Heatmap: ¶

```
In [1]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
data = np.random.randint(low=1,high=100,size=(10,10))
print(data)
hm = sns.heatmap(data=data)
```



```
In [2]:
            help(sns.heatmap)
                AXES IN WHICH TO GRAW THE COLORDAR, OTHERWISE TAKE SPACE TROM THE
                main Axes.
            square : bool, optional
                If True, set the Axes aspect to "equal" so each cell will be
                square-shaped.
            xticklabels, yticklabels: "auto", bool, list-like, or int, optional
                If True, plot the column names of the dataframe. If False, don't pl
        ot
                the column names. If list-like, plot these alternate labels as the
                xticklabels. If an integer, use the column names but plot only ever
        У
                n label. If "auto", try to densely plot non-overlapping labels.
            mask : bool array or DataFrame, optional
                If passed, data will not be shown in cells where ``mask`` is True.
                Cells with missing values are automatically masked.
            ax : matplotlib Axes, optional
                Axes in which to draw the plot, otherwise use the currently-active
                Axes.
            kwargs : other keyword arguments
                All other keyword arguments are passed to
In [5]:
          1 import pandas as pd
```



```
[[ 9 76 61 40 3 60 19 69 64 70]
[48 23 82 36 79 76 21 35 5 71]
[77 58 16 46 56 99 79 71 58 45]
[ 6 69 88 53 77 76 7 67 19 46]
[80 58 29 35 43 22 68 46 17 60]
[13 78 87 49 26 77 57 13 27 65]
[56 38 32 60 7 3 5 23 7 51]
[32 44 84 39 23 42 84 25 43 47]
[ 6 19 61 39 87 29 22 52 75 40]
[21 52 33 97 72 28 72 22 75 10]
```



```
In [6]:
             import pandas as pd
             import matplotlib.pyplot as plt
            import numpy as np
          3
            import seaborn as sns
            data = np.random.randint(low=1,high=100,size=(10,10))
          5
          6
             print(data)
             hm = sns.heatmap(data=data,cmap="tab20",annot=True)
        [[81 61 30 32 81
                         1 94 63 86 26]
         [98 99 66 48 44 45 38 69 35 99]
         [18 41 96 20 3 32 10 23 43 65]
         [13 40 26 56 56
                         6 84 7 25 46]
         [59 21 20 46 39 59 16 44 51 40]
         [83 5 82 61 58 56 10 82 15
                                       5]
         [44 39 76 51 97 69 15 12 72
                                       5]
         [69 19 92
                    4 86 84 80 44 85 41]
         [62 38 85
                    4 40 65 50 38 51 66]
         [66 12 69 28 95 75 28 22 37 45]]
```



```
In [7]:
             import pandas as pd
             import matplotlib.pyplot as plt
          2
             import numpy as np
          3
             import seaborn as sns
             data = np.random.randint(low=1,high=100,size=(10,10))
          5
          6
             print(data)
             hm = sns.heatmap(data=data,cmap="tab20",annot=True,linewidths=2,linecolor=
          7
         [[31 87 62 65 39 61 42 49 50 59]
          [50 78 49 15 48 39 76 81 57 43]
          [72 67 98 86 46 40 2 96 48 4]
          [ 9 95 48 96 72 70 83 13 43 43]
          [37 29
                  5 79 68 42 84 15 80 39]
          [71 71 16 87 16 61 44 5
                                     1 37]
          [18 66 37 39 52 75 22 21 9 94]
                 9 77 12 64 94 67 57 82]
          [49 56
          [93 84 59 82 80 5 70 68 60 87]
          [29 25 78 46 10 22 3 22 39 88]]
                 87
                        65
                            39
                                       49
                78
                    49
                            48
                               39
                                       81
                                   76
                    98
                        86
                 95
                    48
                        96
                                   83
                                                      60
                        79
                            68
                                   84
                                           80
                    16
                        87
                            16
                                                    - 40
                     37
                        39
                     9
             49
                        77
                                                    - 20
             93
                 84
                        82
                            80
                                       68
                                               87
             29
                     78
                        46
                            10
                                           39
                                               88
```

2 3

```
In [9]:
            import pandas as pd
            import matplotlib.pyplot as plt
          3 import numpy as np
          4 import seaborn as sns
          5 data = np.random.randint(low=1,high=100,size=(10,10))
            print(data)
            hm = sns.heatmap(data=data,cmap="tab20",annot=True,linewidths=2,linecolor=
        [[69 89 10 36 80 63 22 94 86 56]
         [54 60 84 83 85 7 53 71 41 25]
         [33 15 92 4 4 34 19 45 70 97]
         [77 87 71 42 5 30 16 19 34 97]
         [16 33 57 67 66 96 68 91 5 24]
         [53 83 6 7 92 50 5 46 57 89]
         [ 1 53 16 66 71
                         7 17 1 70 21]
```

69	89	10	36	80	63	22	94	86	56
54	60	84	83	85	7	53	71	41	25
33	15	92	4	4	34	19	45	70	97
77	87	71	42	5	30	16	19	34	97
16	33	57	67	66	96	68	91	5	24
53	83	6	7	92	50	5	46	57	89
1	53	16	66	71	7	17	1	70	21
45	27	6	76	17	3	87	54	30	71
78	73	51	78	2	47	79	60	37	26
63	26	23	6	98	66	56	3	37	46

[45 27 6 76 17 3 87 54 30 71] [78 73 51 78 2 47 79 60 37 26] [63 26 23 6 98 66 56 3 37 46]]

- 30

```
In [10]:
               import pandas as pd
               import matplotlib.pyplot as plt
            2
              import numpy as np
            3
              import seaborn as sns
              data = np.random.randint(low=1,high=100,size=(10,10))
            5
            6
              print(data)
              hm = sns.heatmap(data=data,cmap="tab20",annot=True,linewidths=2,linecolor=
            7
          [[63 98 47 83 83 38 9 20 26
           [24 81 12 77 43 41 18 88 76 32]
           [52 10 53 18 88 60 2 27 47 73]
           [56 17 99 63 40 88
                               1 86 95 60]
                            7 59 65 54 55]
           [ 9 8 31 88 89
           [31 14 52 11 89 62 58 74 14 6]
           [56 81 90 76 48 57 62 79 10 13]
           [88 21 64 94 34 47 30 95 43 71]
           [62 99 35
                      3 56 67 67 46 6 36]
           [45 45 60 86
                         5 87 88 27 63 46]]
                                                        70
                          83
                                         20
                              83
                                                        65
                          77
                                 41
                                         88
                                             76
                                                 32
                         18
                             88
                                 60
                                                 73
                                                        - 60
              56
                      99
                         63
                              40
                                 88
                                         86
                                             95
                                                 60
                                                        - 55
                         88
                              89
                                         65
                                                        - 50
                              89
                                 62
                                         74
              56
                  81
                      90
                          76
                              48
                                 57
                                     62
                                         79
              88
                      64
                          94
                                         95
                                             43
                                                 71
              62
                  99
                             56
                                 67
                                     67
                                                 36
                                                        - 35
              45
                      60
                          86
                                 87
                                     88
                                             63
```

Out[13]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino
393	27.0	4	140.0	86	2790	15.6	82	1	ford mustang g l
394	44.0	4	97.0	52	2130	24.6	82	2	vw pickup
395	32.0	4	135.0	84	2295	11.6	82	1	dodge rampage
396	28.0	4	120.0	79	2625	18.6	82	1	ford ranger
397	31.0	4	119.0	82	2720	19.4	82	1	chevy s- 10

398 rows × 9 columns

```
In [14]: 1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import numpy as np
4 import seaborn as sns
5 df = pd.read_csv("auto-mpg.csv")
6 df.corr()
```

Out[14]:

	mpg	cylinders	displacement	weight	acceleration	model year	origin
mpg	1.000000	-0.775396	-0.804203	-0.831741	0.420289	0.579267	0.563450
cylinders	-0.775396	1.000000	0.950721	0.896017	-0.505419	-0.348746	-0.562543
displacement	-0.804203	0.950721	1.000000	0.932824	-0.543684	-0.370164	-0.609409
weight	-0.831741	0.896017	0.932824	1.000000	-0.417457	-0.306564	-0.581024
acceleration	0.420289	-0.505419	-0.543684	-0.417457	1.000000	0.288137	0.205873
model year	0.579267	-0.348746	-0.370164	-0.306564	0.288137	1.000000	0.180662
origin	0.563450	-0.562543	-0.609409	-0.581024	0.205873	0.180662	1.000000

In [17]:

- 1 import pandas as pd
- 2 import matplotlib.pyplot as plt
- 3 import numpy as np
- 4 import seaborn as sns
- 5 df = pd.read_csv("auto-mpg.csv")
- 6 hm = sns.heatmap(data=df.corr(),cmap="crest",annot=True,linewidths=2,linec

Networkx: only 3 marks all graph is pending

- · directory graph
- · undirectory graph

Requirement already satisfied: networkx in c:\programdata\anaconda3\lib\site-packages (2.5)

Requirement already satisfied: decorator>=4.3.0 in c:\programdata\anaconda3\l ib\site-packages (from networkx) (4.4.2)

Note: you may need to restart the kernel to use updated packages.

```
In [20]:
```

```
import networkx as nx
 2 import matplotlib.pyplot as plt
 3 \mid g = nx.Graph()
4 g.add_node(1)
   g.add_nodes_from([2,3])
6 g.add_nodes_from(range(4,7))
7
   g.add_edge(1,3)
8 g.add_edge(2,5)
9 g.add_edge(1,7)
10 g.add_edge(3,3)
   g.add_edges_from([(2,3),(3,6),(4,6),(5,6)])
   nx.draw_networkx(g,node_size=300,node_color="red",edge_color="blue",width=
13
   plt.figsize = [150,150]
  plt.show()
14
```



```
In [21]:
           1 help(nx.draw_networkx)
             For directed graphs, arrows are drawn at the head end. Arrows can be
             turned off with keyword arrows=False.
             Examples
             _____
             >>> G = nx.dodecahedral_graph()
             >>> nx.draw(G)
             >>> nx.draw(G, pos=nx.spring layout(G)) # use spring layout
             >>> import matplotlib.pyplot as plt
             >>> limits = plt.axis("off") # turn of axis
             Also see the NetworkX drawing examples at
             https://networkx.github.io/documentation/latest/auto examples/index.htm
         1 (https://networkx.github.io/documentation/latest/auto examples/index.htm
         1)
             See Also
                 / \
In [22]:
             help(nx.graph)
                 **Nodes:**
                 Add one node at a time:
                 >>> G.add_node(1)
                 Add the nodes from any container (a list, dict, set or
                 even the lines from a file or the nodes from another graph).
                 >>> G.add_nodes_from([2, 3])
                 >>> G.add_nodes_from(range(100, 110))
                 >>> H = nx.path_graph(10)
                 >>> G.add_nodes_from(H)
                 In addition to strings and integers any hashable Python object
                 (except None) can represent a node, e.g. a customized node object,
                 or even another Graph.
                 >>> G.add_node(H)
 In [ ]:
           1
```