Chomsky Normal Form (CNF)

[Linz § 8.1, Kozen L. 22]

Definition: A Σ -CFG is in CNF if all its productions are of the form:

$$A \longrightarrow BC$$

or

$$A \longrightarrow a$$

where A, B, C are non-terminals and $a \in \Sigma$

Note:

No grammar in CNF can generate λ . (Why not?)

Further:

Theorem (Chomsky): For any CFG G, there is a CFG G^C in CNF s.t.

$$L(G^C) = L(G) \setminus \{\lambda\}$$

Proof: Given a CFG G: 2 steps

First: By λ and unit prod. elim. thm: (pp. 6-1/2)

Construct a CFG \widehat{G} without λ - or unit productions s.t.

$$L(\widehat{\boldsymbol{G}}) = L(G) \setminus \{\lambda\}.$$

Next: For each terminal symbol $a \in \Sigma$, add a new non-terminal A_a and a production:

$$A_a \rightarrow a$$
.

Then **replace** each terminal a on the **rhs** of an old production (except a prod. of the form $B \to a$) by A_a .

Now all productions have the form:

$$A \rightarrow a$$

or

$$A \rightarrow B_1 B_2 \dots B_k \quad (k \ge 2)$$

Finally: For each production

$$A \rightarrow B_1 B_2 \dots B_k \quad (k \ge 3)$$

add a **new non-terminal** C, and **replace** the above production by:

$$A \rightarrow B_1C$$

and

$$C \rightarrow B_2B_3...B_k$$

Repeat until all **RHS's** of productions have length ≤ 2

The result is a grammar G^C in CNF s.t.

$$L(G^C) = L(\widehat{G}) = L(G) \setminus {\lambda}.$$

Back to our examples:

(1)
$$L(G) = \{a^n b^n \mid n \ge 0\}.$$

By λ /unit elim, we get grammar \hat{G} (see p. 6-3)

with
$$L(\widehat{\boldsymbol{G}}) = \{a^n b^n \mid n > 0\}$$

and productions: $S \to aSb$, $S \to ab$.

Next, add non-terminals A, B, and replace above productions by:

$$S \to ASB$$
, $S \to AB$, $A \to a$, $B \to b$.

So we have prods

$$S \to ASB$$
, $S \to AB$, $A \to a$, $B \to b$.

Finally, split up the first production, i.e.

add non-terminal C, and replace $S \to ASB$ by:

$$S \to AC$$
, $C \to SB$.

So the final grammar G^C in CNF is:

$$\begin{array}{c} S \rightarrow AB \\ \hline S \rightarrow AC \\ \hline C \rightarrow SB \\ \hline A \rightarrow a \\ \hline B \rightarrow b \end{array}$$

$$(2) L(G) = WN_{[\]}$$

 \boldsymbol{G} has productions:

$$S \rightarrow [S] \mid SS \mid \lambda$$
.

By λ /unit elim, we get \widehat{G} for $WN_{[\,]}\setminus\{\lambda\}$ with prods:

$$S \rightarrow [S] | SS | []$$

Add non-terminals A, B, and replace above prods by:

$$S \to ASB \mid SS \mid AB$$
$$A \to [$$
$$B \to]$$

Finally, add new non-terminal C, and replace $S \to ASB$ by:

$$S \to AC$$

$$C \to SB$$

So the final grammar G^C for $WN_{[]}$ in CNF is:

$$\begin{array}{c} S \rightarrow AB \\ \hline S \rightarrow AC \\ \hline S \rightarrow SS \\ \hline C \rightarrow SB \\ \hline A \rightarrow [\\ \hline B \rightarrow] \\ \hline \end{array}$$

Parse Trees for Chomsky Grammars

Given a CFL, L, with a **Chomsky grammar**, G, we want to investigate **parse trees** for words in L.

We will see: parse trees of Chomsky grammars are "thin", i.e. long words derived in G must have very long parse trees.

This is because:

branching in such trees is (at most) binary.

For convenience, we deal with "**extended parse trees**," in which paths are continued downward past the leaves, repeating their terminal symbol.

Example:
$$L = \{a^nb^n \mid n \geq 0\}$$

Chomsky grammar for L:

$$S \to AC \mid AB$$

$$C \to SB$$

$$A \to a$$

$$B \to b$$

The parse tree for $w = a^4b^4$:

[From Kozen, "Automata and Computability", Lecture 22]

The **depth** of a word in a parse tree is the length of the **largest path** from the root to that word.

E.g. (on previous page) the depth of a^4b^4 is $\underline{8}$

- Q. What is the depth of a parse tree for a word of length 2^n ?
- A. Note that the width (i.e. # of nodes on one level) at most doubles at each level.

Therefore:

the width at level 0 = 1, (i.e. the root)

the width at level $1 \le 2$,

the width at level $2 \le 4$,

:

the width at level $n \leq 2^n$

Conclusion:

A word of length $\geq 2^n$, derived in a Chomsky grammar, needs a parse tree of depth $\geq n$.