

Nome: Rodrigo Iglesias Nieto

Nas seguintes táboas vemos os sufijos empregados para factores decimais e binarios:

Factores decimais		
Nome	Abreviatura	Factor
KiloByte	КВ	10 ³ Bytes = 1.000 Bytes
MegaByte	MB	10 ⁶ Bytes = 1.000.000 Bytes
GigaByte	GB	10 ⁹ Bytes = 1.000.000.000 Bytes
TeraByte	ТВ	10 ¹² Bytes = 1.000.000.000 Bytes
PetaByte	РВ	10 ¹⁵ Bytes = 1.000.000.000.000 Bytes
ExaByte	EB	10 ¹⁸ Bytes = 1.000.000.000.000.000 Bytes
ZettaByte	ZB	10 ²¹ Bytes = 1.000.000.000.000.000.000.000 Bytes

Factores binarios		
Nome	Abreviatura	Factor
KibiByte	KiB	2 ¹⁰ Bytes = 1.024 Bytes
MebiByte	MiB	2 ²⁰ Bytes = 1.048.576 Bytes
GibiByte	GiB	2 ³⁰ Bytes = 1.073.741.824 Bytes
TebiByte	TiB	2 ⁴⁰ Bytes = 1.099.511.627.776 Bytes
PebiByte	PiB	2 ⁵⁰ Bytes = 1.125.899.906.842.624 Bytes
ExbiByte	EiB	2 ⁶⁰ Bytes = 1.152.921.504.606.846.976 Bytes
ZebiByte	ZiB	2 ⁷⁰ Bytes = 1.180.591.620.717.411.303.424 Bytes

1. Converte as seguintes unidades

- 2 MB = 2MB*1000KB = 2000 KB
- 10000 KiB = 10000/1024 = 9.765625 MiB
- 4 GB/s = 4GB*1000MB = 4000 MB/s
- 1024 MB/s = 1024/1000 = 1.024 GB/s

2. Calcula a velocidade de transferencia dos datos nos buses das seguintes características:

1 bit e 100 Khz= 100 Kbps

32 bits e 1000 Khz = (32/8)*(1000/1000) = 4 MB/s

32 bits e 66 Mhz = 32*66/(8/1000) = 264000 GB/s

3. Calcula o tamaño en GiB dun disco duro de 500GB

1GB = 10⁹ BYTES -> 500GB = 5¹1BYTES

1GiB = 1.073.741.824 Bytes

1GB - 10⁹

500GB - X } 5^11BYTES

1GiB = 1.073.741.824 Bytes

XGiB = 5^11 BYTES } 465.661GiB

4. Calcula a cantidade de memoria que podemos direccionar empregando 32 bits

2^32 = 2^2 * 2^30 = 4GiB

5. Que tipo memoria emprega unha menor voltaxe?

- a) SDRAM
- b) DDR
- c) DDR3
- d) DDR2

- 6. Indica que módulo de memoria ten unha latencia menor
 - a) DDR2-800 con CL9
 - b) DDR2-800 con CL8
 - c) DDR2-800 con CL6
 - d) DDR2-800 con CL5

- 7. Indica que módulo de memoria ten unha latencia menor
 - a) DDR2-1066 con CL5.
 - b) DDR3-1800 con CL8

- 8. Calcula a latencia dos seguintes módulos en unidades de ns e indica cal ten unha latencia menor
 - a) DDR2-1066 con CL5. [CAS=9.4ns]
 - b) DDR3-1800 con CL8 [CAS=8.88ns]

$$1800/2 = 900 \text{Mhz} = 1.11 \text{ns}$$