Introduction to Graph Algorithms

Version of October 11, 2014

Graphs

- Extremely useful tool in modeling problems
- Consist of:
 - Vertices
 - Edges

Vertices can be considered as "sites" or locations.

Edges represent connections.

Graph Application

Air flight system

- Each vertex represents a city
- Each edge represents a direct flight between two cities
- A query on direct flight = a query on whether an edge exists
- A query on how to get to a location = does a path exist from A to B
- We can even associate costs to edges (weighted graphs), then ask "what is the cheapest path from A to B"

Graph Application

- Each vertex represents a city
- Each edge represents a direct flight between two cities
- A query on direct flight = a query on whether an edge exists
- A query on how to get to a location = does a path exist from A to B
- We can even associate costs/time to edges (weighted graphs), then ask "what is the cheapest/fastest path from A to B"

Why Graph Algorithms?

- Graphs are a ubiquitous data structure in computer science
 - Networks: LAN, the Internet, wireless networks
 - Logistics: transportation, supply chain management
 - Relationship between objects: online dating, social networks (Facebook!)
- Hundreds of interesting computational problems defined on graphs
- We will sample a few basic ones

Definition

- A graph G = (V, E) consists of
 - a set of vertices V, |V| = n, and
 - a set of edges E, |E| = m
- Each edge is a pair of (u, v), where u, v belongs to V

$$V = \{A, B, C, H, L, M, N, P, S, T\}$$
$$E = \{(A, C), (A, H), \dots, (H, P), \dots\}$$

• For directed graph, we distinguish between edge (u, v) and edge (v, u); for undirected graph, no such distinction is made.

Terminology

- Each edge has two endpoints
 - H and B are the endpoints of (H, B)
- An edge joins its endpoints
 - (H, B) joins H and B
- Two vertices are adjacent (or neighbors) if they are joined by an edge.
 - H and B are adjacent
 - H is a neighbor of B
- If vertex v is an endpoint of edge e, then the edge e is said to be incident on v. Also, the vertex v is said to be incident on e
 - (H, B) is incident on H and B
 - H and B are incident on (H, B)

The Degree of a Vertex

The degree of a vertex v (degree(v)) in a graph is the number of edges incident on it.

- Vertex H has degree 5
- Vertex N has degree 1
- Vertex X has degree 0
 (It is called an isolated vertex)

Lemma

$$\sum_{v \in V} degree(v) = 2|E|.$$

Proof.

An edge e = (u, v) in a graph contributes one to degree(u) and contributes one to degree(v).

Path

A path in a graph is a sequence $\langle v_0, v_1, v_2, \dots, v_k \rangle$ of vertices such that $(v_{i-1}, v_i) \in E$ for $i = 1, 2, \dots, k$

- There is a path from v_0 to v_k
- Length of a path = # of edges on the path
- Path contains the vertices v_0, v_1, \ldots, v_k and the edges $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$
- For any $0 \le i \le j \le k$, $\langle v_i, v_{i+1}, \dots, v_i \rangle$ is its subpath
- If there is a path p from u to v, v is said to be reachable from u
- A path is simple if all vertices in the path are distinct

- \(\lambda L, B, M \rangle\) is a path
 - length is 2
 - $-\langle B, M \rangle$ is its subpath
 - $-\ M$ is reachable from L
 - a simple path
- - length is 5
 - ⟨T, H, S⟩ is its subpath
 - P is reachable from N
 - not a simple path

Cycle

A path $\langle v_0,v_1,v_2,\ldots,v_k\rangle$ forms a cycle if $v_0=v_k$ and all edges on the path are distinct

- A cycle is simple if v_1, v_2, \ldots, v_k are distinct
- A graph with no cycles is acyclic

- $\langle T, S, H, T \rangle$ is a simple cycle
- $\langle A, C, L, P, H, A \rangle$ is a simple cycle

Connectivity

- Two vertices are connected if there is a path between them
- A graph is connected if every pair of vertices is connected; otherwise, the graph is disconnected
- The connected components of a graph are the equivalence classes of vertices under the "is reachable from" relation
 - \bullet connected graph
 - one connected component $\{A, B, C, H, L, M, N, P, S, T\}$

- disconnected graph
- 3 connected components
 - $-\{1,2,5\}$
 - $-\{3,6\}$
 - {4}

Subgraph

- Graph G' = (V', E') is a subgraph of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$
- G' is an induced subgraph of G if G' is a subgraph of G and every edge of G connecting vertices of G' is an edge of G'.

Trees

- A tree is a connected, acyclic, undirected graph
- If an undirected graph is acyclic but possibly disconnected, it is a forest

Properties of Trees

Let G = (V, E) be an undirected graph. The following statements are equivalent.

- G is a tree
- 2 Any two vertices in G are connected by a unique simple path
- **3** *G* is connected, but if any edge is removed from *E*, the resulting graph is disconnected
- **4** G is connected, and |E| = |V| 1
- **5** *G* is acyclic, and |E| = |V| 1
- \odot *G* is acyclic, but if any edge is added to *E*, the resulting graph contains a cycle

- (1) G is a tree
- \Rightarrow (2) Any two vertices in G are connected by a unique simple path

- Proof by contradiction
- Suppose that vertices u and v are connected by two distinct simple paths p_1 and p_2 , as shown in the above figure
 - p_1 and p_2 first diverge at vertex w
 - p_1 and p_2 first reconverge at vertex z
 - p' is the subpath of p_1 from w through x to z
 - p'' is the subpath of p_2 from w through y to z
 - The path obtained by concatenating p' and the reverse of p'' is a cycle, which yields the contradiction!

- (2) Any two vertices in G are connected by a unique simple path \Rightarrow (3) G is connected, but if any edge is removed from E, the resulting graph is disconnected
 - If any two vertices in *G* are connected by a unique simple path, then *G* is connected
 - Let (u, v) be any edge in E
 - This edge is a path from u to v, and so it must be the unique path from u to v
 - If (u, v) is deleted from G, there is no path from u to v, and hence its removal disconnects G

- (3) G is connected, but if any edge is removed from E, the resulting graph is disconnected
- \Rightarrow (4) G is connected, and |E| = |V| 1
 - By assumption, the graph G is connected
 - Prove |E| = |V| 1 by induction
 - Base (n = 1): A connected graph with one vertex has zero edge
 - Suppose that G has $n \ge 2$ vertices and that all graphs satisfying (3) with fewer than n vertices also satisfy |E| = |V| 1
 - Removing an arbitrary edge from G separates the graph into 2 connected components
 - Each component satisfies (3), or else G would not satisfy (3)
 - Thus, by induction, the number of edges in 2 components combined is |V|-2
 - ullet Adding in the removed edge yields |E|=|V|-1

- (4) G is connected, and |E| = |V| 1
- \Rightarrow (5) G is acyclic, and |E| = |V| 1
 - Suppose that G is connected and that |E| = |V| 1
 - Suppose that G has a cycle containing k vertices v_1, v_2, \ldots, v_k , and without loss of generality assume that this cycle is simple
 - Let $G_k = (V_k, E_k)$ be the subgraph of G consisting of the cycle
 - Note that $|V_k| = |E_k| = k$
 - If k < |V|, there must be a vertex $v_{k+1} \in V V_k$ that is adjacent to some vertex $v_i \in V_k$, since G is connected
 - Define $G_{k+1} = (V_{k+1}, E_{k+1})$ to be the subgraph of G with $V_{k+1} = V_k \cup \{v_{k+1}\}$ and $E_{k+1} = E_k \cup \{(v_i, v_{k+1})\}$
 - Note that $|V_{k+1}| = |E_{k+1}| = k+1$
 - If k+1 < |V|, we can continue, defining G_{k+2} in the same manner, and so forth, until we obtain $G_n = (V_n, E_n)$, where $n = |V|, V_n = V$, and $|E_n| = |V_n| = |V|$
 - Since G_n is a subgraph of G, we have $E_n \subseteq E$, and hence $|E| \ge |V|$, which contradicts the assumption that |E| = |V| 1

- (5) G is acyclic, and |E| = |V| 1
- \Rightarrow (6) *G* is acyclic, but if any edge is added to *E*, the resulting graph contains a cycle
 - Suppose that G is acyclic and that |E| = |V| 1
 - Let *k* be the number of connected components of *G*
 - Each connected component is a free tree by definition, and since (1) implies (5), the sum of all edges in all connected components of G is |V| - k
 - Consequently, we must have k = 1, and G is in fact a tree (That is, (1) holds)
 - Since (1) implies (2), any two vertices in *G* are connected by a unique simple path
 - Thus, adding any edge to G creates a cycle

- (6) G is acyclic, but if any edge is added to E, the resulting graph contains a cycle
- \Rightarrow (1) G is a tree
 - Suppose that G is acyclic but that if any edge is added to E, a cycle is created
 - We must show that G is connected
 - Let u and v be arbitrary vertices in G
 - If u and v are not already adjacent, adding the edge (u, v) creates a cycle in which all edges but (u, v) belong to G
 - Thus, there is a path from u to v, and since u and v were chosen arbitrarily, G is connected