# **ML Homework 6 Report**

Student Info

1. Student ID: 310555024

2. Student Name: 林廷翰

- Code
  - 1. Kernel K-means
    - Common Parts
      - 1. Load Data

```
def readImagesInNpArray():

# Read the image files.
images = [Image.open(filePathOfImage1), Image.open(filePathOfImage2)]

# Convert image to numpy array.
images[0] = np.asarray(images[0])
images[1] = np.asarray(images[1])

return images
```

The objective of the readImagesINpArray function is to load data from the input file, it will be called in the main function.

2. Compute Kernel

```
def computeKernel(image, gammaC):

# Get image shape.

rows, cols, colors = image.shape

# Compute the color distance.

numOfPixels = rows * cols

colorDist = cdist(image.reshape(numOfPixels, colors), image.reshape(numOfPixels, colors), 'sqeuclidean')

# Compute the indices of a grid.

indices = np.indices((rows, cols))

indicesOfRow = indices[0]

indicesOfCol = indices[1]

# Compute the indices vector.

indicesVector = np.hstack((indicesOfRow.reshape(-1, 1), indicesOfCol.reshape(-1, 1)))

# Compute the spatial distance.

spatialDist = cdist(indicesVector, indicesVector, 'sqeuclidean')

# The kernel formula in spec.

return np.multiply(np.exp(-gammaS * spatialDist), np.exp(-gammaC * colorDist))
```

The function is to compute the gram matrix based on the kernel function defined in spec, and the formula is following pic.

$$k(x,x\prime) = e^{-\gamma_s \|S(x) - S(x\prime)\|^2} imes e^{-\gamma_c \|C(x) - C(x\prime)\|^2}$$

- Part 1 (2-clusters / randomly init)
  - 1. Init Center

For the init center code of part 1, I just initialize the center randomly according to the number of number of clusters.

2. Init Clusters

```
def initClusters(numOfRows, numOfCols, numOfClusters, kernel, initMode):

# Init centers.

centers = initCenters(numOfRows, numOfCols, numOfClusters, initMode)

# K-means.

numOfPixels = numOfRows * numOfCols

clusters = np.zeros(numOfPixels, dtype=int)

for pixel in range(numOfPixels):

# Compute the distance of every pixel to all centers.

distance = np.zeros(numOfClusters)

for index, center in enumerate(centers):

seqOfCenter = center[0] * numOfRows + center[1]

distance[index] = kernel[pixel, pixel] + kernel[seqOfCenter, seqOfCenter] - 2 * kernel[pixel, seqOfCenter]

# Pick the index of minimum distance as the cluster of the point

clusters[pixel] = np.argmin(distance)

return clusters
```

After get the init center from <u>initcenter</u> function, We will classify all the pixels based on the min distance in feature space (each point to the center).

3. Kernel K-means

```
# Kernel k-means.
currentClusters = clusters.copy()
count = 0
iteration = 100

while True:
    # Compute new clusters.
    numOfPixels = numOfRows * numOfCols
    newClusters = kernelClustering(numOfPixels, numOfClusters, kernel, currentClusters)

# Get the image state.
imageState = getCurrentImageState(numOfRows, numOfCols, newClusters)

imageStates.append(imageState)

if np.linalg.norm((newClusters - currentClusters), ord=2) < 0.001 or count >= iteration:
    break

currentClusters = newClusters.copy()
count += 1
```

After getting the init clusters, we start to perform kernel k-means. In each round, we will perform kernelCluster function to get new clusters and calculate the difference between the currentClusters and newClusters to check if it is already converged.

### 4. Kernel Clustering

```
# Get number of members in each cluster

# Get number of members in each cluster

numOfMembers = np.array([np.sum(np.where(clusters == c, 1, 0)) for c in range(numOfClusters)])

# Get sum of pairwise kernel distances of each cluster

pairwise = getSumOfPairwiseOistance(numOfPixels, numOfClusters, numOfMembers, kernel, clusters)

newClusters = np.zeros(numOfPixels, dtype=int)

for p in range(numOfPixels):

distance = np.zeros(numOfClusters)

for c in range(numOfClusters):

distance[c] + kernel[p, p] + pairwise[c]

# Get distance from given data point to others in the target cluster

distToOthers = np.sum(kernel[p, :][np.where(clusters == c)])

distance[c] -= 2.8 / numOfMembers[c] * distToOthers

newClusters[p] = np.argmin(distance)
```

We perform the kernelclustering based on the following pic formula. It the end, it will return the new clusters in array form.

$$\begin{split} \left\|\phi(x_j) - \mu_k^{\phi}\right\| &= \left\|\phi(x_j) - \frac{1}{|C_k|} \sum_{n=1}^N \alpha_{kn} \phi(x_n)\right\| \\ &= \mathbf{k}(x_j, x_j) - \frac{2}{|C_k|} \sum_n \alpha_{kn} \mathbf{k}(x_j, x_n) + \frac{1}{|C_k|^2} \sum_p \sum_q \alpha_{kp} \alpha_{kq} \mathbf{k}(x_p, x_q) \end{split}$$

(22

- Part 2 (3-clusters / randomly init)
  - 1. Init Center

It is same to the init center code of part 1.

2. Init Clusters

```
def initClusters(numOfRows, numOfCols, numOfClusters, kernel, initMode):

# Init centers.

centers = initCenters(numOfRows, numOfCols, numOfClusters, initMode)

# K-means.

numOfPixels = numOfRows * numOfCols

clusters = np.zeros(numOfPixels, dtype=int)

for pixel in range(numOfPixels):

# Compute the distance of every pixel to all centers.

distance = np.zeros(numOfClusters)

for index, center in enumerate(centers):

seqOfCenter = center[0] * numOfRows + center[1]

distance[index] = kernel[pixel, pixel] + kernel[seqOfCenter, seqOfCenter] - 2 * kernel[pixel, seqOfCenter]

# Pick the index of minimum distance as the cluster of the point

clusters[pixel] = np.argmin(distance)

return clusters
```

It is same to the init cluster of part 1.

3. Kernel K-means

```
# Kernel k-means.
currentClusters = clusters.copy()
count = 0
iteration = 100

while True:

# Compute new clusters.
numOfPixels = numOfRows * numOfCols
newClusters = kernelClustering(numOfPixels, numOfClusters, kernel, currentClusters)

# Get the image state.
imageState = getCurrentImageState(numOfRows, numOfCols, newClusters)

imageStates.append(imageState)

if np.linalg.norm((newClusters - currentClusters), ord=2) < 0.001 or count >= iteration:
break

currentClusters = newClusters.copy()
count += 1
```

It is same to the kernel k-means part of part 1.

4. Kernel Clustering

```
157 Odef kernelClustering(numOfPixels, numOfClusters, kernel, clusters):

# Get number of members in each cluster
numOfMembers = np.array([np.sum(np.where(clusters == c, 1, 0)) for c in range(numOfClusters)])

# Get sum of pairwise kernel distances of each cluster
pairwise = getSumOfPairwiseOistance(numOfPixels, numOfClusters, numOfMembers, kernel, clusters)

163 newClusters = np.zeros(numOfPixels, dtype=int)

165 for p in range(numOfPixels):
166 distance = np.zeros(numOfClusters)

167 for c in range(numOfClusters):
168 distance[c] += kernel[p, p] + pairwise[c]

179 # Get distance from given data point to others in the target cluster
171 distance[c] -= 2.0 / numOfMembers[c] * distToOthers
newClusters[p] = np.argmin(distance)

175 preturn newClusters
```

It is same to the kernel clustering of part 1.

- Part 3 (2,3-clusters / k-means++)
  - 1. Init Center

For the init center code of part 3, I choose the init center based on kmeans++ strategy. The function will return centers in array form.

#### 2. Init Clusters

```
def initClusters(numOfRows, numOfCols, numOfClusters, kernel, initMode):

# Init centers.
centers = initCenters(numOfRows, numOfCols, numOfClusters, initMode)

# K-means.
numOfPixels = numOfRows * numOfCols
clusters = np.zeros(numOfPixels, dtype=int)

# for pixel in range(numOfPixels):
# Compute the distance of every pixel to all centers.
distance = np.zeros(numOfClusters)

# or index, center in enumerate(centers):
# seqOfCenter = center[0] * numOfRows + center[1]
# pick the index of minimum distance as the cluster of the point
clusters[pixel] = np.argmin(distance)

# return clusters
```

It is same to the init cluster of part 1.

#### 3. Kernel K-means

It is same to the kernel k-means part of part 1.

## 4. Kernel Clustering

```
# Get number of members in each cluster

# Get number of members in each cluster

numOfMembers = np.array([np.sum(np.where(clusters == c, 1, 0)) for c in range(numOfClusters)])

# Get sum of pairwise kernel distances of each cluster

pairwise = getSumOfPairwiseDistance(numOfPixels, numOfClusters, numOfMembers, kernel, clusters)

newClusters = np.zeros(numOfPixels, dtype=int)

for p in range(numOfFixels):

distance = np.zeros(numOfClusters)

for c in range(numOfClusters):

distance[c] += kernel[p, p] + pairwise[c]

# Get distance from given data point to others in the target cluster

distToOthers = np.sum(kernel[p, :][np.where(clusters == c)])

distance[c] -= 2.0 / numOffMembers[c] * distToOthers

newClusters[p] = np.argmin(distance)

return newClusters
```

It is same to the kernel clustering of part 1.

- Common Parts
  - 1. Output the GIF Results

```
# Output the gif result.

filename = f'./output/kennel_kmeans/kernel_kmeans_{index}_' \

filename = f'./output/kennel_kmeans/kernel_kmeans_{index}_' \

f'cluster_{numOfClusters}_' \

f''{"kmeans++" if initMode else "random"}.gif'

os.makedirs(os.path.dirname(filename), exist_ok=True)

imageStates[0].save(filename, save_all=True, append_images=imageStates[1:], optimize=False, loop=0, duration=100)
```

After converging, we will output the result with gif pics.

- 2. Spectral Clustering
  - Common Parts
    - 1. Load Data

The objective of the readImagesINpArray function is to load data from the input file, it will be called in the main function.

2. Compute Kernel

```
def computeKernel(image, gammaC):

# Get image shape.

rows, cols, colors = image.shape

# Compute the color distance.

numOfPixels = rows * cols

colorDist = cdist(image.reshape(numOfPixels, colors), image.reshape(numOfPixels, colors), 'sqeuclidean')

# Compute the indices of a grid.

indices = np.indices((rows, cols))

indicesOfRow = indices[0]

# Compute the indices vector.

indicesVector = np.hstack((indicesOfRow.reshape(-1, 1), indicesOfCol.reshape(-1, 1)))

# Compute the spatial distance.

spatialDist = cdist(indicesVector, indicesVector, 'sqeuclidean')

# The kernel formula in spec.

return np.multiply(np.exp(-gammaS * spatialDist), np.exp(-gammaC * colorDist))
```

We reuse the **computeKernel** function in kernel k-means program, so the explanation is same to the content in kernel k-means section.

- Part 1 (2-clusters / randomly init)
  - 1. Compute Matrix U

```
# Compute matrixU which containing eigenvectors.

# Compute degree matrixD, outHode, numOfclusters):

# Compute degree matrixD and Laplacian matrixL.

matrixD = np.zeros_like(matrixW):

matrixD[index, row in enumerate(matrixW):

matrixD[index, index] += np.sum(row)

matrixL = matrixD - matrixW

# Normalized cut.

# Compute the normalized Laplacian matrixL.

for idx in range(len(matrixD)):

matrixD[idx, idx] = 1.0 / np.sqrt(matrixD[idx, idx])

## Compute eigenvalues and eigenvectors.

## Compute eigenvectors = np.linalg.eig(matrixL)

## Compute eigenvectors.

## Compute eigenvectors.

## Compute eigenvectors = np.linalg.eig(matrixL)

## Compute eigenvectors = np.linalg.eig(matrixL)

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.

## Sort the eigenvalues and find indices of nonzero eigenvalues.
```

According to the lecture PPT, we know that L = D - W. So we compute the <code>matrixD</code> first, and then compute the <code>matrixL</code> based on D and W. After obtaining the <code>matrixL</code>, we will based on the input parameter <code>cutMode</code> to determine if we need to normalize the <code>matrixL</code>. The we will find the eigenvectors (with to zero eigenvalues) as the return value (<code>matrixU</code>).

#### 2. Spectral Clustering

We will use the matrixu to get the initial centers, and perform k-means to get the result cluster.

#### 3. Init Center

```
69 def initCenters(numOfRows, numOfCols, numOfClusters, matrixU, initMode):
70 if initMode == 1:
71  # Random strategy.
72  numOfPixels = numOfRows * numOfCols
73 preturn matrixU[np.random.choice(numOfPixels, numOfClusters)]
```

For the init center code of part 1, I just initialize the center randomly according to the number of number of clusters and also the eigenspace.

#### 4. K-means

```
# Kernel k-means.

currentCenters = centers.copy()

newClusters = np.zeros(numOfPixels, dtype=int)

count = 0

iteration = 100

while True:

# Compute new cluster.

newClusters = kmeansClustering(numOfPixels, numOfClusters, matrixU, currentCenters)

# Compute new centers.

newCenters = kmeansRecomputeCenters(numOfClusters, matrixU, newClusters)

# Get new state.

imageStates.append(getCurrentImageState(numOfRows, numOfCols, newClusters))

if np.linalg.norm((newCenters - currentCenters), ord=2) < 0.01 or count >= iteration:

break

# Update current parameters.

currentCenters = newCenters.copy()

count += 1
```

We perform k-means based on initial centers. In each round, we use <a href="kmeansClustering">kmeansClustering</a> to get new cluster, we also use the <a href="kmeansRecomputeCenters">kMeansRecomputeCenters</a> to update the centers. We will calculate the difference between the <a href="currentCenters">currentCenters</a> and <a href="newCenters">newCenters</a> to check if it is already converged.

#### 5. Output the GIF Results

```
# Output the gif result.

filename = f'./output/spectral_clustering/spectral_clustering_{index}_' \

f'clusterinumOfcLusters}_' \

f'clusterinumOfcLusters}_-' \

f'*(means++" if initMode else "random"}_-' \

f'*(mormalized" if cutMode else "ratio"}.gif'

os.makedirs(os.path.dirname(filename), exist_ok=True)

if len(imageStates) > 1:

imageStates[0].save(filename, save_all=True, append_images=imageStates[1:], optimize=False, loop=0,

duration=100)

else:

imageStates[0].save(filename)
```

After converging, we will output the result with gif pics.

- Part 2 (3-clusters / randomly init)
  - 1. Compute Matrix U

It is same to the compute matrix U of part 1.

2. Spectral Clustering

It is same to the spectral clustering of part 1.

3. Init Center

```
69 def initCenters(numOfRows, numOfCols, numOfClusters, matrixU, initMode):
78 def initMode == 1:
71  # Random strategy.
72  numOfFixels = numOfRows * numOfCols
73 def return matrixU[np.random.choice(numOfFixels, numOfClusters)]
```

It is same to the init center of part 1.

4. K-means

It is same to the k-means of part 1.

5. Output the GIF Results

```
# Output the gif result.

filename = f'./output/spectral_clustering/spectral_clustering_{index}_' \
f'cluster/numOfClusters}_' \
f'c
```

It is same to the output results of part 1.

- Part 3 (2,3-clusters / k-means++)
  - 1. Compute Matrix U

```
# Compute matrixU which containing eigenvectors.

# Compute degree matrixU, cutHode, numOfCCLusters):

# Compute degree matrixD and Laplacian matrixL.

matrixD = np.zeros_like(matrixW)

for index, row in enumerate(matrixW):

matrixD[index, index] += np.sum(row)

matrixL = matrixD - matrixW

# Normalized cut.

# Compute the normalized Laplacian matrixL.

for idx in range(len(matrixD)):

matrixD[idx, idx] = 1.0 / np.sqrt(matrixD[idx, idx])

matrixL = matrixD.dot(matrixL).dot(matrixD)

# Compute eigenvalues and eigenvectors.

eigenvalues, eigenvectors = np.linalg.eig(matrixL)

# Sort the eigenvalues and find indices of nonzero eigenvalues.

sortedIdx = np.argsort(eigenvalues)

sortedIdx = sortedIdx[eigenvalues[sortedIdx] > 0]

return eigenvectors[sortedIdx[eigenvalues]].T
```

It is same to the compute matrix U of part 1.

2. Spectral Clustering

It is same to the spectral clustering of part 1.

3. Init Center

```
# K-means++ strategy.
# K-means++ strategy.
# Compute indices of a grid.
indices = np.indices((numOfRows, numOfCols))
indicesOfRow = indices[0]

# Compute the indices vector.
indicesVector = np.hstack((indicesOfRow.reshape(-1, 1), indicesOfCol.reshape(-1, 1)))

# Randomly pick first center.
numOfPixels = numOfRows * numOfCols
centers = [indices[np.random.choice(numOfPixels, 1)[0]].tolist()]

# Find remaining centers.
for _ in range(numOfCutsters - 1):
# Compute min distance for each point to all found centers.
distance = np.zeros(numOfPixels)

for index, indice in enumerate(indicesVector):
minDistance = np.Inf

for center in centers:
    dist = np.linds_nome(indice - center)
    minDistance = dist if dist < minDistance else minDistance
    distance[index] = minDistance

# Divide the distance by its sum to get probability.
distance /= np.sum(distance)
# Set a new center.
centers.append(indices[np.random.choice(numOfPixels, 1, p=distance)[0]].tolist())

# Change from index to feature index.
for index, center in enumerate(centers):
centers[index] = matrixU[center[0] * numOfRows + center[1], :]

return np.array(centers)
```

For the init center code of part 3, I choose the init center based on kmeans++ strategy. The function will return centers in array form based on the eigenspace (matrixu).

#### 4. K-means

```
# Kernel k-means.
currentCenters = centers.copy()
newClusters = np.zeros(numOfPixels, dtype=int)
count = 0
iteration = 100

while True:
# Compute new cluster.
newClusters = kmeansClustering(numOfPixels, numOfClusters, matrixU, currentCenters)

# Compute new centers.
newCenters = kmeansRecomputeCenters(numOfClusters, matrixU, newClusters)

# Get new state.
imageStates.append(getCurrentImageState(numOfRows, numOfCols, newClusters))

if np.linalg.norm((newCenters - currentCenters), ord=2) < 8.01 or count >= iteration:
break

# Update current parameters.
currentCenters = newCenters.copy()
count += 1
```

It is same to the k-means of part 1.

5. Output the GIF Results

```
# Output the gif result.

filename = f'./output/spectral_clustering/spectral_clustering_{index}_' \

fictuster{numOfClusters}_' \

f'ctuster{numOfClusters}_' \

f't*means++" if initNode else "random"}_' \

f't*normalized" if cutNode else "ratio"}.gif'

os.makedirs(os.path.dirname(filename), exist_ok=True)

if len(imageStates) > 1:

imageStates[0].save(filename, save_all=True, append_images=imageStates[1:], optimize=False, loop=0,

duration=100)

else:

imageStates[0].save(filename)
```

It is same to the output results of part 1.

- Part 4 (examine points)
  - 1. Plot Result

```
def plotResult(matrixU, clusters, index, initMode, cutMode):
    colors = ['r', 'b']
    plt.clf()

for idx, point in enumerate(matrixU):
    pt.scatter(point[0], point[1], c=colors[clusters[idx]])

# Save the figure.

filename = f'./output/spectral_clustering/eigenspace_{index}_' \
    f'{"normalized" if cutMode else "ratio"}.png'
    os.makedirs(os.path.dirname(filename), oxist_ok=True)

plt.savefig(filename)
```

Capture the result to examine whether the data points within the same cluster do have the same coordinates in the eigenspace of graph Laplacian or not.

- Experiments & Discussion
  - 1. Kernel K-means
    - Image 1
      - 1. Result

|          | 2 Clusters | 3 Clusters |
|----------|------------|------------|
| Randomly |            |            |
| Kmeans++ |            |            |

# 2. Discussion

- Kmeans++ strategy can get better initial clustering.
- For image 1, the better value of k is 2 (sea and island).

# • Image 2

## 1. Result



# 2. Discussion

• For image 2, the better value of k is 3 (tree, rabbit, and background).

# 2. Spectral Clustering

- Image 1 / 2 Clusters
  - 1. Result



## 2. Discussion

• Kmeans++ strategy can get better initial clustering.

# • Image 1 / 3 Clusters

#### 1. Result



## 2. Discussion

- For image 1, the better value of k is 2 (sea and island). In randomly, normalized cut, we can see that there are only some of parts with red color.
- Image 2 / 2 Clusters
  - 1. Result



## 2. Discussion

- All of experiments result show that we can well separate the point in eigenspace.
- Image 2 / 3 Clusters
  - 1. Result

|          | Normalized Cut | Ratio Cut |
|----------|----------------|-----------|
| Randomly |                |           |
| Kmeans++ |                |           |

#### 2. Discussion

• The randomly init is not good initially (we can get the result in the randomly init, normalized cut).

#### Observations

- 1. How to choose k for supervised learning?
  - We may try the see the result first, and then decide the k value it should be. Because there is no general solution to find one.
- 2. Kmeans++ strategy is better than randomly initializing (the initial result).
- 3. We can see that it hardly classifies data points using normalized cut. Most of points are classified into same cluster.