▶ ▶ 11 : LIMITES-CONTINUITÉ

1▶

- * Par exemple,]-1,1[est un voisinage de 0 puisque cet intervalle contient $[-\frac{1}{2},\frac{1}{2}]$, c'est aussi un voisinage de 1/2 puisqu'il contient $[\frac{1}{4},\frac{3}{4}]$, mais ce n'est un voisinage ni de 1, ni de -1, ni de 2...
- De même, [1, 2] est un voisinage de 3/2, de 5/4, mais pas de 2.
- * Dans cette définition, on peut remplacer [a-r,a+r] par]a-r,a+r[, puisque ce dernier intervalle contient $[a-\frac{r}{2},a+\frac{r}{2}].$

2▶

On retrouve ici les notions vues au moment de l'étude de \mathbb{R} .

Par exemple, 0 est intérieur à]-1,1[, comme d'ailleurs tout point a de]-1,1[puisque

 $]a-r,a+r[\subset]-1,1[$ en choisissant $r=\mathrm{Min}(|a-1|,|a+1|)/2.$ On dit que]-1,1[est un ouvert.

De même, tout réel est intérieur à \mathbb{R} (qui est donc un ouvert), \varnothing est également un ouvert.

En revanche 2 n'est pas intérieur à]1,2] (qui n'est donc pas un ouvert).

 $\stackrel{\circ}{D}$ est toujours inclus dans D par définition ; il y a égalité exactement lorsque D est un ouvert.

Les complémentaires des ouverts s'appellent des fermés. Par exemple, $[1, +\infty[$ est un fermé puisque son complémentaire $]-\infty, 1[$ est un ouvert ; $\mathbb R$ est un fermé puisque son complémentaire est un ouvert, de même que \varnothing : [1, 2[n'est ni ouvert ni fermé.

3▶

Par exemple, 0 est adhérent à [-1,1], comme tous les points de [-1,1]. En revanche, 2 et 1 sont adhérents à]1,2], alors que 1 n'appartient pas à l'intervalle : cet intervalle n'est pas fermé car distinct de son adhérence.

D est toujours inclus dans \overline{D} puisque tout élément de D est limite de la suite constante prenant sa valeur ; il y a égalité exactement lorsque D est un fermé.

En particulier, tout singleton est fermé.

4▶

Par exemple, $x \mapsto 1/|x|$ est majorée au voisinage de 1 (par 2 sur $[\frac{1}{2}, \frac{3}{2}]$) et au voisinage de $+\infty$ (par 1 sur $[1, +\infty[$), et positive au voisinage de 0 (sur $]-1, 1[\cap \mathbb{R}^*$ par exemple).

5▶

Dit moins précisément : il est possible de se placer assez proche de a pour que tout élément soit envoyé par f aussi proche de l que fixé à l'avance.

6▶

- * Ces écritures traitent les différents cas suivant que le point au voisinage duquel on se place et la limite obtenue sont réels ou infinis.
- * Pour le cas où l est un réel, $\lim_{x\to a} f(x) = l$ équivaut à $\lim_{x\to a} |f(x)-l| = 0$.
- \ast Les inégalités larges des implications peuvent être écrites strictes, ce qui donne encore des définitions équivalentes.

Pratique 1:

- $\begin{array}{l} \textbf{1.} \lim_{x \to 2} f(x) = 3 \text{ s'\'ecrit } : \ \forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in D, \ |x-2| < \eta \Longrightarrow |f(x) 3| < \varepsilon \\ \lim_{x \to +\infty} f(x) = -\infty \text{ s'\'ecrit } : \ \forall B > 0, \ \exists A > 0, \ \forall x \in D, \ x > A \Longrightarrow f(x) < -B \end{array}$
- **2.** Supposons $\lim_{x \to a} f(x) = l$.

Pour tout voisinage V_l de l, il existe un voisinage V_a de a tel que $f(V_a \cap D) \subset V_l$. Or $f(a) \in f(V_a \cap D)$ si on suppose que f(a) existe, donc f(a) appartient à tout voisinage de l. Ainsi f(a) est aussi proche de l qu'on le veut, donc f(a) = l.

- **3.** Pour les isométries, k=1 et l'inégalité est une égalité (fonctions de type $x\mapsto \pm x+cste$). Supposons f k-lipschitzienne sur \mathbb{R} , et soit $x_0\in\mathbb{R}$. Soit enfin $\varepsilon>0$. Si on choisit $\eta=\varepsilon/k$, il vient pour tout x tel que $|x-x_0|<\eta:|f(x)-f(x_0)|\leqslant k\varepsilon/k=\varepsilon$. Ainsi f est de limite $f(x_0)$ en x_0 .
- **4.** Soit x_0 un réel et soit $0 < \varepsilon < 1$. Pour tout $\eta > 0$, le voisinage $]x_0 \eta, x_0 + \eta[$ contient un rationnel x_1 et un irrationnel x_2 (c'est la densité de \mathbb{Q} et de $\mathbb{R} \setminus \mathbb{Q}$ dans \mathbb{R}). On a alors : $|x_0 x_1| < \eta$ et $|x_0 x_2| < \eta$, mais $|\mathbb{I}_{\mathbb{Q}}(x_0) \mathbb{I}_{\mathbb{Q}}(x_1)|$ ou $|\mathbb{I}_{\mathbb{Q}}(x_0) \mathbb{I}_{\mathbb{Q}}(x_2)|$ est égal à 1 ou 0 suivant que x_0 est rationnel ou pas. $\mathbb{I}_{\mathbb{Q}}$ ne peut donc admettre $\mathbb{I}_{\mathbb{Q}}(x_0)$ pour limite en x_0 .

7▶

Par exemple, $x \mapsto 1/x$ tend vers $+\infty$ en 0^+ et tend vers $-\infty$ en 0^- . Autre exemple, $x \mapsto e^{-1/x^2}$ tend vers 0 en 0^+ et en 0^- (par parité).

8▶

* Preuve: Supposons $\lim_{x\to a} f(x) = l$: pour tout voisinage V_l de l, il existe un voisinage V_a de a tel que $f(V_a\cap D)\subset V_l$. En particulier: $f(V_a\cap D\cap]-\infty, a[)\subset V_l$ et $f(V_a\cap D\cap]a, +\infty[)\subset V_l$, donc f admet l comme limite à gauche et à droite de a.

Réciproquement, soit l la limite à droite et à gauche de f en a, et V_l un voisinage de l. On écrit les deux définitions de limites à gauche et à droite de a avec V_l , ce qui donne deux voisinages V_{ag} et V_{ad} de a; on pose $V_a = V_{ag} \cap V_{ad}$, c'est un voisinage de a tel que : $f(V_a \setminus \{a\}) \subset V_l$, ce qui justifie $\lim_{x \to a} f(x) = l$ si f n'est pas définie en a.

- Si f est définie en a et l = f(a), alors $f(V_a) \subset V_l$ puisque $f(a) \in V_l$, ce qui donne la conclusion.
- * Comme on l'a vu, lorsque f est définie en a, la seule limite possible de f en a est f(a). On dit dans ce cas que f est continue en a.
- Si $f: D \to \mathbb{R}$ n'est pas définie en a mais que $\lim_{x \to a} f(x) = l$ est réel, on peut définir $g: D \cup \{a\} \to \mathbb{R}$ en posant g(x) = f(x) si $x \neq a$ et g(a) = l. Cette fonction est alors continue en a. En général on garde le nom f pour g, et on dit qu'on prolonge f par continuité en g en posant g(a) = l.

9▶

* Preuve: Supposons que f tende vers l quand x tend vers a, et soit (u_n) une suite de réels tendant vers a. Soit V_l un voisinage de l. Il existe un voisinage V_a de a tel que $f(V_a \cap D) \subset V_l$. Comme (u_n) converge vers a, il existe un rang n_0 à partir duquel $u_n \in V_a$. Par conséquent, à partir du rang n_0 , $f(u_n) \in V_l$, ce qui est une des définitions équivalentes vues de la convergence de $(f(u_n))$ vers l.

Par exemple, dans le cas où a et l sont réels, on peut écrire : soit $\varepsilon > 0$, il existe $\eta > 0$ tel que $|x-a| < \eta$ implique $|f(x)-l| < \varepsilon$. Si (u_n) converge vers a, il existe un rang n_0 tel que $n \ge n_0$ implique $|u_n-a| < \eta$. On en déduit : $|f(u_n)-l| < \varepsilon$, ce qui montre bien que la suite $(f(u_n))$ converge vers l.

Montrons la réciproque par contraposée. Supposons que f n'admette pas l pour limite en a. Il existe donc un voisinage V_l de l tel que pour tout voisinage V_a de a on ait $f(V_a \cap D) \not\subset V_l$.

En choisissant V_a égal à $]a - \frac{1}{n}$, $a + \frac{1}{n}[$ si a est réel et [n, a[ou $]-\infty, -n]$ si $a = \pm \infty$, on fabrique pour tout naturel n non nul un réel u_n tel que $f(u_n) \notin V_l$. La suite (u_n) tend clairement vers a, mais la suite $(f(u_n))$ ne peut pas tendre vers l.

* Cette caractérisation séquentielle et très utile pour montrer qu'une fonction n'est pas continue en un point : on fabrique une suite de limite a et dont l'image par f ne converge pas vers f(a).

* Nous avons là notre premier "théorème d'interversion de symboles" (mais pas le dernier car c'est le sujet principal du cours d'analyse de deuxième année) :

si
$$f$$
 est continue en a et (u_n) converge vers a , on peut intervertir $\lim_{n \to +\infty}$ et f :
$$\lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n) \text{ (puisque la réponse est } f(a))$$

Pratique 2:

On choisit deux suites tendant vers 0^+ mais d'images par f de limites différentes!

Par exemple:
$$(u_n) = \left(\frac{1}{2n\pi}\right)$$
 et $(v_n) = \left(\frac{1}{(2n+1)\pi}\right)$

10▶

*Preuve: Il suffit d'appliquer la caractérisation séquentielle de la limite et les propriétés correspondantes déjà démontrées pour les suites.

Par exemple pour 1), supposons que f admette l_1 et l_2 pour limites en a. Par la caractérisation séquentielle de la limite, pour toute suite (u_n) d'éléments de D qui converge vers a, alors $(f(u_n))$ converge vers l_1 et vers l_2 . Par unicité de la limite d'une suite convergente, on obtient $l_1 = l_2$.

- * Rappel pour les théorèmes d'opérations : les indéterminées (non résolues) sont $(+\infty)+(-\infty)$, $0\times(\pm\infty)$ et $1^{\pm\infty}$. Reprendre les exemples vus sur les suites et transposables ici.
- * On applique ces théorèmes d'opérations à partir des fonctions usuelles que nous avons déjà étudiées : fonctions polynomiales, rationnelles, puissances, exponentielles, logarithmiques, trigonométriques circulaires et hyperboliques, et réciproques...

Pratique 3:

- 1. Par compositions de limites, successivement e, 1, $+\infty$ et 0.
- **2.** Idem, $-\ln 2$ et $+\infty$.

11▶

- * Conséquence directe de la caractérisation séquentielle de la limite (comme au point 10).
- * J'insiste : même si les inégalités sont strictes sur un intervalle pour f, par passage à la limite, elles deviennent larges.

Par exemple, pour tout x dans [0,1[on a $\sin x > 0$, mais la limite en 0 de $\sin \cot \sin (0) = 0$.

12▶

La preuve la plus simple consiste là encore d'utiliser les propriétés correspondantes pour les suites et la caractérisation séquentielle de la limite.

Pratique 4:

- 1. Par exemple en passant par une suite (u_n) quelconque tendant vers a: la suite $(f(u_n))$ tend vers $+\infty$ par caractérisation séquentielle de la limite, et $(g(u_n))$ est bornée, donc $((f+g)(u_n)) = (f(u_n) + g(u_n))$ tend vers $+\infty$ par propriété déjà vue sur les suites. Par caractérisation séquentielle de la limite, f+g tend vers $+\infty$ en a.
- **2.** Même chose, la limite obtenue est $-\infty$.
- **3.** Pour tout x > 0: $1 \le 2 + \sin(1/x) \le 3$ puis $\frac{x}{3} \le \frac{x}{2 + \sin(1/x)} \le x$, et par le théorème d'encadrement de fonctions, la limite cherchée est 0.

13▶

* Il s'agit par ce théorème d'obtenir un encadrement d'une fonction au voisinage d'un point où l'on connaît sa limite.

Par exemple, on utilise très souvent que, si $\lim_{x\to a} f(x) = l > 0$, alors f est à valeurs strictement positives, ou même supérieures à l/2, au voisinage de a.

* Preuve : Pour le premier cas par exemple, on traduit que f tend vers l en a à partir du voisinage $V_l =]-\infty, M[$ de l : il existe un voisinage V_a de a tel que $f(V_a \cap D) \subset V_l$, ce qui signifie que pour tout x dans $V_a \cap D$, f(x) < M, ce qui est annoncé.

14▶

* Si f est décroissante, on obtient le théorème correspondant en inversant les inégalités, et en point 3) f tend en b vers une limite finie ou $-\infty$.

Adapter également le théorème pour le cas où l'intervalle considéré est a, b, ou a, b, ou a, b.

* Preuve: f(]a,b[) est une partie non vide de \mathbb{R} , minorée par f(a), donc admet une borne inférieure l. Pour tout $\varepsilon > 0$, par caractérisation de cette borne inférieure, il existe un point c_{ε} tel que $a < c_{\varepsilon} < b$ et $l \leq f(c_{\varepsilon}) < l + \varepsilon$. Comme f est croissante, pour tout $a < x < c_{\varepsilon}$, on obtient $l \leq f(x) < l + \varepsilon$, ce qui montre que f admet en a le réel l pour limite à droite. Comme $f(a) \leq f(x)$ pour tout x > a, le théorème d'encadrement montre que $f(a) \leq l$.

En b, si f est bornée, f admet par la même méthode une limite à gauche. Sinon, pour tout $A \ge 0$ il existe un point d dans [a, b[tel que f(d) > A, et par croissance de f, pour tout x > d on a f(x) > A, ce qui montre que f tend vers $+\infty$ en b^- .

Pour 2) et $c \in [a, b[$, utiliser les résultats précédents avec les restrictions de f à [a, c[et à [c, b[.

15▶

Ici encore, on peut utiliser la propriété déjà vue pour les suites et la caractérisation séquentielle de la limite.

Pratique 5:

Soit directement puisque $\left|\frac{e^{ix}}{1+x}\right| = \frac{1}{1+x}$, soit en passant par parties réelle et imaginaire.

16▶

- * Continuité pour une fonction numérique sur un intervalle : c'est l'idée que l'on peut tracer son graphe sans avoir à "lever le crayon".
- * Comme pour les limites, les deux dernières inégalités peuvent être écrites larges ou strictes.
- * Comme on l'a déjà vu, $\mathbb{I}_{\mathbb{Q}}$ n'est continue en aucun point.

17▶

- * Exemple d'application : si f = g sur une partie A dense de D et que f et g sont continues, alors f = g sur D. En effet, soit $x \in D$, par densité, x est limite d'une suite (u_n) de points A où $f(u_n) = g(u_n)$. Par continuité, $(f(u_n))$ et $(g(u_n))$ convergent vers f(x) = g(x).
- * Les fonctions continues de \mathbb{R} dans \mathbb{R} vérifiant : $\forall (x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y) sont de la forme $x \mapsto \alpha x$ pour un réel α .

Pour le montrer, on raisonne par analyse-synthèse. Si un telle fonction existe, alors f(0) = 0, f est impaire, puis pour tout naturel n, f(n) = nf(1) (preuve par récurrence), puis f(r) = rf(1) si r rationnel (passer par f(p/q) = pf(1/q) et qf(1/q) = f(1)), et conclure grâce à la densité de \mathbb{Q} dans \mathbb{R} .

18▶

- * Tout ceci découle des théorèmes d'opérations sur les limites, et c'est le moyen le plus utilisé pour vérifier qu'une fonction (donnée à partir des fonctions usuelles) est continue en un point (ou sur un intervalle).
- * Par exemple, si f et g sont deux fonctions numériques définies sur \mathbb{R} : $Inf(f,g) = \frac{f+g-|f-g|}{2}$ et $Sup(f,g) = \frac{f+g+|f-g|}{2}$ sont continues sur \mathbb{R} .

Pratique 6:

On utilise, pour le continuité, les théorèmes d'opérations sur les fonctions continues.

1.
$$\mathbb{R}$$
 2. \mathbb{R} **3.** $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}$ **4.** $]-1, +\infty[$

19▶

Par exemple $f: x \mapsto e^{-1/x^2}$ se prolonge par continuité en 0 en posant f(0) = 0.

Autre exemple $g: x \mapsto \frac{\sin x}{x}$ se prolonge par continuité en 0 en posant g(0) = 1, car $\lim_{x \to 0} \frac{\sin(x) - \sin(0)}{x - 0} = \cos(0) = 1$.

20▶

- * Faites un dessin : vous partez du point (a, f(a)) et allez au point (b, f(b)) sans lever le crayon, vous devez traverser la droite horizontale d'ordonnée l...
- * Preuve: Supposons, quitte à changer f en -f, que f(a) < l < f(b) (en cas d'égalité, le résultat est évident). Alors $U = \{y \in [a,b] \mid \forall x \in [a,y], \ f(x) < l\}$ est une partie de $\mathbb R$ non vide (puisque contient a) et majorée par b, elle admet donc une borne supérieure, notons-la c. Clairement, c < b puisque f(b) > l. Si x < c, on a f(x) < l sinon c ne serait pas le plus petit des majorants de U. En faisant tendre x vers c, la continuité de f en c et le théorème d'encadrement donne : $f(c) \leq l$.
- Si f(c) < l, alors par continuité de f en c, il existe un voisinage de c sur lequel les valeurs prises par f sont strictement inférieures à l: c'est impossible, c ne serait pas un majorant de U. Finalement, f(c) = l.
- * Historiquement, on a longtemps cru qu'une fonction qui transforme tout intervalle inclus dans son domaine en un intervalle était continue. C'est faux comme le montre le contre-exemple f suivant : $x \mapsto \sin(1/x)$ si $x \neq 0$ et f(0) = 0. Un intervalle ne contenant pas 0 est bien transformé en un intervalle puisque $x \mapsto \sin(1/x)$ est continue sur \mathbb{R}_+^* et sur \mathbb{R}_-^* . Un intervalle qui contient 0 et non réduit à 0 contient toujours un intervalle de type $\left[\frac{1}{\pi/2 + (2n+1)\pi}, \frac{1}{\pi/2 + 2n\pi}\right]$ pour un |n| naturel assez grand, donc son image par f est égale à [-1,1].

Par ailleurs, le théorème de Darboux affirme que toute dérivée sur un intervalle vérifie cette propriété des valeurs intermédiaires, alors qu'une fonction dérivable n'est pas forcément de classe C^1 . Nous verrons cela en exercice au prochain chapitre.

Pratique 7:

C'est une question on ne peut plus classique. $g: x \mapsto f(x) - x$ est continue par théorème d'opérations, positive en 0 et négative en 1. D'après le théorème des valeurs intermédiaires, il existe un point c de [0,1] où g s'annule, c'est-à-dire f(c) = c.

21▶

* Preuve: Soit f une fonction numérique définie sur un segment [a,b]. Alors f([a,b]) est une partie de \mathbb{R} non vide. Si f([a,b]) n'est pas majoré, il existe une suite (u_n) de points de [a,b] telle que $(f(u_n))$ tend vers $+\infty$. D'après le théorème de Bolzano-Weierstrass, il existe une injection croissante φ de \mathbb{N} dans \mathbb{N} telle que $(u_{\varphi(n)})$ converge vers un point u de [a,b]. Par caractérisation séquentielle de la continuité, la suite $(f(u_{\varphi(n)}))$ converge vers f(u), mais tend aussi vers $+\infty$ comme sous-suite de $(f(u_n))$, ce qui est impossible. Donc f est majorée sur [a,b].

La partie f([a,b]) est donc non vide et majorée, elle admet une borne supérieure l. Par la caractérisation séquentielle de la borne supérieure, il existe une suite (v_n) de [a,b] telle que $(f(v_n))$ converge vers l. D'après le théorème de Bolzano-Weierstrass, il existe une injection croissante φ de $\mathbb N$ dans $\mathbb N$ telle que $(v_{\varphi(n)})$ converge vers un point v de [a,b]. Comme f est continue, la suite $(f(v_{\varphi(n)}))$ converge vers f(v) et vers l. Donc cette borne supérieure l est atteinte par f puisque f(v) = l.

C'est la même démonstration pour la borne inférieure.

Enfin, f([a,b]) est un intervalle (théorème des valeurs intermédiaires), d'où : f([a,b]) = [Inf f, Sup f].

- * Ce théorème est l'outil principal pour montrer qu'une borne supérieure est le maximum, ou qu'une borne inférieure est le minimum d'une fonction continue. Par exemple, si f est une fonction continue à valeurs strictement positives sur un segment [a, b], alors Inf f > 0 parce qu'il existe un point c de [a, b]en lequel cet inf est atteint par f.
- * Une fonction continue et périodique sur \mathbb{R} est bornée et atteint ses bornes : si T est une période de f, les valeurs prises par f sur \mathbb{R} sont celles prises sur [0,T], et f atteint ses bornes sur ce segment.

22▶

Pour compléter le théorème des bornes atteintes, reste à savoir comment une application continue ftransforme un intervalle I autre qu'un segment. Pour le cas où f est monotone, on sait déjà par le théorème de la limite monotone et par le théorème des valeurs intermédiaires que f(I) = (Inf f, Sup f), sans savoir que signifient les parenthèses en terme de crochet ouvrant ou fermant. Par exemple, $\tan(]-\frac{\pi}{2},\frac{\pi}{2}[)=]-\infty,+\infty[$, $\tan(]-1,1[$, et pour $f:x\mapsto\sin(1/x)$ pour $x\neq0$ et f(0) = 0, alors $f(\mathbb{R}) = [-1, 1]$.

23▶

Preuve: Supposons par exemple f strictement croissante (quitte à changer f en -f). Alors $x \neq y$ implique x < y ou l'inverse, donc f(x) < f(y) ou l'inverse, donc $f(x) \neq f(y)$, donc f est injective. Supposons f non strictement monotone : quitte à changer f en -f, il existe x < y < z tels que $f(x) \ge f(y)$ et $f(y) \le f(z)$. Si ces inégalités ne sont pas strictes, f n'est pas injective. Si elles le sont, pour une valeur l comprise strictement entre Min(f(x), f(z)) et f(y), on trouve par le théorème des valeurs intermédiaires appliqué sur [x, y] d'une part et [y, z] d'autre part deux points distincts d'image l par f, donc f n'est pas injective.

24▶

* Preuve du théorème de l'homéomorphisme : Dans ce cadre d'hypothèses, et d'après la proposition précédente, f est injective, et induit donc une bijection de I sur f(I), notons-la encore f.

Reste à voir que f^{-1} est aussi continue. Supposons f strictement croissante (sinon changer f en -f).

Supposons f^{-1} non continue : il existe un point d de f(I) tel que $f^{-1}(d)$ soit distinct de la limite de

- f^{-1} à droite ou à gauche en ce point, par exemple à gauche (sinon raisonnement similaire) : $l = \lim_{x \to d^{-}} f^{-1}(x) < f^{-1}(d) = c$. Il existe donc t < d tel que $f^{-1}(t) < l < c$. Or l'image par f de $[f^{-1}(t), c]$
- est l'intervalle [t, d], qui contient tout y compris entre t et d, ce qui est impossible car aucun y compris strictement entre f(l) et d n'est atteint pas f.
- * On a utilisé ce théorème pour justifier la continuité des fonctions racines, Arctan, Arcsin, etc.
- * Preuve du dernier théorème : Soit $f: I \to f(I)$. On sait par le théorème des bornes atteintes que f(I) est un segment si I en est un. On sait aussi par le théorème des valeurs intermédiaires que f(I)est un intervalle. Quitte à considérer -f, on suppose que f est strictement croissante sur I.

Supposons I = [a, b] avec b dans \mathbb{R} . Alors I contient un segment [a, c] d'image [f(a), f(c)], et pour tout x > c on a f(x) > f(c). Donc f(I) = [f(a), ...

Supposons I = [a, b] avec a et b dans \mathbb{R} . Si f(I) = [c, d], alors par le raisonnement précédent appliqué à f^{-1} , on aurait $f^{-1}(f(I))$ fermé à gauche, ce qui est faux. Donc $f(I) = \lim_{x \to a^+} f(x)$, ... d'après le théorème de la limite monotone.

Finalement, la nature des crochets à gauche de I et de f(I) est la même. La preuve est la même pour traiter les crochets à droite.

* Sans ces conditions, tout est possible : par exemple, l'image d'un intervalle quelconque non vide par une fonction constante est toujours un singleton...

Pratique 8:

f est continue sur \mathbb{R}_+ (théorème d'opérations) et strictement croissante (somme de telles fonctions). Par le théorème de l'homéomorphisme, f est un homéomorphisme de \mathbb{R}_+ sur $[f(0), \lim_{x \to +\infty} f(x)] = \mathbb{R}_+$.