A survey on Cryptanalysis of Elliptic Curve Cryptography

Giordano Santilli

Università degli Studi di Trento

4 February 2020

Giordano Santilli 4 February 2020 1/13

Weierstrass Equation

Let $\mathbb K$ be a field with characteristic different than 2 or 3 and A, $B \in \mathbb K$. A Weierstrass Equation f is an equation in $\mathbb K[x,y]$ of the form

$$f: y^2 = x^3 + Ax + B.$$

The quantity $\Delta=4A^3+27B^2$ is called *discriminant* and if $\Delta\neq 0$, then f is said to be *non-singular*.

Giordano Santilli 4 February 2020 2 / 13

Elliptic Curve

An *elliptic curve* E over \mathbb{K} is the set of points $(x,y) \in \mathbb{K}^2$ which verifies a non-singular Weierstrass equation plus the *point at infinity* \mathcal{O} , that is

$$E(\mathbb{K}) = \left\{ (x, y) \in \mathbb{K}^2 \,\middle|\, y^2 = x^3 + Ax + B : A, B \in \mathbb{K} \right\} \cup \left\{ \mathcal{O} \right\}.$$

Giordano Santilli 4 February 2020 2 / 13

Elliptic Curve

An *elliptic curve* E over \mathbb{K} is the set of points $(x,y) \in \mathbb{K}^2$ which verifies a non-singular Weierstrass equation plus the *point at infinity* \mathcal{O} , that is

$$E(\mathbb{K}) = \left\{ (x,y) \in \mathbb{K}^2 \,\middle|\, y^2 = x^3 + Ax + B : A,B \in \mathbb{K} \right\} \cup \left\{ \mathcal{O} \right\}.$$

$$y^2 = x^3 - x$$

$$y^2 = x^3 - x + 1$$

Giordano Santilli 4 February 2020

This curve has 28 points, including \mathcal{O} .

Giordano Santilli 4 February 2020

Sum

Given two points P and Q over an elliptic curve E, the sum P+Q is defined with the following algorithm:

3/13

Giordano Santilli 4 February 2020

Sum

Given two points P and Q over an elliptic curve E, the sum P+Q is defined with the following algorithm:

• Draw the line between P and Q. This line will intercept the curve E in a third point R'.

3/13

Giordano Santilli 4 February 2020

Sum

Given two points P and Q over an elliptic curve E, the sum P+Q is defined with the following algorithm:

- Draw the line between P and Q. This line will intercept the curve E in a third point R'.
- Draw the symmetric point of R' with respect to the x-axis. This point is R and it is defined to be R = P + Q.

Giordano Santilli 4 February 2020

Doubling

Given one point Q over an elliptic curve E, the double 2Q is defined with the following algorithm:

3/13

Giordano Santilli 4 February 2020

Doubling

Given one point Q over an elliptic curve E, the double 2Q is defined with the following algorithm:

• Draw the tangent line through Q. This line will intercept the curve E in a second point R'.

Giordano Santilli 4 February 2020 3/13

Doubling

Given one point Q over an elliptic curve E, the double 2Q is defined with the following algorithm:

- Draw the tangent line through Q. This line will intercept the curve E in a second point R'.
- Draw the symmetric point of R' with respect to the x-axis. This point is R and it is defined to be R = 2Q.

3/13

Giordano Santilli 4 February 2020

Theorem

Using this definition of point summation (E,+) is an Abelian Group, i.e. given any $P,Q,R\in E$

- (P+Q)+R=P+(Q+R) (associativity),
- $P + \mathcal{O} = \mathcal{O} + P = P$ (identity element),
- $-P \in E$ such that $P + (-P) = \mathcal{O}$ (inverse element),
- P + Q = Q + P (commutativity).

Giordano Santilli 4 February 2020

Theorem

Using this definition of point summation (E,+) is an Abelian Group, i.e. given any $P,Q,R\in E$

- (P+Q)+R=P+(Q+R) (associativity),
- $P + \mathcal{O} = \mathcal{O} + P = P$ (identity element),
- $-P \in E$ such that $P + (-P) = \mathcal{O}$ (inverse element),
- P + Q = Q + P (commutativity).

Order

The *Order* of a point $P \in E$ is the smallest positive integer k such that

$$kP = \mathcal{O}.$$

Giordano Santilli 4 February 2020

Elliptic Curve Discrete Logarithm Problem (ECDLP)

ECDLP

Given an elliptic curve E defined over a finite field \mathbb{F}_q , a point $P \in E$ and another point Q which is a multiple of P, find $k \in \mathbb{N}^+$ such that Q = kP.

The number k is the discrete logarithm of Q to the base P and it is denoted as $\log_P Q = k$.

Given:

- \mathbb{F}_q , a finite field,
- ullet E, an elliptic curve over \mathbb{F}_q ,
- P, a base point of E (usually with big order),
- ullet Q, a multiple of P.

Find $k \in \mathbb{N}^+$ such that $Q = k \cdot P$.

Giordano Santilli 4 February 2020 4 / 13

Elliptic Curve Diffie-Hellman - ECDH

Public Parameters

- E, an elliptic curve over \mathbb{F}_q ,
- \bullet P, a base point of E,
- \bullet N, the order of P.

Alice

- Generates a secret random number $a \in \mathbb{Z}_N$.
- Computes $\alpha = aP$ and sends it to Bob.

Bob

- Generates a secret random number $b \in \mathbb{Z}_N$.
- Computes $\beta = bP$ and sends it to Alice.
- Computes $\gamma = b\alpha = baP$.

Elliptic Curve Digital Signature Algorithm - ECDSA

Suppose Bob wants to send a signed message to Alice.

Public Parameters

- E, an elliptic curve over \mathbb{F}_q ,
- \bullet P, a base point of E,
- N, the order of P,
- m, the message to be signed,
- h, an hash function.

Key Generation - Bob

- Chooses a secret random number $k \in \mathbb{Z}_N$. This is the *secret key*.
- Computes $Q = kP = (x_1, x_2)$. This is the *public key*.

Giordano Santilli 4 February 2020

Elliptic Curve Digital Signature Algorithm - ECDSA

Suppose Bob wants to send a signed message to Alice.

Signature Generation - Bob

- Computes the hash of the message e = h(m).
- Generates a random integer $t \in \mathbb{Z}_N$.
- Computes $r \equiv x_1 \bmod N$.
- Computes $s \equiv t^{-1}(e + rk) \mod N$.
- The pair (r, s) is the *signature*.

Giordano Santilli 4 February 2020 6 / 13

Elliptic Curve Digital Signature Algorithm - ECDSA

Suppose Bob wants to send a signed message to Alice.

Signature Generation - Bob

- Computes the hash of the message e = h(m).
- Generates a random integer $t \in \mathbb{Z}_N$.
- Computes $r \equiv x_1 \bmod N$.
- Computes $s \equiv t^{-1}(e + rk) \mod N$.
- The pair (r,s) is the *signature*.

Signature Verification - Alice

- Computes the hash of the message e = h(m).
- Computes $u \equiv es^{-1} \mod N$ and $v \equiv rs^{-1} \mod N$.
- Computes the point $(x_2, y_2) = uP + vQ$.
- If $r \equiv x_2 \mod N$, then the signature is *valid*.

Giordano Santilli 4 February 2020

Baby step - Giant step

Idea

If we fix $m \geq \lceil \sqrt{N} \rceil$, we can write $k=j_0m+i_0$, with $0 \leq i_0, j_0 < m$. So $Q=kP=(j_0m+i_0)P=j_0mP+i_0P$, therefore

$$Q - j_0 mP = i_0 P.$$

Giordano Santilli 4 February 2020

Baby step - Giant step

Idea

If we fix $m \geq \lceil \sqrt{N} \rceil$, we can write $k=j_0m+i_0$, with $0 \leq i_0, j_0 < m$. So $Q=kP=(j_0m+i_0)P=j_0mP+i_0P$, therefore

$$Q - j_0 mP = i_0 P.$$

Algorithm - BSGS

- Fix an integer $m \ge \lceil \sqrt{N} \rceil$.
- Store a list of iP for $0 \le i < m$ (Baby Step).
- Compute Q jmP for $0 \le j < m$ until one of them matches an element of the stored list (*Giant Step*).
- If $i_0P = Q j_0mP$, then $k \equiv i_0 + j_0m \mod N$.

Giordano Santilli 4 February 2020

Pollard's ρ

Idea

Suppose there exists a pseudorandom function $f: E \to E$ and define an initial random point $R_0 = a_0 P + b_0 Q \in E$. It is possible to define the sequence

$$f(R_i) = R_{i+1}.$$

Since E is a finite group, there exist i < j such that $R_i = R_j$. Therefore, the period of the sequence R_i is a divisor of i-i.

So if

$$a_i P + b_i Q = R_i = R_j = a_j P + b_j Q,$$

then

$$k \equiv \frac{a_j - a_i}{b_i - b_i} \bmod N.$$

Pollard's ρ

Algorithm - Pollard's ho

- Define a random point $R_0 \in E$.
- Compute R_i and R_{2i} for $i = 1, 2, \ldots$
- If $R_i = R_{2i}$, then $k = \gcd(N, i)$.

Remark

To compute the points for the algorithm, it is enough to store just one pair of the shape (R_i,R_{2i}) at each iteration, since $R_{i+1}=f(R_i)$ and $R_{2(i+1)}=f\left(f\left(R_{2i}\right)\right)$.

Giordano Santilli 4 February 2020

Silver-Pohlig-Hellman

Idea

If N is a composite number of the shape

$$N = \prod_{i} q_i^{e_i},$$

with q_i prime numbers and $e_i \in \mathbb{N}^+$, it is possible to solve DLP for each $q_i^{e_i}$ and then combine the results together to find a solution for DLP modulo N.

For each q^e dividing N, k can be written as $k \equiv k_0 + k_1 q + \ldots + k_{e-1} q^{e-1} \mod q^e$. The aim of the algorithm is therefore to recover k_0 , k_1 , ..., k_{e-1} for each q^e .

Giordano Santilli 4 February 2020 7/13

Semaev's Summation Polynomials

Summation Polynomials

Let $E(\mathbb{F}_q)$ be an elliptic curve. For any $n \geq 2$, the n-th summation polynomial $f_n(X_1,\ldots,X_n)$ is defined such that given $x_1,\,x_2,\,\ldots,\,x_n \in \overline{\mathbb{F}_q}$ (the algebraic closure of \mathbb{F}_q), then $f_n(x_1,x_2,\ldots,x_n)=0$ if and only if there exist $y_1,\,y_2,\,\ldots,\,y_n \in \overline{\mathbb{F}_q}$ such that $(x_i,y_i) \in E(\overline{\mathbb{F}_q})$ and $(x_1,y_1)+(x_2,y_2)+\ldots+(x_n,y_n)=\mathcal{O}$.

Giordano Santilli 4 February 2020

Semaev's Summation Polynomials

Summation Polynomials

Let $E(\mathbb{F}_q)$ be an elliptic curve. For any $n\geq 2$, the n-th summation polynomial $f_n(X_1,\ldots,X_n)$ is defined such that given $x_1,\,x_2,\,\ldots,\,x_n\in\overline{\mathbb{F}_q}$ (the algebraic closure of \mathbb{F}_q), then $f_n(x_1,x_2,\ldots,x_n)=0$ if and only if there exist $y_1,\,y_2,\,\ldots,\,y_n\in\overline{\mathbb{F}_q}$ such that $(x_i,y_i)\in E(\overline{\mathbb{F}_q})$ and $(x_1,y_1)+(x_2,y_2)+\ldots+(x_n,y_n)=\mathcal{O}.$

Theorem

- The 2-nd summation polynomial is $f_2(X_1, X_2) = X_1 X_2$.
- The 3-rd summation polynomial is $f_3(X_1,X_2,X_3) = (X_1-X_2)^2X_3^2 2\left((X_1+X_2)(X_1X_2+A) + 2B\right)X_3 + \left((X_1X_2-A)^2 4B(X_1+X_2)\right).$
- For any $n \geq 4$ and $n-3 \geq k \geq 1$, the n-th summation polynomial is $f_n(X_1, X_2, \ldots, X_n) = \operatorname{Res}_X (f_{n-k}(X_1, \ldots, X_{n-k-1}, X), f_{k+2}(X_{n-k}, \ldots, X_n, X)).$

Giordano Santilli 4 February 2020

Anomalous Curves

Anomalous Curve

An elliptic curve over \mathbb{F}_p is called *anomalous* if $|E(\mathbb{F}_p)| = p$.

In 1998 Satoh, Araki and in 1999 Smart showed an algebraic attack to ECDLP over anomalous curves which involves the use of p-adic fields \mathbb{Q}_p .

Idea

Since p is a prime number, the group $E(\mathbb{F}_p)$ is isomorphic to \mathbb{Z}_p and it is possible to define explicitly the isomorphism $\psi: E(\mathbb{F}_p) \to \mathbb{Z}_p$. The ECDLP over $E(\mathbb{F}_p)$ becomes: let $a,b \in \mathbb{Z}_p$ be such that b is a multiple of a modulo p. The problem is to find $k \equiv ba^{-1} \mod p$, which is easy to compute using Euclid's extended algorithm.

In 1998 Semaev proved independently the same result, from a geometric point of view.

Giordano Santilli 4 February 2020 9/13

Fault Attacks

Chosen Input Point Attack

Addition Formulas

Let $P=(x_P,y_P)$ and $Q=(x_Q,y_Q)$ be two points on the elliptic curve $E:y^2=x^3+Ax+B$, then $P+Q=(\overline{x},\overline{y})$, where

$$\overline{x} = \lambda^2 - x_P - x_Q$$
 $\overline{y} = \lambda(x_P - \overline{x}) - y_P$,

with

$$\lambda = \begin{cases} \frac{y_P - y_Q}{x_P - x_Q} & \text{if } P \neq Q, \\ \frac{3x_P^2 + A}{2y_P} & \text{if } P = Q. \end{cases}$$

Remark

The sum does NOT depend on B.

Fault Attacks

Chosen Input Point Attack

Idea

Suppose a protocol involves an elliptic curve $E: y^2 = x^3 + Ax + B$. Let $P = (x_P, y_P)$ be a point on another curve $E': y^2 = x^3 + Ax + C$, with $C \neq B$, such that the order t of P is small on E' in order to compute easily the ECDLP instances in < P >. Then if P is used as base point for the protocol, the public key will be Q = kP, but since the ECDLP is easy, it is possible to recover $k \mod t$.

Giordano Santilli 4 February 2020 10 / 13

Faulty implementation of the algorithm

Fault usage of random parameters

Suppose that in ECDSA t is fixed for each message. So given two messages m_1 and m_2 , their corresponding sign is (r,s_1) and (r,s_2) , where

$$\begin{cases} s_1 \equiv t^{-1}(h(m_1) + rk) \bmod N \\ s_2 \equiv t^{-1}(h(m_2) + rk) \bmod N. \end{cases}$$

Then, $t \equiv \frac{h(m_1) - h(m_2)}{s_1 - s_2} \mod N$ and from this it is possible to retrieve

$$k \equiv \frac{s_1 t - h(m_1)}{r} \bmod N.$$

Giordano Santilli 4 February 2020

Recap of the attacks

Attack	Complexity	Countermeasure
Brute-force	O(N)	Choose a large ${\cal N}.$
Baby step-Giant step	$O(\sqrt{N})$ operations and memory usage	Choose a large N .
Pollard's $ ho$	$O(\sqrt{N})$	Choose a large ${\cal N}.$
Silver-Pohlig- Hellman	If $N = \prod_i p_i^{e_i}$, $O\left(\sum_i e_i (\log N + \sqrt{p_i})\right)$	Choose a large and prime ${\cal N}.$
Summation Polynomials	If E is defined over \mathbb{F}_q , then $O(q^2)$	Choose a large q .
Anomalous Curve Attack	If $ E(\mathbb{F}_p) = p$, then $O(\log p)$	Choose a non-anomalous curve.
Chosen Input Point Attack	$O(\log^2 N)$	Check if $P \in E$.

Giordano Santilli 4 February 2020 12 / 13

THANK YOU

FOR THE ATTENTION!