The Damped Bundle Adjustment Toolbox v0.4 for Matlab

Niclas Börlin 1 and Pierre Grussenmeyer 2

¹Department of Computing Science, Umeå University, Sweden, niclas.borlin@cs.umu.se ²ICube Laboratory UMR 7357, Photogrammetry and Geomatics Group, INSA Strasbourg, France

June 25, 2014

Contents

1	Introduction			
	1.1	Purpos	se	3
	1.2		ilities	3
	1.3	Legal		4
2	Inst	allation		4
3	Usage			4
	3.1	Demos	3	4
		3.1.1	loadplotdemo	5
		3.1.2	loadplotdemo2	5
		3.1.3	camcaldemo	6
		3.1.4	romabundledemo	11
		3.1.5	Camera calibration demos	11
	3.2 Using your own data		your own data	12
		3.2.1	Export from Photomodeler	12
		3.2.2	Loading into Matlab	12
A	Enabling text export from Photomodeler			
В	Camera model			
C	C Result file example			

1 Introduction

1.1 Purpose

This purpose of the Damped Bundle Adjustment toolbox is to be a high-level toolbox for photogrammetry in general and bundle adjustment in particular. It is the hope of the authors that the high-level nature of the code will inspire algorithm development. The code is written in Matlab and is verified to work with Matlab version 8 (release R2012B). The intention is that at least the computation routines will be Octave-compatible. This has however not been tested yet.

1.2 Capabilities

The toolbox currently includes routines for (function names in parentheses):

- File handling:
 - Reading Photomodeler-style text export files (loadpm).
 - Writing Photomodeler-style text result files (bundle_result_file).
- Photogrammetric calculations, including:
 - Spatial resection (resect).
 - Forward intersection (forwintersect).
 - Relative orientation based on the Nistér 5-point algorithm (Stewénius et al., 2006) will be added in the future.
- Bundle adjustment
 - Bundle adjustment proper (bundle) using either Classical, Gauss-Newton-Armijo, Levenberg-Marquardt, or Levenberg-Marquardt-Powell damping schemes (Börlin and Grussenmeyer, 2013a, 2014).
 - Covariance calculations (bundle_cov) from the bundle result.
- Various plotting functions, including:
 - Plot image covered by measurements (plotcoverage).
 - Plot camera network (plotnetwork), either static (as-loaded) or as an illustration of the bundle iterations.
 - Plot of the iteration trace of parameters estimated by bundle (plotparams).
 - Plots of quality statistics from the bundle result (plotimagestats, plotopstats).
- Demo functions using the above functions. The demo functions are detailed in Section 3.1.

This manual does not contain detailed information about how to use each function. More information may be found by typing help <function name> at the Matlab prompt, studying the source code of the demo functions, and reading the source code of each file directly.

Things to be added in the near future:

- Testing of all dampings for return parameter consistency.
- Chirality damping.
- Weights on the observations.
- Test octave compatibility.
- Azimuth-tilt-swing camera model.

1.3 Legal

The licence detail are described in the README.txt file included in the distribution. In summary:

- You use the code at your own risk.
- You may use the code for any purpose, including commercial, as long as you
 give due credit. Specifically, if you use the code, or derivatives thereof, for
 scientific publications, you should refer to on or more of the papers Börlin and
 Grussenmeyer (2013a,b, 2014) that the code is based on.
- You may modify and redistribute the code as long as the licensing details are also redistributed.

2 Installation

- 1. Download the package file dbat_0.4.zip.
- 2. Unpack the package into a directory dbat.
- 3. Inside Matlab, do the following initialization: cd dbat % the directory where you installed the files. dbatSetup % set paths, etc.
- 4. Test the installation by executing the supplied demos described in Section 3.1.

3 Usage

3.1 Demos

Hint: You may wish to use the commands clear and close all between the demos to close all windows and clear all variables.

Figure 1: The figure generated by the loadplotdemo demo.

Camera calibration data set (computed by Photomodeler)

Figure 2: The figure generated by the loadplotdemo2 demo.

3.1.1 loadplotdemo

The loadplot demo demo loads a modified Photomodeler text export file of the 60-camera, 26000-point project used in Börlin and Grussenmeyer (2013a). The camera network, as computed by Photomodeler, is plotted with camera 1 aligned to the cardinal axes. The result should look like Figure 1. The figure is a standard Matlab 3D figure and may e.g. be rotated or zoomed using the camera toolbar.

3.1.2 loadplotdemo2

The loadplotdemo2 demo loads a modified Photomodeler text export file of a 21-camera, 100-point camera calibration project. The camera network, as computed by Photomodeler, is plotted and should look like Figure 2. The figure is a standard Matlab 3D figure and may e.g. be rotated or zoomed using the camera toolbar.

3.1.3 camcaldemo

The camcaldemo demo loads the camera calibration export file from Section 3.1.2 and runs a camera calibration. The EXIF focal length is used as the initial value. The other values are set to "default" values, e.g. the principal point at the center of the sensor and all lens distortion parameters equal to zero. The initial value for the EO parameters are computed by spatial resection (Haralick et al., 1994; McGlone et al., 2004, Chap. 11.1.3.4) using the control points defined for the Photomodeler calibration sheet. The initial OP coordinates are subsequently computed by forward intersection.

The bundle adjustment is run with Gauss-Newton-Armijo damping. The result is given in a number of plot windows and a Photomodeler-style result text file. The result plots are of two kinds: Plots that show the evolution of the iterations and plots that show the quality of the input or output data. The former plots may be useful to understand how the bundle adjustment works but also to "debug" a difficult network that has convergence difficulties. The latter plots give information about the quality of the result and may also provide clues on how to improve a network when the bundle did converge.

Evolution plots The evolution plots are collected in figures 3–7. Figure 3 shows a snapshot of the 3D trace figure at the beginning and end of the iterations. As default, the evolution is presented iteration by iteration with intervening presses of the return key. The figure window is interactive and may be rotated, zoomed, etc. In this example, it is clear in Figure 3b that one camera station had poorer initial values than the rest.

Figures 4–6 contain three plots showing the evolution of the internal orientation (IO), external orientation (EO), and object point (OP), respectively, during the iterations. The IO plot is split into a focal/principal point panel and a radial and tangential distortion panel, where the radial distortion parameters are scaled to provide more information. The EO plot contains a camera center panel and an ω - ϕ - κ Euler angle panel. The EO and OP plots are interactive. Lines in the plots or legends may be selected and all corresponding lines will be highlighted. In the top panel of Figure 5, the motion of one camera stands out. Clicking that line reveals that it belongs to camera station 21, which can be further investigated to decide if it should be excluded from the calibration.

The final evolution plot, shown in Figure 7, illustrates the evolution of the norm of the total residual and the damping behaviour, if any, during the bundle iterations. In this example, the Gauss-Newton-Armijo linesearch damping is active during the first two iterations. For further details on the damping, see Börlin and Grussenmeyer (2013a).

Quality plots The quality plots a gathered in figures 8–10. Per-image quality statistics is shown in Figure 9. The statistics presented for each image are the image coverage (rectangular coverage, convex hull coverage, and radial coverage); the number of measured points; the average (RMS) point residual; and the standard deviations for the EO parameters for the camera stations. In this example, the data does not give any obvious support to exclude the suspected image 21 from the calibration.

The image coverage is detailed in a separate Figure 8. The plotted data is selectable. All observations from a specific image, including their convex hull, will be highlighted when a point or line is selected.

(a) Initial network configuration.

Damping: gna. Iteration 7 of 7

(b) Network configuration after convergence, with camera center trace lines.

Figure 3: 3D network evolution during the iterations. Only the EO and OP parameters are illustrated. In this example, the variation of the OP coordinates is barely visible.

Figure 4: Evolution of network parameters during the iteration sequence: IO parameters.

Figure 5: Evolution of network parameters during the iteration sequence: EO parameters.

Figure 6: Evolution of network parameters during the iteration sequence: OP coordinates.

Figure 7: Residual evolution and damping behaviour during the iterations.

Figure 8: Plots of input/output statistics: Image coverage.

Figure 9: Plots of input/output statistics: Image statistics.

Figure 10: Plots of input/output statistics: Object point statistics.

Finally, the per-OP quality statistics in Figure 10 show the number of observations per OP; the maximum ray intersection angle; the average (RMS) point residual; and the OP coordinate standard deviation. The presentation may be zoomed to show only a subset of the OPs by activating the "zoom" function of the figure window.

Result file The result file is modelled after the Photomodeler result file. The result file is listed in Appendix C.

3.1.4 romabundledemo

The romabundledemo function loads the project from Section 3.1.1 and present essentially the same plots and the camcaldemo. This demo uses the Photomodeler file as input to the bundle adjustment that runs a few iterations until convergence. The same result file and result plots as camcaldemo are essentially generated. Since the project is larger (60 cams/26 000 points) than the previous example (20 cams/100 points), the computation will take a bit longer. Computation time was around one minute running on a HP compaq dc7800 with an Intel Core2 Quad CPU Q9300 @ 2.50GHz under 64-bit Ubuntu 12.04 (kernel 3.5.0-45).

3.1.5 Camera calibration demos

The camera calibration demos from Börlin and Grussenmeyer (2014) will be added to the next version of the toolbox.

3.2 Using your own data

This section describes how to import you own data using Photomodeler text export files. If you have another type of input file, you may be able to write your own loader. Otherwise, if you have a text file you wish to import, feel free to mail the file to the the toolbox authors and request an import function. Althought we cannot guarantee anything, we may adhere to the request, time permitting.

3.2.1 Export from Photomodeler

To import a Photomodeler project into the toolbox, the following steps are valid in Photomodeler Scanner 2012:

- 1. Export the project using the *Export Text File* menu command. If the command is not available, follow the instructions in Appendix A.
- 2. After export, open the *Project/Cameras*... dialog and select the camera that was used in your project.
- 3. Open the generated text file in a text editor.
 - (a) On the 2nd line (usually reading 0.00005 20), append the width and height in pixels of your images, e.g. to 0.000500 20 5616 3744.
 - (b) Inspect the 4th line. For instance, the original data in roma.txt was (some trailing zeros removed):

```
24.3581 18.1143 12.0 35.96404 24.0 0.00022 -0.0 0.0 0.0 0.0
```

The values correspond to the following camera parameters:

focal pp_x pp_y format_w format_h K1 K2 K3 P1 P2. Notice that most of the significant digits of K1-K3 were lost in the text export.

(c) Update the parameter values on the 4th line with values from the camera dialog for each parameter with a larger number of significant digits in the dialog. This usually means all parameters except format_w. In the roma.txt test case, the 4th line was modified to:

```
24.3581 18.1143 12 35.96404 24 2.174e-4 -1.518e-7 0 0.
```

3.2.2 Loading into Matlab

- 1. In matlab, run step 3 from Section 2 if not already done.
- 2. Set the variable fName to the text export file name
 fName='c:/path/to/exported/file.txt';, or select it using
 [f,p]=uigetfile('*.txt'); fName=[f,p];
- 3. Run the loadplotdemo script. A figure with your camera network, aligned with the first camera and rotated to have +Z 'up', should now have been generated.

References

- N. Börlin and P. Grussenmeyer. Bundle adjustment with and without damping. *Photogrammetric Record*, 28(144):396–415, Dec. 2013a. doi: 10.1111/phor.12037.
- N. Börlin and P. Grussenmeyer. Experiments with metadata-derived initial values and linesearch bundle adjustment in architectural photogrammetry. *ISPRS Annals of the Photogrammetry, Remote Sensing, and Spatial Information Sciences*, II-5/W1:43–48, Sept. 2013b.
- N. Börlin and P. Grussenmeyer. Camera calibration using the damped bundle adjustment toolbox. *ISPRS Annals of the Photogrammetry, Remote Sensing, and Spatial Information Sciences*, II(5):89–96, June 2014.
- D. C. Brown. Close-range camera calibration. *Photogrammetric Engineering*, 37(8): 855–866, 1971.
- R. M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nölle. Review and analysis of solutions of the three point perspective pose estimation problem. *Int J Comp Vis*, 13(3): 331–356, 1994.
- C. McGlone, E. Mikhail, and J. Bethel, editors. *Manual of Photogrammetry*. ASPRS, 5th edition, July 2004. ISBN 1-57083-071-1.
- H. Stewénius, C. Engels, and D. Nistér. Recent developments on direct relative orientation. *ISPRS J Photogramm*, 60(4):284–294, June 2006.

A Enabling text export from Photomodeler

Some versions of Photomodeler do not have the text file export option enabled by default. In that case, the following steps worked in Photomodeler Scanner 2012:

- 1. Right-click on the main window toolbar, select Customize toolbar....
- 2. In the *Commands* tab, select the *File* category.
- 3. Drag the Export Text File... command to a toolbar of your choice.
- 4. Now you should be able to export your project as a text file by clicking on the *Export Text File* button.

B Camera model

Currently, the only supported camera model is the omega-phi-kappa Euler angle camera model (McGlone et al., 2004, Ch. 2.1.2.3) with the Brown (1971) lens distortion model.

C Result file example

```
Damped Bundle Adjustment Toolbox result file
   Project Name: Bundle Soln PhotoModeler Calibration Project
  Problems and suggestions:
     Project Problems: Not evaluated
     Problems related to the processing: (1)
        One or more of the camera parameter has a high correlation (see below).
   Information from last bundle
      Last Bundle Run: 25-Jun-2014 15:33:03
     DBAT version: 0.4.0.203 (2014-02-12 16:27:27)
Status: OK (0)
      Sigma0 (pixels): 0.168901
      Sigma0 (mm):
                      0.000539091
     Processing options:
         Orientation:
         Global optimization:
         Calibration:
         Constraints:
         Maximum # of iterations: 20
         Convergence tolerance: 0.001
         Singular test:
         Chirality veto:
                                  off
         Damping:
                                  gna
         Camera unit (cu):
         Object space unit (ou): m
         Initial value comment: Camera calibration from EXIF value
      Total error:
         Number of stages:
         Number of iterations: 7
         First error: 9.85752
Last error: 0.0329067
      Precisions / Standard Deviations:
         Camera Calibration Standard Deviations:
            Cameral (camera unit cu=mm)
               Focal Length:
```

```
7.45895 cu
          Value:
          Deviation:
                       0.001 cu
     Xp - principal point x:
          Value:
                        3.61664 cu
          Deviation:
                        0.0009 cu
     Yp - principal point y:
                       2.60895 cu
          Value:
          Deviation:
                        0.001 cu
     Fw - format width:
                        7.25319 cu
          Value:
     Fh - format height:
                      5.43764 cu
          Value:
     K1 - radial distortion 1:
                      0.00457036 cu^(-3)
          Value:
                      2e-05 cu^(-3)
          Deviation:
          Significance: p=1.00
     K2 - radial distortion 2:
                       -4.25953e-05 cu^(-5)
          Value:
          Deviation:
                      3e-06 cu^(-5)
          Significance: p=1.00
          Correlations over 95%: K3:-97.9%.
     K3 - radial distortion 3:
                    -2.15839e-06 cu^(-7)
: 1e-07 cu^(-7)
          Value:
          Deviation:
          Significance: p=1.00
          Correlations over 95%: K2:-97.9%.
     P1 - decentering distortion 1:
          Value:
                      -6.56858e-05 cu^(-3)
          Deviation:
                       4e-06 cu^(-3)
          Significance: p=1.00
     P2 - decentering distortion 2:
          Value:
                       -2.97019e-05 cu^(-3)
          Deviation:
                        4e-06 cu^(-3)
          Significance: p=1.00
     Iw - image width:
          Value:
                        2272 px
      Ih - image height:
          Value:
                        1704 px
     Xr - X resolution:
          Value:
                        313.306 px/cu
     Yr - Y resolution:
          Value:
                        313.306 px/cu
     Pw - pixel width:
          Value:
                        0.00319176 cu
     Ph - pixel height:
                        0.00319176 cu
          Value:
   Rated angle of view: (88, 72) deg
   Largest distortion: 0.37 cu (116.4 px, 8.2% of half-diagonal)
Photograph Standard Deviations:
  Photo 1: P8250021.JPG
     Omega:
                  -39.425843 deg
        Value:
        Deviation: 0.009 deg
     Phi:
        Value:
                  -1.180802 deg
        Deviation: 0.008 deg
     Kappa:
        Value:
                  -179.839285 deg
        Deviation: 0.003 deg
     Xc:
        Value:
                  0.454890 011
        Deviation: 0.0002 ou
        Value:
                 1.793761 ou
        Deviation: 0.0002 ou
        Value:
                  1.469288 ou
        Deviation: 0.0002 ou
```

```
Photo 2: P8250022.JPG
  Omega:
               -39.761293 deg
     Value:
     Deviation: 0.008 deg
  Phi:
              -1.846860 deg
     Value:
     Deviation: 0.009 deg
  Kappa:
              -90.121386 deg
     Value:
     Deviation: 0.003 deg
  Xc:
     Value:
               0.470426 ou
     Deviation: 0.0002 ou
              2.027244 ou
     Value:
     Deviation: 0.0002 ou
  Zc:
     Value: 1.638798 ou
Deviation: 0.0002 ou
Photo 3: P8250023.JPG
  Omega:
             -27.239614 deg
     Value:
     Deviation: 0.01 deg
  Phi:
              -28.565376 deg
     Value:
     Deviation: 0.008 deg
  Kappa:
               -141.846643 deg
     Value:
     Deviation: 0.006 deg
              -0.644455 ou
     Value:
     Deviation: 0.0002 ou
  Yc:
              1.466419 ou
     Value:
     Deviation: 0.0002 ou
     Value:
               1.581500 ou
     Deviation: 0.0002 ou
Photo 4: P8250024.JPG
  Omega:
              -28.558154 deg
     Value:
     Deviation: 0.009 deg
     Value:
               -30.331823 deg
     Deviation: 0.009 deg
  Kappa:
              -49.784434 deg
     Value:
     Deviation: 0.005 deg
  Xc:
              -0.643656 ou
     Value:
     Deviation: 0.0002 ou
  Yc:
     Value:
               1.491034 ou
     Deviation: 0.0002 ou
  Zc:
     Value:
              1.637067 ou
     Deviation: 0.0003 ou
Photo 5: P8250025.JPG
  Omega:
              4.382465 deg
     Value:
     Deviation: 0.01 deg
  Phi:
              -34.669530 deg
     Value:
     Deviation: 0.009 deg
  Kappa:
               -87.136963 deg
     Value:
     Deviation: 0.005 deg
```

Xc:

```
-0.670769 ou
     Value:
     Deviation: 0.0002 ou
  Yc:
     Value:
               0.417346 ou
     Deviation: 0.0002 ou
  Zc:
     Value:
               1.410400 011
     Deviation: 0.0002 ou
Photo 6: P8250026.JPG
  Omega:
              2.097667 deg
     Value:
     Deviation: 0.01 deg
  Phi:
              -34.017559 deg
     Value:
     Deviation: 0.008 deg
   Kappa:
               1.509495 deg
     Value:
     Deviation: 0.006 deg
  Xc:
               -0.713593 ou
     Value:
     Deviation: 0.0002 ou
     Value:
              0.476373 ou
     Deviation: 0.0002 ou
  Zc:
     Value: 1.464831 ou
Deviation: 0.0002 ou
Photo 7: P8250027.JPG
  Omega:
              27.348313 deg
     Value:
     Deviation: 0.009 deg
  Phi:
               -28.303040 deg
     Value:
     Deviation: 0.009 deg
     Value:
                -44.207883 deg
     Deviation: 0.005 deg
              -0.534727 ou
     Value:
     Deviation: 0.0002 ou
              -0.349536 ou
     Value:
     Deviation: 0.0002 ou
     Value: 1.403703 ou
Deviation: 0.0002 ou
Photo 8: P8250028.JPG
  Omega:
               26.923373 deg
     Value:
     Deviation: 0.01 deg
               -28.127910 deg
     Value:
     Deviation: 0.008 deg
  Kappa:
     Value:
               44.866709 deg
     Deviation: 0.006 deg
  Xc:
              -0.718941 ou
     Value:
     Deviation: 0.0002 ou
  Yc:
     Value:
               -0.466478 ou
     Deviation: 0.0002 ou
     Value:
               1.715076 ou
     Deviation: 0.0003 ou
Photo 9: P8250029.JPG
  Omega:
     Value:
                30.389367 deg
```

```
Deviation: 0.009 deg
  Phi:
              0.190622 deg
     Value:
     Deviation: 0.008 deg
  Kappa:
              0.084680 deg
     Value:
     Deviation: 0.003 deg
  Xc:
              0.524910 ou
     Value:
     Deviation: 0.0002 ou
  Yc:
               -0.543280 ou
     Value:
     Deviation: 0.0002 ou
     Value:
               1.534217 ou
     Deviation: 0.0002 ou
Photo 10: P8250030.JPG
  Omega:
     Value: 31.007671 deg
Deviation: 0.009 deg
  Phi:
              1.729947 deg
     Value:
     Deviation: 0.009 deg
  Kappa:
               89.539852 deg
     Value:
     Deviation: 0.003 deg
     Value:
               0.554112 ou
     Deviation: 0.0002 ou
     Value:
              -0.593288 ou
     Deviation: 0.0002 ou
  Zc:
     Value: 1.617126 ou
Deviation: 0.0002 ou
Photo 11: P8250031.JPG
  Omega:
     Value:
              27.634325 deg
     Deviation: 0.01 deg
  Phi:
               30.750264 deg
     Deviation: 0.008 deg
   Kappa:
      Value:
                42.335672 deg
     Deviation: 0.006 deg
  Xc:
             1.770072 ou
     Value:
     Deviation: 0.0002 ou
   Yc:
              -0.425193 ou
     Value:
     Deviation: 0.0002 ou
  Zc:
     Value:
               1.552593 ou
     Deviation: 0.0002 ou
Photo 12: P8250032.JPG
  Omega:
               24.650099 deg
     Value:
     Deviation: 0.009 deg
  Phi:
     Value:
               30.239562 deg
     Deviation: 0.01 deg
  Kappa:
              133.204262 deg
     Value:
     Deviation: 0.005 deg
  Xc:
     Value:
               1.864900 ou
     Deviation: 0.0002 ou
```

Yc:

```
-0.480971 ou
     Value:
     Deviation: 0.0002 ou
  Zc:
     Value:
               1.614059 ou
     Deviation: 0.0003 ou
Photo 13: P8250033.JPG
  Omega:
               0.525577 deg
     Value:
     Deviation: 0.01 deg
  Phi:
              33.149904 deg
     Value:
     Deviation: 0.009 deg
  Kappa:
             88.705093 deg
     Value:
     Deviation: 0.005 deg
  Xc:
              1.630632 ou
     Value:
     Deviation: 0.0002 ou
  Yc:
     Value:
              0.497602 ou
     Deviation: 0.0002 ou
     Value:
              1.471594 ou
     Deviation: 0.0002 ou
Photo 14: P8250034.JPG
  Omega:
             -1.739778 deg
     Value:
     Deviation: 0.01 deg
  Phi:
              33.635687 deg
     Value:
     Deviation: 0.009 deg
  Kappa:
     Value:
               180.202160 deg
     Deviation: 0.006 deg
     Value:
               1.796838 ou
     Deviation: 0.0002 ou
     Value:
             0.525347 ou
     Deviation: 0.0002 ou
     Value:
              1.598322 ou
     Deviation: 0.0002 ou
Photo 15: P8250035.JPG
  Omega:
             -30.765541 deg
     Value:
     Deviation: 0.009 deg
  Phi:
     Value:
               28.173152 deg
     Deviation: 0.009 deg
  Kappa:
     Value:
              138.430069 deg
     Deviation: 0.005 deg
  Xc:
     Value:
              1.671658 ou
     Deviation: 0.0002 ou
  Yc:
              1.554521 ou
     Value:
     Deviation: 0.0002 ou
  7.c:
     Value:
              1.501366 ou
     Deviation: 0.0002 ou
Photo 16: P8250036.JPG
  Omega:
               -29.886032 deg
     Value:
     Deviation: 0.01 deg
  Phi.
```

Value:

26.975324 deg

```
Deviation: 0.008 deg
  Kappa:
               -134.632200 deg
     Value:
     Deviation: 0.006 deg
  Xc:
              1.694046 ou
     Value:
     Deviation: 0.0002 ou
  Yc:
              1.619403 ou
     Value:
     Deviation: 0.0002 ou
  Zc:
     Value:
               1.590017 ou
     Deviation: 0.0003 ou
Photo 17: P8250037.JPG
  Omega:
                -8.525031 deg
     Value:
     Deviation: 0.01 deg
  Phi:
     Value:
              -0.515992 deg
     Deviation: 0.01 deg
  Kappa:
              179.396297 deg
     Value:
     Deviation: 0.002 deg
  Xc:
              0.424528 ou
     Value:
     Deviation: 0.0003 ou
     Value:
               0.823029 ou
     Deviation: 0.0003 ou
     Value: 1.972158 ou
Deviation: 0.0003 ou
Photo 18: P8250038.JPG
  Omega:
     Value: -4.780071 deg
Deviation: 0.01 deg
  Phi:
     Value:
              0.666412 deg
     Deviation: 0.01 deg
   Kappa:
     Value:
               88.786570 deg
     Deviation: 0.002 deg
     Value:
               0.481967 ou
     Deviation: 0.0003 ou
  Yc:
     Value:
              0.926767 ou
     Deviation: 0.0003 ou
  Zc:
               1.885336 ou
     Value:
     Deviation: 0.0002 ou
Photo 19: P8250039.JPG
  Omega:
              -4.413682 deg
     Value:
     Deviation: 0.01 deg
  Phi:
     Value:
                -0.411819 deg
     Deviation: 0.01 deg
   Kappa:
     Value:
              88.244392 deg
     Deviation: 0.002 deg
  Xc:
              0.461866 ou
     Value:
     Deviation: 0.0003 ou
  Yc:
     Value:
               0.578854 ou
     Deviation: 0.0003 ou
```

7.c:

```
Value:
                        1.875379 ou
               Deviation: 0.0002 ou
         Photo 20: P8250040.JPG
            Omega:
                        -7.605746 deg
               Value:
               Deviation: 0.01 deg
            Phi:
               Value:
                         -1.556271 deg
               Deviation: 0.01 deg
            Kappa:
                        -180.050870 deg
               Value:
               Deviation: 0.002 deg
            Xc:
               Value:
                        0.701783 ou
               Deviation: 0.0003 ou
            Yc:
               Value:
                        0.782358 ou
               Deviation: 0.0003 ou
            Zc:
               Value:
                         1.926168 ou
               Deviation: 0.0002 ou
         Photo 21: P8250041.JPG
            Omega:
                         -8.697313 deg
               Value:
               Deviation: 0.01 deg
            Phi:
                        1.049908 deg
               Value:
               Deviation: 0.01 deg
            Kappa:
               Value:
                        -182.614506 deg
               Deviation: 0.002 deg
                         0.268717 ou
               Value:
               Deviation: 0.0003 ou
               Value:
                         0.821199 ou
               Deviation: 0.0003 ou
               Value:
                        1.905691 ou
               Deviation: 0.0002 ou
Quality
  Photographs
      Total number: 21
      Numbers used: 21
  Cameras
      Total number: 1
      Cameral:
         Calibration:
         Number of photos using camera: 21
         Photo point coverage:
            Rectangular: 41%-83% (61% average, 92% union)
            Convex hull: 31%-62% (46% average, 87% union)
                        60%-92% (73% average, 92% union)
            Radial:
  Photo Coverage
      References points outside calibrated region:
        none
   Point Measurements
      Ray count: 16-21 (20.7 avg)
      Number of control pts: 4
      Number of object pts: 96
   Point Marking Residuals
      Overall point RMS: 0.226 pixels
      Mark point residuals:
        Maximum: 0.952 pixels (OP 1003 on photo 5)
      Object point residuals (RMS over all images of a point):
         Minimum: 0.101 pixels (OP 67 over 21 images)
Maximum: 0.569 pixels (OP 1004 over 21 images)
      Photo residuals (RMS over all points in an image):
```

```
Minimum: 0.178 pixels (photo 4 over 97 points)
Maximum: 0.318 pixels (photo 6 over 93 points)
Point Precision

Total standard deviation (RMS of X/Y/Z std):
Minimum: 8.6e-05 (OP 49)
Maximum: 0.00012 (OP 90)

Maximum X standard deviation: 5.2e-05 (OP 90)
Maximum Y standard deviation: 5.5e-05 (OP 90)
Maximum Z standard deviation: 8.9e-05 (OP 90)
Point Angles
Minimum: 79.6 degrees (OP 90)
Maximum: 90.0 degrees (OP 47)
Average: 86.4 degrees
```