Midterm Key Points

Similarity and Dissimilarity 相似性 & 相異性

Hamming distance

- 相同位元長度的不同位元數量
- ullet Hamming $distance = \sum_{i=1}^n \mathbb{1}(x_i
 eq y_i)$
- Example
 - 001000
 - 110101
 - ooooxo
 - $Hamming\ distance = 5$

Jaccard similarities

- 兩集合交集和聯集的比例
- $Jaccard\ similarities = rac{|A\cap B|}{|A\cup B|}$
- Example
 - {1, 2, 3, 4}
 - {2, 3, 4, 5}
 - $Jaccard\ sim = rac{\{2,3,4\}}{\{1,2,3,4,5\}} = rac{3}{5} = 0.6$

Jaccard distance

- ullet $Jaccard\ distance = 1 Jaccard\ similarities$
- Example
 - Jaccarddis = 1 0.6 = 0.4

Cosine similarities

- 反映兩向量之間角度關係
- ullet $Cosine\ similarities = rac{\Sigma_{i=1}^n A_i B_i}{\sqrt{\Sigma_{n=1}^n A_i^2} \sqrt{\Sigma_{n=1}^n B_i^2}}$

Cosine distance

• $Cosine\ distance = 1 - Cosine\ similarities$

Recommender Systems

Content-based Recommendation(基於內容的推薦)

• 優點:不需要大量使用者資料,推薦結果個性化。

缺點:過濾泡泡問題、依賴物品特徵、推薦多樣性較差。

Collaborative Filtering (協同過濾)

• 優點:無需物品特徵、推薦多樣性高。

• 缺點:冷啟動問題、資料稀疏問題。

User-based vs Item-based Collaborative Filtering

• User-based:根據使用者相似性進行推薦。

• Item-based:根據物品相似性進行推薦。

Clustering

K-means vs. Hierarchical Agglomerative Clustering

K-means 只需在每階段計算每一個點至重心的距離,階層式分群需在每階段都計算群與群的距離,在計算量而言,K-means 會有更好的效率

K-means

- 重複分配以及更新直至收斂
 - 隨機選擇 k 個初始重心
 - 將每個點分配到最近的重心
 - 更新每群的重心
- Euclidean Distance
 - $ullet \ distance(x,y) = \sqrt{\Sigma_{i=1}^n (x_i y_i)^2}$

Hierarchical Agglomerative Clustering

- 每個點初始為單獨群集
- 將最近的兩群合併成一個新的群集
- 逐步合併最相近的群直到達到指定群數

MapReduce

- Map Function: 將資料分成小單位進行處理
- Reduce Function: 對 Map Function 的輸出進行合併和計算
- Example
 - Map: 將每行文字分割為單詞‧形成 (word,1) 的鍵值對

• Reduce: 計算每個單詞的總出現次數

Dimensionality Reduction

Singular Value Decomposition (SVD)

- 將高維資料降維
- 用於資料降維和去除雜訊
- 保留重要特徵

TF-IDF

- TF = 出現次數 文件總詞數
- $IDF = \log \frac{$ 文章數}{ 包含詞的文章數}