PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification ⁵ : G01N 33/569, C07K 15/04, 15/14 C12N 15/00		(11) Internati nal Publication Number:	WO 91/07664
		(43) International Publication Date:	30 May 1991 (30.05.91)
(21) International Application Number: PCT. (22) International Filing Date: 13 November 19	/US90/066 990 (13.11.	Goldstein & Fox, 1225 Conne	cticut Avenue, N.W., Suite

(71) Applicant: CAMBRIDGE BIOSCIENCE CORPORA-TION [US/US]; 365 Plantation Street, Biotechnology Research Park, Worcester, MA 01605 (US).

(72) Inventors: YOUNG, Elihu, M.; 10 Prince Way, Sharon, MA 02067 (US). STOREY, James, R.; 15 Lake Street, Linwood, MA 01525 (US). BELTZ, Gerald, A.; 43 Downing Road, Lexington, MA 02173 (US).

(81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: DIAGNOSTIC PROTEINS TO TEST FOR MORE THAN ONE ANTIBODY

13 November 1989 (13.11.89) US

(57) Abstract

(30) Priority data:

433,709

This invention is directed to the discovery that certain envelope peptide fragments of the Human Immunodeficiency Virus 2 (HIV-2) are particularly immunoreactive against HIV-2 antibodies. These fragments can therefore be applied to immunodiagnostic tests for the detection of antibodies to HIV-2. This invention is also directed to certain chimeric proteins that are made from immunogenic portions of the envelope gene of HIV-2, HIV-1, or HTLV-I that can be used to test for antibodies to HIV-2, HIV-1, and HTLV-I and HTLV-II.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BF BG BJ BR CA CF CG CH CI CM DE DK	Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Canada Central African Republic Congo Switzerland Côte, d'Ivoire Cameroon Germany Denmark	ES FI FR GA GB HU IT JP KP KR LI LK LU MC	Spain Finland France Gabon United Kingdom Greece Hungary Italy Japan Democratic People's Republic of Korea Republic of Korea Licchtenstein Sri Lanka Luxembourg Monaco	MG ML MR MW NL NO PL RO SD SE SN SU TD TG US	Madagascar Mali Mauritania Malawi Netherlands Norway Poland Romania Sudan Sweden Senegal Soviet Union Chad Togo United States of America	
---	---	--	--	--	--	--

- 1 -

DIAGNOSTIC PROTEINS TO TEST FOR MORE THAN ONE ANTIBODY

Field of the Invention

This invention is directed to the discovery that certain envelope peptide fragments of the Human Immunodeficiency Virus 2 (HIV-2) are particularly immunoreactive against HIV-2 antibodies. These fragments can therefore be applied to immunodiagnostic tests for the detection of antibodies to HIV-2. This invention is also directed to certain chimeric peptide fragments that are made from immunogenic portions of the envelope gene of HIV-2, HIV-1, or HTLV-I that can be used to test for antibodies to HIV-2, HIV-1, HTLV-I, and HTLV-II.

BACKGROUND OF THE INVENTION

Human Immunodeficiency Viruses (HIVs) are retroviruses which carry their genetic code on RNA. In humans, Acquired Immune Deficiency Syndrome (AIDS) may be caused by either of two types of HIV: HIV-1 or HIV-2.

HIV-1 (originally HTLV-III) was isolated and identified by Gallo and Montagier et al., U.S. 4,520,113. Ratner et al., Nature 313:277-284 (1985); Muesing et al., Nature 313:450-458 (1985); Sanchez-Pescador et al., Science 227:484-492 (1985); and Wain-Hobson et al., Cell 40:9-17 (1985) disclose the complete DNA sequence of the HTLV-III virus.

HIV-2 (originally LAV-2) was first isolated from West Africans with AIDS-like illness (Clavel, F. et al., Science 233:343-346 (1986); Clavel, F. et al., Nature 324:691-695 (1986)).

HIV-1 and HIV-2 are related to the human T-cell leukemia-lymphoma (HTLV) virus family of T4 tropic retroviruses. HTLV-I is the etiological agent of T-cell leukemia and lymphoma. HTLV-II, originally isolated from a patient with hairy-cell leukemia, is associated with the development of malignant leukemia of mature T-lymphocytes. The complete nucleotide sequence of the provirus genome of HTLV-I is given in Seiki et al., Proc. Nat'l Acad. Sci. (USA) 80:3618-3622 (1983).

When a retrovirus infects a host cell, a DNA copy of its genome is integrated into the chromosome of its host. With some retroviruses, the DNA is integrated into the host cell's chromosomes in the form of a sequence known as a provirus. The DNA copy of the retrovirus' genetic code is synthesized by a viral enzyme called RNA dependent DNA polymerase, or reverse transcriptase. The host cells transcribe the DNA of the viral gene and synthesize the proteins encoded by the virus, which are then assembled into new viruses.

The HIV viruses and HTLV viruses contain at least (i) a gag gene that encodes the internal structural (neurocapsid or core) proteins, (ii) a pol gene that encodes the reverse transcriptase, and (iii) an env gene that encodes the envelope glycoproteins of the virus.

In early studies with HIV-1, Gallo (Gallo, R.C. et al., Science 224:500:503 (1984); Sarnagadharen, M.G. et al., Science 224:506-508 (1985)) and Montagnier (Barre-Sinoussi, F. et al., Science 220:868-871 (1983)), using Western blots, demonstrated that most AIDS patients had antibodies to HIV-1 antigens. From this work, and because it was not widely appreciated that blots could have nonspecific reactions at p17, p24, and other HIV-1 antigens, it was commonly believed

that gag antigens were the appropriate antigens to be used for screening for HIV-1 antibodies. However, not all AIDS sera is reactive in Western blots against gag antigens. The first and most reliable markers of infections are the presence of antibodies to the envelope protein.

Viral lysates of HIV-1 are currently widely used for the detection of antibodies to HIV-1 in human sera. The viral lysate comes from HIV-1 that has been grown in tissue culture and partially purified as the antigen source. The tests are quite sensitive, but suffer from a relatively high rate of false positives. Many scientists have attributed these false positives to cellular proteins contaminating the virus preparations (Honter, J.B. et al., Lancet 1:1222-1223 (1985); Sayers, M.H., Transfusion 26:113-115 (1986)) and the presence of cross-reactive antibodies (Thiry, L. et al., Science 227:1484 (1985); Volsky, D.J., New Engl. J. Med. 315:457-458 (1986)).

The HTLV-I and HTLV-II virus can be readily transferred from the peripheral blood leukocytes of antibody-positive people to leukocytes of antibody-negative people when the two are cultivated together. Popovic et al., Science 219:856-859 (1983). Consequently, there is a risk of infection involved in whole blood transfusions when the transfused blood contains infected cells.

Moreover, individuals infected with one retrovirus may also be harboring a second retrovirus infection. Biological specimens from people with an HIV-1 infection often also give a positive test for antibodies to HTLV-I or HTLV-II. Assays were conducted in the following studies for HTLV-I and HIV-1 antibodies in patient sera: "Rossi et al., Eur. J. Cancer Clin. Oncol 22:411-418 (1986); Aoki et al., Lancet, October 20, 1984, pages 936-937; Tedder et al., Lancet, July 21, 1984, pages 125-128; and Robert-Guroff et al., Lancet, July 21, 1984, pages 128-130. In these studies, the HTLV-I was

detected by viral lysate (Rossi $\underline{et\ al}$. and Aoki $\underline{et\ al}$.) and with core antigen (Tedder $\underline{et\ al}$. and Robert-Guroff $\underline{et\ al}$.).

The Pasteur ELAVIA mixed assay has been reported to preferentially detect HIV-2 antibodies over HIV-1 antibodies. (Lelie, <u>supra</u>). However, this assay is based on the use of a HIV-2 viral lysate assay and thus requires the use of whole virus.

In the United States, human blood must be screened for antibodies to HIV-1 and to HTLV-I and for hepatitis. It is expected that soon human blood sera will also need to be screened for antibodies to HIV-2. Thus, it would be desirable to have a reliable screening assay to test for the presence of antibodies to HIV-2 in human biological samples. It would also be desirable to have a single test that would be able to detect more than one antibody in human biological samples.

SUMMARY OF THE INVENTION

The invention comprises the amino acid sequences of immunoreactive env HIV-2 peptides that can be used for detecting antibodies to HIV-2. The invention also comprises the amino acid sequences of immunodiagnostic chimeric env peptides which are able to detect more than one antibody. Specifically, these chimeric env peptides are able to detect antibodies to HIV-2, HIV-1, and HTLV-I and HTLV-II. Thus, this invention comprises chimeric env peptides comprising immunodiagnostic env peptide fragments of HIV-2-HIV-1; HIV-2-HIV-I; HIV-1-HTLV-I; HIV-2-HIV-I; and HIV-1-HTLV-I.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the construction of plasmid pK1 from plasmids K3D, containing the HIV-1 clone K3D, and pCBC1.

Figure 2 is an electrophoretic gel showing an induced 34 kd protein, called Kl.

Figure 3 is a Western blot showing the reaction of the induced protein, Kl, with human sera from HIV-2 infected individuals.

Figure 4 gives the complete DNA sequence of the coding region of the K1 and the derived amino acid sequence.

Figure 5 shows the construction of plasmid pK3 and a 1038 base pair fragment from position 7101 to position 8139 and the ligation of K3D into the expression vector pCBC2.

Figure 6 is an electrophoretic gel showing an induced 40 kd protein, called K3.

Figure 7 is a Western blot showing the reaction of the induced protein, K3, with human sera from HIV-2 infected individuals.

Figure 8 gives the complete DNA sequence of the coding region of the K3 and the derived amino acid sequence.

Figure 9 shows the construction of the plasmid pK1DG71 from plasmids pLCBC0DG71A and pK1.

Figure 10 is an electrophoretic gel showing an induced 55 kd chimeric protein, called K1DG71.

Figure 11A is a Western blot showing the reaction of the induced protein, K1DG71, with human sera from HIV-1 infected individuals.

Figure 11B is a Western blot showing the reaction of the induced protein, K1DG71, with human sera from HIV-2 infected individuals.

Figure 12 gives the complete DNA sequence of the coding region of the pKlDG71 and the derived amino acid sequence.

Figure 13 shows the construction of the plasmid pDG71353.

Figure 14 shows the construction of the plasmid pK1DG71353.

Figure 15 gives the complete DNA sequence of the coding region of the pK1DG71353 and the derived amino acid sequence.

Figure 16 is an electrophoretic gel showing an induced 68 kd chimeric protein, K1DG71353.

Figure 17 is a Western blot showing the reaction of the induced protein, K1DG71353, with human sera from HIV-1 positive individuals.

Figure 18 is a Western blot showing the reaction of the induced protein, K1DG71353, with human sera from HIV-2 positive individuals.

Figure 19 is a Western blot showing the reaction of the induced protein, K1DG71353, with human sera from HTLV-I positive individuals.

Figure 20 shows that no specific reactivity was seen with negative sera in a Western blot of the induced protein K1DG71353.

Figure 21 gives the complete DNA sequence of the coding region of the $\mbox{K1DG71353}$ protein and the derived amino acid sequence.

DEFINITIONS

In the description that follows, a number of terms used in recombinant DNA technology and immunology are extensively utilized. In order to provide a clearer and consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided.

<u>Promoter</u>. A DNA sequence located proximal to the start codon at the 5' end of the transcribed sequence. At the promoter region, transcription of an adjacent operably linked gene(s) is initiated.

Gene. A DNA sequence that contains information for transcription of a mRNA which codes for a polypeptide or protein. Typically, the nucleotide of the first transcribed codon is numbered +1, and the nucleotides are numbered consecutively with positive integers through the transcribed regions of the gene. Nucleotide +1 may or may not also code for the first translated amino acid. A gene may have regions at the 5' end and 3' end which are transcribed but which are not translated. Similarly, the gene may or may not contain intron information which must be spliced out prior to translation of the mRNA. The mRNA may or may not have regions at the 5' end and/or the 3' end which are not translated.

The numbering of nucleotides in the promoter and transcriptional regulatory region 5' to the transcribed region proceeds consecutively with negative integers with the 5' nucleotide next to the first transcribed codon being numbered -1.

A "complementary DNA" or "cDNA" gene includes recombinant genes synthesized by reverse transcription of mRNA and from which intervening sequences (introns) have been removed.

Operably linked. As used herein, operably linked means that two elements are physically arranged such that factors which influence one element also influence the other. For example, factors which induce a specific promoter to function also induce the transcription of a gene operably linked to that promoter.

<u>Expression</u>. Expression is the process by which the information encoded within a gene is revealed. If the gene encodes a protein, expression involves both transcription of the DNA into mRNA and translation of the mRNA into protein.

Cloning vehicle. A plasmid or phage DNA or other DNA sequence which is able to replicate autonomously in a host cell, and which is characterized by one or a small number of endonuclease recognition sites at which such DNA sequences may be cut in a determinable fashion without loss of an essential biological function of the vehicle, and into which DNA may be spliced in order to bring about its replication and cloning. The cloning vehicle may further contain a marker suitable for use in the identification of cells transformed with the cloning vehicle. Markers, for example, are tetracycline resistance or ampicillin resistance. The word "vector" is sometimes used for "cloning vehicle."

Expression vehicle. A vehicle or vector similar to a cloning vehicle but which is capable of expressing a gene which has been cloned into it, after transformation into a host. The cloned gene is usually placed under the control of (i.e., operably linked to) certain control sequences such as promoter sequences. Expression control sequences will vary depending on whether the vector is designed to express the operably linked gene in a prokaryotic or eukaryotic host and may additionally contain transcriptional elements such as enhancer elements, termination sequences, tissue-specificity elements, and/or translational initiation and termination sites.

<u>Host</u>. Any organism that is the recipient of a replicable expression vehicle.

<u>Peptide fragment.</u> The term "peptide fragment" is meant to include any amino acid sequence which represents a segment of HIV-2, HIV-1, and/or HTLV-I, which is capable of immunologically reacting with the respective antibody and includes naturally-occurring peptide sequences; synthetic, chemically-synthesized peptide sequences; and expressed, genetically engineered peptide sequences.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention comprises the amino acid sequences of immunoreactive env HIV-2 peptides that can be used for detecting antibodies to HIV-2. The invention also comprises genetic sequences coding for the immunoreactive env peptides, expression vehicles containing the genetic sequences, and hosts transformed therewith.

The invention also comprises the amino acid sequences of immunoreactive chimeric env peptides which are able to detect Specifically, these chimeric env more than one antibody. peptides are able to detect antibodies to HIV-2, HIV-1, and HTLV-I and HTLV-II. Thus, this invention comprises chimeric env peptides comprising immunodiagnostic env peptide fragments. of HIV-2-HIV-1; HIV-2-HIV-1-HTLV-I; HIV-2-HTLV-I; and HIV-1-HTLV-I. By a chimeric env peptide is meant a peptide wherein said peptide contains an amino acid sequence which encodes domains of different viral peptides. Two peptides are said to be different peptides if they are not covalently joined in their mature form in the native virus. The inventors have discovered that by combining domains of peptides from different retroviruses there is created a chimeric peptide that is able to detect antibodies to HIV-2, HIV-1, and HTLV-I

and $\mbox{HTLV-II}$, depending on the particular construction of the chimeric peptide.

The chimeric env peptides may contain domains from any HIV-2, HIV-1, and HTLV-I env peptide as long as those domains are capable of being immunoreactive against their respective antibodies or of being combined with another domain in such a way as to maintain, enhance or induce antibody recognition.

A complete HIV-2 nucleotide sequence from HIV-2_{SL/ISY} is described in (Franchini et al., Proc. Natl. Acad. Sci. USA 86:2433-2437 (1989)). The preferred peptide fragments are those described in Examples 1, below, and shown in Figure 4, which gives the complete DNA sequence of the coding region of the K1 peptide fragment and the derived amino acid sequence and in Example 2, below, and shown in Figure 8, which gives the complete DNA sequence of the coding region of the K3 peptide fragment and the derived amino acid sequence.

The preferred env peptides of HIV-1 are those described in Beltz et al., U.S. 4,753,873, particularly the clone G peptide fragment and those peptide fragments therefrom. The most preferred env peptide fragment is CBre3, derived from the gp120 and gp41 regions of the HIV-1 env gene. CBre3, also identified as delta G71A, is described in Thorn et "An enzyme immunoassay using a novel recombinant polypeptide to detect human immunodeficiency virus, " J. Clin. Microbiol. 25:1207-1212 (1987) and in Beltz et al., U.S. 4,753,873. A cell line expressing the recombinant antigen is also on deposit at the American Type Culture Collection (ATCC), accession number 53455. Other recombinant HIV-1 antigens may be used in this invention, provided that the exhibit immunoreactivity to HIV-1 Examples of such recombinant HIV-1 antigens are described in Chang, et al., Bio/Technology, 3:905-909 (1985); Cabradilla et

al., Bio/Technology, 4:128-133 (1985); and U.S. 4,629,783, all incorporated herein by reference.

Essex et al., PCT/US84/00561, publication no. WO 84/04327, describes the env glycoproteins of HTLV-I. Any immunoreactive peptide fragment encoded by the env gene of HTLV-I may be used in this invention. The preferred peptide fragment is the HTLV-I envelope gene from base pairs 6101-6118 and 6170-6499 based on the published sequence of Seiki et al. (Proc. Natl. Acad. Sci. USA 80:3618 (1983)) incorporated herein by reference. Other preferred peptide fragments are those described in Samuel et al., Science 126:1094-1097 (1984), incorporated herein by reference, which gives a restriction map of the env gene of HTLV-I. HTLV-II antibodies can also be detected with use of HTLV-I antigens.

As will be understood by one of skill in the art, there may be variations in the first one or two amino acids of the peptide fragments due to proper alignment of the cloned nucleotide sequence in the expression vehicle.

Also as will be understood by one of skill in the art, there may also be some variation in the peptide fragments, provided however, that these peptides retain immunoreactivity to antibodies to HIV-2, HIV-1, or HTLV-I, respectively. Thus the ranges in the length of the peptide fragments need not be precisely fixed. Amino acids of the peptide fragments may be added without loss of immunoreactivity. deleted or Additionally, amino acids could be exchanged, e.g. a neutral amino acids such as a valine could be exchanged with another neutral amino acid such as leucine. The changes in amino acids may be either conservative or non-conservative. also genomic variation in amino acid sequence and nucleotide sequence between viral isolates (see, for example, Wong-Staal, F. et al., Science 229:759-762 (1985)). It is to be understood that such variations are included in the peptide fragments of this invention, provided that the peptide fragment is able to detect the appropriate antibody. By conservative substitutions is intended combinations such as gly, ala; val, ile, leu; asp, glu; asn, gln; ser, thr; lys, arg; and phe, tyr.

In the description of the methods that follow, the HIV-2 env peptide fragments are used for illustration. The HIV-1 and HTLV-I env peptides used in the chimeric env diagnostic peptides may also be used in these described methods.

The native peptide fragments of the HIV-2 virus may be used as a source of the peptide domains and may be obtained directly from the infected host cell. The peptide fragment would then be obtained by fragmenting the naturally-occurring virus using suitable enzymes or chemical methods.

It is also possible to obtain the peptide fragments by chemical synthesis, for example, by well known solid phase peptide synthesis methods (Merrifield, <u>J. Am. Chem. Soc. 85</u>:2149 (1962); Bodanszky, M., <u>Peptide Chemistry: A Practical Textbook</u>, 1988, Springer-Verlag, New York).

A preferred method of obtaining the peptide fragment is by cloning a polynucleotide fragment which codes for the desired peptide, using genetic engineering techniques. The advantages of using genetic engineering and recombinant clones are twofold: the first advantage is that it is difficult and time-consuming to obtain large amounts of the viral peptides either by direct isolation from the virus or by chemical synthesis; the second advantage is that recombinant peptides are devoid of human antigens that may reduce the reliability of a diagnostic test.

The genetic constructs and the methods for using them can be utilized for expression of the peptide fragments in hosts, including prokaryotic and eukaryotic hosts.

In a preferred embodiment, the introduced sequence is incorporated into a plasmid or viral vector capable of autonomous replication in a prokaryotic host. Any of a wide

variety of vectors may be employed for this purpose, as outlined below.

Factors of importance in selecting a particular plasmid or viral vector include: the ease with which recipient cells that contain the vector may be recognized and selected from those recipient cells which do not contain the vector; the number of copies of the vector which are desired in a particular host; and whether it is desirable to be able to "shuttle" the vector between host cells of different species. The procaryotic hosts may include bacteria such as $\underline{E.\ coli}$, $\underline{S.\ typhimurium}$, $\underline{Serratia\ marcescens}$ or $\underline{Bacillus\ subtilis}$. Preferably, the peptides of the invention are expressed in prokaryotes and especially in $\underline{E.\ coli}$.

The preferred bacterial host for expression is an $\underline{E.\ coli}$ strain that contains a temperature sensitive bacteriophage lambda CI857 gene, such as MZ1, described in Lautenberger \underline{et} al., Gene Anal. Tech. 1:63-66 (1984). Suitable vector systems for expression in $\underline{E.\ coli}$ are pCBC1, described by Beltz, U.S. 4,753,873, and pJL6 Lautenberger, \underline{et} al., Gene Anal. Tech. 1:63-66 (1984) wherein the bacteriophage lambda pL promoter, synthetic ribosome binding site and the first 13 amino acids from the bacteriophage lambda C_{II} gene are provided on the vector together with a \underline{BamHI} site for cloning purposes and synthetically derived DNA containing translation termination codons in all three reading frames.

Eukaryotic hosts may also be used and include yeast, filamentous fungi, insect cells and mammalian cells (Smith et al., Mol. Cell Biol. 3:2156-2165 (1983)) and especially mammalian cells which have been immortalized and may be maintained in cell culture.

Preferred eukaryotic plasmids include those derived from the bovine papilloma virus, vaccinia virus, SV40, and, in yeast, plasmids containing the 2-micron circle, etc., or their derivatives. Such plasmids are well known in the art (Bot-

stein, D., et al., Miami Wntr. Symp. 19:265-274 (1982); Broach, J.R., In: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p. 445-470 (1981); Broach, J.R., Cell 28:203-204 (1982); Bollon, D.P., et al., J. Clin. Hematol. Oncol. 10:39-48 (1980); Maniatis, T., In: Biology: A Comprehensive Treatise, Vol. 3, Gene Expression, Academic Press, NY, pp. 563-608 (1980)), and are commercially available. For example, mammalian expression vector systems which utilize the MSV-LTR promoter to drive expression of the cloned gene, and in which it is possible to cotransfect with a helper virus to amplify plasmid copy number, and, integrate the plasmid into the chromosomes of host cells have been described (Perkins, A.S. et al., Mol. Cell Biol. 3:1123 (1983); Clontech, Palo Alto, California).

The DNA sequence of the peptide fragments can also be inserted into the genome of viruses which is used to infect a cell; for example, vaccinia virus and bacculovirus may be used. (Mackett, M. et al., Proc. Natl. Acad. Sci. USA 79:7415 (1982); Panicali, D. et al., Proc. Natl. Acad. Sci. USA 80:5364 (1983); and Smith, G.L. et al., Nature 302:490 (1983)) The recombinant vaccinia virus replicates in any mammalian cell and the fragment of interest appears on the envelope or in internal viral proteins.

The DNA sequence may be chemically constructed if it is not desired to utilize the HIV-2 genome as the source of the genetic information. Methods of chemically synthesizing DNA are well known in the art (Oligonucleotide Synthesis, A Practical Approach, M. J. Gait, ed., IRS Press, Washington, D.C., 1984; Synthesis and Applications of DNA and RNA, S.A. Narang, ed., Academic Press, San Diego, CA, 1987). Because the genetic code is degenerate, more than one codon may be used to construct the DNA sequence encoding a particular amino

acid (Watson, J.D., In: Molecular Biology of the Gene, 3rd Ed., W.A. Benjamin, Inc., Menlo Park, CA (1977), pp. 356-357).

To express the recombinant HIV-2 peptides of the invention, transcriptional and translational signals recognizable by an appropriate host are necessary. The cloned HIV-2 peptide encoding sequences, obtained through the methods described above, and preferably in a double-stranded form, may be operably linked to sequences controlling transcriptional expression in an expression vector, and introduced into a host cell, either prokaryote or eukaryote, to produce the recombinant HIV-2 peptides of the invention or functional derivatives thereof.

Expression of the HIV-2 peptides in different hosts may result in different post-translational modifications which may alter the properties of the peptides. It is necessary to express the peptides in a host wherein the ability of the peptides to be immunologically recognized by HIV-2 antibodies is not hindered.

In general, expression vectors containing transcriptional regulatory sequences, such as promoter sequences, which facilitate the efficient transcription of the inserted gene fragment, and which are derived from species compatible with the host cells, are used in connection with these hosts. The expression vector typically contains discrete elements such as, for example, a) either an origin of replication which allows for autonomous replication of the vector or elements. which promote insertion of the vector into the host's chromosome, b) a suitable transcriptional promoter to which the sequence of interest can be operably linked, c) a transcriptional terminator sequence if necessary, and d) specific genes which are capable of providing phenotypic selection in transformed cells. The precise nature of the regulatory regions needed for gene expression will vary between species or cell types and there are many appropriate

expression vector systems that are commercially available (For example, through Pharmacia, Boehringer Mannheim or Clontech).

A nucleic acid molecule, such as DNA, is said to be "capable of expressing" a polypeptide if it contains expression control sequences which contain transcriptional regulatory information and such sequences are "operably linked" to the nucleotide sequence which encodes the polypeptide.

An operable linkage is a linkage in which a sequence is connected to a regulatory sequence (or sequences) in such a way as to place expression of the sequence under the influence or control of the regulatory sequence. Two DNA sequences (such as HIV-2 peptide encoding sequence and a promoter region sequence linked to the 5' end of the encoding sequence) are said to be operably linked if induction of promoter function results in the transcription of the peptide encoding mRNA and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the expression regulatory sequences to direct the expression of the HIV-2 peptide, or (3) interfere with the ability of the HIV-2 peptide template to be transcribed by the RNA polymerase. Thus, a promoter region would be operably linked to a DNA sequence if the promoter were capable of effecting transcription of that DNA sequence.

Expression of the HIV-2 peptides in eukaryotic hosts requires the use of regulatory regions functional in such hosts, and preferably eukaryotic regulatory systems. A wide variety of transcriptional and translational regulatory sequences can be employed, depending upon the nature of the eukaryotic host. The transcriptional and translational regulatory signals can also be derived from the genomic sequences of viruses which infect eukaryotic cells, such as HIV, SIV, adenovirus, bovine papilloma virus, Simian virus,

herpes virus, or the like. Preferably, these regulatory signals are associated with a particular gene which is capable of a high level of expression in the host cell. If desired, a fusion product of the HIV-2 peptides may be constructed. For example, the sequence coding for the HIV-2 peptides may be linked to a signal sequence which will allow secretion of the protein from, or the compartmentalization of the protein in, a particular host. Such signal sequences may be designed with or without specific protease sites such that the signal peptide sequence is amenable to subsequent removal.

Transcriptional initiation regulatory signals can be selected which allow for repression or activation, so that expression of the operably linked genes can be modulated. Of interest are regulatory signals which are temperature-sensitive so that by varying the temperature, expression can be repressed or initiated, or are subject to chemical regulation, e.g., metabolite.

Where the native expression control sequence signals do not function satisfactorily in the host cell, then sequences functional in the host cell may be substituted.

The vectors of the invention may further comprise other operably linked regulatory elements such as enhancer sequences, or DNA elements which confer species, tissue or cell-type specific expression on an operably linked gene.

Once the vector or DNA sequence containing the construct(s) is prepared for expression, the DNA construct(s) is introduced into an appropriate host cell by any of a variety of suitable means, for example by transformation of bacterial cells. After the introduction of the vector, recipient cells are grown in a selective medium, which selects for the growth of vector-containing cells. Expression of the cloned gene sequence(s) results in the production of the HIV-2 peptide or in the production of a fragment of this peptide. This

expression can take place in a continuous manner in the transformed cells, or in a controlled manner.

If the HIV-2 peptide DNA encoding sequence and an operably linked promoter is introduced into a recipient host cell as a non-replicating DNA (or RNA) molecule, which may either be a linear molecule or, more preferably, a closed covalent circular molecule which is incapable of autonomous replication, the expression of the HIV-2 peptide may occur through the transient expression of the introduced sequence.

Genetically stable transformants may be constructed with vector systems, or transformation systems, whereby the HIV-2 peptide DNA is integrated into the host chromosome. Such integration may occur de novo within the cell or be assisted by transformation with a vector which functionally inserts itself into the host chromosome, for example, with retroviral vectors, transposons or other DNA elements which promote integration of DNA sequences in chromosomes. A vector is employed which is capable of integrating the desired gene sequences into a mammalian host cell chromosome.

Cells which have been transformed with the HIV-2 peptide-containing DNA vectors of the invention are selected by also introducing one or more markers which allow for selection of host cells which contain the vector, for example, the marker may provide biocide resistance, e.g., resistance to antibiotics, or heavy metals, such as copper, or the like.

The transformed host cell can be fermented (if prokaryotic) or cultured (if eukaryotic) according to means known in the art to achieve optimal cell growth, and also to achieve optimal expression of the cloned HIV peptide sequence fragments. As described hereinbelow, high level of HIV-2 peptide expression for the cloned sequences coding for peptide fragments can be achieved according to a preferred procedure of this invention.

After expression of the cloned HIV-2 peptide fragments, the fragments will typically be recovered and purified according to means known in the art. When bacteria are used as the host, high-level expression of the clones usually results in the formation of insoluble inclusion bodies or aggregates. To purify the expressed proteins, the insoluble inclusion bodies must be made soluble. In the preferred embodiment of this invention, the expressed peptide fragments are purified in a process using N-acylation of amino groups, for example, by citraconylation (Marciani, D.J. et al., Protein Purification: Micro to Macro, Alan. R. Liss, Inc., 1987 pp. 443-458.

An alternative to recombinant genetic engineering techniques for producing peptide fragment antigen includes enzyme polymerase directed <u>in vitro</u> transcription and translation systems. An amplification system for producing peptide fragments is described, for example, in U.S. 4,683,202.

The purified immunogenic and diagnostic peptide fragments according to this invention are specifically recognized by antibodies produced in response to the HIV-2 virus. The HIV-2 antibodies in blood or tissue samples can be detected using the peptide fragments in immunoassays wherein the peptides can be utilized in liquid phase or bound to a solid phase carrier. In addition, the peptide fragments can be detectably labeled in various ways for use in immunoassays for virus. The preferred immunoassays for detecting HIV-2 antibodies using the peptide fragments of this invention include radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), or other assays known in the art, such as immunofluorescent assays, chemiluminescent assays, or bioluminescent assays.

Radioactive isotopes which are particularly useful in assays are $^{3}\rm{H},~125_{I},~131_{I},~32_{P},~35_{S},~14_{C},~51_{Cr},~36_{Cl},~57_{Co},~58_{Co},~59_{Fe},~75_{Se},~and~152_{Eu}.$

While radiolabeling represents one embodiment, alternatively, the peptide sequence or antibodies thereto may also be labeled using fluorescent labels, enzyme labels, free radical labels, avidin-biotin labels, or bacteriophage labels, using techniques known to the art (Chard, <u>Laboratory Techniques in Biology</u>, "An Introduction to Radioimmunoassay and Related Techniques," North Holland Publishing Company (1978).

Typical fluorescent labels include fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde, and fluorescamine.

Typical chemiluminescent compounds include luminol, isoluminol, aromatic acridinium esters, imidazoles, acridinium salts, and the oxalate esters. Typical bioluminescent compounds include luciferin, luciferase, and aequorin.

Typical enzymes include alkaline phosphatase, β -galactosidase, glucose-6-phosphate dehydrogenase, maleate dehydrogenase, glucose oxidase, and peroxidase.

Two principal types of enzyme assays are enzyme-linked immunosorbent assay (ELISA) and the homogeneous enzyme immunoassay, also known as enzyme-multiplied immunoassay (EMIT) (Syva Corp.). The EMIT system depends on deactivation of the enzyme in the tracer-antibody complex; the activity can thus be measured without the need for a separation step.

The immunoassays within the scope of the present invention include latex agglutination assays, immunometric assays and competitive assays.

Latex agglutination assays have been described in Beltz, G.A. et al., in Molecular Probes: Techniques and Medical Applications, A. Albertini et al., eds., Raven Press, New York, 1989, incorporated herein by reference. In the latex

agglutination assay, a antigen-coated latex particles and serum to be tested are mixed and the results then read. With samples lacking HIV-2 antibodies, the latex particles remain milky appearance. and retain a smooth, suspension However, if antibodies reactive with the recombinant antigen are present, the latex particles clump into visibly detectable aggregates. There are several ways to read the results of the latex agglutination assay, including visually with slides, see for example, Riggin et al., EPO Published Patent Application 289,339, incorporated herein by reference, and with specially made slides which are read either visually or with a spectrophotometer, for example those devices described in U.S. 4,596,695 and 4,775,515, incorporated herein by reference. The latex agglutination assay is especially suitable for small volume users, emergency situations, and areas lacking the sophisticated laboratory equipment and supplies needed for immunometric assays.

An agglutination assay can also be used to detect HIV-2 antibodies wherein the desired peptide fragment is immobilized on a suitable particle other than latex beads, for example, on gelatin, red blood cells, nylon, liposomes, gold particles, etc. The presence of antibodies in the same causes agglutination, similar to that of a precipitation reaction, which can then be detected by such techniques as nephelometry, turbidity, infrared spectrometry, visual inspection, colorimetry, and the like.

Immunometric assays include forward sandwich, reverse sandwich immunoassays and simultaneous assay. Each of these terms is well understood by those skilled in the art. The immunometric assays will be described for the detection of antibodies to HIV-2. In these assays, the peptide fragment is bound to the solid-phase carrier and anti-IgG antibodies are detectably labeled.

In a forward sandwich immunoassay, a sample suspected of containing antibodies against HIV-2 is first incubated with a solid-phase immunoabsorbent containing the peptide fragment. Incubation is continued for a period of time sufficient to allow the antibodies in the sample to bind to the immobilized peptide fragment. After the first incubation, the solid-phase immunoabsorbent is separated from the incubation mixture and washed to remove interfering substances which also may be present in the sample. Solid-phase immunoabsorbentcontaining antibodies bound to the immobilized peptide fragments are subsequently incubated for a second time with soluble labeled antibody cross-reactive with a different domain on the antibody to be detected. After the second incubation, another wash is performed to remove unbound labeled antibody from the solid-phase immunoabsorbent and to remove non-specifically bound labeled antibody. antibody bound to the solid-phase immunoabsorbent is then detected and the amount of labeled antibody detected serves as a direct measure of the amount of antibodies present in the original sample. Alternatively, labeled antibody which is not associated with the immunoabsorbent complex can also be detected, in which case the measure is in inverse proportion to the amount of antigen present in the sample. sandwich assays are described, for example, in United States Patents 3,867,517; 4,012,294; and 4,376,110.

In a reverse sandwich assay, the sample suspected of containing test antibodies against HIV-2 is initially incubated with labeled anti-antibody, after which the solid-phase immunoabsorbent containing immobilized peptide fragment cross-reactive with a different domain on the test antibody is added thereto, and a second incubation is carried out. The initial washing step required by a forward sandwich assay is not required, although a wash is performed after the second

incubation. Reverse sandwich assays have been described, for example, in U.S. Patent No. 4,098,876 and 4,376,110.

In a simultaneous sandwich assay, the sample, the immunoabsorbent having immobilized peptide fragment thereon and labeled soluble antibody specific to a different domain of the test antibody are incubated simultaneously in one incubation step. The simultaneous assay requires only a single incubation and does not require washing steps. The use of a simultaneous assay is a very helpful technique, providing ease of handling, homogeneity, reproducibility, linearity of the assays, and high precision. A simultaneous sandwich assay is described, for example, in U.S. Patent No. 4,376,110.

So-called delayed immunometric assays can also be utilized, as are, for example, described in Chu, U.S. Patent No. 4,289,747, and Wolters, U.S. Patent No. 4,343,896.

Another immunometric assay involves capturing the Fc capture technique. In the Fc capture immunoassay, total serum antibodies are captured through anti-human Fc antibodies, typically bound to a solid support. Thus, bound, the Fc region of the antibody to be detected does not participate in other protein-protein interactions. The antibodies to be detected can then be screened with the HIV-2 peptide fragment(s) or with the appropriate chimeric peptide fragment(s) of this invention. A preferred Fc capture immunoassay is described in U.S. Serial No. 07/203,730, filed June 8, 1988, incorporated herein by reference.

In each of the above assays, the sample-containing antibody, solid-phase immunoabsorbent with immobilized peptide fragment and labeled soluble antibody are incubated under conditions and for a period of time sufficient to allow the test antibodies to bind to the immobilized peptide fragments and to the soluble antibodies. In general, it is desirable to provide incubation conditions sufficient to bind as much

antibody as possible, since this maximizes the binding of labeled antibody to the solid phase, thereby increasing the Of course, the specific concentrations of labeled antibodies and immobilized fragments, the temperature and time of incubation, as well as other such assay conditions, can be varied. depending upon various factors including concentration of antibody in the sample, the nature of the sample, and the like. Those skilled in the art will be able to determine operative and optimal assay conditions for each determination by employing routine experimentation.

There are many solid-phase immunoabsorbents which have been employed and which can be used in the present invention. Well-known immunoabsorbents include beads formed from glass, polystyrene, paper, polypropylene, dextran, nylon, and other material; tubes formed from or coated with such materials, and the like. The immobilized peptide fragments may be covalently or physically bound to the solid-phase immunoabsorbent, by techniques such as covalent bonding via an amide or ester linkage or by adsorption. Those skilled in the art will know many other suitable carriers for binding peptide fragments, or will be able to ascertain such, using routine experimentation.

General competitive binding assay techniques useful for the detection of minute amounts of organic molecules such as hormones, proteins, antibodies, and the like are well-known in the art. See Chard, <u>supra</u>. Any of these competitive binding assay techniques can be used for the purposes of detecting HIV-2 antibodies. In order to carry out a competitive binding assay, typically a radioimmunoassay (RIA), it is necessary to provide a binding molecule which has affinity for the label-containing antibody raised in response to a peptide fragment, and for the HIV-2 antibody to be tested as well. A small amount of the fluid or tissue sample containing an unknown quantity of HIV-2 antibody is incubated in the presence of the

raised labeled antibody and also a known amount of antibodyspecific peptide fragment.

The raised antibody is preferably generated with antigenic peptide fragments of the invention. Once the incubation of the test sample with the fragment and tracercontaining antibody is complete, it is necessary to determine the distribution of the tracer-containing molecule between the free and bound (immunocomplexed) form. Usually, but not always, this requires that the bound fraction be physically separated from the free fraction. For example, the specific peptide fragment can be bound to a plate. A variety of other techniques may be used for that purpose, each exploiting physical-chemical differences between the tracer-containing molecule in its free and bound form. The generally available methodologies have been described by Yalow, in Pharmacol. Rev. (1973).These techniques include 28:161 precipitation, salting out techniques, organic solvents, electrophoretic separation, and the like. See Chard, supra, pp. 405-422.

As in the immunometric assays described above, the soluble antibody may be labeled with any detectable label, such as a radiolabel, a fluorescent label, an enzyme label, a free radical label, or a bacteriophage label. Most commonly, the label is a radiolabel or an enzyme label.

The HIV-2 immunogenic peptide fragments according to this invention may be used to stimulate the production of antibodies. In order to stimulate the production of antibody, the peptide fragment may be coupled to a carrier protein such as bovine serum albumin or keyhole limpet hemocyanin (KLH), utilizing techniques well-known and commonly used in the art. Preferably, the carrier protein is KLH, linked to the peptide fragment through a cysteine residue.

Additionally, the HIV-2 peptide fragments can be admixed with an immunologically inert or active carrier. Carriers

which promote or induce immune responses, such as Freund's complete adjuvant, can be utilized.

The preparation of antisera in animals is a well-known technique (see, for example, Chard, supra, pp. 385-396; and Antibodies, A Practical Handbook, Vols. I and II, D. Catty, ed., IRL Press, Washington, D.C. (1988)). The choice of animal is usually determined by a balance between the facilities available and the likely requirements in terms of volume of the resultant antiserum. A large species such a goat, donkey and horse may be preferred, because of the larger volumes of serum readily obtained. However, it is also possible to use smaller species such as rabbit or guinea pig which often yield higher titer antisera. Usually. subcutaneous injection of the antigenic material (the peptide fragment hapten-carrier protein conjugate) are introduced into the immune system of the animal in which antibodies are to be raised. The detection of appropriate antibodies may be carried out by testing the antisera with appropriately labeled tracer-containing molecules. Fractions that bind tracercontaining molecules are then isolated and further purified if necessary.

Antibodies thus obtained may then be utilized in various immunoassays to identify and quantitate the HIV-2 virus or fragments thereof. Both polyclonal antibodies and monoclonal antibodies, produced by well-known techniques as described in Catty, <u>supra</u>, raised in response to the peptide fragments of this invention can be utilized in immunoassays.

When one uses immunometric assays to detect the HIV-2 virus or portions thereof, two separate and distinct antibodies are required. One of these antibodies is bound to the solid-phase support while the other is detectably labeled. In essence, the two different antibodies, although specific for HIV-2 virus, are cross-reactive with different domains on viral protein. In one embodiment, the two different

antibodies may be prepared by using two different peptide fragments according to this invention. The use of antibodies to different peptide fragments, one bound to a carrier and the other detectably labeled, is useful in various sandwich assays.

Alternatively, it is also possible to prepare antibodies which are specific to HIV-2 virus, but cross-reactive with different domains by producing the antisera in two different species, for example, in rabbit and in mouse, utilizing the same peptide fragment.

In addition, the materials for use in the assays of the invention are ideally suited for preparation of a kit. Such a kit may comprise a carrier means being compartmentalized to receive in close confinement one or more container means such as vials, test tubes, and the like. Each of said container means comprises one of the separate elements to be used in the method.

For example, one of said container means may comprise an immunoabsorbent-bound peptide fragment. Such fragment may be bound to a separate solid-phase immunoabsorbent or directly to the inner walls of a container. A second container may comprise detectably labeled anti-antibody in lyophilized form or in solution.

The carrier may also contain, in addition, a plurality of containers each of which comprises different, predetermined and known amounts of antibody. These latter containers can then be used to prepare a standard curve from which can be interpolated the results obtained from the sample containing the unknown amount of antibody.

In the practice of this invention, the presence of the HIV-2 antibody or the virus itself or portions thereof may be detected in biological fluids and tissues. Any sample containing the unknown amount of HIV-2 antibodies or HIV-2 can be used. Normally, a sample is a liquid such as, for example,

urine, saliva, tear drops, cerebrospinal fluid, blood, serum and the like, or a solid or semi-solid such as, for example, tissues, feces, and the like. As is known in the art, the HIV-2 virus and antibodies to the virus are associated with the T-cell disorder, Acquired Immune Deficiency Syndrome (AIDS) and pre-AIDS conditions, such as AIDS-related complex (ARC). In addition, it is also known in the art that antibodies to HIV-2 may be present in a human's or animal's biological fluids or tissue, without such human or animal suffering from AIDS or ARC.

The peptide fragments according to this invention may also be used as a vaccine against the HIV-2 virus. The peptide fragment may be prepared and administered to an animal, as is generally known in the art, to stimulate the production of antibodies. Preferably, the vaccinia virus can be used according to known means for the preparation of HIV-2 vaccines.

The following examples further describe the materials and methods used in carrying out the invention. The examples are not intended to limit the invention in any manner.

EXAMPLES

Example 1: Construction of HIV-2 envelope expressing clone MZ-1/pK1

The K3D clone is a subgenomic fragment of a complete HIV-2 clone HIV-2_{SL/ISY} (Franchini et al., <u>Proc. Natl. Acad. Sci. USA 86</u>:2433-2437 (1989)), prepared by insertion of a KPNI fragment of HIV-2_{SBL/ISY} from position 5295 to position 9012 into a Bluescript vector (Stratagene, Inc.). The HIV-2 clone K3D was provided by Genoveffa Franchini.

The strategy for construction of pK1, a plasmid for expression of a peptide fragment of the env region of HIV-2 in $E.\ coli$, is illustrated in Figure 1.

K3D DNA was digested with restriction enzyme EcoRI with cuts at position 7297. The EcoRI end was made blunt with Klenow polymerase and BglII linkers were added. The DNA was then digested with BglII and Sau3AI. A fragment of approximately 848 base pairs extending from the EcoRI site (converted to BglII) at position 7297 to the Sau3AI site at position 8139 was purified and cloned into Bam HI restricted the expression vector pCBCl to generate the clone pKl.

Plasmid pCBCl is an $\underline{E.\ coli}$ expression vector that makes use of the bacteriophage lambda pL promoter. pCBCl is similar to pJL6 (Lautenberger $\underline{et\ al.}$, $\underline{Gene\ Anal.\ Tech.\ l:63}$ (1984)) whose construction is described completely in Beltz $\underline{et\ al.}$, U.S. Patent No. 4,753,873, incorporated herein by reference.

Using <u>E. coli</u> strain MZ-1, a strain lysogenic for bacteriophage lambda, C₁₈₅₇, as a host strain for pKl, recombinant protein synthesis was induced by temperature shift from 32°C to 42°C (Naghi <u>et al.</u>, <u>Nature 309</u>:810 (1984)). As shown in Figure 2, the temperature shift resulted in the synthesis of a 34 kd protein. Following Western blot transfer of the separated proteins, the induced protein, called Kl, reacted specifically with human sera from HIV-2 infected individuals (Figure 3). The complete DNA sequence of the coding region of Kl and the derived amino acid sequence is presented in Figure 4.

Example 2: Construction of HIV-2 envelope expressing clone MZ-1/pK3

K3D (described in Example 1) was digested with Sau3AI. This cutting resulted in a 1038 base pair fragment from position 7101 to position 8139 (Figure 5). After purifying

the fragment, it was ligated into the expression vector pCBC2. pCBC2 differs from pCBC1 by a single base pair just 5' to the BamHI cloning site. pCBC2 was used in this case rather than pCBC1 to allow for proper reading frame alignment. pCBC2 is also described in Beltz et al., U.S. Patent No. 4,753,873. incorporated herein by reference. The resulting plasmid, pK3, was transferred into the E. coli host MZ-1. temperature shift of MZ-1/pK3 culture from 32°C to 42°C, synthesis of a recombinant protein of 40 kd was induced (Figure 6). Western blot analysis has shown that this protein, called K3, reacted specifically with sera from HIV-2 infected individuals (Figure 7). The complete DNA sequence of the coding region of pK3 and the derived amino acid sequence is presented in Figure 8.

Example 3: Construction of an HIV-2-HIV-1 chimeric envelope expressing clone MZ-1/pK1DG71

The strategy for the construction of the plasmid to express a chimeric envelope clone is illustrated in Figure 9. The plasmid clone pLCBCODG71A has been described in Beltz et al., U.S. 4,753,873, incorporated herein by reference. This plasmid is used for expression of HIV-1 envelope polypeptide. pLCBCODG71A was digested with BglII and BamHI. BglII cleaves at position 407 and BamHI cleaves at position 944. A 537 BP fragment was isolated.

pKl plasmid DNA, described in Example 1, was digested with BamHI which cleaves at position 890. The 537 BP BglII-BamHI fragment of pLCBCODG71A was ligated to BamHI digested pKl. The resulting plasmid, pKlDG71, was transferred to <u>E. coli</u> host MZ-1. Upon temperature shift of MZ-1/pKlDG71 culture from 32°C to 42°C, synthesis of a recombinant protein of approximately 55 kd was induced (Figure 10). Western blot analysis was done with sera from HIV-I infected individuals,

HIV-2 infected individuals and negative controls. The Western blots (Figure 11) showed that the chimeric HIV-2-HIV-1 protein, K1DG71, reacts with sera from HIV-1 infected individuals (Figure 11A) and sera from HIV-2 infected individuals (Figure 11B). No reactivity was seen with negative sera (Figure 11C).

The complete DNA sequence of the coding region of pK1DG71 and the derived amino acid sequence is presented in Figure 12.

Example 4: Construction of an HIV-2-HIV-1-HTLV-I-Chimeric Envelope Expressing Clone

The strategy for construction of an HIV-2-HIV-1-HTLV-I chimeric envelope expressing clone is illustrated in Figure 13 and Figure 14. pCB1353 is an expression plasmid containing regions of the HTLV-I envelope gene from base pairs 6101-6118 and 6170-6499 based on the published sequence of Seiki et al. (Proc. Natl. Acad. Sci. USA 80:3618 (1983)) cloned into expression plasmid pCBC1. The plasmid pCBC1353 was digested with BamHI and SalI to generate a 370 base pair fragment. The 370 BP fragment was inserted into the plasmid pCB2DG71 which had been digested with BamHI and SalI. pCBC2DG71 is an expression plasmid coding for a polypeptide of the HIV-1 envelope protein. This plasmid has been described by Beltz et al., U.S. 4,753,873, incorporated herein by reference. resulting plasmid, pDG71353, codes for a chimeric polypeptide The sequence of the coding region of of HIV-1-HTLV-I. pDG71353 is shown in Figure 15.

Figure 14 shows the remaining steps for the HIV-2-HIV-1-HTLV-I construction. pDG71353 was digested with HindIII and SalI. The insert which contains sequences coding for the HIV-1-HTLV-I polypeptide was ligated into the vector pK1DG71 which had been digested with HindIII and SalI. pK1DG71 is described

in Example 3. The resulting plasmid is called pK1DG71353. pK1DG71353 was transferred into the bacterial strain MZ-1.

When MZ-1 pK1DG71353 was induced by a temperature shift from 32°C to 42°C, a protein of 68 kd was produced (Figure 16). Following Western blot transfer of the separated protein, the induced protein reacted specifically with sera from HIV-1 positive individuals, Figure 17; with sera from HIV-2 positive individuals, Figure 18; and with sera from HTLV-I positive individuals, Figure 19. No specific reactivity was seen with negative sera (Figure 20). The complete sequence of the coding region of pK1DG71353 is shown in Figure 21.

Example 5: Purification of HIV-2 env (K-1) and HIV-2-HIV-1 Chimeric Antigens

The following purification procedure has been used to purify both HIV-2 env (K-1) and HIV-2-HIV-1 chimeric antigens.

E. coli cells were lysed by enzymatic digestion with lysozyme (1 mg/gram of cells) for 10 minutes in 50 mM TrisHCl, pH 7.5 (3 ml/gram of cells) containing 2 mM PMSF, aprotinin (0.1 mg/gram of cells) and DNase I (0.1 mg/gram of cells). The solution was brought up to 1% triton X-100 and stirred for 30 minutes at room temperature. Insoluble material was collected by centrifugation at 12,000 xg for 30 minutes and redigested as above with the exception that RNase I (0.05 mg/gram of cells) and 2.5 mM MgCl₂ were added. After digestion, the pellet was collected by centrifugation as above.

The insoluble material was then sequentially washed with the following buffers (0.2 gram of cells/ml):

- 50 mM TrisHC1, pH 9.0 containing 10 mM EDTA and 0.5%
 Zwittergent 3-14,
- 50 mM TrisHCl, pH 9.0/lM NaCl,

- 3) 6M urea in 50 mM TrisHCl, pH 7.5,
- 4) 8M urea in 50 mM TrisHCl, pH 9 with 1% β -mercaptoethanol.

In each case, the recombinant antigens remained in the insoluble pellet. The pellet from the 8M urea wash was then solubilized with 7M guanidine-HCl pH 11.0/0.5% β -mercaptoethanol. Both HIV-2 env antigen and HIV-2-HIV-1 chimeric protein are very hydrophobic and tend to form aggregates upon removal of guanidine-HCl. To prevent this aggregation, the solubilized antigens were subjected to the following chemical modifications designed to increase the solubility of the antigens in aqueous buffers.

The solubilized protein in 6M guanidine-HCl was first alkylated with 1.2 fold excess of iodoacetic acid over β -mercaptoethanol at pH 8.5. Any unreacted iodoacetic acid was quenched with β -mercaptoethanol. The alkylated sample was dialyzed 3 times against 200 fold 50 mM borate, pH 9.0. The protein became insoluble upon dialysis. The insoluble material was collected by centrifugation and redissolved in 8M Urea, 50 mM borate, pH 9.0 for acylation.

To acylate the alkylated antigen, a 50-fold excess of citraconic anhydride over amino groups on the antigen was added and the pH of the solution was maintained between 8.5 to 9.0 with NaOH. After the reaction was complete, the citraconylated sample was dialyzed against 50 mM borate, pH 9.0 at 4°C. After dialysis, the citraconylated protein was soluble in aqueous buffer and amenable to standard chromatographic technique.

The modified protein sample was then applied to a DEAE-TSK column, equilibrated in 50 mM borate, pH 9.0. The column was developed with a linear gradient of 0.3-1M NaCl to elute the recombinant antigen. Fractions containing HIV-2 env, K-1, antigen or HIV-2-HIV-1 chimeric protein, K1DG71, were pooled.

The immunoreactivity of purified K1 and the chimeric K1DG71 antigens were tested using an indirect immunoassay (EIA). Recombinant antigen was coated onto microtiter wells at concentrations of 0.5 ug and 1.0 ug for K-2 and the chimeric antigen respectively. After washing and blocking non-specific binding sites on the wells, human sera diluted 1:20 was added and any antibodies present allowed to bind to the recombinant antigen for 1 hour at 37°C. Wells were washed to remove unbound antibodies and the presence of bound antibody was detected with horse radish peroxidase labelled goat anti human antibody and a substrate of TmB (3,3', 5,5'-tetramethy/benzidine). Reactions were terminated with H_2SO_4 and OD_{490} determined. Distribution of signals obtained with each antigen for various sera are presented in Table 1.

lable i

Number of Samples in each OD490 Range

ampte	Ant igen	60.2	0.2.0.4	0.4-0.6	0.6-0.8	<0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.2 1.2-1.4 1.4-1.8 1.6-1.8 1.0-2.0 2.3	1.0-1.2	1.2-1.4	0.1.4.1	0.1.0.	0.2.0.1	2.
11V-2 Pos	2	0	0	0	-	0	0	-	4	54	58	12
HIV-1, HIV-2 Neg K1	2	278	-	0	0	0	0	0	o	0	0	0
NIV-1 Pos	Chimeric	0	0	0	-	0	0	•	0	-	-	109
HIV-2 Pos	Chimeric	0	0	•	0	-	. •	0	0	-	-	7
HIV-1, HIV-2 Neg Chimeric	Chimeric	275	, N	0	0	0	0	0	0	0	0	•

A101-03.1AB

Now having fully described this invention, it will be understood by those with skill in the art that the scope may be performed within a wide and equivalent range of condition, parameters, and the like, without affecting the spirit or scope of the invention or of any embodiment thereof.

WHAT IS CLAIMED IS:

- 1. A peptide fragment encoded by nucleotides of about 848 base pairs of the envelope region of the HIV-2 virus wherein said peptide fragment is encoded by the HIV-2 provirus nucleotides at position 7297 to position 8139 as shown in Figure 4.
- 2. A peptide fragment encoded by nucleotides of about 1038 base pairs of the envelope region of the HIV-2 virus wherein said peptide fragment is encoded by the HIV-2 provirus nucleotides at position 7101 to position 8139 as shown in Figure 8.
- 3. A chimeric HIV-2-HIV-1 peptide fragment comprising an immunodiagnostic peptide fragment the envelope region of the HIV-2 virus and an immunodiagnostic peptide fragment of the envelope region of the HIV-1 virus.
- 4. A chimeric HIV-2-HIV-1 peptide fragment comprising said immunodiagnostic peptide fragment of the envelope region of the HIV-2 virus of claim 1 and an immunodiagnostic peptide fragment of the envelope region of the HIV-1 virus.
- 5. The chimeric HIV-2-HIV-1 peptide fragment of claim 4 wherein said immunodiagnostic peptide fragment of the envelope region of the HIV-1 virus is selected from the group consisting of clone G or peptide fragments derived therefrom.
- 6. The chimeric HIV-2-HIV-1 peptide fragment of claim 4 wherein said immunodiagnostic peptide fragment of the envelope region of the HIV-1 virus is CBre3.

ğ

- 7. A chimeric HIV-2-HIV-1-HTLV-I peptide fragment comprising an immunodiagnostic peptide fragment the envelope region of the HIV-2 virus, an immunodiagnostic peptide fragment of the envelope region of the HIV-1 virus, and an immunodiagnostic peptide fragment of the envelope region of the HTLV-I virus.
- 8. The chimeric HIV-2-HIV-1-HTLV-I peptide fragment of claim 7 wherein said immunodiagnostic peptide fragment of the envelope region of the HIV-2 virus is encoded by the HIV-2 provirus nucleotides at position 7297 to position 8139 as shown in Figure 4 or is encoded by the HIV-2 provirus nucleotides at position 7101 to position 8139 as shown in Figure 8.
- 9. The chimeric HIV-2-HIV-1-HTLV-I peptide fragment of claim 7 wherein said immunodiagnostic peptide fragment of the envelope region of the HIV-1 virus comprises the HIV-1 coding sequence of K1DG71353 as shown in Figure 21.
- 10. A chimeric HIV-2-HTLV-I peptide fragment comprising an immunodiagnostic peptide fragment the envelope region of the HIV-2 virus and an immunodiagnostic peptide fragment of the envelope region of the HTLV-I virus.
- 11. The chimeric HIV-2-HTLV-I peptide fragment of claim 10 wherein said immunodiagnostic peptide fragment of the envelope region of the HIV-2 virus is encoded by the HIV-2 provirus nucleotides at position 7297 to position 8139 as shown in Figure 4 or is encoded by the HIV-2 provirus nucleotides at position 7101 to position 8139 as shown in Figure 8.

- 12. The chimeric HIV-2-HTLV-I peptide fragment of claim 10 wherein said immunodiagnostic peptide fragment of the envelope region of the HTLV-I virus is encoded by the HTLV-I provirus nucleotides at position 6101-6118 and 6170-6499.
- 13. A chimeric HIV-1-HTLV-I peptide fragment comprising an immunodiagnostic peptide fragment the envelope region of the HIV-1 virus and an immunodiagnostic peptide fragment of the envelope region of the HTLV-I virus.
- 14. The chimeric HIV-1-HTLV-I peptide fragment of claim 13 wherein said immunodiagnostic peptide fragment of the envelope region of the HIV-1 virus is selected from the group consisting of clone G or peptide fragments derived therefrom.
- 15. The chimeric HIV-1-HTLV-I peptide fragment of claim 13 wherein said immunodiagnostic peptide fragment of the envelope region of the HIV-1 virus is CBre3.
- 16. The chimeric HIV-1-HTLV-I peptide fragment of claim 13 wherein said immunodiagnostic peptide fragment of the envelope region of the HTLV-I virus is encoded by the HTLV-I provirus nucleotides at position 6101-6118 and 6170-6499.
- 17. A recombinant vector for transforming a host cell comprising a DNA encoding any of the peptide fragments of claims 1 to 16 or 22-24.

- 18. A method for detecting HIV-2 antibodies comprising the steps of:
- (a) contacting a sample suspected of containing antibodies to HIV-2 with a peptide fragment of any of claims 1-12 or 22-24 and
 - (b) detecting the presence of said antibodies.
- 19. A method for detecting HIV-1 antibodies comprising the steps of:
- (a) contacting a sample suspected of containing antibodies to HIV-2 with a peptide fragment of any of claims 3-9 or 22-24 and
 - (b) detecting the presence of said antibodies.
- 20. A method for detecting HTLV-I and/or HTLV-II antibodies comprising the steps of:
- (a) contacting a sample suspected of containing antibodies to HIV-2 with a peptide fragment of any of claims 7-16 and
 - (b) detecting the presence of said antibodies.
- 21. A kit for detecting either HIV-2, HIV-1 or HTLV-I and HTLV-II antibodies, or a combination of antibodies thereof, in a sample comprising a carrier being compartmentalized to receive one or more containers in close confinement therein and further comprising
- a first container means comprising a peptide fragment of any of claims 1-16 or 22-24; and
- 2. a detection system for determining the presence of HIV-2, HIV-1, or HTLV-I and HTLV-II antibodies, or a combination thereof.

- 22. A chimeric HIV-2-HIV-1 peptide fragment comprising said immunodiagnostic peptide fragment of the envelope region of the HIV-2 virus of claim 2 and an immunodiagnostic peptide fragment of the envelope region of the HIV-1 virus.
- 23. The chimeric HIV-2-HIV-1 peptide fragment of claim 22 wherein said immunodiagnostic peptide fragment of the envelope region of the HIV-1 virus is selected from the group consisting of clone G or peptide fragments derived therefrom.
- 24. The chimeric HIV-2-HIV-1 peptide fragment of claim 22 wherein said immunodiagnostic peptide fragment of the envelope region of the HIV-1 virus is CBre3.

FIG. 1

FIG. 3

			10 *			20 *			3 *	0		•	40 *			50 * ,			60 *
ATG	GTT	CGT	GCA	AAC	AAA	CGC	AAC	GAG	GCT	CTA	CGA	ATC	GCG	GGA	TCT	GAA	TTC	CTC	TAT
Met	Val	Arg	Ala	Asn	Lys	Arg	ASN	Glu	Ala	Leu	arg	116	Ala	ыу	3er	ษเน	rne	Leu	ıyr
			70 *			80 ¥				0		1	100 *			110 *			120 *
TGC	AAC	ATG	ACT	TGG	TTC	CTT	AAT	ŢGG	GTA	GAA	AAC	AAG	ACG	GGT	CAA	CAG	CAT	AAC	TAT
Cys	Asn	Met	Thr	Trp	Phe	Leu	Asn	irp	Val	ыtu	ASN	Lys	Inr	ыцу	៤ពេ	៤៣	HIS	ASN	ıyr
		- 1	₹30			140 *			150 *			1	L60 ¥			170 *			180 *
GTG	CCC	TGC	CAT	ATA	GAG	CAA	ATA	ATT	AAT	ACC	TGG	CAT	AAG	GTA	GGG	AAA	AAT	GTA	TAT
Val	Pro	Lys	HIS	116	ыu	ษเท	116	116	ASN	ınr	ırp			Val	иту		ASN	ναι	
		1	190 *			200			211	0		í	220 *			230 *			240 *
	CCT																		
Leu	Pro	rro	arg	ษเน	uty	ulu	Leu	ser	Lys	บเน	261.	I FIF	YUL	I LIL.	26L	116	116	M (S	HSII
		i	250 *			260 *			27 *	0		i	280 *			290 *			300 *
ATT	GAT	GTT	* Gat	GGA	GAT	* AAC	CGG	ACA	* AAT	ATT	ACC	TTT	* Agt	GCA	GAG	* GTG	GCA	GAA	* CTA
ATT Ile	GAT Asp	GTT Val	* GAT Asp	GGA Gly	GAT Asp	*AAC Asn	CGG Arg	ACA Thr	* AAT Asn	ATT Ile	ACC	TTT Phe	* AGT Ser	Ala	GAG Glu	* GTG Val	GCA Ala	GAA Glu	X CTA Leu
ATT Ile	GAT Asp	GTT Val	* Gat	GGA Gly	GAT Asp	* AAC	CGG Arg	ACA Thr	* AAT Asn	ATT Ile O	ACC	TTT Phe	* Agt	Ala	GAG Glu	* GTG	GCA Ala	GAA Glu	* CTA
Ile TAC	Asp CGA	GTT Val	* GAT Asp 310 * GAA	Gly	Asp GGG	AAC Asn 320 *	Arg TAT	Thr	# AAT Asn 33 # TTA	ATT Ile O GTA	ACC Thr	TTT Phe	* AGT Ser 340 * ACA	Ala	Glu	STG Val 350 S	Ala	Glu GCC	CTA Leu 360 *
Ile TAC	Asp CGA	GTT Val TTG Leu	X GAT Asp 310 X GAA GU	Gly	Asp GGG	AAC Asn 320 * GAT Asp	Arg TAT	Thr	AAT Asn 33 * TTA Leu	ATT Ile O GTA Val	ACC Thr	TTT Phe GTA Val	* AGT Ser 340 * ACA Thr	Ala	Glu	# GTG Val 350 # GGC Gly	Ala TTC Phe	Glu GCC	CTA Leu 360 * CCT Pro
Ile TAC	Asp CGA	GTT Val TTG Leu	* GAT Asp 310 * GAA	Gly	Asp GGG	AAC Asn 320 *	Arg TAT	Thr	# AAT Asn 33 # TTA	ATT Ile O GTA Val	ACC Thr	TTT Phe GTA Val	* AGT Ser 340 * ACA	Ala	Glu	STG Val 350 S	Ala TTC Phe	Glu GCC	CTA Leu 360 *
TAC Tyr	Asp CGA Arg GCA	GTT Val TTG Leu GAA	X GAT Asp 310 X GAA Glu 370 X AAA	TTG Leu AGA	GGG Gly	AAC Asn 320 * GAT Asp 380 * TCC	Arg TAT Tyr	Thr AAA Lys	AAT Asn 33 * TTA Leu 39 * CCA	ATT Ile O GTA Val O	ACC Thr GAA Glu	TTT Phe GTA Val	* AGT Ser 340 * ACA Thr 400 * AAG	Ala CCA Pro	Glu ATT Ile	# GTG Val 350 * GGC Gly 410 * GTG	TTC Phe	GCC Ala	X CTA Leu 360 X CCT Pro 420 X CTA
TAC Tyr	Asp CGA Arg	GTT Val TTG Leu GAA Glu	# GAT Asp 310 # GAA Glu 370 # AAA Lys	TTG Leu AGA	GGG Gly	* AAC Asn 320 * GAT Asp 380 * TCC Ser	Arg TAT Tyr	Thr AAA Lys	AAT Asn 33 * TTA Leu 39 * CCA Pro	ATT Ile O GTA Val O GGG Gly	ACC Thr GAA Glu	TTT Phe GTA Val	* AGT Ser 340 * ACA Thr 400 * AAG Lys	Ala CCA Pro	Glu ATT Ile	# GTG Val 350 # GGC Gly 410 # GTG Val	TTC Phe	GCC Ala	CTA Leu 360 * CCT Pro 420 * CTA Leu
TAC Tyr ACA Thr	Asp CGA Arg GCA	GTT Val TTG Leu GAA Glu	# GAT Asp 310 # GAA Glu 370 # AAA Lys 430 #	TTG Leu AGA Arg	GGG Gly TAC Tyr	* AAC Asn 320 * GAT Asp 380 * TCC Ser 440 *	TAT Tyr TCT Ser	Thr AAA Lys GCT Ala	AAT Asn 33 * TTA Leu 39 * CCA Pro 45 *	ATT Ile O GTA Val O GGG Gly	ACC Thr GAA Glu AGA Arg	TTT Phe GTA Val	* AGT Ser 340 * ACA Thr 400 * AAG Lys 460 *	CCA Pro AGA Arg	Glu ATT Ile GGT Gly	# GTG Val 350 # GGC Gly 410 # GTG Val 470 #	TTC Phe CTT Leu	GCC Ala GTG Val	CTA Leu 360 * CCT Pro 420 * CTA Leu 480 *

FIG. 4

			•		
490	500	510	520	530	540
*	*	*	*	*	**
TCG GCT CAG TCT CGG A	ACT TTA TTC	CGT GGG ATA (GTG CAG CAA CAG CA	AA CAG CTG TTG	GAC
Ser Ala Gln Ser Arg T	Thr Leu Phe	Arg Gly Ile V	/al Gln Gln Gln G	In GIn Leu Leu	Asp
550 ∗	560 *	570 *	580	590	600
GTG GTC AAG AGA CAA C	IAA GAA ATG	TTG CGA CTG A	CC GTC TGG GGA AC	T AAA AAC CTC	CAA
Val Val Lys Arg Gln G	iln Glu Met	Leu Arg Leu T	hr Val Trp Gly Th	Ir Lys Asn Leu	Gln
610	620 *	630 *	640 *	_	660 *
GCA AGA GTC ACT GCT A	TT GAG AAG	TAC CTA GCA G	AC CAG GCG CGA CT	A AAT TCA TGG	
Ala Arg Val Thr Ala I	le Glu Lys	Tyr Leu Ala As	sp Gln Ala Arg Le	u Asn Ser Trp	
670 *	680 ★	690 *	700 *		720 ·
TGT GCG TTT AGA CAA GT Cys Ala Phe Arg Gln Vo	C TGC CAC	ACT ACT GTA CO Thr Thr Val Pr	CA TGG GTA AAT GA(o Trp Val Asn Asp	C ACC TTA ACA (Thr Leu Thr F	CCT
730	740	750	760		780
*	*	*	*		**
GAG TGG AAC AAC ATG AC	A TGG CAA (5AA TGG GAA CA	C AAA ATC CGC TTC	CTA GAG GCA A	
Glu Trp Asn Asn Met Th	r Trp Gln (5lu Trp Glu Hi	s Lys Ile Arg Phe	Leu Glu Alo A	
790	800	810	820	<u>`</u>	340
*	*	*	*		*
ATC AGT GAG AGT TTA GA	A CAG GCA C	CAA ATC CAG CA	A GAA AAG AAT ATG	TAT GAG CTG C	
Ile Ser Glu Ser Leu Gli	u Gln Ala G	Gln Ile Gln Gli	n Glu Lys Asn Met	Tyr Glu Leu G	
850	860	870	880	_	00
*	*	*	*		*
AAG CTA AAT AGC TGG GAT Lys Leu Asn Ser Trp Asp	GTT TTT G Val Phe G	GC AAT TGG TTT ly Asn Trp Phe	GAC TTA ACC TCC Asp Leu Thr Ser	TEE ATO OTA C	

AAG TAG Lys ---

FIG. 4 (cont.)

FIG. 5

FIG. 7

A ***	·		*				×				30 *				40 *			¥	0		6(
Me-	t Va	l C(.l Ar	oT G rg A	CA A la A	AAC Asn	AA, Lys	A CG 5 Ar	C AA g As	n Gl	G GC u Al	CT C	TA eu	CGA Arg	ATC Ile	GCC	G CGI Arq	AT O Il	C AT	C AA e As	T AA n Ly	A AAA S Lys	;
			7 *	-			8 *				90 *				100 *			11: *			120	
Pro	: AG : Ar	G CA g Gl	A G(n A	CA T la T	GG rp	Cys	CG(Arg	TT Ph	C AA	A GG 5 Gl	y G	AG lu	TGG Trp	AGG Arg	GAA Glu	GC0 Alo	ATO Met	G CA(t Glr	G GAI	GT(¥ AAA Lys	
	,		130				14(*				50 *				160 *			17(*			180	
CAA G I n	AC(Thr	C CT	T GT u Va	A A	AA ys	CAT	CCC Pro	AG(Arg	TA1	AA Ly:	A GO	iA <i>f</i> .y]	ACC Thr	AAT Asn	GAC Asp	ACA Thr	AAT Asn	. ٧٧٧	ATT Ile	AA(Asn	TTT Phe	
404			190 *				200 *			3	1 0 K				¥ 20			230 *			240 *	
Thr	Ala	CC/ Pro	A GA	A AA u Ly	\A /S	GAC Asp	TCA Ser	GAC Asp	CCA Pro	GAA	4 GT 1 Va	A C	iCA Na	TAT Tyr	ATG Meţ	TGG Trp	ACT Thr	AAC Asn	TGC Cys	AGA Arg	GGA Gly	
			250 *				260 *			27 *	:				80			290 *			300	
Glu	Phe	Leu	TAT Tyr	Cy	C /	AAC Asn	ATG Met	ACT Thr	TGG Trp	TTC Phe	CT'	T A	AT sn	TGG Trp	GTA Va l	GAA Glu	AAC Asn	AAG Lys	ACG Thr	GGT Gly	CAA Gln	
			310 *				320 *			33		٠			40 *			350 *			360 *	
CAG Gln	CAT	AAC Asn	TA7 Tyr	GT Va	G (CCG Pro	TGC Cys	CAT His	ATA Ile	GAG Glu	CAA G l n	A A	TA A	Ile i	AAT Asn	ACC Thr	TGG Trp	CAT	AAG Lys	GTA Val	CCC	
		. ,	370 *				380 *			39	0			41	D 0			410	•		420	
AAA Lys	AAT Asn	GTA Val	TAT Tyr	TT! Lei	G C J P	ro l	CCT Pro	AGG Arg	GAA Glu	GGA Gly	GAG Glu	i Ti	TG 7 eu S	ורר ז	וניני ו	GAA Glu	TCA Ser	ACA	GTG Val	ACC Thr	ACT	

FIG. 8

			130 ¥			440 *			¥				60 ¥			470 *			480 *
ATC A	TT <i>l</i> [le	GCT Ala	AAC Asn	ATT Ile	GAT Asp	GTT Val	GAT Asp	GGA Gly	GAT Asp	AAC Asn	CGG Arg	ACA Thr	AAT Asn	ATT	ACC Thr	TTT Phe	AGT Ser	GCA Ala	GAG Glu
			190 *			500 *			¥				20 *			530 *	.01		540 *
GTG (GCA Ala	GAA Glu	CTA Leu	TAC Tyr	CGA Arg	TTG Leu	GAA Glu	TTG Leu	GGG Gly	GAT Asp	TAT Tyr	AAA Lys	TTA Leu	GTA Val	GAA Glu	Val	Thr	Pro	Ile
			550 *			¥			¥				80 ¥			590 *			600 . *
GGC Gly	TTC Phe	GCC Ala	rr T	ACA Thr	GCA Ala	GAA	ΔΔΔ	AGA	TAC	TCC	TCT	GCT	CCA	GGG Gly	AGA Arg	CAT His	AAG Lys	AGA Arg	GGT
										^						(E0			660
			610			620			63	U		(54U ¥			*			*
GTG Val	CTT Leu	הדה	¥ CT∆	GGG Gly	TTC Phe	¥ CTA	GGT	TTT	* CTC	ACG	ACA	GCA	* GGT	GCT	GCA	* ATG	GGG	GCG Ala	*
GTG Val	CTT Leu	GTG Val	* CTA Leu 670	GGG Gly	TTC Phe	X CTA Leu 680	GGT Gly	TTT Phe	CTC Leu	ACG Thr	ACA	GCA Ala	* GGT Gly 700	GCT Ala	GCA Ala	* ATG	GGG Gly	GCG Ala	* GCG
Val	Leu ctc	GTG Val	ECTA Leu 670 ECTG	Gly	Phe	ECTA Leu 680 * CAG	GGT Gly	TTT Phe	CTC Leu 69	ACG Thr 0	ACA Thr	GCA Ala	* GGT Gly 700 * GGG	GCT Ala ATA	GCA Ala GTG	* ATG Met 710 * CAG	GGG	CAG	GCG Ala
Val	Leu ctc	GTG Val	ECTA Leu 670 ECTG	Gly TCG Ser	Phe	ECTA Leu 680 * CAG	GGT Gly TCT Ser	TTT Phe CGG Arg	CTC Leu 69 * ACT Thr	ACG Thr 0 TTA Leu	ACA Thr	GCA Ala CGT Arg	* GGT Gly 700 * GGG	GCT Ala ATA Ile	GCA Ala GTG	* ATG Met 710 * CAG	GGG Gly CAA Gln	CAG	GCG Ala 720 *

FIG. 8 (cont.)

		•	790 *			¥ 008			81 t	0		8	320 *			830 *			840 *
			CAG			GTC	ACT Thr		ATT				CTA			CAG			CTA
Lys	ASII	Leu	um	HIU	Hry	vu (1717	HIU	116	ulu	Lys	ıyı	FÉR	ntu	пэһ	Otti	πια	rn y	LEU
		1	850			860			871 *)		8	380 *			890 *			900 *
AAT	TCA	TGG	* GGA	TGT	GCG	* TTT	AGA	CAA		TGC	CAC	ACT	•	GTA	CCA		GTA	AAT	
							Arg												
		•	910			920			93)		(940			950			960
			*			*			*				*			*			*
							AAC												
Inr	Leu	Inr	rro	ulu	ich	HSII	Asn	ME !	Hrir	irp	Gtii	ulu	, irp	Glu	1112	Lys	1 (6	m y	ille
		9	970			980			991)	٠	1	000		:	010		1	020
			¥			*			*				*	0.15		*	445		*
		GCA	* AAT			* Gag	TDA		* GAA	CAG		CAA	* ATC		CAA	* GAA		AAT	* ATG
		GCA	* AAT			* Gag	AGT Ser		* GAA	CAG		CAA	* ATC		CAA	* GAA		AAT	* ATG
		GCA Ala	* AAT Asn 030		Ser	* GAG Glu 1040			GAA Glu 105	CAG Gln		CAA Gln	* ATC Ile		CAA Gln	# GAA Glu 1070		AAT Asn	ATG Met
Leu	Glu	GCA Ala	* AAT Asn 030 *	Ile	Ser	* GAG Glu 1040 *	Ser	Leu	GAA Glu 105	CAG Gln	Ala	CAA Gln	* ATC Ile 060 *	Gln	CAA Gln	# GAA Glu 1070 #	Lys	AAT Asn	ATG Met
Leu	G l u GAG	GCA Ala 1	* AAT Asn 030 * CAA	I le AAG	Ser	* GAG Glu 1040 * AAT	Ser	Leu TGG	GAA Glu 105 X GAT	CAG Gln)	Ala TTT	CAA Gln 1	X ATC Ile 060 X AAT	Gln TGG	CAA Gln	# GAA Glu 1070 # GAC	Lys	AAT Asn	ATG Met LOSO X
Leu	G l u GAG	GCA Ala 1 CTG Leu	* AAT Asn 030 * CAA GIn	I le AAG	Ser	* GAG Glu 1040 * AAT	Ser	Leu TGG	GAA Glu 105 X GAT	CAG Gln)	Ala TTT	CAA Gln 1	X ATC Ile 060 X AAT	Gln TGG	CAA Gln	# GAA Glu 1070 # GAC	Lys	AAT Asn	ATG Met LOSO X
Leu	Glu GAG	GCA Ala 1 CTG Leu	AAT ASN 030 * CAA Gln	I le AAG	Ser	* GAG Glu 1040 * AAT	Ser	Leu TGG	GAA Glu 105 X GAT	CAG Gln)	Ala TTT	CAA Gln 1	X ATC Ile 060 X AAT	Gln TGG	CAA Gln	# GAA Glu 1070 # GAC	Lys	AAT Asn	ATG Met LOSO X
TAT Tyr	Glu GAG Glu	GCA Ala 1 CTG Leu	* AAT Asn 030 * CAA GIn	AAG Lys	Ser CTA Leu	* GAG Glu 1040 * AAT	Ser	Leu TGG	GAA Glu 105 X GAT	CAG Gln)	Ala TTT	CAA Gln 1	X ATC Ile 060 X AAT	Gln TGG	CAA Gln	# GAA Glu 1070 # GAC	Lys	AAT Asn	ATG Met LOSO X

FIG. 8 (cont.)

FIG. 9

FIG. 10

FIG. 11A

FIG. 11B

FIG. 11C

SUBSTITUTE SHEET

			10 *			20 *			3(*				40 *			50 *			60 *	
			GCA Ala			CGC										GAA				
			70 *		•	80 *			9(*			1	L00 *			110 *		·	120	
			ACT Thr			CTT			GTA	GAA			ACG			CAG			TAT	
	*		130 *			140			150			:	160 *			170 *			180	
			CAT			CAA			AAT	ACC			AAG			AAA			TAT	
	r _a s ¹⁷		190 *			200 *			21	0	٠.	í	220			230		•	240 *	
,			AGG Arg			GAG			TGC				GTG			ATC			AAC	
:. · :		í	250 *			260 *			271 *	D -		ć	280 *			290 *			300	
			GAT Asp			AAC			AAT				AGT			GTG			CTA	
		,	310			320		,	331	0		;	340 **		•	350 *			360 *	
			GAA Glu			GAT			TTA				ACA			GGC			CCT	
·		,	370		-	380		-	39				400			410			420	
			* AAA Lys							GGG						GTG				
			430	J	-	440			45	-			460 *	J	•	470	•		480	
GGG	TTC	СТА	*	TTT	CTC	¥.	A C A	רכא	* - T	ССТ	CCV	ATC		רפר	CCC	¥ TCT	רדר	٨٥٢	*	

FIG. 12

			4	490 *			500 *			510 *)		5	i20 ¥			530 *			540 *
TI Si	CG er	GCT Ala	CAG Gln	TCT Ser	CGG Arg	ACT Thr	TTA Leu	TTC Phe	CGT Arg	GGG Gly	ATA Ile	GTG Val	CAG Gln	CAA Gln	CAG Gln	CAA Gln	CAG Gln	CTG Leu	TTG Leu	GAC Asp
			Į	550 *			560 *			57(*)		5	80 *			590 *			600 *
G. Ve	TG a l	GTC Val	AAG Lys	AGA	CAA Gln	CAA Gln	GAA	ATG Met	TTG Leu	CGA	CTG Leu	ACC Thr	GTC Val	TGG	GGA Gly	ACT Thr	AAA Lys	AAC Asn	CTC Leu	CAG Gln
				510 *			620 ¥			63(*)		ť	540 ¥			650 *			660 *
GI A	CA la	AGA Arg	GTC	ACT	GCT Ala	ATT Ile	GAG	AAG Lys	TAC Tyr	CTA	GCA Ala	GAC Asp	CAG Gln	GCG Ala	CGA Arg	CTA Leu	AAT Asn	TCA Ser	TGG Trp	GGA Gly
			(670 *			680 *			69I)		-	700 *			710 *			720 *
T C	GT ys	GCG Ala	TTT Phe	AGA	CAA Gln	GTC Val	TGC	CAC His	ACT Thr	ACT	GTA Va l	CCA Pro	TGG Trp	GTA	AAT Asn	GAC Asp	ACC Thr	TTA Leu	ACA Thr	CCT Pro
			•	730 *			740 *			75 *	0		-	760 *			770 *			780 *
G	AG lu	TGG Trp	AAC	* AAC	ATG Met	ACA Thr	* TGG	CAA Gln	GAA Glu	* TGG	GAA	CAC His	AAA	* ATC	CGC Arg	TTC Phe	* CTA	GAG Glu	GCA Ala	* AAT
G	AG lu	TGG Trp	AAC Asn	* AAC Asn 790	ATG M et	ACA Thr	* TGG Trp	Gln	GAA Glu	TGG Trp	GAA Glu	CAC His	AAA Lys	* ATC	CGC Arg	TTC Phe	* CTA	Glu	GCA Ala	* AAT
G	lu TC	Trp AGT	AAC Asn	* AAC Asn 790 * AGT	Met	Thr	TGG Trp 800 X CAG	G In GCA	Glu	TGG Trp 81 * ATC	GAA Glu) CAG	HIS	AAA Lys	* ATC Ile 320 * AAG	Arg	Phe	CTA Leu 830 * TAT	Glu	Ala	* AAT Asn 840
G	lu TC	Trp AGT	AAC Asn GAG Asn	* AAC Asn 790 * AGT Ser 850	Met	Thr	TGG Trp 800 * CAG Val 860	GIn GCA Phe	Glu	TGG Trp 81 * ATC Asn	GAA Glu CAG Trp	HIS	AAA Lys GAA Asp	X ATC Ile 320 X AAG Leu	Arg	Phe	CTA Leu 830 * TAT	GAG Ile	Ala	AAT Asn 840 X CAA
G A L	TC ys	Trp AGT Leu CTA	AAC Asn GAG Asn	* AAC Asn 790 * AGT Ser 850 * AGC	Met TTA Trp	Thr GAA Asp	* TGG Trp 800 * CAG Val 860 * GTT	Gln GCA Phe	CAA Gly	TGG Trp 81 * ATC Asn 87 * AAT	GAA Glu CAG Trp	CAA Phe	GAA Asp	* ATC Ile 320 * AAG Leu 880 * TTA	Arg AAT Thr	ATG Ser	X CTA Leu 830 X TAT Trp 890 X TGG	Glu GAG Ile	CTG Phe	AAT Asn 840 * CAA Arg
G A L	TC ys	Trp AGT Leu CTA	AAC Asn GAG Asn AAT Asn	* AAC Asn 790 * AGT Ser 850 * AGC	Met TTA Trp	Thr GAA Asp	* TGG Trp 800 * CAG Val 860 * GTT	Gln GCA Phe	CAA Gly	TGG Trp 81 * ATC Asn 87 * AAT	GAA Glu CAG Trp O	CAA Phe	GAA Asp GAC Asp	* ATC Ile 320 * AAG Leu 880 * TTA	Arg AAT Thr	ATG Ser	X CTA Leu 830 X TAT Trp 890 X TGG	GAG Ile ATC Ile	CTG Phe	*AAT Asn 840 *CAA Arg 900 *AGA

FIG. 12 (cont.)

970 *	980 *	990 *	1000	1010 *	1020
AAA ATT GAA CCA 1 Lys Ile Glu Pro L	TA GGA GTA GCA CI eu Gly Val Ala Pi	CC ACC AAG GCA ro Thr Lys Ala	AAG AGA AGA 6	TC CTC DAG 47	A GAA Glu
1030	1040 *	1050 *	1060 *	1070 *	1080
AAA AGA GCA GTG G Lys Arg Ala Val G	GA ATA GGA CAG GO ly Ile Gly Gln Al	CC AGA CAA TTA a Arg Gln Leu	TTG TCT GGT A Leu Ser Gly I	TA GTG CAG CAG le Val Gin Gin	
1090 *	1100	1110 *	1120 *		1140 ¥
AAC AAT TTG CTG A(Asn Asn Leu Leu Ar	g Ala Ile Glu Gl	C CAA CAG CAT y Gln Gln His	CTG TTG CAA C Leu Leu Gln Le	TC ACA GTC TGG ou Thr Val Trp	GGC Gly
1150 * ATC AAG CAG CTC CA	1160 *	1170	1180 *		1200 *
ATC AAG CAG CTC CA Ile Lys Gln Leu Gl	n Ala Arg Ile Lei	a GCT GTG GAA ; a Ala Val Glu ;	AGA TAC CTA AA Arg Tyr Leu Ly	G GAT CAA CAG 's Asp Gln Gln	CTC Leu
1210 *	1220 *	1230 *	1240 *	•••	260 *
CTG GGG ATT TGG GG Leu Gly Ile Trp Gl	Cys Ser Gly Lys	CTC ATT TGC A Leu Ile Cys 1	ACC ACT GCT GT Thr Thr Ala Va	G CCT TGG AAT l Pro Trp Asn	GCT Ala
1270 *	1280 *	1290 *	1300 *		320
AGT TGG AGT AAT AAA Ser Trp Ser Asn Lys	ICT CTG GAA CAG Ser Leu Glu Gln	ATT TGG AAT A Ile Trp Asn A	NAC ATG ACC TGO ASD Met Thr Tr	5 ATG GAG TGG of Met Glu Trp	
1330 *	1340	1350 *	1360 *		380 **
AGA GAA ATT AAC AAT Arg Glu Ile Asn Asn	Tyr Thr Ser Leu	ATA CAC TCC T Ile His Ser L	TA ATT GAA GAA eu Ile Glu Glu	1 TCG CAA AAC'(1 Ser Gln Asn (CAG
1390 *	1400 *	1410 *	1420 *	-	140 ≭
CAA GAA AAG AAT GAA Gln Glu Lys Asn Glu	GIN GIU Leu Leu	GAA TTA GAT AA Glu Leu Asp Ly	AA TGG GCA CGG ys Trp Ala Arg	ATO 07	

FIG. 12 (cont.)

FIG. 13

19/30

			10			2 0			30 *				40 *			50 *			60 *	
ATG Met	GTT Val	CGT Arg	¥ GCA Ala	AAC Asn	AAA Lys	CGC	AAC Asn	GAG Glu	GCT	CTA	CGA Arg	OTA Ile	GCG	CGG Arg	ATC Ile	TTC	AGA Arg	CCT Pro	GGA Gly	
			70			80			9(*			1	.00			110 *			120	
GGA Gly	GGA Gly	GAT Asp	* ATG Met	AGG Arg	GAC Asp	* AAT Asn	TGG Trp	AGA Arg	AGT	GAA	TTA Leu	TAT Tyr	AAA	TAT Tyr	AAA Lys	GTA	GTA Val	AAA Lys	ATT	
		1	130			140 *			15(*			1	€0 *			170 *			180 *	
GAA Glu	CCA Pro	TTA Leu	* GGA Gly	GTA Val	GCA Ala	CCC	ACC Thr	AAG Lys	GCA	AAG	AGA Arg	AGA Arg	GTG	GTG Val	CAG Gln	AGA Arg	GAA Glu	AAA Lys	AGA Arg	
			190			200			21			i	220 *			230			240 *	
GCA Ala	GTG Val	GGA Gly	* ATA Ile	GGA Gly	CAG Gln	GCC	AGA Arg	CAA Gln	TTA	TTG	TCT Ser	GGT Gly	ATA	GTG Va l	CAG Gln	CAG Gln	CAG Gln	AAC Asn	AAT Asn	
			250			260			27				280			290			300	
TTG Leu	CTG Leu	AGG	* GCT	ATT Ile	GAG Glu	* GGC	CAA	CAG Gln	* CAT	CTG	TTG Leu	CAA	* CTC	ACA Thr	GTC Val	* TGG	GGC	ATC Ile	300 * AAG Lys	
TTG Leu	CTG Leu	AGG Arg	# GCT Ala 310	ATT Ile	GAG Glu	# GGC Gly 320	CAA Gln	CAG Gln	CAT His	CTG Leu 0	TTG Leu	CAA Gin	* CTC Leu 340	ACA Thr	GTC Val	TGG trp	GGC GGC	ATC Ile	* AAG Lys	
Leu	Leu	AGG Arg	# GCT Ala 310 # GCA	I le	Glu	# GGC Gly 320 # CTG	CAA Gln GCT	G I n	CAT HIS 33 **	CTG Leu O	Leu TAC	CAA Gln CTA	X CTC Leu 340 X AAG	Thr	CAA	TGG trp 350 *	GGC Gly	TTG	* AAG Lys	
Leu	Leu	AGG Arg CAG	# GCT Ala 310 # GCA Ala 370	I le	Glu	# GGC Gly 320 * CTG Leu 380	CAA Gln GCT Ala	G I n	CAT His 33 ** GAA Glu	CTG Leu O AGA Arg	Leu TAC	CAA Gln CTA	X CTC Leu 340 X AAG Lys	Thr	CAA	TGG trp 350 * CAG Gin 410	GGC Gly CTC Leu	TTG	* AAG Lys 360 * GGG Gly 420	
CAG Gln	CTC Leu	AGG Arg CAG Gln	# GCT Ala 310 # GCA Ala 370 # TGC	AGA Arg	Glu ATC I le	# GGC Gly 320 # CTG Leu 380 # AAA	CAA Gln GCT Ala	GIN GTG Val	CAT His 33 ** GAA Glu 39 ** TGC	CTG Leu 0 AGA Arg 0	TAC Tyr	CAA Gln CTA Leu	X CTC Leu 340 X AAG Lys 400 X GTG	GAT Asp	CAA Gln	TGG trp 350 * CAG Gin 410 *	GGC Gly CTC Leu	CTG Leu	AAG Lys 360 * GGG Gly	
CAG Gln	CTC Leu	AGG Arg CAG Gln	# GCT Ala 310 # GCA Ala 370 # TGC	AGA Arg	Glu ATC I le	# GGC Gly 320 # CTG Leu 380 # AAA	CAA Gln GCT Ala	GIN GTG Val	CAT His 33 ** GAA Glu 39 ** TGC	CTG Leu 0 AGA Arg 0 ACC Thr	TAC Tyr	CAA Gln CTA Leu	X CTC Leu 340 X AAG Lys 400 X GTG	GAT Asp	CAA Gln	TGG trp 350 * CAG Gin 410 *	GGC Gly CTC Leu GCT Alo	CTG Leu	* AAG Lys 360 * GGG Gly 420 * TGG	

FIG. 15

			490 *)		50 *			5	510 *			520 *			53 *			540
AT I I	T AA e As	iC AA	AT TA sn Ty	AC AC	CA AG or Se	C IT r Le	A AT	A CA e Hi	C TC s Se	C TT	A AT	T GA e Gl	Α ΓΑ	A TC u Sei	G CA r Gli	Δ ΛΛ!		Glr	* GAA Glu
			550 *			56 *				70 *			580 *			59(600 *
AA! Ly:	G AA s As	T GA n Gl	A CA u Gl	A GA n Gl	A TT	A TT(u Lei	G GA/	TT/	A GA	T AA p Ly	A TG s Tr	G GC	A CG(a Arq	ATO Ile	C GAA	ר עט	CTT Leu	CGA Arg	TCC Ser
-			610 *	•		620 *			3	30 *			640 *			650 *			660 *
CGC	C TCI Ser	C CG - Ar	C CG g Ar	A GC	G GCT	GGC	GGG	ATT Ile	ACI Thr	C GG(C TC(/ Ser	AT(TCC Ser	CTC Leu	GCC Ala	TCA Ser	GGA Gly	AAG Lys	AGC Ser
			670 *			680 *			69	ŧ			700 *			710 **			720 *
CTC Leu	CTA Leu	CAT His	r GA(s Glu	i Val	GAC Asp	Lys	GAT Asp	ATT Ile	TCC Ser	CAE Gln	Leu	ACT Thr	CAA Gln	GCA Ala	ATA Ile	GTC Val	AAA Lys	AAC Asn	CAC
			730 *		-	740 *			75 *	:			760 ·¥	. •		770			780 *
AAA Lys	AAT Asn	CTA Leu	CTC Leu	Lys	ATT	GCG A l a	CAG Gln	TAT Tyr	GCT Ala	GCC Ala	CAG Gln	AAC Asn	ΔΓΙΔ	CGA Arg	GGC Gly	CTT Leu	GAT Asp	CTC Leu	רדכ
			790 *			800 *			81	0			820 *			830			840
TTC Phe	TGG Trp	GAG G lu	CAA Gin	GGA Gly	GGA Gly	TTA Leu	TGC Cys	AAA Lys	GCA	TTA	CAA Gln	GAA Glu	CAG	TGC Cys	CGT Arg	TTT Phe	CCG Pro	AAT Asn	* ATT Ile
			850 *			860 *			87 *				380 *			890 *			900 *
ACC Thr	AAT Asn	TCC Ser	CAT His	GTC Val	CCA Pro	ATA I le	CTA Leu	CAA Gln	GAA Glu	AGA Arg	CCC Pro	CCC Pro	CTT Leu	GAG Glu	AAT Asn	CGA Arg	GTC Val	CTG Leu	ACT
			910 *			920 *			931 *				940 *			950 *			•
GGC Gly	TGG Trp	GGC G l y	CTT Leu	AAC Asn	TGG Trp	GAC Asn	CTT Leu	GGC Gly	CTC	TCA Ser	CAG Gln	TGG Trp	GCT	CGA Arg	TCC Ser	TΔG			

FIG. 15 (cont.)

F16.20

		10 *		20 ¥		3			40 *		50 *		60 *
						GCT	CTA		GCG		GAA		TAT Tyr
		70 ¥		80 *		9 *			100 *		110 *		120
		ACT		CTT		GTA	GAA		ACG		CAG		
		130 *		140		15 *			160 *		170 *		180
		CAT											TAT Tyr
		190 *		200 *		211 *	0	i	220 *		230		240 *
		AGG Arg											
	i	250 *		260 *		271 *		ä	280 *		29 <u>.</u> 0		300 *
		GAT Asp				AAT	ATT		AGT		GTG		CTA -
	;	310 *		320		331 *		;	340 *		350 *		360 *
		GAA Glu											
	;	370 *		380		391 *			400 *		410		420 *
		AAA Lys		TCC		CCA	GGG		AAG		GTG	CTT	CTA

FIG. 21

28/30 ·

	430 *		440 *			45 *				160 *			470 *			480 *
GGG TTO	C CTA GGT Leu Gly	TTT CTO	ACG	ACA Thr	GCA Ala	GGT Gly	GCT Ala	GCA Ala	ATG Met	GGG Gly	GCG Ala	GCG Ala	TCT Ser	CTG Leu	ACG Thr	CTG Leu
	490 *		500 *			51 ×)		Ç	520 *			530 *			540 *
	CAG TCT Gln Ser		TTA													
	550 *		560 *			57(*			ţ	580 *			590 *			600 *
	C AAG AGA I Lys Arg															
	610 *		620 *			63: *			6	540 *			650 *			660 *
	A GTC ACT O Val Thr															
	670 *		680 *			69 *	0		-	700 *			710 *			720 *
			* TGC			* ACT	GTA		TGG	* GTA			* ACC			*CCT
	* 5 TTT AGA		* TGC			* ACT	GTA Val		TGG Trp	* GTA			* ACC			*CCT
Cys Ald	* 5 TTT AGA 2 Phe Arg 730	Gln Va	740 * TGG	HIS	Thr GAA	ACT Thr 75 * TGG	GTA Val D GAA	Pro CAC	TGG Trp	# GTA Val 760 # ATC	Asn CGC	Asp TTC	X ACC Thr 770 X CTA	Leu GAG	Thr GCA	XCCT Pro 780 XAAT
Cys Ald	TTT AGA THE Arg 730 X AAC AAC	Gln Va	740 740 * TGG TTGG	HIS	Thr GAA	ACT Thr 75 * TGG Trp	GTA Val D GAA Glu	Pro CAC	TGG Trp AAA Lys	# GTA Val 760 # ATC	Asn CGC	Asp TTC	X ACC Thr 770 X CTA	Leu GAG Glu	Thr GCA	XCCT Pro 780 XAAT
GAG TGG Glu Trp	TTT AGA TTT AG	Gln Va ATG ACA Met Tha	740 740 * TGG Trp 800 * CAG	CAA Gln GCA	Thr GAA Glu CAA	ACT Thr 75 X TGG Trp 81 X ATC	GTA Val D GAA Glu CAG	Pro CAC His	TGG Trp AAA Lys	# GTA Val 760 # ATC Ile 320 # AAG	Asn CGC Arg	TTC Phe	* ACC Thr 770 * CTA Leu 830 * TAT	GAG GLu	Thr GCA Ala	* CCT Pro 780 * AAT Asn 840 * CAA
GAG TGG Glu Trp	T GAG AGT	Gln Va ATG ACA Met Tha	740 740 * TGG Trp 800 * CAG	CAA Gln GCA	Thr GAA Glu CAA	ACT Thr 75 X TGG Trp 81 X ATC	GTA Val GAA Glu CAG Gln	Pro CAC His	TGG Trp AAA Lys GAA Glu	# GTA Val 760 # ATC Ile 320 # AAG	Asn CGC Arg	TTC Phe	* ACC Thr 770 * CTA Leu 830 * TAT	GAG GLu	Thr GCA Ala	* CCT Pro 780 * AAT Asn 840 * CAA

FIG. 21 (cont.)

			910 *		•	920 *			93 *			(940 *			950 *			60 *
			GGA			AGG			TGG	AGA			TTA			TAT		GTA G	TA
	,	•	970			980			99	·	•		000	.,.	•	1010	-,-	1 0	
			*			¥			*				* .			¥			¥
																		AGA G Arg G	
		i	030 *			1040 *			105			10	060 **			1070 *		1 0	90
AAA	AGA	GCA		GGA	ATA		CAG	GCC			TTA	TTG		GGT	ATA		CAG	CAG C	
																		Gln G	
		1	090 *		į	1100 *			1111			1	120 *			1130 *		114	40 *
AAC	TAA	TTG		AGG	GCT		GAG	GGC			CAT	CTG		CAA	СТС		GTC	TGG G(
																		Trp G	
		1	150 *		1	1160 *			117			11	180 ¥			1190 *		12	
ATC	AAG		*	CAG		*			*				*			*	CAA		X
		CAG	* CTC		GCA	* AGA	ATC	CTG	* GCT	GTG	GAA	AGA	* TAC	CTA	AAG	* Gat		:	* TC
		CAG Gln	X CTC Leu 210		GCA Ala	* AGA Arg	ATC Ile	CTG	GCT Ala 1231	GTG Val	GAA	AGA Arg	* TAC Tyr	CTA Leu	AAG Lys	* GAT Asp 1250		CAG C	X TC eu
Ile	Lys	CAG Gln 17	* CTC Leu 210	Gln	GCA Ala	* AGA Arg	ATC Ile	CTG Leu	GCT Ala 1231	GTG Val	GAA Glu	AGA Arg	* TAC Tyr 240	CTA Leu	AAG Lys	* GAT Asp 1250	Gln	CAG C	X TC eu 60
I le	Lys GGG	CAG Gln 13	X CTC Leu 210 X TGG	Gln GGT	GCA Ala TGC	* AGA Arg 1220 * TCT	ATC Ile	CTG Leu	GCT Ala 1231 * CTC	GTG Val)	GAA Glu TGC	AGA Arg 12	TAC Tyr 240 * ACT	CTA Leu GCT	AAG Lys GTG	# GAT Asp 1250 # CCT	Gln TGG	CAG C Gln Li	TC eu 60 X
I le	Lys GGG	CAG Gln 17 ATT Ile	X CTC Leu 210 X TGG Trp	Gln GGT	GCA Ala TGC Cys	# AGA Arg 1220 # TCT Ser	ATC Ile	CTG Leu	# GCT Ala 1231	GTG Val) ATT Ile	GAA Glu TGC	AGA Arg 12 ACC Thr	TAC Tyr 240 * ACT Thr	CTA Leu GCT Ala	AAG Lys GTG Val	# GAT Asp 1250 # CCT Pro	Gln TGG	CAG C Gln Li 120 AAT G Asn A	* TC eu 60 * CT la 20
CTG Leu	GGG Gly	CAG Gln 17 ATT I le	X CTC Leu 210 X TGG Trp 270 X	Gln GGT Gly	GCA Ala TGC Cys	# AGA Arg 1220 # TCT Ser 1280 #	ATC Ile GGA Gly	CTG Leu AAA Lys	# GCT Ala 1231	GTG Val) ATT Ile	GAA Glu TGC Cys	AGA Arg 12 ACC Thr	TAC Tyr 240 * ACT Thr	CTA Leu GCT Ala	AAG Lys GTG Val	# GAT Asp 1250 # CCT Pro	Gln TGG Trp	CAG C Gln Li 120 AAT G Asn A	* TC eu 60
CTG Leu	GGG Gly	CAG Gln 17 ATT Ile 17 AGT	X CTC Leu 210 X TGG Trp 270 X AAT	GIN GGT Gly	GCA Ala TGC Cys	* AGA Arg 1220 * TCT Ser 1280 * CTG	ATC Ile GGA Gly	CTG Leu AAA Lys	GCT Ala 1231 * CTC Leu 1291 * ATT	GTG Val) ATT I le)	GAA Glu TGC Cys	AGA Arg 12 ACC Thr 13	TAC Tyr 240 * ACT Thr 300 * ATG	CTA Leu GCT Ala	AAG Lys GTG Val	# GAT Asp 1250 # CCT Pro 1310 # ATG	Gln TGG Trp GAG	CAG C Gln Li 120 AAT G Asn A	TC eu 60 X CT la 20 X AC
CTG Leu	GGG Gly	CAG Gln 13 ATT Ile 13 AGT Ser	CTC Leu 210 * TGG Trp 270 * AAT Asn	GIN GGT Gly	GCA Ala TGC Cys TCT Ser	* AGA Arg 1220 * TCT Ser 1280 * CTG Leu	ATC Ile GGA Gly	CTG Leu AAA Lys	# GCT Ala 1231	GTG Val) ATT Ile) TGG Trp	GAA Glu TGC Cys	AGA Arg 12 ACC Thr 13 AAC Asn	X TAC Tyr 240 X ACT Thr 300 X ATG Met	CTA Leu GCT Ala	AAG Lys GTG Val	# GAT Asp 1250 # CCT Pro 1310 # ATG Met	Gln TGG Trp GAG	CAG C Gln Li 120 AAT G Asn A 131 TGG G Trp A	# TC eu 60
CTG Leu AGT Ser	GGG Gly TGG Trp	CAG Gln 17 ATT Ile 17 AGT Ser	* CTC Leu 210 * TGG Trp 270 * AAT Asn 330 *	GGT Gly AAA Lys	GCA Ala TGC Cys TCT Ser	* AGA Arg 1220 * TCT Ser 1280 * CTG Leu 1340 *	ATC Ile GGA Gly	CTG Leu AAA Lys CAG Gln	# GCT Ala 1231	GTG Val) ATT Ile) TGG Trp	GAA Glu TGC Cys AAT Asn	AGA Arg 12 ACC Thr 13 AAC Asn	X TAC Tyr 240 X ACT Thr 300 X ATG Met	CTA Leu GCT Ala ACC Thr	AAG Lys GTG Val TGG Trp	# GAT Asp 1250 * CCT Pro 1310 * ATG Met 1370	Gln TGG Trp GAG Glu	CAG C Gln Li 120 AAT G Asn A 131 TGG G Trp A	# TC eu 60

FIG. 21 (cont.)

		13	390 *		•	1400 ¥			1410				¥		1	430 *		1	440 *
CAA	GAA	AAG	ΑΔΤ	GAA	CAA	GAA	TTA	TTG	GAA	TTA	GAT	AAA	TGG	GCA	CGG	ATC	GAA	GAT	CTT
Gln	Glu	Lys	Asn	Glu	Gln	Glu	Leu	Leu	Glu	Leu	Asp	Lys	irp	Ala	Arg	116	ьlu	ASP	Leu
		14	150			460 *			1470 *				80 ¥		1	1490 *		1	1500 *
CGA	TCC	CGC	* TCC	CGC	CGA	GCG	GCT	GGC	GGG	ATT	ACC	GGC	TCC	ATG	TCC	CTC	GCC	TCA	GGA
Arg	Ser	Arg	Ser	Arg	Arg	Ala	Ala	Gly	Gly	Ile	Thr	Gly	Ser	Met	Ser	Leu	Ala	Ser	Gly
		15	510			1520			1530	0		15				1550			1560
			*	· ·		*			*		T00	DAE	_		САА		ΑΤΑ	רדנ	*
AAG	AGC	CTC	CTA	CAT	GAG	616	GAU	AAA Lys	6A I	All	111 202	CAU	LOU	ALI	CAA Gla	ΔIn	AIA AIA	Vnl	lvs
Lys	26L	Leu	Leu	HIS	บเน	ACLI	нъh	Lys	ush	116	SEI	utii	Leu	1111	u (II	пш	110	, , ,	-,,
		13	570			1580			159	0		16	500		. !	1610			1620
			*			¥			¥				*			*			*
AAC	CAC	AAA	AAT	CTA	CTC	AAA	ATT	GCG	CAG	TAT	GCT	GCC	CAG	AAC	AGA	CGA	GUU	CII	UAI
Asn	His	Lys	Asn	Leu	Leu	Lys	Ile	Ala	uln	lyr	Ala	Ala	UIN	ASN	arg	arg	uty	Leu	nsp
		1	630			1640			165	0		10	660			1670	•		1680
		-	¥			¥			*				¥			¥			*
CTC	CTG	TTC	TGG	GAG	CAA	GGA	GGA	TTA	TGC	AAA	GCA	TTA	CAA	GAA	CAG	TGC	CGT	III	500
Leu	Leu	Phe	Trp	Glu	Gln	Gly	Gly	Leu	Суs	Lys	Ala	Leu	Gln	Glu	bln	Cys	Arg	Phe	Pro
		1	690			1700			171	0		1	720			1730			1740
			¥			*							*			*			*
AAT	ATT	ACC	AAT	TCC	CAT	GTC	CCA	ATA	CTA	CAA	GAA	AGA	CCC	CCC	CTT	GAG	AAT	CGA	GTC
Asn	Ile	Thr	Asn	Ser	His	Val	Pro	lle	Leu	bln	Glu	Arg	Pro	Pro	Leu	Glu	ASN	arg	Val,
		1	750			1760			177	0		1	780			1790			•
			¥			*			*				*			*			-
CTG	ACT	GGC	TGG	GGC	CTT	AAC	TGG	GAC	CTT	GGC	CTC	TCA	CAG	TGG	GCT	CGA	TCC	TAG	Ì
Leu	Thr	Gly	Trp	Gly	Leu	ı Asn	Trp	Asp	Leu	G ly	Leu	Ser	Gln	irp	Ala	Arg	26L		

FIG. 21 (cont.)

INTERNATIONAL SEARCH REPORT

International Application No PCT/US90/06621

I. CLASSIFICATION OF SUBJECT MATTER (it several classi	rication symbols apply, indicate all) 4	
According to International Patent Classification (IPC) or to both Nat	ional Classification and IPC	
IPC(5): GO1N 33/569; CO7K 15/04,	15/14; C12N 15/00	
U.S. CL.: 435/5, 320.1, 974, 975;	530/350, 395	
Minimum Documer Classification System		
	2 assification Symbols	
435/5, 320.1, 974, 97	5;	
U.S. 530/350, 395		
Documentation Searched other to the Extent that such Documents	than Minimum Documentation are Included in the Fields Searched 5	
III. DOCUMENTS CONSIDERED TO BE RELEVANT 14		
Category • Citation of Document, 1" with indication, where app		Relevant to Claim No. 17
$rac{X_i}{Y^i}$ Nature, Volume 324, is: Y: December 1986, CLAVEL		$\frac{1-2}{3-1}$
		5-12.1/-
"Molecular cloning and		
of the human immune de virus type 2" pages 69:	LICIONOS 1_605	
	1-695.	
see page 693.		
Y US. A. 4,753,873 (BELT)	7 FT AI.)	3-9,
28 June 1988. see figur		13-24
Y Proceedings of the Nat	ional	7-21
Academy of Sciences, U		
issued June 1983, SEIK		
"Human adult T-cell le		
Complete Nucleotide sec		
provirus genome integra	ated in	•
leukemia cell DNA", pag	ges 3618-22.	
see page 3622.		
Y.,P US. A. 4,939.094 (KUGA	ET AL.)	3-24
03 July 1990, see colu	mn 2. lines	i
14-18.		:
Special categories of cited documents: 15	"T" later document published after the or priority date and not in confliction	ne international filing date
"A" document defining the general state of the art which is not considered to be of particular relevance	cited to understand the principle	
"E" earlier document but published on or after the international filing date	invention "X" document of particular relevant	e; the claimed invention
"L" document which may throw doubts on priority claim(s) or	cannot be considered novel or involve an inventive step	cannot be considered to
which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevant cannot be considered to involve	
"O" document referring to an oral disclosure, use, exhibition or other means	document is combined with one ments, such combination being o	or more other such docu-
"P" document published prior to the international filing date but later than the priority date claimed	in the art. "&" document member of the same p	·
IV. CERTIFICATION		
Date of the Actual Completion of the International Search 2	Date of Mailing of this International Se	
18 March 1991	1 RAP	'R 1991
International Searching Authority 1	Signature of Authorized Officer 20	• •
ISA /US	Christine M. Nucker	ebw

Form PCT/ISA/210 (second sheet) (May 1986)