E1:

Q1:

The reason is that flow tcp 1 has to traverse more routers than flow tcp 2, which means it has a longer delay.

Q2:

Tcp 1 is using slow-start to detect available bandwidth.

Q3:

During time 0.5 - 2.0 sec, tcp 1 is the only flow active but it is still in the slow-start phase and have to compete with other flows starting at 2.0 sec before it can reach the maximum bandwidth.

E2:

Q1:

The data size **2000** and **3500** caused fragmentation because there is offset flag in frame, picture shows below:

```
Fragment offset: 1480

Time to live: 64

Protocol: ICMP (1)

Header checksum: 0x04c4 [validation disabled]

Source: 192.168.1.103 (192.168.1.103)

Destination: 8.8.8.8 (8.8.8.8)

[Source GeoIP: Unknown]

[Destination GeoIP: Unknown]

[2 IPv4 Fragments (2008 bytes): #16(1480), #17(528)]

[Frame: 16, payload: 0-1479 (1480 bytes)]

[Frame: 17, payload: 1480-2007 (528 bytes)]

[Fragment count: 2]

[Reassembled IPv4 length: 2008]

[Reassembled IPv4 data: 080008f5d90500005b51dd800009a51108090a0b0c0d0e0f...]
```

192.168.1.103 fragmented the original datagram.

And in data size id specifies as 2000, there will be 2 fragments created.

Q2:

The reply from the destination 8.8.8.8 for 3500-byte data size also get fragmented, as picture shows below:

```
▼ [3 IPv4 Fragments (3508 bytes): #55(1448), #56(1448), #57(612)]

[Frame: 55, payload: 0-1447 (1448 bytes)]

[Frame: 56, payload: 1448-2895 (1448 bytes)]

[Frame: 57, payload: 2896-3507 (612 bytes)]

[Fragment count: 3]

[Reassembled IPv4 length: 3508]

[Reassembled IPv4 data: 0000407edb0500025b51dd8b0007496808090a0b0c0d0e0f...]
```

The reason is that data size is too large to transmit, and must be fragmented.

Q3:

Like the picture shows below:

41 19.39587100(192.168.1.103	8.8.8.8	ICMP	582 Echo	(ping)	request	id=0xdb05			
44 19.46086900(8.8.8.8	192.168.1.103	ICMP	646 Echo	(ping)	reply	id=0xdb05,			
47 20.39862200(192.168.1.103	8.8.8.8	ICMP	582 Echo	(ping)	request	id=0xdb05			
50 20.45883300(8.8.8.8	192.168.1.103	ICMP	646 Echo	(ping)	reply	id=0xdb05			
54 21.40349700(192.168.1.103	8.8.8.8	ICMP	582 Echo	(ping)	request	id=0xdb05			
57 21.46725900(8.8.8.8	192.168.1.103	ICMP	646 Echo	(ping)	reply	id=0xdb05			
PLOTOCOT: TCWL-(T)									
▼ Header checksum: 0x2ab9 [validation disabled]									
[Good: False]									
[Bad: False]									
Source: 192.168.1.103 (192.168.1.103)									
Destination: 8.8.8.8 (8.8.8.8)									
[Source GeoIP: Unknown]									
[Destination GeoIP: Unknown]									
▼ [3 IPv4 Fragments (3508 bytes): #39(1480), #40(1480), #41(548)]									
[Frame: 39, payload: 0-1479 (1480 bytes)]									
[Frame: 40, payload: 1480-2959 (1480 bytes)]									
[Frame: 41, payload: 2960-3507 (548 bytes)]									
[Fragment count: 3]									
[Reassembled IPv4 length: 3508]									
[Reassembled IPv4 data: 0800565cdb0500005b51dd8900072b8e08090a0b0c0d0e0f]									

41 19.39587100(192.168.1.103	8.8.8.8	ICMP	582 Echo (ping) request	id=0xdb05,
44 19.46086900(8.8.8.8	192.168.1.103	ICMP	646 Echo (ping) reply	id=0xdb05,
47 20.39862200(192.168.1.103	8.8.8.8	ICMP	582 Echo (ping) request	id=0xdb05,
50 20.45883300(8.8.8.8	192.168.1.103	ICMP	646 Echo (ping) reply	id=0xdb05,
54 21.40349700(192.168.1.103	8.8.8.8	ICMP	582 Echo (ping) request	id=0xdb05,
57 21.46725900(8.8.8.8	192.168.1.103	ICMP	646 Echo (ping) reply	id=0xdb05,
▼ Internet Control Message Protocol				
Type: 8 (Echo (ping) request)				
Code: 0				
Checksum: 0x565c [correct]				
Identifier (BE): 56069 (0xdb05)				
Identifier (LE): 1499 (0x05db)				
Sequence number (BE): 0 (0x0000)				
Sequence number (LE): 0 (0x0000)				
[Response frame: 44]				

ID: 0Xdb05, length = 1500, flag = 1, offset = 0
ID: 0Xdb05, length = 1500, flag = 1, offset = 185
ID: 0Xdb05, length = 568, flag = 0, offset = 370

Q4:

This is not sure, I can only sure about that there is no further fragmentation occur in the last packet of the fragment. But in the former two fragments, I can not sure whether there is fragmentation occur only we can found the offset value is between 0 and 185 or 185 and 370.

Q5:

If one fragment is lost, the whole packet should be retransmitted, and the packet with one fragment missing will be discarded.

E3:

Q1:

Node 0 sends packets to Node 5, follow the route 0 - 1 - 4 - 5.

Node 2 sends packets to Node 5, follow the route 2 - 3 - 5.

Both the routes do not change over time.

Q2:

At time 1.0 the link between Node 1 and Node 4 goes down, the route between Node 1 and Node 5 does not change, but Node 0 cannot reach Node 5.

At time 1.2 the link between Node 1 and Node 4 goes up, and the packets can be forwarded again, and Node 0 can reach Node 5 again.

Q3:

When the link between Node 1 and Node 4 goes down, the route changes to 0 - 1 - 2 - 3 - 5. However, when link between Node 1 and Node 4 goes up, the route back to 0 - 1 - 4 - 5. The reason is that the original route has lower cost than 0 - 1 - 2 - 3 - 5.

Q4:

This changes the cost of the link between Node 1 to Node 4 to Node3.

The route changes to 0 - 1 - 2 - 3 - 5 since the cost of route 0 - 1 - 2 - 3 - 5 is 4 which is lower than the cost of route 0 - 1 - 4 - 5 is 5.

Q5:

Node 2 can transmit data use route 2 - 1 - 4 - 5 or route 2 - 3 -5.

Since the network is now using multi path routing, Node 2 will split traffic equally on both these paths.