Poglavje 3

Množice

Teorija množic je razmeroma mlada veja matematike; njen začetnik je bil nemški matematik Georg Cantor v drugi polovici 19. stoletja. V začetku 20. stoletja so jo matematiki privzeli kot univerzalni jezik, v katerem je mogoče izražati matematične ideje in pojme. Preden lahko začnemo graditi stavbo matematike, torej definirati pojme in dokazovati izreke, si izberemo osnovne pojme, s pomočjo katerih definiramo vse druge pojme, in aksiome, iz katerih izpeljujemo vse druge trditve in izreke. Seveda si želimo, da bi bilo osnovnih (nedefiniranih) pojmov čim manj. V zgodovini matematike so bili osnovni pojmi npr. točka, premica, ravnina, število, relacija, funkcija itd., v teoriji množic pa je edini osnovni pojem množica. V 20. stoletju se je razvilo več alternativ teoriji množic, kot so npr. teorija kategorij, kjer sta osnovna pojma dva: objekt in morfizem, λ -račun, kjer je edini osnovni pojem funkcija, in še druge teorije tipov, vendar večina sodobne matematike še vedno temelji na teoriji množic. Obstaja več različic teorije množic, npr. von Neumann – Bernays – Gödlova teorija (NBG), Zermelo – Fraenklova teorija (ZF) ter Zermelo – Fraenklova teorija množic z aksiomom izbire (ZFC), ki jo bomo uporabljali tudi mi. V teoriji ZFC je vsak objekt neka množica.

Zgled 1 V teoriji ZFC naravna števila definiramo kot množice takole:

$$0 = \{\} = \emptyset$$
 prazna množica $1 = \{0\}$ $2 = \{0, 1\}$ \vdots $n = \{0, 1, 2, \dots, n - 1\}$ \vdots

Pripomba o pisavi. Kadar v logiki ali lingvistiki opisujemo jezik J_1 v jeziku J_2 , imenujemo J_1 objektni jezik, J_2 pa $m\acute{e}taj\^ezik$. V prejšnjem poglavju smo opisali

jezik PR v slovenščini, torej je bil jezik PR objektni jezik, slovenščina pa metajezik. V nadaljevanju bo jezik PR naš metajezik, v katerem bomo opisovali objektni jezik teorije množic. Da bo šlo laže in hitreje, bomo v ta namen nekoliko razrahljali stroga pravila predikatnega računa. Za individualne spremenljivke bomo uporabljali vse črke (male in velike, z začetka in s konca abecede), za individualne konstante pa posebne simbole, kot so \emptyset , \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , $0,1,2,\ldots$ Zaradi krajšega pisanja bomo univerzalne kvantifikatorje na začetku izjavnih formul pogosto opuščali in formule, ki niso zaprte, interpretirali kot njihova univerzalna zaprtja. Pri dokazovanju oziroma izpeljevanju implikacije $\varphi \Rightarrow \psi$ preko vmesnih posledic njenega antecedensa $\varphi_1, \varphi_2, \ldots, \varphi_n$ bomo namesto

$$(\varphi \Rightarrow \varphi_1) \land (\varphi_1 \Rightarrow \varphi_2) \land \dots \land (\varphi_{n-1} \Rightarrow \varphi_n) \land (\varphi_n \Rightarrow \psi)$$
 (3.1)

neformalno pisali kar

$$\varphi \Rightarrow \varphi_1 \Rightarrow \varphi_2 \Rightarrow \cdots \Rightarrow \varphi_{n-1} \Rightarrow \varphi_n \Rightarrow \psi$$
 (3.2)

čeprav izraza (3.1) in (3.2) nista enakovredna. Da je v resnici mišljen izraz (3.1), bo razvidno iz konteksta. Podobno bomo ravnali tudi pri dokazovanju oziroma izpeljevanju ekvivalence $\varphi \Leftrightarrow \psi$ preko vmesnih ekvivalentnih formul.

3.1 Relacija pripadnosti (\in) in podajanje množic

Osnovna relacija v teoriji množic je **relacija pripadnosti** \in . Zapis $a \in A$ preberemo a pripada A ali a je element A. Zapis $a \notin A$ uporabljamo kot okrajšavo za formulo $\neg(a \in A)$.

Kako podamo množico? Odgovor nam ponuja

Aksiom ekstenzionalnosti (AE).
$$\forall x : (x \in A \Leftrightarrow x \in B) \implies A = B$$
.

Z besedami: *Množici, ki imata iste elemente, sta enaki*, oziroma: *Množica je določena s svojimi elementi*. Ta ugotovitev ni trivialna, saj bi lahko množice poleg elementov imele še druge atribute, npr. barvo, obliko ali okus. Potem bi rdeča in modra množica naravnih števil imeli iste elemente, a ne bi bili enaki. Po zaslugi aksioma ekstenzionalnost pa lahko množico določimo že s tem, da povemo, kaj so njeni elementi. Za majhne končne množice jih lahko kar naštejemo, npr.:

$$A = \{1, 4, 9\}.$$

V splošnem pa se to ne da. Zato množico definiramo z neko izjavno formulo $\varphi(x)$, v kateri prosto nastopa le spremenljivka x, in sicer takole:

$$A = \{x; \varphi(x)\} \tag{3.3}$$

Ta zapis pomeni, da množici A pripadajo natanko tisti objekti a, za katere je resnična izjava $\varphi(a)$, oziroma:

$$\forall x \colon (x \in A \iff \varphi(x)). \tag{3.4}$$

Zapis oziroma formula (3.3) je le okrajšava za formulo (3.4).

Zgled 2

 $A_1 = \{x; x \in \mathbb{R} \land x > 0\}$ je množica vseh pozitivnih realnih števil.

 $A_2 = \{x; \exists y : (y \in \mathbb{N} \land x = 2y + 1)\}$ je množica vseh lihih naravnih števil.

 $A_3 = \{x; x = 1 \lor x = 4 \lor x = 9\}$ je množica $\{1, 4, 9\}$.

 $A_4 = \{x; x \neq x\}$ je prazna množica \emptyset .

 $A_5 = \{x; x \notin x\}$ je **Russellova množica**.

Množico A_5 je definiral leta 1901 Bertrand Russell. Njeni elementi so vse "običajne" množice, ki ne vsebujejo same sebe kot element. Primeri množic, ki bi lahko vsebovale same sebe kot element:

- množica vseh nepraznih množic,
- množica vseh množic z vsaj tremi elementi,
- množica vseh množic.

Russell si je zastavil vprašanje: Ali je $A_5 \in A_5$? Po definiciji množice A_5 velja:

$$A_5 \in A_5 \iff \varphi(A_5)$$
, kjer je $\varphi(x)$ formula $x \notin x$,

torej $A_5 \in A_5 \iff A_5 \notin A_5$. To protislovje, ki se imenuje **Russellova anti**nomija, je v začetku 20. stoletja povzročilo pravi pretres v osnovah matematike. Kako to protislovje razrešimo?

V enem od zgledov v prejšnjem poglavju smo pokazali, da je izjavna formula

$$\psi = \exists y \forall x : (R(x,y) \iff \neg R(x,x))$$

protislovna, torej lažna v vsaki interpretaciji. Vzemimo interpretacijo I, kjer je

$$D = \{x; x = x\}$$
 ... razred vseh množic,
 $R(x,y)$... relacija pripadnosti $x \in y$.

V tej interpretaciji se formula ψ glasi: $\exists y \forall x \colon (x \in y \iff x \notin x)$, oziroma:

Obstaja množica, ki vsebuje natanko vse tiste množice, ki ne vsebujejo same sebe kot element.

Ker je formula ψ protislovna, je gornja izjava lažna. To pa pomeni, da Russellova množica A_5 **ne obstaja**!

Nauk Russellove antinomije: Pri podajanju množic z izjavno formulo $\varphi(x)$ moramo biti previdni, saj nekatere takšne formule vodijo v protislovje. Teorije, v katerih lahko izpeljemo protislovje, imenujemo protislovne teorije; takšnih teorij pa se močno bojimo. Izjavni izraz $0 \Rightarrow p$ je namreč tavtologija, in če smo izpeljali protislovje 0, po pravilu MP dobimo

$$0, 0 \Rightarrow p \models p.$$

V protislovni teoriji lahko torej dokažemo *vsako* trditev, kar pomeni, da so takšne teorije povsem brez vrednosti.

Russellovi antinomiji se skušamo izogniti na različne načine.

A) V teoriji NBG za osnovni pojem vzamemo *razred*, množice pa definiramo kot poseben primer razredov.

Definicija 1 Razred A je množica, če obstaja razred B, tako da je $A \in B$. V nasprotnem primeru imenujemo A pravi razred.

Oznaka: Enomestni predikat M(x) je okrajšava za izjavno formulo $\exists y : x \in y$. Preberemo ga kot "x je množica".

Razred definiramo z neko izjavno formulo $\varphi(x)$, v kateri prosto nastopa le spremenljivka x, pri čemer pa dodatno zahtevamo, da so elementi razreda le tisti razredi, ki so množice:

$$A = \{x; \ \varphi(x) \land M(x)\}. \tag{3.5}$$

Velja torej: $a \in A \Leftrightarrow \varphi(a) \wedge M(a)$. Definirajmo **Russellov razred** R takole:

$$R = \{x; \ x \notin x \land M(x)\}.$$

Ali je $R \in R$? Po definiciji razreda R velja: $R \in R \iff R \notin R \land M(R)$. Poenostavimo to ekvivalenco z uporabo enakovrednosti $p \Leftrightarrow q \sim (p \land q) \lor (\neg p \land \neg q)$, pa dobimo:

$$R \in R \iff R \notin R \land M(R)$$

$$\sim (R \in R \land R \notin R \land M(R)) \lor (R \notin R \land \neg (R \notin R \land M(R)))$$

$$\sim R \notin R \land \neg (R \notin R \land M(R))$$

$$\sim R \notin R \land (R \in R \lor \neg M(R))$$

$$\sim (R \notin R \land R \in R) \lor (R \notin R \land \neg M(R))$$

$$\sim R \notin R \land \neg M(R)$$

Za razliko od Russellove množice nas Russellov razred R ne pripelje do protislovja, temveč le do ugotovitve, da R ni množica, ampak je pravi razred (in zato seveda ne vsebuje samega sebe kot element, saj bi sicer bil množica).

Pravih razredov ne smemo uporabljati za elemente drugih razredov. V teoriji NBG privzamemo aksiome, ki za nekatere (ne "prevelike") razrede zagotavljajo, da so množice.

B) V teoriji ZFC je edini osnovni pojem množica, privzamemo pa eksistenčne aksiome, ki za nekatere (ne "prevelike") množice zagotavljajo, da obstajajo. Za množice, s katerimi delamo, najprej dokažemo, da obstajajo. Preden vstopimo v teorijo ZFC, privzemimo standardno interpretacijo I njenih izjavnih formul:

```
D=V=\{x;\; x=x\} ... razred vseh množic, x\in y \text{ ... relacija pripadnosti,} x=y \text{ ... relacija enakosti.}
```

3.2 Relacije med množicami

Oglejmo si še druge pomembne dvomestne relacije med množicami.

3.2.1 Relacija enakosti (=)

Enakost objektov v matematiki pojmujemo kot *istost* (oziroma *identičnost*). Privzamemo, da za relacijo enakosti velja:

Načelo zamenljivosti enakega z enakim (EE) Če je A = B, potem vse tisto, kar velja za A, velja tudi za B, in vse tisto, kar velja za B, velja tudi za A.

Trditev 1
$$A = B \iff \forall x : (x \in A \Leftrightarrow x \in B)$$

Dokaz: (\Rightarrow) Naj bo A=B in naj bo x neka množica. Če je $x\in A$, je po načelu EE tudi $x\in B$. In če je $x\in B$, je po načelu EE tudi $x\in A$, torej velja $x\in A\Leftrightarrow x\in B$. Ker je bila množica x poljubna, velja $\forall x\colon (x\in A\Leftrightarrow x\in B)$.

$$(\Leftarrow)$$
 To je aksiom ekstenzionalnosti (AE).

Množici sta torej enaki natanko tedaj, ko imata iste elemente.

Zgled 3 1.
$$\{a,b\} = \{b,a\}$$
 (neurejen) par
2. $\{a,a,a\} = \{a\}$ enojček ali singleton
3. $\{b,c,a,a,c,b,a\} = \{a,b,c\}$

Po trditvi 1 pri naštevanju elementov množice vrstni red ni pomemben, prav tako ne, kolikokrat navedemo posamezen element.

Posledica 1 (i) A = A (refleksivnost enakosti)

- (ii) $A = B \implies B = A \text{ (simetričnost enakosti)}$
- (iii) $A = B \land B = C \implies A = C \text{ (tranzitivnost enakosti)}$

Dokaz: (i) Očitno velja $\forall x : (x \in A \Leftrightarrow x \in A)$, torej je po trditvi 1 A = A.

(ii) Iz formule $\forall x : (x \in A \Leftrightarrow x \in B)$ zaradi komutativnosti ekvivalence sledi $\forall x : (x \in B \Leftrightarrow x \in A)$, torej po trditvi 1 velja $A = B \implies B = A$.

(iii)

$$A = B \ \land \ B = C \ \stackrel{\text{trd. 1}}{\Longleftrightarrow} \ \forall x \colon (x \in A \Leftrightarrow x \in B) \ \land \ \forall x \colon (x \in B \Leftrightarrow x \in C)$$
$$\stackrel{\text{PR}}{\Longleftrightarrow} \ \forall x \colon ((x \in A \Leftrightarrow x \in B) \ \land \ (x \in B \Leftrightarrow x \in C))$$
$$\stackrel{2 \times \text{HS}}{\Longrightarrow} \ \forall x \colon (x \in A \Leftrightarrow x \in C)$$
$$\stackrel{\text{trd. 1}}{\Longleftrightarrow} A = C \checkmark$$

3.2.2 Relacija inkluzije (\subseteq)

Definicija 2

$$A \subseteq B \iff \forall x \colon (x \in A \Rightarrow x \in B)$$

Beremo: A je podmnožica B, ali tudi: A je vsebovana v B. Namesto $\neg(A\subseteq B)$ pišemo $A\not\subseteq B$.

Trditev 2

$$A=B\iff A\subseteq B\ \land\ B\subseteq A.$$

Dokaz:

$$A = B \iff^{\operatorname{trd. 1}} \forall x \colon (x \in A \Leftrightarrow x \in B)$$

$$\iff^{\operatorname{IR}} \forall x \colon ((x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A))$$

$$\implies^{\operatorname{PR}} \forall x \colon (x \in A \Rightarrow x \in B) \land \forall x \colon (x \in B \Rightarrow x \in A)$$

$$\iff^{\operatorname{def. 2}} A \subset B \land B \subset A \checkmark$$

Aksiom, ki vsebuje poljubne izjavne formule, imenujemo *aksiomska shema*; takšna shema predstavlja neskončno mnogo aksiomov. Naslednja aksiomska shema,

s katero se ZFC izogne Russellovi antinomiji, zagotavlja, da za vsako množico obstaja podmnožica vseh tistih elementov, ki zadoščajo dani izjavni formuli $\varphi(x)$.

Aksiomska shema o podmnožicah (ASP). Če množica B obstaja in je $\varphi(x)$ izjavna formula, v kateri le spremenljivka x lahko nastopa prosto, obstaja tudi množica $A = \{x; x \in B \land \varphi(x)\}$, ali s formulo:

$$\forall B \,\exists A \,\forall x \colon (x \in A \iff x \in B \land \varphi(x)).$$

Definicija 3 *Množica A je* prazna, *če velja* $\forall x : x \notin A$.

Posledica 2 Prazna množica obstaja.

Dokaz: V ASP za $\varphi(x)$ vzemimo izjavno formulo $x \neq x$. Potem velja:

$$\forall B \, \exists A \, \forall x \colon (x \in A \iff x \in B \, \land \, x \neq x)$$

$$\stackrel{\text{refl.} =}{\iff} \forall B \, \exists A \, \forall x \colon (x \in A \iff x \in B \, \land \, 0)$$

$$\stackrel{\text{IR}}{\iff} \forall B \, \exists A \, \forall x \colon (x \in A \iff 0)$$

$$\stackrel{\text{IR}}{\iff} \forall B \, \exists A \, \forall x \colon x \notin A$$

$$\stackrel{\text{PR}}{\iff} \exists A \, \forall x \colon x \notin A \, \checkmark$$

Posledica 3 Razred vseh množic $V = \{x; x = x\}$ je pravi razred.

Dokaz: Recimo, da je V množica. Potem po ASP obstaja tudi množica

$$A = \{x; x \in V \land x \notin x\} = \{x; 1 \land x \notin x\} = \{x; x \notin x\};$$

to pa je ravno Russellova množica A_5 , za katero že vemo, da ne obstaja. Torej V ni množica, ampak pravi razred.

Zaenkrat le za eno množico vemo, da zares obstaja, to je prazna množica. Obstoj nadaljnjih množic si v ZFC zagotovimo z *eksistenčnimi aksiomi*.

Aksiom o paru (AP). Če obstajata množici u in v, obstaja tudi množica $A = \{x; x = u \lor x = v\} = \{u, v\}$, ali s formulo:

$$\forall u \, \forall v \, \exists A \, \forall x \colon (x \in A \iff x = u \, \lor \, x = v).$$

Posledica 4 Če obstaja množica u, obstaja tudi množica $A = \{x; x = u\} = \{u\}.$

Dokaz: V aksiomu o paru vzamemo v=u in dobimo množico $\{u,u\}$.

Zgled 4 Število $0 = \emptyset$ obstaja po posledici 2.

Število $1 = \{0\}$ obstaja po posledici 4.

Število $2 = \{0, 1\}$ obstaja po aksiomu o paru.

Izrek 1 (lastnosti inkluzije) Za vse množice A, B, C velja:

- (i) $A \subseteq A$ (refleksivnost inkluzije)
- (ii) $A \subseteq B \land B \subseteq A \implies A = B$ (antisimetričnost inkluzije)
- (iii) $A \subseteq B \land B \subseteq C \implies A \subseteq C \ (tranzitivnost \ inkluzije)$
- (iv) $\emptyset \subseteq A$
- (v) $A \subseteq \emptyset \iff A = \emptyset$

Dokaz: (ii): To je polovica trditve 2.

(v):

$$\begin{split} A \subseteq \emptyset & \stackrel{\mathrm{def.} \subseteq}{\Longleftrightarrow} \forall x \colon (x \in A \implies x \in \emptyset) \\ & \stackrel{\mathrm{def.} \emptyset}{\Longleftrightarrow} \forall x \colon (x \in A \implies 0) \\ & \stackrel{\mathrm{IR}}{\Longleftrightarrow} \forall x \colon x \notin A \\ & \stackrel{\mathrm{def.} \emptyset}{\Longleftrightarrow} A = \emptyset \ \checkmark \end{split}$$