

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	18.56 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.82	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	140 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 30.77$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and, here all desired.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S $0.9D + 1.0W^{M}$ 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

1.2D + 1.6S + 0.5W

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6D + 0.6W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>748.35</u>	<u>6889.55</u>	k
Compressive Load =	<u>4131.51</u>	<u>5367.43</u>	k
Lateral Load =	360.09	3702.95	k
Moment (Weak Axis) =	<u>0.71</u>	0.31	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 167178.6 in-lbs Resisting Force Required = 2533.01 lbs A minimum 132in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4221.68 lbs to resist overturning. Minimum Width = Weight Provided = 6978.13 lbs Sliding Force = 854.11 lbs Use a 132in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2135.26 lbs ballast foundation to resist sliding. Resisting Weight = 6978.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 854.11 lbs Cohesion = 130 psf Use a 132in long x 35in wide x 18in tall 32.08 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3489.06 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

2500 psi

8 in

 $f'_c =$ Length =

Bearing Pressure

ASD LC		1.0D -	+ 1.0S			1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1386 lbs	1386 lbs	1386 lbs	1386 lbs	1536 lbs	1536 lbs	1536 lbs	1536 lbs	2063 lbs	2063 lbs	2063 lbs	2063 lbs	-335 lbs	-335 lbs	-335 lbs	-335 lbs
FB	1376 lbs	1376 lbs	1376 lbs	1376 lbs	2212 lbs	2212 lbs	2212 lbs	2212 lbs	2563 lbs	2563 lbs	2563 lbs	2563 lbs	-3171 lbs	-3171 lbs	-3171 lbs	-3171 lbs
F _V	187 lbs	187 lbs	187 lbs	187 lbs	1537 lbs	1537 lbs	1537 lbs	1537 lbs	1277 lbs	1277 lbs	1277 lbs	1277 lbs	-1708 lbs	-1708 lbs	-1708 lbs	-1708 lbs
P _{total}	9740 lbs	9940 lbs	10139 lbs	10338 lbs	10726 lbs	10926 lbs	11125 lbs	11324 lbs	11604 lbs	11804 lbs	12003 lbs	12202 lbs	681 lbs	800 lbs	920 lbs	1040 lbs
M	3679 lbs-ft	3679 lbs-ft	3679 lbs-ft	3679 lbs-ft	4417 lbs-ft	4417 lbs-ft	4417 lbs-ft	4417 lbs-ft	5729 lbs-ft	5729 lbs-ft	5729 lbs-ft	5729 lbs-ft	3455 lbs-ft	3455 lbs-ft	3455 lbs-ft	3455 lbs-ft
е	0.38 ft	0.37 ft	0.36 ft	0.36 ft	0.41 ft	0.40 ft	0.40 ft	0.39 ft	0.49 ft	0.49 ft	0.48 ft	0.47 ft	5.07 ft	4.32 ft	3.76 ft	3.32 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	241.0 psf	240.4 psf	239.8 psf	239.2 psf	259.2 psf	258.1 psf	257.0 psf	255.9 psf	264.3 psf	263.0 psf	261.8 psf	260.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	366.1 psf	362.0 psf	358.1 psf	354.4 psf	409.4 psf	404.1 psf	399.0 psf	394.3 psf	459.1 psf	452.4 psf	446.0 psf	440.0 psf	366.1 psf	150.3 psf	114.0 psf	100.5 psf

Maximum Bearing Pressure = 459 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 = 2715.7 \text{ ft-lbs}$

Resisting Force Required = 1862.19 lbs S.F. = 1.67

Weight Required = 3103.65 lbs Minimum Width = 35 in in Weight Provided = 6978.13 lbs A minimum 132in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	280 lbs	635 lbs	210 lbs	824 lbs	2292 lbs	770 lbs	106 lbs	186 lbs	37 lbs		
F _V	212 lbs	208 lbs	216 lbs	157 lbs	153 lbs	168 lbs	213 lbs	209 lbs	214 lbs		
P _{total}	8919 lbs	9274 lbs	8849 lbs	9048 lbs	10515 lbs	8994 lbs	2633 lbs	2712 lbs	2563 lbs		
М	837 lbs-ft	827 lbs-ft	846 lbs-ft	626 lbs-ft	626 lbs-ft	663 lbs-ft	836 lbs-ft	825 lbs-ft	838 lbs-ft		
е	0.09 ft	0.09 ft	0.10 ft	0.07 ft	0.06 ft	0.07 ft	0.32 ft	0.30 ft	0.33 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	224.4 psf	236.1 psf	221.5 psf	241.9 psf	287.6 psf	237.8 psf	28.4 psf	31.6 psf	26.1 psf		
f _{max}	331.6 psf	342.1 psf	330.1 psf	322.1 psf	367.9 psf	322.8 psf	135.7 psf	137.4 psf	133.6 psf		

Maximum Bearing Pressure = 368 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 35in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.178 k 12.808 k 7.421 k <u>43%</u>	Rear Strut Maximum Axial Load = 4.660 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 63%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.462 k 12.808 k 7.421 k <u>33%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
	0	Struts under compression are shown to demor transfer from the girder. Single M12 bolts are

ession are shown to demonstrate the load rder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 46.89 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.938 in Max Drift, Δ_{MAX} = 0.612 in 0.612 ≤ 0.938, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 120 \text{ in}$$

$$J = 0.432$$

$$331.976$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$c = cob[Rc, 1.6]$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_L = 27.4 \text{ ksi}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 25.1 \text{ ksi} \\ k &= & 897074 \text{ mm}^4 \\ & & & 2.155 \text{ in}^4 \\ y &= & 41.015 \text{ mm} \\ Sx &= & 1.335 \text{ in}^3 \end{aligned}$$

$$M_{max}St = 2.788 \text{ k-ft}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 120 \\ \mathsf{J} &= 0.432 \\ &= 211.117 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc}^* \sqrt{(\mathsf{LbSc})/(\mathsf{Cb}^* \sqrt{(\mathsf{lyJ})/2})}] \\ \varphi \mathsf{F_I} &= 28.6 \end{split}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$\phi F_L =$ 23.1 ksi

3.4.16.1

N/A for Weak Direction

3.4.18
$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

Sy=

 $M_{max}Wk =$

1.073 in⁴

0.599 in³

1.152 k-ft

45.5 mm

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2^* \sqrt{(BpE))/(1.6b/t)} \\$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 =$ 29.2

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

3.4.16.1 N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

43.2 ksi

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

b/t =

 $\phi F_L =$

3.4.9

$$\begin{array}{lll} S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 31.6 \text{ ksi} \\ \\ b/t = & 7.4 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$\phi F_L St = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$\phi F_L St = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

h/t =

$$mDbr$$
 $S1 = 36.9$
 $m = 0.65$
 $C_0 = 27.5$
 $Cc = 27.5$
 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 27.9836 \text{ mm}^4$
 $\phi F_L = 27.5 \text{ mm}$
 $\phi F_L = 27.5 \text{ mm}$

 $M_{max}Wk = 1.460 \text{ k-ft}$

24.5

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$φF_L = 1.3φyFcy$$

$$φF_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

$$\begin{array}{lll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.86047 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$
 $P_{\text{max}} = 7.72 \text{ kips}$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L =$$

$$pF_L = 30.2 \text{ ksi}$$

Weak Axis:

$$L_b = 63.42$$

 $J = 0.942$

$$J = 0.942$$
 98.9729

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{b_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max} St = 1.460 \text{ k-ft}$$

 $\phi F_L = 43.2 \text{ ksi}$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.7854 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Υ	-46.9	-46.9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-94.402	-94.402	0	0
2	M14	V	-94.402	-94.402	0	0
3	M15	V	-145.893	-145.893	0	0
4	M16	V	-145.893	-145.893	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	214.549	214.549	0	0
2	M14	V	163.057	163.057	0	0
3	M15	V	85.82	85.82	0	0
4	M16	V	85 82	85 82	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	719.742	2	1266.148	2	.73	1	.004	1	0	1	0	1
2		min	-896.707	3	-1621.914	3	-46.295	5	24	4	0	1	0	1
3	N7	max	.037	9	1166.645	1	563	12	001	12	0	1	0	1
4		min	204	2	-150.177	3	-276.993	4	546	4	0	1	0	1
5	N15	max	.028	9	3178.083	1	0	1	0	1	0	1	0	1
6		min	-2.336	2	-575.652	3	-265.018	4	53	4	0	1	0	1
7	N16	max	2625.381	2	4128.793	2	0	10	0	10	0	1	0	1
8		min	-2848.421	3	-5299.651	3	-46.107	5	242	4	0	1	0	1
9	N23	max	.04	14	1166.645	1_	10.641	1	.022	1	0	1	0	1
10		min	204	2	-150.177	3	-269.392	4	534	4	0	1	0	1
11	N24	max	719.742	2	1266.148	2	047	12	0	12	0	1	0	1
12		min	-896.707	3	-1621.914	3	-46.903	5	242	4	0	1	0	1
13	Totals:	max	4062.122	2	11678.162	2	0	1						
14		min	-4642.428	3	-9419.486	3	-945.479	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	108.095	1	468.192	2	-7.992	12	0	3	.258	1	0	4
2			min	5.911	12	-786.666	3	-176.266	1	015	2	.014	12	0	3
3		2	max	108.095	1	327.759	2	-6.315	12	0	3	.111	4	.745	3
4			min	5.911	12	-553.674	3	-135.467	1	015	2	.006	12	442	2
5		3	max	108.095	1	187.327	2	-4.637	12	0	3	.059	5	1.23	3
6			min	5.911	12	-320.683	3	-94.668	1	015	2	043	1	728	2
7		4	max	108.095	1	47.329	1	-2.959	12	0	3	.031	5	1.457	3
8			min	5.911	12	-87.691	3	-53.869	1	015	2	126	1	858	2
9		5	max	108.095	1	145.3	3	996	10	0	3	.005	5	1.425	3
10			min	5.911	12	-93.538	2	-25.012	4	015	2	163	1	833	2
11		6	max	108.095	1	378.292	3	27.728	1	0	3	007	12	1.134	3
12			min	3.111	15	-233.971	2	-19.054	5	015	2	155	1	652	1
13		7	max	108.095	1	611.283	3	68.527	1	0	3	006	12	.585	3
14			min	-6.494	5	-374.404	2	-16.459	5	015	2	101	1	316	1
15		8	max	108.095	1	844.275	3	109.325	1	0	3	.001	2	.181	2
16			min	-17.9	5	-514.836	2	-13.863	5	015	2	056	4	224	3
17		9	max	108.095	1	1077.266	3	150.124	1	0	3	.142	1	.831	2
18			min	-29.306	5	-655.269	2	-11.268	5	015	2	068	5	-1.292	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

20		Member	Sec		Axial[lb]		y Shear[lb]							l .		LC
22	19		10	max	108.095	1	795.702	2	-7.106	12	.015	2	.331	1	1.638	2
22																
12			11	max												
24				min		12		3			0	3		12		3
25	23		12	max	108.095	1				12	.015	2	.054	4	.181	
26	24			min	5.911	12	-844.275	3	-109.325	1	0	3	004	3	224	3
28	25		13	max	108.095	1	374.404	2	-2.073	12	.015	2	.024	5	.585	3
28	26			min	5.911	12	-611.283	3	-68.527	1	0	3	101	1	316	1
28			14	max	108.095	1		2		12	.015	2	001	15	1.134	3
15						15										
30			15							1	.015			12		3
31										5						
33			16								_					-
34			'													
35			17								_					
36			17													
36			10								_			_		
38			10													
38			40								-			_		
39			19							_						
Max Max			_													
41		<u>M14</u>	1													_
Max Max Sol. Max Max																
43 3 max 50.19 1 217.653 2 -4.853 12 .01 3 .087 5 .967 3 44 min 2.496 12 -259.239 3 -100.134 1 -0.12 2 -0.19 1 -7.796 2 46 min 2.496 12 -83.461 3 -59.335 1 -0.12 2 -107 1 96 2 47 5 max 50.19 1 92.317 3 -1.498 12 .01 3 .009 5 1.152 3 48 min 1.134 15 -64.728 1 -37.264 4 -0.12 2 -151 1 -962 3 49 6 max 50.19 1 268.095 3 22.262 1 .01 3 .007 12 .952 3 50 min -9.663 5			2													
44 min 2.496 12 -259.239 3 -100.134 1 012 2 019 1 796 2 45 4 max 50.19 1 77.22 2 -3.175 12 .01 3 .047 5 1.157 3 46 min 2.496 12 -83.461 3 -59.335 1 -012 2 107 1 96 2 48 min 1.134 15 -64.728 1 -37.264 4 -012 2 -151 1 967 2 49 6 max 50.19 1 268.05 3 22.262 1 01 3 .007 12 .952 3 50 min -9.663 5 -204.666 1 -29.89 5 012 2 149 1 -819 2 51 7 max 50.19 1 <				min				3								
45	43		3	max						12				5	.967	
46 min 2.496 12 -83.461 3 -59.335 1 012 2 107 1 96 2 47 5 max 50.19 1 92.317 3 -1.498 12 .01 3 .009 5 1.152 3 48 min 1.134 15 -64.728 1 -37.264 4 012 2 151 1 967 2 49 6 max 50.19 1 268.095 3 22.262 1 .01 3 007 12 .952 3 50 min -9.663 5 -204.666 1 -29.89 5 012 2 .149 1 -8.19 2 556 3 3 52 min -21.069 5 -344.605 1 -27.294 5 012 2 -101 1 515 2 56 4 10 4	44			min	2.496	12		3	-100.134	1	012	2	019	1	796	
47 5 max 50.19 1 92.317 3 -1.498 12 .01 3 .009 5 1.152 3 48 min 1.134 15 -64.728 1 -37.264 4 012 2 151 1 967 2 49 6 max 50.19 1 268.095 3 22.262 1 .01 3 007 12 .952 3 50 min -9.663 5 -204.666 1 -29.89 5 012 2 149 1 819 2 51 7 max 50.19 1 443.873 3 63.061 1 .01 3 .005 12 .556 3 52 min -21.0699 5 -344.605 1 -27.294 5 012 2 -101 1 .555 3 8 max 50.19 1 763.643	45		4	max	50.19	1	77.22	2		12	.01	3	.047	5	1.157	3
48 min 1.134 15 -64.728 1 -37.264 4 012 2 151 1 967 2 49 6 max 50.19 1 268.095 3 22.262 1 .01 3 007 12 .952 3 50 min -9.663 5 -204.666 1 -29.89 5 012 2 149 1 -819 2 51 7 max 50.19 1 443.873 3 63.061 1 .01 3 005 12 .556 3 52 min -21.069 5 -344.605 1 -27.294 5 012 2 101 1 515 2 53 8 max 50.19 1 795.43 3 144.659 1 .01 3 .13 1 .575 1 56 min -24.381 5	46			min	2.496	12	-83.461	3	-59.335	1	012	2	107	1	96	2
49	47		5	max	50.19	1	92.317	3	-1.498	12	.01	3	.009	5	1.152	3
49 6 max 50.19 1 268.095 3 22.262 1 .01 3 007 12 .952 3 50 min -9.663 5 -204.666 1 -29.89 5 012 2 149 1 819 2 51 7 max 50.19 1 443.873 3 63.061 1 .01 3 005 12 .556 3 52 min -21.069 5 -344.605 1 -27.294 5 -0.012 2 -101 1 -515 2 53 8 max 50.19 1 619.651 3 103.86 1 .01 3 0 10 0 15 54 4 10 11 795.43 3 144.695 1 .01 3 .13 1 .575 1 56 min -43.881 5 -624.9	48			min	1.134	15	-64.728	1	-37.264	4	012	2	151	1	967	2
50 min -9.663 5 -204.666 1 -29.89 5 012 2 149 1 819 2 51 7 max 50.19 1 443.873 3 63.061 1 .01 3 005 12 .556 3 52 min -21.069 5 -344.605 1 -27.294 5 012 2 101 1 -515 2 53 8 max 50.19 1 619.651 3 10.01 3 0 10 0 15 54 min -32.475 5 -484.544 1 -24.699 5 012 2 09 4 054 2 55 9 max 50.19 1 795.43 3 144.659 1 .01 3 .13 1 .575 1 56 min -2.496 12 -971.208 3			6			1		3		1	.01	3		12		3
51 7 max 50.19 1 443.873 3 63.061 1 .01 3 .005 12 .556 3 52 min -21.069 5 -344.605 1 -27.294 5 012 2 101 1 515 2 53 8 max 50.19 1 619.651 3 103.86 1 .01 3 0 10 0 15 54 min -32.475 5 -484.544 1 -24.699 5 012 2 09 4 054 2 55 9 max 50.19 1 795.43 3 144.659 1 .01 3 .13 1 .575 1 56 min -43.881 5 -624.943 2 -22.103 5 012 2 112 5 821 3 57 10 max 72.451						5				5	012					
52 min -21.069 5 -344.605 1 -27.294 5 012 2 101 1 515 2 53 8 max 50.19 1 619.651 3 103.86 1 .01 3 0 10 0 15 54 min -32.475 5 -484.544 1 -24.699 5 012 2 09 4 054 2 55 9 max 50.19 1 795.43 3 144.659 1 .01 3 .13 1 .575 1 56 min -43.881 5 -624.943 2 -22.103 5 012 2 112 5 821 3 57 10 max 72.451 4 765.376 2 -6.89 12 .012 2 .313 1 1.347 1 58 min 2.496 12			7											12		
53 8 max 50.19 1 619.651 3 103.86 1 .01 3 0 10 0 15 54 min -32.475 5 -484.544 1 -24.699 5 012 2 09 4 054 2 55 9 max 50.19 1 795.43 3 144.659 1 .01 3 .13 1 .575 1 56 min -43.881 5 -624.943 2 -22.103 5 012 2 -313 1 1.347 1 57 10 max 72.451 4 765.376 2 -6.89 12 .012 2 .313 1 1.347 1 58 min 2.496 12 -971.208 3 -185.457 1 01 3 .009 12 -1802 3 59 11 max 50.19																
54 min -32.475 5 -484.544 1 -24.699 5 012 2 09 4 054 2 555 9 max 50.19 1 795.43 3 144.659 1 .01 3 .13 1 .575 1 56 min -43.881 5 -624.943 2 -22.103 5 012 2 112 5 821 3 57 10 max 72.451 4 765.376 2 -6.89 12 .012 2 .313 1 1.347 1 58 min 2.496 12 -971.208 3 -185.457 1 01 3 .009 12 -1802 3 59 11 max 61.045 4 624.943 2 -5.213 12 .012 2 .159 4 .575 1 60 min 2.496 12 <td></td> <td></td> <td>8</td> <td></td>			8													
55 9 max 50.19 1 795.43 3 144.659 1 .01 3 .13 1 .575 1 56 min -43.881 5 -624.943 2 -22.103 5 012 2 112 5 821 3 57 10 max 72.451 4 765.376 2 -6.89 12 .012 2 .313 1 1.347 1 58 min 2.496 12 -971.208 3 -185.457 1 01 3 .009 12 -1.802 3 59 11 max 61.045 4 624.943 2 -52.13 12 .012 2 .159 4 .575 1 60 min 2.496 12 -795.43 3 -144.659 1 01 3 .002 12 -821 3 61 min 2.496 12																
56 min -43.881 5 -624.943 2 -22.103 5 012 2 112 5 821 3 57 10 max 72.451 4 765.376 2 -6.89 12 .012 2 .313 1 1.347 1 58 min 2.496 12 -971.208 3 -185.457 1 01 3 .009 12 -1.802 3 59 11 max 61.045 4 624.943 2 -5.213 12 .012 2 .159 4 .575 1 60 min 2.496 12 -795.43 3 -144.659 1 01 3 .002 12 -821 3 61 12 max 50.19 1 484.544 1 -3.535 12 .012 2 .085 5 0 15 62 min 2.496 12 <td></td> <td></td> <td>a</td> <td></td>			a													
57 10 max 72.451 4 765.376 2 -6.89 12 .012 2 .313 1 1.347 1 58 min 2.496 12 -971.208 3 -185.457 1 01 3 .009 12 -1.802 3 59 11 max 61.045 4 624.943 2 -5.213 12 .012 2 .159 4 .575 1 60 min 2.496 12 -795.43 3 -144.659 1 01 3 .002 12 821 3 61 12 max 50.19 1 484.544 1 -3.535 12 .012 2 .085 5 0 15 62 min 2.496 12 -619.651 3 -103.86 1 01 3 08 1 054 2 63 13 max 50.19			-													_
58 min 2.496 12 -971.208 3 -185.457 1 01 3 .009 12 -1.802 3 59 11 max 61.045 4 624.943 2 -5.213 12 .012 2 .159 4 .575 1 60 min 2.496 12 -795.43 3 -144.659 1 01 3 .002 12 821 3 61 12 max 50.19 1 484.544 1 -3.535 12 .012 2 .085 5 0 15 62 min 2.496 12 -619.651 3 -103.86 1 01 3 008 1 054 2 63 13 max 50.19 1 344.605 1 -1.857 12 .012 2 .044 5 .556 3 64 min 2.496 12			10											_		
59 11 max 61.045 4 624.943 2 -5.213 12 .012 2 .159 4 .575 1 60 min 2.496 12 -795.43 3 -144.659 1 01 3 .002 12 821 3 61 12 max 50.19 1 484.544 1 -3.535 12 .012 2 .085 5 0 15 62 min 2.496 12 -619.651 3 -103.86 1 01 3 008 1 054 2 63 13 max 50.19 1 344.605 1 -1.857 12 .012 2 .044 5 .556 3 64 min 2.496 12 -443.873 3 -63.061 1 01 3 101 1 515 2 65 14 max 50.19			10													_
60 min 2.496 12 -795.43 3 -144.659 1 01 3 .002 12 821 3 61 12 max 50.19 1 484.544 1 -3.535 12 .012 2 .085 5 0 15 62 min 2.496 12 -619.651 3 -103.86 1 01 3 008 1 054 2 63 13 max 50.19 1 344.605 1 -1.857 12 .012 2 .044 5 .556 3 64 min 2.496 12 -443.873 3 -63.061 1 01 3 101 1 515 2 65 14 max 50.19 1 204.666 1 152 3 .012 2 .007 5 .952 3 66 min 2.496 12			11					_		_		_				1
61 12 max 50.19 1 484.544 1 -3.535 12 .012 2 .085 5 0 15 62 min 2.496 12 -619.651 3 -103.86 1 01 3 008 1 054 2 63 13 max 50.19 1 344.605 1 -1.857 12 .012 2 .044 5 .556 3 64 min 2.496 12 -443.873 3 -63.061 1 01 3 101 1 515 2 65 14 max 50.19 1 204.666 1 152 3 .012 2 .007 5 .952 3 66 min 2.496 12 -268.095 3 -38.059 4 01 3 149 1 819 2 67 15 max 50.19																2
62 min 2.496 12 -619.651 3 -103.86 1 01 3 008 1 054 2 63 13 max 50.19 1 344.605 1 -1.857 12 .012 2 .044 5 .556 3 64 min 2.496 12 -443.873 3 -63.061 1 01 3 101 1 515 2 65 14 max 50.19 1 204.666 1 152 3 .012 2 .007 5 .952 3 66 min 2.496 12 -268.095 3 -38.059 4 01 3 149 1 819 2 67 15 max 50.19 1 64.728 1 18.536 1 .012 2 006 12 1.152 3 68 min 2.496 12			10			-										
63 13 max 50.19 1 344.605 1 -1.857 12 .012 2 .044 5 .556 3 64 min 2.496 12 -443.873 3 -63.061 1 01 3 101 1 515 2 65 14 max 50.19 1 204.666 1 152 3 .012 2 .007 5 .952 3 66 min 2.496 12 -268.095 3 -38.059 4 01 3 149 1 819 2 67 15 max 50.19 1 64.728 1 18.536 1 .012 2 006 12 1.152 3 68 min 2.496 12 -92.317 3 -30.069 5 01 3 151 1 967 2 69 16 max 50.19 1 83.461 3 59.335 1 .012 2 003 12			12													
64 min 2.496 12 -443.873 3 -63.061 1 01 3 101 1 515 2 65 14 max 50.19 1 204.666 1 152 3 .012 2 .007 5 .952 3 66 min 2.496 12 -268.095 3 -38.059 4 01 3 149 1 819 2 67 15 max 50.19 1 64.728 1 18.536 1 .012 2 006 12 1.152 3 68 min 2.496 12 -92.317 3 -30.069 5 01 3 151 1 967 2 69 16 max 50.19 1 83.461 3 59.335 1 .012 2 003 12 1.157 3 70 min -7.099 5			40													
65 14 max 50.19 1 204.666 1 152 3 .012 2 .007 5 .952 3 66 min 2.496 12 -268.095 3 -38.059 4 01 3 149 1 819 2 67 15 max 50.19 1 64.728 1 18.536 1 .012 2 006 12 1.152 3 68 min 2.496 12 -92.317 3 -30.069 5 01 3 151 1 967 2 69 16 max 50.19 1 83.461 3 59.335 1 .012 2 003 12 1.157 3 70 min -7.099 5 -77.22 2 -27.474 5 01 3 107 1 96 2 71 17 max 50.19 1 259.239 3 <t< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></t<>			13											_		
66 min 2.496 12 -268.095 3 -38.059 4 01 3 149 1 819 2 67 15 max 50.19 1 64.728 1 18.536 1 .012 2 006 12 1.152 3 68 min 2.496 12 -92.317 3 -30.069 5 01 3 151 1 967 2 69 16 max 50.19 1 83.461 3 59.335 1 .012 2 003 12 1.157 3 70 min -7.099 5 -77.22 2 -27.474 5 01 3 107 1 96 2 71 17 max 50.19 1 259.239 3 100.134 1 .012 2 .002 3 .967 3 72 min -18.504 5										_				_		
67 15 max 50.19 1 64.728 1 18.536 1 .012 2 006 12 1.152 3 68 min 2.496 12 -92.317 3 -30.069 5 01 3 151 1 967 2 69 16 max 50.19 1 83.461 3 59.335 1 .012 2 003 12 1.157 3 70 min -7.099 5 -77.22 2 -27.474 5 01 3 107 1 96 2 71 17 max 50.19 1 259.239 3 100.134 1 .012 2 .002 3 .967 3 72 min -18.504 5 -217.653 2 -24.878 5 01 3 095 4 796 2 73 18 max 50.19 1 435.018 3 140.932 1 .012 2 .115 1			14													
68 min 2.496 12 -92.317 3 -30.069 5 01 3 151 1 967 2 69 16 max 50.19 1 83.461 3 59.335 1 .012 2 003 12 1.157 3 70 min -7.099 5 -77.22 2 -27.474 5 01 3 107 1 96 2 71 17 max 50.19 1 259.239 3 100.134 1 .012 2 .002 3 .967 3 72 min -18.504 5 -217.653 2 -24.878 5 01 3 095 4 796 2 73 18 max 50.19 1 435.018 3 140.932 1 .012 2 .115 1 .581 3 74 min -29.91 5			-											_		
69 16 max 50.19 1 83.461 3 59.335 1 .012 2 003 12 1.157 3 70 min -7.099 5 -77.22 2 -27.474 5 01 3 107 1 96 2 71 17 max 50.19 1 259.239 3 100.134 1 .012 2 .002 3 .967 3 72 min -18.504 5 -217.653 2 -24.878 5 01 3 095 4 796 2 73 18 max 50.19 1 435.018 3 140.932 1 .012 2 .115 1 .581 3 74 min -29.91 5 -358.085 2 -22.283 5 01 3 115 5 476 2			15													
70 min -7.099 5 -77.22 2 -27.474 5 01 3 107 1 96 2 71 17 max 50.19 1 259.239 3 100.134 1 .012 2 .002 3 .967 3 72 min -18.504 5 -217.653 2 -24.878 5 01 3 095 4 796 2 73 18 max 50.19 1 435.018 3 140.932 1 .012 2 .115 1 .581 3 74 min -29.91 5 -358.085 2 -22.283 5 01 3 115 5 476 2																
71 17 max 50.19 1 259.239 3 100.134 1 .012 2 .002 3 .967 3 72 min -18.504 5 -217.653 2 -24.878 5 01 3 095 4 796 2 73 18 max 50.19 1 435.018 3 140.932 1 .012 2 .115 1 .581 3 74 min -29.91 5 -358.085 2 -22.283 5 01 3 115 5 476 2			16											12		
72 min -18.504 5 -217.653 2 -24.878 5 01 3 095 4 796 2 73 18 max 50.19 1 435.018 3 140.932 1 .012 2 .115 1 .581 3 74 min -29.91 5 -358.085 2 -22.283 5 01 3 115 5 476 2					-7.099	5				5						
73 18 max 50.19 1 435.018 3 140.932 1 .012 2 .115 1 .581 3 74 min -29.91 5 -358.085 2 -22.283 501 3115 5476 2			17	max				3		1				3		
73	72			min	-18.504	5	-217.653	2	-24.878	5	01	3	095	4	796	2
74 min -29.91 5 -358.085 2 -22.283 501 3115 5476 2	73		18	max	50.19	1		3	140.932	1	.012	2	.115	1	.581	3
						5		2		5				5		
	75		19	max	50.19		610.796	3	181.731	1	.012	2	.294	1	0	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

76	Member	Sec	min	Axial[lb]		y Shear[lb]								z-z Mome	
76	NA C	1	min	-41.316	5	-498.518	2	-19.687	5	01	3	139	5	0	3
77	<u>M15</u>	1	max	83.592	5	691.64	2	-8.151	12	.012	2	.294	1	0	2
78			min	-52.731	1	-321.409	3	-181.71	1	008	3	.015	12	0	12
79		2	max	72.186	5	493.995	2	-6.474	12	.012	2	.195	4	.307	3
80			min	-52.731	1	-231.45	3	-140.912	1	008	3	.007	12	659	2
81		3	max	60.78	_5	296.35	2	-4.796	12	.012	2	.114	5	.514	3
82			min	-52.731	1_	-141.491	3	-100.113	1	008	3	019	1	-1.098	2
83		4	max		5	98.705	2	-3.118	12	.012	2	.063	5	.622	3
84			min	-52.731	1	-51.532	3	-59.314	1	008	3	108	1	-1.317	2
85		5	max	37.968	5	38.428	3	-1.441	12	.012	2	.015	5	.629	3
86			min	-52.731	1	-98.939	2	-46.633	4	008	3	151	1	-1.317	2
87		6	max	26.563	5	128.387	3	22.283	1	.012	2	007	12	.536	3
88			min	-52.731	1_	-296.584	2	-39.232	5	008	3	149	1	-1.097	2
89		7	max	15.157	5	218.346	3	63.082	1	.012	2	005	12	.344	3
90			min	-52.731	1	-494.229	2	-36.637	5	008	3	101	1	658	2
91		8	max	3.751	5	308.306	3	103.881	1	.012	2	0	10	.051	3
92			min	-52.731	1	-691.874	2	-34.041	5	008	3	115	4	013	1
93		9	max	-2.968	12	398.265	3	144.679	1	.012	2	.13	1	.879	2
94			min	-52.731	1	-889.519	2	-31.446	5	008	3	148	5	342	3
95		10	max	-2.968	12	1087.164	2	-6.947	12	.008	3	.313	1	1.978	2
96			min	-52.731	1	-488.224	3	-185.478	1	012	2	.009	12	834	3
97		11	max	.518	15	889.519	2	-5.269	12	.008	3	.195	4	.879	2
98			min	-52.731	1	-398.265	3	-144.679	1	012	2	.003	12	342	3
99		12	max	-2.968	12	691.874	2	-3.592	12	.008	3	.11	5	.051	3
100			min	-52.731	1	-308.306	3	-103.881	1	012	2	008	1	013	1
101		13	max	-2.968	12	494.229	2	-1.914	12	.008	3	.059	5	.344	3
102			min	-52.731	1	-218.346	3	-63.082	1	012	2	101	1	658	2
103		14	max	-2.968	12	296.584	2	237	12	.008	3	.011	5	.536	3
104			min	-52.731	1	-128.387	3	-47.452	4	012	2	149	1	-1.097	2
105		15	max	-2.968	12	98.939	2	18.516	1	.008	3	006	12	.629	3
106			min	-57.386	4	-38.428	3	-39.415	5	012	2	151	1	-1.317	2
107		16	max	-2.968	12	51.532	3	59.314	1	.008	3	003	12	.622	3
108			min	-68.792	4	-98.705	2	-36.819	5	012	2	108	1	-1.317	2
109		17	max	-2.968	12	141.491	3	100.113	1	.008	3	.002	3	.514	3
110			min	-80.198	4	-296.35	2	-34.224	5	012	2	122	4	-1.098	2
111		18	max	-2.968	12	231.45	3	140.912	1	.008	3	.115	1	.307	3
112			min	-91.604	4	-493.995	2	-31.628	5	012	2	152	5	659	2
113		19	max	-2.968	12	321.409	3	181.71	1	.008	3	.294	1	0	2
114			min	-103.009		-691.64	2	-29.033	5	012	2	186	5	0	5
115	<u>M16</u>	1	max	81.934	5	662.33	2	-7.802	12	.011	1	.26	1	0	2
116				-115.467	1			-176.524		012	3	.013	12	0	3
117		2	max		5	464.685	2	-6.125	12	.011	1	.148	4	.282	3
118				-115.467	1	-208.706		-135.726		012	3	.006	12	626	2
119		3		59.122	5	267.041	2	-4.447	12	.011	1	.085	5	.464	3
120				-115.467	1_	-118.746		-94.927	1	012	3	042	1	-1.033	2
121		4	max		_5	69.396	2	-2.77	12	.011	1	.047	5	.546	3
122		_	min		1	-28.787	3	-54.128	1	012	3	125	1	-1.22	2
123		5		36.311	5	61.172	3	-1.092	12	.011	1	.011	5	.528	3
124			min		1	-128.249	2	-34.102	4	012	3	162	1	-1.187	2
125		6	max		5	151.131	3	27.469	1	.011	1	007	12	.41	3
126		7	min	-115.467	1	-325.894	2	-28.025	5	012	3	155	1	935	2
127		7	max		5	241.091	3	68.268	1	.011	1	005	12	.192	3
128		0		-115.467	1	-523.539		-25.429	5	012	3	101	10	463	2
129		8	max	2.093 -115.467	5	331.05 -721.184	3	109.067	1	.011	1	0	10	.229 126	
130 131		9			1 12	421.009		-22.834 149.865	<u>5</u>	012 .011	1	08 .141	1	126 1.14	2
131		9	max	-5.955 -115.467	1	-918.829	2	-20.238	5	012	3	102	5	544	3
132			1111111	-115.467		-910.029		-20.238	J	012	J	102	J	544	」 3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
133		10	max	-5.955	12	1116.474	2	-7.296	12	.012	3	.33	1	2.271	2
134			min	-115.467	1	-510.969	3	-190.664	1	011	1	.011	12	-1.062	3
135		11	max	-3.434	15	918.829	2	-5.618	12	.012	3	.152	4	1.14	2
136			min	-115.467	1	-421.009	3	-149.865	1	011	1	.004	12	544	3
137		12	max	-5.955	12	721.184	2	-3.94	12	.012	3	.078	4	.229	2
138			min	-115.467	1_	-331.05	3	-109.067	1	011	1	003	3	126	3
139		13	max	-5.955	12	523.539	2	-2.263	12	.012	3	.038	5	.192	3
140			min	-115.467	1	-241.091	3	-68.268	1	011	1	101	1	463	2
141		14	max	-5.955	12	325.894	2	585	12	.012	3	.001	5	.41	3
142			min	-115.467	1	-151.131	3	-37.902	4	011	1	155	1	935	2
143		15	max	-5.955	12	128.249	2	13.33	1	.012	3	006	12	.528	3
144			min	-115.467	1_	-61.172	3	-28.884	5	011	1	162	1	-1.187	2
145		16	max		12	28.787	3	54.128	1	.012	3	004	12	.546	3
146			min	-115.467	1_	-69.396	2	-26.288	5	011	1	125	1	-1.22	2
147		17	max	-5.955	12	118.746	3	94.927	1	.012	3	0	3	.464	3
148			min	-115.467	1_	-267.041	2	-23.693	5	011	1	101	4	-1.033	2
149		18	max		12	208.706	3	135.726	1	.012	3	.086	1	.282	3
150			min	-115.467	_1_	-464.685	2	-21.097	5	011	1	115	5	626	2
151		19	max	-5.955	12	298.665	3	176.524	1	.012	3	.26	1	0	2
152				-123.089	4	-662.33	2	-18.502	5	011	1	137	5	0	5
153	M2	1	max	1084.867	2	1.958	4	.697	1	0	12	0	3	0	1
154			min	-1425.854	3	.477	15	-44.237	4	0	4	0	1	0	1
155		2	max	1085.296	2	1.901	4	.697	1	0	12	0	1_	0	15
156			min	-1425.533	3	.463	15	-44.61	4	0	4	013	4	0	4
157		3		1085.724	2	1.844	4_	.697	1	0	12	0	1_	0	15
158			min	-1425.211	3	.45	15	-44.983	4	0	4	026	4	001	4
159		4		1086.153	2	1.788	4_	.697	1	0	12	0	1_	0	15
160				-1424.89	3	.437	15	-45.357	4	0	4	039	4	002	4
161		5		1086.581	2	1.731	4	.697	1	0	12	0	1_	0	15
162				-1424.569	3	.423	15	-45.73	4	0	4	052	4	002	4
163		6	max		2	1.674	4_	.697	1	0	12	0	1	0	15
164		_	min	-1424.247	3_	.41	15	-46.103	4	0	4	066	4	003	4
165		7		1087.438	2	1.617	4_	.697	1	0	12	.001	1	0	15
166			min	-1423.926	3	.397	15	-46.477	4	0	4	079	4	003	4
167		8		1087.867	2	1.56	4	.697	1	0	12	.001	1	0	15
168			min	-1423.604	3	.378	12	-46.85	4	0	4	093	4	004	4
169		9		1088.295	2	1.504	4	.697	1	0	12	.002	1	0	15
170		40	min	-1423.283	3	.355	12	-47.223	4	0	4	106	4	004	4
171		10		1088.724	2	1.447	4	.697	1	0	12	.002	1	001	15
172		4.4		-1422.962	3	.333	12	-47.597	4	0	4	12	4	004	4
173		11		1089.152	2	1.39	4	.697	1	0	12	.002	1	001	15
174		40		-1422.64	3	.311	12	-47.97	4	0	4	134	4	005	4
175		12		1089.581	2	1.333	4	.697	1	0	12	.002	1	001	15
176		10		-1422.319	3	.289	12	-48.343	4	0	<u>4</u> 12	148 .002	1	005	4
177		13		1090.009 -1421.998	3	1.276	<u>4</u> 12	.697	4	0	4			001	15
178		1.1				.267		-48.717		0	_	162	4	006 001	4
179		14		1090.438 -1421.676	2	1.22	4	.697	1	0	12	.003 176	1		12
180		15			3	.245	<u>12</u>	-49.09 607	4	0	4		4	006	12
181		15		1090.866 -1421.355	2	1.163	12	.697	1	0	12	.003	1	002	12
182 183		16		1091.295	<u>3</u> 2	.223 1.106	4	-49.463 .697	1	0	<u>4</u> 12	19 .003	1	006 002	12
184		10		-1421.034	3	.201	12	-49.837	-		4	205		002	4
185		17	_	1091.723		1.054	2	.697	1	0	12	.003	1	007	12
186		17		-1420.712	3	.178	12	-50.21	4	0	4	219	4	002	4
		10		1092.152				.697	1	_			1		
187 188		18		-1420.391	3	1.01 .156	<u>2</u>	-50.583	4	0	12 4	.003 234	4	002 007	12
189		19	_		2		2	.697	1	0	12	.004	1		12
109		19	шах	1092.58		.966		.097		U	12	.004		002	14

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
190			min	-1420.069	3	.134	12	-50.957	4	0	4	249	4	008	4
191	M3	1	max	632.618	2	7.908	4	3.524	4	0	12	0	1_	.008	4
192			min	-779.363	3	1.87	15	.008	12	0	4	027	4	.002	12
193		2	max	632.447	2	7.14	4	4.063	4	0	12	0	1	.005	2
194			min	-779.49	3	1.69	15	.008	12	0	4	025	4	0	12
195		3	max	632.277	2	6.373	4	4.602	4	0	12	0	1	.002	2
196			min	-779.618	3	1.51	15	.008	12	0	4	023	4	0	3
197		4	max	632.107	2	5.606	4	5.141	4	0	12	0	1	0	2
198			min	-779.746	3	1.329	15	.008	12	0	4	021	4	002	3
199		5	max	631.936	2	4.839	4	5.679	4	0	12	0	1	0	15
200			min	-779.874	3	1.149	15	.008	12	0	4	019	4	003	3
201		6	max	631.766	2	4.071	4	6.218	4	0	12	0	1	001	15
202			min	-780.002	3	.968	15	.008	12	0	4	016	4	005	6
203		7	max	631.596	2	3.304	4	6.757	4	0	12	0	1	001	15
204			min	-780.129	3	.788	15	.008	12	0	4	014	5	007	6
205		8	max	631.425	2	2.537	4	7.296	4	0	12	0	1	002	15
206			min	-780.257	3	.608	15	.008	12	0	4	011	5	008	6
207		9	max	631.255	2	1.77	4	7.834	4	0	12	0	1	002	15
208			min	-780.385	3	.427	15	.008	12	0	4	008	5	009	6
209		10	max	631.085	2	1.003	4	8.373	4	0	12	0	1	002	15
210			min	-780.513	3	.231	12	.008	12	0	4	004	5	009	6
211		11	max	630.914	2	.347	2	8.912	4	0	12	.001	1	002	15
212			min	-780.64	3	127	3	.008	12	0	4	0	5	01	6
213		12	max	630.744	2	114	15	9.451	4	0	12	.003	4	002	15
214			min	-780.768	3	576	3	.008	12	0	4	0	12	009	6
215		13	max	630.574	2	294	15	9.989	4	0	12	.007	4	002	15
216			min	-780.896	3	-1.3	6	.008	12	0	4	0	12	009	6
217		14	max	630.403	2	474	15	10.528	4	0	12	.012	4	002	15
218			min	-781.024	3	-2.067	6	.008	12	0	4	0	12	008	6
219		15	max	630.233	2	655	15	11.067	4	0	12	.016	4	002	15
220		'	min	-781.151	3	-2.834	6	.008	12	Ö	4	0	12	007	6
221		16	max	630.063	2	835	15	11.606	4	0	12	.021	4	001	15
222		1.0	min	-781.279	3	-3.602	6	.008	12	0	4	0	12	006	6
223		17	max	629.892	2	-1.015	15	12.144	4	0	12	.026	4	001	15
224			min	-781.407	3	-4.369	6	.008	12	0	4	0	12	004	6
225		18	max	629.722	2	-1.196	15	12.683	4	0	12	.031	4	0	15
226			min	-781.535	3	-5.136	6	.008	12	0	4	0	12	002	6
227		19	max	629.551	2	-1.376	15	13.222	4	0	12	.037	4	0	1
228			min	-781.662	3	-5.903	6	.008	12	0	4	0	12	0	1
229	M4	1		1163.579	1	0	1	562	12	0	1	.026	4	0	1
230	171.1			-152.477		0	1	-275.749		0	1	0	12	0	1
231		2		1163.749	1	0	1	562	12	0	1	0	3	0	1
232		_	min	-152.349	3	0	1	-275.897		0	1	005	4	0	1
233		3	+	1163.92	1	0	1	562	12	0	1	0	12	0	1
234					3	0	1	-276.045		0	1	037	4	0	1
235		4		1164.09	1	0	1	562	12	0	1	0	12	0	1
236				-152.094		0	1	-276.192		0	1	069	4	0	1
237		5		1164.26	1	0	1	562	12	0	1	0	12	0	1
238		<u> </u>		-151.966	3	0	1	-276.34	4	0	1	1	4	0	1
239		6		1164.431	<u> </u>	0	1	562	12	0	1	0	12	0	1
240		U		-151.838	3	0	1	-276.488		0	1	132	4	0	1
241		7		1164.601	<u> </u>	0	1	562	12	0	1	0	12	0	1
241			min		3	0	1	-276.635		0	1	164	4	0	1
243		8		1164.772	<u> </u>	0	1	562	12	0	1	104 0	12	0	1
244		0		-151.583	3	0	1	562		0	1	196	4	0	1
244		9			<u> </u>		1		12	0	1	196 0	12	0	1
		9		1164.942		0	1	562							1
246			THILL	-151.455	3	0		-276.931	4	0	1	227	4	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

247 10 max 1165.112 1 0 1 562 12 0 1 0 12 248 min -151.327 3 0 1 -277.078 4 0 1 -259 4 249 11 max 1165.283 1 0 1 562 12 0 1 0 12 250 min -151.199 3 0 1 -277.226 4 0 1 -291 4 251 12 max 1165.453 1 0 1 -277.373 4 0 1 -323 4 251 13 max 1165.623 1 0 1 -562 12 0 1 0 12 253 13 max 1165.794 1 0 1 -562 12 0 1 0 12 254 min -150.816 3 0 1 -277.521 <td< th=""><th>z-z Mome LC</th></td<>	z-z Mome LC
249 11 max 1165.283 1 0 1 562 12 0 1 0 12 250 min -151.199 3 0 1 -277.226 4 0 1 291 4 251 12 max 1165.453 1 0 1 562 12 0 1 0 12 252 min -151.072 3 0 1 -277.373 4 0 1 -323 4 253 13 max 1165.623 1 0 1 562 12 0 1 0 12 254 min -150.944 3 0 1 -277.521 4 0 1 -355 4 255 14 max 1165.794 1 0 1 -562 12 0 1 0 12 256 min -150.883 3	0 1
250 min -151.199 3 0 1 -277.226 4 0 1 291 4 251 12 max 1165.453 1 0 1 562 12 0 1 0 12 252 min -151.072 3 0 1 -277.373 4 0 1 323 4 253 13 max 1165.623 1 0 1 562 12 0 1 0 12 254 min -150.944 3 0 1 -277.521 4 0 1 355 4 255 14 max 1165.794 1 0 1 562 12 0 1 0 12 256 min -150.816 3 0 1 -277.669 4 0 1 387 4 257 15 max 1165.964 1	0 1
251 12 max 1165.453 1 0 1 562 12 0 1 0 12 252 0 1 0 1 277.373 4 0 1 323 4 0 1 323 4 0 1 323 4 0 1 323 4 0 1 323 4 0 1 323 4 0 1 323 4 0 1 323 4 0 1 323 4 0 1 323 4 0 1 323 4 0 1 323 4 0 1 323 4 0 1 325 4 0 1 355 4 0 1 355 4 0 1 355 4 0 1 387 4 0 1 387 4 0 1 387 4 0	0 1
252 min -151.072 3 0 1 -277.373 4 0 1 323 4 253 13 max 1165.623 1 0 1 562 12 0 1 0 12 254 min -150.944 3 0 1 -277.521 4 0 1 355 4 255 14 max 1165.794 1 0 1 562 12 0 1 0 12 256 min -150.816 3 0 1 -277.669 4 0 1 387 4 257 15 max 1165.964 1 0 1 562 12 0 1 0 12 258 min -150.688 3 0 1 -277.816 4 0 1 419 4 259 16 max 1166.134 1	
253 13 max 1165.623 1 0 1 562 12 0 1 0 12 254 min -150.944 3 0 1 -277.521 4 0 1 355 4 255 14 max 1165.794 1 0 1 562 12 0 1 0 12 256 min -150.816 3 0 1 -277.669 4 0 1 387 4 257 15 max 1165.964 1 0 1 562 12 0 1 0 12 258 min -150.688 3 0 1 -277.816 4 0 1 419 4 259 16 max 1166.134 1 0 1 562 12 0 1 0 12 260 min -150.561 3 0 1 -277.964 4 0 1 45 4 261 17 max 1166.305 1 0 1 562 <td></td>	
254 min -150.944 3 0 1 -277.521 4 0 1 355 4 255 14 max 1165.794 1 0 1 562 12 0 1 0 12 256 min -150.816 3 0 1 -277.669 4 0 1 -387 4 257 15 max 1165.964 1 0 1 562 12 0 1 0 12 258 min -150.688 3 0 1 -277.816 4 0 1 -419 4 259 16 max 1166.134 1 0 1 -562 12 0 1 0 12 260 min -150.561 3 0 1 -277.964 4 0 1 45 4 261 17 max 1166.305 1	0 1
255 14 max 1165.794 1 0 1 562 12 0 1 0 12 256 min -150.816 3 0 1 -277.669 4 0 1 387 4 257 15 max 1165.964 1 0 1 562 12 0 1 0 12 258 min -150.688 3 0 1 -277.816 4 0 1 419 4 259 16 max 1166.134 1 0 1 562 12 0 1 0 12 260 min -150.561 3 0 1 -277.964 4 0 1 45 4 261 17 max 1166.305 1 0 1 562 12 0 1 0 12 262 min -150.433 3 0 1 -278.112 4 0 1 482 4 263 18 max 1166.475 1 0 1 562 <td>0 1</td>	0 1
256 min -150.816 3 0 1 -277.669 4 0 1 387 4 257 15 max 1165.964 1 0 1 562 12 0 1 0 12 258 min -150.688 3 0 1 -277.816 4 0 1 419 4 259 16 max 1166.134 1 0 1 562 12 0 1 0 12 260 min -150.561 3 0 1 -277.964 4 0 1 45 4 261 17 max 1166.305 1 0 1 562 12 0 1 0 12 262 min -150.433 3 0 1 -278.112 4 0 1 482 4 263 18 max 1166.475 1	0 1
257 15 max 1165.964 1 0 1562 12 0 1 0 12 258 min -150.688 3 0 1 -277.816 4 0 1419 4 259 16 max 1166.134 1 0 1562 12 0 1 0 12 260 min -150.561 3 0 1 -277.964 4 0 145 4 261 17 max 1166.305 1 0 1562 12 0 1 0 12 262 min -150.433 3 0 1 -278.112 4 0 1482 4 263 18 max 1166.475 1 0 1562 12 0 1001 12 264 min -150.305 3 0 1 -278.259 4 0 1514 4 265 19 max 1166.645 1 0 1562 12 0 1001 12	0 1
258 min -150.688 3 0 1 -277.816 4 0 1 419 4 259 16 max 1166.134 1 0 1 562 12 0 1 0 12 260 min -150.561 3 0 1 -277.964 4 0 1 45 4 261 17 max 1166.305 1 0 1 562 12 0 1 0 12 262 min -150.433 3 0 1 -278.112 4 0 1 482 4 263 18 max 1166.475 1 0 1 562 12 0 1 514 4 264 min -150.305 3 0 1 -278.259 4 0 1 514 4 265 19 max 1166.645 1 <td>0 1</td>	0 1
259 16 max 1166.134 1 0 1 562 12 0 1 0 12 260 min -150.561 3 0 1 -277.964 4 0 1 45 4 261 17 max 1166.305 1 0 1 562 12 0 1 0 12 262 min -150.433 3 0 1 -278.112 4 0 1 482 4 263 18 max 1166.475 1 0 1 562 12 0 1 001 12 264 min -150.305 3 0 1 -278.259 4 0 1 514 4 265 19 max 1166.645 1 0 1 562 12 0 1 001 12	0 1
260 min -150.561 3 0 1 -277.964 4 0 1 45 4 261 17 max 1166.305 1 0 1 562 12 0 1 0 12 262 min -150.433 3 0 1 -278.112 4 0 1 482 4 263 18 max 1166.475 1 0 1 562 12 0 1 001 12 264 min -150.305 3 0 1 -278.259 4 0 1 514 4 265 19 max 1166.645 1 0 1 562 12 0 1 001 12	0 1
261 17 max 1166.305 1 0 1 562 12 0 1 0 12 262 min -150.433 3 0 1 -278.112 4 0 1 482 4 263 18 max 1166.475 1 0 1 562 12 0 1 001 12 264 min -150.305 3 0 1 -278.259 4 0 1 514 4 265 19 max 1166.645 1 0 1 562 12 0 1 001 12	0 1
262 min -150.433 3 0 1 -278.112 4 0 1 482 4 263 18 max 1166.475 1 0 1 562 12 0 1 001 12 264 min -150.305 3 0 1 -278.259 4 0 1 514 4 265 19 max 1166.645 1 0 1 562 12 0 1 001 12	0 1
263 18 max 1166.475 1 0 1 562 12 0 1 001 12 264 min -150.305 3 0 1 -278.259 4 0 1 514 4 265 19 max 1166.645 1 0 1 562 12 0 1 001 12	0 1
264 min -150.305 3 0 1 -278.259 4 0 1514 4 265 19 max 1166.645 1 0 1562 12 0 1001 12	0 1
265 19 max 1166.645 1 0 1562 12 0 1001 12	0 1
	0 1
200	0 1
267 M6 1 max 3486.816 2 2.439 2 0 1 0 1 0 4	0 1
268 min -4660.079 3 038 3 -44.689 4 0 4 0 1	0 1
269 2 max 3487.244 2 2.395 2 0 1 0 1 0 1	0 3
270 min -4659.758 3071 3 -45.063 4 0 4013 4	0 2
271 3 max 3487.673 2 2.351 2 0 1 0 1 0 1	0 3
272 min -4659.436 3104 3 -45.436 4 0 4026 4	001 2
273 4 max 3488.101 2 2.306 2 0 1 0 1 0 1	0 3
274 min -4659.115 3137 3 -45.809 4 0 4039 4	002 2
275 5 max 3488.53 2 2.262 2 0 1 0 1 0 1	0 3
276 min -4658.794 317 3 -46.183 4 0 4053 4	003 2
277 6 max 3488.958 2 2.218 2 0 1 0 1 0 1	0 3
278 min -4658.472 3204 3 -46.556 4 0 4066 4	003 2
279 7 max 3489.387 2 2.174 2 0 1 0 1 0 1	0 3
280 min -4658.151 3237 3 -46.929 4 0 408 4	004 2
281 8 max 3489.815 2 2.129 2 0 1 0 1 0 1	0 3
282 min -4657.83 327 3 -47.303 4 0 4093 4	005 2
283 9 max 3490.244 2 2.085 2 0 1 0 1 0 1	0 3
284 min -4657.508 3303 3 -47.676 4 0 4107 4	005 2
285 10 max 3490.672 2 2.041 2 0 1 0 1 0 1	0 3
286 min -4657.187 3336 3 -48.049 4 0 4121 4	006 2
287	0 3
288 min -4656.866 337 3 -48.423 4 0 4135 4	006 2
289 12 max 3491.529 2 1.952 2 0 1 0 1 0 1	0 3
290 min -4656.544 3403 3 -48.796 4 0 4149 4	007 2
291 13 max 3491.958 2 1.908 2 0 1 0 1 0 1	0 3
292 min -4656.223 3436 3 -49.169 4 0 4164 4	008 2
293	0 3
294 min -4655.901 3469 3 -49.543 4 0 4178 4	008 2
295 15 max 3492.815 2 1.82 2 0 1 0 1 0 1	.001 3
296 min -4655.58 3502 3 -49.916 4 0 4192 4	009 2
297 16 max 3493.243 2 1.775 2 0 1 0 1 0 1	.001 3
298 min -4655.259 3535 3 -50.289 4 0 4207 4	009 2
299 17 max 3493.672 2 1.731 2 0 1 0 1 0 1	.001 3
300 min -4654.937 3569 3 -50.663 4 0 4221 4	01 2
301	.002 3
302 min -4654.616 3602 3 -51.036 4 0 4236 4	01 2
303 19 max 3494.529 2 1.643 2 0 1 0 1 0 1	01

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
304			min	-4654.295	3	635	3	-51.409	4	0	4	251	4	011	2
305	M7	1	max	2358.384	2	7.918	6	3.31	4	0	1	0	1	.011	2
306			min	-2459.976	3	1.858	15	0	1	0	4	027	4	002	3
307		2	max	2358.213	2	7.15	6	3.848	4	0	1	0	1	.008	2
308			min	-2460.104	3	1.678	15	0	1	0	4	025	4	003	3
309		3	max	2358.043	2	6.383	6	4.387	4	0	1	0	1	.005	2
310			min	-2460.232	3	1.498	15	0	1	0	4	024	4	005	3
311		4	max	2357.873	2	5.616	6	4.926	4	0	1	0	1	.003	2
312			min	-2460.36	3	1.317	15	0	1	0	4	022	4	006	3
313		5	max	2357.702	2	4.849	6	5.465	4	0	1	0	1	.001	2
314			min	-2460.487	3	1.137	15	0	1	0	4	019	4	007	3
315		6	max	2357.532	2	4.081	6	6.003	4	0	1	0	1	0	2
316			min	-2460.615	3	.957	15	0	1	0	4	017	4	007	3
317		7	max	2357.362	2	3.314	6	6.542	4	0	1	0	1	002	15
318			min	-2460.743	3	.776	15	0	1	0	4	014	4	008	3
319		8	max	2357.191	2	2.61	2	7.081	4	0	1	0	1	002	15
320			min	-2460.871	3	.496	12	0	1	0	4	012	4	008	3
321		9	max	2357.021	2	2.012	2	7.62	4	0	1	0	1	002	15
322			min	-2460.998	3	.198	12	0	1	0	4	009	4	009	4
323		10	max	2356.851	2	1.414	2	8.158	4	0	1	0	1	002	15
324			min	-2461.126	3	233	3	0	1	0	4	005	4	009	4
325		11	max	2356.68	2	.816	2	8.697	4	0	1	0	1	002	15
326			min	-2461.254	3	681	3	0	1	0	4	002	5	009	4
327		12	max	2356.51	2	.219	2	9.236	4	0	1	.002	4	002	15
328			min	-2461.382	3	-1.13	3	0	1	0	4	0	1	009	4
329		13	max	2356.34	2	306	15	9.775	4	0	1	.006	4	002	15
330			min	-2461.509	3	-1.578	3	0	1	0	4	0	1	009	4
331		14	max	2356.169	2	486	15	10.313	4	0	1	.01	4	002	15
332			min	-2461.637	3	-2.056	4	0	1	0	4	0	1	008	4
333		15	max	2355.999	2	666	15	10.852	4	0	1	.015	4	002	15
334			min	-2461.765	3	-2.824	4	0	1	0	4	0	1	007	4
335		16	max	2355.829	2	847	15	11.391	4	0	1	.019	4	001	15
336			min	-2461.893	3	-3.591	4	0	1	0	4	0	1	006	4
337		17	max	2355.658	2	-1.027	15	11.93	4	0	1	.024	4	001	15
338			min	-2462.02	3	-4.358	4	0	1	0	4	0	1	004	4
339		18	max	2355.488	2	-1.207	15	12.468	4	0	1	.029	4	0	15
340			min	-2462.148	3	-5.125	4	0	1	0	4	0	1	002	4
341		19	max	2355.318	2	-1.388	15	13.007	4	0	1	.035	4	0	1
342			min	-2462.276	3	-5.892	4	0	1	0	4	0	1	0	1
343	M8	1	max	3175.017	1	0	1	0	1	0	1	.025	4	0	1
344			min	-577.952	3	0	1	-267.242	4	0	1	0	1	0	1
345		2	max	3175.187	1	0	1	0	1	0	1	0	1	0	1
346				-577.824	3	0	1	-267.39	4	0	1	006	4	0	1
347		3	max	3175.358	1	0	1	0	1	0	1	0	1	0	1
348			min	-577.697	3	0	1	-267.538	4	0	1	036	4	0	1
349		4		3175.528	1	0	1	0	1	0	1	0	1	0	1
350			min	-577.569	3	0	1	-267.685	4	0	1	067	4	0	1
351		5		3175.698	1	0	1	0	1	0	1	0	1	0	1
352				-577.441	3	0	1	-267.833	4	0	1	098	4	0	1
353		6		3175.869	1	0	1	0	1	0	1	0	1	0	1
354				-577.313	3	0	1	-267.981	4	0	1	129	4	0	1
355		7		3176.039	1	0	1	0	1	0	1	0	1	0	1
356				-577.186	3	0	1	-268.128	4	0	1	159	4	0	1
357		8		3176.21	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	-268.276	4	0	1	19	4	0	1
359		9		3176.38	1	0	1	0	1	0	1	0	1	0	1
360			min		3	0	1	-268.424	4	0	1	221	4	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max		_1_	0	1	0	1	0	_1_	0	1	0	1
362			min	-576.802	3	0	1	-268.571	4	0	1	252	4	0	1
363		11	max	3176.721	1	0	1	0	1	0	1	0	1	0	1
364			min	-576.675	3	0	1	-268.719	4	0	1	283	4	0	1
365		12	max	3176.891	1	0	1	0	1	0	1	0	1	0	1
366			min	-576.547	3	0	1	-268.866	4	0	1	313	4	0	1
367		13	max	3177.061	1	0	1	0	1	0	1	0	1	0	1
368			min	-576.419	3	0	1	-269.014	4	0	1	344	4	0	1
369		14	max	3177.232	1	0	1	0	1	0	1	0	1	0	1
370			min	-576.291	3	0	1	-269.162	4	0	1	375	4	0	1
371		15	max	3177.402	1	0	1	0	1	0	1	0	1	0	1
372			min	-576.163	3	0	1	-269.309	4	0	1	406	4	0	1
373		16	max	3177.572	1	0	1	0	1	0	1	0	1	0	1
374			min	-576.036	3	0	1	-269.457	4	0	1	437	4	0	1
375		17	max	3177.743	1	0	1	0	1	0	1	0	1	0	1
376			min	-575.908	3	0	1	-269.605	4	0	1	468	4	0	1
377		18	max	3177.913	1	0	1	0	1	0	1	0	1	0	1
378			min	-575.78	3	0	1	-269.752	4	0	1	499	4	0	1
379		19	max	3178.083	1	0	1	0	1	0	1	0	1	0	1
380			min	-575.652	3	0	1	-269.9	4	0	1	53	4	0	1
381	M10	1		1084.867	2	1.885	6	034	12	0	1	0	1	0	1
382			min		3	.428	15	-44.634	4	0	5	0	3	0	1
383		2	max	1085.296	2	1.829	6	034	12	0	1	0	10	0	15
384				-1425.533	3	.415	15	-45.007	4	0	5	013	4	0	6
385		3		1085.724	2	1.772	6	034	12	0	1	0	12	0	15
386				-1425.211	3	.401	15	-45.38	4	Ö	5	026	4	001	6
387		4		1086.153	2	1.715	6	034	12	0	1	0	12	0	15
388				-1424.89	3	.388	15	-45.754	4	0	5	039	4	002	6
389		5		1086.581	2	1.658	6	034	12	0	1	0	12	0	15
390			min	-1424.569	3	.375	15	-46.127	4	0	5	053	4	002	6
391		6		1087.01	2	1.602	6	034	12	0	1	0	12	0	15
392			min	-1424.247	3	.361	15	-46.5	4	0	5	066	4	003	6
393		7		1087.438	2	1.545	6	034	12	0	1	0	12	0	15
394				-1423.926	3	.348	15	-46.874	4	0	5	08	4	003	6
395		8		1087.867	2	1.488	6	034	12	0	1	0	12	0	15
396				-1423.604	3	.335	15	-47.247	4	0	5	093	4	003	6
397		9		1088.295	2	1.431	6	034	12	0	1	0	12	0	15
398				-1423.283	3	.321	15	-47.62	4	0	5	107	4	004	6
399		10		1088.724	2	1.374	6	034	12	0	1	0	12	0	15
400			min	-1422.962	3	.308	15	-47.994	4	0	5	121	4	004	6
401		11	max	1089.152		1.32	2	034	12	0	1	0	12	001	15
402				-1422.64	3	.294	15	-48.367	4	0	5	135	4	005	6
403		12		1089.581	2	1.275	2	034	12	0	1	0	12	001	15
404				-1422.319	3	.281	15	-48.74	4	0	5	149	4	005	6
405		13		1090.009	2	1.231	2	034	12	0	1	0	12	001	15
406				-1421.998	3	.267	12	-49.114	4	0	5	163	4	005	6
407		14		1090.438	2	1.187	2	034	12	0	1	0	12	001	15
408				-1421.676	3	.245	12	-49.487	4	0	5	178	4	006	6
409		15		1090.866	2	1.143	2	034	12	0	1	0	12	001	15
410		'		-1421.355	3	.223	12	-49.86	4	0	5	192	4	006	6
411		16		1091.295	2	1.098	2	034	12	0	1	0	12	000 001	15
412		'		-1421.034	3	.201	12	-50.234	4	0	5	207	4	006	6
413		17		1091.723	2	1.054	2	034	12	0	1	0	12	001	15
414		''		-1420.712	3	.178	12	-50.607	4	0	5	221	4	007	6
415		18		1092.152	2	1.01	2	034	12	0	1	0	12	007	15
416		10		-1420.391	3	.156	12	-50.98	4	0	5	236	4	002	6
417		19		1092.58	2	.966	2	034	12	0	<u> </u>	0	12	007	15
417		ן ואַ	IIIIax	1032.30		.500		034	14	U		U	14	002	10

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
418			min	-1420.069	3	.134	12	-51.354	4	0	5	251	4	007	6
419	M11	1	max	632.618	2	7.857	6	3.433	4	0	1	0	12	.007	6
420			min	-779.363	3	1.836	15	161	1	0	4	027	4	.002	15
421		2	max	632.447	2	7.09	6	3.972	4	0	1	0	12	.005	2
422			min	-779.49	3	1.656	15	161	1	0	4	025	4	0	12
423		3	max	632.277	2	6.323	6	4.511	4	0	1	0	12	.002	2
424			min	-779.618	3	1.476	15	161	1	0	4	023	4	0	3
425		4	max	632.107	2	5.556	6	5.049	4	0	1	0	12	0	2
426			min	-779.746	3	1.295	15	161	1	0	4	021	4	002	3
427		5	max	631.936	2	4.788	6	5.588	4	0	1	0	12	0	15
428			min	-779.874	3	1.115	15	161	1	0	4	019	4	003	4
429		6	max	631.766	2	4.021	6	6.127	4	0	1	0	12	001	15
430			min	-780.002	3	.935	15	161	1	0	4	017	4	005	4
431		7	max	631.596	2	3.254	6	6.666	4	0	1	0	12	002	15
432			min	-780.129	3	.754	15	161	1	0	4	014	4	007	4
433		8	max	631.425	2	2.487	6	7.204	4	0	1	0	12	002	15
434			min	-780.257	3	.574	15	161	1	0	4	011	4	008	4
435		9	max	631.255	2	1.72	6	7.743	4	0	1	0	12	002	15
436			min	-780.385	3	.394	15	161	1	0	4	008	4	009	4
437		10	max	631.085	2	.952	6	8.282	4	0	1	0	12	002	15
438		10	min	-780.513	3	.213	15	161	1	0	4	005	4	009	4
439		11	max	630.914	2	.347	2	8.82	4	0	1	0	12	002	15
440			min	-780.64	3	127	3	161	1	0	4	001	4	01	4
441		12	max	630.744	2	147	15	9.359	4	0	1	.003	5	002	15
442		12	min	-780.768	3	583	4	161	1	0	4	001	1	01	4
443		13	max	630.574	2	328	15	9.898	4	0	1	.007	5	002	15
444		13	min	-780.896	3	-1.35	4	161	1	0	4	001	1	009	4
445		14	max	630.403	2	508	15	10.437	4	0	1	.011	5	002	15
446		17	min	-781.024	3	-2.117	4	161	1	0	4	001	1	002	4
447		15	max	630.233	2	688	15	10.975	4	0	1	.016	5	002	15
448		13	min	-781.151	3	-2.885	4	161	1	0	4	001	1	002	4
449		16	max	630.063	2	869	15	11.514	4	0	1	.02	5	001	15
450		10	min	-781.279	3	-3.652	4	161	1	0	4	001	1	006	4
451		17	max	629.892	2	-1.049	15	12.053	4	0	1	.025	4	000 001	15
452		17		-781.407	3	-4.419	4	161	1	0	4	001	1		4
453		18	min max	629.722	2	-1.229	15	12.592	4	0	1	.03	4	004 0	15
454		10		-781.535		-5.186	4	161	1	0	4	002	1	002	4
455		19	min		2	-1.41	15	13.13	4		1	.036	4		1
		19	max	629.551					1	0			1	0	1
456	MAO	1	min	-781.662	3	-5.954	4	161		0	4	002		0	
457	M12	1		1163.579	1	0	1	11.016	1	0	1	.026	4	0	1
458		2		-152.477		0	1	-269.461		0	4	001	1	0	1
459		2		1163.749	1	0	1	11.016	1	0	1	0	1	0	1
460		2	min	-152.349		0	1	-269.609		0	1	005	4	0	1
461		3		1163.92	1	0	1	11.016	1	0	1	.001	1	0	1
462		4			3	0		-269.756		0	1	036	4	0	1
463		4		1164.09	1	0	1	11.016	1	0	1	.003	1	0	1
464		_				0	1	-269.904		0	1	067	4	0	1
465		5		1164.26	1	0	1	11.016	1	0	1	.004	1	0	1
466				-151.966		0	1	-270.052	4	0	1	098	4	0	1
467		6		1164.431	1	0	1	11.016	1	0	1_	.005	1	0	1
468		-		-151.838		0	1	-270.199		0	1_	129	4	0	1
469		7		1164.601	1	0	1	11.016	1	0	1	.006	1	0	1
470			min	-151.71	3	0	1	-270.347	4	0	1_	16	4	0	1
471		8		1164.772	1	0	1	11.016	1	0	1	.008	1	0	1
472		_		-151.583	3	0	1	-270.495		0	1_	191	4	0	1
473		9		1164.942	1	0	1	11.016	1	0	1	.009	1	0	1
474			min	-151.455	3	0	1	-270.642	4	0	1	222	4	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]						Torque[k-ft]				l _	
475		10		1165.112	1_	0	1	11.016	1	0	1	.01	1	0	1
476			min	-151.327	3	0	1_	-270.79	4	0	<u>1</u>	253	4	0	1
477		11		1165.283	1_	0	1	11.016	1	0	1	.012	1	0	1
478			min	-151.199	3	0	1	-270.938	4	0	1_	284	4	0	1
479		12		1165.453	_1_	0	1	11.016	1	0	_1_	.013	1	0	1
480			min	-151.072	3	0	1	-271.085	4	0	1_	316	4	0	1
481		13		1165.623	_1_	0	1_	11.016	1	0	_1_	.014	1_	0	1
482			min		3	0	1	-271.233	4	0	1_	347	4	0	1
483		14	max	1165.794	_1_	0	1	11.016	1	0	_1_	.015	1	0	1
484			min		3	0	1	-271.38	4	0	1_	378	4	0	1
485		15	max	1165.964	_1_	0	_1_	11.016	1	0	_1_	.017	1	0	1
486			min		3	0	1	-271.528	4	0	1	409	4	0	1
487		16	max	1166.134	<u>1</u>	0	1	11.016	1	0	<u>1</u>	.018	1_	0	1
488			min	-150.561	3	0	1	-271.676	4	0	1	44	4	0	1
489		17	max	1166.305	1	0	1	11.016	1	0	1_	.019	1	0	1
490			min	-150.433	3	0	1	-271.823	4	0	1	471	4	0	1
491		18	max	1166.475	1	0	1	11.016	1	0	1_	.02	1	0	1
492			min	-150.305	3	0	1	-271.971	4	0	1	503	4	0	1
493		19	max	1166.645	1	0	1	11.016	1	0	1	.022	1	0	1
494			min	-150.177	3	0	1	-272.119	4	0	1	534	4	0	1
495	M1	1	max		1	786.637	3	48.175	5	0	1_	.258	1	0	3
496			min	-9.547	5	-467.535	2	-107.963	1	0	3	091	5	015	2
497		2	max	176.878	1	785.663	3	49.417	5	0	1	.201	1	.233	1
498			min	-9.265	5	-468.833	2	-107.963	1	0	3	065	5	415	3
499		3	max	480.138	3	551.832	2	7.444	5	0	3	.144	1	.468	1
500			min	-281.409	2	-565.624	3	-107.497	1	0	2	04	5	813	3
501		4	max	480.592	3	550.533	2	8.686	5	0	3	.087	1	.19	1
502			min	-280.804	2	-566.597	3	-107.497	1	0	2	035	5	514	3
503		5	max		3	549.235	2	9.927	5	0	3	.031	1	003	15
504			min	-280.199	2	-567.571	3	-107.497	1	0	2	03	5	215	3
505		6	max	481.5	3	547.937	2	11.169	5	0	3	001	12	.085	3
506			min	-279.593	2	-568.545	3	-107.497	1	0	2	031	4	403	2
507		7	max		3	546.639	2	12.41	5	0	3	004	12	.385	3
508			min	-278.988	2	-569.518	3	-107.497	1	0	2	083	1	691	2
509		8	max		3	545.341	2	13.652	5	0	3	008	12	.686	3
510			min	-278.383	2	-570.492	3	-107.497	1	0	2	14	1	98	2
511		9	max		3	48.62	2	56.113	5	0	9	.082	1	.802	3
512			min	-204.683	2	.392	15		1	0	3	13	5	-1.121	2
513		10	max	495.745	3	47.322	2	57.354	5	0	9	0	10	.78	3
514			min	-204.078	2	0	5	-157.729		0	3	101	4	-1.147	2
515		11		496.199	3	46.023	2	58.595	5	0	9	005	12		3
516			min		2	-1.613	4	-157.729		0	3	088	4	-1.171	2
517		12		508.989	3	364.572	3	150.359	5	0	2	.138	1	.661	3
518		· -	1	-129.746	2	-645.653	2	-105.049		0	3	205	5	-1.038	2
519		13		509.443	3	363.599	3	151.601	5	0	2	.082	1	.469	3
520			min	-129.14	2	-646.952	2	-105.049		0	3	126	5	697	2
521		14		509.897	3	362.625	3	152.842		0	2	.027	1	.277	3
522				-128.535	2	-648.25	2	-105.049		0	3	045	5	355	2
523		15		510.351	3	361.651	3	154.084		0	2	.036	5	.086	3
524				-127.93	2	-649.548	2	-105.049		0	3	029	1	036	1
525		16		510.805	3	360.678	3	155.325	5	0	2	.117	5	.33	2
526		10	min		2	-650.846	2	-105.049		0	3	084	1	104	3
527		17		511.259	3	359.704	3	156.567	5	0	2	.2	5	.674	2
528				-126.719	2	-652.145	2	-105.049		0	3	139	1	294	3
529		18			5	664.198	2	-5.955	12	0	5	.189	5	.339	2
530		10	min	-177.124	1	-297.763	3	-124.424		0	2	199	1	145	3
531		10	max		5	662.9	2	-5.955	12	0	5	.137	5	.012	3
JUI		וש	шах	10.002	J	002.8		-บ.ฮบบ	12	U	J	.101	J	.012	_ <u>J</u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec	T	Axial[lb]	LC					Torque[k-ft]	LC		LC	z-z Mome	LC
532			min	-176.519	1	-298.737	3	-123.183	4	0	2	26	1_	011	1
533	M5	1	max	381.832	1	2620.422	3	95.226	5	0	1	0	_1_	.029	2
534			min	14.213	12	-1587.508	2	0	1	0	4	204	4	0	3
535		2	max	382.438	1	2619.449	3	96.467	5	0	1	0	1	.867	2
536			min	14.515	12	-1588.806	2	0	1	0	4	154	4	-1.383	3
537		3	max	1544.464	3	1672.879	2	57.685	4	0	4	0	1	1.667	2
538			min	-982.526	2	-1815.467	3	0	1	0	1	103	4	-2.712	3
539		4	max	1544.918	3	1671.581	2	58.926	4	0	4	0	1	.807	1
540			min	-981.921	2	-1816.441	3	0	1	0	1	072	4	-1.753	3
541		5	max	1545.372	3	1670.283	2	60.167	4	0	4	0	1	.008	9
542			min	-981.315	2	-1817.414	3	0	1	0	1	041	4	795	3
543		6	max	1545.826	3	1668.985	2	61.409	4	0	4	0	1	.165	3
544			min	-980.71	2	-1818.388	3	0	1	0	1	009	5	978	2
545		7	max		3	1667.686	2	62.65	4	0	4	.024	4	1.124	3
546			min	-980.105	2	-1819.362	3	0	1	0	1	0	1	-1.859	2
547		8	max		3	1666.388	2	63.892	4	0	4	.057	4	2.085	3
548			min	-979.499	2	-1820.335	3	0	1	0	1	0	1	-2.738	2
549		9		1567.623	3	162.517	2	182.196	4	0	1	0	1	2.401	3
550		 	min	-826.762	2	.392	15	0	1	0	1	188	4	-3.118	2
551		10		1568.077	3	161.219	2	183.437	4	0	1	0	1	2.322	3
552		10	min	-826.157	2	0	15	0	1	0	1	092	4	-3.203	2
553		11		1568.531	3	159.921	2	184.679	4	0	1	.005	4	2.244	3
554			min	-825.552	2	-1.449	6	0	1	0	1	0	1	-3.288	2
555		12		1589.607	3	1156.823	3	216.393	4	0	1	0	1	1.97	3
556		12	min	-672.87	2	-1995.915	2	0	1	0	4	299	4	-2.942	2
557		13		1590.061	3	1155.85	3	217.635	4	0	1	0	1	1.36	3
558		13	min	-672.265	2	-1997.214	2	0	1	0	4	185	4	-1.889	2
559		14		1590.515	3	1154.876	3	218.876	4	0	1	165	1	.75	3
560		14	min	-671.66	2	-1998.512	2	0	1	0	4	069	4	834	2
561		15		1590.969	3	1153.902	3	220.117	4	0	1	.046	4	.22	2
562		15	min	-671.054	2	-1999.81	2	0	1	0	4	0	1	004	13
563		16		1591.423	3	1152.929	3	221.359	4	0	1	.163	4	1.276	2
564		10	min	-670.449	2	-2001.108	2	0	1	0	4	0	1	467	3
565		17		1591.877	3	1151.955	3	222.6	4	0	1	.28	4	2.332	2
566		17	min	-669.843	2	-2002.407	2	0	1	0	4	0	1	-1.076	3
567		18	max		12	2237.46	2	0	1	0	4	.305	4	1.202	2
568		10	min	-381.944	1	-1021.381	3	-27.99	5	0	1	0	1	563	3
569		19	max	-14.59	12	2236.162	2	0	1	0	4	.292	4	.022	1
570		19	min	-381.339	1	-1022.355	3	-26.748	5	0	1	0	1	024	3
571	M9	1	max		1	786.637	3	107.963	1	0	3	014	12	0	3
572	IVIO	<u> </u>	min		12	-467.535		5.91	12	0	4	258	1	015	2
573		2	max		1	785.663	3	107.963	1	0	3	011	12	.233	1
574			min	8.294	12	-468.833		5.91	12	0	4	201	1	415	3
575		3		480.138	3	551.832	2	107.497	1	0	2	008	12	.468	1
576		3	min		2	-565.624	3	5.874	12	0	3	144	1	813	3
577		4		480.592	3	550.533	2	107.497	1	0	2	005	12	.19	1
578		-	min		2	-566.597	3	5.874	12	0	3	087	1	514	3
579		5		481.046	3	549.235	2	107.497	1	0	2	002	12	003	15
580		5			2	-567.571	3	5.874	12	0	3	042	4	215	3
		6	min												
581 582		6	max min		2	547.937	2	107.497 5.874	12	0	3	.026 021	<u>1</u> 5	.085	3
		7				-568.545 546.630	3			0				403	
583		/	max		3	546.639	2	107.497	12	0	2	.083	<u>1</u> 5	.385	2
584 585		0	min		2	<u>-569.518</u> 545.341		5.874			3	.14	<u> </u>	691	
		8		482.408	3		2	107.497	1 12	0	3			.686	3
586 587		9	min	<u>-278.383</u> 495.291	3	-570.492	2	5.874 157.729	1	0	3	.004 004	<u>15</u> 12	98	3
		9				48.62				0				.802	
588			min	-204.683	2	.399	15	8.365	12	0	9	16	4	-1.121	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	495.745	3	47.322	2	157.729	1	0	3	.001	1	.78	3
590			min	-204.078	2	.007	15	8.365	12	0	9	1	4	-1.147	2
591		11	max	496.199	3	46.023	2	157.729	1	0	3	.084	1	.759	3
592			min	-203.473	2	-1.563	6	8.365	12	0	9	059	5	-1.171	2
593		12	max	508.989	3	364.572	3	189.207	4	0	3	007	12	.661	3
594			min	-129.746	2	-645.653	2	5.402	12	0	2	256	4	-1.038	2
595		13	max	509.443	3	363.599	3	190.448	4	0	3	004	12	.469	3
596			min	-129.14	2	-646.952	2	5.402	12	0	2	156	4	697	2
597		14	max	509.897	3	362.625	3	191.69	4	0	3	001	12	.277	3
598			min	-128.535	2	-648.25	2	5.402	12	0	2	055	4	355	2
599		15	max	510.351	3	361.651	3	192.931	4	0	3	.047	4	.086	3
600			min	-127.93	2	-649.548	2	5.402	12	0	2	.001	12	036	1
601		16	max	510.805	3	360.678	3	194.173	4	0	3	.149	4	.33	2
602			min	-127.324	2	-650.846	2	5.402	12	0	2	.004	12	104	3
603		17	max	511.259	3	359.704	3	195.414	4	0	3	.251	4	.674	2
604			min	-126.719	2	-652.145	2	5.402	12	0	2	.007	12	294	3
605		18	max	-8.106	12	664.198	2	115.595	1	0	2	.261	4	.339	2
606			min	-177.124	1	-297.763	3	-83.349	5	0	3	.01	12	145	3
607		19	max	-7.803	12	662.9	2	115.595	1	0	2	.26	1	.012	3
608			min	-176.519	1	-298.737	3	-82.108	5	0	3	.013	12	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r.	. LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.116	2	.008	3 9.575e-3		NC	1	NC	1
2			min	636	4	017	3	004	2 -1.58e-3	3	NC	1	NC	1
3		2	max	0	1	.356	3	.04	1 1.101e-2	2	NC	5	NC	2
4			min	636	4	095	1	02	5 -1.611e-3	3	644.069	3	6095.43	1
5		3	max	0	1	.657	3	.097	1 1.245e-2	2	NC	5	NC	3
6			min	636	4	253	1	024	5 -1.641e-3	3	355.858	3	2494.986	1
7		4	max	0	1	.841	3	.146	1 1.389e-2	2	NC	5	NC	3
8			min	636	4	342	1	017	5 -1.672e-3		279.787	3	1651.874	1
9		5	max	0	1	.883	3	.171	1 1.532e-2	2	NC	5	NC	3
10			min	636	4	347	1	003	5 -1.703e-3	3	266.514	3	1408.291	1
11		6	max	0	1	.789	3	.165	1 1.676e-2	2	NC	5	NC	3
12			min	636	4	273	1	.008	15 -1.733e-3	3	297.871	3	1461.085	
13		7	max	0	1	.585	3	.129	1 1.82e-2	2	NC	5	NC	3
14			min	636	4	136	1	.006	10 -1.764e-3		398.735	3	1868.882	1
15		8	max	0	1	.326	3	.074	1 1.963e-2	2	NC	4	NC	2
16			min	636	4	0	15	001	10 -1.795e-3	3	699.851	3	3268.93	1
17		9	max	0	1	.206	2	.028	3 2.107e-2	2	NC	4	NC	1
18			min	636	4	.005	15	008	10 -1.825e-3	3	2221.795	3	8824.274	4
19		10	max	0	1	.273	2	.027	3 2.251e-2	2	NC	3	NC	1
20			min	636	4	015	3	018	2 -1.856e-3	3	1531.034	2	NC	1
21		11	max	0	12	.206	2	.028	3 2.107e-2	2	NC	4	NC	1
22			min	636	4	.005	15	016	5 -1.825e-3	3	2221.795	3	NC	1
23		12	max	0	12	.326	3	.074	1 1.963e-2	2	NC	4	NC	2
24			min	636	4	0	15	016	5 -1.795e-3	3	699.851	3	3268.93	1
25		13	max	0	12	.585	3	.129	1 1.82e-2	2	NC	5	NC	3
26			min	636	4	136	1	005	5 -1.764e-3	3	398.735	3	1868.882	1
27		14	max	0	12	.789	3	.165	1 1.676e-2	2	NC	5	NC	3
28			min	636	4	273	1	.007	15 -1.733e-3	3	297.871	3	1461.085	
29		15	max	0	12	.883	3	.171	1 1.532e-2	2	NC	5	NC	3
30			min	636	4	347	1	.013	10 -1.703e-3	3	266.514	3	1408.291	1
31		16	max	0	12	.841	3	.146	1 1.389e-2	2	NC	5	NC	3
32			min	636	4	342	1	.011	10 -1.672e-3	3	279.787	3	1651.874	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r L	C (n) L/v Ratio	LC	(n) L/z Ratio	LC
33		17	max	0	12	.657	3	.097		2	NC	5	NC	3
34			min	636	4	253	1	.007		3 3	355.858	3	2494.986	1
35		18	max	0	12	.356	3	.04	1 1.101e-2	2	NC	5	NC	2
36			min	636	4	095	1	0	10 -1.611e-3	3 (644.069	3	6095.43	1
37		19	max	0	12	.116	2	.008	3 9.575e-3	2	NC	1	NC	1
38			min	636	4	017	3	004	2 -1.58e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.239	3	.008	3 5.678e-3	2	NC	1	NC	1
40			min	479	4	374	2	004	2 -4.269e-3	3	NC	1	NC	1
41		2	max	0	1	.596	3	.028	1 6.807e-3	2	NC	5	NC	2
42			min	479	4	706	2	03	5 -5.203e-3	3	671.99	3	7699.29	5
43		3	max	0	1	.898	3	.078		2	NC	5	NC	3
44			min	479	4	992	2	035	5 -6.137e-3	3 3	364.204	3	3117.282	1
45		4	max	0	1	1.106	3	.125		2	NC	15	NC	3
46			min	479	4	-1.202	2	024		3 2	276.599	3	1931.927	1
47		5	max	0	1	1.203	3	.152		2	NC	15	NC	3
48			min	479	4	-1.319	2	003	5 -8.006e-3	3	248.8	3	1588.693	1
49		6	max	0	1	1.189	3	.15	1 1.132e-2	2	NC	15	NC	3
50			min	479	4	-1.342	2	.01	10 -8.94e-3	3 2	247.977	2	1610.826	1
51		7	max	0	1	1.083	3	.12		2	NC	15	NC	3
52			min	479	4	-1.287	2	.006		3 2	263.087	2	2026.876	1
53		8	max	0	1	.924	3	.07		2	NC	<u> 15</u>	NC	2
54			min	479	4	-1.182	2	001		3 2	297.213	2	3496.022	1
55		9	max	0	1	.77	3	.04		2	NC	5	NC	1_
56			min	479	4	-1.073	2	007		3 3	343.498	2	6022.838	4
57		10	max	0	1	.698	3	.024	3 1.584e-2	2	NC	5	NC	1_
58			min	479	4	-1.021	2	017		3 3	371.398	2	NC	1
59		11	max	0	12	.77	3	.025		2	NC	5_	NC	1
60			min	48	4	-1.073	2	029		3 3	343.498	2	8154.725	5
61		12	max	0	12	.924	3	.07		2	NC	15	NC	2
62			min	48	4	-1.182	2	034			297.213	2	3496.022	1
63		13	max	0	12	1.083	3	.12		2	NC	15	NC	3
64			min	48	4	-1.287	2	021			263.087	2	2026.876	1
65		14	max	0	12	1.189	3	.15		2	NC	15	NC	3
66			min	48	4	-1.342	2	0			247.977	2	1610.826	
67		15	max	0	12	1.203	3	.152		2	NC	15	NC	3
68			min	48	4	-1.319	2	.011		3	248.8	3	1588.693	1
69		16	max	0	12	1.106	3	.125		2	NC	15	NC	3
70			min	48	4	-1.202	2	.009			276.599	3	1931.927	1
71		17	max	0	12	.898	3	.078		2	NC	_5_	NC	3
72			min	48	4	992	2	.005			364.204	3	3117.282	1
73		18	max	0	12	.596	3	.041		2	NC	_5_	NC	2
74			min	48	4	<u>706</u>	2	0			<u>671.99</u>	3	5809.001	4
75		19	max	0	12	.239	3	.008		2	NC	1_	NC	1
76			min	48	4	374	2	004		3	NC	1_	NC	1
77	M15	1	max	0	12	.244	3	.007		3	NC	_1_	NC	1
78		_	min	393	4	374	2	004		2	NC	1_	NC NC	1
79		2	max	0	12	.465	3	.028		3	NC_	5	NC 5040.000	2
80		_	min	393	4	796	2	04			<u>567.46</u>	2	5819.333	
81		3	max	0	12	.658	3	.078		3	NC 150	5_	NC	3
82			min	393	4	<u>-1.157</u>	2	048			<u>306.459</u>	2	3107.989	
83		4	max	0	12	.8	3	.126		3	NC NC	<u>15</u>	NC	3
84			min	<u>393</u>	4	<u>-1.411</u>	2	034			231.306	2	1927.253	
85		5	max	0	12	.883	3	.153		3	NC	<u>15</u>	NC 1707.00	3
86			min	<u>393</u>	4	-1.538	2	008			206.048	2	1585.03	1
87		6	max	0	12	.905	3	.15		3	NC	<u>15</u>	NC NC	3
88			min	393	4	<u>-1.538</u>	2	.01			206.057	2	1606.748	
89		7	max	0	12	.875	3	.12	1 8.393e-3	3	NC	15	NC	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	l C	(n) I /v Ratio	LC	(n) I /z Ratio	I.C.
90			min	393	4	-1.432	2	.006		2	226.637	2	2020.175	
91		8	max	0	12	.812	3	.072		3	NC	15	NC	2
92			min	393	4	-1.264	2	0		2	269.504	2	3309.799	4
93		9	max	0	12	.745	3	.049	4 9.986e-3	3	NC	5	NC	1
94			min	393	4	-1.097	2	007		2	331.506	2	4916.918	4
95		10	max	0	1	.713	3	.022		3	NC	5_	NC	1
96			min	393	4	-1.019	2	016	2 -1.651e-2	2	371.882	2	NC	1
97		11	max	0	1	.745	3	.023	3 9.986e-3	3	NC	5_	NC	1
98			min	393	4	-1.097	2	038	5 -1.533e-2	2	331.506	2	6245.879	5
99		12	max	0	1	.812	3	.07		3_	NC	<u>15</u>	NC	2
100		10	min	393	4	<u>-1.264</u>	2	044		2	269.504	2	3475.889	1
101		13	max	0	1	.875	3	.12		3	NC	<u>15</u>	NC	3
102		4.4	min	393	4	-1.432	2	029		2	226.637	2	2020.175	
103		14	max	0	1	.905	3	.15	1 7.597e-3	3	NC 200 057	15	NC	3
104		15	min	393	1	<u>-1.538</u>	2	002		<u>2</u> 3	206.057 NC	<u>2</u> 15	1606.748	3
105 106		15	max	393	4	.883 -1.538	2	.153 .012	1 6.8e-3 10 -1.061e-2	2	206.048	2	NC 1585.03	1
107		16	max	_	1	<u>-1.556</u> .8	3	.126	1 6.004e-3	3	NC	15	NC	3
108		10	min	393	4	-1.411	2	.01	10 -9.437e-3	2	231.306	2	1927.253	1
109		17	max	- <u>.393</u> 0	1	.658	3	.078		3	NC	5	NC	3
110		17	min	393	4	-1.157	2	.005		2	306.459	2	3088.482	4
111		18	max	0	1	.465	3	.051		3	NC	5	NC	2
112		10	min	392	4	796	2	0	10 -7.08e-3	2	567.46	2	4660.974	
113		19	max	0	1	.244	3	.007	3 3.614e-3	3	NC	1	NC	1
114			min	392	4	374	2	004	2 -5.902e-3	2	NC	1	NC	1
115	M16	1	max	0	12	.104	2	.006		3	NC	1	NC	1
116			min	145	4	081	3	003	2 -8.045e-3	2	NC	1	NC	1
117		2	max	0	12	.041	3	.04	1 7.612e-3	3	NC	5	NC	2
118			min	145	4	19	2	031	5 -9.121e-3	2	815.86	2	6132.8	1
119		3	max	0	12	.136	3	.097	1 8.774e-3	3	NC	5	NC	3
120			min	145	4	425	2	038	5 -1.02e-2	2	453.866	2	2501.215	1
121		4	max	0	12	.186	3	.146	1 9.935e-3	3	NC	5	NC	3
122			min	145	4	56	2	028		2	361.424	2	1652.505	
123		5	max	0	12	.184	3	.172	1 1.11e-2	3	NC	5	NC	3
124			min	145	4	578	2	009		2	352.109	2	1406.182	1
125		6	max	0	12	.13	3	.166		3	NC	5_	NC	3
126			min	145	4	481	2	.008	15 -1.342e-2	2	410.471	2	1455.438	1
127		7	max	0	12	.037	3	.13	1 1.342e-2	3	NC	5_	NC	3
128			min	145	4	294	2	.008	10 -1.45e-2	2	602.985	2	1853.971	1
129		8	max	0	12	.008	9	.076		3	NC	3_	NC	2
130			min	145	4	073	3	0		2	1430.149		3208.378	
131		9	max	0	12	.154	1	.035		3	NC	4	NC	1
132		10	min	145	4	171	3	006		2	2662.307	3_4	6826.169	
133		10	max	0 145	1	.235	3	.019		3	NC 1796.651	4	NC NC	1
134 135		11	min	145 0	1	<u>214</u> .154	1	014 .021		<u>2</u> 3	NC	<u>3</u>	NC NC	1
136			max min	145	4	171	3	024		2	2662.307	3	9760.83	5
137		12	max	145 0	1	.008	9	.076		3	NC	3	NC	2
138		14	min	145	4	073	3	026	5 -1.557e-2	2	1430.149	2	3208.378	
139		13	max	0	1	.037	3	.13		3	NC	5	NC	3
140		13	min	145	4	294	2	012		2	602.985	2	1853.971	1
141		14	max	0	1	.13	3	.166		3	NC	5	NC	3
142			min	145	4	481	2	.006		2	410.471	2	1455.438	
143		15	max	0	1	.184	3	.172		3	NC	5	NC	3
144			min	145	4	578	2	.014		2	352.109	2	1406.182	
145		16	max	0	1	.186	3	.146		3	NC	5	NC	3
146			min	145	4	56	2	.012	12 -1.127e-2		361.424	2	1652.505	
										_		_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	I C	(n) I /v Ratio	LC	(n) I /z Ratio	IC
147		17	max	0	1	.136	3	.097	1	8.774e-3	3	NC	5	NC	3
148			min	145	4	425	2	.007	10	-1.02e-2	2	453.866	2	2501.215	
149		18	max	0	1	.041	3	.046	4	7.612e-3	3	NC	5	NC	2
150			min	145	4	19	2	.002	10	-9.121e-3	2	815.86	2	5181.555	4
151		19	max	.001	1	.104	2	.006	3	6.451e-3	3	NC	1	NC	1
152			min	145	4	081	3	003	2	-8.045e-3	2	NC	1	NC	1
153	M2	1	max	.007	2	.007	2	.008	1	1.478e-3	5	NC	1	NC	2
154			min	009	3	012	3	597	4	-2.298e-4	1_	8911.229	2	105.113	4
155		2	max	.006	2	.006	2	.008	1	1.573e-3	5	NC	1	NC	2
156			min	008	3	011	3	548	4	-2.155e-4	1	NC	1	114.434	4
157		3	max	.006	2	.005	2	.007	1	1.667e-3	5	NC	1_	NC	2
158			min	008	3	011	3	5	4	-2.013e-4	1	NC	1	125.499	4
159		4	max	.005	2	.004	2	.006	1	1.761e-3	5_	NC	_1_	NC	2
160			min	007	3	011	3	452	4	-1.871e-4	1_	NC	1_	138.763	4
161		5	max	.005	2	.003	2	.006	1	1.855e-3	5_	NC	_1_	NC	1
162			min	007	3	01	3	405	4	-1.729e-4	1_	NC	1	154.839	4
163		6	max	.005	2	.003	2	.005	1	1.95e-3	5	NC	_1_	NC	1
164			min	006	3	01	3	359	4	-1.587e-4	1_	NC	1_	174.579	4
165		7	max	.004	2	.002	2	.004	1	2.044e-3	5	NC	1_	NC	1
166			min	006	3	009	3	315	4	-1.445e-4	1_	NC	1_	199.191	4
167		8	max	.004	2	.001	2	.004	1	2.138e-3	_5_	NC	_1_	NC	1
168			min	005	3	008	3	272	4	-1.303e-4	<u>1</u>	NC	_1_	230.433	4
169		9	max	.004	2	00	2	.003	1	2.233e-3	_4_	NC	_1_	NC	1
170			min	005	3	008	3	231	4	-1.161e-4	1_	NC	1_	270.944	4
171		10	max	.003	2	0	2	.003	1	2.332e-3	4	NC	1	NC	1
172			min	004	3	007	3	193	4	-1.019e-4	1_	NC	1_	324.843	4
173		11	max	.003	2	0	2	.002	1	2.431e-3	4	NC	1	NC	1
174			min	004	3	007	3	157	4	-8.772e-5	_1_	NC	_1_	398.849	4
175		12	max	.003	2	0	15	.002	1	2.531e-3	4	NC	1_	NC	1
176			min	003	3	006	3	124	4	-7.351e-5	1_	NC	1_	504.547	4
177		13	max	.002	2	0	15	.001	1	2.63e-3	4_	NC	1	NC	1
178			min	003	3	005	3	0 <u>95</u>	4	-5.931e-5	1_	NC NC	1_	663.353	4
179		14	max	.002	2	0	15	0	1	2.73e-3	4_	NC	1	NC	1
180		4.5	min	002	3	005	3	068	4	-4.511e-5	1_	NC NC	1_	918.606	4
181		15	max	.001	2	0	15	0	1	2.829e-3	4_	NC NC	1_	NC	1
182		4.0	min	002	3	004	3	046	4	-3.09e-5	1_	NC NC	1_	1369.514	4
183		16	max	.001	2	0	15	0	1	2.928e-3	4	NC	1_	NC 0007.FF0	1
184		47	min	001	3	003	3	027	4	-1.67e-5	1_	NC NC	1_	2287.553	
185		17	max	0	2	0	15	0	1	3.028e-3	4	NC	1	NC 4CC2 2C2	1
186		10	min	0	3	002	3	013	4	-2.495e-6	1_1	NC NC	1	4663.292	4
187		18	max	0	3	0	15	0	1	3.127e-3	4	NC NC	1	NC NC	1
188		10	min	0	1	001	3	004	4	3.445e-7	12	NC NC	<u>1</u> 1	NC NC	1
189		19	max	<u> </u>	1	<u> </u>	1	<u> </u>	1	3.226e-3 1.143e-6	4	NC NC	1	NC NC	1
190 191	M3	1	min max	0	1	0	1	0	1	-3.929e-7	12 12	NC NC	1	NC NC	1
192	IVIO		min	0	1	0	1	0	1	-3.929e-7 -7.884e-4	4	NC NC	1	NC NC	1
193		2	max	0	3	0	15	.015	4	1.555e-5	1	NC	1	NC	1
194			min	0	2	002	6	0	12	-1.211e-4	5	NC NC	1	NC	1
195		3	max	0	3	<u>002</u> 0	15	.029	4	5.514e-4	4	NC	1	NC	1
196		J	min	0	2	003	6	0	12	2.015e-6	12	NC	1	NC	1
197		4	max	.001	3	003 001	15	.043	4	1.221e-3	4	NC	1	NC	1
198		_	min	0	2	005	6	0	12	3.218e-6	12	NC	1	9911.366	_
199		5	max	.002	3	005	15	.055	4	1.891e-3	4	NC	1	NC	1
200		J	min	001	2	002	6	<u>.055</u>	12	4.422e-6	12	NC	1	8888.794	5
201		6	max	.002	3	00 <i>1</i> 002	15	.066	4	2.561e-3	4	NC	1	NC	1
202			min	002	2	002	6	0	12	5.626e-6	12	NC	1	8709.165	_
203		7	max	.002	3	009	15	.077	4	3.231e-3	4	NC	1	NC	1
200			παλ	.002	J	.002	IU	.011		0.2016-0		110		110	

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	002	2	01	6	0	12	6.829e-6		8744.875	6	9169.39	5
205		8	max	.003	3	003	15	.087	4	3.901e-3	4	NC	1_	NC	1
206			min	002	2	012	6	0	12	8.033e-6		7842.087	6	NC	1
207		9	max	.003	3	003	15	.096	4	4.571e-3	4	NC	2	NC NC	1
208		40	min	002	2	<u>013</u>	6	0	12	9.237e-6	12	7307.259	6	NC NC	1
209		10	max	.003	3	003	15	.105	12	5.241e-3 1.044e-5	4	NC 7046 054	2	NC NC	1
210		11	min	003 .004	3	013 003	15	<u> </u>	4	5.911e-3	<u>12</u> 4	7046.951 NC	<u>6</u> 2	NC NC	1
212			max	003	2	003 013	6	0	12	1.164e-5	12	7022.725	6	NC NC	1
213		12	max	.003	3	013	15	.123	4	6.58e-3	4	NC	2	NC NC	1
214		12	min	003	2	003 013	6	0	12	1.285e-5	12	7236.388	6	NC NC	1
215		13	max	.005	3	003	15	.133	4	7.25e-3	4	NC	1	NC	1
216		13	min	004	2	012	6	0	12	1.405e-5	12	7732.564	6	NC	1
217		14	max	.005	3	002	15	.142	4	7.92e-3	4	NC	1	NC	1
218		17	min	004	2	011	6	0	12	1.526e-5	12	8621.934	6	NC	1
219		15	max	.005	3	002	15	.152	4	8.59e-3	4	NC	1	NC	1
220			min	004	2	009	6	0	12	1.646e-5	12	NC	1	NC	1
221		16	max	.006	3	001	15	.163	4	9.26e-3	4	NC	1	NC	1
222			min	005	2	007	1	0	12	1.766e-5	12	NC	1	NC	1
223		17	max	.006	3	0	15	.174	4	9.93e-3	4	NC	1	NC	1
224			min	005	2	006	1	0	12	1.887e-5	12	NC	1	NC	1
225		18	max	.006	3	0	15	.187	4	1.06e-2	4	NC	1	NC	1
226			min	005	2	004	1	0	12	2.007e-5	12	NC	1	NC	1
227		19	max	.007	3	0	5	.201	4	1.127e-2	4	NC	1	NC	1
228			min	005	2	003	1	0	12	2.127e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.005	2	0	12	6.038e-5	1_	NC	1_	NC	3
230			min	0	3	007	3	201	4	-2.289e-4	5	NC	1_	123.142	4
231		2	max	.003	1	.005	2	0	12	6.038e-5	_1_	NC	_1_	NC	3
232			min	0	3	007	3	185	4	-2.289e-4	5	NC	1_	133.903	4
233		3	max	.002	1	.004	2	0	12	6.038e-5	_1_	NC	_1_	NC	3
234			min	0	3	006	3	169	4	-2.289e-4	5	NC	1_	146.71	4
235		4	max	.002	1	.004	2	0	12	6.038e-5	_1_	NC	1_	NC	2
236		<u> </u>	min	0	3	006	3	<u>153</u>	4	-2.289e-4	5_	NC	1_	162.093	4
237		5	max	.002	1	.004	2	0	12	6.038e-5	_1_	NC	1_	NC 100.775	2
238			min	0	3	005	3	1 <u>37</u>	4	-2.289e-4	5	NC NC	1_	180.775	4
239		6	max	.002	1	.004	2	0	12	6.038e-5	1_	NC NC	1_1	NC 202 7F7	2
240		7	min	0	3	005	2	122	4	-2.289e-4	5	NC NC	1	203.757 NC	2
241		-	max	.002	3	.003	3	0 107	12	6.038e-5	1	NC NC	1		
242 243		8	min max	.002	1	005 .003	2	107 0	12	-2.289e-4 6.038e-5	<u>5</u> 1	NC NC	1	232.46 NC	2
244		- 0	min		3	004	3	092	12	-2.289e-4		NC	1	268.958	4
245		9	max	.002	1	.003	2	0	12	6.038e-5	1	NC	1	NC	2
246			min	0	3	004	3	078	4	-2.289e-4	5	NC	1	316.371	4
247		10	max	.001	1	.003	2	0	12	6.038e-5	1	NC	1	NC	2
248		'	min	0	3	003	3	065	4	-2.289e-4	5	NC	1	379.577	4
249		11	max	.001	1	.002	2	0	12	6.038e-5	1	NC	1	NC	1
250			min	0	3	003	3	053	4	-2.289e-4	5	NC	1	466.556	4
251		12	max	.001	1	.002	2	0	12	6.038e-5	1	NC	1	NC	1
252			min	0	3	003	3	042	4	-2.289e-4	5	NC	1	591.109	4
253		13	max	0	1	.002	2	0	12	6.038e-5	1	NC	1	NC	1
254			min	0	3	002	3	032	4	-2.289e-4	5	NC	1	778.855	4
255		14	max	0	1	.001	2	0	12	6.038e-5	1	NC	1	NC	1
256			min	0	3	002	3	023	4	-2.289e-4	5	NC	1	1081.905	4
257		15	max	0	1	.001	2	0	12	6.038e-5	1	NC	1	NC	1
258			min	0	3	002	3	015	4	-2.289e-4	5	NC	1	1620.377	4
259		16	max	0	1	0	2	0	12	6.038e-5	1	NC	1	NC	1
260			min	0	3	001	3	009	4	-2.289e-4	5	NC	1	2726.278	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

004	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	6.038e-5	_1_	NC	1_	NC 5000,000	1
262		10	min	0	3	0	3	004	4	-2.289e-4	5	NC	1_	5630.399	4
263		18	max	0	1	0	2	0	12	6.038e-5	1_	NC	1_	NC	1
264			min	0	3	0	3	001	4	-2.289e-4	5	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	6.038e-5	1	NC	1_	NC	1
266			min	0	1	0	1	0	1	-2.289e-4	5	NC	1_	NC	1
267	<u>M6</u>	1	max	.021	2	.027	2	0	1	1.562e-3	_4_	NC	4_	NC	1
268			min	028	3	038	3	602	4	0	<u> 1</u>	1655.794	3	104.144	4
269		2	max	.02	2	.024	2	0	1	1.654e-3	4	NC	4	NC	1
270			min	027	3	036	3	553	4	0	1_	1756.291	3	113.381	4
271		3	max	.019	2	.022	2	0	1	1.747e-3	4	NC	4	NC	1
272			min	025	3	034	3	504	4	0	1	1869.756	3	124.347	4
273		4	max	.018	2	.02	2	0	1	1.839e-3	4	NC	4	NC	1
274			min	023	3	031	3	456	4	0	1	1998.836	3	137.491	4
275		5	max	.016	2	.018	2	0	1	1.932e-3	4	NC	4	NC	1
276			min	022	3	029	3	409	4	0	1	2146.939	3	153.423	4
277		6	max	.015	2	.016	2	0	1	2.024e-3	4	NC	4	NC	1
278			min	02	3	027	3	363	4	0	1	2318.52	3	172.988	4
279		7	max	.014	2	.014	2	0	1	2.116e-3	4	NC	1	NC	1
280			min	019	3	025	3	318	4	0	1	2519.526	3	197.382	4
281		8	max	.013	2	.012	2	0	1	2.209e-3	4	NC	1	NC	1
282			min	017	3	023	3	275	4	0	1	2758.066	3	228.347	4
283		9	max	.012	2	.01	2	0	1	2.301e-3	4	NC	1	NC	1
284		<u> </u>	min	016	3	021	3	234	4	0	1	3045.499	3	268.502	4
285		10	max	.011	2	.008	2	0	1	2.393e-3	4	NC	1	NC	1
286		10	min	014	3	018	3	195	4	0	1	3398.239	3	321.931	4
287		11	max	.009	2	.007	2	0	1	2.486e-3	4	NC	1	NC	1
288		+ ' '	min	012	3	016	3	159	4	0	1	3840.912	3	395.298	4
289		12	max	.008	2	.005	2	0	1	2.578e-3	4	NC	1	NC	1
290		12	min	011	3	014	3	125	4	0	1	4412.229	3	500.091	4
291		13	max	.007	2	.004	2	0	1	2.67e-3	4	NC	1	NC	1
292		13	min	009	3	012	3	095	4	0	1	5176.719	3	657.556	4
293		14		.006	2	.003	2	<u>095</u> 0	1	2.763e-3	4	NC	1	NC	1
294		14	max	008	3	003	3	069	4	2.763e-3	1	6250.554	3	910.693	4
		4.5	min							•	•				
295		15	max	.005	2	.002	2	0	1	2.855e-3	4	NC 7000 400	1	NC	1
296		40	min	006	3	008	3	046	4	0 0 0 4 7 = 0	1_1	7866.103	3	1357.954	4
297		16	max	.004	2	.001	2	0	1	2.947e-3	4	NC NC	1_	NC 0000 050	1
298		47	min	005	3	006	3	028	4	0	1_	NC NC	1_	2268.853	
299		17	max	.002	2	0	2	0	1	3.04e-3	4	NC	1_	NC 4007.04	1
300		10	min	003	3	004	3	<u>014</u>	4	0	1_	NC	1_	4627.34	4
301		18		.001	2	0	2	0	1	3.132e-3	4	NC	1_	NC NC	1
302			min	002	3	002	3	004	4	0	_1_	NC	<u>1</u>	NC	1
303		19	max	0	1	0	1	0	1	3.224e-3	4_	NC	1_	NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	<u>M7</u>	1	max	0	1	0	1	0	1	0	_1_	NC	_1_	NC	1
306			min	0	1	0	1	0	1	-7.869e-4	4	NC	1_	NC	1
307		2	max	.001	3	0	2	.015	4	0	1	NC	1	NC	1_
308			min	001	2	003	3	0	1	-1.337e-4	4	NC	1_	NC	1
309		3	max	.002	3	0	2	.029	4	5.195e-4	4	NC	1_	NC	1
310			min	002	2	005	3	0	1	0	1	NC	1	NC	1
311		4	max	.004	3	001	15	.043	4	1.173e-3	4	NC	1	NC	1
312			min	003	2	008	3	0	1	0	1	NC	1	9122.576	4
313		5	max	.005	3	002	15	.055	4	1.826e-3	4	NC	1	NC	1
314			min	005	2	01	3	0	1	0	1	NC	1	8098.639	4
315		6	max	.006	3	002	15	.066	4	2.479e-3	4	NC	1	NC	1
316			min	006	2	012	3	0	1	0	1	8748.174	3	7830.781	4
317		7	max	.007	3	003	15	.076	4	3.132e-3	4	NC	1	NC	1
															$\overline{}$

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

319		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
320	318			min	007	2	013	3	0	1	•	1_	7812.879	3		
321			8													
1922																
10			9													•
324			40								•					•
326			10													
126			11													
12 max			+													
328			12							•	•					
13 max			12													_
330			13								•	•				•
331			13													
333			14													
333			17													
334			15							_	•			•		•
335																
336			16								-	4				
337												1				
338			17							4	9.664e-3	4		1		1
339										1		1		1		1
340			18		.02	3		15	.182	4	1.032e-2	4	NC	1	NC	1
342				min	019		007	3	0	1	0	1	NC	1	NC	1
343 M8	341		19	max	.021	3	0	15	.196	4	1.097e-2	4	NC	1	NC	1
344	342			min	021	2	005			1	0	1	NC	1	NC	1
345	343	M8	1	max						1	_	1		1_	NC	1
346				min			022		196	4	-3.012e-4	4		1_		4
347			2									1		1_		1
348				min					18	4	-3.012e-4	4		1_		4
349			3			-										
350														•		
351			4_								_	_				
352			-											_		
353			5													-
354																
355			Ь													
356			7											•		
357 8 max .005 1 .012 2 0 1 0 1 NC 1 NC 1 358 min 0 3 013 3 089 4 -3.012e-4 4 NC 1 277.134 4 359 9 max .004 1 .011 2 0 1 NC 1 NC 1 360 min 0 3 012 3 076 4 -3.012e-4 4 NC 1 325.998 4 361 10 max .004 1 .01 2 0 1 NC														1		
358			0									•		1		
359 9 max .004 1 .011 2 0 1 0 1 NC 1 NC 1 360 min 0 3 012 3 076 4 -3.012e-4 4 NC 1 325.998 4 361 10 max .004 1 .01 2 0 1 0 1 NC 1 NC 1 362 min 0 3 011 3 063 4 -3.012e-4 4 NC 1 391.138 4 363 11 max .003 1 .009 2 0 1 NC	358		0					2							277 124	
360 min 0 3 012 3 076 4 -3.012e-4 4 NC 1 325.998 4 361 10 max .004 1 .01 2 0 1 0 1 NC 1 NC 1 362 min 0 3 011 3 063 4 -3.012e-4 4 NC 1 391.138 4 363 11 max .003 1 .009 2 0 1 0 1 NC 1 NC 1 364 min 0 3 01 3 052 4 -3.012e-4 4 NC 1 480.778 4 365 12 max .003 1 .008 2 0 1 NC 1 NC 1 366 min 0 3 009 3 041 4 -3.012e-4 <td></td> <td></td> <td>a</td> <td></td>			a													
361 10 max .004 1 .01 2 0 1 0 1 NC 1 NC 1 362 min 0 3 011 3 063 4 -3.012e-4 4 NC 1 391.138 4 363 11 max .003 1 .009 2 0 1 0 1 NC 1 NC 1 364 min 0 3 01 3 052 4 -3.012e-4 4 NC 1 480.778 4 365 12 max .003 1 .008 2 0 1 NC 1			-								_					
362 min 0 3 011 3 063 4 -3.012e-4 4 NC 1 391.138 4 363 11 max .003 1 .009 2 0 1 0 1 NC 1 NC 1 364 min 0 3 01 3 052 4 -3.012e-4 4 NC 1 480.778 4 365 12 max .003 1 .008 2 0 1 NC 1 NC 1 NC 1 366 min 0 3 009 3 041 4 -3.012e-4 4 NC 1 609.144 4 367 13 max .003 1 .006 2 0 1 NC 1 NC 1 NC 1 368 min 0 3 007 3 031			10									1		_		
363 11 max .003 1 .009 2 0 1 0 1 NC 1 NC 1 364 min 0 3 01 3 052 4 -3.012e-4 4 NC 1 480.778 4 365 12 max .003 1 .008 2 0 1 0 1 NC 1 NC 1 366 min 0 3 009 3 041 4 -3.012e-4 4 NC 1 609.144 4 367 13 max .003 1 .006 2 0 1 0 1 NC 1 NC 1 368 min 0 3 007 3 031 4 -3.012e-4 4 NC 1 NC 1 370 min 0 3 006 3 022 <			10								_	4				
364 min 0 3 01 3 052 4 -3.012e-4 4 NC 1 480.778 4 365 12 max .003 1 .008 2 0 1 0 1 NC 1 NC 1 366 min 0 3 009 3 041 4 -3.012e-4 4 NC 1 609.144 4 367 13 max .003 1 .006 2 0 1 0 1 NC 1 NC <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>			11							_				_		
365 12 max .003 1 .008 2 0 1 0 1 NC 1 NC 1 366 min 0 3 009 3 041 4 -3.012e-4 4 NC 1 609.144 4 367 13 max .003 1 .006 2 0 1 0 1 NC 1 NC 1 368 min 0 3 007 3 031 4 -3.012e-4 4 NC 1 802.638 4 369 14 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 370 min 0 3 006 3 022 4 -3.012e-4 4 NC 1 114.969 4 371 15 max .002 1 .004 2												<u> </u>				
366 min 0 3 009 3 041 4 -3.012e-4 4 NC 1 609.144 4 367 13 max .003 1 .006 2 0 1 0 1 NC 1 NC 1 368 min 0 3 007 3 031 4 -3.012e-4 4 NC 1 802.638 4 369 14 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 370 min 0 3 006 3 022 4 -3.012e-4 4 NC 1 114.969 4 371 15 max .002 1 .004 2 0 1 0 1 NC 1 1669.938 4 372 min 0 3 005 3 015 <td></td> <td></td> <td>12</td> <td></td> <td>•</td> <td></td> <td></td>			12											•		
367 13 max .003 1 .006 2 0 1 0 1 NC 1 NC 1 368 min 0 3 007 3 031 4 -3.012e-4 4 NC 1 802.638 4 369 14 max .002 1 .005 2 0 1 NC 1 NC 1 370 min 0 3 006 3 022 4 -3.012e-4 4 NC 1 1114.969 4 371 15 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 372 min 0 3 005 3 015 4 -3.012e-4 4 NC 1 1669.938 4 373 16 max .001 1 .003 2 0 1																
368 min 0 3 007 3 031 4 -3.012e-4 4 NC 1 802.638 4 369 14 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 370 min 0 3 006 3 022 4 -3.012e-4 4 NC 1 1114.969 4 371 15 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 372 min 0 3 005 3 015 4 -3.012e-4 4 NC 1 1669.938 4 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1			13											1		
369 14 max .002 1 .005 2 0 1 0 1 NC 1 1 NC 1 370 min 0 3006 3022 4 -3.012e-4 4 NC 1 1114.969 4 371 15 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 372 min 0 3005 3015 4 -3.012e-4 4 NC 1 1669.938 4 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1																-
370 min 0 3 006 3 022 4 -3.012e-4 4 NC 1 1114.969 4 371 15 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 372 min 0 3 005 3 015 4 -3.012e-4 4 NC 1 1669.938 4 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1			14											•		
371 15 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 372 min 0 3 005 3 015 4 -3.012e-4 4 NC 1 1669.938 4 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1														1		4
372 min 0 3 005 3 015 4 -3.012e-4 4 NC 1 1669.938 4 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1			15		.002					1				1		1
373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1										4	-3.012e-4	4		1		4
			16		.001					1		1		1		
374 min 0 3 004 3 009 4 -3.012e-4 4 NC 1 2809.737 4	374			min	0	3	004	3	009	4	-3.012e-4	4	NC	1	2809.737	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

375	Member	Sec 17	max	x [in]	LC 1	y [in] .002	LC 2	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
376		17	min	0	3	002	3	004	4	-3.012e-4	4	NC	1	5802.941	4
377		18	max	0	1	.002	2	0	1	0	1	NC	1	NC	1
378		1.0	min	0	3	001	3	001	4	-3.012e-4	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		15	min	0	1	0	1	0	1	-3.012e-4	4	NC	1	NC	1
381	M10	1	max	.007	2	.007	2	0	12	1.569e-3	4	NC	1	NC	2
382	IVITO		min	009	3	012	3	601	4	1.323e-5		8911.229	2	104.279	4
383		2	max	.006	2	.006	2	0	12	1.66e-3	4	NC	1	NC	2
384			min	008	3	011	3	552	4	1.243e-5	12	NC	1	113.528	4
385		3	max	.006	2	.005	2	<u>552</u>	12	1.751e-3	4	NC	1	NC	2
386		+ -	min	008	3	011	3	504	4	1.164e-5	12	NC	1	124.509	4
387		4	max	.005	2	.004	2	<u>.504</u>	12	1.843e-3	4	NC	1	NC	2
388		+ -	min	007	3	011	3	456	4	1.043e-5	12	NC	1	137.67	4
389		5	max	.005	2	.003	2	430	12	1.934e-3	4	NC	1	NC	1
390		15	min	007	3	01	3	408	4	1.004e-5	12	NC	1	153.623	4
391		6	max	.005	2	.003	2	408 0	12	2.025e-3	4	NC	1	NC	1
392		10		006	3	01	3	362	4	9.24e-6	12	NC	1	173.214	4
		7	min		2		2		12			NC NC	1	NC	
393		+ ′	max	.004		.002		0		2.116e-3	4		1		1
394		0	min	006	3	009	3	<u>317</u>	4	8.441e-6	12	NC NC	1	197.641	1
395		8	max	.004	2	.001	2	0	12	2.208e-3	4			NC 220 C40	_
396			min	005	3	008	3	274	4	7.643e-6	12	NC NC	1_	228.649	4
397		9	max	.004	2	0	2	0	12	2.299e-3	4	NC NC	1_	NC OCO OFO	1
398		10	min	005	3	008	3	233	4	6.844e-6	12	NC	1_	268.859	4
399		10	max	.003	2	0	2	0	12	2.39e-3	4	NC	1_	NC 000,000	1
400		4.4	min	004	3	007	3	<u>195</u>	4	6.045e-6	12	NC	1_	322.362	4
401		11	max	.003	2	0	2	0	12	2.481e-3	4	NC	1	NC 005,000	1
402		1.0	min	004	3	007	3	<u>158</u>	4	5.246e-6	12	NC	1_	395.832	4
403		12	max	.003	2	0	2	0	12	2.573e-3	4	NC	1_	NC	1
404		40	min	003	3	006	3	<u>125</u>	4	4.448e-6	12	NC	1_	500.775	4
405		13	max	.002	2	001	2	0	12	2.664e-3	4	NC	1	NC 050.47	1
406			min	003	3	005	3	095	4	3.649e-6	12	NC	1_	658.47	4
407		14	max	.002	2	001	15	0	12	2.755e-3	4	NC	1	NC	1
408			min	002	3	005	3	069	4	2.85e-6	12	NC	1_	911.986	4
409		15	max	.001	2	0	15	0	12	2.846e-3	4	NC	1_	NC 1050.010	1
410		1.0	min	002	3	004	3	046	4	2.052e-6	12	NC	1_	1359.942	4
411		16	max	.001	2	0	15	0	12	2.938e-3	4_	NC	_1_	NC	1
412			min	001	3	003	3	028	4	1.253e-6	12	NC	<u>1</u>	2272.335	
413		17	max	0	2	0	15	0	12	3.029e-3	4	NC	1_	NC	1
414		4.0	min	0	3	002	4	<u>014</u>	4	1.308e-7	10	NC	1_	4635.029	4
415		18	max	0	2	0	15	0	12			NC	_1_	NC	1
416		1.0	min	0	3	001	4	004	4	-1.171e-5	1_	NC	1_	NC	1
417		19	max	0	1	0	1	0	1	3.211e-3	4	NC	1	NC NC	1
418			min	0	1	0	1	0	1	-2.591e-5	_1_	NC	1_	NC	1
419	M11	1	max	0	1	0	1	0	1	8.603e-6	_1_	NC	1_	NC	1
420			min	0	1	0	1	0	1	-7.835e-4	4	NC	1_	NC	1
421		2	max	0	3	0	15	.015	4	-8.108e-7	<u>12</u>	NC	_1_	NC	1
422		_	min	0	2	002	4	0	1	-1.274e-4	4_	NC	<u>1</u>	NC	1
423		3	max	0	3	0	15	.029	4	5.287e-4	4_	NC	1_	NC	1
424			min	0	2	004	4	0	1	-3.97e-5	1_	NC	1_	NC	1
425		4	max	.001	3	<u>001</u>	15	.042	4	1.185e-3	4_	NC	1	NC NC	1
426			min	0	2	006	4	0	1	-6.386e-5	<u>1</u>	NC	1_	9502.498	
427		5	max	.002	3	002	15	.054	4	1.841e-3	4	NC	1	NC	1
428			min	001	2	008	4	0	1	-8.801e-5	1_	NC	1_	8490.075	4
429		6	max	.002	3	002	15	.066	4	2.497e-3	4	NC	1	NC	1
430			min	002	2	01	4	0	1	-1.122e-4	1_	9855.691	4	8277.053	
431		7	max	.002	3	003	15	.076	4	3.153e-3	4	NC	1	NC	1

: Schletter, Inc. : HCV

Job Number : Model Name : Standar

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
432			min	002	2	011	4	001	1	-1.363e-4	1_	8466.995	4	8654.604	
433		8	max	.003	3	003	15	.086	4	3.809e-3	4	NC	_1_	NC	1
434			min	002	2	012	4	001	1	-1.605e-4	1_	7610.532	4_	9680.467	4
435		9	max	.003	3	003	15	.095	4	4.465e-3	4	NC	2	NC	1
436		10	min	002	2	<u>013</u>	4	002	1	-1.846e-4	1_	7105.19	4_	NC	1
437		10	max	.003	3	003	15	.104	4	5.122e-3	4	NC	2	NC NC	1
438		44	min	003	2	014	4	002	1	-2.088e-4	1_	6863.173	4_	NC NC	1
439		11	max	.004	3	003 014	15	.113	1	5.778e-3	<u>4</u> 1	NC	2	NC NC	1
440		12	min	003 .004	3	014	15	003 .122	4	-2.329e-4 6.434e-3	4	6848.901 NC	2	NC NC	1
442		12	max min	003	2	003 014	4	003	1	-2.571e-4	1	7065.383	4	NC NC	1
443		13	max	.005	3	003	15	.131	4	7.09e-3	4	NC	1	NC	1
444		13	min	004	2	013	4	004	1	-2.812e-4	1	7557.118	4	NC	1
445		14	max	.005	3	003	15	.14	4	7.746e-3	4	NC	1	NC	1
446		17	min	004	2	012	4	004	1	-3.054e-4	1	8433.069	4	NC	1
447		15	max	.005	3	003	15	.149	4	8.402e-3	4	NC	1	NC	1
448		10	min	004	2	01	4	005	1	-3.295e-4	1	9934.363	4	NC	1
449		16	max	.006	3	002	15	.16	4	9.058e-3	4	NC	1	NC	1
450			min	005	2	008	4	006	1	-3.537e-4	1	NC	1	NC	1
451		17	max	.006	3	002	15	.171	4	9.714e-3	4	NC	1	NC	1
452			min	005	2	006	4	006	1	-3.778e-4	1	NC	1	NC	1
453		18	max	.006	3	001	15	.183	4	1.037e-2	4	NC	1	NC	1
454			min	005	2	004	1	007	1	-4.02e-4	1	NC	1	NC	1
455		19	max	.007	3	0	10	.197	4	1.103e-2	4	NC	1	NC	1
456			min	005	2	003	1	008	1	-4.262e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.005	2	.008	1	-3.307e-6	12	NC	1_	NC	3
458			min	0	3	007	3	197	4	-2.519e-4	4	NC	1_	125.987	4
459		2	max	.003	1	.005	2	.007	1	-3.307e-6	12	NC	1_	NC	3
460			min	0	3	007	3	181	4	-2.519e-4	4	NC	1_	136.997	4
461		3	max	.002	1	.004	2	.007	1	-3.307e-6	<u>12</u>	NC	_1_	NC	3
462			min	0	3	006	3	165	4	-2.519e-4	4	NC	1_	150.1	4
463		4	max	.002	1	.004	2	.006	1	-3.307e-6	12	NC	1_	NC	2
464			min	0	3	006	3	15	4	-2.519e-4	4	NC	1_	165.839	4
465		5	max	.002	1	.004	2	.005	1	-3.307e-6	12	NC	1_	NC 404.050	2
466			min	0	3	005	3	134	4	-2.519e-4	4	NC NC	1_	184.953	4
467		6	max	.002	1	.004	2	.005	1	-3.307e-6	12	NC NC	1_	NC 200, 400	2
468		7	min	0	3	005	2	119	4	-2.519e-4	4	NC NC	1	208.466	2
469		/	max	.002	3	.003	3	.004	1	-3.307e-6	12		1	NC 237.834	
470 471		8	min max	.002	1	005 .003	2	104 .004	1	-2.519e-4 -3.307e-6	<u>4</u> 12	NC NC	1	NC	2
472		0	min		3	004	3	09		-2.519e-4		NC	1	275.176	
473		9	max	.002	1	.003	2	.003	1	-3.307e-6		NC	1	NC	2
474			min	0	3	004	3	077	4	-2.519e-4	4	NC	1	323.686	4
475		10	max	.001	1	.003	2	.003	1	-3.307e-6		NC	1	NC	2
476		10	min	0	3	003	3	064	4	-2.519e-4	4	NC	1	388.353	4
477		11	max	.001	1	.002	2	.002	1	-3.307e-6		NC	1	NC	1
478			min	0	3	003	3	052	4	-2.519e-4	4	NC	1	477.343	4
479		12	max	.001	1	.002	2	.002	1	-3.307e-6		NC	1	NC	1
480			min	0	3	003	3	041	4	-2.519e-4	4	NC	1	604.777	4
481		13	max	0	1	.002	2	.001	1	-3.307e-6	12	NC	1	NC	1
482			min	0	3	002	3	031	4	-2.519e-4	4	NC	1	796.865	4
483		14	max	0	1	.001	2	0	1	-3.307e-6	12	NC	1	NC	1
484			min	0	3	002	3	022	4		4	NC	1	1106.923	4
485		15	max	0	1	.001	2	0	1	-3.307e-6	12	NC	1	NC	1
486			min	0	3	002	3	015	4	-2.519e-4	4	NC	1	1657.847	4
487		16	max	0	1	0	2	0	1	-3.307e-6		NC	1_	NC	1
488			min	0	3	001	3	009	4	-2.519e-4	4	NC	1	2789.324	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

400	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		
489		17	max	0	1	0	2	0	1	-3.307e-6	12	NC	1	NC 5700 044	1
490		1.0	min	0	3	0	3	004	4	-2.519e-4	4_	NC	1_	5760.611	4
491		18	max	0	1	0	2	0	1	-3.307e-6	<u>12</u>	NC	_1_	NC	1
492			min	0	3	0	3	001	4	-2.519e-4	4	NC	1_	NC	1
493		19	max	0	1	00	1	0	1	-3.307e-6	12	NC	_1_	NC	1_
494			min	0	1	0	1	0	1	-2.519e-4	4	NC	1_	NC	1
495	M1	1	max	.008	3	.116	2	.636	4	1.565e-2	<u>1</u>	NC	_1_	NC	1_
496			min	004	2	017	3	0	12	-2.899e-2	3	NC	1_	NC	1
497		2	max	.008	3	.055	2	.616	4	8.29e-3	4	NC	4	NC	1
498			min	004	2	006	3	006	1	-1.434e-2	3	1893.5	2	NC	1
499		3	max	.008	3	.013	3	.596	4	1.361e-2	4	NC	5	NC	1
500			min	004	2	01	2	008	1	-1.583e-4	1	911.425	2	6872.773	5
501		4	max	.008	3	.047	3	.576	4	1.189e-2	4	NC	5	NC	1
502			min	004	2	084	2	008	1	-5.225e-3	3	574.313	2	4895.122	5
503		5	max	.008	3	.091	3	.555	4	1.016e-2	4	NC	5	NC	1
504			min	004	2	162	2	005	1	-1.031e-2	3	413.86	2	3899.814	5
505		6	max	.008	3	.14	3	.534	4	1.419e-2	2	NC	15	NC	1
506			min	004	2	237	2	002	1	-1.54e-2	3	325.572	2	3301.987	5
507		7	max	.008	3	.187	3	.512	4	1.892e-2	2	NC	15	NC	1
508		- '	min	004	2	305	2	0	12	-2.048e-2	3	273.509	2	2887.723	4
509		8	max	.008	3	.226	3	.489	4	2.365e-2	2	9186.617	15	NC	1
510			min	004	2	358	2	0	12	-2.557e-2	3	242.737	2	2588.288	4
511		9		.008	3	.252	3	.465	4	2.687e-2	2	8585.626	15	NC	1
512		9	max	004	2	392	2	.465	1	-2.561e-2	3	226.728	2	2404.061	4
		10	min	.007	3		3		4					NC	
513		10	max		2	.261	2	.439		2.908e-2	2	8402.569	<u>15</u>	2350.932	1
514		44	min	004		403		0	12	-2.232e-2	3	222.026	2		4
515		11	max	.007	3	.255	3	.41	4	3.13e-2	2	8585.338	<u>15</u>	NC 0405 405	1
516		40	min	004	2	392	2	0	12	-1.902e-2	3	227.458	2	2405.135	
517		12	max	.007	3	.233	3	.38	4	3.025e-2	2	9185.958	15	NC	1
518		10	min	004	2	<u>357</u>	2	001	1	-1.578e-2	3	244.964	2	2580.532	4
519		13	max	.007	3	.199	3	.346	4	2.426e-2	2	NC 070.045	<u>15</u>	NC	1
520		4.4	min	004	2	<u>301</u>	2	0	1	-1.263e-2	3	278.945	2	3030.391	4
521		14	max	.007	3	.155	3	.31	4	1.827e-2	2	NC	<u>15</u>	NC	1
522			min	004	2	231	2	0	12	-9.484e-3	3	337.21	2	3968.521	4
523		15	max	.007	3	.105	3	.273	4	1.229e-2	2	NC	_5_	NC	1
524			min	004	2	154	2	0	12	-6.336e-3	3	437.857	2	6004.923	4
525		16	max	.006	3	.054	3	.236	4	9.305e-3	_4_	NC	<u>5</u>	NC	1_
526			min	004	2	076	2	0	12	-3.187e-3	3	625.017	2	NC	1
527		17	max	.006	3	.004	3	.202	4	1.045e-2	4	NC	5	NC	1
528			min	004	2	006	2	0	12	-3.768e-5	3	1026.69	2	NC	1
529		18	max	.006	3	.052	2	.172	4	1.143e-2	2	NC	4_	NC	1_
530			min	004	2	04	3	0	12	-4.687e-3	3	2187.499	2	NC	1
531		19	max	.006	3	.104	2	.145	4	2.294e-2	2	NC	1	NC	1
532			min	003	2	081	3	001	1	-9.518e-3	3	NC	1	NC	1
533	M5	1	max	.027	3	.273	2	.636	4	0	1	NC	1	NC	1
534			min	018	2	015	3	0	1	-4.513e-6	4	NC	1	NC	1
535		2	max	.027	3	.129	2	.62	4	6.986e-3	4	NC	5	NC	1
536			min	018	2	001	3	0	1	0	1	802.338	2	9603.925	4
537		3	max	.027	3	.041	3	.602	4	1.376e-2	4	NC	5	NC	1
538			min	018	2	033	2	0	1	0	1	378.012	2	5576.749	4
539		4	max	.026	3	.133	3	.581	4	1.121e-2	4	9975.77	15	NC	1
540			min	018	2	225	2	0	1	0	1	231.791	2	4259.848	4
541		5	max	.026	3	.261	3	.558	4	8.661e-3	4	6981.387	15	NC	1
542		Ť	min	018	2	433	2	0	1	0.0010 0	1	163.382	2	3616.091	4
543		6	max	.025	3	.404	3	.535	4	6.112e-3	4	5375.235	15	NC	1
544			min	017	2	639	2	0	1	0.1126-3	1	126.422		3219.312	
545		7	max	.025	3	.544	3	.511	4	3.563e-3	4	4447.637	15	NC	1
UTU			πιαλ	.020		.0-7-		.011		J.0006-0		1771.001	10	110	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio I	LC	(n) L/z Ratio	LC
546			min	017	2	826	2	0	1	0	1		2	2915.15	4
547		8	max	.024	3	.662	3	.488	4	1.014e-3	4	3908.269	15	NC	1
548			min	017	2	975	2	0	1	0	1	92.421	2	2631.996	4
549		9	max	.023	3	.737	3	.465	4	0	1	3631.662	15	NC	1
550			min	016	2	-1.07	2	0	1	-3.054e-6	5	85.974	2	2399.823	4
551		10	max	.023	3	.765	3	.439	4	0	1	3548.328	15	NC	1
552			min	016	2	-1.102	2	0	1	-2.948e-6	5		2	2366.684	4
553		11	max	.022	3	.746	3	.41	4	0	1_		<u> 15</u>	NC	1
554			min	016	2	-1.07	2	0	1	-2.841e-6	5		2	2432.401	4
555		12	max	.022	3	.681	3	.381	4	7.436e-4	4		15	NC	1
556			min	016	2	971	2	0	1	0	1_		2	2534.763	4
557		13	max	.021	3	.578	3	.347	4	2.613e-3	4		15	NC	1
558			min	015	2	814	2	0	1	0	1_		2	2980.887	4
559		14	max	.021	3	.447	3	.309	4	4.483e-3	4_		15	NC	1_
560			min	015	2	619	2	0	1	0	1_		2	4138.016	4
561		15	max	.02	3	.301	3	.27	4	6.352e-3	4		15	NC	1
562			min	015	2	407	2	0	1	0	_1_		2	7419.21	4
563		16	max	.02	3	.153	3	.231	4	8.222e-3	4		15	NC	1
564			min	015	2	2	2	0	1	0	_1_		2	NC	1
565		17	max	.019	3	.013	3	.196	4	1.009e-2	4_		5	NC	1
566		10	min	014	2	018	2	0	1	0	1_		2	NC	1
567		18	max	.019	3	.12	2	<u>.167</u>	4	5.124e-3	4_		5	NC NC	1
568		10	min	014	2	106	3	0	1	0	_1_		2	NC	1
569		19	max	.019	3	.235	2	145	4	0	1_	NC	1_	NC	1
570	140	4	min	014	2	214	3	0	1	-2.503e-6	4	110	1_	NC NC	1
571	M9	1_	max	.008	3	.116	2	.636	4	2.899e-2	3		1	NC NC	1
572			min	004	2	017	3	001	1	-1.565e-2	1_	NC NC	1_	NC NC	1
573		2	max	.008	3	.055	2	.62	4	1.434e-2	3_		4	NC 0040 040	1
574			min	004	2	006	3	0	12	-7.611e-3	2		2	9948.942	4
575 576		3	max	.008 004	3	.013	2	<u>601</u> 0	12	1.373e-2 -2.928e-5	4		<u>5</u> 2	NC 5710.085	4
576		1	min		3	01	3				<u>10</u>			NC	1
577		4	max	.008 004	2	.047 084	2	.58	12	1.079e-2 -4.733e-3	<u>5</u> 2		<u>5</u> 2	4307.317	4
578 579		5		.008	3	.091	3	0 .558	4	1.031e-2	3		<u>2</u> 5	NC	1
580		3	max	004	2	162	2	<u>.556</u>	12	-9.461e-3	2		2	3615.291	4
581		6	max	.008	3	<u>102</u> .14	3	.535	4	1.54e-2	3		<u>-</u> 15	NC	1
582		-	min	004	2	237	2	0	12	-1.419e-2	2		2	3192.599	4
583		7	max	.008	3	.187	3	.512	4	2.048e-2	3		<u>-</u> 15	NC	1
584			min	004	2	305	2	0	1	-1.892e-2	2		2	2882.635	4
585		8	max	.008	3	.226	3	.488	4	2.557e-2	3		15	NC	1
586			min	004	2	358	2	0	1	-2.365e-2	2			2613.326	_
587		9	max	.008	3	.252	3	.465	4	2.561e-2	3		<u></u>	NC	1
588		Ĭ	min	004	2	392	2	0	12	-2.687e-2	2		2	2397.022	
589		10	max	.007	3	.261	3	.439	4	2.232e-2	3		<u>-</u> 15	NC	1
590			min	004	2	403	2	0	1	-2.908e-2	2		2	2352.135	
591		11	max	.007	3	.255	3	.41	4	1.902e-2	3		<u>-</u> 15	NC	1
592			min	004	2	392	2	0	1	-3.13e-2	2		2	2414.154	_
593		12	max	.007	3	.233	3	.38	4	1.578e-2	3		<u>-</u> 15	NC	1
594			min	004	2	357	2	0	12	-3.025e-2	2		2	2556.222	4
595		13	max	.007	3	.199	3	.346	4	1.263e-2	3		 15	NC	1
596			min	004	2	301	2	0	12	-2.426e-2	2		2	3031.612	4
597		14	max	.007	3	.155	3	.309	4	9.484e-3	3		15	NC	1
598			min	004	2	231	2	002	1	-1.827e-2	2		2	4110.32	5
599		15	max	.007	3	.105	3	.27	4	6.336e-3	3		5	NC	1
600			min	004	2	154	2	005	1	-1.229e-2	2		2	6705.617	5
601		16	max	.006	3	.054	3	.232	4	8.062e-3	5		5	NC	1
602			min	004	2	076	2	007	1	-6.299e-3	2	625.017	2	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.006	3	.004	3	.198	4	1.016e-2	4	NC	5	NC	1
604			min	004	2	006	2	008	1	-5.603e-4	1	1026.69	2	NC	1
605		18	max	.006	3	.052	2	.169	4	4.829e-3	5	NC	4	NC	1
606			min	004	2	04	3	006	1	-1.143e-2	2	2187.499	2	NC	1
607		19	max	.006	3	.104	2	.145	4	9.518e-3	3	NC	1	NC	1
608			min	003	2	081	3	0	12	-2.294e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 34-	-35 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 34	-35 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 34-	-35 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2700.0	1671.0	0.0	1671.0
2	2700.0	1671.0	0.0	1671.0
Sum	5400.0	3342.0	0.0	3342.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5400 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	r _c (psi)	n _{ef} (In)	N _b (ID)					
17.0	1.00	2500	6.000	12492					
$\phi N_{cbg} = \phi (A_{I})$	$_{ m lc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ed}$	$_{l,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (\$	Sec. D.4.1 & Eq	. D-5)					
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$arPsi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)	
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231	_

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi da$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	$_{a}$ / $A_{Na0}) arPsi_{ed,Na} arPsi_{g}$	$_{g,Na} arPsi_{ec,Na} arPsi_{p,Na} \Lambda$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{\!\scriptscriptstyle {p,Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 34	-35 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c} C_{a1}^{1.5}$ (Eq. D-24)							
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		

 $\phi V_{cbgx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx} (Sec. D.4.1 \& Eq. D-22)$

A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
612.00	648.00	1.000	0.944	1.000	1.000	15593	0.70	9735

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	14.66	21056		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
791.64	967.12	1.000	1.000	1.000	21056	0.70	24129

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{ec},\textit{Na}} \, \Psi_{\textit{ec},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{ec},\textit{N}} \, \Psi_{\textit{ed},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\Psi_{ ho,Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2700	6071	0.44	Pass
Concrete breakout	5400	10231	0.53	Pass
Adhesive	5400	8093	0.67	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1671	3156	0.53	Pass (Governs)
T Concrete breakout x+	3342	9735	0.34	Pass
Concrete breakout y-	1671	24129	0.07	Pass
Pryout	3342	20601	0.16	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 34-35 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3	0.67	0.53	119.7 %	1.2	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.