1 问题

莱昂哈德·欧拉出生于1707年四月15日。

考虑序列 1504170715041707n mod 4503599627370517。

该序列中的某个元素被定义为欧拉币,当且仅当它严格小于之前已经定义的所 有欧拉币。

例如,序列的第一项是1504170715041707, 这是第一枚欧拉币。序列的第二项是3008341430083414, 因为它大于1504170715041707, 因此它不是欧拉币。然后,序列的第三项是8912517754604, 比第一项要小,因此是一枚新的欧拉币。

因此,前2枚欧拉币之和为1513083232796311。

求所有欧拉币之和。

2 解法

2.1 暴力

一个最直观的想法是,我们可以暴力枚举每个 n 来判断是否比之前的欧拉币要小,以此来判断当前是否是一个欧拉币。代码大概如下:

Algorithm 1 Calculate all euler coin

```
n\leftarrow 1
step\leftarrow 1504170715041707
mod\leftarrow 4503599627370517
last\_euler\_coin\leftarrow mod
answer\leftarrow 0
while n\neq mod do
if n*step\%mod < last\_euler\_coin then
last\_euler\_coin\leftarrow n*step\%mod
answer+= last\_euler\_coin
end if
n\leftarrow n+1
end while
```

但是很遗憾,这个过程的复杂度是 O(mod) 的,也即:即使 1s 能运算 1e8 次,也需要 521 天。这远远超过了欧拉计划的 1 分钟原则。下面是我自己的暴力代码的速度:

n	euler_coin	时间花费
1	1504170715041707	1.3e-05
3	8912517754604	3.6e-05
506	2044785486369	4.5e-05
3732049906	10487287	2.08483
4015876927	10078122	2.23973
10260071389	1076492	5.668
10543898410	667327	5.82323
10827725431	258162	5.9797
21939277883	107159	12.0777
54990108218	63315	30.237

再之后的一个 euler-coin 的计算已经超过 $60 \mathrm{s}$ 了。

2.2 推导

通过简单计算,我们能够得到 gcd(1504170715041707,4503599627370517)=1。所以一定有 1 是 euler-coin(因为 $1504170715041707n\equiv 1\pmod{4503599627370517}$ 是有解的)。

那么一个有趣且自然的想法是,我们可以枚举每个值,来判断这个值是否是euler-coin,怎么判断是不是 euler-coin 呢?

首先,对于 euler-coin = 1 来说,我们需要找到对应的 n_1 ,不难发现 $n_1 = \frac{1}{1504170715041707}$ mod 4503599627370517 = 3451657199285664

然后,对于剩下的 x ,怎么判断 x 是否是 euler-coin 呢?我们只需要计算 $n_x=\frac{x}{1504170715041707} \mod 4503599627370517$,然后和上一个 euler-coin 对比下标,就能知道这个是不是 euler-coin 了。

然而,这个想法只能处理比较小的x。

所以,我们将这个想法和暴力想法结合起来,对于比较大的 x 和 较小的n,我们暴力从小到大枚举 n 来找到 euler-coin,反之,我们从小到大枚举 x 来判断每个 x 是不是 euler-coin。