

Review: Binary Numbering

- Binary is base 2
 - adjective: being in a state of one of two **mutually exclusive** conditions such as **on** or off, true or false, molten or frozen, presence or absence of a signal
 - From Late Latin bīnārius ("consisting of two")
- Two symbols:

0 1

- Numbers in C that start with 0b are binary
- Example: What is 0b110 in base 10?

•
$$0b110 = 110_2 = (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) = 6_{10}$$

A bit is a single binary digit

powers of two

• A byte is an 8-bit value

Unsigned binary Number = $\sum_{i=0}^{i=n-1} b_i x 2^i = b_{n-1} 2^{N-1} + b_{n-2} 2^{N-2} + ... + b_1 2^1 + b_0 2^0$

Review: Hexadecimal Numbering

- hexadecimal is base 16
 - From "hexa" (Ancient Greek ἑξα-) ⇒ six
 - and from "decem" (Latin) ⇒ ten
- Sixteen symbols

0123456789abcdef

- Numbers in C that start with 0x are hexadecimal numbers
 - $16_{10} = 0 \times 10_{16}$
- Example: What is 0xa5 in base 10?
 - $0xa5 = a5_{16} = (10 \times 16^{1}) + (5 \times 16^{0}) = 165_{10}$
- Hexadecimal numbers are very commonly used in programming to express binary values
 - Imagine the difficulty in correctly expressing a 64-bit binary value in your code

Unsigned Hex Number = $\sum_{i=0}^{i=n-1} b_i \times 16^i = b_{n-1} 16^{N-1} + b_{n-2} 16^{N-2} + ... + b_1 16^1 + b_0 16^0$

Binary <---> Hexadecimal Equivalences

- Hex \rightarrow Binary: $16^1 = 2^4$ 1 digit hex = 4 digits binary
 - 1. Replace hex digits with binary digits
 - 2. Drop leading zeros
 - Example: 0x2d to binary
 - 0x2 is 0b0010, 0xd is 0b1101
 - Drop two leading zeros, answer is 0b101101
- Binary \rightarrow Hex: $2^4 = 16^1$
 - 1. Pad with enough leading zeros until number of digits is a multiple of 4
 - 2. Replace each group of 4 with the HEX equivalent
 - Example: 0b101101
 - Pad on the left to: 0b 0010 1101
 - Replace to get: 0x2d

Number Base Overview (as written in C)

- Decimal is base 10 and Hexadecimal is base 16,
- Hex digits have 16 values 0 9 a f (written in C as 0x0 0xf)
- No standard prefix in C for binary (most use hex)
 - gcc (compiler) allows 0b prefix others might not

Hex digit	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0 b0000	0b0001	<mark>0</mark> b0010	0b0011	0b0100	0b0101	0b0110	0b0111

Hex digit	0x8	0x9	0xa	0xb	0хс	0xd	0xe	0xf
Decimal value	8	9	10	11	12	13	14	15
Binary value	0b1000	0b1001	<mark>0</mark> b1010	0b1011	0b1100	0b1101	0b1110	0b1111

Hex to Binary (group 4 bits per digit from the right)

• Each Hex digit is 4 bits in base 2 $16^1 = 2^4$

0b111110100101011

binary start with a 0b in C

Binary to Hex (group 4 bits per digit from the right)

• 4 binary bits is one Hex digit $2^4 = 16^1$

7

Address and Pointers

- An address refers to a location in memory, the lowest or first byte in a contiguous sequence of bytes
- A pointer is a variable whose contents (or value) can be properly used as an address
 - The value in a pointer *should* be a valid address allocated to the process by the operating system
- The variable x is at memory address 0x90001008
- The variable pt is at memory location 0x90001000
- The contents of pt is the address of x 0x90001008

Variables in Memory: Size and Address

- The number of contiguous bytes a variable uses is based on the type of the variable
 - Different variable types require different numbers of contiguous bytes
- Variable names map to a <u>starting address in memory</u>
- Example Below: Variables all starting at address 0x80, each box is a byte

Variables: Size

- Integer types
 - char, int
- Floating Point
 - float, double
- Modifiers for each base type
 - short [int]
 - long [int, double]
 - signed [char, int]
 - unsigned [char, int]
 - const: variable read only
- char type
 - One byte in a byte addressable memory
 - Signed vs Unsigned Char implementations
 - Be careful char is unsigned on arm and signed on other HW like intel

AArch-32 contiguous Bytes	AArch-64 contiguous Bytes	printf specification
1	1	%с
2	2	%hd
2	2	%hu
4	4	%d / %i
4	4	%u
4	8	%ld
8	8	%11d
4	4	%f
8	8	%lf
8	16	%Lf
4	8	%р
	contiguous Bytes 1 2 2 4 4 4 4 8 8 4	contiguous Bytescontiguous Bytes11222244444888448888888888816

size of a pointer is the word size

sizeof(): Variable Size (number of bytes) *Operator*

```
#include <stddef.h>
/* size_t type may vary by system but is always unsigned */
```

sizeof() operator returns a value of type size_t:

the number of bytes used to store a variable or variable type

• The argument to sizeof() is often an expression:

```
size = sizeof(int * 10);
```

- reads as:
 - number of bytes required to store 10 integers (an array of [10])

Memory Addresses & Memory Content

Variable names in a C statement evaluation

```
x = x + 1; // Lvalue = Rvalue
```

- Lvalue: when on the left side (Lside or Left value) of the = sign
 - address where it is stored in memory a constant
 - Address assigned to a variable cannot be changed at runtime
 - Does not require a memory read
 - Lside Must evaluate to an address
- Rvalue: when on the right side (Rside or Right value) of an = sign
 - contents or value stored in the variable (at its memory address)
 - requires a memory read to obtain contents

X

12

Memory Addresses & Memory Content

- x on left side (**Lside**) of the assignment operator = evaluates to:
 - Address of the memory assigned to the x this is x's Lvalue
- y on right side (Rside) of the assignment operator = evaluates to:
 - Contents of the memory assigned to the variable y (type determines length number of bytes) this is y's Rvalue
- So, x = y; is:

Read memory at y (Rvalue); write it to memory at x's address (Lvalue)

Introduction: Address Operator: &

• Unary address operator (&) produces the address of where an identifier is in

memory

- Print assigned address to g
- Example this might print:

```
value of g is: 42
address of g is: 0x71a0a0
(the address will vary)
```

```
int main(void)
{
  int g = 42;

  printf("value of g is: %d\n", g);
  printf("address of g is: %p\n", &g);
  return EXIT_SUCCESS;
}
```

Tip: printf() format specifier to display an address/pointer (in hex) is "%p"

Introduction: Address Operator: &

- Requirement: identifier must have a Lvalue
 - Cannot be used with constants (e.g., 12) or expressions (e.g., x + y)
 - Example: **&12** does not have an *Lvalue*,
 - so, &12 is <u>not</u> a legal expression
- How can I get an address for use on the Rside?
 - &var (any variable identifier or name)
 - function_name (name of a function, not func());
 - &funct name is equivalent
 - array_name (name of the array like array_name[5]);
 - &array_name is equivalent

Pointer Variables

- In C, there is a *variable type* for **storing an address**: a *pointer*
 - Contents of a pointer is an <u>unsigned</u> (positive numbers) <u>memory address</u>

```
type *name; // defines a pointer; name contains address of a variable of type
```

- A pointer is defined by placing a star (or asterisk) (*) before the identifier (name)
- You also must specify the type of variable to which the pointer points
- Pointers are typed! Why?
 - The compiler needs to know the size (sizeof()) of the data **you are pointing at** (number of consecutive bytes to access) to use (dereference) the pointer
- When the Rside of a variable contains a memory address, (it evaluates to an address) the variable is called a pointer variable

Pointer Variables - 2

A pointer <u>cannot</u> point at itself, why?

```
int *p = &p; /* is not legal - type mismatch */
```

- p is defined as (int *), a pointer to an int, but
- the type of &p is (int **), a pointer to a pointer to an int
- Pointer variables all use the same amount of memory no matter what they point at (in all but very tiny, often old design, cpu's)

```
int *iptr;
char *cptr;

printf("iptr(%u) cptr(%u)\n", sizeof(iptr), sizeof(cptr));
```

• Above prints on a 32-raspberry pi

```
% ./example
iptr(4) cptr(4)
```

Defining Pointer Variables

Assigning a value to a pointer:

```
int *p = &i; /* p points at i (assign address i to p) */
```

Is the same as writing the following definition and assignment statements

```
int *p;  /* p is defined (not initialized) */
p = &i;  /* p points at i (assign address of i to p */
```

- The * is part of the definition of p and is not part of the variable name
 - The name of the variable is simply p, not *p
- C mostly ignores whitespace, so these three definitions are equivalent

Using Pointer Variables and the Address Operator & - 1

Some find this clearer instead:

```
int *p1;
int *p2;
```

a

Using Pointer Variables and the Address Operator & - 2

Indirection (or dereference) Operator: *

- The *indirection operator* (*) or the *dereference operator to a variable* is the **inverse** of the *address operator* (&)
- address operator (&) can be thought of as:

"get the address of this box"

indirection operator (*) can be thought of as:

"follow the arrow to the next box and get its contents""

 Indirection operator causes an additional read to occur, when on either the Rside or Lside of a statement

Rside Indirection (or dereference) Operator: *

- Performs the following steps when the * is on the Rside:1. read the contents of the variable to get an address
- 2. read and return the contents at that address
 - (requires two reads of memory on the Rside)

Rside Indirection (or dereference) Operator: *

23

Lside Indirection Operator

Performs the following steps when the * is on the Lside:

- 1. read the contents of the variable to get an address
- 2. write the evaluation of the Rside expression to that address
 - (requires one read of memory and one write of memory on the Lside)

```
*p = x; // copy the value of x to the memory pointed at by p
```


Lside Indirection (or dereference) Operator: *

 Z

Each use of a * operator results in one additional read: Rside

RULE: Each * when used as a dereference operator in a statement (either Lside or Rside) it causes an <u>additional</u> read to be performed

Each use of a * operator results in one additional read: Lside

```
int z = 2;
int y = 1;
int *p;

p = &z;
*p = y;  // one read on lside
```


X

27

Each use of a * operator results in one additional read : both sides

Pointer to Pointers (Double Indirection)

Define a pointer to a pointer (p2 below)

```
int i = 2;
int *p1;
int **p2; // pointer to a pointer to an int

p1 = &i;
p2 = &p1;
printf("%d\n", (**p2) * (**p2));
```


- C allows any number of pointer indirections
 - more than two levels is very uncommon in real applications as it reduces readability and generates at lot of memory reads
- RULE (important): number of * in the variable definition tells you how many reads it takes to get to the base type

```
#reads to base type = number of * (in the definition) + 1
```

• Example:

```
int **p2; // requires 3 reads to get to the int
```

Double Indirection: Lside

```
int z = 2;
int y = 1;
int *w;
int *p;
int **d;

p = &z;
w = &y;
d = &p;
**d = *w;
```


30

Double Indirection: Rside

Important Observation

**d on Lside is two reads
**d on Rside is three reads

What is Aliasing?

- Two or more variables are aliases of each other when they all reference the same memory (so different names, same memory location)
- Example: When one pointer is copied to another pointer it creates an alias
- Side effect: Changing one variables value (content) changes the value for other variables
 - Multiple variables all read and write the <u>same</u> memory location
 - Aliases occur either by accident (coding errors) or deliberate (careful: readability)

```
int i = 5;
int *p;
int *q;

p = &i;
q = p;  // *p & *q now aliases
*q = 4;  // changes i and *p
```

```
*p and *q are aliases q
```

Result *p, *q and i all have the value of 4

Defining Arrays

Definition: type name[count]

- "Compound" data type where each value in an array is an element of type
- Allocates name with a fixed count array elements of type type
- Allocates (count * sizeof(type)) bytes of contiguous memory
- Common usage is to specify a compile-time constant for count

```
#define BSZ 6 BSZ is a macro replaced by the C preprocessor
```

 Array names are constants and cannot be assigned (the name cannot appear on the Lside by itself)

```
1 word
    (int = 4 bytes)
                  high
                  memory
         33
                  address
         33
         33
         22
         33
         うう
         33
         33
                 9020
b[5]
         23
                 9016
b[4]
         23
b[3]
         33
                 9012
                 9008
b[2]
         23
                 9004
         22
b[1]
                 9000
         33
b[0]
```

int b[6];

Array Initialization

- Initialization: type name[count] = {val0,...,valN};
 - { optional) initialization list can only be used at time of definition
 - If no count supplied, count is determined by compiler using the number of array initializers no initialization values given; then elements are initialized to 0
 - int block[20] = {\}; //only works with constant size arrays
 - · defines an array of 20 integers each element filled with zeros
 - Performance comment: do not zero automatic arrays unless really needed!
 - When a **count** is given:
 - extra initialization values are ignored
 - missing initialization values are set to zero

Accessing Arrays Using Indexing

- name [index] selects the index element of the array
 - index should be unsigned
 - Elements range from: 0 to count 1 (int x[count];)
- name [index] can be used as an assignment target or as a value in an expression

int $a[2] = \{1, 2\};$ a[0] = a[1];

 Array name (by itself with no []) on the Rside evaluates to the address of the first element of the array

9000

address

How many elements are in an array?

- The number of elements of space allocated to an array (called element count) and indirectly the total size in bytes of an array is not stored anywhere!!!!!!
- An array name is just the address of the first element in a block of contiguous memory
 - So, an array does not know its own size!

	1 word (int = 4 byte	s) high
	??	memory address
	??	
	??	
	??	
	??	
	??	
	3.5	
	??	
b[5]	??	90020
b[4]	??	90016
b[3]	??	90012
b[2]	??	90008
b[1]	??	90004
b[0]	??	90000

int b[6];

36

Determining Element Count: compile time calculation

- Programmatically determining the element count in a compiler calculated array
 sizeof(array) / sizeof(of just one element in the array)
- sizeof(array) only works when used in the SAME scope where the array variable was defined

Pointers and Arrays - 1

- A few slides back we stated: Array name (by itself) on the Rside evaluates to the address of the first element of the array
 - int buf[] = {2, 3, 5, 6, 11};
- Array indexing syntax ([]) an operator that performs pointer arithmetic
- buf and &buf[0] on the Rside are equivalent, both
 evaluate to the address of the first array element

One byte per row **Byte Memory Address** 0x12345687 p2 0x000x12345686 0x000x12345685 0x00l0x12345684 0x030x12345683 0x00**p1** 0x12345682 0x000x12345681 0x000x12345680 0×02

1 byte Memory Content

38 X

Pointers and Arrays - 2

- When p is a pointer, the actual evaluation of the address:
 - (p+1) depends on the base type the pointer p points at
- (p+1) adds 1 x sizeof(what p points at) bytes to p
 - ++p is equivalent to p = p + 1
- Using pointer arithmetic to find array elements:
 - Address of the second element &buf[1] is (buf + 1)
 - It can be referenced as * (buf + 1) or buf[1]

1 byte Memory Content One byte per row

39

Pointer Arithmetic In Use – C's Performance Focus

- Alert!: C performance focus <u>does not</u> perform any array "bounds checking"
- Performance by Design: bound checking slows down execution of a properly written program
- Example: array a of length i, C does not verify that a[j] or *(a + j) is valid (does not check: 0 ≤ j < i)
 - C simply "translates" and accesses the memory specified from: a[j] to be *(a + j) which may be outside the bounds of the array
 - OS only "faults" for an incorrect access to memory (read-only or not assigned to your process)
 - It does not fault for out of bound indexes or out of scope
- Lack of bound checking is a common source of errors and bugs and is a common criticism of C

Pointer Arithmetic

- You cannot add two pointers (what is the reason?)
- A pointer q can be subtracted from another pointer p when the pointers are the same type – best done only within arrays!
- The value of (p-q) is the number of elements between the two pointers
 - Using memory address arithmetic (p and q Rside are both byte addresses):
 - Notice that it is sizeof(*p) below: it is what p points at and not sizeof(p) which is the size of the pointer!

```
<u>distance in elements</u> = (p - q) / sizeof(*p)
(p + 3) - p = 3 = (0x08c - 0x080)/4 = 3
```


Pointer Comparisons

Pointers (same type) can be compared with the comparison operators:

```
int numb[] = {9, 8, 1, 9, 5};
int *end;
int *a;
end = numb + (int) (sizeof(numb)/sizeof(*numb));
a = numb;
while (a < end) // compares two pointers (address)
    /* rest of code including doing an a++ */</pre>
```

- Invalid, Undefined, or risky pointer arithmetic (some examples)
 - Add, multiply, divide on two pointers
 - Subtract two pointers of different types or pointing at different arrays
 - Compare two pointers of different types
 - Subtract a pointer from an integer

Using Pointers to Traverse an array

```
0x1234568c
                                                                            0x??
    int x[] = \{0xd4c3b2a1, 0xd4c3b200, 0x12345684\};
                                                                                    0x1234568b
                                                                            0x12
    int cnt = (int)(sizeof(x) / sizeof(*x));
                                                                                    0x1234568a
                                                                            0x34
                                                                    0xc
    for (int j = 0; j < cnt; j++)
                                                                            0x56
                                                                                    0x12345689
         printf("%\#x\n", x[j]);
                                                                    0x12345680
                                                                                    0x12345688
                                                                            0x84
                                                                           0xd4
                                                                                    0x12345687
cnt = 3;
                                                                            0xc3
                                                                                    0x12345686
actual space used by x is cnt * sizeof(*x); = 12 bytes
Calculating by addresses: 0x1234568c - 0x12345680 = 0xc
                                                                           0xb2
                                                                                    0x12345685
                                                                    0x1234568c
                                                                            0x00
                                                                                    0x12345684
    int x[] = \{0xd4c3b2a1, 0xd4c3b200, 0x12345684\};
                                                                            0xd4
                                                                                    0x12345683
    int cnt = (int)(sizeof(x) / sizeof(*x));
                                                                            0xc3
                                                                                    0x12345682
    int *ptr = x; // or &x[0]
                                                                            0xb2
                                                                                    0x12345681
    for (int j = 0; j < cnt; j++)
                                                                            0xa1
                                                                                    0x12345680
                                                            ptr
        printf("%#x\n", *(ptr + j));
                                                                            0x??
                                                                                    0x1234567f
    }
         Brute force translation to pointers
                                                                           1 byte
```

Fast Ways to Traverse an Array: Use a Limit Pointer

```
0x??
                                                                xpt
                                                                             0x12
                                                                                      0x1234568b
 int x[] = \{0xd4c3b2a1, 0xd4c3b200, 0x12345684\};
                                                                                      0x1234568a
                                                                             0x34
 int cnt = (int)(sizeof(x) / sizeof(*x));
                                                                             0x56
                                                                                     0x12345689
int *ptr;
                                                                                      0x12345688
                                                                              0x84
int *xptr;
                                                                             0xd4
                                                                                      0x12345687
                               //or &x[0]
ptr = x;
                                                                             0xc3
                                                                                      0x12345686
xptr = ptr + cnt;
                                                                             0xb2
                                                                                      0x12345685
                                                                             0x00
xpt is a loop limit pointer
                                                                                     0x12345684
it points 1 element past
                                                                             0xd4
                                                                                      0x12345683
the end of the array
                                                                             0xc3
                                                                                     0x12345682
                                                                             0xb2
                                                                                      0x12345681
while (ptr < xptr) {</pre>
                                   % ./a.out
     printf("%#x\n", *ptr);
                                                                                     0x12345680
                                                                             0xa1
                                  0xd4c3b2a1
                                                                ptr
     ptr++;
                                                                             0x??
                                  0xd4c3b200
                                                                                     0x1234567f
                                   0x12345684
                                                                             1 byte
```

0x1234568c

C Precedence and Pointers

- ++ -- pre and post increment combined with pointers can create code that is complex, hard to read and difficult to maintain
- Use () to help readability

common	With Parentheses	Meaning	
*p++	*(p++)	<pre>(1)The Rvalue is the object that p points at (2)increment pointer p to next element ++ is higher than *</pre>	
(*p)++		<pre>(1)Rvalue is the object that p points at (2)increment the object</pre>	
*++p	*(++p)	(1)Increment pointer p first to the next element(2)Rvalue is the object that the incremented pointer points at	
++*p	++(*p)	Rvalue is the incremented value of the object that p points at	

Operator	Description	Associativity
() [] > ++	Parentheses or function call Brackets or array subscript Dot or Member selection operator Arrow operator Postfix increment/decrement	left to right
++ + - ! ~ (type) * & sizeof	Prefix increment/decrement Unary plus and minus not operator and bitwise complement type cast Indirection or dereference operator Address of operator Determine size in bytes	right to left
* / %	Multiplication, division and modulus	left to right
+ -	Addition and subtraction	left to right
<< >>	Bitwise left shift and right shift	left to right
< <= > >=	relational less than/less than equal to relational greater than/greater than or equal to	left to right
== !=	Relational equal to or not equal to	left to right
&&	Bitwise AND	left to right
^	Bitwise exclusive OR	left to right
I	Bitwise inclusive OR	left to right
8:8:	Logical AND	left to right
П	Logical OR	left to right
?:	Ternary operator	right to left
= += -= *= /= %= &= ^= = <<= >>=	Assignment operator Addition/subtraction assignment Multiplication/division assignment Modulus and bitwise assignment Bitwise exclusive/inclusive OR assignment	right to left
,	comma operator	left to right

Example of a hard-to-understand pointer statement

```
int array[] = {2, 5, 7, 9, 11, 13};
int *ptr = array;
int x;
```

```
With
                                            Meaning
common
         Parentheses
                        (1) The Rvalue is the object that p points at
         *(p++)
*p++
                        (2) increment pointer p to next element
                        ++ is higher than *
                        (1) Rvalue is the object that p points at
(*p)++
                        (2) increment the object
                        (1) Increment pointer p first to the next
                            element
*++p
         *(++p)
                        (2) Rvalue is the object that the incremented
                            pointer points at
                        Rvalue is the incremented value of the
++*p
         ++(*p)
                        object that p points at
```

```
x = 1 + (*ptr++)++; // yuck!!
```

```
x = 1 + ++(*ptr++);
```

```
*ptr = *ptr + 1;  // (*ptr)++ is array[0]=2+1=3

x = 1 + *ptr;  // x = 1 + 3 = 4;

ptr = 1 + ptr;  // ptr = &array[1]; ptr ->5
```

C Strings - 1

- C <u>does not</u> have a <u>dedicated type</u> for strings
- Strings are an array of characters terminated by a sentinel termination character
- '\0' is the Null termination character; has the value of zero (do not confuse with '0')
- An array of chars contains a string only when it is terminated by a '\0'
- Length of a string is the number of characters in it, not including the '\0'
- Strings in C are <u>not</u> objects
 - No embedded information about them, you just have a name and a memory location
 - You cannot use + or += to concatenate strings in C
 - For example, you must calculate string length using code at runtime looking for the sentinel

C Strings - 2

- First'\0' encountered from the start of the string always indicates the end of a string
- The '\0' does not have to be in the last element in the space allocated to the array
 - But String length is always less than the size of the array it is contained in
- In the example below, the array buf contains two strings (but only cat is seen as the string)
 - One string starts at &(buf[0]) is "cat" with a string length of 3
 - The other string starts at &(b[4]) is "o" with a string length of 1
 - "o" has two bytes: 'o' and '\0'

Defining Strings: Initialization

- When you combine the automatic length definition for arrays with double quote(") initialization
 - Compiler automatically adds the null terminator '\0' for you

49

Background: Different Ways to Pass Parameters

- Call-by-reference (or pass by reference)
 - Parameter in the called function is an <u>alias</u> (references the same memory location) for the supplied argument
 - Modifying the parameter modifies the calling argument

Call-by-value (or pass by value) (C)

- What Called Function Does
 - Passed Parameters are used like local variables
 - Modifying the passed parameter in the function is allowed just like a local variable
 - So, writing to the parameter, <u>only</u> changes the <u>copy</u>
- The return value from a function in C is by value

Passing Parameters – Call by Value Example

- when inc(x) is called, a copy of x is made to another memory location
 - inc() cannot change the variable x since inc() does not have the address of x, it is local to main() so, 5 is printed
- The inc() function is free to change it's copy of the argument (just like any local variable) remember it does NOT change the parameter in main()

Output Parameters (Mimics Call by Reference)

- Passing a pointer parameter with the <u>intent</u> that the called function will use the address it to store values for use by the <u>calling function</u>, then pointer parameter is called an <u>output parameter</u>
- To pass the address of a variable x use the address
 operator (&x) or the contents of a pointer variable that
 points at x, or the name of an array (the arrays address)
- To be receive an address in the called function, define the corresponding parameter type to be a pointer (add *)
 - It is common to describe this method as: "pass a pointer to x"
- C is still using "pass by value"
 - we pass the value of the address/pointer in a parameter copy
 - The called routine uses the address to change a variable in the caller's scope

```
void inc(int *p);
int
main(void)
    int x = 5;
    inc(&x);
void
inc(int *
```

Example Using Output Parameters

```
void inc(int *p);
                    int
                   main(void)
                        int x = 5;
Pass the
                      \Rightarrow inc(&x);
address of x (&x)
                        printf("%d\n", x);
                        return EXIT SUCCESS;
                   void
Receive an
                    inc(int *p)
address copy in
the variable p
                        if (p != NULL)
(int *p)
                             *p += 1; // or (*p)++
                      Write to the output variable (*p)
```

At the Call to inc() in main()

- 1. Allocate space for p
- 2. Copy x's address into p

With a pointer to X,

inc() can change x in main()this is called a side effectp just like any other local variable

Array Parameters: Call-By-Value or Call-By-Reference?

• Type[] array parameter is automatically "promoted" to a pointer of type Type *, and a copy of the pointer is passed by value_

the name is the address, so this is passing a pointer to the start of the array

```
void passa(int []);
int main(void)
{
  int numbers[] = {9, 8, 1, 9, 5};

  passa(numbers);
  printf("numbers size:%lu\n", sizeof(numbers)); // 20
  return EXIT_SUCCESS;
}
```

```
void passa(int a[])
{
    printf("a size:%lu\n", sizeof(a)); // 4
    return;
}
```

IMPORTANT:

See the size difference 20 in main() in passa() is 4 bytes (size of a pointer) on pi-cluster and 8 on ieng6

- Call-by-value pointer (callee can change the pointer parameter to point to something else!)
- Acts like call-by-reference (called function can change the contents caller's array)

Arrays As Parameters: What is the size of the array?

- It's tricky to use arrays as parameters, as they are passed as pointers to the start of the array
 - In C, Arrays do not know their own size and at runtime there is no "bounds" checking on indexes

Arrays As Parameters, Approach 1: Pass the size

Two ways to pass array size

- 1. pass the count as an additional argument
- 2. add a sentinel element as the last element

remember you can only use sizeof() to calculate element count where the array is <u>defined</u>

```
1 word content
              (int = 4_lbytes)
  end
 0 \times 114
                   0x??
                     5
                          0x110
                          0x10c
                     9
                          0x108
                          0x104
                     8
  a
                          0x100
0 \times 100
           numb
                          address
                   0x??
```

```
int sumAll(int *a, int size);
int main(void)
{
  int numb[] = {9, 8, 1, 9, 5};
  int cnt = (int)(sizeof(numb)/sizeof(numb[0]));

  printf("sum is: %d\n", sumAll(numb, cnt););
  return EXIT_SUCCESS;
}
```

```
int sumAll(int *a, int size)
{
  int sum = 0;
  int *end;
  end = a + size;
  same as:
  sum = sum + *a;
  a++;
  return sum;
}
```

Arrays As Parameters, Approach 2: Use a sentinel element

- A sentinel is an element that contains a value that is not part of the normal data range
 - Forms of 0 are often used (like with strings). Examples: '\0', NULL

```
int strlen(char *a); // returns number of chars in string, not counting \0
int main(void)
  char buf[] = {'a', 'b', 'c', 'd', 'e', '\0'}; // or buf[] = "abcde";
  printf("Number of chars is: %d\n", strlen(buf));
  return EXIT SUCCESS;
                                                                      1 byte
/* Assumes parameter is a terminated string */
                                                                       0x??
                                                                             0x106
int strlen(char *s)
                                                                       1/01
                                                                             0x105
                                                       0x105
   char *p = s;
                                                                             0x104
                                                                        'e'
   if (p == NULL)
                                                                             0x103
                                                                        'd'
       return 0;
                                                                             0x102
   while (*p != '\0')
                                                                        I C I
                                                                             0x101
       p++;
                                                                        'b'
    return (p - s);
                                                                             0x100
                                                     0 \times 100
                                                                       'a'
                                                                              address
```

Reference: Some String Routines in libc (#include <string.h>)

Function	Description
strlen(<i>str</i>)	returns the # of chars in a C string (before null-terminating character).
<pre>strcmp(str1, str2), strncmp(str1, str2, n)</pre>	compares two strings; returns 0 if identical, <0 if str1 comes before str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp stops comparing after at most n characters.
strchr(str, ch) strrchr(str, ch)	character search: returns a pointer to the first occurrence of <i>ch</i> in <i>str</i> , or <i>NULL</i> if <i>ch</i> was not found in <i>str</i> . strrchr find the last occurrence.
strstr(<i>haystack</i> , <i>needle</i>)	string search: returns a pointer to the start of the first occurrence of <i>needle</i> in <i>haystack</i> , or <i>NULL</i> if <i>needle</i> was not found in <i>haystack</i> .
<pre>strcpy(dst, src), strncpy(dst, src, n)</pre>	copies characters in src to dst , including null-terminating character. Assumes enough space in dst . Strings must not overlap. strncpy stops after at most n chars, and <u>does not</u> add null-terminating char.
<pre>strcat(dst, src), strncat(dst, src, n)</pre>	concatenate src onto the end of dst . strncat stops concatenating after at most n characters. Always adds a null-terminating character.
<pre>strspn(str, accept), strcspn(str, reject)</pre>	strspn returns the length of the initial part of <i>str</i> which contains <u>only</u> characters in <i>accept</i> . strcspn returns the length of the initial part of <i>str</i> which does <u>not</u> contain any characters in <i>reject</i> .

Do not overuse strlen()

- C string library function strlen() calculates string length at runtime
- Do not overuse strlen(), as it walks the array each time called

```
int count_e(char *s) // o(n²) !!!
{
  int count = 0;
  if (s == NULL)
     return 0;
  for (int j = 0; j < strlen(s); j++) {
     if (s[j] == 'e')
          count++
     }
  return count ;
}</pre>
```



```
int count_e(char *s) // o(n) !!!
{
   int count = 0;
   if (s == NULL)
       return 0;
   while (*s) {
       if (*s++ == 'e')
            count++
    }
   return count ;
}
```

The NULL Constant and Pointers

- NULL is a constant that evaluates to zero (0)
- You assign a pointer variable to contain NULL to indicate that the pointer does not point at anything
- A pointer variable with a value of NULL is called a "NULL pointer" (invalid address!)
- Memory location 0 (address is 0) is not a valid memory address in any C program
- Dereferencing NULL at runtime will cause a program fault (segmentation fault)!

60

Using the NULL Pointer

Many functions return NULL to indicate an error has occurred

```
/* these are all equivalent */
int *p = NULL;
int *p = (int *)0;  // cast 0 to a pointer type
int *p = (void *)0;  // automatically gets converted to the correct type
```

- NULL is considered "false" when used in a Boolean context
 - Remember: false expressions in C are defined to be zero or NULL
- The following two are equivalent (the second one is preferred for readability):

```
if (p) ...
if (p != NULL) ...
```

Simple String IO - Reading

Task	Example Function Calls	
Read a string	<pre>#include <stdio.h></stdio.h></pre>	must pass the size of the array
	Char Tetrnt'	so fgets() knows how much space there is
	strptr = fgets(myStr, BFSZ, stdin);	

char *fgets(char array[], int size, FILE *stream)

- char * is a pointer (address) to an array of char
- reads in at most one less than size characters from stream and stores them into array
- Reading stops after an EOF or a newline '\n'
 - If a newline ('\n') is read, it is stored into the buffer
 - A terminating null byte ('\0') is always stored after the last character in the buffer

- Returns a **NULL at end of file** (or a read failure), otherwise a pointer to array (pointers later...)
- See man 3 fgets

Pointer returns from a function call (NULL Examples)

This function returns a pointer to the character that follows the first comma ','

```
char *next(char *ptr)
{
    if (ptr == NULL)
        return NULL;

    while ((*ptr != '\0') && (*ptr != ','))
        ptr++;

    if (*ptr == ',')
        return ++ptr;
    return NULL;
}
```

```
#include <stdlib.h>
#include <stdio.h>
#define BUFSZ 512
char *next(char *);
int main()
    char buf[BUFSZ];
    char *ptr;
    while (fgets(buf, BUFSZ, stdin) != NULL) {
        printf("buf: %s\n", buf);
        if ((ptr = next(buf)) != NULL)
            printf("after: %s\n", ptr);
        else
            printf("no comma found\n");
    return EXIT SUCCESS;
```

X

63

Returning a Pointer To a Local Variable (Dangling Pointer)

- There are many situations where a function will return a pointer, but a function must never return a pointer to a memory location that is no longer valid such as:
- 1. Address of a passed parameter copy as the caller may or will deallocate it after the call
- 2. Address of a local variable (automatic) that is invalid on function return
- These errors are called a dangling pointer

```
n is a parameter with
the scope of bad_idea
it is no longer valid after
the function returns

int *bad_idea(int n)
{
    return &n; // NEVER do this
}
```

```
a is an automatic (local) with a scope and lifetime within bad_idea2 a is no longer a valid location after the function returns
```

```
int *bad_idea2(int n)
{
    int a = n * n;
    return &a; // NEVER do this
}
```

```
/*
  * this is ok to do
  * it is NOT a dangling
  * pointer
  */
int *ok(int n)
{
    static int a = n * n;
    return &a; // ok
}
```

String Literals (Read-Only) in Expressions

When strings in quotations (e.g., "string") are part of an expression (i.e., not part of an array initialization) they are called string literals

```
printf("literal\n");
printf("literal %s\n", "another literal");
```

- What is a string literal:
 - Is a null-terminated string in a const char array
 - Located in the read-only data segment of memory
 - Is not assigned a variable name by the compiler, so it is only accessible by the location in memory where it is stored
- String literals are a type of anonymous variable
 - Memory containing data without a name bound to them (only the address is known)
- The *string literal* in the printf()'s, are replaced with the starting address of the corresponding array (first or [0] element) when the code is compiled

String Literals, Mutable and Immutable arrays - 1

```
    mess1 is a mutable array (type is char []) with enough space to hold the string + '\0'

          char mess1[] = "Hello World";
          *(mess1 + 5) = '\0'; // shortens string to "Hello"
                              mess1[] Hello World\0

    mess2 is a pointer to an immutable array with space to hold the string + '\0'

    char *mess2 = "Hello World"; // "Hello World" read only string literal
                                 // mess2 is a pointer NOT an array!
    *(mess2 + 1) = ' \ 0'; // Not OK (bus error)
                                                    read only string literal
                             → Hello World\0
                 mess2

    mess3 is a pointer to a mutable array

                                                                    using the cast (char [])
char *mess3 = (char []) {"Hello World"}; // mutable string
                                                                    makes it mutable
*(mess3 + 1) = '\0';
                                      // ok
                                  → Hello World\0 ◆
                                                        mutable string
                    mess3
```

2D Array of Char (where elements may contain strings)

- 2D array of chars (where rows may include strings)
- Each row has the same fixed number of memory allocated
- All the rows are the same length regardless of the actual string length
- The column size must be large enough for the longest string (fills rest with zeros '\0')

```
char aos[3][14] = {"my", "two dimension", "char array"};
high
memory
                                                   '\0'
              h
 aos[2]
          C
                   a
                       r
                                   r
                                       r
                              a
                                           a
                                                               '\0'
                           d
                                                    i
                              i
aos[1]
                   0
                                  m
                                           n
                                                            n
              W
                  '\0'
aos[0]
              V
```

low memory

```
#define ROWS 3
char aos[ROWS][14] = { "my", "two dimensional", "char array"};
char (*ptc)[14] = aos; // ptc points at a row of 14 chars

for (int i = 0; i < ROWS; i++)
    printf("%s\n", *(ptc + i));</pre>
```

high memory

67

Array of Pointers to Strings (This is NOT a 2D array)

- 2D char arrays are an inefficient way to store strings (wastes memory) unless all the strings are similar lengths, so 2D char arrays are rarely used with string elements
- An array of pointers is common for strings as "rows" can very in length

- aos is an array of pointers; each pointer points at a character array (also a string here)
- Not a 2D array, but any char can be accessed as if it was in a 2D array of chars
 - When I was learning, this was the most confusing syntax aspects of C

main() Command line arguments: argc, argv

- Arguments are passed to main() as a pointer to an array of pointers to char arrays (strings)(**argv)
 - Conceptually: % *argv[0] *argv[1] *argv[2]
- argc is the number of VALID elements (they point at something)
- *argv (argv[0]) is usually is the name of the executable file (% ./vim file.c)
- argv[argc] or *(argv + argc) always contains a NULL (0) sentinel
- argv elements point at mutable (fixed size) strings!

Accessing argy char at a time

- argv is a pointer variable, whose contents can be changed
- it is not an array name, which is just an address that cannot be changed

```
int main(int argc, char **argv)
{
    char *pt;
    (void)argc; // shut up the compiler

    while ((pt = *argv++) != NULL) {
        while (*pt != '\0')
            putchar(*pt++);
        putchar('\n');
    }
    return EXIT_SUCCESS;
}
```

X

70

Defining an Array of Pointer to Strings

Defining an Array of Pointers to Mutable Strings

- Make an array of pointers to mutable strings requires using a cast to an array (char [])
- Add a NULL sentinel at the end to indicate the end of the array

```
char *aos[] = {
  (char []) {"abcde"},
  (char []) {"fgh"},
  (char *) {NULL}
};
char **ptc = aos;
NULL
aos[1]

NULL
aos[0]

NULL
aos[0]
```

```
+3
printf("%c\n", *(*(aos + 1) + 1));
                                                            low
                                                                         +2
                                                            memory
                                                    ptc
                                                                         +1
while (*ptc != NULL) {
    printf("%s\n", *ptc); // prints string
                                                                         low memory
                                                          %./a.out
    for (int j = 0; *(*ptc + j); j++)
        putchar(*(*ptc + j)); // char in string
                                                          abcde
                                                          abcde
    putchar('\n');
                                                          fgh
    ptc++;
                                                          fgh
```

72

+3

Pointers to Functions (Function Pointers)

- Similar in concept to an array name, a function name ends up being the address of the first instruction in a function
- A function pointer variable contains the address of a function
- Generic format: returnType (*name)(type1, ..., typeN)
 - Looks like a function prototype with extra * in front of name
 - Why are parentheses around (*name) needed?

```
returnType *name(type1, ..., typeN) //wrong
```

- Above says name is a function returning a pointer to returnType
- Using the function:

```
(*name)(arg1, ..., argN) name(arg1, ..., argN)
```

Calls the pointed-to function with the given arguments and returns the return value

Pointers to Function Example

```
int add1(int);
int sqr(int);
void array_update(int (*)(int), int *, int);
void print_array(int *, int);

int main(void)
{
    int array[] = {4, 8, 15, 16, 23, 42};
    int cnt = sizeof(array)/sizeof(array[0]);

    print_array(array, cnt);
    array_update(add1, array, cnt);
    print_array(array, cnt);
    array_update(sqr, array, cnt);
    print_array(array, cnt);
    return EXIT_SUCCESS;
}
```

```
void array_update(int (*f)(int), int *a, int cnt)
{
    while (a < endpt) {
        *a = f(*a);
        a++;
    }
}</pre>
```

```
void print_array(int *a, int cnt)
{
   int *endpt = a + cnt;

   while (a < endpt)
        printf("%d ", *a++);
   printf("\n");
}</pre>
```

```
int add1(int i)
{
    return i + 1;
}
int sqr(int i)
{
    return i * i;
}
```

```
%./a.out

4  8  15  16  23  42

5  9  16  17  24  43

25  81  256  289  576  1849
```

string buffer overflow: common security flaw

- A buffer overflow occurs when data is written outside the boundaries of the memory allocated to target variable (or target buffer)
- strcpy() is a very common source of buffer overrun security flaws:
 - always ensure that the destination array is large enough (and don't forget the null terminator)
- strcpy() can cause problems when the destination and source regions overlap

strcpy() buffer overflow: over-write of an adjacent variable

```
int main(void)
{
    char s1[] = "before";
    char r2[] = "xyz";
    char s2[] = "after";

    printf("s2: %s\nr2: %s\nr2: %s\n", s2, r2, s1);

    strcpy(r2,"hello");

    printf("\ns2: %s\nr2: %s\nr2: %s\n",s2,r2,s1);
    return EXIT_SUCCESS;
}
```

compile on pi-cluster with gcc test.c

```
./a.out
s2: after
r2: xyz
s1: before

s2: after
r2: hello
s1: o
```

```
s2[2] s2[3] s2[4] s2[5] r2[0] r2[1] r2[2]
                                                                    s1[0] s1[1]
s2[0]
       s2[1]
                                                            r2[3]
                                                                                 s1[2]
                                                                                        s1[3]
                                                                                               s1[4]
                                                                                                     s1[5]
                                                                                                            s1[6]
        'f'
               1+1
                                                 ' V '
                                                                                   'f'
 'a'
                     'e'
                                   '\0'
                                          ' x '
                                                       77
                                                              '\0'
                                                                     'h'
                                                                            'e'
                                                                                         '0'
                                                                                                       ۱۵'
                                                                                                             '\0'
                            'r'
                                                                                                'n'
                                           before strcpy() overflow
low memory
                                                                                                        high memory
address
                                                                                                        address
s2[0] s2[1] s2[2] s2[3] s2[4] s2[5] r2[0] r2[1] r2[2] r2[3] s1[0] s1[1] s1[2] s1[3] s1[4] s1[5] s1[6]
        'f'
               '+'
                                          'h'
                                                 ۱۵۱
                                                        111
                                                              111
                                                                     '0'
                                                                           '\0'
                                                                                   'f'
 'a'
                      'e'
                                   '\0'
                                                                                          '0'
                                                                                                'r'
                                                                                                              '\0'
```

Extra Slides

•

Memory Size

- Since memory addresses are implemented in hardware using binary
 - The Size (number of byte sized cells) of Memory is specified in powers of 2
- Memory size/capacity in bytes is specified by the "Number of bits" in an address
 - 32 bits of address = 2^{32} = 4,294,967,296
 - Address Range is 0 to 2³² 1 (unsigned)
- Shorthand notation for address size (Memory Capacity)
 - KB = 2^{10} (K=1024) kilobyte
 - $MB = 2^{20}$ megabyte
 - $GB = 2^{30}$ gigabyte
 - TB = 2^{40} terabyte
 - PB = 2^{50} petabyte

Fixed size types in C (later addition to C)

- Sometimes programs need to be written for a particular range of integers or for a particular size of storage, regardless of what machine the program runs on
- In the file <stdint.h> the following fixed size types are defined for use in these situations:

Signed Data types	Unsigned Data types	Exact Size
int8_t	uint8_t	8 bits (1 byte)
int16_t	uint16_t	16 bits (2 bytes)
int32_t	uint32_t	32 bits (4 bytes)
int64_t	uint64_t	64 bits (8 bytes)

Defining Strings: Initialization Equivalents

- Following definitions create equivalent 4-character arrays
 - These are all strings as they all include a null ('\0') terminator

Pointer Practice

strtol() and strtoul() examples of passing a pointer to a pointer

```
long int strtol(const char *str, char **endptr, int base);
unsigned long int strtoul(const char *str, char **endptr, int base);
reruns the string converted to a long or unsigned long
       str pointer to the string to convert
       endptr pass the address of a variable that is a char pointer (output variable)
       base: number base used by the string
• Example: string is to contain just positive numbers >= 0 (in ascii) with no extra stuff

    If the string is not valid, then

   • *endptr != '\0' then string contains more than just numbers (bad input)
   • *endptr stores the address of the first invalid character found in the buffer pointed (str)

    How to use endptr when it does not contain NULL:
```

• When conversion is ok, errno is unaltered (always clear it before calling these routines)

• If there are other conversion errors (you can read the man page) then errno != 0

strtol() and strtoul() examples of passing a pointer to a pointer

```
#include <stdlib.h>
#include <errno.h>
char *endptr;
char buf[] = "33"; // test buffer string
int number;
errno = 0; // set errno to 0 (zero) before each call
number = (int)strtol(buf, &endptr, 10)
// check if the string was a proper number
// *entpr should be at the end of the string == '\0'
if ((*endptr != '\0') || (errno != 0)) {
   // handle the error
printf("%d\n", number);
```

Copying Strings: Use the Sentinel; libc: strcpy()

- To copy an array, you must copy each character from source to destination array
- Watch overwrites: strcpy assumes the target array size is equal or larger than source array

```
index 0 1 2 3 4 5
char 'H' 'e' '1' '1' 'o' '\0'
```

```
char str1[80];
strcpy(str1, "hello");
```

```
char *strcpy(char *s0, char *s1)
{
   char *str = s0;

   if ((s0 == NULL) || (s1 == NULL))
       return NULL;
   while (*s0++ = *s1++)
      ;
   return str; // address of dest string
}
```

Accessing Characters in an Array of Pointers to Strings


```
char *ptr;

ptr = *aos;

if (*ptr == ',')
    or
    if (**aos) == ','
```

You cannot write to an immutable literal

- You can use & to get the address of an anonymous variable as shown
 - Though the Rvalue of "Hello" is the address
- You cannot write to an immutable literal