영상처리 기말고사 정리

퓨리에 변환

주파수를 분해, 합성하여 영상을 개선하는 알고리즘 이미지가 중앙으로 갈수록 저주파이고 가장자리로 갈수록 고주파이다.

DFT

영상 구성 요소 주파수의 스펙트럼을 표시하여 2차원 영상의 DFT를 시각화할 수 있다.

IDFT

스펙트럼으로 표시된 영상을 다시 2차원 영상을 변환

주파수 영역에서 이미지를 필터링:

- 1. 이미지의 DFT를 계산합니다
- 2. F(u,v)에 필터 함수 H(u,v)를 곱합니다
- 3. 결과의 역 DFT 계산

66 of 297

The Segmentation Problem

Segmentation attempts to Partition the pixels of Manuferinto groups that strongly with the objects in an image.

Typically the first step in _______ automated

Computer Vision application. 母母三音點號

The next level of complexity is to try to detect lines.

The masks below will extract lines that are one pixel thick and running in a particular direction.

An edge is a set of connected pixels that lie on the boundary between two regions.

LOG(또는 멕시코 모자) 필터는 노이즈 제거를 위해 가우스를 사용하고 에지 감지를 위해 라 플라스를 사용합니다.

The ____ (or Mexican hat) filter uses the Gaussian for noise removal and the Laplacian for edge detection.

thresholding

물체와 배경을 분할하려 할 때 사용한다.

이미지 히스토그램을 기준으로 단일 글로벌 임계값을 사용하여 이미지 히스토그램을 분할합니다. 이 기술의 성공 여부는 히스토그램을 얼마나 잘 분할할 수 있는지에 크게 좌우됩니다.

입력 이미지에서 전체적으로 thresholing을 하는 것보다 여러개로 쪼개서 하는게 더 효과가 좋다.

otsu 알고리즘

반복적인 시도 없이 한 번에 임계값을 찾을 수 있는 방법

BLOB 서로 다른 개체를 분류할 때 사용한다.

물체 찾기(Labeling) 4-connected, 8-connected

4-connected, 8-connected

4-connected, 8-connected

Hough 알고리즘 rho와 theta를 이용해 직선과 원을 찾는 알고리즘

Harris

코너를 찾을 때 사용하는 알고리즘

찾는 영역에서 변화가 없거나, 두 람다의 크기가 0에 수렴하는 경우 flat 찾는 영역에서 한 방향으로 벡터가 있거나, 하나의 람다가 0보다 큰 경우 edge 찾는 영역에서 여러 방향으로 벡터가 있거나, 두 개의 람다가 0보다 큰 경우 corner

입력 이미지에서 R 값들을 찾는다. (빨간색일수록 값이 크고 파란색일수록 값이 작다)

R값이 treshold보다 크면 corner 후보점이라고 한다.

R 값중에 제일 큰 값이 corner 이다.

클러스터링

supervised learning (수퍼바이즈드 러닝, 지도학습) Classification(분류): 사전 정의된 범주에따라 그룹으로 분류 교육을 위해 label이 지정된 데이터 필요

unsupervised learning (언수퍼바이즈드 러닝, 비지도학습) clusteriong(집속성, 클러스터링): 범주를 사용하지 않는 경우 비슷한 것 끼리 분류 인스턴스만 필요하고 label은 불필요 그루핑된 것끼리는 유사하다 서로 다르게 그루핑 된 것끼리는 틀리다

kmeans 알고리즘 평균을 가지고 그룹화를 시킬 때 사용하는 알고리즘 여러개의 데이터를 k개로 군집화 입력: 클러스터의 수 k, 측정된 거리 1. k 개의 임의 인스턴스를 시드로 선택

2. 클러스터링이 수렴되거나 정지 기준이 될 때까지 반복

PCA(주 성분 검출)

산업적, 다차원 데이터에서 유용한 정보만 추출하는 알고리즘 KLT, Hotelling, Eigenvector, Principal 등이 있음

PCA의 기본 동작

데이터가 있을 때 분포 되어있는 축을 기준으로 차원을 줄일 때 사용 n차원 벡터가 있을 때 n-1 이하의 차원의 벡터로 변환

PCA를 만드는 두 가지 방법 평균 벡터와 공분산 행렬을 이용해 만듬

평균 벡터, 공분산 행렬 구하는 법 필기 예시 m(평균벡터), c(공분산행렬)

Consider the four column vectors:

Cx = 3x3 = 9인 경우 고유값은 3개, 고유벡터 3개이다

PCA = 원래 벡터 - 평균 벡터

$$y = A(X - m_X)^{: ext{PCA,Hotelling transform}}$$