

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

BAIN036 ÁLGEBRA LINEAL PARA INGENIERÍA TUTORÍA 11

Diciembre 2013

1. Considere la Transformación Lineal $H: \mathbb{R}_3[x] \mapsto \mathbb{R}_3[x]$ dada por:

$$H(ax^3 + bx^2 + cx + d) = (a + 2b + 3d)x^3 + (b - d)x^2 + (a - b - c)x + 2d$$

Determine:

- a) $[H]_{\zeta}$, donde ζ es la base canónica de $\mathbb{R}_3[x]$
- b) $[H]_{\Upsilon}$, donde Υ es la base $\{x^3+2x+1,x^2,x+1,-2\}$ de $\mathbb{R}_3[x]$
- c) Según lo anterior H es un isomorfismo?
- 2. Sea V el subespacio de las matrices simétricas de $M_2(\mathbb{R})$. Considere la Transformación Lineal $T: V \mapsto \mathbb{R}^4$ dada por:

$$T\left(\left[\begin{array}{cc} a & b \\ b & c \end{array}\right]\right) = (a+2b, b+3c, a-b-c, c-a)$$

Determine:

 $[T]_C^\xi \text{ donde } C \text{ es la base canónica de } V \neq \xi \text{ es la base } \{(1,2,0,0), (1,0,0,-3), (1,2,3,4), (-3,0,1,1)\}$

3. Sea $F: \mathbb{R}^3 \to \mathbb{R}_2[x]$ una Transformación Lineal tal que:

$$[F]_B^C = \begin{pmatrix} 1 & 0 & -1 \\ -3 & 2 & 1 \\ -2 & 0 & 3 \end{pmatrix}$$

Explicite F(a,b,c) para $B = \{(1,2,3), (0,1,1), (0,1,0)\}$ y $C = \{2x^2-2, x+3, -4\}$