BOI 2024

Vilnius, Lithuania May 3 - May 7, 2024 d2 Tasks Polish (POL)

Święty ogień

W starej religii bałtyckiej ważne jest, aby ciągle płonął święty ogień. Kapłan zwany *krivis* jest odpowiedzialny za ochronę go przed zgaśnięciem. Ma on wielu zaufanych pomocniczek zwanych *vaidilutė* i chce stworzyć dla nich harmonogram podsycania i ochrony ognia. Musi tak stworzyć harmonogramy, aby ogień był zawsze podtrzymywany przez jakąś *vaidilutė*.

 $\it Krivis$ używa swojego własnego systemu czasu, w którym każdy dzień ma M minut. W jego wiosce jest $\it N$ vaidilutė, przy czym $\it i$ -ta vaidilutė ma czas pracy opisany dwiema liczbami całkowitymi $\it s_i$ oraz $\it e_i$. Wartość $\it s_i$ oznacza najwcześniejszy moment w ciągu dnia, w którym może zacząć pracować, a wartość $\it e_i$ oznacza najpóźniejszy moment w ciągu dnia, w którym może skończyć pracować. Czas jest liczony w minutach od początku dnia. Zauważ, że gdy $\it s_i>e_i$, to $\it vaidilutė$ jest skłonna pracować w nocy.

Krivis poprosił Cię o wybranie kilku *vaidilutė* i zorganizowanie dla nich harmonogramów. Wybrana *vaidilutė* musi rozpocząć swoją zmianę nie wcześniej niż o godzinie s_i , oraz zakończyć swoją zmianę nie później niż o godzinie e_i . Pojedyncza zmiana jest zawsze krótsza niż cały dzień. Wybrane *vaidilutė* będą powtarzać swoje zmiany codziennie.

Przekazywanie odpowiedzialności od jednej *vaidilutė* do następnej zwiększa ryzyko zgaśnięcia świętego ognia. Z tego powodu należy zminimalizować liczbę takich sytuacji w ciągu dnia, więc chcesz ułożyć harmonogram, w którym potrzebna będzie jak najmniejsza liczba *vaidilutė*.

Zadanie

Oblicz minimalną liczbę *vaidilutė*, którą musisz wybrać, aby święty ogień był utrzymywany przez cały czas.

Wejście

Pierwszy wiersz wejścia zawiera dwie liczby całkowite N oraz M – liczbę dostępnych $\emph{vaidilut\'e}$ i długość dnia w minutach.

Następnie jest N wierszy, przy czym i-ty z nich zawiera dwie liczby całkowite s_i oraz e_i – najwcześniejszy czas rozpoczęcia i najpóźniejszy czas zakończenia pracy i-tej vaidilutė.

Wyjście

Wypisz jedną liczbę całkowitą - minimalną liczbę vaidilute, którą musisz wybrać. Jeśli nie można wybrać vaidilutes zgodnie z wymaganiami, wypisz -1.

Przykłady

Wejście	Wyjście	Wyjaśnienie
4 100 10 30	3	Możesz wybrać pierwszą, drugą i czwartą <i>vaidilutė</i> oraz ułożyć im harmonogram następująco:
30 70 20 40 60 20		 Pierwsza vaidilutė pracuje od 10-tej minuty aż do 30-tej minuty. Druga vaidilutė pracuje od 30-tej minuty aż do 70-tej minuty. Czwarta vaidilutė pracuje od 70-tej minuty aż do 10-tej minuty kolejnego dnia.
1 100 30 40	-1	Niemożliwe jest ustalenie harmonogramu, ponieważ jest tylko jedna vaidilutė i nie może ona pracować przez cały dzień.

Ograniczenia

- $1 \le N \le 2 \cdot 10^5$
- $2 \le M \le 10^9$
- $ullet \ 0 \leq s_i, e_i < M$ (dla wszystkich $1 \leq i \leq N$)
- ullet $s_i
 eq e_i$ (dla wszystkich $1 \le i \le N$)

Podzadania

Numer	Punkty	Dodatkowe warunki
1	14	$N \leq 20.$
2	17	$N \leq 300.$
3	9	$N \leq 5000.$
4	13	Dla wszystkich $\emph{vaidilute}, s_i < e_i$ lub $e_i = 0.$
5	21	Dla każdej $\emph{vaidilutė}$, przedział czasowy od momentu \emph{s}_i do momentu \emph{e}_i ma taką samą długość.
6	26	Brak dodatkowych warunków.