

A Study of the Performance Predictive Features of Battery Cells

Rafael Abbariao

Introduction

- UEP is a New York based company manufacturing and deploying high-capacity, rechargeable and inexpensive batteries
- Assures stackable power during outages to provide power for hours to days

Solar Micro Grid

Grid Stabilization

Introduction

UEP Cell

- Uses zinc-manganese dioxide ($Zn-MnO_2$) chemistry as traditional AA batteries
- Can be recharged hundreds of times
- High-capacity, safe, easy to transport, and inexpensive alternative to lithium-ion and lead-acid batteries

The Monoblock

- Building block for UEP's systems are blocks of four UEP cells in series
- Each monoblock has capacity of 2 kWh energy

Understanding Battery Chemistry

Failure Mechanisms:

- Instability of Mn(III) resulting in formation of irreversible Mn_3O_4
- Zn poisoning forming irreversible ZnMn₂O₄

Chemistry:

- Zn and MnO₂ deliver capacities through a two-electron reaction in alkaline electrolyte
- Zn delivers through a dissolution-precipitation reaction
- MnO_2 exhibits proton insertion when EMD is used (γ - MnO_2) but goes through dissolution-precipitation when birnessite is used (δ - MnO_2)

Understanding Battery Specifications

- 1. Constant current charge
- 2. Constant voltage charge
- 3. Rest step
- 4. Constant current discharge
- 5. Rest step

Battery Specifications:

- <u>C-rate</u>: Or discharge current which is a measure of the rate at which a battery is discharged relate to its max capacity
- <u>State of Charge (SOC, %)</u>: Expression of the present battery capacity as a percentage of max capacity
- <u>Depth of Discharge (DOD, %)</u>: Percentage of battery capacity that has been discharged as a percentage of max capacity
- <u>Nominal Capacity</u>: The total Amp-hours available when the battery is discharged at a certain discharge current (C-rate) from 100% SOC to the cut-off voltage
- <u>Cycle life:</u> defined as number of complete charge-discharge cycles performed before nominal capacity falls below 80% initial rated capacity.

Understanding Battery Performance and Research Purpose

Number of Cycles as a function of MnO₂ and Zn utilization. The green are represents low MU while the blue represents large capacity

CUNY Energy Institute observed that the cells could:

- Surpass 300 cycles at 50 Ah (or 20% utilization of EMD) for cylindrical cell
- Deliver 150 Ah (or 60% utilization of EMD) where 10 cycles are required

Recall

Cycle life: defined as number of complete charge-discharge cycles performed before nominal capacity falls below 80% initial rated capacity.

Operating Specs?
Manufacture?
Both?
Neither?

Data Processing (for validation)


```
Time Series Data - Processing Script
```

```
df = pd.read_csv("C:/path/timeseriesfile.csv")
df.head()
X = df.iloc[:, 2].values
y_1 = df.iloc[:, [7]].values # charge cap
y_2 = df.iloc[:, [8]].values # discharge cap
Y_1 = plt.plot(X, y_1, color = 'red', label = 'Charge Capacity')
Y_2 = plt.plot(X, y_2, color = 'blue', label = 'Discharge Capacity')
plt.xlabel('Cycle Number')
plt.ylabel('Charge/Discharge Capacity (Ah)')
plt.legend(loc='lower left')
print('Recorded Cycles: %d' % (df.iloc[:, 2].max())) # print max number of cycles recorded
```

print('C-rate: %d Ah' % (df.iloc[:, 8].max())) # print discharge capacity

Recorded Cycles: 19

C-rate: 60 Ah

abovefade_DC = df['Discharge Capacity (Ah)'] < 0.805 * max_DC belowfade_DC = df['Discharge Capacity (Ah)'] > 0.795 * max_DC fade_df = df[abovefade_DC & belowfade_DC] fade_df.tail(5)

max_DC = df['Discharge Capacity (Ah)'].max()

print(fade_df['Cycle Number'].tail(1)) print(fade_df['Discharge Capacity (Ah)'].tail(1)) 40774 16

Name: Cycle Number, dtype: int64

40774 48,293544

Name: Discharge Capacity (Ah), dtype: float64


```
Cycle Series Data - Processing Script
```

```
df = pd.read_csv("C:/path/cycleseriesfile.csv")
df.head()
X = df.iloc[:, 0].values
y_1 = df.iloc[:, [1]].values # charge capacity
y_2 = df.iloc[:, [2]].values # discharge capacity
yl = plt.plot(X, y_1, color = 'red', label = 'Charge Capacity')
y2 = plt.plot(X, y_2, color = 'blue', label = 'Discharge Capacity')
plt.xlabel('Cycle Number')
plt.ylabel('Charge/Discharge Capacity (Ah)')
plt.legend(loc='lower left')
def fadecycle():
  initial_DC = df.iloc[[1], [2]].values
  for _, row in df.iloc[1:, :].iterrows():
    if row[2] <= 0.8 * initial_DC:
       print(row[0], row[2])
print(fadecycle())
```


138 46.81879304 139 43.10925148 140 40.33167306 141 38.64781188 142 37.33765924 143 36.67580096 144 34.37053032 145 32.73379815 146 0.0

NY ENERGY INSTITUTI


```
successful_df1 = pd.read_csv("C:/path/file.csv")
unsuccessful_df1 = pd.read_csv("C:/path/file.csv")
merged_df = pd.concat([successful_df1.iloc[:10, :], unsuccessful_df1.iloc[:10, :]])
merged_df.replace('None', np.nan, inplace=True)
imputer = SimpleImputer(missing_values = np.nan, strategy = "constant", fill_value = 0)
imputed_df = imputer.fit_transform(merged_df.iloc[:, :])
imputed_df = pd.DataFrame(imputed_df, columns = merged_df.columns)
clean_df = imputed_df[['selectfeatures']]
clean_df = clean_df.convert_objects(convert_numeric=True)
fig, axes = plt.subplots(14, 3, figsize = (20, 16))
ax = axes.ravel()
for i in range(41):
  _, bins = np.histogram(clean_df.iloc[:, i], bins = 50)
  ax[i].hist(clean_df.iloc[:30, i], bins = bins, color = 'g', alpha = 0.3)
  ax[i].hist(clean_df.iloc[30:, i], bins = bins, color = 'r', alpha = 0.5)
  ax[i].set_title(clean_df.columns[i], fontsize = 12)
  ax[i].axes.get_xaxis().set_visible(True)
  ax[i].set_yticks(())
ax[0].legend(['successful', 'fade'], loc = 'best', fontsize = 12)
plt.tight_layout()
plt.show()
```

Understanding Battery Chemistry (Recall)

Failure Mechanisms:

- Instability of Mn(III) resulting in formation of irreversible Mn_3O_4
- Zn poisoning forming irreversible ZnMn₂O₄

Chemistry:

- Zn and MnO₂ deliver capacities through a two-electron reaction in alkaline electrolyte
- Zn delivers through a dissolution-precipitation reaction
- MnO_2 exhibits proton insertion when EMD is used (γ - MnO_2) but goes through dissolution-precipitation when birnessite is used (δ - MnO_2)

Component Analysis (continued)

Structure of a primary D cell

Roll to roll manufacturing process used by UEP

Component Analysis (continued)

	Cell Assembly Date	Cell Assembly Operator	A. Batch Nbr	C. Batch Nbr	Dry Voltage
0	4/26/2018	Franck	A - 040618	C - 042518	0.200
1	4/26/2018	Franck	A - 040618	C - 042518	0.300
2	4/26/2018	Franck	A - 040618	C - 042418	0.270
3	5/10/2018	Franck	A - 050318	C - 050718	0.200
4	5/10/2018	Franck	A - 043018	C - 050718	0.290

		▼			
	Cell Assembly Date	Cell Assembly Operator	A. Batch Nbr	C. Batch Nbr	Dry Voltage
0	3	1	1	4	0.200
1	3	1	1	4	0.300
2	3	1	1	3	0.270
3	4	1	7	5	0.200
4	4	i	5	5	0.290

What's Next?

Use a feature based deep learning model to classify the cells to be able to predict battery cycle life before degradation

Data-driven prediction of battery cycle life before capacity degradation

Kristen A. Severson © 1,5, Peter M. Attia © 2,5, Norman Jin © 2, Nicholas Perkins © 2, Benben Jiang © 1, Zi Yang © 2, Michael H. Chen © 2, Muratahan Aykol © 3, Patrick K. Herring © 3, Dimitrios Fraggedakis © 1, Martin Z. Bazant © 1, Stephen J. Harris © 2,4, William C. Chueh © 2* and Richard D. Braatz © 1*

	Classification accuracy (%)			
	Train	Primary test	Secondary test	
Variance classifier	82.1	78.6	97.5	
Full classifier	97.4	92.7	97.5	

Train and primary/secondary test refer to the data used to learn the model and evaluate model performance, respectively.

Thank you!

