

07 728838



Figure 1



Figure 2



#### Transfection of restriction fragments

No. of clones expressing P815A  
/ no. of HmB<sup>r</sup> clones

---

|                      |       |
|----------------------|-------|
| 4.1 kb Pst I - Pst I | 2/16  |
| 2.3 kb Sma I - Pst I | 16/96 |
| 0.9 kb Sma I - Xba I | 22/96 |

Figure 3

1

2

3

4

5

6

7

07 728838

P1.HTR

P1.HTR

PO.HTR

L138.8A

P1.HTR

Liver DBA/2

Spleen DBA/2

P1A  
probe a

P1A probe b

kb

2.6 →

1.5 →

1.2 →



β-actin probe



Figure 4



Figure 5

17 728838

|                                                                              |      |
|------------------------------------------------------------------------------|------|
| ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT GAAGATCCTG ATCACTCATT | -120 |
| GGGTGTCTGA GTTCTGCGAT ATTCCATCCCT CAGCCAATGA GCTTACTGTT CTCGTGGGG GTTTGAGC   | -50  |
| CTTGGGTAGG AAGTTTGCA AGTTCCGCCT ACAGCTCTAG CTTGTGAATT TGTACCCCTT CACGTAAAAA  | 19   |
| AGTAGTCCAG AGTTTACTAC ACCCTCCCTC CCCCTCCCA CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC  | 89   |
| CTTATAGAAG TCTTCCGTAT AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCCTT GCTCTCCCAG  | 159  |
| CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTGAAG AAGTAAGCCG CTAGCTTGCG ACTCTACTCT  | 229  |
| TATCTTAACT TAGCTCGGCT TCCTGCTGGT ACCCTTTGTG CC 271                           |      |

FIGURE 6a

17 728838

ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC AGT GGC TCA GGT GGT GAC GGT GAT GGG 59  
Met Ser Asn Lys Lys Pro Asp Lys Ala His Ser Gly Ser Gly Gly Asp Gly Asp Gly

AAT AGG TGC AAT TTA TTG CAC CGG TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG TGG 118  
Asn Arg Cys Asn Leu Leu His Arg Tyr Ser Leu Glu Glu Ile Leu Pro Tyr Leu Gly Trp

CTG GTC TTC GCT GTC ACA ACA AGT TTT CTG GCG CTC CAG ATG TTC ATA GAC GCC CTT 177  
Leu Val Phe Ala Val Val Thr Thr Ser Phe Leu Ala Leu Gln Met Phe Ile Asp Ala Leu

TAT GAG GAG CAG TAT GAA AGG GAT GTG GCC TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC 236  
Tyr Glu Glu Gln Tyr Glu Arg Asp Val Ala Trp Ile Ala Arg Gln Ser Lys Arg Met Ser

TCT GTC GAT GAG GAT GAA GAC GAT GAG GAT GAG GAT GAC TAC TAC GAC GAC GAG GAC 295  
Ser Val Asp Glu Asp Glu Asp Glu Asp Asp Tyr Tyr Asp Asp Glu Asp

GAC GAC GAC GAT GCC TTC TAT GAT GAT GAG GAT GAG GAA GAA GAA TTG GAG AAC CTG 354  
Asp Asp Asp Asp Ala Phe Tyr Asp Asp Glu Glu Glu Leu Glu Asn Leu

ATG GAT GAT GAA TCA GAA GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG GGT GCC GGA 413  
Met Asp Asp Glu Ser Glu Ala Glu Glu Met Ser Val Glu Met Gly Ala Gly

GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC TGT GTT CCT GGC CAT CAT TTA AGG AAG 472  
Ala Glu Glu Met Gly Ala Gly Ala Asn Cys Ala Cys Val Pro Gly His His Leu Arg Lys

AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA 531  
Asn Glu Val Lys Cys Arg Met Ile Tyr Phe His Asp Pro Asn Phe Leu Val Ser Ile

CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT GAA GAG GTT GCA 590  
Pro Val Asn Pro Lys Glu Gln Met Glu Cys Arg Cys Glu Asn Ala Asp Glu Glu Val Ala

ATG GAA GAG GAA GAA GAA GAG GAG GAG GAG GAG GAA GAG GAA GAG GAA ATG GGA AAC CCG GAT 649  
Met Glu Met Gly Asn Pro Asp

GGC TTC TCA CCT TAG

Gly Phe Ser Pro Amb

FIGURE 6b

728838

GCATGCAGTT GCAAAGCCC GAAGAAAGAA ATGGACAGCG GAAGAAGTGG TTGTTTTTT 60

TTCCCCTTCA TTAATTTCT AGTTTTAGT AATCCAGAAA ATTTGATTT GTTCTAAAGT 120

TCATTATGCA AAGATGTCAC CAACAGACTT CTGACTGCAT GGTGAACCTT CATATGATAC 180

ATAGGATTAC ACTTGTACCT GTAAAAAATA AAAGTTGAC TTGCATAC 228

FIGURE 6c

17 728838

CDNA Sequence of gene Pla  
Content of ASCII file : CDNA ( cfr Figure 6, parts a,b & c )

ACCAACAGGG AGTGAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT  
GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCAG ATTCACTCCCT  
CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGAGG CTTGGTAGG  
AAGTTTGCA AGTTCCGCCT ACAGCTCTAG CTTGTGAATT TGTACCCCTT  
CACGTAAGA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC CCCCCCTCCCA  
CCTCGTGTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG TCTTCCGTAT  
ACAACCTCTTC CGGAGGAAGG AGGGAGGAUC CCCCCCTTT GCTCTCCAG  
CATGCATTGT GTCAACGCCA TTGCACTGAG CTGCTCGAAG AAGTAAGCCG  
CTACCTTGCG ACTCTACTCT TATCTTAAC TAGCTCGGCT TCCTGCTGGT  
ACCCCTTGCG CC  
ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC AGT GGC TCA  
GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA TTG CAC CGG  
TAC TCC CTG CAA GAA ATT CTG CCT TAT CTA GGG TGG CTG GTC  
TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC CAC ATG TTC  
ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG GAT GTG GCC  
TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT GTC GAT GAG  
GAT GAA GAC GAT GAC GAT GAT GAG GAT GAC TAC TAC GAC GAC  
GAG GAC GAC GAC GAT GCC TTC TAT GAT GAT GAG GAT GAT GAT  
GAG GAA GAA GAA TTG GAG AAC CTG ATG GAT GAT GAA TCA GAA  
GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG GGT CCC GGA  
GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC TGT GTT CCT  
GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT  
TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG  
AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT  
GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG  
GAG GAG GAA GAG ATG GGA AAC CCG GAT GGC TTC TCA CCT  
TAG  
GCATGCCAGTT GCAGGGCCCA GAAGAAAGAA ATGGACAGCG GAAGAAGTGG  
TTGTTTTTTT TTCCCCCTCA TTAATTTCT AGTTTTAGT AATCCAGAAA  
ATTTGATTTT GTTCTAAAGT TCATTATGCA AAGATGTAC CAACAGACTT  
CTGACTGCAT GGTGAACTTT CATATGATAC ATACCATTAC ACTTGTACCT  
GTTAAAAATA AAGTTTGAC TTGCAATAC

Figure 6d

11 728838



Figure 7

728838



Figure 8

17 728838

Genomic Sequence of gene YIA  
Content of ASCII file : GENOMIC

ACCAACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT  
GAAGATCCTG ATCACTCATT GGGTGTCTGA CTTCTGGCAT ATTCACTCCCT  
CAGCCCACTGA GCTTACTCTC CTCGTGGGGG GTTGTGAGC CTTGGGTAGG  
AAGTTTGCA AGTTCCGCT ACAGCTCTAG CTTGTGAATT TGTACCCCTT  
CACGTAAGAA ACTAGTCCAG AGTTACTAC ACCCTUCCTC CCCCCCTCCCA  
CCTCGTGTG TGCTGAGTT AAAGTGTCTTC TTATAGAAC TCTTCCGTAT  
AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCCTTT GCTCTCCCAG  
CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCTGAAC AAGTAAGCCG  
CTAGCTTGCG ACTCTACTCT TATCTTAAC TAGCCTGGCT TCCTGCTGGT  
ACCCCTTGCG CC  
ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC AGT GGC TCA  
CGT GGT GAC GGT GAT GGG AAT AGG TGC ATT TTA TTG CAC CGG  
TAC TCC CTG GAA ATT CTG CCT TAT CTA GGG TGG CTG GTC  
TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC CAG ATG TTC  
ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG GAT GTG GCC  
TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT GTC GAT GAC  
GAT GAA GAC GAT GAG GAT GAC GAT GAC TAC TAC GAC GAC  
GAG CAC GAC GAC GAT GCC TTC TAT GAT GAT GAG GAT GAT  
GAG GAA GAA TTG GAG AAC CTG ATG GAT GAT GAA TCA GAA  
GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG GGT GCC GCA  
GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC T  
GTGAGTAACC CGTGGTCTT ACTCTAGATT CAGGGGGGGT GCATTCTTA  
CTCTTGCCCA CATCTGTAGT AAAGACCCACA TTTTGGTTGG GGGTCATTGC  
TGGAGCCATT CCTGGCTCTC CTGTCACAGC CTATCCCCGC TCCCTCCCCTC  
CCCCACTCCT TGCTCCGCCTC TCTTCCCTT TCCCACCTTG CCTCTGGAGC  
TTCAGTCCAT CCTGCTCTGC TCCCTTCCG CTTTGCTCTC CTTGCTCCCC  
TCCCCCTCGG CTCAACTTT CGTGCCTTCT GCTCTCTGAT CCCCACCCCTC  
TTCAGGCTTC CCCATTGCT CCTCTCCCGA AACCCCTCCCC TTCTGTTCC  
CCTTTTCGCG CCTTTTCTT CTCCTCTCCC TCCCCCTCCC TATTTACCTT  
TCACCAAGCTT TGCTCTCTCC GCTCCCCCTCC CCTTTTGCAT CCTTTCTTT  
TCCTGCTCCC CTCCCCCTCC CCTCTCTGTT TACCTCTCAC CGCTTTCTT  
CTACCTGCTT CCTCCCCCTT TGCTGCTCCC TCCCTATTTG CATTTCGGG  
TGCTCTCTCC TCCCCCTCCC CCTCCCTCCC TATTTGCAATT TTGGGGTGT  
CCTCCCTCCC CCTCCCCAGG CCTTTTTT TTTTTTTTTT TTTTTTTTT  
TTGGTTTTTC GAGACAGGGT TTCTCTTTGT ATCCCTGGCT GTCTGGCAC  
TCACTCTGTA GACCAAGGCTG GCCTCAAATCTG CAGAAATCTG CCTGGCTCTG  
CCTCCCAAAT GCTGGGATTA AAGGCTTGCA CCAGGACTGC CCCACTGCAG  
GCCTTTCTTT TTCTCTCTC CTGGCTCTCCC TAACTCCCTT TCTGCATGTT  
AACTCCCCCTT TTGGCACCTT TCCTTACAG GACCCCCCTCC CCTCCCTGT  
TTCCCTTCCG GCACCCCTCC TAGCCCTGCT CTGTTCCCTC TCCCTGCTCC  
CCTCCCCCTC TTGCTCGAC TTTAGCAGC CTACCTCTC CCTCTTTCT  
GCCCGTTCC CCTTTTTGT GCCTTCTCTC CTGGCTCCCC TCCACCTTCC  
AGCTCACCTT TTGTTTTGT TGGTTTTTG GTGTTTGGT TTGCTTTTT  
TTTTTTTTT GCACCTTGT TTCCAAGATC CCTCTCCCCC TCCGGCTTCC  
CCTCTGTG TG CTTTCTCTGT CCTCTCCCCC TGCTGGCTC CCTCTCCCTT  
TCTGCCTTC CTGTCCTCTGC CCTCTCTCT GCTAACCTT TAATGCTTT  
CTTTCTAGA CTCCCCCTC CAGGCTTGCT GTTGCTCTGT GTGCACCTT  
CCTGACCCCTG CTCCCCCTCC CCTCCCTGCT CCTCCCCCTCTT CCTCCACCTC  
CCTTCTCCA GCCTGTGACC CCTCTCTCTC CCTCTCTCTGT TTCTCCCACT  
TCCTGCTTCC TTTACCCCTT CCTCTCTCCCT ACTCTCCCTC CTGCTGCTG  
GACTTCCCTCT GCAGCCGCC AGTTCCCTGC AGTCTGGAG CCTTTCTG  
CTCTCTGTCC ATCACTTCCC CCTAGTTCA CCTCCCTTTC ACTCTCCCT  
ATGTGTCTCT CCTCTCTATCT ATCCCTTCTT TTCTGCTCCC CCTCTCTGT  
CCATCACCTC CCTCTCTCCCT CCTCTTCTCT CCTCTTCTCCA TTTCTTCCA  
CCTGCTTCTT TACCCCTGCCCT CCTCCATTGC CCTCTTACCT TTATGCCAT  
TCCATGTCCC CTCTCAATTG CCTGCTCCCT CCTGCTCCCT CACATCTCC

Figure 9

ATTTCCCTCT TTCTCCCTTA GCCTCTTCTT CCTCTTCTCT TGATCTCCC  
 TTCCCCTTGC TTCTCCCTCC TCCCTTCCCC TTCCCTCATG CCCTCTACTC  
 TACTTGATCT TCTCTCCTCT CCACATACCC TTTTCCTTT CCACCCCTGCC  
 CTTTGCCCC AGACCCCTACA GTATCCTGTG CACAGGAAGT GGGAGGTGCC  
 ATCAACAACA AGGAGGCAAG AACAGAGCA AATCCCAAATCAGCAGGA  
 AAGGTGGAT GAAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTAGCC  
 AAGTGGCTCC TATAACCCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT  
 CTTGATCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TCTCTAAATG  
 CAGGCATGC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA  
 GAATCTGAAA ACTAGGGGCC AGTGGTTGT TTGGGGGACA AATTAGCACG  
 TAGTGTATT TCCCCCTAA AATTATAACA AACAGATTCA TGATTTGAGA  
 TCCCTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTCTTTTA  
 GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTCTT  
 TTGCTAAAAAT ATTCTTCTC ACATATTCA ATTCTCCAG  
 GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT  
 AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT  
 ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA  
 AAT GCT GAT GAA GAG GTT GCA ATG GAA CAG GAA GAA GAA GAA  
 GAG GAG GAG GAG GAA GAG ATG GGA AAC CCG GAT GGC  
 TTC TCA CCT TAG  
 GCATCCAGGT ACTGGCTTCA CTAACCAACC ATTCCCTAAC TATGCCCTGTA  
 GCTAAGAGCA TCTTTTAAATTAATTTATT GGTAAACTAA ACAATTGTTA  
 TCTTTTACA TTAATAAGTA TAAATTAAAT CCAGTATAACA GTTTTAAGAA  
 CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCCTCT TCTTTAGATT  
 GTAGTGTACAC TACTTACTAC AGATGAGAAG TTGTAGACT CGGGAGTAGA  
 GACCAGTAAAGATCATGCA GTGAAATGTG CCCATGGAAA TCCCATATTG  
 TTCTTATAGT ACCTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT  
 TTCAAGAAAG ATCACACGCCG ATGGGTCAACA TCCAAATTAT TTTTTCTCG  
 TTCTGATTTT TTTCAATTCT AGACCTGTGG TTTAAAGAG ATGAAARATCT  
 CTTAAAATTCTT CTTTCATCTT TAATTCTCT TAACCTTACT TTTTTCACT  
 TAGAAATTCAA TCCAAATTCT TAATTCAATC TTAATTCTAA GATTCTTAA  
 AATGTTTTT AAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA  
 GTAACTGGGG GGCTTAGGCA ATCTGTAGGG TTGCGGTATA GCAATAGGGA  
 GTTCTGGTCT CTGAGAACCA GTCAGAGAGA ATGGAAAACC AGGCCCCCTG  
 CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC  
 ATAAAATCTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT  
 ATTTAGTTT CTCCCTGACA AACAAATGACA AGACATAAAA TTGGCAAGAA  
 AGTCAGGAGT GTATTCTAAT AAGTGTGCT TATCTCTTAT TTTCTTCTAC  
 AGTTGCAAAAG CCCAGAAGAA AACAAATGGAC AGCGGAAGAA GTGGTTGTT  
 TTTTTCCCCC TCTCAATT TTCTAGTTT TAGTAATCCA GAAAATTGAA  
 TTTTGTTCTA AAGTTCATTA TGCAAAAGATG TCACCAACAG ACTTCTGACT  
 GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA  
 AATAAAAGTT TGACTTGGCAT AC

Figure 9 (ctd)

17 728838

**Leu-Leu-His-Arg-Tyr-Ser-Leu-Glu-Glu-Ile-Leu-Pro-Tyr-Leu-Gly-Trp-**  
**Val-Phe-Ala-Val-Val-Thr-Thr-Ser-Phe**

**Figure 10**