- sysPreliminary tests
- Test
- Sampled

Optimisation

Theory

Relationships matrix

$$M = \begin{bmatrix} m_{1,1} & m_{1,2} & \dots & m_{1,N} \\ m_{2,1} & m_{2,2} & \dots & m_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ m_{N,1} & m_{N,2} & \dots & m_{N,N} \end{bmatrix}$$
$$m_{i,j} \in [-1,1].$$

Select component A_i

Introduce the set $\{s_{i,j}\}$ of random variables of binomial distribution:

$$P\{s_{i,j} = 1\} = |m_{i,j}|, P\{s_{i,j} = 0\} = 1 - |m_{i,j}|.$$

Let in the moment $t=t_0$ the system has the state $(A_1(t_0),A_2(t_0),...,A_N(t_0))$

Consider

$$d_{i} = \sum_{j=1}^{N} sign(m_{i,j}) s_{i,j} \varphi_{i,j}(A_{j}(t_{0}))$$

 d_i is a random variable taking values $\sum_{j=1}^{N} sign(m_{i,j}) k_j \varphi_{i,j}(A_j(t_0)), k_j = \{0,1\}, j = 1,2,...,N \text{ with } 1 \le j \le n$

probabilities
$$\prod_{j=1}^{N} (2 | m_{i,j} | -1) k_j + 1 - | m_{i,j} |$$

 $D = (d_1, d_2, ..., d_N)$ -- random vector

Let $d_1, d_2, ..., d_M$ — the values which d takes ($M \le 2^N$) and $p_1, p_2, ..., p_M$ — probabilities: $P\{d = d_1\} = p_1$.

Let δ — threashold.

Let S -- a set of sets $s = (s_1, s_2, \dots, s_N)$, where each $s_i \in \{-, 0, +\}$. I.e. there 3^N such s in S.

Let
$$I = (-\infty, -\delta], I^0 = (-\delta, \delta), I^+ = [\delta, \infty).$$

For each $s \in S$ compute $P_s = P\left\{d_1 \in \overset{s}{I^I}, d_2 \in \overset{s}{I^2}, \ldots, d_N \in \overset{s}{I^N}\right\}$

It's clear, that some P_s can be equal 0.

Next define the next state of the system $(A_1(t+1), A_2(t+1), ..., A_N(t+1))$ and probability of transition to this state as following:

for each i (i = 1, 2, ..., N) define:

$$A_i(t+1) = \begin{cases} Dec(A_i(t)) & \text{if } s_i = -\\ A_i(t) & \text{if } s_i = 0\\ Inc(A_i(t)) & \text{if } s_i = + \end{cases}$$
 with probability s_i .

As there are N components, to each state $A_1(t), A_2(t), \dots, A_N(t)$ can correspons 3^N states

 $A_1(t+1), A_2(t+1), ..., A_N(t+1).$

> N := parse(DocumentTools[GetProperty](ComboN, 'value')): K:=parse(DocumentTools [GetProperty](ComboK, 'value')): KN :=K^N; RG := (i,j) -> (RandomTools[MersenneTwister][GenerateFloat64]()-0.5)*2:

KN := 81

Relation matrix generation

> M:= Matrix(N, N, (i,j) -> RG(i,j));

		1	2	3	4
	1	.62	.81	.74	.82
M =	2	26	80	44	97
	3	.59	.92	.68	.94
	4	.91	.29	.60	.72

> GraphTheory[Arrivals](G1, "3.1.1.1"); GraphTheory[Departures](G1, "1.2.2.2"); ["2.1.1.2", "2.1.2.1", "2.1.2.2", "2.2.1.1", "2.2.1.2", "2.2.2.1", "2.2.2.2", "3.1.1.1", "3.1.1.2", "3.1.2.1", "3.1.2.2", "3.2.1.1", "3.2.1.2", "3.2.2.1", "3.2.2.2"] ["1.2.2.2", "1.2.2.3", "1.2.3.2", "1.2.3.3", "1.3.2.2", "1.3.2.3", "1.3.3.2", "1.3.3.3", "2.2.2.2.2", "2.2.2.3", "2.2.3.2", "2.2.3.3", "2.3.2.2", "2.3.2.3", "2.3.3.2", "2.3.3.3"]

> print(M);

Presentation of a number bas-bases with N0 length

```
NO — width of output, bas — base, nb — number to be convert (from \mathcal{O}).
```

> BasePres := proc(N0, bas, nb::integer)::list; return [seq(0, i02 = 1.. N0-numelems(ListTools[Reverse](convert(nb,

'base', bas)))), op(ListTools[Reverse](convert(nb, 'base', bas)))]

end proc;

Inc := proc(k :: integer)::integer; return min(k+1,K);

end proc:

Dec := proc(k :: integer)::integer;

return max(k-1,1);

end proc:

BasePres := proc(NO, bas, nb::integer)::list,

return [seq(0, i02 = 1..N0 - numelems(ListTools[Reverse](convert(nb, 'base', bas)))),