Sequences and Series

Sequence

A **sequence** is an ordered list of numbers (e.g., a_n); the numbers are called "elements" or "terms". Every convergent sequence is bounded, thus an unbounded sequence is divergent.

Sequence Test	Converge	Notes	
Squeeze Theorem	$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L \text{ then } \lim_{n \to \infty} b_n = L$	$a_n \le b_n \le c_n$	
Def 1, pg 692	$\lim_{n \to \infty} a_n = L$		
l'Hospital's Rule	$\lim_{n \to \infty} \frac{f(x)}{g(x)} \Rightarrow \lim_{n \to \infty} \frac{f'(x)}{g'(x)}$	where $f(x)$ = numerator and $g(x)$ = denominator	
Theorem 3, pg 693	if $f(n) = a_n$ then $\lim_{n \to \infty} f(x) = L$		
Theorem 6, pg 694	$\lim_{n o \infty} a_n = 0$ then a_n converges		
Theorem 9, pg 696	$\lim_{n \to \infty} r^n = \begin{cases} 0, & \text{if } -1 < r < 1\\ 1, & \text{if } r = 1 \end{cases}$	Divergent for all other values of $m{r}$	
Theorem 12, pg 698	Every bounded ($m \leq a_n \leq M$), monotonic sequence is convergent	The bounds exists for $n \ge 1$, also see Theorem 10 and 11	

Series

A series is the sum of the terms of a sequence: $\sum_{n=1}^{\infty} a_n$.

Series Test	Converge	Diverge	Notes
Divergence	N/A	$\lim_{n \to \infty} a_n \neq 0$	Doesn't show convergence and the converse is not true
Integral	$\inf_{1}^{\infty} f(x) dx $ converges	$\inf_{1}^{\infty} f(x) dx \text{ diverges}$	$f(x)$ must be positive, decreasing, and continous, also $f(n) = a_n$ for all n
Root	$\lim_{n \to \infty} \sqrt[n]{ a_n } = L < 1$	$\lim_{n \to \infty} \sqrt[n]{ a_n } = L > 1 \text{ or } \infty$	inconclusive if $L=1$
Ratio	$\left \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L < 1 \right $	$\left \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L > 1 \text{ or } \infty$	inconclusive if $L=1$
Direct Comparison	$0 \le a_n \le b_n \text{ for all } n \text{ and } \sum_{n=1}^{\infty} b_n \text{ converges}$	$0 \le b_n \le a_n$ for all n and $\sum_{n=1}^{\infty} b_n$ diverges	$a_n, b_n > 0$
Limit Comparison	$\lim_{n \to \infty} \frac{a_n}{b_n} = L \text{ and } \sum_{n=1}^{\infty} b_n$ converges	$\lim_{n \to \infty} \frac{a_n}{b_n} = L \text{ and } \sum_{n=1}^{\infty} b_n$ diverges	$a_n,b_n>0$ and L is a positive constant, if L is ∞ or 0, then pick a different b_n
Absolute	$\sum_{n=1}^{\infty} a_n = 0$		Definition of absolutely convergent, the sum is independent of the order in which the terms are summed
Conditional	$\sum_{n=1}^{\infty} a_n ^{\text{diverges but }} \sum_{n=1}^{\infty} a_n$ converges		The sum is dependent of the order in which the terms are summed

Common Series

Series Test	Formula	Converge	Diverge	Notes
Alternating	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$	$0 < a_{n+1} \le a_n$ for all n and $\lim_{n \to \infty} a_n = 0$	N/A	
Geometric	$\sum_{n=1}^{\infty} ar^{n-1}$	$ r < 1$ and converges to $rac{a}{1-r}$	$ r \ge 1$	finite sum of the first n terms: $= \frac{a(1-r^n)}{1-r}$
P-Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	$p \leq 1$	cannot calculate sum
Power	$\sum_{n=0}^{\infty} c_n (x-a)^n$	i, converge if $x = aii$, converge for all $xiii$, converge if $ x - a < R$		R is the radius of convergence, you need to check the end points for convergence too. Typically use Ratio Test.
Taylor	$\sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x-a)^n$	x-a < R	x-a > R	Taylor series is centered about a. Same note as power series
Maclaurin	$\sum_{n=0}^{\infty} \frac{f^n(0)}{n!} (x)^n$	x < R	x > R	A Macluarin series is a Taylor series centered about 0. Same note as power series