LITERATURE REVIEW

SL. NO	TITLE	YEAR	TECHNOLOGY	DRAWBACKS	LIN K
01	Advancing cryptographic security: a novel hybrid AES-RSA model with byte-level tokenization	Apr 16, 2024	 byte-level Byte-Pair Encoding (BPE) tokenizer. RSA algorithm Advanced Encryption Standard (AES). 	 Increased Computational Overhead Complexity in Key Management Potential Vulnerabilities in Tokenization 	[A]
02	Design and Implementation of Memory Controller for Byte Access from Data Memory for SoC's Devices	July, 2024	 System-on-Chip (SoC) Architecture. Advanced eXtensible Interface (AXI). Verilog and SystemVerilog UVM (Universal Verification Methodology). 	 Limited Scalability in Multi-Processor Environments. Limited Flexibility in Dynamic Environments Verification and Validation Challenges 	[B]
03	Optimizing Systems for Byte-Addressable NVM by Reducing Bit Flipping	Februar y, 2019	 Phase Change Memory (PCM). XOR Linked Lists. XOR Hash Tables. XOR Red-Black Tree. 	 PCM Write Endurance Power Consumption Memory Allocation Overhead. XOR Hash Tables, Complexity 	

04	20nm High-density single-port and dual- port SRAMa with worldline-voltage- adjustments system for read/write assists	06 March 2014	 Wordline-Voltage- Adjustment System On-Chip Voltage Regulator Temperature Monitoring and Control Temperature and Process Variation- Based Adjustmen 	 Increased Complexity Write/Read Disturb Issues in DP-SRAM Timing Considerations 	D
05	A 45-nm Single-port and Dual-port SRAM family with Robust Read/Write Stabilizing Circuitry under DVFS Environment.	01 August 2008	 Improved Wordline Suppression Circuitry Negative Bitline Technique. 45nm CMOS Technology 	 Process Variation Sensitivity Complexity in Negative Bitline Implementation 	E