```
from google.colab import drive
drive.mount('/content/drive')
```

INPUT

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

INPUT

```
df=pd.read_csv("/content/drive/MyDrive/Cola
b Notebooks/World_population_data.csv"
```

```
df.head(5)
```

	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963
0	Aruba	ABW	Population, total	SP.POP.TOTL	54608.0	55811.0	56682.0	57475.0
1	Africa Eastern and Southern	AFE	Population, total	SP.POP.TOTL	130692579.0	134169237.0	137835590.0	141630546.0
2	Afghanistan	AFG	Population, total	SP.POP.TOTL	8622466.0	8790140.0	8969047.0	9157465.0
3	Africa Western and Central	AFW	Population, total	SP.POP.TOTL	97256290.0	99314028.0	101445032.0	103667517.0
4	Angola	AGO	Population, total	SP.POP.TOTL	5357195.0	5441333.0	5521400.0	5599827.0
5 rc	ows × 68 colum	ıns						

1964	1965	 2014	2015	2016	2017	2018	2019
58178.0	58782.0	103594.0	104257.0	104874.0	105439.0	105962.0	106442.0
145605995.0	149742351.0	583651101.0	600008424.0	616377605.0	632746570.0	649757148.0	667242986.0
9355514.0	9565147.0	32716210.0	33753499.0	34636207.0	35643418.0	36686784.0	37769499.0
105959979.0	108336203.0	397855507.0	408690375.0	419778384.0	431138704.0	442646825.0	454306063.0
5673199.0	5736582.0	27128337.0	28127721.0	29154746.0	30208628.0	31273533.0	32353588.0

2020	2021	2022	2023
106585.0	106537.0	106445.0	106277.0
685112979.0	702977106.0	720859132.0	739108306.0
38972230.0	40099462.0	41128771.0	42239854.0
466189102.0	478185907.0	490330870.0	502789511.0
33428486.0	34503774.0	35588987.0	36684202.0

INPUT df.tail(5)

	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963	1964
261	Kosovo	XKX	Population, total	SP.POP.TOTL	990150.0	1014211.0	1038618.0	1063175.0	1087700.0
262	Yemen, Rep.	YEM	Population, total	SP.POP.TOTL	5542459.0	5646668.0	5753386.0	5860197.0	5973803.0
263	South Africa	ZAF	Population, total	SP.POP.TOTL	16520441.0	16989464.0	17503133.0	18042215.0	18603097.0
264	Zambia	ZMB	Population, total	SP.POP.TOTL	3119430.0	3219451.0	3323427.0	3431381.0	3542764.0
265	Zimbabwe	ZWE	Population, total	SP.POP.TOTL	3806310.0	3925952.0	4049778.0	4177931.0	4310332.0
5 row	s × 68 columi	ns							

1965	 2014	2015	2016	2017	2018	2019	2020
1111812.0	1812771.0	1788196.0	1777557.0	1791003.0	1797085.0	1788878.0	1790133.0
6097298.0	27753304.0	28516545.0	29274002.0	30034389.0	30790513.0	31546691.0	32284046.0
19187194.0	54729551.0	55876504.0	56422274.0	56641209.0	57339635.0	58087055.0	58801927.0
3658024.0	15737793.0	16248230.0	16767761.0	17298054.0	17835893.0	18380477.0	18927715.0
4447149.0	13855753.0	14154937.0	14452704.0	14751101.0	15052184.0	15354608.0	15669666.0

2020	2021	2022	2023
1790133.0	1786038.0	1768086.0	1756374.0
32284046.0	32981641.0	33696614.0	34449825.0
58801927.0	59392255.0	59893885.0	60414495.0
18927715.0	19473125.0	20017675.0	20569737.0
15669666.0	15993524.0	16320537.0	16665409.0

df.columns

```
Index(['Country Name', 'Country Code', 'Indicator Name',
'Indicator Code',
    '1960', '1961', '1962', '1963', '1964', '1965', '1966', '1967',
'1968',
    '1969', '1970', '1971', '1972', '1973', '1974', '1975', '1976',
'1977',
    '1978', '1979', '1980', '1981', '1982', '1983', '1984', '1985',
'1986',
    '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994',
'1995',
    '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003',
'2004',
    '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012',
'2013',
    '2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021',
'2022',
    '2023'],
   dtvpe='object')
```

INPUT

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 266 entries, 0 to 265
Data columns (total 68 columns):

#	Column	Non-Null Count	Dtype
0	Country Name	266 non-null	object
1	Country Code	266 non-null	object
2	Indicator Name	266 non-null	object
3	Indicator Code	266 non-null	object
4	1960	264 non-null	float64
5	1961	264 non-null	float64
6	1962	264 non-null	float64
7	1963	264 non-null	float64
8	1964	264 non-null	float64
9	1965	264 non-null	float64
10	1966	264 non-null	float64
11	1967	264 non-null	float64
12	1968	264 non-null	float64
13	1969	264 non-null	float64
14	1970	264 non-null	float64
15	1971	264 non-null	float64
16	1972	264 non-null	float64
17	1973	264 non-null	float64
18	1974	264 non-null	float64
19	1975	264 non-null	float64
20	1976	264 non-null	float64
21	1977	264 non-null	float64
22	1978	264 non-null	float64
23	1979	264 non-null	float64
24	1980	264 non-null	float64
25	1981	264 non-null	float64
26	1982	264 non-null	float64
27	1983	264 non-null	float64
28	1984	264 non-null	float64
29 30	1985	264 non-null 264 non-null	float64 float64
31	1986 1987	264 non-null	float64
32		264 non-null	float64
33		264 non-null	float64
34		265 non-null	float64
35	1991	265 non-null	float64
36	1992	265 non-null	float64
	1993	265 non-null	float64
38	1994	265 non-null	float64
39	1995	265 non-null	float64
40	1996	265 non-null	float64
41	1997	265 non-null	float64
42	1998	265 non-null	float64
43	1999	265 non-null	float64
44	2000	265 non-null	float64
45	2001	265 non-null	float64
46	2002	265 non-null	float64

47	2003	265	non-null	float64
48	2004	265	non-null	float64
49	2005	265	non-null	float64
50	2006	265	non-null	float64
51	2007	265	non-null	float64
52	2008	265	non-null	float64
53	2009	265	non-null	float64
54	2010	265	non-null	float64
55	2011	265	non-null	float64
56	2012	265	non-null	float64
57	2013	265	non-null	float64
58	2014	265	non-null	float64
59	2015	265	non-null	float64
60	2016	265	non-null	float64
61	2017	265	non-null	float64
62	2018	265	non-null	float64
63	2019	265	non-null	float64
64	2020	265	non-null	float64
65	2021	265	non-null	float64
66	2022	265	non-null	float64
67	2023	265	non-null	float64

dtypes: float64(64), object(4)

memory usage: 141.4+ KB

INPUT

df.describe()

-1	1960	1961	1962	1963	1964	1965	1966
count	2.640000e+02						
mean	1.157939e+08	1.173869e+08	1.195401e+08	1.222050e+08	1.248922e+08	1.276182e+08	1.304676e+08
std	3.639920e+08	3.684672e+08	3.751049e+08	3.837174e+08	3.923714e+08	4.011556e+08	4.104328e+08
min	2.646000e+03	2.888000e+03	3.171000e+03	3.481000e+03	3.811000e+03	4.161000e+03	4.531000e+03
25%	5.132212e+05	5.231345e+05	5.337595e+05	5.449288e+05	5.566630e+05	5.651150e+05	5.691470e+05
50%	3.708088e+06	3.816540e+06	3.931214e+06	4.033994e+06	4.112910e+06	4.194930e+06	4.257383e+06
75%	2.670606e+07	2.748694e+07	2.830289e+07	2.914708e+07	3.001684e+07	3.084892e+07	3.163010e+07
max	3.031517e+09	3.072470e+09	3.126894e+09	3.193470e+09	3.260480e+09	3.328243e+09	3.398510e+09
8 rows	× 64 columns						

1967	1968	1969	2014	2015	2016	2017
2.640000e+02	2.640000e+02	2.640000e+02	2.650000e+02	2.650000e+02	2.650000e+02	2.650000e+02
1.333152e+08	1.362430e+08	1.392759e+08	2.948007e+08	2.986442e+08	3.024871e+08	3.063370e+08
4.196670e+08	4.291879e+08	4.390998e+08	9.224214e+08	9.336474e+08	9.448081e+08	9.559803e+08
4.930000e+03	5.354000e+03	5.646000e+03	1.089900e+04	1.087700e+04	1.085200e+04	1.082800e+04
5.773872e+05	5.832700e+05	5.875942e+05	1.743309e+06	1.788196e+06	1.777557e+06	1.791003e+06
4.317222e+06	4.410692e+06	4.515734e+06	1.028212e+07	1.035808e+07	1.032545e+07	1.030030e+07
3.209247e+07	3.249927e+07	3.277149e+07	6.078914e+07	6.073058e+07	6.062750e+07	6.053671e+07
3.468395e+09	3.540186e+09	3.614593e+09	7.317305e+09	7.404251e+09	7.490956e+09	7.577110e+09

2018	2019	2020	2021	2022	2023
2.650000e+02	2.650000e+02	2.650000e+02	2.650000e+02	2.650000e+02	2.650000e+02
3.101259e+08	3.138348e+08	3.174293e+08	3.206783e+08	3.236218e+08	3.269710e+08
9.668651e+08	9.774204e+08	9.875137e+08	9.965683e+08	1.004474e+09	1.013469e+09
1.086500e+04	1.095600e+04	1.106900e+04	1.120400e+04	1.131200e+04	1.139600e+04
1.797085e+06	1.788878e+06	1.790133e+06	1.786038e+06	1.768086e+06	1.756374e+06
1.039533e+07	1.044767e+07	1.060623e+07	1.050577e+07	1.048694e+07	1.059380e+07
6.042176e+07	5.987258e+07	6.170452e+07	6.358833e+07	6.549775e+07	6.743811e+07
7.661178e+09	7.742725e+09	7.821272e+09	7.888964e+09	7.951595e+09	8.024997e+09

df.duplicated().sum()

df.isna().sum()

	0
Country Name	0
Country Code	0
Indicator Name	0
Indicator Code	0
1960	2
2019	1
2020	1
2021	1
2022	1
2023	1
68 rows × 1 colum	nns
dtype: int64	

```
print("\n Total no of unique
countries:",df['Country Name'].nunique())
OUTPUT
['Aruba' 'Africa Eastern and Southern' 'Afghanistan'
 'Africa Western and Central' 'Angola' 'Albania' 'Andorra' 'Arab World'
 'United Arab Emirates' 'Argentina' 'Armenia' 'American Samoa'
 'Antigua and Barbuda' 'Australia' 'Austria' 'Azerbaijan' 'Burundi'
 'Belgium' 'Benin' 'Burkina Faso' 'Bangladesh' 'Bulgaria' 'Bahrain'
 'Bahamas, The' 'Bosnia and Herzegovina' 'Belarus' 'Belize' 'Bermuda'
 'Bolivia' 'Brazil' 'Barbados' 'Brunei Darussalam' 'Bhutan' 'Botswana'
 'Central African Republic' 'Canada' 'Central Europe and the Baltics'
 'Switzerland' 'Channel Islands' 'Chile' 'China' "Cote d'Ivoire"
 'Cameroon' 'Congo, Dem. Rep.' 'Congo, Rep.' 'Colombia' 'Comoros'
 'Cabo Verde' 'Costa Rica' 'Caribbean small states' 'Cuba' 'Curacao'
 'Cayman Islands' 'Cyprus' 'Czechia' 'Germany' 'Djibouti' 'Dominica'
 'Denmark' 'Dominican Republic' 'Algeria'
 'East Asia & Pacific (excluding high income)'
 'Early-demographic dividend' 'East Asia & Pacific'
 'Europe & Central Asia (excluding high income) ' 'Europe & Central Asia'
 'Ecuador' 'Egypt, Arab Rep.' 'Euro area' 'Eritrea' 'Spain' 'Estonia'
 'Ethiopia' 'European Union' 'Fragile and conflict affected situations'
 'Finland' 'Fiji' 'France' 'Faroe Islands' 'Micronesia, Fed. Sts.' 'Gabon'
 'United Kingdom' 'Georgia' 'Ghana' 'Gibraltar' 'Guinea' 'Gambia, The'
 'Guinea-Bissau' 'Equatorial Guinea' 'Greece' 'Grenada' 'Greenland'
 'Guatemala' 'Guam' 'Guyana' 'High income' 'Hong Kong SAR, China'
 'Honduras' 'Heavily indebted poor countries (HIPC)' 'Croatia' 'Haiti'
 'Hungary' 'IBRD only' 'IDA & IBRD total' 'IDA total' 'IDA blend'
 'Indonesia' 'IDA only' 'Isle of Man' 'India' 'Not classified' 'Ireland'
 'Iran, Islamic Rep.' 'Iraq' 'Iceland' 'Israel' 'Italy' 'Jamaica' 'Jordan'
 'Japan' 'Kazakhstan' 'Kenya' 'Kyrgyz Republic' 'Cambodia' 'Kiribati'
 'St. Kitts and Nevis' 'Korea, Rep.' 'Kuwait'
 'Latin America & Caribbean (excluding high income)' 'Lao PDR' 'Lebanon'
 'Liberia' 'Libya' 'St. Lucia' 'Latin America & Caribbean'
 'Least developed countries: UN classification' 'Low income'
 'Liechtenstein' 'Sri Lanka' 'Lower middle income' 'Low & middle income'
 'Lesotho' 'Late-demographic dividend' 'Lithuania' 'Luxembourg' 'Latvia'
 'Macao SAR, China' 'St. Martin (French part)' 'Morocco' 'Monaco'
 'Moldova' 'Madagascar' 'Maldives' 'Middle East & North Africa' 'Mexico'
 'Marshall Islands' 'Middle income' 'North Macedonia' 'Mali' 'Malta'
 'Myanmar' 'Middle East & North Africa (excluding high income)'
 'Montenegro' 'Mongolia' 'Northern Mariana Islands' 'Mozambique'
 'Mauritania' 'Mauritius' 'Malawi' 'Malaysia' 'North America' 'Namibia'
 'New Caledonia' 'Niger' 'Nigeria' 'Nicaragua' 'Netherlands' 'Norway'
 'Nepal' 'Nauru' 'New Zealand' 'OECD members' 'Oman' 'Other small states'
```

'Pakistan' 'Panama' 'Peru' 'Philippines' 'Palau' 'Papua New Guinea'

"Korea, Dem. People's Rep." 'Portugal' 'Paraguay' 'West Bank and Gaza'

'Poland' 'Pre-demographic dividend' 'Puerto Rico'

print(df['Country Name'].unique())

```
'Pacific island small states' 'Post-demographic dividend'
'French Polynesia' 'Qatar' 'Romania' 'Russian Federation' 'Rwanda'
'South Asia' 'Saudi Arabia' 'Sudan' 'Senegal' 'Singapore'
'Solomon Islands' 'Sierra Leone' 'El Salvador' 'San Marino' 'Somalia'
'Serbia' 'Sub-Saharan Africa (excluding high income)' 'South Sudan'
'Sub-Saharan Africa' 'Small states' 'Sao Tome and Principe' 'Suriname'
'Slovak Republic' 'Slovenia' 'Sweden' 'Eswatini'
'Sint Maarten (Dutch part)' 'Seychelles' 'Syrian Arab Republic'
'Turks and Caicos Islands' 'Chad'
'East Asia & Pacific (IDA & IBRD countries)'
'Europe & Central Asia (IDA & IBRD countries)' 'Togo' 'Thailand'
'Tajikistan' 'Turkmenistan'
'Latin America & the Caribbean (IDA & IBRD countries)' 'Timor-Leste'
'Middle East & North Africa (IDA & IBRD countries) ' 'Tonga'
'South Asia (IDA & IBRD)' 'Sub-Saharan Africa (IDA & IBRD countries)'
'Trinidad and Tobago' 'Tunisia' 'Turkiye' 'Tuvalu' 'Tanzania' 'Uganda'
'Ukraine' 'Upper middle income' 'Uruguay' 'United States' 'Uzbekistan'
'St. Vincent and the Grenadines' 'Venezuela, RB' 'British Virgin Islands'
'Virgin Islands (U.S.)' 'Viet Nam' 'Vanuatu' 'World' 'Samoa' 'Kosovo'
'Yemen, Rep.' 'South Africa' 'Zambia' 'Zimbabwe']
```

Total no of unique countries: 266

INPUT

```
print(df['Country Code'].unique())
print("\n Total no of unique country
code:",df['Country Code'].nunique())
```

```
['ABW' 'AFE' 'AFG' 'AFW' 'AGO' 'ALB' 'AND' 'ARB' 'ARE' 'ARG' 'ARM' 'ASM'
 'ATG' 'AUS' 'AUT' 'AZE' 'BDI' 'BEL' 'BEN' 'BFA' 'BGD' 'BGR'
                                                             'BHR' 'BHS'
                                     'BRB' 'BRN' 'BTN' 'BWA' 'CAF'
'BIH' 'BLR' 'BLZ' 'BMU' 'BOL' 'BRA'
'CEB' 'CHE' 'CHI' 'CHL' 'CHN' 'CIV'
                                     'CMR' 'COD'
                                                 'COG'
                                                       'COL'
'CRI' 'CSS' 'CUB' 'CUW' 'CYM' 'CYP' 'CZE' 'DEU' 'DJI'
                                                       'DMA' 'DNK' 'DOM'
'DZA' 'EAP' 'EAR' 'EAS' 'ECA' 'ECS' 'ECU' 'EGY' 'EMU' 'ERI' 'ESP' 'EST'
'ETH' 'EUU' 'FCS' 'FIN' 'FJI' 'FRA' 'FRO' 'FSM' 'GAB' 'GBR' 'GEO' 'GHA'
'GIB' 'GIN' 'GMB' 'GNB' 'GNO' 'GRC' 'GRD' 'GRL' 'GTM' 'GUM' 'GUY' 'HIC'
'HKG' 'HND' 'HPC' 'HRV' 'HTI' 'HUN' 'IBD' 'IBT' 'IDA'
                                                       'IDB'
                                                             'IDN' 'IDX'
'IMN' 'IND' 'INX' 'IRL' 'IRN' 'IRQ' 'ISL' 'ISR' 'ITA' 'JAM' 'JOR' 'JPN'
'KAZ' 'KEN' 'KGZ' 'KHM' 'KIR' 'KNA' 'KOR' 'KWT' 'LAC' 'LAO' 'LBN' 'LBR'
'LBY' 'LCA' 'LCN' 'LDC' 'LIC' 'LIE'
                                           'LMC' 'LMY'
                                     'LKA'
                                                       'LSO' 'LTE' 'LTU'
'LUX' 'LVA' 'MAC' 'MAF' 'MAR' 'MCO' 'MDA' 'MDG' 'MDV' 'MEA' 'MEX' 'MHL'
'MIC' 'MKD' 'MLI' 'MLT' 'MMR' 'MNA' 'MNE' 'MNG' 'MNP' 'MOZ' 'MRT' 'MUS'
'MWI' 'MYS' 'NAC' 'NAM' 'NCL' 'NER' 'NGA' 'NIC' 'NLD' 'NOR' 'NPL' 'NRU'
```

```
'NZL' 'OED' 'OMN' 'OSS' 'PAK' 'PAN' 'PER' 'PHL' 'PLW' 'PNG' 'POL' 'PRE'
 'PRI' 'PRK' 'PRT' 'PRY' 'PSE' 'PSS' 'PST' 'PYF' 'OAT' 'ROU' 'RUS' 'RWA'
'SAS' 'SAU' 'SDN' 'SEN' 'SGP' 'SLB' 'SLE' 'SLV' 'SMR' 'SOM' 'SRB' 'SSA'
 'SSD' 'SSF' 'SST' 'STP' 'SUR' 'SVK' 'SVN' 'SWE' 'SWZ' 'SXM' 'SYC' 'SYR'
 'TCA' 'TCD' 'TEA' 'TEC' 'TGO' 'THA' 'TJK' 'TKM' 'TLA' 'TLS' 'TMN' 'TON'
 'TSA' 'TSS' 'TTO' 'TUN' 'TUR' 'TUV' 'TZA' 'UGA' 'UKR' 'UMC' 'URY' 'USA'
'UZB' 'VCT' 'VEN' 'VGB' 'VIR' 'VNM' 'VUT' 'WLD' 'WSM' 'XKX' 'YEM' 'ZAF'
'ZMB' 'ZWE']
Total no of unique country code: 266
INPUT
df.drop(['Indicator Name','Country
Name'],axis=1,inplace=True)
INPUT
# Filter data for total population
total population data = df[df['Indicator
Code'] == 'SP.POP.TOTL']
# Sort data based on the total population
for 2022
total population sorted =
total_population data.sort values(by="2022"
, ascending=False)
# Get the top ten countries with the
highest total population for 2022
total top ten countries =
total population sorted.head(10)
print("Top ten countries of total
population\n")
print(total top ten countries[['Country
Code'11
```

Top ten countries of total population

```
Country Code
259
              WLD
103
               IBT
140
              LMY
156
              MIC
102
               IBD
62
              EAR
139
              LMC
249
              UMC
63
              EAS
142
              LTE
```

```
# Create the bar plot
plt.figure(figsize=(15, 6))
plt.subplot(2,2,1)
sns.barplot(x="2022", y="Country Code",
data=total_top_ten_countries,
palette="coolwarm")
plt.title("Top Ten Countries of Total
Population (2022)",fontsize=10)
plt.xlabel("Total Population",fontsize=10)
plt.ylabel("Country",fontsize=10)
plt.show()
```



```
# Create the bar plot
plt.figure(figsize=(15, 6))
plt.subplot(2,2,2)
sns.barplot(x="2016", y="Country Code",
data=total_top_ten_countries,
palette="coolwarm")
plt.title("Top Ten Countries of Total
Population (2016)",fontsize=10)
plt.xlabel("Total Population",fontsize=10)
plt.ylabel("Country",fontsize=10)
plt.show()
```



```
# Sort data based on the total population
for 2022
total_population_sorted1 =
total_population_data.sort_values(by="2022"
, ascending=True)

# Get the top ten countries with the
highest total population for 2022
total_bottom_ten_countries =
total_population_sorted1.head(10)
print("Bottom ten countries of total
population\n")
print(total_bottom_ten_countries[['Country
Code']])
```

Bottom ten countries of total population

```
Country Code
245
               TUV
179
              NRU
188
               PLW
255
              VGB
147
              MAF
84
               GIB
212
               SMR
149
              MCO
137
               LIE
225
               SXM
```

```
# Create the bar plot
plt.figure(figsize=(15, 6))
plt.subplot(2,2,1)
sns.barplot(x="2022", y="Country Code",
data=total_bottom_ten_countries,
palette="coolwarm")
plt.title("Bottom Ten Countries of Total
Population (2022)",fontsize=10)
plt.xlabel("Total Population",fontsize=10)
plt.ylabel("Country",fontsize=10)
plt.show()
```



```
# Create the bar plot
plt.figure(figsize=(15, 6))
plt.subplot(2,2,2)
sns.barplot(x="2016", y="Country Code",
data=total_bottom_ten_countries,
palette="coolwarm")
plt.title("Bottom Ten Countries of Total
Population (2016)",fontsize=10)
plt.xlabel("Total Population",fontsize=10)
plt.ylabel("Country",fontsize=10)
plt.show()
```



```
#filter data for male population
male_population_data = df[df['Indicator
Code']=='SP.POP.TOTL']
male_population_sorted
=male_population_data.sort_values(by="2022"
,ascending=False)
male_top_ten_countries =
male_population_sorted .head(10)
print("Top ten countries of male
population")
print(male_top_ten_countries[['Country
Code']])
```

```
Top ten countries of male population
 Country Code
259
       WLD
103
       IBT
140
      LMY
156
    MIC
102
      IBD
62
      EAR
139
      LMC
249
      UMC
63
      EAS
142
       LTE
```

```
female_population_data = df[df['Indicator
Code'] == 'SP.POP.TOTL']
female_population_sorted=female_population_
data.sort_values(by="2022",ascending=False)
female_top_ten_countries=female_population_
sorted.head(10)
print("Top ten countries of female
population")
print(female_top_ten_countries[['Country
Code']])
```

```
Top ten countries of female population
    Country Code
259
              WLD
103
              IBT
140
              LMY
156
              MIC
102
              IBD
62
              EAR
139
              LMC
249
              UMC
63
              EAS
142
              LTE
```

```
plt.figure(figsize=(15, 6))
plt.subplot(2,2,1)
sns.barplot(x="2022", y="Country Code",
data=male_top_ten_countries,
palette="viridis")
plt.title("Top ten conuntries of male
population(2022)",fontsize=10)
plt.xlabel("Male Population",fontsize=10)
plt.ylabel("Country",fontsize=10)
plt.show()
```



```
plt.figure(figsize=(15, 6))
plt.subplot(2,2,2)
sns.barplot(x="2016", y="Country Code",
data=female_top_ten_countries,
palette="viridis")
plt.title("Top ten conuntries of female
population(2022)",fontsize=10)
plt.xlabel("Female Population",fontsize=10)
plt.ylabel("Country",fontsize=10)
plt.show()
```



```
merge_data=pd.merge(male_population_data,fe
male_population_data,on="Country
Code",suffixes=("_male","_female"))
```

INPUT

```
merge_data["Total population"] =
merge_data["2022_male"] + merge_data
["2022 female"]
```

```
merge data.head()
```

	Country Code	Indicator Code_male	1960_male	1961_male	1962_male	1963_male	1964_male	1965_male
0	ABW	SP.POP.TOTL	54608.0	55811.0	56682.0	57475.0	58178.0	58782.0
1	AFE	SP.POP.TOTL	130692579.0	134169237.0	137835590.0	141630546.0	145605995.0	149742351.0
2	AFG	SP.POP.TOTL	8622466.0	8790140.0	8969047.0	9157465.0	9355514.0	9565147.0
3	AFW	SP.POP.TOTL	97256290.0	99314028.0	101445032.0	103667517.0	105959979.0	108336203.0
4	AGO	SP.POP.TOTL	5357195.0	5441333.0	5521400.0	5599827.0	5673199.0	5736582.0
5 rows × 132 columns								

1967_male		2015_female	2016_female	2017_female	2018_female	2019_female
59522.0		104257.0	104874.0	105439.0	105962.0	106442.0
158313235.0		600008424.0	616377605.0	632746570.0	649757148.0	667242986.0
10010030.0		33753499.0	34636207.0	35643418.0	36686784.0	37769499.0
113319950.0		408690375.0	419778384.0	431138704.0	442646825.0	454306063.0
5827503.0		28127721.0	29154746.0	30208628.0	31273533.0	32353588.0
	59522.0 158313235.0 10010030.0 113319950.0	59522.0 158313235.0 10010030.0 113319950.0	59522.0 104257.0 158313235.0 600008424.0 10010030.0 33753499.0 113319950.0 408690375.0	59522.0 104257.0 104874.0 158313235.0 600008424.0 616377605.0 10010030.0 33753499.0 34636207.0 113319950.0 408690375.0 419778384.0	59522.0 104257.0 104874.0 105439.0 158313235.0 600008424.0 616377605.0 632746570.0 10010030.0 33753499.0 34636207.0 35643418.0 113319950.0 408690375.0 419778384.0 431138704.0	59522.0 104257.0 104874.0 105439.0 105962.0 158313235.0 600008424.0 616377605.0 632746570.0 649757148.0 10010030.0 33753499.0 34636207.0 35643418.0 36686784.0 113319950.0 408690375.0 419778384.0 431138704.0 442646825.0

750000	2020_female	2021_female	2022_female	2023_female	Total population
	106585.0	106537.0	106445.0	106277.0	2.128900e+05
	685112979.0	702977106.0	720859132.0	739108306.0	1.441718e+09
	38972230.0	40099462.0	41128771.0	42239854.0	8.225754e+07
	466189102.0	478185907.0	490330870.0	502789511.0	9.806617e+08
	33428486.0	34503774.0	35588987.0	36684202.0	7.117797e+07
ı					

```
INPUT
sorted data=merge data.sort values(by="Tota
l population", ascending=False)
INPUT
top 10 countries = sorted data.head(10)
INPUT
plt.figure(figsize=(12,6))
sns.barplot(x="CountryCode",y="2022 female"
,data=top 10 countries,color="red",label="f
emale Population")
sns.barplot(x="CountryCode",y="2022 male",
data=top_10_countries,bottom=top_10_countri
es["2022 female"],color="green",label="Male
Population")
plt.xlabel("Country")
plt.ylabel("Population")
plt.legend()
plt.xticks(rotation=45,ha="right")
plt.show()
```


INPUT

bottom_10_countries = sorted_data.tail(10)

```
plt.figure(figsize=(12, 6))
plt.bar(x=bottom_10_countries["Country
Code"],height=bottom_10_countries["2022_fem
ale"], color="red", label="Female
Population")
```

```
plt.bar(x=bottom_10_countries["Country
Code"],height=bottom_10_countries["2022_mal
e"],bottom=bottom_10_countries["2022_female
"], color="green", label="Male Population")
plt.xlabel("Country")
plt.ylabel("Population")
plt.legend()

plt.xticks(rotation=45, ha="right")

plt.show()
```

