Template of a local search algorithm.

Save **S** as **best\_solution** 

 $s = s_0$ ; /\* Generate an initial solution  $s_0$  \*/

While not Termination\_Criterion Do

Compare **S** with the **best\_solution** and update if necessary

Generate (N(s)); /\* Generation of candidate neighbors \*/

If there is no better neighbor Then Stop;

s = s'; /\* Select a better neighbor  $s' \in N(s)$  \*/

#### **Endwhile**

**Output** Final solution found (local optima).

One instance should be run multiple times

Template of a local search algorithm.

Save **S** as **best\_solution** 

 $s = s_0$ ; /\* Generate an initial solution  $s_0$  \*/

While not Termination\_Criterion Do

Compare **S** with the **best\_solution** and update if necessary

Generate (N(s)); /\* Generation of candidate neighbors \*/

If there is no better neighbor Then Stop;

s = s'; /\* Select a better neighbor  $s' \in N(s)$  \*/

**Endwhile** 

Output Final solution found (local optima).

- Selection strategies of the neighbor
  - Best improvement (steepest descent)
    - Best neighbor is selected
    - Neighborhood evaluated in a fully deterministic manner
  - First improvement
    - First improving neighbor is selected
    - Partial evaluation of neighborhood
  - Random selection from those improving the solution



**FIGURE** Selection strategies of improving neighbors.



**FIGURE** Local search (steepest descent) behavior in a given landscape.



**FIGURE** Local search process using a binary representation of solutions, a flip move operator, and the best neighbor selection strategy. The objective function to maximize is  $x^3 - 60x^2 + 900x$ . The global optimal solution is f(01010) = f(10) = 4000, while the final local optima found is s = (10000), starting from the solution  $s_0 = (10001)$ .

- Advantages
  - Simple method and easy to design
  - Gives good solutions very quickly

- Drawbacks
  - Converges to local optima
  - Sensitive to initial solution
  - Number of iterations not known in advance

- Lab session
- Implement your first S-metaheuristic algorithm <u>The</u> <u>Local Search Algorithm (LS)</u>
- Develop the selection strategies and the neighborhood generation methods
- Apply it for
  - The example of maximization function (slide 36, x in [0,31])
  - Give the obtained solution for each selection strategy and neighborhood generation
  - Show the associated search trajectory curve
  - Test the TSP problem Data available on teams