Recall that a directed graph is strongly connected if every two nodes are connected by a directed path in each direction. Let

$STRONGLY-CONNECTED = \{\langle G \rangle | G \text{ is a strongly connected graph} \}.$

Show that STRONGLY-CONNECTED is NL-complete.

Step-by-step solution

Step 1 of 4

Specified that

A directed graph is strongly connected if every two nodes are connected by a directed path in each direction.

Let $STRONGLY _CONNETED = \{ \langle G \rangle | G \text{ is a strongly connected graph} \}$

NL -completeness: A language 'B' is NL_ complete if

- 1. $B \in NL$ and
- 2. Every A in NL is log space reducible to B.

So, to show that STRONGLY_CONNECTED is NL_complete

We need to prove the 2 conditions of NL _completeness.

Comment

Step 2 of 4

(1) $STRONGLY _CONNECTED \in NL$:

We know that

"NL is the class of languages that are decidable in logarithmic space on non-deterministic Turing machine (NTM),

So to prove STRONGLY_CONNECTED ∈ NL, we need to construct a NTM N that decides STRONGLY_CONNECTED in logarithmic space.

The construction of N is as follows:

$$N_1 = "_{On input} \langle G \rangle$$
:

- 1. Select two nodes a and b non-deterministically.
- 2. Run PATH(a,b)
- If it rejects, then the graph is not strongly connected, so accept.
- Otherwise, reject

Since storing the node numbers a and b only takes log space, and PATH uses only log space, so

 $\overline{STRONGLY_CONNECTED} \in NL$

We know that NL = CONL

Thereof $STRONGLY _CONNECTED \in NL$

Comment

(2) Next we must show that every language in <i>L</i> is log space reducible to <i>STRONGLY_CONNECTED</i> . We do this by reducing <i>PATH</i> to <i>STRONGLY_CONNECTED</i>
The $\ensuremath{^{NTM}}\ensuremath{^{N_2}}$ will do this procedure.
$N_2=$ "On input $\left\langle G,s,t ight angle$, where G is a graph and s,t are vertices in G
1. Copy all of G onto the output tape
2. Additionally for each node i in G .
3. Output on edge from <i>i</i> to <i>s</i> .
4. Output an edge from t to i. "
Comment
Step 4 of 4
This algorithm only needs log space to store the counter for <i>i</i>
This algorithm only needs log space to store the counter for i • If there is a path from s to t , then the constructed graph is strongly connected because every node can now get to every other node by going through the path $s-t$.
• If there is a path from s to t, then the constructed graph is strongly connected because every node can now get to every other node by going through
 If there is a path from s to t, then the constructed graph is strongly connected because every node can now get to every other node by going through the path s-t. If there is no path from s to t, then the graph is not strongly connected. Because the only additional edges in the constructed graph go into s and out of
 • If there is a path from s to t, then the constructed graph is strongly connected because every node can now get to every other node by going through the path s-t. • If there is no path from s to t, then the graph is not strongly connected. Because the only additional edges in the constructed graph go into s and out of t, so there can be no new ways of getting from s to t.