Identifizierung von Fehlereinflüssen auf die SAFT-Rekonstruktion händisch aufgenommener Ultraschallmessdaten

Jan.29.2019

Sayako Kodera Technische Universität Ilmenau

Ultrasonic Testing

Source: Quality Magazine

Motivation: Image Quality Improvement

Automatic measurement

¹F. Krieg et al., SAFT processing for manually acquired ultrasonic measurement data with 3D SmartInspect, *SHM-NDT*, 2018

Error Sources

Simulation 00000

Results

Summary

Motivation: Image Quality Improvement

Manual measurement

Measurement data¹

SAFT Reconstruction¹

 Background
 Error Sources
 Simulation
 Results
 Summary

 ○●○○
 ○○○○
 ○○○○
 ○○○

Objectives and Contribution

Problem

Degraded image quality when manual data is reconstructed

Objectives

- Identification of possible error sources
- Evaluation of their impact
- Determination of the error tolerance

Contribution

Provide indicators for developing measurement assistance systems

Simulation Scenario

Assumptions

- Handheld transducer
- Contact testing
- Scan positions recognized by a camera
- Simultaneous reconstruction during the measurement

Reconstruction Method

Synthetic Aperture Focusing Technique (SAFT)

- Superposition according to propagation time delay
- Undersampling should be avoided \rightarrow Spatial sampling interval $< 0.5 \lambda$

Reconstruction Method

Synthetic Aperture Focusing Technique (SAFT)

- Superposition according to propagation time delay
- Undersampling should be avoided
 → Spatial sampling interval
 - $\leq 0.5\lambda$

Path selection

- Unequal scan distribution
- Larger sampling interval
- Incomplete spatial coverage

System inaccuracy

- Positional inaccuracy
- Propagation time change

Example scan positions

Summary

Automatic

Manual

Path selection

- Unequal scan distribution
- Larger sampling interval
- Incomplete spatial coverage

System inaccuracy

- Positional inaccuracy
- Propagation time change

Scan distribution

Equal

Unequal

Path selection

- Unequal scan distribution
- Larger sampling interval
- Incomplete spatial coverage

System inaccuracy

- Positional inaccuracy
- Propagation time change

Sampling interval

Small

Large

Path selection

- Unequal scan distribution
- Larger sampling interval
- Incomplete spatial coverage

System inaccuracy

- Positional inaccuracy
- Propagation time change

Spatial coverage

Full

Incomplete

Path selection

- Unequal scan distribution
- Larger sampling interval
- Incomplete spatial coverage

System inaccuracy

- Positional inaccuracy
- Propagation time change

Positional inaccuracy

Accurate

Inaccurate

Path selection

- Unequal scan distribution
- Larger sampling interval
- Incomplete spatial coverage

System inaccuracy

- Positional inaccuracy
- Propagation time change

Contact pressure

Constant

Inconsistent

Path selection

- Unequal scan distribution
- Larger sampling interval
- Incomplete spatial coverage

System inaccuracy

- Positional inaccuracy
- Propagation time change

\rightarrow Propagation time change

+1

Constant

Inconsistent

Path selection

- Unequal scan distribution
- Larger sampling interval
- Incomplete spatial coverage

System inaccuracy

- Positional inaccuracy
- Propagation time change

\rightarrow Propagation time change

Constant

Inconsistent

Path selection

- Unequal scan distribution ²
- Larger sampling interval ³
- Incomplete spatial coverage

- Positional inaccuracy
- Propagation time change

²K. Mayer et al., 19th World Conference on Non-Destructive Testing, 2016

³H. Mooshofer et al., 19th World Conference on Non-Destructive Testing, 2016

Path selection

- Unequal scan distribution ²
- Larger sampling interval ³
- Incomplete spatial coverage

- Positional inaccuracy
- Propagation time change

²K. Mayer et al., 19th World Conference on Non-Destructive Testing, 2016

³H. Mooshofer et al., 19th World Conference on Non-Destructive Testing, 2016

Path selection

- Unequal scan distribution ²
- Larger sampling interval ³
- Incomplete spatial coverage

- Positional inaccuracy
- Propagation time change

- \rightarrow 2 Simulation studies. 3 factors
- (1) Positional inaccuracy with different spatial coverage
- (2) Propagation time change

²K. Mayer et al., 19th World Conference on Non-Destructive Testing, 2016

³H. Mooshofer et al., 19th World Conference on Non-Destructive Testing, 2016

Path selection

- Unequal scan distribution ²
- Larger sampling interval ³
- Incomplete spatial coverage

- Positional inaccuracy
- Propagation time change

- \rightarrow 2 Simulation studies, 3 factors
- (1) Positional inaccuracy with different spatial coverage
- (2) Propagation time change

²K. Mayer et al., 19th World Conference on Non-Destructive Testing, 2016

³H. Mooshofer et al., 19th World Conference on Non-Destructive Testing, 2016

Simulation Setup

Defect positions (part of a large object)

Assumptions

- Pulse-echo setup
- Single transducer
- Aluminium
- Planar surface
- Point scatterers
- Noise free

Simulation Flow

⁴F. Krieg et al., Progressive online 3-D SAFT processing by matrix structure exploitation, *IEEE IUS*, 2018

Simulation Flow

- How many scans should be taken?
 - \rightarrow Variation of number of scans N_{point}
- How big can the distance error be?
 - ightarrow Variation of position error $\hat{=}\sigma$

Scan Position Selection

 \rightarrow number of scans N_{point} variation

Scan Position Selection

Scan position selection:

- $\begin{tabular}{ll} \blacksquare & Set the number of total scans \\ & N_{point} \\ \end{tabular}$
- Select N_{point} random positions
- ightharpoonup $N_{point} = variable$

Equivalent to the recognition error $\rightarrow \sigma$ variation

$$\hat{x}_k = r \cdot \cos(\theta) + \frac{x_k}{\hat{y}_k}$$

 $\hat{y}_k = r \cdot \sin(\theta) + \frac{y_k}{\hat{y}_k}$

 θ : uniform distribution r: normal distribution (σ) $\rightarrow \sigma = \text{variable}$

Position manipulation

- Using the polar coordinate
- \blacksquare Radius variation with σ
- $\sigma = \sigma$

Position manipulation

- Using the polar coordinate
- \blacksquare Radius variation with σ
- $\sigma = \sigma$

Data Adjustment

Adjustment to the required format \rightarrow Scan positions on the reconstruction grid

⁴F. Krieg et al., Progressive online 3-D SAFT processing by matrix structure exploitation, *IEEE IUS*, 2018

Error Sources

Simulation ○○○○●

Results

Summary

Data Adjustment

Data adjustment

- Quantize scan positions
- Avoid overemphasis
 - \rightarrow Take only the first A-Scan ¹

Data Adjustment

Data adjustment

- Quantize scan positions
- Avoid overemphasis
 - \rightarrow Take only the first A-Scan ¹

Data Adjustment

Data adjustment

- Quantize scan positions
- Avoid overemphasis
 - ightarrow Take only the first A-Scan 1

¹F. Krieg et al., SAFT processing for manually acquired ultrasonic measurement data with 3D SmartInspect, *SHM-NDT*, 2018

Visual Results and Evaluation

RMSE[†]-Evaluation Corresponding visual results

$$\mathsf{RMSE}^\dagger = \frac{\left\|\boldsymbol{\alpha}\cdot\hat{\boldsymbol{C}} - \boldsymbol{C}\right\|_F}{\left\|\boldsymbol{C}\right\|_F} \qquad \qquad \begin{array}{c} \boldsymbol{C} = \mathsf{reference} \\ \hat{\boldsymbol{C}} = \mathsf{obtained} \mathsf{\; result} \end{array}$$

Visual Results and Evaluation

Reference (C-Scan)

SAFT reconstruction of a simulated automatic measurement data

- Scan positions on fine grid
- 100% coverage (1600 grid points)
- No positional error

Visual Results and Evaluation

Result (1) Coverage

Result (1) Coverage

Result (1) Coverage

$$\mathsf{N}_{\mathsf{point}} = 160$$

$$\mathsf{N}_{\mathsf{point}} = 160$$

$$N_{\mathsf{point}} = 160$$

$$\sigma = 0.5 \, \mathrm{mm}, \, \mathrm{RMSE}^\dagger = 0.5$$

$$N_{\mathsf{point}} = 160$$

$$\sigma = 0.5 \text{ mm, RMSE}^\dagger = 0.5$$

$$15$$

$$10$$

$$5$$

$$0$$

$$0$$

$$5$$

$$10$$

$$15$$

$$20$$

$$x \text{ in mm}$$

Conclusion

Identified 5 factors as error sources, 3 were investigated

Factor	Negligible	Note
Spatial	-	Still satisfying results with
coverage		10% coverage
Position	$\leq 0.1\lambda$	Larger error can be tolerated
inaccuracy		with higher coverage
Propagation	$\leq 0.06\lambda$	Stronger artifact formation
time change		

Future Work

- Measurement of the system error
- Other evaluation methods
- Development of measurement assistance systems

Future Work

- Measurement of the system error
- Other evaluation methods
- Development of measurement assistance systems

©Uwe Bellhäuser

Appendix

Parameters w.r.t. Test Object

Parameter	Value
Material	Aluminium
Dimension (L \times B \times H)	$20\mathrm{mm} imes20\mathrm{mm} imes35\mathrm{mm}$
$N_x \times N_y \times N_z$	$40 \times 40 \times 880$
Speed of sound c_0	$6300\mathrm{ms^{-1}}$
Sampling frequency f_S	80 MHz
$dt = rac{1}{f_s}$	12.5 ns
Sampling distance, surface (dx, dy)	0.5 mm
Sampling distance, depth (dz)	39.375 μm
Position of	[9, 29, 520] = [4.5 mm, 14.5 mm, 20.67 mm],
point scatters	[18, 23, 554] = [9 mm, 11.5 mm, 22.02 mm],
	$[23, 19, 571] = [11.5 \mathrm{mm}, 11.5 \mathrm{mm}, 9.5 \mathrm{mm}],$
	$[32, 10, 614] = [16 \mathrm{mm}, 16 \mathrm{mm}, 5 \mathrm{mm}]$

Parameters w.r.t. Pulse

Parameter	Value	
Model	Gaussian (Gabor)	
Carrier frequency f_c	5 MHz	
Wavelength λ	1.26 mm	
Relative bandwidth	0.5	
Length of the pulse	20 · dt	

Parameters w.r.t. Simulation

	Parameter	Value
Constant	Scan positions	random, off the grid
	Opening angle	20°
	Number of simulations	10
	per σ	
Variable	Position error (σ)	02 mm
	Number of scan positions	160, 400, 800, 1600
	(N_{point})	(10%, 25%, 50%, 100%)

State of the Art

SAFT application to the manual measurement data

- Little investigated
 - Potential
 - Implementation
 - Challenges
- Application to concrete objects is proven ²
 - Validity to metal objects is questionable

¹K. Mayer, M. Ibrahim, M. Krause, M. Schubert, Requirements for a small size ultrasonic imaging system for inspection of concrete elements, *19th World Conference on Non-Destructive Testing*, 2016

Results of Literature Search (1)

Keywords (w.r.t. SAFT and manual scan)	Hits	Relevant
ultrasonic "NDT" "SAFT" "arbitrary scan"	7	-
ultrasonic "NDT" "SAFT" "random scan"	9	-
ultrasonic "NDT" "SAFT" "gridless"	14	-
ultrasonic "NDT" "SAFT" "manual scan"	23	-
ultrasonic "NDT" "SAFT" "manual measurement"	28	-
ultrasonic "NDT" "SAFT" "handheld device"	56	-
ultrasonic "synthetic aperture focusing technique" "freehand"		-
ultrasonic synthetic aperture focusing technique "arbitrary sampling"		-

Results of Literature Search (2)

Keywords (w.r.t. SAFT and error sources)	Hits	Relevant
ultrasonic NDT "SAFT" "minimum data size"		-
ultrasonic NDT "SAFT" "scan position error"	0	-
ultrasonic NDT "SAFT" "positional inaccuracy"	2	-
ultrasonic NDT "SAFT" "course surface"	6	-
ultrasonic NDT "SAFT" "inconsistent time"	6	-
ultrasonic NDT "SAFT" "positional error"	17	1
ultrasonic NDT "SAFT" "non planar surface"	24	1
ultrasonic "NDT" "SAFT" "grid size"	160	1
ultrasonic NDT "SAFT" "position error"	226	-
ultrasonic "NDT" "SAFT" "small size"		1
		(up to the first 100)

Automatic vs Manual Data

40

x in mm

60

20

0

Automatic vs Manual Data

¹F. Krieg et al., SAFT processing for manually acquired ultrasonic measurement data with 3D SmartInspect, *SHM-NDT*, 2018

Automatic vs Manual Data

SAFT Reconstruction³

Position Manipulation

Scan Position P_k (10.76, 12.31)

Recognized Position \hat{P}_k (11.82, 12.67)

Rounded Position \bar{P}_k (12, 13)

Recognition and Rounding Error

$$\begin{aligned} \mathsf{P}_k &= (x_k, y_k) \\ \hat{\mathsf{P}}_k &= (\hat{x}_k, \hat{y}_k) \\ &= \begin{pmatrix} x_k + r \cdot \cos(\theta) \\ y_k + r \cdot \sin(\theta) \end{pmatrix} \end{aligned}$$

RMSE[†]

$$\begin{aligned} \mathsf{RMSE}^\dagger &= \frac{\left\| \boldsymbol{\alpha} \cdot \hat{\boldsymbol{C}} - \boldsymbol{C} \right\|_F}{\left\| \boldsymbol{C} \right\|_F} \\ \alpha &= \frac{\mathsf{vec}(\boldsymbol{C})^\mathsf{T} \cdot \mathsf{vec}(\hat{\boldsymbol{C}})}{\mathsf{vec}(\hat{\boldsymbol{C}})^\mathsf{T} \cdot \mathsf{vec}(\hat{\boldsymbol{C}})}. \\ &\qquad \qquad \mathsf{where} \\ \boldsymbol{C} &= \mathsf{reference\ data} \\ \hat{\boldsymbol{C}} &= \mathsf{obtained\ results\ to\ compare} \end{aligned}$$

Effect of Rounding Methods

 $N_{\text{point}} = 1600$ for both Take only one and discard the others

Scan Positions

$$N_{\mathsf{point}} = 1600$$

$N_{\text{point}} = 160$

Coverage Change with Number of Scans

Note: spatial coverage (%) decreases with increasing σ by approx. 2% per mm relative to the number of scan positions (N_{point})

Effect of Varying Coverage

Effect of Varying Coverage

Effect of Varying Coverage

Simulation 2 Setups and Parameters

	Parameter	Value
Constant	Scan positions	on fine grid
	dx	0.5 mm
	$N_x = N_y$	40
	Number of simulations	10
	per σ	
Variable	Vertical distance change (σ)	00.3 mm
	Opening angle	20°, 15°, 10°

Simulation 2 Flow

Simulation flow

Simulation 2 RMSE[†] Results

Simulation 2 RMSE[†]_{crit}

