A statisticians view of the surge in warming debate

Rebecca Killick(r.killick@lancs.ac.uk)
Joint work with Claudie Beaulieu (Uni California Santa Cruz)
Parts with: Adelicia Johnson, Colin Gallagher, Robert Lund, Xueheng Shi
MET Office Oct 2025

Where my interest began Mathematical Sciences

Global Mean Temp

2024

Where is Statistics? NYT Mathematical Sciences

1850

1950

1900

2000

What are changepoints? Mathematical Sciences

For data y_1, \ldots, y_n , if a changepoint exists at τ , then y_1, \ldots, y_{τ} differ from $y_{\tau+1}, \ldots, y_n$ in some way.

There are many different types of change.

Problem

- How many changes?
- Where are the changes? 2^{n-1} possible solutions!

Beaulieu et al. 2015

- potentially hundreds or thousands of series
- no time to consider the format of change for each
- need to include both the potential for trends and also red noise (autocorrelation).

Model Selection

EnvCpt: select the most parsimonious but accurate model for the data. Simple to extend with other types of models.

GMST All Fits

Join-Pin AR(p)

$$Y_t = \theta_i + \frac{\theta_{i+1} - \theta_i}{\tau_{i+1} - \tau_i} (t - \tau_i) + Z_t$$

but
$$Z_t$$
 is AR(p), $Z_t = \phi_1 Z_{t-1} + \phi_2 Z_{t-2} + ... + \phi_p Z_{t-p} + \epsilon_t$.

Challenge:

- Definition of join-pin
- Fitting AR parameter across segments:
 - Fixed we use EM algorithm
 - Varying we can embed in PELT

Beaulieu et al. (2024)

So what?

What would we need to see (in the statistically preferred model).

Extension to gridded

Extension to gridded

Extension to gridded

Summary

- Not accounting for autocorrelation can lead to spurious changes!
- Detecting and documenting changepoints improves analyses . . .
- ... and can help answer pertinent questions in different domains

- Extending to more complex model structures is interesting statistically
- Extending to include covariates is interesting climatically
- Moving to monthly increases noise and seasonal challenges but could be worth the tradeoff for increased dataset size

- I enjoy working with different disciplines . . .
- ... as often it sparks my next research challenge.

Papers discussed

Preprints of all available at: www.lancs.ac.uk/~killick/pub.html

PELT: https://doi.org/10.1080/01621459.2012.737745

Model Choice: https://doi.org/10.1175/JCLI-D-17-0863.1 &

https://doi.org/10.1002/qre.2712

LMvsCpts: https://doi.org/10.1007/s11222-017-9731-0 &

https://doi.org/10.1002/env.2568

Warming Surge: https://doi.org/10.1038/s43247-024-01711-1

Regional warming surge: On ArXiV in the next few days