ENGR 3421:Robotics I

Encoder

Outline

- Types of Encoders
- Quadrature Encoder
- Computations

What is A (Rotary) Encoder

- (Rotary) Encoder measures angular movement.
- a common sensor for motors and other rotational devices.
- Provides closed-loop/feedback controls

Types of Encoders

Hall Effect

Incremental vs. Absolute

Incremental	Absolute
Simple	Complicated
Cheap	Expensive
Measures angular displacement	Measures absolute position
Floating origin	Fixed origin

Quadrature Encoder

Pololu 4805 Motor

<u>Description</u>

PPR & CPR

Pulses Per Revolution:

describes the number of high pulses an encoder will have on either of its square wave outputs A or B over a single revolution.

Counts Per Revolution:

refers to the number of quadrature decoded states that exist between the two outputs A and B

Wheel Speed Computation

- Time "Counts Per Second"
- 2. Revolutions Per Second = Counts Per Second / Counts Per Revolution
- 3. Shaft Speed = Revolutions Per Second / Gear Ratio = Wheel Angular Speed
- 4. Wheel Linear Speed = Wheel Angular Speed * Wheel Radius