ALJABAR BOOLEAN

(Bagian I)

8.1. Definisi Aljabar Boolean

Aljabar Boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner (0 atau 1) dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf alfabet dan tiga operasi dasar, yakni AND, OR, dan NOT (komplemen).

AND dinotasikan x * y atau xyOR dinotasikan x + yNOT (komplemen) dinotasikan x' atau \bar{x}

Perhatikan tabel berikut.

Tabel AND

\boldsymbol{x}	y	xy
1	1	1
1	0	0
0	1	0
0	0	0

Tabel OR

x	y	x + y
1	1	1
1	0	1
0	1	1
0	0	0

Tabel NOT (Komplemen)

x	<i>x</i> '
1	0
0	1

Contoh 1:

Tentukan nilai dari $1 \cdot 0 + (0 + 1)'$!

Jawab:

$$1 \cdot 0 + (0+1)' = 0 + 1' = 0 + 0 = 0$$

Selanjutnya, lihat definisi formal mengenai aljabar Boolean berikut.

Misalkan B adalah himpunan yang didefinisikan pada dua operasi biner (+ dan *) dan sebuah operasi unar ('), serta menggunakan dua elemen 0 dan 1, maka (B, +, *, ') disebut

aljabar Boolean jika memenuhi aksioma-aksioma berikut untuk setiap elemen x, y, dan z dari himpunan B.

Hukum Komutatif	x + y = y + x	xy = yx
Hukum Asosiatif	(x+y) + z = x + (y+z)	(xy)z = x(yz)
Hukum Distributif	x + (yz) = (x + y)(x + z)	x(y+z) = (xy) + (xz)
Hukum Identitas	x + 0 = x	$x \cdot 1 = x$
Hukum Komplemen	x + x' = 1	$x \cdot x' = 0$

8.2. Definisi Ekspresi Boolean

Misalkan $B = \{0, 1\}$. Maka, $B^n = \{(x_1, x_2, ..., x_n) | x_i \in B \text{ untuk } 1 \le i \le n\}$ adalah suatu himpunan dari semua n-tupel yang mungkin atas 0 dan 1. Suatu fungsi dari B^n ke B ini disebut sebagai fungsi Boolean atau ekspresi Boolean.

<u>Contoh</u> 2: Tentukan nilai dari ekspresi Boolean berikut: E(x, y, z) = xy + z'! Jawab:

x	y	Z	xy	$oldsymbol{z}'$	E
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

Contoh 3: Tentukan nilai dari ekspresi Boolean berikut: E(x, y, z) = xyz' + xy'z' + xy'z + x'yz'! Jawab:

х	y	Z	xyz'	xy'z'	xy'z	x'yz'	E
1	1	1	0	0	0	0	0
1	1	0	1	0	0	0	1
1	0	1	0	0	1	0	1
1	0	0	0	1	0	0	1
0	1	1	0	0	0	0	0
0	1	0	0	0	0	1	1
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

Berikutnya akan diberikan contoh bagaimana mencari ekspresi Boolean jika diketahui nilainya.

Contoh 4:

Carilah ekspresi Boolean dari x, y, dan z yang diberikan dalam tabel berikut:

x	y	Z	E
1	1	1	0
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	1
0	0	0	0

Jawab:

Untuk mengetahui ekspresi Boolean, fokus pada angka "1" dalam kolom E, yaitu baris ketiga, baris keempat, dan baris ketujuh.

Baris ke-3 : $x = 1, y = 0, z = 1 \rightarrow \text{ketiganya menghasilkan } E = 1$

sehingga diperoleh xy'z

Baris ke-4 : $x = 1, y = 0, z = 0 \rightarrow \text{ketiganya menghasilkan } E = 1$

sehingga diperoleh xy'z'

Baris ke-7 : $x = 0, y = 0, z = 1 \rightarrow \text{ketiganya menghasilkan } E = 1$

sehingga diperoleh x'y'z

Dengan demikian, E(x, y, z) = xy'z + xy'z' + x'y'z.

8.3. Tabel Identitas Boolean

Selain kelima aksioma yang telah dipaparkan pada Subbab 6.1, aljabar Boolean juga memiliki beberapa hukum lainnya. Perhatikan Tabel Identitas Boolean berikut.

Tabel Identitas Boolean

Hukum Idempoten	x + x = x	xx = x	
Hukum Dominasi	x + 1 = 1	$x \cdot 0 = 0$	
Hukum Absorpsi	x + xy = x	x(x+y)=x	
Hukum Involusi	(x')'	$\dot{x} = x$	
Hukum De Morgan	(x+y)' = x'y'	(xy)' = x' + y'	

8.4. Dualitas

Dalam aljabar Boolean, ada istilah dualitas. Untuk mencari bentuk dual dari suatu aljabar Boolean, dapat diperoleh dengan:

"+" diubah menjadi "*"

"*" diubah menjadi "+"

"1" diubah menjadi "0"

"0" diubah menjadi "1"

Jika terdapat variabel seperti x atau x' pada suatu aljabar Boolean, maka bentuk tersebut tetap dalam bentuk dualnya.

Contoh 5:

Buktikan bahwa $(x \cdot (x + (y \cdot 0)))' = x'$, dan tuliskanlah bentuk dualnya! Jawab:

$$(x \cdot (x + (y \cdot 0)))' = (x \cdot (x + 0))'$$
 (Hukum Dominasi)
= $(x \cdot x)'$ (Hukum Identitas)
= x' (Hukum Idempoten)

Bentuk dualnya: $(x+(x\cdot(y+1)))'=x'$

LATIHAN SOAL

1. Gunakan tabel untuk mencari nilai dari ekspresi Boolean berikut:

a.
$$E(x, y, z) = xy' + (xyz)'$$

b.
$$E(x, y, z) = y'(xz + x'z')$$

2. Carilah ekspresi Boolean dari variabel x, y, dan z pada tabel berikut:

x	y	Z	E
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

3. Buktikan bahwa $(x+(x\cdot(y+1)))'=x'!$