The Incomplete Codex of Basic Mathematics for Computer Scientists From Programmers to Hackers: Mathematical Basis to Computer Science

None(@n0n3x1573n7)

December 14, 2018

Introduction

Contents

1	Introduction	1
Ι	Mathematical Preliminaries	3
2	Algebraic Structures 2.1 Algebraic Structures	4 4 5 6 6 7
3	Number Theory 3.1 Arithmetic	8 8
4	Analysis	9
5	Linear Algebra	10
6	Calculus	11
7	Logic	12
II	Applications to Computer Science	13
8	Relational algebra	14
9	Automata	15
10	Complexity Theory	16
11	Cryptosystem 11.1 Symmetric-key Cryptosystems	17 17 17 17 17

Part I Mathematical Preliminaries

Algebraic Structures

2.1 Algebraic Structures

2.1.1 Sets

Definition 1 (Set)

A set is a collection of distinct objects.

Definition 2 (Order)

Let S be a set. An order on S is a relation, denoted by <, with the following properties:

• If $x \in S$ and $y \in S$ then one and only one of the following statements is true:

$$x < y, x = y, y < x$$

• For $x, y, z \in S$, if x < y and y < z, then x < z.

Remark

- It is possible to write x > y in place of y < x
- The notation $x \le y$ indicates that x < y or x = y.

Definition 3 (Ordered Set)

An ordered set is a set in which an order is defined.

Definition 4 (Bound)

Suppose S is an ordered set, and $E \subset S$.

If there exists $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say that E is <u>bounded above</u>, and call β an <u>upper bound</u> of E. If there exists $\alpha \in S$ such that $x \geq \alpha$ for every $x \in E$, we say that E is <u>bounded below</u>, and call α a <u>lower bound</u> of E.

Definition 5 (Least Upper Bound)

Suppose that S is an ordered set, and $E \subset S$. If there exists a $\beta \in S$ with the following properties:

- β is an upper bound of E
- If $\gamma < \beta$, then γ is not an upper bound of E

Then β is called the Least Upper Bound of E or the supremum of E, denoted

$$\beta = sup(E)$$

Definition 6 (Greatest Lower Bound)

Suppose that S is an ordered set, and $E \subset S$. If there exists a $\alpha \in S$ with the following properties:

- α is a lower bound of E
- If $\gamma < \alpha$, then γ is not an lower bound of E

Then α is called the <u>Greatest Lower Bound</u> of E or the <u>infimum</u> of E, denoted

$$\beta = inf(E)$$

Definition 7 (least-upper-bound property)

An ordered set S is said to have the <u>least-upper-bound property</u> if the following is true: if $E \subset S$, E is not empty, and E is bounded above, then sup(E) exists in S.

Definition 8 (greatest-lower-bound property)

An ordered set S is said to have the <u>greatest-lower-bound property</u> if the following is true:

if $E \subset S$, E is not empty, and E is bounded below, then inf(E) exists in S.

Theorem 1

Suppose S is an ordered set with the least-upper-bound property, $B \subset S$, B is not empty, and B is bounded below.

Let L be the set of all lower bounds of B. Then

$$\alpha = sup(L)$$

exists in S, and $\alpha = inf(B)$.

Proof. Note that $\forall x \in L, y \in B, x \leq y$.

L is nonempty as B is bounded below.

L is bounded above since $\forall x \in S \backslash L, \forall y \in L, x > y$.

Since S has the least-upper-bound property and $L \subset S$, $\exists \alpha = sup(L)$.

The followings hold:

- α is a lower bound of B.
 - (:) $\forall \gamma \in B, \gamma > \alpha$
- β with $\beta > \alpha$ is not a lower bound of B (::)Since α is an upper bound of L, $\beta \notin L$.

Hence
$$\alpha = inf(B)$$
.

Corollary

For all ordered sets, the Least Upper Bound property and the Greatest Lower Bound Porperty are equivalent.

2.1.2 Group

Definition 9 (Group)

A group is a set G with a binary operation \cdot , denoted (G,\cdot) , which satisfies the following conditions:

- Closure: $\forall a, b \in G, a \cdot b \in G$
- Associativity: $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Identity: $\exists e \in G, \forall a \in G, a \cdot e = e \cdot a = a$

• Inverse: $\forall a \in G, \exists a^{-1} \in G, a \cdot a^{-1} = a^{-1} \cdot a = e$

Definition 10 (Semigroup)

A <u>semigroup</u> is (G,\cdot) , which satisfies Closure and Associativity.

Definition 11 (Monoid)

A monoid is a semigroup (G, \cdot) which also has identity.

Definition 12 (Abelian Group)

An Abelian Group or Commutative Group is a group (G,\cdot) with the following property:

• Commutativity: $\forall a, b \in G, a \cdot b = b \cdot a$

2.1.3 Ring

Definition 13 (Ring)

A <u>Ring</u> is a set R with two binary operations + and \cdot , often called the addition and multiplication of the ring, denoted $(R,+,\cdot)$, which satisfies the following conditions:

- (R,+) is an abelian group
- (R,\cdot) is a semigroup
- Distribution: \cdot is distributive with respect to +, that is, $\forall a,b,c \in R$:

$$-a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

$$-(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$

The identity element of + is often noted 0.

Definition 14 (Ring with identity(1))

A Ring with identity is a ring $(R,+,\cdot)$ of which (R,\cdot) is a monoid. The identity element of \cdot is often noted 1.

Definition 15 (Commutative Ring)

A <u>commutative ring</u> is a ring $(R,+,\cdot)$ of which \cdot is commutative.

Definition 16 (Zero Divisor)

For a ring $(R,+,\cdot)$, let 0 be the identity of +.

 $a,b \in R$, $a \neq 0$ and $b \neq 0$, if $a \cdot b = 0$, a,b are called the zero divisors of the ring.

Definition 17 (Integral Domain)

An integral domain is a commutative ring $(R, +, \cdot)$ with 1 which does not have zero divisors.

2.1.4 Field

Definition 18 (Field)

A <u>Field</u> is a set F with two binary operations + and \cdot , often called the addition and multiplication of the field, denoted $(R,+,\cdot)$, which satisfies the following conditions:

- $(F,+,\cdot)$ is a ring
- $(F \setminus \{0\}, \cdot)$ is a group

Alternatively, a Field may be defined with a set of Field Axioms listed below:

- (A) Axioms for Addition
 - (A1) Closed under Addition

$$\forall a,b \in F, a+b \in F$$

- (A2) Addition is Commutative $\forall a,b \in F, a+b=b+a$
- (A3) Addition is Associative $\forall a,b,c \in F, (a+b)+c=a+(b+c)$
- (A4) Identity of Addition $\exists 0 \in F, \forall a \in F, 0+a=a$
- (A5) Inverse of Addition $\forall a \in F, \exists -a \in F, a + (-a) = 0$
- (M) Axioms for Multiplication
 - (M1) Closed under Multiplication $\forall a,b \in F, a \cdot b \in F$
 - (M2) Multiplication is Commutative $\forall a,b \in F, a \cdot b = b \cdot a$
 - (M3) Multiplication is Associative $\forall a,b,c \in F, (a\cdot b)\cdot c = a\cdot (b\cdot c)$
 - (M4) Identity of Multiplication $\exists 1 \in F, \forall a \in F, 1 \cdot a = a$
 - (M5) Inverse of Multiplication $\forall a \in F \setminus \{0\}, \exists a^{-1} \in F, a \cdot a^{-1} = 1$
- (D) Distributive Law $\forall a, b, c \in F, (a+b) \cdot c = a$

 $\forall a, b, c \in F, (a+b) \cdot c = a \cdot c + b \cdot c$ where \cdot takes precedence over +.

Definition 19 (Ordered Field)

An ordered field is a field F which is an ordered set, such that

- x + y < x + z if $x, y, z \in F$ and y < z
- xy > 0 if $x, y \in F$, x > 0 and y > 0

Theorem 2 (Existence of \mathbb{R})

There exists an ordered field $\mathbb R$ containing $\mathbb Q$ as a subfield which has the least-upper-bound property.

Definition 20 (Extended Real Number System)

The extended real number system, denoted $\overline{\mathbb{R}}$, $[-\infty,\infty]$, or $\mathbb{R} \cup \{-\infty,\infty\}$, consists of the real field \mathbb{R} and two symbols, $+\infty$ and $-\infty$. We preserve the original order in \mathbb{R} , and define $\forall x \in \mathbb{R}$,

$$-\infty < x < \infty$$

Remark

The extended real number system does not form a field.

2.2 From \mathbb{N} to \mathbb{R}

Number Theory

3.1 Arithmetic

3.1.1 Integer Arithmetic

Theorem 3 (Division Algorithm)

Definition 21 (Divisibility)

Theorem 4 (Euclidean Algorithm)

Theorem 5 (Extended Euclidean Algorithm)

Definition 22 (Linear Diophantine Equation)

Theorem 6 (Solutions for Linear Diophantine Equation)

3.1.2 Modular Arithmetic

Definition 23 (Modulus)

Analysis

Chapter 5
Linear Algebra

Calculus

Statistics

Logic

Part II Applications to Computer Science

Chapter 9
Relational algebra

Automata

Chapter 11
Complexity Theory

Cryptosystem

- 12.1 Symmetric-key Cryptosystems
- 12.1.1 something
- 12.2 Asymmetric-key Cryptosystems
- 12.2.1 something