SIZ_11_4_24

Střídavé generátory

Trojfázové generátory

- princip alternátoru
 - tři cívky posunuty o 120°
 - rotor tvořen jednou cívkou navinutou ve 2/3 drážek, do kterých je přes kroužky přiveden stejnosměrný budící proud vznik silného rotujícího elmagnetu
 - při pohybu mag. pole rotoru indukuje ve vinutí statoru el. proud vedený na svorkovnici
 - otáčením rotoru vzniká 3f proud
 - rotor poháněn turbínou
- stavba alternátoru
 - skládá se z rotoru, statoru a budiče
 - stator
 - dutý válec svařen z plechů
 - uvnitř válce magnetický obvod z trans. plechů
 - velké alternátory magnetický obvod složen ze segmentů
 - na vnitřním obvodu drážky a pod nima izolované měděné vinutí
 - synchronní stroj je stroj jehož kmitočet svorkového napětí je přímo úměrný otáčkám
 - budič rozběhový motor
- rozdělení
 - alternátory

• hladký rotor z pevného válce; na povrchu drážky a v nich budící vinutí napájené stejnosměrným proudem

- rotor z rotorového kola s určitý počtem pólů (4+); každý pól má svojí budící cívku
- z pravidla 3f
- turboalternátory
 - poháněn parní turbínou
 - rotor vždy hladký
 - v rotoru vyfrézovány drážky pro budící vinutí (ss proud)
- hydroalternátory
 - oproti turboalt. větší průměr,menší délka → pomaloběžný stroj
 - rotor s vyniklými póly
 - rotor poháněn vodní turbínou
- synchronní motory otáčky dány kmitočtem
- synchronní kompenzátory pro řízení účiníku
- synchronní kolektory
- středofrekvenční alternátory

Alternátor při chodu naprázdno

- v rotoru jedna cívka buzena ss proudem → rotor rotujícím elmagnetem
- při nulovém odebírání proudu ze 3f cívek alternátor běží naprázdno
- připojením zátěži o stejném příkonu začne statorem procházet proud vyvolávající točivé mag. pole

Řízení napětí alternátoru

- budící napětí se musí měnit tak, aby při zapojení zátěže svorkové napětí bylo stálé
- výkon alternátoru řídíme množstvím páry přivedené do turbíny

Paralelní chod alternátorů

- · každý alternátor připojený do sítě musí mít
 - stejní sled fází
 - stejné napětí
 - stejný kmitočet
 - napětí ve fázi

Ochrany alternátorů

• nadproudová, napěťová ochrana; chlazení (včasné odpojení, větrák)

Malé alternátory se stálými magnety

- s permanentním buzením
 - pro motorová vozidla
 - mag. tok tvořen permanentním magnetem
 - v mag. obvodu statoru je uloženo pracovní vinutí, ze kterého se odebírá potřebný proud pro provoz
 - na rotoru je upevněno několik párů per. magnetů tak, že se vždy střídá severní a jižní pól magnetu
 - nevyžadují regulaci; popř. regulace usměrňovačem
- malé alternátory
 - stator trvale zmagnetován; vytváří jednotlivé póly
 - v rotoru navinuta jen jedna cívka
 - nepotřebuje budič

Synchronní stroje

Synchronní motory a generátory

- synchronní generátory alternátory
- · synchronní kompenzátory
 - připojen k napájecí střídavé síti a pracuje naprázdno
 - má velký výkon aby kompenzoval jalový výkon
 - plynule reguluje napětí rozvodné sítě
- synchronní motor
 - stator stejný jako u async. motoru
 - na rotoru soustava pólů buzený ss proudem; u menších motorů perma. magnety
 - točivé mag. pole vzniká připojením 3f proudu na stator
 - rotor se otáčí synchronně s mag. polem statoru

$$n=rac{60*f}{p}$$

kde n je rychlost; p počet pólpárů; f frekvence napájení (obvykle 50 Hz); jednotkou jsou otáčky za minutu (ot/min)

- rozlišení podle uspořádání rotoru
 - s vyjádřenými póly rotor z rotorového kola; upevněn určitý počet pólů (4+); každý pól má svou budící cívku
 - s hladkým rotorem rotor z pevného válce; na povrchu podélné drážky s budícím ss vinutím
- při velkém zatížení motoru dojde k zastavení a odběru velkého proudu nakrátko

Spouštění synchronních motorů

- je třeba rotor roztočit na async. otáčky a poté zapnout ss buzení do rotoru, rotor se zmagnetuje a je vtažen do synchronismu
- · možnosti roztočení rotoru

- pomocným async. motorem
- vinutím nakrátko
 - s hladkým rotorem je budící vinutí ve 2/3 obvodu
 - do zbylé 1/3 můžeme vložit klec nakrátko
- pomocí autotransf.
- frekvenčním měničem
- pomocí turboalt.

Jednofázové synchronní motory

- malé sync. motůrky
 - za chodu odpojíme buzení; motor setrvává v chodu
 - motor se rozběhne jako async. ale dále běží sync. rychlostí
 - využití při malých výkonech (zapisovací přístroje atd.)
- SMR motůrky
 - stator s vyniklými póly a dvěma vinutí
 - rotor z perma. magnetu
 - motor s trvale připojeným kondenzátorem
 - určeny pro střídavé napětí; užití v požadavcích otáčení ve dvou smyslech a častý rozběh