Тема 2 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ДЕЙСТВИТЕЛЬНОЙ ПЕРЕМЕННОЙ

Лекция 1. ПЕРВООБРАЗНАЯ. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

- 1. Определение первообразной функции.
- 2. Неопределенный интеграл и его свойства.
- 3. Таблица основных правил и формул интегрирования.
- 4. Основные методы интегрирования.

1. Определение первообразной функции.

Основной задачей дифференциального исчисления является нахождение производной f'(x) или дифференциала df = f'(x)dx функции f(x). В интегральном исчислении решается обратная задача: по заданной функции f(x) требуется найти такую функцию F(x), что F'(x) = f(x).

Таким образом, *основной задачей интегрального исчисления* является восстановление функции F(x) по известной производной или дифференциалу этой функции. Интегральное исчисление имеет многочисленные приложения в геометрии, механике, физике и технике. Оно дает общий метод нахождения площадей, объемов, центров тяжести и т.д.

Определение 1. Функция F(x), $x \in X \subset \mathbb{R}$, называется **первообразной** для функции f(x) на множестве X, если она дифференцируема для любого $x \in X$ и F'(x) = f(x) или dF(x) = f(x)dx.

Пример. Первообразной для функции $f(x) = \sin x$ на множестве **R** является функция $F(x) = -\cos x$, так как $F'(x) = (-\cos x)' = \sin x$ или $dF(x) = d(-\cos x) = \sin x dx \ \forall x \in \mathbf{R}$.

Теорема 1. Любая непрерывная на множестве X функция f(x) имеет на этом отрезке первообразную F(x).

Без доказательства.

Теорема 2. Если $F_1(x)$ и $F_2(x)$ — две различные первообразные одной и той же функции f(x) на множестве X, то они отличаются друг от друга постоянным слагаемым, т.е. $F_2(x) = F_1(x) + C$, где C — постоянная.

▶ Пусть $F_1(x)$ и $F_2(x)$ — первообразные функции f(x) на X . Их разность $F(x) = F_2(x) - F_1(x)$ является дифференцируемой функцией:

$$F'(x) = F_2'(x) - F_1'(x) = f(x) - f(x) = 0$$
.

По теореме Лагранжа имеем F(x) = C. Значит $F_2(x) - F_1(x) = C$ $\forall x \in X$

Следствие. Если F(x) — некоторая первообразная функции f(x) на множестве X, то все первообразные этой функции определяются выражением F(x)+C, где C — произвольная постоянная.

Операция отыскания первообразной F(x) функции f(x) называется *интегрированием*.

2. Неопределенный интеграл и его свойства.

Определение 2. Совокупность F(x)+C всех первообразных функции f(x) на множестве X называется **неопределенным интегралом** и обозначается

$$\int f(x)dx = F(x) + C.$$

выражение f(x)dx называется **подынтегральным выраже**нием, f(x) – **подынтегральной** функцией, x – **переменной интегрирования**, а C – **постоянной интегрирования**.

Неопределенный интеграл представляет собой любую функцию, дифференциал которой равен подынтегральному выражению, а производная – подынтегральной функции.

Примеры:

1)
$$\int 2xdx = x^2 + C$$
, так как $(x^2 + C)' = 2x$ или $d(x^2 + C) = 2xdx$;

$$2) \qquad \int e^x dx = e^x + C \;, \qquad \text{поскольку} \qquad \left(e^x + C\right)' = e^x \qquad \text{или}$$

$$d\left(e^x + C\right) = e^x dx \;;$$

3)
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C \,, \quad \text{так} \quad \text{как} \quad \left(\operatorname{tg} x + C\right)' = \frac{1}{\cos^2 x} \quad \text{или}$$
$$d\left(\operatorname{tg} x + C\right) = \frac{dx}{\cos^2 x} \,.$$

С **геометрической** точки зрения неопределенный интеграл представляет собой семейство кривых y = F(x) + C (C — параметр), обладающих следующим свойством: все касательные к кривым в точках с абсциссой $x = x_0$ параллельны между собой:

$$(F(x)+C)'\Big|_{x=x_0}=F'(x_0)=f(x_0).$$

На рис.1 изображен неопределенный интеграл $x^2 + C$ от функции f(x) = 2x:

$$\int 2xdx = x^2 + C ,$$

который представляет собой семейство парабол $\{y = x^2 + C\}$.

Рис. 1.

Кривые семейства $\{F(x)+C\}$ называются **интегральными кривыми**. Они не пересекаются между собой и не касаются друг друга. Через каждую точку плоскости проходит только одна интегральная кривая. Все интегральные кривые получаются одна из другой параллельным переносом вдоль оси Oy.

Основные свойства неопределенного интеграла

1. Производная от неопределенного интеграла равна подынтегральной функции, дифференциал от неопределенного интеграла равен подынтегральному выражению:

$$\left(\int f(x)dx\right)' = f(x),$$
$$d\left(\int f(x)dx\right) = f(x)dx.$$

► Пусть $\int f(x)dx = F(x) + C$.

Тогда

$$(\int f(x)dx)' = (F(x) + C)' = F'(x) = f(x)$$

и дифференциал

$$d\left(\int f(x)dx\right) = \left(\int f(x)dx\right)'dx = f(x)dx. \blacktriangleleft$$

2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

$$\int dF(x) = F(x) + C.$$

▶ Действительно, так как dF(x) = F'(x)dx, то $\int F'(x)dx = F(x) + C$. \blacktriangleleft

Пример.
$$\int 2xe^x dx = \int d(e^{x^2}) = e^{x^2} + C$$
.

3. Постоянный множитель $a \in \mathbf{R}$, $a \neq 0$, можно выносить за знак неопределенного интеграла:

$$\int af(x)dx = a\int f(x)dx.$$

▶ Действительно, пусть F(x) — первообразная функции f(x): F'(x) = f(x). Тогда aF(x) — первообразная функции af(x):

$$(aF(x))' = a'F(x) = af(x).$$

Отсюда следует, что

$$a\int f(x)dx = a(F(x)+C) = aF(x)+C_1 = \int af(x)dx,$$

где постоянная $C_1 = aC$.

4. Неопределенный интеграл от алгебраической суммы конечно числа функций равен алгебраической сумме интегралов от этих функций:

$$\int (f_1(x) \pm f_2(x) \pm \dots \pm f_n(x)) dx =$$

$$= \int f_1(x) dx \pm \int f_2(x) dx \pm \dots \pm \int f_n(x) dx.$$

▶ Доказательство проведем для двух функций. Пусть F(x) и $\Phi(x)$ — первообразные функций $f_1(x)$ и $f_2(x)$: $F'(x) = f_1(x)$, $\Phi'(x) = f_2(x)$. Тогда функции $F(x) \pm \Phi(x)$ являются первообразными функций $f_1(x) \pm f_2(x)$. Следовательно,

$$\int f_1(x)dx \pm \int f_2(x)dx = (F(x) + C_1) \pm (\Phi(x) + C_2) = (F(x) \pm \Phi(x)) + (C_1 \pm C_2) = (F(x) \pm \Phi(x)) + C = \int (f_1(x) \pm f_2(x))dx. \blacktriangleleft$$

5. Если F(x) – первообразная функции f(x), то

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b)+C.$$

▶ Действительно,
$$\left(\frac{1}{a}F(ax+b)\right)' = \frac{1}{a}F'(ax+b) = f(ax+b)$$
. ◀

6 (инвариантность формул интегрирования). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной:

$$\int f(x)dx = F(x) + C \text{ или } \int f(u)du = F(u) + C,$$

где u — дифференцируемая функция.

В Воспользуемся свойством инвариантности формы дифференциала первого порядка: если dF(x) = F'(x)dx и dF(u) = F'(u)du, где u = u(x). Пусть

$$\int f(x)dx = F(x) + C \Rightarrow F'(x) = f(x)$$

Докажем, что $\int f(u)du = F(u) + C$.

Для этого найдем дифференциал от левой и правой части ра-

венства:

$$d(\int f(u)du) = d(F(u) + C).$$

Отсюда

$$f(u)du = F'(u)du$$

или

$$f(u)du = f(u)du.$$

Из равенств этих дифференциалов следует справедливость свойства 6. ◀

3. Таблица основных правил и формул интегрирования.

Так как интегрирование есть действие, обратное дифференцированию, то большинство из приводимых формул может быть получено обращением соответствующих формул дифференцирования.

Основные правила интегрирования функций

1.
$$\left(\int f(u)du\right)' = f(u)$$
.

2.
$$d(\int f(u)du) = f(u)du$$
.

$$3. \int dF(u) = F(u) + C.$$

4.
$$\int af(u)du = a\int f(u)du$$
.

5.
$$\int (f_1(x) \pm f_2(x) \pm ... \pm f_n(x)) dx =$$

$$= \int f_1(x)dx \pm \int f_2(x)dx \pm ... \pm \int f_n(x)dx.$$

6.
$$\int f(au+b)du = \frac{1}{a}F(au+b)+C.$$

Таблица основных неопределенных интегралов

1.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C \quad (n \neq -1).$$

2.
$$\int a^u du = \frac{a^u}{\ln a} + C \ \left(a > 0, a \neq 1\right).$$

$$\int e^u du = e^u + C.$$

4.
$$\int \frac{du}{u} = \ln|\mathbf{u}| + C.$$

$$\int \sin u du = -\cos u + C .$$

6.
$$\int \cos u du = \sin u + C.$$

$$7. \qquad \int \frac{du}{\cos^2 u} = \operatorname{tg} u + C \ .$$

8.
$$\int \frac{du}{\sin^2 u} = -\operatorname{ctg} u + C.$$

9.
$$\int \operatorname{sh} u du = \operatorname{ch} u + C.$$

10.
$$\int chu du = shu + C.$$

11.
$$\int \frac{du}{\cosh^2 u} = \tanh u + C.$$

12.
$$\int \frac{du}{\sinh^2 u} = -\coth u + C.$$

13.
$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{a + u}{a - u} \right| + C.$$

14.
$$\int \frac{du}{u^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{u}{a} + C \quad (a \neq 0).$$

15.
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{a - u}{a + u} \right| + C \quad (a \neq 0).$$

16.
$$\int \frac{du}{\sqrt{u^2 \pm a^2}} = \ln \left| u + \sqrt{u^2 \pm a^2} \right| + C \left(|u| > |a| \right).$$

17.
$$\int \frac{du}{\sqrt{a^2 + u^2}} = \arcsin \frac{u}{a} = C \ (|u| < |a|).$$

18.
$$\int \sqrt{u^2 + a^2} \, du = \frac{u}{2} \sqrt{u^2 + a^2} + \frac{a^2}{2} \ln \left| u + \sqrt{u^2 + a^2} \right| + C.$$

19.
$$\int \sqrt{a^2 - u^2} \, du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \arcsin \frac{u}{a} + C.$$

Некоторые из приведенных выше формул таблицы интегралов, не имеющие аналога в таблице производных, проверяются дифференцированием их правых частей.

Если первообразная F(x) функция f(x) является элементарной функцией, то говорят, что интеграл $\int f(x)dx$ выражается в элементарных функциях или функция f(x) интегрируема в конечном виде. Однако не всякий интеграл от элементарной функции выражается в элементарных функциях. Используя основные правила интегрирования, можно находить интегралы от более сложных функций.

В отличие от дифференциального исчисления, где, пользуясь таблицей производных, можно найти производную или дифференциал любой заданной функции, в интегральном исчислении нет общих приемов вычисления неопределенных интегралов, а разработаны лишь частные методы, позволяющие свести данный интеграл к табличному.

4. Основные методы интегрирования.

Непосредственное интегрирование. Вычисление интегралов, основанное на приведении подынтегрального выражения к табличной форме и использовании свойств неопределенного интеграла, называется **непосредственным интегрированием.**

Примеры.

1.
$$\int 2^x \cdot 3^{2x} dx = \int (2^x \cdot 3^2)^x dx = \int 18^x dx = \frac{18^x}{\ln 18} + C;$$

2.
$$\int tg^2 x dx = \int \left(\frac{1}{\cos^2 x} - 1\right) dx = \int \frac{dx}{\cos^2 x} - \int dx = tgx - x + C$$
;

Интегрирование подстановкой (заменой переменной). Пусть требуется вычислить интеграл $\int f(x)dx$, который не является табличным. Суть метода подстановки состоит в том, что в интеграле $\int f(x)dx$ переменную x заменяют переменной t по формуле $x = \varphi(t)$, учитывая $dx = \varphi'(t)dt$.

Теорема 3. Пусть функция $x = \varphi(t)$ определена и дифференцируема на некотором множестве T. И пусть X — множество значений функции $x = \varphi(t)$, на котором определена функция f(x). Тогда если на множестве X функция f(x) имеет первообразную, то на множестве T справедлива формула замены переменной

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

► Формула справедлива, если после дифференцирования обеих ее частей получаются одинаковые выражения.

Учитывая, что $f(x) = f(\varphi(t))$ – сложная функция, имеем $d(\int f(x)dx) = \int f(x)dx = f(\varphi(t))\varphi'(t)dt.$

Продифференцировав правую часть данной формулы, получим

$$d(\int f(\varphi(t))\varphi'(t)dt) = f(\varphi(t))\varphi'(t)dt.$$

Таким образом, формула замены переменной в неопределенном интеграле справедлива. ◀

Очень часто при вычислении интегралов пользуются приемом «подведения» подынтегральной функции под знак дифференциала. По определению дифференциала функции имеем $\varphi'(x)dx = d(\varphi(x))$. Переход от левой части этого равенства к правой называют «подведением» множителя $\varphi'(x)$ под знак дифференциала.

Пусть требуется найти интеграл вида

$$\int f(\varphi(x))\varphi'(x)dx.$$

Внесем в этом интеграле множитель $\varphi'(x)$ под знак дифференциала, а затем выполним подстановку $\varphi(x) = u$

$$\int f(\varphi(x))\varphi'(x)dx = \int f(\varphi(x))d(\varphi(x)) = \int f(u)du.$$

Если интеграл $\int f(u)du$ – табличный, его вычисляют непосредственным интегрированием.

Пример.

$$\int \operatorname{tg} x dx = \int \frac{\sin x}{\cos x} dx = -\int \frac{d(\cos x)}{\cos x} = \left[u = \cos x \right] = -\int \frac{du}{u} =$$
$$= -\ln|\cos x| + C.$$

Интегрирование по частям. Метод интегрирования по частям основан на следующей теореме.

Теорема 4. Пусть функции u(x) и v(x) — две дифференцируемые функции переменной x на промежутке X. И пусть функция u'(x)v(x) имеет первообразную на этом промежутке. Тогда функция v'(x)u(x) также имеет производную и справедлива формула интегрирования по частям:

$$\int u dv = uv - \int v du .$$

▶ Пусть u(x) и v(x) – две дифференцируемые функции переменной x . Тогда

$$d(uv) = udv + vdu$$
.

Интегрируя обе части равенства, получаем

$$\int d(uv) = \int udv + \int vdu .$$

Но так как $\int d(uv) = uv + C$, то

$$\int udv = uv - \int vdu . \blacktriangleleft$$

С помощью формулы интегрирования по частям отыскание интеграла $\int u dv$ сводится к вычислению другого интеграла $\int v du$. Применять ее целесообразно, когда интеграл $\int v du$ более прост для вычисления, чем исходный.

Некоторые часто встречающиеся типы интегралов, вычисляемых методом интегрирования по частям:

- **1.** <u>Интегралы вида</u> $\int P_n(x)e^{kx}dx$, $\int P_n(x)\sin kx dx$, $\int P_n(x)\cos kx dx$. Здесь $P_n(x)$ многочлен степени n, $n \in \mathbb{N}$, относительно x, $k \in \mathbb{R}$. Чтобы найти эти интегралы, достаточно положить $u = P_n(x)$ и применить формулу интегрирования по частям n раз.
- II. Интегралы вида $\int P_n(x) \ln x dx$, $\int P_n(x) \operatorname{arccin} x dx$, $\int P_n(x) \operatorname{arccos} x dx$, $\int P_n(x) \operatorname{arccig} x dx$, $\int P_n(x) \operatorname{arccig} x dx$, $\int P_n(x) \operatorname{arccig} x dx$. Здесь $P_n(x)$ многочлен степени n, $n \in \mathbb{N}$, относительно x. Данные интегралы вычисляются по частям, принимая за u функцию, являющуюся множителем при $P_n(x)$.
- **III.** <u>Интегралы вида</u> $\int e^{ax} \cos bx dx$, $\int e^{ax} \sin bx dx$ (a, b числа) вычисляются двукратным интегрированием по частям.

Примеры.

1.
$$\int (x-4)\sin 2x dx = \begin{bmatrix} u = x-4, & du = 1 \cdot dx; \\ dv = \sin 2x dx; & v = -\frac{1}{2}\cos 2x \end{bmatrix} =$$

$$= \left(-\frac{1}{2}\cos 2x\right) \cdot (x-4) + \frac{1}{2}\int \cos 2x dx = -\frac{x-4}{2}\cos 2x + \frac{1}{4}\sin 2x + C$$
2.
$$\int (x-1)\ln x dx = \begin{bmatrix} u = \ln x; & du = \frac{1}{x}dx; \\ dv = (x-1)dx; & v = \frac{(x-1)^2}{2} \end{bmatrix} =$$

$$= \frac{(x-1)^2}{2}\ln x - \int \frac{(x-1)^2}{2} \cdot \frac{1}{x} dx = \frac{(x-1)^2}{2}\ln x - \frac{1}{2}\int \frac{x^2 - 2x + 1}{x} dx =$$

$$= \frac{(x-1)^2}{2}\ln x - \frac{1}{2}\int (x-2 + \frac{1}{x})dx = \frac{(x-1)^2}{2}\ln x -$$

$$-\frac{1}{2}\left(\frac{x^2}{2} - 2x + \ln x\right) + C.$$

$$3. \int e^{-x} \cos 2x dx = \begin{bmatrix} u = e^{-x}; du = -e^{x} dx; \\ dv = \cos 2x; v = \frac{1}{2} \sin 2x \end{bmatrix} =$$

$$= -e^{-x} \cdot \frac{1}{2} \sin 2x + \frac{1}{2} \int e^{-x} \cdot \sin 2x dx = \begin{bmatrix} u = e^{-x}; du = -e^{x} dx; \\ dv = \sin 2x; v = -\frac{1}{2} \cos 2x \end{bmatrix} =$$

$$= -\frac{e^{-x}}{2} \sin 2x + \frac{1}{2} \left(\frac{e^{-x}}{2} \cos 2x - \frac{1}{2} \int e^{-x} \cos 2x dx \right) =$$

$$= -\frac{e^{-x}}{2} \sin 2x + \frac{e^{-x}}{4} \cos 2x - \frac{1}{4} \int e^{-x} \cos 2x dx.$$

Отсюла

$$\int e^{-x} \cos 2x dx = -\frac{e^{-x}}{2} \sin 2x + \frac{e^{-x}}{4} \cos 2x - \frac{1}{4} \int e^{-x} \cos 2x dx.$$

Выразим искомый интеграл

$$\int e^{-x} \cos 2x dx \left(1 + \frac{1}{4} \right) = \frac{e^{-x}}{4} \left(-2\sin 2x + \cos 2x \right).$$
Тогда
$$\int e^{-x} \cos 2x dx = \frac{e^{-x} \left(-2\sin 2x + \cos 2x \right)}{5}.$$

Вопросы для самоконтроля

- 1. Сформулируйте определение первообразной функции. Перечислите свойства первообразной.
 - 2. В чем состоит его геометрический смысл?
- 3. Перечислите основные свойства неопределенного интеграла.
- 4. Как осуществляется интегрирование с помощью замены переменной?
- 5. Как осуществляется интегрирование с помощью интегрирования по частям?