CS738: Advanced Compiler Optimizations Typed Arithmetic Expressions

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Reference Book

Types and Programming Languages by Benjamin C. Pierce

Recap: Untyped Arithmetic Expression Language

```
t :=
                                terms

    constant true

     true

    constant false

     false
                                conditional
     if t then t else t
                                constant zero
     O
     succ t
                                - successor
     pred t
                                predecessor
     iszero t
                                zero test
```

Recap: The Set of Values

Let's add Types to the Language

$$T :=$$

Let's add Types to the Language

$$T := - Types$$
Bool - Booleans

Let's add Types to the Language

T := - Types
Bool - Booleans
Nat - Natural Numbers

A set of rules assigning types to terms

- A set of rules assigning types to terms
- $ightharpoonup \vdash t : T$ denotes "term t has type T"

- A set of rules assigning types to terms
- $ightharpoonup \vdash t : T$ denotes "term t has type T"

- A set of rules assigning types to terms
- $ightharpoonup \vdash t : T$ denotes "term t has type T"

0 : Nat

- A set of rules assigning types to terms
- $ightharpoonup \vdash t : T$ denotes "term t has type T"

0: Nat

 $\frac{t_1 : \mathsf{Nat}}{\mathsf{succ}\ t_1 : \mathsf{Nat}}$

- A set of rules assigning types to terms
- $ightharpoonup \vdash t : T$ denotes "term t has type T"

0 : Nat

 $\frac{t_1 : \mathsf{Nat}}{\mathsf{succ}\ t_1 : \mathsf{Nat}}$

 $\frac{\mathit{t}_1 : \mathsf{Nat}}{\mathsf{pred}\; \mathit{t}_1 : \mathsf{Nat}}$

- A set of rules assigning types to terms
- $ightharpoonup \vdash t : T$ denotes "term t has type T"

0 : Nat

 $\frac{t_1 : \mathsf{Nat}}{\mathsf{succ}\ t_1 : \mathsf{Nat}}$

 $\frac{t_1 : Nat}{pred t_1 : Nat}$

 $\frac{t_1 : \mathsf{Nat}}{\mathsf{iszero}\ t_1 : \mathsf{Bool}}$

The Typing Relation (contd...)

- A set of rules assigning types to terms
- ightharpoonup $\vdash t : T$ denotes "term t has type T"

true: Bool

The Typing Relation (contd...)

- A set of rules assigning types to terms
- $ightharpoonup \vdash t : T$ denotes "term t has type T"

true: Bool

false: Bool

The Typing Relation (contd...)

- A set of rules assigning types to terms
- $ightharpoonup \vdash t : T$ denotes "term t has type T"

true: Bool

false: Bool

 $\frac{t_1: \mathsf{Bool} \quad t_2: T \quad t_3: T}{\mathsf{if} \ t_1 \ \mathsf{then} \ t_2 \ \mathsf{else} \ t_3: T}$

The Typing Relation: Definition

The typing relation for arithmetic expressions is the smallest binary relation between terms and types satisfying all instances of the rules defined earlier.

The Typing Relation: Definition

- ► The typing relation for arithmetic expressions is the smallest binary relation between terms and types satisfying all instances of the rules defined earlier.
- ▶ A term *t* is *typable* (or *well typed*) if there is some *T* sych that *t* : *T*.

▶ If \vdash 0 : R, then R = Nat.

- ▶ If \vdash 0 : R, then R = Nat.
- ▶ If \vdash succ $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$

- ▶ If \vdash 0 : R, then R = Nat.
- ▶ If \vdash succ $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash pred $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$

- ▶ If \vdash 0 : R, then R = Nat.
- ▶ If \vdash succ $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash pred $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash iszero t_1 : R, then R = Bool and \vdash t_1 : Nat.

- ▶ If \vdash 0 : R, then R = Nat.
- ▶ If \vdash succ $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash pred $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash iszero t_1 : R, then R = Bool and \vdash t_1 : Nat.
- ▶ If \vdash true : R, then R = Bool.

- ▶ If \vdash 0 : R, then R = Nat.
- ▶ If \vdash succ $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash pred $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash iszero t_1 : R, then R = Bool and \vdash t_1 : Nat.
- ▶ If \vdash true : R, then R = Bool.
- ▶ If \vdash false : R, then R = Bool.

- ▶ If \vdash 0 : R, then R = Nat.
- ▶ If \vdash succ $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash pred $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash iszero $t_1 : R$, then R = Bool and $\vdash t_1 : Nat$.
- ▶ If \vdash true : R, then R = Bool.
- ▶ If \vdash false : R, then R = Bool.
- ▶ If $\Gamma \vdash$ if t_1 then t_2 else $t_3 : R$, then

- ▶ If \vdash 0 : R, then R = Nat.
- ▶ If \vdash succ $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash pred $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash iszero $t_1 : R$, then R = Bool and $\vdash t_1 : Nat$.
- ▶ If \vdash true : R, then R = Bool.
- ▶ If \vdash false : R, then R = Bool.
- ▶ If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then
 - $ightharpoonup \Gamma \vdash t_1 : Bool$

- ▶ If \vdash 0 : R, then R = Nat.
- ▶ If \vdash succ $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash pred $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash iszero $t_1 : R$, then R = Bool and $\vdash t_1 : Nat$.
- ▶ If \vdash true : R, then R = Bool.
- ▶ If \vdash false : R, then R = Bool.
- ▶ If $\Gamma \vdash$ if t_1 then t_2 else $t_3 : R$, then
 - $ightharpoonup \Gamma \vdash t_1 : Bool$
 - ► Γ ⊢ *t*₂ : *R*

- ▶ If \vdash 0 : R, then R = Nat.
- ▶ If \vdash succ $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash pred $t_1 : R$, then $R = \text{Nat and } \vdash t_1 : \text{Nat.}$
- ▶ If \vdash iszero $t_1 : R$, then R = Bool and $\vdash t_1 : Nat$.
- ▶ If \vdash true : R, then R = Bool.
- ▶ If \vdash false : R, then R = Bool.
- ▶ If $\Gamma \vdash$ if t_1 then t_2 else $t_3 : R$, then
 - $ightharpoonup \Gamma \vdash t_1 : Bool$
 - $ightharpoonup \Gamma \vdash t_2 : R$
 - ightharpoonup $\Gamma \vdash t_3 : R$

Uniqueness of Types

Every term t has at most one type.

Uniqueness of Types

- Every term t has at most one type.
- ▶ If *t* is typeable, then its type is unique.

Uniqueness of Types

- Every term t has at most one type.
- ▶ If *t* is typeable, then its type is unique.
- Moreover, there is just one derivation of this typing built from the inference rules.

► The type system is *safe* (also called *sound*)

- ► The type system is *safe* (also called *sound*)
- Well-typed programs do not "go wrong."

- ► The type system is *safe* (also called *sound*)
- Well-typed programs do not "go wrong."
 - Do not reach a "stuck state."

- The type system is safe (also called sound)
- Well-typed programs do not "go wrong."
 - Do not reach a "stuck state."
- Progress: A well-typed term is not stuck.

- The type system is safe (also called sound)
- Well-typed programs do not "go wrong."
 - Do not reach a "stuck state."
- Progress: A well-typed term is not stuck.
 - ▶ If $\vdash t : T$, then t is either a value or there exists some t' such that $t \to t'$.

- The type system is safe (also called sound)
- Well-typed programs do not "go wrong."
 - Do not reach a "stuck state."
- Progress: A well-typed term is not stuck.
 - If ⊢ t : T, then t is either a value or there exists some t' such that t → t'.
- Preservation: If a well-typed term takes a step of evaluation, then the resulting term is also well-typed.

- The type system is safe (also called sound)
- Well-typed programs do not "go wrong."
 - Do not reach a "stuck state."
- Progress: A well-typed term is not stuck.
 - ▶ If $\vdash t : T$, then t is either a value or there exists some t' such that $t \to t'$.
- Preservation: If a well-typed term takes a step of evaluation, then the resulting term is also well-typed.
 - ▶ If $\vdash t : T$ and $t \rightarrow t'$, then $\vdash t' : T$.