

BOBINES DE

Helmholtz

ANA SANTOS, JOANA SANTIAGO, MAFALDA FRANÇA

- 1. OBJETIVOS
- 2. INTRODUÇÃO
- 3. PROCEDIMENTO EXPERIMENTAL
- 4. CONCLUSÃO

Objetivos

Calibrar Sonda de Efeito de Hall

por meio de um solenoide padrão.

Estabelecer a configuração de Helmholtz

e medir o campo magnético ao longo do eixo das respetivas bobinas.

Verificar o Princípio da sobreposição

a soma do valor dos campos = ao valor medido com as duas bobines ativas.

Introdução: $\frac{a}{b} + \frac{c}{d} = \frac{aa}{b}$ $\frac{a}{b} + \frac{c}{d} = \frac{aa}{b}$ $\frac{a}{b} + \frac{c}{b} = \frac{a}{b}$ $\frac{a}{b} + \frac{c}{b} = \frac{a}{b}$

Conhecimentos:

- Campo Magnético
- Lei de Ampère
- Fluxo do Campo Magnético
- Equações de Faraday

Fórmulas usadas:

Bsol = μ 0 (N/l) Is

(componente longitudinal)

 $B(x) = (\mu 0/2) / (R2 + x^2)^3/2$ (campo magnético criado pelas

bobinas num ponto x genérico9

 $\Delta C/C = \Delta N/N + \Delta l/l + \Delta m/m$

(cálculo da incerteza)

B = Cc VH

(relação entre o campo magnético e a constante de calibração)

 $B(x) = \mu 0 I R^2 / 2(R^2 + (x-x0)^2)^3/2$

(campo magnético ao longo de x devido ao solenoide)

Material:

Voltímetro

 Reóstato de 330 Ω

Amperímetro

 Sonda de Efeito de Hall

 Fonte de Tensão de 15 V

Solenoide

• Resistência de $10 \ \Omega$

 Bobinas de Helmholtz

Procedimentos Experimentais:

Solenoide

Bobinas de Helmholtz

Resultados Parte A:

I (A)	Vh (V)	Declive
0.02	0.0036	0.1309
0.02	0.0046	
0.03	0.0053	Const Calibração
0.04	0.0061	0.033283122
0.05	0.0074	
0.06	0.009	
0.07	0.0102	
0.08	0.0115	
0.09	0.0134	
0.1	0.0146	
0.13	0.0182	

Resultados Parte B:

$01 = 0 \pm 0.01$	cm :	$X02 = 6.25 \pm 0.01$ c	m							
= 0.5 ± 0.01										
- 12000 1000	abala & Chabi			<u>.</u>	7-1-1-0-10-10-10-10-10-10-10-10-10-10-10-		1.			
Tabela 1 (Bobine 1)				Tabela 2 (Bobine 2)			-	Tabela 3 (B1+B2)		
± 0.01 cm	Vh ± 0.1 mV	B (mT)		x ± 0.01 cm	Vh ± 0.1 mV	B (mT)		x ± 0.01 cm	Vh ± 0.1 mV	B (mT)
1	3.1	1.03E-01		1	2.1	6.99E-02		1	5.0	1.66E-0
2	3.8	1.26E-01		2	2.5	8.32E-02	,	2	6.0	2.00E-0
3	4.7	1.56E-01		3	3.0	9.98E-02		3	7.3	2.43E-0
4	5.8	1.93E-01		4	3.7	1.23E-01		4	8.7	2.90E-0
5	6.9	2.30E-01		5	4.5	1.50E-01		5	10.0	3.33E-0
6	8.0	2.66E-01		6	5.6	1.86E-01		- 6	11.1	3.69E-0
7	8.6	2.86E-01		7	6.6	2.20E-01		7	12.0	3.99E-0
8	8.8	2.93E-01	-	8	7.6	2.53E-01	1	8	12.5	4.16E-0
9	8.6	2.86E-01		9	8.5	2.83E-01		9	12.9	4.29E-0
10	7.7	2.56E-01		10	8.8	2.93E-01		10	12.8	4.26E-0
11	6.7	2.23E-01		11	8.6	2.86E-01		11	12.5	4.16E-0
12	5.6	1.86E-01		12	8.0	2.66E-01		12	12.1	4.03E-0
13	4.6	1.53E-01		13	7.1	2.36E-01		13	11.2	3.73E-0
14	3.8	1.26E-01		14	6.0	2.00E-01		14	10.1	3.36E-0
15	3.0	9.98E-02		15	4.9	1.63E-01		15	8.7	2.90E-0
16	2.5	8.32E-02		16	4.0	1.33E-01		16	7.2	2.40E-0
17	2.1	6.99E-02		17	3.3	1.10E-01		17	6.1	2.03E-0
18	1.7	5.66E-02		18	2.8	9.32E-02		18	5.0	1.66E-0

