خوشەبندى سلسلەمراتبى

Hierarchical Clustering

$$C_i \subseteq oldsymbol{D}$$
 ویعنی افراز دسته داده ک $oldsymbol{k}$ به k زیر گروه $oldsymbol{C} = \{C_1, \dots, C_k\}$ خوشه بندی

$$C_i \cap_{i \neq j} C_j = \emptyset$$

$$\bigcup_{i=1}^k C_i = \mathbf{D}$$

 $A_i \in \pmb{A}$ و برای هر $\pmb{A} = \{A_i, ..., A_r\}$ و برای هر $\pmb{B} = \{B_1, ..., B_s\}$ مرده است اگر $\pmb{B} = \{B_1, ..., B_s\}$ در خوشه بندی $A_i \in \pmb{A}$ و برای هر $A_i \subseteq B_j$ و برای و

خوشهبندی سلسلهمراتبی همواره منجر به توالی از n خوشهبندی آشیانه ای C_1,\dots,C_n می شود. که از خوشهبندی با خوشههای تک عضوی $C_1=\{\{x_1\},\dots,\{x_n\}\}\}$ شروع و به خوشهبندی با خوشهی n عضوی n عضوی n خاتمه می یابد. n خاتمه می یابد. در حالت عمومی خوشه n در خوشه n آشیانه کرده است. یعنی اگر n و n و n باشد، آنگاه n باشد، آنگاه در حالت عمومی خوشه ی خوشه و n باشد، آنگاه کرده است. یعنی اگر n و n باشد، آنگاه و n باشد و n باشد، آنگاه و n باشد، آنگاه و n باشد و n

یک از روشهای محاسبهی فاصله بین خوشهها روش تک پیوند (Single Link) است.

$$\delta(C_i, C_j) = \min\{\|\mathbf{x} - \mathbf{y}\| \mid \mathbf{x} \in C_i, \mathbf{y} \in C_j\}$$

Figure 14.3. Single link agglomerative clustering.

Algorithm 14.1: Agglomerative Hierarchical Clustering Algorithm

AGGLOMERATIVE CLUSTERING (D, k):

- 1 $C \leftarrow \{C_i = \{\mathbf{x}_i\} \mid \mathbf{x}_i \in \mathbf{D}\}$ // Each point in separate cluster
- 2 $\Delta \leftarrow \{\|\mathbf{x}_i \mathbf{x}_j\| : \mathbf{x}_i, \mathbf{x}_j \in \mathbf{D}\}$ // Compute distance matrix
- 3 repeat
- Find the closest pair of clusters $C_i, C_j \in \mathcal{C}$
- 5 $C_{ij} \leftarrow C_i \cup C_j$ // Merge the clusters
- 6 $\mathcal{C} \leftarrow (\mathcal{C} \setminus \{C_i, C_j\}) \cup \{C_{ij}\}$ // Update the clustering
- 7 Update distance matrix **Δ** to reflect new clustering
- 8 until $|\mathcal{C}| = k$