Geometry for fun

Henrique Tsuyoshi Yara September 1, 2022

Figure 1: My avatar :D

Contents

	Exercise 001	2
	.1 Problem	
	.2 Solution 1	2
2	Exercise 002	16
	.1 Problem	16
	2.2 Solution 1	10
3	Triangulo Russo	19
	Triangulo Russo 3.1 Problem	19
	3.2 Solution 1	19
	3 Solution 2	19

1 Exercise 001

1.1 Problem

Figure 2: $\overline{DC}=a; \overline{AC}=2a; \angle C\hat{B}D=80^\circ; \angle A\hat{C}D=40^\circ; \angle B\hat{C}D=10^\circ; \angle B\hat{A}C=?$

1.2 Solution 1

Figure 3: $\overline{CE}=\overline{CD}=\overline{AE}=a; \angle C\hat{E}D=\angle C\hat{D}E=70^\circ$

Figure 4: $\angle D\hat{E}C = 50^{\circ}; \overline{BF} = \overline{BC}$

Figure 5: $\overline{GA}//\overline{BF}$; $\angle B\hat{G}A = \angle F\hat{B}C = 80^\circ; \overline{AG} = \overline{CG}; \triangle FBC \approx \triangle AGC$

Figure 6: $\overline{HE}//\overline{GC}$; $\angle A\hat{H}E=80^\circ; H\hat{A}E=H\hat{E}A=50^\circ; \overline{GH}=\overline{HE}=\overline{HA}$

Figure 7: $\angle \hat{GIC} = \angle \hat{BDC} = 90^{\circ}$

Figure 8: $\triangle HJE \approx \triangle BDC$

Figure 9: $\overline{GH} = \overline{HE} : \angle H\hat{G}E = \angle H\hat{E}G = 40^{\circ}$

Figure 10: $\overline{AE} = \overline{IE} = \overline{EC}$

Figure 11: $\triangle HJE \equiv \triangle KJE; \triangle KIE \approx \triangle BCF$

Figure 12: $\triangle HJE \equiv \triangle KJE; \triangle KIE \approx \triangle BCF$

Figure 13: $\overline{JH} = \overline{ML} = \overline{KJ} = \overline{\frac{IG}{2}}$.: $\overline{KH} = \overline{ML}$

Figure 14: $\overline{AG}//\overline{EL}$: $\overline{AG}=2\overline{EL};\overline{KI}=\overline{LC},\overline{KE}=\overline{LE},\angle K\hat{I}E=\angle L\hat{C}E=50^{\circ}$: $\triangle KIE\equiv\triangle LCE$

Figure 15: $\triangle KIE \equiv \triangle HEA$ \therefore $\overline{AH} = \overline{AM}$ \therefore $\angle G\hat{A}B = 20^{\circ}$ \therefore $\angle B\hat{A}C = 30^{\circ}$

2 Exercise 002

2.1 Problem

Figure 16: $\overline{DB}=\overline{AC}; \angle C\hat{A}B=10^\circ; \angle A\hat{B}D=30^\circ; \angle A\hat{D}B=x^\circ$

2.2 Solution 1

Figure 17: $\angle E\hat{A}C=20^\circ; \angle hatEAB=\angle E\hat{B}A$.: $\overline{AE}=\overline{EB}$

Figure 18: $\angle G\hat{B}A = 10^{\circ}; \overline{GB} = \overline{AC}$

Figure 19: $\angle H\hat{A}B + \angle H\hat{B}A = \angle C\hat{H}B = \angle G\hat{H}A = 20^{\circ}$

Figure 20: $\overline{EF} \perp \overline{AB}; \angle E\hat{F}B = \angle E\hat{F}A = 90^{\circ}; \triangle AEF \equiv \triangle BEF$

Figure 21: $\overline{BG} = \overline{BD}$: $\angle D\hat{G}B = 80^\circ; \angle G\hat{A}H = \angle G\hat{H}A = 20^\circ$: $\angle E\hat{G}H = 40^\circ$: $\angle D\hat{G}E = 40^\circ$

Figure 22: $\angle D\hat{G}E = \angle H\hat{G}E = 40^\circ and \angle E\hat{D}G = \angle E\hat{H}G = 80^\circ$.: $\triangle DEG = \triangle HEG$.: $\overline{DG} = \overline{HG} = \overline{AG}$.: $\angle D\hat{A}G = \angle A\hat{D}G = 20^\circ$

- 3 Triangulo Russo
- 3.1 Problem
- 3.2 Solution 1
- 3.3 Solution 2

Figure 23: $\angle D\hat{A}E=20^\circ; \angle E\hat{A}B=60^\circ; \angle D\hat{B}A=50^\circ; \angle C\hat{B}D=30^\circ$

Figure 24: $\angle F\hat{C}D=20^\circ; \overline{CF}=\overline{CE}; \overline{FC} \parallel \overline{AE}$

Figure 25: $F \in \overline{BD}$

Figure 26: $\triangle CDB \approx \triangle ADF : \angle C\hat{A}F = A\hat{C}E; \angle C\hat{B}F = \angle B\hat{F}A$

Figure 27: $\triangle FGD \equiv \triangle EGD$: $\angle G\hat{E}D = 40^{\circ}$: $\angle D\hat{E}A = 30^{\circ}$

Figure 28: $\overline{AD}=\overline{AB}=\overline{AF}; \angle F\hat{A}B=20^\circ; \angle E\hat{A}F=40^\circ$

Figure 29: $\overline{DA} = \overline{AF} = \overline{FD}$

Figure 30: $\overline{DA}=\overline{AF}=\overline{FD}$.: $\angle D\hat{F}E=40^\circ$

Figure 31: $\angle A\hat{F}E=40^\circ$.: $\overline{EF}=\overline{DF}$.: $\angle F\hat{D}E=\angle F\hat{E}D=70^\circ$