ENGG5781 Matrix Analysis and Computations Lecture 0: Overview

Wing-Kin (Ken) Ma

2018-2019 Term 1

Department of Electronic Engineering The Chinese University of Hong Kong

Course Information

General Information

• Instructor: Wing-Kin Ma

- office: SHB 323

- e-mail: wkma@ee.cuhk.edu.hk

- Lecture hours and venue:
 - Monday 11:30am-12:15pm, Yasumoto International Academic Park LT7
 - Tuesday 4:30pm–6:15pm, Mong Man Wai Building Room 710
- Class website: http://www.ee.cuhk.edu.hk/~wkma/engg5781

Course Contents

- This is a foundation course on matrix analysis and computations, which are widely used in many different fields, e.g.,
 - machine learning, computer vision,
 - systems and control, signal and image processing, communications, networks,
 - optimization, and many more...
- Aim: covers matrix analysis and computations at an advanced or research level.

• Scope:

- basic matrix concepts, subspace, norms,
- linear least squares
- eigendecomposition, singular value decomposition, positive semidefinite matrices,
- linear system of equations, LU decomposition, Cholesky decomposition
- pseudo-inverse, QR decomposition
- (advanced) tensor decomposition, advanced matrix calculus, compressive sensing, structured matrix factorization

Learning Resources

- Notes by the instructor will be provided.
- Recommended readings:
 - Gene H. Golub and Charles F. van Loan, Matrix Computations (Fourth Edition),
 John Hopkins University Press, 2013.
 - Roger A. Horn and Charles R. Johnson, Matrix Analysis (Second Edition),
 Cambridge University Press, 2012.
 - Jan R. Magnus and Heinz Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics (Third Edition), John Wiley and Sons, New York, 2007.
 - Giuseppe Calafiore and Laurent El Ghaoui, Optimization Models, Cambridge University Press, 2014.
 - ECE 712 Course Notes by Prof. Jim Reilly, McMaster University, Canada (friendly notes for engineers)

http://www.ece.mcmaster.ca/faculty/reilly/ece712/course_notes.htm

Assessment and Academic Honesty

- Assessment:
 - Assignments: 60%
 - * may contain MATLAB questions
 - * where to submit: I will put a submission box outside my office, SHB 323
 - * no late submissions would be accepted, except for exceptional cases.
 - Final examination: 40%
- Academic honesty: Students are strongly advised to read
 - our homework guideline: http://www.ee.cuhk.edu.hk/~wkma/engg5781/
 hw/hw_guidelines.pdf
 - the University's guideline on academic honesty: http://www.cuhk.edu.hk/ policy/academichonesty

You will be assumed to understand the aspects described therein.

Additional Notice

- Sitting in is welcome, and please send me your e-mail address to keep you updated with the course.
- Course helpers whom you can consult:
 - Mingjie Shao, mjshao@ee.cuhk.edu.hk
 - Ryan Wu, rywu@ee.cuhk.edu.hk
 - Qiong Wu, qwu@ee.cuhk.edu.hk
- You can also get consultation from me; send me an email for an appointment
- Do regularly check your CUHK Link e-mail address; this is the only way we can reach you
- CUHK Blackboard will be used to announce scores and for online homework submission

A Glimpse of Topics

Least Squares (LS)

• Problem: given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{y} \in \mathbb{R}^n$, solve

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2,$$

where $\|\cdot\|_2$ is the Euclidean norm; i.e., $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$.

- widely used in science, engineering, and mathematics
- ullet assuming a tall and full-rank ${f A}$, the LS solution is uniquely given by

$$\mathbf{x}_{\mathsf{LS}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}.$$

Application Example: Linear Prediction (LP)

- let $\{y_t\}_{t>0}$ be a time series.
- Model (autoregressive (AR) model):

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + \dots + a_q y_{t-q} + v_t, \quad t = 0, 1, 2, \dots$$

for some coefficients $\{a_i\}_{i=1}^q$, where v_t is noise or modeling error.

- Problem: estimate $\{a_i\}_{i=1}^q$ from $\{y_t\}_{t\geq 0}$; can be formulated as LS
- **Applications:** time-series prediction, speech analysis and coding, spectral estimation...

A Toy Demo: Predicting Hang Seng Index

blue— Hang Seng Index during a certain time period. red— training phase; the line is $\sum_{i=1}^q a_i y_{t-i}$; \mathbf{a} is obtained by LS; q=10. green— prediction phase; the line is $\hat{y}_t = \sum_{i=1}^q a_i \hat{y}_{t-i}$; the same \mathbf{a} in the training phase.

A Real Example: Real-Time Prediction of Flu Activity

Tracking influenza outbreaks by ARGO — a model combining the AR model and Google search data. Source: [Yang-Santillana-Kou2015].

Eigenvalue Problem

• Problem: given $\mathbf{A} \in \mathbb{R}^{n \times n}$, find a $\mathbf{v} \in \mathbb{R}^n$ such that

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
, for some λ .

• **Eigendecomposition**: let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric; i.e., $a_{ij} = a_{ji}$ for all i, j. It also admits a decomposition

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T,$$
i.e. $\mathbf{O}^T \mathbf{O} = \mathbf{I} : \mathbf{\Lambda} = \mathrm{Diag}(\mathbf{A})$

- where $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is orthogonal, i.e., $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$; $\mathbf{\Lambda} = \mathrm{Diag}(\lambda_1, \dots, \lambda_n)$
- also widely used, either as an analysis tool or as a computational tool
- no closed form in general; can be numerically computed

Application Example: PageRank

- PageRank is an algorithm used by Google to rank the pages of a search result.
- the idea is to use counts of links of various pages to determine pages' importance.

Source: Wiki.

One-Page Explanation of How PageRank Works

Model:

$$\sum_{j \in \mathcal{L}_i} \frac{v_j}{c_j} = v_i, \quad i = 1, \dots, n,$$

where c_j is the number of outgoing links from page j; \mathcal{L}_i is the set of pages with a link to page i; v_i is the importance score of page i.

• as an example,

$$\begin{bmatrix}
0 & \frac{1}{2} & 1 & \frac{1}{3} \\
0 & 0 & 0 & \frac{1}{3} \\
0 & \frac{1}{2} & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{bmatrix} = \begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{bmatrix}.$$

- ullet finding ${f v}$ is an eigenvalue problem—with n being of order of millions!
- further reading: [Bryan-Tanya2006]

Low-Rank Matrix Approximation

• Problem: given $\mathbf{Y} \in \mathbb{R}^{m \times n}$ and an integer $r < \min\{m, n\}$, find an $(\mathbf{A}, \mathbf{B}) \in \mathbb{R}^{m \times r} \times \mathbb{R}^{r \times n}$ such that either $\mathbf{Y} = \mathbf{A}\mathbf{B}$ or $\mathbf{Y} \approx \mathbf{A}\mathbf{B}$.

• Formulation:

$$\min_{\mathbf{A} \in \mathbb{R}^{m \times r}, \mathbf{B} \in \mathbb{R}^{r \times n}} \|\mathbf{Y} - \mathbf{A}\mathbf{B}\|_F^2,$$

where $\|\cdot\|_F$ is the Frobenius, or matrix Euclidean, norm.

• **Applications:** dimensionality reduction, extracting meaningful features from data, low-rank modeling, . . .

Application Example: Image Compression

• let $\mathbf{Y} \in \mathbb{R}^{m \times n}$ be an image.

(a) original image, size= 102×1347

ENGG 5781 Matrix Analysis and Computations

ullet store the low-rank factor pair (\mathbf{A}, \mathbf{B}) , instead of \mathbf{Y} .

(b) truncated SVD, k= 5

ENGG 5781 Matrix Analysis and Computations

(c) truncated SVD, k= 10

ENGG 5781 Matrix Analysis and Computations

(d) truncated SVD, k= 20

ENGG 5781 Matrix Analysis and Computations

Application Example: Principal Component Analysis (PCA)

• Aim: given a set of data points $\{y_1, y_2, \dots, y_n\} \subset \mathbb{R}^n$ and an integer $k < \min\{m, n\}$, perform a low-dimensional representation

$$\mathbf{y}_i = \mathbf{Q}\mathbf{c}_i + \boldsymbol{\mu} + \mathbf{e}_i, \quad i = 1, \dots, n,$$

where $\mathbf{Q} \in \mathbb{R}^{m \times k}$ is a basis; \mathbf{c}_i 's are coefficients; μ is a base; \mathbf{e}_i 's are errors

Toy Demo: Dimensionality Reduction of a Face Image Dataset

A face image dataset. Image size $=112\times92$, number of face images =400. Each \mathbf{x}_i is the vectorization of one face image, leading to $m=112\times92=10304,\,n=400$.

Toy Demo: Dimensionality Reduction of a Face Image Dataset

Mean face

singular vector

singular vector

singular vector

1st principal left 2nd principal left 3rd principal left 400th left singular vector

Energy Concentration

Singular Value Decomposition (SVD)

• SVD: Any $\mathbf{Y} \in \mathbb{R}^{m \times n}$ can be decomposed into

$$\mathbf{Y} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$
,

where $\mathbf{U} \in \mathbb{R}^{m \times m}, \mathbf{V} \in \mathbb{R}^{n \times n}$ are orthogonal; $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ takes a diagonal form.

- also a widely used analysis and computational tool; can be numerically computed
- SVD can be used to solve the low-rank matrix approximation problem

$$\min_{\mathbf{A} \in \mathbb{R}^{m \times r}, \mathbf{B} \in \mathbb{R}^{r \times n}} \|\mathbf{Y} - \mathbf{A}\mathbf{B}\|_F^2.$$

Linear System of Equations

• Problem: given $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{y} \in \mathbb{R}^n$, solve

$$\mathbf{A}\mathbf{x} = \mathbf{y}$$
.

- Question 1: How to solve it?
 - don't tell me answers like x=inv(A)*y or $x=A\setminus y$ on MATLAB!
 - this is about matrix computations
- Question 2: How to solve it when n is very large?
 - it's too slow to do the generic trick x = A y when n is very large
 - getting better understanding of matrix computations will enable you to exploit problem structures to build efficient solvers
- Question 3: How sensitive is the solution x when A and y contain errors?
 - key to system analysis, or building robust solutions

Why Matrix Analysis and Computations is Important?

- as said, areas such as signal processing, image processing, machine learning, optimization, computer vision, control, communications, ..., use matrix operations extensively
- it helps you build the foundations for understanding "hot" topics such as
 - sparse recovery;
 - structured low-rank matrix approximation; matrix completion.

The Sparse Recovery Problem

Problem: given $\mathbf{y} \in \mathbb{R}^m$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, m < n, find a sparsest $\mathbf{x} \in \mathbb{R}^n$ such that

$$y = Ax$$
.

ullet by sparsest, we mean that ${f x}$ should have as many zero elements as possible.

Application: Magnetic resonance imaging (MRI)

Problem: MRI image reconstruction.

Fig. a shows the original test image. Fig. b shows the sampling region in the frequency domain. Fourier coefficients are sampled along 22 approximately radial lines. Source: [Candès-Romberg-Tao2006]

Application: Magnetic resonance imaging (MRI)

Fig. c is the recovery by filling the unobserved Fourier coefficients to zero. Fig. d is the recovery by a sparse recovery solution. Source: [Candès-Romberg-Tao2006]

Low-Rank Matrix Completion

- Application: recommendation systems
 - in 2009, Netflix awarded \$1 million to a team that performed best in recommending new movies to users based on their previous preference¹.
- let **Z** be a preference matrix, where z_{ij} records how user i likes movie j.

$$\mathbf{Z} = \begin{bmatrix} 2 & 3 & 1 & ? & ? & 5 & 5 \\ 1 & ? & 4 & 2 & ? & ? & ? \\ ? & 3 & 1 & ? & 2 & 2 & 2 \\ ? & ? & ? & 3 & ? & 1 & 5 \end{bmatrix}$$
 users

movies

- some entries z_{ij} are missing, since no one watches all movies.
- ${f Z}$ is assumed to be of low rank; research shows that only a few factors affect users' preferences.
- Aim: guess the unkown z_{ij} 's from the known ones.

¹www.netflixprize.com

Low-Rank Matrix Completion

- The 2009 Netflix Grand Prize winners used low-rank matrix approximations [Koren-Bell-Volinsky2009].
- Formulation (oversimplified):

$$\min_{\mathbf{A} \in \mathbb{R}^{m \times r}, \mathbf{B} \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} |z_{ij} - [\mathbf{A}\mathbf{B}]_{i,j}|^2$$

where Ω is an index set that indicates the known entries of \mathbf{Z} .

- cannot be solved by SVD
- in the recommendation system application, it's a large-scale problem
- alternating LS may be used

Toy Demonstration of Low-Rank Matrix Completion

Left: An incomplete image with 40% missing pixels. Right: the low-rank matrix completion result. r=120.

Nonnegative Matrix Factorization (NMF)

- Aim: we want the factors to be non-negative
- Formulation:

$$\min_{\mathbf{A} \in \mathbb{R}^{m \times r}, \mathbf{B} \in \mathbb{R}^{r \times n}} \|\mathbf{Y} - \mathbf{A}\mathbf{B}\|_F^2 \quad \text{s.t. } \mathbf{A} \ge \mathbf{0}, \mathbf{B} \ge \mathbf{0},$$

where $\mathbf{X} \geq \mathbf{0}$ means that $x_{ij} \geq 0$ for all i, j.

- arguably a topic in optimization, but worth noticing
- found to be able to extract meaningful features (by empirical studies)
- numerous applications, e.g., in machine learning, signal processing, remote sensing

NMF Examples

• Image Processing:

The basis elements extract facial features such as eyes, nose and lips. Source: [Lee-Seung1999].

• Text Mining:

Sets of words found simultaneously in different texts

- basis elements allow us to recover different topics;
- weights allow us to assign each text to its corresponding topics.

Toy Demonstration of NMF

A face image dataset. Image size $=101 \times 101$, number of face images =13232. Each \mathbf{x}_i is the vectorization of one face image, leading to $m=101 \times 101=10201$, n=13232.

Toy Demonstration of NMF: NMF-Extracted Features

NMF settings: r=49, Lee-Seung multiplicative update with 5000 iterations.

Toy Demonstration of NMF: Comparison with PCA

Mean face

singular vector

singular vector

1st principal left 2nd principal left 3th principal left singular vector

last principal left singular vector

Energy Concentration

A Few More Words to Say

- things I hope you will learn
 - how to read how people manipulate matrix operations, and how you can manipulate them (learn to use a tool);
 - what applications we can do, or to find new applications of our own (learn to apply a tool);
 - deep analysis skills (why is this tool valid? Can I invent new tools? Key to some topics, should go through at least once in your life time)
- feedbacks are welcome; closed-loop systems often work better than open-loop

References

[Yang-Santillana-Kou2015] S. Yang, M. Santillana, and S. C. Kou, "Accurate estimation of influenza epidemics using Google search data via ARGO," *Proceedings of the National Academy of Sciences*, vol. 112, no. 47, pp. 14473–14478, 2015.

[Bryan-Tanya2006] K. Bryan and L. Tanya, "The 25,000,000,000 eigenvector: The linear algebra behind Google," SIAM Review, vol. 48, no. 3, pp. 569–581, 2006.

[Candès-Romberg-Tao2006] E. J. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," *IEEE Trans. Information Theory*, vol. 52, no. 2, pp. 489–509, 2006.

[Koren-Bell-Volinsky2009] B. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," *IEEE Computer*, vol. 42 no. 8, pp. 30–37, 2009.

[Lee-Seung1999] D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," *Nature*, vol. 401, no. 6755, pp. 788–791, 1999.