Data Science and Business Analytics

Portfolio

By Elizabeth Leonny Efendi

About Me

Elizabeth Leonny Efendi

Enthusiastic and driven Data Science and Business Analytics student from Indonesia, eager to apply analytical skills in real-world settings. Passionate about solving complex problems, contributing to dynamic teams, and continuously expanding my knowledge through hands-on experience.

Business Analysis: Canadian Market

Market Research: Marriott International

Figure 1: Flow Chart

The multiple linear regression will examine the relationship between sustainability initiatives and customer loyalty metrics. The independent variables are environmental practices rating, green building initiatives, waste reduction, and energy conservation efforts, while the dependent variable is customer loyalty score.

Hypotheses:

H₀: There is no significant relationship between sustainability initiatives and customer loyalty metrics.

H₁: There is a significant relationship between sustainability initiatives and customer loyalty metrics.

Multiple linear regression equation:

Loyalty =
$$\beta_0 + \beta_1 Environmental + \beta_2 Building + \beta_3 Waste + \beta_4 Energy + \varepsilon_i$$

$$\widehat{Loyalty} = \widehat{\beta_0} + \widehat{\beta_1} Environmental + \widehat{\beta_2} Building + \widehat{\beta_3} Waste + \widehat{\beta_4} Energy$$

Where:

 $\widehat{\beta_0}$ = The intercept, estimated value of customer loyalty when variables are zero.

 $\hat{\beta}_i$ = The estimated change in customer loyalty when the particular X_i increases by 1 unit with all other independent variables remain constant.

All variables are measured on standardized scales:

- Environmental practices
- · Green building initiatives
- Waste reduction
- · Energy conservation efforts
- Customer loyalty score

Model Summary

١					
	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
	1				

 a. Predictors: (constant), Environmental practices, Green building initiatives, Waste reduction, Energy conservation efforts

Figure 8: Model Summary

Coefficients Table

Model	Unstandardized Coefficients		Standardized Coefficients	1	Sig.	95% Confidence Interval for B	
	В	Std. Error	Beta			Lower Bound	Upper Bound
(Constant)							
Environmental practices							
Green building initiatives							
Waste reduction							
Energy conservation efforts							

Figure 9: Coefficients Table

We will employ t-tests and F-tests using SPSS to examine both the individual significance of variables and the overall significance of the model. This analysis will help us determine whether sustainability initiatives have a meaningful influence on customer loyalty. The adjusted Rsquared value will be used to assess the strength of the relationship in the multiple linear regression model. A higher adjusted R-squared value would indicate a better model fit.

5. Timeline

Figure 17: Gantt Chart

6. Budget

Description	Cost (£)		
ncentives for Online Survey respondents	355,000		
Incentives for Focus Group sessions + Moderator	8,000		
Data Collection and Preparation	350,000	Sen burgers	Budget Breakdown
Data Analysis	200,000		
Administrative and Operational Costs	100,000		
Miscellaneous Fees	50,000		
Total Cost	1,063,000		Danistens

Figure 18: Budget Breakdown

Analysis: Sentre Mentors and Mentees

Stock Price Prediction: Meta

Language:

Data:

- Sources: Yahoo Finance
- <u>Features:</u> Moving averages, trading volume, financial ratios

Methodology:

- <u>Data Preprocessing:</u> Handled missing values, feature engineering
- Models: Linear Regression, Decision Tree

Flight Analysis

Language:

Data:

 Source: The 2009 ASA Statistical Computing and Graphics Data Expo

Methodology:

- Data Collection
- Data Cleaning
- Data Transformation
- Statistical Analysis
- Logistic Regression

Year	Day	of	the	Week	Average Delay
1995			Mo	onday	6.512384
1996			Sati	urday	7.859997
1997			Tue	esday	5.868216
1998			Sati	urday	5.349508
1999			Sati	urday	6.780820
2000			Sati	urday	7.883807
2001			Tue	esday	4.779724
2002			Sati	urday	2.107944
2003			Sati	urday	2.171316
2004			Sati	urday	4.215136

Flight Analysis

Language:

Data:

 Source: The 2009 ASA Statistical Computing and Graphics Data Expo

Methodology:

- Data Collection
- Data Cleaning
- Data Transformation
- Statistical Analysis
- Logistic Regression

Feature coefficients:

UniqueCarrier: -0.41592616010853733 lat_origin: -0.02472788594958321 long_origin: 0.01732631721702439 Year: -0.012916715774805342 long_dest: 0.011310413610952624 lat_dest: -0.003262644191880429 Distance: 0.0006178011191978469 CRSDepTime: -0.00047556415542441486 DepTime: 0.00044985926237693137 CRSArrTime: -8.565315048043337e-05

CRSArrTime: -8.565315048043337e-ArrTime: 5.088578261431095e-05

1956	8.30874
1957	3.33973
1959	6.09148
1962	6.09828
1963	6.50036
1964	6.50962
1965	4.09216
1966	7.66761
1967	4.91252
1968	5.19571
1969	4.62054
1978	4.47843
1971	3.28762
1972	7.89526
1973	4.83987
1974	5.96586
1975	6.00275
1976	6.83899
1977	6.40152
1978	6.40372
1979	6.3864
1988	6.5621
1982	6.84548
1983	6.54396
1984	8.96743
1985	8.17841
1986	7.81842
1987	7.53597
1988	7.60556
1989	8.82401
1998	8.71876
1991	7.85736
1992	8.00239
1993	7.59539
1994	7.06193
1995	6.70015
1996	7.2654
1997	6.83714
1998	6.22502
1999	5.82449
2888	5.29945
2001	4.79883
2002	5.53131
2003	5.81161
2884	7.79378
2887	5.98738

Flight Analysis

Language:

Data:

 Source: The 2009 ASA Statistical Computing and Graphics Data Expo

- Data Collection
- Data Cleaning
- Data Transformation
- Statistical Analysis
- Logistic Regression

Feature coefficients:

UniqueCarrier: -0.41592616010853733 lat_origin: -0.02472788594958321 long_origin: 0.01732631721702439 Year: -0.012916715774805342 long_dest: 0.011310413610952624 lat_dest: -0.003262644191880429 Distance: 0.0006178011191978469 CRSDepTime: -0.00047556415542441486 DepTime: 0.00044985926237693137 CRSArrTime: -8.565315048043337e-05

ArrTime: 5.088578261431095e-05

Research Paper: Clinical Decision Support System

3.1 CDSS Mechanisms

The CDSS processes are complex since it evaluates a large amount of patient data, aligning it with medical literature, case histories, and additional information through advanced algorithms. CDSSs are typically classified into knowledge-based and non-knowledge-based.

Figure 1: Interactions in knowledge-based and non-knowledge-based CDSS.

Knowledge-based CDSSs employ logical procedures to provide suggestions to help physicians. There will always be knowledge sources and rules obtained from medical literature, patient-centered procedures, guidelines, and expert knowledge. It is commonly used to handle complex decision-making cases. Meanwhile, non-knowledge based CDSSs use complex algorithms to make medical decisions and are usually used when a medical case has not explicitly happened in any past scenarios. One of the algorithms used is neural networks, which is a branch of Al to teach computers the way the human brain processes information and learns.

3.3.3 Reliability of Data

The reliability of data is crucial for providing high-quality patient care and making informed decisions. Some research found that patient data from EHRs are not entirely accurate, which is likely due to a lack of EHR usability (Dash et al., 2019). However, maintaining data reliability is a significant challenge. To input and update data manually requires time and energy, and is prone to errors, leading to inaccurate and incomplete data.

Conducting routine data audits can assist in verifying the precision and accuracy of the data. Also, healthcare providers might use automated data input and update processes to reduce errors and save time and energy. This includes using data import and export tools, integrating data systems, and implementing automated workflows.

	Mean Completeness Score	Mean Correctness Score
Hip Pain	.39	.91
Shoulder Pain	.32	.94
Knee Pain	.37	.96
Foot Pain	.30	.95
All cases combined	.34	.94

Figure 7: Completeness and Correctness Scores

Research conducted by internal medicine residents (PGY-1-3), shows that the core issue is completeness of data. Of the six elements, the data entered is only 30%-40% of the total data that should be entered. However, the data's average accuracy rate of 94%.

5.1 Strategic Planning

Strategic planning plays a crucial role in outlining the course of an organization and deciding how to allocate its resources to pursue that path (Reynolds, G.W., 2016). Implementation of CDSS can be classified as a growth or innovation project, which generates significant new revenue for the organization while exploring the use of new technology in a new way at the same time. With strategic planning, healthcare organizations can align their CDSS initiatives with their overall business objectives such as enhancing customer satisfaction and defining pricing strategies to sustain a competitive edge. Analyzing user feedback and satisfaction ratings can reveal areas for improvement in CDSS offerings. Furthermore, the CDSS market is expected to experience substantial growth in the future. Healthcare organizations can analyze data on the adoption rates of CDSS to inform pricing strategies.

Figure 8: CDSS Market Size Prediction

Stay In Touch

elizabethleonnyefendi@gmail.com

https://github.com/gezie1/Portfolio