EXERCICE 1

Soit un vecteur \overrightarrow{V} défini dans le système des coordonnées cartésiennes de base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ par :

 $\overrightarrow{V} = A.\overrightarrow{i} + B.\overrightarrow{j}$

Question:

Trouver l'expression du vecteur \overrightarrow{V} ainsi que les composantes du vecteur dans la base polaire $(\overrightarrow{u}_r, \overrightarrow{u}_\theta)$.

EXERCICE 2

Soit le vecteur \overrightarrow{V} défini dans le système de coordonnées sphériques de base $(\overrightarrow{u}_r, \overrightarrow{u}_\theta, \overrightarrow{u}_\phi)$ par :

 $\overrightarrow{V} = V_r \overrightarrow{u}_r + V_\theta \overrightarrow{u}_\theta + V_\phi \overrightarrow{u}_\phi$

Question : Écrire le vecteur \overrightarrow{V} dans la base cartésienne $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ en déterminant chacune des composantes du vecteur \overrightarrow{V} .

EXERCICE 3

Soi un vecteur \overrightarrow{V} défini dans la base du système de coordonnées cylindriques $(\overrightarrow{u}_r, \overrightarrow{u}_\theta, \overrightarrow{u}_z)$ par :

$$\overrightarrow{V} = V_r . \overrightarrow{u}_r + V_\theta . \overrightarrow{u}_\theta + V_z . \overrightarrow{u}_z$$

Question:

Donner l'expression du vecteur \overrightarrow{V} dans la base cartésiennes.

EXERCICE 4

Soi un vecteur \overrightarrow{V} défini dans la base du système de coordonnées cartésiennes $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ par :

 $\overrightarrow{V} = A.\overrightarrow{i} + B.\overrightarrow{j} + C.\overrightarrow{k}$

Questions:

- 1. Convertir le vecteur \overrightarrow{V} en coordonnées cylindriques.
- 2. Écrire le vecteur \overrightarrow{V} dans la base des coordonnées sphériques.