

PERMUTATION OF THE LAST LAYER (PLL)

Approach

- Permutation of the Last Layer (PLL) will be broken into in 2 sub-steps
 - 1. Corner Permutation of the Last Layer (CPLL)
 - 2. Edge Permutation of the Last Layer (EPLL)
- Manipulation of the F2L can be used to change the permutation of the last layer
 - e.g. Extracting an F2L pair (or two) then re-inserting the pair(s) using a different "triggers"
- This approach requires two "algorithms" which are essentially combinations of simple "algorithms"
 - 1. Algorithm for corner permutation (CPLL) Combination of 2 simple algorithms using R U L moves
 - 2. Algorithm for edge permutation (EPLL) Combination of 2 simple algorithms using R U L moves

CORNER PERMUTATION OF THE LAST LAYER (CPLL)

There are 3 possible cases during CPLL including the "solved" case

Cases: The cases that need to be solved are the "diagonal corner swap" and the "adjacent corner swap"

Probabilities: The "adjacent" corner swap is the most common CPLL as it occurs in 4/6 solves

Approach: A combination of 2 simple algorithms can be used to cycle through the CPLL cases

CPLL ALGORITHM

- To change the permutation of corners you will use a mixture of R U L moves
- The CPLL algorithm that will be used is (R U2 R' U2') (U R U' R') (R U' L' U) (R' U' L U)
 - It may look daunting but it is actually two shorter algorithms
 - It starts with the Anti-Sune algorithm that was used for OCLL (R U2 R' U2') (U R U' R')
 - It ends with the Niklas algorithm which manipulates two F2L pairs (R U' L' U) (R' U' L U)
 - The combination of these two algorithms is the Jb-Perm which swaps 2 LL corners and 2 LL edges
- Explanation of the algorithm(s)
 - The Anti-Sune algorithm disorients 3 of the LL corners and permutes 3 of the LL edges
 - The Niklas algorithm re-orients the LL corners and changes their permutation
 - The combined effect of these two algorithms is to maintain the OLL but change the PLL
- Setup for the algorithm
 - The key to using this algorithm is knowing the appropriate "setup" prior to execution

ADJACENT CORNER SWAP

The "adjacent" corner swap can be recognised by the "headlights" on one side (shown in orange below)

Approach: "Adjacent corner swap" -> "solved"

Setup: Ensure the "Headlights" are on the left before executing the CPLL algorithm

Algorithm: (R U2 R' U2') (U R U' R') (R U' L' U) (R' U' L U)

DIAGONAL CORNER SWAP

The "diagonal" corner swap can be recognised by the absence of "headlights"

Approach: "Diagonal corner swap" -> "adjacent corner swap" -> "solved"

Setup: Ensure the "Headlights" are on the left before executing the "adjacent corner swap"

Algorithm: (R U2 R' U2') (U R U' R') (R U' L' U) (R' U' L U) – twice, remembering to AUF prior to execution

EDGE PERMUTATION OF THE LAST LAYER (EPLL)

There are 5 possible cases during **EPLL** including the "solved" case

EDGE PERMUTATION OF THE LAST LAYER (EPLL)

EPLL can be solved by cycling through the cases in a similar fashion to **CPLL**

Cases: There can only be 3 or 4 misplaced edges, corresponding to the images on the previous slide

Probabilities: The most common cases are the "3-cycles" as they occur in 8/12 solves

Approach: Cycle from 4 misplaced edges -> 3 misplaced edges -> "solved"

EPLL ALGORITHM

- To change the permutation of edges you can use a mixture of R U L moves
- The EPLL algorithm that will be used is (R U2 R' U2') (U R U' R') U (L' U2 L U2') (U' L' U L)
 - It may look daunting but it is actually two Anti-Sune algorithms
 - It starts with the Anti-Sune algorithm that was used for OCLL (R U2 R' U2') (U R U' R')
 - It ends with the left-handed "mirror" (L' U2 L U2') (U' L' U L)
 - The combination of these two algorithms is the **Ub-Perm** which is a clockwise "3-cycle" of LL edges
- Explanation of the algorithm(s)
 - The first Anti-Sune algorithm disorients 3 of the LL corners and permutes 3 of the LL edges
 - The second Anti-Sune algorithm re-orients all of the LL corners and permutes 3 of the LL edges
 - The combined effect of the two algorithms is to maintain the OLL but change the EPLL

3 MISPLACED EDGES

There are 2 EPLL cases with 3 misplaced edges and they can be recognised by the "bar" (orange below)

Approach: "Ua-Perm" -> "Ub-Perm" -> "Solved"

Setup: Ensure the "Bar" is on the left before executing the EPLL algorithm

Algorithm: (R U2 R' U2') (U R U' R') U (L' U2 L U2') (U' L' U L) – once or twice, remembering to AUF

4 MISPLACED EDGES

There are 2 EPLL cases with 4 misplaced edges and they take the most effort to solve

Approach: "Z-Perm" or "H-Perm" -> "Ub-Perm" -> "Solved"

Setup: Avoid the "Ua-Perm" by setting up the Z-Perm correctly before executing the EPLL algorithm

Algorithm: (R U2 R' U2') (U R U' R') U (L' U2 L U2') (U' L' U L) - twice, remembering to AUF

FINGER TRICKS

(R U2 R' U2') (U R U' R')

- 1. Use your index finger(s) to turn the U-layer for the "setup" instead of rotating the cube around the y-axis
- 2. Re-grip so that your right thumb is underneath the R-face and fingers are on top before executing the algorithm
- 3. Execute the whole algorithm without re-gripping
- 4. The U2 can be executed as a "double flick" i.e. index finger followed by middle finger

(L' U2 L U2') (U' L' U L)

- 1. Use your index finger(s) to turn the U-layer for the "setup"
- 2. Execute the whole algorithm without re-gripping
- 3. The U2 can be executed as a "double flick" i.e. index finger followed by middle finger

CONGRATULATIONS!

Practice Makes Perfect