ClimDB Next Generation Meeting

- The Environmental Data Initiative (EDI) organized a workshop:
 - Titled the "Next generation climate and hydrological data products"
 - University of New Mexico in Albuquerque, NM, 12-14 March 2019
 - Participants were LTER Information Managers, EDI Staff, and scientists from both LTER and US Forest Service
 - Objectives:
 - Evaluate the needs and desire for accessing harmonized multi-site and multiagency climate and hydrology data
 - Consider archive and replacement of ClimHydroDB
 - Consider the infrastructure required to collect and store these data
 - Consider new technologies or workflows based on current data storage models

Workshop Overview

- Archive ClimDB/HydroDB (ClimDB) data in EDI
 - ClimDB is too difficult to maintain and will be retired
- Explore CUAHSI HIS as a destination for climate/hydrology data
 - Prepare archived ClimDB data using CUAHSI ODM
 - Evaluate use of CUAHSI tools to replace ClimDB current functionality
 - Evaluate CUAHSI ODM as a framework to harmonize high temporal data
- An RFC will be sent to the ClimDB community
 - Consider proposal from workshop
 - Future workshops planned

CUAHSI= Consortium of Universities for the Advancement of Hydrologic Science

ODM= Observations Data Model

HIS= Hydrologic Information System

ClimDB/HydroDB Data Providers

Individual sites

- Participating sites manage and control original source data within their local information systems
- Sites provide data as a static or dynamically created file

Exchange format

- Consistent, comma-delimited file
- Flexibility allows contributors to add or remove parameters from harvest files at any time
- Attributes and units standardized and based on a controlled vocabulary

ClimDB/HydroDB Harvester / Database/ Query Interface

ClimDB/HydroDB Site Contributions

- 45 total participating sites
 - 24 LTER sites + 2 International LTER sites
 - 22 USFS sites
 - 12 sites include USGS gauging stations
- 389 total measurement stations
 - 189 meteorological
 - 200 stream gauging (includes 65 USGS)
- 21 daily measurement parameters
 - Primarily streamflow, air temperature, precipitation
- >10 million daily values

ClimDB/HydroDB – proposed step 1

- Archive all current ClimDB/HydroDB daily data PASTA
 - Archiving will be done with little recourse to site
 - GCE Toolbox, R tools
 - Data will be prepared for archival in EDI (L0)
 - One data package per site
 - i.e., Wide format (all parameters) by date
 - One table per station
 - Generic EML will be applied
 - Sites will have the opportunity to update data and/or metadata
 - Available metadata will be pulled from the current ClimDB/HydroDB database
 - The ClimDB interface can be used to update site information
 - Deadline date for adding/editing to be determined

ClimDB/HydroDB – proposed step 2

- Explore uploading ClimDB/HydroDB daily data to CUAHSI HIS
 - Data will be prepared in CUAHSI framework (ODM)
 - Examples for current ClimDB participating sites
 - Metadata to populate CUAHSI tables
 - CUAHSI tables: Data values qualified by sites, methods, variables, source, quality control
 - ClimDB parameters have been mapped to CUAHSI variables
 - Metadata from the current ClimDB (lat-long, elevation, methods, people)
 - Enter using CUAHSI templates
 - CUAHSI ODM compatible tables will be stored in EDI (L1), uploaded to HIS
 - One package per site
 - 6 CUAHSI-style tables per data package

Future ClimDB/HydroDB (ClimDB/HydroDB 2.0?)

- Explore CUAHSI ODM framework for future ClimDB
 - Use high temporal resolution data that is in EDI (LO)
 - Convert data into common CUAHSI ODM framework for EDI (L1)
 - Keep native temporal resolution
 - Harmonized parameters and units
 - Select priority stations and parameters
 - Place select data into CUAHSI HIS (L2)
 - Choose priority stations and parameters
 - Aggregate data to hourly format