Honours algebra

D: Functions

A function $f: X \to Y$ is an assignment of an element of Y to each element of X.

1. f is **injective** if:

$$\forall x_1, x_2 \in X; f(x_1) = f(x_2)$$

$$\implies x_1 = x_2.$$

2. f is surjective if:

$$\forall y \in Y; \exists x \in X : y = f(x).$$

3. *f* is **bijective** if it is injective and surjective.

D: Groups

A group G is a set defined with:

- 1. Composition operator (\cdot) such that $x \cdot y = xy$.
- $2. \ \forall x,y,z \in G; \ (xy)z = x(yz)$
- 3. $\exists e \in G : ex = xe = x$ for $\forall x \in G$.
- 4. $\exists x^{-1} \in G : xx^{-1} = x^{-1}x = e$ for $\forall x \in G$.

G is **Abelian** if $\forall x, y \in G; xy = yx$.

D1.2.1(i): Fields

A field F is a set defined with:

1. Addition function (+):

$$(+): F \times F \to F; (\lambda, \mu) \mapsto \lambda + \mu$$

2. Multiplication function (\cdot) :

$$(\cdot): F \times F \to F; (\lambda, \mu) \mapsto \lambda \cdot \mu$$

- 3. $\exists 0_F, 1_F \in F \text{ where } 0_F \neq 1_F \text{ such that } (F,+) \text{ and } (F \setminus \{0_F\},\cdot) \text{ form Abelian groups.}$
- 4. $\exists (-\lambda) \in F : \lambda + (-\lambda) = 0_F$
- 5. $\exists (\lambda^{-1}) \in F : \lambda \cdot (\lambda^{-1}) = 1_F$
- 6. $\lambda(\mu + \nu) = \lambda\mu + \lambda\nu \in F$

D1.2.1(ii): Vector spaces

A vector space V over a field F is an Abelian group V := (V, +) with mapping:

$$F \times V \to V : (\lambda, \boldsymbol{v} \mapsto \lambda \boldsymbol{v})$$

where for $\forall \lambda, \mu \in F$ and $\forall \boldsymbol{v}, \boldsymbol{w} \in V$:

- 1. $\lambda(\boldsymbol{v} + \boldsymbol{w}) = (\lambda \boldsymbol{v}) + (\mu \boldsymbol{w})$
- 2. $(\lambda + \mu)\mathbf{v} = (\lambda \mathbf{v}) + (\mu \mathbf{w})$
- 3. $\lambda(\mu \mathbf{v}) = (\lambda \mu) \mathbf{v}$
- 4. $1_F v = v$

and is a F-vector space.

Remark

Let V be a F-vector space where $v \in V$.

- 1. 0v = 0
- 2. (-1)v = -v
- 3. $\lambda \mathbf{0} = \mathbf{0}$ for $\forall \lambda \in F$.

D: Cartesian products

The Cartesian product of sets X_1, \ldots, X_n is defined as:

$$X_1 \times \cdots \times X_n := \{(x_1, \dots, x_n) : x_i \in X_i\}$$

where 1 < i < n.

The projection of a Cartesian product is:

$$\operatorname{pr}_i: X_1 \times \cdots \times X_n \to X_i;$$

 $(x_1, \dots, x_n) \mapsto x_i$

D1.4.1: Vector subspaces

A vector subspace U of F-vector space V has the following properties:

- 1. $U \subset V$ and $\mathbf{0} \in U$.
- 2. Let $u, v \in U$ and $\lambda \in F$. Then $u + v \in U$ and $\lambda u \in U$.

and is also a vector space.

P1.4.5

Let $T \subset V$ where V is a F-vector space. Then for all vector subspaces containing T, there exists a smallest vector subspace:

$$\mathrm{span}(T) = \langle T \rangle_F \subset V$$

known as the vector subspace generated by T, or the span of T.

D1.4.7: Generating set

Let $T \subset V$ where V is a F-vector space. T is a generating set of V if:

$$\operatorname{span}(T) = V$$

and is the linear combination of vectors in T over field F.

D1.4.9: Power sets

The power set of set X is:

$$\mathcal{P}(X) := \{U : U \subseteq X\}.$$

Let $\mathcal{U} \subseteq \mathcal{P}(X)$. Then:

$$\bigcup_{U\in\mathcal{U}}U:=\{x\in X:(\exists U\in\mathcal{U}:x\in U)\}$$

$$\bigcap_{U\in\mathcal{U}}U:=\{x\in X:\forall U\in\mathcal{U};x\in U\}.$$

D1.5.1: Linear independence

Let V be a F-vector space and $L \subseteq V$. L is linearly independent if:

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r = \mathbf{0}$$

 $\implies \alpha_1 = \dots = \alpha_r = 0$

where $v_i \in L$.

D1.5.8: Basis

A basis of a vector space V is a linearly independent generating set in V.

T1.5.11

Let V be a F-vector space.

Then $\{v_1, \ldots, v_r\}$ is a basis of V iff:

$$\Phi: F^r \to V;$$

$$(\alpha_1,\ldots,\alpha_r)\mapsto \alpha_1\boldsymbol{v}_1+\cdots+\alpha_r\boldsymbol{v}_r$$

is a bijection.

T1.5.12

Let V be a vector space and $E \subseteq V$. Then the following statements are equivalent:

- 1. E is a basis of V.
- 2. E is minimal among all generating sets, or that $E \setminus \{v\}$ is not a basis for $\forall v \in V$.
- 3. E is maximal amongst all linearly independent subsets. i.e. $E \cup \{v\}$ is not linearly independent.

C1.5.13

Every finitely generated vector space has a finite basis. (any vector space too!)

T1.5.14

Let V be a vector space.

- 1. Let $L \subseteq V$ be linearly independent and set E be minimal amongst all generating sets of V. Let $L \subseteq E$. Then E is a basis of V.
- 2. Let $E \subseteq V$ be a generating set and L be maximal amongst all linearly independent subsets of V.

Let $L \subseteq E$. Then E is a basis of V.

D1.5.15

Let X be a set and F be a field. Then:

$$\mathrm{maps}(X,F) := \{f: (\forall f: X \to F)\}$$

and is a *F*-vector space under pointwise addition and multiplication via scalars.

Honours algebra 2

Remark

The subset of all mappings which sends almost all elements of X to 0 is defined: (all but finitely many)

$$F\langle X \rangle \subseteq \operatorname{maps}(X, F)$$

and is a vector subspace.

T1.5.16

Let V be a F-vector space.

Then $(v_i)_{i \in I}$ is a basis for V iff:

$$\forall \boldsymbol{v} \in V; \exists ! (a_i)_{i \in I} \subseteq F: \boldsymbol{v} = \sum_{i \in I} a_i \boldsymbol{v}_i.$$

T1.6.1

Let V be a vector space. Let $L \subset V$ be a linearly independent subset and $E \subseteq V$ a generating set. Then $|L| \leq |E|$.

T1.6.2: Steinitz exchange theorem

Let V be a vector space, $L \subset V$ be a finite linearly independent subset and $E \subseteq V$ be a generating set.

Then there exists an **injective** function $\phi: L \to E$ such that:

$$(E \setminus \phi(L)) \cup L$$

is also a generating set for V.

L1.6.3: Exchange lemma

Let V be a vector space. Let $M \subset V$ be a finite linearly independent subset and $E \subseteq V$ be a generating set where $M \subseteq E$.

If $\exists \boldsymbol{w} \in V \setminus M$ such that set $M \cup \{\boldsymbol{w}\}$ is linearly independent then:

 $\exists e \in E \setminus M : (E \setminus e) \cup \{w\}$ is generating.

C1.6.4

Let V be a finitely generated vector space.

- 1. V has finite basis.
- $2. \ V$ cannot have infinite basis.
- 3. Any two basis of V have the same number of elements.

D1.6.5: Dimension

The dimension of finite F-vector space V is the cardinality of one its basis.

For infinite vector spaces: $\dim(V) = \infty$.

C1.6.7

Let V be a finitely generated vector space.

- 1. Every linearly independent $L \subseteq V$ has **at most** dim(V) elements and if $|L| = \dim(V)$ then L is a basis.
- 2. Every generating set $E \subseteq V$ has at least $\dim(V)$ elements and if $|E| = \dim(V)$ then E is a basis.

C1.6.8

A proper vector subspace of a vector space with finite dimension has itself a strictly smaller dimension.

T1.6.10

Let V be a vector space and $U, W \subseteq V$ be vector subspaces. Then:

$$\dim(U+W) + \dim(U \cap W)$$

= \dim(U) + \dim(W).

D1.7.1: Linear mappings

Let V and W be F-vector spaces. A mapping $f:V\to W$ is F-linear or a **homomorphism** of vector spaces if for $\forall \boldsymbol{v}_1,\boldsymbol{v}_2\in V$ and $\forall \lambda\in F$:

1.
$$f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2)$$

2.
$$f(\lambda \mathbf{v}_1) = \lambda f(\mathbf{v}_1)$$
.

Furthermore bijective linear mappings are an **isomorphism** of vector spaces.

A homomorphism from a vector space to itself is an **endomorphism**.

An isomorphism of a vector space to itself is an **automorphism**.

D1.7.5: Fixed points

In a linear mapping a fixed point is sent to itself. For mapping $f: X \to X$ the **set** of fixed points is:

$$X^f = \{ x \in X : f(x) = x \}.$$

D1.7.6: Complementary subspaces?

Vector subspaces V_1, V_2 of vector space V are **complementary** if the mapping:

$$V_1 \times V_2 \to V$$

is a bijection.

T1.7.7

A F-vector space V is isomorphic to F^n iff $\dim(V) = n$, for $n \in \mathbb{N}$ and F a field.

L1.7.8

Let V, W be F-vector spaces and let B be a basis of V. Then the following mapping:

$$hom_F(V, W) \to maps(B, W); f \mapsto f_B$$
is a bijection.

Remark

Let V, W be F-vector spaces. The set of all homomorphisms from V to W is:

$$hom_F(V, W) \subseteq maps(B, W).$$

P1.7.9

Let $f: V \to W$ be a linear mapping, where V, W are vector spaces.

- 1. If f is injective, there exists map $g: W \to V$ such that $g \circ f = \mathrm{id}_V$. i.e. it has a **left inverse**.
- 2. If f is surjective, there exists map $g: W \to V$ such that $f \circ g = \mathrm{id}_W$. i.e. it has a **right inverse**.

D1.8.1: Image and kernel

Let $f: V \to W$ be a linear mapping. The **image** of this linear mapping f is:

$$\operatorname{im}(f) := f(V) \subseteq W$$

and is a vector subspace of W.

The **kernel** of this linear mapping f is:

$$\ker(f) := f^{-1}(\mathbf{0}) = \{ \mathbf{v} \in V : f(\mathbf{v}) = \mathbf{0} \}$$

and is the preimage of the zero vector in linear mapping f.

L1.8.2

A linear mapping $f: V \to W$ is injective iff $\ker(f) = \{0\}$.

T1.8.4: Rank-nullity theorem

Let $f: V \to W$ be a linear mapping and V, W are vector spaces. Then:

$$\dim(V) = \dim(\ker(f)) + \dim(\operatorname{im}(f)).$$

T2.1.1

Let F be a field and $m, n \in \mathbb{N}$.

Then there exists a bijection:

$$M: \hom_F(F^m, F^n) \to \max(n \times m; F);$$

$$f \mapsto [f]$$

and attaches each linear mapping f with its representing matrix M(f) := [f].

Remark

The set of matrices with n rows and m columns with entries in field F is:

$$mat(n \times m; F).$$

D2.1.6: Matrix products

The product $A \circ B = AB$ is defined:

$$(AB)_{ik} = \sum_{j=1}^{m} A_{ij} B_{jk}$$

where $A \in \text{mat}(n \times m; F)$, F a field, $B \in \text{mat}(m \times \ell; F)$ and $m, n, \ell \in \mathbb{N}$. This is matrix multiplication, with mapping:

$$\max(n \times m; F) \times \max(m \times \ell; F)$$

 $\rightarrow \max(n \times \ell; F);$
 $(A, B) \mapsto AB.$

T2.1.8

Let $g: F^{\ell} \to F^m$ and $f: F^m \to F^n$ be linear mappings. Then $[f \circ g] = [f] \circ [g]$.

P2.1.9

Let $A, A' \in \text{mat}(n \times m; F)$.

Let $B, B' \in \text{mat}(m \times \ell; F)$.

Let $C, C' \in \text{mat}(\ell \times k; F)$.

Let $k, \ell, m, n \in \mathbb{N}$ and denote $I = I_m$ as the $(m \times m)$ identity matrix. Then:

1.
$$(A + A')B = AB + A'B$$

2.
$$A(B + B') = AB + AB'$$

3.
$$IB = B$$

$$4. AI = A$$

5.
$$(AB)C = A(BC)$$
.

D2.2.1: Invertible matrices

A matrix A is **invertible** if:

$$\exists B, C : BA = I \text{ and } AC = I.$$

D2.2.2: Elementary matrices

Elementary matrices are square matrices that differs from the identity matrix by at most one entry.

T2.2.3

Every square matrix with entries in a field can be written as a <u>product</u> of elementary matrices.

D2.2.4: Smith normal form

Matrices with non-zero entries along the diagonal are in Smith normal form. e.g:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

T2.2.5

For every $A \in \text{mat}(n \times m; F)$, there exists invertible matrices P and Q such that PAQ is of Smith normal form.

D2.2.7: Column and row rank

Let matrix $A \in mat(n \times m; F)$.

The column rank of A is the dimension of the subspace of F^n generated by the columns of A.

Similarly the row rank of A is the dimension of the subspace of F^m generated by the rows of A.

T2.2.8

Column and row ranks are equal.

D2.2.9: Full rank matrices

Let matrix $A \in \text{mat}(n \times m; F)$. A is full rank if $\text{rank}(A) = \min(m, n)$.