

Deep Feature Interpolation for Image Content Change

Steven Lang, Manfred Faldum

February 7, 2017

Motivation

Basic Idea

Steven Lang, Manfred Faldum

Motivation

► Right picture: add attribute in pixel-space

Motivation

- Right picture: add attribute in pixel-space
- New idea: add attribute in deep-feature-space

How to get the attribute in deep-feature-space?

How to get the attribute in deep-feature-space?

Let $\phi(x)$ be the mapping from pixel-space into deep-feature-space by concatenating an arbitrary number of layers

How to get the attribute in deep-feature-space?

Let $\phi(x)$ be the mapping from pixel-space into deep-feature-space by concatenating an arbitrary number of layers

- \blacktriangleright Take k nearest neighbor images with existing attribute: S^+
- \blacktriangleright Take k nearest neighbor images with missing attribute: S^-

- ightharpoonup Take k nearest neighbor images with existing attribute: S^+
- \blacktriangleright Take k nearest neighbor images with missing attribute: S^-

- $ightharpoonup \phi^+ = \phi(S^+)$ and $\phi^- = \phi(S^-)$
- ightharpoonup Build the mean $\overline{\phi^+}$ and $\overline{\phi^-}$

- ightharpoonup Take k nearest neighbor images with existing attribute: S^+
- \blacktriangleright Take k nearest neighbor images with missing attribute: S^-

- $lack \phi^+ = \phi(S^+)$ and $\phi^- = \phi(S^-)$
- lacksquare Build the mean $\overline{\phi^+}$ and $\overline{\phi^-}$

• Representation of attribute: $w = \overline{\phi^+} - \overline{\phi^-}$

How to get the output picture?

Steven Lang, Manfred Faldum

How to get the output picture?

- ▶ Reverse mapping of $\phi(z)$ into pixel space:

How to get the output picture?

- $\phi(z) = \phi(x) + \alpha w$
- ▶ Reverse mapping of $\phi(z)$ into pixel space:

- $\tilde{z} = \underset{z}{\operatorname{argmin}} \frac{1}{2} ||\phi(z) \phi(\tilde{z})||_{2}^{2} + \lambda R_{\beta}(\tilde{z})$
- ▶ with $R_{\beta}(\tilde{z}) = \sum_{i,j} ((\tilde{z}_{i,j+1} \tilde{z}_{i,j})^2 + (\tilde{z}_{i+1,j} \tilde{z}_{i,j})^2)^{\frac{\beta}{2}}$

Practical

- ► Model VGG19 pretrained on IMAGENET dataset
- $ightharpoonup \phi(x)$ using the third, fourth and fifth Relu Layer
- ho eta=2 and $\lambda=0.001$ for the regularization term
- ► Tests on LFW dataset