W04 AiR PWr	SPRAWOZDANIE 2		
MODELE UKŁADÓW DYNAMICZNYCH	RÓWNANIA OSCYLACYJNE		
Mikołaj Zapotoczny, nr indeksu: 252939	Data: 05.11.2020r.	Dr inż. Anna Czemplik	

1 Cel ćwiczenia

- Powtórka wiadomości na temat równan oscylacyjnych.
- Generowanie wykresu odpowiedzi skokowej.
- Porównanie otrzymanego wykresu z oczekiwanym bez rozwiązania analitycznego znając jedynie bieguny.

2 Tabelka z biegunami

Lp.	ž	ω	Bieguny			
			Re1	lm1	Re2	lm2
1	0,90	2,2	-2	0,70	-2	-0,70
2	0,40	1	-0,40	0,77	-0,40	-0,77
3	0,90	1	-0,90	0,32	-0,90	-0,32
4	0,40	5	-2	3,90	-2	-3,90

3 Rozwiązania

3.1 Schemat

3.2 Wykres dla odpowiedzi skokowej

3.3 Bieguny

3.4 Wnioski

- Jeśli ksi takie samo, to bieguny leżą na jednej prostej, a ksi jest współczynnikiem kierunkowym.
- Jeśli omega jest takie samo to bieguny leżą w równej odległości od środka układu współrzędnych (na okręgu).
- Jeśli takie samo RE, to bieguny leżą na prostej pionowej.
- Jeśli są te same RE to bieguny będą zanikać tak samo długo.
- Jeśli omega takie samo, to jest ta sama częstotliwość.
- Jeśli ksi takie samo, to jest takie same przeregulowanie.