Aula 06 - Segmentação e Redes Generativas Adversárias

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br

Tópicos

- Classificação vs Segmentação
 - Classificação
 - Detecção de Objetos
 - Segmentação
- Redes Generativas Adversárias
 - DCGAN
 - PIX2PIX
- Codificação

Segmentação

Classificação vs Segmentação

Is this a dog?

Image Classification

What is there in image and where?

Object Detection

Which pixels belong to which object?

Image Segmentation

Classificação

Detecção de Objetos

Detecção de Objetos

Detecção de Objetos - RCNN

- Region Based Convolutional Neural Network (2014) Ross Girshick
- Selective Search Algorithm (Region Proposal)
- CNN (Classification)

R-CNN: Regions with CNN features

Detecção de Objetos - RCNN

Selective Search Algorithm (Region Proposal)

Detecção de Objetos - RCNN

- R-CNN: Selective Search->CNN
- Fast: End-to-end (Sel. Search->ROI Pooling→FC)
- Faster: Region Proposal Network (RPN)

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image	50 seconds	2 seconds	0.2 seconds
Speed-up	1x	25x	250x
mAP (VOC 2007)	66.0%	66.9%	66.9%

Detecção de Objetos - Yolo

- You Look Once (2015)
 - Joseph Redmon / Ross Girshick

Detecção de Objetos - Yolo

Let's Code

- YOLO Inference
 - COLAB [LINK]
 - CPU (local)
 - https://github.com/Asadullah-Dal17/yolov4-opencv-python

Segmentação

Is this a dog?

Image Classification

What is there in image and where?

Object Detection

Segmentação

• Classificação a nível de pixel

Segmentação - Mask RCNN

Faster R-CNN with Binary Mask (2017)

Mask RCNN

Segmentação - UNET

U-Net (Encoder and Decoder)

Let's Code

- U-NET (Treino e Inferência)
 - [LINK]

Redes Generativas Adversárias

Tópicos

- DCGAN
- PIX2PIX
- Prática

Deep Fakes

- Generalização: Dados Sintéticos gerados a partir do aprendizado da distribuição real do dado
- Aplicações
 - Filmes (Cenários Sintéticos)
 - Fotografia (Estimação de Pose, Coloração Artificial, Redução de Ruído)
 - Troca de Contexto (Zebra->Cavalo)
 - •

Generative Adversarial Networks (GAN's)

Modelo Generativo

Aprende a distribuição do dado

Modelo Generativo

Modelo Generativo Profundo

- Camadas Des-Convolucionais (upsampling)
 - Ruído → Imagens Sintéticas

Modelo Discriminante

- Classificação: Falso ou Real ?
 - CNN

Treinamento Adversário

Erro Adversário (Min-Max)

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

Let's Code

• LINK: Lecture_12-DCGAN.ipynb

Pix2Pix

• Transformação de Contexto (Image Translation)

Pix2Pix

- Modelo Generativo: Arquitetura Encoder-Decoder (i.e U-Net)
- Base de Dados Pareada (Origem->Destino)

Let's Code

LINK: Lecture_12-pix2pix.ipynb

