

Intensity Transformations

李东晚

lidx@zju.edu.cn

Contents

- What is image enhancement?
- Point processing
- Histogram processing

A Note About Grey Levels

- Generally, in the range [0, 255]
 - -where 0 is black and 255 is white
 - -stems from display technologies
- For high precision processing, use double in the range [0.0, 1.0]
- in Matlab
 - -im2uint8()
 - -im2unit16()
 - -im2double()

What Is Image Enhancement?

- Image enhancement is the process of making images more useful
- The reasons for doing this include:
 - Highlighting interesting detail in images
 - Removing noise from images
 - Making images more visually appealing

Image Enhancement Examples

Image Enhancement Examples (cont...)

Image Enhancement Examples (cont...)

Image Enhancement Examples (cont...)

Spatial & Frequency Domains

- Image enhancement techniques
 - Spatial domain techniques
 - Direct manipulation of image pixels
 - -Frequency domain techniques
 - Manipulation of Fourier transform or wavelet transform of an image

Basic Spatial Domain Image Enhancement

Most spatial domain enhancement operations can be reduced to the form

g(x, y) = T[f(x, y)]where f(x, y) is the input image, g(x, y) is the processed image and T is some operator defined over some neighbourhood of (x, y)

Contents

- What is image enhancement?
- Point processing
- Histogram processing

Point Processing

- What is point processing?
- Negative images
- Thresholding
- Logarithmic transformation
- Power law transforms
- Grey level slicing
- Bit plane slicing

Point Processing

The simplest spatial domain operations occur when the neighbourhood is simply the pixel itself

In this case T is referred to as a grey level transformation function or a point processing operation

Point processing operations take the form

$$s = T(r)$$

where s refers to the processed image pixel value and r refers to the original image pixel value

Example: Negative Images

Example: Negative Images

Negative images are useful for enhancing white or grey detail embedded in dark regions of an image

 Note how much clearer the tissue is in the negative image of the mammogram below

Example: Negative Images (cont...)

$$s = intensity_{max} - r$$

Example: Thresholding

Thresholding transformations are particularly useful for segmentation in which we want to isolate an object of interest from a background

Example: Thresholding (cont...)

$$s = \begin{cases} 1.0 & r > threshold \\ 0.0 & r <= threshold \end{cases}$$

Thresholding (cont...)

Basic Grey Level Transformations

There are many different kinds of grey level transformations

Three of the most common are shown here

- Linear
- inear
 Negative / Identity of the company of the continuous of th
- Logarithmic
 - Log / Inverse log
- Power law

• nth power / nth root

Logarithmic Transformations

The general form of the log transformation is

$$s = c \times log(1 + r)$$

The log transformation maps a narrow range of low input grey level values into a wider range of output values

The inverse log transformation performs the opposite transformation

Logarithmic Transformations (cont...)

In the following example, the Fourier transform of an image is put through a log transform to reveal more detail

Logarithmic Transformations (cont...)

We usually set c to 1

$$s = c \times log(1+r)$$
 \rightarrow $s = log(1+r)$

Grey levels must be in the range [0.0, 1.0]

Logarithmic Transformations (cont...)

Original

Log Transformed

$$g(x, y) = a + \frac{\ln[f(x, y) + 1]}{b}$$

Exponential Transformations

Original

Exp Transformed

$$g(x, y) = b^{c[f(x,y)-a]} - 1$$

Power Law Transformations

Power law transformations have the following form

$$s = c \times r^{\gamma}$$

Map a narrow range of dark input values into a wider range of output when $\gamma < 1$

Varying γ gives a whole family of curves

Power Law Transformations (cont...)

$$s = r^{\gamma}$$

We usually set c to 1 Grey levels must be in the range [0.0, 1.0]

Power Law Example

$$\gamma = 0.6$$

$$\gamma = 0.4$$

$$\gamma = 0.3$$

The images to the right show a magnetic resonance (MR) image of a fractured human spine

Different curves highlight different detail

Power Law Example

$$\gamma = 5.0$$

An aerial photo of a runway is shown

This time power law transforms are used to darken the image

Different curves highlight different detail

Gamma Correction

Many of you might be familiar with gamma correction of CRT monitors

Gamma Correction

Problem is that display devices do NOT respond linearly to different intensities

Can be corrected using an inverse gamma transform

More Contrast Issues

Piecewise Linear Transformation

Rather than using a well defined mathematical function we can use arbitrary user-defined transforms

The images below show a contrast stretching linear transform to add contrast to a poor

Grey Level Slicing

Highlights a specific range of grey levels

- Similar to thresholding
- Other levels can be suppressed or maintained
- Useful for highlighting features in an image

Bit Plane Slicing

Often by isolating particular bits of the pixel values in an image we can highlight interesting aspects of that image

- Higher-order bits usually contain most of the significant visual information
- Lower-order bits contain subtle details

[10000000]

[01000000]

[00100000]

[00001000]

[00000100]

[0000001]

g h i

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 0 through 7 with bit plane corresponding to the least significant bit. Each bit plane is a binary image.

Bit plane 0

Bit plane 1

Bit plane 2

Bit plane 3

Bit plane 4

Bit plane 5

Bit plane 5

51

Bit plane 7

2022/3/10

Reconstructed image using only bit planes 7 and 6

Reconstructed image using only bit planes 7, 6 and 5

Reconstructed image using only bit planes 7, 6, 5 and 4

(a) Original

(b) Bit plane 7

(c) Bit plane 6

(d) Bit plane 5

(e) Bit plane 4

(f) Bit plane 3

(g) Bit plane 2 **L03 Intensity Transformations 2022/3/10**

(h) Bit plane 1

54

(i) Bit plane 0

Contents

- What is image enhancement?
- Point processing
- Histogram processing

Image Histograms

The histogram of an image shows us the distribution of grey levels in the image Massively useful in image processing, especially in segmentation

Histogram Examples

Lena

A selection of images and their histograms

Notice the relationships between the images and their histograms

Note that the high contrast image has the most evenly spaced histogram

Contrast Stretching

We can fix images that have poor contrast by applying a pretty simple contrast specification

The interesting part is how do we decide on this transformation function?

Histogram Equalisation

Spreading out the frequencies in an image (or equalising the image) is a simple way to improve dark or washed out images

When pixel intensity is continuous

$$p_s(s)ds = p_r(r)dr \longrightarrow \frac{ds}{dr} = \frac{p_r(r)}{p_s(s)}$$

$$p_s(s) = \frac{1}{L-1}$$
 \longrightarrow $s = T(r) = (L-1) \int_0^r p_r(w) dw$

Histogram Equalisation Example

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in

Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF, independently of the form of the PDF of the r's.

Histogram Equalisation Example

$$p_{r}(r) = \begin{cases} \frac{2r}{(L-1)^{2}} & \text{for } 0 \le r \le L-1 \\ 0 & \text{otherwise} \end{cases}$$

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw = \frac{2}{L-1} \int_{0}^{r} w dw = \frac{r^{2}}{L-1}$$

$$p_{s}(s) = p_{r}(r) \left| \frac{dr}{ds} \right| = \frac{2r}{(L-1)^{2}} \left| \left[\frac{ds}{dr} \right]^{-1} \right|$$

$$= \frac{2r}{(L-1)^{2}} \left| \left[\frac{d}{dr} \frac{r^{2}}{L-1} \right]^{-1} \right| = \frac{2r}{(L-1)^{2}} \left| \frac{(L-1)}{2r} \right| = \frac{1}{L-1}$$

Multiple / One to One Mapping

a b

FIGURE 3.17

(a) Monotonically increasing function, showing how multiple values can map to a single value. (b) Strictly monotonically increasing function. This is a one-to-one mapping, both ways.

 When pixel intensity is discrete, the formula for histogram equalisation is given

where
$$S_k = (L-1)T(r_k) = (L-1)\sum_{j=0}^{\infty} p_r(r_j)$$

- $-r_k$: input intensity
- $-s_k$: processed intensity
- -k: the intensity range $k = 0, 1, 2, \dots, L-1$
- $-n_j$: the frequency of intensity j
- -n: the sum of all frequencies

 $= (L-1)\sum_{j=1}^{\kappa} \frac{n_{j}}{n_{j}}$

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

TABLE 3.1

Intensity distribution and histogram values for a 3-bit, 64 × 64 digital image.

$$s_{0} = T(r_{0}) = 7 \sum_{j=0}^{0} p_{r}(r_{j}) = 7p_{r}(r_{0}) = 1.33 \rightarrow 1$$

$$s_{1} = T(r_{1}) = 7 \sum_{j=0}^{\infty} p_{r}(r_{j}) = 7p_{r}(r_{0}) + 7p_{r}(r_{1}) = 3.08 \rightarrow 3$$

$$s_{2} = 4.55 \rightarrow 5$$

$$s_{3} = 5.67 \rightarrow 6$$

$$s_{4} = 6.23 \rightarrow 6$$

$$s_{5} = 6.65 \rightarrow 7$$

$$s_{6} = 6.86 \rightarrow 7$$

$$s_{7} = 7.00 \rightarrow 7$$

a b c

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

Equalisation Transformation Function

Equalisation Examples

Equalisation Transformation Functions

The functions used to equalise the images in the previous example

Equalisation Examples

Equalisation Transformation Functions

The functions used to equalise the images in the previous example

Equalisation Examples (cont...)

Equalisation Examples (cont...)

 A second pass of histogram equalization will produce exactly the same result as the first pass

-1st pass

$$s_{l} = T(l) = (L-1) \sum_{k=0}^{l} \frac{n_{0k}}{n}$$

$$l \rightarrow s \Rightarrow [0, l] \rightarrow [0, s]$$

-2nd pass

$$t_{l} = T(s_{l}) = (L - 1) \sum_{k=0}^{s_{l}} \frac{n_{1k}}{n} = (L - 1) \sum_{k=0}^{l} \frac{n_{0k}}{n} = s_{l}$$

- Use histogram equalization as the bridge
- For continuous intensities $p_r(r) \rightarrow p_z(z)$

$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

$$G(z) = (L - 1) \int_0^z p_z(t) dt = s$$

$$z = G^{-1}[T(r)] = G^{-1}(s)$$

Does the inverse mapping always exist? NO

For discrete intensities

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{MN} \sum_{j=0}^k n_j$$

$$G(z_q) = (L-1) \sum_{i=0}^{q} p_z(z_i)$$
 = S_k

$$z_q = G^{-1}(s_k)$$

Approximation

For discrete intensities

a b c d

FIGURE 3.22

- (a) Histogram of a 3-bit image. (b) Specified histogram.
- (c) Transformation function obtained from the specified histogram.
- (d) Result of performing histogram specification. Compare (b) and (d).

ガシナ 学 信息与电子工程学院

L03 Intensity Transformations

2022/3/10

88

(Histogram Matching (Specification)

the smallest value of z_q so that the value $G(z_q)$ is the closest to s_k

For discrete intensities

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

W Histogram Equalization vs Matching

Mars Global Surveyor

Result of Histogram Equalization

Result of Histogram Matching

Local Histogram Processing

- Global: entire image
- Local: based on the histogram of a neighborhood

Noise enhanced Detail revealed

авс Original

Global

Local 3x3

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3 .

Using Histogram Statistics for Image Enhancement

• mean (average intensity) $m = \sum_{i=1}^{n} r_i p(r_i)$

$$m = \sum_{i=0}^{L-1} r_i p(r_i)$$

$$m = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)$$

• *n*-th moment

$$\mu_n(r) = \sum_{i=0}^{L-1} (r_i - m)^n p(r_i)$$

2-nd moment (variance)

$$\mu_2(r) = \sum_{i=0}^{L-1} (r_i - m)^2 p(r_i)$$

$$\sigma^2 = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[f(x, y) - m \right]^2$$

Using Histogram Statistics for Image Enhancement

Local mean (average intensity)

$$m_{S_{xy}} = \sum_{i=0}^{L-1} r_i p_{S_{xy}}(r_i)$$

Local variance

$$\sigma_{S_{xy}}^2 = \sum_{i=0}^{L-1} (r_i - m_{S_{xy}})^2 p_{S_{xy}}(r_i)$$

neighborhood

$$S_{xy}$$

Using Histogram Statistics for Image Enhancement

Example: enhance the dark filament

Original Globally Equalized Locally Enhanced

$$g(x, y) = \begin{cases} \underline{E} \cdot f(x, y) & \text{if } m_{S_{xy}} \leq \underline{k_0} m_G \text{ AND } \underline{k_1} \sigma_G \leq \sigma_{S_{xy}} \leq \underline{k_2} \sigma_G \\ 4.0 & 0.02 & 0.4 \end{cases}$$
otherwise

Assignments

课后作业题目请对照参考第4版英文原版

• 3.1, 3.5, 3.6, 3.9