21-484 Notes

JD Nir

jnir@andrew.cmu.edu March 18, 2012

- X a set of people

- $\mathbf{A} = \{A_1, \dots, A_m\}$ are subsets of X
- we want to choose m elements x_1, \ldots, x_m such that $x_i \in A_i$. Such a set is called an <u>SDR</u> (system of distinct representatives)
 - \rightarrow Using Hall's theorem: \exists SDR iff $\left|\bigcup_{i\in I}A_i\right|\geq |I|, \forall I\subseteq [m]$
- $\rightarrow \mathbf{B} = \{B_1, \dots, B_m\}$ are subsets of X
- \rightarrow A CSDR is a set of m x_i 's such that its an SDR for **A** and **B**

Theorem (Ford-Fulkerson): The families $\mathbf{A} = \{A_1, \dots, A_m\}$ and $\mathbf{B} = \{B_1, \dots, B_m\}$ have a CSDR iff

$$\left| \left(\bigcup_{i \in I} A_i \right) \cap \left(\bigcup_{j \in J} B_j \right) \right| \ge |I| + |J| - m \quad \forall I, J \subseteq [m]$$

Proof: Define a graph G.

$$V(G) = \{s, a_1, \dots, a_m, x_1, \dots, x_{|X|}, b_1, \dots, b_m, t\}$$

$$E = \{sa_i | 1 \le i \le m\} \cup \{a_i x_k | x_k \in A_i\} \cup \{x_k b_j | x_k \in B_j\} \cup \{b_j t | 1 \le j \le m\}$$

- \rightarrow An s-t path represents a common element of some A_i and B_j .
- \rightarrow every s-t path has the form

 sa_ixb_it

- $\rightarrow \exists$ a CSDR iff there are m internally disjoint s-t paths.
 - \rightarrow all the paths in such a set of paths are of length 5
- \rightarrow The existence of a set of m internally disjoint s-t paths is equivalent to saying that there is no s-t cut pf size < m. (Menger's thm).

1

- \rightarrow need to show that $(*) \iff$ no s-t cut of size < m.
- \rightarrow Let $R \subseteq V(G) \setminus \{s,t\}$. Define $I = \{i \in [m] | a_i \notin R\}, J = \{j \in [m] | b_j \notin R\}$

 \rightarrow If R is a cut then

$$\left(\bigcup_{i\in I} A_i\right) \cap \left(\bigcup_{j\in J} B_j\right) \subseteq R$$

because a path from s to t must visit some a_i then an x then b_j , this means that if a_i and b_j are in $G \setminus R$ then $x \in R$.

$$\rightarrow$$
 for every cut R , $|R| \ge \left| \left(\bigcup_{I} A_i \right) \cap \left(\bigcup_{J} B_j \right) \right| + m - |I| + m - |J| \ge m$

- \rightarrow requiring that the RHS will be $\geq m$, we get (*).
- \rightarrow If (*) is false, $\exists I, J \subseteq [m]$ such that $(\bigcup A_i) \cap (\bigcup B_j) < |I| + |J| m$.
 - \rightarrow for these I and $J(\bigcup A_i) \cap (\bigcup B_i) + m |I| + m |J| < m$
 - \rightarrow Define R to be $(\bigcup A_i) \cap (\bigcup B_j) \cup [m] \setminus I \cup [m] \setminus J$.
 - $\rightarrow |R| < m$.
 - $\rightarrow R$ is an s–t cut

Defs p. 134

- \rightarrow A circuit (a closed trail) in a graph G is called an <u>Eulerian Circuit</u> if it contains every edge of G.
- \rightarrow A trail is called an <u>Eulerian trail</u> if it visits every edge.
- \rightarrow A graph is <u>Eulerian</u> if it contains an Eulerian circuit.
- \rightarrow Thm (Euler 1736, Thm 6.1): A connected graph is Eulerian iff all the degrees are even.