

Bedienungsanleitung LC 80

BEDIENUNGSANLEITUNG

Lerncomputer LC80

2. Ausgabe Mai 1985

veb mikroelektronik karl marx erfurt stammbetrieb

DDR-5010 Erfurt, Rudolfstraße 47. Telefon, 5,80, Telex. 061,306.

Inhaltsübersicht

		Seite
0.	Einführung	5
1.	Kurzbeschreibung	6
1.1.	Technische Kennwerte	6
1.2.	Darstellung der Bedienelemente und	9
	Anschlußstellen	
2.	Allgemeine Informationen	10
2.1.	Beschreibung der Tastatur	10
2.2.	Darstellung der 7-Segment-Anzeige	10
2.3.	Darstellung der Eingaben	11
2.4.	Fehleranzeige	11
3.	Inbetriebnahme und Programmeingabe	11
3.1.	Stromversorgung	11
3.2.	Tasteneingabe	12
3.3.	Registeranzeige und Stepfunktion	17
3.4.	Magnetbandanschluß	21
3.5.	Magnetbandinterface	24
3.6.	Speicherbereiche	26
3.7.	Periphere Bausteine	26
4.	Programmierbeispiele	28
4.1.	Einerkomplement	28
4.2.	8-Bit-Addition	28
4.3.	Linksverschiebung	29
4.4.	Ausblenden der oberen Tetraden	29
4.5.	Bestimmung der größeren von zwei Zahlen	30
4.6.	Ermittlung der Quadratzahlen	31
4.7.	Summieren von Daten	32
4.8.	Bestimmung der größten Zahl	33
5•	Programmtest und Fehlersuche	34
6.	Verwendung des Monitorprogramms	35
6.1.	Unterprogramme	35
6.2.	Praktische Beispiele	40
7.	Hinweise des Herstellers	52
8.	Literaturverzeichnis	53
9•	Anhang	55
10.	Anlage Stromlaufplan	

Werter Kunde!

Als Verbindungskabel für moderne Magnetbandgeräte sind zwei Kabeltypen standardisiert:

- Überspielkabel zur Verbindung Magnetbandgerät Magnetbandgerät und
- Diodenkabel zur Verbindung Magnetbandgerät Rundfunkempfänger Für den Magnetbandverkehr des LC 80 mit modernen Magnetbandgeräten

(Anschluß TA/TB - Buchse: Signaleingang Anschluß 1
Signalausgang Anschluß 3)
ist ein Überspielkabel erforderlich.

Hinweis:

Ist Ihr LC 80 nicht mit zwei ROM's U 505, sondern mit einem 2 KByte-EPROM (z. B. K 573 RF5 o. 2) bestückt, so ändern sich die Startadressen der nachfolgend aufgeführten Unterprogramme. (Siehe S. 58)

4

0. Einführung

Der Lerncomputer LC 80 ist ein Einkarten-Mikrorechner auf der Basis des Mikroprozessorsystems U 880. Er dient in erster Linie dem gründlichen Kennenlernen der Bausteine und dem Erlernen der Programmierung im Maschinencode. Darüber hinaus ist er für einfache Steuerungen, Kontrolleinrichtungen usw. einsetzbar.

Der Lerncomputer ermöglicht:

- die Eingabe von Programmen in Maschinensprache
- das Erlernen der Wirkungsweise der 158 Basisbefehle bzw. der über 450 Operationscodes des Mikroprozessors
- das Erlernen der Programmierung und der Wirkungsweise der Peripheriebausteine PIO (U 855) und CTC (U 857).
- Über zwei Steckverbinder stehen dem Anwender der gesamte CPU-Bus, 12 Ein-/Ausgabeleitungen sowie 4 Handshake-Leitungen des PIO und alle 4 Kanäle des CTC zur freien Verfügung. Damit läßt sich der Lerncomputer für einfache Steuerungen und Regelungen unmittelbar oder in zeitlicher Ablaufsteuerung einsetzen.
- In Verbindung mit einer akustischen Ausgabemöglichkeit können mit dem Lerncomputer einfache akustische Signale bzw. musikalische Spiele programmiert werden (z. B. Uhr mit Weckfunktion).
- Die Ausgabe wird durch eine 6stellige 7-Segment-LED-Anzeige realisiert. Neben der eigentlichen Funktion zur Darstellung der Adressen und Daten kann die Anzeige zur Erzeugung von feststehender oder Wanderschrift in 7-Segment-Darstellung sowie für optische Spiele verwendet werden.
- Die Eingabe erfolgt über eine Tastatur mit 25 Tasten, wobei neben den Funktionen auch RESET- und NMI-Signale erzeugt werden können.
- Als externer Speicher kann ein beliebiges Kassetten- oder Spulentonbandgerät angeschlossen werden. Das Laden von Programmen und Daten vom Band wird dabei durch automatisches Aufsuchen des gewünschten Datensatzes und Berechnung einer Prüfsumme unterstützt.

1. Kurzbeschreibung

Der LC 80 ist ein Einplatinenrechner auf der Basis des U 880-Systems. Die Programmierung erfolgt in Maschinensprache (U 880-Befehlssatz). Zur Eingabe wird eine Tastatur mit 25 Tasten (16 Hexadezimal-, 9 Funktionstasten; Einführung in Zahlensysteme durch Handbuch LC 80) genutzt.

Eine 6stellige 7-Segmentanzeige realisiert die Kommunikation zwischen Gerät und Anwender. Über ein Kassetteninterface kann ein Tonbandgerät angeschlossen werden, wodurch die Ein- und Ausgabe von Programmen ermöglicht wird. Die Stromversorgung muß durch Anschluß eines externen Netzteiles mit 8,5 ... 12 V Wechselspannung oder 10 ... 13 V Gleichspannung/0,6 ... 1 A realisiert werden.

Die Dimensionierung des Netzteiles ist so ausgelegt, daß keine stromziehenden Zusatzschaltungen benutzt werden.

Der LC 80 darf nur im geöffneten Zustand betrieben werden.

Achtung! Der LC 80 darf nur mit einem Netzteil betrieben werden, das den Sicherheitsbestimmungen nach TGL 200-7045 (bzw.

IEC) entspricht. (Schutzkleinspannung nach TGL 200-0602).

Die LED "HALT" (4), (s. Pkt. 1.2.) zeigt an, daß der LC 80 bei der Programmabarbeitung einen HALT-Befehl erreicht hat.

Die LED "OUT" (5), (s. Pkt. 1.2.) wird bei der programmierten Ausgabe von Tönen parallel zur Hörkapsel angesteuert.

Vor der Arbeit mit dem LC 80 ist es zum besseren Verständnis der Probleme der Mikroprozessorprogrammierung günstig, die Bedie-nungsanleitung und das zugehörige Handbuch LC 80 zu studieren.

1.1. Technische Kennwerte

1.1.1. Informationseingabe/-ausgabe

Tastatur 25stellig (16 Hexadezimal-, 9 Funktions-

tasten)

Anzeige 6stellige 7-Segmentanzeige

Ein-/Ausgabe- - Magnetbandinterface mit TB/TA-Anschluß

funktionen - 12 programmierbare Ein-/Ausgänge,

4 Handshake-Leitungen und 7 CTC-Leitungen

- CPU-BUS (ungepufeert)

1	.1	-2-	Funktionen

Bezeichnung	Taste	Funktion
RESET	RES	Unterbrechung der Programmausführung, Rücksetzen in Grundzustand erfolgt erst nach Loslassen der Taste
STORE	ST	Abspeichern von Programmen und Daten auf Magnetband
LOAD	LD	Rückladen von Programmen und Daten vom Magnetband in den Arbeitsspeicher
EXECUTE	EX	START von Anwenderprogrammen sowie der Interfacefunktion
NMI	IMMI	Auslösen eines nichtmaskierbaren Inter- rupts zur Programmunterbrechung sowie freien Verwendung im Anwenderprogramm
ADDRESS	ADR	Adress-Eingabe
DATA	DAT	Daten-Eingabe
LAST		Übergang zum vorherigen Schritt
NEXT	+	Übergang zum nächsten Schritt

1.1.3. Allgemeine Kennwerte

- eingesetzte Schaltkreise des Mikroprozessorsystems

CPU UD 880 D PIO 2x UD 855 D CTC UD 857 D

- realisierter Speicherumfang

2 KByte ROM 2 x U 505 D

1 KByte RAM 2 x U 214 D

- Stromversorgung 8,5 ... 12 V AC/10 ... 13 V DC (aus externem Netzteil)

- Stromaufnahme bei Nennbedingungen und Grundausstattung

< 600 mA bei DC 1000 mA bei AC

- Taktfrequenz

900 kHz + 25 kHz -15 kHz

- Nennarbeitsbedingungen

+10 °C ... +35 °C . Umgebungstemperatur

10 % ... 80 % bei max. 25 °C . relative Luftfeuchte linear abfallend von 80 % /25 °C auf 45 % /35 °C

- Ausführungsklasse N III für das Erzeugnis

- Ausgangspegel für Magnetbandinterface
- Lager- und Transportbedingungen
- . Umgebungstemperatur
- . Relative Luftfeuchtigkeit
- . max. Lager- und Transportdauer
- Schutzgrad
- Schutzklasse
- Abmessung
- Masse ohne Verpackung

- $U_{ss} \ge 40 \text{ mV}$ $(R_{T.} \ge 10 \text{ k}\Omega)$
- -25 °C ... +55 °C max. 93 % bei +25 °C
- 6 Monate

IP 00 TGL RGW 778

III

310 x 255 x 40 mm

ca. 1,3 kg

- 1.1.4. Zubehör
- 1 Stück Verpackung
- 1 Buchsenleiste für Steckverbinder (26polig, 222-26 TGL 29331 Bl. 04)
- 1 Buchsenleiste für Steckverbinder (58polig, 222-58 TGL 29331 Bl. 0.3)
- 1 Bedienungsanleitung LC 80 G-5403.500
- 1 Garantieurkunde

- 1.2. Darstellung der Bedienelemente und Anschlußstellen
- Anschlußbelegung siehe beiliegendes Schaltbild

Legende: 1 Anschluß für externes Netzteil

- 2 Magnetbandanschluß 3 USER-BUS-Anschluß 4 HALT-LED

- 5 OUT-LED 6 7-Segment-Anzeige
- 7 CPU-BUS-Anschluß
 - 8 Tastatur
 - 9 Typschild

2. Allgemeine Informationen

2.1. Beschreibung der Tastatur

	6	
Taste	Bezeichnung	Funktion
RES	(RESET)	Die Taste unterbricht sofort die Pro-
		grammausführung, bringt den Rechner in
		den Grundzustand und zeigt "LC-80" an.
ST	(STORE)	Die Funktion dient zum Speichern von
		Programmen und Daten auf Magnetband,
		um diese später weiter zu verwenden;
		dabei wird ein Programmname mit auf dem
		Magnetband abgespeichert.
LD	(LOAD)	Mit dieser Funktion werden Programme
		oder Daten, welche mittels STORE auf
		einem Magnetband abgelegt wurden, in den
		Rechner geladen.
EX	(EXECUTE)	Start der Ausführung eines Programms
		oder Befehls.
NMI	(NON MASKABLE	Auslösen eines NMI an die CPU
	INTERRUPT)	
ADR	(ADDRESS)	Adress-Eingabe-Taste
DAT	(DATA)	Daten-Eingabe-Taste
	(LAST)	Übergang zum vorherigen Schritt *
<u>+</u>	(NEXT)	Übergang zum nächsten Schritt

2.2. Darstellung der 7-Segment-Anzeige

Die optische Darstellung von Informationen erfolgt auf der 7-Segment-Anzeige des LC 80. Die 6 Stellen können zur Ausgabe von Ziffern und diversen Zeichen verwendet werden.

	1	2	3	4	5	6
	Ad	res	3		Dan	ten-
spalten				apa	alten	

Ist der Inhalt der Anzeige an einigen Stellen im folgenden Text unbekannt oder unwichtig, werden die entsprechenden Stellen hier mit X.X. dargestellt.

2.3. Darstellung der Eingaben

(ADDRESS) bedeutet, daß der Nutzer 4 Zifferntasten drücken soll, um eine Adresse einzugeben. Bei der Eingabe von mehr als 4 Ziffern werden nur die letzten 4 Ziffern gewertet; wird nichts eingegeben, so wird die in der Anzeige stehende Adresse verwendet. Bei der Eingabe der ersten Ziffer wird die vorherige Adresse durch den LC 80 gelöscht, bei weiterer Eingabe werden die Ziffern jeweils von rechts nach links verschoben.

(DATA) bedeutet, daß der Nutzer 1 Byte Daten in den Speicher eingeben soll; die Funktion entspricht in der Ausführung (ADDRESS). 2.4. Fehleranzeige

Bei einer fehlerhaften Eingabe wird durch den LC 80 die Fehlermeldung "ERROR" angezeigt, solange die Taste gedrückt bleibt.
Die Fehleranzeige erfolgt auch bei Übertragungsfehlern vom
Magnetbandgerät.

3. Inbetriebnahme und Programmeingabe

3.1. Stromversorgung

Schließen Sie an die Spannungsbuchse des Rechners den Stecker eines Netzteiles von 8,5 ... 12 V Wechselspannung oder 10 ... 13 V Gleichspannung (s. Pkt. 1.1.3.) an. Der LC 80 wird dabei automatisch gestartet. Seine Bereitschaft wird durch den Namen "LC-80" auf dem Display angezeigt, nachdem er die Anfangsmelodie und den Begrüßungstext vorgeführt hat. Sie können mit der Arbeit am Rechner beginnen, sobald der Text "LC-80" in der Anzeige erschienen ist. Sollte diese Anzeige nicht erfolgen, so drücken Sie bitte die Taste "RES", um den Rechner neu zu starten. Wenn das nicht zum Erfolg führt, überprüfen Sie bitte die Stromversorgung.

Falls nach dem Start des LC 80 der Text "LC-80" erscheint, ohne daß vorher die Anfangsmelodie und der Begrüßungstext ausgegeben wurden, ist zunächst die Stromversorgung zu unterbrechen und wieder herzustellen. Sollte auch jetzt nur der Text "LC-80" erscheinen, geben Sie auf die Adresse 23 FC H einen Wert ungleich 80 H (s. Pkt. 3.2.3.) ein und starten Sie das Gerät durch Betätigen

der Taste "RES".

Zeigt der LC 80 keine Reaktion und leuchtet zusätzlich die LED "HALT", so läßt sich auf Speicherfehler schließen und das Gerät ist zur Reparatur zu geben.

Achtung! Der IC 80 darf nur mit einem Netzteil betrieben werden, das den Sicherheitsbestimmungen nach TGL 200-7045 (bzw. IEC) entspricht. (Schutzkleinspannung nach TGL 200-0602). Bei Verwendung von Netzteilen mit einer Stromergiebigkeit von mehr als 2 A muß eine Sicherung (T 1 A) zwischengeschaltet werden, um im Störungsfall Schäden am Gerät und eine Überhitzung des Rechners zu vermeiden.

3.2. Tasteneingabe

Die Tasten "ST" und "LD" werden unter Pkt. 3.4. erläutert.

3.2.1. RESET

Nach dem Anlegen der Spannung an den LC 80 oder dem Betätigen der RESET-Taste wird ein RESET-Signal für den Rechner erzeugt. Dadurch beginnt der LC 80 mit der Herstellung des Grundzustandes. Nachdem alle Anfangswerte durch das Initialisierungsprogramm eingestellt sind, erscheint der Name "LC-80" in der Anzeige und der Rechner ist bereit zur Arbeit. Es treten zwei verschiedene RESET-Varianten beim LC 80 auf. Bei dem durch das Einschalten der Versorgungsspannung auftretenden "power-on-Reset" beginnt der Rechner mit dem Spielen der Anfangsmusik und dem Begrüßungstext auf der Anzeige. Nach dem Drücken der RESET-Taste erscheint lediglich "LC-80" in der Anzeige. Diese Unterscheidung wird durch das Monitorprogramm vorgenommen. Durch Betätigen der RESET-Taste nach dem Einschalten des Rechners können die Anfangsmusik und der Begrüßungstext übersprungen werden. Die RESET-Taste dient zum Abbrechen von Anwenderprogrammen. die nicht selbst in den Monitor zurückkehren, oder zur definierten Rückkehr in den Grundzustand.

3.2.2. ADDRESS

Nach dem Drücken der Taste "ADR" kann eine Adresse eingegeben werden.

Bedienungsfolge: ADR (ADDRESS)

Beispiel: Setzen der Adresse 2100

Taste Anzeige

Anzeige Beschreibung

ADR X.X.X.X X

Nach dem Drücken der ADR-Taste erfolgt eine durch Dezimalpunkt markierte Anzeige der gültigen Adresse, womit der LC 80 anzeigt, daß er die Eingabe der Adresse erwartet.

2 0.0.0.2.X X

Drücken der Zifferntaste "2"

1 0.0.2.1.X X

Drücken der Zifferntaste "1"

0 0.2.1.0.X X Drücken der Zifferntaste "0"

3.2.3. DATEN, EX, +, -

Nach dem Drücken der Taste "DAT" können Speicherplätze gelesen und im RAM mit Daten beschrieben werden.

Bedienungsfolge: DAT (DATA)

Beispiel:

Beschreiben des Speicherplatzes

2100 mit den Daten "CD"

Taste Anzeige Beschreibung

2.1.0.0.X X

Zustand der Anzeige nach dem

vorherigen Beispiel.

DAT 2 1 0 0 X.X.

Nach dem Drücken der DAT-Taste wechseln die Dezimalpunkte auf die Datenanzeige; der LC 80 ist bereit, die folgenden Ziffern als Daten

anzunehmen.

2 1 0 0 0.C. 2 1 0 0 C.D. Drücken der (HEX-) Zifferntaste "C"
Drücken der (HEX-) Zifferntaste "D"

Die eingegebenen Daten werden sofort in den Speicher eingeschrieben.

+ - Übergang zum nächsten bzw. vorherigen Schritt Nachdem in der Anzeige des LC 80 gültige Ziffern stehen (4 Hex-Ziffern auf der linken Seite als Adresse, 2 Hex-Ziffern rechts als Daten), wird durch das Drücken der Taste "+" oder "-" die Adresse um 1 erhöht bzw. erniedrigt. Gleichzeitig erfolgt die Anzeige der entsprechenden Daten und Markierung der Daten-Anzeige für weitere Eingaben. Beispiel: Der Speicherplatz 2101H ist mit 7AH und der Speicherplatz 2102H mit 00H zu laden.

Taste	Anzeige	Beschreibung
	2 1 0 0 C.D.	Anzeige nach vorherigem Beispiel
+	2 1 0 1 X.X.	Nach dem Drücken der Taste "+"
		wird die Adresse um 1 erhöht und
		es werden die Daten, welche auf
		diesem Speicherplatz stehen, ange-
		zeigt.
7	2 1 0 1 0.7.	Drücken der Zifferntaste "?"
	2 1 0 1 7.A.	Drücken der Zifferntaste "A"
+	2 1 0 2 X.X.	Erhöhen der Adresse
0	2 1 0 2 0.0.	Drücken der Zifferntaste "O"

Beispiel: Die Adressenanzeige zeigt 2102 H; der Inhalt des Speicherplatzes 2101 H ist auf '79H' zu ändern.

Taste	Anzeige	Beschreibung
	2 1 0 2 0.0.	Anzeige nach vorherigem Beispiel
	2 1 0 1 7.A.	Nach Drücken der Taste "-" wird
		die Adresse um 1 erniedrigt und es
		werden die dort stehenden Daten
		angezeigt.
7	2 1 0 1 0.7.	Drücken der Zifferntaste "7"
9	2 1 0 1 7.9.	Drücken der Zifferntaste "9"

EX Ausführung

Mit der Ausführungstaste wird ein Programm auf der Adresse gestartet, die in der Anzeige steht. Während der Abarbeitung des Anwenderprogrammes bleibt die Anzeige dunkel, sofern das Programm nicht selbst die Anzeige bedient.

Bei Fehlbedienung erscheint "ERROR" in der Anzeige.

Taste	Anzeige	Beschreibung
	LC-80	Die Anzeige ist im Grundsustand.
		Damit wird angezeigt, daß keine
		Anwenderadresse eingestellt ist.
EX	ERROR	Es wird demzufolge ein Bedienungs-
		fehler angezeigt.
	LC-80	Nach dem Loslassen der EX-Taste
		kehrt der Rechner in den Grund-
		sustand zurück.
ADR	X.X.X.X.X	Drücken der ADR-Taste und einge-
\		ben der Adresse 2100.
2	0.0.0.2.X X	
1	0.0.2.1.X X	
0	0.2.1.0.X X	
0	2.1.0.0.X X	
EX		Der LC 80 führt das Pregramm (Anfangs-
		musik) ab Adresse 2100H aus.

Beispiel: Spielen der Anfangsmusik

Taste	Anzeige	Beschreibung
	XXXXXX	
RES	L C - 8 O	
ADR	X.X.X.X.X	Anfangsadresse des Programms
2	0.0.0.2.X X	
1	0.0.2.1.X X	
0	0.2.1.0.X X	
0	2.1.0.0.X X	
DAT	2 1 0 0 X.X.	
C	2 1 0 0 0.0.	CALL-Befehl auf Adresse OSEAH
D	2 1 0 0 C.D.	(Monitorprogramm zum Spielen
+	2 1 0 1 X.X.	der Musik)
B	2 1 0 1 0.E.	
A	2 1 0 1 E.A.	
+	2 1 0 2 X.X.	
8	2 1 0 2 0.8.	
•	2 1 0 3 X.X.	

Taste	Anzeige	Beschreibung
7	2 1 0 3 0.7.	HALT-Befehl
6	2 1 0 3 7.6.	
+	2 1 0 4 X.X.	
ADR	2.1.0.4.X X	Adresse auf Anfang
2	0.0.0.2.X X	
1	0.0.2.1.X X	
0	0.2.1.0.X X	
0	2.1.0.0.C D	
EX		Programmstart

Um das Musikstück zu wiederholen, drücken Sie bitte folgende Tasten:

RES ADR 2 1 0 0 EX

3.2.4. NMI Auslösetaste für nichtmaskierbaren Interrupt Mit dieser Taste wird an die CPU ein NMI (nichtmaskierbarer Interrupt) ausgelöst. Dieser NMI ist im Gegensatz zu einem, über den INT-Eingang der CPU ausgelösten Interrupt, nicht sperrbar. Ein NMI zwingt die CPU automatisch zu einen RESTART ab Speicherplatz 0066H.

Unter dieser Adresse, die sich innerhalb des Monitorprogrammbereiches befindet, ist ein Sprung zur RAM-Adresse 2340H gespeichert.

Innerhalb der "power on"-Einschaltroutine des LC 80 wird ab dieser Adresse ein Sprung zu einem Monitorprogramm eingetragen. Dieses Unterprogramm realisiert das kurze Aufleuchten der Anzeige

INT

nach dem Betätigen von NMI. Mittels eines Rückkehrbefehles RETN wird hiernach die Programmabarbeitung unmittelbar nach der Programmstelle fortgesetzt, an der die NMI-Unterbrechung erfolgte.

Möchten Sie die NMI-Funktion innerhalb Ihres Programmes verwenden, so können Sie kürzere NMI-Unterprogramme ab der Adresse 2340H eintragen. Sollten die hierbei verfügbaren 144 Byte nicht ausreichen oder soll Ihr NMI-Unterprogramm an anderer Stelle beginnen, so tragen Sie unter der Adresse

2340H einen Sprungbefehl zu ihrer gewählten Startadresse ein.

3.3. Registeranzeige und Stepfunktion

Zur effektiven Fehlersuche in Anwenderprogrammen, zur Programmverfolgung sowie zum anschaulichen Erlernen der einzelnen CPU-Befehle verfügt der LC 80 über die Funktionen "Registeranzeige" und "Stepfunktion". Beide werden als NMI-Unterprogramm behandelt und können nach Einschreiben eines entsprechenden Sprungbefehles unter der NMI-Startadresse 2340H sehr rationell durch Betätigung von NMI aufgerufen werden.

Bitte beachten Sie, daß der Stackpointer als SP-2 angezeigt wird und bei Verlassen o. genannter Funktionen wieder um 2 erhöht wird.

3.3.1. Registeranzeige

Sie ermöglicht die Darstellung und Veränderung aller CPU-Register (mit Ausnahme der I- und R-Register).

Zur Auslösung der Registeranzeigefunktion sind vorher felgende RAM-Zellen zu beschreiben:

ADR	DAT
2340H	С3Щ
2341H	90H
2342H	OAH

Unter der Adresse 2340H als Startadresse für Anwender-HMI-Unterprogramme wird ein Sprung zur Startadresse des Registeranseige-Unterprogrammes eingetragen.

Wird nun ein beliebiges Anwenderprogramm abgearbeitet, se wird durch Betätigen von MMI das laufende Programm unterbrochen. In der Anzeige erscheint links der Inhalt des Registerpaares AF (bei Erstbetätigung) bzw. der Inhalt des zuletzt dargestellten Paares (bei wiederholter Benutzung des Registeranzeige-Unterprogrammes) sowie rechts der Name des dargestellten Registerpaares.

Durch Betätigung von + wird der Inhalt des jeweils nächsten Registerpaares in der Reihenfolge AF, BC, DE, HL, A'F', B'C', D'E', H'L', IX, IY, SP, PC angezeigt. Nach PC wird mit AF wieder begonnen.

Durch Betätigung von - wird der Inhalt des jeweils vorhergehenden Registerpaares gemäß obiger Reihenfolge angezeigt. Hach AF wird mit PC wieder begonnen.

Soll der Inhalt eines Registerpaares verändert werden, so erfolgt dies durch Betätigen der entsprechenden Zifferntasten. Die Ziffern werden hierbei von rechts nach links durchgeschoben.

Der so geänderte Inhalt des Registerpaares ist vorerst nur Anzeigewert - nicht als wahrer Registerinhalt vorhanden. Dies wird durch die vier Punkte signalisiert:

Falls Ihnen bei der Eingabe ein Fehler unterlaufen ist und Sie möchten den ursprünglichen Registerinhalt noch einmal wissen, so können Sie ihn in diesem Fall durch Betätigung von + , - surückrufen.

Erst mit Betätigung von EX wird der Anzeigewert in das jeweils dargestellte Registerpaar übernommen. Sie erkennen dies am Verlöschen der vier Punkte.

Diese Verfahrensweise gibt Ihnen eine Sicherheit gegen versehentliches Verändern eines Registerinhaltes.

Bei Betätigung von DAT erscheint links der Inhalt des Programmsählers PC und rechts die unter dieser Adresse abgelegten Daten.

Durch Betätigung von ADR wird das Unterprogramm "Registeranseige" verlassen. Alle Registerinhalte werden gemäß den Anseigewerten von der CPU übernemmen (bei Veränderungen nur nach vorheriger Betätigung von EX) und es wird die Programmabarbeitung unter der Adresse, die mit dem Inhalt von PC festgelegt wurde. fortgesetzt.

D. h. bei unverändertem Inhalt von PC wird an der Programmstelle fortgesetzt, wo suvor die Unterbrechung durch HMI erfelgte. Durch erneute Betätigung von MMI kann die Programmabarbeitung zu jedem Zeitpunkt erneut unterbrochen und die Funktion "Registeranzeige" in beschriebener Weise verwendet werden. Bitte beachten Sie, daß bei Verwendung der Funktion "Registeranzeige" der RAM-Bereich von 22D8H - 2305H durch dieses Unterprogramm belegt wird und somit durch das Anwenderprogramm nicht verwendet werden darf.

3.3.2. Stepfunktion

Die Stepfunktion (Step=Schritt) ermöglicht die befehlsweise Abarbeitung eines vorgegebenen Programmes. In der Anzeige wird der Inhalt der einzelnen Registerpaare (analog Funktion "Registeranzeige") dargestellt.

Somit kann die Wirkung der einzelnen CPU-Befehle innerhalb eines Programmablaufes anschaulich verfolgt werden. Zur Auslösung der Stepfunktion sind vorher folgende RAM-Zellen zu beschreiben:

ADR	DAT
2340H	С3Н
2341H	90H
2342H	OBH

Unter der Adresse 2340H als Startadresse für Anwender-NMI-Unterprogramme wird ein Sprung zur Startadresse der Stepfunktion eingetragen.

Nach Betätigung von ADR wird jetzt die Startadresse, von der ab ein entsprechendes Programm bzw. Programmabschnitt schrittweise abgearbeitet werden soll, eingetragen.

Der Übergang zur Stepfunktion erfolgt mittels Betätigung von NMI. Hierbei wird der erste Befehl (Adresse des ersten Befehlsbytes entspricht der eingegebenen Startadresse) abgearbeitet und danach zur Funktion Registeranzeige (mit allen unter Pkt. Registeranzeige aufgeführten Teilfunktionen, außer bei ADR) übergegangen.

Jedoch erscheint als Vorzugsstellung der Programmzählerstand PC bzw. bei allen weiteren Schritten das zuletzt angezeigte Registerpaar.

Mit jeder weiteren Betätigung von ADR wird der gemäß

Programmabarbeitung nachfolgende Befehl ausgeführt und danach wiederum zur Funktion "Registeranzeige" übergegangen. Das Abbrechen der Stepfunktion erfolgt mittels $\overline{\text{RES}}$.

Hiernach befindet sich der LC 80 in der Ausgangslage, der RAM-Inhalt bleibt erhalten, so daß hiernach das Anwenderprogramm in gewohnter Weise geändert oder die Abarbeitung neu gestartet werden kann.

Bitte beachten Sie, daß bei Verwendung der Stepfunktion der RAM-Bereich von 22D8H - 2305H durch dieses Unterprogramm belegt wird und somit durch das Anwenderprogramm nicht verwendet werden darf.

Desweiteren ergeben sich einige kleine Einschränkungen:

- Kanal O des CTC kann nicht verwendet werden. Er dient innerhalb des Unterprogrammes "Stepfunktion" zur Erzeugung eines Interrupts während der Abarbeitung des jeweils nächsten Anwenderbefehles
- hierzu wird das I-Register auf 23H geladen
- IM 2 wird eingenommen
- ein im Anwenderprogramm enthaltener Befehl "DI" blockiert die weitere Abarbeitung der "Stepfunktion"
- die Abarbeitung von anwendereigenen Interruptroutinen mittels Stepfunktion ist aufgrund der Spezifik dieses Funktionsunterprogrammes nicht möglich.

Derartige Interruptroutinen können aber sehr effektiv nach der im Abschnitt "Programmtest und Fehlersuche" dargelegten Methode getestet werden.

3.4. Magnetbandanschluß

Über den Magnetbandanschluß können Daten und Programme auf Magnetband gespeichert und wieder zurück in den Rechner geladen werden. Die Übertragung erfolgt frequenzkodiert, um eine hohe Störsicherheit zu erreichen. Jedem Programm, welches auf Band abgelegt werden soll, muß dabei ein Name zugewiesen werden, unter dem es später zurückgerufen wird; dieser Name wird mit auf dem Band abgelegt.

Neben dem Programmamen ist die Anfangs- und Endadresse des zu übertragenden Programms bzw. Datenblocks anzugeben.

Wird dabei eine Endadresse die kleiner als die Anfangsadresse ist angegeben, so erscheint die Anzeige "ERROR".

Nach Betätigung der Taste "-" können die entsprechenden Angaben korrigiert werden.

Die Endadresse darf nicht zum Programm gehören, da der Inhalt nicht übernommen wird.

Die Übertragung eines Programmes von 1 KByte benötigt etwa 1: 45 min, bei kürzeren Programmen entsprechend weniger. Der Rechner ist mit einem Dioden- bzw. Überspielkabel (abhängig vom jeweiligen Magnetbandgerät) mit dem Magnetbandgerät zu verbinden. Dieses Kabel muß vor Beginn der Operation in die entsprechende Buchse eingesteckt werden.

Starten Sie bitte das Band bevor Sie die EX-Taste drücken.

A) Ubertragung eines Programmes aus dem Speicher zum Tonband Allgemeine Befehlsfolge:

ST (Filename) + (START ADDRESS) + (END ADDRESS) EX
Beispiel: Speichern Sie die Daten, welche auf den Adressen
2100 - 2103 stehen, unter dem Filenamen FOO1
auf Band ab.

Taste	Anzeige	Beschreibung
ST	X.X.X.X P	Das "F" zeigt an, daß der Fi-
		lename eingegeben werden kann.
P 0 0 1	F.O.O.1 F	Filename F001
+	X.X.X S	"S" zeigt an, daß die Start-
		adresse eingegeben werden kann.
2 1 0 0	2.1.0.0. S	Startadresse 2100H
+	X.X.X.Y E	Das "E" zeigt an, daß die End-
		adresse eingegeben werden kann.
2 1 0 4	2.1.0.4 E	Endadresse 2104H
EX		Der Speicherinhalt wird auf das
		Tonband übertragen, die 7-Segment-
		Anzeige ist aus, das OUT-LED
		leuchtet.
	2 1 0 4 X.X.	Nach Schluß der Übertragung
		steht die Endadresse in der An-
		zeige.

Bitte überprüfen Sie vor einer Übertragung, ob Tonbandgerät und LC 80 ordnungsgemäß verbunden sind. Bringen Sie das Band bzw. die Kassette in Aufnahmeposition und schalten Sie das Gerät auf Aufnahme. Erst danach betätigen Sie bitte die EXTaste des LC 80, um die Übertragung zu beginnen; anderfalls besteht die Gefahr, daß die Daten unvollständig aufgezeichnet werden

B) Laden eines Programms vom Magnetband

Allgemeine Befehlsfolge:

LD (Filename) EX

Beispiel: Laden der Daten, die unter dem Namen FOO1 auf Kassette stehen, (die Daten müssen zuvor mit der STORE-Funktion auf Band gespeichert worden sein).

Überprüfen Sie zu Anfang, ob LC 80 und Tonbandgerät ordnungsgemäß verbunden sind und spulen Sie das Band auf die Anfangsposition zurück.

Taste	Anzeige	Beschreibung
LD	X.X.X F	Das "F" zeigt an, daß ein Filename
		eingegeben werden kann.
F 0 0 1	F.0.0.1 F	Filename FOO1
EX		Die Anzeige verlischt, der Rechner
		erwartet Informationen vom Magnet-
		band.
		Mit dem Eintreffen erster Signale
		leuchten alle Punkte.
		Rechner sucht Filename
	[]	Ein anderer Filename wurde gelesen,
		der Rechner sucht weiter. (Jeder
		Filename wird, unmittelbar nach-
		dem er gelesen wurde, kurz ange-
		zeigt.)
	$\mathbf{F} \ 0 \ 0 \ 1 - \mathbf{F}$	Der Filename wurde gefunden.
	1 1 1 1 1	Die Anzeige von "'" zeigt an, daß
		die Daten in den Speicher geladen
		werden.
	2 1 0 4 X.X.	Nachdem die Daten vollständig ein-
		gelesen wurden, wird die Endadres-
		se angezeigt.

Nach der Angabe des Filenamens sucht der LC 80 automatisch die Daten auf dem Tonband und lädt diese in den Speicher. Nach der Übertragung wird eine Prüfsumme berechnet und mit der übertragenen verglichen, um Übertragungsfehler auszuschließen. Werden Fehler festgestellt, so erscheint nach der Übertragung die Anzeige "ERROR", andernfalls wird die Endadresse angezeigt.

Allgemeine Bemerkungen zum Gebrauch des Magnetbandgerätes

1. Für die Datenspeicherung sind spezielle Digitalkassetten empfehlenswert, jedoch sind normale Kassetten in der Regel ausreichend.

Beachten Sie bitte, daß Kassetten auf beiden Seiten einen Vorspann haben, der nicht für die Aufzeichnung geeignet ist. Setzen Sie die Magnetbänder nicht dem Einfluß von starken Magnetfeldern, hohen Temperaturen oder direkter Sonnenbestrahlung aus und vermeiden Sie eine Verschmutzung des Bandes.

3.5. Magnetbandinterface

Die abzuspeichernden digitalen Signale gelangen von Bit 1 des Ports B der System-PIO über einen Tiefpaß (R277, C253) und einen Spannungsteiler (R278, R279) an die Diodenbuchse. Die Signale können mit einem beliebigen Kassetten- bzw. Spulentonbandgerät gespeichert werden. Dazu ist eine Verbindung mit dem Diodeneingang des jeweiligen Gerätes herzustellen.

Auf Band gespeicherte Daten werden über ein Verbindungskabel dem Mikrorechner eingegeben. Der Operationsverstärker B361 (N239) verstärkt die Signale, um einen ausreichenden Pegel für den nachfolgenden PIO-Eingang bereitzustellen.

Über Bit O von Port B der System-PIO gelangen die gespeicherten Daten zur CPU.

Darstellung des Magnetbandsignals

1. Bit-Darstellung: 12 Takte 2 kHz und 3 Takte 1 kHz entsprechen 'O'

> 6 Takte 2 kHz und 6 Takte 1 kHz entsprechen '1'

2. Byte-Darstellung

Start				Stop					
<u> </u>	BitO	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	1
_				90ms					-

Aufbau des Datensatzes auf dem Magnetband:

LEAD SYNC				MID SYNC		FAIL SYNC
1 kHz	2 Byte	2 Ryte	1 Byte	2 kHz 2 Sec	,	2 kHz 2 Sec

LEAD SYNC - Anfangssynchronisationsfrequenz

FILE NAME - Programmname
START ADR - Startadresse
END ADR - Endadresse
CHK SUM - Prüfsumme

MID SYNC - Mittensynchronisationsfrequenz

DATA - Programmdaten

FAIL SYNC - Endsynchronisationsfrequens

3.6. Speicherbereiche

Das Monitorprogramm ist in zwei ROM's U 505 (2x1 KByte) enthalten. Der RAM-Bereich wird durch 2 Schaltkreise U 214 realisiert. Davon sind die letzten 66 Byte für das Monitorprogramm reserviert.

Adresse	Belegung
0000H 03FF	1. ROM
0800H OBFF	2. ROM

2000H ... 23FFH 1 K-RAM-Speicher

Durch den Decoderschaltkreis DS8205 (D209) wird der ROM-Bereich in Blöcken zu 2 KByte ausgewählt, bei der Adresse 0000H beginnend. Mittels des DS8205 auf Pos. D210 erfolgt die Decodierung des RAM-Bereiches in Blöcken zu 1 KByte, bei der Adresse 2000H beginnend.

Über den Anschluß "MEDI" des CPU-Bus kann mit MEDI = L der gesamte interne Speicherbereich abgeschaltet werden.

Die im ROM-Bereich vorhandenen RESTART-Adressen sind für den Anwender nicht zugängig. Um sie nutzen zu können, wurde über Sprungbefehle zu festgelegten Adressen im RAM-Bereich ein indirekter Zugriff ermöglicht.

RO M- Adresse	Adresse im RAM-Bereich
RST1 0008H	2308н
RST2 0010H	2310H
RST3 0018H	2318H
RST4 0020H	2320Н
RST5 0028H	2328н
RST6 0030H	2330Н
RST7 0038H	2338н

3.7. Periphere Bausteine

Die Ansteuerung der Tastatur und der Anseige erfolgt durch die beiden PIO-Bausteine U 855. Die System-PIO D 206 gibt über das Port A die Segmentinformation und über das Port B die Digit-Information aus. Diese Signale dienen gleichzeitig der Tastaturaktivierung. Bit 0 und 1 von Port B werden für das Magnetband-Interface verwendet.

Die Abfrage der Tastatur realisiert die User-PIO D 207 durch die Bits 4 bis 7 von Port B. Die Bits 0 ... 3 von Port B sowie das gesamte Port A stehen für den Anwender zur Verfügung. Dazu sind sie über den Steckverbinder "User-Bus" herausgeführt.

Zuordnung der Anzeige-Segmente zu Port A der System-PIO

D	E	С	DP	G	A	F	В
A7	A 6	A 5	A 4	A3	A2	A 1	∆ O

Segmente Bits von Port A

Belegung einer 7-Segment-Anzeige

Zuordnung der Digits zu Port B der System-PIO

	Adresse			1	aten
B7	В6	B5	B4	B3	B2

Anzeigen Bits von Port B

Der CTC-Baustein U 857 kann vom Anwender vollständig benutzt werden. Dazu sind alle vier C/TRG-Eingänge sowie drei ZC/TO-Ausgänge über den Steckverbinder "User-Bus" herausgeführt. Zur Interruptkaskadierung (IEO-IEI-Verknüpfung) besitzt der CTC die höchste Priorität, gefolgt von der User-PIO D 207 und zuletzt die System-PIO D 206.

4. Programmierbeispiele

4.1. Binerkomplement

Aufgabe: Vom Inhalt des Speicherplatzes 2040H ist das Einerkomplement zu bilden (Negation). Das Ergebnis ist auf dem Speicherplatz 2041H abzulegen.

ADR OPCODE	SOURCE	-STATEMENT	
2000		ORG 2000H	; ADRESSE PROGRAMMBEGINN
2000 3A4020	BSP1:	LD A, (2040H)	; AUSGANGSWERT LADEN
2003 2F		CPL	; KOMPLEMENT BILDEN
2004 324120		LD (2041H),A	; ERGEBNIS ABSPEICHERN
2007 76		HALT	; CPU-HALT
2040		ORG 2040H	; ADRESSE DATEN
2040 6A		DEFB 6AH	; AUSGANGSWERT
			(BRISPIRI.)

Als Ergebnis wird auf dem Speicherplatz 2041H 95H abgelegt.

4.2. 8-Bit-Addition

Aufgabe: Die Inhalte der Speicherplätze 2040H und 2041H sind zu addieren. Die Summe ist auf dem Speicherplatz 2042H abzulegen. (Ein eventueller Übertrag ist nicht zu berücksichtigen).

2000		ORG 2000H	; ADRESSE PROGRAMMBEGINN
2000 214020	BSP2:	LD HL, 2040H	; ADRESSE ERSTER OPERAND
2003 7E		LD A, (HL)	; OPERAND NACH A LADEN
2004 23		INC HL	; ADRESSE ZWEITER OPERAND
2005 86		ADD A, (HL)	; OPERANDEN ADDIEREN
2006 23		INC HL	; ADRESSE FÜR ERGEBNIS
2007 77		LD (HL),A	; ERGEBNIS ABLEGEN
2008 76		HALT	

2040	ORG 2040H	; ADRESSE DATEN
2040 38	DEFB 38H	
2041 2B	DEFB 2BH	

Als Ergebnis wird auf dem Speicherplatz 2042H 63H abgelegt.

4.3. Linksverschiebung

Aufgabe: Der Inhalt des Speicherplatzes 2040H ist um 1 Bit nach links zu verschieben, das Ergebnis ist auf dem Speicherplatz 2041H abzulegen.

2000	ORG 2000H	; ADRESSE PROGRAMMBEGINN
2000 3A4020 BSP3:	LD A, (2040H)	; OPERAND LADEN
2003 CB 27	SLA A	;1 MAL VERSCHIEBEN
2005 324120	LD (2041H),A	; ERGEBNIS ABLEGEN
2008 76	HALT	
2040	ORG 2040H	; ADRESSE DATEN
2040 6F	DEFB 6FH	;BITFOLGE 01101111B
Als Ergebnis wird au	f dem Speicherplatz	2 2041H ODEH abgelegt.
(Bitfolge 11011110B)		

4.4. Ausblenden der oberen Tetrade

Aufgabe: Die oberen 4 Bit der auf dem Speicherplatz 2040H stehenden Zahl sind zu löschen, die unteren 4 Bit unverändert zu lassen. Das Ergebnis ist auf dem Speicherplatz 2041H abzulegen.

2000		ORG 2000H	; ADRESSE PROGRAMMBEGINN
2000 3A4020	BSP4:	LD A, (2040H)	;OPERAND LADEN
2003 E60F		AND OFH	; MASKIEREN DER BITS
2005 324120		LD (2041H),A	; ABLEGEN DES ERGEBNISSES
2008 76		HALT	
2040		ORG 2040H	; ADRESSE DATEN
2040 B8		DEFB OBSH	

Als Ergebnis wird auf dem Speicherplatz 2041H 08H abgelegt.

4.5. Bestimmung der größeren von zwei Zahlen

Die größte von der in 2040H und 2041H stehenden Zahlen ist zu bestimmen und auf dem Speicherplatz 2042H abzulegen. Die Zahlen sollen als vorzeichenlose BCD-Zahlen vorliegen.

2000			ORG, 2000H	; ADRESSE PRO- GRAMMBEGINN
2000	214020	BSP5:	LD HL, 2040H	; ADRESSE ERSTER
2003	7 B		LD A, (HL)	OPERAND; ERSTER OPERAND
			•	NACH A
2004	23		INC HL	; ADRESSE ZWEITER OPERAND
2005	BE		CMP (HL)	; VERGLEICH MIT
2006	D20A20		JP NC, FERTIG	2. OPERAND ; SPR., WENN
2000	DEOREO		or no, imize	1. GRÖSSER
2009	7E		LD A, (HL)	; ZWEITER OPERAND NACH A
0004	00	TO THE CO	TWO 117	
200A	-	FERTIG:	INC HL	; ZIELADRESSE
200B	77		ID (HL),A	; GRÖSSERE ZAHL ABLEGEN
200C	76		HALT	∴
2040			ORG 2040H	; ADRESSE DATEN
2040	79		DEFB 79H	
2041	5 A		DEFB 5AH	

Als Ergebnis wird auf dem Speicherplatz 2042H 79H abgelegt.

Durch den 'CP'-Befehl, welcher die Flags beeinflußt, können die folgenden Vergleichoperationen durchgeführt werden. Dabei stellt 'A' den Inhalt des Akkumulators und 'X' den Vergleichsoperanden dar.

4.6. Ermittlung der Quadratzahlen

Aufgabe: Mittels der Tabellen-Methode ist die Quadratzahl der auf dem Speicherplatz 2040H stehenden Zahl zu bestimmen. Das Ergebnis ist auf dem Speicherplatz 2041H abzulegen. Die Tabelle beginnt auf Adresse 2060H für Werte von 0 bis 9.

2000		ORG 2000H	; ADRESSE PROGRAMMBE- GINN
2000	3A4020 BSP6	: LD A, (2040H)	; AUSGANGSZAHL NACH A
2003	6 P	LD L, A	; INDEX FÜR 16-BIT-ADR
2004	2600	LD H, OOH	; H-REGISTER LÖSCHEN
2006	116020	LD DE, 2060H	; ANF.ADR.DER
			QUADRATTAB.
2009	19	ADD HL, DE	; ANF.ADR + INDEX
200▲	7E	LD A, (HL)	; QUADRATZAHL NACH A
200B	324120	LD (2041H), A	; ERGEBNIS ABLEGEN
200 B	76	HALT	
2040		ORG 2040H	; ADRESSE DATEN
2040	03	DEFB 03H	
2060		ORG 2060H	; ADR. QUADRATWURZEL-
			TAB.
2060	00	DEFB O	
2061	01	DEFB 1	
2062	04	DEFB 4	
2063	09	DEFB 9	
2064	10	DEFB 16	
2065	19	DEFB 25	
2066	24	DEFB 36	
2067	31	DEFB 49	
2068	40	DEFB 64	
2069	51	DEFB 81	

Als Ergebnis wird auf dem Speicherplatz 2041H 09H abgelegt.

Speicherplatz	Hexadezimal	Dezimal
2060Н	OOH	0 (0^2)
2061H	01H	1 (1^2)
2062H	0 4 H	4 (2^2)
2063Н	09H	9 (3^2)
2064H	10胜	16 (4 ⁴ 2)
20 65H	19H	25 (5^2)
2066Н	2 4H	36 (6 ²)
2067H	31H	49 (7^2)
2068H	40H	64 (8^2)
2069Н	51H	81 (9^2)

4.7. Summieren von Daten

Aufgabe: Es ist die Summe einer Reihe von Daten zu berechnen, deren Anzahl auf dem Speicherplatz 2041H steht. Die Datenfolge beginnt ab Speicherplatz 2042H. Das Ergebnis ist auf dem Speicherplatz 2040H abzulegen. (Ein eventueller Übertrag ist nicht zu berücksichtigen.)

2000			ORG 2000H	; ADRESSE PROGRAMMBEGINN
2000	214120	BSP7:	LD HL, 2041H	; ADRESSE ANZAHL
2003	46		LD B,(HL)	;ZÄHLER=ANZAHL D.ZAHLEN
2004	97		SUB A	; Summe = 0
2005	23	Sum:	INC HL	; NÄCHSTE ADRESSE
2006	86		ADD A, (HL)	;SUMME = SUMME + NEUE ZAHL
2007	10 FC		DJNZ SUM	; WDHLG., BIS ALLE ZAHLEN
2009	324020		LD (2040H), A	; ERGEBNIS ABLEGEN
200C	76		HALT	
2040			ORG 2040H	; ADRESSE DATEN
2040			DEFS 1	;SPEICHERPLATZ FÜR ERGEBNIS ;FREIHALTEN
2041	03		DEFB 03H	i a viel dereithe file

2042	28	DEFB 28H
2043	55	DEFB 55H
2044	26	DEFB 26H

Das Ergebnis von 28H + 55H + 26H = A3H ist auf dem Speicherplatz 2040H abgelegt.

4.8. Bestimmung der größten Zahl

Aufgabe: Es ist die größte einer Reihe von Zahlen zu bestimmen.

Die Anzahl der Daten ist auf Adresse 2041H angegeben,
die Zahlenfolge beginnt auf Adresse 2042H. Die größte
der Zahlen ist auf Speicherplatz 2040H abzulegen.

2000			ORG 2000H	; ADRESSE PROGRAMMBEGINM
2000	214120	BSP8:	LD HL, 2041H	; ADRESSE ANZAHL
2003	46		LD B,(HL)	; Zähler = anzahl d.zählen
0004	70		CTTD 4	· · · · · · · · · · · · · · · · · · ·
2004	19		SUB A	; A LÖSCHEN
2005	23	NEXT:	INC HL	; ADRESSE NÄCHSTER ZAHL
2006	BE		CMP (HL)	; NEUE ZAHL MAXIMUM?
2007	D20B20		JP NC, ZÄHL	;SPRUNG, WENN NICHT
200A	7E		LD A,(HL)	; NEUE ZAHL NACH A
200B	10 F 8	ZÄHL:	DJNZ NEXT	; WDHLG., BIS ALLE ZAHLEN
200D	324020		LD (2040H),A	GRÖSSTE ZAHL ABLEGEN
2010	76		HALT	
2040			ORG 2040H	; ADRESSE DATEN
2040			DEFS 1	; PLATZ FÜR ERGEBNIS
2041	05		DEFB 05H	
2042	67		DEFB 67H	
2043	79		DEFB 79H	
2044	15		DEFB 15H	
2045	E3		DEFB OE3H	
2046	72		DEFB 72H	

Als Ergebnis wird auf dem Speicherplatz 2040H OE3H abgelegt.

5. Programmtest und Fehlersuche

Treten bei der Programmabarbeitung Fehler auf oder erscheinen Ergebnisse falsch, so kann durch die Verwendung des HALT-Befehles das Testen des Programms wesentlich erleichtert werden. Die HALT-LED des LC 80 leuchtet auf, sobald die CPU einen HALT-Befehl abgearbeitet hat. Sie verlöscht erst wieder, wenn die Reset-Taste betätigt oder ein Interrupt angenommen wird. Wenn der HALT-Befehl auf das erste Byte eines Befehls geschrieben wird. zeigt nach dem Programmstart das Aufleuchten der LED an, daß das Programm bis zu dieser Adresse abgearbeitet wurde. Unter Benutzung der Funktion "Registeranzeige" können in diesem Fall nach Betätigung von NMI die Registerinhalte mit den theoretischen Sollwerten verglichen werden und auf diese Weise schnell logische Programmfehler ermittelt werden. Durch das Setzen des HALT-Befehls an andere Stellen können Sie somit Programmteile, die bei der Abarbeitung nicht erreicht werden, ermitteln.

Beachten Sie bitte, den HALT-Befehl nach erfolgtem Test wieder durch den richtigen Befehlscode zu ersetzen.

Sind Sie aufgrund des erforderlichen Speicherumfanges für Ihr Anwenderprogramm nicht gezwungen so effektiv wie möglich zu programmieren, so empfiehlt sich folgende Methode:

Fügen Sie nach eigenem Ermessen in bestimmten Abständen HALT-Befehle ein!

(Z. B. unmittelbar von Versweigungsentscheidungen, zu Beginn einzelner Unterprogramme, unmittelbar nach IN-Befehlen usw.)

Vor dem Start Ihres Anwenderprogrammes bereiten Sie den LC 80 gemäß Abschnitt "Registeranzeige" vor und starten danach Ihr Programm. Wird jetst ein HALT-Befehl durch die CPU abgearbeitet und leuchtet die HALT-LED, so können Sie, wie oben dargelegt, die Registerinhalte überprüfen.

Im Gegensatz zu dem zuerst erwähnten Einfügen eines HALT-Befehls anstelle des ersten Bytes eines beliebig anderen Befehles, arbeitet Ihr LC 80 jetzt nach Betätigung von ADR die nachfolgenden Befehle ab. Somit können Sie Ihr gesamtes Programm abschnittsweise kontrollieren und nacheinander abarbeiten lassen.

Ist Ihr Programm voll funktionsfähig, dann ersetzen Sie die eingefügten HALT-Befehle einfach durch NOP-Befehle.

6. Verwendung des Monitorprogramms

6.1. Unterprogramme

ADDECCE MAME

Innerhalb des Monitorprogrammes des LC 80 sind mehrere Programmteile als Unterprogramme ausgelegt und lassen sich deshalb auch vorteilhaft durch den Anwender nutzen!

TOTAL TOTAL TOTAL

ADRESSE	NAME	FUNKTION
0883Н	DAK2	Einmalige Ansteuerung von Anzeige und Tasta-
		tur, Hauptanwendung ist die Ansteuerung der
		Anzeige
085 AH	DAK1	Ansteuerung von Anzeige und Tastatur, bis
		eine Taste gedrückt wurde
O8CAH	ONESEG	Umwandlung einer Ziffer (untere 4 Bits eines
		Bytes) in den entsprechenden 7-Segment-Code
08D9H	TWOSEG	Umwandlung von 2 Ziffern (1 Byte) in den
		entsprechenden 7-Segment-Code und Ablegen
		im Speicher
08 B7H	ADRSDP	Eintragen von 4 Ziffern im Adressanzeige-
		speicher
08C3H	DADP	Eintragen von 2 Ziffern im Datenanzeige-
		speicher
0852H	RAMCHK	Test, ob ein Speicherplatz im RAM liegt
0376н	SOUND	Ausgabe eines Tonsignals
0370н	SOUND1K	Tonsignal 1 kHz
0374H	SOUND2K	Tonsignal 2 kHz
08EEH	MUSIC	Spielen von Musik
OSEAH	MONMUS	Spielen der Anfangsmusik
DAK2		
Startadr	esse:	0883Н
Funktion:		Einmalige Ansteuerung von Anzeige und Tasta-
		tur, alle 6 LED-Anzeigen werden nacheinander
		angesteuert (Ausführungszeit ca. 10 ms).

Bintritt: IX, zeigt auf die niederwertigste Adresse des

Speicherbereiches, der zur Anzeige gelangen soll.

Austritt: CY = 1, wenn keine Taste gedrückt

CY = 0, wenn eine Taste gedrückt (außer RES oder NMI). Der Positionscode der Taste befindet sich

im A-Register (siehe Anhang).

Register: Die Inhalte von AF, A'F', B'C', D'E' werden

zerstört.

Beschreibung: Jeder 7-Segment-Anzeige ist ein Byte im Speicher

zugeordnet, insgesamt also 6 Byte. Dabei ist der rechtesten LED das niederwertigste Byte zu-

geordnet.

Die einzelnen Bits in einem Byte repräsentieren dabei die einzelnen Segmente und den Dezimalpunkt. Ist ein Bit = 1, so leuchtet das zugehörige Segment.

DAK1

STARTADRESSE: 085AH

FUNKTION: wie DAK2, aber:

- die Funktion wird fortgesetzt, bis eine Taste gedrückt wurde.
- Anstelle des Tastencodes wird der umgewandelte interne Code geliefert, wie er von anderen Teilen des Monitorprogrammes benötigt wird.

EINTRITT: IX zeigt auf die niederwertigste Adresse des

Speicherbereiches, der zur Anzeige gelangen soll.

AUSTRITT: Der interne Code befindet sich im A-Register.

REGISTER: Die Inhalte von AF, B, HL, A'F', B'C', D'E'

werden zeretört.

ONESEG:

STARTADRESSE: OSCAH

FUNKTION: Umwandeln einer Ziffer in den entsprechenden

7-Segment-Code.

EINTRITT: Die rechten 4 Bit des A-Registers sind die um-

zuwandelnde Hex-Zahl.

AUSTRITT: Der entsprechende 7-Segment-Code steht im A-

Register.

REGISTER: Der Inhalt in AF wird zerstört.

TWOSEG:

STARTADRESSE: 08D9H

FUNKTION: Umwandeln des Inhalts des A-Registers in die

zugehörigen 2 7-Segment-Codes.

EINTRITT: Untere Tetrade von A als 1. Ziffer.

Obere Tetrade von A als 2. Ziffer.

AUSTRITT: Der erste Code wird in (HL), der zweite Code

in (HL + 1) abgespeichert. HL wird um 2 erhöht.

REGISTER: Die Inhalte der Register AF und HL werden zer-

stört.

ADRSDP

STARTADRESSE: 08B7H

FUNKTION: Eintragen von 4 Ziffern in den Adressanzeige-

speicher (Adressen 23F4 - 23F7H).

EINTRITT: Anzuzeigende Zahl in DE

AUSTRITT: Entsprechender 7-Segment-Code im Adressanzeige-

speicher

REGISTER: Die Inhalte der Register AF und HL werden zer-

stört.

DADP

STARTADRESSE: 08C3H

FUNKTION: Eintragen von 2 Ziffern in den Datenanzeige-

speicher (Adressen 23F2 - 23F3H)

EINTRITT: Anzuzeigende Zahl in A

AUSTRITT: Entsprechender 7-Segment-Code im Datenanzeige-

speicher

REGISTER: Die Inhalte der Register AF und HL werden zer-

stört.

RAMCHK

STARTADRESSE: 0852H

FUNKTION: Test ob ein Speicherplatz im RAM liegt

EINTRITT: HL gibt den Speicherplatz an.

AUSTRITT: Z-Flag = 1 wenn (HL) RAM ist.

REGISTER: Der Inhalt der Register AF wird zerstört.

SOUND:

STARTADRESSE: 0376H

FUNKTION: Tonsignal für Lautsprecher

EINTRITT: Der Inhalt des Registers C gibt die Tonfrequenz

an. Der Inhalt der Register HL gibt die Anzahl

der Takte an;

Höchstwert 32768 Takte

AUSTRITT: --

REGISTER: Die Inhalte der Register AF, B, DE, HL werden

zerstört.

SOUND1K

STARTADRESSE: 0370H

FUNKTION: Ausgabe eines Tonsignals von 1 kHz

EINTRITT: Der Inhalt der Register HL gibt die Anzahl der

Takte an:

Höchetwert 32768 Takte

AUSTRITT: --

REGISTER: Die Inhalte der Register AF, BC, DE, HL werden

zeratört.

SOUND2K

STARTADRESSE: 0374H

FUNKTION: Ausgabe eines Tonsignals in 2 kHz

EINTRITT: Der Inhalt der Register HL gibt die Anzahl der

Takte an:

Höchstwert 32768 Takte

AUSTRITT: ---

REGISTER: Die Inhalte der Register AF, BC, DE, HL werden

zerstört.

MUSIC

STARTADRESSE:

08EEH

FUNKTION:

Spielen von Musik

EINTRITT:

Im Register IY steht die Startadresse des

Musikstückes.

AUSTRITT:

TOSTRITT: ---

REGISTER:

Die Inhalte der Register IX, AF, BC, DE, HL

werden zerstört.

Beschreibung:

Das Register IV zeigt auf den Anfang des Speicherbereiches in dem die codierten Noten stehen. Jeweils 2 Byte repräsentieren eine Note. Das erste Byte gibt die Tonhöhe, das zweite Byte die Tonlänge an.

Hat das erste Byte den Wert 80H, wird das Musikprogramm verlassen, bei 40H wird das Programm von vorn begonnen, bei 20H wird eine Pause mit der durch das zweite Byte angegebenen Länge gemacht.

Als Werte für die Tonhöhe sind die Zahlen OH bis 1FH erlaubt. Bezogen auf eine Taktfrequenz von 900 kHz entsprechen aufeinanderfolgende Zahlen jeweils einen Halbtonschritt, wobei der tiefste Ton (00H) etwa dem Ton ais entspricht.

Die Tonlänge ist ebenfalls frei wählbar, dabei entspricht eine Verdoppelung der Zahl etwa der doppelten Dauer des Tones. Bitte beachten Sie, daß auf Grund des verwendeten RC-Generators die Taktfrequenz nicht konstant ist und daher die einzelnen Notenwerte nicht exakt erzielt werden, gleiches gilt für die Tonlänge.

Dieses Unterprogramm soll mehr eine Hilfe für musikalische Spielereien sein, anstatt ein ernsthaftes Musizieren zu ermöglichen.

Beispiel:

			ORG 2000H
2000	FD211020		LD IY, NOTEN
2004	CDEE08		CALL MUSIK
			ORG 2010H
		NOTEN	
2010	0108		DEFW 0801H
2012	0208		DEFW 0802H
2014	0308		DEFW 0803H
2016	40		DEFB 40H

Es werden drei aufeinanderfolgende Töne aufsteigender Tonhöhe, aber gleicher Dauer (08) ausgegeben. Dies wird endlos wiederholt (Abschluß durch Kurzzeichen 40).

MONMUS

STARTADRESSE: OSEAH

FUNKTION: Spielen der Anfangamusik

EINTRITT: ---

REGISTER: Die Inhalte der Register IX, IY, AF, BC, DE,

HL werden zerstört.

6.2. Praktische Beispiele

Beispiel 1: Anzeige 'HELPUS'

Unter Verwendung des Unterprogrammes DAK1 ist der Text 'HELPUS' anzuzeigen, solange nicht die Taste "+" gedrückt wird. In diesem Fall soll der Rechner in den HALT-Zustand gehen.

ORG 2000H

2000	DD212020	EX1:	LD IX, HELP	; ADR, TEXT
2004	CD5AO8	DISP:	CALL DAK1	; ANZEIGE
2007	FE10		CMIP 10H	; TASTE "+"
2009	20 F 9		JR NZ, DISP	; FALSCHE TASTE
200B	76		HALT	
2020			ORG 2020H	
2020	AE	HELP:	DEFB OAEH	; "S"
2021	E3		DEFB OE3H	; "Մ"
2022	4 F		DEFB 4FH	; "P"

2023	C2	DEFB	OC2H	;	"L"
2024	CE	DEFB	OCEH	;	"E"
2025	6B	DEFB	6BH	:	"H"

Durch das Unterprogramm DAK1 wird der Text, der durch das IX-Register adressiert wird, angezeigt. Dieses Unterprogramm wird verlassen, sobald eine Taste (außer RES oder NMI) gedrückt wird. Durch obiges Programm wird getestet, ob die Taste "+" gedrückt wurde. Ist dies der Fall, geht die CPU in den HALT-Zustand; andernfalls wird das Unterprogramm erneut aufgerufen. Die Codierung für die 7-Segment-Anzeige ergibt sich aus dem Bild im Pkt. 3.6. bzw. der Tabelle im Anhang.

Beispiel 2: Blinkende Anzeige 'HELPUS'
Das Programm DAK2 steuert die Anzeige für die Dauer von rund

10 ms an. Der Text 'HELPUS' soll alle 0,5 Sekunden für 0,5 Sekunden aufleuchten.

2000			ORG 2000H		
2000	212620	EX2:	LD HL, BLANK	;	"LEERZEICHEN"
2003	E5		PUSH HL		
2004	DD212020		LD IX, HELP	ï	TEXT "HELPUS"
2008	DDE3	LOOP	EX (SP),IX	;	AUSTAUSCH TEXT
200A	0632		LD B, 32H	;	ANZEI GEZEIT
200C	CD8308	LOOP1:	CALL DAK2	;	ANZEIGE
200 F	10 F B		DJNZ LOOP1		
2011	18 F 5		JR LOOP		
2020			ORG 2020H		
2020	AE	HELP:	DEFB OAEH	;	"S"
2021	E3		DEFB OE3H	÷	"U"
2022	4 F		DEFB 4FH	;	"P"
2032	C2		DEFB OC2H	;	"L"
2024	CE		DEFB OCEH	;	"E"
2025	6B		DEFB 6BH	;	"H"
2026	00	BLANK:	DEFB O		
2027	00		DEFB O		

2028	00	DEFB	0
2029	00	DEFB	0
202A	00	DEFB	0
202B	00	DEFB	0

Zur Änderung der Anzeigezeit ist der Wert auf dem Speicherplatz 200BH zu ändern, der die Anzahl der Schleifen zum Aufruf von DAK2 vorgibt und damit die Zeit bestimmt. Die Änderung des Anzeigetextes ist auf den Speicherplätzen 2026H – 202BH möglich.

Beispiel 3: Blinklicht-Steuerung

Das OUT-LED soll durch HIGH- bzw. LOW-Signale angesteuert werden, so daß dieses LED blinkt.

2000			ORG 2000H
2000	3EFF	EXO3:	LD A, OFFH
2002	D3F5		OUT (DIGITAP), A
2004	0650		LD B,50H
2006	CD1820	LOOP1:	CALL DELAY
2009	10FB		DJNZ LOOP1
200B	3EFD		LD A, OFDH
2000	D3 F 5		OUT (DIGITAP), A
200F	0650		LD B,50H
2011	CD1820	LOOP2:	CALL DELAY
2014	10FB		DJNZ LOOP2
2016	18 E8		JR EXO3
2018	OEFF	DELAY:	LD C,OFFH
201A	OD	LOOP3:	DEC C
201B	20FD		JR NZ, LOOP3
201 D	C9		RET

Beispiel 4: Textdarstellung

Mittels der Taste "-" wird die Anzeige gelöscht. Nach dem Drücken der Taste "+" erscheint das Wort "Hallo" in der Anzeige.

Benutzt werden dabei die Text-Definitionen im Monitorprogramm. (Text gemäß Code-Tabelle für die 7-Segment-Anzeige, siehe Anhang, zusammengesetzt.)

2000			ORG 2000H	
2000	DD218309	EXO4:	LD IX, DISP3	; TEXT "HALLO"
2004	CD5 AO8	DISPL1:	CALL DAK1	
2007	FE11		CMP 11H	; TASTE "-"
2009	20 F 9		JR NZ, DISPLA	
2008	DD218909		LD IX, DISP4	; LEER-TEXT
200 F	CD5A08	DISPL2:	CALL DAK1	
2012	FE10		CMIP 10H	; TASTE "+"
2014	20 F 9		JR NZ, DISPL2	
2016	DD218909		LD IX, DISP4	
201A	OEO6		LD C, 6	
201C	0620	INI1:	LD B, 20H	
201E	CD8308	INI2:	CALL DAK2	
2021	10FB		DJNZ INI2	
2023	DD2B		DEC IX	
2025	OD		DEC C	
2026	20F4		JR NZ, INI1	
2028	18D6		JR EXO4	

Beispiel 5: Umlauf-Spiel

Die Segmente einer Anzeige-Stelle werden einzeln nacheinander angesteuert. Der Umlauf wird mittels der Taste "+" gestoppt und mit jeder anderen Taste (außer Reset- und Interrupt-Taste) fortgesetzt. In der Tabelle kennzeichnet das jeweils erste Byte die Anzeige-Stelle (OOXX = rechtes; O5XX = links) und das nachfolgende Byte die Segment-Zuordnung (entsprechend der Beschreibung, z. B. Bit O = Segment B).

2000			ORG 2000H
2000	214020	EXO5:	LD HL, TABLE
2003	DD210021		LD IX, MEM
2007	CD3020	LOOP:	CALL CLRDISP
200A	5E		LD E, (HL)
200B	1C		INC E
200C	28 F2		JR Z, EXO5
200E	1 D		DEC E
200F	1600		LD D,O
2011	DD19		ADD IX, DE
2013	23		INC HL

2014	7E		LD A, (HL)
2015	DD7700		LD (IX).A
2018	DD210021		LD IX, MEM
201C	0603		LD B,3
201 B	CD8308	LIGHT:	CALL DAK2
2021	3801		JR C, LIGHT1
2023	4 F		LD C, A
2024	10 F 8	LIGHT1:	DJNZ, LIGHT
2026	79		LD A, C
2027	FEOA		CMP OAH
2029	2802		JR Z,STOP
202B	23		INC HL
202C	23		INC HL
202D	2B	STOP:	DEC HL
202E	18D7		JR LOOP
2030	0606	CLRDISP:	LD B,6
2032	DD360000	CLR:	LD (IX+d),00H
2036	DD23		IMC IX
2038	10 F 8		DJNZ CLR
203A	11 FAFF		LD DE, OFFFAH
203D	DD19		ADD IX, DE
203F	C9		RET
2040	0004	TABLE:	DEFW 0400H
2042	0001		DEFW 0100H
2044	0020		DEFW 2000H
2046	0080		DEFW 8000H
2048	0040		DEFW 4000H
204A	0002		DEFW 0200H
204C	FF		DEFB OFFH

Beispiel 6: Tastenwertigkeit

Ermittlung der jeweils zugeordneten Tastenwertigkeit unter Verwendung der Monitor-Unterprogramme.

Das Unterprogramm DAK2 realisiert die Ansteuerung und Abfrage der Tastatur. Die Wertigkeit entspricht der Matrix-Anordnung.

5000	CD8308	EX06:	CALL DAK2	
2003	CDC308		CALL DADP	; Daten-Anzeige laden
2006	18F8		JR EXO6	
Das Mon	itor-Unterpr	ogramm DAK1	benutzt DAK2	und ermittelt
	_	_		dung im Monitor.
2000	CD5A08	EX07:	CALL DAK1	
2003	CDC308		CALL DADP	
2006	18F8		JR EXO7	
Beispie	l 7: Multipl	ikation		
Multipl	ikation zwei	er 8-Bit-He	x-Zahlen	
Die Fak	toren stehen	in den Spe	icherplätzen 2	100H und 2101H,
das Erg	ebnis wird i	n die Speic	herzellen 2102	H (niederwer-
tiges B	yte) und 210	3H (höherwe	rtiges Byte) a	bgelegt.
2000			ORG 2000H	
2000	210021	EXO8:	LD HL,2100H	
2003	4E		LD C.(HL)	
2004	23		INC HL	
2005	56		LD D.(HL)	
2006	CDOE20		CALL MULT	
2009	23		INC HL	
200A	71		LD (HL),C	
200B	23		INC HL	
200C	70		LC (HL),B	
200D	76		HALT	
				: 8-BIT-MULTIPLI-
•				KATION MIT
				: 16-BIT-ERGEBNIS
				$C \times D = BC$
200E	97	MULT:	SUB A	: REGISTER A
				LÖSCHEN
200F	0608		LD B,8	: 8 BIT
2011	CB19	MULT1:	RR C	: MULTIPLIKATOR
•	-			VERSCHIEB.
2013	3001		JR NC, MULT2	: KEINE ADDITION
				WENN CY = O
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

2015	82		ADD A,D	; ADDITION ENTSPR.
				WERTIGKEIT
2016	CB1F	MULT2:	RR A	; ZWISCHENSPEICHER
				AUF HÖHERE WERTIG-
				KEIT UND UNTERES
				ERGEBNIS-BIT IN
				CY
2018	10F7		DJNZ MULT1	
201A	CB19		RR C	; LETZT.ERGBIT IN
				REG.C
201C	47		LD B,A	; HÖHERWERT.BYTE IN
				REG.B
201D	C9		RET	
Beispi	1 8: Divisi	on		
Divisio	on zweier 8-	Bit-Hex-Zah	len:	
Der Di	vident befin	det sich au:	f dem Speicher	platz 2100H und
der Div	risor auf de	m Speicherp	latz 2101H.	
Das Er	gebnis (X,Y)	befindet s	ich nach der D	ivision auf den
Speich	erplätzen 21	02H (Y) und	2103 (X).	
2020			ORG 2020H	
2020	210021	EXO9:	LD HL,2100H	
2023	56		LD D, (HL)	
2024	23		INC HL	
2025	5E		LD E, (HL)	
2026	CD2E20		CALL DIV	
2029	23		INC HL	
202A	77		LD (HL),A	
202B	23		INC HL	
202C	71		LD (HL),C	
202D	76		HALT	
				; 8-BIT-DIVISION MIT
				; 8-BIT-ERGEBNIS
				; $D : E = C,A$
				; (REST IN REG.A)
202E	97	DIV:	SUB A	
202F	0608		LD B,8	; SCHLEIFENZÄHLER
2031	4 F		LD C,A	; c löschen
			-	

2032	CB12	DIV1:	RL D	; HÖCHSTES BIT IN CY
2034	CB17		RL A	;HÖCHSTES BIT IN AKKU
2036	93		SUB E	
2037	3001		JR NC, DIV2	;SPRUNG WENN ERG. POSITIV
2039	83		ADD A, E	; SUBTRAKTION RÜCKGÄNGIG MACHEN
203A	3F	DIV2:	CCF	; ERGEBNIS KORREKTUR
2038	CB11		RL C	; ERGEBNIS IN C SCHIEBEN
2030	10F3		DJNZ, DIV1	ï
203F	C9		RET	

Beispiel 9: AD-Anschluß

Abfrage-Programm für einen AD-Wandler C 520 (AD 2020).

Das USER-Port (PORT A) wird entsprechend nachfolgender

Schaltung mit den Wandler-Ausgängen gekoppelt. Das Programm
realisiert die Initialisierung des Ports sowie eine zyklische

Abfrage des ermittelten AD-Wertes und dessen Ausgabe über
die LED-Adressanzeige.

Anschlußbedingungen:

BCD-Ausgabe A ... D = Bit 0 ... 3

Digitausgänge: MSD = Bit 4, NSD = Bit 5, LSD = Bit 6 ORG 2000H 2000 2000 3ECF LD A, OCFH; PIO MODE 3 2002 D3FA OUT (USERPC),A 2004 3E7F LD A.7FH; E/A-Definition 2006 D3FA OUT (USERPC),A 2008 CD1820 AD01: CALL AD10 200B EB EX DE.HL : BCD-Wert in Register DE 200C CDB708 CALL ADRSDP: LADEN der Adresse Anzeige 200F DD21F223 LD IX,23F2H 2013 CALL DAK2; Anzeige des Wertes CD8308 2016 10F9 JR ADO1 2018 0600 LD B.O AD10: A102 DBF8 AD11: IN A. (USERPD)

201C	57		LD D,A
201D	DBF8		IN A, (USERPD)
201F	BA		CPD
2020	20F8		JRNZ AD11
5055	E67F		AND 7FH
2024	5 F		LD E,A
2025	E67 0		AND 70H
2027	FE60		CMP 60H; Test auf MSD
2029	2008		JRNZ AD12
202B	7B		LD A,E
202C	E60F		AND OFH
202E	67		LD H,A
202F	CBDO		SET 2,B
2031	18 E 7		JR AD11
2033	FE30	AD12:	CMP 30H; Test auf LSD
2035	2008		JRNZ AD13
2037	7B		LD A,E
2038	E60F		AND OFH
203A	6 F		LD L,A
203B	CBCO		SET O,B
203D	18DB		JR AD11
20 3F	FE50	AD13:	CMP 50H; Test auf NSD
			(mittleres Digit)
2041	20D7		JR NZ AD11
2043	7B		LD A,E
2044	CB27		SLA A
2046	CB27		SLA A
2048	CB27		SLA A
204A	CB27		SLA A
204C	B5		ORL
204D	6 P		LD L,A
204E	CBC8		SET 1,B
2050	3E07		LD A,7
2052	B8		CMOP B
2055	C9		RET

EQU:
USERPC EQU OFAH
USERPD EQU OF8H
ADRSDP EQU O887H
DAK2 EQU 085AH

Bild 1: Beschaltung der A/D Wandler - IS

Beispiel 10: Uhr mit Wecker

Das folgende Beispiel stellt eine Uhr dar. Als Zeitbasis wird dabei der Kanal O des CTC verwendet. Die aktuelle Zeit wird ständig mit der vorgegebenen Weckzeit (Stunden und Minuten) verglichen. Als Wecksignal wird die Anfangsmelodie verwendet. Durch das Drücken einer beliebigen Taste (außer RES oder NMI) wird die Melodie abgestellt und wieder die Zeit angezeigt. Das Drücken muß am Ende der Melodie erfolgen, da die Tastaturabfrage an dieser Stelle durch das Programm DAK2 erfolgt.

Vor dem Programmstart sind die Speicherplätze für Sekunden, Minuten und Stunden sowie für die Weckzeit zu setzen. Soll kein Wecken erfolgen, so ist in die Speicherplätze für die Weckzeit "OFFH" zu schreiben.

2000			ORG 2000H		
2000	ED5E	EX10:	IM S		
2002	3E22		LD A,22H	ţ	INT.TAB H-BYTE
2004	ED47		LD I,A		
2006	AF		XOR A	;	INT.VEC L-BYTE
2007	D3EC		OUT (CTCO),A		
2009	3EA5		LD A,OA5H	;	INT, ZEITGEBER,
					X 256
200B	D3EC		OUT (CTCO),A		
200D	3EE9		LD A, OE9H	;	ZEITKONSTANTE
200 F	D3EC		OUT (CTCO),A		
2011	DD21F223	M1:	LD IX,DATLED	÷	ADR.ANZEIGESPEICH.
2015	CD8308		CALL DAK2		
2018	3804		JR C,M2	;	SPR., WENN KEINE
					TASTE
201A	AF		XOR A		
201B	321622		LD (2216H),A	ţ	WECKER LÖSCHEN
201E	3A1622	M2:	LD A, (2216H)		
2021	FE55		CMAP 55H		
2023	CCEA08		CALL Z, MONMUS	ţ	WENN WECKZEIT
2026	FB		EI		
2027	18 E 8		JR M1		

0040			ODG CONOT		
2040	75		ORG 2040H		
2040	F5		PUSH AF		
2041	C5		PUSH BC		
2042	D5		PUSH DE		
2043	E5		PUSH HL		
2044	211022		-		ADR.ZEITSPEICHER
2047	0615		LD B,15H	•	GRENZWERT TAKTE
2049	CD8720		CALL INCT		TAKTE ERHÖHEN
204C	2032		JR NZ, EXIT	;	WENN NICHT
			S		GRENZWERT
204E	0660		LD B, GOH	ï	GRENZWERT SEKUNDE
					UND MINUTE
2050	CC8720		CALL Z, INCT	;	GGF.SEK.ERHÖHEN
2053	CC8720		CALL Z, INCT	;	GGF.MINUTEN
					ERHÖHEN
2056	0624		LD B,24H	;	GRENZWERT STUNDEN
2058	0 03 720		CALL Z, INCT	;	GGF.STUNDEN
					ERHÖHEN
205B	3A1122		LD A,(2211H)		
205E	CDC308		CALL DADP	;	SEK.ANZEIGEN
2061	2A1222		ID HL, (2212H)	;	
2064	EB		EX DE, HL		
2065	CDB708		CALL ADRSDP	;	MIN.U.STD.ANZ.
2068	2A1222		LD HL, (2212H)	;	TEST, OB WECKZEIT
206B	ED5B1422		LD DE,(2214H)	;	
206F	A7		AND A		
2070	ED52		SBC HL, DE		
2072	200C		JR NZ, EXIT		
2074	3A1122		LD A,(2211H)		
2077	FEOO		CMIP O		
2079	2005		JR NZ, EXIT		
207B	3E55		LD A,55H	;	FLAG 'WECKEN'
			•		SETZEN
207D	321622		LD (2216H),A	;	
2080	E1	EXIT:	POP HL		
2081	D1		POP DE		
2082	C1		POP BC		

2083	F1		POP AF	
2084	FB		EI	
2035	ED4D		RETI	
2087	7E	INCT:	LD A, (HL)	; ZEITEINHEIT ERH.
2088	C60 1		ADD A,1	
A80S	27		DAA	; BCD-KORR.
208 B	77		LD (HL),A	
208C	50		SUB B	; TEST, OB GRENZWERT
208D	2001		JR NZ, NEXT	
208F	77		LD (HL),A	; EINHEIT = $0, Z = 1$
2090	23	NEXT:	INC HL	
2091	c 9		RET	
2200			ORG 2200H	
2200	4020		DEFW 2040H	
221 0			ORG 2210H	
2210			DEFS 1	; ZWISCHENZÄHLER
2211			DEFS 1	; SEKUNDEN
2212			DEFS 1	; MINUTEN
2213			DEFS 1	; STUNDEN
2214			DEFS 1	; WECKMINUTEN
2215			DEFS 1	; WECKSTUNDEN
2216			DEFS 1	; WECKFLAG

7. Hinweise des Herstellers

Der Lerncomputer LC 80, ein sorgfältig vorbereitetes Erzeugnis der Mikroelektronik, bedarf keinerlei Wartungsund Pflegearbeiten.

Da der LC 80 nur im geöffnetem Zustand betrieben werden darf, muß darauf geachtet werden, daß auf der Leiterplatte keine Bauelemente mechanisch beschädigt werden oder durch Fremdkörper Kurzschlüsse entstehen können. Es ist zu beachten, daß die Verkaufsverpackung des LC 80 nicht als Versandverpackung geeignet ist. Bei Eintritt eines möglichen Garantiefalles ist das Gerät für den Versand an den Kundendienst des Herstellers so zu verpacken, daß Transportschäden verhindert werden.

8. Literaturverzeichnis

- (1) H. Kieser, M. Meder: Mikroprozessortechnik Aufbau und Anwendung des Mikroprozessorsystems U 880 D;

 Verlag Technik Berlin 1982, 352 Seiten, 36,-- M.

 Neben einer ausführlichen Beschreibung des Systems

 U 880 D wird insbesondere auf das U 880-Lernsystem und die FPS 2 eingegangen.
- (2) W. Schwarz, G. Meyer, D. Eckhardt: Mikrorechner-Wirkungsweise, Programmierung, Applikation; Verlag Technik Berlin 1980, 360 Seiten, 32,-- M. Nach einer kurzen Darstellung der Grundlagen werden verschiedene Mikroprozessoren vorgestellt. Für diese werden eine Vielzahl von Programmbeispielen aufgeführt und in verschiedenen Varianten diskutiert.
- (3) A. Jugel: Mikroprozessorsysteme; Verlag Technik Berlin 1978, 204 Seiten, 20,-- M. Dieses Buch dient hauptsächlich der Beschreibung der Grundlagen und der Hardware von Mikrorechnern.
- (4) M. Roth: Mikroprozessoren, Wesen-Technologie-Weiterentwicklung, Aufbau-Programmierung-Anwendung;
 Wissenschaftliche Zeitschrift der Technischen
 Hochschule Ilmenau
 4. Auflage 1979, 256 Seiten, 17,-- M.
 Nach einer Beschreibung der technologischen Grundlagen
 werden eine Vielzahl von Mikroprozessoren vorgestellt,
 ebenso weitere für den Aufbau von Mikrorechnern
 benötigte Schaltkreise. Weiterhin wird auf die Mikrorechnersysteme K 1510 und K 1520 sowie auf verschiedene
 Entwicklungssysteme, wie z. B. das MRES und MICROCOMBI
 eingegangen.
- (5) L. Claßen: Programmierung des Mikroprozessorsystems U 880 - K 1520 (Reihe AT, Band 192) Verlag Technik Berlin, 3. Auflage 1983, 79 Seiten, 4,80 M. Das Buch enthält eine kompakte Beschreibung des Mikroprozessorsystems U 880 D.

- insbesondere der U 880-Assemblersprache und der Programmierung der peripheren Schaltkreise.
- (6) Oetker/Claßen: Mikroprozessor Betriebssysteme (Reihe AT, Band 201); Verlag Technik Berlin
- (7) Autorenkollektiv: Softwaretechnologie für Mikrorechner Verlag: Die Wirtschaft, etwa 12,-- M.
- (8) H. Barthold, H. Bäurich: Mikroprozessoren-Mikroelektronische Schaltkreise und ihre Anwendung, 3 Teile (elektronica 186-188); Militärverlag der DDR 1980, je 1,90 M. Während sich Teil 1 mit den Grundlagen der Mikrorechentechnik beschäftigt, geht Teil 2 auf die Mikroprozessoren U 808, U 880 sowie den Intel 8080 ein. Teil 3 enthält die Beschreibung der peripheren Schaltkreise sowie Beispiele für die Programmierung. Eine neue Auflage erschien mit den Heftnummern 202 bis 204.
- (9) Technik der Mikrorechner, Reihe, in: radio, fernsehen, elektronik 26 (1977), H. 17 bis 28 (1979), H. 12 Die Reihe geht ausführlich auf Grundlagen, Hardware, Programmierungstechnik und Mikrorechneranwendung ein.
- (10) Technische Beschreibung
 - Zentrale Verarbeitungseinheit CPU U 880 D
 - Schaltkreis für parallele Ein- und Ausgabe PIO U 855 D
 - Schaltkreis für serielle Ein- und Ausgabe SIO U 856 D
 - Schaltkreis für Zähler- und Zeitgeberfunktion CTC U 857 D

veb mikroelektronik "karl marx" erfurt

- (11) Befehlsbeschreibung U 880 D

 veb mikroelektronik "karl marx" erfurt
- (12) Gerhardt Paulin: Kleines Lexikon der Mikrorechentechnik (Reihe AT, Band 206) Verlag Technik Berlin, 1983, 64 Seiten 4.80 M.

9. Anhang

CODE - TABELLE FÜR DIE 7-SEGMENT-ANZEIGE

CODE	E7	21	CD	AD	2B	ΑE	EE.	25	EF	AF	
	•							-			
ZEICHEN	0	1	2	3	4	5	6	7	8	9	
ANZEIGE		 	-	<u> </u>	1_1	5	5	_l	Ü	1]	
CODE	6F	EA	c6	E9	CE	4E	E6	6B	20	E1	
ZEICHEN	A	В	C	D	E	F	G	Н	I	J	
ANZEIGE	F	6	[_	7	Ε	<u> </u> _	C	님	1	!	
CODE	СВ	C2	6C	68	E8	4F	2F	4 8	AE	CA	<u></u>
ZEICHEN	K	L	M	N	0	P	Q	R	S	Ŧ	
ANZEIGE	닏	1_		1-1	0	P	7	1-	5	<u> -</u>	
CODE	E3	EO	E4	4A	AB	8C	C8	A8	29	08	10
ZEICHEN	U	V	W	X	Y	Z	()	+	-	•
ANZEIGE		<u> _</u>	- _	<u> </u> _		=======================================	C	⊃	4	-	•
D E A7 A6	C A5	DP A4	G A3	A A2	F A1	B AO			MENT: S VO		RT A

$$\frac{F/\frac{A}{G}/B}{E/\frac{C}{O}}$$

DER SYSTEM - PIO

Zahlensystem

Der LC 80 ist eine binär arbeitende Maschine mit einer Wortbreite von 8 Bit (= 1 Byte). Die Notation eines Bytes erfolgt der besseren Übersicht halber in Form zweier Tetraden (oberes und unteres Halbbyte), die im Hexadezimalsystem dargestellt werden. Dieses Zahlensystem ist aufgebaut auf 16 Ziffern, und zwar den Zahlen 0 bis 9 und den Buchstaben A bis F. Ein Vergleich zwischen Dualzahlen, Dezimalzahlen und Hexadezimalzahlen sowie der Darstellung auf der 7-Segment-Anzeige ist in folgender Tabelle aufgeführt. Hexadezimalzahlen werden durch ein nachgestelltes H gekennzeichnet.

Hexadezimal	Dezimal	Dual	7-Segment-Darstellung
OH	0	0000	
1H	1	0001	:
2H	2	0010	2
3н	3	0011	3
4H	4	0100	4
5H	5	0101	5
6Н	6	0110	8
7H	7	0111	-1
8H	8	1000	8
9н	9	1001	9
АН	10	1010	8
BH	11	1011	Ъ
CH	12	1100	<u> </u>
DH	13	1101	占
EH	14	1110	Ξ
FH	15	1111	F

Äquivalenzliste der Bauelemente des LC 80

Originaltyp	Äquivalenztyp	Hersteller (Auswahl)					
U 880 CPU	Z-80 CPU	ZILOG, MOSTEK					
		SGS-ATES, SHARP, NEC					
U 855 PIO	Z-8 0 PIO	ZILOG, MOSTEK					
		SGS-ATES, SHARP, NEC					
U 857 CTC	Z-80 CTC	ZILOG, MOSTEK					
		SGS-ATES, SHARP, NEC					
U 505 ROM	Beide Schaltkreise	INTEL, SIEMENS, HITACHI					
(5V-ROM-Vari-	ersetzbar durch						
ante des 2708)	einen 2716						
	(K 573 PP 2)	ຮັບ					
U 214 RAM	2114	INTEL, SIEMENS, HITACHI					
B 3170 oder	LM 317	NATIONAL SEMICONDUKTOR					
MA 7805	MC 7805	MOTOROLA					
(Spannungsregler)							
В 861	TAA 861	SIEMENS					
(Operationsverstärk	er)						
DL 014	74 LS 14	TEXAS INSTRUMENTS					
(Schmitt-Trigger)							
DS 8205	8205	INTEL					
(Decoder)	(Decoder)						
VQE 23	TIL 827	TEXAS INSTRUMENTS					
(LED-Anzeige)	TLG 824	TOSHIBA					
DT 000	74 LS 00	TEXAS INSTRUMENTS					
(4 Nand, je 2 Eingänge)							

Adressenänderungstabelle

Ist Ihr LC 80 nicht mit zwei ROM's U 505, sondern mit einem 2 KByte-EPROM (z. B. K 573 RF5 o.2) bestückt, so ändern sich die Startadressen der nachfolgend aufgeführten Unterprogramme.

Bitte beachten Sie diese auch bei Verwendung der vorn aufgeführten Programmbeispiele.

Name	Adresse	in	Adresse
	(2x ប 505)		(2716)
DAK2	0883н		0483Н
DAK1	08 5A H		045AH
ONESEG	O8CAH		O4CAH
TWOSEG	08D9H		04D9H
ADRSDP	08B7H		04B7H
DADP	08C3H		04C3H
RAMCHK	0852н		0452H
SOUND	0376н		0376Н
SOUN1K	0370H		0370Н
SOUN2K	0374н		0374H
MUSIK	OSEEH		O4EEH
MONMUS	OSEAH		O4EAH
DISP3	0983н		0583Н
DISP4	0989Н		0589Н

Laden der Speic	herzelle	2342H	bei	Verwendung	von
Registeranzeige	OA				06
Stepfunktion	OB				07

Tabelle Tastenwertigkeit

			•
Wertigkeit	Taste	Wertigkeit	Taste
OH	0	CH	C
1H	1	DH	D
SH	2	EH	E
3н	3	FH	F
4H	4	10H	+
5H	5	11H	_
6Н	6	12H	EX
7H	7	14H	DAT
8H	8	19H	ADR
9н	9	1EH	ST
HA	A	1FH	LD
BH	В		

V 22. 3.4 $d\hat{z}$

Im Stromlaufplan 15403.500-1901 Spientfallen folgende Positionen

R 272 68 sc

V 218 SAY 20

R 321 1k

C 248 C 348 2,2n

2,2 n

C 258 10 n

veb mikroelektronik : karl marx (erfurt stammbetrieb

DDR-5010 Erfurt, Rudolfatraße 47 Telefon: 5 80, Telex: 061 306 elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Telex: BLN 114721 elei, Telefon: 2180

Man man engineering the first of the

