TICNI					
USIN					

R. V. COLLEGE OF ENGINEERING

Autonomous Institution affiliated to VTU
IV Semester B. E. Examinations April/May-17
Computer Science and Engineering
OPERATING SYSTEMS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in the first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.

PART A

1	1.1	List any two resources of computer system.				
	1.2	Define graceful degradation.	01			
	1.3	What is command interpreter?	01			
	1.4	Give two examples of virtual machines.	01			
	1.5	CPU scheduler is also known as	01			
	1.6	List any two thread libraries.	01			
	1.7	What is preemptive scheduling?	01			
	1.8	Define critical section.	01			
	1.9	provides a set of methods for ensuring that at least one of the				
		necessary conditions cannot hold.	01			
	1.10	What is load time binding?	01			
	1.11	Modify bit is also known as	01			
	1.12	<u> </u>	01			
	1.13	What is Bad Blocks?	01			
	1.14	What is the guiding principle for protection?	01			
	1.15	8	02			
	1.16	<u> </u>	02			
	1.17	What is enhanced second chance algorithm?	02			

PART B

2	a	With an abstract view of components of a computer system, define								
		operating system. Discuss the views of a computer.								
	b	List and explain services provided by an operating system which are helpful								
		to the user and system itself.	08							
		OR								
3	a	With a neat diagram of $VM - WARE$ and JVM architecture explain the concept of virtual machine.	08							
	b	With a process state diagram, explain the different states of a process.	04							
	С	What is scheduler? Discuss different types of schedulers.	04							

4	a	Discuss different ways of establishing relationship between user threads and kernel threads.	08					
	b	Suppose the following jobs arrive for processing at the time indicated below, each job will run the listed amount of time.						
		Job 1 2 3 Arrival time 0.0 0.4 1.0 Burst time 8 4 1						
		 i) Give a Gantt chart for execution of these jobs using the <i>FCFS</i> and non-preemptive <i>SJF</i> scheduling algorithms. ii) What is turnaround time and waiting time of each job for the above algorithm? 						
		iii) Compute average turnaround time if <i>CPU</i> is left idle for the first 1 unit then preemptive <i>SJF</i> is used (job 1 and job 2 will wait during this time). OR	08					
5	a b	What is dispatcher? Discuss different scheduling criteria. Explain in detail multilevel queue scheduling and multiple processor	08					
		scheduling.	08					
6	а	What do you mean by a binary semaphore and counting semaphore? Explain the implementation of wait () and signal () semaphore operation	08					
	b	Describe Resource allocation graph (RAG), i) With deadlock	0.0					
		ii) With a cycle but no deadlock.	08					
		OR						
7	a	What is race condition? Explain reader's writer's problem with a semaphores.	08					
	b	Consider the following snapshot of a system	00					
		Process Allocated resources Maximum resources Total resources						
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$						
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
		i) What is the content of need matrix and available?						
		ii) Is the system in a safe state? If yes, give safe sequence.	08					
0		When one the translation leads exide by Co. (TLD) in the total Deside in the control of the cont						
8	a	Why are the translation look-aside buffer (<i>TLB</i>) important? Explain paging hardware with <i>TLB</i> .	08					
	b	Discuss the following terms in brief:						
		i) External fragmentation,						
		ii) Thrashing, iii) Segmentation, and						
		iii) Segmentation, and iv) Demand paging.	08					
		OR						
L			l l					

9	а	Consider the following page reference string:	
		7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1.	
		How many page faults would occur for the following page replacement	
		algorithms assuming 3 frames? All frames are initially empty.	
		i) LRU,	
		ii) FCFS, and	0.0
	_	iii) Optimal.	09
	b	Given memory partitions of $100k$, $500k$, $200k$, $600k$ (in order) which algorithm	
		from best fit, worst fit and first fit places processes with requirements	
		212k, 417k, 112k & 426k in an efficient manner?	07
10	a	Explain the different types of file allocation methods.	09
	b	Discuss different access matrix implementation ideas.	07
		OR	
11	а	Write short notes on:	
		i) Swap – space management, and	
		ii) Free – space management.	08
	b	Suppose that the head of a moving head disk with 200 tracks numbered	
		0 to 199, is currently serving a request at track 143 and has just finished a	
		request at track 125. The queue of requests is kept in <i>FIFO</i> order.	
		86, 147, 91, 177, 94, 150, 102, 175, 130	
		What is the total number of head movements needed to satisfy these	
		requests for the following disk-scheduling algorithms?	
		i) FCFS,	
		ii) SSTF,	
1			
		l ' '	
		iii) $LOOK$, and iv) $C - SCAN$.	08

USN										
-----	--	--	--	--	--	--	--	--	--	--

R. V. COLLEGE OF ENGINEERING

Autonomous Institution affiliated to VTU IV Semester B. E. Examinations April/May-17 Common to CSE / ISE

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 3. Answer all questions from Part A. Part A questions should be answered in the first three pages of the answer book only.
- 4. Answer FIVE full questions from Part B.

PART A

1	1.1	Name the sorting algorithm which has an efficiency of $O(n)$ in the best case.	01						
	1.2	Find the time required to access $A[4][5]$ in $A[10][10]$.							
	1.3	Define topological ordering.							
	1.4	An AVL tree is an example of in the transformation stage of							
		transform and conquer.	01						
	1.5	Describe a flow network.	01						
	1.6	What are promising and non-promising nodes in a state-space tree?	01						
	1.7	Compare the orders of growth of $\frac{1}{2}$ $n(n-1)$ and n^2 .	02						
	1.8	In the empirical analysis, the scatter plots of the functions in the order of and has convex shape.	02						
	1.9	Apply master theorem to find the efficiency of the following:							
		i) $T(n) = 4T\left(\frac{n}{2}\right) + n^2$							
		ii) $T(n) = 16T\left(\frac{n}{2}\right) + n$	02						
	1.10	Compare and contrast between divide and conquer and dynamic programming.	02						
	1.11	Construct a max heap for the list 1,8,6,5,3,7,4 by successive key insertion.	02						
	1.12	How many character comparisons will be made by Horspool's algorithm in	02						
	1,12	searching the following patterns in the binary text of 1000 zeros?							
		i) 10000							
		ii) 01010.	02						
	1.13	,							
		O(logn) and the other uses an algorithm whose run time is $O(n!)$. Example							
		which of the two problems is tractable and which is not.	02						

PART B

2	2	a	Briefly explain the framework for designing and analyzing an algorithm.	08
		b	Discuss the general plan for analyzing the time efficiency of recursive	
			algorithms.	04
		c	Design an algorithm to solve the element uniqueness problem. Analyze its	
			efficiency.	04
			OR	

3	a b c	Define big-oh, big-theta and big-omega notations. Write the general plan for empirical analysis of algorithm time efficiency. Design and analyze a recursive algorithm to count the number of binary				
		digits in n 's binary representation.	04			
4	a b c	Design an algorithm that partitions an array by using its first element as pivot. Use the above algorithm to find the medium for the given set of elements: $4,1,10,9,7,12,8,2,15$ Compute 2101×1130 by applying divide and conquer. Apply <i>DFS</i> method to solve topological ordering for the following graph.				
		OR	04			
5	а	Design an algorithm to merge two sorted arrays. Trace the algorithm for the				
		Array 1 : 5 10 15 20 25				
		Array 2: 2 7 14 32 37	08			
	b	Define $2-3$ tree. Construct a $2-3$ tree for the list $C, O, P, Y, R, I, G, H, T, E, D$. (alphabetical order of the letters).	04			
	С	Design a presorting algorithm to find the mode in a given list of elements.	04			
6	<u>а</u>	Design and analyze an algorithm to build max heap using bottom-up				
	b	approach. Apply Floyd's algorithm for the following digraph.	08			
	~	Tippiy Tioya a algorithm for the following algraph.				
		The state of the s				
		3				
	С	Apply Boyer's-Moore algorithm to search for the pattern <i>AT_THAT</i> in the text	04			
	C	WHICH_FINALLY_HALTSAT_THAT.	04			
		OR				
7	a	For the instance of problem, obtain the optimal solution for the Knapsack problem by using memory function. $W = 5$ (Knapsack capacity)				
		Item Weight Value				
		1 2 8				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		4 2 11	08			
	b	Write the pseudo code of Horspool algorithm.	04			

	С	What is problem reduction? For the following graph, using problem reduction strategy find the number of paths of length 2.	
			04
8	a	Write the pseudo code for Prim's algorithm. Apply the same for the following graph.	08
	b	Construct a Huffman tree for the following data and obtain the Huffman code. Character A B C D E Probability 0.35 0.1 0.2 0.2 0.15	04
	С	Draw a decision tree for the three-element selection sort. OR	04
9	a	Write the pseudo code for Dijkstra's algorithm and apply the same for the following graph (source vertex a).	
	b	Apply the shortest augmenting path algorithm to find the maximum flow and a minimum cut in the following network.	08
	С	Define Bipartite graph.	06 02
			02
10	a b	Find the optimal solution for the assignment problem given below by branch and bound technique.	08
		OR	<u> </u>

4	^	C	$\boldsymbol{\sim}$	4	_
	•	•	┏.	∕∎	_
					h

R. V. COLLEGE OF ENGINEERING

Autonomous Institution affiliated to VTU IV Semester B. E. Examinations April/May-17 Computer Science and Engineering

OBJECT ORIENTED PROGRAMMING WITH C++

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 5. Answer all questions from Part A. Part A questions should be answered in the first three pages of the answer book only.
- 6. Answer FIVE full questions from Part B.

PART A

```
1
          Justify why should we write our own copy constructor.
                                                                                          02
    1.1
    1.2
          Giving default values to arguments of overloaded member functions can
          lead to ambiguity errors. Depict the same with an example.
                                                                                          02
    1.3
          Define a namespace and nested classes.
                                                                                          02
    1.4
          Show how to define static variable for template class shown below:
          Template < class t >
          class A
            static ints;
                                                                                          01
    1.5
          What are mutable data members?
                                                                                          02
          Analyze the output of the following program:
    1.6
          #include < iostream >
          int val = 0;
          class A
            public: A()
               cout << + + val;
            \sim A()
               cout << val --;
          };
          int main()
            A A1, A2, A3;
               A A4, A5;
            return 0;
                                                                                          02
    1.7
          List ant two open mode bits with functionality for file operations.
                                                                                          02
```

```
Write the syntax to create float list with 5 elements initialized with default
1.8
                                                                                         01
      value 10.0;
1.9
      Will the below given order of catch blocks handle multiple exceptions?
      Comment.
      main()
        try
          throw 20;
        catch(...)
          cout << "default exception";</pre>
        catch(int P)
          cout << "intexception";</pre>
        catch(char P)
           cout << "char exception";</pre>
                                                                                         02
      Write the output of the following program:
      #include < iostream >
      #include < map >
      #include < string >
      using namespace std;
      int main()
        multimap < string, string > car;
        car.insert(pair < string, string > ("Pranav", "Ford");
        car.insert(pair < string, string > ("Anu", "Jaguar");
        car.insert(pair < string, string > ("Pranav", "Nissan");
        cout << "Pranav has" << car.count("Pranav") << "Cars";</pre>
                                                                                         02
1.11
      Write the output for the following program:
      main()
      {
        int x = 0;
        int \& y = x;
        y = 5;
        while (x \le 5)
          cout << y + + << ""; x + +;
        cout << x;
                                                                                         02
```

PART B

		PARI B						
2	a	Write a $C + +$ program that implements a class Student (int <i>ID</i> , string name,						
		double grade) private and the following member functions:						
		i) Default constructor to initialize name to "Anu", <i>ID</i> to 84596 and						
		grade to 87.5. ii) Set name to assign new value to the data member name, but						
		ensure that name has at most 20 characters.						
		iii) Set grade to assign new value to grade, but ensure that grade						
		be $>=60$.						
		iv) Print to print student information.						
		Write a main function and create object of class Student as S and use S to						
		test all operations of class Student.						
	b	Discuss the circumstances under which the compiler adds definition of						
	copy constructor to the class.							
		OR						
3	a	Implement a $C + +$ program to create two classes Manager (name, basic,						
		deduct1) and Deputy_Manager(name, basic, deduct2). Write a friend						
		function contribute(), which adds deduct1 and deduct2.						
		Note: deduct1 is 20% of basic and deduct2 is 15% of basic. And data						
		members of both classes are declared as private.	06					
	b	Differentiate between:						
		i) Inline function and macros	0.4					
	_	ii) Procedure oriented and object oriented programming.	04					
	С	Discuss constructor overloading with an example. Comment on "can destructors be overloaded".	06					
		destructors be overloaded.	06					
4	а	Considering any two forms of hybrid inheritance in $C++$, answer the						
		following:						
		i) Give the diagrams describing the inheritance	0.4					
	b	ii) State the classes that will be prefixed with virtual keyboard Create a class First(book_no, book_name) and member functions getdata()	04					
	D	and putdata(). Create a class Second(author_name, publisher) and member						
		functions getdata() and showdata(). Derive a class Third from First and						
		Second with members, number of pages and year of publication. Display all						
		threse information using array of objects of third classes. Your code should						
		handle all ambiguities.	07					
	c	What is the new handler? How is the set_new_handler() function used to set						
		our new handler?	05					
		OR						
5	а	Write a $C + +$ program that creates an array dynamically when its size is						
		specified during runtime.	04					
	b	Discuss multiple inheritance with its ambiguities and what are the possible						
		ways to resolve these ambiguities. Illustrate with an example.	08					
	c	Discuss inheritance using protected accessspecifier by considering private,						
		protected and public data members.	04					
6	a	Write a $C + +$ program which tackles all the three conditions given below:						
		03 = 01 + 02;						
		04 = 01 + 4.25;						
			1 1					
		05 = 8.5 + 01; Where $01,02,03,04,05$ are objects.	06					

hes). mber and bles. ually,	06 04 06 05 05
hes). mber and bles.	06 05 05
hes). mber and bles.	05
hes). mber and bles.	05
and bles.	08
bles. ıally,	08
bles. ıally,	
3,	04
phic	
	04
to a d in ed in al of	
	08
	04
	04
	06
	07
ısing	
	03
	10
tions	Ī l
)	brary oriate ow to using otions error