Visual Regions Encode for (Anticipatory States in Mice

Krithika Suresh, Arenski Vazquez, Thuan Nguyen, Armando Abelho, Zijun Wang, Oscar Aguilar

Pod: Amaterasu TA: Dafne Soares pTA: Shirin Taghian Mentor: Aharon Ravia

Background:

- Anticipatory states are well-studied in higher-order cortical regions but less so in sensory regions such as the visual cortex
- Anticipation can influence an animal's ability to discriminate similar stimuli

Hypothesis:

 The visual cortex encodes anticipatory states, even without explicit external cues

Relevance:

If sensory regions like the visual cortex encode these goal-directed vs free-exploratory internal states, this suggests that cognitive states can influence sensory representations.

Dataset:

- Zhong et al., 2025 in vivo calcium imaging of the visual cortex.
- ~80,000 recorded neurons per animal → rich population data for studying state encoding.
- Includes supervised and unsupervised behavioral conditions, enabling state-specific comparisons.

Task Design and Cortical Recording Regions

Task Design and Cortical Recording Regions

Analysis Pipeline

1) Data preparation

Extract behavioural and neural data from dataset

Align neural data with behavioural data

2) Encoding on a neuronal level

Quantify anticipatory neurons via cohen's d

Visualize distribution of high |d'| neurons

Single-Animal Analysis of Neuronal Selectivity & Activity During Anticipatory States (TX109)

Cohen's d used to classify neurons as anticipatory, non-anticipatory, or neutral.

Across-Animal Comparison of Neuronal Selectivity Proportions During Anticipation

Sensory Regions (LM, RL, V1) Show High Anticipatory Neuron Proportions Across Animals

To rule out potential confounds, we tested whether difference in anticipatory vs non-anticipatory neural activity could be explained by differences in velocity.

<u>Are Anticipatory and Non-Anticipatory Neural</u> <u>Differences Explained by Speed?</u>

- Mice accelerate toward the reward and decelerated after the reward.
- Each mouse showed distinct running speeds. On average, some paused more often and others sprinted faster.
- It is possible that the observed neural differences in both states simply reflect changes in running speed (processing different visual motion).

<u>Disentangling Anticipation From Visual and Temporal Representations</u>

Control groups

 Same subjects, unrewarded stimulus (tests temporal representation)

2) Different subjects, same visual stimulus without reward (controls visual representation)

Are These Neural Responses Specific to Anticipation?

Neurons do not show anticipatory encoding during unrewarded stimulus.

Mouse	Trials with no licks	Trials with licks	Number of neurons
TX60	118	37	57368
TX109	104	50	89577
VR2	194	42	71069

Comparing activity of cells to the first vs last lick

<u>Unrewarded (unsupervised) controls with same stimulus show reduced neuronal selectivity</u>

Mouse	No. of Neurons	
TX104	42565	
TX119	36935	
TX123	43103	

Differences most likely because of anticipation!

4) Population encoding/decoding Encoding: PCA, tSNE Decoding: Linear regression model from PCA

PCA Reveals Separation of Anticipatory and Non-Anticipatory Neural Activity in Supervised Mice

Decoding Anticipatory State From Population Activity

PCA -> Top 100 Features Logistic Regression 1 = ant. state; 0 = non-ant. state

TX109

98% cross-val accuracy

Clear State Separation

TX60

90% cross-val accuracy

-> 94% accuracy via LR hyperparameter optimisation

Conclusion

In this project, we tested whether anticipatory states are <u>encoded</u> in the mouse visual cortex and whether these states can be <u>decoded</u> from the neuronal activity.

 Cohen's d quantified the effect size of anticipatory vs non-anticipatory neural activity, allowing us to classify neurons into selective groups.

 Population analyses and dimensionality reduction (PCA & t-SNE) revealed components that separate anticipatory and non-anticipatory states in supervised mice.

 Overall, these findings support the idea that sensory cortices participate in encoding cognitive states, such as reward anticipation

