

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
26. April 2001 (26.04.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/29520 A1

(51) Internationale Patentklassifikation⁷:

G01F 23/26

(72) Erfinder; und

(21) Internationales Aktenzeichen:

PCT/EP00/10164

(75) Erfinder/Anmelder (nur für US): WINKENS, Frank
[DE/DE]; Mohnstrasse 50, 67067 Ludwigshafen (DE);
FRANK, Wolfgang [DE/DE]; Alexanderstrasse 22, 68519
Viehrheim (DE).

(22) Internationales Anmeldedatum:

16. Oktober 2000 (16.10.2000)

(74) Anwalt: MIERSWA, Klaus; Friedrichstrasse 171, 68199
Mannheim (DE).

(25) Einreichungssprache:

Deutsch

(81) Bestimmungsstaaten (national): AU, BG, BR, BY, CA,
CN, CZ, EE, HU, ID, IL, IN, IS, JP, KR, LT, LV, MX, NO,
NZ, PL, RO, RU, SG, SI, SK, TR, UA, UG, US, ZA.

(30) Angaben zur Priorität:

199 49 985.3 15. Oktober 1999 (15.10.1999) DE

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eura-
asisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von
US): SIE SENSORIK INDUSTRIE-ELEKTRONIK
GMBH [DE/DE]; Edisonstrasse 2, 68519 Viehrheim (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: CAPACITANCE SENSOR FOR DETECTING THE FILL LEVEL OF A MEDIUM IN A CONTAINER

(54) Bezeichnung: KAPAZITIVE SENSOREN ZUR DETEKTION DES FÜLLSTANDES EINES MEDIUMS IN EINEM BE-
HÄLTER

WO 01/29520 A1

(57) Abstract: The invention relates to a sensor comprising an amplifier which is capacitively charged in relation to a mass by a container and a medium constrained therein. Said amplifier is provided with a capacitance feedback whose dimensions are such that the amplifier oscillates exclusively when a critical content level is not attained. The capacitance feedback is influenced by the container in such a way that the capacitive charge of the amplifier input caused exclusively by the container is counteracted. According to the invention, the sensor only reacts to the capacitance of the medium in a manner which is essentially independent of the size of the container. The inventive sensor is also characterized in that it operates at a frequency enabling it to decide between a real and a fake fill level in the container by virtue of differences in the conductivity of the medium. Said fake fill level being caused by wetting or foam. Problems which sensors operating at a very high working frequency of more than approx. 50 MHz are prone to can however be avoided.

[Fortsetzung auf der nächsten Seite]

(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes, und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes
on Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

Veröffentlicht:

- Mit internationalem Recherchenbericht.
- Vor Ablauf der für Änderungen der Ansprüche geltenden
Frist; Veröffentlichung wird wiederholt, falls Änderungen
eintreffen.

(57) Zusammenfassung: Ein erfindungsgemäßer Sensor umfaßt einen Verstärker, der durch einen Behälter und ein darin enthaltenes Medium kapazitiv gegen Masse belastet ist und der eine kapazitive Rückkopplung aufweist, die so dimensioniert ist, daß der Verstärker dann und nur dann oszilliert, wenn der kritische Füllstand nicht erreicht ist. Die kapazitive Rückkopplung wird erfindungsgemäß durch den Behälter so beeinflußt, daß die durch den Behälter allein verursachte kapazitive Belastung des Verstärkereingangs entgegengewirkt wird. Hierdurch wird erreicht, daß der Sensor weitgehend unabhängig von der Größe der Behälterkapazität allein auf die Kapazität des Mediums anspricht. Ein erfindungsgemäßer Sensor zeichnet sich ferner durch eine solche Arbeitsfrequenz aus, daß mit Hilfe der Leitfähigkeit des Mediums unterschieden werden kann zwischen einer massiven und einer scheinbaren, durch Benetzung oder Schaumbildung vorgetäuschten Füllung des Behälters mit dem Medium, jedoch diejenigen Probleme weitgehend vermeidet, mit denen Sensoren mit sehr hoher Arbeitsfrequenz von über ca. 50 MHz behaftet sind.

Kapazitive Sensoren zur Detektion des Füllstandes
eines Mediums in einem Behälter

Technisches Gebiet:

5 Die Erfindung betrifft kapazitive Sensoren mit einem Verstärker zur Detektion des Füllstandes eines Mediums in einem Behälter mit nichtmittelischer Behälterwand, gemäß dem Oberbegriff des Anspruchs 1 sowie 15.

Stand der Technik:

10 Berührungslos arbeitende kapazitive Sensoren zur Erkennung des Füllstandes eines dielektrischen Mediums im Inneren von Behältern mit nichtmetallischen Wänden mittels Elektroden, die außen an dem Behälter angebracht sind, sind bekannt und finden z.B. in der chemischen und pharmazeutischen Industrie, in der Wasseraufbereitung und in der Medizintechnik vielfache Anwendung. Das
15 Funktionsprinzip dieser Sensoren beruht darauf, daß eine Elektrode außen an der Behälterwand in einer bestimmten Höhe angebracht ist. Die Elektrode wird im folgenden „aktive Elektrode“ genannt und ist so angeordnet, daß bei Anliegen einer Spannung ein elektrisches Feld zwischen der aktiven Elektrode und Masse entsteht, das im wesentlichen durch den Behälter und das darin
20 enthaltene Medium verläuft. Das Medium kann eine Flüssigkeit oder z.B. auch ein Pulver sein.

Da das Medium, z.B. Wasser oder eine wässrige Lösung, eine höhere Dielektrizitätskonstante aufweist als Luft, wächst die Kapazität der aktiven Elektrode 25 gegenüber Masse mit zunehmendem Füllstand des Mediums in dem Behälter an. Diese Kapazität wird nachfolgend „aktive Kapazität“ genannt.

Mittels einer geeigneten elektronischen Schaltung wird festgestellt, ob die Kapazität zwischen der aktiven Elektrode und Masse einen bestimmten kritischen Wert übersteigt oder nicht. In einer üblichen, dem Stand der Technik entsprechen Ausführungsform umfaßt eine solche Schaltung einen Verstärker, an dessen Eingang die aktive Elektrode angeschlossen und so positioniert ist, daß der Eingang durch die Kapazität der aktiven Elektrode gegenüber Masse kapazitiv belastet ist. Wird der Behälter mit einem Medium gefüllt, so 30 vergrößert sich die Kapazität der aktiven Elektrode gegenüber Masse, da die
35 vergrößert sich die Kapazität der aktiven Elektrode gegenüber Masse, da die

Dielektrizitätskonstante aller festen und flüssigen Medien größer ist als diejenige von Luft. Die kapazitive Belastung des Eingangs des Verstärkers wächst also mit dem Füllstand des Mediums im Behälter an.

- 5 Der Verstärker ist ferner mit einer Rückkopplung versehen, und der Verstärkungsfaktor des Verstärkers ist so gewählt, daß der Verstärker aufgrund der Rückkopplung oszilliert, solange die den Eingang belastende Kapazität den kritischen Wert nicht übersteigt, wogegen die Oszillation des Verstärkers abbricht und einem Nullsignal weicht, wenn die Kapazität größer ist als dieser
- 10 kritische Wert oder umgekehrt. Mittels einer geeigneten zusätzlichen Schaltung, in die das Ausgangssignal des Verstärkers eingespeist wird, kann durch das Abbrechen oder Auftreten der Oszillation ein Schaltsignal ausgelöst werden. Typischerweise liegt die Frequenz der Oszillation um 1 MHz.
- 15 Die somit gegebene kritische Kapazität, die einer bestimmten kritischen Füllstandshöhe des Mediums im Behälter entspricht, definiert somit den Auslösepunkt des Sensors. Der Wert der kritischen Kapazität kann verändert werden, indem z.B. der Verstärkungsfaktor des Verstärkers verstellt wird. Hierdurch ist der Auslösepunkt des Sensors justierbar.
- 20 Ein wesentlicher Nachteil solcher Sensoren besteht darin, daß die aktive Kapazität nicht durch die Dielektrizitätskonstante und den Füllstand des Mediums allein bestimmt ist, sondern zusätzlich auch von den kapazitiven Eigenschaften des Behälters, d.h. von dessen Abmessungen und Form sowie von der Dielektrizitätskonstanten des Behältermaterials beeinflußt wird, da ein Teil der elektrischen Feldlinien zwischen der aktiven Elektrode und Masse die Wand des Behälters, nicht jedoch das Medium selbst durchläuft. Der Behälter wirkt aufgrund dieses Effektes als zusätzliche Kapazität, die sich der Kapazität des Mediums störend überlagert und im folgenden als „Behälter-Eigenkapazität“
- 25 30 bezeichnet wird.

Auch derjenige Teil der Feldlinien, der durch das Medium verläuft, durchquert beim Übergang von der aktiven Elektrode zum Medium und beim Übergang vom Medium zur Masse jeweils das Behältermaterial, da die Behälterwand sich zwischen der aktiven Elektrode und dem Medium befindet und der Behälter-

boden sich zwischen Medium und Masse befindet. Diese Randbedingung äußert sich durch das Auftreten einer weiteren Kapazität, die in Serie mit der Kapazität des Mediums geschaltet ist und im folgenden „Übergangskapazität“ genannt wird.

5

Die aktive Kapazität umfaßt somit drei Einzelkapazitäten, von denen eine im wesentlichen durch Eigenschaften und Füllstand des Mediums bestimmt ist, während die beiden anderen im wesentlichen durch die kapazitiven Eigenschaften des Behälters bestimmt sind.

10

Durch den Einfluß des Behälters wird somit der Schaltpunkt des Sensors verschoben. Diesem Störeinfluß wird gemäß dem Stand der Technik durch eine entsprechende Justierung des Schaltpunktes Rechnung getragen. Bei Austausch des Behälters gegen einen solchen mit anderen Eigenschaften, z.B.

15 gegen einen solchen aus einem Material mit anderer Dielektrizitätskonstante oder gegen einen solchen mit anderer Wandstärke, muß der Schaltpunkt neu justiert werden.

Ein weiterer erheblicher Nachteil von Sensoren, die dem Stand der Technik entsprechen, wird im folgenden dargestellt. In der Praxis kommt es in vielen Fällen vor, daß das Medium mit Teilen der Innenwände des Behälters selbst in Bereichen, die oberhalb des Füllstandsniveaus liegen, in Kontakt kommt und sie dadurch benetzt. Eine solche Benetzung oberhalb der Oberfläche des Mediums kann z.B. durch Schaumbildung, durch aufsteigende Blasen, durch Kapillarwirkung, durch Kondensation oder durch Wellenbildung aufgrund von Erschütterungen oder Rührvorgängen verursacht werden. Des Weiteren kann eine solche Benetzung dadurch entstehen, daß das Füllstandsniveau des Mediums im Behälter z.B. durch Entnahme des Mediums abgesenkt wird, wobei an der Innenwand des Behälters eine benetzte Fläche zurückbleibt.

25

Erfahrungsgemäß kann bereits eine dünne Schicht des Mediums, die z.B. durch eine solche Benetzung der Seitenwand oder etwa auch durch die Bildung von Schaum über der Oberfläche des Mediums entsteht, bei Sensoren, die dem Stand der Technik entsprechen, zu erheblichen Fehlfunktionen führen. Die Ursache hierfür besteht darin, daß bereits eine solche dünne Schicht des

Mediums einen wesentlichen Beitrag zur Kapazität zwischen Elektrode und Masse liefern kann, so daß der Sensor nicht unterscheiden kann zwischen einer tatsächlichen massiven Füllung des Behälters und einer scheinbaren, durch Benetzung oder Schaumbildung vorgetäuschten Füllung des Behälters. Dieser 5 Umstand kann dazu führen, daß der Sensor auslöst, obwohl die Oberfläche des Mediums das kritische Füllstandsniveau nicht erreicht.

Die Möglichkeit, diese mit Benetzung der Behälterwand und Schaumbildung einhergehenden Probleme durch die Verwendung sehr hoher Oszillations-10 Frequenzen von typischerweise 50 MHz bis 1 GHz lösen, ist bekannt. Durch die Verwendung einer derart hohen Arbeitsfrequenz kann erreicht werden, daß der Sensor unterscheiden kann zwischen einer massiven und einer scheinbaren, durch Benetzung oder Schaumbildung vorgetäuschten Füllung des Behälters mit dem Medium. Das Betreiben eines Sensors unter sehr hohen Frequenzen 15 bringt jedoch den gravierenden Nachteil mit sich, daß das Auftreten von Reflexionen, stehenden Wellen und anderen Störungen innerhalb des Zuleitungskabels zwischen Oszillator und Elektrode stark begünstigt wird, wodurch die eindeutige Detektion des Füllstandes erschwert und der Schaltpunkt oftmals deutlich verschoben wird. Bei solchen Systemen kann bereits das bloße 20 Berühren des Zuleitungskabels mit der Hand zu einer erheblichen Verschiebung des Schaltpunktes führen.

Ein weiterer Nachteil bei der Verwendung derart hoher Frequenzen betrifft die EMV-Problematik. Da die elektromagnetische Emission mit der Frequenz stark 25 zunimmt, ist die Einhaltung der entsprechenden gesetzlichen Emissions-Grenzwerte bei Verwendung derart hoher Frequenzen schwierig. Darüber hinaus muß das System gemäß EMV-Vorschrift so eingerichtet sein, daß eine elektromagnetische Einstrahlung von außen mit einer Feldstärke von 3 V/m im Frequenzbereich von 80 MHz bis 1 GHz keine Funktionsstörung des Systems 30 verursacht. Auch diese Forderung ist bei Betreiben des Sensors mit den oben genannten sehr hohen Frequenzen nur schwer zu erfüllen.

Derartige Niveauschalter sind zum Beispiel in den Druckschriften DE-A- 42 17 305, DD-A- 221 549 sowie DE-A- 44 33 677 beschrieben.

Technische Aufgabe:

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen berührungslos arbeitenden kapazitiven Sensor bereitzustellen, der auslöst, wenn der Füllstand eines Mediums in einem Behälter oberhalb oder auch unterhalb einer bestimmt kritischen Schwelle liegt, wobei der störende Einfluß der kapazitiven Eigenschaften des Behälters zu einem wesentlichen Teil neutralisiert ist; ebenso soll sich der Auslösepunkt des berührungslos arbeitenden kapazitiven Sensors bei einer Benetzung der Behälterinnenwand oder Schaumbildung über der Oberfläche des Mediums nur unwesentlich verschieben.

10 Diese Aufgabe wird erfindungsgemäß gelöst durch einen kapazitiven Sensor mit einem Verstärker zur Detektion des Füllstandes eines Mediums in einem Behälter mit nichmetallischer Behälterwand, umfassend eine erste Elektrode, die an den Eingang des Verstärkers angeschlossen ist und gegenüber Masse mit einer ersten Kapazität behaftet ist, so daß der Eingang des Verstärkers kapazitiv belastet ist, wobei die Elektrode so angeordnet ist, daß das durch das Signal zwischen der Elektrode und Masse entstehende elektrische Feld im wesentlichen durch den Behälter und das Medium verläuft, so daß die Größe der ersten Kapazität einerseits mit zunehmendem Füllstand des Mediums in 15 dem Behälter anwächst und andererseits durch die kapazitiven Eigenschaften des Behälters beeinflußt ist, eine zweite Elektrode, die an den Ausgang des Verstärkers angeschlossen ist, und eine dritte Elektrode, die an den Eingang des Verstärkers angeschlossen ist, wobei sich die zweite Elektrode und die dritte Elektrode in einem Abstand zueinander befinden und so positioniert sind, 20 daß zwischen ihnen eine zweite Kapazität besteht, deren Größe wesentlich durch die kapazitiven Eigenschaften des Behälters und nur unwesentlich durch den Füllstand des Mediums im Behälter beeinflußt ist und die eine kapazitive Rückkopplung des Verstärkers darstellt, und ferner umfassend einen Kondensator, der eine dritte Kapazität aufweist, wobei die eine Elektrode des Kondensators an den Ausgang und die andere Elektrode des Kondensators an den 25 Eingang des Verstärkers angeschlossen ist, so daß der Kondensator parallel zu der zweiten Kapazität ebenfalls eine kapazitive Rückkopplung des Verstärkers darstellt, wobei die Kapazität des Kondensators so gewählt ist, daß der Verstärker aufgrund der kapazitiven Rückkopplung nur dann oszilliert, wenn der 30 Füllstand des Mediums im Behälter und damit die erste Kapazität jeweils 35

unterhalb einer bestimmten Schwelle liegen, wobei die zweite Kapazität dem den Eingang des Verstärkers belastenden kapazitiven Einfluß des Behälters entgegenwirkt, so daß der kapazitive Einfluß des Behälters reduziert ist.

5 In einer weiteren bevorzugten Ausgestaltung der Erfindung wird als Verstärker ein Verstärker mit einer solchen Eigenfrequenz verwendet, daß die Belastung des Eingangs des Verstärkers durch den ohmschen und kapazitiven Widerstand zwischen der Elektrode und Masse so beeinflußt ist, daß der Verstärker oszilliert, wenn der Füllstand des Mediums in dem Behälter unterhalb einer
10 vorgegebenen Schwelle liegt und die Innenseite der Wand des Behälters oberhalb der Oberfläche des Mediums bzw. oberhalb der Schwelle mit einer Schicht des Mediums behaftet ist oder wenn oberhalb der Oberfläche des Mediums Schaum vorliegt. Andererseits wird die Belastung des Eingangs des Verstärkers so beeinflusst, dass die Störungen, die durch das Auftreten von
15 Reflexionen, stehenden Wellen und anderen Einflüssen innerhalb des Zuleitungskabels zwischen Oszillator und Elektrode verursacht werden, unerheblich sind und die geltenden EMV-Vorschriften eingehalten werden. In höchst vorteilhafter Weise ist dann eine Benetzung der Behälterinnenwand oder Schaumbildung über der Oberfläche des Mediums als solche zu erkennen und
20 von einer tatsächlichen, massiven Füllung des Behälters zu unterscheiden.

Entscheidend ist somit die Wahl der Arbeitsfrequenz. Durch eine höhere Arbeitsfrequenz als in der herkömmlichen Sensorik üblich, kann der kapazitive Blindwiderstand zwischen den Elektroden und dem Medium reduziert werden.
25 Dieser Blindwiderstand der Ankopplung an das Medium wird nun deutlich kleiner als der reelle Widerstand feuchter Anhaftungen und Schäume. Somit kann der Sensor berührungslos durch die Behälterwand, in einem gewissen Umfang, auch den Leitwert des dahinter befindlichen Mediums auswerten. Dünne Wasserfilme und Schäume bewirken gemäß der Strömungsfeldtheorie
30 eine höhere Stromdichte und somit einen wesentlich geringeren Leitwert als das kompakte Medium. Somit wird eine Unterscheidung zwischen einem vollen Gefäß und dünnen Wasserfilmen möglich, welche durch Betauung oder anhaftende, schäumende Medien entstehen. Die Kompensationselektrode, in den Figuren 2 oder 3 die Elektrode 12, greift in diesen Prozeß unterstützend
35 ein. In der herkömmlichen Sensorik sind die Arbeitsfrequenzen deutlich

niedriger gewählt und deshalb sind die kapazitiven Blindwiderstände der Kopplung zum Medium höher als die reellen Widerstände von Anhaftungen. Für den Stand der Technik stellen deshalb ein volles Gefäß und eine Anhaftung immer einen "Kurzschluß" gegen Erde dar und können nicht unterschieden werden.

Bei einem erfindungsgemäßen Sensor erfolgt die Rückkopplung durch zwei parallel geschaltete Kapazitäten. Die eine dieser Kapazitäten wird durch einen Kondensator von konstanter, vom Füllstand des Mediums im Behälter und von den kapazitiven Eigenschaften des Behälters unabhängigen Kapazität gebildet und im folgenden „feste Rückkopplungs-Kapazität“ genannt. Dieser Kondensator hat die Aufgabe, ein Oszillieren des Verstärkers immer dann zu gewährleisten, wenn die kapazitive Belastung des Eingangs unterhalb der kritischen Füllstandshöhe liegt.

Die andere dieser Kapazitäten wird durch zwei Elektroden gebildet, die so positioniert sind, daß die zwischen ihnen bestehende Kapazität, die im folgenden „Kompensations-Kapazität“ genannt wird, wesentlich durch Eigenschaften des Behälters bestimmt ist. Dies wird vorteilhaft dadurch erreicht, daß beide Elektroden in einem Abstand zueinander nahe an der Behälterwand angebracht und so ausgerichtet sind, daß das zwischen beiden Elektroden verlaufende elektrische Feld zu einem wesentlichen Teil im Inneren der Behälterwand verläuft. Diejenige dieser beiden Elektroden, die an den Ausgang des Verstärkers angeschlossen ist, wird im folgenden Kompensations-Elektrode genannt. Bei gegebener Oszillationsfrequenz des Verstärkers ist die Rückkopplung um so intensiver, je größer die Kompensations-Kapazität ist.

Erfundungsgemäß üben die kapazitiven Eigenschaften des Behälters somit zwei gegenläufige Einflüsse auf die Größe des Eingangssignals des Verstärkers aus:

Einerseits erhöhen die kapazitiven Eigenschaften des Behälters die aktive Kapazität, was den Ausgang des Verstärkers kapazitiv belastet und das Eingangssignal des Verstärkers verkleinert. Andererseits verstärken die kapazitiven Eigenschaften des Behälters die kapazitive Rückkopplung des Verstärkers, was das Eingangssignal vergrößert.

Diese gegenläufigen Wirkungen neutralisieren sich zumindest teilweise gegenseitig. Durch geeignete Wahl des Anbringungsortes und der Abmessungen der betreffenden Elektroden läßt es sich erreichen, daß sich diese Wirkungen näherungsweise gegenseitig aufheben. In diesem Fall ist der Einfluß 5 kapazitiven Eigenschaften des Behälters auf den Schaltpunkt des Sensors weitgehend eliminiert. Eine Neujustierung des Sensors bei Verwendung eines Behälters mit anderen kapazitiven Eigenschaften, z.B. eines Behälters aus einem anderen Material oder mit anderer Wandstärke, kann somit in sehr vielen Fällen entfallen, was für zahlreiche Anwendungen einen erheblichen 10 Vorteil darstellt. Die Verwendung von Behältern mit sehr großer Wandstärke, die z.B. aus Gründen der Wärmedämmung zweckmäßig sein kann, wird für viele Anwendungen erst bei Einsatz eines erfindungsgemäßen Sensors sinnvoll.

Einen weiteren Vorteil bringt der Umstand mit sich, daß der Auslösepunkt 15 eines erfindungsgemäßen Sensors nicht nur bei Austausch eines Behälters gegen einen solchen mit anderen kapazitiven Eigenschaften weitgehend stabil bleibt, sondern auch dann, wenn sich die kapazitiven Eigenschaften ein- und desselben Behälters während des Betriebes des Sensors verändern.

20 Dies kann z.B. dann der Fall sein, wenn eine heiße Flüssigkeit in den Behälter eingefüllt wird, die sich anschließend abkühlt. Aufgrund von Temperaturänderung verändert sich die Dielektrizitätskonstante des Behältermaterials und damit der kapazitive Einfluß des Behälters. Bei Verwendung eines Sensors, der dem Stand der Technik entspricht, wird der Auslösepunkt daher mit einer 25 Temperaturdrift behaftet sein, der oftmals mit entsprechenden Neujustierungen des Schaltpunktes begegnet werden muß. Bei Einsatz eines erfindungsgemäßen Sensors hingegen kann dieser Aufwand in vielen Fällen entfallen, da hier der Auslösepunkt gegenüber dem kapazitiven Einfluß des Behälters und damit auch gegenüber einer Änderung dieses Einflusses stabilisiert ist.

30 Ein erfindungsgemäßer Sensor unterscheidet sich von einem dem Stand der Technik entsprechenden Sensor auch durch seine Arbeitsfrequenz, d.h. die Frequenz, mit der der Verstärker oszilliert, wenn der Füllstand des Mediums im Behälter unterhalb des kritischen Füllstandes liegt.

Wie vorstehend erwähnt, weisen herkömmliche Sensoren eine Arbeitsfrequenz auf, die mit typischerweise 100 kHz bis circa 1,5 MHz so niedrig ist, daß bei Vorliegen einer Benetzung der Behälterinnenwand oder bei Schaumbildung über der Oberfläche des Mediums erhebliche Fehlmessungen resultieren können, wobei dieses Problem durch die Verwendung sehr hoher Oszillationsfrequenzen von typischerweise 50 MHz bis 1 GHz gelöst werden kann, was jedoch andere wesentliche Nachteile mit sich bringt.

Im Rahmen der vorliegenden Erfindung wurde herausgefunden, daß diese Nachteile bei Verwendung einer Arbeitsfrequenz im Bereich von ca. 4 MHz bis ca. 10 MHz weitgehend eliminiert sind, während der wesentliche Vorteil, daß eine Benetzung der Behälterinnenwand oder Schaumbildung über der Oberfläche des Mediums aufgrund ihrer Leitfähigkeit als solche erkannt und von einer tatsächlichen, massiven Füllung des Behälters unterschieden werden können, dennoch erhalten bleibt. Ein erfindungsgemäßer Sensor ist demnach in der Lage, durch Wahl der Arbeitsfrequenz im Bereich zwischen ca. 4 MHz und ca. 10 MHz gleichzeitig die kapazitiven Eigenschaften und die Leitfähigkeit des Mediums zur Detektion des Füllstandes auszunutzen.

Die Fähigkeit eines erfindungsgemäßen Sensors, eine Benetzung der Behälterinnenwand oder Schaumbildung über der Oberfläche des Mediums aufgrund ihrer Leitfähigkeit als solche zu erkennen und von einer tatsächlichen, massiven Füllung des Behälters zu unterscheiden, beruht auf dem nachfolgend erläuterten Prinzip. Wenn der tatsächliche, massive Füllstand des Mediums unterhalb des kritischen Füllstandes liegt und oberhalb der Oberfläche des Mediums eine Benetzung der Behälterinnenwand oder Schaumbildung vorliegt, dann stellt der dünne Flüssigkeitsfilm einen Widerstand dar, der in erster Näherung nicht von der Frequenz abhängt und der zwischen die Übergangskapazität und die Kapazität des Mediums geschaltet ist. Der Flüssigkeitsfilm wirkt somit als ohmscher Widerstand zwischen zwei kapazitiven Widerständen. Der Eingang des Verstärkers wird durch den Summenwert dieser drei Widerstands-Komponenten belastet.

Bei Verwendung einer niedrigen Arbeitsfrequenz sind diese kapazitiven Widerstände sehr hoch, da sich der kapazitive Widerstand umgekehrt proportional

zur Frequenz verhält. Der ohmsche Widerstand liefert daher in diesem Fall nur einen relativ geringen Beitrag zur Widerstandssumme, d.h. der Flüssigkeitsfilm spielt für die Belastung des Eingangs des Verstärkers nur eine untergeordnete Rolle. Für die Widerstandssumme und damit für die Auslösung des Sensors ist 5 es daher unerheblich, ob eine tatsächliche massive oder eine scheinbare, durch Benetzung oder Schaum vorgetäuschte Füllung des Behälters mit dem Medium vorliegt.

Bei Verwendung einer sehr hohen Arbeitsfrequenz hingegen sind diese 10 kapazitiven Widerstände sehr niedrig. Der ohmsche Widerstand liefert daher in diesem Fall einen relativ großen Beitrag zur Widerstandssumme, d.h. der Flüssigkeitsfilm spielt für die Belastung des Eingangs des Verstärkers eine wesentliche Rolle. Für die Widerstandssumme und damit für die Auslösung des Sensors ist es daher entscheidend, ob eine tatsächliche massive Füllung des 15 Behälters (niedriger ohmscher Widerstand, Sensor löst aus) oder eine scheinbare, durch Benetzung oder Schaum vorgetäuschte Füllung des Behälters (hoher ohmscher Widerstand, Sensor löst nicht aus) vorliegt.

In einer weiteren erfindungsgemäß bevorzugten Ausgestaltung des Sensors 20 besteht eine Elektrode des Sensors aus einer Mehrzahl von miteinander verbundenden Elektroden. Vorzugsweise ist dabei mindestens eine Elektrode im Inneren des Behälters angeordnet und taucht bei Überschreiten eines bestimmten Füllstandes in das Medium ein.

25 In einer weiteren Ausgestaltung des Sensors fallen die erste Elektrode und die dritte Elektrode zusammen und bilden somit eine erste kombinierte Elektrode. Oder die erste Elektrode und die verstärkereingangsseitige Elektrode des Kondensators können zusammenfallen und somit eine kombinierte Elektrode bilden. Gleichermaßen ist es möglich, daß die erste Elektrode, die dritte 30 Elektrode und die verstärkereingangsseitige Elektrode des Kondensators zusammenfallen und somit eine zweite kombinierte Elektrode bilden. In einer weiteren Ausführungsform kann die zweite Elektrode und die verstärkerausgangsseitige Elektrode des Kondensators zusammenfallen und somit eine dritte kombinierte Elektrode bilden. In einer weiteren Ausführungsform können die 35 erste kombinierte Elektrode und die zweite kombinierte Elektrode mechanisch

starr miteinander verbunden sein. In einer weiteren Ausgestaltung der Erfindung können die erste kombinierte Elektrode und die zweite kombinierte Elektrode konzentrisch angeordnet sein.

- 5 In einer weiteren Ausgestaltung der Erfindung weist die dritte kombinierte Elektrode eine erste Platte und eine ausgesparte zweite Platte auf, die mittels eines Leiters mit der ersten Platte verbunden ist, in einem Abstand von der ersten Platte und konzentrisch zu dieser angeordnet ist, wobei die erste kombinierte Elektrode in einer Ebene mit der ausgesparten zweiten Platte liegt und
- 10 innerhalb der Aussparung angeordnet ist. Dabei können die erste Platte auf einer Seite einer Leiterplatte und die ausgesparte zweite Platte und die zweite kombinierte Elektrode auf der anderen Seite der Leiterplatte aufgebracht sein.

In einer weiteren Ausgestaltung der Erfindung ist der Sensor Teil einer solchen
15 Schaltung, die ein Schaltsignal liefert, wenn der Verstärker nicht oszilliert.

Kurzbeschreibung der Zeichnung, in der zeigen:

- Fig. 1 ein Prinzipschaltbild eines erfindungsgemäßen Sensors mit den für seine Funktion maßgeblichen Kapazitäten,
- 20 Fig. 2 eine schematische Skizze einer Ausführungsform eines erfindungsgemäßen Sensors und den Verlauf der elektrischen Felder bei einem Füllstand, der höher ist als der kritische Füllstand,
- Fig. 3 eine schematische Skizze einer Ausführungsform eines erfindungsgemäßen Sensors und den Verlauf der elektrischen Felder bei einem Füllstand, der niedriger ist als der kritische Füllstand,
- 25 Fig. 4 eine Querschnittsansicht des Behälters, an dessen Innenwänden eine Schicht des Mediums anhaftet,
- Fig. 5 eine Querschnittsansicht einer bevorzugten Anordnung der Elektroden,
- Fig. 6 eine Frontalansicht einer bevorzugten Anordnung der Elektroden,
- 30 Fig. 7 eine Frontalansicht einer anderen Anordnung der Elektroden, und
- Fig. 8 eine Frontalansicht einer wiederum anderen Anordnung der Elektroden.

Wege zur Ausführung:

- Fig. 1 zeigt ein Prinzipschaltbild eines erfindungsgemäßen Sensors mit den für seine Funktion maßgeblichen Kapazitäten. Der Eingang 3 eines Verstärkers 1

ist mit einer Elektrode 11 verbunden, die die aktive Elektrode des Sensors darstellt. Die aktive Elektrode 11 ist vorzugsweise nahe der Wand 31 an der Außenseite des Behälters 30 und in einer bestimmten Höhe über dem Boden 32 des Behälters 30 angebracht.

5

Die aktive Elektrode 11 ist gegenüber der Masse 50 mit einer Kapazität 21 behaftet, die sich, wie oben erläutert, aus einer Übergangskapazität 27 und einer mit dieser in Serie wirkenden Kapazität 25 des Mediums 35 sowie einer zu diesen parallel wirkenden Eigenkapazität 26 des Behälters 30 zusammensetzt (Fig. 1). Nur die Kapazität 25 des Mediums 35 ist vom Füllstand abhängig. Wenn der Füllstand steigt, so wächst die Kapazität 25 des Mediums 35 und damit auch die aktive Kapazität 21 an, so daß die kapazitive Belastung am Eingang 3 des Verstärkers 1 vergrößert wird.

10 15 Die feste Rückkopplungs-Kapazität 24 wird durch einen Kondensator 24a hergestellt. Sie gewährleistet, daß der Verstärker 1 stets dann oszilliert, wenn der Füllstand im Behälter einen kritischen Wert unterschreitet, der z.B. durch die Wahl des Verstärkungsfaktors beeinflußt werden kann. In einer bevorzugten Ausführungsform wird bei Überschreiten des kritischen Füllstandes mittels 20 einer geeigneten Schaltung, die z.B. einen Gleichrichter, ein Integrationsglied und einen Komparator umfassen kann, ein Schaltignal ausgelöst.

In einem Abstand von der aktiven Elektrode 11 ist eine Elektrode 12 angebracht, die mit dem Ausgang 4 des Verstärkers 1 verbunden ist und die die 25 Kompensationselektrode des erfundungsgemäßen Sensors darstellt. Sie ist gegenüber einer Elektrode 13, die an den Eingang 3 des Verstärkers 1 angeschlossen ist, mit einer Kapazität 22 behaftet, wobei die Elektroden 12 und 13 so positioniert sind, daß das zwischen ihnen bei Anliegen einer Spannung vorhandene elektrische Feld zu einem wesentlichen Teil durch das Behälter- 30 material verläuft. Die Kapazität 22 stellt die Kompensations-Kapazität des erfundungsgemäßen Sensors dar. Der Einfluß der Kapazität 22 wirkt dem Einfluß der Behälterkapazität erfundungsgemäß entgegen.

Nun wird auf Fig. 2 und Fig. 3 Bezug genommen, die eine Ausführungsform der 35 Erfahrung zeigen, in der die Elektrode 13 vorteilhafterweise mit der aktiven

Elektrode 11 zu einer ersten kombinierten Elektrode 11a vereinigt ist, so daß zwischen der ersten kombinierten Elektrode 11a und der Kompensations-Elektrode 12 die Kompensations-Kapazität 22 besteht. Bei Anliegen einer Spannung zwischen diesen beiden Elektroden stellt sich ein elektrisches Feld 5 42 ein, das im wesentlichen durch die Behälterwand 31 verläuft, so daß die Kompensations-Kapazität 22 erfundungsgemäß von den kapazitiven Eigenschaften des Behälters 30 abhängt.

Der Behälter 30 ist in Fig. 2 bis zu einer Höhe H mit dem Medium 35 gefüllt,
10 die höher ist als die kritische Füllstandshöhe. Fig. 2 zeigt das elektrische Feld 41 (gestrichelt eingezeichnet), das sich in diesem Fall bei Anliegen einer Spannung zwischen der ersten kombinierten Elektrode 11a und Masse 50 einstellt (die Brechung der Feldlinien an Grenzflächen wurde in der Zeichnung nicht berücksichtigt). Ein wesentlicher Teil 41b des elektrischen Feldes 41
15 durchläuft das Medium 35, wobei dieser Teil des elektrischen Feldes auch die Behälterwand 31 und den Behälterboden 32 durchquert, was mit der Übergangskapazität 27 in Fig. 1 korrespondiert. Ein anderer Teil 41a des elektrischen Feldes 41 durchläuft das Medium 35 nicht, sondern verläuft im wesentlichen innerhalb der Behälterwand 31, was mit der Behälter-
20 Eigenkapazität 26 in Fig. 1 korrespondiert. Die kapazitive Belastung des Eingangs 3 des Verstärkers 1 ist aufgrund des hohen Füllstandes so groß, daß der Verstärker 1 nicht oszilliert. Am Ausgang 4 des Verstärkers liegt daher ein Nullsignal 2a an.

25 In Fig. 3 ist der Behälter 30 bis zu einer Höhe h, die geringer als die Höhe H in Fig. 2 und geringer als die kritische Füllstandshöhe ist, mit dem Medium 35 gefüllt. Man erkennt, daß ein Teil 41c des elektrischen Feldes 41 (gestrichelt eingezeichnet), das sich in diesem Fall bei Anliegen einer Spannung zwischen der ersten kombinierten Elektrode 11a und Masse 50 einstellt, nicht mehr
30 durch das Medium 35 verläuft, sondern oberhalb der Oberfläche 36 des Mediums 35 durch Luft verläuft, wodurch die aktive Kapazität 21 (Fig. 1) gegenüber dem in Abb. 2 gezeigten Fall reduziert ist. Die kapazitive Belastung des Eingangs 3 des Verstärkers 1 ist aufgrund des niedrigen Füllstandes so niedrig, daß der Verstärker 1 oszilliert. Am Ausgang 4 des Verstärkers liegt
35 daher ein Signal 2a an.

Fig. 4 zeigt eine Querschnittsansicht des Behälters 30, der bis zu einer bestimmten Höhe mit dem Medium 35 gefüllt ist. Oberhalb der Oberfläche 36 des Mediums 35 haftet an der Innenseite der Behälterwand 31 eine Schicht 37 des Mediums an. Um die Unterscheidungsfähigkeit zwischen einer massiven und einer scheinbaren, durch Benetzung oder Schaumbildung vorgetäuschten Füllung des Behälters mit dem Medium unter gleichzeitiger Ausnutzung der kapazitiven Eigenschaften des Mediums und seiner Leitfähigkeit zu erreichen, wird der Sensor erfindungsgemäß mit einer Arbeitsfrequenz von typischerweise 5 4 MHz bis 10 MHz betrieben. In einer bevorzugten Ausführungsform liegt die Arbeitsfrequenz bei ca. 7 MHz. Andere Arbeitsfrequenzen sind möglich und können z.B. durch entsprechende Bestückung bzw. Parametrierung des 10 Verstärkers 1 realisiert werden.

15 In Fig. 5 ist ein erfindungsgemäßer Sensor mit einer bevorzugten Ausführungsform der Elektroden gezeigt, bei der die Elektroden mechanisch starr miteinander verbunden sind. Die Elektroden 11, 13 und 15 sind zu einer scheibenförmigen zweiten kombinierten Elektrode 11b vereinigt. Gleichzeitig sind die Elektroden 12, 14 zu einer dritten kombinierten Elektrode 12b 20 vereinigt, die eine scheibenförmige Rückenplatte 60 und eine ausgesparte Frontplatte 62 umfaßt, die mittels eines elektrisch leitenden hohlzylindrischen Abstandshalters 61 an ihren Außenrändern elektrisch leitend und mechanisch starr miteinander verbunden sind. Die zweite kombinierte Elektrode 11b ist 25 konzentrisch in der Aussparung der ausgesparten Frontplatte 62 angebracht und liegt mit der ausgesparten Frontplatte 62 in einer Ebene (Fig. 6). Die Rückenplatte 60 weist eine zentrische Bohrung 63 auf, die als Durchführung für den elektrischen Anschluß der zweiten kombinierten Elektrode 11b dient. Die feste Rückkopplungs-Kapazität 24 wird in dieser Ausführungsform im wesentlichen durch die zweite kombinierte Elektrode 11b und die Rückenplatte 30 60 gebildet, während die Kompensations-Kapazität im wesentlichen durch die zweite kombinierte Elektrode 11b und die ausgesparte Frontplatte 62 gebildet wird.

In einer anderen bevorzugten Ausführungsform sind die zweite kombinierte 35 Elektrode 11b und die ausgesparte Frontplatte 62 jeweils als Leiterbahnen auf

einer Seite einer Isolierschicht ausgebildet, während die Rückenplatte 60 als Leiterbahn auf der anderen Seite der Isolierschicht ausgebildet ist. Die Isolierschicht besteht in einer bevorzugten Ausführungsform aus einem Leiterplattenmaterial, das z.B. vom Typ Fr4 sein kann.

5

Andere geometrische Anordnungen der Elektroden sind möglich. Fig. 7 zeigt eine Ausführungsform, in der die zweite kombinierte Elektrode 11b von rechteckiger Form ist. Die ausgesparte Frontplatte 62 (Fig. 6) ist dabei durch zwei Leiterstreifen 62a ersetzt, die sich an gegenüberliegenden Seiten der zweiten kombinierten Elektrode 11b befinden. Fig. 8 zeigt eine weitere Ausführungsform, in der die zweite kombinierte Elektrode 11b von rechteckiger Form und von einem Leiterstreifen 62a umrandet ist.

In einer anderen nicht gezeigten Ausführungsform weist der Sensor mindestens 15 eine Gruppe aus einer Mehrzahl von miteinander verbundenen Elektroden auf. Z.B. kann die aktive Elektrode 11 aufgespalten sein in eine Mehrzahl von miteinander verbundenen Abschnitten, die an verschiedenen Orten angeordnet sind. Eine Anwendung dieser Ausführungsform besteht z.B. in der simultanen Überwachung der Füllstände in mehreren Behältern, bei der eine Auslösung des 20 Sensors erwünscht ist, wenn in mindestens einem der Behälter ein bestimmter kritischer Füllstand überschritten ist.

In einer weiteren nicht gezeigten Ausführungsform ist die aktive Elektrode 11 innerhalb des Behälters 30 nahe dessen Innenwand so angeordnet, daß sie in 25 das Medium 35 eintaucht, wenn der Füllstand einen bestimmten Wert überschreitet. Der Betrieb des Sensors wird durch diese Anordnung nicht beeinträchtigt. Falls nach einer darauf folgenden Absenkung des Füllstandes Benetzung der Innenwände des Behälters 30 oder Schaumbildung bis in die Anbringungshöhe der aktiven Elektrode 11 vorliegt, ist auch die Elektrode 11 30 selbst von Benetzung betroffen. In einer Ausführungsform der Erfindung, in der der Oszillator mit einer Arbeitsfrequenz im Bereich von ca. 4 MHz bis ca. 10 MHz betrieben wird, ist die Unterscheidungsfähigkeit zwischen einer massiven und einer scheinbaren, durch Benetzung oder Schaumbildung vorgetäuschten Füllung des Behälters mit dem Medium weiterhin gegeben.

Erfindungsgemäß können die Elektroden innerhalb oder außerhalb des Behälters angeordnet sein.

In einer weiteren nicht gezeigten Ausführungsform der Erfindung ist der 5 Sensor gegen ein Eindringen des Mediums gesichert und innerhalb des Behälters 30 so angeordnet, daß der Sensor in das Medium 35 eintaucht, wenn der Füllstand einen bestimmten Wert überschreitet.

Gewerbliche Anwendbarkeit:

10 Die erfindungsgemäßen, berührungslos arbeitenden kapazitiven Sensoren sind insbesondere zur Detektion eines Füllstandes eines Mediums in einem Behälter mit nichtmetallischer Behälterwand geeignet. Die Nützlichkeit der Sensoren liegt darin, dass sie auslösen, wenn der Füllstand eines Mediums in einem Behälter oberhalb oder auch unterhalb einer bestimmten kritischen Schwelle 15 liegt, wobei jedoch störende Einflüsse der kapazitiven Eigenschaften des Behälters zum wesentlichen Teil neutralisiert sind. Höchst vorteilhaft verschiebt sich der Auslösepunkt der Sensoren bei einer Benetzung der Behälterinnenwand oder Schaumbildung über der Oberfläche des Mediums nicht bzw. nur unwesentlich. Deshalb können die Sensoren vorteilhaft zwischen 20 einem vollen Gefäß und einem teilweise leeren Gefäß mit Anhaftungen des Mediums auf der inneren Gefäßwandung oder mit Schaum auf der Oberfläche des Mediums unterscheiden.

Bezugszeichenliste:

- 1 Verstärker
- 2 Wechselspannungssignal am Eingang des Verstärkers
- 3 Eingang des Verstärkers
- 5 4 Ausgang des Verstärkers
- 11 erste Elektrode (aktive Elektrode)
- 11a erste kombinierte Elektrode (aus den Elektroden 11, 13)
- 11b zweite kombinierte Elektrode (aus den Elektroden 11, 13, 15)
- 12 zweite Elektrode (Kompensations-Elektrode)
- 10 12b dritte kombinierte Elektrode (aus den Elektroden 12, 14)
- 13 dritte Elektrode
- 14 verstärkerausgangsseitige Elektrode des Kondensators
- 15 verstärkereingangsseitige Elektrode des Kondensators
- 21 erste Kapazität (aktive Kapazität)
- 15 22 zweite Kapazität (Kompensations-Kapazität)
- 24 dritte Kapazität (feste Rückkopplungs-Kapazität)
- 24a Kondensator
- 25 Kapazität des Mediums
- 26 Behälter-Eigenkapazität
- 20 27 Übergangskapazität
- 30 Behälter
- 31 Behälterwand
- 32 Behälterboden
- 35 Medium
- 25 36 Oberfläche des Mediums
- 37 an der Behälterwand anhaftende Schicht des Mediums
- 41 elektrisches Feld zwischen erster Elektrode und Masse
- 42 elektrisches Feld zwischen erster Elektrode und zweiter Elektrode
- 50 Masse
- 30 60 Rückenplatte
- 61 Abstandshalter
- 62 ausgesparte Frontplatte
- 62a Leiterstreifen
- 63 Bohrung

Patentansprüche:

1. Kapazitiver Sensor mit einem Verstärker (1) zur Detektion des Füllstandes eines Mediums (35) in einem Behälter (30) mit nichmetallischer Behälterwand (31), gekennzeichnet durch
 - 5 eine erste Elektrode (11), die an den Eingang (3) des Verstärkers (1) angeschlossen ist und gegenüber Masse (50) mit einer ersten Kapazität (21) behaftet ist, so daß der Eingang (3) des Verstärkers (1) kapazitiv belastet ist, wobei die Elektrode (11) so angeordnet ist, daß das durch das Signal (2) 10 zwischen der Elektrode (11) und Masse (50) entstehende elektrische Feld (41) im wesentlichen durch den Behälter (30) und das Medium (35) verläuft, so daß die Größe der ersten Kapazität einerseits mit zunehmendem Füllstand des Mediums (35) in dem Behälter (30) anwächst und andererseits durch die kapazitiven Eigenschaften des Behälters (30) beeinflußt ist,
 - 15 eine zweite Elektrode (12), die an den Ausgang (4) des Verstärkers (1) angeschlossen ist, und eine dritte Elektrode (13), die an den Eingang (3) des Verstärkers (1) angeschlossen ist,
 - wobei sich die zweite Elektrode (12) und die dritte Elektrode (13) in einem 20 Abstand zueinander befinden und so positioniert sind, daß zwischen ihnen eine zweite Kapazität (22) besteht, deren Größe wesentlich durch die kapazitiven Eigenschaften des Behälters (30) und nur unwesentlich durch den Füllstand des Mediums (35) im Behälter (30) beeinflußt ist und die eine kapazitive Rückkopplung des Verstärkers (1) darstellt,
 - 25 und ferner umfassend einen Kondensator (24a), der eine dritte Kapazität (24) aufweist, deren Größe im Wesentlichen weder durch die kapazitiven Eigenschaften des Behälters (30) noch durch den Füllstand des Mediums (35) im Behälter (30) beeinflusst ist, wobei die eine Elektrode (14) des Kondensators (24a) an den Ausgang (4) und die andere Elektrode (15) des Kondensators (24a) 30 an den Eingang (3) des Verstärkers (1) angeschlossen ist, so daß der Kondensator (24a) parallel zu der zweiten Kapazität (22) ebenfalls eine kapazitive Rückkopplung des Verstärkers (1) darstellt, wobei die Kapazität (24) des Kondensators (24a) so gewählt ist, daß der Verstärker (1) aufgrund der kapazitiven Rückkopplung nur dann oszilliert, 35 wenn der Füllstand des Mediums (35) im Behälter (30) und damit die erste

Kapazität (21) jeweils unterhalb einer bestimmten Schwelle liegen, wobei die zweite Kapazität (22) dem den Eingang (3) des Verstärkers (1) belastenden kapazitiven Einfluß des Behälters (30) entgegenwirkt, so daß der kapazitive Einfluß des Behälters (30) reduziert ist.

5

2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die erste Elektrode (11) und die dritte Elektrode (13) zusammenfallen und somit eine erste kombinierte Elektrode (11a) bilden.

10 3. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die erste Elektrode (11) und die verstärkereingangsseitige Elektrode (15) des Kondensators (24a) zusammenfallen und somit eine kombinierte Elektrode bilden.

15 4. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die erste Elektrode (11), die dritte Elektrode (13) und die verstärkereingangsseitige Elektrode (15) des Kondensators (24a) zusammenfallen und somit eine zweite kombinierte Elektrode (11b) bilden.

20 5. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die zweite Elektrode (12) und die verstärkerausgangsseitige Elektrode (14) des Kondensators (24a) zusammenfallen und somit eine dritte kombinierte Elektrode (12b) bilden.

25 6. Sensor nach Anspruch 4 und 5, dadurch gekennzeichnet, daß die zweite kombinierte Elektrode (11b) und die dritte kombinierte Elektrode (12b) mechanisch starr miteinander verbunden sind.

30 7. Sensor nach Anspruch 4 und 5, dadurch gekennzeichnet, daß die zweite kombinierte Elektrode (11b) und die dritte kombinierte Elektrode (12b) konzentrisch angeordnet sind.

8. Sensor nach Anspruch 4 und 5, dadurch gekennzeichnet, daß die dritte kombinierte Elektrode (12b) eine erste Platte (60) und eine ausgesparte zweite Platte (62) aufweist, die mittels eines Leiters (61) mit der ersten Platte (60) verbunden ist, in einem Abstand von der ersten Platte (60) und konzentrisch zu dieser angeordnet ist, wobei die zweite kombinierte Elektrode (11b) in einer

Ebene mit der ausgesparten zweiten Platte (62) liegt und innerhalb der Aussparung angeordnet ist.

9. Sensor nach Anspruch 8, dadurch gekennzeichnet, daß die erste Platte (60)
5 auf einer Seite einer Leiterplatte und die ausgesparte zweite Platte (62) und die
zweite kombinierte Elektrode (11b) auf der anderen Seite der Leiterplatte
aufgebracht sind.
10. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß der Sensor Teil einer
10 Schaltung ist, die ein Schaltsignal liefert, wenn der Verstärker (1) nicht
oszilliert.
11. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß der Verstärker (1)
durch seine Dimensionierung in einen hohen Arbeitsfrequenzbereich gebracht
15 ist, wobei aufgrund des hohen Arbeitsfrequenzbereiches der kapazitive
Blindwiderstand der Kopplung der Elektroden (11,12,13) zum Medium (35)
soweit reduziert wird, daß dünne Anhaftungen oder Schäume des Mediums (35)
aufgrund ihres geringeren Leitwertes vom kompakten Medium mit seinem
höheren Leitwert deutlich unterscheidbar sind, wobei bei einem Füllstand des
20 Mediums unterhalb einer vorgegebenen Schwelle, jedoch bei Vorliegen von
Anhaftungen oder Schaum oberhalb der Oberfläche des Mediums bzw. dieses
Füllstandes des Mediums die Belastung des Eingangs (3) des Verstärkers (1)
durch den ohmschen und kapazitiven Widerstand zwischen der Elektrode (11)
und Masse (50) so beeinflußt ist, daß der Verstärker (1) oszilliert.
25
12. Sensor nach einem der Ansprüche 1-11, dadurch gekennzeichnet, daß eine
Elektrode des Sensors aus einer Mehrzahl von miteinander verbundenen
Elektroden besteht.
- 30 13. Sensor nach einem der Ansprüche 1-12, dadurch gekennzeichnet, daß min-
destens eine Elektrode im Inneren des Behälters (30) angeordnet ist und bei
Überschreiten eines bestimmten Füllstandes in das Medium (35) eintaucht.

14. Sensor nach einem der Ansprüche 1-13, dadurch gekennzeichnet, daß der Sensor im Inneren des Behälters (30) angeordnet ist und bei Überschreiten eines bestimmten Füllstandes in das Medium (35) eintaucht.

5 15. Kapazitiver Sensor für den Füllstand eines Mediums (35) in einem Behälter (30) mit nichmetallischer Behälterwand (31), umfassend einen Verstärker (1) mit einem Verstärkungsfaktor größer als 1, weiter umfassend eine erste Elektrode (11), die an den Eingang (3) des Verstärkers (1) angeschlossen ist und gegenüber Masse (50) mit einer ersten Kapazität (21) behaftet ist, so daß der
10 Eingang (3) des Verstärkers (1) kapazitiv belastet ist, was eine Verkleinerung eines am Eingang (3) des Verstärkers (1) anliegenden Signals (2) bewirkt, wobei die Elektrode (11) so angeordnet ist, daß das durch das Signal (2) zwischen der Elektrode (11) und Masse (50) entstehende elektrische Feld (41) im wesentlichen durch den Behälter (30) und das Medium (35) verläuft, so daß die Größe
15 der ersten Kapazität mit zunehmendem Füllstand des Mediums (35) in dem Behälter (30) anwächst, weiter umfassend eine zweite Elektrode (12), die an den Ausgang (4) des Verstärkers (1) angeschlossen ist, und eine dritte Elektrode (13), die an den Eingang (3) des Verstärkers (1) angeschlossen ist, wobei sich die Elektroden (12) und (13) in einem Abstand zueinander befinden und so
20 positioniert sind, daß zwischen ihnen eine zweite Kapazität (22) besteht, deren Größe wesentlich durch die kapazitiven Eigenschaften des Behälters (30) und nur unwesentlich durch den Füllstand des Mediums (35) im Behälter (30) beeinflußt ist und die eine kapazitive Rückkopplung des Verstärkers (1) bewirkt, was eine Vergrößerung eines am Eingang (3) des Verstärkers (1) anliegenden
25 Signals (2) bewirkt, und ferner umfassend einen Kondensator (24a), der eine dritte Kapazität (24) aufweist, deren Größe im wesentlichen weder durch die kapazitiven Eigenschaften des Behälters (30) noch durch den Füllstand des Mediums (35) im Behälter (30) beeinflußt ist, wobei die eine Elektrode (14) des Kondensators (24a) an den Ausgang (4) und die andere Elektrode (15) des Kon-
30 densators (24a) an den Eingang (3) des Verstärkers (1) angeschlossen ist, so daß der Kondensator (24a) parallel zu der zweiten Kapazität (22) ebenfalls eine kapazitive Rückkopplung des Verstärkers (1) bewirkt, was eine weitere Vergrößerung des am Eingang (3) des Verstärkers (1) anliegenden Signals (2) bewirkt, wobei die Kapazität (24) des Kondensators (24a) so gewählt ist, daß der
35 Verstärker (1) aufgrund der kapazitiven Rückkopplung nur dann oszilliert,

wenn der Füllstand des Mediums (35) im Behälter (30) und damit die erste Kapazität (21) jeweils unterhalb einer bestimmten Schwelle liegen, wobei als Verstärker (1) ein Verstärker mit einer solchen Eigenfrequenz verwendet wird, daß die Belastung des Eingangs (3) des durch den ohmschen und kapazitiven

5 Widerstand zwischen der Elektrode (11) und Masse (50) so beeinflußt ist, daß der Verstärker (1) oszilliert, wenn der Füllstand des Mediums (35) in dem Behälter (30) unterhalb dieser Schwelle liegt und die Innenseite der Wand (31) des Behälters (30) oberhalb der Oberfläche (36) des Mediums (35) mit einer Schicht (37) des Mediums (35) behaftet ist oder wenn oberhalb der Oberfläche

10 (36) des Mediums (35) Schaum vorliegt, wobei die zweite Kapazität (22) so gewählt ist, daß der Verkleinerung des Signals (2) durch die kapazitive Belastung des Eingangs (3) des Verstärkers (1) allein aufgrund der kapazitiven Eigenschaften des Behälters (30) entgegengewirkt wird durch die Vergrößerung des Signals (2), die durch die kapazitive Rückkopplung allein aufgrund der zweiten

15 Kapazität (22) verursacht wird, wobei die erste Elektrode (11), die dritte Elektrode (13) und die verstärkereingangsseitige Elektrode (15) des Kondensators (24a) zusammenfallen und eine scheibenförmige zweite kombinierte Elektrode (11b) bilden, die als Leiterbahn auf einer ersten Seite einer Leiterplatte ausgebildet ist, und wobei die zweite Elektrode (12) und die Elektrode (14) des

20 Kondensators (24a) zusammenfallen und eine dritte kombinierte Elektrode (12b) bilden, die mit der zweiten kombinierten Elektrode (11b) mechanisch starr verbunden ist und die eine scheibenförmige erste Platte (60), die als Leiterbahn auf der anderen Seite der Leiterplatte ausgebildet ist, und eine ringförmig ausgesparte zweite Platte (62) aufweist, die in einer Ebene mit der zweiten

25 kombinierten Elektrode (11b) liegt und diese konzentrisch umgibt und als Leiterbahn auf der ersten Seite der Leiterplatte ausgebildet ist und konzentrisch zu der ersten Platte (60) angebracht ist, und weiter umfassend eine Schaltung, die ein Schaltsignal liefert, wenn der Verstärker (1) nicht oszilliert.

Fig. 1

Fig. 6

Fig. 7

Fig. 8

Fig. 2

Fig. 3

Fig. 4

Fig. 5

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/EP 00/10164

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01F23/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	TOTH F N ET AL: "A PLANAR CAPACITIVE PRECISION GAUGE FOR LIQUID-LEVEL AND LEAKAGE DETECTION" IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, US, IEEE INC. NEW YORK, vol. 46, no. 2, 1 April 1997 (1997-04-01), pages 644-646, XP000197702 ISSN: 0018-9456 paragraph '0003; figure 5	1-15
A	US 5 722 290 A (KRONBERG JAMES W) 3 March 1998 (1998-03-03) column 3, line 11 -column 6, line 62; figures 1-6	1-15 --/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document published on or after the International filing date
- *L* document which may throw doubts on priority (claim(s)) or which may be cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y combination of two or more documents which cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Z document member of the same patent family

Date of the actual completion of the international search

30/03/2001

Authorized officer

Heinsius, R

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/EP 00/10164

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 532 527 A (ZATLER ANDREJ ET AL) 2 July 1996 (1996-07-02) column 3, line 29 -column 6, line 63; figures 1-3 -----	1-15
A	US 5 739 598 A (EFERL FRANC ET AL) 14 April 1998 (1998-04-14) column 4, line 38 -column 14, line 67; figures 1-13 -----	1-15
A	DD 221 549 A (AMMENDORFER PLASTWERK VEB) 24 April 1985 (1985-04-24) cited in the application page 2, last paragraph -page 13, last paragraph; figure 1 -----	1-15
A	DE 42 17 305 A (EFERL FRANC ;ZATLER ANDREJ (SI)) 2 December 1993 (1993-12-02) cited in the application column 3, line 41 -column 10, line 26; figures 1-4 -----	1-15

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No.
PCT/EP 00/10164

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5722290 A	03-03-1998	NONE	
US 5532527 A	02-07-1996	SI 9200073 A AT 141405 T AU 3837993 A BR 9301754 A CN 1080395 A CZ 9300830 A EP 0568973 A HU 66527 A JP 6258128 A	31-12-1993 15-08-1996 11-11-1993 09-11-1993 05-01-1994 16-11-1994 10-11-1993 28-12-1994 16-09-1994
US 5739598 A	14-04-1998	SI 9300405 A SI 9300585 A DE 69402986 D EP 0711405 A WO 9504261 A	28-02-1995 30-06-1995 05-06-1997 15-05-1996 09-02-1995
DD 221549 A	24-04-1985	NONE	
DE 4217305 A	02-12-1993	NONE	

INTERNATIONALER RECHERCHENBERICHT

internationales Aktenzeichen
PCT/EP 00/10164

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 GO1F23/26		
Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK		
B. RECHERCHIERTE GEBiete		
Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 GO1F		
Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen		
Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal		
C. ALS WESENTLICH ANGEGEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	<p>TOTH F N ET AL: "A PLANAR CAPACITIVE PRECISION GAUGE FOR LIQUID-LEVEL AND LEAKAGE DETECTION" IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, US, IEEE INC. NEW YORK, Bd. 46, Nr. 2, 1. April 1997 (1997-04-01), Seiten 644-646, XP000197702 ISSN: 0018-9456 Absatz '0003!; Abbildung 5</p> <hr/> <p>US 5 722 290 A (KRONBERG JAMES W) 3. März 1998 (1998-03-03) Spalte 3, Zeile 11 -Spalte 6, Zeile 62; Abbildungen 1-6</p> <hr/> <p style="text-align: center;">-/-</p>	1-15
A		1-15
<input checked="" type="checkbox"/> Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen		<input checked="" type="checkbox"/> Siehe Anhang Patentfamilie
<small>* Besondere Kategorien von angegebenen Veröffentlichungen :</small> <ul style="list-style-type: none"> *A* Veröffentlichung, die den alpinen Stand der Technik definiert, aber nicht als besonderes bedeutend angesehen ist *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmelde datum veröffentlicht worden ist *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifehlhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen Rechercheart nach genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wurde ausgeführt) *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Bekanntmachung oder andere Maßnahmen bezieht *P* Veröffentlichung, die vor dem internationalen Anmelde datum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 		
<small>*P* Spätere Veröffentlichung, die nach dem internationalen Anmelde datum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Anwendungshinweise dient</small>		
<small>*X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden</small>		
<small>*Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht auf erforderlicher Tätigkeit beruhend betrachtet werden, weil sie die Veröffentlichung eines oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung betrachtet wird und diese Verbindung für einen Fachmann naheliegend ist</small>		
<small>*Z* Veröffentlichung, die Mitglied derselben Patentfamilie ist</small>		
Datum des Abschlusses der internationalen Recherche		Absendedatum des internationalen Recherchenberichts
20. März 2001		30/03/2001
Name und Postanschrift der internationalen Recherchebehörde		Bevollmächtigter Dienststellen
Europäisches Patentamt, P.B. 5818 Patentamt 2 Niederlassung Berlin Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax (+31-70) 340-3016		Heinstius, R

INTERNATIONALER RECHERCHENBERICHT

internationales Aktenzeichen
PCT/EP 00/10164

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 5 532 527 A (ZATLER ANDREJ ET AL) 2. Juli 1996 (1996-07-02) Spalte 3, Zeile 29 -Spalte 6, Zeile 63; Abbildungen 1-3 -----	1-15
A	US 5 739 598 A (EFERL FRANC ET AL) 14. April 1998 (1998-04-14) Spalte 4, Zeile 38 -Spalte 14, Zeile 67; Abbildungen 1-13 -----	1-15
A	DD 221 549 A (AMMENDORFER PLASTWERK VEB) 24. April 1985 (1985-04-24) in der Anmeldung erwähnt Seite 2, letzter Absatz -Seite 13, letzter Absatz; Abbildung 1 -----	1-15
A	DE 42 17 305 A (EFERL FRANC ;ZATLER ANDREJ (SI)) 2. Dezember 1993 (1993-12-02) in der Anmeldung erwähnt Spalte 3, Zeile 41 -Spalte 10, Zeile 26; Abbildungen 1-4 -----	1-15

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

nationales Aktenzeichen

PCT/EP 00/10164

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5722290	A 03-03-1998	KEINE	
US 5532527	A 02-07-1996	SI 9200073 A AT 141405 T AU 3837993 A BR 9301754 A CN 1080395 A CZ 9300830 A EP 0568973 A HU 66527 A JP 6258128 A	31-12-1993 15-08-1996 11-11-1993 09-11-1993 05-01-1994 16-11-1994 10-11-1993 28-12-1994 16-09-1994
US 5739598	A 14-04-1998	SI 9300405 A SI 9300585 A DE 69402986 D EP 0711405 A WO 9504261 A	28-02-1995 30-06-1995 05-06-1997 15-05-1996 09-02-1995
DD 221549	A 24-04-1985	KEINE	
DE 4217305	A 02-12-1993	KEINE	