Московский Государственный Университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Фоминская Галина кафедра ММП, группа 317 2017

Градиентные методы обучения линейных моделей

1 Введение

В данной работе был проведен анализ методов логистической и мультиномиальной регрессии для задач классификации. Рассмотренная реализация методов была написана на языке *Python*. Эксперименты были проведены на датасетах real-sim и 20newsgroups. В качестве меры качества использовалась ассигасу. Также были реализованы методы one-vs-all и all-vs-all как альтернативные варианты обобщения бинарных классификаторов на многоклассовый случай.

2 Вывод формул

2.1 Логистическая регрессия

Представим формулы для функции потерь в задаче логистической регрессии и для её градиента через матричные операции.

$$Q(X, w) = \frac{1}{l} \sum_{i=1}^{l} \log(1 + \exp(-y_i * \langle X_i, w \rangle)) + \frac{\lambda}{2} w^T w =$$
$$= \frac{1}{l} \langle \log(e + \exp(-y * Xw)), e \rangle + \frac{\lambda}{2} w^T w,$$

где e — вектор из единиц, размер которого совпадает с размером y, * — операция поэлементного перемножения матриц, операции \log и ехр также применяются поэлементно. Тогда градиент функции потерь равен:

$$\nabla_w Q(X, w) = \frac{1}{l} \left(X^T \left(-y * \frac{1}{e + \exp(-y * Xw)} \right) \right)^T + \lambda w,$$

где операция деления тоже поэлементная.

2.2 Мультиномиальная регрессия

Теперь запишем формулы функции потерь и градиента для задачи мультиномиальной регрессии.

$$Q(X, w) = -\frac{1}{l} \sum_{i=1}^{l} \log \frac{\exp \langle X_i, w_{y_i} \rangle}{\sum_{k=1}^{K} \exp \langle X_i, w_k \rangle} + \frac{\lambda}{2} \sum_{k=1}^{K} ||w_k||^2 =$$

$$= \frac{1}{l} (trace(-Xw^T[y]) + \log(\exp(wX^T).sum(axis = 0)).sum()) + \frac{\lambda}{2} w^2.sum()$$

Тогда градиент выглядит так:

$$\nabla_w Q(X, w) = -\frac{1}{l} \left(MX - \left(\frac{\exp(Xw^T)}{\exp(Xw^T) . sum(axis = 1)} \right)^T X \right) + \lambda w,$$

где $M \in \mathbb{R}^{l,K}$, $M_{ij} = 1$, если $y_i = j$, иначе $M_{ij} = 0$.

2.3 Эквивалентность логистической и мультиномиальной регрессии при k=2

Запишем формулу функции потерь мультиномиальной регрессии при k=2:

$$Q(X, w) = -\frac{1}{l} \sum_{i=1}^{l} \log \frac{\exp(\langle X_i, w_1 \rangle I[y_i = 1] + \langle X_i, w_{-1} \rangle I[y_i = -1])}{\exp(\langle X_i, w_1 \rangle + \exp(\langle X_i, w_{-1} \rangle))} + \frac{\lambda}{2} \left(w_1^T w_1 + w_{-1}^T w_{-1} \right) =$$

$$= \frac{1}{l} \sum_{i=1}^{l} \log \left(1 + \exp\left(-y_i * \langle X_i, w_1 - w_{-1} \rangle \right) \right) + \frac{\lambda}{2} \left(w_1^T w_1 + w_{-1}^T w_{-1} \right)$$

Положим $w = w_1 - w_{-1}$, тогда:

$$Q(X, w) = \frac{1}{l} \sum_{i=1}^{l} \log \left(1 + \exp\left(-y_i * \langle X_i, w \rangle \right) \right) + \frac{\lambda}{2} \left((w + w_{-1})^T (w + w_{-1}) + w_{-1}^T w_{-1} \right)$$

$$(w + w_{-1})^T (w + w_{-1}) + w_{-1}^T w_{-1} = w^T w + 2w^T w_{-1} + 2w_{-1}^T w_{-1} = w^T w + 2w_1^T w_{-1}$$

Заметим теперь, что итоговые вероятности можно выразить через w:

$$P(y=1|x) = \frac{\exp\left\langle X_i, w_1 \right\rangle}{\exp\left\langle X_i, w_1 \right\rangle + \exp\left\langle X_i, w_{-1} \right\rangle} = \frac{1}{1 + \exp\left(-\left\langle X_i, w_1 - w_{-1} \right\rangle\right)} = \frac{1}{1 + \exp\left(-\left\langle X_i, w \right\rangle\right)}.$$

Следовательно, ответ не зависит от w_{-1} и можем положить его равным нулевому вектору. Тогда видно, что задача эквивалентна задаче логистической регрессии.

3 Эксперименты

3.1 Сравнение работы алгоритмов

В первом эксперименте сравнивается работа алгоритмов полного и стохастического градиентного спуска. На графиках 1, 2 приведены зависимости функции потерь и точности (accuracy) от времени работы и от итерации для обоих алгоритмов. Для стохастического алгоритма рассматривались следующие несколько начальных приближений: нулевой вектор весов, единичный, а также векторы, заполненные значениями 0.25, 0.5 и 0.75.

Из графиков видно, что стохастический спуск быстрее всего сходится и дает лучшее качество при нулевом начальном приближении. Это можно объяснить тем, что алгоритм штрафует за большую норму вектора весов, и поэтому нулевое начальное приближение оказывается ближе к искомому решению, чем остальные. Также из графиков можно сделать вывод, что полный градиентный спуск сходится более устойчиво, чем стохастический, но гораздо медленнее.

Рис. 1: SGDC vs. GDC

Рис. 2: SGDC with different w0

3.2 Подбор параметров для бинарной классификации

В таблицах 1, 2, 3, 4, 5, 6 показана зависимость качества модели от параметров шага градиентного спуска $step_alpha$ и $step_beta$. Лучшее значение ассигасу для полного алгоритма равно 0.971 и достигается при $\alpha=1000, \beta=0.5$ и при $\alpha=100, \beta=0.1$. Лучшее значение ассигасу для стохастического алгоритма равно 0.935 и достигается также при $\alpha=1000, \beta=0.5$. При таких значениях параметров шага алгоритм начинает сходиться быстро засчет большого α и чем ближе он подходит к решению, тем меньше становится шаг и тем точнее получается результат. Также в целом можно заметить, что при больших значениях β лучшее качество достигается при больших значениях α .

Таблица 1: $\beta = 0$

α	loss, full	accuracy, full	loss, stochastic	accuracy, stochastic
0.1	0.359	0.857	0.608	0.688
1	0.196	0.947	0.563	0.692
100	0.239	0.963	14.429	0.754
1000	47.938	0.704	124.642	0.709

Таблица 2: $\beta = 0.5$

α	loss, full	accuracy, full	loss, stochastic	accuracy, stochastic
0.1	0.618	0.688	0.611	0.688
1	0.569	0.688	0.609	0.688
100	0.172	0.956	2.134	0.701
1000	0.137	0.971	1.815	0.935

Таблица 3: $\beta = 0.1$

	146/111144 5. p 0.1				
α	loss, full	accuracy, full	loss, stochastic	accuracy, stochastic	
0.1	0.457	0.759	0.601	0.688	
1	0.239	0.929	0.424	0.786	
100	0.133	0.971	2.808	0.902	
1000	15.059	0.716	59.487	0.745	

Таблица 4: $\beta = 1$

α	loss, full	accuracy, full	loss, stochastic	accuracy, stochastic
0.1	0.672	0.688	0.681	0.688
1	0.616	0.688	0.622	0.688
100	0.383	0.839	0.524	0.761
1000	0.1782	0.941	4.706	0.789

Таблица 5: $\beta = 2$

α	loss, full	accuracy, full	loss, stochastic	accuracy, stochastic
0.1	0.687	0.688	0.687	0.688
1	0.647	0.688	0.651	0.688
100	0.552	0.688	0.559	0.725
1000	0.251	0.879	2.683	0.741

Таблица 6: $\beta = 0.01$

α	loss, full	accuracy, full	loss, stochastic	accuracy, stochastic
0.1	0.369	0.851	0.611	0.688
1	0.199	0.945	0.349	0.859
100	0.217	0.967	9.324	0.842
1000	55.234	0.694	110.715	0.708

$random_seed$	accuracy	loss
2	0.924	0.191
10	0.947	0.175
50	0.948	0.193
150	0.949	0.175
1000	0.954	0.173

Таблица 7: Accuracy, loss (random seed)

$batch_size$	accuracy	loss
1	0.929	0.188
5	0.955	0.171
10	0.923	0.188
20	0.933	0.181
50	0.953	0.171
100	0.945	0.173

Таблица 8: Accuracy, loss (batch size)

В таблице 7 показано, какое получается качество модели при различной степени случайности выбора объектов в стохастическом алгоритме. Как видно из таблицы, чем больше значение $random_seed$, тем лучше обучается модель. Это может объясняться тем, что при большей степени случайности алгоритм меньше учитывает, какие именно объекты попали в подвыборку на текущем шаге, и засчет этого лучше обобщает.

В таблице 8 показано, как зависит качество модели от размера подвыборки в стохастическом алгоритме. Из таблицы можно сделать вывод, что качество не сильно зависит от этого параметра. В таблицах 9 и 10 показана зависимость качества модели от параметров величины шага при размерах подвыборки 10 и 100. Можно сделать вывод, что наше наблюдение о том, что при больших значениях β лучшее качество достигается при больших значениях α , остается справедливым и при этих значениях размера подвыборки.

	$batch_$	size = 10	$batch_size = 100$	
α	loss	accuracy	loss	accuracy
0.1	0.603	0.688	0.611	0.688
1	0.480	0.754	0.559	0.688
100	0.820	0.953	0.339	0.953
1000	17.599	0.908	22.536	0.662

Таблица 9: $\beta = 0$

	$batch_size = 10$		$batch_size = 100$	
α	loss	accuracy	loss	accuracy
0.1	0.677	0.688	0.673	0.688
1	0.629	0.688	0.623	0.688
100	0.415	0.806	0.455	0.742
1000	0.627	0.875	0.233	0.925

Таблица 10: $\beta = 1$

3.3 Сравнение трех методов многоклассовой классификации

Теперь рассмотрим задачу многоклассовой классификации. В приведенной реализации есть три метода ее решения: one-vs-all, all-vs-all и мультиномиальная регрессия. Сравним их между собой. К плюсам методов one-vs-all и all-vs-all можно отнести то, что они оба простые и легко реализуются, а также за их основу можно брать любой бинарный классификатор. Но при этом метод one-vs-all хорошо работает в случаях, когда каждый класс отделим от остальных, и плохо работает в других случаях. В методе all-vs-all итоговое решение принимается на основе подсчета числа голосов всех алгоритмов. Из-за того, что число голосов у разных классов может оказаться одинаковым, ответ зависит от способа выбора класса в таких случаях. Это делает метод all-vs-all неустойчивым. Также число классификаторов, равное $\frac{k(k-1)}{2}$, может быть довольно большим, и придется обучить и хранить много векторов в памяти. Так же в этих двух методах обучение классификаторов происходит независимо друг от друга, и следовательно нет общей функции потерь, по которой можно оценивать качество модели.

Третий способ решения задачи многоклассовой классификации — это обобщение логистической регрессии на случай $k \geq 2$, называемое мультиномиальной регрессией. К плюсам этого метода можно отнести те же плюсы, что есть у логистической регрессии: он корректно оценивает вероятности принадлежности объектов к классам, может быть обучен с помощью известных методов, а в случае k=2 сводится к бинарной логистической регрессии, как показано в теоретической части.

На рисунке 3 изображена работа этих методов для случая классификации объектов, описываемых 2 признаками, на 3 класса.

4 Эксперименты на датасете 20newsgroups

Здесь мы попробуем решить задачу многоклассовой классификации для текстов из датасета 20newsgroups с помощью алгоритма мультиномиальной регрессии.

Рис. 3: Multiclass

4.1 Подбор параметров

Рассмотрим два способа векторных представлений текстов:

- 1. Вектор из счетчиков частот слов
- 2. Вектор из счетчиков tf-idf

В таблицах 11, 12 и 13 приведены результаты экспериментов, в которых тексты были представлены этими способами. Видно, что представление текстов с использованием tf-idf дает значительно лучшие результаты ассигасу на отложенной выборке, поэтому в дальнейшем будет использовать его.

α	accuracy
0.1	0.615
1	0.665
10	0.653
100	0.645

Таблица 11: Без tf-idf, $\lambda = 0$, maxiter=1000

λ	accuracy
0	0.645
10^{-6}	0.041
10^{-1}	0.106
1	0.053
100	0.641

Таблица 12: Без tf-idf, $\alpha = 100$, maxiter=1000

α	accuracy
1	0.589
10	0.714
100	0.744

Таблица 13: C tf-idf, $\lambda = 0$, maxiter=1000

При $\alpha=100$ и $\lambda=10^{-6}$ ассигасу получилось равным 0.744, как и при $\lambda=0$, поэтому в дальнейшем было выбрано $\lambda=10^{-6},~\alpha=100.$

4.2 Применение алгоритма

После обучения полного градиентного спуска с подобранными в предыдущем эксперименте параметрами на коллекции 20 newsgroups, сделаем предсказание на тестовой выборке и проанализируем результаты. Полученная ассигасу равна 0.684. Матрица ошибок приведена на рисунке 4.

Рис. 4: Матрица ошибок при применении tf-idf

Рассмотрим теперь 2 примера ошибочно классифицированных текстов (таблицы 14 и 15. Первый текст действительно содержит слова headers, displays, uncompressed, которые могут указывать на его отношение к компьютерной графике. При этом при предобработке текстов слово x-face, которое должно повлиять на отнесение текста к классу comp.windows.x, было разбито на части x и face, которые по отдельности могут встречаться в очень разных по тематике текстах. Поэтому алгоритм мог ошибся при классификации этого документа. Второй текст просто очень маленький и не содержит слов, указывающих на его класс.

i m not familiar at all with the format of these x face thingies but after seeing them in some folks headers i ve got to see them and maybe make one of my own i ve got dpg view on my linux box which displays uncompressed x faces and i ve managed to compile un compface too but now that i m looking for them i can t seem to find any x face s in anyones news headers could you would you please send me your x face header i know i ll probably get a little swamped but i can handle it i hope

Таблица 14: True label is *comp.windows.x*, predicted label is *comp.graphics* in a word yes

Таблица 15: True label is alt.atheism, predicted label is talk.politics.misc

4.3 Применение лемматизации и стемминга

Применение лемматизации и стемминга может помочь сократить словарь, то есть понизить размерность пространства признаков. В таблице 16 приведены результаты. Из нее видно, что применение стемминга ухудшило качество предсказаний, а применение лемматизации улучшило. При этом в обоих случаях размерность пространства признаков была понижена, но про стемминге различных слов осталось меньше, чем при лемматизации. Поэтому падение качества может быть связано с потерей большой части информации при стемминге.

алгоритм	accuracy	время (мин)	размерность
GDC	0.684	13	101631
GDC + Stemming	0.681	11	84435
GDC + Lemmatizing	0.686	12	93650

Таблица 16: Исходный алгоритм vs. стемминг vs. лемматизация

На рисунках 5, 6 приведены матрицы ошибок для выполненных предсказаний. Видно, что распределение ошибок практически не изменилось.

4.4 Сокращение словаря

Попробуем добиться ускорения работы алгоритма и улучшения его качества, удалив из коллекции слова, которые встречаются в либо очень часто, либо очень редко. Из таблицы 17 видно, что при лучшая точность достигается при удалении слов, частота которых выше 90%. При этом при лучшем времени, в 10 раз меньшем времени обучения начальной модели, достигается точность 0.677 при дополнительном удалении слов, которые встретились реже 5 раз. Если вместо этого удалять стоп-слова, ассигасу итогового предсказания на тесте составит 0.649.

- 70

Рис. 5: Матрица ошибок при применении стемминга

min_df (количество)	max_df (%)	accuracy	время (мин)
0	99	0.685	12
0	90	0.685	11
0	80	0.684	11
10	90	0.668	1
5	90	0.677	1

Таблица 17: Зависимость ассuracy и времени работы от количества удаленных слов

- 70

- 50

Рис. 6: Матрица ошибок при применении лемматизации