APPENDIX A: SELECTED BIBLIOGRAPHY OF CAMPAIGN ANALYSES

	Author	TITLE	Publication
1954	Wohlstetter, Hoffman,	Selection and Use of Strategic Air Bases	RAND
	Lutz, and Rowen		
1973	Davis and	All You Ever Wanted to Know About MIRV	Journal of Conflict
1773	Shilling	and ICBM Calculations but Were Not Cleared to Ask	Resolution
1976	Steinbruner and Garwin	Strategic Vulnerability: the Balance between Prudence and Paranoia	International
1981	Epstein	Soviet Vulnerabilities in Iran and the RDF	Security International
1004	D	Deterrent	Security
1984	Posen	Measuring the European Conventional	International
		Balance: Coping with Complexity in Threat Assessment	Security
1987	Epstein	Strategy and Force Planning: The Case of the	Brookings
1988	Posen	Persian Gulf Is NATO Decisively Outnumbered?	International
1700	1 osen	18 14110 Beclottery Cadianiserea.	Security
1988	Mearsheimer	Numbers, Strategy, and the European	International
		Balance	Security
1988	Epstein	Dynamic Analysis and the Conventional	International
		Balance in Europe	Security
1988	May, Bing,	Strategic Arsenals After START: the	
	Steinbruner	Implications of Deep Cuts	
1989	Mearsheimer	Assessing the Conventional Balance: The 3:1	International
4000	0.1	rule and its Critics	Security
1989	Salman,	Analysis or Propaganda? Measuring	Nuclear
	Sullivan, and	American Strategic Nuclear Capability,	Arguments
1990	Van Evera McCue	1969-88	NDU Press
1990	McCue	U-Boats in the Bay of Biscay: An Essay in Operations Analysis	NDU Fress
1994	Masaki	The Korean Question: Assessing the Military	Security Studies
		Balance	J
1996	Biddle	Victory Misunderstood: What the Gulf War	International
		Tells Us About the Future of Conflict	Security
1998	O'Hanlon	Stopping a North Korean Invasion: Why	International
		Defending South Korea is Easier than the Pentagon Thinks	Security
2001	Greenhill	Mission Impossible? Preventing Deadly	Security Studies
		Conflict in the African Great Lakes Region	
2003	O'Hanlon	Estimating Casualties in a War to Overthrow	Orbis
2004	CI.	Saddam	T , , , , ,
2004	Glosny	Strangulation from the Sea? A PRC	International
		Submarine Blockade of Taiwan	Security

2004	Kuperman	The Limits of Humanitarian Intervention: Genocide in Rwanda	Brookings
2005	Armstrong	A Stochastic Salvo Model Analysis of the	Military
2000	and Powell	Battle of the Coral Sea	Operations
	and I owen	buttle of the Coful Sea	Research
2006	Lieber and	The End of MAD? The Nuclear Dimension of	International
	Press	U.S. Primacy	Security
2007	Raas and	Osirak Redux? Assessing Israeli Capabilities	International
	Long	to Destroy Iranian Nuclear Facilities	Security
2007	Bjoern	African Adventure?: Assessing the	MIT Security
	,	European Union's Military Intervention in	Studies
		Chad and the Central African Republic	
2008	Talmadge	Closing Time: Assessing the Iranian Threat	International
	O	to the Strait of Hormuz	Security
2010	Gholz and	Protecting "The Prize": Oil and the US	Security Studies
	Press	National Interest	v
2011	Bennett and	The Collapse of North Korea: Military	International
	Lind	Missions and Requirements	Security
2011	Shifrinson	A Crude Threat: The Limits of an Iranian	International
	and Priebe	Missile Campaign Against Saudi Arabian Oil	Security
2012	Bell	Can Britain Defend the Falklands?	Defence Studies
2014	Haggerty	Safe Havens in Syria: Missions and	MIT Masters
		Requirements for an Air Campaign	Thesis
2014	Anderson	Peacekeepers Fighting a Counterinsurgency	Studies in Conflict
		Campaign: A Net Assessment of the African	& Terrorism
		Union Mission in Somalia	
2015	Armstrong	Refighting Pickett's Charge: Mathematical	Social Science
	and	Modeling of the Civil War Battlefield	Quarterly
2016	Sodergren	TI 110 CI : 110	D A NED
2016	Heginbotham	The US-China military scorecard	RAND
2016	et al.		T ((' 1
2016	Glaser and	Should the United States Reject MAD?	International
	Fetter	Damage Limitation and Nuclear Strategy	Security
2016	D: 441 4	toward China	I., t ati a al
2016	Biddle and Oelrich	Future Warfare in the Western Pacific:	International
	Geirich	Chinese Antiaccess / Area Denial, U.S. AirSea	Security
		Battle, and Command of the Commons in East Asia	
2016	MacKay,		Historical
2010	Price, and	Weighing the Fog of War: Illustrating the Power of Bayesian Methods for Historical	Methods
	Wood	Analysis through the Battle of the Dogger	14161110115
	1 100a	Bank	
2017	Talmadge	Would China Go Nuclear? Assessing the	International
2017	Tammage	Risk of Chinese Nuclear Escalation in a	Security
		Conventional War with the United States	Scoming
		controlled that the office butter	

2020	Fagan, Horwood, MacKay, Price, Richards, and	Bootstrapping the Battle of Britain	Journal of Military History
	Wood		
2020	Wu	Living with Uncertainty: Modeling China's Nuclear Survivability	International Security

APPENDIX B: SELECTING INPUT DISTRIBUTIONS

Our proposed approach to handling uncertainty requires researchers to select a distribution for the inputs, decide on its parameters, and to model the correlation between different inputs. Guidance for parameter assignment can be found in Step 4, and we provide guidance for distribution selection and correlation here. Although implementing Monte Carlo once distributions are selected is a computational task, substantial qualitative research (e.g. analysis of historical campaigns, consultations with experts), should inform distribution selection. Many statistical distributions are available for researchers to use. The choice of distribution can affect the outcome, both by producing the incorrect variance for the outcome measure, but also potentially by introducing statistical bias, though most of the simulation literature focuses on variance. As with constructing the model, no universal rules exist for selecting the appropriate distribution. That said, there is some general guidance on which distributions are appropriate in which circumstances. Researchers can draw on their substantive knowledge and conduct research (e.g. examining historical campaigns or consulting experts) to decide on distributions, or they could conduct an additional form of sensitivity analysis, comparing the results from using different distributions.

The distribution that encodes the least information about a variable is a *uniform* distribution. If researchers can specify upper and lower bounds on a variable but have no other information about which values within that range are more likely than any other, then a uniform distribution is the appropriate choice. For instance, in their sensitivity analysis, Press and Lieber examine a range of nuclear weapon reliability and accuracy, plugging in values from uniform distributions.⁴

Researchers conducting campaign analysis often have an estimate of a most likely value, in addition to the upper and lower bounds of model variables. When researchers have a sense of these three values only, the simulations literature suggests using a *triangular* distribution, with a maximum value at the most likely value suggested by the expert, and probability decreasing linearly (and potentially asymmetrically) to 0 at each of the extremes.⁵

¹See Eunhye Song and Barry L Nelson, "Input Model Risk," in, *Advances in Modeling and Simulation* (Springer, 2017), pp. 63–80, pp. 68-69

²Alan R Washburn and Moshe Kress, *Combat Modeling*, vol. 139 (Springer, 2009), p. 9.

³Bahar Biller and Barry L Nelson, "Answers to the Top Ten Input Modeling Questions," in, *Proceedings of the Winter Simulation Conference*, vol. 1 (IEEE, 2002), pp. 35–40, doi:10.1109/WSC.2002.1172865; Song and Nelson, "Input Model Risk."

⁴Keir A Lieber and Daryl G Press, "The End of MAD? The Nuclear Dimension of US Primacy," *International Security*, Vol. 30, No. 4 (2006), pp. 7–44, doi:10.1162/isec.2006.30.4.7.

⁵Biller and Nelson, "Answers to the Top Ten Input Modeling Questions.". Several R packages and Python's numpy library provide functions for sampling from a triangular distribution.

The parameters of a normal distribution are more difficult to set qualitatively and normal distributions are symmetrical and unbounded, but is a defensible choice for many variables. The mean of a set of independent variables, regardless of their distributions, is asymptotically normally distributed, making it a valid choice for some types of variables, such as the total time for an operation, given independent components that make up the total time. More concretely, firing errors are usually normally distributed, making normal distributions valuable for modeling weapon accuracy.

Other distributions have attractive statistical properties but have parameters that are difficult to extract in the research process. Log-normal or beta distributions are useful distributions for continuous outcomes that are positive and continuous (log-normal) or between 0 and 1 (beta). Setting the parameters for these will often involve data that may not be available. The number of independent events or arrivals in a time period are distributed as a Poisson distribution, but the "rate" parameter can be difficult to estimate qualitatively. Finally, some specific problems have distributions that have been characterized in the operations research or military modeling literatures. Research in search theory, for instance, shows that the probability of finding an object, P(S), if searching effort is randomly allocated within the search area, is an exponential distribution $P(S) = 1 - e^{(-\text{effort/area})}$.

Researchers must also decide how to model the dependence between different inputs. A known pitfall in the combat modeling literature, which relies heavily on statistical distributions, is the assumption that all inputs are independently distributed. A researcher might believe that if one variable takes a high value, a second variable is also likely to take a high value. For instance (as we discuss further in the replication section), the probability that the United States would detect one type of Chinese nuclear facility could be correlated to some degree with the probability of detecting another type of nuclear facility. The simplest way to impose correlation is to use perfect correlation for all values: the detection probabilities for all targets might be identical within a single run. Often, though, researchers would not like to assume perfect correlation. If researchers are using normal distributions, they can set a level of covariance between them and draw from a multivariate normal.

⁶This is nothing to say of events often being correlated, which makes the Poisson distribution inappropriate.

⁷Bernard Osgood Koopman, "Search and Screening," OEG Rep.

⁸Washburn and Kress, Combat Modeling.

⁹Textbooks on Bayesian hierarchical modeling also have useful guidance on creating joint distributions.