Main Ideal. Dunership Matrix

Empirical Models of Pricing in Industries with Differentiated-Products

Aviv Nevo

University of Pennsylvania and NBER

Fall 2018

Empirical Models of Pricing with Differentiated-Products

Up to now we assumed that the products were homogenous (at least as an approximation).

Bresnahan, JIE 87, "Competition and Collusion in the American Automobile Industry: 1955 Price War"

Q: In 1955 quantities of autos sold were higher and prices were lower, relative to 54 and 56. Why? Was this due to a price war/breakdown of collusion?

Bresnahan, JIE 87

- Basic idea: use variation in demand to learn about model of competition (like 1st Bresnahan note). However, now the variation is across products (and not between markets).
- Treat location in characteristic space as fixed; Given location, markups will differ depending on ownership of nearby products. Ask which supply model best fits the data. (See graph)
- This is essentially like using the characteristics of other products as IV.

Figure 2(b)

Model

Supply (static multi-product pricing)

f = 1, ..., F firms; j = 1, ..., J products.

Each firms produces some subset, \mathcal{F}_f , of the J products.

Cost of production: C(x, q) = A(x) + mc(x)qwhere q is the quantity produced and x is the quality of the product:

Let
$$mc(x) = \mu e^x$$
; No explanes of scale

The profits of firm f are

$$\Pi_f = \sum_{j \in \mathscr{F}_f} (p_j - mc_j) Ms_j(p) - C_f$$

Assuming: (1) existence of a pure-strategy Bertrand-Nash equilibrium in prices; (2) prices that support it are strictly positive. The first order conditions are

$$s_j(p) + \sum_{r \in \mathscr{F}_f} (p_r - mc_r) \frac{\partial s_r(p)}{\partial p_j} = 0 \quad j = 1, ..., J$$

Define $S_{jr}=-\partial s_r/\partial p_j, \ \ j,r=1,...,J,$ and an "ownership" structure defined by

$$H_{jr} = \begin{cases} 1, & \text{if } \exists f: \{r,j\} \subset \mathscr{F}_f; \\ 0, & \text{otherwise} \end{cases}$$
 and let $\Omega_{jr} = H_{jr} * S_{jr}.$ et by ell
$$\prod_{j \in J} \{f: \{r,j\} \subset \mathscr{F}_f; \\ 0, & \text{otherwise} \} \end{cases}$$
 And the polar forms of the standard of the standard forms of the standa

Substitute & upward oring prossure complements lowers the price.

Then the first order conditions become

$$s(p) - \Omega(p - mc) = 0$$

which implies a pricing equation can be set that $p-mc=\Omega^{-1}s(p)$

$$p - mc = \Omega^{-1}s(p)$$

$$p - mc = \Omega^{-1}s$$
for shell product firms:
$$p = mc - \frac{s(p)}{2s_1} \quad con add \quad (k'mex) \frac{3s_2}{3p_3}$$
This

& See price, estimate beneat, back out M

Therefore by:

- (1) assuming a model of conduct; and
- (2) using estimates of the demand substitution;

we are able to:

Heart of Id

- (1) measure PCM (without using cost data);
- (2) compute these margins under different "ownership" structures (i.e., different Ω^*).

Note: we assumed away any cost synergies across products and across time.

Model

Demand (vertical differentiation)

consumers agree on the vanking of the product

Let:

v - measure consumer taste (WTP for quality);

 $v \sim U[0, V_{max}]$ with density δ on there as γ

x - auto quality;

y - consumer income;

p - price of the auto;

The indirect utility of consumer (v, y) from auto (x, p) is

$$vx + y - p$$

and if no auto is bought it is

$$\frac{v\gamma+y-E}{\text{pole of some outside }}$$
 where γ and E are parameters to be estimated.

Assume each consumer chooses exactly one of the J+1 options; Therefore the demand for product j=0,...,J is

$$q_j = \delta[v_{j+1} - v_j]$$

where the cutoff points, v_j , are computed by the consumer who is just indifferent between two options. These are given by

$$v_{j} = \begin{cases} 0 & j = 0\\ \frac{p_{j-1} - p_{j}}{x_{j-1} - x_{j}} & j = 1, ..., J\\ V_{max} & j = J + 1 \end{cases}$$

where $p_0 = E$ and $x_0 = \gamma$

The price derivatives are

$$\frac{\partial q_j}{\partial p_j} = \delta \left[\frac{1}{x_j - x_{j+1}} + \frac{1}{x_{j-1} - x_j} \right]$$

and

$$rac{\partial q_j}{\partial p_k} = egin{cases} \delta \left[rac{1}{\mathsf{x}_j - \mathsf{x}_k}
ight] & k = j - 1, j + 1 \\ 0 & \textit{otherwise} \end{cases}$$

Conditional on the x's we could estimate demand and compute the implied markups for different demand structures.

Quality is assumed $x_j = \sqrt{\beta_0 + \sum_k \beta_k z_{jk}}$; where z_{jk} is a characteristic of product j and β 's are parameters to be estimated.

Data

Prices: list prices

quantities: quantity produced

characteristics

Econometrics

1) Let $P^*(z; H, \beta, \gamma, V_{max}, \delta, \mu)$ and $Q^*(z; H, \beta, \gamma, V_{max}, \delta, \mu)$ represent the equilibrium prices and quantities predicted by the model.

Assume: $P_j = P_j^* + \varepsilon_j^p$ and $q_j = q_j^* + \varepsilon_j^p$ where ε_j^p and ε_j^q are iid zero mean normally distributed shocks with variance σ_p^2 and σ_q^2 Then the likelihood function is given by

$$\prod_{j=1}^{J} \frac{1}{2\pi\sigma_{p}^{2}} exp\Big[-\frac{(P_{j} - P_{j}^{*})^{2}}{2\sigma_{p}^{2}} \Big] \frac{1}{2\pi\sigma_{q}^{2}} exp\Big[-\frac{(q_{j} - q_{j}^{*})^{2}}{2\sigma_{q}^{2}} \Big]$$

Note: the likelihood function is not well behaved (the ranking of the cars will change with the values of the parameters).

- 2) 4 models are estimated:
 - Collusive: the ownership matrix is a matrix of 1's;
 - Nash (multi-product pricing): the ownership matrix is blocks of 1's;
 - Products (single-product pricing): the ownership matrix is identity;
 - Hedonic: $P_j^* = exp[\alpha_0 + \sum_k \alpha_k z_{jk}]$ and $q_j^* = exp[\lambda_0 + \lambda_1(P_j P_j^*)]$
- 3) The models are estimated separately for each year. Identification is coming from cross-product variation.

4) Testing:

- (a) Cox test of non-nested alternatives (LR of the null and the alternative is the central statistic, the mean and variance are computed under the null and used to compute a test statistic that is distributed standard normal)
- (b) Informal: compares estimates across years. Either structural parameters are unstable or competition changes.

Results

- Table 3: 54, 56 only collusive model not rejected; 55 only Nash model not rejected;
- Table 4: structural parameters do not change under maintained assumption;
- Table 5: structural parameters vary between 55 and 54/56 if competition model is held fixed;

TABLE III
COX TEST STATISTICS

b-1955 Collusion10.36 -9.884 -13.36	can mad
Froducts -3.978 3.0291.604 vte	عام المراديد ما أمماء
Froducts -3.978 3.0291.604 vte	41 6
Froducts -3.978 3.0291.604 vte	wed by
	viedonic
b-1955 Collusion — -10.36 -9.884 -13.36	Meaning
-10.36 -9.884 -13.36	
Nash-Competition -1.594 — 1.260 0.6341	
"Products" -0.7598 -4.3791.527	
Hedonic -3.353 -8.221 -5.950 -	
c-1956	
Collusion — 1.227 0.8263 1.629	
Nash-Competition -2.4264.586 0.8314	
SW 7 "Products" -3.153 0.9951 - 4.731	
05 54 Hedonic -5.437 -9.671 -11.58 -	

Row denotes the null (i.e., the model assumed true), while column denote the alternative. Values of the test statistic (asymptotically a standard normal) sig different from zero lead to rejection. The intuition of the test is as follows: if the residuals under the null can be explained by the alternative then the null is rejected.

TABLE IV PARAMETER ESTIMATES 1954-56, MAINTAINED SPECIFICATION

Parameters	1954ª	1955 ^b	1956ª
Physical Characteristics			
Quality Proxies			
Constant	47.91 (32.8)	48.28 (43.2)	50.87 (29.4)
Weight #/1000	0.3805	0.5946 (0.145)	0.5694
Length "/1000	0.1819	0.1461 (0.059)	0.1507
Horsepower/100	2.665 (0.692)	3.350 (0.535)	3.248 (0.620)
Cylinders	-0.7387	-0.9375	-0.9639
Hardtop Dummy	(0.205) 0.9445 (0.379)	(0.115) 0.4531 (0.312)	(0.186) 0.4311 (0.401)
Demand/Supply			
μ-Marginal Cost	0.1753 (0.024)	0.1747 (0.020)	0.1880 (0.035)
γ-Lower Endpoint	4.593 (1.49)	3.911 (2.08)	4.441 (1.46)
$V_{ m max}\!-\!UpperEndpoint$	1.92E + 7 (8.44E + 6)	2.41E + 7 (9.21E + 6)	2.83E + 7 (7.98E + 6)
δ Taste Density	0.4108 (0.138)	0.4024 (0.184)	0.4075 (0.159)

Notes: Figures in parentheses are asymptotic standard errors.

^a Estimated using the Collusion specification.

^b Estimated using the Nash-Competition specification.

TABLE V(i) PARAMETER ESTIMATES 1954-56, COLLUSIVE SPECIFICATION

Parameters	1954	1955	1956	_
Constant	47.91	-23.37	50.87	- charge refrences sluse of
	(32.8)	(24.5)	(29.4)	- oller
Weight	0.3805	0.0103	0.5694	_ 5,100
	(0.332)	(5.43E-2)	(0.374)	- hereje
Length	0.1819	-2.88E-3	0.1507	012
•	(0.128)	(0.102)	(0.146)	nelverus
Horsepower	2,665	0.1165	3.248	elice d
	(0.692)	(0.106)	(0.620)	9000
Cylinders	-0.7387	-1.309	-0.9639	as don
	(0.205)	(1.52)	(0.186)	-1 h
Hardtop	0.9445	1.468	0.4311	
	(0.379)	(1.08)	(0.401)	
μ	0.1753	1.344	0.1880	
	(0.024)	(0.151)	(0.035)	
y	4.593	1.604	4.441	
•	(1.49)	(4.83)	(1.46)	
V_{max}	1.92E + 7	1.46E + 8	2.83E + 7	
	(8.44E+6)	(6.74E+6)	(7.98E+6)	
δ	0.4108	5.75E - 2	0.4075	
	(0.138)	(8.28E-2)	(0.159)	

Note: Figures in parentheses are asymptotic standard errors.

Assures Hol collegive for all 3 years

not just 54 and 56.

Table V(ii)
Parameter Estimates 1954–56, Bertrand Specification

Parameters	1954	1955	1956
Constant	31.64	48.28	33.23
	(29.9)	(43.2)	(17.8)
Weight	0.9311	0.5946	6.23E - 3
-	(0.210)	(0.145)	(8.73E-4)
Length	0.1474	0.1461	0.1605
-	(0.038)	(0.059)	(0.149)
Horsepower	4.962	3.350	2.972E - 2
	(0.676)	(0.535)	(1.47E-2)
Cylinders	-0.8846	-0.9375	-0.9078
•	(0.194)	(0.115)	(0.256)
Hardtop	-0.2474	0.4531	0.5282
	(0.464)	(0.312)	(0.249)
μ	0.2518	0.1747	0.2902
	(0.074)	(0.312)	(0.249)
γ	6.352	3.911	1.204
	(3.54)	(2.08)	(3.19)
$V_{ m max}$	9.81E + 5	2.41E + 7	1.03E + 6
	(8.78E+6)	(9.21E+6)	(8.90E+6)
δ	5.04	0.4024	7.334
	(1.21)	(0.184)	(2.46)

Note: Figures in parentheses are asymptotic standard errors.

Comments

- 1) The formal test requires that at least one of the alternatives be true. The test proposed by Voung (*EMA*, 88) does not require this. It is applied by Gasmi, Laffont and Voung (*JEMS*, 92) to testing models of collusion in the soft-drink market.
- 2) The test for collusion relies critically on getting the demand estimates right. The demand model is very restrictive in several ways:

 Assumes only competes with door relighbors**
 - (a) The model imposes very restrictive substitution patterns. Even in this market it is not clear that the vertical model is a good approximation;
 - (b) No error in quality measures;

- 3) The implicit assumption is that the locations, i.e., characteristics, are exogenous (pre-determined). Is this a reasonable assumption?
- 4) The model ignores dynamics on both the producer and consumer side.