

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ «Информатика и системы управления» КАФЕДРА ИУ-7 «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе № 2

Дисциплина:	<u>Моделирование</u>		
Студент группы ИУ7-73Б			Паламарчук А.Н.
		(Подпись, дата)	(Фамилия И.О.)
Преподаватель	-		<u>Рудаков И.В.</u>
		(Подпись, дата)	(Фамилия И.О.)

Задание

Разработать программное обеспечение для расчёта предельных вероятностей, среднего времени пребывания в состояниях. Необходимо реализовать для расчета сложной системы S, с количеством состояний [2, 10]. Пользователь должен иметь возможность осуществить ввод матрицы интенсивностей переходов состояний (валидация необходима). Необходимо определить время нахождения системы в каждом состоянии при установившемся режиме работы. Результаты расчетов должны выводится пользователю в табличном виде.

Теоретическая часть

Случайный процесс протекает в некоторой сложной системе называется марковским, если для каждого момента времени вероятность любого состояния системы в будущем зависит только от его состояния в настоящем и не зависит от того, когда и каким образом система пришла в это состояние (т.е. не зависит от того как процесс развивался в прошлом).

Для анализа марковского процесса с непрерывным временем составляют систему дифференциальных уравнений Колмогорова. В левой части каждого уравнения находится производная функции вероятности $p_i(t)$, а в правой — сумма произведений вероятностей всех состояний, переводящих систему в данное состояние i, на интенсивности соответствующих переходов, минус суммарная интенсивность всех переходов, выводящих систему из состояния i, умноженная на вероятность $p_i(t)$. Уравнение Колмогорова для состояния i имеет следующий вид:

$$p'_{i}(t) = \Sigma \left(\lambda_{ji} * p_{j}(t)\right) - p_{i}(t) * \Sigma(\lambda_{ij})$$
(1)

По условию задачи рассматриваемый марковский процесс является стационарным, его вероятностные характеристики не изменяются со временем. Тогда производные вероятностей равны нулю $p'_i(t) = 0$, что приводит к системе линейных алгебраических уравнений. Однако такая система является линейно зависимой. Для получения единственного решения

одно из уравнений заменяется уравнением нормировки — сумма вероятностей нахождения системы во всех состояниях равна единице $\Sigma p_{\rm i}(t)=1$.

Для нахождения среднего времени пребывания системы в состоянии $j\left(t_{j}\right)$ используется уравнение баланса, которое в стационарном режиме утверждает равенство частоты входа в состояние и частоты выхода из него:

$$frequencyInput_i = frequencyOutput_i$$
 (2)

Частота выхода определяется: $frequencyOutput_j = probability_j * sumOutputIntensity_j$, где $sumOutputIntensity_j = \Sigma(\lambda_{ji})$.

Частота входа определяется: $frequencyInput_j = \Sigma(probability_i * \lambda_{ij}).$ Среднее время пребывания в состоянии по определению обратно суммарной интенсивности выхода: $t_j = \frac{1}{sumOutputIntensity_j}.$ Выразив $sumOutputIntensity_j$ из уравнения баланса и подставив в определение времени, получаем

$$t_j = \frac{probability_j}{\Sigma(probability_i * \lambda_{ij})}$$
 (3)

Результат работы

Вывод

Поставленная задача была выполнена в полном объеме. Разработанное программное обеспечение позволяет производить расчёт предельных вероятностей, среднего времени пребывания в состояниях для сложной системы S.