Homework 7.2 Linear Algebra Math 524 Stephen Giang

Problem 7.C.2: Suppose T is a positive operator on V. Suppose $v, w \in V$ are such that

$$Tv = w$$
 and $Tw = v$

Prove that v = w.

Because T is a positive operator, $\langle Tv, v \rangle \geq 0$. Notice the following:

$$\begin{split} \langle T(v-w), (v-w) \rangle &\geq 0 \\ \langle Tv-Tw, v-w \rangle &= -\langle v-w, v-w \rangle \geq 0 \\ &= -||v-w||^2 \geq 0 \end{split}$$

Because of the square, it means that $-||v-w||^2=0$. Thus ||v-w||=0, so v=w

Problem 7.C.4: Suppose $T \in \mathcal{L}(V, W)$. Prove that T^*T is a positive operator on V and TT^* is a positive operator on W

Notice the following:

$$(T^*T)^* = T^*T^{**} = T^*T$$
 $(TT^*)^* = T^{**}T^* = TT^*$

Because of the following, we can see that both are self-adjoint. So now we can notice the following:

$$\langle T^*Tv, v \rangle = \langle T^2v, v \rangle$$

$$= \langle Tv, Tv \rangle$$

$$= ||Tv||^2 \ge 0$$

$$\langle TT^*v, v \rangle = \langle (T^*)^2v, v \rangle$$

$$= \langle T^*v, T^*v \rangle$$

$$= ||T^*v||^2 \ge 0$$

Thus T^*T and TT^* are positive operators on V and W respectively

Problem 7.C.7: Suppose T is a positive operator on V. Prove that T is invertible if and only if

$$\langle Tv, v \rangle > 0$$

for every $v \in V$, with $v \neq 0$

$$(=>)$$
. Let $\langle Tv, v \rangle > 0$.

If T is not invertible then there exists $v \neq 0 \in V$, such that Tv = 0. So we can see that $\langle Tv, v \rangle = 0$. This contradicts that $\langle Tv, v \rangle > 0$, so T has to be invertible

(<=) Let T be invertible.

We can define an operator, $S^2 = T$, where S is the square root operator of T because T is a positive operator. So now we can notice the following

$$\langle Tv, v \rangle = \langle S^2v, v \rangle = \langle Sv, Sv \rangle = ||Sv||^2 > 0$$

Problem 7.D.1: Fix $u, v \in V$ with $u \neq 0$. Define $T \in \mathcal{L}(V)$ by

$$Tv = \langle v, u \rangle x$$

for every $v \in V$. Prove that

$$\sqrt{T^*T}v = \frac{||x||}{||u||} \langle v, u \rangle u$$

By definition of T, we can see the following:

$$T^*Tv = T^*\langle v,u\rangle x = \langle v,u\rangle T^*(x) = \langle v,u\rangle \langle x,x\rangle u = ||x||^2\langle v,u\rangle u$$

We can see that the map $R \in \mathcal{L}(V)$, with:

$$Rv = \frac{||x||}{||u||} \langle v, u \rangle u$$

is a square root of T^*T . We can also see that $\langle Rv, v \rangle \geq 0$. If we let $e_1, ..., e_n$ be an orthonormal basis of V, then we can write the following:

$$u = a_1 e_1 + \dots + a_n e_n$$

for some $a_1, ..., a_n$. So now we have:

$$R(e_j) = \frac{||x||}{||u||} \langle e_j, u \rangle u = \frac{||x||}{||u||} (a_j \bar{a_1} e_1 + \dots + a_j \bar{a_n} e_n)$$

Now we can see that $\mathcal{M}(R) = \frac{||x||}{||u||} a_j \bar{a}_k$. Now we can see that $\mathcal{M}(R) = \mathcal{M}(R^*)$. Thus R is the square root of T^*T and self-adjoint. So the result below is true:

$$\sqrt{T^*T}v = \frac{||x||}{||u||} \langle v, u \rangle u$$

Problem 7.D.2: Give an example of $T \in \mathcal{L}(\mathbb{C}^2)$ such that 0 is the only eigenvalue of T and the singular values of T are 5, 0.

Notice the following:

$$\mathcal{M}(T) = \begin{pmatrix} 0 & 0 \\ 5 & 0 \end{pmatrix}$$

Because $\mathcal{M}(T)$ is a triangular matrix, the eigenvalues are its entries in the diagonal, being 0.

Also Notice that to find the singular values:

$$\mathcal{M}(T)\mathcal{M}(T^*) = \begin{pmatrix} 0 & 0 \\ 5 & 0 \end{pmatrix} \begin{pmatrix} 0 & 5 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 25 \end{pmatrix}$$

Because $\mathcal{M}(T^*)\mathcal{M}(T)$ is a triangular matrix, the eigenvalues are its entries in the diagonal, being 0 and 25. By 7.52, the singular values are the non-negative square root values of $\mathcal{M}(T^*)\mathcal{M}(T)$'s eigenvalues, which are 0 and 5

Problem 7.D.5: Suppose $T \in \mathcal{L}(\mathbb{C}^2)$ is defined by T(x,y) = (-4y,x). Find the singular values of T.

Notice we can write $\mathcal{M}(T)$ as a matrix in respect to a basis (x, y):

$$\mathcal{M}(T) = \begin{pmatrix} 0 & -4 \\ 1 & 0 \end{pmatrix}$$

Thus $\mathcal{M}(T^*) = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix}$. Now we can see the following:

$$\mathcal{M}(T)\mathcal{M}(T^*) = \begin{pmatrix} 0 & -4 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} = \begin{pmatrix} 16 & 0 \\ 0 & 1 \end{pmatrix}$$

The singular values are going to be the square root of the eigenvalues of $\mathcal{M}(T)\mathcal{M}(T^*)$, so they are 4 and 1.