Paper Presentation

Hierarchical Document Clustering Using Frequent Itemsets

(B. Fung, K. Wang, and M. Ester. SDM 2003)

Presenters: Deyuan Guo, Elaheh Sadredini CS@UVa. March 28, 2016

CS 6501: Text Mining - Spring 2016

Outline

- Background
- The Frequent Itemset-based Hierarchical Clustering (FIHC) Approach
- Experimental Results

Background

Hierarchical Document Clustering

- Challenges in hierarchical document clustering
 - High dimensionality
 - High volume of data
 - Consistently high clustering quality
 - Meaningful cluster description

Background

Two types of hierarchical document clustering

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) (Kaufman and Rousseeuw, 1990) Bisecting K-means (Steinbach, Karypis, and Kumar, 2000)

Background

- Frequent itemset-based approaches
 - Previous work: Document clustering using frequent itemsets, by Wang et al., 1999. (No hierarchy)
 - Previous work: Hierarchical Frequent Term-based
 Clustering (HFTC), by Beil, Ester, and Xu, 2002. (Greedy heuristic, not scalable)
- Today's topic: Frequent Itemset-based Hierarchical Clustering (FIHC)
 - Cluster-centered: Measure the similarity of clusters directly using frequent itemsets
 - Overcome many challenges: High dimensionality;
 Scalability; Meaningful cluster description; Accuracy; etc.

Preprocessing

- Stopword removal
- Stemming

Doc 1: apple =
$$5$$
, boy = 2 , cat = 7

Doc 3: boy =
$$3$$
, cat = 1 , window = 5

	apple	boy	cat	window
Doc 1	5	2	7	0
Doc 2	4	0	0	3
Doc 3	0	3	1	5

FIHC - Basic Definitions

Global frequent itemset

Global support

Global frequent item

Cluster frequent item

Cluster support

	apple	boy	cat	window
Doc 1	5	2	7	0
Doc 2	4	0	0	3
Doc 3	0	3	1	5

FIHC - Basic Definitions

Global frequent itemset

Global support = 60%

Global frequent item

Cluster frequent item

Cluster support

	apple	boy	cat	window
Doc 1	5	2	7	0
Doc 2	4	0	0	3
Doc 3	0	3	1	5

FIHC - Basic Definitions

Global frequent itemset

Global support = 60%

Global frequent item = boy or cat

Cluster frequent item

Cluster support

	apple	boy	cat	window
Doc 1	5	2	7	0
Doc 2	4	0	0	3
Doc 3	0	3	1	5

FIHC Algorithm Overview

FIHC - Generate Frequent Itemsets

	apple	boy	cat	window
Doc 1	5	2	7	0
Doc 2	4	0	0	3
Doc 3	1	3	1	5
Doc 4	8	0	2	0
Doc 5	5	0	0	3

Minimum support = 60%

Frequent itemsets: {apple}, {cat}, {window}, {apple, window}

FIHC - Generate Frequent Itemsets

Reduce dimension → Improves efficiency and scalability

	apple	boy	cat	window
Doc 1	5	2117	7	0
Doc 2	4	0 \ \	0	3
Doc 3	0	3	1	5
Doc 4	8	0/1	2	0
Doc 5	5	مالا	0	3

Minimum support = 60%

Frequent itemsets: {apple}, {cat}, {window}, {apple, window}

FIHC - Why Frequent Itemset Mining?

FIHC Algorithm Overview

FIHC - Construct Initial Clusters

Frequent itemsets: {apple}, {cat}, {window}, {apple, window}

FIHC - Making Clusters Disjoint

Frequent itemsets: {apple}, {cat}, {window}, {apple, window}

FIHC - Scoring Function

Similarity between a cluster and a document

$$Score(C_i \leftarrow doc_j) = [\sum_{x} n(x) * cluster_support(x)] - [\sum_{x'} n(x') * global_support(x')]$$

Class
(apple)
apple = 100%
window = 75%

Class (cat) cat = 100%

Class (window) cat = 60% window = 100% Class (apple,window)
apple = 100%
cat = 60%

window = 100%

 $(5 \times 1.0) + (3 \times 0.75) - (1 \times 0.6) = 6.65$

-0.4

-5.4

 $(5 \times 1.0) + (1 \times 0.6) + (3 \times 1.0) = 8.6$

Doc 5:

apple = 5

Cat = 1

window = 3

CS 6501: Text Mining - Spring 2016

FIHC Algorithm Overview

FIHC - Tree Construction

FIHC build the hierarchical tree after clustering

Bottom-up: Start from the largest cluster label

How to choose the best parent?

FIHC Algorithm Overview

FIHC - Cluster Tree Pruning

- Cluster Tree Pruning Why?
 - Remove overly specific child clusters
 - Document of the same topic may distributed over different subtrees, which would lead to poor clustering quality
- Cluster Tree Pruning: Inter-Cluster Similarity

Geometric mean of both direction

$$\circ \quad Inter_Sim(C_i, C_j) = (Sim(C_i, C_j) * Sim(C_i, C_j))^{1/2}$$

Treat *Cj* as a doc, reuse the score function

$$\circ \quad Sim(C_i, C_j) = Score(C_i, doc(C_j)) / (\Sigma n(x) + \Sigma n(x')) + 1$$

Normalized by item frequency

x: global frequent items in both Ci and Cj

x': global frequent items in Cj but not in Ci

n(): frequency in Cj

FIHC - Cluster Tree Pruning

- Cluster Tree Pruning Child Pruning (for level > 1)
 - Shorten the tree

- Cluster Tree Pruning Sibling Merging (for level = 1)
 - Narrow the tree

Experimental Results - Data Sets

⇒ Each document is pre-classified into a single natural class.

Data Set	Number of Documents	Number of Classes	Class Size	Average Class Size	Number of Terms
Classic4	7094	4	1033 - 3203	1774	12009
Hitech	2301	6	116 - 603	384	13170
$Re\theta$	1504	13	11 - 608	116	2886
Reuters	8649	65	1 - 3725	131	16641
Wap	1560	20	5 - 341	78	8460

Table 5.1: Summary descriptions of data sets

Experimental Results - Evaluation

Clustering Quality: F-measure

- Widely used method for evaluation
- F-measure range is from 0 to 1
- Weighted average of recall and precision

Data Set	# of	F-measure				
(# of natural classes)	Clusters	FIHC	UPGMA	Bi. k-means	HFTC	
Classic4	3	0.62*	×	0.59	n/a	
(4)	15	0.52*	×	0.46	n/a	
	30	0.52*	×	0.43	n/a	
	60	0.51*	×	0.27	n/a	
	Average	0.54	×	0.44	0.61*	
Hitech	3	0.45	0.33	0.54*	n/a	
(6)	15	0.42	0.33	0.44*	n/a	
	30	0.41	0.47*	0.29	n/a	
	60	0.41*	0.40	0.21	n/a	
	Average	0.42*	0.38	0.37	0.37	
Re0	3	0.53*	0.36	0.34	n/a	
(13)	15	0.45	0.47*	0.38	n/a	
	30	0.43*	0.42	0.38	n/a	
	60	0.38*	0.34	0.28	n/a	
	Average	0.45*	0.40	0.34	0.43	
Reuters	3	0.58*	×	0.48	n/a	
(65)	15	0.61*	×	0.42	n/a	
	30	0.61*	×	0.35	n/a	
	60	0.60*	×	0.30	n/a	
	Average	0.60*	×	0.39	0.49	
Wap	3	0.40*	0.39	0.40*	n/a	
(20)	15	0.56	0.49	0.57*	n/a	
ALPHONOUS CO.	30	0.57	0.58*	0.44	n/a	
	60	0.55	0.59*	0.37	n/a	
	Average	0.52*	0.51	0.45	0.35	

 $\begin{array}{ll} \text{Table 5.2: F-measure comparison} \\ \times = \text{not scalable to run} & * = \text{best competitor} \end{array}$

Experimental Results - Efficiency

Conclusions

- Main contributions of the paper
 - Using frequent itemsets to reduce dimension, so as to achieve higher efficiency and scalability
 - Measuring cluster similarity based on frequent itemsets
 - High clustering quality
 - Number of clusters is optional as input parameter
 - Meaningful cluster labels

Thanks!