Dérivation

1 Tangentes et nombres dérivés.

1.1 Tangente à un graphe.

Définition 1

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle de \mathbb{R} . Soit \mathcal{C}_f sa représentation graphique. La **tangente** à \mathcal{C}_f au point A(a, f(a)) est la droite passant par A la plus proche de \mathcal{C}_f au voisinage de a.

Exemple 2

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ admet une tangente au point A(1,1) dont le coefficient directeur vaut 2.

1.2 Nombre dérivé.

Définition 3

On dit que f est **dérivable en a** si son graphe C_f admet une tangente au point A(a, f(a)). On appelle alors **nombre dérivé** et on note $\mathbf{f}'(\mathbf{a})$ le coefficient directeur de cette tangente.

Exemple 4

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est dérivable en 1 et f'(1) = 2.

1.3 Équation d'une tangente.

Théorème 5

Soit $f: I \to \mathbb{R}$ une fonction dérivable en a. La tangente $T_f(a)$ de f en A(a, (f(a))) a pour équation

$$T_f(a): y = f'(a)(x-a) + f(a)$$

Exemple 6

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est dérivable en 1, $T_f(1)$ a pour équation

$$T_f(1): y = 2(x-1)+1$$

Définition 7

Soit $f: I \to \mathbb{R}$. On dit que f est **dérivable sur I** si pour tout réel a dans I, f est dérivable en a. On appelle alors fonction dérivée de f et on note $f': I \to \mathbb{R}, x \mapsto f'(x)$

Exemple 8

La fonction $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est dérivable sur \mathbb{R} et f'(x) = 2x.

2 Calcul de dérivée.

2.1 Fonctions de référence.

Fonction f	Domaine de définition	Domaine de dérivabilité	Fonction dérivée f'
Fonction constante : $f(x) = k, k$ réel	$ ight]\mathbb{R}$	ight]R	f'(x)=0
Fonction affine : $f(x) = mx + p$, m et p réels	$ ight]\mathbb{R}$	ight]R	f'(x) = m
Fonction puissance : $f(x) = x^n$, n entier naturel	\mathbb{R}	\mathbb{R}	$f'(x) = nx^{n-1}$
Fonction inverse : $f(x) = \frac{1}{x}$	$]-\infty;0[\cup]0;+\infty[$]-∞;0[∪]0;+∞[$f'(x) = -\frac{1}{x^2}$
Fonction racine carrée : $f(x) = \sqrt{x}$	[0;+∞[]0;+∞[$f'(x) = \frac{1}{2\sqrt{x}}$

2.2 Opérations sur les fonctions dérivables.

Proposition 9

Soient u et v deux fonctions dérivables sur un intervalle I et λ un réel.

f	f'
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + uv'
$\frac{1}{v}$	$-\frac{v'}{v^2}$
$\frac{u}{v}$	$\frac{u'v - uv'}{v^2}$

Toutes ces fonctions sont dérivables sur I sauf les fonctions $\frac{1}{v}$ et $\frac{u}{v}$ qui sont dérivables seulement où v ne s'annule pas.

Exemple 10

1.
$$(5)' = 0$$

2.
$$(3x-7)'=3$$

3.
$$(x^7)' = 7x^6$$

4.
$$(2x^3 - x)' = (2x^3)' + (-x)' = 2(x^3)' - (x)' = 2 \times 3x^2 - 1$$

5.
$$(4x^3 + 3x^2 + 5x + 14)' = 12x^2 + 6x + 5$$

6.
$$(\sqrt{x}(5x+1))' = (\sqrt{x})'(5x+1) + \sqrt{x}(5x+1)' = \frac{1}{2\sqrt{x}}(5x+1) + 5\sqrt{x}$$

7.
$$\left(\frac{1}{x^3+x}\right)' = -\frac{(x^3+x)'}{(x^3+x)^2} = -\frac{3x^2+1}{(x^3+x)^2}$$

8.
$$\frac{x^2 + 3x + 7}{7x + 1} = \frac{(x^2 + 3x + 7)'(7x + 1) - (x^2 + 3x + 7)(7x + 1)'}{(7x + 1)^2} = \frac{(2x + 3)(7x + 1) - (x^2 + 3x + 7) \times 7}{(7x + 1)^2}$$

2

3 Signe de la dérivée et sens de variation.

Théorème 11

Soit f une fonction dérivable sur un intervalle I.

Pour tout x de I, $f'(x) \ge 0 \Leftrightarrow f$ est croissante sur I.

Pour tout x de I, $f'(x) \le 0 \Leftrightarrow f$ est décroissante sur I.

Pour tout x de I, $f'(x) = 0 \Leftrightarrow f$ est constante sur I.

Pour tout x de I sauf un nombre fini $f'(x) > 0 \Leftrightarrow f$ est strictement croissante sur I.

Pour tout x de I sauf un nombre fini $f'(x) < 0 \Leftrightarrow f$ est strictement décroissante sur I.

Exemple 12

Soit f la fonction définie sur l'intervalle [-3;3] par $f(x) = -2x^3 - 1,5x^2 + 18x + 26$

- **1.** Étudier les variations de la fonction f sur l'intervalle [-3;3].
- 2. En déduire les extremums de la fonction f et préciser en quelles valeurs elles sont atteintes.
- **1.** On dérive la fonction f, $f'(x) = -6x^2 3x + 18$.

f'(x) est une fonction trinôme du second degré, avec a = -6, b = -3 et c = 18.

$$\Delta = (-3)^2 - 4(-6)(18) = 441 = 21^2$$
, $x_1 = \frac{3 - 21}{-12} = \frac{3}{2}$ et $x_2 = \frac{3 + 21}{-12} = -2$.

On dresse alors le tableau de signe de f et on déduit les variations de f :

x	-3		-2		$\frac{3}{2}$		3
f'(x)		-	0	+	0	_	
f(x)	12.5				42.875		12.5

2. Sur (-3;3], 0 est le minimum de la fonction f atteint pour x=-2. 42.875 est le maximum de la fonction f atteint pour $x=\frac{3}{2}$.