振动与波动(一)

一、选择题

- 1. 有一质点的运动表达式为 $x=A\sin(\omega t+\varphi)$, 当时间 t=T/4 时 (T 为周期),质点的加速度为 ()

- (A) $-A\omega^2 \sin \varphi$ (B) $A\omega^2 \sin \varphi$ (C) $-A\omega^2 \cos \varphi$ (D) $A\omega^2 \cos \varphi$
- 2. 一平面简谐波沿 x 正方向传播, 表达式为 $y = 0.2\cos\left|2\pi\left(\frac{t}{2}\right)\right|$
- s时刻的波形图是(
 - (A)

-) (B)
- (C)
- (\mathbf{D})

- 3. 一物体作简谐振动,振动方程为 $x = A\cos(\omega t + \pi)$ 。则该物体在 t = T/4 时刻的动能与 t=T/8(T 为振动周期)时刻的势能之比为(
- A. 1:4
- B. 1:2
- C. 1:1
- D. 2:1
- E. 4:1
- 4. 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(
- $(A) kA^2$
- (B) $0.5kA^2$
- (C) $0.25kA^2$
- 5. 图中所画的是两个简谐振动的振动曲线。若这两个简谐振动可叠 加,则合成余弦振动的初相为(
- A. 1.5π
- Β. π
- $C.~0.5\pi$
- D. 0

二、填空题

- 1. 两个小球A、B作同频率、同方向的简谐振动,当A球自正方向回到平衡位置时,B球恰 好在正方向的端点,则A球比B球_____(填"超前"或"落后") π/2。
- 2. 在两个相同的弹簧下各悬一物体,两物体的质量比 $m_1:m_2=4:1$,则二者作简谐振动的周期 之比为 $T_1:T_2=$ 。
- 3. 一弹簧振子一端连接一质量为2kg的物体,在光滑水平面内作简谐振动,振动表达式为

 $x=0.1\sin(50t-\pi/2)$ (SI),则其运动的总能量为_____J。

4. 一单摆的悬线长 l=1.5m,在顶端固定点的竖直下方 0.45m 处有一小钉子,如图所示,设摆动很小,则单摆的左右两方的摆角振幅之比 A_{\pm} : A_{\pm} =_____。

5. 已知两同频率同方向的简谐振动 x_1, x_2 振幅都为 A, x_1 初始位置为 $-A, x_2$ 初始位置为 0.5A,初速度大于 0,则两简谐振动初相位之差: ________,以及合振动的振幅_______。

三、计算题

1. 一个沿x轴作简谐振动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表示. 如果t=0时质点的状态分别是:

$$(1) x_0 = -A;$$

(2)过平衡位置向正向运动;

(3)过
$$x = \frac{A}{2}$$
处向负向运动;

(4)过
$$x = -\frac{A}{\sqrt{2}}$$
 处向正向运动.

试求出相应的初位相,并写出振动方程.

2. 如图所示,物体的质量为m,放在光滑斜面上,斜面与水平面的夹角为 θ ,弹簧的倔强系数为k,滑轮的转动惯量为J,半径为R. 先把物体托住,使弹簧维持原长,然后由静止释放,试证明物体作简谐振动,并求振动周期.

