MODEL EVALUATION AND SELECTION

- Evaluation metrics: How can we measure accuracy? Other metrics to consider?
- Use **validation test set** of class-labeled tuples instead of training set when assessing accuracy
- Some of the measures are:
 - Accuracy suitable when class tuples are evenly distributed
 - Precision suitable when class tuples are not evenly distributed
 - Recall Sensitivity

CLASSIFIER EVALUATION METRICS: CONFUSION MATRIX

Confusion Matrix:

Actual class\Predicted class	Yes	No	
Yes	True Positives (TP)	False Negatives (FN)	
No	False Positives (FP)	True Negatives (TN)	

Actual class\Predicted class	C ₁	¬ C ₁	
C_1	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

- Given m classes, an entry, $CM_{i,j}$ in a **confusion matrix** indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

CLASSIFIER EVALUATION METRICS: CONFUSION MATRIX

- True Positives
 - Postive tuples correctly classified as positive.
- True Negatives:
 - Negative tuples correctly classified as negative.
- False Positives:
 - Negative tuples incorrectly classified as positives.
- False Negatives:
 - Positive tuples incorrectly classified as negatives

CLASSIFIER EVALUATION METRICS: CONFUSION MATRIX

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁	
C_1	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	1	0	
buy_computer = no	1	998	
Total			1000

- Given m classes, an entry, $CM_{i,j}$ in a **confusion matrix** indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

ACCURACY, ERROR RATE, SENSITIVITY AND SPECIFICITY

A\P	С	¬C	
С	TP	FN	P
¬C	FP	TN	N
	P ′	N'	All

• Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

Accuracy = (TP + TN)/All

 \circ Error rate: 1 - accuracy, or

Error rate = (FP + FN)/All

CLASSIFIER EVALUATION METRICS: PRECISION AND RECALL, AND F-MEASURES

• **Precision**: exactness – what % of tuples that the classifier labeled as positive are actually positive

$$precision = \frac{TP}{TP + FP}$$

- **Recall:** completeness what % of positive tuples did the classifier label as positive?
- Perfect score is 1.0

$$recall = \frac{TP}{TP + FN}$$

The 2-by-2 confusion matrix

gold standard labels

		gold positive	gold negative		
system output	system positive	true positive	false positive	precision =	$=\frac{\mathrm{tp}}{\mathrm{tp+fp}}$
labels	system negative	false negative	true negative		
		$recall = \frac{tp}{tp+fn}$		accuracy =	tp+tn tp+fp+tn+fi

CONFUSION MATRIX FOR 3 CLASS CLASSIFIATION

		g	old labels		
		urgent	normal	spam	
	urgent	8	10	1	$\mathbf{precision}_{\mathbf{u}} = \frac{8}{8+10+1}$
system output	normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
	spam	3	30	200	precision s= $\frac{200}{3+30+200}$
		recallu =	recalln=	recalls =	
		8	60	200	
		8+5+3	10+60+30	1+50+200	

Macroaveraging and Microaveraging

C	lass 1:	Urgent	Cla	ass 2:	Normal	C	lass 3:	Spam		Poo	led	
	true urgent	true not	,	true normal	true not		true spam	true not		true	true no	
system urgent		11	system normal	60	55	system spam	200	33	system	268	99	
system not	8	340	system not	40	212	system not	51	83	system no	99	635	
precisio	$n = \frac{8}{8+1}$	= .42	precision =	60+5	5 = .52	precision =	200+	$\frac{0}{33} = .86$	microaverage precision	-	68 3+99 =	73
		ma	croaverage	.42+	.52+.86	- 60						

precision

• Macro-average gives equal weight to each class, regardless of the number of instances. Microaveraging, on the other hand, aggregates the counts of true positives, false positives, and false negatives across all classes and then calculates the performance metric based on the total counts.

CLASSIFIER EVALUATION METRICS: PRECISION AND RECALL, AND F-MEASURES

- The F-score is a way of combining the precision and recall of the model, and it is defined as the harmonic mean of the model's precision and recall.
- Inverse relationship between precision & recall
- F measure (F_1 or F-score): harmonic mean of precision and recall,

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

- F_{β} : weighted measure of precision and recall
 - assigns ß times as much weight to recall as to precision

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

CLASSIFIER EVALUATION METRICS: EXAMPLE

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (<i>accuracy</i>)

•
$$Precision = 90/230 = 39.13\%$$

$$Recall = 90/300 = 30.00\%$$