## CLAIMS

The invention claimed is:

- 1. A method for producing a compound that regulates telomerase activity, comprising:
  - a) obtaining a preparation of mammalian telomerase enzyme that is at least ~2000-fold more pure than an extract of cells from adenovirus-transformed kidney cell line (293 cells), wherein the telomerase enzyme contains telomerase RNA component, and has a molecular weight of 200-2000 kDa;
    - b) combining the preparation with a test compound;
  - c) determining telomerase activity of the enzyme in the presence of the test compound;
  - d) identifying the compound as being a regulator of telomerase if the telomerase activity measured in step c) is affected by the presence of the compound; and then
  - e) producing the compound if it is identified as being a regulator of telomerase in step d).
- 2. A method for producing a compound that regulates telomerase activity, comprising:
  - a) identifying the compound as being a regulator of telomerase; and then
  - b) producing the compound if it is identified as being a regulator of telomerase in step a);

wherein the compound has been identified as a regulator of telomerase by a process comprising:

- i) obtaining a preparation of mammalian telomerase enzyme that is at least ~2000-fold more pure than an extract of cells from adenovirus-transformed kidney cell line (293 cells), wherein the telomerase enzyme contains telomerase RNA component, and has a molecular weight of 200-2000 kDa;
  - ii) combining the preparation with a test compound;
- iii) determining telomerase activity of the enzyme in the presence of the test compound;
- iv) identifying the compound as being a regulator of telomerase if the telomerase activity measured in step iii) is affected by the presence of the compound.

- 3. The method of claim 1 or claim 2, wherein the telomerase preparation was obtained by a process in which a solution containing telomerase activity was combined with an oligonucleotide having specific activity for mammalian telomerase; and then protein was collected that had bound the oligonucleotide.
- 4. The method of claim 3, wherein the oligonucleotide comprises a retrievable label such as biotin.
- 5. The method of claim 3, wherein the solution that was combined with the oligonucleotide had been obtained by preparing an enriched solution from a cell expressing telomerase, whereby telomerase enzyme in the enriched solution was separated from other proteins expressed by the cell.
- 6. The method of claim 1 or claim 2, wherein the process used to prepare the telomerase comprised combining a fraction containing telomerase enzyme with an anion exchange matrix, and collecting protein that bound the matrix.
- 7. The method of claim 1 or claim 2, wherein the process used to prepare the telomerase comprised combining a fraction containing telomerase enzyme with a cation exchange matrix (such as a heparin matrix), and collecting protein that bound the matrix.
- 8. The method of claim 1 or claim 2, wherein the process used to prepare the telomerase comprised combining a fraction containing telomerase enzyme with an intermediate selectivity matrix, and collecting protein that bound the matrix; wherein the intermediate selectivity matrix had at least one of the following substituents: hydroxyapatite, a polyamine (such as spermine or spermidine), poly guanylic acid, a divalent metal ion (such as Ni"), a positively charged poly-amino acid (such as poly-L-lysine), a positively charged enzyme (such as histone), or aminophenyl-boronic acid.
- 9. The method of claim 1 or claim 2, wherein the process used to prepare the telomerase comprised separating a fraction containing the telomerase enzyme by gel filtration chromatography or gradient centrifugation that separates molecules > 200 kDa.

- 10. The method of claim 3, wherein the oligonucleotide contains a sequence that binds specifically to telomerase RNA component.
- 11. The method of claim 10, wherein the oligonucleotide contains the sequence of oligo 5 (SEQ. ID NO:3).
- 12. The method of claim 3, wherein the oligonucleotide contains a sequence that is specifically recognized by telomerase protein.
- 13. The method of claim 12, wherein the oligonucleotide contains the sequence (TTAGGG), (SEQ. ID NO:6).
- 14. The method of claim 12, wherein the oligonucleotide does not contain the sequence (TTAGGG), (SEQ. ID NO:6).
- 15. The method of claim 12, wherein the oligonucleotide contains the sequence of M2/TS (SEQ. ID NO:8).
- 16. The method of claim 12, wherein the telomerase preparation is at least ~20,000 fold more pure than the cell extract.
- 17. The method of claim 1 or claim 2, wherein the telomerase preparation is between ~3,000 and ~60,000 fold more pure than the cell extract.
- 18. The method of claim 1 or claim 2, wherein the telomerase protein is human.
- 19. The method of claim 1 or claim 2, wherein the telomerase preparation has measurable telomerase activity in 0.2  $\mu g$  of protein when quantified in a telomere primer elongation assay in which  $^{32}P$ -labeled primer extensions are separated on a gel and detected using a phosphoimager screen.
- 20. The method of claim 1 or claim 2, wherein telomerase core enzyme is present in the preparation at a concentration of at least  $3 \times 10^{-10} \text{ mol L}^{-1}$ .

- 21. The method of claim 1 or claim 2, wherein telomerase core enzyme is present in the preparation at a concentration of at least  $2 \times 10^{-9}$  mol L<sup>-1</sup>.
- 22. The method of claim 1 or claim 2, wherein the telomerase activity is determined by a primer elongation assay.
- 23. The method of claim 1 or claim 2, wherein the telomerase activity is determined in by a dot blot assay.
- 24. The method of claim 1 or claim 2, whereby the compound is identified as being an inhibitor of telomerase.
- 25. The method of claim 1 or claim 2, whereby the compound is identified as being an activator of telomerase.