\tilde{e}_k, \tilde{x}_k : $\tilde{x}_k = \tilde{e}_k + \sum_{i=1}^p a_i \tilde{x}_{k-i}$. Если пренебречь шумом квантования ξ_k , то $\tilde{x}_k \cong x_k$ и их можно использовать для оценки корреляционной функции $\hat{R}_x(i)$ в приемнике и далее по (4.31) найти коэффициенты предсказания.

4.2.4. Мера информации непрерывного источника.

Н.И в последовательные моменты времени t_k , k=1,2,...,n вырабатывает сообщения x_k . Случайный вектор $(x_1,...,x_n)$ характеризуется многомерной функцией плотности распределения вероятности $w_n(x_1,...,x_n,t_1,...,t_n)$. Если величины x_k независимы и процесс на выходе Н.И стационарный, то источник описывается одномерной ФПВ w(x). Марковский Н.И характеризуется следующей ФПВ : $w(x_k,x_{k-1})=w(x_{k-1})w(x_k/x_{k-1})$. Формулы для энтропии непрерывного источника получаются путем обобщения формул для энтропии Д.И.

Пусть Н.И вырабатывает сообщение x(t). Переходя от непрерывно процесса к дискретному путем процедур дискретизации и квантования, получим: $\widetilde{x}_k = l\Delta$, где $l = 0,\pm 1,\pm 2,...$, Δ - шаг квантования, \widetilde{x}_k - квантованный отсчет, появляющийся с вероятностью $p_l = P\{\widetilde{x}_k = l\Delta\}$. Предположим, что источник описывается одномерной ФПВ. Тогда $p_l \cong w(\widetilde{x}_k)\Delta$.

Тогда на основе формулы для энтропии ДИ получим:

$$\begin{split} H(x,\Delta) &= -\sum_l p_l \log_2(p_l) = -\sum_l p_l \log_2(w(\widetilde{x}_k)\Delta) = -\sum_l p_l \log_2(w(\widetilde{x}_k)) - \sum_l p_l \log_2(\Delta) = \\ &-\sum_l w(\widetilde{x}_k) \log_2(w(\widetilde{x}_k))\Delta - \log_2(\Delta) \,, \quad \text{т.к.} \quad \sum_l p_l = 1 \,. \quad \text{Переходя к пределу при } \Delta \to 0 \,, \\ &\text{получим} \end{split}$$

$$H(x) = -\int_{-\infty}^{\infty} w(x) \log_2(x) dx - \lim_{\Delta \to 0} \log_2(\Delta).$$

Первое слагаемое — **дифференциальная энтропия**, второе — величина бесконечно большая (конечна она только при конечном интервале квантования Δ), она часто исключается из рассмотрения, т.к. при передаче сообщения по каналу связи важна дифференциальная энтропия