Data Structures and Algorithms

Live Class 4: Complexity

Heikki Peura h.peura@imperial.ac.uk

Today

- ► Search algorithms
- ► How to analyse algorithm complexity
 - "How does my code slow as my data grows?"

Announcements

Tutors on the chat on the Hub:

- Weekdays 9-11am, 1-3pm, 5-7pm; weekends 9-11am, 1-3pm
- Help, advice, support, guidance, comfort
- Rooms for Session 3 and 4 questions

Guessing game

A friend is thinking of a number between 1-100 and you have to guess it.

Whenever you make a guess, the friend tells you whether it is correct, too high, or too low.

How many guesses will you need?

Search algorithms

Search for the word "swagger"?

What is the worst we could do?

If the answers were "yes" and "no"?

Linear search - worst case: go through everything

If the answers are "too low" and "too high"?

- ► Each time, discard half or remaining numbers
- Binary search worst case?

Logarithms

Exponentials:
$$2^4 = 2 \times 2 \times 2 \times 2 = 16$$

Logarithm flips the exponential:

- $\log_2 16 = 4$
- "How many 2s do we multiply to get 16?"
- ► "How many times do we divide 16 by 2 to get to 1?"

Logarithms

Exponentials:
$$2^4 = 2 \times 2 \times 2 \times 2 = 16$$

Logarithm flips the exponential:

- $\log_2 16 = 4$
- "How many 2s do we multiply to get 16?"
- "How many times do we divide 16 by 2 to get to 1?"

For numbers up to 128, we need to make at most $\log_2 128 = 7$ guesses

What about for numbers up to 1024? 2048? 1 000 000?

Logarithms

Exponentials:
$$2^4 = 2 \times 2 \times 2 \times 2 = 16$$

Logarithm flips the exponential:

- $\log_2 16 = 4$
- "How many 2s do we multiply to get 16?"
- ► "How many times do we divide 16 by 2 to get to 1?"

For numbers up to 128, we need to make at most $\log_2 128 = 7$ guesses

What about for numbers up to 1024? 2048? 1 000 000?

Guess the number from 1 to n:

- ► Linear search: at most *n* guesses
- ▶ Binary search: at most log₂(n) guesses

Algorithm design: searching a list

Suppose we have a list L. We want to check whether it contains the number 13.

What are computers good at?

1. Performing simple calculations

- Arithmetic operations
- Comparisons
- Assignments
- Accessing memory

2. Remembering the results

Goals in designing algorithms

- 1. Correctness finds the correct answer for any input
- 2. **Efficiency** finds the answer quickly

Goals in designing algorithms

- 1. Correctness finds the correct answer for any input
- 2. **Efficiency** finds the answer quickly
- ► It is important to understand both: think of airplane software, Uber or algorithmic trading...

Goals in designing algorithms

- 1. Correctness finds the correct answer for any input
- 2. Efficiency finds the answer quickly
- ► It is important to understand both: think of airplane software, Uber or algorithmic trading...

Efficiency:

- ► How much time will our computation take?
- ► How much memory will it need?

Example: linear search

Is x in list A?

```
1  def linear_search(A, x):
2    for elem in A:
3        if elem == x:
4         return True
5    return False
```

Efficiency:

- ► How much time will our computation take?
- ► How much memory will it need?

How much time will it take?

Simple: run and time it? But time depends on

- 1. Speed of computer
- 2. Specifics of implementation
- 3. Value of input

How much time will it take?

Simple: run and time it? But time depends on

- Speed of computer
- 2. Specifics of implementation
- 3. Value of input

We can avoid 1 and 2 by measuring time in the **number of basic** steps executed

- ► Step: constant-time computer operation
 - Arithmetic operations
 - Comparisons
 - Assignments
 - Accessing memory

How much time will it take?

Simple: run and time it? But time depends on

- Speed of computer
- 2. Specifics of implementation
- 3. Value of input

We can avoid 1 and 2 by measuring time in the **number of basic** steps executed

- ► Step: constant-time computer operation
 - Arithmetic operations
 - Comparisons
 - Assignments
 - Accessing memory

For 3, measure number of steps depending on the size of input

Complexity and input

Searching for an item in a list?

```
def linear_search(A, x):
    # A is a list of length n

for elem in A:
    if elem == x:
    return True

return False
```

Complexity and input

Searching for an item in a list?

```
def linear_search(A, x):
    # A is a list of length n
for elem in A:
    if elem == x:
    return True
return False
```

- x could be the first element of A
- x could not be in A
- ► How to give a general complexity measure?

Complexity cases

Cases for given input size (length of A):

- ▶ Best case minimum time
- ► Worst case maximum time
- Average case average or expected time over all possible inputs

Complexity cases

Cases for given input size (length of A):

- ▶ Best case minimum time
- ▶ Worst case maximum time
- Average case average or expected time over all possible inputs

Principle: focus on worst-case analysis

- Upper bound on running time
- Bonus: usually easier to analyze

Total: 5n + 2 steps

- As n gets large, 2 is irrelevant
- Arguably, so is 5
 - It's the size of the problem that matters

Total: 5n + 2 steps

- As n gets large, 2 is irrelevant
- Arguably, so is 5
 - It's the size of the problem that matters

Principle: ignore constant factors and lower-order terms

- These depend on computer and program implementation
- They do not matter for large inputs
- Simplifies comparisons

```
def f(x):
                           # Let's assume x is integer
      ans = 0
                           # 1 step
      for i in range(100):
        ans += 1
                          # 200 steps
      for i in range(x):
         ans += 1
                          # 2*x
      for i in range(x):
          for j in range(x):
           ans -= 1 # 2*x^2
      return ans
                # 1 step for return
10
```

```
def f(x):
                              # Let's assume x is integer
       ans = 0
                              # 1 step
       for i in range(100):
           ans += 1
                              # 200 steps
       for i in range(x):
           ans += 1
                              # 2**
       for i in range(x):
           for j in range(x):
              ans -= 1 # 2*x^2
                  # 1 step for return
10
       return ans
```

Steps: $202 + 2x + 2x^2$

▶ $x \text{ small} \rightarrow \text{first loop dominates } (x = 3)$

```
def f(x):
                               # Let's assume x is integer
       ans = 0
                               # 1 step
       for i in range(100):
           ans += 1
                               # 200 steps
       for i in range(x):
           ans += 1
                               # 2 * ×
       for i in range(x):
           for j in range(x):
               ans -= 1 # 2*x^2
                            # 1 step for return
       return ans
10
```

Steps: $202 + 2x + 2x^2$

- ightharpoonup x small o first loop dominates (x = 3)
- ▶ $x \text{ large} \rightarrow \text{last loop dominates } (x = 10^6)$

```
def f(x):
                                # Let's assume x is integer
       ans = 0
                                # 1 step
       for i in range(100):
           ans += 1
                               # 200 steps
       for i in range(x):
           ans += 1
                               # 2 * ×
       for i in range(x):
           for j in range(x):
               ans -= 1 # 2*x^2
                            # 1 step for return
       return ans
10
```

Steps: $202 + 2x + 2x^2$

- ightharpoonup x small o first loop dominates (x = 3)
- ▶ $x \text{ large} \rightarrow \text{last loop dominates } (x = 10^6)$
- Only need to consider last (nested) loop for large x

```
def f(x):
                                # Let's assume x is integer
       ans = 0
                                # 1 step
       for i in range(100):
           ans += 1
                               # 200 steps
       for i in range(x):
           ans += 1
                               # 2 * ×
       for i in range(x):
           for j in range(x):
               ans -= 1 # 2*x^2
       return ans
                            # 1 step for return
10
```

Steps: $202 + 2x + 2x^2$

- $ightharpoonup x ext{ small} o ext{first loop dominates } (x = 3)$
- ▶ $x \text{ large} \rightarrow \text{last loop dominates } (x = 10^6)$
- Only need to consider last (nested) loop for large x
- ▶ Does the 2 in $2x^2$ matter? For large x, order of growth much more important

1. Measure number of basic operations as function of input size

- 1. Measure number of basic operations as function of input size
- 2. Focus on worst-case analysis

- 1. Measure number of basic operations as function of input size
- 2. Focus on worst-case analysis
- 3. Ignore constant factors and lower-order terms

- 1. Measure number of basic operations as function of input size
- 2. Focus on worst-case analysis
- 3. Ignore constant factors and lower-order terms
- 4. Only care about large inputs
 - Only large problems are interesting
 - What happens when size gets very large?

- 1. Measure number of basic operations as function of input size
- 2. Focus on worst-case analysis
- 3. Ignore constant factors and lower-order terms
- 4. Only care about large inputs
 - Only large problems are interesting
 - What happens when size gets very large?

Formal way to describe this approach:

Big-O notation: upper bound on worst-case running time

Big-O: bound on runtime growth rate

Let T(n) be the number of steps taken for input size n:

• Example: $T(n) = 202 + 2n + 2n^2$

Big-O: bound on runtime growth rate

Let T(n) be the number of steps taken for input size n:

Example: $T(n) = 202 + 2n + 2n^2$

Definition: T(n) is O(f(n)) if for all sufficiently large n, T(n) is bounded above by a constant multiple of f(n)

Big-O: bound on runtime growth rate

Let T(n) be the number of steps taken for input size n:

Example: $T(n) = 202 + 2n + 2n^2$

Definition: T(n) is O(f(n)) if for all sufficiently large n, T(n) is bounded above by a constant multiple of f(n)

Example: T(n) is $O(n^2)$ if for all large enough n, T(n) is bounded above by a constant multiple of $f(n) = n^2$

- ▶ Gist: for high values of n, does f(n) "grow at least as quickly"?
 - $ightharpoonup cf(n) = cn^2$? (for any constant c)
 - $T(n) = 202 + 2n + 2n^2$?
- ▶ What if f(n) = n, that is O(n)?

Input size

Big O tells us how fast the algorithm is

Fast algorithm: worst-case running time grows slowly with input size

- ► O(1): constant running time primitive operations
- $ightharpoonup O(\log n)$: logarithmic running time
- ► O(n): linear running time linear search
- \triangleright $O(n \log n)$: log-linear time
- \triangleright $O(n^c)$: polynomial running time
- \triangleright $O(c^n)$: exponential running time
- \triangleright O(n!): factorial running time

Go to menti.com

```
def fun_function(n):
    val = 0
    for i in range(n):
        val += 1
    for i in range(1000):
        val += 6
    return val
```

- A. Constant time O(1)
- B. Linear time O(n)
- C. Quadratic time $O(n^2)$
- D. None of the above
- E. I don't know

```
def fun_function(n):
    val = 0
    for i in range(n):
        val += 2
        for i in range(1000):
            val += 5
    return val
```

- A. Constant time O(1)
- B. Linear time O(n)
- C. Quadratic time $O(n^2)$
- D. None of the above
- E. I don't know

```
def fun_function(n):
    val = 0
    for i in range(n):
        val += 2
    for i in range(n):
        val += 1
        for i in range(700):
        val += 5
    return val
```

- A. Constant time O(1)
- B. Linear time O(n)
- C. Quadratic time $O(n^2)$
- D. None of the above
- E. I don't know

```
def fun_function(n):
    val = 0
    for i in range(5, 30):
        val += 2
    for i in range(3):
        val += 1
        for i in range(700):
        val -= 2
    return val
```

- A. Constant time O(1)
- B. Linear time O(n)
- C. Quadratic time $O(n^2)$
- D. None of the above
- E. I don't know

Algorithm for finding *x* in sorted list *L*:

- Pick an index i roughly dividing L in half
- If L[i] == x, return True (if nothing left to search return False)
- ► If not:
 - ▶ If L[i] > x, repeat search on left half of L
 - Otherwise repeat search on right half

Algorithm for finding *x* in sorted list *L*:

- Pick an index i roughly dividing L in half
- If L[i] == x, return True (if nothing left to search return False)
- ► If not:
 - ▶ If L[i] > x, repeat search on left half of L
 - Otherwise repeat search on right half

Find number 24 in a list L = [9, 24, 32, 56, 57, 59, 61, 99]

Algorithm for finding *x* in sorted list *L*:

- Pick an index i roughly dividing L in half
- If L[i] == x, return True (if nothing left to search return False)
- ► If not:
 - If L[i] > x, repeat search on left half of L
 - Otherwise repeat search on right half

Find number 24 in a list L = [9, 24, 32, 56, 57, 59, 61, 99]

First iteration

9	24	32	56	57	59	61	99
9	24	32	56	57	59	61	99

 $L[i] = 56 > 24 \rightarrow \text{discard right half and search left half}$

Algorithm for finding *x* in sorted list *L*:

- Pick an index i roughly dividing L in half
- If L[i] == x, return True (if nothing left to search return False)
- ▶ If not:
 - ▶ If L[i] > x, repeat search on left half of L
 - Otherwise repeat search on right half

Find number 24 in a list L = [9, 24, 32, 56, 57, 59, 61, 99]

First iteration

()	24	32	56	57	59	61	99
9	T	24	32	56	57	59	61	99

 $L[i] = 56 > 24 \rightarrow \text{discard right half and search left half}$

Second iteration

$$L[i] = 24 \rightarrow \text{return True}$$

Algorithm for finding *x* in list *L*:

- Pick an index i roughly dividing L in half
- ▶ If L[i] == x, return True (if nothing left to search return False)
- ► If not:
 - ▶ If L[i] > x, repeat search in left half of L
 - Otherwise repeat search in right half

Complexity = # of iterations × **Constant time per iteration**

Algorithm for finding *x* in list *L*:

- Pick an index i roughly dividing L in half
- ▶ If L[i] == x, return True (if nothing left to search return False)
- ► If not:
 - ▶ If L[i] > x, repeat search in left half of L
 - Otherwise repeat search in right half

Complexity = # of iterations × **Constant time per iteration**

But how many iterations?

Algorithm for finding *x* in list *L*:

- Pick an index i roughly dividing L in half
- ▶ If L[i] == x, return True (if nothing left to search return False)
- ► If not:
 - If L[i] > x, repeat search in left half of L
 - Otherwise repeat search in right half

Complexity = # of iterations × **Constant time per iteration**

But how many iterations?

How many times can you split n items in half?

Algorithm for finding *x* in list *L*:

- Pick an index i roughly dividing L in half
- ▶ If L[i] == x, return True (if nothing left to search return False)
- ► If not:
 - If L[i] > x, repeat search in left half of L
 - Otherwise repeat search in right half

Complexity = # of iterations × **Constant time per iteration**

But how many iterations?

- How many times can you split n items in half?
- $\triangleright \log_2(n)$ (but base of logarithm does not matter for big-O)

Algorithm for finding *x* in list *L*:

- Pick an index i roughly dividing L in half
- ▶ If L[i] == x, return True (if nothing left to search return False)
- ► If not:
 - If L[i] > x, repeat search in left half of L
 - Otherwise repeat search in right half

Complexity = # of iterations × Constant time per iteration

But how many iterations?

- ▶ How many times can you split *n* items in half?
- $\triangleright \log_2(n)$ (but base of logarithm does not matter for big-O)
- ▶ Complexity O(log n)!

Sorting algorithms

So if we have an unsorted list, should we sort it first?

- ► Suppose complexity *O*(*sort*(*n*))
- Is it less work to sort and do a binary search than do a linear search?
- ▶ In other words: is $sort(n) + \log(n) < n$?
- ► No...

In practice: what if we need to search repeatedly, say *k* times?

- ▶ Is $sort(n) + k \log(n) < kn$?
- Depends on k...

Complexity matters

You're planning a trip around the world visiting 10 cities. What's the cheapest route?

Check all alternative routes?

Complexity matters

You're planning a trip around the world visiting 10 cities. What's the cheapest route?

Check all alternative routes?

- ► There are $10 \times 9 \times 8 \times \cdots \times 2 \times 1 = 3628800$ possible routes
- ► Factorial complexity *O*(*n*!)
- ▶ Travelling salesperson problem

Review

Measuring algorithm time complexity:

- Number of basic steps taken
- Worst-case analysis
- Focus on large inputs

Searching and sorting (next session) are canonical algorithms problems

Review exercises:

- Big O practice
- Search algorithms