Domácí úkol

1) Doplňte následující tabulku:

1) Dopinic nasicuujici tabuiku.	
Vzorec	Název
HIO ₄	Kyselina jodistá
H5IO6	Kyselina pentahydrogenjodistá
H ₃ ReO ₅	Kyselina trihydrogenrhenistá
(NH ₄)NO ₃	Dusičnan amonný
HNO4	Kyselina peroxodusičná
H_2SO_6	Kyselina diperoxosírová
CH_2 — $CH = CH_2$	prop-2-en-cykobuthan
CH ₃ CH ₃ CH ₃ CH ₃	3,7-dimethan-4,5-diethan-nonan
NO ₂	2,3-dinitro-buthan
CH ₃ —CH—CH—COOH 	1-karboxy-1,2-dihydroxy-propan

2) Výpočty (nezapomeňte uvádět jednotky!!!):

a) Vypočítejte molární koncentraci 180 cm³ roztoku, který obsahuje 11,476 g KOH.
 Mr (KOH) = 56,1056

$$n_a = \frac{11.476}{56.1056}$$

$$c_A = \frac{n_a}{V} = \frac{\frac{11.476}{56.1056}}{180} \doteq 1.14 \cdot 10^{-3} \frac{\text{Mol}}{\text{cm}^3}$$

b) Kolik gramů Ba(OH) $_2$ ·8 H $_2$ O je zapotřebí na přípravu 2 dm 3 0,125 M roztoku Ba(OH) $_2$. Mr (Ba(OH) $_2$) = 171,342 Mr (Ba(OH) $_2$ ·8H $_2$ O) = 315,464

$$n_a = c_A \cdot V = 2 \cdot 0.125 = 0.25 \text{ Mol}$$

 $m = 0.25 \cdot 315.464 = 78 \text{ g}.$

c) 200 cm³ vodného roztoku ethanolu obsahuje 120 cm³ ethanolu. Vypočítejte koncentraci ethanolu v objemových procentech.

$$\frac{120}{200} = 100\%$$

d) Vypočítejte hmotnostní zlomek KCl v roztoku, který byl připraven rozpuštěním 20 g KCl v 150 g vody.

$$\frac{20}{150+20} = 0.117$$

e) Vypočítejte, kolik gramů NaNO₃ je zapotřebí na přípravu 2,5 dm³ 10% roztoku NaNO₃ o hustotě 1,0674 g·cm⁻³

$$V = 2.5 \cdot 10\% = 0.25 \text{ dm}^3 = 250 \text{ cm}^3$$

 $m = 1.0674 \cdot 250 = 267 \text{ g}$

f) Do 720 g 12,5% roztoku NaCl bylo přidáno 30 g soli. Určete koncentraci roztoku (v hm %) po úpravě.

$$\begin{split} m_{\rm H_2O} &= 720 \cdot (1-12.5\%) = 630 \\ m_{\rm NaCl} &= 720 \cdot 12.5\% + 30 = 120 \\ \frac{120}{630+120} &= 16\% \end{split}$$

g) Kolik cm³ 0,125M roztoku KOH lze připravit ze 3,5 g KOH.

$$n = \frac{3.5}{56} = 0.0625 \text{ mol}$$

 $V = \frac{0.0625}{0.125} = 0.5 \text{ dm}^3 = 500 \text{ cm}^3$