МФТИ

Алгоритмы и структуры данных, осень 2022 Семинар №10. Выпуклые оболочки

- 1. На плоскости даны n точек. Найдите такую минимальную по включению выпуклую фигуру F, что все n точек лежат внутри F, причём каждая из точек лежит на расстоянии хотя бы r от границы F. Как найти периметр такой фигуры? Асимптотика: $O(n \log n)$.
- **2.** На плоскости в некоторых точках стоят n детей. Они хотят сделать селфи. Для этого им нужно определить человека, с положения которого все остальные видны под минимальным углом. Помогите им определить фотографа за $O(n \log n)$.
- **3.** Постройте выпуклое расслоение данного множества из n точек за $O(n^2)$. Выпуклое расслоение строится по слоям: i-м слоем выступают точки, лежащие в вершинах выпуклой оболочки множества точек, из которого выброшены точки меньших слоёв. Иными словами, 1-й слой это вершины выпуклой оболочки; 2-й слой это вершины выпуклой оболочки после выкидывания вершин 1-го слоя; и так далее.
- **4.** На плоскости даны n точек в общем положении (никакие три не лежат на одной прямой). За $O(n^2 \log n)$ найдите сумму площадей выпуклых оболочек по всем подмножествам точек, содержащих хотя бы три из них.
- **5.** Известно, что если $x_1 \neq x_2$, то существует ровно одно парабола вида $y = x^2 + bx + c$, проходящая через заданные точки (x_1, y_1) и (x_2, y_2) . На плоскости даны n точек. Вася проводит параболы описанного вида через каждую пару точек с различными абсциссами. Найдите количество различных нарисованных парабол, внутри которых (между ветвями которых) нет других точек. Асимптотика: $O(n \log n)$.
- **6.** Дан набор чисел a_1, \ldots, a_n , не обязательно положительных. Определим $f(l,r) = a_l + 2a_{l+1} + \ldots + (r-l+1)a_r$. Найдите $\max_{l \leq r} f(l,r)$ за $O(n \log n)$.
- 7. Дано корневое дерево, в каждой вершине которого написаны два числа: в i-й вершине написаны числа a_i и b_i . Из произвольной вершины i можно перепрыгнуть в любую вершину j, лежащую в поддереве i, тогда стоимость прыжка равна $a_i \cdot b_j$. Для каждой вершины определите минимальную суммарную стоимость прыжков, чтобы добраться из неё до какого-либо листа дерева. Асимптотика: $O(n \log^2 n)$.
- **8.** Пусть a, b, c три массива длины n. Пусть $dp_0 = 0$. Пусть $dp_i = \max_{j < i} \{a_j b_i + dp_j \cdot c_i\}$. Найдите все значения dp за $O(n \log n)$.

- **1.** Постройте выпуклую оболочку. От вершин нужно отступить на расстояние r, суммарно к границе прибавится окружность радиуса r.
- 2. Покажите, что фотограф обязательно стоит в вершине выпуклой оболочки.
- **3.** Здесь идея только одна: точки достаточно отсортировать один раз (по (x, y) в самом начале).
- **4.** Рассмотрите пару точек и определите, во сколько выпуклых оболочек входит это ребро. Для этого можно перебрать первую вершину, отсортировать все остальные по полярному углу относительно неё и провращать прямую.
- **5.** При замене координат $(x,y) \to (x,y-x^2)$ параболы перейдут в прямые. Останется найти количество сторон выпуклой оболочки.
- **6.** Пусть $suff_i = f(i,n)$. Перебирайте r в порядке возрастания, найдите максимум по всем отрезкам, которые заканчиваются в r. Тогда $f(i,r) = suff_i suff_{r+1} sum(r+1,n) \cdot (r-i+1)$. Тогда достаточно хранить выпуклую оболочку на точках $(suff_i,i)$.
- 7. Пусть dp_i ответ для i-й вершины. Тогда $dp_i = \min_{j \text{ из поддерева } i} dp_j + a_i \cdot b_j$. Достаточно хранить точки (dp_j, b_j) в выпуклой оболочке. Нужно будет также сливать выпуклые оболочки, для этого воспользуйтесь идеей переливания меньшего к большему.
- **8.** Храните точки (a_j, dp_j) . Нужно просто вставлять "в середину" выпуклой оболочки.