

CONSTITUTIVE RELATION IDENTIFICATION USING PINN

APL405 : COURSE PROJECT

Aditya Agrawal (2021AM10198)

Swapnil Kashyap (2021AM10782)

Prof. Rajdip Nayek

OBJECTIVE

 Use Physics Informed Neural Networks(PINNs) to study the dependence of the strain energy density on the invariants of the Cauchy Green Deformation tensor in hyperelasticity.

DEFINING THE BOUNDARY VALUE PROBLEM(BVP)

Governing Equations:

$$\begin{split} \underline{\nabla}_{\underline{X}} \cdot \underline{\underline{P}}(\underline{X}) &= \underline{0} \quad \text{in } \Omega, \\ \underline{u}(\underline{X}) &= \underline{\tilde{u}} \quad \text{on } \partial \Omega_u, \\ \underline{t}(\underline{X}) &= \underline{\underline{P}}(\underline{X})\underline{n}(\underline{X}) &= \underline{0} \quad \text{on } \partial \Omega_t, \end{split}$$

P(X): Piola-Kirchhoff Stress Tensor

u(X): Displacement Field

 $\tilde{\boldsymbol{u}}$: Displacement B.C.

t(X): Traction B.C.

 Ω : Domain (Square Plate)

 $\partial\Omega_{_{\mathrm{U}}}$: Displacement Bounda

 $\partial\Omega_{\mathrm{t}}$: Traction Boundary

CONSTITUTIVE MODEL

$$\underline{\underline{F}}(\underline{X}) = \underline{\underline{I}} + \underline{\nabla}_{\underline{X}}\underline{u}(\underline{X})$$

$$\underline{\underline{C}}(\underline{X}) = \underline{\underline{F}}(\underline{X})^{\mathrm{T}}\underline{\underline{F}}(\underline{X})$$

$$W(\underline{\underline{C}}(\underline{X})) = W\left(I_1(\underline{\underline{C}}), I_2(\underline{\underline{C}}), I_3(\underline{\underline{C}})\right)$$

$$I_1(\underline{C}(\underline{X})) = \operatorname{tr}(\underline{C}) + 1,$$

$$I_2(\underline{\underline{C}}(\underline{X})) = \frac{1}{2} \left[\left(\operatorname{tr}(\underline{\underline{C}}) + 1 \right)^2 - \left(\operatorname{tr}(\underline{\underline{C}}^2) + 1 \right) \right]$$

$$I_3(\underline{\underline{C}}(\underline{X})) = \det(\underline{\underline{C}})$$

$$W(I_1, I_2, I_3) = \underline{Q}^{T}(I_1, I_2, I_3) \underline{\beta}$$

F(X): Deformation Gradient

C(X): Cauchy Green Deformation Tensor

W(C(X)): Strain Energy Density Function

 I_1 , I_2 , I_3 : Invariants of C(X)

 $\mathbf{Q}(\mathbf{X})$: Dictionary of potential non-linear functions of $\mathbf{I_1}, \mathbf{I_2}$ and $\mathbf{I_3}$

 β : Unknown Feature parameters of the functions in $\widehat{\ }$

CONSTITUTIVE MODEL:

$$\underline{Q}(I_1, I_2, I_3) = \underbrace{\left[(\bar{I}_1 - 3)^i (\bar{I}_2 - 3)^{j-i} : j \in \{1, \dots, N_a\}, i \in \{0, \dots, j\} \right]^{\mathrm{T}}}_{\text{Generalized Mooney-Rivlin features}}$$

$$\bigoplus \underbrace{\left[(J-1)^{2b} : b \in 1, \dots, N_b \right]^{\mathrm{T}}}_{\text{Volumetric deformation features}} \oplus \underbrace{\left[\log(\bar{I}_2/3) \right]}_{\text{Logarithmic feature}}$$

$$J = \det(\underline{\underline{F}}) = I_3^{1/2}, \, \bar{I}_1 = J^{-2/3}I_1, \, \bar{I}_2 = J^{-4/3}I_2,$$

$$\underline{\underline{P}}(\underline{X}) = \frac{\partial W(\underline{X})}{\partial \underline{\underline{F}}(\underline{X})} = \frac{\partial \underline{\underline{Q}}^{\mathrm{T}}(I_1, I_2, I_3)\underline{\beta}}{\partial \underline{\underline{F}}} = \sum_{k=1}^{3} \frac{\partial \underline{\underline{Q}}^{\mathrm{T}}(I_1, I_2, I_3)\underline{\beta}}{\partial I_k} \quad \frac{\partial I_k(\underline{\underline{C}})}{\partial \underline{\underline{F}}}$$

$$\underline{r}(\underline{X}) = \underline{\underline{P}}(\underline{X})\underline{n}(\underline{X}), \quad \underline{X} \in \partial\Omega_u$$

r(X): Reaction Force = Internal Traction

$$\underline{R} = \int_{\underline{X} \in \partial \Omega_u} \underline{r}(\underline{X}) d(\partial \Omega_u)$$

R: Net reaction force on boundary

PHYSICS INFORMED NEURAL NETWORK

Optimization Problem:

$$\phi^* = \operatorname*{arg\,min}_{\phi} \mathcal{L}\left(\phi\right). \quad \Phi^* = \{\mathsf{W*}, \, \mathsf{\beta*}\}$$

Where,

$$\mathcal{L} = MSE_G + \lambda_u \ MSE_u + \lambda_t \ MSE_t + \lambda_e \ \mathsf{MSE}_e$$

$$MSE_G = \frac{1}{N_G} \sum_{j=1}^{N_G} \| (\partial_t + \mathcal{N}) \, \hat{\boldsymbol{u}} (t, \boldsymbol{X}; \boldsymbol{\phi}) \|^2, \quad (t_j, \boldsymbol{X}_j) \in [0, T] \times \Omega$$

$$MSE_{u} = \frac{1}{N_{u}} \sum_{j=1}^{N_{u}} \|\hat{\boldsymbol{u}}(t, \boldsymbol{X}; \boldsymbol{\phi}) - \overline{\boldsymbol{u}}\|^{2}, \qquad (t_{j}, \boldsymbol{X}_{j}) \in [0, T] \times \Gamma_{u}$$

$$MSE_{t} = \frac{1}{N_{t}} \sum_{j=1}^{N_{t}} \|\hat{\boldsymbol{t}}(t, \boldsymbol{X}; \boldsymbol{\phi}) - \bar{\boldsymbol{t}}\|^{2}, \qquad (t_{j}, \boldsymbol{X}_{j}) \in [0, T] \times \Gamma_{t}$$

$$\mathsf{MSE}_{\mathrm{e}} = 1/\mathsf{N}_{\mathrm{e}} \sum ||\hat{\mathbf{u}}(\mathsf{t},\mathsf{X};\Phi) - \mathbf{u}(\mathsf{t},\mathsf{X})||^2 \ (\mathsf{t},\mathsf{X}) \in [\mathsf{0},\mathsf{T}] \times \Omega$$

ALGORITHM USED

```
Input: Physical domain, BCs, and DNN
     Material parameters β
     Sample points X_{int} from \Omega
     Sample points X_u from \Gamma_u
     Sample points X_t from \Gamma_t
     Neural network architecture
     Neural network hyperparameters
     Optimizer (Adam followed by L-BFGS)
Initialization: Initial weights and biases of the DNN
Output: Optimized weights and biases of the DNN
while Not minimized do
    Obtain \hat{u} from the DNN
    Compute \nabla_X \hat{u} using automatic differentiation
    Compute \boldsymbol{F} = \boldsymbol{I} + \nabla_{\boldsymbol{X}} \hat{\boldsymbol{u}}
    Compute J = \det(\mathbf{F}), \mathbf{C}, I_1, and \mathbf{P}
    if X_{int} then
        Compute \nabla_X \cdot P using automatic differentiation
        Calculate MSE_G
    else if X_t then
        Compute t = P \cdot N
        Calculate MSE_t
    else
        Calculate MSE_u
    Calculate loss function
    Update the weights and biases
end
```


RESULTS

δ = 30cm; Shape of NN: 2x50x10x2; Epochs: 3

The beta parameters of the model are, ========Epoch=======> 2 Index: 36. Beta: -0.03032270073890686 Batch: 0, Loss: 0.11956954747438431 Index: 2, Beta: -0.02136821858584881 Batch: 1, Loss: 0.12356039881706238 Index: 37, Beta: -0.02109895646572113 Batch: 2, Loss: 0.11865314096212387 Index: 43, Beta: -0.020868590101599693 Batch: 3, Loss: 0.12199420481920242 Index: 5, Beta: -0.019864879548549652 Batch: 4, Loss: 0.08449181914329529 Index: 1, Beta: -0.01938806287944317 Batch: 5, Loss: 0.08309056609869003 Index: 4, Beta: -0.019118856638669968 Batch: 6, Loss: 0.08225032687187195 Index: 3, Beta: -0.01821942627429962 Index: 9, Beta: -0.014078034088015556 Batch: 7, Loss: 0.08203616738319397 Index: 8, Beta: -0.013385855592787266 Batch: 8, Loss: 0.08343254774808884 Index: 7, Beta: -0.012614504434168339 Batch: 9, Loss: 0.08178643137216568 Index: 6, Beta: -0.011757155880331993 Batch: 10, Loss: 0.08209459483623505 Index: 14, Beta: -0.006524367723613977 Batch: 11, Loss: 0.08202366530895233 Index: 13, Beta: -0.0055363597348332405 Batch: 12, Loss: 0.08208108693361282 Index: 12, Beta: -0.004533857572823763 Batch: 13, Loss: 0.08199996501207352 Index: 11, Beta: -0.0035458127968013287 Batch: 14, Loss: 0.08186598867177963 Index: 10, Beta: -0.002608978422358632 Batch: 15, Loss: 0.08210473507642746 Index: 38, Beta: -0.0017901933752000332 Batch: 16, Loss: 0.08133222162723541 Index: 39, Beta: -0.0004524534160736948 Index: 25, Beta: -0.0004323547473177314 Batch: 17, Loss: 0.0812196359038353 Index: 26, Beta: -0.000312241812935099 Batch: 18, Loss: 0.08141925930976868 Index: 24, Beta: -0.00025708184693939984 Batch: 19, Loss: 0.08071540296077728 Index: 15, Beta: 0.00019133489695377648 Batch: 20, Loss: 0.08099354058504105 Index: 17, Beta: -0.0001383695926051587 Batch: 21, Loss: 0.08069579303264618 Batch: 22, Loss: 0.08042990416288376 Index: 31, Beta: 1.0179139280808158e-05 Batch: 23, Loss: 0.08109515905380249 Index: 42, Beta: 9.8017535492545e-06 Batch: 24, Loss: 0.08166274428367615 Index: 40, Beta: -4.8810870794113725e-06 Training Time: 1297.6093933582306 Index: 30, Beta: -4.519060894381255e-07

δ = 10cm; Shape of NN: 2x50x10x2; Epochs: 3

```
The beta parameters of the model are,
Index: 36, Beta: -0.030564846470952034
Index: 37, Beta: -0.02375234104692936
Index: 2, Beta: -0.021825416013598442
Index: 43, Beta: -0.021552903577685356
Index: 5, Beta: -0.020494718104600906
Index: 4, Beta: -0.019802140071988106
Index: 1, Beta: -0.01978423446416855
Index: 3, Beta: -0.018952779471874237
Index: 9, Beta: -0.016391858458518982
Index: 8, Beta: -0.01585765741765499
Index: 7, Beta: -0.015241487883031368
Index: 6, Beta: -0.014529050327837467
Index: 14, Beta: -0.009953312575817108
Index: 13, Beta: -0.00916887167841196
Index: 12, Beta: -0.008285663090646267
Index: 11, Beta: -0.0073189339600503445
Index: 10, Beta: -0.006290603894740343
Index: 38, Beta: -0.005618561524897814
Index: 20, Beta: -0.0010095395846292377
Index: 25, Beta: 0.00063336017774418
Index: 39, Beta: 0.0006062289467081428
Index: 24, Beta: 0.0005178358405828476
Index: 26, Beta: 0.0005088273901492357
Index: 19, Beta: -0.00045949884224683046
Index: 15, Beta: 1.3964428944746032e-05
Index: 41, Beta: -1.0297783774149138e-05
Index: 33, Beta: -6.92333560436964e-06
Index: 42, Beta: 2.956993739644531e-06
```

```
========> 2
Batch: 0, Loss: 0.23695941269397736
Batch: 1, Loss: 0.2429947853088379
Batch: 2, Loss: 0.209515780210495
Batch: 3, Loss: 0.21302184462547302
Batch: 4, Loss: 0.08621767908334732
Batch: 5, Loss: 0.08333951979875565
Batch: 6, Loss: 0.0823962464928627
Batch: 7, Loss: 0.08243657648563385
Batch: 8, Loss: 0.08397434651851654
Batch: 9, Loss: 0.08241042494773865
Batch: 10, Loss: 0.08270702511072159
Batch: 11, Loss: 0.08274658024311066
Batch: 12, Loss: 0.0825682207942009
Batch: 13, Loss: 0.08292887359857559
Batch: 14, Loss: 0.08282697200775146
Batch: 15, Loss: 0.08333796262741089
Batch: 16, Loss: 0.0820881649851799
Batch: 17, Loss: 0.08219333738088608
Batch: 18, Loss: 0.08248143643140793
Batch: 19, Loss: 0.08116885274648666
Batch: 20, Loss: 0.08178413659334183
Batch: 21, Loss: 0.0813763290643692
Batch: 22, Loss: 0.08096446096897125
Batch: 23, Loss: 0.08232741057872772
Batch: 24, Loss: 0.08351408690214157
Training Time: 1725.0156118869781
```

δ = 50cm: Shape of NN: 2x50x10x2; Epochs: 3

```
The beta parameters of the model are,
                                          ==========================> 2
Index: 36, Beta: -0.028982507064938545
                                          Batch: 0, Loss: 0.08524735271930695
Index: 2, Beta: -0.019829921424388885
                                          Batch: 1, Loss: 0.08730721473693848
Index: 43, Beta: -0.018234340474009514
                                          Batch: 2, Loss: 0.0854186937212944
Index: 1. Beta: -0.01777459867298603
                                          Batch: 3, Loss: 0.0882968083024025
Index: 5, Beta: -0.016955263912677765
                                          Batch: 4, Loss: 0.08352784067392349
Index: 4, Beta: -0.015920501202344894
                                          Batch: 5, Loss: 0.08299772441387177
Index: 3, Beta: -0.014717147685587406
Index: 37, Beta: -0.012779138050973415
                                          Batch: 6, Loss: 0.082362599670887
Index: 9, Beta: -0.008368752896785736
                                          Batch: 7, Loss: 0.08196030557155609
Index: 8, Beta: -0.007433408405631781
                                          Batch: 8, Loss: 0.0830799862742424
Index: 7, Beta: -0.006407493259757757
                                          Batch: 9, Loss: 0.08173023164272308
Index: 6, Beta: -0.005308269057422876
                                          Batch: 10, Loss: 0.08190938830375671
Index: 20, Beta: 0.0007336471462622285
                                          Batch: 11, Loss: 0.08175679296255112
Index: 19, Beta: 0.0004912199219688773
                                         Batch: 12, Loss: 0.08187545090913773
Index: 16, Beta: -0.00043488582014106214
                                          Batch: 13, Loss: 0.08159300684928894
Index: 17, Beta: -0.00031879753805696964
Index: 15, Beta: -0.00027281633811071515
                                         Batch: 14, Loss: 0.08142910897731781
Index: 14, Beta: -0.000212154453038238
                                         Batch: 15, Loss: 0.0814986303448677
Index: 25, Beta: 0.00018640853522811085
                                          Batch: 16, Loss: 0.08102010935544968
Index: 26, Beta: 0.000160772746312432
                                          Batch: 17, Loss: 0.0808710977435112
Index: 10, Beta: -0.00014509752509184182
                                          Batch: 18, Loss: 0.08091156929731369
Index: 22, Beta: -0.0001206896995427087
                                          Batch: 19, Loss: 0.08058905601501465
Index: 23, Beta: -9.17998404474929e-05
                                          Batch: 20, Loss: 9, 98063548803329468
Index: 11, Beta: -6.934937846381217e-05
Index: 31, Beta: 6.952626790734939e-06
Index: 41, Beta: -6.922108696016949e-06
Index: 40, Beta: 4.654953954741359e-06
Index: 12, Beta: -1.8227947293780744e-06
```

OBSERVATIONS AND ANALYSIS

- We observe that in all the 3 cases, the β components with higher weightage are similar in magnitude but not the same. This proves that while PINNs produce consistent results when used in solving PDEs, they are not necessarily accurate.
- The features from the library that are significant are: 1,2,3,4,5,36,37, and 43.
- Also, the losses are similar i.e. 0.080 in all the cases where the starting loss was 0.335, 0.3346, 0.46950 respectively.

CONCLUSION

- We observed the ability of Neural Networks to solve partial differential equations whose analytical solutions are too expensive to compute.
- The method used DCM(Deep Collocation Method) does not involve any sort of traditional meshing of the domain as in the case of other numerical methods such FEM and CFD.
- However, we see that the results are quite sensitive to the hyperparameters of the model.
- Cross-validation and testing is required to accurately obtain these hyperparameters for generalizing the model.

