## DSBDAL Assignment 06 - Data Visualization 3

Download the Iris flower dataset or any other dataset into a DataFrame. (e.g., https://archive.ics.uci.edu/ml/datasets/Iris). Scan the dataset and give the inference as:

- 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
- 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
- 3. Create a box plot for each feature in the dataset. Compare distributions and identify outliers.

```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

import numpy as np import seaborn as sns import pandas as pd

ds = pd.read csv('/content/drive/My Drive/DSBDL/Assignment6/iris.csv')

|        | sepal_length    | sepal_width | petal_length | petal_width | species   |
|--------|-----------------|-------------|--------------|-------------|-----------|
| 0      | 5.1             | 3.5         | 1.4          | 0.2         | setosa    |
| 1      | 4.9             | 3.0         | 1.4          | 0.2         | setosa    |
| 2      | 4.7             | 3.2         | 1.3          | 0.2         | setosa    |
| 3      | 4.6             | 3.1         | 1.5          | 0.2         | setosa    |
| 4      | 5.0             | 3.6         | 1.4          | 0.2         | setosa    |
|        | ***             |             | •••          |             |           |
| 145    | 6.7             | 3.0         | 5.2          | 2.3         | virginica |
| 146    | 6.3             | 2.5         | 5.0          | 1.9         | virginica |
| 147    | 6.5             | 3.0         | 5.2          | 2.0         | virginica |
| 148    | 6.2             | 3.4         | 5.4          | 2.3         | virginica |
| 149    | 5.9             | 3.0         | 5.1          | 1.8         | virginica |
| 150 rc | ows × 5 columns |             |              |             |           |

Next steps:

Generate code with ds



View recommended plots

## Feature Information

Numeric features: sepal\_width, sepal\_length, petal\_length and petal\_width

Nominal features: species

ds.dtypes

sepal\_length float64 sepal\_width float64 petal\_length float64 petal\_width float64 species object

dtype: object

ds.describe()

|       | sepal_length | sepal_width | petal_length | petal_width |     |
|-------|--------------|-------------|--------------|-------------|-----|
| count | 150.000000   | 150.000000  | 150.000000   | 150.000000  | ılı |
| mean  | 5.843333     | 3.054000    | 3.758667     | 1.198667    |     |
| std   | 0.828066     | 0.433594    | 1.764420     | 0.763161    |     |
| min   | 4.300000     | 2.000000    | 1.000000     | 0.100000    |     |
| 25%   | 5.100000     | 2.800000    | 1.600000     | 0.300000    |     |
| 50%   | 5.800000     | 3.000000    | 4.350000     | 1.300000    |     |
| 75%   | 6.400000     | 3.300000    | 5.100000     | 1.800000    |     |
| max   | 7.900000     | 4.400000    | 6.900000     | 2.500000    |     |
|       |              |             |              |             |     |

sns.histplot( data=ds , x="sepal\_length" , bins=10 )

<Axes: xlabel='sepal\_length', ylabel='Count'>



sns.histplot( data=ds , x="sepal\_width" , bins=10 )

<Axes: xlabel='sepal\_width', ylabel='Count'>



<Axes: xlabel='petal\_length', ylabel='Count'>



sns.histplot( data=ds , x="petal\_width" , bins=10 )



sns.boxplot( data=ds.drop( [ "species" ] , axis=1 ) )







sns.boxplot( data=ds , x="species" , y="sepal\_width" )

```
<Axes: xlabel='species'. vlabel='sepal width'>
sns.boxplot( data=ds , x="species" , y="petal_length" )
```

<Axes: xlabel='species', ylabel='petal\_length'>



sns.boxplot( data=ds , x="species" , y="petal\_width" )