Introduction to Machine Learning Methods in Condensed Matter Physics

LECTURE 1, FALL 2021

Yi Zhang (张亿)

International Center for Quantum Materials, School of Physics Peking University, Beijing, 100871, China

Email: frankzhangyi@pku.edu.cn

Course information

- Instructor: Yi Zhang (张亿) <u>frankzhangyi@pku.edu.cn</u>
- Lectures: Mon 18:40-20:30,

School of Physics, Room W563

- Teaching assistant: Pei-lin Zheng (郑沛林), peilinzheng@pku.edu.cn
- *Mass communication, notifications and course slides: available on course.pku.edu.cn
- **Reference:** Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015, also available online at: http://neuralnetworksanddeeplearning.com/

Further references (mainly academic publications) will be added on the go.

- Course grade: Simple homework routines (40%) + final project (60%)
- Practice is key! Be both well-grounded and adventurous at the same time.

Syllabus

Machine learning methods	Condensed matter physics
 Supervised machine learning (artificial neural network, deep learning, adversarial attacks) Unsupervised machine learning Reinforcement learning Generative modelling (restricted Boltzmann machine, generative adversarial network) Quantum neural network 	 Phases and properties Experimental and numerical data analysis Monte Carlo methods Renormalization group Control, time evolution, and dynamics Many-body state and entanglement
Common ground: abundant microscopic degrees of freedom versus (emergent properties of) a few collective degrees of freedom	
I wish you all a fruitful semester!	More is different. – P. W. Anderso

The image recognition problem task

The MNIST data set:

Conventional programing:

Machine learning:

Perceptron

Biological neural network:

Perceptron for decision making: (1960s)

 W_2

 X_2

Weather

(1) Input X_1 Actor & actress

 X_3 Free schedule Location

 W_3

Issue with XOR: (first Al winter)

(2) Evaluate

(3) Decision

Should I go for the movie?

 $f(x) = \begin{cases} 0 & \text{if } 0 > x \\ 1 & \text{if } x \ge 0 \end{cases}$

 W_4

Yes! $(w \cdot x + b > 0)$ or No. $(w \cdot x + b < 0)$

 W_1

 X_4

Artificial neural network

- Perceptron as NAND gates → multiple layers could help (Fully-connected feed-forward neural network)
- Powerful non-linear expressions

ANN with a single hidden layer of sufficient* width can express any nonlinear function within a given error.

- Optimization: (how does machine learn?)
- 1st generation: evolution;
- 2nd generation: smooth functions, finite differences;

3rd generation: the gradient-descent family with back propagation

Perceptron revisited

Artificial neural network learning

Minimize cost function:
$$C(w,b) \equiv \frac{1}{2n} \sum_{x} \|y(x) - a\|^2$$
 ANN outputs: $a(x) = (0.1, 0.2, 0.1, 0.42, ...)^T$ e.g. for image labeled '6': $y(x) = (0,0,0,0,0,0,1,0,0,0)^T$

Gradient descent optimization

Minimize cost function:
$$C(w,b) \equiv \frac{1}{2n} \sum_{x} \|y(x) - a\|^2$$

learning rate

Adjust parameters
$$v$$
 as: $w_k \to w_k' = w_k - \eta \frac{\partial C}{\partial w_k}$ $b_l \to b_l' = b_l - \eta \frac{\partial C}{\partial b_l}$

$$b_l
ightarrow b_l' = b_l - \eta rac{\partial C}{\partial b_l}$$

$$\Delta C \approx -\eta \nabla C \cdot \nabla C = -\eta \|\nabla C\|^2 \leq 0$$

Average over samples
$$x$$
:

$$C = \frac{1}{n} \sum_{x} C_x$$

$$C = rac{1}{n} \sum_x C_x \qquad C_x \equiv rac{\|y(x) - a\|^2}{2}$$

Stochastic gradient descent:

Mini-batch of size m

$$abla C pprox rac{1}{m} \sum_{j=1}^m
abla C_{X_j}$$

Epoch: every sample is covered once in training.

$$v
ightarrow v' = v - \eta
abla C$$

$$\nabla C \equiv \left(\frac{\partial C}{\partial v_1}, \dots, \frac{\partial C}{\partial v_m}\right)^T$$

Back propagation

- Notations: from one layer to the next: $z^l \equiv w^l a^{l-1} + b^l$ nonlinear activation function: $a^l = \sigma(z^l)$
- Chain rule of derivatives:

(1)
$$\delta_j^L = \frac{\partial C}{\partial z_j^L} = \sum_k \frac{\partial C}{\partial a_k^L} \frac{\partial a_k^L}{\partial z_j^L} = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L)$$

(2)
$$\delta_j^l = \frac{\partial C}{\partial z_j^l} = \sum_k \frac{\partial C}{\partial z_k^{l+1}} \frac{\partial z_k^{l+1}}{\partial z_j^l} = \sum_k \delta_k^{l+1} w_{kj}^{l+1} \sigma'(z_j^l)$$

$$rac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l$$

Usually applicable to a full mini-batch in matrix form.

- 1. **Input** x: Set the corresponding activation a^1 for the input layer.
- 2. **Feedforward:** For each $l=2,3,\ldots,L$ compute $z^l=w^la^{l-1}+b^l$ and $a^l=\sigma(z^l)$.
- 3. **Output error** δ^L : Compute the vector δ^L .
- 4. Backpropagate the error: For each $l=L-1,L-2,\ldots,2$ compute δ^l .
- 5. **Output:** The gradient of the cost function is given by $\frac{\partial C}{\partial w^l_{ik}} = a^{l-1}_k \delta^l_j \text{ and } \frac{\partial C}{\partial b^l_i} = \delta^l_j.$

A first ML code

```
class Network(object):
   def __init__(self, sizes):
       self.num layers = len(sizes)
       self.sizes = sizes
       self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
       self.weights = [np.random.randn(y, x)
                      for x, y in zip(sizes[:-1], sizes[1:])]
   def feedforward(self, a):
       """Return the output of the network if ``a`` is input."""
       for b, w in zip(self.biases, self.weights):
           a = sigmoid(np.dot(w, a)+b)
       return a
   def evaluate(self, test_data):
       test_results = [(np.argmax(self.feedforward(x)), y)
                       for (x, y) in test_data]
       return sum(int(x == y) for (x, y) in test_results)
   def sigmoid(z):
       """The sigmoid function."""
       return 1.0/(1.0+np.exp(-z))
   def sigmoid_prime(z):
       """Derivative of the sigmoid function."""
       return sigmoid(z)*(1-sigmoid(z))
         >>> net = network.Network([784, 30, 10])
```

```
def backprop(self, x, y):
   nabla_b = [np.zeros(b.shape) for b in self.biases]
   nabla_w = [np.zeros(w.shape) for w in self.weights]
   # feedforward
   activation = x
   activations = [x] # list to store all the activations, layer by layer
   zs = [] # list to store all the z vectors, layer by layer
   for b, w in zip(self.biases, self.weights):
       z = np.dot(w, activation)+b
       zs.append(z)
       activation = sigmoid(z)
       activations.append(activation)
   # backward pass
   delta = self.cost_derivative(activations[-1], y) * \
       sigmoid_prime(zs[-1])
   nabla_b[-1] = delta
   nabla_w[-1] = np.dot(delta, activations[-2].transpose())
   for 1 in xrange(2, self.num_layers):
       z = zs[-1]
       sp = sigmoid prime(z)
       delta = np.dot(self.weights[-1+1].transpose(), delta) * sp
       nabla_b[-1] = delta
       nabla_w[-1] = np.dot(delta, activations[-1-1].transpose())
   return (nabla_b, nabla_w)
  def cost_derivative(self, output_activations, y):
      return (output_activations-y)
```

```
def SGD(self, training_data, epochs, mini_batch_size, eta,
       test data=None):
    if test_data: n_test = len(test_data)
    n = len(training_data)
    for j in xrange(epochs):
       random.shuffle(training_data)
       mini_batches = [
            training_data[k:k+mini_batch_size]
            for k in xrange(0, n, mini_batch_size)]
       for mini batch in mini batches:
            self.update_mini_batch(mini_batch, eta)
       if test data:
            print "Epoch {0}: {1} / {2}".format(
               j, self.evaluate(test_data), n_test)
       else:
            print "Epoch {0} complete".format(j)
def update mini batch(self, mini batch, eta):
    """Update the network's weights and biases by applying
    gradient descent using backpropagation to a single mini batch.
    The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
    is the learning rate."""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    for x, y in mini_batch:
       delta_nabla_b, delta_nabla_w = self.backprop(x, y)
       nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
       nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
    self.weights = [w-(eta/len(mini_batch))*nw
                    for w, nw in zip(self.weights, nabla_w)]
    self.biases = [b-(eta/len(mini_batch))*nb
                   for b, nb in zip(self.biases, nabla_b)]
```