Probabilistic Robotics Course

Projects

Giorgio Grisetti

grisetti@dis.uniroma1.it

Dept. of Computer Control and Management Engineering Sapienza University of Rome

Rules

- Projects are individual
- •The project has to be linked to a *private* git repo shared with the "staff".

•No admission at the exam without having choosen a project

- •For each project we provide:
 - ground truth solution
 - data of the problem

Evaluation

- The evaluation of a project consists in running the system on different data (but similar to the one used for testing)
- Project accounts for small (+/-1) grade adjustments.
- •Special situations that require immediate registration of the exam (e.g. erasmus) and do not hand in the project in time will incur in a penalty of 4 points.

#1 Beacon Calibration

Input:

- Range measurements between a set of 3D points in the space (beacons)
- No initial guess

Output:

Position of the beacons in the space

#2 2D Bearing Only SLAM

Input:

2D Bearing (labeled observations)

Odometry

Output:

trajectory and map.

#3 2D Range Only SLAM

Input:

2D Ranges (labeled observations)

Odometry

Output:

trajectory and map.

#4 Visual Odometry

Input:

- Camera parameters
- Image sequence where each image is described by a sequence of keypoint-id pairs <u,v,id>

Output

- Trajectory
- •3D points

Hint

- 1. Register the first pair using epipolar geometry
- 2. Triangulate the initial points and impose a scale
- 3. Incrementally add a new
 - a) Determine the position using Projective ICP
 - b) Triangulate the missing points
 - c) Update the camera pose
- BA at the end

#5 Planar Monocular SLAM

Differential Drive equipped with a monocular camera

- Input:
 - Integrated dead reckoning
 - Stream of point projections with "id"
 - Camera Parameters
 - Extrinsics (pose of camera on robot)
 - Intrinsics (K)
- Output:
 - Trajectory and Map
- Hint
 - Bootstrap the system by triangulating the initial set of points with the odometry guess

How to get a project

Send an email asking for a project (name and number) to

- •guadagnino@diag.uniroma1.it
- •bazzana@diag.uniroma1.it

- 1) Use as Subject: [ProbRob][ProjAss]
- 2) Write at least your Student ID
- 3) Wait for instructions