- Ist N Poissonprozess und Y_n Markov-Kette mit $P = E + \frac{1}{\lambda}Q$, dann ist $X_t = Y_{N_t}$ Markov-Kette mit Intensitätsmatrix Q.
- μ ist invariantes Maß $\iff \mu Q = 0$
- Ist X_n rekurrent, irreduzibel, dann gilt $\lim_{t\to\infty} p_{ij}(t) = \frac{1}{m_i q_i}$

Ist (B_t) eine Brownsche Bewegung, dann auch:

- $(-B_t)$, $(B_{a+t} B_a)$, $(cB_{\frac{t}{c^2}})$
- Zeitumkehr: $(tB_{\frac{1}{2}})$
- \bullet Spiegelungsprinzip: Der nach τ gespiegelte Prozess.

Eigenschaften der Brownschen Bewegung:

- $\sup B_t = \infty$, $\inf B_t = -\infty$, also unendlich oft weit hoch und runter.
- P-fast-sicher nie Lipschitzs-Stetig
- Total variation ∞ , quadratische Variation $\xrightarrow{P} t$.
- Stochastischer Kern $P_t(x,\cdot) = \mathcal{N}(x,t)$
- $\mathcal{G}f = \frac{1}{2}f''$
- Ist τ endliche Stoppzeit, dann ist $(B_{\tau+t} B_{\tau})$ verteilt wie (B_t) und unabhängig von \mathcal{F}_{τ} .
- Identisch verteilt sind: $M_t := \sup_{0 \le s \le t} B_s, M_t B_t, |B_t|$
- P-fast-sicher Nullstellenmenge perfekt

Invarianzprinzip von Dansker: Ist $E\xi_i = 0$, $0 < \text{Var}(\xi_i) =: \sigma^2 < \infty$, $S_k = \sum_{j=1}^k \xi_i$, $Y_t = S_{\lfloor t \rfloor} + (t - \lfloor t \rfloor t) \xi_{\lfloor t \rfloor + 1}$, $(X_t^{(n)}) := \frac{1}{\sigma \sqrt{n}} Y_{nt}$, dann konvergieren die Wahrscheinlichkeitsmaße P_n schwach gegen P, wobei P so ist, dass die Projektionen π_t eine Brownsche Bewegung sind.

3 Wichtige Beweisideen

3.1 Konvergenz gegen stationäre Verteilung

Voraussetzungen: (X_n) irreduzibel, aperiodisch, positiv rekurrent. "Kopplungs-Argument": (Y_n) Kette mit gleicher Übergangsmatrix, $Y_n \sim \pi$, $T := \inf\{n \in \mathbb{N} \mid X_n = Y_n\}$.

- Zeige $P(T < \infty) = 1$
- Definiere

$$Z_n := \left\{ X_n, n \le TY_n, n > T \right\}$$

• Schätze ab

$$|p_{ij}^{(n)} - \pi(j)| \le 2 \cdot P_{\hat{\nu}}(T > n) \to P(T = \infty) = 0$$