

Navigation and Ancillary Information Facility

Instrument Kernel IK

January 2017

Purpose

Navigation and Ancillary Information Facility

- The Instrument Kernel serves as a repository for instrument specific information that may be useful within the SPICE context.
 - Always included:
 - » Specifications for an instrument's field-of-view (FOV) size, shape, and orientation
 - Other possibilities:
 - » Internal instrument timing parameters and other data relating to SPICE computations might also be placed in an I-kernel
 - » Instrument geometric calibration data
 - » Instrument detector geometric parameters
 - » Instrument optical distortion parameters
- Note: instrument mounting alignment data are specified in a mission's Frames Kernel (FK)
 - _ Wasn't true for some of the earliest missions that used SPICE

I-Kernel Structure

Navigation and Ancillary Information Facility

• An I-Kernel is a SPICE text kernel. The format and structure of a typical I-Kernel is shown below.

```
KPL/IK
   Comments describing the keywords and values
   to follow, as well as any other pertinent
   information.
      \begindata
         Keyword = Value(s) Assignment
         Keyword = Value(s) Assignment
      \begintext
   More descriptive comments.
      \begindata
         Keyword = Value(s) Assignment
      \begintext
```

More descriptive comments. etc...

I-Kernel Contents (1)

Navigation and Ancillary Information Facility

Examples of IK keywords, with descriptions:

- INS-94031_FOCAL_LENGTH

MGS MOC NA focal length

- INS-41220 IFOV

MEX HRSC SRC pixel angular size

- INS-41130 NUMBER OF SECTORS

MEX ASPERA NPI number of sectors

- In general SPICE does not require any specific keywords to be present in an IK
 - One exception is a set of keywords defining an instrument's FOV, if the SPICE Toolkit's GETFOV routine is planned to be used to retrieve the FOV attributes
 - » Keywords required by GETFOV will be covered later in this tutorial
- The requirements on keywords in an IK are the following:
 - Keywords must begin with INS[#], where [#] is replaced with the NAIF instrument ID code (which is a negative number)
 - The total length of the keyword must be less than or equal to 32 characters

Keywords are case-sensitive (Keyword != KEYWORD)

I-Kernel Contents (2)

Navigation and Ancillary Information Facility

- IKs should contain extensive comments regarding:
 - Instrument overview
 - Reference source(s) for the data included in the IK
 - Names/IDs assigned to the instrument and its parts
 - Explanation of each keyword included in the file
 - Description of the FOV and detector layout
 - Where appropriate, descriptions of the algorithms in which parameters provided in the IK are used, and even fragments of source code implementing these algorithms
 - » For example optical distortion models or timing algorithms
- These comments exist primarily to assist users in integrating I-Kernel data into their applications
 - One needs to know the keyword name to get its value(s) from the IK data
 - One needs to know what each value means in order to use it properly

I-Kernel Interface Routines

Navigation and Ancillary Information Facility

As with any SPICE kernel, an IK is loaded using FURNSH

```
CALL FURNSH ( 'ik_file_name.ti' ) { Better yet, use a FURNSH kernel }
```

 By knowing the name and type (DP, integer, or character) of a keyword of interest, the value(s) associated with that keyword can be retrieved using G*POOL routines

```
CALL GDPOOL ( NAME, START, ROOM, N, VALUES, FOUND ) for DP values

CALL GIPOOL ( NAME, START, ROOM, N, VALUES, FOUND ) for integer values

CALL GCPOOL ( NAME, START, ROOM, N, VALUES, FOUND ) for character string values
```

 When an instrument's FOV is defined in the IK using a special set of keywords discussed later in this tutorial, the FOV shape, reference frame, boresight vector, and boundary vectors can be retrieved by calling the GETFOV routine

```
CALL GETFOV ( INSTID, ROOM, SHAPE, FRAME, BSIGHT, N, BOUNDS)
```

FORTRAN examples are shown

FOV Definition Keywords (1)

Navigation and Ancillary Information Facility

- The following keywords defining FOV attributes for the instrument with NAIF ID (#) must be present in the IK if the SPICE Toolkit's GETFOV module will be used
 - Keyword defining shape of the FOV

 Keyword specifying the reference frame in which the boresight vector and FOV boundary vectors are specified

```
INS#_FOV_FRAME = 'frame name'
```

Keyword defining the boresight vector

$$INS\#_BORESIGHT = (X, Y, Z)$$

FOV Definition Keywords (2)

Navigation and Ancillary Information Facility

- Keyword(s) defining FOV boundary vectors, provided in either of two ways
 - 1) By specifying boundary vectors explicitly

where the FOV_BOUNDARY_CORNERS keyword provides an array of vectors that point to the "corners" of the instrument field of view.

Note: Use of the INS#_FOV_CLASS_SPEC keyword is optional when explicit boundary vectors are provided.

FOV Definition Keywords (3)

Navigation and Ancillary Information Facility

2) By providing half angular extents of the FOV (possible only for circular, elliptical or rectangular FOVs)

where the FOV_REF_VECTOR keyword specifies a reference vector that, together with the boresight vector, define the plane in which the half angle given in the FOV_REF_ANGLE keyword is measured. The other half angle given in the FOV_CROSS_ANGLE keyword is measured in the plane normal to this plane and containing the boresight vector.

FOV Definition Keywords (4)

Navigation and Ancillary Information Facility

- When explicit boundary vectors are provided, they must be listed in either clockwise or counter-clockwise order, not randomly
- Neither the boresight nor reference vector has to be co-aligned with one of the FOV frame's axes
 - But for convenience, each is frequently defined to be along one of the FOV axes
- Neither the boresight nor corner nor reference vector has to be a unit vector
 - But these frequently are defined as unit vectors
- When a FOV is specified using the half angular extents method, the boresight and reference vectors have to be linearly independent but they don't have to be perpendicular
 - But for convenience the reference vector is usually picked to be normal to the boresight vector
- Half angular extents for a rectangular FOV specify the angles between the boresight and the FOV sides, i.e. they are for the middle of the FOV
- The next several pages show examples of FOV definitions

Circular Field of View

Navigation and Ancillary Information Facility

Consider an instrument with a circular field of view.

Circular FOV Definition

Navigation and Ancillary Information Facility

The following sets of keywords and values describe this circular field of view:

Specifying boundary vectors explicitly:

Specifying half angular extents of the FOV:

Elliptical Field of View

Navigation and Ancillary Information Facility

Consider an instrument with an elliptical field of view.

Elliptical FOV Definition

Navigation and Ancillary Information Facility

The following sets of keywords and values describe this elliptical field of view:

Specifying boundary vectors explicitly:

Specifying half angular extents of the FOV:

Rectangular Field of View

Navigation and Ancillary Information Facility

Consider an instrument with a rectangular field of view.

Rectangular FOV Definition

Navigation and Ancillary Information Facility

The following sets of keywords and values describe this rectangular field of view:

Specifying boundary vectors explicitly:

Specifying half angular extents of the FOV:

Polygonal Fields of View

Navigation and Ancillary Information Facility

Consider an instrument with a trapezoidal field of view.

Polygonal FOV Definition

Navigation and Ancillary Information Facility

The following sets of keywords and values describe this polygonal field of view:

Specifying boundary vectors explicitly:

• A polygonal FOV cannot be specified using half angular extents.

IK Utility Programs

Navigation and Ancillary Information Facility

- No IK utility programs are included in the Toolkit
- Two IK utility programs are provided on the NAIF website (http://naif.jpl.nasa.gov/naif/utilities.html)

OPTIKS displays field-of-view summary for all FOVs defined in

a collection of IK files.

BINGO converts IK files between UNIX and DOS text formats

Additional Information on IK

Navigation and Ancillary Information Facility

- The best way to learn more about IKs is to examine some found in the NAIF Node archives.
 - Start looking here:

```
http://naif.jpl.nasa.gov/naif/data_archived.html
```

- NAIF does not yet have an "I-Kernel Required Reading" document
- But information about IKs is available in other documents:
 - header of the GETFOV routine
 - Kernel Required Reading
 - OPTIKS User's Guide
 - Porting kernels tutorial
 - NAIF IDs Tutorial
 - Frames Required Reading

Backup

Navigation and Ancillary Information Facility

IK file example

Computing angular extents from corner vectors returned by GETFOV

Sample IK Data

Navigation and Ancillary Information Facility

The following LEMMS1 FOV definition was taken from the Cassini MIMI IK (cas_mimi_v11.ti):

```
Low Energy Magnetospheric Measurements System 1 (LEMMS1)
  Since the MIMI LEMMS1 detector's FOV is circular and it's diameter is 15.0
  degrees, looking down the X-axis in the CASSINI MIMI LEMMS1 frame, we have:
   (Note we are arbitrarily choosing a vector that terminates in the Z=1
   plane.)
                                    ins
                               X \
                                ins \
                                  |-- 1.0 --|
```

continues

Sample IK Data

Navigation and Ancillary Information Facility

FOV definition from the Cassini MIMI IK (continued):

```
The Y component of one 'boundary corner' vector is:
       Y Component = 1.0 * tan (7.50 degrees)
                = 0.131652498
  The boundary corner vector as displayed below is
  normalized to unit length:
\begindata
INS-82762 FOV FRAME = 'CASSINI MIMI LEMMS1'
INS-82762 FOV SHAPE = 'CIRCLE'
INS-82762 BORESIGHT = (
 INS-82762 FOV BOUNDARY CORNERS = (
 \begintext
```


Circular FOV Angular Size

Navigation and Ancillary Information Facility

The angular separation between the boundary corner vector and the boresight is the angular size.

FORTRAN EXAMPLE

Elliptical FOV Angular Size - 1

Navigation and Ancillary Information Facility

The angular sizes are the angular separations between the boresight and the boundary vectors.

FORTRAN EXAMPLE

```
C Retrieve the FOV parameters from the kernel pool.
    CALL GETFOV(-22222, 2, SHAPE, FRAME, BSGHT, N, BNDS)

C Compute the angular separations.
    ANG1 = VSEP( BSGHT, BNDS(1,1) )
    ANG2 = VSEP( BSGHT, BNDS(1,2) )

C The angle along the semi-major axis is the larger
    of the two separations computed.
    LRGANG = MAX( ANG1, ANG2)
    SMLANG = MIN( ANG1, ANG2)
```


Elliptical FOV Angular Size - 2

Navigation and Ancillary Information Facility

C EXAMPLE

Rectangular FOV Angular Size - 1

Navigation and Ancillary Information Facility

The angular extents of the FOV are computed by calculating the angle between the bisector of adjacent unit boundary vectors and the boresight.

Rectangular FOV Angular Size - 2

Navigation and Ancillary Information Facility

FORTRAN EXAMPLE

```
С
     Retrieve FOV parameters from the kernel pool.
     CALL GETFOV (-33333, 4, SHAPE, FRAME, BSGHT, N, BNDS)
C
     Normalize the 3 boundary vectors
     CALL UNORM (BNDS (1,1), UNTBND (1,1), MAG)
     CALL UNORM (BNDS (1,2), UNTBND (1,2), MAG)
     CALL UNORM (BNDS (1,3), UNTBND (1,3), MAG)
C
     Compute the averages.
     CALL VADD (UNTBND (1,1), UNTBND (1,2), VEC1)
     CALL VSCL(0.5, VEC1, VEC1)
     CALL VADD (UNTBND (1,2), UNTBND (1,3), VEC2)
     CALL VSCL(0.5, VEC2, VEC2)
     Compute the angular separations
C
            = VSEP( BSGHT, VEC1 )
     ANG1
            = VSEP( BSGHT, VEC2 )
     ANG2
C
     Separate the larger and smaller angles.
     LRGANG = MAX(ANG1, ANG2)
     SMLANG = MIN(ANG1, ANG2)
```


Rectangular FOV Angular Size - 3

Navigation and Ancillary Information Facility

C EXAMPLE

```
/* Define the string length parameter. */
   #define STRSIZ
/* Retrieve the FOV parameters from the kernel pool. */
   getfov c(-33333, 4, STRSIZ, STRSIZ, shape, frame,
              bsqht, &n, bnds);
/* Normalize the 3 boundary vectors. */
   unorm c(&(bnds[0][0]), &(untbnd[0][0]), &mag);
   unorm c(&(bnds[1][0]), &(untbnd[1][0]), &mag);
   unorm c(&(bnds[2][0]), &(untbnd[2][0]), &mag);
/* Compute the averages */
   vadd c(&(untbnd[0][0]), &(untbnd[1][0]), vec1);
   vscl c(0.5, vec1, vec1);
   vadd c(&(untbnd[1][0]), &(untbnd[2][0]), vec2);
   vscl c(0.5, vec2, vec2);
/* Compute the angular separations. */
   ang1 = vsep c( bsght, vec1);
    ang2 = vsep c( bsght, vec2);
/* Separate the larger and smaller angles. */
    if ( ang1 > ang2 ) {
       lrgang = ang1; smlang = ang2; }
    else {
       lrgang = ang2; smlang = ang1; }
```