Contact Information

- Stephan Heinemann
- SMS: +1 (250) 891-5446
- Email: stephan.heinemann@hotmail.com
- Bookings, Questions

Part II – Climbing and Descending

- Review Basic Climbing and Descending
- Departure and Approach Climbs and Descents
- V-Speeds (POH)
- Flaps
- Balked Landings Power, Attitude, Trim
- Summary and Questions
- Pre-Flight Briefing

Review Basic Climbing and Descending

- Mentally perform a basic climb and level off and state all required actions. (APT)
- Mentally perform a basic descent and level off and state all required actions. (PAT)
- How do we maintain our airspeed during a climb with set power?
- How do we estimate our glide path during a descent?

Departure and Cruise Climbs

- Best angle / gradient ($\bigvee x$) ensures best obstacle clearance
- Best rate (Vy)— minimizes climbing time
- Normal improves forward visibility and engine cooling
- En-Route addresses ground speed, convenience and comfort (Vcc = Vy + (Vy Vx))

Climb Attitudes

- Prolonged climbs require heading or attitude changes for lookout
- Control airspeed with pitch attitude at full power
- More nose-up attitude requires more rudder input

Reference Climb Airspeeds

AIRSPEEDS FOR NORMAL OPERATION

Unless otherwise noted, the following speeds are based on a maximum weight of 2550 pounds and may be used for any lesser weight.

Takeoff:	
Normal Climb Out	75-85 KIAS
Short Field Takeoff, Flaps 10°, Speed at 50 Feet	. 56 KIAS
Enroute Climb, Flaps Up:	
Normal, Sea Level	75-85 KIAS
Normal, 10,000 Feet	70-80 KIAS
Best Rate-of-Climb, Sea Level	74 KIAS
Best Rate-of-Climb, 10,000 Feet	72 KIAS
Best Angle-of-Climb, Sea Level	62 KIAS
Best Angle-of-Climb, 10,000 Feet	CT VIAC

Reference climb airspeeds can be found in the POH under Section 4 Normal Procedures

Establishing a Power-on Descent

- In cruise attitude lookout ahead and below
- Reduce power for estimated descent airspeed
- Keep straight and control yaw with rudder
- Decelerate to descent airspeed maintaining cruise attitude
- Establish required pitch attitude and trim

Maintaining a Power-On Descent

- Adjust power and attitude to attain desired descent airspeed and rate of descent
- Re-trim after power and attitude adjustments
- Continue lookout and monitor external references, heading, descent airspeed and rate of descent

Reference Descent Airspeeds

Landing Approach:										
Normal Approach, Flaps Up									65-75 KI	A\$
Normal Approach, Flaps 30°			-				-		60-70 KI	AS
Short Field Approach, Flaps 3	0°)							. 61 KI	AS
Balked Landing:										
Maximum Power, Flaps 20°									 . 60 KI	AS

 Reference descent airspeeds can be found in the POH under Section 4 Normal Procedures

Best Glide Airspeed

AIRSPEEDS FOR EMERGENCY OPERATION	
Engine Failure After Takeoff:	K
Wing Flaps Up	70 KIAS
Wing Flaps Down	65 KIAS
Maneuvering Speed:	2
2550 Lbs	105 KIAS
2200 Lbs	98 KIAS
1900 Lbs	90 KIAS
Maximum Glide	68 KIAS
Precautionary Landing With Engine Power	65 KIAS
Landing Without Engine Power:	:
Wing Flaps Up	70 KIAS
Wing Flaps Down	65 KIAS

 Best glide airspeed for power-off descents can be found in the POH under Section 3 Emergency Procedures

Operating Flaps

- Operate flaps conservatively while airspeed in white arc
- Flaps permit lower airspeeds and steeper descent angles
- Flaps support obstacle clearance approaches
- Retract flaps in stages within white arc (above 48 KIAS)

Balked Landings

- Apply full power and keep straight controlling yaw
- Establish and maintain slight nose-up attitude
- Control airspeed with attitude and retract flaps in stages
- Trim and continue to monitor climb airspeed
- Consider ground effect during go around

Summary / Quiz

- Why do we use different airspeeds for climbs and descents?
- Where can we find the Vx and Vy airspeeds?
- Where can we find the best glide airspeed?
- Mentally perform a power-on descent and level-off describing all required actions. (PAT)
- Mentally perform a balked approach describing all required actions – remember the flaps. (PAT)

Pre-Flight Briefing

- Exercise
- Training Area
- Departure and Arrival Procedures
- Weather Briefing / NOTAMs
- Aircraft and Documents
- Time and Fuel Requirements
- Safety Considerations and Responsibilities

Additional Materials

- Additional Materials for Climbing and Descending
- Flight Instructor Guide Exercises 7 and 8
- Flight Instructor Guide Lesson Plans 2, 3 and 4

Angle or Gradient of Climb

Maximum excess thrust available gives maximum angle or gradient of climb

- Weight increases weight apparent drag and excess thrust required
- Weight increases lift required and lift induced drag

Maximum Excess Thrust

Angle/Gradient of Climb - Propeller Excess Thrust Graph and Vx Maximum excess thrust occurs at VMP. Vx for a propeller aeroplane occurs at VMP.

Weight and Excess Thrust

Factors Affecting Angle/Gradient - Increasing Weight

Effects 2 and 3. Increasing weight requires more lift. This increases induced drag and therefore total drag. The result is a decrease in excess thrust and a decrease in the climb angle. Vx increases.

Configuration and Excess Thrust

Factors Affecting Angle/Gradient - Configuration

Flaps and undercarriage deployed increase parasite drag and therefore total drag. The result is a decrease in excess thrust and a decrease in the climb angle. Vx decreases.

Air Density and Excess Thrust

Rate of Climb

```
Rate of Climb = Power Available - Power Required

W

Maximum Excess Power Available gives Maximum Rate of Climb
```

- Rate of climb depends on both angle of climb and airspeed
- Forces multiplied with speeds give powers
- F*V=F*D/T=W/T=P

Maximum Excess Power

