Objetivos de aprendizaje Tema 10

Análisis Matemático I

Javier Gómez López

11 de marzo de 2022

- 1. Conocer y comprender el enunciado de los siguientes resultados:
 - a) Teorema del valor medio escalar

Teorema 1. Sea Ω un abierto de un espacio normado X, $a, b \in \Omega$ tales que $[a, b] \subset \Omega$ $y \ f : \Omega \to \mathbb{R}$ una función continua en [a, b], y diferenciable en [a, b]. Entonces, existe $c \in]a, b[$ tal que

$$f(b) - f(a) = Df(c)(b - a) \tag{1}$$

Como consecuencia, si $M \in \mathbb{R}_0^+$ verifica que $||Df(x)|| \leq M$ para todo $x \in]a,b[$, se tendrá:

$$|f(b) - f(a)| \le M||b - a|| \tag{2}$$

b) Corolarios de la desigualdad del valor medio

Corolario 1. Sean X e Y espacios normados, Ω un abierto convexo de X y f: $\Omega \to Y$ una función diferenciable. Supongamos que existe $M \in \mathbb{R}^+_0$ verificando que $||Df(x)|| \le M$ para todo $x \in \Omega$. Entonces f es lipschitziana con constante M, es decir:

$$||f(b) - f(a)|| \le M||b - a|| \quad \forall a, b \in \Omega$$

Corolario 2. Sean X e Y espacios normados, Ω un subconjunto abierto y conexo de X y f : $\Omega \to Y$ una función diferenciable tal que Df(x) = 0 para todo $x \in \Omega$. Entonces f es constante.

2. Conocer y comprender la versión general de la desigualdad del valor medio, incluyendo su demostración, así como la del lema previo.

Lema. Sea Y un espacio normado y sean $g:[0,1] \to Y$ y $\alpha:[0,1] \to \mathbb{R}$ dos funciones continuas en [0,1] y derivables en [0,1], verificando que

$$||g'(t)|| \le \alpha'(t) \qquad \forall t \in]0,1[\tag{3}$$

Se tiene entonces la siquientes designaldad:

$$||g(1) - g(0)|| \le \alpha(1) - \alpha(0) \tag{4}$$

Demostración. Fijado $\varepsilon > 0$, consideremos el conjunto

$$\Lambda = \{t \in [0,1] : ||g(t) - g(0)|| \le \alpha(t) - \alpha(0) + \varepsilon t + \varepsilon\}$$

y a poco que se piense, la demostración estará casi concluida si probamos que $1 \in \Lambda$.

Por ser g y α continuas, la función $\varphi:[0,1]\to\mathbb{R}$ defindia por

$$\varphi(t) = ||g(t) - g(0)|| - (\alpha(t) - \alpha(0)) - \varepsilon t \qquad \forall t \in [0, 1]$$

también es continua, de lo que deduciremos dos consecuencias:

En primer lugar, como $\varphi(0) = 0$, la continuidad de φ en 0 nos permite encontrar $\eta \in]0,1[$ tal que, para $t \in [0,\eta]$, se tenga $\varphi(t) < \varepsilon$, con lo que $[0,\eta] \subset \Lambda$.

Por otra parte, como $\Lambda = \{t \in [0,1] : \varphi(t) \leq \varepsilon\}$, la continuidad de φ nos dice que Λ es un subconjunto cerrado de [0,1], luego es compacto, y en particular tiene máximo. Sea pues $t_0 = \max \Lambda$ y anotemos que $t_0 \geq \eta > 0$. Nuestro objetivo es probar que $t_0 = 1$, así que supondremos que $t_0 < 1$ para llegar a una contradeción.

Al ser $0 < t_0 < 1$, tenemos que g y α son derivables en t_0 , luego existe $\delta > 0$ tal que, para todo $t \in [0, 1]$ con $|t - t_0| \le \delta$, se tiene

$$||g(t) - g(t_0) - g'(t_0)(t - t_0)|| \le \frac{\varepsilon}{2} |t - t_0|$$
 y también
 $|\alpha(t) - \alpha(t_0) - \alpha'(t_0)(t - t_0)| \le \frac{\varepsilon}{2} |t - t_0|$

Obviamente, podemos suponer que $t_0 + \delta < 1$, para tomar $t = t_0 + \delta$ y obtener

$$||g(t_0 + \delta) - g(t_0) - \delta g'(t_0)|| \le \frac{\varepsilon}{2}\delta \qquad \text{así como}$$

$$|\alpha(t_0 + \delta) - \alpha(t_0) - \delta \alpha'(t_0) \le \frac{\varepsilon}{2}\delta \qquad (5)$$

Llegaremos a una contradicción viendo que $t_0 + \delta \in \Lambda$. Para ello, usando la primera desigualdad de (5), la hipótesis (3) con $t = t_0$, y el hecho de que $t_0 \in \Lambda$, tenemos:

$$||g(t_{0} + \delta) - g(0)|| \leq ||g(t_{0} + \delta) - g(t_{0}) - \delta g'(t_{0})|| + \delta ||g'(t_{0})|| + ||g(t_{0}) - g(0)||$$

$$\leq \frac{\varepsilon}{2}\delta + \delta\alpha'(t_{0}) + \alpha(t_{0}) - \alpha(0) + \varepsilon t_{0} + \varepsilon$$
(6)

Por otra parte, usando la segunda desigualad de (5) tenemos también

$$\delta \alpha'(t_0) + \alpha(t_0) = \alpha(t_0 + \delta) - (\alpha(t_0 + \delta) - \alpha(t_0) - \delta \alpha'(t_0))$$

$$\leq \alpha(t_0 + \delta) + \frac{\varepsilon}{2}\delta$$
(7)

De (6) y (7) deducimos claramente que

$$||g(t_0+\delta)-g(0)|| \leq \frac{\varepsilon}{2}\delta + \alpha(t_0+\delta) + \frac{\varepsilon}{2}\delta - \alpha(0) + \varepsilon t_0 + \varepsilon$$

$$= \alpha(t_0 + \delta) - \alpha(0) + \varepsilon(t_0 + \delta) + \varepsilon$$

es decir, que $t_0 + \delta \in \Lambda$. Esto es una clara contradicción, ya que $t_0 + \delta > t_0 = \max \Lambda$.

Así pues hemos comprobado que $t_0 = 1$ y en particular $1 \in \Lambda$, es decir

$$||g(1) - g(0)|| \le \alpha(1) + \alpha(0) + 2\varepsilon$$

Como esto es válido para todo $\varepsilon \in \mathbb{R}^+$, tenemos (4), como queríamos.

Teorema (Desigualdad del valor medio). Sean X e Y espacios normados, Ω abierto de X, $a,b \in X$ tales que $[a,b] \subset \Omega$ y $f:\Omega \to Y$ una función. Supongamos que f es continua en [a,b] y diferenciable en [a,b[, y que existe $M \in \mathbb{R}^+_0$ tal que $||Df(x)|| \leq M$ para todo $x \in]a.b[$. Se tiene entonces:

$$||f(b) - f(a)|| \le M||b - a||$$

Demostración. Basta aplicar el lema anterior a las funciones $g_{[0,1]} \to Y$ y $\alpha : [0,1] \to \mathbb{R}$ definidas, para todo $t \in [0,1]$, por

$$g(t) = f((1-t)a + tb)$$
 y $\alpha(t) = M||b-a||t$

Es claro que g y α son continuas en [0,1] y derivables en [0,1] con

$$||g'(t)|| = ||Df((1-t)a+tb)(b-a)||$$

 $\leq ||Df((1-t)a+tb)||||b-a|| \leq M||b-a|| = \alpha'(t) \quad \forall t \in]0,1[$

Aplicando pues el lema anterior, obtenemos la desigualdad buscada:

$$||f(b) - f(a)|| = ||g(1) - g(0)|| < \alpha(1) - \alpha(0) = M||b - a||$$