Computer-Assisted Problem-Solving / Numerical Methods

Iterative Methods for $A\vec{x} = \vec{b}$

version: March 4th, 2020

Legend: Method, Theory, Example, Advanced, Appendix

Theory

Iterative Methods for $A\vec{x} = \vec{b}$

Important part of numerical mathematics. Still vigorously developed!

Example: $x^{(m+1)} = Mx^{(m)} + c$

M determined by A, c determined by A and bWhen M,c constant \rightarrow stationary method

Start vector $x^{(0)}$, and then $x^{(1)}, x^{(2)}, \dots, x^{(\infty)}$

Continue until residual $||r^{(m)}|| := ||Ax^{(m)} - b||$ small

Stationary methods (point-wise methods):

- relatively simple (analysis, implementation)
- Jacobi, Gauss-Seidel, SOR, JOR, SLOR, ...

Non-stationary methods (vector-wise methods):

- more complicated, but often more effective
- CG, PCG, MICCG, MILU, GMRES, BiCG, BiCG-STAB, etc.

Method

Stationary Methods

Derivation and analysis through partitioning A

Partition method 1: A = N - P

$$Ax = b \Longrightarrow Nx = b + Px \Longrightarrow Nx^{(m+1)} = b + Px^{(m)}$$
$$\Longrightarrow x^{(m+1)} = N^{-1}b + N^{-1}Px^{(m)}$$

Partition method 2: A = L + D + R

Example:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ a_{21} & 0 & 0 \\ a_{31} & a_{32} & 0 \end{pmatrix} + \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{pmatrix} + \begin{pmatrix} 0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

Remark:

partition methods often related, e.g.

$$N = D$$
, $P = -(L + R)$ (Jacobi)

$$N = D + L$$
, $P = -R$ (Gauss-Seidel)

Method

Jacobi Method

Also known as 'Gauss-Jacobi Method' or 'Method of Simultaneous Changes'

$$Ax = b, A = N - P \Longrightarrow$$
 $Nx^{(m+1)} = b + Px^{(m)} \Longrightarrow x^{(m+1)} = N^{-1}b + N^{-1}Px^{(m)}$
 $A = L + D + R, \text{ via } N = D, P = -(L + R) \Longrightarrow$
 $x^{(m+1)} = D^{-1}b - D^{-1}(L + R)x^{(m)}$

Iteration rule:

$$x_i^{(m+1)} = \frac{1}{a_{ii}} \{ b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(m)} \}, \quad i = 1 \cdots n$$

Algorithm:

1 start at iteration m = 0 with initial guess $\vec{\mathbf{x}}_0$

$$\implies$$
 2. for $i = 1 \dots N$

$$x_i^{(m+1)} = \frac{1}{a_{ii}} \{ b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(m)} \}$$

 $3 ext{ if converged} \Longrightarrow STOP$

$$4 m = m + 1 \text{ and goto (2)} \Longrightarrow$$

Number of operations: $\#iterations*2N^2 \Longrightarrow \mathcal{O}(N^2)$ Stop criteria:

1)
$$||x^{(m+1)} - x^{(m)}|| < \epsilon$$
 3) $||r^{(m)}|| < \epsilon$, $r^{(m)} = Ax^{(m)} - b$

2)
$$\frac{\|x^{(m+1)}-x^{(m)}\|}{\|x^{(m+1)}\|} < \epsilon$$
 4) $\frac{\|r^{(m)}\|}{\|x^{(m)}\|} < \epsilon$ $r^{(m)}$ is residual

Example
$$\begin{pmatrix} 10 & 3 & 1 \\ 2 & -10 & 3 \\ 1 & 3 & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 14 \\ -5 \\ 14 \end{pmatrix}$$

Start $x^{(0)} = (0 \ 0 \ 0)^T$ Exact solution $x = (1 \ 1 \ 1)^T$ Exact Error in iteration m: $||e^{(m)}||_{\infty} = ||x - x^{(m)}||_{\infty}$ Error Ratio = $||e^{(m+1)}||_{\infty}/||e^{(m)}||_{\infty}$

m	x_1	x_2	x_3	$\ e^{(m)}\ _{\infty}$	Ratio
0	0	0	0	1	
1	1.4	0.5	1.4	0.5	0.5
2	1.11	1.20	1.11	0.2	0.4
3	0.929	1.055	0.929	0.071	0.36
4	0.9906	0.9645	0.9906	0.0355	0.50
5	1.01159	0.9953	1.01159	0.01159	0.33
6	1.000251	1.005795	1.000251	0.005795	0.50

In 6 iterations: (approx.) 2 digits accuracy (see Appendix A)

A is diagonally dominant Linear convergence with rate $\alpha \approx 0.5$ Estimate of rate follows from "proof of convergence" Jacobi Method

Theorem:

A diagonally dominant \Longrightarrow Jacobi converges with "linear rate" (independent of start vector $x^{(0)}$)

Definitions:

- 1) Error in iteration m: $e^{(m)} := x x^{(m)}$
- 2) Linear convergence:

$$||e^{(m+1)}||_{\infty} = \alpha ||e^{(m)}||_{\infty}$$
, with $|\alpha| < 1$

Proof of convergence Jacobi:

$$x_{i} = \frac{1}{a_{ii}} \{b_{i} - \sum_{j=1, j \neq i}^{n} a_{ij} x_{j}\}, \quad i = 1 \cdots n$$

$$x_{i}^{(m+1)} = \frac{1}{a_{ii}} \{b_{i} - \sum_{j=1, j \neq i}^{n} a_{ij} x_{j}^{(m)}\}, \quad i = 1 \cdots n$$

Combine (subtract) \Longrightarrow

$$e_i^{(m+1)} = x_i - x_i^{(m+1)} = -\frac{1}{a_{ii}} \left\{ \sum_{j=1, j \neq i}^n a_{ij} (x_j - x_j^{(m)}) \right\}$$
$$= -\sum_{j=1, j \neq i}^n \frac{a_{ij}}{a_{ii}} e_j^{(m)} \quad i = 1 \cdots n$$

Estimate \Longrightarrow

Define

$$|e_i^{(m+1)}| \le \sum_{j=1, j \ne i}^n |\frac{a_{ij}}{a_{ii}}| \|e^{(m)}\|_{\infty}$$

$$\mu := \max_{1 \le i \le n} \sum_{j=1, j \ne i}^n |\frac{a_{ij}}{a_{ii}}|$$

As a result

$$|e_i^{(m+1)}| \le \mu ||e^{(m)}||_{\infty}$$

Right-hand side independent of $i \Longrightarrow$

$$||e^{(m+1)}||_{\infty} \le \mu ||e^{(m)}||_{\infty}$$

and hence convergence if $\mu < 1$, with rate μ (Strictly) Diagonally dominant $\Longrightarrow \mu < 1$, since

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad i = 1 \cdots n \Longrightarrow \mu < 1$$

Example:

$$A = \begin{pmatrix} 10 & 3 & 1 \\ 2 & -10 & 3 \\ 1 & 3 & 10 \end{pmatrix}$$

$$\mu := \max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} \left| \frac{a_{ij}}{a_{ii}} \right| = \frac{5}{10} \Longrightarrow$$

Convergence rate Jacobi (in this example) 0.5

Remarks:

rate μ is conservative (often somewhat faster) if $a_{ii} = 0 \Longrightarrow \text{apply re-ordering of matrix}$ Method

Gauss-Seidel Method

Method of Successive Changes

$$Ax = b, A = N - P \Longrightarrow$$
 $Nx^{(m+1)} = b + Px^{(m)} \Longrightarrow x^{(m+1)} = N^{-1}b + N^{-1}Px^{(m)}$
 $N = D + L, P = -R \Longrightarrow$

$$x^{(m+1)} = (D + L)^{-1}b - (D + L)^{-1}Rx^{(m)}$$

This is correct, but more convenient is

$$(D+L)x^{(m+1)} = b - Rx^{(m)} \Longrightarrow$$
$$x^{(m+1)} = D^{-1}b - D^{-1}(Lx^{(m+1)} + Rx^{(m)})$$

Iteration rule:

$$x_i^{(m+1)} = \frac{1}{a_{ii}} \{ b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(m+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(m)} \}, \quad i = 1 \cdots n$$

Use calculated $x_i^{(m+1)}$ directly for $x_j^{(m+1)}$ $j \ge i+1$

Number of operations: #iterations* $2N^2 \Longrightarrow \mathcal{O}(N^2)$

Stop criteria: same as for Jacobi Method

Algorithm:

1) start at iteration m = 0 with initial guess $\vec{\mathbf{x}}_0$

$$\implies$$
 2) for $i = 1 \dots N$

$$x_i^{(m+1)} = \frac{1}{a_{ii}} \{ b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(m+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(m)} \}$$

3) if converged \Longrightarrow STOP

4)
$$m = m + 1$$
 and goto (2) \Longrightarrow

Same example as for Jacobi:

$$\begin{pmatrix} 10 & 3 & 1 \\ 2 & -10 & 3 \\ 1 & 3 & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 14 \\ -5 \\ 14 \end{pmatrix}$$

Start vector $x^{(0)} = (0 \ 0 \ 0)^T$ Solution $x = (1 \ 1 \ 1)^T$

m	x_1	x_2	x_3	$\ e^{(m)}\ _{\infty}$	Ratio
0	0	0	0	1	
1	1.40000	0.78	1.026	4.00E-1	0.40
2	1.06340	1.02048	0.98752	6.34E-2	0.16
3	0.99951	0.99528	1.00191	4.90E-3	0.08
4	1.00123	1.00082	0.99963	1.23E-3	0.25
5	0.99979	0.99985	1.00007	2.08E-4	0.17

Linear convergence with rate $\alpha < 0.5$

Faster than Jacobi

Notice: A is diagonally dominant

Theorem:

- A diagonally dominant \Longrightarrow
- 1) Gauss-Seidel linearly convergent (independent of start vector $x^{(0)}$)
- 2) Gauss-Seidel converges faster than Jacobi

Estimate of convergence rate follows from proof of convergence of Gauss-Seidel Method (see Appendix B)

Method

SOR Method

Successive-Over-Relaxation Method Gauss-Seidel with acceleration

Iteration rule Gauss-Seidel:

$$\hat{x_i}^{(m+1)} = \frac{1}{a_{ii}} \{ b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(m+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(m)} \}, \quad i = 1 \cdots n$$

Extrapolation:

$$x_i^{(m+1)} = \omega \hat{x_i}^{(m+1)} + (1 - \omega) x_i^{(m)}$$

Under-relaxation $0 < \omega < 1$

Over-relaxation $1 < \omega < \infty$

Gauss-Seidel $\omega = 1$

Algorithm:

- 1) start at iteration m = 0 with initial guess $\vec{\mathbf{x}}_0$
- \implies 2) for $i = 1 \dots N$

$$\hat{x}_{i}^{(m+1)} = \frac{1}{a_{ii}} \{ b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(m+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(m)} \}$$

$$\mathbf{x}_{i}^{m+1} = \omega * \hat{\mathbf{x}}_{i} + (1 - \omega) * \mathbf{x}_{i}^{m}$$

- 3) if converged \Longrightarrow STOP
- 4) m = m + 1 and goto (2) \Longrightarrow

Number of operations: #iterations * $(2N^2 + 4N)$ $\Longrightarrow \mathcal{O}(N^2)$

Advantage: #iterations much smaller!

Number of operations often $\mathcal{O}(N)$ or $\mathcal{O}(N^{3/2})$ depending on sparsity of matrix (avoid use of full A!)

Partition method for Gauss-Seidel:

$$Ax = b, A = N - P \text{ met } N = D + L \text{ en } P = -R$$

 $\implies Nx^{(m+1)} = b + Px^{(m)} \Longrightarrow$
 $x^{(m+1)} = D^{-1}b - D^{-1}(Lx^{(m+1)} + Rx^{(m)})$

Partition for SOR via back calculation

$$x^{(m+1)} = \omega \{ D^{-1}b - D^{-1}(Lx^{(m+1)} + Rx^{(m)}) \} + (1-\omega)x^{(m)}$$

$$(I + \omega D^{-1}L)x^{(m+1)} = \omega D^{-1}b - \omega D^{-1}Rx^{(m)} + (1-\omega)x^{(m)}$$

$$N = I + \omega D^{-1}L$$

$$P = -\omega D^{-1}R + (1-\omega)I$$

Convergence behaviour SOR: $e^{(m+1)} = M_{\omega}e^{(m)}$, with iteration matrix

$$M_{\omega} = N^{-1}P = (I + \omega D^{-1}L)^{-1}\{(1 - \omega)I - \omega D^{-1}R\}$$

For optimal convergence:

 $r_{\sigma}(M_{\omega})$ minimal (and < 1)

With this enormous gain can be achieved!

Example:
$$\begin{pmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 24 \\ 30 \\ -24 \end{pmatrix}$$

Start vector $x^{(0)} = (1; 1; 1)^T$ Exact solution $x = (3; 4; -5)^T$

	Gauss-Seidel			
m	$ x_1 $	x_2	x_3	
0	1	1	1	
1	5.25	3.8125	-5.046875	
2	3.1406250	3.8828125	-5.0292969	
3	3.0878906	3.9267578	-5.0183105	
4	3.0549316	3.9542236	-5.0114441	
5	3.0343323	3.9713898	-5.0071526	
6	3.0214577	3.9821186	-5.0044703	
7	3.0134110	3.9888241	-5.0027940	
	SO	$R \ (\omega = 1.25)$)	
m	$ x_1 $	x_2	x_3	
0	1	1	1	
1	6.3125	3.5195313	-6.6501465	
2	2.6223145	3.9585266	-4.6004238	
3	3.1333027	4.0102646	-5.0966863	
4	2.9570512	4.0074838	-4.9734897	
5	3.0037211	4.0029250	-5.0057135	
6	2.9963276	4.0009262	-4.9982822	
7	3.0000498	4.0002586	-5.0003486	

SOR: 14 iterations for $x_i - x_i^{(m)} < 1.0E - 7$, $i = 1 \cdots 3$

Gauss-Seidel: 34 iterations

Advanced | Conjugate Gradient Method (CG)

Notation: inner product $(x, y) = x^T y$

Definitions:

- (1) A positive definite: (Ax, x) > 0 if $x \neq 0$
- (2) x and y conjugate: $x^TAy = (x, Ay) = 0$

Theorem:

A symmetric $\implies (Ax, y) = (x, Ay)$

Theorem:

If A symmetric and positive definite \Longrightarrow Solving $A\vec{x} = \vec{b}$ is equivalent to minimizing

$$J[\vec{\mathbf{y}}] := \frac{1}{2}(\vec{\mathbf{y}}, A\vec{\mathbf{y}}) - (\vec{\mathbf{y}}, \vec{\mathbf{b}})$$

At iteration k: approximation $\vec{\mathbf{x}}_k$

Problem: find search direction $\vec{\mathbf{z}}_k$ such that new sol. $\vec{\mathbf{x}}_{k+1} = \vec{\mathbf{x}}_k + \alpha_k \vec{\mathbf{z}}_k$ minimizes $J[\vec{\mathbf{x}}_k + \alpha_k \vec{\mathbf{z}}_k]$

When search direction $\vec{\mathbf{z}}_k$ known: Minimum $J[\vec{y}]$ found when (*J* quadr. function of α ; A symm. and pos.def.):

$$\frac{\partial}{\partial \alpha} J[\vec{\mathbf{x}}_k + \alpha_k \vec{\mathbf{z}}_k] = 0 \Longrightarrow \alpha_k = \frac{(\vec{\mathbf{z}}_k, \vec{\mathbf{r}}_k)}{(\vec{\mathbf{z}}_k, A\vec{\mathbf{z}}_k)}$$

with $\vec{\mathbf{r}}_k = \vec{\mathbf{b}} - A\vec{\mathbf{x}}_k$ residual at iteration k

How to find search direction $\vec{\mathbf{z}}_k$? Different approaches \Longrightarrow different CG variants

Example: method of steepest descent Multi-Variable calculus:

Greatest decrease of $J[\vec{y}]$ for direction $-\nabla J[\vec{y}]$

$$-\nabla J[\vec{\mathbf{y}}] = -\frac{1}{2}\nabla(\vec{\mathbf{y}}, A\vec{\mathbf{y}}) + \nabla(\vec{\mathbf{y}}, \vec{\mathbf{b}}) = -A\vec{\mathbf{y}} + \vec{\mathbf{b}}$$

Evaluated in $\vec{\mathbf{y}} = \vec{\mathbf{x}}_k \implies \vec{\mathbf{z}}_k = -\nabla J[\vec{\mathbf{x}}_k] = \vec{\mathbf{r}}_k$

Algorithm: Steepest Descent (for $A\vec{x} = \vec{b}$)

- 1. start at iteration k = 0 with initial guess $\vec{\mathbf{x}}_0$
- 2. compute initial residual $\vec{\mathbf{r}}_0 = \vec{\mathbf{b}} A\vec{\mathbf{x}}_0$

$$\implies$$
 3. compute α_k from $\alpha_k = \frac{(\vec{\mathbf{r}}_k, \vec{\mathbf{r}}_k)}{(\vec{\mathbf{r}}_k, A\vec{\mathbf{r}}_k)}$

- 4. update solution $\vec{\mathbf{x}}_{k+1} = \vec{\mathbf{x}}_k + \alpha_k \vec{\mathbf{r}}_k$
- 5. if converged \Longrightarrow STOP
- 6. k = k + 1 and goto (3) \Longrightarrow

Theorem:

convergence Steepest Descent in $\leq n$ iterations (in case of exact arithmetic)

Example:
$$\begin{pmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 24 \\ 30 \\ -24 \end{pmatrix}$$

Startvector $x^{(0)} = (0; 0; 0)^T$

Exact solution $x = (3; 4; -5)^T$

Steepest Descent			
k	x_1	x_2	x_3
0	0	0	0
1	6	0	0
2	$\frac{6}{7}$	$\frac{48}{7}$	0
3	3	$\overset{\cdot}{4}$	-5

Ready in exactly 3 iterations!

Remarks:

- Kind of direct method
- Computation of α_k most expensive
- Iterations very different from SOR: (vector-wise approach)
- Irregular convergence behaviour
- Impractical: search directions often not optimal (e.g. because of round-off)
- Impractical for large matrices: approx. n iterations, with e.g. $n=10^5$ or 10^6

Advanced

CG Methods & Preconditioning

Speed-up of steepest descent method

More complicated linear algebra

Orthogonal search directions $\vec{\mathbf{z}}_k$:

$$(\vec{\mathbf{z}}_i, A\vec{\mathbf{z}}_j) = 0 \text{ if } i \neq j \text{ } (\vec{\mathbf{z}}_i \text{ and } \vec{\mathbf{z}}_j \text{ conjugate}) \Longrightarrow$$

Conjugate Gradient (CG) methods

Krylov (linear-) subspaces:

$$K^n(A; \vec{\mathbf{r}}_0) = \operatorname{span}\{\vec{\mathbf{r}}_0, A\vec{\mathbf{r}}_0, A^2\vec{\mathbf{r}}_0, \dots A^{n-1}\vec{\mathbf{r}}_0\} \Longrightarrow$$

Krylov subspace methods

Search directions depend on previous search directions

Computational effort CG comparable with SOR

Further speed-up by means of preconditioning:

$$A\vec{\mathbf{x}} = \vec{\mathbf{b}} \implies CA\vec{\mathbf{x}} = C \vec{\mathbf{b}}$$

Preconditioner (matrix) $C \approx A^{\text{inv}}$, but ...

C should be easy to compute and store

Equations with C should be 'easy' to solve

Preconditioning \Longrightarrow

Large reduction of computational effort!

"It's the preconditioning that counts"

Algorithm: Preconditioned CG (for $A\vec{x} = \vec{b}$)

- **0.** start at iteration k = 0 with initial guess $\vec{\mathbf{x}}_0$
- 1. compute initial residual $\vec{\mathbf{r}}_0 = \vec{\mathbf{b}} A\vec{\mathbf{x}}_0$
- 2. compute (initial) auxiliary variables: $\vec{\mathbf{w}}_0 = C\vec{\mathbf{r}}_0$ $\alpha = (\vec{\mathbf{w}}_0, \vec{\mathbf{w}}_0)$
- 3. compute initial search direction $\vec{\mathbf{z}}_0 = C\vec{\mathbf{w}}_0$
- **4.** k = 1
- \implies 5. compute auxiliary vector $\vec{\mathbf{u}}_k = A\vec{\mathbf{z}}_k$
 - 6. compute auxiliary variable $t = \alpha/(\vec{\mathbf{u}}_k, \vec{\mathbf{z}}_k)$
 - 7. update solution and residual vectors

$$\vec{\mathbf{x}}_{k+1} = \vec{\mathbf{x}}_k + t \, \vec{\mathbf{z}}_k$$
$$\vec{\mathbf{r}}_{k+1} = \vec{\mathbf{r}}_k - t \, \vec{\mathbf{u}}_k$$
$$\vec{\mathbf{w}}_{k+1} = C \vec{\mathbf{r}}_{k+1}$$

- 8. compute auxiliary variable $\beta = (\vec{\mathbf{w}}_{k+1}, \vec{\mathbf{w}}_{k+1})$
- 9. update search direction

$$\vec{\mathbf{z}}_{k+1} = C\vec{\mathbf{w}}_{k+1} + (\beta/\alpha)\vec{\mathbf{z}}_k$$

- **10.** $\alpha = \beta$
- 11. check convergence: $\|\vec{\mathbf{z}}_{k+1}\| < \epsilon$, $\|\vec{\mathbf{r}}_{k+1}\| < \epsilon$ if converged \Longrightarrow STOP
- 12. k = k + 1 and goto (5) \Longrightarrow

Example 1:
$$\begin{pmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 24 \\ 30 \\ -24 \end{pmatrix}$$

CG without preconditioner (C = I)

Startvector $x^{(0)} = (0; 0; 0)^T$

Exact solution $x = (3; 4; -5)^T$

	\mathbf{CG}				
k	x_1	x_2	x_3		
0	0	0	0		
1	3.525773196	4.407216495	-3.525773196		
2	2.858011121	4.148971939	-4.954222164		
3	2.999999998	4.000000002	-4.999999998		

Ready in (exactly) 3 iterations!

Example 2:
$$\begin{pmatrix} 0.2 & 0.1 & 1 & 1 & 0 \\ 0.1 & 4 & -1 & 1 & -1 \\ 1 & -1 & 60 & 0 & -2 \\ 1 & 1 & 0 & 8 & 4 \\ 0 & -1 & -2 & 4 & 700 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

Initial vector $x^{(0)} = (0; 0; 0; 0; 0; 0)^T$

Exact solution

 $x = (7.859713; 0.4229264; -0.07359224; -0.5406430; 0.01062616)^T$

A is symmetric, positive definite,

but ill-conditioned: $k(A)_{\infty} = 13961.71 >> 1$

Compare 5 methods, stop tolerance $\epsilon = 0.01$

method	iterations	$\ x - x^{(m)}\ _{\infty}$
Jacobi	49	0.00305834
Gauss-Seidel	15	0.02445559
SOR ($\omega = 1.25$)	7	0.00818607
$\mathbf{CG} \ (C = I)$	5	0.00629785
PCG $(C = D^{-1})$	$oxed{4}$	0.00009312

Notice: Iterations of Jacobi, GS and SOR different from iterations with CG and PCG

Preconditioning:

PCG better than CG: preconditioning helps Diagonal matrix D^{-1} easy to handle Equations with preconditioner C in algorithm should be easy to solve:

$$\vec{\mathbf{w}}_{k+1} = C\vec{\mathbf{r}}_{k+1}$$
, with $C \approx A^{\text{inv}} \Longrightarrow A\vec{\mathbf{w}}_{k+1} \approx \vec{\mathbf{r}}_{k+1}$ solve $\vec{\mathbf{w}}_{k+1}$ to a good approximation

For example: $C = D^{-1} \approx A^{\text{inv}}$, when A strongly diagonally dominant

Various methods:

1) ILU method:

Incomplete LU factorization A = LU

2) ICCG method:

Incomplete Choleski factorization $A = LL^T$ (ILU for symmetric matrices)

- 3) Modified ILU and ICCG (MILU, MICCG): modification w.r.t. diagonal
- 4) BiCG-STAB method:

Bi-Conjugate Gradient Stabilized

- extension of (Preconditioned) CG method
- combination of two CG-like iterations
- more stable convergence behaviour
- can be combined with any preconditioner

Appendix | A: Spectral radius & Convergence

For the error in Jacobi:

$$e_i^{(m+1)} = x_i - x_i^{(m+1)} = -\sum_{j=1, j \neq i}^n \frac{a_{ij}}{a_{ii}} e_j^{(m)}$$
 $i = 1 \cdots n$

This can be written as $e^{(m+1)} = Me^{(m)}$, with

$$M := - \begin{pmatrix} 0 & \frac{a_{12}}{a_{11}} & \frac{a_{13}}{a_{11}} & \cdots & \frac{a_{1n}}{a_{11}} \\ \frac{a_{21}}{a_{22}} & 0 & \frac{a_{23}}{a_{22}} & \cdots & \frac{a_{2n}}{a_{22}} \\ \vdots & & \ddots & \vdots \\ \frac{a_{n1}}{a_{nn}} & \frac{a_{n2}}{a_{nn}} & \cdots & 0 \end{pmatrix}$$

Induction $\implies e^{(m)} = M^m e^{(0)}$

For $e^{(m)} \to 0$ $(m \to \infty)$ we must have $M^m \to 0$

General splitting A = N - P:

$$Ax = b \Longrightarrow Nx = b + Px \Longrightarrow x = N^{-1}b + N^{-1}Px$$
 (1)

Iterative method:
$$x^{(m+1)} = N^{-1}b + N^{-1}Px^{(m)}$$
 (2)

Combination (1) and (2) \Longrightarrow

$$e^{(m+1)} = x - x^{(m+1)} = N^{-1}Pe^{(m)}$$

Hence, in $e^{(m+1)} = Me^{(m)}$ we replace $M = N^{-1}P$

Theorem from Linear Algebra:

- 1) $r_{\sigma}(M) < 1$ (spectral radius smaller than 1) necessary and sufficient for $M^m \to 0$
- 2) $r_{\sigma}(M)$ smaller \Longrightarrow convergence speed \uparrow

Theorem:

Stationary Methods convergent $\iff r_{\sigma}(M) < 1$

Hence: $r_{\sigma}(N^{-1}P) < 1$

necessary and sufficient for convergence Computation via $det(N^{-1}P - \lambda I) = 0$, or generally easier via $det(P - \lambda N) = 0$

Theorem:

||M|| < 1 for arbitrary norm \Longrightarrow stationary method convergent (sufficient, not necessary!)

Reason: $r_{\sigma}(M) = \inf_{\parallel \cdot \parallel} \parallel M \parallel$

(spectral radius smaller than every other norm)

Remark:

condition $\mu < 1$ for Jacobi $\iff ||M||_{\infty} < 1$

$$\mu := \max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} \left| \frac{a_{ij}}{a_{ii}} \right|$$

Example (see Jacobi):
$$\begin{pmatrix} 10 & 3 & 1 \\ 2 & -10 & 3 \\ 1 & 3 & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 14 \\ -5 \\ 14 \end{pmatrix}$$

Jacobi method
$$\Longrightarrow$$

$$M_j = -D^{-1}(L+R) = \begin{pmatrix} 0 & -0.3 & -0.1 \\ 0.2 & 0 & 0.3 \\ -0.1 & -0.3 & 0 \end{pmatrix}$$

For this M_i we have :

$$||M_j||_{\infty} = 0.5$$
, $||M_j||_1 = 0.6$, $r_{\sigma}(M_j) \approx 0.39$ (all <1)

Definitions (after m iterations $e^{(m)} = M^m e^{(0)}$):

- (total) convergence factor $||M^m||$
- average convergence factor $||M^m||^{1/m}$
- average conv. speed $R_m = -\frac{1}{m} \log \|M^m\|$
- asympt. conv. speed $R_{\infty} = \lim_{m \to \infty} R_m$ = .. = $-\log\{r_{\sigma}(M)\}$

Gain ν digits in m iterations:

$$||e^{(m)}|| = ||M^m|| ||e^{(0)}|| = 10^{-\nu} ||e^{(0)}|| \Longrightarrow -10 \log ||M^m|| = \nu$$

Average gain per iter.: $\frac{\nu}{m} = -\frac{1}{m}^{10} \log ||M^m|| = R_m$

For the example:
$$M_j^6 = \begin{pmatrix} -0.0008 & 0.0018 & -0.0013 \\ -0.0014 & -0.0027 & -0.0017 \\ -0.0008 & 0.0018 & -0.0013 \end{pmatrix}$$

Which gives:

$$||M_j^6||_{\infty} = 0.0058, ||M_j^6||_{\infty}^{1/6} = 0.42, R_6 = 0.37, R_{\infty} = 0.41$$

6 iterations \implies 6 * 0.4 \approx 2 gain in digits

Appendix

B: Convergence of Gauss-Seidel

Theorem:

A diagonally dominant \Longrightarrow

- 1) Gauss-Seidel linearly convergent (independent of start vector $x^{(0)}$)
- 2) Gauss-Seidel converges faster than Jacobi

Proof (convergence Gauss-Seidel):

$$x_{i} = \frac{1}{a_{ii}} \{b_{i} - \sum_{j=1, j \neq i}^{n} a_{ij} x_{j} \}, \quad i = 1 \cdots n$$

$$x_{i}^{(m+1)} = \frac{1}{a_{ii}} \{b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(m+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(m)} \}, \quad i = 1 \dots n$$

Combination (via splitting Σ) \Longrightarrow

$$e_i^{(m+1)} = x_i - x_i^{(m+1)}$$

$$= -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} e_j^{(m+1)} - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} e_j^{(m)} \quad i = 1 \cdots n$$

Now define
$$\alpha_i := \sum_{j=1}^{i-1} \left| \frac{a_{ij}}{a_{ii}} \right|$$
 $\beta_i := \sum_{j=i+1}^n \left| \frac{a_{ij}}{a_{ii}} \right|$ with $\alpha_1 = \beta_n = 0$

This yields for μ (see Jacobi)

$$\mu = \max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} \left| \frac{a_{ij}}{a_{ii}} \right| = \max_{1 \le i \le n} (\alpha_i + \beta_i)$$

Estimation \Longrightarrow

$$|e_i^{(m+1)}| \le \alpha_i ||e^{(m+1)}||_{\infty} + \beta_i ||e^{(m)}||_{\infty} \quad i = 1 \cdots n$$

Suppose k is index with $||e^{(m+1)}||_{\infty} = |e_k^{(m+1)}|$ This gives

$$||e^{(m+1)}||_{\infty} \le \alpha_k ||e^{(m+1)}||_{\infty} + \beta_k ||e^{(m)}||_{\infty} \Longrightarrow$$

$$||e^{(m+1)}||_{\infty} \le \frac{\beta_k}{1 - \alpha_k} ||e^{(m)}||_{\infty} \Longrightarrow$$

$$||e^{(m+1)}||_{\infty} \le \eta ||e^{(m)}||_{\infty}, \quad \text{with } \eta := \max_{1 \le i \le n} \frac{\beta_i}{1 - \alpha_i}$$

Hence, there is linear convergence if $\eta < 1$

Computations give:

$$\forall i \quad (\alpha_i + \beta_i) - \frac{\beta_i}{1 - \alpha_i} = \frac{(\alpha_i + \beta_i)(1 - \alpha_i) - \beta_i}{1 - \alpha_i} = \frac{\alpha_i \left\{1 - (\alpha_i + \beta_i)\right\}}{1 - \alpha_i} \ge \frac{\alpha_i}{1 - \alpha_i} (1 - \mu) \ge 0$$

with $\mu < 1$ and $0 \le \alpha_i \le 1$ used in the final step (both follow from diagonal dominance of A)
Choose i for which η is reached:

$$(\alpha_i + \beta_i) - \eta \ge 0$$

With $\mu = \max_{1 \le i \le n} (\alpha_i + \beta_i)$ we obtain $\mu - \eta \ge (\alpha_i + \beta_i) - \eta \ge 0$, such that finally $\eta \le \mu < 1$

Hence:

linear convergence $(\eta < 1)$ and faster than Jacobi $(\eta \le \mu)$

For the example:

$$A = \begin{pmatrix} 10 & 3 & 1 \\ 2 & -10 & 3 \\ 1 & 3 & 10 \end{pmatrix} \Longrightarrow \mu := \max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} \left| \frac{a_{ij}}{a_{ii}} \right| = \frac{5}{10}$$

$$\alpha_{i} = \sum_{j=1}^{i-1} \left| \frac{a_{ij}}{a_{ii}} \right| \quad \alpha_{1} = 0, \alpha_{2} = \frac{2}{10}, \alpha_{3} = \frac{4}{10}$$

$$\beta_{i} = \sum_{j=i+1}^{n} \left| \frac{a_{ij}}{a_{ii}} \right| \quad \beta_{1} = \frac{4}{10}, \beta_{2} = \frac{3}{10}, \beta_{3} = 0$$

$$\eta = \max_{1 \le i \le n} \frac{\beta_{i}}{1 - \alpha_{i}} = \frac{4}{10}$$

 \implies Convergence rate Gauss-Seidel 0.4

Remark:

for PDEs often $\eta = \mu = 1$, but still convergence

Appendix

C: Convergence Theorems

Theorem 1:

$$x^{(m+1)} = Mx^{(m)} + c$$
 convergent $\iff r_{\sigma}(M) < 1$

Theorem 2:

||M|| < 1 for arbitrary matrix norm \Longrightarrow

a)
$$x^{(m+1)} = Mx^{(m)} + c$$
 convergent

b)
$$||x - x^{(m)}|| \le ||M||^m ||x - x^{(0)}||$$

c)
$$||x - x^{(m)}|| \le \frac{||M||^m}{1 - ||M||} ||x^{(1)} - x^{(0)}||$$

Theorem 3:

A strict diagonally dominant \Longrightarrow Jacobi and Gauss-Seidel convergent

Theorem 4: A = N - P

- a) A and N symmetric and positive definite, 2N A pos. definite \Longrightarrow convergence
- b) A symmetric and positive definite, $N + N^T A$ positive definite \Longrightarrow convergence
- c) Jacobi convergent if A and 2D-A symmetric and positive definite
- d) Gauss-Seidel convergent if A symmetric and positive definite

Theorem 5:
$$||x - x^{(m)}|| \approx r_{\sigma}^{m}(M)||x - x^{(0)}||$$

(since $r_{\sigma}(M) \leq ||M||$ for arbitrary matrix norm)

Theorem 6 (Stein-Rosenberg):

If $a_{ij} \leq 0$ $(i \neq j)$ and $a_{ii} > 0 \Longrightarrow$ exactly one statement below holds:

a)
$$0 \le r_{\sigma}(M_g) < r_{\sigma}(M_j) < 1$$

b)
$$1 < r_{\sigma}(M_j) < r_{\sigma}(M_g)$$

c)
$$r_{\sigma}(M_i) = r_{\sigma}(M_q) = 0$$

d)
$$r_{\sigma}(M_j) = r_{\sigma}(M_g) = 1$$

Theorem 7 (Kahan):

If $a_{ii} \neq 0 \Longrightarrow r_{\sigma}(M_{\omega}) \geq |\omega - 1| \Longrightarrow$ SOR only converges if $0 < \omega < 2$ (necessary, not sufficient)

Theorem 8 (Ostrowski-Reich):

If A symmetric and positive definite, and $0 < \omega < 2 \implies SOR$ convergent

Theorem 9:

If A symmetric, pos. definite and tri-diagonal

Then: a)
$$r_{\sigma}(M_g) = r_{\sigma}^2(M_j) < 1$$

b) SOR optimal: $\omega_{\text{opt}} = \frac{2}{1 + \sqrt{1 - r_{\sigma}^2(M_j)}}$

Theorem 10:

If: A hermitian $(A^* = A)$ with positive diagonal Then: G.S. convergent \iff A positive definite

Example 1:
$$A = \begin{pmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix}$$

A symmetric, positive definite and tri-diagonal

$$M_{j} = -D^{-1}(L+R) = \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 0 & -3 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{3}{4} & 0 \\ -\frac{3}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{4} & 0 \end{pmatrix}$$

$$M_{j} - \lambda I = \begin{pmatrix} -\lambda & -\frac{3}{4} & 0 \\ -\frac{3}{4} & -\lambda & \frac{1}{4} \\ 0 & \frac{1}{4} & -\lambda \end{pmatrix} \Longrightarrow \det(M_{j} - \lambda I) = 0 \Longrightarrow$$

$$\lambda = 0 \text{ or } \lambda = \pm \sqrt{(5/8)} \Longrightarrow r_{\sigma}(M_{j}) = \sqrt{(5/8)} \Longrightarrow$$

$$\omega_{\text{opt}} = \frac{2}{1 + \sqrt{1 - \frac{5}{2}}} \approx 1.24$$

Example 2:
$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

Gauss-Seidel:
$$M = -(D+L)^{-1}R = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ -\frac{1}{4} & -\frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{4} & -\frac{1}{4} \\ 0 & \frac{1}{8} & \frac{3}{8} \end{pmatrix}$$
$$||M||_{\infty} = 1, \ ||M||_{1} = 9/8, \ ||M||_{F} = 0.884 < 1$$

Theorem 2 \Longrightarrow Gauss-Seidel convergent, although $||M||_{\infty} \ge 1$ and $||M||_1 \ge 1$

Notice: condition is sufficient, not necessary