MapReduce & GraphLab: Programming Models for Large-Scale Parallel/Distributed Computing

Iftekhar Naim

Motivation

□ The Age of "Big Data"

facebook

*G Billion
Flickr Photos

- □ Infeasible to analyze on a single machine
- □ Solution: Distribute across many computers

Outline

- Motivation
- MapReduce Overview
 - Design Issues & Abstractions
 - Examples and Results
 - Pros and Cons
- □ Graph Lab
 - Graph Parallel Abstraction
 - MapReduce vs Pregel vs GraphLab
 - Implementation Issues
 - Pros and Cons

Motivation

- Challenges: We repeatedly solve the same systemlevel problems
 - $\hfill\Box$ Communication/Coordination among the nodes
 - Synchronization, Race Conditions
 - □ Load Balancing, Locality, Fault Tolerance, ...
- $\hfill \square$ Need a higher level programming Model
 - That hides these messy details
 - $\hfill \square$ Applies to a large number of problems

MapReduce: Overview

- A programming model for large-scale data-parallel applications
 - □ Introduced by Google (Dean & Ghemawat, OSDI'04)
- Petabytes of data processed on clusters with thousands of commodity machines
 - Suitable for programs that can be decomposed in many embarrassingly parallel tasks
- □ Hides low level parallel programming details

Example: Count word frequencies from web pages

- □ Input: Web documents
 - Key = web document URL, Value = document content
- □ Output: Frequencies of individual words
- □ Steps 1: specify a Map function

MapReduce: Overview

- □ Programmers have to specify two primary methods
 - Map: processes input data and generates intermediate key/value pairs
 - Reduce: aggregates and merges all intermediate values associated with the same key

Example: Count word frequencies from web pages

- □ Step 2: specify a Reduce function
 - □ Collect the partial sums provided by the map function
 - Compute the total sum for each individual word

 ${\color{red}\textbf{Input:}} \ {\color{red}\textbf{Intermediate files}} \ {\color{red}\textbf{<}} {\color{red}\textbf{key=word, value=partialCount*}} \\ {\color{red}\textbf{>}} \\ {\color{red}\textbf{-}} {\color{red}\textbf{-$

Example code: Count word

```
void map(String key, String value):
// key: webpage url
// value: webpage contents
for each word w in value:
    EmitIntermediate(w, "1");

void reduce(String key, Iterator partialCounts):
// key: a word
// partialCounts: a list of aggregated partial counts
int result = 0;
for each pc in partialCounts:
    result += ParseInt(pc);
Emit(AsString(result));
```

Implementation Details: Scheduling

- One Master, many workers
 - MapReduce Library splits input data into M pieces (16MB or 64MB per piece, uses GFS)
- Master assigns each idle worker to a map or reduce task
- Worker completes the map task, buffers the intermediate (key,value) in memory, and periodically writes to local disk
 - Location of buffered pairs are returned to Master
- □ Master assigns completed map tasks to Reduce workers
 - Reduce worker reads the intermediate files using RPC
 - Sorts the keys and performs reduction

How MapReduce Works?

Ref: J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, OSDI, 2004

Fault Tolerance

- □ Worker Failure: Master pings the workers periodically
 - □ If no response, then master marks the worker as failed
 - Any map task or reduce task in progress is marked for rescheduling
 - Completed reduce tasks don't have to be recomputed
- Master Failure
 - Master writes periodic checkpoints to GFS. On failure, new master recovers to that checkpoint and continues
 - Often not handled, aborts if master fails (failure of master is less probable)

Locality

- □ Bandwidth is an important resource
 - Communicating large datasets to worker nodes can be very expensive
- Do not transfer data to worker
 - Assign task to the worker that has the data locally
- □ Create multiple replications of data (Typically 3)
- Master assigns to one of these computers having the data in local file system

Other Refinements: Backup Tasks

- □ Some machines can be extremely slow ("straggler")
 - Perhaps a bad disk that frequently encounters correctable errors
- □ Solution: Backup tasks
 - Near the end of map reduce, master schedules some backup tasks for each of the remaining tasks
 - A task is marked as complete if either the primary or the backup execution completes

Other Refinements

□ Task Granularity:

- M map tasks, R reduce tasks
- We want to make M and R larger
 - Dynamic load balancing
- Faster recovery from failure
- BUT, increases the number of scheduling decisions increases with M and R
- □ Finally we'll get R output files. So R should not be too large
- Typical settings: for 2000 worker machines:
 - M = 200,000 and R = 5000

Results: Sorting

M=15k, R=4k, ~ 1800 machines

Figure 3: Data transfer rates over time for different executions of the sort program

Example: Word Frequency: MAP

```
#include "mapreduce/mapreduce.h"
// User's map function
class WordCounter : public Mapper {
  public:
    virtual void Map(const MapInput& input) {
        //perform map operation, parse input
        ...
        //for each word
        Emit(word,"1")
  }
};
REGISTER MAPPER(WordCounter);
```

Word Frequency: MAIN (Simplified)

```
int main(int argc, char** argv) {
   MapReduceSpecification spec;
   // Store list of input files into "spec"
   MapReduceInput* input = spec.add_input();
   input->set_mapper_class("WordCounter");
   //specify output files
   MapReduceOutput* out = spec.output();
   out->set_reducer_class("Adder");
   // Tuning parameters: use at most 2000
   spec.set_machines(2000);
   // Now run it
   MapReduceResult result;
   MapReduce(spec, &result));
   return 0;
}
```

Word Frequency: REDUCE

```
// User's reduce function
class Adder: public Reducer {
    virtual void Reduce(ReduceInput* input) {
        // Iterate over all entries with the
        // same key and add the values
        int64 value = 0;
        while (!input->done()) {
            value += StringToInt(input->value());
            input->NextValue();
        }
        // Emit sum for input->key()
        Emit(IntToString(value));
      }
};
REGISTER REDUCER(Adder);
```

MapReduce Instances at Google

Ref: PACT 06' Keynote slides by Jeff Dean, Google, Inc.

Pros: MapReduce

- □ Simplicity of the model
 - Programmers specifies few simple methods that focuses on the functionality not on the parallelism
 - □ Code is generic and portable across systems
- □ Scalability
 - Scales easily for large number of clusters with thousands of machines
- Applicability to many different systems and a wide variety of problems
 - Distributed Grep, Sort, Inverted Index, Word Frequency count, etc.

Summary: MapReduce

- MapReduce
 - Restricted but elegant solution
 - High level abstraction
 - □ Implemented in C++
- □ Many Open-source Implementation
 - □ Hadoop (Distributed, Java)
 - $lue{}$ Phoenix, Metis (Shared memory, for multicore, C++)

Cons: MapReduce

- Restricted programming constructs (only map & reduce)
- Does not scale well for dependent tasks (for example Graph problems)
- Does not scale well for iterative algorithms (very common in machine learning)

GraphLab

GraphLab: Motivation

- □ MapReduce is great for Data Parallel applications
 - Can be easily decomposed using map/reduce
 - Assumes independence among the tasks
- □ Independence assumption can be too restrictive
- □ Many interesting problems involve graphs
 - Need to model dependence/interactions among entities
 - Extract more signal from noisy data
 - MapReduce is not well suited for these problems

Bulk Synchronous Parallel Model:

Pregel

[Malewicz et al. '2010]

http://graphlab.org/powergraph-presented-at-osdi/

Graph-based Abstraction

- Machine learning practitioners typically had two choices:
 - □ Simple algorithms + "Big data" vs
 - Powerful algorithms (with dependency)+ "Small data"
- □ Graph-based Abstraction
 - Powerful algorithms + "Big data"
- □ Graph parallel programming models:
 - Pregel: Bulk Synchronous Parallel Model (Google, SIGMOD 2010)
 - □ GraphLab: asynchronous model [UAI 2010, VLDB 2012]

Tradeoffs of the BSP Model

- □ Pros:
 - Scales better than MapReduce for Graphs
 - □ Relatively easy to build
 - □ Deterministic execution
- □ Cons:
 - Inefficient if different regions of the graph converge at different speed
 - □ Can suffer if one task is more expensive than the others
 - Runtime of each phase is determined by the slowest machine

Synchronous vs Asynchronous Belief Propagation

[Gonzalez, Low, Guestrin. '09]

GraphLab Framework: Overview

- GraphLab allows asynchronous iterative computation
- □ The GraphLab abstraction consists of 3 key elements:
 - Data Graph
 - Update Functions
 - $lue{}$ Sync Operation
- □ We explain GraphLab using PageRank example

GraphLab vs. Pregel (Page Rank)

[Low et al. PVLDB'12]

□ PageRank (25M Vertices, 355M Edges, 16 processors)

http://graphlab.org/powergraph-presented-at-osdi/

Case Study: PageRank

□ Iterate:

$$R[i] = \alpha + (1 - \alpha) \sum_{(j,i) \in E} \frac{1}{L[j]} R[j]$$

- Where:
 - lacktriangledown as the random reset probability
 - $\square L[j]$ is the number of links on page j

$$R[5] = \alpha + (1 - \alpha) \left(\frac{1}{3} R[1] + \frac{1}{1} R[4] \right)$$

http://graphlab.org/powergraph-presented-at-osdi/

1. Data Graph

- □ Data Graph: a directed acyclic graph G=(V,E,D)
 - Data D refers to model parameters, algorithm states and other related data

2. Update Functions

An **update function** is a user defined program (similar to map) Applied to a **vertex**, transforms the data in the **scope** of the vertex

1. Data Graph

- \square PageRank: G = (V,E,D)
 - Each vertex (v) corresponds to a webpage
 - Each edge (u,v) corresponds to a link from $(u \rightarrow v)$
 - Vertex data D_v stores the rank of the webpage i.e. R(v)
 - Edge data: $D_{u \to v}$ stores the weight of the link $(u \to v)$

$$R[v] \leftarrow \alpha + (1-\alpha) \sum_{u \in N[v]} W_{uv} \times R[u]$$

2. Update Function

$$R[v] \leftarrow \alpha + (1-\alpha) \sum_{u \in N[v]} W_{uv} \times R[u];$$

```
struct pagerank : public iupdate_functor<graph, pagerank> {
  void operator()(icontext_type& context) {
    double sum = 0;
    foreach ( edge_type edge, context.in_edges() )
        sum += 1/context.num_out_edges(edge.source()) *
            context.vertex_data(edge.source());
    double& rank = context.vertex_data();
    double old_rank = rank;
    rank = RESET_PROB + (1-RESET_PROB) * sum;
    double residual = abs(rank - old_rank)
    if (residual > EPSILON)
        context.reschedule_out_neighbors(pagerank());
}
```

3. Sync Operation

- Global operation, usually performed periodically in the background
 - Useful for maintaining some global statistics of the algorithm
 - Example: PageRank may want to return a list of 100 top ranked web pages
 - Determine the global convergence criteria. For example, estimate log-likelihood.
 - Estimate total log-likelihood for Expectation Maximization
- □ Similar to Reduce functionality in MapReduce

GraphLab: Hello World!

```
#include <graphlab.hpp>
int main(int argc, char** argv) {
   graphlab::mpi_tools::init(argc, argv);
   Graphlab::distributed_control dc;
   dc.cout()<< "Hello World!\n";
   graphlab::mpi_tools::finalize();
}</pre>
```

- □ Let the file name: my_first_app.cpp
- Use "make" to build
- □ Excecute: mpiexec -n 4 ./my_first_app

dc.cout() provides a wrapper around standard std::cout
When used in a distributed environment, only one copy will print, even though all machines execute it.

Scheduling

Algorithm 2: GraphLab Execution Model

```
Input: Data Graph G = (V, E, D)
Input: Initial vertex set \mathcal{T} = \{v_1, v_2, ...\}
while \mathcal{T} is not Empty do
v \leftarrow \text{RemoveNext}(\mathcal{T})
(\mathcal{T}', \mathcal{S}_v) \leftarrow f(v, \mathcal{S}_v)
\mathcal{T} \leftarrow \mathcal{T} \cup \mathcal{T}'
Output: Modified Data Graph G = (V, E, D')
```

[Low et al. PVLDB'12]

GraphLab Tutorials

- □ For more interesting examples, check:
 - http://docs.graphlab.org/using_graphlab.html
- A step by step tutorial for implementing PageRank in GraphLab

Few Additional Details

- □ Fault Tolerance using checkpointing
- □ The GraphLab described here is GraphLab 2.1
 - GraphLab for distributed systems
- The first version was proposed only for multicore systems
- □ Recently, PowerGraph was proposed
 - GraphLab on Cloud

Summary

- MapReduce: efficient for independent tasks
 - □ Simple framework
 - Independence assumption can be too restrictive
 - □ Not scalable for graphs or dependent tasks, or iterative tasks
- □ Pregel: Bulk Synchronous Parallel Models
 - Can model dependent and iterative tasks
 - □ Easy to Build, Deterministic
 - Suffers from inefficiencies due to synchronous scheduling
- GraphLab: Asynchrnous Model
 - Can model dependent and iterative tasks
 - □ Fast, efficient, and expressive
 - □ Introduces non-determinism, relatively complex implementation

Tradeoffs of GraphLab

□ Pros:

- Allows dynamic asynchronous scheduling
- More expressive consistency model
- □ Faster and more efficient runtime performance

□ Cons:

- Non-deterministic execution
- Substantially more complicated to implement

References

- MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean & Sanjay Ghemawat, OSDI 2004.
- GraphLab: A new framework for parallel machine learning, Low et al., UAI 2010.
- GraphLab: a distributed framework for machine learning in the cloud, Low et al., PVLDB 2012.
- Pregel: a system for large-scale graph processing, Malewicz et al., SIGMOD 2010.
- Parallel Splash Belief Propagation, Gonzalez et al., Journal of Machine Learning Research, 2010.

Disclaimer

 Many figures and illustrations were collected from Carlos Guestrin's GraphLab tutorials

http://docs.graphlab.org/using_graphlab.html

Additional GraphLab Implementation Issues

Scheduling

The scheduler determines the order that vertices are updated

The process repeats until the scheduler is empty

Scheduling

- What happens for boundary vertices (across machines)?
- □ Data is classified as edge data and vertex data
- □ Partition a huge graph across multiple machines
 - Ghost vertices (along the cut) maintains adjacency information
 - Graph must be cut efficiently. Use parallel graph partitioning tools (ParMetis)

Consistency Model

Race conditions may occur if updating shared data
 If overlapping computations run simultaneously

(b) Consistency Models

Consistency Model: How to Avoid Race?

- Ensure update functions for two vertices simultaneously operate only if
 - two scopes do not overlap
- □ Three consistency models:
 - □ Full consistency
 - Edge consistency
 - Vertex consistency

Consistency vs Parallelism

(c) Consistency and Parallelism

Consistency Model: Implementation

- □ Option 1: Chromatic Engine:
 - Graph coloring: neighboring vertices have different colors
 - Simultaneous update only for vertices with same color

Consistency using Distributed Locks

□ Distributed Locking

- Non-blocking locks allow computation to proceed while locks/data are requested.
- Request locks in a canonical order to avoid deadlock