- CH1 Introduction
- CH2 Software Processes
- CH3 Agile SW Development
- CH4 Requirements Engineering
- CH5 System Modeling
- CH6 Architectural Design
- CH7 Design & Implementation
- CH8 Software Testing
- CH10 Dependable Systems

CH1 - Introduction

- **Software:** Computer programs & associated documentation
- Software engineering: concerned with theories, methods, tools for software development
 - Fundamental activities: software specification, development, validation, evolution
 - A part of system engineering (hardware + software + process engineering)
- Often: Software costs > computer system / hardware cost
- Software maintenance cost > development cost
- Software products: "Generic" or "customized"
- Essential attributes of good software:
 - Maintainability: Critical attribute. To be able to evolve with changing needs
 - Dependablity: Security, reliability, safety. Should not cause damage in case of failure
 - Efficiency
 - Acceptability: Compatible with other systems, understandable, usable

Application Types

Stand-alone

- Run on a local machine (e.g a PC).
- Need not to be connected to a network
- Has all required functionality

Interactive transaction-based

- Accessed by users externally, runs on remote computer
- Web app.s (e.g e-commerce app.s)

Embedded control systems

Controls and manages HW

Batch processing systems

· Processes individual inputs in large batches

Data collection systems

• Collect data using sensors, send to other systems to process

Entertainment systems

Modelling & simulation systems

- · Developed by scientists & engineers for modeling
- Usually includes many separate interacting objects

Systems of systems

- Composed of other software systems
- Web-based systems: Distributed & complex. Need "agile development": impractical to specify all the requirements for such systems in advance.
- Service-oriened systems: All components considered as replaceable services. Allows rapid configurations & incremental updates as new services become available.

CH2 - Software Processes

- "Software process": Structured set of activities required to develop a software system
- Many different ones but all involve: Specification, design & implementation, validation, evolution
- Approaches:
 - "Plan driven process": all activities planned in advance, progress is measured against the plan
 - "Agile process": Incremental planning, easier to change process to changing requirements
 - Often, elements from both approaches are used.

Software Process Models

The Waterfall Model

- Plan-driven
- · Separate identified phases
- Drawback: a phase has to be completed before moving onto next, hard to accomodate changes
 - Only appropriate when the requirements are well understood & changes will be limited
- Mostly used for large system engineering projects where a system is developed at several sites

Incremental Development

- · Cost of making changes reduced
- Easier to get customer feedback
 - Customers can comment on demonstrations
 - Customers can be provided with useful software earlier
- Drawbacks:
 - Regular changes may corrupt project structure incorporating changes becomes harder and costlier as time progresses
 - Cost-ineffective to document each system version -> Measuring progress is hard

Integration & Configuration (Reuse-oriented SW. Eng.)

- Based on software reuse reused elements can be configured according to requirements
- Standard approach for many business system types
- · Faster delivery
- Less SW developed from scratch -> Reduced risks & costs
- Drawbacks:
 - Some requirements are likely to be unsatisfied
 - Lost control over the evolution of reused components

Process Activities

• Can be ordered sequentially or interleaved according to the model

Requirements Engineering Process

Software Design & Implementation

- Design: Creating software structure
 - Architectural, database, interface (between components), component selection & design
- Implementation: translating the structure into an executable
 - Design & implementation can be closely related or interleaved

Software Validation

Testing: Most common verification & validation activity

• V-model: Testing phases in a plan-driven software process:

System Evolution

- Change anticipation: Possible changes can be anticipated without much rework
- Change tolerance: Process is designed so that changes are applied without much cost

Software Prototyping

• Discarded after development: usually unstructured, undocumented and not standard-compliant

Incremental Development & Delivery

- Early increments serve as prototypes
- Requirements are not changed throughout the development of an increment
- · Highest priority services receive most testing
- · Specification is developed toghether with the SW itself
 - May contradict procurement models of some organizations

Process Improvement

- Process maturity approach: ? Agile approach: focus on iterative development & reduction of overheads. Emphasis on rapid functionality delivery & adapting to requirement changes
- improvement cycle: Change -> Measure -> Analyze -> Change ...
- · Process metrics:
 - Taken time to complete activities
 - Required resources for activities
 - Number of occurrences of a specific event (e.g. an error)
- SEI capability maturity model:
 - 1. Initial: uncontrolled

- 2. Repeatable: Defined & used product management procedures
- 3. Defined: Defined & used process management procedures
- 4. Managed: Defined & used quality management strategies
- 5. Optimising: Defined & used process improvement procedures

CH3 - Agile SW Development

- Program specification, design and implementation are inter-leaved
- The system is developed as a series of versions or increments with stakeholders involved in version specification and evaluation
- Frequent delivery of new versions for evaluation
- Extensive tool support (e.g. automated testing tools) used to support development.
- The aim is to reduce overheads in the SW process, to be able do respond quickly to changing requirements without excessive rework.
 - e.g Minimal documentation focus on working code

Principles

- Customer involvement: Evaluating iterations, provide and prioritize requirements
- Incremental delivery
- People over processes: Skill of the team should be recognized members should develop their own ways of working without prescripted processes
- Embrace change
- Maintain simplicity

Agile development techniques

Extreme programming (XP)

- "Extreme" iterative development:
 - New versions may be built several times per day
 - Increments are delivered to customers every 2 weeks
 - All tests must be run for every build and the build is only accepted if tests run successfully.
- Has a technical focus usually not easy to integrate with management practice
- XP practices:
 - Incremental planning: Requirements recorded onto "story cards" -> Broken down into "Tasks"
 - Minimal useful set of functionality is developed first, frequent small releases. Functionality added incrementally.
 - Minimum design to satisfy current requirements is carried out
 - Test-first development: A functionality's test framework is implemented earlier than the functionality itself
 - Constant refactoring: All developers are expected to refactor code as soon as possible, even if there is no immediate need
 - Improves software understandability & reduces need for documentation
 - Well-structured code -> Changes are easier to make
 - Changes requiring architecture refactoring are much more expensive
 - Collective ownership: Everyone works on everything, no islands of expertise develop
 - Pair programming
 - Helps develop collective ownership
 - Informal review process
 - Encourages refactoring & sharing of knowledge
 - Continuous integration: After each task is completed, it is integrated & tested (must pass the test)
 - Test-driven development clarifies the requirements to be implemented
 - Tests are written as programs rather than data -> they can be executed automatically after integrating each new functionality
 - The customer should be available full-time as a member of the development team

- Customer may be reluctant may feel that providing requirements was enough
- Large amounts of overtime are not acceptable: Reduces productivity & quality on long term

Agile Project Management

Scrum

- · Agile method focusing on managing iterative development rather than agile practices
- "product backlog": a "TODO list", may be feature definitions, SW. requirements, user stories, supplementary tasks (e.g user documentation, architecture definition), etc.
- "scrum"s: daily meetings reviewing progress and daily tasks, ideally short f2f meeting including whole team
- "velocity": estimate of backlog covering rate of the team
- 3 phases:
 - Initial: plan outline, establish objectives (choose from backlog), design architecture
 - "Sprint cycles" of developing increments
 - fixed length (~2-4 weeks)
 - Project closure: wrap-up & complete documentation (e.g system help frames)
- Team is isolated from distractions & customer communication. Only the "scrum master" handles communication with the customer.
- · Benefits:
 - Breaks down product into managable chunks
 - Unstable requirements do not hold up
 - Whole team has visibility on everything
 - Customers see on-time increment delivery, can provide feedback
 - Establishes customer-developer trust

Scaling Up Agile Methods

- · Agile methods are successful for small & medium sized projects with small teams
 - "Scaling up": Agile methods for large SW systems with large teams
 - "Scaling out": Introducing agile methods to a large, experienced organization

Practical problems

- Agile is informal -> incompatible with legal approach to contracts in large companies
- Agile is more approporiate for new software rather than maintenance
 - In large companies usually: Maintenance cost > development cost
- Agile is more approporiate for small co-located teams
 - SW development involves worldwide distributed teams
 - Design documents may be needed for distributed teams
 - If not available: IDE support for visualisation & program analysis is essential
 - Cross-team communication mechanisms are needed
- Agile works best when team has high skill level, but large companies have a wide range of skill level
- Software contracts are based around specifications; however, agile interleaves specification and development
 - Contract based on time rather than functionality is required for agile -> considered risky
- Maintenance problems:
 - Lack of SW documentation
 - Also needed if system is subject to external regulation
 - Customers are kept involved in development
 - Diverse set of stakeholders in large systems -> hard to involve them all in development
 - Need to keep the original team
 - Problem for long-lifetime systems
- Prioritizing changes may be difficult: Multiple stakeholders have different priorities
- Incremental delivery: Can be hard for business planning and marketing
- Several integrated systems: Significant amount of development on system configuration rather than development
- Completely incremental approach to requirements engineering is impossible
- Continuous integration practically impossible. However, frequent system builds & regular releases are essential
- Multi-team Scrum:
 - Releases are aligned
 - Each team has their own scrum masters and product owners
 - Each team chooses "product architect"s to design & evolve overall system architecture
 - "scrum of scrums" are done where representatives of each team meet and discuss progress

CH4 - Requirements Engineering

• Req. eng: Establishing services a customer requires from a system & its operation and development constraints

- System requirements: Descriptions of the system services & constraints. Generated during requirements engineering.
- "Requirement": Ranges from an abstract statement of a service / system constraint to a detailed functional specification
 - Dual function: May be the basis for a bid for a contract or for the contract itself
- User requirements: Statements in natural language + diagrams of services & operational constraints
 - Must be understandable by the end-users & customers without technical knowledge
- System requirements: Structured document, detailed descriptions of system functions, services, operational constraints.
 - Defines things to be implemented -> May be a part of a contract
- Readers of requirements specification types:

- "Stakeholder": Any person or organization who is affected by the system in some way and thus has a legitimate interest
 - End users, system managers, system owners, external stakeholders
- Agile methods use incremental requirements engineering and may express requirements as "user stories"
 - Practical for business systems
 - Problematic for systems requiring pre-delivery analysis (e.g critical systems) or systems developed by multiple teams

Functional & Nonfunc. Requirements

- **Functional requirements:** Statements of system services, describing system's reactions to particular inputs and situations
 - May state what the system should not do
 - Depends on SW type, expected users & type of system where the SW is used
 - Functional user req.s: May be high-level statements of what the system should do
 - Functional system req.s: describes system services in detail

- Non-functional requirements: Constraints on system services or func.s
 - Timing constraints, development process constraints, standards, etc.
 - Often apply to the system as a whole, rather than individiual features
 - May be more critical than functional requirements
 - May be difficult to state precisely, which may be difficult to verify
 - "Goals" (general intentions of the user) can be specified instead
 - A "verifiable nonfunc. req." uses some measure that can be tested objectively
 - Speed: operation time, response time, refresh rate etc.
 - Size
 - Ease of use
 - Reliability: Failure rate, availability etc.
 - Robustness: Recovery from failure
 - Portability: Target-dependent statement rate
 - A single nonfunc. requirements may generate several related
 - Product requirements: execution speed, reliability etc.
 - Organizational requirements: Consequence of organizational policies & procedures (e.g standards, implementation requirements etc.)
 - External requirements: interoperability requirements, legal requirements etc.
- Domain requirements: System constraints from the operation domain
- In principle: Requirements should be complete & consistent:
 - Completeness: include descriptions of all required system facilities
 - Consistency: No conflicts in the descriptions of the system facilities
 - Complexity of environment & system -> impossible to produce a complete and consistent requirements document

Requirements Engineering Process

· An iterative activity in which req. elicitation, analysis, validation and management are interleaved

Req.s Elicitation / Discovery

- Technical staff works with stakeholders to find out about application domain, system services & system's operational constraints
- Stages (in a cycle):
 - Req.s discovery
 - Getting info. from stakeholders about the required & existing systems
 - Interviewing:
 - closed (pre-determined questions) or open, or mixed
 - Not good for understanding domain requirements: Stakeholder can unintentionally overlook them since they are already familiar with the domain

Ethnography: Social scientist analyzing how people work

- Important social & organizational factors can be observed
- Effective for understanding existing processes
- Cannot identify new features to be added to a system
- Specifying user & system requirements from the gathered info.
- Req.s classification & organization
- Req.s prioritization & negotiation
 - Conflicts are resolved here
- Req.s specification
 - Req.s are documented here
- Problems:
 - Stakeholders may have unstable decisions
 - Stakeholders express req.s in their own terms
 - Stakeholders' req.s may conflict
 - Organizational & political factors may influence the req.s
 - Stakeholders & business environment may change -> Req.s change during analysis process
- User stories: Real-life system usage examples
 - Practical situation -> stakeholders can relate and comment
- Scenarios: Structured form of user stories
 - Should include starting situation, normal event flow, what can go wrong, state when scenario finishes, other concurrent activities

Requirements specification

- Process of documenting the req.s
- Requirements are written using natural language + diagrams & tables
- Problems with NL:
 - Lack of clarity: Hard to be precise without being complex
 - Functional & nonfunc. req.s may get mixed up
 - Several req.s can be expressed together
- Form-based specifications: Definition of function/entity, description of inputs, outputs, computations, pre & post conditions, any side effects of the function
- Tabular specification: Supplements NL
 - Useful when there are alternative courses of action

- Use-cases: Identifies an interaction and involved actors
 - A set of use-cases should describe all possible interactions with the system
- SW Req. document should describe "what" the system should do rather than "how" it should do
- Incremental development -> Less detail in req.s document

Requirements Validation

- · Validating that the requirements define the system that the customer really wants
- Important: Errors in req.s are costly
- Check:
 - Validity (whether system provides func.s tht best supports customer's needs)
 - Consistency
 - Completeness
 - Realism (whether implementation with given budget & tech is possible)
 - Verifiability (whether the req.s can be tested)
- · Techniques:
 - Reviews (systematic manual analyses)
 - Both client and contractors should be involved
 - Formal or informal
 - Check: Verifiability, comprehensibility, traceability (whether origin of the req. is clear),
 adaptability (whether the req. can be changed without large impact on other req.s)
 - Prototyping
 - Test-case generation

Requirements Management

- Managing changing req.s during req. engineering and system development
 - New req.s emerge as system is being developed and after is deployed
- Req.s mng. planning:
 - Req.s identification: Needed so that a req. can be cross-referenced with other req.s
 - Change management process: Set of activities to assess impacr & cost of changes
 - Traceability policies: Define relationships between req.s
 - Tool support

CH5 - System Modeling

- Representing system using a graphial notation almost always based on UML
- Models of existing systems are used during req. eng. to clarify its purpose & as a basis for strengths and weaknesses -> Lead to req.s for new system
- Models of new systems are used during req. eng. to explain req.s to other stakeholders
 - Engineers use it to discuss design proposals & document system for implementation
- Model driven engineering: Possible to implement system (partially or completely) from model

System Perspectives

- External perspective: Model context or environment
- Interaction perpective: Model interactions between system & environment or between system components
- Structural perspective: Model organization of system or the structure of processed data
- Behavioral perspective: Model how the system responds to events

UML Diagram Types

- Activity diagrams
- Use-case diagrams: Shows system environment interactions
- Sequence diagrams: Shows actor system interactions and interactions between system components
- Class diagrams: Shows object classes and the associations inbetween
- State diagrams: Shows the system's reactions to internal & external events

Context Models

- Shows system's operational context & boundaries
 - Social and organizational concerns affects the boundary
 - Boundary position profoundly affects system req.s
 - Simply shows other systems in the environment, not how it is used or developed
 - Process models show how they are used
 - UML Activity diagrams may be used to define process models
- Architectural model: Shows relationship among systems

Interaction Models

 Use-case and sequence diagrams may be used to model inter-system and inter-component interactions

Use-case Diagrams

- Each use case represents a discrete task that involves external interaction with a system
 - Actors in a use case may be people or other systems

Represented as a diagram for overview and also in a more detailed textual form

Sequence Diagrams

• Part of UML showing sequence of interactions taking place during a particular use-case

Structural Models

- Display system organization in terms of its components and their relationships
- Static models: show structure of system design, dynamic models: show system organization during execution
- · Created when system architecture is being created & discussed

Class Diagrams

- · Object Class: General definitiob of one kind of system obejct
 - During early stages of SW engineering: objects represent an entity in the real world

• Generalization: Base class - Derived class relation

- Aggregation association: Class is composed of other classes
 - Subclasses do not depend on aggregating class to be able to exist similar to an "array array element" relation

Behavioral models

- Models a system's dynamic behavior during execution
 - Show expected response to environmental stimulus
- Types of environmental stimuli:
 - Data: input to be processed by system
 - Events: Trigger system processing
 - May or may not have associated data
- Data-driven models: Show sequence of actions in processing input & generating associated output
 - o Most busines systems are data-driven, minimal external event processing
 - Shows end-to-end processing in a system -> Useful in req.s analysis
- Event-driven models: Shows system's response to external & internal events
 - Most real-time systems are event-driven, minimal data processing
 - Based on assumption that a system has finite states & events/stimuli cause transition between states
 - State machine models: Show system's responses to internal & external events

Statechart in UML are used to represent state machine models

Model-Driven engineering

- Principal outputs of development are models rather than programs
 - Programs are later generated from models
 - Increases abstraction: Engineers no longer have to be concerned with details related to programming languages or execution platforms
 - Method is still in developments
 - Cheaper code generation but developing translators for new platforms may be expensive
- Model-driven architecture (MDA): Model a system using a subset of UML modules, at different levels
 of abstraction, generate implementation from model. In principle, it is possible to generate a
 working program without manual intervention.
 - Computation-independent model (CIM) / Domain model: Model important domain abstractions in a system
 - Platform-independent model (PIM): Model operation without referencing implementation
 - Usually described using UML to show response to stimuli & static system structure
 - Platform-specific model (PSM): Transformation of PIMs for specific platforms
 - Can be layered according to added details

- Iterative approach of MDA suggests agile, however up-front modeling contradicts.
 - Can be used in agile if PIM-to-program transformation can be fully automated
- MDA has limited adoption:
 - Limited tool availability for model conversion between abstraction levels
 - The abstractions that are useful for discussions may not be the right abstractions for implementation
 - For most complex systems, req. eng, security, dependability, backwards compatibility, testing etc. are more significant problems than implementation
 - Prevalance of agile has diverted attention away from MDA

CH6 - Architectural Design

- Concerned with overall structure & organization of a SW system
 - Results with an "architectural model" identifying relation between system components ->
 Critical link between design and req.s engineerings
 - Early stage of agile processes

- Refactoring architecture affects many system components -> expensive
- Architectural abstraction:
 - Small scale: arch. of individual programs & its components
 - Large scale: arch. of large systems involving other systems & programs
- Explicit architecture benefits:
 - Used for discussion & communication with stakeholders
 - Analyzing system for wherher it can meet its nonfunc. requirements
 - An architecture can be reused for other systems
- Box & line diagram representations of architecture: Very abstract but good for communication with stakeholders

Architecture and system characteristics

- Performance: Localize crititcal operations, minimize communications, use "larger" components
- Security: Use layered architecture with critical assets in the inner layers
- Safety: Localise safety-critical features in a small number of sub-systems.
- Availability: Include redundant components and mechanisms for fault tolerance.
- Maintainability: Use replacable components

Architectural views

- Relate different views using use-cases & scenarios:
 - Logical view: Show key abstractions in the system as objects & object classes
 - Process view: Show how the system is composed of interacting processes at run-time
 - Development view: Show how the SW is decomposed for development
 - Physical view: Show how HW & SW components are distributed across processors in system
- Represent views with UML or architectural description lang.s (ADLs)

Architectural patterns

- Patterns: means of representing, sharing, reusing knowledge
 - architectural pattern: stylized description of good design practice, which has been tried and tested in different environments
 - Should include info. about when they are useful and when they are not
 - May be represented using tabular & graphical descriptions

Layered architecture

Used to model sub-systems interface

- Organizes system into a set of "abstract machine" layers
 - Each provides a set of services
- Supports incremental development
 - A layer changes -> only adjacent layers affected
- Example: layers from OS to the user interface

Repository architecture

- Efficient data sharing mechanism when large amounts of data is shared among subsystems
 - Shared data held in central database instead of each subsystem maintaining their own databases

Client-server architecture

- Distributed system model which shows how data and processing is distributed across a range of components
 - Can be implemented on a single computer
 - Set of stand-alone "servers" providing specific services, "clients" calling these services &
 "network" providing clients access to the servers

Pipe & Filter architecture

- Input -> functional transformations -> output
- If transformations are sequential: "batch sequential model", used extensively in data processing systems
- Not very suitable for interactive systems

Application architectures

- Architecture for a type of system that may be configured and adapted to fulfill specific requirements.
- Used as:
 - A starting point for architectural design.
 - A design checklist.
 - Way of organising the work of the development team.
 - Means of assessing components for reuse.
 - To discuss application types.
- Two widely used generic app. architectures:
 - Transaction processing systems

- Data centered app.s provessing user requests & updating info in a system database
- Users make asynchronous requests for service which are then processed by a transaction manager
- E-commerce sys.s, reservation sys.s, etc.
- Language processing systems

- App.s where user specifies intentions in a formal language, which is processed & interpreted by the system
- Compilers, command interpreters etc.
- Compiler components:
 - Lexical analyzer: Converts language tokens to internal form
 - Symbol table: holds info. about names of entities used in text
 - Syntax analyzer
 - Syntax tree: internal structure of the program being compiled
 - Semantic analyzer: Uses info. from syntax tree & symbol table to check semantic correctness of text
 - Code generator: "Walk" syntax tree to generate abstract machine code

Repository compiler architecture:

Pipe & filter compiler architecture:

Information systems architecture

- · Can be organized in layers
 - Layers: UI, User communications, info. retrieval, system database...
 - Transaction-based since interaction with these systems generally involves database transactions

CH7 - Design & Implementation

- · Implementation: Realizing the design as a program
- Developing a modifiable "off the shelf system": design process is concerned with the configuration features

Object-Oriented Design With UML

- Involve developing a number of different system models may not be cost-effective for small systems
- Common activities include:

1) Defining system context & interactions

- Defines relationship between software and external environment
- Establishes system boundaries helps decide which features to implement
- System context model: Demonstrates other systems
- Interaction model: e.g. Use case model & descriptions

2) Designing system architecture

• Organize components in an architectural pattern (e.g. layered, client-server...)

3) Identifying object classes

- Relatively difficult & an iterative process
 - Considering tangible entities & scenerio based analysis (as in use case model) helps

• In the system's verbal description: Generally objects & attributes correspond to nouns, operations & services correspond to verbs

4) Developing design models

- **Design model:** Shows relations between objects/object classes
 - Structural model: Describes static structure of object classes & relationships
 - **Dynamic model:** Describes dynamic interactions between objects

Examples:

- Subsystem models: Show logically related groups of objects
 - Shown with "packages" in UML

• **Sequence models:** Show sequence of object interactions

- State diagrams: Show objects' response to service requests & triggered state transitions
 - Useful for modeling run-time behavior
 - Not needed / Unnecessarily complex for most objects

• Also use case models, aggregation models, generalisation models... etc

5) Specifying object interfaces

- Specifying interafaces allows designing objects in parallel
- UML: Class diagrams

«interface» Remote Control	
stopInstrum collectData	ent(instrument): iStatus ent (instrument): iStatus (instrument): iStatus (instrument): string

Design Patterns

- Ways of reusing abstract knowledge: a description of a problem and the essence of its solution
- · Consists of:
 - Name
 - Problem description
 - Solution description (as a template for design)
 - Consequences (& trade-offs)
- Pattern examples: Observer, Façade, Iterator, Decorator...

Implementation Issues

Reuse

- Existing code should be used as much as possible
- · Reuse costs:
 - Searching for reusable software
 - Buying reusable software
 - Adaptation of reusable software
 - Integrating reusable software with each other

Reuse levels

- Abstraction level: Reuse knowledge of successful abstractions
- Object level: Reuse objects from an existing library
- Component level: Reuse collections of objects & object classes
- System level: Reuse entire application systems

Configuration management

 Supporting the system integration process so that all developers can access the project code and documents in a controlled way, find out what changes have been made, and compile and link components to create a system

Config. man. activities

- · Version management
- System integration (Define versions of used components)
- Problem tracking
- Release management

Host-Target Development

Consider development & execution platform differences

- Sometimes more or less the same (e.g. Java Virtual Machine)
- Sometimes different (e.g embedded systems): Need simulations & testing

Open Source Development

- Avaliable source & volunteers are invited do particitpate in development
- Open source business: Selling support for software rather than software product itself
 - Intention: Cheaper & quicker development and forming a community of users
- Licensing: Open source sofware need not be freely used & manipulated. Restrictions may apply

CH8 - Software Testing

Program Testing

- · Executing program with artificial data
- Defect/Verification testing: Discover possible defects before putting the program into use
 - Can use deliberately obscure test cases
 - Does not guarantee absence of errors
 - "Are we building the product right?"
- Validation testing: Demonstrate program to developers & customers
 - At least one test for each requirement in SRS
 - "Are we building the right product?"
- Verification & Validation (V&V) confidence dependss on softwaree purpose, user expectations, marketing environment
 - Early publishing to market is sometimes more important than finding defects

Software inspection

• Software inspection: static verification, software testing: dynamic verification

- · Doesn't require execution
- · Can check conformance with a standard
- Unlike testing, incomplete program can be verified without additional costs
- Unlike testing, cannot check performance, usability etc.
- · Both inspections and testing should be used in V&V

Testing stages:

1) Development Testing

Unit testing

- Testing components individually (for defects)
- Example units:
 - Functions/Methods of an object
 - Object classes
 - Composite components & their interfaces
- Testing object classes: Inheritance is more difficult to test as tested information is not localized
- Should be automated whenever possible
 - Setup, call, assertion (checking) stages

Choosing unit testing cases:

- 2 unit test case types:
 - Normal operation (usual cases)
 - Abnormal inputs (edge cases)
- **Partition testing:** Process inputs with similar characteristics together, test inputs from each "equivalence class"
- Guideline-based testing: Tests reflecting previous experience, common errors, edge cases
 - Forcing system to generate all errors
 - Force input buffer overflow
 - Repeat same input multiple times
 - ... etc.

Component testing

- Testing composite components & showing that the component interface behaves in accordance with specification
- Assume unit tests within component are completed
- Interface types:
 - Parameter interfaces: Passed data between methods/procedures
 - Shared memory intercafes: Block of memory shared among methods/procedures
 - **Procedural interfaces:** Encapsulated procedure set of a sub-system to be called by other subsystems
 - Message passing interfaces: Service requests among sub-systems
- Interface errors:
 - Interface misuse: A component calls another component erroneously
 - **Interface misunderstanding:** A caller component makes wrong assumptions about the called component
 - **Timing errors:** Caller and called components operate at different speeds and out-of-date or premature information is accessed

System testing

- Integrate components to create a system version & test it
 - Teams developing different components may come toghether for testing. Some companies have separate testing teams for system testing
- Test interaction and compatibility between components
 - "Emergent behavior" of the system

- Use-cases can be used as a basis as they usually force component interaction
- Exhaustive testing is impractical: Policies defining test coverages may be developed

Test-driven Development

 Write tests before increments, aim to pass tests during development. Do not move on to next increment until test is passed

Introduced as part of agile

Benefits

- Code coverage: every code segment is tested at least once
- **Regression testing:** Test suite is developed incrementally with the program It can always be checked whether new code introduces new bugs
- · Simplified debugging
- System documentation: Tests form a documentation describing what the code should be doing

2) Release Testing

- Testing a release which is for outside development team
- A form of system testing, except:
 - A team separate than development team should be responsible for testing
 - System testing focuses on verification, release testing focuses on validation
- Shows system delivers its specified functionality, performance and dependability, does not fail during normal use
- Usually black-box where tests are derived from system specification
- Requirements-based testing: Examine each requirement & develop test/s for them
- Scenario testing: Devise usage scenarios & use them to develop tests
- Performance testing: Testing emergent properties of system (e.g performance, reliability)
 - Steadily increase load until performance becomes unacceptable
 - Stress testing: Deliberately overload system to test failure behavior

3) User testing

- Users / customers provide input & system testing advice
- Essential since influences from user's working environment cannot be exactly replicated in a testing environment
 - User's environment affects reliability, performance, usability, robustness of a system
- Alpha testing: Users and developers work together
- **Beta testing:** A release is available to the users for them to experiment with and raise problems to developers
- Acceptance testing: Customers test whether system can be accepted from system dev.s & deployed.
 - Primarily for custom systems Testing Test Test Test Tests criteria plan results report Plan Define Derive Run Accept or Negotiate acceptance acceptance acceptance acceptance test results reject criteria testing tests system tests
 - In agile: Tests are defined by the user/customer. No separate acceptance testing process
 - Main problem is whether the user working with the team can represent a general user

CH10 - Dependable Systems

•••