Notes and exercises from Linear Algebra and Geometry

John Peloquin

Introduction

This document contains notes and exercises from [1].

Chapter III

Section 1

Exercise (4). Let V, W be a pair of supplementary subspaces of E. Every subspace U containing V is the direct sum of V with $U \cap W$.

Proof. If $u \in U$, then u = v + w for some $v \in V$ and $w \in W$, and $w = u - v \in U$. So $U = V + (U \cap W)$, and $V \cap U \cap W = \{0\}$.

Section 2

Exercise (1). *Projections and idempotents:* If p, q are the projections for a direct sum E = V + W, then $p, q \in \text{End}(E)$ are such that $p^2 = p$, $q^2 = q$, and p + q = 1. Conversely, if $p \in \text{End}(E)$ is such that $p^2 = p$, then $E = p(E) + p^{-1}(0)$ is a direct sum. Moreover, if q = 1 - p, then $q^2 = q$, $q(E) = p^{-1}(0)$, and $q^{-1}(0) = p(E)$.

Proof. For the forward direction, we know $p, q \in \text{End}(E)$ and p + q = 1 (3.2.2). It follows that $p^2 = p \circ (1 - q) = p - pq = p$ and $q^2 = (1 - p)^2 = 1 - p = q$.

For the converse, p + q = 1, so E = p(E) + q(E). Also $pq = p - p^2 = 0$, so $p(E) \cap q(E) = \{0\}$ and $q(E) \subseteq p^{-1}(0)$. If $x \in p^{-1}(0)$, then q(x) = x, so $x \in q(E)$. Hence $q(E) = p^{-1}(0)$ and similarly $q^{-1}(0) = p(E)$. Finally $q^2 = q$ as above. \Box

Exercise (2). If W and W' are both supplementary to V in E, then W and W' are isomorphic.

Proof. If p is the projection of E onto W', then the restriction of p to W is an isomorphism from W to W'.

Exercise (3). If E = V + W is a direct sum with inclusions $i : V \to E$ and $j : W \to E$, and $v : V \to F$ and $w : W \to F$ are linear maps, then there is a unique linear map $u : E \to F$ with $u \circ i = v$ and $u \circ j = w$.

Proof. If p, q are the projections on V, W respectively, then $u = v \circ p + w \circ q$. \square

Exercise (11). $GA(E)/E \cong GL(E)$.

Proof. Define $\varphi : \mathbf{GA}(E) \to \mathbf{GL}(E)$ by $\varphi(t_a \circ v) = v$. Note that φ is well-defined by (3.2.17), φ is a homomorphism by (3.2.19), and φ is clearly surjective. Also $\varphi(u) = 1$ if and only if u is a translation, so $\ker \varphi = T(E)$, the normal subgroup of translations. It follows that $\mathbf{GA}(E)/T(E) \cong \mathbf{GL}(E)$. Finally, the mapping $a \mapsto t_a$ is an isomorphism $E \cong T(E)$ from the additive group E.

Exercise (13). If $u: E \to F$ is affine and L is a variety in F, then $u^{-1}(L)$ is empty or a variety in E.

Proof. If $a \in u^{-1}(L)$ and L_0 is the direction of L, then $L = u(a) + L_0$ and hence $u^{-1}(L) = a + u^{-1}(L_0)$.

Section 3

Exercise (3). A necessary and sufficient condition for a nonempty subset V of a vector space to be a variety is that for all pairs x, y of distinct points of V, the line D_{xy} is contained in V.

Proof. The condition is necessary by (3.3.2).

If the condition holds, choose $v \in V$ and let $V_0 = -v + V$. We claim V_0 is a subspace, from which it follows that $V = v + V_0$ is a variety. First, $0 = -v + v \in V_0$. If $x \in V_0$ and $x \neq 0$, then $v + x \in V$ and $v + x \neq v$, so $D_{v,v+x} = \{v + \xi x \mid \xi \in \mathbf{R}\} \subseteq V$. It follows that $\xi x \in V_0$ for all $\xi \in \mathbf{R}$. If also $y \in V_0$ and $y \neq x$, then $D_{v+x,v+y} \subseteq V$, so in particular $v + 2^{-1}(x + y) \in V$ and $2^{-1}(x + y) \in V_0$. By the previous result, it then follows that $x + y \in V_0$. Therefore V_0 is a subspace as claimed.

Exercise (4). *Translations and homothetic maps:*

- A necessary and sufficient condition for an affine map to be a translation or a homothetic map is that its associated linear map be homothetic.
- A necessary and sufficient condition for an affine map to preserve the direction of lines is that it be a translation or a bijective homothetic map.
- If u_1, u_2 are translations or homothetic maps, then so is $u_1 \circ u_2$.
- If u_1, u_2 and $u_1 \circ u_2$ are homothetic maps with ratios not equal to 1, their centers are collinear. If instead $u_1 \circ u_2$ is a translation, then it is either the identity or a translation in the direction of the line through the centers of u_1 and u_2 .
- If $v \in \mathbf{GA}(E)$, then $v \circ h_{a,\lambda} \circ v^{-1} = h_{v(a),\lambda}$.
- The subset H(E) of translations and homothetic maps in GA(E) forms a subgroup, and $H(E)/E \cong \mathbb{R}^*$.

Proof.

- This follows from the equations $t_a = t_a \circ h_1$ and $h_{a,\lambda} = t_{(1-\lambda)a} \circ h_{\lambda}$ and $t_a \circ h_{\lambda} = h_{(1-\lambda)^{-1}a,\lambda}$ $(\lambda \neq 1)$.
- The condition is sufficient because such a map has the form $t_a \circ h_\lambda$ with $\lambda \neq 0$, which clearly preserves the direction of lines. Conversely, suppose $u = t_a \circ v$ preserves the direction of lines. If $x \neq 0$, let D be the vector line through x. Then v(D) = D, so $v(x) = \lambda x$ for some $\lambda \in \mathbf{R}$ with $\lambda \neq 0$, and in fact $v(y) = \lambda y$ for all $y \in D$. We claim $v = h_\lambda$, from which the result follows. If $y \notin D$, then by considering the vector line D' through y we have $v(y) = \mu y$ for some $\mu \in \mathbf{R}$. Now $v(D_{xy}) = D_{v(x)v(y)} = D_{\lambda x,\mu y}$, and since v preserves direction there is $\xi \in \mathbf{R}$ with $\mu y \lambda x = \xi(y x)$, or $(\mu \xi)y = (\lambda \xi)x$. Since $y \notin D$, this implies $\mu = \xi = \lambda$. Therefore $v = h_\lambda$ as claimed.
- If $u_1 = t_a \circ h_\lambda$ and $u_2 = t_b \circ h_\mu$, then by (3.2.19.1), $u_1 \circ u_2 = t_{a+\lambda b} \circ h_{\lambda \mu}$.
- Write $u_1 = h_{a,\lambda}$, $u_2 = h_{b,\mu}$, and $u_1 \circ u_2 = h_{c,\nu}$ with $\lambda, \mu, \nu \neq 1$. Then for all x,

$$(1-v)c + vx = (1-\lambda)a + \lambda(1-\mu)b + \lambda\mu x$$

Taking x = 0 and $x \neq 0$ (we assume such exist!) yields $v = \lambda \mu$ and

$$c = (1 - \lambda \mu)^{-1} [(1 - \lambda)a + \lambda (1 - \mu)b] = (1 - \lambda \mu)^{-1} (\lambda - 1)(b - a) + b$$

so that a, b, c are collinear. If instead $u_1 \circ u_2 = t_c$, then $\lambda \mu = 1$ and $c = (\lambda - 1)(b - a)$, from which the second result follows.

• Write $v = t_b \circ w$, where $w \in GL(E)$, so that $v^{-1} = w^{-1} \circ t_{-b}$. By repeated application of (3.2.19.1),

$$v \circ h_{a,\lambda} \circ v^{-1} = t_b \circ w \circ t_{(1-\lambda)a} \circ h_{\lambda} \circ w^{-1} \circ t_{-b}$$

$$= t_{v((1-\lambda)a)} \circ w \circ h_{\lambda} \circ w^{-1} \circ t_{-b}$$

$$= t_{b+(1-\lambda)w(a)} \circ h_{\lambda} \circ t_{-b}$$

$$= t_{b+(1-\lambda)w(a)-\lambda b} \circ h_{\lambda}$$

$$= t_{(1-\lambda)v(a)} \circ h_{\lambda}$$

$$= h_{v(a),\lambda}$$

• First, $1 \in H(E)$. If $u_1, u_2 \in H(E)$, then $u_1 \circ u_2 \in H(E)$ by a previous item. If $u_1 = t_a \circ h_\lambda$ with $\lambda \neq 0$, then $u_1^{-1} = t_{-\lambda^{-1}a} \circ h_{\lambda^{-1}} \in H(E)$. Therefore H(E) is a subgroup of **GA**(*E*). Define $\varphi : H(E) \to \mathbf{R}^*$ by $\varphi(t_a \circ h_\lambda) = \lambda$. Note that φ is well-defined (since $E \neq \{0\}!$), φ is a homomorphism by a previous item, φ is surjective, and $\ker \varphi = T(E) \cong E$. It follows that $H(E)/E \cong \mathbf{R}^*$.

Exercise (5). A variety not parallel to a hyperplane meets the hyperplane. If H is a vector hyperplane in E and V is a subspace of E not contained in H, then $V \cap H$ is a vector hyperplane in V.

Proof. Any vector in the direction of the variety which is not in the direction of the hyperplane determines a line in the variety which meets the hyperplane (3.3.8).

If *D* is the vector line through a vector in V - H, then *D* is supplementary to H in E, so D is supplementary to $V \cap H$ in V (Exercise 3.1.4).

Exercise (6). *Dilations and transvections:* Let H be a vector hyperplane in E and suppose $u \in \text{End}(E)$ fixes every element of H.

- There is $\gamma \in \mathbf{R}$ unique such that $u(a) \in \gamma a + H$ for all $a \in E H$.
- If $\gamma \neq 1$, then γ is an eigenvalue of u and $E(\gamma; u)$ is a line S supplementary to E(1; u) = H. A subspace V satisfies $u(V) \subseteq V$ if and only if $S \subseteq V$ or $V \subseteq H$. In particular, a vector line D satisfies $u(D) \subseteq D$ if and only if D = S or $D \subseteq H$.
- If $\gamma = 1$, and g(x) = 0 is an equation of H, there is $c \in H$ unique such that u(x) = x + g(x)c for all $x \in E$. u is bijective. If $u \neq 1$ (so $c \neq 0$), then the line $T = D_{0c}$ is independent of g. The scalar 1 is the only eigenvalue of u if $H \neq \{0\}$, and E(1; u) = H if $u \neq 1$. If $u \neq 1$, a subspace V satisfies

 $u(V) \subseteq V$ if and only if $T \subseteq V$ or $V \subseteq H$; in particular, a vector line D satisfies u(D) = D if and only if $D \subseteq H$.

• The set $\Gamma(E, H)$ of automorphisms of E leaving the hyperplane H fixed pointwise is a subgroup of GL(E). The subset $\Theta(E, H)$ of transvections is a normal abelian subgroup of $\Gamma(E, H)$ isomorphic to H. $\Gamma(E, H)/H \cong \mathbb{R}^*$.

Proof.

• If $a \in E - H$, then $E = \mathbf{R}a + H$, so $u(a) = \gamma a + t$ for some $\gamma \in \mathbf{R}$ and $t \in H$. If $b \in E$, then $b = \beta a + h$ for some $\beta \in \mathbf{R}$ and $h \in H$, so

$$u(b) = u(\beta a + h)$$

$$= \beta u(a) + u(h)$$

$$= \beta(\gamma a + t) + h$$

$$= \gamma(\beta a + h) + (1 - \gamma)h + \beta t$$

$$= \gamma b + (1 - \gamma)h + \beta t$$
(1)

Therefore $u(b) \in \gamma b + H$. If also $u(b) \in \gamma' b + H$, then $(\gamma' - \gamma) b \in H$, which implies $\gamma' = \gamma$ if $b \notin H$. Therefore γ is unique for $b \notin H$.

• Let $x = a - (1 - \gamma)^{-1} t$. Then $x \neq 0$ since $a \notin H$ and

$$u(x) = u(a - (1 - \gamma)^{-1} t)$$

$$= u(a) - (1 - \gamma)^{-1} u(t)$$

$$= \gamma a + t - (1 - \gamma)^{-1} t$$

$$= \gamma [a - (1 - \gamma)^{-1} t]$$

$$= \gamma x$$

Therefore x is an eigenvector of u with eigenvalue γ . Let S be the vector line through x. Then $S \subseteq E(\gamma; u)$. Conversely if $b \in E(\gamma; u)$, then $u(b) = \gamma b$, which implies $(1 - \gamma)h + \beta t = 0$ in (1), so $h = -\beta(1 - \gamma)^{-1}t$ and

$$b = \beta a + h = \beta [a - (1 - \gamma)^{-1} t] = \beta x \in S$$

Therefore $S = E(\gamma; u)$. By hypothesis $H \subseteq E(1; u)$. Conversely if $b \in E(1; u)$, then $b = u(b) \in \gamma b + H$, so $(1 - \gamma)b \in H$, so $b \in H$. Therefore H = E(1; u). S is supplementary to H since $x \notin H$.

By hypothesis $u(V) \subseteq V$ for any subspace $V \subseteq H$. If $S \subseteq V$, then $V = S + V \cap H$ (Exercise 3.1.4), so clearly $u(V) \subseteq V$. Conversely if $u(V) \subseteq V$ and $v \in V$

V-H, then v=s+h for some $s \in S$ with $s \neq 0$ and $h \in H$, so $u(v)=\gamma s+h$ and $v-u(v)=(1-\gamma)s \in V$, which implies $s \in V$ and $S=\mathbf{R}s \subseteq V$.

• Fix $e \in E$ with g(e) = 1 and let c = u(e) - e. Since $u(e) \in e + H$, g(c) = 0 and $c \in H$. Now u(x) = x + g(x)c holds for x = e, and for $x \in H$, so by linearity it holds for all $x \in \mathbf{R}e + H = E$. Note c is unique since if u(e) = e + g(e)c', then c' = u(e) - e = c.

The map $x \mapsto x - g(x)c$ is clearly the inverse of u, so u is bijective.

If h(x) = 0 is another equation of H, then by the above there exists $c' \in H$ such that u(x) = x + h(x)c' for all $x \in E$. But $h = \lambda g$ for some $\lambda \neq 0$ (3.3.6), so $u(x) = x + g(x)(\lambda c')$ for all $x \in E$ and $c = \lambda c'$ by uniqueness of c. If $u \neq 1$, then $T = D_{0c} = D_{0c'}$ is independent of g.

If $u(x) = x + g(x)c = \lambda x$, then $(\lambda - 1)x \in H$. If $\lambda \neq 1$, then $x \in H$, so actually $(\lambda - 1)x = 0$ and x = 0. If $\lambda = 1$, then g(x)c = 0, so either g(x) = 0 and $x \in H$, or c = 0 and u = 1.

As above, $u(V) \subseteq V$ if $V \subseteq H$ or $T \subseteq V$. Conversely if $u(V) \subseteq V$ and $x \in V - H$, then $g(x) \neq 0$ and $g(x)c = u(x) - x \in V$, so $c \in V$ and $T = \mathbf{R}c \subseteq V$. \square

• $\Gamma(E,H)$ is obviously a subgroup of $\mathbf{GL}(E)$. Define $\varphi:\Gamma(E,H)\to\mathbf{R}^*$ by $\varphi(u)=\gamma$. Then φ is a well-defined, surjective homomorphism and $\ker\varphi=\Theta(E,H)$. It follows that $\Theta(E,H)$ is a normal subgroup of $\Gamma(E,H)$ and that $\Gamma(E,H)/\Theta(E,H)\cong\mathbf{R}^*$. Finally, the mapping $c\mapsto (x\mapsto x+g(x)c)$ is an isomorphism $H\cong\Theta(E,H)$, so in particular $\Theta(E,H)$ is abelian.

Chapter IV

Section 1

Exercise (1). If $t \neq 1$ is a transvection in E, a basis for E may be chosen relative to which

$$M(t) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Conversely, matrices of the form

$$B_{12}(\lambda) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$$
 $B_{21}(\lambda) = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$

are matrices of transvactions relative to some basis $\{a_1, a_2\}$. These transvections have the lines D_{0a_1} and D_{0a_2} respectively.

Proof. Write t(x) = x + g(x)c, where $g \in E^*$ with $g \neq 0$, and $c \neq 0$ with g(c) = 0 (Exercise 3.3.6). Let $a_1 = c$ and choose a_2 such that $g(a_2) = 1$. Then $\{a_1, a_2\}$ is the desired basis for E.

Conversely, if *t* is the transformation of $B_{12}(\lambda)$ relative to $\{a_1, a_2\}$, then

$$t(x) = t(\xi_1 a_1 + \xi_2 a_2)$$

$$= \xi_1 t(a_1) + \xi_2 t(a_2)$$

$$= \xi_1 a_1 + \xi_2 (\lambda a_1 + a_2)$$

$$= \xi_1 a_1 + \xi_2 a_2 + \lambda \xi_2 a_1$$

$$= x + g(x) a_1$$

where $g = \lambda a_2^* \in E^*$. Therefore t is a transvection in the line D_{0a_1} . A similar argument applies to $B_{21}(\lambda)$.

Exercise (3). If $u \in \text{End}(E)$ and rank(u) = 1, there is a basis of E relative to which

$$M(u) = \begin{pmatrix} \delta & 0 \\ 0 & 0 \end{pmatrix}$$
 $(\delta \neq 0)$ or $M(u) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

The second case occurs if and only if u is nilpotent, in which case $u^2 = 0$.

Proof. Let $N = u^{-1}(0)$ and R = u(E). Then N and R are vector lines in E (4.1.7). If $N \cap R = \{0\}$, then E = N + R is a direct sum. Choose $a_1 \in R$ and $a_2 \in N$ with $a_1, a_2 \neq 0$. Then $u(a_1) = \delta a_1$ with $\delta \neq 0$ since $u(a_1) \in R$ and $a_1 \notin N$, and also $u(a_2) = 0$. It follows that $\{a_1, a_2\}$ is a basis of E relative to which

$$M(u) = \begin{pmatrix} \delta & 0 \\ 0 & 0 \end{pmatrix}$$

If $N \cap R \neq \{0\}$, then N = R (3.3.1). Choose $a_1 \in N$, $a_1 \neq 0$ and a_2 with $u(a_2) = a_1$. Then $\{a_1, a_2\}$ is a basis of E (since $a_2 \notin N$) relative to which

$$M(u) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

If M(u) has this form, then $M(u^2) = M(u)^2 = 0$, so $u^2 = 0$ and u is nilpotent. Conversely if u is nilpotent, there is k > 1 least such that $u^k = 0$. Then $u^{k-1}(E) \neq 0$ but $u^{k-1}(E) \subseteq N$, so $u^{k-1}(E) = N$. If k > 2, then $u^{k-1}(E)$ is a proper subspace of $u^{k-2}(E)$, lest $u^{k-2}(E) = N$ and $u^{k-1} = 0$. But then $u^{k-2}(E) = E$, impossible since $\operatorname{rank}(u) = 1$. It follows that $u^2 = 0$, so N = R and M(u) has this form. \square

Exercise (8). We have

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \begin{pmatrix} \beta_1 & \beta_2 \end{pmatrix} = \begin{pmatrix} \alpha_1 \beta_1 & \alpha_1 \beta_2 \\ \alpha_2 \beta_1 & \alpha_2 \beta_2 \end{pmatrix}$$

This can be interpreted as the composite of a linear form $E \to \mathbf{R}$ and a linear map $\mathbf{R} \to E$; it maps the plane onto the origin or onto a vector line and hence is of rank 0 or 1.

Exercise (9). If $f : E \to E$ is a function which commutes with all automorphisms in GL(E), then $f = h_{\lambda}$ for some $\lambda \in \mathbb{R}$.

Proof. First, since f commutes with $h_2 \in \mathbf{GL}(E)$,

$$f(0) = f(2 \cdot 0) = 2 \cdot f(0) = f(0) + f(0)$$

and it follows that f(0) = 0. Now $f(\alpha x) = \alpha f(x)$ for all $x \in E$ and $\alpha \in \mathbf{R}$, using the previous result for $\alpha = 0$ and commutativity of f with $h_{\alpha} \in \mathbf{GL}(E)$ for $\alpha \neq 0$.

Fix $x \neq 0$ and let $u \neq 1$ be a transvection in the line $D = D_{0x}$. Then u(f(x)) = f(u(x)) = f(x), so $f(x) \in D$ and hence $f(x) = \lambda x$ for some $\lambda \in \mathbf{R}$. It follows that $f(y) = \lambda y$ for all $y \in D$. Fix $y \notin D$. We may assume u(y) = x + y. By reasoning as above, $f(y) = \lambda_y y$ and $f(x + y) = \lambda_{x+y}(x + y)$ for some $\lambda_y, \lambda_{x+y} \in \mathbf{R}$. But also

$$f(x+y) = f(u(y)) = u(f(y)) = u(\lambda_y y) = \lambda_y u(y) = \lambda_y (x+y)$$

so $\lambda_y = \lambda_{x+y}$ (since $x + y \neq 0$). Now considering the transvection u' in the line $D' = D_{0y}$ with u'(x) = x + y, it follows that $\lambda = \lambda_{x+y} = \lambda_y$. Therefore $f(y) = \lambda y$ for all $y \in E$, so $f = h_{\lambda}$.

References

[1] Dieudonné, J. Linear Algebra and Geometry. Hermann, 1969.