.7 95.4 96 94 92.6 94 60,318 64,308 56,167 82,402 57,392 74,797 51,892 416 581 381 56,8 356 356 76,778 509 677 495 56,8 36 46,505 76,778 52,963 66,236 45,7 333 455 337 401 415 52,963 66,236 45,7 333 456 337 401 415 63,354 69,931 60,791 65,646 61,663 65,404 64,815 437 482 419 455 337 401 415 437 482 419 456 337 401 415 437 482 419 456 337 401 415 4,889 6,106 5,571 7,690 5,766 9,179 43 4,889 6,106 5,195 6,714	Ava Gloss 45 Dea. %	76	78.7	74	73	71	56.4	77.5	60.4
60,318 64,308 56,167 82,402 57,392 74,797 51,892 416 581 387 568 336 516 358 73,763 89,501 71,774 79,183 73,344 84,525 76,778 60,9 66,7 495 546 56 37 40,7 41,78 52,963 66,236 48,343 66,049 48,884 58,092 60,266 66,236 60,236 60,236 60,236 60,236 60,236 60,240 48,884 66,186 60,781 66,646 61,663 65,404 64,815 47 415 447 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 48 47 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48	Avg Clarity, transm.	95	2.96	95.4	96	\$	92.6	94	90.3
416 581 387 568 396 516 358 73,763 89,501 71,774 79,183 73,344 84,525 76,778 50,96 617 495 546 506 36,29 60,236 52,963 66,238 48,343 46,484 56,049 48,884 56,092 60,236 63,354 495 337 466 61,663 65,404 64,815 63,354 69,531 66,049 48,884 46,815 47 41 437 482 419 453 425 451 447 40 5,571 7,690 5,766 9,179 6,238 40 5,5 38 53 4,788 4,889 6,106 5,195 6,714 4,922 5,535 4,788 4,889 6,106 5,195 2,043 2,043 2,043 2,043 2,043 2,043 2,043 2,043 2,043 2,044 4,148 </td <td>MD-Avg 1% SECANT, psi</td> <td>60,318</td> <td>84,308</td> <td>56,167</td> <td>82,402</td> <td>57,392</td> <td>74,797</td> <td>51,892</td> <td>73,991</td>	MD-Avg 1% SECANT, psi	60,318	84,308	56,167	82,402	57,392	74,797	51,892	73,991
73,763 89,501 71,774 79,183 73,344 84,525 76,778 509 617 495 546 506 583 529 52,963 66,236 48,343 66,049 48,884 56,092 60,236 52,963 66,236 48,343 66,049 46,884 56,092 60,236 63,554 69,331 60,791 66,646 61,663 65,044 64,815 437 482 419 453 425 451 447 40 55 38 53 40 6,236 4,786 40 55 38 53 40 6,236 4,786 40 55 38 53 40 6,236 4,786 40 5,60 5,714 4,922 5,535 4,788 4,889 6,106 5,716 2,043 2,602 2,048 2,196 3,028 2,102 2,043 2,867 2,078	MPa	416	581	387	268	396	216	358	510
600 617 495 546 560 583 529 52.963 66,238 48,343 66,049 46,884 56,092 60,236 365 467 333 456 61,663 65,404 64,15 63,354 69,931 60,791 65,646 61,663 65,404 64,15 40 55 40 6,640 61,663 47 47 40 55 38 53 425 451 44,15 40 55 38 53 40 6,236 43 40 56 38 425 451 447 447 40 56 38 43 43 43 43 40 56 36 46 34 38 33 43 40 56 36 46 34 38 33 43 40 51 47 42 47 47 47 <t< td=""><td>CD-Avg 1% SECANT, psi</td><td>73,763</td><td>89,501</td><td>71,774</td><td>79,183</td><td>73,344</td><td>84,525</td><td>76,778</td><td>73,736</td></t<>	CD-Avg 1% SECANT, psi	73,763	89,501	71,774	79,183	73,344	84,525	76,778	73,736
52,963 66,236 48,343 66,049 48,884 58,092 60,236 365 457 333 456 337 401 415 63,354 69,931 60,791 65,646 61,663 65,404 64,815 437 462 419 453 425 451 447 5,808 8,040 5,571 7,690 5,766 9,179 6,236 4,889 6,106 5,195 6,714 4,922 5,535 4,788 34 42 36 46 34 38 33 15 21 14 20 14 20 14 15 21 14 20 14 20 14 15 27 2,346 2,702 2,303 2,602 2,284 19 19 16 65 65 16 16 16 19 19 16 19 16 16 16	MPa	609	219	495	546	909	283	529	508
365 457 333 456 337 401 415 63,354 69,931 60,781 65,646 61,663 65,404 64,815 417 437 462 419 453 426 61,663 65,404 64,815 47 4,808 6,040 5,571 7,690 5,766 9,179 6,238 47 4,889 6,106 5,571 7,690 5,766 6,319 6,238 47 4,788 34 42 36 46 34 38 33 4,788 1,1 42 36 46 34 38 33 4,788 1,1 1,2 2,795 2,672 2,043 2,867 2,078 2,078 1,5 2,1 1,4 20 1,4 20 1,4 20 1,4 1,9 1,9 1,6 2,702 2,303 2,602 2,294 2,604 2,294 2,604 2,294	MD-Avg 2% SECANT, psi	52,963	66,238	48,343	66,049	48,884	58,092	60,236	59,989
63,354 69,931 60,791 65,646 61,663 65,404 64,815 437 482 419 453 425 451 447 5,808 8,040 5,571 7,690 5,766 9,179 6,238 4,0 55 38 53 40 6,235 4,788 6,106 5,195 6,714 4,922 5,535 4,788 7,196 3,028 2,059 2,872 2,043 2,867 2,078 1,5 2,1 1,4 20 1,4 20 1,4 1,5 2,1 1,4 20 1,4 20 1,4 1,5 2,1 1,4 20 1,4 20 1,4 1,9 1,9 1,6 1,0 1,6 1,6 1,4 20 1,4 1,9 1,9 1,6 1,0 1,0 1,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	MPa	365	457	333	455	337	401	415	414
437 482 419 453 425 451 447 5,808 8,040 5,571 7,690 5,766 9,179 6,238 40 55 38 53 40 6,238 43 4,869 6,106 5,195 6,714 4,922 5,535 4,788 2,196 3,028 2,059 2,872 2,043 2,867 2,078 15 2,1 14 20 14 20 14 2,755 2,755 2,346 2,702 2,303 2,602 2,284 19 19 16 19 16 18 16 18 548 549 656 663 614 506 541 704 742 737 795 627 609 623 77 18 190 60 326 67 134 77 70 907 805 86 114 100	CD-Avg 2% SECANT, psi	63,354	69,931	60,791	65,646	61,663	65,404	64,815	60,037
5,808 8,040 5,571 7,690 5,766 9,179 6,238 4,0 55 38 53 40 63 43 4,889 6,106 5,195 6,714 4,922 5,535 4,788 3,4 42 36 46 34 38 33 33 1,196 3,028 2,059 2,872 2,043 2,867 2,078 1,5 21 14 20 14 20 14 2,755 2,755 2,346 2,702 2,303 2,602 2,284 19 19 16 19 16 19 16 18 16 548 549 636 653 614 506 541 16 704 742 737 795 827 609 623 67 134 73 720 907 805 86 512 563 746 160 86 <td>MPa</td> <td>437</td> <td>482</td> <td>419</td> <td>453</td> <td>425</td> <td>451</td> <td>447</td> <td>414</td>	MPa	437	482	419	453	425	451	447	414
40 55 38 53 40 63 43 4,889 6,106 5,195 6,714 4,922 5,535 4,788 34 42 36 46 34 38 33 1,860 3,028 2,059 2,872 2,043 2,877 2,078 1,5 21 14 20 14 20 14 1,9 19 16 19 16 19 16 18 548 549 636 663 663 67 614 506 541 704 742 737 795 627 609 623 67 134 77 18 190 60 326 67 134 653 67 134 737 720 907 805 868 512 653 67 140 100 86 109 93 111 69 114 100	MD-Avg ULTIMATE, psi	5,808	8,040	5,571	7,690	5,766	9,179	6,238	7,912
4,869 6,106 5,195 6,714 4,922 5,535 4,788 34 42 36 46 34 38 33 2,196 3,028 2,059 2,872 2,043 2,867 2,078 2,755 2,755 2,746 2,002 14 20 14 19 79 76 19 76 18 76 548 549 636 653 614 506 541 704 742 737 795 627 609 623 77 18 190 60 326 67 134 737 720 907 868 512 563 86 109 93 111 69 114 100 86 109 9.247 7.779 9.245 8.3 8.3	MPa	40	- 55	38	53	40	83	43	55
34 42 36 46 34 38 33 2,196 3,028 2,059 2,872 2,043 2,867 2,078 15 2,1 14 20 14 20 14 2,755 2,755 2,346 2,702 2,303 2,602 2,284 19 19 16 19 16 18 16 16 548 549 636 653 614 506 623 704 742 737 795 627 609 623 77 18 190 60 326 67 134 72 76 190 134 246 156 150 86 109 93 111 69 114 100 7.138 9.047 7.719 9.213 5.727 9.462 8.3	CD-Avg ULTIMATE, psi	4,869	6,106	5,195	6,714	4,922	5,535	4,788	6,509
2,196 3,028 2,059 2,872 2,043 2,867 2,078 15 21 14 20 14 20 14 2,755 2,765 2,346 2,702 2,303 2,602 2,284 19 19 16 19 16 18 16 704 742 737 795 627 609 623 77 18 190 50 326 67 134 72 76 190 134 246 156 150 86 109 93 111 69 114 100 7.138 9.047 7.719 9.213 5.727 9.462 8.3	MPa	34	42	36	46	8	38	83	45
15 21 14 20 14 20 14 2,755 2,755 2,346 2,702 2,303 2,602 2,284 19 19 16 19 16 18 16 548 549 636 653 614 506 541 704 742 737 795 627 609 623 77 72 907 805 868 512 563 72 76 190 134 246 156 150 86 109 93 111 69 114 100 7.138 9.047 7.719 9.213 5.727 9.462 8.3	MD-Avg YIELD STRENGTH, psi	2,196	3,028	2,059	2,872	2,043	2,867	2,078	2,696
2,755 2,755 2,346 2,702 2,303 2,602 2,284 19 19 16 19 16 18 16 548 549 636 653 614 506 541 704 742 737 737 720 907 805 868 67 134 72 76 190 134 246 156 150 86 109 93 111 69 114 100 7.138 9.047 7.719 9.213 5.727 9.462 8.3	MPa	15	21	14	20	44	20	14	19
19 19 16 19 16 18 16 17 17 17 17 17 16 17 16 16 15 15 15 15 16 16 16 16 16 16 17 16 17 16 16 17 16 16 16 16 17 16 17<	CD-Avg YIELD STRENGTH, psi	2,755	2,755	2,346	2,702	2,303	2,602	2,284	2,638
548 549 636 653 614 506 541 704 742 737 795 627 609 623 77 18 190 60 326 67 134 737 720 907 805 868 512 563 86 109 93 111 69 114 100 7.138 9.047 7.719 9.213 5.727 9.462 8.3	MPa	19	19	16	19	16	18	16	18
704 742 737 795 627 609 623 77 18 190 60 326 67 134 737 720 907 805 868 512 563 72 76 190 134 246 156 150 86 109 93 111 69 114 100 7.138 9.047 7.719 9.213 5.727 9.462 8.3	MD-Avg ELONGATION, %	548	549	929	653	614	506	541	572
77 18 190 60 326 67 134 737 720 907 805 868 512 563 72 76 190 134 246 156 150 86 109 93 111 69 114 100 7.138 9.047 7.719 9.213 5.727 9.462 8.3	CD-Avg ELONGATION, %	704	742	737	795	627	609	623	663
737 720 907 805 868 512 563 72 76 190 134 246 156 150 86 109 93 111 69 114 100 7.138 9.047 7.719 9.213 5.727 9.462 8.3	Avg Elmendorf Type B MD, gms	11	18	180	90	326	29	134	165
. gms 72 76 190 134 246 156 150 150 10NE, ft-lb/ln3 86 109 93 111 69 114 100 7.138 9.047 7.719 9.213 5.727 9.462 8.3	Avg Elmendorf Type B CD, gms	737	720	206	805	868	512	563	570
TURE, ft-lb/ln3 86 109 93 111 69 114 100 7.7138 9.047 7.719 9.213 £.727 9.462 8.3	Dart impact, gms	72	76	190	134	246	156	150	310
7.138 9.047 7.719 9.213 5.727 9.462 8.3	Avg PUNCTURE, ft-lb/ln3	98	109	93	111	69	114	100	122
	Joules/cm3	7.138	9.047	7.719	9.213	5.727	9.462	8.3	10.126

Table 3 (continued)

	Comp.	Example	Comp.	Example	Comp.	Example	Comp.	Example
	Example 10	2	Example 11	3	Example 12	4	Example 13	5
Heat Seal Strength, lb/in g/mm	-							
Temperature, °C								
80				0.03		0.79		
				1		14		
90		0.04		0.03		0.05		0.06
		1		1		1	· · · · · · · · · · · · · · · · · · ·	1
100	0.16	0.1	0.08	0.09	0.06	1	0.04	2.3
	3	2	1	2	1	18	1	41
110	2.43	2.93	3.64	4.65	2.25	2.75	1.31	4.19
	43	52	65	83	40	49	23	75
120	3.26	2.48	4.29	3.45	2.62	3.26	4.01	4.85
	58	44	77	62	47	58	72	87
130	2.81	2.61	4.41	3.44	2.3	2.61	4	4.95
	50	47	79	61	41	47	71	88
140	3.49	2.65	4.62	3.31	1.67	4.61	3.91	6.39
	62	47	83	59	30	82	70	114
150	3.43	2.68	4.51	2.48	1.6	3.99	3.25	4.05
	61	48	81	44	29	71	58	72
Hot Tack Strength N/25 m	m							
Temperature, °C								
90	0.26	0.16	0.2	0.13	0.19	0.52	0.13	0.82
100	1.38	1.4	1.44	1.02	1.31	1.1	1.47	3.16
110	2.52	5.02	3.41	4.32	2.36	4.33	2.37	4.23
120	4.49	6.19	4.95	9.48	4.22	6.05	4	7.46
130	3.17	6.46	2.85	7.69	2.86	6.47	3.39	6.64
140	2.62	5.28	3.74	5.32	2.31	3.76	3.28	3.57
150	223%	416%	189%	361%	2.09	2.76	2.92	0.93
Maximum Hot Tack Strength, N/25 mm	4.49	6.46	4.95	9.48	422%	647%	4	7.46

Table 4

	Comp. Ex. 14	Comp. Ex. 15	Ex. 2	Ex. 3	Ex. 4	Ex. 5	Ex. 6	Ex. 7
Structure								
A Layer (20%)								
LDPE 503	100%	100%	20%	20%	-		ì	
DOWLEX 2070D			80%	80%				
ELITE 5101					100%	100%	····	· · · · · · · · · · · · · · · · · · ·
Exceed 350d60							100%	100%
B Layer (core) (60%)					-			
SR 256M	80%	80%	80%	80%	80%	80%	80%	80%
DOWLEX 2045	20%	20%	20%	20%	20%	20%	20%	20%
Avg Thickness, mils	1.0	1.9	1.0	1.8	1.0	1.8	0.9	1.8
microns	25	48	25	46	25	46	23	46
Avg Haze Value, %	7	7.6	4.5	6.3	11	11.6	10	12.9
Avg Gloss 45 Deg, %	69.4	65.6	78.7	73	56.4	60.4	63.8	57.5
Avg Clarity, transm.	92.1	90.7	96.7	96	92.6	90.3	93.8	92.8
MD-Avg 1% Secant, psi	78,405	73,964	84,308	82,402	74,797	73,991	79,292	74,377
MPa	541	510	581	568	516	510	547	513
CD-Avg 1% Secant, psl	84,204	84,767	89,501	79,183	84,525	73,736	80,680	78,281
MPa	581	584	617	546	583	508	556	540
MD-Avg 2% Secant, psi	62,972	60,867	66,238	66,049	58,092	59,989	62,015	61,483
MPa	434	420	457	455	401	414	428	424
CD-Avg 2% Secant, psi MPa	65,122 449	68,340 471	69,931 482	65,646 453	65,404 451	60,037 414	62,452	63,625
MD-Avg Ultimate, psi	6.089	6.260	8.040	7.690	9.179	7,912	431 9.171	439 8,739
MPa	42	43	55	53	63	55	63	60
CD-Avg Ultimate, psi	5,230	5,485	6,106	6,714	5,535	6,509	7,132	7,449
MPa	36	38	42	46	38	45	49	51.
MD-Avg Yield Strength, psi	2,950	2,907	3,028	2,872	2,867	2,696	3,147	2,858
MPa	20	20	21	20	20	19	22	2,000
CD-Avg Yield Strength, psi	2,621	2,807	2.755	2,702	2,602	2,638	2,736	2,727
MPa	18	19	19	19	18	18	19	19
MD-Avg Elong., %	452	634	549	653	506	572	555	638
CD-Avg Elong., %	742	769	742	795	609	663	625	699
Avg Elmendorf Type B MD,	11	27	18	50	67	165	127	175
Avg Elmendorf Type B CD, gms	575	639	720	805	512	570	451	551
Dart Impact, gms	45	210	76	134	156	310	152	310
Avg Puncture, ft-lb/in3	74	85	109	111	114	122	148	136
(Joules/cm3)	6.142	7.055	9.047	9.213	9.462	10.126	12.284	11.288
Avg Kinetic COF (F-M)	0.42	0.42	0.48	0.35	0.37	0.36	0.39	0.29
Avg Static COF (F-M)	0.53	0.52	0,54	0.44	0.49	0.46	0.5	0.35

Table 4 (continued)

	Comp. Ex. 14	Comp. Ex.	Ex. 2	Ex. 3	Ex. 4	Ex. 5	Ex. 6	Ex. 7
Heat Seal Strength, lb/in (g/mm)								
Temperature, C								
80	0.24			0.03	0.79		0.02	
	4			1	14		0	
90	0.02	0.02	0.04	0.03	0.05	0.06	0.03	0.00
90	0.02	0.02	1	0.03	1	0.06	0.03	0.03
		<u> </u>	<u> </u>		 		 	 _
100	0.07	0.05	0.1	0.09	1	2.3	0.12	0.12
	1	1	2	2	18	41	2	2
110	1.11	1,49	2.93	4.65	2.75	4.19	2.81	4.52
110	20	27	52	83	49	75	50	4.53 81
	- 20		ÜE	03	73	10	30	01
120	0.98	1.42	2.48	3.45	3.26	4.85	3.09	5.56
	18	25	44	62	58	87	55	99
			<u> </u>					
130	1.03	1.38 25	2.61 47	3.44	2.61 47	4.95 88	3.43 61	5.26 94
	10	20		07	7/	00	01	94
140	1.35	1.66	2.65	3.31	4.61	6.39	3.65	5.98
	24	30	47	59	82	114	65	107
	4.07	100	- 0.00		0.00			
150	1.07	1.65	2.68 48	2.48 44	3.99 71	4.05 72	3.55 63	6.63 119
Hot Tack Strength N/25 mm		2.5		77	- ''-		- 03	119
Temperature, C	T T	 			 		 	
80	0.13	0.12	0.13	0.13	0.15	0.12	0.14	0.12
90	0.12	0.14	0.16	0.13	0.52	0.82	0.12	0.11
100		0.27	1.4	1.02	1.1	3.16	0.24	0.12
110		2.28	5.02	4.32	4.33	4.23	5.05	4.99
120		2.63	6.19	9.48	6.05	7.46	6.16	10.34
130		2.17	6.46	7.69	6.47	6.64	5.98	7.1
140		1.52	5.28	5.32	3.76	3.57	5.23	5.4
150	0.64	0.54	4.16	3.61	2.76	0.93	2.34	3.27
Maximum Hot Tack Strength, N/25 mm	3.47	2.63	6.46	9.48	6.47	7.46	6.16	10.34

The examples shown in Tables 2-4 demonstrate that the use of PP in the core of a blown coextruded film structure offers several important improvements or advantages over the use of polyethylene, including excellent optics, high modulus, high tensile properties, high puncture resistance, and high hot tack strength. All of these attributes are highly desirable for pouch, heavy-duty shipping sack and soft goods overwrap applications.

In another evaluation, two different three layer coextruded blown films were fabricated to further study the relationship between modulus and puncture. The films were coextruded as described above at a 2.5:1 blow-up ratio (BUR). Inventive Example 8 was prepared as follows and was determined to have a1percent MD secant modulus of 103,000 psi and a puncture resistance of 38.9 in-lb.:

A = AFFINITY PL1880

B = INSPIRE H308-02Z + 5percent AFFINITY PL 1880

C = ATTANE 4201

Comparative example 16 was prepared as follows and was determined to have a 1percent MD secant modulus of 27,100 psi and a puncture resistance of 39.5 in-lb.:

A = AFFINITY PL 1880 + 20percent LDPE 132

B = DOWLEX 2045 the 30percent LDPE 132

C = ATTANE 4201 + 20percent LDPE 132

These results show that the use of a propylene-rich polypropylene polymer can provide substantially increased modulus for a coextruded blown film without sacrificing puncture resistance properties. Thus, these results are very surprising because it has been traditionally accepted that as modulus increases toughness properties such as puncture resistance and dart impact variably decrease.

We claim:

1. A coextruded air-quenched multilayer blown film structure comprising:

- (A) a non-sealant layer comprised of a propylene-rich polypropylene polymer blended with at least one ethylene-rich ethylene interpolymer, and
- (B) a sealant layer comprised of at least one second ethylene interpolymer,

wherein the ethylene-rich ethylene interpolymer comprises ethylene interpolymerized with at least one other comonomer other than propylene and wherein the structure is characterized as having a maximum hot tack strength in the sealing temperature range of 80°C to 150° of greater than 5.0 Newton/25 millimeter, when fabricated at a sealant layer thickness of 0.2 mil (5.1 microns) or greater and tested using a JB Instrument Hot Tack Tester set at a 0.5 second dwell, 0.2 second delay time, 40 psi (276 kPa) seal bar pressure and 250 mm/second peel rate.

- 2. The film structure of Claim 1 wherein the polypropylene polymer is a homopolymer.
- 3. The film structure of Claim 1 wherein the polypropylene polymer is a random copolymer.
- 4. The film structure of Claim 1 wherein the polypropylene polymer is an impact copolymer comprising ethylene.

5. The film structure of Claim 1 wherein the ethylene-rich ethylene interpolymer is a heterogeneously branched ethylene interpolymer.

- 6. The film structure of Claim 1 wherein the ethylene-rich ethylene interpolymer is a homogeneously branched ethylene interpolymer.
- 7. The film structure of Claim 6 wherein the ethylene-rich ethylene interpolymer is a substantially linear ethylene interpolymer.
- 8. The film structure of Claim 6 wherein the ethylene-rich ethylene interpolymer is a homogeneously branched linear ethylene interpolymer.
- 9. The film structure of Claim 1 wherein the polypropylene polymer and the ethylene-rich ethylene interpolymer are blended in situ using multiple polymerization reactors.
- 10. The film structure of Claim 1 wherein the ethylene-rich ethylene interpolymer is blended with another ethylene polymer.
- 11. The film structure of Claim 10 wherein the ethylene-rich ethylene interpolymer is a heterogeneously branched linear ethylene interpolymer and the other ethylene polymer is a low density polyethylene homopolymer.

12. The film structure of Claim 11 wherein the low density polyethylene homopolymer is characterized as having a melt strength greater than 10 cN as determined using a Gottfert Rheotens unit at 190°C.

- 13. The film structure of Claim 1 wherein the structure is a three layer film structure with an non-sealant outer layer, a non-sealant core layer and the polypropylene layer (A) as the non-sealant core layer.
- 14. The film structure of Claim 13 wherein the sealant layer and the non-sealant outer comprise the same polymer composition or combination.
- 15. The film structure of Claim 1 wherein the sealant comprises a blend of a heterogeneously branched ethylene polymer and homogeneously branched ethylene interpolymer.
- 16. The film structure of Claim 15 wherein the heterogeneously branched ethylene polymer is a copolymer of ethylene and a C_4 - C_{20} α -olefin.
- 17. The film structure of Claim 1 wherein the ethylene-rich ethylene interpolymer is a homogeneously branched ethylene interpolymer and the second ethylene interpolymer is a heterogeneously branched linear ethylene interpolymer or a

blend of a heterogeneously branched linear ethylene interpolymer and a low density polyethylene homopolymer.

- 18. The film structure of Claim 17 wherein the heterogeneously branched linear ethylene interpolymer is a very low density polyethylene (VLDPE).
- 19. The film structure of Claim 17 wherein the heterogeneously branched linear ethylene interpolymer is a linear low density polyethylene (LLDPE).
- 20. The film structure of Claim 1 wherein the non-sealant polypropylene layer (A) is adjacent to the sealant layer (B).
- 21. The film structure of Claim wherein the sealant layer has a thickness in the range of 0.15 to 0.25 mil (3.8 to 6.4 microns).
- 22. A process for making the multilayer blown film structure of Claim 1 comprising
- a) obtaining a blown film coextrusion unit having at least two separate extruders which separately feed a multi-channel annular die,
- b) blending the propylene-rich polypropylene polymer with the at least one ethylene-rich ethylene interpolymer and feeding the blend to the first extruder of the coextrusion film unit,

b) feeding at least one second ethylene interpolymer to the second extruder of the coextrusion film unit,

- c) simultaneously extruding the blend and the second ethylene interpolymer through the multi-channel annular die to form a molten tube, and
- d) thereafter, using air to blow-up the tube into a bubble and quenching the bubble to form the multilayer blown film structure.
 - 23. A pouch made from the multilayer blown film structure of Claim 1.
- 24. An overwrap film made from the multilayer blown film structure of Claim1.
- 25. A heavy-duty shipping sack made from the multilayer blown film structure of Claim 1.
 - 26. The pouch of Claim 23 containing a flowable material.
 - 27. The pouch of Claim 27 wherein the pouch holds from 5 mL to 10,000 mL.
 - 28. The pouch of Claim 26 wherein the flowable material is milk.
- 29. The film structure of Claim 1 wherein the film structure contains a slip agent, antiblock agent and, optionally, a processing aid.

30. The film structure of Claim 1 wherein the film structure contains a pigment to render the film structure opaque.

31. The film structure of Claim 1 wherein the film structure contains an ultraviolet light absorbing additive.

INTERNATIONAL SEARCH REPORT

Intern al Application No PCT/US 01/02396

		<u>_</u>	01/ 00 01/ 02330
A. CLASSII IPC 7	FICATION OF SUBJECT MATTER B32B27/32		
According to	International Patent Classification (IPC) or to both national classifica	ion and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 7	cumentation searched (classification system followed by classification $C08L - B32B$	n symbols)	
Documentat	ion searched other than minimum documentation to the extent that su	ch documents are included	i in the fields searched
	ata base consulted during the International search (name of data bas ternal, WPI Data, PAJ	e and, where practical, sea	arch terms used)
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	Cliation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
X	US 4 643 928 A (NAKAMURA OSAMU E 17 February 1987 (1987-02-17) cited in the application	ŕ	1-10, 12-14, 16,20, 22,24, 29-31
İ	column 2, line 38 -column 4, line	61	
X	US 5 389 448 A (SCHIRMER HENRY G 14 February 1995 (1995-02-14) column 3, line 56 -column 6, line examples 4-8	·	1-9, 12-14, 20,22, 24,29-31
Furth	ner documents are listed in the continuation of box C.	χ Patent family mer	nbers are listed in annex.
"A" docume consid "E" earlier of filing d "L" docume which citatior "O" docume other r "P" docume	ant defining the general state of the art which is not ered to be of particular relevance focument but published on or after the international factor in the publication date of another or other special reason (as specified) entering to an oral disclosure, use, exhibition or means and published prior to the international filing date but	or priority date and no clied to understand th invention X* document of particular cannot be considered involve an inventive s Y* document of particular cannot be considered document is combine	ed after the international filing date in conflict with the application but e principle or theory underlying the relevance; the claimed invention novel or cannot be considered to ep when the document is taken alone relevance; the claimed invention to involve an inventive step when the with one or more other such docuion being obvious to a person skilled the same patent family
Date of the	actual completion of the international search	Date of mailing of the	international search report
2	3 May 2001	01/06/200	1
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Stinchcom	be, J

information on patent family members

Interni al Application No PCT/US 01/02396

	Patent document dited in search report		Publication date		Patent family member(s)	Publication date
	US 4643928	Α	17-02-1987	JP	1461085 C	14-10-1988
				JP	60125622 A	04-07-1985
				JP	63006344 B	09-02-1988
				DE	3481979 D	23-05-1990
				EP	0144999 A	19-06-1985
	US 5389448	Α	14-02-1995	AT	137519 T	15-05-1996
				AT	185743 T	15-11-1999
				AU	639585 B	29-07-1993
				AU	8242791 A	20-02-1992
				BR	9103462 A	12-05-1992
				CA	2048296 A	14-02-1992
				CS	9102496 A	15-04~1992
				DE	69119166 D	05-06-1996
				DE	69119166 T	21-11-1996
1				DE	69131731 D	25-11-1999
				DE	69131731 T	31-05-2000
				EP	0474376 A	11-03-1992
]				EP	0700778 A	13-03-1996
				FI	913807 A	14-02-1992
				HK	20397 A	20-02-1997
1				HU	62923 A	28-06-1993
i				JP	3118473 B	18-12-2000
				JP	4248855 A	04-09-1992
]				NZ	239336 A	26-10-1993
				PL	291407 A	04-05-1992
1				SG	48984 A	18-05-1998
1				SG	66838 A	22-02-2000