

REACTIVO DE NITROGENO DE UREA

USO:

Para la determinación cuantitativa del Nitrógeno de Urea en suero.

HISTORIA DEL METODO:

La urea ha sido determinada por el método directo donde la urea se condensa con diacetil para formar un cromógeno y por un método indirecto donde se mide la amonia de la acción de la ureasa sobre la urea.

La amonia libre se ha medido utilizando el reactivo de Nessler y la reacción de Berthelot, Talke y Schubert introdujeron un procedimiento (enzimático) en 1965 utilizando ureasa y glutamato dehidrogenasa. Este procedimiento presente se basan en una modificación de aquel método.

PRINCIPIO:

$$Urea + H2O \xrightarrow{Ureasa} 2NH3 + CO2$$

$$NH3 + a - Ketoglutarate + NADH + H$$
 $\stackrel{+}{\longrightarrow} L - glutamato + NAD$ $\stackrel{+}{+} H2O$

La urea se hidroliza por la ureasa para producir amonia y agua, la amonia liberada reacciona con A-Ketoglutarato en la presencia de NADH para dar glutamato. Una cantidad equimolar de NADH se oxida durante la reacción resultando en una disminución de la absorción que es directamente proporcional a la concentración de nitrógeno de urea en la muestra.

REACTIVOS:

La concentración se refiere al reactivo reconstituido. NADH 0.3 mM, Ureasa 1500 U/L, Glutamato Dehidrogenasa >1500 U/ L, a-Ketoglutarato 4.0 mM, Buffer pH 8.2 \pm 0.1 Activadores y Estabilizadores no reactivos.

PRECAUCIONES:

- 1. Este reactivo es para diagnostico "In Vitro"
- 2. Evite ingestión de los reactivos ya que no se ha determinado su toxicidad.

PREPARACION DEL REACTIVO:

Reconstituya con el volumen de agua destilada indicado en la etiqueta, agite suavemente y disuelva.

ALMACENAMIENTO:

- 1. Almacene el reactivo de 2-8 °C.
- 2. El reactivo reconstituido es estable por 2 días a $18\text{-}25~^{\mathrm{O}}\mathrm{C}$. y 30 días $2\text{-}8~^{\mathrm{O}}\mathrm{C}$.
- 3. El reactivo reconstituído debe almacenarse 2-8 °C.

DETERIORO: NO SE USE SI:

- 1. Ha penetrado humedad al vial y se ha hecho pasta.
- El reactivo reconstituido tiene una absorción menor de 1.0 a 340 nm.

COLECCION Y ALMACEN DE LA MUESTRA:

- 1. Se recomienda suero.
- 2. No utilice plasma con anticoagulantes.
- 3. Todo material en contacto con la muestra debe estar libre de amonia y materiales pesados.
- Se ha reportado estable la urea en suero por 72 hrs. 2-8°C. Los sueros sin refrigerar deben usarse en las próximas 8hr.

INTERFERENCIAS:

- 1. La reacción de la urea se inhibe con fluoruro.
- Muestras con niveles de amonia elevados dan elevados resultados de BUN falsos.
- 3. Young ha publicado una lista de interferencias.

MATERIALES PROVISTOS:

Reactivo Nitrógeno de la Urea.

MATERIALES REQUERIDOS PERO NO PROVISTOS:

- 1. Instrumentos de pipeteo precisos.
- 2. Tubo de ensayo o gradilla.
- Reloj
- 4. Espectrofotómetro con cubeta térmica.

PROCEDIMIENTO AUTOMATIZADO:

Ver las hojas apropiadas del instrumento.

PROCEDIMIENTO MANUAL:

- 1. Reconstituya los reactivos de acuerdo a las instrucciones.
- Ponga en cero el espectrofotómetro con agua a 340 nm.
- 3. Pipetee 1.0 de reactivo en los tubos y permita que obtengan la temperatura ambiente.
- 4. Agregue 0.01 ml. (10ul) de muestra al tubo de muestra e inmediatamente póngase en el espectrofotómetro.
- 5. Después de 30 segundos lea la absorbancia (A1)
- 6. Segundos después de la primera lectura tome otra lectura (A-2).
- 7. Determine el cambio de absorbancia entre las dos lecturas (A1-A2).
- 8. Repita el procedimiento con cada muestra.

VOLUMEN ALTERNATIVO:

Si el espectrofotómetro que se esta utilizando requiere un volumen final mayor de 1.0 ml. utilice

0.025 ml. (25 ul) de muestra en 3.0 ml. de reactivo, desarrolle la prueba descrita arriba.

CALIBRACION:

Use standard acuoso BUN (20 mg./dl.) o un calibrador apropiado.

CONTROL DE CALIDAD:

Corra rutinariamente sueros control normal y anormal para monitorear la reacción.

CALCULOS:

(A1 - A2) = Diferencia de absorción entre lecturas.

Ejemplo:

$$\frac{1.5 - 1.0}{1.5 - 0.9} = \frac{0.5}{0.6}$$
 x 20 = 17 mg/dl.

NOTA:

Para obtener resultados en unidades SI multiplique por 10 para convertir dl. a litros y divida entre 28 el peso molecular del nitrógeno.

Ejemplo: 17 mg./dl. x 10/28 = 6.06 mmol/ L.

LIMITANTES:

Las muestras con valores sobre 80 mg./dl. deben ser diluidas 1:1 con sol'n. salina al 0.9%, corra de nuevo y multiplique por dos..

VALORES ESPERADOS:

7 - 18 mg./ dl.

DESEMPEÑO:

- 1. Linearidad; 80 mg./dl
- 2. Comparación: Un estudio hecho utilizando otro procedimiento enzimático nos dio una correlación de 0.999 con una ecuación de regresión de y=0.98x+0.64.
- 3. Precisión:

Entre Pruebas

Conc.	D.E.	C.V.%
14	0.5	3.6
49	1.8	3 7

Prueba a prueba

Conc.	D.E.	C.V.%
14	0.6	4.3
46	0.8	1.7

REFERENCIAS:

- 1.- Fearon, W,R;Biochem J. 331:902 (1939)
- 2.- Marshall, E, K, Jr, Biol. Chem. 15.487 (1913)
- 3.- Gentzkow, C,J.J.Biol. Chem. 143.531 (1952)
- 4.- Fawcett, J, K; Scott, J, E, J, Clin. Path 13:156 (1960)
- 5.- Talke,H, Schubert, G.E. Klin, Wschr, 43:174 (1965)
- 6.- Tietz,N,W, Fundamentals of Clinical Chemistry, Philadelphia W.B. Saunders, p. 991 (1976).
- 7.- Young. D, S, et al, Clin. Chem, 21: 1d (1975)

