UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS

MATEMÁTICA I (MA-1111) Fecha de publicación: 13/01/10 Contenido para el parcial: I

PRÁCTICA DE LA SEMANA 3 y 4

Trimestre: Ene-Mar 2010

Contenidos

- Operaciones con funciones.
- Transformaciones gráficas de funciones.
- Función inyectiva.
- Función inversa.
- Funciones trigonométricas.
- Funciones trigonométricas inversas.
- Composición

Ejercicios a resolver en la práctica

- **1**. Sean $f(x) = \sqrt{2-x}$ y $g(x) = \sqrt{x+2}$.
- a) Determina el dominio de las funciones f y g.
- b) Halla el dominio y una expresión para cada una de las siguientes funciones.
 - i) (f+g)(x)
- ii) (fg)(x)
- iii) (f/g)(x)
- **c**) ¿Existirá algún elemento del dominio de f y g tal que f(x) = g(x)?, en caso afirmativo hállalo.
- d) ¿Qué significa el resultado hallado en d)? Verifícalo gráficamente.
- **2.** Dadas las funciones reales de variable real f, g y h definidas por f(x) = |x|, g(x) = x+1 y $h(x) = x^2 1$, halla F(x), si $F = h \circ g \circ f$.

- **3**. Dadas las funciones reales de variable real f y g definidas como $f(x) = \sqrt{x + \frac{\pi}{2}}$ y $g(x) = \frac{1}{x^2}$
- **a)** Determina $(g \circ f)(x)$.
- **b**) Indica el dominio de la función $g \circ f$.
- 4. Para cada una de las funciones definidas a continuación determina el dominio.

a)
$$f(x) = \frac{\sqrt{-x}}{1-5x^2}$$

a)
$$f(x) = \frac{\sqrt{-x}}{1 - 5x^2}$$
 b) $f(x) = \sqrt{(x - 1)(3 - x)}$ **c)** $g(x) = \frac{\sqrt{x^2 - 4}}{9 - x^2}$ **d)** $t(x) = \frac{x - 2}{\cos 2x}$

c)
$$g(x) = \frac{\sqrt{x^2 - 4}}{9 - x^2}$$

$$\mathbf{d)} \ \mathbf{t}(x) = \frac{x-2}{\cos 2x}$$

5. Dadas
$$f(x) = \sqrt{x^2 - 4}$$
 y $g(x) = \begin{cases} x + 3 & \text{si } x > 2 \\ 1 - x & \text{si } x < -2 \end{cases}$

- a) Indica el dominio de f.
- **b**) Indica el dominio de *g*.
- **c**) Halla $(g \circ f)(x)$ e indica su dominio.
- **d**) Halla $(f \circ g)(x)$ e indica su dominio.
- 6. Grafica las funciones definidas a continuación.

a)
$$w(x) = |x|$$
 b) $w_1(x) = |x+2|$ **c)** $w_2(x) = 1 + |x-3|$ **d)** $w_3(x) = 1 - |x|$ **e)** $w_4(x) = |1-|x|$

c)
$$w_2(x) = 1 + |x-3|$$

d)
$$w_3(x) = 1 - |x|$$

e)
$$w_4(x) = |1-|x||$$

- **7**. Sea f(x) = 5x 4.
- a) Demuestra que la función f es invertible.
- b) Halla la función inversa de f.
- **c**) Determina f(3) y $f^{-1}(11)$.
- 8. Determina el valor de cada una de las siguientes expresiones:

a)
$$\arcsin\left(\frac{1}{2}\right)$$

a)
$$\arcsin\left(\frac{1}{2}\right)$$
 b) $\arccos(-1)$ **c)** $\arcsin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ **d)** $\tan^{-1}(-1)$

d)
$$\tan^{-1}(-1)$$

9. Halla el valor de cada una de las siguientes expresiones:

a)
$$\cos \left(\sin^{-1} \left(\frac{\sqrt{3}}{2} \right) \right)$$

b) sen
$$\left(\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$$

a)
$$\cos\left(\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$$
 b) $\sin\left(\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$ **c)** $\sin^{-1}\left(\tan\left(-\frac{\pi}{4}\right)\right)$ **d)** $\arccos\left(\cos\left(0\right)\right)$)

- **10.** Dada $f(x) = \begin{cases} x+2, & x<-3 \\ -1, & -3 \le x \le \pi \\ -\sec x, & x>\pi \end{cases}$
- a) Halla f(2), $f\left(-\frac{\pi}{2}\right)$, $f\left(\frac{13\pi}{6}\right)$, $f\left(-2\pi\right)$.

- b) Grafica la función f.c) A partir de la gráfica indica el rango de la función.

Ejercicios propuestos

1. Sean $f(x) = 4x^3$ y $g(x) = (x+2)^2$. Escribe las expresiones de:

$$\mathbf{a)} \ (f+g)(x)$$

b)
$$g(x-2)$$

c)
$$1+f(2x)$$

$$\mathbf{d)} \ (f \ g)(x)$$

a)
$$(f+g)(x)$$
 b) $g(x-2)$ **c)** $1+f(2x)$) **d)** $(fg)(x)$ **e)** $4(\frac{f}{g})(x)$

2. Dadas las funciones f, g y h definidas por $f(x) = \frac{1}{x}$, g(x) = 2 + x y $h(x) = \sqrt{x}$, indica el dominio y determina las expresiones de:

a)
$$\left(\frac{f}{g}\right)(x)$$

b)
$$\left(\frac{g}{f}\right)(x)$$

c)
$$\left(\frac{f}{h}\right)(x)$$

d)
$$(f \circ g \circ h)(x)$$

$$\mathbf{a}) \left(\frac{f}{g} \right) (x) \qquad \mathbf{b}) \ \left(\frac{g}{f} \right) (x) \qquad \mathbf{c}) \ \left(\frac{f}{h} \right) (x) \qquad \mathbf{d}) \ \left(f \circ g \circ h \right) (x) \qquad \mathbf{e}) \ \left(f \circ h \circ g \right) (x) \quad \mathbf{f}) \ \left(g \circ f \circ h \right) (x)$$

$$\mathbf{f)} \ \big(g \circ f \circ h \big) (x)$$

Reflexiona

- Dadas dos funciones reales de variable real f y g ¿cómo se determina el dominio de la función f + g?
- Dadas dos funciones reales de variable real f y g ¿cómo se determina el dominio de la función f - g?
- Dadas dos funciones reales de variable real f y g ¿cómo se determina el dominio de la función $f \cdot g$?
- Dadas dos funciones reales de variable real f y g ¿cómo se determina el dominio de la función $\frac{J}{-}$?
- Dadas dos funciones reales de variable real f y g ¿cómo se determina el dominio de la función $f \circ g$?

3. Para cada una de las funciones definidas a continuación indica el dominio.

a)
$$f(x) = \frac{x + \sqrt{7}}{x^2 - 1}$$

b)
$$f(x) = \sqrt{2 - 2x - x^2}$$

a)
$$f(x) = \frac{x + \sqrt{7}}{x^2 - 1}$$
 b) $f(x) = \sqrt{2 - 2x - x^2}$ **c)** $f(x) = \sqrt{\frac{x - \sqrt{2}}{64 - 4x^2}}$ **d)** $f(x) = \frac{x^2}{\sec(3x)}$

$$\mathbf{d)} \ f(x) = \frac{x^2}{\mathrm{sen}(3x)}$$

Reflexiona

- ¿Cuál es el dominio de la función raíz cuadrada de x?
- ¿Qué condiciones debe satisfacer f(x) para que $\sqrt{f(x)}$ sea un número real?
- 4. Dadas las funciones reales de variable real definidas por

$$f(x) = \begin{cases} -x^2 & \text{si } x \ge 1 \\ x+2 & \text{si } x < 1 \end{cases} \quad \mathbf{y} \quad g(x) = \begin{cases} 2x & \text{si } x \ge 0 \\ -3x+2 & \text{si } x < 0 \end{cases},$$

Halla: **a)** $(f \circ g)(-2)$ **b)** $(f \circ g)(0)$ **c)** $(f \circ g)(x)$

En los problemas del 5 y 6 grafica las funciones dadas.

5.a)
$$f(x) = x^2$$
 b) $f_1(x) = x^2 + \frac{5}{2}$ **c)** $f_2(x) = \left(x + \frac{5}{2}\right)^2$ **d)** $f_3(x) = 3 - (x - 3)^2$ **e)** $f_4(x) = \left|3 - (x - 3)^2\right|$

6. a)
$$s(x) = \operatorname{sen} x$$
 b) $s_1(x) = 1 + \operatorname{sen} x$ **c)** $s_2(x) = \operatorname{sen} \left(x + \frac{\pi}{4} \right)$ **d)** $s_3(x) = 3 | \operatorname{sen} x |$

- **7.** Sea $f(x) = \frac{1}{3}x + 5$,
- a) Representa gráficamente la función f
- **b**) ¿Es la función *f* inyectiva?
- c) ¿Es la función f invertible?
- d) En caso de ser invertible, halla la función inversa de f.
- 8. Determina el valor de cada una de las siguientes expresiones:

- **a)** $\operatorname{arcsen}\left(-\frac{1}{2}\right)$ **b)** $\operatorname{arctan}\left(1\right)$ **c)** $\operatorname{arccos}\left(-\frac{1}{\sqrt{2}}\right)$ **d)** $\operatorname{sen}^{-1}\left(-\frac{\sqrt{2}}{2}\right)$ **e)** $\operatorname{cos}^{-1}\left(-\frac{1}{2}\right)$
- **9.** Dada la función real de variable real definida por $f(x) = \arcsin(x)$. ¿Cuáles de las siguientes afirmaciones son correctas? Justifica tu respuesta.
- I) La gráfica de la función arco seno contiene al punto $\left(1, \frac{\pi}{2}\right)$.

II)
$$f(x) = \text{sen}^{-1}(x) = \frac{1}{\text{sen } x}$$
.

III) La gráfica decrece de izquierda a derecha desde el segundo cuadrante hacia el cuarto.

IV) Dom $_f = |-1,1|$.

$$\mathbf{V}) \operatorname{Rg}_f = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$$

10. Para cada una de las funciones definidas a continuación indica el dominio.

$$a) f(x) = \sqrt{3 - \sin^2 x}$$

a)
$$f(x) = \sqrt{3 - \sin^2 x}$$
 b) $g(x) = \arccos\left(\frac{2 - x}{3}\right)$

11. Dada
$$f(x) = \cos x$$
. Halla: **a)** $f(\pi)$ **b)** $f\left(-\frac{\pi}{2}\right)$ **c)** $f\left(20\pi\right)$ **d)** $f\left(-\frac{20\pi}{15}\right)$.

b)
$$f\left(-\frac{\pi}{2}\right)$$

c)
$$f(20\pi)$$

d)
$$f\left(-\frac{20\pi}{15}\right)$$

Reflexiona

- ¿A cuál intervalo se restringe el dominio de la función seno para poder definir su inversa, la función arco seno? ¿por qué?
- ¿Qué condiciones debe satisfacer f(x) para que arcsen(f(x)) sea un número real?
- ¿A cuál intervalo se restringe el dominio de la función coseno para poder definir su inversa, la función arco coseno? ¿por qué?
- ¿Qué condiciones debe satisfacer f(x) para que $\arccos(f(x))$ sea un número real?

Respuestas de los ejercicios propuestos

1) a)
$$4x^3 + x^2 + 4x + 4$$

$$x^2$$

c)
$$1 + 32x^3$$

d)
$$4x^5 + 16x^4 + 16x^3$$

1) a)
$$4x^3 + x^2 + 4x + 4$$
 b) x^2 c) $1 + 32x^3$ d) $4x^5 + 16x^4 + 16x^3$ e) $\frac{16x^3}{(x+2)^2}$, $x \ne -2$

2) a)
$$\frac{1}{x(2+x)}$$
, $Dom_{\frac{f}{g}} = R - \{-2, 0\}$

2) a)
$$\frac{1}{x(2+x)}$$
, $Dom_{\frac{f}{g}} = R - \{-2, 0\}$ **b)** $\frac{2+x}{\frac{1}{x}} = x(2+x)$, $Dom_{\frac{g}{f}} = R - \{0\}$

c)
$$\frac{1}{x\sqrt{x}}$$
, Dom $\frac{f}{h} = (0, +\infty)$

d)
$$\frac{1}{2+\sqrt{x}}$$
, $Dom_{f\circ g\circ h}=(0,+\infty)$

e)
$$\frac{1}{\sqrt{x+2}}$$
, $\operatorname{Dom}_{f \circ h \circ g} = (-2, +\infty)$ f) $2 + \frac{1}{\sqrt{x}}$, $\operatorname{Dom}_{g \circ f \circ h} = (0, +\infty)$

f)
$$2 + \frac{1}{\sqrt{x}}$$
, $Dom_{g \circ f \circ h} = (0, +\infty)$

3) a)
$$R - \{-1, 1\}$$
 b) $\left[1 - \sqrt{3}, 1 + \sqrt{3}\right]$ c) $\left(-\infty, -4\right) \cup \left[\sqrt{2}, 4\right)$ d) $R - \left\{x \in R \mid x = \frac{k \pi}{3}, k \in Z\right\}$

4) a)
$$-64$$
 b) 2 **c)** $(f \circ g)(x) = f(g(x)) = \begin{cases} -(2x)^2 & \text{si } x \ge \frac{1}{2} \\ -(-3x+2)^2 & \text{si } x < 0 \\ 2x+2 & \text{si } 0 \le x < \frac{1}{2} \end{cases}$

5)

6)

7) a)

b) Si **c**) Si **d**)
$$f^{-1}$$
: $R \to R$, tal que $f^{-1}(x) = 3x - 1$:

8) a)
$$-\frac{\pi}{6}$$
 b) $\frac{\pi}{4}$ c) $\frac{3\pi}{4}$ d) $-\frac{\pi}{4}$ e) $\frac{2\pi}{3}$

- **9**) I, IV y V
- **10) e)** R **f)** [-1,5] **11) a)** -1 **b)** 0 **c)** 1 **d)** $-\frac{1}{2}$

Halla el error

- $\bullet \quad \text{Si } f(x) = \begin{cases} 2 & \text{si } x < -3 \\ x & \text{si } -3 \le x \le 0 \\ x^2 & \text{si } x > 0 \end{cases} \quad \text{entonces} \quad f(4) = \begin{cases} 2 & \text{si } 4 < -3 \\ 4 & \text{si } -3 \le 4 \le 0 \\ 64 & \text{si } 4 > 0 \end{cases}$
- $g(x) = x^3h(2-3x)$ significa que $g(x) = x^2h(x)\cdot(2x-3)$
- $g(x) = x^3 h(2-3x)$ significa que $g(x) = x^2 h \cdot 2 x_3 h \cdot 3x$
- Para obtener la gráfica de y = f(x+k) con k > 0 se desplaza la gráfica de y = f(x), según el eje y, k unidades hacia abajo.
- Para obtener la gráfica de y = f(x+k) con k < 0 se desplaza la gráfica de y = f(x), según el eje x, k unidades hacia la izquierda
- Sea $f: R \to R$, tall que f(x) = 3 2x entonces $f^{-1}(x) = \frac{1}{3 2x}$
- Sea $f: R \to R$, tal que f(x) = 3 2x entonces $f^{-1}(x) = -3 + 2x$
- Si $f(x) = \arcsin\left(\frac{3-2x}{4}\right)$ entonces $Dom_f = [-1,1]$
- $\operatorname{sen}\left(\operatorname{arccos}\left(\frac{\sqrt{3}}{2}\right)\right) = \frac{\sqrt{3}}{2}$
- $\cos\left(\arcsin\left(\frac{1}{2}\right)\right) = \cos\left(\frac{1}{2}\right) \cdot \arcsin\left(\frac{1}{2}\right)$
- $arccos\left(-\frac{1}{2}\right) = \frac{4\pi}{3} \Leftrightarrow cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}$
- Si $f(x) = \arcsin\left(\frac{3-2x}{4}\right)$ entonces $Dom_f = [-1,1]$
- $\cos 2x 1 = \cos (2x 1)$
- = sen (3x) = 3 sen(x)
- $f(x) = \left(\sqrt{x + \frac{\pi}{2}}\right)^2 \Rightarrow f(x) = x + \frac{\pi}{2}$
- sen $x = 0 \Leftrightarrow x = 2k\pi$, $k \in \mathbb{Z}$

• $f(x) = \cos x \Rightarrow f(x) = 0 \Leftrightarrow x = k \frac{\pi}{2}, k \in \mathbb{Z}$

Practica elaborada por la Prof: Aida Montezuma. Ampliada por Prof Antonio Di Teodoro. 2010