Lecture 5 Information and Entropy

Lecture 5— Contents

A measure for information

Problem statement Formal definition

Entropy of a random variable

Definition
Bounds on entropy

Entropy for random vectors

Joint entropy Conditional entropy Mutual information Words and symbols

Information and entropy for unlimited messages

Information rate
Efficiency of an information source

Lecture 5— Contents

A measure for information Problem statement Formal definition

Entropy of a random variable Definition Bounds on entropy

Entropy for random vectors

Joint entropy Conditional entropy Mutual information Words and symbols

Information and entropy for unlimited messages

Information rate
Efficiency of an information source

A measure for information

Any event from a probability space is partly unexpected (unpredictable). Thus it bears some information.

Formally,

- \blacktriangleright we want to measure how informative an event $A \in \mathcal{F}$ is, in a probability space $(\Omega, \mathcal{F}, P[\cdot])$
- \blacktriangleright we do it by defining a real-valued quantity i(A), named information of A,
- \blacktriangleright the information of A depends only on the probability P [A]

$$i : \mathcal{F} \mapsto \mathbb{R} \quad , \quad i(A) = g(P[A])$$

for a suitable function $g:[0,1]\mapsto \mathbb{R}$.

Go to axiomatic definition >> Skip axiomatic definition

Axiomatic definition of information

We require i(A) and $g(\alpha)$ to satisfy the following axioms

- 1. information is non negative, for all \ensuremath{A}
- 2. the sure event has null information, $i(\Omega)=0$;
- 3. less likely events are more informative:
- 4. A, B independent events $\Rightarrow i(A \cap B) = i(A) + i(B)$

- 1. $g(\alpha) \ge 0$, for all $\alpha \in [0,1]$
- 2. g(1) = 0;
- 3. g is a nonincreasing function in [0,1]
- 4. $g(\alpha\beta) = g(\alpha) + g(\beta)$.

Nicola Laurenti Information Theory 5 / 43

Axiomatic definition of information

The only functions that meet the above are

$$g(\alpha) = \log_b \frac{1}{\alpha} = \log_{1/b} \alpha$$

for $0 < \alpha \le 1$ and the base b > 1

Defining information with a base or another only changes by a multiplicative constant.

It is customary to choose b=2 so that an event with probability $\alpha=1/2$ carries unit information

The unit information is called bit.

Nicola Laurenti Information Theory 6 / 43

Definition of information

Definition

The information of an event A, having P[A] > 0, is given by

$$i(A) = \log_2 \frac{1}{P[A]} = \log_{1/2} P[A]$$
 [bit]

If P[A] = 0 it is **not possible** to define i(A). It is also said that $i(A) = \infty$.

Lecture 5— Contents

A measure for information

Problem statement Formal definition

Entropy of a random variable

Definition
Bounds on entropy

Entropy for random vectors

Joint entropy Conditional entropy Mutual information Words and symbols

Information and entropy for unlimited messages

Efficiency of an information source

Information function of a random variable

Given a discrete rv x with alphabet A_x and PMD $p_x(a)$, the information function of x maps any value $a \in A_x$ into the information carried by x taking the value a

$$i_x : \mathcal{A}_x \mapsto \mathbb{R} \quad , \quad i_x(a) = i(\{x = a\}) = \log_2 \frac{1}{p_x(a)}$$

Once defined i_x , we can apply it to x itself.

The rv $i_x(x)$ is the (random) information carried by x.

Definition of entropy

The mean of $i_x(x)$ represents the average information carried by x

Definition

The entropy H(x) of a discrete rv x is the expectation of its information function

$$H(x) = \operatorname{E}\left[i_x(x)\right]$$

By the fundamental theorem for expectation,

$$H(x) = \sum_{a \in \mathcal{A}_x} p_x(a) i_x(a) = \sum_{a \in \mathcal{A}_x} p_x(a) \log_2 \frac{1}{p_x(a)}$$

H(x) does not depend on the alphabet of x but only on its PMD values.

► Show example

→ Skip example

Nicola Laurenti Information Theory 10 / 43

Entropy calculation

Example (binary variable)

$$x$$
 binary rv with $\mathcal{A}_x=\{a_1,a_2\}$, $p_x(a_1)=p\,,\;p_x(a_2)=1-p$

$$H(x) = p_x(a_1)i_x(a_1) + p_x(a_2)i_x(a_2)$$
$$= p\log_2 \frac{1}{p} + (1-p)\log_2 \frac{1}{(1-p)}$$

$$p=1/2 \quad \Rightarrow \quad H(x)=1 \text{ bit }$$

any unbalancing (p > 1/2 or p < 1/2)decreases H(x)

for
$$x$$
 a.s. constant $(p=0 \text{ or } p=1)$ $H(x)=0.$

Show more examples Skip other examples

Proposition (lower bound)

- 1. If x is a.s. constant, then H(x) = 0.
- 2. Otherwise, H(x) > 0.

Proof.

→ Skip

- 1. $\mathcal{A}_x=\{a_1\}$ and $i_x(a_1)=0$. There is only one term in the sum $H(x)=\sum_{a\in\mathcal{A}_x}p_x(a)i_x(a)$ and it is null.
- 2. For all $a \in \mathcal{A}_x$ we have $0 < p_x(a) < 1$ and $i_x(a) > 0$. All terms in $H(x) = \sum_{a \in \mathcal{A}_x} p_x(a) i_x(a)$ are strictly positive.

Nicola Laurenti Information Theory 12 / 43

Proposition (upper bound)

Let x be a rv with a finite alphabet of M values

- 1. If all $a \in \mathcal{A}_x$ are equally likely with probability $p_x(a) = 1/M$, then $H(x) = \log_2 M$.
- 2. Otherwise, $H(x) < \log_2 M$.

Proof.

1.

$$i_x(a) = \log_2 M$$
 , for all $a \in \mathcal{A}_x$

$$i_x(x)$$
 is a.s. constant, its expectation $H(x) = \log_2 M$

Nicola Laurenti Information Theory 13 / 43

Bounds on entropy values

Proof.

⇒ Skip

2. use Jensen's inequality, with the function $h(z) = \log_2 z$ strictly concave and the rv $z=1/p_x(x)$ not a.s. constant

$$H(x) = E\left[\log_2 \frac{1}{p_x(x)}\right] < \log_2 E\left[\frac{1}{p_x(x)}\right]$$

$$\log_2 \mathbf{E}\left[\frac{1}{p_x(x)}\right] = \log_2 \left(\sum_{a \in \mathcal{A}_x} p_x(a) \frac{1}{p_x(a)}\right) = \log_2 M$$

Nominal information, efficiency and redundancy

If x has an infinite alphabet, there is no upper bound. \triangleright See example For a finite rv x, the upper bound value $\log_2 M$ is called the nominal information. The ratio of entropy to nominal information

$$\eta_x = \frac{H(x)}{\log_2 M} \quad , \quad 0 \le \eta_x \le 1$$

is called efficiency of x.

Its complement $1 - \eta_x$ is called redundancy.

Lecture 5— Contents

A measure for information

Problem statement Formal definition

Entropy of a random variable

Bounds on entropy

Entropy for random vectors

Joint entropy Conditional entropy Mutual information Words and symbols

Information and entropy for unlimited message Information rate

Entropy of a random vector

For a discrete random vector $\boldsymbol{x} = [x_1, \dots, x_n]$ we define information function

$$i_x : \mathcal{A}_x \mapsto \mathbb{R}$$
 , $i_x(a) = i(\{x = a\}) = \log_2 \frac{1}{p_x(a)}$

and entropy

$$H(\boldsymbol{x}) = \mathrm{E}\left[i_{\boldsymbol{x}}(\boldsymbol{x})\right]$$
.

 $H(x) = H(x_1, \dots, x_n)$ is also called the joint entropy of the rvs x_1, \dots, x_n

We want to relate $H(x) = H(x_1, ..., x_n)$ and $H(x_1), ..., H(x_n)$. Start with two variables, x = [x, y].

Proposition (lower bound)

- 1. If y is a.s. a function of x then H(x, y) = H(x).
- 2. Otherwise, H(x,y) > H(x).

Proof.

▶ Skip

1. in this case $i_x(a,b) = i_x(a)$, for all $[a,b] \in \mathcal{A}_x$ and we get

$$H(x,y) = E[i_x(x,y)] = E[i_x(x)] = H(x)$$

Nicola Laurenti Information Theory 18 / 43

Joint and single entropies

Proof.

➡ Skir

2. If y is not a function of x, there exist points $[a,b] \in \mathcal{A}_x$ with $p_x(a,b) < p_x(a)$. For such points $i_x(a,b) > i_x(a)$. For all other points in \mathcal{A}_{x} , $i_{x}(a,b) \geq i_{x}(a)$.

$$\begin{split} H(x,y) &= \sum_{[a,b] \in \mathcal{A}_{\boldsymbol{x}}} p_{\boldsymbol{x}}(a,b) i_{\boldsymbol{x}}(a,b) \\ &> \sum_{[a,b] \in \mathcal{A}_{\boldsymbol{x}}} p_{\boldsymbol{x}}(a,b) i_{\boldsymbol{x}}(a) = \mathrm{E}\left[i_{\boldsymbol{x}}(x)\right] = H(x) \end{split}$$

by interpreting $i_x(x)$ as a function of the rve [x,y].

Joint and single entropies

Proposition (upper bound)

- 1. If x and y are statistically independent, then H(x,y) = H(x) + H(y).
- 2. Otherwise, H(x, y) < H(x) + H(y).

Proof.

1. $\{x = a\}$ and $\{y = b\}$ are statistically independent

$$i_{\boldsymbol{x}}(a,b) = i_x(a) + i_y(b)$$
 , for all $[a,b] \in \mathcal{A}_{\boldsymbol{x}}$

and by the linearity of expectation

$$H(x,y) = E[i_x(x,y)] = E[i_x(x)] + E[i_y(y)] = H(x) + H(y)$$

Nicola Laurenti Information Theory 20 / 43

Proof.

▶ Skip

2. We will show that H(x,y) - H(x) - H(y) < 0. Write it as

$$H(x,y) - H(x) - H(y) = \mathbb{E}\left[i_{\boldsymbol{x}}(x,y) - i_{\boldsymbol{x}}(x) - i_{\boldsymbol{y}}(y)\right]$$
$$= \mathbb{E}\left[\log_2 \frac{p_{\boldsymbol{x}}(x)p_{\boldsymbol{y}}(y)}{p_{\boldsymbol{x}}(x,y)}\right]$$

Since x,y are not independent, the rv $z=\frac{p_x(x)p_y(y)}{p_x(x,y)}$ is not a.s. constant. Apply Jensens' inequality (\log_2 concave)

$$E\left[\log_2 \frac{p_x(x)p_y(y)}{p_x(x,y)}\right] < \log_2 E\left[\frac{p_x(x)p_y(y)}{p_x(x,y)}\right]$$
$$= \log_2 \sum_{[a,b] \in \mathcal{A}_x} p_x(a)p_y(b)$$

Nicola Laurenti Information Theory 21 / 43

Joint and single entropies

Proof (continued).

Since
$$\mathcal{A}_{\boldsymbol{x}} \subset \mathcal{A}_x \times \mathcal{A}_y$$

$$\log_2 \sum_{[a,b] \in \mathcal{A}_x} p_x(a) p_y(b) \le \log_2 \sum_{[a,b] \in \mathcal{A}_x \times \mathcal{A}_y} p_x(a) p_y(b)$$

$$= \log_2 \left(\sum_{a \in \mathcal{A}_x} p_x(a) \right) \left(\sum_{b \in \mathcal{A}_y} p_y(b) \right)$$

$$= \log_2 1 = 0$$

Summary and generalization to n variables

We obtained the bounds for the joint entropy

$$\max \left\{ H(x), H(y) \right\} \quad \leq H(x,y) \leq \quad H(x) + H(y)$$

$$\uparrow \qquad \qquad \uparrow$$
one a function statistically independent

The generalization to n variables gives

$$\max_{i} \{H(x_i)\} \le H(x_1, \dots, x_n) \le \sum_{i=1}^{n} H(x_i)$$

Nicola Laurenti Information Theory 23 / 43

Conditional information and entropy

Starting from a discrete rve x = [x, y] and the conditional statistical description of x given y, we can give the following

Definition

Conditional information of x given y

$$i_{x|y}: \mathcal{A}_{x} \mapsto \mathbb{R} \quad , \quad i_{x|y}(a|b) = \log_2 \frac{1}{p_{x|y}(a|b)}$$

Definition

Conditional entropy of x given y

$$H(x|y) = \mathbb{E}\left[i_{x|y}(x|y)\right]$$
.

Nicola Laurenti Information Theory 24 / 43

Conditional information and entropy

Since $i_{x|y}(x|y)$ is a function of both rvs x and y, the expectation must be taken with respect to their joint statistical description

$$H(x|y) = \sum_{[a,b] \in \mathcal{A}_{x}} p_{x}(a,b) i_{x|y}(a|b) = \sum_{[a,b] \in \mathcal{A}_{x}} p_{x}(a,b) \log_{2} \frac{1}{p_{x|y}(a|b)} .$$

Observe that the conditional PMD is used in the logarithm and the joint PMD in the expectation.

Nicola Laurenti Information Theory 25 / 43

Conditional, joint & single entropies

Proposition

Given a discrete rve x = [x, y], we have

$$i_{x|y}(a|b) = i_{\mathbf{x}}(a,b) - i_{y}(b)$$
 , $H(x|y) = H(x,y) - H(x)$.

Proof.

→ Skip

$$i_{x|y}(a|b) = \log_2 \frac{1}{p_{x|y}(a|b)} = \log_2 \frac{p_y(b)}{p_{xy}(a,b)}$$
$$= \log_2 \frac{1}{p_{xy}(a,b)} - \log_2 \frac{1}{p_y(b)} = i_x(a,b) - i_y(b)$$

Substitute a, b with rvs x, y and take expectations

$$\mathrm{E}\left[i_{x|y}(x|y)\right] = \mathrm{E}\left[i_{x}(x,y)\right] - \mathrm{E}\left[i_{y}(y)\right]$$

Nicola Laurenti Information Theory 26 / 43

Bounds for the conditional entropy

From the bounds for the joint entropy we get

$$\begin{array}{ccc} 0 & \leq H(x|y) \leq & H(x) \\ & \uparrow & \\ \uparrow & \text{statistically} \\ x \text{ a function of } y & \text{independent} \end{array}$$

We can therefore think of H(x|y) as a measure of the average information (uncertainty) carried by x once we know y.

Nicola Laurenti Information Theory 27 / 43

Mutual information

Definition

The mutual information between two rvs x and y is

$$I(x,y) = H(x) + H(y) - H(x,y)$$
.

Properties

- 1. I(x,y) = H(x) H(x|y) is the difference between the a priori uncertainty on x, and the uncertainty on x once we know y.
- 2. I(x,y) = I(y,x) is symmetrical

Bounds

$$\begin{array}{ccc} 0 & \leq I(x,y) \leq & \min \left\{ H(x), H(y) \right\} \\ \uparrow & \uparrow \\ \text{statistically} & \text{one a function} \\ \text{independent} & \text{of the other} \end{array}$$

Calculation Example

Example

$$\begin{split} \mathcal{A}_{[x,y]} &= \left\{ [m,n] \in \mathbb{Z}^2 \,:\, 1 \leq n \leq m \leq 4 \right\} \\ p_{x,y}(m,n) &= \frac{1}{4m} \quad \Rightarrow \quad i_{x,y}(m,n) = \log_2 m + 2 \\ \text{marginal } x : \\ p_x(m) &= \sum_n p_{x,y}(m,n) = \frac{1}{4} \sum_{n=1}^m \frac{1}{m} = \frac{1}{4} \;,\; \forall m \\ &\Rightarrow \quad i_x(m) = 2 \quad, \quad H(x) = 2 \text{ bit} \end{split}$$

conditional, y given x:

$$i_{y|x}(n|m) = i_{x,y}(m,n) - i_x(m) = \log_2 m$$

$$H(y|x) = E[\log_2 x] = \sum_{m=1}^4 \frac{1}{4} \log_2 m \approx 1.15 \text{ bit}$$

joint entropy:
$$H(x,y) = H(x) + H(y|x) \simeq 3.15$$
 bit

marginal
$$y$$
: $p_y(1) = \frac{25}{48}$, $p_y(2) = \frac{13}{48}$, $p_y(3) = \frac{7}{48}$, $p_y(4) = \frac{1}{16}$

$$H(y) = 4 + \frac{15}{16}\log_2 3 - \frac{25}{24}\log_2 5 - \frac{7}{48}\log_2 7 - \frac{13}{48}\log_2 13 \simeq 1.66$$
 bit

conditional,
$$x$$
 given $y{:}\quad H(x|y) = H(x,y) - H(y) \simeq 1.49\,\mathrm{bit}$

mutual information: $I(x,y) = H(x) - H(x|y) \simeq 0.51 \, \mathrm{bit}$

Nicola Laurenti Information Theory 29 / 43

Appendix to Lecture 5

remain to Eccture of

Backup slides

Definition of information: examples

Example

We randomly pick a card out of a regular 52-card pack. The event

$$A = \{ \text{The suit of the extracted card is hearts} \}$$

has probability P[A] = 1/4. Hence its information is i(A) = 2 bit. The event

 $B = \{ \text{The value of the extracted card is 7} \}$

has probability P[B] = 1/13. Hence its information is $i(B) = \log_2 13 \simeq 3.7$ bit.

Example

In a message with iid binary symbols having equally likely values 0 and 1, a 3-symbol string is observed. The event

$$A = \{ \text{The observed string is '010'} \}$$

has probability $P[A]=(1/2)^3=1/8$. Hence, i(A)=3 bit. If, on the contrary, P[0]=3/4 and P[1]=1/4 (not equally likely), we have P[A]=9/64 and $i(A)=6-2\log_23\simeq 2.83$ bit.

Return
 Re

Nicola Laurenti Information Theory 41 / 43

Entropy calculation

Example (ternary variable)

$$\mathcal{A}_x = \{a_1, a_2, a_3\}, \ p_x(a_1) = p, \ p_x(a_2) = q, \ p_x(a_3) = 1 - p - q$$

$$H(x) = p \log_2 \frac{1}{p} + q \log_2 \frac{1}{q} + (1 - p - q) \log_2 \frac{1}{(1 - p - q)}$$

Nicola Laurenti Information Theory 42 / 43

Entropy calculation

Example (geometric rv)

$$A_x = \{0, 1, 2, \ldots\}$$
 , $p_x(k) = (1 - p)p^k$

information of a value $k \in \mathcal{A}_x$

$$i_x(k) = \log_{1/2}(1-p) + k \log_{1/2} p$$

(random) information of x

$$i_x(x) = \log_{1/2}(1-p) + x \log_{1/2} p$$

take expectation with E[x] = p/(1-p)

$$H(x) = \log_{1/2}(1-p) + \frac{p}{1-p}\log_{1/2}p$$

