Homework 4

Due time: 11 p.m. Nov. 14th, 2024

Turn in your hard-copy hand-writing homework at the entrance of Room 3-324 SIST #3 Building.

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.
- All final answers must be rounded to **two decimal places**.

- 1. In the circuit below, notice that u(t) means the step function, you need to find:
 - (a) v(0+) and i(0+)
 - (b) $\frac{dv(0+)}{dt}$ and $\frac{di(0+)}{dt}$
 - (c) $v(\infty)$ and $i(\infty)$

- 2. The switch in the circuit has been in position a for a long time. At t=0, the switch moves instantaneously to position b.
 - (a) Find i(0+)
 - (b) Find $\frac{di(0+)}{dt}$
 - (c) Find the expression of i(t) for t > 0.

3. Calculate v(t) for t > 0 in the circuit. (Hint: you can apply the Thevenin Equivalent Circuit to simplify the circuit)

4. The switch moves from position a to b at t = 0. Find $v_o(t)$ for t > 0. (Hint: you can apply Thevenin Equivalent Circuit to simplify the circuit)

5. The initial energy stored in the circuit is zero. Find v_o for $t \ge 0$. The response is overdamped, critically damped or underdamped?

6. Switch S_1 has been in position a and switch S_2 has been closed for a long time. At t=0, switch S_1 is moved instantaneously to position b, and switch S_2 is opened at the same time. Find $v_c(t)$ for t>0.

7. In the circuit below, find i(t) for t > 0.

8. Obtain $i_1(t)$ and $i_2(t)$ for t > 0 in the circuit.

