

EECS 151/251A

Spring 2021

Digital Design and Integrated

Circuits

Instructor:
John Wawrzynek

Lecture 13: RISC-V Part 1

Announcements

- □ Virtual Front Row today, 3/2:
 - □ Tony Kam
 - □ Ellie Wang
 - □ Robin Chu
 - □ Neil Kulkarni
 - □ Ruohan Yan
- □ HW6 posted (due Monday)
- □ Midterm Reminder

_	2:	2/25	Circuit Timing Part 2 (slides)(video)	
	7	3/2	RISC-V Microarchitecture and Implementation	Discussion 7
		3/4	RISC-V Part 2	
	8	3/9	Exam 1 Review	Discussion 8
		3/11	No Class - Exam 6-9PM	
	9	3/16	Power and Energy	Discussion 9
		3/18	Memory Blocks 1	
	10	3/23	Spring Recess	
		3/25	Spring Recess	

Project Introduction

- You will design and optimize a RISC-V processor
- □ Phase 1: Design and demonstrate a processor
- □ Phase 2:
 - ASIC Lab implement cache memory and generate complete chip layout
 - FPGA Lab Add video display and graphics accelerator

Today discuss how to design the processor

What is RISC-V?

- Fifth generation of RISC design from UC Berkeley
- A high-quality, license-free, royalty-free RISC ISA specification
- Experiencing rapid uptake in both industry and academia
- Supported by growing shared software ecosystem
- Appropriate for all levels of computing system, from microcontrollers to supercomputers
 - 32-bit, 64-bit, and 128-bit variants (we're using 32-bit in class, textbook uses 64-bit)
- Standard maintained by non-profit RISC-V Foundation

https://riscv.org/specifications/

Foundation Members (60+)

LIALCONN®

Instruction Set Architecture (ISA)

- Job of a CPU (*Central Processing Unit*, aka *Core*): execute *instructions*
- Instructions: CPU's primitives operations
 - Instructions performed one after another in sequence
 - Each instruction does a small amount of work (a tiny part of a larger program).
 - Each instruction has an operation applied to operands,
 - and might be used change the sequence of instruction.
- CPUs belong to "families," each implementing its own set of instructions
- CPU's particular set of instructions implements an Instruction Set Architecture (ISA)
 - Examples: ARM, Intel x86, MIPS, RISC-V, IBM/Motorola
 PowerPC (old Mac), Intel IA64, ...

If you need more info on processor organization.

RISC Processor Instructions in Brief

- Compilers generate machine instructions to execute your programs in the following way:
- Load/Store instructions move operands between main memory (cache hierarchy) and core register file.
- Register/Register instructions perform arithmetic and logical operations on register file values as operands and result returned to register file.
- Register/Immediate instructions perform arithmetic and logical operations on register file value and constants.
- Branch instructions are used for looping and if-than-else (data dependent operations).
- Jumps are used for function call and return.

Complete RV321 ISA

	imm[31:12]			rd	0110111	LUI
	imm[31:12]			rd	0010111	AUIPC
imı	m[20 10:1 11 19]	9:12]		rd	1101111	$_{ m JAL}$
imm[11:	0]	rs1	000	rd	1100111	JALR
imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	BEQ
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE
imm[12 10:5]	rs2	rs1	100	imm[4:1 11]	1100011	BLT
imm[12 10:5]	rs2	rs1	101	imm[4:1 11]	1100011	$_{\mathrm{BGE}}$
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	BLTU
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	BGEU
imm[11:	0]	rs1	000	rd	0000011	LB
imm[11:	0]	rs1	001	rd	0000011	LH
imm[11:	0]	rs1	010	rd	0000011	LW
imm[11:	0]	rs1	100	rd	0000011	LBU
imm[11:	0]	rs1	101	rd	0000011	LHU
imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	\sim SW
imm[11:	0]	rs1	000	rd	0010011	ADDI
imm[11:	0]	rs1	010	rd	0010011	SLTI
imm[11:	0]	rs1	011	rd	0010011	SLTIU
imm[11:	0]	rs1	100	rd	0010011	XORI
imm[11:	0]	rs1	110	rd	0010011	ORI
imm[11:	0]	rs1	111	rd	0010011	ANDI
000000	· · ·	4	001	1	0010011	CTTT

11 SLLI	0010011	rd	001	rs1	shamt		0000000
11 SRLI	0010011	rd	101	rs1	shamt		0000000
11 SRAI	0010011	rd	101	rs1	shamt		0100000
11 ADD	0110011	rd	000	rs1	rs2		0000000
11 SUB	0110011	rd	000	rs1	rs2		0100000
11 SLL	0110011	rd	001	rs1	rs2		0000000
11 SLT	0110011	rd	010	rs1	rs2		0000000
11 SLTU	0110011	rd	011	rs1	rs2		0000000
11 XOR	0110011	rd	100	rs1	rs2		0000000
11 SRL	0110011	rd	101	rs1	rs2		0000000
11 SRA	0110011	rd	101	rs1	0000 rs2		0100000
11 OR	0110011	rd	110	rs1	0000000 rs2		0000000
11 AND	0110011	rd	111	rs1	rs2		0000000
11 FENC	0001111	00000	000	00000	succ	pred	0000
11 FENC	0001111	00000	001	00000	0000	0000	0000
11 ECAL	1110011	00000	000	00000		00000000	00000
	1110011	00000	000	00000		00000001	
	1110011	25 ¹ 1A	001	EPC1	in E	csr_+	\
	1110011	ZJIH			<u> </u>		
	1110011	rd	011	rs1		csr	(
	1110011	rd	101	zimm		csr	(
	1110011	rd	110	zimm		csr	(
11 CSRR	1110011	rd	111	zimm		csr	(
							

Summary of RISC-V Instruction Formats

Binary encoding of machine instructions. Note the common fields.

31	30 25	5 24 21	20		19	15	14	12	11	8	7	6	0	
fu	ınct7	r	s2		rs1		funct	3		rd		opco	de	R-type
						9								
	imm[1]	1:0]			rs1		funct3	3		rd		opco	de	I-type
imn	n[11:5]	r	s2		rs1		funct	3		$\operatorname{imm}[4]$	4:0]	opco	de	S-type
imm[12]	imm[10:5]	r	s2		rs1		funct	3	imn	n[4:1]	imm[11]	opco	de	B-type
	imm[31:12]									rd		opco	de	U-type
imm[20]	imm[10]	0:1]	imm[1	.1]	imr	m[1]	9:12]			rd		opco	de	J-type

"State" Required by RV321 ISA

Each instruction reads and updates this state during execution:

- Registers (x0..x31)
 - -Register file (or *regfile*) **Reg** holds 32 registers x 32 bits/register: **Reg[0].. Reg[31]**
 - -First register read specified by rs1 field in instruction
 - -Second register read specified by rs2 field in instruction
 - -Write register (destination) specified by rd field in instruction
 - x0 is always 0 (writes to Reg[0] are ignored)
- Program Counter (PC)
 - -Holds address of current instruction
- Memory (MEM)
 - -Holds both instructions & data, in one 32-bit byte-addressed memory space
 - -We'll use separate memories for instructions (IMEM) and data (DMEM)
 - Later we'll replace these with instruction and data caches
 - Instructions are read (fetched) from instruction memory (assume IMEM read-only)
 - Load/store instructions access data memory

RISC-V State Elements

- State encodes everything about the execution status of a processor:
 - PC register
 - 32 registers
 - Memory

Note: for these state elements, clock is used for write but not for read (asynchronous read, synchronous write).

RISC-V Microarchitecture Oganization

Datapath + Controller + External Memory

Microarchitecture

Multiple implementations for a single instruction set architecture:

- Single-cycle
 - Each instruction executes in a single clock cycle.
- Multicycle
 - Each instruction is broken up into a series of shorter steps with one step per clock cycle.
- Pipelined (variant on "multicycle")
 - Each instruction is broken up into a series of steps with one step per clock cycle
 - Multiple instructions execute at once by overlapping in time.
- Superscalar
 - Multiple functional units to execute multiple instructions at the same time
- Out of order...
 - Instructions are reordered by the hardware

First Design: One-Instruction-Per-Cycle RISC-V Machine

On every tick of the clock, the computer executes one instruction

- 1. Current state outputs drive the inputs to the combinational logic, whose outputs settles at the values of the state before the next clock edge
- 2. At the rising clock edge, all the state elements are updated with the combinational logic outputs, and execution moves to the next clock cycle (next instruction)

Basic Phases of Instruction Execution

Implementing the add instruction

				1		4
0000000	rs2	rs1	000	rd	0110011	ADD

```
add rd, rs1, rs2
```

Instruction makes two changes to machine's state:

```
Reg[rd] = Reg[rs1] + Reg[rs2]
PC = PC + 4
```

Datapath for add

Timing Diagram for add

Implementing the sub instruction

0000000	rs2	rs1	000	rd	0110011
0100000	rs2	rs1	000	rd	0110011

ADD SUB

sub rd, rs1, rs2

```
Reg[rd] = Reg[rs1] - Reg[rs2]
```

- Almost the same as add, except now have to subtract operands instead of adding them
- inst[30] selects between add and subtract

Datapath for add/sub

Implementing other R-Format instructions

		1		1		
0000000	rs2	rs1	000	rd	0110011	ADD
0100000	rs2	rs1	000	rd	0110011	SUB
0000000	rs2	rs1	001	rd	0110011	brack $ brack$
0000000	rs2	rs1	010	rd	0110011	brack $ brack$
0000000	rs2	rs1	011	rd	0110011	SLTU
0000000	rs2	rs1	100	rd	0110011	XOR
0000000	rs2	rs1	101	rd	0110011	central SRL
0100000	rs2	rs1	101	rd	0110011	brack SRA
0000000	rs2	rs1	110	rd	0110011	OR
0000000	rs2	rs1	111	rd	0110011	AND
						1

 All implemented by decoding funct3 and funct7 fields and selecting appropriate ALU function

Implementing the addi instruction

• RISC-V Assembly Instruction: Uses the "I-type" instruction format addi rd, rs1, integer

Reg[rd] = Reg[rs1] + sign_extend(immediate)

example:
addi x15,x1,-50

31	0 19 15	- 1 /	/ /	6 0
imm[11:0]	rs1	funct3	rd	opcode
12	5	3	5	7

111111001110	00001	000	0111	0010011
imm=-50	rs1=1	ADD	rd=15	OP-Imm

Review: Datapath for add/sub

Adding addi to datapath

I-type Format immediates

- imm[31:0]
- High 12 bits of instruction (inst[31:20]) copied to low 12 bits of immediate (imm[11:0])
- Immediate is sign-extended by copying value of inst[31] to fill the upper 20 bits of the immediate value (imm[31:12])

Adding addi to datapath

Implementing Load Word instruction

• RISC-V Assembly Instruction: Also uses the "I-type" instruction format lw rd, integer(rs1)

```
Reg[rd] = DMEM[Reg[rs1] + sign_extend(immediate)]
example:
```

addi x14,8(x2)

31	0 19 15		11	7 6 0
imm[11:0]	rs1	funct3	rd	opcode
12	5	3	5	7

00000001000	00010	010	01110	000011
imm=+8	rs1=2	LW	rd=14	LOAD

Review: Adding addi to datapath

Adding Lw to datapath

Adding Lw to datapath

CS 61c 30

All RV32 Load Instructions

imm[11:0]	rs1	000	rd	0000011	LB
imm[11:0]	rs1	001	rd	0000011	LH
imm[11:0]	rs1	010	rd	0000011	LW
imm[11:0]	rs1	100	rd	0000011	LBU
imm[11:0]	rs1	101	rd	0000011	LHU

funct3 field encodes size and signedness of load data

 Supporting the narrower loads requires additional circuits to extract the correct byte/halfword from the value loaded from memory, and sign- or zero-extend the result to 32 bits before writing back to register file.

Implementing Store Word instruction

```
    RISC-V Assembly Instruction:

                                  Uses the "S-type" instruction format
  sw rs2, integer(rs1)
  DMEM[Reg[rs1] + sign extend(immediate)] = Reg[rs2]
  example:
  sw x14, 8(x2)
                           20 19
                                              12 11
31
              25 24
                                       15 14
                                                            7 6
   imm[11:5]
                                                   imm[4:0]
                                          funct3
                                                                   opcode
                     rs2
                                 rs1
                                  5
                      5
                                                      5
   offset[11:5]
                                                   offset[4:0]
                                          width
                                                                  STORE
                                 base
                     \operatorname{src}
                                         010
000000
                           00010
                                                    01000
               01110
                                                                 0100011
                                                  offset[4:0]
offset[11:5] rs2=14
                           rs1=2
                                         SW
                                                                    STORE
                   000000
                                  01000
                                              combined 12-bit offset = 8
```

Review: Adding 1w to datapath

Adding sw to datapath

Adding sw to datapath

CS 61c 35

Review: I-Format immediates

- imm[31:0]
- High 12 bits of instruction (inst[31:20]) copied to low 12 bits of immediate (imm[11:0])
- Immediate is sign-extended by copying value of inst[31] to fill the upper 20 bits of the immediate value (imm[31:12])

I & S -type Immediate Generator

inst[31:0]

- Just need a 5-bit mux to select between two positions where low five bits of immediate can reside in instruction
- Other bits in immediate are wired to fixed positions in instruction

imm[31:0]

End of Lecture 13