Lezione 11-12 Trus formazioni allini e isometrie Prop: La compositione de due trasformazione affin e affine Dim: {cx} = A x + b, gcx = A2 x + b2 g(g(x))=A2(g(x))+b2=A2(A1x+b2)+b2= = A2. A1 x + A2. b1 + b2 parte huere vettore (parte de haslazione) pate lineure. Prop: L'inversa de una tràsformatione affine (se esiste)

$r = \{(2,1) + (3,-2)\}$	
Vo vettore	
panto diretione give Linetione give to the first of the f	
La velta innumque fcv) avri	
\$ (V) = \$ ((2,1)) come panto iniviale \$ ((2,1)) = (3,8)	
· Come direzione (1 solo rustit d. (3-2)	
$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$	
$(1 \circ)(-2)^{-}(3)$	
Parlé heure di f.	
Forma parametria di for): (3,8)+(.(2,3).	

c) Sempre con la stessa trusformatione & deter	annare ly no to she
um volta rustata diventa la retta Ey=x	
JCx, y)= C-y+4, x+6)	
1º modo: La velta richiesta e la rotazione or	
Leblu vetta y=x intomo al punto (-15)=Po-	Donno que sta us formatione Socció i conti
	facil i conti
2º modo: Determino 2 panti P, e P2 sulla	velti y=x,
ai esempio $P_1 = (1,1)$ $P_2 = (0,0)$. Cerco	$Q_1 e Q_2$

Oss: Quando si tratto di travare immagini / controimmagini
A solto spati a flan. Tourite mappe affani:
> le rappresentizioni parametriche sono como de per trovare le jun
imanagi imanagi
-s " cartésiant " 1, contoimma-
gini.
Es: Cosa succede se fucuis una retirione in senso oranio
d'angolo d'ispetto a un panto, seguito du um volazione
d'argolo d'ispetto a un punto, seguita du une volazione in senso antiorano vispetto a un alto punto?

$ \begin{cases} 2 & \text{cx} = A_1 \times + b_1 \end{cases} $	A= (cos d - sind) 1= (sind cos d)
$ \begin{cases} 2 & \text{Cx} = A_2 \times b_2 \\ - & \text{Cx} \end{cases} $	Sin (-a) cos (-d) (-sin d cos a)
82(8,cx)=A2(Ax+h2)	$+b_2 = A_2 \cdot A_1 \times + A_2 \cdot b_1 + b_2$
	$\frac{1}{x} + \frac{1}{2} + \frac{1}{2}$
	traslazione lampil vellere Azbithz.

S la rette d'equatione { y = 3} E preservater du f Per calculare la traslative, prendo un punt qualsiasi sculla retter Ey = 33, and esemply P=(03) e culculo JCP) SCP)-P=(7,0) Je la composizione della niflessione vispetto alla retor r = {y=3/2} can la traslazione lango il vettore v=(7,0) $o g(x,y) = \frac{1}{2} (\sqrt{3} x - y + 5, x + \sqrt{3}y + 7)$

A e una ma nice de ro	hazione in senso antiorano di angulo = 300		
Centro di notazione: ri	isolvere (cx)=x		
$\begin{pmatrix} 1 \sqrt{3} \times - \frac{4}{2} + \frac{5}{2} \\ 2 \sqrt{3} \times - \frac{4}{2} + \frac{5}{2} \end{pmatrix}$	= X		
2 2 2			
5.1 73 7			
(1/2×+ 7/3 y + 7/2 =	- 9		
	2		
Consideriano i 3 pan	nt sequent in IR.		
A = (12,4), B = (1,3,6	6) $C = C - 1 3 4$		
Determinare le espre	essioni d'filte be isometrie che		
mandans il triangolo A	BC in se stesso.		

Deim a 1 1 1 1 2 2 200 1
Devo aggingere le mappe affini but che
S(A)=A, S(B)=C, S(C)=B
Pauls fisso
opposite that hell'origine
cD-D-A
A questo punto cera tite le applicazione linear ortigonali
troli-che.
SCB-A)= C-A o o o Sono le parti hireni delle
o o o sono le parti hier i delle
S(C-A)=B-A anglighting alling comme
S(C-A)=B-A appliasin offini cerale.

Le sonto e poi trasto	(
Le sonto e poi trasto	it relative /+ P-s P+,	A	
P-> P-A-> F(P-A)->	F(P-A)+A		
			