Solving the Vehicle Routing Problem with Multiple Trips by Adaptive Memory Programming

Alfredo Olivera and Omar Viera Universidad de la República Montevideo, Uruguay

ICIL'05, Montevideo, Uruguay, February 2005

Contents

- 1. Motivation and problem description.
- 2. Adaptive memory procedure.
- 3. Experimental results.
- 4. Conclusions and future work.

The classic Vehicle Routing Problem (VRP)

• Given:

- A set of n customers and one depot.
- Travelling costs c_{ij} .
- Customer demands q_i and vehicle capacity Q.
- Find a set of routes such that:
 - Each route starts and ends at the depot.
 - Every customer belongs to exactly one route.
 - Vehicle capacity is not exceeded in any route.
 - The total cost is minimized.

A sample VRP instance

The optimal VRP solution

• Total cost 525 (5 routes).

The VRP solution in practice - finite fleet

• Total cost 525 (5 routes).

• Problem: 3 vehicles available.

• Solution: ?

The VRP solution in practice - finite fleet

The VRP solution in practice - time horizon

The VRP solution in practice - time horizon

- Total cost 554 (6 routes).
- Problem: must finish the work before time 200.
- Solution: re-calculate!

VRP limitations

- The classic VRP model does not consider:
 - a finite number of vehicles,
 - a time horizon,
 - the assignment of routes to vehicles.
- It is not always possible to account for these constraints at a second stage.

The VRP with Multiple Trips (VRPMT)

- Besides the VRP constraints, the VRPMT considers:
 - A finite number of vehicles (m).
 - A time horizon (T).
- Solutions include an assignment of routes to vehicles.
- More than one route may be assigned to the same vehicle.
- The duration for each vehicle should not be greater than T.

Some remarks about the VRPMT

- The problem incorporates realistic constraints.
- Finding a *feasible* solution is NP-Hard (by reduction of the Bin Packing Problem).
- Little work reported in the OR literature.

Adaptive memory procedure

The Adaptive Memory Procedure (AMP)

- Proposed by Rochat and Taillard in 1995 for VRP and VRPTW.
- Probabilistic intensification and diversification.
- Enhancement of local search algorithms.
- Gives accurate solutions when used to solve other VRPs.

AMP - The algorithm

- ullet A memory M with *components* of visited solutions is kept.
- A generic template:
 - 1. Initialize M.
 - 2. Repeat for AMP^{iter} iterations:
 - (a) **Build** a solution s using M.
 - (b) Apply tabu search to s.
 - (c) **Update** M using the obtained solution.

AMP - The Memory

- ullet The memory M contains individual routes.
- Routes belonging to better solutions are stored first.
- The size of the memory is bounded.

AMP - Initialization

- Initially, the memory is empty.
- The following is repeated a fixed number of times:
 - 1. Build a solution using a fast randomized heuristic.
 - 2. Apply the **tabu search** to that solution.
 - 3. Add the routes of the new solution to M.

AMP - Solution building

- ullet Probabilistically select non-overlapping routes from M.
- Higher probability is assigned to the first routes.
- The selected routes are assigned to the vehicles, using a simple greedy heuristic.

Tabu Search - neighborhood definition

ullet For each solution s, a set of neighbors N(s) is defined:

Tabu Search - exploration strategy

 Infeasible solutions may be visited and penalized in the objective function.

Repeat for TS^{iter} iterations:

- 1. Make the best non-tabu move.
- 2. Declare tabu the inverse of the move for δ iterations.

Experimental results

Benchmark problems

- The AMP was tested over a set of 104 benchmark problems.
- Highly constrained instances (finding a feasible solution is the main issue).
- Results were compared with:
 - Brandão and Mercer (BM),
 - Taillard, Laporte and Gendreau (TLG),
 - Petch and Salhi (PS).

Summarized results

	AMP	BM	TLG	PS
Feasible solutions	95	89	86	76
Average LTR (%)	1.4	$\int 5.2$	6.5	4.9
Average Overtime	3.9	9.3	14.2	_

- Average GAP with respect to a VRP lower bound: 3.09%.
- The GAP standard deviation average was 0.76%.
- The AMP solved 6 previously unsolved instances.

Conclusions and future work

Conclusions

- We solved a hard and practical vehicle routing problem.
- The AMP was effective (once more).
- The algorithm seems to be flexible to handle more constraints.

Future work

- Add constraints to the VRPMT:
 - heterogeneous fleet,
 - multiple depots,
 - time windows,
 - control of depot congestion.

Questions