

Network, Security and Privacy

Cryptography continues...

Modern Cryptography

- Two-Way Cryptography
 - Symmetric Cryptography
 - Public key Cryptography
- One-Way Cryptography
 - Hash

Hash Function

 A hash algorithm creates a unique "digital fingerprint" (= message digest or digest)

- It's a ONE-WAY function
 - Content cannot be used to reveal the original data
 - Takes a variable-length string as input
 - Returns a fixed-length string as output
- Even a small change in the input drastically changes the output
- Primarily for comparison purposes

Hash Functions

- Popular hash function MD5
 - Produce 128-bit ciphertext
 - E.g., b9b985cdc61c8db72289ce54f0937eb2 (32 hex)
 - Thoroughly broken
- Government standard SHA-1, SHA-2
 - SHA-1: 160-bit ciphertext
 - E.g., 4751031b69d5480dfb30023f72640dd45a3c5de (40 hex)
 - Theoretical weaknesses
- "NEW" cryptographic hash function SHA-3
 - · Too new to fully evaluate
 - Maybe good enough

Encryption vs. Hash

Fig. 1: Encryption - a two-way operation

Fig. 2: Hashing - a one-way operation

Checking Integrity

Hash Characteristics: Preimage Resistance

Preimage Attack

Given: y = h(M)

Find: M' such that y = h(M')

Hash Characteristics: Collision Resistance

Collision Attack

Given: none Find: $M' \neq M$ such that h(M) = h(M')

M: Message

Hash: Hash function

h(M): Digest

Find: M and M' such that $M \neq M'$, but h(M) = h(M')

Hash: Summary

- Fixed Size.
 - Always produce the same fixed size output no matter how long the input is.
- Unique.
 - Two different sets of data cannot produce the same digest
 - Known as a collision
- Original.
 - Should not be possible to produce a desired or predefined hash
- Secure.
 - The resulting hash cannot be reversed in order to determine the original words

Message Authentication Code (MAC)

• Is a mechanism used to authenticate the sender of the message

Digital Signatures

- cryptographic technique analogous to hand-written signatures
- Sender (Bob) digitally signs document, establishing he is document owner/creator.
- Verifiable, non-forgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

Digital Signatures

- The sender uses a signing algorithm to sign the message. The message and the signature are sent to the receiver.
- The receiver receives the message and the signature and applies the verifying algorithm to the combination. If the result is true, the message is accepted; otherwise, it is rejected.

Digital Signatures

A digital signature needs a public-key system. The signer signs
with her private key; the verifier verifies with the signer's public key.

Signing the Digest

- Sender's Side: A hash is created for the sender's message. It is the hash that is signed by the private key of the sender (= digital signature). The original message and the digital signature is sent to the receiver.
- Receiver's Side: Digital signature is verified by decrypting it with the sender's public key which reveals the hash. A hash value of the message transmitted to the recipient is created and compared with the hash from the digital signature

Key Comparisons

Security Goal	Hash	MAC	Digital Signature
Integrity	Yes	Yes	Yes
Authentication	No	Yes	Yes
Non-repudiation	No	No	Yes
Key	None	Symmetric keys	Asymmetric keys

- Integrity guarantee no unauthorised modification/deletion happened
- Authentication proving who you are (did you send that message?)
- Non-repudiation cannot deny knowledge of an action done by a user (I never sent that message to Julian)

Digital Certificate

- Problem: How to trust that a public key belong to whom it claims to be?
- Solution: Use trusted third-party entity. They vouch that a public key belongs to a particular individual or organization

Certification Authority (CA)

- CA issues the certification signed with CA's private key
- Each certificate has a period of validity. If there is no problem with the certificate, the CA issues a new certificate before the old one expires.

X.509 Certificate

Public Key Infrastructure (PKI)

- Set of hardware, software, organizations, and policies to make Public Key Cryptography work on Internet
 - How to verify that the person sending the message
- User registers with a CA (e.g. VeriSign) and requests for an X.509 certificate
 - a Certificate Signing Request (CSR) is sent to CA
 - Must provide some proof of Identity
 - Levels of certification: simple email confirmation or background checks
- CA issues the digital certificate (signed by CA)
- User attaches the certificate to transactions (email, web, etc)
- Receiver authenticates transaction with CA's public key
 - Contact CA to ensure the certificate is not revoked or expired

END