Работа 2.4.1

Определение теплоты испарения жидкости

Панферов Андрей

1 Аннотация

В данной работе измеряется давление насыщенного пара жидкости при разнои температуре, по полученным данным вычисляется теплота её испарения с помощью уравнения Клапеирона–Клаузиуса.

2 Теоретические сведения

Испарением называется переход вещества из жидкого в газообразное состояние. Чтобы испарение проходило без изменения температуры, к жидкости нужно подводить тепло. Количество теплоты, необходимое для изо- термического испарения одного моля жидкости при внешнем давлении, равном упругости ее насыщенных паров, называется молярнои теплотой испарения.

В настоящей работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона–Клаузиуса

$$\frac{dP}{dT} = \frac{\mu L}{T(V_2 - V_1)}$$

C помощью уравнения Ван-дер-Ваальса можно получить зависимость P(T), с помощью которой определить искомую величину.

$$(P + \frac{a}{V^2})(V - b) = RT$$

В таблице ниже приведены все значения параметров различных жидкостей уранения Ван-дер-Ваальса в условиях данного опыта.

	$T_{ ext{кип}}$	V_1 ,	$V_2,$	b,	a	a/V_2^2
Вещество		10^{-6}	10^{-3}	10^{-6}		
	K	<u>м</u> 3 моль	$\frac{_{\rm M}3}{_{\rm MOJL}}$	$\frac{_{\rm M}3}{_{\rm MOJL}}$	$\frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\mathbf{mo}_{\mathbf{J} \mathbf{b}^2}}$	кПа
Вода	373	18	31	26	0,4	0,42
CCl ₄	350	97	29	126	1,95	2,3
Этиловый эфир	307	104	25	137	1,8	2,9
Этиловый спирт	351	58	29	84	$1,\!2$	1,4

Откуда видно, что $\frac{V_1}{V_2} < 0.005$, а $\frac{a}{PV^2} < 0.03$, ошибка метода измерений равна 4%, тогда

$$PV = \nu RT$$

$$L = \frac{RT^2}{\mu P} \frac{dP}{dT} = -\frac{R}{\mu} \frac{d(lnP)}{d(\frac{1}{T})}$$

3 Оборудование и инструментальные погрешности

В работе используются: термостат; герметический сосуд, заполненный исследуемой жидкостью; отсчетный микроскоп.

Инструментальные погрешности измерений:

Градусник – 0,2 К

Штангенциркуль -0.1 мм

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

На рисунке слева изображена схема установки. Наполненный водой резервуар 1 играет роль термостата. Нагревание термостата производится спиралью 2, электрическим подогреваемой Для охлаждения воды в термостате через змеевик 3 пропускается водопроводная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Температура воды измеряется термометром 5. В термостат погружен запаянный прибор 6 с исследуемои жидкостью. Над неи находится насыщенный пар (перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по ртутному манометру, соединенному с исследуемым объемом. Отсчет показании манометра производится при помощи микроскопа.

4 Результаты измерений и обработка данных

4.1 Подготовка к эксперименту

Измерим разность уровней в ртутном U - образном манометре с помощью микроскопа и температуру по термометру. Включим термостат. Через каждый градус будем измерять разность высот и температуру. Продолжим повышать температуру в течение половины имеющегося у нас времени, чтобы успеть произвести измерения при остывании прибора. Проведём те же измерения при охлаждении жидкости. Установим такой поток воды, чтобы охлаждение шло примерно тем же темпом, что и нагревание.

4.2 Проведение измерений

Измерим начальную разность уровней:

$$\Delta H_0 = 18.0 \pm 0.1 \text{mm}$$

Проведем измерения с шагом 1 градус при нагревании и последующем охлаждении системы. Результаты занесем в *Таблицу 1*:

Таблица 1: Результаты измерений и их первичная обработка

T, C	H_{up} , mm	H_{down} , mm	ΔH_{up} , mm	ΔH_{down} , mm	$1/{ m T},1/{ m K}\cdot 10^{-5}$	$ln(\frac{P_{up}}{P_0})$	$ln(\frac{P_{down}}{P_0})$
20	79.5	79.6	18.0	17.8	341.3	0.000	-0.011
21	79.0	79.1	19.0	18.8	340.1	0.054	0.043
22	78.7	78.4	19.6	20.2	339.0	0.085	0.115
23	78.0	78.0	21.0	21.0	337.8	0.154	0.154
24	77.4	77.5	22.2	22.0	336.7	0.210	0.201
25	76.9	77.0	23.2	23.0	335.6	0.254	0.245
26	76.2	76.2	24.6	24.6	334.4	0.312	0.312
27	75.5	75.4	26.0	26.2	333.3	0.368	0.375
28	74.8	74.7	27.4	27.6	332.2	0.420	0.427
29	74.2	73.8	28.6	29.4	331.1	0.463	0.491
30	73.5	72.9	30.0	31.2	330.0	0.511	0.550
31	72.5	72.2	32.0	32.6	328.9	0.575	0.594
32	71.7	71.3	33.6	34.4	327.9	0.624	0.648
33	70.8	70.0	35.4	37.0	326.8	0.676	0.721
34	69.7	69.2	37.6	38.6	325.7	0.737	0.763
35	68.4	68.0	40.2	41.0	324.7	0.803	0.823
36	67.6	66.9	41.8	43.2	323.6	0.843	0.875
37	66.1	65.9	44.8	45.2	322.6	0.912	0.921
38	65.0	64.7	47.0	47.6	321.5	0.960	0.972
39	63.8	63.7	49.4	49.6	320.5	1.010	1.014
40	62.4	62.4	52.2	52.2	319.5	1.065	1.065
$\sigma T \approx 0.2$	$\sigma H \approx 0.1$		$\sigma \Delta H = 2 \sigma$	$H \approx 0.2$	$\sigma 1/T \approx 0.3$		

4.3 Обработка результатов измерений

В нее же занесем погрешности и результаты обработки измерений:

$$\Delta H = \Delta H_0 - 2H + 2H_0$$

, где H_0 - высота при температуре 20 С

$$ln(\frac{P}{P_0}) = ln(\frac{\Delta H}{\Delta H_0})$$

$$\sigma ln(\frac{P}{P_0}) \approx \frac{2\sigma\Delta H}{\Delta H} \approx 0.015$$

Сначала построим график зависимости ΔH от T (по сути ΔP от T). На одни оси нанесем данные повышения и понижения температуры. Построим ту же зависимость в координатах 1/T от $ln(\frac{P}{P_0})$ на другом графике:

Заметно небольшое различие зависимостей давления от температуры при нагревании и охлаждении.

 ΔH от T: Для нахождения L необходимо сосчитать производную в каждой точке, для этого воспользуемся методом сплайнов "в первом приближении" (так же будем учитывать строгую монотонность производной в силу итак большой погрешности эксперимента), для чего по каждым трём точкам мысленно построим параболу и найдем её угловой коэффициент для зависимти ΔH от T. Полученные результаты занесем в $Taблицу\ 2$. Далее найдём среднее значение теплоты испарения.

Таблица 2: Вычисление касательных к графику

Т	$rac{dP}{dT}_{up},\Pi { m a/K}$	$rac{dP}{dTdown},\Pi { m a}/{ m K}$	$L_{up},$ кДж/кг	$L_{down},$ кДж/кг		
21	7.84	11.76	1678	2545		
22	9.80	10.78	2048	2186		
23	12.74	8.82	2501	1732		
24	10.78	9.80	2016	1849		
25	11.76	12.74	2118	2315		
26	13.72	15.68	2347	2682		
27	13.72	14.70	2235	2376		
28	12.74	15.68	1982	2422		
29	12.74	17.64	1912	2575		
30	16.66	15.68	2399	2171		
31	17.64	15.68	2397	2092		
32	16.66	21.56	2171	2744		
33	19.60	20.58	2440	2451		
34	23.52	19.60	2775	2252		
35	20.58	22.54	2285	2454		
36	22.54	20.58	2423	2141		
37	25.48	21.56	2572	2157		
38	22.54	21.56	2183	2062		
39	25.48	22.54	2363	2082		
$L_{\rm cp} = (2.3 \pm 0.3) \cdot 10^6 { m Дж/кг}$						

К статистической погрешности прбавим приборную погрешность и получим:

$$L=2.3\pm0.3\,\mathrm{MДж/кг}$$

 $ln(\frac{P}{P_0})$ от 1/T: График и так линеен, поэтому найдем его угловой коэффициент и напрямую из него L:

$$L = 2.27 \pm 0.04 \,\mathrm{MДж/кг}$$

Полезно будет сравнить результаты с табличными значениями:

$$L_{
m {\scriptscriptstyle Ta6}{\scriptscriptstyle J}} = 2.26~{
m M}{
m Дж}/{
m K}{
m \Gamma}$$

5 Выводы

Оба метода дают результаты совпадающие с табличными значениями. Что также подтверждает, что наша оценка применимости модели, которую мы провели в начале работы, была верна.

Точности двух методов вычисления значительно отличаются; вероятно из-за большого влияния погрешности измерений на точечные вычисления производной. График в осях ln(P) от 1/T более информативен и нагляден и является предпочтительным при вычислении L.

Разница данных при нагревании и при охлаждении ,в основном, лежит в пределах погрешности измерений и никаких тенденций в отклонениях не наблюдается.