계량분석 Course Introduction

김현우, PhD¹

1 충북대학교 사회학과 조교수

September 6, 2021

진행 순서

- 🕕 강사 소개
- ② 사회학과 계량적 분석
- 🜖 대학원 계량분석의 두 얼굴: Science와 Art
- ◑ 수업의 구성과 당부사항
- 5 통계분석 패키지의 선택
- 중북대 사회학과 커리큘럼과 이 수업

강사 소개

김현우

- Pennsylvania State University 사회학 박사학위 취득(2017)
- Edna Bennett Pierce Prevention Research Center 박사후 연구원 (2017-2019)
- Edna Bennett Pierce Prevention Research Center 연구조교수 (2019-2021)
- 충북대학교 사회학과 조교수 (2021.9-)

사회학과 계량적 분석

- 1. 오늘날 통계적 리터러시가 갖는 중요성이 폭발적으로 증대하였다.
 - 제4차 산업혁명의 기반기술(빅데이터, 인공지능, IoT 등) 전문가 수요
 - 급속히 증가하는 데이터의 양: 오늘날 전 세계 데이터의 90%가 최근 2년 동안 생성
 - 통계학은 인공지능, 빅데이터 분석, 기계학습(machine learning) 등의 기초
- 2. 최근 10년 사이 사회학 방법론 분야에도 눈부신 발전이 있었다.
 - (만약) 계량적 분석을 택하여 공부한다면 이를 필수적으로 따라가야 한다.
 - 여러분의 졸업 이후에도 이 발전은 (더 빠르게) 계속 될 것이며 스스로 그 지식을 업데이트할 수 있어야 한다.

사회학과 계량적 분석

- 1. 사회학에서 (고급) 계량적 분석은 이미 핵심적 주류다.
 - ASR 2021년 8월호에 실린 7편의 논문 중 6편의 논문이, AJS 2021년 7월호에 실린 5편의 논문 중 3편의 논문이 계량적 분석을 사용하였다.
 - 여러분의 세부전공과 상관없이 만약 계량분석을 공부하지 않으면 3/4 (=9/12)은 읽고 비판하지 못한다.
- 2. "에이, 그래도 나는 계량분석을 전공할 건 아닌데..."
 - 물론 모든 사람이 계량적 분석 자체를 전공해야 하는 것은 아니다.
 - 하지만 이 수업에서 다루는 토픽은 선형회귀분석(linear regression analysis)의 기초와 그 응용으로, 이는 사회학에서 쓰이는 모든 계량분석의 기초적인 뼈대를 구성한다.
 - 다시 말해, 이 수업이 다루는 토픽은 기초일 뿐이고 전혀 수준높은 계량분석이 아니다.

대학원 계량분석의 두 얼굴: Science와 Art

- 1. 사회통계학은 두 개의 얼굴을 가지고 있다.
 - 과학으로서의 측면(Science)과 손기술로서의 측면(Art)
- 2. Science: 설명할 수 있는 힘
 - 내가 지금 하고 있는 것이 무엇인지 직관적으로 명확하게 알아야 한다.
 - 남에게 그리고 논문 속에서 자신의 분석을 확실하게 설명할 수 있어야 한다.
- 3. Art: 반복숙련의 힘
 - 손기술/연습은 생각보다 매우 중요하며 연습해두지 않으면 연구나 실무에서 전혀 쓸 수 없다.
 - 투자한 시간이 절대적으로 많아야 한다. 머리 못지 않게 엉덩이로 공부한다!

대학원 계량분석의 두 얼굴: Science와 Art

1. 수학에 관한 코멘트

- 통계학은 본디 수학의 분과학문이다. 수학을 제대로 하지 않고 건너뛴다는 것은 사실 넌센스다.
- 강의계획서와 강의안을 만드는 동안에도 사실 몇 번이나 마음을 바꾸었다. 여러 다른 교수님들과도 상의를 해보았다.
- 최종적으로 수학을 필요최소한만 하고 모두 건너뛰기로 하였다. 수학보다 직관을 강조하기로 한 셈이다.
- 수학을 건너뛰는 것에는 장단점이 있다. 중요한 장점은 사회통계학에 대한 흥미를 잃지 않게 돕는다는 것이다.
- 그러므로 지금은 일단 직관적으로 공부한 다음, 나중에 점점 더 호기심이 생겨 계량분석을 한층 깊게 공부하고 싶다면 그때 가서 수학을 하자!

7/19

- 1. 선수과목: 학부 사회통계 및 사회조사방법론
 - 만약에 기억이 잘 안나면 학부 시절의 교재와 노트를 다시 보아야 한다.
 - 지금 학부에서 사회통계연습이 비대면 강좌로 개설되고 있다. 필요하면 가서 듣자!
 - 知之爲知之, 不知爲不知, 是知也.
- 2. 교재는 필수가 아니지만...
 - 자습용으로 중요하므로 반드시 하나 정도는 (구판/중고라도) 구입하는 것을 강추!
 - 정확히 알고 구입하는 것이 아니라면 계량경제학이나 수리통계학과 같이 지나치게 수학적인 것은 피할 것.
 - 전공은 전혀 상관없다(e.g., 경영통계학, 관광통계학 등).
- 3. 강의계획서는 수업이 진행하면서 조금씩 계속 업데이트된다.
 - https://github.com/hxk271/Syllabi

1. 점수에 관한 코멘트

- 중간시험은 문헌검토(literature review) 방식.
- 기말시험은 여러분이 직접 원하는 자료를 가지고 회귀분석을 수행하고 해석하여 요약 보고.
- 퀴즈는 정말로 여러분을 위한 것!
- 솔직히 말해 애초에 대학원생은 점수에 대해 연연할 필요가 없다.

2. 모르는 것이 있을때는?

- 인터넷 좀 찾아보다가 영 답이 안나온다 싶으면 바로 달려와서 연구실 문을 두드릴 것!
- 피해야 할 것: (1) 쪽팔림/죄책감으로 인해 강사로부터 도망쳐 다니는 것, (2) 장문의 메일로 묻는 것. 메일로는 물어도 무슨 소린지 이해를 못할 때가 많고, 설령 알아들어도 메일로 답하기 곤란할 때가 많다.

1. 수업에서 분석할 데이터 준비

- 이 수업을 가이드로 삼아 여러분은 스스로 관심있는 프로젝트를 직접 수행하여야 한다.
- 첫 출발점은 분석할 데이터를 준비하는 것!
- 먼저 관심가는 주제(경제사회학/환경사회학/조직사회학/노동문제 등)를 먼저 특정할 것. 그리고 나서 데이터를 고른다. 반드시 한국 데이터가 아니어도 된다.

2. 어디에서 데이터를 확보할까?

- ICPSR: https://www.icpsr.umich.edu
- KGSS: http://kgss.skku.edu
- GSS: https://gss.norc.org
- KSDC: https://www.ksdc.re.kr
- 사업체패널: https://www.kli.re.kr/wps
- 한국노동패널: https://www.kli.re.kr/klips

- 1. 데이터 확보는 제법 중요한 일!
 - 좋은 데이터 찾기에 시간을 많이 쏟아야 한다. 좋은 데이터를 얻는 것은 좋은 논문의 출발점.
 - TITO (Trash In, Trash Out).
 - 지도교수님과 반드시 이런 이야기를 나누고 조언을 받을 것!
- 2. 이상적으로는 이 수업에 좋은 데이터를 들고와서 석박사 논문을 위한 분석을 바로 하는 것!
 - 만일 논문 주제를 정하지 못했거나 데이터를 찾지 못할 것 같다면 석박사 논문과는 다른 주제의 (관심가는) 데이터라도 상관없다.
 - 아무래도 이 수업을 위한 데이터를 찾을 수 없을 것 같다면, 최대한 빨리 강사와 상담할 것.
 - 아무리 늦어도 중간시험 이전까지는 자기 데이터를 확보해야 한다.

1. 영어에 관한 코멘트

- 나도 안다. 처음엔 좀 어색할 수도 있다.
- 그런데 통계학은 결국 영어권에서 그 핵심적인 발전이 이루어진 분야. 좋건싫건 이것이 오리지널.
- 자꾸 우리말과 엮어서 반복할 예정! 결국엔 둘 다 기억해야 함.
- 2. 필요하다면 한국통계학회 통계용어집을 이용할 것.
 - http://www.kss.or.kr/bbs/board.php?bo_table=psd_sec
- 3. 좋은 소식도 있다!
 - 영어가 훨씬 직관적이라 통계학 속에 담긴 진짜 의미나 취지를 오히려 알아듣기 쉽다.
 - 게다가 우리말이라고는 해도 순우리말이 아니라 일본식 한자가 많다.

1. 다섯 개의 강력한 대안들: SPSS, SAS, Stata, R, Python

2. 가격 측면

- SPSS, SAS는 일단 아웃. 개인은 도저히 감당할 수 없고 반드시 기관이 구입해야 한다.
- Stata는 개인이 살짝 부담이긴 한데 살 수는 있음. 물론 기관은 부담없이 구입해 줄 수 있다.
- R과 Python은 무료.

1. 러닝커브(learning curve) 측면

- R과 Python은 러닝커브가 가파르다. 언어 자체를 배우는데 시간을 꽤 써야한다.
 일단 습득하면 가장 많은 것들(머신러닝/웹스크래이핑/빅데이터/GIS/SNA/베이즈통계 포함)을 할 수 있다!
- Stata과 SAS는 러닝커브가 살짝 있지만 한 학기 안으로 할 만하다. 요즘엔 베이즈통계나 머신러닝 등을 조금 다룰 수 있지만 R과 Python만큼 강력하지는 않다.
- SPSS는 러닝커브가 거의 없다. 구문(syntax)를 배우려면 약간 시간이 걸리긴 한다. 그런데 제약이 제법 많다(예컨대 parametric survival analysis 등).

1. 인기 측면

- SAS는 미정부에서 여전히 압도적. 최근에 좀 바뀐다는 기류가 있지만 아직 잘 모르겠다.
- SPSS는 미국 대학 학부와 국내 조사기관에서 압도적인 인기
- R과 Python은 전세계적으로 개발자 커뮤니티에서 압도적. 단순 규모로서는 최대 인기.
- Stata는 미국 의료기관(생물통계)과 국내외 사회과학 대학원에서 상당한 인기.

1. 왜 결론은 Stata인가?

- 일단 SAS는 내가 모름. 미안합니다~
- SPSS는 현업(조사기관)에서 많이 쓰이지만 그 밖에서는 잘 안쓰임. 게다가 통계학을 알면 쉽게 독학할 수 있다.
- Python과 R은 머신러닝/웹스크래이핑/빅데이터 등에서 강력하므로, 학생들을 위해서는 이쪽의 전망이 낫지만 두 개의 단점: (1) 러닝커브 때문에 포기자가 나옴; (2) 분석 노가다(!)할 때 Stata가 좀 더 편리함.
- 미국 Penn State, UPenn, Notre Dame 등에서도. 보통 1학점 짜리 랩에서 공부.

- 2. 일단 Stata를 공부하기로 한 이상, 깔끔한 do 파일을 만드는게 무엇보다 남는 일!
 - do 파일에서 코드를 짤 때는 일부러 들여쓰기(indentation) 할 것을 추천!
 - 각주달기(annotation)를 철저히! 자신을 단기기억상실증 환자인 것처럼 전제해야.
 - 최대한 보기 좋게 꾸며야 한다. 타인의 코드를 읽거나 읽혀야 할 일이 있고, 또 수 주/ 개월/년 뒤 자신의 코드를 되돌아볼 때도 있다(e.g, R&R 등).

충북대 사회학과 커리큘럼과 이 수업

1. 외부 특강과의 비교

- 많은 학생들이 통계분석 패키지를 공부하고 논문 쓰기 위해서 대학 바깥에서 특강을 듣는다.
- KOSSDA 외부 특강: https://kossda.methods.snu.ac.kr/
- 이 수업은 특히 "기초통계학" 및 "중급통계학"과 같은 수요에 대응한다.

충북대 사회학과 커리큘럼과 이 수업

- 2. 충북대 사회학과 학부에서 개설할 계량분석 관련 수업들
 - 사회통계(2학년): 통계학의 논리적 기초 중심. Excel
 - 사회통계연습(2학년): 실습 중심. SPSS (단 비대면이면 JASP).
 - 소셜데이터분석(3학년): 파이썬 입문, 기계학습(machine learning), 웹 자료수집 (web scraping), 커뮤니티 매핑(community mapping), 텍스트 분석(text analysis)
- 2. 충북대 사회학과 대학원에서 개설할 계량분석 관련 수업들
 - 계량분석1(대학원): 이 수업
 - 계량분석2(대학원): 범주형 자료분석(Categorical Data Analysis). 계량분석1이 선수강.
 - 고급사회통계세미나(대학원): 수요에 따라 종단자료 분석(Longitudinal Data Analysis), 다층모형 분석(Multilevel Modeling), 사건사분석(Event-History Analysis), 소셜네트워크분석(Social Network Analysis), 공간회귀분석(Spatial Regression Analysis) 약간, 비실험적 인과분석(Causal Inference with Observational Data) 등.