Projeto em Ciência de Dados 2 - Possíveis soluções para os objetivos do projeto

1. Qual a vazão de saída do reservatório a cada momento?

• Solução: Contas matemáticas simples com pandas.

2. Qual a curva típica da saída do reservatório ao longo de 24h durante os dias úteis? E nos finais de semana?

- Solução: Diferentes gráficos (pyplot/matplotlib/seaborn) para a vazão de saída ao longo dos dias.
- Podemos ter:
 - Um gráfico para cada dia da semana (média simples da saída por dia)
 - Um gráfico com a saída para a semana completa (média simples da saída considerando todos os dias entre segunda e sexta)
 - Um gráfico para cada dia do fim de semana (média simples da saída por dia)
 - Um gráfico com a saída para o fim de semana completo (média simples da saída considerando sábados e domingos)
 - Gráficos considerando as estações do ano, meses do ano e etc.

3. Qual o tempo de uso das bombas em horário de ponta e fora de ponta?

- **Solução:** Estatísticas para o uso das bombas
- Podemos ter:
 - Estatística para o uso médio (tempo em horas/minutos) para as bombas durante os horários de ponta e fora de ponta.
 - Estatísticas que dependem da estação/meses do ano e etc.

4. Qual a previsão da vazão de saída para as próximas 24h para um determinado dia e horário?

o Solução: Modelo de ML (NNs, Arima/Sarima, XGBosst, etc)

5. Para um determinado dia, horário e nível do reservatório, em quanto tempo ele se esvaziará caso falte energia?

 Solução: Usar a previsão da vazão (perguntas 4 e 7) e calcular em quanto tempo (horas/minutos) o reservatório será esvaziado.

6. Há correlação entre a temperatura e o consumo de água?

- Solução: Análise de correlação simples.
- Podemos ter:
 - Gráficos entre temperatura e consumo de água ao longo do tempo (dias/semanas/meses)

- Gráficos entre consumo de água para diferentes épocas do ano (com temperatura média para essas épocas)
- 7. Qual a previsão da vazão de saída para as próximas 24h para um determinado dia e horário, considerando uma previsão de temperatura?
 - **Solução:** Igual a pergunta 4. Modelo de ML para previsão da vazão, dessa vez utilizando também dados meteorológicos.
- 8. Para um determinado dia, horário, nível do reservatório e previsão da vazão de saída para as próximas 24h, qual deveria ser a programação horária de cada bomba, de modo a minimizar o uso delas durante o horário de ponta, enquanto mantém o nível do reservatório entre 20 e 95%?
 - Solução: Muito difícil. Algum algoritmo (necessita pesquisa e estudo) para otimização do uso das bombas.
 - Podemos ter:
 - Rede neural para otimização (saída com a probabilidade de cada bomba estar ligada em certo momento). A rede vai precisar de uma função de custo personalizada, que tente minimizar o uso das bombas sem infringir o limite do reservatório (solução mais legal)
 - Algoritmo de otimização mais clássico, como programação linear, programação inteira, PSO (Particle Swarm Optimization). (Difícil, exige muito estudo e verificar se é viável)
 - Algoritmo genético (uma merda, mas pode ser que funcione)
 - Aprendizado por reforço (legal, mas ninguém sabe o suficiente sobre isso)

Entregável:

- Dashboard com gráficos e estatísticas?
- Uma REST API para alimentar esse dashboard?
- Obs: podemos discutir isso na apresentação da proposta de solução.

Pontos Importantes para se levar em consideração

1. Para fazer inferência em dados futuros, vamos precisar consumir dados de previsão de tempo para o RS. Se existir uma API para isso, provavelmente ela vai retornar menos informação do que os dados meteorológicos que recebemos, ou seja, para criar o modelo, temos que saber oque vem dessa API.