

Mobile Robots: Sensor & Navigation

AGV – Automated Guided Vehicles

AMR - Automated Mobile Robots

Nenad Belančić

Application Manager Robotics

top 10

semiconductor company

~46,700

~7,800

total employees

R&D employees

leading player

 in automotive, systems for power management and drives, sensor systems, connected secure systems, wireless combos, differentiated memories

9%+ | 19% | 13%

target operating model*

Infineon at a glance

Business segments revenue*

Industrial Power Control (IPC)

Financials

^{*2021} Fiscal year (as of 30 September 2021)

Employees*

50,280 employees worldwide

Americas 5,360

56 R&D and20 manufacturing locations**

Market position

Automotive

1
Strategy Analytics,
April 2021

Power

1
Omdia,
September 2021

EMEA 20,360

Asia/Pacific 24,560

Microcontroller

3Omdia,
August 2021

For further information: Infineon Annual Report 2021

^{**}as of 30 September 2021

Robots are moving toward Industry 4.0. This brings the need for robots to be smarter and interconnected but also calls for the need for standardization.

Human-robot collaboration is one important trend in robotics. The ability to work mutually with humans, enables robots to adapt to a rapidly changing environment.

Connectivity level and the need of data security correlate, so security must be integrated into all existing and new systems, but once again calls standardization needs for diverse robots & systems to interact properly.

Safety is key when robots interact with their environment with a special focus on human safety, work safety, routing accuracy and collision avoidance

On high level mobile robots can be categories into AGVs and AMRs

AGV

<u>Automated Guided Vehicle</u>

AGVs are "fixed". They follow predefined paths using lasers, beacons, barcodes or magnetic tape.

AMR

<u>Autonomous Mobile Robot</u>

AMRs are not "fixed" and don't need external paths.

Autonomously mapping and navigating by using sensors

Potential use cases: warehouse & logistic, last mile delivery, robots in hotels, banks, airports etc.

Mobile robots are a fast growing market and need sophisticated system solutions for each functional block

Application requirements

Different types of mobile robots require unique and appropriate solutions

Precise, efficient & compact motor drives

Fast charging reducing charging and idle time

Environmental sensing for navigation and safety

Connectivity enabling AI, real time monitoring and IoT

Connectivity enabling AI and IoT

Market outlook

Xensiv™ Sensors

Enable safe and precise object detection, navigation & collision avoidance with Infineon's XensivTM Sensor portfolio

Xensiv™ Sensors

- Radar Sensor
- 3D Time-of-light (ToF) Sensor

XENSIV™ sensors portfolio & Robotics use cases

3D Radar

3D iToF

Microphone & ultrasound TR

World smallest form factor

Best-in-class resolution

24GHz / 60 GHz Application innovation leader

Power efficient Indirect Time of Flight 3D camera

Unique SNR, sensitivity and power efficiency

Best accuracy

Energy Efficiency

Best performance & energy efficiency

High resolution 3D point cloud

Crystal clear audio signals

Use cases in robotics

Collision avoidance / obstacle-stairs detection (radar, ToF, ultrasounds)

Improved User Interface & experience (gesture, VUI)

Odometry fusion / positioning / SLAM

Height/floor positioning

Vacuum flow mgt

Material classification

Human Presence/safety

Requires sensor+MPU/MCU+algo/software integrated system offer

Mobile robot use cases of Sensors Value proposition

	Collision Avoidance Navigation/Mapping/Odometry	2D/3D Object detection Human presence	Gesture control	Voice recognition
Current solutions	1. Safety laser scanners 2. 3D ToF (IFM)	1. RGB cameras2. Stereo cameras3. ToF cameras	1. RGB cameras 2. ToF cameras	1. Microphones
Problem	Safety laser scanners: No positioning in 3D High costs Big size	RGB: Big Size No positioning in 3D Doesn't work in dark env. False positives from images Stereo: Big Size Less range accuracy Limited working distance Doesn't work in dark env.	RGB: > No positioning in 3D > Doesn't work in dark env. > False positives Stereo: > Less range accuracy > Limited working distance > Doesn't work in dark env.	
Solution	ToF cameras24/60 Ghz Radars	ToF cameras24/60 Ghz Radars	> ToF cameras > 60 Ghz Radars	› IM69D Mems Mic
Infineon's Differentiators	3D sensing ToF Precise target localization & detection, special design via module maker partners Radar Precise range & velocity & direction of movement estimation, Real human presence, Human segmentation, Anonymity	3D sensing (works in dark environment) ToF Precise target localization & detection, special design via module maker partners, small form factor Radar Precise range & velocity & direction of movement estimation, Real human presence, Human segmentation, Anonymity, small form factor	Radar: > Hide behind cover > Anonymity > Low power consumption	› High SNR› Crystal clear audio signal

Infineon has a broad 3D sensing technology portfolio with ToF, Radar 24 and 60 GHz and Ultrasonic

Infineon Proprietary

infineon

Working principle of RADAR and ToF camera for 3D sensing

RAdio Detection And Ranging: Radio frequency energy transmitted and reflected from an object which determines the direction, speed, distance and angle

Time-of-Flight: Modulated infrared-light emitted from camera and reflected by objects. Phase-shift of returned light corresponds to distance to the scene; it is measured in each pixel of the image sensor

Fast

 25 complete scans per second with average 2D laser scanners

Precise

0.5° angular resolution with ±1.2 mm standard error (<20 m)

Versatile

270° Field of View with a maximum distance of 20 m.
 Compensation of fog, dust, rain etc.

Expensive

 Average cost 4.000 – 5.000€ for standard 2D laser scanner

2-Dimensional

Only horizontal (vertical) scan

3D sensing selection tree: Choosing RADAR or ToF camera depends on the target use case

Master use cases	Human machine interface (HMI)		Space & motion				
	Macro gesture (Leg-kick, hand waving, Body-moves)		Collision avoidance				
	Body tracking		Presence detection/Distance measurement/ Position information				
Sub	Drawing		Objects co	Objects counting/Tracking/Density map			
use cases/ Functions	Hand tracking	Finger tracking	Indoor/Outdoor Range up to 100 m	Indoor/Outdoor up to 7 m	Indoor ~10 m Outdoor ~4 m		
	Tiniest finger movement in sub-millimeter	Counting fingers	Low range-	High range- resolution (2 cm)	High accuracy (1% of range)		
	range (micro- gesture)	Finger tip mouse	resolution (70 cm)		Environmental scanning		
	Power optimization by	Distinguish each finger or	Presence detection	Smallest form factor	Recognizes body contour		
Capabilities/ Features	duty cycling body part			System-cost- benefit	Picture of shape		
	Hidden in case No privacy concerns To get picture of target shape		Measurement independent to environmental conditions				
Solution	60 GHz	ToF	24 GHz	60 GHz	ToF		

The new REAL3™ imager system provides best depth data quality & resolution for best user experiences

Full scale of AR applications

Infineon Proprietary

REAL3™ Long Range Time of Flight offer

Get the right solution for your product

Now Q2 2021 Now / Q3 2021 IRS2381C Ready to use Smallest low power long range system Flood Flood Flood Spot

Resolution	38 k pixel up to 3 m 9,6 k pixel up to 5 m 2,4 k pixel up to 10 m	43 k pixel up to 3 m 10,8 k pixel up to 5 m 2,7 k pixel up to 10 m	307 k resolution up to 3 m 4.5k dots up to 6 m
Power	250 mW for 5 m range 350 mW for 10 m range	200 mW for 5 m range 300 mW for 10 m range	500 mW for 3 m (VGA) 500 mW for 6 m (4.5k dots)
Module Size (ES)	14,5 x 8 mm	10,6 x 7 mm	14,9 x 9,4 mm
Availability	available today	EES Feb 21 Production June 21	IRS2877C available today Hybrid solution: Demo Q1/21

Radar sensor Use case selection tree

Selection guide: presence/motion detection with 60 GHz

Broad Product Portfolio for 60GHz and 24GHz

Infineon Proprietary

Choose the best evaluation and implementation tool

Ready	to	go	radar
	•••	9~	· aaa.

Radar development

Systems development with radar

Additional functions

Networking capable

Solution size

XENSIV™ BGT60TR13C SoM

BGT60LTR11AIP Autonomous mode

DEMO 60 GHZ TR13CAIP w/ RADAR SDK for presence

Connected Sensor Kit FW in ModusToolbox®

ES available. Mass Market Launch - Q1

Micro/macro motion detect, ranging

Through separate connectivity board

Presence sensing	Simple motion detection	Micro/macro motion detect, ranging
------------------	-------------------------	------------------------------------

20 mm x 6.25 mm

PIR replacement

5 m (at 0°) +/- 40 degrees

Segmentation, tracking, vital None sensing, gesturing

Through Arduino MKR		Through Ardu
---------------------	--	--------------

uino MKR

17 mm x 12.7 mm (RF shield) 75 mm x 25 mm

10 m (at 0°), +/-45

Eval & testing use cases, development, ref. design

Micro/macro motion detect, ranging

Programmable to also do Smart Smart entrance counter entrance counter / Advanced presence*

Feather board with CYSBSYS-RP01 SoM

Self-contained IoT system, PoC

10 m (at 0°), +/-45

starter, ref design

20 mm x 15 mm

10 m (macro motion at 0°) (qualified up to 5 m), +/-45

Entrance counter presence/motion detector

Intended usage

Range and field of view

^{*}Dependent on application and system

Further Material – Sensors

Portfolio and further information can be found here:

<u>Link</u> → Sensor Selection Guide

- Link → Radar
- Link → Time-of-Light (ToF)

Learn more on our webpage

Part of your life. Part of tomorrow.