Análise e desenvolvimento de coeficientes LSFD otimizados para redes Cell-Free mMIMO com apoio de Redes Neurais Profundas

Yan Mendonça Vieira Curado

Orientador: Prof. Dr. Rodrigo Pinto Lemos

05 de março de 2024

Sumário

- ▶ 1- Introdução
 - a. Motivação
 - b. Contextualização
 - c. Objetivos
- ▶ 2- Desenvolvimento
- ► **3-** Resultados
- ► **4-** Trabalhos Futuros

1.

Motivação

- Necessidade por maiores taxas de transferência para as redes sem fio de próxima geração
- Redes Cell-free mMIMO com uso do LSFD só são possíveis assumindo condições ideais
- Combater o efeito da contaminação das pilotos

$$y_l = \sum_{i=1}^K \mathbf{h}_{il} s_i + \mathbf{n}_l$$

$$\check{\boldsymbol{S}}_{kl} \triangleq \mathbf{v}_{kl}^{H} \boldsymbol{y}_{l} = \mathbf{v}_{kl}^{H} \mathbf{h}_{kl} \boldsymbol{S}_{k} + \sum_{i=1, i \neq k}^{K} \mathbf{v}_{kl}^{H} \mathbf{h}_{il} \boldsymbol{S}_{i} + \mathbf{n}_{l}$$

Objetivos

- Desenvolver redes neurais para replicar o papel dos coeficientes LSFD
- Analisar os impactos causados pela interferência mútua no sistema
- Comparativo com estudos de referência

2.

Desenvolvimentos

- Desenvolvimento de diversas arquiteturas de redes neurais (MLP, CNN, TCN, RNN, ResNet)
- Análise do impacto da interferência mútua no sistema
- Processamento de sinais com valores absolutos e complexos
- Wavelets aplicada a redes NOMA*

Modelagem rede *Cell-free mMIMO*

realizações

Modelagem CNN

Modelagem CNN

setups

8.000 amostras

Modelagem CNN

Tipo da camada	Kernel	Entrada	Saída
Conv2d	5x5x64 – [padding:2]	10x10x1	10x10x64
Dropout2d	-	-	-
BatchNorm2d	-	-	-
ReLU	-	-	-
Conv_2	3x3x128 – [padding:1]	10x10x64	10x10x128
Dropout_2	-	-	-
BatchNorm_2	-	-	-
ReLU	-	-	-
Linear_1	-	12.800	1024
Dropout	-	-	-
BatchNorm_3	-	-	-
ReLU	-	-	-
Linear	-	1024	128
Dropout	-	-	-
BatchNorm_4	-	-	-
ReLU	-	-	-
Linear	-	128	1
Sigmoid	-	-	-

Resultados

4.

Trabalhos Futuros

Trabalhos futuros

- Desenvolvimento e implementação de rede OLNN
- Comunicações digitais (Análise de BER)

Obrigado

