General Specifications

GENERAL DESCRIPTION

- · General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100µF)

HOW TO ORDER

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

PACKAGING CODES

Code	EIA (inch)	IEC(mm)	7" Paper	7" Embossed	13" Paper	13" Embossed
02	01005	0402	Н	Р	N	
03	0201	0603	Н		N	
05	0402	1005	Н		N	
15	0603	1608	Т		М	
21	0805	2012		U		L
31	1206	3216		U		L
32	1210	3225		U		L
43	1812	4532		V		S

TYPICAL ELECTRICAL CHARACTERISTICS

KYDEER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X5R	Specification Limits	X5R Specification Limits	Measuring Conditions (Complies with JIS C5101 / IEC60384)							
Operati	ng Temperature Range	-55°C to +85°C	Temperature Cycle Chamber							
	Capacitance	Within specified tolerance	Measure after heat treatment							
Dissi	pation Factor / Tanô	Refer to https://spicat.kyocera-avx.com for individual part number specification	Measure after heat treatment Capacitance Frequency Volt Cs10µF Frequency: 1kHz±10% Volt: 1.0±0.2Vrms *0.5±0.2Vrms *:KGM02AR50J104, KGM02AR50J474, KGM03CR50J225, KGM03BR50J225 KGM03DR50J475, KGM03CR50G475, KGM05CR50J106 C>10µF Frequency: 120Hz±10%							
			Volt : 0.5±0.2Vrms The charge and discharge current of the capacitor must not exceed 50mA.							
Ins	ulation Resistance	Refer to https://spicat.kyocera-avx.com for individual part number specifiction	Apply the rated voltage for 1 minute, and measure it in normal temperature and humidity. The charge and discharge current of the capacitor must not exceed 50mA.							
D	electric Strength	No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/ charge and discharge current limited to 50 mA (max) * KGM31AR52A225: 200% of rated voltage							
Е	ending Strength	No significant damage with 1mm bending	Glass epoxy PCB: Fulcrum spacing: 90mm, duration time 10 seconds.							
	Solderability	Solder coverage : 95% min.	Soaking condition							
		·	Sn-3Ag-0.5Cu 245±5°C 3±0.5 sec.							
	Appearance	No problem observed	Take the initial value after heat treatment.							
	Capacitance Variation	≤ ±7.5%	Soak the sample in 260°C±5°C solder for 10±0.5 seconds and place in nor- mal temperature and humidity, and measure after							
Resistance to Solder	Dissipation Factor / Tanδ	Within specification	heat treatment. (Pre-heating conditions)							
Heat	Insulation Resistance	Within specification	Order Temperature Time 1 80 to 100°C 2 minutes							
	Withstanding Voltage / Dielectric Strength	Resist without problem	2 150 to 200°C 2 minutes The charge and discharge current of the capacitor must not exceed 50mA for IR and withstanding voltage measurement.							
	Appearance	No visual defects	Take the initial value after heat treatment.							
	Capacitance Variation	≤ ±7.5%	(Cycle) Room temperature (3 min.) →							
Thermal Shock	Dissipation Factor	Within specification	Lowest operation temperature (30 min.)> Room temperature (3 min.)>							
	Insulation Resistance	Within specification	Highest operation temperature (30 min.)							
	Withstanding Voltage / Dielectric	Resist without problem	After 5 cycles, measure after heat treatment.							
	Strength	Nesist Wallout problem	The charge and discharge current of the capacitor must not exceed 50mA for IR and withstanding voltage measurement.							
	Appearance	No visual defects	Take the initial value after heat treatment. After applying *1.5 the rated voltage at the highest operation temperature for 1000+12/ -0 hours, and measure the sample							
Load Life	Capacitance Variation	≤ ±12.5%	after heat treatment in normal temperature and humidity. The charge and discharge current of the capacitor must not exceed 50mA for IR measurement.							
	Dissipation Factor / Tanδ	≤ Initial Value x 2.0 (See Above)	*Apply 1.0 times when the rated voltage is 4V or less. Applied voltages for respective products are indicated							
	Insulation Resistance	Over 1000MΩ or 50MΩ\(\text{M}\)pF, whichever is less. *Exceptions Listed Below	in the chart below.							
	Appearance	No visual defects	Take the initial value after heat treatment.							
Load Humidity	Capacitance Variation	≤ ±12.5%	After applying rated voltage for 500+12/ -0 hours in the condition of 40°C±2°C and 90 to 95%RH, and place in normal							
	Dissipation Factor / Tanδ Insulation Resistance	Within specification Over 1000ΜΩ or 50ΜΩ · μF, whichever is less. *Exceptions Listed Below	temperature and humidity, then measure the sample after heat treatment.							
	Appearance	Over 1000MΩ or 50MΩ · μi, whichever is less. *Exceptions Listed Below No problem observed	The charge and discharge current of the capacitor must not exceed 50mA for IR measurement. Microscope							
Ter	mination Strength	No problem observed No problem observed	Apply a sideward force of 500g (5N) to a PCB-mounted sample. note : 2N for 0201 size, and 1N for 01005 size.							
16	Appearance	No problem observed	Take the initial value after heat treatment. Vibration frequency: 10 to 55 (Hz)							
Vibration	Capacitance	Within tolerance	Amplitude: 1.5mm Amplitude: 1.5mm Sweeping condition: 10 -> 55 10Hz/1 minute in X, Y and Z directions: 2							
	Tanδ	Within tolerance	hours each, 6 hours in total, and place in normal temperature and humidity, then measure the sample after heat treatment.							
	Heat treatment	Expose sample in the temperature of 150+0/ -10°C for 1 hour and leave the samp	I le in normal temperature and humidity for 24±2 hours.							

Voltage to be applied in the High Temperature Load (Applied voltage is the multiple of the rated voltage)

Rated Voltage		Products
	6.3V	KGM02AR50J224, KGM02AR50J474, KGM03BR50J225, KGM03CR50J225, KGM03DR50J475, KGM05CR50J106, KGM05BR50J156, KGM05DR50J226, KGM21AR50J476
	10V	KGM02AR51A104, KGM03CR51A225, KGM15CR51A226
	16V	KGM03CR51C105, KGM05AR51C225, KGM05CR51C475, KGM15CR51C226
×1.0	25V	KGM05AR51E105, KGM05AR51E225, KGM05CR51E225, KGM05CR51E475, KGM15CR51E475, KGM15CR51E106, KGM21AR51E226
	35V	KGM05AR51V105, KGM15CR51V475, KGM15CR51V106
	100V	KGM31AR52A225
×1.2	6.3V	KGM03BR50J105
	6.3V	KGM02AR50J153-104, KGM03AR50J474
×1.3	10V	KGM03AR51A223-224, KGM05AR51A105-225
	16V	KGM05AR51C105

<Load Life / Load Humidity>Insulation Resistance : Over $10M\Omega \cdot \mu F$

X5R / R5	03	KGM03BR51A105, KGM03CR51C224, KGM03CR51E224
XJR / RJ	05	KGM05BR51A475, KGM05CR51A106, KGM05CR51V225

Capacitance Range

	Case Size			01005				0201						0402							0603							0805			
	Soldering		Re	eflow Or	nly		Re	eflow O	nly				Re	flow/W	ave					Re	flow/W	ave			Reflow/Wave						
	Packaging		Pape	r/Embo	ssed		,	All Pape	er				,	All Pape	er					-	All Pape	r			All Embossed						
(L) Length		mm (in.)		.40 ± 0.0				.60 ± 0.						.00 ± 0.							60 ± 0.:				2.01 ± 0.20 (0.079 ± 0.008)						
W) Width		mm (in.)		.20 ± 0.0 08 ± 0.0				.30 ± 0. 11 ± 0.						.50 ± 0. 020 ± 0.							80 ± 0.: 31 ± 0.							25 ± 0.2 49 ± 0.0			
(t) Terminal		mm (in.)		.10 ± 0.0 04 ± 0.0				.15 ± 0. 006 ± 0.						.25 ± 0. 10 ± 0.							35 ± 0.1 14 ± 0.0							50 ± 0.2 20 ± 0.0			
	Voltage:		6.3	10	16	4	6.3	10	16	25	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap (pF)	100	101		Α	Α					Α																					
	150	151		Α	Α					Α																	10	7	~	-W-	
	220	221		Α	Α					Α							Α										4	<		7) 5	- —
	330	331		Α	Α					Α							Α												/ (J 1	
	470	471		Α	Α					Α							Α	İ										<u>_</u>			_
	680	681		Α	Α		1		İ	Α		İ				İ	Α	İ		İ						\vdash		*t	1		
	1000	102		Α	Α				Α	Α							Α			1											
	1500	152	Α	Α	Α				Α	Α						İ	Α														
	2200	222	Α	Α	Α			Α	Α	Α							Α														
	3300	332	Α	Α	Α			Α	Α	Α							Α														
	4700	472	Α	Α	Α			Α	Α	Α					Α									Α							
	6800	682	Α	Α	Α			Α	Α	Α					Α									Α							
Cap (µF)	0.010	103	Α	Α	Α			Α	Α	Α					Α							Α	Α	Α							
	0.015	153	Α												Α							Α	Α	Α							
	0.022	223	Α				Α	Α	Α	Α				Α	Α							Α	Α	Α							К
	0.033	333	Α					Α						Α								Α	Α	Α							К
	0.047	473	Α				Α	Α	Α	Α				Α	Α							Α	Α	Α							К
	0.068	683	Α					Α						Α								Α		Α							K
	0.10	104	Α	Α			Α	Α	Α	В			Α	Α	Α		Α					Α	Α	Α					К	K	К
	0.15	154																				Α							К	К	
	0.22	224	Α			Α	Α	Α	С	С		Α	Α	Α	Α		Α	В	В	В	В	В	В	В					К	К	К
	0.33	334																В	В	В	В	В							Α		
	0.47	474	Α			Α	Α				Α	Α	Α	Н	Α		Н	В	В	В	В	В	В	В					Α	Α	Α
	0.68	684																В	В	В	В	В							Α	Α	Α
	1	105				В	В	B/C	С		Α	Α	Α	Α	Α	Α		В	В	В	В	В	В	В				Α	Α	Α	Α
	2.2	225				С	B/C	С			Α	Α	Α	Α	A/C	С		В	В	В	В	В	С	С			Α	Α	Α	Α	Α
	4.7	475				С	D				С	Н	B/C	С	С			В	В	В	В	С	С		Α	Α	Α	Α	Α	Α	Α
	10	106									С	С	С					С	С	С	С	С	С		Α	Α	Α	Α	Α		
	15	156									В	В																			
	22	226									С	D						С	С	С	С	С			Α	Α	Α	Α	Α		
	47	476																С	С						Α	Α	Α				
	100	107																								Α					
	Voltage:		6.3	10	16	4	6.3	10	16	25	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
	Case Size			01005				0201						0402			0603 0805														

Case Size	01005 (KGM 02)		0201 (F	(GM03)			04	02 (KGM0	15)			0603 (k	0805 (KGM21)			
Thickness Letter	Α	Α	В	С	D	Α	В	С	Н	D	Α	В	С	D	K	Α
Max Thickness (mm)	0.22	0.33	0.35	0.39	0.55	0.56	0.65	0.70	0.75	0.8	0.90	0.95	1	1.02	1.40	1.45
Carrier Tape	PAPER		PAI	PER	•		•	PAPER				PAF	PER		EMB	
Packaging Code 7"reel	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	T	T	T	T	U	U
Packaging Code 13"reel	P	N	N	N	N	N	N	N	N	N	М	М	М	М	L	L
				DAI	PER				ENTE	OSSED (E	MD)					

PREFERRED SIZES ARE SHADED

Case Size					1′	206				l			1210							1812					
														alu			Reflow Only								
Soldering						v/Wave							eflow Or												
Packaging	mm					bossed ± 0.40							Emboss .20 ± 0.4				All Embossed 4.50 ± 0.30								
(L) Length	(in.)					± 0.40)						126 ± 0.2							.30 ± 0.3					
W) Width	mm					± 0.30	`						.50 ± 0.3						3.20 ± 0.20						
·	(in.) mm					± 0.012 ± 0.25)						098 ± 0.0							.61 ± 0.0					
(t) Terminal	(in.)					± 0.010)						020 ± 0.0							0.01 ± 0.00					
Voltage:		4	6.3	10	16	25	35	50	100	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50		
Cap (pF) 100	101																								
150	151.0																						igwdown		
220	221																						\vdash		
330	331																						$\vdash \vdash$		
470	471																						\vdash		
680	681													-									$\vdash \vdash$		
1000	102				-													-			_		$\vdash \vdash \vdash$		
1500	152				_									-				-			_		$\vdash\vdash\vdash$		
2200	222				\vdash					-								-			-		$\vdash\vdash\vdash$		
3300	332				-					-								-					$\vdash\vdash\vdash$		
3900 4700	392 472				-					-				-				-			-		$\vdash\vdash$		
Cap (µF) 5600	562																						\vdash		
6800	682																						$\vdash \vdash$		
0.01	103																						\vdash		
0.012	123																						\vdash		
0.012	153																						\vdash		
0.013	183																						\vdash		
0.022	223									-													\vdash		
0.027	273																						\vdash		
0.033	333																						\Box		
0.039	393																								
0.047	473																								
0.068	683																								
0.082	823																								
0.10	104																								
0.12	124																								
0.15	154																								
0.22	224																								
0.33	334																								
0.47	474	М	М	М	М	М	М	М							С	С									
0.68	684																								
1	105	Н	Н	Н	Н	Н	Н	Н		Е	Е	Е	Е	Е	Е	Е									
2.2	225	Н	Н	Н	Н	Н	Н	Н	Α	L	L	L	L	L	L	L									
4.7	475	Н	Н	Н	Н	Α	Н	Α		J	J	J	J	J	Α	Α									
10	106	Н	Н	Н	Н	Α	Н	Н		J	J	J	J	J	Α	Α					J		\square		
22	226	Н	Н	Н	Α	Н				Α	Α	Α	L	Α			J	J	J						
47	476	Н	Н	Н	Н					L	L	L	L	L											
100	107	Н	Н							L	L											_			
Voltage:		4	6.3	10	16	25	35	50	100	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50		
Case Size					12	206							1210							1812					

Case Size	12	06 (KGM 3	31)		1812 (KGM 43)							
Thickness Letter	М	Α	Н	С	Е	J	Α	L	J			
Max Thickness (mm)	1.25	1.8	1.9	1.27	1.45	2.21	2.7	2.80	2.80			
Carrier Tape	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB			
Packaging Code 7"reel	U	U	U	U	U	U	U	U	V			
Packaging Code 13"reel	L	L	L	L	L	L	L	L	S			
	EMBOSSED (EMB)											

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

KYOCERA AVX:

```
08056D106KAT2A 08056D106KAT4A 08056D106MAT2A 08056D475KAT2A 08056D475KAT4A
08056D475MAT2A 0805YD105KAT2A 0805YD105KAT4A 0805YD105MAT2A 0805YD105MAT4A
0805YD225KAT2A 12063D105KAT2A 12063D105MAT2A 12063D225KAT2A 12063D475KAT2A 0805ZD225KAT2A
 0805ZD225KAT4A 0805ZD225MAT2A 0805ZD475KAT2A 0805ZD475KAT4A 0805ZD475MAT2A
12066D106KAT2A 12066D106MAT2A 12066D106MAT4A 12066D226KAT2A 12066D226MAT2A
12066D226MAT4A 1206YD106KAT2A 1206YD225KAT2A 1206YD225KAT4A 1206YD225MAT2A
1206YD475KAT2A 1206YD475MAT2A 1206ZD106KAT2A 1206ZD106KAT4A 1206ZD106MAT2A
1206ZD106MAT4A 1206ZD475KAT2A 1206ZD475KAT4A 1206ZD475MAT2A 12103D106KAT2A 12103D225KAT2A
 12103D225MAT2A 12103D475KAT2A 12103D475MAT2A 12106D106KAT2A 12106D106MAT2A
12106D107MAT2A 12106D226KAT2A 12106D226MAT2A 12106D476MAT2A 1210DD225KAT2A
1210DD225MAT2A 18123D106KAT2A 18123D106MAT2A 1210YD106KAT2A 1210YD106MAT2A
1210YD226KAT2A 1210YD475KAT2A 1210ZD106KAT2A 1210ZD106KAT4A 1210ZD106MAT2A
1210ZD106MAT4A 1210ZD226KAT2A 1210ZD226KAT4A 1210ZD226MAT2A 1210ZD475KAT2A
1210ZD475MAT2A 1812ZD226KAT2A 1812ZD226MAT2A 0201ZD222KAT2A 0201ZD222MAT2A
0201ZD332KAT2A 0201ZD472KAT2A 0201ZD682KAT2A 0201ZD103KAT2A 0201ZD103MAT2A 04024D105MAT2A
 04026D105KAT2A 04026D224KAT2A 04026D224KAT4A 04026D224MAT2A 0402YD104KAT2A
0402YD333KAT2A 0402YD333KAT4A 0402YD333MAT2A 0402YD473KAT2A 0402YD473MAT2A
0402YD473MAT4A 0402ZD104KAT2A 0402ZD104KAT4A 0402ZD104MAT2A 0402ZD104MAT4A
0402ZD224KAT2A 06033D104KAT2A 06033D104KAT4A 06033D104MAT2A 06033D154KAT2A 06033D224KAT2A
 06036D105KAT2A
```