B 粒子衰变的运动学研究

周鹏宇

Univ. of Sci. & Tech. of China

2021年1月4日

B 粒子衰变的运动学研究

关于 B 介子衰变的研究

- 由 B 介子的横动量 pT 的分布, 可以分析其与 QGP 作用过程
- B 介子 p_T 谱 dN/dp_T 或者 dN/dp_T 应为 Levy 函数形式, 含有三个未知参数.
- 实验上, 测量到其衰变产物 e, D0, J/ ψ 粒子的 R_{AA} .

$$R_{AA} = \frac{\sigma_{pp}}{N_{bin}} \times \frac{\left(\frac{\mathrm{d}^{2} N}{N2\pi p_{T} \mathrm{d} p_{T} \mathrm{d} y}\right)_{AA}}{\left(\frac{\mathrm{d}^{2} N}{N2\pi p_{T} \mathrm{d} p_{T} \mathrm{d} y}\right)_{pp}} \tag{1}$$

• 模拟时, 可以用两个直方图相除得到.

计算步骤

图: 计算步骤程序框图

B 粒子参数选择

- 粒子选择: B0把 B 介子 (B0,B+,B-) 全部看做 B0
- p_T 分布 (6)
- px, py 均匀分布在 pT 为半径的圆上.

$$\varphi \sim U[0, 2\pi], \qquad \begin{aligned} p_{\mathsf{x}} &= p_{\mathsf{T}} \sin \varphi \\ p_{\mathsf{y}} &= p_{\mathsf{T}} \cos \varphi \end{aligned}$$

y的分布 ~ N(0,1.2)
 y对系统动力学的影响?

$$p_z = \sqrt{m^2 + p_T^2} \sinh y$$

● 能量 E, 动量大小 P

$$P = \sqrt{p_T^2 + p_z^2}$$
 $E = \sqrt{P^2 + m^2}$

p⊤抽样

• Levy 函数代表 $\frac{\mathrm{d}^2 N}{\mathrm{d} \rho_T \mathrm{d} y}$

$$f(x) = xa^{2}(c-1)\frac{c-2}{bc[bc+(c-2)m]}*\left(\frac{bc+\sqrt{x^{2}a^{2}+m^{2}}-m}{bc}\right)^{-c}$$

其中 m = 5.280 是 B 粒子质量, a = 0.193, b = 0.277, c = 0.535.

FONLL 模型来自网站

http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html

- 参数: pp 200GeV, Hadronic final state=B hadron, Cross section type=dsigma/dpt, ptmin=0(GeV), ptmax=20; ymin=-1, ymax=1, npoints=200.
- 得到计算结果后, 对其修正了单位 (pb \rightarrow mb), 除以了 $\sigma_{pp}=30 (\text{mb}\rightarrow \text{yield})$, 除以 $\mathrm{d}y=2 ($ 最终 $\frac{\mathrm{d}^2N}{\mathrm{d}p_T\mathrm{d}y})$.

p⊤ 抽样

- 为解决 Levy 函数在高 pT 区间过小的问题, 步骤如下:
 - 选取抽样粒子 $p_T \sim U[0, 20]$.
 - 填充直方图时, 权重取为 weight=pTdist.Eval(pT).

实现

调用 Pythia8 相关函数.

• 初始化

```
Pythia8::Pythia pythia;
Pythia8::Pythia pythia;
Pythia8::Event& event = pythia.event;
Pythia8::ParticleData& pdt = pythia.particleData;
pythia . readString("511:onMode = off");
pythia . readString("511:onlfAny = 11");
```

• 添加一个事例

```
event.reset();
event.append( 511, 1, 0, 0, pT*sin(phi), pT*cos(phi), pz, E, m );
```

• 执行衰变

```
pythia.next();
```

• 数据存储在 event 数组中.

填充直方图

• 直方图初始化 (nbins=200,ptmin=0,ptmax=20)

```
TH1D hist("name", "", nbins, ptmin, ptmax);
```

- 产生一个随机分布的 B 粒子并执行衰变.
- 在子粒子中找到研究对象 (以 e(id=11) 为例)
 - 确保子粒子的是由 B 直接衰变来的

```
event[i].mother1()==1
```

- 选择正反粒子都进行填充
- 对子粒子的 y 进行选择
 - 对 e, |y| < 0.7, dy = 1.4.
 - 对 D0,J/ ψ , |y| < 1, dy = 2.
- 填充直方图, 权重为 weight $imes rac{1}{2\pi
 ho_T \mathrm{d}y}$

```
histdaughter. Fill (event[i].pT(), weight / (2 * M_PI * 2 * ymax * event[i].pT()) );
```

用到的是子粒子的 pT.

归一化

- **产生事例时**, **对***y* < 1 的 B 粒子计数 (填充直方图 histmother), 计数值除以 d*y*. **即** weight/(2 * bymax).
- 对于不同分布的 B 介子 p_T 谱, 定义截面为分布函数的定积 分 $\int_{p_{Tmin}}^{p_{Tmax}} \frac{\mathrm{d}N}{\mathrm{d}p_T} \mathrm{d}p_T$.
- 对直方图, 设定分支比.
 - e: BR=0.1061984
 - D0: BR = 0.03251
 - Jpsi: 0.00596

注: 该分支比可能不正确

• 归一化

1 histdaughter.Scale(BR*crosssection/(histmother.Integral("width")));

"width" 选项修正了 bin 宽.

• 对于 Levy 分布粒子, 除以 N_{bin} = 291.90194.

附注

- 填充直方图的权重 2πdy 在直方图相除时可以消掉.
- 分支比在直方图相除时可以消掉, 不会影响 R_{AA}

图: B2e R_{AA}

结果

图: B2D0 R_{AA}

图: B2Jpsi R_{AA}

图: B2echeck

图: B2e RAA, 对 FONLL 的检查

图: B2eRaacheck

检查

数据: yield. 绘图时除以了 $2\pi p_T dp_T dy$. $dy = 2, dp_T = 1, 2, 3$. 乘上 *BR*. 直方图除以了 $N_{AA} = 297$. 忽略了 yield 换算到截面乘以 42mb 的问题.

图: B2D0check