Fórmulas de la Lógica Proposicional

Semana 1

Edgar Andrade, PhD

Última revisión: Enero de 2022

Departmento de Matemáticas Aplicadas y Ciencias de la Computación

Presentación

En esta sesión estudiaremos:

1 Representación lógica del conocimiento

2 Un poco de historia

3 Estructura y recursión

Contenido

1 Representación lógica del conocimiento

2 Un poco de historia

3 Estructura y recursión

Ejemplos:

Puzzles

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Ejemplos:

Puzzles

Micromundos

Figure 1.3 A scene from the blocks world. SHRDLU (Winograd, 1972) has just completed the command "Find a block which is taller than the one you are holding and put it in the box."

Ejemplos:

- Puzzles
- Micromundos
- Lenguaje natural

Figure 7.1: This is a visual presentation of the idea behind the formalization of the DITEANSITYE CONSTRUCTION. The horizontal lines represent the time line. The left square brackets represent the beginning and the right square brackets represent the end of a predicate being true.

"Juan lanzó la bola a Pedro"

Ejemplos:

- Puzzles
- Micromundos
- Lenguaje natural
- Circuitos, software, otros...

¿Para qué se usa?

Ejemplos:

Razonamientos

- Supongamos que n es par.
- Entonces n = 2a para algún $a \in \mathbb{Z}$.
- Luego nn = 2(a2a).
- Por lo tanto, n^2 es par.

¿Para qué se usa?

Ejemplos:

Una proposición ϕ puede verse como una colección de situaciones.

Razonamientos

Solución de restricciones

Caballos (1/5)

Poner tres caballos en un tablero 3x3 sin que se ataquen simultáneamente.

Caballos (2/5)

Enumeramos las casillas

1	2	3
4	5	6
7	8	9

Caballos (3/5)

 c_1 : hay un caballo en 1

• c_2 : hay un caballo en 2

2	2	
4	5	6
7	8	9

Caballos (3/5)

 c_1 : hay un caballo en 1

• c_2 : hay un caballo en 2

 $-c_3$: no hay un caballo en 3

2	2	
4	5	6
7	8	9

Caballos (4/5)

Reglas:

Si hay un caballo en 1, no debe haber un caballo en 6 ni en 8, toda vez que se estarían atacando mútuamente.

Caballos (5/5)

Reglas:

Si hay un caballo en 2, no debe haber un caballo en 7 ni en 9, toda vez que se estarían atacando mútuamente.

Contenido

1 Representación lógica del conocimiento

2 Un poco de historia

3 Estructura y recursión

Influencias históricas (1/5)

Gottfried Leibniz (1646–1716) ™ Calculus Ratiocinator

Influencias históricas (1/5)

Gottfried Leibniz (1646–1716) ™ Calculus Ratiocinator

(1815−1864)

Las facultades mentales son operaciones simbólicas

Influencias históricas (2/5)

Gotlob Frege
(1848–1925)

Las matemáticas se fundamentan en la lógica

Influencias históricas (2/5)

Gotlob Frege
(1848–1925)

Las matemáticas se fundamentan en la lógica

David Hilbert
(1862–1943)

Las matemáticas se
fundamentan en
procedimientos mecánicos

Influencias históricas (3/5)

Ludwig Wittgenstein (1889–1951)

Emile Post (1897–1954)

Procedimiento de las tablas de verdad

Influencias históricas (4/5)

Martin Davis (1928–)

Hilary Putnam (1926–2016)

Algoritmo eficiente para buscar un modelo

Influencias históricas (5/5)

Noam Chomsky (1928–)

John McCarthy (1927–2011)

Formalización del lenguaje y del sentido común

Contenido

1 Representación lógica del conocimiento

2 Un poco de historia

3 Estructura y recursión

Objetos por capas

Números naturales

0

$$0 + 1$$

$$0+1+1$$

$$0 + 1 + 1 + 1$$

Objetos por capas

Números naturales

0

0+1

0+1+1

0+1+1+1

Objetos por capas

Números naturales

0

$$0 + 1$$

$$0 + 1 + 1$$

$$0 + 1 + 1 + 1$$

Árboles

$$Suma(n) = \begin{cases} 0, & \text{si } n == 0\\ n + Suma(n-1), & \text{si } n > 0 \end{cases}$$

$$Suma(n) = \begin{cases} 0, & \text{si } n == 0 \\ n + Suma(n-1), & \text{si } n > 0 \end{cases}$$

Suma(3)

$$Suma(n) = \begin{cases} 0, & \text{si } n == 0 \\ n + Suma(n-1), & \text{si } n > 0 \end{cases}$$

$$3 + Suma(2)$$

$$Suma(3)$$

Suma(n) =
$$\begin{cases} 0, & \text{si } n == 0 \\ n + \text{Suma}(n-1), & \text{si } n > 0 \end{cases}$$
 2+Suma(1)
3+Suma(2)
Suma(3)

$$Suma(n) = \begin{cases} 0, & \text{si } n == 0 \\ n + Suma(n-1), & \text{si } n > 0 \end{cases}$$

$$2 + Suma(1)$$

$$3 + Suma(2)$$

$$Suma(3)$$

$$Suma(n) = \begin{cases} 0, & \text{si } n == 0 \\ n + Suma(n-1), & \text{si } n > 0 \end{cases}$$

$$1+0=1$$

$$2+Suma(1)$$

$$3+Suma(2)$$

$$Suma(3)$$

Suma(n) =
$$\begin{cases} 0, & \text{si } n == 0 \\ n + \text{Suma}(n-1), & \text{si } n > 0 \end{cases}$$
 2+1=3
3+Suma(2)
Suma(3)

Suma(n) =
$$\begin{cases} 0, & \text{si } n == 0 \\ n + \text{Suma}(n-1), & \text{si } n > 0 \end{cases}$$
 3+3=6
Suma(3)

$$Suma(n) = \begin{cases} 0, & \text{si } n == 0\\ n + Suma(n-1), & \text{si } n > 0 \end{cases}$$

$$Suma(3)=6$$

Proposición

$$\mathsf{Suma}(n) = \frac{n(n+1)}{2}$$

Proposición

$$\mathsf{Suma}(n) = \frac{n(n+1)}{2}$$

Proposición

$$\mathsf{Suma}(n) = \frac{n(n+1)}{2}$$

Demostración

Caso base: Si n = 0, entonces Suma $(0) = 0 = \frac{0(0+1)}{2}$

Proposición

$$\mathsf{Suma}(n) = \frac{n(n+1)}{2}$$

- **Caso base:** Si n = 0, entonces Suma $(0) = 0 = \frac{0(0+1)}{2}$
- **Caso inductivo:** Suponemos que Suma $(n) = \frac{n(n+1)}{2}$. Entonces

Proposición

$$\mathsf{Suma}(n) = \frac{n(n+1)}{2}$$

- **Caso base:** Si n = 0, entonces Suma $(0) = 0 = \frac{0(0+1)}{2}$
- Caso inductivo: Suponemos que Suma $(n) = \frac{n(n+1)}{2}$. Entonces

Suma
$$(n+1) = (n+1) + \text{Suma}(n)$$
 (por definición de Suma)

$$= (n+1) + \frac{n(n+1)}{2}$$
 (por h.i.)

$$= \frac{2(n+1)}{2} + \frac{n(n+1)}{2}$$

$$= \frac{2(n+1) + n(n+1)}{2}$$

$$= \frac{(2+n)(n+1)}{2}$$

$$= \frac{(n+1)((n+1)+1)}{2}$$

Proposición

$$\mathsf{Suma}(n) = \frac{n(n+1)}{2}$$

- **Caso base:** Si n = 0, entonces Suma $(0) = 0 = \frac{0(0+1)}{2}$
- Caso inductivo: Suponemos que Suma $(n) = \frac{n(n+1)}{2}$. Entonces Suma $(n+1) = \frac{(n+1)((n+1)+1)}{2}$.

Proposición

$$\mathsf{Suma}(n) = \frac{n(n+1)}{2}$$

- **Caso base:** Si n = 0, entonces Suma $(0) = 0 = \frac{0(0+1)}{2}$
- Caso inductivo: Suponemos que Suma $(n) = \frac{n(n+1)}{2}$. Entonces Suma $(n+1) = \frac{(n+1)((n+1)+1)}{2}$.
- Por lo tanto, para todo n se tiene que $Suma(n) = \frac{n(n+1)}{2}$.

$$\text{num_aristas}(A) = \begin{cases} 0, & \text{si } A \text{ es una hoja} \\ 2 + \text{num_aristas}(A.\text{left}) + \text{num_aristas}(A.\text{right}), & \text{si } A \text{ es una rama} \end{cases}$$

$$\begin{aligned} \text{num_aristas}(A) &= \begin{cases} 0, & \text{si } A \text{ es una hoja} \\ 2 + \text{num_aristas}(A.\text{left}) + \text{num_aristas}(A.\text{right}), & \text{si } A \text{ es una rama} \end{cases} \end{aligned}$$

 $num_aristas(A)$

$$\begin{aligned} \text{num_aristas}(A) &= \begin{cases} 0, & \text{si } A \text{ es una hoja} \\ 2 + \text{num_aristas}(A.\text{left}) + \text{num_aristas}(A.\text{right}), & \text{si } A \text{ es una rama} \end{cases} \end{aligned}$$

$$2+$$
num_aristas (h) + num_aristas (h) num_aristas (A)

$$\begin{aligned} \text{num_aristas}(A) &= \begin{cases} 0, & \text{si } A \text{ es una hoja} \\ 2 + \text{num_aristas}(A.\text{left}) + \text{num_aristas}(A.\text{right}), & \text{si } A \text{ es una rama} \end{cases} \end{aligned}$$

 $0 \\ 2 + \mathsf{num_aristas}(h) + \mathsf{num_aristas}(h) \\ \mathsf{num_aristas}(A)$

$$\begin{aligned} \text{num_aristas}(A) &= \begin{cases} 0, & \text{si } A \text{ es una hoja} \\ 2 + \text{num_aristas}(A.\text{left}) + \text{num_aristas}(A.\text{right}), & \text{si } A \text{ es una rama} \end{cases} \end{aligned}$$

$$2+0+0=2$$
 num_aristas(A)

$$\begin{aligned} \text{num_aristas}(A) &= \begin{cases} 0, & \text{si } A \text{ es una hoja} \\ 2 + \text{num_aristas}(A.\text{left}) + \text{num_aristas}(A.\text{right}), & \text{si } A \text{ es una rama} \end{cases} \end{aligned}$$

 $num_aristas(A)=2$

Proposición

 $num_aristas(A)$ es par.

Proposición

 $num_aristas(A)$ es par.

Proposición

 $num_aristas(A)$ es par.

Demostración

■ Caso base: Si A es una hoja, entonces num_aristas(A) = 0 que es par.

Proposición

 $num_aristas(A)$ es par.

- Caso base: Si A es una hoja, entonces num_aristas(A) = 0 que es par.
- Caso inductivo: Suponemos que A = Tree(B, C) y que num_aristas(B) = 2a y num_aristas(C) = 2b para a, b enteros. Entonces

Proposición

 $num_aristas(A)$ es par.

- Caso base: Si A es una hoja, entonces num_aristas(A) = 0 que es par.
- Caso inductivo: Suponemos que A = Tree(B, C) y que num_aristas(B) = 2a y num_aristas(C) = 2b para a, b enteros. Entonces

$$num_aristas(A) = 2 + num_aristas(B) + num_aristas(C)$$
 (por def. num_aristas)
= $2 + 2a + 2b$ (por h.i.)
= $2(1 + a + b)$

Proposición

 $num_aristas(A)$ es par.

- Caso base: Si A es una hoja, entonces num_aristas(A) = 0 que es par.
- Caso inductivo: Suponemos que A = Tree(B, C) y que num_aristas(B) = 2a y num_aristas(C) = 2b para a, b enteros. Entonces num_aristas(A) es par.

Proposición

 $num_aristas(A)$ es par.

- Caso base: Si A es una hoja, entonces num_aristas(A) = 0 que es par.
- Caso inductivo: Suponemos que A = Tree(B, C) y que num_aristas(B) = 2a y num_aristas(C) = 2b para a, b enteros. Entonces num_aristas(A) es par.
- Por lo tanto, para todo A se tiene que num_aristas(A) es par.

Fin de la sesión 1

En esta sesión usted ha aprendido:

- 1. Un poco de historia
- 2. Idea del lenguaje como representación y estructura
- 3. Estructura basada en recursión