CSSE2010 Course Notes

Paddy Maher

August 5, 2021

1 Introduction

Following on from the lecture notes as prescribed by the CSSE2010 course, the course notes will be outputting through looking at the levels of abstraction of a computer.

[insert graph of abstraction in computers]

2 Digital logic level

2.1 Bytes and bits

- Computers represent everything in binary
- $\mathbf{Bit} = \text{binary digit } (0 \text{ or } 1)$
- Byte = 8 bits
- Modern computers deal with words which are usually a power of 2 number of bytes. For example:
 - -1, 2, 4 or 8 bytes = 8, 16, 32 or 64 bits

2.2 Representing whole unsigned numbers in binary

2.2.1 Conversion from binary to decimal and vice versa

Converting binary to decimal

- Add values of each position where bit is 1
- Example: 1010011 = 128 + 32 + 4 + 2 + 1 = 167

Converting Decimal to Binary

Method 1

- Rewrite 'n' as the sum of powers of 2 (by repeating subtracting largest powers of 2 not greater than n)
- Assemble binary number from 1's in bit positions corresponding to those powers of 2, 0's elsewhere

Method 2

Building up bits from the right (least significant bit (LSB) to most (MSB))

- Divide n by 2
- Remainder of division (0 or 1) is next bit
- Repeat with n = quotient

2.2.2 Least and Most Significant Bits

The most significant bit is denoted as **MSB**, likewise, the least significant bit is denoted as **LSB**. These bits can be found on a binary number typically as the leftmost and rightmost bits respectively.

[arrow pointing to example of MSB and LSB in binary number]

2.3 Basic Digital Logic

2.3.1 Digital circuits and Logic gates

Digital Circuits

- Only two logical levels present (i.e. binary)
 - Logic '0'; usually small voltage (e.g. around 0 volts)
 - Logic '1'; usually larger voltage (e.g. 0.8 to 5 volts, depending on the "logic family", i.e. type/size of transistors)

Logic gates

- Are the building blocks of computers
- Each gate has
 - One or more inputs
 - Exactly one ouput
- Perform logic operations or functions
 - 7 basic types: NOT, AND, OR, NAND, NOR, XOR XNOR
 - Inputs and outputs can have only two states 1 and 0; can be called "true" and "false" respectively.
 - Logic symbol, truth table, boolean expression, timing diagram

2.3.2 Basic Logic Gates

[complete logic gates]

2.4 Boolean Logic

2.4.1 Boolean Logic Functions

- Logic functions can be expressed as expressions involving:
 - variables (literals), e.g A, B, X
 - functions, e.g +, ., \oplus , \overline{X}
- Rules about how this works are called Boolean algebra
- Variables and functions can only take on values 0 or 1

2.4.2 Boolean Algebra conventions

Conventions

- Inverstion: [insert overline] (overline)
 - e.g. $NOT(A) = \overline{A} (A bar)$
- AND: dot(.) or implied (by adjacency)
 - e.g. AND(A,B) = AB = A.B
- OR: plus sign (+)
 - e.g. OR(A,B,C) = A+B+C

Other examples

- $XOR(A,B) = A \oplus B = \overline{A}B + A\overline{B}$
- NAND(A,B,C) = \overline{ABC}
- $NOR(A,B) = \overline{A+B}$

2.4.3 Summary of logic function representations

There are four representations of logic functions (assume function of n inputs)

- Truth
 - Lists output for all 2^n combinations of inputs (Best to list inputs in a systematic way)
- Boolean function (or equation)
 - Describes the conditions under which the function output is 1
- Logic Diagram
 - Combination of logic symbols joined by wires
- Timing Diagram

2.4.4 Logic function implementation

- \bullet Any logic function can implemented as the \mathbf{OR} of \mathbf{AND} combinations of the inputs
 - Called 'sum of products'
- Example:

	A	В	$\mid C \mid$	M
	0	0	0	0
	0	0	1	0
	0	1	0	0
- Consider truth table	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1
	1	1	1	1

- For each '1' in the output column, write down the ${\bf AND}$ combination of inputs that give 1
- **OR** these together

Equivalent functions

- Sum of products does not necessarily produce circuit with minimum number of gates
- Can 'manipulater' boolean functions to give an equivalent function
 - Use rules of boolean algebra
- Example: $\mathbf{Z} = \mathbf{AB} + \mathbf{AC} = \mathbf{A}(\mathbf{B} + \mathbf{C})$

Boolean identities

Name	AND form	OR form
Identity law	$1\mathbf{A} = \mathbf{A}$	$0 + \mathbf{A} = \mathbf{A}$
Null law	$0\mathbf{A} = \mathbf{A}$	$1 + \mathbf{A} = 1$
Idempotent law	$\mathbf{A}\mathbf{A} = \mathbf{A}$	$\mathbf{A} + \mathbf{A} = \mathbf{A}$
Inverse law	$\mathbf{A}\overline{A} = 0$	$\mathbf{A} + \overline{\mathbf{A}} = 1$
Commutative law	AB = BA	$\mathbf{B} + \mathbf{A} = \mathbf{B} + \mathbf{A}$
Associative law	$(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$	$(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$
Distributive law	A+BC = (A+B).(A+C)	$\mathbf{A.(B+C)} = \mathbf{AB} + \mathbf{AC}$
Absorption law	$\mathbf{A}(\mathbf{A} + \mathbf{B}) = \mathbf{A}$	$\mathbf{A} + \mathbf{A}\mathbf{B} = \mathbf{A}$
De Morgan's law	$\overline{\mathbf{A}}\overline{\mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$	$\overline{\mathbf{A}} + \overline{\mathbf{B}} = \overline{\mathbf{A}}\overline{\mathbf{B}}$

2.4.5 Number bases

[Flow diagram of Binary(base 2), Decimal(base 10), Hex(base 16), Octal(base 8)] [May need to add further details of the table (in regard to the individual binary representations)]

ter j representations/j					
MSB				LSB	
$2^{(n-1)}$	$2^{(n-2)}$		2^1	2^{0}	Excess- $2^{(n-1)}$; $-2^{(n-1)} \le x \le (2^{(n-1)} - 1)$
$-2^{(n-1)}$	$2^{(n-2)}$		2^1	2^{0}	2's comp; $-2^{(n-1)} \le x \le (2^{(n-1)} - 1)$
$-2^{(n-1)}-1$	$2^{(n-2)}$		2^1	2^{0}	1's comp; $-(2^{(n-1)}-1) \le x \le (2^{(n-1)}-1)$
+/-	$2^{(n-2)}$		2^1	2^{0}	Sign-Mag; $-(2^{(n-1)}-1) \le x \le (2^{(n-1)}-1)$
$2^{(n-1)}$	$2^{(n-2)}$		2^1	2^{0}	Unsigned; $0 \le x \le 2^n - 1$

[fix peculiar exponential layout]

2.4.6 Equivalent Circuits

- All circuits can be constructed from NAND or NOR gates
 - These are called 'complete' gates
- Examples: [insert NOT AND OR logic gates]
- Reason: Easier to build NAND and NOR gates from transistors

2.5 Binary Arthmetic

2.5.1 Binary addition

• Addition is quite simple in binary

• Above ignores carry in

[make sense of the table above]

Decimal	8-bit unsigned	Decimal	2's complement
10	00001010	10	00001010
+ 243	$+\ 11110011$	+ (-13)	$+\ 11110011$
253	11111101	-3	11111101

- Format matters upon interpreting the number
- Whatever the format is the bit-wise addition (which leads to the hardware circuit) is the same.
- Two's complement; there is no need to do anything with the carry out from the MSB to get the correct result
- But in one's complement, the carry out from the MSB will have to be added back to the result to get the correct answer; this is one drawback of one's complement representation

Overflow in binary addition

Decimal	8-bit unsigned	Decimal	2's complement
15	00001111	125	01111101
+ 243	+ 11110011	+ 4	$+\ 00000100$
258	00000010	129	10000001

Overflow: Not enough bits to represent the answer. The result goes out of range thus outputting an incorrect answer.

– Unisgned: carry-out from the $MSB \rightarrow \text{overflow}$

- 2's comp: carry-in to the \mathbf{MSB} and carry-out from the \mathbf{MSB} are different \rightarrow overflow
- Equivalently, overflow occurs if (in 2's comp)
 - * Two negatives added together give a positive, or;
 - * Two positives added together give a negative

2.5.2 Adders and addition of binary words

A device which adds 2 bits $(with \ no \ carry-in)$ is called a 'half-adder' [insert half adder diagrams]

Addition of binary words

• Have to be able to deal with carry-in

	A	В	Cin	Cout	Sum
	0	0	0	0	0
	0	0	1	0	1
	0	1	0	0	1
•	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	0	1

- $S = \overline{AB}C + \overline{A}B\overline{C} + ...$
- $S = A \oplus B \oplus Cin$

[insert full adder diagram with relevant sum and carry-out equation] Binary Adder

- Can cascade full adders to make binary adder
 - Example: for 4 bits ... [insert 4 bit binary adder diagram]
- This is a ripple-carry adder

2.5.3 Binary subraction

- $\mathbf{A} \mathbf{B}$; usually implemented as $\mathbf{A} + (-\mathbf{B})$
 - **A** and **B** are multi-bit quantities
 - '+' in this case means addition (not **OR**)
 - -B means negative B the two's complement of B
- Two's complement of **B** can be calculated by flipping bits and adding 1.

[add relevant equations and interpretations]

- 3 Microarchitecture level
- 4 Instruction set architecture level
- 5 Assembly language level
- 6 Problem-oriented language level