Matematika mérnököknek 2

Ismétlés

Numerikus differenciálás

Diffegyenletek

Fourier

Matlab

Projekt

Desc Linkek

Ismétlés

Diff-számítás

Határozatlan integrál

Matematika mérnököknek 2

Diff-számítás

Desc Summa

Fa 1

Fa 2

Ismétlés

Desc Summa

A pillanatnyi változási gyorsaság, az érintő x tengellyel bezárt szögének tangense, meredekség.

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Deriválás és műveletek (legyen $C \in \mathbb{R}$):

$$(Cf)' = cf'$$

$$(f+g) = f' + g'$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2} \qquad g \neq 0$$

$$f(g)' = f'(g)g'$$

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Elemi függvények:

$$C' = 0$$

$$(x^C)' = Cx^{C-1}$$

$$\sin' = \cos$$

$$\cos' = -\sin$$

$$\tan' = \frac{1}{\cos^2}$$

$$\cot' = -\frac{1}{\sin^2}$$

$$(C^x)' = \log(C)C^x \qquad C > 0$$

$$\log(|x|)' = \frac{1}{x} \qquad x \neq 0$$

Diff-számítás

Határozza meg az alábbi függvény deriváltját: $e^{xe^{\sin(x)}}$

Mo 1 Diff-számítás

$$e^{xe^{\sin(x)}}(e^{\sin(x)} + xe^{\sin(x)}\cos(x))$$

Fa 1 Diff-számítás

Határozza meg az alábbi függvény deriváltját:

$$\frac{\log(x\log(x))}{x^2}$$

Mo 2 Diff-számítás

$$\frac{\log(x) + 1}{x^3 \log(x)} - \frac{2 \log(x \log(x))}{x^3}$$

Fa 2 Diff-számítás

Határozatlan integrál

```
Desc Summa

Fa 1

Fa 2

Fa 3

Fa e^{ax}\sin(x)

Fa e^{ax}\cos(x)
```

Ismétlés

Desc Summa

Határozatlan integrál, anti-derivált.

$$\left(\int f\right)' = f$$

Tulajdonságok $C, D \in \mathbb{R}$:

$$\int (Cf + g) = C \int f + \int g$$

$$\int C dx = Cx + D$$

$$\int x^C dx = \frac{x^{C+1}}{C+1} + D \qquad C \neq -1$$

$$\int \sin = -\cos + C$$

$$\int \cos = \sin + C$$

$$\int \frac{1}{x} dx = \log|x| + C \qquad x \neq 0$$

$$\int C^x dx = \frac{C^x}{\log C} + D \qquad C > 0, C \neq 1$$

$$\int (f'g + fg') = fg + C$$

$$\int f(g)g' = \left(\int f\right)(g) + C$$

Számoljuk ki a következő integrált:

$$\int xe^{x^2}\mathrm{d}x$$

Mo 1

Mivel $\frac{de^{x^2}}{dx} = 2xe^{x^2}$, ezért a megoldás:

$$\frac{e^{x^2}}{2} + C.$$

Fa 1

Számoljuk ki a következő integrált: $\int \sin(x) e^x \mathrm{d}x$

Mo 2

Parciális:

$$\int \sin(x)e^x dx = -\cos(x)e^x - \int -\cos(x)e^x dx =$$
$$-\cos(x)e^x + \int \cos(x)e^x dx$$

$$\int \sin(x)e^x dx = \sin(x)e^x - \int \cos(x)e^x dx$$

Összeadva:

$$\int \sin(x)e^x dx = \frac{\sin(x) - \cos(x)}{2}e^x + C$$

Fa 2

Számoljuk ki a következő integrált: $\int \cos^3(x) \mathrm{d}x$

Mo 3 Határozatlan integrál

Helyettesítés: u = sin(x)

$$\int \cos^3(x) dx = \int (1 - \sin^2(x)) \cos(x) dx =$$

$$\int 1 - u^2 du = u - \frac{u^3}{3} + C = \sin(x) - \frac{\sin^3(x)}{3} + C$$

Fa 3

Fa $e^{ax}\sin(x)$

Legyen
$$0 \neq a \in \mathbb{R}$$
:
$$\int e^{au} \sin(u) du = ?$$

Mo $e^{ax}\sin(x)$ Határozatlan integrál

Mo $e^{ax}\sin(x)$

parciális integrálás:

$$f = e^{au}, \quad g' = \sin(u):$$

$$\int e^{au} \sin(u) du = -e^{au} \cos(u) - \int ae^{au} (-\cos(u)) du =$$
$$= -e^{au} \cos(u) + a \int e^{au} \cos(u) du$$

 $f' = e^{au}, \quad g = \sin(u)$:

$$\int e^{au} \sin(u) du = \frac{e^{au}}{a} \sin(u) - \int \frac{e^{au}}{a} \cos(u) du =$$
$$\frac{e^{au}}{a} \sin(u) - \frac{1}{a} \int e^{au} \cos(u) du =$$

szorozzuk meg a^2 -el a másodikat és adjuk össze az elsővel:

$$(1+a^2) \int e^{au} \sin(u) du = ae^{au} \sin(u) - e^{au} \cos(u) \implies$$

$$\int e^{au} \sin(u) du = \frac{e^{au} (a \sin(u) - \cos(u))}{1+a^2}$$

Fa $e^{ax}\sin(x)$

Fa $e^{ax}\cos(x)$

Legyen
$$0 \neq a \in \mathbb{R}$$
:
$$\int e^{au} \cos(u) du = ?$$

Mo $e^{ax}\cos(x)$ Határozatlan integrál

Mo $e^{ax}\cos(x)$

Az előző feladatban összadás helyett vonjunk ki.

$$\int e^{au} \cos(u) du = \frac{e^{au} (\sin(u) + a \cos(u))}{1 + a^2}$$

Fa $e^{ax}\cos(x)$

Numerikus differenciálás

```
Fa \sin(\frac{a}{x})
Fa \sin(\frac{a}{x}), szimder
```

Matematika mérnököknek 2

Fa $\sin(\frac{a}{x})$

Tegyük fel, hogy az $f(x) = \sin(\frac{100}{x})$ függvény értékei h = 0.001 lépésközzel adottak a $[0.5, 2\pi]$ intervallumon. Deriváljuk numerikusan a függvényt! Ábrázoljuk az eredményt a függvény tényleges deriváltjával közös ábrán. Magyarázzuk meg az eltérést a $\frac{\sin(3x)}{x}$ fv-nél látottakhoz képest.

Mo $\sin(\frac{a}{x})$

Mo $\sin(\frac{a}{x})$

Egy lehetséges megoldás:

```
function numdiff(f, df, a, b, h)
    x=a:h:b;
    y=f(x);
    d1=diff(y)./diff(x);
    figure; plot(x(1:end-1),d1)
    fd1=df(x);
    delta=sum(abs(fd1(1:end-1)-d1));
    title(sprintf('az eltérés-összeg: %f\n',delta))
    hold on; plot(x,fd1); hold off
end
```

Fa $\sin(\frac{a}{r})$

Fa $\sin(\frac{a}{x})$, szimder

Tegyük fel ismét, hogy az $f(x) = \sin(\frac{100}{x})$ függvény értékei h = 0.001 lépésközzel adottak a $[0.5, 2\pi]$ intervallumon. Deriváljuk numerikusan a függvényt, ám most a derivált közelítését az alábbi formulával számoljuk:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

Mo $\sin(\frac{a}{x})$, szimder

Mo $\sin(\frac{a}{x})$, szimder

Egy lehetséges megoldás:

```
function numdiffSym(f, df, a, b, h)
  x=a:h:b;
  y=f(x);
  d1=(y(3:end)-y(1:end-2))/(2*h);
  figure; plot(x(2:end-1),d1)
  fd1=df(x);
  delta=sum(abs(fd1(2:end-1)-d1));
  title(sprintf('az eltérés-összeg: %f\n', delta));
  hold on; plot(x,fd1); hold off
end
```

Fa $\sin(\frac{a}{x})$, szimder

Diffegyenletek

Osztályozás

Szétválasztható

Elsőrendű, homogén lineáris

Elsőrendű, inhomogén lineáris

Szöveges feladatok

Kezdetiérték feladatok

$$y' = f(\frac{y}{x})$$

Bernoulli

$$y'' = a_1 y' + a_0 y$$

Matematika mérnököknek 2

Osztályozás

Desc Summa

Fa 1

Fa 2

Fa 3

Fa 4

Diffegyenletek

Desc Summa

Egy differenciálegyenlet

- közönséges: ha csak egyetlen változóra vonatkozó deriváltakat tartalmaz. Egyébként parciális.
- rendje: a benne szereplő ismeretlen függvény legmagasabb rendű deriváltja.
- lineáris: ha benne szereplő ismeretlen függvény illetve deriváltjai csak első hatványon szerepelnek, azaz ha

$$\sum_{k=0}^{n} P_k(x) \frac{d^k y}{dx^k} = Q(x)$$

alakú (vagy ilyenre hozható), ahol $P_k(x)$ csak x-től függ. Egyébként $nemline \acute{a}ris$ -nak nevezzük.

Közönséges, elsőrendű, nemlineáris differenciálegyenlet:

$${y'}^2 = \sin(x\sqrt{y}) + 123 + y$$

egy közönséges, másodrendű, lineáris differenciálegyenlet.

$$y'' + \sin(x) = 123 + y$$

Parciális, elsőrendű, nemlineáris differenciálegyenlet:

$$(f_x')^2 - (f_y')^2 = xy$$

Parciális, másodrendű, lineáris differenciálegyenlet:

$$f_{xx}'' - f_{xy}'' = xy$$

Osztályozás

Állapítsa meg az alábbi differenciálegyenlet típusát:

$$\frac{dy}{dx} = x + 4$$

Mo 1 Osztályozás

közönséges, elsőrendű, lineáris.

Fa 1 Osztályozás

Állapítsa meg az alábbi differenciálegyenlet típusát:

$$\frac{d^2y}{dx^2} = a \qquad a \in \mathbb{R}$$

Mo 2 Osztályozás

közönséges, másodrendű, lineáris.

Fa 2 Osztályozás

Állapítsa meg az alábbi differenciálegyenlet típusát:

$$y'' = y'\sin(x) - \cos(x)$$

Mo 3 Osztályozás

közönséges, másodrendű, lineáris.

Fa 3 Osztályozás

Fa 4

Állapítsa meg az alábbi differenciálegyenlet típusát:

$$2y'' + 3y' + 4\sqrt{y} = 0$$

Mo 4 Osztályozás

Mo 4

közönséges, másodrendű, nemlineáris.

Fa 4 Osztályozás

Szétválasztható

Desc Summa

Fa 1.feladat

Fa 2.feladat

Fa 3.feladat

Fa 4.feladat

Fa 5.feladat

Fa 6.feladat

Diffegyenletek

Desc Summa

Egy differenciálegyenletet szétválasztható változójúnak nevezünk, ha

$$g(y)y' = f(x)$$

alakú, vagy ilyenre hozható. Vagyis az x és y változók elkülöníthetőek (szétválasztható, szeparálható)

A fenti alak 'megoldása':

$$\int g(y) \mathrm{d}y = \int f(x) \mathrm{d}x$$

A következő speciális esetekkel gyakran találkozunk:

$$y' = f(x) y = \int f(x) dx$$
$$y' = g(y) x = \int \frac{1}{g(y)} dy$$
$$y' = f(x)g(y) \int f(x)dx = \int \frac{1}{g(y)} dy$$

Szétválasztható

Fa 1.feladat

Oldja meg a

$$\frac{du}{dy} = u(y)y$$

differenciálegyenletet!

Mo 1.feladat

Szétválasztható

Mo 1.feladat

$$\frac{u'}{u} = y$$

$$\log(|u|)' = y$$

$$\log(|u|) = \frac{y^2}{2} + C \quad C \in \mathbb{R}$$

$$|u| = e^C e^{\frac{y^2}{2}}$$

$$u = Ce^{\frac{y^2}{2}} \quad C \in \mathbb{R}$$

Fa 1.feladat Szétválasztható

Fa 2.feladat

Oldja meg a következő differenciálegyenletet:

$$z^3 + \frac{du}{dz}(u+1)^2 = 0$$

Mo 2.feladat Szétválasztható

Mo 2.feladat

$$u'(u+1)^2 = -z^3$$

$$\int (u+1)^2 du = \int -z^3 dz$$

$$\frac{(u+1)^3}{3} = \frac{-z^4}{4} + C \quad u\text{-t kifejezve:}$$

$$u = \left(\frac{-3z^4}{4} + C\right)^{\frac{1}{3}} - 1$$

Fa 2.feladat Szétválasztható

Fa 3.feladat

Oldja meg a következő differenciálegyenletet :

$$y' = 2\cos(x) + 3\sin(x)$$

Mo 3.feladat

Szétválasztható

Mo 3.feladat

$$y = 2\sin(x) - 3\cos(x)$$

Fa 3.feladat Szétválasztható

Fa 4.feladat

Oldja meg a következő differenciálegyenletet:

$$y' = y^2$$

Mo 4.feladat

Szétválasztható

Mo 4.feladat

$$x = \int \frac{1}{y^2} dy$$
$$x = -\frac{1}{y} + C$$
$$y = -\frac{1}{x - C}$$

Fa 4.feladat Szétválasztható

Fa 5.feladat

Oldja meg a következő differenciálegyenletet:

$$y' = ay$$
 $a \in \mathbb{R}$

Mo 5.feladat

Szétválasztható

Mo 5.feladat

$$t = \int \frac{1}{ay} dy$$
$$t = \frac{\log(|y|)}{a} + C$$
$$e^{at} = e^{C}|y|$$
$$y = Ce^{at} \quad C \in \mathbb{R}$$

Fa 5.feladat Szétválasztható

Fa 6.feladat.

Oldja meg a következő differenciálegyenletet:

$$(1+x)yy'=1$$

Mo 6.feladat

Szétválasztható

Mo 6.feladat.

szétválasztható

$$yy' = \frac{1}{1+x}$$

$$\int y dy = \int \frac{1}{1+x} dx$$

$$\frac{y^2}{2} = \log(|1+x|) + C$$

$$y = \pm \sqrt{2\log(|1+x|) + C}$$

Fa 6.feladat Szétválasztható

Elsőrendű, homogén lineáris

Desc Summa

Fa 1

Fa 2

Diffegyenletek

Desc Summa

$$y' + A(t)y = 0$$

megoldása (lásd: ??):

$$y = Ce^{-\int A(t)dt}$$
 $C \in \mathbb{R}$

Speciálisan, ha A(t) = A konstans:

$$y = Ce^{-At} \qquad C \in \mathbb{R}$$

Fa 1

Oldja meg a következő differenciálegyenletet :

$$y' + 10y = 0$$

Mo 1

Mo 1

$$y = Ce^{-10t} \qquad C \in \mathbb{R}$$

Fa 1 Elsőrendű, homogén lineáris

Fa 2

Oldja meg a következő differenciálegyenletet :

$$y' = \log(t)y$$

Mo 2

Mo 2

$$\int \log(t)dt = \log(t)t - \int 1dt =$$

$$= \log(t)t - t + C \qquad C \in \mathbb{R}$$

$$\int \frac{1}{y} dy = \log(|y|) \qquad C \in \mathbb{R}$$

vagyis:

$$y = Ce^{t(\log(t)-1)}$$
 $C \in \mathbb{R}$ (rv)

Fa 2

Elsőrendű, inhomogén lineáris

Fa 1. feladat

Fa 2. feladat

Diffegyenletek

Fa 1. feladat

Oldja meg a következő differenciálegyenletet :

$$y' = y + x + 2$$

Mo 1. feladat

Mo 1. feladat

elsőrendű, lineáris, inhomogén

$$y = Ce^x$$
 a homogén megoldása

$$C = C(x)$$
 változó variálása

$$C'(x)e^{x} + C(x)e^{x} = C(x)e^{x} + x + 2$$

$$C'(x) = (x+2)e^{-x}$$
 parciálisan integráljuk

$$C(x) = -(x+2)e^{-x} + \int e^{-x} dx = -(x+3)e^{-x} + K$$

$$y = \left(-(x+3)e^{-x} + K\right)e^x$$

Ellenőrizzük géppel is a megoldást! kód

Fa 1. feladat

Fa 2. feladat

Oldja meg a következő differenciálegyenletet :

$$xy' - 2y = 2x^4$$

Mo 2. feladat

Mo 2. feladat

elsőrendű, lineáris, inhomogén

$$y' = \frac{2}{x}y + 2x^3$$

 $y = Cx^2$ a homogén megoldása

C = C(x) változó variálása

$$C'(x)x^{2} + \underline{C(x)2x} = \frac{2}{\underline{x}}C(x)x^{2} + 2x^{3}$$

$$C'(x) = 2x \implies C(x) = x^2 + K$$

$$y = (x^2 + K)x^2 \qquad K \in \mathbb{R} \qquad (mod)$$

Ellenőrizzük géppel is a megoldást!

Fa 2. feladat

Szöveges feladatok

Fa keverés

Fa görbe

Fa levegő

Fa 4

Fa rádium

Fa hűlés

Diffegyenletek

Fa keverés

Egy 10 liter vizet tartalmazó edénybe *literenként* 0.3 kg sót tartalmazó oldat folyik be folyamatosan 2 liter/perc sebességgel. Az edénybe belépő folyadék összekeveredik a vízzel és a keverék 2 liter/perc sebességgel kifolyik az edényből. Mennyi só lesz az edényben 5 perc múlva?

Mo keverés

Mo keverés

Jelölje s(t) a tartálybeli só mennyiségét t-edik időpillanatban. Nézzük mi történik a $[t,t+\Delta t]$ intervallumban:

$$s(t + \Delta t) = s(t) + \Delta t \cdot 2 \cdot 0.3 - \Delta t \cdot 2 \frac{s(t)}{10}$$

A $\Delta t \rightarrow 0$ határátmenetet véve kapjuk:

$$s' = 0.6 - 0.2s$$

$$s(t) = Ce^{-0.2t} \text{ homogén}$$

$$C'(t)e^{-0.2t} - 0.2C(t)e^{-0.2t} = 0.6 - 0.2C(t)e^{-0.2t} \text{ variálás}$$

$$C'(t) = 0.6e^{0.2t} \implies C(t) = 3e^{0.2t} + K$$

$$s(t) = \left(3e^{0.2t} + K\right)e^{-0.2t} = 3 + Ke^{-0.2t}$$

$$s(0) = 0 = 3 + K, K = -3 \implies s(5) = 3 - \frac{3}{e} \approx 1.8964$$

Fa keverés

Fa görbe

Keressük meg azokat a görbéket, melyek esetében bármely érintőnek az x-tengellyel vett metszéspontjának x-koordinátája fele akkora, mint az érintési ponté.

Mo görbe

Mo görbe

$$y(x)$$
 a keresett függvény x_0 egy tetszőleges pont $y_0 = y(x_0), \quad y_0' = y'(x_0)$ $y_0 + y_0'(x - x_0)$ az érintő egyenlete $x_m = x_0 - \frac{y_0}{y_0'}$ a metszéspont $\frac{x_0}{2} = x_0 - \frac{y_0}{y_0'}$ a feltétel miatt $\frac{x}{2} = x - \frac{y}{y'}$ a diffegyenlet $\int \frac{1}{y} dy = 2 \int \frac{1}{x} dx$ szétválasztható $\log(|y|) = 2 \log(|x|) + C$ $y = Dx^2$ adódik $D \neq 0$

Fa görbe

Fa levegő

Egy 200 m^3 térfogatú szobában 0.15% szén-dioxid van. A ventillátor percenként 20 m^3 0.04% CO_2 tartalmú levegőt fúj a helyiségbe. Mennyi idő múlva csökken a szoba levegőjében a CO_2 mennyiség a harmadára?

Mo levegő

Mo levegő

Legyen y(t) a CO_2 mennyisége (m^3) a t-edik időpillanatban. Mitörténik a $[t, t + \Delta t]$ -ben?

$$y(t + \Delta t) = y(t) + \Delta t \ 20 \ 0.04 - \Delta t \ 20 \ \frac{y(t)}{200}$$

$$y' = 0.8 - 0.1y$$

$$y = Ce^{-0.1t} \text{ homogén, variálás}$$

$$C'(t)e^{-0.1t} - 0.1C(t)e^{-0.1t} = 0.8 - 0.1C(t)e^{-0.1t}$$

$$C(t) = 0.8e^{0.1t} \implies C(t) = 8e^{0.1t} + K$$

$$y(t) = 8 + Ke^{-0.1t}$$

$$y(0) = 30 = 8 + K, K = 22$$

$$y(t) = 10 \implies t = 23.979$$

Fa levegő

Fa 4

Egy 100 liter vizet tartalmazó edényben 0.5 kg só van oldott állapotban. Az edénybe 5 $\frac{liter}{perc}$ sebességgel tiszta víz folyik be, és az oldat ugyanilyen sebességgel a túlfolyón távozik. Mennyi lesz az oldatban levő só mennyisége 1 óra múlva?

Mo 4

Mo 4

Jelölje s(t) a tartálybeli só mennyiségét t-edik időpillanatban. Legyen Δt egy "elegendően" kicsiny időtartam. Ekkor

$$s(t + \Delta t) = s(t) - \frac{s(t)5\Delta t}{100}$$

A $\Delta t \rightarrow 0$ határátmenetet véve kapjuk a

$$s' = -\frac{5}{100}s$$

differenciálegyenletet, melynek általános megoldása

$$s(t) = Ce^{-\frac{5}{100}t}$$

melyből,

$$s(0) = 0.5 = Ce^0 = C$$

adódik, ahonnan

$$s(60) = \frac{0.5}{e^3} \approx 0.025 \text{kg}.$$

Fa 4

Fa rádium

A rádium bomlási sebessége arányos a pillanatnyi rádium mennyiséggel. Tudjuk, hogy a bomlás következtében a rádium mennyisége 1000 év alatt felére csökken. Hány százaléka bomlik el az anyagnak 100 év alatt?

Mo rádium

Mo rádium

Jelölje m(t) a rádium atomok számát t időpillanatban. Ha Δt egy pozitív szám, akkor a

$$\frac{m(t) - m(t + \Delta t)}{\Delta t}$$

mennyiség az (átlagos) bomlási sebesség a $[t, t + \Delta t]$ intervallumon. $\Delta t \to 0$ -t véve, megkapjuk a pillanatnyi bomlási sebességet, ami a feltevés szerint arányos a pillanatnyi anyagmennyiséggel:

$$m' = \beta m$$

$$m(t) = Ce^{\beta t} \quad C \in \mathbb{R}$$

$$m(0) = C$$

$$m(1000) = Ce^{\beta 1000} = 0.5C$$

$$\beta = \frac{\log(0.5)}{1000}$$

$$\frac{m(100)}{m(0)} = e^{\frac{\log(0.5)}{10}} \approx 0.933$$

Azaz kb. 6.67%-a bomlik el 100 év alatt a rádiumnak.

Fa rádium

Fa hűlés

Egy test 10 perc alatt 100 C fokról 60 C fokra hűlt le. A környező levegő hőmérsékletét konstans 20 C foknak tekinthetjük. Mikor hűl le a test 25 C fokra, ha a test hűlésének sebessége egyenesen arányos a test és az őt körülvevő levegő hőmérsékletének különbségével? (bővebben: Newton law of cooling)

Mo hűlés

Mo hűlés

Legyen a test hőmérséklete h(t) a t-edik időpillanatban:

$$h'(t) = K(h(t) - 20) \quad \text{a feltételek és hűlés-törvény miatt}$$

$$(h(t) - 20)' = K(h(t) - 20) \quad \text{homogén, megoldása:}$$

$$h(t) = Ce^{Kt} + 20$$

$$h(0) = 100 \implies C = 80$$

$$h(10) = 60, \quad 80e^{K10} + 20 = 60, \quad K = \frac{\log(0.5)}{10}$$

$$h(T) = 80e^{T\frac{\log(0.5)}{10}} + 20 = 80 \cdot 2^{-\frac{T}{10}} + 20 = 25$$

$$2^{-\frac{T}{10}} = 2^{-4}, \quad T = 40$$

Fa hűlés

Kezdetiérték feladatok

Fa 1

Fa 2

Fa 3

Fa 4

Fa 5

Diffegyenletek

Fa 1

Oldja meg a következő kezdeti érték feladatot:

$$\dot{x} = 2x - t, \qquad x(0) = 1$$

Mo 1

Mo 1

elsőrendű, lineáris, inhomogén,

(homogén mo. -> általános mo. -> konstans meghatározása)

$$\dot{x} = 2x \text{ homogén:}$$

$$x = Ce^{2t} \text{ variálás:}$$

$$C'e^{2t} + C2e^{2t} = 2Ce^{2t} - t$$

$$C'(t) = -te^{-2t} \text{ parciális int:}$$

$$\int -te^{-2t} dt =$$

$$= \frac{1}{2} \int t(-2e^{-2t}) dt = \frac{1}{2}te^{-2t} - \frac{1}{2} \int e^{-2t} dt =$$

$$= \frac{1}{2}te^{-2t} + \frac{1}{4}e^{-2t} + K$$

$$x = \left(\frac{1}{2}te^{-2t} + \frac{1}{4}e^{-2t} + K\right)e^{2t}$$

$$x(0) = 1 = (0 + 0.25 + K) \cdot 1 \implies K = \frac{3}{4}$$

Fa 1

Fa 2

Oldja meg a következő kezdeti érték feladatot:

$$y' = xy \qquad y(0) = 1$$

Mo 2

Mo 2

A homogén elsőrendű lineárisak szétválaszthatóak, ezért a megoldás:

$$y = Ce^{\frac{x^2}{2}}$$

ezért

$$y(0) = C \cdot 1 = C = 1$$
$$y = e^{\frac{x^2}{2}}$$

Fa 2

Fa 3

Oldja meg a következő kezdeti érték feladatot:

$$y'(t) = -y(t) + \cos(t), \qquad y(0) = 0$$

Mo 3

Mo 3

elsőrendű, lineáris, inhomogén,

(homogén mo. -> általános mo. -> konstans meghatározása)

$$y(t) = Ce^{-t} \quad \text{a homogén megoldása, változó variálása:}$$

$$C'(t)e^{-t} + C(t)(-1)e^{-t} = -C(t)e^{-t} + \cos(t)$$

$$C'(t) = e^t \cos(t) \quad \text{parciális int, kétféleképpen:}$$

$$\int e^t \cos(t) dt = e^t \sin(t) - \int e^t \sin(t) dt$$

$$\int e^t \cos(t) dt = e^t \cos(t) + \int e^t \sin(t) dt$$

$$\int e^t \cos(t) dt = \frac{e^t (\sin(t) + \cos(t))}{2} + K$$

$$y(t) = \frac{\sin(t) + \cos(t)}{2} + Ke^t$$

$$y(0) = 0 = \frac{0+1}{2} + K \cdot 1 \implies K = -0.5$$

$$y(t) = \frac{\sin(t) + \cos(t) - e^t}{2}$$

Fa 3

Fa 4

Oldja meg a következő kezdeti érték feladatot:

$$\dot{x} + t^2 x = t^2, \quad x(0) = 2$$

Mo 4

Mo 4

$$\dot{x}=-t^2x \qquad \text{a homogén rész, melynek megoldása:}$$

$$x(t)=Ce^{-\frac{t^3}{3}} \quad \text{variálás:}$$

$$C'(t)e^{-\frac{t^3}{3}}+C(t)(-t^2)e^{-\frac{t^3}{3}}=-t^2C(t)e^{-\frac{t^3}{3}}+t^2$$

$$C'(t)=t^2e^{\frac{t^3}{3}}=\left(e^{\frac{t^3}{3}}\right)'\Longrightarrow$$

$$C(t)=e^{\frac{t^3}{3}}+K$$

$$y(t)=1+Ke^{-\frac{t^3}{3}}$$

$$y(0)=2=1+K\cdot 1\implies K=1$$

Fa 4

Fa 5

Adjuk meg a

$$e^{y-x} + y'e^{x-y} = 0$$

egyenlettel megadott görbesereg origón átmenő példányát.

Mo 5

Mo 5

1.megoldás: szokásos módon szeparábilis-ként oldjuk meg

2.megoldás: látjuk, hogy az y(x)=x egy megoldás, és az egyenletet y'=f(x,y) alakban felírva felfedezhetjük, hogy teljesülnek a Picard-Lindelöf feltételei (f_y' folytonos), így megvan az egyetlen megoldás.

Fa 5

$$y' = f(\frac{y}{x})$$

Desc Summa

Fa 1.feladat

Fa 2.feladat

Diffegyenletek

Desc Summa

$$f(tx,ty)=f(x,y)$$
 változóiban homogén
$$\iff f(x,y)=h\Big(\frac{y}{x}\Big) \quad \text{mert:}$$

$$f(x,y)=f\Big(x\frac{x_0}{x},y\frac{x_0}{x}\Big)=$$

$$=f\Big(x_0,x_0\frac{y}{x}\Big)=h\Big(\frac{y}{x}\Big)$$

Az ilyenek szeparábilisra vezetnek:

$$y' = h\left(\frac{y}{x}\right)$$
$$u = \frac{y}{x} \text{ helyettesítés}$$

$$u'x + u = h(u)$$
 szeparábilis...

$$y' = f(\frac{y}{x})$$

Fa 1.feladat

Oldja meg a következő differenciálegyenletet:

$$y' = \frac{x^2 + y^2}{xy}$$

Mo 1.feladat

 $y' = f(\frac{y}{x})$

Mo 1.feladat

$$u = \frac{y}{x}$$

$$u'x + u = u + \frac{1}{u}$$

$$uu' = \frac{1}{x}$$

$$\int u du = \int \frac{1}{x} dx$$

$$\frac{u^2}{2} = \log(|x|) + C$$

$$y = \pm x \left(\log(x^2) + C\right)^{\frac{1}{2}}$$

Fa 1.feladat $y' = f(\frac{y}{x})$

Fa 2.feladat

Oldja meg a következő differenciálegyenletet:

$$xy' + y\log(x) = y\log(y)$$

Mo 2.feladat $y' = f(\frac{y}{x})$

Mo 2.feladat

$$e^{u} = \frac{y}{x}$$

$$y' = e^{u}u'x + e^{u} = e^{u}u$$

$$u'x + 1 = u \quad \text{sz\'etv\'alaszthat\'o}:$$

$$\frac{u'}{u - 1} = \frac{1}{x} \quad \text{integr\'alva}:$$

$$\log(|u - 1|) = \log(|x|) + C$$

$$|u - 1| = D|x| \quad D > 0$$

$$u = Dx + 1 \quad D \in \mathbb{R}$$

$$y = xe^{Dx + 1}$$

Fa 2.feladat $y' = f(\frac{y}{x})$

Bernoulli

Desc Summa

Fa 1.feladat

Fa 2.feladat

Fa 3.feladat

Fa 4.feladat

Diffegyenletek

Desc Summa

$$y' = f_1 y + f_a y^a$$
 alakú, $a \neq 0, 1$

Keressük a megoldást u^b alakban:

$$bu^{b-1}u' = f_1u^b + f_au^{ab}$$

$$b - 1 = ab \implies b = \frac{1}{1-a}$$

$$bu' = f_1u + f_a$$

$$u' = (1-a)f_1u + (1-a)f_a$$

Összefoglalva:

$$u' = (1 - a)f_1 u + (1 - a)f_a$$
 (ber)
 $y = u^{\frac{1}{1-a}}$

Bernoulli

Fa 1.feladat

Oldja meg a következő differenciálegyenletet :

$$xy^2y' = x^2 + y^3$$

Mo 1.feladat Bernoulli

Mo 1.feladat

Bernoulli, a = -2-vel

$$y' = xy^{-2} + \frac{1}{x}y$$

$$u' = 3\frac{1}{x}u + 3x$$

$$u' = 3\frac{1}{x}u \quad \text{homogén:}$$

$$u = Cx^3 \quad \text{változó variálás:}$$

$$C'(x)x^3 + C(x)3x^2 = 3x + 3C(x)x^2$$

$$C'(x) = 3x^{-2}, \quad C(x) = -3x^{-1} + K$$

$$u = x^2(Kx - 3)$$

$$y = \left(x^2(Kx - 3)\right)^{\frac{1}{3}}$$

Fa 1.feladat Bernoulli

Fa 2.feladat

Oldja meg a következő differenciálegyenletet :

$$tu' + 4u = t^4u^2 \qquad t > 0$$

Mo 2.feladat Bernoulli

Mo 2.feladat

Az eredeti egy Bernoulli a = 2-vel:

$$u' = -\frac{4}{t}u + t^3u^2$$

tehát $y^{\frac{1}{1-a}} = y^{-1} = u$ -val, a következőt kell megoldani:

$$y' = \frac{4}{t}y - t^3$$

$$y' = \frac{4}{t}y \implies y = Kt^4 \quad \text{változó variálás:}$$

$$K't^4 + K4t^3 = \frac{4}{t}Kt^4 - t^3$$

$$K' = -\frac{1}{t} \implies K(t) = -\log(|t|) + C$$

$$K(t) = C - \log(t) \quad t \quad \text{pozitív}$$

$$y = t^4(C - \log(t))$$

$$u = \frac{1}{t^4(C - \log(t))}$$

Fa 2.feladat Bernoulli

Fa 3.feladat

Oldja meg a következő differenciálegyenletet :

$$u' = u^4 \cos(x) + u \tan(x)$$

Mo 3.feladat Bernoulli

Mo 3.feladat

Bernoulli a = 4-el:

$$y' = -3\tan(x)y - 3\cos(x)$$

$$y' = -3\tan(x)y \quad \text{homogén:}$$

$$y = Ce^{-3\int \tan(x)dx}$$

$$\int \tan(x)dx = -\log(|\cos(x)|)$$

$$y = C|\cos(x)|^3$$

$$y = C\cos^3(x) \quad \text{konstans variálás:}$$

$$C'(x)\cos^3(x) - C(x)3\cos^2(x)\sin(x) =$$

$$= -3\tan(x)C(x)\cos^3(x) - 3\cos(x)$$

$$C'(x)\cos^3(x) = -3\cos(x)$$

$$C'(x) = -3\frac{1}{\cos^2(x)}C(x) = -3\tan(x) + K$$

$$y(x) = (-3\tan(x) + K)\cos^3(x)$$

$$u(x) = ((-3\tan(x) + K)\cos^3(x))^{-\frac{1}{3}}$$

Fa 3.feladat Bernoulli

Fa 4.feladat

Oldja meg következő differenciálegyenletet:

$$3x' + x = (1 - 2t)x^4$$

Mo 4.feladat Bernoulli

Mo 4.feladat

$$x' = -\frac{1}{3}x + \frac{1-2t}{3}x^4 \quad \text{Bernoulli, } a = 4$$

$$y' = y + (2t-1) \quad y^{-\frac{1}{3}} = x$$

$$y = C(t)e^t \quad \text{:hom.mo.; C-variálás:}$$

$$C'(t) = e^{-t}(2t-1) \quad \text{parciális int.:}$$

$$\int e^{-t}(2t-1) dt = -e^{-t}(2t-1) - \int -e^{-t} 2 dt =$$

$$= -e^{-t}(2t-1) - 2e^{-t} =$$

$$= K - e^{-t}(2t+1) \quad \text{inhom-ba vissza:}$$

$$y = \left(K - e^{-t}(2t+1)\right)e^t$$

$$x = y^{-\frac{1}{3}} = \frac{1}{\left((K - e^{-t}(2t+1))e^t\right)^{\frac{1}{3}}} =$$

$$= \frac{1}{\left(Ke^t - (2t+1)\right)^{\frac{1}{3}}} =$$

Fa 4.feladat Bernoulli

$$y'' = a_1 y' + a_0 y$$

Desc Képlet

Diffegyenletek

Desc Képlet

másodrendű, lineáris, homogén, konstans együtthatós:

$$y'' = a_1 y' + a_0 y = 0$$

$$\lambda^2 = a_1 \lambda + a_0 = 0$$
 karakterisztikus egyenlet

$$\lambda_1 \neq \lambda_2$$
 valósak:

$$C_1 e^{\lambda 1 t} + C_2 e^{\lambda 2 t}$$
 az ált. mo.

$$\lambda_1 = \lambda_2$$
 valós:

$$C_1 e^{\lambda 1t} + C_2 t e^{\lambda 2t}$$
 az ált. mo.

 $\lambda_1 \neq \lambda_2$ komplexek:

$$\lambda_{1,2} = a \pm bi$$

 $C_1 e^{at} \cos(bt) + C_2 t e^{at} \sin(bt)$ az ált. mo.

$$y'' = a_1 y' + a_0 y$$

Fourier

Sorok

Transzform

Matematika mérnököknek 2

Sorok

Desc Egyben

Fourier

Desc Egyben

pdf Sorok

Transzform

Desc Egyben

Fourier

Desc Egyben

pdf

Transzform

Matlab

Desc diff

Fa másik diff

Desc függvények megadása

Matematika mérnököknek 2

Desc diff

```
diff
input: v = [v_1, \dots, v_n]
output: dv = [v_2 - v_1, \dots, v_n - v_{n-1}]
példa:
 v=[1:7].^2
 v =
          4 9
                   16
                        25
                             36
     1
                                  49
 dv=diff(v)
 dv =
     3 5 7 9
                        11
                             13
 diff(diff(v))
 ans =
    2 2 2 2 2
 diff(v,2)
 ans =
    2
        2 2
               2
                    2
```

Azaz megfelelő paraméterezéssel több diff hívást összevonhatunk.

Matlab

Fa másik diff

Hogyan valósitaná meg a diff függvényt? (elegendő ha vektorok esetén működik, de ciklust ne tartalmazzon!)

Mo másik diff Matlab

Mo másik diff

```
Egy lehetséges megoldás:
```

```
function dv=mdiff(v)
  dv=v(2, end)-v(1, end-1);
end
```

Próbáljuk ki!

Fa másik diff Matlab

Desc függvények megadása

Rövid függvények megadásának legegyszerűbb módja:

```
fun = @(x) x.^2

fun =

@(x) x.^2

fun(1:7)

ans =

1 4 9 16 25 36 49
```

További lehetőségek: create functions.

Matlab

Projekt

Desc Nappali

Desc Levelező

Első projekt

Második projekt

Harmadik projekt

Matematika mérnököknek 2

Desc Nappali

	1	Koczka,Boiko,Makár,Polgár	2
Polyák,Balyi,Pákozdi,Szilágyi	3	Radáz	4
Kátai	5		6
Zolnai, Patkós,Kádár,Süvöltős	7	Csatári,Jécsák,Varga	8
	9		10
	11		12
	1		2
	3		4
	5		6
	7		8
	9		10
	11		12

Desc Levelező

Első projekt

- Desc 1
- Desc 2
- Desc 3
- Desc 4
- Desc 5
- Desc 6
- Desc 7
- Desc 8
- Desc 9
- Desc 10
- Desc 11
- Desc 12

Vezesse le a

$$y' - y = x + \sin(x)$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a $[-3,3] \times [-2,5]$ -en és rajzoltassa rá az $y(-3)=1.5, \quad y(-3)=2.5, \quad y(-3)=3.5$

kezdeti értékekhez tartozó megoldásokat is.

Vezesse le a

$$y' + y = x^2 + x$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a $[-3,1] \times [-2,6]$ -en és rajzoltassa rá az

$$y(-3) = -1, \quad y(-3) = 1, \quad y(-3) = 3$$

kezdeti értékekhez tartozó megoldásokat is.

Vezesse le a

$$y' + \frac{y}{x} = \sqrt{x}$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a $[0.5,4] \times [-4,6]$ -en és rajzoltassa rá az

$$y(0.5) = -4, \quad y(0.5) = 0, \quad y(0.5) = 4$$

kezdeti értékekhez tartozó megoldásokat is.

Vezesse le a

$$y' - y = x\sin(x)$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a $[-1,2] \times [-5,7]$ -en és rajzoltassa rá az $y(-1)=-0.5, \quad y(-1)=-0.3, \quad y(-1)=-0.1$

kezdeti értékekhez tartozó megoldásokat is.

Vezesse le a

$$y' = y - x\cos(x)$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a $[-1,2] \times [-7,4]$ -en és rajzoltassa rá az

 $y(-1) = -0.1, \quad y(-1) = -0.3, \quad y(-1) = -0.5$

kezdeti értékekhez tartozó megoldásokat is.

Vezesse le a

$$y' = y + xe^{-x}$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a $[-1,2] \times [-13,3]$ -en és rajzoltassa rá az

 $y(-1) = 0.8, \quad y(-1) = 0.5, \quad y(-1) = 0.1$

kezdeti értékekhez tartozó megoldásokat is.

Vezesse le a

$$y' = xy + x^2 \sin(x)$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a [-1,2] × [-13,3]-en és rajzoltassa rá az

$$y(-1) = -4,$$
 $y(-1) = -2,$ $y(-1) = -1$

kezdeti értékekhez tartozó megoldásokat is.

Vezesse le a

$$y' = \frac{(x^2 - 1)y}{x} + \sin(x) - \frac{\cos(x)}{x}$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a $[-2,-0.3] \times [-8,0]$ -en és rajzoltassa rá az

$$y(-2) = -2,$$
 $y(-2) = -4,$ $y(-2) = -6$

kezdeti értékekhez tartozó megoldásokat is.

Vezesse le a

$$y' = \left(x - \frac{2}{x}\right)y + 1 - \frac{1}{x^2}$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a $[-2,-0.5] \times [-15,0]$ -en és rajzoltassa rá az

$$y(-2) = -2,$$
 $y(-2) = -4,$ $y(-2) = -6$

kezdeti értékekhez tartozó megoldásokat is.

Vezesse le a

$$y' - xy = x^3$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a $[-2,0] \times [-3,3]$ -en és rajzoltassa rá az

y(-2) = -1, y(-2) = 0, y(-2) = 1

kezdeti értékekhez tartozó megoldásokat is.

Vezesse le a

$$y' + y = e^x$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a $[-3,1] \times [-3,3]$ -en és rajzoltassa rá az

$$y(-2) = -2,$$
 $y(-2) = 0,$ $y(-2) = 2$

kezdeti értékekhez tartozó megoldásokat is.

Vezesse le a

$$y' - y = xe^x$$

differenciálegyenlet megoldását kézzel. Oldja meg a Matlab/Octave dsolve függvénye segítségével is. Ábrázolja az egyenlet vektormezejét a $[-3,1] \times [-3,3]$ -en és rajzoltassa rá az

 $y(-3) = -3, \quad y(-3) = 0.5, \quad y(-3) = 3$

kezdeti értékekhez tartozó megoldásokat is.

Második projekt

Desc 1
Desc 2
Desc 3
Desc 4
Desc 5
Desc 6
Desc 7
Desc 8
Desc 9
Desc 10

Desc 11

Desc 12

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = \sin(0.5y) + \frac{e^{-2y}}{t^2 + 1} - \cos(t)$$
$$y(-10) = 2$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész :Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' + y' + 3y = t - 1$$
$$y(0) = 2$$
$$y'(0) = 0$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = y\sin(y) + \frac{e^{-y}}{t^2 + 1} + \cos(t)$$
$$y(-10) = 0$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész :Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' - y' - 3y = 1 - 2t$$
$$y(0) = 1$$
$$y'(0) = 0$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = \sin(2y) + \frac{e^{-y^2}}{t^2 + 1} + \cos(t)$$
$$y(-10) = 1$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész :Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' - 2y' + y = 2 - 2t$$
$$y(0) = 1$$
$$y'(0) = 1$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = y\sin(y) - \frac{e^{-y}}{t^2 + 1} + \cos(t^2)$$
$$y(-10) = 1$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész :Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' + 2y' + 3y = t - 1$$
$$y(0) = 0$$
$$y'(0) = 0$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = \sin(y^2) + \frac{e^{-y^2}}{t^2 + 1} + \cos(t)$$
$$y(-10) = 2$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész :Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' - 3y' + 3y = 2t - 3$$
$$y(0) = 1$$
$$y'(0) = 0$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = 2\sin(y^2) - \frac{e^{-y^2}}{t^2 + 1} + \cos(t)$$
$$y(-10) = -2$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész :Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' - 2y' + 3y = t$$
$$y(0) = 1$$
$$y'(0) = -1$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = \sin(e^y) - \sin(y)^2 + t$$
$$y(-10) = -1$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész :Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' + 3y' + 3y = 3t - 1$$
$$y(0) = 3$$
$$y'(0) = 0$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = \sin(-y) + \frac{e^{-y^2}}{t^2 + 1} + \cos(t + 10)$$
$$y(-10) = 1$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész :Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' - 2y' + 3y = 2t + 1$$
$$y(0) = 3$$
$$y'(0) = 0$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = \sin(y) + \frac{e^{-y}}{t^2 + 1} + \cos(t)$$
$$y(-10) = 0$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész :Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' - 2y' - 3y = 2t - 1$$
$$y(0) = 1$$
$$y'(0) = 1$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = \sin(2y) - \frac{e^{-y}}{t^2 + 1} + \cos(t)$$
$$y(-10) = 1$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész : Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' - 2y' + 3y = 2t - 1$$
$$y(0) = 1$$
$$y'(0) = 0$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = -\sin(y+3) + \frac{e^{-y}}{t^4 + 1} + \cos(t)$$
$$y(-10) = 0$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész :Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' - 2y' + 3y = 3t + 1$$
$$y(0) = -1$$
$$y'(0) = 0$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Első rész : Oldja meg Euler módszerrel és 4-ed rendű Runge-Kutta módszerrel a következő kezdeti érték feladatot:

$$y' = \sin(2y+1) + \frac{e^{-2y}}{t^2+3} + \cos(t)$$
$$y(-10) = -1$$

Hány lépést kell tenni a [-10, 10] intervallumon, ha 10^{-3} -nál kevesebb eltérést akarunk y(10)-re az ode45 illetve ode23 által számolthoz képest?

Második rész :Oldja meg Runge-Kutta módszerrel az alábbi kezdetiérték problémát:

$$y'' - 2y' + 3y = 12t + 11$$
$$y(0) = 1$$
$$y'(0) = -1$$
$$y(1) = ?$$

A lépésszám legyen 222. Hasonlítsa össze a kapott eredményt az ode45 -által számoltakkal.

Harmadik projekt

Desc 1
Desc 2
Desc 3
Desc 4
Desc 5
Desc 6
Desc 7
Desc 8
Desc 9
Desc 10
Desc 11

Desc 12

Projekt

Határozza meg a

$$f(x) = \begin{cases} 10 & x \in [0, 1) \\ 20 & x = 1 \\ 30 & x \in (1, 2] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Határozza meg a

$$f(x) = \begin{cases} -10 & x \in [-1, 0) \\ -20 & x = 0 \\ -30 & x \in (0, 1] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Határozza meg a

$$f(x) = \begin{cases} 1 & x \in [4, 6) \\ 2 & x = 6 \\ 3 & x \in (5, 7] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Határozza meg a

$$f(x) = \begin{cases} -21 & x \in [-4, -3) \\ -20 & x = -3 \\ -19 & x \in (-3, -2] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Határozza meg a

$$f(x) = \begin{cases} 10 & x \in [0, 1) \\ 20 & x = 1 \\ 30 & x \in (1, 2] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Határozza meg a

$$f(x) = \begin{cases} -1 & x \in [3, 5) \\ -2 & x = 5 \\ -3 & x \in [5, 7] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Határozza meg a

$$f(x) = \begin{cases} 0 & x \in [4, 5) \\ 2 & x = 5 \\ 4 & x \in (5, 6] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Határozza meg a

$$f(x) = \begin{cases} 1 & x \in [4, 6) \\ 2 & x = 6 \\ 3 & x \in (5, 7] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Határozza meg a

$$f(x) = \begin{cases} -21 & x \in [-4, -3) \\ -20 & x = -3 \\ -19 & x \in (-3, -2] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Határozza meg a

$$f(x) = \begin{cases} 2 & x \in [4, 5) \\ 3 & x = 5 \\ 4 & x \in [5, 6] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Határozza meg a

$$f(x) = \begin{cases} -1 & x \in [3, 5) \\ -2 & x = 5 \\ -3 & x \in (5, 7] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Határozza meg a

$$f(x) = \begin{cases} 0 & x \in [4, 5) \\ 2 & x = 5 \\ 4 & x \in (5, 6] \end{cases}$$

függvény periodikus kiterjesztésének Fourier együtthatóit "kézzel". A kapott eredmény segítségével ábrázolja az eredeti függvényt és 5, 10, 15 tagot felhasználó közelítését.

Desc Linkek

Matematika mérnököknek 2