

2 Des nœuds aux kilomètres par heure

Objectif: Mettre en œuvre l'instruction d'affectation.

Syntaxe Python: variable = expression

Enoncé : On veut convertir une certaine quantité n1 de vitesse exprimée en nœuds (miles nautiques par heure) en la quantité équivalente n_2 exprimée en kilomètres par heure (km/h). Proposer une instruction de type « affectation » qui réalise cette conversion.

Méthode : On cherche ici à convertir $n_1 \cdot u_1$ en $n_2 \cdot u_2$ où u_1 et u_2 sont des unités physiques compatibles qui dérivent de la même unité de base u_b du Système international d'unités.

$$\begin{vmatrix} u_1 = a_1 \cdot u_b \\ u_2 = a_2 \cdot u_b \end{vmatrix} \Rightarrow \begin{vmatrix} n_1 \cdot u_1 = n_1 \cdot (a_1 \cdot u_b) = (n_1 \cdot a_1) \cdot u_b \\ n_2 \cdot u_2 = n_2 \cdot (a_2 \cdot u_b) = (n_2 \cdot a_2) \cdot u_b \end{vmatrix} \Rightarrow \frac{n_1 \cdot u_1}{n_2 \cdot u_2} = \frac{n_1 \cdot a_1}{n_2 \cdot a_2}$$

Comme on cherche n_2 tel que $n_1 \cdot u_1 = n_2 \cdot u_2$, on a donc :

$$\frac{n_1 \cdot u_1}{n_2 \cdot u_2} = \frac{n_1 \cdot a_1}{n_2 \cdot a_2} = 1 \ \Rightarrow \ n_2 = n_1 \cdot \frac{a_1}{a_2}$$

où les coefficients a_i sont documentés dans le Système international d'unités par le Bureau international des poids et mesures.

Une fois connus les coefficients a_i , on détermine la quantité n_2 de l'unité u_2 par une affectation simple : n2 = n1*a1/a2.

Résultat : On applique la méthode précédente à la conversion proposée dans l'énoncé où u_1 représente les nœuds (miles nautiques par heure), u_2 les kilomètres par heure (km/h) et u_b les mètres par seconde (m/s). Le Système international d'unités fournit par ailleurs les facteurs de conversion a_1 (nd \rightarrow m/s) et a_2 (km/h \rightarrow m/s) : $a_1 = 1852/3600$ et $a_2 = 1000/3600$.

Compte-tenu de ces valeurs, le code cicontre permet de calculer le nombre n_2 de kilomètres par heure en fonction du nombre n_1 de nœuds.

```
a1 = 1852/3600

a2 = 1000/3600

a2 = n1*a1/a2
```

Remarque : on n'a pas cherché à effectuer « à la main » les calculs numériques : PYTHON les fera mieux que nous ; et surtout, on n'a pas cherché non plus à particulariser la $3^{\grave{e}me}$ ligne du code en n2 = n1*1852/1000 : la forme plus abstraite n2 = n1*a1/a2 restera identique pour convertir des parsecs en années-lumière (longueurs), des gallons en barils (volumes) ou encore des électron-volts en frigories (énergies), seules les valeurs des coefficients a_i changeront (lignes 1 et 2 du code).

Vérification : Pour tester le résultat précédent, on peut comparer les valeurs obtenues par le calcul avec celles de quelques valeurs caractéristiques facilement évaluables « à la main » (exemples : $n_1 = 1$ nd $\Rightarrow n_2 = 1.852$ km/h ou $n_1 = 1/1852$ nd $\Rightarrow n_2 = 1/1000$ km/h).

On obtient bien par le calcul les résultats escomptés.