

<u>Course</u> > <u>Lecture 4</u> > <u>Lecture Videos 4</u> > Quiz 4.7: HH versus LIF

Ouiz 4.7: HH versus LIF

Exponential Integrate-and-fire model	
0 points possible (ungraded) An exponential integrate-and-fire model can be derived	
$ lap{igg }$ from a 2-dimensional model (such as the FizHugh-Nagumo model) assuming that the auxiliary variable w is con	nstant 🗸
ightharpoonup from the HH model, assuming that the gating variables h and n and m are constant	
from the HH model, assuming that the gating variables m is instantaneous and h and n are constant \checkmark	
×	
Submit You have used 1 of 1 attempt	
Answers are displayed within the problem	
Reset 0 points possible (ungraded)	
in a 2-dimensional model such as the FizHugh-Nagumo model, the auxiliary variable w is necessary to implement voltage after a spike \checkmark	ent a reset of the
in a nonlinear integrate-and-fire model, the auxiliary variable w is necessary to implement a reset of the voltage	e after a spike
in a nonlinear integrate-and-fire model, a reset of the voltage after a spike is implemented algorithmically/expli	icitly 🗸
in the FizHugh-Nagumo model, a reset of the voltage after a spike is implemented algorithmically/explicitly	
Submit You have used 1 of 1 attempt	
Answers are displayed within the problem	
Discussion Topic: Week 4 / Quiz 4.7: HH versus LIF	Show Discussion

© All Rights Reserved