Theorems for Exam 1

Ryan Coyne

March 5, 2024

Theorem 1 Let (G, \circ) be a group, and let $g \in G$. Then

$$g^{-1} \circ g = e.$$

Proof We define $x = g^{-1} \circ g$. Then we have

$$x = x \circ e$$

$$= x \circ x \circ x^{-1}$$

$$= g^{-1} \circ g \circ g^{-1} \circ g \circ x^{-1}$$

$$= g^{-1} \circ g \circ x^{-1}$$

$$= x \circ x^{-1}$$

$$= e$$

Thus $g^-1 \circ g = e$.

Theorem 2 Let (G, \circ) be a group and $H \subseteq G$. Then H is a group if and only if:

- a) $H \neq \emptyset$, and
- b) $h_1 \circ h_2^{-1} \in H \text{ for all } h_1, h_2 \in H.$

Proof First, suppose that H is a subgroup. We get that $e \in H$, so $H \neq 0$. Thus, (a) holds. Now, let $h_1, h_2 \in H$, then we have that $h_2^{-1} \in H$. Thus, $h_1 \circ h_2^{-1} \in H$. Hence (b) holds. Now, suppose that (a) and (b) hold. From (a) we have that $H \neq 0$, so there exists $h \in H$. Thus from (b) we get that

$$e = h \circ h^{-1} \in H$$

and so (1) holds.

Let $h \in H$. We have shown that $e \in H$. So, from (b) we get

$$h^{-1} = e \circ h^{-1} \in H.$$

So, (2) holds.

Let $h_1, h_2 \in H$. We have shown that $h_2^{-1} \in H$. Hence (b) gives that

$$h_1 \circ h_2 = h_1 \circ (h_2^{-1})^{-1} \in H.$$

Thus, (3) holds. Therefore H is a subgroup. \blacksquare

Theorem 3 Let (G, \circ) be a group, and H a subgroup of G. Then for all $g_1, g_2 \in G$ there exists a bijection $g_1H \to g_2H$.

Proof Let $x \in g_1H$. We define

$$f(x) = g_2 g_1^{-1} x.$$

As x = g1h for some $h \in H$, we have that $f(x) = g_2g_1^{-1}g_1h = g_2h \in g_2H$. Therefore $f(x) \in g_2H$ and f is a function $g_1H \to g_2H$.

We next claim that f is a bijection.

inj) Let $x_1, x_2 \in g_1H$ such that $f(x_1) = f(x_2)$. Then we have

$$g_2g_2^{-1}x_1 = g_2g_1^{-1}x_2 \Longrightarrow g_1^{-1}x_1 = g_1^{-1}x_2$$

 $\Longrightarrow x_1 = x_2.$

Thus, f is injective.

sur) Let $y \in g_2H$. Then there exists $h \in H$ such that $y = g_2h$. We define

$$x = g_1 h \in g_1 H$$
.

We then have

$$f(x) = g_2 g_1^{-1} g_1 h = g_2 h = y.$$

Thus, f is bijective.

Theorem 4 Let (G_1, \circ) and $(G_2, *)$ be groups, and $f : G_1 \to G_2$ a group homomorphism. Then, $\ker(f)$ is a subgroup of G_1 .

Proof As $f(e_{G_1}) = e_{G_2}$, we have that $e_{G_1} \in \ker(f)$, and so $\ker(f) \neq \emptyset$. Let $g_1, g_2 \in \ker(f)$. Then,

$$f(g_1) = e_{G_2} = f(g_2).$$

Therefore

$$f(g_1 \circ g_2^{-1}) = f(g_1) * f(g_2)^{-1} = e_{G_2} * e_{G_2}^{-1} = e_{G_2}.$$

Thus, $g_1 \circ g_2^{-1} \in \ker(f)$ and $\ker(f)$ is a subgroup of G_1 .

Theorem 5 Let (G_1, \circ) and $(G_2, *)$ be groups, and $f: G_1 \to G_2$ a group homomorphism. Then, f is injective if an only if $\ker(f) = \{e_{G_1}\}$.

Proof \Longrightarrow) Assume f is injective, and let $g \in \ker(f)$. Then $f(g) = e_{G_2} = f(e_{G_1})$. As f is injective, we get that $g = e_{G_1}$, and so $\ker(f) = \{e_{G_1}\}$.

 \iff) Assume $\ker(f) = \{e_{G_1}\}$ and let $g_1, g_2 \in G_1$ such that $f(g_1) = f(g_2)$. We then have

$$f(g_1) * f(g_2)^{-1} = e_{G_2}$$

$$\Longrightarrow f(g_1 \circ g_2^{-1}) = e_{G_2}$$

$$\Longrightarrow g_1 \circ g_2^{-1} \in \ker(f)$$

$$\Longrightarrow g_1 \circ g_2^{-1} = e_{G_1}$$

$$\Longrightarrow g_1 = g_2.$$

Hence f is injective.

Theorem 6 Let G and H be groups, then $(G \times H, \circ)$ is a group where

$$(g_1, h_1) \circ (g_2, h_2) := (g_1g_2, h_1h_2).$$