CAGCGTCAGACGCAGGGCACTGAGAATGTGCGACAGCGCGCAACGATGAAGTAGCCCAGAGGGTCCCTTG GAAAATGAGGCCAGGGTCCCTGCTGCTGCTTGTTCTGCTGCTCGCCCTGTCCAGGAGCCTGCGGGGCAAA GAGTGTGCGTCTCCACCTGTGAGTGTCACCAGGAGGACGACTTCAGAGTCACCTGCAAGGAGCTCCACC GAATCCCCAGCCTGCCGCCCAGCCCCAGACTCTGAAGCTCATCGAGACTCATCTGAAGACCATACCCAG TCTTGCATTTTCGAGTCTGCCCAATATTTCCAGGATCTATTTATCTATAGATGCAACTCTGCAGCGGCTG GAACCACATTCTTTCTACAATTTGAGTAAAATGACTCACATAGAAATCCGGAACACCAGAAGCTTAACCT ATATAGACCCTGATGCCTTGACAGAGCTCCCCTTGCTCAAGTTTCTTGGCATTTTCAATACTGGACTTAG AATATTCCCTGACTTGACCAAAATTTATTCCACGGACATATTCTTTATACTTGAAATCACAGACAACCCT TACATGACTTCGGTCCCTGAAAACGCATTCCAGGGCCTATGCAATGAAACCTTGACCCTGAAACTGTACA ACAATGGATTTACTTCAGTCCAAGGACATGCTTTCAATGGAACAAAGCTGGATGCTGTTTACCTAAACAA GAATAAATACCTGACAGCTATAGACAACGATGCCTTTGGAGGAGTATACAGTGGACCAACTTTGCTAGAT GTGTCTTCCACCAGCGTCACTGCCCTTCCTTCCAAAGGCCTGGAGCACCTCAAAGAACTGATCGCAAAAG ACACCTGGACTCTCAAAAAGCTCCCGCTGTCGTTGAGTTTCCTCCACCTCACTCGGGCTGACCTCTCTTA $\tt CCCGAGCCACTGCTGCGCTTTTAAGAACCAGAAGAAAATCAGGGGAATCCTGGAGTCTTTGATGTGTAAT$ GAGAGCAGTATCCGGAACCTTCGTCAAAGGAAATCAGTGAACATCTTGAGGGGTCCCATCTACCAGGAAT CTCTCACTATTACGTCTTCTTTGAAGAACAAGAGGATGAGGTCGTTGGTTTCGGCCAAGAGCTCAAAAAT CCTCAGGAAGAGACTCTCCAAGCCTTCGAGAGCCACTATGACTACACGGTGTGTGGGGACAACGAGGACA TGGTGTGTACCCCCAAGTCGGACGAGTTTAACCCCTGTGAAGATATCATGGGCTACAGGTTCCTGAGAAT CGTGGTGTGGTTTGTCAGTCTGCTGGCTCTCCTGGGCAATATCTTCGTCCTGCTCATTCTGCTAACCAGC CACTACAAATTGACCGTGCCGCGGTTCCTCATGTGCAACTTGGCCTTTGCAGATTTCTGCATGGGGGTAT ACCTGCTTCTCATTGCCTCTGTAGACCTGTACACACACTCTGAGTACTACAACCACGCCATCGACTGGCA GACGGGCCCTGGGTGCAACACGGCTGGCTTCTTCACTGTTTTCGCCAGTGAGTTATCAGTGTACACACTG ACGGTCATCACCTGGAGCGATGGTACGCCATCACCTTCGCCATGCGCCTGGATAGGAAGATCCGCCTCA AATCAGCAGCTATGCCAAGGTCAGCATCTGCCTGCCAATGGACACCGACACCCCTCTTGCACTCGCATAC ATTGTCCTCGTTCTGCTCAATGTTGTTGCCTTTGTTGTCGTCTGTTCCTGCTATGTGAAGATCTACA TCACGGTCCGAAATCCCCAGTACAACCCTCGAGATAAAGACACCAAGATTGCCAAGAGGATGGCTGTGTT GATCTTCACTGACTTCATGTGCATGGCGCCCATCTCCTTCTATGCGCTGTCGGCACTTATGAACAAGCCT CTAATCACTGTTACTAACTCCAAAATCTTGTTGGTTCTCTTCTACCCCCTCAACTCCTGTGCCAATCCGT TTCTCTATGCTATTTTCACCAAGGCCTTCCAGAGGGACGTGTTCATCCTGCTCAGCAAGTTTGGCATCTG CAAACGCCAGGCCCAGGCCTATCAGGGTCAGAGAGTCTGTCCCAACAATAGCACTGGTATTCAGATCCAA AAGATTCCCCAGGACACGAGGCAGAGTCTCCCCAACATGCAAGATACCTATGAACTGCTTGGAAACTCCC AGCTAGCTCCAAAACTGCAGGGACAAATCTCAGAAGAGTATAAGCAAACAGCCTTGTAAAGGAAAGGCTA CGCTAGTCACAGTGAGACTTACAAAAGGCTGGTTTCTTGAACATGCGTTCCAGTCCCGTGACATGTGAAC ACATAGGTTCATGCAGGTGATGATTCATAGGGTCAGAGTTCATCTCTAGAAAGTATTGCCTC (SEQ ID NO:1)

FIGURE 1A

MRPGSLLLLVLLLALSRSLRGKECASPPCECHQEDDFRVTCKELHRIPSLPPSTQTLKLIETHLKTIPSLAFSSLPN ISRIYLSIDATLQRLEPHSFYNLSKMTHIEIRNTRSLTYIDPDALTELPLLKFLGIFNTGLRIFPDLTKIYSTDIFF ILEITDNPYMTSVPENAFQGLCNETLTLKLYNNGFTSVQGHAFNGTKLDAVYLNKNKYLTAIDNDAFGGVYSGPTLL DVSSTSVTALPSKGLEHLKELIAKDTWTLKKLPLSLSFLHLTRADLSYPSHCCAFKNQKKIRGILESLMCNESSIRN LRQRKSVNILRGPIYQEYEEDPGDNSVGYKQNSKFQESPSNSHYYVFFEEQEDEVVGFGQELKNPQEETLQAFESHY DYTVCGDNEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLALLGNIFVLLILLTSHYKLTVPRFLMCNLAFADFC MGVYLLLIASVDLYTHSEYYNHAIDWQTGPGCNTAGFFTVFASELSVYTLTVITLERWYAITFAMRLDRKIRLRHAY TIMAGGWVSCFLLALLPMVGISSYAKVSICLPMDTDTPLALAYIVLVLLLNVVAFVVVCSCYVKIYITVRNPQYNPR DKDTKIAKRMAVLIFTDFMCMAPISFYALSALMNKPLITVTNSKILLVLFYPLNSCANPFLYAIFTKAFQRDVFILL SKFGICKRQAQAYQGQRVCPNNSTGIQIQKIPQDTRQSLPNMQDTYELLGNSQLAPKLQGQISEEYKQTAL (SEQ ID NO:2)

FIGURE 1B

underlined = deleted in targeting construct

[] = sequence flanking Neo insert in targeting construct

[CAGCGTCAGACGCAGGGCACTGAGAATGTGCGACAGCGCGCAACGATGAAGTAGCCCAG AGGGTCCCTTGGAAAATGAGGCCAGGGTCCC] TGCTGCTGCTTGTTCTGCTGCTCGCCCT GTCCAGGAGCCTGCGGGGCAAAGAGTGTGCGTCTCCACCCTGTGA [GTGTCACCAGGAGG ACGACTTCAGAGTCACCTGCAAGGAGCTCCACCGAATCCCCAGCCTGCCGCCCAGCACCC AGACTCT] GAAGCTCATCGAGACTCATCTGAAGACCATACCCAGTCTTGCATTTTCGAGT CTGCCCAATATTTCCAGGATCTATTTATCTATAGATGCAACTCTGCAGCGGCTGGAACCA CATTCTTCTACAATTTGAGTAAAATGACTCACATAGAAATCCGGAACACCAGAAGCTTA ACCTATATAGACCCTGATGCCTTGACAGAGCTCCCCTTGCTCAAGTTTCTTGGCATTTTC AATACTGGACTTAGAATATTCCCTGACTTGACCAAAATTTATTCCACGGACATATTCTTT ATACTTGAAATCACAGACAACCCTTACATGACTTCGGTCCCTGAAAACGCATTCCAGGGC CTATGCAATGAAACCTTGACCCTGAAACTGTACAACAATGGATTTACTTCAGTCCAAGGA GCTATAGACAACGATGCCTTTGGAGGAGTATACAGTGGACCAACTTTGCTAGATGTCT TCCACCAGCGTCACTGCCCTTCCTTCCAAAGGCCTGGAGCACCTCAAAGAACTGATCGCA AAAGACACCTGGACTCTCAAAAAGCTCCCGCTGTCGTTGAGTTTCCTCCACCTCACTCGG GCTGACCTCTTACCCGAGCCACTGCTGCGCTTTTAAGAACCAGAAGAAAATCAGGGGA ATCCTGGAGTCTTTGATGTGTAATGAGAGCAGTATCCGGAACCTTCGTCAAAGGAAATCA GTGAACATCTTGAGGGGTCCCATCTACCAGGAATATGAAGAAGATCCGGGTGACAACAGT GTTGGGTACAAACAAACTCCAAGTTCCAGGAGAGCCCAAGCAACTCTCACTATTACGTC TTCTTTGAAGAACAAGAGGATGAGGTCGTTGGTTTCGGCCAAGAGCTCAAAAATCCTCAG GAAGAGACTCTCCAAGCCTTCGAGAGCCACTATGACTACACGGTGTGTGGGGACAACGAG GACATGGTGTGTACCCCCAAGTCGGACGAGTTTAACCCCTGTGAAGATATCATGGGCTAC AGGTTCCTGAGAATCGTGGTGTGGTTTGTCAGTCTGCTGGCTCTCCTGGGCAATATCTTC GTCCTGCTCATTCTGCTAACCAGCCACTACAAATTGACCGTGCCGCGGTTCCTCATGTGC AACTTGGCCTTTGCAGATTTCTGCATGGGGGTATACCTGCTTCTCATTGCCTCTGTAGAC CTGTACACACTCTGAGTACTACAACCACGCCATCGACTGGCAGACGGGCCCTGGGTGC AACACGGCTGGCTTCTTCACTGTTTTCGCCAGTGAGTTATCAGTGTACACACTGACGGTC ATCACCCTGGAGCGATGGTACGCCATCACCTTCGCCATGCGCCTGGATAGGAAGATCCGC CTCAGGCACGCGTACACCATCATGGCTGGGGGCTGGGTTTCCTGCTTCCTCGCCCTG GACACCCCTCTTGCACTCGCATACATTGTCCTCGTTCTGCTGCTCAATGTTGTTGCCTTT GTTGTCGTCTGTTCCTGCTATGTGAAGATCTACATCACGGTCCGAAATCCCCAGTACAAC CCTCGAGATAAAGACACCAAGATTGCCAAGAGGATGGCTGTGTTGATCTTCACTGACTTC ATGTGCATGGCGCCCATCTCCTTCTATGCGCTGTCGGCACTTATGAACAAGCCTCTAATC ACTGTTACTAACTCCAAAATCTTGTTGGTTCTCTTCTACCCCCTCAACTCCTGTGCCAAT CCGTTTCTCTATGCTATTTTCACCAAGGCCTTCCAGAGGGACGTGTTCATCCTGCTCAGC AAGTTTGGCATCTGCAAACGCCAGGCCCAGGCCTATCAGGGTCAGAGAGTCTGTCCCAAC AATAGCACTGGTATTCAGATCCAAAAGATTCCCCAGGACACGAGGCAGAGTCTCCCCAAC ATCTCAGAAGAGTATAAGCAAACAGCCTTGTAAAGGAAAGGCTACGCTAGTCACAGTGAG ACTTACAAAAGGCTGGTTTCTTGAACATGCGTTCCAGTCCCGTGACATGTGAACACATAG GTTCATGCAGGTGATGATTCATAGGGTCAGAGTTCATCTCTAGAAAGTATTGCCTC

FIGURE 2A

FIGURE 2B

+ \$	mis	<u> </u>				224	0.226) -	0.181				780	180	0.076
Teste	Epididy	Weight	ĝ												
Heart/	Bodv	Weight	%	0.694	0.719	0.485	0.559	0.535	0.570	0.499	0.610	0.455	0.452	0.478	0.520
	Heart	Weight	g)	0.155	0.122	0.119	0.133	0.121	0.137	0.045	0.051	0.053	0.053	090.0	0.042
Thymus/	Body	Weight	<u>(</u> %)	0.367	0.354	0.224	0.265	0.354	0.258	0.111	0.048	0.266	0.290	0.279	0.012
Liver/ Kidney/ Thymus/ Heart/ Te	Thymus	Weight	(b)	0.082	0.060	0.055	0.063	0.080	0.062	0.010	0.004	0.031	0.034	0.035	0.001
Kidney/	Body	Weight	(%)	1.464	1.297	1.393	1.278	1.052	1.339	1.219	1.316	1.091	1.142	1.164	1.177
	Kidney	Weight	(<u>6</u>)	0.327	0.220	0.342	0.304	0.238	0.322	0.110	0.110	0.127	0.134	0.146	0.095
Liver/	Body	Weight	(%)	5.622	5.307	5.654	5.010	5.624	5.591	4.819	4.569	5.034	5.676	6.202	4.535
	Liver	Weight	(B)	1.256	0.900	1.388	1.192	1.272	1.344	0.435	0.382	0.586	999.0	0.778	0.366
Spleen/	Body	Weight	(%)	0.425	0.307	0.281	0.340	0.354	0.300	0.089	0.191	0.137	0.153	0.191	0.087
Spleen/	Spleen	Weight	(g)	0.095	0.052	0.069	0.081	0.080	0.072	0.008	0.016	0.016	0.018	0.024	0.007
	Body Sple	Weight	(a)	22.339	16.960	24.550	23.792	8.5 22.619	24.040	7.5 9.026	8.360		11.733	12.545	7 8.070
		Length	(cm)	10	8.25	9.5	9.7	8.5	တ	7.5	7	∞	9.7	∞	7
		Age	(days)	48	48	48	48	48	48	47	48	48	48	48	48
		Gender		- Female	Female	Male	Male	-/+ Female	Male	Female	Female	Female	Male	Male	Male
				+/+	+/+	+ /+	+	+,	+/-	+	+	+	+	+	+

FIGURE 3

		•			Spleen/ Liver/ Kidn	Spleen/		Liver/		Kidney/		Thymus/		Heart/	Testes +
		Age at		Body	Spleen	Body	Liver	Body	Kidney	Body	Thymus	Body	Heart	Body	Epididymis
O	3ender	Test	Test Length \	Veig	Weight	Weight	Weight	Weight	Weight	Weight	Weight	Weight	Weight	Weight	Weight
			(cm)	(g)	(a)	(%)	(a)	(%)	(a)	(%)	(a)	(%)	(6)	(%)	(6)
ш́ _+	emale	308	9.5	25.191	0.222	0.8813	1.476	5.8592	0.353	1.4013	0.039	0.1548	0.145	0.5756	
+/+ F(emale	308	9.918	28.180	0.091	0.3229	1.447	5.1348	0.383	1.3591	0.043	0.1526	0.136	0.4826	
∑ +	lale	308	11.025	55.089	0.182	0.3304	3.267	5.9304	0.694	1.2598	0.074	0.1343	0.219	0.3975	0.35
≥ +	lale	308	7	42.613	0.136	0.3192	2.144	5.0313	0.485	1.1382	0.052	0.1220	0.201	0.4717	0.387
Œ	Female	307	7.978	19.561	0.030	0.1534	0.863	4.4118	0.184	0.9406	0.040	0.2045	0.109	0.5572	
∇ -/-	lale	307	9.47	9.47 25.557	0.077	0.3013	1.394	5.4545	0.340	1.3304	0.025	0.0978	0.111	0.4343	0.401
Σ	Male	307	9.5	25.263	0.051	0.2019	1.232	4.8767	0.296	1.1717	0.027	0.1069	0.102	0.4038	0.389

FIGURE 4