ECE551 - Homework 7

Khoi-Nguyen Mac

November 4, 2016

1 Truncation as Filter Approximation

(a) Let $\psi = \{\varphi_k\}$ be the basis of $\mathbb{C}^{\mathbb{Z}}$

$$h_d \in \mathbb{C}^{\mathbb{Z}} \Rightarrow h_d = \sum_{\varphi_k \in \psi} \alpha_k \varphi_k$$

Since $I \subset \mathbb{Z}$, $\mathbb{C}^I \subset \mathbb{C}^\mathbb{Z}$, where $\mathbb{C}^I = \operatorname{span}\{\phi^I\}$, $\phi^I \subset \phi$.

$$T_{I}h_{d} = \sum_{\varphi_{k} \in \psi} w[k]\alpha_{k}\varphi_{k}$$

$$= \sum_{\varphi_{k} \in \psi^{I}} 1 \cdot \alpha_{k}\varphi_{k} + \sum_{\varphi_{k} \in \psi/\psi^{I}} 0 \cdot \alpha_{k}\varphi_{k}$$

$$= \sum_{\varphi_{k} \in \psi^{I}} \alpha_{k}\varphi_{k} \in \operatorname{span}\{\psi^{I}\} = \mathbb{C}^{I}$$

$$\Rightarrow T_{I}h_{d} - h_{d} = \sum_{\varphi_{k} \in \psi/\psi^{I}} \alpha_{k}\varphi_{k}$$

$$\Rightarrow \langle T_I h_d - h_d, T_I h_d \rangle = 0 \Rightarrow T_I h_d - h_d \perp T_I h_d$$

By orthogonality principal, $T_I h_d$ is the least square approximation of h_d on $\ell_2(I)$.

(b) $\forall z \in \mathbb{C}^{\mathbb{Z}}$, we have

$$T_I z = \sum_{\varphi_k \in \psi} \beta_k \varphi_k \perp T_I h_d - h_d = \sum_{\varphi_k \in \psi/\psi^I} \alpha_k \varphi_k$$
$$\Rightarrow \langle T_I z, T_I h_d - h_d \rangle = 0, \forall z \in \mathbb{C}^{\mathbb{Z}}$$

Hence, T_I is an orthogonal projection.

(c) For $I = \{0, \dots, 4\}$, $T_I h_d = \begin{bmatrix} \dots & 0 & \operatorname{sinc0} & \operatorname{sinc} \frac{\pi}{3} & \operatorname{sinc} \frac{2\pi}{3} & \operatorname{sinc1} & \operatorname{sinc} \frac{4\pi}{3} & 0 & \dots \end{bmatrix}^\top$

(d) We can choose I as $\{-2, -1, 0, 1, 2\}$, so $T_I h_d$ is $T_I h_d = \begin{bmatrix} \cdots & 0 & -\operatorname{sinc} \frac{2\pi}{3} & -\operatorname{sinc} \frac{\pi}{3} & \operatorname{sinc} 0 & \operatorname{sinc} \frac{2\pi}{3} & 0 & \cdots \end{bmatrix}^\top$

2 Lagrange Interpolation

- (a)
- (b)

3 Polynomial Spaces with Orthogonality

- (a)
- (b)
- (c)

4 Polynomial Spaces vs. Spline Spaces

- (a) Figure 1 shows the graph of $s_0, s_1 \in U$
- (b)
- (c)

5 Interpolation with Shifted Symmetric Functions

- (a)
- (b)
- (c)

6 Python: Interpolation Games

Figure 1: s_0 and s_1 with N=5