

INSTITUTO FEDERAL DE CIÊNCIA E TECNOLOGIA DO MARANHÃO DEE – DEPARTAMENTO DE ELETROELETRÔNICA

CIRCUITO CONVERSOR BUCK

1. APRESENTAÇÃO

Esta atividade de laboratório tem por objetivo exercitar o conteúdo estudado nesta aula (capítulo), especificamente sobre o estudo de conversores cc-cc do tipo Buck. Contudo, deve compreender:

- Implementar moduladores de largura de pulso (PWM);
- Entender os princípios básicos de conversores cc-cc;
- Realizar medições no circuito;
- Analisar os resultados obtidos.

2. CIRCUITO

A fonte é para **100V** (médios). A carga possui uma resistência de **10** Ω . Note que a frequência de comutação é de **15kHz** e a razão cíclica é de **50%**. O indutor de filtro é de **5mH** e o capacitor é de **100\muF**.

Observação: Com o circuito simulado no Psim, note que os componentes são ideais, ou seja, genéricos, não se utilizando algum modelo específico de chave.

Figura 1 - Circuito do conversor cc-cc Buck

Anote os valores simulados e calculados na tabela.

Parâmetr o	Explicação	Valor Calculado	Valor Simulado
$V_{o(avg)}$	Tensão média na carga		
V _{o(RMS)}	Tensão eficaz na carga		
I _{o(RMS)}	Corrente eficaz na carga		
I _{o(avg)}	Corrente média na carga		
P _o	Potência na saída		
ΔLO _{max}	Ondulação máxima do indutor		
I _{Lo(max)}	Corrente máxima no indutor		
I _{Lo(avg)}	Corrente média no indutor		
I _{Lo(rms)}	Corrente eficaz no indutor		
I _{Co(max)}	Corrente máxima no capacitor		
I _{Co(rms)}	Corrente eficaz no capacitor		
V _{S1}	Tensão máxima sobre a chave		
V _{D1}	Tensão máxima sobre o diodo		

Utilize as fórmulas abaixo para fazer o que se pede na atividade:

$$\begin{split} Io = Io_{\textit{med}} = Io_{\textit{rms}} = Io_{\textit{pk}} = \frac{Vo}{Ro} & I_{\textit{Lo}} = I_{\textit{Lo}(\textit{med})} = I_o \\ \Delta Lo_{\textit{max}} = \frac{Vi}{\Delta I_{\textit{Lo}} \cdot F_s} \times D \cdot (1 - D) \end{split}$$

3. VERIFICAÇÃO

- 1) Os resultados obtidos na simulação condizem com os valores calculados?
- 2) Qual foi o rendimento obtido pelo circuito analisado?
- 3) Explique as discrepâncias entre os valores obtidos, caso tenha ocorrido.