A Broader Picture of Random-walk Based Graph Embedding KDD'21

Zexi Huang¹, Arlei Silva², Ambuj Singh¹

¹Department of Computer Science, University of California, Santa Barbara

²Department of Computer Science, Rice University

Most Popular

Downloaded Cited

August 2016

XGBoost: A Scalable Tree Boosting System

KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on

Tiangi Chen,

Carlos Guestrin

Cited 4,504 times

August 2016 node2vec: Scalable Feature Learning for Networks

KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on

Aditva Grover.

A Jure Leskovec

Cited 2,155 times

August 2003

Maximizing the spread of influence through a social network

KDD '03: Proceedings of the ninth ACM SIGKDD international conference on

David Kempe, 🚳 Jon Kleinberg,

🌇 Éva Tardos

Cited 3,740 times

clickthrough data

July 2002 Optimizing search engines using

KDD '02: Proceedings of the eighth ACM SIGKDD international conference on

Thorsten Joachims

Cited 2,021 times

August 2004

Mining and summarizing customer reviews

KDD '04: Proceedings of the tenth ACM SIGKDD international conference on

A Minqing Hu, Bing Liu

Cited 2,859 times

August 2008 Factorization meets the

> collaborative filtering model KDD '08: Proceedings of the 14th ACM

neighborhood: a multifaceted

SIGKDD international conference on...

Yehuda Koren

Cited 1,804 times

DeepWalk: online learning of social representations

> KDD '14: Proceedings of the 20th ACM SIGKDD international conference on

Bryan Perozzi, Rami Al-Rfou,

Steven Skiena

Cited 2,244 times

August 2016

"Why Should I Trust You?": Explaining the Predictions of Any Classifier

KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on...

Marco Tulio Ribeiro,

Sameer Singh, + 1

Cited 1,698 times

Research papers

- ► [PARS14] DeepWalk: online learning of social representations
- ► [GL16] node2vec: scalable feature learning for networks
- ... (with many more items omitted)
- ► [CM20] InfiniteWalk: deep network embeddings as ...
- ► [ZLHK21] Node proximity is all you need: ...

Research papers

- ► [PARS14] DeepWalk: online learning of social representations
- ► [GL16] node2vec: scalable feature learning for networks
- ... (with many more items omitted)
- ► [CM20] InfiniteWalk: deep network embeddings as ...
- ► [ZLHK21] Node proximity is all you need: ...

Surveys

- ► [HYL17] Representation learning on graphs: methods and applications
- **.**..
- ► [CAEHP+20] Machine learning on graphs: a model and comprehensive taxonomy

Research papers

- ► [PARS14] DeepWalk: online learning of social representations
- ► [GL16] node2vec: scalable feature learning for networks
- ... (with many more items omitted)
- ► [CM20] InfiniteWalk: deep network embeddings as ...
- ► [ZLHK21] Node proximity is all you need: ...

Surveys

- ► [HYL17] Representation learning on graphs: methods and applications
- **.**.
- ► [CAEHP+20] Machine learning on graphs: a model and comprehensive taxonomy

Difficult to compare existing methods and to design novel ones

Question: link prediction

Question: link prediction

(a) Dot product [OCP+16, WCZ16, ZCW+18]

Question: link prediction

(a) Dot product [OCP+16, WCZ16, ZCW+18]

(b) Classification based on combined embeddings [GL16, NLR+18, JDE+20]

[GL16. NLR+18. JDE+20]

Question: link prediction

How should embeddings be used for link prediction?

[OCP+16, WCZ16, ZCW+18]

Question: multiscale

(a) Random-walks capture multiple structural scales [DYB10]

Question: multiscale

(a) Random-walks capture multiple structural scales [DYB10]

Random-walk scale

(b) Embedding performance [GL16] insensitve to random-walk scales

Question: multiscale

(a) Random-walks capture multiple structural scales [DYB10]

Natidotti-waik scale

(b) Embedding performance [GL16] insensitve to random-walk scales

How do embeddings capture different structural scales?

random-walk process + similarity metric + embedding algorithm

random-walk process similarity metric embedding algorithm

DeepWalk standard PMI sampling

random-walk process	similarity metric	embedding algorithm
---------------------	-------------------	---------------------

DeepWalk standard PMI sampling

node2vec biased PMI sampling

	random-walk process	similarity metric	embedding algorithm
DeepWalk	standard	PMI	sampling
node2vec	biased	PMI	sampling
Multiscale	standard	autocovariance	factorization
•••			

Random-walk process

M: transition matrix

 π,Π : stationary distribution

Random-walk process

M: transition matrix

 π,Π : stationary distribution

PMI¹:
$$R = \log(\Pi M^{\tau}) - \log(\pi \pi^{T})$$

¹[LG14] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurIPS'14.

$$\mathsf{PMI}^1:\ R = \log(\Pi M^\tau) - \log(\pi \pi^T) \quad \text{ Autocovariance}^2:\ R = \Pi M^\tau - \pi \pi^T$$

¹[LG14] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurIPS'14.

²[DYB10] Delvenne, Yalikari, and Barahona. Stability of graph communities across time scales. PNAS'10.

$$\mathsf{PMI}^1 \colon \, R = \log(\Pi M^\tau) - \log(\pi \pi^T) \quad \, \mathsf{Autocovariance}^2 \colon \, R = \Pi M^\tau - \pi \pi^T$$

¹[LG14] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurIPS'14.

²[DYB10] Delvenne, Yalikari, and Barahona. Stability of graph communities across time scales. PNAS'10.

PMI¹:
$$R = \log(\Pi M^{\tau}) - \log(\pi \pi^T)$$
 Autocovariance²: $R = \Pi M^{\tau} - \pi \pi^T$

Method

¹[LG14] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurIPS'14.

²[DYB10] Delvenne, Yalikari, and Barahona. Stability of graph communities across time scales. PNAS'10.

$$\mathsf{PMI}^1\colon R = \log(\Pi M^\tau) - \log(\pi \pi^T) \qquad \mathsf{Autocovariance}^2\colon R = \Pi M^\tau - \pi \pi^T$$

$$\mathsf{Random\text{-}walk\ based\ embedding\ methods}$$

$$\mathsf{Standard} \qquad \mathsf{Non\text{-}standard}$$

$$\mathsf{Non\text{-}standard}$$

$$\mathsf{PMI} \qquad \mathsf{Autocovariance}$$

$$\mathsf{DeepWalk\ LINE} \qquad \mathsf{NetMF\ NetSMF} \qquad \mathsf{Multiscale} \qquad \mathsf{node2vec\ APP} \qquad \mathsf{NetMF\ NERD}$$

$$\mathsf{NetMF\ NetSMF} \qquad \mathsf{NetMF\ NERD}$$

 $^{^{1}}$ [LG14] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurIPS'14.

 $^{^2}$ [DYB10] Delvenne et al. Stability of graph communities across time scales. PNAS'10.

Embedding algorithm

Explicit: Factorization (SVD)
$$\min \|UU^T - R\|_F^2$$

Implicit: Sampling (SGD)
$$\max \sum_{u,v} \log \Pr((u,v) \in \mathcal{D} | \mathbf{u}_u, \mathbf{v}_v)$$

Embedding algorithm

Explicit: Factorization (SVD)
$$\min ||UU^T - R||_F^2$$

Implicit: Sampling (SGD)
$$\max \sum_{u,v} \log \Pr((u,v) \in \mathcal{D} | \mathbf{u}_u, \mathbf{v}_v)$$

Embedding algorithm

Explicit: Factorization (SVD)
$$\min ||UU^T - R||_F^2$$

Implicit: Sampling (SGD)
$$\max \sum_{u,v} \log \Pr((u,v) \in \mathcal{D} | \mathbf{u}_u, \mathbf{v}_v)$$

Datasets

	$ \mathcal{V} $	$ \mathcal{E} $	labels
BLOGCATALOG	10,312	333,983	interests
Airport	3,158	18,606	countries/continents
Wiki-words	4,777	92,157	tags
PoliticalBlogs	1,222	16,717	ideologies

Downstream tasks

- Node classification (Micro/Macro-F1)
- Link prediction (precision@k)
- Community detection (NMI)

Embedding dimension = 128

Comparing similarity metrics: node classification

PMI:
$$R = \log(\Pi M^{\tau}) - \log(\pi \pi^T)$$
 Autocovariance: $R = \Pi M^{\tau} - \pi \pi^T$

Figure: PMI consistently outperforms autocovariance in node classification.

Comparing similarity metrics: link prediction

PMI:
$$R = \log(\Pi M^{\tau}) - \log(\pi \pi^T)$$
 Autocovariance: $R = \Pi M^{\tau} - \pi \pi^T$

Figure: Autocovariance with dot product ranking consistently outperforms PMI (with either ranking scheme) in link prediction.

predicted degree \propto embedding norm $\|\mathbf{u}\|$

 $\text{predicted degree} \propto \text{embedding norm } \|\mathbf{u}\| \propto \begin{cases} \text{actual degree} & \text{for autocov.} \\ \text{constant} & \text{for PMI} \end{cases}$

 $\text{predicted degree} \propto \text{embedding norm } \|\mathbf{u}\| \propto \begin{cases} \text{actual degree} & \text{for autocov.} \\ \text{constant} & \text{for PMI} \end{cases}$

Autocovariance captures heterogeneous degree distribution in graphs!

$$\text{predicted degree} \propto \text{embedding norm } \|\mathbf{u}\| \propto \begin{cases} \text{actual degree} & \text{for autocov.} \\ \text{constant} & \text{for PMI} \end{cases}$$

Autocovariance captures heterogeneous degree distribution in graphs!

Figure: Autocovariance embedding norms correlate with actual degrees, but not PMI.

 $\text{predicted degree} \propto \text{embedding norm } \|\mathbf{u}\| \propto \begin{cases} \text{actual degree} & \text{for autocov.} \\ \text{constant} & \text{for PMI} \end{cases}$

(b) Autocovariance

Figure: Autocovariance predicts more edges connecting to the hubs than PMI.

Multiscale

PMI:
$$R = \log(\Pi M^{\tau}) - \log(\pi \pi^{T})$$
 Autocovariance: $R = \Pi M^{\tau} - \pi \pi^{T}$

Multiscale

PMI:
$$\widetilde{R} = \log(\Pi_{\tau}^{\frac{1}{\tau}} \sum_{t=1}^{\tau} M^t) - \log(\pi \pi^T)$$

Autocovariance:
$$R = \Pi M^{\tau} - \pi \pi^{T}$$

Figure: Node classification performance for PMI can be improved by smooth-averaging across multiple Markov times.

Multiscale

PMI:
$$\widetilde{R} = \log(\prod_{\tau}^{\frac{1}{\tau}} \sum_{t=1}^{\tau} M^t) - \log(\pi \pi^T)$$

Autocovariance: $R = \Pi M^{\tau} - \pi \pi^{T}$

Figure: Node classification performance for PMI can be improved by smooth-averaging across multiple Markov times.

Figure: Prediction of edges of specific structural scales can be improved with different Markov times for autocovariance.

Problems:

- 1. How can one compare existing methods and to advance the SOTA?
- 2. How should embeddings be used for link prediction?
- 3. How do embeddings capture different structural scales?

Contributions:

- 1. A unified view of different processes, similarities, and algorithms.
- 2. Autocovariance embedding is significantly better for link prediction.
- 3. Ways to exploit multiscale similarity for optimized performance.

References I

[CAEHP+20] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine learning on graphs: A model and comprehensive taxonomy. arXiv:2005.03675, 2020.

[CM20] Sudhanshu Chanpuriya and Cameron Musco.

Infinitewalk: Deep network embeddings as laplacian embeddings with a nonlinearity.

In SIGKDD, 2020.

[DYB10] J-C Delvenne, Sophia N Yaliraki, and Mauricio Barahona.

Stability of graph communities across time scales.

PNAS, 107(29):12755-12760, 2010.

[GL16] Aditya Grover and Jure Leskovec.

node2vec: Scalable feature learning for networks.

In SIGKDD, 2016.

[HYL17] William L Hamilton, Rex Ying, and Jure Leskovec.

Representation learning on graphs: Methods and applications.

arXiv:1709.05584, 2017.

References II

[JDE+20] Amin Javari, Tyler Derr, Pouya Esmailian, Jiliang Tang, and Kevin Chen-Chuan Chang.

Rose: Role-based signed network embedding.

In WebConf. 2020.

[LG14] Omer Levy and Yoav Goldberg.

Neural word embedding as implicit matrix factorization.

In NeurIPS, 2014.

[NLR+18] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul

Kim.

Continuous-time dynamic network embeddings.

In WebConf. 2018.

[OCP+16] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu.

Asymmetric transitivity preserving graph embedding.

In SIGKDD, 2016.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.

Deepwalk: Online learning of social representations.

In SIGKDD, 2014.

References III

[WCZ16] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding.

In SIGKDD, 2016.

[ZCW⁺18] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu.

Arbitrary-order proximity preserved network embedding.

In SIGKDD, 2018.

[ZLHK21] Jing Zhu, Xingyu Lu, Mark Heimann, and Danai Koutra.

Node proximity is all you need: Unified structural and positional node and graph embedding.

In SDM, 2021.