ANÁLISIS DE ERROR DE ESTADO ESTABLE

El error estacionario es una medida de la exactitud de un sistema de control. Se analiza el error estacionario debido a entradas escalón, rampa y parábola.

	CONTROL ANALÓGICO	CONTROL DIGITAL	
Esquema	$R(s) \longrightarrow \begin{array}{c} E(s) \\ \hline \\ G(s) \\ \hline \\ H(s) \\ \hline \end{array} \longrightarrow \begin{array}{c} F(s) \\ \hline \\ F$	$R(z) \xrightarrow{\qquad \qquad } Gc(z) \xrightarrow{\qquad \qquad } Gp(z) \xrightarrow{\qquad \qquad } Y(z)$	
Error	$E(s) = \frac{1}{1 + Gc(s)Gp(s)H(s)}R(s)$	$E(z) = \frac{1}{1 + Gc(z)Gp(z)H(z)}R(z)$	
	E(s) 1	E(z) 1 1	
	$\frac{E(s)}{R(s)} = \frac{1}{1 + G_{C}(s)G_{P}(s)H(s)} = \frac{1}{1 + G(s)H(s)}$	$\frac{E(z)}{R(z)} = \frac{1}{1 + G_{C}(z)G_{P}(z)H(z)} = \frac{1}{1 + G(z)H(z)}$	
Función de	Función de Transferencia de Malla de la forma:	Función de Transferencia de Malla de la forma:	
transferencia de malla	$G(s)H(s) = \frac{K(s+c_1)(s+c_2)(s+c_n)}{(s+p_1)(s+p_2)(s+p_n)} = \frac{K \prod_{j=1}^{m} (s+c_j)}{\prod_{i=1}^{n} (s+p_i)}$	$G(z)H(z) = \frac{K \prod_{j=1}^{m} (z - c_j)}{\prod_{i=1}^{n} (z - p_i)}$	
Polos de la	Polos de valor 0	Polos de valor 1	
función de transferencia de malla en el "origen"	$G(s)H(s) = \frac{K(s+c_1)(s+c_2)(s+c_n)}{s^N(s+p_1)(s+p_2)(s+p_{n-N})} = \frac{K \prod_{j=1}^m (s+c_j)}{s^N \prod_{i=1}^{n-N} (s+p_i)}$	$G(z)H(z) = \frac{K \prod_{j=1}^{m} (z - c_j)}{(z - 1)^N \prod_{i=1}^{n-N} (z - p_i)}$	

C1 'C' ''	Tipo de sistema			N polos en el "origen"	
Clasificación de sistemas		0		0	
según su		1		1	
número de polos en el		2		2	
'origen"		3		3	
		Análisis del error	de n	osición	
	El error de posición		_	ferencia es un escalón unit	rario
Error cuando la referencia es un escalón	$E(s) = \frac{1}{1 + G(s)H(s)} \cdot \frac{1}{s}$		E(z)	$z) = \frac{1}{1 + G(z)H(z)} \cdot \frac{z}{(z-1)}$	
Aplicando el teorema del valor final se	$e(t)_{t\to\infty} = \lim_{s\to 0} sE(s)$ $e_{ss} = \lim_{s\to 0} s \frac{1}{1 + G(s)H(s)} \frac{1}{s} = \lim_{s\to 0} \frac{1}{1 + G(s)H(s)}$		e(k)	$(z)_{k\to\infty} = \lim_{z\to 1} \frac{(z-1)}{z} E(z)$	
obtiene el error de			$e_{ss} = \lim_{z \to 1} \frac{(z-1)}{z} \frac{1}{1 + G(z)H(z)} \frac{z}{(z-1)} = \lim_{z \to 1} \frac{1}{1 + G(z)H(z)}$		
estado estable	$e_{ss} = \frac{1}{1 + K_P} \text{donde} K_p = \lim_{s \to 0} G$ $Kp \text{ es la constante de error de posición}$			$e_{ss} = \frac{1}{1 + K_P}$ donde $K_P = \lim_{z \to 1} G(z)H(z)$	
	1			<i>Kp</i> es la constante de error de posición	
	Dado que		Dado que		
	$G(s)H(s) = \frac{K \prod_{j=1}^{m} (s + c_j)}{s^N \prod_{i=1}^{n-N} (s + p_i)}$		$G(z)H(z) = \frac{K \prod_{j=1}^{m} (z - c_j)}{(z - 1)^N \prod_{i=1}^{n-N} (z - p_i)}$		
	los valores de <i>Kp</i> y el errror de estado número <i>N</i> de polos en el origen.	estable dependen del		ene que los valores de Kp y nero N de polos en $(1,0)$.	el errror de estado estable dependen del
N = 0	$K_{p} = G(0)H(0) = \frac{K \prod_{j=1}^{m} (c_{j})}{\prod_{i=1}^{n} (p_{i})} y e_{ss}$	$=\frac{1}{1+K_P}$	K_{P}	$= G(1)H(1) = \frac{K \prod_{j=1}^{m} (1 - c_{j})}{\prod_{i=1}^{n} (1 - p_{i})}$	$\frac{)}{y} y e_{ss} = \frac{1}{1 + K_P}$

	K_p y e_{ss} son valores reales distintos de cero y finitos	K_p y e_{ss} son valores reales distintos de cero y finitos			
	¡ EL ERROR NO ES NULO! Si Kp aumenta, el error disminuye	¡ EL ERROR NO ES NULO! Si Kp aumenta, el error disminuye			
N = I	$K_{P} = \lim_{s \to 0} \frac{K \prod_{j=1}^{m} (c_{j})}{\sum_{i=1}^{n-1} (p_{i})} \to \infty y e_{ss} = 0$	$K_{P} = \lim_{z \to 1} \frac{K \prod_{j=1}^{m} (1 - c_{j})}{(z - 1) \prod_{i=1}^{n-1} (1 - p_{i})} \to \infty y e_{ss} = 0$			
	$e_{ss} = 0$ si la función de transferencia de malla tiene un polo en el origen	$e_{ss} = \theta$ si la función de transferencia de malla tiene un polo en (1,0)			
<i>N</i> ≥ 2	$K_{P} = \lim_{s \to 0} \frac{K \prod_{j=1}^{m} (c_{j})}{s^{N} \prod_{i=1}^{n-N} (p_{i})} \to \infty y e_{ss} = 0$	$K_{P} = \lim_{z \to 1} \frac{K \prod_{j=1}^{m} (1 - c_{j})}{\left(z - 1\right)^{N} \prod_{i=1}^{n-N} (1 - p_{i})} \to \infty y e_{ss} = 0$			
		$e_{ss} = \theta$ para entada escalón si la función de transferencia de malla			
	de malla tiene mas de un polo en el origen tiene mas de un polo en (1,0)				
Análisis del error de velocidad El error de velocidad se determina cuando la referencia es una rampa unitaria					
Error cuando la referencia es un escalón	$E(s) = \frac{1}{1 + G(s)H(s)} \cdot \frac{1}{s^2}$	$E(z) = \frac{1}{1 + G(z)H(z)} \cdot \frac{Tz}{\left(z - 1\right)^2}$			
Aplicando el teorema del valor final se	$e_{ss} = \lim_{s \to 0} s \frac{1}{1 + G(s)H(s)} \frac{1}{s^2} = \lim_{s \to 0} \frac{1}{s + sG(s)H(s)}$	$e_{ss} = \lim_{z \to 1} \frac{(z-1)}{z} \frac{1}{1 + G(z)H(z)} \frac{Tz}{(z-1)^2} = \lim_{z \to 1} \frac{T}{(z-1) + (z-1)G(z)H(z)}$			
obtiene el error de estado estable	$e_{ss} = \lim_{s \to 0} \frac{1}{sG(s)H(s)}$	$e_{ss} = \lim_{z \to 1} \frac{T}{(z-1)G(z)H(z)}$			
	$e_{ss} = \frac{1}{K_v}$ donde $K_v = \lim_{s \to 0} sG(s)H(s)$	$e_{ss} = \frac{1}{K_v}$ donde $K_v = \lim_{z \to 1} \frac{(z-1)G(z)H(z)}{T}$			
	Kv es la constante de error de velocidad y depende de la función de transferencia de malla y su número N de polos en	Kv es la constante de error de velocidad y depende de la función de transferencia de malla y su número N de polos en $(1,0)$.			

el origen.				
Considerando	Considerando			
$G(s)H(s) = \frac{K \prod_{j=1}^{m} (s + c_j)}{s^N \prod_{i=1}^{n-N} (s + p_i)}$	$G(z)H(z) = \frac{K \prod_{j=1}^{m} (z - c_j)}{(z - 1)^N \prod_{i=1}^{n-N} (z - p_i)}$			
$K_{v} = \lim_{s \to 0} s \frac{K \prod_{j=1}^{m} (s + c_{j})}{\prod_{i=1}^{n-N} (s + p_{i})} = 0 y e_{ss} \to \infty$	$K_{v} = \lim_{z \to 1} (z - 1) \frac{K \prod_{j=1}^{m} (1 - c_{j})}{T \prod_{i=1}^{n} (1 - p_{i})} = 0 \text{y} e_{ss} \to \infty$			
$K_{v} = \lim_{s \to 0} s \frac{K \prod_{j=1}^{m} (s + c_{j})}{s \prod_{i=1}^{n-1} (s + p_{i})} = \frac{K \prod_{j=1}^{m} (c_{j})}{\prod_{i=1}^{n-1} (p_{i})} y e_{ss} = \frac{1}{K_{v}}$	$K_{v} = \lim_{z \to 1} (z - 1) \frac{K \prod_{j=1}^{m} (z - c_{j})}{T(z - 1) \prod_{i=1}^{n-1} (z - p_{i})} = \frac{K \prod_{j=1}^{m} (1 - c_{j})}{T \prod_{i=1}^{n-1} (1 - p_{i})} \text{y} e_{ss} = \frac{1}{K_{v}}$			
K_{ν} y e_{ss} son valores reales distintos de cero y finitos	K_{ν} y e_{ss} son valores reales distintos de cero y finitos			
m	$K_{v} = \lim_{z \to 1} (z - 1) \frac{K \prod_{j=1}^{m} (z - c_{j})}{T(z - 1)^{N} \prod_{i=1}^{n-N} (z - p_{i})} \to \infty \text{y} e_{ss} = 0$			
$e_{ss} = 0$ para entada rampa si la función de transferencia	$e_{ss} = \theta$ para entada rampa si la función de transferencia de malla			
de malla tiene mas de un polo en el origen	tiene mas de un polo en (1,0)			
Análisis del error de aceleración				
El error de aceleración se determina cuando la referencia es una parábola unitaria				
$E(s) = \frac{1}{1 + G(s)H(s)} \cdot \frac{1}{s^3}$	$E(z) = \frac{1}{1 + G(z)H(z)} \cdot \frac{Tz(z+1)}{2(z-1)^3}$			
	Considerando $G(s)H(s) = \frac{K \prod_{j=1}^{m} (s + c_j)}{s^N \prod_{i=1}^{m} (s + p_i)}$ $K_v = \lim_{s \to 0} s \frac{K \prod_{j=1}^{m} (s + c_j)}{\prod_{i=1}^{m} (s + p_i)} = 0 y e_{ss} \to \infty$ $K_v = \lim_{s \to 0} s \frac{K \prod_{j=1}^{m} (s + c_j)}{s \prod_{i=1}^{m} (s + p_i)} = \frac{K \prod_{j=1}^{m} (c_j)}{\prod_{i=1}^{n-1} (p_i)} y e_{ss} = \frac{1}{K_v}$ $K_v y e_{ss} \text{son valores reales distintos de cero y finitos}$ $K_v = \lim_{s \to 0} s \frac{K \prod_{j=1}^{m} (c_j)}{s^N \prod_{i=1}^{m} (p_i)} \to \infty y e_{ss} = 0$ $e_{ss} = 0 \text{para entada rampa si la función de transferencia de malla tiene mas de un polo en el origen}$ $\text{Análisis del error de aceleración se determina cuando}$			

El procedimiento es similar al que se empleo para los casos anteriores de error de posición y error de velocidad, con base en lo cual se tiene la siguiente tabla de resumen

Tabla del análisis de error de estado estable para ambos tipos de sistemas de control, analógico y digital.

	Entrada escalón unitario	Entrada rampa unitaria	Entrada parábola
N=0	$e_{ss} = \frac{1}{1 + K_p}$ donde se tiene que calcular K_p	$K_{v} = 0$ y $e_{ss} \rightarrow \infty$	$K_a = 0$ y $e_{ss} \rightarrow \infty$
	¡EL ERROR NO ES NULO! Si K_p aumenta, el error disminuye.		
N=1	$K_P \to \infty$ y $e_{ss} = 0$	$e_{ss} = \frac{1}{K_{v}}$ Calcular K_{v}	$K_a = 0$ y $e_{ss} \rightarrow \infty$
		¡EL ERROR NO ES NULO! Si K_{ν} aumenta, el error disminuye.	
N=2	$K_P \to \infty$ y $e_{ss} = 0$	$K_{v} \rightarrow \infty$ y $e_{ss} = 0$	$e_{ss} = \frac{1}{K_a}$ Calcular K_a
			¡EL ERROR NO ES NULO! Si Ka aumenta, el error disminuye.
N=3,4 ,	$K_P \to \infty$ y $e_{ss} = 0$	$K_{v} \rightarrow \infty$ y $e_{ss} = 0$	$e_{ss} = \frac{1}{K_a} = 0$
			$K_a \to \infty$ y $e_{ss} = 0$