Домашняя работа №1 по курсу «Разработка компиляторов» весна 2025.

Для каждой грамматики из списка, соответствующему варианту, определить тип грамматики по классификации Хомского, для грамматик типа 2 и 3 необходимо привести вывод не менее двух предложений языка, принадлежащих языку, порождаемому грамматикой.

Укажите язык, порождаемый грамматикой, в множественно-теоретическом виде.

Вариант	Задачи	Вариант	Задачи
1	1, 10, 30	11	3, 20, 39
2	2, 12, 31	12	4, 21, 38
3	3, 11, 32	13	5, 22, 37
4	4, 13, 33	14	6, 23, 36
5	5, 14, 34	15	7, 24, 35
6	6, 15, 35	16	8, 25, 34
7	7, 16, 36	17	9, 26, 33
8	8, 17, 37	18	10, 27, 32
9	9, 18, 38	19	11, 28, 31
10	10, 19, 39	20	13, 2, 30

Nº	Грамматика	Nº	Грамматика
1	$S \rightarrow ABC$ $A \rightarrow aA \mid a$ $B \rightarrow Bb \mid \varepsilon$ $C \rightarrow Cc \mid c$	15	$S \rightarrow aSBC \mid abC$ $CB \rightarrow BC$ $bB \rightarrow bb$ $bC \rightarrow bc$ $cC \rightarrow cc$
2	$S \rightarrow T \mid T + S \mid T - S$ $T \rightarrow F \mid F * T$ $F \rightarrow a \mid b$	16	S → abcA c A → acB a B → bcbaB ε
3	$S \rightarrow aS \mid bS \mid aA \mid bB$ $A \rightarrow a \mid aS$ $B \rightarrow c \mid cS$	17	$S \rightarrow abSA \mid \epsilon$ $A \rightarrow Aa \mid \epsilon$
4	$S \rightarrow aQb \mid \epsilon$ $Q \rightarrow cSc$	18	$S \rightarrow aS \mid bB$ $B \rightarrow aB \mid bS \mid bC$ $C \rightarrow aC \mid c$
5	$S \rightarrow aSL \mid aL$ $L \rightarrow Kc$ $cK \rightarrow Kc$ $K \rightarrow b$	19	$S \rightarrow A \mid SA \mid SB$ $A \rightarrow a$ $B \rightarrow b$
6	$\begin{array}{l} S \rightarrow 0A1 \\ 0A \rightarrow 00A1 \\ A \rightarrow \epsilon \end{array}$	20	$S \rightarrow aSBc \mid abc$ $cB \rightarrow Bc$ $bB \rightarrow bb$

7	$S \rightarrow aaCFD$ $F \rightarrow AFB \mid AB$ $AB \rightarrow bBA$ $Ab \rightarrow bA$ $AD \rightarrow D$ $Cb \rightarrow bC$ $CB \rightarrow C$ $bCD \rightarrow \epsilon$	21	S → abC aB B → bc bC → bc
8	$S \rightarrow AASB \mid AAB$ $A \rightarrow a$ $B \rightarrow bbb$	22	S → abc aSQ bQc → bbcc cQ → Qc
9	$S \rightarrow A \mid B$ $A \rightarrow aAb \mid ab$ $B \rightarrow aaaBb \mid aBbbb \mid aaab \mid abbb$	23	$S \rightarrow ASB \mid AB$ $AB \rightarrow BA$ $A \rightarrow a$ $B \rightarrow b$
10	$S \rightarrow aASB \mid \epsilon$ $A \rightarrow ad \mid d$ $B \rightarrow bb$	24	$S \rightarrow abc \mid aSQ$ $bQc \rightarrow bbcc$ $cQ \rightarrow Qc$
11	S → aSdd A A → bAc bc	25	$S \rightarrow ASB \mid BSA$ $A \rightarrow a$ $B \rightarrow b \mid \epsilon$ $SB \rightarrow \epsilon$
12	S → aSBa aba aB → Ba bB → bb	26	$S \rightarrow SS \mid RS$ $R \rightarrow RR \mid 0$ $RS \rightarrow SR$ $0S0 \rightarrow 010$
13	$S \rightarrow Ba \mid bA \mid a$ $B \rightarrow bB \mid b$ $A \rightarrow aA \mid a$	27	S → bSS ab
14	$S \rightarrow aCA$ $Ea \rightarrow aE$ $A \rightarrow aaEA \mid F$ $Ca \rightarrow aC$ $EF \rightarrow DF$ $CD \rightarrow Ca$ $ED \rightarrow DaaE$ $F \rightarrow a$	28	$S \rightarrow aSbS$ $S \rightarrow BaB$ $B \rightarrow \epsilon$ $B \rightarrow bS$

Для алфавита $A = \{a, b, c\}$ необходимо сконструировать регулярную грамматику и детерминированный конечный автомат для языка из символов этого алфавита:

- 30. Набор строк, в котором все а предшествуют b, которые, в свою очередь, предшествуют c. Возможно, что нет ни a, ни b, ни c.
- 31. Набор строк, в котором подстрока аа встречается по крайней мере дважды.
- 32. Множество строк, которые не начинаются с подстроки ааа.
- 33. Множество строк, которые не содержат подстроку аса.
- 34. Множество строк, которые начинаются с а, содержат ровно два b и заканчиваются на сс.
- 35. Множество строк, в которых за каждым b сразу следует по крайней мере одно с.
- 36. Множество строк, в которых количество а делится на 3.
- 37. Множество строк нечетной длины, которые содержат подстроку bb.
- 38. Множество строк четной длины, которые содержат ровно один а.
- 39. Множество строк с нечетным числом вхождений подстроки ab.

Допускается построение ДКА по регулярной грамматике, и регулярной грамматике по ДКА.

Для полученного ДКА необходимо написать функцию / программу, моделирующую поведение этого автомата. В качестве тестов нужно представить не менее четырех корректных входных цепочек и цепочек, не допускаемых данным автоматом.