

Compte rendu: Intégration numérique

Module : Calcul Scientifique **Classe :** 3^{me} année **A.U** 2023/2024

Remarque préliminaire: Vous devez rédiger un compte rendu dans lequel vous répondrez à toutes les questions de ce travail. La qualité de la rédaction, de la synthèse, de l'analyse des résultats obtenus sont des critères importants pour la note.

But du travail

Le but de ce travail est d'étudier et d'implémenter, sous Python, quelques méthodes numériques (rectangle, trapèze et Simpson) pour le calcul approché de:

$$I(f) = \int_a^b f(x) \, dx.$$

Notons que l'expression analytique de f(x) peut être connue comme elle peut être inconnue.

Introduction

Très souvent le calcul explicite de l'intégrale, d'une fonction f continue sur [a,b] dans \mathbb{R} , définie par $I(f) = \int_a^b f(x) \, dx$ peut se révéler très laborieux, ou tout simplement impossible à atteindre. Par conséquent, on fait appel à des méthodes numériques, afin de calculer une approximation de I(f). Pour cela, on subdivise [a,b] en n sous-intervalles $(a=x_0 < x_1 < \ldots < x_n = b)$ de longueur $h = \frac{b-a}{n}$ et on utilise le fait que

$$I(f) = \int_a^b f(x) \, dx = \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f(x) \, dx.$$

On est donc ramené au calcul de l'intégrale sur un petit intervalle $[x_i, x_{i+1}]$, ce que l'on fait à l'aide d'une formule d'intégration élémentaire. Une telle formule est ensuite obtenue en remplaçant f par un polynôme d'interpolation de Lagrange ou de Newton.

1. Méthode des rectangles (rectangle à gauche, rectangle à droite et point milieu)

Cette méthode est basée sur l'interpolation de chaque sous-intervalle $[x_i, x_{i+1}]$ par un polynôme de degré zéro. Alors la formule d'intégration élémentaire est donné par:

$$\int_{x_i}^{x_{i+1}} f(x) \, dx \simeq h_i f(\xi_i), \quad \text{avec} \quad \xi_i \in [x_i, x_{i+1}] \text{ et } h_i = x_{i+1} - x_i.$$

D'où la formule d'intégration est:

$$I(f) = \int_a^b f(x) dx \simeq \sum_{i=0}^{n-1} h_i f(\xi_i).$$

Dans le cas d'une subdivision uniforme (c'est-à-dire $h_i = h = \frac{b-a}{n}$), on obtient:

$$I(f) = \int_a^b f(x) dx \simeq h \sum_{i=0}^{n-1} f(\xi_i).$$

On dit méthode de rectangle à gauche si $\xi_i = x_i$, rectangle à droite si $\xi_i = x_{i+1}$ et point milieu si $\xi_i = \frac{x_{i+1} + x_i}{2} = x_{i+\frac{1}{2}}$.

- 1. Avec Python, écrire trois fonctions que vous appellerai **RectangleGauche**, **RectangleDroite** et **PointMilieu** basées sur la méthode de rectangle à gauche, rectangle à droite et point milieu, respectivement. Chacune de ces fonctions Python prend pour entrées *a*, *b*, *n* et *f*, et a pour sortie la valeur approchée de l'intégrale d'une fonction *f*.
- 2. Tester et valider les fonctions **RectangleGauche**, **RectangleDroite** et **PointMilieu** par $f(x) = x \log(x)$ sur l'intervalle [1,2] pour n = 2,4,8,16 puis comparer les résultats obtenus avec la valeur exacte de $\int_{1}^{2} x \log(x) dx$.

Indication: Python dispose d'une fonction prédéfinie pour le calcul exact de l'intégrale appelée **integrate**.

- -Il faut faire appel à la bibliothèque sympy en utilisant import sympy as sp.
- Avant de pourvoir utiliser des variables symboliques, il faut les déclarer comme symboles: x=sp.symbols('x').
- Pour calculer l'intégrale $\int_a^b f(x) dx$, on utilise sp.integrate(f(x),(x,a,b)).
- Pour donner la valeur numérique de $\int_a^b f(x) dx$, on utilise sp.integrate(f(x),(x,a,b)).evalf().

2. Méthode des trapèzes

Cette méthode est basée sur l'interpolation de chaque sous-intervalle $[x_i, x_{i+1}]$ par un polynôme de degré un. En d'autres mots, sur chaque $[x_i, x_{i+1}]$ la fonction f est substituée par la droite joignant les points $(x_i, f(x_i))$ et $(x_{i+1}, f(x_{i+1}))$. D'où la formule d'intégration élémentaire est donné par:

$$\int_{x_i}^{x_{i+1}} f(x) dx \simeq \frac{x_{i+1} - x_i}{2} [f(x_i) + f(x_{i+1})].$$

Ainsi la formule d'intégration est:

$$I(f) = \int_a^b f(x) \, dx \simeq \sum_{i=0}^{n-1} \frac{h_i}{2} \left[f(x_i) + f(x_{i+1}) \right].$$

Dans le cas d'une subdivision uniforme (c'est-à-dire $h_i = h = \frac{b-a}{n}$), on obtient la formule des trapèzes composée suivante:

$$I(f) = \int_a^b f(x) dx \simeq \frac{h}{2} [f(x_0) + f(x_n)] + h \sum_{i=1}^{n-1} f(x_i).$$

- 1. Ecrire une fonction Python que vous appellerai **trapeze** qui prend pour entrées *a*, *b*, *n* et *f*, et a pour sortie la valeur approchée de l'intégrale d'une fonction *f* par la méthode des trapèzes composée.
- 2. Tester et valider la fonction **trapeze** par $f(x) = \cos(x) \exp(x)$ sur l'intervalle $[0, \pi]$ pour n = 2, 4, 8, 16 puis comparer les résultats obtenus avec la valeur exacte de $\int_0^{\pi} \cos(x) \exp(x) dx$.

3. Méthode de Simpson

La méthode de Simpson est basée sur l'interpolation de chaque sous-intervalle $[x_i, x_{i+1}]$ par un polynôme de degré deux. Ainsi la fonction f est substituée par ce polynôme du second degré qui définit donc un arc de parabole passant par les points d'ordonnées $f(x_i)$, $f(\frac{x_{i+1}+x_i}{2})$ et $f(x_{i+1})$. Alors la formule d'intégration élémentaire est donné par:

$$\int_{x_i}^{x_{i+1}} f(x) dx \simeq \frac{h_i}{6} \left[f(x_i) + 4f(\frac{x_{i+1} + x_i}{2}) + f(x_{i+1}) \right].$$

Par conséquent, la formule d'intégration est:

$$I(f) = \int_a^b f(x) dx \simeq \sum_{i=0}^{n-1} \frac{h_i}{6} \left[f(x_i) + 4f(\frac{x_{i+1} + x_i}{2}) + f(x_{i+1}) \right].$$

Dans le cas d'une subdivision uniforme, la formule de Simpson composée devient:

$$I(f) = \int_a^b f(x) dx \simeq \frac{h}{6} \left[f(x_0) + f(x_n) + 2 \sum_{i=1}^{n-1} f(x_i) + 4 \sum_{i=0}^{n-1} f(\frac{x_{i+1} + x_i}{2}) \right].$$

- 1. Ecrire une fonction Python que vous appellerai **Simpson** qui prend pour entrées *a*, *b*, *n* et *f*, et a pour sortie la valeur approchée de l'intégrale d'une fonction *f* par la méthode de Simpson composée.
- 2. Tester et valider la fonction **Simpson** par $f(x) = x \exp(-x) \cos(2x)$ sur l'intervalle $[0,2\pi]$ pour n=2,4,8,16 puis comparer les résultats obtenus avec la valeur exacte de $\int_0^{2\pi} x \exp(-x) \cos(2x) \, dx$.

4. Comparaison des trois méthodes

Soit

$$I(f) = \int_{1}^{3} (x+1) \exp(x^{2}) dx.$$

- 1. Quelle est la méthode la plus efficace pour une bonne approximation de I(f)?
- 2. Représenter sur le même graphe l'erreur de chaque méthode (méthode du point milieu, méthode des trapèzes, méthode de Simpson) en fonction du nombre de sous-intervalles $n \in [2,4,8,10,12,14,16,18,20]$. Que remarquez-vous?
- 3. Donner le degré de prècision de chaque méthode pour n = 1.