

STK3332

Ambient Light Sensor and Proximity Sensor with Built-in IR LED

Preliminary Datasheet

Version - 0.9.3

Sensortek Technology Corporation

1. OVERVIEW

Description

The STK3332 is an integrated ambient and infrared light to digital converter with a built-in IR LED and I²C interface. This device provides not only ambient light sensing to allow robust backlight/display brightness control but also infrared sensing to allow proximity estimation featured with interrupt function.

For ambient light sensing, the STK3332 incorporates a photodiode, timing controller and ADC in a single chip. The excellent spectral response is designed to be close-to human eye. The STK3332 is suitable for detecting a wide range of light intensity environment.

For proximity sensing, the STK3332 also incorporates a photodiode, timing controller and ADC in the same chip. The spectral response of STK3332 is optimized for wavelength 940nm infrared light. The STK3332 provides programmable current setting to drive IR LED and employs a noise cancellation scheme to highly reject unwanted ambient IR noise.

The STK3332 has excellent temperature compensation, robust on-chip refresh rate setting without external components. Software shutdown mode control is provided for power saving application. The STK3332 operating voltage range is 1.7V to 3.0V.

Feature

 Integrated ambient light sensor, proximity sensor and infrared LED in one package.

Proximity Sensor

- 16 bits resolution for proximity detection
- Built-in LED driver with flexible setting
 - LED turn-on time: 7 steps IT
 - LED current: 3.125 / 6.25/ 12.5 / 25 / 50 / 100 /150 mA
- Flexible interrupt setting
 - Several interrupt modes meet application requirements.
 - Flag modes are included.
 - Intelligent persistence to speed up the response time: 1/2/4/16 times
- Low noise design
- High ambient light suppression
- 940nm LED for STK3332.

Ambient Light Sensor

- Convert ambient light intensity to 16-bit digital data format
- 3rd generation ambient light sensor which closes to human-eye response and suppress IR portion.
- Flexible digital settings
 - Integration time: 7 steps IT
- Flexible interrupt setting
 - Interrupt while out-of- window
 - Persistence: 1/2/4/8 times
- Clear channel for different light source compensation.

General

- Fully digital control with I²C interface
 - 1.7 ~ 3.6V I²C interface
- Low power design
 - Standby mode
 - Wait mode
- V_{DD} wide operation voltage: 1.7~3.0V
- Excellent temperature compensation: -40 to 85°C
- Available package options: OLGA
 - STK3332: 4 x 1.5 x 1 (mm)
- Lead-free package (RoHS compliant)
- Moisture Sensitivity Level 3

Applications

1

Mobile Phone, Smart-phone, PDA

2. FUNCTION BLOCK

3. PINOUT DIAGRAM

Top View

4. PIN DESCRIPTION

Pin No.	Pin Name	Dir.	Pin Function
1	VDD	PWR	Power supply: 1.7V to 3.0V.
2	SCL	1	I ² C serial clock line.
3	GND	GND	Ground. The thermal pad is also connected to the GND pin.
4	LEDA		Anode of the embedded IR LED, connect to power.
5	LDR		IR LED driver pin connecting to the cathode of the external IR LED. The sink current of the IR LED driver can be programmed through I ² C or the external resistor.
6	NC		No Connect.
7	/INT	0	Interrupt pin, LO for interrupt alarming. (Open Drain)
8	SDA	В	I ² C serial data line. (Open Drain)

Direction denotation:

0	Output	GND	Ground
I	Input	В	Bi-direction
PWR	Power	NC	Not Connect

5. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage	-0.3	_	3.6	V
V _{LEDA}	Voltage of LED's anode	-0.3		4.7	V
V_{LDR}	Voltage of LDR			3.6	V
Та	Operation temperature	-40	_	85	°C
Ts	Storage temperature	-40	_	85	°C

NOTE: All voltages are measured with respect to GND

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage	1.7		3.0	V
V _{LEDA}	Voltage of LED's anode	2.8	7	4.6	V
f _{I2C}	Clock frequency of I ² C	_		400	KHz
Ta	Operation temperature	-40	_	85	°C

NOTE: All voltages are measured with respect to GND

Symbol	Parameter	Max.	Unit
ESD		2 (HBM)	kV
	Electrostatic discharge protection	200 (MM)	V
		100 (Latch Up)	mA

NOTE: All voltages are measured with respect to GND

5.1 Electrical and Optical Characteristics

 $V_{DD} = V_{LED} = 2.8V$, under room temperature 25°C (unless otherwise noted)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Operation	Characteristics					
lals	ALS only supply current	Note1,2		240	A	μΑ
I_{PS}	PS only supply current	Note1,2		260		μΑ
I_{SD}	Shutdown current	Note1,2		TBD		μΑ
V_{IH}	Logic high, I ² C	Note6	1.3		V_{DD}	V
V_{IL}	Logic low, I ² C	Note7	_		0.4	V
ALS Chara	cteristics			—		
λρι	Peak sensitivity wavelength for ALS			550		nm
ALSFSCNT	Full scale ALS counts				65535	counts
ALSdark	ALS dark offset	Note2,3,4		0	3	counts
ALSSENSE	ALS sensing tolerance	Note2,3	-12.5		+12.5	%
Proximity C	Characteristics					
λp_2	High sensitivity wavelength range for PS		800		1000	nm
PS _{FSCNT}	Full scale PS counts				65535	counts
ILEDsink	LED sink current	IRDR_LED[2:0] Note5	\nearrow			
		000		3.125		mA
		001		6.25		mA
		010		12.5		mA
	4	011		25		mA
		100		50		mA
		101	7	100		mA
		110		150		mA
AMB supp	Ambient Light Suppression	Note8			TBD	Lux

- Note 1: No LED operation,
- Note 2 : $GAIN_ALS[1:0] = 2'b00$, $LIT_ALS[3:0] = 4'b0010$, $LIT_ALS[3:0] = 2'b00$, $LIT_ALS[3:0] = 4'b0000$.
- Note 3: White LED parallel light source.
- Note 4 : $E_{ambient} = 0 Lux$.
- Note 5: The voltage of LDR pin is fixed at 1.2V.
- Note 6: I²C logical high voltage level is specified as worst-case condition when all of the recommended operation supply voltages (V_{DD}) are taken into consideration. The logical high level is different when different supply voltage is applied.
- Note 7: I²C logical low voltage level is specified as worst-case condition when all of the recommended operation supply voltages (V_{DD}) are taken into consideration. The logical low level is different when different supply voltage is applied.
- Note 8: Sunlight environment.

5.2 Timing Chart

Characteristics of the SDA and SCL I/O

Symbol	Parameter	Standar	Standard Mode		Fast Mode	
Symbol	mboi rarameter		Max.	Min.	Max.	Unit
fsclk	SCL clock frequency	10	100	10	400	KHz
† _{HDSTA}	Hold time after (repeated) start condition. After this period, the first clock is generated	4.0	_	0.6	-	μs
tLOW	LOW period of the SCL clock	4.7	_	1.3	-	μs
† _{HIGH}	HIGH period of the SCL clock	4.0	_	0.6		μs
†susta	Set-up time for a repeated START condition	4.7	_	0.6		μs
† _{HDDAT}	Data hold time	0		0	_	ns
t _{SUDAT}	Data set-up time	250		100		ns
† _r	Rise time of both SDA and SCL signals	_	1000	_	300	ns
† _f	Fall time of both SDA and SCL signals		300	_	300	ns
tsusto	Set-up time for STOP condition	4.0	-	0.6		μs
† _{BUF}	Bus free time between a STOP and START condition	4.7	_	1.3	_	μs

Note 1: f_{SCLK} is the $(t_{SCLK})^{-1}$.

Timing Chart of the SDA and SCL

Read Data

Sequential Read Data

6. FUNCTION DESCRIPTION

6.1 Digital Interface

STK3332 contains eight-bit registers accessed via the I²C bus. All operations can be controlled by the command register. The simple command structure makes user easy to program the operation setting and latch the output data from STK3332. Section 5.2 Timing chart displays the STK3332 I²C command format for reading and writing operation between host and STK3332.

STK3332 provides fixed I²C slave address of 0x47 using 7 bit addressing protocol.

Slave Address	R/W Command Bit	OPERATION	
0x47	0	Write Command to STK3332	
(followed by the R/W bit)	1	Read Data from STK3332	

6.2 System Operation

6.3 ALS Operation

6.3.1 ALS General Operation

The related ALS control bits are summarized below.

ALS Control Bits

General Control					
EN_ALS	Enable ALS sensing function				
IT_ALS[3:0]	ALS integration time				
GAIN_ALS[1:0]	ALS gain control				
PRST_ALS[1:0]	ALS persistence number				
GAIN_C[1:0]	Clear channel gain control				
ALS Interrupt Control					
EN_ALS_INT	Enable ALS function interrupt				
EN_ALS_DR_INT	Enable ALS data ready interrupt				
THDH_ALS[15:0]	ALS out-of-windows high threshold				
THDL_ALS[15:0]	ALS out-of-windows low threshold				

ALS Data/Status Bits

Data	
DATA_ALS[15:0]	16-bits ALS channel raw data
DATA_C[15:0]	16-bits Clear channel raw data
Status	
FLG_ALS_DR	Indicate the ALS data ready event
FLG_ALS_INT	Indicate the Green channel out-of-
	windows event

STK3332 uses the coated photodiode array to measure the Lux of the incoming light and also an un-filtered clear photodiode array to improve the ALS sensing accuracy.

The ALS sensing function is enabled by the EN_ALS bit and the gain control bit GAIN_ALS[1:0]/GAIN_C[1:0] and IT period IT ALS[3:0] shall be set before the EN ALS.

The FLG_ALS_DR bit shall be asserted every ADC conversion cycle complete and shall be cleared automatically after one of the DATA_ALS[15:0]/DATA_C[15:0] is be read out through I²C.

The ALS/C data are 16-bit output and are stored in two bytes register. Higher byte register must be read first than lower byte. Data reading word protection is implemented to make sure the conversion data within the same conversion cycle could be read correctly. When the higher byte register is read, the lower 8-bit data will be stored into a shadow register which is read by the following sequential read or another single read to the lower byte register.

6.3.2 ALS Interrupt Description

ALS Out-of-Windows Interrupt

STK3332 provides the ALS data out-of-windows interrupt. Once the EN_ALS_INT is set to 1, then the STK3332 shall issue an ALS interrupt and assert the FLG_ALS_INT bit if the ALS data DATA_ALS[15:0] are outside the user's programmed window defined by THDH_ALS[15:0] and THDL_ALS[15:0]. The FLG_ALS_INT shall be cleared by write the bit 0 and shall be reset to 0 if POR/SWRst or EN_ALS = 0. Clear the EN_ALS_INT will also clear the FLG_ALS_INT bit to 0.

ALS persistence numbers PRST_ALS[1:0] is used to avoid the false alarm of ALS out-of-windows event due to environment noise. If ALS persistence is set larger than 1, then the ALS out-of-windows interrupt will not be issued until continuous persistence numbers of ADC conversion results outside the defined windows.

ALS Data Ready Interrupt

STK3332 also provides the ALS data ready interrupt. Once the EN_ALS_DR_INT is set to 1, then the STK3332 shall issue an ALS data ready interrupt every ADC conversion cycle and assert the FLG_ALS_DR bit. The FLG_ALS_DR shall be cleared automatically after any one of the DATA_R/G/B/C[15:0] is be read out through I²C and shall be reset to 0 if POR/SWRst or EN_ALS = 0. Clear the EN_ALS_DR_INT will not influence the FLG_ALS_DR status.

6.4 PS Operation

6.4.1 PS General Operation

The related PS control bits are summarized below.

PS Control Bits

General Control		
EN_PS	Enable PS function	
EN_INTELLI_PRST	Enable PS intelligent persistence	
IT_PS[3:0]	PS integration time	
GAIN_PS[1:0]	PS gain control	
PRST_PS[1:0]	PS persistence number	
DATA_PS_OFFSET[15:0]	PS digital offset cancel	
INTELLI_WAIT_PS[6:0]	PS intelligent persistence wait period	
LED Control		
IRDR_LED[2:0]	Choose LED driving current	
PS Interrupt Control		
PS_INT_MODE[2:0]	Choose PS interrupt mode.	
EN_PS _INT	Enable PS function interrupt	
EN_PS_DR_INT	Enable PS data ready interrupt	
THDH_PS[15:0]	PS near-far detect high threshold	
THDL_PS[15:0]	PS near-far detect low threshold	

PS Data/Status Bits

1 0 2 41.47 0 141.00 2110			
Data			
DATA_PS[15:0]	16-bits PS raw data		
Status			
FLG_NF	Indicate the current object near/far		
	state		
FLG_PS_INT	Indicate the object near/far state		
	changed event		
FLG_PS_DR	Indicate the PS data ready event		

The proximity function is used for object detection by IR-sensitivity photodiode detection of reflected IR energy emitted by the built-in IR LED.

The DATA_PS[15:0] will be the ADC output subtract offset data defined in DATA_PS_OFFSET[15:0]. The PS data are 16-bit output and are stored in two bytes register. Higher byte register must be read first than lower byte. Data reading word protection is implemented to make sure the conversion data within the same conversion cycle could be read correctly. When the higher byte register is read, the lower 8-bit data will be stored into a shadow register which is read by the following sequential read or another single read to the lower byte register.

The FLG_NF is used to indicate the current object is in near or far state and persistence is also applied to this flag if PRST_PS > 1.

The FLG_PS_DR bit shall be asserted every ADC conversion cycle complete and shall be cleared automatically after the DATA_PS[15:0] is be read out through I²C.

IRDR_LED[2:0] is used to choose different LED constant driving current. STK3332 has 7 different LED current

levels 3.125/6.25/12.5/25/50/100/150 mA.

6.4.2 PS Interrupt Description

The EN_PS_INT[0] register is used to control PS interrupt function for enable or disable
The PS_NF_MODE[1] register is used to select how STK3630 reports the object near/far state to application.
The PS_INT_MODE[2] register is PS interrupt modes for near/far state change are described as below.

PS INT Function (EN PS INT[0] = 1'b0) & PS Near/Far Flag Mode (PS NF Mode[1] = 1'b0)

If EN_PS_INT[0] is set to 1'b0, then the polling mode is used and the INT pin is non-active when near/far event detected. In this mode, the INT output level is fixed to pull-high and the FLG_PS_INT will never be asserted. The application simply polls the FLG_NF to check the object in near or far state.

PS INT Function (EN PS INT[0] = 1'b1) & PS Near/Far Flag Mode (PS NF Mode[1] = 1'b0)

The INT pin is treated as interrupt signal. The FLG_NF is used to indicate whether the object is in near or far state. The STK3332 is default in object far state and the FLG_NF = 1. Once the object moving close to the STK3332 and PS code exceed the high threshold THDH_PS, STK3332 will switch to object near state and the FLG_NF is cleared to 0. STK3332 will issue a PS interrupt to inform the object near/far state changed and also set the FLG_PS_INT to 1. If the object move far away from the STK3332 and PS code lower than the low threshold THDL_PS, STK3332 will switch to object far state and the FLG_NF is set to 1. STK3332 will also issue a PS interrupt to inform and set FLG_PS_INT. The FLG_PS_INT shall be cleared by write the bit 0 and shall be reset to 0 if POR/SWRst or EN_PS = 0. The FLG_NF shall be reset to 1 if POR/SWRst or EN_PS = 0. Change the PS MODE will also clear the FLG_PS_INT to 0, but keep the current PS code and FLG_NF state.

PS persistence numbers PRST_PS[1:0] is used to avoid the false alarm of PS interrupt event due to environment noise. If PS persistence is set larger than 1, then the PS interrupt will not be issued until continuous persistence numbers of ADC conversion results meet the interrupt condition describe above.

STK3332 also provides intelligent persistence to speed up the response time and can be enabled by set EN_INTELLI_PRST to 1. Once the PS signal is exceed the high threshold when object in far state or lower than low threshold when in near state, EN_INTELLI_PRST = 1 and the PS persistence number PRST_PS[1:0] large than 1, the STK3332 will enter the *PS_INTELLI_WAIT* PS function sub-state and use a shorter INTELLI_WAIT_PS period to perform the PS persistence check. This is used to shorten the PS response time and also avoid the flicker noise influence when choosing the right wait period. The STK3332 shall return to the normal operation state loop no matter what PS persistence success or fail.

For example:

- (1) PRST_PS[1:0] = 2'b01 (x2), EN_ALS = 1, EN_PS = 1, EN_WAIT = 1, EN_INTELLIGENT_PRST = 0
- (2) PRST PS[1:0] = 2'b01 (x2), EN ALS = 1, EN PS = 1, EN WAIT = 1, EN INTELLIGENT PRST = 1
- (3) $PRST_PS[1:0] = 2'b10$ (x4), $EN_ALS = 1$, $EN_PS = 1$, $EN_WAIT = 1$, $EN_INTELLIGENT_PRST = 1$ and fail to issue interrupt event (no continue persistence numbers of PS ADC conversion results is out of threshold),

PS INT Function (EN PS INT[0] = 1'b1) & PS Near/Far Flag Mode (PS NF Mode[1] = 1'b1)

If PS_NF_MODE[1] = 1'b1, then the polling mode is used and the INT pin is treated as a near/far flag signal, not an interrupt signal. In this mode, the INT output level is same with the FLG_NF signal level and the FLG_PS_INT will never be asserted. The application simply polls the INT level (high or low) to check the object in near or far state. INT Pin is only from PS FLG_NF, and the ALS interrupt, Invalid PS interrupt is ignored.

PS Data Ready Interrupt

STK3332 provides the PS data ready interrupt. Once the EN_PS_DR_INT is set to 1, then the STK3332 shall issue a PS data ready interrupt every ADC conversion cycle and assert the FLG_PS_DR bit. The FLG_PS_DR shall be cleared automatically after the DATA_PS[15:0] is be read out through I²C and shall be reset to 0 if POR/SWRst or EN_PS = 0. Clear the EN_PS_DR_INT will not influence the FLG_PS_DR status.

6.5 Wait State Operation

6.5.1 Wait State General Operation

The related Wait control bits are summarized below.

Wait Control Bits

General Control	
EN_WAIT	Enable Wait state
WAIT[7:0]	Wait period

Wait state is used for power saving

7. CONTROL REGISTER MAP

						BIT				
ADDR	REG NAME	7	6	5	4	3	2	1	0	Default
0x00	<u>STATE</u>				EN_CTAU TOK	EN_INTELLI _PRST	EN_WAIT	EN_ALS	EN_PS	0x00
0x01	<u>PSCTRL</u>	PRST_	PS[1:0]	GAIN_	PS[1:0]		IT_PS	[3:0]		0x00
0x02	ALSCTRL1	PRST_A	ALS[1:0]	GAIN_	ALS[1:0]		IT_AL	S[3:0]		0x02
0x03	<u>LEDCTRL</u>		IRDR_LED[2:0]				EN_CTIRFC	EN_CTIR	0x60	
0x04	INTCTRL1	INT_CTRL	NT_CTRL EN_INVALI D_PS_INT			EN_ALS_I NT	PS_INT_M ODE	PS_NF_MO DE	EN_PS_I NT	0x00
0x05	<u>WAIT</u>				WAI	T[7:0]				0x00
0x06	THDH1_PS				THDH_	PS[15:8]				0xFF
0x07	THDH2_PS				THDH_	_PS[7:0]				0xFF
0x08	THDL1_PS				THDL_	PS[15:8]		A A		0x00
0x09	THDL2 PS				THDL_	PS[7:0]				0x00
0x0A	THDH1_ALS				THDH_/	ALS[15:8]				0xFF
0x0B	THDH2_ALS				THDH_	ALS[7:0]			>	0xFF
0x0C	THDL1 ALS				THDL_ /	ALS[15:8]				0x00
0x0D	THDL2 ALS		THDL_ ALS[7:0]						0x00	
0x10	FLAG	FLG_ALS_ DR	FLG_PS_D R	FLG_ALS_I NT	FLG_PS_I NT		FLG_ALS_S AT	FLG_INVALI D PS INT	FLG_NF	0x01
0x11	DATA1_PS		ı		DATA_	PS[15:8]				0x00
0x12	DATA2_PS				DATA	_PS[7:0]				0x00
0x13	DATA1 ALS				DATA_/	ALS[15:8]				0x00
0x14	DATA2 ALS					ALS[7:0]				0x00
0x1B	DATA1_C					C[15:8]				0x00
0x1C	DATA2 C					_C[7:0]				0x00
0x1D	DATA1 PS OFFSET					OFFSET[15:8]				0x00
0x1E 0x20	DATA CTIR1					OFFSET[7:0] CTIR1[7:0]				0x00 0x00
0x20 0x21	DATA CTIR1					TIR2[7:0]				0x00
0x21	DATA CTIR3					TIR3[7:0]				0x00
0x23	DATA CTIR4					TIR4[7:0]				0x00
0x3E	PDT_ID				PDT_	ID[7:0]				0x52
0x3F	Reserved				Rese	erved				
0x4E	ALSCTRL2			GAIN	_C[1:0]					0x00
0x4F	INTELLI WAIT PS					ELLI_WAIT_PS	[6:0]	•	•	0x00
0x80	SOFT_RESET	1			Write any	to soft reset				
0xA1	<u>PSPDCTRL</u>						PS_	_SEL		0x00
0xA5	INTCTRL2							EN_ALS_DR _INT	EN_PS_ DR_INT	0x00

STATE Register (0x00)

Bit	7	6	5	4	3	2	1	0
ITEM				EN_CTAU TOK	EN_INTEL LI_WAIT	EN_WAIT	EN_ALS	EN_PS
Access				R/W	R/W	R/W	R/W	R/W
Default				0	0	0	0	0

Bit	ITEM	Description
0	EN_PS	Enable the PS function.
		0 : Disable
		1 : Enable
1	EN_ALS	Enable the ALS/C function.
		0 : Disable
		1 : Enable
2	EN_WAIT	Enable the Wait state.
		0 : Disable
		1 : Enable
3	EN_INTELLI_PRST	Enable the intelligent persistence function.
		0 : Disable
		1 : Enable
4	EN_CTAUTOK	Enable the CTAUTOK function.
		0 : Disable
		1 : Enable

PSCTRL Register (0x01)

Bit	7	6	5	4	3	2	1	0		
ITEM	PRST_F	PS[1:0]	GAIN_PS[1:0]		IT_PS[3:0]					
Access	R/	W	R/	W	R/W					
Default	2'b	000	2't	000	4'b0000					

Bit	ITEM			Description
3:0	IT_PS[3:0]	PS integration	on time.	
		4'b0000	96 us	
		4'b0001	192 us	
		4'b0010	384 us	
		4'b0011	768 us	
		4'b0100	1.54 ms	
		4'b0101	3.07 ms	
		4'b0110	6.14 ms	
		others	Reserved	
5:4	GAIN_PS[1:0]	PS gain setti	ng.	
		2'b00	x 1 times	
		2'b01	x 2 times	
		2'b10	x 4 times	
		2'b11	x 8 times	I

7:6	PRST_PS[1:0]	•	•	he PS has an interrupt persistence filter. The ser to specify the number of consecutive out-of-					
		•	threshold PS occurrences before an interrupt is triggered.						
		2'b00	x 1 times						
		2'b01	x 2 times						
		2'b10	2'b10 x 4 times						
		2'b11	x 16 times						

ALSCTRL1 Register (0x02)

Bit	7	6	5	4	3	2	1	0		
ITEM	PRST_A	LS[1:0]	GAIN_ALS[1:0]		IT_ALS[3:0]					
Access	R/	W	R/	'W		W				
Default	2't	000	2'k	000		4'b(0010			

Bit	ITEM	Description
3:0	IT_ALS[3:0]	ALS integration time.
		4'b0000 25 ms
		4'b0001 50 ms
		4'b0010 100 ms
		4'b0011 200 ms
		4'b0100 400 ms
		4'b0101 800 ms
		4'b0110 1600 ms
		others Reserved
5.4	0.412.1.41.01	
5:4	GAIN_ALS[1:0]	ALS gain setting. GAIN_ALS[1:0] is used to control of the ALS channels
		signal gain. The Clear channel is controlled by GAIN_C[1:0].
		2'b00 x 1 times
		2'b01 x 4 times
		2'b10 x 16 times
		2'b11 x 64 times
7:6	DDCT ALC[1.∩1	ALS parsistance setting The ALS has an interrupt parsistance filter. The
7.0	PRST_ALS[1:0]	ALS persistence setting. The ALS has an interrupt persistence filter. The
		persistence filter allows user to specify the number of consecutive out-of-
		windows ALS occurrences before an interrupt is triggered.
		2'b00 x 1 times
		2'b01 x 2 times
		2'b10 x 4 times
		2'b11 x 8 times

LEDCTRL Register (0x03)

Bit	7	6	5	4	3	2	1	0
ITEM	IRDR_LED[2:0]						EN_CTIRFC	EN_CTIR
Access	R/W						R/W	R/W
Default		3'b101					0	0

Bit	ITEM	Description							
7:5	IRDR_LED[2:0]	LED constant current setting. The STK3332 provides different sinking ability							
		for IRLED through setting IRDR.							
		3'b000 3.125 mA current sink							
		3'b001 6.25 mA current sink							
		3'b010 12.5 mA current sink							
		3'b011 25 mA current sink							
		3'b100 50 mA current sink							
		3'b101 100 mA current sink							
		3'b110 150 mA current sink							
1	EN_CTIRFC	If EN_CTIR and EN_CTAUTOK always set to 1.							
		0: CTIR is auto mode.							
		1 : CTIR is manual mode. (To set DATA_CTIRn data can reduce sunlight effect.)							
		mode EN_CTAUTOK EN_CTIRFC EN_CTIR							
		Auto 1 0 1							
		Manual 0 1 1							
0	EN_CTIR	Enable the CTIR function.							
		0 : Disable							
		1 : Enable							

INTCTRL1 Register (0x04)

Bit	7	6	5	4	3	2	1	0
ITEM	INT_CTRL		EN_INVALI D_PS_INT		EN_ALS_I NT	PS_	INT_MODE[2	2:0]
Access	R/W		R/W		R/W		R/W	
Default	0		0		0		3'b000	

Bit	ITEM	Description								
2:0	PS_INT_MODE[2:0]	Select PS interrupt mode.								
		Refer to the PS interrupt description.								
3	EN_ALS_INT	Enable the ALS out-of-windows interrupt.								
		0 : Disable								
		1 : Enable								
5	EN_INVALID_P\$_INT	Enable the Invalid PS interrupt.								
		0 : Disable								
		1 : Enable								
7	INT_CTRL	0 : Set /INT pin low if FLG_ALS_INT or FLG_ALS_DR or FLG_PS_INT or								
		FLG_PS_DR high (logical OR)								
		1 : Set /INT pin low if FLG_ALS_INT and FLG_ALS_DR and FLG_PS_INT and								

FLG_PS_DR high (logical AND)

WAIT Register (0x05)

Bit	7	6	5	4	3	2	1	0			
ITEM		WAIT[7:0]									
Access		R/W									
Default		8'b00000000									

Bit	ITEM	Description	
7:0	WAIT[7:0]	PS/GS wait state period.	
		wait period = (WAIT[7:0] + 1) * 1.54 ms	

THDH1_PS Register (0x06)

Bit	7	6	5	4	3	2	1	0			
ITEM		THDH_PS[15:8]									
Access		R/W									
Default		8'b11111111									

THDH2 PS Register (0x07)

Bit	7	6	5	4	3	2	1	0			
ITEM		THDH_PS[7:0]									
Access	R/W										
Default	8'b11111111										

THDL1_PS Register (0x08)

Bit	7	6	5	4	3	2	1	0		
ITEM		THDL_PS[15:8]								
Access		4		R/	W					
Default	8'b0000000									

THDL2 PS Register (0x09)

Bit	7	6	5	4	3	2	1	0			
ITEM	THDL_PS[7:0]										
Access		R/W									
Default	8'b00000000										

Bit	ITEM	Description
15:0	THDH_PS[15:0]	PS high threshold.
15:0	THDL_PS[15:0]	PS low threshold.

THDH1_ALS Register (0x0A)

Bit	7	6	5	4	3	2	1	0			
ITEM	THDH_ALS[15:8]										
Access	R/W										
Default	8'b1111111										

THDH2 ALS Register (0x0B)

Bit	7	6	5	4	3	2	1	0		
ITEM		THDH_ALS[7:0]								
Access	R/W									
Default	8'b11111111									

THDL1_ALS Register (0x0C)

Bit	7	6	5	4	3	2	1	0			
ITEM		THDL_ALS[15:8]									
Access		R/W									
Default		8'b00000000									

THDL2 ALS Register (0x0D)

Bit	7	6	5	4	3	2	1	0		
ITEM	THDL_ALS[7:0]									
Access	R/W									
Default	8'b00000000									

	Bit	ITEM	Description
I	15:0	THDH_ALS[15:0]	ALS high threshold.
	15:0	THDL_ALS[15:0]	ALS low threshold.

FLAG Register (0x10)

Bit	7	6	5	4	3	2	1	0
ITEM	FLG_ALS_	FLG_PS_	FLG_ALS_	FLG_PS_I		FLG_ALS_	FLG_INVA	FLG_NF
	DR	DR	INT	NT		SAT	LID_PS_INT	
Access	R/W	R/W	R/W	R/W		RO	R/W	RO
Default	0	0	0	0		0	0	1

Bit	ITEM	Description						
0	FLG_NF	Object near/far flag. Default FLG_NF = 1, object in far state.						
		0 : Object in near state						
		1 : Object in far state						
1	FLG_INVALID_PS	Indicate if interrupt event is related to INVALID_PS_INT. Write bit 0 to clear.						
	_INT	0 : No INVALID_PS_INT event						

		1 : INVALID_PS_INT event
2	FLG_ALS_SAT	Indicate the ALS channel circuit saturation.
		0 : No ALS channel circuit saturation, the data is valid.
		1 : ALS channel circuit saturation, the data is not valid.
4	FLG_PS_INT	Indicate if interrupt event is related to PS_INT. Write bit 0 to clear.
		0 : No PS_INT event
		1 : PS_INT event
5	FLG_ALS_INT	Indicate if interrupt event is related to ALS_INT. Write bit 0 to clear.
		0 : No ALS_INT event
		1 : ALS_INT event
6	FLG_PS_DR	Indicate PS data conversion complete. Automatically cleared after
		DATA_PS[15:0] is read.
		0: PS data is not ready
		1: PS data is ready
7	FLG_ALS_DR	Indicate ALS data conversion complete. Automatically cleared after
		DATA_ALS[15:0] is read.
		0: ALS data is not ready
		1: ALS data is ready

DATA1_PS Register (0x11)

Bit	7	6	5	4	3	2	1	0			
ITEM	DATA_PS[15:8]										
Access		RO									
Default		8,P00000000									

DATA2_PS Register (0x12)

Bit	7	6	5	4	3	2	1	0			
ITEM		DATA_PS[7:0]									
Access	RO										
Default	8'b0000000										

The STK3332 has two 8-bit read-only registers to hold the data from ADC of PS. The most significant bit (MSB) is accessed at register 0x11, and the least significant bit (LSB) is accessed at register 0x12. The registers are updated for every PS integration time (conversion cycle).

DATA1 ALS Register (0x13)

Bit	7	6	5	4	3	2	1	0			
ITEM		DATA_ALS[15:8]									
Access		RO									
Default		8'b0000000									

DATA2 ALS Register (0x14)

Bit	7	6	5	4	3	2	1	0		
ITEM		DATA_ALS[7:0]								

Access	RO
Default	8'b0000000

DATA1 C Register (0x1B)

Bit	7	6	5	4	3	2	1	0		
ITEM		DATA_C[15:8]								
Access		RO								
Default		8,00000000								

DATA2 C Register (0x1C)

Bit	7	6	5	4	3	2	1	0		
ITEM	DATA_C[7:0]									
Access		RO								
Default	8,00000000									

The STK3332 has two 8-bit read-only registers to hold each data from ADC of ALS/C. The registers are updated for every ALS/C integration time (conversion cycle).

DATA1_PS_OFFSET Register (0x1D)

Bit	7	6	5	4	3	2	1	0	
ITEM	DATA_PS_OFFSET[15:8]								
Access	RW								
Default	8'b00000000								

DATA2 PS OFFSET Register (0x1E)

Bit	7	6	5	4	3	2	1	0			
ITEM		DATA_PS_OFFSET[7:0]									
Access		RW									
Default		8'b00000000									

DATA CTIR1 Register (0x20)

The state of the s										
Bit	7	6	5	4	3	2	1	0		
ITEM		DATA_CTIR1[7:0]								
Access		RW								
Default	8'b00000000									

DATA_CTIR2 Register (0x21)

Bit	7	6	5	4	3	2	1	0		
ITEM		DATA_CTIR2[7:0]								
Access		RW								

Default	8,00000000
---------	------------

DATA CTIR3 Register (0x22)

Bit	7	6	5	4	3	2	1	0		
ITEM		DATA_CTIR3[7:0]								
Access		RW								
Default		8,00000000								

DATA_CTIR4 Register (0x23)

Bit	7	6	5	4	3	2	1	0		
ITEM		DATA_CTIR4[7:0]								
Access		RW								
Default	8'b00000000									

Product ID (0x3E)

Read Only; PDT_ID = Product ID(0x52) to indicate the product information.

Reserved (0x3F)

Read Only; RSRVD = Reserved for engineering mode.

ALSCTRL2 Register (0x4E)

Bit	7	6	5	4	3	2	1	0
ITEM			GAIN_C[1:0]					
Access			R/	W W				
Default			2't	000				

Bit	ITEM	Description
5:4	GAIN_C[1:0]	Clear channel gain setting. GAIN_C[1:0] is used to control of the Clear
		<u>channel signal gain. The ALS</u> are controlled by GAIN_ALS[1:0].
		2'b00 x 1 times
		2'b01 x 4 times
		2'b10 x 16 times
		2'b11 x 64 times

INTELLI WAIT PS Register (0x4F)

Bit	7	6	5	4	3	2	1	0			
ITEM			INTELLI_WAIT_PS[6:0]								
Access			R/W								
Default			7'b000000								

I	Bit	ITEM	Description
I	6:0	INTELLI_WAIT_PS[PS wait state period for intelligent persistence.
		6:0]	wait period = (INTELLI_WAIT_PS[6:0] + 1) * 390us

Soft reset (0x80)

Write any data to this register will reset the chip.

PSPDCTRL Register (0xA1)

Bit	7	6	5	4	3	2	1	0
ITEM					PS_PS3	PS_PS2	PS_PS1	PS_PS0
Access					R/W	R/W	R/W	R/W
Default					1	1	1	7.31

Bit	ITEM	Description
0	PS_PS0	Enable the PSO PD .
		0 : Disable
		1 : Enable
1	PS_PS1	Enable the PS1 PD .
		0 : Disable
		1 : Enable
2	PS_PS2	Enable the PS2 PD .
		0 : Disable
		1 : Enable
3	PS_PS3	Enable the PS3 PD .
		0 : Disable
		1 : Enable

INTCTRL2 Register (0xA5)

Bit	7	6	5	4	3	2	1	0
ITEM							EN_ALS_	EN_PS_D
							DR_INT	R_INT
Access							R/W	R/W
Default							0	0

Bit	ITEM	Description
0	EN_PS_DR_INT	Enable the PS Data Ready interrupt.
		0 : Disable
		1 : Enable
1	EN_ALS_DR_INT	Enable the ALS Data Ready interrupt.
		0 : Disable
		1 : Enable

8. ALS RESPONSE CHARTS

Spectrum

View Angle

9. PROXIMITY CHARACTERISTIC

Spectrum

View Angle

IRLED Emission Angle

10. APPLICATION NOTE

STK3332 Typical Application Circuit with Independent VDD and VLED Supply Voltage

10.1 Power Noise Consideration

It is suggested that IC power and V_{LED} comes from individual source to get the best performance of STK3332 and an R/C low pass filter is also suggested to be added in the V_{DD} path of STK3332 to reduce the switching noise from whole system. The recommended R value is 22 Ohm.

10.2 Power ON Sequence

It is suggested that $t1 \ge 0 \text{(VDD is needed first)}$, and $t2 \ge 0$. VDD variation peak=100mV (+/-50mV). VLEDA variation peak=200mV (+/-100mV).

11. PACKAGE OUTLINE

Top View

Side View

Bottom View

PCB Pad Layout and Solder Mask Define Recommendation

Suggested PCB pad layout guidelines are shown below.

Solder Mask Define

Notes: all linear dimensions are in mm.

Marking Rule

12. SOLDERING INFORMATION

12.1 Soldering Condition

0. Pb-free solder temperature profile

- 2. Reflow soldering should not be done more than three times.
- 3. When soldering, do not put stress on the lcs during heating.
- 4. After soldering, do not warp the circuit board.

12.2 Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350°C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

12.3 Repairing

Repair should not be done after the lcs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the lcs will or will not be damaged by repairing.

13. STORAGE INFORMATION

13.1 Storage Condition

- 1. Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.
- 2. The delivery product should be stored with the conditions shown below:

Storage Temperature	10 to 30°C
Relatively Humidity	below 60%RH

13.2 Treatment After Unsealed

1. Floor life (time between soldering and removing from MBB) must not exceed the time shown below:

Floor Life	168 Hours		
Storage Temperature	10 to 30°C		
Relatively Humidity	below 60%RH		

 When the floor life limits have been exceeded or the devices are not stored in dry conditions, they must be re-baked before reflow to prevent damage to the devices. The recommended conditions are shown below

Temperature	60℃	
Re-Baking Time	12 Hours	

14. TAPE AND REEL DIMENSION

TBD

Notes: all linear dimensions are in mm.

Revision History

Date	Version	Modified Items		
2018/01/23	0.9.0	Initial release.		
2018/01/25	0.9.1	Datasheet update (Marking rule)		
2018/03/02	0.9.2	Add Power ON Sequence		
2018/04/16	0.9.3	Modify page5:		
		1. IALS typ=240 (from 245), IPS=260 (from 265)		
		2. ALS Max Dark=3 (from 2)		
		3. Note 5: The voltage of LDR pin is fixed at 1.2V (from 1.0V)		

Important Notice

This document contains information that is proprietary to Sensortek Technology Corp. ("sensortek"), and is subject to change without notice. Any part of this document may not be used, reproduced, duplicated or disclosed in any form or any means without the prior written permission of sensortek.

Sensortek does not warrant or represent that any license, either express or implied, is granted under any sensortek's patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which sensortek's products or services are used. In addition, Sensortek does not assume any liability for the occurrence of infringing on any patent or other intellectual property rights of a third party.

Sensortek reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.