This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

	Intern	ational Bureau
INTERNATIONAL APPLICATION PUBLIS	SHED	UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 5:		(11) International Publication Number: WO 93/18652
A01N 43/16, A61K 31/35	A1	(43) International Publication Date: 30 September 1993 (30.09.93)
(21) International Application Number: PCT/US	S93/023	(81) Designated States: AU, BB, BG, BR, CA, CZ, FI, HU, JP, KR, LK, MG, MN, MW, NO, NZ, PL, RO, RU, SD,
(22) International Filing Date: 12 March 1993	(12.03.	93) SK, UA, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI pa-
(30) Priority data: 854,167 20 March 1992 (20.03.92	2) 1	tent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, SN, TD, TG).
(71) Applicant: MERCK & CO., INC. [US/US]; 126 coln Avenue, Rahway, NJ 07065 (US).	East L	Published in- With international search report. With amended claims and statement.
(72) Inventors: HOLT, Tom, G.; 779 Summit Aver field, NJ 07090 (US). MONAGHAN, Richar Johnson Road, Somerset, NJ 08873 (US).	nue, We d, L. ;	st- 48
(74) Agent: MUTHARD, David, A.; 126 East Lincol Rahway, NJ 07065 (US).	n Aven	1e,

(54) Title: METHODS OF ACHIEVING ANTITUMOR ACTIVITY USING 16-MEMBERED-MACROLIDE-TYPE COMPOUNDS

(57) Abstract

Inhibition of renal cancer, melanoma, colon cancer, lung cancer and leukemia cells by administration of compounds from the bafilomycin and hygrolidin groups of compounds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

				MR	Mauritania
ΑT	Austria	FR	France		
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BC	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	treland	PT	Portugal
BR	Brazil	(T	Italy	RO	Romania
CA	Canada	JР	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC	Congo	*	of Korca	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI.	Côte d'Ivoire	KZ.	Kazakhstan	SN	Senegal
CM	Cameroon	LI	Liechtenstein	SU	Soviet Union
CS	45 4 4 11	LK	Sri Lanka	TD	Chad
		1.U	Luxembourg	TG	Togo
CZ	Czech Republic		J	UA	Ukraine
ÐĒ	Germany	MC	Monaco		United States of America
DK	Denmark	MG	Madagascar	US	
ES	Spain	Ml.	Mali	VN	Viet Nam
Fl	Finland	MN	Mongolia		

WO 93/18652 PCT/US93/02378

- 1 -

TITLE OF THE INVENTION METHODS OF ACHIEVING ANTITUMOR ACTIVITY USING 16-MEMBERED-MACROLIDE-TYPE COMPOUNDS

⁵ FIELD OF THE INVENTION

The invention pertains to the inhibition of certain types of cancerous cells. More specifically, renal cancer, melanoma, lung cancer, colon cancer and leukemia cells are inhibited by administration of compounds from the groups of bafilomycin and hygrolidin and analogs of each of them.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a type of bar chart known as a mean graph, showing the Total Growth Inhibition caused by compound number 4 from the table below, upon a panel of some 60 tumor cell lines.

Figure 2 is the same type of chart as in Figure 1, showing the Total Growth Inhibition caused by compound number 16 from the table below.

20

10

15

25

BACKGROUND OF THE INVENTION

The aforementioned bafilomycins and hygrolidins (which collectively are known as hygrolides) were previously known and shown to have activity as antiparasitics, anthelmintics, antibiotics, insecticides, antifungals, agents for the therapy of bone diseases such as osteoporosis and as Na⁺, K⁺ ATP-ase inhibitors leading to increased cardiac function. These compounds share the structural feature of having a 16-membered macrocyclic lactone ring:

10

5

15

20

When run through whole tumor-cell assays, compounds from this group have been found to exhibit antitumor activity.

SUMMARY OF THE INVENTION

The invention here is a method of obtaining antitumor activity, in particular against cancers taken from the group consisting of melanoma, renal cancer, lung cancer, colon cancer and leukemia, by administration to mammalian tumor cells of a pharmacologically effective amount of a compound selected from the group consisting of

30

(a) a bafilomycin of the formula

10

5

where R is hydrogen or acetyl, R^1 is hydrogen or the acyl radical of a carboxylic acid having one to six carbon atoms;

15 R² is

$$OR^3$$
 OR^4
 OR^7O
 R^6

20

R³ is hydrogen or methyl;

R⁴ is hydrogen, methyl, the acyl radical of a carboxylic acid having one to six carbon atoms,

R⁵ is hydrogen or

R⁶ is methyl or isopropyl;

0 R⁷ is hydrogen or acetate;

R⁸ is hydrogen or methyl;

R⁹ is hydroxy or methyl; and

(b) a hygrolidin of the formula

15

20

where R¹⁰ is

25

$$OH$$
 OR^{11}
 CH_3 or HO
 CH_3

30

O O O O O and $R^{1\,1}$ is hydrogen, -CCHCHCNH2, -CCHCHCOH or

WO 93/18652 PCT/US93/02378

- 5 -

5

10

15

The term "pharmacologically effective amount" shall mean that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by a researcher or clinician.

The compounds of the present invention can be administered in such oral dosage forms as tablets, capsules (each including timed release and sustained release formulations), pills, powders, granules, elixers, tinctures, suspensions, syrups and emulsions. Likewise, they may also be administered in intravenous form (both bolus and infusion), intraperitoneal, subcutaneous or intramuscular form, all using forms well known to those of ordinary skill in the pharmaceutical arts. An effective but non-lethal amount of the compound desired can be employed as an antitumor agent.

20

The dosage regimen utilizing the compounds of the present invention is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound or salt thereof employed. An ordinarily skilled physician or veterinarian can readily determine and prescribe the effective amount of the drug required.

30

25

Oral dosages of the present invention, when used for the indicated effects, will range between about 1-25 mg/day orally. Advantageously, compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily. Furthermore, preferred compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal

WO 93/18652 PCT/US93/02378

÷

vehicles, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in that art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittant throughout the dosage regimen.

5

10

15

20

25

30

In the methods of the present invention, the compounds herein described in detail can form the active ingredient, and are typically administered in admixture with suitable pharmaceutical diluents, excipients or carriers (collectively referred to herein as "carrier" materials) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices.

For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water and the like. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents and coloring agents can also be incorporated into the mixture. Suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes and the like. Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum and the like.

The compounds of the present invention can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.

Compounds of the present invention may also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled. The compounds of the present invention may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamidephenol, polyhydroxyethylaspartamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues. Furthermore, the compounds of the present invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross-linked or amphipathic block copolymers or hydrogels.

Preferred bafilomycins used in the method of the invention include the following:

15

10

5

25

20

- 8 -

	Compound	<u>R</u> 1	R ²
	(1)	Н	OCH ₃ OH
5			CH ₃
10	(2)	Н	OH O NH OHO OHO OHO OHO OHO OHO OHO OHO
15	(3)	Н	OCH ₃ O NH OCH ₃ CH ₃ CH ₃
25	(4)	Н	OH OCH ₃ OCH ₃ OOH
			H ₃ C´ CH₃ O´ OH
30	(5)	Н	OCH ₃ OC

	Compound	i R ¹	R ²
	(6)	H	OH OCH₃
5			O CH₃
			н₃С Сн₃
10	(7)	Н	ОН ОССИ О
	,		OCCH ₃
			H₃C CH₃
15	(8)	O -CCH ₃	OH OCCH₃
			O CH₃
20			H₃C CH₃
• • •	(9)	н	OCH ₃ OCCH ₃
25			O CH3
		0	H ₃ C CH ₃
30	(10)	-CCH3	OCH ₃ OCCH ₃
			O CH₃
			H₃C CH₃

WO 93/18652 PCT/US93/02378

- 10 -

- 11 -

Another group of preferred compounds are set forth as

follows:

5

10

15

R¹

R³

R⁴ _OH

CH₃

20

(13)

Compound

(12)

Н

Н

OH CH₃

H₃C

25

(14)

O || -CCH₃

O || -CCH₃ OCCH₃

WO 93/18652 PCT/US93/02378

- 12 -

Some compounds in the bafilomycin class are sometimes referred to as leucanicidins. Examples include the following:

	Compound	<u>R¹</u>	R ⁵	R ⁶
15	(15)	Н .	-CH ₃	CH ₃
20	(16)	O CCH(CH ₃) ₂	CH ₃	CH₃
20	(17)	Н	Н	-OH
	(18)	Н	Н	-CH ₃

25

Preferred hygrolidins used in the method of the invention include the following

PCT/US93/02378

An additional preferred compound is oxyhygrolidin:

10

15

20

5

The most preferred compounds of the invention are any or all of those specifically set forth in these examples. These compounds are not, however, to be construed as forming the only genus that is considered as the invention, and any combination of the compounds of their moieties may itself form a genus.

Methods of making bafilomycins are taught in U.S. Patent Nos. 4,385,065 and 4,558,139 and in Kretschmer et al. Agric. Biol. Chem., 49.8 (1985) 2509-2511. Methods of making leucanicidins are taught in Meyer et al, Helv. Chim. Acta. 68 (1985) 83-94. Methods of making hygrolidins are taught in U.S. Patent No. 4,390,546 and in Kretschmer, et al, ibid. The entire disclosure of these patents and journal articles is incorporated herein by reference, and variations of the methods disclosed therein are readily made by those of ordinary skill in the art.

25

30

DETAILED DESCRIPTION OF THE INVENTION

An in vitro human tumor drug screen is used to evaluate compounds used in the method of the present invention. The screen employed has been described and the experimental details are taught in the text and bibliography of Boyd, et al., Status of the NCI Preclinical Antitumor Drug Discovery Screen; Principles and Practices of Oncology, Vol. 3, No. 10, Oct. 1989, Lippincott. The screen is a disease-oriented primary screen that employs multiple disease-specific (i.e. tumor-type specific) models. The models are based on the

WO 93/18652 PCT/US93/02378

- 15 -

availability of a wide variety of human tumor cell lines, representing many different forms of human cancer. These cell lines comprise a diverse panel of human tumor cell lines arrayed in disease-specific subpanels.

The panel contains a total of 60 human tumor cell lines derived from seven cancer types (lung, colon, melanoma, renal, ovarian, brain and leukemia) that have been adapted to a single growth medium and that have reproducible profiles for growth and drug sensitivity.

10

5

EXAMPLE 1

Individual cell lines were initailly photographed, expanded (two passages maximum) and cryo-preserved (master stocks) with 15 growth medium and split-ratios recommended by their respective sources. Only cell lines documented to be free of adventitious bacteria and pathogenic viruses (NCI-FCRF³ Diagnostic Microbiology Lab and Animal Health Diagnostic Lab) were accepted for subsequent characterization. Following recovery of master stocks, cell lines were 20 adapted to a single, standard culture medium: RPMI 1640 (Quality Biologicals, Inc., Gaithersburg, MD) supplemented with 10% heatinactivated fetal bovine serum (Sterile Systems Hyclone, Logan, UT) and 2 mM L-glutamine (NCI-FCRF Central Medium Laboratory) without antibiotics and cultured under conventional culture conditions, 25 that is, 37°C, 5% CO₂, 95% air, 100% relative humidity. Cell lines were than expanded (five passages maximum) and cryopreserved for generation of seed stocks. Established adherent cell monolayers approaching 80% confluency were harvested with trypsin/EDTA (NCI-FCRF Central Medium Laboratory) whereas some early passage 30 adherent cell lines were harvested with solution A and 2X-crystalized trypsin III (Sigma Chemical Co.). Leukemia cell lines were subcultured by trituration and dilution. Small cell lung carcinoma cell lines (which generally form large aggregates in suspension under conventional culture conditions) were cultured and assayed in suspension as well as

5

25

30

adherent monolayers utilizing poly-L-lysine pretreatment of culture vessels. Following recovery of seed stock, cell lines were subjected to isoenzyme analysis as well as preliminary growth and drug sensitivity assays using one or more in vitro growth inhibition assays (described below). Cell lines meeting basic quality assurance criteria (mycoplasma-negative, MAP-negative, human isoenzymes only) and exhibiting suitable growth profiles were expanded (five serial passages from seed stock, maximum) and cryopreserved as a large number of aliquots designated working seed stock. Cell cryopreservation was achieved using a CryoMed controller (Model 801) and a CryoMed 10 freezing chamber (No. 2700) with a step rate of -1°C/min followed by storage in vapor-phase liquid N2 (NCI-FCRF Central Repository). Cell line seed stocks were tested also for in vivo tumorigenicity (s.c. and i.p. inoculations) in accordance with established protocols. Cell lines recovered from working seed stocks were subjected to repeat 15 mycoplasma tests and to more extensive in vitro growth characterization. Cell lines subsequently were evaluated with respect to stability in drug sensitivity profiles over the course of 20 weekly passages. In addition, each cell line was expanded (eight passages, maximum from seed stock thaw) and cryopreserved as a large number 20 of aliquots ("roller bottle" stock) for in vivo characterization and assay development.

Tetrazolium/formazan reagents were purchased from Sigma Chemical Co. (St. Louis, MO): MTT (m2128), MTT formazan (M2003), INT (18377), INT formazan (I7375), and NBT (N6876). DMSO was purchased from Sigma Chemical Co. (D5879), J. T. Baker Chemical Co. (9194-3, Phillipsburg, NJ), and American Burdick and Jackson Laboratories (Spectrophotometric Grade Product 081, Muskegan, MI). These chemicals were stored in unopened bottles at room temperature in the dark or in 50-ml sterile plastic tubes at -20°C in the dark. Anhydrous isopropanol (505-7) and propylene glycol (P-1009) were purchased from Sigma Chemical Co. Reagent grade hydrochloric acid (A-744) and hexane (H-302-1) were purchased from Fisher Scientific Co. Dimethylformamide (27,054-7) was purchased

WO 93/18652 PCT/US93/02378

5

10

15

20

25

30

from Aldrich Chemical Co. (Milwaukee, WI) Propanol (spectrophotometric grade 9068-1) was purchased from American Burdick and Jackson Laboratories. Crystalline stock materials were stored at -20°C. Solvent-reconstituted chemotherapeutic agents were prepared at high concentration, partitioned into multiple aliquots, and stored at -70°C. Just prior to culture application the contents of frozen vials were thawed and mixed. Measured aliquots (20-200 µl) were transferred by micropipet (Gilson Pipetman, Models P200 and P1000) equipped with polypropylene tips to standard culture medium within polypropylene tubes (Sarstedt 62.554/002 or Falcon 2098) and serially diluted in culture medium containing an appropriate concentration of vehicle. In principle, the viable cell number/well is directly proportional to the production of formazan, which following solubilization, can be measured spectrophotometrically. In brief, cells were harvested from exponential-phase maintenance cultures (T-75 cm² flasks; Falcon Plastics 3023), counted by trypan blue exclusion, and dispensed within replicate 96-well culture plates (Falcon Plastics 3075) in 100-µl volumes using a repeating pipet (Eppendorf repeater 4780) or multichannel pipet (Flow Labs, Titertek). Following a 24-h incubation at 37°C, 5% CO₂, 100% relative humidity (Heraeus B5060EKO₂) incubators or NAPCO 5300 incubators), 100 µl of culture medium. culture medium containing drug or culture medium containing drug vehicle was dispensed within appropriate wells (vehicle control group, N = 6; each drug treatment group, N = 3). Peripheral wells of each plate (lacking cells) were utilized for drug blank (N = 2) and medium/tetrazolium reagent blank (N = 6) "background" determinations. Culture plates were then incubated for 1 to 11 days prior to the addition of tetrazolium reagent. MTT stock solution was prepared as follows: 5 mg MTT/ml PBS (Quality Biologicals, Inc.) was sterile filtered with 0.45-µm filter units (Nalgene type SCN) and stored at 4°C for a maximum of 1 month. MTT working solution was prepared just prior to culture application by diluting MTT stock solution 1:5 (v/v) in prewarmed standard culture medium. Alternatively, other tetrazolium reagents (namely, INT or NBT) were

5

25

30

prepared and utilized in a simialr fashion for selected experiments. Under standard MTA conditions 50 ml of MTT working solution was added to each culture well (resulting in 50 μg MTT/250 μl to total medium volume) and cultures were incubated at 37°C for 4 to 24 h depending upon individual cell line requirements. Following incubation cell monolayers and formazan were inspected microscopically: Culture plates containing suspension lines or any detached cells were centrifuged at low speed for 5 min. All but 10-20 μl of culture medium supernatant was removed from wells by slow aspiration through a blunt 18-gauge needle and replaced with 150 µl of DMSO (Burdick & Jackson) using a 10 multichannel pipet. Following thorough formazan solubilization (trituration by pipet or vibration on a plate shaker), the absorbance of each well was measured using a microculture plate reader (Dynatech MR600; Alexandria, VA) at 540 nm (single wavelength, calibration factor = 1.00) interfaced with an Apple IIe computer. Subsequently, 15 data were stored and analyzed through use of Apple Soft, Apple Turnover, and Lotus Symphony software. Cell line growth and growth inhibition were expressed in terms of mean (±1 SD) absorbance units and/or percentage of control absorbance (±1 SD%) following subtraction of mean "background" absorbance. Linearity and 20 reproducibility of instrument measurements were verified by the use of formazan reagents in appropriate solvent systems.

Absorption spectra of formazan reagents as well as cellgenerated formazans were measured with a UV/visible scanning spectrophotometer (Perkin-Elmer Lambda V; Perkin-Elmer Corp., Norwalk, CT). Samples were placed in 1-cm pathlength disposable polystyrene cuvets (Fisher Scientific Co. 14-385-942) except those solubilized in dimethylformamide solvent which were evaluated in 1-cm pathlength glass spectrophotometer cells (Coleman S7300-4). Freshly prepared material was analyzed in dual beam mode with 2-nm slit width, at 120 nm/min. 0.02 A threshold, and 0.5 s response. Instrument wavelength calibration was verified by examination of deuterium emission spectra to be 653.1 ± 0.3 nm.

WO 93/18652 PCT/US93/02378

4

۸

5

10

- 19 -

Following 1-11 days' incubation, supernatant culture medium was removed and 200 µl of methylene blue (Sigma MB-1) solution [5 g/liter in ethanol:water (50%, v/v)] was added without delay. Following incubation at room temperature for 45 min, unbound stain was removed by plate inversion on absorbant paper and subsequent emersion/dilution in four, 1-liter washes with distilled deionized water. Bound protein stain was solubilized by the addition of 100 µl SDS (Sigma L4509) solution (1%, v/v in water) to each well. Absorbances of wells were measured at 630 nm (single wavelengths, calibration factor = 1.00) using equipment and computerized analysis procedures described above for the MTA.

EXAMPLE 2

A more preferred method uses the anionic dye sulforhodamine B (SRB). SRB is a bright pink anionic dye that, in dilute acetic acid, binds electrostatically to the basic amino acids of fixed monolayers of cells. SRB can detect about 1000 cells at 560 nM and 200-300 cells fluorescently. Supermaximal concentration and staining time were determined by dose-response and kinetic analyses. A more preferred medium comprises beta-glycerophosphate as the buffering agent, and the medium has a stable physiological pH of 7.4 in atmospheric CO₂. The medium includes biotin, L-asparagine, pyruvate and oxaloacetate for metabolic stimulation of intracellular CO₂ production.

EXAMPLE 3

Measures of relative cell line sensitivities are done by comparing relative drug concentrations required to produce the same level of response in each cell line visually. This is presented by a mean graph. Two mean graphs appear at Figures 1 and 2. The mean graph, derived from Total Growth Inhibition (TGI) values, is centered at the arithmetic mean of the logarithm of the TGI values for all cell live

5

10

15

20

responses measured for a given compound. The mean graph is construed by projecting bars, one for each cell line (listed by identified on the left of the graph) to either the right or the left of the mean, depending on whether cell sensitivity to the test drug is greater or less than average. The length of a bar is proportional to the difference between the logarithm of the cell line TGI and the mean. For example, for a given cell line, a bar projecting three log units to the right of the mean would reflect an individual cellular sensitivity 1,000 times that of the average of all the cellular responses to the given compound represented on the graph.

Figures 1 and 2 demonstrate that compounds 4 and 19, respectively have especially good antitumor activity against colon cancer cells, renal cancer cells, melanoma cells, lung cancer cells (non-small cells) and leukemia cells. More limited activity is also shown against the other cell lines.

The extrapolation of positive results in the above-described assays to utility as antitumor agents is supported by Boyd, M.R., Status of the NCI Preclinical Antitumor Drug Discovery Screen; Principles and Practices of Oncology, Vol. 3, No. 10, October 1989, Lippincott, the entire disclosure of which is incorporated herein by reference.

25

WHAT IS CLAIMED IS:

1. A method of treating tumors of renal cells, colon cells, lung cells or melanoma in a mammal in need thereof, comprising the step of administering to said mammal a pharmacologically effective amount of a compound selected from the group consisting of

(a) a bafilomycin of the formula

10

5

15

where R is hydrogen or acetyl, R¹ is hydrogen or the acyl radical of a carboxylic acid having one to six carbon atoms;

R² is

25

30

R³ is hydrogen or methyl;

R⁴ is hydrogen, methyl, the acyl radical of a carboxylic acid having one to six carbon atoms;

R⁵ is hydrogen or

10

5

R6 is methyl or isopropyl;

R⁷ is hydrogen or acetate;

R⁸ is hydrogen or methyl;

R⁹ is hydroxy or methyl; or

20

(b) a hygrolidin of the formula

30

25

where R¹⁰ is

5

10

- 23 -

$$OH$$
 OR^{11}
 CH_3 or HO
 CH_3
 CH_3

O O O O O and R¹¹ is hydrogen, -CCHCHCNH₂, -CCHCHCOH or

2. A method of treating tumors of renal cells in a mammal in need thereof, comprising the step of administering to said mammal a pharmacologically effective amount of a compound selected from the group consisting of

(a) a bafilomycin of the formula

where R is hydrogen or acetyl, R¹ is hydrogen or the acyl radical of a carboxylic acid having one to six carbon atoms;

 R^2 is

R³ is hydrogen or methyl;
R⁴ is hydrogen, methyl, the acyl radical of a carboxylic acid having one to six carbon atoms;

20 R⁵ is hydrogen or

25

R⁶ is methyl or isopropyl;

R⁷ is hydrogen or acetate;

R⁸ is hydrogen or methyl;

R⁹ is hydroxy or methyl; or

5

(b) a hygrolidin of the formula

where R¹⁰ is

O O O O and R^{11} is hydrogen, -CCHCHCNH2, CCHCHCOH or

3. A method of treating tumors of colon cells, in a mammal in need thereof, comprising the step of administering to said mammal a pharmacologically effective amount of a compound selected from the group consisting of

(a) a bafilomycin of the formula

5 CH₃ OCH₃ CH₃ CH₃
OR
P¹O CH₃ CH₃ OCH₃
OR

where R is hydrogen or acetyl, R¹ is hydrogen or the acyl radical of a carboxylic acid having one to six carbon atoms;

15 R² is

R³ is hydrogen or methyl;

R⁴ is hydrogen, methyl, the acyl radical of a carboxylic acid having one to six carbon atoms;

 R^5 is hydrogen or

R⁶ is methyl or isopropyl;

10 R⁷ is hydrogen or acetate;

R⁸ is hydrogen or methyl;

R⁹ is hydroxy or methyl; or

(b) a hygrolidin of the formula

15

5

where R¹⁰ is

25

20

$$OH$$
 OR^{11}
 CH_3 or HO
 CH_3

5

4. A method of treating tumors of lung cells in a mammal in need thereof, comprising the step of administering to said mammal a pharmacologically effective amount of a compound selected from the group consisting of

(a) a bafilomycin of the formula

15

20

where R is hydrogen or acetyl, R^1 is hydrogen or the acyl radical of a carboxylic acid having one to six carbon atoms;

25

R² is

30

 R^3 is hydrogen or methyl;

R⁴ is hydrogen, methyl, the acyl radical of a carboxylic acid having one to six carbon atoms;

R⁵ is hydrogen or

R⁶ is methyl or isopropyl;

R⁷ is hydrogen or acetate;

R8 is hydrogen or methyl;

R⁹ is hydroxy or methyl; or

(b) a hygrolidin of the formula

where R10 is

PCT/US93/02378

₽

5

- 30 -

$$OH$$
 OR^{11}
 CH_3 or HO
 CH_3
 CH_3

15

20

5. A method of treating tumors of melanoma in a mammal in need thereof, comprising the step of administering to said mammal a pharmacologically effective amount of a compound selected from the group consisting of

(a) a bafilomycin of the formula

25

30

where R is hydrogen or acetyl, R¹ is hydrogen or the acyl radical of a carboxylic acid having one to six carbon atoms;

5

 $R^2\,is$

R³ is hydrogen or methyl; R⁴ is hydrogen, methyl, the acyl radical of a carboxylic acid having one to six carbon atoms;

20 R⁵ is hydrogen or

R⁶ is methyl or isopropyl;

R⁷ is hydrogen or acetate;

R⁸ is hydrogen or methyl;

R⁹ is hydroxy or methyl; or

(b) a hygrolidin of the formula

CH₃ OCH₃ CH₃ CH₃
R¹⁰
OH
CH₃ CH₃ CH₃

10

5

where R¹⁰ is

20 Q Q Q Q Where R^{11} is hydrogen, -CCHCHCNH2, -CCHCHCOH

30 6. The method as claimed in Claim 1, wherein said compound administered to said mammal is

5

- 33 -

7. The method as claimed in Claim 1, wherein said compound administered to said mammal is

25

AMENDED CLAIMS

[received by the International Bureau on 20 August 1993 (20.08.93); original claims 1-7 replaced by amended claims 1-22 (9 pages)]

WHAT IS CLAIMED IS:

1. A method of treating tumors of renal cells, colon cells, lung cells or melanoma in a mammal in need thereof, comprising the step of administering to said mammal a pharmacologically effective amount of a compound selected from the group consisting of a bafilomycin of the formula:

Compound	R ¹	R ²
(1)	Н	OCH ₃ OH CH ₃

Compound	R ¹	R ²
(6)	Н	OH OCH ₃
		H ₃ C CH ₃
(7)	н	OH OCCH ₃ CH ₃
(0)	O ∥ -CCH₃	H³C CH³
(8)	-CCH ₃	CH ₃
		H₃C CH₃
(9)	· H	OCH ₃ OCCH ₃
		H ₃ C CH ₃
(10)	O -CCH ₃	OCH ₃ OCCH ₃
		O CH₃
		H₃C CH₃

2. A method of treating tumors of renal cells, colon cells, lung cells or melanoma in a mammal in need thereof, comprising the step of administering to said mammal a pharmacologically effective amount of a compound selected from the group consisting of a bafilomycin of the formula:

3. A method of treating tumors of renal cells, colon cells, lung cells or melanoma in a mammal in need thereof, comprising the step of administering to said mammal a pharmacologically effective amount of a compound selected from the group consisting of a bafilomycin of the formula:

Compound	<u>R¹</u>	R ⁵	R ⁶
(15)	H ,	-CH ₃	CH₃
(16)	O CCH(CH ₃) ₂	CH ₃	CH ₃
(17)	Н	Н	-OH
(18)	Н	Н	-CH₃

4. A method of treating tumors of renal cells, colon cells, lung cells or melanoma in a mammal in need thereof, comprising the step of administering to said mammal a pharmacologically effective amount of a compound selected from the group consisting of a hygrolidin of the formula

where R¹⁰ is

O O O O and R^{11} is hydrogen, -CCHCHCNH2, -CCHCHCOH or

\$

- 5. The method according to Claim 1 wherein the type of tumor which is treated is a tumor of renal cells in a mammal.
- 6. The method according to Claim 2 wherein the type of tumor which is treated is a tumor of renal cells in a mammal.
- 7. The method according to Claim 3 wherein the type of tumor which is treated is a tumor of renal cells in a mammal.
- 8. The method according to Claim 4 wherein the type of tumor which is treated is a tumor of renal cells in a mammal.
- 9. The method according to Claim 1 wherein the type of tumor which is treated is a tumor of colon cells in a mammal.
- 10. The method according to Claim 2 wherein the type of tumor which is treated is a tumor of colon cells in a mammal.
- 11. The method according to Claim 3 wherein the type of tumor which is treated is a tumor of colon cells in a mammal.
- 12. The method according to Claim 4 wherein the type of tumor which is treated is a tumor of colon cells in a mammal.
- 13. The method according to Claim 1 wherein the type of tumor which is treated is a tumor of lung cells in a mammal.
- 14. The method according to Claim 2 wherein the type of tumor which is treated is a tumor of lung cells in a mammal.
- 15. The method according to Claim 3 wherein the type of tumor which is treated is a tumor of lung cells in a mammal.

- 16. The method according to Claim 4 wherein the type of tumor which is treated is a tumor of lung cells in a mammal.
- 17. The method according to Claim 1 wherein the type of tumor which is treated is a tumor of melanoma in a mammal.
- 18. The method according to Claim 2 wherein the type of tumor which is treated is a tumor of melanoma in a mammal.
- 19. The method according to Claim 3 wherein the type of tumor which is treated is a tumor of melanoma in a mammal.
- 20. The method according to Claim 4 wherein the type of tumor which is treated is a tumor of melanoma in a mammal.
- 21. The method as claimed in Claim 4, wherein said compound administered to said mammal is

22. The method as claimed in Claim 1, wherein said compound administered to said mammal is

STATEMENT UNDER ARTICLE 19

Applicants have amended Claim 1 as originally filed by rewriting it as four separate independent claims.

New Claims 1-3 claim methods of treatment of tumors utilizing bafilomycins selected from groups of compounds. Support for Claims 1-3 is found on pages 7-12 of the specification as originally filed. Applicants note that the new Claims 1-3 do not include the method of treatment which utilizes the compounds disclosed as antitumor compounds in the J. Antibiotics reference or the JP,A, 1-216927 application cited in the International Search Report.

New Claim 4 is merely part (b) of originally written Claim 1 as an independent claim.

New Claims 5-20 are merely dependent claims similar to originally filed Claims 2-5 which depend on new Claims 1-4 instead of the original Claim 1.

New Claims 21-22 are the same as original Claims 6-7 but now depend on the appropriate new Claims 4 and 1, respectively.

Applicants respectfully contend that no new matter has been introduced by these amendments and that the relevance of the references cited in the international search report may have changed as a result of these amendments.

Applicants, therefore, respectfully request entry of the amendments as specified on the substitute sheets and respectfully assert that the claimed invention as amended discloses an invention that is novel and has an inventive step.

International application No. PCT/US93/02378

1					
US CL	IPC(5) :A01N 43/16; A61K 31/35 US CL :514/185, 186, 460				
	to International Patent Classification (IPC) or to both	national classification and IPC			
	LDS SEARCHED locumentation searched (classification system follower	d by placeification symbols)			
U.S. :	recuired and a service (classification system follower	oy cassification symbols)			
Documenta	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched		
Electronic o	data base consulted during the international search (na	ame of data base and, where practicable	, search terms used)		
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.		
x	THE JOURNAL OF ANTIBIOTICS, Vol. XXXVIII, No. 11, "PD 1-7 118,576:" "A NEW ANTITUMOR MACROLIDE ANTIBIOTIC" (WILTON), November, 1985, pages 1449-1452.				
x	JP,A, 1-216927 (AJINOMOTO COMPANY, LTD.) 30 August 1-7 1989. See the Abstract and the claims.				
Furth	ner documents are listed in the continuation of Box C	· · · · · · · · · · · · · · · · · · ·			
'A' do	ecial categories of cited documents: current defining the general state of the art which is not considered	"I" inter document published after the inte date and not in conflict with the applic principle or theory underlying the inv	ation but cited to understand the		
	be part of particular relevance rice document published on or after the international filing date	"X" document of particular relevance; the			
"L" document which may throw doubts on priority claim(s) or which is cited to catablish the publication date of another citation or other special reason (as specified) "Y" document is taken alone document is taken alone "Y" document of particular relevance; the claimed investion cannot be considered to involve an inventive step when the document is					
*O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than "A" document published prior to the international filing date but later than "A" document member of the same patent family					
the priority date claimed					
Date of the actual completion of the international search 11 MAY 1993 Date of mailing of the international search 2 4 JUN 1993					
11 MAY 1993 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. NOT APPLICABLE 2 4 JUN 1993 Authorized officer NATHAN M. NUTTER NATHAN M. NUTTER Telephone No. (703) 308-2351					