

2500	
2375	
2250	
2125	

- Im Moment haben die Spalten nur drei Werte
- Problem: Bei 10 FPS (Bildern pro Sekunde) wäre eine

Einwohner	Musterstadt	Bad Salz
1960	2100	7500
1970	2500	7600
1980	2800	7700

Anfangswert

Endwert

Zwischenwerte

Funktionsweise der Animation

- Im Moment haben die Spalten nur drei Werte
- Problem: Bei 10 FPS (Bildern pro Sekunde) wäre eine Animation dieser Werte nur 0.3s (3/10) lang. Wollen wir für jeden Wert eine Sekunde Animation, braucht es also 10 Werte für jede Zeile des Diagramms, da jede Zeile eine Sekunde lang animiert werden soll.

Eine Sekunde Animation

Funktionsweise der Animation

Diese Werte kann man einfach berechnen:

Wertänderung pro Bild= (Endwert - Anfangswert) / FPS

Zwischen 2100 und 2500 wäre dies (2500 - 2100) / 10, also 400 / 10 = 40

Um nun alle Zwischenwerte zu berechnen, müssen wir diese Erhöhung FPS-mal auf den Wert addieren.


```
Beispiel: FPS = 10 , Erhöhung pro Bild = 40
```

Wert = 2100 **← Anfangswert**

Werte für Musterstadt = []

Wiederhole 10 mal: ← FPS

Speichere Wert in "Werte für Musterstadt"

Wert = Wert + 40 ← Änderung pro Bild

Somit erhalten wir folgende Werte: 2100, 2140, 2180, 2220, 2260, 2300, 2340, 2380, 2420, 2460