

Projet tutoré Intitulé:

Collaborative filtering approach in recommender systems

Présenté par:

- El Yagouby Mohamed Amine
- Taghzouti Othmane

Soutenu le 28 mai 2022

Encadré par:

Pr. Nfaoui El Habib

Le plan

I - Contexte général du projet

Les systèmes de recommandation Problématique Solution proposée Objectifs Organisation

II - Systèmes de recommandations basés sur le filtrage collaboratif

Data utilisée Memory-based Model-based L'évaluation

III - L'application web SmartRecommender

Description Diagramme CU Outils Démonstration Résultats et discussion

Contexte général du projet

Aperçu sur les systèmes de recommandation

- Guider l'utilisateur dans ses choix
- Maximiser les profits (Amazon 5ème plus grande entreprise au monde, 70% des visionnages sur Youtube...)

Principe de fonctionnement

Content-based filtering

Collaborative filtering

Liked by Alice and Bob Similar users

Problématique

- Comment peut-on construire un système de recommandation?
 - Laquelle des deux méthodes est mieux adaptée?
 - Comment peut-on valider le résultat de notre système de recommandation?

Filtrage collaboratif:

- Pas de connaissance approfondie requise
 - Data à utiliser moins volumineuse
 - L'effet « surendipitous »

Objectifs du projet

- Étude du filtrage collaboratif avec ses différents modèles
 - Comparaison et analyse de ces modèles
- Réalisation d'une application web de recommandation avec des datasets variées

Les systèmes de recommandation Problématique Solution proposée Objectifs

Organisation

Le filtrage collaboratif

Le filtrage collaboratif

Data utilisée

Matrice utilisateur-objet (User-item matrix)

Objets

196 242 3 186 302 3 22 377 1 244 51 2 166 346 1	vield ratings	movield	userld
22 377 1 244 51 2	242 3	242	196
244 51 2	302 3	302	186
	377 1	377	22
166 346 1	51 2	51	244
	346 1	346	166

4				5	
4	5		5		
	5		4		3
5	4	?	?	?	?

Les types du filtrage collaboratif: memory based (User based)

Memory-based

$$\hat{r}_{u,i} = aggr_{v \in N_i(u)} r_{v,i}$$

$$\hat{r}_{u,i} = \frac{\sum_{v \in N_i(u)} sim(u,v).r_{v,i}}{\sum_{v \in N_i(u)} sim(u,v)}$$

Les types du filtrage collaboratif: memory based (Item based)

$$\hat{r}_{u,i} = aggr_{j \in N_u(i)} r_{u,j}$$

$$\hat{r}_{u,i} = \frac{\sum_{j \in N_u(i)} sim(i,j).r_{u,j}}{\sum_{j \in N_u(i)} sim(i,j)}$$

Mesure de similarité

Memory-based

$$cos \, similarity(u,v) = \frac{\sum_{i \in I_{uv}} r_{ui} r_{vi}}{\sqrt{\sum_{i \in I_{u}} r_{ui}^2 \sum_{i \in I_{v}} r_{vi}^2}}$$

$$msd \, similarity(u,v) = \frac{1}{\frac{1}{|I_{uv}|} \sum_{i \in I_{uv}} (r_{ui} - r_{vi})^2 + 1}$$

Model based

Décomposition en valeurs singulières (SVD)

M m×n U_r

Σ_rr×r

V_r

$$\hat{\boldsymbol{r}}_{ui} = \boldsymbol{U}_{u} \boldsymbol{V}_{i}^{T}$$

Objets

Facteurs latents

Popularité -

?

?

?

?

?

?

		1
2	•	,)
-		J

Utilisateurs

A H H LAVATE	HURITER 2045	1	111	is custom anymore in	LIONKING
4				5	
4	5		5		
	5		4		3
5	4				

?	?
?	?
?	?
2	2

Durée-

\sim
~ [

	5	4	?	?	?	?
		5		4		3
	4	5		5		
	4				5	
•						

Matrice incomplète (95% des valeurs sont inconnues)

Objets

Utilisateurs

4			5	
4	5	5		
	5	4		3
5	4			

Model based

Minimisation de la fonction objective

$$min_{p,q} \sum_{(u \cdot i) \in K} (r_{ui} - U_u V_i^T)^2 + \lambda (||U_u||^2 + ||V_i||^2)$$

Memory-based

Validation des modèles de prédiction

 Mesure de l'écart entre les scores estimés et les scores réels (non utilisés dans la construction des modèles) grâce aux relations suivantes

L'erreur absolue moyenne (MAE)
Mean Absolute Error

$$MAE = \frac{1}{|\widehat{R}|} \sum_{\widehat{r}_{ui} \in \widehat{R}} |r_{ui} - \widehat{r}_{ui}|$$

L'erreur quadratique moyenne (RMSE)
Root Mean Squared Error

$$RMSE = \sqrt{\frac{1}{|\widehat{R}|} \sum_{\widehat{r}_{ui} \in \widehat{R}} (r_{ui} - \widehat{r}_{ui})^2}$$

L'application web SmartRecommender

Description de l'application

Outils

- Exploiter le travail achevé précédemment au sein de l'étude des différents modèles du filtrage collaboratif
- Construction et test des systèmes de recommandation en utilisant 2 bases de données:
 - Films (MovieLens 1M ratings, 3883 films, 6040 utilisateurs)
 - Livres (GoodBooks 981757 ratings, 10000 livres 53000 utilisateurs)

Diagramme CU

Les outils principalement utilisés

Outils

Python

Langage de programmation qui fournit des outils adaptés à l'apprentissage automatique

Pandas

Libraire de manipulation des données

Django

Framework qui suit l'architecture MVT

Scikit-Suprise

- Librairie orientée spécifiquement à la construction et l'analyse des systèmes de recommandation
- Convient parfaitement à notre projet grâce aux algorithmes de CF qui y sont définis: SVD pour le model-based, KNN inspired pour le memory based

Démonstration en vidéo

Résultats et discussions

SVD KNN User-based KNN Item-based

<u>accuracy of the algorithm:</u>

<u>accuracy of the algorithm:</u>

<u>accuracy of the algorithm:</u>

RMSE 0.8809531994362201

MAE 0.6911881047892232

RMSE 0.9283307004098478

MAE 0.7321873820573952

RMSE 0.9178920596660614

MAE 0.7230052919717014

Résultats et discussions

Exemple:

L'utilisateur 5 qui est intéressé par les films du genre comédie et drama

SVD

KNN User-based

KNN Item-based

the user 5:

Top 5 recommandations for Top 5 recommandations for Top 5 recommandations for the user 5:

the user 5:

Annie Hall (1977)	Comedy Romance
Do the Right Thing (1989)	Comedy Drama
Manhattan (1979)	Comedy Drama Romance
Magnolia (1999)	Drama
Seventh Seal, The (Sjunde inseglet, Det) (1957)	Drama

Gate of Heavenly Peace, The (1995)	Documentary
Schlafes Bruder (Brother of Sleep) (1995)	Drama
Paralyzing Fear: The Story of Polio in America, A (1998)	Documentary
Ulysses (Ulisse) (1954)	Adventure
Smashing Time (1967)	Comedy

Open Season (1996)	Comedy
Harlem (1993)	Drama
Condition Red (1995)	Action Drama Thriller
Angela (1995)	Action Drama Thriller
Nueba Yol (1995)	Comedy Drama

Résultats et discussions

- On ne peut pas décider directement le meilleur système de recommandation
- Chaque base de données s'adapte différemment avec un certain algorithme
 - > Les entreprises divisent les données collectées
 - > Testent chaque partie avec un modèle diffèrent
 - > Prennent finalement le modèle qui génère un maximum de revenu

Conclusion

Fin

Merci pour votre attention