1.3 The Cross Product of Vectors

Definition 1.3.1 Cross product (네티크 외자 >

** dot Product

F. Cr & V4(7)

Let
$$F = \langle a_1, b_1, c_1 \rangle$$
 and $G = \langle a_2, b_2, c_2 \rangle$

The cross product of F with G is the vector $F \times G$ defined by

 $F \times G = \langle b_1 c_2 - b_2 c_1, a_2 c_1 - a_1 c_2, a_1 b_2 - a_2 b_1 \rangle$

Vector

Remembering the components of F x G:

Theorem 1.3.1

1. $F \times G$ is orthogonal to both F and G

 \mathfrak{I}_2 . $||F \times G|| = ||F|| ||G|| \sin \theta$, where θ is the angle between F and G

3. if $F \neq \langle 0, 0, 0 \rangle$ and $G \neq \langle 0, 0, 0 \rangle$, then $F \times G = \langle 0, 0, 0 \rangle$ if and only if F and G are parallel

5. $(\alpha F) \times G = \alpha(F \times G) = F \times (\alpha G)$ 5. $(\alpha F) \times G = \alpha(F \times G) = F \times (\alpha G)$ 6. $F \times G = G \times F$

6. $F \times G = -G \times F$

Direction of F x G:

Example 1.3.1

Find the equation of a plane Π passing through (1, 2, 1), (-1, 1, 3), and (-2, -2, -2)

sample midtorn sample midtern a.3.2

Sample

midterm Q3.4

$$FXG = \langle 3+3 \rangle, -(6+6), 8-3 \rangle$$

= $\langle 11, -12, 5 \rangle$