

GBI Tutorium Nr. 41

Foliensatz 3

Vincent Hahn - vincent.hahn@student.kit.edu | 8. November 2012

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

[Pleaseinsertintopreamble]bungsblatt 2

Wiederholung: Mengen

Formale Sprachen

Wiederholung: Mengen

Aufgaben

Formale Sprachen

4 Aufgaben

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

[Please insert into preamble] bungsblatt

2

[Pleaseinsertintopreamble]bungsblatt 2

Wiederholung: Mengen

2 Wiederholung: Mengen

Formale Sprachen

3 Formale Sprachen

Aufgaben

4 Aufgaben

Best of Fehler

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungs

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 2.3

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

 $B(x, y) \stackrel{\frown}{=} y$ ist bester Freund von x. M sei die Menge aller Menschen.

Lösung

Best of Fehler

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungs

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 2.3

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

 $B(x, y) \stackrel{\frown}{=} y$ ist bester Freund von x. M sei die Menge aller Menschen.

Lösung

 $\forall x \in M : \exists_1 y \in M : B(x,y)?$

Best of Fehler

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungs

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 2.3

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

 $B(x, y) \stackrel{\frown}{=} y$ ist bester Freund von x. M sei die Menge aller Menschen.

Lösung

 $\forall x \in M : \exists_1 y \in M : B(x,y)!$

Best of Fehler

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungs

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 2.3

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

 $B(x, y) \stackrel{\frown}{=} y$ ist bester Freund von x. M sei die Menge aller Menschen.

Lösung

 $\forall x \in M : \exists_1 y \in M : B(x, y)!$

 $\forall x \in M : \exists y \in M : B(x,y)$

Best of Fehler

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungs

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 2.3

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

 $B(x, y) \stackrel{\frown}{=} y$ ist bester Freund von x. M sei die Menge aller Menschen.

Lösung

$$\forall x \in M : \exists_1 y \in M : B(x, y)!$$

$$\forall x \in M : \exists y \in M : B(x,y) \land \forall z \in M \backslash y : \neg B(x,z)$$

Best of Fehler

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungs

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 2.3

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

 $B(x, y) \stackrel{\frown}{=} y$ ist bester Freund von x. M sei die Menge aller Menschen.

Lösung

$$\forall x \in M : \exists_1 y \in M : B(x, y)!$$

$$\forall x \in M : \exists y \in M : B(x,y) \land \forall z \in M \backslash y : \neg B(x,z)$$

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

[Pleaseinsertintopreamble]bungsblatt 2

Wiederholung: Mengen

Wiederholung: Mengen

Formale Sprachen

Formale Sprachen

Aufgaben

4 Aufgaben

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Aufgabe 1

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Was ist $\{1, 2, 3\} \cup \{3, 4, 5\}$?

6/26

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Aufgabe 1

Wiederholung: Mengen

Was ist $\{1, 2, 3\} \cup \{3, 4, 5\}$? Antwort: {1, 2, 3, 4, 5}

Formale Sprachen

Aufgabe 2

Aufgaben

Frage: Was ist $M \cup \{\}$?

6/26

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungs

2

Aufgabe 1

Wiederholung: Mengen

Was ist $\{1,2,3\} \cup \{3,4,5\}$? Antwort: $\{1,2,3,4,5\}$

Formale Sprachen

Aufgabe 2

Aufgaben

Frage: Was ist $M \cup \{\}$?

Antwort: M

Aufgabe 3

Frage: Was ist $M \cap \{\}$?

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblott

2

Aufgabe 1

Wiederholung: Mengen

Was ist $\{1,2,3\} \cup \{3,4,5\}$? Antwort: $\{1,2,3,4,5\}$

Formale Sprachen

Aufgabe 2

Aufgaben

Frage: Was ist $M \cup \{\}$?

Antwort: M

Aufgabe 3

Frage: Was ist $M \cap \{\}$?

Antwort: {}.

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 4

Die Mengendifferenz: Was ist $\{1,2,3\} \setminus \{2,3,4\}$?

Aufgabe 5

Alles zusammen: Was ist $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\}$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 4

Die Mengendifferenz: Was ist $\{1,2,3\}\setminus\{2,3,4\}$?

Antwort: {1}

Aufgabe 5

Alles zusammen: Was ist $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\}$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 4

Die Mengendifferenz: Was ist $\{1,2,3\} \setminus \{2,3,4\}$?

Antwort: {1}

Aufgabe 5

Alles zusammen: Was ist $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\}$

Antwort: {2, *a*}

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

1 [Pleaseinsertintopreamble]bungsblatt 2

Wiederholung: Mengen

2 Wiederholung: Mengen

Formale Sprachen

3 Formale Sprachen

Aufgaben

4 Aufgaben

Definition

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Definition: formale Sprache

Eine *formale Sprache* (über einem Alphabet *A*) ist eine Teilmenge $L \subseteq A*$.

Vorsicht

 $abb \neq \{abb\}$, aber das Wort abb ist in der Sprache $\{abb\}$.

Erklärung

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Erklärung

L ist also eine Menge. Darin sind alle syntaktisch korrekten Gebilde enthalten.

Beispiel 1

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel: Schlüsselwörter in Java

Eine formale Sprache wäre etwa die Menge der Schlüsselwörter in der Programmiersprache Java:

Beispiele:

Größe:

Beispiel 1

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel: Schlüsselwörter in Java

Eine formale Sprache wäre etwa die Menge der Schlüsselwörter in der Programmiersprache Java:

Beispiele: { class, if, else, for, while, . . . }

Große:

Beispiel 1

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel: Schlüsselwörter in Java

Eine formale Sprache wäre etwa die Menge der Schlüsselwörter in der Programmiersprache Java:

Beispiele: { class, if, else, for, while, ... }

Größe: Endlich

Beispiel 2

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel:

Gesucht ist eine Sprache L über $A = \{a, b\}$, in denen kein Wort das Teilwort ab enthält.

Deklaration:

Alternativ:

Beispiel 2

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel:

Gesucht ist eine Sprache L über $A = \{a, b\}$, in denen kein Wort das Teilwort ab enthält.

Deklaration: $L = \{a, b\} \setminus \{w_1 abw_2 | w_1, w_2 \in \{a, b\}^*\}.$

Alternativ:

Beispiel 2

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel:

Gesucht ist eine Sprache L über $A = \{a, b\}$, in denen kein Wort das Teilwort ab enthält.

Deklaration: $L = \{a, b\} \setminus \{w_1 abw_2 | w_1, w_2 \in \{a, b\}^*\}.$

Alternativ: $L = \{w_1 w_2 | w_1 \in \{b\}^* \land \{a\}^*\}.$

Beispiel 3

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Wiederholung: Mengen

Formale Sprachen

Aufgaben

- Das Alphabet ist A = {
- Die Sprache *L* sind alle Dezimalzahlen

Beispiel 3

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Wiederholung: Mengen

Formale Sprachen

Aufgaben

- **Das Alphabet ist** $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- Die Sprache *L* sind alle Dezimalzahlen

$$\Rightarrow$$
 $-22 \in L$

Beispiel 3

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

- **Das Alphabet ist** $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- Die Sprache *L* sind alle Dezimalzahlen
- ⇒ -22 ∈ L
- \Rightarrow 22 0 - 3 \notin L (aber \in A^* !

Beispiel 3

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

- **Das Alphabet ist** $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- Die Sprache *L* sind alle Dezimalzahlen
- ⇒ -22 ∈ L
- ightharpoonup \Rightarrow 22 0 - 3 \notin L (aber \in $A^*!$)

Produkt

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Definition: Produkt

Wiederholung: Mengen

Seien L_1 und L_2 zwei formale Sprachen. Dann bezeichnet

Formale Sprachen

$$L_1 \cdot L_2 = \{ w_1 w_2 | w_1 \in L_1 \text{ und } w_2 \in L_2 \}$$

Aufgaben

das Produkt der Sprachen L_1 und L_2 .

Beispiel:

Wie vorhin ist die Sprache L über $A = \{a, b\}$ gesucht, wo nirgendwo das Teilwort ab vorkommt. Komfortable Prduktschreibweise:

Produkt

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Definition: Produkt

Wiederholung: Mengen

Seien L₁ und L₂ zwei formale Sprachen. Dann bezeichnet

Formale Sprachen

$$L_1 \cdot L_2 = \{ w_1 w_2 | w_1 \in L_1 \text{ und } w_2 \in L_2 \}$$

Aufgaben

das Produkt der Sprachen L_1 und L_2 .

Beispiel:

Wie vorhin ist die Sprache L über $A = \{a, b\}$ gesucht, wo nirgendwo das Teilwort ab vorkommt. Komfortable Prduktschreibweise: $L = \{b\}^* \{a\}^*$

Produkt

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel: Produkt

Gesucht ist die Sprache der nichtleeren Wörter über dem Alphabet A.

Produkt

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel: Produkt

Gesucht ist die Sprache der nichtleeren Wörter über dem Alphabet A.

$$L = A \cdot A^*$$

Produkt

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel 2: Produkt

Gegeben: Die Sprachen $L_1 = \{a^n | n \in \mathbb{N}_0\}$ und $L_2 = \{b^n | n \in \mathbb{N}_0\}$. Sind diese Wörter $\in L_1 \cdot L_2$?

- ab
- **■** €
- bak
- aak

Produkt

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel 2: Produkt

Gegeben: Die Sprachen $L_1 = \{a^n | n \in \mathbb{N}_0\}$ und $L_2 = \{b^n | n \in \mathbb{N}_0\}$. Sind diese Wörter $\in L_1 \cdot L_2$?

- ab
- lacksquare
- bak
- aak

Produkt

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel 2: Produkt

Gegeben: Die Sprachen $L_1 = \{a^n | n \in \mathbb{N}_0\}$ und $L_2 = \{b^n | n \in \mathbb{N}_0\}$. Sind diese Wörter $\in L_1 \cdot L_2$?

- ab
- lacksquare
- bab
 - aak

Produkt

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel 2: Produkt

Gegeben: Die Sprachen $L_1 = \{a^n | n \in \mathbb{N}_0\}$ und $L_2 = \{b^n | n \in \mathbb{N}_0\}$. Sind diese Wörter $\in L_1 \cdot L_2$?

- ab
- lacksquare
- bab
- aab

Produkt

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel 2: Produkt

Gegeben: Die Sprachen $L_1 = \{a^n | n \in \mathbb{N}_0\}$ und $L_2 = \{b^n | n \in \mathbb{N}_0\}$. Sind diese Wörter $\in L_1 \cdot L_2$?

- ab
- lacksquare
- bab
- aab

Potenzen

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Definition: Potenzen

L sei eine formale Sprache. Rekursiv lässt sich auch die Potenz davon definieren.

$$L^{0} = \{\epsilon\}$$
$$L^{i+1} = L^{i} \cdot L$$

Potenzen

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel 1: Potenzen

Es sei $L = \{a\}^* \{b\}^*$. Was ist dann in

- L⁰
 - L
- · L

Potenzen

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel 1: Potenzen

Es sei $L = \{a\}^* \{b\}^*$. Was ist dann in

- L⁰
- L¹
-

Potenzen

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel 1: Potenzen

Es sei $L = \{a\}^* \{b\}^*$. Was ist dann in

- L⁰
- L¹
- L²

Konkatenationsabschluss

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt
Definition: Konkatenationsabschluss

L sei eine formale Sprache. Dann ist der Konkatenationsabschluss:

 $L^* = \bigcup L^i$

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Der ϵ -freie Konkatenationsabschluss ist:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Konkatenationsabschluss

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

ϵ -freier Konkatenationsabschluss

Aufgaben

Falls $\epsilon \in \mathit{L}$, so enthält der ϵ -freie Konkatenationsabschluss auch ϵ .

Konkatenationsabschluss

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Beispiel 1: Konkatenationsabschluss

Formale Sprachen

Argumentiere, dass $L^* = \{a, b\}^*$ ist.

Aufgaben

Beispiel 2: Mengenäquivalenz beweisen

Zeige, dass $L^* \cdot L = L^+$ (Tafel).

Konkatenationsabschluss

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Beispiel 1: Konkatenationsabschluss

Formale Sprachen

Argumentiere, dass $L^* = \{a, b\}^*$ ist.

Aufgaben

Beispiel 2: Mengenäquivalenz beweisen

Zeige, dass $L^* \cdot L = L^+$ (Tafel).

Beispiele

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiele

- IP4-Adressen
- Programmiersprache C
- 4 HTML
- E-Mail (RFC 5322)

Wie es geht

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- 2 Alphabet: $A = \{a, b\}$

Wie es geht

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- 2 Alphabet: $A = \{a, b\}$

Wie es geht

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel

- 4 Alle Wörter, die genau ein "b" enthalten
- ② Alphabet: $A = \{a, b\}$
- **3** $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$ oder

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

2

[Pleaseinsertintopreamble]bungsblatt 2

Wiederholung: Mengen

2 Wiederholung: Mengen

Formale Sprachen

Aufgaben

3 Formale Sprachen

4 Aufgaben

Übungsaufgabe

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Winter 2010/2011

Es sei $A = \{a, b\}$. Beschreiben Sie die folgenden formalen Sprachen mit den Symbolen $\{, \}$, a, b, ϵ , \bigcup , *, Komma, (,) und +:

- 1 die Menge aller Wörter über A, die das Teilwort "ab" enthalten
- @ die Menge aller W\u00f6rter \u00fcber A, deren vorletztes Zeichen ein \u00e4b\u00e4 ist
- die Menge aller Wörter über A, in denen nirgends zwei "b"s hintereinander vorkommen

Übungsaufgabe

Vincent Hahn - vincent.hahn@student.kit.edu

[Pleaseinsertintopreamble]bungsblatt

Sommer 2009 (4 von 46 Punkten)

Gegeben seien diese formalen Sprachen: Wiederholung: Mengen

$$L_{1} = \left\{ a^{k} b^{m} | k, m \in \mathbb{N}_{0} \wedge k \mod 2 = 0 \wedge m \mod 3 = 1 \right\}$$

$$L_{2} = \left\{ b^{k} a^{m} | k, m \in \mathbb{N}_{0} \wedge k \mod 2 = 1 \wedge m \mod 3 = 0 \right\}$$

Aufgaben

Geben Sie eine äquivalente Menge in Mengenschreibweise an für:

$$0 L = L_1$$

$$2 L = L_1 \cdot L_2$$

26/26