2nde	CORRECTION CONTRÔLE	
/20	ENSEMBLES – INTERVALLES - VALEUR	1h
	ABSOLUE	

Exercice 1(6 points)

1. Compléter les expressions avec le symboles \in , \notin , \subset ou \notin

a)
$$-5 \in]-5,1;5]$$

$$j) \quad \sqrt{144} \in \mathbb{N}$$

f)
$$\sqrt{2} \notin [0; 1,414]$$

k)
$$\frac{1}{11} \notin \mathbb{D}$$

l) $\mathbb{Q} \notin \mathbb{D}$
m) $\sqrt{3} \notin \mathbb{Q}$

c)
$$\frac{120}{3} \in \mathbb{Z}$$

$$1) \quad \mathbb{Q} \not \subset \mathbb{D}$$

h)
$$\pi \notin \mathbb{Q}$$
 i) $4,0 \in \mathbb{R}$

2. Écrire en-dessous de chaque nombre le plus petit ensemble auquel il appartient.

$$\frac{5}{4}$$
 ; $\sqrt{3}$

$$\frac{5}{4}$$
 ; $\sqrt{3}$; $(-7)^2$; $\sqrt{400}$; $1,765 \times 10^2$;

$$1,765 \times 10^2$$
 ; 32

- 3. Est-il vrai que le carré d'un nombre irrationnel est toujours un nombre irrationnel? NON. Contre-exemple : $(\sqrt{2})^2 = 2$
- 4. Existe-t-il deux nombres rationnels dont la somme est un nombre entier? OUI. Par exemple : $\frac{1}{3} + \frac{2}{3} = \frac{3}{3} = 1$

Exercice 2 (10 points)

Partie 1 (6 points)

Dans chaque cas, traduire à l'aide d'un ou plusieurs intervalles les inégalités suivantes :

a)
$$x > -6:]-6; +\infty[$$

b)
$$x \le 0 :] - \infty ; 0]$$

c)
$$x < 3$$
 ou $x \ge 5$: $] - \infty$; $3[\cup [5; +\infty[$

d)
$$-1 < x < 6$$
 et $x \ge 5$: $]-1$; $6[\cap [5; +\infty[= [5; 6[$

Partie 2 (3 points)

Dans chaque cas, **déterminer** $I \cup J$ et $I \cap J$ puis les **représenter** sur les droites graduées correspondantes de **deux couleurs différentes**.

a)
$$I = \left[-\frac{1}{2}; 4\right]$$
 et $J = [2; 5]$

$$I \cup J = \left[-\frac{1}{2} ; 5 \right]$$

$$I \cap J = [2;4]$$

b)
$$I =]-5;-3]$$
 et $J =]-3;5]$

$$I \cup J =]-5;5]$$

$$I \cap J = \emptyset$$

c)
$$I =]-\infty$$
; 5[et $J =]-2$; 0[

$$I \cup J =]-\infty$$
; $5[$

$$I \cap J =]-2;0[$$

Exercice 3 (5 points)

a) Soit T, O et M trois points d'une droite graduée d'abscisses respectives 7, -4 et x. Exprimer les distances TO et TM en utilisant la notation valeur absolue.

$$TO = |7 + 4| = |-4 - 7|$$

 $TM = |7 - x| = |x - 7|$

b) Écrire sans valeur absolue les nombres suivants :

$$|-10^{-2}| = 10^{-2}$$

 $|-\pi + 3| = 3 - \pi$

c) Résoudre l'équation |x + 8| = 11.

$$x + 8 = 11$$
 ou $x + 8 = -11$
 $x = 3$ $x = -19$

d) Résoudre l'inéquation : $|x - 2| \le 4$.

$$-4 \le x - 2 \le 4$$

 $-2 \le x \le 6$
 $x \in [-2; 6]$

BONUS (+1 point)

Démontrer que $\frac{1}{3}$ n'est pas un nombre décimal. Voir cours