The Road Ahead:

Creating a CNN for Traffic Sign Detection and Classification

•••

Argishti Ovsepyan

Problem Statement Outline

- Objective: Implementing a Convolutional
 Neural Network (CNN) to detect and interpret
 traffic signs, a critical component in automated
 driving technology.
- **Significance:** Traffic sign detection is vital for safety and regulation compliance in autonomous vehicles.
- Impact on Industry: The successful implementation of traffic sign detection and classification can play a transformative role in the automotive industry, enhancing the user experience in modern driving.

Agenda

O1 Finding Data

Preprocessing the tiny LISA dataset for modeling

02

EDA

Investigating traffic sign distribution

(03

Modeling

Creating cold start CNN models and exploring VGG19 transfer learning

(04) Visualization

Observing all CNN layers and implementing Grad-CAM overlay for final layer

05 Future Work

class

Investigating limitations resulting in incorrect predictions

Finding Data

Preprocessing the tiny LISA dataset for modeling

Preprocessing data

Label Transformation:

Class mapping an index to each unique class name. Class labels are one-hot encoded for multi-class classification.

Loading and Resizing Images:

Images are loaded from the specified path and resized to a common size.

Conversion to NumPy Arrays:

Augmented images and class labels are converted into numpy arrays for model input.

Image Augmentation:

Techniques like rescaling, shearing, zooming, flipping, and brightness adjustment are applied to enhance the training dataset.

Applying Augmentations:

Multiple augmented images are generated from each original image.

EDA

Investigating traffic sign class distribution

Modeling

Creating cold start CNN models and exploring VGG19 transfer learning

Model Version 1

Holdout Results:

0.8963 Accuracy

0.3243 Loss

Model Version 2

Holdout Results:

0.9296 Accuracy

0.2318 Loss

Visualization

Observing all CNN layers and implementing Grad-CAM overlay for final layer

Actual: stop Predicted: stop

Heatmap

Actual: yieldAhead Predicted: yieldAhead

Heatmap

Actual: signalAhead Predicted: signalAhead

Heatmap

Actual: yield Predicted: merge

Heatmap

Actual: merge Predicted: yield

Heatmap

Actual: keepRight Predicted: signalAhead

Heatmap

Future Work

Investigating limitations resulting in incorrect predictions

- Investigate issues with "Keep Right" predictions and handling of images with multiple signs.
- Adjust the model, exploring variations in batch size and layer composition.
- Examine the impact of different image presentations (e.g., black and white, grayscale) on predictions.
- Assess how color (especially red and yellow) affects the model's decisions.
- Expand the diversity of training images, including different distances from the camera, for a more robust solution.
- Refine the model to reduce misclassifications and enhance its performance in real-world scenarios.

Thanks!

Do you have any questions?