```
In [1]: import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
   import numpy as np
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   import seaborn as sns
```

In [2]: #Load the dataset bike = pd.read_csv('daily-bike-share.csv')

In [3]: bike.head()

Out[3]:

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	а
0	1	1/1/2011	1	0	1	0	6	0	2	0.344167	0.36
1	2	1/2/2011	1	0	1	0	0	0	2	0.363478	0.35
2	3	1/3/2011	1	0	1	0	1	1	1	0.196364	0.18
3	4	1/4/2011	1	0	1	0	2	1	1	0.200000	0.21
4	5	1/5/2011	1	0	1	0	3	1	1	0.226957	0.22

- instant: A unique row identifier
- **dteday**: The date on which the data was observed in this case, the data was collected daily; so there's one row per date.
- **season**: A numerically encoded value indicating the season (1:winter, 2:spring, 3:summer, 4:fall)
- **yr**: The year of the study in which the observation was made (the study took place over two years year 0 represents 2011, and year 1 represents 2012)
- **mnth**: The calendar month in which the observation was made (1:January ... 12:December)
- holiday: A binary value indicating whether or not the observation was made on a public holiday)
- **weekday**: The day of the week on which the observation was made (0:Sunday ... 6:Saturday)
- workingday: A binary value indicating whether or not the day is a working day (not a
 weekend or holiday)
- weathersit: A categorical value indicating the weather situation (1:clear, 2:mist/cloud, 3:light rain/snow, 4:heavy rain/hail/snow/fog)
- **temp**: The temperature in celsius (normalized)
- atemp: The apparent ("feels-like") temperature in celsius (normalized)
- hum: The humidity level (normalized)
- windspeed: The windspeed (normalized)
- rentals: The number of bicycle rentals recorded.

In [4]: #day extraction
bike['day'] = pd.DatetimeIndex(bike['dteday']).day
bike.head()

Out[4]:

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	а
0	1	1/1/2011	1	0	1	0	6	0	2	0.344167	0.36
1	2	1/2/2011	1	0	1	0	0	0	2	0.363478	0.35
2	3	1/3/2011	1	0	1	0	1	1	1	0.196364	0.18
3	4	1/4/2011	1	0	1	0	2	1	1	0.200000	0.21
4	5	1/5/2011	1	0	1	0	3	1	1	0.226957	0.22

In [5]: bike.head(31)

Out[5]:

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	
0	1	1/1/2011	1	0	1	0	6	0	2	0.344167	0
1	2	1/2/2011	1	0	1	0	0	0	2	0.363478	0
2	3	1/3/2011	1	0	1	0	1	1	1	0.196364	0
3	4	1/4/2011	1	0	1	0	2	1	1	0.200000	0
4	5	1/5/2011	1	0	1	0	3	1	1	0.226957	0
5	6	1/6/2011	1	0	1	0	4	1	1	0.204348	0
6	7	1/7/2011	1	0	1	0	5	1	2	0.196522	0
7	8	1/8/2011	1	0	1	0	6	0	2	0.165000	0
8	9	1/9/2011	1	0	1	0	0	0	1	0.138333	0
9	10	1/10/2011	1	0	1	0	1	1	1	0.150833	0
10	11	1/11/2011	1	0	1	0	2	1	2	0.169091	0
11	12	1/12/2011	1	0	1	0	3	1	1	0.172727	0
12	13	1/13/2011	1	0	1	0	4	1	1	0.165000	0
13	14	1/14/2011	1	0	1	0	5	1	1	0.160870	0
14	15	1/15/2011	1	0	1	0	6	0	2	0.233333	0
15	16	1/16/2011	1	0	1	0	0	0	1	0.231667	0
16	17	1/17/2011	1	0	1	1	1	0	2	0.175833	0
17	18	1/18/2011	1	0	1	0	2	1	2	0.216667	0
18	19	1/19/2011	1	0	1	0	3	1	2	0.292174	0
19	20	1/20/2011	1	0	1	0	4	1	2	0.261667	0
20	21	1/21/2011	1	0	1	0	5	1	1	0.177500	0
21	22	1/22/2011	1	0	1	0	6	0	1	0.059130	0
22	23	1/23/2011	1	0	1	0	0	0	1	0.096522	0
23	24	1/24/2011	1	0	1	0	1	1	1	0.097391	0
24	25	1/25/2011	1	0	1	0	2	1	2	0.223478	0
25	26	1/26/2011	1	0	1	0	3	1	3	0.217500	0
26	27	1/27/2011	1	0	1	0	4	1	1	0.195000	0
27	28	1/28/2011	1	0	1	0	5	1	2	0.203478	0
28	29	1/29/2011	1	0	1	0	6	0	1	0.196522	0
29	30	1/30/2011	1	0	1	0	0	0	1	0.216522	0
30	31	1/31/2011	1	0	1	0	1	1	2	0.180833	0

In [6]: bike.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 731 entries, 0 to 730
Data columns (total 15 columns):
```

#	Column	Non-Null Count	Dtype
0	instant	731 non-null	int64
1	dteday	731 non-null	object
2	season	731 non-null	int64
3	yr	731 non-null	int64
4	mnth	731 non-null	int64
5	holiday	731 non-null	int64
6	weekday	731 non-null	int64
7	workingday	731 non-null	int64
8	weathersit	731 non-null	int64
9	temp	731 non-null	float64
10	atemp	731 non-null	float64
11	hum	731 non-null	float64
12	windspeed	731 non-null	float64
13	rentals	731 non-null	int64
14	day	731 non-null	int64
dtype	es: float64(4	l), int64(10), o	bject(1)
memor	ry usage: 85.	8+ KB	

In [7]: numeric_features = ['temp', 'atemp', 'hum', 'windspeed']
bike[numeric_features+['rentals']].describe()

Out[7]:

	temp	atemp	hum	windspeed	rentals
count	731.000000	731.000000	731.000000	731.000000	731.000000
mean	0.495385	0.474354	0.627894	0.190486	848.176471
std	0.183051	0.162961	0.142429	0.077498	686.622488
min	0.059130	0.079070	0.000000	0.022392	2.000000
25%	0.337083	0.337842	0.520000	0.134950	315.500000
50%	0.498333	0.486733	0.626667	0.180975	713.000000
75%	0.655417	0.608602	0.730209	0.233214	1096.000000
max	0.861667	0.840896	0.972500	0.507463	3410.000000

```
In [8]: label = bike['rentals']
fig, ax = plt.subplots(2, 1, figsize=(9,12))

#histogram
ax[0].hist(label, bins=100)
ax[0].set_ylabel('Frequency')
#mean, median and mode lines
ax[0].axvline(label.mean(), c='magenta',ls='dashed', lw=2)
ax[0].axvline(label.median(), c='blue',ls='dashed', lw=2)

#boxplot
ax[1].boxplot(label, vert=False)
ax[1].set_xlabel('Rentals')

fig.suptitle('Rental distribution')
fig.show()
```

C:\Users\steph\AppData\Local\Temp\ipykernel_23048\3744000061.py:17: UserWarni
ng: Matplotlib is currently using module://matplotlib_inline.backend_inline,
which is a non-GUI backend, so cannot show the figure.
fig.show()

Rental distribution


```
In [9]: #numeric feature plot
for col in numeric_features:
    fig = plt.figure(figsize=(9,6))
    ax = fig.gca()
    feature = bike[col]
    feature.hist(bins=100, ax=ax)
    ax.axvline(feature.mean(), c='magenta', ls='dashed', lw=2)
    ax.axvline(feature.median(), c='cyan', ls='dashed', lw=2)
    ax.set_title(col)
plt.show()
```


0

0.0

8 sur 20 22/05/2023, 02:12

0.4

0.6

0.8

1.0

0.2

season


```
In [11]: for col in numeric_features:
    fig = plt.figure(figsize=(9,6))
    ax = fig.gca()
    feature = bike[col]
    label = bike['rentals']
    correlation = feature.corr(label)
    plt.scatter(x=feature, y=label)
    plt.xlabel(col)
    plt.ylabel('Bike rentals')
    ax.set_title(f"rentals vs {col} - correlation : {correlation}" )
    plt.show()
```


season

Boxplot grouped by holiday

Boxplot grouped by workingday

Boxplot grouped by day

Evaluate the Trained Model

SyntaxError: invalid syntax

```
In [17]: predictions =model.predict(X_test)
         np.set_printoptions(suppress=True)
         print(f"Predicted label: {np.round(predictions)[:10]} \nActual labels: {y_test
         Predicted label: [1896. 1184. 1007.
                                              -28. 314. 385. 475.
                                                                     590. 1476. -2
         Actual labels: [2418 754 222 47 244 145 240 555 3252
                                                                        38]
In [18]: plt.scatter(y_test, predictions)
         plt.xlabel('Actual Labels')
         plt.ylabel('Predicted Labels')
         plt.title('Daily Bike share Predictins')
         #overlay the regz = np.polyfit(y_test, predictions, 1)
         p = np.poly1d(z)
         plt.plot(y_test, p(y_test), color='magenta')ression line
         plt.show()
           Cell In[18], line 8
             plt.plot(y_test, p(y_test), color='magenta')ression line
```

```
In [ ]: from sklearn.metrics import mean_squared_error, r2_score
    mse = mean_squared_error(y_test, predictions)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_test, predictions)
    print(f"MSE : {mse}\nRMSE : {rmse}\nR2 : {r2}")
In [ ]:
```

KPOVIESSI O. A. Stéphane