Project 4 Mathematics 512

Instructor: Ricardo Mancera Spring 2024

Due date: Friday April 5th

1.

Let W_t be a standard Wiener process, that is the drift parameter is zero and the Variance parameter $\sigma^2 = 1$. Suppose that we divide the interval [0,2] into L subintervals $[t_i, t_{i+1}]$, with $t_i = i\delta t$ and $\delta t = 2/L$. Let $W_i = W(t_i)$ and $\delta W_i = W_{i+1} - W_i$. Verify numerically that

- a) $\sum_{i=0}^{L-1} |\delta W_i|$ is unbounded as δt goes to zero
- b) $\sum_{i=0}^{L-1} \delta W_i^2$ converges to 2 in probability as δt goes to zero

2.

Evaluate numerically the stochastic integrals

- a) Itô $\int_0^2 W(t)dW(t)$
- b) Stratonovich $\int_0^2 W(t) \circ dW(t)$
- c) $E\left[\int_0^2 W(t)dW(t)\right]$
- d) $E\left\{\left[\int_0^2 W(t)dW(t)\right]^2\right\}$
- e) $E\left[\int_0^2 W^2(t)dt\right]$
- f) For $t \in [0,2]$ evaluate $\int_0^t W(t)dW(t)$, $\int_0^t W(t) \circ dW(t)$ and $\frac{1}{2}\int_0^t dt$ what do you observe.

3.

Consider the following SDE:

$$dX(t) = \mu X(t)dt + \sigma X(t)dW(t)$$
, $X(0) = 3$, $\mu = 2$, $\sigma = 0.10$

Where $t \in [0,1]$.

- a) Show that the Euler Maruyama method has weak order of convergence equal to one. That is $|E[X_1] E[X(1)]| = C\Delta t$. Here X(1) is the exact solution at time 1 and X_1 is the computed solution at time 1.
- b) Show that the Euler Maruyama method has strong order of convergence equal to one half. That is $E|X_1 X(1)| = C\Delta t^{0.5}$. Here X(1) is the exact solution at time 1 and X_1 is the computed solution at time 1.

4.

Consider the following SDE:

$$dX(t) = \mu X(t)dt + \sigma X(t)dW(t)$$
, $X(0) = 3$, $\mu = 2$, $\sigma = 0.10$

a) Simulate (over the interval [0,20]) this stochastic process using an implicit method of the form

$$X_{n+1} = X_n + (1-\theta)\Delta t f(X_n) + \theta \Delta t f(X_{n+1}) + \sqrt{\Delta t}\alpha_n g(X_n)$$

- b) Compare with the analytical solution.
- c) For what values of μ and σ is the SDE mean-square stable.
- d) For what values of θ is the implicit method mean-square stable.
- e) For what values of μ and σ is the SDE asymptotically stable.
- f) For what values of θ is the Implicit method asymptotically stable.

Verify your results using numerical simulations.

5.

Consider the following SDE:

$$dX(t) = \mu X(t)dt + \sigma X(t)dW(t)$$
, $X(0) = 2$, $\mu = 0.1$, $\sigma = 0.15$

Let a = 0.5 and b = 3.

Compute the mean exit time function v(x) for $x \in [0.5, 3]$