Contact during exam: Pavel Gumenyuk

Mobile: (+47) 469 50 522

Faglig kontankt under eksamen: Pavel Gumenyuk

Mobil: (+47) 469 50 522

EXAM TMA4175

Complex Analysis, May 31, 2011

9:00 - 13:00

Allowed materials:

One A5 yellow sheet stamped by the department with students' notes

Calculator HP30S

Hjelpemidler:

Et A5-ark stemplet fra instituttet med valgfri påskrift av studenten Kalkulator HP30S

Oppgave 1 / problem 1.

0

<u>Bokmål</u>. Hva er bildet av halvstripen $D:=\{z: 0<\operatorname{Re} z<2, \operatorname{Im} z>0\}$ ved den brudne lineær transformasjonen

$$w = f(z) := \frac{1+z}{1-z}$$
?

<u>English</u>. What is the image of the half-strip $D:=\{z: 0< \operatorname{Re} z<2, \operatorname{Im} z>0\}$ under the linear-fractional mapping

$$w=f(z):=\frac{1+z}{1-z}$$
?

Oppgave 2 / problem 2.

<u>Bokmål</u>. La $n \neq 0$ være et heltall. Finn verdien til det følgende integralet:

$$\int_0^{2\pi} \sin^2(n\theta) \cos(2n\theta) d\theta.$$

Hint: Skriv integranden via $z = e^{i\theta}$, $1/z = e^{-i\theta}$.

English. Let $n \neq 0$ be an integer. Find the value of the following integral:

$$\int_0^{2\pi} \sin^2(n\theta) \cos(2n\theta) \, d\theta.$$

Hint: Express the integrand in terms of $z = e^{i\theta}$, $1/z = e^{-i\theta}$.

Oppgave 3 / problem 3.

<u>Bokmål</u>. Hvor mange nullpunkter, med ordenen tatt hensyn til, har funksjonen $f(z) := z^5 + 3z^2 + e^{z-2}$ på områdenc $\{z : |z| < 1\}$ og $\{z : 1 < |z| < 2\}$?

English. How many zeros, taking into account multiplicities (orders), does the function $f(z) := z^5 + 3z^2 + e^{z-2}$ have in the domains $\{z : |z| < 1\}$ and $\{z : 1 < |z| < 2\}$?

> Oppgave 4 / problem 4.

<u>Bokmål</u>. Anta at f er holomorf på $\{z: 1 < |z| < +\infty\}$ og at $f(n) = 2^n$ for alle $n = 2, 3, \ldots$ Hva slags singularitet har funksjonen f i ∞ ?

<u>English</u>. Assume that f is holomorphic in $\{z: 1 < |z| < +\infty\}$ and that $f(n) = 2^n$ for each $n = 2, 3, \ldots$ What kind of singularity does function f have at ∞ ?

Oppgave 5 / problem 5.

<u>Bokmål</u>. La $\mathbb{D} := \{z : |z| < 1\}$. Fiksér M > 1. La \mathcal{S}^M være klassen av alle univalente holomorfe funksjoner $f : \mathbb{D} \to \mathbb{C}$ slik at f(0) = 1, f'(0) = 1, og $|f(z)| \leq M$ for alle $z \in \mathbb{D}$. Bevis at hver følge $f_n \in \mathcal{S}^M$, $n = 1, 2, \ldots$, har en delfølge f_{n_k} som konvergerer lokalt uniformt i \mathbb{D} til en funksjon fra \mathcal{S}^M .

Hint: bruk resonnementet i beviset for Riemanns avbildningssats.

<u>English</u>. Denote $\mathbb{D} := \{z : |z| < 1\}$. Fix M > 1. Let S^M be the class of all univalent holomorphic functions $f : \mathbb{D} \to \mathbb{C}$ such that f(0) = 1, f'(0) = 1, and $|f(z)| \leq M$ for all $z \in \mathbb{D}$. Prove that any sequence $f_n \in S^M$, $n = 1, 2, \ldots$, has a subsequence f_{n_k} that converges locally uniformly in \mathbb{D} to a function from the class S^M .

Hint: follow the argument in the proof of the Riemann Mapping Theorem.

Oppgave 6 / problem 6.

<u>Bokmål</u>. La f være en holomorf funksjon på $\mathbb{D} := \{z : |z| < 1\}$. Anta at |f(z)| < M for alle $z \in \mathbb{D}$. Bruk Cauchys integralsformel for deriverte å vise at

$$|f^{(n)}(z)| \le \frac{n!}{(1-|z|)^n} M$$

for alle $z \in \mathbb{D}$ og alle n = 1, 2, ...

<u>English</u>. Let f be a holomorphic function in $\mathbb{D} := \{z : |z| < 1\}$. Assume that |f(z)| < M for all $z \in \mathbb{D}$. Using the Cauchy integral formulas for derivatives, show that

$$|f^{(n)}(z)| \le \frac{n!}{(1-|z|)^n} M$$

for any $z \in \mathbb{D}$ and any n = 1, 2, ...

Oppgave 7 / problem 7.

<u>Bokmål</u>. La M være et positivt tall, f en holomorf funksjon på et område $D \subset \mathbb{C}$, og $z_0 \in D$. Anta at $|f(z)| \leq M$ for alle $z \in D$ og at $|f(z_0)| = M$. Forklar hvorfor f i dette tilfellet må være en konstant i D.

<u>English</u>. Let M be a positive number, f a holomorphic function in a domain $D \subset \mathbb{C}$, and $z_0 \in D$. Assume that $|f(z)| \leq M$ for all $z \in D$ and that $|f(z_0)| = M$. Explain why in this case f must be constant in D.

Oppgave 8 / problem 8.

<u>Bokmål</u>. Bevis at hver begrenset holomorf funksjon $f: \mathbb{C}^* \to \mathbb{C}, \mathbb{C}^* := \mathbb{C} \setminus \{0\}$, er konstant.

English. Prove that any bounded holomorphic function $f: \mathbb{C}^* \to \mathbb{C}$, $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$, is constant.