DYNAMIKA SZTUCZNYCH SATELITÓW ZIEMI

Prowadzący dr inż.. Jan Kindracki Pok. 306b

Treść przedmiotu

Przypomnienie definicji ruchu satelity na orbicie Keplerowskiej;

Układy współrzędnych stosowane w astronautyce;

Perturbacje, źródła, strefy oddziaływań;

Korekcje orbity

Przypomnienie mechaniki ruchu punktu materialnego oraz dynamiki ruchu bryły sztywnej;

Wprowadzenie do systemów kontroli położenia satelity;

Czynniki zakłócające ruch satelity zewnętrzne i wewnętrzne;

Rodzaje satelitów;

Wyznaczanie położenia satelity, sensory;

Elementy wykonawcze układu utrzymania pozycji satelity;

Projektowanie systemu ACS;

Obliczenia pojedynczych manewrów systemu ACS.

Wiadomości o zaliczeniu

Sposób zaliczenia przedmiotu:

Dwa kolokwia każde oceniane w zakresie 0÷50punktów, do zdobycia w sumie 100punktów, pozytywna ocena od 50 punktów:

```
0 ÷50pkt - 2.0
```

51 ÷60pkt - 3.0

61 ÷70pkt - 3.5

71 ÷80pkt - 4.0

81 ÷90pkt - 4.5

91 ÷100pkt - 5.0

Literatura:

- P. Fortescue, J.Stark, G. Swinerd "Spacecraft Systems Engineering", Willey, 2003 BG Antresola Wolny Dostęp
- 2. Ch.D. Brown "Elements of Spacecraft Design", AIAA, 2002
- 3. V.A Chabotov "Orbital Mechanics", AIAA, 2002 BG Antresola Wolny Dostęp
- 4. P. Hughes, "Spacecraft attitude dynamics" *biblioteka MEiL*
- 5. M.J.Sidi "Spacecraft Dynamics & Control, A practical engineering approach", Cambridge University Press, 2006
- 6. Curtis, Howard D "Orbital mechanics for engineering students" BG Antresola Wolny Dostep

Dynamika Orbit

Przypomnienie wiadomości o orbitach Keplerowskich

Zagadnienie 2-ciał

$$\vec{r} = \vec{r}_1 - \vec{r}_2$$

$$\vec{F}_{1} = G \cdot m_{1} \cdot m_{2} \cdot \frac{\vec{r}_{2} - \vec{r}_{1}}{\left|\vec{r}_{2} - \vec{r}_{1}\right|^{3}} \qquad \qquad \vec{F}_{2} = G \cdot m_{1} \cdot m_{2} \cdot \frac{\vec{r}_{1} - \vec{r}_{2}}{\left|\vec{r}_{1} - \vec{r}_{2}\right|^{3}} = -\vec{F}_{1}$$

$$\vec{r}_2 - \vec{r}_1 = -G \cdot (m_1 + m_2) \cdot \frac{\vec{r}_2 - \vec{r}_1}{r^3}$$

Równanie orbitalne

$$r = \frac{h^2}{\mu} \cdot \frac{1}{1 + e \cdot \cos \Theta}$$

$$V_{\perp} = \frac{h}{r}$$
 $V_{r} = \frac{\mu}{h} \cdot e \cdot \sin \Theta$

circle orbit

Równanie Keplera

(związek pomiędzy anomalią średnią i

$$M_e = E - e \cdot \sin E$$

$$tg\left(\frac{\Theta}{2}\right) = \sqrt{\frac{1+e}{1-e}} \cdot tg\left(M_e\right)$$

 $M_a = \Psi$ – anomalia mimosrodowa

Czas przelotu na orbicie

$$t_{elip} = \frac{a^{\frac{3}{2}}}{\sqrt{\mu}} \cdot \left\{ 2 \arctan\left(\sqrt{\frac{1+e}{1-e}} \cdot tg\left(\frac{\Theta}{2}\right)\right) - \frac{e \cdot \sqrt{1-e^2} \cdot \sin\Theta}{1+e \cdot \cos\Theta} \right\}$$

$$t_{hyp} = \frac{a^{\frac{3}{2}}}{\sqrt{\mu}} \cdot \left\{ \frac{e \cdot \sqrt{e^2 - 1} \cdot \sin \Theta}{1 + e \cdot \cos \Theta} - \ln \frac{\sqrt{e + 1} + \sqrt{e - 1} \cdot \tan \left(\frac{\Theta}{2}\right)}{\sqrt{e + 1} - \sqrt{e - 1} \cdot \tan \left(\frac{\Theta}{2}\right)} \right\}$$

Elementy orbity nieperturbowanej

h – moment orbitalny;

i – inklinacja;

e – mimośród orbity;

 ω – argument perigeum;

 Ω – rektascensja węzła wstępującego;

 Θ — anomalia prawdziwa;

Lub dodatkowo

a – duża półoś orbity;

M – anomalia średnia

Układy współrzędnych – umiejscowienie osi układu w przestrzeni

Oś **X** leży w płaszczyźnie równika i wskazuje na punkt Barana (punkt leżący w gwiazdozbiorze Barana)

Oś **Z** leży w osi obrotu Ziemi;

Oś **Y** jest ortogonalna do obu poprzednich osi tworząc razem prostokątny kartezjański układ współrzędnych

≈ 21 June

Układy współrzędnych - Kształt Ziemi

Współczynnik spłaszczenia Ziemi

$$f = \frac{R_e - R_p}{R_e} \qquad e = \sqrt{2f - f^2}$$

Promień biegunowy Ziemi

$$R_p = R_e \cdot \sqrt{1 - e^2}$$

Promień Ziemi na dowolnej szerokości geograficznej

$$R_{\phi} = \frac{R_e}{\sqrt{1 - e^2 \cdot \sin \phi}}$$

Układy współrzędnych – geocentryczny, równikowy

$$\vec{r} = x\vec{I} + y\vec{J} + z\vec{K} \qquad v = v_x\vec{I} + v_y\vec{J} + v_z\vec{K} \qquad \vec{r} = r\vec{u}_r$$

$$\vec{u}_r = \cos\delta \cdot \cos\alpha \cdot \vec{I} + \cos\delta \cdot \sin\alpha \cdot \vec{J} + \sin\delta \cdot \vec{K}$$

Układy współrzędnych - geocentryczny, horyzontalny

A – kąt azymutu (mierzony jako dodatni zgodnie z obrotem wskazówek zegara od kierunku północnego) 0≤A
 ≤ 360

a – kąt elewacji (mierzony pomiędzy liną styczną w punkcie 0 lokalnego układu odniesienia i linią wektora wskazującego dany obiekt)

$$\vec{\rho} = \cos a \cdot \cos A \cdot \vec{i} + \cos a \cdot \cos A \cdot \vec{j} + \sin a \cdot \vec{k}$$

Transformacja pomiędzy układami równikowym a horyzontalnym

Transformacja z układu równikowego do horyzontalnego

$$\rho_{h} = Q|_{r \to h} \cdot \rho_{r} \qquad Q|_{r \to h} = \begin{bmatrix} -\sin\theta & \cos\theta & 0 \\ -\sin\phi\cos\theta & -\sin\phi\sin\theta & \cos\phi \\ \cos\phi\cos\theta & \cos\phi\sin\theta & \sin\phi \end{bmatrix}$$

Transformacja z układu horyzontalnego do równikowego

$$\rho_{r} = Q|_{h \to r} \cdot \rho_{h} \qquad Q|_{h \to r} = \begin{bmatrix} -\sin\theta & -\sin\phi\cos\theta & \cos\phi\cos\theta \\ \cos\theta & -\sin\phi\sin\theta & \cos\phi\sin\theta \\ 0 & \cos\phi & \sin\phi \end{bmatrix}$$

θ – kąt pomiędzy osią X (skierowaną do punktu Barana) a położeniem lokalnego układu współrzędnych

φ - szerokość geograficzna położenia lokalnego układu współrzędnych

Transformacja pomiędzy kartezjańskimi układami współrzędnych

$$\vec{R} = X \cdot \vec{I} + Y \cdot \vec{J} = x \cdot \vec{i} + y \cdot \vec{j}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \cos \Omega & \sin \Omega & 0 \\ -\sin \Omega & \cos \Omega & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Χγ,**Y**,**Z** – układ związany z Ziemią, inercjalny, geocentryczny leżący w płaszczyźnie ekliptyki

P,Q,W – układ współrzędnych leżący w płaszczyźnie orbity, oś P wskazuje na perigeum orbity

$$\begin{bmatrix} P \\ Q \\ W \end{bmatrix} = \begin{bmatrix} \cos \omega & \sin \omega & 0 \\ -\sin \omega & \cos \omega & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos i & \sin i \\ 0 & -\sin \omega & \cos i \end{bmatrix} \cdot \begin{bmatrix} \cos \Omega & \cos \Omega & 0 \\ -\sin \Omega & \sin \Omega & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Czas i jego pomiar

Doba gwiazdowa (*sidereal day*) – jest to czas obrotu Ziemi dookoła swej osi i powrotu pozycji słońca (lub dowolnej długości geograficznej) w stosunku do wybranej gwiazdy, wynosi on 23h56m4.091s

Doba słoneczna (*solar day*) - jest to czas obrotu Ziemi dookoła swej osi i powrotu słońca do wybranej długości geograficznej, wynosi 24h

Różnica pomiędzy dobą słoneczną a gwiazdową wynosi 3.93minuty a wynika z faktu że w ciągu doby Ziemia pokonuje 0.986° w swym ruchu dookoła słońca i o tyle zmieniają się pozycje gwiazd, więc żeby gwiazdy wróciły do dawnej pozycji musi dokonać obrotu o dodatkowy kąt wynoszący właśnie 0.986°

Jak znaleźć różnicę??

4 lata = 1461 dni słonecznych (365*4 +1) W ciągu 4 lat Ziemia obróciła się wokół Słońca 1440°

W ciągu 1 doby słonecznej Ziemia przemieszcza się wokół Słońca o 0.98° (1440°/1461dób) W ciągu 1doby słonecznej Ziemia obraca się o 360.98°

1 doba słoneczna = 1440m 1 doba gwiazdowa = 1436.7m(1440*360/360.98)

Różnica = 3.93 minuty

Źródło: M.Richaria, Satellite Communication Systems

Wprowadzenie do orbit nie-Keplerowskich

Ogólne równanie ruchu satelity na orbicie "Keplerowskiej" (idealnej) możemy zapisać w postaci:

$$\frac{d^2\vec{r}}{dt} = -\mu \cdot \frac{\vec{r}}{r^3} = \gamma_k \qquad \frac{da}{dt} = \frac{de}{dt} = \frac{d\Omega}{dt} = \frac{d\omega}{dt} = \frac{di}{dt} = 0 \quad \text{oraz} \quad \frac{dM}{dt} = n$$

Uwzględniając zakłócenia w ruchu po orbicie, ogólnie można napisać następująco:

$$\frac{d^2\vec{r}}{dt} = \gamma_k + \gamma_p$$

γ_o – przyśpieszenie perturbacyjne

$$\frac{da}{dt} = F_a(a, e, i, \omega, \Omega, M, t)$$

$$\frac{de}{dt} = F_e(a, e, i, \omega, \Omega, M, t)$$

$$\frac{di}{dt} = F_i(a, e, i, \omega, \Omega, M, t)$$

$$\frac{d\omega}{dt} = F_\omega(a, e, i, \omega, \Omega, M, t)$$

$$\frac{d\Omega}{dt} = F_\omega(a, e, i, \omega, \Omega, M, t)$$

$$\frac{d\Omega}{dt} = F_\omega(a, e, i, \omega, \Omega, M, t)$$

Perturbacje - równania Gauss'a

dla sił perturbujących niezachowawczych (zależnych od pozycji i prędkości)

$$\frac{da}{d\theta} = \frac{2p \cdot r^2}{\mu \cdot (1 - e^2)^2} \cdot \left(e \cdot \sin \theta \cdot R + \frac{p}{r} \cdot T\right)$$

$$\frac{de}{d\theta} = \frac{r^2}{\mu} \cdot \left(\sin \theta \cdot R + \left(1 + \frac{r}{p}\right) \cdot \cos \theta \cdot T + e \cdot \frac{r}{p} \cdot T\right)$$

$$\frac{di}{d\theta} = \frac{r^3}{\mu \cdot p} \cdot \cos(\theta + \omega) \cdot W$$

$$\frac{d\Omega}{d\theta} = \frac{r^3 \cdot \sin(\theta + \omega)}{\mu \cdot p \cdot \sin i} \cdot W$$

$$\frac{d\omega}{d\theta} = \frac{r^2}{\mu \cdot e} \cdot \left[-\cos \theta \cdot R + \left(1 + \frac{r}{p}\right) \cdot \sin \theta \cdot T\right] - \cos i \cdot \frac{d\Omega}{d\theta}$$

$$\frac{dt}{d\theta} = \frac{r^2}{\sqrt{\mu \cdot p}} \cdot \left[1 - \frac{r^2}{\mu \cdot e} \cdot \left(\cos \theta \cdot R - \left(1 + \frac{r}{p}\right) \cdot \sin \theta \cdot T\right)\right]$$

$$\frac{da}{dt} = \frac{2}{n \cdot \sqrt{1 - e^2}} \cdot \left(e \cdot \sin \theta \cdot R + \left(1 + e \cdot \cos \theta\right) \cdot T\right)$$
Druga postać równań

UWAGA: przedstawione powyżej zależności nie działają dla orbit kołowych i o zerowym kącie inklinacji

R – siła działająca na satelitę wzdłuż promienia wodzącego

T – siła działająca na satelitę poprzecznie do promienia

W – siła normalna do dwóch poprzednich sił, tworząca razem układ prawoskrętny

$$p = a \cdot (1 - e^2) = \frac{h^2}{\mu}$$
 p - parametr pericentrum

Druga postać równań

$$\frac{de}{dt} = \frac{1}{n \cdot \sqrt{1 - e^2}} \cdot (e \cdot \sin \theta \cdot R + (1 + e \cdot \cos \theta) \cdot T)$$

$$\frac{de}{dt} = \frac{\sqrt{1 - e^2}}{n \cdot a} \cdot (\sin \theta \cdot R + [\cos(M) + \cos(\theta)] \cdot T)$$

$$\frac{di}{dt} = \frac{1}{n \cdot a \cdot \sqrt{1 - e^2}} \cdot \frac{r}{a} \cdot \cos(\theta + \omega) \cdot W$$

$$\frac{d\Omega}{dt} = \frac{1}{n \cdot a \cdot \sqrt{1 - e^2}} \cdot \frac{r}{a} \cdot \frac{\sin(\theta + \omega)}{\sin(i)} \cdot W$$

$$\frac{d\omega}{dt} = \frac{\sqrt{1 - e^2}}{n \cdot a \cdot e} \cdot \left[-\cos \theta \cdot R + \left(1 + \frac{1}{1 + e \cdot \cos(\theta)}\right) \cdot \sin \theta \cdot T \right] - \cos i \cdot \frac{d\Omega}{dt}$$

$$\frac{dM}{dt} = n + \frac{1 - e^2}{n \cdot a \cdot e} \cdot \left\{ \left[\frac{-2 \cdot e}{1 + e \cdot \cos(\theta)} + \cos(\theta) \right] \cdot R - \left[1 + \frac{1}{1 + e \cdot \cos(\theta)} \right] \cdot T \cdot \sin(\theta) \right\}$$

Perturbacje - Równania Lagrange'a

dla sił perturbujących zachowawczych (zależnych tylko od pozycji)

$$\vec{F}_p = -grad(\vec{r})$$

 $\vec{F}_n = -grad(\vec{r})$ Siła perturbująca jako gradient z wektora r

$$\frac{da}{dt} = \frac{2}{n \cdot a} \cdot \frac{\partial U}{\partial M}$$

$$\frac{de}{dt} = \frac{1 - e^2}{n \cdot a^2 \cdot e} \cdot \frac{\partial U}{\partial M} - \frac{\sqrt{1 - e^2}}{n \cdot a^2 \cdot e} \cdot \frac{\partial U}{\partial \omega}$$

$$\frac{di}{dt} = \frac{-1}{n \cdot a^2 \cdot \sqrt{1 - e^2} \cdot \sin i} \cdot \left[\frac{\partial U}{\partial \Omega} + \cos i \cdot \frac{\partial U}{\partial \omega} \right]$$

$$\frac{d\Omega}{dt} = \frac{1}{n \cdot a^2 \cdot \sqrt{1 - e^2} \cdot \sin i} \cdot \frac{\partial U}{\partial i}$$

$$\frac{d\omega}{dt} = \frac{\sqrt{1 - e^2}}{n \cdot a^2 \cdot e} \cdot \frac{\partial U}{\partial e} - \frac{\cos i}{n \cdot a^2 \cdot \sqrt{1 - e^2} \cdot \sin i} \cdot \frac{\partial U}{\partial i}$$

$$\frac{dM}{dt} = n - \frac{2}{n \cdot a} \cdot \frac{\partial U}{\partial M} - \frac{1 - e^2}{n \cdot a^2 \cdot e} \cdot \frac{\partial U}{\partial e}$$

Perturbacje - rozwiązanie

Tak uzyskane równania różniczkowe należ scałkować w odpowiednich granicach: od ustalonego czasu początkowego t_0 dla którego znamy dokładne parametry orbity dla tej chwili czasowej: a_0 , e_0 , i_0 , o_0 ,

$$\frac{da}{dt} = \frac{2}{n \cdot a} \cdot \frac{\partial U}{\partial M} = n_a \implies da = n_a \cdot dt$$

$$\int_{a_0}^a da = n_a \int_{t_0}^t dt \implies a \cdot a_0 = n_a \cdot (t - t_0)$$

$$a = a_0 + n_a \cdot (t - t_0)$$

$$e = e_0 + n_e \cdot (t - t_0)$$

$$i = i_0 + n_i \cdot (t - t_0)$$

$$\omega = \omega_0 + n_o \cdot (t - t_0)$$

$$\Omega = \Omega_0 + n_o \cdot (t - t_0)$$

$$M = M_0 + n_o \cdot (t - t_0)$$

Rodzaje perturbacji i strefy ich oddziaływań

- Hamujący wpływ atmosfery ziemskiej opór atmosferyczny;
- Anizotropia (nierównomierność) pola grawitacyjnego;
- Nie-sferyczność kształtu Ziemi;
- Wpływ pola magnetycznego Ziemi;
- Perturbacje ciała trzeciego (Księżyc, Słońce, Jowisz, itp..);
- Ciśnienie promieniowania słonecznego.

Strefy oddziaływań

- **1. Strefa zewnętrzna** w której praktycznie zakłócenia ruchu satelitów powodowane są przez duże ciał niebieskie (Słońce i Księżyc).
- **2. Strefa środkowa** w której wpływy zakłócające spowodowanie anizotropią pola grawitacyjnego są tego samego rzędu co wpływ ciał obcych.
- **3. Strefa wewnętrzna** w której działanie hamujące atmosfery jest na tyle znaczne, że należy je już uwzględniać.

Zakłócenia niegrawitacyjne w górnych warstwach atmosfery zmniejszają się szybko wraz ze wzrostem odległości od Ziemi i praktycznie można je pominąć w odległości przekraczającej $2 \cdot R_o$ od środka Ziemi, czyli h = 6371km od powierzchni.

Zakłócenia związane z anizotropią pola grawitacyjnego, także maleją ze wzrostem odległości od środka Ziemi. W odległości 10·R_o praktycznie nie mają już znaczenia.

Źródło	Przyśpieszenie (m/s²)		
	500km	GEO	
Opór atmosfery	6·10 ⁻⁵ A/M	1,8 ·10 ⁻¹³ A/M	
Ciśnienie światła	4,7 ·10 ⁻⁶ A/M	4,7 ·10 ⁻⁶ A/M	
Słońce	5,6 ·10 ⁻⁷	3,5 ·10 ⁻⁶	
Księżyc	1,2 ·10 ⁻⁶	7,3 ·10 ⁻⁶	
Jowisz	8,5 ·10 ⁻¹²	5,2 ·10 ⁻¹¹	

Opór atmosferyczny

Opór atmosferyczny i perturbacje przez niego powodowane szybko maleją z wysokością orbity, podlegają jednak skomplikowanym zmianom wraz ze zmianami w atmosferze, spowodowanymi np.: wpływem Słońca, pory roku, pory doby – dzień czy noc. Siły perturbujące można wyznaczyć z poniższych zależności:

$$R = -\frac{1}{2} \rho \cdot v \cdot \delta \cdot \sqrt{\frac{\mu}{p \cdot F}} \cdot e \cdot \sin \theta$$

$$T = -\frac{1}{2} \rho \cdot v \cdot \delta \cdot \sqrt{\frac{\mu}{p \cdot F}} \cdot \left(1 + e \cdot \cos \theta - r \cdot \alpha \cdot \left(\frac{p}{\mu} \right)^{\frac{1}{2}} \cdot \cos i \right)$$

$$W = -\frac{1}{2} \rho \cdot v \cdot \delta \cdot \frac{r \cdot \alpha}{\sqrt{F}} \cdot \sin i \cdot \cos(\theta + \omega)$$

M – masa satelity;

S – pole rzutowanej powierzchni na płaszczyznę prostopadłą;

 C_D – współczynnik oporu aerodynamicznego (2,2 dla kuli; 3 dla cylindra);

R_p – promień perigeium orbity;

V_p – prędkość satelity w perigeum orbity

V – prędkość bezwzględna;

α – prędkość obrotowa satelity [rad/s]

$$F = \left(1 - \frac{r_p \cdot \alpha}{v_p} \cdot \cos i\right)^2 \qquad p = a \cdot \left(1 - e^2\right) \qquad \delta = \frac{\mathbf{F} \cdot \mathbf{S} \cdot \mathbf{C}_{\mathrm{D}}}{M}$$

Opór atmosferyczny – przykład obliczeniowy

Obliczyć zmiany parametrów orbitalnych dla satelity krążącego na orbicie LEO o parametrach 200x400km, ważącego 1145kg. Pole powierzchni prostopadłej do kierunku ruchu 1m^2 , współczynnik $C_D=0,5$. Satelita obraca się z prędkością 300deg/min. Pozostałe dane to: nachylenie płaszczyzny orbity i=28,5deg, Ω =10deg, ω =54deg, $R_E=6378$ km, m=398600km 3 /s 2

Obliczamy:

 $A = 6678 \text{km}, \ e = 0,014975, \ T = 5431,013 \text{s} \ n = 0,001157 \text{rad/s}, \ V_p = 7,8424 \text{km/s} \ a \ pozostałe wartości w postaci wykresów postaci wykresów kartości w postaci w postaci wykresów kartości w postaci w po$

Opór atmosferyczny – przykład obliczeniowy

Czas życia satelity na orbicie LEO

Czas życia satelity na orbicie LEO zależy głównie od hamującego wpływu atmosfery. Wielkość tą można szacować przy użyciu poniższych zależności:

$$t_{life} \approx \frac{e_0^2}{2 \cdot B} \cdot \left(1 - \frac{11}{6} \cdot e_0 + \frac{29}{16} \cdot e_0^2 + \frac{7}{8} \cdot \frac{H}{a_0} \right)$$

$$B \approx \sqrt{\frac{\mu}{a_0^3}} \cdot \frac{A \cdot C_D}{M} \cdot \rho_{p0} \cdot a_0 \cdot e_0 \cdot I_1 \left(\frac{a_0 \cdot e_0}{H} \right) \cdot \exp \left(-e_0 \cdot \left(1 + \frac{a_0}{H} \right) \right)$$

$$I_{1}\left(\frac{a_{0} \cdot e_{0}}{H}\right) = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! \cdot (1+k)!} \cdot \left(\frac{a_{0} \cdot e_{0}}{2 \cdot H}\right)^{1+2 \cdot k}$$

 ρ_{p0} – gęstość atmosfery dla perigeum orbity początkowej wyznaczona przy użyciu modelu atmosfery (Atm1976, MSIS200, JB2006);

a₀ – półoś orbity początkowej;

e₀ – mimośród orbity początkowej;

A – powierzchnia "czołowa" satelity;

M – masa satelity;

C_D – współczynnik oporu satelity;

H – wysokość satelity

Orbit Lifetime vs Initial Circ Orbit Altitude (CdA/m=200 cm^2/kg; Equatorial Orbit)

Altitude Scale Height Atmospheric Dens						
(km)	(km)	Mean (kg/m³)	Maximum (kg/m³) 1.225			
0	8.4	1.225				
100	5.9	5.25E-7	5.75E-7			
150	25.5	1.73E-9	1.99E-9			
200	37.5	2.41E-10	3.65E-10			
250	44.8	5.97E-11	1.20E-10			
300	50.3	1.87E-11	4.84E-11			
350	54.8	6.66E-12	2.18E-11			
400	58.2	2.62E-12	1.05E-11			
450	61.3	1.09E-12	5.35E-12			
500	64.5	4.76E-13	2.82E-12			
550	68.7	2.14E-13	1.53E-12			
600	74.8	9.89E-14	8.46E-13			
650	84.4	4.73E-14	4.77E-13			
700	99.3	2.36E-14	2.73E-13			
750	121	1.24E-14	1.59E-13			
800	151	6.95E-15	9.41E-14			
850	188	4.22E-15	5.67E-14			
900	226	2.78E-15	3.49E-14			
950	263	1.98E-15	2.21E-14			
1,000	296	1.49E-15	1.43E-14			
1,250	408	5.70E-16	2.82E-15			
1,500	516	2.79E-16	1.16E-15			
2,000	829	9.09E-17	3.80E-16			
2,500	1220	4.23E-17	1.54E-16			
3,000	1590	2.54E-17	7.09E-17			
3,500	1900	1.77E-17	3.67E-17			
4,000	2180	1.34E-17	2.11E-17			
4,500	2430	1.06E-17	1.34E-17			
5,000	2690	8.62E-18	9.30E-18			
6,000	3200	6.09E-18	5.41E-18			
7,000	3750	4.56E-18	3.74E-18			
8,000	4340	3.56E-18	2.87E-18			
9,000	4970	2.87E-18	2.34E-18			
10,000	5630	2.37E-18	1.98E-18			
15,000	9600	1.21E-18	1.16E-18			
20,000	14600	7.92E-19	8.42E-19			
25,000	20700	5.95E-19	6.81E-19			
30,000	27800	4.83E-19	5.84E-19			
35,000	36000	4.13E-19	5.21E-19			
35,786	37300	4.04E-19	5.12E-19			

Opór atmosferyczny – atmosfera standardowa

$$ho(h) =
ho_o \cdot \exp\left(-rac{h}{H}
ight)$$
 po-gęstość na wysokości skali; h – wysokość satelity; H – skala wysokości;

Na gęstość atmosfery na danej wysokości wpływa wiele czynników:

- pora roku,
- pozycja w cyklu słonecznym;
- pora dnia
- aktywność Słońca

Przykład zmian gęstości atmosfery pod wpływem cyklu słonecznego dla modelu atmosfery MSISE-90

Uproszczone obliczenia wpływu oporu aerodynamicznego

W obliczeniach uproszczonych oraz dla orbit kołowych lub o bardzo niewielkim mimośrodzie można zastosować poniższe zależności służące do obliczania zmiany półosi orbity, okresu obiegu oraz prędkości:

$$\frac{da}{dt} = \frac{-2 \cdot \pi \cdot C_D \cdot A \cdot \rho \cdot a^2}{M} \left[\frac{m}{rev} \right]$$

$$\frac{dT}{dt} = \frac{-6 \cdot \pi^2 \cdot C_D \cdot A \cdot \rho \cdot a^2}{M \cdot V} \left[\frac{s}{rev} \right]$$

$$\frac{dV}{dt} = \frac{\pi \cdot C_D \cdot A \cdot \rho \cdot a \cdot V}{M} \left[\frac{\frac{m}{s}}{rev} \right]$$

Oszacowanie długości życia satelity na danej orbicie można uzyskać przy użyciu następującej zależności:

$$L = \frac{-H_m}{\left(\frac{da}{dt}\right)_{\frac{m}{rev}}} [orbit]$$

H – skala wysokości [m]da/dt – zmiana półosi w ciągu jednej orbity [m/rev]

Przykład obliczeniowy:

Satelita o masie 1000kg, pole powierzchni $8m^2$ i współczynniku oporu $C_D = 2.6$

Uproszczone obliczenia wpływu oporu aerodynamicznego c.d.

Poniższy wykres obrazuje w sposób uproszczony szybkość "ściągania" przez atmosferę ziemską satelitę o parametrach: masa **1000kg**, pole powierzchni **8m**², współczynnik oporu $C_D = 2.6$, dla gęstości atmosfery obliczanej przy użyciu modelu MSISE-90 dla średniej aktywności słonecznej.

Model potencjału grawitacyjnego Ziemi w poniższej postaci jest prawdziwy tylko dla przypadku zamodelowania Ziemi w postaci punktu materialnego lub idealnej sfery

$$U(r) = -\frac{\mu}{r}$$

W rzeczywistości nasza planeta nie jest idealną sferą, dlatego potencjał grawitacyjny należy opisywać poniższą zależnością ujmującą jej niekulistość i nierównomierny rozkład masy:

$$U(r, \phi, \lambda) = -\frac{\mu}{r} + B(r, \phi, \lambda)$$

$$B(r,\phi,\lambda) = \frac{\mu}{r} \cdot \left\{ \sum_{n=2}^{\infty} \left[\left(\frac{R_e}{r} \right)^n \cdot J_n \cdot P_n \cdot \sin \phi + \sum_{m=1}^n \left(\frac{R_e}{r} \right)^n \cdot \left(C_{nm} \cdot \cos(m \cdot \lambda) + S_{nm} \cdot \sin(m \cdot \lambda) \right) \cdot P_{nm} \cdot \sin(\phi) \right] \right\}$$

R – geocentryczna odległość punktu P;

λ – geocentryczna długość geograficzna;

R_e – średni równikowy promień Ziemi;

J_n – współczynnik harmonicznej;

P_{nm} – współczynnik wielomianu Legendre

P_n - współczynnik wielomianu Legendre stopnia n;

 C_{nm} – współczynnik geopotencjału dla zmian związanych z długoścą geograficzną

S_{nm} – współczynnik geopotencjału dla zmian związanych z długoścą geograficzną

Wartości współczynników do obliczenia wartości potencjału grawitacyjnego Ziemi

J_2	1082.6×10^{-6}	C_{21}	0	S21	0
J_3	-2.53×10^{-6}	C_{22}	1.57×10^{-6}		-0.90×10^{-6}
J_4	-1.62×10^{-6}	C_{31}	2.19×10^{-6}	S_{31}	0.27×10^{-6}
J_5	-0.23×10^{-6}	C_{32}	0.31×10^{-6}	S_{32}	-0.21×10^{-6}
J_6	0.54×10^{-6}	C_{33}	0.10×10^{-6}		0.20×10^{-6}

Największy wpływ na potencjał grawitacyjny ma współczynnik J_2 w większości obliczeń analitycznych jedynie on jest brany pod uwagę

TESSERAL P_{nm} (n \neq m \neq 0)

SECTORIAL P_{nn} $(n \neq 0)$

Według WGS (Word Geodetic Survey) dla modelu obowiązującego od 1984 roku zależność na potencjał grawitacyjny można uprościć do następującego związku:

$$U \approx -\frac{\mu}{r} \cdot \left\{ 1 - \sum_{n=2}^{\infty} \left[\left(\frac{R_e}{r} \right)^n \cdot J_n \cdot P_n \cdot \sin \phi \right] \right\} = \frac{\mu}{r} \cdot \left[U_o + U_{J2} + U_{J3} + \dots \right]$$

$$U_0 = -1; \quad U_{J2} = \left(\frac{R_e}{r}\right)^2 \cdot J_2 \cdot \frac{1}{2} \cdot \left(3\sin^2\phi - 1\right); \quad U_{J3} = \left(\frac{R_e}{r}\right)^3 \cdot J_3 \cdot \frac{1}{2} \cdot \left(5\sin^3\phi - 3\sin\phi\right)$$

Uwzględniając związek pomiędzy szerokością geograficzną a kątem inklinacji orbity oraz kątami argumentu pericentrum i anomalią prawdziwą, możemy uzyskać wyrażenie na współczynnik \mathbf{J}_2 , który jest dominujący ze wszystkich innych i w obliczeniach inżynierskich wystarczająco dokładnie opisuje zachowanie się potencjału grawitacyjnego

$$\sin \phi = \sin i \cdot \sin(\omega + \Theta)$$

$$U_{J2} = \frac{\mu}{a} \cdot \left(\frac{R_e}{a}\right)^2 \cdot J_2 \cdot \left[\frac{1}{2} - \frac{3}{4} \cdot \left(\sin^2 i\right)\right] \cdot \left(1 - e^2\right)^{-\frac{3}{2}}$$

Uwzględniając równania Lagrange'a wyznaczające zależność zmiany danego parametru orbity w funkcji czasu otrzymujemy

$$\frac{da}{dt} = \frac{de}{dt} = \frac{di}{dt} = 0$$

$$\frac{d\Omega}{dt} = -\frac{3}{2} \cdot \frac{n \cdot J_2 \cdot \cos i}{\left(1 - e^2\right)^2} \cdot \left(\frac{R_e}{a}\right)^2 = n_{\Omega} \qquad \frac{d\omega}{dt} = \frac{3 \cdot n \cdot J_2 \left[1 - 5 \cdot \cos^2 i\right]}{4\left(1 - e^2\right)^2} \cdot \left(\frac{R_e}{a}\right)^2 = n_{\omega}$$

$$\frac{dM}{dt} = n + \frac{3 \cdot n \cdot J_2 \left[3 \cdot \cos^2(i) - 1 \right]}{4 \left(1 - e^2 \right)^{\frac{3}{2}}} \cdot \left(\frac{R_e}{a} \right)^2 = n_M$$

$$a = a_0$$

$$e = e_0$$

$$i = i_0$$

$$\Omega = \Omega_0 + n_\Omega \cdot (t - t_0)$$

$$\omega = \omega_0 + n_\omega \cdot (t - t_0)$$

$$M = M_0 + n_M \cdot (t - t_0)$$

Niejednorodność pola grawitacyjnego – przykład obliczeniowy

