

Target Brazil Sales Analysis

I. Import the dataset and do the usual exploratory analysis steps like checking the structure & characteristics of the dataset.

A. Data type of all columns in the "customers" table.

B. Get the time range between which the orders were placed.

```
1 --This query will give you the range of time between which the orders were placed,
2 --showing the earliest and latest order_purchase_timestamp.
3 \subseteq SELECT
4 | MIN(order_purchase_timestamp) first_order_date,
5 | MAX(order_purchase_timestamp) last_order_date
6 FROM \subseteq Target_CaseStudy.orders\subseteq
6 FROM \subseteq Target_CaseStudy.orders\subseteq
6 | Target_CaseStudy.orders\subseteq
7 | Targ
```

JOB IN	FORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS	E
Row /	first_order_date	-	. last_order_date	•	h	
1	2016-09-04 21:15	19 UTC	2018-10-17 17:3	0:18 UTC		

C. Count the Cities & States of customers who ordered during the given period.

```
---This will give you the count of unique states and cities
   --where customers who placed orders are located.
3
   SELECT
 4
    COUNT( DISTINCT customer_state) count_of_unique_states,
 5 | COUNT( DISTINCT customer_city) count_of_unique_cities
    FROM 'Target_CaseStudy.customers' c JOIN 'Target_CaseStudy.orders' o
 7
        ON c.customer_id = o.customer_id
8
   WHERE
9
      o.order_purchase_timestamp
10
        BETWEEN
11
      (SELECT MIN(order_purchase_timestamp) FROM 'Target_CaseStudy.orders')
12
      (SELECT MAX(order_purchase_timestamp) FROM 'Target_CaseStudy.orders')
13
```

Query results

JOB	IN	FORMATION RES	ULTS	CHART	JSON	EXECUTION DETAILS
Row	11	count_of_unique_states	count_of_uni	que_cities_		
1		27		4119		

II. In-depth Exploration:

A. Is there a growing trend in the no. of orders placed over the past years?

```
1 --The query provides a clear view of the total number of orders placed each year.
2 --This can help in understanding how the volume of orders has changed over time.
3 SELECT
4 EXTRACT(YEAR FROM order_purchase_timestamp) as Year,
5 COUNT(order_id) as monthly_order_count
6 FROM __Target_CaseStudy.orders'
7 GROUP BY Year
8 ORDER BY Year
```

JOB IN	FORMATION RESULTS		RESULTS CHA	ART	JSON	EXECUTION DETAILS	E)
Row /	Year ▼	11	monthly_order_count				
1	20	16	329				
2	20	17	45101				
3	20	18	54011				

Insight: The count in 2016 is less because of 3 months of data. Sales increased by 19.75% from 2017 to 2018.

B. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

1st Query

```
1 --This query will help you see if the number of orders has increased gradually each month
2 --over the past years by calculating the total number of orders placed each month for each year.
3 SELECT
4 EXTRACT(YEAR FROM order_purchase_timestamp) as Year,
5 FORMAT_TIMESTAMP('%b', order_purchase_timestamp) as Month,
6 EXTRACT(MONTH FROM order_purchase_timestamp) as Month_Number,
7 COUNT(order_id) as Order_Count
8 FROM _Target_CaseStudy.orders'
9 GROUP BY Year, Month, Month_Number
10 ORDER BY Year, Month_Number;
```

JOB IN	FORMATIO	N R	ESULTS CHA	RT JSON
Row /	Year 7/	Month	Month_Number	Order_Count
1	2016	Sep	9	4
2	2016	Oct	10	324
3	2016	Dec	12	:10
4	2017	Jan	1	800
5	2017	Feb	2	1780
6	2017	Mar	3	2682
7	2017	Apr	4	2404
8	2017	May	:5	3700
9	2017	Jun	6	3245
10	2017	Jul	7	4026
11	2017	Aug	:8	4331
12	2017	Sep	9	4285
13	2017	Oct	10	4631
14	2017	Nov	11	7544
15	2017	Dec	12	5673
16	2018	Jan	:1	7269
17	2018	Feb	2	6728
18	2018	Mar	3	7211
19	2018	Apr	94	6939
20	2018	May	5	6873
21	2018	Jun	6	6167
22	2018	Jul	7	6292
23	2018	Aug	8	6512
24	2018	Sep	9	16
25	2018	Oct	10	4

2nd Query

Query results

JOB IN	FORMATION	RESULTS	CHART JS	ON EXECUTION	EXECUTION DETAILS E	
Row /	Month ▼ //	Month_Number >	order_in_2016 ▼ //	order_in_2017 ▼ //	order_in_2018 ▼ //	
1	Jan	1	0	800	7269	
2	Feb	2	0	1780	6728	
3	Mar	3	0	2682	7211	
4	Apr	4	0	2404	6939	
5	May	5	0	3700	6873	
6	Jun	6	0	3245	6167	
7	Jul	7	0	4026	6292	
8	Aug	8	0	4331	6512	
9	Sep	9	4	4285	16	
10	Oct	10	324	4631	4	
11	Nov	11	0	7544	0	
12	Dec	12	1	5673	0	

<u>Insights</u>: Looking at the counts across the three years, 2016 had low orders from people who might have taken time to become aware of this platform. Then, in 2017, the number of orders per month increased until the end of the year. However, the order count from Sep for 2018 has decreased.

C. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

• 0-6 hrs: Dawn

● 7-12 hrs: Mornings

● 13-18 hrs: Afternoon

● 19-23 hrs: Night

```
1 -- It categorizes the order times into four intervals: Dawn, Morning, Afternoon, and Night,
2 --based on the hour of the day extracted from the order_purchase_timestamp field.
   SELECT
3
     COUNT(order_id) Order_Count,
4
5
     CASE
     WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN @ AND 6 THEN "Dawn"
6
7
     WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN "Morning"
      WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN "Afternoon"
8
9
     WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 19 AND 23 THEN "Night"
10
    ELSE "Other" END AS Order_time_category
   FROM <u>Target_CaseStudy.orders</u>
12 GROUP BY order_time_category
13 ORDER BY Order_Count
```

Query results

JOB INFORMATION		RESULTS CHART	T JSON	EXECUTION DETAILS	EXECUTION GI
Row /	Order_Count ▼ //	Order_time_category	16		
1	5242	Dawn			
2	27733	Morning			
3	28331	Night			
4	38135	Afternoon			

Bar chart

<u>Insights:</u> The highest order count is during the Afternoon (13-18 HRS) when Brazilian customers place the most orders.

Recommendations: Schedule marketing campaigns, promotions, and advertisements during peak ordering times to maximize engagement and sales. Allocate more customer service and support resources during peak order times to handle the increased volume effectively.

III. Evolution of E-commerce orders in the Brazil region:

A. Get the month-on-month no. of orders placed in each state.

```
-- This query gives month-on-month number of orders placed in each state
   --with month names as columns and states as rows.
 3 SELECT
 4
     customer_state State,
 5
     SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 1 THEN 1 END) AS Jan,
 6
      SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 2 THEN 1 END) AS Feb,
 7
     SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 3 THEN 1 END) AS Mar,
 8
     SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 4 THEN 1 END) AS Apr,
 9
     SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 5 THEN 1 END) AS May,
     SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 6 THEN 1 END) AS Jun,
10
     SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 7 THEN 1 END) AS Jul,
11
     SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 8 THEN 1 END) AS Aug,
12
13
      SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 9 THEN 1 END) AS Sep,
14
      SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 10 THEN 1 END) AS Oct,
15
      SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 11 THEN 1 END) AS Nov,
      SUM(CASE WHEN EXTRACT(MONTH FROM order_purchase_timestamp) = 12 THEN 1 END) AS Dec
16
17 FROM
      'Target_CaseStudy.orders' o JOIN 'Target_CaseStudy.customers' c
18
19
      ON o.customer_id = c.customer_id
20 GROUP BY
21 customer_state
22 ORDER BY
23    customer_state;
```

JOB IN	FORMATION	RESU	JLTS	CHART	JSON	EXECUTI	ON DETAILS	EXEC	CUTION GRA	PH			
Row /	State *//	Jan ▼// 8	Feb *//	Mar ▼//	Apr * //	May ▼ //	Jun 🕶 🌽	Jul ▼// 9	Aug 🎷	Sep * //	Oct * //	Nov ▼ // 5	Dec ▼ // 5
2	AL	39	39	40	51	46	34	40	34	20	30	26	14
3	AM.	12	16	14	19	19	8	23	9	9	3	10	6
4	AP	11	4	8	5	11	4	7	5	2	3	4	4
5	BA	264	273	340	318	368	307	405	323	170	170	250	192
6	CE	99	101	126	143	136	121	140	130	77	74	108	81
7	DF	151	196	207	183	208	220	243	232	97	104	168	131
8	ES	159	186	182	188	228	204	206	200	93	104	170	113
9	GO:	164	176	199	177	226	184	192	213	88	117	157	127
10	MA	66	67	77	73	65	59	79	70	42	52	.56	41
.11	MG.	971	1063	1237	1061	1190	1080	1111	1177	511	600	943	691
12	MS	71	75	79	58	74	76	74	59	33	34	46	36
13	MT	96	84	71	92	104	83	85	78	35	55	74	50
14	PA	82	83	109	107	75	92	96	104	41	58	70	58
15	PB	33	47	55	51	47	51	79	46	29	31	30	37
16	PE	113	146	153	154	174	140	210	170	76	87	126	103
17	P)	55	46	48	50	56	43	52	43	23	25	31	23
18	PR	443	460	504	500	524	478	523	556	183	225	378	271
19	RJ	990	1176	1302	1172	1321	1128	1288	1307	612	725	1048	783
20	RN	51	31	52	42	39	49	56	40	24	27	44	30
21	RO	23	25	29	20	26	22	27	23	16	14	17	11
22	RR	2	7	8	4	3	8	6	nut	2	4	2	must
23	RS	427	473	569	488	559	526	565	599	279	276	422	283
24	SC	345	316	362	351	379	321	356	365	157	189	303	193
25	SE	24	27	43	27	19	37	42	43	16	25	27	20
26	SP	3351	3357	4047	3967	4632	4104	4381	4982	1648	1908	3012	2357
27	TO	19	28	28	33	34	26	23	28	17	13	17	14

B. How are the customers distributed across all the states?

Insights for both A and B:

High-Volume States: States like São Paulo (SP) and Rio de Janeiro (RJ) have a significantly higher number of unique customers and orders. The high order volume in SP and RJ might be due to a larger population, better internet penetration, and higher economic activity. Low-Volume States: States like AP and RR have the fewest customer orders. The lower order volume might be due to a smaller population, lower economic activity, or logistical challenges.

Recommendations:

Expand in Less-Volume States: While SP and RJ are essential markets, Target may explore opportunities for expansion and growth in states with lower customer counts, such as Roraima (RR), Amapá (AP). Investigate the reasons behind the lower customer counts in these regions and develop strategies to increase market penetration.

IV. Impact on the Economy: Analyze the money movement by e-commerce by looking at order prices, freight, and others.

A. Get the % increase in the cost of orders from the year 2017 to 2018 (include months between Jan to Aug only).

```
1 WITH year_wise AS
   (SELECT
     EXTRACT(YEAR FROM order_purchase_timestamp) Year,
3
4
     EXTRACT(MONTH FROM order_purchase_timestamp) Month,
5
     FORMAT_TIMESTAMP("%b", order_purchase_timestamp) Month_name,
     ROUND(SUM(payment_value),2) Cost_of_Orders
6
7 FROM 'Target_CaseStudy.payments' p JOIN 'Target_CaseStudy.orders' o
8 ON p.order_id = o.order_id
9 WHERE EXTRACT(MONTH FROM order_purchase_timestamp) BETWEEN 1 AND 8
10 GROUP BY Year, Month, Month_name),
     y2017 AS
11
     (SELECT
12
13
       Year,
14
       Month,
15
       Month_name,
16
       Cost_of_Orders AS Cost_2017
17
     FROM year_wise
18
     WHERE Year = 2017
     ORDER BY Month),
19
20
     y2018 AS
21
      (SELECT
22
       Year,
23
       Month.
24
       Month_name,
25
      Cost_of_Orders AS Cost_2018
26
     FROM year_wise
     WHERE Year = 2018
27
     ORDER BY Month)
28
29
   --Final SELECT--
30
     SELECT
32
33
       y2017.Month_name as Month,
       y2017.Cost_2017,
34
35
       y2018.Cost_2018,
       ROUND((y2018.Cost_2018 - y2017.Cost_2017)/y2017.Cost_2017 * 100,2) Percentage_Difference
36
37
     FROM y2017 JOIN y2018
       ON y2017. Month = y2018. Month
38
39
     ORDER BY y2017. Month
Aa
```

Row /	Month ▼ //	Cost_2017 ▼ //	Cost_2018 ▼ //	Percentage_Difference 7/
1	Jan	138488.04	1115004.18	705.13
2	Feb	291908.01	992463.34	239.99
3	Mar	449863.6	1159652.12	157.78
4	Apr	417788.03	1160785.48	177.84
5	May	592918.82	1153982.15	94.63
6	Jun	511276.38	1023880.5	100.26
7	Jul	592382.92	1066540.75	80.04
8	Aug	674396.32	1022425.32	51.61

<u>Insights</u>: The cost of orders from 2017 to 2018 increased for all months. January witnessed the highest percentage increment, while August was the least.

B. Calculate the Total & Average value of the order price for each state.

```
1 SELECT
2 | customer_state AS State,
3 | ROUND(SUM(price),2) Total_Order_Price,
4 | ROUND(AVG(price),2) Avg_Order_Price,
5 | FROM __Target_CaseStudy.order_items__oi JOIN __Target_CaseStudy.orders__o
6 | ON oi.order_id = o.order_id
7 | JOIN __Target_CaseStudy.customers__o
8 | ON o.customer_id = c.customer_id
9 | GROUP BY State
10 | ORDER BY Total_Order_Price Desc
```

JOB IN	IFORMATION	RESULTS	CHART JS
Row /	State + //	Total_Order_Price	Avg_Order_Price
1	SP	5202955.05	109.65
2	RJ	1824092.67	125.12
3	MG	1585308.03	120.75
4	RS	750304.02	120.34
5	PR	683083.76	119.0
ô	SC	520553.34	124.65
7	BA	511349.99	134.6
8	DE	302603.94	125.77
9	GO	294591.95	126.27
10	ES	275037.31	121.91
11	PE	262788.03	145.51
12	CE	227254.71	153.76
13	PA	178947.81	165.69
14	MT	156453.53	148.3
15	MA	119648.22	145.2
16	MS	116812.64	142.63
17	PB	115268.08	191.48
18	PI	86914.08	160.36
19	RN	83034.98	156.97
20	AL	80314.81	180.89
21	SE	58920.85	153.04
22	то	49621.74	157.53
23	RO	46140.64	165.97
24	AM	22356.84	135.5
25	AC	15982.95	173.73
26	AP	13474.3	164.32
27	RR	7829.43	150.57

C. Calculate the Total & Average value of order freight for each state.

```
1 SELECT
2 customer_state AS State,
3 ROUND(SUM(freight_value),2) Total_Freight_Value,
4 ROUND(AVG(freight_value),2) Avg_Freight_Value,
5 FROM <u>Target_CaseStudy.order_items</u> oi JOIN <u>Target_CaseStudy.orders</u> o
6 ON oi.order_id = o.order_id
7 JOIN <u>Target_CaseStudy.customers</u> c
8 ON o.customer_id = c.customer_id
9 GROUP BY State
10 ORDER BY Total_Freight_Value Desc
```

Query results

JS(CHART	RESULTS	FORMATION	JOB IN
Value/	Avg_Freight	Total_Freight_Value	State - /	Row /
15.15		718723.07	SP	1
20.96		305589.31	RJ	2
20.63		270853.46	MG	3
21.74		135522.74	RS	4
20.53		117851.68	PR	5
26.36		100156.68	BA	6
21.47		89660.26	sc	7.
32.92		59449.66	PE	8
22.77		53114.98	GO	9
21.04		50625.5	DF	10
22.06		49764.6	ES	11
32.71		48351.59	CE	12
35.83		38699.3	PA	13
38.26		31523.77	MA	14
28.17		29715.43	MT	15
42.72		25719.73	PB	16
39.15		21218.2	PI	17
23.37		19144.03	MS	18
35.65		18860.1	RN	19
35.84		15914.59	AL	20
36.65		14111.47	SE	21
37.25		11732.68	то	22
41.07		11417.38	RO	23
33.21		5478.89	MA	24
40.07		3686.75	AC	25
34.01		2788.5	AP	26
42.98		2235.19	RR	27

<u>Insights</u>: Evidently, the state 'SP' has the maximum Order Price and Freight Value. However, its Average Order Price and Freight Value are the lowest among all, maybe because of its large population. The state 'RR' has the lowest Total Price and Freight Value, but its Average Order Price and Freight Value are neither the highest nor the lowest.

V. Analysis based on sales, freight, and delivery time.

A. Find the no. of days taken to deliver each order from the order's purchase date as delivery time. Also, calculate the difference (in days) between the estimated & actual delivery date of an order. Do this in a single query.

Query results

JOB IN	FORMATION RESULTS	CHART J	SON EXECUTI	ON DETAILS E	EXECUTION GRAPH	
Row /	order_id ▼	Purchase_Date */	Delivery_Date ▼ //	Est_Delivery_Date	time_to_deliver	diff_estimated_delivery
1	bfbd0f9bdef84302105ad712d	2016-09-15	2016-11-09	2016-10-04	54	-36
2	3b697a20d9e427646d925679	2016-10-03	2016-10-26	2016-10-27	23	0
3	be5bc2f0da14d8071e2d45451	2016-10-03	2016-10-27	2016-11-07	24	10
4	a41c8759fbe7aab36ea07e038	2016-10-03	2016-11-03	2016-11-29	30	25
5	d207cc272675637bfed0062ed	2016-10-03	2016-10-31	2016-11-23	27	22
6	cd3b8574c82b42fc8129f6d50	2016-10-03	2016-10-14	2016-11-23	10	39
7	ae8a60e4b03c5a4ba9ca0672c	2016-10-03	2016-11-03	2016-12-01	30	27
8	ef1b29b591d31d57c0d733746	2016-10-03	2016-11-01	2016-11-25	28	23
9	0a0837a5eee9e7a9ce2b1fa83	2016-10-04	2016-10-22	2016-11-24	18	32
10	1ff217aa612f6cd7c4255c9bfe	2016-10-04	2016-10-24	2016-11-24	20	30
11	ed8c7b1b3eb256c70ce0c7423	2016-10-04	2016-11-18	2016-11-24	44	5
12	c3d9e402b6a0fbe2a5f7fc5b41	2016-10-04	2016-11-08	2016-12-08	35	29
13	46046adea0e222a29259bad3d	2016-10-04	2016-10-24	2016-11-28	20	34
14	80606b26965c5ed21e85a085e	2016-10-04	2016-11-17	2016-12-08	44	20
15	79ffdd52a918bbe867895a4b1	2016-10-04	2016-10-26	2016-11-24	22	28
16	c4b41c36dd589e901f6879f25	2016-10-04	2016-11-09	2016-11-24	36	14
17	36989eb07a0de2d3d3129eea3	2016-10-04	2016-10-11	2016-12-06	7	55
18	3f72d2b757e725cd48a4726f8	2016-10-04	2016-10-17	2016-11-28	12	41
19	f3f12fc90564a9b036680a887c	2016-10-04	2016-11-01	2016-11-24	28	22
20	5b1376fe61863fe3508011db3	2016-10-04	2016-10-17	2016-12-08	13	51

Insights:

"time_to_deliver" to assess the overall delivery performance and identify any delays. A shorter delivery time generally indicates better efficiency in the logistics and supply chain.

"diff_estimated_delivery" helps in understanding the accuracy of the estimated delivery dates. Negative values indicate late deliveries, while positive values indicate early deliveries.

Recommendations:

Dates with negative:

a. **Root cause analysis:** Conduct a thorough analysis of the reasons behind delays. Is it due to shipping partner issues, internal processing inefficiencies, or other factors? Identifying the root causes can help you address the underlying issues effectively. Use this data to set improvement targets and track progress over time.

Days more than a week:

- a. **Optimize Inventory Management:** Maintain sufficient stock levels of popular products to avoid stockouts and minimize the need for backorders, which can lead to extended delivery times.
- b. **Improve order processing Speed:** Invest in order processing automation and technology to reduce the time it takes to process and fulfill customer orders.
- **B.** Find out the top 5 states with the highest & lowest average freight value.

Highest State Average Freight Value

```
1 WITH
   state_freight_values AS
2
3
     (SELECT
 4
       customer_state AS State,
 5
       ROUND(AVG(freight_value),2) AS Avg_freight_value
 6
 7
       'Target_CaseStudy.order_items' oi
 8
      JOIN
 9
        'Target_CaseStudy.orders' o
10
11
      oi.order_id = o.order_id
12
     JOIN
13
      'Target_CaseStudy.customers' c
14
     ON
15
      o.customer_id = c.customer_id
16
     GROUP BY customer_state),
17
   top_5_state AS
18
      (SELECT
19
       State,
       Avg_freight_value
20
21
    FROM state_freight_values
22
    ORDER BY avg_freight_value DESC
23
    LIMIT 5)
24
25
     SELECT
26
      State AS Highest_state,
27
       Avg_freight_value AS Highest_freight_value
28
     FROM top_5_state
     ORDER BY highest_freight_value
29
```

Row /	Highest_state */	Highest_freight_value 🏅
1	PI	39.15
2	AC	40.07
3	RO	41.07
4	PB	42.72
5	RR	42.98

Lowest State Average Freight Value

```
1 WITH
2 \state_freight_values AS
3 V (SELECT
4
       customer_state AS State,
 5
       ROUND(AVG(freight_value),2) AS Avg_freight_value
6 V
     FROM
7
      'Target_CaseStudy.order_items' oi
8 V
     JOIN
9
      'Target_CaseStudy.orders' o
10 V
     ON
      oi.order_id = o.order_id
11
12 V
     JOIN
13
      'Target_CaseStudy.customers' c
14 V
     ON
15
      o.customer_id = c.customer_id
     GROUP BY customer_state),
16
17 bottom_5_state AS
18 V (SELECT
19
      State,
28
      Avg_freight_value
     FROM state_freight_values
21
22
      ORDER BY avg_freight_value
23
     LIMIT 5)
24
25 V
    SELECT
26
       State AS Lowest_state,
27
       Avg_freight_value AS Lowest_freight_value
28
      FROM bottom_5_state
29
     ORDER BY Lowest_freight_value
```

Row /	Lowest_state	Lowest_freight_value
1	SP	15.15
2	PR	20.53
3	MG	20.63
4	RJ	20.96
5	DF	21.04

C. Find out the top 5 states with the highest & lowest average delivery time.

Highest Average delivery time.

```
1 WITH
2 state_deliver_time AS
     (SELECT
3
       customer_state AS State,
4
 5
      ROUND(AVG(DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, DAY)),2) AS time_to_deliver
 6
 7
      `Target_CaseStudy.orders' o
 8
     JOIN
9
      `Target_CaseStudy.customers' c
10
     ON
     o.customer_id = c.customer_id
11
12
     WHERE order_status = 'delivered'
13
     GROUP BY customer_state),
14
15 top_5_state AS
16
     (SELECT
17
      State,
18
      time_to_deliver
19
     FROM state_deliver_time
    ORDER BY time_to_deliver DESC
20
21
     LIMIT 5 )
22
23
     SELECT
24
     State,
25
      time_to_deliver AS highest_time_to_deliver
     FROM top_5_state
26
27 ORDER BY highest_time_to_deliver
```

Row /	State ▼ //	highest_time_to_deliver
1	PA	23.32
2	AL	24.04
3	AM	25.99
4	AP	26.73
5	RR	28.98

Lowest Average delivery time.

```
1 WITH
2 state_deliver_time AS
3
     (SELECT
4
       customer_state AS State,
 5
       ROUND(AVG(DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, DAY)),2) AS time_to_deliver
 6
 7
       'Target_CaseStudy.orders' o
      JOIN
 8
 9
       'Target_CaseStudy.customers' c
     ON
10
11
      o.customer_id = c.customer_id
12
      WHERE order_status = 'delivered'
13
     GROUP BY customer_state),
14
15 bottom_5_state AS
16
     (SELECT
17
       State,
18
       time_to_deliver
19
     FROM state_deliver_time
     ORDER BY time_to_deliver
20
21
     LIMIT 5 )
22
23
     SELECT
24
      State.
25
       time_to_deliver AS lowest_time_to_deliver
    FROM bottom_5_state
26
27 ORDER BY lowest_time_to_deliver
```

Row /	State /	lowest_time_to_deliver/
1	SP	8.3
2	PR	11.53
3	MG	11.54
4	DF	12.51
5	SC	14.48

Insights:

- 1. The highest average delivery times are significantly above 20 days. There is a relatively small range between the top state (RR) and the fifth state (PA), suggesting consistent delays across these states.
- 2. The lowest average delivery time for the state (SP) is just 8.3 days. The range of delivery times is wider among the lowest states compared to the highest states, indicating some variability in delivery efficiency.

Recommendations:

- 1. For States with the Highest Average Delivery Time, conduct a detailed analysis to identify the root causes of delays in the states with the highest average delivery times (RR, AP, AM, AL, PA). Look into factors such as transportation issues, warehouse inefficiencies, or logistical challenges.
- 2. For States with the Lowest Average Delivery Time, analyze the strategies and practices used in these states and try to replicate them in states with higher delivery times. Identify key success factors and apply them where possible.

D. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

```
T WITH state_delivery_time AS
2 (SELECT
3
     customer_state AS State,
     ROUND(AVG(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)),2) Avg_delivery_time,
5
     ROUND(AVG(DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_date, DAY)),2) AS Avg_est_delivery_time
      'Target_CaseStudy.orders' o
 8
   JOIN
9 Target_CaseStudy.customers c
10 ON
12 WHERE order_status = 'delivered'
13 GROUP BY customer_state
15 delivery_difference AS
16
17
     SELECT
       State,
18
19
       Avg_delivery_time,
20
      Avg_est_delivery_time,
       ROUND((Avg_est_delivery_time - Avg_delivery_time),2) AS delivery_diff
21
22
     state_delivery_time
    ORDER BY delivery_diff
24
25
     LIMIT 5)
26 SELECT
27
    State,
    delivery_diff AS Delivery_speed
28
29 FROM delivery_difference
30 ORDER BY Delivery_speed
```

Row /	State ▼ //	Delivery_speed */			
1	AL	-16.09			
2	RR	-12.57			
3	MA	-12.35			
4	SE	-11.86			
5	CE	-10.86			

<u>Insight</u>: Negative values indicate that every state had more late deliveries than early ones. Hence, the average fastest delivery value for each state is negative.

Recommendations: In this situation, since orders are arriving before the estimated delivery time, we can either reduce the estimated time and make the customer feel more valued or reduce the freight charges for these states to match the actual delivery time with the estimated delivery time, thereby reducing the total cost.

VI. Analysis based on the payments:

A. Find the month-on-month no. of orders placed using different payment types.

```
1 SELECT
    EXTRACT(YEAR FROM order_purchase_timestamp) AS year,
    EXTRACT(MONTH FROM order_purchase_timestamp) AS month,
4 FORMAT_TIMESTAMP('%B', order_purchase_timestamp) AS month_name,
 5 COUNT(CASE WHEN p.payment_type = 'credit_card' THEN o.order_id END) AS credit_card,
 6 COUNT(CASE WHEN p.payment_type = 'debit_card' THEN o.order_id END) AS debit_card,
7 COUNT(CASE WHEN p.payment_type = 'UPI' THEN o.order_id END) AS UPI,
8 COUNT(CASE WHEN p.payment_type = 'voucher' THEN o.order_id END) AS voucher,
9 COUNT(CASE WHEN p.payment_type = 'not_defined' THEN o.order_id END) AS not_defined
10 FROM
11 Target_CaseStudy.orders o
12 JOIN
13 Target_CaseStudy.payments p
14 ON
15 o.order_id = p.order_id
16 GROUP BY
17 year, month, month_name
18 ORDER BY
19 year, month, month_name
20
```

Row /	year /	month //	month_name 🔀	credit_card	debit_card /	UPI /	voucher //	not_defined/
1	2016	9	September	3	0	0	o o	0
2	2016	10	October	254	2	63	23	0
3	2016	12	December	- 1	0	0	0	0
4	2017	1	January	583	9	197	61	0
5	2017	2	February	1356	13	398	119	0
6	2017	3	March	2016	31	590	200	0
7	2017	4	April	1846	27	496	202	0
8	2017	5	May	2853	30	772	289	0
9	2017	6	June	2463	27	707	239	0
10	2017	7	July	3086	22	845	364	0
11	2017	8	August	3284	34	938	294	0
12	2017	9	September	3283	43	903	287	0
13	2017	10	October	3524	52	993	291	0
14	2017	11	November	5897	70	1509	387	0
15	2017	12	December	4377	64	1160	294	0
16	2018	1.	January	5520	109	1518	416	0
17	2018	2	February	5253	69	1325	305	0
18	2018	3	Merch	5691	78	1352	391	0
19	2018	4	April	5455	97	1287	370	0
20	2018	5	May	5497	51	1263	324	0
21	2018	6	June	4813	182	1100	324	0
22	2018	7	July	4755	242	1229	281	0
23	2018	8	August	4985	277	1139	295	2
24	2018	9:	September	0	0.0	0	15	31
25	2018	10	October	0	0	0	4	0

<u>Insights:</u> The number of orders increased clearly from 2016 to 2018. Per output, credit card is the most used payment method, which is nowadays the easiest and most seamless for customers.

B. Find the no. of orders placed on the basis of the payment installments that have been paid.

C	ULTS	FORMATION RES	JOB IN
ders/	num_ord	payment_installments/	Row /
9060		1	1
2389	1.	2	2
0443	10	3	3
7088	- 65	4	4
5234	- 6	5	5
3916	- 83	6	6
1623	15.	7	7
4253	309	8	8
644		9	9
5315	- 8	10	10
23		11	-11
133		12	12
16		13	13
15		14	14
74		15	15
- 5		16	16
8		17	17
27		18	18
17		20	19
3		21	20
1		22	21
1		23	22

Insights: Most of the orders are placed in single payment/installment.