Выч мат 3

Калиничев Игорь

20 октября 2021 г.

1 4.1

<u>III.4.1.</u> (В.С. Рябенький) Предложить алгоритм проведения на плоскости окружности через четыре и более точек методом наименьших квадратов.

В терминах МНК мы хотим приблизить функцию на плоскости F(x,y)=0 функцией вида $F(x,y)=(a-x)^2+(b-y)^2-R^2$. Соотвественно для этого нам нужно минимизировать функционал

$$F = \sum_{i=1}^{n} (F(x_i, y_i, a, b, R) - 0)^2 = \sum_{i=1}^{n} ((a - x_i)^2 + (b - y_i)^2 - R^2)^2 \to min$$

Соотвественно значения a, b, R находятся методом наименьших квадратов и по ним строится оптимальная окружность.

2 *

- 1	19	4.1	×	4.5	**	4.6	5.11д	5.13-1.3		
	20	4.2	*	4.5	**	4.6	5.11e	5.12аб		
				$\kappa = 0$	1	1 4	/	Получить из	Этой	
форму	лы следс	твия для	действи	тельной	и мни	мой час	стей.			
** Πc $x_k, k =$	** Пользуясь результатом задачи *, доказать, что если набор узлов x_k , $k=0,1,,n$ определяется нулями многочлена Чебышева $n+1$ порядка:									
						$\kappa = 0$		$=\frac{n+1}{2}\delta_{ln}$, T.e.	
многоч	лены Чеб	бышева о	ртогона	альны на	нулях	к более	старших мі	ногочленов.		

Воспользуемся формулой суммы геом прогрессии

$$\sum_{k=0}^{N-1} exp(\frac{i2\pi Lk}{N}) = //L \neq mN// = \frac{exp(\frac{i2\pi LN}{N}) - 1}{exp(\frac{i2\pi L}{N}) - 1} = \frac{exp(i2\pi L) - 1}{exp(\frac{i2\pi L}{N}) - 1} = //L \in \mathbf{N}// = 0$$

Если сумма в знаменателе зануляется, значит N делит L, и все слагаемые в сумме просто равны 0, так что равенство все равно выполняется. Таким образом:

$$\sum_{k=0}^{N-1} exp(i(\frac{2\pi Lk}{N} + \phi)) = exp(i\phi) \sum_{k=0}^{N-1} exp(i(\frac{2\pi Lk}{N})) = 0$$

Приравняв действительную и комплексную часть к 0 получим следствия:

$$\sum_{k=0}^{N-1} \sin(\frac{2\pi Lk}{N} + \phi) = \sum_{k=0}^{N-1} \cos(\frac{2\pi Lk}{N} + \phi) = 0$$

$3 \quad 4.5$

<u>III.4.5.</u> Функцию $y = \sqrt{1 + \sin^2(x-1)}$ решено приближенно заменить тригонометрическим полиномом

 $P_2(x) = a + a_1 \sin x + b_1 \cos x + a_2 \sin 2x + b_2 \cos 2x$, который наименее в смысле метода наименьших квадратов удаляется от таблицы значений этой функции, вычисленной в некоторых десяти заданных точках x_0, x_1, \dots, x_9 .

- а) Опишите алгоритм для отыскания коэффициентов a, a_1, a_2, b_1, b_2 .
- б) какие (существенные!) упрощения можно сделать в случае, если $x_k = k \cdot 2\pi/10, k = 0, 1, ..., 9.$

а) Нужно минимизировать такой функционал:

$$F = \sum_{i=0}^{9} (a + a_1 \sin(x_i) + b_1 \cos(x_i) + a_2 \sin(2x_i) + b_2 \cos(2x_i) - \sqrt{1 + \sin^2(x_i - 1)})^2 \to \min$$

Для чего достаточно просто найти его частные производные по параметрам, приравнять их у нулю и решить систему уравнений.

б) можно раскрыть квадрат и пользуясь тригонометрическими формулами и формулой из * сразу получить

$$\sum_{i=0}^{9} \cos(x_i) \sin(x_i) = \sum_{i=0}^{9} \cos(x_i) \sin(2x_i) = \sum_{i=0}^{9} \cos(2x_i) \sin(x_i) = \sum_{i=0}^{9} \cos(2x_i) \sin(2x_i) = 0$$

$$\sum_{i=0}^{9} \cos^2(x_i) = \sum_{i=0}^{9} \cos^2(2x_i) = \sum_{i=0}^{9} \sin^2(x_i) = \sum_{i=0}^{9} \sin^2(2x_i) = 5$$

Учитывая все это наш функционал преобразится в

$$F = \sum_{i=0}^{9} (1 + \sin^2(x_i - 1)) - 2\sum_{i=0}^{9} (a + a_1 \sin(x_i) + b_1 \cos(x_i) + a_2 \sin(2x_i) + b_2 \cos(2x_i)) \sqrt{1 + \sin^2(x_i - 1)} + 10a^2 + 5(a_1^2 + b_1^2 + a_2^2 + b_2^2)$$

то есть по факту нужно минимизировать

$$F^* = 10a^2 + 5(a_1^2 + b_1^2 + a_2^2 + b_2^2) - 2\sum_{i=0}^{9} (a + a_1\sin(x_i) + b_1\cos(x_i) + a_2\sin(2x_i) + b_2\cos(2x_i))\sqrt{1 + \sin^2(x_i - 1)}$$

что проще минимизации начального функционала

4 **

19	4.1	×	4.5	**	4.6	5.11д	5.13-1.3
20	4.2	*	4.5	**	4.6	5.11e	5.12a6

* Доказать, что
$$\forall \phi, \forall L \in N: \sum_{k=0}^{N-1} \exp \left(i \left(\frac{2\pi Lk}{N} + \phi \right) \right) = 0$$
. Получить из этой

формулы следствия для действительной и мнимой частей.

** Пользуясь результатом задачи *, доказать, что если набор узлов x_k , k=0,1,...,n определяется нулями многочлена Чебышева n+1 порядка:

$$T_{n+1}(x_k) = 0, k = 0, 1, ..., n$$
, to $\forall l, m \le n$: $\sum_{k=0}^{n} T_l(x_k) T_m(x_k) = \frac{n+1}{2} \delta_{lm}$, t.e.

многочлены Чебышева ортогональны на нулях более старших многочленов.

нули многочлена Чебышева T_n равны $x_k=\cos\left(\pi\frac{1+2k}{2n}\right)$ кроме того известно $T_l(\cos(x))=\cos(lx).$ Таким образом

$$\sum_{k=0}^{n-1} T_l(x_k) T_m(x_k) = \sum_{k=0}^{n-1} \cos\left(\frac{(\pi + 2\pi k)l}{2n}\right) \cos\left(\frac{(\pi + 2\pi k)m}{2n}\right) =$$

$$= \frac{1}{2} \sum_{k=0}^{n-1} \cos \left(\frac{(\pi + 2\pi k)(l+m)}{2n} \right) + \cos \left(\frac{(\pi + 2\pi k)(l-m)}{2n} \right)$$

По следствию в *, эта сумма не равна нулю только при условии l=m и тогда она равна:

$$\sum_{k=0}^{n-1} T_l(x_k) T_l(x_k) = \frac{1}{2} \sum_{k=0}^{n-1} 1 = \frac{n}{2}$$

То есть

$$\sum_{k=0}^{n-1} T_l(x_k) T_m(x_k) = \frac{n}{2} \delta_{ml}$$

5 4.6

шёва $T_{n+1}(x)$, и записаны в виде следующей таблицы.

X	X_0	x_1	 x_{n-1}	X_n
у	Y_0	y_1	 y_{n-1}	y_n

Среди многочленов степени не выше заданного k $0 \le k \le n$ указать тот многочлен $P_k(x)$, который наилучшим (в смысле метода наименьших квадратов) образом приближает заданную функцию.

Указание. Искать $P_k(x)$ в виде $P_k(x) = \sum_{j=0}^k C_j T_j(x)$ и воспользоваться

тем, что многочлен Чебышёва: $T_k(x)$, k = 0, 1, ..., n+1 образуют ортонормированную систему векторов на множестве точек $x_0, x_1, ..., x_n$.

а) осуществить вычисления в случае n = 3

х	x_0	x_1	x_2	<i>x</i> ₃
у	2	1	3	0

Многочлены Чебышева степени не выше k образуют ортогональный базис в пространстве многочленов степени не выше k со стандартным скалярным произведением для МНК с заданными точками x_i (следствие **), соотвественно чтобы минимизировать норму $||y(x) - \sum_{j=0}^k C_j T_j(x)||$ необходимо и достаточно взять $C_j = \frac{(y,T_j)}{(T_j,T_j)}$ в условии написано T_j ортонормированы и видимо я неправ, но казалось бы из ** должно следовать $||T_j||^2 = \frac{n+1}{2}$ и я буду так считать.

а) В соответсвии с вышесказанным осталось только посчитать:

$$C_0 = \frac{2}{n+1} \sum_{k=0}^{n} y_k T_0(x_k) = 3$$

$$C_1 = \frac{2}{n+1} \sum_{k=0}^{n} y_k T_1(x_k) = -0.5411$$

$$C_2 = \frac{2}{n+1} \sum_{k=0}^{n} y_k T_2(x_k) = -0.7071$$

$$C_3 = \frac{2}{n+1} \sum_{k=0}^{n} y_k T_3(x_k) = -1.306565$$

$6 \quad 5.11r$

<u>III.5.11.</u> Постройте наилучшую среднеквадратическую линейную аппроксимацию для функции

a)
$$f(x) = x^{1/2}$$
 при $x \in [0; 1];$

б)
$$f(x) = 1/x$$
 при $x \in [1; 2];$

в)
$$f(x) = \ln (1 + x)$$
 при $x \in [0; 1];$

$$\Gamma$$
) $f(x) = \sin x$ при $x \in [0; \pi];$

д)
$$f(x) = x^2$$
 при $x \in [0; 1];$

$$e) f(x) = e^x$$
 при $x \in [0; 1];$

ж)
$$f(x) = \sin x$$
 при $x \in [0; \pi/2]$.

г) $f(x)=\sin x$ $x\in [0,\pi]$ Берем линейный функционал $F=a+bx=a\phi_0+b\phi_1$ В соотвествии с теорией нужно посчитать скалярные произведения:

$$(\phi_0, \phi_1) = (\phi_1, \phi_0) = \int_0^{\pi} x dx = \frac{\pi^2}{2}$$
$$(\phi_0, \phi_0) = \int_0^{\pi} 1^2 dx = \pi$$

$$(\phi_1, \phi_1) = \int_0^\pi x^2 dx = \frac{\pi^3}{3}$$

$$(\phi_1, \sin x) = \int_0^{\pi} x \sin x dx = \pi$$

$$(\phi_0, \sin x) = \int_0^{\pi} \sin x dx = 2$$

И решить систему линейных уравнений с матрицей Грама:

$$\begin{pmatrix} \pi & \frac{\pi^2}{2} \\ \frac{\pi^2}{2} & \frac{\pi^3}{3} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2 \\ \pi \end{pmatrix}$$

от куда
$$a=\frac{2}{\pi},\,b=0.$$
 Таким образом

$$F=\frac{2}{\pi}$$

7 5.13-1,2

<u>III.5.13.</u> В следующей таблице представлены уровни смертности (число смертей на сто тысяч человек) для возрастов 20–45 лет в Англии начала столетия:

20	21	22	23	24	4	25		26		27	7	28
431	409	429	42	2 5.	30	50	5	45	9	49	9	526
				,								
29	30	31	32	3.	3	34		35		36	5	37
563	587	595	64	7 60	669		746		0	77	78	828
38	39	40	41	42	43		44		45			
846	836	916	956	1014	107	6	113	4	1024	ŀ		

- 1) Нарисуйте прямую метода наименьших квадратов для аппроксимации этих данных и исходные данные. Хорошо ли прямая аппроксимирует данные?
- 2) График исходных данных позволяет предположить, что для возрастных интервалов [20, 28], [28, 39] и [39, 45] данные можно приблизить различными прямыми. Методом наименьших квадратов постройте приближения на трех этих отрезках отдельно.

Не знаю насколько это законно, но в питоне задача сводится к 4 раза применить np.polyfyt 1) y=28.72x-234.16

2)
$$y_1 = 13.216x + 150.577$$
 $y_2 = 31.381x - 352.850$ $y_3 = 40x - 686.28$

Еще, как человек с 5 семестрами лаб, не могу не спросить зачем так извращаться, и почему вместо 3 прямых не приблизить параболой:

