Educação Profissional Paulista

Técnico em Ciência de Dados

Introdução à informática

Aula 1

[DADOS]ANO1C1B2S11A1

Objetivo da Aula

Introduzir os conceitos de sistemas operacionais.

Competências da Unidade (Técnicas e Socioemocionais)

- Compreender e dominar os principais conceitos e noções de sistemas operacionais na informática;
- Analisar situações em que cada tipo de sistema operacional pode ser utilizado e identificar os principais equipamentos e finalidades de aplicação para seus usos.

Recursos Didáticos

- Recurso audiovisual para a exibição de textos, vídeos e imagens;
- Artigos selecionados para leitura.

Duração da Aula

50 minutos.

Sistemas operacionais – Revisão

Definição de um sistema operacional

Um sistema operacional (SO) é um software que atua como intermediário entre o usuário e o hardware do computador.

Ele gerencia os recursos do sistema, proporcionando um ambiente no qual os programas de aplicativo podem ser executados.

Pontos-chave:

- Interface entre o usuário e o hardware;
- Gerencia e aloca recursos como CPU, memória e dispositivos de armazenamento;
- Facilita a criação e a execução de programas de software.

Paginação

Paginação é uma técnica essencial no gerenciamento de memória de sistemas operacionais modernos, otimizando o uso de maneira eficiente.

Nesse método, a memória é **dividida em blocos de tamanho fixo**, como em páginas, que são armazenadas na RAM e no disco rígido, na área de *swap*.

Entre os benefícios, estão:

- Criar um espaço de endereçamento virtual contínuo para processos;
- Possibilidade de execução de múltiplos processos simultâneos sem conflito;
- Maximização do uso da memória.

Paginação

A gestão das páginas entre a memória e o disco é realizada a partir das tabelas de páginas, que gerenciam a correspondência entre páginas virtuais e endereços físicos.

A *Translation Lookaside Buffer* (TLB), um cache avançado, agiliza esse processo ao armazenar as traduções mais recentes ou acessadas, reduzindo o tempo para converter endereços virtuais em físicos.

Tome nota

A TLB é vital para o sistema. Sem ela, o acesso constante às tabelas de páginas pode sobrecarregar o sistema.

© Getty Images

Exemplos de paginação

Exemplo 1:

Em um sistema com **4 GB de RAM**, um processo pode ter um espaço de endereço virtual muito maior, como 32GB, graças à paginação.

As partes do programa que estão sendo usadas são mantidas na RAM, enquanto o resto permanece no disco até ser necessário.

Exemplo 2:

Sistemas como **Windows 11 e Linux** usam um método chamado paginação para administrar a memória do computador de modo eficaz. Imagine que cada programa é um livro.

Exemplos de paginação

Exemplo 3:

A **TLB**, em CPUs modernas, como os processadores Intel Core i7, acelera o mapeamento de endereços virtuais para físicos.

Então, ocorre o melhor desempenho da paginação ao armazenar as traduções recentes.

Tome nota

A **paginação** permite que o computador use apenas as páginas necessárias do livro em vez de abri-lo inteiro. Isso economiza espaço e possibilita que mais programas rodem ao mesmo tempo.

Swapping e thrashing

Swapping: processo de transferir páginas ou segmentos de memória entre RAM e o disco para otimizar o uso de memória pelos processos.

Utilização: técnica usada para liberar memória para processos que necessitam de mais recursos ou para balancear o uso da memória entre os processos em execução.

O uso excessivo do *swapping* pode causar *thrashing*, um estado no qual o sistema gasta mais tempo com essa transferência do que executando os processos.

Swapping e thrashing são conceitos relacionados ao gerenciamento de memória em sistemas operacionais.

Ambos são usados quando a memória está limitada ou estão sendo intensamente utilizados.

Swapping e thrashing

O *thrashing* pode afetar negativamente o desempenho do sistema, causando lentidão e possíveis travamentos.

Como minimizar o thrashing?

Sistemas operacionais **aprimoram o algoritmo**, que decide quais páginas trocar, e controlam a quantidade de programas rodando ao mesmo tempo por meio da multiprogramação.

Isso ajuda a evitar sobrecarga por processos simultâneos.

Além disso, preveem quais páginas serão necessárias, mantêm as mais relevantes na memória e utilizam algoritmos avançados de substituição, como o Least Recently Used (LRU).

Tome nota

Least Recently Used (LRU) é um algoritmo de substituição de cache usado para gerenciar a memória de forma eficiente, decidindo qual item em memória será substituído para dar espaço a um novo item.

© Getty Images

Exemplos de swapping e thrashing

Exemplo 1:

Um sistema operacional pode usar algoritmos como **LRU** (*Least Recently Used*) para prevenir o *thrashing*, substituindo as páginas que não foram usadas por um longo período, minimizando o impacto no desempenho.

Exemplo 2:

Um servidor web sob alta carga pode começar a fazer **swapping intensivo** quando a RAM fica cheia, movendo dados ativos entre a memória e o disco.

Isso pode resultar em uma desaceleração significativa do tempo de resposta às requisições.

Exemplos de swapping e thrashing

Exemplo 3:

Aumentar a quantidade de RAM em um computador pode reduzir a frequência de *swapping* e **prevenir o** *thrashing*.

Isso é observado em máquinas de edição de vídeo, nas quais grandes quantidades de dados precisam ser processadas rapidamente.

Exemplos

Exemplos populares de software de servidor web incluem Apache HTTP Server, Nginx, Microsoft Internet Information Services (IIS) e LiteSpeed.

Alocação de memória

A alocação de memória é vital no gerenciamento de sistemas operacionais, pois define a distribuição da memória para os processos e busca o uso eficiente, reduzindo a fragmentação. Estratégias como **best-fit, worst-fit e first-fit** têm prós e contras, conforme a situação.

best-fit	worst-fit	first-fit
Aloca o menor bloco capaz de atender à demanda, minimizando a fragmentação externa, mas pode ser mais lenta, devido à necessidade de procurar o bloco ideal.	Opta pelo maior bloco disponível, mantendo grandes blocos de memória livres para uso futuro, mas pode levar a uma maior fragmentação com o tempo.	Aloca o primeiro bloco de memória grande, oferecendo um bom equilíbrio entre performance e simplicidade.

Elaborado especialmente para o curso.

Alocação de memória

Sistemas operacionais utilizam técnicas para lidar com a **fragmentação**, a fim de garantir que os recursos de memória sejam otimizados entre os processos, como:

- compactação da memória;
- uso de algoritmos de alocação que equilibram eficiência e velocidade.

Tipos de fragmentação:

Fragmentação interna: ocorre quando o espaço de memória alocado é maior do que o necessário pelo processo, levando a um desperdício de memória nos blocos designados.

Fragmentação externa: ocorre quando há espaço livre na memória total, mas está fracionado em blocos pequenos demais para atender a uma solicitação de alocação.

© Getty Images

Exemplos de alocação de memória

Exemplo 1:

No Linux, o algoritmo de **alocação first-fit** é bastante usado para alocar espaço de memória para novos processos, procurando o primeiro espaço que seja grande o suficiente para acomodar a solicitação.

Exemplo 2:

A fragmentação interna pode ocorrer quando, em sistemas com páginas fixas de memória, o espaço não é totalmente usado pelos processos, como se uma página tivesse 4 KB, mas o processo só usasse 3,5 KB, sobrando 0,5 KB inutilizado.

Exemplos de alocação de memória

Exemplo 3:

Em sistemas como o Windows, que usam alocação dinâmica de memória, pode surgir **fragmentação externa**. Isso ocorre quando "buracos" pequenos demais para uso efetivo aparecem após aplicativos serem desinstalados ou alocações irregulares de memória serem feitas.

Tome nota

Essa situação pode requerer uma **desfragmentação**, para otimizar o espaço.

O que a TLB armazena?

Endereços físicos somente.

Traduções de endereços recentes.

Endereços virtuais somente.

Dados de usuário e *kernel*.

O que a TLB armazena?

Endereços físicos somente.

Endereços virtuais somente.

Traduções de endereços recentes.

Dados de usuário e kernel.

FEEDBACK GERAL DA ATIVIDADE

A Translation Lookaside Buffer (TLB) armazena as traduções mais recentes ou frequentemente acessadas de endereços virtuais para físicos, o que acelera significativamente o processo de tradução de endereços durante a paginação.

O que o thrashing causa?

Melhoria do desempenho.

Desaceleração do sistema.

Aumento de espaço em disco.

Redução de uso de CPU.

O que o thrashing causa?

Melhoria do desempenho.

Aumento de espaço em disco.

Desaceleração do sistema.

Redução de uso de CPU.

FEEDBACK GERAL DA ATIVIDADE

O thrashing ocorre quando há excesso de swapping (troca de páginas de memória com o disco), levando a uma desaceleração significativa no sistema, pois o sistema operacional passa mais tempo paginando do que executando processos.

Qual alocação minimiza fragmentação externa?

Best-fit.

Worst-fit.

First-fit.

Random-fit.

Qual alocação minimiza fragmentação externa?

Best-fit.

Worst-fit.

First-fit.

Random-fit.

FEEDBACK GERAL DA ATIVIDADE

O algoritmo de alocação *best-fit* procura o menor bloco de memória livre que é suficiente para atender à demanda, minimizando assim a quantidade de espaço desperdiçado e a fragmentação externa.

Hoje desenvolvemos:

- A habilidade no uso da **paginação** para gerir memória eficientemente, entendendo a divisão do espaço em páginas e o papel crucial da **TLB** na aceleração do acesso à memória.
- Os conhecimentos de **swapping e thrashing**, compreendendo o intercâmbio de páginas de memória com o disco e as estratégias para evitar a degradação do desempenho por excesso de paginação.
- A expertise nas estratégias de alocação de memória, como **best-fit e first-fit**, e de como minimizar a fragmentação, optando pela melhor conformidade com o espaço disponível.

Saiba mais

Neste artigo, vamos fazer o download e a instalação do Ubuntu 18.04, vamos falar de algumas distribuições do Linux e listar alguns dos principais comandos.

DELVA, P. Linux: download, instalação, distribuições e principais comandos. *Alura*, 2020. Disponível em:

https://www.alura.com.br/artigos/linux-download-instalacao-distribuicoes-e-principais-comandos. Acesso em: 11 mar. 2024.

Referências da aula

DELVA, P. Linux: download, instalação, distribuições e principais comandos. *Alura*, 2020. Disponível em: https://www.alura.com.br/artigos/linux-download-instalacao-distribuicoes-e-principais-comandos. Acesso em: 11 mar. 2024.

TANENBAUM, A. S.; BOS, H. Sistemas operacionais modernos. São Paulo: Pearson Education do Brasil, 2016.

Identidade visual: Imagens © Getty Images

Educação Profissional Paulista

Técnico em Ciência de Dados

S11 - Aula 1 - Quiz

Condições de conclusão Ver O que a TLB armazena? O Endereços físicos somente. O Traduções de endereços recentes. O Endereços virtuais somente. O Dados de usuário e kernel. O que o thrashing causa? O Melhoria do desempenho. O Aumento de espaço em disco. O Desaceleração do sistema. O Redução de uso de CPU. Qual alocação minimiza fragmentação externa? O Worst-fit. O Best-fit. O Random-fit. O First-fit.

Disciplina

Introdução a Ciencia de Dados, Ferramentas e Jargões da Área 2º Bimestre

Curso

Técnico em Ciência de Dados

Ano letivo

2025

Ĵ

Retornar ao Sumário

Educação Profissional Paulista

Técnico em Ciência de Dados

Introdução à informática

Aula 2

[DADOS]ANOICIB2S11A2

Objetivos da Aula

Introduzir os conceitos de sistemas operacionais.

Competências da Unidade (Técnicas e Socioemocionais)

- Compreender e dominar os principais conceitos e noções de sistemas operacionais na informática;
- Analisar situações em que cada tipo de sistema operacional pode ser utilizado e identificar os principais equipamentos e finalidades de aplicação para seus usos;
- Trabalhar em grupos.

Recursos Didáticos

- Recurso audiovisual para a exibição de textos, vídeos e imagens;
- Artigos selecionados para leitura.

Duração da Aula

50 minutos.

Conceitos fundamentais de sistemas de arquivo

Os sistemas de arquivos são vitais para os sistemas operacionais, gerenciando o armazenamento, a organização e o acesso aos dados em mídias de armazenamento.

Eles determinam a nomenclatura, a alocação e a segurança dos arquivos dentro de uma estrutura de diretórios. **Conheça cada um**:

NTFS ext4 FAT32 (New Technology File (Fourth Extended File (File Allocation Table 32) System) System) Utilizado pelo Windows, é Popular no Linux, é Aloca o primeiro bloco de conhecido por suportar reconhecido por sua memória grande, grandes volumes e robustez e eficiência no oferecendo um bom complexas configurações gerenciamento de muitos equilíbrio entre de permissões, tornandoarquivos pequenos, ideal performance e -o adequado para para servidores e sistemas simplicidade. de banco de dados. ambientes empresariais.

Elaborado especialmente para o curso.

Conceitos fundamentais de sistemas de arquivo

A estrutura de um sistema de arquivos inclui metadados que armazenam informações sobre os arquivos, como:

- tamanho;
- data de criação;
- permissões;
- localização;

Esses dados são **essenciais** para o gerenciamento eficiente dos arquivos e a interação do usuário/aplicativos com o sistema de arquivos.

Além disso, sistemas de arquivos contemporâneos incluem funcionalidades como compressão e criptografia de dados, **otimizando** o uso do espaço e resguardando informações sensíveis.

Exemplos de conceitos fundamentais de sistemas de arquivo

Exemplo 1:

O sistema de arquivos NTFS no Windows inclui definir permissões complexas de arquivo e tem suporte para **grandes volumes de armazenamento**, adequado para empresas e servidores.

Exemplo 2:

O sistema de arquivos **FAT32** é muito usado em dispositivos de armazenamento removíveis, como pen drives, devido à sua compatibilidade universal entre sistemas operacionais, mesmo tendo limitações de tamanho de arquivo e volume.

Exemplos de conceitos fundamentais de sistemas de arquivo

Exemplo 3:

No Linux, o **sistema de arquivos ext4** é amplamente utilizado por sua eficiência em gerenciar um vasto número de pequenos arquivos.

Tome nota

No Linux, o ext4 é ideal para servidores de arquivos e sistemas de bancos de dados.

Implementação de sistemas de arquivos

A implementação dos sistemas de arquivos define como os dados são escritos e lidos nos dispositivos de armazenamento. Existem métodos de alocação de arquivos, como:

- **Alocação contígua**: simples e eficaz para acessos sequenciais, mas pode causar fragmentação.
- **Alocação encadeada**: utilizada no FAT32, permite fácil expansão dos arquivos, mas acessos aleatórios são mais lentos.
- Alocação indexada: usada no ext4, conta com inodes que direcionam aos blocos de dados, agilizando o acesso direto aos arquivos.

Tome nota

Inodes são estruturas essenciais em vários sistemas de arquivos UNIX, como o ext3 e ext4 no **Linux**. Eles guardam dados importantes de um arquivo, menos o nome e o conteúdo. "Inode" vem de "index node".

Implementação de sistemas de arquivos

Os sistemas de arquivos precisam **gerenciar a integridade e a organização dos dados**, especialmente em situações de falhas do sistema ou desligamentos inesperados.

Sistemas atuais usam o *journaling*, que anota alterações antes de efetivá-las no sistema principal. Isso permite restaurar o sistema de modo rápido e seguro após falhas, mantendo a consistência dos dados.

Tome nota

O **journaling** é uma técnica em sistemas de arquivos que registra as mudanças em um *log* antes de aplicá-las ao sistema principal. Assim, se houver uma falha durante uma gravação, o sistema operacional verifica o *log* (journal) para finalizar as alterações pendentes e prevenir a corrupção de dados.

Exemplos de implementação de sistemas de arquivos

Exemplo 1:

O método de alocação contígua é simples e facilita o acesso sequencial, mas pode levar à fragmentação ao longo do tempo.

Isso pode resultar em ineficiência para sistemas antigos ou sistemas embarcados com necessidades de armazenamento previsíveis.

Exemplo 2:

Sistemas de arquivos que utilizam alocação encadeada, como o FAT32, permitem a expansão fácil de arquivos adicionando-se mais blocos à cadeia.

Contudo, o acesso aleatório é mais lento, já que cada bloco precisa ser lido em sequência.

Exemplos de implementação de sistemas de arquivos

Exemplo 3:

O uso de **inodes** no sistema de arquivos **ext4** permite uma alocação indexada, na qual cada arquivo tem um inode que aponta para seus blocos de dados.

Tome nota

Alocação indexada eficiente facilita o acesso direto e a expansão de arquivos.

Gerenciamento de espaço em disco

Objetivo: a administração eficaz do espaço em disco é crucial para maximizar a eficiência do armazenamento e assegurar a integridade dos dados.

Métodos como bitmap ou listas encadeadas são vitais para monitorar os blocos utilizados e disponíveis.

Além disso, sistemas de arquivos com *journaling*, a exemplo do ext4 e NTFS, reforçam a confiabilidade por meio de um log de transações que registra as alterações planejadas nos arquivos.

Permitindo que:

O sistema se recupere de forma estável após interrupções.

Gerenciamento de espaço em disco

O LVM, ou gerenciamento de volumes lógicos, oferece uma maneira avançada e flexível de administrar o espaço em disco.

Permite ao administrador do sistema alterar o tamanho de partições e volumes sem interrupções, adaptando o espaço disponível conforme as demandas mudam.

 Vantajoso em servidores, nos quais a necessidade por armazenamento pode mudar bastante.

Os sistemas de arquivos precisam gerir a **fragmentação**: acontece quando arquivos são armazenados em partes dispersas no disco, afetando o desempenho.

Para resolver isso, utilizam-se ferramentas de **desfragmentação** para reorganizar os dados e otimizar o acesso aos arquivos.

Exemplo

No Windows, desfragmentar é um procedimento de manutenção regular para juntar fragmentos de arquivos e melhorar a velocidade de leitura e escrita no disco.

Exemplos de gerenciamento de espaço em disco

Exemplo 1:

Sistemas com *journaling*, como o ext4, podem recuperar-se rapidamente de falhas, registrando mudanças em um *journal* antes de aplicá-las ao sistema de arquivos principal, garantindo a integridade dos dados após um *crash*.

Exemplo 2:

O uso do **LVM** em servidores Linux permite o redimensionamento dinâmico de volumes sem interromper o acesso aos dados, facilitando a gestão de espaço em ambientes que requerem flexibilidade de armazenamento.

Exemplos de gerenciamento de espaço em disco

Exemplo 3:

A desfragmentação periódica em sistemas de arquivos **NTFS no Windows** reorganiza os dados para melhorar a velocidade de acesso e aumentar o espaço contíguo disponível.

Tome nota

Essa realização otimiza o desempenho do sistema.

Vamos fazer uma **atividade**

Brainstorming: seminário sobre sistemas operacionais mais utilizados no mercado

No seminário sobre sistemas operacionais, exploraremos e debateremos os mais usados atualmente, focando em aprofundar o conhecimento técnico, as aplicações práticas, o perfil dos usuários e o impacto das comunidades de desenvolvedores.

20 mir

Em grupo

Cada grupo de alunos será responsável por pesquisar, analisar e apresentar um esboço abrangente que cubra os seguintes pontos:

- Introdução aos sistemas operacionais mais utilizados: apresentem uma visão geral dos sistemas operacionais dominantes no mercado, incluindo uma breve história e suas estatísticas atuais de uso e popularidade.
- Características técnicas: analisem as características-chave dos sistemas operacionais dominantes, focando em gestão de memória, processamento, arquivos e segurança e como cada um maneja atualizações e suporte.
- Casos de uso e aplicativos: identifiquem os perfis de usuários típicos e discutam os casos de uso mais comuns, incluindo aplicações industriais, comerciais e pessoais para cada sistema operacional.
- **Desenvolvimento e comunidade**: examinem o modelo de desenvolvimento (código aberto vs. código fechado) de cada sistema operacional, o suporte comunitário e corporativo e como isso influencia sua evolução e adoção.
- Tendências e futuro: reflitam sobre as inovações recentes e as tendências futuras para os sistemas operacionais, considerando o impacto da computação em nuvem, da inteligência artificial e da Internet das Coisas (IoT).

Seminário sobre sistemas operacionais mais utilizados no mercado

Durante a apresentação, estejam preparados para responder às seguintes perguntas-chave:

- Quais são as principais diferenças nos recursos de gerenciamento de memória e processamento entre os sistemas operacionais mais utilizados?
- Como cada sistema operacional atende a diferentes tipos de usuários e casos de uso, e quais são as aplicações mais significativas para cada um?
- Qual é o papel das comunidades de desenvolvimento e do modelo de licenciamento na trajetória de sucesso de um sistema operacional?

Entrega para hoje: Cada grupo precisa enviar um resumo detalhado da apresentação com fontes usadas no AVA.

Na próxima aula, cada grupo realizará sua apresentação, expondo suas descobertas e percepções à turma.

Hoje desenvolvemos:

- O entendimento aprofundado sobre **NTFS, ext4 e FAT32**, discernindo como cada um serve a propósitos variados, do NTFS robusto ao FAT32 simples e ao ext4 eficiente no Linux.
- Conhecimentos em gestão de sistemas de arquivos, avaliando métodos de alocação, como contíguo, encadeado e indexado, e seu impacto na eficiência de armazenamento e acesso a dados.
- A compreensão do **LVM e do journaling** para garantir a consistência e a recuperação de dados, enfatizando a relevância dessas técnicas para a evolução dos sistemas **operacionais e as demandas por eficácia**.

Saiba mais

"Qual sistema operacional você usa?"

Você pensa logo no Windows, no terminal do Linux ou no ícone do Android? Mas sistemas operacionais vão além das interfaces gráficas e dos *shells*. Surpreso? Não é só sobre clicar em ícones ou digitar comandos!

Conheça mais no curso de introdução ao sistema operacional.

PESSÔA, C. Sistemas operacionais: conceito e estrutura. *Alura*, 2023. Disponível em: https://www.alura.com.br/artigos/sistemas-operacionais-conceito-estrutura. Acesso em: 11 mar. 2024.

Referências da aula

PESSÔA, C. Sistemas operacionais: conceito e estrutura. *Alura*, 2023. Disponível em: https://www.alura.com.br/artigos/sistemas-operacionais-conceito-estrutura Acesso em: 11 mar. 2024.

TANENBAUM, A. S.; BOS, H. Sistemas operacionais modernos. São Paulo: Pearson Education do Brasil, 2016.

Identidade visual: Imagens © Getty Images

Educação Profissional Paulista

Técnico em Ciência de Dados

S11 - Aula 2 - Registro

Brainstorming: seminário sobre sistemas operacionais mais utilizados no mercado

No seminário sobre sistemas operacionais, exploraremos e debateremos os mais usados atualmente, focando em aprofundar o conhecimento técnico, as aplicações práticas, o perfil dos usuários e o impacto das comunidades de desenvolvedores.

Cada grupo de alunos será responsável por pesquisar, analisar e apresentar um esboço abrangente que cubra os seguintes pontos:

- Introdução aos sistemas operacionais mais utilizados: apresentem uma visão geral dos sistemas operacionais dominantes no mercado, incluindo uma breve história e suas estatísticas atuais de uso e popularidade.
- Características técnicas: analisem as características-chave dos sistemas operacionais dominantes, focando em gestão de memória, processamento, arquivos e segurança e como cada um maneja atualizações e suporte.
- 1. Casos de uso e aplicativos: identifiquem os perfis de usuários típicos e discutam os casos de uso mais comuns, incluindo aplicações industriais, comerciais e pessoais para cada sistema operacional.
- Desenvolvimento e comunidade: examinem o modelo de desenvolvimento (código aberto vs. código fechado) de cada sistema operacional, o suporte comunitário e corporativo e como isso influencia sua evolução e adoção.
- Tendências e futuro: reflitam sobre as inovações recentes e as tendências futuras para os sistemas operacionais, considerando o impacto da computação em nuvem, da inteligência artificial e da Internet das Coisas (IoT).

Durante a apresentação, estejam preparados para responder às seguintes perguntas-chave:

- 1. Quais são as principais diferenças nos recursos de gerenciamento de memória e processamento entre os sistemas operacionais mais utilizados?
- 1. Como cada sistema operacional atende a diferentes tipos de usuários e casos de uso, e quais são as aplicações mais significativas para cada um?
- 1. Qual é o papel das comunidades de desenvolvimento e do modelo de licenciamento na trajetória de sucesso de um sistema operacional?

Entrega para hoje: Cada grupo precisa enviar um resumo detalhado da apresentação com fontes usadas no AVA.

Na próxima aula, cada grupo realizará sua apresentação, expondo suas descobertas e percepções à turma.

	Condições de conclusão	
(
Fazer um envio		

Resumo das Avaliações

Turmas separadas: 293566972 | 2ª SERIE BT MANHA ANUAL | 99 | JOAO CRUZ PROF

Oculto para estudantes	Não
Participantes	43
Enviado	1

Disciplina

Introdução a Ciencia de Dados, Ferramentas e Jargões da Área 2º Bimestre

Curso

Técnico em Ciência de Dados

Ano letivo

2025

Ĵ

Retornar ao Sumário

Educação Profissional Paulista

Técnico em Ciência de Dados

Introdução à informática

Aula 3

Código da aula: [DADOS]ANO1C1B2S11A3

Objetivos da Aula

Introduzir os conceitos de sistemas operacionais.

Competências da Unidade (Técnicas e Socioemocionais)

- Compreender e dominar os principais conceitos e noções de sistemas operacionais na informática;
- Analisar situações em que cada tipo de sistema operacional pode ser utilizado e identificar os principais equipamentos e finalidades de aplicação para seus usos;
- Trabalhar em grupos.

Recursos Didáticos

- Recurso audiovisual para a exibição de textos, vídeos e imagens;
- Artigos selecionados para leitura.

Duração da Aula

50 minutos.

Vamos fazer uma **atividade**

Seminário:

Tema: sistemas operacionais mais utilizados no mercado

Em grupo

Agora é o momento de apresentar!

- Cada grupo terá um tempo para apresentação. Esse tempo será definido pelo professor em função da quantidade de grupos na sala.
- Programem-se para não ultrapassar o tempo máximo e, também, para não apresentar de forma rápida e sem profundidade.
- 3 Lembrem-se do tempo destinado às perguntas.

Hoje desenvolvemos:

O conhecimento por meio de pesquisas de quais são os sistemas operacionais mais utilizados no **mercado globalizado**, o que garantiu uma visão holística.

A habilidade de comunicação em grupo ao explorar o tema dos **sistemas operacionais**, além do compartilhamento de ideias e informações.

A capacidade de sintetizar informações complexas com os pontos principais dos sistemas operacionais mais usados, vendo não apenas suas **funcionalidades**, mas também sua relevância no contexto atual da tecnologia da informação.

Saiba mais

Que tal dominar o universo Linux?

Mergulhe na essência do Open Source, navegue pelas distribuições e sistemas embarcados, amplie seus horizontes com aplicações desktop e *server-side* vitais,

Decifre as linguagens de programação essenciais para sua certificação:

ALURA. Certificação Linux LPI Essentials: Evolution and Distributions. Disponível em: https://www.alura.com.br/curso-online-certificacao-linux-lpi-essentials-evolution-distributions. Acesso em: 11 mar. 2024.

Referências da aula

ALURA. *Certificação Linux LPI Essentials*: Evolution and Distributions. Disponível em: https://www.alura.com.br/curso-online-certificacao-linux-lpi-essentials-evolution-distributions Acesso em: 11 mar. 2024.

TANENBAUM, A. S.; BOS, H. Sistemas operacionais modernos. São Paulo: Pearson Education do Brasil, 2016.

Identidade visual: Imagens © Getty Images

Educação Profissional Paulista

Técnico em Ciência de Dados

