2.8 Lemma. Let p and $q_1, q_2, ..., q_n$ all be primes and let k be a natural number such that $pk = q_1q_2...q_n$. Then $p = q_i$ for some i.

Proof. Let p and $q_1, q_2, ..., q_n$ all be primes and let k be a natural number such that $pk = q_1q_2...q_n$ be given. Consider the base case where n = 1 such that

$$pk = q_1$$
.

Since p is prime, k = 1 by primality. Thus, $p = q_1$. By induction, suppose $pk = q_1q_2...q_b$ with 1 < n < b such that $p = q_i$. We want to show when $pk = q_1q_2...q_bq_{b+1}$, $p = q_i$. Since $pk = q_1q_2...q_bq_{b+1}$, we can rewrite this as

$$p|q_1q_2...q_bq_{b+1}.$$

Let $a = q_1q_2...q_b$ for some $a \in \mathbb{Z}$ such that $p|aq_{b+1}$. Suppose (p, a) = 1. By Theorem 1.41, since $p|aq_{b+1}$ and (p, a) = 1, $p|q_{b+1}$. By definition, $pt = q_{b+1}$ for some $t \in \mathbb{Z}$. Since p is prime, t = 1 by primality. Thus, $p = q_i$. Since our base case and inductive hypothesis is true, the Lemma is true.