Prof: T. S. Grigera JTP: G. Ferrara

Práctica 1 — Introducción a Monte Carlo

Bibliografía: Krauth (2006, Cap. 1)

Ejercicio 1. Implemente el algoritmo para calcular π mediante la estimación Monte Carlo por muestreo directo de la integral

$$\int_{-R}^{R} dx \int_{-R}^{R} dy f(x, y), \qquad f(x, y) = \begin{cases} 1 & x^2 + y^2 \le R^2 \\ 0 & \text{si no.} \end{cases}$$
 (1.1)

Considere $N=10,100,10^2,\ldots,10^8$ muestras y para cada N obtenga 20 estimaciones. Estime luego la varianza $\langle [(N_a/N)-\pi]^2 \rangle$ y grafique en función de N. ¿Cómo se comporta la varianza con N?

Ejercicio 2. Implemente el cálculo del ejercicio anterior pero utilizando un muestreo mediante una cadena de Markov. Utilice un paso de tamaño $\delta=0.3$ y experimente para comprobar que converge al número π para valores grandes del número de muestras N. Grafique la tasa de aceptación y la varianza para $N=10^6$ como función de δ en el intervalo [0,3R]. ¿Qué valor de δ arroja la estima más pequeña de la varianza?

Ejercicio 3. Calcule π mediante una simulación del experimento de Bouffon.

Ejercicio 4. a) Implemente un proceso de Markov que recorra una red cuadrada de 4×4 visitando todos los sitios con igual probabilidad. Verifíquelo graficando el número de visitas a cada sitio en función del número de pasos. **b)** Ensaye una variante tipo Metropolis-Hastings en la cual los sitios de los bordes nunca proponen una movida hacia afuera de la red.