Introduction to Machine Learning

Lecture 3: Regression

Alexis Zubiolo alexis.zubiolo@gmail.com

Data Science Team Lead @ Adcash

November 3, 2016

Before we start

Would you be interested in a more advanced course? I can propose

- Machine learning from scratch (how to implement an ML algorithm with no library)
- ► A more advanced version of this course (with more theoretical technical details)
- Large-scale machine learning (distributed computing)

Regression in Machine Learning

This lecture is about regression in Machine learning.

Reminder: In regression, the output *y* is **continous**.

Example:

- **Price estimation**: y = price (e.g. 50000 BGN for a house)
- ▶ **Predicting the future** (*e.g.* weather forecast): *y* = temperature or amount of rain

Regression in Machine Learning: Applications

Domains of application:

- ► Price estimation/prediction
- Weather forecast
- Production quantity estimation
- Stock option price prediction
- ▶ Fit statistical model to data
- Physics & chemistry
- ... and others

Linear and polynomial regression

Purpose of regression: **approximate solutions** of **overdetermined systems**.

In this course, we will see

- ► Linear regression
- ► Polynomial regression

Principal components:

► Old problem (least-squares method usually credited to Carl Friedrich Gauss in 1795)

Principal components:

- ▶ Old problem (least-squares method usually credited to Carl Friedrich Gauss in 1795)
- Several ways to approximate the data
 - Linear model
 - Polynomial model (remember kernels from SVMs)
 - ▶ Fit a distribution

Principal components:

- Old problem (least-squares method usually credited to Carl Friedrich Gauss in 1795)
- Several ways to approximate the data
 - Linear model
 - Polynomial model (remember kernels from SVMs)
 - ▶ Fit a distribution
 - **•** ...
- Several ways to formulate the problem
 - Least Squares
 - Support Vector regression
 - **.** . . .

Principal components:

- Old problem (least-squares method usually credited to Carl Friedrich Gauss in 1795)
- Several ways to approximate the data
 - Linear model
 - Polynomial model (remember kernels from SVMs)
 - ▶ Fit a distribution
 - **.** . . .
- Several ways to formulate the problem
 - Least Squares
 - Support Vector regression
- Several ways to solve the problem
 - Closed-form expression (exact formula)
 - Optimization

living area (m ²)	# bedrooms	price (1000's euros)
50	1	30
76	2	48
26	1	12
102	3	90

living area (m ²)	# bedrooms	price (1000's euros)
50	1	30
76	2	48
26	1	12
102	3	90
61	2	?

living area (m ²)	# bedrooms	price (1000's euros)
50	1	30
76	2	48
26	1	12
102	3	90
61	2	?

 $\mbox{Linear model: price} = \mbox{\bf a} \times \mbox{area} + \mbox{\bf b} \times \# \mbox{ bedrooms} + \mbox{\bf c}$

living area (m ²)	# bedrooms	price (1000's euros)
50	1	30
76	2	48
26	1	12
102	3	90
61	2	?

 $\mbox{Linear model: price} = \mbox{\bf a} \times \mbox{area} + \mbox{\bf b} \times \# \mbox{ bedrooms} + \mbox{\bf c}$

Problem: optimal values for \mathbf{a} , \mathbf{b} and \mathbf{c} ?

living area (m²)	# bedrooms	price (1000's euros)
50	1	30
76	2	48
26	1	12
102	3	90
61	2	?

 $\mbox{Linear model: price} = \mbox{\bf a} \times \mbox{area} + \mbox{\bf b} \times \# \mbox{ bedrooms} + \mbox{\bf c}$

Problem: optimal values for \mathbf{a} , \mathbf{b} and \mathbf{c} ?

General formulation:

$$\hat{y} = w^T x$$

Linear regression with ordinary least-squares

Linear regression: Estimate y as a **linear** function of x:

$$\hat{y} = w^T x$$

Linear regression with ordinary least-squares

Linear regression: Estimate y as a **linear** function of x:

$$\hat{y} = w^T x$$

Least squares: Penalty (loss) is a **quadratic** function

$$\ell\left(\hat{y},y\right) = \left(\hat{y} - y\right)^2$$

Regression formulation

2 main ways to solve the linear least-squares problem:

$$\min_{w} \sum_{i} \left(w^{T} x^{(i)} - y^{(i)} \right)^{2} \tag{1}$$

Method 1: Closed-form expression

$$w = \left(X^T X\right)^{-1} X^T Y$$

It can be computationally expensive (matrix multiplication, matrix inversion, matrix multiplication, matrix-vector multiplication)

Method 2: Numerical optimization For example gradient descent algorithms, ...

Polynomial regression

Polynomial regression pprox Kernel trick

Remind the kernel trick from the SVM lecture.

Example:

$$x=(x_1,x_2)$$

can become

$$\phi(x) = (1, x_1, x_2, x_1^2, x_2^2, x_1x_2)$$

with a second order kernel.

Then we can find w solution of

$$\min_{w} \sum_{i} \left(w^{T} \phi \left(x^{(i)} \right) - y^{(i)} \right)^{2} \tag{2}$$

Practical information

Variable standardization

Variables have various magnitudes. Example:

- ▶ Living area: Up to a few hundreds m²
- ▶ Price: Up to a few 100 000s BGN (and even more)
- # bedrooms: usually much smaller than 10

This can be an issue when training a regression model.

Variable standardization

Variables have various magnitudes. Example:

- ▶ Living area: Up to a few hundreds m²
- ▶ Price: Up to a few 100 000s BGN (and even more)
- \blacktriangleright # bedrooms: usually much smaller than 10

This can be an issue when training a regression model.

It is possible to calculate the **standard score** z of a variable x

$$z = \frac{x - \mu}{\sigma}$$

where

- lacksquare μ is the mean of the variable
- $ightharpoonup \sigma$ is its standard deviation

Variable standardization

Variables have various magnitudes. Example:

- ▶ Living area: Up to a few hundreds m²
- ▶ Price: Up to a few 100 000s BGN (and even more)
- # bedrooms: usually much smaller than 10

This can be an issue when training a regression model. It is possible to calculate the **standard score** z of a variable x

$$z = \frac{x - \mu}{\sigma}$$

where

- $ightharpoonup \mu$ is the mean of the variable
- $ightharpoonup \sigma$ is its standard deviation

Another option: Scale between 0 and 1

$$z = \frac{x - \min}{\max - \min}$$

Overfitting and underfitting

Illustration on a generated example: Try to fit the function

$$y = f(x) = \cos\left(\frac{3\pi}{2}x\right) + \text{noise}$$

for $x \in [0,1]$, with a polynomial regression

Overfitting and underfitting

Illustration on a generated example: Try to fit the function

$$y = f(x) = \cos\left(\frac{3\pi}{2}x\right) + \text{noise}$$

for $x \in [0, 1]$, with a polynomial regression

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

Optimal parameters can be chosen with cross-validation over a grid:

Split the data into train/test

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

- Split the data into train/test
- ▶ Choose a degree $d \in \{1, ..., 20\}$

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

- ► Split the data into train/test
- ▶ Choose a degree $d \in \{1, ..., 20\}$
- ► Train on the train set with this degree

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

- ► Split the data into train/test
- ▶ Choose a degree $d \in \{1, ..., 20\}$
- ► Train on the train set with this degree
- Test the model on the test set

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

Optimal parameters can be chosen with cross-validation over a grid:

- Split the data into train/test
- ▶ Choose a degree $d \in \{1, ..., 20\}$
- Train on the train set with this degree
- Test the model on the test set

It can be done over several train/test splits.

Toy example: Fitting a distribution

Find A, x_0 and σ such that

$$\hat{y} = f(x) = Ae^{\frac{\left(x - x_0\right)^2}{2\sigma^2}}$$

best fits the data in terms of least-square error.

Regression with SVMs

Alternatives to least squares

It is possible to use a different loss function ℓ . Remember, we had

$$\ell\left(\hat{y},y\right) = (\hat{y} - y)^2$$

Alternatives to least squares

It is possible to use a different loss function ℓ . Remember, we had

$$\ell\left(\hat{y},y\right) = (\hat{y} - y)^2$$

We can use support vector machines for regression (SVR):

- ▶ If within the margin (i.e. $-\epsilon \le \hat{y} y \le +\epsilon$) then no penalty
- linear or quadratic penalty outside the margin (see flip-chart for illustration)

This loss function is called ϵ -insensitive.

Alternatives to least squares

It is possible to use a different loss function $\ell.$ Remember, we had

$$\ell\left(\hat{y},y\right) = (\hat{y} - y)^2$$

We can use support vector machines for regression (SVR):

- ▶ If within the margin (i.e. $-\epsilon \le \hat{y} y \le +\epsilon$) then no penalty
- linear or quadratic penalty outside the margin (see flip-chart for illustration)

This loss function is called ϵ -insensitive.

Note: We can use kernels as for SVM

Regression: Output y is a **continuous variable**.

Regression: Output *y* is a **continuous variable**.

Several ways to **penalize errors**:

- Least squares
- Support vector regressions

Regression: Output *y* is a **continuous variable**.

Several ways to **penalize errors**:

- Least squares
- Support vector regressions

Several ways to **model the prediction**:

- Linear
- Quadratic
- Other kernel

Regression: Output *y* is a **continuous variable**.

Several ways to **penalize errors**:

- Least squares
- Support vector regressions

Several ways to **model the prediction**:

- Linear
- Quadratic
- Other kernel

Parameter selection is important

Thank you! Questions?