LPO G.BRASSENS

TITRE

GENCODE: BLABLABLA

TOTO ET TITI

Mathématiques

Consignes:

- * L'examen est noté sur un total de 50 points (45 + 5 bonus).
- * L'épreuve dure 1h.

Exercice 1: On considère $\varphi = \frac{1+\sqrt{5}}{2}$ (le nombre d'or).

 $\fbox{1:}$ Montrez que φ est solution de l'équation suivante :

$$x^2 - x - 1 = 0$$

- 2: Montrez que $\frac{-1}{\varphi} = 1 \varphi$.
- 3: Montrez que $x^2 x 1 = (x \varphi)\left(x + \frac{1}{\varphi}\right)$

Exercice 2: (8 points) On considère la suite géométrique (h_n) (avec $n \in \mathbb{N}$) de terme de rang 3 ayant pour valeur 7 et de raison $\frac{5}{2}$. Compléter le diagramme en répondant aux questions suivantes :

1: Compléter les pointillés ci-dessous pour obtenir les quatre premiers termes de la suite:

1.a.
$$h_3 = 7$$

1.b.
$$h_4 = h_3 \times \frac{5}{2} = 7 \times \frac{5}{2} = -30$$

1.c.
$$h_5 = \dots \times \dots = \dots$$

1.d.
$$h_6 = \dots \times \dots = \dots$$

1.e.
$$a_4 = 15$$

1.f.
$$a_5 = a_4 \times -2 = 15 \times -2 = -30$$

1.g.
$$a_6 = \dots \times \dots = \dots$$

1.h.
$$a_7 = \dots \times \dots = \dots$$

Exercice 3: (20 points) Résoudre les équations suivantes dans $\mathbb R$ par la méthode du discriminant :

- 1. $-5x^2 + 4x + 4 = 0$
- **2.** $-5x^2 + 4x + 4 = 0$

Le polynôme est de la forme $-5x^2 + 4x + 4$ avec a = -5, b = 4 et c = 4. On calcul le discriminant Δ :

$$\Delta = b^{2} - 4ac$$
= $(4)^{2} - 4 \times (-5) \times (4)$
= 96

On a donc $\Delta > 0$ donc l'équation $-5x^2 + 4x + 4 = 0$ admet 2 solutions :

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_{1} = \frac{-(4) - \sqrt{96}}{2 \times -5}$$

$$x_{1} = \frac{-(4) + \sqrt{96}}{2 \times -5}$$

$$x_{1} = \frac{2}{5} + \frac{2\sqrt{6}}{5}$$

$$x_{2} = \frac{-(4) + \sqrt{96}}{2 \times -5}$$

$$x_{2} = \frac{2}{5} - \frac{2\sqrt{6}}{5}$$

L'équation $-5x^2 + 4x + 4 = 0$ admet donc $x_1 = \frac{2}{5} + \frac{2\sqrt{6}}{5}$ et $x_2 = \frac{2}{5} - \frac{2\sqrt{6}}{5}$ comme solutions.

Exercice 4: (20 points) Résoudre les équations suivantes dans \mathbb{R} par la méthode du discriminant :

1.
$$-\frac{x^2}{2} + 2x + 2 = 0$$

Le polynôme est de la forme $-\frac{x^2}{2} + 2x + 2$ avec $a = -\frac{1}{2}$, b = 2 et c = -2. On calcul le discriminant Δ :

$$\Delta = b^2 - 4ac$$

$$= (2)^2 - 4 \times \left(-\frac{1}{2}\right) \times (-2)$$

$$= 0$$

On a donc $\Delta = 0$ donc l'équation $-\frac{x^2}{2} + 2x + 2 = 0$ admet 1 solution :

$$x_0 = \frac{-b}{2a} \\ x_0 = \frac{-(2)}{2 \times -\frac{1}{2}} \\ x_0 = 2$$

L'équation $-\frac{x^2}{2} + 2x + 2 = 0$ admet donc $x_0 = 2$ comme solutions.