

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

Année 2018 - 2019

C4 : MODÉLISATION CINÉMATIQUE DES SYSTÈMES COMPOSÉS DE CHAINES DE SOLIDES

TD 10 - Cinématique des solides (C4-5)

15 Janvier 2019

Compétences

- Analyser: Apprécier la pertinence et la validité des résultats:
 - o unités du système international;
 - o homogénéité des grandeurs.
- Modéliser: Proposer un modèle de connaissance et de comportement:
 - Solide indéformable;
 - o référentiel, repère;
 - équivalence solide/référentiel;
 - o vecteur-vitesse angulaire de deux référentiels en mouvement l'un par rapport à l'autre";
- Résoudre : Proposer un modèle de connaissance et de comportement
 - Modélisation plane;
 - o Torseur cinématique;

1 Étude d'un centre d'usinage grande vitesse 5 axes

a) Présentation des exigences

L'usinage est une opération de transformation d'un produit par enlèvement de matière. Cette opération est à la base de la fabrication de produits dans les industries mécaniques. On appelle le moyen de production associé à une opération d'usinage une machine outil ou un centre d'usinage. La génération d'une surface par enlèvement de matière est obtenue grâce à un outil muni d'au moins une arête coupante. Les différentes formes de pièces sont obtenues par des translations et des rotations de l'outil par rapport à la pièce.

La figure ci-dessus est un exemple de machine possédant 3 translations (X, Y et Z) et deux rotations (B et C). Une telle machine est appelée machine 5 axes (un axe est un ensemble qui gère un des mouvements élémentaire, translation ou rotation). Sur cette machine, 2 axes sont utilisés pour mettre en mouvement l'outil par rapport au bâti (ce sont les translations Y et Z) et 3 axes sont utilisés pour mettre en mouvement la pièce par rapport au bâti (ce sont la translation X et les deux rotations B et C).

	Variable	Course
Axe X	x(t)	800 mm
Axe Y	<i>y</i> (<i>t</i>)	600 mm
Axe Z	z(t)	500 mm

	Variable	Course
Axe B	$\theta_1(t)$	30°/-110°
Axe C	$\theta_0(t)$	360°

L'objectif de cette étude est de déterminer les conditions cinématiques à imposer pour respecter le critère de qualité d'usinage du cahier des charges. La chaîne cinématique pour déplacer l'outil par rapport au bâti.

Centre d'usinage 5 axes

Pièce complexe obtenue par usinage

FIGURE 1

FIGURE 2 - Diagramme partiel des exigences du centre d'usinage

Modélisation de la chaine cinématique associée à l'outil

• On associe à S₃ (Supposé galiléen), le repère :

$$R_3 = (O_3, \overrightarrow{x}_3, \overrightarrow{y}_3, \overrightarrow{z}_3)$$

• S_4 est en mouvement de translation de direction $\overrightarrow{y}_4 = \overrightarrow{y}_3$ par rapport à S_3 . On associe à S_4 , le repère :

$$R_4 = (O_4, \overrightarrow{x}_4 = \overrightarrow{x}_3, \overrightarrow{y}_4 = \overrightarrow{y}_3, \overrightarrow{z}_4 = \overrightarrow{z}_3)$$

• S_5 est en mouvement de translation de direction $\vec{z}_5 = \vec{z}_3$ par rapport à S_3 . On associe à S_5 , le repère :

$$R_5 = (O_5, \overrightarrow{x}_5 = \overrightarrow{x}_3, \overrightarrow{y}_5 = \overrightarrow{y}_3, \overrightarrow{z}_5 = \overrightarrow{z}_3)$$

- On pose:
 - $\circ \overrightarrow{O_3O_4} = y(t) \cdot \overrightarrow{y}_3 + l_3 \cdot \overrightarrow{z}_3;$ $\circ \overrightarrow{O_4D} = l_4 \cdot \overrightarrow{x}_4;$ $\circ \overrightarrow{DO_5} = z(t) \cdot \overrightarrow{z}_5;$

 - l_3 et l_4 sont des constantes.
- Q 1 : Exprimer $\overrightarrow{O_3O_5}$ dans la base associée au repère R_3 .
- Q 2 : Définir et caractériser le lieu géométrique du point O_5 (extrémité de l'outil) dans son mouvement par rapport au repère R_3 , lorsque l'on commande les axes Y et Z.
 - **Q 3 : Donner** l'expression de $\overrightarrow{V}(O_5 \in 5/3)$ en utilisant la dérivation vectorielle.
- Q4: A l'aide du diagramme des exigences (figure 2), calculer la valeur maximale de la norme du vecteur vitesse $\|\overrightarrow{V}(O_5 \in 5/3)\|_{max}$.

Chaîne cinématique pour déplacer la pièce par rapport au bâti.

- Le repère R₃ est toujours considéré comme galiléen.
- S_2 est en mouvement de translation de direction $\vec{x}_2 = \vec{x}_3$ par rapport à S_3 . On associe à S_2 , le repère:

$$R_2 = (O_2, \overrightarrow{x}_2 = \overrightarrow{x}_3, \overrightarrow{y}_2 = \overrightarrow{y}_3, \overrightarrow{z}_2 = \overrightarrow{z}_3)$$

• S_1 est en mouvement de rotation autour de l'axe $(O_2, \overrightarrow{y}_1 = \overrightarrow{y}_2)$ par rapport à S_2 (paramètre angulaire de mouvement $\theta_1 = (\vec{z}_2, \vec{z}_1)$). On associe à S_1 , le repère :

$$R_1 = \left(O_1, \overrightarrow{x}_1, \overrightarrow{y}_1 = \overrightarrow{y}_2, \overrightarrow{z}_1\right)$$

• S₀ est en mouvement de rotation autour de l'axe $(O_1, \overrightarrow{z}_0 = \overrightarrow{z}_1)$ par rapport à S_1 (paramètre angulaire de mouvement $\theta_0 = (\vec{x}_1, \vec{x}_0)$). On associe à S_0 , le repère :

$$R_0 = (O_0, \overrightarrow{x}_0, \overrightarrow{y}_0, \overrightarrow{z}_0 = \overrightarrow{z}_1)$$

- On pose:
 - $\circ \overrightarrow{O_3 A} = x_A(t) \cdot \overrightarrow{x}_3;$

 - $\begin{array}{ll}
 \circ & \overrightarrow{AO_2} = l_2 \cdot \overrightarrow{z}_3; \\
 \circ & \overrightarrow{O_2O_1} = -l_1 \cdot \overrightarrow{y}_3;
 \end{array}$
 - $\circ \overrightarrow{O_1O_0} = l_0 \cdot \overrightarrow{z}_1;$
 - l_2 , l_1 et l_0 sont des constantes.
 - o La surface usinée est définie comme un ensemble de points M de coordonnées (x_M, y_M, z_M) dans le repère R_0 .
- **Q 5 : Donner les figures planes de projection traduisant les deux rotations de** S_0/S_1 **et de** S_1/S_2 .
- **Q6: Exprimer** $\overrightarrow{\Omega}(2/3)$
- **Q7: Exprimer** $\overrightarrow{\Omega}(1/2)$
- **Q8: Exprimer** $\Omega(0/1)$
- **Q 9 : En déduire** $\overrightarrow{\Omega}(1/3)$ et $\overrightarrow{\Omega}(0/3)$
- Q 10: Calculer $\left[\frac{d\vec{z}_1}{dt}\right]_{R_2}$.
- Q 11 : Caractériser le lieu géométrique du point O_0 dans son mouvement par rapport au repère R_3 lorsque l'on commande les axes X, B et C.
 - **Q 12:** Exprimer le vecteur position O_3O_0 .
 - **Q 13 :** Calculer $\overrightarrow{V}(O_0 \in 0/3)$ par dérivation vectorielle.
 - **Q 14 :** Déterminer la valeur maximale de la norme de cette vitesse si $l_0 = 0$, 1m et $\dot{x}_A = 0$.
 - **Q** 15 : Exprimer le torseur cinématique $\left\{\mathscr{V}_{(0/3)}\right\}$ en O_0 .
 - **Q 16 :** Exprimer le torseur cinématique $\left\{\mathscr{V}_{(0/3)}\right\}$ en M.