<u>Dérivation (2): Fonctions dérivées</u>

Table des matières

1	Dérivées des fonctions usuelles 1.1 Formules de dérivation des fonctions usuelles	3
2	Opérations sur les fonctions dérivées 2.1 Somme, produit, inverse, quotient de dérivées	4 5 7 7 7 9
3	<pre>Étude de fonctions 3.1 Variations d'une fonction</pre>	16 16 13
aı	airforceblue aliceblue alizarin almost maranth amber amber(sae/ece) americanrose amethyst anti-flashwhite antiquebrass antiquefuchsia antiquewhite ao ao(english) applegreen apricot aqua aquamarine armygreen arylideyellow ashgrey asparagus atomictangerine auburn aureolin	

1. Dérivées des fonctions usuelles

Ex.: Soit la fonction f définie sur $\mathbb R$ par $f(x)=x^2$. Démontrons que pour tout $x \in \mathbb{R}$, on : f'(x) = 2x.

Pour cela, calculons le **nombre dérivé** de f en un nombre réel quelconque a.

Figure 1: Représentation de $f(x) = x^2$

Pour
$$h \neq 0$$
:
$$\frac{f(a+h) - f(a)}{h} = \frac{(a+h)^2 - a^2}{h}$$

$$= \frac{a^2 + 2ah + h^2 - a^2}{h}$$

$$= \frac{2ah + h^2}{h}$$

$$= \frac{h \times (2a+h)}{h}$$

$$= 2a + h$$
Or $\lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} \right) = \lim_{h \to 0} (2a + h)$

 $\lim_{h\to 0} \left(\frac{f(a+h) - f(a)}{h} \right) = \lim_{h\to 0} \left(2a + h \right) = 2a$

Pour tout nombre a, on associe le **nombre dérivé** de la fonction f égal à 2a. On a donc défini sur $\mathbb R$ une fonction, notée f', tel que f'(x)=2x.

Dérivation	(2)	:	Fonctions	dérivées	1spé

Déf. :

Soit f une fonction définie sur I.

On dit que f est dérivable sur I si elle est dérivable en tout réel $x \in I$.

Dans ce cas, la fonction qui à tout $x \in I$ associe le **nombre dérivé** de f en x est appelée **fonction dérivée** de f et se note f'.

Figure 2: C'est au mathématicien français **Joseph-Louis Lagrange** (1736-1813) que l'on doit la notation f'(x) au nom de "dérivée" pour désigner ce concept mathématique.

1.1. Formules de dérivation des fonctions usuelles♥

\overline{f}		\mathcal{D}_f	f'	$\mathcal{D}_{f'}$
f(x) = a	avec $a \in \mathbb{R}$	\mathbb{R}	f'(x)=0	\mathbb{R}
avec $a\in\mathbb{R}$				
f(x) = ax		\mathbb{R}	f'(x) = a	\mathbb{R}
avec $a\in\mathbb{R}$				
$f(x) = x^2$		\mathbb{R}	f'(x) = 2x	\mathbb{R}
$f(x) = \frac{1}{x}$		$\mathbb{R}-\{0\}$	$f'(x) = \frac{-1}{x^2}$	$\mathbb{R}-\{0\}$
$f(x) = \frac{1}{x^n}$		$\mathbb{R}-\{0\}$	$f'(x)=rac{-n}{x^{(n+1)}}$	$\mathbb{R}-\{0\}$
avec $n\geqslant 1$				
$\frac{f(x) = \sqrt{x}}{}$		[0; +∞[$f'(x) = \frac{1}{2\sqrt{x}}$]0 ; +∞[

Ex. :

- Soit f définie sur $\mathbb R$ par $f(x)=x^4$ alors :
 - ullet f est dérivable sur ${\mathbb R}$
 - On a, pour tout $x \in \mathbb{R}$, $f'(x) = 4x^3$
- Soit f définie sur $\mathbb{R}-\{0\}$ par $f(x)=rac{1}{x^5}$ alors :
 - f est dérivable sur $\mathbb{R} \{0\}$
 - On a, pour tout $x \in \mathbb{R} \{0\}$, $f'(x) = \frac{-5}{x^6}$

Démonstration : Dérivée de la fonction inverse

Soit la fonction f définie sur $\mathbb{R}-\{0\}$ par $f(x)=rac{1}{x}$

Démontrons que pour tout x de $\mathbb{R}-\{0\}$, on a : $f'(x)=\frac{-1}{x^2}$.

Pour $h \neq 0$ et $h \neq -a$:

Four
$$h \neq 0$$
 et $h \neq -a$.
$$\frac{f(a+h) - f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a - (a+h)}{a(a+h)}}{h}$$

$$= \frac{\frac{-h}{a(a+h)}}{h} = \frac{-1}{a(a+h)}$$

$$\lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} \right) = \lim_{h \to 0} \left(\frac{-1}{a(a+h)} \right)$$
$$= \frac{-1}{a^2}$$

Pour tout nombre a, on associe le **nombre dérivé** de f égal à $\frac{-1}{a^2}$

Ainsi, pour tout $x \in \mathbb{R} - \{0\}$, on a : $f'(x) = \frac{-1}{x^2}$.

Démonstration : Non dérivabilité de la fonction racine carrée en O

Soit la fonction f définie sur $[0 ; +\infty[$ par $f(x)=\sqrt{x}$

On calcule le taux de variation de f en O :

Pour h > 0:

$$\frac{f(0+h) - f(0)}{h} = \frac{\sqrt{0+h} - \sqrt{0}}{h}$$

$$= \frac{\sqrt{h}}{h}$$

$$= \frac{\sqrt{h}}{\sqrt{h} \times \sqrt{h}} = \frac{1}{\sqrt{h}}$$

$$\lim_{h \to 0} \left(\frac{f(0+h) - f(0)}{h} \right) = \lim_{h \to 0} \left(\frac{1}{\sqrt{h}} \right) = +\infty$$

En effet, lorsque $h \to 0$, $\left(\frac{1}{\sqrt{h}}\right)$ prend des valeurs de plus en plus grandes.

Donc f n'est pas dérivable en 0.

Géométriquement, cela signifie que la courbe représentative de la fonction racine carrée admet une tangente verticale en x = 0.

2. Opérations sur les fonctions dérivées

2.1. Somme, produit, inverse, quotient de dérivées

Ex.: Soit la fonction f définie sur $\mathbb R$ par $f(x)=x+x^2$.

Pour $h \neq 0$:

$$\frac{f(a+h) - f(a)}{h} = \frac{((a+h) + (a+h)^2) - (a+a^2)}{h} \\
= \frac{a+h+a^2+2ah+h^2-a-a^2}{h} \\
= \frac{h+2ah+h^2}{h} = \frac{h(1+2a+h)}{h} = 1+2a+h$$
Donc:
$$\lim_{h\to 0} \left(\frac{f(a+h) - f(a)}{h}\right) = \lim_{h\to 0} (1+2a+h) = 1+2a.$$

Alors f est dérivable sur \mathbb{R} et on a pour tout $x \in \mathbb{R}$, f'(x) = 1 + 2x.

On pose pour tout $x \in \mathbb{R}$:

• u(x) = x

•
$$v(x) = x^2$$

On a ainsi : f(x) = u(x) + v(x)

Pour tout $x \in \mathbb{R}$, on a donc :

Figure 3: Représentation de \sqrt{x}

- u'(x) = 1
- v'(x) = 2x

On constate sur cet exemple que : f'(x) = u'(x) + v'(x)

Soit encore (u+v)'(x)=u'(x)+v'(x)

2.2. Formules d'opération sur les fonctions dérivées ♥

u et v sont deux fonctions dérivables sur I.

Dérivabilité	Propriété
$\overline{(u+v)}$ est dérivable sur I	(u+v)'=u'+v'
(ku) est dérivable sur I avec $k\in\mathbb{R}$	(ku)'=ku'
(uv) est dérivable sur I	(uv)' = u'v + uv'
$\left(rac{1}{u} ight)$ est dérivable sur I Avec u qui ne s'annule pas sur I	$\left(rac{1}{u} ight)'=rac{-u'}{u^2}$
$\left(rac{u}{v} ight)$ est dérivable sur I Avec v qui ne s'annule pas sur I	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

Démonstration pour (uv)' = u'v + uv' :

• On veut démontrer que :

$$\lim_{h\to 0}\left(\frac{(uv)(a+h)-(uv)(a)}{h}\right)=u'(a)v(a)+u(a)v'(a)$$

Calculons
$$\frac{(uv)(a+h)-(uv)(a)}{h}$$

$$\frac{(uv)(a+h) - (uv)(a)}{h} = \frac{u(a+h)v(a+h) - u(a)v(a)}{h}$$

$$= \frac{u(a+h)v(a+h) - u(a)v(a+h) + u(a)v(a+h) - u(a)v(a)}{h}$$

$$= \frac{u(a+h)v(a+h) - u(a)v(a+h) + u(a)v(a+h) - u(a)v(a)}{h}$$

$$= \frac{\left(u(a+h) - u(a)\right)v(a+h) + u(a)\left(v(a+h) - v(a)\right)}{h}$$

$$= \frac{\left(u(a+h) - u(a)\right)v(a+h)}{h} + \frac{u(a)\left(v(a+h) - v(a)\right)}{h}$$

$$= \frac{u(a+h) - u(a)}{h} \times v(a+h) + u(a) \times \frac{v(a+h) - v(a)}{h}$$

On a :

•
$$\lim_{h \to 0} (u(a+h)) = u(a)$$

•
$$\lim_{h \to 0} (v(a+h)) = v(a)$$

De plus, on a u et v dérivables sur I donc :

plus, on a
$$u$$
 et v dérivables sur
$$\bullet \lim_{h \to 0} \left(\frac{u(a+h) - u(a)}{h} \right) = u'(a)$$

$$\bullet \lim_{h \to 0} \left(\frac{v(a+h) - v(a)}{h} \right) = v'(a)$$

•
$$\lim_{h \to 0} \left(\frac{v(a+h) - v(a)}{h} \right) = v'(a)$$

En passant à la limite lorsque $h \to 0$, on a :

$$\begin{aligned} (uv)' &= \lim_{h \to 0} \left(\frac{(uv)(a+h) - (uv)(a)}{h} \right) \\ &= \lim_{h \to 0} \left(\frac{u(a+h) - u(a)}{h} \times v(a+h) + u(a) \times \frac{v(a+h) - v(a)}{h} \right) \\ &= \lim_{h \to 0} \left(\frac{u(a+h) - u(a)}{h} \times v(a+h) \right) + \lim_{h \to 0} \left(\frac{v(a+h) - v(a)}{h} \times u(a) \right) \\ &= u'(a)v(a) + u(a)v'(a) \end{aligned}$$

On conclut que (uv)' = u'v + uv'

Méthode : Calculer les dérivées de sommes, produits et quotients de fonctions.

Calculons les fonctions dérivées des fonctions suivantes :

•
$$f_1(x) = 5x^3$$

 $f_1(x) = 5 \times u(x)$ avec $u(x) = x^3$ et $u'(x) = 3x^2$
Donc $f'_1(x) = 5 \times u'(x) = 5 \times 3x^2 = 15x^2$

$$\boxed{f'_1(x) = 15x^2}$$
• $f_2(x) = 3x^2 + 4\sqrt{x}$

•
$$f_2(x) = 3x^2 + 4\sqrt{x}$$

$$f_2(x) = 3 \times u(x) + 4 \times v(x)$$

avec
$$\begin{cases} u(x) = x^2 \\ v(x) = \sqrt{x} \end{cases} \Rightarrow \begin{cases} u'(x) = 2x \\ v'(x) = \frac{1}{2\sqrt{x}} \end{cases}$$

Donc
$$f_2'(x) = (3 \times u'(x)) + (4 \times v'(x)) = (3 \times 2x) + \left(4 \times \frac{1}{2\sqrt{x}}\right)$$

$$f_2'(x) = 6x + \frac{2}{\sqrt{x}}$$
• $f_3(x) = \frac{1}{2x^2 + 5x}$

•
$$f_3(x) = \frac{1}{2x^2 + 5x}$$

$$f_3(x) = \frac{1}{u} \quad \text{avec } u(x) = 2x^2 + 5x$$

$$\Rightarrow u'(x) = (2 \times 2x) + (5 \times 1) = 4x + 5$$

$$\text{Donc } f_3'(x) = \frac{u'}{u^2} = \frac{4x + 5}{(2x^2 + 5x)^2}$$

Donc
$$f_3'(x) = \frac{u'}{u^2} = \frac{4x+5}{(2x^2+5x)^2}$$

$$f_3'(x) = \frac{4x+5}{(2x^2+5x)^2}$$

•
$$f_4(x) = (3x^2 + 4x)(5x - 1)$$

$$f_4(x) = u(x) \times v(x)$$
 avec
$$\begin{cases} u(x) = 3x^2 + 4x \\ v(x) = 5x - 1 \end{cases} \Rightarrow \begin{cases} u'(x) = 6x + 4 \\ v'(x) = 5 \end{cases}$$

$$f'_4(x) = u'v + uv'$$

$$= (6x + 4)(5x - 1) + (3x^2 + 4x)(5)$$

$$= 30x^2 - 6x + 20x - 4 + 15x^2 + 20x$$

$$= 45x^2 + 34x - 4$$

$$f'_{4}(x) = 45x^{2} + 34x - 4$$
• $f_{5}(x) = \frac{6x - 5}{x^{3} - 2x^{2} - 1}$

•
$$f_5(x) = \frac{6x-5}{x^3-2x^2-1}$$

$$f_5(x)=rac{u(x)}{v(x)}$$
 avec $egin{cases} u(x)=6x-5 \ v(x)=x^3-2x^2-1 \end{cases}$ $\Rightarrow egin{cases} u'(x)=6 \ v'(x)=3x^2-4x \end{cases}$

Donc:

$$f_5'(x) = \frac{u'v - uv'}{v^2}$$

$$= \frac{(6)(x^3 - 2x^2 - 1) - (6x - 5)(3x^2 - 4x)}{(x^3 - 2x^2 - 1)^2}$$

$$= \frac{6x^3 - 12x^2 - 6 - 18x^3 + 24x^2 + 15x^2 - 20x}{(x^3 - 2x^2 - 1)^2}$$

$$= \frac{-12x^3 + 27x^2 - 20x - 6}{(x^3 - 2x^2 - 1)^2}$$

2.3. Composée de dérivées

$$rac{f}{f(ax+b)} rac{\mathcal{D}_f}{f$$
 dérivable sur I $af'(ax+b)$

Ex.:
$$f(x) = \sqrt{5x - 4} = u(5x - 4)$$
 avec $u(x) = \sqrt{x} \Rightarrow u'(x) = \frac{1}{2\sqrt{x}}$
Donc $f'(x) = 5 \times u'(5x - 4) = 5 \times \frac{1}{2\sqrt{5x - 4}}$

2.4. Cas de la fonction valeur absolue

Ex. :

- La valeur **absolue** de -5 est égale à 5.
- La valeur absolue de 8 est égale à 8.

Déf.: La valeur absolue d'un nombre A est égal au nombre A si A est positif, et au nombre -A si Aest négatif.

La **valeur absolue** de A se note |A|.

$$|A| = \begin{cases} A & \text{si } A \ge 0 \\ -A & \text{si } A \le 0 \end{cases}$$

Ex. :

$$|x-5|$$
 = $\begin{cases} x-5 & \text{si } (x-5) \ge 0 \\ -(x-5) & \text{si } (x-5) \le 0 \end{cases}$ = $\begin{cases} x-5 & \text{si } x \ge 5 \\ 5-x & \text{si } x \le 5 \end{cases}$

2.5. Fonction valeur absolue

La fonction valeur absolue

13579

est la fonction f définie sur $\mathbb R$ par f(x)=|x|. Propriété : La fonction valeur absolue

• strictement **décroissante** sur $]-\infty$; 0]

• strictement **croissante** sur $[0; +\infty[$.

Remarque:

Dans un repère orthogonal, la courbe de la fonction valeur absolue est symétrique par rapport à l'axe des ordonnées.

2.6. Étude de la dérivabilité en 0

Soit f définie sur \mathbb{R} par f(x) = |x|.

Calculons le taux de variation de f en 0 :

$$\frac{f(0+h)-f(0)}{h} = \frac{|0+h|-|0|}{h} = \frac{|h|}{h}$$

• Si $h > 0 \Rightarrow |h| = h$ donc $\frac{f(0+h) - f(0)}{h} = \frac{h}{h} = 1$ • Si $h < 0 \Rightarrow |h| = -h$ donc $\frac{f(0+h) - f(0)}{h} = \frac{-h}{h} = -1$

Donc :

$$\lim_{h\to 0} \left(\frac{f(0+h)-f(0)}{h}\right) = \begin{cases} 1 & \text{si } h>0 \\ -1 & \text{si } h<0 \end{cases}$$

Cette limite n'existe pas car elle dépend du signe de h.

La fonction valeur absolue n'est donc pas dérivable en 0.

Où placer la tangente en x = 0 ?

Dérivation (2) : Fonctions dérivées — 1spé

Cependant, il est à noter que la fonction f(x) = |x| est dérivable en tout nombre différent de 0.

3. Étude de fonctions

3.1. Variations d'une fonction

Théorème : Soit une fonction f définie et dérivable sur I.

- Si $f'(x) \le 0$, alors f est **décroissante** sur I.
- Si $f'(x) \ge 0$, alors f est **croissante** sur I.

Ex.: Soit la fonction f définie sur $\mathbb R$ par f(x) = $2x^2$ - 8x

>

1

• Calcul de f'(x)

f est dérivable sur $\mathbb R$ et f'(x)=4x-8

• Signe de f' en fonction de x.

Il faut résoudre f'(x) > 0

 $f'(x) > 0 \Leftrightarrow 4x - 8 > 0$

 $\Leftrightarrow 4x > 8 \qquad \Leftrightarrow x > 2$

Si x > 2 alors f'(x)

O donc f est ${f croissante}$ sur

150 2 +5 3 25 5 5 5 1 150 = 2.3.5 ²	729 243 81 27 9 3 1	3 1485 3 495 3 165 3 55 3 11 1485=	3 3 5 11 3 ³ , 5. 11	378 189 63 21 7 1 378 = 2	2 3 3 7 2.3 ³ .7	1260 630 315 105 35 7 1	223357
---	---------------------------------------	---	---	---	---	---	--------

 $[2; +\infty[$

$$f(2) = 2 \times (2)^2 - 8 \times (2) + 1 = -7$$

La fonction f admet un minimum égal à (-7) en x=2

Ex.: Soit la fonction f définie sur $\mathbb R$ par $f(x)=x^3+\frac92x^2-12x+5$.

• Calcul de f'(x)

f est dérivable sur \mathbb{R} et $f'(x) = 3x^2 + 9x - 12$

• Signe de f' en fonction de x.

Il faut résoudre f'(x) > 0

f' étant une fonction du $2^{
m nd}$ degré, il faut trouver les racines de $3x^2+9x-12$

$$\Delta = b^2 - 4ac = 9^2 - 4 \times 3 \times (-12) = 225 > 0$$

Il existe donc 2 racines :
$$\begin{cases} x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-9 + \sqrt{225}}{2 \times 3} = 1 \\ x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-9 - \sqrt{225}}{2 \times 3} = -4 \end{cases}$$

On a: a = 3 > 0 donc $f'(x) = (3x^2 + 9x - 12) < 0$ pour $x \in [-4; 1]$

ullet Tableau de variations de f.

Représentation graphique de f

On a:

$$f(-4) = (-4)^3 + \frac{9}{2} \times (-4)^2 - 12 \times (-4) + 5 = 61$$

$$f(1) = (1)^3 + \frac{9}{2} \times (1)^2 - 12 \times (1) + 5 = \frac{-3}{2}$$

3.2. Extremum d'une fonction

Théorème :

Soit f définie et dérivable sur I et f' sa dérivée.

Si f' s'annule et change de signe en x=c de I alors f admet un extremum (minimum ou maximum) local en x=c.

Ex.

Soit f définie sur \mathbb{R} par $f(x)=5x^2-3x+4$ \mnimg{Tableau de variation de f(x)](img/07.png)

Pour tout $x \in \mathbb{R}$, on a : f'(x) = 10x - 3

Et f'(x) = 0 pour $x = \frac{3}{10}$

On a : $f\left(\frac{3}{10}\right) = \frac{71}{20}$

f admet donc un **minimum** en $x=\frac{3}{10}$ égal à $\left(\frac{71}{20}\right)$.

3.3. Position relative de deux courbes

Ex. :

Soit f et g deux fonctions définies sur $[2; +\infty[$ par :

- $f(x) = x^3$
- g(x) = -5x + 18

L'étude de la position relative de \mathcal{C}_f et de \mathcal{C}_g revient à étudier le signe de la différence f(x)-g(x)

On pose : $h(x) = f(x) - g(x) = x^3 + 5x - 18$

Pour tout x de $[2 ; +\infty[$, on a : $h'(x) = 3x^2 + 5$

h' est une fonction du 2^{nd} degré :

- a = 3 , b = 0 et c = 5
- $\Delta = b^2 4ac = 0^2 4 \times 3 \times 5 = -60 < 0$

Donc h'(x) est du signe de a=3>0

$$h'(x)$$
 \Rightarrow h est strictement

sur $[2; +\infty[$

De plus, on a : $h(2) = (2)^3 + 5 \times (2) - 18 = 0$

D'après le tableau de variations, on a $h(x) \geq 0$.

Donc, pour tout $x \in [2; +\infty[$, on a :

$$f(x) - g(x) \ge 0 \iff f(x) \ge g(x)$$

On en déduit que \mathcal{C}_f est **au-dessus** de \mathcal{C}_g sur $x \in [2 ; +\infty[$.

Figure 4: Représentation de f et g