discussion 10

Semi-Supervised Learning

K-means++

overview

- semi-supervised learning
 - Generative Models
 - semi-SVM
 - graph-based method --- convex!
 - co-training
- Unsupervised learning
 - clustering --- K-means; K-means++
 - PCA (not cover in this discussion)

semi-supervised learning

• inductive semi-supervised learning

$$\{(\mathbf{x}_i, y_i)\}_{i=1}^l \stackrel{iid}{\sim} p(\mathbf{x}, y) \qquad \{\mathbf{x}_i\}_{i=l+1}^{l+u} \stackrel{iid}{\sim} p(\mathbf{x}),$$

learns a predictor $f: \mathcal{X} \mapsto \mathcal{Y}$

- transductive learning.
 - only interested in the predictions on the unlabeled training data

How semi-supervised learning help?

- What implicit ordering is induced by the unlabeled data?
- How to find a predictor near the top of this implicit ordering and fits the labeled data well?

Self-training example: image categorization

1. Train a naïve Bayes classifier on the two initial labeled images

2. Classify unlabeled data, sort by confidence $\log p(y = \text{\tiny astronomy}|x)$

3. Add the most confident images and predicted labels to labeled data

4. Re-train the classifier and repeat

Gaussian mixture model (GMM)

- Model parameters: $\theta = \{\pi_i, \mu_i, \Sigma_i\}_{i=1}^K, \pi_i$: class priors, μ_i :Gaussian means, Σ_i :covariance matrices
- Joint distribution

$$p(\mathbf{x}, \mathbf{y}|\theta) = p(\mathbf{y}|\theta)p(\mathbf{x}|\mathbf{y}, \theta)$$
$$= \sum_{i=1}^{K} \pi_i \mathcal{N}(\mathbf{x}; \mu_i, \Sigma_i)$$

Classification:

$$p(\mathbf{y}|\mathbf{x},\theta) = \frac{p(x,y|\theta)}{\sum_{i=1}^{K} p(\mathbf{x},y_i|\theta)}$$

Effect of unlabeled data in GMM

The difference comes from maximizing different quantities

implicit ordering: large to small ordering of log likelihood of θ

$$\log p(\{\mathbf{x}_i\}_{i=l+1}^{l+u} \mid \theta) = \sum_{i=l+1}^{l+u} \log \left(\sum_{y \in \mathcal{Y}} p(\mathbf{x}_i, y \mid \theta) \right)$$

- objective function
 - with only labeled data

 - \blacktriangleright MLE for θ trivial (sample mean and covariance)
 - with both labeled and unlabeled data

$$\log p(X_{l}, Y_{l}, X_{u} | \theta) = \sum_{i=1}^{l} \log p(y_{i} | \theta) p(x_{i} | y_{i}, \theta) + \sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^{2} p(y | \theta) p(x_{i} | y, \theta) \right)$$

semi - SVM

Optimize for the separator with large margin wrt labeled and

unlabeled data. [Joachims '99]

semi-SVM

objective function

$$\underset{f}{\operatorname{argmin}} \frac{1}{l} \sum_{i=1}^{l} \max(1 - y_i f(\mathbf{x}_i), 0) + \lambda_1 ||f||^2 + \lambda_2 \frac{1}{u} \sum_{i=l+1}^{l+u} \max(1 - |f(\mathbf{x})|, 0)$$

hat loss: (non-convex) $\max(1 - |f(\mathbf{x})|, 0)$

Heuristic idea:

- Maximize margin over the labeled points
- Get initial labels to unlabeled points based on this separator.
- Try flipping labels of unlabeled points to see if doing so can increase margin.
- $\{-1, +1\} \Rightarrow \{+1, -1\}$ any other class combinations?
- local optimal

Labels "propagate" via similar unlabeled articles.

	d_1	d_5	d_6	d_7	d_3	d_4	d_8	d_9	d_2
asteroid									
bright	•	•							
comet		•	•						
year			•	•					
zodiac				•	•				
•									
airport						•			
bike						•	•		
camp						3 2	•	•	
yellowstone							-	•	•
zion									•

How to create the graph:

$$G = \langle V, E \rangle = \begin{cases} V : datapoints (S_l \cup S_u) \\ E : Similarity/Weights \end{cases}$$

- Adjacency graph:
 - K-NN
 - ullet Σ -NN, where Σ is the distance of two data points
- Graph weights
 - Simple formulation: $\{0,1\}$
 - Gaussian kernel function

Large w_{ij} implies a preference for the predictions $f(\mathbf{x}_i)$ and $f(\mathbf{x}_j)$ to be the same. This can be formalized by the graph energy of a function f:

$$\sum_{i,j=1}^{l+u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2.$$

The graph energy induces an implicit ordering of $f \in \mathcal{F}$ from small to large.

graph Laplacian matrix.

• objective function

$$\underset{f}{\operatorname{argmin}} \frac{1}{l} \sum_{i=1}^{l} c(f(\mathbf{x}_i), y_i) + \lambda_1 ||f||^2 + \lambda_2 \sum_{i,j=1}^{l+u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2,$$

co-training

 X_1 view

Co-training algorithm

- Train two classifiers: $f^{(1)}$ from $(X_l^{(1)},Y_l)$, $f^{(2)}$ from $(X_l^{(2)},Y_l)$.
- ② Classify X_u with $f^{(1)}$ and $f^{(2)}$ separately.
- 3 Add $f^{(1)}$'s k-most-confident $(x, f^{(1)}(x))$ to $f^{(2)}$'s labeled data.
- Add $f^{(2)}$'s k-most-confident $(x, f^{(2)}(x))$ to $f^{(1)}$'s labeled data.
- Repeat.

co-training

objective function

individual loss function $c^{(u)}$ and regularizer $\Omega^{(u)}$

$$\underset{\langle f^{(1)}, \dots f^{(m)} \rangle}{\operatorname{argmin}} \sum_{u=1}^{m} \left(\frac{1}{l} \sum_{i=1}^{l} c^{(u)}(f^{(u)}(\mathbf{x}_{i}), y_{i}) + \lambda_{1} \Omega^{(u)}(f^{(u)}) \right) + \lambda_{2} \sum_{i=l+1}^{l+u} \sum_{u,v=1}^{m} c(f^{(u)}(\mathbf{x}_{i}), f^{(v)}(\mathbf{x}_{i})).$$

disaggreement on the unlabeled data

unsupervised learning

- Kmeans ; kmeans++
- PCA

K-Means Algorithm: **Details**

```
centers ← pick k initial Centers
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   // Compute the new centers (M-Step)
   for i in range(k):
      centers[i] =
         mean([x for (x, c) in asg if c == i])
                                  To a local
     Guaranteed to
                                               Depends on
                    ... to what?
       converge!
                                 optimum. 🕾
                                              Initial Centers
```

Kmeans++

Picking the Initial Centers

- ➤ Simple Strategy: select k points at random
 - · What could go wrong?

➤ Better Strategy: kmeans++

- Randomized approx. algorithm
- Intuition select points that are not near existing centers

K-Means++ Algorithm

```
centers ← set(randomly select a single point)
while len(centers) < k:</pre>
  # Compute the distance of each point
  # to its nearest center dSq = d^2
  dSq \leftarrow [(x, dist_to_nearest(centers, x)^2) for x in data]
  # Sample a new point with probability
  # proportional to dSq
  c ← sample_one(data, prob = dSq / sum(dSq))
  # Update the clusters
  centers.add(c)
```

Res-A: weighted reservoir sampling

➤ Goal: Sample k records from a stream where record i is included in the sample with probability proportional to w;

➤ Algorithm:

For each record i draw a uniform random number:

$$u_i \sim \mathbf{Unif}(0,1)$$

 $u_i \sim \mathbf{Unif}(0,1)$ • Select the top-k records ordered by: u_i^{1/w_i}

Common ML Pattern?

- Query Function: [pow(rand(), 1 / record.w), record]
- Agg. Function: top-k heap

Basic Analysis Behind Res-A

- Define the random variable: $X_i = u_i^{1/w_i}$
- ➤Then:

$$\mathbf{P}\left(X_{i} < \alpha\right) = \mathbf{P}\left(u_{i}^{1/w_{i}} < \alpha\right) = \mathbf{P}\left(u_{i} < \alpha^{w_{i}}\right) = \alpha^{w_{i}}$$

$$\mathbf{P}\left(X_{i} = \alpha\right) = w_{i}\alpha^{w_{i}-1}$$
Derivative of CDF \Rightarrow PDF

- ➤ Suppose we want to pick just one element (k=1)
 - · Probability of selecting X_i is:

on this derivation

$$\int_{0}^{1} \mathbf{p} \left(X_{i} = \alpha \right) \prod_{j \neq i} \mathbf{P} \left(X_{j} < \alpha \right) d\alpha = \int_{0}^{1} \left(w_{i} \alpha^{w_{i} - 1} \right) \prod_{j \neq i} \alpha^{w_{j}} d\alpha$$

$$= \frac{w_{i}}{\sum_{i} w_{i}}$$
We won't test you

$$\int_{0}^{1} \mathbf{p} (X_{i} = \alpha) \prod_{j \neq i} \mathbf{P} (X_{j} < \alpha) d\alpha = \int_{0}^{1} (w_{i} \alpha^{w_{i} - 1}) \prod_{j \neq i} \alpha^{w_{j}} d\alpha$$

$$= w_{i} \int_{0}^{1} (\alpha^{w_{i} - 1}) \alpha^{\sum_{j \neq i} w_{j}} d\alpha$$

$$= w_{i} \int_{0}^{1} \alpha^{-1 + \sum_{j} w_{j}} d\alpha$$

$$= \frac{w_{i}}{\sum_{j} w_{j}} \alpha^{\sum_{j} w_{j}} \Big|_{\alpha = 0}^{\alpha = 1}$$

$$= \frac{w_{i}}{\sum_{j} w_{j}}$$