Triggered Guitar Effects Platform

Ralph Carlo Quinto (CE), Bryan Guner (EE), Haley Scott (EE)

Advisor: Dr. Ambrose Adegbege

Overview

- Problem Identification
- Project Goals
- Team Breakdown
- DTW
- Pure Data
- Project Specifications
- Implementation
- Digital Effects
- Schedules
- Summary

Problem Identification

- Guitar effect pedals physically restrain the guitar player
- Effect pedals require presence of mind on the part of the performer
- Analog and digital effects pedals are costly

Project Goals

- Develop a software platform to analyze a time sequence of notes and trigger guitar effects as instructed
- Trigger on a designated instance that occurs multiple times throughout the song
- Mitigate the latency between a detected match and the triggering event
- Process sequences up to 10 note onsets per second

Team Breakdown

Bryan Guner	Team Lead - Develop a protocol for digital signal processing of the guitar signal in order to create a time-sequential record of the frequency content of the guitar signal and a comparison between pre recorded songs and live performances.
Ralph Quinto	Software Engineer - Research for possible programming platforms. Responsible for reading electric guitar signals, creating the signal analysis patches in pure data, and triggering digital guitar effects.
Haley Scott	Architectural Manager - Responsible for ensuring successful integration of project components, researching system methods, designing digital effects, project and organizational management.

Dynamic Time Warping

- Algorithm for the measurement of similarity between two temporal sequences
- Calculates an optimal match in the form of a distance that is the sum of localized cost functions

Dynamic Time Warping Matching

DTW Path

- The process can be thought of conceptually as arranging the two sequences on the sides of a grid
- Each cell within the grid will be filled
 with a distance measure comparing
 the corresponding elements of the two
 sequences

How DTW Works

- To find the best path through the grid, we search for a path that minimizes the total distance between them
- Without optimizations, all possible paths through the grid are calculated and a minimum is selected

Why DTW?

- DTW is relatively insensitive to time-scale contraction or dilation in either the database or query signals
- A slightly erroneous performance will register a match as long as the section is the closest match to the database sequence relative to what's been processed so far
- The algorithm is commonplace in most speech dictation software and has a wide scope of applications such as gesture recognition

Basic Dynamic Time Warping

x[t]

	Ŧ
y	LL.

	0	1	4	1	1
	1	0	1	0	4
	4	1	0	1	9
	1	0	1	0	4
I	0	1	4	1	1
	0	1	4	1	1
	1	4	9	4	0
ĺ	1	2	3	2	0

3	0	0	1
	B: 1		
2	0	0	1
Messel .	B: 1	B: 2	B: 7
		L: 1	L: 2
		BL: 1	BL: 2½
1	1	1	4
		L: 2	L: 6
	1	2	3

Background (Pure Data)

- Visual programming language (LabView)
 - Objects are linked together to model the flow of control and audio
 - Designed for creating interactive computer music and multimedia works
 - Generate Waveforms
 - Perform Signal Analysis
- Modular code base
 - Externals could be generated using C, C++, Python, Java, and many more
- Open source project listed under a modified BSD License
 - all distributed copies of the source code must contain the BSD license

Project Specs (PD & Physical Components)

- Pure Data Specs
 - Sampling rate of 44,100 Hz
 - Fiddle uses 1024 most recent samples to produce midi data
- Electric Guitar: Ibanez RG5EX1
 - Bridge Pickup: Infinity 4
 - Magnet: Ceramic
 - \diamond DC Resistance: 15.6 K Ω
 - Gauges: .009/.011/.016/.024/.032/.042

Block Diagram of Simplified PD Patch

Current PD Recording Implementation

Current PD Implementation

Testing and Validation

- Tested different sequences
 - Single Notes
 - Consistent triggering
 - Chords
 - Inconsistent triggering
- Record system clock at input and triggering
 - Took difference to measure latency
 - 1-2 ms
- 44100/1024 = 44 notes per second

Issues With Approach

- Currently triggers on the first instance of trigger sequence
- Accuracy in chord detection (trigger sequence length)
- Match detection versus actual desired trigger point
- User familiarity with PD / ease of use

Future Improvements

- Subsequence tracking over DTW matching
- Application to control actions other than guitar effects
- Interface kit for analog effect pedals
- User GUI external to PD patch
- Hybrid of other candidate techniques to serve as false trigger fail safe

Reverb Effect

- Creates the sound of a performance in a concert hall
- Mirrors a large
 number of
 reflections to build
 up and then decay

Delay Effect

- Creates the sound of a repeating, decaying echo
- Delwrite block allocates memory for a delay line
- Delread block reads the signal from a delay line

Fuzz Effect

- Creates the sound of a distorted, heavier guitar
- Clip block restricts a signal to lie between two limits

Spectral Delay Effect

- Creates the sound of a repeating echo, with harmonics ringing at different times
- FFT divides frequencies
 into smaller bins, which
 each have a different
 delay applied

Project Schedule

Time Budget

Spending Budget

Summary

- Created an automatic guitar effect trigger system using
 DTW
 - Capable of triggering any digital effect
- Design criteria met:
 - Trigger latency of <= 1 second (2 ms)
 - Minimum note onset separation of 10 notes per second
 - 43 notes / sec (detect a new note every 23 ms)
 - Concurrent effects triggering

Questions?