STOR 320 Workflow in RMarkdown

Lecture 2

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

Workflow Information

- Chapters Discussing Workflow
 - Chapter 2: Basics
 - Chapter 4: Rscripts
 - Chapter 6: Projects
- Our Focus is on Workflow Within RMarkdown
- Today's Lecture on RMarkdown
 - Running R Code
 - Objects
 - Functions

Essential Reads

- Highly Advised Reading
 - Chapter 21: RMarkdown
 - Basics
 - Text Formatting
 - Code Chunks
 - Chapter 22: More ggplot Info
 - Labeling
 - Annotating
 - Scaling
 - Zooming
 - Themes
 - Saving Graphics

Rmarkdown File

Cheat Sheet

Placing Code in RMarkdown

- Code Chunks (Mini Rscripts)
 - R, Python, SQL, Rcpp (C++)
 - Inserting R Chunks
 - Method 1:

- Method 2: Ctrl+Alt+I
- Method 3: Type ```{r}

 ``

Put R code here

Inline Code in RMarkdown

```
The sum of vector a is `r sum(a)`.

Knit to HTML

a \leftarrow c(1,2,3)
The sum of vector a is 6.
```

- Various Ways
 - Highlighted Code

- Various Ways (Cont.)
 - Chunking It (Recommended)

Ctrl+Shift+Enter

Order Matters

```
#Created Variables x and y assigned to 3 and 4 respectively
x=3
y=4
print(c(x,y))

{r}
x+y #Addition
x-y #Subtraction
x*y #Multiplication
x/y #Division
x/y #Powers
x%y #Modulus (x mod y)

Error: object 'x' not found
```

- Order Matters (Cont.)
 - Run First Chunk

4

У

10

- Order Matters (Cont.)
 - Super Chunky

```
```{r}
#Created Variables x and y assigned to 3 and 4 respectively
x=3
y=4
print(c(x,y))
 [1] 3 4
 `{r}
 ∰ ¥ ▶
x+y #Addition
x-y #Subtraction
x*y #Multiplication
x/v #Division
x∧v #Powers
x[%]y #Modulus (x mod y)
 \lceil 1 \rceil 7
 [1] -1
 \lceil 1 \rceil 12
 [1] 0.75
 [1] 81
 [1] 3
```{r}
         #Logarithm of x
log(x)
abs(x-y) #Absolute value of x-y
exp(x)
          #e^x
                           Then, Run Current Chunk
 Γ17 1.098612
 Г17
 [1] 20.08554
```

- Order Matters (Cont.)
 - Super Chunky (Cont.)

Chunk Options

```
```{r,eval=F}
p3<-p2+geom_smooth(COMPLETE_INSIDE)
p3
```
</pre>
```

Option	Run code	Show code	Output	Plots	Messages	Warnings
eval = FALSE	-		-	-	-	-
include = FALSE		-	-	-	-	-
echo = FALSE		-				
results = "hide"			-			
fig.show = "hide"				-		
message = FALSE					-	
warning = FALSE						-

Chunk Options

Objects in R

```
``{r}
                              € ▼ ▶
#Numeric Vector Named x
x=c(3,2,1,5,7,8)
#Prints x
#Third Element of x
x[3]
#Character Vector Named y
y=c("H","T","H","T","H","T")
#Fifth Element of y
y[5]
#3x2 Matrix Named z
z=matrix(c(3,2,1,5,7,8),
  nrow=2,ncol=3,byrow=T
#Prints z
z
#First Row of z
z[1,]
#1st and 3rd Column of z
z[,c(1,3)]
                             [1] 3 2 1 5 7 8
 \lceil 1 \rceil 1
[1] "H"
      [,1] [,2] [,3]
\lceil 1, \rceil
[2,]
[1] 3 2 1
      [,1] [,2]
[1,]
[2,]
```

- Many Types of Objects
 - Vector and Matrix

Objects in R

- Many Types of Objects (Cont.)
 - Tibble/Dataframe

Objects in R

Functions in R

- Many Types of Functions
 - You: Input Objects and Specify Arguments (Defaults Exist)
 - Function: Outputs Objects
 - Example > quantile()
 - Input: Vector and Specified Percentiles
 - Output: Desired Percentiles
 - For online help, > ?quantile

Functions in R

```
Console
      Terminal ×
> #Randomly Draw 1000 Samples from
> #Normal Distribution with Mean=5 and SD=10
> x=rnorm(1000,mean=5,sd=10)
> mean(x) #Prints Sample Mean
[1] 4.905269
> sd(x)
         #Prints Sample SD
[1] 10.01766
> quantile(x) #Default Quantiles (Min,Quartiles,Max)
                  25%
                              50%
                                         75%
                                                   100%
-28.232597 -1.480456
                        5.022031 11.433746 33.929228
> quantile(x,probs=c(0.05,0.95)) #Middle 90%
                95%
       5%
-11.98847
          21.30757
```


- Many Types of Functions (Cont.)
 - Example (Cont.)

Rmarkdown Training

Now, let us

PRACTICE

Download the Rmd for Tutorial 2 to Your Computer from the Course Website and open the file in RStudio