

Ву:

Rogério Rocha up201805123 Tomé Cunha up201904710

Specification of the work

- In this project we will address One-player solitaire games, most specifically the Symmetry puzzle, in which the objective is to form palindromes both in each column and row. Each one of the puzzles has a unique solution.
- The rules are simple: either we add one of tree geometrical figures(circle, triangle or square), or leave the space empty, in order to create a palindrome.

Related work

Palindromic sentence building puzzle: https://www.itprotoday.com/sql-server/palindromes-puzzle-solutions

```
with c as
  select
   n as words, cast(n as bigint) as sentences,
   cast(n as bigint) as v, n-1 as i
 from nums -- auxiliary table of numbers
 where n = 1
select words, sentences
from c where i = 0
order by words:
            sentences
            1956
           13699
            986409
            9864100
            108505111
            1302061344
            16926797485
            236975164804
            3554627472075
            56874039553216
            17403456103284420
            330665665962403999
```

Finding maximal 2 dimensional palindromes:

https://drops.dagetubl.de/opus/volltexte

https://drops.dagstuhl.de/opus/volltexte/201 6/6075/pdf/LIPIcs-CPM-2016-19.pdf

■ Table 2 Text T (left) and d = 0's pals array (right), at the point where the algorithm will calculate the value for T[6, 6] in pals[6].

	1	2	3	4	5	6	7	8	9	10
1	a	b	b	b	b	a	a	b	b	e
2	b	\mathbf{c}	\boldsymbol{c}	\mathbf{c}	b	c	\mathbf{c}	\mathbf{c}	b	e
3	b	\mathbf{c}	\mathbf{c}	\mathbf{c}	b	c	\mathbf{c}	\mathbf{c}	\mathbf{a}	e
4	b	c	\boldsymbol{c}	\mathbf{c}	b	c	\mathbf{c}	\mathbf{c}	\mathbf{a}	e
5	b	b	b	b	\mathbf{a}	b	b	b	b	\mathbf{a}
6	a	\mathbf{c}	\mathbf{c}	c	b	$\underline{\mathbf{c}}$	\mathbf{c}	\mathbf{c}	b	c
7	a	c	\mathbf{c}	\mathbf{c}	b	c	$\underline{\mathbf{c}}$	c	b	c
8	b	c	\mathbf{c}	c	b	c	\mathbf{c}	\mathbf{c}	b	c
9	b	b	\mathbf{a}	\mathbf{a}	b	b	b	b	\mathbf{a}	b
10	e	e	\mathbf{e}	e	\mathbf{a}	c	\mathbf{c}	\mathbf{c}	b	c

■ Table 4 Shown on the left is a text that contains a cubic number of maximal rect2DP. The *'s indicate unique, unused characters. On the right is a partial table with counts, which are the exact number of rect2DP that are centered at the corresponding text positions.

1	1	1	2	3	4	5	6	7	8	9	0	1	2	3		1	2	3	4	5	6	7	8	9	0	1	2	3
3	T	*	*	*	*	*	*	0	*	*	*	*	*	*	1	Т						1						
1 * * * 0 0 0 0 0 0 0 0 * * * 1	1	*	*	*	*	*	0	0	0	*	*	*	*	*	2	2					1	2						
5 * * 0 0 0 0 0 0 0 0 0 0 0 0 * * 6 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ı	*	*	*	*	0	0	0	0	0	*	*	*	*	3	3				1	2	3						
5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	*	*	*	0	0	0	0	0	0	0	*	*	*	4	ı			1	2	3	4						
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	*	*	0	0	0	0	0	0	0	0	0	*	*	5	5		1	2	3	4	5						
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ı	*	0	0	0	0	0	0	0	0	0	0	0	*	6	5	1	2	3	4	5	6						
9 5 0 * * * 0 0 0 0 0 0 0 0 0 * * * 0 1 * * * * 0 0 0 0 0 0 0 * * * * 1 1 * * * * 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	7	1	2	3	4	5	6	7	6	5	4	3	2	1
0	ı	*	0	0	0	0	0	0	0	0	0	0	0	*	8	3						6						
1 * * * * 0 0 0 0 0 0 * * * * 1 1 3	۱	*	*	0	0	0	0	0	0	0	0	0	*	*	9	1						5						
	۱	*	*	*	0	0	0	0	0	0	0	*	*	*	0							4						
2 * * * * * * 0 0 0 * * * * * * 2 2	1	*	*	*	*	0	0	0	0	0	*	*	*	*	1	ч						3						
	1	*	*	*	*	*	0	0	0	*	*	*	*	*	2	2						2						
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		*	*	*	*	*	*	0	*	*	*	*	*	*	3	3						1						

Formulation of the problem

Operators

Leave empty

Precondition: Matrix position

must be empty

Effect: Position remains

empty Cost: 1

Precondition: Matrix position

must be empty

Effect: New state where the position is filled with a triangle **Cost**: 1

Precondition: Matrix position

must be empty

Effect: New state where the position is filled with a circle

Cost: 1

Add a Square

Precondition: Matrix position must be empty

Effect: New state where the position is filled with a square

Cost: 1

Heuristics

Score

The score heuristic helps us find the best available next state, as palindrome formation would bump the value of this heuristic up

Central Pieces

Given different board sizes we can approach a solution faster if we search for lines which have a middle piece (for uneven sizes) as these provide a solid footing for future states