Introduction to Game Theory Nash Equilibrium Computation and Applications

Sujit Prakash Gujar

sujit.gujar@iiit.ac.in

Agenda

- Examples: How to compute NE?
- Iterated Dominance
- Two Player non-zero sum games and LCP
- Complexity of computing a NE

Meet at the cafe game:

A B	L	G
L	2,1	0.5,0.5
G	0,0	1,2

× No dominant strategy equilibirium

Meet at the cafe game:

A B	L	G
L	2,1	0.5,0.5
G	0,0	1,2

- × No dominant strategy equilibirium
- (L,L) and (G,G) PSNE

Meet at the cafe game:

A B	L	G
L	2,1	0.5,0.5
G	0,0	1,2

- × No dominant strategy equilibirium
- (L,L) and (G,G) PSNE
- Does it have MSNE?

Meet at the cafe game:

A B	L	G
L	2,1	0.5,0.5
G	0,0	1,2

- × No dominant strategy equilibirium
- (L,L) and (G,G) PSNE
- Does it have MSNE?
- Say Player A plays L with prob p and Player B plays with q (Note this is enough to specify mixed strategy completely though more precise way is $\sigma_1=(p,1-p), \sigma_2=(q,1-q)$ and $\sigma=(\sigma_1,\sigma_2)$)

	L	G
L	2,1	0.5,0.5
G	0,0	1,2

• Will A randomize if $U_A(L,q) > U_A(G,q)$?

	L	G
L	2,1	0.5,0.5
G	0,0	1,2

• Will A randomize if $U_A(L,q) > U_A(G,q)$?

	L	G
L	2,1	0.5,0.5
G	0,0	1,2

- Will A randomize if $U_A(L,q) > U_A(G,q)$? Why?
- What is $U_A(L,q)$, $U_A(G,q)$?

	L	G
L	2,1	0.5,0.5
G	0,0	1,2

- Will A randomize if $U_A(L,q) > U_A(G,q)$? Why?
- What is $U_A(L,q), U_A(G,q)$?
- What can we say about q

	L	G
L	2,1	0.5,0.5
G	0,0	1,2

- Will A randomize if $U_A(L,q) > U_A(G,q)$? Why?
- What is $U_A(L,q), U_A(G,q)$?
- What can we say about q
- $U_A(L,q) = 2q + 0.5(1-q)$ and $U_A(G,q) = 1-q \Rightarrow q = \frac{1}{5}$

	L	G
L	2,1	0.5,0.5
G	0,0	1,2

- Will A randomize if $U_A(L,q) > U_A(G,q)$? Why?
- What is $U_A(L,q), U_A(G,q)$?
- What can we say about q
- $U_A(L,q) = 2q + 0.5(1-q)$ and $U_A(G,q) = 1-q \Rightarrow q = \frac{1}{5}$
- Similarly what can we say about p?

	L	G
L	2,1	0.5,0.5
G	0,0	1,2

- Will A randomize if $U_A(L,q) > U_A(G,q)$? Why?
- What is $U_A(L,q)$, $U_A(G,q)$?
- What can we say about q
- $U_A(L,q) = 2q + 0.5(1-q)$ and $U_A(G,q) = 1-q \Rightarrow q = \frac{1}{5}$
- Similarly what can we say about p?
- And $p = \frac{1}{5}$ or $p = \frac{4}{5}$?

	Hawk	Dove
Hawk	(0,0)	(5,1)
Dove	(1,5)	(3,3)

• Can (H,H) or (D,D) be PSNE? Are there any PSNE?

	Hawk	Dove
Hawk	(0,0)	(5,1)
Dove	(1,5)	(3,3)

- Can (H,H) or (D,D) be PSNE? Are there any PSNE?
- Say Player 1 plays H with prob p and Player 2 with q

	Hawk	Dove
Hawk	(0,0)	(5,1)
Dove	(1,5)	(3,3)

- Can (H,H) or (D,D) be PSNE? Are there any PSNE?
- Say Player 1 plays H with prob p and Player 2 with q
- What can we say about *p* and *q*?

	Hawk	Dove
Hawk	(0,0)	(5,1)
Dove	(1,5)	(3,3)

- Can (H,H) or (D,D) be PSNE? Are there any PSNE?
- Say Player 1 plays H with prob p and Player 2 with q
- What can we say about p and q?

•
$$5(1-q) = q + 3(1-q)$$
 and $5(1-p) = p + 3(1-p) \Rightarrow p = \frac{2}{3} = q$

How to Compute Nash Equilibrium in General?

Consider the following game:

	1	2	3	4	5	6
1	(0,0)	(5,1)	(3,4)	(1,0)	(3,7)	(0,0)
2	(8,0)	(2,2)	(-4,4)	(-1,0)	(8,7)	(6,4)
3	(2,3)	(3,2)	(3,-4)	(4,0)	(2,7)	(0,0)
4	(1,1)	(6,4)	(2,1)	(2,6)	(3,7)	(0,0)
5	(5,6)	(7,5)	(1,2)	(3,4)	(4,7)	(0,0)
6	(-1,2)	(9,6)	(8,5)	(1,6)	(5,2)	(0,5)
7	(1,4)	(0,7)	(7,9)	(1,0)	(1,7)	(0,0)

• What are PSNE?

How to Compute Nash Equilibrium in General?

Consider the following game:

	1	2	3	4	5	6
1	(0,0)	(5,1)	(3,4)	(1,0)	(3,7)	(0,0)
2	(8,0)	(2,2)	(-4,4)	(-1,0)	(8,7)	(6,4)
3	(2,3)	(3,2)	(3,-4)	(4,0)	(2,7)	(0,0)
4	(1,1)	(6,4)	(2,1)	(2,6)	(3,7)	(0,0)
5	(5,6)	(7,5)	(1,2)	(3,4)	(4,7)	(0,0)
6	(-1,2)	(9,6)	(8,5)	(1,6)	(5,2)	(0,5)
7	(1,4)	(0,7)	(7,9)	(1,0)	(1,7)	(0,0)

- What are PSNE?(2,5) and (6,2). May be many more...
- How about MSNE?
- Let $\sigma_1 = (p_1, p_2, \dots, p_7)$ and $\sigma_2 = (q_1, \dots, q_6)$
- What we can say about these first? $\sum p_i = 1 \sum q_j = 1$.

How to Compute Nash Equilibrium in General?

Consider the following game:

	1	2	3	4	5	6
1	(0,0)	(5,1)	(3,4)	(1,0)	(3,7)	(0,0)
2	(8,0)	(2,2)	(-4,4)	(-1,0)	(8,7)	(6,4)
3	(2,3)	(3,2)	(3,-4)	(4,0)	(2,7)	(0,0)
4	(1,1)	(6,4)	(2,1)	(2,6)	(3,7)	(0,0)
5	(5,6)	(7,5)	(1,2)	(3,4)	(4,7)	(0,0)
6	(-1,2)	(9,6)	(8,5)	(1,6)	(5,2)	(0,5)
7	(1,4)	(0,7)	(7,9)	(1,0)	(1,7)	(0,0)

- What are PSNE?(2,5) and (6,2). May be many more...
- How about MSNE?
- Let $\sigma_1 = (p_1, p_2, \dots, p_7)$ and $\sigma_2 = (q_1, \dots, q_6)$
- What we can say about these first? $\sum p_i = 1 \sum q_j = 1$. What more?
- Can we say $U_1(1, \sigma_2) = U_1(2, \sigma_2) = \ldots = U_1(7, \sigma_2)$?

Recall Prisoner's Dilemma

	С	NC
C	(-5,-5)	(-1,-10)
NC	(-10,-1)	(-2,-2)

• Let prob of p for C by Player 1 and q by Player 2

		С	NC
С		(-5,-5)	(-1,-10)
NC	. ((-10,-1)	(-2,-2)

- Let prob of p for C by Player 1 and q by Player 2
- $-5q (1-q) = -10q 2(1-q) \Rightarrow q = \frac{-1}{4}$

		С	NC
С		(-5,-5)	(-1,-10)
NC	. ((-10,-1)	(-2,-2)

- Let prob of p for C by Player 1 and q by Player 2
- $-5q (1-q) = -10q 2(1-q) \Rightarrow q = \frac{-1}{4}$

		С	NC
ſ	C	(-5,-5)	(-1,-10)
	NC	(-10,-1)	(-2,-2)

- Let prob of p for C by Player 1 and q by Player 2
- $-5q (1-q) = -10q 2(1-q) \Rightarrow q = \frac{-1}{4}$ Non-sense
- Where does the assumption of this equality go wrong?

	С	NC
С	(-5,-5)	(-1,-10)
NC	(-10,-1)	(-2,-2)

- Let prob of p for C by Player 1 and q by Player 2
- $-5q (1-q) = -10q 2(1-q) \Rightarrow q = \frac{-1}{4}$ Non-sense
- Where does the assumption of this equality go wrong?
- Row player is indifferent among the actions for which she assigns non-zero probability given a mixed strategy of column player.

• Let
$$\Omega_i(\sigma_i) = \{s_i \in S_i : \sigma_i(s_i) > 0\}$$

• Let
$$\Omega_i(\sigma_i) = \{s_i \in S_i : \sigma_i(s_i) > 0\}$$

•
$$\Omega(\sigma) = \Omega_1(\sigma_1) \times \Omega_2(\sigma_2) \times \ldots \times \Omega_n(\sigma_n)$$
 (support of σ)

- Let $\Omega_i(\sigma_i) = \{s_i \in S_i : \sigma_i(s_i) > 0\}$
- $\Omega(\sigma) = \Omega_1(\sigma_1) \times \Omega_2(\sigma_2) \times \ldots \times \Omega_n(\sigma_n)$ (support of σ)
- At NE, what can we say for $U_i(s_i, \sigma i) \ \forall s_i \in \Omega_i$?

- Let $\Omega_i(\sigma_i) = \{s_i \in S_i : \sigma_i(s_i) > 0\}$
- $\Omega(\sigma) = \Omega_1(\sigma_1) \times \Omega_2(\sigma_2) \times \ldots \times \Omega_n(\sigma_n)$ (support of σ)
- At NE, what can we say for $U_i(s_i, \sigma i) \ \forall s_i \in \Omega_i$?
- $U_i(s_i, \sigma{-}i) = U_i(s_i', \sigma{-}i) \ \forall s_i, s_i' \in \Omega_i$ and

- Let $\Omega_i(\sigma_i) = \{s_i \in S_i : \sigma_i(s_i) > 0\}$
- $\Omega(\sigma) = \Omega_1(\sigma_1) \times \Omega_2(\sigma_2) \times \ldots \times \Omega_n(\sigma_n)$ (support of σ)
- At NE, what can we say for $U_i(s_i, \sigma i) \ \forall s_i \in \Omega_i$?
- $U_i(s_i, \sigma i) = U_i(s'_i, \sigma i) \ \forall s_i, s'_i \in \Omega_i \ \text{and}$ $U_i(s_i, \sigma - i) \ge U_i(s'_i, \sigma - i) \ \forall s_i \in \Omega_i, s'_i \in S_i \setminus \Omega_i$

$$w_i = U_i(s_i, \sigma_{-i}) \qquad \forall s_i \in \Omega_i \ \forall i \tag{1}$$

$$w_i \geq U_i(s_i', \sigma_{-i}) \qquad \forall s_i' \in S_i \setminus \Omega_i \ \forall i$$
 (2)

$$\sigma_i(s_i) > 0 \qquad \forall s_i \in \Omega_i \ \forall i$$
 (3)

$$\sigma_i(s_i') = 0 \qquad \forall s_i' \in S_i \setminus \Omega_i \ \forall i$$
 (4)

$$\sum_{s_i \in S_i} \sigma_i(s_i) = 1 \qquad \forall i \tag{5}$$

$$w_i = U_i(s_i, \sigma_{-i}) \qquad \forall s_i \in \Omega_i \ \forall i \tag{1}$$

$$w_i \geq U_i(s_i', \sigma_{-i}) \qquad \forall s_i' \in S_i \setminus \Omega_i \ \forall i$$
 (2)

$$\sigma_i(s_i) > 0 \qquad \forall s_i \in \Omega_i \ \forall i$$
 (3)

$$\sigma_i(s_i') = 0 \qquad \forall s_i' \in S_i \setminus \Omega_i \ \forall i$$
 (4)

$$\sum_{s_i \in S_i} \sigma_i(s_i) = 1 \qquad \forall i \tag{5}$$

Convince yourself that there are $n+2\sum_i |S_i|$ equations If we have found $w_1,\ldots,w_n,\sigma_1,\ldots,\sigma_n$ satisfying the above, we have found a NE.

Two Player non-Zero Sum Games

Two Player non-Zero sum games, also called Bi-matrix Games

$$U_1(s_i, \sigma_2) = \sum_{s_2 \in S_2} \sigma_2(s_2) \times u_1(s_i, s_2)$$

• $U_1(), U_2()$ are linear equations

Two Player non-Zero Sum Games

Two Player non-Zero sum games, also called Bi-matrix Games

$$U_1(s_i, \sigma_2) = \sum_{s_2 \in S_2} \sigma_2(s_2) \times u_1(s_i, s_2)$$

- $U_1(), U_2()$ are linear equations
- Hence, equations (1) (5) are linear

Two Player non-Zero Sum Games

Two Player non-Zero sum games, also called Bi-matrix Games

$$U_1(s_i, \sigma_2) = \sum_{s_2 \in S_2} \sigma_2(s_2) \times u_1(s_i, s_2)$$

- $U_1(), U_2()$ are linear equations
- Hence, equations (1) (5) are linear
- Can we solve it in polynomial time?Why or How?

Bi-matrix Games and LCP

- Solving (1) (5) for two players is called Linear Complementarity
 Problem (LCP)
- LCPs are well studied and useful in LP, Quadratic Programming, computational mechanics
- LCP: No objective function, more about feasibility

LCP in Standard Form Given $M(\in R^{n\times n}), q(\in R^n)$ find $w, z \in R^n$ s.t.

$$w^T z = 0$$
$$w = Mz + q$$
$$w, z \ge 0$$

It is shown that Bi-matrix game is equivalent to the above

Complexity of Nash Equilibrium Computation

- Lemke-Howson¹: Used LCP to solve bi-matrix games
- Time complexity: Worst case exponential
- Nash (1951): NASH reduces to BROWER
- PPAD: Polynomial Parity Arguments on Directed graphs (Papadimtriou 1994)
- Daskalakis, Goldberg, Papadimitriou², Chen and Deng³: NASH is PPAD complete

¹Lemke, Carlton E., and Joseph T. Howson, Jr. "Equilibrium points of bimatrix games." Journal of the Society for Industrial and Applied Mathematics 12.2 (1964): 413-423.

³Chen, Xi, and Xiaotie Deng. "Settling the Complexity of Two-Player Nash Equilibrium." FOCS. Vol. 6. 2006.

Applications

- Packet Forwarding Game 1
- Packet Forwarding Game 2
- In Networks:
 Papadimitriou, Christos. "Algorithms, games, and the internet."
 Proceedings of the thirty-third annual ACM symposium on Theory of computing. ACM, 2001.
- Security and Game Theory
 - where to locate strong antivirus firewalls in network to make it secure
 - Patrolling at air-ports
 - ► Patrolling for fare-invasion

Better Patrolling with Game Theory

- Indian Railways caught a racket in 2012: Travel ticketless in trains; if caught, touts pay for you
 http://www.thehindu.com/news/national/
 travel-ticketless-in-trains-if-caught-touts-pay-for-you/
 article5252855.ece
- Prof Millind Tambe, University of Southern California: POineer in using Game Theory for Security
- TRUSTS: Scheduling Randomized Patrols for Fare Inspection in Transit Systems, Conference on Innovative Applications of Artificial Intelligence (IAAI)

TRUSTS

TRUSTS

$$\begin{aligned} \max_{\mathbf{x},\mathbf{u}} \sum_{\lambda \in \Lambda} p_{\lambda} u_{\lambda} \\ \text{s.t.} \quad u_{\lambda} &\leq \min\{\rho, \ \tau \sum_{e \in \lambda} x_e f_e\}, \ \text{for all } \lambda \in \Lambda \\ \sum_{v \in V^+} x_{(v^+,v)} &= \sum_{v \in V^-} x_{(v,v^-)} \leq \gamma \\ \sum_{(v',v) \in E} x_{(v',v)} &= \sum_{(v,v^\dagger) \in E} x_{(v,v^\dagger)}, \ \text{for all } v \in V \\ \sum l_e \cdot x_e &\leq \gamma \cdot \kappa, 0 \leq x_e \leq \alpha, \forall e \in E \end{aligned}$$

TRUSTS

$$\begin{aligned} \max_{\mathbf{x},\mathbf{u}} \sum_{\lambda \in \Lambda} p_{\lambda} u_{\lambda} \\ \text{s.t.} \quad u_{\lambda} &\leq \min\{\rho, \ \tau \sum_{e \in \lambda} x_e f_e\}, \ \text{for all } \lambda \in \Lambda \\ \sum_{v \in V^+} x_{(v^+,v)} &= \sum_{v \in V^-} x_{(v,v^-)} \leq \gamma \\ \sum_{(v',v) \in E} x_{(v',v)} &= \sum_{(v,v^\dagger) \in E} x_{(v,v^\dagger)}, \ \text{for all } v \in V \\ \sum l_e \cdot x_e &\leq \gamma \cdot \kappa, 0 \leq x_e \leq \alpha, \forall e \in E \end{aligned}$$

 Λ : set of possible types $(\lambda \in \Lambda)$

 x_e : Probability of patrolling on edge e (marginal representation of patrolling strategy)

f_e: Proabablity of getting caught on e if patrolling happens

 ρ : Fare per ride

au : Fine if caught traveling without ticket

 γ : No of patrol units available

K: duration for which each patrol unit can work

Performance

- Fare ρ : \$1.5, Fine τ : \$100

Further Reading

- Game Theory and Mechanism Design, Y Narahari. World Scientific Publishing Company, 2014.
- Multiagent systems: Algorithmic, game-theoretic, and logical foundations, Shoham, Yoav, and Kevin Leyton-Brown. Cambridge University Press, 2008. (Free download).
- Game Theory by Roger Myerson. Harvard University press, 2013.
- Algorithmic Game Theory, edited by Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay Vazerani. (Non-printable version available online).

```
http://gametheory.net/
```

http://lcm.csa.iisc.ernet.in/gametheory/lecture.html

