# **MACM-300** Intro to Formal Languages and Automata

#### Anoop Sarkar

http://www.cs.sfu.ca/~anoop

#### The Chomsky Hierarchy

- unrestricted or type-0 grammars, generate the recursively enumerable languages, automata equals Turing machines
- context-sensitive grammars, generate the context-sensitive languages, automata equals Linear Bounded Automata
- context-free grammars, generate the context-free languages, automata equals Pushdown Automata
- regular grammars, generate the regular languages, automata equals Finite-State Automata

#### The Chomsky Hierarchy: G = (V, T, P, S) where, $\alpha, \beta, \gamma \in (N \cup T)^*$

- unrestricted or type-0 grammars:  $\alpha \rightarrow \beta$ , such that  $\alpha \neq \epsilon$
- **context-sensitive** grammars:  $\alpha A\beta \rightarrow \alpha \gamma \beta$ , such that  $\gamma \neq \epsilon$
- **context-free** grammars:  $A \rightarrow \gamma$
- regular grammars:  $A \rightarrow a \ B \text{ or } A \rightarrow a$

Regular grammars: **right-linear CFG**:  $L(G) = \{a^*b^* \mid n \ge 0\}$ 

3

$$L(G) = \{a^*b^* \mid n \ge 0\}$$

 $A \rightarrow a A$ 

 $A \rightarrow \epsilon$ 

 $A \rightarrow b B$ 

 $B \rightarrow b B$ 

 $B \rightarrow \epsilon$ 

# Context-free grammars: $L(G) = \{a^n b^n \mid n \ge 0\}$

$$S \rightarrow a S b$$

 $S \rightarrow \epsilon$ 

5

## Dependency Grammar



#### Dependency Grammar: (Tesnière, 1959), (Panini, 500-400 BC)

| 1 | Calvin   | 2     | SBJ |
|---|----------|-------|-----|
| 2 | imagined | _     | TOP |
| 3 | monsters | 2     | OBJ |
| 4 | in       | {2,3} | MOD |
| 5 | school   | 4     | OBJ |

- If the dependencies are nested then DGs are equivalent (formally) to CFGs
  - 1. TOP(imagined) → SBJ(Calvin) imagined OBJ(monsters) MOD(in)
  - 2.  $MOD(in) \rightarrow in OBJ(school)$
- However, each rule is lexicalized (has a terminal symbol)

/

## Categorial Grammar: (Adjukiewicz, 1935)

Calvin hates mangoes NP (S\NP)/NP NP S\NP S

- · Also equivalent to CFGs
- Similar to DGs, each rule in CG is lexicalized

(

8

# Context-sensitive grammars: $L(G) = \{a^n b^n \mid n \ge 1\}$

Context-sensitive grammars:  $L(G) = \{a^{2^i} \mid i \ge 1\}$  $S \rightarrow ACaB$ 

 $S \rightarrow S B C$   $S \rightarrow a C$   $a B \rightarrow a a$   $C B \rightarrow B C$ 

$$C a \rightarrow a a C$$

$$C B \rightarrow D B$$

$$C B \rightarrow E$$

$$a D \rightarrow D a$$

$$A D \rightarrow A C$$

$$a E \rightarrow E a$$

$$A E \rightarrow \epsilon$$

9

11

## Context-sensitive grammars: $L(G) = \{a^n b^n \mid n \ge 1\}$

 $C \rightarrow b$ 

$$\begin{array}{c} S_1 \\ S_2 \, B_1 \, C_1 \\ S_3 \, B_2 \, C_2 \, B_1 \, C_1 \\ a_3 \, C_3 \, B_2 \, C_2 \, B_1 \, C_1 \\ a_3 \, B_2 \, C_3 \, C_2 \, B_1 \, C_1 \\ a_3 \, a_2 \, C_3 \, C_2 \, B_1 \, C_1 \\ a_3 \, a_2 \, C_3 \, B_1 \, C_2 \, C_1 \\ a_3 \, a_2 \, B_1 \, C_3 \, C_2 \, C_1 \\ a_3 \, a_2 \, a_1 \, C_3 \, C_2 \, C_1 \\ a_3 \, a_2 \, a_1 \, C_3 \, C_2 \, C_1 \\ a_3 \, a_2 \, a_1 \, b_3 \, b_2 \, b_1 \end{array}$$

Context-sensitive grammars: 
$$L(G) = \{a^{2^i} \mid i \ge 1\}$$

S A C a B A a a C B A a a E A a E a A E a a

10

# Context-sensitive grammars: $L(G) = \{a^{2^i} \mid i \ge 1\}$

- A and B serve as left and right end-markers for sentential forms (derivation of each string)
- • C is a marker that moves through the string of a's between A and B, doubling their number using C  $a \to a$  a C
- When C hits right end-marker B, it becomes a D or E by  $C B \rightarrow D B$  or  $C B \rightarrow E$
- If a D is chosen, that D migrates left using  $a D \rightarrow D a$  until left end-marker A is reached
- At that point D becomes C using  $A D \rightarrow A C$  and the process starts over
- Finally, E migrates left until it hits left end-marker A using  $a \to E a$

13

#### Strong vs. Weak Generative Capacity

- Weak generative capacity of a grammar is the set of strings or the language, e.g.  $0^n 1^n$  for  $n \ge 0$
- Strong generative capacity is the set of structures (usually the set of trees) provided by the grammar

- **context-sensitive** grammars:  $0^i$ , i is not a prime number and i > 0
- **indexed** grammars:  $0^n 1^n 2^n \dots m^n$ , for any fixed m and  $n \ge 0$
- tree-adjoining grammars (TAG), linear-indexed grammars (LIG), combinatory categorial grammars (CCG): 0<sup>n</sup>1<sup>n</sup>2<sup>n</sup>3<sup>n</sup>, for n ≥ 0
- **context-free** grammars:  $0^n 1^n$  for  $n \ge 0$
- deterministic context-free grammars: S' → S c, S → S A | A,
   A → a S b | ab: the language of "balanced parentheses"
- regular grammars: (0|1)\*00(0|1)\*

15

| Language                               | Automaton            | Grammar                          | Recognition | Dependency     |
|----------------------------------------|----------------------|----------------------------------|-------------|----------------|
| Recursively<br>Enumerable<br>Languages | Turing Machine       | Unrestricted  Baa → A            | Undecidable | Arbitrary      |
| Context-<br>Sensitive<br>Languages     | Linear-Bounded       | Context-<br>Sensitive<br>At → aA | NP-Complete | Crossing       |
| Context-<br>Free<br>Languages          | Pushdown (stack)     | Context-Free<br>S → gSc          | Polynomial  | Nested         |
| Regular<br>Languages                   | Finite-State Machine | Regular<br>A → cA                | Linear      | Strictly Local |

## Recognition Complexity

• Given grammar G and input x, provide algorithm for: Is  $x \in L(G)$ ?

• unrestricted: undecidable

• context-sensitive: NSPACE[n] – linear non-deterministic space

• indexed grammars: NP-Complete

• tree-adjoining grammars (TAG), linear-indexed grammars (LIG), combinatory categorial grammars (CCG), head grammars:  $O(n^6)$ 

• context-free:  $O(n^3)$ 

• deterministic context-free: O(n)

• regular grammars: O(n)