If two vectors are linearly independent, can I say, they are uncorrelated?

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 7 & 17 \\ 2 & 11 & 19 \end{bmatrix}$$

$$Rank = 3$$

$$A_1 & A_2 \text{ are linearly In dependence}$$

$$A_1 & A_2 \neq 0$$

Ax= Sx ~> eigen value & eigen vector

$$|A| = \prod_{i=1}^{d} S_i$$

 $|A| = \iint S_1$ what if one of the eigen values is equal to $Zero_2$? |A| = 0 ~> Singular matrix -> Not invertible -> non-full rank -> some of columns or row are linearly dependent A= \(\alpha_1 \alpha_2 \alpha_37 \)

Probability and Statistics

Mahdi Roozbahani Georgia Tech

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Probability

- A sample space S is the set of all possible outcomes of a conceptual or physical, repeatable experiment. (S can be finite or infinite.)
 - E.g., S may be the set of all possible outcomes of a dice roll: S
 (1 2 3 4 5 6)
 - E.g., S may be the set of all possible nucleotides of a DNA site: S
 (A C G T)
 - E.g., S may be the set of all possible time-space positions of an aircraft on a radar screen.
- An Event A is any subset of S
 - Seeing "1" or "6" in a dice roll; observing a "G" at a site; UA007 in space-time interval

Three Key Ingredients in Probability Theory

A sample space is a collection of all possible outcomes

Random variables X represents **outcomes** in sample space

$$P(X=1) = \frac{1}{6}$$

Probability of a random variable to happen

$$p(x) = p(X = x)$$

$$p(x) \ge 0$$

density = Likelihood = P(x) = f(x)

Continuous variable

Continuous probability distribution

Polf

Probability density function
 Density or likelihood value
 Temperature (real number)
 Gaussian Distribution

Discrete variable

Pmf

Discrete probability distribution
Probability mass function
Probability value
Coin flip (integer)
Bernoulli distribution

$$\sum_{x \in A} p(x) = 1$$

Continuous Probability Functions

- Examples:
 - Uniform Density Function:

$$f_{x}(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

Exponential Density Function:

$$f_x(x) = \frac{1}{\mu}e^{-\frac{x}{\mu}}$$
 for $x \ge 0$ M as a Parameter $F_x(x) = 1 - e^{\frac{-x}{\mu}}$ for $x \ge 0$

Gaussian(Normal) Density Function

$$f_{x}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

 $f_x(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad \qquad \text{we have two Parameters}$

Discrete Probability Functions

- Examples:
 - Bernoulli Distribution:

$$\begin{cases} 1 - p & for \ x = 0 \\ p & for \ x = 1 \end{cases}$$

In Bernoulli, just a single trial is conducted

Binomial Distribution:

•
$$P(X = k) = {n \choose k} p^k (1-p)^{n-k}$$

k is number of successes

n-k is number of failures

 $\binom{n}{k}$ The total number of ways of selection **k** distinct combinations of **n** trials, **irrespective of order**.

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Example

X = Throw a dice

Y = Flip a coin

X and **Y** are random variables

N = total number of trials

 n_{ii} = Number of occurrence

X

$$y_{j=2} = tail$$
 $x_{i=1} = 1$ $x_{i=2} = 2$ $x_{i=3} = 3$ $x_{i=4} = 4$ $x_{i=5} = 5$ $x_{i=6} = 6$ $x_{i=6} = 6$

X

$$x_{i=1} = 1$$
 $x_{i=2} = 2$ $x_{i=3} = 3$ $x_{i=4} = 4$ $x_{i=5} = 5$ $x_{i=6} = 6$

Y
$$y_{j=2} = tail$$
 $n_{ij} = 3$ $n_{ij} = 4$ $n_{ij} = 2$ $n_{ij} = 5$ $n_{ij} = 1$ $n_{ij} = 5$ 20 $n_{ij} = 1$ $n_{ij} = 2$ $n_{ij} = 2$ $n_{ij} = 4$ $n_{ij} = 2$ $n_{ij} = 4$ $n_{ij} = 2$ $n_{ij} = 4$ $n_{ij} = 1$ 15 $n_{ij} = 1$ 15

$$P(y=h, X=2) = \frac{2}{35} = \frac{nij}{N}$$

$$P(y=t) = \frac{20}{35} = \frac{Cj}{N}$$
 $P(x=5) = \frac{5}{35} + \frac{Ci}{N}$

$$P(y=t \mid x=1) = \frac{3}{5} \neq \frac{n_{ij}}{c_i}$$

$$P(x=1 \mid y=t) = \frac{3}{20} = \frac{n_{ij}}{c_j}$$

$$P(Y=y,X=x) = \frac{nij}{N} = \frac{nij}{Ci} \frac{Ci}{N} = P(Y=y|X=x) P(X=x)$$

$$= \frac{nij}{Cj} \frac{Cj}{N} = P(X=x|Y=y) P(Y=y)$$

Probability:

$$p(X = x_i) = \frac{c_i}{N}$$

Joint probability:

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Conditional probability:

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Sum rule

$$p(X = x_i) = \sum_{i=1}^{L} p(X = x_i, Y = y_j) \Rightarrow p(X) = \sum_{Y} P(X, Y)$$

Product rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \frac{c_i}{N} = p(Y = y_j | X = x_i) p(X = x_i)$$
$$p(X, Y) = p(Y | X) p(X)$$

Conditional Independence

P(H,F,V,D)=P(H) F,V,D) P(F,V,D)

= P(H|F,D) P(F14,D) P(4,D)

= P(H|F,D) P(F(V) P(V|D) P(D)

Examples:

P(Virus | Drink Beer) = P(Virus)

iff Virus is independent of Drink Beer

P(Flu | Virus) DrinkBeer) = P(Flu | Virus)

iff Flu is independent of Drink Beer, given Virus

P(Headache | Flu; Virus; DrinkBeer) =
P(Headache | Flu; DrinkBeer)

iff Headache is independent of Virus, given Flu and Drink Beer

Assume the above independence, we obtain:

P(Headache, Flu, Virus, Drink Beer)

=P(Headache | Flu; Virus; DrinkBeer) P(Flu | Virus; DrinkBeer)

P(Virus | Drink Beer) P(DrinkBeer)

=P(Headache|Flu;DrinkBeer) P(Flu|Virus) P(Virus) P(DrinkBeer)

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Bayes' Rule

- P(X|Y)= Fraction of the worlds in which X is true given that Y is also true.
- For example:
 - H="Having a headache"
 - F="Coming down with flu"
 - P(Headche|Flu) = fraction of flu-inflicted worlds in which you have a headache. How to calculate?
- Definition:

$$P(X|Y) = \frac{P(X,Y)}{P(Y)} = \frac{P(Y|X)P(X)}{P(Y)}$$

Corollary:

$$P(X,Y) = P(Y|X)P(X)$$

This is called Bayes Rule

Bayes' Rule

•
$$P(Headache|Flu) = \frac{P(Headache,Flu)}{P(Flu)}$$

= $\frac{P(Flu|Headache)P(Headache)}{P(Flu)}$

Other cases:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X|Y)P(Y) + P(X|\neg Y)P(\neg Y)}$$

•
$$P(Y = y_i | X) = \frac{P(X|Y)P(Y)}{\sum_{i \in S} P(X|Y = y_i)P(Y = y_i)}$$

•
$$P(Y|X,Z) = \frac{P(X|Y,Z)P(Y,Z)}{P(X,Z)} = \frac{P(X|Y,Z)P(Y,Z)}{P(X|Y,Z)P(Y,Z)}$$

$$\frac{P(X|Y,Z)P(Y,Z)+P(X|\neg Y,Z)P(\neg Y,Z)}{P(X|Y,Z)P(Y,Z)+P(X|\neg Y,Z)P(\neg Y,Z)}$$

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Mean and Variance

Expectation: The mean value, center of mass, first moment:

$$E_X[g(X)] = \int_{-\infty}^{\infty} g(x)p_X(x)dx = \mu$$

- N-th moment: $g(x) = x^n$
- N-th central moment: $g(x) = (x \mu)^n$
- Mean: $E_X[X] = \int_{-\infty}^{\infty} x p_X(x) dx$
 - $\bullet E[\alpha X] = \alpha E[X]$
 - $\bullet \ E[\alpha + X] = \alpha + E[X]$
- Variance(Second central moment): $Var(x) = E_X[(X E_X[X])^2] = E_X[X^2] E_X[X]^2$
 - $Var(\alpha X) = \alpha^2 Var(X)$
 - $Var(\alpha + X) = Var(X)$

For Joint Distributions

- Expectation and Covariance:
 - $\bullet E[X+Y] = E[X] + E[Y]$
 - $cov(X,Y) = E[(X E_X[X])(Y E_Y(Y))] = E[XY] E[X]E[Y]$
 - Var(X + Y) = Var(X) + 2cov(X, Y) + Var(Y)

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution

Maximum Likelihood Estimation

Gaussian Distribution

• Gaussian Distribution:
$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Probability density function

Probability versus likelihood

Multivariate Gaussian Distribution

$$p(x|\mu,\Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\{-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)\}$$

• Moment Parameterization $\mu = E(X)$

$$\Sigma = Cov(X) = E[(X - \mu)(X - \mu)^{\mathsf{T}}]$$

- Mahalanobis Distance $\Delta^2 = (x \mu)^T \Sigma^{-1} (x \mu)$
- Tons of applications (MoG, FA, PPCA, Kalman filter,...)

Properties of Gaussian Distribution

 The linear transform of a Gaussian r.v. is a Gaussian. Remember that no matter how x is distributed

$$E(AX + b) = AE(X) + b$$
$$Cov(AX + b) = ACov(X)A^{T}$$

this means that for Gaussian distributed quantities:

$$X \sim N(\mu, \Sigma) \rightarrow AX + b \sim N(A\mu + b, A\Sigma A^{\mathsf{T}})$$

The sum of two independent Gaussian r.v. is a Gaussian

$$Y = X_1 + X_2, X_1 \perp X_2 \rightarrow \mu_y = \mu_1 + \mu_2, \Sigma_y = \Sigma_1 + \Sigma_2$$

 The multiplication of two Gaussian functions is another Gaussian function (although no longer normalized)

$$N(a,A)N(b,B) \propto N(c,C),$$

where $C = (A^{-1} + B^{-1})^{-1}, c = CA^{-1}a + CB^{-1}b$

Central Limit Theorem

Probability mass function of a biased dice

Let's say, I am going to get a sample from this pmf having a size of n = 4

$$S_1 = \{1,1,1,6\} \Rightarrow E(S_1) = 2.25$$

$$S_2 = \{1,1,3,6\} \Rightarrow E(S_2) = 2.75$$

•

$$S_m = \{1,4,6,6\} \Rightarrow E(S_m) = 4.25$$

According to CLT, it will follow a bell curve distribution (normal distribution)

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Maximum Likelihood Estimation

- Probability: inferring probabilistic quantities for data given fixed models (e.g. prob. of events, marginals, conditionals, etc).
- Statistics: inferring a model given fixed data observations (e.g. clustering, classification, regression).

Main assumption:

Independent and identically distributed random variables i.i.d

Maximum Likelihood Estimation

For Bernoulli (i.e. flip a coin):

Objective function:
$$P(x_i|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}$$
 $x_i \in \{0,1\}$ or $\{head, tail\}$

$$L(\theta|X) = L(\theta|X = x_1, X = x_2, X = x_3, ..., X = x_n)$$

i.i.d assumption

$$L(\theta|X) = \prod_{i=1}^{n} P(x_i|\theta)$$

$$L(\theta|X) = \prod_{i=1}^{n} P(x_i|\theta) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}$$

$$L(\theta|X) = \theta^{x_1} (1 - \theta)^{1 - x_1} \times \theta^{x_2} (1 - \theta)^{1 - x_2} \dots \times \theta^{x_n} (1 - \theta)^{1 - x_n} = \theta^{\sum x_i} (1 - \theta)^{\sum (1 - x_i)}$$

We don't like multiplication, let's convert it into summation

What's the trick?

Take the log

$$L(\theta|X) = \theta^{\sum x_i} (1 - \theta)^{\sum (1 - x_i)}$$

$$logL(\theta|X) = l(\theta|X) = \log(\theta) \sum_{i=1}^{n} x_i + \log(1-\theta) \sum_{i=1}^{n} (1-x_i)$$

How to optimize θ ?

$$\frac{\partial l(\theta|X)}{\partial \theta} = 0 \qquad \frac{\sum_{i=1}^{n} x_i}{\theta} - \frac{\sum_{i=1}^{n} (1 - x_i)}{1 - \theta} = 0$$

$$\theta = \frac{1}{n} \sum_{i=1}^{n} x_i$$