

# Team 1-2 HW2 Covid-19 Pooled Testing Case

Hanqi Yao, Yuchen Wang, Xixuan Zhai

### Task one: Base Model

• Total test amount N:10000

• Prevalence: 1% (Infection rate)

• Accurancy: 100%

| Row-pooled Test                                                              | Number V      | Ilustration 🔻                   |
|------------------------------------------------------------------------------|---------------|---------------------------------|
| # of people in a row (k_r)                                                   | 10            |                                 |
| # of group                                                                   | 1000          |                                 |
| # of 1st test                                                                | 1000 =        | = # of groups                   |
| prevanlence                                                                  | 1%            |                                 |
| P(X>=1)(X: # of positive person in a certain group) X~B(k_r, prevanlence)    | 0.095617925 = | = 1-P(X=0)                      |
| E(Y) (Y: # of group which are tested positive)<br>$Y \sim B(N/k_r, P(X>=1))$ | 95.61792499 = | =# of groups * p(X>=1)          |
| # of 2nd test                                                                | 956.1792499 = | $= k_r * E(Y)$                  |
| # of total test                                                              | 1956.17925 =  | = # of 1st test + # of 2nd test |

| Cross-Pooled Test                                                                            | Number      | Ilustration                        |
|----------------------------------------------------------------------------------------------|-------------|------------------------------------|
| # of order of a square(k_s)                                                                  | 10          |                                    |
| # of squares                                                                                 | 100         | = 10000/(10^2)                     |
| # of 1st test                                                                                | 2000        | = # of squares * k_s*2             |
| prevanlence                                                                                  | 1%          |                                    |
| P(X1>=1)(X1: #  of positive person in a certain row)<br>$X1\sim B(k_s, \text{ prevanlence})$ | 0.095617925 | = 1-P(X1=0)                        |
| P(X2>=1)(X2: # of positive person in a certain column) X2~B(k_s, prevanlence)                | 0.095617925 | = 1-P(X2=0)                        |
| E(Y1) (Y1: # of column which are tested positive)<br>$Y \sim B(k_r, P(X1 >= 1))$             | 0.95617925  | = # of order of a square *P(X1>=1) |
| E(Y2) (Y2: # of row which are tested positive)<br>$Y \sim B(k_r, P(X2 \ge 1))$               | 0.95617925  | = # of order of a square *P(X2>=1) |
| E(Z)=E(Y1*Y2)=E(Y1)E(Y2) (Z: # of person that need to test again) Y1, Y2 are independent     | 0.914278758 |                                    |
| # of 2nd test                                                                                | 91.4278758  | = # of squares * E(Z)              |
| # of total test                                                                              | 2091.427876 | = # of 1st test + # of 2nd test    |

In summary, row-pooled test needs 1956.17925 times and cross-pooled needs 2091.42876 times

#### Task two: Recommendations



- When k\_r = 10, the row-pooled method has the smallest total test times.
- When k\_s = 25, the cross-pooled method has the smallest total test times.
- When k\_r &k\_s<=10, we choose row-pooled test, in in all other cases, we choose the cross-pooled test.

## Task three: Change of prevalence test

| Scenario Summary                 | Scenario Summary |             |             |             |             |
|----------------------------------|------------------|-------------|-------------|-------------|-------------|
|                                  |                  |             |             |             |             |
| Changing Cells:                  |                  |             |             |             |             |
| prevalence                       | 1%               | 1%          | 2%          | 5%          | 10%         |
| Result Cells:                    |                  |             |             |             |             |
| Total times of row_pooled test   | 1956.17925       | 1956.17925  | 2829.271931 | 5012.630608 | 7513.215599 |
| Total times of cross_pooled test | 1293.633483      | 1293.633483 | 2372.402205 | 6021.65829  | 9415.741777 |

- Sensitivity Analysis Conclusion: As prevalence increases, the testing burden grows for both methods.
- Practical Application Recommendation: If prevalence is low, cross-pooled tests  $\sqrt{\ }$ . When prevalence is high, although cross-pooled tests still have a slight advantage, the efficiency gap between the methods is minimal. Other factors  $\sqrt{\ }$

## Task four: Acbott Lab test (change of accuracy)

| variable                                                                  | number |
|---------------------------------------------------------------------------|--------|
| Total amount                                                              | 2000   |
| # of people who has virus                                                 | 1000   |
| # of people who has virus and be tested positive                          | 990    |
| # of people who has no virus                                              | 1000   |
| #of people who has no virus but be tested positive                        | 50     |
| P(positive) =P(positive No virus)*P(No virus)+P(Positive  virus)*P(Virus) | 0.0594 |

| Changed model                         | Number      |  |  |
|---------------------------------------|-------------|--|--|
| prevalence                            | 5.94%       |  |  |
| k_r                                   | 10          |  |  |
| k_s                                   | 10          |  |  |
| # of total times of row-pooled test   | 5579.370252 |  |  |
| # of total times of cross-pooled test | 6941.327276 |  |  |

| Information Po |        | Positive              |            |                         |        |                       |         |
|----------------|--------|-----------------------|------------|-------------------------|--------|-----------------------|---------|
|                | Priors | Conditional Likeliho  | oods       | Joint                   |        | Posteriors            | 2       |
| Virus          | 1%     | P(Positive Virus)=    | 0.99       | P(Virus and Positive)=  | 0.0099 | P(Virus Positive)=    | 0.16667 |
| No Virus       | 99%    | P(Positive No Virus): | 0.05       | P(No Virus and Positive | 0.0495 | P(No Virus Positive)= | 0.83333 |
|                |        |                       | 125,000.00 | P(Positive)=            | 0.0594 |                       |         |

• The result 0.0594 is the new **prevalence**.By incorporating this value into the base model, we can obtain the new total times as **5579.370252** for row-pooled test and **6941.327276** for cross-pooled test.