Or. rer. nat Dennis Müller

Quadratisch Diskriminan analyse

Gaußsche Diskriminanzanalyse

Gaußsche Diskriminanzanalyse

Dr. rer. nat Dennis Müller

January 18, 2016

Table of Contents

Gaußsche Diskriminanzanalyse

Dr. rer. na Dennis Müller

Quadratische Diskriminanz analyse

Gaußsche Diskriminanz analyse 1 Quadratische Diskriminanzanalyse

2 Gaußsche Diskriminanzanalyse

Einführung

Gaußsche Diskriminanzanalyse

> or. rer. na Dennis Müller

Quadratische Diskriminanzanalyse

Gaußsche Diskriminanz analyse

 $\label{eq:Quadratische} Quadratische \ Diskriminanzanalyse \ - \ Merkmalsklassifikation$

Dr. rer. nat Dennis Müller

Quadratische Diskriminanzanalyse

Gaußsche Diskriminanz analyse

- Wir betrachten zunächst ein Zwei-Klassen Klassifikationsproblem.
- Dabei sei zu einem zu klassifizierenden Objekt ein n-dimensionaler Featurevektor $\mathbf{x}_i \in \mathbb{R}^n$ gegeben. Wir nehmen an dieser Vektor entstammt einer von zwei Klassen.
- Mit $y_i \in \{0,1\}$ bezeichnen wir die Klasse des i-ten Featurevektors.
- Nach dem Satz von Bayes und dem Satz der totalen Wahrscheinlichkeit folgt dann

$$P(y_i|\mathbf{x}_i) = \frac{P(\mathbf{x}_i|y_i) \cdot p(y_i)}{P(\mathbf{x}_i|y_i = 0) \cdot p(y_i = 0) + P(\mathbf{x}_i|y_i = 1) \cdot p(y_i = 1)}$$

 In der Quadratische Diskriminanzanalyse gehen wir davon aus, dass die Featurevektoren innerhalb einer Klasse einer Normalverteilung entsprechen, also

$$P(\mathbf{x}_i|y_i) = \frac{1}{\sqrt{(2\pi)^n |\Sigma_{y_i}|}} \exp\left(-\frac{1}{2} \left(\mathbf{x}_i - \mu_{y_i}\right)^T \Sigma_{y_i}^{-1} \left(\mathbf{x}_i - \mu_{y_i}\right)\right)$$

■ Ferner nehmen wir an das die *a-priori* Wahrscheinlichkeit für die Klassenzugehörigkeit Bernoulli-verteilt ist, also

$$P(y_i) = \theta^{y_i} \cdot (1 - \theta)^{(1 - y_i)}$$

 $\mathsf{mit}\ \theta \in [0,1].$

■ Die Parameter unseres Modells sind also $\theta, \mu_0, \mu_1, \Sigma_0$ und Σ_1 .

 Angenommen wir haben ein Trainingsset von k Featurevektoren mit bekannter Klassenzugehörigkeit. Die log-likelihood der Daten ist dann

$$\lambda(\theta, \mu_0, \mu_1, \Sigma_0, \Sigma_1) = \sum_{i=1}^k \log P(x_i, y_i | \theta, \mu_0, \mu_1, \Sigma_0, \Sigma_1)$$
$$= \sum_{i=1}^k \log P(x_i | y_i, \mu_0, \mu_1, \Sigma_0, \Sigma_1) \cdot P(y_i | \theta)$$

Dr. rer. na Dennis Müller

Quadratische Diskriminanzanalyse

Gaußsche Diskriminanz analyse Die Maximum-likelihood Schätzung für die fünf Parameter ergibt sich dann zu

$$\theta = \frac{1}{k} \sum_{i=1}^{k} y_i$$

$$\mu_0 = \frac{\sum_{i=1}^{k} x_i (1 - y_i)}{\sum_{i=1}^{k} (1 - y_i)}$$

$$\mu_1 = \frac{\sum_{i=1}^{k} x_i y_i}{\sum_{i=1}^{k} y_i}$$

$$\Sigma_0 = \frac{\sum_{i=1}^{k} (x_i - \mu_0) (x_i - \mu_0)^T (1 - y_i)}{\sum_{i=1}^{k} (1 - y_i)}$$

$$\Sigma_1 = \frac{\sum_{i=1}^{k} (x_i - \mu_1) (x_i - \mu_1)^T y_i}{\sum_{i=1}^{k} y_i}$$

Sind die Parameter nun bekannt, z.B. durch obige ML-Schätzung, können wir einen neuen Featurevektor mit unbekannter Klassenzugehörigkeit klassifizieren. Dazu betrachten wir zunächst das Verhältnis der a-posteriori Wahrscheinlichkeiten

$$\frac{P(y_i = 1|\mathbf{x}_i)}{P(y_i = 0|\mathbf{x}_i)} = \frac{P(\mathbf{x}_i|y_i = 1)P(y_i = 1)}{P(\mathbf{x}_i|y_i = 0)P(y_i = 0)}$$

 Auch hier betrachten wir wieder den Logarithmus und erhalten zunächst

$$\log P(\mathbf{x}_{i}|y_{i}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|\Sigma_{y_{i}}| - \frac{1}{2}(\mathbf{x}_{i} - \mu_{y_{i}})^{T} \Sigma_{y_{i}}^{-1}(\mathbf{x}_{i} - \mu_{y_{i}})$$

und

$$\log P(y_i) = y_i \log \theta + (1 - y_i) \log(1 - \theta)$$

Dr. rer. na Dennis Müller

Quadratische Diskriminanzanalyse

Gaußsche Diskriminanz analyse Nun gilt für den Logarithmus des Verhältnisses

$$\begin{split} g(\mathbf{x}_i) &= \log \frac{P(y_i = 1 | \mathbf{x}_i)}{P(y_i = 0 | \mathbf{x}_i)} \\ &= \\ &- \frac{1}{2} \log |\Sigma_1| + \frac{1}{2} \log |\Sigma_0| \\ &- \frac{1}{2} \left(\mathbf{x}_i - \mu_0 \right)^T \Sigma_0^{-1} \left(\mathbf{x}_i - \mu_0 \right) + \frac{1}{2} \left(\mathbf{x}_i - \mu_1 \right)^T \Sigma_1^{-1} \left(\mathbf{x}_i - \mu_1 \right) \\ &+ log \left(\frac{\theta}{1 - \theta} \right) \end{split}$$

g heisst *Entscheidungsfunktion*.

 Der mittlere Term lässt sich schreiben als (aus-multiplizieren und neu zusammenfassen)

$$\frac{1}{2} \mathbf{x}_{i}^{T} \left(\Sigma_{1}^{-1} - \Sigma_{0}^{-1} \right) \mathbf{x}_{i} \\
+ \\
\mathbf{x}_{i}^{T} \left(\Sigma_{0}^{-1} \mu_{0} - \Sigma_{1}^{-1} \mu_{1} \right) \\
+ \\
\frac{1}{2} \mu_{1}^{T} \Sigma_{1}^{-1} \mu_{1} - \frac{1}{2} \mu_{0}^{T} \Sigma_{0}^{-1} \mu_{0}$$

GDA

Gaußsche Diskriminanzanalyse

> r. rer. na Dennis Müller

Quadratische Diskriminanz analyse

Gaußsche Diskriminanzanalyse

 ${\bf Gauß sche\ Disk riminanz analyse-Spezial fall}$

Bei der quadratischen Diskriminanzanalyse (QDA) gehen wir davon aus, das beide Klassen unterschiedliche Varianzen haben können. Dadurch ergibt sich eine, i.d.r. quadratische Grenzfläche zwischen den beide Klassen durch den Term

$$\mathbf{x}_{i}^{T}\left(\Sigma_{1}^{-1}-\Sigma_{0}^{-1}\right)\mathbf{x}_{i}$$

.

■ Bei der Gaußschen Diskriminanzanalyse (GDA) nehmen wir an, das beide Klassen die gleiche Varianz haben, also $\Sigma_0 = \Sigma_1 = \Sigma$. Dann ergibt sich für die ML Schätzung

$$\Sigma = \frac{1}{k} \sum_{i=1}^{k} (\mathbf{x}_i - \mu_{y_i}) (\mathbf{x}_i - \mu_{y_i})^T$$

Für die Entscheidungsfunktion folgt dann

$$g(\mathbf{x}_i) = x_i^T \Sigma^{-1} (\mu_0 - \mu_1) + \frac{1}{2} (\mu_1 - \mu_0)^T \Sigma^{-1} (\mu_1 - \mu_0) + \log \left(\frac{\theta}{1 - \theta} \right)$$

■ Hier ist die Entscheidungsfunktion also *linear* in x_i .

■ Für $\theta=1/2$, also a-priori gleich wahrscheinliche Klassen ist $\log(\theta/(1-\theta))=0$. Die Entscheidungsfunktion betrachtet dann nur die mit der (gleichen) Kovarianz gewichtete Distanz zwischen dem Featurevektor und beiden Klassenzentren. Die Zuordnung zu Klasse 1 erfolgt dann also g.d.w.

$$(\mathbf{x}_{i} - \mu_{1})^{T} \Sigma^{-1} (\mathbf{x}_{i} - \mu_{1}) \leq (\mathbf{x}_{i} - \mu_{0})^{T} \Sigma^{-1} (\mathbf{x}_{i} - \mu_{0})$$

- Die so gewichtete Distanz bezeichnet man auch als Mahalanobis-Distanz.
- In diesem Spezialfall ist die GDA also ein Nearest-Neighbor Klassifikator.