

Introdução à Ciência da Computação - 113913

Lista de Revisão Prova 1

Observações:

- As provas também serão corrigidas por um **corretor automático**, portanto é necessário que as entradas e saídas do seu programa estejam conforme o padrão especificado em cada questão (exemplo de entrada e saída). Por exemplo, não use mensagens escritas durante o desenvolvimento do seu código como "Informe a primeira entradas". Estas mensagens não são tratadas pelo corretor, portanto a correção irá resultar em resposta errada, mesmo que seu código esteja correto.
- Serão testadas várias entradas além das que foram dadas como exemplo, assim como as listas.
- Assim como as listas, as provas devem ser feitas na versão Python 3 ou superior.
- Leia com atenção e faça **exatamente** o que está sendo pedido.

Questão A - Máximo Divisor Comum

O máximo divisor comum entre dois ou mais números inteiros é o maior número inteiro que é fator de tais números. Por exemplo, os divisores comuns de 12 e 18 são 1, 2, 3 e 6, logo mdc(12,18) = 6. Dizemos que dois números inteiros a e b são primos entre si, se e somente se mdc(a,b) = 1. Faça um programa que leia uma sequência de duplas de inteiros do teclado, A e B. A quantidade de duplas da sequência é desconhecida, mas ela termina quando A ou B for menor ou igual a zero. A dupla que contém A ou B menor ou igual a zero não faz parte da sequência, devendo ser desconsiderada.

Entrada

A entrada será a sequência de duplas de inteiros, cada linha de entrada contém dois inteiros \mathbf{A} e \mathbf{B} , separados por espaço. Considere que a sequência contém pelo menos uma dupla.

Saída

Para cada A e B lidos que fazem parte da sequência, calcule e imprima na tela mdc(A,B). Ao final imprima a média de todos os máximos divisores comuns calculados com duas casas decimais após a vírgula.

Exemplo de Entrada	Exemplo de Saída
8 12	4
7 9	1
397 311	1
-0 4	2.00
8 13	1
8 14	2
4 0	1.50
16 120	8
-1 -1	8.00

Tabela 1: Questão A

Questão B - Mínimo Múltiplo Comum

O mínimo múltiplo comum (mmc) de dois inteiros a e b é o menor inteiro positivo que é múltiplo simultaneamente de a e de b. Se não existir tal inteiro positivo, por exemplo, se a = 0 ou b = 0, então mmc(a,b) é zero por definição. Sabemos que $a \cdot b = mmc(a,b) \cdot mdc(a,b)$.

Entrada

A entrada contém apenas valores inteiros, sendo N>0 e $A,B\geq 0$. Na primeira linha será lido o valor N e nas próximas N linhas serão lidos os valores A e B, separados por espaço.

Saída

Para cada valor \mathbf{A} e \mathbf{B} lidos, calcule e imprima seu mmc. Ao final, imprima a média dos mínimos múltiplos comuns (com duas casas decimais após a vírgula) dos mmcs calculados.

Exemplo de Entrada	Exemplo de Saída
2	8
4 8	15
3 5	11.50
2	0
0 5	0
5 0	0.00
3	24
12 8	12
3 4	0
0 2	12.00
1	24
8 24	24.00
2	4
4 2	40
8 10	22.00

Tabela 2: Questão B

Questão C - Função Sigma e Tal

A função sigma denotada por $\sigma(n)$ é a função que soma os divisores distintos de n, incluindo 1 e n. A função tal denotada por $\tau(n)$ é a função que retorna a quantidade de divisores distintos de n, incluindo 1 e n.

Entrada

A entrada consiste de um inteiro n, onde $n \ge 1$.

Saída

A saída será composta de 3 linhas: a primeira linha conterá todos os divisores de n separados por espaço, em uma única linha, conforme exemplo abaixo. Não deve haver espaços em branco após o último valor da linha. A segunda linha será o valor $\sigma(n)$, e a terceira $\tau(n)$.

Nota

No primeiro exemplo, o número 4 tem três divisores: 1, 2 e 4. $\sigma(4) = 1 + 2 + 4 = 7$ e $\tau(4) = 3$.

Exemplo de Entrada	Exemplo de Saída
4	1 2 4
	7
	3
5	1 5
	6
	2
12	1 2 3 4 6 12
	28
	6
100	1 2 4 5 10 20 25 50 100
	217
	9
50	1 2 5 10 25 50
	93
	6

Tabela 3: Questão C

Questão D - The Winter is Coming

Os Starks sempre avisaram: "The Winter is Coming" e o inverno finalmente chegou em Westeros. O Rei do Norte, Jon Snow, decidiu igualar o ouro entre todas as casas do Norte, dando ouro para algumas. Para isso, ele pediu para você, o Mestre da Moeda, considerar o ouro (em kg) que cada uma possui e calcular o custo mínimo do presente do rei, sabendo que: no Norte existem \boldsymbol{n} casas, o ouro que cada uma possui é estimado em um inteiro a_i e que o rei apenas dará ouro, não tirará de ninguém.

Entrada

A primeira linha contém um inteiro n ($1 \le n \le 100$) - o número de casas no Norte. As próximas n linhas contém os inteiros $a_1, a_2, a_3, \ldots, a_n$, onde $a_i \ge 0$ corresponde ao ouro, em kg, que cada casa possui. Considere que o primeiro inteiro a_i sempre será o ouro correspondente da casa que **possui mais ouro**.

Saída

Um único inteiro que corresponde a quantidade mínima de ouro (em kg) que Winterfell irá gastar para que todas as casas tenham a mesma quantidade de ouro.

Nota

No primeiro exemplo se adicionarmos para a segunda casa 4 kg, para a terceira 3 e para a quarta 2, então todas elas terão 4 kg.

No quarto exemplo não é possível dar nada para ninguém, porque todas as casas possuem 12 kg.

Exemplo de Entrada	Exemplo de Saída
4	
4	
0	9
1	
2	
3	
1	1
1	
0	
2	
3	2
1	
1	0
12	U

Tabela 4: Questão D

Questão E - Fibonacci

Leia uma sequência de inteiros positivos do teclado, um por linha. A sequência termina quando for lido um inteiro menor ou igual a 0 (que não fará parte da sequência de números lidos). Para cada número $\mathbf{k} > \mathbf{0}$ lido, calcule o \mathbf{k} -ésimo (F_k) elemento da sequência de Fibonacci, conforme definição dada abaixo:

$$F_n = \begin{cases} 1; \ n = 1 \text{ ou } n = 2\\ F_{n-1} + F_{n-2}; \ n > 2 \end{cases}$$

Entrada

Cada linha de entrada conterá um inteiro k, quando a linha conter $k \leq 0$ o programa deve parar. Considere que pelo menos um k > 0 será lido.

Saída

Considerando o valor de F_k :

- \bullet Caso F_k seja par e k
 seja par, imprima a soma dos dois.
- $\bullet\,$ Caso F_k seja par e k
 seja ímpar, imprima a diferença de F_k com k.
- $\bullet\,$ Caso F_k seja ímpar e k
 par, imprima a multiplicação.
- \bullet Caso F_k seja ímpar e k
 seja ímpar, imprima a divisão inteira de F_k por k.

Ao final, informa a média aritmética dos números lidos da sequência com duas casas decimais e o maior F_k calculado, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
1	1
	2
$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	-1
3	2.00
-1	2
1	1
1	1
1	12
4	2.00
0	3
4	12
4	1
5	4.50
0	5
6	14
7	1
	6.50
-6	13
10	550
	25
$\frac{9}{9}$	168
8	1
7	8.50
-185	55

Tabela 5: Questão E

Questão F - Duplas de Inteiros

Faça um programa que leia uma sequência de duplas de números inteiros do teclado: \boldsymbol{A} e \boldsymbol{N} . A quantidade de duplas da sequência é desconhecida, mas ela termina quando \boldsymbol{A} for igual a -1. A dupla que contém $\boldsymbol{A}=-1$ não faz parte da sequência, devendo ser desconsiderada.

Entrada

A entrada consiste de várias duplas de inteiros \boldsymbol{A} e \boldsymbol{N} , separados por espaço. Considere que pelo menos uma dupla válida será lida.

Saída

Ao final da leitura o programa deve imprimir, nessa ordem, a soma de todos os \mathbf{N} que fazem dupla com \mathbf{A} múltiplos de 8; a média de todos os \mathbf{N} maiores que 3 (com duas casas decimais após a vírgula) e a soma da maior dupla da sequência, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
1 -1	2
8 2 5 3	0.00
-1 4	10
0 4	5
8 5	$\frac{3}{4.50}$
-8 -4 -1 0	13
8 -1	
16 1	$\begin{bmatrix} 0 \\ 0.00 \end{bmatrix}$
0 0	17
-1 25	
0 4	$\begin{vmatrix} 4 \\ 4.00 \end{vmatrix}$
-1 5	4.00
8 2	2
4 3	0.00
-1 12	10

Tabela 6: Questão F