Rattrapage

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont independantes. Seule les reponses soigneusement justifiées seront prise en compte.]

Exercice 1. Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. indépendantes et identiquement distribuées telles que $\mathbb{E}[X_i]=0$, $\mathbb{E}[X_i^2]=1$ et $\mathbb{E}[X_i^4]<\infty$ pour tout $i\geqslant 1$. On appelle $(\mathcal{F}_n)_{n\geqslant 1}$ la filtration naturelle des $(X_n)_{n\geqslant 1}$, c-à-d $\mathcal{F}_0=\{\emptyset,\Omega\}$, $\mathcal{F}_n=\sigma(X_1,...,X_n)$ pour $n\geqslant 1$. Soit $(a_{i,j})_{i,j\geqslant 1}$ une suite à deux indices de nombres réels, vérifiant la condition de symétrie $a_{i,j}=a_{j,i}$ pour tous $i,j\geqslant 1$. On suppose aussi que $C=\sum_{i=1}^\infty\sum_{j=1}^\infty a_{i,j}^2<+\infty$. On considère les processus $(Q_n)_{n\geqslant 1}$, $(U_n)_{n\geqslant 1}$, $(V_n)_{n\geqslant 1}$ définis par

$$Q_n = \sum_{1 \leqslant i, j \leqslant n} a_{i,j} X_i X_j, \quad V_n = \sum_{1 \leqslant i \leqslant n} a_{i,i} (X_i^2 - 1) \quad \text{pour } n \geqslant 1;$$

$$\text{et} \qquad U_1 = 0, \quad U_n = \sum_{1\leqslant i < j \leqslant n} a_{i,j} X_i X_j = \sum_{i=2}^n \left(\sum_{j=1}^{i-1} a_{i,j} X_j\right) \!\! X_i \qquad \text{pour } n \geqslant 2.$$

- a) Pour $n \ge 1$ on pose $A_n = \sum_{1 \le i \le n} a_{i,i}$, $M_n = Q_n A_n$. Montrer que $M_n = 2U_n + V_n$ et que les processus $(U_n)_{n \ge 1}$, $(V_n)_{n \ge 1}$ et $(M_n)_{n \ge 1}$ sont des martingales par rapport à la filtration $(\mathcal{F}_n)_{n \ge 1}$.
- b) Montrer que $(U_n)_{n\geq 1}$ et $(V_n)_{n\geq 1}$ sont des processus bornés dans $L^2(\Omega)$.
- c) En déduire que le processus $(M_n)_{n\geqslant 1}$ converge presque sûrement vers une v.a. finie M_{∞} .
- d) Expliquer pourquoi $\mathbb{E}[M_{\infty}] = 0$ et $Var(M_{\infty}) = \lim_{n \to \infty} Var(M_n)$.

Exercice 2. Soit $(X_n)_{n\geqslant 0}$ et $(Y_n)_{n\geqslant 0}$ deux chaînes de Markov homogènes définies sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. On suppose qu'elle sont indépendantes, qu'elles ont le même espace d'état $\mathcal{M} = \{0,1\}$ et la même matrice de transition $P: \mathcal{M} \times \mathcal{M} \to [0,1]$ donnée par

$$P = \left(\begin{array}{cc} 1 - \alpha & \alpha \\ \alpha & 1 - \alpha \end{array}\right)$$

où $\alpha \in]0,1[$ est un paramètre. Pour $n \ge 0$ on pose $Z_n = (X_n,Y_n)$ et $W_n = \mathbb{I}_{X_n = Y_n}$.

- a) Montrer que le processus $(Z_n)_{n\geq 0}$ est une chaîne de Markov homogène et déterminer son espace d'états et sa matrice de transition.
- b) Soit $T = \inf \{n \ge 0 : X_n = Y_n\}$ le premier instant où les deux chaînes se trouvent dans le même état. En exploitant le fait que $(W_n)_{n\ge 0}$ est une chaîne de Markov homogène et en supposant que $\mathbb{P}(X_0 \ne Y_0) = 1$, déterminer la loi de T.

Exercice 3. Un joueur joue à pile ou face de manière répétée : il mise $1 \in$ à chaque parte, et remporte sa mise ou la perd selon le résultat. On suppose qu'il part avec moins de $10 \in$ et qu'il joue tant qu'il n'est pas ruiné ou qu'il n'a pas atteint la somme de $10 \in$. Pour $n \ge 0$ soit X_n la somme qu'il possède après l'n-iéme jeu.

a) Montrer que le processus $(X_n)_{n\geqslant 0}$ est une chaîne de Markov homogène sur $\{0, ..., 10\}$ et donner sa matrice de transition.

- b) On pose $T_x = \inf\{n \ge 0 : X_n = x\}$ et $u(x) = \mathbb{P}(T_{10} < T_0 | X_0 = x)$. Donner une interprétation intuitive de cette probabilité.
- c) Déterminer l'équation linéaire satisfaite par la fonction u(x), ainsi que les conditions aux limites.
- d) On suppose que le joueur commence avec 1€. Déterminer la probabilité qu'il atteigne la somme de 10€.