UNIT-II AC Circuits					
1.	(1 Marks) Taxonomy Level: Remember	CO: C114.2	PI: 3.2.3		
•	Define inductive reactance	CO. C114.2	11. 5.2.5		
	Inductive reactance The opposition offered by an inductor in an AC circuit for the flocalled inductive reactance. It is represented by X_L and the units at $X_L = \omega L$		ough it is		
2.	Taxonomy Level: Remember	CO: C114.2	PI: 3.2.3		
2.	Define Impedance?	CO. C114.2	11. 3.2.3		
	Impedance The opposition offered by an AC circuit for the flow of current th impedance. It is represented by Z and the units are ohms. $Z = R + j(X_L - X_C)$	nrough it is called	d		
3.	Taxonomy Level: Remember Define Power factor.	CO: C114.2	PI: 3.2.3		
	Power factor: It is the cosine of angle between voltage phasor to current phasor in Power factor, $p.f = cos\theta$ $\cos \theta = \frac{R}{Z}$	n AC circuits.			
4.	Taxonomy Level: Remember	CO: C114.2	PI: 3.2.3		
	Draw impedance triangle?	-1	•		
	Z $R = Resistance$ $X_L = Inductive Reactance X_C = Capacitive$ $Reactance$ $Z = Impedance$				
5.	Taxonomy Level: Remember	CO: C114.2	PI: 3.2.3		
	Define phase difference It is the Difference between two phases or vectors.				
	LEAD V W LAG				
1.	(3 Marks) Taxonomy Level: Remember	CO: C114.2	PI:3.2.3		
1.	Define resonant frequency and derive the formula for it.	100.0114.2	11.3.4.3		
	Resonant frequency The frequency at which inductive reactance is equals to capacitive called as resonant frequency.	re reactance that	frequency is		

	$X_{L} = \omega L$
	\mathbf{v} 1
	$X_{C} = \frac{1}{\omega C}$
	At Resonance
	$X_L = X_C$
	$\omega L = \frac{1}{\omega C}$
	$\omega_{\rm L} = \frac{1}{\omega C}$ $\omega_{\rm r} = \frac{1}{\sqrt{LC}}$
	√LC
	$f_r = \frac{1}{2\pi\sqrt{LC}}$
	$\int_{-1}^{1} 2\pi \sqrt{LC}$
2.	Taxonomy Level: Remember CO: C114.2 PI: 3.2.3
	Mention the various types of powers in AC circuits& represent the power triangle.
	There exist three powers in an AC circuit. Those are,
	1. Real Power
	2. Reactive Power
	3. Apparent Power Power triangle for capacitive load is,
	Tower triangle for capacitive toad is,
	$S \longrightarrow C$
	$\frac{3}{2\theta}$ Q
	$\stackrel{\longrightarrow}{P}$
3.	Taxonomy Level: Remember CO: C114.2 PI: 3.2.3
	A series RLC network consists of R=3 Ω ,L=2mHandC=0.4 μ F.Determine the
	Angular resonant frequency.
	Angular resonant frequency. Given data $R=3\Omega$
	Angular resonant frequency. Given data
	Angular resonant frequency. Given data $R=3\Omega$
	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4\mu F$
	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4\mu F$
4.	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4 \mu F$ $\omega_{\rm r}=\frac{1}{\sqrt{\rm LC}}=\frac{1}{\sqrt{2\times 10^{-3}\times 0.4\times 10^{-6}}}=35355.33 {\rm rad/sec}$
4.	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4\mu F$
4.	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4 \mu F$ $\omega_{\rm r}=\frac{1}{\sqrt{\rm LC}}=\frac{1}{\sqrt{2\times 10^{-3}\times 0.4\times 10^{-6}}}=35355.33 {\rm rad/sec}$ Taxonomy Level: Remember Find the impedance of R circuit with AC excitation Circuit Diagram:
4.	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4 \mu F$ $\omega_{\rm r}=\frac{1}{\sqrt{\rm LC}}=\frac{1}{\sqrt{2\times 10^{-3}\times 0.4\times 10^{-6}}}=35355.33 {\rm rad/sec}$ Taxonomy Level: Remember Find the impedance of R circuit with AC excitation Circuit Diagram:
4.	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4 \mu F$ $\omega_{\rm r}=\frac{1}{\sqrt{\rm LC}}=\frac{1}{\sqrt{2\times 10^{-3}\times 0.4\times 10^{-6}}}=35355.33 {\rm rad/sec}$ Taxonomy Level: Remember Find the impedance of R circuit with AC excitation Circuit Diagram:
4.	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4 \mu F$ $\omega_{\rm r}=\frac{1}{\sqrt{\rm LC}}=\frac{1}{\sqrt{2\times 10^{-3}\times 0.4\times 10^{-6}}}=35355.33 {\rm rad/sec}$ Taxonomy Level: Remember Find the impedance of R circuit with AC excitation Circuit Diagram:
4.	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4 \mu F$ $\omega_{\rm r}=\frac{1}{\sqrt{\rm LC}}=\frac{1}{\sqrt{2\times 10^{-3}\times 0.4\times 10^{-6}}}=35355.33 {\rm rad/sec}$ Taxonomy Level: Remember Find the impedance of R circuit with AC excitation Circuit Diagram:
4.	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4 \mu F$ $\omega_{\rm r}=\frac{1}{\sqrt{\rm LC}}=\frac{1}{\sqrt{2\times 10^{-3}\times 0.4\times 10^{-6}}}=35355.33 {\rm rad/sec}$ Taxonomy Level: Remember Find the impedance of R circuit with AC excitation Circuit Diagram:
4.	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4 \mu F$ $\omega_{\rm r}=\frac{1}{\sqrt{\rm LC}}=\frac{1}{\sqrt{2\times 10^{-3}\times 0.4\times 10^{-6}}}=35355.33 {\rm rad/sec}$ Taxonomy Level: Remember Find the impedance of R circuit with AC excitation
4.	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4 \mu F$ $\omega_{\rm r}=\frac{1}{\sqrt{\rm LC}}=\frac{1}{\sqrt{2\times 10^{-3}\times 0.4\times 10^{-6}}}=35355.33 {\rm rad/sec}$ Taxonomy Level: Remember Find the impedance of R circuit with AC excitation Circuit Diagram:
4.	Angular resonant frequency. Given data $R=3\Omega$ $L=2 \ mH=2\times 10^{-3}H \ C=$ $0.4 \mu F$ $\omega_{\rm r}=\frac{1}{\sqrt{\rm LC}}=\frac{1}{\sqrt{2\times 10^{-3}\times 0.4\times 10^{-6}}}=35355.33 {\rm rad/sec}$ Taxonomy Level: Remember Find the impedance of R circuit with AC excitation Circuit Diagram:

	$-V_0 \sin \omega t$
	$I = \frac{V_0 \sin \omega t}{R}$
	$I = I_0 \sin \omega t$
	Z = R
	Phasor Diagram
	Voltage, V
	Current, 1
	t
	Vector Diagram:
	vector Diagram.
_	——————————————————————————————————————
5.	Taxonomy Level: Remember CO: C114.2 PI: 3.2.3
	What is the relationship among the phase and line values in a i) star and ii) delta connected networks?
	i) Star connected Network:-
	$V_{\text{Phase}} = \frac{V_{\text{L}}}{\sqrt{3}}$
	\ -
	$I_{\text{Phase}} = I_{\text{Line}}$
	ii) Delta Connected Network:-
	$ m V_{Phase} = V_{Line}$
	$I_{\text{Phase}} = \frac{I_{\text{L}}}{\sqrt{3}}$
	Phase $\sqrt{3}$
	(5 Marks)
1.	Taxonomy Level: Understand CO: C114.2 PI: 3.2.3
	Analyze series RL circuit and obtain the impedance triangle for the circuit if it is excited with
	ac supply Consider a series RL circuit connected with alternating voltage $V = V_m \sin \omega t$ as shown in
	below diagram
	T
	R
	$V_R \rightarrow V_L \rightarrow$
	I
	V
	In the above diagram the current passes through the RL circuit then it causes two voltage
	drops. Those are, Voltage Drop across pure resistance, $V_R = I \times R$
	Voltage drop across pure resistance, $V_R = I \times K$ Voltage drop across pure inductance, $V_L = I \times X_L$
	Totago drop across pare madetance, TE 1771

If we take voltage phasors then according to KVL, the addition of phasors is

$$\overline{V} = \overline{V_{R}} + \overline{V_{L}} = \overline{IR} + \overline{IX_{L}}$$

From the above equation the phasor diagram and voltage triangle are obtained as,

Phasor diagram

From the above diagram

V_R is inphase with I

I lags V_L by 90⁰

Voltage triangle

from ∠OAB

$$V = \sqrt{V_R^2 + V_L^2}$$

$$V = \sqrt{(IR)^2 + (IX_L)^2}$$

$$V = I.\sqrt{R^2 + X_L^2}$$

Impedance & Impedance triangle:-

The impedance for RL-series circuit is $Z = R + jX_L$ where $X_L = 2\pi fL$

From ∠OAB

$$\tan \phi = \frac{X_{L}}{R}$$

$$\sin \phi = \frac{R}{Z}$$

$$\cos \phi = \frac{X_L}{Z}$$

2. Taxonomy Level: Understand

CO: C114.2 | PI: 3.2.6

A Series RLC circuit has $R=10\Omega$, L=25mH and $C=60\mu F$ with frequency of 50Hz. Determine the impedance and power factor of the circuit.

Given data

$$R=10\Omega$$

$$L=25 \text{ } mH=25\times10^{-3}H \text{ } C=$$

60μ*F*

$$f=50Hz$$

ω=2πf=2×3.14×50=314rad/sec $X_L=ωL=314×25×10^{-3}=7.85Ω$ $X_C=\frac{1}{ωC}=\frac{1}{314×60×10^{-6}}=53.07Ω$
$Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}}$ $Z = \sqrt{10^{2} + (7.85 - 53.07)^{2}}$ $Z = 53.43\Omega$ Power factor, $\cos \theta = \frac{R}{Z}$ $\cos \theta = \frac{10}{53.43}$ $\cos \theta = 0.99$

3. **Taxonomy Level: Apply**

values of R and L.

CO: C114.2 PI: 3.2.6 A coil takes a current of 2 ampere at 0.6 lagging power factor from a 220 V, 50 Hz single phase source. If the coil is modeled by a series RL circuit, find the complex power in the coil and the

Given data

I=2A

 $\cos\theta = 0.6(lag)$

V = 220V

f=50Hz

S=?

R=?

L=?

Solution

$$Z = \frac{V}{I} = \frac{220}{2} = 110\Omega$$

$$R = Z\cos\theta = 110 \times 0.6 = 66\Omega$$

$$\cos \theta = \frac{R}{Z}$$

$$X_{L} = \sqrt{(Z)^{2} - (R)^{2}} = 88\Omega$$

$$X_{r} = \omega L$$

$$X_L = \omega L$$

 $\omega = 2\pi f = 2 \times 3.14 \times 50 = 314 \text{rad/sec}$

$$L = \frac{X_L}{\omega} = \frac{88}{314} = 0.28H$$

$$S = VI = 220 \times 2 = 440V$$

Taxonomy Level: Understand CO: C114.2 PI: 3.2.3 Compare star and delta connections in three phase circuits Star Connection Delta Connection $V_{\text{Phase}} = V_{\text{Line}}$ $V_{\text{Phase}} = \frac{V_{\text{Line}}}{\sqrt{3}}$ $I_{\text{Phase}} = \frac{I_{\text{Line}}}{\sqrt{3}}$ $I_{\text{Phase}} = I_{\text{Line}}$ Power in single phase, Power in single phase, $P_{ph} = V_{ph}I_{ph}\cos\theta$ $P_{ph} = V_{ph} I_{ph} \cos \theta$ Power in three phase, Power in three phase, $P = 3V_{ph}I_{ph}\cos\theta$ $P = 3V_{ph}I_{ph}\cos\theta$ $P = \sqrt{3}V_L I_L \cos \theta$ $P = \sqrt{3}V_{I}I_{L}\cos\theta$ 5. **Taxonomy Level: Understand** CO: C114.2 PI: 3.1.6 Derive the formula for impedance of series RLC circuit. $V_R = IR$ $V_L = IX_L$ $V_C = IX_C$ $V = V_0 \sin(\omega t + \theta)$ $V = \sqrt{V_{R}^2 + \left(V_{L} - V_{C}\right)^2}$ $V = \sqrt{(IR)^{2} + (IX_{L} - IX_{C})^{2}}$ $V = I\sqrt{(R)^{2} + (X_{L} - X_{C})^{2}}$ $Z = \frac{V}{I} = \sqrt{(R)^2 + (X_L - X_C)^2}$

	Impedance Triangle:
	$Z \longrightarrow (X_L - X_C)$
	(10 Marks)
1.	Taxonomy Level: Understand CO: C114.2 PI: 4.1.1
	Define Alternating quantity, Instantaneous value, Frequency, Time period and Cycle for a Full sine wave.
	Consider a full sine wave as represented in the below diagram,
	I
	T_0 T
	Alternating quantity: The magnitude of the wave form varies with respect to time is called as alternating quantity. Instantaneous value: The value of an alternating quantity at a particular time is called as instantaneous value Frequency (f): Number of cycles per second is called as frequency it is represented by f and the units are Hz $f = \frac{1}{-}$
	T Time period (T): The time taken to complete one cycle is called time period it is represented by T and the units are seconds. Cycle: The positive and negative portions of a wave form is called Cycle.
2.	Taxonomy Level: Understand CO: C114.2 PI: 4.1.1
	Define the terms average value, rms value, form factor peak factor and derive them for full sine wave.
	Consider a full sine wave as represented below

1. Average value:

The algebraic sum of all the instantaneous values over a period of time is called as average value. The average value can be obtained as,

$$\begin{split} I_{\text{avg}} &= \frac{1}{\pi} \int_{0}^{\pi} i(t) dt \\ I_{\text{avg}} &= \frac{1}{\pi} \int_{0}^{\pi} I_{\text{m}} \sin \omega t \, d\omega t \\ I_{\text{avg}} &= \frac{I_{\text{m}}}{\pi} \int_{0}^{\pi} \sin \omega t \, d\omega t \\ I_{\text{avg}} &= \frac{I_{\text{m}}}{\pi} \left[-\cos \omega t \right]_{0}^{\pi} \\ I_{\text{avg}} &= \frac{2I_{\text{m}}}{\pi} \end{split}$$

2. RMS value:

It is the DC equivalent of AC current. The rms value can be obtained as,

$$\begin{split} I_{rms} &= \sqrt{\frac{1}{T}} \int\limits_{0}^{T} i^2(t) dt \\ I_{rms} &= \sqrt{\frac{1}{2\pi}} \int\limits_{0}^{2\pi} (I_m \sin \omega t)^2 d\omega t \\ I_{rms} &= \sqrt{\frac{I_m^2}{2\pi}} \int\limits_{0}^{2\pi} \sin^2 \omega t \ d\omega t \\ We know, \sin^2 \theta &= \frac{1 - \cos 2\theta}{2} \\ I_{rms} &= \sqrt{\frac{I_m^2}{2\pi}} \int\limits_{0}^{2\pi} \left(\frac{1 - \cos 2\omega t}{2}\right) d\omega t \\ I_{rms} &= \frac{I_m}{\sqrt{2\pi}} \sqrt{\int\limits_{0}^{2\pi} \left(\frac{1 - \cos 2\omega t}{2}\right) d\omega t} \\ I_{rms} &= \frac{I_m}{\sqrt{2\pi}} \sqrt{\left[\frac{1}{2} \int\limits_{0}^{2\pi} d\omega t - \frac{1}{2} \int\limits_{0}^{2\pi} \cos 2\omega t \ d\omega t\right]} \\ I_{rms} &= \frac{I_m}{\sqrt{2\pi}} \sqrt{\left[\frac{1}{2} \left[\omega t\right]_{0}^{2\pi} - \frac{1}{2} \left[\sin 2\omega t\right]_{0}^{2\pi}\right]} \\ I_{rms} &= \frac{I_m}{\sqrt{2\pi}} \sqrt{\pi - 0} \\ I_{rms} &= \frac{I_m}{\sqrt{2}} \end{split}$$

3. from factor:

The ratio of rms value to average value is called as form factor.

$$form factor = \frac{RMS \, value}{Average \, value}$$

The form factor for the sine wave is,

The form factor for the sine wave is,
$$form \, factor = \frac{I_{rms}}{I_{avg}}$$

$$form \, factor = \frac{I_{m} \, / \, \sqrt{2}}{2\,I_{m} \, / \, \pi} \, , \, \, form \, factor = 1.11$$

4. Peak factor:

The ratio of peak value to rms value is called as peak factor.

$$peak factor = \frac{peak value}{rms value}$$

The peak factor for the sine wave can be obtained as,

$$peak \ factor = \frac{I_m}{I_m / \sqrt{2}}$$

Peak factor = 1.41

3. **Taxonomy Level: Analyze**

CO: C114.2 PI: 4.1.1

Three similar coils each of resistance 40Ω and the inductance 2 H are connected in i) star and ii)delta to the three phase 50Hz and 440Vsupply. Calculate the line current and total Power absorbed.

Given data

$$R = 40\Omega$$
, $L = 2H$

$$F = 50Hz$$
, $\omega = 314 \text{ rad/sec}$

$$X_L = \omega L = 314 \times 2 = 628\Omega$$

$$Z_{ph} = \sqrt{(R)_L + (X_L)} = 629.27 \Omega$$

i) Star connected

$$V_{\text{Phase}} = \frac{V_{\text{Line}}}{\sqrt{3}} = \frac{440}{\sqrt{3}} = 254.03 \text{V}$$

$$I_{\text{phase}} = \frac{V_{\text{phase}}}{Z_{\text{phase}}} = \frac{440}{629.27} = 0.699 A$$

$$I_{\text{Line}} = I_{\text{Phase}} = 0.403 \, A$$

$$P = 3 \times 440 \times 0.699 \times 0.063 = 58.12W$$

$$\cos\theta = \frac{R}{Z} = \frac{40}{629.27} = 0.063$$

$$P = 3 \times 254.03 \times 0.403 \times 0.063 = 19.34W$$

ii) Delta connected

$$\dot{V}_{Phase} = V_{Line} = 440V$$

$$I_{\text{Phase}} = \frac{V_{\text{Phase}}}{Z_{\text{Phase}}} = \frac{254.03}{629.27} = 0.403 \,\text{A}$$

$$P = 3V_{ph}I_{ph}\cos\theta = 3X440X0.403X0.063 = 33.5W$$