

Challenge 2 CS-EEE

Introduction to Transistors

What is Transistors?

Switches:

It comes in various forms and packages but

- It has three terminals
- Two types: BJT and MOSFET

A semiconductor device used to:

- amplify signal
- switch electrical signals and power.

Transistor Types

Bipolar Junction Transistor

Complementary metal-oxide-semiconductor (CMOS)

Transistor Types

Characteristic	MOSFET	BJT (NPN/PNP)
Transistor Types	N-Channel (e.g., IRF520, IRF740), P-Channel (e.g., IRF9530, IRF9630)	NPN (e.g., 2N3904, BC547), PNP (e.g., 2N3906, BC557)
Input Control	Voltage-controlled device	Current-controlled device
Input Impedance	Extremely high	Moderate to low
Switching Speed	Very fast (e.g., nanoseconds to microseconds)	Fast to moderate (e.g., microseconds to milliseconds)
Voltage Rating	low to high voltage	low to moderate voltage
Current Rating	low to high current	low to moderate current
Applications	Digital and analog applications	Amplification, switching, signal processing

How do they work? At entry level

Symbol of MOSFET

Functions as a switch with a control terminal

> The circuit implementation

- A positive V_{GS}
- Drain (D) and Source (S) are connected like a switch!
- The V_{GS} must be large enough to turn on the switch, hence larger then a V_{TH}
- Control the gate voltage to control the current flows through the light bulb

How to use it?

- The transistor in serial with the load
- The gate of the transistor is connected to the selected IO pins from Arduino.
- R1 is called a pull-down resistor
- When the IO pin is high, 5V is connected to the transistor, and turn it on
- Current flows from supply +V to the Load.

If +V = 5V, can we use IO pin to connect to the load?

Can we connect the load on the other side of the transistor?

Circuit schematics

More about transistors

www.vishay.com

IRF520

Vishay Siliconix

PRODUCT SUMMARY				
V _{DS} (V)	100			
R _{DS(on)} (Ω)	V _{GS} = 10 V	0.27		
Q _g max. (nC)	16			
Q _{gs} (nC)	4.4			
Q _{gd} (nC)	7.7			
Configuration	Single			

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)						
PARAMETER		SYMBOL	LIMIT	UNIT		
Drain-source voltage		V _{DS}	100	V		
Gate-source voltage	V _{GS}	± 20	v			
Continuous drain current	V_{GS} at 10 V $T_{C} = 25 ^{\circ}C$ $T_{C} = 100 ^{\circ}C$	I-	9.2			
Continuous drain current	$T_C = 100 ^{\circ}$ C		6.5	A		

IRF520

Vishay Siliconix

Regions of operations of MOSFET

Operation Mode	Туре	Condition
Cut-Off	NMOS	$V_{GS} < V_{TH}$
	PMOS	$ V_{GS} < V_{TH} $
Linear	NMOS	$V_{GS} \ge V_{TH}$ $V_{DS} \le V_{GS} - V_{TH}$
	PMOS	$\begin{aligned} V_{GS} \ge V_{TH} \\ V_{DS} \le V_{GS} - V_{TH} \end{aligned}$
Saturation	NMOS	$V_{GS} \ge V_{TH}$ $V_{DS} \ge V_{GS} - V_{TH}$
	PMOS	$\begin{aligned} V_{GS} &\geq V_{TH} \\ V_{DS} &\geq V_{GS} - V_{TH} \end{aligned}$

IRF520

Vishay Siliconix

www.vishay.com

Fig. 1 - Typical Output Characteristics, T_C = 25 °C

Ideal Switch vs. Practical Switch

ON state:

- No limit on the current it can carry.
- Zero voltage drop.

OFF state:

- No limit on the blocking voltage.
- OFF state resistance should be infinite.

The operating speed of the device has no limits.

Reality Check

Ref: https://www.electronicshub.org/mosfet-as-a-switch/

Power handling capabilities

Fig. 1 - Typical Output Characteristics, T_C = 25 °C

Finite on-state resistance

R _{DS(on)} (Ω)	V _{GS} = 10 V	0.27

Finite off-state resistance, which results in a reverse leakage current and 100V max V_{DS}.

Limited speed of operation

Power losses during the transition of states.

One more thing

UCL

Back EMF and flyback diode

Look at those spikes! And there is a limited on Vds

