- Independence: $f_{X|Y}(X,Y) = f_{X}(x)f_{Y}(y)$
- $\mathbb{E}[X] = \int_{-\infty}^{\infty} f_X(x) dx$
- $\forall X, Y, \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- $Var(X) = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- X, Y indep, Var(X + Y) = Var(X) + Var(Y)
- X, Y follows \mathcal{N} and indep, so does X + Y

Concentration Inequalities

Markov's inequality

For RV X with finite $\mathbb{E}[X]$ and $X \ge 0$:

$$\mathbb{P}(X \geqslant t) \leqslant \mathbb{E}[X]/t \quad t > 0$$

Pf. Refer to the property

$$\int_0^\infty \mathbb{P}(X\geqslant x) dx = x \mathbb{P}(X\geqslant x)\big|_0^\infty - \int_0^\infty x d\mathbb{P}(X\geqslant x)$$

$$= 0 + \int_0^\infty f_X(x) dx = \mathbb{E}[X]$$
 From here, consider

$$\int_0^\infty \mathbb{P}(X\geqslant x) dx \geqslant \int_0^t \mathbb{P}(X\geqslant t) dx \geqslant t \mathbb{P}(X\geqslant t)$$

Chebyshev's inequality

For RV X with finite $\mathbb{E}[X]$, Var(X) and $X \ge 0$:

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le \mathsf{Var}(X)/t^2 \quad t > 0$$

Pf. Apply Markov's with $Y = |X - \mathbb{E}[X]|^2$

Chernoff's bound

For RV X with finite MGF = $\mathbb{E}[e^{\lambda X}]$, for any $t \ge 0$:

$$\mathbb{P}(X \geqslant t) = \mathbb{P}(e^{\lambda X} \geqslant e^{\lambda t}) \leqslant \mathbb{E}[e^{\lambda X - \lambda t}]$$

$$\mathbb{P}(X\leqslant -t)=\mathbb{P}(e^{-\lambda X}\geqslant e^{\lambda t})\leqslant \mathbb{E}[e^{-\lambda X-\lambda t}]$$

Pf. Apply Markov's with $Y=e^{\pm \lambda X}$ (notice $Y\geqslant 0$). One **Pf.** The MGF of the product of two standard Gaussians may select a λ that to maximize $\mathbb{E}[e^{\lambda X - \lambda t}]$.

Chernoff's bound corollaries

- C^2 -Subgaussian RV $\mathbb{E}[X] = 0$ and $\mathbb{E}[e^{\lambda X}]$ $e^{\lambda^2 C^2/2}$, using Chernoff's bound: $\mathbb{P}(X \ge t)$ $e^{\lambda^2 C^2/2 - \lambda t}$. Setting $\lambda = \frac{t}{C^2}$ yields the tightest bound: $\mathbb{P}(|X| \ge t) \le e^{-t^2/(2C^2)}$
- If $X \in [a, b]$, then $X \mathbb{E}[X]$ is $\frac{(a-b)^2}{2}$ subgaussian.

Hoeffding's bound

For IID RV \in [a, b] with mean μ and emperical mean $\hat{\mu}_n$,

$$\mathbb{P}(|\hat{\mu}_n - \mu| \geqslant t) \leqslant 2e^{\frac{-2nt^2}{(b-a)^2}} \quad t > 0$$

Pf. $\hat{\mu}_n - \mu$ is $\frac{(b-a)^2}{4n}$ subgaussian (use the corollary).

Geometry of Higher Dimension Gaussian

Gaussian PDF and MGF

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$M_X(t) = \mathbb{E}[X] = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$$

For a Gaussian RV $X \sim \mathcal{N}(\mu, \sigma^2)$

Gaussian Annulus Theorem

Let $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ then for any $t \in (0, \sqrt{d})$,

$$\mathbb{P}(\|\mathbf{z}\|_2 \in [\sqrt{d} - t, \sqrt{d} + t]) \geqslant 1 - 2e^{-t^2/8}$$

Pf. Write $\|\mathbf{z}\|_2^2 = \sum_{i=1}^n z_i^2$ then

$$\mathbb{E}[e^{\lambda(\|\mathbf{z}\|_2^2-d)}] = \left(e^{-\lambda}\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{z_i^2(1-2\lambda)}{2}}dz_i\right)^d$$

The term inside the integral is a $\mathcal N$ pdf with variance $\frac{1}{1-2\lambda}$. For $\lambda<\frac{1}{2}$, the expectation is $\frac{e^{-d\lambda}}{(1-2\lambda)^{d/2}}$, which is $\leq e^{2d\lambda^2}$ for $|\lambda| < \frac{1}{4}$. Hoeffing's on $\|\mathbf{z}\|_2^2 - d$ yields

$$\mathbb{P}(|\|\mathbf{z}\|_2^2 - d| \geqslant t\sqrt{d}) \leqslant e^{2d\lambda^2 - \lambda t\sqrt{d}} \leqslant 2e^{-t^2/8}$$
 Finally, $\|\|\mathbf{z}\|_2^2 - \sqrt{d}| \geqslant t$ implies $\|\|\mathbf{z}\|_2^2 - d| \geqslant t\sqrt{d}$

Near Orthogonality

Lem1. Fix $\|\mathbf{x}\|_2 = \ell$ and $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$, then for any $t \geqslant 0$

$$\mathbb{P}(|\mathbf{z}^\mathsf{T}\mathbf{x}| \geqslant t) \leqslant 2e^{-\frac{t^2}{2\ell^2}}$$

Hoeffding's bound on z^Tx .

Lem2. $\mathbf{z}_1, \mathbf{z}_2 \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ are indep, then for any $t \geqslant 0$

$$\mathbb{P}(|\mathbf{z}_1^\mathsf{T}\mathbf{z}_2| \geqslant td) \leqslant 2e^{-\frac{t^2d}{4}}$$

is $\frac{1}{\sqrt{1-\lambda^2}}$. Therefore, $\mathbb{E}[e^{\lambda(\mathbf{z}_1^\mathsf{T}\mathbf{z}_2)}] = (1-\lambda^2)^{-\frac{d}{2}} \leqslant$ bound on $\mathbf{z}_1^\mathsf{T}\mathbf{z}_2$

Lem3. Same conditions as **lem2**, then for any $t \in (0,1]$

$$\mathbb{P}\left(\left|\frac{\mathbf{z_1}^\mathsf{T}\mathbf{z_2}}{||\mathbf{z_1}||_2||\mathbf{z_2}||_2}\right| \geqslant t\right) \leqslant 4e^{-\frac{t^2d}{16}}$$

Pf. Define event $\mathcal{E} := \{||\mathbf{z_1}||_2 \geqslant \sqrt{d/2} \text{ and } ||\mathbf{z_2}||_2 \geqslant$ $\sqrt{d/2}$ } then $\mathcal{E}^c := \{||\mathbf{z_1}||_2 \leqslant \sqrt{d/2} \text{ or } ||\mathbf{z_2}||_2 \leqslant \sqrt{d/2}\}$ $\mathbb{P}(\mathcal{E}^c) \leqslant \mathbb{P}(||\mathbf{z_1}||_2 \leqslant \sqrt{d/2}) + \mathbb{P}(||\mathbf{z_2}||_2 \leqslant \sqrt{d/2})$

$$\leq 2\mathbb{P}(||\mathbf{z_1}||_2 \leq \sqrt{d} - \sqrt{d/2})$$

 $\leq 2e^{-(\sqrt{d/2})^2/8}$ (Annulus Theorem) = $2e^{-d/16}$

Define $\mathcal{F} = \left\{ \left| \frac{\mathbf{z_1}^{\mathsf{T}} \mathbf{z_2}}{\|\mathbf{z_1}\|_2 \|\mathbf{z_2}\|_2} \right| \geqslant t \right\} : \mathbb{P}(\mathcal{F}) = \mathbb{P}(\mathcal{F}|\mathcal{E})\mathbb{P}(\mathcal{E}) +$ $\mathbb{P}(\mathcal{F}|\mathcal{E}^c)\mathbb{P}(\mathcal{E}^c) \leqslant \mathbb{P}(\mathcal{F}|\mathcal{E}) + \mathbb{P}(\mathcal{E}^c)$. \mathcal{F} given \mathcal{E} implies **Proof outline**: $|\mathbf{z_1}^\mathsf{T}\mathbf{z_2}| \geqslant t^2d/2$ which is $\leqslant 2e^{-dt^2/16}$ (lem2). Therefore, $\mathbb{P}(\mathcal{F}) \leq 2e^{-dt^2/16} + 2e^{-d/16} \leq 4e^{-dt^2/16}$

Johnson-Lindenstrauss Lemma

Given d-dimensional dataset v_1, \ldots, v_n , for k < d sample $\mathbf{u}_1, \dots, \mathbf{u}_k$ IID from $\mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. Define

$$\pi(\mathbf{v}) = \frac{1}{\sqrt{k}}[\mathbf{u_1}^\mathsf{T}\mathbf{v}, \mathbf{u_2}^\mathsf{T}\mathbf{v}, \dots, \mathbf{u_k}^\mathsf{T}\mathbf{v}]$$

Lem4. π preserves magnitude: fix $\delta > 0$ and $\epsilon > 0$, for $k \geqslant \frac{8}{2} \ln \frac{2}{\delta}$, the probability holds

$$\boxed{ \mathbb{P}\left(|\|\pi(\mathbf{v})\|_2 - \|\mathbf{v}\|_2 | \geq \epsilon \|\mathbf{v}\|_2 \right) \leqslant \delta}$$

Pf. Since $\mathbf{u}_i^\mathsf{T} \mathbf{v} \in \mathcal{N}(0, \|\mathbf{v}\|_2^2), \frac{\sqrt{k}}{\|\mathbf{v}\|_2} \pi(\mathbf{v}) \sim \mathcal{N}(0, \mathbf{I}_k)$. We

$$\begin{split} \mathbb{P}\left(\left|\frac{\sqrt{k}}{\|\mathbf{v}\|_2}\|\pi(\mathbf{v})\|_2 - \sqrt{k}\right| \geqslant t\right) \leqslant 2e^{-\frac{t^2}{8}} \\ \mathbb{P}\left(|\|\pi(\mathbf{v})\|_2 - \|\mathbf{v}\|_2| \geqslant \frac{t\|\mathbf{v}\|_2}{k}\right) \leqslant 2e^{-\frac{t^2}{8}} \\ \text{Set } \epsilon = \frac{t}{\sqrt{k}} \text{ and } 2e^{-\frac{\epsilon^2k}{8}} \leqslant \delta \text{, } k \geqslant \frac{8}{\epsilon^2} \ln \frac{2}{\delta}. \end{split}$$

Lem5. π preserves distance: fix $\delta > 0$ and $\epsilon > 0$, for $k \geqslant \frac{16}{5^2} \ln \frac{n}{\delta}$, the probability holds $(\mathbf{v}_{i,j} = \mathbf{v}_i - \mathbf{v}_j)$

$$\mathbb{P}\left(\forall i, j, ||\pi(\mathbf{v}_{i,j})||_2 - ||\mathbf{v}_{i,j}||_2| \ge \epsilon ||\mathbf{v}_{i,j}||_2\right) \le \delta$$

Pf. The probability of each condition is $\leq 2e^{-\frac{\epsilon^2 k}{8}}$. Union bound suggests the total probability is $\leqslant \binom{n}{2} 2e^{-\frac{\epsilon^2 k}{8}} \leqslant$

Estimation

Maximum Likelihood Estimation (MLE)

Given data $x \sim X$, the MLE is computes the most likely parameter θ : $\hat{\theta} = \max_{\theta} f(\theta) = \max_{\theta} f_X(x|\theta)$.

Finding the MLE it is often easier to optimize the loglikelihood $q(\theta) = \log(f(\theta))$. The **1-dimensional derivati**- $(e^{-2\lambda^2})^{-\frac{d}{2}}=e^{\lambda^2 d}$ for $\lambda\in(0,0.8]$. Apply Hoeffding's ve test suggests that if 1) $g'(\theta)=0$ and 2) $g''(\theta)>0$, then θ is a local minima.

Convex $q''(x) \ge 0$ always, global minima exists

Concave $q''(x) \leq 0$ always, global maxima exists

Emperical Mean and Variances

Let $X \in [[a,b]]$ be a random variable, $\bar{\mu}$ be the empirical mean, $\bar{\sigma}^2$ the empirical variance computed with μ , and $\hat{\sigma}^2$ with $\bar{\mu}$ respectively. One may bound $|\bar{\mu} - \mu|$ with the Hoeffding's bound on X_i , $|\bar{\sigma}^2 - \sigma|$ with the Hoeffding's bound on $Y_i = |X_i - \mu|^2$, and $|\hat{\sigma}^2 - \sigma^2|$ using the identity $(\hat{\sigma}^2 - \sigma^2) = (\bar{\sigma}^2 - \sigma^2) + (\bar{\mu} - \mu)^2$

Separating Gaussian Mixture

Given data $X_1 \sim \mathcal{N}(\mu_1, \mathbf{I}_d)$ and $X_2 \sim \mathcal{N}(\mu_2, \mathbf{I}_d)$ with yields the bound for $n \geqslant \frac{k \log(2) + \log(2\delta)}{2 \cdot 2}$

unknown μ_1, μ_2 , we wish to classify them correctly.

Distance bound for same Gaussian: If x_1, x_2 are from the same distribution, $\frac{\mathbf{x}_1-\mathbf{x}_2}{\sqrt{2}}\sim\mathcal{N}(\mathbf{0},\mathbf{I}_d)$, we use the Annulus Theorem to bound their pairwise distance:

$$\mathbb{P}(\|\mathbf{x}_1 - \mathbf{x}_2\|_2 \le \sqrt{2}(\sqrt{d} + t)) \ge 1 - e^{-t^2/8}$$

• Separation of different Gaussians: If $\mathbf{x}_1 \sim \mathcal{N}(\mu_1, I)$ and $\mathbf{x}_2 \sim \mathcal{N}(\mu_2, I)$, define:

$$\mathbf{z} = \frac{\mathbf{x}_1 - \mathbf{x}_2 - (\mu_1 - \mu_2)}{\sqrt{2}} \sim \mathcal{N}(0, I).$$

Then, $\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2 = \|\mathbf{z}\|_2^2 + \Delta^2 + 2(\mathbf{x}_1 - \mathbf{x}_2)^\top (\mu_1 - \mu_2)$. Using the Gaussian Annulus Theorem and concentration bounds on $(\mathbf{x}_1 - \mathbf{x}_2)^{\top} (\mu_1 - \mu_2)$, we conclude

$$\mathbb{P}(\|\mathbf{x}_1 - \mathbf{x}_2\|_2 \geqslant \sqrt{2}(\sqrt{d} + t))$$

is high when $\|\mu_1 - \mu_2\|_2 = \Delta \gtrsim d^{1/4} \sqrt{\log(n/\delta)}$.

• Union bound: We apply Union bound on n points to show the property extends pairwise to any n points.

Algorithm: Pick a reference vector, assign all within $\sqrt{2}(\sqrt{d}+t)$ to one cluster, others to the second.

Total Variation Distance

Given observations from $\mathbf{p} = (p_1, \dots, p_k)$, we measure the closesness of an estimate $\hat{\mathbf{p}} = (\hat{p}_1, \dots, \hat{p}_k)$:

$$d_{\mathsf{TV}}(\hat{\mathbf{p}}, \mathbf{p}) = \max_{S \subseteq \{1, 2, \dots, k\}} \sum_{i \in S} (p_i - \hat{p}_i)$$

Break it down to positive and negative terms:

$$\sum |p_i - \hat{p}_i| - \sum |\hat{p}_i - p_i|$$

This value is maximal when $p_i^{i:p_i<\hat{p}_i}$. Since positive and negative sums are equal in magnitude,

$$\max_{S\subseteq\{1,2,\dots,k\}}\sum_{i\in S}(p_i-\hat{p}_i)=\frac{1}{2}\sum_{i=1}^k|p_i-\hat{p}_i|$$
 Estimator: $X_i:i=1,2,\dots,n$, we assign a Bernoulli

random variable for each class where $\hat{p}_i = \frac{\sum_{j=1}^n \mathbb{I}(X_j = i)}{n}$

$$d_{\mathsf{TV}}(\hat{\mathbf{p}}, \mathbf{p}) = \max_{S \subseteq \{1, 2, \dots, k\}} \sum_{i \in S} (p_i - \hat{p}_i)$$
$$= \max_{S \subseteq \{1, 2, \dots, k\}} \sum_{i \in S} \frac{\mathbb{I}(X_j = i)}{n} - \sum_{i \in S} p_i$$

By linearity of expectation, $\mathbb{E}\left[\sum_{i \in S} \frac{\mathbb{I}(X_j = i)}{n}\right] = \sum_{i \in S} p_i$.

This means $\sum_{i \in S} \frac{\mathbb{I}(X_j = i)}{n}$ is a random variable with mean $\sum_{i \in S} p_i$ and range [0,1]. Applying Hoeffding's bound,

$$\mathbb{P}\left(\left|\sum_{i \in S} \frac{\mathbb{I}(X_j = i)}{n} - \sum_{i \in S} p_i\right| \geqslant \epsilon\right) \leqslant 2e^{-2\epsilon^2 n}$$

$$\mathbb{P}(|d_{\mathsf{TV}}(\hat{\mathbf{p}}, \mathbf{p})| \le \epsilon) \le 2^k 2e^{-2\epsilon^2 n}$$
 (no. of S)

 2^k is the number of possible S. Hence, $2^k 2e^{-2\epsilon^2 n} \leqslant \delta$

Optimization

Consider a function $f: \mathbb{R}^d \to \mathbb{R}$ which we want to optimize wrt to its input $\mathbf{x}: \hat{\mathbf{x}} = \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$.

Derivative test

Gradient the first derivative $\nabla f(\mathbf{w})$ is defined by

$$\begin{bmatrix} \frac{\partial f}{\partial w_1}(\mathbf{w}) & \frac{\partial f}{\partial w_2}(\mathbf{w}) & \cdots & \frac{\partial f}{\partial w_d}(\mathbf{w}) \end{bmatrix}^\mathsf{T}$$

Hessian the second derivative $abla^2 f(\mathbf{w})$ is defined by

$$\begin{bmatrix} \frac{\partial^2 f}{\partial w_1^2}(\mathbf{w}) & \frac{\partial^2 f}{\partial w_1 \partial w_2}(\mathbf{w}) & \cdots & \frac{\partial^2 f}{\partial w_1 \partial w_d}(\mathbf{w}) \\ \frac{\partial^2 f}{\partial w_2 \partial w_1}(\mathbf{w}) & \frac{\partial^2 f}{\partial w_2^2}(\mathbf{w}) & \cdots & \frac{\partial^2 f}{\partial w_2 \partial w_d}(\mathbf{w}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial w_d \partial w_1}(\mathbf{w}) & \frac{\partial^2 f}{\partial w_d \partial w_2}(\mathbf{w}) & \cdots & \frac{\partial^2 f}{\partial w_d^2}(\mathbf{w}) \end{bmatrix}$$

Local min: \mathbf{x}^* s.t. for some neighborhood around \mathbf{x}^* , $f(\mathbf{x}) \geqslant f(\mathbf{x}^*)$ for all \mathbf{x} from the neighborhood

Global min: \mathbf{x}^* s.t. $\forall \mathbf{x} \in \mathbb{R}^d, f(\mathbf{x}) \geqslant f(\mathbf{x}^*)$

Stationary points: ${\bf x}$ s.t. $\nabla f({\bf x})={\bf 0}.$ It can either be a local max, min, or saddle point.

Conditions for local min: On top of $\nabla f(\mathbf{x}) = \mathbf{0}$:

- (necessary) $\mathbf{v}^\mathsf{T} \nabla^2 f(\mathbf{x}) \mathbf{v} \geqslant 0$, $\forall \mathbf{v} \in \mathbb{R}^d$
- (sufficient) $\mathbf{v}^\mathsf{T} \nabla^2 f(\mathbf{x}) \mathbf{v} > 0$, $\forall \mathbf{v} \in \mathbb{R}^d \{\mathbf{0}\}$

Alternatively, the entries of $\nabla^2 f(\mathbf{x})$ must be $\geqslant 0$

Convexity

 \overline{f} is convex if for any $\mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^d$ and $\alpha \in (0,1)$

$$f(\alpha \mathbf{w}_1 + (1 - \alpha)\mathbf{w}_2) \leq \alpha f(\mathbf{w}_1) + (1 - \alpha)f(\mathbf{w}_2)$$

If f is differentiable, then

- Once: $f(\mathbf{w}_1) \geqslant f(\mathbf{w}_2) + \nabla f(\mathbf{w}_2)^{\top} (\mathbf{w}_1 \mathbf{w}_2)$
- $\bullet \;\; {\sf Twice} \colon \nabla^2 f(\mathbf{x})$ is positive semi-definite everywhere.

 $\label{eq:convex} \textbf{Jensen's inequality} \ \text{if} \ f \ \text{is convex, for any distribution} \ D$

$$f(\mathbb{E}_{\mathbf{w} \sim D}[\mathbf{w}]) \leqslant \mathbb{E}_{\mathbf{w} \sim D}[f(\mathbf{w})]$$

$$\begin{split} & \text{Lipchitz smooth } \|\nabla f(\mathbf{w}_1) - \nabla f(\mathbf{w}_2)\|_2 \leqslant L\|\mathbf{w}_1 - \mathbf{w}_2\|_2. \\ & \text{All } L - \text{smooth function must satisfy } f(\mathbf{w}_1) \leqslant f(\mathbf{w}_2) + \\ & \nabla f(\mathbf{w}_2)^\top (\mathbf{w}_1 - \mathbf{w}_2) + \frac{L}{2}\|\mathbf{w}_1 - \mathbf{w}_2\|_2^2 \end{split}$$