文理 6.4:

B: c) 先证 aA = An Ac

著 $\pi \in \partial A$. 由 史 界 点 穴 义 役 , $V_{7}>0$, $V_{7}>0$

る xe A n Ac , 同理 羽得, Y r>u, B(x; r) n A≠ダ B(x; r) n Ac≠ダ

· xe dA

又由文理 6.) 知: Ā n Āc = ((A^c)°) c n (A°) c $= ((A^c)^\circ \sqcup A^\circ)^c \quad (De Murgen 律 (A n B)^c = A^c \sqcup B^c)$

显然有 DA:An Ac DAc

(2). $A^{\circ} \sqcup \partial A = A^{\circ} \sqcup (\overline{A} \wedge \overline{A}^{\circ})$ $= (A^{\circ} \sqcup \overline{A}) \wedge (A^{\circ} \sqcup \overline{A}^{\circ}) \qquad \qquad \overline{L} \wedge A^{\circ} = (A^{\circ})^{\circ} (\overline{\Sigma} \mathcal{U}_{6.1})$ $= \overline{A} \wedge (A^{\circ} \sqcup (A^{\circ})^{\circ}) = \overline{A}$

· A = A° □ ∂A (不复异)

星然有 A° = A \ ∂A , ∂A = A \ A°.

(3). $A \sqcup \partial A = A \sqcup (\overline{A} \wedge \overline{A^c})$ $= (A \sqcup \overline{A}) \wedge (A \sqcup \overline{A^c}) \qquad [A \subset \overline{A}, |R^c| = A \sqcup A^c \subset A \sqcup \overline{A^c}]$ $= \overline{A} \wedge |R^c| = \overline{A}$

 $A - \partial A = A - (\bar{A} \cap \bar{A}^c) = A \cap ((\bar{A})^c \sqcup (\bar{A}^c)^c) \qquad [:: A^o = (\bar{A}^c)^c]$ $= (A \cap (\bar{A})^c) \sqcup (A \cap A^o) \quad [A \subset \bar{A} \Rightarrow (\bar{A})^c \subset A^c; A^o \in A]$ $= \phi \sqcup A^o = A^o$ $A \cap (\bar{A})^c \subset A \cap A^c = \phi$

[: Ac A => (A) c A => (A) c To]

(5) $\partial(A \sqcup B) = \overline{A \sqcup B} \wedge \overline{(A \sqcup B)^c}$ $= (\overline{A} \sqcup \overline{B}) \wedge \overline{(A \sqcup B)^c}$ $= (\overline{A} \wedge \overline{(A \sqcup B)^c}) \sqcup (\overline{B} \wedge \overline{(A \sqcup B)^c})$

[: $A \subset A \sqcup B \Rightarrow (A \sqcup B)^c \subset A^c \Rightarrow (\overline{A \sqcup B})^c \subset \overline{A}^c \Rightarrow \overline{A} n (A \sqcup B)^c \subset \overline{A} n \overline{A}^c$]

[理, $\overline{B} n (\overline{A \sqcup B})^c \subset \overline{B} n \overline{B}^c$ $\overline{C} (\overline{A} n \overline{A}^c) \sqcup (\overline{B} n \overline{B}^c) = \partial A \sqcup \partial B$.

- (7). 考 ∂A= 夕 刘 由 (5) 知 Ā= A , A° = A

 ∴ A既 闭 只开

 茨理 61

 ¬ A 既 闭 又开, 以 A= Ā , A= A° ⇒ (A°)° = A° ⇒ ° = A°

 ∴ ∂A= Ā ∧ Ā = A ∧ A°= ∮
- (8) ① 若A为闭集, Ā = A

 V ∂A= Ā N Ā = A N Ā ⊂ A.

 若 ∂A ⊂ A 以 由 (3) 矢

 Ā = A 口 ∂A = A ⇒ A 为 闭