Lecture 4

Inference and Comparison of Mean Vectors

Readings: Johnson & Wichern 2007, Chapter 5.1-5.4; 6.1-6.4; 6.8

DSA 8070 Multivariate Analysis

Whitney Huang Clemson University

Notes

Agenda

- Confidence Intervals/Region for Population Means
- 2 Hypothesis Testing for Mean Vector
- Multivariate Paired Hotelling's T-Square
- 4 Comparisons of Two Mean Vectors
- **Multivariate Analysis of Variance**

Notes

Inference on Mean Vectors

This Week's Topics:

- Single Mean Vector: inference on μ (multivariate one-sample t-test)
- ullet Paired Mean Vectors: differences between paired observations \Rightarrow reduce to one-sample Hotelling's T^2 on differences
- \bullet Two Independent Mean Vectors: Hotelling's T^2 two-sample test
- Several Mean Vectors: MANOVA (multivariate extension of ANOVA)

Analogy with Univariate Methods:

- One-sample t-test \rightarrow single μ
- Paired t-test → paired mean vectors
- Two-sample t-test \rightarrow two mean vectors
- ANOVA → MANOVA

ence and parison of n Vectors	Notes		

Review: Sampling Distribution of Univariate Sample Mean \bar{X}_n

Suppose X_1,X_2,\cdots,X_n is a random sample from a univariate population distibution with mean $\mathbb{E}(X)=\mu$ and variance $\mathrm{Var}(X)=\sigma^2.$ The sample mean \bar{X}_n is a function of random sample and therefore has a distribution

- $\bar{X}_n\stackrel{\cdot}{\sim} \mathrm{N}(\mu,\frac{\sigma^2}{n})$ when the sample size n is "sufficiently" large \Rightarrow This is the central limit theorem (CLT)
- The result above is exact if the population follows a normal distribution, i.e., $X \sim N(\mu, \sigma^2)$
- $\bullet \ \ \text{The standard error} \ \sqrt{\mathrm{Var}(\bar{X}_n)} = \frac{\sigma}{\sqrt{n}} \ \text{provides a} \\ \ \ \text{measure estimation precision. In practice, we use} \\ \ \frac{s}{\sqrt{n}} \ \text{instead where} \ s \ \text{is the sample standard deviation}$

Notes			

Sampling Distribution of Multivariate Sample Mean Vector \bar{X}_n

Suppose X_1,X_2,\cdots,X_n is a random sample from a multivariate population distibution with mean vector $\mathbb{E}(X) = \mu$ and covariance matrix $= \Sigma$.

- $\bar{X}_n \stackrel{.}{\sim} \mathrm{N}(\mu, \frac{1}{n}\Sigma)$ when the sample size n is "sufficiently" large \Rightarrow This is the multivariate version of CLT
- The result above is exact if the population follows a normal distribution, i.e., $X \sim N(\mu, \Sigma)$
- Again, the estimation precision improves with a larger sample size. Like the univariate case we would need to replace Σ by its estimate S, the sample covariacne matrix

Notes				

Review: Interval Estimation of Univariate Population Mean $\boldsymbol{\mu}$

The general format of a confidence interval (CI) estimate of a population mean is

Sample mean \pm multiplier \times standard error of mean.

For variable X, a CI estimate of its population mean μ is

$$\bar{X}_n \pm t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}},$$

Here the multiplier value is a function of the confidence level, α , the sample size n

Inference and Comparison of Mean Vectors OLEMS N UNIVERSITY
Confidence Intervals/Region for Population Means

Notes			

Constructing Confidence Intervals for Mean Vector

We will still use the general recipe

Sample mean ± multiplier × standard error of mean.

The multiplier value also depends the strategy used for dealing with the multiple inference issue

• One at a Time CIs: a CI for μ_i is computed as

$$\bar{x}_j \pm t_{n-1,\frac{\alpha}{2}} \frac{s_j}{\sqrt{n}}, \quad j = 1, \cdots, p$$

ullet Bonferroni Method: a CI for μ_j is computed as

$$\bar{x}_j \pm t_{n-1,\frac{\alpha}{2p}} \frac{s_j}{\sqrt{n}}, \quad j = 1, \cdots, p$$

• Simultaneous CIs: a CI for μ_i is computed as

$$\bar{x}_j \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p,\alpha} \frac{s_j}{\sqrt{n}}, \quad j = 1, \cdots, p$$

Example: Mineral Content Measurements [source: Penn Stat Univ. STAT 505]

This example uses a dataset that includes mineral content measurements at two different arm bone locations for n = 64 women. We will determine confidence intervals for the two population means. The sample means and standard deviations for the two variables are:

Let's apply the three methods we learned to construct 95% CIs

domhumerus (X_2) n = 64 $\bar{x}_2 = 1.7927$ $s_2 = 0.2835$

Notes

Notes

_			

Mineral Content Measurements Example Cont'd

• One at a Time CIs: $\bar{x}_j \pm t_{n-1,\alpha/2} \frac{s_j}{\sqrt{n}}, \quad j=1,\cdots,p.$ Therefore 95% CIs for μ_1 and μ_2 are:

$$\mu_1: 0.8438 \pm \underbrace{1.998}_{t_{63,0.025}} \times \underbrace{0.1140}_{\sqrt{64}} = [0.815, 0.872]$$
 $\mu_2: 1.7927 \pm 1.998 \times \underbrace{0.2835}_{\sqrt{64}} = [1.722, 1.864]$

• Bonferroni Method: $\bar{x}_j \pm t_{n-1,\alpha/2p} \frac{s_j}{\sqrt{n}}, \quad j=1,\cdots,p.$

$$\begin{array}{ll} \mu_1: & 0.8438 \pm \underbrace{2.296}_{t_{63,0.0125}} \times \frac{0.1140}{\sqrt{64}} = & \left[0.811, 0.877\right] \\ \mu_2: & 1.7927 \pm 2.296 \times \frac{0.2835}{\sqrt{64}} = & \left[1.711, 1.874\right] \end{array}$$

• Simultaneous Cls:
$$\bar{x}_j \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p,\alpha} \frac{s_j}{\sqrt{n}}, \quad j=1,\cdots,p$$

$$\mu_1: \quad 0.8438 \pm 2.528 \times \frac{0.1140}{\sqrt{64}} = \quad [0.808, \frac{1.140}{\sqrt{n}}] = \quad [0.808, \frac{$$

μ_1 :	$0.8438 \pm 2.528 \times \frac{0.1140}{\sqrt{64}} =$	[0.808, 0.880]
μ_2 :	$0.8438 \pm 2.528 \times \frac{0.1140}{\sqrt{64}} = 1.7927 \pm 2.528 \times \frac{0.2835}{\sqrt{64}} =$	[1.703, 1.882]

Notes

95 % Cls Based on Three Methods

Notes

Confidence Ellipsoid

A confidence ellipsoid for μ is the set of μ satisfying

$$n(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu})^T \boldsymbol{S}^{-1}(\bar{\boldsymbol{X}} - \boldsymbol{\mu}) \leq \frac{(n-1)p}{n-p} F_{p,n-p,\alpha}$$

Notes

Hypothesis Testing for Mean

Recall: for univariate data, t statistic

$$t = \frac{\bar{X}_n - \mu_0}{s/\sqrt{n}} \Rightarrow t^2 = \frac{\left(\bar{X}_n - \mu_0\right)^2}{s^2/n} = n\left(\bar{X}_n - \mu_0\right)\left(s^2\right)^{-1}\left(\bar{X}_n - \mu_0\right)$$

Under H_0 : μ = μ_0

$$t \sim t_{n-1}, \quad t^2 \sim F_{1,n-1}$$

• Extending to multivariate by analogy:

$$T^2 = n \left(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)^T \boldsymbol{S}^{-1} \left(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)$$

Under $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$

$$\frac{(n-p)}{(n-1)p}T^2 \sim F_{p,n-p}$$

Note: T^2 here is the so-called Hotelling's T-Square

Notes

Hypothesis Testing for Mean Vector μ

State the null

$$H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$$

and the alternative

$$H_a: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$$

Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n \left(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)^T \boldsymbol{S}^{-1} \left(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)$$

- **Ompute the P-value**. Under $H_0: F \sim F_{p,n-p}$
- Oraw a conclusion: We do (or do not) have enough statistical evidence to conclude $\mu \neq \mu_0$ at α significant level

Notes

Notes

Notes

Example: Women's Dietary Intake [source: Penn Stat Univ. STAT 505]

The recommended intake and a sample mean for all women between 25 and 50 years old are given below:

Variable	Recommended Intake (μ_0)	Sample Mean (\bar{x}_n)
Calcium	1000 mg	624.0 mg
Iron	15 mg	11.1 mg
Protein	60 <i>g</i>	65.8 g
Vitamin A	800 μg	839.6 μg
Vitamin C	75~mg	78.9 mg

Here we would like to test, at α = 0.01 level, if the μ = μ_0

Women's Dietary Intake Example Analysis

State the null

$$H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$$

and the alternative

$$H_a: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$$

Ompute the test statistic

$$F = \frac{n - p}{(n - 1)p} n \left(\bar{x}_n - \mu_0\right)^T S^{-1} \left(\bar{x}_n - \mu_0\right) = 349.80$$

- $\begin{tabular}{ll} \textbf{Oompute the P-value}. & Under $H_0: \quad F \sim F_{p,n-p} \Rightarrow \\ & \text{p-value} = \mathbb{Pr}\big(F_{p,n-p} > 349.80\big) = 3 \times 10^{-191} < \alpha = 0.01 \\ \end{tabular}$
- Oraw a conclusion: We do have enough statistical evidence to conclude $\mu \neq \mu_0$ at α = 0.01 significant level

Inference and Comparison of Mean Vectors	
CLEMS N	

LEMS ® N			
r Mean Vector			
4.15			

Profile Plots

- Standardize each of the observations by dividing their hypothesized means
- Plot either simultaneous or Bonferroni CIs for the population mean of these standardized variables

Inference and Comparison of Mean Vectors
Confidence Intervals/Region for Population Means
for Mean Vector Multivariate Paired Hotelling's T-Square

Notes			

Spouse Survey Data Example

A sample (n = 30) of husband and wife pairs are asked to respond to each of the following questions:

- What is the level of passionate love you feel for your partner?
- What is the level of passionate love your partner feels for you?
- What is the level of companionate love you feel for your partner?
- What is the level of companionate love your partner feels for you?

Responses were recorded on a typical five-point scale: 1) None at all 2) Very little 3) Some 4) A great deal 5) Tremendous amount.

We will try to address the following question: Do the husbands respond to the questions in the same way as their wives?

4 17

Ν	0	tes	

Notes

Multivariate Paired Hotelling's T-Square

Let X_F and X_M be the responses to these 4 questions for females and males, respectively. Here the quantities of interest are $\mathbb{E}(D) = \mu_D$, the average differences across all husband and wife pairs.

- State the null $H_0: \mu_D = 0$ and the alternative hypotheses $H_a: \mu_D \neq \mathbf{0}$
- Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n \bar{\boldsymbol{D}}_n^T \boldsymbol{S}_{\boldsymbol{D}}^{-1} \bar{\boldsymbol{D}}_n$$

- **③ Compute the P-value**. Under $H_0: F \sim F_{p,n-p}$
- **② Draw a conclusion**: We do (or do not) have enough statistical evidence to conclude $\mu_D \neq 0$ at α significant level

Intervals/Region for Population Means

Multivariate Paired Hotelling's T-Square

Comparisons of Two Mean Vectors

Multivariate Analysis of Variance 100 dd

4.18

Spouse Survey Data Example Analysis

State the null

$$H_0: \boldsymbol{\mu}_D = \mathbf{0}$$

and the alternative

$$H_a: \boldsymbol{\mu}_D \neq \mathbf{0}$$

Ompute the test statistic

$$F = \frac{n-p}{(n-1)p} n \bar{D}_n^T S_D^{-1} \bar{D}_n = 2.942$$

- **© Compute the P-value.** Under $H_0: F \sim F_{p,n-p} \Rightarrow$ p-value = $\mathbb{P}\mathbb{F}(F_{p,n-p} >) = 0.0394 < \alpha = 0.05$
- **② Draw a conclusion**: We do have enough statistical evidence to conclude $\mu_D \neq 0$ at 0.05 significant level

4.19

Notes

Motivating Example: Swiss Bank Notes (Source: PSU stat 505)

Suppose there are two distinct populations for 1000 franc Swiss Bank Notes:

- The first population is the population of Genuine Bank Notes
- The second population is the population of Counterfeit Bank Notes

For both populations the following measurements were taken:

- Length of the note
- Width of the Left-Hand side of the note
- Width of the Right-Hand side of the note
- Width of the Bottom Margin
- Width of the Top Margin
- O Diagonal Length of Printed Area

We want to determine if counterfeit notes can be distinguished from the genuine Swiss bank notes

4.00

Review: Two Sample t-Test

Suppose we have data from a single variable from population 1: $X_{11}, X_{12}, \cdots, X_{1n_1}$ and population 2: $X_{21}, X_{22}, \cdots, X_{2n_2}$. Here we would like to draw inference about their population means μ_1 and μ_2 .

Assumptions:

- \bullet Homoscedasticity: The data from both populations have common variance σ^2
- Independence: The subjects from both populations are independently sampled $\Rightarrow \{X_{1i}\}_{i=1}^{n_1}$ and $\{X_{2j}\}_{j=1}^{n_2}$ are independent to each other
- Normality: The data from both populations are normally distributed (not that crucial for "large" sample)

Here we are going to consider testing $H_0: \mu_1 = \mu_2$ against $H_a: \mu_1 \neq \mu_2$

Inference and Comparison of Mean Vectors
<u>CLEMS#N</u>
Comparisons of Two Mean Vectors

Notes			

Review: Two Sample t-Test

We define the sample means for each population using the following expression:

$$\bar{x}_1 = \frac{\sum_{j=1}^{n_1} x_{1j}}{n_1}, \quad \bar{x}_2 = \frac{\sum_{j=1}^{n_2} x_{2j}}{n_2}.$$

We denote the sample variance

$$s_1^2 = \frac{\sum_{j=1}^{n_1} \left(x_{1j} - \bar{x}_1\right)^2}{n_1 - 1}, \quad s_2^2 = \frac{\sum_{j=1}^{n_2} \left(x_{2j} - \bar{x}_2\right)^2}{n_2 - 1}.$$

Under the homoscedasticity assumption, we can "pool" two samples to get the pooled sample variance

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \stackrel{H_0}{\sim} t_{n_1 + n_2 - 2}$$

We can use this result to construct confidence intervals and to perform hypothesis tests

Notes

Notes

The Two Sample Problem: The Multivariate Case

Now we would like to use two independent samples $\{\pmb{X}_{11},\cdots \pmb{X}_{12},\cdots \pmb{X}_{1n_1}\}$ and $\{\pmb{X}_{21},\cdots \pmb{X}_{22},\cdots \pmb{X}_{2n_2}\},$ where

$$\boldsymbol{X}_{ij} = \begin{bmatrix} X_{ij1} \\ X_{ij2} \\ \vdots \\ X_{ijp} \end{bmatrix}$$

to infer the relationship between μ_1 and μ_2 , where

$$\boldsymbol{\mu}_{i} = \begin{bmatrix} \mu_{i1} \\ \mu_{i2} \\ \vdots \\ \mu_{i} \end{bmatrix}$$

Assumptions

- Both populations have common covariance matrix, i.e., $\Sigma_1 = \Sigma_2$
- Independence: The subjects from both populations are independently sampled
- Normality: Both populations are normally distributed

The Multivariate Two-Sample Problem

Here we are testing

$$H_0: \begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \vdots \\ \mu_{1n} \end{bmatrix} = \begin{bmatrix} \mu_{21} \\ \mu_{22} \\ \vdots \\ \mu_{2n} \end{bmatrix},$$

 $, \quad H_a: \mu_{1k} \neq \mu_{2k} \text{ for at least one } k \in \{1,2,\cdots,p\}$

Under the common covariance assumption we have

$$S_p = \frac{(n_1 - 1)S_1 + (n_2 - 1)S_2}{n_1 + n_2 - 2}$$

where

$$S_i = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i) (x_{ij} - \bar{x}_i)^T, \quad i = 1, 2$$

Notes			

The Two-Sample Hotelling's T-Square Test Statistic

The two-sample t test is equivalent to

$$t^2 = (\bar{x}_1 - \bar{x}_2)^T \left[s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right) \right]^{-1} (\bar{x}_1 - \bar{x}_2).$$

Under H_0 , $t^2 \sim F_{1,n_1+n_2-2}$. We can use this result to perform a hypothesis test

We can extend this to the multivariate situation:

$$T^2 = (\bar{x}_1 - \bar{x}_2)^T \left[S_p \left(\frac{1}{n_1} + \frac{1}{n_2} \right) \right]^{-1} (\bar{x}_1 - \bar{x}_2)$$

Under H_0 , we have

$$F = \frac{n_1 + n_2 - p - 1}{p(n_1 + n_2 - 2)}T^2 \sim F_{p,n_1 + n_2 - p - 1}$$

We can use this result to perform inferences for multivariate cases

Two-Sample Test for Swiss Bank Notes

```
> T rest states.

T.squared <- as.numeric(t(xbar1 - xbar2) %*% solve(Sp * (1 / n1 + 1 / n2)) %*% (xbar1 - xbar2))

> Fobs <- T.squared * ((n1 + n2 - p - 1) / ((n1 + n2 - 2) * p))
 > # p-value
> pf(Fobs, p, n1 + n2 - p -1, lower.tail = F)
[1] 3.378887e-105
```

Conclusion

The counterfeit notes can be distinguished from the genuine notes on at least one of the measurements ⇒ which ones?

Notes

Notes

Simultaneous Confidence Intervals

$$\bar{x}_{1k} - \bar{x}_{2k} \pm \sqrt{\frac{p(n_1 + n_2 - 2)}{n_1 + n_2 - p - 1}} F_{p,n_1 + n_2 - p - 1,\alpha} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) s_{k,p}^2},$$

where $s_{k,p}^2$ is the pooled variance for the variable \boldsymbol{k}

Variable	95% CI
Length of the note	(-0.04, 0.34)
Width of the Left-Hand note	(-0.52, -0.20)
Width of the Right-Hand note	(-0.64, -0.30)
Width of the Bottom Margin	(-2.70, -1.75)
Width of the Top Margin	(-1.30, -0.63)
Diagonal Length of Printed Area	(1.81, 2.33)

Notes			

Checking Model Assumptions

Assumptions:

• Homoscedasticity: The data from both populations have common covariance matrix Σ

Will return to this in next slide

• Independence:

This assumption may be violated if we have clustered, time-series, or spatial data

Normality:

Multivariate QQplot, univariate histograms, bivariate scatter plots

Inference and
Comparison of
Mean Vectors

Confidence
Intervals/Region
for Population
Means
Hypothesis Testing
for Mean Vector
Multivariate Paired
Hotelling's
T-Square
Comparisons of
Two Mean Vectors
Multivariate
Analysis of
Variance

Notes			

Testing for Equality of Mean Vectors when $\Sigma_1 \neq \Sigma_2$

- Bartlett's test can be used to test if $\Sigma_1 = \Sigma_2$ but this test is sensitive to departures from normality
- As as crude rule of thumb: if $s_{1,k}^2>4s_{2,k}^2$ or $s_{2,k}^2>4s_{1,k}^2$ for some $k\in\{1,2,\cdots,p\}$, then it is likely that $\Sigma_1\neq\Sigma_2$
- Life gets difficult if we cannot assume that $\Sigma_1 = \Sigma_2$ However, if both n_1 and n_2 are "large", we can use the following approximation to conduct inferences:

$$T^2 = (\bar{\boldsymbol{X}}_1 - \bar{\boldsymbol{X}}_2)^T \left[\frac{1}{n_1} \boldsymbol{S}_1 + \frac{1}{n_2} \boldsymbol{S}_2 \right]^{-1} (\bar{\boldsymbol{X}}_1 - \bar{\boldsymbol{X}}_2) \overset{H_0}{\sim} \chi_p^2$$

Notes

Comparing More Than Two Populations: Romano-British Pottery Example (source: PSU stat 505)

- Pottery shards are collected from four sites in the British Isles:
 - Llanedyrn (L)
 - Caldicot (C)
 - Isle Thorns (I)
 - Ashley Rails (A)
- The concentrations of five different chemicals were be used
 - ullet Aluminum (Al)
 - Iron (Fe)
 - ullet Magnesium (Mg)
 - Calcium (Ca)
 - $\bullet \ \, \mathsf{Sodium} \,\, (Na)$
- Objective: to determine whether the chemical content of the pottery depends on the site where the pottery was obtained

e and son of ctors Not
SPN
egion on
Testing
Paired
ns of Vectors

Review: (Univariate) Analysis of Variance (ANOVA)

• $H_0: \mu_1 = \mu_2 = \dots = \mu_g$

 H_a : At least one mean is different

Source	df	SS	MS	F statistic
Treatment	g – 1	SSTr	$MSTr = \frac{SSTr}{g-1}$	$F = \frac{ ext{MSTr}}{ ext{MSE}}$
Error	N-g	SSE	$MSE = \frac{SSE}{N-q}$	

Total
$$N-1$$
 SSTo

 Test Statistic: $F^* = \frac{\text{MSTr}}{\text{MSE}}$. Under H_0 , $F^* \sim F_{df_1=g-1,df_2=N-g}$

Assumptions:

- The distribution of each group is normal with equal variance (i.e. $\sigma_1^2=\sigma_2^2=\cdots=\sigma_g^2$)
- Responses for a given group are independent to each other

Notes

Notes

4.31

One-way Multivariate Analysis of Variance (One-way MANOVA)

- **Notation:** Y_{ij} is the vector of variables for subject j in group i; n_i is the sample size in group i; $N = n_1 + n_2 + \dots + n_q$ the total sample size
- Assumptions: 1) common covariance matrix Σ ; 2) Independence; 3) Normality

Test Statistics for MANOVA

• We are interested in testing the null hypothesis that the group mean vectors are all equal

$$H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \cdots = \boldsymbol{\mu}_g.$$

The alternative hypothesis:

 $H_a: \mu_{ik} \neq \mu_{jk}$ for at least one $i \neq j$ and at least one variable k

Mean vectors:

- Sample Mean Vector: $\bar{\boldsymbol{y}}_{i.} = \frac{1}{n_i} \boldsymbol{Y}_{ij}, \quad i = 1, \cdots, g$
- Grand Mean Vector: $\bar{\boldsymbol{y}}_{..} = \frac{1}{N} \sum_{i=1}^{g} \sum_{j=1}^{n_i} \boldsymbol{Y}_{ij}$
- Total Sum of Squares:

$$T = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (Y_{ij} - \bar{y}_{..}) (Y_{ij} - \bar{y}_{..})^T$$

Inference and Comparison of Mean Vectors	
CLEMS N	
Hypothesis Testing iable k Multivariate Paired Hotelling's T-Square	

Notes			

MANOVA Decomposition and MANOVA Table

$$T = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (Y_{ij} - y_{..}) (Y_{ij} - \bar{y})^T$$

$$= \sum_{i=1}^{g} \sum_{j=1}^{n_i} [(Y_{ij} - \bar{y}_{i.}) + (\bar{y}_{i.} - \bar{y}_{..})] [(Y_{ij} - \bar{y}_{i.}) + (\bar{y}_{i.} - \bar{y}_{..})]^T$$

$$= \sum_{i=1}^{g} \sum_{j=1}^{n_i} (Y_{ij} - \bar{y}_{i.}) (Y_{ij} - \bar{y}_{i.})^T + \sum_{i=1}^{g} n_i (\bar{y}_{i.} - \bar{y}_{..}) (\bar{y}_{i.} - \bar{y}_{..})^T$$

$$E$$

MANOVA Table

SourcedfSSTreatment
$$g-1$$
 H Error $N-g$ E Total $N-1$ T

Reject $H_0: \mu_1 = \mu_2 = \cdots = \mu_g$ if the matrix H is "large" relative to the matrix ${m E}$

Test Statistics for MANOVA

There are several different test statistics for conducting the hypothesis test:

Wilks Lambda

$$\Lambda^* = \frac{|\boldsymbol{E}|}{|\boldsymbol{H} + \boldsymbol{E}|}$$

Reject H_0 if Λ^* is "small"

Hotelling-Lawley Trace

$$T_0^2 = \operatorname{trace}(\boldsymbol{H}\boldsymbol{E}^{-1})$$

Reject H_0 if T_0^2 is "large"

Pillai Trace

$$V = \operatorname{trace}(\boldsymbol{H}(\boldsymbol{H} + \boldsymbol{E})^{-1})$$

Reject H_0 if V is "large"

Notes

Notes

Romano-British Pottery Example

> dat <- read.table("pottery.txt", header = F)</pre> Residuals 22 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Df Pillai approx F num Df den Df Pr(>F) 3 1.5539 4.2984 15 60 2.413e-05 60 2.413e-05 *** ٧1 Residuals 22

⇒ at least one of the chemicals differs among the sites

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notes

Summary

In this lecture, we learned about:

- Confidence Intervals/Regions for Mean Vector
- Hypothesis Testing for Mean Vector
- Multivariate Version of Paired Tests
- Hypothesis Testing for Two Mean Vectors
- MANOVA

In the next two lectures, we will learn about Multivariate Regression

Notes			
Notes			
Notes			