Е.В. Небогина, О.С. Афанасьева

РЯДЫ. ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Trill Lind

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Е.В. Небогина, О.С. Афанасьева

РЯДЫ. ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Утверждено редакционно—издательским советом университета в качестве учебного пособия

Самара Самарский государственный технический университет 2009 УДК 517.521 Н 39

Рецензенты: канд. техн. наук Бенгина Т. А.

Небогина, Е.В.

Н 39 **Ряды. Практикум по высшей математике**: Учеб. пособ. / Е.В. Небогина, О.С. Афанасьева. – Самара: Сам. гос. техн. ун-т, 2009, –43 с.: ил.

Приведены краткие сведения и формулы по теме «Ряды», а также большое количество примеров. Представлены задачи для самостоятельного решения (группы A и B). Примеры группы A предназначены для решения в аудитории, группы B — для самостоятельной внеаудиторной работы. Для самоконтроля все примеры групп A и B приведены с ответами. Предназначено для студентов первого курса машиностроительного и физико-технололического факультетов.

УДК 517.521 Н 39

[©] Небогина Е.В., Афанасьева О.С., 2009

[©] Самарский государственный технический университет, 2009

ПРЕДИСЛОВИЕ

Предлагаемый практикум по высшей математике «Ряды» предназначен для студентов инженерных специальностей машиностроительного и физико-технологического факультетов. Его цель – помочь студентам самостоятельно или с помощью преподавателя овладеть методами решения задач по теме «Ряды». Каждый раздел соответствует одному практическому занятию по высшей математике и в нем приводятся основные теоретические сведения и необходимые формулы. Внимание уделено как решению типовых задач по данной тематике, так и примерам для самостоятельной работы.

В пособии использована сквозная нумерация задач. По каждой теме предлагаются задачи для разбора и решения их в аудитории (часть A), а также задачи для самостоятельного решения (часть Б). Задачи расположены по мере возрастания их сложности. Ко всем задачам приведены ответы. В заключении приведен тренировочный тест для проверки знаний учащихся по данной теме.

1. ЧИСЛОВЫЕ РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ. ПРИЗНАКИ СХОДИМОСТИ: НЕОБХОДИМЫЙ, СРАВНЕНИЯ, ДОСТАТОЧНЫЕ

Пусть $u_1, u_2, u_3, ..., u_n, ...$, где $u_n = f$ n — бесконечная числовая последовательность. Выражение

$$u_1 + u_2 + u_3 + \dots + u_n + \dots$$

называется бесконечным **числовым рядом**, а числа $u_1,u_2,u_3,...,u_n,...-$ **членами** ряда; $u_n=f$ n называется **общим членом**. Ряд часто записывают в виде $\sum_{n=1}^{\infty} u_n$.

Сумму первых n членов числового ряда обозначают через S_n и называют n-ой **частичной суммой ряда**:

$$S_n = u_1 + u_2 + u_3 + ... + u_n$$
.

Ряд называется *сходящимся*, если его n-ая частичная сумма S_n при неограниченном возрастании n стремится к конечному пределу, т.е. если $\lim_{n\to\infty} S_n = S$, $S \neq \infty$. Число S называют *суммой* ряда. Если же $\lim_{n\to\infty} S_n$ не стремится к конечному пределу, то ряд называют *расходяшимся*.

Приведём примеры рядов, наиболее часто использующихся при исследовании на сходимость.

Ряд

$$a + aq + aq^2 + ... + aq^{n-1} + ... |q| < 1$$
,

составленный из членов любой убывающей геометрической прогрессии, является сходящимся и имеет сумму $\frac{a}{1-a}$.

Рял

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$$

называемый гармоническим, расходится.

Ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ ($\alpha \in R$), называемый *обобщенно гармоническим*, сходится при $\alpha > 1$ и расходится при $\alpha \le 1$.

Теорема. Если ряд

$$u_1 + u_2 + u_3 + \dots$$

сходится, то $\lim_{n\to\infty} u_n = 0$, т.е. при $n\to\infty$ предел общего члена сходящегося ряда равен нулю (необходимый признак сходимости ряда).

Таким образом, если $\lim_{n\to\infty}u_n\neq 0$, то ряд расходится.

Перечислим важнейшие признаки сходимости и расходимости рядов с положительными членами.

Первый признак сравнения. Пусть даны два ряда:

$$u_1 + u_2 + u_3 + \dots + u_n + \dots$$
 (1)

u

$$v_1 + v_2 + v_3 + \dots + v_n + \dots,$$
 (2)

причем каждый член ряда (1) не превосходит соответствующего члена ряда (2), т.е. $u_n \le v_n$ n=1,2,3,... . Тогда если сходится ряд (2), то сходится и ряд (1); если расходится ряд (1), то расходится и ряд (2).

Этот признак остается в силе, если неравенства $u_n < v_n$ выполняются не при всех n, а лишь начиная с некоторого номера n = N.

Второй признак сравнения. Если существует конечный и от-

личный от нуля предел
$$\lim_{n\to\infty} \left(\frac{u_n}{v_n}\right) = k$$
 , то оба ряда $\sum_{n=1}^\infty u_n$ и $\sum_{n=1}^\infty v_n$ одно-

временно сходятся или одновременно расходятся.

Радикальный признак Коши. Если для ряда

$$u_1 + u_2 + u_3 + \dots + u_n + \dots$$

существует $\lim_{n\to\infty} \sqrt[n]{u_n}=C$, то этот ряд сходится при C<1 и расходится при C>1.

Признак Даламбера. Если для ряда

$$u_1 + u_2 + u_3 + ... + u_n + ...$$

существует $\lim_{n\to\infty}\left(\frac{u_{n+1}}{u_n}\right)=D$, то этот ряд сходится при D<1 и расходится при D>1.

Интегральный признак. *Если* f(x) *при* $x \ge 1$ — *непрерывная,*

положительная и монотонно убывающая функция, то ряд $\sum_{n=1}^{\infty} u_n$, где $u_n=f$ n, сходится или расходится в зависимости от того, сходится или расходится интеграл $\int_{-\infty}^{\infty} f \ x \ dx \ N \ge 1$.

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1.1. Найти сумму ряда

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \frac{1}{7\cdot 9} + \dots + \frac{1}{2n-1} + 2n+1 + \dots$$

Решение. Общий член ряда можно представить в виде суммы простейших дробей:

$$\frac{1}{2n-1} = \frac{A}{2n-1} + \frac{B}{2n+1}.$$

Определим коэффициенты A и B:

$$1 = A 2n + 1 + B 2n - 1$$
;

при
$$n = \frac{1}{2}$$
: $1 = 2A \Rightarrow A = \frac{1}{2}$;

при
$$n = -\frac{1}{2}$$
: $1 = -2B \Rightarrow B = -\frac{1}{2}$.

Таким образом, n-ый член ряда будет иметь следующий вид:

$$u_n = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right),$$

откуда

$$u_1 = \frac{1}{2} \left(1 - \frac{1}{3} \right), u_2 = \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right), u_3 = \frac{1}{2} \left(\frac{1}{5} - \frac{1}{7} \right), u_4 = \frac{1}{2} \left(\frac{1}{7} - \frac{1}{9} \right), \dots$$

Следовательно,

$$\begin{split} S_n &= \frac{1}{2} \left(1 - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right) + \frac{1}{2} \left(\frac{1}{5} - \frac{1}{7} \right) + \dots + \frac{1}{2} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right) = \\ &= \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{1}{2n - 1} - \frac{1}{2n + 1} \right) = \frac{1}{2} \left(1 - \frac{1}{2n + 1} \right). \end{split}$$

Так как $\lim_{n\to\infty} S_n = \frac{1}{2}\lim_{n\to\infty} \left(1-\frac{1}{2n+1}\right) = \frac{1}{2}$, то ряд сходится и его сумма равна $\frac{1}{2}$.

Omsem: $S = \frac{1}{2}$.

Пример 1.2. Исследовать сходимость ряда

$$\frac{2}{3} + \frac{1}{3} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{2}{3} \left(\frac{1}{2}\right)^{n-1} + \dots$$

Решение. Данный ряд составлен из членов бесконечно убывающей геометрической прогрессии и поэтому сходится. Найдем его сумму. Здесь $a=\frac{2}{3}$ (первый член прогрессии), $q=\frac{1}{2}$ (знаменатель прогрессии). Следовательно,

$$S = \frac{a}{1-a} = \frac{2/3}{1-1/2} = \frac{4}{3}.$$

Так как ряд имеет конечную сумму, то он сходится.

Ответ: ряд сходится, $S = \frac{4}{3}$.

Пример 1.3. Исследовать сходимость ряда

$$\frac{3}{13} + \frac{6}{18} + \frac{9}{23} + \dots + \frac{3n}{5n+8} + \dots$$

Решение. Так как

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{3n}{5n + 8} = \lim_{n \to \infty} \frac{3}{5 + 8/n} = \frac{3}{5},$$

т.е. $\lim_{n\to\infty}u_n\neq 0$, то ряд расходится (не выполняется необходимый признак сходимости).

Ответ: расходится.

Пример 1.4. Исследовать сходимость ряда $\sum_{n=1}^{\infty} n^2 \sin \frac{1}{n^2}$.

Решение. Воспользуемся необходимым признаком сходимости:

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} n^2 \sin\frac{1}{n^2} = \lim_{n\to\infty} n^2 \cdot \frac{1}{n^2} = 1.$$

Так как $\lim_{n\to\infty} u_n \neq 0$, то ряд расходится (не выполняется необходимый признак сходимости).

Ответ: расходится.

Пример 1.5. Исследовать сходимость ряда
$$\sum_{n=1}^{\infty} \frac{1}{2^n + 1}$$
.

Решение. Члены данного ряда меньше соответствующих членов ряда $\sum_{n=1}^{\infty} \frac{1}{2^n}$ т.е. ряда $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$. Но последний ряд сходится как бесконечно убывающая геометрическая прогрессия. Следовательно, сходится и данный ряд (по первому признаку сравнения).

Ответ: сходится.

Пример 1.6. Исследовать сходимость ряда с общим членом $u_n = \frac{1}{4 \cdot 2^n - 3} \; .$

Решение. Сравним этот ряд с рядом, у которого общий член $v_n = 1/2^n$ (т.е. с бесконечно убывающей геометрической прогрессией). Применим второй признак сравнения рядов:

$$\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \frac{2^n}{4 \cdot 2^n - 3} = \lim_{n\to\infty} \frac{1}{4 - 3/2^n} = \frac{1}{4}.$$

Так как предел конечен и отличен от нуля и ряд $\sum_{n=1}^{\infty} \frac{1}{2^n}$ сходится, то сходится и данный ряд.

Ответ: сходится.

Пример 1.7. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$.

Решение. Сравним ряд с расходящимся гармоническим рядом, у которого $v_n = \frac{1}{n}$:

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1} = \lim_{n \to \infty} \frac{1}{1 + 1/n^2} = 1.$$

Следовательно, данный ряд расходится (по второму признаку сравнения).

Ответ: расходится.

Пример 1.8. Исследовать сходимость ряда

$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+1} \right)^n.$$

Решение. Здесь удобно применить радикальный признак Коши, поскольку $\sqrt[n]{u_n} = \frac{n}{2n+1}$, а предел последней дроби находится просто:

 $C = \lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \frac{n}{2n+1} = \left[\frac{\infty}{\infty}\right] = \frac{1}{2}$ (для раскрытия неопределенности использовалось правило Лопиталя).

Так как C = 1/2 < 1, то ряд сходится.

Ответ: сходится.

Пример 1.9. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{2^n} \left(1 + \frac{1}{n}\right)^{n^2}$.

Решение. Применим радикальный признак Коши:

$$u_n = \frac{1}{2^n} \left(1 + \frac{1}{n} \right)^{n^2}, \ \sqrt[n]{u_n} = \frac{1}{2} \left(1 + \frac{1}{n} \right)^n,$$

$$C = \lim_{n \to \infty} \sqrt[n]{u_n} = \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \frac{1}{2} e.$$

Так как C > 1, то ряд расходится.

Ответ: расходится.

Пример 1.10. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{n^3}{n!}$.

Решение. Применим признак Даламбера:

$$u_n = \frac{n^3}{n!}, \ u_{n+1} = \frac{n+1^3}{n+1!}, \ \frac{u_{n+1}}{u_n} = \frac{n+1^2}{n^3}.$$

Значит,

$$D = \lim_{n \to \infty} \frac{n+1^{2}}{n^{3}} = \lim_{n \to \infty} \frac{1+1/n^{2}}{n} = 0.$$

Так как D < 1, то ряд сходится.

Ответ: сходится.

Пример 1.11. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{2^n}{n^6}$.

Решение. Воспользуемся признаком Даламбера. Имеем $u_n = \frac{2^n}{n^6}, \, u_{n+1} = \frac{2^{n+1}}{n+1}^6, \, \frac{u_{n+1}}{u_n} = \frac{2n^6}{n+1}^6 \, ; \, \text{значит},$ $D = \lim_{n \to \infty} \frac{2n^6}{n+1}^6 = \lim_{n \to \infty} \frac{2}{1+1/n}^6 = 2 \; .$

Так как D < 1, то ряд расходится.

Ответ: расходится.

Пример 1.12. Исследовать сходимость ряда

$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Решение. Применим интегральный признак: $u_n = \frac{1}{n^2}$, следова-

тельно, $f(x) = \frac{1}{x^2}$, $\int_1^\infty \frac{dx}{x^2} = -\frac{1}{x}\Big|_1^\infty = 1$. Интеграл сходится (является конечной величиной), поэтому сходится и данный ряд.

Ответ: сходится.

Пример 1.13. Исследовать сходимость ряда $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

Решение. Применим интегральный признак:

$$u_n = \frac{1}{n \ln n}, f \quad x = \frac{1}{x \ln x},$$

$$\int_{2}^{\infty} \frac{dx}{x \ln x} = \int_{2}^{\infty} \frac{d \ln x}{\ln x} = \ln \ln x \Big|_{2}^{\infty} = \infty, \quad d \quad \ln x = dx/x.$$

Интеграл расходится, поэтому расходится и данный ряд. *Ответ:* расходится.

Задания для самостоятельного решения по теме «Числовые ряды с положительными членами. Признаки сходимости: необходимый, сравнения, достаточные» Группа А

1.*A*. Найти сумму ряда
$$\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + ... + \frac{1}{3n-2-3n+1} +$$

Ответ: ряд сходится, $S = \frac{1}{3}$.

2.*A***.** Найти сумму ряда
$$\frac{1}{1\cdot 4} + \frac{1}{2\cdot 5} + ... + \frac{1}{n + 3} + ...$$

Ответ: ряд сходится, $S = \frac{11}{18}$.

3.А. Исследовать сходимость ряда
$$\frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \dots + \frac{2n-1}{2n} + \dots$$

Ответ: расходится.

4.А. Исследовать сходимость ряда

$$\frac{10}{7} + \frac{100}{9} + \frac{1000}{11} + \dots + \frac{10^n}{2n+5} + \dots$$

Ответ: расходится.

5.*A*. Исследовать сходимость ряда
$$1 + \frac{1+2}{1+2^2} + \dots + \frac{1+n}{1+n^2} + \dots$$

Ответ: расходится.

6.*A***.** Исследовать сходимость ряда
$$\sum_{n=1}^{\infty} \frac{1}{n^2 - 4n + 5}$$
.

Ответ: сходится.

7.*A***.** Исследовать сходимость ряда
$$\sum_{n=1}^{\infty} \sqrt{\frac{1}{n^4 + 1}}$$
 .

Ответ: сходится.

8.*A***.** Исследовать сходимость ряда
$$\sum_{n=1}^{\infty} \frac{n^2}{3^n}$$
.

Ответ: сходится.

9.*A*. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{n!}{5^n}$.

Ответ: расходится.

10.*A*. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \left(\frac{2n+5}{3n-1} \right)^n$.

Ответ: сходится.

11.*A*. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \arcsin^n \frac{1}{n}$.

Ответ: сходится.

12.*A*. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{n+1\sqrt{n+1}}$.

Ответ: сходится.

Задания для самостоятельного решения по теме «Числовые ряды с положительными членами. Признаки сходимости: необходимый, сравнения, достаточные» Группа В

1.В. Найти сумму ряда
$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \dots + \frac{1}{n + n + 1 + n + 2} + \dots$$

Ответ: ряд сходится, $S = \frac{1}{4}$.

2.В. Исследовать сходимость ряда
$$\frac{1}{4} + \frac{2}{9} + ... + \frac{n}{5n-1} + ...$$

Ответ: расходится.

3.В. Исследовать сходимость ряда
$$\sum_{n=1}^{\infty} \frac{1}{10n-2}$$
.

Ответ: расходится.

4.В. Исследовать сходимость ряда
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$
.

Ответ: сходится.

5.В. Исследовать сходимость ряда
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3}$$
.

Ответ: расходится.

6.B. Исследовать сходимость ряда $1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots + \frac{1}{n^4} + \dots$

Ответ: сходится.

7.В. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \left(\frac{5n^2 + 2n + 1}{2n^2 + 2n + 1} \right)^n$.

Ответ: расходится.

8.В. Исследовать сходимость ряда $\frac{3}{2} + \frac{9}{8} + ... + \frac{3^n}{n \cdot 2^n} + ...$

Ответ: расходится.

9.В. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \arctan^n \frac{1}{n}$.

Ответ: сходится.

2. ЗНАКОЧЕРЕДУЮЩИЕСЯ ЧИСЛОВЫЕ РЯДЫ. ПРИЗНАК ЛЕЙБНИЦА. ЗНАКОПЕРЕМЕННЫЕ РЯДЫ. АБСОЛЮТНАЯ И УСЛОВНАЯ СХОДИМОСТЬ

Рассмотрим ряды, члены которых имеют чередующиеся знаки, т.е. ряды вида

$$u_1 - u_2 + u_3 - u_4 + ... + (-1)^{n-1}u_n + ...,$$

где $u_n > 0$ $n = 1, 2, 3, \dots$

Признак сходимости знакочередующегося ряда (признак Лейбница). Знакочередующийся ряд сходится, если абсолютные величины его членов монотонно убывают, а общий член стремится к нулю, т.е. если выполняются следующие два условия:

- 1) $u_1 > u_2 > u_3 > \dots$;
- $\lim_{n\to\infty}u_n=0.$

Возьмем n-ю частичную сумму сходящегося знакочередующегося ряда, для которого выполняется признак Лейбница:

$$S_n = u_1 - u_2 + u_3 - u_4 + \dots + (-1)^{n-1}u_n.$$

Пусть R_n — остаток ряда. Его можно записать как разность между суммой ряда S и n-й частичной суммой S_n , т.е. $R_n = S - S_n$. Нетрудно видеть, что

$$R_n = (-1)^n (u_{n+1} - u_{n+2} + u_{n+3} - u_{n+4} + ...).$$

Величина $|R_n|$ оценивается с помощью неравенства $|R_n| < u_{n+1}$.

Приведем некоторые свойства знакопеременных рядов (т.е. знакочередующихся рядов и рядов с произвольным чередованием знаков своих членов).

Определение. Знакопеременный ряд

$$u_1 + u_2 + u_3 + \dots + u_n + \dots$$

сходится, если сходится ряд

$$|u_1| + |u_2| + |u_3| + \dots + |u_n| + \dots$$

В этом случае исходный ряд $\sum_{n=1}^{\infty} u_n$ называется *абсолютно схо- дяшимся*.

Сходящийся ряд $\sum_{n=1}^{\infty} u_n$ называется условно сходящимся, если

ряд $\sum_{n=1}^{\infty} |u_n|$ расходится.

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 2.1. Исследовать сходимость ряда

$$\frac{1}{2} - \frac{2}{2^2 + 1} + \frac{3}{3^2 + 1} - \frac{4}{4^2 + 1} + \dots + -1 \frac{n+1}{n^2 + 1} + \dots$$

Решение. Применим признак Лейбница. Так как

$$\frac{1}{2} > \frac{2}{5} > \frac{3}{10} > \frac{4}{17} > \dots,$$

то выполнено первое условие признака Лейбница. Далее, так как

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{n}{n^2+1} = \lim_{n\to\infty} \frac{1}{n+1/n} = 0,$$

то выполнено и второе условие. Значит, по признаку Лейбница, данный ряд сходится.

Ответ: сходится.

Пример 2.2. Исследовать сходимость ряда

$$1,1-1,01+1,001-...+-1^{n-1} [1+0,1^n]+...$$

Решение. Первое условие признака Лейбница выполняется: 1,1>1,01>1,001>...; с другой стороны, $u_n=1+\frac{1}{10^n}$,

 $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \left(1 + \frac{1}{10^n}\right) = 1$. Так как $\lim_{n\to\infty} u_n \neq 0$, то не выполнен необходимый признак сходимости ряда. Ряд расходится.

Ответ: расходится.

Пример 2.3. Исследовать сходимость ряда

$$1 - \frac{1}{2} - \frac{1}{2^2} + \frac{1}{2^3} - \frac{1}{2^4} - \frac{1}{2^5} + \dots$$

Решение. Составим ряд из абсолютных величин:

$$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \dots$$

Это бесконечно убывающая геометрическая прогрессия, которая сходится. Значит, и данный ряд сходится, причем абсолютно.

Ответ: сходится абсолютно.

Пример 2.4. Исследовать сходимость ряда

$$\frac{1}{2} - \frac{4}{5} + \frac{7}{8} - \frac{10}{11} + \dots + -1 \xrightarrow{n-1} \frac{3n-2}{3n-1} + \dots$$

Pешение. Применим признак Лейбница. Первое условие признака не выполняется, так как $\frac{1}{2} < \frac{4}{5} < \frac{7}{8} < \frac{10}{11} < \dots$. Следовательно, данный ряд расходится.

Ответ: расходится.

Пример 2.5. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{-1^{n-1} n+1}{n^2+n+1}$. Установить характер сходимости (абсолютная, условная).

Решение. Воспользуемся признаком Лейбница. Имеем $u_1=\frac{2}{3}$, $u_2=\frac{3}{7}$, $u_3=\frac{4}{13}$, $u_4=\frac{5}{21}$ и т.д. Так как $\frac{2}{3}>\frac{3}{7}>\frac{4}{13}>\frac{5}{21}>\dots$, то первое условие признака Лейбница выполняется. Далее, так как:

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{n+1}{n^2+n+1} = \lim_{n\to\infty} \frac{1+1/n}{n+1/(n+1)/n^2} = \lim_{n\to\infty} \frac{1}{n} = 0,$$

то выполнено и второе условие. Значит, данный ряд сходится. Составим ряд из абсолютных величин,

$$\frac{2}{3} + \frac{3}{7} + \frac{4}{13} + \frac{5}{21} + \dots + \frac{n+1}{n^2 + n + 1} + \dots$$

Применим интегральный признак: $u_n = \frac{n+1}{n^2+n+1}$; следовательно,

$$f(x) = \frac{x+1}{x^2+x+1}$$
. Вычислим несобственный интеграл:

$$\int_{1}^{\infty} \frac{x+1}{x^{2}+x+1} dx = \int_{1}^{\infty} \frac{x+1/2}{x+1/2} \frac{dx}{x^{2}+3/4} + \frac{1}{2} \int_{1}^{\infty} \frac{dx}{x+1/2^{2}+3/4} = \frac{1}{2} \ln |x^{2}+x+1| \left| \int_{1}^{\infty} + \frac{1}{\sqrt{3}} \arctan \left(\frac{2x+1}{\sqrt{3}} \right) \right|_{1}^{\infty} = \infty.$$

Интеграл расходится, поэтому расходится и ряд, составленный из абсолютных величин. Следовательно, исходный знакопеременный ряд сходится условно.

Ответ: сходится условно.

Пример 2.6. Исследовать сходимость ряда
$$\sum_{n=1}^{\infty} -1^{n+1} \frac{1}{2n+1^n}$$
.

Решение. Ряд знакочередующийся, применим признак Лейбница:

$$\frac{1}{3} > \frac{1}{5^{2}} > \frac{1}{7^{2}} > \dots > \frac{1}{2n+1}^{n} > \dots;$$

$$\lim_{n \to \infty} u_{n} = \lim_{n \to \infty} \frac{1}{2n+1}^{n} = 0.$$

Так как оба условия признака Лейбница выполняются, ряд сходится. Составляем ряд из абсолютных величин членов данного ряда:

$$\sum_{n=1}^{\infty} \frac{1}{2n+1}^{n}.$$

Ряд знакоположительный, применим признак Коши:

$$\lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{2n+1}} = \lim_{n \to \infty} \frac{1}{2n+1} = 0.$$

Ряд сходится. Значит, данный ряд сходится абсолютно.

Ответ: сходится абсолютно.

Пример 2.7. Исследовать сходимость ряда

$$\frac{1}{2} - \frac{8}{4} + \dots + -1 \frac{n^3}{2^n} + \dots$$

Решение. Составим ряд из абсолютных величин: $\sum_{n=1}^{\infty} \frac{n^3}{2^n}$. Приме-

ним признак Даламбера; имеем $u_n = \frac{n^3}{2^n}$, $u_{n+1} = \frac{n+1}{2^{n+1}}$.

$$D = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{n+1^{-3} 2^n}{2^{n+1} n^3} = \lim_{n \to \infty} \frac{1+1/n^{-3}}{2} = \frac{1}{2}.$$

Так как D < 1, то ряд сходится. Значит, и данный ряд сходится, причем абсолютно.

Ответ: сходится абсолютно.

Пример 2.8. Исследовать сходимость ряда

$$\frac{1}{10} + \frac{7}{10^2} - \frac{13}{10^3} + \frac{19}{10^4} + \frac{25}{10^5} - \frac{31}{10^6} + \dots$$

Решение. Составим ряд из абсолютных величин: $\sum_{n=1}^{\infty} \frac{6n-5}{10^n}$.

Применим признак Даламбера: $u_n = \frac{6n-5}{10^n}$, $u_{n+1} = \frac{6n+1-5}{10^{n+1}}$, $\frac{u_{n+1}}{u_n} = \frac{6n+1}{106n-5}$. Значит, $D = \lim_{n \to \infty} \frac{u_{n+1}}{u} = \lim_{n \to \infty} \frac{6n+1}{106n-5} = \frac{1}{10}$.

Так как D < 1, то ряд сходится. Следовательно, исходный ряд сходится абсолютно.

Ответ: сходится абсолютно.

Задания для самостоятельного решения по теме «Знакочередующиеся числовые ряды. Признак Лейбница. Знакопеременные ряды. Абсолютная и условная сходимость» Группа А

Исследовать сходимость знакопеременных рядов и установить характер сходимости (абсолютная, условная).

1.A.
$$3\frac{1}{2} + 3\frac{1}{4} - 3\frac{1}{8} - 3\frac{1}{16} + 3\frac{1}{32} + 3\frac{1}{64} - 3\frac{1}{128} - 3\frac{1}{256} + \dots$$

Ответ: расходится.

2.A.
$$1 - \frac{1}{3} + \dots + -1^{n+1} \frac{1}{2n-1} + \dots$$

Ответ: сходится условно.

3.A.
$$1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + -1 \xrightarrow{n-1} \frac{1}{3^{n-1}} + \dots$$

Ответ: сходится абсолютно.

4.A.
$$\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} + \frac{5}{6} - \frac{6}{7} + \dots$$

Ответ: расходится.

5.A.
$$1 - \frac{1}{2^4} - \frac{1}{3^4} + \frac{1}{4^4} - \frac{1}{5^4} - \frac{1}{6^4} + \dots$$

Ответ: сходится абсолютно.

6.A.
$$1-2+3-4+...+ -1^{n-1}n+...$$

Ответ: расходится.

7.A.
$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots + \frac{-1}{n^2}^{n-1} + \dots$$

Ответ: сходится абсолютно.

8.A.
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + -1 + \frac{1}{n} + \dots$$

Ответ: сходится условно.

9.A.
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots + \frac{-1}{\sqrt{n+1}} + \dots$$

Ответ: сходится условно.

Задания для самостоятельного решения по теме «Знакочередующиеся числовые ряды. Признак Лейбница. Знакопеременные ряды. Абсолютная и условная сходимость» Группа В

Исследовать сходимость знакопеременных рядов и установить характер сходимости (абсолютная, условная).

1.B.
$$3\frac{1}{2} + 3\frac{1}{4} - 3\frac{1}{8} - 3\frac{1}{16} + 3\frac{1}{32} + 3\frac{1}{64} - 3\frac{1}{128} - 3\frac{1}{256} + \dots$$

Ответ: расходится.

2.B.
$$\frac{2}{2^3+1} - \frac{3}{3^3+2} + \frac{4}{4^3+3} - \dots + -1 \frac{n+1}{n+1} \frac{n+1}{n+1} + \dots$$

Ответ: сходится абсолютно.

3.B.
$$\frac{1}{\ln 2} - \frac{1}{\ln 3} + \frac{1}{\ln 4} - \frac{1}{\ln 5} + \dots + \frac{-1}{\ln (n+1)} + \dots$$

Ответ: сходится условно.

4.B.
$$1 - \frac{2}{1!} + \frac{2^2}{2!} - \frac{2^3}{3!} + \dots + -1 \xrightarrow{n-1} \frac{2^{n-1}}{n-1!} + \dots$$

Ответ: сходится абсолютно.

5.B.
$$1 - \frac{1}{3^3} + \dots + -1^{n+1} \frac{1}{2n-1^3} + \dots$$

Ответ: сходится абсолютно.

6.B.
$$2 - \frac{2^4}{2!} + \frac{2^9}{3!} - \frac{2^{16}}{4!} + \dots + -1 + \frac{2^{n^2}}{n!} + \dots$$

Ответ: расходится.

7.B.
$$\frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2^2} + \dots + -1 \cdot \frac{1}{n} \cdot \frac{1}{2^n} + \dots$$

Ответ: сходится абсолютно.

8.B.
$$-1 + \frac{1}{\sqrt{2}} - \dots + -1^n \frac{1}{\sqrt{n}} + \dots$$

Ответ: сходится условно.

3. ФУНКЦИОНАЛЬНЫЕ РЯДЫ. СТЕПЕННЫЕ РЯДЫ. ОБЛАСТЬ СХОДИМОСТИ И РАДИУС СХОДИМОСТИ

3.1. Функциональные ряды

Ряд

$$u_1 + u_2 + ... + u_n + ...$$

называется *функциональным*, если его члены являются функциями от x, т.е. $u_n = u_n$ x n = 1, 2, ...

Рассмотрим функциональный ряд

$$u_1 x + u_2 x + u_3 x + \dots + u_n x + \dots$$
 (3.1)

Давая x определенные числовые значения, получаем различные числовые ряды, которые могут оказаться сходящимися или расходящимися.

Совокупность тех значений x, при которых функциональный ряд сходится, называют *областью сходимости* этого ряда.

Теорема (признак Вейерштрасса). Пусть функциональный ряд (3.1) сходится в области D_1 и пусть существует сходящийся знако-

положительный числовой ряд $\sum_{n=1}^{\infty} a_n$ такой, что для всех $x \in D_1$ и для

 $n > N_0$, $n \in N$ члены ряда (3.1) удовлетворяют условию

$$|u_n \ x| \leq a_n$$
.

Тогда ряд (3.1) сходится абсолютно и равномерно в области $D_{\rm i}$.

Ряд
$$\sum_{n=1}^{\infty} a_n$$
 называется **мажорирующим** для ряда (3.1).

Для определения области абсолютной сходимости функционального ряда (3.1) следует воспользоваться либо признаком Даламбера, либо признаком Коши. Именно, если

$$\lim_{n \to \infty} \left| \frac{u_{n+1} \ x}{u_n \ x} \right| = l \ x$$

или

$$\lim_{n\to\infty}\sqrt{|u_n\ x|}=l\ x\ ,$$

то для определения области абсолютной сходимости ряда (3.1) следует решить функциональное неравенство $l \ x < 1$, а для определе-

ния области расходимости — функциональное неравенство $l \ x > 1$. При этом для изучения поведения ряда в граничных точках получаемой области, т.е. в точках, описываемых уравнением $l \ x = 1$, требуется дополнительное исследование.

3.2. Степенные ряды. Интервал сходимости

Степенным рядом называется функциональный ряд

$$a_0 + a_1 x - x_0 + a_2 x - x_0^2 + \dots + a_n x - x_0^n + \dots$$
 (3.2)

или ряд частного вида

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots,$$
 (3.3)

получающийся из (3.2) при $x_0 = 0$, где a_0 , a_1 , a_2 , ..., a_n , ... – постоянные числа, называемые **коэффициентами ряда.**

Областью сходимости степенного ряда всегда является некоторый интервал.

Теорема Абеля). 1. Если степенной ряд сходится при некотором значении x_0 , не равном нулю, то он абсолютно сходится при всяком значении x, для которого $|x| < |x_0|$;

2. Если ряд расходится при некотором значении x'_0 , то он расходится при всяком x, для которого $|x| > |x'_0|$.

T e o p e м a 2. Областью абсолютной сходимости степенного ряда является интервал с центром в начале координат.

Интервалом сходимости степенного ряда называется такой

Рис. 1

интервал -R; R, что $\forall x \in -R$, R ряд сходится и притом абсолютно, а для $x \notin -R$, R ряд расходится (см. рис. 1). Число R называют *радиусом сходимости*

степенного ряда.

На концах интервала (т.е. при x = R и x = -R) вопрос о сходимости или расходимости данного ряда решается индивидуально для каждого конкретного ряда.

Для определения радиуса сходимости степенного ряда (3.3) рассмотрим ряд, составленный из абсолютных величин его членов:

$$|a_0| + |a_1||x| + |a_2||x|^2 + \dots + |a_n||x|^n + \dots$$
 (3.4)

Для определения области сходимости ряда (3.4) можно воспользоваться признаком Даламбера

$$\lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| = \lim_{n \to \infty} |x| \left| \frac{a_{n+1}}{a_n} \right| < 1$$

или признаком Коши

$$\lim_{n\to\infty} \sqrt[n]{|a_n x^n|} = \lim_{n\to\infty} |x| \sqrt[n]{|a_n|} < 1.$$

Для вычисления радиуса сходимости имеем соотношения:

$$R = \frac{1}{\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|}$$
 (3.5)

или

$$R = \frac{1}{\lim_{n \to \infty} \left| \sqrt[n]{a_n} \right|}.$$
 (3.6)

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 3.1. Найти область сходимости функционального ряда $\sum_{n=1}^{\infty} \frac{1}{n9^n - r - 1^{-2n}}.$

Решение. Для определения области сходимости воспользуемся радикальным признаком Коши

$$\lim_{n\to\infty} \sqrt[n]{|u_n|} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{n9^n \ x-1^{2n}}} = \frac{1}{9 \ x-1^2} < 1.$$

Решим неравенство:

$$|x-1|^2 > \frac{1}{9} \Rightarrow |x-1| > \frac{1}{3} \Rightarrow \begin{cases} x-1 > \frac{1}{3}; \\ x-1 < -\frac{1}{3}; \end{cases} \Rightarrow \begin{cases} x > \frac{4}{3}; \\ x < \frac{2}{3}. \end{cases}$$

Исследуем сходимость ряда на границах области сходимости, а именно в точках $x=\frac{4}{3}$ и $x=\frac{2}{3}$.

Подставив $x = \frac{4}{3}$ в исходный ряд, получим $\sum_{n=1}^{\infty} \frac{1}{n}$. Этот ряд является расходящимся гармоническим. Следовательно, точка $x = \frac{4}{3}$ не входит в область сходимости ряда $\sum_{n=1}^{\infty} \frac{1}{n9^n \ x-1}^{2n}$.

Аналогично при $x=\frac{2}{3}$, получим $\sum_{n=1}^{\infty}\frac{-1}{n}^n$. Этот сходится согласно признаку Лейбница, так как

$$\lim_{n\to\infty} |a_n| = \lim_{n\to\infty} \frac{1}{n} = 0.$$

Следовательно, точку $x = \frac{2}{3}$ включаем в область сходимости исходного ряда.

Ombem:
$$x \in \left(-\infty; \frac{2}{3}\right] \cup \left(\frac{4}{3}; +\infty\right)$$
.

Пример 3.2. Найти область сходимости функционального ряда $\sum_{n=1}^{\infty} \left(\frac{5}{3}\right)^n \frac{1}{\sqrt{n}} x^{2n} \cos x - \pi n .$

Pешение. Преобразуем исходный ряд, воспользовавшись формулами приведения:

$$\sum_{n=1}^{\infty} \left(\frac{5}{3}\right)^n \frac{1}{\sqrt{n}} x^{2n} \cos x - \pi n = \sum_{n=1}^{\infty} \left(\frac{5}{3}\right)^n \frac{-1}{\sqrt{n}} x^{2n} \cos x.$$

Применим признак Даламбера

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{3}\right)^{n+1} \frac{1}{\sqrt{n+1}} x^{2n+2} \cos x}{\left(\frac{5}{3}\right)^n \frac{-1}{\sqrt{n}} x^{2n} \cos x} \right| = \frac{5}{3} x^2 < 1$$

и решим неравенство

$$x^2 < \frac{3}{5} \Longrightarrow -\sqrt{\frac{3}{5}} < x < \sqrt{\frac{3}{5}}.$$

Исследуем сходимость на концах интервала:

при $x=\pm\sqrt{\frac{3}{5}}:\sum_{n=1}^{\infty}\frac{-1}{\sqrt{n}}^{n}\cos\sqrt{\frac{3}{5}}$ — ряд сходится (условно) согласно признаку Лейбница, так как

$$\lim_{n\to\infty} |a_n| = \lim_{n\to\infty} \frac{1}{\sqrt{n}} \cos\sqrt{\frac{3}{5}} = 0.$$

Область сходимости $x \in \left[-\sqrt{\frac{3}{5}}; \sqrt{\frac{3}{5}} \right]$.

Ombem:
$$x \in \left[-\sqrt{\frac{3}{5}}; \sqrt{\frac{3}{5}} \right]$$
.

Пример 3.3. Найти область сходимости функционального ряда $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2} + \sqrt{n} + 1}.$

Peшение. Так как члены ряда $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}} 2x+1}$ удовлетворяют усло-

вию
$$\left| \frac{1}{\sqrt[3]{n^2} + \sqrt{n} + 1} \right| < \left| \frac{1}{\sqrt[3]{n^2}} \right|$$
, то для определения области

сходимости воспользуемся вторым признаком сравнения:

$$\lim_{n \to \infty} \frac{\frac{1}{\sqrt[3]{n^2 + \sqrt{n} + 1}}}{\frac{1}{\sqrt[3]{n^2}} = \lim_{n \to \infty} \frac{\sqrt[3]{n^2}}{\sqrt[3]{n^2 + \sqrt{n} + 1}} = \lim_{n \to \infty} \frac{1}{\sqrt[3]{n^2 +$$

$$= \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{\sqrt[6]{n}} + \frac{1}{\sqrt[3]{n^2}}\right)^{2x+1}} = 1.$$

Так как обобщенный гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ сходится при

$$\alpha > 1$$
, то ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}} \sum_{n=1}^{\infty} \frac{1}{n^{\frac{2}{3}} 2^{x+1}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{4}{3}x + \frac{2}{3}}}$ будет сходиться при

$$\frac{4}{3}x + \frac{2}{3} > 1$$
, откуда $x > \frac{1}{4}$.

Область сходимости
$$x \in \left(\frac{1}{4}; +\infty\right)$$
.

Omeem:
$$x \in \left(\frac{1}{4}; +\infty\right)$$
.

Пример 3.4. Найти область сходимости функционального ряда $\sum_{n=1}^{\infty} \frac{1}{n \ n+x}$.

Решение. Воспользуемся интегральным признаком, вычислив

$$\int_{1}^{\infty} \frac{dy}{y + x}.$$

Для нахождения первообразной разложим подынтегральную функцию на простейшие дроби:

$$\frac{1}{y + x} = \frac{A}{y} + \frac{B}{y + x};$$

$$1 = A y + x + By;$$

при
$$y = -x$$
: $1 = -Bx \Rightarrow B = -\frac{1}{x}$;

при
$$y=0$$
: $1=Ax \Rightarrow A=\frac{1}{x}$.

Определим, при каких значениях x сходится несобственный интеграл:

$$\int_{1}^{\infty} \frac{dy}{y + x} = \lim_{b \to \infty} \int_{1}^{b} \left(\frac{1}{x} \frac{1}{y} - \frac{1}{x} \frac{1}{y + x} \right) dy = \lim_{k \to \infty} \int_{1}^{b} \left(\frac{1}{y} - \frac{1}{y + x} \right) dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}{y + x} \right| dy = \lim_{k \to \infty} \left| \frac{1}{y} - \frac{1}$$

Полученное выражение справедливо для $\forall x \neq 0$.

В случае x = 0 несобственный интеграл принимает следующий вид:

$$\int_{1}^{\infty} \frac{dy}{y^2} \, .$$

Вычислим его:

$$\int_{1}^{\infty} \frac{dy}{y^{2}} = \lim_{b \to \infty} \int_{1}^{b} \frac{dy}{y^{2}} = \lim_{b \to \infty} \left(-\frac{1}{y} \right) = \lim_{b \to \infty} \left(-\frac{1}{b} + 1 \right) = 1.$$

Следовательно, исходный несобственный интеграл сходится при любых значениях x. Значит, интервал сходимости $x \in -\infty; +\infty$.

Omsem: $x \in -\infty; +\infty$.

Пример 3.5. Найти радиус и интервал сходимости степенного ряда $\sum_{n=0}^{\infty} \frac{n+3}{n^2+1} x+2^n$.

Решение. Радиус сходимости найдем по формуле (3.5):

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{n+3 + n+1^2 + 1}{n+4 + n^2 + 1} = 1.$$

Интервал сходимости данного ряда определяется неравенством |x+2| < 1 или -3 < x < -1.

Исследуем концы интервала сходимости.

При x = -1 получаем числовой ряд

$$\sum_{n=0}^{\infty} \frac{n+3}{n^2+1} -1 + 2^{-n} = \sum_{n=0}^{\infty} \frac{n+3}{n^2+1},$$

расходимость которого можно установить с помощью предельного признака сравнения (при сравнении с гармоническим рядом $\sum_{n=0}^{\infty} \frac{1}{n}$).

При x = -3 получаем числовой знакочередующийся ряд

$$\sum_{n=0}^{\infty} \frac{n+3}{n^2+1} -3 + 2^n = \sum_{n=0}^{\infty} -1^n \frac{n+3}{n^2+1},$$

который сходится по признаку Лейбница, но ряд, составленный из абсолютных членов данного ряда, то есть ряд $\sum_{n=0}^{\infty} \frac{n+3}{n^2+1}$, расходится, поэтому исследуемый ряд сходится условно.

Таким образом, интервал сходимости исследуемого степенного ряда имеет вид $-3 \le x < 1$.

Omeem: $R = 1, x \in -3:1$.

Пример 3.6. Найти радиус и интервал сходимости степенного ряда $\sum_{n=0}^{\infty} \frac{x-2^{-n}}{3^n}$.

Решение. Радиус сходимости найдем по формуле (3.6):

$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}} = \lim_{n \to \infty} \sqrt[n]{3^n} = 3.$$

Интервал сходимости данного ряда определяется неравенством |x-2| < 3 или -1 < x < 5 .

Исследуем концы интервала сходимости. При x=-1 получаем числовой знакочередующийся ряд

$$\sum_{n=0}^{\infty} \frac{-1-2^{n}}{3^{n}} = \sum_{n=0}^{\infty} -1^{n},$$

который расходится по признаку Лейбница.

При x = 5 получаем числовой ряд

$$\sum_{n=0}^{\infty} \frac{5-2^{n}}{3^{n}} = \sum_{n=0}^{\infty} 1^{n},$$

который также является расходящимся.

Таким образом, интервал сходимости исследуемого степенного ряда имеет вид -1 < x < 5.

Ответ: $R = 3, x \in -1;5$.

Пример 3.7. Вычислить
$$I = \int_{-0.6}^{0} \frac{dx}{\sqrt[3]{1+x^2}}$$
 с точностью до 0,001.

Решение. Разложим подинтегральную функцию в биномиальный ряд по степеням x:

$$1+x^2 \frac{-\frac{1}{3}}{} = 1 - \frac{1}{3}x^2 + \frac{1 \cdot 4}{3 \cdot 6}x^4 - \frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9}x^6 + \dots,$$

который сходится при |x|<1. Так как отрезок интегрирования -0.6;0 находится внутри интервала сходимости биномиального ряда, то ряд можно почленно интегрировать. Подставляя в интеграл вышеприведенное разложение подынтегральной функции и почленно интегрируя в указанных пределах, получаем

$$I = \int_{-0.6}^{0} \frac{dx}{\sqrt[3]{1+x^2}} = \int_{-0.6}^{0} \left(1 - \frac{1}{3}x^2 + \frac{2}{9}x^4 - \frac{14}{81}x^6 + \dots\right) dx =$$

$$= \left(x - \frac{1}{3 \cdot 3}x^3 + \frac{2}{9 \cdot 5}x^5 - \frac{14}{81 \cdot 7}x^7 + \dots\right) \Big|_{-0.6}^{0} =$$

$$= -\left(-0.6 + \frac{0.6}{9} - \frac{2 \cdot 0.6}{45} + \frac{14 \cdot 0.6}{567} - \dots\right).$$

Четвертый член $\frac{14\cdot 0.6^{-7}}{567}\approx 0.0007$ меньше 0.001. Поэтому для вычисления приближенного значения интеграла с требуемой точно-

стью достаточно ограничиться первыми тремя членами ряда:

$$I = 0.6 - \frac{0.6^{3}}{9} + \frac{2 \cdot 0.6^{3}}{45} \approx 0.579.$$

Ответ: $I \approx 0,579$.

Задания для самостоятельного решения по теме «Функциональные ряды. Степенные ряды. Область сходимости и радиус сходимости» Группа А

Найти области сходимости рядов.

1*A*.
$$\sum_{n=1}^{\infty} \frac{1}{n^x}$$
.

Ответ: $x \in 1; +\infty$.

$$2A. \sum_{n=1}^{\infty} x^n.$$

Ответ: x∈ -1;1 .

$$3A. \sum_{n=1}^{\infty} \ln^n x.$$

Ombem: $x \in \left(\frac{1}{e}; e\right)$.

4A.
$$\sum_{n=1}^{\infty} \left(\frac{x-1}{3} \right)^n \cdot \frac{1}{\sqrt[3]{n}}.$$

Ответ: x ∈ -2;4 .

$$5A. \sum_{n=1}^{\infty} \frac{x^n}{n!}.$$

Omeem: $x \in -\infty; +\infty$.

6A.
$$\sum_{n=1}^{\infty} \frac{1}{1+x^n}$$
.

Ombem: $x \in -\infty; 1 \cup 1; +\infty$.

Определить радиус и интервал сходимости рядов. Исследовать сходимость в граничных точках интервала сходимости.

7A.
$$\sum_{n=1}^{\infty} \frac{n^2+3}{3^n} x+3^n$$
.

Ответ: R = 3, x ∈ -6;0 .

8*A*.
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
.

Ответ: R = 1, $x \in -1$;1.

9A.
$$\sum_{n=2}^{\infty} \frac{x+4^n}{\sqrt[3]{n^4-2}}.$$

Ответ: R = 1, $x \in -5$;3.

Задания для самостоятельного решения по теме «Функциональные ряды. Степенные ряды. Область сходимости и радиус сходимости» Группа В

Найти области сходимости рядов.

1B.
$$\sum_{n=1}^{\infty} x^{3n} \operatorname{tg} \frac{2x}{3n}$$
.

Ответ: x∈ -1;1 .

2B.
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n n^2 + 1} 25x^2 + 1^n.$$

Ombem: $x \in \left(-\frac{1}{5}; \frac{1}{5}\right)$.

3B.
$$\sum_{n=1}^{\infty} \frac{-1^{n+1}}{n^{\ln|x|}}$$
.

Omsem: $x \in -\infty; -1 \cup 1; +\infty$.

$$4B. \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}.$$

Ответ: $x \in -\infty; +\infty$.

5B.
$$\sum_{n=1}^{\infty} x^{n-2}$$
.

Ответ: x ∈ -1;0 .

Определить радиус и интервал сходимости рядов. Исследовать сходимость в граничных точках интервала сходимости.

6B.
$$\sum_{n=1}^{\infty} \frac{n^2 + 6}{6^n} x + 6^n.$$

Omsem: $R = 6, x \in -12;0$.

7B.
$$\sum_{n=1}^{\infty} nx^{n}$$
.

Omeem: R = 0, x = 0.

8B.
$$\sum_{n=2}^{\infty} n-1 \ 3^{n-1} x^{n-1}$$
.

Omsem:
$$R = \frac{1}{3}$$
, $x \in \left(-\frac{1}{3}; \frac{1}{3}\right)$.

Вычислить приближенно определенный интеграл, используя разложение подынтегральной функции в степенной ряд (разложение указано в скобках) и почленное интегрирование полученного ряда. Результат должен быть получен с точностью до 0,001.

9B.
$$\int_{-0.4}^{0} \sin \frac{5x^2}{2} dx \left(\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \right).$$

Ответ: 0,0533.

10B.
$$\int_{-\frac{1}{3}}^{0} \frac{1 - \cos 3x}{x^2} dx \left(\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \right).$$

Ответ: 0,9583.

11B.
$$\int_{-0.2}^{0} e^{-5x^2} dx \left(e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots \right).$$

Ответ: 0,1866.

4. РЯДЫ ФУРЬЕ

4.1. Определение ряда Фурье

Рядом Фурье периодической функции f x с периодом 2π , определенной и интегрируемой на отрезке $-\pi,\pi$, называется ряд

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx , \qquad (4.1)$$

коэффициенты которого определяются формулами:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f x \, dx, \ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f x \cos nx \, dx, \ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f x \sin nx \, dx.$$

Если ряд (4.1) сходится, то его сумма S x есть периодическая функция с периодом 2π , т.е. S $x+2\pi$ = S x .

Теорема Дирихле. Пусть функция f x на сегменте $-\pi,\pi$ имеет конечное число экстремумов и является непрерывной за исключением конечного числа точек разрыва I рода. Тогда ряд Фурье этой функции сходится в каждой точке сегмента $-\pi,\pi$ и сумма S x этого ряда:

- 1) $S \ x = f \ x$ во всех точках непрерывности функции $f \ x$, лежащих внутри сегмента $-\pi,\pi$;
- 2) $S \ x_0 = \frac{1}{2} \Big[f \ x_{0-0} + f \ x_{0+0} \Big]$, где x_0 точка разрыва I рода функции $f \ x$;

3) $S \ x = \frac{1}{2} \Big[f \ -\pi + 0 \ + f \ \pi - 0 \ \Big]$ на концах промежутка, т.е. при $x = \pm \pi$.

Если выполняются условия теоремы Дирихле, то ряд (4.1) является рядом Фурье функции f(x) и пишут

$$f x = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx . {(4.2)}$$

Если f x=f -x , т.е. f x - функция четная, то $b_{\scriptscriptstyle n}=0$ и

$$f x = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$
.

Если f(x) = -f(x), т.е. $f(x) - \phi$ ункция нечетная, то $a_n = 0$ и

$$f x = \sum_{n=1}^{\infty} b_n \sin nx.$$

4.2. Ряд Фурье с периодом 21

T е о р е м а*. Если функция f x u её производная f' x — непрерывные функции на отрезке -l,l (l — произвольное положительное число) или же имеют на нём конечное число точек разрыва I рода, то во всех точках $x \in -l,l$, в которых f x непрерывна, сумма ряда равна f x u справедливо разложение

$$f \quad x = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right), \tag{4.3}$$

где

$$a_0 = \frac{1}{l} \int_{-l}^{l} f x \, dx,$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f x \cos \frac{n\pi x}{l} dx, \, b_n = \frac{1}{l} \int_{-l}^{l} f x \sin \frac{n\pi x}{l} dx,$$

a в каждой точке x_0 разрыва функции сумма ряда равна $\dfrac{f \ x_{0-0} + f \ x_{0+0}}{2}$ и на концах отрезка сумма ряда равна $\dfrac{f - l + f \ l}{2}$.

Функция, заданная на полупериоде 0,l, может быть представлена различными рядами Фурье. При четном продолжении данной функции на второй полупериод -l, 0 получается ряд по косинусам:

$$f x = \frac{a_0}{2} \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l},$$

$$b_n = 0; a_n = \frac{2}{l} \int_0^l f x \cos \frac{n\pi x}{l} dx, \quad n = 0, 1, 2, ...;$$
(4.4)

при нечетном продолжении – ряд по синусам:

$$f x = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l};$$

$$a_n = 0; b_n = \frac{2}{l} \int_{0}^{l} f x \sin \frac{n\pi x}{l} dx, n = 1, 2, 3,$$

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 4.1. Разложить в ряд Фурье функцию

$$f \ x = \begin{cases} 1, & \text{если} - \pi \le x < 0, \\ -1, & \text{если} \ 0 \le x \le \pi. \end{cases}$$

Решение. Имеем:

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f x dx = \frac{1}{\pi} \int_{-\pi}^{0} 1 \cdot dx + \frac{1}{\pi} \int_{0}^{\pi} -1 \cdot dx = \frac{1}{\pi} x \Big|_{-\pi}^{0} - \frac{1}{\pi} x \Big|_{0}^{\pi} =$$

$$= \frac{1}{\pi} \Big[0 - -\pi \Big] - \frac{1}{\pi} \pi - 0 = 1 - 1 = 0 ;$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f x \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{0} \cos nx dx - \frac{1}{\pi} \int_{0}^{\pi} \cos nx dx =$$

$$= \frac{1}{\pi} \frac{\sin nx}{n} \Big|_{0}^{0} - \frac{1}{\pi} \frac{\sin nx}{n} \Big|_{0}^{\pi} = 0 ;$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f x \sin nx dx = \frac{1}{\pi} \int_{-\pi}^{0} \sin nx dx - \frac{1}{\pi} \int_{0}^{\pi} \sin nx dx =$$

$$= -\frac{1}{\pi} \frac{\cos nx}{n} \Big|_{-\pi}^{0} + \frac{1}{\pi} \frac{\cos nx}{n} \Big|_{0}^{\pi} =$$

$$= -\frac{1}{\pi n} \cos 0 - \cos n\pi + \frac{1}{\pi n} \cos n\pi - \cos 0 = \frac{2}{\pi n} \left[-1^{n} - 1 \right].$$

При четных n выражение в квадратной скобке равно нулю, а при нечетных n оно равно -2. Поэтому $b_n=-\frac{4}{\pi n}$ n=1,3,5,... . Таким образом, $a_0=0$, $a_n=0$, $b_{2n}=0$, $b_{2n-1}=-\frac{4}{\pi (2n-1)}$. На основании формулы (4.2) имеем

$$f(x) = -\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2n-1) x}{2n-1}.$$

В развернутом виде этот ряд запишется так:

$$f x = -\frac{4}{\pi} \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right).$$

Точкой разрыва является точка x=0. На основании теоремы * в ней сумма ряда равна $\frac{f}{2} \frac{x_{0-0}}{2} + \frac{f}{2} \frac{x_{0+0}}{2} = \frac{f}{2} \frac{0}{2} + \frac{f}{2} \frac{0}{2} = \frac{1+-1}{2} = 0$ и на концах отрезка сумма ряда равна $\frac{f}{2} - \frac{\pi}{2} + \frac{f}{2} = \frac{1+-1}{2} = 0$, т.е. сумма ряда не совпадает со значениями функции f x. Следовательно, кроме точки x=0 полученный ряд сходится к функции f x во всех точках $x \in -\pi, \pi$, в которых f x непрерывна.

Примечание. Функция нечетная, поэтому все её коэффициенты $a_n = 0$ и их можно было не вычислять.

Omeem:
$$f(x) = -\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin nx}{n}$$
.

Пример 4.2. Разложить функцию f(x) = |x-1|, $0 \le x \le 3$, в ряд Фурье по косинусам.

Решение. Данная функция определена на полупериоде 0,3, т.е.

l=3. Построим график функции f(x)=|x-1| на этом интервале. При переходе через точку x=1 функция меняет знак, поэтому получим:

$$f x = |x-1| = \begin{cases} x-1, \text{ при } x \ge 1, \\ -x+1, \text{ при } x < 1. \end{cases}$$

Для разложения такой функ-

ции в ряд Фурье по косинусам её следует продолжить на второй полупериод -3,0 четным образом (симметрично относительно оси O_{y} , см. рис. 2).

Для чётной функции коэффициенты $b_n = 0$, а коэффициенты a_n вычисляются по формулам (4.1):

$$a_n = \frac{2}{l} \int_0^l f x \cos \frac{n\pi x}{l} dx = \frac{2}{3} \int_0^3 |x - 1| \cos \frac{n\pi x}{3} dx.$$

Так как функция f(x)=|x-1| меняет свой знак при переходе через точку x=1, то отрезок интегрирования разобьем на два отрез-ка: от 0 до 1, где f(x)=-x+1 и от 1 до 3, где f(x)=x-1. Тогда

$$a_n = \frac{2}{3} \left(\int_0^1 1 - x \cos \frac{n\pi x}{3} dx + \int_1^3 x - 1 \cos \frac{n\pi x}{3} dx \right). \tag{4.5}$$

При n = 0 имеем

$$a_n = \frac{2}{3} \left(\int_0^1 1 - x \, dx + \int_1^3 x - 1 \, dx \right) = \frac{2}{3} \left(-\frac{1 - x^2}{2} \Big|_0^1 + \frac{x - 1^2}{2} \Big|_1^3 \right) =$$

$$= \frac{2}{3} \left(\frac{1}{2} + 2 \right) = \frac{2}{3} \cdot \frac{5}{2} = \frac{5}{3}.$$

Для вычисления коэффициентов a_n n=1,2,... применим метод интегрирования по частям, причем в первом интеграле (4.5) имеем: u=1-x, $dv=\cos\frac{n\pi x}{3}dx$, откуда du=-dx, $v=\frac{3}{n\pi}\sin\frac{n\pi x}{3}$. Во вто-

ром интеграле (4.5) положим u = x - 1, $dv = \cos \frac{n\pi x}{3} dx$, откуда du = dx, $v = \frac{3}{n\pi} \sin \frac{n\pi x}{3}$. Тогда $a_n = \frac{2}{3} \left(\frac{3}{n\pi} 1 - x \sin \frac{n\pi x}{3} \right)_0^1 + \frac{3}{n\pi} \int_0^1 \sin \frac{n\pi x}{3} dx + \frac{2}{3} \left(\frac{3}{n\pi} x - 1 \sin \frac{n\pi x}{3} \right)_1^3 - \frac{3}{n\pi} \int_1^3 \sin \frac{n\pi x}{3} dx = \frac{2}{3} \left(-\frac{9}{n^2 \pi^2} \cos \frac{n\pi x}{3} \right)_0^1 + \frac{2}{3} \left(\frac{9}{n^2 \pi^2} \cos \frac{n\pi x}{3} \right)_1^3 = \frac{2}{3} \frac{9}{n^2 \pi^2} \left(-\cos \frac{n\pi}{3} + 1 + \cos n\pi - \cos \frac{n\pi}{3} \right) = \frac{6}{n^2 \pi^2} \left(\cos n\pi + 1 - 2\cos \frac{n\pi}{3} \right) = \frac{6}{n^2 \pi^2} \left(-1^n + 1 - 2\cos \frac{n\pi}{3} \right),$

так как $\cos n\pi = -1^n$.

Следовательно, искомое разложение функции в ряд Фурье по косинусам имеет вид

$$f x = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{3} =$$

$$= \frac{5}{6} + \sum_{n=1}^{\infty} \frac{6}{n^2 \pi^2} \left(-1^n + 1 - 2\cos \frac{n\pi}{3} \right) \cos \frac{n\pi x}{3}.$$

Это разложение справедливо в области непрерывности данной функции.

Omeem:
$$f(x) = \frac{5}{6} + \sum_{n=1}^{\infty} \frac{6}{n^2 \pi^2} \left(-1^n + 1 - 2\cos\frac{n\pi}{3} \right) \cos\frac{n\pi x}{3}$$
.

Задания для самостоятельного решения по теме «Ряды Фурье» Группа А

На отрезке $[-\pi;\pi]$ разложить в ряд Фурье функции.

1*A***.**
$$f x = x$$
.

Omeem:
$$2\sum_{n=1}^{\infty} -1^{n+1} \frac{\sin nx}{n}$$
.

2*A***.**
$$f x = x^2$$
.

Omsem:
$$\frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} -1^{-n} \frac{\cos nx}{n^2}$$
.

На отрезке [-l;l] разложить в ряд Фурье функции.

3*A***.**
$$f x = x$$
.

Omsem:
$$\frac{2l}{\pi}\sum_{n=1}^{\infty}\frac{-1}{n}^{n+1}\sin\frac{n\pi x}{l}.$$

4*A***.**
$$f(x) = |x|$$
.

Omsem:
$$\frac{l}{2} - \frac{4l}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{2n-1} \cos \frac{2n-1}{l} \pi x$$
.

Задания для самостоятельного решения по теме «Ряды Фурье» Группа В

На отрезке $[-\pi;\pi]$ разложить в ряд Фурье функции.

1*B***.**
$$f(x) = x + \pi$$
 .

Omsem:
$$\pi + 2\sum_{n=1}^{\infty} -1^{n+1} \frac{\sin nx}{n}$$
.

2B.
$$f x = e^x$$
.

Omsem:
$$\frac{2}{\pi} \sin \pi \left[\frac{1}{2} + \sum_{n=1}^{\infty} \frac{-1^{n}}{n^{2} + 1} \cos nx - n \sin nx \right].$$

3В. На отрезке [-l;l] разложить в ряд Фурье функцию:

$$f \quad x = \begin{cases} 0, -l \le x \le 0, \\ x, \ 0 < x \le l. \end{cases}$$

$$Omsem: \frac{l}{4} - \frac{2l}{\pi} \sum_{n=1}^{\infty} \left[\frac{1}{\pi (2n-1)^2} \cos \frac{2n-1}{l} \frac{\pi x}{n} + \frac{-1}{2n} \sin \frac{n\pi x}{l} \right].$$

Представить функцию f(x), заданную на полупериоде 0,l, рядом Фурье по синусам или косинусам. Построить график функции.

4B.
$$f(x) = \begin{cases} -x, & 0 \le x \le 2, \\ -2, & 2 < x \le 4 \end{cases}$$
 по косинусам.

Ombem:
$$f(x) = -\frac{3}{2} - \sum_{n=1}^{\infty} \frac{8}{n^2 \pi^2} \cos \frac{n \pi x}{4}$$
.

5B.
$$f(x) = \begin{cases} 3, 0 \le x \le 3, \\ -x + 6, 3 < x \le 6 \end{cases}$$
 по синусам.

Omsem:
$$f(x) = \sum_{n=1}^{\infty} \left(\frac{6}{n\pi} + \frac{-1^{-n} 12}{n^2 \pi^2} \right) \sin \frac{n\pi x}{6}$$
.

Ряды Тренировочный тест

№ п/п	Задания	Ответы
1	Вычислить сумму ряда $\sum_{n=1}^{\infty} \frac{2n+1}{n^2 \ n+1}^2 \ .$	А. 2; Б. 3; В. 1; Г. 0; Д. 5.
2	Какие из рядов сходятся 1) $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt[4]{n^5}}$; 2) $\sum_{n=1}^{\infty} \frac{n+2}{n^4}$; 3) $\sum_{n=1}^{\infty} \frac{1+\sqrt[5]{n}}{\sqrt[3]{n}}$?	А. Все; Б. 1) и 3); В. 2) и 3); Г. 1) и 2); Д. Ни один.
3	Какие из рядов расходятся 1) $\sum_{n=1}^{\infty} \frac{5^n}{n^2}$; 2) $\sum_{n=1}^{\infty} \frac{n+1}{2^n n!}$; 3) $\sum_{n=1}^{\infty} \frac{n^n}{n!}$?	A. Все; Б. 1) и3); В. 2) и 3); Г. 1) и 2); Д. Ни один.
4	Какие из рядов сходятся 1) $\sum_{n=1}^{\infty} \frac{\left(\frac{n+1}{n}\right)^{n^2}}{3^n}$; 2) $\sum_{n=1}^{\infty} \left(\frac{9n^2+4}{5n^2+7}\right)^n$; 3) $\sum_{n=1}^{\infty} \frac{n+1}{2n}^n$?	А. Все; Б. 1) и3); В. 2) и 3); Г. 1) и 2); Д. Ни один.
5	Какие из рядов сходятся абсолютно 1) $\sum_{n=1}^{\infty} \frac{-1^n n}{2^n}$; 2) $\sum_{n=1}^{\infty} \frac{-1^n n}{\sqrt{n+1}}$; 3) $\sum_{n=1}^{\infty} \frac{-1^n}{n^4+1}$?	А. Все; Б. 2) и3); В. 1) и 3); Г. 1) и 2); Д. Ни один.
6	Найти область сходимости ряда $ \sum_{n=1}^{\infty} \frac{1}{x+1}^{n} . $	A. $-\infty; -2 \cup 0; +\infty$; Б. $-\infty; +\infty$; B. $-\infty; -2 \cup 0; +\infty$; Г. $-\infty; -2 \cup 0; +\infty$; Д. $-\infty; -2 \cup 0; +\infty$.
7	Найти область сходимости ряда $\sum_{n=1}^{\infty} \frac{x^n}{n} .$	A. -∞;-1 ∪ 1;+∞ ; B. -∞;+∞ ; B. -1,1 ; Γ. -1;1 ; Д. -1,1 .

8	Найти радиус сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{x-1}{4^n}$.	А. $\frac{1}{4}$; Б. 0; В. 4; Г. 2; Д. 8.
9	Вычислить интеграл с точностью до 0,001: $\int\limits_{0}^{0.4} e^{-\frac{3x^2}{4}} dx \; .$	А. 0,385; Б. 0,4; В. 0,384; Г. 0,5; Д. 0.
10	На отрезке $-\pi;\pi$ разложить в ряд Фурье функцию $f \ x = x^3$.	A. $\sum_{n=1}^{\infty} \frac{6 - \pi^{3} n^{2}}{\pi n^{3}} - 1^{n} \sin nx;$ B. $2\sum_{n=1}^{\infty} \frac{6 - \pi^{3} n^{2}}{\pi n^{3}} - 1^{n} \sin nx;$ B. $2\sum_{n=1}^{\infty} \frac{4 - \pi^{3} n^{2}}{\pi n^{3}} - 1^{n} \sin nx;$ $\Gamma. 2\sum_{n=1}^{\infty} \frac{6 - \pi^{3} n^{2}}{\pi n^{3}} - 1^{n} \sin \frac{nx}{\pi};$ $I. 2\sum_{n=1}^{\infty} \frac{6 - \pi^{3} n^{2}}{\pi n^{3}} - 1^{n} \sin nx.$

Ответы: В, Г, Б, Б, В, В, Д, В, А, Д.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч.2. М.: Оникс 21 век, Мир и Образование, 2007. 304 с.
- 2. *Самарин Ю.П., Сахабиева Г.А.* Математика -7 для студентов вузов. Ряды. Самара: изд-во СамГТУ, 2000. 73 с.
- 3. *Бугров Я.С., Никольский С.М.* Задачник. М.: Физматлит, 2001. 304 с.
- 4. *Шипачев В.С.* Задачник по высшей математике. М.: Высшая школа, 2003, 304 с.
- 5. Сборник задач по математике под редакцией *А.В. Ефимова, Б.П. Демидовича*. М.: Физико-математическая литература. Т.2, 2001. 288 с.
- 6. *Пискунов Н.С.* Дифференциальное и интегральное исчисление. Т.2. М.: Интеграл-Пресс, 2008, 544 с.

ОГЛАВЛЕНИЕ

Предисловие	
1. Числовые ряды с положительными членами. Признаки	
сходимости: необходимый, сравнения, достаточные	
Примеры с решениями	
Задания для самостоятельного решения (группа А)	
Задания для самостоятельного решения (группа В)	
2. Знакочередующиеся числовые ряды. Признак Лейбница.	
Знакопеременные ряды. Абсолютная и условная сходимость.	
Примеры с решениями	
Задания для самостоятельного решения (группа А)	
Задания для самостоятельного решения (группа В)	
3. Функциональные ряды. Степенные ряды. Область сходи-	
мости и радиус сходимости	
3.1. Функциональные ряды	
3.2. Степенные ряды. Интервал сходимости	
Примеры с решениями	
Задания для самостоятельного решения (группа А)	
Задания для самостоятельного решения (группа В)	
4. Ряды Фурье	
4.1. Определение ряда Фурье	
4.2. Ряд Фурье с периодом $2l$	
Примеры с решениями	
Задания для самостоятельного решения (группа А)	
Задания для самостоятельного решения (группа В)	
Тренировочный тест	
Список рекомендуемой литературы	

Учебное издание

Ряды

НЕБОГИНА Елена Васильевна АФАНАСЬЕВА Ольга Сергеевна

Печатается в авторской редакции

Подп. в печать 16.01.09 Формат 60х841/16. Бумага офсетная. Печать офсетная. Усл. п. л. 2,56. Уч. изд. л. 2,48. Тираж 150 экз. Рег. №9. Заказ № 14

Государственное образовательное учреждение высшего профессионального образования «Самарский государственный технический университет» 443100. Самара, ул. Молодогвардейская, 244. Главный корпус.

Отпечатано в типографии Самарского государственного технического университета 443100 г. Самара, ул. Молодогвардейская, 244. Корпус № 8