Deep Learning in Scientific Computing

Introduction to Differentiable Physics - Part 1

Spring Semester 2023

Siddhartha Mishra Ben Moseley

TH zürich

Course timeline

	Tutorials		Lectures
Tue 3:15-14:00, HG E5		Fri 12:15-14:00, HG D1.1	
21.02.		24.02.	Course introduction
28.02.	Intro to PyTorch	03.03.	Introduction to deep learning I
07.03.	Deep learning in PyTorch I	10.03.	Introduction to deep learning II
14.03.	Deep learning in PyTorch II	17.03.	Physics informed neural networks introduction and theory
21.03.	Implementing PINNs I	24.03.	Physics-informed neural networks - applications
28.03.	Implementing PINNs II	31.03.	Physics-informed neural networks - limitations and extensions
04.04.	Implementing PINNs III	07.04.	
11.04.		14.04.	
18.04.	Introduction to projects	21.04.	Introduction to operator learning
25.04.	Implementing neural operators I	28.04.	Operator networks and DeepONet
02.05.	Implementing neural operators II	05.05.	DeepONet continuation
09.05.	Project work	12.05.	Neural operators
16.05.	Implementing neural operators III	19.05.	Limitations of neural operators
23.05.	Project work	26.05.	Introduction to differentiable physics I
30.05.	Coding an autodiff engine	02.06.	Introduction to differentiable physics II

Lecture overview

- PINNs/ operator learning recap
- When should I use DNNs for scientific problems?
- Hybrid SciML approaches
 - Residual modelling
 - Opening the "black-box"
- Differentiable physics
 - How to train hybrid approaches
 - Autodifferentiation as a key enabler
 - Autodifferentiation recap

Course recap - PINNs

$$m\frac{d^2u}{dt^2} + \mu\frac{du}{dt} + ku = 0$$

$$NN(t;\theta) \approx u(t)$$

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(t_i; \theta) - u(\underline{t_i}))^2 + \frac{\lambda}{M} \sum_{j}^{M} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] NN(\underline{t_j}; \theta) \right)^2$$
Physics loss

Course recap - PINNs

Limitations of PINNs

$$m\frac{d^2u}{dt^2} + \mu\frac{du}{dt} + ku = 0$$

$$NN(t;\theta) \approx u(t)$$

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(t_i; \theta) - u(\underline{t_i}))^2 + \frac{\lambda}{M} \sum_{j}^{M} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] NN(\underline{t_j}; \theta) \right)^2$$
Physics loss

Course recap - PINNs

$$m\frac{d^2u}{dt^2} + \mu\frac{du}{dt} + ku = 0$$

$$NN(t;\theta) \approx u(t)$$

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(t_i; \theta) - u(\underline{t_i}))^2 + \frac{\lambda}{M} \sum_{j}^{M} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] NN(\underline{t_j}; \theta) \right)^2$$
Physics loss

Advantages of PINNs

- Mesh-free
- Can jointly solve forward and inverse problems
- Often performs well on "messy" problems (where some observational data is available)
- Mostly unsupervised
- Can perform well for highdimensional PDEs

Limitations of PINNs

- Computational cost often high (especially for forwardonly problems)
- Can be hard to optimise
- Challenging to scale to highfrequency, multi-scale problems

Course recap — Operator learning

Darcy PDE

$$\nabla \cdot (a(\mathbf{x})\nabla u(\mathbf{x})) = f(\mathbf{x})$$

Permeability, a(x) Pressure, u(x)

Course recap — Operator learning

Darcy PDE

$$\nabla \cdot \big(a(\mathbf{x}) \nabla u(\mathbf{x}) \big) = f(\mathbf{x})$$

Advantages of operator learning Limitations of operator learning

 $\mathcal{G}_{\theta}^{*}[a]$

$$a(x) \to \{a_k\}_{k=1}^m \to NN(\{a_k\}; \theta) \to \{u_k\}_{k=1}^p \to \hat{u}(x)$$

$$L(\theta) = \frac{1}{NM} \sum_{i}^{N} \sum_{j}^{M} \|u_{i}(x_{j}) - \mathcal{G}_{\theta}^{*}[a_{i}](x_{j})\|^{2}$$

Course recap — Operator learning

Darcy PDE

$$\nabla \cdot \big(a(\mathbf{x}) \nabla u(\mathbf{x}) \big) = f(\mathbf{x})$$

Advantages of operator learning Limitations of operator learning

Can be **orders of magnitude** faster than traditional simulation (once trained)

erpolation
$$\mathcal{G}^*_{\theta}[a]$$

$$a(x) \to \{a_k\}_{k=1}^m \to NN(\{a_k\}; \theta) \to \{u_k\}_{k=1}^p \to \hat{u}(x)$$

$$L(\theta) = \frac{1}{NM} \sum_{i}^{N} \sum_{j}^{M} \|u_{i}(x_{j}) - \mathcal{G}_{\theta}^{*}[a_{i}](x_{j})\|^{2}$$

- Can require lots of training data, which can be expensive to obtain
- Can struggle to **generalise** to inputs outside of its training data
- Encoding / reconstruction steps require some assumptions about the regularity of a(x) and u(x)

When should I use deep neural networks for scientific problems?

Advantages of DNNs

- Usually very fast (once trained)
- Can represent highly non-linear functions

Limitations of DNNs

- Often lots of training data required
- Can be hard to optimise
- Can be hard to interpret
- Often struggle to generalise

When should I use deep neural networks for scientific problems?

Advantages of DNNs

- Usually very fast (once trained)
- Can represent highly non-linear functions

Limitations of DNNs

- Often lots of training data required
- Can be hard to optimise
- Can be hard to interpret
- Often struggle to generalise

General advice

Use DNNs to:

- 1) Accelerate your workflow, or
- 2) Learn the parts you are unsure of / have incomplete knowledge

Otherwise using DNNs may **not** be a good idea!

What are hybrid SciML approaches?

Note: all the DNNs so far have entirely **replaced** traditional algorithms

Key idea: incorporate DNNs directly into a traditional algorithm = hybrid approach

General advice

Use DNNs to:

- 1) Accelerate your workflow, or
- 2) Learn the parts you are unsure of / have incomplete knowledge

Ways to incorporate scientific principles into machine learning

Loss function

Example: **Physics-informed neural networks**(add governing equations to loss function)

Architecture

Example:
Encoding regularity / symmetries /
conservation laws (e.g. energy conservation,
rotational invariance), operator learning

Hybrid approaches

Example:
Neural differential equations
(incorporating neural networks into traditional PDE solvers)

A plethora of SciML techniques

B Moseley, Physics-informed machine learning: from concepts to real-world applications, PhD thesis, 2022

A plethora of SciML techniques

Constraining physical quantities Encoding conservation laws Auxiliary tasks Encoding governing equations Residual modelling Loss function Differentiable physics Neural differential equations **Traditional** In-the-loop methods workflows Hybrid approaches Adding physical variables **Encoding symmetries** Physics-inspired NAS No learning ML inspired by Koopman theory Physically constrained GPs No data required Architecture **Hard** physics **No** physics constraints constraints

Fully learned

Fully data-driven

Naive ML

B Moseley, Physics-informed machine learning: from concepts to real-world applications, PhD thesis, 2022

A simple hybrid approach – residual modelling

$$\hat{y} = y_{\text{phys}}(\mathbf{x}) + NN(\mathbf{x}; \theta)$$

I.e. neural network learns residual correction to physics model

Trained using many examples of inputs/outputs

When is this useful?

A simple hybrid approach – residual modelling

$$\hat{y} = y_{\text{phys}}(\mathbf{x}) + NN(\mathbf{x}; \theta)$$

I.e. neural network learns residual correction to physics model

Trained using many examples of inputs/outputs

Useful when:

- We have incomplete understanding of physics
- More complex physical modeling is too expensive

Compared to naïve ML approach:

- Easier learning task: don't need to learn all the physics
- More interpretable

A simple hybrid approach – residual modelling

$$\hat{y} = y_{\text{phys}}(x) + NN(x; \theta)$$

I.e. neural network learns residual correction to physics model

Trained using many examples of inputs/outputs

$$L(\theta) = \sum_{i}^{N} (\hat{y}(\mathbf{x}_{i}; \theta) - y(\mathbf{x}_{i}))^{2}$$

$$= \sum_{i}^{N} (NN(\mathbf{x}_{i}; \theta) - [y(\mathbf{x}_{i}) - y_{\text{phys}}(\mathbf{x}_{i})])^{2}$$

$$\equiv \sum_{i}^{N} (NN(\mathbf{x}_{i}; \theta) - r(\mathbf{x}_{i}))^{2}$$

Aerofoil shape (set of points), $\{x_i, y_i\}_{i=1}^N$

Simulation task:

Given $\{x_i, y_i\}_{i=1}^N$, Re and α Predict F

Aerofoil shape (set of points), $\{x_i, y_i\}_{i=1}^N$

- Full CFD simulations are typically accurate, but very expensive
- Faster approximate methods exist, but are usually less accurate

Simulation task:

Given $\{x_i, y_i\}_{i=1}^N$, Re and α Predict F

Hess-Smith panel method:

Fast **approximate** method for predicting lift force

Training data:

Many example inputs/outputs generated from (expensive) **high-fidelity** CFD modelling

Goal:

A model which is **faster** than CFD and more **accurate** than approximate physics model

NACA23012

True

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-20

-10

0

10

20

Naive NN (no physics inputs)

NN + physics model (hybrid approach)

Opening the black-box

$$\hat{y} = y_{\text{phys}}(\mathbf{x}) + NN(\mathbf{x}; \theta)$$

Residual methods treat the physics model as a "black-box"

More complex hybrid methods open the box and insert ML **inside** the traditional algorithm

We insert ML where;

- 1) the algorithm is **slow**
- 2) we are **unsure** of our assumptions/ want to improve our modelling

Opening the black-box – finite difference solver

FD solver

Incompressible Navier-Stokes equation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nu \nabla^2 \mathbf{u} = -\frac{1}{\rho} \nabla p$$
$$\nabla \cdot \mathbf{u} = 0$$

u(x,t) is the flow velocity p(x,t) is the pressure $\rho(x)$ is the density ν is the viscosity

Opening the black-box – finite difference solver

FD solver

Incompressible Navier-Stokes equation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nu \nabla^2 \mathbf{u} = -\frac{1}{\rho} \nabla p$$
$$\nabla \cdot \mathbf{u} = 0$$

u(x,t) is the flow velocity p(x,t) is the pressure $\rho(x)$ is the density ν is the viscosity

"Operator splitting" numerical solver:

Discretise in time

$$\boldsymbol{u}_{t+1} = \boldsymbol{u}_t - \delta t (\boldsymbol{u}_t \cdot \nabla) \boldsymbol{u}_t + \delta t \, \nu \nabla^2 \boldsymbol{u}_t - \frac{\delta t}{\rho} \, \nabla p_{t+1} \, (1)$$

Let

$$\boldsymbol{u}^* = \boldsymbol{u}_t - \delta t (\boldsymbol{u}_t \cdot \nabla) \boldsymbol{u}_t + \delta t \, \nu \nabla^2 \boldsymbol{u}_t - \frac{\delta t}{\rho} \nabla p_t \quad (2)$$

Then

$$\boldsymbol{u}_{t+1} = \boldsymbol{u}^* - \frac{\delta t}{\rho} \nabla (p_{t+1} - p_t)$$

Asserting $\nabla \cdot \boldsymbol{u}_{t+1} = 0 \Rightarrow$

$$0 = \nabla \cdot \boldsymbol{u}^* - \frac{\delta t}{\rho} \nabla^2 (p_{t+1} - p_t)$$

$$\nabla^2(p_{t+1} - p_t) = \frac{\rho}{\delta t} \nabla \cdot \boldsymbol{u}^*$$

Discretise in space

$$L(p_{i,j,k,t+1} - p_{i,j,k,t}) = \frac{\rho_{i,j,k}}{\delta t} D \boldsymbol{u}_{i,j,k}^* \quad (3)$$

Opening the black-box – finite difference solver

FD solver

Incompressible Navier-Stokes equation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nu \nabla^2 \mathbf{u} = -\frac{1}{\rho} \nabla p$$
$$\nabla \cdot \mathbf{u} = 0$$

u(x,t) is the flow velocity p(x,t) is the pressure $\rho(x)$ is the density ν is the viscosity

"Operator splitting" numerical solver:

Discretise in time

$$\mathbf{u}_{t+1} = \mathbf{u}_t - \delta t (\mathbf{u}_t \cdot \nabla) \mathbf{u}_t + \delta t \, \nu \nabla^2 \mathbf{u}_t - \frac{\delta t}{\rho} \nabla p_{t+1} \, (1)$$
Let

$$\boldsymbol{u}^* = \boldsymbol{u}_t - \delta t (\boldsymbol{u}_t \cdot \nabla) \boldsymbol{u}_t + \delta t \, \nu \nabla^2 \boldsymbol{u}_t - \frac{\delta t}{\rho} \nabla p_t \quad (2)$$

Then

$$\begin{aligned} \boldsymbol{u}_{t+1} &= \boldsymbol{u}^* - \frac{\delta t}{\rho} \, \nabla (p_{t+1} - p_t) \\ \text{Asserting } \nabla \cdot \boldsymbol{u}_{t+1} &= 0 \Rightarrow \\ 0 &= \nabla \cdot \boldsymbol{u}^* - \frac{\delta t}{\rho} \, \nabla^2 (p_{t+1} - p_t) \\ \nabla^2 (p_{t+1} - p_t) &= \frac{\rho}{\delta t} \, \nabla \cdot \boldsymbol{u}^* \end{aligned}$$

Discretise in space

$$L(p_{i,j,k,t+1} - p_{i,j,k,t}) = \frac{\rho_{i,j,k}}{\delta t} D \boldsymbol{u}_{i,j,k}^* \quad (3)$$

Basic algorithm: Discretise u, p and ρ Loop:

- 1. Compute $u_{i,j,k}^*$ using (2)
- 2. Solve matrix equation (3) for $p_{i,j,k,t+1}$
- 3. Compute $u_{i,j,k,t+1}$ using (1)

```
def NS_solver(u_0, p_0, rho, nu):
    "Pseudocode for solving NS equation"

# u_0, p_0 have shape (NX, NY, NZ)
    u_t, p_t = u_0, p_0
    for t in range(0, T):
        u_star = f(u_t, p_t, rho, nu)
        p_t = matrix_solve(u_star, p_t, rho)
        u_t = g(u_t, p_t, rho, nu)

return u_t, p_t
```


Computational cost / accuracy trade-off

Low fidelity FD solver

(32 x 32 x 64) cells ~10 seconds / 100 timesteps

High fidelity FD solver

(128 x 128 x 256) cells ~1000 seconds / 100 timesteps

- Discretisation induces errors in the solver
- But finer grids are much more computationally expensive
- Can we use ML improve the accuracy of the low fidelity solver?

Traditional Navier-Stokes solver

```
def NS_solver(u_0, p_0, rho, nu):
    "Pseudocode for solving NS equation"

# u_0, p_0 have shape (NX, NY, NZ)
u_t, p_t = u_0, p_0
for t in range(0, T):
    u_star = f(u_t, p_t, rho, nu)
    p_t = matrix_solve(u_star, p_t, rho)
    u_t = g(u_t, p_t, rho, nu)

return u_t, p_t
```


Traditional Navier-Stokes solver

```
def NS_solver(u_0, p_0, rho, nu):
    "Pseudocode for solving NS equation"

# u_0, p_0 have shape (NX, NY, NZ)
u_t, p_t = u_0, p_0
for t in range(0, T):
    u_star = f(u_t, p_t, rho, nu)
    p_t = matrix_solve(u_star, p_t, rho)
    u_t = g(u_t, p_t, rho, nu)

return u_t, p_t
```

Where could we insert ML inside this workflow to improve accuracy / efficiency?

Hybrid Navier-Stokes solver

```
def NS solver(u 0, p 0, rho, nu):
    "Pseudocode for solving NS equation"
    # u 0, p 0 have shape (NX, NY, NZ)
    u t, p t = u 0, p 0
    for t in range(0, T):
        u star = f(u t, p t, rho, nu)
        p t = matrix solve(u_star, p_t, rho)
        u t = g(u t, p t, rho, nu)
    return u t, p t
def Hybrid NS solver(u 0, p 0, rho, nu, theta):
    "Pseudocode for solving NS equation, with NN correction'
    # u 0, p 0 have shape (NX, NY, NZ)
    u t, p t = u 0, p 0
    for t in range(0, T):
        u star = f(u t, p t, rho, nu)
        p t = matrix solve(u star, p t, rho)
        u t = g(u t, p t, rho, nu)
        u t, p t = NN(u t, p t, theta)
    return u t, p t
```


Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)


```
def NS solver(u 0, p 0, rho, nu):
    "Pseudocode for solving NS equation"
    # u 0, p 0 have shape (NX, NY, NZ)
    u t, p t = u 0, p 0
    for t in range(0, T):
        u star = f(u t, p t, rho, nu)
        p t = matrix solve(u_star, p_t, rho)
        u t = q(u t, p t, rho, nu)
    return u t, p t
def Hybrid NS solver(u 0, p 0, rho, nu, theta):
    "Pseudocode for solving NS equation, with NN correction"
    # u 0, p 0 have shape (NX, NY, NZ)
    u t, p t = u 0, p 0
    for t in range(0, T):
        u star = f(u t, p t, rho, nu)
        p t = matrix solve(u star, p t, rho)
        u t = g(u t, p t, rho, nu)
        u t, p t = NN(u t, p t, theta)
    return u t, p t
```

Initial velocity, \boldsymbol{u}_0

Final velocity from **high-fidelity** NS_solver, $u_{\text{true }T}$

Assume our training data are $\{(\boldsymbol{u}_0^l, \boldsymbol{u}_{\text{true }T}^l)\}_l^N$ generated from high-fidelity simulations


```
def NS solver(u 0, p 0, rho, nu):
    "Pseudocode for solving NS equation"
    # u 0, p 0 have shape (NX, NY, NZ)
   u t, p t = u 0, p 0
    for t in range(0, T):
        u star = f(u t, p t, rho, nu)
        p t = matrix solve(u_star, p_t, rho)
        u t = q(u t, p t, rho, nu)
   return u t, p t
def Hybrid NS solver(u 0, p 0, rho, nu, theta):
    "Pseudocode for solving NS equation, with NN correction"
    # u 0, p 0 have shape (NX, NY, NZ)
   u t, p t = u 0, p 0
    for t in range(0, T):
        u star = f(u t, p t, rho, nu)
        p t = matrix solve(u star, p t, rho)
        u t = g(u t, p t, rho, nu)
        u t, p t = NN(u t, p t, theta) <
   return u t, p t
```

Initial velocity, u_0

Final velocity from **high-fidelity** NS_solver, $u_{\text{true }T}$

Assume our training data are $\{(\boldsymbol{u}_0^l, \boldsymbol{u}_{\text{true }T}^l)\}_l^N$ generated from high-fidelity simulations

How can we learn θ when the neural network is **inside** the traditional algorithm?

Key idea: **autodifferentiation** allows us to differentiate **arbitrary** algorithms, not just neural networks!

We train neural networks using autodifferentiation

But autodifferentiation = exact gradients of **arbitrary** programs

So, we can use it to differentiate (and learn) traditional algorithms too!

Key idea: **autodifferentiation** allows us to differentiate **arbitrary** algorithms, not just neural networks!

We train neural networks using autodifferentiation

But autodifferentiation = exact gradients of **arbitrary** programs

So, we can use it to differentiate (and learn) traditional algorithms too!

```
def NN(x, theta):
    "Defines a FCN"
    y = torch.tanh(theta[0]@x + theta[1])
    return y

theta.requires_grad_(True)
y = NN(x, theta)
loss = loss_fn(y, y_true)
dtheta = torch.autograd(loss, theta)
# for learning theta (training NN)
```


Key idea: **autodifferentiation** allows us to differentiate **arbitrary** algorithms, not just neural networks!

```
def NN(x, theta):
    "Defines a FCN"
    y = torch.tanh(theta[0]@x + theta[1])
    return y

theta.requires_grad_(True)
y = NN(x, theta)
loss = loss_fn(y, y_true)
dtheta = torch.autograd(loss, theta)
# for learning theta (training NN)
```

```
def Hybrid NS solver(u 0, p 0, rho, nu, theta):
    "Pseudocode for solving NS equation, with NN correction"
    \# u 0, p 0 have shape (NX, NY, NZ)
    u t, p t = u 0, p 0
    for t in range(0, T):
        u star = f(u t, p t, rho, nu)
        p t = matrix solve(u star, p t, rho)
        u t = g(u t, p t, rho, nu)
        u t, p t = NN(u t, p t, theta)
    return u t, p t
theta.requires grad (True)
u T, = Hybrid NS solver(u 0, p 0, rho, nu, theta)
loss = loss fn(u T, u T true)
dtheta = torch.autograd(loss, theta)
# for learning theta (training NN)
```


Key idea: **autodifferentiation** allows us to differentiate **arbitrary** algorithms, not just neural networks!

Differentiable physics = using autodifferentiation to differentiate physical algorithms

```
def NN(x, theta):
    "Defines a FCN"
    y = torch.tanh(theta[0]@x + theta[1])
    return y

theta.requires_grad_(True)
y = NN(x, theta)
loss = loss_fn(y, y_true)
dtheta = torch.autograd(loss, theta)
# for learning theta (training NN)
```

```
def Hybrid NS solver(u 0, p 0, rho, nu, theta):
    "Pseudocode for solving NS equation, with NN correction"
    \# u 0, p 0 have shape (NX, NY, NZ)
    u t, p t = u 0, p 0
    for t in range(0, T):
        u star = f(u t, p t, rho, nu)
        p t = matrix solve(u star, p t, rho)
        u t = g(u t, p t, rho, nu)
        u t, p t = NN(u t, p t, theta)
    return u t, p t
theta.requires grad (True)
u T, = Hybrid NS solver(u 0, p 0, rho, nu, theta)
loss = loss fn(u T, u T true)
dtheta = torch.autograd(loss, theta)
# for learning theta (training NN)
```


Hybrid approach -

32 x 32 x 64 grid cells ~15 seconds / 100 timesteps

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

Autodifferentiation is a key enabler

- Autodifferentiation is a key enabler of all of the SciML techniques studied so far

It allows us to **efficiently** differentiate through complicated loss functions and get gradients of learnable parameters

$$NN(t;\theta) \approx u(t)$$

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(t_i;\theta) - u(t_i))^2$$

$$+ \frac{\lambda}{M} \sum_{j}^{M} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] NN(t_j;\theta) \right)^2$$

Physics-informed neural network

$$G_{\theta}^{*}[a]$$

$$a(x) \to \{a_{k}\}_{k=1}^{m} \to NN(\{a_{k}\}; \theta) \to \{u_{k}\}_{k=1}^{p} \to \hat{u}(x)$$

$$L(\theta) = \frac{1}{NM} \sum_{i}^{N} \sum_{j}^{M} \|u_{i}(x_{j}) - G_{\theta}^{*}[a_{i}](x_{j})\|^{2}$$

Operator learning

Lecture overview

- PINNs/ operator learning recap
- When should I use DNNs for scientific problems?
- Hybrid SciML approaches
 - Residual modelling
 - Opening the "black-box"
- Differentiable physics
 - How to train hybrid approaches
 - Autodifferentiation as a key enabler
 - Autodifferentiation recap

5 min break


```
def Hybrid NS solver(u 0, p 0, rho, nu, theta):
    "Pseudocode for solving NS equation, with NN correction"
    # u 0, p 0 have shape (NX, NY, NZ)
    u t, p t = u 0, p 0
    for t in range(0, T):
        u star = f(u t, p t, rho, nu)
        p t = matrix solve(u star, p t, rho)
        u t = g(u t, p t, rho, nu)
        u t, p t = NN(u t, p t, theta)
    return u t, p t
theta.requires grad (True)
u_T,_ = Hybrid_NS_solver(u_0, p_0, rho, nu, theta)
loss = loss fn(u T, u T true)
dtheta = torch.autograd(loss, theta)
# for learning theta (training NN)
```

Many programs can be decomposed in the following way:

Program:

Input: a vector $x \in \mathbb{R}^n$

Function: A series of **primitive operations** on the elements of *x* add / multiply / trigonometric / ...

Output: some transformed vector $y \in \mathbb{R}^m$

Mathematically, the program defines a vector function $y: \mathbb{R}^n \to \mathbb{R}^m$, composed of primitive operations:

$$y(x) = f_N \circ, \dots, \circ f_2 \circ f_1(x)$$

Consider **any** vector function $y: \mathbb{R}^n \to \mathbb{R}^m$, composed from many other vector functions

$$y(x) = f_N \circ, \dots, \circ f_2 \circ f_1(x)$$

Then we can use the **multivariate chain rule** (= matrix multiplication of Jacobians) to evaluate its derivatives

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{f}_N}{\partial \mathbf{f}_{N-1}}, \dots, \frac{\partial \mathbf{f}_2}{\partial \mathbf{f}_1} \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}}$$

where

$$J_{y} \equiv \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}} \end{pmatrix}$$

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

or the Jacobian-vector product (jvp):

of **arbitrary** programs.

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

vn):

m m

n

or the Jacobian-vector product (jvp):

 $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\mathbf{v}$

m

n

of arbitrary programs.

Why compute vjps / jvps, and not the full Jacobian?

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

$$\boldsymbol{v}^T \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}} \quad \boxed{ } \quad \boxed$$

or the Jacobian-vector product (jvp):

$$\frac{1}{n}$$
 v m n

of **arbitrary** programs.

Why compute vjps / jvps, and not the full Jacobian?

1. In deep learning, vjps are usually the quantities needed when evaluating the gradient of **scalar** loss functions

$$L(\boldsymbol{\theta}): \mathbb{R}^n \to \mathbb{R}^1$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = \frac{\partial L}{\partial \boldsymbol{N} \boldsymbol{N}} \frac{\partial \boldsymbol{N} \boldsymbol{N}}{\partial \boldsymbol{\theta}}$$

$$\frac{\partial L}{\partial \mathbf{N} \mathbf{N}} = \left(\frac{\partial L}{\partial N N_1}, \dots, \frac{\partial L}{\partial N N_k}\right)$$

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

$$\boldsymbol{v}^T \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}}$$

or the Jacobian-vector product (jvp):

$$\frac{\partial y}{\partial x}v$$

of arbitrary programs.

Why compute vjps / jvps, and not the full Jacobian?

- 1. In deep learning, vjps are usually the quantities needed when evaluating the gradient of **scalar** loss functions
- 2. Often evaluating vjp/jvps does not explicitly require the full Jacobian to be computed, making them **efficient** to compute

Consider

$$y = \sin(x)$$

Then

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{pmatrix} \cos(x_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \cos(x_n) \end{pmatrix}$$

And

$$\boldsymbol{v}^T \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}} = (v_1 \cos(x_1), \dots, v_n \cos(x_n))$$
$$= \boldsymbol{v} \cdot \cos(\boldsymbol{x})$$

Requires O(n) operations

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

$$\boldsymbol{v}^T \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}}$$

m

or the Jacobian-vector product (jvp):

$$\frac{\partial y}{\partial x}v$$

$$\bigcap_{n} = \bigcap_{m}$$

of **arbitrary** programs.

Why compute vjps / jvps, and not the full Jacobian?

- 1. In deep learning, vjps are usually the quantities needed when evaluating the gradient of **scalar** loss functions
- 2. Often evaluating vjp/jvps does not explicitly require the full Jacobian to be computed, making them **efficient** to compute
- 3. We can use vjps / jvps to compute the full Jacobian row by row / column by column if necessary

Let

 $\boldsymbol{v}^T = (1,0,\dots,0)$

Then

$$\boldsymbol{v}^T \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}} = \left(\frac{\partial y_1}{\partial x_1}, \dots, \frac{\partial y_1}{\partial x_n}\right)$$

= First row of Jacobian

Note:

$$v^T \frac{\partial y}{\partial x} = v^T \frac{\partial f_N}{\partial f_{N-1}}, ..., \frac{\partial f_2}{\partial f_1} \frac{\partial f_1}{\partial x}$$

Then we can compute $v^T \frac{\partial y}{\partial x}$ by iteratively computing vector-Jacobian products, from left to right (reverse-mode):

Starting with v^T ,

$$\boldsymbol{v}^T \leftarrow \boldsymbol{v}^T \frac{\partial \boldsymbol{f}_N}{\partial \boldsymbol{f}_{N-1}}$$

$$\boldsymbol{v}^T \leftarrow \boldsymbol{v}^T \frac{\partial \boldsymbol{f}_{N-1}}{\partial \boldsymbol{f}_{N-2}}$$

$$v^T \leftarrow v^T \frac{\partial f_1}{\partial x}$$

Note:

$$v^T \frac{\partial y}{\partial x} = v^T \frac{\partial f_N}{\partial f_{N-1}}, \dots, \frac{\partial f_2}{\partial f_1} \frac{\partial f_1}{\partial x}$$

Then we can compute $v^T \frac{\partial y}{\partial x}$ by iteratively computing vector-Jacobian products, from left to right (reverse-mode):

Starting with v^T ,

$$oldsymbol{v}^T \leftarrow oldsymbol{v}^T rac{\partial oldsymbol{f}_N}{\partial oldsymbol{f}_{N-1}}$$
 $oldsymbol{v}^T \leftarrow oldsymbol{v}^T rac{\partial oldsymbol{f}_{N-1}}{\partial oldsymbol{f}_{N-2}}$
...
 $oldsymbol{v}^T \leftarrow oldsymbol{v}^T rac{\partial oldsymbol{f}_1}{\partial oldsymbol{x}}$

• So, we only need to define the **vjp** for each **primitive operation** in order to compute $v^T \frac{\partial y}{\partial x}$

Autodiff in practice

$$y = W_2 \sigma(W_1 x + \boldsymbol{b_1}) + \boldsymbol{b_2}$$

- Decompose given function into its primitive operations
- 2) Build a **directed graph** of these operations

Autodiff in practice

$$y = W_2 \sigma(W_1 x + \boldsymbol{b}_1) + \boldsymbol{b}_2$$

- Decompose given function into its primitive operations
- 2) Build a **directed graph** of these operations
- 3) For each primitive operation, define
 - 1) Forward operation
 - 2) vector-Jacobian product
 - 3) Jacobian-vector product

Autodiff in practice

$$y = W_2 \sigma(W_1 x + \boldsymbol{b}_1) + \boldsymbol{b}_2$$

- 2) Build a **directed graph** of these operations
- 3) For each primitive operation, define
 - 1) Forward operation
 - 2) vector-Jacobian product
 - 3) Jacobian-vector product
- 4) Evaluate the vjp or jvp of the function by applying the chain rule (=message passing) through the graph
 - 1) Forwards for jvp
 - 2) Backwards for vjp

Differentiating through an Euler solver

Consider

$$\frac{d\mathbf{y}}{dx} = \mathbf{f}(x)$$

Solve using Euler method:

Given $y_0, x_0, \delta t$:

$$y_{i+1} = y_i + \delta x f(x_i)$$
$$x_{i+1} = x_i + \delta x$$

Differentiating through an Euler solver

Consider

$$\frac{d\mathbf{y}}{dx} = \mathbf{f}(x)$$

Solve using Euler method:

Given $y_0, x_0, \delta t$:

$$y_{i+1} = y_i + \delta x f(x_i)$$
$$x_{i+1} = x_i + \delta x$$

Differentiating through an Euler solver

Consider

$$\frac{d\mathbf{y}}{dx} = \mathbf{f}(x)$$

Solve using Euler method:

Given $y_0, x_0, \delta t$:

$$y_{i+1} = y_i + \delta x f(x_i)$$
$$x_{i+1} = x_i + \delta x$$

We can differentiate through this program in the same way!

And, for example, learn y_0 given observations of y_N

Summary

- PINNs / operator learning entirely replace traditional algorithms with DNNs
- Hybrid approaches instead insert ML inside key parts of traditional algorithms
- Autodifferentiation is the key enabler for SciML
 - Allows hybrid approaches to be trained end-to-end
 - Can differentiate through arbitrary programs
 - This is an incredibly general and powerful idea

