المساحات و الحجوم

1- متوازى المستطيلات

ليكُن a و b و c طول و عرض و ارتفاع متوازي المستطيلات

$$S = 2(ab + bc + ca)$$
 : المساحة

المساحة الكلية

$$V = abc$$
 الحجم:

2**- المكعب**

ليكن a طول حرف المكعب

$$S = 6a^2$$

$$V = a^3$$
 الحجم

3 - الموشور القائم

أ- ليكن h ارتفاع موشـور قائمl و l و محيط و مسـاحة قاعدته

على التوالي.

$$S = l \times h$$
 المساحة الجانبية *

$$S_T = l \times h + 2B$$

$$V = B \times h$$
 الحجم*

<u>4- الهرم</u>

S ارتفاع هرما رأسه أ-

B المتضمن للقاعدة. ليكن

مساحة قاعدة الهرم.

 $V = \frac{1}{3} B . h$ حجم الهرم:

<u>5 - رباعي الأوجه المنتظم</u>

ليكن a طول حرف رباعي الأوجه منتظم

$$S = \frac{3\sqrt{3}}{4}a^3$$
 المساحة الجانبية

$$V = \frac{\sqrt{2}}{12}a^3$$
 الحجم

<u>6 - الأسطوانة القائمة</u>

ليكن h ارتفاع الاسطوانة و R شعاع قاعدتها

$$S_L = 2\pi R h$$
 المساحة الجانبية هي

$$V = \pi R^2 h$$
 الحجم هو

6- الفلكة ليكن *R* شعاع الفلك

 $S=4\pi R^2$ المساحة هي:ا

 $V = \frac{4}{3}\pi R^3$ الحجم هو: هي

ليكن R شعاع القاعدة لمخروط دوراني

 $S_L = \pi R \cdot SH$ المساحة الجانبية هي

 $V = \frac{1}{3}\pi R^2 h$:الحجم

h = OS

يمرين ABCD رباعي الأوجه حيث BD=DC و BD=DC و ABCD و منتصفات و ABCD يا على التوالي

 $(IJ) \perp (DK)$ بين أن

تمرين ABCDEFGH مكعب

 $\left(EBG \right) \perp \left(DF \right)$ أتبث أن $\left(EB \right) \perp \left(DF \right)$ ثم أتبث أن

A في (P) في على (C) في العمودي على (P) في العمودي على (P) في العمودي على (P) في العمودي على (P)

 $M \neq B$; $M \in (C)$ و $S \neq A$ حيث $S \in (\Delta)$

 $.(MB) \perp (SM)$ أتبث أن

 $(SAI) \perp (SCI)$ أتبث أن -3

(SI) على H المسقط العمودي لـ A على H

 $(AH) \perp (SC)$ أتبث أن

تمرین ABCDEFGH مکعب

 $(HEB) \perp (AGF)$ أتبث أن

تمرين في الفضاء نعتبر ABC مثلثا قائم الزاوية في A ضمن مستوى

لتكن D مماثلة B بالنسبة لـ A ، و S نقطة خارج P حيث SB=SD. لتكن D و SD على التوالي SD على التوالي

 $(P) \perp (SAC)$ استنتج أن $(AB) \perp (SAC)$ استنتج أن -3

 $(AB) \perp (IJ)$ بين أن -4

SA = 8cm على (P) في A حيث المستقيم العمودي على

أحسب حجم الهرم SABCD

 $1m^2$ أحسب حجم فلكة مساحتها تساوي $1m^2$

