Ex12_LuisZüttel_GionRubitschung_D1P

May 27, 2024

Gegeben sei Schema

$$R = (A, B, C, D, E)$$

mit den funktionalen Abhängigkeiten

$$F = \{A \to BC, CD \to E, B \to D, E \to A\}$$

1 Exercise 1 (Armstrongs Axioms)

Zeigen Sie, dass aus F die funktionale Abhängigkeit $BC \to A$ folgt. Oder in anderen Worten, dass $BC \to A$ in F^+ enthalten ist.

 $E \to A$

 $CD \to E$

 $E \to A$ kann also durch auch durch $CD \to E$ ausgedrückt werden.

 $CD \to A$ kann wegen $B \to D$ auch als $CB \to A$ ausgedrückt werden, was dasselbe wie $BC \to A$ ist.

2 Exercise 2 (Lossless Decomposition)

1. Zeigen Sie, dass die Zerlegung in (A, B, C) und (A, D, E) verlustfrei ist.

$$R_1=(A,B,C)$$
 und $R_2=(A,D,E)$

$$R_1\cap R_2=(A)$$

Mit A kann B wie auch C von R_1 bestimmt werden. Die Attribute von R_2 können durch implizierte Funktionalitäten bestimmt werden. Für D durch $B \to D$, also $A \to D$. Und danach mit Augmentation von C dann auch E, also $AC \to E$.

2. Zeigen Sie, dass die Zerlegung in (A, B, C) und (C, D, E) nicht verlustfrei ist.

$$R_1 = (A, B, C), R_2 = (C, D, E)$$

$$R_1 \cap R_2 = (C)$$

Durch C kann weder R_1 noch R_2 hergeleitet werden, da in keiner der Funktionalen Abhängigkeiten C als einzelner Superkey vorkommt.

3. Finden Sie eine Relation r des Schemas R, welche bei der Zerlegung Information verliert, d.h. $\pi_{ABC}(r) \bowtie \pi_{CDE}(r) \neq r$.

r:

Ā	В	С	D	Ε
			d1 d2	

 $\pi_{ABC}(r)$:

 $\pi_{CDE}(r)$:

$$\begin{array}{c|cccc} \hline C & D & E \\ \hline c1 & d1 & e1 \\ c1 & d2 & e2 \\ \hline \end{array}$$

 $\pi_{ABC}(r) \bowtie \pi_{CDE}(r) \neq r$

A	В	С	D	E
a1	b1	c1	d1	e1
a1	b1	c1	d2	e2
a2	b2	c1	d1	e1
a2	b2	c1	d2	e2

$$\Rightarrow \pi_{ABC}(r) \bowtie \pi_{CDE}(r) \neq r$$

3 Exercise 3 (Find Candidate Keys)

Geben sie alle Schlüsselkandidaten für R an.

Aist ein Candidate Key, weil $A\to BC,\,B\to D$ und $CD\to E$ bedeuten, dass Aalle Attribute bestimmen kann.

E ist ein Candidate Key, weil $E \to A$ und A ein Candidate Key ist, was bedeutet, dass E alle Attribute bestimmen kann.

BC ist ein Candidate Key, weil BC D durch $B \to D$ und E durch $CD \to E$ bestimmen kann.

CD ist ein Candidate Key, weil CD E durch $CD \to E$ und A durch $E \to A$ bestimmen kann. Da A ein Candidate Key ist, kann CD alle Attribute bestimmen.

Daher sind die Candidate Key A, E, BC und CD.

4 Exercise 4 (BCNF Decomposition)

Zerlegen Sie R mit dem BCNF-Dekompositionsalgorithmus.

Anhand der Candidate Keys können wir alle funktionale Abhängigkeiten zerlegen, welche nichttrivial und keine Candidate Keys sind. Das bedeutet das $B \to D$ zerlegt werden muss.

$$R_1 = (B,D) \ R_2 = (A,B,C,E)$$