МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КРЕМЕНЧУЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ МИХАЙЛА ОСТРОГРАДСЬКОГО

Кафедра комп'ютерної інженерії та електроніки

3BIT

ПРО ВИКОНАННЯ ПРАКТИЧНИХ РОБІТ

з навчальної дисципліни

«Ймовірнісно-статистичні методи інформаційних технологій»

Тема «Схема Бернуллі»

Здобувач освіти гр. КН-24-1, Бояринцова П. С. Викладач Сидоренко В. М.

Тема. Схема Бернуллі

Мета: набути практичних навичок розв'язання типових задач у рамках схеми Бернуллі.

1.1 Постановка завдання.

Ознайомитися з теоретичними відомостями з теми. Виконати індивідуальні завдання згідно з варіантом. Відповісти на контрольні питання.

1.2 Розв'язання задачі згідно зі своїм варіантом.

Задача 3. Знайдіть *найбільш імовірну кількість* випадінь герба внаслідок 25 кидань монети. (рис. 1).

Рисунок 1 – розв'язання задачі 3

Задача 4. Монету кинуто 10 разів. Знайдіть ймовірність того, що герб випаде: а) від 4 до 6 разів; б) хоча б один раз. (рис. 2)

Рисунок 2 – розв'язання задачі 4

Задача 5. Яка ймовірність того, що при n=1000 киданнях монети орел випаде рівно k=500 разів? (рис. 3):

Рисунок 3 – розв'язання задачі 5

Задача 6. Імовірність настання події A в кожному з 900 незалежних випробувань дорівнює p=0.8. Знайдіть імовірність того, що подія A відбудеться: а) 750 разів; б) 710 разів; в) від 710 до 740 разів. (рис. 4)

Рисунок 4 – розв'язання задачі 6

Задача 7. Імовірність того, що електролампочка, виготовлена заводом, ϵ бракованою, дорівнює 0.02. Для контролю відібрано навмання 1000 лампочок. Оцінить імовірність того, що частота бракованих лампочок у вибірці відрізняється від імовірності 0.02 менше, ніж на 0.01. (рис. 5):

 $\left|\frac{k}{n} - p\right| \le 0,01$; $\left|\frac{k}{1000} - 0,02\right| < 0,01$ -0,01 < 1000 - 0,02 < 0,01 +0,02 $0.01 \le \frac{R}{1000} \le 0.03 \times 1000$ P1000 (10 < k ≤ 30)-2 pr(k1 \le k \le k2) \approx P(x2) - P(x1) × 1,223363 = 0,488051 20 (225877) ≈ 2.0,488051≈0,976102

Рисунок 5 – розв'язання задачі 7

1.3 Отримані результати.

Схема Бернуллі ϵ зручною моделлю для визначення ймовірності певної кількості успіхів у серії незалежних випробувань із сталою ймовірністю події. Для великих значень n ефективно використовувати наближення за формулами Лапласа або Пуассона, що спрощу ϵ обчислення без значної втрати точності.

Практичні приклади показують, що вибір методу залежить від параметрів задачі, тому важливо враховувати умови застосування кожного наближення.

1.4 Відповіді на контрольні питання.

1. Надати визначення схеми випробувань Бернуллі.

Схема Бернуллі — послідовність незалежних випробувань, у кожному з яких ϵ два результати: «успіх» з ймовірністю p або «неуспіх» з ймовірністю q = 1 - p, причому p незмінна для всіх випробувань.

2. Які властивості має випадковий експеримент за схемою Бернуллі?

Кожне випробування має два можливі результати (успіх/неуспіх).

Випробування незалежні між собою.

Ймовірність успіху p однакова в кожному випробуванні.

3. Що загального і відмінного схеми випробувань Бернуллі від схеми випробувань, що описується гіпергеометричним розподілом?

Спільне: обидва описують число «успіхів» у серії відборів/випробувань. Відмінність: у схемі Бернуллі відбори робляться з поверненням (незалежні, постійна p), у гіпергеометричному розподілі — без повернення (ймовірність змінюється від відбору до відбору).

4. Як визначається ймовірність отримати к успіхів у п незалежних випробуваннях за схемою Бернуллі?

$$P_n(k) = C_n^k * p^k * q^{n-k}$$

5. Навести приклади випадкових експериментів, які можна моделювати за допомогою схеми Бернуллі.

Кидання монети n разів (успіх = «орел»).

Серія пострілів стрільця (успіх = влучення).

Перевірка деталей на брак (успіх = брак або навпаки, залежно від формулювання), при незалежних перевірках і сталому p.

Кожен абонент телефонує в станцію протягом хвилини (успіх = дзвінок), якщо дзвінки незалежні й мають однакову ймовірність.