Témata: Více o Tablo metodě. Věta o dedukci. Věta o kompaktnosti a aplikace. Rezoluční metoda, množinová reprezentace formulí v CNF, rezoluční uzávěr, strom dosazení. Hilbertovský kalkulus.

Příklad 1. Navrhněte vhodná atomická tabla pro Peirceovu spojku ↓ (NOR), pro Shefferovu spojku \(\gamma\) (NAND), a pro ternárí operátor "if p then q else r" (IFTE).

Příklad 2. Dokažte přímo (transformací tabel) větu o dedukci, tj. že pro každou teorii T a výroky φ, ψ platí

$$T \vdash \varphi \rightarrow \psi$$
 právě když $T, \varphi \vdash \psi$.

Příklad 3. Ukažte, že každý spočetný rovinný graf je obarvitelný čtyřmi barvami.

Příklad 4. Ukažte, že každé spočetné částečné uspořádání lze rozšířit na úplné (lineární) uspořádání.

Příklad 5. Označme jako φ výrok $\neg(p \lor q) \to (\neg p \land \neg q)$.

- (a) Převeďte $\neg \varphi$ do CNF a množinové reprezentace.
- (b) Najděte rezoluční zamítnutí $\neg \varphi$, tj. důkaz φ .

Příklad 6. Najděte rezoluční uzávěry $\mathcal{R}(S)$ pro následující výroky S:

- (1) $\{\{p,q\}, \{\neg p, \neg q\}, \{\neg p, q\}\}$
- (2) $\{\{p,q\},\{p,\neg q\},\{\neg p,\neg q\}\}\$ (3) $\{\{p,\neg q,r\},\{q,r\},\{\neg p,r\},\{q,\neg r\},\{\neg q\}\}\$

Příklad 7. Najděte rezoluční zamítnutí následujících výroků:

- $(1) \ (p \leftrightarrow (q \rightarrow r)) \land ((p \leftrightarrow q) \land (p \leftrightarrow \neg r))$
- $(2) \neg (((p \to q) \to \neg q) \to \neg q)$

Příklad 8. Dokažte rezolucí, že v teorii $T = \{\neg p \rightarrow \neg q, \neg q \rightarrow \neg r, (r \rightarrow p) \rightarrow s\}$ platí výrok s.

Příklad 9. Dokažte, že je-li $S = \{C_1, C_2\}$ splnitelná a C je rezolventa C_1 a C_2 , potom je i Csplnitelná.

Příklad 10. Zkonstruujte strom dosazení pro formuli $S = \{\{p,r\}, \{q,\neg r\}, \{\neg q\}, \{\neg p,t\}, \{\neg s\}, \{s,\neg t\}\}.$

Příklad 11. Předpokládejme, že máme k dispozici MgO, H₂, O₂, a C a můžeme provádět následující reakce:

- (1) $MgO + H_2 \rightarrow Mg + H_2O$
- (2) C + O₂ \rightarrow CO₂
- (3) $CO_2 + H_2O \rightarrow H_2CO_3$
- (1) Reprezentujte naše možnosti výrokem (nad vhodně zvoleným jazykem) a převedte ho do množinové reprezentace
- (2) Pomocí LI-rezoluce dokažte, že můžeme získat H₂CO₃.

Příklad 12. V Hilbertově kalkulu dokažte pro libovolné formule následující vztahy:

(a) $\vdash_H p \to p$

- (b) $\{\neg p\} \vdash_H p \to q$
- (c) $\{\neg(\neg p)\} \vdash_H p$
- (d) $\{p \to q, q \to r\} \vdash_H p \to r$
- (e) $\{p, q \to (p \to r)\} \vdash_H q \to r$

Příklad 13. Dokažte korektnost hilbertovského kalkulu:

- Dokažte, že logické axiomy jsou tautologie.
- Dokažte, že modus ponens je korektní, tj. když $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, tak $T \models \psi$.
- Ukažte, že $T \vdash_H \varphi$ implikuje $T \models \varphi$.

Příklad 14. Vyslovte a dokažte větu o dedukci pro hilbertovský kalkulus.

 ${f Hilbert's\ calculus.}$ The ${\it Hilbert's\ propositional\ calculus}$ is a proof system for propositional logic where

- we only use the logical connectives \neg, \rightarrow
- we have the following (schemes of) logical axioms:
 - (i) $\varphi \to (\psi \to \varphi)$
 - (ii) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (iii) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$
- and the following rule of inference:

$$\frac{\varphi,\ \varphi\to\psi}{\psi}$$

i.e. "from φ and $\varphi \to \psi$ infer ψ " (called "modus ponens")

In Hilbert's calculus, a *proof* of a proposition φ from a theory T is a finite sequence $\varphi_0, \ldots, \varphi_n = \varphi$ of formulas such that for every $i \leq n$,

- φ_i is a logical axiom, or
- $\varphi_i \in T$ (an axiom of the theory), or
- φ_i can be inferred from a pair of preceding propositions φ_j , φ_k (j < i, k < i) by applying the rule of inference.

If such a proof exists, we write $T \vdash_H \varphi$.