

PTO 02-4682

Japanese Kokai Patent Application
No. Sho 52[1977]-89070

SEMICONDUCTOR DEVICE

Hiromoto Serizawa and Shoichi Fukai

UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, D.C. SEPTEMBER 2002
TRANSLATED BY THE RALPH MCELROY TRANSLATION COMPANY

JAPANESE PATENT OFFICE
PATENT JOURNAL (A)
KOKAI PATENT APPLICATION NO. SHO 52[1977]-89070

Int. Cl. ² :	H 01 L 21/20
	G 02 B 5/14
	H 01 L 31/00
	H 01 L 33/00

Sequence Nos. for Office Use:	6684-57
	7377-57
	6513-57
	7448-23

Filing No.:	Sho 51[1976]-5611
-------------	-------------------

Filing Date:	January 20, 1976
--------------	------------------

Publication Date:	July 26, 1977
-------------------	---------------

No. of Inventions:	1 (Total of 4 pages)
--------------------	----------------------

Examination Request:	Not filed
----------------------	-----------

SEMICONDUCTOR DEVICE

[Handotai sochi]

Inventors:	Hiromoto Serizawa and Shoichi Fukai
------------	--

Applicant:	Matsushita Electric Industrial Co., Ltd.
------------	---

[There are no amendments to this patent.]

Claims

1. A type of semiconductor device characterized by the fact that it has a hetero-junction of Si, Ge, or group II-VI, group III-V, or other cubic crystal compound semiconductor and tetragonal crystal-structure or cubic crystal-structure ABO_3 perovskite type

oxide (where A is an element selected from K, Ba, Sr and Pb, and B is an element selected from the group of Ti, Ta, Zr, Fe, Sn and Ce).

2. The semiconductor device described in Claim 1 characterized by the fact that said hetero-junction is formed from the (100) plane of said Si, Ge, or cubic crystal compound semiconductor and the (001) plane of said tetragonal crystal-structure perovskite type oxide.

3. The semiconductor device described in Claim 1 characterized by the fact that said hetero-junction is formed from the (100) plane of said Si, Ge or cubic crystal compound semiconductor and the (100) plane of said cubic crystal-structure perovskite type oxide.

Detailed explanation of the invention

This invention pertains to a type of semiconductor device. More specifically, this invention is for obtaining a type of semiconductor base material for application in photo-semiconductors and other semiconductor devices.

That is, the purpose of this invention is provide a type semiconductor substrate for application in various semiconductor devices characterized by the fact that it has a hetero-junction of Si, Ge, or GaAs, GaP, or other group III-V compound semiconductor, or ZnSe, ZnTe, or other group II-VI compound semiconductor and BaTiO₃, SrTiO₃, or another tetragonal crystal-structure or cubic crystal-structure oxide of Ti, Ta, Zr, Fe, Sn or Ce generally represented as perovskite type ABO₃.

When epitaxial growth of hetero substances is used to form a double hetero-structure of Ga_xAl_{1-x}As for the GaAs semiconductor laser, the characteristics are improved significantly. Consequently, this phenomenon has attracted significant attention. In the prior art, research has been undertaken on junctions for many types of semiconductors, such as GaAs-Ge, ZnSe-ZnTe, ZnSe-GaAs, etc. However, for the conventional junction, even when it is referred to as a hetero-junction, it is still an epitaxial structure between semiconductors. Little study has been made on the epitaxial junctions between semiconductor and dielectric, insulator, metal, etc. On the other hand, many studies have been made on sapphire Al₂O₃ and spinel (MgO * Al₂O₃) for use as insulating substrates in vapor phase growth of Si. On such substrates, epitaxial growth of Si is performed. In addition, GaAs or other crystal has been epitaxially grown on Al₂O₅, MgAl₂O₄, BeO, etc.

As far as growth of oxide insulators on semiconductor is concerned, examples include SiO₂, GaO₂, Al₂O₃, etc. on Si and GaAs. They are formed as protective films or insulating separating films. However, there is no epitaxial growth. As far as a junction between insulators is concerned, there have been reports on epitaxial growth of Bi₄Ti₅O₁₂ on MgO or MgAl₂O₄.

The present invention provides a type of substrate for a semiconductor device with epitaxial hetero-junction of BaTiO₃ or other perovskite type crystal and a semiconductor. This type of substrate for a semiconductor device has not been seen in the prior art.

Studies have been made on using BaTiO₃ or other perovskite type ABO₃ crystal as a ferroelectric material. In particular, as it is a substance with a high melting point, it has been used as a ceramic in many practical applications. The following table lists the crystalline properties of the ABO₃ type crystal.

	①	②	③	④	⑤
物質名	格子定数	融点	熱膨脹係数	エピタキシャル例	
BaTiO ₃	a=3.994 c=4.036	1618	/	GaAs, ZnSe	
SrTiO ₃	a=3.905	~2000	1.1 × 10 ⁻⁶	Si, GaP	
PbTiO ₃	a=3.904 c=4.152			Si, GaP	
SrZrO ₃	a=4.099	2640	8.75 × 10 ⁻⁶ 9.34 × 10 ⁻⁶	GaAs, ZnSe	
SrSnO ₃	a=4.082			GaAs, ZnSe	
BaZrO ₃	a=4.182	2688	5.64 × 10 ⁻⁶ 6.54 × 10 ⁻⁶	InP, ZnTe, CdS	
BaBzO ₃	a=4.12			InP, ZnTe	
KTaO ₃	a=3.989 c=4.003	1357		GaAs	

Key:

- 1 Name of substance
- 2 Lattice constant
- 3 Melting point
- 4 Thermal expansion coefficient
- 5 Epitaxial examples

This table lists the lattice constants, melting points and thermal expansion coefficients of the ABO₃ type crystals, such as BaTiO₃, SrTiO₃, PbTiO₃, SrZrO₃, BaZrO₃ and KTaO₃, as well as examples of the epitaxial semiconductor layers epitaxially grown on said crystals.

However, when epitaxial growth of the semiconductor layer listed in the above table is performed on said ABO₃ type crystal, when the (001) plane of the tetragonal crystal of ABO₃ type and the (100) plane of the cubic crystal are used, good epitaxial growth takes place in the <100> direction of the ABO₃ type crystal and the <100> direction of the semiconductor layer. That is, as shown in Figure 1, epitaxial growth takes place in the <100> direction of the ABO₃ crystal and in the <100> direction of the semiconductor layer. Also, for the ABO₃ type cubic crystal, good epitaxial growth takes place for the (100) plane of said crystal and the (100) plane

of the semiconductor layer. In the following, we will examine the case of a junction between Si and sapphire as a typical example of the epitaxial growth of a semiconductor layer on an insulating substrate.

Usually, in growth of Si (100), which is often used in LSI, etc., on a sapphire, while Si has a diamond structure (cubic crystal), the sapphire has a rhomboherald [transliteration] crystal form. Consequently, the (100) plane of Si is epitaxially grown on the (10 $\bar{1}$ 2) plane of the sapphire. In this case, deviations in the lattice constants of the Si(100) plane and the sapphire (10 $\bar{1}$ 2) plane are 14.3% and 5.7% for the two sides, respectively. Also, the thermal expansion coefficient of sapphire is about twice that of Si. At a temperature of about 1000°C as required for growth of Si, the deviation in the lattice is small, yet, as the system is cooled down, significant strain is developed.

On the other hand, as far as the junction between ABO_3 crystal and Si or GaP or other semiconductor is concerned, the deviation in the lattice constant on the growth plane determined on the base of the data listed in the above table is much smaller than that in the case of Si and sapphire at room temperature. Also, as far as thermal expansion coefficient is concerned, while said group II-VI and group III-V semiconductors usually have thermal expansion coefficients much larger than that of Si, the thermal expansion coefficient of ABO_3 crystal is similar to or smaller than that of sapphire. Consequently, the thermal strain developed due to cooling is much smaller than that developed at the interface between sapphire and Si.

In addition, when said oxides are used as substrate, because the melting point is high, it allows growth with substrate in a high-temperature state. In this way, one can obtain an epitaxial hetero-junction for said ABO_3 crystal and semiconductor layer much better than that for Si and sapphire.

In the following, we will examine application examples of epitaxial growth in this invention.

(1) Growth of Si on SrTiO_3

(100) plane of SrTiO_3 single crystal is cut out and polished to mirror surface quality. Then, the surface processing layer is etched off to form a substrate for epitaxial growth. On this substrate, growth is performed using a Si epitaxial device by means of decomposition of SiH_4 as is commonly used. The temperature of the substrate is in the range of 950-1100°C. H_2 gas containing 4% SiH_4 is fed to flow corresponding to a substantial concentration [flow rate] of SiH_4 of 30 cc/min, with H_2 gas used as a carrier gas with a flow rate of 30 L/min. The growth rate of Si is about 0.2-0.3 $\mu\text{m}/\text{min}$ to a thickness of several μm to tens of μm . For the grown Si, the epitaxial structure is checked by X-ray diffraction and electron beam diffraction. (100) plane of Si is grown on (100) plane of SrTiO_3 .

Also, similar epitaxial growth of Si can be made on other substrates, such as BaTiO₃, PbTiO₃, SrZrO₃, SrFeO₃, etc.

(2) Vapor phase growth of GaAs on SrZrO₃

Just as in the case of vapor phase growth of Si, (100) plane of SrZrO₃ is cut out and is polished to mirror surface quality. Then, the surface processing layer is etched off to form a substrate for epitaxial growth. Then, the device shown in Figure 2 is used for growth. Figure 2 is a schematic diagram illustrating the growth device. In Figure 2, (1) represents a heating furnace; (2) represents a furnace core tube; (3) represents a graphite table; (4) represents a SrTiO₃ single crystal substrate; (5) represents an AsH₃ source; (6) represents a (CH₃)₃Ga source; and (7), (8), (9) represent H₂ sources. In the growth, the reaction between (CH₃)₃Ga and AsH₃ is adopted. The (CH₃)₃Ga source is kept at 0°C, and at a concentration of 10% for AsH₃ in H₂ gas flow, the gas mixture is fed in. H₂ flows through a Pd diffusion plate, and is used as a carrier gas. The flow rate of H₂ gas is 3 L/min, and the flow rate of AsH₃ is 450 mL/min (10% in hydrogen), and the hydrogen gas is fed at 30 mL/min through (CH₃)₃Ga. The temperature of the substrate is about 800°C, and a growth layer with thickness in the range of several thousand Å to about 100 μm is obtained. The growth layer is checked by means of X-ray and electron beam diffraction, and it is found to be a single crystal thin film. Also, growth is performed for GaAs (100) on the (001) plane of SrZrO₃. In addition, epitaxial growth has been confirmed for BaTiO₃ and PbTiO₃.

(3) Vapor deposition of ZnSe on SrTiO₃

Vapor deposition is performed on the (001) plane of SrTiO₃ as a substrate and using ZnSe single crystal as the evaporation source. The temperature of the substrate is changed in the range of 200-600°C, and the temperature of the evaporation source is in the range of 800-1000°C. When the substrate temperature is in the range of 400-500°C, results of the electron beam diffraction indicate certain twin and super-lattice spots. However, the obtained epitaxial film has a relatively good quality.

According to the present invention, on an ABO₃ perovskite type insulating substrate, Si, Ge or other semiconductor crystal is grown, so that it is possible to obtain a high-quality substrate for forming semiconductor integrated circuits. Also, by means of growth of group II-VI and group III-V crystals, it is possible to obtain substrates useful for manufacturing photo-integrated circuits.

As explained above, this invention can form hetero-junction of ABO₃ perovskite type oxide (with A representing K, Ba, Sr, Pb, and B representing Ta, Ti, Zr, Fe, Sn, Ce) in tetragonal crystal or cubic crystal structure and cubic crystal semiconductor layer. It is possible to obtain thin film single crystal with few defects and with good crystallinity. The obtained semiconductor substrates can be used in manufacturing various types of semiconductor devices.

Brief description of the figures

Figure 1 is a diagram illustrating the orientation configuration of the epitaxial junction between ABO_3 type crystal and semiconductor layer. Figure 2 is a schematic diagram illustrating an GaAs epitaxial growth device in an application example of this invention.

- 1 Heating furnace
- 4 Substrate crystal
- 5 AsH_3 source
- 6 $(\text{CH}_3)_3\text{Ga}$ source
- 7, 8, 9 H_2 gas source

Figure 1

Key: 1 Semiconductor layer

Figure 2

CLIPPEDIMAGE= JP352089070A

PAT-NO: JP352089070A

DOCUMENT-IDENTIFIER: JP 52089070 A

TITLE: SEMICONDUCTOR DEVICE

PUBN-DATE: July 26, 1977

INVENTOR-INFORMATION:

NAME

SERIZAWA, HIROMOTO
FUKAI, SHOICHI

ASSIGNEE-INFORMATION:

NAME	COUNTRY
MATSUSHITA ELECTRIC IND CO LTD	N/A

APPL-NO: JP51005611

APPL-DATE: January 20, 1976

INT-CL (IPC): H01L021/20;H01L033/00 ;H01L031/00
;G02B005/14

ABSTRACT:

PURPOSE: To produce thin film single crystal of good crystallinity by the hetero bonding of perovskite type crystals of given metal and Si, Ge or group II-VI, III-V compound semiconductors.

COPYRIGHT: (C)1977, JPO&Japio

⑨日本国特許庁
公開特許公報

⑩特許出願公開
昭52-89070

⑤Int. Cl².
H 01 L 21/20
G 02 B 5/14
H 01 L 31/00
H 01 L 33/00

識別記号

⑥日本分類
99(5) B 15
99(5) J 4
99(5) H 0
104 G 0

⑦内整理番号
6684-57
7377-57
6513-57
7448-23

⑧公開 昭和52年(1977)7月26日
発明の数 1
審査請求 未請求

(全 4 頁)

⑨半導体装置

⑩特 願 昭51-5611
⑪出 願 昭51(1976)1月20日
⑫發明者 芹沢皓元
門真市大字門真1006番地松下電器株式会社内

⑬發明者 深井正一

門真市大字門真1006番地松下電器産業株式会社内
⑭出願人 松下電器産業株式会社
門真市大字門真1006番地
⑮代理 人 弁理士 中尾敏男 外1名

明 細 告

1. 発明の名称

半導体装置

2. 特許請求の範囲

(1) Si, Ge あるいはⅢ-VI族、Ⅲ-V族等の立方晶系化合物半導体と、正方晶もしくは立方晶構造のABO₃ペロブスカイト型（ただしAはK, Ba, Sr, Pbの組より選択された1つ、BはTi, Ta, Zr, Re, Sn, Ceの組より選択された1つ）酸化物との異種接合を有することを特徴とする半導体装置。

(2) 上記Si, Ge あるいは立方晶系化合物半導体の(100)面と上記正方晶構造のペロブスカイト型酸化物の(001)面とで上記異種接合を形成したことを特徴とする特許請求の範囲第1項に記載の半導体装置。

(3) 上記Si, Ge あるいは立方晶系化合物半導体の(100)面と上記立方晶構造のペロブスカイト型酸化物の(100)面とで上記異種接合を形成したことを特徴とする特許請求の範囲第1項

に記載の半導体装置。

3. 発明の詳細な説明

本発明は半導体装置に関し、光半導体装置あるいはその他の半導体装置への応用に適した半導体基体を得るものである。

すなわち本発明はSi, Ge あるいはGaAs, GaPなどのⅢ-V族化合物半導体あるいはZnSe, ZnTeなどのⅡ-V族化合物半導体とBaTiO₃やSrTiO₃などのペロブスカイト形ABO₃のように一般的に書き表わせる正方晶あるいは立方晶構造のTi, Ta, Zr, Re, Sn, Ceの酸化物との異種接合を形成し、種々の半導体装置の応用に供する半導体基体を得ることを目的としている。

異種物質のエピタキシャル成長はGaAs半導体レーザーがGa_xAl_{1-x}Asとダブルヘテロ構造にすることによって大きな特性の向上をみて非常に注目されるに至った。従来より、ヘテロエピタキシャル成長はGaAs-Ga, ZnSe-ZnTe, ZnSe-GaAsなどの多くの半導体について接合が研究されているが、従来の接合は異種接合といつても半

導体同志のエピタキシャルであり、半導体と誘電体、絶縁体、金属などのエピタキシャル接合はあまり研究されていない。しかるに、Siの気相成長ICにおける絶縁基板としてのサファイア Al₂O₃ やスピネル(MgO・Al₂O₃)は多くの研究がなされている。これらの基板上にはSiのエピタキシャル成長がされているほか、GaAsなどの結晶も Al₂O₃, MgAl₂O₄, BeOなどにエピタキシャル成長がなされている。

また、半導体上への酸化物絶縁体の成長は Si や GaAs 上に SiO₂, Ga₂O, Al₂O₃ などがあり、保護膜としてまた絶縁分離膜としてなされているが、エピタキシャル成長されているものはない。絶縁物同志の接合としては MgO や MgAl₂O₄ 上に Bi₄Ti₃O₁₂ のエピタキシャル成長がなされた例は報告されている。

そこで、本発明は従来行われていない BaTiO₃ などのペロブスカイト型結晶と半導体とのエピタキシャル異種接合により良好なる半導体基盤用基板を得るものである。

りなる結晶の格子定数、融点、熱膨脹係数およびその結晶にエピタキシャル成長するエピタキシャル半導体層の例を記載したものである。

ところで、これら ABO₃ 型結晶上に上記表に記載の半導体層をエピタキシャル成長する場合 ABO₃ 型の大とえば正方晶結晶の (001) 面と立方晶半導体の [100] 面をとると、ABO₃ 型の結晶の <100> 方向と半導体層の <100> 方向とは良好なエピタキシャル成長が行われる。すなわち第 1 図に示すように ABO₃ 結晶の <100> 方向と半導体層の <100> 方向とはエピタキシャル成長する。なお ABO₃ 型の立方結晶の場合は [100] 面と半導体層の [100] 面で良好なエピタキシャル成長を行わせることができる。ここで、絶縁基板上に半導体層をエピタキシャル成長する代表的な例として Si とサファイアとの接合を考えてみる。

通常 LSI 等で使われる Si (100) のサファイア上への成長において、Si はダイヤモンド構造(立方晶系)をしているのに対してサファイアはロンボヘラルドの結晶形のため Si の (100) 面は

さて、BaTiO₃ などのペロブスカイト型 ABO₃ 結晶は強誘電体材料として研究されてきた。特に高融点物質であるためのセラミックとして実用化されている場合が多い。ABO₃ 型の結晶学的性質を下表に示す。

物質名	格子定数	融点	熱膨脹係数	エピタキシャル例
BaTiO ₃	a=3.994 c=4.038	1618	/°C	GaAs, ZnSe
SrTiO ₃	a=3.905	~2000	1.1×10 ⁻⁶	Si, GaP
PbTiO ₃	a=3.904 c=4.152			Si, GaP
SrZrO ₃	a=4.088	2640	8.75×10 ⁻⁶ 9.34×10 ⁻⁶	GaAs, ZnSe
SrSnO ₃	a=4.082			GaAs, ZnSe
BaZrO ₃	a=4.182	2688	6.64×10 ⁻⁶ 6.54×10 ⁻⁶	InP, ZnTe, CdS
BaSmO ₃	a=4.12			InP, ZnTe
KTaO ₃	a=3.989 c=4.003	1357		GaAs

この表は ABO₃ 型結晶すなわち BaTiO₃, SrTiO₃, PbTiO₃, SrZrO₃, SrSnO₃, BaZrO₃, KTaO₃ 上

サファイアの (1012) 面にエピタキシャル成長する。このときの Si (100) 面とサファイアの (1012) 面の各辺の格子定数のズレは 2 辺がそれぞれ 14.3% と 5.7% の値を有している。また熱膨脹係数は Si よりサファイアの方が約 2 倍の値をしており、Si を成長させるに必要な 1000°C 前後の温度では格子のズレとしてはいく分少なくななるが同時に伴う界面における歪が多く含まれている。

一方、ABO₃ 結晶と Si あるいは GaP などの半導体との接合をみると上記表から求めた成長面での格子定数のズレとしては常温において Si とサファイアの場合に比較してはるかに少ない値となる。また熱膨脹係数においてはこれら I-V 族、II-V 族半導体の熱膨脹係数は一般に Si よりも大きいのにに対して ABO₃ 結晶はサファイアとあまりかわらないかそれ以下の値であるため冷却による熱歪としてはサファイアと Si との界面に比べて非常に小さくなる。

さらにこれらの酸化物を基板とする場合には融点

が高いために高強度基板状態での成長も可能となる。このように、上記ABO₃型結晶と半導体層とはSiとサファイアよりもすぐれた良好なエピタキシャル異種接合を得ることができる。

以下、エピタキシャル成長を行った本発明の実施例を図面とともに説明する。

(1) SrTiO₃ 上への Si の成長。

SrTiO₃ 単結晶を(100)面に切り出し、鏡面、IC研磨してその後表面加工層をエッティングでとり除いてエピタキシャル用基板とする。これを基板として通常用いられる SiH₄ の分解による Si エピタキシャル装置により成長させた。基板温度を 960～1100°C とし、4% SiH₄ 入り H₂ ガスを SiH₄ の実質濃度で 30 cc/min に相当する量を H₂ ガスをキャリアガスとして 30 L/min で流して成長させた。成長 Si は 0.2～0.3 μ/min で数 μ～数十 μ 成長させた。成長 Si は X 線回折および電子線回折によってエピタキシャルしていることが確認された。SrTiO₃ (100) 面上に Si の (100) 面が成長していた。

よって單結晶薄膜であることが確認されるとともに SrZrO₃ 結晶 (001) 面に GaAs (100) が成長していた。また BaTiO₃、PbTiO₃ についてもエピタキシャルが確認された。

(2) SrTiO₃ 上への ZnSe の蒸着。

SrTiO₃ の (001) 面を基板として ZnSe 単結晶を蒸発源として蒸着を行なった。基板温度は 200°C～600°C まで変化させ、蒸着源温度は 800°C～1000°C で行なった。基板温度 400°C～500°C において電子線回折の結果では若干の双晶や超格子スポットがみられたが、かなり良好なエピタキシャル膜を得ることができた。

このように本発明によれば、ABO₃ ベロブスカイト型単結晶基板上に Si、Ge 等の半導体結晶を成長させることにより良好な半導体集積回路用の基板を得ることができ、また I-V、I-V 族結晶を成長させることにより光集積回路用としてすぐれた基板を得ることができる。

以上のように本発明は正方晶あるいは立方晶構造のABO₃ ベロブスカイト型 (ただし A : K, Ba,

BaTiO₃, PbTiO₃, SrZrO₃, SrFeO₃ などにおいても同様に Si のエピタキシャルが認められた。

(2) SrZrO₃ 上への GaAs の気相成長。

Si の気相成長の場合と同様に SrZrO₃ を (100) IC 切り出し、鏡面に研磨し、その後表面加工層をエッティング除去してエピタキシャル用基板とし、第 2 図に示す成長装置により成長を行った。第 2 図に成長装置の概略を示す。第 2 図において、1 は加熱炉、2 は炉芯管、3 はグラファイト台、4 は SrTiO₃ 単結晶基板、5 は AsH₃ 源、6 は (CH₃)₃ Ga 源、7, 8, 9 は H₂ ガス源である。さて、成長 IC は (CH₃)₃ Ga と AsH₃ の反応が使われた。(CH₃)₃ Ga ソースは 0°C に保たれ、AsH₃ は H₂ 気流中 IC 10 分間ませて導入された。H₂ は Pd 拡散板を通してキャリアガスとした。流量は H₂ ガスが 30 L/min、AsH₃ 450 ml/min (10 分水素中) (CH₃)₃ Ga IC は水素ガスを 30 ml/min 通過させた。基板温度は約 800°C とし約 10 分から約 100 分の厚さまでの成長層を得た。成長層は X 線および電子線回折に

Sr, Pb, B : Ta, Ti, Zr, Fe, Sn, Ce) 錫化物と立方晶系半導体層の異種接合を形成するものであって、欠陥の少ない結晶性の良好な薄膜単結晶を得ることができ、各種半導体装置に適した半導体基板を得るものである。

4. 図面の簡単な説明

第 1 図は ABO₃ 型結晶と半導体層とのエピタキシャル接合の方位関係図、第 2 図は本発明の一実施例における GaAs エピタキシャル成長装置の概略構成図である。

1 …… 加熱炉、4 …… 基板結晶、5 …… AsH₃ 源、6 …… (CH₃)₃ Ga 源、7, 8, 9 …… H₂ ガス源。

代理人の氏名 井理士 中尾 敏男 ほか 1 名

第1図

第2図

