Chapter 8 Evaluation

Prof. Chang-Chieh Cheng

Dept. Computer Science

National Chiao Tung University, Taiwan

• Test and evaluation

Basic evaluation

$$misclassification\ rate = \frac{number\ incorrect\ predictions}{total\ predictions}$$

- Four possible outcomes
 - True Positive (TP)
 - True Negative (TN)
 - False Positive (FP)
 - False Negative(FN)

Confusion matrix

		Prediction positive negative		
Target	positive negative	TP FP	FN TN	

Confusion matrix

ID	Target	Pred.	Outcome		ID	Target	Pred.	Outcome
1	spam	ham	FN	_	11	ham	ham	TN
2	spam	ham	FN		12	spam	ham	FN
3	ham	ham	TN		13	ham	ham	TN
4	spam	spam	TP		14	ham	ham	TN
5	ham	ham	TN		15	ham	ham	TN
6	spam	spam	TP		16	ham	ham	TN
7	ham	ham	TN		17	ham	spam	FP
8	spam	spam	TP		18	spam	spam	TP
9	spam	spam	TP		19	ham	ham	TN
10	spam	spam	TP		20	ham	spam	FP

		Prediction		
		'spam' 'ham'		
Target	'spam'	6	3	
Target	'ham'	2	9	

Misclassification accuracy

$$\frac{(FP+FN)}{(TP+TN+FP+FN)}$$

$$\frac{(2+3)}{(6+9+2+3)} = 0.25$$

Classification accuracy

$$\frac{(\mathit{TP}+\mathit{TN})}{(\mathit{TP}+\mathit{TN}+\mathit{FP}+\mathit{FN})}$$

$$\frac{(6+9)}{(6+9+2+3)} = 0.75$$

• TP rate (TPR)

$$\frac{\mathit{TP}}{(\mathit{TP}+\mathit{FN})}$$

• TN rate (TNR)

$$\frac{TN}{(TN+FP)}$$

• FP rate (FPR)

$$\frac{\mathit{FP}}{(\mathit{TN}+\mathit{FP})}$$

• FN rate (FNR)

$$\frac{\mathit{FN}}{(\mathit{TP}+\mathit{FN})}$$

For example

		Predi <i>'spam'</i>			
Toract	'spam'	6	3	TP	FN
Target	'ham'	2	9	FP	TN

TPR
$$=\frac{6}{(6+3)} = 0.667$$

TNR $=\frac{9}{(9+2)} = 0.818$
FPR $=\frac{2}{(9+2)} = 0.182$
FNR $=\frac{3}{(6+3)} = 0.333$

• Precision

$$\frac{\mathit{TP}}{(\mathit{TP}+\mathit{FP})}$$

Recall

$$\frac{\mathit{TP}}{(\mathit{TP}+\mathit{FN})}$$

For example

precision =
$$\frac{6}{(6+2)}$$
 = 0.75
recall = $\frac{6}{(6+3)}$ = 0.667

• F₁-measure

$$2 \times \frac{(\text{precision} \times \text{recall})}{(\text{precision} + \text{recall})}$$
$$= \frac{2TP}{2TP + FP + FN}$$

• F_{β} -measure

$$F_{\beta} = \frac{(1+\beta^2)TP}{(1+\beta^2)TP + \beta^2 FP + FN}$$

For example

F₁-measure =
$$2 \times \frac{\left(\frac{6}{(6+2)} \times \frac{6}{(6+3)}\right)}{\left(\frac{6}{(6+2)} + \frac{6}{(6+3)}\right)}$$

= 0.706

without TN

Average class accuracy

$$\frac{1}{|levels(t)|} \sum_{l \in levels(t)} recall_l$$

Harmonic average class accuracy

$$\frac{1}{|levels(t)|} \sum_{l \in levels(t)} \frac{1}{\text{recall}_l}$$

Harmonic average of *n* numbers:

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

Arithmetic mean and Harmonic mean

 A confusion matrix for a k-NN model trained on a churn prediction problem.

 A confusion matrix for a naive Bayes model trained on a churn prediction problem.

70

		Predict 'non-churn'	ion <i>'churn'</i>	$Recall_{nc} = \frac{70}{70 + 20} = 0.778$
Target	'non-churn' 'churn'	70	20 8	$Recall_c = \frac{8}{2+8} = 0.8$
		I		<u> </u>

 A confusion matrix for a k-NN model trained on a churn prediction problem.

		Prediction		
		'non-churn' 'churn'		
Torgot	'non-churn'	90	0	
Target	'churn'	9	1	

Harmonic average class accuracy
$$= \frac{1}{\frac{1}{2}(\frac{1}{10} + \frac{1}{01})} = 0.182$$

 A confusion matrix for a naive Bayes model trained on a churn prediction problem.

Harmonic average class accuracy
$$= \frac{1}{\frac{1}{2}(\frac{1}{0.778} + \frac{1}{0.8})} = 0.789$$

• Profit matrix

		Prediction		
		positive negative		
Target	positive	TP_{Profit}	FN _{Profit}	
	negative	FP_{Profit}	TN_{Profit}	

- Example
 - The **profit matrix** for the pay-day loan credit scoring problem.

		Prediction		
		'good'	'bad'	
Torgot	'good'	140	-140	
Target	'bad'	-700	0	

Example

 The confusion matrix for a k-NN model trained on the pay-day loan credit scoring problem.

Prediction 'good' 'bad'

Target 'good' 57 3 10 30 average class accuracy
$$_{HM} = 83.824\%$$

 The confusion matrix for a decision tree model trained on the pay-day loan credit scoring problem

		Prediction		
		'good'	'bad'	
Taract	'good'	43	17	
Target	'bad'	3	37	

average class accuracy_{HM} = 80.761%

Overall profit for the k-NN model

		Prediction	
		'good'	'bad'
Tarret	'good'	7 980 -	-420
Target	'bad'	-7000	0
	Profit		560

Overall profit for the decision tree model

		Prediction		
		'good' 'bad'		
Tanas	'good'	6 020	-2380	
Target	'bad'	-2100	0	
	Profit	1 540		

Multinomial targets

$$precision(l) = \frac{TP(l)}{TP(l) + FP(l)}$$

$$recall(l) = \frac{TP(l)}{TP(l) + FN(l)}$$

where l is a target level

Multinomial targets

• Example: bacterial species identification

ID	Target	Prediction	ID	Target	Prediction
1	durionis	fructosus	16	ficulneus	ficulneus
2	ficulneus	fructosus	17	ficulneus	ficulneus
3	fructosus	fructosus	18	fructosus	fructosus
4	ficulneus	ficulneus	19	durionis	durionis
5	durionis	durionis	20	fructosus	fructosus
6	pseudo.	pseudo.	21	fructosus	fructosus
7	durionis	fructosus	22	durionis	durionis
8	ficulneus	ficulneus	23	fructosus	fructosus
9	pseudo.	pseudo.	24	pseudo.	fructosus
10	pseudo.	fructosus	25	durionis	durionis
11	fructosus	fructosus	26	pseudo.	pseudo.
12	ficulneus	ficulneus	27	fructosus	fructosus
13	durionis	durionis	28	ficulneus	ficulneus
14	fructosus	fructosus	29	fructosus	fructosus
15	fructosus	ficulneus	30	fructosus	fructosus

- Multinomial targets
 - Example: bacterial species identification

			Populi					
		'durionis'	'ficulneus'	'fructosus'	'pseudo.'	Recall		
Target	'durionis'	5	0	2	0	0.714		
	'ficulneus'	0	6	1	0	0.857		
	'fructosus'	0	1	10	0	0.909		
	'pseudo.'	0	0	2	3	0.600		
	Precision	1.000	0.857	0.667	1.000			

Harmonic average class accuracy

$$\frac{1}{\frac{1}{4}\left(\frac{1}{0.714} + \frac{1}{0.857} + \frac{1}{0.909} + \frac{1}{0.600}\right)} = \frac{1}{1.333} = 75.000\%$$

Continuous targets

sum of squared errors =
$$\frac{1}{2} \sum_{i=1}^{n} (t_i - \mathbb{M}(\mathbf{d}_i))^2$$

$$\text{mean squared error} = \frac{\displaystyle\sum_{i=1}^{n} (t_i - \mathbb{M}(\mathbf{d}_i))^2}{n}$$

root mean squared error
$$=\sqrt{\frac{\displaystyle\sum_{i=1}^{n}(t_{i}-\mathbb{M}(\mathbf{d}_{i}))^{2}}{n}}$$

$$\text{mean absolute error} = \frac{\displaystyle\sum_{i=1}^{n} abs(t_i - \mathbb{M}(\mathbf{d}_i))}{n}$$

Continuous targets

$$R^2 = 1 - \frac{\text{sum of squared errors}}{\text{total sum of squares}}$$

total sum of squares =
$$\frac{1}{2} \sum_{i=1}^{n} (t_i - \overline{t})^2$$

- Hold-out sampling
 - Divide the full data into training, validation, and test sets.

(b) A 40:20:40 split

- Validation set
 - To tune the parameters of a model
 - To avoid overfitting in iterative machine learning algorithms.
- Test set
 - only to assess the performance of a model.

K-ford cross validation

Black rectangles indicate test data, and white spaces indicate training data.

Leave-one-out cross validation

- €0 bootstrap process
 - **bootstrapping**: a self-starting process
 - k iterations
 - Each iteration randomly select *m* instances as training set

Black rectangles indicate test data, and white spaces indicate training data.

Notice the out-of-time sampling

- Prediction scores
 - all classification prediction models return a score
 - score ≥ threshold → Positive
 - otherwise → Negative

		Pred-		Out-				Pred-		Out-
ID	Target	iction	Score	come		ID	Target	iction	Score	come
7	ham	ham	0.001	TN	-	5	ham	ham	0.302	TN
11	ham	ham	0.003	TN		14	ham	ham	0.348	TN
15	ham	ham	0.059	TN		17	ham	spam	0.657	FP
13	ham	ham	0.064	TN		8	spam	spam	0.676	TP
19	ham	ham	0.094	TN		6	spam	spam	0.719	TP
12	spam	ham	0.160	FN		10	spam	spam	0.781	TP
2	spam	ham	0.184	FN		18	spam	spam	0.833	TP
3	ham	ham	0.226	TN		20	ham	spam	0.877	FP
16	ham	ham	0.246	TN		9	spam	spam	0.960	TP
1	spam	ham	0.293	FN	_	4	spam	spam	0.963	TP

spam is positive and ham is negative in this case
Target is spam and prediction is also spam → TP
Target is spam and but prediction is ham → FN
Target is ham and prediction is also ham → TN
Target is ham and but prediction is spam → FP

- Prediction scores
 - How well the distributions of scores produced by the model for different target levels are separated?
 - Which model is better?
 - Model 1

Model 2

- Prediction scores
 - Threshold increases TPR decreases
 - TP rate (TPR) = TP / (TP + FN)
 - Threshold = 0.0 → Every thing is positive → FN = 0
 - Threshold increases TNR increases
 - TN rate (TNR) = TN / (TN + FP)
 - Threshold = $0.0 \rightarrow No \text{ negative } \rightarrow TN = 0$

- Receiver operating characteristic index, ROC index
- Receiver operating characteristic curve, ROC curve
- Example:

(a) Threshold: 0.75

		Prediction			
		'spam' 'ham'			
Target	'spam'	4	4		
Target	'ham'	2	10		

(b) Threshold: 0.25

		Prediction		
		'spam'	'ham'	
Toract	'spam'	7	2	
Target	'ham'	4	7	

• ROC curve

TP rate (TPR) = TP / (TP + FN) TN rate (TNR) = TN / (TN + FP)

- ROC index
 - Given a set of thresholds $T = \{t_1, t_2, ..., t_m\}$

$$R = \sum_{i=2}^{m} \frac{(FPR(t_i) - FPR(t_{i-1}))(TPR(t_i) + TPR(t_{i-1}))}{2}$$

• R is above 0.7 that indicates a strong model; otherwise, weak model

• ROC curve

Kolmogorov-Smirnov statistic (K-S statistic)

$$CP(positive, ps) = \frac{\text{num positive test instances with score} \le ps}{\text{num positive test instances}}$$

$$CP(negative, ps) = \frac{\text{num negative test instances with score} \le ps}{\text{num negative test instances}}$$

• where ps is prediction score

Kolmogorov-Smirnov statistic (K-S statistic)

$$K-S = \max_{ps} (CP(positive, ps) - CP(negative, ps))$$

Higher K-S indicate better model

Kolmogorov-Smirnov statistic (K-S statistic)

Gain

$$Gain(dec) = \frac{\text{num positive test instances in decile } dec}{\text{num positive test instances}}$$

 a decile is any of the nine values that divide the sorted data into ten equal parts

Separating 10 parts by 9 values

- Sorted by prediction score
- 10 deciles separating

Decile	ID	Target	Prediction	Score	Outcom
1 st	9	spam	spam	0.960	TP
1	4	spam	spam	0.963	TP
2 nd	18	spam	spam	0.833	TP_
2	20	ham	spam	0.877	FP
3 rd	6	spam	spam	0.719	TP_
3	10	spam	spam	0.781	TP
4 th	17	ham	spam	0.657	FP_
4	8	spam	spam	0.676	TP
5 th	5	ham	ham	0.302	<u>T</u> N
5	14	ham	ham	0.348	TN
6 th	16	ham	ham	0.246	<u>T</u> N
0	1	spam	ham	0.293	FN
7 th	2	spam	ham	0.184	<u>F</u> N
7	3	ham	ham	0.226	TN
8 th	19	ham	ham	0.094	<u>T</u> N_
	12	spam	ham	0.160	FN
9 th	15	ham	ham	0.059	<u>T</u> N_
	13	ham	ham	0.064	TN
10 th	7	ham	ham	0.001	<u>T</u> N_
	11	ham	ham	0.003	TN

• Example: gain, cumulative gain, lift, and cumulative lift

	Positive	Negative				
	(<i>'spam'</i>)	(<i>'ham'</i>)		Cum.		Cum.
Decile	Count	Count	Gain	Gain	Lift	Lift
1 st	2_	0_	0.222	0.222	2.222	2.222
2 nd	1	1	0.111	0.333	1.111	1.667
3 rd	2	0	0.222	0.556	2.222	1.852
4 th	1	1	0.111	0.667	1.111	1.667
5 th	0	2	0.000	0.667	0.000	1.333
6 th	1	1	0.111	0.778	1.111	1.296
7 th	1	1	0.111	0.889	1.111	1.270
8 th	1 - Σ =	9 $1-\sum_{i=1}^{\infty} = \frac{1}{2}$	0.111	1.000	1.111	1.250
9 th	0	2	0.000	1.000	0.000	1.111
10 th	0	2	0.000	1.000	0.000	1.000

#Positive: 9, (9/20)

#Negative: 11, (11/20)

=(1/2)/(9/20)

=(9/(9+7))/(9/20)

$$\mbox{Cumulative gain}(\mbox{\it dec}) = \frac{\mbox{\it num positive test instances in all deciles up to } \mbox{\it dec}}{\mbox{\it num positive test instances}}$$

$$Lift(dec) = \frac{\% \text{ of positive test instances in decile } dec}{\% \text{ of positive test instances}}$$

$$\mbox{Cumulative lift}(\mbox{\it dec}) = \frac{\% \mbox{ of positive instances in all deciles up to } \mbox{\it dec}}{\% \mbox{ of positive test instances}}$$

