

FIG. 1

2/21

LINKER #1 15bp | SV40 ORIGIN=332bp
GACGTGCGGG CCGCTCTAGG CCTCCAAAAA AGCCTCCTCA CTACTTCTGG AATAGCTCAG 60
AGGCCGAGGC GGCCTCGGCC TCTGCATAAA TAAAAAAAAT TAGTCAGCCA TGCATGGGC 120
GGAGAATGGG CGGAACCTGGG CGGAGTTAGG GGCAGGGATGG GCGGAGTTAG GGGCGGGACT 180
ATGGTTGCTG ACTAATTGAG ATGCATGCTT TGCATACTTC TGCCTGCTGG GGAGCCTGGG 240
GACTTCCAC ACCTGGTTGC TGACTAATTG AGATGCATGC TTTGCATACT TCTGCCTGCT 300
GGGGAGCCTG GGGACTTCC ACACCCCTAAC TGACACACAT TCCACAGAAT TAATTCCCT | LINKER #2=13bp | 360
347 8 360 1
AGTTATTAAAT AGTAATCAAT TACGGGGTCA TTAGTTCAT A GCCATATAT GGAGTTCCGC 420
GTTACATAAC TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG 480
CMV PROMOTER-ENHANCER=567bp
ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTCCA TTGACGTCAA 540
TGGGTGGACT ATTTACGGTA AACTGCCAC TTGGCAGTAC ATCAAGTGT A TCATATGCCA 600
AGTACGCCAC CTATTGACGT CAATGACGGT AAATGGCCCG CCTGGCATT TGCCAGTAC 660
ATGACCTTAT GGGACTTCC TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC 720
ATGGTGATGC GGTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTGA CTCACGGGA 780
TTTCCAAGTC TCCACCCAT TGACGTCAAT GGGAGTTGT TTTGGCACCA AAATCAACGG 840
GACTTCCAA AATGTCGTA CAACTCCGCC CCATTGACGC AAATGGCGG TAGGCGTGT 900
LINKER #3=76bp
CGGTGGAGG TCTATATAAG CAGAGCTGGG TACGTGAACC GTCAGATCGC CTGGAGACGC 960
727 8 LEADER=60bp
Bgl II CATCACAGAT CTCTCACCAT GAGGGTCCCC GCTCAGCTCC TGGGGCTCCT GCTGCTCTGG 1020
978 9 +1 101 102 107 108
CTCCCAGGTG CACGATGTGA TGGTACCAAG GTGGAAATCA AACGTACGGT GGCTGCACCA 1080
1038 9 1062 3 Bsi WI
TCTGTCTTCA TCTTCCCGCC ATCTGATGAG CAGTTGAAAT CTGGAACCTGC CTCTGTTGT 1140
TGCCCTGCTGA ATAACCTCTA TCCCAGAGAG GCCAAAGTAC AGTGGAAAGGT GGATAACGCC 1200
HUMAN KAPPA CONSTANT 324bp 107 AMINO ACID & STOP CODON
CTCCAATCGG GTAACTCCC GGAGAGTGT ACAGAGCAGG ACAGCAAGGA CAGCACCTAC 1260
AGCCTCAGCA GCACCCGTGAC GCTGAGCAAA GCAGACTACG AGAAACACAA AGTCTACGCC 1320
TGCAGAGTCA CCCATCAGGG CCTGAGCTCG CCCGTCACAA AGAGCTCAA CAGGGGAGAG 1380
STOP
LIGHT
CHAIN Eco RI LINKER #4=85bp
TGT TGAATTC AGATCCGTTA ACGGTTACCA ACTACCTAGA CTGGATTCTG GACAACATGC 1440
1386 7
GGCCGTGATA TCTACGTATG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT 1500
1471 2

FIG. 2A

GTTTGCCCTT CCCCCGTGCC TTCCCTTGACC CTGGAAGGTG CCACTCCCAC TGTCCCTTCC 1560
 TAATAAAATG AGGAAATTGC ATCGCATTTGT CTGAGTAGGT GTCATTCTAT TCTGGGGGGT 1620
 GGGGTGGGGC AGGACAGCAA GGGGGAGGGAT TGGGAAGACA ATAGCAGGCA TGCTGGGGAT 1680
 GCGGTGGGCT CTATGGAACC AGCTGGGCT CGACAGCTAT GCCAAGTACG CCCCCTATTG 1740
 1702 3 1717 8
 ACGTCAATGA CGGTAAATGG CCCGCCTGGC ATTATGCCA GTACATGACC TTATGGGACT 1800
 TTCCTACTTG GCAGTACATC TACGTATTAG TCATCGCTAT TACCATGGTG ATGCGGTTT 1860
 CMV PROMOTER-ENHANCER=334bp
 GGCAGTACAT CAATGGCGT GGATAGCGGT TTGACTCACG GGGATTCCA AGTCTCCACC 1920
 CCATTGACGT CAATGGGAGT TTGTTTGGC ACCAAAATCA ACGGGACTTT CCAAAATGTC 1980
 GTAACAACTC CGCCCCATTG ACGCAAATGG GCGGTAGGCG TGTACGGTGG GAGGTCTATA 2040
 TAAGCAGAGC TGGGTACGTC CTCACATTCA GTGATCAGCA CTGAACACAG ACCCGTCGAC 2100
 2051 2 2058 9
 ATGGTTGGA GCCTCATCTT GCTCTTCCTT GTCGCTGTTG CTACGGTGTG GCTAGCACC 2160
 START HEAVY CHAIN -5 -4 -3 114 115
 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAECS 2220
 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG TGGAACTCA 2280
 GGGGCCCTGA CCAGCGGCGT GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC 2340
 HUMAN GAMMA 1 CONSTANT
 TCCCTCAGCA GCGTGGTGAC CGTGCCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC 2400
 993bp=330 AMINO ACID & STOP CODON
 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGCAGAGCC CAAATCTTGT 2460
 GACAAAATC ACACATGCC ACCGTGCCA GCACCTGAAC TCCTGGGGGG ACCGTCAGTC 2520
 TTCCTCTTCC CCCCAAAACC CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTACCA 2580
 TGGGTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG GTACGTGGAC 2640
 GGGGTGGAGG TGCATAATGC CAAGACAAAG CCGCGGGAGG AGCAGTACAA CAGCACGTAC 2700
 CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC CAGGACTGGC TGAATGGCAA GGACTACAAG 2760
 TGCAAGGTCT CCAACAAAGC CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAGCCAAA 2820
 GGGCAGCCCC GAGAACACCA GGTGTACACC CTGCCCCCAT CCCGGGATGA GCTGACCAGG 2880
 AACCAAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG 2940
 TGGGAGAGCA ATGGGCAGCC GGAGAACAC TACAAGACCA CGCCTCCCGT GCTGGACTCC 3000

FIG. 2B

GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG 3060
 AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAAGAGC 3120
 STOP HEAVY CHAIN Bam HI LINKER #7=81bp
 CTCTCCCTGT CTCCGGTAA ATGAGGATCC GTTAACGGTT ACCAACTACC TAGACTGGAT 3180
 3144 5
 TCGTGACAAC ATGCGGCCGT GATATCTACG TATGATCAGC CTCGACTGTG CCTTCTAGTT 3240
 3225 6
 GCCAGCCATC TGTTGTTGC CCCTCCCCG TGCTTCCTT GACCCTGGAA GGTGCCACTC 3300
 BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp
 CCACTGTCTT TTCTAATAA AATGAGGAAA TTGCATCGCA TTGTCTGAGT AGGTGTCATT 3360
 CTATTCTGGG GGGTGGGGTG GGGCAGGACA GCAAGGGGGA GGATTGGGAA GACAATAGCA 3420
 LINKER #8=34bp
 GGATGCTGG GGATGCGGTG GGCTCTATGG AACCAAGCTGG GGCTCGACAG CGCTGGATCT 3480
 3456 7
 CCCGATCCCC AGCTTGCTT CTCAATTCT TATTTGCATA ATGAGAAAAA AAGGAAAATT 3540
 3490 1
 AATTTAACCA CCAATTCACT AGTTGATTGA GCAAATGCGT TGCCAAAAAG GATGCTTTAG 3600
 MOUSE BETA GLOBIN MAJOR PROMOTER=366bp
 AGACAGTGTT CTCTGCACAG ATAAGGACAA ACATTATTCA GAGGGAGTAC CCAGAGCTGA 3660
 GACTCCTAAG CCAGTGAGTG GCACAGCATT CTAGGGAGAA ATATGCTTGT CATCACCGAA 3720
 GCCTGATTCC GTAGAGCCAC ACCTTGGTAA GGGCAATCT GCTCACACAG GATAGAGAGG 3780
 GCAGGAGCCA GGGCAGAGCA TATAAGGTGA GGTAGGATCA GTTGCTCCTC ACATTTGCTT 3840
 LINKER #9=19bp 5' UNTRANSLATED DHFR=82bp
 CTGACATAGT TGTGTTGGGA GCTTGGATAG CTTGGACAGC TCAGGGCTGC GATTTCGCGC 3900
 3856 7 3875 6 START DHFR
 CAAACTTGAC GGCAATCCTA GCGTGAAGGC TGGTAGGATT TTATCCCCGC TGCCATGAT 3960
 3957 8
 GTTCGACCAT TGAAC TGACAT CGTCGCCGTG TCCCCAAATA TGGGGATTGG CAAGAACCGA 4020
 GACCTACCCCT GGCTCCGCT CAGGAACGAG TTCAAGTACT TCCAAAGAAT GACCACAAACC 4080
 TCTTCAGTGG AAGGTAAACA GAATCTGGTG ATTATGGGTAA GGAAAACCTG GTTCTCCATT 4140
 MOUSE DHFR=564bp=187 AMINO ACID & STOP CODON
 CCTGAGAAGA ATCGACCTTT AAAGGACAGA ATTAATATAG TTCTCAGTAG AGAACTCAAA 4200
 GAACCACAC GAGGAGCTCA TTTTCTTGCC AAAAGTTGG ATGATGCCTT AAGACTTATT 4260
 GAACAAACCGG AATTGGCAAG TAAAGTAGAC ATGGTTTGG TAGTCGGAGG CAGTTCTGTT 4320
 TACCAAGGAAG CCATGAATCA ACCAGGCCAC CTTAGACTCT TTGTGACAAG GATCATGCAG 4380
 GAATTTGAAA GTGACACGTT TTTCCCAGAA ATTGATTGG GGAAATATAA ACTTCTCCCA 4440
 GAATACCCAG GCGTCCTCTC TGAGGTCCAG GAGGAAAAAG GCATCAAGTA TAAGTTGAA 4500

STOP DHFR
 GTCTACGAGA AGAAAGACTA ACAGGAAGAT GCTTCAAGT TCTCTGCTCC CCTCCTAAAG 4560
 4521 2

3' UNTRANSLATED DHFR=82bp **LINKER #10=10bp**
 TCATGCATTT TTATAAGACC ATGGGACTTT TGCTGGCTT AGATCAGCCT CGACTGTGCC 4620
 4603 4 4613 4

TTCTAGTTGC CAGCCATCTG TTGTTGCCCTCCTCCGTG CCTTCCTTGA CCCTGGAAGG 4680
BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp
 TGCCACTCCC ACTGTCTTT CCTAATAAAA TGAGGAAATT GCATCGCATT GTCTGAGTAG 4740

GTGTCATTCT ATTCTGGGG GTGGGGTGGG GCAGGACAGC AAGGGGGAGG ATTGGGAAGA 4800
LINKER #11=17bp
 CAATAGCAGG CATGCTGGGG ATGCGGTGGG CTCTATGGAA CCAGCTGGGG CTCGAGCTAC 4860
 4844 5

TAGCTTGCT TCTCAATTTC TTATTTGCAT AATGAGAAAA AAAGGAAAAT TAATTTAAC 4920

ACCAATTCAAG TAGTTGATTG AGCAAATGCG TTGCCAAAAAA GGATGCTTA GAGACAGTGT 4980
MOUSE BETA GLOBIN MAJOR PROMOTER=366bp
 TCTCTGCACA GATAAGGACA AACATTATTC AGAGGGAGTA CCCAGAGCTG AGACTCCTAA 5040

GCCAGTGAGT GGCACACGCAT TCTAGGGAGA AATATGCTTG TCATCACCGA AGCCTGATT 5100

CGTAGAGCCA CACCTTGGTA AGGGCCAATC TGCTCACACA GGATAGAGAG GGCAGGAGCC 5160

AGGGCAGAGC ATATAAGGTG AGGTAGGATC AGTTGCTCCT CACATTGCT TCTGACATAG 5220

LINKER #12=21bp **START NEO**
 TTGTGTTGGG AGCTTGGATC GATCCTCTAT GTTGAACAA GATGGATTGC ACGCAGGTT 5280
 5227 8 5248 9

TCCGGCCGCT TGGGTGGAGA GGCTATTCTGG CTATGACTGG GCACAAACAGA CAATCGGCTG 5340

CTCTGATGCC GCCGTGTTCC GGCTGTCAGC GCAGGGGCGC CCGGTTCTTT TTGTCAAGAC 5400
NEOMYCIN PHOSPHOTRANSFERASE
 CGACCTGTCC GGTGCCCTGA ATGAACGTCA GGACGAGGCA GCGGGCTAT CGTGGCTGGC 5460

795bp=264 AMINO ACIDS & STOP CODON
 CACGACGGGC GTTCCTTGCG CAGCTGTGCT CGACGTTGTC ACTGAAGCGG GAAGGGACTG 5520

GCTGCTATTG GGCGAAGTGC CGGGGCAGGA TCTCCTGTCA TCTCACCTTG CTCTGCCG 5580

GAAAGTATCC ATCATGGCTG ATGCAATGCG GCGGCTGCAT ACGCTTGATC CGGCTACCTG 5640

CCCATTGAC CACCAAGCGA AACATCGCAT CGAGCGAGCA CGTACTCGGA TGGAAGCCGG 5700

TCTTGTGAT CAGGATGATC TGGACGAAGA GCATCAGGGG CTCGCGCCAG CCGAACTGTT 5760

CGCCAGGCTC AAGGCGCGCA TGCCCGACGG CGAGGATCTC GTCGTGACCC ATGGCGATGC 5820

CTGCTTGCCG AATATCATGG TGGAAAATGG CCGCTTTCT GGATTCACTG ACTGTGGCCG 5880

GCTGGGTGTG GCGGACCGCT ATCAGGACAT AGCGTTGGCT ACCCGTGATA TTGCTGAAGA 5940

GCTTGGCGGC GAATGGGCTG ACCGCTTCCCT CGTGCTTAC GGTATCGCCG CTCCCGATT 6000

FIG. 2D

STOP NEO
 GCAGCGCATC GCCTTCTATC GCCTTCTTGA CGAGTTCTTC ~~TGAGCGGGAC~~ TCTGGGGTTC 6060
 6043 4
 GAAATGACCG ACCAAGCGAC GCCCAACCTG CCATCACGAG ATTCGATTC CACCGCCGCC 6120
 3' UNTRANSLATED NEO=173bp
 TTCTATGAAA GGTTGGGCTT CGGAATCGTT TTCCGGGACG CGGGCTGGAT GATCCTCCAG 6180
 CGCGGGGATC TCATGCTGGA GTTCTTCGCC CACCCCAACT TGTTTATTGC AGCTTATAAT 6240
 6216 7
 GGTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA AAGCATTTC TTCACTGCAT 6300
 SV40 POLY A EARLY=133bp LINKER #13=19bp
 TCTAGTTGTG GTTTGTCCAA ACTCATCAAT CTATCTTATC ATGTCTGGAT CGCGGCCGCG 6360
 6349 50
 ATCCCGTCGA GAGCTTGGCG TAATCATGGT CATAGCTGTT TCCTGTGTGA AATTGTTATC 6420
 6368 9
 CGCTCACAAAT TCCACACAAAC ATACGAGCCG GAAGCATAAA GTGTAAAGCC TGGGGTGCCT 6480
 AATGAGTGAG CTAACTCACA TTAATTGCGT TGCGCTCACT GCCCGCTTTC CAGTCGGGAA 6540
 ACCTGTCGTG CCAGCTGCAT TAATGAATCG GCCAACGCGC GGGGAGAGGC GGTTTGCCTA 6600
 PVC 19
 TTGGGCGCTC TTCCGCTTCC TCGCTCACTG ACTCGCTGCG CTCGGTCGTT CGGCTGCCTC 6660
 GAGCGGTATC AGCTCACTCA AAGGCGGTAA TACGGTTATC CACAGAATCA GGGGATAACG 6720
 CAGGAAAGAA CATGTGAGCA AAAGGCCAGC AAAAGGCCAG GAACCGTAAA AAGGCCGCCT 6780
 6792=BACTERIAL ORIGIN OF REPLICATION
 TGCTGGCGTT T~~T~~TCCATAGG CTCCGCCCCC CTGACGAGCA TCACAAAAAT CGACGCTCAA 6840
 GTCAGAGGTG GCGAAACCCG ACAGGACTAT AAAGATACCA GGCCTTCCC CCTGGAAGCT 6900
 CCCTCGTGCCTC CTCTCCTGTT CCGACCCCTGC CGCTTACCGG ATACCTGTCC GCCTTCTCC 6960
 CTTCGGGAAG CGTGGCGCTT TCTCAATGCT CACGCTGTAG GTATCTCAGT TCGGTGTAGG 7020
 TCGTTCGCTC CAAGCTGGGC TGTGTGCACG AACCCCCCGT TCAGCCCGAC CGCTGCCTC 7080
 TATCCGGTAA CTATCGTCTT GAGTCCAACC CGGTAAGACA CGACTTATCG CCACTGGCAG 7140
 CAGCCACTGG TAACAGGATT AGCAGAGCGA GGTATGTAGG CGGTGCTACA GAGTTCTTGA 7200
 AGTGGTGGCC TAACTACGGC TACACTAGAA GGACAGTATT TGGTATCTGC GCTCTGCTGA 7260
 AGCCAGTTAC CTTCGGAAAA AGAGTTGGTA GCTCTTGATC CGGCAAACAA ACCACCGCTG 7320
 GTAGCGGTGG TTTTTTGTT TGCAAGCAGC AGATTACGCG CAGAAAAAAA GGATCTCAAG 7380
 AAGATCCTTT GATCTTTCT ACGGGGTCTG ACGCTCAGTG GAACGAAAAC TCACGTTAAG 7440
 GGATTTGGT CATGAGATTA TCAAAAAGGA TCTTCACCTA GATCCTTTA AATTAAAAAT 7500

FIG. 2E

GAAGTTTAA ATCAATCTAA AGTATATATG AGTAAACTTG **STOP BETA LACTAMASE** GTCTGACAGT **TACCAATGCT** 7560
 7550
 TAATCAGTGA GGCACCTATC TCAGCGATCT GTCTATTCG TTCATCCATA GTTGCCCTGAC 7620
 TCCCCGTCGT GTAGATAACT ACGATAACGGG AGGGCTTACC ATCTGGCCCC AGTGCTGCAA 7680
 TGATACCGCG AGACCCACGC TCACCGGCTC CAGATTATC AGCAATAAAC CAGCCAGCCG 7740
BETA LACTAMASE=861bp
 GAAGGGCCGA GCGCAGAAGT GGTCCCTGCAA CTTTATCCAG CTCCATCCAG TCTATTAATT 7800
286 AMINO ACID & STOP CODON
 GTTGCCTGGGA AGCTAGAGTA AGTAGTTCGC CAGTTAATAG TTTGCGCAAC GTTGTGCA 7860
 TTGCTACAGG CATCGTGGTG TCACGCTCGT CGTTGGTAT GGCTTCATTC AGCTCCGGTT 7920
 CCCAACGATC AAGGGCAGTT ACATGATCCC CCATGTTGTG CAAAAAAAGCG GTTAGCTCCT 7980
 TCGGTCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC ATGGTTATGG 8040
 CAGCACTGCA TAATTCTCTT ACTGTCAATGC CATCCGTAAG ATGCTTTCT GTGACTGGTG 8100
 AGTACTCAAC CAAGTCATTC TGAGAATAGT GTATGCGGCG ACCGAGTTGC TCTTGCCCGG 8160
 CGTCAATACG GGATAATAACC GCGCCACATA GCAGAACCTT AAAAGTGCTC ATCATTGGAA 8220
 AACGTTCTTC GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTTCGATGT 8280
 AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTAC TTTCACCAAGC GTTCTGGGT 8340
 GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT AAGGGCGACA CGGAAATGTT 8400
START BETA LACTAMASE
 GAATACTCAT ACTCTTCCTT TTTCAATATT ATTGAAGCAT TTATCAGGGT TATTGTCTCA 8460
 8410
 TGAGCGGATA CATATTTGAA TGTATTTAGA AAAATAAACAA AATAGGGGTT CCGCGCACAT 8520
 TTCCCCGAAA AGTGCCACCT

FIG. 2F

LINKER #1=15bp |
 GACGTCGCGG CCGCTCTAGG CCTCCAAAAA AGCCTCCTCA CTACTCTGG AATAGCTAG 60
 15 6

AGGCCGAGGC GGCCCTCGGCC TCTGCATAAA TAAAAAAAAT TAGTCAGCCA TGCATGGGGC 120
 SV40 ORIGIN=332bp
 GGAGAATGGG CGGAACCTGGG CGGAGTTAGG GGCGGGATGG GCGGAGTTAG GGGCGGGACT 180
 ATGGTTGCTG ACTAATTGAG ATGCATGCTT TGCACTACTTC TGCCCTGCTGG GGAGCCTGGG 240
 GACTTTCCAC ACCTGGTTGC TGACTAATTG AGATGCATGC TTTGCATACT TCTGCCTGCT 300
 GGGGAGCCTG GGGACTTCC ACACCCCTAAC TGACACACAT TCCACAGAAAT TAATTCCCCCT 360
 347 8
 AGTTATTAAT AGTAATCAAT TACGGGGTCA TTAGTTCAT A GCCCATATAT GGAGTTCCGC 420
 GTTACATAAC TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCCATTG 480
 ACGTCAATAA TGACGTATGT TCCCAGAGTA ACGCCAATAG GGACTTCCA TTGACGTCAA 540
 CVM PROMOTER-ENHANCER=567bp
 TGGGTGGACT ATTTACGGTA AACTGCCAC TTGCGAGTAC ATCAAGTGTAA TCATATGCCA 600
 AGTACGCCCTT CTATTGACGT CAATGACGGT AAATGGCCCG CCTGGCATTAA TGCCCGAGTAC 660
 ATGACCTTAT GGGACTTCC TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC 720
 ATGGTGATGC GGTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTGA CTCACGGGG 780
 TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTGT TTTGGCACCA AAATCAACGG 840
 GACTTTCAA AATGTCGTA CAACTCCGCC CCATTGACGC AAATGGCGG TAGGCGTGTAA 900
 CGGTGGGAGG TCTATATAAG CAGAGCTGGG TACGTGAACC GTCAGATCGC CTGGAGACGC 960
 927 8 934 5

Bgl 2 START LIGHT CHAIN NATURAL LEADER=66bp
 CATCACAGAT CTCTCACTAT GGATTTCAAG GTGCAGAGTTA TCAGCTTCCT GCTAATCAGT 1020
 978 9

GCTTCAGTCAT TAATGTCCAG AGGACAAATT GTTCTCTCCC AGTCTCCAGC AATCCTGTCT 1080
 1044 5+1

GCATCTCCAG GGGAGAAGGT CACAATGACT TGCAAGGCCA GCTGAAGTGT AAGTTACATC 1140
 CACTGGTTCC AGCAGAAGCC AGGATCCTCC CCCAAACCCCT GGATTTATGC CACATCCAAC 1200
 LIGHT CHAIN VARIABLE REGION 318bp 106 AMINO ACID
 CTGGCTTCTG GAGTCCTGT TCGCTTCAGT GGCAGTGGGT CTGGGACTTC TTACTCTCTC 1260
 ACCATCAGCA GAGTGGAGGC TGAAGATGCT GCCACTTATT ACTGCCAGCA GTGGACTAGT 1320
 AACCCACCCA CGTTGGAGG GGGGACCAAG CTGGAAATCA AACGTACGGT GGCTGCACCA 1380
 1362 3
 TCTGTCTTCATCTTCCGCC ATCTGATGAG CAGTTGAAAT CTGGAACCTGC CTCTGTTGTG 1440
 TGCCCTGCTGA ATAACCTCTA TCCCAGAGAG GCCAAAGTAC AGTGGAAAGGT GGATAACGCC 1500

FIG. 3A

HUMAN KAPPA CONSTANT=324bp=107 AMINO ACID & STOP CODON
 CTCCAATCGG GTAATCCC GGAGAGTGT ACAGAGCAGG ACAGCAAGGA CAGCACCTAC 1560
 AGCCTCAGCA GCACCCCTGAC GCTGAGCAAA GCAGACTACG AGAAACACAA AGTCTACGCC 1620
 TGCAGAAGTCA CCCATCAGGG CCTGAGCTCG CCCGTCACAA AGAGCTTCAA CAGGGGAGAG 1680
 STOP
 LIGHT
 CHAIN Eco RI LINKER #4=81bp
 TGTGAATTC AGATCCGTTA ACGGTTACCA ACTACCTAGA CTGGATTCTG GACAACATGC 1740
 1646 7
 GGCGTGATA TCTACGTATG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT 1800
 1771 2
 GTTGCCCCCT CCCCCGTGCC TTCCTTGACC CTGGAAGGTG CCACTCCCAC TGTCCCTTCC 1860
 TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT GTCATTCTAT TCTGGGGGGT 1920
 BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp
 GGGGTGGGGC AGGACAGCAA GGGGGAGGAT TGGGAAGACA ATAGCAGGCA TGCTGGGGAT 1980
 LINKER #5=15bp
 GCGGTGGGCT CTATGGAACC AGCTGGGGCT CGACAGCTAT GCCAAGTACG CCCCCTATTG 2040
 2002 3 2017 8
 ACGTCAATGA CGGTAAATGG CCCGCCTGGC ATTATGCCA GTACATGACC TTATGGGACT 2100
 TTCCCTACTTG GCAGTACATC TACGTATTAG TCATCGCTAT TACCATGGTG ATGCGGTTT 2160
 CMV PROMOTER-ENHANCER=334bp
 GGCAGTACAT CAATGGCGT GGATAGCGGT TTGACTCACG GGGATTCCA AGTCTCCACC 2220
 CCATTGACGT CAATGGAGT TTGTTTGGC ACCAAAATCA ACGGGACTTT CCAAAATGTC 2280
 GTAACAACTC CGCCCCATTG ACGCAAATGG GCGGTAGGCG TGTACGGTGG GAGGTCTATA 2340
 LINKER #6=7bp Sal I
 TAAGCAGAGC TGGGTACGTC CTCACATTCA GTGATCAGCA CTGAACACAG ACCCGTCGAC 2400
 START 2351 2 2358 9
 HEAVY CHAIN SYNTHETIC & NATURAL LEADER Mlu I 2457 8
 ATGGGTTGGA GCCTCATCTT GCTCTTCCTT GTCGCTGTG CTACCGCTGT CCTGTCCCCAG 2460
 2401 -5 -4 -3 -2 -1 +1
 GTACAAC TGC AGCAGCCTGG GGCTGAGCTG GTGAAGCCTG GGGCCTCAGT GAAGATGTCC 2520
 TGCAAGGCTT CTGGCTACAC ATTTACCACT TACAATATGC ACTGGGTAAA ACAGACACCT 2580
 HEAVY CHAIN VARIABLE=363bp=121 AMINO ACID
 GGTCGGGGCC TGGATGGAT TGGAGCTATT TATCCCAGAA ATGGTGATAAC TTCCTACAAT 2640
 CAGAAGTTCA AAGGCAAGGC CACATTGACT GCAGACAAAT CCTCCAGCAC AGCCTACATG 2700
 CAGCTCAGCA GCCTGACATC TGAGGACTCT GCGGTCTATT ACTGTGCAAG ATCGACTTAC 2760
 TACGGCGGTG ACTGGTACTT CAATGTCTGG GGCGCAGGGA CCACGGTCAC CGTCTCTGCA 2820
 GCTAGCACCA AGGGCCCAC TGGCTTCCCC CTGGCACCCCT CCTCCAAGAG CACCTCTGGG 2880
 GGCACAGCGG CCCTGGGCTG CCTGGTCAAG GACTACTTCC CGAACCAGGT GACGGTGTG 2940
 HUMAN GAMMA 1 CONSTANT=993bp
 TGGAAC TCA GCGCCCTGAC CAGCGGCGTG CACACCTTCC CGGCTGTCT ACAGTCCTCA 3000

FIG. 3B

330 AMINO ACID & STOP CODON

GGACTCTACT CCCTCAGCAG CGTGGTGACC GTGCCCTCCA GCAGCTTGGG CACCCAGACC 3060
 TACATCTGCA ACGTGAATCA CAAGCCCAGC AACACCAAGG TGGACAAGAA AGCAGAGCCC 3120
 AAATCTTGTG ACAAAACTCA CACATGCCA CCGTCCCCAG CACCTGAACCT CCTGGGGGGA 3180
 CCGTCAGTCT TCCTCTTCCC CCCAAAACCC AAGGACACCC TCATGATCTC CCGGACCCCT 3240
 GAGGTCACAT GCGTGGTGGT GGACGTGAGC CACGAAGACC CTGAGGTCAA GTTCAACTGG 3300
 TACGTGGACG GCGTGGAGGT GCATAATGCC AAGACAAAGC CGCGGGAGGA GCAGTACAAC 3360
 AGCACGTACC GTGTGGTCAG CGTCCTCACC GTCCCTGCACC AGGACTGGCT GAATGGCAAG 3420
 GAGTACAAGT GCAAGGTCTC CAACAAAGCC CTCCCAGCCC CCATCGAGAA AACCATCTCC 3480
 AAAGCCAAAG GGCAGCCCCG AGAACCCACAG GTGTACACCC TGCCCCCATC CCGGGATGAG 3540
 CTGACCAAGA ACCAGGTCAAG CCTGACCTGC CTGGTCAAAG GCTTCTATCC CAGCGACATC 3600
 GCGGTGGAGT GGGAGAGCAA TGGGCAGCCG GAGAACAACT ACAAGACCAC GCCTCCCGTG 3660
 CTGGACTCCG ACGGCTCCTT CTTCTCTAC AGCAAGCTCA CCGTGGACAA GAGCAGGTGG 3720
 CAGCAGGGGA ACGTCTTCTC ATGCTCCGTG ATGCATGAGG CTCTGCACAA CCACTACACG 3780
 STOP HEAVY CHAIN Bam HI LINKER #7=81bp
 CAGAAGAGCC TCTCCCTGTC TCCGGGTAAA TGAGGGATCCG TTAACGGTTA CCAACTACCT 3840
 3813 4
 AGACTGGATT CGTGACAACA TGCGGCCGTG ATATCTACGT ATGATCAGCC TCGACTGTGC 3900
 3894 5
 CTTCTAGTTG CCAGCCATCT GTTGTGGCC CCTCCCCGT GCCTTCCTTG ACCCTGGAA 3960
 GTGCCACTCC CACTGTCCCT TCCTAATAAA ATGAGGAAAT TGCATCGCAT TGTCTGAGTA 4020
 BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp
 GGTGTCAATT TATTCTGGGG GGTGGGGTGG GGCAGGACAG CAAGGGGGAG GATTGGGAAG 4080
 ACAATAGCAG GCATGCTGGG GATGCGGTGG GCTCTATGGA ACCAGCTGGG GCTCGACAGC 4140
 4125 6
 GCTGGATCTC CCGATCCCCA GCTTGCTTC TCAATTCTT ATTTGCATAA TGAGAAAAAA 4200
 AGGAAAATTA ATTTAACAC CAATTAGTA GTTGATTGAG CAAATGCGTT GCCAAAAAGG 4260
 MOUSE BETA GLOBIN MAJOR PROMOTER=366bp
 ATGCTTTAGA GACAGTGGTC TCTGCACAGA TAAGGGACAAA CATTATTCAAG AGGGAGTACC 4320
 CAGAGCTGAG ACTCCTAACG CAGTGAGTGG CACAGCATTC TAGGGAGAAA TATGCTTGTG 4380
 ATCACCGAAG CCTGATTCCG TAGAGCCACA CCTTGGTAAG GGCCAATCTG CTCACACAGG 4440
 ATAGAGAGGG CAGGAGCCAG GGCAGAGCAT ATAAGGTGAG GTAGGATCAG TTGCTCCTCA 4500

FIG. 3C

CATTGCTTC TGACATAGTT **LINKER #9=19bp** **5' UNTRANSLATED DHFR=82bp**
 4525 6 GTGTTGGGAG CTTGGATAGC TTGGACAGCT CAGGGCTGCG 4560
 4544 5
 ATTCGCGCC AAACTTGACG GCAATCCTAG CGTGAAGGCT GGTAGGATT TATCCCCGCT 4620
START DHFR
 GCCATCATGG TTCGACCATT GAACTGCATC GTCGCCGTGT CCCAAAATAT GGGGATTGGC 4680
 4626 7
 AAGAACGGAG ACCTACCCCTG GCCTCCGCTC AGGAACGAGT TCAAGTACTT CCAAAGAATG 4740
 ACCACAAACCT CTTCACTGGA AGGTAAACAG AATCTGGTGA TTATGGGTAG GAAAACCTGG 4800
DHFR=564bp=187 AMINO ACID & STOP CODON
 TTCTCCATTG CTGAGAAGAA TCGACCTTTA AAGGACAGAA TTAATATAGT TCTCAGTAGA 4860
 GAACTCAAAG AACCAACCACG AGGAGCTCAT TTTCTTGCCA AAAGTTGGTGA TGATGCCTTA 4920
 AGACTTATTG AACAAACCGGA ATTGGCAAGT AAAGTAGACA TGGTTGGAT AGTCGGAGGC 4980
 AGTTCTGTTT ACCAGGAAGC CATGAATCAA CCAGGCCACC TTAGACTCTT TGTGACAAGG 5040
 ATCATGCAGG AATTGAAAG TGACACGTTT TTCCCAGAAA TTGATTTGGG GAAATATAAA 5100
 CTTCTCCAG AATACCCAGG CGTCCTCTCT GAGGTCCAGG AGGAAAAAAGG CATCAAGTAT 5160
STOP DHFR **3' UNTRANSLATED DHFR=82bp**
 AAGTTGAAG TCTACGAGAA GAAAGAC_{1AA} CAGGAAGATG CTTCAAGTT CTCTGCTCCC 5220
 5140 1
LINKER #10
 CTCCTAAAGC TATGCATTT TATAAGACCA TGGGACTTTT GCTGGCTTTA GATCAGCCTC 5280
 5272 3
=10bp
 GACTGTGCCT TCTAGTTGCC AGCCATCTGT TGGTTGCCCT TCCCCCGTGC CTTCCCTTGAC 5340
 BOVINE GROWTH HORMONE POLYADENYLATION=231bp
 CCTGGAAAGGT GCCACTCCCA CTGTCTTTC CTAATAAAAT GAGGAAATTG CATCGCATTG 5400
 TCTGAGTAGG TGTCAATTCTA TTCTGGGGGG TGGGGTGGGG CAGGACAGCA AGGGGGAGGA 5460
 TTGGGAAGAC AATAGCAGGC ATGCTGGGGA TGGGGTGGGC TCTATGGAAC CAGCTGGGGC 5520
 5513 4
=17bp
 TCGAGCTACT AGCTTGCTT CTCATTCT TATTGCAATGAGAAAAA AAGGAAAATT 5580
 5530 1
 AATTTAACCA CCAATTCACT AGTTGATTGA GCAAATGCGT TGCCAAAAAG GATGCTTTAG 5640
 MOUSE BETA GLOBIN MAJOR PROMOTER=366bp
 AGACAGTGT CTCTGCACAG ATAAGGACAA CTAGGGAGAA ATATGTTGT CATCACCGAA 5700
 GACTCCTAAG CCAGTGAGTG GCACAGCATT CTAGGGAGAA ATATGTTGT CATCACCGAA 5760
 GCCTGATTCC GTAGAGCCAC ACCTTGGTAA GGGCCAATCT GCTCACACAG GATAGAGAGG 5820
 GCAGGAGCCA GGGCAGAGCA TATAAGGTGA GGTAGGATCA GTTGCTCCTC ACATTTGCTT 5880
LINKER #12=21bp **START NEO**
 CTGACATAGT TGTGTTGGGA GCTTGGATCG ATCCTCTATG GTTGAACAAG ATGGATTGCA 5940
 5896 7 5917 8
 CGCAGGTTCT CGGGCCGCTT GGGTGGAGAG GCTATTGCGC TATGACTGGG CACAACAGAC 6000

12/21

AATCGGCTGC TCTGATGCCG CGGTGTTCCG GCTGTCAGCG CAGGGGGCG:C CGGTTCT:TT 6060
NEOMYCIN PHOSPHOTRANSFERASE=795bP=264 AMINO ACID & STOP CODON
TGTCAAGACC GACCTGTCGG TGCCCTGAA TGAAC TGCAAGCGAG CGCGGCTATC 6120
GTGGCTGGCC ACGACGGCG C TTCTTGCGC AGCTGTGCTC GACGTTGTCA CTGAAGCGGG 6180
AAGGGACTGG CTGCTATTGG GCGAAGTGCC GGGGCAGGAT CTCTGTCTAT CTCACCTTGC 6240
TCCTGCCGAG AAAGTATCCA TCATGGCTGA TGCAATGCAG CGGCTGCATA CGCTTGATCC 6300
GGCTACCTGC CCATTGACCC ACCAAGCGAA ACATCGCATC GAGCGAGCAC GTACTCGGAT 6360
GGAAGCCGGT CTTGTCGATC AGGATGATCT GGACGAAGAG CATCAGGGGC TCGCGCCAGC 6420
CGAACTGTTG GCCAGGCTCA AGGCGCGCAT GCCCGACGGC GAGGATCTG TCGTGACCCA 6480
TGGCGATGCC TGCTTGCCGA ATATCATGGT GGAAAATGGC CGCTTTCTG GATTCAATCGA 6540
CTGTGGCCGG CTGGGTGTGG CGGACCGCTA TCAGGACATA GCGTTGGCTA CCCGTGATT 6600
TGCTGAAGAG CTTGGCGGGCG AATGGGCTGA CCGCTTCCTC GTGCTTALG GTATCGCCG 6660
STOP NEO
TCCCGATTG CAGCGCATCG CCTTCTATCG CCTTCTTGAC GAGTTCTTC ~~T~~ GAGCGGGACT 6720
6712³
CTGGGGTTCG AAATGACCGA CCAAGCGACG CCCAACCTGC CATCACGAGA TTTCGATTCC 6780
3' UNTRANSLATED NEO=173bp
ACCGCCGCCT TCTATGAAAG GTTGGGCTTC GGAATCGTT TCCGGGACGC CGGCTGGATG 6840
ATCCTCCAGC GCGGGGATCT CATGCTGGAG TTCTTCGCGC ACCCCAACTT GTTTATTGCA 6900
6885⁶
GCTTATAATG GTTACAAATA AAGCAATAGC ATCACAAATT TCACAAATAA AGCATTTTT 6960
SV40 EARLY POLYADENYLATION REGION=133bp
TCACTGCATT CTAGTTGTGG TTTGTCCAAA CTCATCAATC TATCTTATCA TGTCTGGATC 7020
7018⁹
LINKER #13=19bp
GCGGCCGCGA TCCCGTCGAG AGCTTGGCGT AATCATGGTC ATAGCTGTT CCTGTGTGAA 7080
7037⁸
PUC 19
ATTGTTATCC GCTCACAAATT CCACACAAACA TACGAGCCGG AAGCATAAAG TGAAAGCCT 7140
GGGGTGCCTA ATGAGTGAGC TAACTCACAT TAATTGCGTT GCGCTCACTG CCCGCTTTCC 7200
AGTCGGGAAA CCTGTCGTGC CAGCTGCATT AATGAATCG CCAACGCGCG GGGAGAGGGCG 7260
GTTTGCCTAT TGGGCGCTCT TCCGCTTCCT CGCTCACTGA CTCGCTGCAG TCGGTGTTTC 7320
GGCTGCGCG AGCGGTATCA GCTCACTCAA AGGGCGTAAT ACGGTTAACACAGA ACAGAATCAG 7380
GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA AAAGGCCAAG AACCGTAAAAA 7440
7461=BACTERIAL ORIGIN OF REPLICATION
AGGCCGCGTT GCTGGCGTTT ~~T~~ TCCATAGGC TCCGCCCCCCC TGACGAGCAT CACAAAATC 7500

FIG. 3E

GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA AAGATACCAG GCGTTCCCC 7560
 CTGGAAAGCTC CCTCGTGCAGC TCTCCTGTT CGACCCCTGCC GCTTACCGGA TACCTGTCCG 7620
 CCTTTCTCCC TTCGGGAAGC GTGGCGCTT CTCAATGCTC ACGCTGTAGG TATCTCAGTT 7680
 CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT GTGTGCACGA ACCCCCCGTT CAGCCCCGACC 7740
 GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC 7800
 CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG 7860
 AGTTCTTGAA GTGGTGGCCT AACTACGGCT ACACTAGAAG GACAGTATTT GGTATCTGCG 7920
 CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAAACAAA 7980
 CCACCGCTGG TAGCGGTGGT TTTTTGTTT GCAAGCAGCA GATTACCGCGC AGAAAAAAAG 8040
 GATCTCAAGA AGATCCTTG ATCTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAAACT 8100
 CACGTTAAGG GATTTGGTC ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTAA 8160
 STOP
 ATTAAAAATG AAGTTTAAA TCAATCTAAA GTATATATGA GTAAACCTGG TCTGACAGTT 8220
BETA LACTAMASE
ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG TCTATTCGT TCATCCATAG 8280
 TTGCCTGACT CCCCCTCGTG TAGATAACTA CGATACGGGA GGGCTTACCA TCTGGCCCCA 8340
 GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC AGATTTATCA GCAATAAAAC 8400
 BETA LACTAMASE=861bp=286 AMINO ACID & STOP CODON
 AGCCAGCCGG AAGGGCCGAG CGCAGAAAGTG GTCCTGCAAC TTTATCCGCC TCCATCCAGT 8460
 CTATTAATTG TTGCCGGGAA GCTAGAGTAA GTAGTTGCC AGTTAATAGT TTGCGCAACG 8520
 TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC GTTGGTATG GCTTCATTCA 8580
 GCTCCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC CATGTTGTGC AAAAAAGCGG 8640
 TTAGCTCCTT CGGTCCCTCG ATCGTTGTCA GAAGTAAGTT GGCCGCAGTG TTATCACTCA 8700
 TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTCTG 8760
 TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG TATGCGGCGA CCGAGTTGCT 8820
 CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG CAGAACTTTA AAAGTGCTCA 8880
 TCATTGGAAA ACGTTCTCG GGGCGAAAAC TCTCAAGGAT CTTACCGCTG TTGAGATCCA 8940
 GGTCGATGTA ACCCACTCGT GCACCCAACT GATCTTCAGC ATCTTTACT TTCACCGAGCG 9000
 TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGAAA AAAGGGAATA AGGGCGACAC 9060
 GGAAATGTTG AATACTCAT CTCTTCCTT TTCAATATTA TTGAAGCATT TATCAGGGTT 9120
 ATTGTCTCAT GAGCGGATAC ATATTTGAAT GTATTTAGAA AAATAAACAA ATAGGGGTTC 9180
 CGCGCACATT TCCCCGAAAA GTGCCACCT

FIG. 3F

14/21

LEADER

FIG. 4

LEADER

-19	-15	-10	-5
FRAME 1 Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg Val			
ATG GGT TGG AGC CTC ATC TTG CTC TTC CTT GTC GCT GTC GCT ACG CGT GTC			
2409	2418	2427	2436
2445			
-1 5+1 FR1 10 15			
Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Ala Gly Ala Ser			
CTG TCC CAG GTA CAA CTG CAG CCT GGG GCT GAG CTG GTG AAG CCT GGG GCC TCA			
2460	2469	2478	2487
			2496 GCT 2505
20 25 30 31 CDR1 35 36			
Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp			
GTG AAG ATG TCC TGC AAG GCT TCT GGC TAC ACA TTT ACC AGT TAC AAT ATG CAC TGG			
2517	2526	2536	2544
			2553 2562
40 FR2 45 49 50 52 52A 53 54			
Val Lys Gln Thr Pro Gly Arg Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn			
GTA AAA CAG ACA CCT GGT CGG GGC CTG GAA TGG ATT GGA GCT ATT TAT CCC CGA AAT			
2574	2583	2592	2601
			2610 2619
55 CDR2 60 65 66 FR3 70			
Gly Asp Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys			
GGT GAT ACT TCC TAC AAT CAG AAG TTC AAA GGC AAG GCC ACA TTG ACT GCA GAC AAA			
2631	2640	2649	2658
			2667 2676
75 80 82 82A 82B 82C 83 85			
Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val			
TCC TCC AGC ACA GCC TAC ATG CAG CTC AGC AGC CTC ACA TCT GAG GAC TCT GCG GTC			
2688	2697	2706	2715
			2724 2733
90 94 95 CDR3 100 100A 100B 100C 100D 101 102 103			
Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn Val Trp Gly			
TAT TAC TGT GCA AGA TCG ACT TAC TAC GGC GGT GAC TGG TAC TTC AAT GTC TGG GGC			
2745	2754	2763	2772
			2781 2790
105 FR4 110 113			
Ala Gly Thr Thr Val Thr Val Ser Ala			
GCA GGG ACC ACG GTC ACC GTC TCT GCA			
2802	2811	2820	

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9A

FIG. 9B

FIG. 9C

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14A

FIG. 14B