TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (High-speed U-MOSIII)

TPC8009-H

High-Efficiency DC / DC Converter Applications Notebook PC Applications Portable-Equipment Applications

- Small footprint due to a small and thin package
- High-speed switching
- Small gate charge: QSW = 9.1 nC (typ.)
- Low drain-source ON-resistance: $RDS(ON) = 8 \text{ m}\Omega \text{ (typ.)}$
- High forward transfer admittance: $|Y_{fs}| = 16 \mathrm{S}$ (typ.)
- Low leakage current: $I_{DSS} = 10 \mu A \text{ (max) (V}_{DS} = 30 \text{ V)}$
- Enhancement mode: $V_{th} = 1.1 \text{ to } 2.3 \text{ V (V}_{DS} = 10 \text{ V, I}_{D} = 1 \text{ mA)}$

Maximum Ratings (Ta = 25°C)

Characte	eristic	Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	30	V	
Drain-gate voltage (R	$R_{GS} = 20 \text{ k}\Omega$)	V_{DGR}	30	V	
Gate-source voltage		V_{GSS}	±20	V	
Drain current	DC (Note 1)	I _D	13	А	
Diam current	Pulse (Note 1)	I _{DP}	52		
Drain power dissipati	on (t = 10 s) (Note 2a)	P_{D}	1.9	W	
Drain power dissipati	on (t = 10 s) (Note 2b)	P _D	1.0	W	
Single-pulse avalanche energy (Note 3)		E _{AS}	219	mJ	
Avalanche current		I _{AR}	13	Α	
Repetitive avalanche	energy Note 2a) (Note 4)	E _{AR}	0.19	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature	range	T _{stg}	-55 to 150	°C	

Note 1: For Notes 1 to 4, refer to the next page.

This transistor is an electrostatic-sensitive device. Handle with care.

Weight: 0.085 g (typ.)

Circuit Configuration

Thermal Characteristics

Characteristic	Symbol	Max	Unit
Thermal resistance, channel to ambient $(t = 10 \text{ s})$ (Note 2a)	R _{th (ch-a)}	65.8	°C/W
Thermal resistance, channel to ambient (t = 10 s) (Note 2b)	R _{th (ch-a)}	125	°C/W

Marking (Note 5)

Note 1: The channel temperature should not exceed 150°C during use.

Note 2: (a) Device mounted on a glass-epoxy board (a)

(b) Device mounted on a glass-epoxy board (b)

Note 3: $V_{DD} = 24 \text{ V}$, $T_{ch} = 25^{\circ}\text{C}$ (initial), L = 1.0 mH, $R_G = 25 \Omega$, $I_{AR} = 13 \text{ A}$

Note 4: Repetitive rating: pulse width limited by max channel temperature.

Note 5: • on the lower left of the marking indicates Pin 1.

* Weekly code: (Three digits)

2 2006-01-17

Electrical Characteristics (Ta = 25°C)

Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit	
Gate leakage cur	rent	I _{GSS}	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μΑ	
Drain cutoff curre	ent	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	10		μΑ		
Drain-source breakdown voltage		V _{(BR)DSS}	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	30	_	_	V	
		V _{(BR)DSX}	$I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$	15	_	_	v	
Gate threshold vo	oltage	V _{th}	$V_{DS} = 10 \text{ V}, I_D = 1 \text{ mA}$	1.1	_	2.3	V	
Drain course ON	5		$V_{GS} = 4.5 \text{ V}, I_D = 6.5 \text{ A}$	_	11	15	- mΩ	
Drain-source ON-resistance		R _{DS} (ON)	V _{GS} = 10 V, I _D = 6.5 A	_	8	10		
Forward transfer	ward transfer admittance $ Y_{fs} $ $V_{DS} = 10 \text{ V}, I_D = 6.5 \text{ A}$		$V_{DS} = 10 \text{ V}, I_D = 6.5 \text{ A}$	8	16	_	S	
Input capacitance	9	C _{iss}		_	1460	_		
Reverse transfer capacitance		C _{rss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	250	_	pF	
Output capacitance		Coss		_	600	_		
Switching time	Rise time	t _r	AGS 0 A D = 6.2 Y A D = 0.2 Y	_	5	_	- ns	
	Turn-on time	t _{on}		_	13	_		
	Fall time	t _f		_	12	_		
	Turn-off time	t _{off}	V _{DD} ≃ 15 V Duty ≦ 1%, t _w = 10 μs	_	37			
Total gate charge (gate-source plus gate-drain)		Qg	$V_{DD} \simeq 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 13 \text{ A}$	_	29	_		
			$V_{DD} \simeq 24 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 13 \text{ A}$	_	16	_		
Gate-source charge 1		Q _{gs1}	$V_{DD} \simeq 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 13 \text{ A}$	_	4.2	_	nC	
Gate-drain ("Miller") charge		Q _{gd}		_	7.3	_		
Gate switch charge		Q _{SW}		_	9.1	_		

Source-Drain Ratings and Characteristics (Ta = 25°C)

Character	istic		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse	(Note 1)	I _{DRP}	_	_	_	52	Α
Forward voltage (diode)			V _{DSF}	I _{DR} = 13 A, V _{GS} = 0 V	_	_	-1.2	V

3 2006-01-17

4

6 2006-01-17

RESTRICTIONS ON PRODUCT USE

060116EAA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
- conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A

 The TOSHIBA products listed in this document are intended for usage in general electronics applications
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from
 its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
 021023 C