Indian Sign Language Database Creation and Detection

Submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology

in

CSE Core

by

Debangsu Sarkar - 19BCE0902 Swayam Atul Mehta – 20BCE0255

Under the guidance of Prof. / Dr. Gopalkrishan T

SCOPE

VIT, Vellore.

April, 2022

Executive Summary

Sign language is one of the oldest and most natural form of language for communication, but since most people do not know sign language and interpreters are very difficult to come by, we have come up with a real time method using neural networks for finger spelling based Indian sign language. In our method, the hand is first passed through a filter and after the filter is applied the hand is passed through a classifier, a Convoluted Neural Network which predicts the class of the hand gestures. We also recognized the importance of developing a Software which makes it easier to develop Datasets for the various regional interpretations of Indian Sign language.

INDEX

S. No.	Contents	Page No. 4 4 5 6 12
S. NO.	Contents	No.
1.	Introduction	4
1.1	Objective	4
1.2	Motivation	4
1.3	Background	5
1.4	Literature Review	6
1.5	Hardware and Software Requirements	12
2.	Project Description and Goals	12
2.1	Data Acquisition	12
2.2	Data Preprocessing and Feature Extraction for Vision-Based Approach	13
2.3	Gesture Classification	13
2.4	Keywords and Definitions	14
2.5	Methodology	18
2.6	Data Set Generation	18
3.	Gesture Classification	19
4.	Challenges Faced	21
5.	Results	22
6.	Conclusion	22
7.	Future Scope	22
8.	References	23
9.	Appendix A	23

1. INTRODUCTION

1.1 OBJECTIVE

To exchange information and communicate among their community, the deaf and hard of hearing people use a commonly agreed upon sign language. Computer recognition of sign language deals from sign gesture acquisition and continues till text/speech generation. These signs can be static, in the form of single letters which can be captured as an image, or dynamic, in the form of continuous string of characters forming a word and then a sentence which can be captured as a video. Static gesture recognition is simpler than dynamic gesture recognition, and we will attempt to recognise that first, but both recognition systems are important to the human community. We aim to develop an Indian sign language recognition dataset and use it in the deep learning model which depends on neural networks to interpret gestures of sign language and hand poses to natural language. We are going to describe the Sign language recognition steps, the data acquisition, data pre-processing and transformation, the feature extraction, classification and then describe how we got the results. We will also describe some future directions for research in this regard.

Keywords: Sign Language Recognition, Hand Tracking, Hand Gesture Recognition, Gesture Analysis, Face Recognition, Sign Language, ISL, Hearing Disability, Convolutional Neural Network (CNN), Artificial Intelligence, Computer Vision, Machine Learning, Image Processing, Dataset creation, Neural Network.

1.2 MOTIVATION

For interaction between normal people and D&M people a language barrier is created as sign language structure which is different from normal text. So, they depend on vision-based communication for interaction. If there is a common interface that converts the sign language to text the gestures can be easily understood by the other people. So, research has been made for a vision-based interface system where D&M people can enjoy communication without really knowing each other's language. The aim is to develop a user-friendly human computer interface (HCI) where the computer understands the human sign language. There are various sign languages all over the world, namely Indian Sign Language (ISL), French Sign Language, British Sign Language (BSL), Indian Sign language, Japanese Sign Language and work has been done on other languages all around the world.

1.3 BACKGROUND

Sign language is a visual gestural mode of communication used predominantly by people who are deaf or hard of hearing as well as people who cannot speak. It makes use of three dimensional space through hand movements, facial expressions and body language to convey meaning. It has its own vocabulary and syntax which is purely different from other spoken/written languages. A spoken language makes use of vocal tracts along with linguistic elements like vowels, consonants, tone, etc. to convey a message. On the other hand, a sign language makes use of above mentioned visual elements altogether eliminating the use of oratory and auditory systems of the human body. Both spoken and sign languages involve complex grammar which plays a key role in connecting words into phrases and sentences.

The Indian Sign Language (ISL), often referred to as the Indo-Pakistani Sign Language (IPSL), is the predominant sign language in South Asia. Number signs, family relationship and spatial use are some crucial features of ISL which distinguish it from other sign languages. Unlike the Indian Sign Language (ISL), ISL is devoid of temporal inflection in its fingerspelling chart.

A sign language recognition system serves as an easy, efficient and accurate mechanism to transform sign language into text/speech. Computerized digital image processing and classification methods are used to recognize the alphabet flow and interpret the words and phrases of sign language. The four essential components of a gesture recognition system are – modeling, analysis, recognition and application systems.

1.4 Literature Review

Authors and Year (Reference)	Title (Study)	Concept / Theoretical model/ Framework	Methodology used/ Implementation	Dataset details/ Analysis	Relevant Finding	Limitations/ Future Research/ Gaps identified
Ashok K Sahoo, Gouri	SIGN LANGUAGE RECOGNITION : STATE OF THE ART	A survey paper: The sign language recognition steps are described. Data acquisition, data preprocessing, transformation, feature extraction, classification and results obtained are examined. Some future directions for research in this area also suggested.	paper, so implementation details are not contained but it dedicates to find various implementations done by the scientists, like data acquisition devices are used by some of the researchers in order to acquire input signs. These are the list of input devices: CyberGlove® Sensor Glove	various datasets already used by the researchers, like Lifeprint Fingurespell Library for ISL, CAS-PEAL for CSL and many others and discussed on the various usages and advantages of each.	in computer recognition of sign languages of other countries but a very limited work has been done in ISL Computerization. ISL is majorly missing in various literature. Most of the researchers create their own database for sign language recognition. This database can be also classified into digits, alphabets and phrases. Current systems are mainly focused on static signs/manual signs/alphabets/numerals. Systems should	mechanisms used by various researchers and is mostly an exercise into the various datasets available and when to use one or create our own dataset.
			Polhemus FASTRAK		be able to distinguish face, hand and other parts of body simultaneously.	

Ahmed	Machine	The authors	The dataset contains	The dataset	The framework has	The variation in size,
KASAPBASI,	learning	developed a dataset	images varying 0.5	contains images	achieved a 99.38%	position, shape and
Ahmed	methods for	and a Convolutional	m, 0.75 m and 1 m	and corresponding	accuracy with excellent	background of the hand,
Eltayeb	sign language	Neural Network-	hand distance to	letters of ISLA.	prediction and small loss	lighting, and the
AHMED	recognition: A	based sign language	illustrate variance in	The creation of the	(0.0250) with using the	distance of the hand
ELBUSHRA,	critical	interface system to	illumination and	dataset was	homemade dataset in	from the camera is still
Omar AL-	review and	interpret gestures of	depth conditions.	dependent on	contrast to the first public	not taken much into
HARDANEE	analysis	sign language and	The neural network	many factors such	dataset: 99.41% with a	account although is
Arif YILMAZ		hand poses to	developed in this	as illumination and	0.0204 loss and the second	stressed much
(2022)		natural language.	study is a	the distance	dataset: obtained accuracy	throughout the paper.
		The dataset created	Convolutional	between the	was 99.48% and the loss	This study can be
		in this study is a new	Neural Network	camera and	was 0.0210, although the	improved by adding
		addition in the field	(CNN) which	hand which we	dataset was the largest	more images for more
		of sign language	enhances the	adjusted to	one among all the other	letters and words into
		recognition (SLR).	predictability of the	improve the	datasets and contains	the dataset. More
		This dataset may be	Indian Sign Language	performance of the	104,000 images which	images can be added to
		used to develop SLR	alphabet (ISLA).	CNN model. The	ultimately led to the	improve accuracy and
		systems.		dataset was	superior prediction and has	reduce loss. By adding
		Furthermore, the		created under	higher validation accuracy	new words and terms,
		research compares		variable conditions	and lower OOB error.	the proposed system
		the results of the		which increases		may be improved to
		dataset with two		the number of		predict a complete
		different datasets		contributions,		word. Predicted words
		from other studies.		comparisons,		can be turned into
				results and		speech by utilizing a
				conclusions in the		text-to-speech engine.
				field of SLR and		
				may enhance such		
				Systems.		
L	1	I.	I.	I.	I .	I.

G. Ananth	Selfie video	This paper introduces	Their implementation	The paper doesn't go	Thus, they tested and	The ANN model isn't
Rao, P.V.V.	based	• •			· · · · · · · · · · · · · · · · · · ·	deeply explored and
Kishore	continuous		Image Processing until	dataset they made or		most of the discussion is
(2018)		closer to real time	we have the result of	used except for a few		around the video
(2016)	Indian sign		the picture's features			
	language 	• •	being extracted. They	sentences that they	create a database we don't	1
	recognition	captured sign language		have used but they	·	processing, feature
	system	, , , , , ,	capturing sensor: A	had this info that: A	' '	extraction and the
		· · · · · · · · · · · · · · · · · · ·	smart phone camera	ioiiiiai uatabase oi		formation of the
		computing power to	that records the video	18 signs in	They have proved that an	database. A mobile app
		that of a smart phone.	and is processed per	continuous sign	ANN works better in this	isn't developed to show
		Pre-filtering,	frame and is	language was	case than a WMS.	how the Android API
		segmentation and	segmented by frame	recorded with 10		might react to it and the
		feature extraction on	and object and then	different signers.		image processing is
		video frames creates a	the monotone image	Pre-filtering,		done independently.
		sign language feature	is taken and the	segmentation and		, , , , , , , , , , , , , , , , , , , ,
		space. Minimum	features are extracted	contour detection		
		Distance and Artificial	after passing through	are performed with		
			Sobel's masks. Then	Gaussian filtering,		
		_	2D DCT is calculated of			
		•	the head contour. For			
			faster classification as			
		iteratively. Sobel edge	•	subtraction		
		•	Minimum distance	respectively. Hand		
		enhanced with	classifier is used	and head contour		
		,	(MDC).	energies are features		
		adaptive thresholding		for classification		
		giving a near perfect		computed from		
		segmentation of hand		discrete		
		and head portions		cosine transforms.		
		compensating for				
		the small vibrations of				
		the selfie stick.				

Junfu Pu,	Iterative	The framework used	Their method	Two public	Their approach had the	Substitution error was
Wengang	Alignment	for this research was	integrated the	datasets:(1) RWTH-	strong capability to deal	ignored in the Word
Zhou,	Network for	a 3D residual	encoder-decoder	PHOENIX-Weather	with the unseen sentence	Error Rate (WER) for
Houqiang Li	Continuous	network (3D-ResNet)	network and	multi-signer (7K	recognition problem. It	RWTH-PHOENIX-
(2019)	Sign Language	for feature	connectionist	sign videos with a	was more effective and	Weather-2014. Training
	Recognition	extraction and an	temporal	total of 77K words)	superior with better	the network in an end-
		encoder-decoder	classification (CTC)	for German SLR. (2)	performance compared to	to-end way did not
		network for	into a unified deep	CSL (5k videos	existing methods.	provide good results.
		sequence modelling.	architecture. To	made by 50 signers		This Align-end2end
			explore the	and 100 sentences		method can be explored
			correspondence	each, each		further.
			between the input	sentence consists		
			sequence and target	an average of 5		
			translation, soft	words) for Chinese		
			dynamic time	SLR.		
			warping (soft-DTW)			
			was used to align the			
			CTC-decoder and			
			LSTM-decoder. Their			
			system consisted of			
			4 tiers of neural			
			network: (1) Feature			
			Extractor (2)			
			Sequence Encoder			
			(3) Target Decoders			
			(4) Alignment			
			Constraint			

Oscar Koller	Quantitative	This paper provides	The author has	There is no dataset	It is observed that large	In many studies, data
(2020)	Survey of the	an overview of the	covered 300	as such since it is a	vocabulary (> 1000 signs)	augmentation is not
	State of the	field of sign language			and 50-200 vocabulary	carefully described and
	Art in Sign	recognition following	and manually	the author has	tasks have experienced a	also an ablation study
	Language	a quantitative meta-	labelled them based	covered studies	large gain in the number of	that details the effect of
	Recognition	study approach.	on their basic	which have been	published results since	various augmentation
			recognition	done mainly using	2015. RGB data started	methods is left for
			characteristics which	datasets for Indian, Chinese and	attracting a lot of interest	coming research. More
			include modelled	German sign	after 2005 and depth as	efforts are needed to
			vocabulary size,	languages.	input modality gained	create real-life large
			number of	languages.	popularity after 2010.	vocabulary continuous
			contributing signers,		Hand shape has been	sign language tasks that
			the features and		tackled by a much larger	should be made publicly
			modalities of the		fraction of results	accessible with well-
			employed sign		published after 2015.	defined train,
			language, its dataset			development and test
			quality and available			partitions.
			input data type. A			
			detailed structured			
			overview comparing			
			over 25 research			
			studies that have			
			evaluated their			
			approaches on the			
			RWTH-PHOENIX-			
			Weather corpus.			

Ming Jin Cheok, Zaid Omar, Mohamed Hisham Jaward (2017)		the state-of-the-art techniques used in recent hand gesture and sign language recognition research.	techniques reviewed have been categorized into: data acquisition, pre-processing, segmentation, feature extraction and classification. At each stage, the used algorithms have been elaborated along with comparison of their merits. The sensor-	as such since it is a survey paper but the author has reviewed the benchmark databases like Purdue RVL-SLLL, RWTH-PHOFNIX-	recognition of only one hand. Most vision-based researches which were reviewed used a standard camera or a webcam. The most commonly applied pre-processing techniques included Median and Gaussian filter to remove noises. Tracking of hand movement was often	gaps to be filled for gesture recognition to be able to be put into actual use. The numbers of research using benchmark database are far less compared to those collected their own database. Future works using benchmarked databases are advised to allow for direct comparison between algorithms used.
---	--	---	---	--	--	--

1.5 Hardware and Software Requirements

We have developed this project using OpenCV and Keras modules of python.

The prerequisites software & libraries for the sign language project are:

- Python (3.7.4)
- IDE (Jupyter)
- Numpy (version 1.16.5)
- cv2 (openCV) (version 3.4.2)
- Keras (version 2.3.1)
- Tensorflow (as keras uses tensorflow in backend and for image preprocessing) (version 2.0.0)

2. PROJECT DESCRIPTION AND GOALS

2.1 Data Acquisition

The different approaches to acquire data about the hand gesture can be donein the following ways:

I. Use of sensory devices

It uses electromechanical devices to provide exact hand configuration, and position. Different glove-based approaches can be used to extract information. But it is expensive and not user friendly.

II. Vision based approach

In vision-based methods computer camera is the input device for observing the information of hands or fingers. The Vision Basedmethods require only a camera, thus realizing a natural interaction between humans and computers without the use of any extra devices. These systems tend to complement biological vision by describing artificial vision systems that are implemented in software and/or hardware.

The main challenge of vision-based hand detection is to cope with the large variability of human hand's appearance due to a huge number ofhand movements, to different skin-color possibilities as well as to the variations in viewpoints, scales, and speed of the camera capturing the scene.

2.2 Data Preprocessing and Feature Extraction for Vision-Based Approach

- In [1] the approach for hand detection combines threshold-based colordetection with background subtraction. We can use Adaboost face detector to differentiate between faces and hands as both involve similar skin-color.
- We can also extract necessary image which is to be trained by applying a filter called Gaussian blur. The filter can be easily applied using open computer vision also known as OpenCV and is described in [3].
- For extracting necessary image which is to be trained we can use instrumented gloves as mentioned in [4]. This helps reduce computation time for preprocessing and can give us more concise and accurate data compared to applying filters on data received from video extraction.
- We tried doing the hand segmentation of an image using color segmentation techniques but as mentioned in the research paper skin color and tone is highly dependent on the lighting conditions due to which output, we got for the segmentation we tried to do were no so great. Moreover, we have a huge number of symbols to be trained for our project many of which look similar to each other like the gesture for symbol 'V' and digit '2', hence we decided that in order to produce better accuracies for our large number of symbols, rather than segmenting the hand out of a random background we keep background of hand a stable single color so that we don't need to segment it on the basis of skin color. This would help us to get better results.

2.3 Gesture Classification

• In [1] Hidden Markov Models (HMM) is used for the classification of the gestures. This model deals with dynamic aspects of gestures. Gestures are extracted from a sequence of video images by tracking the skin-color blobs corresponding to the hand into a body– face space centered on the face of the user. The goal is to recognize two classes of gestures: deictic and symbolic. The image is filtered using a fast look–up indexing table. After filtering, skin color pixels are gathered into blobs. Blobs are statistical objects based on the location (x, y) and the colorimetry (Y, U, V) of the skin color pixelsin order to determine homogeneous

areas.

- In [2] Naïve Bayes Classifier is used which is an effective and fast method for static hand gesture recognition. It is based on classifying the different gestures according to geometric based invariants which are obtained from image data after segmentation. Thus, unlike many other recognition methods, this method is not dependent on skin color. The gestures are extracted from each frame of the video, with astatic background. The first step is to segment and label the objects of interest and to extract geometric invariants from them. Next step is the classification of gestures by using a K nearest neighbor algorithm aided with distance weighting algorithm (KNNDW) to provide suitable data for a locally weighted Naïve Bayes" classifier.
- Network" by Hsien-I Lin, Ming-Hsiang Hsu, and Wei-Kai Chen graduates of Institute of Automation Technology National Taipei University of Technology Taipei, Taiwan, they construct a skin model to extract the hand out of an image and then apply binary threshold to the whole image. After obtaining the threshold image they calibrate it about the principal axis in order to center the image about it. They input this image to a convolutional neural network model in order to train and predict the outputs. They have trained their model over 7 hand gestures and using their model they produce an accuracy of around 95% for those 7 gestures.

2.4 Key Words and Definitions

I. Feature Extraction and Representation:

The representation of an image as a 3D matrix having dimension as ofheight and width of the image and the value of each pixel as depth (1 in case of Grayscale and 3 in case of RGB). Further, these pixel values are used for extracting useful features using CNN.

II. Artificial Neural Networks:

Artificial Neural Network is a connection of neurons, replicating the structure of human brain. Each connection of neuron transfers information to another neuron. Inputs are fed into first layer of neurons which processes it and transfers to another layer of neurons called as hidden layers. After processing of information through multiple layers of hidden

layers, information is passed to final output layer.

There are capable of learning and they have to be trained. There are differentlearning strategies:

- 1. Unsupervised Learning
- 2. Supervised Learning
- 3. Reinforcement Learning

III. Convolution Neural Network:

Unlike regular Neural Networks, in the layers of CNN, the neuronsare arranged in 3 dimensions: width, height, depth. The neurons in a layer will only be connected to a small region of the layer (window size) before it, instead of all of the neurons in a fully-connected manner. Moreover, the final output layer would have dimensions (number of classes), because by the end of the CNN architecture we will reduce the full image into a single vector of class scores.

- a) Convolution Layer: In convolution layer we take a small window size [typically of length 5*5] that extends to the depth of the input matrix. The layer consists of learnable filters of window size. During every iteration we slid the window by stride size [typically 1], and compute the dot product of filter entries and input values at a given position. As we continue this process well create a 2-Dimensional activation matrix that gives the response of that matrix at every spatial position. That is, the network will learn filters that activate when they see some type of visual feature such as an edge of some orientation or a blotch of some color
- **b) Pooling Layer:** We use pooling layer to decrease the size of activation matrix and ultimately reduce the learnable parameters. There are two types of pooling:
 - i. **Max Pooling:** In max pooling we take a window size [for examplewindow of size 2*2], and only take the maximum of 4 values. Well lidthis window and continue this process, so well finally get a activation matrix half of its original Size.
 - ii. **Average Pooling:** In average pooling we take average of all values in a window.

c) Fully Connected Layer: In convolution layer neurons are connected only to a local region, while in a fully connected region, well connect the all the inputs to neurons.

d) Final Output Layer: After getting values from fully connected layer, well connect them to final layer of neurons [having count equal to total number of classes], that will predict the probability of each image to be in different classes.

IV. TensorFlow:

Tensorflow is an open-source software library for numerical computation. First we define the nodes of the computation graph, then inside a session, the actual computation takes place. TensorFlow is widely used in Machine Learning.

V. Keras:

Keras is a high-level neural networks library written in python that works as a wrapper to TensorFlow. It is used in cases where we want to quickly build and test the neural network with minimal lines of code. It contains implementations of commonly used neural network elements like layers, objective, activation functions, optimizers, and tools to make working with images and text data easier.

VI. OpenCV:

OpenCV (Open-Source Computer Vision) is an open source library of programming functions used for real-time computer-vision. It is mainly usedfor image processing, video capture and analysis for features like face and object recognition. It is written in C++ which is its primary interface, however bindings are available for Python, Java, MATLAB/OCTAVE.

2.5 Methodology

The system is a vision-based approach. All the signs are represented with bare hands and so it eliminates the problem of using any artificial devices forinteraction.

2.6 Data Set Generation

For the project we tried to find already made datasets but we couldn't find dataset in the form of raw images that matched our requirements. All we could find were the datasets in the form of RGB values. Hence, we decided to create our own data set. Steps we followed to create our data set are as follows.

We used Open computer vision (OpenCV) library in order to produce our dataset. Firstly, we captured around 800 images of each of the symbol in ISLfor training purposes and around 200 images per symbol for testing purpose.

First, we capture each frame shown by the webcam of our machine. In each frame we define a region of interest (ROI) which is denoted by a blue bounded square as shown in the image below.

Finally, we apply our gaussian blur filter to our image which helps us extracting various features of our image. The image after applying gaussian blur looks like below.

3. GESTURE CLASSIFICATION

The approach which we used for this project is:

Our approach uses two layers of algorithm to predict the final symbol of the user.

Algorithm Layer 1:

- 1. Apply gaussian blur filter and threshold to the frame taken with OpenCV toget the processed image after feature extraction.
- 2. This processed image is passed to the CNN model for prediction and if aletter is detected for more than 50 frames then the letter is printed and taken into consideration for forming the word.
- 3. Space between the words is considered using the blank symbol.

Algorithm Layer 2:

- 1. We detect various sets of symbols which show similar results on gettingdetected.
- 2. We then classify between those sets using classifiers made for those setsonly.

Layer 1: CNN

Model:

- 1. **1st Convolution Layer:** The input picture has resolution of 128x128 pixels.It is first processed in the first convolutional layer using 32 filter weights(3x3 pixels each). This will result in a 126X126 pixel image, one for each Filter-weights.
- 2. **1st Pooling Layer:** The pictures are down sampled using max pooling of 2x2 i.e we keep the highest value in the 2x2 square of array. Therefore, ourpicture is down sampled to 63x63 pixels.
- **3. 2nd Convolution Layer:** Now, these 63 x 63 from the output of the first pooling layer is served as an input to the second convolutional layer. It is processed in the secondconvolutional layer using 32 filter weights (3x3 pixels each). This will result in a 60 x 60 pixel image.
- 4. **2nd Pooling Layer:** The resulting images are down sampled again using max pool of 2x2 and isreduced to 30 x 30 resolution of images.
- 5. **1st Densely Connected Layer:** Now these images are used as an input to a fully connected layer with 128 neurons and the output from the second convolutional layer is reshaped to anarray of 30x30x32 =28800 values. The input to this layer is

an array of 28800 values. The output of these layer is fed to the 2nd Densely Connected Layer. We are using a dropout layer of value 0.5 to avoid overfitting.

- 6. **2nd Densely Connected Layer:** Now the output from the 1st Densely Connected Layer is used as an input to a fully connected layer with 96 neurons.
- 7. **Final layer:** The output of the 2nd Densely Connected Layer serves as an input for the final layer which will have the number of neurons as the number of classes we are classifying (alphabets + blank symbol).

Activation Function:

We have used ReLu (Rectified Linear Unit) in each of the layers (convolutional as well as fully connected neurons). ReLu calculates $\max(x,0)$ for each input pixel. This adds nonlinearity to the formula and helps to learn more complicated features. It helps in removing the vanishing gradient problem and speeding up the training by reducing the computation time.

Pooling Layer:

We apply **Max** pooling to the input image with a pool size of (2, 2) with reluactivation function. This reduces the amount of parameters thus lessening the computation cost and reduces overfitting.

Dropout Layers:

The problem of overfitting, where after training, the weights of the network are so tuned to the training examples they are given that the network doesn't perform well when given new examples. This layer "drops out" a random set of activations in that layer by setting them to zero. The network should be able to provide the right classification or output for a specific example even if some of the activations are dropped out[5].

Optimizer:

We have used Adam optimizer for updating the model in response to the output of the loss function. Adam combines the advantages of two extensions of two stochastic gradient descent algorithms namely adaptive gradient algorithm (ADA GRAD) and root mean square propagation (RMSProp).

Training and Testing:

We convert our input images (RGB) into grayscale and apply gaussian blur to remove unnecessary noise. We apply adaptive threshold to extract ourhand from the background and resize our images to 128 x 128.

We feed the input images after preprocessing to our model for training and testing after applying all the operations mentioned above.

The prediction layer estimates how likely the image will fall under one of the classes. So the output is normalized between 0 and 1 and such that the sum of each values in each class sums to 1. We have achieved this using softmax function.

At first the output of the prediction layer will be somewhat far from the actual value. To make it better we have trained the networks using labeled data. The cross-entropy is a performance measurement used in the classification. It is a continuous function which is positive at values which isnot same as labeled value and is zero exactly when it is equal to the labeled value. Therefore, we optimized the cross-entropy by minimizing it as close to zero. To do this in our network layer we adjust the weights of our neural networks. TensorFlow has an inbuilt function to calculate the cross entropy.

As we have found out the cross-entropy function, we have optimized it using Gradient Descent in fact with the best gradient descent optimizer is called Adam Optimizer.

4. CHALLENGES FACED

There were many challenges faced by us during the project. The very first issue we faced was of dataset. We wanted to deal with raw images and that too square images as CNN in Keras as it was a lot more convenient working with only square images. We couldn't find any existing dataset for that hence we decided to make our own dataset. Second issue was to select afilter which we could apply on our images so that proper features of the images could be obtained and hence then we could provide that image as input for CNN model. We tried various filter including binary threshold, canny edge detection, gaussian blur etc. but finally we settled with gaussian blur filter. More issues were faced relating to the accuracy of the model we trained in earlier phases which we eventually improved by increasing the input image size and also by improving the dataset.

5. RESULTS

We have achieved an accuracy of 95.8% in our model using only layer 1 of our algorithm, and using the combination of layer 1 and layer 2 we achieve an accuracy of 98.0%, which is a better accuracy then most of the current research papers on Indian sign language. Most of the research papersfocus on using devices like kinect for hand detection. In [7] they build a recognition system for flemish sign language using convolutional neural networks and kinect and achieve an error rate of 2.5%. In [8] a recognition model is built using hidden markov model classifier and a vocabulary of 30 words and they achieve an error rate of 10.90%. In [9] they achieve an average accuracy of 86% for 41 static gestures in Japanese sign language. Using depth sensors map [10] achieved an accuracy of 99.99% for observed signers and 83.58% and 85.49% for new signers. They also used CNN for their recognition system. One thing should be noted that our model doesn't uses any background subtraction algorithm whiles some of the models present above do that. So, once we try to implement background subtraction in our project the accuracies may vary. On the other hand, most of the above projects use kinect devices but our main aim was to create a project which can be used with readily available resources. A sensor like kinect not only isn't readily available but also is expensive for most of audience to buy and our model uses a normal webcam of the laptop hence it is great plus point. Below are the confusion matrices for our results.

6. CONCLUSION

In this report, a functional real time vision based Indian sign language recognition for D&M people have been developed for ISL alphabets. We achieved final accuracy of 98.0% on our dataset. We are able to improve ourprediction after implementing two layers of algorithms in which we verify and predict symbols which are more similar to each other. This way we are able to detect almost all the symbols provided that they are shown properly, there is no noise in the background and lighting is adequate.

7. FUTURE SCOPE

We are planning to achieve higher accuracy even in case of complex backgrounds by trying out various background subtraction algorithms. We are also thinking of improving the preprocessing to predict gestures in low light conditions with a higher accuracy.

8. REFERENCES

- [1] Sahoo, Ashok & Mishra, Gouri & Ravulakollu, Kiran. (2014). Sign language recognition: State of the art. ARPN Journal of Engineering and Applied Sciences. 9. 116-134.
- [2] Ahmed KASAPBAŞI, Ahmed Eltayeb AHMED ELBUSHRA, Omar AL-HARDANEE, Arif YILMAZ, DeepISLR: A CNN based human computer interface for Indian Sign Language recognition for hearing-impaired individuals,

Computer Methods and Programs in Biomedicine Update,

(https://www.sciencedirect.com/science/article/pii/S2666990021000471).

[3] G. Ananth Rao, P.V.V. Kishore, Selfie video based continuous Indian sign language recognition system, Ain Shams Engineering Journal, Volume 9, Issue 4,2018

LINKS:

- [1] (PDF) Sign language recognition: State of the art (researchgate.net)
- [2] <u>DeepISLR: A CNN based human computer interface for Indian Sign Language</u> recognition for hearing-impaired individuals | Elsevier Enhanced Reader
- [3] Selfie video based continuous Indian sign language recognition system ScienceDirect

9. APPENDIX A

OpenCV

OpenCV (Open-Source Computer Vision Library) is released under a BSDlicense and hence it's free for both academic and commercial use. It has C++, Python and Java interfaces and supports Windows, Linux, Mac OS, iOS and Android. OpenCV was designed for computational efficiency andwith a strong focus on real-time applications. Written in optimized C/C++,the library can take advantage of multi-core processing. Enabled with OpenCL, it can take advantage of the hardware acceleration of the underlying heterogeneous compute platform.

Adopted all around the world, OpenCV has more than 47 thousand people of user community and estimated number of downloads exceeding 14 million. Usage ranges from interactive art, to mines inspection, stitching maps on the web or through advanced robotics.

Convolution Neural network

CNNs use a variation of multilayer perceptrons designed to require minimalpreprocessing. They are also known as shift invariant or space invariant artificial neural networks (SIANN), based on their shared-weights architecture and translation invariance characteristics.

Convolutional networks were inspired by biological processes in that the connectivity pattern between neurons resembles the organization of the animal visual cortex. Individual cortical neurons respond to stimuli only in are stricted region of the visual field known as the receptive field. The receptive fields of different neurons partially overlap such that they cover the entire visual field. CNNs use relatively little pre-processing compared to other image classification algorithms. This means that the network learns the filters that in traditional algorithms were hand-engineered. This independence from prior knowledge and human effort in feature design is a major advantage. They have applications in image and video recognition, recommender systems, image classification, medical image analysis, and natural language processing.

Tensorflow

TensorFlow is an open-source software library for dataflow programming across a range of tasks. It is a symbolic math library, and is also used for machine learning applications such as neural networks. It is used for both research and production at Google.

TensorFlow was developed by the Google brain team for internal Google use. It was released under the Apache 2.0 open-source library on November 9, 2015.

TensorFlow is Google Brain's second-generation system. Version 1.0.0 was released on February 11, 2017. While the reference implementation runs on single devices, TensorFlow can run on multiple CPUs and GPUs (with optional CUDA and SYCL extensions for general-purpose computing on graphics processing units). TensorFlow is available on 64-bit Linux, macOS, Windows, and mobile computing platforms including Android and iOS. Its flexible architecture allows for the easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops toclusters of servers to mobile and edge devices.