CS1231S Tutorial 5

AY 24/25 Sem 1 — github/omgeta

Q1. Disproof by Counterexample

- 1. Suppose $a, b \in S$, a = "s", b = "u"
- 2. $len(a) = 1 = len(b) \land a \neq b$
- 3. $\exists a, b \in S((aRb \land bRa) \land (a \neq b))$
- 4. $\therefore R$ is not antisymmetric
- 5. $\therefore R$ is not a partial order

(Definition of antisymmetry) (Definition of partial order)

- Q2. (a) False. $7 \mid 21 \implies 7 \leq 21 \implies 21 \nleq *7$ (by antisymmetry)
 - (b) True. 2, 3 are minimal elements. E.g. $\{2, 3, 5, 7, 21, 30, 84, 99\}$
 - (c) True. $21 \leq 84 \wedge 5$ is noncomparable to 21, 84. E.g. $\{2, 3, 7, 21, 5, 30, 84, 99\}$
 - (d) True. 30, 84, 99 are maximal elements. E.g. $\{2, 3, 5, 7, 21, 99, 84, 30\}$
- Q3. For $A = \{11, 12, 13, 14, 15, 16\}, F_x = \{k \in \mathbb{Z}^+ : k \mid x\}$:

$$F_{11} = \{1, 11\} \implies |F_{11}| = 2$$

$$F_{12} = \{1, 2, 3, 4, 6, 12\} \implies |F_{12}| = 6$$

$$F_{13} = \{1, 13\} \implies |F_{13}| = 2$$

$$F_{14} = \{1, 2, 7, 14\} \implies |F_{14}| = 4$$

$$F_{15} = \{1, 3, 5, 15\} \implies |F_{15}| = 4$$

$$F_{16} = \{1, 2, 4, 8, 16\} \implies |F_{16}| = 5$$

Minimal elements are 11, 13, largest and maximal element is 12 ■

Q4. All linearizations are:

$$11 \preccurlyeq^* 13 \preccurlyeq^* 14 \preccurlyeq^* 15 \end{cases}^* 16 \mathrel \preccurlyeq^* 12$$
 (Given) $11 \mathrel \preccurlyeq^* 13 \mathrel \preccurlyeq^* 15 \mathrel \preccurlyeq^* 14 \mathrel \varsigma^* 16 \mathrel \varsigma^* 12$ $13 \mathrel \varsigma^* 11 \mathrel \varsigma^* 14 \mathrel \varsigma^* 16 \mathrel \varsigma^* 12$ $13 \mathrel \varsigma^* 11 \mathrel \varsigma^* 15 \mathrel \varsigma^* 16 \mathrel \varsigma^* 12$

Q5. Direct Proof

```
1. Prove \subseteq is reflexive:
    1.1. Let S \in \mathcal{P}(A)
    1.2. S \subseteq S
                                                                                                    (Definition of subsets)
    1.3. \therefore \forall S \in \mathcal{P}(A)(S \subseteq S)
                                                                                               (Universal generalization)
    1.4. \therefore\subseteq is reflexive
                                                                                                (Definition of reflexivity)
2. Prove \subseteq is antisymmetric:
    2.1. Let S, T \in \mathcal{P}(A)
    2.2. Suppose S \subseteq T \land T \subseteq S
    2.3. S = T
                                                                                              (Definition of set equality)
    2.4. \therefore \forall S, T \in \mathcal{P}(A)(S \subseteq T \land T \subseteq S \rightarrow S = T)
                                                                                               (Universal generalization)
    2.5. :\subseteq is antisymmetric
                                                                                           (Definition of antisymmetry)
3. Prove \subseteq is transitive:
    3.1. Let S, T, U \in \mathcal{P}(A)
    3.2. Suppose S \subseteq T \wedge T \subseteq U
    3.3. \forall x (x \in S \to x \in T \land x \in T \to x \in U)
                                                                                                     (Definition of subset)
    3.4. \forall x (x \in S \to x \in U)
                                                                                           (Transitivity of implication)
    3.5. S \subseteq U
                                                                                                     (Definition of subset)
    3.6. \therefore \forall S, T, U \in \mathfrak{P}(A)(S \subseteq T \land T \subseteq U \to S \subseteq U)
                                                                                               (Universal generalization)
                                                                                              (Definition of transitivity)
    3.7. :\subseteq is transitive
4. \subseteq is reflexive, antisymmetric and transitive
                                                                                                               (Conjunction)
                                                                                            (Definition of partial order)
5. :\subseteq is a partial order
```

Q6. (a) Direct Proof

- 1. Prove R is reflexive:
 - 1.1. Let $(a,b) \in B \times B$
 - 1.2. $a \le a \land b \le b$
 - 1.3. (a,b)R(a,b)(Definition of R)
 - 1.4. $\forall (a,b) \in B \times B((a,b)R(a,b))$ (Universal generalization)
 - 1.5. $\therefore R$ is reflexive (Definition of reflexive)
- 2. Prove R is antisymmetric:
 - 2.1. Let $(a, b), (c, d) \in B \times B$
 - 2.2. Suppose $(a,b)R(c,d) \wedge (c,d)R(a,b)$
 - 2.3. $(a \le c \land c \le a) \land (b \le d \land d \le b)$ (Definition of R)
 - 2.4. $a = c \land b = d$ (Definition of \leq)
 - 2.5. $\forall (a,b), (c,d) \in B \times B((a,b)R(c,d) \wedge (c,d)R(a,b) \rightarrow a = c \wedge b = d)$ (Universal generalization)
 - 2.6. R is antisymmetric (Definition of antisymmetry)
- 3. Prove R is transitive:
 - 3.1. Let $(a, b), (c, d), (e, f) \in B \times B$
 - 3.2. Suppose $(a,b)R(c,d) \wedge (c,d)R(e,f)$
 - 3.3. $a \le c \le e \land b \le d \le f$ (Definition of R)
 - 3.4. $a \le e \land b \le f$ (T18. Transitivity of \leq)
 - 3.5. (a,b)R(e,f)(Definition of R)
 - 3.6. $\forall (a,b), (c,d), (e,f) \in B \times B((a,b)R(c,d) \wedge (c,d)R(e,f) \rightarrow (a,b)R(e,f))$ (Universal generalization)
 - 3.7. $\therefore R$ is transitive (Definition of transitivity)
- 4. $\therefore R$ is reflexive, antisymmetric and transitive
- (Conjunction)
- 5. $\therefore R$ is a partial order
 - (Definition of partial order)

(b)

- (c) Maximal and largest element is (1,1). Minimal and smallest element is (0,0)
- (d) No. Counterexample: (0,1) $\mathcal{R}(1,0) \wedge (1,0)$ $\mathcal{R}(0,1)$

Q7. S is the reflexive closure of R

(a) Direct Proof

- 1. Prove S is reflexive:
 - 1.1. Let $x \in A$
 - 1.2. x = x
 - 1.3. xSx
 - 1.4. $\therefore \forall x \in A(xSx)$
 - 1.5. $\therefore S$ is reflexive

- (Definition of S)
- (Universal generalization)
- (Definition of reflexivity)

(b) Direct Proof

- 1. Prove $R \subseteq S$:
 - 1.1. Let $(x, y) \in R$
 - 1.2. xRy
 - 1.3. xSy
 - 1.4. $(x,y) \in S$
 - 1.5. $\therefore \forall (x,y) \in A \times A((x,y) \in R \rightarrow (x,y) \in S)$
 - 1.6. $\therefore R \subseteq S$

- (Definition of R) (Definition of S)
- (Universal generalization)
- (Definition of subset)

(c) Direct Proof

- 1. Prove $S \subseteq S'$:
 - 1.1. Let $(x, y) \in S$
 - 1.2. $x = y \lor xRy$
 - 1.3. Case 1 (x = y): xS'y
 - 1.4. Case 2 (xRy): xS'y

 - 1.5. In all cases, xS'y
 - 1.6. $(x,y) \in S'$
 - 1.7. $\therefore \forall (x,y) \in A \times A((x,y) \in S \rightarrow (x,y) \in S')$
 - 1.8. $\therefore S \subseteq S'$

(Reflexivity of S') (Definition of S')

(Definition of S)

- (Universal generalization) (Definition of subset)

- Q8. (a) $xRy \leftrightarrow x < y$
 - (b) $xRy \leftrightarrow x \le y$
 - (c) DNE. ■
 - (d) $xRy \leftrightarrow xy \ge 0$
- (a) Comparable: $\{1,1\},\{1,2\},\{1,4\},\{1,5\},\{1,10\},\{1,15\},\{1,20\}$ Q9. ${2,2},{2,4},{2,10},{2,20}$
 - $\{4,4\},\{4,20\}$
 - {5,5}, {5,10}, {5,15}, {5,20}
 - {10, 10}, {10, 20}
 - {15, 15}
 - {20, 20}
 - (b) Compatible: $\{1,1\},\{1,2\},\{1,4\},\{1,5\},\{1,10\},\{1,15\},\{1,20\}$ $\{2,2\},\{2,4\},\{2,5\},\{2,10\},\{2,20\}$

 - ${4,4},{4,5},{4,10},{4,20}$
 - $\{5,5\},\{5,10\},\{5,15\},\{5,20\}$
 - $\{10, 10\}, \{10, 20\}$
 - $\{15, 15\}$
 - {20, 20} ■

Q10. (a) Maximal chains: $\{\phi, \{a\}, \{a,b\}, \{a,b,c\}, \{a,b,c,d\}\}$ and $\{\phi, \{a\}, \{a,c\}, \{a,b,c\}, \{a,b,c,d\}\}$

(b) 3

Maximal chains: $\{11, 385\}$ and $\{2, 6, 12\}$

Q11. (a) True.

Direct Proof

1. Prove $\forall a, b \in A(a, b \text{ are comparable} \rightarrow a, b \text{ are compatible})$

2. Suppose a, b are comparable

 $2.1. \ a \leq b \vee b \leq a$

(Definition of comparable)

2.2. Case 1 $(a \le b)$:

2.2.1. $b \leq b$

 $2.2.2. : \exists c = b \in A(a \leq c \land b \leq c)$

2.2.3. $\therefore a, b$ are compatible

2.3. Case 2 $(b \le a)$:

2.3.1. $a \preccurlyeq a$

2.3.2. $\therefore \exists c = a \in A(b \leq c \land a \leq c)$

2.3.3. $\therefore a, b$ are compatible

(Reflexivity of partial order) (Universal generalization)

(Reflexivity of partial order)

(Universal generalization)

(Definition of compatible)

(Definition of compatible)

2.4. In all cases, a, b are compatible

(b) False. Counterexample from Q9: $\{4,10\}$ is compatible $(4\mid 20 \land 10\mid 20)$ but not comparable $(4\nmid 10 \land 10\nmid 4)$