EXPERIMENT

Objective:

To determine the strength of given alkali mixture (NaOH & Na₂CO₃) by titrating it against standard HCl solution using phenolphthalein and methyl orange as an indicator.

Apparatus and Chemicals required:

Burette, pipette, conical flask, HCl, NaOH, Na₂CO₃, phenolphthalein and methyl orange indicators.

Theory:

The alkalinity of water is due to the presence of hydroxide ion (OH⁻), carbonate (CO₃²⁻) and bicarbonate ion (HCO₃⁻) present in the given sample of water. These can be estimated separately by titration against standard acid, using phenolphthalein and methyl orange indicators.

NaOH + HCl
$$\rightarrow$$
 NaCl + H₂O] P
Na₂CO₃ + HCl \rightarrow NaHCO₃ + NaCl] P
NaHCO₃ + HCl \rightarrow NaCl + CO₂ + H₂O] M

Procedure:

Pipette out 10 ml of alkali mixture in a conical flask + 1-2 drops of phenolphthalein indicator \rightarrow Pink color appears \rightarrow Titrate this against N/50 HCl until pink color just disappears \rightarrow This is the first end point P \rightarrow to the same mixture add 1-2 drops of methyl orange \rightarrow light yellow color appears \rightarrow continue the titration with N/50 HCl until the light yellow color changed to orange - red color \rightarrow This gives the second end point M.

Observation:

S.No.	Volume of N/50 HCl used with phenolphthalein (V ₁ ml)	Volume of N/50 HCl used with methyl orange (V ₂ ml)
1.		
2.		
3.		

Calculation:

 V_1 ml \equiv Half neutralization of Na₂CO₃ + neutralization of NaOH

 V_2 ml = Half neutralization of Na_2CO_3

Hence, (1) for complete neutralization of Na_2CO_3 required HCl (N/50) = $2V_2$ ml

(2) for complete neutralization of NaOH required HCl $(N/50) = (V_1-V_2)$ ml

Using Formula, $N_1V_1 = N_2 V_2$

For NaOH, $N_1 \times 10 = 1/50 \times (V_1 - V_2)$

Strength of NaOH = $N \times Eq$. wt. (40) gm/lit.

(Eq.wt. of NaOH = 40)

For Na₂CO₃, $N_1 \times 10 = 1/50 \times 2 V_2$

Strength of $Na_2CO_3 = N_1 \times Eq.$ wt. (53) gm/lit.

(Eq.wt. of $Na_2CO_3 = 53$)

Result:

- (1) The strength of NaOH isgm/lit.
- (2) The strength of Na₂CO₃ isgm/lit.

Precautions:

- (1) Burette should be vertical throughout the experiment.
- (2) The reaction mixture should continuously be shaken during titration.
- (3) Glass ware should be washed and dried before doing the experiments.
- (4) The amount of indicators should be same.