第3章a: 微分中值定理

数学系 梁卓滨

2019-2020 学年 I

Outline

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 的 **驻点**.

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 以 的 **驻点** .

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 以 的 **驻点** .

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值

即:在 x₀ 附近成立

$$f(x) \le f(x_0)$$

那么 x_0 是驻点.

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 数 的 **驻点**.

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值),即:在 x_0 附近成立

$$f(x) \le f(x_0)$$
 $(f(x) \ge f(x_0))$

那么 x_0 是驻点.

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 的 **驻点**.

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值),即:在 x_0 附近成立

$$f(x) \le f(x_0) \qquad (f(x) \ge f(x_0))$$

那么 x_0 是驻点.

证明 设 $f(x) \leq f(x_0)$,则

$$f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 以 的 **驻点** .

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值),即:在 x_0 附近成立

$$f(x) \le f(x_0)$$
 $(f(x) \ge f(x_0))$

那么 x_0 是驻点.

证明 设 $f(x) \leq f(x_0)$,则

$$f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0,$$

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 的 **驻点**.

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值),即:在 x_0 附近成立

$$f(x) \le f(x_0) \qquad (f(x) \ge f(x_0))$$

那么 x_0 是驻点.

证明 设 $f(x) \le f(x_0)$,则 $f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0,$

$$f'(x_0) = f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}$$

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \in I$ 的 **驻点**.

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值),即:在 x_0 附近成立

$$f(x) \le f(x_0)$$
 $(f(x) \ge f(x_0))$

那么 x_0 是驻点.

证明 设 $f(x) \le f(x_0)$,则 $f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0,$

$$f'(x_0) = f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} \ge 0,$$

定义 设 y = f(x) 是定义在开区间 I 上的可导函数, $x_0 \in I$. 如果 $f'(x_0) = 0$,则称 $x_0 \neq y = f(x)$ 的 驻点.

驻点的几何意义 x_0 是 y = f(x) 的驻点 \Leftrightarrow 曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线是水平.

费马引理 设 y = f(x) 在 x_0 处可导,并且取到局部最大值(最小值), 即:在 x_0 附近成立

$$f(x) \le f(x_0) \qquad (f(x) \ge f(x_0))$$

那么 x_0 是驻点.

证明 设 $f(x) \leq f(x_0)$,则

$$f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0,$$

$$f'(x_0) = f'_-(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0,$$

$$\Rightarrow f'(x_0) = 0$$

y = f(x) 在 x_0 处取到局部最大(或最小) ⇒ x_0 是驻点

y = f(x) 在 x_0 处取到局部最大(或最小) \Rightarrow x_0 是驻点

注 费马定理的逆命题不成立.

y = f(x) 在 x_0 处取到局部最大(或最小) ⇒ x_0 是驻点

注 费马定理的逆命题不成立, 也就是:

 x_0 是驻点 \Rightarrow y = f(x) 在 x_0 处取到局部最大(或最小)

$$y = f(x)$$
 在 x_0 处取到局部最大(或最小) ⇒ x_0 是驻点

注 费马定理的逆命题不成立. 也就是:

$$x_0$$
 是驻点 \Rightarrow $y = f(x)$ 在 x_0 处取到局部最大(或最小)

$$M$$
 $x_0 = 0$ 是 $y = x^3$ 的驻点,但不是局部最大(或最小)值点.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

证明 由连续性,f(x) 在 [a, b] 上取到最值,设 $x = \xi_1$ 是最大值点, $x = \xi_2$ 是最小值点.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

证明 由连续性,f(x) 在 [a, b] 上取到最值,设 $x = \xi_1$ 是最大值点, $x = \xi_2$ 是最小值点.

若 ξ₁ ∈ (a, b)

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

证明 由连续性,f(x) 在 [a, b] 上取到最值,设 $x = \xi_1$ 是最大值点, $x = \xi_2$ 是最小值点.

若 ξ₁ ∈ (a, b)

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

证明 由连续性,f(x) 在 [a, b] 上取到最值,设 $x = \xi_1$ 是最大值点, $x = \xi_2$ 是最小值点.

● 若 ξ_1 ∈ (a, b),则由费马引理, $f'(\xi_1) = 0$

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

证明 由连续性,f(x) 在 [a, b] 上取到最值,设 $x = \xi_1$ 是最大值点, $x = \xi_2$ 是最小值点.

- 若 $\xi_1 \in (a, b)$,则由费马引理, $f'(\xi_1) = 0$
- 若 ξ₂ ∈ (a, b)

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

证明 由连续性,f(x) 在 [a,b] 上取到最值,设 $x = \xi_1$ 是最大值点, $x = \xi_2$ 是最小值点.

- 若 $ξ_1 ∈ (α, b)$,则由费马引理, $f'(ξ_1) = 0$
- 若 ξ₂ ∈ (a, b)

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

证明 由连续性,f(x) 在 [a,b] 上取到最值,设 $x = \xi_1$ 是最大值点, $x = \xi_2$ 是最小值点.

- 若 $\xi_1 \in (a, b)$,则由费马引理, $f'(\xi_1) = 0$
- 若 $ξ_2$ ∈ (α, b),则由费马引理, $f'(ξ_2)$ = 0

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

证明 由连续性,f(x) 在 [a, b] 上取到最值,设 $x = \xi_1$ 是最大值点, $x = \xi_2$ 是最小值点.

- 若 $ξ_1 ∈ (a, b)$,则由费马引理, $f'(ξ_1) = 0$
- 若 ξ₂ ∈ (α, b),则由费马引理, f'(ξ₂) = 0
- 若 ξ_1 , ξ_2 为端点 x = a, b,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处 f(a) = f(b),

则至少存在一点 $\xi \in (\alpha, b)$,使得 $f'(\xi) = 0$.

证明 由连续性,f(x) 在 [a,b] 上取到最值,设 $x=\xi_1$ 是最大值点, $x = \xi_2$ 是最小值点.

- 若 ξ₁ ∈ (α, b),则由费马引理, f'(ξ₁) = 0
- 若 ξ₂ ∈ (a, b),则由费马引理, f'(ξ₂) = 0
- 若 ξ_1 , ξ_2 为端点 $x = \alpha$, b,则由于 $f(\alpha) = f(b)$,说明此时 f(x) 为 常值函数

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处 f(a) = f(b),

则至少存在一点 $\xi \in (\alpha, b)$,使得 $f'(\xi) = 0$.

证明 由连续性,f(x) 在 [a,b] 上取到最值,设 $x=\xi_1$ 是最大值点, $x = \xi_2$ 是最小值点.

- 若 ξ₁ ∈ (α, b),则由费马引理, f'(ξ₁) = 0
- 若 ξ₂ ∈ (a, b),则由费马引理, f'(ξ₂) = 0
- 若 ξ_1 , ξ_2 为端点 $x = \alpha$, b,则由于 $f(\alpha) = f(b)$,说明此时 f(x) 为 常值函数, $f' \equiv 0$

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (\alpha, b)$,使得 $f'(\xi) = 0$.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

注 罗尔定理的三个条件,缺一不可,否则都有反例.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在端点处f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

注 罗尔定理的三个条件,缺一不可,否则都有反例.

例如 (3) 不满足时,结论不成立:

证明 令 $g(x) = f(x) - x^2$,则 g(x) 满足罗尔定理的三个条件:

(1) 在闭区间 0,1] 上连续,

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,
- (3) 端点处g(0) = g(1)

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,
- (3) 端点处 g(0) = g(1) (g(0) = f(0) 0 = 0,

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,
- (3) 端点处 g(0) = g(1) (g(0) = f(0) 0 = 0, g(1) = f(1) 1 = 0)

例 设 f(x) 在 [0, 1] 上连续,在上可导,而且 f(0) = 0,f(1) = 1. 证明:存在 $\xi \in (0, 1)$,使得 $f'(\xi) = 2\xi$.

证明 令 $g(x) = f(x) - x^2$,则 g(x) 满足罗尔定理的三个条件:

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,
- (3) 端点处 g(0) = g(1) (g(0) = f(0) 0 = 0, g(1) = f(1) 1 = 0)

所以由罗尔定理可知:存在 $\xi \in (0,1)$ 使得 $g'(\xi) = 0$.

例 设 f(x) 在 [0,1] 上连续,在上可导,而且 f(0) = 0,f(1) = 1. 证明:存在 $\xi \in (0,1)$,使得 $f'(\xi) = 2\xi$.

证明 令 $g(x) = f(x) - x^2$,则 g(x) 满足罗尔定理的三个条件:

- (1) 在闭区间 0,1] 上连续,
- (2) 在开区间(0,1)上可导,
- (3) 端点处 g(0) = g(1) (g(0) = f(0) 0 = 0, g(1) = f(1) 1 = 0)

所以由罗尔定理可知:存在 $\xi \in (0,1)$ 使得 $g'(\xi) = 0$.

因为 g'(x) = f'(x) - 2x,所以 $f'(\xi) - 2\xi = 0$.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点 $\xi \in (a,b)$,使得 $f'(\xi) = \frac{f(b)-f(a)}{b-a}$.

证明 设 h(x) 表示过曲线两个端点的直线,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点
$$\xi \in (a, b)$$
,使得 $f'(\xi) = \frac{f(b)-f(a)}{b-a}$.

证明 设 h(x) 表示过曲线两个端点的直线,则

$$h(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点
$$\xi \in (a, b)$$
,使得 $f'(\xi) = \frac{f(b)-f(a)}{b-a}$.

证明 设 h(x) 表示过曲线两个端点的直线,则

$$h(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

$$\Leftrightarrow g(x) = f(x) - h(x).$$

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = \frac{f(b)-f(a)}{b-a}$.

证明 设 h(x) 表示过曲线两个端点的直线,则

$$h(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

令 g(x) = f(x) - h(x). 则 g(x) 在 [a, b] 上连续,(a, b) 内可导,g(a) = 0 = g(b).

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

证明 设 h(x) 表示过曲线两个端点的直线,则

$$h(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

令 g(x) = f(x) - h(x). 则 g(x) 在 [a, b] 上连续,(a, b) 内可导,g(a) = 0 = g(b).所以由罗尔定理知,存在 $\xi \in (a, b)$ 使得

$$0 = h'(\xi)$$

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

证明 设 h(x) 表示过曲线两个端点的直线,则

$$h(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

令 g(x) = f(x) - h(x). 则 g(x) 在 [a, b] 上连续,(a, b) 内可导,g(a) = 0 = g(b).所以由罗尔定理知,存在 $\xi \in (a, b)$ 使得

$$0 = h'(\xi) = f'(\xi) - h'(\xi)$$

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点
$$\xi \in (a, b)$$
,使得 $f'(\xi) = \frac{f(b)-f(a)}{b-a}$.

证明 设 h(x) 表示过曲线两个端点的直线,则

$$h(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

令 g(x) = f(x) - h(x). 则 g(x) 在 [a, b] 上连续,(a, b) 内可导,g(a) = 0 = g(b).所以由罗尔定理知,存在 $\xi \in (a, b)$ 使得

$$0 = h'(\xi) = f'(\xi) - h'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a}.$$

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点
$$\xi \in (\alpha, b)$$
,使得 $f'(\xi) = \frac{f(b)-f(\alpha)}{b-a}$.

推论 设 y = f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导并且 恒成立 f'(x) = 0,则 f 是常数.

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

推论 设 y = f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导并且恒成立 f'(x) = 0,则 f 是常数.

证明 任取 $a \le x_1 < x_2 \le b$. 在区间 $[x_1, x_2]$ 上运用拉氏中值定理知:

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

则至少存在一点 $\xi \in (\alpha, b)$,使得 $f'(\xi) = \frac{f(b)-f(\alpha)}{b-\alpha}$.

推论 设 y = f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导并且恒成立 f'(x) = 0,则 f 是常数.

证明 任取 $\alpha \le x_1 < x_2 \le b$. 在区间 $[x_1, x_2]$ 上运用拉氏中值定理知: $\exists \xi \in (x_1, x_2)$ 使得

$$f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

定理 如果函数 f(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,

f(b)
$$f(a)$$
 $f(a)$ f

则至少存在一点 $\xi \in (\alpha, b)$,使得 $f'(\xi) = \frac{f(b)-f(a)}{b-a}$.

推论 设 y = f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导并且 恒成立 f'(x) = 0,则 f 是常数.

证明 任取 $\alpha \le x_1 < x_2 \le b$. 在区间 $[x_1, x_2]$ 上运用拉氏中值定理知: $\exists \xi \in (x_1, x_2)$ 使得

$$f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

由条件 f'(ξ) = 0,所以 $f(x_2) = f(x_1)$.

例1 证明当 $x_1 < x_2$ 时,成立不等式: arctan x_2 — arctan $x_1 \le x_2 - x_1$.

例1 证明当 $x_1 < x_2$ 时,成立不等式: arctan x_2 — arctan $x_1 \le x_2 - x_1$.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,

例1 证明当 $x_1 < x_2$ 时,成立不等式: arctan $x_2 -$ arctan $x_1 \le x_2 - x_1$.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定

理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi)$$

例1 证明当 $x_1 < x_2$ 时,成立不等式:

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2}$$

例 1 证明当 $x_1 < x_2$ 时,成立不等式:

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

例1 证明当 $x_1 < x_2$ 时,成立不等式:

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

所以 $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

例 1 证明当 $x_1 < x_2$ 时,成立不等式:

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

所以 $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

例 2 证明当 $x_1 < x_2$ 时,成立不等式:

$$\sin x_2 - \sin x_1 \le x_2 - x_1.$$

例1 证明当 $x_1 < x_2$ 时,成立不等式:

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

所以 $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

例 2 证明当 $x_1 < x_2$ 时,成立不等式:

$$\sin x_2 - \sin x_1 \le x_2 - x_1.$$

证明 令 $f(x) = \sin x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,

例1 证明当 $x_1 < x_2$ 时,成立不等式:

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

所以 $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

<mark>例 2</mark> 证明当 $x_1 < x_2$ 时,成立不等式:

$$\sin x_2 - \sin x_1 \le x_2 - x_1.$$

证明 令 $f(x) = \sin x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi)$$

例 1 证明当 $x_1 < x_2$ 时,成立不等式:

$$\arctan x_2 - \arctan x_1 \le x_2 - x_1$$
.

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

所以 $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

例 2 证明当 $x_1 < x_2$ 时,成立不等式:

$$\sin x_2 - \sin x_1 \le x_2 - x_1.$$

证明 令 $f(x) = \sin x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \cos \xi \le 1$$

arctan x,则 f(x) 在区间 [x_1, x_2]

证明 令 $f(x) = \arctan x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

 $\arctan x_2 - \arctan x_1 \leq x_2 - x_1$.

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \frac{1}{1 + \xi^2} \le 1$$

所以 $\operatorname{arctan} x_2 - \operatorname{arctan} x_1 = f(x_2) - f(x_1) \leq x_2 - x_1$

例 2 证明当 $x_1 < x_2$ 时,成立不等式:

例 1 证明当 $x_1 < x_2$ 时,成立不等式:

$$\sin x_2 - \sin x_1 \le x_2 - x_1.$$

证明 令 $f(x) = \sin x$,则 f(x) 在区间 $[x_1, x_2]$ 上满足拉氏中值定理的条件,故 $\exists \xi \in (x_1, x_2)$ 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) = \cos \xi \le 1$$

所以 $\sin x_2 - \sin x_1 = f(x_2) - f(x_1) \le x_2 - x_1$

● (a, b) 上恒成立 $f'(x) > 0 \Rightarrow f(x)$ 在 [a, b] 上(严格)单调增加.

- (a,b) 上恒成立 $f'(x) > 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调增加.
- (a,b) 上恒成立 $f'(x) < 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调递减.

- (a,b) 上恒成立 $f'(x) > 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调增加.
- (a, b) 上恒成立 $f'(x) < 0 \Rightarrow f(x)$ 在 [a, b] 上(严格)单调递减.

 \mathbf{R} 只证 f' > 0 情形 (f' < 0 情形类似).

- (a,b) 上恒成立 $f'(x) > 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调增加.
- (a, b) 上恒成立 $f'(x) < 0 \Rightarrow f(x)$ 在 [a, b] 上(严格)单调递减.

 \mathbf{m} 只证 f' > 0 情形 (f' < 0 情形类似).

设 $a \leq x_1 < x_2 \leq b.$

- (a,b) 上恒成立 $f'(x) > 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调增加.
- (a,b) 上恒成立 $f'(x) < 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调递减.

 \mathbf{M} 只证 f' > 0 情形 (f' < 0 情形类似).

设 $\alpha \le x_1 < x_2 \le b$. 由拉格朗日中值定理知:存在 $\xi \in (x_1, x_2)$ 使得

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = f'(\xi)$$

- (a,b) 上恒成立 $f'(x) > 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调增加.
- (a,b) 上恒成立 $f'(x) < 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调递减.

 \mathbf{p} 只证 f' > 0 情形 (f' < 0 情形类似).

设 $a \le x_1 < x_2 \le b$. 由拉格朗日中值定理知:存在 $\xi \in (x_1, x_2)$ 使得

$$\frac{f(x_1)-f(x_2)}{x_1-x_2}=f'(\xi)>0.$$

- (a,b) 上恒成立 $f'(x) > 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调增加.
- (a,b) 上恒成立 $f'(x) < 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调递减.

 \mathbf{p} 只证 f' > 0 情形 (f' < 0 情形类似).

设 $\alpha \le x_1 < x_2 \le b$. 由拉格朗日中值定理知:存在 $\xi \in (x_1, x_2)$ 使得

$$\frac{f(x_1)-f(x_2)}{x_1-x_2}=f'(\xi)>0.$$

所以 $f(x_1) < f(x_2)$.

- (a,b) 上恒成立 $f'(x) > 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调增加.
- (a,b) 上恒成立 $f'(x) < 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调递减.

 \mathbf{H} 只证 f' > 0 情形 (f' < 0 情形类似).

设 $\alpha \leq x_1 < x_2 \leq b$. 由拉格朗日中值定理知:存在 $\xi \in (x_1, x_2)$ 使得

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = f'(\xi) > 0.$$

所以 $f(x_1) < f(x_2)$.

M3 证明当x > 0 时,成立不等式:

$$\frac{x}{1+x} < \ln(1+x) < x.$$

- (a,b) 上恒成立 $f'(x) > 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调增加.
 - (a,b) 上恒成立 $f'(x) < 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调递减.

 \mathbf{H} 只证 f' > 0 情形(f' < 0 情形类似).

设 $\alpha \le x_1 < x_2 \le b$. 由拉格朗日中值定理知:存在 $\xi \in (x_1, x_2)$ 使得

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = f'(\xi) > 0.$$

所以 $f(x_1) < f(x_2)$.

M 3 证明当x > 0 时,成立不等式:

$$\frac{x}{1+x} < \ln(1+x) < x.$$

提示 设 $f(x) = \ln(1+x) - \frac{x}{1+x}$, $g(x) = x - \ln(1+x)$.

定理 设 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导,则 ● (a,b) 上恒成立 $f'(x) > 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调增加.

- (a, b) 上恒成立 $f'(x) < 0 \Rightarrow f(x)$ 在 [a, b] 上(严格)单调递减.

 \mathbf{H} 只证 f' > 0 情形 (f' < 0 情形类似). 设 $\alpha \le x_1 < x_2 \le b$. 由拉格朗日中值定理知:存在 $\xi \in (x_1, x_2)$ 使得

所以 $f(x_1) < f(x_2)$.

 $\frac{f(x_1)-f(x_2)}{x_1-x_2}=f'(\xi)>0.$

 $\frac{x}{1+x} < \ln(1+x) < x.$ 提示 设 $f(x) = \ln(1+x) - \frac{x}{1+x}$, $g(x) = x - \ln(1+x)$. 若单调增,则

f(x) > f(0) , g(x) > g(0)3a 中值定理

10/12 ⊲ ⊳ ∆ ⊽

定理 设 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导,则 ● (a,b) 上恒成立 $f'(x) > 0 \Rightarrow f(x)$ 在 [a,b] 上(严格)单调增加.

- (a, b) 上恒成立 $f'(x) < 0 \Rightarrow f(x)$ 在 [a, b] 上(严格)单调递减.

 \mathbf{H} 只证 f' > 0 情形 (f' < 0 情形类似).

设 $\alpha \le x_1 < x_2 \le b$. 由拉格朗日中值定理知:存在 $\xi \in (x_1, x_2)$ 使得

所以
$$f(x_1) < f(x_2)$$
.

 $\frac{f(x_1) - f(x_2)}{x_1 - x_2} = f'(\xi) > 0.$ 所以 $f(x_1) < f(x_2)$.

$$\frac{x}{1+x} < \ln(1+x) < x.$$

提示 设 $f(x) = \ln(1+x) - \frac{x}{1+x}$, $g(x) = x - \ln(1+x)$. 若单调增,则 f(x) > f(0) = 0, g(x) > g(0) = 0.

3a 中值定理

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 设
$$f(x) = \ln(1+x) - \frac{x}{1+x}$$
, $g(x) = x - \ln(1+x)$. 对 $x > 0$ 成立

M3 证明当x>0 时,成立不等式:

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 设
$$f(x) = \ln(1+x) - \frac{x}{1+x}$$
, $g(x) = x - \ln(1+x)$. 对 $x > 0$ 成立

$$f'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2}$$
$$g'(x)$$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 设 $f(x) = \ln(1+x) - \frac{x}{1+x}$, $g(x) = x - \ln(1+x)$. 对 x > 0 成立

$$f'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2}$$
$$g'(x)$$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 设
$$f(x) = \ln(1+x) - \frac{x}{1+x}$$
, $g(x) = x - \ln(1+x)$. 对 $x > 0$ 成立

$$f'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2} > 0,$$

$$g'(x)$$

例3 证明当x > 0时,成立不等式:

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 设
$$f(x) = \ln(1+x) - \frac{x}{1+x}$$
, $g(x) = x - \ln(1+x)$. 对 $x > 0$ 成立

$$f'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2} > 0,$$

$$g'(x) = 1 - \frac{1}{1+x}$$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 设
$$f(x) = \ln(1+x) - \frac{x}{1+x}$$
, $g(x) = x - \ln(1+x)$. 对 $x > 0$ 成立

$$f'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2} > 0,$$

$$g'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x}$$

例3 证明当x > 0时,成立不等式:

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 设
$$f(x) = \ln(1+x) - \frac{x}{1+x}$$
, $g(x) = x - \ln(1+x)$. 对 $x > 0$ 成立

$$f'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2} > 0,$$

$$g'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0.$$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 设
$$f(x) = \ln(1+x) - \frac{x}{1+x}$$
, $g(x) = x - \ln(1+x)$. 对 $x > 0$ 成立

 $f'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2} > 0,$

$$g'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0.$$

所以当x > 0 时,f(x) 和 g(x) 严格单调递增. 所以

$$f(x) > f(0) = 0$$

$$g(x) > g(0) = 0$$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 设
$$f(x) = \ln(1+x) - \frac{x}{1+x}$$
, $g(x) = x - \ln(1+x)$. 对 $x > 0$ 成立

 $f'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2} > 0,$

$$g'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0.$$

所以当x > 0 时,f(x) 和 g(x) 严格单调递增. 所以

$$f(x) > f(0) = 0 \implies \ln(1+x) - \frac{x}{1+x} > 0$$

 $g(x) > g(0) = 0$

$$\frac{x}{1+x} < \ln(1+x) < x.$$

证明 设
$$f(x) = \ln(1+x) - \frac{x}{1+x}$$
, $g(x) = x - \ln(1+x)$. 对 $x > 0$ 成立

 $f'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2} > 0,$

$$g'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0.$$

所以当x > 0时,f(x)和 g(x)严格单调递增. 所以

$$f(x) > f(0) = 0 \implies \ln(1+x) - \frac{x}{1+x} > 0$$

 $g(x) > g(0) = 0 \implies x - \ln(1+x) > 0$

柯西中值定理

定理 如果函数 f(x) 和 g(x) 满足条件:

- (1) 在闭区间 [a, b] 上连续,
- (2) 在开区间 (a, b) 上可导,
- (3) 在开区间 (a, b) 内 $g'(x) \neq 0$,

则至少存在一点 $\xi \in (a, b)$,使得 $\frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}$.