2021-winter-intern

2월 7일 업무 진행 상황

기존 결과에서 인용횟수, 출원날짜, google patent link 와 특허 pdf file link 를 추가하였다.

→ Keywords : autonomous driving

assignee : stradvision 으로 세부검색한 결과는 아래와 같다.

→ 해당 결과는 google patent 의 세부검색 결과로 먼저 테스트 해보았다.

현재 google patent, patently apple 의 모든 자율주행 관련 특허를 하나의 데이터 베이스 추합하고 있는 중이다.

이 후 몽고 DB 에 있는 데이터 베이스 중복제거 작업을 수행할 예정이다.

2월 3일 업무 진행 상황

다음은 28 일에 설계한 크롤링 로봇의 동작 과정이다.

• 먼저 patently apple 에 존재하는 자율주행에 관한 특허들을 크롤링한 결과이다. 140 여개가 추출되었으며 동적 크롤링을 진행하였기에 16 분이 소요되었다.

• 구글 특허 세부검색을 통하여 db 에 데이터를 저장한다.

```
db에 키워드들을 저장 (리스트를 수정해서 돌리면 됨)

keyword = 'autonomous driving'
inventor = ''
assignee_list = ['stradvision', 'Maymo LLC', 'Mvidia', 'argo AI', 'baidu', 'cruise', 'motional', 'Mobileye', 'Aurora', 'zoox', 'nuro', 'ford', 'intel', 'Hyundai
country = ''
for assignee in assignee_list:
    df = detail_search(keyword, inventor, assignee, country)
    df_to_db('autonomous driving',df,my_client)

Python
```

다만 90 분정도 진행되다가 connection error 가 발생해서 ford 부터 다시 실행하였다.

총합 3 시간 30 분 정도 크롤링에 걸렸다.

다만 한가지 의아한 점은 반복문을 1 개만 시행했을 때에는 1000 개의 검색결과를 추출하는데 2 분 40 여초 정도만 걸린것을 확인할 수 있었다.

stradvision 24sec 12페이지 intel 2m 37sec 100페이지 volkswagen 2m 41sec 100페이지

마찬가지로 상당히 짧은 시간에 크롤링이 진행된것을 볼 수 있다. 실제로 해당 함수에서는 정적인 데이터만을 가져왔기 때문에 2분 40 여초 시간이 걸려야 했으나 상대적으로 오랜 시간이 걸린것을 확인할 수 있다.

크롤링이 모두 끝난 이후 데이터베이스에 14436 개의 데이터가 존재하는 것을 확인할 수 있다. 다만, 이 때에 각각의 특허 링크에 접속하지 않았기 때문에 가져온 데이터는 한정적이다.

이는 추후 우리가 설계한 로봇의 2 번째 기능을 고안하면서 추가할 계획이다.

db 에 쌓인 데이터를 바탕으로 유의미한 정보를 추출해낼 것이다.

우리는 그 지표로 다른 특허에서 인용된 횟수와 출원 날짜를 고민해보았다.

이는 더 고민해보아야 할 것이다.

특허 페이지에 접속해 해당 정보들을 더 가져올 수 있도록 프로그램을 설계해야 할 것이다.

1월 28일 업무 진행 상황

우리가 만들 크롤링 로봇에 대해서 설명하고자 한다.

먼저 구글 patent 의 세부검색기능을 이용하여 자율주행관련된 기업에서 autonomous driving 가 포함된 특허들을 추출해내고자 한다.

가이드하우스 인사이트 자율주행 기술 종합 순위

2019년	2020년	2021년
웨이모(구글)	웨이모(구글)	웨이모(구글)
크루즈(GM)	포드	엔비디아
포드	크루즈(GM)	아르고AI (포드·폭스바겐)
앱티브	바이두	바이두
인텔-모빌아이	인텔-모빌아이	크루즈
폭스바겐	현대차그룹-앱티브	모셔널 (현대차그룹-앱티브)
다임러-보쉬	폭스바겐	모빌아이
바이두	얀덱스	오로라
도요타	죽스	죽스
르노-닛산-미쓰비시	다임러-보쉬	뉴로
	웨이모(구글) 크루즈(GM) 포드 앱티브 인텔-모빌아이 폭스바겐 다임러-보쉬 바이두 도요타	웨이모(구글) 웨이모(구글) 크루즈(GM) 포드 포드 크루즈(GM) 앱티브 바이두 인텔-모빌아이 인텔-모빌아이 폭스바겐 현대차그룹-앱티브 다임러-보쉬 폭스바겐 반이두 안덱스

자료 가이드하우스 인사이트

현재 생각하고 있는 기업들은 기술 종합 순위에 존재하는 기업들로 가능하다면 해당 사이트에서 매년 기술 종합 순위가 업데이트 된다면

db 에 데이터를 계속 쌓아나가는 방식으로 설계하고 싶다.

이 때 db 에 데이터를 쌓아갈 때에 크롤링해서 정보를 얻어내는 곳은 모두 google patent 에서 얻어내도록 설계하였기에 동일한 데이터가 db 에 쌓이게 될 경우

해당 데이터의 형태는 동일하다. 그렇기에 이를 고려해서 프로그램을 설계한다면 문제를 해결하기 쉬울 것이다.

또한, patently apple 을 통하여 차량 기술에 대한 특허들을 크롤링해 db 에 저장하는 것을 현재의 목표로 하고 있다.

이 때 크롤링 할 때에는 추후에 데이터베이스에서 로봇 2 가 필터링해내기 위해서 각각 특허의 링크내용을 포함하고 있어야 한다.

1 월 27 일 업무 진행 상황

Apple patent archives 검색 기능 설정

간단하게 Apple search service 라는 창을 만들었다. Categories 는 patently apple 사이트에 있는 archives 를 모두 가져 온 것이다.

해당 archives filed 를 누르게 되면 그에 해당하는 특허 제목과 링크를 추출하도록 하였다.

특허 번호와 assignee, inventor 등 모든 정보를 가져오는 것은 더 많은 시간이 소요될 것 같다.

• 추가적으로 해야 할 업무

- → 위의 데이터베이스를 MongoDB 에 주기적으로 업로드 할 것
- → MongoDB 의 데이터들을 filtering 하는 기능

1월 26일 업무 진행 상황

기존 정의한 google patent 함수를 사용하여 반환된 데이터 프레임을 json file 로 변환하였다.

```
@app.route("/mongo")
def index():
    client = MongoClient('mongodb://localhost:27017/')
    db = client.my_database
    collection = db.my_collection
    results = collection.find()
    return render_template('index.html', data=results)

if __name__ == "__main__":
    app.run(debug=True)
```

```
* Detected change in 'c:\\Users\\LEGION\\Desktop\\projects\\myproject\\app.py', reloading
* Restarting with stat
* Debugger is active!
* Debugger PIN: 956-077-675
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
```

my_database 의 하위폴더 my_collection 에 있는 json 파일을 불러 와서 data 에 저장하였다.

html 구조로 변환하여 출력되도록 하였다.

• Mongo DB 와 python Flask 연동

Google patent 검색하기

입력 키워드 : stradvision
최대 검색 갯수 : 10개

특히제목: System and method for side vision detection of obstacles for vehicles
링크: www.google.com/patents/US8199975
특허번호: US8199975
국가코드: US
특히제목: Presenting geographic search results using location projection and
링크: www.google.com/patents/EP3114434A1
특히번호: EP3114434A1
국가코드: EP

- 추가적으로 해야 할 업무들
 - → Action Diagram 에 따라 웹 페이지 상에서 입력이 가능하도록 해야함
 - →입력 및 결과에 대한 기본적인 웹 페이지 틀 구상하기

1월 25일 업무 진행 상황

• flask 를 이용한 웹페이지 만들어보기

하위 페이지로 우리가 만든 함수들로 구성하면 되겠다는 생각이 든다.

• 데이터 프레임을 db 에 저장하는 함수 선언

```
def df_to_db(keyword, df, client):
    items = df.to_dict("records")
    mydb = client['data']
    mycol = mydb[keyword]

    mycol.insert_many(items)

df_to_db('autonomous driving3',df,my_client)
```

해당 함수를 활용하여 데이터프레임의 저장이 가능한 것을 확인하였다.

이 때 데이터프레임을 저장할 때의 이름은 보통 어떤 것으로 지정하는지는 더 찾아봐야할 것 같다.

(데이터프레임을 생성한 시간 or 입력 키워드의 요약정보)

1월 24일 업무 진행 상황

• activity diagram 작성

• mongoDB 설치 및 csv 파일 업로드해보기

설치 및 사용법만 보았을 뿐 어떻게 사용하는지는 차차 관련서적과 인터넷을 통해 찾아볼 예정

1월 20일 업무 진행 상황

자율주행 관련 특허로 추출되는 데이터를 csv 형태로 변환하였다.

• 자율주행 외에도 archives 에 다른 category 에도 동일하게 적용하여 함수를 사용할 수 있다.

Electronic Devices with Broadband Ranging Capabiliti	US20200182964A1	CN(2019) / US(2019) /	Carlo Di Nallo / Simo	Apple Inc
Inductive charging between electronic devices	US10886771B2	WO(2019) / US(2015) ;	Darshan R. Kasar / C	Apple Inc
Withdrawn	US80233951		*	
Configurable wireless transmitter device	US10158244B2	WO(2016) / EP(2016) /	Christopher M. Pincir	Apple Inc
Thermally optimized rx wireless charger for small rx devic	US20210036557A1	CN(2019) / US(2019) /	Grant S. Haug / Chris	Apple Inc
Wireless charging systems for electronic devic	US20190363565A1	US(2019) / US(2019)	Christopher S. Graha	Apple Inc
Detection of coil coupling in an inductive charging system	US10110051B2	US(2017) / US(2014) /	Todd K. Moyer / Chi	Apple Inc
Withdrawn	US80090730	*	•	**
Multi-layer transmitter coil arrangement for wireless chargi	US20180091000A1	WO(2017) / US(2017) /	Eric S. Jol / Christoph	Apple Inc
Withdrawn	US70117754		-	-
Systems and methods for object detection by radio frequ	US20200300996A1	US(2019) / US(2019)	Berke Cetinoneri / Ic	Apple Inc
Method for manufacturing graphene using cover member	US10035708B2	WO(2014) / KR(2013) /	Kilwan Cho / Hyojin	Academy Industry F
Laser system	US10074958B2	WO(2016) / JP(2014) /	Osamu Wakabayashi	Gigaphoton Inc
Withdrawn	US80090973	-	= 5:	<u> </u>
System and method for enhanced high throughput (eht) s	tUS20210076437A1	CN(2020) / US(2020) /	Jarkko L. KNECKT / 0	Apple Inc
Inductive module	US20180233951A1	CN(2017) / US(2017) /	Karl Ruben F. Larsso	Apple Inc
Transient Power Management Circu	US20210075214A1	US(2020) / US(2020)	Samuel B. Schaevitz	Apple Inc
Inductive Power Transf	US20210036553A1	WO(2020) / US(2018) /	Aiguo Hu / Jeffrey D	Apple Inc

 사용자가 입력한 "autonomous driving" 키워드 검색에 따른 특허정보를 추출하는 기능도 가능하도록 하였다. (다른 키워드를 검색하더라도 동일하게 적용가능하다.)

1월 19일 업무 진행 상황

현재 알고리즘

• 필터 1 실행 -> 페이지 접속 추출되는 데이터의 형태: 00,000,00

• 아무런 정보를 얻어내지 못한 링크들로부터 필터 2 실행 -> 페이지 접속 추출되는 데이터의 형태: 20190 or 20200 or 20180 • 아무런 정보를 얻어내지 못한 링크들로부터 필터 3 실행 -> 페이지 접속 추출되는 데이터의 형태 : href = uspto

vehicle-related-project-titan-is-moving-to-the-next-phase.html https://www.patentlyapple.com/patently-apple/2020/05/apple-won-63-parents-today-covering-afuture-sliding-door-hinge-system-for-a-vehicle-and-a-future-he.html ustrating-next-gen-seat-belt-systems-that-includes-roof-and-lapbelt-airbags.html https://www.patentlyapple.com/patently-apple/2019/07/apple-invents maps-requiring-smartglasses-or-iphone-with-ar-camera-on-dash.htm https://www.patentlyapple.com/patently-apple/2019/05/apple-invents-a-yehicle-radar-system-thatreads-road-signs-and-warns-of-road-hazards-in-low-visibility-conditions-like-a-snow.html https://www.patentlyapple.com/patently-apple/2019/03/a-project-titan-patent-reveals-how headight-tail-light-elements-will-house-cameras-figr-autonomous-mode-driving.html va.patentlyapple.com/patently-apple/2018/16/an-apple-patent-discovered-in-europe-ern-range-of-view-and-data-completional-gaptem-for-ployee-stan.html https://www.patentlyapple.com/patently-apple/2018/10/apple-reveals-more-details-about-their-ar-windshield-system-that-could-extend-to-driving-school-simulators.html system-that-focuses-on-illuminating-objects-advances a five-windshield.html https://www.patentlyapple.com/patently-apple/2018/97/fike-a-science-fiction-novel-apple-revealshow-your-personal-driving-profile-will-control-your autonomous-car.html

hps://www.paternflyapple.com/paternfly-apple/2018/06/apple-invents-an-autor idance-system-that-recognizes-intent-signah-drom-authorized-drivers.html https://www.patentlyapple.com/patently-apple/2918/06/hew-apple-invention-covers-inspectio and-primal-neural-networks-for-controlling-future-autonomous-vehicles.html https://www.puterrflyapple.com/puterrfly-apple/20/8/03/apples-most-advanced-project-titan-invention-surfaces-detalling-gesture-controls-straubeads-up-display.html

https://www.patentlyapple.com/patently-apple.2011/02/a-new-project-titan-patent-surfaces-in-europe-covering-interchangeable-heads-up-digray-interfaces-more.html

https://www.patentlyapple.com/patently-apple/2013/12/the-first-apple-patent-regardingautonomous-vehicle-navigation-was-published adday-by-the-us-patent-office.html

필터 3 의 알고리즘을 만들기 위하여 필터에 걸러지지않은 남은 링크들을 직접살펴보았으며, 정보가 추출되지 않은 링크들은

대체로 같은 특허에 관한 기사형태로, 다른 기사를 다시 설명하는 정보였다.

이 때 필터 1,2,3 에서 접속하는 페이지들이 동일한 페이지임 => 때문에 더 오래걸림 (현재 필터 1:14 분, 필터 2:10 분, 필터 3:4 분정도 소요)

이를 보완하기 위한 작업이 필요 (보완시 14 분정도 소요될 것으로 예상)

※해당 시간은 patently apple 의 archives 중 vehicle technology 의 정보들을 크롤링한 시간으로 5 페이지 크롤링하는데 걸리는 시간이다

필터 1을 통하여 추출된 특허 정보들

필터 2 를 통하여 추출된 특허 정보들을 추가한 데이터프레임

assignee	Inventor	적용국가	특허코드	특허제목	
Apple Inc	Clarisse Mazuir / Arthur Y. Zhang / Albert J	US(2018) / US(2016) / US(2018)	US1110426781	Exterior lighting and warning system	
Apple Inc	Peter F. Masschelein / Martin Melcher / Derek _	US(2018) / US(2018) / US(2020)	US1073036881	System with windows	
Apple Inc	John M. Kearney / Clarisse Mazuir / Arthur Y	US(2017) / US(2017)	US1075208281	Climate control system with slit-vent fluid de_	
Apple Inc	Diomidis KATZOURAKIS / Huibert Mees / Robert M	US(2017) / US(2017)	US11046330B1	Redundant vehicle actuator system	
Apple Inc	Derek A. Faust / Emery A. Sanford / James Foster	WO(2015) / WO(2015) / US(2015) / EP(2015) / CN	US1087538082	Climate control	
Apple Inc	Lucian Ion / Mahesh Krishnamurthy	WO(2017) / US(2017) / WO(2017)	US20180088588A1	Color filter array for machine vision syst	
Apple Inc	Lucian Ion	WO(2017) / US(2017) / WO(2017)	US20180091717A1	Camera shades	
Apple Inc	Mark B. Rober / Sawyer I. Cohen / Daniel Kurz	US(2017) / US(2017) / US(2017) / US(2019) / US	US20180089900A1	Augmented virtual display	
Apple Inc.	Sayanan V. Sivaraman	WO(2017) / US(2017) / WO(2017)	US20180082134A1	Traffic direction gesture recognition	
Apple	Jared A. CRAWFORD / Yingen Xiong / Marco Pontil	WO(2017) / WO(2017) / DE(2017) / CN(2017) / US	US20180082135A1	Vehicle Video System	126

또한, 함수화와 documentation 을 작성해야 한다.

1월 18일 업무 진행 상황

특허번호가 추출되지 않은 링크들

```
表外性な からい A No. 12 世代 12 世代 12 日本 No. 12 日本 N
```

현재 제목에 관한 추출은 진행중이며

찾아낸 것들은 빨간색 동그라미의 특허번호들이다.

반복문과 find 를 통하여 20210~와 20200~의 형태를 찾아내서 필터링하였다.

추출되지 않은 링크들은 55 개에서 36 개로 줄었다.

하지만 처음 00,000,000 의 형태로 걸러졌어야할 링크들에서 걸러지지 못한 링크들이 존재했다.

때문에 해당 문제가 발생한 이유에 대해서 찾아봐야 할 것 같다.

1 월 17 일 업무 진행 상황

특허번호가 추출되지 않은 링크들

```
를 하는데 보고 그는 모든데 보고 그는 Note of the property of
```

14 일자 업무 결과를 살펴보면 특허코드가 94 개 추출된 것을 확인할 수 있다. 이는 00,000,000 형태의 특허번호만을 추출하여 변환한 결과이다.

다만 실제 사이트에는 중간에 특허 제목이 언급되어있는 경우도 존재한다. 위의 2 사진은 동일한 링크에서의 결과이다.

제목과 다른 정보들을 구별해낼 수 있는 방법이 필요하고, 이 외의 형태들일 경우 특허 정보를 검색할 방안도 필요하다.

현재 고안하고 있는 해결방안은 다음과 같다.

- 해결방안의 알고리즘
- 빨간색 동그라미의 모든 정보를 가져온 이후 여러 개의 요소가 존재하는 것들은 제거한다. (Inventors 와 같은 다른 기사들에서의 공통적인 내용이 삭제될 것으로 예상)

다만 걱정되는 사항은 한 개의 특허에 관해 여러 개의 기사가 존재하는 경우에는 데이터가 손실될 수 있다는 것이다.

(이는 프로그래밍과정 중에서 삭제되는 요소들을 print 를 통해 직접 확인해서 제목이 존재하는지 확인해 볼 것임)

얻어낸 제목을 통하여 검색할 때에는 동적 크롤링인 세부검색을 사용해야 한다.

위의 사진은 google patent 에서 제목을 검색한 결과이다. 일치하는 검색결과가 나타나지 않는 것을 확인할 수 있으며,

세부 검색을 통하여 첫 페이지에 제목이 가장 유사한 특허를 찾아내면 해결가능할 듯 하다.

다만 그 외에 txt 파일에 존재하는 링크들에는 다양한 예외들이 존재한다.

그렇기 때문에 모든 특허들에 대한 정보가 필요하다면 파이썬을 통하여 얻어내지 특허들은 직접 링크에 접속해 수작업으로 마무리해야할 것 같다.

1월 14일 업무 진행 상황

apple patent 의 특허 정보수집

해당 링크로부터 US 특허코드 추출

```
print(len(driving_ptcode))
print(driving_ptcode))
print(driving_ptcode))
print(driving_ptcode))
print(driving_ptcode))

Python

94
['11104267', '10730368', '10752082', '11046338', '10875388', '10803001', '10970518', '10465314', '10351162', '10760525', '10594850', '10314116',
'10446938', '110950228', '11103197', '10308312', '10605174', '11124188', '11177766', '10606166', '10804600', '110920580', '11011126',
'10446938', '110950228', '11163157', '10788316', '11060537', '10388387', '110977', '10948522', '11124033', '10960378', '10960378', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910528', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628', '10910628',
```

1월 13일 업무 진행 상황

동적크롤링을 활용한 특허 관련 기사 제목과 링크추출

- → Autonomous driving 키워드를 입력했을때의 검색된 기사 제목과 링크를 추출한 결과이다.
- → 동적 크롤링을 활용하였기 때문에 정적 크롤링을 사용한 이전의 Search 함수와 달리 최대 검색 갯수를 입력 parameter 로 인가하지 않았다.

```
if(k==0):
    driver.find_element_by_xpath(
    if(k > 0):
        driver.find_element_by_xpath(
    except NoSuchElementException :
        print("Maximum page is ", k+1)
        break
```

- → NoSuchElementException 예외처리를 하여 Next page 가 존재하지 않는 경우 함수를 종료하도록 하였다.
- \rightarrow 따라서 검색 키워드에 따른 최대 페이지까지 모든 정보를 수집가능하다. autonomous driving 의 경우 Maximum page 는 3 이며 총 24 개의 정보가 검색되었다.

```
[31] Apple_patently = Search_patent_news()
```

검색할 키워드를 입력하세요: autonomous driving /usr/local/lib/python3.7/dist-packages/ipykern /usr/local/lib/python3.7/dist-packages/ipykern /usr/local/lib/python3.7/dist-packages/ipykern /usr/local/lib/python3.7/dist-packages/ipykern Maximum page is 3

1월 12일 업무 진행 상황

동적크롤링과 정적크롤링의 시간차이

위의 사진은 정적인 데이터만 가져오는 크롤링 방식이다 0.5 초가 걸린것을 확인할 수 있다.

위의 사진은 selenium 을 활용하여 직접 웹페이지에 접속해서 데이터를 가져오는 방식이다. 3.9 초가 걸린것을 확인할 수 있다.

최대한 정적인 웹페이지에서 가져오도록 코드를 작성한다면 프로그램이 더 빠르게 동작할 것이다

세부사항의 input querry 에 따라 동작하는 함수를 선언하였다.

search_details 를 이용하여 list 를 생성하고,

search_details_df 을 이용해 데이터프레임으로의 변환이 가능하다.

여기에서 논문 제목이 길다면 ...으로 표기되는데 이는 또 다른 페이지에 접속해서 제목을 가져와야한다.

때문에 더 오랜시간이 소요되고 이는 optional 로 함수를 정의하였다.

change_ptname 함수를 사용하여 해결할 수 있고

```
print(output['특히지목'][0])

v 04s

Python

Method and device for generating image data set to be used for learning cnn capable of detecting obstruction in autonomous driving circumstance, and testing method, and testing device using the same
```

전체 제목으로 변하였음을 확인할 수 있다.

- Patentlyapple.com

javascript 를 껐을 때에는 아무런 페이지가 나오지않는 것을 볼 수 있다. 때문에 동적크롤링을 사용해야한다.

현재 진행 상황 flow chart

function1 은 조금 더 단순한 기능을 수행한다. 정적인 웹페이지 구조만을 가져오기 때문에 더 빠른 연산속도인 것을 확인할 수 있다.

function2 는 더 복잡한 기능을 수행한다. 셀레니움을 활용하여 직접 웹페이지에 접속해 동적인 웹페이지 구조를 가져온다.

때문에 function1 에서는 페이지수를 지정해주었지만 function2 에서는 검색되는 모든 정보를 저장할 수 있지만, 그만큼 오래 걸린다.

또한 구글에서는 검색결과가 1000 개를 넘어갈 경우에는 실제로 검색결과가 더 존재하지만 보여주지 않는다.

따라서 1000 개가 넘어가는 경우에는 input querry 를 수정하여 검색결과를 줄일 필요가 있다.

1월 11일 업무 진행 상황

- Family to family 을 제외한 patent citation 데이터 추출
- Non patent citations 데이터 추가
- ▼ paper_citation 사용예제

→ paper citation 함수를 사용하여 citation, 과 Non_patent 라는 데이터 프레임을 반환하도록 하였다. Non-patent citation 은 Title 내용만 있기 때문에 데이터 프레임을 각각 분할 생성하였다.

1월 10일 업무 진행 상황

vs 코드에서 html 에서 필요한 정보를 가져오지 못하는 문제가 존재

	특허제목	링크	특허번호	국가코드
0	Réseaux neuronaux convolutionnels sensibles à	www.google.co.kr/patents/WO2017079522A1	www.google.co.kr/patents/WO2017079522A1	www
1	Method for increasing object detection rate or	www.google.co.kr/patents/US9230193	www.google.co.kr/patents/US9230193	www
2	Proposition de région pour des régions d'image	www.google.co.kr/patents/WO2017139927A1	www.google.co.kr/patents/WO2017139927A1	www
3	Method for detecting texts included in an imag	www.google.co.kr/patents/US9524430	www.google.co.kr/patents/US9524430	www
4	Three-dimensional (3d) convolution with 3d bat	www.google.co.kr/patents/WO2017031088A1	www.google.co.kr/patents/WO2017031088A1	www
5	Pedestrian notifications	www.google.co.kr/patents/US8954252	www.google.co.kr/patents/US8954252	www
6	Deepstereo: learning to predict new views from	www.google.co.kr/patents/WO2016183464A1	www.google.co.kr/patents/WO2016183464A1	www
7	Distance measurement device and environment ma	www.google.co.kr/patents/CN103154666A	www.google.co.kr/patents/CN103154666A	www
8	Driving support method and apparatus	www.google.co.kr/patents/EP1878618A2	www.google.co.kr/patents/EP1878618A2	www
9	Method, apparatus and computer readable record	www.google.co.kr/patents/WO2013048162A2	www.google.co.kr/patents/WO2013048162A2	www

해결하였으나 replace()함수가 동작하지 않아서 직접 문자열을 slicing 해야할듯

 \rightarrow 해당문제인줄알았으나 www.google.co.kr 과 $\underline{\text{www.google.com}}$ 주소가 두개 존재하기 때문에 발생하던 문제

•	특허제목	링크	특허번호	국가코드	1
0	Réseaux neuronaux convolutionnels sensibles à	www.google.com/patents/WO2017079522A1	017079522A1	01	
1	Method for increasing object detection rate or	www.google.com/patents/US9230193	230193	23	
2	Method for detecting texts included in an imag	www.google.com/patents/US9524430	524430	52	
3	Proposition de région pour des régions d'image	www.google.com/patents/WO2017139927A1	017139927A1	01	
4	Pedestrian notifications	www.google.com/patents/US8954252	954252	95	
5	Three-dimensional (3d) convolution with 3d bat	www.google.com/patents/WO2017031088A1	017031088A1	01	
6	Deepstereo: learning to predict new views from	www.google.com/patents/WO2016183464A1	016183464A1	01	
7	Driving support method and apparatus	www.google.com/patents/EP1878618A2	878618A2	87	
8	Distance measurement device and environment ma	www.google.com/patents/CN103154666A	03154666A	03	
9	Method, apparatus and computer readable record	www.google.com/patents/WO2013048162A2	013048162A2	01	

보완할 수 있는 코드가 필요해보임

1월 6일 업무 진행 상황

▼ search 함수 사용예제

result: 생성하고자 하는 데이터 프레임

keyword, result = search()

➡ 최대 검색갯수 입력(숫자) : 10 키워드 입력(끝내고싶으면 end 입력) :CNN

키워드 입력(끝내고싶으면 end 입력) :deep learning 키워드 입력(끝내고싶으면 end 입력) :stradvision

키워드 입력(끝내고싶으면 end 입력) :end

키워드 CNN, deep learning, stradvision 검색 결과에 대해 field 검색을 수행하도록 하였다.

field 를 잘못 검색 할 경우 오류검출문과 함께 다시 입력하도록 기능을 수정하였음.

field_search 사용예제

[19] result3 = field_search(result2)

검색가능한 field들: [특허제목, '탱크', '특허번호', '국가코드', '적용국가', 'Inventor', 'assignee']
검색할 field를 다시 입력하세요(옵네고싶으면 end 입력): 국가코드 검색할 field를 다시 입력하세요(옵네고싶으면 end 입력): 국가코드 검색할 field를 입력하세요: Werox Corp 검색할 field를 입력하세요: Kerox Corp (를하세요: Kerox Corp Hond) 등 end 입력): end

[20] display(result3)

[21] I Similarity-based detection of prominent object. www.google.com/patents/US9613282 US9613282 US US(2015) JP(2016) FP(2016) José A. Rodríguez-Serrano / Albert Gordo Solde... Xerox Corp 5 Cross-trained convolutional neural networks us... www.google.com/patents/US9613282 US9613282 US US(2015) Afjun Sharma / Pramod Sankar Kompalli Xerox Corp

- → field 를 잘못 입력 할 시, '검색할 field 를 다시 입력하세요' 경고문과 함께 다시 입력가능하도록 하였음.
- → field_search 사용예제에서 국가코드가 US 이면서 Current_assignee 가 Xerox Corp 인 특정 필드 검색을 하였고 해당 결과가 잘 나타난 것을 확인 하였다.

1월 5일 업무 진행 상황

생성된 데이터셋 내에서 검색기능을 수행해 검색된 데이터들을 새로운 데이터프레임으로 만들어주는 기능

field_search 라는 함수이름으로 정의되어서 검색필드를 먼저 지정하고 해당 내용을 검색하면 포함된 내용이 들어간 행 추출

field_search 사용예제

0	result3 = field_search(result2)						↑ ↓ ⊕ 目 ‡
[] c	isplay(result3)						
	특허제목	링크	특허번호	국가코드	적용국가	Inventor	assignee
	1 Similarity-based detection of prominent object	www.google.com/patents/US20170083792	US20170083792	US	US(2015) / JP(2016) / EP(2016)	José A. Rodríguez-Serrano / Albert Gordo Solde	Xerox Corp
	2 Object detection and classification in images	www.google.com/patents/US20170206431	US20170206431	US	US(2016)	Jian Sun / Ross Girshick / Shaoqing Ren / Kaim	Microsoft Technology Licensing LLC
	3 Cross-trained convolutional neural networks us	www.google.com/patents/US20170032222	US20170032222	US	US(2015)	Arjun Sharma / Pramod Sankar Kompalli	Xerox Corp
	5 Deeply learned convolutional neural networks (www.google.com/patents/US20170169315	US20170169315	US	US(2016)	Gonzalo Vaca Castano / Syed Zain Masood / Step	Sighthound Inc
	6 Multi-task deep convolutional neural networks	www.google.com/patents/US9286524	US9286524	US	US(2015)	Xue Mei / Danil V. Prokhorov / Jun Li / Dachen	University of Technology Sydney/ Toyota Motor

< documentation >

result3 = 검색된 새로운 데이터 프레임

result2 = 검색할 데이터 프레임

(이 기능은 search_advanced 를 사용하지 않아도 사용할 수 있도록 정의하였음)

현재 사용 방식은 (검색할 field 지정 → 키워드 입력)의 과정을 반복해서 해당하는 데이터들을 데이터 프레임으로 생성

다만 검색 field 를 지정할 때 아래 사진처럼 field 를 잘못 입력할 경우에는 이미 많이 검색했더라도 error 가 발생해 새로 입력해야하는 불편함이 존재함.

이를 해결하기위해 while 문을 사용해 '키워드를 다시 입력하세요' 라는 경고문구를 출력할 예정

<진행되어야할 업무>

- 경고문구 출력
- search 함수 return 이 2 개인데 간소화할 방안

1월 4일 업무 진행 상황

특허 발명자(inventor) 와 소유자정보(Current assignee) 검색기능 추가

Inventor: Daniel Hendricus Franciscus DIJKMAN, Regan Blythe TOWAL, Venkata Sreekanta Reddy ANNAPUREDDY

Current Assignee: Qualcomm Inc

위의 inventor, current Assignee 만 추출하여 만든 데이터 프레임 형태는 아래와 같다.

Inventor assignee

- 0 Daniel Hendricus Franciscus DIJKMAN/Regan Blyt... Qualcomm Inc
 - Inventor 와 assignee 의 정보를 추가한 데이터 프레임 생성

→ assignee 열의 공백은 해당 특허 assignee 가 없음을 의미한다.

1월 3일 업무 진행 상황

• 링크를 추출할 때 검색창에서 특정 언어의 결과로 출력되는 오류 수정

0	Réseaux neuronaux convolutionnels sensibles à	www.google.com/patents/WO2017079522A1? cl=fr
1	Object detection and classification in images	www.google.com/patents/US20170206431
2	Proposition de région pour des régions d'image	www.google.com/patents/WO2017139927A1? cl=fr
3	Similarity-based detection of prominent object	www.google.com/patents/US20170083792
4	Cross-trained convolutional neural networks us	www.google.com/patents/US9633282
5	Deeply learned convolutional neural networks (www.google.com/patents/US20170169315
6	Face hallucination using convolutional neural	www.google.com/patents/US9405960
7	Hierarchical deep convolutional neural network	www.google.com/patents/WO2016069581A1? cl=en

해당 사진처럼 언어에 관한 검색어 설정이 ?cl=이후에 나타난다

	특허제목	링크	특허번호	국가코드
0	Réseaux neuronaux convolutionnels sensibles à	www.google.com/patents/WO2017079522A1	WO2017079522A1	WO
1	Object detection and classification in images	www.google.com/patents/US20170206431	US20170206431	US
2	Proposition de région pour des régions d'image	www.google.com/patents/WO2017139927A1	WO2017139927A1	WO
3	Similarity-based detection of prominent object	www.google.com/patents/US20170083792	US20170083792	US
4	Cross-trained convolutional neural networks us	www.google.com/patents/US9633282	US9633282	US
5	Deeply learned convolutional neural networks (www.google.com/patents/US20170169315	US20170169315	US
6	Face hallucination using convolutional neural	www.google.com/patents/US9405960	US9405960	US
7	Hierarchical deep convolutional neural network	www.google.com/patents/WO2016069581A1	WO2016069581A1	WO
8	Hierarchical deep convolutional neural network	www.google.com/patents/US20160117587	US20160117587	US
9	Context-based priors for object detection in i	www.google.com/patents/US20170011281	US20170011281	US

오류를 해결한 이후의 결과는 위와 같다

- → 특허번호 입력에 따라 링크를 새로 생성하여 Url 404 error 문제 해결하였음.
 - 인용정보 데이터프레임 생성
- ▼ paper_citation 사용예제

citation : 입력한 논문을 인용한 논문들의 데이터프레임

Patent Citations (13)					90% —
Publication number	Priority date	Publication date	Assignee	Title	
US20080304740A1 *	2007-06-06	2008-12-11	Microsoft Corporation	Salient Object Detection	
US20110182469A1 *	2010-01-28	2011-07-28	Nec Laboratories America, Inc.	3d convolutional neural networks for automatic human	action recognition
CN104217225A *	2014-09-02	2014-12-17	中国科学院自动化研究所	A visual target detection and labeling method	
US20150078654A1 *	2013-09-13	2015-03-19	Interra Systems, Inc.	Visual Descriptors Based Video Quality Assessment Us	sing Outlier Model
CN104572804A *	2013-10-24	2015-04-29	Tcl集团股份有限公司	Video object retrieval system and method	
Family To Family Citations					
CN104794527B*	2014-01-20	2018-03-27	富士通株式会社	Disaggregated model construction method and equipm convolutional neural networks	nent based on
CN104036323B *	2014-06-26	2016-11-09	叶茂	A kind of vehicle checking method based on convolution	onal neural networks
CN104517103A *	2014-12-26	2015-04-15	广州中国科学院先进技术研 究所	Traffic sign classification method based on deep neura	l network
CN104573731B *	2015-02-06	2018-03-23	厦门大学	Fast target detection method based on convolutional n	eural networks
CN104809443B*	2015-05-05	2018-12-28	上海交通大学	Detection method of license plate and system based o networks	n convolutional neural
CN104866868B*	2015-05-22	2018-09-07	杭州朗和科技有限公司	Metal coins recognition methods based on deep neura	network and device
CN105138973B *	2015-08-11	2018-11-09	北京天诚盛业科技有限公司	The method and apparatus of face authentication	
CN105120130B*	2015-09-17	2018-06-29	京东方科技集团股份有限公司	A kind of image raising frequency system, its training n raising frequency method	nethod and image

해당 정보는 특허 링크에 접속해 paper citation 중 family to family citation 부분이다.

어느 데이터들이 필요한지 모르기에 우선 이정도로 마무리하였다.

12 월 29 일 업무 진행 상황

• 적용국가 추출하는 데이터프레임 및 함수 생성

 데이터 프레임을 입력으로 특허번호를 검색했을 때, 인용문을 출력하는 기능 추가

0	Réseaux neuronaux convolutionnels sensibles à	www.google.com/patents/WO2017079522A1?
1	Object detection and classification in images	www.google.com/patents/US20170206431
2	Proposition de région pour des régions d'image	www.google.com/patents/WO2017139927A1? cl=fr
3	Similarity-based detection of prominent object	www.google.com/patents/US20170083792
4	Cross-trained convolutional neural networks us	www.google.com/patents/US9633282
5	Deeply learned convolutional neural networks (www.google.com/patents/US20170169315
6	Face hallucination using convolutional neural	www.google.com/patents/US9405960
7	Hierarchical deep convolutional neural network	www.google.com/patents/WO2016069581A1? cl=en

문제상황: 위의 기능을 수행하는 함수를 만들기위해 데이터프레임에서 가져온 링크로 함수를 실행시킬 경우에 링크에 실제로는 접속가능하나 urlopen 했을 경우 404 에러가 존재한다고 나타남.

	특허제목	링크	특허번호	국가코드
0	Réseaux neuronaux convolutionnels sensibles à	www.google.com/patents/WO2017079522A1	WO2017079522A1	WO
1	Object detection and classification in images	www.google.com/patents/US20170206431	US20170206431	US
2	Proposition de région pour des régions d'image	www.google.com/patents/WO2017139927A1	WO2017139927A1	WO
3	Similarity-based detection of prominent object	www.google.com/patents/US20170083792	US20170083792	US
4	Cross-trained convolutional neural networks us	www.google.com/patents/US9633282	US9633282	US
5	Deeply learned convolutional neural networks (www.google.com/patents/US20170169315	US20170169315	US
6	Face hallucination using convolutional neural	www.google.com/patents/US9405960	US9405960	US
7	Hierarchical deep convolutional neural network	www.google.com/patents/WO2016069581A1	WO2016069581A1	WO
8	Hierarchical deep convolutional neural network	www.google.com/patents/US20160117587	US20160117587	US
9	Context-based priors for object detection in i	www.google.com/patents/US20170011281	US20170011281	US

아래의 링크일 경우에는 기능을 수행할 수 있음.

그렇기 때문에 도출해낼 수 있는 해결방안은 다음과 같으며, 이 중에서 편한 방법으로 해결할 예정

해결방안 1 : 현재 키워드의 정보는 search 함수에만 존재하기 때문에 키워드의 정보를 가져와서 링크를 생성

해결방안 2 : 인용 데이터를 간단한 링크에서 추출

12 월 28 일 업무 진행 상황

• 키워드 입력에 따른 파일명 지정

입력 한 키워드가 그대로 파일명으로 저장되도록 하였음. 파일명이 objectdetection.xlsx으로 저장되었음.

기워드 입력(끝내고싶으면 end 입력) :object 키워드 입력(끝내고싶으면 end 입력) :detection 키워드 입력(끝내고싶으면 end 입력) :end objectdetection.xlsx

	특허제목	링크	특허번호	국가코드	적용국가
0	Object detection apparatus and object detectio	www.google.com/patents/WO2017094891A1?cl=en	WO2017094891A1?cl=en	WO	NaN
1	Method and device for object detection in the \dots	www.google.com/patents/US7791527	US7791527	US	NaN
2	Object detection Device	www.google.com/patents/US20100026491	US20100026491	US	NaN
3	Object detection system	www.google.com/patents/US20020014955	US20020014955	US	NaN
4	Object detection device, object detection meth	www.google.com/patents/WO2015041081A1?cl=en	WO2015041081A1?cl=en	WO	NaN

195	Fast object detection for augmented reality sy	www.google.com/patents/US20060233423	US20060233423	US	NaN
196	Foreign object detection and removal system fo	www.google.com/patents/US20100048269	US20100048269	US	NaN
197	Context aware moving object detection	www.google.com/patents/US20130176430	US20130176430	US	NaN
198	Foreign object detection apparatus	www.google.com/patents/US7567088	US7567088	US	NaN
199	Nonlinear system identification for object det	www.google.com/patents/US20140167704	US20140167704	US	NaN
200 rows × 5 columns					

• 특허 인용 관련 정보 추출 기능

```
US6954744B2
              (en)
2001-08-29
2005-10-11
Honeywell International, Inc.
Combinatorial approach for supervised neural network learning
AU2003301143A1
              (en)
2002-12-19
2004-07-14
Drexel University
Apparatus and method for removing non-discriminatory indices of an indexed dataset
US20070094214A1
              (en)
2005-07-15
2007-04-26
Li Eric Q
Parallelization of bayesian network structure learning
```

Patent Citations 에 대한 Publication number, Priority date, Publication date, Assignee, Title 의 정보를 추출하는데 성공함.

하지만 각각의 정보를 따로 추출하여 데이터 프레임 형태로 저장하기 위해선 추가적인 html 구조 분석이 필요해보임.

• 최대검색갯수 지정받아 데이터 저장

```
[92] result = search()

□ 검색갯수 입력(숫자): 10
키워드 입력(끝내고싶으면 end 입력):stradvision
키워드 입력(끝내고싶으면 end 입력):end

☑ [93] # result 데이터 프레임 시각화
display(result)
# result 데이터 프레임 엑셀로 변환
result.to_excel('Search Results.xlsx')
```

	특허제목	링크	특허번호	국가코 드
0	Réseaux neuronaux convolutionnels sensibles à	www.google.com/patents/WO2017079522A1? cl=fr	WO2017079522A1? cl=fr	WO
1	Pedestrian notifications	www.google.com/patents/US8954252	US8954252	US
2	Method for increasing object detection rate or	www.google.com/patents/US9230193	US9230193	US
3	Method for detecting texts included in an imag	www.google.com/patents/US9524430	US9524430	US
4	Proposition de région pour des régions d'image	www.google.com/patents/WO2017139927A1? cl=fr	WO2017139927A1? cl=fr	WO
5	Three-dimensional (3d) convolution with 3d bat	www.google.com/patents/WO2017031088A1? cl=en	WO2017031088A1? cl=en	wo
6	Deepstereo: learning to predict new views from	www.google.com/patents/WO2016183464A1? cl=en	WO2016183464A1? cl=en	wo
7	Driving support method and apparatus	www.google.com/patents/EP1878618A2?cl=en	EP1878618A2?cl=en	EP
8	Distance measurement device and environment ma	www.google.com/patents/CN103154666A?cl=en	CN103154666A?cl=en	CN
9	Object Detection Using Cascaded Convolutional	www.google.com/patents/US20160307074	US20160307074	US

• 적용국가 추출기능

```
[87] df_app = []
for link in result['링크']:
    df_app.append(application('http://'+link))
    # print(application('http://'+link))
print(df_app)

[['US(2016) / JP(2016) / WO(2016) / DE(2016)'], ['US(2015) / JP(2016) / EP(2016)'], ['US(2016)'], ['US(2015)'], ['US(2015
```

현재 2 차원 리스트이기 때문에 원래 데이터프레임에 concate 가 되지않는 문제가 있음.

2 차원 리스트 안에 있던 요소들을 join 함수를 이용하여 하나의 요소로 합쳤으나, 2 차원 리스트로 남아있는 문제가 존재함.

파이썬 리스트에 대한 이해가 더 있어야 해결가능할 것으로 보임.

12 월 27 일 업무 진행 상황

• 인턴쉽 진행자료 문서화

Stradvision winter internship report

링크: https://colab.research.google.com/drive/1gxrKS6glVcW-caskgzCJ0snvU3DVjLH4?usp=sharing

• 분석 코드들 함수화

함수 정의

- 1. 페이지 추출함수 (주소를 입력해 해당 페이지의 제목, 링크, 특허번호, 국가코드를 추출): pageExtraction
- 2. 적용국가 추출함수 (주소를 입력해 해당 주소에 접속, 적용국가 추출): application
- 3. 키워드 검색해 데이터 프레임을 반환하는 함수: search

(함수 사용예제)

search 함수 사용예제

[9] result = search()

키워드 입력(끝내고싶으면 end 입력) :stradvision
키워드 입력(끝내고싶으면 end 입력) :deep learning
키워드 입력(끝내고싶으면 end 입력) :CNN
키워드 입력(끝내고싶으면 end 입력) :end

● # result 데이터 프레임 시각화 display(result) # result 데이터 프레임 멕셀로 변환 result.to_excel('Search Results.xlsx')

	특허제목	링크	특허번호	국가코드
0	Method and system for vision-centric deep-lear	www.google.com/patents/US9760806	US9760806	US
1	Regionlets with shift invariant neural pattern	www.google.com/patents/US9202144	US9202144	US
2	Similarity-based detection of prominent object	www.google.com/patents/US20170083792	US20170083792	US
3	Hierarchical deep convolutional neural network	www.google.com/patents/US20160117587	US20160117587	US
4 84	Object detection and classification in images	www.google.com/patents/US20170206431	US20170206431	US
	显著性信息取得装置以及显著性信息取得方法	www.google.com/patents/CN106296638A?cl=zh	CN106296638A?cl=zh	CN
85	Gemeinsames Tiefenschätzen und semantisches Be	www.google.com/patents/DE102016005407A1?cl=de	DE102016005407A1?cl=de	DE
86	两层文本识别系统和方法	www.google.com/patents/CN101496036B?cl=zh	CN101496036B?cl=zh	CN
87	脸部识别方法和设备	www.google.com/patents/CN106295496A?cl=zh	CN106295496A?cl=zh	CN
88	神经网络训练与构建方法和装置以及目标检测方法和装置	www.google.com/patents/CN106295678A?cl=zh	CN106295678A?cl=zh	CN
89 r	ows × 4 columns			

추가되어야할 내용들

- 1. 데이터프레임을 입력으로 적용국가를 추출하는 함수
- 2. 파이썬을 처음 사용하는 사람을 위해 엑셀변환 간소화
- 3. 엑셀 파일에 키워드 정보를 포함하는 방안 고안
- 4. 저장할 키워드 개수를 입력받아서 검색실행하도록 고안

12 월 24 일 업무 진행 상황

- 특허 적용국가 및 연도 추출
- 추출한 정보들을 엑셀에 데이터 프레임 형태 저장
- google patent 에 검색어 키워드를 직접 입력하는 대신에 프로그램에 입력해서 검색해주는 기능추가
- 키워드들을 입력했을 때 검색 갯수를 보여주고, 사용자가 타당하다 판단되면 추출하도록 하려 했으나 실제 구글에 검색되는 것은 cache memory 로 할당하였기에 완전히 파악 불가능 하였음
- 여러 페이지에 대해 데이터 추출 가능하도록 함

키워드 입력(끝내고싶으면 end 입력) :stradvision 키워드 입력(끝내고싶으면 end 입력) :deep learning 키워드 입력(끝내고싶으면 end 입력) :end

	특허제목	링크	특허번호	국가코드	적용국가
0	Method and system for vision-centric deep-lear	www.google.com/patents/US9760806	US9760806	US	NaN
1	Object detection using deep neural networks	www.google.com/patents/US9275308	US9275308	US	NaN
2	Image processing apparatus and method based on	www.google.com/patents/US20170169313	US20170169313	US	NaN
3	Utilizing deep learning for boundary-aware ima	www.google.com/patents/US20170287137	US20170287137	US	NaN
4	Deepstereo: learning to predict new views from	www.google.com/patents/WO2016183464A1?cl=en	WO2016183464A1?cl=en	WO	NaN
134	Fussgängerdetektion und Bewegungsvorhersage mi	www.google.com/patents/DE102017105903A1?cl=de	DE102017105903A1?cl=de	DE	NaN
135	Gemeinsames Tiefenschätzen und semantisches Be	www.google.com/patents/DE102016005407A1?cl=de	DE102016005407A1?cl=de	DE	NaN
136	显著性信息取得装置以及显著性信息取得方法	www.google.com/patents/CN106296638A?cl=zh	CN106296638A?cl=zh	CN	NaN
137	脸部识别方法和设备	www.google.com/patents/CN106295496A?cl=zh	CN106295496A?cl=zh	CN	NaN
138	神经网络训练与构建方法和装置以及目标检测方法和装置	www.google.com/patents/CN106295678A?cl=zh	CN106295678A?cl=zh	CN	NaN
139 rows × 5 columns					

12 월 23 일 업무 진행 상황

• google patent 에 검색어 키워드를 직접 입력하는 대신에 프로그램에 입력해서 검색해주는 기능추가

특허 검색 창 :"stradvision" "deep learning"

https://www.google.com/search?g=%22stradvision%22+%22deep+learning%22&biw=910&bih=646&tbm=pts&ei=

• 데이터 프레임 생성

	논문제목	링크	특허번호	국가코드	적용국가
0	Engaging and disengaging for autonomous driving	www.google.com/patents/US20140156134	US20140156134	US	NaN
1	Engaging and disengaging for autonomous driving	www.google.com/patents/US9352752	US9352752	US	NaN
2	Remote operation of autonomous vehicle in unex	www.google.com/patents/US20170045885	US20170045885	US	NaN
3	后用和停用自动驾驶 Enable and disable the autopilot	www.google.com/patents/CN104837705B?cl=en	CN104837705B?cl=en	CN	NaN
4	Engaging and disengaging for autonomous driving	www.google.com/patents/US9511779	US9511779	US	NaN
5	Engaging and disengaging for autonomous driving	www.google.com/patents/WO2014085380A1?cl=en	WO2014085380A1?cl=en	WO	NaN
6	Engaging and disengaging for autonomous driving	www.google.com/patents/US8825258	US8825258	US	NaN
7	Remote operation of autonomous vehicle in unex	www.google.com/patents/US9494935	US9494935	US	NaN
8	Système de navigation et de commande pour des	www.google.com/patents/WO2008048707A2?cl=fr	WO2008048707A2?cl=fr	WO	NaN
9	Method for Interacting with an Object Displaye	www.google.com/patents/US20160041624	US20160041624	US	NaN

• 데이터 프레임 엑셀로의 변환

	Α	В	С	D	Е	F
1		논문제목	링크	특허번호	국가코드	적용국7
2	0	Engaging and disengaging for autonomous driving	www.google.com/pater	US20140156134	US	
3	1	Engaging and disengaging for autonomous driving	www.google.com/pater	US9352752	US	
4	2	Remote operation of autonomous vehicle in unexpected	www.google.com/pater	US20170045885	US	
5	3	启用和停用自动驾驶 Enable and disable the autopilot	www.google.com/pater	CN104837705B?cl=en	CN	
6	4	Engaging and disengaging for autonomous driving	www.google.com/pater	US9511779	US	
7	5	Engaging and disengaging for autonomous driving	www.google.com/pater	WO2014085380A1?cl=	WO	
8	6	Engaging and disengaging for autonomous driving	www.google.com/pater	US8825258	US	
9	7	Remote operation of autonomous vehicle in unexpected	www.google.com/pater	US9494935	US	
10	8	Système de navigation et de commande pour des véhice	www.google.com/pater	WO2008048707A2?cl=	WO	
11	9	Method for Interacting with an Object Displayed on Data	www.google.com/pater	US20160041624	US	
12						
13						
14						

추가 되어야할 업무들

- 적용국가 추출
- 1 페이지 이상의 자료가 나타날 경우 정보 추출

12 월 22 일 업무 진행 상황

• list 에서 1 페이지에 해`당하는 논문 제목 추출 (이 중에서 제목만을 찾아서 슬라이싱해야함) 이 때 class 의 이름에 해당하는 zBAuLc 로 시작하는 부분은

PC 마다 다른 것을 확인하였음) 때문에 모든 PC 에서 적용가능한 방안을 고려해야함

• 논문링크 추출(어제 상황에서 필요한 부분만을 추출하는데 성공함. 이는 그대로 data frame 에 저장해도 될 듯함)

논문 링크 추출

https://www.google.com/patents/related/US201401561348sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgEAU8usg=A0vVaw077ehm4YGYt_5fJ-ogl_19phttps://www.google.com/patents/related/US2052528sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgLAU8usg=A0vVaw1-N1jYNIJj3UT1dVq_HKCehttps://www.google.com/patents/related/US201700458858sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgHEAU8usg=A0vVaw1bbDDEg8630WBS4cw9f_Xnhttps://www.google.com/patents/related/US95117798sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgHEAU8usg=A0vVaw1bbDDEg8630WBS4cw9f_Xnhttps://www.google.com/patents/related/US2014085380Al8sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgKEAU8usg=A0vVaw2LTrJC5Zq0BBTD_e93nME9https://www.google.com/patents/related/US24949368sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgCEAU8usg=A0vVaw3vxqlVJh0rJgBEBeHHVIRdhttps://www.google.com/patents/related/US24949368sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgCEAU8usg=A0vVaw3vxqlVJh0rJgBEBeHHVIRdhttps://www.google.com/patents/related/US24949368sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgCEAU8usg=A0vVaw3vxqlVJh0rJgBEBeHHVIRdhttps://www.google.com/patents/related/US292865288sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgDEAU8usg=A0vVaw3rluBl_ZZxod9DS9UNnoXhttps://www.google.com/patents/related/US292865288sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgDEAU8usg=A0vVaw3rluBl_ZZxod9DS9UNnoXhttps://www.google.com/patents/related/US292865248sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgEEAU8usg=A0vVaw3t6JpdTAntA79VxyBwA9https://www.google.com/patents/related/US292865248sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgEAU8usg=A0vVaw3t6JpdTAntA79VxyBwA9https://www.google.com/patents/related/US291600416248sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgEAU8usg=A0vVaw3t6JpdTAntA79VxyBwA9https://www.google.com/patents/related/US291600416248sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgEAU8usg=A0vVaw3t6JpdTAntA79VxyBwA9https://www.google.com/patents/related/US291600416248sa=U8ved=2ahUKEwjQts7-1_bOAhXUxisBHXOHD4MQQdJ6BAgEAU8usg=A0vVaw3t6JpdTAntA79VxBwA9

 특허번호 추출(특허번호의 자리수가 다양함. slicing 범위를 알아야함 find 함수로 &sa=U&ved= 의 위치를 찾아내서 slicing 하면될듯함)

특허 번호 추출

- 국가코드 추출(특허번호의 앞자리 2 자리 or 3 자리가 국가코드임. 특허번호 추출을 성공하면 이는 마찬가지로 될듯함)
- 적용국가 추출(적용국가는 검색했을 때에 논문 링크에 접속해야 나타나는 정보임. 때문에 또 정보를 가져올 방안을 고민해보기)
- 검색 갯수가 10 개를 넘어갈 경우도 고려해야 함. (위의 일련의 과정을 하나의 함수로 선언하여서, 검색갯수까지 실행되도록 코딩)

• 추출한 정보들을 엑셀에 저장하기 위한 데이터 프레임 형태로 만들기 (지금까지 만든 데이터들 저장해봄. 크기만 늘리면 계속 가능할 듯)

	논문제목	림크	특허번호
0	[[Engaging and disengaging for autonomous driv	https://www.google.com/patents/related/US20140	NaN
1	[[Engaging and disengaging for autonomous driv	https://www.google.com/patents/related/US93527	NaN
2	[[Remote operation of autonomous vehicle in un	https://www.google.com/patents/related/US20170	NaN
3	[[Engaging and disengaging for autonomous driv	https://www.google.com/patents/related/US95117	NaN
4	[[Engaging and disengaging for autonomous driv	https://www.google.com/patents/related/WO20140	NaN
5	[[启用和停用自动驾驶 Enable and disable the autopilot]]	https://www.google.com/patents/related/CN10483	NaN
6	[[Remote operation of autonomous vehicle in un	https://www.google.com/patents/related/US94949	NaN
7	[[Engaging and disengaging for autonomous driv	https://www.google.com/patents/related/US88252	NaN
8	[[Multi-task deep convolutional neural network	https://www.google.com/patents/related/US92865	NaN
9	[[Method for Interacting with an Object Displa	https://www.google.com/patents/related/US20160	NaN

12 월 21 일 업무 진행 상황

○ beuatifulSoup 을 이용해 google patent 에 검색했을 때 나타나는 데이터들을 불러오기

```
Sup - Beaufind Suckietosage content. "Mail.carser")

rint(Suck.pretCity())

#문 경우을

super_name - such indulation

#문문 경우 수용

#문문 경우

#문문 경우 수용

#문문 경우

#문문 경
```

불러온 데이터들을 바탕으로 필요한 정보들 추출

。 논문 제목 추출

。 논문 링크 추출

[4] (diss**#Bluc | 97de*****div class***| Blease wijeth A77fmd**Engaging and disengaging for automous driving */div**/frb**, 46 class**; Blease wijeth A77fmd**Engaging and disengaging for automous driving */div**/frb**, 46 class**; Blease wijeth A77fmd**Engaging and disengaging for automous driving */div**/frb**, 46 class**; Blease wijeth A77fmd**Engaging and disengaging for automous driving */div**/frb**, 46 class**; Blease wijeth A77fmd**Engaging and disengaging for automous driving */div**/frb**, 46 class**; Blease wijeth A77fmd**Engaging and disengaging for automous driving */div**/frb**, 46 class**; Blease wijeth A77fmd**Engaging and disengaging for automous driving */div**/frb**, 46 class**; Blease wijeth A77fmd**Engaging and disengaging for automous driving */div**/frb**, 46 class**; Blease wijeth A77fmd**Engaging and disengaging for automous driving */div**/frb**, 46 class**; Blease wijeth A77fmd**Engaging and disengaging for automous driving */div**/frb**, 46 class**; Blease wijeth A77fmd**Engaging */div**/frb**, 46 class**; Blease wij

- 。 특허번호 추출
- 。 국가코드 추출
- 。 적용국가 추출
- 。 추출한 정보들을 엑셀에 저장하기 위한 데이터 프레임 형태로 만들기
- 。 만든 데이터 프레임을 pandas 를 이용하여 csv 파일로 변환

그 외의 적용하면 유용할 기능들 고안해보기

- google patent 에 검색어 키워드를 직접 입력하는 대신에 프로그램에 입력해서 검색해주는 기능
- 적용국가를 추출하기 위해서는 논문 링크의 데이터를 불러와서 해당 국가
 코드 데이터를 얻어야 함
- 키워드들을 입력했을 때 검색 갯수를 보여주고, 사용자가 타당하다판단되면 추출하는 기능
- pc 마다 검색할 때 html 에 나타나는 class 이름이 달랐기에 일반화 가능한 법 고안하기

만든 데이터 프레임을 pandas 를 이용하여 csv 파일로 변환

Team members

- Song Yeong Won Confluence (atlassian.net)
- Lee JunGi Confluence (atlassian.net)

