

Machine Learning

Neural Networks: Representation

Non-linear hypotheses

Non-linear Classification

$$x_1 = \text{size}$$

$$x_2 = \# \text{ bedrooms}$$

$$x_3 = \#$$
 floors

$$x_4 = age$$

. . .

$$x_{100}$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^3 x_2 + \theta_6 x_1 x_2^2 + \dots)$$

What is this?

You see this:

Computer Vision: Car detection

Testing:

What is this?

Cars "Non"-Cars Quadratic features ($x_i \times x_j$): ≈ 3 million

features

Machine Learning

Neural Networks: Representation

Neurons and the brain

Neural Networks

Origins: Algorithms that try to mimic the brain. Was very widely used in 80s and early 90s; popularity diminished in late 90s.

Recent resurgence: State-of-the-art technique for many applications

The "one learning algorithm" hypothesis

[Roe et al., 1992]

The "one learning algorithm" hypothesis

[Metin & Frost, 1989] Andrew Ng

Sensor representations in the brain

Seeing with your tongue

Haptic belt: Direction sense

Human echolocation (sonar)

Implanting a 3rd eye

Machine Learning

Neural Networks: Representation

Model representation I

Neuron in the brain

Neurons in the brain

Neuron model: Logistic unit

Sigmoid (logistic) activation function.

(neuron [say]) Analogous to neurons body

Neural Network

Neural Network

$$a_i^{(j)} =$$
 "activation" of unit i in layer j

 $\Theta^{(j)} \equiv \text{matrix of weights controlling}$ function mapping from layer j to layer j+1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

If network has s_j units in layer j, s_{j+1} units in layer j+1, then $\Theta^{(j)}$ will be of dimension $s_{j+1} \times (s_j+1)$.

Machine Learning

Neural Networks: Representation

Model representation II

Forward propagation: Vectorized implementation

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$z^{(2)} = \Theta^{(1)}x$$
$$a^{(2)} = g(z^{(2)})$$

Add
$$a_0^{(2)} = 1$$
.
 $z^{(3)} = \Theta^{(2)}a^{(2)}$
 $h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$

Neural Network learning its own features

Other network architectures

Machine Learning

Neural Networks: Representation

Examples and intuitions I

Non-linear classification example: XOR/XNOR

x1, x2 Features

 x_1 , x_2 are binary (0 or 1).

Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$

Example: OR function

Machine Learning

Neural Networks: Representation

Examples and intuitions II

$$x_1$$
 AND x_2

$x_1 \text{ OR } x_2$

Negation:

$$h_{\Theta}(x) = g(10 - 20x_1)$$

Putting it together: $x_1 \text{ XNOR } x_2$

x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	$h_{\Theta}(x)$
0	0			
0	1			
1	0			
1	1			

Neural Network intuition

Handwritten digit classification

[Courtesy of Yann LeCun] Andrew Ng

Handwritten digit classification

[Courtesy of Yann LeCun] Andrew Ng

Machine Learning

Neural Networks: Representation

Multi-class classification

Multiple output units: One-vs-all.

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc. when pedestrian when car when motorcycle

Multiple output units: One-vs-all.

$$h_{\Theta}(x) \in \mathbb{R}^4$$

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc.

when pedestrian when car when motorcycle

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

$$y^{(i)}$$
 one of $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$

pedestrian car motorcycle truck