Algebra relazionale

L'algebra relazionale è utilizzata per l'interrogazione di una base di dati. Specifica il procedimanto per ottenere il risultato.

L'algebra relazionale consiste in un insieme di operazioni chiuse sulle relazioni e si compone di operatori di tipo:

- Unario -> $op(r_1) \rightarrow r_2$;
- Binario -> $op(r_1, r_2) \rightarrow r_3$;

Dal punto di vista funzionale, gli operatori possono essere divisi in tre gruppi:

- Operatori insiemistici;
- Operatori specifici;
- Operatori di giunzione (o Join), che uniscono più tabelle imponendo condizioni.

Dal punto di vista della derivabilità, possono essere classificati in:

- Operatori di base;
- Operatori derivati (ottenuti combinando operatori di base).

Operatori insiemistici

Gli operatori insiemistici applicano alle relazioni le operazioni dell'algebra legate agli insiemi. Questo è possibile poichè le relazioni sono insiemi di tuple omogenee.

Definizione: Due tuple si dicono omogenee se hanno gli stessi attributi.

Gli operatori insieministici si possono applicare, quindi, solo a relazioni con lo stesso schema.

Date r_1 e r_2 relazioni di schema $R_1(x)$ e $R_2(X)$, è possibile applicare loro i seguenti operatori insiemistici:

	m1	on	Δ
v	111	UL	

Operatore binario di base.

$$r_1 \cup r_2 = r_3$$

- Contenuto di r_3 -> $\{t | (t \in r_1) \ OR \ (t \in r_2)\};$
- Schema di r_3 -> insieme X, non cambia.

Cardianlità:
$$\begin{cases} |r_1 \in r_2| \le |r_1| + |r_2| \\ |r_1 \in r_2| \ge MAX(|r_1|, |r_2|) \end{cases}$$

Differenza

Operatore unario di base.

$$r_1 - r_2 = r_3$$

- Contenuto di r_3 -> $\{t|(t \in r_1) \ AND \ (t \notin r_2)\};$
- Schema di r_3 -> insieme X, non cambia.

Cardianlità:
$$\begin{cases} |r_1 - r_2| \le |r_1| \\ |r_1 - r_2| \ge 0 \end{cases}$$

Intersezione

Operatore binario derivato.

$$r_1 \cap r_2 = r_1 - (r_1 - r_2)$$

Cardianlità:
$$\begin{cases} |r_1\cap r_2|\leq min(|r_1|,|r_2|)\\ |r_1\cap r_2|\geq 0 \end{cases}$$

Operatori specifici

Data r relazione di schema R(X) con $X = \{A_1, ..., A_n\}$, gli operatori specifici applicabili sono:

Ridenominazione Operatore unario di base. Consente la modifica dello schema di una relazione (ovvero permette di modificare il valore dei suoi atributi).

Dato un insieme di attributi $y = \{B_1, ..., B_n\}$, con |y| = |b|, allora:

$$\rho_{A_1,...,A_n\to B_1,...,B_n}=\{t|\exists t'\in r \text{ tale che } \forall i\in\{...,n\} \text{ allora } t'[A_i]=t[B_i]\}$$

- Contenuto di r_3 -> risultato ;
- Schema di r_3 -> y.

Esempio

Popolazione:

Nome	Cap	Abitanti
Verona	37100	35000
Vicenza	50100	15000

Città: **Popolazione** Comune Cap Milano 20100 2500000

Non posso fare l'unione, devo prima ridenominare:

$$\rho_{\text{Abitanti} \rightarrow \text{Popolazione}}(\text{Popolazione}) \cup (\text{Citt\`a})$$

Selezione

Operatore unario di base. Consente di estrarre da una relazione solo le tuple che soddisfano una certa condizione F (taglio in orizzontale).

$$\sigma_F(r) = \begin{cases} \text{schema} & X \\ \text{istanza} & \{t \,|\, \exists t' \in r: \, F(t) (\text{la tupla t rende vera F}) \} \end{cases}$$

La condizione F è una formula proposizionale che si ottiene combinando attraverso i connettivi logici \land, \lor, \neg formule *atomiche* del tipo:

- $A\theta B$;
- $A\theta c$.

Dove:

- $\theta \in \{=, \neq, >, <, \geq, \leq\};$
- $A, B \in X$;
- $c \in DOM(A)$ o è compatibile con DOM(A).

Una formula atomica del tipo $A\theta B$ è vera sulla tupla $t \in r$ se vale:

$$t[A]$$
 oppure $t[B]$

Una formula atomica del tipo $A\theta c$ è vera sulla tupla $t \in r$ se vale:

$$t[A]$$
 oppure c

Cardianlità: $0 \ge |\sigma(r)| \ge |r|^1$

 $^{^{1}}F$ è tanto più selettiva quanto più la cardinalità di avvicina a 0.

Proiezione

Operatore unario di base. Consente di eliminare alcuni attributi delle tuple di una relazione.

Sia $y = \{A_1, ..., A_n\}$ un sottoinsieme degli attributi di X, allora:

$$\Pi_Y(r) = \begin{cases} ext{schema} & Y \\ ext{istanza} & \{t \, | \, \exists t' \in r : \, t = t'[Y] \} \end{cases}$$

dove t'[Y] è una tupla E su Y tale che $\forall A_i \in Y_i$ vale $E[A_i] = t'[A_i]$.

Cardianlità: $\begin{cases} 1 \leq |Pi_Y(r)| \leq |r| & \text{in generale} \\ |Pi_Y(r)| = |r| & \text{se } y \text{ è una superchiave per } r \end{cases}$

Operatori di giunzione

Gli operatori di giunzione consentono di unire in un'unica relazione tuple contenute in due relazioni distinte costruendo coppie di tuple che soddisfano una condizione di joint e generando per ogni coppia una tupla nel risultato.

\bar{r}_1	Α	В	C	$ar{r}_2$ C D	$r_1 \bowtie r_2$	A	В	С	D
	a_1	b_2	c_1	c_1 d_0		a_1	b_1	c_1	d_0
	a_2	b_2	c_2	c_2 d_9		a_2	b_2	c_2	d_9
	a_3	b_1	c_2			a_3	b_1	c_2	d_9
	a_4	b_4	c_3						

Gli operatori di giunzione si dividono in:

Join naturale

Operatore binario di base. La condizione di join è implicita e dipende dallo schema di relazioni coinvolte. Due tuple costituiscono una coppia generata dal join se presentano gli stessi valori (uguaglianza) negli attributi comuni alle due relazioni.

Siano r_1 e r_2 due relazioni di schema $R_1(X_1)$ e $R_2(X_2)$, allora:

$$r_1\bowtie r_2=\begin{cases} \text{schema:} X_1\cup X_2\\ \text{istanza:} \{t\mid \exists t_1\in r_1\ \land \exists t_2\in r_2:\quad t_1=t[X_1]\ \land t_2=t[X_2]\}\end{cases}$$

Nel caso in cui non vi siano attributi in comune, il join naturale è detto prodotto cartesiano e produce tutte le coppie possibili.

Cardianlità:

- $0 \le |r_1 \bowtie r_2| \le |r_1| \cdot |r_2|$ in generale;
- $|0 \le |r_1 \bowtie r_2| \le |r_1|$ se $x_1 \cap x_2$ è superchiave per r_2 ;
- $|r_1 \bowtie r_2| = |r_1|$ se $x_1 \cap x_2$ è soggetto a un vincolo di integrità referenziale che vincola $x_1 \cap x_2$ su r_1 rispetto a r_2 e $x_1 \cap x_2$ è superchiave per r_2 .

Proprietà:

Date r_1 e r_2 due relazioni di schema $R_1(X_1)$ e $R_2(X_2)$, allora:

- Il join naturale $r_1 \bowtie r_2$ si dice completo se

$$\forall t_1 \in r_1 \text{ tali che } \exists t \in r_1 \bowtie r_2 \text{ vale che } t[X_1] = t_1$$

Λ

$$\forall t_2 \in r_2 \text{ tali che } \exists t \in r_1 \bowtie r_2 \text{ vale che } t[X_2] = t_2$$

In questo caso la cardinalità diventa: $MAX(|r_1|, |r_2|) \le |r_1| \bowtie |r_2| \le |r_1| \cdot |r_2|$;

- Il join naturale è commutativo;
- Il join naturale è associativo;
- Se le due relazioni hanno lo stesso schema ($X_1=X_2$) allora

$$r_1 \bowtie r_2 = r_1 \cap r_2$$

- Se le due relazioni hanno schemi disgiunti ($X_1 \cap X_2 = \emptyset$) allora

$$r_1 \bowtie r_2 = r_1 \ge r_2$$
 (prodotto cartesiano)

Θ-join

Operatore binario derivato. Produce come risultato il join tra r_1 e r_2 dove la condizione di join è esplicitata come parametro. Per poterlo usare è necessario che le due relazioni abbiano schemi discigiunti $(X_1 \cap X_2 = \emptyset)$.

$$r_1 \bowtie_F r_2$$

Un θ -join si dice EQUI-join se la condizione F è una congiunzione di uguaglianza tra attributi di r_1 e r_2 .

Equivalenza tra gli operatori di join

Il join naturale tra due relazioni r_1 di schema X_1 e r_2 di schema X_2 dove $X_1 \cap X_2 = \{c_1, \dots, c_m\}$ equivale alla seguente espressione contenente un Θ -Join :

$$r_1 \bowtie r_2 \equiv \Pi_{X_1 \cap X_2}(r_1 \bowtie_{c_1' = c_1 \wedge \dots \wedge c_m' = c_m} (\rho_{c_1, c_2, \dots, c_m \to c_1', c_2', \dots, c_m'}(r_2)))$$