CrossMark

FULL LENGTH PAPER

SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints

Liuqin Yang¹ · Defeng Sun² · Kim-Chuan Toh¹

Received: 30 May 2014 / Accepted: 19 April 2015 / Published online: 5 May 2015 © Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2015

Abstract In this paper, we present a majorized semismooth Newton-CG augmented Lagrangian method, called SDPNAL+, for semidefinite programming (SDP) with partial or full nonnegative constraints on the matrix variable. SDPNAL+ is a much enhanced version of SDPNAL introduced by Zhao et al. (SIAM J Optim 20:1737–1765, 2010) for solving generic SDPs. SDPNAL works very efficiently for nondegenerate SDPs but may encounter numerical difficulty for degenerate ones. Here we tackle this numerical difficulty by employing a majorized semismooth Newton-CG augmented Lagrangian method coupled with a convergent 3-block alternating direction method of multipliers introduced recently by Sun et al. (SIAM J Optim, to appear). Numerical results for various large scale SDPs with or without nonnegative constraints show that the proposed method is not only fast but also robust in obtaining accurate solutions. It outperforms, by a significant margin, two other competitive publicly available first order methods based codes: (1) an alternating direction method of

yangliuqin@u.nus.edu
Defeng Sun
matsundf@nus.edu.sg

Department of Mathematics and Risk Management Institute, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076, Singapore

D. Sun's research was supported in part by the Academic Research Fund under Grant R-146-000-149-112. K.-C. Toh's research supported in part by the Ministry of Education, Singapore, Academic Research Fund under Grant R-146-000-194-112.

 [⊠] Kim-Chuan Toh mattohkc@nus.edu.sg Liuqin Yang

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076, Singapore

multipliers based solver called SDPAD by Wen et al. (Math Program Comput 2:203–230, 2010) and (2) a two-easy-block-decomposition hybrid proximal extragradient method called 2EBD-HPE by Monteiro et al. (Math Program Comput 1–48, 2014). In contrast to these two codes, we are able to solve all the 95 difficult SDP problems arising from the relaxations of quadratic assignment problems tested in SDPNAL to an accuracy of 10^{-6} efficiently, while SDPAD and 2EBD-HPE successfully solve 30 and 16 problems, respectively. In addition, SDPNAL+ appears to be the only viable method currently available to solve large scale SDPs arising from rank-1 tensor approximation problems constructed by Nie and Wang (SIAM J Matrix Anal Appl 35:1155–1179, 2014). The largest rank-1 tensor approximation problem we solved (in about 14.5 h) is nonsym(21, 4), in which its resulting SDP problem has matrix dimension n = 9261 and the number of equality constraints m = 12,326,390.

Keywords Semidefinite programming · Degeneracy · Augmented Lagrangian · Semismooth Newton-CG method

Mathematics Subject Classification 90C06 · 90C22 · 90C25 · 65F10

1 Introduction

Let \mathcal{K} be a pointed closed convex cone whose interior $int(\mathcal{K}) \neq \emptyset$ and \mathcal{P} be a polyhedral convex cone in a finite-dimensional Euclidean space \mathcal{X} such that $\mathcal{K} \cap \mathcal{P}$ is non-empty. For any cone $\mathcal{C} \subseteq \mathcal{X}$, we denote the dual cone of \mathcal{C} by \mathcal{C}^* . For any closed convex set $\mathcal{C} \subseteq \mathcal{X}$, we denote the metric projection of \mathcal{X} onto \mathcal{C} by $\Pi_{\mathcal{C}}(\cdot)$ and the tangent cone of \mathcal{C} at $X \in \mathcal{C}$ by $T_{\mathcal{C}}(X)$, respectively. We will make extensive use of the Moreau decomposition theorem in [11], which states that $X = \Pi_{\mathcal{C}}(X) - \Pi_{\mathcal{C}^*}(-X)$ for any $X \in \mathcal{X}$ and any closed convex cone $\mathcal{C} \subseteq \mathcal{X}$. Let \mathcal{S}^n be the space of $n \times n$ real symmetric matrices and \mathcal{S}^n_+ be the cone of positive semidefinite matrices in \mathcal{S}^n . In this paper, we focus on the case where $\mathcal{X} = \mathcal{S}^n_+$, $\mathcal{K} = \mathcal{K}^* = \mathcal{S}^n_+$. We are particularly interested in the case where $\mathcal{P} = \mathcal{S}^n_{\geq 0}$, the cone of $n \times n$ real symmetric matrices whose elements are all nonnegative, though the algorithm which we will design later is also applicable to other cases. For any matrix $X \in \mathcal{S}^n$, we use $X \succ 0$ to indicate that X is a real symmetric positive definite matrix.

Consider the semidefinite programming (SDP) with an additional polyhedral cone constraint, which we name as SDP+:

(P)
$$\max\{\langle -C, X \rangle \mid \mathcal{A}(X) = b, X \in \mathcal{K}, X \in \mathcal{P}\},$$
 (1)

where $b \in \mathbb{R}^m$ and $C \in \mathcal{X}$ are given data, $\mathcal{A} : \mathcal{X} \to \mathbb{R}^m$ is a given linear map whose adjoint is denoted as \mathcal{A}^* . Note that $\mathcal{P} = \mathcal{X}$ is allowed in (1), in which case there is no additional polyhedral cone constraint imposed on X. We assume that the matrix $\mathcal{A}\mathcal{A}^*$ is invertible, i.e., \mathcal{A} is surjective. The dual of (P) is given by

(D)
$$\min\{\langle -b, y \rangle \mid \mathcal{A}^*(y) + S + Z = C, S \in \mathcal{K}^*, Z \in \mathcal{P}^*\}.$$
 (2)

The optimality conditions (KKT conditions) for (P) and (D) can be written as follows:

$$\begin{cases} \mathcal{A}(X) - b = 0, \ \mathcal{A}^*(y) + S + Z - C = 0, \\ \langle X, \ S \rangle = 0, \quad X \in \mathcal{K}, \quad S \in \mathcal{K}^*, \quad \langle X, \ Z \rangle = 0, \quad X \in \mathcal{P}, \quad Z \in \mathcal{P}^*. \end{cases}$$
 (3)

In order for the KKT conditions (3) to have solutions, throughout this paper we make the following blanket assumption.

Assumption 1 (a) For problem (P), there exists a feasible solution $X_0 \in \mathcal{S}^n_+$ such that

$$\mathcal{A}(X_0) = b, \quad X_0 \succ \mathbf{0}, \quad X_0 \in \mathcal{P}. \tag{4}$$

(b) For problem (D), there exists a feasible solution $(y_0, S_0, Z_0) \in \Re^m \times S^n_+ \times S^n$ such that

$$\mathcal{A}^*(y_0) + S_0 + Z_0 = C, \quad S_0 > 0, \quad Z_0 \in \mathcal{P}^*.$$
 (5)

It is known from convex analysis (e.g, [3, Corollary 5.3.6]) that under Assumption 1, the strong duality for (P) and (D) holds and the KKT conditions (3) have solutions.

For a given $\sigma > 0$, define the augmented Lagrangian function for the dual problem (D) as follows:

$$L_{\sigma}(y, S, Z; X) = \langle -b, y \rangle + \langle X, A^*y + S + Z - C \rangle + \frac{\sigma}{2} ||A^*y + S + Z - C||^2$$

= $\langle -b, y \rangle + \frac{\sigma}{2} ||A^*y + S + Z + \sigma^{-1}X - C||^2 - \frac{1}{2\sigma} ||X||^2$, (6)

where $X \in \mathcal{X}$, $y \in \mathbb{R}^m$, $S \in \mathcal{K}^*$, $Z \in \mathcal{P}^*$. We can consider the following inexact augmented Lagrangian method to solve (D). Specifically, given $\sigma_0 > 0$, $(y^0, S^0, Z^0) \in \mathbb{R}^m \times \mathcal{K}^* \times \mathcal{P}^*$, perform the following steps at the (k+1)th iteration:

$$\begin{cases} (y^{k+1}, S^{k+1}, Z^{k+1}) \approx \arg\min\{L_{\sigma_k}(y, S, Z; X^k) \mid y \in \Re^m, S \in \mathcal{K}^*, Z \in \mathcal{P}^*\}, \\ X^{k+1} = X^k + \sigma_k(\mathcal{A}^* y^{k+1} + S^{k+1} + Z^{k+1} - C), \end{cases}$$
(7a)

where $\sigma_k \in (0, +\infty)$, k = 0, 1, ... For a general discussion on the convergence of the augmented Lagrangian method for solving convex optimization problems and beyond, see [18,19].

Note that problem (P) can be reformulated as a standard SDP in the primal form by replacing the constraint $X \in \mathcal{P}$ with two constraints X - Y = 0 and $Y \in \mathcal{P}$. In [26], SDPNAL introduced by Zhaoet al. is applied to solve such a reformulated problem. It works quite well for nondegenerate SDPs, especially those without the constraint $X \in \mathcal{P}$. However, many of the tested SDPs (with the constraint $X \in \mathcal{P}$) in [26] are degenerate and SDPNAL is unable to solve those problems efficiently. Motivated by our desire to overcome the aforementioned difficulty in solving degenerate SDPs and

to improve the performance of SDPNAL, we present here a majorized semismooth Newton-CG augmented Lagrangian method by directly working on (P) instead of its reformulated problem. We call this new method SDPNAL+ since it is a much enhanced version of SDPNAL and it is designed for SDP+ problems (P). We should emphasize that the technique of majorization plays a pivotal role in solving the inner problem (7a), which leads to an alternating minimization between the blocks (y, S) and Z.

The remaining parts of this paper are organized as follows. In Sect. 2, we introduce a majorized semismooth Newton-CG method for solving the inner minimization problems of the augmented Lagrangian method and analyze the convergence for solving these inner problems. Section 3 presents the SDPNAL+ dual approach. Section 4 is on numerical issues. There we report numerical results for a variety of SDP+ and SDP problems. We make an extensive numerical comparison with two other competitive first order methods based codes: (1) an alternating direction method of multiplier (ADMM) based solver called SDPAD by Wen et al. [25] and (2) a two-easy-block-decomposition hybrid proximal extragradient method called 2EBD-HPE by Monteiro et al. [10]. Numerical results show that SDPNAL+ is both fast and robust in achieving accurate solutions.

For the first time, we are able to solve all the 95 difficult SDP problems arising from the relaxations of quadratic assignment problems (QAPs) tested in SDPNAL to an accuracy of 10^{-6} efficiently, while SDPAD and 2EBD-HPE successfully solve 30 and 16 problems, respectively. In addition, SDPNAL+ appears to be the only viable method currently available to solve large scale SDPs arising from rank-1 tensor approximation problems constructed by Nie and Wang [12]. The largest rank-1 tensor approximation problem solved is nonsym (21, 4), in which its resulting SDP problem has matrix dimension n = 9261 and the number of equality constraints m = 12,326,390. Finally, in order to demonstrate the power of the proposed majorized semismooth Newton-CG procedure, we list the numerical results by only running the convergent ADMM with 3-block constraints (ADMM+ in short) introduced by Sun et al. [22]. As one may observe, although ADMM+ outperforms both SDPAD and 2EBD-HPE, it can still encounter numerical difficulty in solving some hard problems such as those arising from QAPs to high accuracy. The superior numerical performance of SDPNAL+ over solvers based purely on first order methods such as SDPAD and 2EBD-HPE clearly shows the necessity of exploiting second order methods such as the semismooth Newton-CG method in order to solve hard SDP+ and SDP problems to high accuracy efficiently. While there has been a recent focus on using first order methods such as those based on ADMM or accelerated proximal gradient methods to solve structured convex optimization problems arising from machine learning and statistics, the extensive numerical results we obtained here for matrix conic programming problems serve to demonstrate that second order methods with good local convergence property are essential, if used wisely, for mitigating the inherent slow local convergence of first order methods, especially on difficult problems.

2 A majorized semismooth Newton-CG method for inner problems

Let $\sigma > 0$ and $\widetilde{X} \in \mathcal{S}^n$ be fixed. In this section we will present a majorized semi-smooth Newton-CG method for solving the following inner problems involved in the augmented Lagrangian method (7a):

$$\min\{\phi(y, S, Z) := L_{\sigma}(y, S, Z; \widetilde{X}) \mid y \in \Re^{m}, \quad S \in \mathcal{K}^{*}, \quad Z \in \mathcal{P}^{*}\}. \tag{8}$$

Note that problem (8) is the dual of the following problem:

$$\max \left\{ \langle -C, X \rangle - \frac{1}{2\sigma} \|X - \widetilde{X}\|^2 \mid \mathcal{A}(X) = b, \quad X \in \mathcal{K}, \quad X \in \mathcal{P} \right\}. \tag{9}$$

Since the objective function in (9) is strongly concave, (9) has a unique optimal solution. In order for its dual problem (8) to have a bounded solution set, we need the following generalized Slater condition.

Assumption 2 There exists a positive definite matrix $X_0 \in \mathcal{S}^n_+ \cap relint(\mathcal{P})$ such that

$$\mathcal{A}(\mathcal{T}_{\mathcal{P}}(X_0)) = \Re^m, \quad X_0 > 0, \tag{10}$$

where $relint(\mathcal{P})$ denotes the relative interior of \mathcal{P} .

Note that in (10), $\mathcal{T}_{\mathcal{P}}(X_0)$ is actually a linear subspace of \mathcal{S}^n as X_0 is assumed to be in the relative interior part of the polyhedral cone \mathcal{P} . When $\mathcal{P} = \mathcal{S}^n$, Assumption 2 is equivalent to saying that

$$\begin{cases} \mathcal{A}: \mathcal{S}^n \to \mathfrak{R}^m \text{ is onto,} \\ \exists X_0 \in \mathcal{S}^n_+ \text{ such that } \mathcal{A}(X_0) = b, \quad X_0 \succ \mathbf{0}. \end{cases}$$
 (11)

From [17, Theorems 17 and 18], we have the following useful lemma.

Lemma 2.1 Suppose that Assumption 2 holds. Then for any $\alpha \in \Re$, the level set $\mathcal{L}_{\alpha} := \{(y, S, Z) \in \Re^m \times \mathcal{K}^* \times \mathcal{P}^* \mid \phi(y, S, Z) \leq \alpha\}$ is a closed and bounded convex set.

2.1 A majorized semismooth Newton-CG method

Consider $(\tilde{y}, \tilde{S}, \tilde{Z}) \in \arg\min\{\phi(y, S, Z) \mid y \in \Re^m, S \in \mathcal{K}^*, Z \in \mathcal{P}^*\}$. Let

$$\widehat{C} = C - \sigma^{-1} \widetilde{X}.$$

Then we must have $\widetilde{Z} = \prod_{\mathcal{P}^*} (\widehat{C} - \mathcal{A}^* \widetilde{y} - \widetilde{S})$. Therefore, problem (8) is equivalent to the following optimization problem:

$$\min \left\{ \Phi(y, S) := \langle -b, y \rangle + \frac{\sigma}{2} \| \Pi_{\mathcal{P}}(\mathcal{A}^* y + S - \widehat{C}) \|^2 \mid y \in \Re^m, \quad S \in \mathcal{K}^* \right\}. \tag{12}$$

In order to introduce our majorized semismooth Newton-CG method for solving (12), we need to majorize the second part of the objective function in (12) by a convex, but not necessarily strongly convex, quadratic function. Specifically, for given $(y^l, S^l) \in \Re^m \times K^*$ and $l \ge 0$, since

$$\begin{split} \|\Pi_{\mathcal{P}}(\mathcal{A}^*y+S-\widehat{C})\|^2 &\leq \|\Pi_{\mathcal{P}}(\mathcal{A}^*y^l+S^l-\widehat{C})\|^2 + \|\mathcal{A}^*y+S-\mathcal{A}^*y^l-S^l\|^2 \\ &\quad + 2\langle \Pi_{\mathcal{P}}(\mathcal{A}^*y^l+S^l-\widehat{C}), \ \mathcal{A}^*y+S-\mathcal{A}^*y^l-S^l\rangle \\ &= \|\mathcal{A}^*y+S+Z^l-\widehat{C}\|^2, \end{split}$$

where $Z^l := \Pi_{\mathcal{P}^*}(\widehat{C} - \mathcal{A}^* y^l - S^l)$, we know that for $(y, S) \in \Re^m \times S^n$,

$$\Phi(y, S) \leq \langle -b, y \rangle + \frac{\sigma}{2} \| \mathcal{A}^* y + S + Z^l - \widehat{C} \|^2$$

$$= \Psi_l(y, S) := \langle -b, y \rangle + \frac{\sigma}{2} \| \mathcal{A}^* y + S + \sigma^{-1} \widetilde{X} - \widetilde{C}^l \|^2, \tag{13}$$

where $\widetilde{C}^l := C - Z^l$. Thus Ψ_l is a majorization function of Φ at (y^l, S^l) because $\Psi_l(y^l, S^l) = \Phi(y^l, S^l)$ and $\Psi_l(y, S) \ge \Phi(y, S) \forall (y, S) \in \Re^m \times S^n$. In order to find an optimal solution for problem (12), for $l = 0, 1, \ldots$, we solve the following problem

$$\min\{\Psi_l(y,S) \mid y \in \Re^m, \quad S \in \mathcal{K}^*\}. \tag{14}$$

Observe that if $(\tilde{y}, \tilde{S}) \in \arg\min\{\Psi_l(y, S) \mid y \in \Re^m, S \in \mathcal{K}^*\}$, then we must have $\tilde{S} = \prod_{\mathcal{K}^*} (\tilde{C}^l - \mathcal{A}^* \tilde{y} - \sigma^{-1} \tilde{X})$. Thus we can compute y^{l+1} and S^{l+1} simultaneously as follows:

$$\begin{cases} y^{l+1} \in \arg\min\left\{\varphi_l(y) := \langle -b, y \rangle + \frac{\sigma}{2} \|\Pi_{\mathcal{K}}(\mathcal{A}^*y + \sigma^{-1}\widetilde{X} - \widetilde{C}^l)\|^2 \mid y \in \mathfrak{R}^m \right\}, \\ S^{l+1} = \Pi_{\mathcal{K}^*}(\widetilde{C}^l - \mathcal{A}^*y^{l+1} - \sigma^{-1}\widetilde{X}). \end{cases}$$
(15a)

Note that we can only solve problem (15a) inexactly by an iterative method. Here we will introduce a semismooth Newton-CG (SNCG) method for solving (15a). Specifically, for fixed \widetilde{X} , $\widetilde{C} \in \mathcal{S}^n$, we need to consider the following problem of the form

$$\min \left\{ \varphi(y) := \langle -b, y \rangle + \frac{\sigma}{2} \| \Pi_{\mathcal{K}} (\mathcal{A}^* y + \sigma^{-1} \widetilde{X} - \widetilde{C}) \|^2 \mid y \in \Re^m \right\}. \tag{16}$$

The objective function in (16) is continuously differentiable and solving (16) is equivalent to solving the following nonsmooth equation:

$$\nabla \varphi(y) = \mathcal{A} \Pi_{\mathcal{K}}(\widetilde{X} + \sigma(\mathcal{A}^*y - \widetilde{C})) - b = 0, \quad y \in \Re^m.$$
 (17)

Since $\Pi_{\mathcal{K}}(\cdot)$ is strongly semismooth [21], we can design a SNCG method as in [26] to solve (17), and expect fast superlinear or even quadratic convergence.

Let $\tilde{y} \in \Re^m$ be fixed. Consider the following eigenvalue decomposition:

$$\widetilde{X} + \sigma(\mathcal{A}^* \widetilde{y} - \widetilde{C}) = Q \Gamma_{\widetilde{y}} Q^{\mathsf{T}}, \tag{18}$$

where $Q \in \mathcal{R}^{n \times n}$ is an orthogonal matrix whose columns are eigenvectors, and $\Gamma_{\tilde{y}}$ is the diagonal matrix of eigenvalues with the diagonal elements arranged in the nonincreasing order: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Define the following index sets

$$\alpha := \{i \mid \lambda_i > 0\}, \quad \bar{\alpha} := \{i \mid \lambda_i < 0\}.$$

We define the operator $W^0_{\tilde{y}}: \mathcal{S}^n \to \mathcal{S}^n$ by

$$W_{\tilde{\mathbf{v}}}^{0}(H) := Q(\Sigma \circ (Q^{\mathsf{T}}HQ))Q^{\mathsf{T}}, \quad H \in \mathcal{S}^{n}, \tag{19}$$

where "o" denotes the Hadamard product of two matrices and

$$\Sigma = \begin{bmatrix} E_{\alpha\alpha} & \nu_{\alpha\bar{\alpha}} \\ \nu_{\alpha\bar{\alpha}}^{\mathsf{T}} & 0 \end{bmatrix}, \quad \nu_{ij} := \frac{\lambda_i}{\lambda_i - \lambda_j}, \quad i \in \alpha, \quad j \in \bar{\alpha}, \tag{20}$$

where $E_{\alpha\alpha} \in \mathcal{S}^{|\alpha|}$ is the matrix of ones. Define $V_{\tilde{y}}^0: \Re^m \to \mathcal{S}^n$ by

$$V_{\tilde{v}}^{0}d := \sigma \mathcal{A}[Q(\Sigma \circ (Q^{\mathsf{T}}(\mathcal{A}^{*}d)Q))Q^{\mathsf{T}}], \quad d \in \Re^{m}.$$
(21)

For any $y \in \Re^m$, define

$$\hat{\partial}^2 \varphi(y) := \sigma \mathcal{A} \, \partial \Pi_{\mathcal{K}} (\widetilde{X} + \sigma (\mathcal{A}^* y - \widetilde{C})) \mathcal{A}^*, \tag{22}$$

where $\partial \Pi_{\mathcal{K}}(\widetilde{X} + \sigma(\mathcal{A}^*y - \widetilde{C}))$ is the Clarke subdifferential of $\Pi_{\mathcal{K}}(\cdot)$ at $\widetilde{X} + \sigma(\mathcal{A}^*y - \widetilde{C})$. Note that from [9], we know that

$$\hat{\partial}^2 \varphi(\tilde{y}) h = \partial^2 \varphi(\tilde{y}) h \quad \forall h \in \Re^m, \tag{23}$$

where $\partial^2 \varphi(\tilde{y})$ denotes the generalized Hessian of φ at \tilde{y} , i.e., the Clarke subdifferential of $\nabla \varphi$ at \tilde{y} . However, note that (23) does not mean that $\hat{\partial}^2 \varphi(\tilde{y}) = \partial^2 \varphi(\tilde{y})$. Actually, it is unclear to us whether the latter holds. Fortunately, from Pang et al. [14, Lemma 11] we know that

$$W^0_{\tilde{v}} \in \partial \Pi_{\mathcal{K}}(\widetilde{X} + \sigma(\mathcal{A}^*\tilde{y} - \widetilde{C}))$$

and thus $V_{\tilde{y}}^0 = \sigma \mathcal{A} W_{\tilde{y}}^0 \mathcal{A}^* \in \hat{\partial}^2 \varphi(\tilde{y}).$

Now we will introduce the SNCG algorithm for solving (16). Choose $y^0 \in \Re^m$. Then the algorithm can be stated as follows.

Algorithm SNCG: A Semismooth Newton-CG Algorithm (SNCG $(y^0, \widetilde{X}, \sigma)$).

Given $\mu \in (0, 1/2)$, $\bar{\eta} \in (0, 1)$, $\tau \in (0, 1]$, $\tau_1, \tau_2 \in (0, 1)$, and $\delta \in (0, 1)$. Perform the jth iteration as follows.

Step 1. Given a maximum number of CG iterations $N_i > 0$, compute

$$\eta_i := \min(\bar{\eta}, \|\nabla \varphi(y^j)\|^{1+\tau}).$$

Apply the conjugate gradient (CG) algorithm $(CG(\eta_j, N_j))$, to find an approximation solution d^j to

$$(V_i + \varepsilon_i I) d = -\nabla \varphi(y^j), \tag{24}$$

where $V_j \in \hat{\partial}^2 \varphi(y^j)$ is defined as in (21) and $\varepsilon_j := \tau_1 \min\{\tau_2, \|\nabla \varphi(y^j)\|\}$.

Step 2. Set $\alpha_j = \delta^{m_j}$, where m_j is the first nonnegative integer m for which

$$\varphi(y^j + \delta^m d^j) \le \varphi(y^j) + \mu \delta^m \langle \nabla \varphi(y^j), d^j \rangle. \tag{25}$$

Step 3. Set $y^{j+1} = y^j + \alpha_i d^j$.

The convergence results for the above SNCG algorithm are stated in Theorems 2.2 and 2.3 below. We shall omit the proofs as they can be proved in the same fashion as in [26, Theorems 3.4 and 3.5].

Theorem 2.2 Suppose that Assumption 2 holds. Then Algorithm SNCG generates a bounded sequence $\{y^j\}$ and any accumulation point \hat{y} of $\{y^j\}$ is an optimal solution to problem (16).

Theorem 2.3 Suppose that Assumption 2 holds. Let \hat{y} be an accumulation point of the infinite sequence $\{y^j\}$ generated by Algorithm SNCG for solving the problem (16). Suppose that at each step $j \geq 0$, when the CG algorithm terminates, the tolerance η_j is achieved (e.g., when $N_j = m + 1$), i.e.,

$$\|\nabla \varphi(y^j) + (V_j + \varepsilon_j I) d^j\| \le \eta_j. \tag{26}$$

Assume that the constraint nondegenerate condition

$$A \ln(\mathcal{T}_{\mathcal{K}}(\widehat{W})) = \Re^{m}$$
(27)

holds at $\widehat{W} := \Pi_{\mathcal{K}}(\widetilde{X} + \sigma(\mathcal{A}^*\hat{y} - \widetilde{C}))$, where $\operatorname{lin}(\mathcal{T}_{\mathcal{K}}(\widehat{W}))$ denotes the lineality space of $\mathcal{T}_{\mathcal{K}}(\widehat{W})$. Then the whole sequence $\{y^j\}$ converges to \widehat{y} and

$$\|y^{j+1} - \hat{y}\| = O(\|y^j - \hat{y}\|^{1+\tau}). \tag{28}$$

For notational convenience, for any $y \in \Re^m$ and $S \in \mathcal{S}^n$, let Y := (y, S). Define the linear map $\mathcal{M} : \Re^m \times \mathcal{S}^n \to \mathcal{S}^n$ by

$$\mathcal{M}Y := \mathcal{A}^* y + S \quad \forall Y = (y, S) \in \Re^m \times \mathcal{S}^n. \tag{29}$$

Let $B := (b, 0) \in \Re^m \times S^n$ and $\mathcal{C} := \Re^m \times \mathcal{K}^*$. Then problem (12) is equivalent to

$$\min \left\{ \Phi(Y) := \langle -B, Y \rangle + \frac{\sigma}{2} \| \Pi_{\mathcal{P}}(\mathcal{M}Y + \sigma^{-1}\widetilde{X} - C) \|^2 \mid Y \in \mathcal{C} \right\}$$
 (30)

and the function $\Psi_l(y, S)$ in (13) can be rewritten as

$$\Psi_l(Y) = \Psi_l(y, S) = -\langle B, Y \rangle + \frac{\sigma}{2} \| \mathcal{M}Y + \sigma^{-1} \widetilde{X} - C + Z^l \|^2.$$

Furthermore, $\widehat{Y} = (\widehat{y}, \widehat{S})$ is an optimal solution of

$$\min\{\Psi_l(Y) \mid Y \in \mathcal{C}\}\tag{31}$$

if and only if \hat{y} is an optimal solution of problem (15a) and $\widehat{S} = \prod_{\mathcal{K}^*} (\widetilde{C}^l - \mathcal{A}^* \hat{y} - \sigma^{-1} \widetilde{X})$. Given $\xi_1 \in (0, 1)$ and $\xi_2 \in (0, \infty)$, we will use the following stopping criteria for terminating Algorithm SNCG:

(A1)
$$\Psi_l(Y^{l+1}) \le \Psi_l(Y^l) - \frac{\xi_1}{2} |\langle \nabla \Psi_l(Y^l), Y^{l+1} - Y^l \rangle|,$$

(A2)
$$\|Y^{l+1} - \Pi_{\mathcal{C}}(Y^{l+1} - \nabla \Psi_l(Y^{l+1}))\| \le \xi_2(\Psi_l(Y^l) - \Psi_l(Y^{l+1}))^{\frac{1}{2}}$$
.

We can now state our majorized semismooth Newton-CG method for solving (12) as follows:

Algorithm MSNCG: A Majorized Semismooth Newton-CG Algorithm (MSNCG $(y^0, S^0, Z^0, \widetilde{X}, \sigma)$).

Given $\xi_1 \in (0,1), \, \xi_2 \in (0,+\infty)$. Perform the lth iteration as follows.

Step 1. Starting with y^l as the initial point, apply Algorithm SNCG to minimize $\varphi_l(\cdot)$ to find $y^{l+1} = \text{SNCG}(y^l, \widetilde{X}, \sigma)$ and $S^{l+1} := \Pi_{\mathcal{K}^*}(C - \mathcal{A}^*y^{l+1} - Z^l - \sigma^{-1}\widetilde{X})$ satisfying (A1) and (A2).

Step 2. Compute
$$Z^{l+1} := \prod_{\mathcal{P}^*} (C - \mathcal{A}^* y^{l+1} - S^{l+1} - \sigma^{-1} \widetilde{X}).$$

Next, we establish the convergence of Algorithm MSNCG.

Lemma 2.4 Suppose that Assumption 2 holds. Then for Algorithm MSNCG, (A1) and (A2) are achievable.

Proof If $Y^l - \Pi_{\mathcal{C}}(Y^l - \nabla \Psi_l(Y^l)) = 0$, then one can take $Y^{l+1} = Y^l$ to satisfy (A1) and (A2). Next, we assume that $Y^l - \Pi_{\mathcal{C}}(Y^l - \nabla \Psi_l(Y^l)) \neq 0$. Then Y^l is not an optimal solution of problem (31). Let \widehat{Y} be an arbitrary optimal solution of problem (31). Then $\widehat{Y} = \Pi_{\mathcal{C}}(\widehat{Y} - \nabla \Psi_l(\widehat{Y}))$. So $\langle Y^l - \widehat{Y}, (\widehat{Y} - \nabla \Psi_l(\widehat{Y})) - \widehat{Y} \rangle \leq 0$, i.e., $\langle \nabla \Psi_l(\widehat{Y}), Y^l - \widehat{Y} \rangle \geq 0$, which implies

$$\langle \nabla \Psi_l(Y^l), Y^l - \widehat{Y} \rangle \ge \langle \nabla \Psi_l(Y^l) - \nabla \Psi_l(\widehat{Y}), Y^l - \widehat{Y} \rangle = \sigma \|\mathcal{M}(\widehat{Y} - Y^l)\|^2.$$
 (32)

Since

$$\Psi_l(Y^l) > \Psi_l(\widehat{Y}) = \Psi_l(Y^l) + \langle \nabla \Psi_l(Y^l), \ \widehat{Y} - Y^l \rangle + \frac{\sigma}{2} \|\mathcal{M}(\widehat{Y} - Y^l)\|^2, \quad (33)$$

we obtain that $\langle \nabla \Psi_l(Y^l), \ \widehat{Y} - Y^l \rangle + \frac{\sigma}{2} \|\mathcal{M}(\widehat{Y} - Y^l)\|^2 < 0$. This implies

$$\langle \nabla \Psi_l(Y^l), \ \widehat{Y} - Y^l \rangle < 0.$$
 (34)

Then by using (32), (33), (34) and the fact that $\widehat{Y} = \Pi_{\mathcal{C}}(\widehat{Y} - \nabla \Psi_l(\widehat{Y}))$, we know that for given $\xi_1 \in (0, 1)$ and $\xi_2 \in (0, \infty)$, there exists $\delta > 0$ such that

$$\begin{split} \Psi_l(Y) &\leq \Psi_l(Y^l) - \frac{\xi_1}{2} |\langle \nabla \Psi_l(Y^l), Y - Y^l \rangle|, \\ \|Y - \Pi_{\mathcal{C}}(Y - \nabla \Psi_l(Y))\| &\leq \xi_2(\Psi_l(Y^l) - \Psi_l(Y))^{\frac{1}{2}}, \end{split}$$

for all $Y \in \mathcal{C}$ satisfying $\|Y - \widehat{Y}\| < \delta$. Let $\{\widetilde{y}^j\}_{j=0}^{+\infty}$ be the sequence generated by $\mathrm{SNCG}(\widetilde{y}^0, \widetilde{X}, \sigma)$ with $\widetilde{y}^0 := y^l$. For each $j \geq 0$, let $\widetilde{S}^j := \Pi_{\mathcal{K}^*}(C - \mathcal{A}^*\widetilde{y}^j - Z^l - \sigma^{-1}\widetilde{X})$. Then by Theorem 2.2, we know that $\{(\widetilde{y}^j, \widetilde{S}^j)\}$ is a bounded sequence and any accumulation point of $\{(\widetilde{y}^j, \widetilde{S}^j)\}$, say $\widehat{Y} := (\widehat{y}, \widehat{S})$, is an optimal solution to problem (31). Thus there exists a sufficiently large j such that $Y^{l+1} := (\widetilde{y}^j, \widetilde{S}^j)$ satisfying (A1) and (A2).

Theorem 2.5 Suppose that Assumption 2 holds. Let Algorithm MSNCG be executed with stopping criteria (A1) and (A2). Then it generates a bounded sequence $\{(y^l, S^l, Z^l)\}$ and any accumulation point (\hat{y}, \widehat{S}) of $\{(y^l, S^l)\}$ is an optimal solution to problem (12) and hence $(\hat{y}, \widehat{S}, \widehat{Z})$ is an optimal solution to problem (8), where $\widehat{Z} := \prod_{\mathcal{D}^*} (C - \mathcal{A}^* \hat{y} - \widehat{S} - \sigma^{-1} \widehat{X})$. Furthermore, $\|Z^{l+1} - Z^l\| \to 0$ as $l \to +\infty$.

Proof By (A1), we have $\Phi(Y^{l+1}) \leq \Psi_l(Y^{l+1}) \leq \Psi_l(Y^l) - \frac{\xi_1}{2} |\langle \nabla \Psi_l(Y^l), Y^{l+1} - Y^l \rangle| = \Phi(Y^l) - \frac{\xi_1}{2} |\langle \nabla \Psi_l(Y^l), Y^{l+1} - Y^l \rangle|$. Hence, the sequence $\{\Phi(Y^l)\}$ is nonincreasing.

By Lemma 2.1, we know that the level set $\mathcal{L}:=\{Y\in\mathcal{C}\mid \Phi(Y)\leq \Phi(Y^0)\}$ is a closed and bounded convex set. Then the sequence $\{Y^l\}$ is bounded and so is the sequence $\{Z^l\}$. Let \widehat{Y} be an accumulation point of $\{Y^l\}$. Then $\Phi(Y^l)\to\Phi(\widehat{Y})$ and $\langle\nabla\Psi_l(Y^l),\ Y^{l+1}-Y^l\rangle\to 0$ as $l\to\infty$. Furthermore, $\Psi_l(Y^l)-\Psi_l(Y^{l+1})\to 0$ as $l\to\infty$.

By noting that

$$\Psi_l(Y^{l+1}) = \Psi_l(Y^l) + \langle \nabla \Psi_l(Y^l), Y^{l+1} - Y^l \rangle + \frac{\sigma}{2} \|\mathcal{M}(Y^{l+1} - Y^l)\|^2, \quad (35)$$

we get from (A1) that

$$\langle \nabla \Psi_{l}(Y^{l}), Y^{l+1} - Y^{l} \rangle + \frac{\sigma}{2} \| \mathcal{M}(Y^{l+1} - Y^{l}) \|^{2} \le -\frac{\xi_{1}}{2} |\langle \nabla \Psi_{l}(Y^{l}), Y^{l+1} - Y^{l} \rangle| \le 0.$$
(36)

Since $\langle \nabla \Psi_l(Y^l), Y^{l+1} - Y^l \rangle \to 0$ as $l \to \infty$, we obtain from (36) that

$$\|\mathcal{M}(Y^{l+1} - Y^l)\| \to 0 \text{ as } l \to \infty.$$
 (37)

For any l > 0, denote $\Delta_l := Y^l - \Pi_{\mathcal{C}}(Y^l - \nabla \Phi(Y^l))$. Then we have

$$\begin{split} \|\Delta_{l+1}\| &\leq \|Y^{l+1} - \Pi_{\mathcal{C}}(Y^{l+1} - \nabla \Psi_{l}(Y^{l+1}))\| \\ &+ \|\Pi_{\mathcal{C}}(Y^{l+1} - \nabla \Psi_{l}(Y^{l+1})) - \Pi_{\mathcal{C}}(Y^{l+1} - \nabla \Phi(Y^{l+1}))\| \\ &\leq \xi_{2}(\Psi_{l}(Y^{l}) - \Psi_{l}(Y^{l+1}))^{\frac{1}{2}} + \|\nabla \Psi_{l}(Y^{l+1}) - \nabla \Phi(Y^{l+1})\|. \end{split}$$

By direct computations, we have for $l \geq 1$,

$$\begin{split} \|\nabla \Psi_{l}(Y^{l+1}) - \nabla \Phi(Y^{l+1})\| \\ &= \|\sigma \mathcal{M}^{*}(\mathcal{M}Y^{l+1} + \sigma^{-1}\widetilde{X} - C + Z^{l}) - \sigma \mathcal{M}^{*}(\Pi_{\mathcal{P}}(\mathcal{M}Y^{l+1} + \sigma^{-1}\widetilde{X} - C))\| \\ &= \|\sigma \mathcal{M}^{*}(Z^{l} - Z^{l+1})\| \leq \sigma \|\mathcal{M}^{*}\| \|\mathcal{M}(Y^{l+1} - Y^{l})\|, \end{split}$$

where we have used the fact that

$$||Z^{l+1} - Z^{l}|| = ||\Pi_{\mathcal{P}^{*}}(C - \sigma^{-1}\widetilde{X} - \mathcal{M}Y^{l+1}) - \Pi_{\mathcal{P}^{*}}(C - \sigma^{-1}\widetilde{X} - \mathcal{M}Y^{l})||$$

$$\leq ||\mathcal{M}(Y^{l+1} - Y^{l})||. \tag{38}$$

Thus, by (37) and the fact that $(\Psi_l(Y^l) - \Psi_l(Y^{l+1}))^{\frac{1}{2}} \to 0$ as $l \to \infty$, we derive that $\|\Delta_{l+1}\| \to 0$ as $l \to \infty$. Since \widehat{Y} is an accumulation point of $\{Y^l\}$, we obtain that $\widehat{Y} - \Pi_{\mathcal{C}}(\widehat{Y} - \nabla \Phi(\widehat{Y})) = 0$. By the convexity of Φ , \widehat{Y} is an optimal solution of problem (30).

Finally, by using (37) and (38), we know that $||Z^{l+1} - Z^l|| \to 0$ as $l \to \infty$.

3 A majorized semismooth Newton-CG augmented Lagrangian method

For any k > 0 and $(v, S, Z) \in \Re^m \times S^n \times S^n$, denote

$$\phi_k(y, S, Z) := L_{\sigma_k}(y, S, Z; X^k), \tag{39}$$

$$\hat{\phi}_k(y, S, Z) := \begin{cases} L_{\sigma_k}(y, S, Z; X^k) & \text{if } (y, S, Z) \in \Omega := \Re^m \times \mathcal{K}^* \times \mathcal{P}^*, \\ +\infty & \text{otherwise.} \end{cases}$$
(40)

Since the inner problems in (8) are solved inexactly, we will use the following standard stopping criteria considered in [18,19] to terminate Algorithm MSNCG:

(B1)
$$\hat{\phi}_k(y^{k+1}, S^{k+1}, Z^{k+1}) - \inf \hat{\phi}_k \le \epsilon_k^2, \quad \epsilon_k \ge 0, \quad \sum_{k=0}^{\infty} \epsilon_k < \infty.$$

(B1)
$$\hat{\phi}_k(y^{k+1}, S^{k+1}, Z^{k+1}) - \inf \hat{\phi}_k \le \epsilon_k^2, \quad \epsilon_k \ge 0, \quad \sum_{k=0}^{\infty} \epsilon_k < \infty.$$

(B2) $\hat{\phi}_k(y^{k+1}, S^{k+1}, Z^{k+1}) - \inf \hat{\phi}_k \le (\delta_k^2/2\sigma_k) \|X^{k+1} - X^k\|, \quad \delta_k \ge 0, \quad \sum_{k=0}^{\infty} \delta_k < \infty.$

(B3) dist
$$(0, \partial \hat{\phi}_k(y^{k+1}, S^{k+1}, Z^{k+1})) \le (\delta'_k/\sigma_k) \|X^{k+1} - X^k\|, \quad 0 \le \delta'_k \to 0.$$

Just like SDPNAL, each iteration of the MSNCG algorithm can be quite expensive. Thus it is crucial for us to find a reasonably good initial point to warm start Algorithm SDPNAL+. We can certainly do so by solving the inner problem (8) by using any gradient descent type method. However, for this purpose we find that ADMM+

introduced by Sun et al. [22] is usually more efficient than other choices. Now we can present our SDPNAL+ algorithm as follows.

Algorithm SDPNAL+: A Majorized Semismooth Newton-CG Augmented Lagrangian Algorithm (SDPNAL+ $(y^0, S^0, Z^0, X^0, \sigma_0)$)

Stage 1. Use ADMM+ to generate an initial point

$$(y^0, S^0, Z^0, X^0, \sigma_0) \leftarrow \text{ADMM} + (y^0, S^0, Z^0, X^0, \sigma_0).$$

Stage 2. For $k = 0, \ldots$, perform the kth iteration as follows:

- (a) Using (y^k, S^k, Z^k) as the initial point, apply Algorithm MSNCG to minimize $\hat{\phi}_k(\cdot)$ to find $(y^{k+1}, S^{k+1}, Z^{k+1}) = \text{MSNCG}(y^k, S^k, Z^k, X^k, \sigma_k)$ and $X^{k+1} = X^k + \sigma_k(A^*y^{k+1} + S^{k+1} + Z^{k+1} C)$ satisfying (B1), (B2) or (B3).
- (b) Update $\sigma_{k+1} = \rho \sigma_k$ for some $\rho > 1$ or $\sigma_{k+1} = \sigma_k$.
- Remark 3.1 (a) As mentioned in the introduction, if (P) is reformulated as a standard SDP and Algorithm SDPNAL+ is applied to this reformulated form, then SDPNAL+ reduces to SDPNAL proposed in [26].
- (b) Note that numerically it is difficult to compute dist $(0, \partial \hat{\phi}_k(W^{k+1}))$ in the criterion (B3) for terminating Algorithm MSNCG directly, where $W^{k+1} = (y^{k+1}, S^{k+1}, Z^{k+1})$. Fortunately, we have from [18] that

$$\begin{split} (\mathrm{dist}(0,\partial\hat{\phi}_{k}(W^{k+1})))^{2} &= \|\Pi_{\mathcal{T}_{\Omega}(W^{k+1})}(-\nabla\phi_{k}(W^{k+1}))\|^{2} \\ &= \|\Pi_{\mathcal{T}_{\mathfrak{R}^{m}}(y^{k+1})}(-\nabla_{y}\phi_{k}(W^{k+1}))\|^{2} \\ &+ \|\Pi_{\mathcal{T}_{\mathcal{K}^{*}}(S^{k+1})}(-\nabla_{S}\phi_{k}(W^{k+1}))\|^{2} \\ &+ \|\Pi_{\mathcal{T}_{\mathcal{P}^{*}}(Z^{k+1})}(-\nabla_{Z}\phi_{k}(W^{k+1}))\|^{2} \\ &= \|\mathcal{A}(X^{k} + \sigma_{k}R_{D}^{k+1}) - b\|^{2} \\ &+ \|\Pi_{\mathcal{T}_{\mathcal{K}^{*}}(S^{k+1})}(-\sigma_{k}R_{D}^{k+1} - X^{k})\|^{2} \\ &+ \|\Pi_{\mathcal{T}_{\mathcal{P}^{*}}(Z^{k+1})}(-\sigma_{k}R_{D}^{k+1} - X^{k})\|^{2} \end{split}$$

where $R_D^{k+1} = \mathcal{A}^* y^{k+1} + S^{k+1} + Z^{k+1} - C$. Observe that the first term in the last equality can readily be evaluated. The third term can also be computed easily since \mathcal{P} is a polyhedral cone. The second term is again computable as we shall show next. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the eigenvalues of S^{k+1} being arranged in a nonincreasing order. Denote $\alpha := \{i \mid \lambda_i > 0, i = 1, \ldots, n\}$ and $\bar{\alpha} := \{1, \ldots, n\} \setminus \alpha$. Then there exists an orthogonal matrix $P \in \Re^{n \times n}$ such that

$$S^{k+1} = P \begin{bmatrix} \Lambda_{\alpha} & 0 \\ 0 & 0 \end{bmatrix} P^{\mathsf{T}},$$

where Λ_{α} is the diagonal matrix whose diagonal entries are λ_i for $i \in \alpha$. Write $P = [P_{\alpha} \ P_{\bar{\alpha}}]$ with $P_{\alpha} \in \Re^{n \times |\alpha|}$ and $P_{\bar{\alpha}} \in \Re^{n \times |\bar{\alpha}|}$. From [1], we know that the

tangent cone of \mathcal{S}^n_+ at $S^{k+1} \in \mathcal{S}^n_+$ can be characterized as $\mathcal{T}_{\mathcal{S}^n_+}(S^{k+1}) = \{B \in \mathcal{S}^n \mid P_{\bar{\alpha}}^{\mathsf{\scriptscriptstyle T}} B P_{\bar{\alpha}} \succeq 0\}$. Let $H = P^T(-\sigma_k R_D^{k+1} - X^k)P$. Then

$$\Pi_{\mathcal{T}_{\mathcal{K}^*}(S^{k+1})}(-\sigma_k R_D^{k+1} - X^k) = P \begin{pmatrix} H_{\alpha\alpha} & H_{\alpha\bar{\alpha}} \\ H_{\bar{\alpha}\alpha} & \Pi_{\mathcal{S}_+^{|\bar{\alpha}|}}(H_{\bar{\alpha}\bar{\alpha}}) \end{pmatrix} P^T.$$

We can obtain similar theorems on the convergence of SDPNAL+ as SDPNAL([26, Theorems 4.1 and 4.2]). The global convergence of Algorithm SDPNAL+ follows from Rockafellar [19, Theorem 1] and [18, Theorem 4] without much difficulty.

Theorem 3.1 Suppose that Assumption 2 holds. Let Algorithm SDPNAL+ be executed with stopping criterion (B1). If there exists $(y_0, S_0, Z_0) \in \Re^m \times S^n_+ \times S^n$ such that

$$A^*(y_0) + S_0 + Z_0 = C, \quad S_0 > 0, \quad Z_0 \in relint(\mathcal{P}^*),$$
 (41)

then the sequence $\{X^k\} \subset \mathcal{P}$ generated by Algorithm SDPNAL+ is bounded and $\{X^k\}$ converges to \overline{X} , where \overline{X} is some optimal solution to (P), and $\{(y^k, S^k, Z^k)\}$ is asymptotically minimizing for (D) with $\max(P) = \inf(D)$.

If $\{X^k\}$ is bounded, then the sequence $\{(y^k, S^k, Z^k)\}$ is also bounded, and all of its accumulation points of the sequence $\{(y^k, S^k, Z^k)\}$ are optimal solutions to (D).

Next we state the local linear convergence of Algorithm SDPNAL+.

Theorem 3.2 Suppose that Assumption 2 holds. Let Algorithm SDPNAL+ be executed with stopping criteria (B1) and (B2). Assume that (D) satisfies condition (41). If the second order sufficient conditions (in the sense of the conditions in [2, Theorem 3.137]) holds at \overline{X} , where \overline{X} is an optimal solution to (P), then the generated sequence $\{X^k\} \subset \mathcal{P}$ is bounded and $\{X^k\}$ converges to the unique optimal solution \overline{X} with $\max(P) = \min(D)$, and

$$\|X^{k+1} - \overline{X}\| \le \theta_{\infty} \|X^k - \overline{X}\| \quad \forall k \text{ sufficiently large,}$$

for some $\theta_{\infty} \in [0, 1)$ with the property that $\theta_{\infty} \ll 1$ if $\sigma_k \to \sigma_{\infty}$ for any sufficiently large σ_{∞} . The conclusions of Theorem 3.1 about $\{(y^k, S^k, Z^k)\}$ are also valid.

Proof The conclusions of Theorem 3.2 follow from the results in [19, Theorem 2] and [18, Theorem 5 and Proposition 3] combined with [2, Theorem 3.137]. □

4 Numerical experiments

4.1 SDP+ and SDP problem sets

In our numerical experiments, we test the following SDP+ and SDP problem sets.

(i) SDP+ problems coming from the relaxation of a binary integer nonconvex quadratic (BIQ) programming:

$$\min \left\{ \frac{1}{2} x^T Q x + \langle c, x \rangle \mid x \in \{0, 1\}^{n-1} \right\}. \tag{42}$$

This problem has been shown in [4] that under some mild assumptions, it can equivalently be reformulated as the following completely positive programming (CPP) problem:

$$\min \left\{ \frac{1}{2} \langle Q, X_0 \rangle + \langle c, x \rangle \mid \operatorname{diag}(X_0) = x, \quad X = [X_0, x; x^T, 1] \in \mathcal{C}_{pp}^n \right\}, \quad (43)$$

where C_{pp}^n denotes the *n*-dimensional completely positive cone. It is well known that even though C_{pp}^n is convex, it is computationally intractable. To solve the CPP problem, one would typically relax C_{pp}^n to $S_+^n \cap S_{>0}^n$, and the relaxed problem has the form (P):

$$\min \frac{1}{2} \langle Q, X_0 \rangle + \langle c, x \rangle$$
s.t.
$$\operatorname{diag}(X_0) - x = 0, \quad \alpha = 1, \quad X = \begin{bmatrix} X_0 & x \\ x^T & \alpha \end{bmatrix} \in \mathcal{S}_+^n, \quad X \in \mathcal{P},$$
(44)

where the polyhedral cone $\mathcal{P} = \{X \in \mathcal{S}^n \mid X \geq 0\}$. In our numerical experiments, the test data for Q and c are taken from Biq Mac Library maintained by Wiegele, which is available at http://biqmac.uni-klu.ac.at/biqmaclib.html.

(ii) SDP and SDP+ problems arising from the relaxation of maximum stable set problems. Given a graph G with edge set \mathcal{E} , the SDP and SDP+ relaxation $\theta(G)$ and $\theta_+(G)$ of the maximum stable set problem are given by

$$\theta(G) = \max\{\langle ee^T, X \rangle : \langle E_{ij}, X \rangle = 0, \quad (i, j) \in \mathcal{E}, \quad \langle I, X \rangle = 1, \quad X \in \mathcal{S}_+^n\},$$

$$(45)$$

$$\theta_+(G) = \max\{\langle ee^T, X \rangle : \langle E_{ij}, X \rangle = 0, \quad (i, j) \in \mathcal{E}, \quad \langle I, X \rangle = 1, \quad X \in \mathcal{S}_+^n, \quad X \in \mathcal{P}\},$$

$$(46)$$

where $E_{ij} = e_i e_j^{\mathsf{T}} + e_j e_i^{\mathsf{T}}$ and e_i denotes the *i*th column of the identity matrix, $\mathcal{P} = \{X \in \mathcal{S}^n \mid X \geq 0\}$. In our numerical experiments, we test the graph instances G considered in [20,23,24].

(iii) SDP+ relaxation for computing lower bounds for quadratic assignment problems (QAPs). Let Π be the set of $n \times n$ permutation matrices. Given matrices $A, B \in S^n$, the QAP is given by

$$v_{\text{QAP}}^* := \min\{\langle X, AXB \rangle : X \in \Pi\}. \tag{47}$$

For a matrix $X = [x_1, \ldots, x_n] \in \Re^{n \times n}$, we will identify it with the n^2 -vector $x = [x_1; \ldots; x_n]$. For a matrix $Y \in R^{n^2 \times n^2}$, we let Y^{ij} be the $n \times n$ block corresponding to $x_i x_j^T$ in the matrix $x x^T$. It is shown in [16] that v_{QAP}^* is bounded below by the following number generated from the SDP+ relaxation of (47):

$$v := \min \langle B \otimes A, Y \rangle$$
s.t.
$$\sum_{i=1}^{n} Y^{ii} = I, \langle I, Y^{ij} \rangle = \delta_{ij} \quad \forall 1 \le i \le j \le n,$$

$$\langle E, Y^{ij} \rangle = 1 \quad \forall 1 \le i \le j \le n, \quad Y \in \mathcal{S}_{+}^{n}, Y \in \mathcal{P},$$

$$(48)$$

where the sign \otimes stands for the Kronecker product, E is the matrix of ones, and $\delta_{ij} = 1$ if i = j, and 0 otherwise, $\mathcal{P} = \{X \in \mathcal{S}^{n^2} \mid X \geq 0\}$. In our numerical experiments, the test instances (A, B) are taken from the OAP Library [8].

(iv) SDP+ relaxations of clustering problems (RCPs) described in [15, eq. (13), uptoaconstant]:

$$\min\{\langle -W, X \rangle \mid Xe = e, \langle I, X \rangle = K, \quad X \in \mathcal{S}^n_+, \quad X \in \mathcal{P}\},\tag{49}$$

where W is the so-called affinity matrix whose entries represent the similarities of the objects in the dataset, e is the vector of ones, and K is the number of clusters, $\mathcal{P} = \{X \in \mathcal{S}^n \mid X \geq 0\}$. All the data sets we tested are from the UCI Machine Learning Repository (available at http://archive.ics.uci.edu/ml/datasets.html). For some large data instances, we only select the first n rows. For example, the original data instance "spambase" has 4601 rows, we select the first 1500 rows to obtain the test problem "spambase-large.2" for which the number "2" means that there are K=2 clusters.

(v) SDP+ problems arising from the SDP relaxation of frequency assignment problems (FAPs) [7]. Given a network represented by a graph G and an edge-weight matrix W, a certain type of frequency assignment problem on G can be relaxed into the following SDP (see [5, eq. (5)]):

$$\max \left\langle \left(\frac{k-1}{2k}\right) L(G, W) - \frac{1}{2} \text{Diag}(We) X \right\rangle$$
s.t.
$$\operatorname{diag}(X) = e, X \in \mathcal{S}_{+}^{n},$$

$$-E^{ij} \bullet X = 2/(k-1) \quad \forall (i, j) \in U \subseteq E,$$

$$-E^{ij} \bullet X \leq 2/(k-1) \quad \forall (i, j) \in E \setminus U,$$
(50)

where k > 1 is an integer, L(G, W) := Diag(We) - W is the Laplacian matrix, $E^{ij} = e_i e_j^T + e_j e_i^T$ with $e_i \in \Re^n$ being the *i*th standard unit vector and $e \in \Re^n$ is the vector of all ones. Define $M_{ij} = -\frac{1}{k-1}$ if $(i, j) \in E$, and $M_{ij} = 0$ otherwise. Then (50) is equivalent to

$$\max \left\langle \left(\frac{k-1}{2k}\right) L(G, W) - \frac{1}{2} \text{Diag}(We) X \right\rangle$$
s.t.
$$\operatorname{diag}(X) = e, X \in \mathcal{S}_{+}^{n}, X - M \in \mathcal{P},$$
(51)

where $\mathcal{P} = \{X \in \mathcal{S}^n \mid X_{ij} = 0, \quad \forall (i, j) \in U; \quad X_{ij} \ge 0, \quad \forall (i, j) \in E \setminus U\}.$

We should mention that we can easily extend our algorithm to handle the following more general SDP+ problem:

$$\min\{\langle C, X \rangle \mid \mathcal{A}(X) = b, \quad X \in \mathcal{K}, \quad X - M \in \mathcal{P}\},\tag{52}$$

where $M \in \mathcal{X}$ is a given matrix. Thus (51) can also be solved by our proposed algorithm.

(vi) SDP relaxations for rank-1 tensor approximations (R1TA) [13]:

$$\max\{\langle f, y \rangle \mid M(y) \in \mathcal{S}^n_+, \langle g, y \rangle = 1\}, \tag{53}$$

where $y \in \Re^{\mathbb{N}_m^n}$, M(y) is a linear pencil in y. The dual of (53) is given by

$$\min\{\gamma \mid \gamma g - f = M^*(X), \quad X \in \mathcal{S}^n_+\}. \tag{54}$$

It is shown in [12] that (54) can be transformed into a standard SDP (up to a constant):

$$\min\{\langle C, X \rangle \mid \mathcal{A}(X) = b, \quad X \in \mathcal{S}^n_{\perp}\},\tag{55}$$

where C is a constant matrix and A is a linear map, which depend on M, f, g.

4.2 Numerical results

In this subsection, we compare the performance of our SDPNAL+ algorithm with two other competitive publicly available first order methods based codes for solving large-scale SDP+ and SDP problems: an ADMM based solver, called SDPAD (release-beta2, released in December 2012) developed in [25] and a two-easy-block-decomposition hybrid proximal extragradient method, which was called 2EBD-HPE¹ (v0.2, released on May 31, 2013) and we call it 2EBD here, introduced in [10]. Since we use the convergent ADMM with 3-block constraints introduced by Sun et al. [22] (which was called ADMM3c but we call it ADMM+ here to indicate that it is an enhanced version of ADMM with convergence guarantee) to warm start SDPNAL+, we also list the numerical results obtained by running ADMM+ alone for the purpose of demonstrating the power and the importance of the proposed majorized semismooth Newton-CG algorithm for solving difficult SDP+ and SDP problems.

All our computational results for the tested SDP+ and SDP problems are obtained by running MATLAB on a Linux server (6-core, Intel Xeon X5650 @ 2.67 GHz, 32 G RAM).

In our numerical experiments, we measure the accuracy of an approximate optimal solution (X, y, S, Z) for (P) and (D) by using the following relative residual:

$$\eta = \max\{\eta_P, \eta_D, \eta_K, \eta_P, \eta_{K^*}, \eta_{P^*}, \eta_{C1}, \eta_{C2}\},\tag{56}$$

where $\eta_P = \frac{\|\mathcal{A}X - b\|}{1 + \|b\|}$, $\eta_D = \frac{\|\mathcal{A}^*y + S + Z - C\|}{1 + \|C\|}$, $\eta_{\mathcal{K}} = \frac{\|\Pi_{\mathcal{K}^*}(-X)\|}{1 + \|X\|}$, $\eta_{\mathcal{P}} = \frac{\|\Pi_{\mathcal{P}^*}(-X)\|}{1 + \|X\|}$, $\eta_{\mathcal{P}^*} = \frac{\|\Pi_{\mathcal{C}}(-S)\|}{1 + \|Z\|}$, $\eta_{C1} = \frac{|\langle X, S \rangle|}{1 + \|X\| + \|S\|}$, $\eta_{C2} = \frac{|\langle X, Z \rangle|}{1 + \|X\| + \|Z\|}$. Additionally, we compute the relative gap by

$$\eta_g = \frac{\langle C, X \rangle - \langle b, y \rangle}{1 + |\langle C, X \rangle| + |\langle b, y \rangle|}.$$
 (57)

Let $\varepsilon > 0$ be a given accuracy tolerance. We terminate both SDPNAL+ and ADMM+ when $\eta < \varepsilon$.

http://www2.isye.gatech.edu/~cod3/CamiloOrtiz/Software_files/2EBD-HPE_v0.2/2EBD-HPE_v0.2.zip

Note that SDPAD can be used to solve SDP+ problems of form (P) with $\mathcal{P} = \mathcal{S}_{\geq 0}^n$ directly and we stop SDPAD when $\eta < \varepsilon$, where η is defined as in (56). However, it is shown recently that the direct extension of ADMM to the multi-block case is not necessarily convergent [6]. Hence SDPAD, which is essentially an implementation of the direct extension of ADMM with the step length set at 1.618 for solving the dual of SDP+ problems, does not have convergence guarantee in theory.

The implementation of 2EBD including its termination, along with ADMM+ and SDPAD, is done in the same way as in [22]. For 2EBD, we reformulate QAP, RCP and R1TA problems as SDP problems in the standard form as these problems do not appear to have obvious two-easy blocks structures.

In our numerical experiments, we also use a restart strategy for SDPNAL+ if it is not able to achieve the required accuracy for the tested SDP+ problems. For some problems, even though η_P and η_D can reach the required accuracy tolerance, η_K or η_{C1} may stay above the required tolerance or stagnate. This may happen, as in the case for SDPNAL, because many of these SDP+ problems are degenerate at the optimal solutions. One way to overcome this difficulty is to apply ADMM+ to (P) using the most recently computed (y, S, Z, X, σ) to restart SDPNAL+ when its progress is not satisfactory. From this point of view, our proposed algorithm is quite flexible. In addition, the penalty parameter σ is dynamically adjusted according to the progress of the algorithm. A greater σ ensures faster convergence in theory but it leads to a more difficult inner problem (7a). Hence we adjust σ in order to balance this dilemma. However, the exact details on the restart and adjustment strategies are too tedious to be presented here. Note that MSNCG can be viewed as an alternating minimization between the blocks (y, S) and Z for solving problem (7a). Naturally we can try to alternately minimize the blocks (y, Z) and S, for which the computational cost of the generalized Newton system is cheaper due to the simple structure of \mathcal{P} . However, the overall cost can be much more expensive because the piecewise linear structure of $\Pi_{\mathcal{D}}(\cdot)$ generally does not give rise to a well-conditioned generalized Hessian, which leads to a slower convergence for solving the problem (7a).

Table 1 shows the number of problems that have been successfully solved to the accuracy of 10^{-6} in η by each of the four solvers SDPNAL+, ADMM+, SDPAD and 2EBD, with the maximum number of iterations set at 25,000 or the maximum

Table 1 Number of problems which are solved to the accuracy of 10^{-6} in η

Problem set (no.)\solver	SDPNAL+	ADMM+	SDPAD	2EBD
θ (58)	58	56	53	53
θ_{+} (58)	58	58	58	56
FAP (7)	7	7	7	7
QAP (95)	95	39	30	16
BIQ (134)	134	134	134	134
RCP (120)	120	120	114	109
R1TA (55)	55	42	47	18
Total (527)	527	456	443	393

computation time set at 99 h. As can be seen, only SDPNAL+ can solve all the problems to the accuracy of 10^{-6} . In particular, for the first time, we are able to solve all the 95 difficult SDP+ problems arising from QAP problems to an accuracy of 10^{-6} efficiently, while ADMM+, SDPAD and 2EBD can successfully solve 39, 30 and 16 problems, respectively.

Tables 2 and 3 show the numerical results obtained by SDPNAL+ with the tolerance $\varepsilon = 10^{-6}$ for a subset of of the tested problems (the full set of numerical results can be found at http://www.math.nus.edu.sg/~mattohkc/publist.html/). The first three columns of each table give the problem name, the dimension of the variable y (m), the size of the matrix C (n_s) and the number of linear inequality constraints (n_l) in (D), respectively. The middle five columns give the number of outer iterations, the total number of inner iterations, the total number of iterations for ADMM+, and the objective values $\langle C, X \rangle$ and $\langle b, y \rangle$. The relative infeasibilities and gap, as well as times (in the format hours:minutes:seconds) are listed in the last eight columns. It is interesting to note that all the tested problems (especially the QAPs) can be solved to the required accuracy 10^{-6} efficiently by SDPNAL+.

Tables 4 and 5 compare SDPNAL+, ADMM+, SDPAD and 2EBD on a subset of the tested SDP+ and SDP problems, respectively, using the tolerance $\varepsilon=10^{-6}$. We terminate ADMM+, SDPAD, 2EBD after 25,000 iterations or 99 h. As can be seen, except for SDPNAL+, the required accuracy is not achieved for most of the tested QAPs after 25,000 iterations for the solvers ADMM+, SDPAD and 2EBD. For the last three solvers, they typically converge very slowly when η falls below the range of 10^{-4} to 10^{-5} . For R1TA problems, SDPNAL+ is significantly faster than the other 3 methods and it seems that only SDPNAL+ can solve those large scale ($n \ge 2000$) problems efficiently.

We observe that although ADMM+ and SDPAD perform similar steps in each iteration cycle (except that the former perform one extra update on the variable y to ensure the convergence of the algorithm), the former can be more efficient than latter on many tested instances. The main factors to account for the difference in the performance could be (a) ADMM+ can take a larger step length for updating the multiplier (it is shown in [22] that the step length can be taken to be larger than $(1+\sqrt{5})/2$ when a certain checkable criterion holds); (b) it uses a more effective adjustment strategy for updating the penalty parameter σ ; (c) in addition, ADMM+ also performs rescaling of the SDP data and restarting the algorithm whenever the ratio in $\|X^k\|$ and $\max\{\|S^k\|, \|Z^k\|, \|A^*y^k\|\}$ deviate, say more than 20% from 1.

Figure 1 shows the performance profiles of SDPNAL+, ADMM+, SDPAD and 2EBD for all the 527 tested problems. We recall that a point (x, y) is in the performance profile curve of a method if and only if it can be solved exactly (100y)% of all the tested problems at most x times slower than any other method. It can be seen that SDPNAL+ outperforms the other 3 methods by a significant margin.

Table 2 Performance of SDPNAL+ on θ_+ , FAP, QAP, BIQ and RCP problems $(\varepsilon=10^{-6})$

	V 7:			Ē
Problem $m \mid n_s$; n_l	HITSUDITA	pobj dobj	$\eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_{S}$	Time
theta10 12470 500;	0 0 354	8.31485880 1 8.31490052 1	4.1-14 8.5-7 2.2-10 6.5-9 1.7-7 2.5-8 -2.5-6	46
theta102 37467 500;	0 0 157	3.80662264 1 3.80662724 1	1.1-13 9.5-7 8.5-9 7.0-9 1.7-8 9.6-10 -6.0-7	23
theta103 62516 500;	0 0 144	2.23774188 1 2.23774202 1	1.4-14 9.2-7 3.9-8 1.2-8 9.5-10 2.1-10 -3.0-8	22
theta104 87245 500;	0 0 169	1.32826073 1 1.32826099 1	1.7 - 14 9.3 - 7 1.5 - 8 2.6 - 9 2.1 - 9 6.9 - 10 - 9.2 - 8	24
theta12 17979 600;	0 0 362	9.20905068 1 9.20909180 1	8.7 - 13 9.0 - 7 0 6.1 - 9 1.2 - 7 1.4 - 8 -2.2 - 6	1:15
theta123 90020 600;	0 0 156	2.44951466 1 2.44951496 1	6.6-14 9.3-7 1.3-8 4.1-9 1.4-9 3.8-10 -6.0-8	34
hamming-9-8 2305 512;	11 11 500	2.24000000 2 2.24000020 2	1.1 - 10 9.5 - 7 1.7 - 10 0.0 - 16 1.4 - 11 0.0 - 16 -4.4 - 8	44
hamming-10-2 23041 1024;	0 0 657	8.53345652 1 8.53332571 1	6.9-12 8.7-7 2.1-7 3.2-8 2.3-7 3.5-8 7.6-6	3:09
hamming-9-5-6 53761 512;	0 0 461	5.86651695 1 5.86665968 1	3.3-13 7.5-7 0 0 9.5-7 2.6-7 -1.2-5	45
G43 9991 1000;	21 21 973	2.79738220 2 2.79735897 2	5.3-12 8.9-7 1.7-7 2.7-8 2.1-7 1.6-8 4.1-6	12:32
G44 9991 1000;	21 21 942	2.79743352 2 2.79746225 2	5.7-12 9.9-7 1.2-8 1.5-8 2.6-7 5.0-8 -5.1-6	12:00
G45 9991 1000;	21 21 888	2.79313957 2 2.79317590 2	3.6-12 9.8-7 6.0-8 3.9-8 3.3-7 1.1-7 -6.5-6	11:43
G46 9991 1000;	21 21 887	2.79026490 2 2.79032512 2	3.6-12 9.7-7 5.8-8 4.8-8 5.6-7 1.4-7 -1.1-5	11:35
G47 9991 1000;	21 21 1042	2.80888870 2 2.80891901 2	9.7-12 9.4-7 7.2-10 1.5-8 2.7-7 2.4-8 -5.4-6	13:10
G51 5910 1000;	1 2 5672	3.49000718 2 3.49000007 2	8.6-10 9.9-7 4.5-7 4.9-7 4.2-8 1.8-8 1.0-6	1:15:12
G52 5917 1000;	5 5 10840	3.48386577 2 3.48386413 2	3.4-9 9.9-7 3.9-7 2.3-7 1.5-8 2.3-8 2.4-7	2:21:46
G53 5915 1000;	4 4 13260	3.48213570 2 3.48211536 2	3.3-9 9.9-7 5.0-7 3.0-7 1.2-7 4.9-8 2.9-6	2:48:21
G54 5917 1000;	8 8 4278	3.40999655 2 3.41000193 2	4.0 - 10 9.9 - 7 1.3 - 7 1.3 - 7 2.0 - 8 9.3 - 9 - 7.9 - 7	51:18
1dc.1024 24064 1024;	0 0 2620	9.55514182 1 9.55511660 1	3.2-13 9.9-7 2.8-7 6.4-8 3.9-8 4.0-9 1.3-6	31:46
1et.1024 9601 1024;	0 0 1144	1.82071997 2 1.82071515 2	3.1-12 9.9-7 2.5-7 3.5-8 4.5-8 2.2-9 1.3-6	12:43
1tc.1024 7937 1024;	0 0 2732	2.04205928 2 2.04204076 2	7.4-13 9.9-7 6.3-7 5.1-7 1.5-7 2.9-8 4.5-6	31:34
1zc.1024 16641 1024;	0 0 711	1.28001293 2 1.27999917 2	3.9-12 7.7-7 1.6-7 2.0-8 1.8-7 1.7-8 5.4-6	7:12
2dc.1024 169163 1024;	0 0 4135	1.77104688 1 1.77099903 1	4.6-13 6.5-7 6.2-7 9.9-7 1.6-7 1.7-7 1.3-5	44:55
1dc.2048 58368 2048;	0 0 4153	1.74258920 2 1.74257466 2	1.1-111 9.9-71 3.7-71 2.9-71 9.5-81 1.2-81 4.2-6	5:50:06

Table 2 continued				
Problem $\mid m \mid n_s; n_l$	it itsub itA	pobj dobj	$\eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	Time
let.2048 22529 2048;	0 0 3039	3.38165943 2 3.38165218 2	1.2-11 9.9-7 1.8-7 1.7-7 2.7-8 8.6-9 1.1-6	4:01:54
1tc.2048 18945 2048;	0 0 2876	3.70489820 2 3.70488730 2	1.4-11 9.9-7 2.8-7 1.8-7 3.9-8 2.2-9 1.5-6	3:50:43
2dc.2048 504452 2048;	0 0 2997	2.87872690 1 2.87867849 1	1.9-12 9.9-7 2.9-7 6.1-7 7.3-8 7.0-8 8.3-6	3:54:58
fap11 252 252;	5 5 1180	2.97984952-2 2.98707469-2	8.1-12 9.6-7 4.9-7 4.5-15 2.4-7 6.5-15 -6.8-5	39
fap12 369 369;	15 15 1768	2.73312482-1 2.73415267-1	9.4-14 9.9-7 2.6-8 6.0-7 7.0-9 4.6-7 —6.6-5	1:56
fap25 2118 2118;	11 11 2268	1.28781491 1 1.28803442 1	2.2-7 9.1-7 0.8-15 4.5-7 4.7-16 9.2-7 -8.2-5	3:58:21
fap36 4110 4110;	4 4 2033	6.98573185 1 6.98607976 1	8.4-10 9.5-7 8.5-7 7.0-15 2.3-8 1.1-13 -2.5-5	23:07:56
bur26a 1051 676;	137 222 10228	5.42644954 6 5.42664508 6	7.6-11 9.9-7 2.6-7 7.9-7 5.1-7 2.5-9 -1.8-5	1:48:05
bur26c 1051 676;	247 441 21498	5.42685366 6 5.42707215 6	5.3-11 9.9-7 1.6-7 7.5-7 2.5-7 2.0-9 -2.0-5	2:03:12
bur26d 1051 676;	173 306 13287	3.82088460 6 3.82098028 6	1.5 - 10 9.9 - 7 9.4 - 8 8.0 - 7 2.8 - 7 3.5 - 10 -1.3 - 5	1:59:20
bur26e 1051 676;	129 361 14705	5.38699884 6 5.38711462 6	2.3-10 8.8-7 1.1-7 9.4-7 1.4-8 2.5-8 -1.1-5	1:18:35
bur26f 1051 676;	107 248 11272	3.78211965 6 3.78219580 6	2.1-15 9.9-7 4.1-7 2.7-7 3.8-11 4.1-9 -1.0-5	1:45:13
bur26g 1051 676;	250 392 10817	1.01172603 7 1.01177521 7	2.3-11 9.9-7 5.0-7 5.6-7 2.3-9 4.2-9 -2.4-5	1:32:44
bur26h 1051 676;	146 360 10658	7.09871739 6 7.09844876 6	1.5-10 9.5-7 7.4-7 9.9-7 2.4-9 4.7-9 1.9-5	1:25:45
chr22a 757 484;	104 250 6940	6.15599997 3 6.15591877 3	7.8-9 3.5-7 2.6-10 0.2-16 3.5-11 0.0-16 6.6-6	22:57
chr22b 757 484;	89 189 5620	6.19399919 3 6.19397816 3	2.0-7 3.1-7 1.6-7 1.9-16 6.3-10 0.0-16 1.7-6	12:46
chr25a 973 625;	53 200 5151	3.79659302 3 3.79236524 3	2.5-11 8.6-7 6.5-8 3.7-8 4.2-8 2.0-7 5.6-4	21:04
esc32a 1582 1024;	46 78 1664	1.03320457 2 1.03320681 2	3.3-13 9.5-7 9.9-7 8.1-7 6.6-9 7.5-9 -1.1-6	32:32
esc32b 1582 1024;	52 100 2196	1.31863123 2 1.31876533 2	7.2-12 9.8-7 3.7-7 9.6-7 6.7-8 9.3-7 -5.1-5	45:50
esc32c 1582 1024;	46 139 3562	6.15172917 2 6.15177999 2	3.0 - 7 9.7 - 7 8.6 - 13 3.2 - 7 3.3 - 13 1.4 - 7 -4.1 - 6	1:06:19
esc32d 1582 1024;	0 0 678	1.90223554 2 1.90227139 2	3.5-12 9.9-7 2.2-7 2.7-7 3.1-7 2.3-7 -9.4-6	9:40
esc32e 1582 1024;	40 47 1248	$1.90001450\ 0 \mid 1.89997253\ 0$	1.6-8 9.9-7 1.3-15 1.4-8 1.8-16 6.4-9 8.7-6	22:00
esc32f 1582 1024;	40 47 1248	$1.90001450\ 0 \mid 1.89997253\ 0$	1.6-8 9.9-7 1.3-15 1.4-8 1.8-16 6.4-9 8.7-6	21:31
esc32g 1582 1024;	0 0 520	5.83333959 0 5.83331567 0	2.5-13 9.3-7 9.7-9 8.0-8 2.1-10 4.4-9 1.9-6	7:17

Table 2 continued	
Ta	

kra30a 1393 900; 49 72 3208 kra30b 1393 900; 81 101 3080 kra32 1582 1024; 67 83 2946 lipa30a 1393 900; 443 1216 13 lipa30b 1393 900; 4 9 820 lipa40a 2458 1600; 5 18 991 muo24 808 576; 43 66 2359	49 72 3208 81 101 3080 67 83 2946 443 1216 1300 4 9 820 153 546 3732 5 18 991 43 66 2359	8.68155154 8.68268686 4 8.78355000 4 8.78468655 4 8.57529179 4 8.57648412 4 1.31780000 4 1.31780000 4 1.51426000 5 1.51426111 5 3.15379935 4 3.15379159 4 4.76581311 5 4.76581129 5 3.40071083 3 3.40090464 3	1.2-10 7.5-7 1.2-7 9.9-7 3.4-7 1.9-7 -6.5-5 7.1-11 7.0-7 1.4-7 9.9-7 3.7-7 1.7-7 -6.5-5 1.3-11 8.4-7 1.4-7 9.9-7 3.5-7 9.3-7 -7.0-5	52:13
	11 3080 3 2946 216 1300 820 446 3732 991	8.7835000 4 8.78468655 4 8.57529179 4 8.57648412 4 1.31780000 4 1.31780000 4 1.51426000 5 1.51426111 5 3.15379935 4 3.15379159 4 4.76581311 5 4.76581129 5 3.40071083 3 3.40090464 3 3.62566278 3 3.62577908 3	7.1-11 7.0-7 1.4-7 9.9-7 3.7-7 1.7-7 -6.5-5 1.3-11 8.4-7 1.4-7 9.9-7 3.5-7 9.3-7 -7.0-5	55:48
	3 2946 216 1300 820 846 3732 991	8.57529179 4 8.57648412 4 1.31780000 4 1.31780000 4 1.51426000 5 1.51426111 5 3.15379935 4 3.15379159 4 4.76581311 5 4.76581129 5 3.40071083 3 3.40090464 3 3.62566278 3 3.62577908 3	1.3-11 8.4-7 1.4-7 9.9-7 3.5-7 9.3-7 -7.0-5	
	216 1300 820 446 3732 991 61359	1.31780000 4 1.31780000 4 1.51426000 5 1.51426111 5 3.15379935 4 3.15379159 4 4.76581311 5 4.76581129 5 3.40071083 3 3.40090464 3 3.62566278 3 3.62577908 3		1:07:22
	520 146 3732 991 6 2359	1.51426000 5 1.51426111 5 3.15379935 4 3.15379159 4 4.76581311 5 4.76581129 5 3.40071083 3 3.40090464 3 3.62566278 3 3.62577908 3	4.4-8 1.0-7 1.0-8 1.9-16 2.3-13 0.0-16 -4.3-10	47:33
	146 3732 991 6 2359	3.15379935 4 3.15379159 4 4.76581311 5 4.76581129 5 3.40071083 3 3.40090464 3 3.62566278 3 3.62577908 3	2.3-9 8.2-9 3.3-14 4.7-16 4.1-14 0.1-16 -3.7-7	11:08
	991 6 2359	4.76581311 5 4.76581129 5 3.40071083 3 3.40090464 3 3.62566278 3 3.62577908 3	5.5-7 1.2-7 7.7-8 1.4-16 5.6-10 0.0-16 1.2-6	3:01:05
	6 2359	3.40071083 3 3.40090464 3 3.62566278 3 3.62577908 3	4.2-7 1.5-7 3.3-7 5.2-16 3.7-9 0.0-16 1.9-7	1:02:59
		3.62566278 3 3.62577908 3	1.0 - 10 9.6 - 7 1.1 - 7 9.9 - 7 2.6 - 7 2.5 - 7 -2.8 - 5	14:12
nug25 973 625; 48 76 2708	6 2708		9.7-11 7.9-7 6.0-8 9.9-7 1.1-7 7.2-8 -1.6-5	19:25
	49 86 3300	5.12924842 3 5.12946060 3	1.5 - 10 9.0 - 7 6.2 - 8 9.9 - 7 1.2 - 7 3.2 - 7 - 2.1 - 5	36:53
nug28 1216 784; 50 77 3190	7 3190	5.02532199 3 5.02552528 3	1.6-10 8.7-7 7.2-8 9.9-7 1.3-7 4.4-7 -2.0-5	40:26
nug30 1393 900; 44 68 2463	8 2463	5.94890136 3 5.94920345 3	$3.8 - 11 \mid 9.9 - 7 \mid 1.3 - 7 \mid 9.6 - 7 \mid 3.3 - 7 \mid 1.1 - 7 \mid -2.5 - 5$	45:02
ste36a 1996 1296; 122 18	122 189 7344	9.25661751 3 9.25811948 3	4.3-11 9.9-7 1.6-7 9.9-7 3.9-7 6.8-8 -8.1-5	6:29:21
ste36b 1996 1296; 173 24	173 242 11851	1.56582438 4 1.56653460 4	1.5 - 10 9.9 - 7 1.8 - 7 9.9 - 7 5.4 - 7 4.2 - 8 -2.3 - 4	9:45:58
ste36c 1996 1296; 143 20	143 202 10008	8.13267040 6 8.13407147 6	4.6-11 9.9-7 1.8-7 9.5-7 4.8-7 3.8-9 -8.6-5	8:06:50
	33 42 2630	1.11336476 6 1.11525360 6	8.5-12 9.9-7 5.1-8 9.4-7 3.0-9 2.7-9 -8.5-4	14:52
	296 344 18325	3.37687430 8 3.37871783 8	1.7-10 9.9-7 1.7-7 9.9-7 9.4-7 5.1-8 -2.7-4	1:18:04
tai30a 1393 900; 39 39 1614	9 1614	1.70671520 6 1.70679434 6	2.8-11 7.4-7 3.4-7 9.9-7 6.5-7 2.2-7 -2.3-5	29:11
tai30b 1393 900; 236 34	236 342 16584	5.98852630 8 5.99068570 8	9.0-7 9.9-7 6.9-14 8.5-7 6.1-15 2.3-9 -1.8-4	2:52:00
tai35a 1888 1225; 38 38 3467	8 3467	2.21649346 6 2.21657164 6	4.8-11 6.6-7 2.9-7 9.9-7 5.1-7 2.4-7 -1.8-5	1:56:18
	142 214 10915	2.69644456 8 2.69710521 8	2.6-10 9.9-7 1.7-7 9.8-7 7.7-7 6.7-8 -1.2-4	8:01:01
	33 33 3395	2.84310602 6 2.84321095 6	7.6-11 3.5-7 2.8-7 9.9-7 6.0-7 2.0-7 -1.8-5	3:56:34
tai40b 2458 1600; 101 14	101 146 7124	6.09005347 8 6.09143489 8	5.6-10 9.9-7 2.5-7 9.9-7 9.9-7 2.4-8 -1.1-4	10:55:44
tho30 1393 900; 44 74	44 74 2925	1.43549788 5 1.43563445 5	6.3-11 9.9-7 1.8-7 9.9-7 5.1-7 6.9-8 -4.8-5	1:03:01

Table 2 continued				
Problem $\mid m \mid n_s; n_l$	it itsub itA	pobj dobj	$\eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	Time
tho40 2458 1600;	24 51 3998	2.26485088 5 2.26503953 5	2.0-10 9.9-7 2.0-7 9.9-7 5.2-7 2.7-8 -4.2-5	5:08:15
be250.1 251 251;	122 123 2800	-2.511946354 -2.511943984	1.1-7 9.9-7 1.3-7 0.2-16 1.8-8 4.6-16 -4.7-7	1:13
be250.2 251 251;	121 121 2842	-2.368149194 -2.368145454	1.2-12 9.9-7 1.1-8 2.0-8 1.5-8 2.3-8 -7.9-7	1:12
be250.3 251 251;	84 89 2200	-2.400000314 -2.399996624	1.3-7 9.9-7 1.2-7 0.1-16 1.2-8 1.4-16 -7.7-7	59
be250.4 251 251;	208 209 3850	-2.572031854 -2.572025444	9.7-9 9.9-7 5.5-8 0.0-16 2.0-8 0.2-16 -1.2-6	1:42
be250.5 251 251;	115 127 2791	-2.237470844 -2.237467954	4.1-12 9.9-7 3.1-9 3.4-8 8.2-9 2.9-7 -6.5-7	1:15
bqp500-1 501 501;	138 171 2499	$-1.25964032\ 5\ -1.25964547\ 5$	1.6-11 9.9-7 6.5-9 6.8-9 9.1-7 1.6-7 2.0-6	5:20
bqp500-2 501 501;	142 194 2390	$-1.36011042\ 5\ -1.36011154\ 5$	6.8-8 9.9-7 8.2-8 0.1-16 4.8-9 0.3-16 4.1-7	5:29
bqp500-3 501 501;	135 180 2390	-1.384533385 -1.384535495	2.0-8 9.7-7 3.8-7 0.5-16 6.6-8 2.8-16 7.6-7	6:31
bqp500-4 501 501;	128 174 2390	-1.393283335 -1.393285035	2.3-7 9.9-7 7.1-8 0.2-16 2.1-9 6.0-16 6.1-7	80:9
bqp500-5 501 501;	169 206 2910	$-1.34092095\ 5\ -1.34092382\ 5$	4.5-8 9.9-7 4.8-8 0.0-16 1.0-8 0.2-16 1.1-6	7:25
gka1f 501 501;	166 203 2780	-6.555905984 -6.555913694	1.3-8 9.8-7 1.6-7 0.3-16 1.3-8 6.3-16 5.9-7	6:32
gka2f 501 501;	205 242 3541	-1.079317395 -1.07932064 5	1.0-11 9.9-7 6.0-9 9.1-9 1.6-7 8.1-8 1.5-6	7:54
gka3f 501 501;	174 216 2954	$-1.50150987\ 5\ -1.50151193\ 5$	6.4-12 9.9-7 1.5-8 3.4-8 5.2-8 6.6-7 6.8-7	6:51
gka4f 501 501;	183 222 3101	-1.870878785 -1.87087908 5	4.2-12 9.9-7 4.2-9 2.4-8 2.4-8 2.0-7 8.2-8	7:10
gka5f 501 501;	142 187 2520	$-2.06914264\ 5\ -2.06914258\ 5$	1.8-7 9.9-7 7.1-8 0.2-16 1.3-8 1.9-16 -1.5-8	5:53
soybean-large.2 308 307;	2 2 1171	5.46342122 3 5.46342235 3	8.1-13 9.2-7 8.0-9 9.9-7 1.8-8 6.6-7 -1.0-7	29
soybean-large.3 308 307;	2 2 934	4.57580592 3 4.57580844 3	4.6-13 7.2-7 1.7-8 2.7-7 4.5-8 9.3-8 -2.8-7	25
soybean-large.4 308 307;	52 52 1506	4.04637305 3 4.04637422 3	1.0-13 7.7-7 2.8-7 8.7-7 2.7-8 3.0-7 -1.4-7	52
soybean-large.5 308 307;	2 2 814	3.63158072 3 3.63158133 3	2.6-13 9.8-7 0 9.6-7 1.7-8 2.0-7 -8.4-8	22
soybean-large.6 308 307;	0 0 413	3.26767677 3 3.26767798 3	$4.1-12 \ 9.4-7 \ 1.3-7 \ 5.7-7 \ 4.3-7 \ 1.1-7 -1.9-7$	12
spambase-large.2 1501 1500;	0 0 535	4.71138593 8 4.71150439 8	9.9-7 9.9-7 1.6-15 3.0-7 4.3-16 2.0-7 -1.3-5	11:07
spambase-large.3 1501 1500;	8 8 1844	2.36009657 8 2.36013239 8	2.5-10 8.9-7 2.3-7 9.9-7 6.0-7 5.3-8 -7.6-6	1:40:31
spambase-large.4 1501 1500;	8 8 4519	1.39698995 8 1.39699718 8	8.7-10 9.8-7 0 9.9-7 6.1-9 6.7-8 -2.6-6	2:49:39

$ n_{n} \leq n_{n} + n_{$
nobi dobi
HitsublitA
Problem $\mid m \mid n_i : n_i$

Problem $ m n_8$; η itilisablitA pobj dobj $\eta p \eta $	Table 2 Continued				
11 1500; 8 8 9184 1.02748129 8 1.02754393 8 3.8-13 9.7-7 2.6-8 5.7-7 2.5-8 9.6-7 -30-5 21 1500; 8 8 2798 7.27756732 7 7.27685611 7 8.0-12 9.9-7 0 9.1-7 4.5-7 8.6-7 4.9-5 1 1000; 0 0 576 5.52269325 3 5.52256503 3 9.9-7 5.2-7 1.4-15 1.2-7 1.2-5 1 1000; 21 21 762 2.81040989 3 2.81042183 3 2.1-13 9.2-7 7.6-7 6.4-7 3.9-8 1.2-7 1.2-5 1 1000; 38 38/797 1.2764378 3 1.27471600 3 3.3-12 9.2-7 1.4-15 2.2-7 1.3-14-5 1 1000; 8 8 1781 1.21466288 3 1.21471600 3 3.3-12 9.2-7 1.6-7 9.9-7 7.9-8 1.9-6 1 1000; 8 8 1191 1.4176055 7 1.47174710 7 9.7-12 9.4-7 0 1.6-7 9.9-7 6.5-8 4.6-6 1 1000; 8 8 1191 1.4176055 7 1.47174710 7 9.7-12 9.4-7 0 1.6-7 9.9-7 6.5-8 4.6-6 1 1000; 8 8 1194 1.47176055 7 1.47174710 7 9.7-12 9.4-7 0 1.6-7 9.9-7 6.2-8 4.6-6 1 1000; 8 8 12449 6.98489394 6 6.98490266 6 1.2-13 9.9-7 1.3-9 9.7-7 6.8-9 2.7-7 1.2-6 1 1000; 8 8 1358 6.09809592 6 6.09811370 6 2.5-11 9.9-7 1.4-15 8.7-8 3.2-8 3.8-9	Problem $\mid m \mid n_s; n_l$	it itsub itA	pobj dobj	$\eta_P \mid \eta_D \mid \eta_{K_1} \mid \eta_{K_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	Time
11500; 8 812798 7.27756732 7 7.27685611 7 8.0-12 9.9-71 0 9.1-71 4.5-71 8.6-12 9.9-71 0 9.1-71 4.5-71 8.0-15 1.0-71 1.2-5 1.000; 0 0 576 5.52269325 3 5.52256503 3 9.9-71 5.2-71 1.4-15 1.2-71 1.8-15 1.0-71 1.2-5 1.000; 21 21 762 2.81040989 3 2.81042183 3 2.1-13 9.2-77 2.6-71 2.9-71 2.2-71	spambase-large.5 1501 1500;	8 8 9184	1.02748129 8 1.02754393 8	3.8-13 9.7-7 2.6-8 5.7-7 2.5-8 9.6-7 -3.0-5	4:49:37
1000; 0 0 576 5.52269325 3 5.52256503 3 9.9-7 5.2-7 1.4-15 2.2-7 1.8-15 1.0-7 1.2-5 1000; 21 21 21 762 2.81040989 3 2.81042183 3 2.1-13 9.2-7 7.6-7 6.4-7 3.9-8 2.2-7 -2.1-6 1000; 0 0 545 1.72764378 3 1.72763706 3 2.7-11 4.9-7 0 2.0-7 9.9-7 7.9-8 1.9-6 1000; 8 8 781 1.21466288 3 1.21471600 3 3.3-12 9.5-7 1.3-7 4.6-7 7.6-7 6.9-9 -2.2-5 11000; 8 8 1191 1.47176055 7 1.47174710 7 9.7-12 9.4-7 0 1.6-7 9.9-7 7.8-6 11000; 0 0 373 1.03929738 7 1.03929372 7 6.1-12 9.9-7 0 9.7-7 3.9-7 1.1-7 1.8-6 11000; 8 8 1249 6.9849394 6 6.98490266 6 1.2-11 9.9-7 2.3-9 9.7-7 3.7-9 2.2-7 -6.2-7 11000; 8 8 1358 6.09809526 6.09811370 6 2.5-111 8.8-7 0 9.9-7 3.7-9 2.2-7 -6.2-7 8 8 1373 5.76086706 6 5.76093491 6 4.5-12 8.6-7 0 9.9-7 3.7-9 2.2-7 -1.5-6 8 8 1948 1.38028144 6 3.09979147 6 7.5-12 9.9-7 0 7.0-8 9.7-7 1.2-7 1.2-7 1.2-6 8 8 1918 1.38028143 6 1.38019123 6 7.4-12 9.9-7 4.4-7 9.6-7 8.2-7 1.8-7 -1.2-6 11111533 1.11182191 6 6.5-13 9.9-7 4.4-7 9.6-7 8.2-7 1.2-6	spambase-large.6 1501 1500;	8 8 2798	7.27756732 7 7.27685611 7	8.0-12 9.9-7 0 9.1-7 4.5-7 8.6-7 4.9-5	2:07:59
1000; 21 21 762 2.81040893 2.81042183 2.1-13 9.2-7 7.6-7 6.4-7 3.9-8 2.2-7 -2.1-6 1000; 0 0 345 1.72764378 3 1.72763706 3 2.7-11 4.9-7 0 12.0-7 9.9-7 7.9-8 1.9-6 1000; 38 38 797 1.21466288 3 1.21471600 3 3.3-12 9.5-7 1.3-7 4.6-7 7.6-7 2.6-9 -2.2-5 1000; 8 8 1191 1.47176055 7 1.47174710 7 9.7-12 9.4-7 0 1.6-7 9.9-7 0.5-8 4.6-6 1 1000; 8 8 1191 1.47176055 7 1.47174710 7 9.7-12 9.4-7 0 1.6-7 9.9-7 0 5.8-8 4.6-6 1 1000; 2 21 879 8.16944543 6 8.16945493 6 7.0-12 9.9-7 0 9.7-7 3.9-7 1.1-7 1.8-6 1 1000; 8 8 3158 6.09809592 6 6.09811370 6 2.5-11 8.8-7 0 9.9-7 3.7-9 2.6-7 -1.5-6 8 8 8 1576 3.00980144 6 3.00979147 6 4.5-12 8.6-7 0 7.0-8 8.3-8 8.5-9 -4.0-6 8 8 1918 1.38028143 6 1.38019123 6 7.4-12 9.9-7 0 7.5-8 9.5-7 1.6-7 3.3-5 11 11 533 1.11181933 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.1118193 6 1.	abalone-large.2 1001 1000;	0 0 576	5.52269325 3 5.52256503 3	9.9-7 5.2-7 1.4-15 2.2-7 1.8-15 1.0-7 1.2-5	5:01
1000; 0 0 545 1.72764378 3 1.72763706 3 2.7-11 4.9-7 0 2.0-7 9.9-7 7.9-8 1.9-6 1.000; 38 38 797 1.21466288 3 1.21471600 3 3.3-12 9.5-7 1.3-7 4.6-7 7.6-7 2.6-9 -2.2-5 1.000; 8 8 1191 1.47176055 7 1.47174710 7 9.7-12 9.4-7 0 1.6-7 9.9-7 6.7-1 2.9-7 1.1-17 1.8-6 1.1000; 8 8 1191 1.47176055 7 1.47174710 7 9.7-12 9.4-7 0 1.6-7 9.9-7 6.5-8 4.6-6 1.11000; 8 8 1192 1.03929738 7 1.03929372 7 6.1-12 9.9-7 0 9.7-7 3.9-7 1.1-7 1.8-6 1.1000; 8 8 12449 6.98489394 6 6.98490266 6 1.2-11 9.9-7 0.9-7 3.9-7 1.7-7 6.2-7 6.09809592 6 6.09811370 6 2.5-11 8.8-7 0 9.9-7 3.7-9 2.2-7 -6.2-7 6.98489394 6 3.00980144 6 3.00979147 6 4.5-12 8.6-7 0 7.0-8 9.7-7 1.2-7 1.7-6 8 8 1576 3.00980144 6 3.00979147 6 4.5-12 8.6-7 0 7.0-8 9.7-7 1.2-7 1.7-6 8 8 1918 1.38028143 6 1.38019123 6 6.5-13 9.9-7 4.4-7 9.6-7 8.7-1 6.7-1	abalone-large.3 1001 1000;	21 21 762	2.81040989 3 2.81042183 3	2.1-13 9.2-7 7.6-7 6.4-7 3.9-8 2.2-7 -2.1-6	7:29
1000; 38 38 797 1.21466288 3 1.21471600 3 3.3-12 9.5-7 1.3-7 4.6-7 7.6-7 2.6-9 -2.2-5 1000; 8 8 781 9.17362617 2 9.17389149 2 6.7-11 9.9-7 0 6.6-7 5.2-7 2.3-7 -1.4-5 11000; 8 8 1191 1.47176055 7 1.47174710 7 9.7-12 9.4-7 0 1.6-7 9.9-7 6.5-8 4.6-6 1 1 1 1 1 1 1 1 1	abalone-large.4 1001 1000;	0 0 545	1.72764378 3 1.72763706 3	2.7-11 4.9-7 0 2.0-7 9.9-7 7.9-8 1.9-6	6:43
1000; 8 8 781 9.17362617 2 9.17389149 2 6.7-11 9.9-7 0 6.6-7 5.2-7 2.3-7 -1.4-5 1 1000; 8 8 1191 1.47176055 7 1.47174710 7 9.7-12 9.4-7 0 1.6-7 9.9-7 6.5-8 4.6-6 1 1 1 1 1 1 1.000; 2 2 1879 8.16944543 6 8.16944543 6 2.0-12 9.0-7 0 9.7-7 3.9-7 1.1-7 1.8-6 1 1 1 1 1 1 1 1 1	abalone-large.5 1001 1000;	38 38 797	1.21466288 3 1.21471600 3	3.3-12 9.5-7 1.3-7 4.6-7 7.6-7 2.6-9 -2.2-5	11:45
1 1000; 1 1,47176055 7 1,47174710 7 9,7-12 9,4-7 0 1,6-7 9,9-7 6,5-8 4,6-6 1 1000; 0 0 373 1,03929738 7 1,03929737 7 6,1-12 9,9-7 0 9,7-7 3,9-7 1,1-7 1,8-6 1 1 1 1 1 1 1 1 1	abalone-large.6 1001 1000;	8 8 781	9.17362617 2 9.17389149 2	6.7-11 9.9-7 0 6.6-7 5.2-7 2.3-7 -1.4-5	9:12
1 1000; 0 0 373 1.03929738 7 1.03929372 7 6.1-12 9.9-7 0 9.7-7 3.9-7 1.1-7 1.8-6 1 1000; 8 8 2449 8.16944543 6 8.16945493 6 7.0-12 9.0-7 1.3-9 9.9-7 3.7-9 2.1-7 -5.8-7 1 1000; 8 8 3158 6.098489394 6 6.98490266 6 1.2-11 9.9-7 2.3-9 9.7-7 6.8-9 2.2-7 -6.2-7 1 1000; 8 8 3158 6.09809592 6 6.09811370 6 2.5-11 8.8-7 0 9.9-7 3.7-9 2.6-7 -1.5-6 8 8 3373 5.76086706 6 5.76093491 6 9.9-7 9.9-7 1.4-15 8.7-8 3.2-15 3.8-8 -5.9-6 8 8 1576 3.00980144 6 3.00979147 6 4.5-12 8.6-7 0 7.0-8 9.7-7 1.2-7 1.7-6 8 8 1645 1.79283384 6 1.79284813 6 7.5-12 9.9-7 2.8-8 2.3-8 8.5-9 -4.0-6 8 8 1918 1.38028143 6 1.38019123 6 7.4-12 9.9-7 4.4-7 9.6-7 8.2-7 1.6-7 3.3-5 11 11 533 1.11181933 6 1.11182191 6 6.5-13 9.9-7 4.4-7 9.6-7 8.2-7 1.8-7 1.2-6	segment-large.2 1001 1000;	8 8 8 1 1 1 9 1	1.47176055 7 1.47174710 7	9.7-12 9.4-7 0 1.6-7 9.9-7 6.5-8 4.6-6	9:16
1 1000; 2 2 1879 8.16944543 6 8.16945493 6 7.0-12 9.0-7 1.3-9 9.9-7 3.7-9 2.1-7 -5.8-7 1 1000; 8 8 2449 6.98489394 6 6.98490266 6 1.2-11 9.9-7 2.3-9 9.7-7 6.8-9 2.2-7 -6.2-7 1 1000; 8 8 3158 6.09809592 6 6.09811370 6 2.5-11 8.8-7 0 9.9-7 3.7-9 2.6-7 -1.5-6 8 8 3373 5.76086706 6 5.76093491 6 9.9-7 9.9-7 1.4-15 8.7-8 3.2-15 3.8-8 -5.9-6 8 8 1576 3.00980144 6 3.00979147 6 4.5-12 8.6-7 0 7.0-8 9.7-7 1.2-7 1.7-6 8 8 1645 1.79283384 6 1.79284813 6 7.5-12 9.9-7 2.8-8 2.3-8 8.3-8 8.5-9 -4.0-6 8 8 1918 1.38028143 6 1.38019123 6 7.4-12 9.9-7 0 7.5-8 9.5-7 1.6-7 3.3-5 11 11 533 1.11181933 6 1.11182191 6 6.5-13 9.9-7 4.4-7 9.6-7 8.2-7 1.8-7 1.2-6	segment-large.3 1001 1000;	0 0 373	1.03929738 7 1.03929372 7	6.1-12 9.9-7 0 9.7-7 3.9-7 1.1-7 1.8-6	2:43
1 1000; 8 8 2449 6.98489394 6 6.98490266 6 1.2-11 9.9-7 2.3-9 9.7-7 6.8-9 2.2-7 -6.2-7 6.8-9 2.3-7 -6.2-7 6.8-9 2.3-7 -6.2-7 6.8-9 2.3-7 -6.2-7 -1.5-6 6.09809592 6 6.09811370 6 2.5-11 8.8-7 0 9.9-7 3.7-9 2.6-7 -1.5-6 6.9-7 3.7-9 3.00980144 6 3.009791476 4.5-12 8.6-7 0 7.0-8 9.7-7 1.2-7 1.7-6 8 8 1645 1.7928384 6 1.79284813 6 7.5-12 9.9-7 2.8-8 2.3-8 8.3-8 8.5-9 -4.0-6 8 8 1918 1.38028143 6 1.38019123 6 7.4-12 9.9-7 4.4-7 9.6-7 8.2-7 1.8-7 -1.2-6 11 11 11 11 11 11 11	segment-large.4 1001 1000;	2 2 1879	8.16944543 6 8.16945493 6	7.0-12 9.0-7 1.3-9 9.9-7 3.7-9 2.1-7 -5.8-7	13:52
8 8 3158 6.09809592 6 6.09811370 6 2.5-11 8.8-7 0 9.9-7 3.7-9 2.6-7 -1.5-6 5.76086706 6 5.76093491 6 9.9-7 9.9-7 1.4-15 8.7-8 3.2-15 3.8-8 -5.9-6 8 8 1576 3.00980144 6 3.00979147 6 4.5-12 8.6-7 0 7.0-8 9.7-7 1.2-7 1.7-6 5 8 8 1645 1.79283384 6 1.79284813 6 7.5-12 9.9-7 2.8-8 2.3-8 8.3-8 8.5-9 -4.0-6 5 8 1918 1.38028143 6 1.38019123 6 7.4-12 9.9-7 0 7.5-8 9.5-7 1.6-7 3.3-5 11 11 11 11 11 11 11	segment-large.5 1001 1000;	8 8 2449	6.98489394 6 6.98490266 6	1.2-11 9.9-7 2.3-9 9.7-7 6.8-9 2.2-7 -6.2-7	19:06
8 8 3373 5.76086706 6 5.76093491 6 9.9-7 9.9-7 1.4-15 8.7-8 3.2-15 3.8-8 -5.9-6 8 8 1576 3.00980144 6 3.00979147 6 4.5-12 8.6-7 0 7.0-8 9.7-7 1.2-7 1.7-6 8 8 1645 1.79283384 6 1.79284813 6 7.5-12 9.9-7 2.8-8 2.3-8 8.3-8 8.5-9 -4.0-6 8 8 1918 1.38028143 6 1.38019123 6 7.4-12 9.9-7 0 7.5-8 9.5-7 1.6-7 3.3-5 11 11 11533 1.11181933 6 1.11182191 6 6.5-13 9.9-7 4.4-7 9.6-7 8.2-7 1.8-7 -1.2-6	segment-large.6 1001 1000;	8 8 3158	6.09809592 6 6.09811370 6	2.5-11 8.8-7 0 9.9-7 3.7-9 2.6-7 -1.5-6	24:00
8 8 1576 3.009801446 3.009791476 4.5-12 8.6-7 0 7.0-8 9.7-7 1.2-7 1.7-6 8 8 1645 1.792833846 1.792848136 7.5-12 9.9-7 2.8-8 2.3-8 8.5-9 -4.0-6 8 8 1918 1.380281436 1.380191236 7.4-12 9.9-7 0 7.5-8 9.5-7 1.6-7 3.3-5 11 11 533 1.111819336 1.111821916 6.5-13 9.9-7 4.4-7 9.6-7 8.2-7 1.8-7 -1.2-6	housing.2 507 506;	8 8 3373	5.76086706 6 5.76093491 6	9.9-7 9.9-7 1.4-15 8.7-8 3.2-15 3.8-8 -5.9-6	4:50
8 8 1645 1.792833846 1.792848136 7.5-12 9.9-7 2.8-8 2.3-8 8.5-9 -4.0-6 8 8 1918 1.380281436 1.380191236 7.4-12 9.9-7 0 7.5-8 9.5-7 1.6-7 3.3-5 11 11 533 1.111819336 1.111821916 6.5-13 9.9-7 4.4-7 9.6-7 8.2-7 1.8-7 -1.2-6	housing.3 507 506;	8 8 1576	3.00980144 6 3.00979147 6	4.5-12 8.6-7 0 7.0-8 9.7-7 1.2-7 1.7-6	3:20
8 8 1918 1.38028143 6 1.38019123 6 7.4-12 9.9-7 0 7.5-8 9.5-7 1.6-7 3.3-5 11 11 11 11 133 1.11181933 6 1.11182191 6 6.5-13 9.9-7 4.4-7 9.6-7 8.2-7 1.8-7 -1.2-6	housing.4 507 506;	8 8 1645	1.79283384 6 1.79284813 6	7.5-12 9.9-7 2.8-8 2.3-8 8.3-8 8.5-9 4.0-6	2:50
11 11 533 1.11181933 6 1.11182191 6 6.5-13 9.9-7 4.4-7 9.6-7 8.2-7 1.8-7 -1.2-6	housing.5 507 506;	8 8 1918	1.38028143 6 1.38019123 6	7.4-12 9.9-7 0 7.5-8 9.5-7 1.6-7 3.3-5	3:30
	housing.6 507 506;	11 11 533	1.11181933 6 1.11182191 6	6.5-13 9.9-7 4.4-7 9.6-7 8.2-7 1.8-7 -1.2-6	1:06

Table 3 $\,$ Performance of SDPNAL+ on θ and R1TA problems $(\varepsilon=10^{-6})$

Problem $ m n_s$; n_l theta10 12470 500; theta102 37467 500;	itlitsublitA	nobi dobi	2 22 22 22 22 22	Time
theta10 12470 500; theta102 37467 500;		Food wood	$^{\prime\prime}P$ $^{\prime\prime}D$ $^{\prime\prime}K_1$ $^{\prime\prime}K_2$ $^{\prime\prime}C_1$ $^{\prime\prime}C_2$ $^{\prime\prime}g$	111115
theta102 37467 500;	11 11 200	8.38059601 1 8.38059488 1	4.4-8 7.6-7 6.5-16 0 4.0-16 0 6.7-8	32
	11 11 84	3.83905392 1 3.83905464 1	8.1-8 6.8-7 3.4-16 0 0.4-16 0 -9.3-8	21
theta103 62516 500;	20 20 64	2.25285667 1 2.25285686 1	2.8-7 8.1-7 1.8-16 0 7.6-16 0 -4.1-8	38
theta104 87245 500;	43 47 63	1.33361259 1 1.33361411 1	3.9-7 4.4-7 1.3-16 0 1.5-16 0 -5.5-7	53
theta12 17979 600;	13 13 200	9.28016817 1 9.28016713 1	2.3-8 3.7-7 0.9-15 0 1.3-16 0 5.6-8	51
theta123 90020 600;	12 12 70	2.46686527 1 2.46686518 1	6.0-8 7.1-7 2.1-16 0 1.1-16 0 1.9-8	36
hamming-9-8 2305 512;	12 12 200	2.24000000 2 2.24000041 2	1.1-9 2.5-7 7.1-16 0 4.4-16 0 —9.2-8	21
hamming-10-2 23041 1024;	10 10 200	1.02399926 2 1.02400047 2	1.2-8 4.8-7 1.3-16 0 0.8-16 0 -5.9-7	2:54
hamming-9-5-6 53761 512;	6 6 200	8.53333333 1 8.53333618 1	3.4-14 6.2-7 5.9-16 0 0.2-16 0 -1.7-7	20
G43 9991 1000;	27 27 200	2.80625087 2 2.80624586 2	6.8-7 9.8-7 1.6-15 0 1.6-14 0 8.9-7	3:32
G44 9991 1000;	30 30 200	2.80583223 2 2.80583220 2	1.1-7 6.1-7 2.5-15 0 0.8-16 0 5.9-9	3:48
G45 9991 1000;	26 26 200	2.80185148 2 2.80185127 2	1.3-7 6.4-7 3.2-15 0 2.4-15 0 3.8-8	3:31
G46 9991 1000;	28 30 200	2.79837009 2 2.79836974 2	1.9-7 7.9-7 5.7-15 0 5.4-15 0 6.2-8	3:49
G47 9991 1000;	30 31 200	2.81894037 2 2.81893954 2	1.8-7 3.7-7 1.4-14 0 1.4-14 0 1.5-7	3:52
G51 5910 1000;	148 584 200	3.48999920 2 3.48999975 2	7.3-7 5.9-7 9.2-14 0 4.6-14 0 -7.9-8	41:06
G52 5917 1000;	458 1619 200	3.48387855 2 3.48386488 2	7.6-7 9.3-7 3.0-15 0 2.4-14 0 2.0-6	3:53:19
G53 5915 1000;	425 1183 200	3.48348615 2 3.48347655 2	4.7-7 9.9-7 8.9-14 0 3.2-15 0 1.4-6	2:16:35
G54 5917 1000;	123 462 200	3.41000018 2 3.40999990 2	2.5-7 9.3-7 9.3-15 0 5.7-16 0 4.2-8	23:17
1dc.1024 24064 1024;	48 74 200	9.59856502 1 9.59849891 1	9.1-7 5.9-7 5.5-14 0 3.8-14 0 3.4-6	14:32
let.1024 9601 1024;	64 129 200	1.84226960 2 1.84226147 2	5.9-7 3.3-7 5.3-15 0 6.1-14 0 2.2-6	35:33
1tc.1024 7937 1024;	156 417 200	2.06304654 2 2.06304284 2	7.5-7 6.2-7 3.1-14 0 7.5-16 0 8.9-7	1:22:24
1zc.1024 16641 1024;	16 16 200	1.28666672 2 1.28666665 2	1.8-8 8.4-7 0.8-15 0 3.8-15 0 2.7-8	4:56
2dc.1024 169163 1024;	148 376 200	1.86381938 1 1.86378972 1	8.2-7 9.2-7 1.1-14 0 4.0-15 0 7.8-6	2:21:20
1dc.2048 58368 2048;	62 112 200	1.74731330 2 1.74729390 2	9.7-7 6.2-7 5.3-14 0 1.6-14 0 5.5-6	1:55:31

nued
e 3 conti
Table

Problem m ns, ny iditsablitA pobj dobj pobj dobj np np np np,	Table 2 Colleman				
228 658 1200 3.42031726 3.42029072 8.77 8.07 1.1-14 0 4.8-15 0 3.9-6 5.09 1725 200 3.74644012 3.746432712 4.77 8.27 3.2-15 0 2.7-15 0 1.8-5 16.1386 200 3.06739144 3.06738102 1.5.71 2.48 0 0 1.0-16 0 1.4-17 2.5 33 200 1.06613340 1.066100 1.0-16 0 1.2-6 1.00613340 1.00613340 1.06613340 1.06610 1.0-16 0 1.0-16	Problem $\mid m \mid n_s; n_l$	it itsub itA	pobj dobj	$\eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	Time
509 1725 200 3.74644012 2 3.746432712 4.77 8.2-7 1.6-14 0 96-15 0 99-7 167 385 200 3.06739144 3.06728102 9.8-7 8.2-7 3.2-15 0 2.7-15 0 1.8-5 25 33 200 1.06613340 1.06611027 0 8.5-8 4.2-7 0 0 3.0-16 0 7-4-6 25 33 200 1.06613340 1.06611027 0 8.5-8 4.2-7 0 0 3.0-16 0 7-4-6 25 33 200 1.06613340 1.06611027 0 8.5-8 4.2-7 0 0 3.0-16 0 7-4-6 17 21 200 2.9134846 2.91343357 0 7.5-8 2.5-7 0.2-16 0 0.5-16 0 -2.5-6 19 22 200 3.0827539 0 3.08254910 7.5-8 2.5-7 0.2-16 0 0.5-16 0 1.2-5 26 28 200 3.0827539 0 3.08254910 2.47 1.7-7 1.8-16 0 1.2-6 24 46 72 1.829991320 1.99323089 2.47 1.7-7 1.8-16 0 1.1-16 0 2.4-5 37 39 82 1.993152210 1.99323089 1.77 5.7-10.3-16 0 1.2-16 0 2.4-5 46 51 77 2.06951100 0 2.06938546 5.7-1 2.7-10.1-16 0 1.2-45 46 51 77 1.09333279 1 1.098318641 5.7-8 2.7-1 0.10 0.1-16 0 1.2-45 46 51 77 1.09333279 1 1.098318641 5.7-8 2.7-1 0.10 0.1-16 0 1.2-16 0 1.2-6 45 62 91 1.344184 1 1.30421331 5.7-8 2.7-1 0.10 0.1-16 0 1.2-16 0 1.2-6 45 62 91 1.349345457 0 34933816 5.7-8 2.7-1 0.10 0.2-1	1et.2048 22529 2048;	228 658 200	3.42031726 2 3.42029072 2	8.7-7 8.0-7 1.1-14 0 4.8-15 0 3.9-6	5:29:46
167]385 200 3.06739144 13.06728102 1 9.87 3.2-15 0 12.7-15 0 1.8-5 13 13 1200 5.74083615 0 1.5-7 2.4-8 0 0 1.0-16 0 -4.1-7 25 33 200 1.06613340 1.06611027 0 8.5-8 4.2-7 0 0 3.0-16 0 7.4-6 17 21 200 2.91348466 2.9134337 0 7.5-8 2.5-7 0.2-16 0 0.5-16 0 7.5-6 19 22 200 2.91348466 2.9134337 0 7.5-8 2.5-7 0.2-16 0 0.5-16 0 7.5-6 26 28 200 3.09572024 0 3.08253910 2.4-7 1.7-7 1.8-16 0 1.1-16 0 3.7-6 26 28 200 3.09572024 0 3.08253910 2.4-7 1.7-7 1.8-16 0 1.1-16 0 3.7-6 26 28 200 3.09572024 0 3.08253910 2.4-7 1.7-7 1.8-16 0 1.1-16 0 1.2-6 31 31 87 2.0695110 1.99233089 0 1.7-7 2.7-10 0 0.1-16 0 1.2-6 31 31 87 2.0695110 1.99233089 0 1.7-7 2.7-10 0 0.1-16 0 1.2-6 45 62 91 1.3424653 1.118428819 5.7-8 2.7-7 0 0.1-16 0 0.7-16 0 1.2-6 45 62 91 1.344184 1 1.3428891 5.7-8 2.7-7 0 0.0-16 0 1.3-6 41 43 111 3.49345457 0 3.4933891 0 5.3-8 2.4-7 0 0 0.3-16 0 1.2-6 50 51 85 3.15086704 1.13684788 6.4-7 1.2-7 3.3-16 0 1.2-6 50 51 51 6.5-7 3.3-16 0 1.2-16 0 1.0-6 50 51 51 6.5-7 3.3-16 0 1.3-16 0 1.3-6 50 51 51 6.5-7 3.3-16 0 1.3-16 0 1.3-6 50 51 51 6.5-7 3.3-16 0 1.3-16 0 1.3-6 50 51 51 51 51 51 51 51	1tc.2048 18945 2048;	509 1725 200	3.74644012 2 3.74643271 2	4.7-7 8.2-7 1.6-14 0 9.6-15 0 9.9-7	22:10:45
13 13 200 5.740831010 5.74083615 0 1.5-7 248 0 0 1.0-16 0 -4.1-7 25 33 200 1.0661340 1.06611027 0 8.5-8 4.2-7 0 0 3.0-16 0 7.4-6 17 21 200 1.69471772 1.69472878 0 7.5-8 2.5-7 0.2-16 0 0.5-16 0 -2.5-6 19 22 200 2.91348466 2.91343357 0 7.5-8 2.5-7 0.2-16 0 0.6-16 0 7.5-6 30 31 200 3.0825739 3.08254910 0 2.4-7 1.7-7 1.8-16 0 1.3-16 0 7.5-6 26 28 200 3.09572024 3.09557416 0 6.4-7 6.5-7 0.8-16 0 1.0-16 0 2.0-5 43 46 72 1.82999132 0 1.83002862 0 5.4-7 3.3-7 0 0 0.8-16 0 1.0-16 0 -1.6-5 37 39 82 1.99313221 0 1.99323089 0 1.7-7 5.7-7 0.3-16 0 1.0-16 0 -1.6-5 37 37 87 2.06951100 0 2.06938546 0 5.7-7 2.2-7 0 0 1.1-16 0 5.4-5 46 51 77 1.09833279 1 1.09831864 1 5.3-8 2.2-7 0 0 1.1-16 0 -4.7-6 45 62 90 1.18424653 1 1.1842819 1 5.7-8 5.5-7 1.0-13 0 1.4-16 0 -1.3-5 45 62 91 1.30418148 1 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.4-16 0 -1.3-5 45 62 91 1.30418148 1 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.2-16 0 2.6-5 45 62 91 1.30438457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 3.0-6 45 62 91 2.08879111 2.7093348 1 4.7-7 6.4-7 0 0 0.3-16	2dc.2048 504452 2048;	167 385 200	3.06739144 1 3.06728102 1	9.8-7 8.2-7 3.2-15 0 2.7-15 0 1.8-5	14:22:06
25 33 200 1.06613340 1.106611027 8.5-8 4.2-7 0 0 3.0-16 0 7.4-6 17/21 200 1.69471772 0 1.69472878 7.9-7 1.6-7 0.8-16 0 0.5-16 0 7.5-6 19 22 200 3.08257539 3.08257539 3.082574910 2.4-7 1.7-7 1.8-16 0 1.3-16 0 3.7-6 26 28 200 3.09572024 3.09557416 6.4-7 6.7-7 0.8-16 0 0.1-16 0 2.0-5 43 46 72 1.82999132 0 1.83002862 2.4-7 1.7-7 1.8-16 0 1.3-16 0 1.2-6 2.0-5 37 39 82 1.82999132 0 1.83002862 2.4-7 3.3-7 0 0 0.8-16 0 1.0-16 0 1.6-5 2.0-6 37 39 82 1.99315221 0 1.99323089 1.7-7 5.7-7 0.3-16 0 1.0-16 0 1.6-5 2.0-6 37 37 37 37 37 37 37 37 37 3	nonsym(8,4) 46655 512;	13 13 200	5.74083101 0 5.74083615 0	$1.5 - 7 \mid 2.4 - 8 \mid 0 \mid 0 \mid 1.0 - 16 \mid 0 \mid -4.1 - 7$	29
17/21/200 1.69471772 0 1.69472878 0 7.9-7 1.6-7 0.8-16 0 0.5-16 0 -2.5-6 19/22/200 2.9134846 0 2.91343357 0 7.5-8 2.5-7 0.2-16 0 0.6-16 0 7.5-6 30/31/200 3.08257539 0 3.08254910 0 2.4-7 1.7-7 1.8-16 0 1.3-16 0 3.0-6 26/28/200 3.09572024 0 3.09572024 0 3.09557416 0 6.4-7 6.6-7 0.8-16 0 0.1-16 0 2.0-5 43/46/72 1.82999132 0 1.83002862 0 5.4-7 3.3-7 0 0 0.8-16 0 1.0-16 0 1.0-6 37/39/82 1.99315221 0 1.99323089 0 1.7-7 5.7-7 0.3-16 0 1.0-16 0 1.0-6 31/31/87 2.14076548 0 2.14073540 0 5.5-7 2.2-7 0 0 1.1-16 0 5.7-6 46/51/77 1.09833279 1 1.09831864 1 6.3-8 2.2-7 0 0 1.1-16 0 1.4-5 45/52/90 1.15471518 1 1.15473381 1 5.4-8 6.6-7 1.6-13 0 1.3-16 0 1.4-6 45/52/90 1.13424653 1 1.18425819 1 5.7-8 3.5-7 1.0-13 0 1.3-16 0 1.3-6 45/52/90 1.13424653 1 1.13425819 1 5.7-8 3.5-7 1.0-13 0 1.3-16 0 1.3-6 41/43/111 3.49345470 3.493389110 5.7-8 3.5-7 1.0-13 0 1.2-16 0 1.2-6 29/35/139 4.179280370 4.17942269 0 31-71 2.9-7 0 0 0 0.2-16 0 1.2-16 0 3.0-6	nonsym(9,4) 91124 729;	25 33 200	1.06613340 0 1.06611027 0	8.5-8 4.2-7 0 0 3.0-16 0 7.4-6	2:00
19 22 200 2.91348466 0 2.91343357 0 7.5-8 2.5-7 0.2-16 0 0.6-16 0 7.5-6 30 31 200 3.0825739 0 3.08254910 0 2.4-7 1.7-7 1.8-16 0 1.3-16 0 3.7-6 26 28 200 3.09572024 0 3.09557416 0 6.4-7 6.5-7 0.8-16 0 0.1-16 0 2.0-5 43 46 72 1.82999132 0 1.83002862 0 5.4-7 3.3-7 0 0 0.8-16 0 1.0-16 0 1.6-5 37 39 82 1.99315221 0 1.99323089 0 1.7-7 5.7-7 0.3-16 0 1.0-16 0 1.6-5 37 37 87 2.06951100 0 2.06938546 0 5.5-7 2.2-7 0 0 1.1-16 0 5.7-6 46 51 77 1.09833279 1 1.09831864 1 5.5-7 2.2-7 0 0 0 1.1-16 0 2.4-5 46 51 77 1.09833279 1 1.09831864 1 5.4-8 6.5-7 1.6-13 0 1.3-16 0 1.4-5 45 62 90 1.18424653 1 1.18428819 1 5.7-8 3.5-7 1.0-13 0 1.3-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-16 0 1.4-15 0 1.5-5 45 62 91 1.13424653 1 1.18428819 1 5.7-8 3.5-7 1.0-13 0 1.3-16 0 1.2-16 0 1.6-5 45 62 91 1.349245457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 1.2-16 0 1.6-5 29 35 135 2.70887911 1.270973348 1 6.4-7 4.2-7 5.3-16 0 1.2-16 0 1.6-5 26 37 185	nonsym(10,4) 166374 1000;	17 21 200	1.69471772 0 1.69472878 0	7.9-7 1.6-7 0.8-16 0 0.5-16 0 -2.5-6	3:37
30 31 200 3.08257539 0 3.082549100 2.47 1.77 1.8.16 0 1.3.16 0 3.7-6 26 28 200 3.09572024 0 3.09557416 0 6.47 6.6-7 0.8-16 0 0.1-16 0 2.0-5 43 46 72 1.82999132 0 1.83002862 0 5.47 3.3-7 0 0 0.8-16 0 -8.0-6 37 39 82 1.99315221 0 1.99323089 0 1.7-7 5.7-7 0.3-16 0 1.0-16 0 -1.6-5 31 31 87 2.14076548 0 2.14073540 0 5.5-7 2.2-7 0 0 1.1-16 0 5.7-6 46 51 77 1.09833279 1 1.09831864 1 6.3-8 2.2-7 0 0 1.1-16 0 5.4-5 46 51 77 1.09833279 1 1.09831864 1 5.4-8 6.6-7 1.6-13 0 3.2-16 0 -4.7-6 46 51 77 1.09833279 1 1.09831864 1 5.4-8 6.6-7 1.6-13 0 3.2-16 0 -4.7-6 45 62 90 1.18424653 1 1.18425819 1 5.7-8 3.2-7 1.0-13 0 1.3-16 0 -4.7-6 45 62 91 1.30418148 1 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.3-16 0 -1.3-5 41 43 111 3.49345457 0 3.493389110 5.3-8 2.4-7 0 0 0.3-16 0 2.6-5 29 35 139 4.17928037 0 4.17942269 0 3.1-7 2.9-7 0 0 1.2-16 0 2.6-5 26 37 185 3.15086704 1 3.15084788 1 6.4-7 4.2-7 5.3-16 0 1.2-16 0 2.6-5 500; 49 50 77 2.77557008 0 2.77553681 0 8.4-8 7.0-7 0.0 1.4-16 0 -1.0-5 800; 14 14 129 2.87657149 0 2.87658217 0	nonsym(11,4) 287495 1331;	19 22 200	2.91348466 0 2.91343357 0	7.5-8 2.5-7 0.2-16 0 0.6-16 0 7.5-6	7:14
26 28 200 3.09572024 0 3.09557416 0 6.4-7 6.6-7 0.8-16 0 0.1-16 0 2.0-5 43 46 72 1.82999132 0 1.83002862 0 5.4-7 3.3-7 0 0 0.8-16 0 -8.0-6 37 39 82 1.99315221 0 1.99323089 0 1.7-7 5.7-7 0.3-16 0 1.0-16 0 -1.6-5 31 31 87 2.14076548 0 2.14073540 0 5.5-7 2.2-7 0 0 1.1-16 0 5.7-6 37 37 87 2.06951100 0 2.06938546 0 5.1-7 7.6-7 0 0 0.1-16 0 2.4-5 46 51 77 1.09833279 1 1.09831864 1 5.4-8 6.6-7 1.6-13 0 1.3-16 0 -4.7-6 60 76 86 1.15471518 1 1.15473381 1 5.4-8 6.6-7 1.6-13 0 1.3-16 0 -4.7-6 45 62 90 1.18424653 1 1.18425819 1 5.7-8 3.5-7 1.0-13 0 1.3-16 0 -4.7-6 45 62 91 1.30418148 1 1.3425819 1 5.7-8 3.5-7 1.0-13 0 1.2-16 0 -4.7-6 45 62 91 1.30421848 1 1.3425819 1 5.3-8 2.4-7 0 0 0.3-16 0 -1.5-5 41 43 111 3.49345457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 1.2-16 0 2.6-5 29 35 139 4.17928037 0 4.1794269 0 3.1-7 2.9-7 0 0 0.2-16 0 1.2-16 0 3.6-6 47 56 2.78568871 0 2.78568871 0 2.78568871 0 2.78568871 0 2.78568871 0 2.78568871 0 2.8819 0.0-8 0 0 1.4-16 0 1.4-16 0 -1.0-5 49 50 77 2.77557008 0 2.7755	nonsym(5,5) 50624 625;	30 31 200	3.08257539 0 3.08254910 0	2.4-7 1.7-7 1.8-16 0 1.3-16 0 3.7-6	1:18
43 46 72 1.82999132 0 1.83002862 0 5.47 3.3-7 0 0 0.8-16 0 -8.0-6 37 39 82 1.99315221 0 1.99323089 0 1.77 5.7-7 0.3-16 0 1.0-16 0 -1.6-5 31 31 87 2.14076548 0 2.14073540 0 5.5-7 2.2-7 0 0 1.1-16 0 5.7-6 46 51 77 1.09833279 1 1.09831864 1 6.3-8 2.2-7 0 0 0.1-16 0 2.4-5 60 76 86 1.15471518 1 1.15473381 1 5.4-8 6.6-7 1.6-13 0 3.2-16 0 -7.7-6 45 62 90 1.18424653 1 1.18425819 1 5.7-8 3.5-7 1.0-13 0 1.3-16 0 -4.7-6 45 62 91 1.30418148 1 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.4-16 0 -1.3-5 41 43 111 3.49345457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 8.2-6 29 35 137 2.70987911 1 2.70973348 1 4.7-7 6.4-7 0 0 1.2-16 0 2.6-5 26 37 185 3.15086704 1 3.15084788 1 6.4-7 4.2-7 5.3-16 0 1.2-16 0 1.0-5 49 50 77 2.77557008 0 2.77553681 0 8.4-8 7.0-7 0.7 0.3-16 0 1.0-5 49 50 77 2.7755704 0 2.87658217 0 8.8-8 9.0-8 0 0 1.1-16 0 -1.0-5 88-8 9.0-8 0 0 1.4-16 0 -1.0-6 1.0-6	nonsym(6,5) 194480 1296;	26 28 200	3.09572024 0 3.09557416 0	6.4-7 6.6-7 0.8-16 0 0.1-16 0 2.0-5	6:39
37 39 82 1.99315221 0 1.99323089 0 1.7-7 5.7-7 0.3-16 0 1.0-16 0 -1.6-5 31 31 87 2.14076548 0 2.14073540 0 5.5-7 2.2-7 0 0 1.1-16 0 5.7-6 46 51 77 2.06951100 0 2.06938546 0 5.1-7 7.6-7 0 0 0.1-16 0 2.4-5 46 51 77 1.09833279 1 1.09831864 1 6.3-8 2.2-7 0 0 0.7-16 0 6.2-6 45 62 90 1.15471518 1 1.15473381 1 5.4-8 6.6-7 1.6-13 0 3.2-16 0 -4.7-6 45 62 90 1.30418148 1 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.4-16 0 -4.7-6 45 62 91 1.30418148 1 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.4-16 0 -1.3-5 41 43 111 3.49345457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 8.2-6 29 35 139 4.17928037 0 4.17942269 0 3.1-7 2.9-7 0 0 0.8-16 0 1.2-16 0 1.6-5 26 37 185 3.15086704 1 3.15084788 1 6.4-7 4.2-7 5.3-16 0 1.2-16 0 1.0-5 49 50 77 2.77557008 0 2.77553681 0 8.4-8 7.0-7 0.3-16 0 1.0-16 49 50 77 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	sym_rd(3,35) 82250 666;	43 46 72	1.82999132 0 1.83002862 0	5.4-7 3.3-7 0 0 0.8-16 0 -8.0-6	1:27
31 31 87 2.14076548 0 2.14073540 0 5.5-7 2.2-7 0 0 1.1-16 0 5.7-6 37 37 87 2.06951100 0 2.06938346 0 5.1-7 7.6-7 0 0 0.1-16 0 2.4-5 46 51 77 1.09833279 1 1.09831864 1 6.3-8 2.2-7 0 0 0.7-16 0 6.2-6 50 76 86 1.15471518 1 1.15473381 1 5.4-8 6.6-7 1.6-13 0 3.2-16 0 -7.7-6 45 62 90 1.18424653 1 1.18425819 1 5.7-8 3.5-7 1.0-13 0 1.3-16 0 -4.7-6 45 62 91 1.30418148 1 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.4-16 0 -1.3-5 41 43 111 3.49345457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 8.2-6 29 35 139 4.17928037 0 4.17942269 0 3.1-7 2.9-7 0 0 0.8-16 0 1.5-5 26 37 185 2.709879111 2.70973348 1 6.4-7 4.2-7 5.3-16 0 1.2-16 0 3.0-6 47 51 66 2.78568871 0 2.78562272 0 2.4-7 6.0-7 0 0 2.0-16 0 1.0-5 49 50 77 2.77557008 0 2.77563681 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.0-5 14 14 129 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.0-5	sym_rd(3,40) 135750 861;	37 39 82	1.99315221 0 1.99323089 0	$1.7 - 7 \mid 5.7 - 7 \mid 0.3 - 16 \mid 0 \mid 1.0 - 16 \mid 0 \mid -1.6 - 5$	2:18
37 37 87 2.06951100 0 2.06938546 0 5.1-7 7.6-7 0 0 0.1-16 0 2.4-5 46 51 77 1.09833279 1 1.09831864 1 6.3-8 2.2-7 0 0 0.7-16 0 6.2-6 60 76 86 1.15471518 1 1.15473381 1 5.4-8 6.6-7 1.6-13 0 3.2-16 0 -7.7-6 45 62 90 1.18424653 1 1.18425819 1 5.4-8 6.6-7 1.6-13 0 1.3-16 0 -4.7-6 45 62 91 1.30418148 1 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.4-16 0 -1.3-5 41 43 111 3.49345457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 1.2-6 29 35 139 4.17928037 0 4.17942269 0 3.1-7 2.9-7 0 0 0.8-16 0 1.2-6 32 35 137 2.709879111 2.70973348 1 6.4-7 6.4-7 0 0 1.2-16 0 3.0-6 47 51 66 2.78568871 0 2.78562272 0 2.4-7 6.0-7 0 0 2.0-16 0 1.0-5 49 50 77 2.77557008 0 2.77563681 0 8.4-8 7.0-7 0.3-16 0 3.4-16 0 -1.0-5 14 14 129 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	sym_rd(3,45) 211875 1081;	31 31 87	2.14076548 0 2.14073540 0	5.5-7 2.2-7 0 0 1.1-16 0 5.7-6	4:31
46 51 77 1.09833279 1.09831864 1 6.3-8 2.2-7 0 0 0.7-16 0 6.2-6 60 76 86 1.15471518 1.15473381 1 5.4-8 6.6-7 1.6-13 0 3.2-16 0 -7.7-6 45 62 90 1.18424653 1.18425819 1 5.7-8 3.5-7 1.0-13 0 1.3-16 0 -4.7-6 45 62 91 1.30418148 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.4-16 0 -1.3-5 41 43 111 3.49345457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 8.2-6 29 35 139 4.17928037 0 4.1794269 0 3.1-7 2.9-7 0 0 0.8-16 0 -1.5-5 32 35 137 2.709879111 2.70973348 1 4.7-7 6.4-7 0 0 1.2-16 0 2.6-5 26 37 185 3.15086704 3.15084788 6.4-7 4.2-7 5.3-16 0 1.2-16 0 3.0-6 47 51 66 2.7785688710 2.785562272 0 2.4-7 6.0-7 0 0 2.0-16 0 1.0-5 49 50 77 2.77557008 0 2.77563681 0 8.4-8 7.0-7 0.3-16 0 3.8-16 0 -1.0-5 14 14 129 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	sym_rd(3,50) 316250 1326;	37 37 87	2.06951100 0 2.06938546 0	5.1-7 7.6-7 0 0 0.1-16 0 2.4-5	8:24
60 76 86 1.15471518 I 1.15473381 1 5.48 6.6-7 1.6-13 0 3.2-16 0 -7.7-6 45 62 90 1.18424653 I 1.18425819 1 5.7-8 3.5-7 1.0-13 0 1.3-16 0 -4.7-6 45 62 91 1.30418148 I 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.4-16 0 -1.3-5 41 43 111 3.49345457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 8.2-6 29 35 139 4.17928037 0 4.1794269 0 3.1-7 2.9-7 0 0 0.8-16 0 -1.5-5 32 35 137 2.70987911 I 2.70973348 1 4.7-7 6.4-7 0 0 1.2-16 0 1.2-16 0 3.0-6 47 51 66 2.78568871 0 2.78562272 0 2.4-7 6.0-7 0 0 2.0-16 0 1.0-5 49 50 77 2.77557008 0 2.77563681 0 8.4-8 7.0-7 0.3-16 0 3.8-16 0 -1.0-5 49 50 77 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	sym_rd(4,35) 73814 630;	46 51 77	1.09833279 1 1.09831864 1	6.3-8 2.2-7 0 0 0.7-16 0 6.2-6	1:45
45 62 90 1.18424653 1 1.18425819 1 5.7-8 3.5-7 1.0-13 0 1.3-16 0 -4.7-6 45 62 91 1.30418148 1 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.4-16 0 -1.3-5 41 43 111 3.49345457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 8.2-6 29 35 139 4.17928037 0 4.17942269 0 3.1-7 2.9-7 0 0 0.8-16 0 -1.5-5 32 35 137 2.709879111 2.70973348 1 4.7-7 6.4-7 0 0 1.2-16 0 1.2-6 26 37 185 3.15086704 3.15084788 6.4-7 4.2-7 5.3-16 0 1.2-16 0 1.0-5 47 51 66 2.77557008 0 2.77553681 0 8.4-8 7.0-7 0.3-16 0 1.8-16 0 -1.0-5 49 50 77 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	sym_rd(4,40) 123409 820;	98 92 09	1.15471518 1 1.15473381 1	5.4-8 6.6-7 1.6-13 0 3.2-16 0 -7.7-6	4:56
45 62 91 1.30418148 1 1.30421731 1 6.8-8 7.9-7 1.0-15 0 1.4-16 0 -1.3-5 41 43 111 3.49345457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 8.2-6 29 35 139 4.17928037 0 4.17942269 0 3.1-7 2.9-7 0 0 0.8-16 0 -1.5-5 32 35 137 2.709879111 2.70973348 1 4.7-7 6.4-7 0 0 1.2-16 0 2.6-5 26 37 185 3.15086704 3.15084788 6.4-7 4.2-7 5.3-16 0 1.2-16 0 3.0-6 47 51 66 2.78568871 0 2.78562272 0 2.4-7 6.0-7 0 0 2.0-16 0 1.0-5 49 50 77 2.77557008 0 2.77563681 0 8.48 7.0-7 0.3-16 0 3.8-16 0 -1.0-5 14 14 129 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	sym_rd(4,45) 194579 1035;	45 62 90	1.18424653 1 1.18425819 1	5.7-8 3.5-7 1.0-13 0 1.3-16 0 -4.7-6	7:44
41 43 111 3.49345457 0 3.49338911 0 5.3-8 2.4-7 0 0 0.3-16 0 8.2-6 29 35 139 4.17928037 0 4.17942269 0 3.1-7 2.9-7 0 0 0.8-16 0 -1.5-5 32 35 137 2.709879111 2.70973348 1 4.7-7 6.4-7 0 0 1.2-16 0 2.6-5 26 37 185 3.15086704 1 3.15084788 6.4-7 4.2-7 5.3-16 0 1.2-16 0 3.0-6 47 51 66 2.78568871 0 2.78562272 0 2.4-7 6.0-7 0 0 2.0-16 0 1.0-5 49 50 77 2.77557008 0 2.77563681 0 8.4-8 7.0-7 0.3-16 0 3.8-16 0 -1.0-5 14 14 129 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	sym_rd(4,50) 292824 1275;	45 62 91	1.30418148 1 1.30421731 1	6.8-8 7.9-7 1.0-15 0 1.4-16 0 $-1.3-5$	12:44
29 35 139 4.17928037 0 4.17942269 0 3.1-7 2.9-7 0 0 0.8-16 0 -1.5-5 32 35 137 2.709879111 2.70973348 1 4.7-7 6.4-7 0 0 1.2-16 0 2.6-5 26 37 185 3.15086704 1 3.15084788 1 6.4-7 4.2-7 5.3-16 0 1.2-16 0 3.0-6 47 51 66 2.78568871 0 2.78563272 0 2.4-7 6.0-7 0 0 2.0-16 0 1.0-5 49 50 77 2.77557008 0 2.77563681 0 8.4-8 7.0-7 0.3-16 0 3.8-16 0 -1.0-5 14 14 129 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	sym_rd(5,15) 54263 816;	41 43 111	3.49345457 0 3.49338911 0	5.3-8 2.4-7 0 0 0.3-16 0 8.2-6	2:53
32 35 137	sym_rd(5,20) 230229 1771;	29 35 139	4.17928037 0 4.17942269 0	3.1-7 2.9-7 0 0 0.8-16 0 -1.5-5	27:28
26 37 185 3.15086704 1 3.15084788 1 6.4-7 4.2-7 5.3-16 0 1.2-16 0 3.0-6 47 51 66 2.78568871 0 2.78562272 0 2.4-7 6.0-7 0 0 2.0-16 0 1.0-5 49 50 77 2.77557008 0 2.77563681 0 8.48 7.0-7 0.3-16 0 3.8-16 0 -1.0-5 14 14 129 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	sym_rd(6,15) 38759 680;	32 35 137	2.70987911 1 2.70973348 1	4.7-7 6.4-7 0 0 1.2-16 0 2.6-5	1:33
47 51 66 2.78568871 0 2.78562272 0 2.4-7 6.0-7 0 0 2.0-16 0 1.0-5 49 50 77 2.77557008 0 2.77563681 0 8.4-8 7.0-7 0.3-16 0 3.8-16 0 -1.0-5 14 14 129 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	sym_rd(6,20) 177099 1540;	26 37 185	3.15086704 1 3.15084788 1	6.4-7 4.2-7 5.3-16 0 1.2-16 0 3.0-6	22:48
49 50 77 2.77557008 0 2.77553681 0 8.4-8 7.0-7 0.3-16 0 3.8-16 0 -1.0-5 14 14 129 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	nsym_rd([20,25,25]) 68249 500;	47 51 66	2.78568871 0 2.78562272 0	2.4-7 6.0-7 0 0 2.0-16 0 1.0-5	58
14 14 129 2.87657149 0 2.87658217 0 8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	nsym_rd([25,20,25]) 68249 500;	49 50 77	2.77557008 0 2.77563681 0	8.4-8 7.0-7 0.3-16 0 3.8-16 0 -1.0-5	58
	$nsym_rd([25,25,20]) \mid 68249 \mid 500;$	14 14 129	2.87657149 0 2.87658217 0	8.8-8 9.0-8 0 0 1.4-16 0 -1.6-6	34

Table 3 continued				
Problem $\mid m \mid n_s; n_l$	it itsub itA	pobj dobj	$\eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	Time
nsym_rd([25,25,25]) 105624 625;	56 64 95	2.83000532 0 2.83011896 0	1.5-7 9.0-7 0 0 1.7-16 0 -1.7-5	1:33
nsym_rd([30,30,30]) 216224 900;	30 33 122	3.03772558 0 3.03770676 0	6.2-7 4.6-7 0.3-16 0 0.0-16 0 2.7-6	3:52
nsym_rd([35,35,35]) 396899 1225;	45 49 141	3.07047975 0 3.07050501 0	1.4-7 2.0-7 0 0 1.4-16 0 -3.5-6	9:14
nsym_rd([40,40,40]) 672399 1600;	33 35 93	3.87873078 0 3.87863899 0	2.1-7 3.3-7 0.2-16 0 0.1-16 0 1.0-5	14:23
nsym_rd([8,8,8,8]) 46655 512;	11 11 200	2.83768958 0 2.83773386 0	1.0-7 3.3-7 0 0 1.0-16 0 -6.6-6	28
nsym_rd([9,9,9,9]) 91124 729;	14 14 200	3.10895856 0 3.10890841 0	3.1-7 2.6-7 2.6-16 0 2.0-16 0 6.9-6	1:07
nonsym(12,4) 474551 1728;	5 17 200	5.92161950 0 5.92162092 0	2.8-8 4.5-9 0.1-16 0 0.2-16 0 -1.1-7	16:55
nonsym(13,4) 753570 2197;	15 55 200	7.27450656 0 7.27450942 0	5.2 - 7 5.6 - 9 1.0 - 16 0 0.8 - 16 0 -1.8 - 7	1:51:34
nonsym(7,5) 614655 2401;	32 43 200	5.10582689 0 5.10572890 0	2.4-7 2.0-7 0 0 2.7-16 0 8.7-6	53:29
nonsym(8,5) 1679615 4096;	14 22 200	5.77855140 0 5.77862086 0	5.2-7 1.0-7 0 0 4.8-16 0 -5.5-6	2:46:20
nonsym(18,4) 5000210 5832;	13 55 200	1.53963123 1 1.53954727 1	5.8-7 3.7-7 0 0 1.6-16 0 2.6-5	8:50:14
nonsym(20,4) 9260999 8000;	7 17 200	1.77231047 1 1.77233375 1	5.2-8 7.4-8 0 0 2.2-15 0 -6.4-6	8:26:40
nonsym(21,4) 12326390 9261;	7 21 200	2.03462783 1 2.03463278 1	$5.7 \hbox{-} 8 \ 1.3 \hbox{-} 8 \ 2.9 \hbox{-} 15 \ 0 \ \ 2.9 \hbox{-} 15 \ 0 \ \ -1.2 \hbox{-} 6$	14:22:05

Table 4 Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ_+ , FAP, QAP, BIQ and RCP problems $(\varepsilon = 10^{-6})$

	a b c d	" a b c d	ηg a b c d	a b c d
theta10 12470 500;	0, 0;354 354 351 490	8.5-7 8.5-7 9.9-7 9.9-7	-2.5-6 -2.5-6 -7.8-7 1.5-6	46 45 42 1:11
theta102 37467 500;	0, 0;157 157 130 355	9.5-7 9.5-7 9.0-7 9.9-7	$-6.0-7 \mid -6.0-7 \mid 2.1-6 \mid 2.2-6$	23 23 23 54
theta103 62516 500;	0, 0;144 144 108 323	9.2-7 9.2-7 9.8-7 9.8-7	$-3.0-8 \mid -3.0-8 \mid 5.9-7 \mid 2.6-6$	22 22 21 49
theta104 87245 500;	0, 0;169 169 123 338	9.3-7 9.3-7 9.8-7 9.9-7	-9.2-8 -9.2-8 1.1-6 3.2-6	24 24 20 51
theta12 17979 600;	0, 0;362 362 366 494	9.0-7 9.0-7 8.8-7 9.2-7	-2.2-6 -2.2-6 1.0-6 1.3-6	1:15 1:14 1:11 1:52
theta123 90020 600;	0, 0;156 156 107 345	9.3-7 9.3-7 9.9-7 9.9-7	$-6.0-8 \mid -6.0-8 \mid 5.1-7 \mid 2.6-6$	34 35 33 1:26
hamming-9-8 2305 512;	11,11;500 2413 3100 938	9.5-7 9.6-7 9.6-7 9.0-7	-4.4-8 -1.2-5 -6.9-7 5.6-6	44 3:07 4:20 1:36
hamming-10-2 23041 1024;	0, 0;657 657 651 902	8.7-7 8.7-7 9.4-7 8.8-7	7.6-6 7.6-6 -2.6-6 3.4-5	3:09 3:05 5:17 3:47
hamming-9-5-6 53761 512;	0, 0;461 461 507 563	9.5-7 9.5-7 9.5-7 8.9-7	$-1.2-5 \mid -1.2-5 \mid -1.9-6 \mid 8.0-6$	45 45 54 58
G43 9991 1000;	21,21;973 1154 1147 934	8.9-7 9.8-7 9.4-7 9.9-7	4.1-6 -3.1-6 1.7-6 2.0-6	12:32 13:04 10:20 13:00
G44 9991 1000;	21,21;942 1151 1144 968	9.9-7 9.3-7 9.9-7 9.9-7	-5.1-6 -2.9-6 1.6-6 1.6-6	12:00 12:13 10:11 13:15
G45 9991 1000;	21,21;888 1175 1185 966	9.8-7 9.5-7 9.4-7 9.9-7	$-6.5-6 \mid 2.9-6 \mid -1.0-6 \mid 1.6-6$	11:43 13:24 10:36 13:28
G46 9991 1000;	21,21;887 1199 1180 943	9.7-7 9.9-7 9.8-7 9.9-7	$-1.1-5 \mid -3.2-6 \mid -1.0-6 \mid 1.4-6$	11:35 12:55 10:42 12:58
G47 9991 1000;	21,21;1042 1186 1137 992	9.4-7 9.5-7 9.5-7 9.9-7	-5.4-6 2.9-6 -9.4-7 1.2-6	13:10 13:18 10:28 13:50
G51 5910 1000;	1, 2;5672 6207 10361 9586	7-6.9 7-6.9 7-6.9 7-6.9	1.0-6 3.7-7 2.6-7 5.6-7	1:15:12 1:21:52 2:11:03 2:31:30
G52 5917 1000;	5, 5;10840 11463 14163 12124	7-6.9 7-6.9 7-6.9 7-6.9	2.4-7 4.2-7 4.5-7 6.9-7	2:21:46 2:26:28 2:46:25 3:15:11
G53 5915 1000;	4, 4;13260 13289 23865 20623	7-6.9 7-6.9 7-6.9 7-6.9	2.9-6 2.6-6 2.9-6 4.2-6	2:48:21 2:49:53 4:48:56 5:49:06
G54 5917 1000;	8, 8;4278 3262 7542 5136	7-6.9 7-6.9 7-7.9 7-6.9	-7.9-7 3.1-6 4.6-7 1.3-6	51:18 38:42 1:26:47 1:17:01
1dc.1024 24064 1024;	0, 0;2620 2620 2681 3641	7-6.9 7-6.9 7-6.9 7-6.9	1.3-6 1.3-6 3.4-6 4.0-6	31:46 32:22 45:21 53:12
let.1024 9601 1024;	0, 0;1144 1144 2563 2609	7-6.9 7-6.9 7-6.9 7-6.9	1.3-6 1.3-6 5.6-6 5.9-6	12:43 12:54 39:53 35:35
1tc.1024 7937 1024;	0, 0;2732 2732 6545 6675	7-6.9 7-6.9 7-6.9 7-6.9	4.5-6 4.5-6 4.5-6 4.2-6	31:34 32:08 1:48:31 1:40:06
1zc.1024 16641 1024;	0, 0;711 711 770 25000	7.7-7 7.7-7 9.9-7 3.1-5	5.4-6 5.4-6 2.0-6 7.9-4	7:12 7:19 12:18 7:48:20
2dc.1024 169163 1024;	0, 0;4135 4135 1896 1891	9.9-7 9.9-7 9.9-7 9.9-7 1.3-5 11.3-5 11.0-5 11.5-5	1.3-5 1.3-5 1.0-5 1.5-5	44:55 45:59 29:02 24:59

Table 4 continued				
Problem $\mid m \mid n_s; n_l$	Iteration a b c d	η a b c d	$\frac{\eta_g}{a b c d}$	Time al bl cl d
1dc.2048 58368 2048;	0, 0;4153 4153 7277 8476	7-6.6 7-6.6 7-6.6 7-6.6	4.2-6 4.2-6 6.4-6 6.5-6	5:50:06 5:47:45 13:59:49 16:04:13
1et.2048 22529 2048;	0, 0;3039 3039 4422 4739	7-6.9 7-6.9 7-6.9 7-6.9	1.1-6 1.1-6 4.8-6 7.8-6	4:01:54 4:04:34 8:47:18 8:28:46
1tc.2048 18945 2048;	0, 0;2876 2876 7329 7482	7-6.9 7-6.9 7-6.9 7-6.9	1.5-6 1.5-6 5.5-6 5.6-6	3:50:43 3:50:16 13:29:15 13:50:32
2dc.2048 504452 2048;	0, 0;2997 2997 2147 1849	7-6.9 7-6.9 7-6.9 7-6.9	8.3-6 8.3-6 1.0-5 2.2-5	3:54:58 3:52:42 4:13:47 3:07:46
fap11 252 252;	5, 5;1180 1559 2585 2771	9.6-7 5.3-7 9.9-7 9.7-7	$-6.8-5 \mid -1.9-5 \mid -2.2-4 \mid -1.1-4$	39 50 1:07 1:18
fap12 369 369;	15,15;1768 1830 3394 3325	9.9-7 8.4-7 9.9-7 9.9-7	$-6.6-5 \mid -2.6-5 \mid -2.2-4 \mid -1.3-4$	1:56 1:55 3:32 3:08
fap25 2118 2118;	11,11;2268 5799 5495 4498	9.2-7 9.9-7 9.9-7 9.9-7	-8.2-5 -3.2-5 -1.1-4 -7.1-5	3:58:21 10:55:33 13:26:47 8:11:50
fap36 4110 4110;	4, 4;2033 2824 4445 3500	9.5-7 9.9-7 9.9-7 9.8-7	$-2.5-5 \mid -1.7-5 \mid -3.0-5 \mid -2.8-5$	23:07:56 30:57:53 78:43:03 43:37:44
bur 26a 1051 676;	137,222;10228 25000 25000 25000	9.9-7 5.6-6 1.1-5 8.9-6	-1.8-5 -6.3-5 -7.7-5 -8.2-5	1:48:05 2:05:11 2:07:44 2:38:24
bur 26b 1051 676;	100,208;8605 25000 25000 25000	9.9-7 6.8-6 1.1-5 9.3-6	$-1.8-5 \mid -5.7-5 \mid -8.0-5 \mid -7.5-5$	1:32:52 2:07:13 1:57:30 2:49:59
bur 26c 1051 676;	247,441;21498 25000 25000 25000	9.9-7 4.2-6 1.4-5 1.4-5	$-2.0-5 \mid -4.5-5 \mid -1.2-4 \mid -1.8-4$	2:03:12 2:05:11 2:02:35 2:50:08
bur 26d 1051 676;	173,306;13287 25000 25000 25000	9.9-7 6.4-6 1.5-5 1.3-5	$-1.3-5 \mid -8.4-5 \mid -1.2-4 \mid -1.4-4$	1:59:20 2:02:24 1:51:20 2:53:07
bur 26e 1051 676;	129,361;14705 25000 25000 25000	9.4-7 3.1-6 6.4-6 1.4-5	$-1.1-5 \mid -2.8-5 \mid -3.6-5 \mid -1.9-4$	1:18:35 2:03:18 2:28:06 2:46:03
bur26f 1051 676;	107,248;11272 20887 25000 25000	9.9-7 9.9-7 8.1-6 1.2-5	$-1.0-5 \mid -1.0-5 \mid -4.8-5 \mid -7.5-5$	1:45:13 1:45:08 2:09:11 2:44:28
bur 26g 1051 676;	250,392;10817 17910 25000 25000	9.9-7 8.6-7 1.6-6 7.8-6	-2.4-5 -6.3-6 -4.0-5 -6.9-5	1:32:44 1:29:22 1:57:13 2:46:34
bur26h 1051 676;	146,360;10658 23208 25000 25000	9.9-7 9.4-7 1.4-6 2.3-5	1.9-5 -1.4-6 -2.3-5 -1.7-4	1:25:45 1:57:33 2:01:12 2:54:20
chr22a 757 484;	104,250;6940 6457 22364 25000	3.5-7 8.8-7 9.9-7 2.5-5	$6.6-6 \mid \mathbf{3.9-4} \mid -2.7-4 \mid -2.6-3$	22:57 12:29 50:45 1:17:44
chr22b 757 484;	89,189;5620 7211 25000 25000	3.1-7 9.7-7 1.5-5 2.1-5	1.7-6 3.4-4 -1.4-3 -1.8-3	12:46 13:52 1:07:51 1:15:34
chr25a 973 625;	53,200;5151 7127 25000 25000	8.6-7 8.6-7 3.7-5 3.4-5	5.6-4 7.8-4 -9.5-3 -6.8-3	21:04 26:03 2:10:29 2:23:01
esc32a 1582 1024;	46,78;1664 4931 2247 9630	7-6.9 7-6.9 7-6.9 7-6.9	$-1.1-6 \mid -2.0-6 \mid -1.1-6 \mid -2.7-6$	32:32 1:06:25 27:49 2:44:37
esc32b 1582 1024;	52,100;2196 25000 25000 25000	9.8-7 3.7-6 2.4-6 8.3-6	$-5.1-5 \mid -2.4-4 \mid -2.2-4 \mid -4.0-4$	45:50 5:18:19 4:31:51 7:59:47
esc32c 1582 1024;	46,139;3562 25000 25000 25000	9.7-7 5.3-6 5.1-6 1.6-5	-4.1-6 -5.4-5 -5.2-5 -9.8-5	1:06:19 4:58:47 4:00:23 8:01:19
esc32d 1582 1024;	0, 0;678 678 799 1412	7-6.9 7-6.9 7-6.9 7-6.9	$-9.4-6 \mid -9.4-6 \mid -1.7-5 \mid -2.2-7$	9:40 9:39 8:01 25:40
esc32e 1582 1024;	40,47;1248 1108 905 784	7-7-6 7-9-8 7-8-6 7-6-6	8.7-6 -3.8-7 -9.2-6 -3.1-6	22:00 16:09 8:32 14:30

ned	
contin	
Table 4	

Table 1				
Problem $\mid m \mid n_s; n_l$	Iteration a b c d	η a b c d	η_g al bl cl d	Time al bl cl d
esc32f 1582 1024;	40,47;1248 1108 905 784	7-7-6 7-9-8 7-8-6 7-6-6	8.7-6 -3.8-7 -9.2-6 -3.1-6	21:31 15:45 8:25 12:57
esc32g 1582 1024;	0, 0;520 520 588 981	9.3-7 9.3-7 9.2-7 9.9-7	1.9-6 1.9-6 -3.3-6 3.6-7	7:17 7:14 5:41 17:19
esc32h 1582 1024;	97,236;4959 25000 25000 25000	9.9-7 9.4-6 1.2-5 2.8-5	$-4.4-5 \mid -4.1-4 \mid -5.0-4 \mid -7.4-4$	1:42:34 5:01:41 4:13:31 7:30:56
kra30a 1393 900;	49,72;3208 25000 25000 25000	9.9-7 1.3-5 1.4-5 1.7-6	$-6.5-5 \mid -4.2-4 \mid -5.7-4 \mid -5.9-5$	52:13 3:45:29 5:11:22 5:42:45
kra30b 1393 900;	81,101;3080 25000 25000 25000	9.9-7 1.1-5 1.1-5 1.8-5	$-6.5-5 \mid -3.7-4 \mid -4.9-4 \mid -6.1-4$	55:48 3:56:14 5:15:18 5:45:45
kra32 1582 1024;	67,83;2946 25000 25000 25000	9.9-7 9.1-6 1.1-5 1.7-5	$-7.0-5 \mid -3.2-4 \mid -4.0-4 \mid -5.0-4$	1:07:22 5:07:43 6:57:49 8:11:14
lipa30a 1393 900;	443,1216;1300 3533 11683 16167	1.0-7 8.9-7 9.5-7 9.9-7	-4.3-10 8.3-6 3.2-5 -3.8-6	47:33 26:59 1:52:11 3:46:31
lipa30b 1393 900;	4, 9;820 2700 7516 25000	8.2-9 9.1-7 9.9-7 1.6-4	-3.7-7 4.3-5 4.7-5 1.1-2	11:08 16:33 52:22 5:31:56
lipa40a 2458 1600;	153,546;3732 6483 18785 25000	5.5-7 8.8-7 9.8-7 9.5-6	1.2-6 4.2-5 -4.1-5 -1.5-4	3:01:05 3:32:47 19:15:19 26:56:27
lipa40b 2458 1600;	5,18;991 4878 5970 25000	4.2-7 9.0-7 9.8-7 4.6-4	1.9-7 1.1-4 -6.4-5 -4.1-2	1:02:59 2:20:09 4:11:06 23:33:11
nug24 898 576;	43,66;2359 25000 25000 25000	9.9-7 9.1-6 1.1-5 1.6-5	-2.8-5 -1.9 -4 -2.3 -4 -2.7 -4	14:12 1:17:49 1:40:05 1:57:03
nug25 973 625;	48,76;2708 25000 25000 25000	9.9-7 1.2-5 1.0-5 1.7-5	$-1.6-5 \mid -2.0-4 \mid -2.0-4 \mid -2.5-4$	19:25 1:35:46 1:53:26 2:16:27
nug27 1132 729;	49,86;3300 25000 25000 25000	9.9-7 1.0-5 1.3-5 1.7-5	$-2.1-5 \mid -2.0-4 \mid -2.6-4 \mid -2.8-4$	36:53 2:21:06 2:51:26 3:28:20
nug28 1216 784;	50,77;3190 25000 25000 25000	9.9-7 9.3-6 1.2-5 1.7-5	$-2.0 - 5 \mid -1.8 - 4 \mid -2.2 - 4 \mid -2.6 - 4$	40:26 2:47:04 3:27:54 4:02:11
nug30 1393 900;	44,68;2463 25000 25000 25000	9.9-7 8.7-6 1.1-5 1.7-5	-2.5-5 -1.6 -4 -1.9 -4 -2.2 -4	45:02 3:48:43 4:58:12 5:39:31
ste 36a 1996 1296;	122,189;7344 25000 25000 25000	9.9-7 9.7-6 1.3-5 1.6-5	$-8.1 - 5 \mid -5.8 - 4 \mid -6.8 - 4 \mid -6.7 - 4$	6:29:21 9:38:26 12:37:18 14:09:11
ste36b 1996 1296;	173,242;11851 25000 25000 25000	9.9-7 1.2-5 1.8-5 1.3-5	$-2.3-4 \mid -1.5-3 \mid -2.0-3 \mid -2.1-3$	9:45:58 9:19:24 12:10:09 14:23:33
ste36c 1996 1296;	143,202;10008 25000 25000 25000	9.9-7 1.2-5 1.5-5 1.6-5	$-8.6-5 \mid -5.8-4 \mid -7.3-4 \mid -7.2-4$	8:06:50 9:26:42 12:22:19 14:23:52
tai25a 973 625;	33,42;2630 2201 1845 25000	9.9-7 9.5-7 9.9-7 1.7-6	$-8.5\text{-4} \mid -8.0\text{-4} \mid -7.2\text{-4} \mid -1.8\text{-3}$	14:52 8:38 9:24 2:27:04
tai25b 973 625;	296,344;18325 25000 25000 25000	9.9-7 2.9-5 3.7-5 4.2-5	-2.7-4 -2.0 -3 -2.4 -3 -2.5 -3	1:18:04 1:28:33 1:55:04 2:21:35
tai30a 1393 900;	39,39;1614 25000 25000 25000	9.9-7 4.7-6 4.6-6 1.3-5	$-2.3-5 \mid -6.3-5 \mid -7.3-5 \mid -1.3-4$	29:11 3:53:48 6:09:25 6:00:13
tai30b 1393 900;	236,342;16584 25000 25000 25000	9.9-7 2.0-5 2.4-5 2.6-5	$-1.8\text{-}4 \mid -1.0\text{-}3 \mid -1.2\text{-}3 \mid -1.2\text{-}3$	2:52:00 3:42:12 4:28:02 5:38:24
tai35a 1888 1225;	38,38;3467 25000 25000 25000	9.9-7 3.9-6 4.0-6 1.3-5	$-1.8-5 \mid -4.8-5 \mid -5.6-5 \mid -1.0-4$	1:56:18 9:21:21 15:00:46 12:53:01
tai35b 1888 1225;	142,214;10915 25000 25000 25000	9.9-7 2.1-5 2.4-5 2.8-5	$-1.2\textbf{-4} \mid -9.1\textbf{-4} \mid -1.0\textbf{-3} \mid -1.1\textbf{-3}$	8:01:01 8:51:20 11:15:52 12:51:27

Table 4 continued				
Problem $\mid m \mid n_s; n_l$	Iteration al bl cl d	η a b c d	η_s al bl cl d	Time al bl cl d
tai 40a 2458 1600;	33,33;3395 25000 25000 25000	9.9-7 3.7-6 4.0-6 1.4-5	-1.8-5 -4.6-5 -5.3-5 -1.0-4	-1.8-5 -4.6-5 -5.3-5 -1.0-4 3:56:34 20:22:53 31:45:29 26:00:47
tai 40b 2458 1600;	101,146;7124 25000 25000 25000	9.9-7 1.9-5 2.5-5 3.1-5	$-1.1\text{-}4 \mid -7.2\text{-}4 \mid -8.1\text{-}4 \mid -8.5\text{-}4$	9.9-7 1.9-5 2.5-5 3.1-5 -1.1-4 -7.2-4 -8.1-4 -8.5-4 10:55:44 17:50:19 23:17:25 25:23:31
tho30 1393 900;	44,74;2925 25000 25000 25000	9.9-7 1.1-5 1.5-5 2.2-5	$-4.8-5 \mid -2.6-4 \mid -3.4-4 \mid -4.0-4$	9.9-7 1.1-5 1.5-5 2.2-5 -4.8-5 -2.6-4 -3.4-4 -4.0-4 1:03:01 3:46:49 4:46:03 5:44:33
tho40 2458 1600;	24,51;3998 25000 25000 25000	9.9-7 9.3-6 1.3-5 2.0-5	$-4.2-5 \mid -2.1-4 \mid -2.7-4 \mid -3.2-4$	5:08:15 17:12:50 24:35:42 26:05:11
be250.1 251 251;	122,123;2800 4327 5345 3537	7-6.6 7-6.6 7-6.9 7-6.9	-4.7 - 1 - 2.0 - 7 - 3.6 - 7 - 4.1 - 7 - 1:13 - 1:16 - 1:35 - 1:37	1:13 1:16 1:35 1:37
be250.2 251 251;	121,121;2842 3827 5108 3044	7-6.6 7-6.6 7-6.9 7-6.9	7.9-7 -8.6-7 -5.3-7 -8.0-7	1:12 1:08 1:28 1:22
be250.3 251 251;	84,89;2200 3796 4331 2592	7-6.9 7-6.9 7-6.9 7-6.9	$-7.7-7 \mid -1.1-6 \mid -7.3-7 \mid -1.1-6 59 \mid 1:11 \mid 1:18 \mid 1:11$	59 1:11 1:18 1:11
be250.4 251 251;	208,209;3850 8023 8350 6453	7-6.9 7-6.9 7-6.9 7-6.9	$-1.2-6 \mid -1.1-6 \mid -1.1-6 \mid -2.9-7 1:42 \mid 2:23 \mid 2:24 \mid 2:53$	1:42 2:23 2:24 2:53
be250.5 251 251;	115,127;2791 4460 5089 3174	7-6.9 7-6.9 7-6.9 7-6.9	$-6.5 - 7 \mid -7.5 - 7 \mid -6.4 - 7 \mid -7.2 - 7 1:15 \mid 1:23 \mid 1:31 \mid 1:26$	1:15 1:23 1:31 1:26
bqp500-1 501 501;	138,171;2499 6473 6932 4086	7-6.9 7-6.9 7-6.9 7-6.9	2.0-6 -1.4-6 -3.4-7 -1.6-6	5:20 8:35 9:45 9:13
bqp500-2 501 501;	142,194;2390 8008 10582 4862	7-6.9 7-6.9 7-6.9 7-6.9	$4.1 - 7 \mid -4.2 - 7 \mid -8.6 - 8 \mid -1.2 - 6$	5:29 10:46 14:42 10:52
bqp500-3 501 501;	135,180;2390 8192 8915 4965	7-6.9 7-6.9 7-6.9 7-7.9	7.6-7 -1.5-6 3.7-7 -5.8-7	6:31 12:53 12:25 11:22
bqp500-4 501 501;	128,174;2390 7188 9012 4031	7-6.9 7-6.9 7-6.9 7-6.9	$6.1 - 7 \mid -1.0 - 6 \mid -3.8 - 7 \mid -1.2 - 6$	6:08 10:37 12:10 9:11
bqp500-5 501 501;	169,206;2910 6898 7641 4541	7-6.9 7-6.9 7-6.9 7-6.9	1.1-6 -8.9-7 -1.2-6 -8.2-7	7:25 10:34 10:57 10:19
gka1f 501 501;	166,203;2780 6717 8147 4600	7-6.9 7-6.9 7-6.9 7-8.9	5.9-7 -1.3-6 -1.2-6 -5.6-7	6:32 9:38 11:28 10:31
gka2f 501 501;	205,242;3541 7519 8949 5403	7-6.9 7-6.9 7-6.9 7-6.9	1.5-6 -1.5-6 -1.4-6 -1.0-6	7:54 10:50 12:52 12:10
gka3f 501 501;	174,216;2954 6102 7037 3957	7-6.9 7-6.9 7-6.9 7-6.9	$6.8-7 \mid -1.1-6 \mid -2.0-6 \mid -1.6-7$	6:51 9:07 10:46 9:07
gka4f 501 501;	183,222;3101 6673 7529 4070	7-6.9 7-6.9 7-6.9 7-6.9	8.2-8 -1.1-6 -4.2-7 -3.5-7	7:10 9:13 11:20 9:14
gka5f 501 501;	142,187;2520 6482 7023 4210	7-6.9 7-6.9 7-6.9 7-6.9	$-1.5\text{-}8 \mid -5.9\text{-}7 \mid -9.4\text{-}7 \mid -7.5\text{-}7$	5:53 9:14 10:36 9:45
soybean-large.2 308 307;	2, 2;1171 1190 5050 2261	9.9-7 9.2-7 9.9-7 9.9-7	$-1.0\text{-}7 \mid -7.7\text{-}8 \mid -1.2\text{-}7 \mid -7.0\text{-}8$	29 29 3:45 3:09
soybean-large.3 308 307;	2, 2;934 922 5993 2159	7.2-7 8.8-7 9.6-7 8.5-7	-2.8-7 -2.1 -7 -5.4 -9 1.4 -7	25 24 4:47 3:54
soybean-large.4 308 307;	soybean-large.4 308 307; 52,52;1506 1609 13512 3831	7-6.9 7-6.9 7-6.9 7-7.8	$-1.4 7 \mid -2.8 7 \mid -1.2 7 \mid -1.6 7 52 \mid 42 \mid 10 \hbox{::}51 \mid 7 \hbox{:}18$	52 42 10:51 7:18
soybean-large.5 308 307;	soybean-large.5 308 307; 2, 2;814 850 2974 1404	7-6.9 7-6.9 7-7.9 7-8.9	$-8.4 - 8 \mid -9.1 - 8 \mid -7.9 - 8 \mid -1.7 - 7 22 \mid 23 \mid 2:23 \mid 2:05$	22 23 2:23 2:05

continued
4
e
3
$\mathbf{I}\mathbf{a}$

Problem $ m n_s;n_l$	Iteration a b c d	η a b c d	$\frac{\eta_g}{a b c d}$	Time a b c d
soybean-large.6 308 307;	0, 0;413 413 545 681	9.4-7 9.4-7 6.8-7 9.1-7	9.4-7 9.4-7 6.8-7 9.1-7 -1.9-7 -1.9-7 3.5-8 1.3-6	12 12 21 44
spambase-large.2 1501 1500;	0, 0;535 535 992 4429 8 8:1844 1705 1830 6617	-6.6 /-6.6 /-6.6 /-6.6 -0.0 /-0.0 /-0.0 /-0.0	9.9-7 9.9-7 9.9-7 -1.3-5 -1.3-5 -1.2-5 -1.3-5 11:07 11:17 22:17 3:12:36 0.0.7 0.8.7 0.0.7 0.0.7 -7.6 6.1 -8.6 -3.3 0.10:31 35:47 58:10 6:13:5	11:07 11:17 22:17 3:12:36
spannbase-large.3 1301 1300; spambase-large.4 1501 1500;	8, 8;4519 3761 7091 25000	-6.6 1-6.6	9.9-7 9.8-7 9.3-7 9.3-7 -7.0-6 -7.0-6 -0.0-6 -0.3-5 140.31 33.47 30.10 0.13.30 9.9-7	2:49:39 1:19:26 5:32:29 17:57:38
spambase-large.5 1501 1500;	8, 8;9184 8398 7510 25000	9.7-7 9.9-7 9.8-7 1.1-2	2 -3.0-5 -2.9-5 -2.4-5 3.0-1	4:49:37 3:26:14 3:21:11 18:14:24
spambase-large.6 1501 1500;	8, 8;2798 2031 2415 25000	5.9.1 7-9.9 7-9.9 7-9.9	9.9-7 9.9-7 9.9-7 1.8-2 4.9-5 -4.2-5 -5.8-5 -10.0-1	2:07:59 49:32 1:07:56 17:07:48
abalone-large.2 1001 1000;	0, 0;576 576 650 1493	7-6.6 7-6.6 7-6.6 7-6.6	9.9-7 9.9-7 9.9-7 9.9-7 1.2-5 1.2-5 6.6-6 -1.4-6	5:01 5:07 5:08 31:13
abalone-large.3 1001 1000;	21,21;762 765 796 1306	9.2-7 9.9-7 9.9-7 9.9-7	7 -2.1-6 -3.6-6 -9.9-7 -4.2-6	7:29 6:09 8:56 22:21
abalone-large.4 1001 1000;	0, 0;545 545 629 710	2-6.6 7-9.6 7-6.6 7-6.6	9.9-7 9.9-7 9.6-7 9.9-7 1.9-6 1.9-6 -6.9 - 6 -9.2-7	6:43 6:50 5:01 12:03
abalone-large.5 1001 1000;	38,38;797 834 1107 833	7-6.9 7-6.9 7-6.9 7-5.9	7 -2.2-5 -1.5-5 -2.1-5 -2.1-5	11:45 8:39 9:11 14:17
abalone-large.6 1001 1000;	8, 8;781 796 1101 950	7-6.9 7-6.9 7-6.9 7-6.9	7 -1.4-5 -1.4-5 -1.8-5 -1.9-5	9:12 8:21 8:49 15:24
segment-large.2 1001 1000;	8, 8;1191 1264 1080 1745	2-6.6 7-8.6 7-6.6 7-6.6	9.9-7 9.9-7 9.8-7 9.9-7 4.6-6 5.0-6 -4.7 - 6 -5.0-7	9:16 9:15 8:27 34:22
segment-large.3 1001 1000;	0, 0;373 373 412 1956	2-6.6 7-8.6 7-6.6 7-6.6	9.9-7 9.9-7 9.8-7 9.9-7 1.8-6 1.8-6 -7.1-7 -1.1-6	2:43 2:41 3:33 37:08
segment-large.4 1001 1000;	2, 2;1879 2024 19479 6354	7-6.6 7-6.6 7-6.6 7-6.6	7 -5.8-7 -5.5-7 -4.5-7 -5.0-7	13:52 14:50 5:23:13 3:07:06
segment-large.5 1001 1000;	8, 8;2449 2711 22003 8257	7-6.6 7-6.6 7-6.6 7-6.6	9.9-7 9.9-7 9.9-7 9.9-7 -6.2-7 -6.7-7 -6.0-7 -6.4-7	19:06 20:31 6:09:59 4:19:44
segment-large.6 1001 1000;	8, 8;3158 3262 25000 10211		9.9-7 9.9-7 1.3-6 9.9-7 -1.5-6 -1.5-6 -9.6-7 -1.0-6	24:00 24:06 7:10:04 5:25:59
housing.2 507 506;	8, 8;3373 3284 2679 2566	-9.8 7-6.6 7-9.6 7-6.6	9.9-7 9.6-7 9.9-7 8.6-7 -5.9-6 -5.4-6 -5.2-6 -5.3-6	4:50 4:31 3:26 7:52
housing.3 507 506;	8, 8;1576 1247 1523 1338	-8.6 7-6.6 7-6.6 7-7.6	9.7-7 9.9-7 9.9-7 9.8-7 1.7-6 8.0-6 -6.7-6 5.2-6	3:20 1:34 1:56 4:29
housing.4 507 506;	8, 8;1645 1368 1064 1090	9.9-7 9.9-7 9.9-7 8.4-2	9.9-7 9.9-7 9.9-7 8.4-7	2:50 2:00 1:25 3:40
housing.5 507 506;	8, 8;1918 1319 1916 1451	9.9-7 9.6-7 9.3-7 8.8-2	9.9-7 9.6-7 9.3-7 8.8-7 3.3-5 -3.2-5 3.6-5 6.3-5	3:30 2:07 2:36 5:03
housing.6 507 506;	11,11;533 536 842 1958	2.9-7 9.9-7 9.8-7 9.5-5	9.9-7 9.9-7 9.8-7 9.5-7 -1.2-6 -9.7-6 5.9-6 6.3-5	1:06 53 1:20 6:29

Table 5 Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ and R1TA problems $(\epsilon=10^{-6})$

Problem $\mid m \mid n_s; n_l$	Iteration a b c d	$n = a \mid b \mid c \mid d$	η_g a b c d	Time a b c d
theta10 12470 500;	11,11;200 396 333 422	7.6-7 9.1-7 9.9-7 9.8-7	6.7-8 -2.1-6 -1.4-6 1.2-6	32 51 36 59
theta102 37467 500;	11,11;84 159 127 312	6.8-7 9.1-7 9.2-7 9.9-7	-9.3-8 1.3-6 1.7-6 1.6-6	21 22 21 47
theta103 62516 500;	20,20;64 144 104 300	8.1-7 9.7-7 9.9-7 9.8-7	-4.1-8 -6.2-8 2.0-7 2.0-6	38 20 21 45
theta104 87245 500;	43,47;63 151 116 342	4.4-7 9.0-7 9.5-7 9.8-7	-5.5-7 -2.4-8 8.3-7 3.2-6	53 22 19 51
theta12 17979 600;	13,13;200 413 358 444	3.7-7 8.4-7 8.5-7 9.9-7	5.6-8 2.1-6 1.0-6 1.1-6	51 1:24 1:02 1:38
theta123 90020 600;	12,12;70 157 105 325	7.1-7 9.2-7 9.2-7 9.7-7	1.9-8 -6.8-8 2.2-7 2.5-6	36 35 34 1:19
hamming-9-8 2305 512;	12,12;200 2635 3129 1276	2.5-7 9.8-7 9.7-7 9.4-7	-9.2-8 -1.2-5 5.6-7 -5.8-6	21 3:17 4:07 2:02
hamming-10-2 23041 1024;	10,10;200 667 731 1066	4.8-7 6.9-7 9.6-7 9.9-7	-5.9-7 -1.5-5 2.2-6 2.5-5	2:54 7:19 9:39 12:05
hamming-9-5-6 53761 512;	6, 6;200 1022 1215 197	6.2-7 8.8-7 9.8-7 8.8-7	-1.7-7 -1.1 -5 -1.8 -6 -5.1 -6	20 1:24 1:36 20
G43 9991 1000;	27,27;200 1237 1097 962	9.8-7 9.4-7 9.8-7 9.9-7	8.9-7 -3.5-6 -1.8-6 2.0-6	3:32 9:54 9:13 12:49
G44 9991 1000;	30,30;200 1236 1110 996	6.1-7 9.7-7 9.3-7 9.9-7	5.9-9 -3.6-6 -8.8-7 1.6-6	3:48 9:57 9:15 13:17
G45 9991 1000;	26,26;200 1261 1120 1007	6.4-7 9.9-7 9.6-7 9.9-7	3.8-8 3.2-6 1.8-6 1.6-6	3:31 10:04 9:21 13:35
G46 9991 1000;	28,30;200 1284 1142 974	7-6-6 7-6-6 7-9-6 7-6-7	6.2-8 -3.1-6 -1.6-6 1.3-6	3:49 10:11 9:21 12:55
G47 9991 1000;	30,31;200 1267 1088 1030	3.7-7 9.3-7 9.5-7 9.9-7	1.5-7 2.8-6 8.9-7 1.2-6	3:52 9:59 8:51 13:47
G51 5910 1000;	148,584;200 6151 10210 8746	7.3-7 9.9-7 9.9-7 9.9-7	-7.9-8 -1.7-7 8.6-8 1.9-7	41:06 53:54 1:33:48 1:55:48
G52 5917 1000;	458,1619;200 25000 25000 25000	9.3-7 1.6-6 3.5-6 2.9-6	2.0-6 7.1-6 1.4-5 1.5-5	3:53:19 3:24:55 3:45:22 5:38:42
G53 5915 1000;	425,1183;200 25000 25000 25000	9.9-7 1.5-6 3.7-6 3.7-6	1.4-6 5.9-6 1.5-5 1.8-5	2:16:35 3:12:47 3:24:18 5:30:23
G54 5917 1000;	123,462;200 3892 5633 5398	9.3-7 9.9-7 9.9-7 9.9-7	4.2-8 -2.8-6 3.3-7 3.2-7	23:17 33:11 49:11 1:13:51
1dc.1024 24064 1024;	48,74;200 5077 9728 15069	9.1-7 9.9-7 9.9-7 9.9-7	3.4-6 4.2-6 4.9-6 4.0-6	14:32 50:49 1:31:42 3:03:20
1et.1024 9601 1024;	64,129;200 3956 10174 17252	5.9-7 9.9-7 9.9-7 9.9-7	2.2-6 3.1-6 3.0-6 2.7-6	35:33 50:14 1:45:03 3:53:32
1tc.1024 7937 1024;	156,417;200 5775 25000 18474	7.5-7 9.9-7 2.3-6 9.9-7	8.9-7 3.8-6 3.3-6 2.3-6	1:22:24 54:35 4:13:43 3:47:44
1zc.1024 16641 1024;	16,16;200 884 734 4488	8.4-7 9.7-7 9.2-7 9.6-7	2.7-8 6.9-7 1.6-6 2.4-5	4:56 12:44 8:49 49:10
2dc.1024 169163 1024;	148,376;200 6951 14316 23007	9.2-7 9.9-7 9.9-7 9.9-7	7.8-6 3.1-5 2.6-5 2.6-5	2:21:20 1:24:20 4:20:36 5:32:26
1dc.2048 58368 2048;	62,112;200 5520 12938 20527	7-6.6 7-6.6 7-6.6 7-7-6	5.5-6 6.6-6 6.7-6 6.8-6	1:55:31 6:10:05 14:00:08 28:29:05

continue
n
e
<u>ब</u>
=

Table 3 continued				
Problem $\mid m \mid n_s; n_l$	Iteration a b c d	η a b c d	η_g a b c d	Time al bl cl d
let.2048 22529 2048;	228,658;200 3601 13985 25000	8.7-7 9.9-7 9.9-7 6.1-3	3.9-6 4.3-6 4.2-6 2.2-2	5:29:46 3:59:47 17:25:13 40:08:45
1tc.2048 18945 2048;	509,1725;200 6574 20819 25000	8.2-7 9.9-7 9.9-7 1.2-6 9.9-7 4.8-6 3.8-6 5.5-6	9.9-7 4.8-6 3.8-6 5.5-6	22:10:45 7:26:56 23:37:33 39:35:04
2dc.2048 504452 2048;	167,385;200 6293 25000 16945	9.8-7 9.9-7 3.7-6 9.9-7	1.8-5 2.0-5 3.5-5 2.8-5	14:22:06 8:52:47 47:15:41 28:09:34
nonsym(8,4) 46655 512;	13,13;200 6927 6871 25000	1.5-7 8.7-7 9.9-7 1.9-2	-4.1-7 5.7-6 2.1-5 6.2-1	29 8:40 8:54 1:10:07
nonsym(9,4) 91124 729;	25,33;200 25000 4584 25000	4.2-7 3.2-5 9.7-7 1.9-2	7.4-6 5.2-4 -1.7-5 4.2-3	2:00 1:18:21 14:29 2:41:00
nonsym(10,4) 166374 1000;	17,21;200 25000 6711 25000	7.9-7 2.8-5 9.9-7 1.6-2	-2.5-6 -1.9-4 2.6-5 6.2-1	3:37 2:57:30 48:32 5:52:44
nonsym(11,4) 287495 1331;	19,22;200 25000 16627 25000	2.5-7 1.3-3 9.9-7 9.9-3	7.5-6 5.1-2 3.0-5 -2.2-1	7:14 6:30:10 4:57:08 12:51:58
nonsym(5,5) 50624 625;	30,31;200 12638 4918 25000	2.4-7 9.6-7 9.9-7 2.5-3	3.7-6 9.0-6 1.8-5 -4.8-2	1:18 27:19 10:10 1:50:10
nonsym(6,5) 194480 1296;	26,28;200 25000 11981 25000	6.6-7 1.6-4 9.9-7 1.6-3	2.0-5 -3.0-3 -2.8-5 -4.9-2	6:39 5:57:28 2:59:30 11:24:24
sym_rd(3,35) 82250 666;	43,46;72 2964 2812 11937	5.4-7 9.7-7 9.9-7 9.5-7	-8.0-6 $-1.3-6$ $1.8-5$ $-1.9-6$	1:27 7:54 7:07 1:09:55
sym_rd(3,40) 135750 861;	37,39;82 3736 3356 25000	5.7-7 9.4-7 9.9-7 3.9-3	$-1.6-5 \mid -1.2-6 \mid -2.1-5 \mid 1.3-1$	2:18 19:34 16:55 4:37:17
sym_rd(3,45) 211875 1081;	31,31;87 4689 4498 25000	5.5-7 9.3-7 9.9-7 5.5-3	5.7-6 -3.5-6 -3.9-5 -1.5-1	4:31 46:05 41:11 8:09:46
sym_rd(3,50) 316250 1326;	37,37;87 4432 4161 25000	7.6-7 9.1-7 9.6-7 3.2-3	2.4-5 -3.7-6 4.2-5 1.1-1	8:24 1:13:12 1:07:37 13:45:47
sym_rd(4,35) 73814 630;	46,51;77 969 3400 25000	2.2-7 9.9-7 9.7-7 5.1-4	6.2-6 -4.2-6 -4.2-5 -1.7-2	1:45 4:44 9:10 1:58:12
sym_rd(4,40) 123409 820;	60,76;86 447 761 2396	7-6.6 7-6.6 7-6.6 7-9.9	-7.7-6 -1.3-5 -1.3-5 -1.3-5	4:56 3:37 7:06 21:58
sym_rd(4,45) 194579 1035;	45,62;90 462 737 2569	3.5-7 9.9-7 9.9-7 9.9-7	$-4.7 - 6 \mid -1.4 - 5 \mid -1.4 - 5 \mid -1.4 - 5$	7:44 6:56 12:42 43:48
sym_rd(4,50) 292824 1275;	45,62;91 466 758 2824	7-9-9 7-9-9 7-6-6 7-6-7	$-1.3 5 \mid -1.6 5 \mid -1.6 5 \mid -1.6 5$	12:44 12:11 22:43 1:21:38
sym_rd(5,15) 54263 816;	41,43;111 1549 1980 25000	2.4-7 8.8-7 9.7-7 3.2-4	8.2-6 7.1-5 -3.7-5 1.6-2	2:53 6:46 7:53 3:28:56
sym_rd(5,20) 230229 1771;	29,35;139 2832 3563 25000	3.1-7 9.3-7 9.8-7 5.5-3	$-1.5-5 \mid 9.7-5 \mid -1.0-4 \mid -3.1-1$	27:28 1:56:14 2:22:52 27:04:51
sym_rd(6,15) 38759 680;	32,35;137 1358 1652 13111	6.4-7 9.3-7 9.9-7 9.9-7	2.6-5 5.2-5 -6.9-5 -6.3-7	1:33 3:52 4:26 1:12:00
sym_rd(6,20) 177099 1540;	26,37;185 3280 3576 25000	6.4-7 9.7-7 9.6-7 3.0-4	$3.0-6 \mid \mathbf{1.5-4} \mid -\mathbf{1.1-4} \mid -\mathbf{2.5-2}$	22:48 1:34:25 1:43:31 17:41:06
nsym_rd([20,25,25]) 68249 500;	47,51;66 5883 6641 25000	6.0-7 9.8-7 9.7-7 6.1-3	1.0-5 -3.0-5 2.5-5 -1.2-1	58 7:55 8:10 1:12:25
nsym_rd([25,20,25]) 68249 500;	49,50;77 6113 6912 25000	7.0-7 9.9-7 9.9-7 5.5-3	$-1.0-5 \mid -3.0-5 \mid -1.3-5 \mid -8.7-2$	58 7:26 8:25 1:11:35
nsym_rd([25,25,20]) 68249 500;	14,14;129 6252 6898 25000	9.0-8 9.9-7 9.9-7 2.8-3	$-1.6-6 \mid -5.9-6 \mid 2.7-5 \mid $ 5.2-2	34 8:11 8:31 1:10:17

Table 5 continued				
Problem $\mid m \mid n_s; n_l$	Iteration a b c d	η a b c d	η_{g} al bl c d	Time al bl cl d
nsym_rd([25,25,25]) 105624 625;	56,64;95 11250 3705 25000	9. 0-7 9.9-7 9.9-7 6.6-4	9.0-7 9.9-7 9.9-7 6.6-4	1:33 26:20 8:09 2:04:05
nsym_rd([30,30,30]) 216224 900;	30,33;122 25000 4829 25000	6.2-7 2.0-5 9.9-7 4.9-3	6.2-7 2.0-5 9.9-7 4.9-3 2.7-6 5.5-4 3.2-5 1.5-1	3:52 2:21:43 26:48 5:07:41
nsym_rd([35,35,35]) 396899 1225;	45,49;141 25000 8788 25000	2.0-7 1.4-3 9.9-7 1.0-3	2.0-7 1.4-3 9.9-7 1.0-3 -3.5-6 4.1-3 -4.2-5 3.6-3	9:14 5:18:55 1:57:42 11:13:11
$nsym_rd([40,40,40]) \mid 672399 \mid 1600;$	33,35;93 25000 25000 25000	3.3-7 1.1-4 3.7-4 5.1-4	3.3-7 1.1-4 3.7-4 5.1-4 1.0-5 5.0-3 1.3-2 -1.9-2	14:23 12:12:03 13:56:21 22:41:13
nsym_rd([8,8,8,8]) 46655 512;	11,11;200 5325 5865 25000	3.3-7 9.4-7 9.9-7 1.2-3	3.3-7 9.4-7 9.9-7 1.2-3	28 7:09 7:13 1:12:01
nsym_rd([9,9,9,9]) 91124 729;	14,14;200 21833 4073 25000	3.1-7 9.0-7 9.6-7 1.6-2	$3.1-7 \mid 9.0-7 \mid 9.6-7 \mid \textbf{1.6-2} 6.9-6 \mid -7.1-6 \mid -3.1-5 \mid -2.5-1 1:07 \mid 1:12:18 \mid 12:47 \mid 2:52:40 \mid -3.1-5 \mid -2.5-1 \mid 1:07 \mid 1:12:18 \mid 12:47 \mid 2:52:40 \mid -3.1-5 \mid -2.5-1 \mid 1:07 \mid 1:12:18 \mid 12:47 \mid 2:52:40 \mid -3.1-5 \mid -2.5-1 \mid -3.1-5 \mid -3.1-5$	1:07 1:12:18 12:47 2:52:40
nonsym(12,4) 474551 1728;	5,17;200 16473 25000 25000	2.8-8 8.8-7 1.2-2 1.2-2	$-1.1-7 \mid -2.7-6 \mid -7.7-2 \mid 5.8-1$	2.8 + 8.8 + 7 + 1.2 +
nonsym(13,4) 753570 2197;	15,55;200 25000 25000 25000 5.2-7 5.4-4 9.1-3 1.9-2 -1.8-7 3.6-2 - 1.6-1 2.7-1	5.2-7 5.4-4 9.1-3 1.9-2	$-1.8-7 \mid \mathbf{3.6-2} \mid -1.6\mathbf{-1} \mid \mathbf{2.7-1}$	1:51:34 29:11:11 32:02:36 54:30:04
nonsym(7,5) 614655 2401;	32,43;200 25000 25000 25000	2.4-7 1.4-3 1.2-2 1.8-2	8.7-6 -5.7-2 -1.2-1 -1.1-1	53:29 38:36:39 43:46:36 67:40:52
nonsym(8,5) 1679615 4096;	14,22;200 12791 10732 7851	5.2-7 1.2-3 1.3-2 1.2-2	$-5.5-6 \mid -3.7-2 \mid 2.5-1 \mid -4.3-1$	$5.2 - 7 \: \textbf{1.2-3} \: \textbf{1.3-2} \: \textbf{1.2-2} -5.5 - 6 \: \textbf{-3.7-2} \: \textbf{2.5-1} \: \textbf{-4.3-1} 2.46 \cdot 20 \: 99 \cdot 00 \cdot 46 \: 99 \cdot 01 \cdot 08 \: 99 \cdot 03 \cdot 37 = 2.46 \cdot 20 \: \textbf{2.2-1} \: 2.2-1$
nonsym(18,4) 5000210 5832;	13,55;200 8748 7962 7017	5.8-7 3.5-4 7.8-3 1.4-2	5.8-7 3.5-4 7.8-3 1.4-2 2.6-5 -1.3-2 -3.5-1 3.8-1	8:50:14 99:02:10 99:01:13 99:05:37
nonsym(20,4) 9260999 8000;	7,17;200 3231 3031 2645	7.4-8 4.7-4 9.6-3 2.2-2	$-6.4-6 \mid 5.7-2 \mid -4.4-1 \mid -3.5-1$	8:26:40 99:07:11 99:03:17 99:16:28
nonsym(21,4) 12326390 9261;	7,21;200 1918 1904 1792	5.7-8 2.7-4 9.8-3 5.2-3	5.7-8 2.7-4 9.8-3 5.2-3 -1.2-6 2.6-3 5.0-1 9.4-1	14:22:05 99:09:25 99:05:25 99:29:18

Fig. 1 Performance profiles of SDPNAL+, ADMM+, SDPAD and 2EBD on [1,10]

Acknowledgments The authors would like to thank Jiawang Nie and Li Wang for sharing their codes on semidefinite relaxations of rank-1 tensor approximation problems.

References

- 1. Arnold, V.I.: On matrices depending on parameters. Russ. Math. Surv. 26, 29-43 (1971)
- 2. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)
- Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples, vol. 3. Springer, Berlin (2006)
- Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120, 479–495 (2009)
- Burer, S., Monteiro, R.D., Zhang, Y.: A computational study of a gradient-based log-barrier algorithm for a class of large-scale sdps. Math. Program. 95, 359–379 (2003)
- 6. Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of admm for multi-block convex minimization problems is not necessarily convergent. Math. Program. (to appear)
- Eisenblätter, A., Grötschel, M., Koster, A.M.: Frequency planning and ramifications of coloring. Discuss. Math. Graph Theory 22, 51–88 (2002)
- Hahn, P., Anjos, M.: QAPLIB—a quadratic assignment problem library. http://www.seas.upenn.edu/ qaplib
- Hiriart-Urruty, J.-B., Strodiot, J.-J., Nguyen, V.H.: Generalized Hessian matrix and second-order optimality conditions for problems with C^{1,1} data. Appl. Math. Optim. 11, 43–56 (1984)
- Monteiro, R., Ortiz, C., Svaiter, B.: A first-order block-decomposition method for solving two-easyblock structured semidefinite programs. Math. Program. Comput. 6, 103–150 (2014)
- Moreau, J.J.: Décomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires. C. R. Acad. Sci. 255, 238–240 (1962)

 Nie, J., Wang, L.: Regularization methods for SDP relaxations in large-scale polynomial optimization. SIAM J. Optim. 22, 408–428 (2012)

- Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)
- Pang, J.-S., Sun, D.-F., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and lorentz complementarity problems. Math. Oper. Res. 28, 39–63 (2003)
- Peng, J., Wei, Y.: Approximating k-means-type clustering via semidefinite programming. SIAM J. Optim. 18, 186–205 (2007)
- Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discret. Optim. 6, 231–241 (2009)
- Rockafellar, R.T.: Conjugate duality and optimization. CBMS-NSF Regional Conf. Ser. Appl. Math. vol. 16. SIAM, Philadelphia (1974)
- Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)
- Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
- Sloane, N.: Challenge problems: independent sets in graphs. http://www.research.att.com/njas/doc/graphs.html (2005)
- 21. Sun, D.-F., Sun, J.: Semismooth matrix-valued functions. Math. Oper. Res. 27, 150–169 (2002)
- 22. Sun, D.-F., Toh, K.-C., Yang, L.-Q.: A convergent 3-block semi-proximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J. Optim. (to appear)
- Toh, K.C.: Solving large scale semidefinite programs via an iterative solver on the augmented systems. SIAM J. Optim. 14, 670–698 (2004)
- Trick, M., Chvatal, V., Cook, B., Johnson, D., McGeoch, C., Tarjan, R.: The second dimacs implementation challenge—NP hard problems: maximum clique, graph coloring, and satisfiability. http://dimacs.rutgers.edu/Challenges/ (1992)
- Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput. 2, 203–230 (2010)
- Zhao, X.-Y., Sun, D.-F., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737–1765 (2010)

