- 1. (§3.A #7) Show that every linear map from a 1-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if $\dim(V) = 1$ and $T \in \mathcal{L}(V)$, then there exists a $\lambda \in \mathbb{F}$ such that $Tv = \lambda v$ for all $v \in V$.
- 2. (§3.B # 9) Suppose that $T \in \mathcal{L}(V, W)$ is injective and v_1, \ldots, v_n is linearly independent in V. Prove that Tv_1, \ldots, Tv_n is linearly independent in W.
- 3. (§3.B # 10) Suppose that v_1, \ldots, v_n spans V and $T \in \mathcal{L}(V, W)$. Prove that Tv_1, \ldots, Tv_n spans ran(T).
- 4. (§3.B #12) Suppose that V is finite dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap \text{null}(T) = \{0\}$ and $\text{ran}(T) = \{Tu : u \in U\}$.
- 5. (§3.D # 8) Suppose V is finite dimensional and $T: V \to W$ is a surjective linear map of V onto W. Prove that there is a subspace U of V such that $T|_{U}$ is an isomorphism of U onto W. (Here $T|_{U}$ means the function T restricted to U. In other words, $T|_{U}$ is the function whose domain is U, with $T|_{U}$ defined by $T|_{U}(u) = T(u)$ for every $u \in U$.)
- 6. (§3.D # 18) Show that V and $\mathcal{L}(\mathbb{F}, V)$ are isomorphic vector spaces.