Integrating Automatic and Manual Reserves in Optimal Power Flow via Chance Constraints

ÁLVARO PORRAS CABRERA

PH.D. CANDIDATE AT UNIVERSITY OF MALAGA

JOINT WORK WITH L. ROALD, J.M. MORALES AND S. PINEDA

JULY 10, 2023

July 10-14 · SANTIAGO, CHILE

OPTIMAL POWER FLOW

- Least-costly dispatch
- Supply electricity net demand
- Technical limits:
 - Production
 - Network equipment

$$\min_{p_g} \sum_{g \in \mathcal{G}} c_g p_g$$
s.t.
$$\sum_{g \in \mathcal{G}} p_g = \sum_{n \in \mathcal{N}} d_n$$

$$\underline{p}_g \le p_g \le \overline{p}_g, \quad \forall g \in \mathcal{G}$$

$$-\overline{f}_l \le \sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}} p_g - d_n \right) \le \overline{f}_l, \quad \forall l \in \mathcal{L}$$

- Operating cost
- System's balance
- Power output dispatch limits
- Line-flow capacity

OPTIMAL POWER FLOW under UNCERTAINTY

Uncertainty in

electricity demand and renewable energy generation

- Uncertain net demand: $d_n + \omega_n$
- Reserve deployment: $p_g + r_g(\omega)$
- $\qquad \text{To counterbalance error:} \quad \sum_{g \in \mathcal{G}} r_g(\omega) = \sum_{n \in \mathcal{N}} \omega_n = \Omega$
- lacktriangle To anticipate downward and upward reserve capacity: $-r_g^d \leq r_g(\omega) \leq r_g^u$

Two-stage Framework (TS)

$$\min_{p_g, r_g^u, r_g^d, r_g(\omega)} \quad \sum_{g \in \mathcal{G}} c_g p_g + c_g^u r_g^u + c_g^d r_g^d$$

s.t.
$$\sum_{g \in \mathcal{G}} p_g = \sum_{n \in \mathcal{N}} d_n$$
$$\underline{p}_g + r_g^d \le p_g \le \overline{p}_g - r_g^u, \quad \forall g \in \mathcal{G}$$
$$r_g^d, r_g^u \ge 0, \quad \forall g \in \mathcal{G}$$

$$\sum_{g \in \mathcal{G}} r_g(\omega) = \sum_{n \in \mathcal{N}} \omega_n = \Omega$$

$$- r_g^d \le r_g(\omega) \le r_g^u, \quad \forall g \in \mathcal{G}$$

$$- \overline{f}_l \le \sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}} (p_g + r_g(\omega)) - d_n - \omega_n \right) \le \overline{f}_l, \quad \forall l \in \mathcal{L}$$

First-stage constraints

Second-stage constraints

How does it work?

Real-time Operation

Computationally demanding!!!
Unrealistic

Real-time Operation

Automatic Generation Control - AGC

Affine Control Policy (AGC)

$$\begin{aligned} & \min_{p_g,\beta_g,r_g^u,r_g^d} & & \sum_{g \in \mathcal{G}} c_g p_g + c_g^u r_g^u + c_g^d r_g^d \\ & \text{s.t.} & & \sum_{g \in \mathcal{G}} p_g = \sum_{n \in \mathcal{N}} d_n \\ & & & \underline{p}_g + r_g^d \leq p_g \leq \overline{p}_g - r_g^u, \quad \forall g \in \mathcal{G} \\ & & & & r_g^d, r_g^u \geq 0, \quad \forall g \in \mathcal{G} \end{aligned}$$

$$\sum_{g \in \mathcal{G}} \beta_g = 1$$

$$- r_g^d \le \beta_g \Omega \le r_g^u, \quad \forall g \in \mathcal{G}$$

$$- \overline{f}_l \le \sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}} (p_g + \beta_g \Omega) - d_n - \omega_n \right) \le \overline{f}_l, \quad \forall l \in \mathcal{L}$$

 $p_g, \beta_g, r_g^u, r_g^d \to \text{first-stage variables}$

Reserve deployment follows an affine control policy (AGC):

$$r_g(\omega) = \beta_g \sum_{n \in \mathcal{N}} \omega_n = \beta_g \Omega$$

AGC counterbalances forecast errors:

$$\sum_{g \in \mathcal{G}} \beta_g = 1$$

How does it work?

Real-time Operation

Conservative approach!!!

Linear decision rule replacing second-stage variables

Real-time Operation

Why does SO have to meet technical constraints in low-probability and high-impact events?

Real-time Operation

Chance-constrained Program (AGC+CC)

$$\min_{p_g, r_g^u, r_g^d, r_g(\omega)} \quad \sum_{g \in \mathcal{G}} c_g p_g + c_g^u r_g^u + c_g^d r_g^d$$

s.t.
$$\sum_{g \in \mathcal{G}} p_g = \sum_{n \in \mathcal{N}} d_n$$
$$\underline{p}_g + r_g^d \le p_g \le \overline{p}_g - r_g^u, \quad \forall g \in \mathcal{G}$$
$$r_g^d, r_g^u \ge 0, \quad \forall g \in \mathcal{G}$$

$$\sum_{g \in \mathcal{G}} \beta_g = 1$$

$$\mathbb{P} \left(\begin{array}{c} -r_g^d \le \beta_g \Omega \le r_g^u, \quad \forall g \in \mathcal{G} \\ -\overline{f}_l \le \sum_n B_{ln} \left(\sum_{g \in \mathcal{G}} (p_g + \beta_g \Omega) - d_n - \omega_n \right) \le \overline{f}_l, \quad \forall l \in \mathcal{L} \end{array} \right) \ge 1 - \epsilon$$

- Technical constraints are satisfied with a given (high) probability.
- Solutions more economical, since extreme events are discarded.

 $p_g, \beta_g, r_g^u, r_g^d \to \text{first-stage variables}$

How does it work?

Real-time Operation

Real-time Operation

Integration of automatic and manual

Integrating Automatic and Manual (AGC+M)

Reserve deployments are combinations of AGC and manual adjustments:

$$r_g(\omega) = \beta_g \Omega + r_g^M(\omega)$$

$$\sum_{g \in \mathcal{G}} r_g^M(\omega) = 0$$

Guaranteeing robust feasibility.

$$-r_g^d \le \beta_g \Omega + r_g^M(\omega) \le r_g^u, \quad \forall g \in \mathcal{G}$$

$$-\overline{f}_l \le \sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}} (p_g + \beta_g \Omega + r_g^M(\omega)) - d_n - \omega_n \right) \le \overline{f}_l, \quad \forall l \in \mathcal{L}$$

 Most of the time the operation is automatic except in extreme, unlikely events. Manual reserve is computationally expensive. Thus, its probability of occurrence is limited.

$$\mathbb{P}(r_q^M(\omega) = 0, \quad \forall g \in \mathcal{G}) \ge 1 - \epsilon$$

Integrating Automatic and Manual (AGC+M)

$$\begin{aligned} & \underset{p_g, r_g^u, r_g^d, r_g, r_g}{\min} & \sum_{g \in \mathcal{G}} c_g p_g + c_g^u r_g^u + c_g^d r_g^d \\ & \text{s.t.} & \sum_{g \in \mathcal{G}} p_g = \sum_{n \in \mathcal{N}} d_n \\ & \underbrace{p_g + r_g^d \leq p_g \leq \overline{p}_g - r_g^u}, \quad \forall g \in \mathcal{G} \\ & \underbrace{r_g^d, r_g^u \geq 0}, \quad \forall g \in \mathcal{G} \end{aligned}$$

$$& \sum_{g \in \mathcal{G}} \beta_g = 1, \quad \sum_{g \in \mathcal{G}} r_g^M(\omega) = 0$$

$$& - r_g^d \leq \beta_g \Omega + r_g(\omega) \leq r_g^u, \quad \forall g \in \mathcal{G}$$

$$& - \overline{f}_l \leq \sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}} (p_g + \beta_g \Omega + r_g(\omega)) - d_n - \omega_n \right) \leq \overline{f}_l, \quad \forall l \in \mathcal{L}$$

$$& \mathbb{P}(r_g^M(\omega) = 0, \quad \forall g \in \mathcal{G}) \geq 1 - \epsilon \end{aligned}$$

$$p_g, \beta_g, r_g^u, r_g^d \to \text{first-stage variables}$$

 $r_g^M(\omega) \to \text{second-stage variables}$

How does it work?

Real-time Operation

Evaluation Procedure

Real-time Operation

Numerical Experiments

- IEEE-118 bus system.
- Real-time operation over 100.000 scenarios.

$$\epsilon = 5\%$$

- Different metrics are evaluated.:
 - The number of scenarios where AGC is sufficient to handle the forecast errors satisfying technical constraints.
 - The number of scenarios where manual adjustments are required to meet technical constraints. $|\mathcal{S}_M|$
 - The number of scenarios where AGC and manual reserve are not enough to offset the power imbalances whilst satisfying technical constraints. $|\mathcal{S}_I|$
 - Expected operating cost $\mathbb{E}[C]$ (k€)

	$ \mathcal{S}_{\mathrm{A}} $	$ \mathcal{S}_{\mathrm{M}} $	$ \mathcal{S}_{\mathrm{I}} $	$\mathbb{E}[C]$ (k \in)
AGC	99.56%	0.16%	0.28%	73.65
AGC+CC	94.12%	0.17%	5.71%	53.04
AGC+M	94.30%	5.41%	0.29%	60.15

 $|\mathcal{S}_A|$

Numerical Experiments

Thanks! Any question?

PH.D. CANDIDATE AT UNIVERSITY OF MALAGA
JOINT WORK WITH L. ROALD, J.M. MORALES AND S. PINEDA
JULY 10, 2023

ADVANCED ANALYTICS FOR A BETTER WORLD

