УДК 550.4

Детализация техногенных литохимических аномалий как метод выявления групп населения, проживающих в условиях повышенного экологического риска

Новикова Л. Н., Новиков Ю. А. КО УкрГГРИ, Симферополь

В северной части Крыма (Армянско-Красноперекопский район) проведены комплексные эколого-геохимические исследования, в результате которых установлены участки с опасной категорией загрязнения почв. Для выяснения параметров техногенного загрязнения на этих участках проведена крупномасштабная почвенно-геохимическая съемка, результаты которой изпагаются в статье.

Вступление. Данное исследование – часть программы "Защита здоровья человека от воздействия загрязнения окружающей среды", выполняемой Крымской ассоциацией "Экология и мир". Одна из целей программы - установление четкой связи между здоровьем населения и воздействием определенного загрязнения и загрязнителей (источников загрязнения), особенно загрязнением тяжелыми металлами. Исследование проведено в северной части Крыма (Ариянско-Красноперекопский регион), где целью эколого-геохимических исследований было выявление и оконтуривание "целевых участков" с наиболее сильным воздействием загрязнения.

В исследуемом регионе проведена литохимическая съемка по сети 2х2 км и комплексные эколого-геохимические исследования масштаба 1:10000 на территории КПО "Титан", Сивашского анилино-красочного, Перекопского бромного и Крымского содового заводов. Установлена геохимическая характеристика источников техногенного вещества и геохимическая оценка техногенного загрязнения основных компонентов окружающей природной среды, образующих непрерывную цепь: исходное сырье, продукция — твердые и жидкие стоки грунты и почвы промплощадок, санитарных зон химических предприятий района — донные отложения — наземная древесная растительность, плоды деревьев.

По результатам эколого-геохимических исследований масштаба 1: 200000 для Армянско-Красноперекопского региона составлена карта суммарного загрязнения почв и выявлены участки с опасной категорией загрязнения почв и почво-грунтов (в том числе сел Перекоп и Филатовка, располагающихся в 3 и 12 км юго-восточнее КПО "Титан").

Объекты и методы исследования. Для выяснения параметров техногенного загрязнения, на территории сел Перекоп и Филатовка проведена площад-

ная почвенно-геохимическая съемка масштаба 1:10000 (шаг опробования – 100–200 м). Опробовались светло-коричневые, желтовато-коричневые, серые суглинки лугово-каштановых солонцеватых и лугово-степных с солонцами почв. С целью оценки вредного воздействия почвенных аномалий токсичных химических элементов на биоту проведено биогеохимическое опробование, в частности морковь, капуста, свекла, баклажаны, картофель.

Почвенно-геохимические пробы подвергались количественному спектральному и атомно-абсорбшионному анализу в аттестованных лабораториях Крымского отделения УкрІТРИ (бывший Институт минеральных ресурсов - ИМР). Спектральный анализ выполнялся на 40 химических элементов: Cu. Pb. Co. Ni. Zn. Mo. Cr. V, Ti, Sn, Mg, Mn, Ba, Be, Nb, Zr, Ga, La, Ce, Y, Yb, Ag, W, Bi, Ge, Sc, Sr, Li, P, As, Sb, Hq, Tl, Cd, Au, Pt, Ta, In, Pd, В. Для определения Нд использовался атомно-абсорбционный фотометр РАФ-1 (завода Казгеофизирибор) с электронной приставкой, изготовленной в ИМР. Половина проб проанализирована, помимо спектрального, атомно-абсорбщионным методом на содержание Zn, As, Sb, St, P, Cd, а также ионно-селективным методом на F. Биогеохимические пробы проанализированы в аттестованной лаборатории массовых анализов ЦНИЛСТа НПО "Селта" атомно-абсорбционным методом на Cu, Zn, Pb, Cd.

Результаты и обсуждение. В результате проведенных исследований установлены: 1 — геохимический спектр техногенного загрязнения почв и сельскохозяйственной продукции; 2 — интенсивность загрязнения токсичными химическими элементами; 3 — пространственная структура техногенных литохимических и биогеохимических аномалий.

Основные элементы техногенного загрязнения почв и почво-грунтов сел Перекоп и Филатовка – Pb, As, Zn, Hq, P, Ba, Sr, Cd, Cu, Cr, Mo, Sb, F.

Таблица 1. Содержание токсичных химических элементов и коэффициенты концентрации (Кк) в почво-грунтах и почвах с. Перекоп

Химические элементы	Содержание элемента, мг/кг		КK		Клдк = С/Слдк	
	min	max	Kk (min)	Kk (max)	min	max
Hg	0,032	0,5	1,45	22,73		2,5
Pb	25,0	320,0	1,25	16,0	_	10,66
Q _i	32,0	40,0	1,31	2,0	_	_
Z n	130,0	290,0	1,41	3,15		_
Sb	7,3	23,5			1,62	5,22
As	21,8	44,6	10,9	22,3	10,9	22,3
Mo	2,0	5,0	1,33	3,33		
Sr	23,5	205,8	5,9	51'5		
Р	1000,0	3000,0	1,28	3,83		
Be	2,5	4,0	0,8	2,0		_
F	400,0	_	1,29	_	_	T -
or	120,0	150,0	1,43	1,79	1,2	1,5

Табяица 2.

Содержание токсичных химических элементов и коэффициенты концентрации(Кk) в почво-грунтах и почвах с. Филатовка

Химические элементы	Содер элемент	1	Kk		К пдк = Сі/ Спдк	
	min	max	Kk (min)	Kk (max)	min	max
Pb	32,0	50,0	1,6	2,5	1,1	1,7
As	2,4	2,9	1,2	1,45	1,2	1,45
Zn	150,0	200,0	1,63	2,17	_	_
Hg	0,09	0,18	4,5	9,0		_
Р	1500,0	2000,0	1,9	2,6	-	-
Ba	800,0	1000,0	1,8	2,3	-	_
Sr	138,0	328,0	1,03	2,4	-	1 -
Cd	2,15	4,3	1,1	2,15	_	1,1
Cu	-	32,0	_	1,31	_	T -
Li	_	32,0	_	1,2	_	-

На территории с. Перекоп установлены комплексные контрастные аномалии большой группы токсичных химических элементов I, II и III классов опасности. Средние размеры аномалий составляют 300х250 м. Основные параметры техногенных литохимических аномалий с. Перекоп приведены в табл. 1. Выделение техногенных литохимических аномалий производилось на основе определения фона химических элементов в суглинках верхней части лугово-каштановых почв [2].

Оценка уровня химического загрязнения почв и почво-грунтов как индикатора неблагоприятного воздействия на здоровье человека проведена на основе определения суммарного показателя загрязнения (Zc) почв и почво-грунтов [1]. Суммарный показатель загрязнения рассчитывался для 12 основных для дакного района токсичных химических элементов, указанных в таблице 1. 60 % территории села классифициро-

вано как относящееся к средней катего-рии загрязнения почв и 40 % - к умеренно опасной и опасной.

На территории с. Филатовка наибольшее развитие имеют техногенные почвенно-геохими-чес-кие аномалии Рb, Hg, As, Zn, P, Cu, Ba, Cd, Sr и Li. Размеры аномалий варьируют от 600х150 м до 700х700 м, охватывая почти всю территорию. Их параметры приведены в табл. 2.

По суммарному показателю загрязнения почвы территории с. Филатовка почти полностью отнесены к средней категории загрязнения.

По данным биогеохимического опробования, на территории с. Перекоп и с. Филатовка выделяются биогеохимические аномалии Сd, Сu, Pb, Zn, пространственно совпадающие с техногенными литохимическими аномалиями этих элементов. Биогеохимические аномалии выделены с учетом предельно допустимых концентраций (ПДК) для свежих овощей. Размеры ано-

малий варьируют от 260x520 м до 390x840 м. Содержание в аномалиях составляет, мг/кг: Pb = 0,64=,43 (ПДК Pb = 0,5); Cd = 0,05=0,09 (ПДК = 0,03); Cu = 1,71=2,1 (ПДК = 1), Zn = 10.

По результатам работ в пределах территорий сел были выделены "целевые участки" (участки наиболее контрастных литохимических и биогеохимических аномалий, с опасной категорией загрязнения почв). Изучение подвижных форм токсичных химических элементов, как наиболее опасных для здоровья людей, в пределах этих "целевых участков" показало, что количество их изменяется от 10 до 45% валового содержания химических элементов.

В результате опроса жителей исследуемых сел выяснилось, что в пределах выделенных авторами "целевых участков" дети и молодые люди (до 30 лет) имеют хронические заболевания верхних лыхательных путей.

Материалы исследований переданы в Крымский медицинский университет им. С. И. Георгиевского для медицинского обследования этих групп населения.

Даны рекомендации по проведению ряда срочных природоохранных мероприятий.

- 1. Методические указания по оценке степени опасности загрязнения почвы химическими веществами. М., Минздрав СССР. 1987.
- 2. Новиков Ю.А., Новикова Л.Н. Оценка экологического состояния природной среды районов химических предприятий и курортных зон по геохимическим данным. Сб. "IV объединенный международный симпозиум по проблемам прикладной геохимии, посвященный памяти академика Л.В. Таусона". Иркутск, 1994. С.76–77.

В північній частині Криму (Армянско-Красноперекопский район) проведені комплексні еколого-геохімічні дослідження, у результаті яких установлені ділянки з небезпечною категорією забруднення ґрунту. Для з'ясування параметрів техногенного забруднення на цих ділянках проведена крупномасштабна ґрунтово-геохімічна з'йомка, результати якої викладаються в цій статті.

In the northern part of the Crimea (Armyansk-Krasnoperekopsk region) the complex ecological-geochemical investigations have been carried out, as the result of which the areas with a dangerous category of soil contamination have been established. In order to ascertain the parameters of the technogenous contamenation on this areas the large-scale soil-geochemical survey, results of which are stated in the article, has been carried out.