

ОНЛАЙН-ОБРАЗОВАНИЕ

Меня хорошо слышно && видно?

Напишите в чат, если есть проблемы! Ставьте + если все хорошо

Архитектура сетей

OSI

TCP/IP

01 osi

OSI

- 7 Прикладной уровень
 Application layer
- 6 Уровень представления Presentation layer
- 5 Сеансовый уровень Session layer
- 4 Транспортный уровень Transport layer
- 3 Сетевой уровень Network layer
- 2 Канальный уровень LLC Data link layer MAC
- 1 Физический уровень Physical layer

TCP/IP (DOD)

4 Уровень приложений Application layer

- 3 Транспортный уровень Transport layer
- 2 Уровень сети Интернет Internet

1 Уровень доступа к сети Network Access layer

Path MTU Discovery

Уровень 1 - физический

Физический уровень описывает способы передачи бит через физические среды линий связи, соединяющие сетевые устройства

Уровень 2 - канальный

Канальный уровень (1-ый уровень модели TCP/IP) - описывает способ кодирования данных для передачи пакета данных на физическом уровне

MAC(Media Acess Control, или Medium Access Control) - подуровень управления доступом к среде

LCC(Logical Link Control) - подуровень управления логической связью

Уровень 2 - канальный

Задачи уровня 2:

- Формирование / обработка сигнала
- Множественный доступ
- Выделение границ кадра
- Аппаратная адресация
- Контроль ошибок передачи

Имена интерфейсов

- Старая нотация eth0, eth1... iftypeN. Группировка интерфейсов по типу и сквозная нумерация. Из глобальных минусов - в качестве eth0 может оказаться не тот интерфейс, что до перезагрузки, например, если вставить новую карточку в "младший" слот.
- Новая нотация (от systemd) Predictable Network Interface Names. В своем виде по умолчанию использует форматы (упрощенно)
 (en|wl)[P<domain>]p<bus>s<slot>[f<function>][n<phys_port_name>|d<dev_port>] PCI location
 (en|wl)[P<domain>]o<bus>[f<function>][n<phys_port_name>|d<dev_port>] -

(en|wl)[P<domain>]o<bus>[f<function>][n<phys_port_name>|d<dev_port>] - Onboard device

Таким образом enp0s3 говорит нам о том, что мы имеем дело с Ethernetадаптером подключенным к шине pci №0 в слот №3, а eno1 говорит об onboard ethernet-адаптере с индексом 1. Предназначается для определения пути передачи данных. Отвечает за определение кратчайших маршрутов и маршрутизацию, отслеживание неполадок и заторов в сети

4 бита Номер	4 бита Длина	8 бит Тип сервиса	16 бит Общая длина					
версии	заголовка	PR D T R	l					
16 бит Идентификатор пакета			3 бита Флаги 13 бит Смещение фрагмент					
8 бит Время жизни		8 бит Протокол верхнего уровня		16 бит Контрольная сумма				
		32 (IP-адрес	бита источни	ka				
		32 (IP-адрес н	бита іазначен	Р				
		Параметры и	выравни	вание				

Уровень 3 - сетевой

Bits 0-2: Precedence.

Bit 3: 0 = Normal Delay, 1 = Low Delay.

Bit 4: 0 = Normal Throughput, 1 = High Throughput.

Bit 5: 0 = Normal Relibility, 1 = High Relibility.

Bit 6-7: Reserved for Future Use.

Precedence

111 - Network Control 011 - Flash

110 - Internetwork Control 010 - Immediate

101 - CRITIC/ECP 001 - Priority

100 - Flash Override 000 - Routine

Flags

Bit 0: reserved, must be zero

Bit 1: (DF) 0 = May Fragment, 1 = Don't Fragment.

Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.

```
# ipcalc 195.239.108.7/26
Address: 195.239.108.7 11000011.11101111.01101100.00 000111
Wildcard: 0.0.0.63
                          0000000.00000000.00000000.00 111111
=>
Network: 195.239.108.0/26
                          11000011.11101111.01101100.00 000000
HostMin: 195.239.108.1
                          11000011.11101111.01101100.00 000001
HostMax: 195.239.108.62
                          11000011.11101111.01101100.00 111110
Broadcast: 195.239.108.63
                          11000011.11101111.01101100.00 111111
                           Class C
Hosts/Net: 62
```

Предположим у нас есть сеть:

HostA посылает HostC ір-пакет

TCP

UDP

Transmission Control Protocol (TCP) Header 20-60 bytes

sc	ource por 2 byt	t number tes	destination port number 2 bytes					
		11.0	e number ytes					
acknowledgement number 4 bytes								
data offset 4 bits	reserved 3 bits	control flags 9 bits	window size 2 bytes					
	check 2 byt		urgent pointer 2 bytes					
optional data 0-40 bytes								

Заголовок UDP

Unicast

Broadcast

03TCP

Transmission Control Protocol (TCP) Header 20-60 bytes

sc	ource por 2 by	t number tes	destination port number 2 bytes					
		sequence 4 by						
	acknowledgement number 4 bytes							
data offset 4 bits	reserved 3 bits	control flags 9 bits	window size 2 bytes					
	check 2 by		urgent pointer 2 bytes					
optional data 0-40 bytes								

- CWR (Congestion Window Reduced) Поле «Окно перегрузки уменьшено» флаг установлен отправителем, чтобы указать, что получен пакет с установленным флагом ECE (RFC 3168)
- ECE (ECN-Echo) Поле «Эхо ECN» указывает, что данный узел способен на ECN (явное уведомление перегрузки) и для указания отправителю о перегрузках в сети (RFC 3168)
- URG поле «Указатель важности» задействовано (англ. Urgent pointer field is significant)
- ACK поле «Номер подтверждения» задействовано (англ. Acknowledgement field is significant)

- PSH (англ. Push function) инструктирует получателя протолкнуть данные, накопившиеся в приёмном буфере, в приложение пользователя
- RST оборвать соединения, сбросить буфер (очистка буфера) (англ. Reset the connection)
- SYN синхронизация номеров последовательности (англ. Synchronize sequence numbers)
- FIN (англ. final, бит) флаг, будучи установлен, указывает на завершение соединения (англ. FIN bit used for connection termination).

Flag				Decimal						
CWR	Congestion Window Reduced	1	0	0	0	0	0	0	0	128
ECE	ECN-Echo	0	1	0	0	0	0	0	0	64
URG	Urgent	0	0	1	0	0	0	0	0	32
ACK	Acknowledgement	0	0	0	1	0	0	0	0	16
PSH	Push	0	0	0	0	1	0	0	0	8
RST	Reset	0	0	0	0	0	1	0	0	4
SYN	Syn	0	0	0	0	0	0	1	0	2
FIN	Fin	0	0	0	0	0	0	0	1	1

- CLOSED Начальное состояние узла. Фактически фиктивное
- LISTEN Сервер ожидает запросов установления соединения от клиента
- SYN-SENT Клиент отправил запрос серверу на установление соединения и ожидает ответа
- SYN-RECEIVED Сервер получил запрос на соединение, отправил ответный запрос и ожидает подтверждения
- ESTABLISHED Соединение установлено, идёт передача данных
- FIN-WAIT-1 Одна из сторон (назовём её узел-1) завершает соединение, отправив сегмент с флагом FIN

- CLOSE-WAIT Другая сторона (узел-2) переходит в это состояние, отправив, в свою очередь сегмент АСК и продолжает одностороннюю передачу
- FIN-WAIT-2 Узел-1 получает АСК, продолжает чтение и ждёт получения сегмента с флагом FIN
- LAST-ACK Узел-2 заканчивает передачу и отправляет сегмент с флагом FIN
- TIME-WAIT Узел-1 получил сегмент с флагом FIN, отправил сегмент с флагом ACK и ждёт 2*MSL секунд, перед окончательным закрытием соединения
- CLOSING Обе стороны инициировали закрытие соединения одновременно: после отправки сегмента с флагом FIN узел-1 также получает сегмент FIN, отправляет АСК и находится в ожидании сегмента АСК (подтверждения на свой запрос о разъединении)

04

Управляющие пакеты

Управляющие пакеты

- Net-tools (arp, ifconfig, netstat, route) <u>deprecated</u>
- Iproute2 (ip, ss, tc, nstat)
- NetworkManager (nmcli)

iproute2

- ip управление маршрутизацией, интерфейсами, arp-таблицами
- tc traffic control управлением приоритезацией трафика
- ss sockstat информация о socket'ax (одна из сторон netstat)
- nstat информация о сетевых каунтерах

- ip link list
- ip addr show
- ip route show
- ip route Is
- ip neigh show
- ip rule list
- cat /etc/iproute2/rt_tables
- ip route list table <main|local|default>
- echo 200 Otus >> /etc/iproute2/rt_tables
- ip rule add from 10.0.0.10 table Otus
- ip route add default via 195.96.98.253 dev ppp2 table Otus

включение форвардинга

echo 1 > /proc/sys/net/ipv4/ip_forward

выключение фильтрации асинхронной маршрутизации

```
#!/bin/bash
for DEV in /proc/sys/net/ipv4/conf/*/rp_filter
do
    echo 0 > $DEV
done
```

Сетевые снифферы.

- tcpdump информация о сетевой активности. Работает максимально близко к "проводу"
- ngrep утилита для поиска пакетов по содержимому, Network grep. По смыслу схожа с tcpdump.
- Wireshark (tshark)

05

Questions?

Спасибо за внимание!

