HR Analytics Dashboard — Employee Attrition & Workforce Trends

In this project, we explore a fictional company's HR dataset to uncover insights about:

- Employee attrition trends
- Department-wise performance and salary
- Gender distribution and pay gap
- Experience vs salary patterns

This type of analysis helps HR teams reduce attrition, plan training programs, and make informed decisions on hiring and compensation.

Import Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Optional
sns.set(style="whitegrid")
```

Load Data

```
In [2]: df_hr = pd.read_csv("HR Analytics Data.csv")
```

Initial Exploration

```
df_hr.head(4)
In [3]:
Out[3]:
             Unnamed:
                                                                                       Experience
                        EmployeeID
                                          Name Age Gender Department Education
                                                                                                   Salary Pe
                                                                                          (Years)
                                                                                 High
         0
                     0
                               1001
                                    Employee_0
                                                  50
                                                         Male
                                                                        IT
                                                                                              26
                                                                                                  116027
                                                                               School
                     1
                                                                                 PhD
          1
                               1002 Employee_1
                                                         Male
                                                                       HR
                                                                                              25
                                                                                                   68494
                                                  36
                                                                                 High
         2
                     2
                               1003 Employee_2
                                                                                                   33373
                                                  29
                                                         Male
                                                                 Marketing
                                                                                              24
                                                                               School
                               1004
                                     Employee_3
                                                  42
                                                         Male
                                                                 Marketing
                                                                                 PhD
                                                                                              13
                                                                                                   42161
```

In [4]: df_hr.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 100 entries, 0 to 99 Data columns (total 11 columns): Non-Null Count Dtype Column _____ -----____ 0 Unnamed: 0 100 non-null int64 1 100 non-null EmployeeID int64 2 100 non-null Name object 3 Age 100 non-null int64 4 Gender 100 non-null object 5 Department 100 non-null object 6 Education 100 non-null object 7 Experience (Years) 100 non-null int64 8 100 non-null int64 Salary 9 PerformanceRating 100 non-null object 10 Attrition 100 non-null object dtypes: int64(5), object(6)

In [5]: df_hr.describe(include='all')

memory usage: 8.7+ KB

Out[5]:

	Unnamed: 0	EmployeeID	Name	Age	Gender	Department	Education	Experience (Years)
count	100.000000	100.000000	100	100.000000	100	100	100	100.000000
unique	NaN	NaN	100	NaN	2	5	4	NaN
top	NaN	NaN	Employee_0	NaN	Male	IT	High School	NaN
freq	NaN	NaN	1	NaN	56	27	26	NaN
mean	49.500000	1050.500000	NaN	40.060000	NaN	NaN	NaN	18.400000
std	29.011492	29.011492	NaN	10.688255	NaN	NaN	NaN	10.354329
min	0.000000	1001.000000	NaN	22.000000	NaN	NaN	NaN	1.000000
25%	24.750000	1025.750000	NaN	30.000000	NaN	NaN	NaN	10.000000
50%	49.500000	1050.500000	NaN	41.500000	NaN	NaN	NaN	19.500000
75 %	74.250000	1075.250000	NaN	48.000000	NaN	NaN	NaN	27.250000
max	99.000000	1100.000000	NaN	59.000000	NaN	NaN	NaN	34.000000

Initial Insights

- 100 employee records
- Balanced distribution across departments and genders
- Categorical variables: Gender, Department, Education, Performance, Attrition
- Numerical variables: Age, Experience, Salary

Check for Missing Data

```
In [6]:
         df_hr.isnull().sum()
        Unnamed: 0
Out[6]:
                                0
         EmployeeID
         Name
                                0
         Age
         Gender
                                0
         Department
         Education
                                0
         Experience (Years)
                                0
         Salary
         PerformanceRating
         Attrition
         dtype: int64
```

Attrition Overview

```
In [7]: # Cou# Check for Missing Datant of Attrition
    attrition_counts = df_hr['Attrition'].value_counts()
    attrition_percentage = df_hr['Attrition'].value_counts(normalize=True) * 100

    print("\nAttrition Percentage:\n", attrition_percentage.round(2))

Attrition Percentage:
    No    84.0
    Yes    16.0
    Name: Attrition, dtype: float64
```

Attrition Distribution

```
In [8]: plt.figure(figsize=(6, 2))
    sns.countplot(data=df_hr)# Attrition Overview, x='Attrition', palette='Set2')
    plt.title('Employee Attrition Distribution')
    plt.ylabel('Number of Employees')
    plt.xlabel('Attrition Status')
    plt.show()
```


Attrition by Department

```
In [9]:
    plt.figure(figsize=(8, 3))
    ax = sns.countplot(data=df_hr, x='Department', hue='Attrition', palette='Set1')
    plt.title('Attrition by Department')
    plt.ylabel('Employee Count')
    plt.xticks(rotation=45)

# Add Labels on top of each bar
    for container in ax.containers:
        ax.bar_label(container, label_type='edge', fontsize=10, padding=2)
    plt.tight_layout()
    plt.show()
```


Attrition by Gender

```
In [10]: plt.figure(figsize=(6, 2))
    ax = sns.countplot(data=df_hr, x='Gender', hue='Attrition', palette='pastel')
    plt.title('Attrition by Gender')
    plt.ylabel('Number of Employees')

for container in ax.containers:
    ax.bar_label(container, label_type='edge', fontsize=10, padding=2)

plt.tight_layout()
    plt.show()
```


Attrition by Age

Attrition by Education Level

```
In [12]: plt.figure(figsize=(8, 2))
    ax = sns.countplot(data=df_hr, x='Education', hue='Attrition', palette='coolwarm')
    plt.title('Attrition by Education Level')
    plt.xticks(rotation=20)

for container in ax.containers:
        ax.bar_label(container, label_type='edge', fontsize =10, padding=2)
```


Key Takeaways from Attrition Analysis

- Overall attrition rate is ~20%, which is typical in many industries.
- Some departments (like [insert after seeing chart]) show higher turnover.
- Age and education level play a role in attrition patterns.
- Gender attrition is fairly balanced or [mention skew if seen].

These insights can help HR teams:

- Review compensation or leadership in high-attrition departments.
- Develop retention strategies for younger or more experienced talent.

Salary Trends & Gender Pay Gap

Average Salary by Gender

```
In [13]: plt.figure(figsize=(6, 3))
    ax = sns.barplot(data=df_hr, x='Gender', y='Salary', estimator=np.mean, palette='paste
    plt.title('Average Salary by Gender')
    plt.ylabel('Average Salary')

# Add salary Labels
for container in ax.containers:
    ax.bar_label(container, fmt='%.0f', padding=2)

plt.show()
```



```
In [ ]:
```

Salary Distribution by Gender

```
In [14]: plt.figure(figsize=(8, 4))
    sns.boxplot(data=df_hr, x='Gender', y='Salary', palette='coolwarm')
    plt.title('Salary Distribution by Gender')
    plt.show()
```


Average Salary by Department & Gender

```
In [15]: plt.figure(figsize=(10, 3))
    ax = sns.barplot(data=df_hr, x='Department', y='Salary', hue='Gender', estimator=np.me
    plt.title('Average Salary by Department and Gender')
    plt.ylabel('Avg Salary')
    plt.xticks(rotation=30)
    for container in ax.containers:
        ax.bar_label(container, fmt='%.0f', padding=2)

plt.tight_layout()
    plt.show()
```



```
In [ ]:
```

Gender Pay Gap Analysis

-Overall average salaries differ slightly between genders. -Some departments (e.g., [fill based on chart]) show noticeable differences. -Boxplots show salary range and variability.

HR Recommendation: Investigate pay structures and ensure fair compensation across departments.

Performance Rating & Salary Correlation

```
In [16]: plt.figure(figsize=(8, 4))
    ax = sns.boxplot(data=df_hr, x='PerformanceRating', y='Salary', order=['Low', 'Medium'
    plt.title('Salary Distribution by Performance Rating')
    plt.xlabel('Performance Rating')
    plt.ylabel('Salary')
    plt.show()
```


In []:

Department-Wise Salary & Experience Review

```
In [17]: plt.figure(figsize=(10, 5))
    sns.scatterplot(data=df_hr, x='Experience (Years)', y='Salary', hue='Department', pale
    plt.title('Experience vs Salary by Department')
    plt.xlabel('Experience (Years)')
    plt.ylabel('Salary')
    plt.show()
```


Correlation Heatmap (Numerical Variables)


```
In [ ]:
In [ ]:
```

Final Insights & Recommendations

- Departments with higher attrition may need focused attention.
- Gender pay gap exists in some departments review compensation policies.
- Experience correlates with salary, but outliers may exist.
- Performance ratings do not always align with higher pay worth further analysis.

Tools Used:

- Pandas, Seaborn, Matplotlib
- Barplot, Boxplot, Scatter Plot, Heatmap
- If you're hiring, managing teams, or into data this is how the insights come to life!
- Let's connect and talk data!

In []: