

Bruce M. Boghosian

Confidence intervals for the binomial parameter p

Interval estimation with more than one parameter

Summar

Interval Estimation

Confidence Intervals for the Binomial Parameter p

Bruce M. Boghosian

Department of Mathematics
Tufts University

©2022, all rights reserved

1 Confidence intervals for the binomial parameter p

Interval estimation with more than one parameter

Summary

Confidence intervals for the binomial parameter p

Bruce M. Boghosiar

Confidence intervals for the binomial parameter *p*

Interval estimation with more than one parameter

Summar

- We conduct n Bernoulli trials with heads probability p.
- For one trial, mean is p, standard deviation is $\sqrt{p(1-p)}$
- For n trials, we have a binomial probability distribution with mean p and standard deviation $\sqrt{p(1-p)/n}$
- Using MLE or MM, we have $p_e = \frac{1}{n} \sum_{j=1}^{n} k_j$, so for large n

$$Z = \frac{p_e - p}{\sqrt{p_e(1 - p_e)/n}}$$

will be distributed like a standard normal, by the CLT.

Margin of error

Bruce M. Boghosian

Confidence intervals for the binomial parameter *p*

Interval estimation with more than one parameter

Summa

- Margin of error is half max width of confidence interval.
- Let k be the number of successes in n Bernoulli trials.
- Estimate is $p_e = k/n$.
- Confidence interval is $\left[p_e z_{\alpha/2} \frac{\sigma_e}{\sqrt{n}}, \ p_e + z_{\alpha/2} \frac{\sigma_e}{\sqrt{n}}\right]$
- Width of confidence interval is $2z_{\alpha/2} \frac{\sigma_e}{\sqrt{n}} = \frac{z_{\alpha/2}(4\sigma_e)}{2\sqrt{n}}$
- **E**stimate of standard deviation is $\sigma_e = p_e(1 p_e)$
- Problematic because we don't know p_e in advance.
- Note that $4\sigma_e = 4p_e(1-p_e)$ has upper bound of one.
- Margin of error is 100d% where $d = \frac{z_{\alpha/2}}{2\sqrt{n}}$
- \blacksquare Usually $\alpha=$ 0.05, but other values of α are possible.

Choosing sample sizes

Bruce M. Boghosiar

Confidence intervals for the binomial parameter *p*

Interval estimation with more than one parameter

Summar

- Largest interval half width possible is $d = \frac{z_{\alpha/2}}{2\sqrt{n}}$.
- We have in general

Prob
$$\left(-d \le \frac{1}{n} \sum_{j=1}^{n} x_j - p \le +d\right) = 1 - \alpha.$$

- This can be regarded as an equation for the minimum value of n needed to attain the confidence α , and margin of error 100d%.
- For fixed *n*, you can have more confidence in estimates with larger margins of error
- Likewise, you can have smaller margins of error, but you may have less confidence in those.

Comparing normal and binomial interval estimation

Bruce M. Boghosiar

Confidence intervals for the binomia parameter parameter

Interval estimation with more than one parameter

Summa

- In all examples with normal data, we *specified* variance σ_0 .
- We found confidence intervals for the estimate of the mean

$$\mu_e = \frac{1}{n} \sum_{j=1}^n x_j$$

■ Rather than insist on a priori knowledge of σ_0 , why not use

$$\sigma_e = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (x_j - \mu_e)^2} \quad ?$$

After all, for the binomial distribution, we had no hesitation about using both

$$p_{\mathrm{e}} = rac{1}{n} \sum_{i=1}^{n} k_{j}$$
 and $\sigma_{\mathrm{e}} = \sqrt{p_{\mathrm{e}}(1-p_{\mathrm{e}})}.$

An important distinction

Bruce M. Boghosia

Confidence intervals for the binomia parameter *p*

Interval estimation with more than one parameter

Summar

- For the binomial distribution, the mean is p and the standard deviation is $\sqrt{p(1-p)}$. The latter is completely determined by the former.
- For the normal distribution, mean μ and standard deviation σ are two separately specifiable parameters, each with its own estimator.
- When we use an estimator to find μ_e from our n data points, we effectively "use up" a data point.
- When we use μ_e in the calculation of an average to obtain σ_e , our average is effectively over only n-1 points.
- For this reason, the *sample standard deviation* used for interval estimation for normally distributed data is not that given by the MLE (or MM) estimator.

Tufts Summary

Summary

- We constructed confidence intervals for Bernoulli trials.
- We have defined margin of error.
- We have shown how to estimate needed sample sizes.
- We have contrasted interval estimation with normal and binomial data.