3. Разложение образца оксида металла (I) массой 1000 мг, содержащего 13.38% кислорода по массе, изучали термогравиметрическим методом. Изменение массы образца можно описать следующей схемой:

$$\mathbf{I} \xrightarrow{\mathbf{290^{\circ}C}} \mathbf{II} \xrightarrow{\mathbf{350^{\circ}C}} \mathbf{III} \xrightarrow{\mathbf{375^{\circ}C}} \mathbf{IV} \xrightarrow{\mathbf{600^{\circ}C}} \mathbf{V}$$
 Массы веществ (мг): 1000.0 972.1 961.0 955.4 933.1

При дальнейшем нагревании изменения массы не происходит, но при 886 °С вещество V плавится без разложения.

- Определите, какой металл входит в состав соединений I V.
- Установите состав соединений I V.
- Какой цвет имеет вещество IV? Где применяется это вещество?

1. Определить металл, входящий в состав соединений, можно с помощью закона эквивалентов:

$$\frac{\partial_{M}}{\partial_{0}} = \frac{\omega_{M}}{\omega_{0}}$$

где Э – эквивалентные массы, а ω – массовые доли металла и кислорода, соответственно.

Тогда: $\frac{9_{\text{M}}}{8.0} = \frac{86.62}{13.38}$, отсюда $9_{\text{M}} = 51.8$. Перебирая возможные степени окисления (n), найдем для n=4 молярную массу металла $51.8 \times 4 = 207.2$. Это — **свинец**.

2. Очевидно, что масса свинца во всех соединениях I – V одинакова и составляет 866.2 мг, остальное кислород. Для дальнейшего решения удобно составить таблицу:

Вещество	Масса свинца (мг)	Масса кислорода (мг)	ω(Pb) (%)	ω(O) (%)
I	866.2	1000 - 866.2 = 133.8	86.62	13.38
П	866.2	972.1 - 866.2 = 105.9	89.106	10,894
Ш	866.2	961.0 - 866.2 = 94.8	90.135	9.865
IV	866.2	955.4 - 866.2 = 89.2	90.66	9.34
V	866.2	933.1 - 866.2 = 66.9	92.83	7.17

Для определения индексов x и y в соединениях типа $A_x B_y$ удобно воспользоваться соотношением x:y $=\frac{\omega_{A}}{A_{A}}:\frac{\omega_{B}}{A_{B}}$, где A — атомные массы соответствующих элементов. Тогда

Вещество	$\frac{\omega_{Pb}}{A_{Pb}}: \frac{\omega_0}{A_0}$	x:y	Формула соединений
I	0.418:0.836	1:2	PbO ₂
II	0.430:0.681	12:19	Pb ₁₂ O ₁₉
Ш	0.435:0.616	12:17	Pb ₁₂ O ₁₇
IV	0.438:0,584	3:4	Pb ₃ O ₄
V	0.488:0.488	1:1	PbO

Значения х:у для I и V легко получаются делением на меньшее число во втором столбце. Для соединения IV такое деление даёт соотношение 1:1.33. Умножив на 3, получаем 3:4. Сложнее определить индексы для веществ II и III. Деление на наименьшее число даёт соотношения 1:1.58 и 1:1.42, соответственно. Наименьшим числом, при умножении на которое получаются целочисленные индексы, является 12.

3. Соединение IV (Pb₃O₄), сурик, имеет интенсивный красный цвет и широко используется в производстве красок.

Задача составлена на основании статьи: J.S. Anderson, M. Sterns. J. Inorg. Nuclear. Chem., 1959, 11, 272-285.

Рекомендации к оцениванию

2 балла 1. Определение свинца

2. Расчет индексов и определение формул веществ I, IV, V по 1 баллу

3 балла 4 балла

3. Расчет индексов и определение формул веществ II, III по 2 балла

1 балл

Цвет сурика и его использование как пигмента

итого: 5 баллов