Number systems of different lengths, and a natural approach to infinitesimal analysis

Richard Pettigrew
Department of Mathematics
University of Bristol

April 21, 2008

The talk in brief

• Describe *EA*, a finitary theory of finite sets.

- Describe EA, a finitary theory of finite sets.
- Define the notion of a natural number system in EA.

- Describe *EA*, a finitary theory of finite sets.
- Define the notion of a natural number system in EA.
- Show that there are non-isomorphic natural number systems in *EA*.

- Describe EA, a finitary theory of finite sets.
- Define the notion of a natural number system in EA.
- Show that there are non-isomorphic natural number systems in EA.
- Give a taste of the theory of natural number systems in EA.

- Describe EA, a finitary theory of finite sets.
- Define the notion of a natural number system in EA.
- Show that there are non-isomorphic natural number systems in *EA*.
- Give a taste of the theory of natural number systems in EA.
- Sketch the beginnings of a theory of infinitesimal analysis in an extension on *EA*.

EΑ

Constants, operators, and function and relation symbols

Constant: Ø (empty set)

EΑ

Constants, operators, and function and relation symbols

- Constant: Ø (empty set)
- Function symbols:
 - P (power set)
 - TC (transitive closure)
 - { , } (pair set)

EΑ

Constants, operators, and function and relation symbols

- Constant: Ø (empty set)
- Function symbols:
 - P (power set)
 - TC (transitive closure)
 - { , } (pair set)
- Term-forming operator: $\{x \in t : A(x)\}$, whenever A is bounded.

Analysis

EΑ

Constants, operators, and function and relation symbols

- Constant: Ø (empty set)
- Function symbols:
 - P (power set)
 - TC (transitive closure)
 - { , } (pair set)
- Term-forming operator: $\{x \in t : A(x)\}$, whenever A is bounded.
- Relation symbols:
 - = (identity)
 - (membership)

Analysis

EΑ

EA in a nutshell

 Axioms of Empty Set, Power Set, Transitive Closure, Pair Set, and Extensionality are definitions of primitive symbols.

EΑ

EA in a nutshell

- Axioms of Empty Set, Power Set, Transitive Closure, Pair Set, and Extensionality are definitions of primitive symbols.
- Instead of the Axiom of Infinity, EA has the Axiom of Dedekind Finiteness: ∀x, y(x ⊆ y → x <_c y)

EΑ

EA in a nutshell

- Axioms of Empty Set, Power Set, Transitive Closure, Pair Set, and Extensionality are definitions of primitive symbols.
- Instead of the Axiom of Infinity, EA has the Axiom of Dedekind Finiteness: ∀x, y(x ⊆ y → x <_c y)
- The Axiom Schema of Subset Comprehension is restricted to bounded formulae.

EΑ

EA in a nutshell

- Axioms of Empty Set, Power Set, Transitive Closure, Pair Set, and Extensionality are definitions of primitive symbols.
- Instead of the Axiom of Infinity, EA has the Axiom of Dedekind Finiteness: ∀x, y(x ⊆ y → x <_c y)
- The Axiom Schema of Subset Comprehension is restricted to bounded formulae.

In other words...

EΑ

EA in a nutshell

- Axioms of Empty Set, Power Set, Transitive Closure, Pair Set, and Extensionality are definitions of primitive symbols.
- Instead of the Axiom of Infinity, EA has the Axiom of Dedekind Finiteness: ∀x, y(x ⊆ y → x <_c y)
- The Axiom Schema of Subset Comprehension is restricted to bounded formulae.

In other words...

• *EA* is finitely axiomatized by adding the Axioms of Dedekind Finiteness, P, and TC to Jensen's rudimentary functions.

Systems Examples Induction and Recursion Length Measuring the Universe Analysis

The axioms of EA

EΑ

EA in a nutshell

- Axioms of Empty Set, Power Set, Transitive Closure, Pair Set, and Extensionality are definitions of primitive symbols.
- Instead of the Axiom of Infinity, EA has the Axiom of Dedekind Finiteness: ∀x, y(x ⊆ y → x <_c y)
- The Axiom Schema of Subset Comprehension is restricted to bounded formulae.

In other words...

- *EA* is finitely axiomatized by adding the Axioms of Dedekind Finiteness, P, and TC to Jensen's rudimentary functions.
- *EA* is mutually interpretable with $I\Delta_0 + \exp$. (With mutually inverse interpretations? Don't know. Suspect not.)

Definitions

Definition (L generated from 0 by σ)

Suppose σ is a unary global function defined by a term of EA, and 0 is a closed term. Then, if L is a linear ordering, we say that L is generated from 0 by σ if

- (1) First(L) = 0, and
- (2) $\operatorname{Next}_L(x) = \sigma(x)$, for all x in $\operatorname{Field}(L)$ except $\operatorname{Last}(L)$.

Thus, roughly, if L is generated from 0 by σ , it has the following form:

$$[0, \sigma(0), \sigma(\sigma(0)), \cdots, a]$$

Definitions

Definition (Natural number system)

We say that σ generates a natural number system from 0 if

 $\forall L(L \text{ is generated from 0 by } \sigma \to \sigma(\text{Last}(L)) \not\in \text{Field}(L))$

Definition (Natural number system)

We say that σ generates a natural number system from 0 if

 $\forall L(L \text{ is generated from 0 by } \sigma \to \sigma(\text{Last}(L)) \not\in \text{Field}(L))$

• If $\mathcal{N} = (\sigma_{\mathcal{N}}, 0_{\mathcal{N}})$ is a natural number system, we say that L is in \mathcal{N} if L is generated from $0_{\mathcal{N}}$ by $\sigma_{\mathcal{N}}$.

Definitions

Definition (Natural number system)

We say that σ generates a natural number system from 0 if

 $\forall L(L \text{ is generated from 0 by } \sigma \to \sigma(\text{Last}(L)) \not\in \text{Field}(L))$

- If $\mathcal{N} = (\sigma_{\mathcal{N}}, 0_{\mathcal{N}})$ is a natural number system, we say that L is in \mathcal{N} if L is generated from $0_{\mathcal{N}}$ by $\sigma_{\mathcal{N}}$.
- If $L = [0_{\mathcal{N}}, \cdots a]$ in \mathcal{N} , let $\overline{\sigma_{\mathcal{N}}}(L) = [0_{\mathcal{N}}, \cdots, a, \sigma_{\mathcal{N}}(a)]$.

Definitions

Definition (Natural number system)

We say that σ generates a natural number system from 0 if

 $\forall L(L \text{ is generated from 0 by } \sigma \to \sigma(\text{Last}(L)) \not\in \text{Field}(L))$

- If $\mathcal{N} = (\sigma_{\mathcal{N}}, 0_{\mathcal{N}})$ is a natural number system, we say that L is in \mathcal{N} if L is generated from $0_{\mathcal{N}}$ by $\sigma_{\mathcal{N}}$.
- If $L = [0_{\mathcal{N}}, \cdots a]$ in \mathcal{N} , let $\overline{\sigma_{\mathcal{N}}}(L) = [0_{\mathcal{N}}, \cdots, a, \sigma_{\mathcal{N}}(a)]$.

Thus, roughly, ${\cal N}$ consists of the following linear orderings:

[],
$$[0_{\mathcal{N}}]$$
, $[0_{\mathcal{N}}, \sigma_{\mathcal{N}}(0_{\mathcal{N}})]$, $[0_{\mathcal{N}}, \sigma_{\mathcal{N}}(0_{\mathcal{N}}), \sigma_{\mathcal{N}}(\sigma_{\mathcal{N}}(0_{\mathcal{N}}))]$, \cdots

Examples of natural number systems

```
Example
```

Examples of natural number systems

Example

• \mathcal{VN} is generated from \varnothing by $\sigma_{\mathcal{VN}}: x \mapsto x \cup \{x\}$

$$[]$$
, $[\varnothing]$, $[\varnothing, \{\varnothing\}]$, $[\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}]$, \cdots

Example

• \mathcal{VN} is generated from \varnothing by $\sigma_{\mathcal{VN}}: x \mapsto x \cup \{x\}$

Induction and Recursion

$$[]$$
, $[\varnothing]$, $[\varnothing, \{\varnothing\}]$, $[\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}]$, \cdots

• \mathcal{Z} is generated from \emptyset by $\sigma_{\mathcal{Z}}: x \mapsto \{x\}$

$$[], [\varnothing], [\varnothing, \{\varnothing\}], [\varnothing, \{\varnothing\}, \{\{\varnothing\}\}], \cdots$$

Example

• $\mathcal{V}\mathcal{N}$ is generated from \varnothing by $\sigma_{\mathcal{V}\mathcal{N}}: x \mapsto x \cup \{x\}$

$$[], \quad [\varnothing], \quad [\varnothing, \{\varnothing\}], \quad [\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}], \quad \cdots$$

• \mathcal{Z} is generated from \varnothing by $\sigma_{\mathcal{Z}}: x \mapsto \{x\}$

$$[]$$
, $[\varnothing]$, $[\varnothing, \{\varnothing\}]$, $[\varnothing, \{\varnothing\}, \{\{\varnothing\}\}]$, \cdots

• \mathcal{CH} is generated from \varnothing by $\sigma_{\mathcal{CH}}: x \mapsto \mathrm{P}(x)$

$$[], [\varnothing], [\varnothing, P(\varnothing)], [\varnothing, P(\varnothing), P(P(\varnothing))], \cdots$$

Analysis

Theorem (Bounded induction)

Suppose A is a bounded formula of EA. Then

$$EA \vdash (A([]) \& (\forall L \text{ in } \mathcal{N})[A(L) \rightarrow A(\overline{\sigma_{\mathcal{N}}}(L))]) \rightarrow (\forall L \text{ in } \mathcal{N})A(L)$$

Induction along natural number systems

Theorem (Bounded induction)

Suppose A is a bounded formula of EA. Then

$$EA \vdash (A(\ [\]\) \& (\forall L \ in \ \mathcal{N})[A(L) \rightarrow A(\overline{\sigma_{\mathcal{N}}}(L))]) \rightarrow (\forall L \ in \ \mathcal{N})A(L)$$

Unbounded induction DOES NOT HOLD

If A is unbounded, then the following does not necessarily hold:

$$EA \vdash (A([]) \& (\forall L \text{ in } \mathcal{N})[A(L) \rightarrow A(\overline{\sigma_{\mathcal{N}}}(L))]) \rightarrow (\forall L \text{ in } \mathcal{N})A(L)$$

Induction along natural number systems

Theorem (Bounded induction)

Suppose A is a bounded formula of EA. Then

$$EA \vdash (A([]) \& (\forall L \text{ in } \mathcal{N})[A(L) \rightarrow A(\overline{\sigma_{\mathcal{N}}}(L))]) \rightarrow (\forall L \text{ in } \mathcal{N})A(L)$$

Unbounded induction DOES NOT HOLD

If A is unbounded, then the following does not necessarily hold:

$$EA \vdash (A([]) \& (\forall L \text{ in } \mathcal{N})[A(L) \rightarrow A(\overline{\sigma_{\mathcal{N}}}(L))]) \rightarrow (\forall L \text{ in } \mathcal{N})A(L)$$

Both are consequences of the presence only of bounded separation.

Definition (Arithmetical global functions)

Suppose φ is a global function. We say that φ is arithmetical if

$$EA \vdash \forall x, y(x \cong y \rightarrow \varphi(x) \cong \varphi(y))$$

Definition (Arithmetical global functions)

Suppose φ is a global function. We say that φ is arithmetical if

$$EA \vdash \forall x, y(x \cong y \rightarrow \varphi(x) \cong \varphi(y))$$

Definition (\mathcal{N} is closed under φ)

Suppose φ is an arithmetical global function. Then we say that ${\mathcal N}$ is closed under φ if

$$EA \vdash (\forall x \text{ in } \mathcal{N})(\exists y \text{ in } \mathcal{N})[\text{Field}(y) \cong \varphi(\text{Field}(x))].$$

Theorem

Given a natural number system \mathcal{N} , the family of arithmetical global functions under which \mathcal{N} is closed is closed under limited recursion.

Theorem

Given a natural number system \mathcal{N} , the family of arithmetical global functions under which \mathcal{N} is closed is closed under limited recursion.

Unlimited recursion DOES NOT HOLD

Given a natural number system \mathcal{N} , the family of arithmetical global functions under which \mathcal{N} is closed is NOT closed under full recursion.

Theorem

Given a natural number system \mathcal{N} , the family of arithmetical global functions under which \mathcal{N} is closed is closed under limited recursion.

Unlimited recursion DOES NOT HOLD

Given a natural number system \mathcal{N} , the family of arithmetical global functions under which \mathcal{N} is closed is NOT closed under full recursion.

Both are consequences of the presence only of bounded induction. Unlimited recursion requires Σ_1 induction.

• For n = 0, 1, 2, 3, there are natural number systems closed under all and only the arithmetical functions of Grzegorczyk's class \mathscr{E}^n :

- For n = 0, 1, 2, 3, there are natural number systems closed under all and only the arithmetical functions of Grzegorczyk's class \mathcal{E}^n :
 - VN, Z, CH closed under $\varphi \Leftrightarrow \varphi \in \mathscr{E}^0$.

Analysis

- For n = 0, 1, 2, 3, there are natural number systems closed under all and only the arithmetical functions of Grzegorczyk's class \mathcal{E}^n :
 - \mathcal{VN} , \mathcal{Z} , \mathcal{CH} closed under $\varphi \Leftrightarrow \varphi \in \mathscr{E}^0$.
 - There is a system, ACK, which moves from one set to another in their Ackermann ordering:

 \mathcal{ACK} is closed under $\varphi \Leftrightarrow \varphi \in \mathscr{E}^3$.

i.e ACK closed under exponentiation, but not superexponentiation.

Analysis

Recursion along a natural number system

- For n = 0, 1, 2, 3, there are natural number systems closed under all and only the arithmetical functions of Grzegorczyk's class \mathcal{E}^n :
 - \mathcal{VN} , \mathcal{Z} , \mathcal{CH} closed under $\varphi \Leftrightarrow \varphi \in \mathscr{E}^0$.
 - There is a system, ACK, which moves from one set to another in their Ackermann ordering:

 \mathcal{ACK} is closed under $\varphi \Leftrightarrow \varphi \in \mathscr{E}^3$.

i.e ACK closed under exponentiation, but not superexponentiation.

• But the distinctions are more fine-grained:

Recursion along a natural number system

- For n = 0, 1, 2, 3, there are natural number systems closed under all and only the arithmetical functions of Grzegorczyk's class \mathcal{E}^n :
 - \mathcal{VN} , \mathcal{Z} , \mathcal{CH} closed under $\varphi \Leftrightarrow \varphi \in \mathscr{E}^0$.
 - There is a system, ACK, which moves from one set to another in their Ackermann ordering:

 \mathcal{ACK} is closed under $\varphi \Leftrightarrow \varphi \in \mathscr{E}^3$.

i.e ACK closed under exponentiation, but not superexponentiation.

- But the distinctions are more fine-grained:
 - There are natural number systems closed under $x + \log(x)$ but not under x + x.

Recursion along a natural number system

- For n = 0, 1, 2, 3, there are natural number systems closed under all and only the arithmetical functions of Grzegorczyk's class \mathcal{E}^n :
 - VN, Z, CH closed under $\varphi \Leftrightarrow \varphi \in \mathscr{E}^0$.
 - There is a system, \mathcal{ACK} , which moves from one set to another in their Ackermann ordering:

 \mathcal{ACK} is closed under $\varphi \Leftrightarrow \varphi \in \mathscr{E}^3$.

i.e ACK closed under exponentiation, but not superexponentiation.

- But the distinctions are more fine-grained:
 - There are natural number systems closed under $x + \log(x)$ but not under x + x
 - There are natural number systems closed under $x\log(\log(x))$ but not under $x\log(x)$.

Analysis

Made-to-Measure Natural Number Systems

Definition (φ is maximally powerful in \mathcal{N})

 φ is maximally powerful in $\mathcal N$ if, for any arithmetical global function ψ , if $\mathcal N$ is closed under ψ , then there is $\mathbf n$ such that ψ is eventually majorized by $\varphi^{\mathbf n}$.

Made-to-Measure Natural Number Systems

Definition (φ is maximally powerful in \mathcal{N})

 φ is maximally powerful in $\mathcal N$ if, for any arithmetical global function ψ , if $\mathcal N$ is closed under ψ , then there is $\mathbf n$ such that ψ is eventually majorized by $\varphi^{\mathbf n}$.

Theorem

Suppose there is **C** such that

(i)
$$EA \vdash (\forall x) (\mathbf{C} \leq x \rightarrow x < \varphi(x))$$

(ii)
$$EA \vdash (\forall x, y) (\mathbf{C} \le x \le y \rightarrow \varphi(x) \le \varphi(y))$$

(ili)
$$EA \vdash (\forall x, y) (\mathbf{C} \le x \le y \to \varphi(x) - x \le \mathbf{2}^y - y)$$

Then there a natural number system \mathcal{ACK}_{φ} such that φ is maximally powerful in \mathcal{ACK}_{φ} .

Relations of length between natural numbers systems

Definition

$$\mathcal{M} \prec \mathcal{N}$$
 if

$$EA \vdash (\forall x \text{ in } \mathcal{M})(\exists y \text{ in } \mathcal{N})[\text{Field}(y) \cong \text{Field}(x)].$$

i.e. there is an injection from \mathcal{M} into \mathcal{N} that preserves length.

Relations of length between natural numbers systems

Definition

 $\mathcal{M} \prec \mathcal{N}$ if

$$EA \vdash (\forall x \text{ in } \mathcal{M})(\exists y \text{ in } \mathcal{N})[\text{Field}(y) \cong \text{Field}(x)].$$

i.e. there is an injection from \mathcal{M} into \mathcal{N} that preserves length.

Theorem

In the presence of Σ_1 induction, and thus unlimited recursion, all natural number systems are of the same length: i.e. $\mathcal{M} \cong \mathcal{N}$, for all \mathcal{M} and \mathcal{N} .

The incommensurability of $\mathcal{V}\mathcal{N}$ and \mathcal{Z}

Theorem

 $\mathcal{V}\mathcal{N}$ and \mathcal{Z} are incommensurable: that is,

$$VN \not\preceq Z$$
 and $Z \not\preceq VN$

The incommensurability of $\mathcal{V}\mathcal{N}$ and \mathcal{Z}

Theorem

 $\mathcal{V}\mathcal{N}$ and \mathcal{Z} are incommensurable: that is,

$$VN \not\preceq Z$$
 and $Z \not\preceq VN$

I will sketch two proofs:

- One is syntactic.
- The other is model-theoretic.

Measuring the Universe

Lemma (Parikh-style Bounding Lemma)

Suppose A is a bounded formula of EA. Then, if

$$EA \vdash \forall x \exists ! y A(x, y)$$

Then there is a classical natural number, n, such that

$$EA \vdash \forall x \exists ! y (y \in P^{\mathbf{n}}(TC(x)) \& A(x, y))$$

The syntactic proof

Proof. Suppose $VN \leq Z$. That is,

$$EA \vdash (\forall v \text{ in } \mathcal{VN})(\exists ! z \text{ in } \mathcal{Z})(\operatorname{Field}(v) \cong \operatorname{Field}(z))$$

Thus, by Parikh-style Bounding Lemma, there is \mathbf{n} such that

$$EA \vdash (\forall v \text{ in } \mathcal{VN})(\exists z! \text{ in } \mathcal{Z})(z \in P^{\mathbf{n}}(TC(v)) \& Field(v) \cong Field(z))$$

Induction and Recursion

But, by (meta-theoretical) induction on \mathbf{n} ,

$$EA \vdash (\forall v \text{ in } \mathcal{VN})(\forall z \text{ in } \mathcal{Z})(z \in P^{\mathbf{n}}(TC(v)) \rightarrow z \in V_{\mathbf{n+4}})$$

Thus,

$$EA \vdash (\forall v \text{ in } \mathcal{VN})(\exists z! \text{ in } \mathcal{Z})(z \in V_{n+4} \& \operatorname{Field}(v) \cong \operatorname{Field}(z))$$

which is false.

The model-theoretic proof

Proof. Let M be a model of EA that contains a non-standard member of VN, b. Then define the following submodel of M:

$$C(M,b) = \bigcup_{n=1}^{\infty} \{x \in M : M \models x \in \mathbf{P}^{\mathbf{n}}(b)\}$$

We call C(M, b) the cumulation model of EA of b. Then

$$C(M, b) \models EA$$

But C(M,b) contains only standard members of \mathcal{Z} , while it contains non-standard members of \mathcal{VN} . Thus, it is not the case that $\mathcal{VN} \prec \mathcal{Z}$.

Measuring the universe

Definition (\mathcal{N} measures the universe)

 ${\cal N}$ measures the universe if

$$EA \vdash (\forall x)(\exists y \text{ in } \mathcal{N})[x \cong \text{Field}(y)]$$

Theorem

In the presence of Σ_1 induction, and thus unlimited recursion, every natural number system measures the universe.

Measuring the universe

Theorem

In EA, no natural number system measures the universe.

Proof. Suppose ${\mathcal N}$ measures the universe. If ${\bf k}$ is a classical natural number, let

- $v_{\mathbf{k}}$ be the \mathbf{k}^{th} member of $\mathcal{V}\mathcal{N}$,
- $z_{\mathbf{k}}$ be the \mathbf{k}^{th} member of \mathcal{Z} , and
- $n_{\mathbf{k}}$ be the \mathbf{k}^{th} member of \mathcal{N} .

Since \mathcal{N} measures the universe,

$$EA \vdash (\forall x)(\exists y! \text{ in } \mathcal{N})[x \cong y]$$

Thus, by the Parikh-style Bounding Lemma, there is **n** such that

$$EA \vdash (\forall x)(\exists y! \text{ in } \mathcal{N})[y \in \mathbf{P}^{\mathbf{n}}(x) \& x \cong y]$$

Analysis

Measuring the universe

Thus, for all classical natural numbers, \mathbf{k} ,

$$n_{\mathbf{k}} \in \mathrm{P}^{\mathbf{n}}(v_{\mathbf{k}})$$
 and $n_{\mathbf{k}} \in \mathrm{P}^{\mathbf{n}}(z_{\mathbf{k}})$

Thus,

$$n_{\mathbf{k}} \in \mathbf{P}^{\mathbf{n}}(v_{\mathbf{k}}) \cap \mathbf{P}^{\mathbf{n}}(z_{\mathbf{k}})$$

Thus,

$$n_{\mathbf{k}} \in V_{\mathbf{n+4}}$$

But this gives a contradiction, since V_{n+4} cannot contain sufficiently many members of \mathcal{N} to measure all standard members of $\mathcal{V}\mathcal{N}$ and \mathcal{Z} .

Analysis

Definition (\mathcal{N} -small and \mathcal{N} -large)

Suppose ${\mathcal N}$ is a natural number system.

Definition (\mathcal{N} -small and \mathcal{N} -large)

Suppose ${\mathcal N}$ is a natural number system.

• $x \text{ is } \mathcal{N}\text{-small} \leftrightarrow (\exists y \text{ in } \mathcal{N})[x < \text{Field}(y)]$

Definition ($\mathcal N$ -small and $\mathcal N$ -large)

Suppose $\mathcal N$ is a natural number system.

- x is \mathcal{N} -small $\leftrightarrow (\exists y \text{ in } \mathcal{N})[x < \text{Field}(y)]$
- x is \mathcal{N} -large $\leftrightarrow (\forall y \text{ in } \mathcal{N})[\text{Field}(y) < x]$

Length

Definition (\mathcal{N} -small and \mathcal{N} -large)

Examples

Suppose \mathcal{N} is a natural number system.

- $x \text{ is } \mathcal{N}\text{-small} \leftrightarrow (\exists y \text{ in } \mathcal{N})[x < \text{Field}(y)]$
- x is \mathcal{N} -large \leftrightarrow $(\forall y \text{ in } \mathcal{N})[\text{Field}(y) < x]$

Definition

 EA^+ is obtained from EA by adding the following axiom:

$$(\exists x)[x \text{ is } \mathcal{ACK}\text{-large}]$$

Definition (\mathcal{N} -small and \mathcal{N} -large)

Suppose $\mathcal N$ is a natural number system.

- x is \mathcal{N} -small $\leftrightarrow (\exists y \text{ in } \mathcal{N})[x < \text{Field}(y)]$
- x is \mathcal{N} -large $\leftrightarrow (\forall y \text{ in } \mathcal{N})[\text{Field}(y) < x]$

Definition

 EA^+ is obtained from EA by adding the following axiom:

$$(\exists x)[x \text{ is } \mathcal{ACK}\text{-large}]$$

Theorem

If EA is consistent, then EA⁺ is consistent.

<u>Infinite</u>simal analysis in *EA*+

Definition (Integers in EA^+)

An integer is an ordered pair (a, b) where a and b are sets. (Intuitively, (a, b) is a - b.)

$$(a,b) =_{\mathbb{Z}} (c,d) \leftrightarrow a+d \cong b+c$$

Infinitesimal analysis in EA⁺

Definition (Integers in EA⁺)

An integer is an ordered pair (a, b) where a and b are sets. (Intuitively, (a, b) is a - b.)

$$(a,b) =_{\mathbb{Z}} (c,d) \leftrightarrow a+d \cong b+c$$

Definition (Rationals in EA+)

A rational is an ordered pair (a,b) where a and b are integers, and $b \neq_Z 0$. (Intuitively, (a,b) is $\frac{a}{b}$.)

$$(a,b) =_Q (c,d) \leftrightarrow a \times_Z d \cong b \times_Z c$$

Infinitesimal analysis in EA+

Definition (Reals in EA^+)

$$r$$
 in $R \leftrightarrow (\exists x)[x$ is \mathcal{ACK} -small & $|r| < x]$

Infinitesimal analysis in EA+

Definition (Reals in EA^+)

$$r$$
 in $R \leftrightarrow (\exists x)[x$ is \mathcal{ACK} -small & $|r| < x]$

Definition (Infinitesimal in EA+)

$$r \text{ in } I \leftrightarrow (\forall x) \left[x \text{ is } \mathcal{ACK}\text{-small} \rightarrow |r| < \frac{1}{x} \right]$$

Since there is an \mathcal{ACK} -large set in EA^+ , there are infinitesimals.

R is 'almost' real closed

Definition $(x \simeq y)$

If x and y are in R, then $x \simeq y \leftrightarrow x - y$ in I

Length

Examples

Definition $(x \simeq y)$

If x and y are in R, then $x \simeq y \leftrightarrow x - y$ in I

Theorem

- If 0 < a is in R, then there is b in R such that $b^2 \simeq a$.
- If n is small and odd and $\{a_i\}_{i=0}^n$ is a sequence of reals, then there is b in R such that

$$\sum_{i=0}^n a_i b^i \simeq 0$$

Definition (*f* is continuous)

If $f: J \to R$, then f is continuous if

$$(\forall x, y \text{ in } J)[x \simeq y \to f(x) \simeq f(y)]$$

Continuous functions in EA+

Definition (*f* is continuous)

If $f: J \to R$, then f is continuous if

$$(\forall x, y \text{ in } J)[x \simeq y \to f(x) \simeq f(y)]$$

The following theorems hold:

Definition (*f* is continuous)

If $f: J \rightarrow R$, then f is continuous if

$$(\forall x, y \text{ in } J)[x \simeq y \to f(x) \simeq f(y)]$$

The following theorems hold:

The Intermediate Value Theorem

Definition (*f* is continuous)

If $f: J \to R$, then f is continuous if

$$(\forall x, y \text{ in } J)[x \simeq y \to f(x) \simeq f(y)]$$

The following theorems hold:

- The Intermediate Value Theorem
- Every continuous function on a closed interval is bounded and attains its bounds.

Definition (f is differentiable)

Suppose $f: J \to R$, x is in J, and α is in R. Then f is differentiable at x with derivative α if

$$(\forall \delta \text{ in } I) \left[\frac{f(x+\delta) - f(x)}{\delta} \simeq \alpha \right]$$

Definition (f is differentiable)

Suppose $f: J \to R$, x is in J, and α is in R. Then f is differentiable at x with derivative α if

$$(\forall \delta \text{ in } I) \left[\frac{f(x+\delta) - f(x)}{\delta} \simeq \alpha \right]$$

Definition (f is integrable)

Suppose $f:[a,b] \to R$, $a \le x \le b$, and α is in R. Then f is integrable at x with definite integral α if, for any \mathcal{ACK} -large N,

$$\sum_{i=0}^{N} \frac{b-a}{N} \cdot f\left(a+i\frac{b-a}{N}\right) \simeq \alpha$$

The following theorems hold:

Analysis

The following theorems hold:

Rolle's Theorem and the Mean Value Theorem.

The following theorems hold:

- Rolle's Theorem and the Mean Value Theorem.
- The Fundamental Theorems of the Calculus

Definition

By definition,

$$e_N^{\mathsf{x}} = \sum_{i=0}^N \frac{\mathsf{x}^i}{i!}$$

Polynomials of large degree

Definition

By definition,

$$e_N^{\times} = \sum_{i=0}^N \frac{x^i}{i!}$$

Theorem

- For any large N and any x in R, e_N^X is in R.
- For any large M and N and any x in R, $e_M^{\times} \simeq e_N^{\times}$.

Polynomials of large degree

Definition

By definition,

$$e_N^{\times} = \sum_{i=0}^N \frac{x^i}{i!}$$

Theorem

- For any large N and any x in R, e_N^x is in R.
- For any large M and N and any x in R, $e_M^x \simeq e_N^x$.

Theorem

For any large N, the function $x \mapsto e_N^x$ is differentiable at all points x in R with derivative e_N^x .

Weierstrass' Approximation Theorem

Theorem (Weierstrass)

Suppose $f:[a,b] \to R$ is continuous function. Then there is a polynomial.

Induction and Recursion

$$P(x) = \sum_{i=0}^{N} a_i x^i$$

possibly of large degree, such that

$$(\forall a \leq x \leq b)[P(x) \simeq f(x)]$$

References

All the results here and many more can be found in:

Pettigrew, R. (doctoral thesis)

Natural, Rational, and Real Arithmetic in the Finitary
Theory of Finite Sets

http://www.maths.bris.ac.uk/~rp3959/thesis1.pdf/