QUASI-PERIOD COLLAPSE FOR DUALS TO FANO POLYGONS: AN EXPLANATION ARISING FROM ALGEBRAIC GEOMETRY

ALEXANDER M. KASPRZYK AND BEN WORMLEIGHTON

Abstract. The Ehrhart quasi-polynomial of a rational polytope P is a fundamental invariant counting lattice points in integer dilates of P. The quasi-period of this quasi-polynomial divides the denominator of P but is not always equal to it: this is called quasi-period collapse. Polytopes experiencing quasi-period collapse appear widely across algebra and geometry and yet the phenomenon remains largely mysterious. By using techniques from algebraic geometry – \mathbb{Q} -Gorenstein deformations of orbifold del Pezzo surfaces – we provide a sufficient condition for quasi-period collapse to occur for rational polygons dual to Fano polygons, and conjecture an explicit description of the discrepancy between the quasi-period and the denominator.

1. Introduction

Let $P \subset \mathbb{Z}^d \otimes_{\mathbb{Z}} \mathbb{Q}$ be a convex lattice polytope of dimension d. Let $L_P(k) := |kP \cap \mathbb{Z}^d|$ count the number of lattice points in dilations kP of P, $k \in \mathbb{Z}_{\geq 0}$. Ehrhart [9] showed that L_P can be written as a degree d polynomial

$$L_P(k) = c_d k^d + \ldots + c_1 k + c_0$$

which we call the *Ehrhart polynomial* of P. The leading coefficient c_d is given by Vol(P)/d!, c_{d-1} is equal to $Vol(\partial P)/2(d-1)!$, and $c_0=1$. Here $Vol(\cdot)$ denotes the normalised volume, and ∂P denotes the boundary of P. For example, if P is two-dimensional (that is, P is a lattice polygon) we obtain

$$L_P(k) = \frac{\operatorname{Vol}(P)}{2}k^2 + \frac{\left|\partial P \cap \mathbb{Z}^2\right|}{2}k + 1.$$

Setting k = 1 in this expression recovers Pick's Theorem [16]. The values of the Ehrhart polynomial of P form a generating function $\operatorname{Ehr}_P(t) := \sum_{k \geq 0} L_P(k) t^k$ called the *Ehrhart series* of P.

When the vertices of P are rational points the situation is more interesting. Recall that a *quasi-polynomial* with *period* $s \in \mathbb{Z}_{>0}$ is a function $q : \mathbb{Z} \to \mathbb{Q}$ defined by polynomials $q_0, q_1, \ldots, q_{s-1}$ such that

$$q(k) = q_i(k)$$
 when $k \equiv i \pmod{s}$.

The *degree* of q is the largest degree of the q_i . The minimum period of q is called the *quasi-period*, and necessarily divides any other period s. Ehrhart showed that L_P is given by a quasi-polynomial of degree d, which we call the *Ehrhart quasi-polynomial* of P. Let π_P denote the quasi-period of P. The smallest positive integer $r_P \in \mathbb{Z}_{>0}$ such that $r_P P$ is a lattice polytope is called the *denominator* of P. It is certainly the case that L_P is r_P -periodic, however it is perhaps surprising that the quasi-period of L_P does not always equal r_P ; this phenomenon is called *quasi-period collapse*.

Example 1.1 (Quasi-period collapse). Consider the triangle $P := \text{conv}\{(5,-1),(-1,-1),(-1,1/2)\}$ with denominator $r_P = 2$. This has $L_P(k) = 9/2k^2 + 9/2k + 1$, hence $\pi_P = 1$.

Quasi-period collapse is poorly understood, although it occurs in many contexts. For example, de Loera–McAllister [7,8] consider polytopes arising naturally in the study of Lie algebras (the Gel'fand–Tsetlin polytopes and the polytopes determined by the Clebsch–Gordan coefficients) that exhibit quasi-period collapse. In dimension two McAllister–Woods [15] show that there exist rational polygons with r_P arbitrarily large but with $\pi_P = 1$ (see also Example 3.7). Haase–McAllister [10] give a constructive view of this phenomena in terms of $GL_d(\mathbb{Z})$ -scissor congruence; here a polytope is partitioned into pieces that are individually modified via $GL_d(\mathbb{Z})$ transformation and lattice translation, then reassembled to give a new polytope which (by construction) has equal Ehrhart quasi-polynomial but different r_P .

2010 Mathematics Subject Classification. 52B20 (Primary); 05E, 14J17 (Secondary).

Key words and phrases. Quasi-period collapse, mutation, Fano polytope, Ehrhart quasi-polynomial.

Example 1.2 (GL₂(\mathbb{Z})-scissor congruence). The lattice triangle $Q := \text{conv}\{(2,-1),(-1,-1),(-1,2)\}$ with Ehrhart polynomial $L_Q(k) = 9/2k^2 + 9/2k + 1$ can be partitioned into two rational triangles as depicted on the left below. Fix the bottom-most triangle, and transform the top-most triangle via the lattice automorphism $e_1 \mapsto (3,-1)$, $e_2 \mapsto (4,-1)$. This gives the rational triangle P (depicted on the right) from Example 1.1.

We give an explanation for quasi-period collapse in two dimensions for a certain class of polygons in terms of recent results in algebraic geometry arising from Mirror Symmetry. In §2 we explain how mutation – a combinatorial operation arising from the theory of cluster algebras – gives an explanation of this phenomenon, and explain how this is related to \mathbb{Q} -Gorenstein (qG-) deformations of del Pezzo surfaces as studied by Wahl [17], Kollár–Shepherd-Barron [14], Hacking–Prokhorov [11], and others. Finally, in Theorem 3.4 we provide a sufficient condition for quasi-period collapse to occur, and conjecture an explicit formula for the discrepancy between the denominator and the quasi-period for this class of polygons.

2. Mutation

In [10] Haase–McAllister propose the open problem of finding a systematic and useful technique that implements $GL_d(\mathbb{Z})$ -scissor congruence for rational polytopes. In the case when the dual polyhedron is a lattice polytope it was observed in [2] that one such technique is given by *mutation*.

- 2.1. The combinatorics of mutation. Let $N \cong \mathbb{Z}^d$ be a rank d lattice and set $N_{\mathbb{Q}} := N \otimes_{\mathbb{Z}} \mathbb{Q}$. Let $P \subset N_{\mathbb{Q}}$ be a lattice polytope. We require and will assume from here onwards that P satisfies the following two conditions:
 - (a) P is of maximum dimension in N, dim(P) = d;
 - (b) the origin is contained in the strict interior of P, $\mathbf{0} \in P^{\circ}$.

Condition (b) is not especially stringent, and can be satisfied by any polytope with $P^{\circ} \cap N \neq \emptyset$ by lattice translation. It is, however, an essential requirement in what follows.

Let $M := \text{Hom}(N, \mathbb{Z}) \cong \mathbb{Z}^d$ denote the dual lattice. Given a polytope $P \subset N_{\mathbb{Q}}$, the dual polyhedron is defined by

$$P^* := \{ u \in M_{\mathbb{Q}} \mid u(v) \ge -1 \text{ for all } v \in P \} \subset M_{\mathbb{Q}}.$$

Condition (b) gives that P^* is a (typically rational) polytope. It is on rational polytopes dual to lattice polytopes that we focus. In this section we will explain how mutation corresponds to a piecewise- $GL_d(\mathbb{Z})$ transformation of P^* , and hence is an instance of $GL_d(\mathbb{Z})$ -scissor congruence for P^* .

Following [2, §3], let $w \in M$ be a primitive lattice vector. Then $w : N \to \mathbb{Z}$ determines a height function (or grading) which naturally extends to $N_{\mathbb{Q}} \to \mathbb{Q}$. We call w(v) the *height* of $v \in N_{\mathbb{Q}}$. We denote the set of all points of height h by $H_{w,h}$, and write

$$w_h(P) := \operatorname{conv}(H_{w,h} \cap P \cap N) \subset N_{\mathbb{Q}}$$

for the (possibly empty) convex hull of lattice points in P at height h.

Definition 2.1. A *factor* of $P \subset N_{\mathbb{Q}}$ with respect to $w \in M$ is a lattice polytope $F \subset w^{\perp}$ such that for every negative integer $h \in \mathbb{Z}_{<0}$ there exists a (possibly empty) lattice polytope $R_h \subset N_{\mathbb{Q}}$ such that

$$H_{w,h} \cap \text{vert}(P) \subseteq R_h + |h| F \subseteq w_h(P)$$
.

Here '+' denotes Minkowski sum, and we define $\emptyset + Q = \emptyset$ for every lattice polytope Q.

Definition 2.2. Let $P \subset N_{\mathbb{Q}}$ be a lattice polytope with $w \in M$ and $F \subset N_{\mathbb{Q}}$ as above. The *mutation* of P with respect to the data (w, F) is the lattice polytope

$$\mu_{(w,F)}(P) := \operatorname{conv}\left(\bigcup_{h \in \mathbb{Z}_{<0}} R_h \cup \bigcup_{h \in \mathbb{Z}_{\geq 0}} (w_h(P) + hF)\right) \subset N_{\mathbb{Q}}.$$

It is shown in [2, Proposition 1] that, for fixed data (w, F), any choice of $\{R_h\}$ satisfying Definition 2.1 gives $\operatorname{GL}_d(\mathbb{Z})$ -equivalent mutations. Since we regard lattice polytopes as being defined only up to $\operatorname{GL}_d(\mathbb{Z})$ -equivalence, this means that mutation is well-defined. One can readily see that translating the factor F by some lattice point $v \in w^{\perp} \cap N$ gives isomorphic mutations: $\mu_{(w,F+v)}(P) \cong \mu_{(w,F)}(P)$. In particular if $\dim(F) = 0$ then $\mu_{(w,F)}(P) \cong P$. Finally, we note that mutation is always invertible [2, Lemma 2]: if $Q := \mu_{(w,F)}(P)$ then $P = \mu_{(-w,F)}(Q)$.

Remark 2.3. Informally, mutation corresponds to the following operation on slices $w_h(P)$ of P: at height h one Minkowski adds or "subtracts" |h| copies of F, depending on the sign of h. Definition 2.1 ensures that the concept of Minkowski subtraction makes sense.

Mutation has a natural description in terms of the dual polytope P^* [2, Proposition 4 and pg. 12].

Definition 2.4. The *inner-normal fan* in $M_{\mathbb{Q}}$ of a polytope $F \subset N_{\mathbb{Q}}$ is generated by the cones

$$\sigma_{v_F} := \{ u \in M_{\mathbb{Q}} \mid u(v_F) = \min\{u(v) \mid v \in F\} \}, \quad \text{for each } v_F \in \text{vert}(F).$$

A mutation $\mu_{(w,F)}$ induces a piecewise- $\mathrm{GL}_d(\mathbb{Z})$ transformation $\varphi_{(w,F)}$ on $M_\mathbb{Q}$ given by

$$\varphi_{(w,F)}: u \mapsto u - u_{\min}w$$
, where $u_{\min} := \min\{u(v_F) \mid v_F \in \text{vert}(F)\}$.

The inner-normal fan of F determines a chamber decomposition of $M_{\mathbb{Q}}$, and $\varphi_{(w,F)}$ acts linearly within each chamber. Let $Q:=\mu_{(w,F)}(P)$. Then $\varphi_{(w,F)}(P^*)=Q^*$. It is clear that the Ehrhart quasi-polynomials L_{P^*} and L_{Q^*} for the dual polytopes are equal, since the map $\varphi_{(w,F)}$ is piecewise-linear. Hence mutation gives a systematic way to produce examples of $\mathrm{GL}_d(\mathbb{Z})$ -scissor congruence.

Example 2.5 (Mutation). Let $P = \text{conv}\{(1,0),(0,1),(-1,-1)\} \subset N_{\mathbb{Q}}$ and $w = (2,-1) \in M$. Then $F = \text{conv}\{(0,0),(-1,-2)\} \subset w^{\perp}$ is a factor. We see that $Q := \mu_{(w,F)}(P) = \text{conv}\{(1,0),(0,1),(-1,-4)\}$.

On the dual side we have that $M_{\mathbb{Q}}$ is divided into two chambers whose boundary is given by $\mathbb{Q} \cdot w$, and

$$\varphi_{(w,F)}:(u_1,u_2)\mapsto \begin{cases} (u_1,u_2), & \text{if } u_1+2u_2\leq 0;\\ (3u_1+4u_2,-u_1-u_2), & \text{otherwise}. \end{cases}$$

Thus we recover Example 1.2 from the view-point of mutation.

From here onwards we assume that $P \subset N_{\mathbb{Q}}$ is *Fano*. That is, in addition to conditions (a) and (b) above, P satisfies:

(c) the vertices vert(P) of P are primitive lattice points.

The property of being Fano is preserved under mutation [2, Proposition 2]. We refer to [13] for a survey of Fano polytopes.

- 2.2. **Toric geometry.** We review some toric algebraic geometry and discuss its extensive connections with Ehrhart theory. A toric variety is a partial compactification of an algebraic torus $(\mathbb{C}^{\times})^n$. They are described combinatorially by cones, fans, and polytopes. This and much more is detailed in [6].
- 2.2.1. Affine toric varieties arise from cones. Let $N \cong \mathbb{Z}^n$ be a lattice and let $N_{\mathbb{Q}} := N \otimes_{\mathbb{Z}} \mathbb{Q}$ be the associated \mathbb{Q} -vector space. A cone σ in $N_{\mathbb{Q}}$ is a subset of the form

$$\mathrm{cone}(S) \coloneqq \{ \sum_{v \in S} \lambda_v v : \lambda_v \ge 0, \text{all but finitely many } \lambda_v \text{ are zero} \}$$

Let $M = N^{\vee} := \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ be the dual lattice to N, and $M_{\mathbb{Q}} = M \otimes_{\mathbb{Z}} \mathbb{Q}$ the dual vector space to $N_{\mathbb{Q}}$. Define the *dual cone* to a cone $\sigma \subset N_{\mathbb{Q}}$ to be

$$\sigma^{\vee} := \{ v \in M_{\mathbb{Q}} : \langle u, v \rangle \ge 0 \text{ for all } u \in \sigma \}$$

where $\langle \cdot, \cdot \rangle$ is the dual pairing $N_{\mathbb{Q}} \times M_{\mathbb{Q}} \to \mathbb{R}$. Suppose now that σ is a *rational polyhedral* cone: that there is a finite set of lattice points $S \subset N$ such that $\sigma = \text{cone}(S)$. Such a cone σ gives an affine toric variety U_{σ} as follows.

- **Input:** σ , a rational polyhedral cone
- Dualise to σ^V
- Take lattice points $\sigma^{\vee} \cap M$ to obtain a semigroup
- Take the semigroup algebra $\mathbb{C}[\sigma^{\vee} \cap M]$; this is a finitely generated \mathbb{C} -algebra
- Output: $U_{\sigma} := \operatorname{Spec} \mathbb{C}[\sigma^{\vee} \cap M].$

The cone σ (or rather σ^{\vee}) is describing which functions on the torus extend to global functions on U_{σ} , which is equivalent to describing the variety. One can describe the torus inside U_{σ} intrinsically as

$$T_N := N \otimes_{\mathbb{Z}} \mathbb{C}^{\times}$$

In this presentation, a vector $m \in M$ gives a function $\chi^m : T_N \to \mathbb{C}$ via

$$\chi^m(n \otimes t) = t^{\langle m, n \rangle}$$

Example 2.6. Take $N = \mathbb{Z}^2$ and let $\sigma = \text{cone}(e_1, e_2)$. The dual cone is $\sigma^{\vee} = \text{cone}(e^1, e^2)$ giving

$$\sigma^{\vee} \cap M = \mathbb{Z}^2_{>0}$$
 and $\mathbb{C}[\sigma^{\vee} \cap M] \cong \mathbb{C}[x, y]$

Hence $U_{\sigma} \cong \mathbb{C}^2$. In this case, σ^{\vee} prescribes that the only Laurent polynomials extending to all of U_{σ} are the polynomials.

- 2.2.2. *Toric varieties arise from fans.* To construct more complicated toric varieties we glue together affine toric varieties in an equivariant way. The combinatorial avatar of this process is collecting cones together in a *fan*. To start with, a *face* of a cone σ is a subset of σ of the form $\sigma \cap (\langle m, \cdot \rangle = 0)$ for some $m \in \sigma^{\vee}$. The cones forming the boundary of σ are examples of faces, as is the vertex of the cone (the origin). A *fan* in $N_{\mathbb{Q}}$ is a collection of cones $\Sigma = {\sigma}$ such that
 - if $\tau \subset \sigma$ is a face, then $\tau \in \Sigma$
 - for any two cones $\sigma_1, \sigma_2 \in \Sigma$, $\sigma_1 \cap \sigma_2$ is a face of each

A fan Σ produces a toric variety X_{Σ} via gluing two affine pieces U_{σ_1} , U_{σ_2} according to the (potentially zero-dimensional) face they have in common.

Example 2.7. Take $N = \mathbb{Z}^2$ and Σ to be the fan containing the cones $\sigma_1 = \operatorname{cone}(e_1, e_2)$, $\sigma_2 = \operatorname{cone}(e_1, -e_1 - e_2)$, $\sigma_3 = \operatorname{cone}(e_2, -e_1 - e_2)$ and their faces. The two-dimensional cones give three copies of \mathbb{C}^2 and the gluing prescribed by the faces makes this into \mathbb{P}^2 . For example, σ_1 and σ_3 share the face $\operatorname{cone}(e_2)$ that corresponds to the toric variety $\mathbb{C}^\times \times \mathbb{C}$. Gluing \mathbb{C}^2 to \mathbb{C}^2 along $\mathbb{C}^\times \times \mathbb{C}$ is familiar from the gluing construction of projective space.

2.2.3. Compact toric varieties arise from polytopes. Suppose $P \subset N_{\mathbb{Q}}$ is a lattice polytope. One can produce a fan Σ_P from P via

$$\Sigma_P := \{ \operatorname{cone}(S) : S \subset \operatorname{Vert}(P) \text{ such that all } u \in S \text{ share a face} \}$$

This is called the *spanning fan* of *P* and defines a toric variety $X_P := X_{\Sigma_P}$ that turns out to be compact.

A polytope $Q \subset M_{\mathbb{Q}}$ also defines a toric variety V_Q . Let $L_Q = \#Q \cap M$ and define a map $\phi_Q : T_N \to \mathbb{P}^{L_Q-1}$ by $x \mapsto (\chi^m(x))_{m \in Q \cap M}$. The toric variety V_Q is defined to be the closure of the image of ϕ_Q in \mathbb{P}^{L_Q-1} in the Zariski topology (where the closed sets are the algebraic sets). If we define the dual polytope

$$P^{\vee} := \{ v \in M_{\mathbb{Q}} : \langle u, v \rangle \ge -1 \}$$

then the toric variety X_P is also described abstractly as the variety V_{kP^\vee} for large enough k.

Example 2.8. A polytope for \mathbb{P}^2 is the triangle with vertices e_1 , e_2 , $-e_1-e_2$. The dual polytope is the triangle with vertices $2e^1-e_2$, $-e_1+2e_2$, $-e^1-e^2$. This has 10 lattice points and describes the third Veronese (or anticanonical) embedding of \mathbb{P}^2 in \mathbb{P}^9 .

2.2.4. Polytopes arise from divisors. A (Weil) divisor on a variety is a formal \mathbb{Z} -linear combination of codimension one subvarieties. The irreducible codimension one subvarieties of a toric variety X_{Σ} that are preserved by the torus action are indexed by the rays of Σ . The set of rays is commonly denoted $\Sigma(1)$. Thus, we can express torus-invariant divisors in the forn

$$\sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho}$$

where D_{ρ} is the divisor corresponding to the ray $\rho \in \Sigma(1)$. One can associate a polytope P(D) to a divisor of this form as follows. Let u_{ρ} be the primitive lattice point lying on the ray ρ . Then set

$$P(D) := \{ v \in M_{\mathbb{Q}} : \langle u_{\rho}, v \rangle \ge -a_{\rho} \text{ for all } \rho \in \Sigma(1) \}$$

The hyperplanes defining the facets of P(D) are given by $\langle u_{\rho}, \cdot \rangle = -a_{\rho}$ and so this construction of P(D) taking in the data $(u_{\rho}, a_{\rho})_{\rho \in \Sigma(1)}$ is often referred to as a 'facet presentation' for P(D). Denote by $\mathcal{O}(D)$ the line bundle (or sheaf) associated to a divisor D.

Lemma 2.9 ([6], Proposition 4.3.3). Let $D = \sum_{\rho} a_{\rho} D_{\rho}$. A basis of $H^0(\mathcal{O}(D))$ is in bijection with lattice points of P(D). That is,

$$\#P(D)\cap M=L_{P(D)}=h^0(\mathcal{O}(D))$$

2.2.5. Toric Fano varieties. When P is a Fano polytope the toric variety X_P is a toric Fano variety; namely, the anticanonical divisor $-K_{X_P}$ is ample. When P is a Fano polygon X_P is a toric del Pezzo surface with at worst log terminal singularities.

The geometry, specifically the deformation theory, of toric del Pezzo surfaces will be our main tool in studying quasi-period collapse. The main deformation-theoretic invariant we will use is the *singularity* content of P introduced in [3], which we recall in Definition 2.14 below. From a combinatorial point of view the singularity content is invariant under mutations of P. In §2.5 we remark on the connection between singularity content and the qG-deformation theory of X_P , and how this gives a geometric explanation for the quasi-period collapse of P^* .

2.3. **Quotient singularities.** In order to state the definition of singularity content we first recall some of the theory of quotient or orbifold surface singularities from algebraic geometry. A point of an algebraic variety X is called singular at a point p if

$$\dim T_p X > \inf_{q \in X} \dim T_q X$$

where T_pX is the tangent space to X at p. We also say that p is a singularity of X. An interesting and well-studied class of singularities is quotient singularities that are constructed as follows. Let $G \subset GL_n(\mathbb{C})$ be a finite subgroup. G acts on \mathbb{C}^n and the set of orbits \mathbb{C}^n/G can be endowed with the structure of an algebraic variety. The origin in \mathbb{C}^n is fixed by G and so produces a singular point of the orbit space \mathbb{C}^n/G . We call a singularity with a neighbourhood that is isomorphic as varieties to \mathbb{C}^n/G for some G a quotient singularity. When G is a cyclic group, we say that such a singularity is a cyclic quotient singularity. Up to conjugation we can generate such cyclic G by a matrix of the form

$$\begin{pmatrix} \varepsilon & \\ & \varepsilon^a \end{pmatrix}$$

where ε is a root of unity and $a \in \mathbb{Z}$. If ε is a primitive rth root of unity we denote the corresponding quotient singularity by $\frac{1}{r}(1, a)$. Clearly the value of a only matters mod r. Since G is abelian the singularity $\frac{1}{r}(1, a)$ is a toric variety whose fan is given by the single two-dimensional cone

$$\sigma = \operatorname{cone}\{e_2, re_1 - ae_2\} \subset N_{\mathbb{Q}}.$$

The lattice height of such a cone – that is, the lattice distance between the origin and the line segment joining the two primitive ray generators of the cone (the *edge* of the cone) – is called the *local index*, and can be calculated to be

$$\ell_{\sigma} = \frac{r}{\gcd\{r, a+1\}}.$$

Another way of defining this is to say that the local index is the absolute value of a primitive normal vector to the cone edge evaluated on any element of the edge. The *width* of the cone is the number of unit-length lattice line segments along the edge of the cone or, equivalently, one less than the number of lattice points along the edge. The width is equal to $gcd\{r, a + 1\}$.

A cyclic quotient singularity is called a *T-singularity* if it is smoothable by a qG-deformation. This is a highly geometric definition but for our purposes we can use the following numerical characterisation of *T*-singularities.

Lemma 2.10 ([14, Proposition 3.11]). *An isolated cyclic quotient singularity is a T-singularity if and only if it takes the form*

$$\frac{1}{dn^2}(1, dnc - 1)$$

for some c with $gcd\{n, c\} = 1$.

The cone $\sigma \subset N_{\mathbb{Q}}$ associated to a T-singularity $\frac{1}{dn^2}(1, dnc-1)$ has local index $\ell=n$ and width dn; it is easily seen that T-singularities are characterised by having width divisible by local index. Suppose that $P \subset N_{\mathbb{Q}}$ is a Fano polygon with edge E spanning σ . Let $w \in M$ be the primitive inner-normal such that $w(E) = -\ell$, and choose $F \subset w^{\perp}$ of lattice length d. The mutation $\mu_{(w,F)}(P)$ collapses the edge E to a vertex, removing the cone σ . This is equivalent in geometry to a local qG-smoothing of the T-singularity.

Example 2.11. Consider the polytope $Q := \text{conv}\{(1,0),(0,1),(-1,-4)\}$ appearing in Example 2.5. The corresponding spanning fan has three two-dimensional cones, two of which are smooth and one of which, $\text{cone}\{(1,0),(-1,-4)\}$, corresponds to a $\frac{1}{4}(1,1)$ *T*-singularity.

The other relevant class of quotient singularities are the *R-singularities* introduced in [3].

Definition 2.12. A cyclic quotient singularity of local index ℓ and width k is an R-singularity if $k < \ell$.

Let $\sigma \subset N_{\mathbb{Q}}$ be a cone of local index ℓ and width k. Write $k = d\ell + r$, where $d, r \in \mathbb{Z}_{\geq 0}, 0 \leq r < \ell$. If r = 0 then σ is a T-singularity. Assume that $r \neq 0$ and, as before, suppose that $P \subset N_{\mathbb{Q}}$ is a Fano polygon with edge E spanning σ . Let $w \in M$ be the corresponding inner-normal, and pick $F \subset w^{\perp}$ of lattice length d. The mutation $\mu_{(w,F)}(P)$ transforms σ to a cone τ of width r corresponding to a $\frac{1}{r\ell}(1,rc/k-1)$ singularity. Crucially, τ has width strictly less than the local index, and so cannot be simplified via further mutation. This is equivalent to a partial qG-smoothing of the original singularity σ , resulting in a singularity τ that is rigid under qG-deformation. The R-singularity τ is independent of the choices made [3, Proposition 2.4].

Definition 2.13. Let $\sigma \subset N_{\mathbb{Q}}$ be a cone corresponding to a $\frac{1}{r}(1, c-1)$ singularity. Let ℓ be the local index and let k be the width of the cone. Write $k = d\ell + r$, where $d, r \in \mathbb{Z}_{\geq 0}$, $0 \leq r < \ell$. The *residue* of σ is

$$\operatorname{res}(\sigma) = \begin{cases} \frac{1}{r\ell}(1, rc/k - 1), & \text{if } r \neq 0; \\ \emptyset, & \text{otherwise.} \end{cases}$$

The *singularity content* of σ is the pair $(d, res(\sigma))$. From a geometric perspective the singularity content contains all local qG-deformation-theoretic data about σ .

We observe that any toric variety of dimension two will only have quotient singularities (see [6]).

Definition 2.14. Let $P \subset N_{\mathbb{Q}}$ be a Fano polygon with cones $\sigma_1, \ldots, \sigma_n$. The *basket* of P is the multiset

$$\mathcal{B} := \{ \operatorname{res}(\sigma_i) \mid 1 \le i \le n \},\$$

where the empty residues are omitted¹. The *singularity content* of P is the pair

$$(d_1 + \cdots + d_n, \mathcal{B}),$$

where the d_i are the integers appearing in the singularity content of the σ_i . Singularity content is a qG-deformation-invariant of X_P .

2.4. **Hilbert series.** Any toric variety X_P arising from a polytope P comes with a natural ample divisor D given by its 'toric boundary'

$$D = \sum_{\rho \in \Sigma(1)} D_{\rho}$$

When *P* is Fano we have D = -K, the anti-canonical divisor on X_P . Define the *Hilbert function* of (X_P, D) to be

$$h_{(X_P,D)}(n) := \dim H^0(\mathcal{O}(nD))$$

In this case, due to Lemma 2.9, one has that the Hilbert function of $(X_P, -K)$ equals the Ehrhart quasipolynomial $L_{P^*}(k)$ of the rational polytope P^* . It follows that the generating function $\operatorname{Hilb}_{(X_P, -K)}(t)$ for the Hilbert function of $(X_P, -K)$, the *Hilbert series* of $(X_P, -K)$, is equal to the Ehrhart series of P^* . From here onwards we suppress -K from the notation.

The Hilbert series of an orbifold del Pezzo surface X with basket \mathcal{B} can be written in the form [3, Corollary 3.5]:

$$Hilb_X(t) = \frac{1 + (K^2 - 2)t + t^2}{(1 - t)^3} + \sum_{\sigma \in \mathcal{B}} Q_{\sigma},$$

where Q_{σ} are *orbifold correction terms* given by certain rational functions with denominators $1 - t^{\ell_{\sigma}}$.

Example 2.15. The orbifold correction term for the *R*-singularity $\frac{1}{2}(1,1)$ is

$$Q_{\frac{1}{3}(1,1)} = \frac{-t}{3(1-t^3)} = -\frac{1}{3}(t+t^4+t^7+\dots)$$

which contributes -1/3 to the coefficient of t^d when $d \equiv 1 \pmod{3}$.

It is apparent from this example how the Q_{σ} terms are the root of the quasi-polynomial behaviour of $h_{(X_P,D)}(d)$ and hence for the quasi-polynomial behaviour of the Ehrhart function $L_P(d)$. In general Q_{σ} contributes to the Hilbert function as a quasi-polynomial of period ℓ_{σ} .

If the sheaf $\mathcal{O}(D)$ is a line bundle, we say that D is Cartier. The smallest integer d such that -dK is Cartier is called the *Gorenstein index* of X_P and denoted by ℓ_{X_P} . This is also computed by the following:

$$\ell_{X_P} = \operatorname{lcm}\{\ell_{\sigma} : \sigma \in X_P^{\operatorname{sing}}\}\$$

where X_p^{sing} is the set of singularities on X_P . We prove the following easy lemma to relate the Gorenstein index with the denominator of the dual polytope.

Lemma 2.16. Let P be a Fano polygon. The Gorenstein index ℓ_{X_P} is equal to the denominator r_{P^*} of P^* .

Proof. In the toric setting -dK is Cartier if and only if dP^* is a lattice polytope from [6]. This gives the result

2.5. **Algebraic geometry and the quasi-period.** Mutations were introduced in [2] as part of an ongoing program investigating Mirror Symmetry for Fano manifolds [5]. In two dimensions the picture is very well understood: see [1] for the details. In summary, if two Fano polygons P and $Q \subset N_{\mathbb{Q}}$ are related by a sequence of mutations then there exists a qG-deformation between the corresponding toric del Pezzo surfaces X_P and X_Q . Such a qG-deformation preserves the anti-canonical Hilbert series, hence $L_{P^*} = L_{Q^*}$ and so the quasi-periods of P^* and Q^* agree. However it does not in general preserve the Gorenstein index, and hence the denominators r_{P^*} and r_{Q^*} need not be equal. The cones over the edges of P correspond to the singularities of X_P , and these admit partial qG-smoothings to the qG-rigid singularities given by the basket \mathcal{B} of residues.

Suppose that the singularity content of P is (d, \mathcal{B}) . Then X_P is qG-deformation-equivalent to a (*not necessarily toric*) del Pezzo surface X with singularities \mathcal{B} and whose non-singular locus has topological

 $^{^{1}}$ In [3] the basket is cyclically ordered. Although important from the viewpoint of classification, it is not required here.

Euler number d. Since $Hilb_{X_P}(t) = Hilb_X(t)$, we have an explanation for quasi-period collapse of the dual polytope P^* . Specifically, the Gorenstein index of X is equal to the quasi-period of P^* .

3. STUDYING QUASI-PERIOD COLLAPSE

The Hilbert series of toric del Pezzo surfaces (or more generally, del Pezzo orbifolds) were studied in [18] with the aim of describing the structure of the set of possible baskets $\mathcal B$ of R-singularities on orbifold del Pezzo surfaces with a fixed Hilbert series. This is achieved by partitioning $\mathcal B$ into two pieces: a *reduced basket* and an *invisible basket*. The latter, along with the T-singularities, are not detected by the Hilbert series, and from our viewpoint it is these 'invisible' singularities that cause quasi-period collapse to occur.

Definition 3.1. A collection $\sigma_1, \ldots, \sigma_n$ of *R*-singularities is a *cancelling tuple* if

$$Q_{\sigma_1} + \dots + Q_{\sigma_n} = 0.$$

A collection of *R*-singularities is called *invisible* if it is a disjoint union of cancelling tuples.

Example 3.2. Let σ be an R-singularity of local index ℓ and width k. Then there exists an R-singularity σ' of local index ℓ and width $\ell - k$ such that $Q_{\sigma} + Q_{\sigma'} = 0$. Combinatorially, this is understood by the observation that the union of the two cones gives a T-singularity.

Definition 3.3. Let X be an toric del Pezzo surface. A maximal invisible subcollection of the basket \mathcal{B} of X is called an *invisible basket* for X. Notice that such a maximal subcollection is not unique, since singularities can appear in many different cancelling tuples. Given a choice of invisible basket $\mathcal{IB} \subset \mathcal{B}$, the complement $\mathcal{RB} = \mathcal{B} \setminus \mathcal{IB}$ is called the *reduced basket* for X corresponding to the choice of \mathcal{IB} .

Observe that

$$\sum_{\sigma \in \mathcal{IB}} Q_{\sigma} = 0$$

however the singularities in \mathcal{IB} still can contribute to the expression for the Gorenstein index (or the denominator) in (*).

Denote the collection of *T*-singularities on X_P by \mathcal{T}_P .

Theorem 3.4. Let $P \subset N_{\mathbb{Q}}$ be a Fano polygon with singularity content (d, \mathcal{B}) . Let \mathcal{IB} be an invisible basket for X_P with corresponding reduced basket \mathcal{RB} . The quasi-period of P^* is bounded above by

$$\pi_{P^*} \leq \operatorname{lcm}\{\ell_{\sigma} \mid \sigma \in \mathcal{RB}\}.$$

Furthermore, P^* exhibits quasi-period collapse if there exists some $\tau \in \mathcal{IB} \cup \mathcal{T}_P$ of local index not dividing $lcm\{\ell_{\sigma} \mid \sigma \in \mathcal{RB}\}$.

Proof. From the preceding discussion we have shown that

$$Ehr_{P^*}(t) = Hilb_{X_P}(t) = \frac{1 + (K^2 - 2)t + t^2}{(1 - t)^3} + \sum_{\sigma \in \mathcal{B}} Q_{\sigma}$$

We can rewrite this as

$$Ehr_{P^*}(t) = \frac{1 + (K^2 - 2)t + t^2}{(1 - t)^3} + \sum_{\sigma \in \mathcal{RB}} Q_{\sigma}$$

using (†).

²We adopt the convention that $lcm\{\emptyset\} = 1$.

Notice that the first term

$$\frac{1 + (K^2 - 2)t + t^2}{(1 - t)^3}$$

is the generating function for a polynomial that we denote by i(d). As previously discussed, each of the orbifold correction terms Q_{σ} is the generating function for a quasi-polynomial $q_{\sigma}(d)$ with quasi-period ℓ_{σ} . When $\sigma \in \mathcal{RB}$ these terms are not cancelled out and so make non-zero contributions to the Ehrhart function. It follows that we can express

$$L_{P^*}(d) = i(d) + \sum_{\sigma \in \mathcal{RB}} q_{\sigma}(d)$$

The right hand side is a sum of a polynomial with a collection of quasi-polynomials and hence its quasiperiod is bounded above by the lowest common multiple of the periods of the $q_{\sigma}(d)$, or

$$lcm\{\ell_{\sigma} \mid \sigma \in \mathcal{RB}\}\$$

The period of the left hand side is by definition the quasi-period π_{P^*} of P^* and so we obtain the desired inequality.

To provide the sufficent condition for quasi-period collapse to occur, recall that the denominator r_{P^*} of P^* is equal to

$$r_{P^*} = \operatorname{lcm} \left\{ \ell_{\sigma} \mid \sigma \in X_P^{\operatorname{sing}} \right\} = \operatorname{lcm} \left\{ \ell_{\sigma} \mid \sigma \in \mathcal{IB} \cup \mathcal{RB} \cup \mathcal{T}_P \right\}$$

This is strictly greater than the upper bound for π_{P^*} if and only if there is some $\tau \in \mathcal{IB} \cup \mathcal{T}_P$ whose local index does not divide $lcm\{\ell_{\sigma} \mid \sigma \in \mathcal{RB}\}$, completing the proof.

Remark 3.5. It follows from [18, §4] that the choice of \mathcal{IB} is irrelevant in the statement of Theorem 3.4.

Example 3.6 (Detecting quasi-period collapse). Consider the polytope $Q := \text{conv}\{(1,0),(0,1),(-1,-4)\}$ appearing in Example 2.5. This has singularity content $(3,\emptyset)$, and $\mathcal{T}_Q = \{2 \times \text{smooth}, \frac{1}{4}(1,1)\}$. We see that $r_{Q^*} = 2$ but $\pi_{Q^*} \leq 1$, hence $\pi_{Q^*} = 1$.

Computational evidence suggests that actually this upper bound is an equality; namely that the quasi-period of P^* is given by

$$\pi_{P^*} = \operatorname{lcm}\{\ell_{\sigma} \mid \sigma \in \mathcal{RB}\}\$$

but proving this would involve a thorough understanding of any relations between the quasi-polynomials $q_{\sigma}(d)$ for all σ , which is currently fairly opaque. This would give a complete characterisation of quasi-period collapse for duals to Fano polygons, and an explicit formula for the discrepancy between quasi-period and denominator.

3.1. **Application:** a family of triangles with maximal quasi-period collapse. We now give an example of an infinite family of Fano triangles, obtained via mutation, where the denominator r_{P^*} can become arbitrarily large but where $\pi_{P^*} = 1$. Let $P \subset N_{\mathbb{Q}}$ be a Fano triangle. Recall that the corresponding toric variety X_P is a *fake weighted projective plane* [12]: a quotient of a weighted projective plane by a finite group N/N' acting free in codimension one, where N' is the sublattice generated by the vertices of P.

Example 3.7 (Mutations of \mathbb{P}^2). In [4,11] the graph of mutations of \mathbb{P}^2 is constructed. The vertices of this graph are given by $\mathbb{P}(a^2,b^2,c^2)$, where $(a,b,c) \in \mathbb{Z}_{>0}^3$ is a *Markov triple* satisfying

$$(3.1) a^2 + b^2 + c^2 = 3abc.$$

Let $X_P = \mathbb{P}(a^2, b^2, c^2)$ be such a weighted projective plane, with $P \subset N_{\mathbb{Q}}$ the corresponding Fano triangle. Since X_P is qG-deformation-equivalent to \mathbb{P}^2 , so X_P is smoothable and its anti-canonical Hilbert function has quasi-period one. Hence $\pi_{P^*} = 1$. However, the denominator r_{P^*} of P^* can be arbitrarily large. To see this, note first that a, b, c must be pairwise coprime: if $p \mid a$ and $p \mid b$ then $p^2 \mid 3abc = a^2 + b^2 + c^2$, and hence $p \mid c$; but then p appears as a square on the left-hand side and as a cube on the right-hand side of (3.1). Let \overline{b} be an inverse of $b \pmod{a^2}$. Note that $c^2\overline{b}^2 + 1 \equiv (3abc - b^2)\overline{b}^2 + 1 \equiv 3a\overline{b}c \pmod{a^2}$, and so the singularity $\frac{1}{a^2}(b^2, c^2)$ on X_P has local index

$$\frac{a^2}{\gcd\left\{a^2, c^2\overline{b}^2 + 1\right\}} = \begin{cases} a, & \text{if } a \not\equiv 0 \pmod{3}; \\ a/3, & \text{if } a \equiv 0 \pmod{3}. \end{cases}$$

Considering equation (3.1) (mod 3) shows that no Markov numbers are divisible by three. Hence the three local indices on X_P are a, b, and c, and so $r_{P^*} = abc$. The two triangles P and Q in Example 2.5 are the simplest examples, arising from the Markov triples (1, 1, 1) and (1, 1, 2) respectively, and corresponding to \mathbb{P}^2 and $\mathbb{P}(1, 1, 4)$.

We end by observing that there exist Fano triangles of quasi-period one not arising from the construction in Example 3.7.

Example 3.8. Consider

$$P = \text{conv}\{(3,2), (-1,2), (-1,-2)\} \subset N_{\mathbb{Q}}.$$

The corresponding fake weighted projective plane $X_P = \mathbb{P}(1,1,2)/(\mathbb{Z}/4)$ has $2 \times \frac{1}{4}(1,3)$ and $\frac{1}{8}(1,3)$ T-singularities. We see that P^* has $r_{P^*} = 2$ and $\pi_{P^*} = 1$. In fact X_P is qG-smoothable to the nonsingular del Pezzo surface of degree two, and hence $L_{P^*}(k) = k^2 + k + 1$.

We expect that the algebro-geometric methods of this paper can be used to classify all triangles dual to Fano triangles with quasi-period 1, and hope to extend these methods to treat more general rational polygons, as well as higher dimensional polytopes.

Acknowledgments. Our thanks to Tom Coates, Alessio Corti, Mohammad Akhtar, Thomas Prince, and Miles Reid for many helpful discussions. AK is supported by EPSRC Fellowship EP/N022513/1. BW was supported by a grant from the London Mathematical Society.

References

- [1] Mohammad Akhtar, Tom Coates, Alessio Corti, Liana Heuberger, Alexander M. Kasprzyk, Alessandro Oneto, Andrea Petracci, Thomas Prince, and Ketil Tveiten. Mirror symmetry and the classification of orbifold del Pezzo surfaces. *Proc. Amer. Math. Soc.*, 144(2):513–527, 2016.
- [2] Mohammad Akhtar, Tom Coates, Sergey Galkin, and Alexander M. Kasprzyk. Minkowski polynomials and mutations. *SIGMA Symmetry Integrability Geom. Methods Appl.*, 8:Paper 094, 17, 2012.
- [3] Mohammad Akhtar and Alexander M. Kasprzyk. Singularity content. arXiv:1401.5458 [math.AG], 2014.
- [4] Mohammad Akhtar and Alexander M. Kasprzyk. Mutations of fake weighted projective planes. *Proc. Edinb. Math. Soc.* (2), 59(2):271–285, 2016.
- [5] Tom Coates, Alessio Corti, Sergey Galkin, Vasily Golyshev, and Alexander M. Kasprzyk. Mirror symmetry and Fano manifolds. In *European Congress of Mathematics*, pages 285–300. Eur. Math. Soc., Zürich, 2013.
- [6] David A. Cox, John B. Little, and Henry K. Schenck. *Toric varieties*, volume 124 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 2011.
- [7] Jesús A. De Loera and Tyrrell B. McAllister. Vertices of Gelfand-Tsetlin polytopes. Discrete Comput. Geom., 32(4):459-470, 2004.
- [8] Jesús A. De Loera and Tyrrell B. McAllister. On the computation of Clebsch-Gordan coefficients and the dilation effect. *Experiment. Math.*, 15(1):7–19, 2006.
- [9] E. Ehrhart. Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires. *J. Reine Angew. Math.*, 227:25–49, 1967.
- [10] Christian Haase and Tyrrell B. McAllister. Quasi-period collapse and GL_n(Z)-scissors congruence in rational polytopes. In Integer points in polyhedra—geometry, number theory, representation theory, algebra, optimization, statistics, volume 452 of Contemp. Math., pages 115–122. Amer. Math. Soc., Providence, RI, 2008.
- [11] Paul Hacking and Yuri Prokhorov. Smoothable del Pezzo surfaces with quotient singularities. Compos. Math., 146(1):169–192, 2010
- [12] Alexander M. Kasprzyk. Bounds on fake weighted projective space. Kodai Math. J., 32(2):197-208, 2009.
- [13] Alexander M. Kasprzyk and Benjamin Nill. Fano polytopes. In *Strings, gauge fields, and the geometry behind,* pages 349–364. World Sci. Publ., Hackensack, NJ, 2013.
- [14] J. Kollár and N. I. Shepherd-Barron. Threefolds and deformations of surface singularities. *Invent. Math.*, 91(2):299–338, 1988.
- [15] Tyrrell B. McAllister and Kevin M. Woods. The minimum period of the Ehrhart quasi-polynomial of a rational polytope. *J. Combin. Theory Ser. A*, 109(2):345–352, 2005.
- [16] G. Pick. Geometrisches zur zahlenlehre. Sonderabdr. Naturw.-medizin. Verein f. Böhmen "Lotos", (8, 9):S. 8°, 1899.
- [17] Jonathan M. Wahl. Elliptic deformations of minimally elliptic singularities. Math. Ann., 253(3):241–262, 1980.
- [18] Ben Wormleighton. Reconstruction of singularities on orbifold del Pezzo surfaces from their Hilbert series. *Communications in Algebra*, 48(1):119–140, 2020.

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK E-mail address: a.m.kasprzyk@nottingham.ac.uk

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY IN St. Louis, St. Louis, MO, 63130, USA *E-mail address*: b.wormleighton@berkelev.edu