Chapitre

Nombres complexes

6. Généralités

6.1. Propriétés

Inférieur Ou supérieur

Il n'y a pas de relation d'ordre sur $\mathbb C$. On ne peut pas dire qu'un nombre complexe est plus grand qu'un autre.

Opérations usuelles

Soient z = a + ib et z' = a' + ib' deux nombres complexes.

$$z + z' = (a + a') + i(b + b')$$

$$\cdot z \times z' = (aa' - bb') + i(ab' + a'b)$$

$$\cdot \ \frac{1}{z} = \frac{a}{a^2 + b^2} - i \frac{b}{a^2 + b^2}$$

Opérations de conjugaison

•
$$\bar{z} = a - ib$$

•
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

•
$$Re(z) = \frac{z + \bar{z}}{2}$$

•
$$Im(z) = \frac{z - \bar{z}}{2i}$$

$$z \in \mathbb{R} \iff z = \overline{z}$$

$$\cdot \ \overline{\overline{z}} = z.$$

6.1. Module d'un nombre complexe

Définitions

Le module est noté $|z| = \sqrt{z\overline{z}}$ i

Le module d'un nombre complexe est la prolongement à $\mathbb C$ de la valeur absolue qui existe sur $\mathbb R$. On a |z|=OM. Il défini une distance sur $\mathbb C$

i Info

La notation \sqrt{x} est réservée au Réels positifs. Or le module est une valeur réelle positive, on peut donc l'utiliser ici

Propriétés

- Si z = x + iy alors $|z| = \sqrt{x^2 + y^2}$
- $\cdot |z| = |\overline{z}|, \quad z \times \overline{z} = x^2 + y^2$
- $\cdot \ |z\times z'| = |z|\times |z'|, \quad \left|\frac{1}{z}\right| = \tfrac{1}{|z|}, \quad \left|\tfrac{z}{z'}\right| = \tfrac{|z|}{|z'|}.$
- $\cdot |z+z'| \le |z| + |z'|$
- $|z^n| = |z|^n$, *n* entier naturel.

! Inégalité triangulaire

$$||z| - |z'|| \le |z + z'| \le |z| + |z'|$$

Module négatif

 $z=-3e^{i\frac{\pi}{4}}$ n'est pas sous forme polaire. On sait que $e^{i\pi}=-1$, donc $z=3e^{i(\frac{\pi}{4}+\pi)}.$

6.1. Argument

Définition

Soit M un point d'affixe le nombre complexe z non nul. On appelle argument de z tous les réels θ , mesure en radians de l'angle $\left(\overrightarrow{e_1};\overrightarrow{OM}\right)$.

On note $arg(z)=\theta+2k\pi,\quad k\in\mathbb{Z}\quad \text{ou }arg(z)=\theta\quad [2\pi]$ (modulo $[2\pi]$).

Astuce

Autrement dit, un nombre complexe non nul a une infinité d'arguments. Si θ est l'un d'entre eux, tout autre argument de z s'écrit $\theta + 2k\pi$. On dit aussi qu'un argument de z est défini modulo 2π .

Argument du nombre 0

Le nombre complexe o n'a pas d'argument car la définition $arg(z) = \left(\overrightarrow{e_1}; \overrightarrow{OM}\right)$ suppose $M \neq 0$.

Propriétés

- Si z est un réel strictement positif alors arg(z) = 0 [2 π].
- Si z est un réel strictement négatif alors $arg(z) = \pi$ [2 π].
- \cdot Si z est un imaginaire pur non nul alors $arg(z)=\frac{\pi}{2}$
- Si $arg(z) = \theta$ $[2\pi]$ alors $arg(-z) = \theta + \pi$ $[2\pi]$
- Si $arg(z) = \theta$ [2 π] alors $arg(\overline{z}) = -\theta$ [2 π].

Règles de calcul

- arg(zz') = arg(z) + arg(z')
- $arg(\frac{z}{z'}) = arg(z) arg(z')$
- $arg(\frac{1}{z'}) = -arg(z')$
- $arg(z^n) = n arg(z)$
- $arg(\bar{z}) = -arg(z)$

On note : $z = |z|e^{i\theta} = |z|(\cos(\theta) + i\sin(\theta))$

6.1. Formules d'Euler

Théorème 1.1 : Formule d'Euler

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

π Théorème 1.2 : Propriétés

•
$$e^{i\theta}e^{i\theta'}=e^{i(\theta+\theta')}$$

- $\cdot \overline{e^{i\theta}} = e^{-i\theta} = \frac{1}{e^{i\theta}}$
- Formule de Moivre : $(e^{i\theta})^n = e^{in\theta}$

6.1. Exponentielle complexe

On définit l'exponentielle complexe sur $\mathbb C$ par $\exp: C \to C, z \to e^{a+ib}$

Elle vérifie les mêmes propriétés que dans les réels. :

- $\exp(z+z') = \exp(z) \exp(z')$
- $\exp(nz) = (\exp(z))^n$
- Elle prolonge à $\mathbb C$ l'exponentielle réelle. Il ne faut pas le confondre avec la forme exponentielle d'un nombre complexe.

6. Equations du 2nd degré

Théorème 2.1 : Solutions d'une Équation du 2nd degré à coefficients complexes

L'équation $Az^2+bz+c=0$, notée E admet 2 solutions complexes, qui sont :

- $z_1=z_2=\frac{-b}{2a}$ si $\Delta=0$
- $\cdot \ z_1 = rac{-b+\delta}{2a}, z_1 = rac{-b-\delta}{2a}$, avec $\delta^2 = \Delta$

Théorème 2.2 : Théorème fondamental de l'algèbre

Toute fonction polynôme de degré n admet n racines dans \mathbb{C} .