and thus $\widehat{f}(u) = \overrightarrow{f}(u)$ for all $u \in \overrightarrow{E}$. Then we have

$$\widehat{f}(u + \lambda a) = \lambda f(a) + \overrightarrow{f}(u),$$

which proves the uniqueness of \hat{f} . On the other hand, the map \hat{f} defined as above is clearly a linear map extending f.

When $\lambda \neq 0$, we have

$$\widehat{f}(u + \lambda a) = \widehat{f}(\lambda(a + \lambda^{-1}u)) = \lambda \widehat{f}(a + \lambda^{-1}u) = \lambda f(a + \lambda^{-1}u).$$

Proposition 25.5 shows that $\langle \widehat{E}, j, \omega \rangle$, is a homogenization of (E, \overrightarrow{E}) . As a corollary, we obtain the following proposition.

Proposition 25.6. Given two affine spaces E and F and an affine map $f: E \to F$, there is a unique linear map $\widehat{f}: \widehat{E} \to \widehat{F}$ extending f, as in the diagram below,

$$E \xrightarrow{f} F$$

$$\downarrow j$$

$$\widehat{E} \xrightarrow{\widehat{f}} \widehat{F}$$

such that

$$\widehat{f}(u + \lambda a) = \overrightarrow{f}(u) + \lambda f(a),$$

for all $a \in E$, all $u \in \overrightarrow{E}$, and all $\lambda \in \mathbb{R}$, where \overrightarrow{f} is the linear map associated with f. In particular, when $\lambda \neq 0$, we have

$$\widehat{f}(u + \lambda a) = \lambda f(a + \lambda^{-1}u).$$

Proof. Consider the vector space \widehat{F} and the affine map $j \circ f \colon E \to \widehat{F}$. By Proposition 25.5, there is a unique linear map $\widehat{f} \colon \widehat{E} \to \widehat{F}$ extending $j \circ f$, and thus extending f.

Note that $\widehat{f} \colon \widehat{E} \to \widehat{F}$ has the property that $\widehat{f}(\overrightarrow{E}) \subseteq \overrightarrow{F}$. More generally, since

$$\widehat{f}(u + \lambda a) = \overrightarrow{f}(u) + \lambda f(a),$$

the linear map \hat{f} is weight-preserving. Also observe that we recover f from \hat{f} , by letting $\lambda = 1$ in $\hat{f}(u + \lambda a) = \lambda f(a + \lambda^{-1}u)$, that is, we have

$$f(a+u) = \widehat{f}(u + a).$$