Formas Normales

- Normalización Introducción
- Primera Forma Normal
- Segunda Forma Normal
- Tercera Forma Normal
- Forma Normal de Boyce-Codd
- Dependencias Multivaluadas
- Cuarta Forma Normal

Normalización

Introducción

- En el proceso de normalización se somete un esquema relación (er) a una serie de pruebas para "certificar" si pertenece o no a una cierta forma normal.
- Puede considerarse como un proceso durante el cual los er insatisfactorios se descomponen repartiendo sus atributos entre ers más pequeños que poseen propiedades deseables.
- Las formas normales, sin considerar otros factores, no garantizan un buen diseño de BD. Props adicionales:
 - » Join sin pérdida
 - » Preservación de dependencias

Superclave

Superclave

– Una superclave de R = {A₁, ..., A_n} es un conjunto de atributos S ⊆ R tal que no existen 2 tuplas distintas t_1 y t_2 en ningún r tal que t_1 [S] = t_2 [S].

Clave

Clave

 Una clave K es una superclave que cumple que si se le quita alguno de sus atributos, deja de ser superclave.

Clave Candidata

Clave candidata, clave primaria

 Si una relacion tiene mas de una clave, cada una es una clave candidata. Una de ellas es arbitrariamente designada como clave primaria. El resto son secundarias.

Primera Forma Normal (1NF)

Definición

 Los dominios de los atributos deben incluir solo valores atómicos (los atributos no pueden ser multivaluados ni compuestos)

Ejemplo

(b)	DEPARTAMENTO					
	NOMBRED	NÚMEROD	NSSGTED	LUGARESD		
	Investigación	5	333445555	(Belén, Sacramento, Higueras)		
	Administración	4	987654321	(Santiago)		
	Dirección	1	888665555	(Higueras)		

Atributo Primo

 Un atributo del esquema relación R es primo si es miembro de alguna clave de R.

Dependencia Total

 X→Y es una df total si la eliminación de cualquier atributo A de X hace que la df deje de ser válida. (no tiene atr. redundantes a la izq.)

Dependencia Parcial

 X→Y es una df parcial si es posible eliminar un atributo A de X, y la df sigue siendo válida.

Segunda Forma Normal (2NF)

Definición

 Un er R está en 2NF ningún atributo no primo A de R depende parcialmente de cualquier clave de R.

Segunda Forma Normal (2NF)

Ejemplo

- -El atributo no primo NOMBREE viola 2NF, por la df2
- -Los atr no primos NOMBREPR y LUGARP violan 2NF, por la df3

Segunda Forma Normal (2NF)

Dependencia Transitiva

 Una df X→Y en un er R es una df transitiva si existe un conjunto de atributos Z que no sea un subconjunto de una clave de R, y se cumplen tanto X→Z como Z→Y.

Tercera Forma Normal (3NF)

Definición

 Un er R está en 3NF si está en 2NF y ningún atributo no primo de R depende transitivamente de una clave de R.

Un er R está en 3NF si, siempre que una df
 X→A se cumple en R, o bien (a) X es una superclave de R, o (b) A es un atributo primo de R.

Tercera Forma Normal (3NF)

Ejemplo

-Las dfs NUMEROD→NOMBRED y NUMEROD→NSSGTED violan 3NF

Tercera Forma Normal (3NF)

(a)

Ejemplo

LOTES

Forma Normal de Boyce-Codd (BCNF)

Definición

 Un er R está en BCNF si, siempre que una df X→A se cumple en R, entonces X es una superclave de R.

Ejemplo

Forma Normal de Boyce-Codd (BCNF)

Ejemplo

```
Imparte (estudiante, curso, profesor)
F = { estudiante, curso → profesor
                                            3NF
     profesor → curso }
Claves: {estudiante, curso} y {estudiante,
  profesor}
 Descomposiciones posibles:
    {estudiante, profesor} y {estudiante, curso}
    {curso, profesor} y {curso, estudiante}
    {profesor, curso} y {profesor, estudiante}
```

Algoritmos de diseño

- Descomposición de relaciones
- Preservación de dependencias
- Descomposición en 3NF preservando las dfs
- Join sin pérdida. Propiedad
- Test de join sin pérdida
- Descomposición en BCNF con JSP
- Descomposición en 3NF con JSP y pres de dfs
- Problemas con valores nulos y tuplas colgantes

Descomposición de relaciones

Esquema relación universal R

 $-R = (A_1, A_2, ..., A_n)$, que contiene todos los atributos de la BD

Descomposición de relaciones

Descomposición de R, D

- D = (R₁, R₂, ..., R_m), que se obtiene mediante los algoritmos que realizan la descomposición utilizando las dependencias funcionales
- Se debe verificar: $\bigcup_{i=1}^{m} R_i = R$

Preservación de dependencias

- Proyección de un conjunto de dependencias sobre un Esquema de Relación
 - Dado un conjunto de dfs F sobre R, la proyección de F sobre R_i, Π_{Ri}(F), donde R_i es un subconj de R, es el conj de dfs X→Y en F+ tal que los atributos en X∪Y estén todos contenidos en R_i.

Preservación de dependencias

Preservación de dependencias

– Una descomposición D = $(R_1, R_2, ..., R_m)$ de R preserva las dependencias respecto a F si se cumple: $((\Pi_{R_1}(F)) \cup ... \cup (\Pi_{R_m}(F))) + = F +$

Descomposición en 3NF con pres de dfs

Algoritmo

- 1. Encontrar un cubrimiento minimal G para F;
- 2. Para cada miembro izq X de una df que aparezca en G crear un er {X ∪ A₁ ∪ A₂ ... ∪ Am} en D, donde X→ A₁, X→ A₂, ..., X→ Am sean las únicas dfs en G con X como miembro izq;
- 3. Colocar todos los atributos restantes (que no fueron colocados en ningún er) en un solo er para asegurar la prop. de preservación de dependencias;

Join sin Pérdida

Definición

– Una descomposición D = (R₁, R₂, ..., R_m) de R tiene la propiedad de **JSP** respecto al conjunto de dfs F sobre R, si por cada instancia de relación r de R que satisfaga F, se cumple lo siguiente:

*
$$(\Pi_{R1}(r), ..., \Pi_{Rm}(r)) = r$$

Join sin Pérdida

Propiedad

- D = (R₁, R₂) de R tiene JSP respecto a F sobre R sii - la df (R₁ ∩ R₂) → (R₁ - R₂) está en F+ ó - la df (R₁ ∩ R₂) → (R₂ - R₁) está en F+

Test de join sin pérdida

Algoritmo

- crear una matriz S con una fila i por cada relación R_i en la desc
 y una columna j por cada atributo A_i en R;
- 2. hacer S(i,j) := b_{ii} para todas las entradas de la matriz;
- 3. para cada fila i que represente el er R_i
 para cada columna j que represente el atributo A_j
 si R_i incluye a A_j entonces hacer S(i,j) := a_j;
- repetir hasta que una ejecución no modifique S
 para cada df X→Y en F
 igualar los símbolos en los atributos de Y para
 aquellas filas que coinciden en los atributos de X;
- 5. si una fila tiene todos símbolos "a", la desc es con JSP, en caso contrario, no lo es:

Test de join sin pérdida

Ejemplo

(c) R={NSS, NOMBREE, NÚMEROP, NOMBREPR, LUGARP, HORAS} D={R1, R2, R3} R1=EMP={NSS, NOMBREE} R2=PROYECTO={NÚMEROP, NOMBREPR, LUGARP} R3=TRABAJA_EN={NSS, NÚMEROP, HORAS}

F={NSS ->NOMBREE; NÚMEROP ->{NOMBREPR, LUGARP}; {NSS, NÚMEROP} ->HORAS}

	NSS	NOMBREE	NÚMEROP	NOMBREPR	LUGARP	HORAS	_
R1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	^b 16	
R2	b ₂₁	b ₂₂	^a 3	a ₄	a ₅	^b 26	
R3	a ₁	b ₃₂	^а з	^b 34	^b 35	^a 6	

(matriz original S al principio del algoritmo)

	NSS	NOMBREE	NÚMEROP	NOMBREPR	LUGARP	HORAS
R1	^a 1	a ₂	^b 13	b ₁₄	b ₁₅	b ₁₆
R2	b ₂₁	b ₂₂	^a 3	a ₄	a ₅	^b 26
R3	a ₁	b32 a2	^a 3	b34 ^a 4	b ₃₅ a ₅	a ₆

(la matriz S después de aplicar las dos primeras dependencias funcionales - la última fila sólo tiene símbolos "a", así que nos detenemos)

Descomposición en BCNF con JSP

Algoritmo

```
    1. hacer D := { R };
    2. mientras haya un er Q en D que no esté en BCNF hacer comenzar escoger un er Q en D que no esté en BCNF; encontrar una df X→Y en Q que viole BCNF; reemplazar Q en D por dos esquemas (Q - Y) y (X ∪ Y) fin;
```

Desc en 3NF con JSP y pres de dfs

Algoritmo

- 1. encontrar un cubrimiento minimal G para F;
- para cada miembro izq X de una df que aparezca en G crear un er {X ∪ A₁ ∪ A₂ ... ∪ A₁m} en D, donde X→ A₁, X→ A₂, ..., X→ Am sean todas las dfs en G con X como miembro izq;
- 3. si ninguno de los er contiene una clave de R, crear un er adicional que contenga atributos que formen una clave de R;
- 4. eliminar er redundantes, es decir que estén contenidos en otro ya generado

Problemas con nulos

◆ Ejemplo

(a) EMPLEADO

NOMBREE	<u>NSS</u>	FECHAN	DIRECCIÓN	NÚMD
Silva, José B.	123456789	09-ENE-55	Fresnos 731, Higueras, MX	5
Vizcarra, Federico T.	333445555	08-DIC-45	Valle 638, Higueras, MX	5
Zapata, Alicia J.	999887777	19-JUL-58	Castillo 3321, Sucre, MX	4
Zapaia, Alicia 5. Valdés, Jazmín S.	987654321	20-JUN-31	Bravo 291, Belén, MX	4
	666884444	15-SEP-52	Espiga 975, Heras, MX	5
Nieto, Ramón K.	453453453	31-JUL-62	Rosas 5631, Higueras, MX	5
Esparza, Josefa A.	987987987	29-MAR-54	Dalias 980, Higueras, MX	4
Jabbar, Ahmed V.		10-NOV-27	Sorgo 450, Higueras, MX	1
Botello, Jaime E.	888665555	· · ·	Becerra 6530, Belén, MX	nulo
Bernal, Andrés C.	999775555	26-ABR-55	Bejuco 7654, Higueras, MX	nulo
Benítez, Carlos M.	888664444	09-ENE-53	Dojugo 700-1, riigabias, mr	

DEPARTAMENTO

NOMBRED	NÚMD	NSSGTED
Investigación	5	333445555
Administración	4	987654321
Dirección	1	888665555

(b)

Problemas con nulos

NOMBREE	NSS	FECHAN	DIRECCIÓN	NÚMD	NOMBRED	NSSGTED
Silva, José B.	123456789	09-ENE-55	Fresnos 731, Higueras, MX	5	Investigación	333445555
Vizcarra, Federico T.	333445555	08-DIC-45	Valle 638, Higueras, MX	5	Investigación	333445555
Zapata, Alicia J.	999887777	19-JUL-58	Castillo 3321, Sucre, MX	4	Administración	987654321
•		20-JUN-31	Bravo 291, Belén, MX	4	Administración	987654321
Valdés, Jazmín S.	987654321	15-SEP-52	Espiga 975, Heras, MX	5	Investigación	333445555
Nieto, Ramón K.	666884444	31-JUL-62	Rosas 5631, Higueras, MX	5	Investigación	333445555
Esparza, Josefa A.	453453453	- ·	Dalias 980, Higuera, MX	4	Administración	987654321
Jabbar, Ahmed V.	987987987	29-MAR-59		1	Dirección	888665555
Botello, Jaime E.	888665555	10-NOV-27	Sorgo 450, Higueras, MX	1	D110001011	0000000
(c)						
NOMBREE	NSS	FECHAN	DIRECCIÓN	NÚMD	NOMBRED	NSSGTED
Other José B	102456790	09-ENE-55	Fresnos 731, Higueras, MX	5	Investigación	333445555
Silva, José B.	123456789 333445555	08-DiC-45	Valle 638, Higueras, MX	5	Investigación	333445555
Vizcarra, Federico T. Zapata, Alicia J.	999887777	19-JUL-58	Castillo 3321, Sucre, MX	4	Administración	987654321
Valdés, Jazmín S.	987654321	20-JUN-31	Bravo 291, Belén, MX	4	Administración	987654321
Nieto, Ramón K.	666884444	15-SEP-52	Espiga 975, Heras, MX	5	Investigación	333445555
Esparza, Josefa A.	453453453	31-JUL-62	Rosas 5631, Higueras, MX	5	Investigación	33344555!
Jabbar, Ahmed V.	987987987	29-MAR-59	Dalias 980, Higuera, MX	4	Administración	98765432
Botello, Jaime E.	888665555	10-NOV-27	Sorgo 450, Higueras, MX	1	Dirección	888665555
Bernal, Andrés C.	999775555	26-ABR-55	Весегта 6530, Belén, МХ	nulo	nulo	nulo
Benitez, Carlos M.	888664444	09-ENE-53	Bejuco 7654, Higueras, MX	nulo	nulo	nulo

Problemas con tuplas colgantes

(a) EMPLEADO_1

NOMBREE	<u>NSS</u>	FECHAN	DIRECCIÓN
Silva, José B.	123456789	09-ENE-55	Fresnos 731, Higueras, MX
Vizcarra, Federico T.	333445555	08-DIC-45	Valle 638, Higueras, MX
Zapata, Alicia J.	999887777	19-JUL-58	Castillo 3321, Sucre, MX
Valdés, Jazmín S.	987654321	20-JUN-31	Bravo 291, Belén, MX
Nieto, Ramón K.	666884444	15-SEP-52	Espiga 975, Heras, MX
Esparza, Josefa A.	453453453	31-JUL-62	Rosas 5631, Higueras, MX
Jabbar, Ahmed V.	987987987	29-MAR-54	Dalias 980, Higueras, MX
Botello, Jaime E.	888665555	10-NOV-27	Sorgo 450, Higueras, MX
Bernal, Andrés C.	999775555	26-ABR-55	Becerra 6530, Belén, MX
Benítez, Carlos M.	888664444	09-ENE-53	Bejuco 7654, Higueras, MX

(c) EMPLEADO_3

NSS	NÚMD
123456789	5
333445555	5
999887777	4
987654321	4
666884444	5
453453453	5
987987987	4
888665555	1

Resumen

Se presentaron las ideas básicas de la teoría de diseño relacional.

- Dependencia Funcional
- Forma Normal
- Descomposición
- Preservación de Dependencias
- Join Sin Pérdida
- Algoritmos de Normalización.

Resumen

