Congratulations! You passed!

Grade received 80%

Latest Submission Grade 80% To pass 80% or higher

Go to next item

1. Which notation would you use to denote the 4th layer's activations when the input is the 7th example from the 3rd mini-batch?	1 / 1 point
(a) a[4]{3}(7)	
a ^[7] (3)(4)	
a ^[3] {7)(4)	
ريم Expand	
\odot Correct Yes. In general $a^{[l]\{t\}(k)}$ denotes the activation of the layer l when the input is the example k from the mini-batch t .	
2. Which of these statements about mini-batch gradient descent do you agree with?	0 / 1 point
One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.	
You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).	
Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.	
رم Expand	
g Experie	
⊗ Incorrect	
3. We usually choose a mini-batch size greater than 1 and less than m , because that way we make use of vectorization but not fall into the slower case of batch gradient descent.	1/1 point
○ False	
True	
∠ [¬] Expand	
⊘ Correct	
Correct. Precisely by choosing a batch size greater than one we can use vectorization; but we choose a value less than m so we won't end up using batch gradient descent.	
4. Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:	1/1 point

Which of the following do you agree with?

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

∠ Expand

✓ Correct

5. Suppose the temperature in Casablanca over the first two days of March are the following:

1/1 point

March 1st: $heta_1=30^\circ~{
m C}$

March 2nd: $\theta_2=15^\circ~{
m C}$

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\,\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{\rm corrected}$ is the value you compute with bias correction. What are these values?

- $v_2=15$, $v_2^{
 m corrected}=20$
- \bigcirc $v_2=20$, $v_2^{
 m corrected}=15$
- $v_2=20$, $v_2^{
 m corrected}=20$
- $v_2 = 15$, $v_2^{
 m corrected} = 15$

∠⁷ Expand

 \bigodot Correct Correct, $v_2=eta v_{t-1}+\left(1-eta
ight) heta_t$ thus $v_1=15,v_2=15$. Using the bias correction $rac{v_t}{1-eta^2}$ we get $rac{15}{1-(0.5)^2}=20$.

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

1/1 point

- $\alpha = 1.01^t \alpha_0$
- $\bigcirc \quad \alpha = e^{-0.01\,t}\alpha_0$
- $\bigcirc \quad \alpha = \frac{\alpha_0}{\sqrt{1+t}}$
- $\bigcap \alpha = \frac{\alpha_0}{1 + 3t}$

∠⁷ Expand

✓ Correct

Correct. This is not a good learning rate decay since it is an increasing function of $t. \,$

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The yellow and red lines were computed using values $beta_1$ and $beta_2$ respectively. Which of the following are true?

- $\bigcirc \quad \beta_1=0,\,\beta_2>0.$
- $\bigcirc \quad \beta_1>\beta_2.$
- $\beta_1 = \beta_2$.

∠⁷ Expand

⊘ Correct

Correct. $eta_1 < eta_2$ since the yellow curve is noisier.

8. Consider this figure:

1/1 point

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5); and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

∠ Expand

 \bigcirc Correct

9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

0 / 1 point

Try using Adam

Try better random initialization for the weights

Try initializing all the weights to zero

lacksquare Try tuning the learning rate lpha

✓ Correct

Try mini-batch gradient descent

