Trigonometry Functions

Example 1: A circular wire of radius

3cm

is cut and bent so as to lie along the circumference of a hoop whose radius is $48 cm\,$. Find the angle in degrees which is subtended at the centre of hoop.

Ans: Given that, radius of circular wire = 3cm

When it is cut then its length becomes $2\pi \times 3 = 6\pi$

Again, it is being placed along a circular hoop of radius 48cm .

The length (s) of the arc = 6π

Radius of circle, r = 48cm

Therefore, the angle heta (in radian) subtended by the arc at the centre of circle is given by

$$\Rightarrow \theta = \frac{Arc}{Radius}$$

$$\Rightarrow \theta = \frac{6\pi}{48}$$

$$\Rightarrow \theta = \frac{\pi}{8}$$

$$\Rightarrow \theta = 22.5^{\circ}$$

Trigonometry Functions

Example 15: If $\tan \theta = \frac{-4}{3}$, then $\sin \theta$ is

a)
$$\frac{-4}{5}$$
 but not $\frac{4}{5}$

b)
$$\frac{-4}{5}$$
 or $\frac{4}{5}$

c)
$$\frac{4}{5}$$
 but not $\frac{-4}{5}$

d) None of these

Ans: The correct answer is option (b) $\frac{-4}{5}$ or $\frac{4}{5}$

Given that, $\tan \theta = \frac{-4}{3} = \frac{P}{B}$.

By Pythagoras theorem, we have

$$\rightarrow H^2 = P^2 + B^2$$

$$\rightarrow H^2 = 4^2 + 3^2$$

(Here, we have taken positive value of perpendicular because length can't be negative)

$$\rightarrow H^2 = 16 + 9$$

$$\rightarrow H^2 = 25$$

$$\rightarrow H = 5$$

Since $\tan \theta = \frac{-4}{3}$ is negative, θ lies either in second quadrant or in fourth quadrant.

We know that $\sin \theta = \frac{P}{H}$. Therefore, we get

If θ lies in second quadrant, $\sin \theta = \frac{4}{5}$ and if θ lies in fourth quadrant, $\sin \theta = -\frac{4}{5}$.

Hence, the required answer is (b) $\frac{-4}{5}$ or $\frac{4}{5}$

Trigonometry Functions

Example 16: If $\sin\theta$ and $\cos\theta$ are the roots of the equation $ax^2-bx+c=0$, then a, b and c satisfy the relation.

a)
$$a^2 + b^2 + 2ac = 0$$

b)
$$a^2 - b^2 + 2ac = 0$$

c)
$$a^2 + c^2 + 2ab = 0$$

d)

$$a^2 - b^2 - 2ac = 0$$

Ans: The correct answer is option (b) $a^2 - b^2 + 2ac = 0$

Given that, $\sin \theta$ and $\cos \theta$ are the roots of the equation $ax^2 - bx + c = 0$.

We know that if the roots of the quadratic equation $ax^2 + bx + c = 0$ are α and β . Then we have, $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$. Therefore, we get

$$\Rightarrow \sin \theta + \cos \theta = \frac{b}{a} \dots (i)$$
 and $\sin \theta \cos \theta = \frac{c}{a} \dots (ii)$

On squaring both the sides in equation (i), we get

$$\Rightarrow \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = \frac{b^2}{a^2}$$

We have, $\sin\theta\cos\theta = \frac{c}{a}$ and we know that $\sin^2\theta + \cos^2\theta = 1$. Therefore, we get

$$\Rightarrow 1 + \frac{2c}{a} = \frac{b^2}{a^2}$$

$$\Rightarrow \frac{a+2c}{a} = \frac{b^2}{a^2}$$

$$\Rightarrow \frac{a+2c}{1} = \frac{b^2}{a}$$

On cross multiplication, we get

$$\Rightarrow a^2 + 2ac = b^2$$

$$\Rightarrow a^2 - b^2 + 2ac = 0$$

Trigonometry Functions

Example 17: The greatest value of Sin X COS X is

- a) 1
- b) 2
- c) √2
- d)

1/2

Ans: The correct answer is option (d) $\frac{1}{2}$

We have, $\sin x \cos x$

Multiply and divide the expression by $^{\mathrm{2}}$

$$\Rightarrow \frac{1}{2} \times 2\sin x \cos x$$

We know that $2\sin x \cos x = \sin 2x$. Therefore, we get

$$\Rightarrow \frac{1}{2} \times \sin 2x$$

We know that,

$$\Rightarrow -1 \leqslant \sin 2x \leqslant 1$$

Divide the expression by $^{\mbox{2}}$

$$\Rightarrow -\frac{1}{2} \leqslant \frac{\sin 2x}{2} \leqslant \frac{1}{2}$$

Hence, the greatest is $\frac{1}{2}$.

Trigonometry Functions

70. $\sin 10^{\circ}$ is greater than $\cos 10^{\circ}$.

Ans: Given, sin 10° > cos 10°

$$\Rightarrow \sin 10^{\circ} > \cos (90^{\circ} - 80^{\circ})$$

We know that $\cos(90^{\circ} - \theta) = \sin\theta$. Therefore, we get

It is incorrect because value of $\sin e$ is in increasing order.

Thus, the given statement is false.

Trigonometry Functions

72. One value of θ which satisfies the equation $\sin^4 \theta - 2\sin^2 \theta - 1$ lies between 0 and 2π .

Ans: We have, $\sin^4 \theta - 2\sin^2 \theta - 1$

Let $y = \sin^2 \theta$. Therefore, we get

$$\Rightarrow y^2 - 2y - 1 = 0$$

We know that for quadratic equation $ax^2 + bx + c = 0$, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Therefore, we get

$$\Rightarrow y = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \times 1 \times - 1}}{2 \times 1}$$

$$\Rightarrow y = \frac{2 \pm \sqrt{4 + 4}}{2}$$

$$\Rightarrow y = \frac{2 \pm 2\sqrt{2}}{2} = \frac{2(1 \pm \sqrt{2})}{2}$$

On canceling common terms, we get

$$\Rightarrow y = 1 \pm \sqrt{2}$$

$$\Rightarrow \sin^2 \theta = 1 \pm \sqrt{2}$$

$$\Rightarrow \sin^2 \theta = 1 + \sqrt{2} \text{ or } \sin^2 \theta = 1 - \sqrt{2}$$

We know that $-1 \le \sin \theta \le 1$. Therefore, we say that $\sin^2 \theta \le 1$.

But we have,

$$\Rightarrow \sin^2 \theta = 1 + \sqrt{2} \text{ or } \sin^2 \theta = 1 - \sqrt{2}$$

Which is not possible.

Thus, the given statement is false.

Trigonometry Functions

73. If $\cos ecx = 1 + \cot x$ then $x = 2n\pi, 2n\pi + \frac{\pi}{2}$.

Ans: Given, $\cos ecx = 1 + \cot x$

$$\Rightarrow \frac{1}{\sin x} = 1 + \frac{\cos x}{\sin x}$$

$$\Rightarrow \frac{1}{\sin x} = \frac{\sin x + \cos x}{\sin x}$$

$$\Rightarrow \sin x + \cos x = 1$$

Divide whole equation by $\sqrt{2}$.

$$\Rightarrow \frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x = \frac{1}{\sqrt{2}}$$

We know that $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ and $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. Therefore, we can write above written equation as,

$$\Rightarrow \sin\frac{\pi}{4}\sin x + \cos\frac{\pi}{4}\cos x = \frac{1}{\sqrt{2}}$$

Or

$$\Rightarrow \cos x \cos \frac{\pi}{4} + \sin x \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

We know that cos(x - y) = cos x cos y + sin x sin y. Therefore, we get

$$\Rightarrow \cos\left(x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \cos\left(x - \frac{\pi}{4}\right) = \cos\frac{\pi}{4}$$

We know that if $\cos\theta = \cos\alpha$, then $\theta = 2n\pi \pm \alpha$. Therefore, we get

$$\Rightarrow x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}$$

$$\Rightarrow x = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{4}$$

$$\Rightarrow x = 2n\pi + \frac{\pi}{4} + \frac{\pi}{4} \text{ or } \Rightarrow x = 2n\pi - \frac{\pi}{4} + \frac{\pi}{4}$$

$$\Rightarrow x = 2n\pi + \frac{\pi}{2} \text{ or } \Rightarrow x = 2n\pi$$

Thus, the given statement is true.