ا. به ازای کدام مقادیر
$$m$$
، معادلهی درجه ی دوم $m=0$ مقادیر m معادلهی درجه ی دوم $m<0$ فاقد ریشهی حقیقی است؛ $m<0$ (۲ $m<0$

$$x^{
m Y}$$
به ازای کدام مقادیر m ، معادلهی درجه ی دوم $m=0$ دوم $m
eq x^{
m Y}$ دارای دو ریشه ی حقیقی متمایز است $m \neq x$ (۴ $m>x$ (۲ $m>x$ (۱ $m=x$ (1 $m=x$ (۱ $m=x$ (1 $m=x$ (۱ $m=x$ (۱ $m=x$ (۱ $m=x$ (۱ $m=x$ (۱ $m=x$ (۱ $m=x$ (1 $m=x$ (1

۳. مجموع ریشه های معادله ی
$$(x-1)^{\mathsf{Y}}=(1-\sqrt{\mathsf{Y}})^{\mathsf{Y}}$$
 برابر است با: $-\mathsf{Y}\sqrt{\mathsf{Y}}$ (۴ $\mathsf{Y}\sqrt{\mathsf{Y}}$ (۳ Y ۲ (۲ Y - Y (۱)

۴. به ازای چه مقادیری از
$$m$$
 و n ، معادله ی $m=1$ ($m=1$) $m=-1$ ($m=-1$ ($m=-1$) $m=-1$ ($m=-1$ ($m=-1$) $m=-1$ ($m=-1$

۱ اگر یکی از ریشه های معادله ی درجه ی دوم
$$v^{\mathsf{T}}+x+k^{\mathsf{T}}-1=0$$
 صفر باشد. ریشه ی دیگر کدام است؟ $\sqrt{\pi}$ (۴ v^{T}

ک حدود
$$m$$
 کدام باشد تا هیچ نقطهای از تابع $y=x^{ extsf{Y}}- extsf{f}x+m$ دارای فاصلهی ۵ از محور x ها نباشد؟ حدود $m>0$ (۱) $x=x^{ extsf{Y}}- extsf{f}$ داری فاصلهی ۵ از محور $x=x^{ extsf{Y}}- extsf{f}$ داری فاصله کا از محور $x=x^{ extsf{Y}}- extsf{f}$ داری خود می ماد در محور $x=x^{ extsf{Y}}- extsf{f}$ داری خود می ماد در محور $x=x^{ extsf{Y}}- extsf{f}$ داری خود می ماد در محور $x=x^{ extsf{Y}}- extsf{f}$ کا از محور $x=x^{ extsf{Y}}- extsf{f}$

of 18 1 PM 1:48 ,7/26/17

ىتاد رفعتى

۸. معادله ی ه
$${\sf w}={\sf w}+{\sf w}+{\sf$$

۱۰ اگر ه
$$x^{4}+4x+1=0$$
 باشد. حاصل $x^{4}+4x+1=0$ کدام است؟ ۱۰ (۴ ه $x^{4}+4x+1=0$ ه x^{4

۱۰ در معادله ی درجه ی دوم
$$x = (x-1)^{\mathsf{Y}} + \mathsf{Y}\sqrt{\mathsf{Y}}(x-1) = \mathsf{Y}$$
 ، بزرگ ترین جواب x کدام است؟ $\sqrt{\mathsf{Y}}$ (۴ $\sqrt{\mathsf{Y}}$ (۳ Y Y (۳ Y Y (۳ Y) Y (۱ Y

۱۱. اگر معادلهی ه و بریشه ی حقیقی دارد؟
$$(x-a)(x-b)+1=0$$
 دو ریشه ی حقیقی دارد؟ $(b-x)(x-a)-1=0$ (۲ $(x-a)(x+b)+1=0$ (۱ $(x-a)(x-b)+1=0$ (۳ $(x-a)(x-b)+1=0$

ا در معادله ی ه
$$b=a$$
 برقرار باشد آنگاه: $x^{
m Y}+ax+b=a$ اگر بین ریشه ها رابطه ی $a^{
m Y}=b^{
m Y}$ (۴ هما و معادله ی $a^{
m Y}=b^{
m Y}$ (۴ هما و معادله ی $a^{
m Y}=b^{
m Y}$ (۴ هما و معادله ی $a^{
m Y}=b^{
m Y}$ (۴ هما و معادله ی م

های معادله ی درجه ی دوم
$$\sqrt{r} = \sqrt{r}$$
 $\sqrt{r} + \sqrt{r}$ پقدر است؟ $x^{\mathsf{Y}} - (\sqrt{r} + \sqrt{r})x + \sqrt{s} = 0$ به معادله ی درجه ی دوم $x^{\mathsf{Y}} - (\sqrt{r} + \sqrt{r})x + \sqrt{s} = 0$ به $x^{\mathsf{Y}} - (\sqrt{r} + \sqrt{r})x + \sqrt{s} = 0$ به جموع مربعات ریشه های معادله ی درجه ی دوم $x^{\mathsf{Y}} - (\sqrt{r} + \sqrt{r})x + \sqrt{s} = 0$ به جموع مربعات ریشه های معادله ی درجه ی دوم $x^{\mathsf{Y}} - (\sqrt{r} + \sqrt{r})x + \sqrt{s} = 0$ به جموع مربعات ریشه های معادله ی درجه ی دوم $x^{\mathsf{Y}} - (\sqrt{r} + \sqrt{r})x + \sqrt{s} = 0$ به جموع مربعات ریشه های معادله ی درجه ی دوم $x^{\mathsf{Y}} - (\sqrt{r} + \sqrt{r})x + \sqrt{s} = 0$ به جموع مربعات ریشه های معادله ی درجه ی دوم $x^{\mathsf{Y}} - (\sqrt{r} + \sqrt{r})x + \sqrt{s} = 0$ به جموع مربعات ریشه های معادله ی درجه ی دوم $x^{\mathsf{Y}} - (\sqrt{r} + \sqrt{r})x + \sqrt{s} = 0$ به درجه ی دوم $x^{\mathsf{Y}} - (\sqrt{r} + \sqrt{r})x + \sqrt{s} = 0$ به درجه ی درجه

برابر است با:
$$lpha^{
m T}+eta^{
m T}+lpha^{
m T}+eta^{
m T}$$
 برابر است با: $x^{
m T}+x-{
m T}={}_{\circ}$ برابر است با: $x^{
m T}+x-{
m T}={}_{\circ}$ برابر است با: $x^{
m T}+a^{
m T}+a^{
m T}+a^{
m T}+a^{
m T}$ برابر است با: $x^{
m T}+a^{
m T}+a^$

of 18 2 PM 1:48 ,7/26/17

ىتاد رفعتى

۱۷. در معادله ی ه
$$x^2+4x-1=0$$
 حاصل $x^2+4x-1=0$ کدام است؟ ۱۹۶ (۴ ۲۸۹ (۲ ۱۹۶ (۳ ۲۸۹ (۲ ۱۹۶ (۱

در معادله ی
$$x$$
 در معادله ی x دام است؟ x دام است؟ x دام است؟ x دام هستند) x در معادله ی معادله هستند) x دام است x دام است؟ x دام است x دام است

۲۰. در معادله ی درجه ی دوم
$$x^{r}+$$

۲۱. در معادله ی درجه ی دوم
$$x^{r}-4x+1=0$$
 حاصل عبارت $x^{r}-4x+1+1=0$ چقدر است؟ $x^{r}-4x+1=0$ چقدر است؟ $x^{r}-4x+1=0$

of 18 3 PM 1:48 ,7/26/17

۱۳. به ازای کدام مقدار
$$m$$
، مجموع مربعات ریشه های معادله ی درجه ی دوم $1 = x^{r} + (m-1)x = 1$ است؟ $-r$ برابر r است؟ $-r$ فقط $-r$

۲۳. به ازای کدام مقدار
$$m$$
 ریشه های حقیقی معادله ی $m = r + r + r + m$ معکوس یکدیگرند؟ $-r$ ، ۱ (۴ $r + r + m$) ۲ (۲ $r + r + m$) ۱ (۱

برقرار $mx^{\mathsf{Y}}+(\mathsf{Y}m-\mathsf{I})x=\mathsf{A}$ برقرار به های حقیقی معادله ی $x_{\mathsf{I}}x_{\mathsf{Y}}+x_{\mathsf{Y}}+x_{\mathsf{Y}}+x_{\mathsf{Y}}+x_{\mathsf{Y}}+x_{\mathsf{Y}}$ برقرار است؟

$$m$$
 هيچ مقدار) هيچ

$$-\frac{r}{r}$$
 (r $\frac{r}{r}$ (r

$$-\frac{r}{r}$$
 (1

۴ به ازای کدام مقدار m مجموع معکوس ریشههای معادلهی درجه ی دوم $x^{\mathsf{T}}-x-m=\mathfrak{o}$ برابر است x^{T}

$$\frac{1}{r} (r) \qquad \qquad -\frac{1}{r} (r) \qquad \qquad -\frac{1}{r} (1)$$

۲۶. در معادلهی درجه ی دوم $\alpha=0$ $\alpha=0$ مجموعات مربعات ریشهها کدام است؟ α ۰ (۳ $\alpha=0$ ۲) ۹۹ (۱

۱۹۵۰ اگر در معادلهی درجهی دوم lpha = lpha + lpha ، حاصل ضرب ریشهها از مجموع ریشهها، ۴ واحد کمتر باشد، مجموع ۱

۲۸ حدود
$$m$$
 برای آن که معادله ی $m = m + m + m + m + m$ دارای دو ریشه ی مختلف العلامه باشد. کدام است؟ $m < 1$ (۴ $m < 1$ (۳ $m < m < 1$ (۱ $m > 1$ (1 $m > 1$ (۱ $m > 1$ (1 m

۲۹. حدود m برای آن که معادله ی درجه ی دوم m=lpha+x دارای دو ریشه ی متمایز مثبت باشد. کدام است؟

$$o < m < \frac{1}{r}$$
 (r

$$m<$$
ه يا $m>$ ه ر $m>$ ه ر $m>$ ه ر $m>$ ه ر $m>$ ه رات

ېت در معادلهی درجه ی دوم
$$a$$
 در معادلهی درجه ی دوم a در معادله ی دوم a در معادله ی درجه ی دوم a در معادله ی درجه ی درجه ی درجه ی درجه ی دوم a در معادله ی درجه ی در

$$x^{7}-x^{$$

۱۸ (
$$x$$
۲ ریشه های معادله هستند) $\sqrt{x_1}+\sqrt{x_1}$ حاصل $\sqrt{x_1}+\sqrt{x_1}$ کدام است؟ (x 7 ریشه های معادله هستند) ۱۸ (x 7 (x 8) ۱۲ (x 9) ۲ (x 9) ۱۲ (x 9) ۱۲ (x 9) ۲ (x 9) ۱۲ (x 9) ۲ (x

۱۳۳. در مورد معادلهی درجهی دوم
$$v=0$$
 ($\sqrt{r}+1$) $x^{r}-r\sqrt{r}$ ($\sqrt{r}+1$) کدام گزینه درست است؟ ($\sqrt{r}+1$) دو ریشه از $\frac{1}{r}$ بزرگ ترند ($\frac{1}{r}$ کوچک ترند ($\frac{1}{r}$) دو ریشه از $\frac{1}{r}$ کوچک ترند (۴) دو ریشه از $\frac{1}{r}$ کوچک ترند (۴) دو ریشه از $\frac{1}{r}$ کوچک ترند

به ازای چه مقدار
$$m$$
 یکی از ریشه های معادله ی $m=0$ به ازای چه مقدار m یکی از ریشه های معادله ی m .۳۴ (۱ m ۲ (۲ m) ۳۲ (۱ m

of 18 5 PM 1:48 ,7/26/17

۱۳۶ اگر
$$\alpha$$
 و eta ریشه های معادله ی $x^{r}-rx+1=\circ$ باشند. حاصل $x^{r}-rx+1=\circ$ کدام است؟ $x^{r}-rx+1=\circ$ کرام است؟ $x^$

۱۳۷. اگر
$$x=y$$
 باشد. x و y جواب های صحیح و مثبت کدام معادله می باشد? $x^{\mathsf{Y}}-\Delta x+\mathcal{F}=\circ$ (۲ $x^{\mathsf{Y}}+\Delta x+\mathcal{F}=\circ$ (۱ $x^{\mathsf{Y}}+\Delta x+\mathcal{F}=\circ$ (۱ $x^{\mathsf{Y}}+\mathcal{F}x+\Delta=\circ$ (۴ $x^{\mathsf{Y}}+\mathcal{F}x+\Delta=\circ$ (۳

۱۳۹. اگر یکی از ریشه های معادله ی
$$x^{
m Y}-bx+1=0$$
 برابر $x^{
m Y}-bx+1=0$ باشد ریشه ی دیگر کدام است؟ $\frac{w-\sqrt{y}}{w}$ (۴ $\frac{\sqrt{y}-y}{w}$ (۴ $\frac{\sqrt{y}-y}{w}$ (1 $\frac{\sqrt{y}-y}{w}$

به ازای کدام مقدار
$$k$$
 در معادله ی درجه ی دوم $x_1+7x_1=rac{7}{7}$ بین ریشه ها رابطه ی $x_1+7x_2=rac{7}{7}$ برقرار است؟ $x_1+7x_2=rac{7}{7}$ برقرار است؟

۴۲. اگر
$$lpha$$
 و eta ریشه های $lpha=1$ د $x^{\mathsf{Y}}+kx-\lambda=0$ و $x^{\mathsf{Y}}+kx-\lambda=0$

به های معادله ی درجه ی دوم
$$m=0$$
 m کدام است؛ $x^{\mathsf{Y}}-(\mathsf{Y}m+\mathsf{I})x+m^{\mathsf{Y}}+m^{\mathsf{Y}}=0$ دو عدد طبیعی متوالی است، مقدار m کدام است؛ m دا) (۱ m کردام است؛ m ک

در معادله ی درجه دوم
$$(\alpha^{\mathsf{Y}}-\mathbf{f})^{\mathsf{Y}}+\mathbf{f}\beta^{\mathsf{Y}}$$
 اگر β,α ریشه های معادله باشند، حاصل \mathbf{f},α چقدر است؟ \mathbf{f},α در معادله ی درجه دوم \mathbf{f},α اگر \mathbf{f},α البت \mathbf{f},α اگر \mathbf{f},α البتر \mathbf{f},α ال

۲ (۴۵ در معادله ی درجه دوم
$$\sqrt{x_1^{\sf Y}(mx-1)}$$
 حاصل $x^{\sf Y}-mx+1=0$ چقدر است؟ $\sqrt{x_1^{\sf Y}(mx-1)}$ در معادله ی درجه دوم $\sqrt{x_1^{\sf Y}(mx-1)}$ چقدر است؟ $\sqrt{x_1^{\sf Y}(mx-1)}$

در معادله ی درجه دوم
$$x^{\mathsf{T}}$$
 در معادله ی درجه دوم x^{T} در معادله ی در دوم x^{T} در معادله ی در دوم x^{T} در معادله ی درجه دوم x^{T}

در معادله ی درجه دوم
$$x^{\mathsf{Y}} + \mathsf{Y} = \mathsf{A} + \mathsf{Y} + \mathsf{$$

۱۳۰۰ اگر یکی از ریشه های معادله ی
$$x(ax^{Y}-x-a)=1$$
 برابر ۲ باشد، مجموع دو ریشه ی دیگر آن کدام است؛ $x(ax^{Y}-x-a)=1$ (۱ $x(ax^{Y}-x-a)=1$) برابر ۲ باشد، مجموع دو ریشه ی دیگر آن کدام است؛ $x(ax^{Y}-x-a)=1$

به ازای کدام مقدار
$$m$$
 مجموع معکوس ریشههای متمایز معادلهی a a برابر ۱ است؛ a برابر a است؛ a برابر a است؛ a انقط a انتقط a

؟ کدام است
$$rac{lpha^{m{Y}}eta^{m{Y}}}{\Deltalpha+m{Y}}+rac{eta^{m{Y}}lpha^{m{Y}}}{\Deltaeta+m{Y}}$$
 باشند حاصل $x^{m{Y}}+\Delta x+m{Y}=\circ$ کدام است $x^{m{Y}}+\Delta x+m{Y}=\circ$

۱۵۰ جواب های کدام معادله، معکوس ریشه های معادله
$$x^{\prime}-\Delta x-y=0$$
 است?
$$x^{\prime}-\Delta x-y=0 \hspace{0.2cm} \text{(1)} \hspace{0.2cm} x^{\prime}-x-y=0 \hspace{0.2cm} \text{(1)} \hspace{0.2cm} x^{\prime}+x-y=0 \hspace{0.2cm} \text{(1)} \hspace{0.2cm} x^{\prime}+x-y=0 \hspace{0.2cm} \text{(2)} \hspace{0.2cm} x^{\prime}+x-y=0 \hspace{0.2cm} \text{(2)} \hspace{0.2cm} x^{\prime}+x-y=0 \hspace{0.2cm} \text{(2)} \hspace{0.2cm} x^{\prime}+x-y=0 \hspace{0.2cm} \text{(3)} \hspace{0.2cm} x^{\prime}+x-y=0 \hspace{0.2cm} \text{(4)} \hspace{0.2cm} x^{\prime}+x-y=0$$

۱۵۲ معادله ی درجه ی دومی که ریشه هایش
$$x^{r}+ax-r=o$$
 و $x^{r}-\sqrt{r-a}$ باشد. کدام است? $x^{r}+ax-r=o$ (۱ $x^{r}-ax+r=o$ (۴ $x^{r}-ax+r=o$ (۴ $x^{r}-ax+r=o$ (۴

۵۳. معادله ی درجه ی دومی با ضرایب گویا که یکی از ریشه های آن
$$\nabla$$
 ∇ باشد. کدام است? $x^{\mathsf{Y}}-\mathsf{F}x+\mathsf{F}=\circ$ (۲ $x^{\mathsf{Y}}-\mathsf{F}x-\mathsf{F}=\circ$ (۱ $x^{\mathsf{Y}}-\mathsf{F}x+\mathsf{I}=\circ$ (۴ $x^{\mathsf{Y}}-\mathsf{F}x+\mathsf{I}=\circ$ (۳

۵۴. معادلهی درجهی دومی که ریشه هایش عکس ریشه های معادلهی $x^{\mathsf{Y}} - 1$ ۱۳ $x^{\mathsf{Y}} - 1$ باشد. کدام است؟

$$\Delta x^{\mathsf{Y}} + \mathsf{I} \mathsf{Y} x - \mathsf{I} = \circ \mathsf{I} \mathsf{Y}$$
 $-\Delta x^{\mathsf{Y}} + \mathsf{I} \mathsf{Y} x + \mathsf{I} = \circ \mathsf{I} \mathsf{I}$

$$x^{\mathsf{Y}} - \mathsf{I} \mathsf{Y} x + \mathsf{\Delta} = \mathsf{o} \ \ (\mathsf{f}^{\mathsf{F}})$$

۵۵. معادله درجه دومی که ریشه هایش ۹ برابر ریشه های معادله ی au= au- au+x باشد. کدام است؟

$$x^{\mathsf{Y}} + 9x - \mathsf{YY} = \circ \mathsf{Y}$$

$$x^{\mathsf{Y}} + 9x - \mathsf{YFF} = \circ (1)$$

$$x^{Y} + 1 \lambda x - YY = 0$$
 (f

$$x^{7}+1\lambda x-74 = \circ$$
 (4

۵۶. معادله ی درجه دومی که ریشه هایش به تر تیب دو واحد از ریشه های معادله ی m-1=n بیش تر باشند کدام

$$x^{
m Y}-(m+{
m f})x+m+{
m f}={
m o}$$
 (Y

$$x^{oldsymbol{r}}-(m-oldsymbol{r})x+oldsymbol{r}m+oldsymbol{r}=oldsymbol{\circ}$$
 (1

$$x^{\dagger} + (m - f)x + fm + f = o$$
 (f

$$x^{\mathsf{Y}} - (m+\mathsf{Y})x + \mathsf{Y}m + \mathsf{Y} = \circ (\mathsf{Y})$$

۵۷. معادله ی درجه ی دومی که هر یک از ریشه هایش نصف ریشه های معادله ی ${f r}={f r}+{f r}-{f r}$ باشد کدام است؟

$$x^{\gamma} - \beta x + 1 = 0$$
 (Y

$$x^{\mathsf{Y}} - \mathsf{Y} x + \mathsf{Y} = \mathsf{o}$$
 (1

$$x^{7}-7x+1=0$$

$$x^{\mathsf{Y}} - \mathsf{F} x + \mathsf{Y} = \circ$$
 (1"

۵۸. معادلهی درجهی دومی که ریشه های آن به ترتیب ۵ واحد بیش تر از ریشه های معادله ی $x^{\mathsf{T}} - \mathsf{T} x + \mathsf{I} = 0$ باشد، کدام است؟

$$mx^{\dagger} - \Upsilon(1 + \Delta m)x + \Upsilon\Delta m + \Pi = \circ (\Upsilon \qquad mx^{\dagger} - \Upsilon(1 + \Upsilon m)x + \Pi = \circ (\Pi m)x +$$

$$mx^{\dagger} - \dagger(1 + \dagger m)x + 11 = \circ$$
 (1

$$mx^{\dagger} - \Upsilon(1 - \Delta m)x + \Upsilon\Delta m - 9 = 0$$
 (6)

$$mx^{\dagger} + \Upsilon(1 + \mathfrak{r}m)x - 9 = \circ (\mathfrak{r}^m)$$

۱۵۹ اگر ریشههای معادلهی $x^{ extsf{Y}}+4x+m-1=0$ باشند، $x^{ extsf{Y}}+4x+m-1=0$ کدام است؟ -۲ ۳ -1 (1º ۲ (۲

MONTA / در سنامه، آزمون، پاسخنامه، منتا

ستاد رفعتی

از دو برابر ریشههای معادلهی ه
$$x^{
m Y}-yx+c=0$$
 از دو برابر ریشههای معادلهی هعادلهی هعادلهی هعادلهی واحد بیشتر $x^{
m Y}-yx+c=0$ باشند، $y^{
m Y}-y^{
m Y}+y^{
m Y}+y^{
m Y}+y^{
m Y}$ کدام است؟ $y^{
m Y}-y^{
m Y}+y^{
m$

اگر
$$eta$$
 ریشههای معادلهی $x^{ extsf{Y}}- extsf{F}x+1=\circ$ باشند، به ازای کدام مقدار $x^{ extsf{X}}$ به $x^{ extsf{Y}}- extsf{F}x+1=\circ$ به معادلهی معادلهی $x^{ extsf{Y}}- extsf{F}x+1=\circ$ مورت $(\sqrt{lpha}\,,\,\sqrt{eta})$ است؟ مورت $(\sqrt{lpha}\,,\,\sqrt{eta})$ است -1 (۴ میلاند) است -1 (۳ میلاند) مقدار $x^{ extsf{Y}}- extsf{F}x+1=\circ$ مورت $(\sqrt{lpha}\,,\,\sqrt{eta})$ است -1 (۳ میلاند) مقدار $x^{ extsf{Y}}- extsf{F}x+1=\circ$ مورت $(\sqrt{lpha}\,,\,\sqrt{eta})$ است -1 (۳ میلاند) مقدار $x^{ extsf{Y}}- extsf{F}x+1=\circ$ معادله معادل

$$S=lpha+eta$$
 اگر $lpha$, $eta=lpha+eta$ به ازای کدام مقدار a بوده و داشته باشیم ، a برابر a برابر برابر a برابر برابر a برابر برابر a برابر برابر

۶۳. کدام یک از معادلات زیر فقط دارای دو ریشه ی قرینه می باشند؟

$$x^{\mathbf{F}} + \mathbf{F}x^{\mathbf{F}} + \mathbf{I} = \circ$$
 (Y
$$x^{\mathbf{F}} - \mathbf{F}x^{\mathbf{F}} + \mathbf{A} = \circ$$
 (Y
$$x^{\mathbf{F}} - \mathbf{F}x^{\mathbf{F}} + \mathbf{A} = \circ$$
 (Y

۶۴. محور تقارن منحنی تابع با ضابطه ی
$$y=rac{rx-1}{rx}$$
 منحنی منحنی $y=rac{rx-1}{r}$ منحنی با ضابطه قطع می کند؟ $y=rac{rx-1}{r}$ منحنی $y=rac{rx-1}{r}$ منحنی $y=rac{rx-1}{r}$ منحنی $y=rac{rx-1}{r}$ منحنی $y=rac{rx-1}{r}$ (۱) (۲ $y=rac{r}{r}$

وروی خط
$$y=1$$
 دارای می نیمم است. a کدام است؟ $y=y=x^{\mathsf{Y}}+ax+1$ دارای می نیمم است. a کدام است؟ $y=y=x^{\mathsf{Y}}+ax+1$ دارای می نیمم است. $y=y=y=x^{\mathsf{Y}}+ax+1$ دارای می نیمم است. $y=y=y=x^{\mathsf{Y}}+ax+1$ دارای می نیمم است.

of 18 10 PM 1:48 ,7/26/17

کمترین مقدار عبارت
$$y=x^{\mathsf{Y}}-x+\mathsf{Y}$$
 کدام است؟ $y=x^{\mathsf{Y}}$

برد تابع
$$f(x)=-x^{7}+arrho x+1$$
 کدام است؟ $f(x)=-x^{7}+arrho x+1$ برد تابع $f(x)=-x^{7}+arrho x+1$ (۱ $(-\infty, T]$ (1 $(-\infty, T]$ (۱ $(-\infty, T]$ (۱ $(-\infty, T]$ (۱ $(-\infty, T]$ (۱ $(-\infty, T]$ (1 $(-\infty, T]$

نسبت به خط
$$x=1$$
 متقارن باشد، این منحنی محور $x=1$ ها را با $y=(a-1)x^{1}+x+\pi$ متعارن باشد، این منحنی محور $x=1$ ها را با $y=(a-1)x^{1}+x+\pi$ کدام طول مثبت قطع می کند؟ $y=(a-1)x^{1}+x+\pi$ کدام طول مثبت قطع می کند؟

ه کدام
$$y$$
 منحنی به معادله ی $y=ax^{\mathsf{Y}}+bx+c$ محور طولها را در ۳ و ۱ و محور عرضها را در ۶ قطع کرده است. کمترین مقدار y کدام $y=ax^{\mathsf{Y}}+bx+c$ است؟ $y=ax^{\mathsf{Y}}+bx+c$ محور طولها را در ۳ و ۱ و محور عرضها را در ۶ قطع کرده است. کمترین مقدار $y=ax^{\mathsf{Y}}+bx+c$ محور طولها را در ۳ و ۱ و محور عرضها را در ۶ قطع کرده است. کمترین مقدار $y=ax^{\mathsf{Y}}+bx+c$ محور طولها را در ۳ و ۱ و محور عرضها را در ۶ قطع کرده است. کمترین مقدار $y=ax^{\mathsf{Y}}+bx+c$ محور طولها را در ۳ و ۱ و محور عرضها را در ۶ قطع کرده است. کمترین مقدار $y=ax^{\mathsf{Y}}+bx+c$ محور طولها را در ۳ و ۱ و محور عرضها را در ۶ قطع کرده است. کمترین مقدار $y=ax^{\mathsf{Y}}+bx+c$ محور طولها را در ۳ و ۱ و محور عرضها را در ۶ قطع کرده است. کمترین مقدار $y=ax^{\mathsf{Y}}+bx+c$ محور طولها را در ۳ و ۱ و محور عرضها را در ۶ قطع کرده است. کمترین مقدار $y=ax^{\mathsf{Y}}+bx+c$ محور طولها را در ۳ و ۱ و محور عرضها را در ۶ قطع کرده است.

۱۷۰. به ازای کدام مجموعه مقادیر
$$m$$
 منحنی به معادله ی $x+t-(m-1)$ $x+t$ در بالای محور x ها است؛ $y=x^{\mathsf{Y}}-(m-1)$ در بالای محور x ها در بالای در بالای محور x ها در بالای در

۱۸۰ محیط مستطیلی ۱۸۰ واحد است. به ازای کدام طول مستطیل مساحت آن بیشترین مقدار است؟
$$4$$
 (۴ 8 9 (۳ 8 9 (۲ 8 9 9 (۱ 9 9 9

of 18 11 PM 1:48 ,7/26/17

۱۳ به ازای کدام مقدار
$$m$$
 منحنی تابع $y=(m+1)\,x^{ extsf{Y}}+ extsf{F}x+m-1$ همواره بالای محور x هاست؛ $-r< m< t$ (۴ $m< -r$ (۳ $m>-r$ (۲ $m> t$ (۱ $m> t$ (1 $m> t$

۱۹۷۰ به ازای کدام مقادیر
$$m$$
 نمودار m نمودار m نمودار m نمودار m بایین محور m بایین

۲۵. به ازای کدام مقادیر
$$m$$
 هر نقطه از نمودار تابع با ضابطهی $m < -1$ ($m-1$) $x^{
m Y} + m + 1$ در زیر محور m ها قرار دارد؟ $m < -1$ (۴ $m < 0$ (۱ $m < 0$) ا

۱ محور
$$y=x^{\mathsf{Y}}-\mathsf{Y} x-\mathsf{A}$$
 را حداقل چند واحد به سمت راست منتقل کنیم تا هر دو نقطهی تلاقی آن با محور $y=x^{\mathsf{Y}}-\mathsf{Y} x-\mathsf{A}$ طولها، در x های نامنفی باشد؟ x (۴ x ۱) x و x (۴ x) x (8 x) x (8 x) x (9 x) x (1 x) x

۱ گر نمودار
$$f$$
 با ضابطهی m کدام است؛ $y=1$ خط $y=1$ خط $y=1$ خط ا $y=1$ کدام است؛ $y=1$ کاد، مقدار $y=1$ کدام است؛ $y=1$ خط ا $y=1$ خط ا $y=1$ خط ا $y=1$ خط الله خوام است؛ $y=1$ خط الله خوام الله خ

۱۹۹ منحنی به معادله ی
$$y=(m+{\sf r})x^{\sf Y}+{\sf f}x+m-1$$
 به ازای کدام مقدار m محور x ها را در دو نقطه قطع می کند؟ $y=(m+{\sf r})x^{\sf Y}+{\sf f}x+m-1$ به معادله ی $y=(m+{\sf r})x^{\sf Y}+{\sf f}x+m-1$ به ازای کدام مقدار $y=(m+{\sf r})x^{\sf Y}+{\sf f}x+m-1$

of 18 12

PM 1:48 ,7/26/17

، شابطه ی تابع f با نمودار مقابل، مطابق کدام گزینه می تواند باشدf

$$y=-x^{\intercal}+\Delta x- \Upsilon$$
 (1

$$y = -\mathbf{r}x^{\mathbf{r}} + \mathbf{r}x + \mathbf{\Delta} \ (\mathbf{r}$$

$$y=x^{ extsf{Y}}- extsf{T}x+ extsf{Y}$$
 (T

$$y = -\mathbf{r} x^{\mathbf{r}} - \mathbf{r} x + \mathbf{r}$$
 (r

ها را در صورتی که منحنی تابع
$$rac{ t v}{ t t} + ax + a - rac{ t v}{ t t}$$
، محور x ها را در طرفین محور y ها قطع کند، آنگاه حدود تغییرات x چگونه x x

$$a>rac{ au}{ au}$$
 (۴

$$a<rac{r}{r}$$
 (r

$$Y < a <$$
 F (Y

$$a < rac{ au}{
u}$$
 (۳ $\qquad \qquad a < arsigma$ ۲ لي $a > arsigma$ ۱) الم

ها، مماس است. مقدار
$$b$$
 کدام است؟ $y={
m Y}x^{
m Y}+bx+{
m F}$ بر قسمت مثبت محور x ها، مماس است. مقدار $y={
m Y}x^{
m Y}+bx+{
m F}$ کدام است؟ $-\sqrt{r}$ (۴ $\pm r\sqrt{r}$ (۳ $\pm r\sqrt{r}$ (۲ $\pm r\sqrt{r}$ (۱ $\pm r\sqrt{r}$ (1 $\pm r\sqrt$

به صورت مقابل بوده و مختصات رأس سهمی aeta است. $ax^{
m Y}+bx+c$ کدام است؟ ۱ $ax^{
m Y}+bx+c$ نمودار تابع ۱ $ax^{
m Y}+bx+c$ کدام است؟ $ax^{
m Y}+bx+c$ نمودار تابع $ax^{
m Y}+bx+c$ کدام است؟ $ax^{
m Y}+bx+c$ نمودار تابع $ax^{
m Y}+bx+c$ نمودار تا

۹. به ازای چند مقدار صحیح
$$a$$
، تابع درجه ی دوم a دوم a به ازای چند مقدار صحیح a تابع درجه ی دوم a دوم a دوم a در به ازای چند مقدار صحیح a تابع درجه ی دوم a دوم a دوم a دوم کند؟ a در به ازای چند مقدار صحیح a تابع درجه ی دوم a درجه ی دوم a دوم کند؟ a درجه ی دوم a درجه ی دوم a درجه ی دوم a درجه ی دوم a دوم کند؟

۸۵. به ازای چه حدودی از a، نمودار تابع درجهی دوم $x=x^{\mathsf{Y}}-(a-\mathfrak{k})x+rac{\mathsf{q}}{\mathfrak{k}}$ فقط از ناحیهی چهارم محورهای مختصات نمی گذرد؟

$$\circ < a < 1$$
 (1°

$$-1 < a < -1$$
 (1)

$$1 < a < Y$$
 (Y $-Y < a < -1$ (Y $-1 < a < \circ$ ()

بتاد رفعتہ

۸۶. محور تقارن سهمی $x=x^{7}+4$ منحنی را در نقطهای به عرض (۲-) قطع میکند. طول پارهخطی که سهمی روی محور $y=x^{7}+4$ ایجاد میکند، کدام است؟

$$r\sqrt{r}$$
 (re $r\sqrt{r}$ (re $r\sqrt{r$

۱. اگر عبارت
$$y=ax(x+1)+1$$
 همواره مثبت باشد، به جای a چند عدد صحیح می توان قرار داد؛ $y=ax(x+1)+1$ گر عبارت $y=ax(x+1)+1$ همواره مثبت باشد، به جای $y=ax(x+1)+1$

۱. اگر مساحت مثلثی که راسهای آن نقاط برخورد منحنی به معادلهی $y=x^{\mathsf{Y}}-kx+1$ با محورهای مختصات است، برابر یک واحد مربع باشد، k کدام است؟

$$\pm\sqrt{r}$$
 (re $\pm r\sqrt{r}$ (re $\pm r$ (r $\pm r$ (1

کدام $\frac{lpha^{
m M}eta+lphaeta^{
m M}}{(lpha^{
m T}+lphalpha+lpha)(eta^{
m T}+lphaeta+
m Y)}$ باشند، حاصل عبارت $x^{
m T}+lpha x-1=\circ$ کدام اگر lpha و lpha ریشه های معادله ی درجه ی دوم $x^{
m T}+lpha x-1=\circ$ کدام است؟

$$\frac{q}{q}$$
 (fr $\frac{r_0}{r_0}$ (fr $\frac{-r_0}{r_0}$ (1

۹۰. به هر یک از جواب های معادله
$$a=a$$
 $b=a$ ۲ دو واحد اضافه می کنیم. به حاصل ضرب آنها چند واحد اضافه می شود؟ a ۲ (۲ b ۸ (۳ b ۲ (۲ b ۴ (۱ b

۹۱. به ازای چه حدودی از
$$a$$
 تابع درجه ی دوم $a>1$ ($a-1$) $x^{\mathsf{Y}}-\mathsf{Y}\sqrt{\mathsf{T}}x+(a+1)$ ، از ناحیه ی سوم و چهارم نمی گذرد؟ $a>1$ (۴ $a\geq 1$ (۲ $a\geq 1$ (۱ $a\geq$

of 18 14 PM 1:48 ,7/26/17

۹۲. ریشه های حقیقی معادله ی ۶
$$ax^{
m Y}+ax+a^{
m Y}=9$$
 معکوس یکدیگرند. اختلاف این دو ریشه کدام است؟ $ax^{
m Y}+ax+a^{
m Y}=9$ (۱) $ax^{
m Y}+ax+a^{
m Y}=9$ (۱)

۹۳. اگر
$$lpha$$
 و eta جواب های معادله ی $lpha=(lpha+rac{\mathsf{r}}{eta})^{\mathsf{r}}+(eta+rac{\mathsf{r}}{lpha})^{\mathsf{r}}$ باشند، حاصل $x^{\mathsf{r}}-ax+\mathsf{r}=\circ$ کدام است؟ Af (۴ $lpha$ ۴ $lpha$ (۳ $lpha$ ۲ $lpha$ $lpha$

۱۹۵ اگر
$$1+\alpha$$
۱ و $1+\alpha$ ۲ ریشه های معادله ی $1+\alpha$ ۲ باشند، کدام معادله ریشه هایش $\frac{1}{\beta}$ و $\frac{1}{\beta}$ است؟ $1+\alpha$ ۲ باشند، کدام معادله ریشه هایش $1+\alpha$ ۲ باشند، کدام معادله ریشه های $1+\alpha$ ۲ باشند، کدام معادله ریشه هایش $1+\alpha$ ۲ باشند، کدام معادله ریشه های معادله یا باشند، کدام معادله ریشه هایش $1+\alpha$ ۲ باشند، کدام معادله ریشه های $1+\alpha$ ۲ باشند و ترسید و ترسید

۹۶. به ازای کدام مجموعه ی مقادیر
$$a$$
 ، معادله ی a ، معادله ی a ، معادله ی a ، معادله ی a ، دو جواب مثبت و یک جواب منفی دارد؟ $-1 < a < \circ$ (۴ $a < 1$) (۳ $a > -1$) (۱ $a > 1$) (۱

۱۹۷۰ به ازای کدام مقدار
$$m$$
 در معادله ی $\kappa^{2}+\kappa mx+\kappa m+\kappa=0$ یکی از جواب ها، ۳ برابر جواب دیگر است؟ $-\frac{r}{r}$ (۴ $-\frac{r}{r}$ (۳ $\frac{r}{r}$ (۲ $\frac{r}{r}$ (۱ $\frac{r}{r}$

۹۸. اگر رأس یک سهمی روی نیمساز ربع اول باشد و محور xها را در دو نقطه، به طول های - و - قطع کند، آن گاه این سهمی محور ها را در نقطه ای با کدام عرض قطع می کند؟y

$$-\frac{k}{\mu}$$
 (h

اگر نمودار سهمی x=ax ۴+۴x+a و محور xها را در دو نقطه ی متمایز با طول مثبت قطع کند، راس سهمی به ازای ۱۹۹۰ اگر کدام مقادیر $\,a$ ، زیر محور $\,x$ ها قرار دارد؟

$$(-rac{1}{r},\circ)$$
 (1° (∞,\circ) (1°

$$(\infty,\circ)$$
 (Y

اکیداً صعودی است. حداقل مقدار
$$a$$
 کدام است؟ $f(x)=x^{ extsf{Y}}+ extsf{Y}x+ extsf{X}$ در بازه ی $f(x)=x^{ extsf{Y}}+ extsf{Y}x+ extsf{Y}x+ extsf{X}$

۲۰ اگر
$$\alpha$$
 و β ریشه های معادله ی α است α باشند، حاصل α است α و α ریشه های معادله ی α است α باشند، حاصل α است α کدام است α کد

۱۰۱ه اگر ریشههای معادلهی ه
$$ax^{\mathsf{Y}}+ax+b=0$$
 از مربع معکوس ریشههای معادلهی ه $ax^{\mathsf{Y}}+ax+b=0$ دو واحد کم تر باشد، a کدام است؟ a ۱۷ (۴ ۴۲ (۳ ۳۱ (۲ ۲۰ (۱

بتاد رفعتی

۱۰۵ به ازای کدام مقادیر
$$a$$
 معادله ی $a>+$ (۲ ست) $x^{\mathsf{Y}}+(a-\mathsf{I})x^{\mathsf{Y}}+(\mathfrak{F}-a)x=\mathfrak{F}$ دارای سه ریشه ی حقیقی متمایز $a>+$ (۱ مثبت است) $a>+$ (۲ مرای سه $a>+$ (۱ مثبت است) مثبت است) مثبت است) مثبت است

 $rac{eta^{\mathsf{Y}}-\mathsf{Y}eta}{lpha}$ و $rac{lpha^{\mathsf{Y}}-\mathsf{Y}lpha}{eta}$ و $rac{lpha^{\mathsf{Y}}-\mathsf{Y}lpha}{eta}$ و $rac{lpha^{\mathsf{Y}}-\mathsf{Y}lpha}{eta}$ و $rac{lpha^{\mathsf{Y}}-\mathsf{Y}lpha}{eta}$ و $rac{eta^{\mathsf{Y}}-\mathsf{Y}lpha}{eta}$ و $rac{eta^{\mathsf{Y}}-\mathsf{Y}lpha}{eta}$ و $rac{eta^{\mathsf{Y}}-\mathsf{Y}lpha}{eta}$

$$x^{\mathsf{Y}} - \mathsf{f} x - \mathsf{Y} = \circ (\mathsf{Y})$$
 $x^{\mathsf{Y}} - \mathsf{f} x - \mathsf{Y} = \circ (\mathsf{Y})$ $x^{\mathsf{Y}} - \mathsf{A} x - \mathsf{Y} = \circ (\mathsf{f})$ $x^{\mathsf{Y}} - \mathsf{f} x - \mathsf{Y} = \circ (\mathsf{f})$

۱۰۷ به ازای چه مقادیری از
$$a$$
 ، نمودار تابع $f(x)=(a^{\mathsf{Y}}-\mathsf{Y})x^{\mathsf{Y}}+(a^{\mathsf{Y}}-\mathsf{Y})x+\mathsf{I}$ از هر ۴ ناحیه ی دستگاه مختصات عبور می کند؟ $\mathbb{R}-[-\mathsf{Y},\mathsf{Y}]$ (۴ $\mathbb{R}-(-\mathsf{Y},\mathsf{Y})$ (۳ $(-\mathsf{Y},\mathsf{Y})$ (۲ $(-\mathsf{Y},\mathsf{Y})$

۱۰۸ به ازای کدام مقادیر
$$m$$
 ازمعادله ی $mx-m\sqrt{x}+m-1$ فقط یک جواب برای x حاصل می شود؟ $-\frac{m}{r} < m < r$ (۱ $-\frac{m}{r} < m < r$ (۱ $-\frac{m}{r} < m < r$ (۳ $-\frac{m}{r} < m < r$ (1 $-\frac{m}{r} < m < r$ (2 $-\frac{m}{r} < m < r$ (1 $-\frac{m}{r} < m < m <$

۹ م ا ریشه های معادله ی
$$ax^{\mathsf{Y}}+ax+b=0$$
 از ریشه های معادله ی $ax^{\mathsf{Y}}+ax+b=0$ یک واحد بیشتر است. $ax^{\mathsf{Y}}+ax+b=0$ کدام است $ax^{\mathsf{Y}}+ax+b=0$ (۱) $ax^{\mathsf{Y}}+ax+b=0$ کدام است $ax^{\mathsf{Y}}+ax+b=0$ (۱) $ax^{\mathsf{Y}}+ax+b=0$ کدام است $ax^{\mathsf{Y}}+ax+b=0$ کدام است $ax^{\mathsf{Y}}+ax+b=0$ (۱)

ه ۱۱. به ازای کدام مجموعهی مقادیر
$$m$$
، از معادلهی m و m ، دو جواب متمایز برای m حاصل می شود ؟ m میچ مقدار m) ۱ $m < r$ (۲ $m \geq 1$) هیچ مقدار m

of 18 17 PM 1:48 ,7/26/17

MONTA / در سنامه، آز مون، پاسخنامه، منتا

تاد رفعتی

ا ا ا ا اگر معادله ی
$$a=a$$
 مقادیر a به کدام صورت است $a^{f F}-(m+{f T})x^{f T}+m+a=a$ دارای ۴ ریشه حقیقی متمایز باشد، مجموعه مقادیر a به کدام صورت است a به کدام صورت

کدام است؟
$$(x^{
m Y}+x)^{
m Y}-1$$
 ۱ کدام است؟ کدام است؟ $(x^{
m Y}+x)^{
m Y}-1$ کدام است؟ کدام است؟ $-$ ۴ (۴ کار $-$ ۲ ک

ال اگر
$$a+\log b-\log(a+b)$$
 کدام است؛ $x^{\mathsf{Y}}-\mathsf{I}\circ x+\circ_{\mathsf{f}}\mathsf{I}=\circ$ کدام است؛ اگر $a+\log b-\log(a+b)$ ا

۱ ۱ معادله ی معادله ی معادله ی
$$\alpha = 1$$
 ۱ باشند، معادله ی درجه ی دومی که ریشه های آن $\alpha = 1$ ۱ باشند، معادله ی درجه ی دومی که ریشه های آن $\alpha = 1$ ۱ باشد، کدام است؟
$$-x^{\mathsf{Y}} - \mathsf{V}x + \mathsf{I} = \circ \quad \mathsf{Y}$$

$$-x^{\mathsf{Y}} - \mathsf{V}x + \mathsf{I} = \circ \quad \mathsf{Y}$$

$$-x^{\mathsf{Y}} - \mathsf{V}x + \mathsf{I} = \circ \quad \mathsf{Y}$$

$$-x^{\mathsf{Y}} + \mathsf{V}x + \mathsf{I} = \circ \quad \mathsf{Y}$$

of 18 18 PM 1:48 ,7/26/17