Let X_1,\ldots,X_n be i.i.d. standardized variates with $E(X_i^n)<\infty$. Find the limiting distribution of

$$Z_n = \frac{\sqrt{n}(X_1X_2 + X_3X_4 + \dots + X_{2n-1}X_{2n})}{(X_1^2 + X_2^2 + \dots + X_{2n}^2)}$$

Solution:

Since X_i s are i.i.d standardized variates, we have

$$E(X_i) = 0$$
, $V(X_i) = E(X_i^2) = 1$, $i = 1, 2, ..., n$

Let
$$Y_i = X_{2i-1}X_{2i}$$
, $i = 1, 2, ..., n$

$$\Rightarrow E(Y_i) = E(X_{2i-1})E(X_{2i}) = 0$$
 (: X_is are independent)

and
$$V(Y_i) = E(Y_i^2) = E[X_{2i-1}^2 X_{2i}^2] = E[X_{2i-1}^2] E[X_{2i}^2] = 1 \cdot 1 = 1$$

Hence Y_i , i=1,2,...,n are also i.i.d.r.vs. Hence CLT holds for $S_n=\sum_{i=1}^n Y_i$. Further,

$$E(S_n) = \sum_{i=1}^n E(Y_i) = 0 \text{ and}$$

$$V(S_n) = \sum_{i=1}^n V(Y_i) = n$$

Then by CLT

$$U_n = \frac{S_n - E(S_n)}{\sqrt{V(S_n)}} = \frac{X_1 X_2 + \dots + X_{2n-1} X_{2n}}{\sqrt{n}} \xrightarrow{L} Z \text{ where } Z \sim N(0,1) \text{ as } n \longrightarrow \infty.$$

Also
$$E(X_i^2) = 1$$
 (finite), $i = 1, 2, ..., n$.

Hence, by Khinchine's theorem, WLLN applies to the sequence $\{X_i^2\}$, $i=1,2,\dots,2n$ so that

$$V_n = \frac{X_1^2 + X_2^2 + \dots + X_{2n}^2}{2n} \xrightarrow{P} E(X_i^2) = 1 \text{ as } n \to \infty.$$

Hence, by Slutsky's theorem, we have

$$\lim_{n \to \infty} (U_n \cdot V_n) = \frac{2\sqrt{n}(X_1 X_2 + \dots + X_{2n-1} X_{2n})}{{X_1}^2 + \dots + {X_n}^2} \xrightarrow{L} \frac{Z}{1} = Z \sim N(0,1)$$

Thus,
$$\frac{\sqrt{n}(X_1X_2+\cdots+X_{2n-1}X_{2n})}{X_1^2+\cdots+X_n^2} \xrightarrow{L} \frac{Z}{2} \sim N\left(0,\frac{1}{4}\right)$$
 (If $Z \sim N(0,1)$, then $cZ \sim N(0,c^2)$).