Отчёт по лабораторной работе №6.9.1 Закон Кюри-Вейса и обменное взаимодействие в ферромагнетиках

Плюскова Н.А. Б04-004

17 сентября 2023 г.

1. Аннотация

В данной работе исследуется температурная зависимость магнитной восприимчивости ферромагнетика в парамагнитной области - выше точки Кюри. По полученной в работе температуре Кюри оценивается энергия обменного взаимодействия. Объектом исследования является металлический гадолиний.

2. Теоретическое введение

2.1 Феноменологическое описание ферромагнетиков: парамагнитная фаза и эффективное поле Вейсса

Намагниченностью называется магнитный момент I единицы объёма, который связан с внешним магнитным полем H через магнитную восприимчивость \varkappa : $I=\varkappa H$

Рассмотрим восприимчивость парамагнитного вещества, в котором магнитный момент атома обусловлен только спином одного электрона. Тогда в магнитном поле у атома возникают два возможных уровня энергии: $E_- = -\mu B$ и $E_+ = +\mu B$, причем в низкоэнергетичном состоянии _ магнитный момент параллелен магнитному полю.

В соответствии с Больцмановским распределением отношение числа электронов N_+ с энергией E_+ к числу электронов N_- с энергией E_- равно

$$\frac{N_{+}}{N_{-}} = \exp\left(-\frac{2\mu B}{k_{\rm B}T}\right) \simeq 1 - \frac{2\mu B}{k_{\rm B}T} \tag{1}$$

Намагниченность вещества определяется только разностью чисел электронов, магнитные моменты которых ориентированы по полю или против поля, а поскольку мы рассматриваем проекцию магнитного момента на одну ось, то парамагнитная часть восприимчивости равна:

$$\varkappa = \frac{I}{H} = N \frac{\mu^2}{k_B T} = N \frac{g^2 \mu_B^2 S(S+1)}{3k_B T}$$
 (2)

Для описания взаимодействия соседних электронов в ферромагнетике предположим, что в ферромагнетике имеется некоторое эффективное магнитное поле $H_{\rm эфф}$. Величина обменного поля пропорциональна имеющейся намагниченности образца: $H_{\rm эфф}=\lambda I$, где λ – некоторая константа. Тогда, учитывая поправку на дополнительное поле $H_{\rm эфф}$, получим закон Кюри-Вейсса:

$$\varkappa = \frac{I}{H} = N \frac{g^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}(T-\Theta)} \propto \frac{1}{T-\Theta}$$
 (3)

Где $\Theta = \frac{N\mu^2\lambda}{k_{\rm B}} = N\frac{g^2\mu_{\rm B}^2S(S+1)}{3k_{\rm B}}\lambda$ — параметр, имеющий размерность температуры. Этот закон носит приближенный характер и не позволяет описать, что происходит в

Этот закон носит приближенный характер и не позволяет описать, что происходит в ферромагнитой области, но достаточно точно характеризует температурную зависимость магнитной восприимчивости в парамагнитной фазе.

2.2 Связь эффективного поля Вейсса с обменным интегралом.

Энергия обменного взаимодейтвия $U_{\text{обм}}$ атомов i и j представляет собой разность между средними значениями кулоновской энергии для параллельных и антипараллельных спинов S_i и S_j , а J – коэффициент пропорциональности, называемый обменным интегралом, величина которого зависит от степени перекрытия распределённых зарядов атомов i и j.

$$U_{\text{обм}} = -2JS_i S_i \tag{4}$$

Установим приближенно связь между обменным интегралом J и константой Вейсса λ . Найдем энергию $U_{\text{пер}}$, требуемую для переворота данного спина в присутствии всех других спинов его ближайших соседей. С одной стороны, эта энергия вдвое больше обменной энергии системы с какой-то определенной ориентацией спина. С другой стороны, каждый магнитный атом испытывает действие эффективного поля, следовательно, воздействиевсех спинов на данный характеризуется средней намагниченностью $I=\mu/V$, и мы можем записать равенство

$$2 \cdot 2JnS^2 = U_{\text{пер}} = 2\mu H_{\text{эфф}} = 2\mu \frac{\lambda \mu}{V}$$

Выразив константу λ из температуры Θ , мы получаем:

$$J = \frac{3k_{\rm B}\Theta}{2nS(S+1)} \tag{5}$$

3. Экспериментальная установка и принцип измерений

Рис. 1: Схема экспериментальной установки

Экспериментальная установка для измерения восприимчивости магнетиков приведена на рис. 1. Ферромагнитный образец 1 располагается внутри пустотелой катушки 2, которая является индуктивностью колебательного контура, входящего в состав LC-генератора. Частота колебаний генератора высвечивается на цифровом табло блока. Катушка само-индукции помещена в термостат, представляющий собой массивный медный цилиндр 3, расположенный в пенопластовом корпусе 4. Образец помещен в тефлоновую капсулу. С помощью штока 5 капсулу можно перемещать вдоль оси катушки самоиндукции. Когда шток опущен, образец введен в катушку, а когда поднят – образец из неё вынут.

Магнитная восприимчивость образца определяется по изменению самоиндукции, происходящему при его введении в катушку. Обозначая через L индуктивность катушки с образцом и через L_0 её индуктивность в отсутствии образца, получим:

$$\frac{L - L_0}{L_0} = \frac{\Delta L}{L_0} = \mu - 1 = 4\pi \varkappa$$

Учитывая, что частота f колебательного LC-контура определяется выражением $\frac{1}{f}=2\pi\sqrt{LC}$, получим:

$$\frac{1}{\varkappa} \propto \frac{f^2}{f_0^2 - f^2} \tag{6}$$

4. Результаты эксперимента и обработка данных

При выполнении работы образец сначала охлаждается ниже точки Кюри, а затем медленно нагревается. Исследуем зависимость частот f и f_0 от температуры, постепенно нагревая образец. Измерения проводим в интервале от 2 °C до 50 °C с шагом в примерно 3 °C, результаты представлены в Таблице 1 в разделе Приложение.

Результаты измерения изобразим на графике (Рис. 2) в координатах $\left(T, \frac{f^2}{f_0^2 - f^2}\right)$.

Рис. 2: Зависимость $\frac{f^2}{f_0^2 - f^2}(T)$

Линейный участок аппроксимируем прямой, искомые коэффициенты из метода наименьшних квадратов равны:

$$k = 8.78 \pm 0.40$$
$$b = -165.87 \pm 13.14$$

Пользуясь соотношениями (3) и (6), получаем

$$\Theta = -\frac{b}{k} = 18.90 \pm 1.66 \, ^{\circ}\text{C} = 291.9 \pm 25.6 \, \text{K}$$

Пользуясь формулой (5), оценим величину обменного интеграла, считая, что для гадолиния n=12, S=7/2:

$$J = 0.200 \pm 0.019$$
 мэВ

5. Вывод

В ходе работы была исследована температурная зависимость магнитной восприимчивости гадолиния и определена температура Кюри $\Theta = 291.9 \pm 25.6~\mathrm{K}$, что в пределах σ совпадает с табличным значением 293.4 К. По измеренным данным видно, что закон Кюри-Вейса не выполняется при температурах, ниже Θ , т.е. в ферромагнитной области. По полученному значению Θ был оценен обменный интеграл $J = 0.200 \pm 0.019~\mathrm{mpB}$.

Возможные причины расхождения теоретического и экспериментального значений температуры Кюри:

- \bullet Точно не успевали снимать значения частот f и f_0
- Не учитывалась погрешность константы термопары
- $\bullet\,$ Чем выше была температура, тем точнее были измерения f и f_0
- При выполнении эксперимента сталкивались с проблемой колебаний температуры на 3-4 единицы вниз

6. Приложение

U, MKB	σ_U , мкВ	T, °C	f , к Γ ц	σ_f , к Γ ц	f_0 , к Γ ц	σ_{f_0} , к Γ ц
-900	- 0)	2,02	909,23	, , , , , , , , , , , , , , , , , , ,	956,13	707
-780	10	4,95	909,32	0,01	956,51	0,01
-750		5,68	909,63		955,71	
-660		7,88	909,83		955,83	
-540		10,80	909,92		956,03	
-440		13,24	909,70		955,73	
-410		13,98	910,21		955,78	
-380		14,71	910,51		955,83	
-350		15,44	911,65		955,94	
-310		16,41	912,90		955,80	
-270		17,39	915,09		955,89	
-250		17,88	916,83		955,81	
-220		18,61	918,34		955,99	
-190		19,34	922,57		955,98	
-170		19,83	925,47		956,00	
-150		20,32	928,62		956,04	
-130		20,80	930,62		955,98	
-110		21,29	933,84		956,05	
-90		21,78	936,34		955,98	
-70		22,27	938,78		956,01	
-50		22,76	940,37		955,82	
-20		23,49	942,53		955,97	
0		23,98	943,87		955,94	
30	10	24,71	945,11	0,01	955,99	0,01
50		25,20	946,34		955,80	
70		25,68	947,37		955,94	
90		26,17	948,24		955,98	
110		26,66	948,91		956,00	
160		27,88	950,12		955,91	
210		29,10	950,97		955,84	
260		30,32	951,46		956,02	
310		31,54	951,91		956,01	
360		32,76	952,33		956,01	
410		33,98	952,64		956,01	
460		35,20	952,80		955,99	
510		36,41	953,04		955,97	
560		37,63	953,20		955,90	
610		38,85	953,41		956,02	
660		40,07	953,54		956,03	
710		41,29	953,54		956,03	
760		42,51	953,75		956,02	
810		43,73	953,82		955,98	
860		44,95	953,94		956,02	
910		46,17	953,94		955,97	
960		47,39	954,03		956,09	
990		48,12	954,14		956,08	

Таблица 1: Результаты измерений.