

1/21

- 1 Saline Control
- 2 PGF-2 α – 1 hr 10 mM sperm.
- 3 PFG-2 α – 1 hr 10 mM sperm. + 5 hr 1 mM sperm.

BEST AVAILABLE COPY

FIG. 1

2/21

- Control
- ~ Control + Spermidine
- ω PGF-2 α (1 h 35 m)
- 4 PGF-2 α (1 h 35 m) + Spermidine
- 5 PGF-2 α (1 h 35 m) + Spermidine
- 6 PGF-2 α (3 h 45 m) + Spermidine
- 7 PGF-2 α (3 h 45 m) + Spermidine

FIG.2

3/21

TCGAAGACCGGTAAGCACGGCATGCCAAGGTCCATCTGGTTGGTATTGATATTTTACTGGGAAGAAATAT
S K T G K H G H A K V H L V G I D I F T G K K Y
GAAGATATCTGCCCGTCACTCATAACATGGATGTCACCAACATCAAAGGAATGATTCCAGCTGATTGGC
E D I C P S T H N M D V P N I K R N D F Q L I G
ATCCAGGATGGGTACCTATCCCTGCTCCAGGACAGTGGGGAGGTACGAGAGGACCTCGTCTGCCTGAGGG
I Q D G Y L S L L Q D S G E V R E D L R L P E G
GACCTTGGCAAGGAGATTGAGCAGAAGTATGACTGTGGAGAAGAGATCCTGATCACAGTGCTGTCCGCCATG
D L G K E I E Q K Y D C G E E I L I T V L S A M
ACAGAGGAGGCAGCTGTTGCAATCAAGGCCATGGCAAAATACTGGCTTCCAGGGTGGCGGTGGCAGCA
T E E A A V A I K A M A K
GTGATCCATGAGCCTACAGAGGCCCTCCCCCAGCTCTGGCTGGCCCTGGCTGGACTCCTATCCAATT
TTTGACGTTTATTTGGTTTCCCTACCCCTCAAACGTGCGGGAGACCCTGCCCTCACCTAGCTCCCT
TGGCCAGGCATGAGGGAGGCCATGGCCTGGTGAAGCTACCTGCCTCTCTCGCAGCCCTGATGGGGAAA
GGGAGTGGGTACTGCCTGTGGTTAGGTTCCCTCCCTTTCTTAAATTCAATTGGAATCAGAAAG
CTGTGGATTCTGGCAAATGGTCTTGTCTTATCCCACCTAAACCCATCTGGTCCCTGTTCTCCATAGT
CCTTCACCCCCAACGACCACTGACAGACTGGGACCCAGCCCCCTCCCTGCCTGTCTTCCAAACCC
TCTATAGGGGTGACAAGAAGAGGGAGGGGGAGGGGACACGATCCCTCCTCAGGCATCTGGGAAGGCCTTGC
CCCCATGGCTTACCCCTTCTGTGGCTTCTCCCTGACACATTGTTAAAATCAAACCTGAATAAAC
TACAAGTTAATATGAAAAAAAAAAAAAA
(972 NT, 109 aa)

FIG.3

4/21

CAGGTCTAGAGTTGGAATCGAACCTCTTAAAATGGCAGATGATTGGACTTCGAGACAGGAGATGCAGGGG
M A D D L D F E T G D A G
CCTCAGCCACCTTCCAATGCAGTGCTCAGCATTACGTAAGAATGGTTTGCTGGTCAAGGGCCGGCCAT
A S A T F P M Q C S A L R K N G F V V L K G R P
GTAAGATCGTCGAGATGTCTACTTCGAAGACTGGCAAGCATGCCATGCCAAGGTCCATCTGGTTGGTATTG
C K I V E M S T S K T G K H G H A K V H L V G I
ATATTTTACTGGGAAGAAATATGAAGATATCTGCCCGTCGACTCATAACATGGATGTCCCCAACATCAAAA
D I F T G K K Y E D I C P S T H N M D V P N I K
GGAATGATTCCAGCTGATTGGCATCCAGGATGGGTACCTATCCCTGCTCCAGGACAGTGGGGAGGTACGAG
R N D F Q L I G I Q D G Y L S L L Q D S G E V R
AGGACCTTCGTCTGCCCTGAGGGAGACCTGGCAAGGAGATTGAGCAGAAGTATGACTGTGGAGAAGAGATCC
E D L R L P E G D L G K E I E Q K Y D C G E E I
TGATCACAGTGCTGTCGCCATGACAGAGGAGGCAGCTGTTGCAATCAAGGCTCGAG
L I T V L S A M T E E A A V A I K A

(488 NT, 151 aa)

FIG.4

5/21

CAGGTCTAGAGTTGGAATCGAACCTCTTAAATGGCAGATGATTGGACTTCGAGACAGGAGATGCAGGGG	
M A D D L D F E T G D A G	13
CCTCAGCCACCTCCAATGCAGTGCTCAGCATTACGTAAAGAATGGTTTGCTGGTCAAGGGCCGGCCAT	144
A S A T F P M Q C S A L R K N G F V V L K G R P	
GTAAGATCGTCGAGATGTCTACTTCGAAGACTGGCAAGCATGCCATGCCAAGGTCCATCTGGTTGGTATTG	
C K I V E M S T S K T G K H G H A K V H L V G I	61
ATATTTTACTGGGAAGAAATATGAAGATATCTGCCCGTCGACTCATAACATGGATGTCCCCAACATCAAAA	288
D I F T G K K Y E D I C P S T H N M D V P N I K	
GGAATGATTCCAGCTGATTGCCATCCAGGATGGTACCTATCCCTGCTCCAGGACAGTGGGGAGGTACGAG	
R N D F Q L I G I Q D G Y L S L L Q D S G E V R	109
AGGACCTTCGTCTGCCTGAGGGAGACCTGGCAAGGAGATTGAGCAGAAGTATGACTGTGGAGAAGAGATCC	432
E D L R L P E G D L G K E I E Q K Y D C G E E I	
TGATCACAGTGCTGTCGCCATGACAGAGGGAGGCAGCTGTTGCAATCAAGGCCATGGCAAAATACTGGCTT	
L I T V L S A M T E E A A V A I K A M A K *	154
CCAGGGTGGCGGTGGTGGCAGCAGTGATCCATGAGCTACAGAGGCCCTCCCCCAGCTCTGGCTGGGCCCT	576
TGGCTGGACTCCTATCCAATTATTTGACTTTATTTGGTTTCTCACCCCTCAAACGTGCGGGGAGA	
CCCTGCCCTCACCTAGCTCCCTGGCCAGGCATGAGGGAGGCCATGGCTGGTGAAGCTACCTGCCTCTTC	720
TCTCGCAGCCCTGATGGGGAAAGGGAGTGGTACTGCCTGTGGTTAGGTTCCCCTCTCCCTTTCTTTT	
TAATTCAATTGGAATCAGAAAGCTGTGGATTCTGGCAAATGGCTTGTGCTTTATCCCACTCAAACCCA	864
TCTGGTCCCTGTTCTCCATAGTCCTCACCCCCAACGACCAACTGACAGACTGGGACAGCCCCCTCCCT	
GCCTGTGTCTTCCAAACCCCTCTAGGGGTGACAAGAAGAGGAGGGGGAGGGGACACGATCCCTCC	1008
TCAGGCATCTGGGAAGGGCTTGCCCCATGGCTTACCCCTTCTGTGGCTTCTCCCTGACACATTGT	
TAATAACCTGAATAAAACTACAAGTTAATATGAAAAAAAAAAAAAA	1139

(1139 NT, 154 aa)

FIG.5

6/21

rat vs. human(BC000751 or NM_001970) 96.5% identity (coding)

	10	20	30	40	50	60	
rat	ATGGCAGATGATTGGACTTCGAGACAGGAGATGCAGGGCCTCAGCCACCTTCCAATG	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	
human	ATGGCAGATGACTTGGACTTCGAGACAGGAGATGCAGGGCCTCAGCCACCTTCCAATG	10	20	30	40	50	60
	70	80	90	100	110	120	
rat	CAGTGCTCAGCATTACGTAAGAATGGTTTGTTGTGGTCAAGGGCCGCCATGTAAGATC	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	
human	CAGTGCTCAGCATTACGTAAGAATGGCTTGTTGTGGTCAAAGGGCCGCCATGTAAGATC	70	80	90	100	110	120
	130	140	150	160	170	180	
rat	GTCGAGATGTCTACTTCGAAGACTGGCAAGCATGGCCATGCCAAGGTCCATCTGGTTGGT	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	
human	GTCGAGATGTCTACTTCGAAGACTGGCAAGCACGGCACGCCAACGGTCCATCTGGTTGGT	130	140	150	160	170	180
	190	200	210	220	230	240	
rat	ATTGATATTTTACTGGGAAGAAATATGAAGATATCTGCCCGTCGACTCATAACATGGAT	:::::::::::	:::::::::::	:::::::::::	:::::::::::	:::::::::::	
human	ATTGACATCTTACTGGGAAGAAATATGAAGATATCTGCCCGTCAACTCATAATATGGAT	190	200	210	220	230	240
	250	260	270	280	290	300	
rat	GTCCCCAACATCAAAAGGAATGATTCCAGCTGATTGGCATCCAGGATGGGTACCTATCC	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	
human	GTCCCCAACATCAAAAGGAATGACTTCCAGCTGATTGGCATCCAGGATGGGTACCTATCA	250	260	270	280	290	300
	310	320	330	340	350	360	
rat	CTGCTCCAGGACAGTGGGGAGGTACGAGAGGACCTTCGTCTGCCTGAGGGAGACCTTGGC	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	
human	CTGCTCCAGGACAGCAGGGGAGGTACGAGAGGACCTTCGTCTCCCTGAGGGAGACCTTGGC	310	320	330	340	350	360
	370	380	390	400	410	420	
rat	AAGGAGATTGAGCAGAAGTATGACTGTGGAGAAGAGATCCTGATCACAGTGCTGTCCGCC	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::	
human	AAGGAGATTGAGCAGAAGTACGACTGTGGAGAAGAGATCCTGATCACGGTGCTGTGCC	370	380	390	400	410	420
	430	440	450	460			
rat	ATGACAGAGGGAGGCAGCTGTTGCAATCAAGGCCATGGCAAAA	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::			
human	ATGACAGAGGGAGGCAGCTGTTGCAATCAAGGCCATGGCAAAA	430	440	450	460		

FIG. 6

7/21

rat vs. human(NM_020390) 72.5% identity (coding)

	10	20	30	40	50	60	
rat	ATGGCAGATGATTGGACTTCGAGACAGGGAGATGCAGGGCCTCAGCCACCTTCCAATG	:::::::::::::::::::	:::::::	:::::::	:::::::	:::::::	
human	ATGGCAGACGAAATTGATTTCACTACTGGAGATGCCGGGCTTCCAGCACTTACCTATG	10	20	30	40	50	60
	70	80	90	100	110	120	
rat	CAGTGCTCAGCATTACGTAAGAATGGTTTGTTGCTCAAGGGCCGGCATGTAAGATC	:::::::	:::::::	:::::::	:::::::	:::::::	
human	CAGTGCTCGGCCTTGCACAAAAACGGCTTGTGGTGTCAAAGGACGACCATGCAAAATA	70	80	90	100	110	120
	130	140	150	160	170	180	
rat	GTCGAGATGTCTACTTCGAAGACTGGCAAGCATGGCCATGCCAAGGTCCATCTGGTTGGT	:::::::	:::::::	:::::::	:::::::	:::::::	
human	GTGGAGATGTCAACTTCAAAACTGGAAAGCATGGTCATGCCAAGGTTCACCTGTTGGA	130	140	150	160	170	180
	190	200	210	220	230	240	
rat	ATTGATATTTTACTGGGAAGAAATATGAAGATATCTGCCCGTCGACTCATAACATGGAT	:::::::	:::::::	:::::::	:::::::	:::::::	
human	ATTGATATTTCACGGGCAAAAATATGAAGATATTTGTCTTCACTCACAACATGGAT	190	200	210	220	230	240
	250	260	270	280	290	300	
rat	GTCCTAACATCAAAAGGAATGATTCCAGCTGATTGGCATCCAGGATGGGTACCTATCC	::::::	::::::	::::::	::::::	::::::	
human	GTTCCAAATATTAAGAGAAATGATTCAACTGATATGCATTCAAGATGGTTACCTTCC	250	260	270	280	290	300
	310	320	330	340	350	360	
rat	CTGCTCCAGGACAGTGGGGAGGTACGAGAGGACCTTCGTCTGCCTGAGGGAGACCTTGGC	::::::	::::::	::::::	::::::	::::::	
human	CTGCTGACAGAAACTGGTGAAGTTCGTGAGGATCTTAAACTGCCAGAAGGTGAACTAGGC	310	320	330	340	350	360
	370	380	390	400	410	420	
rat	AAGGAGATTGAGCAGAAGTATGACTGTGGAGAAGAGATCCTGATCACAGTGCTGTCCGCC	::::::	::::::	::::::	::::::	::::::	
human	AAAGAAATAGAGGGAAAATACAATGCAGGTGAAGATGTACAGGTGTCTGTATGTGTGCA	370	380	390	400	410	420
	430	440	450	460			
rat	ATGACAGAGGGAGGCAGCTGTTGCAATCAAGGCCATGGCAAA	::::::	::::::	::::::			
human	ATGAGTGAGAATATGCTGTAGCCATAAAACCT--GCAAAT	430	440	450	460		

FIG.7

8/21

rat vs. mouse (BC003889) 98.3% identity (coding)

	10	20	30	40	50	60
rat	ATGGCAGATGATTGGACTTCGAGACAGGAGATGCAGGGCCTCAGCCACCTTCCAATG	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::
mouse	ATGGCAGATGATTGGACTTCGAGACAGGAGATGCAGGGCCTCAGCCACCTTCCAATG	10	20	30	40	50
	70	80	90	100	110	120
rat	CAGTGCTCAGCATTACGTAAAGAATGGTTTGTTGCTCAAGGCCGCCATGTAAGATC	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::
mouse	CAGTGCTCAGCATTACGTAAAGAATGGTTTGTTGCTCAAAGGCCGCCATGTAAGATC	70	80	90	100	110
	130	140	150	160	170	180
rat	GTCGAGATGTCTACTTCGAAGACTGGCAAGCATGGCCATGCCAACGGTCCATCTGGTTGGT	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::
mouse	GTCGAGATGTCTACTTCGAAGACTGGCAAGCATGGCCATGCCAACGGTCCATCTGGTTGGC	130	140	150	160	170
	190	200	210	220	230	240
rat	ATTGATATTTTACTGGGAAGAAATATGAAGATATCTGCCCGTCGACTCATAACATGGAT	::::::	::::::	::::::	::::::	::::::
mouse	ATTGACATTTTACTGGGAAGAAATATGAAGATATCTGCCCGTCGACTCATAATATGGAT	190	200	210	220	230
	250	260	270	280	290	300
rat	GTCCCCAACATCAAAGGAATGATTCCAGCTGATTGGCATCCAGGATGGGTACCTATCC	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::
mouse	GTCCCCAACATCAAACGGAATGACTTCAGCTGATTGGCATCCAGGATGGGTACCTATCC	250	260	270	280	290
	310	320	330	340	350	360
rat	CTGCTCCAGGACAGTGGGGAGGTACGAGAGGACCTTCGTCTGCCTGAGGGAGACCTTGGC	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::	:::::::::::::::::::
mouse	CTGCTCCAGGACAGTGGGGAGGTACGAGAGGACCTTCGTCTGCCTGAAGGAGACCTTGGC	310	320	330	340	350
	370	380	390	400	410	420
rat	AAGGAGATTGAGCAGAAGTATGACTGTGGAGAAGAGATCCTGATCACAGTGCTGTCCGCC	::::::	::::::	::::::	::::::	::::::
mouse	AAGGAGATTGAGCAGAAGTATGACTGTGGAGAAGAGATCCTGATCACAGTGCTGTCCGCC	370	380	390	400	410
	430	440	450	460		
rat	ATGACAGAGGAGGCAGCTGTTGCAATCAAGGCCATGGCAAAA	::::::	::::::	::::::		
mouse	ATGACAGAGGAGGCAGCTGTTGCAATCAAGGCCATGGCAAAA	430	440	450	460	

FIG.8

9/21

rat vs. human(BC000751 or NM_001970) 100.0% identity

rat MADDLDFETGDAGASATFPMQCSALRKNGFVVLKGRPCKIVEMSTSKTGKHGHAKVHLVG
.....

human MADDLDFETGDAGASATFPMQCSALRKNGFVVLKGRPCKIVEMSTSKTGKHGHAKVHLVG
10 20 30 40 50 60

rat IDIFTGKKYEDICPSTHNMVPNIKRNDFQLIGIQDGYSLLQDSGEVREDLRLPEGDLG
.....

human IDIFTGKKYEDICPSTHNMVPNIKRNDFQLIGIQDGYSLLQDSGEVREDLRLPEGDLG
70 80 90 100 110 120

rat KEIEQKYDCGEEILITVLSAMTEEAAVAKAMAK
.....

human KEIEQKYDCGEEILITVLSAMTEEAAVAKAMAK
130 140 150

FIG.9

10/21

rat vs. human(NM_020390) 82.5% identity

	10	20	30	40	50	60
rat	MADDLD FETGDAGASATFPMQCSALRKNGFVVLKGRPCKIVEMSTS KHGAKVHLVG	::::::::::	::::::::::	::::::::::	::::::::::	::::::::::
human	MADEID FTGDAGASSTYPMQCSALRKNGFVVLKGRPCKIVEMSTS KHGAKVHLVG	10	20	30	40	50
		70	80	90	100	110
rat	IDIFTGKKY EDICPSTHNM DVPNIKRND FQLIGI QDGYLSSLQDSGEVREDLRLPEGDLG	::::::::::	::::::::::	::::::::::	::::::::::	120
human	IDIFTGKKY EDICPSTHNM DVPNIKRND YQLICI QDGYLSSLTETGEVREDLKLPEGELG	70	80	90	100	110
		130	140	150		
rat	KEIEQKYDCGEEILITVLSAMTEEA AA VAIKAMAK	::::	:::	...:	:::	:
human	KEIEGKYNA GEDVQSV MCAMSEEYAVAIKP-CK	130	140	150		

FIG.10

11/21

rat vs. mouse (BC003889) 100.0% identity

	10	20	30	40	50	60
rat	MADDLD	FETGDAGASATFPMQCSALRKNGFVVLKGRPCKIVEMSTS	KTGKHGHAKVHLVG			
	:::::::::::	:::::::::::	:::::::::::	:::::::::::	:::::::::::	:::::::::::
mouse	MADDLD	FETGDAGASATFPMQCSALRKNGFVVLKGRPCKIVEMSTS	KTGKHGHAKVHLVG			
	10	20	30	40	50	60
	70	80	90	100	110	120
rat	IDIFTGKKYEDICPSTHNM	DVPNIKRND	FQLIGI	QDGYL	SLLQDS	GEVREDLRLPEGDLG
	:::::::::::	:::::::::::	:::::::::::	:::::::::::	:::::::::::	:::::::::::
mouse	IDIFTGKKYEDICPSTHNM	DVPNIKRND	FQLIGI	QDGYL	SLLQDS	GEVREDLRLPEGDLG
	70	80	90	100	110	120
	130	140	150			
rat	KEIEQKYDCGEEILITV	LSAMTEEAAV	AIKAMAK			
	:::::::::::	:::::::::::	:::::::::::	:::::::::::	:::::::::::	:::::::::::
mouse	KEIEQKYDCGEEILITV	LSAMTEEAAV	AIKAMAK			
	130	140	150			

FIG. 11

12/21

FIG. 12

O I P E JC184
NOV 12 2003
PATENT & TRADEMARK OFFICE

13/21

SOUTHERN BLOTT OF RAT GENOMIC DNA

EcoR V

Rat eIF-5A 1139 bp

FIG. 13

O I P E JC182
NOV 1 2 2003.
PATENT & TRADEMARK OFFICE

14/21

FIG. 14

15/21

GCTGTGTATTATTGGGCCATAAGAACACATACCTGTGCTGAGTCCTGCACTCACAGACGGCTACTGGGT
A V Y Y W A H K N H I P V L S P A L T D G S L G
GACATGATCTTTCCATTCTATAAAAACCCAGGCTTGGCCTGGACATCGTTGAAGACCTGCGGCTCATC
D M I F F H S Y K N P G L V L D I V E D L R L I
AACATGCAGGCCATTTGCCAAGCGCACTGGGATGATCATCCTGGGTGGAGGCGTGGTCAAGCACCACATC
N M Q A I F A K R T G M I I L G G G V V K H H I
GCCAATGCTAACCTCATGCGGAATGGAGCTGACTACGCTGTTATATCAACACAGCCCAGGAGTTGATGGC
A N A N L M R N G A D Y A V Y I N T A Q E F D G
TCAGACTCAGGAGCCCGGCCAGATGAGGCTGTCTCCTGGGCAAGATCCGGATGGATGCACAGCCAGTAAAG
S D S G A R P D E A V S W G K I R M D A Q P V K
GTCTATGCTGATGCATCTCTGGTTTCCCTTGCTGGTGGCTGAGACATTGCCAAAAGGCAGATGCCCTC
V Y A D A S L V F P L L V A E T F A Q K A D A F
AGAGCTGAGAAGAATGAGGACTGAGCAGATGGTAAAGACGGAGGCTCTGCCACACTTTATTATTATT
R A E K N E D
GCATACCAACCCCTCTGGCCCTCTCCTGGTCAGCAGCATCTTGAGAATAATGCCCTTTGTTGGTT
CTGTAAGGACTTAAAAAA

(606 NT, 151 aa)

FIG. 15

16/21

FIG.16

O I P E
NOV 12 2003
PATENT & TRADEMARK OFFICE
U.S.A.

17/21

FIG. 17

BEST AVAILABLE COPY

18/21

rat vs. human (BC000333) 87.4% identity (coding)

	10	20	30	40	50	60
rat	GCTGTGATTATGGGCCATAAGAACACATACCTGTGCTGAGTCCTGCACTCACAGAC					
	: :					
human	TCCGTGATTACTGGGCCAGAAGAACACATCCCTGTGTTAGTCCCGCACTTACAGAC					
	10	20	30	40	50	60
	70	80	90	100	110	120
rat	GGCTCACTGGGTGACATGATCTTTCCATT CCTATAAAAACCCAGGCTTGGTCTGGAC					
	: :					
human	GGCTCGCTGGCGACATGATCTCTTCCATT CCTACAAGAACCCGGGCCTGGTCTGGAC					
	70	80	90	100	110	120
	130	140	150	160	170	180
rat	ATCGTTAAGACCTGCGGCTCATCAACATGCAGGCCATTTCGCCAAGCGCACTGGGATG					
	: :					
human	ATCGTTGAGGACCTGAGGCTCATCAACACACAGGCCATTTGCCAAGTGCAGTGGGATG					
	130	140	150	160	170	180
	190	200	210	220	230	240
rat	ATCATCCTGGGTGGAGGCCTGGTCAAGCACACATGCCAATGCTAACCTCATGCGGAAT					
	: :					
human	ATCATTCTGGCGGGGGCGTGGTCAAGCACACATTGCCAATGCCAACCTCATGCGGAAC					
	190	200	210	220	230	240
	250	260	270	280	290	300
rat	GGAGCTGACTACGCTGTTATATCAACACAGCCCAGGAGTTGATGGCTCAGACTCAGGA					
	: :					
human	GGGGCCGACTACGCTGTTACATCAACACAGCCCAGGAGTTGATGGCTCTGACTCAGGT					
	250	260	270	280	290	300
	310	320	330	340	350	360
rat	GCCCCGCCAGATGAGGCTGTCTCCTGGGGCAAGATCCGGATGGATGCACAGCCAGTAAAG					
	: :					
human	GCCCCGACCAGACGAGGCTGTCTCCTGGGGCAAGATCCGGGTGGATGCACAGCCCGTCAAG					
	310	320	330	340	350	360
	370	380	390	400	410	420
rat	GTCTATGCTGATGCATCTCTGGTTTCCCTTGCTGGTGGCTGAGACATTGCCAAAG					
	: :					
human	GTCTATGCTGACGCCCTCCCTGGTCTTCCCCCTGCTTGTGGCTGAAACCTTGGCCAGAAG					
	370	380	390	400	410	420
	430	440	450			
rat	GCAGATGCCTTCAGAGCTGAGAACATGAGGAC					
	: :					
human	ATGGATGCCTTCATGCATGAGAACAGAGGAC					
	430	440	450			

FIG. 18

19/21

Hours After PGF-2 α Treatment

0 1 24

FIG. 19

BEST AVAILABLE COPY

20/21

Saline – 3 hours *in vitro*
PGF-2 α – 3 hours *in vitro*
PGF-2 α – 6 hours *in vitro*

FIG.20

21/21

Southern Blot of Rat Genomic DNA

EcoRV

Partial rat DHS
cDNA probe

FIG. 21

BEST AVAILABLE COPY