STATE OF	Primeira Avaliação		Nota:	
Curso:	Ciência da Computação		10,0	
Disciplina:	Linguagens Formais e Autômatos			
Aluno(a):		Data:	03/08/23	

- Considere a seguinte expressão regular: (a + b + c) c* a* + d + (b + c)*. Marque a opção que apresenta uma palavra que não seja gerada por ela. (2 pts).
 - a) () d
 - b) () cb
 - c) () aaaa
 - d) () ccca
 - e) (x) bbca
- Com o uso do algoritmo AFε → AFN construa o AFN equivalente ao AFε abaixo e marque a afirmativa correta com relação ao autômato gerado: (2 pts)

- a) () Possui 6 transições
- b) () Possui 7 transições
- c) (≰) Possui 8 transições C
- d) () Possui 9 transições
- e) () Nenhuma das respostas anteriores.
- 3) Qual das opções denota a função programa estendida (δ) de um AFε? (2 pts)

a)
$$(\times)$$
 $2^Q \times \Sigma^* \rightarrow 2^Q$

- b) () $2^Q \times \sum^* \rightarrow Q$
- c) () $Q \times \sum \rightarrow 2^Q$
- d) () $Q \times \sum \rightarrow Q$
- e) () Nenhuma das respostas anteriores.
- Marque a opção que corresponde a uma expressão regular que especifique a linguagem aceita pelo AFN M dado. (2 pts)

$$M = (\{x, y, z\}, \{q_0, q_1, q_2\}, \delta, q_0, \{q_2\})$$

δ:	Х	y	Z
q ₀	{q ₁ }	{q ₁ }	{q ₁ }
91	$\{q_0, q_2\}$	$\{q_0, q_2\}$	$\{q_0, q_2\}$
\mathbf{q}_2	-	- F	-

- a) () (xyz)*xyz
- b) () $(x + y + z)^*$
- c) () (x+y+z)*(x+y+z)
- d) () $x^* + y^* + z^*$
- e) (x) Nenhuma das respostas anteriores.

5) Marque a opção que apresenta as afirmativas que são verdadeiras com relação ao algoritmo de minimização de autômatos. (1 pt):

- I.Dois estados q_i e q_j são equivalentes quando para qualquer palavra w pertencente a \sum^* , $\underline{\delta}(q_i, w)$ e $\underline{\delta}(q_j, w)$ resultam ambos em estados não finais.
- II.Um dos pré-requisitos para a aplicação do algoritmo é que o autômato seja um AFN.
- III.Um dos pré-requisitos para a aplicação do algoritmo é que a função programa seja definida para todas as combinações de estados com símbolos do alfabeto.
- IV.O algoritmo de minimização de autômatos gera um (FN) com o menor número de estados possível. ×
- a) () II
- b) (**★**) III
- c) () I, II, III
- d) () II, III, IV
- e) () I, II, III, IV

6) Dada a GR G1, qual a ER que gera a linguagem por ela denotada? (1 pt)

$$G_1 = (\{S, A, B, C\}, \{a, b, c\}, P, S)$$

- P:
- $S \rightarrow aS \mid A$
- $A \rightarrow aaB \mid C$
- $B \rightarrow cB \mid \epsilon$
- $C \rightarrow bC \mid B$
- a) () $a^*(aa + b)c^*$
- b) (\checkmark) $a^*(b^* + aa)c^*$
- c) () a*(aa+b)*c
- d) () $a^*(b^* + aa^*)c$
- e) () Nenhuma das respostas anteriores