Latch de alta performance sensível ao nível com saídas tristate (Datasheet)

Trabalho realizado por: João Pedro Sá Gomes A89141 Ricardo da Silva Correia A89156

Nota:O projeto está guardado na pasta "Inicio 2018" na célula "projeto" do S-edit

Índice:

- Notação
- Diagrama de pinos
- Diagrama de blocos
- Tabela de verdade
- Instruções acerca do dispositivo
- Condições de operação (com carga)
- Representações gráficas

Notação:

IN ou Vin	Entrada da Latch(Pino 4)
Clock	Entrada de relógio (Pino 1)
Enable	Entrada responsável por produzir 3 saídas diferentes: 0, 1 lógicos ou alta impedância(Z) (Pino 2)
GND	Ground do Latch (Pino 3)
VDD	Alimentação do Latch (Pino 5)
Iout	Corrente à saída
Q ou Vout ou OUT	Tensão de saída do Latch (Pino 6)
C(Q ou Vout ou OUT)	Tensão complementar de saída do Latch (Pino 7)

Diagrama de pinos:

Figura 1: Diagrama de pinos

Figura 2:Diagrama de pinos no S-edit

Diagrama de blocos:

Figura 3:diagram de blocos do latch de alta performance sensível ao nível com saídas tristate

Tabela de verdade:

IN	Clock	Enable	Q	C(Q)
0	0	0	Z	Z
0	0	1	VA	C(VA)
0	1	0	Z	Z
0	1	1	0	1
1	0	0	Z	Z
1	0	1	VA	C(VA)
1	1	0	Z	Z
1	1	1	1	0

Tabela 1

Nota: VA=valor anterior C()=complementar do () Z=alta impedância

Instruções acerca do dispositivo:

- A tensão de alimentação (VDD) no 1 lógico e no zero lógico deve ser igual às tensões do IN, do clock e
 do Enable no 1 lógico e no 0 lógico, respetivamente. Este parâmetro é essencial, de modo a evitarmos
 resultados inesperados e possíveis danos no dispositivo.
- Este dispositivo foi projetado de tal forma, que ao introduzir uma entrada de 5V(1 lógico), seja possível obter 4,56V (1 lógico) na carga (paralelo de um condensador de 20 pF com uma resistência de 1 kOhm).

Condições de operação:

Parâmetro a medir	Condições	Carga à saída ?(S/N)	MAX.	MIN.	Unida des	Gráfico	
Vin(IN)	VDD=5V Enable=5V Clock=5V	Fez se o varrimento de IN de 0 a 10V e mediu-se Q em função de IN, anotando-se o valor de IN na qual era conseguido o 1 lógico à saída	S	-	2.1	V	Gráfico 3
VDD	IN=5V Enable=5V Clock=5V	Fez se o varrimento de VDD de 0 a 10V e mediu-se Q em função de VDD	S	-	4.4*	V	Gráfico 1
Iout	IN=5V Enable=5V Clock=5V	Fez se o varrimento de VDD de 0 a 5V e mediu-se Iout em função de VDD, de seguida anotou-se o valor de Iout para VDD=5V	S	-4.56	0	mA	Gráfico 2 b)
Iout	IN=5V Enable=5V Clock=5V	Fez se o varrimento de VDD de 0 a 5V e mediu-se Iout em função de VDD, de seguida anotou-se o valor de Iout para VDD=4.4V	S	-4	0	mA	Gráfico 2 a)

Iout	VDD=5V Enable=5V Clock=5V	Fez se o varrimento de IN de 0 a 5V e mediu- se IN em função de Iout, verificou-se qual era o Iout máximo e mínimo	S	-4.56	0	mA	Gráfico 4
Vout	VDD=5V Enable=5V Clock=5V	Fez se o varrimento de IN de 0 a 10V e mediu-se Q em função de IN, anotando o valor máximo e mínimo de Q	S	4.56	0	V	Gráfico 3
Iout	VDD=5V Vin=5V Enable=5V Clock=5V R=0.00001Ω	De modo a conseguir descobrir a corrente máxima na saída colocou-se uma resitência R=0.00001Ω	N	~21	0	mA	Gráfico 5

Tabela 2

Nota:

• A carga utilizada foi um paralelo de um condensador de 20pF e uma resistência de 1 kOhm

Parâmetro	Carga à saída ?(S/N)	Valor	Gráfico
Taxa de transição de entrada(subida e descida)	S	0.5ns/V	 (valor obtido através de cálculos)
Delay de subida (saída)	S	2 ns	Gráfico 8
Delay de descida (saída)	S	1.69 ns	Gráfico 9
Tempo de subida (saída)	S	14.26 ns	Gráfico 10
Tempo de descida (saída)	S	9.18 ns	Gráfico 11
Delay de subida (saída)	N	1.76 ns	Gráfico 6
Delay de descida (saída)	N	1.49 ns	Gráfico 7

^{*}Só a partir do VDD=4.4V (considerando as condições presentes na tabela) é que o Vout foi acima de 4V para o 1 lógico (4V foi a margem mínima à qual se pretendeu que a tensão do 1 lógico tivesse à saída)

Tempo de subida (saída)	N	3.18 ns	Gráfico 12
Tempo de descida (saída)	N	4.37 ns	Gráfico 13

Tabela 3

Nota:

- Os valores da tabela acima foram obtidos para tempos de subida da entrada, Clock e Enable de 1ns
- Estas medições foram obtidas para um VDD=5V, enquanto que o Clock, Enable e Vin tinham 5V para o 1 lógico e 0V para o 0 lógico.

Representações gráficas:

Gráfico 1- VDD vs Q (com carga)

Figura 4:Montagem S-edit usado para obter o gráfico abaixo

Gráfico 1

Gráfico 2 a) VDD vs Iout (com carga):

Nota: a montagem usada no S-edite foi igual à anterior, mudando apenas o intervalo de varrimento e mediu-se a corrente à saída me vez da tensão

Gráfico 2 a)

Gráfico 2 b) VDD vs Iout (com carga):

Nota: a montagem usada no S-edit foi igual à utilizada para obter o gráfico 1, mudando apenas o intervalo de varrimento e mediu-se a corrente à saída me vez da tensão.

Gráfico 2 b)

Gráfico 3-IN vs Q (com carga):

Figura 5: Montagem S-edit usada para obter o gráfico abaixo

Gráfico 3

Gráfico 4-IN vs Iout (com carga):

Nota: a montagem usada para obter o gráfico abaixo foi a mesma que se usou para obter o gráfico 3, mudou-se apenas o intervalo de varrimento e mediu-se a corrente à saída me vez da tensão.

Gráfico 4

Gráfico 5-Iout máximo (sem carga):

Figura 6: Montagem S-edit usada para obter o gráfico abaixo

Gráfico 5

Gráfico 6-Delay de subida (sem carga):

Figura 7: Montagem do S-edit utilizada para obter o gráfico abaixo.

Gráfico 6

Gráfico 7-Delay de descida (sem carga):

Nota: A montagem utilizada para obter este gráfico foi a mesma que a utilizada para obter o gráfico 6.

Gráfico 7

Gráfico 8-Delay de subida (com carga):

Figura 8: Montagem do S-edit utilizada para obter o gráfico abaixo.

Gráfico 8

Gráfica 9-Delay de descida (com carga):

Nota: A montagem utilizada para obter este gráfico foi a mesma que a utilizada para obter o gráfico 8.

Gráfico 9

Gráfico 10-Tempo de subida da saída (com carga):

Nota: A montagem utilizada para obter este gráfico foi a mesma que a utilizada para obter o gráfico 8.

Gráfico 10

Gráfico 11-Tempo de descida da saída (com carga):

Nota: A montagem utilizada para obter este gráfico foi a mesma que a utilizada para obter o gráfico 8.

Gráfico 11

Gráfico 12-Tempo de subida da saída (sem carga):

Nota: A montagem utilizada para obter este gráfico foi a mesma que a utilizada para obter o gráfico 6.

Gráfico 12

Gráfico 13-Tempo de descida da saída (sem carga):

Nota: A montagem utilizada para obter este gráfico foi a mesma que a utilizada para obter o gráfico 6.

Gráfico 13

Modo de funcionamento do circuito (sem carga)

Nota: A montagem utilizada para obter este gráfico foi a mesma que a utilizada para obter o gráfico 6.

	Binário	FT	НТ	LT	PW	RT	Delay
IN	0101010101	1 ns	100 ns	100 ns	100 ns	1 ns	30 ns
Clock	0101010101	1 ns	100 ns	100 ns	100 ns	1 ns	0 ns
Enable	11111111111	1 ns	100 ns	100 ns	100 ns	1 ns	0 ns

Nota: 1 lógico =5 V 0 lógico= 0V

Nota: Foi introduzido um delay de 30 ns na entrada de forma a evitar que a transição entre o Clock e o IN seja ao mesmo tempo, permitindo obter os resultados pretendidos.

Gráfico 14

Com carga (condensador de 20pF em paralelo com resistência de 1K Ohm)

Nota: A montagem utilizada para obter este gráfico foi a mesma que a utilizada para obter o gráfico 8.

	Binário	FT	НТ	LT	PW	RT	Delay
IN	0101010101	1 ns	100 ns	100 ns	100 ns	1 ns	30 ns
Clock	0101010101	1 ns	100 ns	100 ns	100 ns	1 ns	0 ns
Enable	11111111111	1 ns	100 ns	100 ns	100 ns	1 ns	0 ns

Gráfico 15

Nota: Nas saídas o valor lógico 1 representa 4.56V

Se na montagem anterior fosse variada a entrada Enable:

Nota: A montagem utilizada para obter este gráfico foi idêntica à utilizada para obter o gráfico 8, a única diferença é que se colocou a entrada Enable como indica a tabela abaixo.

	Binário	FT	НТ	LT	PW	RT	Delay
IN	0101010101	1 ns	100 ns	100 ns	100 ns	1 ns	30 ns
Clock	0101010101	1 ns	100 ns	100 ns	100 ns	1 ns	0 ns
Enable	111000111000	1 ns	100 ns	100 ns	100 ns	1 ns	0 ns

Gráfico 16

Nota: Nas saídas o valor lógico 1 representa 4.56V