

PART 3

Inference Of Large Neural Networks Lecture

- Overview of Al Inference Optimization techniques
- Distributed Inference
- TensorRT
- Faster Transformers
- Triton Inference Server
- Nemo Megatron

Lab

- Overview of the class environment
- Hugging Face / Pytorch Inference for the GPT-J
- Optimize GPT-J with Faster Transformers
- Deploy GPT-J with Triton Inference Server

LARGE MODELS INFERENCE IS DIFFICULT

NEMO-MEGATRON WITH DGX SUPERPOD

Train what was once impossible

Algorithmic innovation

Train the world's largest transformer-based language models using Megatron's advanced optimizations and parallelization algorithms.

Direct access to world-class NLP experts

Access dedicated expertise from install to infrastructure management to scaling workloads to streamlined production AI.

Optimized Topology for Multi-Node Training

Train the largest models using model parallelism, with NVLINK and InfiniBand for fast cross-node communication.

Turnkey Experience for Rapid Deployment

A full-stack data center platform that includes industry-leading computing, storage, networking, software, and management tools.

Efficiency at Extreme Scale

Training GPT-3 175B takes 355 years on a V100, 14.8 years on 1 DGX A100 and about 1 month on a 140-node DGX SuperPOD

LET'S DIVE INTO THE DETAILS

MODEL SELECTION

Not all models are created equally

Image Classification

Object detection

NLP

MODEL SELECTION

Not all models respond in the same way to knowledge distillation, pruning and quantization

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION

E.g. Train Large then compress

QUANTIZATION

The idea

QUANTIZATION

The rationale

Input Datatype	Accumulation Datatype	Math Throughput	Bandwidth Reduction
FP32	FP32	1x	1x
FP16	FP16	8x	2x
INT8	INT32	16x	4x
NT4	INT32	32x	8x
INT1	INT32	128x	32x

QUANTIZATION

Approaches

Post-training quantization(PTQ)

Quantization-aware training (QAT)

Post-training quantization (PTQ)

Start with a pre-trained model and evaluate it on a calibration dataset.

Calibration data is used to calibrate the model. It can be a subset of training data.

Calculate dynamic ranges of weights and activations in the network to compute quantization parameters (q-params).

Quantize the network using q-params and run inference

Quantization-aware training (QAT)

Start with a pre-trained model and introduce quantization ops at various layers

Finetune it for a small number of epochs.

Simulates the quantization process that occurs during inference.

The goal is to learn the q-params which can help to reduce the accuracy drop between the quantized model and pretrained model.

MODEL OPTIMIZATION

Pruning

Reduce the complexity of neural networks by removing unnecessary connections

- Reduce memory bandwidth
- Reduce memory footprint
- Accelerate the compute

Challenge: Maintain accuracy of the original unpruned network

6 inputs, 6 neurons (including 2 outputs), 32 connections

6 inputs, 5 neurons (including 2 outputs), 24 connections

SPARSITY SUPPORT

Accelerate Inference with Ampere Sparse Tensor Core

Maximize throughput at low latency with sparsity

New optimizations with 2:4 fine-grained structured sparsity result in greater performance reducing the weights in half

ASP (Automatic SParsity) provides easy-to-use workflow to induce the sparsity while maintaining accuracy of original dense network

TensorRT accelerates inference using sparse kernels

Training Phase

Enable Sparsity by setting the kSPARSE_WEIGHTS flag in IBuilderConfig

SPARSITY IN A100 GPU

TRANSFORMER ENGINE

TRANSFORMER ENGINE

Optimal Transformer acceleration with Hopper Tensor Core

- Transparent to DL frameworks
- User can enable/disable
- Selectively applies new FP8 format for highest throughput
- Monitors tensor statistics and dynamically adjusts range to maintain accuracy

INSIDE THE NVIDIA HOPPER ARCHITECTURE

INSIDE 8-BIT FLOATING POINT (FP8)

Allocate 1 bit to either range or precision

Support for multiple accumulator and output types

2x throughput & half footprint of FP16/BF16

KNOWLEDGE DISTILLATION

The idea

Distilling the Knowledge in a Neural Network

Geoffrey Hinton*†
Google Inc.
Mountain View
geoffhinton@google.com

Oriol Vinyals†
Google Inc.
Mountain View
vinvals@google.com

Jeff Dean Google Inc. Mountain View jeff@google.com

Abstract

A very simple way to improve the performance of almost any machine learning algorithm is to train many different models on the same data and then to average their predictions [3]. Unfortunately, making predictions using a whole ensemble of models is cumbersome and may be too computationally expensive to allow deployment to a large number of users, especially if the individual models are large neural nets. Caruana and his collaborators [1] have shown that it is possible to compress the knowledge in an ensemble into a single model which is much easier to deploy and we develop this approach further using a different compression technique. We achieve some surprising results on MNIST and we show that we can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model. We also introduce a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse. Unlike a mixture of experts, these specialist models can be trained rapidly and in parallel.

- Train a large model
- Use the trained model to train a smaller model

KNOWLEDGE DISTILLATION

DistillBERT

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo BERT-base	68.7 79.5	44.1 56.3	68.6 86.7	76.6 88.6	71.1 91.8		53.4 69.3	91.5	70.4 89.0	56.3 53.5
DistilBERT	, , , , ,	51.3	82.2	87.5	89.2		59.9		86.9	56.3

Table 2: **DistilBERT yields to comparable performance on downstream tasks.** Comparison on downstream tasks: IMDb (test accuracy) and SQuAD 1.1 (EM/F1 on dev set). D: with a second step of distillation during fine-tuning.

Model	IMDb (acc.)	SQuAD (EM/F1)
BERT-base	93.46	81.2/88.5
DistilBERT	92.82	77.7/85.8
DistilBERT (D)	-	79.1/86.9

Table 3: **DistilBERT is significantly smaller while being constantly faster.** Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

DistillBERT retain 97% of BERT performance while is only 66M parameters

INFERENCE OF HUGE MODELS

INFERENCE OF HUGE MODELS

Goals and Challenges

- · Goal: To infer huge models in an efficient and convenient way, including
 - Maximizing Utilization of GPUs
 - A unified and simple inference solution for many models in production
 - Easier deployments, scaling and support
 - Maximizing Throughput, Minimizing Latency
- Challenges:
 - Huge model requires more memory than available on 1 GPU
 - There are no tools to infer Huge Models, apart from Triton
 - Model needs to be optimized before the inference
 - Frameworks used for training Huge Models are quite complex and inadequate for inference

PRODUCTION DEPLOYMENT

Executive Math

2 bytes per weight (FP16)

$$\frac{175 * 10^9 * 2}{1024 * 1024 * 1024} = 325.96GB$$

We want GPU memory consumption in GB

PRODUCTION DEPLOYMENT

Pruning - 2:4 Structured Sparsity

PRODUCTION DEPLOYMENT

Quantization

DISTRIBUTED INFERENCING

MODEL PARALLELISM

Complementary Types of Model Parallelism

- Inter-Layer (Pipeline) Parallelism
 - Split sets of layers across multiple devices
 - *Inference:*
 - Maximizes GPU utilization and Throughput
 - Can be used easily with TRITON
- Intra-Layer (Tensor) Parallelism
 - Split individual layers across multiple devices
 - *Inference:*
 - Minimizes latency

GPU 1

MODEL PARALLELISM

Combined Model Parallelism. Multiple GPUs in Multiple DGXs.

Inter + Intra Parallelism

INFERENCE IS COMPLEX

Real-Time | Competing Constraints | Rapid Updates

INFERENCE APPROACHES BY NVIDIA

LARGE SCALE NLP DEPLOYMENT

TensorRT vs FasterTransformer

TensorRT	FasterTransformer
No support for model parallelism Pipeline parallelism achieved using Triton Inference Server	Supports both tensor and pipeline parallelism
Support for a variety of models and types of layers Transformers: BERT, GPT, and T5	Limited support to BERT, GPT-2, Megatron GPT-3
Integration with Triton Inference Server	Integration with the Triton Inference Server
Additional steps are required to deploy large scale transformer Model TensorRT 8.2 supports GPT-2 up to 1.5B parameters and T5 up to 11B parameters	Supports large scale transformers
Fastest inference BERT like models	Fastest inference for GPT-3 like models

NVIDIA TensorRT

SDK for High-Performance Deep Learning Inference

Optimize and deploy neural networks in production.

Maximize throughput for latency-critical apps with compiler and runtime.

Optimize every network, including CNNs, RNNs, and Transformers.

- 1. Reduced mixed precision: FP32, TF32, FP16, and INT8.
- 2. Layer and tensor fusion: Optimizes use of GPU memory bandwidth.
- 3. Kernel auto-tuning: Select best algorithm on target GPU.
- 4. Dynamic tensor memory: Deploy memory-efficient apps.
- 5. Multi-stream execution: Scalable design to process multiple streams.
- 6. Time fusion: Optimizes RNN over time steps.

Drive

Data Center GPUs

INFERENCE OPTIMIZATION WORKFLOW FOR TensorRT

TensorRT INTEGRATED WITH PYTORCH AND TENSORFLOW

6x FASTER INFERENCE WITH 1 LINE OF CODE

Available in <u>PyTorch NGC</u> <u>Container</u> Available in <u>TensorFlow</u> & NGC Container

WORLD LEADING INFERENCE PERFORMANCE

TensorRT Accelerates Every Workload

BEST IN CLASS RESPONSE TIME AND THROUGHPUT vs CPUs

36X

Computer Vision < 7ms

10X

Reinforcement Learning

583X

Speech Recognition < 100ms

178X

Text-to-Speech < 100ms

21X

NLP < 50ms

Recommenders < 1 sec

TENOSRRT

TensorRT transformer optimization specifics

TensorRT optimizes the self-attention block by pointwise layer fusion:

- Reduction is fused with power ops (for LayerNorm and residual-add layer)
- Scale is fused with softmax
- GEMM is fused with ReLU/GELU activations

TensorRT also optimizes the network for inference:

- Eliminating transpose ops
- Fusing the three KQV projections into a single GEMM
- FP16 mode: Control the layer-wise precisions to preserve accuracy while running the most compute-intensive ops in FP16

Figure 1a. T5 architecture

Figure 1b. GPT-2 architecture

TENOSRRT

Inference libraries by NVIDIA

T5-3B model inference comparison. TensorRT on A100 GPU provides a 21x smaller latency compared to PyTorch CPU inference.

CPU: Intel Platinum 8380, 2 sockets. GPU: NVIDIA A100 PCI Express 80GB. Software: PyTorch 1.9, TensorRT 8.2.0EA. Task: "Translate English to German: that is good."

NVIDIA FASTER TRANSFORMER

FASTERTRANSFORMER

Summary

FasterTransformer: Highly optimized transformer-based encoder and decoder component for inference

Based on CUDA and cuBLAS

- Encoder transformer: BERT
- Decoder transformer: GPT-2, Megatron-GPT-3 and OpenNMT-tf
- Decoding contains whole process of translation: OpenNMT-tf

Support FP32, FP16 and INT8

Provide C++ API and TensorFlow/PyTorch OP

FasterTransformer backend for Triton InferenceServer (Alpha): multi-GPU, multi-node models (GPT and T5) with billions of parameters

FASTERTRANSFORMER

Summary

- Checkpoint converter
- Huggingface
 - Megatron
 - Nemo Megatron
 - TensorFlow
- Data type
 - FP32
 - FP16
 - INT8 weight only PTQ for bs 1 and 2

- Feature
 - Multi-GPU multi-node inference
 - Dynamic random seed
 - Stop tokens
 - Beam search and sampling are both supported
 - FP32, FP16 and INT8 inference
- Frameworks
 - TensorFlow
 - PyTorch
 - C++
 - Triton backend

OPTIMIZATIONS

- 1.Layer Fusion
- 2. Inference optimization for autoregressive models
- 3. Memory optimization
- 4. Usage of MPI and NCCL to enable inter/intra node communication and support Model parallelism
- 5. MatMul kernel autotuning (GEMM Autotuning)
- 6. Inference with lower precisions and quantization
- 7. Others:
 - 1. Rapidly fast C++ BeamSearch implementation
 - 2. Optimized all-reduce for the TensorParallelism 8 mode. When eights of the model are split between 8 GPUs

OPTIMIZATIONS LEAD TO THIS

Encoder Inference in the Framework

Encoder Inference in the Faster Transformer

TRITON INFERENCE SERVER

TRITON: INFERENCE SERVER ARCHITECTURE

Easy to Use

Pretrained Neural Network is placed on DGX and ready for inference with TRITON

DEVELOPERS CAN FOCUS ON MODELS AND APPLICATIONS

Triton Takes Care of Plumbing To Deploy Models for Inference

Multiple Frameworks

All Major Framework Backends For Flexibility & Consistency

Concurrent Model Execution For High Throughput & Utilization, lower TCO

Standard HTTP/gRPC Communication

Inferencing on GPU and CPU

Inference Serving on GPU & CPU Across

Cloud | Data Center | Edge

Bare metal | Virtualization

Different Types of Queries

Dynamic Batching

Support for Different Types of Inference Queries Used in Different Use Cases

Dynamic Batching Maximizes Throughput Under Latency Constraint

MODEL ENSEMBLING

It's easy to create pipeline for parts of one huge model in TRITON

MODEL ENSEMBLING

It's easy to create pipeline for parts of one huge model in TRITON

HOW TO DEPLOY LARGE MODELS?

TENSORRT+ TRITON INFERENCE SERVER

LARGE SCALE NLP DEPLOYMENT

TensorRT and Triton Inference Server

LARGE SCALE NLP DEPLOYMENT

TensorRT and Triton Inference Server

```
name: "megatron_gpt3_18b_onnx_ensemble"
platform: "ensemble"
    name: "input .1"
    data type: TYPE INT64
     dims: [4, 1824]
                                         semble scheduling (
                                        step [
                                          model name: 'megatron_gpt3_18b_onnx_part1'
model version: -1
     data_type: TYPE_INT64
     dims: [4, 1024]
                                            Input map {
                                             key: "imput_1"
value: "imput_1"
     name: "2"
                                             Input map {
     data type: TYPE BOOL
                                              key: "imput.1"
    dims: [4, 1,1024,1024]
                                               value: "input.1"
                                             input map (
                                              key: "2"
value: "2"
output I
    name: "9761"
                                            output_map {
key: "4888"
    data type: TYPE FP16
                                               value: "middle tensor"
     dims: [4, 1024, 50304]
                                            model_mene: 'megatron_gpt3_180_onns_gart2'
model_version: -1
input_map (
key: "488"
                                               value: "middle_tensor"
                                            input_map {
   key: "2"
   value: "2"
                                            output_map {
   key: "9761"
```

LARGE SCALE NLP DEPLOYMENT

TensorRT and Triton Inference Server

```
name: "megatron gpt3 18b onnx part1"
platform: "onnxruntime onnx"
                                                                                      name: "megatron_gpt3_18b_onnx_ensemble"
platform: "ensemble"
input [
    name: "input .1"
    data type: TYPE INT64
                                                                                          name: "input .1"
                                                                                          data type: TYPE INT64
    dims: [4, 1024]
                                                                                          dims: [4, 1824]
                                                                                                                      semble scheduling (
                                                                                                                      step [
    name: "input.1"
                                                                                                                       model_name: "megatron_gpt3_180_onnx_part1"
model_version: +1
    data type: TYPE INT64
                                                                                          data type: TYPE INT64
                                                                                          dims: [4, 1024]
                                                                                                                          input map {
    dims: [4, 1024]
                                                                                                                           key: "input_1"
                                                                                                                           volue: "input_1"
                                                                                          name: "2"
    name: "2"
                                                                                                                          Input map €
                                                                                          data type: TYPE BOOL
                                                                                                                           key: "imput.1"
    data type: TYPE BOOL
                                                                                         dims: [4, 1,1024,1024]
                                                                                                                           value: "input.1"
    dims: [4, 1,1024,1024]
                                                                                                                          input map &
                                                                                                                           key: "2"
value: "2"
                                                                                      output I
output [
                                                                                         name: "9761"
                                                                                                                         output_map { key: "4888"
                                                                                         data type: TYPE FP16
    name: "4088"
                                                                                                                           value: "middle tensor"
                                                                                          dims: [4, 1024, 50304]
    data type: TYPE FP16
    dims: [1024, 4, 4096]
                                                                                                                         model_meme: 'megatron_gpt3_ldb_unns_part2'
model_version: -1
input_map (
key: "4088"
instance group[{
                                                                                                                           value: "middle_tensor"
    count: 1
    kind: KIND GPU
                                                                                                                          input map {
    gpus: [0]
                                                                                                                          output map {
```

```
name: "megatron gpt3 18b onnx part2"
platform: "onnxruntime onnx"
input [
   name: "4088"
   data type: TYPE FP16
   dims: [1024, 4, 4096]
   name: "2"
   data type: TYPE BOOL
   dims: [4, 1,1024,1024]
output [
   name: "9761"
   data type: TYPE FP16
   dims: [4, 1024, 50304]
instance group[{
   count: 1
   kind: KIND GPU
   gpus: [1]
```

GPT-3 MEGATRON-LM EXAMPLE

MEGATRON-LM GPT-3

Pipeline-Parallelism Inference steps

SCALING BY ADDING ONE SIMPLE LINE OF CODE

Running 4 Different Inference Jobs on one DGX A100

INFERENCE RESULTS: MEGATRON-LM ON BERT

203X Higher Throughput on 8x V100 16GB (DGX-1) than CPU

Inference throughput comparisons (requests /per second) BERT MEGATRON-LM 6.7B parameters. Seq_length=1024.

INFERENCE RESULTS: MEGATRON-LM ON GPT-3

590X - 720X Higher Throughput on DGX A100 320GB vs. CPU

Inference throughput comparisons (requests /per second) GPT-3 MEGATRON-LM 18B parameters. Seq length=1024.

INFERENCE RESULTS: MEGATRON-LM ON GPT-3

Using our 18B recipe to run Inference on GPT-3 Models 14X parameters
Using 1xDGX A100 640GB

LARGE TRANSFORMERS INFERENCE

FASTER TRANSFORMER + TRITON INFERENCE SERVER

OVERALL ARCHITECTURE

OVERALL ARCHITECTURE

GPT-J TRITON ENSEMBLE

PERFORMANCE

NEMO MERGATRON INFERENCE

NEMO-MEGATRON WITH DGX SUPERPOD

Train what was once impossible

Algorithmic innovation

Train the world's largest transformer-based language models using Megatron's advanced optimizations and parallelization algorithms.

Direct access to world-class NLP experts

Access dedicated expertise from install to infrastructure management to scaling workloads to streamlined production AI.

Optimized Topology for Multi-Node Training

Train the largest models using model parallelism, with NVLINK and InfiniBand for fast cross-node communication.

Turnkey Experience for Rapid Deployment

A full-stack data center platform that includes industry-leading computing, storage, networking, software, and management tools.

Efficiency at Extreme Scale

Training GPT-3 175B takes 355 years on a V100, 14.8 years on 1 DGX A100 and about 1 month on a 140-node DGX SuperPOD

GPT-3 | TRITON + FASTERTRANSFORMER

Value: Multi-Node Inference for large scale Transformer Models

Goal: Serve giant transformer models and accelerate inference performance

Capabilities:

- Written in C++/CUDA and relies on cuBLAS, cuBLASIt, cuSPARSELt
- Optimize kernels for encoder/decoder layers of transformer models
- Integrated as a backend in Triton Inference Server
- Uses tensor/pipeline parallelism for multi-GPU, multi-node inference
- FP16, FP32 supported
- POC of Post-training weight-only INT8 quantization for GPT
 - Only for BS 1-2
- Megatron and HuggingFace converters provided
 - POC of Tensorflow/ONNX converters
- Uses MPI and NCCL to enable inter/intra node communication

Exceptions/Limitations:

- Supports only GPT and T5 style models currently
- Size-per-head (of the attention head) of the model must be 32, 64, 96, 128, 144, 160, 192, 224 and 256
- Model must be converted to FasterTransformer format
- Currently beta release

GPT-3 | TRITON + FASTERTRANSFORMER

Value: Multi-Node Inference for large scale Transformer Models

INFERENCE BENCHMARKS

Model Siz	e Input Length	Output Length	Batch Size	# of GPUs	Min of P99 (ms)	Max of P99 (ms)
1.3B	60	20	1 - 256	1 - 8	74	437
5.1B	60	20	1 - 256	1 - 8	94	1,143
20B	60	20	1 - 256	1 - 8	230	4,146
175B	60	20	1 - 256	8 - 32	649	5,731
530B	60	20	1 - 256	16 - 32	1,054	8,326

20B GPT-3 | batch_size: 256 | input_len: 60 | output_len: 20

20B GPT-3 | # of GPU: 1 | input_len: 60 | output_len: 20

OVERVIEW OF THE TOOLING

Efficient Hyperparameter Search With Embedded Heuristics

Efficient Hyperparameter Search

PERFORMANCE GAINS

175B GPT-3 Model: 6.85x training speedup

PERFORMANCE GAINS

Inference 175B GPT-3 Model: Optimizing throughput and latency

LAB

Overview

- Baseline inference Of GPT-J with 6B parameters using the Hugging Face library and PyTorch
- Inference Of GPT-J with Faster Transformers
- Distributed inference: Tensor Parallel (TP) and/or Pipeline Parallel (PP)
- Deployment of GPT-J with Triton Inference Server

