Просторові групи

Андрій Жугаєвич (http://zhugayevych.me) 28 липня 2022 р.

1	Кри	сталографічні групи	1
	1.1	Елементи симетрії кристалографічних груп	1
	1.2	Гратка Браве	2
	1.3	Обернена гратка	3
	1.4	Класифікація кристалографічних груп	3
	1.5	Структура кристалографічних груп	4
2	Інші	дискретні групи просторових симетрій	5
3	Елег	менти математичної теорії симетрії кристалів	5
4	Табл	ині і схеми	7

§1. Кристалографічні групи

1.1. Елементи симетрії кристалографічних груп

Просторові елементи симетрії (тобто елементи групи IO(n)) тривимірного простору являють собою комбінацію точкового перетворення і трансляції: $r \to \mathbf{R}r + t$. До базових неточкових елементів просторової симетрії належать трансляція, гвинтова вісь (screw axis) і площина ковзання (glide plane).

Елементи кристалографічної групи можна подати у вигляді

$$r \to \mathbf{R}r + v(\mathbf{R}) + t,$$
 (1.1)

де ${\bf R}$ — так звана лінійна частина перетворення (елемент точкової симетрії), ${\bf t}$ — власна (цілочислова) трансляція (тобто трансляція на цілочислові лінійні комбінації постійних гратки), ${\bf v}({\bf R})$ — залежна від ${\bf R}$ невласна (дробова) трансляція. Позначення елементів симетрії див. на рис. 1, невласні елементи симетрії позначаються таким чином:

- ullet гвинтова вісь $\{n_k\}$ поворот на кут $2\pi/n$ разом зі зсувом уздовж осі на k/n;
- площина ковзання $\{a,b,c,n,d\}$ $\{a,b,c\}$ означає зсув на 1/2 вздовж осі a, b чи c разом із відбиттям в площині, що проходить через цю вісь, $\{n\}$ означає зсув на 1/2 по a і по c, $\{d\}$ означає зсув на 1/4 по a і по c (див. приклад на рис. 3).

Поворотні і інверсійні осі можуть мати лише порядок 1, 2, 3, 4, 6 (відбиття включаються). В базисі примітивної комірки матриця \mathbf{R} і вектор t цілочислові, а компоненти вектора $v(\mathbf{R})$ є правильними дробами з можливими значеннями знаменника 2, 3, 4, 6.

	Axes	Planes				
	n - n n_1 n_2 n_3 n_4 n_5					
1	0	m ———				
2	• •	a,b				
3	A A A A	с				
4	♦ ♦ ♦ ♦	n				
6		d→				

Рис. 1: Графічні позначення елементів симетрії

Вектори і площини в кристалах позначаються кристалографічними індексами. В координатах, де базисом є вектори елементарної комірки Браве, вектор з координатами n_i позначається $[n_1n_2n_3]$, а площина hx + ky + lz = const - (hkl). Індекси площини, що містить два задані вектори, знаходяться взяттям векторного добутку.

1.2. Гратка Браве

 $Трансляційна група кристалу – група трансляцій, що залишають інваріантним кристал – <math>\epsilon$, очевидно, інваріантною підгрупою кристалографічної групи (математично це те ж саме, що й гратка Браве). Вона ϵ визначальною складовою просторових груп.

Елементарна комірка (unit cell) — об'єм кристалу, трансляціями якого можна отримати весь кристал. Примітивна комірка (primitive cell) — елементарна комірка мінімального об'єму. Якщо остання вибрана на примітивних векторах трансляцій, то її називають примітивним паралелепіпедом (вибір все одно неоднозначний, зазвичай вибирають примітивні вектори мінімальної довжини).

Гратка, побудована трансляціями примітивного паралелепіпеда з точками у його вершинах (тобто множина точок $\sum_{n_i \in \mathbb{Z}} \sum_{i=1}^3 n_i \boldsymbol{a}_i$), називається *граткою Браве* кристалу (Bravais lattice) або просто граткою кристалу. Таким чином гратка Браве описує симетрію примітивного паралелепіпеда (симетрія вузлів) безвідносно до реального розташування атомів у ньому. Характер розташування атомів всередині елементарної комірки називається *базисом*, іноді *мотивом* (motif).

Існує 14 типів граток Браве (табл. 2), що відрізняються просторовою групою симетрій гратки, ці просторові групи називаються *групами Браве*. Вони розбиті на 7 *граткових систем* (lattice system) за точковою групою симетрій гратки. В межах окремої граткової системи гратки Браве відрізняються *типом центрування* (див. примітку до табл. 2). Слід зауважити можливість ситуації, коли, наприклад для фтору, гратка Браве орторомбічна, а розташування атомів у ній має симетрію моноклинної сингонії. В цьому випадку типом Браве гратки вважається моноклинний, але з кутом $\beta = \pi/2$!

Примітивну комірку завжди можна вибрати так, щоб вона мала точкову симетрію її гратки Браве — це комірка Вігнера-Зейтца (Wigner-Seitz) — примітивна комірка, побудована на вибраному вузлі гратки як геометричне місце точок, найближчим вузлом яких є вибраний вузол (центр комірки). Центр комірки вибирають з міркувань максимальної симетрії так, щоб мінімізувати кількість невласних трансляцій.

Часто комірка Вігнера—Зейтца має складну форму, а примівні комірки простої форми на мають точкової симетрії гратки Браве. Тому зручно користуватися так званим *паралелепіпедом Браве* — елементарною коміркою форми паралелепіпеда мінімального об'єму, яка має точкову симетрію її гратки Браве (див. рdb-файли). Однак для гратки hP не існує паралелепіпеда Браве, а лише шестикутна призма Браве. В цьому випадку зазвичай жертвують симетрією на користь простої форми паралелепіпеда. Так вибрані комірки умовно називають *елементарними комірками Браве* і за умовчанням під елементарною коміркою розуміють саме їх.

Нехай a_i – базисні вектори деякої гратки. Γ ратковими координатами називається трійка чисел (ξ, η, ζ) така, що декартові координати $r = \sum_j a_j \xi_j$. Граткові координати знаходяться за формулою $\xi_i = \alpha_i r$, де α_i – поділені на 2π базисні вектори оберненої гратки (обернена матриця). Зміна базису здійснюється за очевидною формулою $\xi_i' = \sum_j (\alpha_i' a_j) \xi_j$. За умовчанням граткові координати відносять до елементарної комірки Браве.

Стандартний вибір примітивних векторів для граток з нетривіальним центруванням такий (координати граткові, знизу наведена обернена матриця):

oC	oF, cF	oI,tI	cI	hR
$ \begin{array}{c ccccc} \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} $	$\frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$	$ \begin{array}{c cccc} \frac{1}{2} \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} $	$ \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} $	$ \frac{1}{3} \begin{pmatrix} -1 & 2 & -1 \\ -2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} $
$ \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix} $	$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}$

Окремої уваги потребує ромбоедрична гратка. Її орієнтація вибирається таким чином, що головна діагональ гратки співпадає з головною діагоналлю декартової системи координат, а примітивні вектори лежать у площині, утвореній головною діагоналлю (1,1,1) і відповідним декартовим ортом e_i так, що $a_i = de_i + d\delta(1,1,1)$. Параметри (d,δ) пов'язані зі стандартними параметрами ромбоедричної гратки $(a_{\rm rh},\alpha)$ співвідношеннями $a_{\rm rh} = d\sqrt{1+2\delta+3\delta^2},\, 1-\cos\alpha=\left(1+2\delta+3\delta^2\right)^{-1}$. Проте в більшості випадків її зручніше представляти як гексагональну гратку з двома вузлами в точках (2/3,1/3,1/3) і (1/3,2/3,2/3) так, що головна діагональ оригінальної ромбоедричної гратки співпадає з віссю z гексагональної (див. табл. вище і рdb-файл). Параметри гексагональної гратки виражаються через пару (d,δ) простим чином:

$$3a = \sqrt{2}d, c = \sqrt{3}(1+3\delta)d.$$

Схема підпорядкування (взаємоперетворення) граток Браве наведена на рис. 4.

1.3. Обернена гратка

Поняття оберненої гратки природно виникає при розкладі періодичної на гратці функції в тригонометричний ряд Фур'є (або навпаки). Розглянемо суму

$$\hat{f}(\mathbf{k}) = \sum_{\mathbf{r}} f(\mathbf{r}) e^{i\mathbf{k}\mathbf{r}},$$

де r пробігає множину вузлів гратки. Функції $e^{i k r}$, а з ними і $\hat{f}(k)$ періодичні на оберненій гратці, визначеній своїми примітивними векторами

$$\boldsymbol{\alpha}_i = e_{ijk} \frac{2\pi}{v} \left(\boldsymbol{a}_j \times \boldsymbol{a}_k \right),$$

де $v = \boldsymbol{a}_1 \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3)$ – об'єм примітивної комірки. Їх явний вигляд виводиться з умови

$$a_i \alpha_j = 2\pi \delta_{ij}$$
.

Обернене перетворення Фур'є дається формулою

$$f(\mathbf{r}) = \frac{1}{(2\pi)^3} \int \hat{f}(\mathbf{k}) e^{-i\mathbf{k}\mathbf{r}} d^3k,$$

де інтеграл береться по примітивній комірці оберненої гратки. Примітивні вектори оберненої гратки знаходяться за формулами переходу від граткових до декартових координат.

Відмітимо формулу

$$\sum_{\boldsymbol{r}} e^{i\boldsymbol{k}\boldsymbol{r}} = (2\pi)^3 \delta(\boldsymbol{k}),$$

причому тут символ $\delta(k)$ вважається періодичною на оберненій гратці функцією.

1.4. Класифікація кристалографічних груп

Всього існує 230 просторових (кристалографічних, федорівських) груп, перелічених в табл. 3. Їх позначення складається з типу центрування гратки Браве і елементів симетрії, як для точкових груп.

Геометричний кристалографічний клас (просто кристалографічний клас, crystal class) — група лінійних частин елементів просторової групи (вони утворюють групу), вона є однією з 32 кристалографічних точкових груп. На відміну від трансляційної, точкова група кристалу не завжди є симетрією кристалу, а тільки для симорфних просторових груп (це їх означення). Арифметичний кристалографічний клас — група лінійних частин і власних трансляцій елементів просторової групи (вони утворюють групу), вона є однією з 73 симорфних груп. Геометрична голоедрія — найменша група Браве, що містить дану просторову групу. За своїми геометричними голоедріями просторові групи діляться на 7 сингоній (crystal system). Сингонії і кристалографічні класи наведені в табл. 1.

	a	m	О	tri	t	h	c
Primitive	1			3	4	6	23
Primitive-inversion				(-3)	-4	-6	
Central	-1			(-3)	$4/\mathrm{m}$	$6/\mathrm{m}$	m-3
Axial		2	222	32	422	622	432
Planar		m	mm2	3m	$4\mathrm{mm}$	$6\mathrm{mm}$	-43m
Planar-inversion					-42m	-6m2	
Axial-central		$2/\mathrm{m}$	mmm	-3m	$4/\mathrm{mmm}$	$6/\mathrm{mmm}$	m-3m

Табл. 1: Точкові групи кристалів розбиті за сингоніями і типами симетрії. Сингонії: anorthic (triclinic), monoclinic, orthorhombic, trigonal, tetragonal, hexagonal, cubic.

Кристалографічні групи можна класифікувати або за лінійними частинами (сингонія – геометричний клас), або за трансляційними (граткова система – гратка Браве), або і за тими і за другими (арифметичний клас). Ці класифікації не зовсім сумісні, оскільки тригональна сингонія містить групи ромбоедричної і гексагональної граткових систем, а гексагональна граткова система містить групи тригональної і гексагональної сингоній. Тому для класифікації замість сингоній і граткових систем використовують так звані кристалографічні системи (crystal family), їх 6: anorthic (a), monoclinic (m), orthorhombic (o), tetragonal (t), hexagonal (h), cubic (c). При цьому ромбоедричну гратку розглядають як відповідним чином центровану гексагональну. Тоді ієрархія класифікацій послідовна і виглядає так:

- кристалографічна система
- кристалографічний клас
- тип центрування гратки
- арифметичний клас
- кристалографічна група.

Максимальними групами є групи P6/mmm, Pm-3m, Fm-3m, Im-3m. Причому послідовність (Fm-3m, Pm-3m, Im-3m) є ланцюгом взаємних мінімальних надгруп, а група P6/mmm зв'язана з кубічними групами максимальною підгрупою R-3m.

1.5. Структура кристалографічних груп

Симорфні групи утворюються безпосередньою комбінацією елементів точкової і трансляційної груп (напівпрямий добуток). При цьому для точкових груп з горизонтальними осями і площинами іноді виникає неоднозначність їх орієнтації відносно гратки. Це такі симорфні групи:

ſ	Cmm2	P321	P3m1	P-3m1	P-42m	I-42m	P-6m2
	Amm2	P312	P31m	P-31m	P-4m2	I-4m2	P-62m

Порядок симорфної групи дорівнює добутку порядку точкової групи і кількості вузлів на елементарну комірку Браве.

Несиморфні групи є нетривіальними підгрупами симорфних і включають невласні елементи симетрії, для яких група не має відповідних власних точкових елементів. Їх можна одержати, беручи кратний паралелепіпед Браве даного арифметичного класу і деформуючи його мотив таким чином, щоб зникли деякі власні елементи симетрії. Приклади елементів несиморфних груп у дво- і тривимірному просторах наведені на рис. 2 і 3. Зокрема, на рис. 3 показаний елемент

$$G_{124} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/4 \\ 0 & 0 & 1 & 1/4 \end{pmatrix} = d(0, 1/4, 1/4) \ 0, y, z$$

Окремий клас становлять енантиоморфні просторові групи, які відрізняються одна від одної по принципу правої і лівої орієнтації гвинтової осі. Таких пар є 11:

C_4	D_4	D_4	C_3	D_3	D_3	C_6	C_6	D_6	D_6	О
P4 ₁	P4 ₁ 22	$P4_{1}2_{1}2$	P3 ₁	P3 ₁ 12	P3 ₁ 21	P6 ₁	P6 ₂	$P6_{1}22$	P6 ₂ 22	P4 ₁ 32
P4 ₃	P4 ₃ 22	$P4_{3}2_{1}2$	$P3_2$	P3 ₂ 12	$P3_{2}21$	$P6_3$	P6 ₄	$P6_{3}22$	$P6_{4}22$	P4 ₃ 32

В кристалографії орбіти просторової групи називають *правильними системами точок* цієї групи, а відповідний стабілізатор — *симетрією даної точки*. Очевидно, стабілізатор є підгрупою точкової групи даної просторової групи. Точки тривіальної (найнижчої) симетрії називають точками *загального положення* (general positions). *Порядок* просторової групи — це кількість точок загального положення в елементарній комірці Браве. Просторова група однозначно визначається будь-якою своєю правильною системою точок за умови, що відомий стабілізатор цієї системи. Згруповані за симетрійною еквівалентністю орбіти називають *позиціями Уайкофа* (Wyckoff) просторової групи. Орбіти (позиції Уайкофа) максимальних кубічних груп наведені в табл. 4 разом з рис. 5

Рис. 2: Несиморфна група P4bm у двовимірному просторі

Рис. 3: Несиморфна група Fd-3m

§2. Інші дискретні групи просторових симетрій

Крім точкових і просторових груп у фізиці відіграють важливу роль також групи стержнів (всього 75) і групи шарів (80), які описують симетрію одноперіодичних (полімери) і двоперіодичних структур (шаруваті кристали типу силікатів, смектики, мономолекулярні шари) відповідно. Двовимірні просторові групи (їх 17) зображені на рис. 4. У двовимірному просторі також визначені групи бордюрів (7).

§3. Елементи математичної теорії симетрії кристалів

Нехай E_n — евклідів простір. Нагадаємо, що в ньому визначені: групи лінійних $GL(n,\mathbb{R})$ і власних лінійних $SL(n,\mathbb{R})$ перетворень, групи ортогональних перетворень O(n) і обертань SO(n), групи трансляцій $T(n,\mathbb{R})$ і цілочислових трансляцій $T(n,\mathbb{Z}) = L$, група рухів евклідового простору $IO(n) = O(n) \rtimes T(n)$ (T — інваріантна підгрупа), афінна група $Aff(\mathbb{R}^n) = GL(n,\mathbb{R}) \rtimes T(n,\mathbb{R})$.

 $\mathit{Kpucman}\ C$ – періодична структура в E_n , $\mathit{гратка}\ L\simeq \mathbb{Z}^n$ – множина точок $\sum_{i=1}^n l_i a_i$, де $a_i\in E_n$ – постійні гратки. $Кристалографічна група <math>\Gamma$ – дискретна група рухів n-вимірного евклідового простору, що має обмежену фундаментальну область (елементарну комірку). Дві групи вважаються еквівалентними, якщо вони спряжені в групі афінних перетворень простору, зберігаючих орієнтацію (якщо відкинути останню умову, то у тривимірному просторі буде 219 груп замість 230). Точкова група F (група напрямів) – підгрупа O(n), що залишає інваріантним деякий кристал C. Кожна кристалографічна група Γ однозначно визначається трійкою $\{F,L,\alpha\}$, де $\alpha:F\to E_n/L$ (примітивна комірка), причому перетворення симетрії виглядають так: $(f,l)x = fx + \alpha(f) + l$. Трійка $\{F,L,\alpha\}$ задає розширення групи F за допомогою групи L (інваріантної підгрупи розширення), при цьому автоморфізм групи L задається як $\psi_f(l) = fl$, а коцикл як $\chi(f_1, f_2) = \alpha(f_1) + f_1 \alpha(f_2) - \alpha(f_1 f_2)$. Функція α повинна задовольняти такі умови: 1) умова нормування $\alpha(1)=0,2)$ умова замкненості групи Γ по відношенню до множення $\chi(f_1,f_2)\in L,3)$ умова асоціативності множення $(1-f_1)\chi(f_2,f_3)=(f_3^{-1}-1)\chi(f_1,f_2).$ Якщо $\alpha\equiv 0$, то група $\Gamma=F\rtimes L$ і називається симорфною. Клас кристалографічної групи визначається породжуючою її точковою групою. Групи, лінійні частини яких спряжені в $GL(n,\mathbb{R})$, належать до одного класу. Групи, лінійні частини яких спряжені в $GL(n,\mathbb{Z})$, належать до одного арифметичного класу (арифметичні класи відповідають симорфним групам). В базисі векторів трансляції гратки матриця лінійної частини перетворень цілочислова, тому точкові симетрії самої гратки описуються скінченними підгрупами в $GL(n,\mathbb{Z})$ (з точністю до спряженості). Геометричною (відповідно, арифметичною) голоедрією кристалографічної групи Г називається найменша підгрупа симетрії гратки, що містить групу лінійних частин перетворень з Γ з точністю до спряженості в $GL(n,\mathbb{Z})$ (відповідно, $GL(n,\mathbb{R})$). Зауважимо, що скінченні підгрупи в $GL(n,\mathbb{Z})$ відповідають симорфним групам. Кристалографічні групи належать до одної *сингонії* (відповідно, до одного *типу гратки Браве*), якщо їх геометричні (відповідно, арифметичні) голоедрії співпадають.

Розмірність простору, п	1	2	3	4
Число кристалографічних груп	2	17	230	4783
Число арифметичних класів (симорфних груп)	2	13	73	710
Число геометричних класів (точкових груп)	2	10	32	227
Число арифметичних голоедрій (граток Браве)	1	5	14	64
Число геометричних голоедрій (сингоній)	1	4	7	
Число максимальних скінченних підгруп в $GL(n,\mathbb{Z})$	1	2	4	9

4. ТАБЛИЦІ І СХЕМИ

§4. Таблиці і схеми

anorthic (triclinic)		$a, b, c, \alpha, \beta, \gamma$	P-1	aP	Γ_t
monoclinic	$\alpha = \gamma = \pi/2$	a, b, c, β	P2/m	mP	Γ_m
			C2/m	mC	Γ_m^b
orthorhombic	$\alpha = \beta = \gamma = \pi/2$	a, b, c	Pmmm	οP	Γ_o
			Cmmm	oС	Γ_o^b
			Fmmm	oF	Γ_o^f
			Immm	οI	Γ_o^v
tetragonal	$a = b, \ \alpha = \beta = \gamma = \pi/2$	a, c	P4/mmm	tP	Γ_q
			$I4/\mathrm{mmm}$	tI	Γ_q^v
rhombohedral	$a = b = c, \ \alpha = \beta = \gamma$	a, α	R-3m	hR	Γ_{rh}
hexagonal	$a=b, \ \alpha=\beta=\pi/2, \ \gamma=2\pi/3$	a, c	P6/mmm	hP	Γ_h
cubic	$a = b = c, \ \alpha = \beta = \gamma = \pi/2$	a	Pm-3m	cР	Γ_c
			Fm-3m	cF	Γ_c^f
			Im-3m	cI	Γ_c^v

Табл. 2: Типи граток Браве. Вказані: граткова система, параметри паралелепіпеда Браве (ще треба додати систему нерівностей), незалежні параметри, група Браве, міжнародне позначення і позначення Шенфліса. Типи центрування гратки Браве: P — примітивна гратка, C — базоцентрована в площині xy, A — базоцентрована в площині yz, F — гранецентрована, I — об'ємоцентрована, R — ромбоедрична.

Рис. 4: Схема підпорядкування граток Браве (гратки вирівняні за кількістю незалежних параметрів)

a	1	C_1	1	P1
	-1	C_i	2	P-1
m	2	C_2	3	P2 P2 ₁ C2
	m	C_s	6	Pm Pc Cm Cc
	$\frac{11}{2/m}$	C_{2h}	10	$\mathbf{P2/m}$ $\mathbf{P2}_{1}/\mathbf{m}$ $\mathbf{C2/m}$ $\mathbf{P2}/\mathbf{c}$ $\mathbf{P2}_{1}/\mathbf{c}$ $\mathbf{C2}/\mathbf{c}$
		211		P222 P222 ₁ P2 ₁ 2 ₁ 2 P2 ₁ 2 ₁ 2 ₁
О	222	D_2	16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				$Pnc2$ $Pmn2_1$ $Pba2$ $Pna2_1$ $Pnn2$
	mm2	C_{2v}	25	$\mathbf{Cmm2}$ $\mathbf{Cmc2}_1$ $\mathbf{Ccc2}$ $\mathbf{Amm2}$ $\mathbf{Abm2}$ $\mathbf{Ama2}$
				Aba2 Fmm2 Fdd2 Imm2 Iba2 Ima2
				Pmmm Pnnn Pccm Pban Pmma Pnna
				Pmna Pcca Pbam Pccn Pbcm Pnnm
	mmm	D_{2h}	47	Pmmn Pbcn Pbca Pnma
				Cmcm Cmca Cmmm Cccm Cmma Ccca
				Fmmm Fddd Immm Ibam Ibca Imma
t	4	C_4	75	P4 P4 ₁ P4 ₂ P4 ₃ I4 I4 ₁
	-4	S_4	81	P-4 I-4
	$4/\mathrm{m}$	C_{4h}	83	$P4/m$ $P4_2/m$ $P4/n$ $P4_2/n$ $I4/m$ $I4_1/a$
	422	D_4	89	P422 P42 ₁ 2 P4 ₁ 22 P4 ₁ 2 ₁ 2
	422	D_4	09	$P4_222 P4_22_12 P4_322 P4_32_12 \textbf{I422} I4_122$
	4mm	C_{4v}	99	P4mm P4bm P4 ₂ cm P4 ₂ nm P4cc P4nc
		$\bigcup_{v} C_{4v}$	99	$P4_2mc$ $P4_2bc$ $I4mm$ $I4cm$ $I4_1md$ $I4_1cd$
	-42m	D_{2d}	111	P-42m P-42c P-42 ₁ m P-42 ₁ c P-4m2 P-4c2
		224	111	P-4b2 P-4n2 I-4m2 I-4c2 I-42m I-42d
				P4/mmm P4/mcc P4/nbm P4/nnc P4/mbm
	$4/\mathrm{mmm}$	D_{4h}	123	$P4/mnc$ $P4/nmm$ $P4/ncc$ $P4_2/mmc$ $P4_2/mcm$
	,	170		$P4_2/nbc$ $P4_2/nmc$ $P4_2/mbc$ $P4_2/mmm$ $P4_2/nmc$
		-		$P4_2/ncm$ $I4/mmm$ $I4/mcm$ $I4_1/amd$ $I4_1/acd$
h	3	C_3	143	P3 P3 ₁ P3 ₂ R3
	-3	C_{3i}	147	P-3 R-3
	32	D_3	149	P312 P321 P3 ₁ 12 P3 ₁ 21 P3 ₂ 12 P31 ₂ 21 R32
	3m	C_{3v}	156	P3m1 P31m P3c1 P31c R3m R3c
	-3m	C_6	162 168	P-31m P-31c P-3m1 P-3c1 R-3m R-3c P6 P6 ₁ P6 ₅ P6 ₂ P6 ₄ P6 ₃
	-6	C_{3h}	174	P-6
	$6/\mathrm{m}$	C_{6h}	175	P6/m P6 ₃ /m
	622	D_6	177	P622 P6 ₁ 22 P6 ₅ 22 P6 ₂ 22 P6 ₄ 22 P6 ₃ 22
	6mm	C_{6v}	183	P6mm P6cc P6 ₃ cm P6 ₃ mc
	-6m2	D_{3h}	187	P-6m2 P-6c2 P-62m P-62c
	$6/\mathrm{mmm}$	D_{6h}	191	$P6/mmm$ $P6/mcc$ $P6_3/mcm$ $P6_3/mmc$
c	23	T	195	P23 F23 I23 P2 ₁ 3 I2 ₁ 3
	m-3	T_h	200	Pm-3 Pn-3 Fm-3 Fd-3 Im-3 Pa-3 Ia-3
	432	O	207	P432 P4 ₂ 32 F432 F4 ₁ 32 I432 P4 ₃ 32 P4 ₁ 32 I4 ₁ 32
	-43m	T_d	215	P-43m F-43m P-43n F-43c I-43d
				Pm-3m Pn-3n Pm-3n Pn-3m
	m-3m	O_h	221	Fm-3m Fm-3c Fd-3m Fd-3c Im-3m Ia-3d
$\overline{}$				

Табл. 3: Просторові групи. Вказані: система, клас і номер першої групи в класі. Симорфні групи виділені.

Група Р
m-3m, поліедр повторюваності: 0 < z < x < y < 1/2.

a	Γ	m-3m	O_h	1	0	0	0	
b	R	m- $3m$	O_h	1	1/2	1/2	1/2	
c	M	$4/\mathrm{mmm}$	D_{4h}	3	1/2	1/2	0	
d	X	$4/\mathrm{mmm}$	D_{4h}	3	0	1/2	0	
e	Δ	$4\mathrm{mm}$	C_{4v}	6	0	y	0	
f	T	$4\mathrm{mm}$	C_{4v}	6	1/2	1/2	z	
g	Λ	3m	C_{2v}	8	x	x	x	
h	Z	mm2	D_{1h}	12	x	1/2	0	
i	\sum	mm2	C_{2v}	12	x	x	0	
j	S	mm2	D_{1h}	12	x	1/2	x	
k	ΓXM	m	C_{1v}	24	x	y	0	
1	RXM	m	C_{1h}	24	x	1/2	z	
m	ΓRX	m	C_{1v}	24	x	y	x	ΓRM
n		1		48				

Група Fm-3m, поліедр повторюваності: 0 < z < x < y < 1/2, x + y < 1/2.

a	Γ	m-3m	O_h	1	0	0	0	M
b	H	m-3m	O_h	1	0	1/2	0	R
c	P	-43m	T_d	2	1/4	1/4	1/4	
d	N	mmm	D_{2h}	6	1/4	1/4	0	
e	Δ	$4\mathrm{mm}$	C_{4v}	6	0	y	0	
f	$\Lambda + F'$	3m	C_{3v}	8	x	x	x	F
g	D	mm2	C_{2v}	12	1/4	1/4	z	
h	\sum	mm2	C_{2v}	12	x	x	0	
i	G	mm2	C_{2v}	12	x	1/2 - x	0	
j	ΓHN	m	C_{1v}	24	x	y	0	
k	$\Gamma H'PN$	m	C_{1v}	24	\boldsymbol{x}	x	z	$\mid HPN, \Gamma HP \mid$
1		1		48				

Група Іт-3т, поліедр повторюваності: 0 < z < x < y < 1/2, x + y + z < 3/4, оптимізований: 0 < z < x < y, y + z < 1/2.

g	1 ~ < 1/	:						
a	Γ	m-3m	O_h	1	0	0	0	R
b	X	$4/\mathrm{mmm}$	D_{4h}	3	0	1/2	0	M
$^{\mathrm{c}}$	L	-3m	D_{3d}	4	1/4	1/4	1/4	
d	W	-42m	D_{2d}	6	3/4	0	1/2	
e	Δ	$4\mathrm{mm}$	C_{4v}	6	0	y	0	
f	Λ	$3 \mathrm{m}$	C_{3v}	8	x	x	x	
g	V	mm2	C_{2v}	12	x	1/2	0	
h	$\Sigma + S'$	mm2	C_{2v}	12	x	x	0	S, K, U
i	Q	2	C_2	24	1/4	y	1/2 - y	
j	ΓXM	m	C_{1v}	24	x	y	0	XWU
k	$\Gamma X'M$	m	C_{1v}	24	x	x	z	
1		1		48				XML

Табл. 4: Орбіти максимальних кубічних груп. Вказані: позиція (символ Уайкофа і в позначеннях оберненої гратки), стабілізатор, кратність в межах примітивної комірки, граткові координати, еквівалентні точки при центруванні.

Рис. 5: Комірка Вігнера–Зейтца та орбіти максимальних кубічних груп

4. *ТАБЛИЦІ І СХЕМИ* 11

Рис. 6: Двовимірні просторові групи

Table 1.2.1.1. Classification of layer groups

Bold or bold underlined symbols indicate Laue groups. Bold underlined point groups are also lattice point symmetries (holohedries).

Two-dimensional Bravais system	Symbol	Three-dimensional crystal system	Crystallographic point groups	No. of layer-group types	Restrictions on conventional coordinate system	Cell parameters to be determined	Bravais lattice
Oblique	m	Triclinic	$1, \bar{1}$	2	None	$a, b, \gamma \dagger$	mp
		Monoclinic	2, m, <u>2/m</u>	5	$\alpha = \beta = 90^{\circ}$	-	
Rectangular	0			11	$\beta = \gamma = 90^{\circ}$	a, b	op
		Orthorhombic	222, 2mm, <u>mmm</u>	30	$\alpha = \beta = \gamma = 90^{\circ}$	-	oc
Square	t	Tetragonal	4, 4 , 4/m	16	a = b	а	tp
			422, 4 <i>mm</i> , $\bar{4}$ 2 <i>m</i> , $\underline{4/mmm}$		$\alpha = \beta = \gamma = 90^{\circ}$		
Hexagonal	h	Trigonal	3, 3	8	a = b	а	hp
			32, 3 <i>m</i> , 3 <i>m</i>				
		Hexagonal	6, 6 , 6/m	8	$\gamma = 120^{\circ}$	1	
			622, 6 <i>mm</i> , 6 <i>m</i> 2, 6 <i>lmmm</i>		$\alpha = \beta = 90^{\circ}$		

[†] This angle is conventionally taken to be non-acute, i.e. $\geq 90^{\circ}$.

Table 1.2.1.2. Classification of rod groups

Bold symbols indicate Laue groups.

Three-dimensional crystal system	Crystallographic point groups	No. of rod-group types	Restrictions on conventional coordinate system	
Triclinic	1, 1	2	None	
Monoclinic (inclined)	2, m, 2/m	5	$\beta = \gamma = 90^{\circ}$	
Monoclinic (orthogonal)		5	$\alpha = \beta = 90^{\circ}$	
Orthorhombic 222, 2mm, mmm		10	$\alpha = \beta = \gamma = 90^{\circ}$	
Tetragonal	4, 4 , 4 / m	19		
	422, 4mm, 42m, 4/mmm			
Trigonal	3, 3	11	$\alpha = \beta = 90, \ \gamma = 120^{\circ}$	
	32, 3 m , $\bar{3}m$			
Hexagonal	6, 6 , 6 / m	23		
	622, 6mm, 6 m2, 6/mmm			

Table 1.2.1.3. Classification of frieze groups

Bold symbols indicate Laue groups.

Two-dimensional crystal system	Crystallographic point groups	No. of frieze-group types	Restrictions on conventional coordinate system
Oblique	1, 2	2	None
Rectangular	m, 2mm	5	$\gamma = 90^{\circ}$

Рис. 7: Субперіодичні групи: копія стор. 6 книги International Tables for Crystallography. Vol. E. Subperiodic groups (Kluwer, 2002).