Practical Machine Learining Class Project

Nick Orka 3/3/2020

Overview

One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. A goal of the project is to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants and to predict the manner in which they did the exercise. This is the "classe" variable in the training set.

Data preprocessing

The training data for this project are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv (https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv)

The test data are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv (https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv)

The data for this project come from this source:

http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har (http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har).

```
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
```

Data summary

The initial data have NA data that required to be cleaned:

```
dim(training)

## [1] 19622 160

dim(testing)

## [1] 20 160
```

Cleaning data

Cleaned data:

```
var_names <- names(training)
naNames <- names(training[, colSums(is.na(training)) > 0])
var_names <- var_names[!var_names %in% naNames]
var_names <- var_names[!grepl("X|timestamp|window", var_names)]
training <- training[, var_names]
classe <- training$classe
training <- training[, sapply(training, is.numeric)]
var_names <- names(training)
training$classe <- classe
testing <- testing[, var_names]
dim(training)</pre>
```

```
## [1] 19622 53
```

dim(testing)

[1] 20 52

Create validation dataset

```
set.seed(34562)
isTrain <- createDataPartition(training$classe, p = .7, list = F)
validating <- training[-isTrain, ]
training <- training[isTrain,]
dim(validating)</pre>
```

```
## [1] 5885 53
```

dim(training)

[1] 13737 53

Prediction model

```
control <- caret::trainControl(method = "cv", 5)
model <- caret::train(classe ~ ., data = training, method = "rf", trControl = control, ntree = 2
50, localImp = TRUE)
model</pre>
```

```
## Random Forest
##
## 13737 samples
      52 predictor
##
##
      5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 10989, 10990, 10989, 10991, 10989
## Resampling results across tuning parameters:
##
##
    mtry Accuracy
                     Kappa
##
    2
          0.9900269 0.9873832
##
    27
           0.9909734 0.9885804
##
    52
          0.9842034 0.9800127
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 27.
```

Then, we estimate the performance of the model on the validation data set.

```
p <- predict(model, validating)
confusionMatrix(validating$classe, p)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                Α
                           C
                                     Ε
##
            A 1673
                      1
                           0
##
            В
                11 1128
                                     0
            C
##
                 0
                      9 1015
                                2
                                     0
##
            D
                 0
                      0
                          15 948
                                     1
##
            Ε
                      1
                           3
                                6 1072
##
   Overall Statistics
##
##
##
                  Accuracy : 0.9917
##
                    95% CI: (0.989, 0.9938)
##
       No Information Rate: 0.2862
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.9895
##
    Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                          0.9935
                                   0.9903
                                            0.9826
                                                      0.9916
                                                               0.9991
                          0.9998
                                   0.9977
                                             0.9977
                                                      0.9968
## Specificity
                                                               0.9979
## Pos Pred Value
                          0.9994
                                   0.9903
                                            0.9893
                                                      0.9834
                                                               0.9908
## Neg Pred Value
                          0.9974
                                   0.9977
                                             0.9963
                                                      0.9984
                                                               0.9998
## Prevalence
                          0.2862
                                   0.1935
                                             0.1755
                                                      0.1624
                                                               0.1823
## Detection Rate
                          0.2843
                                   0.1917
                                             0.1725
                                                      0.1611
                                                               0.1822
## Detection Prevalence
                          0.2845
                                   0.1935
                                             0.1743
                                                      0.1638
                                                               0.1839
## Balanced Accuracy
                          0.9966
                                   0.9940
                                             0.9902
                                                      0.9942
                                                               0.9985
accuracy <- postResample(p, validating$classe)</pre>
accuracy
```

```
## Accuracy Kappa
## 0.9916737 0.9894659
```

```
oose <- 1 - as.numeric(confusionMatrix(validating$classe, p)$overall[1])
oose</pre>
```

```
## [1] 0.008326253
```

So, the estimated accuracy of the model is 99.17% and the estimated out-of-sample error is 0.83%.

Predicting for Test Data Set

Now, we apply the model to the original testing data set downloaded from the data source.

[1] B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E

Appendix: Figures

1. Variable importance

Variable Importance of RF model

roll_belt pitch_forearm yaw_belt pitch belt magnet_dumbbell_z magnet_dumbbell_y gyros_dumbbell_y gyros_belt_z yaw_arm magnet belt x roll_forearm accel_dumbbell_y gyros_arm_y accel_forearm_x magnet arm z magnet forearm z pitch arm accel_dumbbell_z magnet_forearm_y total accel dumbbell gyros_belt_x magnet_belt_z gyros_forearm_y gyros_arm_x gyros forearm z gyros dumbbell z magnet_belt_y total_accel_arm magnet arm y gyros_dumbbell_x 40 50 60 MeanDecreaseAccuracy

roll_belt pitch_forearm yaw_belt magnet dumbbell z roll_forearm pitch_belt magnet_dumbbell y accel dumbbell y magnet_dumbbell_x accel forearm x roll dumbbell total_accel_dumbbell magnet_forearm_z magnet_belt_z magnet belt y accel dumbbell z accel belt z gyros_belt_z yaw_arm magnet belt x gyros_dumbbell_y yaw_dumbbell roll_arm accel_forearm_z magnet_arm_y magnet forearm y accel_dumbbell_x yaw forearm accel arm x magnet_arm_x

Warning: Using alpha for a discrete variable is not advised.

Multi-way importance plot

Relations between measures of importance

2. Correlation Matrix Visualization

3. Decision Tree Visualization

Rattle 2020-Mar-04 17:00:48 Fox

