Лабораторная №1

Курилов Михаил, Б02-003

14 сентября 2021 г.

1. Зависимость вероятности от числа испытаний, числа точек в множестве и числа точек в пространстве

Для нахождения вероятности написана функция, которая получает исследуемое множество set, минимальное и максимальное значения, которые может принять число в данной задаче, min и max соответственно, число испытаний tests. Во время одного испытания генерируется случайное число из заданного отрезка [min, max] и проверяется, содержится ли оно в исследуемом множестве. Затем luck – количество случаев, когда содержится, делится на число испытаний. По определению вероятности

$$P = \lim_{tests \to \infty} \frac{luck}{tests} = \lim_{tests \to \infty} \widetilde{P}$$

Где $\widetilde{P}:=\frac{luck}{tests}$. Так как в нашем случае число испытаний конечное, то формально нельзя найти P, но можно \widetilde{P} . Когда число испытаний невелико, то \widetilde{P} может заметно отличаться от P, но при $tests\gg 1$ различие между ними должно быть незначительным.

Для исследования в качестве множества возьмем отрезок. Если генерируется случайное число, то вероятность выбора одной фиксированной точки из [min, max] равна $\frac{1}{max-min+1}$, а значит, вероятность выбора точки из отрезка [min', max'] теоретически равна:

$$P_{theory} = \frac{max' - min' + 1}{max - min + 1} = \frac{l'}{l}$$

Где l':=max'-min'+1 – количество точек в исследуемом множестве, l=max-min+1 – количество точек в отрезке [min,max].

Результаты измерений $\widetilde{P}(tests)$ представлены ниже. Для всех измерений $tests \in [1, 10^5].$

Рис. 1: l' = 2, l = 10

Рис. 2: $l'=4,\, l=10$

Рис. 3: l' = 6, l = 10

Рис. 4: l' = 8, l = 10

Рис. 5: l' = 20, l = 100

Рис. 6: l' = 40, l = 100

Рис. 7: l' = 60, l = 100

Рис. 8: l' = 80, l = 100

Рис. 9: $l' = 2 \cdot 10^2$, $l = 10^3$

Рис. 10: $l' = 4 \cdot 10^2$, $l = 10^3$

Рис. 11: $l'=6\cdot 10^2,\, l=10^3$

Рис. 12: $l' = 8 \cdot 10^2$, $l = 10^3$

Рис. 13: $l' = 2 \cdot 10^3$, $l = 10^4$

Рис. 14: $l' = 4 \cdot 10^3$, $l = 10^4$

Рис. 15: $l' = 6 \cdot 10^3$, $l = 10^4$

Рис. 16: $l' = 8 \cdot 10^3$, $l = 10^4$

Рис. 17: $l'=2\cdot 10^8,\, l=10^9$

Рис. 18: $l' = 4 \cdot 10^8$, $l = 10^9$

Рис. 19: $l'=6\cdot 10^8,\, l=10^9$

Рис. 20: $l' = 8 \cdot 10^8$, $l = 10^9$

Из данных графиков можем сделать вывод о верности предположения. Значение, к которому стремится \widetilde{P} при увеличении tests в пределах некоторой погрешности совпадает с P_{theory} . Отсюда, например, следует, что P прямо пропорционально числу элементов в исследуемом множестве и обратно пропорционально числу элементов в пространстве. При этом коэффициент пропорциональности в пределах погрешности совпадает с 1.

Для исследования того, насколько быстро \widetilde{P} стремится P при изменении tests построим графики $\ln(\mathcal{E}^{-1})(tests)$, где $\mathcal{E} = max|\widetilde{P} - P|$, где максимум берется по всем значениям tests начиная с данного до максимального (т.е. 10^5). Логарифм здесь берется для того, чтобы было лучше видно изменение \mathcal{E} , т.к. при больших $tests - \mathcal{E}$ очень мало, а логарифм стремится к минус бесконечности в нуле.

Сначала построим графики при фиксированном размере пространства для того, чтобы сравнить, зависит ли "скорость"
стремления к P от размера множества.

Рис. 21: l = 10

Рис. 22: $l = 10^2$

Рис. 23: $l = 10^3$

Рис. 24: $l = 10^5$

Рис. 25: $l = 10^9$

Теперь зафиксируем $\frac{l'}{l}$ для того, чтобы сравнить, зависит ли "скорость"
стремления кPот размера пространства.

Рис. 26: P = 0.2

Рис. 27: P = 0.4

Рис. 28: P = 0.2

Рис. 29: P = 0.4

Из графиков можем сделать выводы, что "скорость" стремления к P не зависит ни от размера пространства l, ни от P, поскольку графики для разных случаев лежат друг к другу очень близко и нельзя выделить какихто особенностей.

2. Зависимость вероятности от вида множества

Исследуем, зависит ли вероятность P от вида множества. Напомним, что этих видов пять: конечный набор точек, отрезок, интервал, отрезок без конечного числа точек, интервал без конечного числа точек. Далее фиксируем l=100 и l'=20, где l — мощность пространства, l' — мощность исследуемого множества.

Рис. 30: Отрезок

Рис. 31: Интервал

Рис. 32: Отрезок без конечного числа точек

Рис. 33: Интервал без конечного числа точек

Рис. 34: Конечный набор точек

Как видно из графиков, для всех видов множеств \widetilde{P} стремится к $P=P_{theory}$. Действительно, если вероятность выбора каждой фиксированной точки в испытании равна $\frac{1}{l}$, то вероятность выбора точки исследуемого множества $\frac{l'}{l}$, то есть не зависит от вида множества, а зависит лишь от числа точек в нем и мощности пространства.

Также интересно исследовать, зависит ли "скорость"стремления от вида множества. Аналогично для всех видов множеств построим графики $\ln(\mathcal{E}^{-1})(tests)$.

Рис. 35: l' = 20, l = 100

Из графика можем сделать вывод, что "скорость" стремления к P не зависит от типа множества, так как полученные графики лежать близко друг к другу и среди множеств нельзя выделить какое-то особенное, поведение которого сильно отличается от остальных. Это логично, ведь вероятности выбора конкретных точек пространства равны, а значит, точки неразличимы. Имеется ввиду, что множества, которые можем получить друг из друга перестановкой точек, ведут себя одинаково.

3. Выводы

Таким образом, значение, к которому стремится \widetilde{P} при увеличении tests в пределах некоторой погрешности совпадает с P_{theory} . Это значит, что P прямо пропорционально числу элементов в исследуемом множестве l', обратно пропорционально числу элементов в пространстве и не зависит от вида множества. Это объясняется тем, что вероятности выбора двух любых точек пространства совпадают и равняются $\frac{1}{l}$ в предположении случайности генерируемого числа.

Также были проведены исследования зависимости "скорости"стремления \widetilde{P} к P. Она не зависит ни от l, ни от P, ни от типа множества. Последнее утверждение вытекает из равенства вероятностей выбора двух любых точек пространства.