MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #26

Pointwise Convergence and Uniform Convergence

Part I: Pointwise Convergence

Definition:

1) Pointwise Convergence of a function

Given a sequence of function $f_n : E \to \mathbf{R}$ (where E is a set), we say f_n converges pointwise to f iff for **each** $\mathbf{x} \in \mathbf{E}$, $\lim_{n \to \infty} f_n(x) = f(x)$

2) Pointwise Convergence of a series of function

We say a series of function $\sum_{k=1}^{\infty}f_k(x)$ converges pointwise if and only if **For each** x, the partial sum $\sum_{k=1}^{n}f_k(x)$ converges pointwise to $\sum_{k=1}^{\infty}f_k(x)$

Example 1

Discuss the pointwise convergence of

$$f_n(x) = (\sin x)^n \text{ for } x \in [0, \pi]$$

Solution:

We can see $\sin x < 1$ for $x \in \left[0, \frac{\pi}{2}\right)$ and $\left(\frac{\pi}{2}, \pi\right]$ and $\sin x = 1$ for $x = \frac{\pi}{2}$. Hence

$$\lim_{n \to \infty} f_n(x) = \begin{cases} \lim_{n \to \infty} (\sin x)^n = 0 & \text{for } x \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right] \\ \lim_{n \to \infty} 1^n = 1 & \text{for } x = \frac{\pi}{2} \end{cases}$$

Example 2

Discuss the pointwise convergence of

$$\sum_{n=1}^{\infty} \frac{x^n e^x}{n} \text{ for } x \in [0, \infty)$$

Solution:

We apply root test

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{xe^{\frac{x}{n}}}{\sqrt[n]{n}} = x \qquad \text{(Note: } \lim_{n\to\infty} \sqrt[n]{n} = 1 \text{ and } \lim_{n\to\infty} e^{\frac{x}{n}} = e^0 = 1\text{)}$$

From the root test, the series converges when $0 \le x < 1$ and diverges when x > 1For x = 1 (which the root has no conclusion)

$$\sum_{n=1}^{\infty} \frac{x^n e^x}{n} = \sum_{n=1}^{\infty} \frac{1^n e^1}{n} = e \sum_{n=1}^{\infty} \frac{1}{n}$$
 which diverges by p - test (p = 1)

Part 2: Uniform Convergence

Definition: (Uniform Convergence of Function)

Given a sequence of function $f_n\colon E\to \textbf{R}$, we say $\ f_n\ \ \underline{\textbf{converges uniformly}}$ to $\ f$ iff

$$\lim_{n\to\infty} \left(\sup_{x\in E} |f_n(x) - f(x)| \right) = 0$$

In other word, $\sup_{x \in E} |f_n(x) - f(x)| \to 0$ as $n \to \infty$

(Note: $\sup_{x \in E} |g(x)|$ is called <u>sup-norm</u> of g(x) on E)

Definition: (Uniform Convergence of Series of Function)

Let $g_n\colon E\to \mathbf{R}$ be a sequence of functions, we say the series $\sum_{k=1}^\infty g_k(x)$ converges uniformly to function S(x) on E iff the partial sum $S_n(x)=\sum_{k=1}^n g_k(x)$ converges uniformly to S(x) on E

Example 3

Show that the following functions

$$f_{n}(x) = \frac{\sin nx}{1 + nx}$$

Converges uniformly on $[c, \infty)$ where c is a positive number.

(Step 1: Find the limit first)

For any $x \in [c, \infty)$, we have

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\sin(\ln x)}{1 + nx} = 0 \quad \text{(Since } 1 + nx \to \infty\text{)}$$

(Step 2: Compute the sup-norm)

$$0 \le \sup_{x \in [c, \infty)} |f_n(x) - f(x)| = \sup_{x \in [c, \infty)} \frac{|sinnx|}{|1 + nx|} \le \sup_{x \in [c, \infty)} \frac{1}{|1 + nx|} = \frac{1}{1 + nc}$$

Taking limit on both side (n $\to \infty$) and note that $\lim_{n \to \infty} \frac{1}{1+nc} = 0$, we have

$$\lim_{n \to \infty} \left(\sup_{\mathbf{x} \in [c,\infty)} |f_n(\mathbf{x}) - f(\mathbf{x})| \right) = 0$$

Hence $f_n(x)$ converges uniformly on $[c, \infty)$.

Example 4

Show that the sequence of functions

$$f_n(x) = x^n$$

Converges uniformly on [0,b] where b < 1, does not converge uniformly on [0,1] where $n \in \mathbf{N}$.

For [0, b], (where b < 1)

(Step 1: Find the Limit First)

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = 0 \text{ for all } x \in [0,b]$$

(Step 2: Compute the sup-norm)

$$\sup_{x \in [0,b]} |f_n(x) - f(x)| = \sup_{x \in [0,b]} |x^n| = b^n$$

$$\lim_{n \to \infty} \left(\sup_{\mathbf{x} \in [0,b]} |f_n(\mathbf{x}) - f(\mathbf{x})| \right) = \lim_{n \to \infty} b^n = 0$$

Hence $f_n(x)$ converges uniformly on [0,b]

For [0, 1]

(Step 1: Find the limit first)

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = \begin{cases} \lim_{n \to \infty} x^n = 0 & \text{for } x \in [0,1) \\ \lim_{n \to \infty} 1^n = 1 & \text{for } x = 1 \end{cases}$$

(Step 2: Compute the sup-norm)

Note that

$$|f_n(x) - f(x)| =$$

$$\begin{cases} x^n - 0 = x^n & \text{for } x \in [0,1) \\ 1^n - 1 = 0 & \text{for } x = 1 \end{cases}$$

So $\sup_{x \in [0,1]} |f_n(x) - f(x)| = 1^n = 1$, therefore

$$\lim_{n\to\infty} \left(\sup_{\mathbf{x}\in[0,1]} |f_n(\mathbf{x}) - f(\mathbf{x})| \right) = \lim_{n\to\infty} 1 = 1 \neq 0$$

Hence $f_n(x)$ is not uniformly convergent on [0,1].

Remark: From the above example, we see the uniformly convergence of a function also depends on the interval.

Example 5

Let $f: \mathbf{R} \to \mathbf{R}$ be uniformly continuous on \mathbf{R} and let $f_n(x) = f\left(x + \frac{1}{n}\right)$ for $x \in R$.

Show that $f_n(x)$ converges uniformly on **R** to f(x)

(Step 1: Find the limit first)

Since f(x) is uniformly continuous on **R**, then f(x) is continuous on **R**

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f\left(x + \frac{1}{n}\right) = f\left(\lim_{n \to \infty} \left(x + \frac{1}{n}\right)\right) = f(x)$$

(Step 2: Compute the sup-norm)

$$\sup_{\mathbf{x} \in \mathbf{R}} |f_n(\mathbf{x}) - f(\mathbf{x})| = \sup_{\mathbf{x} \in \mathbf{R}} \left| f\left(\mathbf{x} + \frac{1}{n}\right) - f(\mathbf{x}) \right|$$

Since f(x) is uniformly continuous on R,

then when
$$n \to \infty$$
, $\left| x + \frac{1}{n} - x \right| = \left| \frac{1}{n} \right| \to 0$, $f\left(x + \frac{1}{n} \right) - f(x) \to 0$. Hence we have

$$\lim_{n \to \infty} \sup_{x \in \mathbf{R}} |f_n(x) - f(x)| = \lim_{n \to \infty} \sup_{x \in \mathbf{R}} \left| f\left(x + \frac{1}{n}\right) - f(x) \right| = 0$$

Hence $f_n(x)$ converges uniformly to f(x)

Example 6

Show that if f_n , g_n are bounded and converges uniformly to f, g on E respectively, show that f_ng_n converges uniformly to fg on fE

Solution:

Clearly, if $\,f_n\,$ and $\,g_n\,$ are bounded, then $\,f(x)\,$ and $\,g(x)\,$ are also bounded Note that

$$\begin{split} &|f_n(x)g_n(x) - f(x)g(x)| \leq |f_n(x)g_n(x) - f_n(x)g(x) + f_n(x)g(x) - f(x)g(x)| \\ &\leq |f_n(x)||g_n(x) - g(x)| + |g(x)||f_n(x) - f(x)| \\ &\leq M|g_n(x) - g(x)| + N|f_n(x) - f(x)| \end{split}$$

$$\sup_{\mathbf{x}\in\mathbf{E}}|f_n(\mathbf{x})g_n(\mathbf{x})-f(\mathbf{x})g(\mathbf{x})| \leq \underset{\mathbf{x}\in\mathbf{E}}{\mathrm{Msup}}|g_n(\mathbf{x})-g(\mathbf{x})| + \underset{\mathbf{x}\in\mathbf{E}}{\mathrm{Nsup}}|f_n(\mathbf{x})-f(\mathbf{x})|$$

$$\lim_{n\to\infty} \left(\sup_{\mathbf{x}\in\mathbf{E}} |f_n(\mathbf{x})g_n(\mathbf{x}) - f(\mathbf{x})g(\mathbf{x})| \right) \le M(0) + N(0) = 0$$

So
$$\lim_{n\to\infty} (\sup_{x\in E} |f_n(x)g_n(x) - f(x)g(x)|) = 0$$

Therefore f_ng_n converges uniformly to fg on $\ E.$

Part 3: Power Series and radius of convergence

Definition:

A power series is a function of the form

$$a_0 + a_1(x - c) + a_2(x - c)^2 + \dots = \sum_{n=0}^{\infty} a_n(x - c)^n$$

Where $c, a_1, a_2, ...$ are numbers and c is called <u>center</u> of the series

One interesting thing is about the convergence of power series

Given a power series $\sum_{n=0}^{\infty}a_n(x-c)^n$, the domain of convergence of the series is an non-empty interval (E) which $E\subseteq [c-R+c+R]$ where $R=\frac{1}{\limsup_{n\to\infty} \sqrt[n]{a_n}}$ is

so called radius of convergence of the series

Example 7

Find the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{n^3}{3^n} (x-1)^n$$

Solution:

We can apply root test

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{\sqrt[n]{n^3}}{3} |x - 1| = \lim_{n \to \infty} \frac{\left(\sqrt[n]{n}\right)^3}{3} |x - 1| = \frac{|x - 1|}{3}$$

The series converges when $\frac{|x-1|}{3} < 1 \rightarrow |x-1| < 3 \rightarrow -2 < x < 4$

The series diverges when $\frac{|x-1|}{3} > 1 \rightarrow |x-1| > 3 \rightarrow x < -2$ and x > 4

Hence the domain of convergence $E \subseteq [-2,4]$ (we do not know the convergence at x=2,4). So R=3.

Example 8

Find the radius of convergence of the following power series

$$\sum_{n=1}^{\infty} \frac{2^n}{n!} x^n$$

Solution:

Since the terms involves factorial, instead of using root test, it may better for us to use ratio test

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{2^{n+1} x^{n+1}}{(n+1)!}}{\frac{2^n x^n}{n!}} \right| = \lim_{n \to \infty} \frac{2x}{n+1} = 0 < 1$$

So the series converges for all $x \in \mathbf{R}$, hence $R = \infty$

Try to work on the following exercises. You may submit your work to me for comments.

©Exercise 1

Discuss the pointwise convergence of following series of functions

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$

b)
$$\sum_{n=1}^{\infty} a^{n^2} x^n \quad where \ a < 1$$

c)
$$\sum_{n=1}^{\infty} n(tanx)^n$$

d)
$$\sum_{n=1}^{\infty} \frac{x^{2^{n-1}}}{1-x^{2^n}}$$

(Hint:
$$\frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{1}{1-x^{2^{n-1}}} - \frac{1}{1-x^{2^n}}$$
)

©Exercise 2

Define
$$f_n(x) = \frac{x}{x+n}$$
 for $x \ge 0$

Show that if a>0, $f_n(x)$ converges uniformly on [0,a] but does not converges uniformly on $[0,\infty)$

©Exercise 3

Define
$$f_n(x) = \frac{x^n}{1+x^n}$$

Show that if 0 < b < 1, $f_n(x)$ converges uniformly on [0,b] but does not converges uniformly on [0,1]

©Exercise 4

For
$$x \geq 0$$
, define $f_n(x) = e^{nx}$ and $g_n(x) = xe^{nx}$
Show that $f_n(x)$ does not converges uniformly on $[0,\infty)$ but $g_n(x)$ converges uniformly on $[0,\infty)$

©Exercise 5

Show that if $\,f_n\,$ and $\,g_n\,$ converges uniformly to $\,f,g\,$ respectively on a set A, then $\,f_n\,+g_n\,$ converges uniformly on $\,A.$

©Exercise 6

Find the radius of convergence of the following power series

a)
$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{(n+2)2^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{x^{2n+1}}{4^n}$$

c)
$$\sum_{n=1}^{\infty} \frac{(n!)^2 (2n+2)!}{(2n)! [(n+1)!]^2} x^n$$

d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(n!)^2 4^n}$$

e)
$$\sum_{n=1}^{\infty} a_n x^n$$
 where $a_n = \begin{cases} \frac{1}{2^n} & \text{if n is odd} \\ 1 & \text{if n is even} \end{cases}$