

S2k-Leitlinie

"Diagnostik und Therapie

klinisch hormoninaktiver Hypophysentumoren"

Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF)

AWMF-Registernummer:
089-002
Autoren der Leitlinie (in alphabetischer Reihenfolge):
Jörg Bojunga, Michael Buchfelder, Timo Deutschbein, Beate Ditzen, Martin Fassnacht, Jörg Flitsch Rüdiger Gerlach, Elfriede Gertzen, Jürgen Honegger, Gerhard Horstmann, Cornelia Jaursch-Hancke Arend Koch, Ulrich J. Knappe, Ilonka Kreitschmann-Andermahr, Mirjam Kunz, Wolf Lagrèze, Nils H Nicolay, Werner Paulus, Martin Reincke, Wolfgang Saeger, Manuel Schmidt, Matthias M. Webel Helmut Wilhelm
Koordinatoren der Leitlinie (in alphabetischer Reihenfolge):
Martin Fassnacht, Cornelia Jaursch-Hancke
Sekretär der Leitlinie:
Timo Deutschbein

Inhaltsverzeichnis

		Seit
<u>Präai</u>	nbel	3
<u>Leitli</u>	nienreport	4
I.	Geltungsbereich und Zweck	4
II.	Zusammensetzung der Leitliniengruppe und Beteiligung von Interessensgruppen	4
III.	Methodik	6
IV.	Externe Begutachtung und Verabschiedung	8
V.	Redaktionelle Unabhängigkeit und Umgang mit Interessenskonflikten	8
VI.	Verbreitung und Implementierung	8
VII.	Gültigkeitsdauer und Aktualisierungsverfahren	9
<u>Defin</u>	ition	10
l.	Definition	10
II.	Allgemeine Empfehlung	12
Diag	nostik	13
Ther	apie	20
l.	Vorgehen bei Erstdiagnose	20
II.	Perioperatives Management	27
III.	Empfehlungen bei Rest- und Rezidivtumoren	31
Path	ologie	36
<u>Nach</u>	sorge	42
l.	Allgemeines	42
II.	Unmittelbarer postoperativer Verlauf (bis etwa 2 Wochen nach der Operation)	44
III.	Kurzfristiger postoperativer Verlauf (etwa 6-12 Wochen nach der Operation)	45
IV.	Mittel- und langfristiger postoperativer Verlauf	47
V.	Nachsorge nach strahlentherapeutischen Interventionen	49
VI.	Nachsorge von Patienten ohne vorherige Hypophysen-Operation	50
Bera	tung und Schulung	<u>54</u>
Beso	ndere Personengruppen	<u>56</u>
l.	Patienten mit unerfülltem Kinderwunsch	56
II.	Schwangere Patientinnen	57
III.	Patienten mit relevanter Morbidität bzw. Gebrechlichkeit	60
Litera	atur	62

1. Präambel

Hypophysentumoren sind häufig. Gemäß den Daten von Sektionsstudien treten sie bei Erwachsen mit einer Prävalenz von ca. 10% auf. Auf die unterschiedlichen Entitäten von Hypophysentumoren wird in **Kapitel 3** (Definition) genauer eingegangen. Über 85% der Hypophysentumoren sind Hypophysenadenome, von welchen wiederum ca. 25-30% hormoninaktiv sind. Letztere stellen somit nach den Prolaktinomen den zweithäufigsten Tumortyp dar. Sie stehen im Fokus der vorliegenden S2k-Leitlinie. Hormonaktive Hypophysenadenome bzw. Tumoren, die nicht primär von der Hypophyse ausgehen, werden in dieser Leitlinie vor allem aus differentialdiagnostischer Sicht berücksichtigt. Bezüglich der Therapie dieser anderen Tumoren wird auf entsprechende andere Leitlinien und Empfehlungen verwiesen.

Trotz der relativen Häufigkeit von Hypophysentumoren ist die derzeitige Studienlage zumindest zu manchen klinischen Fragestellungen limitiert. Die Leitliniengruppe ist sich einig, dass ein strukturiertes, interdisziplinäres Vorgehen für eine optimale Patientenversorgung essentiell ist. Die hier von 12 medizinischen Fachgesellschaften und einer Patienten-Selbsthilfegruppe vorgelegte Leitlinie hat das Ziel, auf Basis internationaler Leitlinien und aktueller Publikationen praxistaugliche Empfehlungen zum Management von Patienten mit hormoninaktiven Hypophysentumoren zur Verfügung zu stellen.

Die Leitlinie besteht aus folgenden Dokumenten:

- Langversion mit Empfehlungstexten, Hintergrundinformationen und ausführlichem Bericht zur Methodik (Leitlinienreport).
- Kurzversion mit den wichtigsten Empfehlungen und Tabellen in Kurzform.
- Zusammenfassung der Leitlinie als gezielte Information für Patienten.

Alle drei Dokumente sind im Internet frei verfügbar (http://awmf-leitlinien.de, AWMF-Registernummer 089-002).

2. Leitlinienreport

I. Geltungsbereich und Zweck

Zielorientierung der Leitlinie

Die Leitlinie dient der Verbesserung von Diagnose, Therapie und Nachsorge bei Patienten mit hormoninaktiven Hypophysentumoren.

<u>Patientenzielgruppe</u>

Die Leitlinie gibt Empfehlungen für erwachsene Patienten mit hormoninaktiven Hypophysentumoren.

Versorgungsbereich

Die Leitlinie gilt sowohl für die ambulante als auch die stationäre medizinische Versorgung in Deutschland und behandelt Diagnostik, Therapie und Nachsorge in der primär- und spezialärztlichen Anbindung.

Anwenderzielgruppe

Zum Adressatenkreis der Leitlinie gehören alle Ärzte, die an der Beratung, Diagnostik, Therapie und Nachsorge von Patienten mit hormoninaktiven Hypophysentumoren beteiligt sind (insbesondere, aber nicht ausschließlich Augenärzte, Endokrinologen, Internisten, Neurologen Neurochirurgen, Neuropathologen, Neuroradiologen, Psychiater/Psychologen und Strahlentherapeuten). Weiterhin ist die Leitlinie zur Information für Interessierte bestimmt, welche ebenfalls in die Begleitung entsprechender Patienten involviert sind (z.B. Allgemeinmediziner oder Gynäkologen).

Die Leitlinie kann aber auch interessierten Patienten helfen, ihren Kenntnisstand über Diagnostik und Therapie von Hypophysentumoren zu verbessern und ihnen damit eine partizipative Entscheidungsfindung zu ermöglichen.

Sämtliche Leitlinien der wissenschaftlichen medizinischen Fachgesellschaften sind für Ärzte rechtlich nicht bindend und haben daher weder haftungsbegründende noch haftungsbefreiende Wirkung.

Was im juristischen Sinne den ärztlichen Standard in der konkreten Behandlung eines Patienten darstellt, kann nur im Einzelfall entschieden werden.

II. Zusammensetzung der Leitliniengruppe und Beteiligung von Interessensgruppen

Die Leitlinie wurde federführend durch die Deutsche Gesellschaft für Endokrinologie (DGE) erstellt, die als Koordinatoren Martin Fassnacht (Würzburg) und Cornelia Jaursch-Hancke (Wiesbaden) beauftragte. Timo Deutschbein (Würzburg) fungierte als Leitliniensekretär und wurde unterstützt von Katharina Spek (Würzburg) als studentischer Hilfskraft. Im Auftrag der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF) stand Cathleen Muche-Borowski zur methodischen Beratung zur Verfügung und übernahm die Moderation der drei Treffen der Leitlinienkommission (inklusive der abschließenden Konsensuskonferenz).

Das Leitlinienvorhaben wurde nach der Anmeldung 2017 auf der Webseite der AWMF veröffentlicht. Die für das Fachgebiet relevanten Fachgesellschaften und Patientengruppen wurden angeschrieben

und um die Nennung von Mandatsträgern gebeten. Folgende Fachgesellschaften, Arbeitsgruppen und Patientenvertretungen nahmen an der Leitlinienentwicklung teil (**Tabelle 1**):

Fachgesellschaft	Mandatsträger
Arbeitsgemeinschaft Hypophyse der Deutschen Gesellschaft für Endokrinologie (AG Hypophyse)	Timo Deutschbein, <u>Jörg Flitsch</u> , Ulrich J. Knappe, Wolfgang Saeger
Berufsverband deutscher Internisten (BDI)	Cornelia Jaursch-Hancke
Deutsche Gesellschaft für Radioonkologie (DEGRO)	Nils H. Nicolay
Deutsche Gesellschaft für angewandte Endokrinologie (DGAE)	<u>Jörg Bojunga,</u> Michael Buchfelder
Deutsche Gesellschaft für Endokrinologie (DGE)	Martin Fassnacht, Cornelia Jaursch-Hancke, Matthias M. Weber
Deutsche Gesellschaft für Innere Medizin (DGIM)	Martin Reincke
Deutsche Gesellschaft für Neurologie (DGN)	Ilonka Kreitschmann-Andermahr
Deutsche Gesellschaft für Neurochirurgie (DGNC)	Rüdiger Gerlach, <u>Jürgen Honegger</u> , Gerhard Horstmann
Deutsche Gesellschaft für Neuropathologie und Neuroanatomie e.V. (DGNN)	Arend Koch, Werner Paulus
Deutsche Gesellschaft für Neuroradiologie (DGNR)	Manuel Schmidt
Deutsche Gesellschaft für Psychologie (DGPS)	Beate Ditzen
Deutsche Ophthalmologische Gesellschaft (DOG)	Wolf Lagrèze, Helmut Wilhelm
Netzwerk Hypophysen- und Nebennierenerkrankungen e.V.	Elfriede Gertzen, <u>Mirjam Kunz</u>

Tabelle 1: Aufstellung der an der Leitlinienerstellung mitwirkenden Fachgesellschaften (in alphabetischer Reihenfolge). Die Namen der stimmberechtigten Hauptrepräsentanten der einzelnen Fachgesellschaften sind jeweils unterstrichen.

Die Deutsche Gesellschaft für Allgemeinmedizin (DEGAM) und die Deutsche Gesellschaft für Gynäkologie und Geburtshilfe (DGGG) sagten ihre Teilnahme ab.

Beim Kick-Off-Meeting der Leitlinienkommission, welches am 19. Juni 2018 in Frankfurt (Main) erfolgte, wurden die wesentlichen inhaltlichen Fragen festgelegt. Abschließend wurden aus dem Kreis der Kommissionsmitglieder heraus insgesamt 7 Arbeitsgruppen gebildet, welche primär die zuvor besprochenen Themenbereiche bearbeiteten (**Tabelle 2**):

Arbeitsgruppe	Themengebiet	Teilnehmer
1	Präambel, Leitlinienreport und Definition	Martin Fassnacht, Ulrich J. Knappe, Wolfgang Saeger
2	Diagnostik	Jörg Bojunga, Michael Buchfelder, <u>Cornelia Jaursch-Hancke</u> , Ilonka Kreitschmann-Andermahr, Wolf Lagrèze, Manuel Schmidt, Matthias M. Weber
3	Therapie	Jörg Flitsch, Jürgen Honegger, Gerhard Horstmann, Rüdiger Gerlach, <u>Ulrich J. Knappe</u> , Nils H. Nicolay, Martin Reincke
4	Pathologie	Arend Koch, <u>Wolfgang Saeger</u>
5	Nachsorge	<u>Timo Deutschbein,</u> Jörg Flitsch, Wolf Lagrèze, Nils H. Nicolay, Martin Reincke, Manuel Schmidt
6	Beratung und Schulung	Martin Fassnacht, Elfriede Gertzen, <u>Mirjam Kunz</u>
7	Besondere Personengruppen	Timo Deutschbein, <u>Jörg Flitsch</u> , Rüdiger Gerlach

Tabelle 2: Aufstellung der im Rahmen der Leitlinienerstellung konstituierten Arbeitsgruppen (Angabe der jeweiligen Teilnehmer in alphabetischer Reihenfolge). Die Namen der Hauptverantwortlichen der einzelnen Arbeitsgruppen sind jeweils unterstrichen.

III. Methodik

Festlegung der klinisch relevanten Fragen, Literaturrecherche und Auswahl der Evidenz

Beim ersten Treffen der Leitlinienkommission am 19. Juni 2018 in Frankfurt (Main) wurden die wesentlichen klinischen Fragen festgelegt, welche durch die Leitlinie beantwortet werden sollen. Diese Fragen wurden 7 Untergruppen zugeordnet, die sich in der Gliederung der weiter unten aufgeführten Empfehlungen wiederfinden. Insbesondere wird zu folgenden übergeordneten Fragen Stellung bezogen:

- Welche Diagnostik ist zur Abklärung von Hypophysentumoren der notwendige Standard?
- Wann besteht die Indikation zu einer Operation, einer Strahlentherapie oder einer medikamentösen Therapie bzw. wann kann beobachtend zugewartet werden?
- Welche Punkte sind bei der Nachsorge zu beachten (inklusive Beratung und Schulung der Patienten)?

Bei der Erstellung der Leitlinie wurde nicht nur auf die bereits vorhandenen internationalen Leitlinien (1-13), sondern auch auf eine umfangreiche Primärliteratur zurückgegriffen. Die Literatursuche erfolgte dabei durch die einzelnen Arbeitsgruppen, z.B. mittels geeigneter Suchhilfen wie PubMed (https://www.ncbi.nlm.nih.gov/pubmed/).

Formulierung der Empfehlungen und strukturierte Konsensfindung

Auf Grundlage der Literatur wurden durch die oben genannten Arbeitsgruppen Empfehlungen und Hintergrundtexte erarbeitet. Diese wurden zunächst im Umlaufverfahren innerhalb der einzelnen Arbeitsgruppen abgestimmt.

Gemäß der AWMF-Richtlinien erfolgte die Graduierung der Empfehlungen über die Formulierungen "soll", "sollte" und "kann" (**Tabelle 3**):

Syntax	Beschreibung
soll	starke Empfehlung
sollte	Empfehlung
kann	offene Empfehlung

Tabelle 3: Schema zur Graduierung von Leitlinien-Empfehlungen. Negative Empfehlungen sind entsprechend umzuformulieren.

Alle Empfehlungen sowie z.T. auch Inhalte des Erläuterungstexts wurden sowohl bei dem zweiten Treffen der Leitlinienkommission am 19. Februar 2019 als auch auf der Konsensuskonferenz am 25. Juni 2019 diskutiert und dann abschließend verabschiedet. Der Ablauf der Konsensuskonferenz gestaltete sich dabei im Sinne eines nominalen Gruppenprozesses wie folgt:

- Präsentation der zu konsentierenden Aussagen bzw. Empfehlungen;
- Registrierung der Stellungnahmen im Umlaufverfahren und Zusammenfassung von Kommentaren durch den Moderator;
- Vorabstimmung über Diskussion der einzelnen Kommentare Erstellung einer Rangfolge;
- Debattieren bzw. Diskussion der Diskussionspunkte;
- Endgültige Abstimmung über jede Empfehlung und alle Alternativen;
- Schritte werden für jede Empfehlung wiederholt.

Alle Empfehlungen wurden im Konsens bzw. starken Konsens verabschiedet. Die Konsensusstärke wurde dabei gemäß **Tabelle 4** festgelegt:

Konsens	Zustimmung (%)
starker Konsens	> 95
Konsens	> 75-95
mehrheitliche Zustimmung	50-75
kein Konsens	< 50

Tabelle 4: Schema zur Graduierung der Konsensusstärke im Rahmen der Beurteilung der Leitlinien-Empfehlungen.

Im Anschluss an die Konsensuskonferenz wurden die Kommentare zunächst unter Berücksichtigung der gefassten Beschlüsse durch die verschiedenen Arbeitsgruppen-Leiter modifiziert, bevor eine abschließende redaktionelle Überarbeitung der gesamten Leitlinie durch den Sekretär und die beiden Koordinatoren erfolgte.

IV. Externe Begutachtung und Verabschiedung

Die Leitlinie wurde am 06. November 2019 allen beteiligten Fachgesellschaften zur Stellungnahme vorgelegt und von diesen bis zum 20. Dezember 2019 endgültig verabschiedet. Durch die AWMF erfolgte anschließend eine externe formale Beurteilung.

V. Redaktionelle Unabhängigkeit und Umgang mit Interessenskonflikten

Die Leitlinie wurde von der DGE initiiert; alle anfallenden Kosten wurden ausschließlich von der DGE und den beteiligten Fachgesellschaften finanziert.

Vor Beginn der Konsensuskonferenz legten alle Teilnehmer ihre Interessenkonflikte offen (siehe Dokument im **Anhang**). Hierfür wurden Interessenkonflikte schriftlich mithilfe eines Formblattes der AWMF (in der Version aus 2018) erfasst und der Leitliniengruppe tabellarisch zur Verfügung gestellt.

Das Formblatt hatte dabei direkte finanzielle und indirekte Interessen zum Inhalt. Im Speziellen wurde nach Berater- bzw. Gutachtertätigkeiten, der Mitarbeit in wissenschaftlichen Beiräten, Vortrags- bzw. Schulungstätigkeiten, Autoren- bzw. Coautorenschaften, Forschungsvorhaben bzw. Durchführung klinischer Studien sowie Eigentümerinteressen (Patent, Urheberrecht, Aktienbesitz) gefragt. Darüber hinaus mussten Angaben zu Mitgliedschaften bzw. Funktionen in Interessenverbänden, den Schwerpunkten wissenschaftlicher Tätigkeiten bzw. Publikationen, den Schwerpunkten der klinischen Tätigkeiten, federführenden Beteiligung an Fortbildungen bzw. Ausbildungsinstituten sowie persönlichen Beziehungen zu Vertretungsberechtigten eines Unternehmens der Gesundheitswirtschaft gemacht werden.

Die von den Teilnehmern angegebenen Interessenskonflikte wurden von den beiden Leitlinienkoordinatoren bewertet und in allen Fällen als nicht relevant eingestuft. Die Interessenskonflikte der beiden Leitlinienkoordinatoren wurden von diesen gegenseitig begutachtet und ebenfalls als unkritisch eingeschätzt. Zusammenfassend musste daher keiner der Teilnehmer von Abstimmungen ausgeschlossen werden. Im Fall von Enthaltungen waren diese durch eine freiwillige Entscheidung der Teilnehmer begründet.

VI. <u>Verbreitung und Implementierung</u>

Die Leitlinie wird auf den Homepages der DGE (www.endokrinologie.net) und der AWMF (www.awmf.com) zum freien Download zur Verfügung gestellt. Eine ins Englische übersetzte Version der Leitlinie wird in der Zeitschrift "Experimental and Clinical Endocrinology and Diabetes" publiziert. Die Leitlinienempfehlungen werden darüber hinaus auf den Kongressen und themenbezogenen Fortbildungsveranstaltungen der beteiligten Fachgesellschaften vorgestellt. Zusätzlich gibt es eine Informationsbroschüre für Patienten, die die wesentlichen Aspekte der Leitlinie laienverständlich zusammenfasst.

VII. <u>Gültigkeitsdauer und Aktualisierungsverfahren</u>

Die letzte inhaltliche Überarbeitung dieser Leitlinie erfolgte im Dezember 2019. Veröffentlicht wurde die Leitlinie im Januar 2020. Die Gültigkeit beträgt 5 Jahre (bis Dezember 2024). Bei veränderter Datenlage erfolgt ggf. auch eine frühere Überarbeitung der Leitlinie. Das Aktualisierungsverfahren wird durch die DGE koordiniert.

3. Definition und allgemeine Empfehlung

I. <u>Definition</u>

Hypophysentumoren sind bei Erwachsen häufig und bis auf seltene Ausnahmen gutartig (siehe Details **Tabelle 5**). Autopsie-Studien lassen in der Allgemeinbevölkerung eine Prävalenz von ca. 10 % vermuten (14,15). In radiologischen Studien wird eine sehr variable Prävalenz von 4-38 % beschrieben (16-20). Viele dieser Tumoren werden klinisch allerdings nicht auffällig bzw. werden zufällig im Rahmen einer zerebralen Bildgebung entdeckt, welche aus einem anderen Grund als der Tumorsuche erfolgte (sog. "Inzidentalome"). Über 85% aller Tumoren in der Hypophysenregion sind Hypophysenadenome. Ein Teil dieser Adenome ist hormonproduzierend, wobei auf diese Tumoren in der vorliegenden Leitlinie nicht näher eingegangen wird.

Im Fokus stehen stattdessen die klinisch hormoninaktiven Tumoren, von denen beide Geschlechter ungefähr gleich häufig betroffen sind. Bei genauer Aufarbeitung durch den (Neuro-)Pathologen kann eine Untergruppe klassifiziert werden, bei der immunhistochemisch ein Hormonnachweis gelingt, das Hormon aber nicht in relevanter Menge in die Zirkulation abgegeben wird. Auch diese Adenome gehören im Kontext dieser Leitlinie zur Gruppe der hormoninaktiven Hypophysentumoren. Auf die seltenen bzw. sehr seltenen Tumoren, die keine Adenome sind, wird primär aus differentialdiagnostischer Sicht eingegangen.

Während in Autopsiestudien weniger als 1 % der Tumoren größer als 1 cm sind, sind Raumforderungen dieser Größe in Bildgebungsstudien oft sogar bei der Mehrheit der Patienten zu finden (21,22). Deshalb ist zu vermuten, dass zum Teil doch klinische Symptome vorlagen, die die initiale Bildgebung mit getriggert haben bzw. es einen relevanten Publikationsbias gibt, da Expertenzentren gehäuft Patienten mit größeren Tumoren zugewiesen bekommen.

Obwohl diese Grenze natürlich arbiträr ist, hat es sich im klinischen Alltag durchgesetzt, Hypophysentumoren bei einer Größe von ≥ 1 cm als Makrotumoren (bzw. Makroadenome) bzw. bei einer Größe von < 1 cm entsprechend als Mikrotumoren (bzw. Mikroadenome) zu bezeichnen.

Da bei den klinisch inapparenten Raumforderungen häufig keine Operation notwendig ist, gibt es regelhaft auch keine pathologisch gesicherte und somit "endgültige" Diagnose. Da es keine verlässlichen Zahlen zur Inzidenz und Prävalenz dieser Tumoren gibt, haben wir uns bei den Angaben zur relativen Häufigkeit der (teils sehr seltenen) Differentialdiagnosen auf die große Datenbank des Deutschen Hypophysenregisters gestützt (**Tabelle 5**). Es sei allerdings auf den Umstand verwiesen, dass in diesem Register definitionsgemäß nur operierte Fälle dokumentiert werden.

Tumorentität	Relative Häufigkeit	
Formal gutartige Tumoren		
Hypophysenadenome - Hormoninaktive Adenome - Prolaktinome - Wachstumshormon-produzierende Adenome (Akromegalie) - ACTH-produzierende Adenome (M. Cushing) - TSH-produzierende Adenome - Gonadotropin-produzierende Adenome	86,6 %	
Kraniopharyngeome	3,1%	
Meningeome	1,3%	
Hypophysenhinterlappentumoren (Spindelzellonkozytom, Pituizytom, Granularzelltumor)	0,4%	
Zysten	4,5%	
Zysten der Rathke-Tasche	3,6%	
Arachnoid-Zysten	0,2%	
Dermoid-Zysten		
Kolloid-Zysten		
Hypophysen-Hyperplasie		
Laktotrope Hyperplasie (während der Schwangerschaft)		
Thyreotrope und gonadotrope Hyperplasie		
Andere Entitäten (Auswahl)		
Hypophysen-Abszess	0,3%	
Lymphozytische Hypophysitis		
Maligne Tumoren	1,6%	
Chordome	0,4%	
Chondrosarkome		
Hypophysenkarzinom		
Keimzelltumor (Germinom)		
Metastasen anderer Malignome (z.B. Bronchial- oder Mamma-Karzinom)	0,7%	
Taballa 5: Differentialdiagnesen von Hypophysontumeren haw Ursachen von Baumferderungs	·	

Tabelle 5: Differentialdiagnosen von Hypophysentumoren bzw. Ursachen von Raumforderungen in der Sella-Region (adaptiert nach (23)). Die Daten zur relativen Häufigkeit stammen aus dem deutschen Hypophysenregister mit insgesamt mehr als 11.000 operierten Tumoren. In diesem Register werden definitionsgemäß nur operierte Fälle berücksichtigt. Daher ist es offensichtlich, dass Prolaktinome und (kleine) gutartige hormoninaktive Raumforderungen (welche häufig nicht operiert werden) bzw. Tumoren, welche häufig transkraniell operiert werden, in diesem Register unterrepräsentiert sind.

II. Allgemeine Empfehlung

Empfehlung 3.1:

Jeder Patient mit neu nachgewiesenem oder bekanntem Hypophysentumor **soll** von einem interdisziplinären Team aus in der Behandlung von Hypophysentumoren erfahrenen Ärzten* diagnostiziert und behandelt werden.

Starker Konsens

* Obligat unter Einbezug von Endokrinologie, Neurochirurgie und (Neuro-)Radiologie, je nach Tumorgröße oder geplanter Intervention zusätzlich auch noch (Neuro-)Pathologie, Ophthalmologie und Strahlentherapie, bei speziellen Fragestellungen ggf. auch andere Fachdisziplinen (z.B. Gynäkologie, Neurologie und Psychologie).

Erläuterung

Bei Patienten mit Hypophysentumoren ist zur Gewährleistung einer adäquaten Diagnostik, Therapie und Nachsorge eine besondere Fachexpertise erforderlich, welche in der Regel nur durch eine interdisziplinäre Betreuung gegeben ist.

Auch wenn es keine prospektiven Studien gibt, ob ein interdisziplinäres Management das klinische Outcome der Patienten verbessert, so sind alle Mitglieder der Leitliniengruppe überzeugt, dass dies der Fall ist. Idealerweise werden alle Patienten in einer regelmäßigen interdisziplinären Fallkonferenz besprochen. Dieses interdisziplinäre Team umfasst nach unserer Auffassung obligat die Disziplinen Endokrinologie, Neurochirurgie und (Neuro-)Radiologie sowie je nach Tumorgröße oder geplanter Intervention zusätzlich auch noch (Neuro-)Pathologie, Ophthalmologie und Strahlentherapie. Bei speziellen Fragestellungen ist es zudem sinnvoll, andere Fachdisziplinen (z.B. Gynäkologie, Neurologie und Psychologie) zuzuschalten.

4. Diagnostik

Empfehlung 4.1:

Bei Patienten mit einem Hypophysentumor **sollen** eine ausführliche Anamnese und klinische Untersuchung zur Evaluation von Symptomen einer Hypophyseninsuffizienz bzw. eines Hormonexzesses sowie von lokalen Symptomen durch die Raumforderung durchgeführt werden.

Starker Konsens

Erläuterung

Anamnestische und klinische Hinweise auf eine Hypophyseninsuffizienz und/oder eine gesteigerte Hormonaktivität sind entscheidend für die weitere Diagnostik und können häufig schon beim Erstgespräch und/oder durch eine klinisch-körperliche Untersuchung entdeckt werden (6).

Bei Hypophysenadenomen nehmen v.a. deren Größe und Hormonaktivität auf die zu beobachtenden Beschwerden Einfluss. Insbesondere bei Makroadenomen können durch die Kompression von Nachbarstrukturen auch lokale Komplikationen wie Doppelbilder oder eine Beeinträchtigung von Visus und Gesichtsfeld beobachtet werden (24,25). Die Datenlage zu Kopfschmerzen als Symptom von hormoninaktiven Hypophysentumoren ist nicht eindeutig. Während einige Studien einen Zusammenhang zwischen Kopfschmerzen und strukturellen Eigenschaften des Hypophysentumors wie einer Invasion des Sinus cavernosus (26) oder hoch proliferativen Tumoren herstellten (27), konnten andere keine Beziehung zwischen Kopfschmerzen und Tumoreigenschaften aufdecken (28-30). Weitere Angaben zur Kopfschmerzproblematik können dem Kapitel 5 entnommen werden (siehe Erläuterung zu Empfehlung 5.3).

Beim Hypophysenapoplex hingegen sind plötzlich auftretende Kopfschmerzen ("thunderclap headache") zusammen mit plötzlich auftretenden Visus- und/oder Gesichtsfeldstörungen ein Leitsymptom (31).

Klinische Hinweise auf eine Hypophyseninsuffizienz liegen bei Erstdiagnose hormoninaktiver Makroadenome bereits bei 85 % der Patienten vor (5,32). Am häufigsten sind die gonadotrope und die somatotrope Achse betroffen (jeweils > 80 %) (5,33). Die Insuffizienz der gonadotropen Funktion führt bei Frauen vor der Menopause zu Zyklusstörungen und Amenorrhoe, bei Männern zu Libidoverlust und Erektionsstörungen. Wachstumshormon hat im Erwachsenenalter u.a. einen Einfluss auf den Stoffwechsel, weshalb Leistungsfähigkeit und Lebensqualität bei einem Mangel reduziert sein können. Studien, die isoliert die Folgen einer Beeinträchtigung der somatotropen Achse bei hormoninaktiven Hypophysen-Makroadenomen untersuchen, liegen bisher jedoch nicht vor (34). Der isolierte Ausfall der somatotropen Hormonachse ist beim Erwachsenen somit klinisch schwer zu fassen.

Störungen der übrigen Hypophysen-Partialfunktionen sind seltener. In 20-50 % der Makroadenome sind die thyreotrope und kortikotrope Achse betroffen. Eine thyreotrope Insuffizienz manifestiert sich mit Symptomen der Schilddrüsenunterfunktion, wie Gewichtszunahme, Müdigkeit, trockenem, struppigem Haar, Verstopfung, vermehrter Neigung zum Frieren und Ödembildung. Demgegenüber geht eine kortikotrope Insuffizienz üblicherweise mit Schwäche, Müdigkeit, Gewichtsverlust, Blässe und Anämie einher. Ein akuter Ausfall der kortikotropen Hormonachse kann zu einer lebensbedrohlichen Addison-Krise führen, welche sich mit Bauchschmerzen, Übelkeit, Erbrechen, Hypovolämie, Hypotonie, Hypoglykämie und Hyponatriämie bemerkbar macht. Grundsätzlich ist eine Addison-Krise als erster Hinweis auf ein hormoninaktives Hypophysenadenom ein seltenes Symptom.

Das erste (und ggf. auch einzige) Anzeichen einer kortikotropen Insuffizienz kann das Syndrom der inadäquaten ADH-Sekretion (SIDAH) darstellen (35). Da Cortisol der stärkste Inhibitor der Vasopressin-Sekretion ist, führt ein Mangel an Cortisol teilweise zu einem SIADH mit klinischen Symptomen wie Übelkeit, Kopfschmerzen, Erbrechen (als Korrelat von euvolämer Hyponatriämie bei verminderter

Serumosmolalität und erhöhter Natrium-Konzentration im Urin) einher. Bei ausgeprägter Hyponatriämie kommt es aber auch zu Bewusstseinsveränderungen, Myoklonien und epileptischen Anfällen.

Das Auftreten eines Diabetes insipidus ist in der Regel ein Hinweis dafür, dass es sich nicht um ein Hypophysenadenom handelt (36,37). Stattdessen ist in diesen Fällen eher an andere tumoröse, entzündliche oder infiltrative Hypophysenprozesse wie Kraniopharyngeome, Hypophysitiden, Germinome, Metastasen o.ä. zu denken (38).

Klinische Hinweise auf eine Hormonaktivität werden primär durch die jeweils gesteigerte Hormonsekretion getriggert und können teilweise sehr variabel sein. Die häufigsten hormonaktiven Hypophysenadenome sind Prolaktinome (32-66%), Wachstumshormon- (GH-) produzierende Adenome (Akromegalie 8-16%) und adrenocorticotropes Hormon- (ACTH-) produzierende Adenome (Morbus Cushing, 2-6%). Eine Mehrsekretion von thyreotropem Hormon (TSH) bzw. luteinisierendem Hormon (LH) und/oder follikelstimulierendem Hormon (FSH) (welche dann als TSH-om oder Gonadotropinom bezeichnet werden) ist sehr selten (24,34).

Leitsymptome von Prolaktinomen sind Amenorrhoe, Libidoverlust, Galaktorrhoe und Infertilität bei Frauen bzw. erektile Dysfunktion, Libidoverlust und Infertilität bei Männern (39). Hinweise auf GH-produzierende Adenome können neben einer Vergrößerung von Akren (also der stammfernen Körperspitzen wie Händen, Füßen, Unterkiefer, Lippen und Nase) oder inneren Organen (im Sinne einer Organomegalie) auch ansonsten eher unspezifische Symptome (z.B. starkes Schwitzen, Schnarchen, Gelenkbeschwerden oder Carpaltunnelsyndrom) sein (8). Bei ACTH-produzierenden Adenomen sind proximal betonte Myopathie, Plethora, Gefäßfragilität mit Blutungsneigung, stammbetonte Adipositas, dünne Haut und Striae rubrae, als charakteristische Zeichen zu nennen (12). Zusätzlich liegt häufig ein Diabetes mellitus, erhöhter Blutdruck und bei Frauen ein Hirsutismus vor. Typisch für TSH-produzierende Adenome sind wiederum Anzeichen einer (mäßig) ausgeprägten Hyperthyreose mit Tachykardie, vermehrtem Schwitzen und Gewichtsabnahme (40). FSH/LH produzierende Adenome sind klinisch meist unauffällig, können aber selten eine ovarielle Überstimulation bzw. Amenorrhoe (bei prämenopausalen Frauen) oder durch eine vorzeitige Pubertät bzw. Folgen eines Hypogonadismus (beim männlichen Geschlecht) auffallen (41,42).

Empfehlung 4.2:

Bei Patienten mit einem klinisch hormoninaktiven Hypophysentumor **soll** eine laborchemische Sicherung der Diagnose hormoninaktiver Hypophysentumor erfolgen.

Eine mögliche Hormonaktivität **soll** durch basale morgendliche Messung von Prolaktin, TSH, freiem T4 (fT4), freiem T3 (fT3), LH, FSH, Gesamt-Testosteron (bei Männern) bzw. Östradiol (bei prämenopausalen Frauen), IGF-1, und einen 1 mg Dexamethason-Test abgeklärt werden.

Starker Konsens

Empfehlung 4.3:

Bei Makroadenomen **soll** die Hypophysenfunktion in Bezug auf eine Hypophyseninsuffizienz überprüft werden. Hierzu gehören eine basale morgendliche Messung von TSH, freiem fT4, fT3, LH, FSH, Gesamt-Testosteron (bei Männern) bzw. Östradiol (bei prämenopausalen Frauen), Cortisol und IGF-1.

Bei Auffälligkeiten **soll** eine weitere Funktionstestung erfolgen.

Auch größere Mikroadenome (mit einer Größe von 6-9 mm) führen ggf. zu einer Hypophyseninsuffizienz und **sollten** deshalb auch hinsichtlich einer Funktionsstörung laborchemisch untersucht werden.

Starker Konsens

Erläuterung

Die Interpretation der Hormondiagnostik ist teilweise schwierig. Daher ist die Beurteilung der basalen Werte und der Funktionstests durch einen in Hypophysen-Erkrankungen erfahrenen Arzt vorzunehmen.

Auch bei klinisch hormoninaktiven Hypophysenadenomen kann eine autonome Hormonproduktion vorliegen und ist durch die o.g. Hormondiagnostik abzuklären (5,34,37,43).

Der Ausschluss eines Prolaktinoms steht aufgrund der Häufigkeit und der therapeutischen Konsequenzen im Vordergrund. Bei Nachweis eines Makroadenoms ist ein Prolaktin-Wert von > 250 μ g/l nahezu beweisend für ein Makroprolaktinom (3,5,11). Bei hormoninaktiven Makroadenomen kann eine Hyperprolaktinämie auch durch eine Verlagerung bzw. Kompression des Hypophysenstiels entstehen, welche konsekutiv hemmende Einflüsse des Dopamins auf die laktotropen Zellen des Hypophysenvorderlappens reduziert. Somit kommt es zu erhöhten Prolaktin-Werten, welche jedoch regelhaft unter 100 μ g/l liegen (11).

Bei der Labordiagnostik ist insbesondere bei nicht eindeutiger Anamnese bzw. Klinik zu beachten, dass Immunoassays mit biologisch inaktiven Komplexen aus Prolaktin und anti-Prolaktin-IgG (big-big-Prolaktin/Makroprolaktin) kreuzreagieren und so zu falsch positiven Messergebnissen führen können. Bei Nachweis einer Hyperprolaktinämie und Verdacht auf einen falsch positiven Befund ist deshalb durch Fällung mit Polyethylenglykol (PEG) eine Makroprolaktinämie auszuschließen (44,45).

Bei gesicherter Hyperprolaktinämie ist es insbesondere bei sehr großen Adenomen empfehlenswert, durch das Labor eine Verdünnungsreihe anfertigen zu lassen, um einen "High-Dose-Hook"-Effekt auszuschließen (11). Darunter ist ein Messartefakt zu verstehen, welches bei Vorliegen sehr hoher Prolaktin-Konzentrationen zu einer Übersättigung der im Immunoassay eingesetzten Antikörper und somit zu falsch niedrigen Messergebnissen führen kann. Große Prolaktinome können so sicher von großen hormoninaktiven Makroadenomen unterschieden werden.

Bei Mikroprolaktinomen liegt der Prolaktin-Wert stets < 250 µg/l. Differentialdiagnostisch müssen aber andere Ursachen der Hyperprolaktinämie ausgeschlossen werden, um ein Mikroprolaktinom sicher von einem hormoninaktiven Mikroadenom zu unterscheiden. Viele Medikamente (v.a. Psychopharmaka), Faktoren (z.B. Stress, Geschlechtsverkehr, Palpation der Mammae) und Erkrankungen (z.B. schwere internistische Komorbiditäten wie Leber- oder Niereninsuffizienz bzw. Endokrinopathien wie eine Hypothyreose) können zu einer Hyperprolaktinämie führen (11).

Als Screeningtest einer Akromegalie ist der IGF-1 Wert geeignet (6), wohingegen die GH-Konzentration zahlreichen äußeren Einflüssen unterliegt und sich deshalb nicht zum Ausschluss oder Nachweis einer Akromegalie eignet. Ein Cushing-Syndrom wird mit hoher Sensitivität durch den 1 mg Dexamethason-Test abgeklärt (einmalige Durchführung ausreichend, dann Einnahme von 1 mg Dexamethason um 23 Uhr und Blutentnahme auf Serumcortisol am Folgemorgen um 8-9 Uhr). Alternativ kann auch zweimal das freie Cortisol im 24 Stunden Sammelurin oder das Speichel-Cortisol um Mitternacht ("bed-time") bestimmt werden (12,46,47). Klinisch relevant Gonadotropin-produzierende Hypopyhsenadenome sind selten und werden durch die Kombination aus Klinik und Labor (mit Bestimmung von LH, FSH und Sexualhormonen) diagnostiziert (42). Die Diagnose eines extrem seltenen TSH-oms ist durch Bestimmung von TSH und peripheren Schilddrüsenhormonwerten möglich. Ein zusätzlich wegweisender Befund für das TSH-om ist der erhöhte Nachweis der sog. alpha-Subunit (a-SU) (42).

unabhängig von klinischen Symptomen kann eine partielle oder vollständige Hypophyseninsuffizienz vorliegen, die demnach abzuklären ist (6,10). Das Risiko einer Hypophyseninsuffizienz hängt dabei unmittelbar mit der Größe des Hypophysenadenoms zusammen (6,37). Die überwiegende Zahl der nachweisbaren Insuffizienzen findet sich bei Makroadenomen (5). Bei Mikroadenomen bis zu 5 mm ist eine Hypophyseninsuffizienz selten, so dass eine routinemäßige Funktionsprüfung nicht zwingend zu empfehlen ist (6). Größere Mikroadenome (6-9 mm) können zu einer Hypophyseninsuffizienz führen und sind deshalb auch hinsichtlich einer Funktionsstörung laborchemisch zu untersuchen (6).

Zur Beurteilung der kortikotropen Funktion erfolgt im ersten Schritt eine Bestimmung des basalen morgendlichen Serum-Cortisols:

- Basales Serum-Cortisol ≤ 4,0 µg/dl (110 nmol/l): hochwahrscheinlicher Nachweis einer sekundären Nebennierenrinden-Insuffizienz.
- Basales Serum-Cortisol ≥ 15,0 µg/dl (414 nmol/l): hochwahrscheinlich suffiziente kortikotrope Achse.
- Bei Nachweis eines basalen Serum-Cortisols im diagnostischen Graubereich (d.h. 4,1-14,9 μg/dl (111-413 nmol/l)) ist eine dynamische Funktionstestung zu veranlassen (Goldstandard: Insulin-Hypoglykämie-Test, alternativ: Metopyron-Test, ACTH-Test (unter Einsatz von 250 mg Synacthen®) oder Corticotropin-Releasing-Hormon-Test (CRH-Test) (47-50).

Das pathognomonisch erniedrigte bzw. inadäquat niedrige TSH ist im Kontext einer sekundären Hypothyreose alleine kein geeigneter Parameter. Stattdessen muss hier primär fT4 Berücksichtigung finden. Werte im unteren Referenzbereich sind bei gleichzeitigem Hinweis auf den Ausfall anderer Hypophysenachsen als thyreotrope Insuffizienz zu werten. Die Durchführung eines Funktionstests mit Thyrotropin Releasing-Hormon (TRH) bringt keinen weiteren Erkenntnisgewinn und ist deshalb obsolet (51).

Die Evaluation der gonadotropen Funktion erfolgt durch die Zusammenschau der Gonadotropine LH und FSH sowie der geschlechtsspezifischen Sexualhormone (Gesamt-Testosteron bei Männern bzw. Östradiol bei prämenopausalen Frauen). Bei postmenopausalen Frauen ist eine Bestimmung des Östradiols nicht erforderlich, da hier die alleinige Bestimmung der physiologisch erhöht nachweisbaren Gonadotropine ausreichend ist. Die Blutentnahme zur Bestimmung des Gesamt-Testosterons erfolgt dabei idealerweise nüchtern und bis spätestens 10 Uhr vormittags. Für die Durchführung eines Stimulationstests mit Gabe von Luteinisierendes Hormon Releasing-Hormon (LH-RH) gibt es in der Regel keine Notwendigkeit (51).

Tabelle 6 gibt die im Rahmen der endokrinologischen Diagnostik sinnvollen Parameter nochmals wieder.

Laborparameter

- Prolaktin
- TSH, fT4, fT3
- LH, FSH, Sexualhormone
 - bei prämenoplausalen Frauen Östradiol
 - bei Männer Gesamt-Testosteron
- IGF-1
- Morgendliches basales Cortisol^A
- 1 mg Dexamethason-Test

Tabelle 6: Obligate Hormonparameter bei Erstdiagnose eines Hypophysentumors. Legende: ^A Cortisol ist nur bei Makroadenomen und großen Mikroadenomen (≥ 6mm) zu bestimmen, bei grenzwertigen Befunden sind Funktionstests erforderlich (weitere Informationen hierzu im Erläuterungstext).

Empfehlung 4.4:

Zum bildgebenden Nachweis und zur Charakterisierung von Hypophysentumoren **soll** die Diagnostik mittels Magnetresonanztomographie der Sella erfolgen.

Starker Konsens

Erläuterung:

Die Magnetresonanztomographie (MRT, auch Kernspintomographie) bietet im Vergleich zur Computertomographie (CT) eine genauere Darstellung von Läsionen der Sella und der suprasellären Region. Deshalb hat sich das MRT als Goldstandard in der Diagnostik von Hypophysenadenomen durchgesetzt (52,53).

Ein mögliches Protokoll für eine MRT-Bildgebung der Sellaregion (inklusive Angaben zu dynamischen Kontrastmittel-Sequenzen) ist in **Tabelle 7** dargelegt.

Die Mitglieder der Leitliniengruppe machen auf den besonderen Nutzen sagittaler T2-gewichteter Aufnahmen (diese sind in den Standardprotokollen bisher häufig nicht enthalten) sowie auf die Verwendung der halben Kontrastmittel-Dosis bei Mikroadenomen (Sichtung der nativen Aufnahmen vor KM-Applikation) aufmerksam.

Die Diagnose eines Makroadenoms (Größe ≥ 1 cm) ist morphologisch unproblematisch. Die MRT-Untersuchung hat hier v.a. die Aufgabe, potentielle Beeinträchtigungen von Umgebungsstrukturen zu erkennen (z.B. Infiltration des Sinus cavernosus, Ummauerung oder Kompression der Arteria carotis interna, Kompression des Chiasma opticum bzw. des Nervus opticus oder des Tractus opticus, Einbruch in den Clivus oder den Sinus sphenoidalis). Deshalb müssen diese anatomischen Strukturen eindeutig identifizierbar sein, andernfalls ist die Bildgebung zu wiederholen. Makroadenome führen oft zu einer Vergrößerung der Sella.

10-15 % der Hypophysenadenome zeigen Einblutungen (54). Am häufigsten wird dies bei Makroadenomen unter Bromocriptin-Therapie oder während der Schwangerschaft beobachtet (53). Bei akuten Einblutungen kann sich eine Spiegelbildung zeigen. Einblutungen in die Hypophyse können aber auch primär, posttraumatisch oder im Rahmen viraler Erkrankungen auftreten.

Das typische Mikroadenom (Größe <1 cm) erscheint mehrheitlich in T1w nativ hypointens und bleibt auch nach Kontrastmittel-Gabe hypointens (52,55). In T2w sind Mikroadenome oft etwas hyperintens. Nach Kontrastmittel-Gabe wird häufig die reduzierte Kontrastmittel-Aufnahme im Vergleich zum Normalgewebe der Adenohypophyse sichtbar. Die einseitige Anhebung des Diaphragma sellae oder die einseitige Absenkung des Sellabodens sowie die Verlagerung des Infundibulums zur Gegenseite können indirekte Zeichen für das Vorliegen eines Mikroadenoms sein.

Entscheidend für die Diagnostik des Mikroadenoms ist eine zusätzliche dynamische Untersuchung mit schnellen, repetitiven, coronaren, T1w-Sequenzen, die die verminderte Kontrastmittel-Anreicherung des Adenomgewebes im Vergleich zu normalem Hypophysengewebe zeigen kann (55-58).

Um Hypophysenadenome sicher von der Vielzahl anderer sellärer Raumforderungen (siehe **Tabelle 5**) abzugrenzen, bedarf es einer großen Erfahrung in der Beurteilung der MRT-Bilder der Sellaregion (37).

	Beschreibung
	Eine Feldstärke von mindestens 1,5 und idealerweise 3 Tesla (T) [51], eine Schichtdicke von 1,5-2 mm, einen kleinen Bildwinkel ("Field of View", FoV), eine hohe Matrix und in-Plane idealerweise eine Auflösung von 0,5 x 0,5 mm T2-Wichtung (T2w) in coronarer Schichtung, ausgerichtet nach dem Infundibulum (sagittaler T2w Localizer); ergänzend mindestens eine zweite Ebene in axialer oder sagittaler Schichtung
MRT-Charakateristika	T1-Wichtung (T1w) coronar und sagittal nativ
	T1w coronar und sagittal nach intravenöser Kontrastmittel-Gabe (z.B. 0,05 mmol/kg Körpergewicht (bei Mikroadeomen) bzw. 0,1 mmol/kg Körpergewicht (bei Makroadenomen) eines Gadolinium-haltigen Kontrastmittels) (25,59)
	3D T1 MPRAGE Volumendatensatz mit 1 mm isotroper Voxelgröße nach intravenöser Kontrastmittelgabe
	Flussrate des Kontrastmittels: 2 ml/s
	Zeitpunkt der Injektion: Beginn der 2. dynamischen Messung
	Dauer der dynamischen Messung: max. 30 s
Kontrastmittel-Gabe	Anzahl der Messungen: 6-8
	MRT-Sequenz: coronare T1 Turbo-Spin-Echo
	Voxelgröße: 0,5 x 0,5 x 2 mm
	Spülung: 20 ml NaCl-Flush mit einer Flussrate von 2,0 ml/s

Tabelle 7: Mögliches Protokoll für eine MRT-Bildgebung der Sellaregion.

Sollten Kontraindikationen, wie zum Beispiel ein implantierter Herzschrittmacher oder nicht MRtaugliche Metallimplantate gegen eine bildgebende Diagnostik mittels MRT sprechen, so ist eine Untersuchung der Sellaregion mittels Computertomographie durchzuführen. Idealerweise sollte dann ein Volumendatensatz mit möglichst kleiner Kollimation (z.B. Spiral-CT mit 0.6 mm Schichtdicke) akquiriert und im Weichteil- sowie im Knochenfenster multiplanar rekonstruiert werden. Ggf. kann neben einer nativen Darstellung zusätzlich ein zweiter Datensatz nach intravenöser Applikation eines nichtionischen iodierten Röntgenkontrastmittels (z.B. lomeprol 400 mg lod/ml in einer Dosierung von 60 ml) akquiriert werden.

Empfehlung 4.5:

Bei Hypophysentumoren, die in der Magnetresonanztomographie einen Kontakt zur Sehbahn aufweisen, **soll** eine augenärztliche Diagnostik durchgeführt werden.

Starker Konsens

Erläuterung:

Bei Hypophysenmakroadenomen können z.T. bei mehr als der Hälfte der Fälle Sehstörungen bis hin zu Gesichtsfeldausfällen und Blindheit beobachtet werden. Bei invasivem Einwachsen in den Sinus cavernosus werden ggf. auch Doppelbilder berichtet. Da sich die Ausfälle langsam entwickeln und zum Teil durch das andere Auge kompensiert werden, werden sie von den Patienten nicht immer bemerkt (60). Studien zeigen, dass bei 5-15 % der Makroadenome Sehstörungen vorliegen, die von den Patienten subjektiv nicht wahrgenommen wurden (43).

Zur augenärztlichen Untersuchung gehören die Messung von Sehschärfe und Gesichtsfeld sowie eine Untersuchung des Fundus. Im Regelfall ist hierbei eine statische Perimetrie der zentralen 30 Grad des Gesichtsfeldes ausreichend. In Hinblick auf die Durchführung einer optischen Kohärenztomographie (OCT) sind die bisherigen Empfehlungen nicht einheitlich. Verschiedene Leitlinien erwähnen die OCT nicht oder halten die Durchführung mit Blick auf die Prognose des Visus für nicht essenziell (10,25).

Andere Autoren wiederum empfehlen die präoperative Durchführung einer OCT, da eine Opticusatrophie reproduzierbar quantifiziert werden kann und die Untersuchung somit einen besseren prognostischen Wert für die postoperative Erholung hat.

Doppelbilder aufgrund einer Hirnnervenlähmung sind als Hinweis auf einen Tumoreinbruch in den Sinus cavernosus zu werten. Geringer ausgeprägte Motilitätsstörungen werden durch eine Motilitätsanalyse in den neun Hauptblickrichtungen (z.B. an der Tangententafel) abgeklärt. Zu beachten ist aber, dass es auch ohne Augenbewegungsstörung zu Diplopie kommen kann, nämlich wenn es bei einer bitemporalen Hemianopsie zu einer Abweichung der Augenstellung (Exophorie) kommt. In diesem Fall wird die Motilitätsanalyse normal ausfallen.

5. Therapie

I. Vorgehen bei Erstdiagnose

Empfehlung 5.1:

Bei symptomlosen, hormoninaktiven Hypophysentumoren (< 1 cm) **soll** der Patient primär observierend begleitet werden ("wait and scan").

Bei symptomlosen, hormoninaktiven Hypophysentumoren (≥ 1 cm) kann der Patient meist primär observierend begleitet werden ("wait and scan").

Starker Konsens

Erläuterung:

Der Terminus "Hypophysentumor" schließt neben den Hypophysenadenomen auch andere hormoninaktive Raumforderungen der Sellaregion (wie z.B. Rathke'sche Taschenzysten und Kraniopharyngeome) ein (siehe auch **Tabelle 5** in **Kapitel 3**). Da ohne histologische Diagnose in manchen Fällen diese Unterscheidung radiologisch nicht möglich ist, gilt die vorliegende Leitlinie bei nicht operierten Fällen auch für die anderen Entitäten.

In einer Metaanalyse wurde der klinische Verlauf bei longitudinaler Beobachtung inzidentell diagnostizierter, nicht-funktioneller Hypophysenadenome analysiert (61). Pro 100 Patientenjahre wurde eine Größenzunahme bei 3,3 (Mikroadenome) bzw. 12,5 (Makroadenome) Fällen beobachtet. Die Inzidenz neuer endokriner Dysfunktionen betrug 2,4 und einer Gesichtsfeldverschlechterung 0,65 pro 100 Patientenjahre. Die Inzidenz einer Hypophysenapoplexie betrug 0,2 pro 100 Patientenjahre und war höher in Studien, die ein größeres mittleres Tumorwachstum (> 3,5 mm) beschrieben. Daraus kann abgeleitet werden, dass es bei Mikroadenomen nur sehr selten zu einer relevanten Größenzunahme kommt, während dies bei Makroadenomen deutlich häufiger der Fall ist. Die anderen analysierten Komplikationen sind in der Verlaufsbeobachtung hormoninaktiver Hypophysenadenome verhältnismäßig selten.

besteht bei inzidentell nachgewiesenen und symptomlosen, nicht-funktionellen Hypophysenadenomen die Möglichkeit einer "wait and scan"-Strategie. Bei asymptomatischen Patienten mit Hypophysenmikroadenom ist dies sogar die bevorzugte Variante. Vor- und Nachteile dieses Vorgehens gegenüber einer Operation sind mit dem Patienten ausführlich zu besprechen. Ein "wait and scan" wird meist bei intrasellären Adenomen oder Adenomen mit nur geringer suprasellärer Ausdehnung durchgeführt. Eine supraselläre Ausdehnung von > 5 mm oder eine beginnende Pelottierung des Chiasmas sind hingegen Argumente für eine operative Therapie. Eine supraselläre Ausdehnung eines Hypophysenadenoms von 8 mm auf der sagittalen MRT-Schnittebene stellt gemäß vorliegender Literatur einen praktikablen Grenzwert für das Auftreten von Sehstörungen dar (87,0 % Sensitivität, 72,4 % Spezifität) (62).

Bei klinisch hormoninaktiven Mikroadenomen wird prinzipiell ein "wait and scan" durchgeführt, da im Verlauf oft keine Größenzunahme beobachtet wird und nicht mit hypophysären Hormondefiziten oder sonstigen Komplikationen zu rechnen ist. Eine Studie untersuchte die Wachstumskinetik von 15 Patienten mit klinisch hormoninaktiven Hypophysenadenomen, die zur Operation zugewiesen wurden und von denen serielle bildgebende Untersuchungen vorlagen (63). Bei 9 Adenomen fand sich ein exponentielles und bei 5 Adenomen ein logistisches Wachstum (zunächst exponentielles Wachstum, dann Wachstumsverlangsamung), während ein Adenom keine Größenzunahme zeigte. Somit wachsen klinisch hormoninaktive Hypophysenadenome stetig entsprechend der beschriebenen Wachstumsmodelle es ist nicht mit einer zunehmenden Akzeleration Wachstumsgeschwindigkeit zu rechnen. Entsprechend können die Kontrollintervalle im Verlauf verlängert werden. Andererseits wird ein Wachstum bei geringer Wachstumsrate oft erst nach Jahren sichtbar.

Die empfohlenen Kontrollintervalle bei einer "wait and scan"-Strategie beruhen auf Expertenmeinung. Studien liegen hierzu nicht vor. Detaillierte Vorschläge zu den Nachsorgeintervallen bei nicht-operierten Patienten finden sich in **Kapitel 7**.

Empfehlung 5.2:

Bei symptomlosen, hormoninaktiven Hypophysentumoren **sollte** in der Regel keine medikamentöse Therapie mit Dopaminagonisten durchgeführt werden.

Sofern unklar ist, ob eine funktionelle Hyperprolaktinämie bei klinisch hormoninaktivem Adenom oder doch ein Prolaktinom vorliegt, **kann** ein zeitlich begrenzter Behandlungsversuch mit Dopaminagonisten erfolgen.

Die Verlaufskontrolle **sollte** sowohl endokrinologisch (mit Bestimmung des Prolaktin-Serumwertes) als auch radiologisch erfolgen.

Starker Konsens

Erläuterung:

Wegen der überschaubaren Anzahl publizierter Serien und somit vergleichsweise geringen Zahl an berichteten Fällen ist die Evidenz für eine Empfehlung zur Therapie von asymptomatischen hormoninaktiven Hypophysenadenomen mit Dopaminagonisten nicht ausreichend. Die größten Serien sind in einem aktuellen Review zusammengefasst (64): Bei Gabe von Dopaminagonisten fand sich in einer Studie mit 79 Fällen in 87 % keine Tumorprogression (38 % Schrumpfung, 49 % stabiler Tumor); nach 15 Jahren zeigte sich noch bei 81 % keine Progression (65). Bei Nachweis einer Größenzunahme des Adenoms kann eine off-label Therapie mit Dopaminagonisten erwogen werden, wenn das Operationsrisiko erhöht oder eine vollständige Entfernung des Adenoms wegen invasivem Charakter nicht zu erwarten ist.

Von 250 Patienten mit später histologisch nachgewiesenem hormoninaktiven Hypophysenadenom zeigten bei Erstpräsentation 44,8 % eine Hyperprolaktinämie. Unter diesen Patienten war der Prolaktin-Wert bei 73,2 % mild (Prolaktin < 50 μ g/I), bei 24,1 % moderat (Prolaktin 50-100 μ g/I) und nur bei 2,7 % deutlich (Prolaktin > 100 μ g/I) erhöht (66).

Die Abgrenzung von hormoninaktiven Hypophysenadenomen von Prolaktinomen bei Vorliegen einer leichten bis moderaten Hyperprolaktinämie kann jedoch im Einzelfall schwierig sein (67). Insofern erscheint in diesen unklaren Fällen ein Behandlungsversuch mit Dopaminagonisten gerechtfertigt. Im Verlauf ist nach 3-6 Monaten eine MRT- und Prolaktin-Kontrolle ratsam. Ein sehr rasches Absinken des Prolaktin-Wertes unter dopaminagonistischer Therapie und eine fehlende Größenabnahme des Hypophysenadenoms sprechen für eine funktionelle Hyperprolaktinämie bei hormoninaktivem Hypophysenadenom und gegen das Vorliegen eines Prolaktinoms.

In der täglichen Praxis zeigen sich immer wieder Fälle inaktiver Hypophysenadenome, die über längere Zeit fälschlicherweise mit Dopaminagonisten unter dem Verdacht eines Prolaktinoms behandelt wurden und bei denen im Verlauf eine Größenzunahme des Adenoms imponierte. Deshalb ist es essenziell, den Effekt einer Therapie mit Dopaminagonisten frühzeitig auch durch bildgebende Diagnostik zu evaluieren. Bei Hinweisen auf ein progredientes hormoninaktives Hypophysenadenom mit Begleit-Hyperprolaktinämie ist der Patient rechtzeitig einer operativen Therapie zuzuführen.

Empfehlung 5.3:

Bei einer (drohenden) Beeinträchtigung des Sehvermögens **soll** eine operative Behandlung des Hypophysentumors durchgeführt werden.

Tumoren, die ein signifikantes Größenwachstum aufweisen (v.a. in Bezug auf kritische Umgebungsstrukturen wie die Sehbahn), **sollten** operiert werden.

Der Nachweis einer relevanten Hypophyseninsuffizienz **kann** als Operationsindikation gewertet werden.

Hypophysentumoren sind selten die Ursache für Kopfschmerzen, weshalb eine Operationsindikation allein aufgrund dieses Symptoms zurückhaltend gestellt werden **sollte**.

Starker Konsens

Erläuterung:

Die Indikationen zur Operation von Hypophysentumoren ergeben sich aus den unterschiedlichen (drohenden) Komplikationen dieser Tumoren und werden von uns bewusst als unterschiedlich streng formuliert.

Die transsphenoidale Operation ist in der Regel die geeignete Erstlinientherapie symptomatischer hormoninaktiver Hypophysenadenome. Eine transkranielle Operation ist als Primäreingriff nur selten indiziert. Die Indikationsstellung hängt jedoch auch von der Präferenz des Chirurgen ab (68). Laut entsprechender Leitlinie des Congress of Neurological Surgeons wird die Indikation für transkranielle Operationen oder deren Kombination mit dem transsphenoidalen Zugang für invasive Hypophysenadenome mit ausgedehntem suprasellären, frontalen oder temporalen Wachstum gesehen (9). Bei Vorliegen eines Verschluss-Hydrocephalus kann ebenfalls der transkranielle Zugang indiziert sein (69).

Das Chiasma-Syndrom stellt dabei eine absolute Indikation zur Operation dar. Ist die Beeinträchtigung des Sehvermögens noch nicht eingetreten, aber droht diese, sehen wir auch eine eindeutige Operationsindikation.

Beobachtung eines klinisch hormoninaktiven Hypophysenadenoms wird die Bei initialer Operationsindikation dann gestellt, wenn im Verlauf eine signifikante Größenprogredienz beobachtet wird. Größenprogredienz ist schwierig zu definieren. Eine mögliche Definition ist eine Zunahme des Tumorvolumens im Vergleich zur Voruntersuchung. Das Tumorvolumen berechnet sich hierbei nach der Formel: $V = 4/3 * \pi * (a * b * c)$, wobei a/b/c die maximalen Tumordurchmesser in axialer, coronarer und sagittaler Schichtführung beschreiben. Alternativ und im klinischen Alltag verbreiteter kann der maximale Tumordurchmesser und der hierzu in der Schnittebene senkrechte Durchmesser im radiologischen Befund angegeben werden. Eine formale Progredienz ist hierbei nicht in jedem Fall gleichbedeutend mit einer klinischen Relevanz. Um diese zu bestimmen, ist neben der quantitativen Messung eine auch qualitative Bewertung der Tumorausbreitung notwendig und sollte ebenfalls im radiologischen Befund angegeben werden. Nützlich sind hier die kategorialen Einteilungen nach Knosp bezüglich der Invasion in den Sinus cavernosus und/oder nach Hardy bezüglich der extrasellären Tumorausbreitung insbesondere in Bezug zur Sehbahn bzw. zum Chiasma opticum (70-72). Generell sollte bei der Verlaufsbildgebung die Vergleichbarkeit der Voruntersuchung mit der aktuellen Untersuchung hinsichtlich Schichtführung, Schichtdicke und Kippung sichergestellt werden, um Phänomene wie Partialvolumeneffekte auf ein Minimum zu reduzieren; ggf. ist eine Bildfusion und/oder Tumorvolumetrie zu ergänzen.

Bei Vorliegen einer Hypophysenvorderlappen-Insuffizienz sprechen wir (zumindest, wenn ≥ 2 Hypophysenachsen betroffen sind) ebenfalls eine Empfehlung zur transsphenoidalen Operation aus. Allerdings ist dies bewusst als "kann-Empfehlung" formuliert. Bei frühzeitiger Operation scheint eine höhere Wahrscheinlichkeit für eine postoperative Verbesserung der Hypophysenvorderlappen-Funktion zu bestehen, und eine weitere Verschlechterung der Hypophysenvorderlappen-Insuffizienz kann vermieden werden. Ein neuer postoperativer Hypopituitarismus durch die Operation selbst wurde nur

bei 5,5 % der Hypophysenadenome beobachtet und trat vorwiegend bei sehr großen Adenomen auf (73).

Die Datenlage bezüglich des ursächlichen Zusammenhanges zwischen Kopfschmerzen und Hypophysentumoren ist nicht eindeutig (siehe **Kapitel 4**). Kopfschmerz-assoziierte Symptome sind sogar im Falle von Mikroadenomen und kleinen Rathke'schen Taschenzysten bei jeweils kleiner Fallzahl nach transsphenoidaler Tumorresektion in der überwiegenden Zahl rückläufig gewesen (74). Dennoch stellt nach Überzeugung der Leitlinien-Autoren das Symptom Kopfschmerz allein eine seltene Indikation zur Operation dar.

Studien zur Radiotherapie als Primärtherapie konnten keine dem operativen Verfahren vergleichbare Ergebnisse erbringen (10).

Im Jahr 2016 wurde eine systematische Auswertung der relevanten Literatur von 1966 bis 2014 publiziert, wobei sich gemäß einer prospektiven und einiger retrospektiven Kohortenstudien bei einer Komplikationsrate von 7,1 % eine Besserung von Sehleistung (in 75-91 %) und Hypophysenfunktion (in 35-50 %) zeigte (10). So imponierte in einer großen Serie von 1.140 transsphenoidal operierten Patienten eine Verschlechterung des Visus in 1 %, eine Nachblutung in 0,4 %, eine Augenbewegungsstörung in 0,3 %, eine postoperative Liquorfistel in 0,3 % und eine Meningitis in 0,1 %. 64,8 % der hormoninaktiven Hypophysenadenome konnten radikal entfernt werden (75). In einer weiteren Serie von 1.045 transsphenoidalen Operationen wurde gezeigt, dass die Komplikationsrate bei Zweitoperationen höher war als bei Primäroperationen (76). Nach vollständiger Adenomentfernung ohne sichtbaren Tumorrest betrug die durchschnittliche Rezidivrate 12 %. Eine Meta-Analyse ergab bei sichtbarem Resttumor in 46 % der Fälle eine Progredienz (77). Bei postoperativen Langzeit-Beobachtungsstudien ist die Rate sogar noch höher.

Empfehlung 5.4:

Bei hochgradigen oder rasch progredienten neuroophthalmologischen Defiziten **soll** eine notfallmäßige neurochirurgische Vorstellung erfolgen.

Starker Konsens

Erläuterung:

Die postoperative Besserung von Sehstörungen durch Resektion eines Hypophysenadenoms ist im Wesentlichen von ihrer präoperativen Ausprägung abhängig. Die überwiegende Anzahl der Studien spricht gegen eine Abhängigkeit von der Dauer des Bestehens. Nach Auffassung der Autoren ist das schlagartige Auftreten der Symptome im Rahmen einer Hypophysenapoplexie allerdings gesondert zu betrachten.

In einer retrospektiven Auswertung von 41 Operierten zeigte sich in der multivariaten Analyse nur mit der präoperativen Visusminderung ein signifikanter Zusammenhang, nicht aber mit der Symptomdauer (68). In einer endoskopisch transsphenoidal operierten Serie von 47 Patienten war ein schweres visuelles Defizit präoperativ mit schlechtem visuellen Outcome korreliert (78). Eine Metaanalyse von 35 Studien mit endoskopischer transsphenoidaler Hypophysen-Operation zeigte bei deutlicher Heterogenität der Daten eine Besserung des visuellen Defizits in 67,5 % der Fälle, eine postoperative Verschlechterung fand sich bei 4,5%. Bei vorbestehendem Gesichtsfelddefekt kam es bei 40,4 % der operierten Fälle zu einer kompletten Rückbildung und bei insgesamt 80,8 % der Fälle zu einer Besserung des Gesichtsfelddefektes (79). Angaben zu einer Korrelation zwischen Symptomdauer und Erholung der visuellen Funktion wurden in beiden Publikationen nicht gemacht.

Eine retrospektive Untersuchung von 84 entweder transkraniell oder transsphenoidal operierten Patienten mit Gesichtsfeldstörung durch (peri-)selläre Raumforderungen zeigte eine postoperative Besserung der Defizite in 70,9 % der Fälle. Die mittlere Symptomdauer betrug 9,7 Monate, eine kurze Symptomdauer war hier mit einer besseren Erholung der Symptome korreliert (80).

Bei der Hypophysenapoplexie handelt es sich um eine akute Einblutung oder Infarzierung eines Hypophysenadenoms. Sie führt häufig zu akuten ophthalmologischen Defiziten, d.h. Visusstörungen, Gesichtsfeldausfälle und/oder Augenmuskelparesen. Eine retrospektive Auswertung von 41 operierten Patienten (davon 17 Operationen innerhalb von 7 Tagen nach Symptombeginn) mit akuten ophthalmologischen Defiziten aufgrund einer Hypophysenapoplexie zeigte eine Besserung der Visusminderung in 92,9 % und komplette Rückbildung in 57,1 % der Fälle. Eine Besserung von Gesichtsfelddefekten wurde bei 94,7 % und eine komplette Rückbildung bei 36,3 % der Fälle nachgewiesen. Prädiktiv hierfür war der Grad der präoperativen Einschränkung, aber nicht der Operationszeitpunkt. Augenmuskellähmungen erholten sich in 96,4 % der Fälle. Die Korrelation zum präoperativen Ausprägungsgrad war stärker als zum Timing der Operation (81). In einer anderen retrospektiven Auswertung von 32 Patienten, die entweder früh oder später (d.h. innerhalb von 72 oder > 72 Stunden nach Auftreten der Symptome) wegen einer Hypophysenapoplexie operiert worden waren, fand sich ebenfalls kein Zusammenhang der Besserung der neuroophthalmologischen Defizite mit dem Zeitpunkt der Operation (82).

Andere Autoren hingegen bewerten die im Rahmen ihrer Fallberichte recherchierte Literatur so, dass es durchaus eine Indikation zur frühen Operation bei akutem neuroophthalmologischen Defizit gibt (83). Die Autoren dieser Leitlinie empfehlen aufgrund dieser Literaturberichte und auch aufgrund ihrer persönlichen Erfahrung bei akut auftretendem Sehverlust und/oder Ophthalmoplegie im Rahmen einer Hypophysenapoplexie die notfallmäßige Vorstellung in einer neurochirurgischen Hauptabteilung, wünschenswert in einer Klinik mit verfügbarer Expertise im Bereich der Hypophysenchirurgie.

Empfehlung 5.5:

Die neurochirurgische Intervention **sollte** durch Neurochirurgen mit ausreichender Erfahrung in der Hypophysenchirurgie erfolgen.

Starker Konsens

Erläuterung:

Die bisherig gesammelte Erfahrung eines Hypophysenchirurgen und die jährliche Fallzahl der durchgeführten transsphenoidalen Operationen beeinflussen das Resektionsergebnis und die Komplikationsrate. In einer Befragung amerikanischer Neurochirurgen wurde eruiert, wie viele Hypophysen-Operationen individuell durchgeführt wurden und wie hoch die dabei aufgetretenen Komplikationsraten eingeschätzt wurden (84). Dabei fand sich eine signifikante inverse Korrelation zwischen Anzahl der durchgeführten Operationen und Häufigkeit der beobachteten Komplikationen. Beispielsweise wurde von Neurochirurgen mit einer Vorerfahrung von < 200 transsphenoidalen Operationen eine mittlere Mortalitätsrate von 1,2 % angegeben, von Neurochirurgen mit > 500 Operationen hingegen von nur 0,2 %. Chirurgen mit geringer Vorerfahrung berichteten zudem deutlich häufiger über neue postoperative Hypophysenvorderlappen-Insuffizienzen als Chirurgen mit großer Erfahrung (20,6 gegenüber 7,2 %).

Ein Literatur-Review (85) ergab konsistent einen Trend höherer Komplikationsraten mit geringerer jährlicher Anzahl transsphenoidaler Operationen. Insbesondere zeigte sich, dass in allen Zentren mit ausreichender jährlicher Fallzahl eine akzeptable Komplikationsrate beschrieben wurde. Bei geringer jährlicher Anzahl transsphenoidaler Operationen traten hingegen in einzelnen Zentren nicht akzeptable Komplikationsraten auf. Es wird jedoch ausdrücklich darauf hingewiesen, dass die jährliche Fallzahl nicht als einziges Kriterium für den Operationserfolg verstanden werden darf. Auch in einigen Zentren mit geringer jährlicher Operationszahl wurden gute Ergebnisse erzielt.

Empfehlung 5.6:

Da die Ergebnisse mikrochirurgischer und endoskopischer transsphenoidaler Operationen gleichwertig sind, **sollte** die Wahl des Visualisierungsmodus von der Erfahrung des Operateurs mit der optischen Technik und seiner Präferenz abhängig gemacht werden.

Starker Konsens

Erläuterung:

Akzeptanz endoskopischer Verfahren zur transsphenoidalen Exstirpation von Hypophysenadenomen ist im Verlauf der letzten Jahre gewachsen und daraus resultiert eine breite Anwendung des Endoskops zur operativen Behandlung von Hypophysenadenomen (86,87). Neben der klassischen mikrochirurgischen transsphenoidalen Resektion mit endoskopischer Resektionskontrolle (endoskopisch assistierte Mikrochirurgie) ist in den letzten Jahren die rein endoskopische Operation zunehmend akzeptiert. Die Erfahrung einzelner Zentren in dem Transitionsprozess von mikrochirurgischen zu endoskopischen Operationen zeigte eine vergleichbare bis höhere Effektivität der Resektion bei ähnlichen endokrinologischen Ergebnisse (88-90). Diese positive Einschätzung der endoskopischen Technik wird jedoch nicht einheitlich von allen Hypophysentumor-Chirurgen geteilt (91,92). Dennoch beschreiben eine Reihe von Metaanalysen und Reviews eine geringe Verbesserung der kompletten Resektion von Hypophysenadenomen insbesondere, wenn diese lokal invasiv gewachsen sind oder ein extraselläres Wachstum haben (93). Eine 2017 publizierte Metaanalyse zeigte eine signifikant höhere Resektionsrate der endoskopisch operierten Patienten Hypophysenadenomen (94). Für Patienten mit einem Rezidiv- oder Restadenom, die entweder mikrochirurgisch transsphenoidal oder transkraniell operiert wurden, war die Resektionsrate bei endoskopischen Re-Operationen nur gering höher als bei mikrochirurgisch erneut operierten Patienten (53 gegenüber 47 %) (95). Der Vorteil der endoskopischen Operation besteht darin, dass eine direkte Visualisierung des Operationsgebiets in hoher Auflösung möglich ist, durch die Anwendung von Winkeloptiken auf direktem Weg nicht einsehbare Bereiche eingesehen werden und die Resektion sicher fortgesetzt werden kann. In der Mikrochirurgie wird zu diesem Zwecke die Anwendung von Spiegeln in Kombination mit Spülsaugern empfohlen (96,97). Nachteile der Endoskopie sind die Visualisierung des Operationsgebietes auf Monitoren sowie der fehlende stereoskopische Bildeindruck, der durch die Entwicklung von dreidimensionalen Endoskopieverfahren in Zukunft kompensiert werden könnte (98). Einige Arbeitsgruppen meinten eine bessere Visualisierung und Differenzierung von originärem Hypophysengewebe und Tumorgewebe mit endoskopischen Verfahren im Vergleich zu mikrochirurgischen Operationen zu sehen (99).

Die Komplikationsrate in großen Serien war ohne wesentlichen Unterschied zwischen mikrochirurgischen und endoskopisch operierten Patienten (100,101). Eine Meta-Analyse des Outcomes von transsphenoidaler Endoskopie versus Mikrochirurgie ergab eine hochsignifikant höhere Inzidenz vaskulärer Komplikationen mit der endoskopischen Technik. Für alle anderen Komplikationen zeigte sich kein signifikanter Unterschied (102).

Die Autoren betrachten die mikrochirurgische und endoskopische Technik als gleichwertig und geben keiner dieser Operationstechniken den Vorzug. Diese Empfehlung ist in Einklang mit der Leitlinie des Congress of Neurological Surgeons, die keinen substantiellen Vor- oder Nachteil der mikrochirurgischen gegenüber der endoskopischen Technik sieht (9).

Empfehlung 5.7:

Beim transsphenoidalen Zugang sollen Sinus sphenoidalis und Sella turcica weit genug geöffnet werden, um alle präoperativ als resektabel angesehenen Tumoranteile entfernen zu können.

Starker Konsens

Erläuterung:

In einer Studie wurde davon berichtet, dass bei allen 30 Patienten, die wegen eines hormoninaktiven Restadenoms nochmals operiert wurden, eine unzureichende knöcherne Freilegung der Keilbeinhöhle (97 %), der Sella (93 %) oder beider Strukturen (90 %) vorlag (103). Mit großzügiger Eröffnung konnten 86 % der nicht invasiven Adenome und 31 % der invasiven Adenome bei der Re-Operation vollständig entfernt werden. Selbst bei schwierig zu operierenden Adenomen mit fibröser und gummiartiger Konsistenz gelang mit genügend weiter Freilegung eine komplette Resektion.

Die an der vorliegenden Leitlinie beteiligten Hypophysenchirurgen haben allesamt Erfahrung mit Re-Operationen von Patienten, bei denen aufgrund unzureichender Freilegung ein signifikantes Restadenom zurückblieb und sind sich einig, dass eine weite Eröffnung von Sinus sphenoidalis und Sella turcica Voraussetzung ist für eine bestmögliche Resektion hormoninaktiver Hypophysenadenome.

Empfehlung 5.8:

Neuronavigation und intraoperative Bildgebung mittels Ultraschall **können** zur Erhöhung der Sicherheit und der Resektionsrate bei transsphenoidalen Operationen von Hypophysentumoren genutzt werden. Die intraoperative Bildgebung mittels Magnetresonanztomographie **kann** bei Operationen von Hypophysentumoren zur Erhöhung der Resektionsrate eingesetzt werden.

Starker Konsens

Erläuterung:

Die in der Neurochirurgie als Standardmethode angewendete Neuronavigation (syn. Bild-geführtes Operieren) bedient sich präoperativer Datensätze (MRT, CCT), die eingelesen und als Referenz-Grundlage für die Operationsinstrumente genutzt werden. In der transsphenoidalen Hypophysenchirurgie ersetzt sie die intraoperative Anwendung des C-Bogens unter Einsatz von Röntgen-Strahlen beim Zugang. Ihr Wert zur Vermeidung von Komplikationen bei eingeschränkter Nutzbarkeit anatomischer Orientierungspunkte (paraselläre Tumoranteile, Rezidiv-Operationen) ist anerkannt (76,104). Eine grundsätzliche Schwäche der Technik besteht in der Änderung der anatomischen Lageverhältnisse durch Volumenveränderung bei Tumorresektion (sog. "Shift").

Zur intraoperativen Bildgebung erfolgte der Einsatz der MRT anfangs mit Geräten geringer Feldstärke (0,12-0,3 T), die intraoperative Scandauer lag zwischen 18 und 30 Minuten. Nachresektionen nach intraoperativem Scan wurden in 18-66 % der Fälle durchgeführt (105-107). Ein Vergleich mit dem postoperativen MRT (1,5 T) nach 3 Monaten zeigte in 40 untersuchten Patienten je nach untersuchtem Kompartiment eine Sensitivität von 85,7-100 % und eine Spezifität von 90,5-100% (107). Mittels höherer Feldstärken (1,5 T) und somit verbesserter Bildqualität konnte bei 36 von 85 Patienten (42 %), deren Hypophysentumoren präoperativ als komplett resektabel eingestuft wurden, intraoperativ ein Resttumor nachgewiesen und in 21 von 29 Nachresektionen komplett entfernt werden. Dies erhöhte die Resektionsrate in dieser selektionierten Gruppe von 58 auf 82 % (108). In einer neueren Publikation derselben Arbeitsgruppe wurde bei 85 operierten nicht-hormonsezernierenden Hypophysenadenomen in 83 % der Fälle nach intraoperativem Scan nachreseziert und die Resektionsrate dieser nicht selektionierten Serie von 44 auf 66 % verbessert (109). So scheint auf den ersten Blick auch in erfahrenen Händen die intraoperative MRT die Operationsergebnisse positiv zu beeinflussen. Die Methode ist allerdings zeit- und kostenintensiv, zudem sind entweder spezielle nichtmagnetische Instrumente oder das Umlagern des narkotisierten Patienten für die Untersuchung erforderlich. In manchen Zentren sind mobile Kernspintomographen installiert, die sich zum Patienten bewegen.

In einem kürzlich erschienenen Literatur-Review wurden die Ergebnisse der intraoperativen MRT bei hormoninaktiven Hypophysenadenomen dargestellt (110). Je nach Studie erfolgte aufgrund des intraoperativen MRT-Ergebnisses in 15-83% der operierten Fälle eine Nachresektion. Die Rate der Komplettentfernung konnte durch das intraoperative MRT um 3-40% gesteigert werden.

Das intraoperative CCT bei transsphenoidalen Hypophysen-Operationen wurde beschrieben (111), hat sich aber nicht durchgesetzt.

Die intraoperative Ultraschall Anwendung zur Resektionskontrolle von Hypophysen-Makroadenomen wurde bei Erstbeschreibung transsellär durchgeführt (112). Eine spätere Studie nutzte den gleichen Ansatz mit einer speziellen Sonde an 24 Patienten und konnte in 17 Fällen (71 %) eine komplette Tumorentfernung erreichen (113). Schon 2010 hatte diese Gruppe an einem Kollektiv von 9 Patienten den Einsatz des Prototyps einer seitlich abstrahlenden Sonde beschrieben, welche in die intraselläre Resektionshöhle eingebracht wurde und eine hervorragende anatomische Auflösung erlaubte (114). Bei 113 transsphenoidalen Operationen wurde der "intrakavitäre" Ultraschall mit einer kommerziell erhältlichen Sonde eingesetzt (115). In 65 Operationen wurde nach dem ersten intraoperativen Ultraschall nachreseziert (58 %), in 39 davon radikal (60 %). In dieser Serie mit relativ großen, oftmals auch infiltrativen Tumoren (22 % Knosp Grad III, 12 % Knosp Grad IV) sowie relativ häufigen Rezidiv-Operationen (27 %) ergab sich durch die Nachresektion nach Ultraschall eine Verbesserung der Resektionsrate von 32 auf 66 %, was den Ergebnissen großer Serien mit unselektionierten Primäroperationen entspricht (75). Für den abschließenden intraoperativen Ultraschall ergab sich im Vergleich zum MRT 3 Monate nach Operation bezüglich festgestellter Tumorreste eine Sensitivität von 57 % und eine Spezifität von 91 % (115).

Eine grundsätzliche Schwäche der Angaben zu den Resektionsraten ohne oder mit Nachresektion nach jedweder intraoperativen Bildgebung ist ein potentieller Bias. Die Operateure hätten ohne verfügbare intraoperative Bildgebung wahrscheinlich auch weiter operiert und die Resektionsrate verbessert.

Trotz positiver Effekte auf Sicherheit (Neuronavigation) und Resektionsrate (intraoperative Bildgebung) ersetzen nach Meinung der an der Leitlinienerarbeitung beteiligten Neurochirurgen weder das bildgestützte Operieren noch die intraoperative Bildgebung die Erfahrung des Operateurs als den für den Operationserfolg im Wesentlichen ausschlaggebenden Faktor. Beide Techniken haben laut aktueller Leitlinie des Congress of Neurological Surgeons keinen zwingenden Vorteil für den Operationserfolg (9).

II. Perioperatives Management

Empfehlung 5.9:

Bei Vorliegen oder Verdacht auf eine sekundäre Nebenniereninsuffizienz **soll** eine adäquate Glukokortikoidsubstitution erfolgen.

Die perioperative Substitution von Hydrocortison bei der Resektion von Hypophysentumoren **sollte** nach einem standardisierten lokalen Protokoll durchgeführt werden.

Starker Konsens

Erläuterung:

Bei allen Patienten mit geplanter Operation eines Hypophysenadenoms ist präoperativ eine basale Cortisol-Bestimmung durchzuführen, die im Zweifel durch einen Stimulationstest ergänzt wird (siehe die Erläuterung zu **Empfehlung 4.2**). Bei Nachweis einer kortikotropen Insuffizienz ist die perioperative Substitution mit Glukokortikoiden erforderlich. Patienten, die keine kortikotrope Insuffizienz haben, können unter sorgfältigem Monitoring des Cortisol-Wertes ohne perioperative Substitution operativ behandelt werden (116). In der Literatur ist eine Vielzahl perioperativer Substitutionsregimen beschrieben, die sich in der Glukokortikoid-Dosis und der Dauer der Gabe unterscheiden. Gängige Substitutionsschemen für die unmittelbar perioperative Zeit sind 50 mg oder 100 mg Hydrocortison intraoperativ und 50 mg oder 100 mg Hydrocortison über 24 Stunden per Perfusor. Danach erfolgt eine

schrittweise Dosisreduktion bis zum Erreichen einer Erhaltungsdosis. Eine verbindliche Empfehlung über die Höhe und die Dauer der perioperativen Hydrocortison-Substitution (bis zum Erreichen der Erhaltungsdosis) ist nach ausführlicher Diskussion der Leitlinien-Autoren nicht möglich und es bedarf den in dieser Situation erfahrenen Arzt, der individuell die Dosis festlegt. Hydrocortison stellt das Glukokortikoid der ersten Wahl zur Substitution einer sekundären Insuffizienz der Nebennierenrinde dar (5). Die Gabe von Hydrocortison ist aufgrund der kurzen Halbwertszeit gut zu steuern. In begründeten Ausnahmefällen kann Hydrocortison durch ein synthetisches Glukokortikoid ersetzt werden.

Eine Befragung unter deutschen endokrinologischen Zentren ergab, dass 68 % eine routinemäßige perioperative Hydrocortison-Substitution im Rahmen von Hypophysen-Operationen durchführen, während 32 % eine Substitution nur bei nachgewiesener kortikotroper Insuffizienz verabreichen (117). Bei Verzicht auf eine perioperative Hydrocortison-Substitution hat der Hypophysenchirurg über eine ausreichende Erfahrung zu verfügen und die selektive Adenomektomie mit Erhalt der Hypophysenfunktion zu gewährleisten. Voraussetzung ist außerdem eine gute postoperative Überwachung des Patienten durch ein spezialisiertes Team.

Die Sicherheit steroidreduzierender Protokolle sind in einer randomisierten prospektiven Studie (116), einer retrospektiven (118) und diversen nicht randomisierten prospektiven Studien (119-124) nachgewiesen. Eine aktuelle Metaanalyse hat keinen Unterschied in der Inzidenz der postoperativen kortikotropen Insuffizienz oder anderer Komplikationen, wie Diabetes insipidus, gezeigt; dies war unabhängig davon, ob die Patienten perioperativ Glukokortikoide erhalten hatten oder nicht (125). In der bisher einzigen prospektiven randomisierten Studie, die bei einer limitierten Anzahl an Patienten ohne kortikotrope Insuffizienz die perioperative Steroidgabe (für 2 Tage) gegenüber einer Operation ohne Steroide untersuchte, konnte kein Unterschied im Auftreten von Komplikationen, eines Diabetes insipidus oder einer symptomatischen postoperativen Hyponatriämie nachgewiesen werden (116).

Wenn bei schwierigen und großen Tumoren ein Risiko einer intraoperativen Verschlechterung der Hypophysenfunktion besteht, ist ebenfalls eine Substitution der kortikotropen Achse zu beginnen.

Während des postoperativen stationären Aufenthaltes erfolgt eine Überprüfung der kortikotropen Achse. In einigen Zentren wird im postoperativen Verlauf der basale morgendliche Serum-Cortisolwert einmalig oder an mehreren Tagen bestimmt. Gängig ist die Bestimmung am dritten postoperativen Tag. Im Falle einer perioperativen Hydrocortison-Substitution ist diese 18-24 Stunden vor der Blutabnahme zu pausieren. Bei einem sehr niedrigen Wert (< 4 µg/dl bzw. < 110 nmol/l) ist von einer Insuffizienz der Nebennierenrinde auszugehen (7,50,126). Im diagnostischen Graubereich (4,1-14,9 µg/dl bzw. 111-413-nmol/l) ist eine Nebennierenrinden-Insuffizienz möglich (7,50,126). Bei Werten >15 ug/dl kann von einer regelrechten Nebennierenrinden-Funktion ausgegangen werden und auf eine Substitution mit Hydrocortison verzichtet bzw. eine perioperative Substitution beendet werden (siehe **Empfehlung 4.2**).

Empfehlung 5.10:

Bei möglichem oder bewiesenem Vorliegen einer postoperativen Nebennierenrinden-Insuffizienz sollen Betroffene noch vor der Entlassung suffizient über die notwendige Medikation und die Notwendigkeit einer bedarfsgerechten Adaptation aufgeklärt werden (siehe auch **Empfehlung 8.1** und **Empfehlung 8.2**).

Starker Konsens

Erläuterung:

Bei der Entlassung aus der stationären Behandlung ist eine Hydrocortison-Tagesdosis von 15-30 mg üblich (davon etwa 2/3 am Morgen und 1/3 am Mittag, alternativ auch Aufteilung auf 3 Tagesdosen möglich). Diese Erhaltungsdosis ist dann bis zur postoperativen Evaluation in der Endokrinologie (6-12 Wochen nach der Operation) unverändert beizubehalten und in Situationen mit gesteigertem Bedarf zu erhöhen.

Bereits während des stationären Aufenthaltes sind Patienten hinsichtlich stressabhängiger Dosisadaptationen des Hydrocortisons ausreichend zu schulen und mit einem Notfallausweis (sowie idealerweise auch einer Hydrocortison-Notfallspritze) auszustatten (siehe **Kapitel 8**). Alternativ können diese Maßnahmen auch vom nachbetreuenden Endokrinologen übernommen werden, sofern eine Vorstellung beim Endokrinologen in unmittelbarem Anschluss an den postoperativen stationären Aufenthalt erfolgt.

Empfehlung 5.11:

Bei prä- oder postoperativem Nachweis einer Hypothyreose **soll** vor Aufnahme einer Substitutionstherapie zunächst eine kortikotrope Insuffizienz ausgeschlossen werden, da sich diese sonst klinisch demaskieren kann.

Zur Diagnosestellung sowie zur Dosistitration der Schilddrüsenhormon-Substitutionstherapie **soll** das fT4 (und nicht das in diesem Fall häufig erniedrigte bzw. inadäquat niedrige TSH) berücksichtigt werden.

Starker Konsens

Erläuterung:

Perioperative Anpassungen einer bereits präoperativ aufgenommenen Substitutionstherapie sind mit Ausnahme der kortikotropen Achse oftmals nicht erforderlich. Vor Aufnahme einer thyreotropen Substitutionstherapie (welche in aller Regel mit Levothyroxin erfolgt) ist stets eine kortikotrope Insuffizienz auszuschließen, da sich diese sonst klinisch (bis hin zur Addison-Krise) demaskieren kann.

Empfehlung 5.12:

Um ein mögliches SIADH und/oder einen Diabetes insipidus frühzeitig zu erkennen, **sollen** nach der Operation bis mindestens zum 10. postoperativen Tag regelmäßig die Serum-Elektrolyte bestimmt und die Patienten entsprechend ausführlich aufgeklärt werden.

Starker Konsens

Erläuterung:

Postoperative Elektrolytstörungen aufgrund einer Störung der Freisetzung von ADH durch den Hypophysenhinterlappen werden häufig beobachtet. Sie haben zentrale Bedeutung für das frühpostoperative Management von Patienten nach Hypophysen-Operation. Daher sind bis zur Entlassung aus der stationären Betreuung täglich die Ein- und Ausfuhr von Flüssigkeit zu bilanzieren sowie Serum-Natrium und Urinosmolalität zu bestimmen. Ein Diabetes insipidus aufgrund eines Mangels an ADH tritt meist in den ersten postoperativen Tagen auf. Die gegenläufige Störung, das SIADH mit erhöhter ADH Freisetzung tritt in der Regel mit Verzögerung einige Tage nach der Operation auf. Phasen eines Diabetes insipidus und eines SIADH können sich in seltenen Fällen auch miteinander abwechseln, was eine adäquate Diagnostik und Therapie erschweren kann (127,128). Eine Flüssigkeitsrestriktion auf 1,5 Liter pro Tag bis zum 10. postoperativen Tag kann in dieser Situation sinnvoll sein.

Kommt es in den ersten postoperativen Tagen zu einem Diabetes insipidus, ist Desmopressin zunächst intravenös oder subkutan zu applizieren (z.B. 0,25-1,0 µg alle 12-24 Stunden), da die Desmopressin-Aufnahme über die Nasenschleimhaut in diesem Zeitraum aufgrund der Schwellung nach transnasalem Eingriff noch sehr variabel sein kann. Primäre Behandlungsziele sind eine Normalisierung von Urinvolumen und Serum-Natrium sowie die Gewährleistung eines ungestörten Nachtschlafs durch Vermeidung einer relevanten Nykturie. Besteht der Diabetes insipidus bis zur Entlassung fort, kann Desmopressin auf eine intranasale (oder orale) Gabe umgestellt werden. Über die möglichen Folgen einer Desmopressin-Überdosis (z.B. Übelkeit, Erbrechen, Kopfschmerzen, Lethargie sowie bei fortschreitender Hyponatriämie ggf. auch Bewusstlosigkeit und Koma) und die sich hieraus ergebenen

Konsequenzen (z.B. umgehendes Pausieren von Desmopressin, ärztliche Rücksprache) sind Betroffene suffizient aufzuklären.

Beim SIADH handelt es sich um eine gravierende und potenziell lebensbedrohliche Folge der transsphenoidalen Operation. Die frühe Diagnose hat deshalb im postoperativen Management nach Hypophysen-Operation hohe Priorität. Die Patienten sind ausführlich über das SIADH und die typischen Symptome aufzuklären (siehe Kapitel 8). Elektrolytkontrollen insbesondere mit Bestimmung des Serum-Natriumwertes sind bis zum 10. postoperativen Tage zu gewährleisten. Nach Entlassung erfolgt die ambulante Natriumbestimmung z.B. beim Endokrinologen, beim Hausarzt oder im Rahmen einer ambulanten Wiedervorstellung in der neurochirurgischen Klinik. Die behandelnde neurochirurgische Klinik hat für die frühe Wiedervorstellung und Anbindung bei einem Endokrinologen Sorge zu tragen. In einer Literaturübersicht retrospektiver Studien wird die Häufigkeit einer postoperativen Hyponatriämie als Ausdruck eines SIADH mit einer Häufigkeit zwischen 2 und 25 % bei einem Häufigkeitsgipfel um den 8. bis 10. postoperativen Tag angegeben. Bei Euvolämie ist das Vorliegen eines SIADH sehr wahrscheinlich (129). Ein systematischer Review von 2016 identifizierte 10 Studien mit mehr als 10 Patienten und Angaben zur postoperativen Hyponatriämie und umfasste 2.947 Patienten. In 4-12 % traten postoperative Hyponatriämien auf (130). Eine landesweite Auswertung der US-amerikanischen Wiederaufnahme-Datenbank identifizierte nach 8.546 transsphenoidalen Hypophysen-Operationen im Jahr 2013 742 Fälle mit ungeplanten stationären Wiederaufnahmen innerhalb der ersten 30 Tage (8,7 %), die zweithäufigste Ursache waren Wasser- und Elektrolytstörungen (131). In einer anderen Studie über 522 operierte Patienten hatten 8,6 % am 7. postoperativen Tag eine Hyponatriämie. Die Hyponatriämie war besonders häufig, wenn der Tumor bis an das Chiasma opticum heranreichte (Odds-Ratio 2,4) und wenn am 1. postoperativen Tag das Serum-Natrium erniedrigt war (Odds-Ratio 1,16 pro mmol/l). In dieser Studie lag die Wiederaufnahmerate wegen einer Hyponatriämie bei 2,7 % (132). In einer Serie von 295 Patienten mit transsphenoidaler Hypophysen-Operation konnte durch das Einführen einer beschränkten täglichen Flüssigkeitsaufnahme auf 1,5 I/Tag im postoperativen Verlauf die Wiederaufnahmerate von 7,6 % der ersten 118 Patienten signifikant auf 2,4 % der folgenden 169 Patienten reduziert werden (133), weshalb dieses Vorgehen auch von anderen empfohlen wird (134).

Empfehlung 5.13:

Nach einem neurochirurgischen Eingriff **soll** auf das mögliche Auftreten von Liquorfisteln, Meningitiden und Sehstörungen geachtet werden.

Starker Konsens

Erläuterung:

Im unmittelbaren perioperativen Verlauf werden Mortalitäts- und Morbiditätsraten von 1 bzw. 5 % beschrieben (135) Relevante Operations-bedingte Komplikationen sind somit zwar selten, die Komplikationsrate hängt allerdings erwartungsgemäß von der Erfahrung des Neurochirurgen ab (84,136).

Empfehlung 5.14:

Eine kurzfristige postoperative Bildgebung der Sellaregion ist in der Regel verzichtbar und **sollte** bestimmten Fragestellungen vorbehalten sein (z.B. zur Größenbeurteilung intraoperativ verbliebener Tumorreste, neu aufgetretenen Sehstörungen oder neurologischen Defizite mit der Frage einer Nachblutung oder Gefäßverletzung).

Die erste reguläre Verlaufsbildung **sollte** nach 3-6 Monaten erfolgen.

Starker Konsens

Erläuterung:

Eine MRT-Untersuchung liefert zuverlässigere Ergebnisse, wenn sie nicht unmittelbar, sondern frühestens 3-6 Monate nach der Operation durchgeführt wird. Dies ist z.B. durch den Umstand begründet, dass nach dieser Zeit eine Größenbeurteilung von Tumorrestgewebe weniger durch postoperative Veränderungen und Artefakte erschwert wird (34).

III. Empfehlungen bei Rest- und Rezidivtumoren

Empfehlung 5.15:

Bei Rest- oder Rezidivgewebe eines hormoninaktiven Hypophysentumors **sollen** das Observieren ("wait and scan"), die Re-Operation und die Strahlentherapie (siehe **Empfehlung 5.16** und **Empfehlung 5.17**) erwogen werden (möglichst in einer interdisziplinären Fallkonferenz unter endokrinologischer, chirurgischer, pathologischer, radiologischer, ophthalmologischer und strahlentherapeutischer Beteiligung).

Starker Konsens

Erläuterung:

Bei Rezidiv-Adenomen kommen die Re-Operation und/oder die Strahlentherapie in Frage.

Eine Re-Operation wird in der Regel durchgeführt, wenn das Rest- oder Rezidivadenom operativ zugänglich und als resektabel beurteilt wird. Auch bei Sehstörungen aufgrund des Rezidiv-Wachstums ist eine operative Entlastung indiziert. Bei großen Rezidiv-Adenomen mit invasivem Anteil kann auch das Konzept eines operativen Tumor-Debulking mit anschließender Strahlentherapie verfolgt werden. Die Indikation für eine Re-Operation ist von einem erfahrenen Hypophysenchirurgen vor dem Hintergrund der Strahlentherapie-Alternativen zu stellen.

Eine Strahlentherapie ist bei Rezidivadenomen oder Restadenomen nach stattgehabter Operation in Betracht zu ziehen. Eine Strahlentherapie ist gegenüber der Operation zu favorisieren bei invasiven Rest- oder Rezidivadenomen, insbesondere mit Invasion in den Sinus cavernosus, die operativ nicht oder nur mit hohem Risiko entfernt werden könnten.

Nach inkompletter Resektion von hormoninaktiven Hypophysenadenomen wurden in verschiedenen retrospektiven Analysen Progressionsraten von 30-60 % berichtet, während bei postoperativ fehlendem Tumornachweis im MRT die Wahrscheinlichkeit eines bildgebenden Rezidivs nach 10 Jahren nur zwischen 10 und 20 % lag (137-141). Aufgrund der signifikanten Progressionsraten wird v.a. bei größeren oder extrasellär gelegenen Restbefunden eine postoperative Strahlentherapie immer wieder diskutiert; in einer Studie rezidivierten 26 % der Tumoren, die innerhalb von 12 Monaten nach Operation bestrahlt wurden im Vergleich zu 46 % der Tumoren, die nicht nachbestrahlt wurden (142). Vergleichbare Daten wurden auch von einer anderen Arbeitsgruppe geliefert, welche eine verbesserte Tumorkontrollrate nach direkter postoperativer Strahlentherapie darlegte (143). Allerdings setzt eine direkte Nachbestrahlung alle Patienten dem Risiko radiogener Nebenwirkungen aus, so dass bei inkomplett resezierten hormoninaktiven Hypophysenadenomen ohne besonders großen Restbefund oder extraselläre Lokalisation in der klinischen Routine in der Regel auf eine direkte Nachbestrahlung zugunsten bildgebender Verlaufskontrollen verzichtet wird (138,144).

Für die Strahlentherapie hormoninaktiver Hypophysenadenome stehen verschiedene Strahlentherapieverfahren zur Verfügung (siehe **Empfehlung 5.16** und **Empfehlung 5.17**). Die Wahl des Strahlentherapieverfahrens wird in der klinischen Versorgung von der Größe und der Nähe des Bestrahlungsvolumens von den Risikostrukturen, v.a. dem optischen System abhängig gemacht. Der intraoperative Befund ist bei der Wahl des Strahlentherapieverfahrens und der Definition des

Zielvolumens zu berücksichtigen. Die beiden Standardverfahren sind die stereotaktische Radiochirurgie und die fraktionierte Strahlentherapie. Die Beratung hinsichtlich strahlentherapeutischer Optionen hat durch einen fachkundigen Arzt zu erfolgen.

Bei progredienten Restbefunden hormoninaktiver Hypophysenadenomen erreicht die Strahlentherapie hohe Kontrollraten von ca. 90 % nach 10 Jahren. In einer großen retrospektiven Kohorte zeigten sich bei knapp 400 konventionell bestrahlten Patienten im langfristigen Verlauf progressionsfreie Überlebensraten von 97 und 96 % nach 10 und 20 Jahren (145). Ähnlich hohe Kontrollraten wurden auch nach stereotaktischer Radiochirurgie mittels Gamma-Knife beschrieben (146). Insofern stellt die Strahlentherapie einen Therapiestandard für progrediente Restbefunde dar.

Empfehlung 5.16:

Die Strahlentherapie von Rest-/Rezidivgewebe hormoninaktiver Hypophysenadenome **kann** abhängig von den individuellen pathoanatomischen Gegebenheiten mittels Radiochirurgie erfolgen.

Starker Konsens

Erläuterung:

Bei der Radiochirurgie handelt es sich um eine einzeitige hochkonformale Strahlentherapie mit steilen Dosisgradienten, die ursprünglich auf Behandlungen mit dem Leksell Gamma Knife zurückgeht, heute aber auch z. B. mit dem "CyberKnife" oder mit speziell dafür optimierten Linearbeschleunigern (mit Mikro-Multileaf-Kollimatoren, 6-achsiger Tischkorrektur, adäquater Bildgebung) durchgeführt werden kann. Ziel der Radiochirurgie ist bei gleichzeitig maximaler Schonung des umgebenden Gewebes eine hohe Wirkdosis im Tumor zu applizieren.

Die verschriebenen Dosen werden in der Radiochirugie auf die Randdosis bezogen, damit liegen die applizierten Maximaldosen innerhalb des Zielvolumens prinzipbedingt höher.

Insbesondere im amerikanischen Schrifttum wird der Begriff Radiochirurgie für Behandlungen mit einer oder bis zu fünf Fraktionen (Hypofraktionierung) verwendet, wobei sich die strahlenbiologischen Effekte hoher Einzeldosen von denen der fraktionierten Strahlentherapie unterscheiden. Im Folgenden nutzen wir den Begriff Radiochirurgie primär für die Einzeitbestrahlung; hypofraktionierte hochkonformale Strahlentherapieverfahren bilden einen Kompromiss in Richtung einer fraktionierten Strahlentherapie (siehe **Empfehlung 5.17**).

Geräte, die für die Radiochirurgie von Hypophysenadenomen Anwendung finden, müssen kleinste Strahlenfelder (4–5 mm Durchmesser auf die typische Randisodose) mit steilen Dosigradienten zur Peripherie hin erzeugen können; die Qualitätssicherung hat gemäß DIN 6875–1, 6875–2 und 6875–3 zu erfolgen. Eine stereotaktische Ortsgenauigkeit unterhalb von 0,5 mm ist bei der einzeitigen Radiochirurgie anzustreben. Entsprechend müssen die apparativen Voraussetzungen bei der Behandlung ebenso wie bei der Qualitätskontrolle ausgewählt werden. Während für festsitzende stereotaktische Rahmen von einer Ortsungenauigkeit von weniger als 0,5 mm auszugehen ist, erreichen Maskenfixierungen Genauigkeiten von 1-2 mm nur in Verbindung mit Lagekontrollsystemen, die auch während der Strahlentherapie eine Kontrolle und ggf. Unterbrechung der Strahlapplikation sowie eine Repositionierung erlauben. Der individuellen Ortsungenauigkeit ist bei der Strahlentherapieplanung und –applikation Rechnung zu tragen. Aufgrund der Komplexität des Verfahrens sollte die Radiochirurgie nur an Zentren mit Erfahrung in der kranialen Stereotaxie durchgeführt werden.

Die für die Strahlentherapieplanung erforderliche Bildgebung hat auf Basis einer Planungs-CT in Verbindung mit einer geeigneten MRT-Untersuchung zu erfolgen, welche maximal 14 Tage zurückliegt. Die Auflösung hat im Vergleich zur Tumorgröße in einem vernünftigen Verhältnis zu stehen, bei Mikroadenomen ist eine Auflösung (Voxelgröße) von 1 mm anzustreben.

Die Identifikation der Zielstruktur hat von einem in der Behandlung von Hypophysentumoren erfahrenen Behandler zu erfolgen, gegebenenfalls im Konsens mit einem Neuroradiologen. Das klinische

Zielvolumen (clinical target volume, CTV) umfasst dabei die in der Kontrastmittel-verstärkten T1-gewichteten MRT-Sequenz erkennbaren makroskopischen Tumoranteile (gross tumor volume, GTV), in aller Regel ohne zusätzliche Sicherheitssäume (CTV = GTV). Der üblicherweise nur geringen Lagerungsungenauigkeit kann je nach Setup des Patienten mit einer Expansion des CTV zum Planungszielvolumen (planning target volume, PTV) Rechnung getragen werden.

Bei hormoninaktiven Tumoren sind Einzeitdosen ab 12 Gy wirksam, Randdosen bis 16 Gy wurden bei klinischen Kollektiven beschrieben (147).

Für das optische System werden im Schrifttum (148) bei der Einzeitbestrahlung Risikodosen zwischen 10 und 12 Gy angegeben, für die ein Komplikationsrisiko von maximal 1 % besteht. Bei Einzeitdosen von 8 Gy für Chiasma opticum und Sehnerven sind keine relevanten Risiken beschrieben.

Das Auftreten posttherapeutischer Hypophyseninsuffizienzen ist von der applizierten Dosis auf die identifizierbare Resthypophyse und den Hypophysenstiel abhängig und wird in der Literatur mit 5-30 % angegeben (149). Regelhaft sollten hier Dosen von maximal 11 Gy nicht überschritten werden.

Die Entscheidung zwischen einzeitiger Radiochirurgie und hypofraktionierter Radiochirurgie ergibt sich – auch in Abwägung zur konventionell fraktionierten Strahlentherapie (siehe **Empfehlung 5.17**) – aus der anatomischen Situation, insbesondere aus der Nähe zum optischen System und der Größe des Zielgebietes. Für Tumoren, die einen Mindestabstand von 2 mm zum optischen System (N. opticus und Chiasma opticum) nicht unterschreiten, kommt eher die einzeitige Radiochirurgie in Betracht. Bei Kontakt (ohne Kompression) oder einem Abstand von weniger als 2 mm kann eine hypofraktionierte Radiochirurgie erfolgen (150). Bei der hypofraktionierten Strahlentherapie sollten je nach gewählter Fraktionierung die verschriebenen Dosen dosisäquivalent umgerechnet werden, beispielsweise nach dem linearquadratischen Modell.

Kontraindikation für die Radiochirurgie sind nicht abgrenzbare (diffus infiltrativ wachsende) Tumoren, Ummauerung des optischen Systems oder symptomatische Raumforderungen.

Empfehlung 5.17:

Die Strahlentherapie von Rest-/Rezidivgewebe hormoninaktiver Hypophysenadenome **kann** mittels fraktionierter Strahlentherapie erfolgen.

Die Strahlentherapie von Hypophysenadenomen, welche nicht für die Radiochirurgie geeignet sind (z.B. bei Nähe zum optischen System), **sollte** fraktioniert erfolgen.

Starker Konsens

Erläuterung:

Auch wenn es bisher keine vergleichenden Studien gibt, die die Ansprechraten von fraktionierten Strahlentherapieverfahren gegenüber der Radiochirurgie untersucht haben, zeigen zahlreiche retrospektive Kohortenanalysen in etwa vergleichbare Kontrollraten der beiden Verfahren bei hormoninaktiven Hypophysenadenomen. Bei großen Tumoren, die der stereotaktischen Radiochirurgie nicht mehr zugänglich sind oder bei kritischer Nähe zu den optischen Strukturen, v.a. dem Chiasma opticum, stellt die fraktionierte Strahlentherapie das Verfahren der Wahl dar, um die Effekte hoher Einzeldosen auf das optische System zu vermeiden.

Die fraktionierte Strahlentherapie setzt eine präzise Lagerung und Fixierung des Patienten, beispielsweise in einer individuellen thermoplastischen Maske voraus. Die Definition des Zielvolumens hat ähnlich wie bei der Radiochirurgie auf der Basis eines Planungs-CTs in Maskenlagerung und unter Verwendung einer ko-registrierten, Kontrastmittel-verstärkten T1-gewichteten MRT-Sequenz zu erfolgen. Das CTV umfasst die in der MRT-Bildgebung erkennbaren makroskopischen Tumoranteile. Das Planungszielvolumen umfasst zusätzlich einen Sicherheitssaum, um die üblicherweise geringen Lagerungsungenauigkeiten zu kompensieren. Regelmäßige Bildgebungen auf dem Strahlentherapietisch, beispielsweise durch Kegelstrahl-CT oder orthogonale Röntgenaufnahmen,

ermöglichen eine wiederholte Überprüfung der Lagerungsgenauigkeit unter Therapie (151). Die Qualitätssicherung hat gemäß DIN 6875–1, 6875–2 und 6875–3 zu erfolgen.

Üblicherweise werden bei der fraktionierten Strahlentherapie Dosen zwischen 45 und 54 Gy in 5 wöchentlichen Fraktionen von 1,8 bis 2 Gy über einen Zeitraum von 5 bis 6 Wochen verwendet. Bei der Dosisverschreibung sind die Belastungen der umliegenden Risikostrukturen, beispielsweise nach QUANTEC-Vorgaben zu berücksichtigen (152,153), um das Risiko von strahleninduzierten Spättoxizitäten zu minimieren. Damit lassen sich die Nebenwirkungsraten sehr gering halten. In zwei Fallserien mit fast 800 Patienten wurden Schäden am optischen System nach 10 Jahren bei 1,5 % der bestrahlten Patienten berichtet (145,154). Daten zu strahlenbedingten Zweittumoren liegen nur für ältere Strahlentherapieverfahren vor, die im Vergleich zu modernen hochkonformalen Verfahren deutlich höhere Hirnanteile signifikant belastet haben; hier wurden Raten von unter 2 % nach 20 Jahren beobachtet (154). Dagegen kommen neue Einschränkungen der hypophysären Hormonproduktion nach Strahlentherapie relativ gesehen häufiger vor. Zwei große Kohortenstudien mit insgesamt 1200 Patienten untersuchten nach fraktionierter Strahlentherapie Einschränkungen der ACTH-, TSH- oder Gonadotropin-Produktion und berichteten nach 10 Jahren neu aufgetretene hypophysäre Insuffizienzen bei 20-30% der Patienten (145,155). Hierbei ist jedoch eine zuverlässige Differenzierung gegenüber Effekten einer vorangegangenen Operation nicht möglich.

Der Stellenwert hochkonformaler Strahlentherapieverfahren, v.a. der intensitätsmodulierten Strahlentherapie, kann deutliche dosimetrische Vorteile hinsichtlich der umliegenden Risikostrukturen bieten; der Langzeitvorteil hinsichtlich der Strahlentherapiebedingten Toxizitäten ist aber bisher wissenschaftlich noch nicht abschließend belegt. Ebenso sind bisher nur sehr beschränkt Daten zur Beurteilung des Stellenwerts einer fraktionierten Protonenbestrahlung verfügbar (156,157).

Empfehlung 5.18:

Bei postoperativ wachsendem Tumorrest und nach Ausschöpfung operativer und strahlentherapeutischer Optionen **kann** in Einzelfällen die Behandlung von hormoninaktiven Hypophysenadenomen mit Dopaminagonisten erwogen werden. Für Somatostatinanaloga besteht in dieser Indikation keine ausreichende Evidenz.

Starker Konsens (bei einer Enthaltung)

Erläuterung:

Die Datenlage zur medikamentösen Therapie ist sehr begrenzt. In einer kleinen Studie mit 33 Patienten mit operiertem hormoninaktivem Hypophysenadenom und Resttumor konnte durch die Gabe von Dopaminagonisten in 79 % eine Tumorkontrolle erreicht werden, während dies in einer nicht behandelten Kontrollgruppe (n=47) nur 38 % waren (158). In einer kleinen Untersuchungsgruppe von 19 Patienten mit 8 nicht operierten hormoninaktiven Hypophysenadenomen und 11 Operierten wurde eine 25% Tumorschrumpfung bei 6 Fällen (32%) beobachtet (159).

In einer ersten randomisierten Studie wurden Patienten mit postoperativen Resten hormoninaktiver Hypophysenadenome entweder mit (n=59) oder ohne (n=57) Cabergolin nachbehandelt. Dabei zeigte die Behandlungsgruppe in 28,8% eine Tumorschrumpfung, in 66,1% einen stabilen Befund und in 5,1% einen Progress, die Kontrollgruppe in 10,5%, 73,7% und 15,8%. Das progressionsfreie Überleben war 23,2 Monate mit Nachbehandlung und 20,8% Monate ohne diese, weswegen die Autoren die Behandlung postoperativer Reste hormoninaktiver Hypophysenadenome mit Cabergolin als effektiv ansehen (160).

Den Autoren der Leitlinie erscheint die Datenlage aufgrund der begrenzten Probandenzahl und dem Fehlen weiterer randomisierter Studien nicht robust genug, um eine allgemeingültige Empfehlung aussprechen zu können.

Als Grundlage für eine Somatostatin-Analogatherapie ist das Vorhandensein von Somatostatin-Rezeptoren (SSTR) auf der Membran der Tumorzellen erforderlich. Hormoninaktive Hypophysenadenome exprimieren insbesondere die Subtypen 2a und 5 (161). Therapeutisch kann somit der SSTR-2 durch die verfügbaren Substanzen Octreotid oder Lanreotid von Bedeutung sein. Allerdings werden die Somatostatinrezeptoren nur in geringem Maße exprimiert, weswegen im Gegensatz zu GH-produzierenden Tumoren deutlich geringere Erfolge zu erwarten sind und daher keine explizite Therapieempfehlung ausgesprochen werden kann. In den wenigen Publikationen zu diesem Thema wird von maximal 5% Ansprechen im Sinne einer Tumorschrumpfung berichtet (162,163).

Empfehlung 5.19:

Als Erstlinien-Chemotherapie für aggressive Hypophysenadenome mit dokumentiertem Tumorwachstum und fehlender chirurgischer oder strahlentherapeutischer Behandlungsoption **sollte** eine Monotherapie mit Temozolomid durchgeführt werden.

Starker Konsens (bei einer Enthaltung)

Erläuterung:

Nach den Leitlinien der Europäischen Gesellschaft für Endokrinologie sind aggressiv wachsende Hypophysentumoren durch ein radiologisch invasives Wachstum und eine ungewöhnlich rasche Wachstumsrate charakterisiert, oder zeigen ein klinisch relevantes Wachstum trotz optimalen Standardtherapien (Operation, Radiotherapie, konventionelle medikamentöse Therapie z.B. mit Dopamin-Agonisten oder Somatostatin-Analoga) (13). Die Wachstumsrate von Hypophysentumoren wird durch Patienten- und Tumor-spezifische Merkmale beeinflusst, wobei die intrinsische Tumorheterogenität das Rezidivrisiko und die Behandlungsresistenz maßgeblich bestimmt. Zu unterscheiden sind Invasivität und Aggressivität des Hypophysentumors: die Invasion ist ein wesentlicher Faktor für die unvollständige Tumorresektion. Aggressive Tumoren der Hypophyse sind bei klinischer Präsentation fast immer Makroadenome. Das Zeitintervall zwischen der Primärdiagnose und dem aggressiven Tumorverhalten variiert von Monaten bis > 10 Jahren, aber beträgt meist mehrere Jahre (164-167).

Die ersten Fallberichte über Temozolomid bei der Behandlung aggressiver Hypophysentumoren erschienen 2006. Inzwischen sind 11 Studien mit insgesamt 106 Patienten (davon 34 Hypophysenkarzinome) publiziert worden, zumeist mit dem Dosisregime von Temozolomid 150–200 mg / m2 / Tag an Tag 1 bis 5, mit Wiederholung alle 4 Wochen. Die Ansprechrate (teilweise oder vollständige Tumorregression) in diesem heterogenen Patientengut lag bei 47% (95% CI 36–58) (13). Eine vergleichbare Wirksamkeit (37%) wurde bei 156 auswertbaren Patienten beobachtet, über die im Rahmen einer zeitgleich zur Leitlinie publizierten Umfrage der Europäischen Gesellschaft für Endokrinologie zu aggressiven Hypophysentumoren berichtet wurde (168). Klinisch funktionelle Tumoren sprachen besser an als endokrin inaktive Tumoren.

Alternative Therapien sind aktuell allenfalls als individuelle Heilversuche anzusehen. Bei nicht-Ansprechen der Temozolomid-Therapie reicht die aktuelle Datenlage nicht aus, weitere Therapieempfehlungen auszusprechen. Individuelle Ansätze sollten kritisch und in Absprache mit spezialisierten Zentren diskutiert werden.

6. Pathologie

Empfehlung 6.1:

Das Gewebsmaterial aus einer Hypophysentumor-Operation **soll** nach den Kriterien der jeweils gültigen WHO-Klassifikation für Tumoren endokriner Organe und Tumoren des zentralen Nervensystems aufgearbeitet und beurteilt werden.

Starker Konsens

Erläuterung:

In Hinblick auf die histopathologische Qualitätssicherung und um eine wissenschaftliche Vergleichbarkeit zu ermöglichen, ist eine standardisierte Aufarbeitung des hypophysären Tumorgewebes notwendig. Nur unter diesen Voraussetzungen können prognostische Aussagen getroffen werden. Hierzu hat sich in den letzten Jahren weltweit die jeweils gültige WHO-Klassifikation für endokrine Tumoren und Tumoren des zentralen Nervensystems (ZNS) (169,170) durchgesetzt und stellt damit die Grundlage der neuropathologischen Aufarbeitung dar. In der Diagnostik von Hypophysentumoren ist ein guter Informationsfluss zwischen den behandelnden medizinischen Disziplinen (also u.a. Neurochirurgie, Endokrinologie und (Neuro-)Pathologie), für die konsequente Anwendung der von der WHO empfohlenen Richtlinien essentiell. Als wesentliche Informationen an den (Neuro-)Pathologen, insbesondere zur Beurteilung der Aggressivität eines Hypophysenadenoms, sind die Tumorgröße, die Tumorausdehnung bzw. Invasivität im präoperativen MRT sowie die klinische Präsentation notwendig.

Zur Gruppe der klinisch inaktiven Hypophysentumoren zählen die "silenten" Adenome, die trotz immunhistochemisch nachweisbarer Hormonproduktion zu keiner klinisch messbaren Hormonübersekretion führen, die Hormon-negativen, Transkriptionsfaktor-positiven Adenome, sowie die Hormon- und Transkriptionsfaktor-negativen Nullzelladenome.

Empfehlung 6.2:

Zur histopathologischen Aufarbeitung von Hypophysenadenomen **sollen** analog zur WHO-Klassifikation Antikörper gegen die hypophysären Hormone (GH, Prolaktin, TSH, ACTH, FSH, LH, a-SU), die drei hypophysären Transkriptionsfaktoren (PIT-1, T-PIT, SF-1), den Östrogen-Rezeptor und den Proliferationsmarker Ki-67 im Labor bereitgehalten werden.

Starker Konsens

Erläuterung:

Um Hypophysenadenome gemäß ihres Hormonsubtyps einordnen zu können, müssen im histologischen Labor die (möglichst monoklonalen) Antikörper gegen die oben genannten Hypophysenhormone etabliert sein und vorgehalten werden. Zur Subtypisierung hormonnegativer und plurihormonaler Hypophysenadenome sind die Antikörper für die Transkriptionsfaktoren Pituitary-specific positive transcription factor 1 (PIT-1; relevant für den GH-, Prolaktin- und TSH-Zellkomplex), T-box factor pituitary (T-PIT; relevant für den ACTH-Zellkomplex) und Steroidogenic Factor 1 (SF-1; relevant für den gonadotropen Zellkomplex) notwendig. Auch der immunhistochemische Nachweis von Östrogen-Rezeptoren (ÖR) ist bei der Differenzierung bihormonaler GH- und Prolaktin-positiver Adenome unverzichtbar. Der Proliferationsmarker Ki-67 (MiB-1) ist immer einzusetzen, in Fällen zweifelhafter Aggressivität eines Adenoms ggf. ergänzt um p53 als weiteren Marker.

Eine Elektronenmikroskopie ist im Gegensatz zu früheren Klassifikationsrichtlinien (171) nicht mehr erforderlich.

Empfehlung 6.3:

Da die Identifikation bestimmter Hormon-produzierender als auch Transkriptionsfaktor-positiver Hypophysenadenome prognostische Relevanz hat, **sollen** im schriftlichen Pathologiebefund die Hormon- und Transkriptionsfaktor-Subtypen benannt werden.

Starker Konsens

Erläuterung:

Die derzeit gültige WHO-Klassifikation der Hypophysenadenome basiert weiterhin auf der Histostruktur und dem immunhistochemischen Nachweis der sezernierten Hormone. Dabei hat sich allerdings auch das Verständnis der für die Differenzierung der unterschiedlichen Zelllinien Hypophysenvorderlappens verantwortlichen Transkriptionsfaktoren verbessert. So geht man davon aus, dass sich unter dem Einfluss von Pit-1 die GH-, Prolaktin- sowie TSH-produzierenden Zellen entwickeln. Eine Expression von T-Pit findet sich in ACTH-produzierenden Zellen und der Transkriptionsfaktor SF-1 führt zur Ausdifferenzierung gonadotroper Zellen. Der immunhistochemische Nachweis dieser Transkriptionsfaktoren spielt in der Diagnostik immunhistochemisch hormonnegativer und plurihormonaler Hypophysenadenome eine wichtige Rolle. Die immunhistochemisch nachweisbare Expression dieser Transkriptionsfaktoren ist zwingend, ausnahmslos nukleär und ist in allen Kernen nachzuweisen. Expressionen von mehr als einem Transkriptionsfaktor in einem Adenom kommen nicht

Die Differenzierung zwischen Hypophysenvorderlappen- und Tumorgewebe kann bei Adenomen zumeist bereits im mit Hämatoxylin-Eosin (HE) gefärbten Präparat, besonders aber in der "periodic acid-Schiff" (PAS)-Reaktion ausgemacht werden, da ein Tumor in der ansonsten eher bunt gemischten Zellkomposition der Adenohypophyse durch eine monoklonal imponierende Zellpopulation auffällt. In jedem Adenom ist die für adenohypophysäres Gewebe typische feinlobuläre Läppchenarchitektur aufgehoben. Dies lässt sich ggf. in einer Gömöriversilberung bestätigen. So lassen sich physiologisch vorkommende regionale Prädominanzen bestimmter Zelltypen sowie kleine ACTH Zellnester von echten Adenomen abgrenzen.

Die Bestimmung des Hypophysenadenom-Subtyps beruht auf strukturellen und immunhistologischen Unterschieden, die in **Tabelle 8** dargestellt sind.

Die Hormon-negativen, aber Transkriptionsfaktor-positiven Adenome können endokrin inaktiv bzw. "silent" oder endokrin aktiv sein und stellen dann durch ihren Nachweis das entscheidende Korrelat zur Erklärung einer hypophysären Überfunktion dar. So können PIT-1-positive Adenome ohne den zu erwartenden Hormonnachweis eine GH-, Prolaktin- oder TSH-Überfunktion erklären. Ebenso können T-PIT-positive, ACTH-negative Adenome eine ACTH-Überfunktion (im Sinne eines Morbus Cushing oder eines Nelson-Syndroms) bedingen. Schließlich stellen auch SF-1-positive, FSH- und LH-negative Adenome gonadotrope Adenome dar.

Bei Hormon-negativen Adenomen hat der sichere Nachweis der endokrinen Differenzierung durch die Färbung von Chromogranin A oder Synaptophysin zu erfolgen, wobei aber Chromogranin-Negativität ein Hypophysenadenom nicht ausschließt.

	Immunhistochemie				mögliche Funktion
Tumortyp	Hormone und Transkriptions- Rezeptoren faktor		Aggressiv	Hauptfunktion	
Somatotrope Adenome					
Dicht granuliertes STH-Adenom	GH, ggf. PRL, a- SU, ÖR negativ	PIT-1		Akromegalie	
Gering granuliertes STH-Adenom	GH, ggf. PRL, a- SU, ÖR negativ	PIT-1	ja	Akromegalie	silent
Undifferenziertes STH-Adenom	GH, ggf. PRL, ÖR negativ	PIT-1	ja	Akromegalie	silent
Laktotrope Adenome					
Dicht granuliertes PRL-Adenom	PRL, ÖR positiv	PIT-1		Hyperprolaktinämie	
Gering granuliertes PRL-Adenom	PRL, ÖR positiv	PIT-1	Makro- adenome beim Mann	Hyperprolaktinämie	silent
Azidophiles Stammzell-Adenom	PRL, (GH), ÖR positiv	PIT-1	ja	Hyperprolaktinämie	Akromegalie
Undifferenziertes PRL-Adenom	PRL, ÖR positiv	PIT-1	ja	Hyperprolaktinämie	silent
Gemischte STH-Prolaktin Adenome					
Dicht granuliertes GH-/PRL-Adenom	GH, PRL, ÖR positiv	PIT-1		Akromegalie	Hyperprolaktinämie
Gering granuliertes GH-/PRL-Adenom	GH, PRL, ÖR positiv	PIT-1		Akromegalie	Hyperprolaktinämie
Mammosomatotropes Adenom	GH, PRL, ÖR positiv	PIT-1		Akromegalie	Hyperprolaktinämie
Thyreotrope Adenome					
TSH-Adenom	TSH (PRL)	PIT-1		TSH-Überfunktion	silent
Undifferenziertes TSH-Adenom	TSH, PRL	PIT-1		TSH-Überfunktion	Hyperprolaktinämie
Plurihormonale Adenome					
PIT-1-positives plurihormonales Adenom	GH, PRL, TSH, andere	PIT-1	ja	Inaktiv	Hyperprolaktinämie
T-PIT- oder SF-1-positives Adenom	Unterschiedliche Kombinationen	T-PIT oder SF-1	unklar		
Kortikotrope Adenome					
Dicht granuliertes ACTH-Adenom	ACTH	T-PIT		Morbus Cushing	silent → aggressiv
Gering granuliertes ACTH-Adenom	ACTH	T-PIT		Morbus Cushing	silent → aggressiv
Crooke-Zelladenom	ACTH	T-PIT	ja	Morbus Cushing	silent
Gonadotrope Adenome				Inaktiv	
FSH- oder LH- oder FSH-/LH-Adenom	FSH und/oder LH	SF-1			
alpha-Subunit Adenom	a-SU	SF-1		inaktiv	
Hormon- und Transkriptionsfaktor- negative Tumoren	negativ	negativ		inaktiv	
Nullzell-Adenom	negativ	negativ		inaktiv	

Tabelle 8: WHO-Klassifikation der Hypophysenadenome von 2017. Abkürzungen: ACTH, adrenocorticotropes Hormon; a-SU, alpha-Subunit; FSH, follikelstimulierendes Hormon; GH, growth hormone; LH, luteinisierendes Hormon, ÖR, Östrogenrezeptor; PIT-1, Pituitary-specific positive transcription factor; PRL, Prolaktin; T-PIT, T-PIT-box factor pituitary; TSH, thyreotropes Hormon; SF-1, Steroidogenic Factor 1.

Empfehlung 6.4:

Für Hormon-negative, Transkriptionsfaktor-positive Adenome **sollen** analog zur WHO-Klassifikation folgende Diagnosen angewandt werden:

- Hormon-inaktives PIT-1 positives Hypophysenadenom (eine nähere Zuordnung zu GH-Prolaktin- oder TSH-Adenomen ist nicht sicher möglich)
- Hormon-inaktives gondadotropes Hypophysenadenom (SF-1-positives Adenom)
- Hormon-inaktives kortikotropes Hypophysenadenom (T-PIT-positives Adenom)

Starker Konsens (bei einer Enthaltung)

Erläuterung:

Die Definition der Nullzelladenome hat sich in der WHO-Klassifikation von 2017 (170) gegenüber der Vorgängerklassifikation von 2004 (171) entscheidend geändert. Galt früher der fehlende Nachweis von hypophysären Hormonen als entscheidendes Kriterium, ist jetzt das gemeinsame Fehlen von Hormonen und Transkriptionsfaktoren entscheidend (**Tabelle 8**). Die Rate der Nullzelladenome wird daher erheblich absinken, nach ersten Berechnungen von etwa 15 % (172) auf etwa 1 % (173,174).

Empfehlung 6.5:

Zusätzlich zu der histologischen Klassifikation eines Hypophysentumors **soll** analog zur WHO-Klassifikation dessen klinische Wertigkeit und Aggressivität beurteilt werden, wozu klinische Angaben zur endokrinen Aktivität des Tumors und zu radiologischen Befunden bezüglich der Ausbreitung und Invasivität erforderlich sind.

Starker Konsens

Erläuterung:

Die sog. "atypischen Adenome" der WHO-Klassifikation von 2004 (171,175-177) wurden nicht in die aktuelle Klassifikation von 2017 (170) übernommen, weil sie nicht die erhofften prognostischen Aussagen ermöglichten und die für die Diagnose notwendige nukleäre p53-Expression institutionsübergreifend unterschiedliche Ergebnisse und Interpretationen erbrachte (178,179).

Die aggressiven Adenome der neuen Nomenklatur von 2017 (13,170) zeichnen sich durch ein rascheres Wachstum und eine höhere Rezidivrate aus (180) und sind definiert durch das Vorliegen eines oder mehrere der folgenden Kriterien:

- 1. Ihren histologischen Subtyp als solchen (170,181,182). Dieses betrifft die gering granulierten somatotropen Adenome, die laktotropen Makroadenome (Durchmesser > 10 mm) beim Mann, die "silenten" kortikotropen Adenome, die Crooke-Zelladenome und das PIT-1-positive plurihormonale Adenom, welches dem sog. "silent subtype-3 adenoma" der vorherigen Klassifikation (170) entspricht. Diese Zuordnung als aggressives Adenom durch den Adenomtyp ist unabhängig von den jeweils dargestellten histologischen Proliferationsparametern (Ki-67, Mitosezahl) des Einzelfalls.
- 2. Durch ihre erhöhten Proliferationsparameter (Ki-67 über 3 %, Nachweis von Mitosen (deren Schwellenwert nicht von der WHO definiert ist) und eventuell eine signifikante nukleäre p53-Expression).
- 3. Durch klinische Kriterien, wie ein außergewöhnlich rasches Tumorwachstum oder präoperative radiologische Befunde eines ausgedehnten invasiven Wachstums oder intraoperative neurochirurgische Aspekte einer ausgedehnten Invasion in Nachbargewebe.

Punkt 3 stellt klar, dass aggressive Adenome oft nur diagnostiziert werden können, wenn klinische Aspekte mitberücksichtigt werden. Dies betrifft auch Angaben zu Hormonwerten. Endokrin aktive

ACTH-Adenome müssen nicht per se aggressiv sein (und sind es meistens auch nicht), "silente" (also nicht endokrin aktive ACTH-Adenome) sind es grundsätzlich.

Wird von neurochirurgischer Seite fraktioniert Gewebe eingesandt (z.B. Probe 1: Nasen-Rachen- und Nasen-Nebenhöhlen-Schleimhaut, Probe 2: Dura, Probe 3: Tumor), ist dies aus histopathologischer Sicht sehr zu begrüßen. In diesem Fall ist festzulegen, in welchen Gewebeanteilen ein Tumornachweis als "invasives Wachstum" angesehen wird. In jedem Fall ist ein Tumornachweis in der ersten Fraktion bzgl. der Frage nach Invasivität als klar diagnostisch anzusehen. In der zweiten Fraktion sind verschiedene Punkte zu diskutieren. Welches Durablatt wurde eingesandt; knöchernes oder mediales/hypophysäres? Ein Tumornachweis im knöchernen Blatt hat als klar invasiv zu gelten. Werden Tumorzellnester innerhalb der medialen/hypophysären Dura nachgewiesen, ist auch hier eine Invasivität zu bejahen. Anteile dieses Durablattes verbleiben in situ und damit möglicherweise auch Anteile des Tumors, sodass auch hier von einer erhöhten Wahrscheinlichkeit eines Rezidivs ausgegangen werden kann.

In der aktuellen Version der WHO-Klassifikation der Hypophysentumoren werden vereinfachend und aus Sicht der Autoren dieser Leitlinie ungünstigerweise alle Knosp Grad III und IV -Adenome im präoperativen MRT als infiltrativ und damit aggressiv angenommen (170). Hier wird auf eine einzige Übersichtsarbeit verwiesen, an deren Erstellung offensichtlich weder Neurochirurgen noch Neuroradiologen beteiligt waren (183). In der Original-Publikation von Knosp hingegen wurden die coronaren MRT-Untersuchungen von 25 Patienten (50 Sinus cavernosi) ausgewertet und intraoperativ mikrochirurgisch validiert: in Grad 0 und Grad I Tumoren fand sich keine Infiltration, in Grad II Tumoren zu 88 %, in Grad III Tumoren zu 86 % und in Grad IV Tumoren in 100 % (72). Eine intraoperativ endoskopische Validierung von 137 Patienten aus derselben Arbeitsgruppe zeigte keine Infiltration in Grad 0 Adenomen, 1,5 % Infiltration in Grad I Tumoren, 10 % in Grad II Adenomen, 38 % Infiltration in Grad III Tumoren und 100 % in Grad IV Adenomen (184). Die dort vorgeschlagene Präzisierung der Knosp-Klassifikation in Bezug auf die Grad III Adenome ergab für den Grad IIIa (Tumorextension oberhalb der Pars horizontalis der intracavernöse A. carotis interna) eine Infiltrationsrate von 27 %, für den Grad IIIb (Ausdehnung des Tumors unterhalb der Pars horizontalis der intracavernösen A. carotis) eine Infiltrationsrate von 71 %. Die in der WHO-Klassifikation vollzogene Vereinfachung ist also vereinfachend und inhaltlich fraglich. Dieses Problem betrifft allerdings auch einen nicht unerheblichen Teil von tumorbiologischen Studien, welche sich mit dem Infiltrationsverhalten humaner Hypophysenadenome und korrelierten Parametern beschäftigen. Hier wurden häufig ebenfalls vereinfachend die präoperativen MRT-Untersuchungen zur Definition der infiltrativen Gruppen herangezogen, ohne auf eine mögliche neurochirurgische oder postoperative radiologische Bestätigung Wert zu legen.

Empfehlung 6.6:

Bei Vorliegen von Aggressivitätskriterien **soll** analog zur WHO-Klassifikation bei der Diagnose im schriftlichen Pathologiebefund hinter dem Hormon- und Transkriptionsfaktor-Subtyp noch der Zusatz "mit Merkmalen der Aggressivität" aufgeführt werden.

Starker Konsens

Empfehlung 6.7:

Zur Planung einer Pharmakotherapie **kann** die Immunhistologie mit Nachweis der Somatostatin- und Dopaminrezeptoren hilfreich sein.

Sofern bei aggressiven Hypophysenadenomen und -karzinomen eine Therapie mit Temozolomid erwogen wird, **kann** eine MGMT-Bestimmung ergänzt werden.

Starker Konsens (bei drei Enthaltungen)

Erläuterung:

Sofern zur Behandlung aggressiver inaktiver Adenome aus klinischer Sicht Somatostatinanaloga, Dopaminagonisten oder Temozolomid in Frage kommen, haben sich die immunhistochemischen Färbungen mit Antikörpern gegen die Somatostatinrezeptoren (SSTR) SSTR2a und SSTR5, die Dopaminrezeptoren und die Bestimmung der O-6-Methylguanine-DNA-Methyltransferase (MGMT)-Expression als hilfreich erwiesen. Dicht granulierte somatotrope Adenome sind deutlich stärker positiv für SSTR2a als die gering granulierten somatotropen Adenome (185) und entsprechend reagieren die dicht granulierten Adenome auch stärker auf die Somatostatinanaloga-Therapie (185,186). Die relativ wenigen "silenten" Adenome dieses Typs enthalten immunhistologisch ebenfalls SSTR2 und SSTR5 (187). Gleiches gilt für die laktotropen Adenome, die nur sehr selten "silent" sind, wobei dann die Immunhistologie für Dopamin-Rezeptoren zur Frage einer Therapie mit Dopaminagonisten (188) einzusetzen ist. ACTH-Adenome sind nicht selten "silent", weshalb bei aggressivem Verhalten auf SSTR (189) zu untersuchen ist. Unabhängig von ihrem histologischen Typ enthalten 60% der inaktiven Adenome Dopaminrezeptoren und 7% den SSTR2 (190).

In aggressiven Hypophysenadenomen sprechen Studien dafür, dass die Bestimmung der MGMT-Proteinexpression einen prädiktiven Wert für das Ansprechen einer Temozolomid-Therapie haben (168). Der routinemäßige Einsatz als prädiktiver Biomarker wird allerdings gegenwärtig noch diskutiert. Eine Korrelation zwischen der MGMT-Promotormethylierung und MGMT-Expression zeigt sich in Hypophysenadenomen nicht. Eindeutige immunhistochemische Grenzwerte der MGMT-Expression in Hinblick auf das Ansprechen von Temozolomid sind in Adenomen gegenwärtig nicht definiert (13,168,191-193). Die mismatch-repair-Proteine (besonders der Verlust von MSH-6) sind bei sehr aggressiven Adenomen zur Therapie zu bestimmen (194).

Empfehlung 6.8:

Eine molekulargenetische Untersuchung des Gewebes hormoninaktiver Hypophysenadenome **kann** aufgrund fehlender klinischer Konsequenz aktuell nicht empfohlen werden.

Starker Konsens (bei einer Enthaltung)

Erläuterung:

Sporadische Mutationen wurden zwar in bis zu 60 % der kortikotropen Adenome (v.a. USP8 und USP48 Mutation) und in ca. 40 % der somatotropen Adenome (v.a. GNAS Mutationen) beschrieben (195-199), aber in hormoninaktiven Adenomen gibt es bisher keine pathogenetisch relevanten Mutationen, die gehäuft gefunden wurden. Grundsätzlich hat ein molekularpathologischer Mutationsnachweis zum momentanen Zeitpunkt keine therapeutischen Konsequenzen und wird daher allenfalls im Rahmen von Forschungsprojekten durchgeführt.

Zum Nachweis von Hormon-negativen, Transkriptionsfaktor-positiven Hypophysenadenomen kann neben der immunhistochemischen Analyse der entsprechenden Transkriptionsfaktoren (PIT-1, T-PIT, SF-1) auch eine epigenetische Analyse (EPIC) durchgeführt werden (200).

7. Nachsorge

I. Allgemeines

Empfehlung 7.1:

Patienten mit Hinweisen auf eine Keimbahnmutation **sollten** auf die Möglichkeit einer humangenetischen Beratung hingewiesen werden.

Starker Konsens

Erläuterung:

Eine Keimbahnmutation ist vor allem dann zu erwägen, wenn der Patient bei Erstdiagnose des Hypophysenadenoms ≤ 30 Jahre alt ist, neben dem Hypophysenadenom noch weitere Tumoren bekannt sind oder es eine familiäre Häufung von Hypophysenadenomen gibt (201).

Empfehlung 7.2:

Nach einem neurochirurgischen Eingriff an der Hypophyse **soll** der Patient darauf hingewiesen werden, dass bestimmte Alltags- und Freizeitaktivitäten für einen begrenzten Zeitraum zu meiden sind.

Starker Konsens

Erläuterung:

Bestimmte Alltags- bzw. Freizeitaktivitäten (z.B. Haare waschen, Naseputzen, Blasinstrumente spielen) sowie die Ausübung körperlicher Tätigkeiten (z.B. im Rahmen sportlicher oder beruflicher Betätigungen) sind nach einem neurochirurgischen Eingriff zumindest über einen gewissen Zeitraum zu vermeiden. Eine Übersicht an Handlungsempfehlungen für den postoperativen Verlauf nach transsphenoidalen Eingriffen, welche exemplarisch von mehreren deutschen Neurochirurgen ausgesprochen wurden, gibt die nachfolgende **Tabelle 9** (202). Selbstverständlich gilt im Einzelfall jeweils die konkrete Empfehlung des jeweiligen Operateurs.

Aktivität	empfohlene Karenzzeit (in Wochen) nach transsphenoidalem Routinezugang			empfohlene Karenzzeit (in Wochen) nach erweitertem Zugang		
	Variation	Median	Empfehlung	Variation	Median	Empfehlung
Alltägliche Aktivitäten						
Nase schnäuzen	<1-8	3	3 ^A	1-12	4	4 ^A
Haare waschen	<1-1	<1	<1	<1-2	<1	<1
Saunagang	1-4	4	4	2-12	4	4
Blasinstrument spielen	3-12	6	6 ^B	3-26	8	6 ^B
Fliegen	<1-8	1,5	1 ^C	<1-8	2,5	2 ^C
Schwer Heben	<1-8	4	4	1-26	6	6
Autofahren	<1-12	1	<1 ^D	<1-12	4	2 ^G
CPAP-Gerät nutzen	<1-12	3,5	3 ^A	<1-12	4	4 ^A
Geschlechtsverkehr haben	<1-4	1	1	<1-8	3,5	2
Sportliche Aktivitäten						
Nordic Walking	<1-4	2	2	<1-6	3	3
Joggen	<1-6	4	3	<1-12	5	4
Brustschwimmen	1-8	4	4	2-12	6	6
Kraulen	1-8	4	4	2-12	6	6
Tauchen	4-26	8	12 ^E	6-ø	12	12 ^E
Tennis	<1-8	4	4	4-12	7	6
Fußball	<1-8	4	4 ^F	4-12	8	8 ^F
Leistungssport	4-12	6	6	6-12	12	10
Berufliche Aktivitäten (8	Stunden/Tag)					•
Sitzende Tätigkeit	<1-3	1,5	2	<1-4	2	3
Körperliche Tätigkeit	<1-6	3,5	4 ^A	2-12	6	6 ^A

Tabelle 9: Handlungsanweisungen nach routinemäßigen oder erweiterten transsphenoidalen Eingriffen von 14 deutschen Neurochirurgen (mit insgesamt etwa 1000 transsphenoidalen Operationen pro Jahr). Unter der Spalte "Variable" finden sich die Angaben der an der Umfrage teilnehmenden Neurochirurgen in ihrer jeweiligen Reichweite ("von…bis…"). Legende: A) Länger nach intraoperativem Liquorfluss; B) Startpunkt für stufenweise Erhöhung der Aktivität; C) Ausschluss intrakranieller Luft (innerhalb des Schädels) ist Voraussetzung, z. B. durch CT; D) Vorausgesetzt, Hyponatriämie ist ausgeschlossen und Patient fühlt sich wohl; E) Statement des verantwortlichen Operateurs ist verbindlich; F) Keine Kopfbälle; G) Vorausgesetzt, die Hirnoberfläche war weder durch den Tumor noch die Operation involviert; Ø = nie (für weiterführende Informationen wird auf die entsprechende Originalarbeit verwiesen). Tabelle modifiziert nach (202).

Für transkranielle Eingriffe ist im Hinblick auf die Fahrtauglichkeit nach Hirnoperationen nach den verbindlichen Begutachtungsleitlinien zur Kraftfahrteignung der Bundesanstalt für Straßenwesen (BAST) mit Gültigkeit ab dem 24. Mai 2018 ein Fahrverbot für (zunächst) 3 Monate postoperativ auszusprechen. Das Vorliegen von Sehstörungen, einer Tagesschläfrigkeit oder epileptischer Anfälle bedarf einer gesonderten Bewertung (203). Selbstverständlich gilt im Einzelfall die konkrete Empfehlung des Operateurs.

Empfehlung 7.3:

Patienten **sollen** gezielt nach psychosozialen Konsequenzen und Begleiterscheinungen des Hypophysentumors befragt werden. Der Einsatz von Fragebögen **kann** dabei hilfreich sein.

Starker Konsens

Erläuterung:

Patienten mit hormoninaktiven Makroadenomen der Hypophyse leiden im Vergleich zu altersgleichen gesunden Kontrollen auch nach erfolgreicher Operation oder Bestrahlung nachweislich unter einer beeinträchtigten Lebensqualität (204). Spezifisch wurde bei Betroffenen ein vermehrtes Auftreten von Abgeschlagenheit und Tagesmüdigkeit beobachtet (205). Diese Beeinträchtigungen können oftmals auf einen unterschwelligen Hypopituitarismus zurückgeführt werden (206).

Ob bei Patienten mit hormoninaktiven Hypophysenadenomen der Einsatz von Fragebögen zur Erfassung der Lebensqualität einer alleinigen klinischen Evaluation überlegen ist, ist bislang nicht ausreichend belegt. Die gesundheitsbezogene Lebensqualität wird durch körperliche, psychische und soziale Faktoren bestimmt. Gerade im Langzeitverlauf stellt der Einsatz objektivierender Messinstrumente eine Möglichkeit dar, klinisch eher subtile Veränderungen eines Patienten besser nachvollziehen und bei der Betreuung berücksichtigen zu können (z.B. vor der Veranlassung einer Substitutionstherapie bei nicht eindeutigen Laborbefunden oder im Fall eines Arztwechsels) (207,208). Geeignete Fragebögen, welche hinsichtlich ihrer Aussagekraft bereits validiert wurden, sind beispielsweise (Auswahl):

- Fragebögen zur gezielten Evaluation von Patienten mit Hypophysenadenomen:
 - LBNQ Leiden Bother and Need Questionnaire (209)
- Fragebögen zur Evaluation der allgemeinen Lebensqualität:
 - Short-Form-36 Health Survey (SF-36) (210)
 - Nottingham Health Profile (NHP) (211)
 - EuroQoL 5Q5D (212)
- Weitere Fragebögen zur gezielten Evaluation von Patienten mit einem im Erwachsenenalter erworbenem Hypopituitarismus:
 - Quality of Life-Assessment of Growth Hormone Deficiency in Adults (QoL-AGHDA Wachstumshormonmangel)
 - Questions on Life Satisfaction Hypopituitarism Module (QLS Wachstumshormonmangel) (213)
 - Adult Hypopituitarism Questionaire (AHQ, Hypopituitarismus allgemein) (214)

Die Ergebnisse dieser Fragebögen können auch zur Evaluation einer medizinischen Nachbehandlung sowie ggf. einer psychotherapeutischen Nachsorge herbeigezogen werden. Besonders kognitiv verhaltenstherapeutische und achtsamkeitsbasierte Interventionen haben sich bei der Nachsorge onkologischer Erkrankungen im Hinblick auf die Reduktion von Müdigkeit, Ängsten und depressiven Symptomen bewährt (215,216), die Effekte sind allerdings moderat (217). Ein positiver Einfluss im Rahmen der Behandlung und Nachsorge eines Hypophysenadenoms liegt nahe, ist allerdings spezifisch für dieses Krankheitsbild bisher nicht überprüft worden.

II. <u>Unmittelbarer postoperativer Verlauf (bis etwa 2 Wochen nach der Operation)</u>

Nach operativer Resektion eines Hypophysenadenoms wird die konkrete Nachsorge v.a. durch den Zeitpunkt der postoperativen Evaluation bestimmt. Zu dem perioperativen und unmittelbar postoperativen Verlauf (bis etwa 2 Wochen nach der Operation) wird bereits in dem **Kapitel 5** zur Therapie (und dort konkret in den **Empfehlungen 5.9-5.14**) Stellung genommen.

III. Kurzfristiger postoperativer Verlauf (etwa 6-12 Wochen nach der Operation)

Empfehlung 7.4:

Eine postoperative Nachsorge soll engmaschig und nach lokalen interdisziplinären Standards erfolgen.

Sofern keine lokalen interdisziplinären Standards existieren, kann z.B. nach dem in Abbildung 1, Abbildung 2 und Tabelle 10 aufgeführten Procedere verfahren werden.

Starker Konsens

Empfehlung 7.5:

Innerhalb der ersten 3 Monate postoperativ **soll** eine ausführliche endokrinologische Nachsorge erfolgen.

Das endokrinologische Labor **soll** bei allen Patienten eine morgendliche Messung von TSH, fT4, fT3, Cortisol, IGF-1 LH, FSH sowie Gesamt-Testosteron (bei Männern) bzw. Östradiol (bei prämenopausalen Frauen) beinhalten.

Eine sekundäre Nebennierenrinden-Insuffizienz **soll** nach frühestens 6 und spätestens 12 Wochen verbindlich ausgeschlossen werden z.B. mittels einer geeigneten dynamischen Funktionstestung (siehe **Empfehlung 4.3**)

Bei Verdacht auf einen Diabetes insipidus **sollte** die Urin-Osmolalität bestimmt und ggf. ein entsprechender Funktionstest durchgeführt werden.

Starker Konsens

Empfehlung 7.6:

Obligat sollen eine bewiesene Insuffizienz von kortikotroper und thyreotroper Achse therapiert werden, bei anderen hypophysären Hormoninsuffizienzen sollte eine Substitutionstherapie geprüft werden (siehe hierzu auch Empfehlung 5.9, Empfehlung 5.10 und Empfehlung 5.11). Bezüglich der adäquaten Schulung von Patienten wird auf Empfehlung 8.1 und Empfehlung 8.2 verwiesen.

Starker Konsens

Erläuterung:

Die postoperative Diagnostik ist in Abbildung 1 nochmals zusammengefasst.

Bei bereits präoperativ bekannten oder im Verlauf neu aufgetretenen Hormonmangelzuständen ist es ratsam, schon im kurzfristigen postoperativen Intervall eine entsprechende Diagnostik zu veranlassen, um eine notwendige Substitutionstherapie adäquat adaptieren oder beginnen zu können. Gemäß einer Metaanalyse ist nach einer Operation eine Besserung hormoneller Beeinträchtigungen bei etwa 30 % der Fälle zu erwarten und somit deutlich weniger wahrscheinlich als (oftmals rückläufige) Sehstörungen (135). Die Mehrzahl der Betroffenen ist daher langfristig auf eine Substitutionstherapie angewiesen.

Bezüglich der zu erfolgenden Hormondiagnostik sei auf die Ausführungen in **Kapitel 4** zur Diagnostik hingewiesen.

Wird postoperativ bereits Hydrocortison eingenommen, ist dieses vor der Testung mindestens 18-24 Stunden lang absetzen (synthetische Glukokortikoide wie Prednison oder Dexamethason entsprechend nochmals länger). Bestätigt sich eine sekundäre Nebennierenrinden-Insuffizienz, wird direkt die Hydrocortison-Substitution eingeleitet bzw. fortgesetzt.

Bei Durchführung eines ACTH-Tests ist v.a. in den ersten Wochen nach einer Hypophysen-Operation die Möglichkeit eines falsch-positiven Befundes zu berücksichtigen, da erst ein mittel- bis langfristiger ACTH-Mangel eine zuverlässige Atrophie der Nebenniere bedingt (218). Ab etwa 6-8 Wochen nach der Operation erscheint es jedoch sinnvoll, primär den einfach durchzuführenden, die Patienten kaum

belastenden, ACTH-Test zur dynamischen Austestung der kortikotropen Achse einzusetzen; alternativ können alle üblichen Funktionsteste angewendet werden (siehe die Erläuterung zu **Empfehlung 4.3**). Die Aufnahme einer kortikotropen Substitutionstherapie erfolgt entsprechend der Erläuterung zu **Empfehlung 5.10**.

Eine thyreotrope Insuffizienz wird mit in aller Regel mit Levothyroxin therapiert. Bei erstmaligem Nachweis einer behandlungsbedürftigen Hypothyreose wird die Therapie üblicherweise mit etwa 1,6 µg Levothyroxin pro kg Körpergewicht begonnen. Bei weniger ausgeprägten Befunden oder in bestimmten Situationen (z.B. bei bekannten kardiovaskulären Komorbiditäten) erfolgt der Beginn mit einer niedrigeren Dosis, um im Verlauf eine Therapieeskalation vorzunehmen. Bei sekundärer Hypothyreose ist das laborchemische Therapieziel ein fT4 im oberen Drittel des Referenzbereichs. Eine erste Bestimmung des fT4-Wertes ist nach etwa 8 Wochen unter Therapie sinnvoll. Bei unzureichender Höhe des fT4 ist das Levothyroxin um etwa 12,5-25 µg pro Tag anzuheben, gefolgt von einer erneuten Laborkontrolle nach etwa 8 Wochen (einen unauffälligen klinischen Verlauf vorausgesetzt).

Die Substitution einer gonadotropen Insuffizienz erfolgt beim Mann mit Testosteron und bei der prämenopausalen Frau mit einer Östrogen-Gestagen-Kombination (oder bei Z.n. Hysterektomie mittels Östrogen-Monotherapie). Vor Aufnahme einer Langzeittherapie (z.B. durch Einsatz einer Testosteron-Depotspritze) ist eine Therapie mit transdermalen Präparaten (z.B. Testosterongel) empfehlenswert.

Bei nachgewiesenem Wachstumshormonmangel <u>und</u> entsprechenden Beschwerden (insbesondere einer Einschränkung der Lebensqualität), ist eine Substitutionstherapie mit Somatotropin zu erwägen. Die Therapie ist seit 1995 bei symptomatischem Wachstumshormonmangel bei Erwachsenen zugelassen (219)

Bei persistierender Einschränkung des Allgemeinbefindens und/oder der Libido trotz adäquater Substitution der übrigen Hypophysenhormone ist individuell eine Substitutionstherapie mit Dihydroepiandrostendion (DHEA) zu erwägen. Positive Effekte sind erst nach Wochen oder Monaten festzustellen. Es handelt sich um eine nicht etablierte Therapie, worüber die Patientin aufzuklären ist.

Im Fall einer neuen oder sich verschlechternden Nykturie ist die tägliche Urinmenge zu protokollieren. Eine Urinmenge von > 6 I/Tag ist nahezu immer mit einem Diabetes insipidus vergesellschaftet. Bei einer Ausscheidung von > 3,5 l/Tag (bzw. 50 ml/kg Körpergewicht pro Tag) sind simultan Serum- und Urinosmolalität zu bestimmen (bei einer hohen Serumosmolalität von > 295 mosmol/l liegen üblicherweise die Urinosmolalität bei ungefähr 600 mosmol/l und das Verhältnis von Serum- zu Urinosmolalität bei > 2; hierbei hat ein Urinteststreifen für Glukose negativ auszufallen). Zum definitiven Beweis eines Diabetes insipidus ist ein hypertoner Kochsalzbelastungstest (alternativ auch ein Durstversuch oder ein Arginin-Stimultationstest) zu veranlassen (220,221). Die genannte Funktionstestung kann relevante Komplikationen bedingen und bedarf daher einer entsprechenden Expertise bei der Durchführung. Wird ein Diabetes insipidus centralis diagnostiziert, kann Desmopressin intranasal oder oral verabreicht werden. Für die Dosistitration sind u.a. die Trinkmenge, die Miktionsfrequenz, der periphere Flüssigkeitsstand, die Gewichtsentwicklung und der Natriumwert im Serum zu berücksichtigen. Über die möglichen Folgen einer Desmopressin-Überdosis (z.B. Übelkeit, Erbrechen, Kopfschmerzen, Lethargie sowie bei fortschreitender Hyponatriämie ggf. auch Bewusstlosigkeit und Koma) und die sich hieraus ergebenen Konsequenzen (z.B. umgehendes Pausieren von Desmopressin, ärztliche Rücksprache) müssen Betroffene suffizient aufgeklärt werden.

Waren präoperativ Laborparameter erhöht (z.B. ACTH, IGF1, FSH oder a-SU bei subklinischen kortikotropen, somatotropen oder gonadotropen Adenomen), erlaubt die postoperative Bestimmung des Indexparameters ggf. eine erste Einschätzung, ob (und wenn ja, wieviel) Tumorgewebe nach der Operation noch verblieben ist.

Empfehlung 7.7:

Sofern keine offenkundige Beeinträchtigung besteht und regelmäßig eine bildgebende Nachsorge mittels Magnetresonanztomographie erfolgt, **kann** bei fehlenden radiologischen Hinweisen auf einen Kontakt zur Sehbahn auf ophthalmologische Verlaufsuntersuchungen verzichtet werden.

Starker Konsens

Erläuterung:

Bei den postoperativen Kontrollen sind in der Regel 6 Monate Abstand ausreichend. Ein operativer Eingriff kann bei etwa 80% der Betroffenen eine Verbesserung der Sehleistung bedingen (222). Die Besserung tritt dabei manchmal schon unmittelbar postoperativ ein (223,224). Das Erholungspotential ist vom Ausmaß der Opticusatrophie bzw. des Gesichtsfeldausfalls abhängig.

Abbildung 1: Vorschlag zur postoperativen Nachsorge von Patienten in den ersten 12 Wochen nach der Operation eines hormoninaktiven Hypophysentumors. Legende: ^A regelmäßig bis min. zum 10. postoperativen Tag; ^B TSH, fT4, fT3, Cortisol, IGF1, LH, FSH, geschlechtsabhängig Östradiol bzw. Gesamt-Testosteron; ^C Dynamische Funktionstests zur diagnostischen Aufarbeitung einer möglichen kortikotropen Insuffizienz (siehe Erläuterungen zu der **Empfehlung 4.2**); ^D frühestens nach 6, besser nach 8 und spätestens nach 12 Wochen; ^E sofern Voruntersuchung unauffällig und Klinik blande im 1. Halbjahr keine erneute Durchführung mehr.

IV. Mittel- und langfristiger postoperativer Verlauf

Auch im langfristigen Verlauf sind regelmäßige Nachsorgeuntersuchungen erforderlich. Das individuelle Kontrollintervall ist dabei u.a. von präoperativen Befunden (Tumorgröße, Vorliegen und Ausmaß einer hormonellen Beeinträchtigung), dem Operationsergebnis (Komplett- oder Teilresektion) und dem postoperativen Verlauf abhängig. Wesentliche Ziele sind, eine potentielles Tumorrezidiv und/oder eine hormonelle Beeinträchtigung frühzeitig zu erkennen. In Abhängigkeit der direkten postoperativen endokrinologischen Diagnostik (siehe **Empfehlung 7.4**) erfolgt die weitere endokrinologische Nachsorge.

Empfehlung 7.8:

Bei regelrechter Hypophysenfunktion **sollte** 1 Jahr nach der Operation eine ausführliche Labordiagnostik erfolgen. Ist diese erneut unauffällig, sollte die weitere endokrinologische Nachsorge beendet werden.

Zeigt sich eine Hypophyseninsuffizienz, **sollte** zunächst alle 6 Monate, später alle 1-2 Jahre lebenslang eine endokrinologische Nachsorge erfolgen.

Starker Konsens

Empfehlung 7.9:

Eine erste MRT-Kontrolle sollte nach 3-6 Monaten postoperativ erfolgen.

Zeigt sich hierbei kein Rest- oder Rezidivtumor, **sollte** die nächste MRT-Kontrolle 2 Jahre nach der Operation wiederholt werden.

Bei unauffälligem Verlauf **sollten** die neuroradiologischen Kontrollintervalle anschließend weiter verlängert werden (auf alle 3 Jahre, somit erneute Bildgebung 5 bzw. 8 Jahre nach der Operation).

Sofern sich nach 8 Jahren bildgebender Nachsorge weiterhin kein Hinweis auf ein Rezidiv ergibt, **sollte** danach langfristig nur noch alle 5 Jahre eine Folgebildgebung veranlasst werden.

Bei Nachweis eines Resttumors in der ersten postoperativen MRT-Kontrolle **sollte** zunächst über 5 Jahre jährlich eine weitere Bildgebung erfolgen.

Bei stabilem Befund kann anschließend das Kontrollintervall verlängert werden (z.B. auf alle 2-3 Jahre).

In allen Fällen **sollte** eine lebenslange radiologische Nachsorge angeboten werden.

Starker Konsens

Erläuterung:

Konkrete Empfehlungen zu den idealen Intervallen bildgebender Kontrollen sind aufgrund der bisher sehr limitierten Datenlage schwierig. **Abbildung 2** gibt hier eine Orientierung.

Abbildung 2: Vorschlag zur postoperativen Nachsorge von Patienten mit hormoninaktiven Hypophysentumoren. Legende: * Grundsätzlich ist die Magnetresonanztomographie die Untersuchung der Wahl, bei Kontraindikationen kann auf eine Computertomographie ausgewichen werden. Sofern keine offenkundige Beeinträchtigung des Sehvermögens besteht und regelmäßig eine bildgebende Nachsorge mittels Magnetresonanztomographie erfolgt, kann bei fehlenden radiologischen Hinweisen auf einen Kontakt zur Sehbahn auf ophthalmologische Verlaufsuntersuchungen verzichtet werden.

Empfehlung 7.10:

Ergibt sich der Verdacht auf ein Tumorrezidiv oder ein relevantes Wachstum postoperativ verbliebenen Tumorgewebes, **sollen** konkrete Empfehlungen zum weiteren Vorgehen festgelegt werden (möglichst in einer interdisziplinären Fallkonferenz unter endokrinologischer, neurochirurgischer, (neuro-)pathologischer, (neuro-)radiologischer, ophthalmologischer und strahlentherapeutischer Beteiligung).

Starker Konsens

Erläuterung:

Nach bisheriger Datenlage kommt es nach alleiniger Operation bei 10% bis etwa einem Drittel der Fälle zu einem Rezidiv (135); dabei ist das Risiko jedoch deutlich geringer, wenn im postoperativen MRT kein Restgewebe mehr nachweisbar ist. Inkomplett resezierte Tumoren weisen erwartungsgemäß ein erhöhtes Rezidivrisiko auf (138,140). Auch ist v.a. bei ausgebliebener Strahlentherapie mit einem Größenwachstum von Restgewebe zu rechnen (135).

Empfehlung 7.11:

Bei langfristig verlaufsstabiler Beeinträchtigung der Sehfunktion sowie fehlendem Rest-/Rezidivtumor **sollte** die Notwendigkeit regelmäßiger augenärztlicher Nachsorge geprüft werden.

Sofern neue ophthalmologische Defizite auftreten oder ein möglicher Tumorkontakt zur Sehbahn vorliegt (z.B. verdächtiger Befund im Rahmen einer Kontroll-MRT), **soll** zeitnah eine ophthalmologische Untersuchung veranlasst werden.

In Abhängigkeit des Langzeitverlaufs **sollten** ggf. auch kürzere bzw. längere Kontrollintervalle geprüft werden.

Starker Konsens

Erläuterung:

Die langfristige ophthalmologische Nachsorge entspricht inhaltlich grundsätzlich den Empfehlungen zur ophthalmologischen Diagnostik im kurzfristigen postoperativen Verlauf, auf welche deshalb an dieser Stelle nicht mehr dezidiert eingegangen wird. Die konkreten Untersuchungen bzw. Kontrollintervalle hängen von Art, Verlauf und Schweregrad der individuellen Beeinträchtigungen ab und sind primär vom behandelnden Ophthalmologen vorzugegeben. Allerdings sei auf den Umstand verwiesen, dass ophthalmologische Defizite, welche durch die vormalige Tumorausdehnung oder die nachfolgende Therapie (z.B. Operation, Bestrahlung) bedingt sind, therapeutisch nicht in jedem Fall kausal angegangen werden können. So besteht nur bei persistierendem oder erneutem Tumorkontakt zur Sehbahn die Möglichkeit, chirurgisch oder ggf. auch medikamentös eine Tumormassenreduktion mit konsekutiver Entlastung der Sehbahnstrukturen herbeizuführen. Bei durch die Bestrahlung hervorgerufenen Einschränkungen des Sehvermögens besteht keinerlei ursächliche Therapieoption. Dementsprechend kann der Nachweis ophthalmologischer Defekte ggf. ohne therapeutische Konsequenzen bleiben, wodurch weitere ophthalmologische Kontrollen möglicherweise verzichtbar werden.

V. Nachsorge nach strahlentherapeutischen Interventionen

Empfehlung 7.12:

Nach einer Strahlentherapie **sollen** regelmäßige strahlentherapeutische Nachsorgen unter Einbezug einer Magnetresonanztomographie erfolgen.

Starker Konsens

Erläuterung:

Die Verpflichtung zur dauerhaften strahlentherapeutischen Nachsorge durch einen sach- und fachkundigen Arzt ergibt sich aus dem deutschen Strahlenschutzgesetz sowie aus der jeweils aktuellen Richtlinie "Strahlenschutz in der Medizin" und dient zur Qualitätssicherung der Strahlenanwendung. Daher hat nach stattgehabter Strahlentherapie eine lebenslängliche klinische strahlentherapeutische Nachsorge zu erfolgen, zunächst 3-6 Monate nach Therapie, dann für die nächsten 5 Jahre in Abhängigkeit von der Symptomatik in maximal jährlichen Abständen. Im weiteren Verlauf können die Intervalle abhängig von der Klinik des Patienten verlängert werden.

Durch die Einbeziehung adäquater Bildgebung lassen sich zum einen Rezidive nach Strahlentherapie erkennen, zum anderen können radiogene Veränderungen im umliegenden gesunden Gewebe bildgebend detektiert werden. Auch wenn keine Daten zu einer optimalen Frequenz der Nachsorgebildgebung vorliegen, hat diese in Abhängigkeit von Vorbefunden und klinischer Symptomatik in Intervallen von 6-24 Monaten zu erfolgen. Der überwiegende Teil der Rezidive nach Strahlentherapie tritt innerhalb der ersten 5 Jahre auf (145,225), so dass mindestens dieser Zeitraum

bildgebend zu erfassen ist. Allerdings sind in seltenen Fällen Spätrezidive noch bis zu 20 Jahre nach Strahlentherapie beschrieben worden, so dass mit dem Patienten weitere Bildgebungen in längeren Intervallen zu diskutieren sind (145).

Empfehlung 7.13:

Nach Strahlentherapie hormoninaktiver Hypophysentumoren **sollten** lebenslang endokrinologische Nachsorgen erfolgen.

Die Intervalle der augenärztlichen Nachsorge sollten individuell festgelegt werden.

Starker Konsens

Erläuterung:

Hypophysäre Achseninsuffizienzen treten in der Regel mit deutlicher Latenz zur Strahlentherapie auf, der überwiegende Teil zwischen 2-4 Jahren; allerdings werden bis zu 30 % der posttherapeutisch entstehenden Insuffizienzen deutlich später als 5 Jahre nach Strahlentherapie manifest (145,155). Daher sind langfristige endokrinologische Kontrollen notwendig, die in Abhängigkeit von der Befundsituation initial alle 6-12 Monate durchzuführen sind und im Verlauf ggf. verlängert werden können.

Ebenso können mit deutlicher Verzögerung postradiogene Schäden am optischen System auftreten, wenngleich die Inzidenz insgesamt sehr gering ist. So sind bei 0,2-0,5 % der Patienten neu aufgetretene Spätschäden am optischen System zwischen 10 und 20 Jahren nach stattgehabter Strahlentherapie beschrieben (145,154). Das Risiko einer Schädigung hängt von der Nähe des bestrahlten Volumens zum optischen System und von der applizierten Dosis ab. Daher sind lebenslang ophthalmologische Kontrollen (inkl. Visus- und Gesichtsfeldbestimmung, v.a. bei Prozessen mit Nähe zu Strukturen des visuellen Systems) erforderlich. Initial ist eine Kontrollfrequenz zwischen 6 und 12 Monaten anzustreben, welche im Verlauf verlängert werden kann. Wie bereits dargelegt, bleibt der Nachweis einer Bestrahlungs-bedingten Schädigung der Sehbahn in aller Regel ohne therapeutische Konsequenz und hat somit eher forensischen Wert.

VI. Nachsorge von Patienten ohne vorherige Hypophysen-Operation

Zur alleinigen Nachbeobachtung von nicht-funktionellen Hypophysenadenomen liegen nur wenige prospektive Daten vor, weshalb viele Empfehlungen Expertenmeinungen darstellen. Eine inhaltliche Orientierung ermöglichen die publizierten Empfehlungen der US-amerikanischen Endocrine Society (6).

Empfehlung 7.14:

Bei Mikroadenomen **soll** eine endokrinologische Verlaufskontrolle zunächst nach ca. 12 Monaten und anschließend über 3 Jahre einmal jährlich erfolgen, bevor im Fall von konstant unauffälligen Befunden die weiteren Untersuchungsintervalle individuell festgelegt werden.

Bei Makroadenomen **soll** eine endokrinologische Verlaufskontrolle zunächst nach ca. 3-6 Monaten und anschließend über 3 Jahre einmal jährlich erfolgen, bevor im Fall von konstant unauffälligen Befunden die weiteren Untersuchungsintervalle individuell festgelegt werden.

Starker Konsens

Erläuterung:

Hypophysäre Mikroadenome gehen oftmals ohne relevante klinische oder laborchemische Veränderungen einher. In den bisher prospektiv nachverfolgten Fällen waren bisher nie relevante Veränderung der initialen Hypophysenfunktion dokumentiert worden (22,226-230).

Im Gegensatz dazu wurde bei Makroadenomen eine klinisch relevante Einschränkung der Hypophysenfunktion beschrieben (u.a. gonadotrope Achse bei etwa jeder Dritten Frau und bis zu 40 % der Männer beeinträchtigt) (231). In einer Metaanalyse, welche die Daten von 8 Studien mit insgesamt 1719 Patienten subsummierte, fanden sich bei 58 % aller Fälle laborchemische Hinweise auf einen hypophysär bedingten Hormonmangel (15). Die einzelnen Hypophysenachsen waren dabei in unterschiedlicher Frequenz betroffen (somatotrope, gonadotrope, kortikotrope und thyreotrope Insuffizienz bei 87, 72, 30 und 24 %). Ein vorbestehender Hypopituitarismus verschlechterte sich bei 10-14 % der Patienten (230,232). Gemäß einer Metaanalyse kam es pro Jahr bei 2,4 % der Patienten zu einer neuen hypophysären Beeinträchtigung (233). Bei neuem Auftreten eines Hypophysenapoplexes kam es bei bis zu 11 % der Fälle zu einer Hypophyseninsuffizienz (226).

Empfehlung 7.15:

Bei Mikroadenomen **soll** eine radiologische Verlaufskontrolle mittels MRT der Sellaregion zunächst jährlich über 3 Jahre erfolgen, bevor im Fall von konstant unauffälligen Befunden die weiteren Untersuchungsintervalle individuell festgelegt werden.

Konsens (bei zwei Enthaltungen)

Empfehlung 7.16:

Bei Makroadenomen <u>ohne</u> Kontakt zu Strukturen der vorderen Sehbahn **soll** eine radiologische Verlaufskontrolle mittels MRT der Sellaregion zunächst nach ca. 6 Monaten und anschließend über 3 Jahre einmal jährlich erfolgen, bevor im Fall von konstant unauffälligen Befunden die weiteren Untersuchungsintervalle individuell festgelegt werden.

Bei Makroadenomen <u>mit</u> Kontakt zu Strukturen der vorderen Sehbahn **soll** eine radiologische Verlaufskontrolle mittels MRT der Sellaregion zunächst nach ca. 3-6 Monaten und anschließend über 3 Jahre einmal jährlich erfolgen, bevor im Fall von konstant unauffälligen Befunden die weiteren Untersuchungsintervalle individuell festgelegt werden.

Starker Konsens

Erläuterung:

Die Datenlage zu den besten Bildgebungsintervallen bei Hypophysenadenomen ist begrenzt. Bei initialem Nachweis eines Makroadenoms sind selläre Bildgebungen langfristig zu veranlassen, da es innerhalb von 4-5 Jahren bei bis zu 50 % der Fälle zu einem Tumorwachstum kommt (226). Zudem wird bei etwa 10 % der Fälle im Verlauf von 5 Jahren ein Hypophysenapoplex beobachtet (226). In einer Metaanalyse wurde der Verlauf von hypophysären Inzidentalomen innerhalb einer Nachbeobachtungszeit von 472 Personenjahren untersucht (233). Zwar kam es innerhalb von 100 Patientenjahren bei etwa 6 Läsionen zu einem Größenprogress, bei Mikroadenomen (etwa 3 Fälle pro 100 Patientenjahre) war eine zunehmende Größe allerdings deutlich seltener zu beobachten als bei Makroadenomen (etwa 13 Fälle pro 100 Patientenjahre). Auch in anderen Untersuchungen wurde die durchschnittliche Rate der größenprogredienten Mikroadenome mit < 11% angegeben (22,226-228,230,234). Als Inzidentalom erstdiagnostizierte Makroadenome zeigten in diversen Studien in durchschnittlich 24 % der Fälle ein Größenwachstum (22,226-230,232,234-236).

Von einigen Autoren werden bei inzidentellen Mikroadenomen < 5 mm weder radiologische noch endokrinologische Verlaufskontrollen empfohlen (34). Ein Teil der Leitlinienautoren ist der Auffassung, dass in der Subgruppe sehr kleiner, klinisch inaktiver Mikroadenome eine Verlaufskontrolle nicht

zwingend erforderlich ist und bei einem größenstabilen Befund nach 12 Monaten keine weiteren Bildgebungen mehr erforderlich sind.

Bei asymptomatischen hormoninaktiven Makroadenomen ist bei längerfristig dokumentierter Größenkonstanz ein Verzicht auf lebenslange kernspintomographische Kontrollen zu diskutieren. In der verfügbaren Literatur gibt es keine Evidenz für oder wider bildgebende Kontrollen. Bei Affektion der vorderen Sehbahn empfehlen wir aber, die bildgebende Kontrolle fortzuführen.

Weiterhin wird derzeit die Retention von Gadolinium nach wiederholter Applikation diskutiert (237). Nach aktueller Datenlage kommt es zwar bei linearen aber nicht bzw. in deutlich geringerem Ausmaß bei makrozyklischen gadoliniumhaltigen Kontrastmitteln zu einer Retention von Gadolinium im Neuroparenchym und anderen Geweben. Gemäß aktuellem wissenschaftlichen Kenntnisstand verursachen diese Ablagerungen weder Symptome noch Erkrankungen. Da jedoch die langfristigen Risiken einer Gadoliniumablagerung unbekannt sind, empfahl die EMA das Ruhen der Zulassungen für intravenöse lineare gadoliniumhaltige Kontrastmittel in der EU. Deshalb ruht nach EMA Empfehlung die Zulassung für lineare Kontrastmittel mit Ausnahme der Wirkstoffe Gadoxetsäure und Gadobensäure zur Leberbildgebung und des Wirkstoffs Gadopentetsäure zur intraartikulären Injektion (238-240). Handlungsleitend bei der Nachsorge von Hypophysentumoren ist das Ziel, ein Höchstmaß an diagnostischer Qualität mit der größtmöglichen Sicherheit für die Patienten zu verbinden. Bei MRT-Untersuchungen der Sella verbessern Kontrastmittel die Aussagekraft in erheblichem, nicht selten in entscheidendem Maße. In jedem Einzelfall gilt es daher, das Risiko, ohne MRT-Kontrastmittel einen wichtigen Befund zu übersehen, gegenüber den durch ihren Einsatz möglichen Nebenwirkungen abzuwägen.

	Erste Kontrolle nach Erstdiagnose		Weitere Kontrollen		
	Zeitpunkt	Inhalt	Zeitpunkt	Inhalt	
Mikroadenom	nach 12 Monaten	- Hormonlabor - Sella-MRT	- zunächst nach 24 und 36 Monaten - weitere Kontrollen nach individueller Einschätzung (Intervalllänge diskutieren!)	- Hormonlabor - Sella-MRT	
Makroadenom ohne Kontakt zu Strukturen der vorderen Sehbahn	nach 6 Monaten	- Hormonlabor - Sella-MRT	 jährliche Kontrollen über 3 Jahre (d.h. inkl. Erstkontrolle insg. 4 Kontrollen) weitere Kontrollen nach individueller Einschätzung (Intervalllänge diskutieren!) 	- Hormonlabor - Sella-MRT	
Makroadenom mit Kontakt zu Strukturen der vorderen Sehbahn	nach 3-6 Monaten	- Hormonlabor - Sella-MRT - Augenarzt	 jährliche Kontrollen über 3 Jahre (d.h. inkl. Erstkontrolle insg. 4 Kontrollen) weitere Kontrollen nach individueller Einschätzung (Intervalllänge diskutieren!) 	- Hormonlabor - Sella-MRT - Augenarzt	

Tabelle 10: Abklärungsintervalle bei größenstabilen Hypophysenadenomen ohne endokrinologische Auffälligkeiten (zum Vorgehen bei schwangeren Patientinnen sei auf **Kapitel 9** und dort konkret auf **Abschnitt II** verwiesen).

Empfehlung 7.17:

Bei radiologischem Nachweis von Hypophysentumoren mit Kontakt zur oder Kompression der Sehbahn sollen obligat eine Gesichtsfelduntersuchung und optional eine OCT veranlasst werden. Bei Patienten mit einer nicht an Strukturen des visuellen Systems heranreichenden Hypophysenläsion, welche regelmäßig eine bildgebende Nachsorge mittels MRT erhalten, **kann** auf eine augenärztliche Untersuchung verzichtet werden.

Starker Konsens (bei einer Enthaltung)

Erläuterung:

Gemäß der bisherigen Literatur ist im Verlauf der Nachsorge mit dem Auftreten von Gesichtsfeldeinschränkungen (bei ca. 8 %) und Hypophysenapoplexen (bei ca. 2 %) zu rechnen, wobei letztgenannte Fälle regelhaft zu einer chronischen Hypophyseninsuffizienz führen (226).

8. Beratung und Schulung

Empfehlung 8.1:

Patienten mit hormoninaktiven Hypophysentumoren (und idealerweise auch deren Bezugspersonen) **sollen** dahingehend beraten werden, woran ein Mangel an lebensnotwendigen Hormonen (z.B. Cortisol, Schilddrüsenhormonen und ADH) und/oder ein Syndrom der inadäquaten Antidiurese zu erkennen sind und wie diese behandelt werden.

Starker Konsens (bei einer Enthaltung)

Erläuterung:

Die Erfahrung zeigt, dass seltene Erkrankungen, wie die Hypophyseninsuffizienz, mit zum Teil unspezifischen Symptomen oft verspätet erkannt oder fehlgedeutet werden. Deswegen ist es essentiell, dass alle Patienten mit Hypophysenmakrotumor bzw. nach einer Operation oder Bestrahlung der Hypophysenregion ausreichend über mögliche Symptome eines hypophysären Hormonmangels aufgeklärt sind, dass sie ggf. frühzeitig einen Endokrinologen zur Diagnostik aufsuchen können. Da gerade der Ausfall der corticotropen und thyreotropen Achse am häufigsten zu (lebens-)bedrohlichen Beschwerden führen kann, ist hier die Aufklärung am notwendigsten. Zusätzlich kann es gerade in den ersten Tagen und Wochen nach Operation zu Hypophysenhinterlappenproblemen mit Störungen des Wasserhaushalts kommen, so dass dies in dieser Situation explizit auch aufzuklären ist.

Es hat sich als sehr günstig erwiesen, wenn nicht nur der Patient, sondern auch entsprechende weitere Bezugspersonen beraten und geschult werden.

Parallel zu dieser Leitlinie ist eine eigene **Patientenbroschüre** erstellt worden, die auf die speziellen Aspekte der Leitlinie und insbesondere die Patientenaufklärung eingeht.

Empfehlung 8.2:

Patienten bei denen der Verdacht auf eine sekundäre Nebenniereninsuffizienz besteht oder diese bereits diagnostiziert wurde, **sollen** einen Notfallausweis und ein Notfallset erhalten.

Zusätzlich **sollten** diese Patienten (idealerweise gemeinsam mit einer Bezugsperson) mittels strukturierten Schulungs- und Behandlungsprogrammen zur Diagnose geschult werden (mit regelmäßiger Wiederholung im Verlauf der Erkrankung).

Starker Konsens

Erläuterung:

Wie bereits erwähnt, kann die sekundäre Nebenniereninsuffizienz zu lebensbedrohlichen Addison-Krisen führen (241). Das Ziel muss es sein, diese Addison-Krisen zu verhindern. Ein Notfallausweis dient zur raschen Identifikation der betroffenen Patienten durch das medizinische Fachpersonal. Ein von mehreren Endokrinologen und der Deutschen Gesellschaft für Endokrinologie (DGE) abgestimmte Notfallausweis kann über das Netzwerk Hypophysen- und Nebennierenerkrankungen (www.glandulaonline.de) kostenfrei bezogen werden.

Analog wie in der Diabetes-Behandlung schon seit Jahren etabliert, ist die Leitliniengruppe überzeugt, dass durch ein strukturiertes Schulungsprogramm die Patienten besser auf drohende Nebennierenkrisen vorbereitet sind und lebensbedrohliche Situationen dadurch abgewandt werden können. In den letzten Jahren wurde von der DGE ein solches strukturiertes Schulungsprogramm etabliert (242,243). In diesen Schulungen erhalten die Patienten und ihre Bezugspersonen dann auch eine Einführung in das empfohlene Notfallset, das eine 100 mg Hydrocortison-Ampulle für

Injektionszwecke enthalten sollte. Zusätzlich werden die Patienten und ihre Bezugspersonen in der Injektion von Hydrocortison geschult. Die (Eigen-)Injektion kann intramuskulär oder auch subkutan ("offlabel") erfolgen. Die Resorption im subkutanen Bereich ist etwas verlangsamt, welches aber in der Praxis zu vernachlässigen ist.

Falls der Auslöser der Addison-Krise kein gastrointestinaler Infekt ist, besteht im Weiteren auch die Möglichkeit der "off-label"-Verwendung von Suppositorien (100 mg Prednison).

Empfehlung 8.3:

Patienten mit hormoninaktiven Hypophysenadenomen **sollen** relevante ärztliche Unterlagen (z.B. Entlassungsbrief, Befundberichte) ausgehändigt werden.

Sie (und nach Möglichkeit auch deren Bezugspersonen) **sollen** durch das zuständige medizinische Personal darüber informiert werden, dass eine Weiterbehandlung in einem für Hypophysenerkrankungen spezialisierten Zentrum oder Praxis sinnvoll ist.

Starker Konsens

Erläuterung:

Generell sollte es üblich sein, dass Patienten alle relevanten ärztlichen Unterlagen zu ihrer eigenen Krankengeschichte erhalten. Im Falle von Hypophysentumoren, die regelhaft eine interdisziplinäre Behandlung bei verschiedenen Ärzten erfordern, erscheint dies nochmals besonders wichtig.

Empfehlung 8.4:

Patienten mit hormoninaktiven Hypophysentumoren (und nach Möglichkeit auch deren Bezugspersonen) **sollen** durch das zuständige medizinische Personal (z.B. Ärzte, Endokrinologie-Assistenten) auf krankheitsbezogene Patientenorganisationen (u.a. Selbsthilfegruppen) aufmerksam gemacht werden.

Starker Konsens

Erläuterung:

Nach Erfahrung der Leitlinienkommissionsmitglieder ist die Unterstützung im Selbstmanagement durch eine Selbsthilfegruppe für viele Patienten eine große Hilfe. Für diese seltenen Erkrankungen steht u.a. das seit 1994 bestehende Netzwerk Hypophysen- und Nebennierenerkrankungen e.V. (www.glandulaonline.de) zur Verfügung. Dieses ist in Regionalgruppen gegliedert, welche in verschiedenen Städten und Regionen Deutschlands und Österreichs wirken.

Betroffene, deren Bezugspersonen und Ärzte stehen dabei miteinander im Austausch, um die Versorgung von Patienten mit Hypophysen- und Nebennierenerkrankungen zu optimieren. Das Netzwerk Hypophysen- und Nebennierenerkrankungen e.V. gibt unter anderem zahlreiche Informationsbroschüren zu den unterschiedlichsten endokrinologischen Krankheitsbildern, bezogen auf Störungen in der Hypophysenfunktion heraus (siehe ausführliche Erläuterung im **Patiententeil** dieser Leitlinie).

9. Besondere Patientengruppen

I. Patienten mit unerfülltem Kinderwunsch

Empfehlung 9.1:

Bei unerfülltem Kinderwunsch auf Boden eines hormoninaktiven Hypophysentumors mit konsekutivem hypogonadotropem Hypogonadismus **sollte** die Anbindung an ein Kinderwunschzentrum angeboten werden.

Starker Konsens

Erläuterung:

Hormoninaktive Hypophysenadenome können durch eine Verdrängung gesunden Hypophysengewebes u.a. eine Funktionsstörung der gonadotropen Hormonachse nach sich ziehen. Der hieraus resultierende hypogonadotrope Hypogonadismus äußert sich bei Frauen durch Zyklusstörungen/Amenorrhoe, bei beiden Geschlechtern in einer Einschränkung von Libido und Fertilität sowie konsekutiv auch einem unerfüllten Kinderwunsch (244,245). In diesen Fällen kann die Fertilität durch eine geeignete hormonelle Stimulationstherapie allerdings regelhaft wiedererlangt werden (246-248).

Empfehlung 9.2:

Im Vorfeld einer geplanten Schwangerschaft **sollte** bei Tumoren (v.a. mit einer Größe über 1 cm), welche im Verlauf potentiell eine Beeinträchtigung der Sehleistung bedingen könnten, eine operative Resektion diskutiert werden.

Bei Patientinnen, die nicht operiert werden, **soll** in der Schwangerschaft regelmäßig (mindestens alle 3 Monate) eine ophthalmologische Kontrolluntersuchung durchgeführt werden.

Starker Konsens

Erläuterung:

Im Vorfeld einer geplanten Schwangerschaft ist es vorteilhaft, hormoninaktive Hypophysen-Makroadenome oder große Mikroadenome operativ zu resezieren (v.a. bei Tumoren, welche in relativer Nähe zur Sehbahn liegen und somit bei weiterem Wachstum die Sehleistung beeinträchtigen könnten), da Tumoren in der Schwangerschaft wachsen können. Ab einer Tumorausdehnung von 8 mm oberhalb der Sella-Eingangsebene in der sagittalen Bildgebung sind relevante Sehbeeinträchtigungen wahrscheinlich (62). Sofern nicht operiert wird, sind im Verlauf der Schwangerschaft zumindest regelmäßig ophthalmologische bzw. ggf. auch radiologische Kontrollen zu veranlassen, um eine potentielle Bedrohung der Sehbahn möglichst früh detektieren zu können. Die ophthalmologische Diagnostik beinhaltet den Organbefund, die Sehschärfenbestimmung und statische 30 Grad Perimetrie, optional ist eine OCT indiziert.

II. Schwangere Patientinnen

Diagnose und Therapie von Hypophysenadenom in der Schwangerschaft stellen dabei grundsätzlich eine besondere Herausforderung dar. So können typische physiologische Veränderungen (z.B. von Hormonmilieu und klinischem Phänotyp) eine Erkennung der zugrundeliegenden Erkrankung erschweren bzw. verzögern, während die therapeutischen Optionen durch die potentielle Gefährdung von Mutter und ungeborenem Kind limitiert sind. Auf die Besonderheiten der Diagnostik in der Schwangerschaft wird an dieser Stelle bewusst nicht eingegangen, da dies nicht der Fokus dieser Leitlinie ist.

Die Inzidenz relevanter hormoninaktiver Hypophysenadenome im Rahmen einer Schwangerschaft wird in einer aktuellen britischen Studie mit 0,59 Fällen pro 100.000 Schwangerschaften angegeben (249). Da während einer Schwangerschaft das Hypophysenvolumen durch eine Hyperplasie der Prolaktin-produzierenden Zellen zunimmt, kann selbst bei Frauen mit bis dato asymptomatischem hormoninaktivem Hypophysentumor eine relevante Raumforderung entstehen (250). Konsekutive Symptome können z.B. ein Ausfall hypophysärer (Partial-)Funktionen und/oder ein Chiasma-Syndrom sein.

Empfehlung 9.3:

Bei klinischer Notwendigkeit zu einer Bildgebung der Sellaregion **sollte** diese in der Schwangerschaft mittels einer nativen Magnetresonanztomographie erfolgen.

Eine Kontrastmittelgabe **sollte** nur in begründeten Ausnahmefällen erfolgen.

Starker Konsens

Erläuterung:

Da gravierende Pathologien oft auch ohne Kontrastmittel zu erkennen sind und Kontrastmittel-induzierte fetale Schäden nicht ausgeschlossen werden können, wird in der Regel auf die Gabe von Kontrastmittel verzichtet (251).

Empfehlung 9.4:

Sofern in der Schwangerschaft eine Operation im Sella-Bereich erforderlich wird, **sollte** diese möglichst im 2. Trimenon erfolgen.

Starker Konsens

Erläuterung:

Wie bereits im Abschnitt "Patienten mit unerfülltem Kinderwunsch" erwähnt, kann das Hypophysenvolumen durch die physiologische Hyperplasie der Prolaktin-produzierenden Zellen relevant zunehmen und somit bei gleichzeitigem Vorliegen eines Tumors raumfordernde Effekte bedingen (z.B. Kopfschmerz, Sehstörung, Hypopituitarismus). Bei klinischer Symptomatik (v.a. bei hochgradigen Sehstörungen oder Auftreten eines Hypophysenapoplex) kann unter Umständen auch eine operative Intervention erforderlich werden (252). In diesem Fall ist das 2. Schwangerschaftstrimenon der geeignetste Zeitpunkt für eine Operation, da dann die fetale Organogenese bereits abgeschlossen ist und eine lagerungsbedingte Kompression der Vena cava im Rahmen des Eingriffs (anders als bei weit fortgeschrittener Schwangerschaft) noch keine wahrscheinliche Komplikation darstellt. Bei fortgeschrittener Schwangerschaft und ausreichender Kindesreife kann auch eine Kombination von Hypophysen-Operation und kombinierter

Schnittentbindung erwogen werden (253). Per se ist das Vorliegen eines hormoninaktiven Hypophysentumors aber kein Grund für eine Entbindung per Sectio oder ein Unterlassen des Stillens (249).

Empfehlung 9.5:

In der Schwangerschaft sind Hormonparameter oft schwierig zu interpretieren. Bei Schwangeren **soll** daher vor einer Hormondiagnostik geprüft werden, ob die geplante endokrinologische Diagnostik sinnvolle therapeutische Konsequenzen hat.

Starker Konsens

Erläuterung:

Die Bestimmung von Prolaktin (11) und der a-SU im Kontext einer Schwangerschaft ist aufgrund der hier physiologisch erhöhten Werte in aller Regel nicht sinnvoll. Konkrete Behandlungsempfehlungen basieren üblicherweise auf den bei nichtschwangeren Patientinnen gemachten Erfahrungen unter Berücksichtigung der Schwangerschaftsphysiologie. Ein vermehrtes Risiko für die Ausbildung von Komorbiditäten (z.B. arterielle Hypertonie, Präeklampsie) oder das Auftreten von Frühbzw. Totgeburten scheint jedoch nicht zu bestehen (249). Ebenso wenig unterliegen hormoninaktive Adenome während der Gravidität einer grundsätzlichen Wachstumstendenz (254). Dementsprechend kann eine beobachtende Haltung gerechtfertigt sein.

Empfehlung 9.6:

Bei Vorliegen eines hormoninaktiven Hypophysentumors in der Schwangerschaft **sollen** unabhängig von vorbestehenden Schilddrüsenpathologien einmal pro Trimester die Schilddrüsenwerte kontrolliert werden.

Bei vorbekannter Hypothyreose ist nach positivem Schwangerschaftsnachweis regelhaft eine umgehende Dosiseskalation des Levothyroxins erforderlich, um dem vermehrten Bedarf an Schilddrüsenhormon Rechnung zu tragen und eine suffiziente Kindsentwicklung zu gewährleisten.

Bei höhergradigem Verdacht auf eine Hypothyreose und nicht eindeutigem Laborbefund **soll** eine weiterführende Abklärung veranlasst werden (u.a. inklusive Bestimmung der Autoantikörper und Schilddrüsensonographie), ggf. gefolgt von der Einleitung bzw. Adaptation einer Substitutionstherapie mit Levothyroxin.

Starker Konsens

Erläuterung:

Bei Schwangeren mit anamnestischem bzw. klinischem Verdacht auf eine Schilddrüsenfunktionsstörung wird allgemein zu einer umgehenden Laborevaluation geraten (1,4,255). Dementsprechend empfehlen zumindest manche Autoren ein allgemeines Schilddrüsen-Screening bei Patientinnen mit Kinderwunsch oder Schwangerschaft (256). Hierbei ist zu bedenken, dass die Erkennung einer zentralen Hypothyreose oftmals schwierig ist: so müssen TSH und fT4 nicht zwingend erniedrigt sein, auch im unteren Normbereich befindliche Werte können bei suggestiver Klinik bereits eine entsprechende Verdachtsdiagnose mit konsekutivem Therapieversuch rechtfertigen.

Wird eine sekundäre Hypothyreose vermutet oder ist eine solche bereits vorbekannt, wird wie bei vergleichbaren nicht-schwangeren Patientinnen üblich allein das fT4 oder das Gesamt-T4 zur Beurteilung der Schilddrüsenfunktion oder zur Ermittlung der erforderlichen Substitutionsdosis herangezogen; das pathognomonisch erniedrigte bzw. inadäquat niedrige TSH ist hierzu ungeeignet

(257). Die US-amerikanischen Leitlinien empfehlen, während der Schwangerschaft anstelle von fT4 das Gesamt-T4 zu messen. Dieses ist in Deutschland allerdings nur noch selten verfügbar, so dass die (zusätzliche) Bestimmung des Gesamt-T4 v.a. dann sinnvoll erscheint, wenn die Werte des fT4 unplausibel imponieren. Bei erstmaligem Nachweis einer behandlungsbedürftigen Hypothyreose wird die Therapie bei Schwangeren (unabhängig von der ursächlichen Genese) üblicherweise mit etwa 1,6 µg Levothyroxin pro kg Körpergewicht begonnen (258). Bei weniger ausgeprägten Befunden oder in bestimmten Situationen (z.B. bei bekannten kardiovaskulären Komorbiditäten) erfolgt der Beginn mit einer niedrigeren Dosis, um im Verlauf eine Therapieeskalation vorzunehmen. Bei vorbekannter Hypothyreose ist nach positivem Schwangerschaftsnachweis regelhaft eine umgehende Dosiseskalation des Levothyroxins erforderlich, um dem vermehrten Bedarf an Schilddrüsenhormon Rechnung zu tragen und eine suffiziente Kindsentwicklung zu gewährleisten (üblicherweise um etwa + 30 %, z.B. durch zusätzliche Einnahme der üblichen Tagesdosis an 2 Tagen pro Woche). Bei sekundärer Hypothyreose kann die fT3-Konzentration trotz eines normwertigen fT4 durchaus weiterhin erniedrigt sein (259,260). Therapieziel ist in diesem Fall allein ein etwas über dem mittleren Normbereich befindlicher fT4-Wert. Eine erste Bestimmung des fT4-Wertes ist nach etwa 2 Wochen unter Therapie sinnvoll. Bei unzureichender Höhe des fT4 ist das Levothyroxin um etwa 12,5-25 μg/Tag anzuheben, gefolgt von einer erneuten Laborkontrolle nach etwa 2 Wochen. Im Verlauf ist es in der Regel möglich, das Kontrollintervall zu erweitern, wobei pro Trimenon zumindest eine Messung erfolgt.

Direkt nach der Entbindung nimmt der Levothyroxin-Bedarf wieder deutlich ab, so dass die Dosis entsprechend zu reduzieren ist. Bei vorbekannter Hypothyreose bietet sich meist die vor der Schwangerschaft eingenommene Substitutionsdosis an (1,261,262).

Empfehlung 9.7:

Während die Substitutionsdosis des Hydrocortisons bei bekannter Nebennierenrindeninsuffizienz im Verlauf der Schwangerschaft (zumindest im ersten und zweiten Trimenon) üblicherweise nicht angepasst werden muss, **soll** im Rahmen des Geburtsvorgangs unbedingt eine adäquate Dosiseskalation erfolgen.

Starker Konsens

Erläuterung:

Patientinnen mit vorbekannter Nebennierenrindeninsuffizienz bedürfen bei unkompliziertem Verlauf der Schwangerschaft üblicherweise keiner Anpassung der Substitutionsdosis des Hydrocortisons; allenfalls im 3. Trimester kann eine leichte Dosiseskalation erforderlich werden (263-265). Im Kontext der Geburt hat jedoch unbedingt eine adäquate Dosiseskalation zu erfolgen. Nach Einsetzen der Wehen wird die Gabe von 25 mg Hydrocortison intravenös (i.v.) alle 6 Stunden empfohlen, im Rahmen des Geburtsvorgangs oder bei langfristiger Wehentätigkeit ist eine Dosiseskalation auf 100 mg Hydrocortison i.v. alle 6 Stunden (oder alternativ die Gabe einer kontinuierlichen Hydrocortison-Infusion) sinnvoll. Nach einer unkomplizierten Entbindung kann die Substitutionsdosis üblicherweise innerhalb von drei Tagen wieder auf die übliche Erhaltungsdosis reduziert werden (266). Bei schwierigeren Verläufen ist das Hydrocortison-Management nach endokrinologischer Rücksprache festzulegen.

Sofern ein relevantes Schwangerschaftserbrechen vorliegt (üblicherweise v.a. im 1. Trimester relevant), sind zur herkömmlichen Substitutionstherapie mit Hydrocortison peroral. ggf. alternative Applikationswege (z.B. rektale Gabe von 100 mg Prednison als Zäpfchen, intramuskuläre Gabe von 1 mg Dexamethason) zu prüfen. Ein erhöhter Mineralokortikoid-Bedarf besteht im Schwangerschaftsverlauf regulär nicht.

III. Patienten mit relevanter Morbidität bzw. Gebrechlichkeit

Empfehlung 9.8:

Bei gebrechlichen und multimorbiden Patienten **soll** vor der Diagnostik stets erwogen werden, ob perspektivisch mögliche therapeutische Konsequenzen gezogen werden (können).

Im Vorfeld einer Operation soll eine Risikoabschätzung erfolgen.

Starker Konsens

Erläuterung:

Per se ist eine Operation an der Hirnanhangdrüse (mit typischerweise mehr als einstündiger Dauer) als mittelschwerer chirurgischer Eingriff zu verstehen. Vorbestehende Erkrankungen und auch ein höheres Lebensalter sind keine grundsätzlichen Kontraindikationen gegenüber derartigen Interventionen (auch, da die publizierten Operationsergebnisse mit Ausnahme einer leicht erhöhten Komplikationsrate (267) mit der übrigen Bevölkerung vergleichbar sind (267-269)). Dennoch ist auf eine strenge Indikationsstellung zu achten.

Zur Abschätzung des allgemeinen Risikos einer Vollnarkose haben in der Anästhesie verschiedene Scores Einzug gehalten. Einer der bekanntesten wurde von der American Society of Anesthesiologists (ASA) vorgeschlagen (270). Durch Einteilung des körperlichen Zustandes in 6 Gruppen erlaubt die sogenannte ASA-Klassifikation eine erleichterte Risikoabschätzung.

Empfehlung 9.9:

Vor allem bei (stark) adipösen Patienten **sollte** postoperativ an das erhöhte Risiko von Liquorfisteln gedacht werden.

Starker Konsens

Erläuterung:

Eine Besonderheit stellt das erhöhte Risiko von Liquorfisteln bei adipösen Patienten dar, welches mit steigendem BMI zunimmt (271). In der Literatur zeigt sich bereits ein erhöhtes Risiko ab einem BMI > 25 kg/m² (272) bzw. 30 kg/m² (273). Als Ursache ist der erhöhte intraabdominelle Druck und damit verbundene erschwerte venöse Abfluss aus dem ZNS anzunehmen, der den intrakraniellen Druck ansteigen lässt und damit die Belastung der Operationswunde.

Empfehlung 9.10:

Patienten mit hormoninaktiven Hypophysentumoren unter Therapie mit Thrombozytenaggregationshemmern oder oralen Antikoagulanzien unterliegen einem erhöhten Blutungsrisiko und bedürfen der besonderen Risikoabwägung und Vorbereitung auf einen chirurgischen Eingriff. Ein frühzeitiger interdisziplinärer Austausch zum therapeutischen Vorgehen **sollte** stets angestrebt werden.

Starker Konsens

Erläuterung:

Bei Einnahme von oralen Antikoagulanzien gelten die allgemeinen Regeln bei operativen Eingriffen.

Patienten, bei denen die Einnahme von oralen Antikoagulanzien indiziert ist, sind per se als Risikopatienten anzusehen. Als besonderes Risiko transsphenoidaler Operationen ist das postoperative Nasenbluten zu nennen, während bei transkraniellen Eingriffen das Risiko intrakranieller Blutungen erhöht ist. Beide Operationswege haben unter gerinnungshemmender Medikation ein erhöhtes Risiko für ein Hämatom in der Tumorresektionshöhle und ein dadurch entstehendes Chiasma-Syndrom bzw. Sinus-cavernosus-Syndrom.

Stets ist eine interdisziplinäre Rücksprache und Festlegung des perioperativen Regimes der Antikoagulation anzustreben. Das präoperative Absetzen oraler Antikoagulanzien und eine postoperative Prophylaxe mit niedermolekularen Heparinen sind in der Regel angemessen. Vor allem bei Hochrisikopatienten ist ein perioperatives Bridging zu prüfen. Diese Empfehlungen sind nicht spezifisch für das perioperative Management von Patienten mit Hypophysenadenomen, sondern aus anderen (neuro-)chirurgischen Operationen abgeleitet (274).