Marcell Vazquez-Chanlatte HW0

1. Piazza Setup

Done

2. (a)
$$\prod_{k=2}^{n} (1 - \frac{1}{k^2})$$

i.
$$\Pi_{k=2}^{n}(1-\frac{1}{k^2})=\Pi_{k=2}^{n}(\frac{k^2-1}{k^2})$$

ii. $\frac{3}{4}, \frac{2}{3}, \frac{5}{8}, \frac{3}{5}$
iii. $\frac{3}{4}, \frac{4}{6}, \frac{5}{8}, \frac{6}{10}$

ii.
$$\frac{3}{4}, \frac{2}{3}, \frac{5}{8}, \frac{3}{5}$$

iii.
$$\frac{3}{4}, \frac{4}{6}, \frac{5}{8}, \frac{6}{10}$$

iv.
$$\Pi_{k=b2}^n (1 - \frac{1}{k^2}) = \frac{n+1}{2n}$$

(b)
$$3^{1000} \mod 7$$

i.
$$3^1, 3^2, 3^3, 3^4, 3^5, 3^6, 3^7$$

iii.
$$3^{1000} \mod 7 = 1000 \mod 6 = 4$$

(c)
$$\sum_{r=1}^{\infty} \frac{1}{2}^r = \lim_{n \to \infty} \frac{n^2 - 1}{n^2} = 1$$

(d)
$$\frac{\log_7 81}{\log_7 9} = \frac{4\log_7 3}{2\log_7 3} = 2$$

(e)
$$\log_2 4^{2n} = 2n \log_2 2^2 = 4n$$

(f)
$$\log_{17} 221 - \log_{17} 13 = \log_{17} \frac{221}{13} = 1$$

3. Claim:
$$1 + \sum_{j=1}^{n} j! j = (n+1)!$$

- (a) Let $n > 0, n \in \mathbb{N}$
- (b) Base: Suppose n = 1, $1 + \sum_{j=1}^{1} j! j = 1 + 1 = 2 = (1+1)!$
- (c) I.H : Suppose for some n > 0 that $1 + \sum_{j=1}^{n} j! j = (n+1)!$
- (d) Observe that, $1 + \sum_{j=1}^{n+1} j! j = 1 + (n+1)! (n+1) + \sum_{j=1}^{n} j! j$
- (e) Applying the I.H, $1 + (n+1)!(n+1) + \sum_{j=1}^{n} j! j = 1 + (n+1)!(n+1) + (n+1)!$
- (f) Simplifying, $1 + \sum_{j=1}^{n+1} j! j = 1 + (n+1)! (n+1+1)$

- 4. (a) $4^{\log_4 n}$ and 2n + 1
 - i. Claim: $4^{\log_4 n}\Theta(2n+1)$
 - ii. Observe that $4^{\log_4 n} = n$ due to properties of logs $n \in \mathbb{N}$
 - iii. Sub Claim: nO(2n+1)
 - A. Notice that 2n = n + n > n 1 for n > 1
 - B. Therefore, 2n + 1 > n
 - C. Suppose that C > 1, $C \in \mathbb{N}$
 - D. Notice that C(2n+1) > n for n > 1
 - E. Thus nO(2n+1)
 - iv. Sub Claim: (2n+1)O(n)
 - A. Observe that $2n < 10^{100}n 1$ for n > 1
 - B. Let C be 10^{100} , $C \in \mathbb{N}$
 - C. Substituting 2n + 1 < Cn
 - D. Applying Def of Big O, (2n+1)O(n)
 - v. Therefore, Applying the Def of Big Theta, $\Box 4^{\log_4 n} = n\Theta(2n+1)$
 - (b) Claim: n^2 is $\Omega(\sqrt{2}^{\log n})$
 - i. Let n be an integer such that n > 1
 - ii. Observe that $\log_2 n^2 = 2\log_2 n > \log_2 \sqrt{n} = \log_2 n^{\frac{1}{2}} = \frac{\log_2 n}{2}$
 - iii. Thus, $2^{\log_2 n^2} = n^2 > \sqrt{2}^{\log_2 n} = 2^{\log_2 \sqrt{n}}$
 - iv. Let $C = 1, C \in \mathbb{Z}$
 - v. Notice that $n^2 > C\sqrt{2}^{\log_2 n}$
 - vi. Applying the Def of Big Ω , n^2 is $\Omega(\sqrt{2}^{\log_2 n})$
 - (c) $\log n!$ is $O(n \log n)$
 - (d) n^k is $O(c^n)$
- 5. (a) $T(n) = 5\log_2 n + 1$
 - (b) $T(n) = (n-1) \sum_{x=1}^{n-1} \frac{1}{x}$
 - (c) $T(n) = n(\log_2 n)^2$
 - (d) Claim: $T(n) = T(\frac{n}{2}) + 5 = 5\log_2 n + 1$, T(1) = 1
 - i. Base: $T(1) = 1 = 5 \cdot 0 + 1 = 5 \log_2 0 + 1$
 - ii. I.H: Suppose the for some $n \in \mathbb{Z}^+$, $T(n) = 5 \log_2 n + 1$
 - iii. Observe that T(n) will only result integer results if given power's of 2 because $\frac{n}{2}$ will only recursively be divisible by to if all its factors are 2, i.e. $n = 2^x$
 - iv. Therefore the next integer input after n is 2n with all inbetween results having an imply floor to make them equal to the n input.
 - v. Note that $T(2n) = T(\frac{2n}{2}) + 5 = T(n) + 5$
 - vi. Applying the I.H, $T(2n) = 5\log_2 n + 1 + 5 = 5(\log_2(n) + 1) + 1 = 5\log_2 n\log_2(2) + 1 = 5\log_2 n + 1$

6. (a) Assuming n is even:

i.
$$T(n) = T(\frac{n}{2}) + C, T(1) = D$$

ii.
$$T(n) = C \log_2 n + D$$

(b) Assuming n is even

i. Assuming lines compute in
$$C$$
 time... $T(n) = 2T(\frac{n}{2}) + C(n+1), T(1) = 1$

ii.
$$T(n) = C(2n - 1) + n \log_2 n$$

7. (a)

x, n:	return
2, 12:	2^{12}
$2^2, 6:$	2^{12}
$2^4, 3:$	$2^4 \cdot 2^6$
$2^8, 1:$	$2^8 \cdot 1$
$2^{1}6,0:$	1

- (b) it thats x^n
- (c) The algorithm takes essientally the same time for an even integer n and n-1 (odd) because $\frac{n-1}{2}$ is essientally flooring the result if n is odd and because its pretty hard to predict primes. Therefore

$$T(0) = D, T(1) = C + D$$

$$T(n) = T(\frac{n}{2}) + C$$

(d)
$$T(n) = C \log_2(n) + D + C) = C(\log_2(n) + 1) + D, n > 1$$