

SOMMAIRE

- Introduction
- Data cleaning et statistique descriptive
- ☐ Classification et illustrations
- ☐ Algorithme de génération classe_parent
- ☐ ANOVA et régressions multilinéaires
- Conclusion

Classification & illustrations

Algorithme de génération

ANOVA & régressions multilinéaires

Votre banque souhaite cibler de nouveaux clients potentiels, plus particulièrement les jeunes en âge d'ouvrir leur tout premier compte bancaire.

Stratégie : Modélisez les données à l'aide d'une régression linéaire.

Objectif : Créer un programme capable de prédire les revenus d'un enfant.

Source : Site OC + World Income

Classification & illustrations

Algorithme de génération

ANOVA & régressions multilinéaires

Conclusion

Mission 1: Statistique descriptive

Décrire, résumer, représenter la donnée

Classification & illustrations

Algorithme de génération

ANOVA & régressions multilinéaires

Conclusion

Tables de l'étude

Algorithme de génération

ANOVA & régressions multilinéaires

Data cleaning

- Nb total pays: 116
 - ✓ **Fidji** gdpppp correction
 - ✓ Rename, drop
 - ✓ Kosovo population
 - ✓ **Soudan** population
 - ✓ Taïwan informations
 - ✓ Palestine & Kosovo gdpppp
 - ✓ **Lituanie** centile manquant

Statistique descriptive

- Représentativité: 89% de la population Monde
- Les quantiles :
 - ✓ population séparée en n classes d'égal effectif
 - ✓ situent très rapidement un sujet au sein d'une population parente
- L'OCDE définit les Parités de Pouvoir d'Achat (PPP) comme :
 - ✓ Les TAUX de CONVERSION monétaire qui EGALISENT les POUVOIRS D'ACHAT des différentes monnaies

Classification & illustrations

Algorithme de génération

ANOVA & régressions multilinéaires

Conclusion

Mission 2: CAH

Illustrer la diversité des pays en termes de distribution de revenus et ainsi aboutir à un clustering

Statistique descriptive illustrations

génération

régressions multilinéaires

Classification & illustrations

Classification: 5 clusters suivant les variables [[gdpppp , population , GINI]]

Caractérisation des clusters suivant les variables

- On retrouve CHN et IND caractérisées par leur population et des inégalités
- Cluster 3 regroupe les pays les plus inégalitaires
- Cluster 1 regroupe les pays les plus développés (au fort pouvoir d'achat)

• Différenciation des revenus en <u>absolu</u> et les écarts observés entre classe (<u>pente</u>)

• Ecarts importants entre classes les plus pauvres (p1 vs p2 «CHN») et les plus riches (p99 vs p100 «BRA»)

• Courbes de Lorenz

- 13% des brésiliens les plus riches possèdent 50% des richesses du pays
- La répartition de la richesse en Ukraine est « plus égalitaire »

• Evolution de l'indice de GINI

GINI conforme aux Lorenz

multilinéaires

Classification & illustrations

• Classement par indice de GINI

descriptive

- Rappel : prédiction par régression basée sur 3 variables (2 sont disponibles)
 - Objectif : générer la classe de revenu du parent (3ème variable)

Mission 3: Génération de données

Introduction de la notion d'élasticité intergénérationnelle

Simuler des données manquantes utiles pour la régression finale

$$ln(Y_{child}) = \alpha + \beta_1 ln(Y_{parent}) + \varepsilon$$

Algorithme de génération

Interprétation de la distribution conditionnelle « faible mobilité » (ex : pays africains)

66% de chances que les enfants issus de parents défavorisés, le soient euxmêmes également

• Une distribution conditionnelle « forte mobilité » verra une répartition plus équilibrée des chances d'être soit favorisé soit défavorisé (ex : pays scandinaves)

descriptive

Méthodologie

- ➤ Clonage données df*500 → 5,8M rows
- Récupération coefficients d'élasticité (116)
- Initialisation dataframe vide avec var [y_child , y_parents , c_i_child , c_i_parent]
- \rightarrow For Loop avec {nb_q = 100, size = 500*nb_q}

- ➤ Obtention Sample → 5,8M rows
- Join variable [Country_Code]
- Correction type (object -> int)
- Merge du df principal à Sample sur [quantile] + [Country_Code]
- Conservation des variables utiles à la mission 4

	Country_Code	c_i_parent	income	gdpppp	GINI_avg	IGEincome
0	ALB	66	4670.0	7297.0	31.411111	0.815874
1	ALB	40	1087.0	7297.0	31.411111	0.815874
2	ALB	10	2938.0	7297.0	31.411111	0.815874
3	ALB	31	2892.0	7297.0	31.411111	0.815874
4	ALB	11	2058.0	7297.0	31.411111	0.815874

Classification & illustrations

Algorithme de génération

ANOVA & régressions multilinéaires

- A ce stade, obtention d'un dataset regroupant les variables souhaitées pour la mission 4
 - Objectif : expliquer le revenu des individus en fonction de plusieurs variables explicatives (pays, l'indice de Gini, la classe de revenus des parent)

Mission 4: Régression linéaire

Montrer une relation de dépendance entre une variable à expliquer et une série de variables explicatives

Modéliser cette association par un modèle mathématique

• Avant toute chose, il est intéressant de se demander si la variable cible peut et/ou doitêtre utilisée telle quelle...

Theoretical Quantiles

Theoretical Quantiles

Présentation des revenus sous 2 formes (brute vs log)

 Bimodalité d'une distribution : indication forte de distribution non-normale.

• On retiendra la version en log plus proche d'une loi normale

ANOVA : Ordinary Least Squares regression (ols)

Application d'une ANOVA sous Statsmodels

```
anova_vln = sm.tools.add_constant(anova_vln)
X = "log_income"
Y = "Country_Code"
# Ordinary Least Squares regression
# 1st fit Linéaire (ite 1)
model_0 = ols('log_income ~ Country_Code', data=anova_vln).fit()
```

Lecture des résultats, statistique de Fisher (F>>1) et eta2 >>

• Influence réelle du pays sur les revenus et forte intensité de la corrélation

Performance du modèle suite à régression (facultatif)

- Régression sur données catégorielles ici : [Country_Code]
- Variables transformées Country_Code[T.xxx]

Dep. Variable: log_income			R-squared:		0.729		
Model:		OLS	Adj.	R-squared:		0.727	
Method:	Least Sq	uares	F-st	atistic:		269.0	
Date:	Mon, 23 Aug	2021	Prob (F-statistic):		0.00		
Time:	15:	37:15	Log-Likelihood:			-12627.	
No. Observations:	11600		AIC:	AIC:		2.549e+04	
Df Residuals:		11484	BIC:		2.634e+04		
Df Model:	115						
Covariance Type:	nonrobust						
	coef	std (err	t	P> t	[0.025	0.975]
Intercept	7.8517	0.0	972	108.713	0.000	7.710	7.993
Country Code[T.ARG]	0.4503	0.3	102	4.409	0.000	0.250	0.651

OLS Regression Results

• Itération n°2 : élimination variables transformées non-significatives (pvalue > 5%)

• Amélioration du modèle de 3% avec variance expliquée ~76%

Régression multilinéaire 1

Modèle 1 : $log(income - log(income - mean)_{pays} + GINI_{pays}$

	sum_sq	d†	F	PR(>F)	EtaSq
log_income_mean	13334.685346	1.0	25613.845878	0.000000e+00	0.681494
GINI_mean	194.692167	1.0	373.973216	4.964476e-82	0.009950
Residual	6037.451256	11597.0	NaN	NaN	0.308555

Décomposition de la variance du modèle multilinéaire 1

Régression multilinéaire 2

• Modèle 2 : $log(income) \sim log(income_mean)_{|pays} + GINI_{|pays} + classe_parent$

Dep. Variable:	log_income	R-squared:	0.774
Model:	OLS	Adj. R-squared:	0.774
Method:	Least Squares	F-statistic:	6.626e+06
Date:	Fri, 27 Aug 2021	Prob (F-statistic):	0.00
Time:	16:53:06	Log-Likelihood:	-5.7841e+06
No. Observations:	5800000	AIC:	1.157e+07
Df Residuals:	5799996	BIC:	1.157e+07
Df Model:	3		
	and the second s		

Covariance Type: nonrobust

P>|t| [0.025 std err 0.975] Intercept -0.0253 0.003 -8.971 0.000 -0.031 -0.020 log income mean 0.9834 0.000 3918.485 0.000 0.983 0.984 GINI mean -0.0167 3.49e-05 -479.239 0.000 -0.017 -0.017 classe parent 0.0105 9.44e-06 1112.047 0.000 0.010 0.011

Coef régression GINI <<0 → impact négligeable sur la situation des personnes

	sum_sq	df	F	PR(>F)	EtaSq
log_income_mean	6.606401e+06	1.0	1.535452e+07	0.0	0.678778
GINI_mean	9.881741e+04	1.0	2.296703e+05	0.0	0.010153
classe_parent	5.320772e+05	1.0	1.236648e+06	0.0	0.054669
Residual	2.495493e+06	5799996.0	NaN	NaN	0.256401

Décomposition de la variance du modèle multilinéaire 2

Cross validation (Scikit-learn)

```
from sklearn.model_selection import cross_validate
from sklearn.linear_model import LinearRegression

X = XTrain
y = yTrain
model = LinearRegression()
model.fit(X,y)

scores = cross_validate(model, X, y, cv = 5, scoring=('r2','neg_mean_squared_error'), return_train_score=True)
```

• Performance très proche <u>training</u> vs. <u>test</u> set (sur 5 splits)

Train_R² crossV values: [0.77362787 0.77198907 0.77478373 0.7759848 0.77416014] Test_R² crossV values: [0.77589084 0.78216905 0.77120973 0.76659614 0.77352937]

Pas de surapprentissage observé

		test accuracy(%)	train accuracy(%)
0	Scores_min	77.2	76.7
1	Scores_mean	77.4	77.4
2	Scores_max	77.6	78.2

Modèle conforme aux résultats obtenus sous Statsmodels

- Modèle fortement porté par le revenu moyen du pays
- 68% Variance expliquée avec 1 seule variable
- Limite étude : données [classe parent] **simulées**
- **Faible poids** du GINI et classe parent
- Amélioration du modèle possible par :
 - intégration d'autres critères (éducation, typologie territoriale...)
 - étude poussée des leviers et observations influentes

Merci

Classification & illustrations

Algorithme de génération

ANOVA & régressions multilinéaires

Conclusion

Annexes

Normalité, Homoscédasticité et Colinéarité des Résidus

Leviers et Distance de Cook

Classification & illustrations

Algorithme de génération

ANOVA & régressions multilinéaires

Conclusion

Etude de la normalité des résidus

Distribution à 98% similaire à une loi normale, mais non-homogène selon la pvalue

- . Kurtosis ~ 2,97 (proche de 3 -> normal)
- . Skewness ~ -0.17 (symétrique)

Corrélation et colinéarité

 VIF
 Tolerance

 log_income_mean
 1.111169
 0.899953

 GINI_mean
 1.111169
 0.899953

 classe_parent
 1.000000
 1.000000

Pas de multi-colinéarité (VIF <10)

Classification & illustrations

Algorithme de génération

ANOVA & régressions multilinéaires

Homoscédasticité des résidus

Variabilité des résidus change en fonction de la variable GINI → signe hétéroscédasticité

Confirmé par Test statistique de Breusch Pagan : pvalue << 5%

Leviers et Distance de Cook

Identification des observations résiduelles à fort effet de levier

Identification des observations pouvant impacter la régression (valeurs de prédiction aberrantes)