

Contrôle continu : Jeudi 25 février 2016 Durée 2h

Calculatrice et documents interdits. Téléphones portables éteints et hors de la table. Aurtôgraffe et présentation soignées; prises en compte dans la notation (-2 points possibles).

Les réponses et les constructions non justifiées ne seront pas prises en compte dans la notation.

La figure 1 représente schématiquement un mécanisme de transformation de mouvement de type $rotation \rightarrow translation$. Il est composé des quatre solides suivants :

- Bâti (0), lié au repère de référence $\mathcal{R}_0 = (O, \vec{x_0}, \vec{y_0}, \vec{z_0})$.
- Arbre d'entrée (1), lié au repère $\mathcal{R}_1 = (O, \vec{x_1}, \vec{y_1}, \vec{z_0})$, il est en liaison pivot d'axe $(O, \vec{z_0})$ avec le bâti (0).
- Roue (2), liée au repère $\mathcal{R}_2 = (B, \vec{x_2}, \vec{y_2}, \vec{z_0})$, elle est en liaison pivot d'axe $(A, \vec{z_0})$ avec l'arbre d'entrée (1) et engrène au point K avec une couronne solidaire (et donc immobile par rapport) au bâti (0).
- Bielle (3), liée au repère $\mathcal{R}_3 = (C, \vec{x_3}, \vec{y_3}, \vec{z_0})$, elle est en liaison pivot d'axe $(B, \vec{z_0})$ avec la roue (2).
- Coulisseau (4), il est en liaison glissière d'axe $(O, \vec{x_0})$ avec le bâti (0) et en liaison pivot d'axe $(C, \vec{z_0})$ avec la bielle (3).

On donne : $\overrightarrow{OA} = a\vec{x_1}$, $\overrightarrow{AK} = R\vec{x_1}$, K étant le point de contact entre la roue (2) et la couronne (0), $\overrightarrow{AB} = R\vec{x_2}$, $\overrightarrow{BC} = L\vec{x_3}$ et $\overrightarrow{OC} = \lambda\vec{x_0}$ (on a L > a + R) et on introduit les angles $\alpha = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1})$, $\beta = (\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{y_1}, \overrightarrow{y_2})$ et $\theta = (\overrightarrow{x_0}, \overrightarrow{x_3}) = (\overrightarrow{y_0}, \overrightarrow{y_3})$. Les variables cinématiques du mécanisme sont les fonctions du temps : $\alpha(t)$, $\beta(t)$, $\theta(t)$ et $\lambda(t)$.

Dans tout l'exercice, on pourra identifier la couronne et le bâti (0).

FIGURE 1 – Schéma du mécanisme étudié. On rappelle ici les données géométriques du problème $\overrightarrow{OA} = a\vec{x_1}$, $\overrightarrow{AK} = R\vec{x_1}$, $\overrightarrow{AB} = R\vec{x_2}$, $\overrightarrow{BC} = L\vec{x_3}$ et $\overrightarrow{OC} = \lambda\vec{x_0}$.

1 Cinématique analytique

- 1- Dessiner les diagrammes de changement de base $0 \leftrightarrow 1$, $1 \leftrightarrow 2$ et $0 \leftrightarrow 3$.
- 2- Donner les expressions des vecteurs vitesse instantanée de rotation $\vec{\Omega}(1/0)$, $\vec{\Omega}(2/1)$, $\vec{\Omega}(3/0)$ et $\vec{\Omega}(2/0)$.
- 3- Exprimer la vitesse $\vec{V}(A \in 1/0)$ du point A dans le mouvement de l'arbre d'entrée (1) par rapport à \mathcal{R}_0 .
 - 4- Faire de même pour $\vec{V}(K \in 1/0)$.
 - 5- Exprimer la vitesse $\vec{V}(B \in 2/1)$ du point B dans le mouvement de la roue (2) par rapport à \mathcal{R}_1 .
 - 6- Exprimer le vecteur vitesse $\vec{V}(B \in 2/0)$.
- 7- Exprimer la vitesse de glissement $\vec{V}(K \in 2/0)$. En appliquant la condition de roulement sans glissement entre les solides (2) et (0) établir une relation entre $\dot{\alpha}$ et $\dot{\beta}$. Préciser alors le sens de rotation de (2) par rapport à (1).
- 8- Quelle relation y a-t-il entre les vecteurs $\vec{V}(K \in 1/0)$ et $\vec{V}(K \in 2/1)$? **Indication :** utiliser la condition de roulement sans glissement.
- 9- Déterminer en fonction de $\dot{\lambda}$, la vitesse $\vec{V}(C \in 3/0)$ de C par rapport à \mathcal{R}_0 . En déduire l'expression au point C du torseur cinématique $\{\mathcal{V}(3/0)\}$ du mouvement de la bielle (3) par rapport au bati (0).
- 10- Exprimer au point C le torseur cinématique $\{V(4/0)\}$ du mouvement du coulisseau (4) par rapport au bati (0).
- 11- Exprimer $\vec{V}(B \in 3/0)$. En utilisant la question 6 et en tenant compte du rôle joué par B vis-à-vis des solides (2) et (3), obtenir une relation vectorielle faisant intervenir $\dot{\lambda}$, les vitesses angulaires $\dot{\alpha}$, $\dot{\beta}$, $\dot{\theta}$ et les données géométriques du problème (a, R et L).
 - 12- Écrire le vecteur \overrightarrow{OC} comme une combinaison linéaire des vecteurs $\vec{x_1}$, $\vec{x_2}$ et $\vec{x_3}$.

Pour répondre à la question bonus suivante, vous pouvez librement choisir de partir de la relation vectorielle obtenue à la question 11 ou 12.

13- (Bonus) Écrire deux relations scalaires faisant intervenir λ , α , β , θ et les données géométriques du problème (a, R et L).

2 Cinématique graphique

- 1- Identifier les centres instantanés de rotation (CIR) suivants :
- I_{10} : CIR du mouvement de l'arbre (1) par rapport au bâti (0).
- I_{21} : CIR du mouvement de la roue (2) par rapport à l'arbre (1).
- I_{20} : CIR du mouvement de la roue (2) par rapport à la couronne (0).
- I_{32} : CIR du mouvement de la bielle (3) par rapport à la roue (2).
- 2- On suppose que l'arbre d'entrée tourne à une vitesse angulaire constante $|\dot{\alpha}| = 10$ tours.min⁻¹ et que la longueur a = OA = 30cm. Donner la valeur numérique de la norme $\|\vec{V}(A \in 1/0)\|$ (en m.s⁻¹).

Indication: on prendra $\pi \simeq 3$.

Pour la tracé du vecteur $\vec{V}(A \in 1/0)$, on prendra une norme de 3 cm et on supposera $\dot{\alpha} < 0$.

- 3- Préciser, d'après la question précédente, l'échelle utilisée.
- 4- Représenter le vecteur vitesse $\vec{V}(\mathbf{A} \in 1/0)$ sur la figure 2.
- 5- Faire de même pour le vecteur vitesse $\vec{V}(B \in 1/0)$.
- 6- Construire, en justifiant, le vecteur $\vec{V}(K \in 1/0)$. En déduire la construction de $\vec{V}(K \in 2/1)$. Indication: utiliser la condition de roulement sans glissement.
- 7- Construire le vecteur vitesse $\vec{V}(B \in 2/1)$ puis utiliser la loi de composition des vitesses pour construire $\vec{V}(B \in 2/0)$.
 - 8- Construire le vecteur vitesse $\vec{V}(C \in 3/0)$.

 $\label{eq:figure 2-Schéma} Figure \ 2-Schéma\ pour\ la\ partie\ graphique.\ \grave{A}\ compléter\ et\ \grave{a}\ remettre\ avec\ le\ cahier\ de\ composition.$ Indiquer le numéro d'anonymat sur cette page.