

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P66308A
Publications Code 4PM1_02_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is given.
- Crossed out work should be marked **unless** the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no
marks.

With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used.

If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$ leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$ where $|pq|=|c|$ and $|mn|=|a|$ leading to $x=...$

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and a leading to x = ...

3. Completing the square:

$$x^{2} + bx + c = 0$$
: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \neq 0$ leading to $x = ...$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by **either**

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question	Scheme	Mark
1(a)	$A = \frac{1.2}{2} \times 7^2 = 29\frac{2}{5}$	M1A1 [2]
(b)	$P = 7 + 7 + 7 \times 1.2 = 22\frac{2}{5}$ (cm)	M1A1 [2]
	Total	4 marks

Part	Mark	Notes
(a)	M1	For using the correct formula for the area of a sector with correct substitution of the given values. $A = \frac{1.2}{2} \times 7^2 = \dots$
	A1 [2]	For $A = 29\frac{2}{5}$ o.e. (cm ²)
(b)	M1	For a complete method to find the perimeter of the sector with correct substitution of the given values $P = 7 + 7 + 7 \times 1.2 =$
	A1 [2]	$P = 22\frac{2}{5}$ o.e. (cm)

Question	Scheme	Mark
2	$\sin(2\theta - 20)^{\circ} = \sqrt{3}\cos(2\theta - 20)^{\circ} \Rightarrow \tan(2\theta - 20)^{\circ} = \sqrt{3}$	M1
	$(2\theta - 20)^{\circ} = 60^{\circ}, 240^{\circ}, 420^{\circ}, \dots$	M1A1
	$\theta = \frac{'60' + 20}{2} = 40^{\circ}, \theta = \frac{'240' + 20}{2} = 130^{\circ}$	M1A1 [5]
	Total	5 marks

Mark	Notes
M1	For using the identity $\frac{\sin A}{\cos A} = \tan A$ to reach $\tan (2\theta - 20)^\circ = k$ where k is a numerical value
	$\sin(2\theta - 20)^{\circ} = \sqrt{3}\cos(2\theta - 20)^{\circ} \Rightarrow \tan(2\theta - 20)^{\circ} = \sqrt{3}$
	For finding at least one correct angle for $(2\theta-20)^{\circ}$
M1	$(2\theta - 20)^{\circ} = 60^{\circ}, 240^{\circ}, 420^{\circ}, \dots$
	Allow even for eg., -120° This mark can be implied by correct final answers.
	For both of the angles 60° and 240°
A1	Ignore any extra values, even if within range. $0 \le (2\theta - 20) \le 360$
	This mark can be implied by correct final answers.
	For correct processing of their values for $(2\theta-20)^{\circ}$
M1	$\theta = \frac{'60' + 20}{2} = \dots$ or $\theta = \frac{'240' + 20}{2} = \dots$
A1 [5]	For both correct values of $\theta = 40$ and 130 Ignore other angles out of range, penalise extra angles within the range by the loss of this A mark

3 $9-x^2 = 0 \Rightarrow x = \pm 3$ $A = \int_{-3}^{3} 9 - x^2 dx = \left[9x - \frac{x^3}{3} \right]_{-3}^{3}$	Mark
	B1 M1A1
$A = \left(9 \times 3 - \frac{3^3}{3}\right) - \left(9 \times -3 - \frac{\left[-3\right]^3}{3}\right) = 36$ Total	M1A1 [5] 5 marks

Mark	Notes				
You may	You may see the working without $A = \dots$. Please accept for full marks.				
B1	Find the intersections of C with the x-axis.				
DI	$9 - x^2 = 0 \Rightarrow x = \pm 3$				
	Attempt to integrate the given expression only i.e., $9-x^2$				
	A squared expression integrated is M0.				
	See General Guidance for the definition of an attempt.				
M1					
	$(A) \int_{0}^{3} $				
	$(A) = \int_{-3}^{3} 9 - x^2 dx = \left[9x - \frac{x^3}{3} \right]_{-3}^{3}$				
	Ignore limits for this mark, even if they are completely missing.				
A1	For the correct integral $(A) = \left[9x - \frac{x^3}{3}\right]$ [ignore limits for this mark].				
	For substituting their limits into their integrated expression provided it is changed from				
	$9-x^2$ and is not a differentiated expression.				
	$(A) = \left(9 \times '3' - \frac{'3'^3}{3}\right) - \left(9 \times '\left[-3\right]' - \frac{\left['-3'\right]^3}{3}\right) = \dots$				
	$\left \begin{array}{c} (A) - \left(\frac{3}{3} \times 3 - \frac{3}{3} \right) - \left(\frac{3}{3} \times \left[-3 \right] - \frac{3}{3} \right) - \dots \end{array} \right $				
M1					
	This mark can be implied by the correct final answer following correct integration. Allow				
	also double 18 for this mark.				
	If the final answer is incorrect and their integrated expression is incorrect, do not award this				
	mark unless substitution is explicitly seen.				
A1	For the correct answer only $(A) = 36$ (cm^2)				
[5]					

Question	Scheme	Mark
4(a)	$FC = \sqrt{10^2 + 10^2 + 10^2} = \sqrt{300}$	M1A1 [2]
(b)	$\cos FCA = \frac{\sqrt{200}}{\sqrt{300}} \Rightarrow \angle FCA = 35.3^{\circ}$	M1A1 [2]
(c)	$CX = \frac{\sqrt{200}}{2} = \sqrt{50}$, $FX = \sqrt{50 + 100} = \sqrt{150}$	M1,M1A1
	$\cos \angle FXC = \frac{'150' + '50' - '300'}{2 \times \sqrt{'150'} \times \sqrt{'50'}} \Rightarrow \angle FXC = 125.2643^{\circ} \Rightarrow \text{awrt } 125^{\circ}$	M1A1 [5]
	Total	9 marks

Part	Mark	Notes
(a)		For using Pythagoras theorem or any appropriate trigonometry to find FC.
		$FC = \sqrt{10^2 + 10^2 + 10^2} = \dots$
	M1	OR
	1411	$AC = \sqrt{10^2 + 10^2} = \sqrt{200}$ $FC = \sqrt{10^2 + 200} = \sqrt{300}$
		$FC = \sqrt{10^2 + 200} = \sqrt{300}$
	A1	For the correct exact length of $FC = \sqrt{300} \left(= 10\sqrt{3} \right)$
(b)		For using any appropriate trigonometry to find the required angle. They must find a value for the award of this mark.
	M1	$\cos \angle FCA = \frac{\sqrt{200}}{\sqrt{300}} \Rightarrow \angle FCA = \left(35.2643^{\circ}\right), \sin \angle FCA = \frac{10}{\sqrt{300}} \Rightarrow \angle FCA = \left(35.2643^{\circ}\right),$
		$\tan \angle FCA = \frac{10}{\sqrt{200}} \Rightarrow \angle FCA = (35.2643^{\circ})$
		Allow awrt 14.1 for $\sqrt{200}$ and awrt 17.3 for $\sqrt{300}$
	A1	$\angle FCA = 35.2643^{\circ} \approx 35.3^{\circ} \text{ (awrt)}$
	111	Accept answers which round to 35.3°, but they must round to this value.

(c)		Let <i>X</i> be the midpoint of <i>BH</i> . For any method (Pythagoras or trigonometry) to find the length <i>CX</i>
	M1	$CX = \frac{\sqrt{200}}{2} = \left(\sqrt{50} \text{or} 5\sqrt{2}\right)$
	M1	For any method (Pythagoras or trigonometry) to find the length FX $FX = \sqrt{50 + 100} = \left(\sqrt{150} \text{ or } 5\sqrt{6}\right) \text{ or } FX = \sqrt{200 - 50} = \left(\sqrt{150} \text{ or } 5\sqrt{6}\right)$
	A1	For both correct lengths $\sqrt{50}$ and $\sqrt{150}$
	M1	For the correct cosine rule to find angle <i>FXC</i> using their lengths $\cos \angle FXC = \frac{'150' + '50' - '300'}{2 \times \sqrt{'150'} \times \sqrt{'50'}} \Rightarrow \angle FXC = (125.2643^{\circ})$
	A1	NB: Check that the cosine rule they are using is to find the required angle. For the correct angle with awrt. $\angle FXC = 125^{\circ}$ Accept answers which round to 125° , but they must round to this value.
	ALT -	- Uses the right-angled triangle FGX
	M1	Let X be the midpoint of BH. For any method (Pythagoras or trigonometry) to find the length GX $GX = \frac{\sqrt{200}}{2} = \left(\sqrt{50} \text{ or } 5\sqrt{2} \text{ or awrt } 7.07\right)$
		If they use the sin ratio to find the angle, identify $FG = 10$ (cm) For any method (Pythagoras or trigonometry) to find the length FX
	M1	$FX = \sqrt{50 + 100} = (\sqrt{150} \text{ or } 5\sqrt{6} \text{ awrt } 12.2)$ or $FX = \sqrt{200 - 50} = (\sqrt{150} \text{ or } 5\sqrt{6} \text{ awrt } 12.2)$
		OR If they use the tan ratio to find the angle, identify $FG = 10$ (cm)
	A1	For both correct lengths $\sqrt{50}$ and 10 for tan or $\sqrt{50}$ and $\sqrt{150}$ for cos or $\sqrt{150}$ and 10 for sin Allow decimal equivalents, i.e., 7.07 and 12.2
		$\cos \angle FXG = \frac{\sqrt{50}}{\sqrt{150}} \Rightarrow \angle FXG = \left(54.7356^{\circ}\right), \sin \angle FXG = \frac{10}{\sqrt{150}} \Rightarrow \angle FXG = \left(54.7356^{\circ}\right),$
	M1	$\tan \angle FXG = \frac{10}{\sqrt{50}} \Rightarrow \angle FXG = (54.7356^{\circ})$
		So the required angle is $\angle FXC = 180 - 54.7356$ We must see this
		calculation for the award of this mark. Do not award just for 54.7356°
	A1	For the correct angle with awrt. $\angle FXC = 125^{\circ}$ Accept answers which round to 125°, but they must round to this value.
	l	Treespe and well which round to 120, out they must round to this value.

Question	Scheme	Mark
5(a)	$3t^2 - 23t + 30 = 0 \Rightarrow (3t - 5)(t - 6) = 0 \Rightarrow t = 6, \frac{5}{3}$	M1A1A1
	3	[3]
(b)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 6t - 23$	M1
	$(6t - 23 > 0) \Longrightarrow t > \frac{23}{6}$	A1 [2]
(c)	$s = \int 3t^2 - 23t + 30 dt = \frac{3t^3}{3} - \frac{23t^2}{2} + 30t + c$	M1A1
	$26 = \frac{3(8)^3}{3} - \frac{23(8)^2}{2} + 30(8) + c \Rightarrow c = 10'$	M1
	$d = 0 + 0 + 0 + 10' \Rightarrow d = 10$	A1
		[4]
	Total	9 marks

Part	Mark	Notes
5 (a)	M1	For setting the given expression for $v = 0$ and attempting to solve the 3TQ
		See general guidance for the definition of an attempt
		$3t^2 - 23t + 30 = 0 \Rightarrow (3t - 5)(t - 6) = 0 \Rightarrow t =,$
	A1	For either $t = 6$ or $t = \frac{5}{3}$ For both $t = 6$ and $t = \frac{5}{3}$
	A1	\mathcal{I}
(b)	M1	For differentiating the given expression for <i>v</i> which must be correct for this mark.
		$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 6t - 23$ $(6t - 23 > 0) \Rightarrow t > \frac{23}{6}$
	A1	$(6t-23>0) \Rightarrow t>\frac{23}{6}$
(-)	N/1	Accept equivalent exact values including $t > 3.83$
(c)	M1	For attempting to integrate the given expression for <i>v</i> See General Guidance for the definition of an attempt with no terms differentiated.
		+c is not required for the award of this mark.
		$s = \int 3t^2 - 23t + 30 dt = \frac{3t^3}{3} - \frac{23t^2}{2} + 30t + c$
	A1	For the correct integrated expression, which must include a constant term e.g.+ c
		$s = \frac{3t^3}{3} - \frac{23t^2}{2} + 30t + c$
		Simplification is not required for this mark
	M1	For substituting the given values of $t = 8$ when $s = 26$ into their integrated expression to
		$\int \int $
		$26 = \frac{3(8)^3}{3} - \frac{23(8)^2}{2} + 30(8) + c \Rightarrow c = 10'$
		$[d = 0 + 0 + 0 + 10] \Rightarrow d = \dots]$
	A1	For the correct value of $d = 10$

Question	Scheme	Mark
6(a)	$S_{20} = 20(3+2\times20) = 860$	M1A1
	20 ()	[2]
(b)	$S_1 = 3 \times 1 + 2 \times 1^2 = 5$	B1
	$S_2 = 3 \times 2 + 2 \times 2^2 = 14$	M1
	$14 = 5 + U_2 \Rightarrow U_2 = 9$	M1
	d = 9 - 5 = 4	A1
	a = 9 - 3 = 4	
	$U_n = '5' + (n-1)'4'$	M1
	$S_n = \sum_{n=0}^{\infty} (4r+1) \Rightarrow A = 4, B = 1$	A1
	r=1	[6]
(c)	n = n = n = n = n = n = n = n = n = n =	
	$T_n = \frac{n}{2}(2 \times 7 + (n-1)4) = \left \frac{n}{2}(10 + 4n) \right \Rightarrow T_n = \frac{n}{2}(10 + 4n) \text{ or } T_n = n(5 + 2n)$	M1
	$n(5+2n) = 3n + 2n^2 + 252, 5n = 2n + 252$	
		M1,dM1
	$5n = 3n + 252 \Longrightarrow n = 126$	ddM1A1
		[5]
	Total	13 marks

Part	Mark	Notes
6(a)	M1	For substituting 20 into the given $S_{20} = 20(3+2\times20) = 860$
	A 1	
	A1	For $S_{20} = 860$
		Sight of 860 with no working scores M1A1
(b)	B1	For finding the first term $S_1 = 3 \times 1 + 2 \times 1^2 = 5$ or $a = 5$
		Award this mark even if it is not clear that they understand that S_1 is the first term.
	M1	For a complete method to find the second term
		$S_2 = 3 \times 2 + 2 \times 2^2 = 14$
		$14 = 5 + U_2 \Rightarrow U_2 = 9$
	M1	For finding the common difference, they must reach a value for this mark.
		d = '9' - '5' = (4)
	A1	For $d = 4$
	M1	For either $A = 4$ or $B = 1$
		Accept embedded values.
	A 1	For both $A = 4$ and $B = 1$
	E a n 41a a	Accept embedded values.
(c)	M1	final correct answer seen without any or minimal working, award full marks in part (b)
(c)	1V1 1	For an expression for T_n using the given values
		$T_n = \frac{n}{2} (2 \times 7 + (n-1)4) = \left\lfloor \frac{n}{2} (10 + 4n) \right\rfloor$
	M1	For equating their expression for T_n in $T_n = n(3+2n)+252$
		The correct expression for S_n must be used here.
		$\Rightarrow \frac{n}{2}(10+4n) = n(3+2n)+252 \Rightarrow (5n=3n+252)$
		This is an A mark in Epen
	dM1	For forming a linear equation.
		e.g. $5n = 3n + 252$ o.e.
		This mark is dependent on the previous M mark.
	ddM1	For solving their linear equation.
		$5n = 3n + 252 \Rightarrow n = (126)$
	Λ 1	This mark is dependent on both previous M marks. For $n = 126$
	A1	Γ OI $n - 120$

Question	Scheme	Mark
7 (a)	$\alpha + \beta = -\frac{p}{2}$ and $\alpha\beta = \frac{q}{2}$	B1
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = -\frac{37}{14}$	B1
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha \beta}$	M1
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\left(\alpha + \beta\right)^2 - 2\alpha\beta}{\alpha\beta} = \frac{\left(-\frac{p}{2}\right)^2 - 2\left(\frac{q}{2}\right)}{\frac{q}{2}} = -\frac{37}{14}$	A1
	$\frac{\left(-\frac{p}{2}\right)^2 - 2\left(\frac{q}{2}\right)}{\frac{q}{2}} = \frac{p^2 - 4q}{2q} = \frac{p^2 + 4p + 12}{2(-p - 4)} = -\frac{37}{14} \Rightarrow 7p^2 - 9p - 36 = 0$	dM1A1
	$[7p^{2}-9p-36=0 \text{ OR } 7q^{2}+65q+112=0]$ $p = \frac{-(-9)\pm\sqrt{(-9)^{2}-4\times7\times(-36)}}{2\times7} \Rightarrow p=3, q=-7$	M1A1A1ft [9]
(b)	$\alpha^2 - \beta^2 = (\alpha - \beta)(\alpha + \beta)$	M1
	$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$	M1
	$(\alpha - \beta)(\alpha + \beta) = \sqrt{\left(-\frac{3}{2}\right)^2 - 4 \times \left(-\frac{7}{2}\right)} \times \left(-\frac{3}{2}\right) = -\frac{3\sqrt{65}}{4}$	M1A1 [4]
	Total	13 marks

Part	Mark	Notes
(a)		For the sum and product of roots of the equation $f(x) = 0$ in terms of p and q
	B1	$\alpha + \beta = -\frac{p}{2}$ and $\alpha\beta = \frac{q}{2}$
	B1	For the sum of roots of the equation $g(x) = 0$ $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = -\frac{37}{14}$
	M1	For the correct algebra to find the sum of roots of $g(x) = 0$ ready for substitution of values. $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$

		This can be implied by correct substitution of their values for the sum and product.
		For the correct value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ in terms of p and q [Simplification not required]
	A1	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\left(\alpha + \beta\right)^2 - 2\alpha\beta}{\alpha\beta} = \frac{\left(-\frac{p}{2}\right)^2 - 2\left(\frac{q}{2}\right)}{\frac{q}{2}} = -\frac{37}{14}$
		For substituting in for either p or for q into the above equation correctly to form a 3TQ
		in just p or q [ft their $-\frac{37}{14}$ and their $-\frac{p}{2}$ and $\frac{q}{2}$]. The algebra must be correct here.
	dM1	$\frac{\left(-\frac{p}{2}\right)^{2} - 2\left(\frac{q}{2}\right)}{\frac{q}{2}} = \frac{p^{2} - 4q}{2q} = \frac{p^{2} + 4p + 12}{2(-p - 4)} = -\frac{37}{14} \Rightarrow \left[7p^{2} - 9p - 36 = 0\right]$
		This mark is dependent on the previous M mark.
	A1	For the correct 3TQ $7p^2 - 9p - 36 = 0$ OR $7q^2 + 65q + 112 = 0$
		For attempting to solve their 3TQ by any valid method $(7p+12)(p-3)=0 \Rightarrow p=(p=3)$
	M1	OR $p = \frac{-(-9) \pm \sqrt{(-9)^2 - 4 \times 7 \times (-36)}}{2 \times 7} \Rightarrow p =,$ Negative value of a not required
	A1	Negative value of p not required For the correct value of $p = 3$ or value of $q = -7$
		For the correct value of $p = 3$ and value of $q = -7$
	A1ft	Ft on their value of p or q
		Ignore mislabelling of (i) and (ii) or even no labelling of parts at all.
	M1	For factorising $\alpha^2 - \beta^2 = (\alpha - \beta)(\alpha + \beta)$ correctly
(b)		For the correct algebra on $(\alpha - \beta)^2$ i.e. $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$
	M1	
		Look for this expansion which may be embedded in their working.
		For the correct substitution of their sum and product into $(\alpha - \beta)(\alpha + \beta)$
	M1	$(\alpha - \beta)(\alpha + \beta) = \sqrt{\left(-\frac{3}{2}\right)^2 - 4 \times \left(-\frac{7}{2}\right)} \times \left(-\frac{3}{2}\right) = \left[\sqrt{\frac{65}{4}} \times \left(-\frac{3}{2}\right)\right]$
	A1	For the correct answer only $\alpha^2 - \beta^2 = -\frac{3\sqrt{65}}{4}$

Question	Scheme										Mark
8(a)	_										
		x	0	0.5	0.8	1	1.6	2	2.5	3	B2
		у	-3.5	-1.6	0.3	1.6	3.5	2.4	-0.8	-3.2	
(b)					y on the s mooth cu						B1ft B1ft [2]
(c)	$\cos(A$	$\overline{(A+B)}$	$=\cos A$	$\cos B - s$	in A sin B	$r \Rightarrow \cos 2$	$A = \cos^2 A$	$A - \sin^2 A$	$=1-\sin^2$	$A-\sin^2 A$	M1
			$1-2\sin^2$								A1 cso [2]
(d)	$2\sin x$	c + 6(1)	$-\cos 2z$	(x) - x - 5	$\bar{t} = 0$						M1
	$2\sin x + 6(1-\cos 2x) - x - 5 = 0$ $\sin x - 3\cos 2x - \frac{1}{2} = \frac{x}{2} \pm k \text{where } k \text{ is a constant} \Rightarrow y = \frac{x}{2} - 1$						dM1A1				
	Draws	s line	$y = \frac{x}{2} - \frac{x}{2}$	1							M1
			_		c = 2.3 or	x = 2.4					A1 [5]
										Total	11 marks

Part	Mark		Scheme								
(a)										1	
			х	0	0.5	0.8	1	1.6	2	2.5	3
	B2		у	-3.5	-1.6	0.3	1.6	3.5	2.4	-0.8	-3.2
			These						31 for any 2 only. Acce		
(b)	B1ft B1ft	у	All points plotted correctly (ft their values) on the graph within half of one square. All of their points are joined to form a smooth curve within half of a square of a point. There must be at least six points plotted and joined.								
(c)	M1				`	•	$A \cos B -$ correctly		$B = \cos^2 A -$	$-\sin^2 A$ co	orrectly
	A1 cso	For si	mplify	ing to th	e require	d identity	$\cos 2A =$	$=1-2\sin^2$			
(d)	M1	For su	$2\sin^2 x = 1 - \cos 2x$ For substituting the above into the given f (x) with no errors. e.g., $2\sin x + 6(1 - \cos 2x) - x - 5 = 0$								
	dM1	For reaching the equation of the curve on one side and the equation of a straight line on the other. $\sin x - 3\cos 2x - \frac{1}{2} = \frac{x}{2} \pm k$ where k is a constant o.e Note: This mark is dependent on the previous M mark.									
	A1	For th	e corre	ect equat	ion of th	e equation	of the str	aight line	required y	$y = \frac{x}{2} - 1$	
	M1	Corre	ct coor	dinates f	$xightharpoonup = \frac{x}{2}$	-1 are;		-1), (1, -	$-\frac{1}{2}$, (2, 0		
	A1	For bo	oth cor	rect root	s of $x =$	$= 0.6 ext{ or } x$	z = 0.7 AN	$\mathbf{ND} x = 2$.3 or $x = 2$	2.4	

Question	Scheme	Mark
9(a)	$\overrightarrow{AB} = -\overrightarrow{OA} + \overrightarrow{OB} \Rightarrow \overrightarrow{AB} = -2\mathbf{a} + 4\mathbf{b}$	M1A1
		[2]
(b)	$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} \Rightarrow \overrightarrow{OP} = 2\mathbf{a} + \frac{1}{2}(4\mathbf{b} - 2\mathbf{a}) = \mathbf{a} + 2\mathbf{b}$	M1A1
	<u> </u>	[2]
(c)	$\overrightarrow{AQ} = \overrightarrow{AO} + \overrightarrow{OQ}$	M1
	$\overrightarrow{OQ} = \frac{3}{4} \left(\overrightarrow{OP} \right)$	B1
	$\overrightarrow{AQ} = -2\mathbf{a} + \frac{3}{4}(\mathbf{a} + 2\mathbf{b}) = -\frac{5}{4}\mathbf{a} + \frac{3}{2}\mathbf{b}$	A1
4.70		[3]
(d)	$\overrightarrow{OR} = \lambda 4\mathbf{b}$ or $\overrightarrow{OR} = \phi \mathbf{b}$	M1
	$\overrightarrow{OR} = \overrightarrow{OA} + \mu \overrightarrow{AQ} = 2\mathbf{a} + \mu \left(-\frac{5}{4}\mathbf{a} + \frac{3}{2}\mathbf{b} \right)$	M1
	$2\mathbf{a} + \mu \left(-\frac{5}{4}\mathbf{a} + \frac{3}{2}\mathbf{b} \right) = \lambda 4\mathbf{b}$	
	$\mathbf{a}\left(2 - \frac{5\mu}{4}\right) + \frac{3\mu}{2}\mathbf{b} = \lambda 4\mathbf{b} \implies \frac{3\mu}{2} = 4\lambda \text{ and } 2 - \frac{5\mu}{4} = 0$	M1
	$2 - \frac{5\mu}{4} = 0 \Rightarrow \mu = \left(\frac{8}{5}\right)$	M1A1
	$\frac{3}{2} \times \frac{8}{5} = 4\lambda \Rightarrow \lambda = \frac{12}{20}, \left(\frac{3}{5}\right)$	
		A1
	OR: RB = 3:2	[6]
	Total	13 marks

Part	Mark	Scheme
(a)	M1	For the correct vector statement $\overrightarrow{AB} = -\overrightarrow{OA} + \overrightarrow{OB}$
	A1	$\overrightarrow{AB} = -2\mathbf{a} + 4\mathbf{b}$
(b)	M1	For a correct vector statement
	1711	e.g $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$
	A1	For the correct simplified vector
		$\overrightarrow{OP} = 2\mathbf{a} + (2\mathbf{b} - \mathbf{a}) = \mathbf{a} + 2\mathbf{b}$
	M1	For a correct vector statement
(c)	IVI I	e.g., $\overrightarrow{AQ} = \overrightarrow{AO} + \overrightarrow{OQ}$ or $\overrightarrow{AQ} = \overrightarrow{AP} + \overrightarrow{PQ}$
		For the correct vector statement for \overrightarrow{OQ}
	B1	$\overrightarrow{OQ} = \frac{3}{4} \left(\overrightarrow{OP} \right) \text{or} \overrightarrow{PQ} = -\frac{1}{4} \left(\overrightarrow{OP} \right)$
	A1	For the correct simplified vector

		$\overrightarrow{AQ} = -2\mathbf{a} + \frac{3}{4}(\mathbf{a} + 2\mathbf{b}) = -\frac{5}{4}\mathbf{a} + \frac{3}{2}\mathbf{b} \text{or} \overrightarrow{AQ} = \frac{1}{2}(-2\mathbf{a} + 4\mathbf{b}) - \frac{1}{4}(\mathbf{a} + 2\mathbf{b}) = -\frac{5}{4}\mathbf{a} + \frac{3}{2}\mathbf{b}$ The there is more than one route to finding the required ratio, but any route must involve						
(d)	In this part there is more than one route to finding the required ratio, but any route must involve							
	OR or .	$\stackrel{ o}{R}_B$						
	As the ge	neral principle: The first M mark is for one vector using a parameter.						
		The second M mark is for a second vector using a different parameter.						
		The third M mark is for equating coefficients and forming two						
		equations in both parameters.						
		The fourth M mark is for solving their equations. Check their working						
	The follow	and do not allow an erroneous method. wing is using one path. Please trace their path on the sketch to check that it is valid. The						
	path they	use must involve the vector \overrightarrow{OR} or \overrightarrow{RB} eg., $\overrightarrow{AR} = \overrightarrow{AO} + \overrightarrow{OR}$ or $\overrightarrow{AR} = \overrightarrow{AB} + \overrightarrow{BR}$						
	M1	For the correct statement $\overrightarrow{OR} = \lambda 4\mathbf{b}$ or $\overrightarrow{OR} = \phi \mathbf{b}$						
		For the correct statement for \overrightarrow{OR}						
	M1	$\overrightarrow{OR} = \overrightarrow{OA} + \mu \overrightarrow{AQ} = 2\mathbf{a} + \mu \left(-\frac{5}{4}\mathbf{a} + \frac{3}{2}\mathbf{b} \right)$						
	For equating the two statements for \overrightarrow{OR} and equating coefficients $2\mathbf{a} + \mu \left(-\frac{5}{4}\mathbf{a} + \frac{3}{2}\mathbf{b} \right) = \lambda 4\mathbf{b}$							
		$\mathbf{a}\left(2 - \frac{5\mu}{4}\right) + \frac{3\mu}{2}\mathbf{b} = \lambda 4\mathbf{b} \Rightarrow \frac{3\mu}{2} = 4\lambda \text{ and } 2 - \frac{5\mu}{4} = 0$						
		For solving their two simultaneous equations correctly to find the value of λ (the						
		parameter for <i>OR</i>)						
	M1	$2 - \frac{5\mu}{4} = 0 \Rightarrow \mu = \frac{8}{5}$						
		$\frac{3}{2} \times \frac{8}{5} = 4\lambda \Rightarrow \lambda = \dots$						
		For the correct value of λ						
	A1	$\lambda = \frac{12}{20} = \left(\frac{3}{5}\right)$						
	A1	For the correct ratio $OR: RB = 3:2$						

Useful Sketch

Question	Scheme	Mark
10(a)	(i) $y = 2$ (ii) $x = -4$	B1B1
		[2]
(b)	$\left(\frac{1}{2}, 0\right), \left(0, -\frac{1}{4}\right)$	5454
	(2,0), (3,4)	B1B1
(a)		[2]
(c)		B3 [3]
	x = -4	[5]
	5	
	y-2	
	-15 -10 -5 5 10	
	5	
	$\left(0,-\frac{1}{4}\right)$ $\left(\frac{1}{2},0\right)$	
	$\left(0,-\frac{1}{4}\right)$	
	10	
(d)	dy = 2(x+4) - (2x-1)	
(u)	$\frac{dy}{dx} = \frac{2(x+4) - (2x-1)}{(x+4)^2}$	M1A1
	m = 1	B1
	<i>d</i> u 0	0.61.10.61.1
	$\frac{dy}{dx} = 1 \Rightarrow \frac{9}{(x+4)^2} = 1 \Rightarrow (x+4)^2 = 9 \Rightarrow x = -7, -1$	dM1ddM1A1
	(x+4)	
	P(-1,-1), Q(-7,5)	A1A1
		[8]
(e)	y = x + k	3.51.1.1
	$'-1' = '-1' + k_1 \Rightarrow k_1 = 0$ $'5' = '-7' + k_2 \Rightarrow k_2 = 12$	M1A1A1
	Total	[3] 18 marks
	1 otai	10 marks

Part	Mark	Notes
(a)	B1	For correct equations only (i) $y = 2$ These must be clearly labelled.
	B1	(ii) $x = -4$
(b)	B1	For either $\left(\frac{1}{2}, 0\right)$ OR $\left(0, -\frac{1}{4}\right)$ accept $y = -\frac{1}{4}$ OR $x = \frac{1}{2}$
	B1	For both $\left(\frac{1}{2}, 0\right)$ AND $\left(0, -\frac{1}{4}\right)$ accept $y = -\frac{1}{4}$ AND $x = \frac{1}{2}$
(c)		For the correct shape in the correct 'quadrants'. Do not allow the curves to turn back on
	B1	themselves, but be reasonable in your judgement. If they all turn back on themselves clearly – withold the mark. If there is doubt over just one end, allow the mark. If you are really not sure, then please send to Review.
	B1ft	Their asymptotes drawn and labelled and there must be at least one part of the curve present that is asymptotic in nature. Any curve that crosses the asymptotes does not score this mark. Accept -4 written on the <i>x</i> -axis and 2 written on the <i>y</i> -axis.
	B1ft	Their intersections labelled. Accept $y = -\frac{1}{4}$ AND $x = \frac{1}{2}$ labelled correctly and their curve must pass through these points.
(d)	M1	For attempting to use Quotient rule: An attempt is defined as both $(2x-1)$ and $(x+4)$ differentiated CORRECTLY and the correct formula used (subtracted either way around in the numerator) with the denominator squared. $\frac{dy}{dx} = \frac{2(x+4)-(2x-1)}{(x+4)^2}$ [Correct] or $\frac{dy}{dx} = \frac{(2x-1)-2(x+4)}{(x+4)^2}$ [Incorrect] Or for an attempt to use product rule: Both terms differentiated correctly with the correct formula used. Allow a maximum of one sign error.

		$ dy = (2x-1)(1)(-1)(x+4)^{-2} + (2)(x+4)^{-1} \rightarrow dy = -(2x-1)+2(x+4) $
		$\frac{dy}{dx} = (2x-1)(1)(-1)(x+4)^{-2} + (2)(x+4)^{-1} \Rightarrow \left[\frac{dy}{dx} = \frac{-(2x-1)+2(x+4)}{(x+4)^2} \right]$
		$\frac{dy}{dx} = \frac{2(x+4)-(2x-1)}{(x+4)^2}$ Fully correct
	A1	$\int dx \qquad (x+4)^2$
	B1	For $m = 1$
	БІ	ATT 1 for wort two montes only
		ALT 1 for next two marks only
	dM1	For setting their $\frac{dy}{dx} = 1$ and rearranging to reach a 3TQ. If there is no squared term in
	ulvi i	their $\frac{dy}{dx}$ then this is M0. $x^2 + 8x + 7 = 0$
	ddM1	For attempting to solve their 3TQ
	dalvii	$x^2 + 8x + 7 = 0 \Rightarrow (x+1)(x+7) = 0 \Rightarrow x = \dots,\dots$
		ALT 2 for next two marks only
	dM1	For setting their $\frac{dy}{dx} = 1 \Rightarrow \frac{9}{(x+4)^2} = 1 \Rightarrow (x+4)^2 = 9$
	ddM1	$(x+4)^2 = 9 \Rightarrow x+4 = \pm 3 \Rightarrow x = \dots, \dots$
	A1	For BOTH correct values of x , -7 and -1
	A1	For using their values of x to find either the coordinates of P or Q , they must be given as coordinates but allow missing or incorrect labels i.e, if they label P as Q or vice versa, allow the marks. At P $y = \frac{2 \times ('-1') - 1}{-1 + 4} = -1 \Rightarrow$ Coordinates are $(-1, -1)$ OR
		At Q $y = \frac{2 \times ('-7') - 1}{-7 + 4} = 5 \Rightarrow \text{Coordinates are } (-7,5)$
		At P $y = \frac{2 \times (-1) - 1}{-1 + 4} = -1 \Rightarrow \text{Coordinates are } (-1, -1)$
	A1	ВОТН
		At Q $y = \frac{2 \times (-7) - 1}{-7 + 4} = 5 \Rightarrow \text{Coordinates are } (-7,5)$
(e)		For substituting either of their coordinates into
	M1	y = x + k
	1711	$'-1' = '-1' + k_1 \Longrightarrow k_1 = \dots$
		$"5" = "-7" + k_2 \Longrightarrow k_2 = \dots$
	A1	$k_1 = 0$
	A1	$k_2 = 12$