Statistical Pattern Recognition: Assignment 1 Praveen Kumar N (201082001)

January 18, 2021

1 Problem 1

Sample n=100, 1000, 10000 points from (a) Uniform Distribution in 0 to 1. (b) Gaussian Distribution with mean 0 and variance 1. (c) Exponential Distribution with rate parameter = 1. Verify if the points are generated according to the respective distribution by plotting a histogram of the fraction of points in each case. Label graph properly.

```
[89]: import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns
```

```
[220]: num_samp = [100,1000,10000]
                                              # number of samples
      # samples from uniform distribution in 0 to 1
      fig,axes=plt.subplots(1,len(num_samp),figsize=(14,5))
      fig.suptitle("Histogram of n samples from uniform distribution")
      for i in range(len(num_samp)):
          n = num_samp[i]
                                              # n samples from unifrom distribution
          uni_samp = np.random.rand(n)
          sns.distplot(uni_samp, ax=axes[i], color='r', fit=stats.uniform, kde=False)
          axes[i].set_title("n ={}".format(n))
      plt.show()
      # samples from Gaussian distribution with mean 0 and variance 1
      fig,axes=plt.subplots(1,len(num_samp),figsize=(14,5))
      fig.suptitle("Histogram of n samples from normal distribution")
      for i in range(len(num_samp)):
          n = num_samp[i]
          gauss_samp = np.random.randn(n)
                                                # n samples from normal distribution
          sns.distplot(gauss_samp, ax=axes[i], color='g', fit=stats.norm, kde=False)
          axes[i].set_title("n ={}".format(n))
```

```
plt.show()

# samples from Exponential distribution with parameter 1

fig,axes=plt.subplots(1,len(num_samp),figsize=(14,5))
fig.suptitle("Histogram of n samples from exponential distribution")

for i in range(len(num_samp)):
    n = num_samp[i]
    exp_samp = np.random.exponential(1,n) # n samples from exponential_u
    distribution
    sns.distplot(exp_samp, ax=axes[i], color='b', fit=stats.expon, kde=False)
    axes[i].set_title("n ={}".format(n))
plt.show()
```


2 Problem 2

Assume a unit circle centered at (0,0). Let n=2; 3; 5 points be uniformly sampled from the circumference of the circle. Write a python program to estimate the probability of n=2; 3; 5 points lie within some semi-circle.

```
[209]: n_iter
                   = 50000
                              # Number of iterations to estimate the probability
                   = [2,3,5] # number of points to be sampled from the circumference
       est_probs = []
                             # list of estimated probabilities
       tru_probs = []
                              # list of true probabilities
       for n in n_samp:
           tru_probs.append((n/2**(n-1)))
                                                        # computing true probability, p = ___
        \rightarrow n*(1/2)^{(n-1)}
           n_suc = 0
                                                        # number of successes indicating u
        \rightarrownumber of times
                                                        # we get all n points lying on same \square
        →semicircle
           for _ in range(n_iter):
                samp_theta = np.random.uniform(0,2*np.pi,n) # sampling n_{\sqcup}
        →points(represented by its angle)
                                                                # from the circumference_
        \rightarrowuniformly
                # Checking whether these n points lie on same semicircle
```

```
samp_theta_min = np.min(samp_theta,initial=2*np.pi,where=samp_theta>np.

pi)

samp_theta = ((2*np.pi-samp_theta_min)+samp_theta)%(2*np.pi)
samp_theta = np.where(samp_theta>np.pi,samp_theta-2*np.pi,samp_theta)
samp_theta.sort()
theta_diffs = np.ediff1d(samp_theta)
# for these n points to be in same semicircle sum of the angles
# between consecutive points should not cross pi or 180 degrees
if np.sum(theta_diffs)<=np.pi:
    n_suc = n_suc+1

est_probs.append(n_suc/n_iter) # estimated probability = no. of_
successes/ no. of iterations

print("True probabilities:",tru_probs)
print("Estimated probabilities:",est_probs)</pre>
```

True probabilities: [1.0, 0.75, 0.3125]

Estimated probabilities: [1.0, 0.7488, 0.3123]

3 Problem 3

Assume two classes male and female. The height of the male class is distributed according to the normal distribution with a mean of 5.8 feet and a standard deviation of 1 feet and the height of the female class is distributed with a mean of 5 feet and a standard deviation of 1 feet. Assume following prior probabilities for two classes (a) For Male 0.5 and for Female 0.5. (b) For Male 0.1 and for Female 0.9. For each of the above cases, specify the priors, plot the class conditional densities and posterior probabilities of both the classes. Compute the misclassification error. Draw the decision boundary for the Bayes classifier.

```
[219]: # feature(x)
                                      : height
       # classes(w)
                                      : male(class 0) , female(class 1)
                                      : p0 = Pr\{class = 0\}, p1 = Pr\{class = 1\}
       # prior probablities
       # class conditional densities : f0(x) = fx(x/class = 0),
                                       f1(x) = fx(x/class = 1)
       # posterior probabilities : Pr\{class = 0/x\} = q0(x) = fx(x/class = 0/x)
        \rightarrow 0)*Pr\{class = 0\}/fx(x) = p0*f0(x)/fx(x) ,
                                        Pr\{class = 1/x\} = q1(x) = fx(x/class = 
        \rightarrow 1)*Pr\{class = 1\}/fx(x) = p1*f1(x)/fx(x)
       # fx(x) = p0*f0(x) + p1*f1(x)
       # classification
                                      : x \ge decision boundary = class = 1
                                        x< decision boundary => class = 0
```

```
mean_m = 5.8  # mean height of male class
SD_m = 1 # standard deviation of male class
mean_f = 5  # mean height of female class
SD_f = 1 # standard deviation of female class
# plot of class conditional densities
x = np.linspace(1,10,1000)
                                     # taking 1000 features in the range
\rightarrow [1, 10]
f0_x = stats.norm.pdf(x,mean_m,SD_m) # class conditional density for class = 0
f1_x = stats.norm.pdf(x,mean_f,SD_f) # class conditional density for class = 1
plt.figure(figsize=(12, 5), dpi=80)
plt.plot(x,f0_x,'r')
plt.plot(x,f1_x,'g')
plt.legend(["class 0: mean = {}, SD = {}".format(mean_m,SD_m),"class 1: mean =_
\rightarrow{}, SD = {}".format(mean_f,SD_f)])
plt.title("Class conditional densities")
plt.xlabel("feature(height)"); plt.ylabel("Density(Pdf)")
plt.show()
# Prior probabilities
p0 = m_prior = 0.5 # prior probability of male class
p1 = f_prior = 0.5 # prior probability of female class
# computing posterior probabilities
q0_x = []
q1_x = []
class_0 = []
class_1 = []
fx_x = [p0*f0_x[i]+p1*f1_x[i] \text{ for } i \text{ in } range(1000)]
for i in range(1000):
   q0_x.append(f0_x[i]*p0/fx_x[i])
   q1_x.append(f1_x[i]*p1/fx_x[i])
   # splitting features based on classes they belong to
   if q0_x[i] > = q1_x[i]:
       class_0.append(x[i])
   else:
       class_1.append(x[i])
```

```
# Computing decision boundary
dec_boundry = (mean_m+mean_f)/2
# decision boundary for normal class conditional densities
# with different mean and same variance and p0=p1=1/2
# plot of posterior probabilities
plt.figure(figsize=(12, 5), dpi=80)
plt.plot(x,q0_x,'r')
plt.plot(x,q1_x,'g')
plt.axvline(dec_boundry)
plt.legend(["Posterior probability density for class 0", "Posterior probability ∪
→density for class 1", "Decision boundary"])
plt.title("Posterior probability densities(p0 = {}, p1 = {})".format(p0,p1))
plt.xlabel("feature(height)"); plt.ylabel("Density(Pdf)")
plt.show()
# Computing misclassification error
           = p1*stats.norm.sf(dec_boundry,loc=mean_f,scale=SD_f) + p0*stats.
→norm.cdf(dec_boundry,loc=mean_m,scale=SD_m)
print("CASE A : p0 = {}, p1 = {}".format(p0,p1))
print("Decision boundary : {}".format(dec_boundry))
print("Missclassification error : {}".format(mis_error))
#----- CASE B -----
# Prior probabilities
p0 = m_prior = 0.1 # prior probability of male class
p1 = f_prior = 0.9 # prior probability of female class
# Computing posterior probabilities
q0_x = []
q1_x = []
class_0 = []
class_1 = []
fx_x = [p0*f0_x[i]+p1*f1_x[i] \text{ for } i \text{ in } range(1000)]
for i in range(1000):
   q0_x.append(f0_x[i]*p0/fx_x[i])
   q1_x.append(f1_x[i]*p1/fx_x[i])
   # splitting features based on classes they belong to
```

```
if q0_x[i] >= q1_x[i]:
        class_0.append(x[i])
    else:
        class_1.append(x[i])
# Computing decision boundary
dec_boundry = (mean_m + mean_f)/2 - ((SD_m)**2 * np.log(p1/p0))/(mean_f - mean_m)
# decision boundary for normal class conditional densities
# with different mean and same variance and p0=0.1, p1=0.9
# plot of posterior probabilities
plt.figure(figsize=(12, 5), dpi=80)
plt.plot(x,q0_x,'r')
plt.plot(x,q1_x,'g')
plt.axvline(dec_boundry)
plt.legend(["Posterior probability density for class 0", "Posterior probability⊔
→density for class 1", "Decision boundary"])
plt.title("Posterior probability densities(p0 = {}, p1 = {})".format(p0,p1))
plt.xlabel("feature(height)"); plt.ylabel("Density(Pdf)")
plt.show()
# Computing misclassification error
mis_error = p1*stats.norm.sf(dec_boundry,loc=mean_f,scale=SD_f) + p0*stats.
→norm.cdf(dec_boundry,loc=mean_m,scale=SD_m)
print("CASE B : p0 = {}, p1 = {}".format(p0,p1))
print("Decision boundary : {}".format(dec_boundry))
print("Missclassification error : {}".format(mis_error))
```


CASE A : p0 = 0.5, p1 = 0.5Decision boundary : 5.4

 ${\tt Missclassification\ error\ :\ 0.3445782583896759}$

CASE B : p0 = 0.1, p1 = 0.9

Decision boundary : 8.146530721670276

 ${\tt Missclassification\ error\ :\ 0.0997960343653087}$

Servicorde 1

STATISTICAL PATTERN RECOGNITION ASSIGNMENT - 1 (due:19/01/2021)

Praven Kumar N 201082001

2 Problem: TO find protosility that n points sampled uniformly from the circumforance of a circle lie on some semi carcle

Some semicircle since angle blw any true points on circle \$180°

\$ P = 1 for n=1 & 2

@ Now for n>2.

thoughout & sondonly pick I out of n points (soy x) there there one ne, mays

4 Now construct a semicorcle XY Storting from point x (theresterna) > un have two Semicorcles XY & YX

4 Now remaining (n-1) con demonstration be in either in Semicorcle XY

81 /x with propositizy (1/2)

probability = probability that I'm point hie in semicircles. The probability = probability that I'm point hie in semicircle. X probability that 2nd point hie in a semicircle X

prosobility that $(n-1)^{\frac{m}{2}}$ point lie in a semicircle $= (\frac{1}{2}) \times (\frac{1}{2}) \cdots (\frac{1}{2})$ $= (\frac{1}{2})^{m-1}$

nc, = n may we get above probability for each of the mays

total probability = n (/2)n-1/= p

DATE 3 Given peature -> height (x) dassed -> male, finale Pr (4/00) = 7 (5.8.1) dal conditional dentities By (x/don = 1/= f, (x) -> N (501) Mo = 5.8, Mo = 5 00 = 07 = 0 = 1 O con a: 4 po = Pr {dan = 0} = pr{mole } = 0.5 | prior presositities b1 = por {dan = 14 = por {femole } = 0.5 4 quo(x) = Pr {clan = 0/x} = pofo(x) / (x(x)) } portorior probobility dentities ai(x) = pr (class = 1/x) = bif(x) /6x(x) tx(x) = Pofe(x) +Pifi(x) > Boys classifur hB(x) = 0 if qo(x) ≥ q, (x) 9/2(x) < 9/2 (x) 4 decision boundary we have, if 96 (x) Z q, (x) -> class o Qu(x) < qu(x) -> class I champarakeen or extension of the contract of t in by fishing -XXXXX) Consider do (x) = di (x) /of (1x) ≥ / f.(x) hore po=p=0.5 total texto > fo(x) = fi(x) $\Rightarrow \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{(x-\mu_0)^2}{2\sigma^2} \right] \ge 1 \exp \left[-\frac{(x-\mu_0)^2}{2\sigma^2} \right]$ I taki lm' on both sides - (x-110)2 7 = (x-11)2

(x-40)2 ≤ (x-4,)2 xx-2110x+110° = xx-24,x+11,2 +2x(4,-40) = (4, 3-43) x = (4,2-4,2) 2 (4, 11) x & M, +Ma => class o x > 11,+110 - down 1 durin poundary = 11+110 = 5.8 +5 = 5.4 / = D 4 miscla Mification evoror: decision boundary = D ever = Po [talxida + po foxida decision boundary = D ona = p, [1-Fa(B)]+ po Fa[D) = 0.5 [1-Fa(5.4)]+0.5 Fa(0.5)/ YOF Pr {x >5.4/clan=1} Pr {x <5.4/clan=0} O case b: → pe = 0.1 | point probabilities 13 avo(x) = potodx) /bx(x) | porturior prospositify dimities q1 (x) = p. f. (x) /tx(x) fx(x) = pofo(x) + pofo(x) if 90(X) = 91 (X) Beyes dollipion: bB(x) = 0 90(x) < 9, (x)

DATE 4 decision boundary we have, if $a_b(x) = a_b(x) \rightarrow dan \theta$ $Q_0(x) < Q_1(x) \rightarrow dam 1$ consider av.(x) > av.(x) > be to (x) > botro(x) > b. 1/ exp [-(x-11, x] > bo 1/ exp [-(x-110)2] exp $[-(x-\mu_0)^2] > p_0 \exp [-(x-\mu_0)^2]$ take 'In' on both sides - (1-11) 2 > ln(bo) - (2-16)2 - (x-11) 2 > -ln (b) - (x-110)2 (x-11,)2 < ln (b) + (x-110)2 (x-11.) 2 < 202 ln (b) + (x-110)2 4 - 2 x /1. + /1, 2 < 202/ln(po) + x2 -22/10 + 102 > 202/n(b) -22/10+/102> -22/11, +/11,2 > 202 ln (p) + 2x (u,- u) > (u, 2- u,2) 02/n (p) + x (µ, -µ0) > (u,2-10-2)

	$\frac{2(\mu,-\mu_0)}{2(\mu,-\mu_0)} - \frac{2(\mu,-\mu_0)}{2(\mu,-\mu_0)} = \frac{2(\mu,-\mu_0)}{2(\mu$
>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
7	$2 \leq (u,+u_0) - \sigma^2 \ln (b_1) \Rightarrow close \theta$ $2 \qquad (u,-u_0) \qquad (b_0)$
⇒ 0	lecision boundary = 11,+110 = 03 ln (bi) = D
	hore M. =5. p. = 0.9 0=1
	$\mu_0 = 5.8$ $\mu_0 = 0.1$
	$\Rightarrow D = 5 + 5.8 - 1 \ln(0.9) = 8.1465/1$
me	relassification error:
me	sclassification error:
نع ک	$row = p \int_{0}^{\infty} f_{0}(x) dx + p \int_{-\infty}^{0} f_{0}(x) dx$
نع	$row = p_1 \int_{-\infty}^{\infty} f_0(x) dx + p_0 \int_{-\infty}^{0} f_0(x) dx$ $row = p_0 q \left[1 - F_1(3.1465)\right] + 0.1 \left[F_0(8.1465)\right]$
نع ک	$row = p_1 \int_{-\infty}^{\infty} f_0(x) dx + p_0 \int_{-\infty}^{0} f_0(x) dx$ $row = p_0 q \left[1 - F_1(3.1465)\right] + 0.1 \left[F_0(8.1465)\right]$
نع	$rin = p. \int_{-\infty}^{\infty} f_0(x) dx + po \int_{-\infty}^{\infty} f_0(x) dx$ $rin = p. 9 \left[1 - F. (8.1465)\right] + 0.1 \left[F_0(8.1465)\right]$
نع	$row = p_1 \int_{-\infty}^{\infty} f_0(x) dx + p_0 \int_{-\infty}^{0} f_0(x) dx$ $row = p_0 q \left[1 - F_1(3.1465)\right] + 0.1 \left[F_0(8.1465)\right]$
نع	$rin = p. \int_{-\infty}^{\infty} f_0(x) dx + po \int_{-\infty}^{\infty} f_0(x) dx$ $rin = p. 9 \left[1 - F. (8.1465)\right] + 0.1 \left[F_0(8.1465)\right]$
نع	$rin = p. \int_{-\infty}^{\infty} f_0(x) dx + po \int_{-\infty}^{\infty} f_0(x) dx$ $rin = p. 9 \left[1 - F. (8.1465)\right] + 0.1 \left[F_0(8.1465)\right]$
نع	$rin = p. \int_{-\infty}^{\infty} f_0(x) dx + po \int_{-\infty}^{\infty} f_0(x) dx$ $rin = p. 9 \left[1 - F. (8.1465)\right] + 0.1 \left[F_0(8.1465)\right]$