SS 2020 Shestakov

Übungsaufgaben zur Vorlesung "Analysis IIb"

Blatt 5

Aufgabe 1. Sei $B_1(0)$ die offene Einheitskugel im \mathbb{R}^n und $f: \mathbb{R}^n \to \mathbb{R}$ eine C^1 -Funktion mit f=0 auf der Einheitssphäre $\partial B_1(0)$. Zeigen Sie, dass es einen Punkt $a \in B_1(0)$ mit $\nabla f(a) = 0$ gibt.

Aufgabe 2. Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = (y^2 - x)(y^2 - 2x)$. Zeigen Sie:

- a) f hat längs jeder Geraden durch den Ursprung ein lokales Minimum in (0,0).
- b) f hat kein lokales Minimum in (0,0).

Aufgabe 3. Seien $a_1, ..., a_m$ gegebene Punkte im \mathbb{R}^n . Finden Sie einen Punkt $a \in \mathbb{R}^n$, so dass die Summe der quadrierten Abstände zu diesen Punkten minimal ist.

Aufgabe 4. Beweisen oder widerlegen Sie:

- a) ? Summen und positive Vielfache positiv definiter Matrizen sind positiv definit. ?
- b) ? Die Determinante einer negativ definiten Matrix ist negativ. ?

Aufgabe 5. Untersuchen Sie folgende Funktionen auf Extrema:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = 2x^3 + xy^2 + 5x^2 + y^2$$

b)
$$f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = 3x^3 + y^2 + z^2 + 6xy - 2z + 1$$

Abgabe: Bis 11. Juni um 10 Uhr als PDF-Datei in StudIP in der Veranstaltung Übung Analysis IIb unter dem Reiter Dateien im dafür vorgesehenen Ordner.

Aufgabe	1	2		3	4		5		
		a	b		a	b	a	b	
Punkte	3	3	3	3	2	1	3	3	21

Präsenzaufgaben

- 1. Sei $H := \mathbb{R} \times [0, \infty)$ die obere abgeschlossene Halbebene im \mathbb{R}^2 , f eine C^1 -Funktion in einer Umgebung von H und $a = (a_1, 0)$ ein Randpunkt. Zeigen Sie: Hat $f_{|H}$ ein Extremum in a, so gilt $\frac{\partial f}{\partial x}(a) = 0$.
- 2. Untersuchen Sie folgende Funktionen auf Extrema:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = 3x^2y + y^3 - 12x - 15y + 3$$

b)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^4 + y^4 - 2x^2$$

c)
$$f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = xyz(16 - x - y - 2z)$$

- 3. Untersuchen Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = y(3x^2 y^2)$, auf Extrema. Skizzieren Sie die Fläche z = f(x,y) im \mathbb{R}^3 und erklären Sie, warum sie Affensattel genannt wird.
- 4. Beweisen oder widerlegen Sie:
 - a) ? Es gibt eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, die unendlich viele strenge lokale Maxima und kein lokales Minimum hat. ?
 - b) ? Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine C^1 -Funktion mit genau einem stationären Punkt $(x_0, y_0) \in \mathbb{R}^2$, in dem ein lokales Minimum von f vorliegt. Dann gilt $f(x, y) \geq f(x_0, y_0)$ für alle $(x, y) \in \mathbb{R}^2$. ?
 - c) ? Ist $P: \mathbb{R}^n \to \mathbb{R}$ ein Polynom, so nimmt |P| im \mathbb{R}^n sein Infimum an. ?
- 5. Ein Zirkuszelt hat die Form eines Zylinders mit dem konischen Dach. Finden Sie die kleinste Menge des für ein solches Zelt benötigten Stoffes für fixiertes Volumen V.
- 6. Sei A die Darstellungsmatrix einer linearen Abbildung von $(\mathbb{R}^n, \|\cdot\|_1)$ nach $(\mathbb{R}^m, \|\cdot\|_1)$ bezüglich der Standardbasen. Berechnen Sie die Operatornorm $\|A\|_{\text{op}}$.