

Fundação Universidade Federal de Rondônia - UNIR Curso de Bacharelado e Licenciatura em Ciência da Computação

Disciplina: Álgebra Linear

Professor: Lucas Marques da Cunha SIAPE: 3269899

Aluno (a):

LISTA DE ATIVIDADES 05

1) Determine se os seguintes vetores são linearmente independentes em R2.

a)
$$(2, 1)^T, (3, 2)^T$$

b)
$$(2, 3)^T, (4, 6)^T$$

c)
$$(-2, 1)^T, (1, 3)^T, (2, 4)^T$$

d)
$$(-1, 2)^T, (1, -2)^T, (2, -4)^T$$

e)
$$(1, 2)^T, (-1, 1)^T$$

- **2)** Mostre que $\{(1\ 2\ 3)^T, (-\ 2\ 1\ 0)^T, (1\ 0\ 1)^T\}$ é base para o \mathbb{R}^3 .
- **3)** Considere os vetores $x_1 = (2, 1)^T$, $x_2 = (4, 3)^T$, $x_3 = (7, -3)^T$.
 - a) Mostre que x_1 e x_2 formam uma base para o \mathbb{R}^2 .
 - **b)** Por que x_1 , x_2 e x_3 devem ser linearmente dependentes?
- **4)** Sejam $u_1 = (3, 2)^T$, $u_2 = (1, 1)^T e x = (7, 4)^T$. Encontre as coordenadas de **x** em relação a u_1 e u_2 .
- **5)** Sejam $b_1 = (1, -1)^T e b_2 = (-2, 3)^T$. Encontre a matriz de transição de $\{e_1, e_2\}$ para $\{b_1, b_2\}$ e as coordenadas de $x = (1, 2)^T$ em relação à $\{b_1, b_2\}$.
- **6)** Ache a dimensão do subespaço de \mathbb{R}^4 coberto por $x_1 = (1\ 2\ -1\ 0)^T$, $x_2 = (2\ 5\ -3\ 2)^T$, $x_3 = (2\ 4\ -2\ 0)^T$, $x_4 = (3\ 8\ -5\ 4)^T$.

- 7) Mostre que a transformação L: $\mathbb{R}^3 \to \mathbb{R}^2$ é linear, em que L é definida por: $L(x) = (x_1 + x_2, x_2 + x_3)$
- 8) Seja $b_1 = (1\ 1\ 0)^T$, $b_2 = (1\ 0\ 1)^T e\ b_3 = (0\ 1\ 1)^T$ e seja L uma transformação Linear representando \mathbb{R}^2 em \mathbb{R}^3 definida por $L(x) = x_1b_1 + x_2b_2 + (x_1 + x_2)b_3$. Encontre a matriz A representando L em relação às bases {e₁, e₂} e {b₁, b₂, b₃}
- **9)** Qual a transformação linear T: $\mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1, 2) = (2, 3, -1)^T e T(3, 1) = (1, 4, 2)^T?