CS2040S Data Structures and Algorithms

Hashing IV

Competition: Speed Demon!

Simple data processing.... as fast as you can.

Problem Set: Automatic Writing!

Produce your own magnum opus, automatically!

Jaquet Droz: The Writer

Hashing overview

• What is a hash function?

Collision resolution: chaining and open addressing

Java hashing

• Table (re)sizing

Sets

Abstract Data Types

Symbol Table

```
public interfaceSymbolTablevoid insert (Key k, Value v)insert (k,v) into tableValue search (Key k)get value paired with kvoid delete (Key k)remove key k (and value)boolean contains (Key k)is there a value for k?int size()number of (k,v) pairs
```

Note: no successor / predecessor queries.

Hash Functions

Problem:

- Huge universe U of possible keys.
- Smaller number *n* of actual keys.
- How to map *n* keys to $m \approx n$ buckets?

Hash Functions

Define hash function $h: U \rightarrow \{1..m\}$

- Store key k in bucket h(k).

Hash Functions

Collisions:

- We say that two <u>distinct</u> keys k_1 and k_2 collide if: $h(k_1) = h(k_2)$

- The table size is smaller than the universe size.
- The pigeonhole principle says:
 - There must exist two keys that map to the same bucket.
 - Some keys must collide!

Resolving Collisions

- Basic problem:
 - What to do when two items hash to the same bucket?

- Solution 1: Chaining
 - Insert item into a linked list.

- Solution 2: Open Addressing
 - Find another free bucket.

How large should the table be?

- Assume: Hashing with Chaining
- Assume: Simple Uniform Hashing
- Expected search time: O(1 + n/m)
- Optimal size: $m = \Theta(n)$
 - if (m < 2n): too many collisions.
 - if (m > 10n): too much wasted space.

- Problem: we don't know *n* in advance.

Idea:

- Start with small (constant) table size.
- Grow (and shrink) table as necessary.

Example:

- Initially, m = 10.
- After inserting 6 items, table too small! Grow...
- After deleting *n*-1 items, table too big! Shrink...

How to grow the table:

- 1. Choose new table size m.
- 2. Choose new hash function h.
 - Hash function depends on table size!
 - Remember: $h: U \rightarrow \{1..m\}$
- 3. For each item in the old hash table:
 - Compute new hash function.
 - Copy item to new bucket.

Not like Java hashCode!

Time complexity of growing the table:

- Assume:
 - Let m_1 be the size of the old hash table.
 - Let m_2 be the size of the new hash table.
 - Let *n* be the number of elements in the hash table.

– Costs:

- Scanning old hash table: $O(m_1)$
- Creating new hash table: $O(m_2)$
- Inserting each element in new hash table: O(1)
- Total: $O(m_1 + m_2 + n)$

Idea 1: Increment table size by 1

$$- \text{ if } (n == m): m = m+1$$

- Cost of resize:
 - Size $m_1 = n$.
 - Size $m_2 = n + 1$.
 - Total: O(n)

Idea 1: Increment table size by 1

- When (n == m): m = m+1
- Cost of each resize: O(n)

Table size	8	8	9	10	11	12	•••	n+1
Number of items	0	7	8	9	10	11	•••	n
Number of inserts		7	1	1	1	1	•••	1
Cost		7	8	9	10	11		n

- Total cost:
$$(7 + 8 + 9 + 10 + 11 + ... + n) = O(n^2)$$

Idea 2: Double table size

- if (n == m): m = 2m

Cost of resize:

- Size $m_1 = n$.
- Size $m_2 = 2n$.
- Total: O(n)

Idea 2: Double table size

- When (n == m): m = 2m
- Cost of each resize: O(n)

Table size	8	8	16	16	16	16	16	16	16	16	32	32	32	•••	2n
# of items	0	7	8	9	10	11	12	13	14	15	16	17	18	• • •	n
# of inserts		7	1	1	1	1	1	1	1	1	1	1	1	•••	1
Cost		7	8	1	1	1	1	1	1	1	16	1	1		n

- Total cost:
$$(7 + 15 + 31 + ... + n) = O(n)$$

Idea 2: Double table size

- if (n == m): m = 2m

- Cost of resize: O(n)
- Cost of inserting n items + resizing: O(n)

- Most insertions: O(1)
- Some insertions: linear cost (expensive)
- Average cost: O(1)

Idea 3: Square table size

- When (n == m): $m = m^2$

Table size	Total Resizing Cost
8	?
64	?
4,096	?
16,777,216	?
• • •	•••
m	?

Idea 3: Square table size

- if
$$(n == m)$$
: $m = m^2$

– Cost of resize:

- Size $m_1 = n$.
- Size $m_2 = n^2$.
- Total: $O(m_1 + m_2 + n)$ = $O(n + n^2 + n)$ = $O(n^2)$

Idea 3: Square table size

- if
$$(n == m)$$
: $m = m^2$

- Cost of resize:
 - Total: $O(n^2)$

- Cost of inserts:
 - Total: O(n)

Best (so far): Double table size

```
- \text{ if } (n == m): m = 2m
```

- Cost of resize:
 - Size $m_1 = n$.
 - Size $m_2 = 2n$.
 - Total: O(n)

Basic procedure: (chained hash tables)

Delete(key)

- 1. Calculate hash of *key*.
- 2. Let *L* be the linked list in the specified bucket.
- 3. Search for item in linked list *L*.
- 4. Delete item from linked list L.

Cost:

- Total: O(1 + n/m)

What happens if too many items are deleted?

- Table is too big!
- Shrink the table...

- Try 1:
 - If (n == m), then m = 2m.
 - If (n < m/2) then m = m/2.

Rules for shrinking and growing:

- Try 1:
 - If (n == m), then m = 2m.
 - If (n < m/2) then m = m/2.

- Example problem:
 - Start: n=100, m=200
 - Delete: n=99, $m=200 \rightarrow$ shrink to m=100
 - Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
 - Repeat...

Example execution:

```
• Start: n=100, m=200
```

```
cost=100 • Delete: n=99, m=200 \rightarrow shrink to m=100
```

```
cost=100 • Insert: n=100, m=100 \rightarrow \text{grow to } m=200
```

```
cost=100 • Delete: n=99, m=200 \rightarrow shrink to m=100
```

```
cost=100 • Insert: n=100, m=100 \rightarrow \text{grow to } m=200
```

- cost=100 Delete: n=99, $m=200 \rightarrow$ shrink to m=100
- cost=100 Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
 - Repeat...

Rules for shrinking and growing:

- Try 2:
 - If (n == m), then m = 2m.
 - If (n < m/4), then m = m/2.

- Is this right?
- How do we decide whether this works?

Rules for shrinking and growing:

- Try 2:
 - If (n == m), then m = 2m.
 - If (n < m/4), then m = m/2.

Claim:

- Every time you double a table of size m, at least m/2 new items were added.
- Every time you shrink a table of size m, at least m/4 items were deleted.

Claim:

- Every time you double a table of size m, at least m/2 new items were added.
- Every time you shrink a table of size m, at least m/4 items were deleted.

Technique for analyzing "average" cost:

- Common in data structure analysis
- Like paying rent:
 - You don't pay rent every day!
 - Pay 900/month = 30/day.

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: amortized cost = 7

insert: 5
 insert: 5
 5+5 <= 2*7 = 14
 insert: 5
 5+5+5 <= 3*7 = 21
 insert: 13
 5+5+5+13 <= 4*7 = 28
 insert: 7
 5+5+5+13+7 <= 5*7 = 35

"amortized" is NOT "average"

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: amortized cost **NOT** 7

```
    insert: 13
    insert: 5
    insert: 7
    insert: 7
```

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: (Hash Tables)

- Inserting k elements into a hash table takes time O(k).
- Conclusion:

The insert operation has amortized cost O(1).

Accounting Method (paying rent)

- Imagine a bank account B.
- Each operation adds money to the bank account.
- Every step of the algorithm spends money:
 - Immediate money: to perform the operation.
 - Deferred money: from the bank account.
- Total cost execution = total money
 - Average time / operation = money / num. ops

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account, uses O(1) dollars to insert element.
- A table with k new elements since last resize has k dollars in bank.

Bank account \$2 dollars

	_
0	null
1	null
2	(k ₁ , A)
3	null
4	null
5	null
6	null
7	null
8	(k ₂ , B)
9	null

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.

– Claim:

- Resizing a table of size m takes O(m) time.
- If you resize a table of size m, then:
 - at least m/2 new elements since last resize
 - -bank account has $\Theta(m)$ dollars.

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.
- Pay for resizing from the bank account!
- Strategy:
 - Analyze inserts ignoring cost of resizing.
 - Ensure that bank account always is big enough to pay for resizing.

Total cost: Inserting *k* elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Total cost: Inserting *k* elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Cost per operation:

- Deferred dollars: O(1)
- Immediate dollars: O(1)
- Total: O(1) / per operation

Counter ADT:

- increment()
- read()

Counter ADT:

- increment()
- read()

increment()

Counter ADT:

- increment()
- read()

increment(), increment()

0	0	0	0	0	0	0	0	1	0

Counter ADT:

- increment()
- read()

increment(), increment()

What is the worst-case cost of incrementing a counter with max-value n?

- 1. O(1)
- **✓**2. O(log n)
 - 3. O(n)
 - 4. $O(n^2)$
 - 5. I have no idea.

Counter ADT:

- increment()
- read()

Some increments are expensive...

Question: If we increment the counter to *n*, what is the amortized cost per operation?

- Easy answer: $O(\log n)$
- More careful analysis....

Observation:

During each increment, only <u>one</u> bit is changed from: $0 \rightarrow 1$

Observation:

During each increment, many bits may be changed from: $1 \rightarrow 0$

Observation:

Accounting method: each bit has a bank account.

Whenever you change it from $0 \rightarrow 1$, add one dollar.

Observation:

Accounting method: each bit has a bank account. Whenever you change it from $0 \rightarrow 1$, add one dollar. Whenever you change it from $1 \rightarrow 0$, pay one dollar.

Counter ADT

Counter ADT

increment()

Counter ADT

increment(), increment()

Counter ADT

increment(), increment()

Counter ADT

increment()

Observation:

Amortized cost of increment: 2

- One operation to switch one $0 \rightarrow 1$
- One dollar (for bank account of switched bit).

(All switches from $1 \rightarrow 0$ paid for by bank account.)

Table Size Rules

Rules for shrinking and growing:

- If (n == m), then m = 2m.
- If (n < m/4), then m = m/2.

– Claim:

- Every time you double a table of size m, at least m/2 new items were added.
- Every time you shrink a table of size m, at least m/4 items were deleted.

Accounting Method

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.

– Claim:

- Resizing a table of size m takes O(m) time.
- If you resize a table of size m, then:
 - at least m/2 new elements since last resize
 - -bank account has $\Theta(m)$ dollars.

Total cost: Inserting *k* elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Cost per operation:

- Deferred dollars: O(1)
- Immediate dollars: O(1)
- Total: O(1) / per operation

Hash Table Resizing

Conclusion: Hashing with Chaining

with Simple Uniform Hashing Assumption (SUHA)

Cost per operation:

- Insert operation: amortized O(1)
- Search operation: expected O(1)

Notes:

- Inserts are amortized because of table resizing.
- Inserts are not randomized (because no searching for duplicates).
- Searches are expected (but not amortized) since no resizing on a search.

Hashing overview

• What is a hash function?

Collision resolution: chaining and open addressing

Java hashing

• Table (re)sizing

Sets

Symbol Table

```
public interface SymbolTable<Key, Value v) insert (k,v) into table

void insert(Key k, Value v) get value paired with k

void delete(Key k) remove key k (and value)

boolean contains(Key k) is there a value for k?

int size() number of (k,v) pairs</pre>
```

Note: no successor / predecessor queries.

Set

public class	Set <key></key>	
void	insert(Key k)	Insert k into set
boolean	contains(Key k)	Is k in the set?
void	delete(Key k)	Remove key k from the set
void	<pre>intersect(Set<key> s)</key></pre>	Take the intersection.

Take the union.

union(Set<Key> s)

Properties:

• No defined ordering.

void

- Speed is critical.
- Space is critical.

Set

Java: HashSet<...> implements Set<...>

A few examples

Facebook:

- I have a list of (names) of friends:
 - John
 - Mary
 - Bob
- Some are online, some are offline.
- How do I determine which are on-line and which are off-line?

Maintain a set of online (or offline) friends...

A few examples

Spam filter:

- I have a list bad e-mail addresses:
 - @ mxkp322ochat.com
 - @ info.dhml212oblackboard.net
 - @ transformationalwellness.com
- I have a list of good e-mail addresses:
 - My mom.
 - *.nus.edu.sg
- How do I quickly check for spam?

Maintain a set...

Set

public class	Set <key></key>	
void	insert(Key k)	Insert k into set
boolean	contains(Key k)	Is k in the set?
void	delete(Key k)	Remove key k from the set
void	intersect(Set <key> s)</key>	Take the intersection.
void	union(Set <key> s)</key>	Take the union.

Solution 1: Implement using a Hash Table

Which problem does a hash table not solve?

- 1. Fast insertion
- 2. Fast deletion
- 3. Fast lookup
- 4. Small space
- 5. All of the above
- 6. None of the above

A hash table takes more space than a simple list!

Use a hash table: 0 0 www.gmail.com Why do we store the URL www.apple.com data in the hash table? www.microsoft.com hash("www.microsoft.com") www.nytimes.com hash("www.nytimes.com")~

Use a hash table: 0 www.gmail.com Why do we store the URL www.apple.com data in the hash table? www.microsoft.com hasl So that we can resolve www.nytimes.com collisions!

Abstract Data Type

Set

public class	Set <key></key>	
void	insert(Key k)	Insert k into set
boolean	contains(Key k)	Is k in the set?
void	delete(Key k)	Remove key k from the set
void	intersect(Set <key> s)</key>	Take the intersection.
void	union(Set <key> s)</key>	Take the union.

Solution 2: Implement using a Fingerprint Hash Table

```
Use a fingerprint:
                                    0
   Only store/send m bits!
                                    0
hash("www.gmail.com")-----
hash("www.apple.com")....
                                    0
                                    0
hash("www.microsoft.com")"
                                    0
hash("www.nytimes.com")
                                  9
```

Fingerprints

Set Abstract Data Type

Maintain a vector of 0/1 bits.

```
insert(key)
1. h = hash(key);
2. table[h] = 1;

lookup(key)
1. h = hash(key);
2. return (table[h] == 1);
```

The key difference of a Fingerprint Hash Table (FHT) is:

- 1. A FHT prevents collisions.
- 2. A FHT does not store the key in the table.
- 3. A FHT works with simpler hash functions.
- 4. A FHT saves time calculating hashes.
- 5. I don't understand how an FHT is different.

```
Use a fingerprint:
                                 0
                                 0
hash("www.gmail.com")-----
hash("www.apple.com")
                                 0
                                 0
hash("www.microsoft.com")"
                                 0
hash("www.nytimes.com")
                               9
```

```
What happens on collision?
                                     0
                                     0
hash("www.gmail.com").....
                                     0
                                  3
hash("www.apple.com")
                                     0
                                     0
hash("www.microsoft.com")"
                                     0
hash("www.nytimes.com")
                                  9
```

Lookup operation: 0 0 0 0 0 0 If the URL is in the web cache, it will always report true. 9 (No false negatives.)

Fingerprint Hash Table

Facebook example: if the FHT stores the set of online users, then you might:

- 1. Believe Fred is on-line, when he is not.
- 2. Believe Fred is offline, when is not.
- 3. Never make any mistakes.

Spam example: it is better to store in the Fingerprint Hash Table:

- 1. The set of **good** e-mail addresses.
 - 2. The set of **bad** e-mail addresses
 - 3. It does not matter.

I think it is better to mistakenly accept a few SPAM e-mails than to accidently reject an e-mail from my mother!

Probability of a false negative: 0

Probability of a false positive?

On lookup in a table of size m with n elements, Probability of **no** false positive:

$$\left(1 - \frac{1}{m}\right)^n \approx \left(\frac{1}{e}\right)^{n/m}$$

chance of no collision

Probability of collision?

hash("www.gmail.com")

What is the probability that no other URL is in slot 3?

0	0
1	0
2	0
3	1
4	0
5	0
6	1
7	0
8	1
9	0

Probability of no false positive: (simple uniform hashing assumption)

$$\left(1 - \frac{1}{m}\right)^n \approx \left(\frac{1}{e}\right)^{n/m}$$

Probability of a false positive, at most:

$$1-\left(\frac{1}{e}\right)^{n/m}$$

Assume you want:

- Probability of false positives < p
 - Example: at most 5% of queries return false positive.

$$p = .05$$

- Need:
$$\frac{n}{m} \le \log\left(\frac{1}{1-p}\right)$$

• Example: m >= (13.5)n

prob(false positive)

probability of false positive vs (m/n)

table size (m/n)

Summary So Far

Fingerprint Hash Functions

- Don't store the key.
- Only store 0/1 vector.

Summary So Far

Fingerprint Hash Functions

- Don't store the key.
- Only store 0/1 vector.
- Trade-off:
 - Reduced space: only 1-bit per slot
 - Increase space: bigger table to avoid collisions

Fingerprint Hash Table

Can we do better?


```
Idea: use 2 hash functions!
                                                          0
                                                          0
hash("www.gmail.com")
                                                          0
insert(URL)
                                                          0
     k_1 = \text{hash}_1(\text{URL});
                                                          0
     k_2 = \text{hash}_2(\text{URL});
     T[k_1] = 1;
                                                      9
     T[k_2] = 1;
```

Idea: use 2 hash functions!

```
query(URL)
k_1 = \text{hash}_1(\text{URL});
k_2 = \text{hash}_2(\text{URL});
if (T[k_1] \&\& T[k_2])
return true;
else return false;
```


A Bloom Filter can have:

- ✓ 1. Only false positives.
 - 2. Only false negatives.
 - 3. Both false positives and negatives.
 - 4. Wait, which is which again?

Idea: use 2 hash functions!

- No false negatives.
- Possible false positives.

Idea: use 2 hash functions!

```
query(URL)
k_1 = \text{hash}_1(\text{URL});
k_2 = \text{hash}_2(\text{URL});
if (T[k_1] \&\& T[k_2])
return true;
else return false;
```


Idea: use 2 hash functions!

Trade-off:

- Each item takes more "space" in the table.
- Requires <u>two</u> collisions for a false positive.

0	0
1	0
2	1
3	1
4	0
5	0
6	1
7	0
8	1
9	0

Probability a given bit is 0:

Probability a given bit is 0:

$$\left(1 - \frac{1}{m}\right)^{2n} \approx \left(\frac{1}{e}\right)^{2n/m}$$

Probability of a false positive: (1 set in both slots)

$$\left(1-\left(\frac{1}{e}\right)^{2n/m}\right)^2$$

Question:

- 1. What analytic mistake did I make on the previous slide?
- 2. The slots are not independent!
- 3. If one slot is a 1, then the other slot is less likely to be a 1.

Probability a given bit is 0:

$$\left(1 - \frac{1}{m}\right)^{2n} \approx \left(\frac{1}{e}\right)^{2n/m}$$

Probability of a false positive: (1 set in both slots)

$$\left(1-\left(\frac{1}{e}\right)^{2n/m}\right)^2$$

^{*} Assuming BOGUS fact that each table slot is independent...

Assume you want:

- probability of false positives < p
 - Example: at most 5% of queries return false positive.

$$p = .05$$

- Need:
$$\frac{n}{m} \le \frac{1}{2} \log \left(\frac{1}{1 - p^{1/2}} \right)$$

• Example: m >= (7.9)n

^{*} Assuming BOGUS fact that each table slot is independent...

prob(false positive)

False positives rate vs. (m/n)

table size (m/n)

Probability a given bit is 0:

$$\left(1 - \frac{1}{m}\right)^{kn} \approx e^{-kn/m}$$

Probability a given bit is 0:

$$\left(1 - \frac{1}{m}\right)^{kn} \approx e^{-kn/m}$$

Probability of a collision at one spot:

$$1 - e^{-kn/m}$$

* Assuming BOGUS fact that each table slot is independent...

Probability of a collision at one spot:

$$1 - e^{-kn/m}$$

Probability of a collision at all *k* spots:

$$(1-e^{-kn/m})^k$$

* Assuming BOGUS fact that each table slot is independent...

prob(false positive)

false positive rate vs. (m/n)

table size (m/n)

prob(false positive)

false positive rate vs k

$$m = 10n$$

prob(false positive)

$$m = 18n$$

What is the optimal value of k?

Probability of false positive:

$$(1-e^{-kn/m})^k$$

- Choose:
$$k = \frac{m}{n} \ln 2$$

- Error probability: 2^{-R}

Implementing Sets

- Fingerprint Hash Functions
 - Don't store the key.
 - Only store 0/1 vector.
- Bloom Filter
 - Use more than one hash function.
 - Redundancy reduces collisions.
- Probability of Error
 - False positives
 - False negatives

Fingerprint Hash Table

```
What about deletion?
                                            0
                                            0
insert("www.gmail.com")...
                                            0
                                         3
                                            0
                                         4
insert("www.apple.com")
                                            0
                                         5
delete("www.gmail.com")
                                            0
                                         9
```

What about deleting an element?

- Store counter instead of 1 bit.
- On insert: increment.
- On delete: decrement.

Beware:

- If counter is big, then no space saving.
- If collisions are rare, counter is small: only a few bits.

Implementation of Set ADT:

- insert: O(k)
- delete: O(k)
- query: O(k)

Implementation of Set ADT:

- intersection
 - Bitwise AND of two Bloom filters
 - Time: O(m)

0	0	&	0
1	0	&	1
2	0	&	0
3	1	&	1
4	0	&	0
5	0	&	0
6	1	&	0
7	0	&	0
8	1	&	1
9	0	&	0

Implementation of Set ADT:

- intersection
 - Bitwise AND of two Bloom filters: O(m)

- union
 - Bitwise OR of two Bloom filters: O(m)

Other applications

- Chrome browser safe-browsing
 - Maintains list of "bad" websites.
 - Occasionally retrieves updates from google server.
- Spell-checkers
 - Storing all words takes a lot of space.
 - Instead, store a Bloom filter of the words.

• Weak password dictionaries

Summary

When to use Bloom Filters?

- Storing a set of data.
- Space is important.
- False positives are ok.

Interesting trade-offs:

- Space
- Time
- Error probability

Today: Hash Tables (continued)

- Table (re)sizing
 - Proper hash table size
 - Amortized analysis
- Sets
 - Hash table sets
 - Bloom Filters