Consecuencia lógica y satisfacibilidad

Clase 04

IIC 1253

Prof. Cristian Riveros

Recordatorio: Consecuencia lógica

Sea $\Sigma = \{\alpha_1, \dots, \alpha_m\}$ un conjunto de formulas con variables p_1, \dots, p_n .

Definición

■ Diremos que α es consecuencia lógica de Σ si, y solo si, para toda valuación v_1, \ldots, v_n se tiene que:

si
$$\left[\bigwedge_{i=1}^{m} \alpha_i\right](v_1,\ldots,v_n) = 1$$
, entonces $\alpha(v_1,\ldots,v_n) = 1$.

■ Si α es consecuencia lógica de Σ , entonces escribiremos $\Sigma \models \alpha$.

Ejemplo

Recordatorio: Sobre consecuencia lógica

¿cuáles de las siguientes afirmaciones son verdaderas?

1. $\{1\} \models \alpha$ entonces α es una tautología.

- **V**
- 2. Si α es una contradicción, entonces $\{\alpha\} \models \beta$ para toda formula β .

¿cuál es la relación entre $\models y \rightarrow ?$

Outline

Reglas de consecuencia lógica

Satisfacibilidad

Outline

Reglas de consecuencia lógica

Satisfacibilidad

Algunas reglas de consecuencia lógica

- 1. Modus ponens: $\{p, p \rightarrow q\} \models q$
- 2. Modus tollens: $\{ \neg q, p \rightarrow q \} \models \neg p$
- 3. Silogismo: $\{p \rightarrow q, q \rightarrow r\} \models p \rightarrow r$
- 4. Silogismo disyuntivo: $\{p \lor q, \neg p\} \models q$
- 5. Conjunción: $\{p, q\} \models p \land q$
- 6. Simplificación conjuntiva: $\{p \land q\} \models p$
- 7. Aplificación disyuntiva: $\{p\} \models p \lor q$
- 8. Demostración condicional: $\{p \land q, p \rightarrow (q \rightarrow r)\} \models r$
- 9. Demostración por casos: $\{p \rightarrow r, q \rightarrow r\} \models (p \lor q) \rightarrow r$

Demuestre cada una de las consecuencias lógicas

- 1. Verificando todas las valuaciones (tabla de verdad).
- 2. Deducimos α desde Σ reusando alguna de las reglas anteriores.

¿cómo podemos "reusar" las reglas anteriores?

Composición y consecuencia lógica

Sean $\Sigma = \{\alpha_1(p_1, \dots, p_n), \dots, \alpha_m(p_1, \dots, p_n)\}$ y β_1, \dots, β_n formulas proposicionales.

Definición

La **composición** $\Sigma(\beta_1,...,\beta_n)$ es el conjunto resultante de componer cada formula en Σ con $\beta_1,...,\beta_n$, esto es:

$$\Sigma(\beta_1,\ldots,\beta_n) = \{\alpha_1(\beta_1,\ldots,\beta_n),\ldots,\alpha_m(\beta_1,\ldots,\beta_n)\}$$

Teorema

Sean Σ un conjunto de formulas y $\alpha(p_1,\ldots,p_n)$, β_1,\ldots , β_n formulas.

Si
$$\Sigma \vDash \alpha$$
, entonces $\Sigma(\beta_1, \ldots, \beta_n) \vDash \alpha(\beta_1, \ldots, \beta_n)$.

Demuestre este teorema (muy similar al caso de equivalencia lógica)

- 1. Verificando todas las valuaciones (tabla de verdad).
- 2. Deducimos α desde Σ reusando alguna de las reglas anteriores.

¿cómo hacemos esta "deducción"?

```
Ejemplo
\{ p, p \rightarrow q, s \lor r, \neg s \land \neg t \} \models q \land r
                 1. p (Premisa)
                 2. p \rightarrow q (Premisa)
                 3. q (Modus Ponens 1 y 2)
                 4. s \lor r (Premisa)
                 5. \neg s \rightarrow r (equivalencia con 4.)
                 6. \neg s \land \neg t (Premisa)
                 7. \neg s (Simplificación conjuntiva 6)
                 8. r \pmod{\text{Modus Ponens 5 y 7}}
                 9. q \wedge r (Conjunción 3 y 8)
```

¿por qué esta secuencia de pasos **demuestra** que $\Sigma \models \alpha$?

Para deducir α desde Σ

1. Si $\Sigma' \vDash \alpha$ y $\Sigma' \subseteq \Sigma$, entonces $\Sigma \vDash \alpha$.

"Si queremos demostrar que $\Sigma \vDash \alpha$ pero demostramos α usando solo un subconjunto de Σ , entonces hemos demostrado que $\Sigma \vDash \alpha$."

Ejemplo

$$\{ p, p \rightarrow q, s \lor r, \neg s \land \neg t \} \models q \land r \}$$

- 1. p (Premisa)
- 2. $p \rightarrow q$ (Premisa)
- 3. q (Modus Ponens 1 y 2)

$$\{p, p \rightarrow q, s \lor r, \neg s \land \neg t\} \models q$$

Demostración: ejercicio

Para deducir α desde Σ

- 1. Si $\Sigma' \models \alpha$ y $\Sigma' \subseteq \Sigma$, entonces $\Sigma \models \alpha$.
- 2. Si $\Sigma \models \alpha$ y $\Sigma \cup \{\alpha\} \models \beta$, entonces $\Sigma \models \beta$.

"Si demostramos α desde Σ , y demostramos β usando Σ y α , entonces habremos demostrado que $\Sigma \vDash \beta$."

Ejemplo

$$\{ p, p \rightarrow q, s \lor r, \neg s \land \neg t \} \vDash q \land r$$

3. q (Modus Ponens 1 y 2)

8. r (Modus Ponens 5 y 7)

9. $q \wedge r$ (Conjunción 3 y 8)

 $\{p, p \rightarrow q, s \lor r, \neg s \land \neg t, q, r\} \models q \land r$

... por lo tanto, $\{p, p \rightarrow q, s \lor r, \neg s \land \neg t\} \models q \land r$.

Para deducir α desde Σ

- 1. Si $\Sigma' \models \alpha$ y $\Sigma' \subseteq \Sigma$, entonces $\Sigma \models \alpha$.
- 2. Si $\Sigma \vDash \alpha$ y $\Sigma \cup \{\alpha\} \vDash \beta$, entonces $\Sigma \vDash \beta$.

"Si demostramos α desde Σ , y demostramos β usando Σ y α , entonces habremos demostrado que $\Sigma \vDash \beta$."

Demostración: ejercicio

- 1. Si $\Sigma' \vDash \alpha$ y $\Sigma' \subseteq \Sigma$, entonces $\Sigma \vDash \alpha$
- 2. Si $\Sigma \cup \{\alpha\} \models \beta$ y $\Sigma \models \alpha$, entonces $\Sigma \models \beta$.

Estrategia para demostrar $\Sigma \models \alpha$

- Demostramos que $\Sigma \models \beta_0$. (usando 1. y reglas anteriores)
- Demostramos que $\Sigma \cup \{\beta_0\} \models \beta_1$. (usando 1. y reglas anteriores)
- Demostramos que $\Sigma \cup \{\beta_0, \beta_1\} \models \beta_2$. (usando 1. y reglas anteriores)
- **.**..
- Demostramos que $\Sigma \cup \{\beta_0, \dots, \beta_{n-1}\} \models \beta_n$. (usando 1. y reglas ant.)
- Demostramos que $\Sigma \cup \{\beta_0, \dots, \beta_n\} \vDash \alpha$.
 - ..., usando 2. concluimos que $\Sigma \vDash \alpha$.

```
Ejemplo
\{p, p \rightarrow q, s \lor r, \neg s \land \neg t\} \models q \land r
                 1. p (Premisa)
                 2. p \rightarrow q (Premisa)
                 3. q (Modus Ponens 1 y 2)
                 4. s \lor r (Premisa)
                 5. \neg s \rightarrow r (equivalencia con 4.)
                 6. \neg s \land \neg t (Premisa)
                 7. \neg s (Simplificación conjuntiva 6)
                 8. r \pmod{\text{Modus Ponens 5 y 7}}
                 9. q \wedge r (Conjunción 3 y 8)
```

¿alguna estrategia mejor?

Outline

Reglas de consecuencia lógica

Satisfacibilidad

Satisfacción de un conjunto de formulas

Definiciones

• $\alpha(p_1,\ldots,p_n)$ se dice satisfacible si existe una valuación v_1,\ldots,v_n :

$$\alpha(v_1,\ldots,v_n) = 1$$

- $\Sigma = \{\alpha_1, \dots, \alpha_m\}$ con variables p_1, \dots, p_n se dice satisfacible si existe una valuación v_1, \dots, v_n tal que: $\left[\bigwedge_{i=1}^m \alpha_i\right](v_1, \dots, v_n) = 1$.
- Σ es inconsistente si NO es satisfacible.

¿qué propiedad cumple la tabla de verdad de una formula satisfacible? ¿y la del conjunto?

Satisfacción de un conjunto de formulas

Definiciones

 $\alpha(p_1,\ldots,p_n)$ se dice satisfacible si existe una valuación v_1,\ldots,v_n :

$$\alpha(v_1,\ldots,v_n) = 1$$

- $\Sigma = \{\alpha_1, \dots, \alpha_m\}$ con variables p_1, \dots, p_n se dice satisfacible si existe una valuación v_1, \dots, v_n tal que: $\left[\bigwedge_{i=1}^m \alpha_i\right](v_1, \dots, v_n) = 1$.
- Σ es inconsistente si NO es satisfacible.

¿cuál de las siguientes formulas/conjuntos son satisfacibles?

- $(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$
- \blacksquare { $\neg q \lor p$, $q \lor \neg r$, $\neg p \lor r$ }

Consecuencia lógica vs satisfacibilidad

Teorema

$$\{\alpha_1,\ldots,\alpha_m\} \vDash \alpha$$
 si, y solo si, $\{\alpha_1,\ldots,\alpha_m,\neg\alpha\}$ es inconsistente.

Demostración (⇒)

Suponga que $\{\alpha_1, \ldots, \alpha_m\} \vDash \alpha$.

PD: para toda v_1, \ldots, v_n se cumple que $\left[\bigwedge_{i=1}^m \alpha_i \wedge \neg \alpha \right] (v_1, \ldots, v_n) = 0$.

Tomamos una valuación cualquiera v_1, \ldots, v_n y tenemos dos casos:

- 1. Si $[\bigwedge_{i=1}^{m} \alpha_i](v_1, \ldots, v_n) = 0$,
 - entonces $\left[\bigwedge_{i=1}^{m} \alpha_i \wedge \neg \alpha\right] (v_1, \dots, v_n) = 0.$

(¿por qué?)

- 2. Si $\left[\bigwedge_{i=1}^{m} \alpha_i \right] (v_1, \dots, v_n) = 1$, entonces:
 - $\alpha(v_1,\ldots,v_n)=1$
 - $\neg \alpha(v_1, \ldots, v_n) = 0$
 - ... y por lo tanto $\left[\bigwedge_{i=1}^{m} \alpha_i \wedge \neg \alpha\right] (v_1, \dots, v_n) = 0$.

Consecuencia lógica vs satisfacibilidad

Teorema

$$\{\alpha_1, \dots, \alpha_m\} \models \alpha$$
 si, y solo si, $\{\alpha_1, \dots, \alpha_m, \neg \alpha\}$ es inconsistente.

Demostración (←)

Suponga que $\{\alpha_1, \ldots, \alpha_m, \neg \alpha\}$ es inconsistente.

PD1: para toda v_1, \ldots, v_n ,

si
$$\left[\bigwedge_{i=1}^{m} \alpha_i\right](v_1,\ldots,v_n) = 1$$
, entonces $\alpha(v_1,\ldots,v_n) = 1$.

Sea v_1, \ldots, v_n una valuación cualquiera tal que $\left[\bigwedge_{i=1}^m \alpha_i \right] (v_1, \ldots, v_n) = 1$.

PD2:
$$\alpha(v_1, ..., v_n) = 1$$
.

$$\left[\bigwedge_{i=1}^{m} \alpha_{i}\right](v_{1}, \ldots, v_{n}) = 1 \quad \text{entonces} \quad \neg \alpha(v_{1}, \ldots, v_{n}) = 0 \quad \text{(ipor qué?)}$$

$$\text{entonces} \quad \alpha(v_{1}, \ldots, v_{n}) = 1$$

Satisfacibilidad y representación de problemas

Problema

Dada una fórmula α , queremos verificar si α es satisfacible.

¿cómo podemos hacer esto eficientemente?

- El problema de satisfacción es un problema fundamental tanto en ciencia de la computación como en ingeniería.
- Muchos otros problemas pueden ser resueltos usando este problema.