Chapter 3

Display Primitives

Saminda Premaratne

Definitions

- CG API Computer
 Graphics Application
 Programming Interface
 (OpenGL, DirectX)
- Graphics primitives functions in the API that describe picture components
- How could we describe an object?
 - Typically focus on **object shape**
 - Define an object's shape with geometric primitives
 - Span of primitives are defined by the API
 - What are some types?
 - Lines, Triangles, Quadrics, Conic sections, Curved surfaces

Two Dimensional Images

 Use Cartesian coordinates

We label the two axes as

- X (horizontal)
- Y (vertical)
- Origin is in the lower left
- How big is the space?
 - So what is the image we see on a screen?
 - We call this space the world coordinate system

Partition the space into pixels

- Define a set of points (vertices) in 2D space.
- 2. Given a set of vertices, draw lines between consecutive vertices.
- 3. If you were writing OpenGL yourself, let's talk about low level calls
- 4. What about 2D vs 3D?

Absolute and Relative Coordinate Specifications

- Absolute
 coordinates –
 location specified
 as a relationship to
 the origin
- Relative
 coordinates –
 location specified
 as a relationship to
 other points
 - Good for pen/plotters
 - Publishing/layout
 - Allows for a very object oriented approach

What is a "pixel"

Q: What is a pixel? A square or a point?

Q: Where is (2,1)?

Scan Converting Lines

Line Drawing

- Draw a line on a raster screen between two points
- What's wrong with statement of problem?
 - doesn't say anything about which points are allowed as endpoints
 - doesn't give a clear meaning of "draw"
 - doesn't say what constitutes a "line" in raster world
 - doesn't say how to measure success of proposed algorithms

Problem Statement

 Given two points P and Q in XY plane, both with integer coordinates, determine which pixels on raster screen should be on in order to make picture of a unit-width line segment starting at P and ending at Q

Finding next pixel:

Special case:

Horizontal Line:

Draw pixel *P* and increment *x* coordinate value by 1 to get next pixel.

Vertical Line:

Draw pixel *P* and increment *y* coordinate value by 1 to get next pixel.

Diagonal Line:

Draw pixel P and increment both x and y coordinate by 1 to get next pixel.

- What should we do in general case?
 - Increment x coordinate by 1 and choose point closest to line.
 - But how do we measure "closest"?

Vertical Distance

- Why can we use vertical distance as measure of which point is closer?
 - because vertical distance is proportional to actual distance
 - how do we show this?
 - with similar triangles

- By similar triangles we can see that true distances to line (in blue) are directly proportional to vertical distances to line (in black) for each point
- Therefore, point with smaller vertical distance to line is closest to line

Strategy 1 - Incremental Algorithm (1/2)

Basic Algorithm

- Find equation of line that connects two points P and Q
- Starting with leftmost point P, increment x_i by 1 to calculate $y_i = m^*x_i + B$ where m = slope, B = y intercept
- Draw pixel at $(x_i, Round(y_i))$

Incremental Algorithm:

- Each iteration requires a floating-point multiplication
 - Modify algorithm to use deltas
 - $-(y_{i+1}-y_i) = m*(x_{i+1}-x_i) + B B$
 - $y_{i+1} = y_i + m*(x_{i+1} x_i)$
 - If $\Delta x = 1$, then $y_{i+1} = y_i + m$
- At each step, we make incremental calculations based on preceding step to find next y value

Strategy 1 - Incremental Algorithm (2/2)

Example Code

```
// Incremental Line Algorithm
// Assume x0 < x1
void Line(int x0, int y0,
          int x1, int y1) {
  int x, y;
  float dy = y1 - y0;
  float dx = x1 - x0;
  float m = dy / dx;
  y = y0;
  for (x = x0; x < x1; x++) {
         WritePixel(x, Round(y));
         y = y + m;
  }
```

Problem with Incremental Algorithm:

Calculate the coordinates using Incremental Algorithm?

Discretization - converting a continuous signal into discrete elements.

Scan Conversion - converting vertex/edges information into pixel data for display

Example 1:

Point1 V:(2,2) C:(255,102,0)

Point2 V:(17,8) C:(255,102,0)

What if colors were different?

Strategy 2 – Midpoint Line Algorithm (1/3)

- Assume that line's slope is shallow and positive (0 < slope < 1); other slopes can be handled by suitable reflections about principle axes
- Call lower left endpoint (x_0, y_0) and upper right endpoint (x_1, y_1)
- Assume that we have just selected pixel P at (x_p, y_p)
- Next, we must choose between pixel to right (E pixel), or one right and one up (NE pixel)
- Let Q be intersection point of line being scan-converted and vertical line $x=x_p+1$

Strategy 2 – Midpoint Line Algorithm (2/3)

Strategy 2 – Midpoint Line Algorithm (3/3)

- Line passes between E and NE
- Point that is closer to intersection point Q must be chosen
- Observe on which side of line midpoint M lies:
 - E is closer to line if midpoint M lies above line, i.e., line crosses bottom half
 - NE is closer to line if midpoint M lies below line, i.e., line crosses top half
- Error (vertical distance between chosen pixel and actual line) is always <= ½
- Algorithm chooses NE as next pixel for line shown
- Now, need to find a way to calculate on which side of line midpoint lies

Line

Line equation as function f(x):

$$y=mx+B$$

$$y = \frac{dy}{dx}x + B$$

Line equation as implicit function:

f(x) eiby

for coefficients a, b, c, where a, $b \neq 0$

from above,

ydxlyHBdx dy ydXBdXO .adky=dxBd

Properties (proof by case analysis):

- $f(x_m, y_m) = 0$ when any point M is on line
- $f(x_m, y_m) < 0$ when any point M is above line
- $f(x_m, y_m) > 0$ when any point M is below line
- Our decision will be based on value of function at midpoint M at $(x_p + 1, y_p + \frac{1}{2})$

Decision Variable

Decision Variable d:

- We only need sign of $f(x_p + 1, y_p + \frac{1}{2})$ to see where line lies, and then pick nearest pixel
- $d = f(x_p + 1, y_p + \frac{1}{2})$
 - if d > 0 choose pixel NE
 - if d < 0 choose pixel E
 - if d = 0 choose either one consistently

How do we incrementally update d?

- On basis of picking E or NE, figure out location of M for that pixel, and corresponding value d for next grid line
- We can derive d for the next pixel based on our current decision

If E was chosen:

Increment M by one in x direction

$$d_{new} = f(x_p + 2, y_p + \frac{1}{2})$$

$$= a(x_p + 2) + b(y_p + \frac{1}{2}) + c$$

$$d_{old} = a(x_p + 1) + b(y_p + \frac{1}{2}) + c$$

• d_{new} - d_{old} is the incremental difference ΔE

$$d_{new} = d_{old} + a$$

 $\Delta E = a = dy$ (2 slides back)

 We can compute value of decision variable at next step incrementally without computing F(M) directly

$$d_{new} = d_{old} + \Delta E = d_{old} + dy$$

- \forall ΔE can be thought of as correction or update factor to take d_{old} to d_{new}
- It is referred to as forward difference

If NE was chosen:

Increment M by one in both x and y directions

$$d_{new} = F(x_p + 2, y_p + 3/2)$$

= $a(x_p + 2) + b(y_p + 3/2) + c$

$$\forall$$
 $\Delta NE = d_{new} - d_{old}$
 $d_{new} = d_{old} + a + b$
 $\Delta NE = a + b = dy - dx$

• Thus, incrementally, $d_{new} = d_{old} + \Delta NE = d_{old} + dy - dx$

Summary (1/2)

- At each step, algorithm chooses between 2 pixels based on sign of decision variable calculated in previous iteration.
- It then updates decision variable by adding either ∆E or ∆NE to old value depending on choice of pixel. Simple additions only!
- First pixel is first endpoint (x₀, y₀), so we can directly calculate initial value of d for choosing between E and NE.

Summary (2/2)

- First midpoint for first $d = d_{start}$ is at $(x_0 + 1, y_0 + \frac{1}{2})$
- $f(x_0 + 1, y_0 + \frac{1}{2})$ = $a(x_0 + 1) + b(y_0 + \frac{1}{2}) + c$ = $a * x_0 + b * y_0 + c + a + \frac{b}{2}$ = $f(x_0, y_0) + a + \frac{b}{2}$
- But (x_0, y_0) is point on line and $f(x_0, y_0) = 0$
- Therefore, $d_{start} = a + b/2 = dy dx/2$ - use d_{start} to choose second pixel, etc.
- To eliminate fraction in d_{start}:
 - redefine f by multiplying it by 2; f(x,y) = 2(ax + by + c)
 - this multiplies each constant and decision variable by 2, but does not change sign
- Bresenham's line algorithm is same but doesn't generalize as nicely to circles and ellipses

Example Code

```
void MidpointLine(int x0, int y0,
                    int x1, int y1) {
   int
         dx = x1 - x0;
   int
         dy = y1 - y0;
          d = 2 * dy - dx;
   int
          incrE = 2 * dy;
   int
      incrNE = 2 * (dy - dx);
   int
   int x = x0;
   int y = y0;
   writePixel(x, y);
   while (x < x1) {
           if (d <= 0) { // East Case
                   d = d + incrE;
           } else { // Northeast Case
                   d = d + incrNE;
                   y++;
           }
           x++;
           writePixel(x, y);
   }
                   /* while */
                   /* MidpointLine */
}
```

Calculate the coordinates using Midpoint line Algorithm?

Scan Converting Circles

Version 1: really bad

For x = -R to R $y = \operatorname{sqrt}(R * R - x * x);$ Pixel (round(x), round(y));

Pixel (round(x), round(-y));

Version 2: slightly less bad

For x = 0 to 360

Pixel (round $(R \bullet \cos(x))$, round $(R \bullet \sin(x))$);

Version 3 — Use Symmetry

- Symmetry: If $(x_0 + a, y_0 + b)$ is on circle
 - also $(x_0 \pm a, y_0 \pm b)$ and $(x_0 \pm b, y_0 \pm a)$; hence 8-way symmetry.
- Reduce the problem to finding the pixels for 1/8 of the circle

Using the Symmetry

Scan top right 1/8 of circle of radius R

- Circle starts at $(x_0, y_0 + R)$
- Let's use another incremental algorithm with decision variable evaluated at midpoint

Sketch of Incremental Algorithm


```
x = x<sub>0</sub>; y = y<sub>0</sub> + R; Pixel(x, y);
for (x = x<sub>0</sub>+1; (x - x<sub>0</sub>) > (y - y<sub>0</sub>); x++) {
   if (decision_var < 0) {
        /* move east */
        update decision_var;
   }
   else {
        /* move south east */
        update decision_var;
        y--;
   }
   Pixel(x, y);
}</pre>
```

- Note: can replace all occurrences of x_0 , y_0 with 0, 0 and Pixel $(x_0 + x, y_0 + y)$ with Pixel (x, y)
- Shift coordinates by $(-x_0, -y_0)$

What we need for Incremental Algorithm

- Decision variable
 - negative if we move E, positive if we move SE (or vice versa).
- Follow line strategy: Use implicit equation of circle

$$f(x,y) = x^2 + y^2 - R^2 = 0$$

f(x,y) is zero on circle, negative inside, positive outside

- If we are at pixel (x, y)
 - examine (x + 1, y) and (x + 1, y 1)
- Compute f at the midpoint

Decision Variable

- Evaluate $f(x,y) = x^2 + y^2 R^2$ at the point
 - We are asking: "Is $\left(x+1,y-\frac{1}{2}\right)$

$$f\left(x+1,y-\frac{1}{2}\right)=(x+1)^2+\left(y-\frac{1}{2}\right)^2-R^2$$

positive or negative?" (it is zero on circle)

- If negative, midpoint inside circle, choose E

 vertical distance to the circle is less at

 (x + 1, y) than at (x + 1, y-1).
- If positive, opposite is true, choose SE

The right decision variable?

- Decision based on vertical distance
- Ok for lines, since d and d_{vert} are proportional
- For circles, not true:

$$d((x+1,y),Circ) = \sqrt{(x+1)^2 + y^2} - R$$

$$d((x+1,y-1),Circ) = \sqrt{(x+1)^2 + (y-1)^2} - R$$

 Which d is closer to zero? (i.e. which of the two values below is closer to R):

$$\sqrt{(x+1)^2 + y^2}$$
 or $\sqrt{(x+1)^2 + (y-1)^2}$

- We could ask instead: "Is $(x + 1)^2 + y^2$ or $(x + 1)^2 + (y - 1)^2$ closer to R^2 ?"
- The two values in equation above differ by

$$[(x+1)^2 + y^2] - [(x+1)^2 + (y-1)^2] = 2y-1$$

Incremental Computation, Again (1/2)

How to compute the value of

$$f(x,y) = (x+1)^2 + \left(y - \frac{1}{2}\right)^2 - R^2$$

at successive points?

Answer: Note that

is just
$$f(x+1,y)-f(x,y)$$

and that
$$\Delta_{E}(x,y) = 2x + 3$$

$$f(x+1, y-1) - f(x, y)$$
 is just

$$\Delta_{SF}(x, y) = 2x + 3 - 2y + 2$$

Incremental Computation (2/2)

- If we move E, update by adding 2x + 3
- If we move SE, update by adding 2x + 3 2y + 2.
- Forward differences of a 1st degree polynomial are constants and those of a 2nd degree polynomial are 1st degree polynomials
 - this "first order forward difference," like a partial derivative, is one degree lower

Second Differences (1/2)

• The function $\Delta_{E}(x, y) = 2x + 3$ is linear, hence amenable to incremental computation:

$$\Delta_{\mathsf{E}}(x+1,y) - \Delta_{\mathsf{E}}(x,y) = 2$$
$$\Delta_{\mathsf{E}}(x+1,y-1) - \Delta_{\mathsf{E}}(x,y) = 2$$

Similarly

$$\Delta_{SE}(x+1,y) - \Delta_{SE}(x,y) = 2$$

$$\Delta_{SE}(x+1,y-1) - \Delta_{SE}(x,y) = 4$$

Second Differences (2/2)

- For any step, can compute new $\Delta_E(x, y)$ from old $\Delta_E(x, y)$ by adding appropriate second constant increment update delta terms as we move.
 - This is also true of $\Delta_{SE}(x, y)$
- Having drawn pixel (a,b), decide location of new pixel at (a + 1, b) or (a + 1, b 1), using previously computed Δ(a, b).
- Having drawn new pixel, must update Δ(a, b) for next iteration; need to find either Δ(a + 1, b) or Δ(a + 1, b - 1) depending on pixel choice
- Must add $\Delta_{E}(a, b)$ or $\Delta_{SE}(a, b)$ to $\Delta(a, b)$
- So we...
 - Look at $\Delta(i)$ to decide which to draw next, update x and y
 - Update d using $\Delta_{E}(a,b)$ or $\Delta_{SE}(a,b)$
 - Update each of $\Delta_{E}(a,b)$ and $\Delta_{SE}(a,b)$ for future use
 - Draw pixel

Midpoint Eighth Circle Algorithm

```
MEC (R) /* 1/8<sup>th</sup> of a circle w/ radius R */
{
int x = 0, y = R;
int delta E, delta_SE;
float decision;
delta E = 2*x + 3;
delta SE = 2(x-y) + 5;
decision = (x+1)*(x+1) + (y + 0.5)*(y + 0.5) -R*R;
Pixel(x, y);
while (y > x) {
         if (decision > 0) {/* Move east */
                  decision += delta E;
                  delta E += 2; delta SE += 2; /*Update
delta*/
         }
         else {/* Move SE */
                  y--;
                  decision += delta SE;
                  delta E += 2; delta SE += 4; /*Update
delta*/
         }
         x++;
         Pixel(x, y);
}
}
```

Analysis

- Uses floats!
- 1 test, 3 or 4 additions per pixel
- Initialization can be improved
- Multiply everything by 4 __ No Floats!
 - Makes the components even, but sign of decision variable remains same

Questions

- Are we getting <u>all</u> pixels whose distance from the circle is less than ½?
- Why is y > x the right stopping criterion?
- What if it were an ellipse?

Other Scan Conversion Problems

Patterned primitives

Aligned Ellipses

 Non-integer primitives

General conics

Patterned Lines

 Patterned line from P to Q is not same as patterned line from Q to P.

- Patterns can be geometric or cosmetic
 - Cosmetic: Texture applied after transformations
 - Geometric: Pattern subject to transformations

Cosmetic patterned line

Geometric patterned line

INTRODUCTION TO COMPUTER GRAPHICS

Geometric Pattern vs. Cosmetic Pattern

Geometric (Perspectivized/Filtered)

Cosmetic (Contact Paper)

Aligned Ellipses

Equation is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

i.e,

$$b^2x^2 + a^2y^2 = a^2b^2$$

- Computation of $\,\Delta_{\rm E}\,$ and $\,\Delta_{\rm SE}\,$ is similar
- Only 4-fold symmetry
- When do we stop stepping horizontally and switch to vertical?

Direction Changing Criterion (1/2)

 When absolute value of slope of ellipse is more than 1:

• How do you check this? At a point (x,y) for which f(x,y) = 0, a vector <u>perpendicular</u> to the level set is $\nabla f(x,y)$ which is

$$\left[\frac{\partial f}{\partial x}(x,y),\frac{\partial f}{\partial y}(x,y)\right]$$

This vector points more <u>right</u> than <u>up</u> when

$$\frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y) > 0$$

Direction Changing Criterion (2/2)

In our case,

Major axis lies on x axis

$$\frac{\partial f}{\partial x}(x,y) = 2b^2x$$

and

$$\frac{\partial f}{\partial y}(x,y) = 2a^2y$$

so we check for

$$2b^2x - 2a^2y > 0$$

i.e.

$$a^2x-b^2y>0$$

This, too, can be computed incrementally

Problems with Aligned Ellipses

Now in ENE octant, <u>not</u> ESE octant

 This problem is artifact of aliasing – much more on this later

Generic Polygons

