K-means in spark + PROJECT description

Basic notions

 Borrowed from Francis Back's nice notes at ENS (<u>https://www.di.ens.fr/~fbach/courses/fall2013/lecture3.pdf</u>)

K- means clustering is a method of vector quantization. K-means clustering is an algorithm of alternate minimization that aims at partitioning n observations into K clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype to the cluster (see Figure 3.1).

Figure 3.1. Clustering on a 2D point data set with 3 clusters.

Notations

We will use the following notations:

- $x_i \in \mathbb{R}^p$, $i \in \{1, ..., n\}$ are the observations we want to partition.
- $\mu_k \in \mathbb{R}^p$, $k \in \{1, ..., K\}$ are the means where μ_k is the center of the cluster k. We will denote μ the associated matrix.
- z_i^k are indicator variables associated to x_i such that $z_i^k = 1$ if x_i belongs to the cluster $k, z_i^k = 0$ otherwise. z is the matrix which components are equal to z_i^k .

Finally, we define the distortion $J(\mu, z)$ by:

$$J(\mu, z) = \sum_{i=1}^{n} \sum_{k=1}^{K} z_i^k ||x_i - \mu_k||^2.$$

The K-means algorithm

The aim of the algorithm is to minimize $J(\mu, z)$. To do so we proceed with an alternating minimization :

- Step 0: We choose a vector μ
- Step 1: we minimize J with respect to $z: z_i^k = 1$ if $||x_i \mu_k||^2 = \min_s ||x_i \mu_s||^2$, in other words we associate to x_i the nearest center μ_k .
- Step 2: we minimize J with respect to μ : $\mu_k = \frac{\sum_i z_i^k x_i}{\sum_i z_i^k}$.
- Step 3: we come back to step 1 until convergence.

Data

 We will use a simple (classical) data set describing features of flowers (available at https://www.dropbox.com/s/9kits2euwawcsj0/iris.data.txt)

Le jeu de données [modifier modifier le code]				
Fisher's Iris Data				
longueur des sépales (en cm) ‡	largeur des sépales (en cm) ‡	longueur des pétales (en cm) (Petal length)	largeur des pétales (en cm) ‡ (Petal width)	Espèce (Species)
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

source: https://fr.wikipedia.org/wiki/Iris_(jeu_de_données)

How do we proceed

- I will give you the code soon
- To launch a Python program from the master node of the cluster.

```
spark-submit --master yarn \
    --executor-memory 7g \
    --num-executors 5 \
    --executor-cores 1 \
    kmeans-dario-x.py
```

- Step-by-step presentation of the code
- Then you can launch the job and eventually modify it.

Initialising variables and RDDs

Initialising the centroids

In the same manner, zipWithIndex gives an id to each cluster

Points repartition

```
joined = data.cartesian(centroides)
# ((0, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']), (0, [4.4, 3.0, 1.3, 0.2]))
```

We compute the distance between the points and each cluster

```
dist = joined.map(lambda x: (x[0][0], (x[1][0], computeDistance(x[0][1][:-1], x[1]
[1]))))

def computeDistance(x,y):
    return sqrt(sum([(a - b)**2 for a,b in zip(x,y)]))

# (0, (0, 0.866025403784438))

dist_list = dist.groupByKey().mapValues(list)

# (0, [(0, 0.866025403784438), (1, 3.7), (2, 0.5385164807134504)])
```

Points repartition

```
def closestCluster(dist_list):
    cluster = dist_list[0][0]
    min_dist = dist_list[0][1]
    for elem in dist_list:
        if elem[1] < min_dist:
            cluster = elem[0]
                 min_dist = elem[1]
    return (cluster, min_dist)</pre>
```

We keep only the closest cluster to each point.

```
min_dist = dist_list.mapValues(closestCluster)

# (0, [(0, 0.866), (1, 3.7), (2, 0.538)])

# (0, (2, 0.538))
```

assignment will be our return value: It contains the datapoint, # the id of the closest cluster and the distance of the point to the centroid

```
assignment = min_dist.join(data)
# (0, ((2, 0.538), [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']))
```



```
New centroids
# (0, ((2, 0.538), [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']))
clusters = assignment.map(lambda x: (x[1][0][0], x[1][1]
[:-1])
# (2, [5.1, 3.5, 1.4, 0.2])
count = clusters.map(lambda x: (x[0],1)).reduceByKey(lambda
x, y: x+y)
somme = clusters.reduceByKey(sumList)
newCentroides = somme.join(count).map(lambda x :
(x[0], movenneList(x[1][0], x[1][1]))
def moyenneList(x,n):
   return [x[i]/n for i in range(len(x))]
```

Spark Lightning-Fast Cluster Computing

End Condition

Based on counting the number of point moves

End Condition

```
if switch == 0 or number_of_steps == 100:
    clusteringDone = True
    error = sqrt(min_dist.map(lambda x: x[1][1]).reduce(lambda x,y: x + y))/
nb_elem.value

else:
    centroides = centroidesCluster
    prev_assignment = min_dist
    number_of_steps += 1
```

The whole program

- Available at https://www.dropbox.com/s/tm9lk6vffci5yzr/kmeans-dario-x.py
- ATTENTION: you need to
 - load the iris data on your HDFS home
 - change the program by indicating where to load the data and to store the result - this is left as an exercice
 - On AWS run the job with spark-submit --master yarn \
 --executor-memory 7g \
 --num-executors 5 \
 --executor-cores 1 \
 kmeans-dario-x.py

Cluster Dauphine

```
spark-submit \
--master yarn --deploy-mode cluster \
--executor-cores 4 \
--num-executors 11 \
--executor-memory 5g \
--conf spark.yarn.executor.memoryOverhead=2g \
--conf spark.driver.memory=5g \
--conf spark.driver.cores=1 \
--conf spark.yarn.jars="file:///home/cluster/shared/spark/jars/*.jar" \
kmeans-dario-x.py
```

Project on Kmeans

Deadline Febraury 3, 2020

- Make experimental analysis of the basic Python version, eventually by lowering the number of iterations
- Find, describe, and implement otpimizations
- Use bigger input data instead of Iris, or bigger Iris instances, and perform experiments
- · Switch to Scala
 - RDD
 - Dataframes
 - Datasets
 - Pick a sufficiently large input and make experiments to compare Scala implementations
- Write a technical report, around 20 pages max, with main points about implementations and experiments.
- Send the report + the code by email by the indicated deadline.

Second PROJECT

· Deadline Febraury 3, 2020

- Consider the book http://www.iro.umontreal.ca/~nie/IFT6255/
 Books/MapReduce.pdf
- Implement in Spark algorithms presented in Chapter 6 about EM and HMM and perform experiments, by usisng indicated data sets + another data set you will find in the web
- Discuss eventual efficiency problems (at least one) and propose some solutions (at least one) supported by experiment.
- Write a report, max 20 pages, clearly introducing the problem and solutions and experiments.
- Send the report + the code by email by the indicated deadline.