Minimisation d'AEF: Exemple

≡0	≡0,1	≡0,1,2	≡0,1,2,3
1	2	2	2
2	3	3	3
3	1	1	1
5	5	5	5
6	6	6	6
4	4	4	4
7	7	7	7

Automates finis avec ε-transitions

- Un ε -AFN est un quintuplet A = (Q, Σ , δ ,q0, F) où:
 - Q est l'ensemble fini d'états
 - $-\Sigma$ est un vocabulaire (d'entrée) fini
 - δ: $\mathbf{Q} \times \Sigma \cup \{\epsilon\}$ → $\mathcal{P}(\mathbf{Q})$ est une fonction dite de transition
 - q0∈ Q est l'état initial
 - F ⊆ Q est l'ensemble des états terminaux (ou d'acceptation)

Automates finis avec ε-transitions

Exemple

- Configuration : couple (q, w) avec q∈Q et w∈Σ* (q représente l'état courant et w le mot qui reste à lire sur le ruban)(sans changement)
- Succession immédiate : (modifiée)
 (q',w') peut suivre immédiatement (q,w):
 (q, w) → (q', w')
 si et seulement si
 w = vw' avec v ∈ Σ∪{ε} (si v=ε alors w = w')
 (q, v, q') ∈ R

Elimination des ε-transitions

Elimination des ε-transitions

- Soit A=(Q,Σ,δ,q0, F) un ε-AFND. On construit un automate ε-el(A)=(Q,Σ, ε-el(δ),q0, ε-el(F)) qui reconnaît L(A).
- On définit inductivement la relation ⇒:
 - $q \Rightarrow q et$
 - Si q \Rightarrow q' et q" $\in \delta(q', \epsilon)$ alors q \Rightarrow q"
- On définit ε-el(δ) par:
 q' ∈ δ(q, a) ssi il existe q1 q2 ∈ Q tels que q2 ∈ δ(q1, a) et q2 ⇒ q'
- L'ensemble des états accepteurs ε-el(F) est défini par:
 - ε-el(F)=F∪{q0} si q0 \Rightarrow q' ∈ F
 - ε-el(F)= F sinon.

Déterminisation des ε-AFN

• ε-fermeture:

On appelle ε -fermeture de l'ensemble d'états $T = \{e_1, e_2, \dots, e_n\}$, l'ensemble des états accessibles depuis un état e_i de T par des ε -transitions

Principe de déterminisation:

- 1. Partir de l'ε-fermeture de l'état initial
- Rajouter dans la table de transition toutes les ε-fermetures des nouveaux états produits avec leurs transitions
- 3. Recommencer 2 jusqu'à ce qu'il n'y ait plus de nouveaux états
- Tous les états contenant au moins un état terminal deviennent terminaux

Fermeture par concaténation

Fermeture par union

Fermeture par l'opération *

- Fermeture par complémentation
 - On complète l'automate sur son alphabet Σ
 - On inverse les états accepteurs et non accepteurs

Langages réguliers

Expressions régulières

- Les expressions régulières servent à désigner les langages réguliers
 - ∅, ε et toute lettre x∈A sont des expressions régulières sur A,
 - Si α et β sont des expressions régulières sur A, alors:
 - α + β et $\alpha\beta$ sont des expressions régulières sur A
 - (α)* est aussi une expression régulière sur A

Relation de désignation

- Ø désigne Ø,
- ε désigne {ε}
- et toute lettre x∈A désigne {x}
- Si α désigne A et β désigne B, alors
 - α +β désigne A∪B
 - $-\alpha\beta$ désigne A.B
 - $-(\alpha)^*$ désigne (A)*

Notation: Si e est une expression régulière, on note par L(e) le langage désigné par e

Relation de désignation

Exemple:

Ensemble des mots alternant des 0 et des 1 $(\epsilon + 1)(01)^*(\epsilon + 0)$

Langages réguliers

- Un langage L est régulier ssi il existe une expression régulière e telle que L(e)=L
- Théorème de Kleene:

Soit Σ un alphabet et $L \subseteq \Sigma^*$

L est régulier ssi L est reconnu par un automate d'états fini.

Preuve:

- Il existe un algorithme qui transforme une expression régulière en un automate fini équivalent (propriétés de clôture des automates)
- Il existe un algorithme qui transforme un automate fini en une expression régulière équivalente.) (lemme d'Arden)

Construction d'un AFN à partir d'une expression régulière

• Automate associé à l'expression régulière :

$$(0+1)*1(0+1)$$

Propriétés des langages réguliers

Théorème

L'ensemble des langages réguliers est fermé par:

- la réunion
- l'intersection
- la complémentation
- l'image miroir
- l'opération *
- l'opération +

Lemme de pompage

Soit L un langage régulier. Alors, il existe $n \in \mathbb{N}$ tel que pour tout mot $w \in L$ avec $|w| \ge n$, on peut trouver $x,y,z \in \Sigma^*$ tels que w = xyz et

- y≠ε
- |xy|≤ n
- Pour tout $k \in \mathbb{N}$, $xy^kz \in \mathbb{L}$

Limites des langages réguliers

- Il existe des langages non réguliers
- On utilise le lemme de pompage pour montrer par l'absurde, que {aⁿbⁿ| n≥0} est non régulier

- Une grammaire G est un quadruplet <V, Σ, S, R> où:
 - ∀: vocabulaire non terminal
 - $-\Sigma$: vocabulaire terminal
 - S∈ V : axiome ou symbole initial
 - R : règles (ou productions)
- Une règle est un couple (α,β) qu'on note en général :

$$\alpha \rightarrow \beta$$

où :
$$\alpha \in (V \cup \Sigma)^* - \{\epsilon\}$$

et
$$\beta \in (V \cup \Sigma)^*$$

Exemple1

- $V = \{S, A, B\}$
- $\Sigma = \{0, 1\}$
- S∈ V: axiome
- R:

 $S \rightarrow 0A1B$

 $1B \rightarrow 1ABB$

 $1A \rightarrow A1$

 $1B \rightarrow 11$

 $0A \rightarrow 00$

Exemple2

- V = { <prop.>, <impl.>, <terme>, <fact.>, <prop. sec.>,
 <prop. pri.>}
- $\Sigma = \{(,)\} \cup \{p, q, r, \ldots\} \cup \{\neg, \leftrightarrow, \rightarrow, \land, \lor\}$
- R est donné sous la forme BNF suivante :

Hiérarchie de Chomsky

type	restrictions	
Type 3 ou linéaire à droite	Si toutes les règles sont de la forme: A→aB ou A→ε	
Type 2 ou hors-contexte	Si toutes les règles sont de la forme A $\rightarrow \alpha$	
Type 1 ou sous- contexte	Pour tout $\alpha \rightarrow \beta$, avec $ \alpha \le \beta $	
Type 0 ou générale	Pour tout $\alpha \rightarrow \beta$	

Dérivations

 Un mot y dérive immédiatement d'un mot x si et seulement si il existe une règle r: α→β et deux mots g et d de V* tels que :

$$x=g \alpha d$$
 et $y=g \beta d$

On le note: $x \Rightarrow_G y$ (ou $x \Rightarrow y$ quand il n'y a pas d'ambiguïté)

Dérivations

- Une dérivation est l'utilisation de la fermeture réflexive et transitive de ⇒, notée ⇒*
- ⇒ + est la fermeture transitive non réflexive de ⇒
- dérivation à gauche : dériver en premier le non-terminal le plus à gauche
- dérivation à droite : dériver en premier le non-terminal le plus à droite

Dérivations

Exemple:

Soit G = (
$$\{S\}$$
, $\{0, 1\}$, S, $\{(S \rightarrow 0S1), (S \rightarrow 01)\}$).

$$S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000S111 \Rightarrow 000111$$

Donc S ⇒* 000111

Remarque: $S \Rightarrow^* S$ (0 pas)

Langage engendré par une grammaire

 Le langage engendré par une grammaire G, noté L(G), est l'ensemble des mots terminaux dérivant de S. Formellement :

$$L(G) = \{x \in V_T^* | S \Rightarrow_G^* x\}$$

• Exemple:

Soit G = ({S}, {0, 1}, S, {(S, 0S1), (S, 01)}). On montre que:
$$L(G) = \{0^n1^n | n \in N\}$$

 Deux grammaires G et G₀ sont dites équivalentes si et seulement si elles engendrent le même langage:

$$L(G) = L(G_0)$$

 Un langage L⊆ T* est de type i s'il existe une grammaire G=(N,T,P,S) de type i avec L=L(G)

Théorème

Soit T_i l'ensemble des langages de type i

$$T_3 \subseteq T_2 \subseteq T_1 \subseteq T_0$$

• $\{a^nb^nc^n|n\in N\}$ est de type 1 S \rightarrow aAbc| ϵ A \rightarrow aAbC | ϵ Cb \rightarrow bC Cc \rightarrow cc

- {aⁿbⁿ|n∈ N} est de type 2
 S →aSb | ε
- {aⁿb^m|n,m∈ N} est de type 3

$$S \rightarrow aA \mid bB \mid \epsilon$$

 $A \rightarrow aA \mid \epsilon$

$$B \rightarrow bB \mid \epsilon$$

Exemple 1

 $S \rightarrow aS$

```
S \rightarrow aA

A \rightarrow bA

A \rightarrow b

S \Rightarrow aA \Rightarrow ab

S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaS \Rightarrow aaaaA \Rightarrow aaaab

S \Rightarrow aS \Rightarrow aaA \Rightarrow aab

S \Rightarrow aS \Rightarrow aaA \Rightarrow aabA \Rightarrow aabbA \Rightarrow aabbb
```

$$L(G) = \{a^nb^m; n,m \ge 1\} = L(aa^*bb^*)$$

Exemple 2:

$$S \rightarrow aS$$

 $S \rightarrow bA$
 $S \rightarrow \epsilon$
 $A \rightarrow bA$
 $A \rightarrow \epsilon$

$$L(G) = L(a*b*)$$

Equivalence grammaire régulière et AFN

Théorème

Un langage est régulier si et seulement s'il est généré par une grammaire régulière.

Preuve:

- Conversion grammaire régulière → automate
- Conversion automate → grammaire régulière