Restoring Soundness of the Orion Proof System & More

<u>Thomas den Hollander</u>, Daniel Slamanig Research Institute CODE Universität der Bundeswehr München

Orion: Zero Knowledge Proof with Linear Prover Time (CRYPTO'22)

- Proof system with
 - O(N) prover time
 - O(log(N)) verifier time* & proof size
- Two main innovations
 - Algorithm for linear-time encodable linear code
 - Previously inverse polynomial or impractical
 - Proof composition with code-switching
 - Based on tensor code PCS ([BCG+17, BCG20, GLS+ (Brakedown)])
 - Take $O(\sqrt{N})$ verifier time & proof size, add outer proof
 - Not limited to same linear code, no proving hash functions

Our work

- Orion is unsound, both with and without zk
 - Demonstrate using practical attack
- Propose a solution
 - Preserve linear prover time complexity
 - No hash functions inside outer SNARK circuit
 - No new commitments/rounds to protocol
- For zero-knowledge
 - Propose a linear-time encodable zero-knowledge linear code
 - Increased prover time
 - Significantly smaller verifier time & proof size

PCS: Commitment phase

- Commit(pp, ϕ ; r) \rightarrow C
 - Matrix of coefficients W
 - Encode each row, add random vectors

$$O D_i = E_C(W_i) + r_i || r_i$$

- Encode each column
 - $E_i = E_C(D_i)$
- Merkle Commitment
 - $C = Commit_{M}(E)$

$$v(x) = \begin{bmatrix} 1 \\ x^k \\ \dots \\ x^{(k-1)k} \end{bmatrix}^T \begin{bmatrix} \\ \\ \psi \end{bmatrix} D =$$

$$\psi(x) = \begin{bmatrix} -W_1 & - \\ -W_2 & - \\ \vdots & \\ -W_k & - \end{bmatrix}$$

$$\psi(x) = \begin{bmatrix} 1 \\ x^k \\ \dots \\ x^{(k-1)k} \end{bmatrix}^T \begin{bmatrix} -W_1 & - \\ \vdots & \\ -W_k & - \end{bmatrix}$$

$$\psi(x) = \begin{bmatrix} E_C(W_1) + \vec{r_1} & \vec{r_1} \\ E_C(W_2) + \vec{r_2} & \vec{r_2} \\ \vdots & \vdots \\ E_C(W_k) + \vec{r_k} & \vec{r_k} \end{bmatrix}$$

Evaluation phase

- Tensor code PCS
 - P sends linear combination of encoded rows
 - Row: $D_i = E_c(W_i) + r_i || r_i$
 - $\mathbf{c}_{\mathsf{v}} = \langle \mathsf{v}, \mathsf{D} \rangle$
 - V checks that result is a codeword
 - $\mathbf{c}_{v} = \mathbf{E}_{c}(\mathbf{W}_{v}) + \mathbf{r}_{v} || \mathbf{r}_{v}$ V checks linear combination at random column set J
 - $c_y = \langle \gamma, D \rangle$ for $j \in J$ Evaluation same, but using x_0 instead of γ
- Orion adds outer SNARK
 - Commit to c_v , build inside CP-SNARK and compare only at $j \in J$
 - Also sample row set I
 - Encode columns D_{ij} inside CP-SNARK, compare with E at $(i, j) \in I \times J$

Evaluation phase

- Eval(pp, C, X= $x_0 \otimes x_1$, y = $x_0^T W x_1$, φ)

 1. V sends challenge vector γ

 - 2. P computes
 - a. c_y = ⟨γ, D⟩
 b. W_y = ⟨γ, W⟩
 c. r_y = ⟨γ, R⟩
 d. And sends C_{cy} = Commit(c_y)
 3. V sends column set J, making sure j ∈ J ⇒ j+n ∉ J
 - 4. P commits to CP-SNARK witness: W_v, r_v , columns $D_{\bullet i}$ for $j \in J$
 - 5. V sends row set I
 - P computes CP-SNARK proof π
 - a. Check c_γ = E_C(W_γ) + r_γ || r_γ, compare to C_{cγ} at j ∈ J
 b. Check c_γ = ⟨γ, D_{•j}⟩ at columns j ∈ J
 c. Compare E_C(D_{•j}) to C at (i,j) ∈ I × J
 7. V checks π and openings

Issue due to zero-knowledge...

```
2.d.
              P sends C_{cv} = Commit(c_v)
              V sends column set J, making sure j \in J \Rightarrow j+n \notin J
              P commits to CP-SNARK witness: W_v, r_v, columns D_{\bullet i} for j \in J
              Check c_v = E_C(W_v) + r_v || r_v, compare to C_{cv} at j \in J
6.a.
```

- Prover can choose r_v, <u>after</u> J was sampled
 E_C(W_v) + r_v and r_v are never opened at the same offset
 Simply choose suitable r_v!
- Evaluate to any point

...but the issue persists without zk

```
2.d. P sends C<sub>cγ</sub> = Commit(c<sub>γ</sub>)
3. V sends column set J, making sure j ∈ J ⇒ j+n ∉ J
4. P commits to CP-SNARK witness: W<sub>γ</sub>, *<sub>γ</sub>, columns D<sub>•j</sub> for j ∈ J
...
6.a. Check c<sub>γ</sub> = E<sub>C</sub>(W<sub>γ</sub>) + r<sub>γ</sub> || r<sub>γ</sub>, compare to C<sub>cγ</sub> at j ∈ J
```

- J is known before commitment to W_v
- Find W_v such that E_C(W_v)=c_v at J
- Solve linear system
- Evaluate to any point, with overwhelming probability

How to fix?

```
2.d. P \operatorname{sends} C_{c\gamma} = \operatorname{Commit}(c_{\gamma}) Commit \operatorname{to} W_{\gamma}, r_{\gamma} \operatorname{before} \operatorname{knowing} J
3. V \operatorname{sends} \operatorname{column} \operatorname{set} J, \operatorname{making} \operatorname{sure} j \subseteq J \Rightarrow j+n \notin J
4. P \operatorname{commit} \operatorname{to} \operatorname{CP-SNARK} \operatorname{witness:} W_{\gamma}, r_{\gamma}, \operatorname{columns} \operatorname{D}_{\bullet j} \operatorname{for} j \subseteq J
...

6.a. \operatorname{Check} c_{\gamma} = \operatorname{E}_{\operatorname{C}}(W_{\gamma}) + r_{\gamma} || r_{\gamma}, \operatorname{compare} \operatorname{to} \operatorname{C}_{c\gamma} \operatorname{at} j \subseteq J
...

J must be known when committing to \operatorname{D}_{\bullet}, otherwise not succinct!
```

Commit twice?

- We could simply add another round of commitments
- Open commitment inside outer SNARK?
 - Outer SNARK circuit grows
 - Increased proof size from additional commitment
- Another round of CP-SNARK commitments?
 - Two (succinct) commitments, increasing verifier time & proof size
 - Verifier time potentially mitigated using batching

Our solution

- J has two purposes, which can be separated!
- Use J to check linear combinations of rows
- Use J' to compare with commitment

```
2.d. P sends C<sub>cγ</sub> = Commit(c<sub>γ</sub>)
3. V sends column set J
4. P commits to CP-SNARK witness: W<sub>γ</sub>, r<sub>γ</sub>, columns D<sub>•j</sub> for j ∈ J
5. V sends row set I and column set J'
6.a. Check c<sub>γ</sub> = E<sub>C</sub>(W<sub>γ</sub>) + r<sub>γ</sub> || r<sub>γ</sub>, compare to C<sub>cγ</sub> at j ∈ J'
...
```

How to deal with zero-knowledge?

```
2.d. P \text{ sends } C_{c\gamma} = Commit(c_{\gamma})
3. V \text{ sends column set J}
4. P \text{ commits to CP-SNARK witness: } W_{\gamma}, r_{\gamma}, \text{ columns } D_{\bullet j} \text{ for } j \in J
5. V \text{ sends row set I } and \text{ column set J'}
6.a. C \text{ heck } c_{\gamma} = E_{C}(W_{\gamma}) + r_{\gamma} || r_{\gamma}, \text{ compare to } C_{c\gamma} \text{ at } j \in J'
...
```

Still unsound: P knows V won't query c_v at j ± n for j ∈ J

New zero-knowledge code

- No restrictions on J, J': uniformly random
- Use polynomial to hide any |J| + |J'| evaluations
 - Fixed degree, O(1)
 - No constant term
- Retains minimum relative distance
- General transformation

$$E_{C,ZK}(y; r)_i = (E_C(y) || E_C(y))_i + \sum_{j>0} r_i i^j$$

& More...

- New knowledge soundness & zero-knowledge proof
 - Simulator needed to know X before committing to polynomial
- Challenge space now logarithmic
 - *Sampling γ actually requires O(√N) work from verifier.
 - o [DP23]: Use $(1\gamma_1)\otimes(1\gamma_2)\otimes...\otimes(1\gamma_{\log(k)})$ instead
- Multi-point opening
- Explicit consideration of Fiat-Shamir

New zk-SNARK: Scorpius

- Proof system with
 - O(N) prover time
 - O(log(N)) verifier time & proof size
- Compared to Orion
 - Increased prover time
 - Faster verifier & smaller proof size
- Rigorous knowledge soundness & zero-knowledge proofs

Conclusion

- Orion is unsound, both with & without ZK
 - Attack efficient and perfect/negligible failure probability
- We provide a new zero-knowledge code
 - General transformation that retains minimum relative distance
 - Linear time encodable
- We propose Scorpius, with
 - Knowledge soundness fix without any overhead
 - Retaining linear prover
 - ZK code with increased prover, smaller verifier time & proof size

Thanks for listening!

Any questions?

ePrint: https://eprint.iacr.org/2024/1164.pdf