Оглавление

1	Введение				
	1.1	Сведе	ния из дифференциальных уравнений		
		1.1.1	Условия существования решений задачи Коши		
		1.1.2	Формула Коши для векторного линейного дифференциального		
			уравнения		
		1.1.3	Формула Коши для матричного дифференциального уравнения		
	1.2	Поиск	фундаментальных матриц		
		1.2.1	Автономный случай		
		1.2.2	Периодические системы		
		1.2.3	Сведения из выпуклого анализа		
2	Дис	Дискретная задача моментов			
	2.1	Дискр	етный процесс управления— часть I		
		2.1.1	Постановка задачи		
		2.1.2	Множество достижимости и его свойства		
		2.1.3	Исследование разрешимости задачи моментов		
		2.1.4	Геометрический смысл (отступление)		
		2.1.5	Решение задачи моментов		
	2.2	Дискр	етный процесс управления— часть II		
		2.2.1	Постановка задачи и её решение		
		2.2.2	Геометрическая интерпретация		
		2.2.3	Вычисление оптимального управления		
3	Неп	рерыв	зная задача моментов		
	3.1	Поста	новка задачи		
	3.2	Решен	ие		
		3.2.1	Исследование разрешимости задачи моментов		
	3.3	Непре	рывная задача оптимального управления		
		3.3.1	Система с постоянными коэффициентами		
	3.4	Одекс	омпозиции состояния нелинейной системы (отступление)		
	3.5	Доказ	ательство теоремы о декомпозиции состояний для случая посто-		
		янных	коэффициентов		

OГЛAВЛEНИЕ

	3.6	Достаточное условие управляемости для непрерывных систем с переменными коэффициентами				
	3.7	Достаточное условие управляемости для непрерывных систем с перио-				
	9.1	дическими коэффициентами				
4	Зад	Задача моментов в \mathcal{L}_p и \mathcal{L}_∞				
	4.1	Пространство \mathcal{L}_p , $1 $				
	4.2	Пространство \mathcal{L}_{∞}				
	4.3	Принцип максимума Понтрягина				
5	Зад	Задача быстродействия				
	5.1	Постановка задачи				
	5.2	Свойства множества достижимости				
	5.3	Условие максимума				
		5.3.1 Условие нормальности (общности положения)				
		$5.3.2$ Условие управляемости при выпуклости множества \mathcal{P}				
6	Зад	Вадача из множества во множество				
	6.1	Постановка задачи				
	6.2	Вспомогательные утверждения				
	6.3	Решение задачи				
7	Ли	Линейно-выпуклые задачи				
	7.1	Постановка задачи (начало)				
	7.2	Решение задачи				
	7.3	Теория минимаксов				
	7.4	Решение задачи (окончание)				

Глава 1

Введение

Рассмотрим некоторый объект, состояние которого в каждый момент времени описывает набор чисел $x = (x_1, x_2, \dots, x_n)^T$; пусть мы можем управлять этим объектом, т. е. выбирать некоторый параметр, так или иначе влияющий на состояние объекта. Пусть поведение объекта описывается некоторыми уравнениями, например,

$$x^{k+1} = f(k, x^k, u^k),$$

где k — целое число (дискретное время), u^k — параметр (управление), которое выбираем мы. Другим подобным примером может служить система дифференциальных уравнений

$$\frac{dx}{dt} = f(t, x(t), u(t)),$$

где t — время, u(t) — управление.

Наложим некоторые геометрические ограничения на множества допустимых управлений: пусть $u^k \in \mathcal{P}(k)$ (или, аналогично, $u(t) \in \mathcal{P}(t)$). Например, таким множеством может быть многоугольник или шар. Эти ограничения происходят из реальной жизни: так, например, при управлении автомобилем, мы можем поворачивать руль не сколь угодно круто, а максимум на некоторый фиксированный угол в ту или иную сторону: $u(t) \in [-\alpha, \alpha]$.

Чтобы еще более сузить класс управлений, введем функционал качества $J(u(\cdot))$, который будет оценивать «пригодность» выбранного управления по некоторому критерию. Нас в дальнейшем будут интересовать задачи нахождения оптимального управления, т. е. такого управления, на котором функционал качества достигает экстремума.

Приведем несколько примеров функционалов качества. В задаче Maŭepa-Больца функционал имеет вид

$$J(u(\cdot); t_0, x^0) = \int_{t_0}^{t_1} L(t, x(t), u(t)) dt + \varphi(t_1, x(t_1)).$$
(1.1)

Задаче устремления функционала (1.1) к минимуму можно придать содержательную интерпретацию как минимизации затрачиваемого топлива, расходуемого объектом на

перемещение, и задаче перевода объекта в заданную точку пространства. В дискретном случае функционал (1.1) принимает вид

$$J(\{u_k\}_{k=k_0+1}^{k_1}; k_0, x^{k_0}) = \sum_{k=k_0+1}^{k_1-1} L(k, x^k, u^k) + \varphi(K_1, x^{k_1}).$$

Другой пример функционала качества:

$$J(u(\cdot); t_0, x^0) = \int_{t_0}^{t_1} L(t, x(t), u(t)) dt \to \inf_{u(\cdot)}.$$

1.1 Сведения из дифференциальных уравнений

1.1.1 Условия существования решений задачи Коши

Рассмотрим линейную систему дифференциальных уравнений

$$\begin{cases} \frac{dx}{dt} = A(t)x(t) + B(t)u(t) + f(t), \\ x(t_0) = x^0. \end{cases}$$
 (1.2)

Как известно, для локального существования и единственности решения этой системы достаточно непрерывности и липшецевости по x правой части. Кроме того, справедлива следующая

Теорема 1. Рассмотрим уравнение

$$\dot{x} = f(x, t),\tag{1.3}$$

 $ede\ f(x,t)$ непрерывна в некоторой области A. Тогда для любой компактной области из A существует решение уравнения (1.3), доходящее до её границы.

Замечание 1. Если управление в правой части (1.2) есть лишь кусочно-непрерывная функция, то полученное решение лишь кусочно-дифференцируемая функция. В таком случае, задача сначала решается на одном промежутке непрерывности правой части, и значение решения в точке разрыва кладется начальным условием для задачи нахождения решения на примыкающем промежутке непрерывности.

В самом широком случае, когда правая часть (1.2) всего лишь измерима, решение понимается в смысле решения по Каратеодори.

Следующий пример показывает, что в условиях теоремы может не иметь место продолжимость решения.

Пример 1. Решением системы

$$\begin{cases} \dot{x} = x^2, \\ x(0) = 1. \end{cases}$$

является функция

$$x(t) = \frac{1}{1-t},$$

которая является разрывной в точке t=1.

Понятно, что единственной причиной непродолжимости может быть уход траекторий решений за конечное время на бесконечность. Что бы исключить подобные ситуации из рассмотрения, дополнительно потребуем, чтобы ||x(t)|| рос не быстрее известной функции, не уходящей на бесконечность за конечное время. Для этого оценим скорость роста $||x(t)||^2$:

$$\frac{d}{dt} (\|x\|^2) = \frac{d}{dt} (\langle x(t), x(t) \rangle) = 2 \langle x(t), f(t, x(t)) \rangle.$$

Для продолжимости решений вправо, потребуем, что бы

$$\langle x, f(t, x) \rangle \leqslant C_1 ||x||^2 + C_2,$$
 (1.4)

где C_1, C_2 — положительные константы. Обозначая $y = y(t) = \|x(t)\|^2$, получаем:

$$\dot{y} \leqslant 2C_1 y + 2C_2 \Leftrightarrow \dot{y} - 2C_1 y \leqslant 2C_2.$$

Домножим обе части на e^{-2C_1t} :

$$e^{-2C_1t}\dot{y} - 2C_1e^{-2C_1t}y \leqslant 2C_2e^{-2C_1t};$$

$$\frac{d}{dt}\left(e^{-2C_1t}y\right) \leqslant 2C_2e^{-2C_1t}.$$

Проинтегрируем это соотношение от t_0 до t:

$$e^{-2C_1t}y(t) - e^{-2C_1t_0}y(t_0) \leqslant 2C_2 \int_{t_0}^t e^{-2C_1\tau}d\tau = \frac{C_2}{C_1} \left[e^{-2C_1t_0} - e^{-2C_1t}\right];$$

Окончательно,

$$y(t) \le e^{2C_1(t-t_0)}y(t_0) + (e^{2C_1(t-t_0)} - 1)\frac{C_2}{C_1},$$

что гарантирует продолжимость решения. Применяя неравенство Коши-Буняковского, условие (1.4) можно усилить и записать в виде

$$||f(t,x)|| \leqslant C_3 ||x|| + C_4,$$

где $C_3 > 0$ и $C_4 > 0$. Это условие, называемое условием сублинейного роста, гарантирует продолжимость решений в обе стороны.

1.1.2 Формула Коши для векторного линейного дифференциального уравнения

Вернемся к рассмотрению задачи (1.2). Сначала рассмотрим однородное уравнение

$$\dot{x} = A(t)x(t). \tag{1.5}$$

Определение 1. Матрица $X(t,\tau) \in \mathbb{R}^{n \times n}$ называется фундаментальной матрицей для уравнения (1.5), если

$$\frac{dX(t,\tau)}{dt} = A(t)X(t,\tau),$$

и, кроме того, $X(\tau,\tau)=E$ (где E — единичная матрица).

Пусть вектор-столбцы x^1, x^2, \dots, x^n — фундаментальная система решений уравнения (1.5); составим из них матрицу $\Phi(t)$. При этом

$$\frac{d\Phi(t)}{dt} = A(t)\Phi(t).$$

Несложно показать, что $X(t,\tau) = \Phi(t)\Phi^{-1}(\tau)$. Таким образом, в случае задачи Коши

$$\begin{cases} \dot{x} = A(t)x(t), \\ x(t_0) = x^0. \end{cases}$$

решение представимо в виде $x(t) = X(t,\tau)x^0$. Это выражение так же называется формулой Коши для однородного уравнения.

Далее, рассмотрим неоднородное уравнение

$$\begin{cases} \dot{x} = A(t)x(t) + f(t), \\ x(t_0) = x^0. \end{cases}$$
 (1.6)

Будем искать решения в виде x(t) = F(t)y(t), где F(t) — некоторая матрица. Тогда, дифференцируя и подставляя в (1.6), получим:

$$\dot{x} = \dot{F}(t)y(t) + F(t)\dot{y}(t) = A(t)F(t)y(t) + f(t),$$

$$\dot{y} = F^{-1}(t)(A(t)F(t) - \dot{F}(t))y(t) + F^{-1}(t)f(t).$$

Выбирая $F(t) = X(t, t_0)$, мы сводим систему (1.6) к системе

$$\begin{cases} \dot{y} = X^{-1}(t, t_0) f(t), \\ y(t_0) = x^0. \end{cases}$$

Таким образом, мы можем выписать в явном виде ответ:

$$y(t) = x^{0} + \int_{t_{0}}^{t} X^{-1}(\tau, t_{0}) f(\tau) d\tau;$$

$$x(t) = X(t, t_0)x^0 + \int_{t_0}^t X(t, t_0)X^{-1}(\tau, t_0)f(\tau)d\tau.$$
 (1.7)

Отметим, что $X(\tau,t_0)$ отображает x^0 в $x(\tau)$, а $X(t,\tau)$ отображает $x(\tau)$ в x(t). Тогда $x(t) = X(t,\tau)X(\tau,t_0)x^0$. Но в силу единственности решения $x(t) = X(t,t_0)x^0$ имеем:

$$X(t,\tau)X(\tau,t_0) = X(t,t_0).$$
 (1.8)

Соотношение (1.8) называется полугрупповым свойством фундаментальной матрицы. В частности, при $t=t_0$, получаем $X(t_0,\tau)X(\tau,t_0)=E$. Это позволяет записать соотношение (1.7) в виде

$$x(t) = X(t, t_0)x^0 + \int_{t_0}^t X(t, \tau)f(\tau)d\tau,$$

называемом формулой Коши для неоднородного уравнения.

Конкретно для задачи (1.2), формула Коши имеет вид

$$x(t) = X(t, t_0)x^0 + \int_{t_0}^{t} X(t, \tau)B(\tau)u(\tau)d\tau + \int_{t_0}^{t} X(t, \tau)f(\tau)d\tau.$$

Задача 1. Пусть задано уравнение

$$\dot{x} = A(t)x(t) + f(t).$$

Какая должна быть матрица A_1 в линейной замене переменных, чтобы уравнение приняло вид

$$\dot{x} = B(t)x(t) + f_1(t),$$

где $f_1(t)$ — заданная функция?

1.1.3 Формула Коши для матричного дифференциального уравнения

Рассмотрим следующее матричное дифференциальное уравнение:

$$\begin{cases} \dot{Z} = A(t)Z(t) + Z(t)B(t) + C(t); \\ Z(t_0) = Z^0; \end{cases}$$
 (1.9)

где $A, B, C, Z \in \mathbb{R}^{n \times n}$.

Сделаем замену переменных $Z(t) = X(t, t_0)Z_1(t)$ (где $X(t, t_0)$ — фундаментальная матрица) и подставим в (1.9):

$$\dot{Z} = A(t)X(t, t_0)Z_1 + X(t, t_0)\dot{Z}_1 = A(t)X(t, t_0)Z_1 + X(t, t_0)B + C.$$

Сократим на $A(t)X(t,t_0)Z_1$ обе части и избавимся от фундаментальной матрицы при \dot{Z}_1 :

$$\dot{Z}_1 = Z_1 B + X(t_0, t) C \Rightarrow \dot{Z}_1^T = B^T Z_1^T + C^T X^T (t_0, t).$$

Вновь сделаем замену $Z_1^T = Y^T(t_0, t) Z_2(t)$, при подстановке получим:

$$\dot{Z}_1^T = B^T Y^t(t, t_0) Z_2^T + C^T X^T(t_0, t) \Rightarrow \dot{Z}_2 Y(t, t_0) = X(t_0, t) C \Rightarrow \dot{Z}_2 = X(t_0, t) C Y(t_0, t).$$
(1.10)

Итак, итоговая замена имеет вид:

$$Z = X(t, t_0)Z_1 = X(t, t_0)Z_2Y(t, t_0).$$

Проинтегрируем уравнение (1.10):

$$Z_2(t) = Z^0 + \int_{t_0}^t X(t_0, \tau) C(\tau) Y(t_0, \tau) d\tau$$

с учетом замены, получим:

$$Z(t) = X(t, t_0)Z^{0}Y(t, t_0) + \int_{t_0}^{t} X(t, \tau)C(\tau)Y(t_0, \tau)Y(t, t_0)d\tau$$

по полугрупповому свойству свернем подынтегральное выражение и получим в итоге окончательную формулу Коши для матричного ОДУ:

$$Z(t) = X(t, t_0)Z^0Y(t, t_0) + \int_{t_0}^t X(t, \tau)C(\tau)Y(t, \tau)d\tau$$
(1.11)

Пример 2. Рассмотрим уравнение Риккати:

$$\dot{P}(t) = A(t)P(t) + P(t)A^{T}(t) + M(t).$$

Для этого уравнения выполняется соотношение $Y^{T}(t,\tau) = X(t,\tau)$ (Проверьте!). Учитывая это, получаем решение:

$$P(t) = X(t, t_0)P^0X^T(t, t_0) + \int_{t_0}^t X(t, \tau)MX^T(t, \tau)d\tau.$$

1.2 Поиск фундаментальных матриц

1.2.1 Автономный случай

Рассмотрим случай, когда матрица A = const и $\dot{X} = AX$. Отметим, что фундаментальная матрица X будет инвариантна относительно смещения во времени, иными

словами $X(t,\tau) = X(t-\tau)$. Также верно, что если x(t) — решение, то $x(t+\delta t)$ — тоже будет являться решением. В общем виде решение будет записываться как:

$$x(t) = X(t, \tau)x(\tau)$$

теперь рассмотрим решение $x(t + \Delta t)$:

$$x(t + \Delta t) = X(t + \Delta t, \tau + \Delta t)x(\tau + \Delta t); X(t, \tau) = X(t + \Delta t, \tau + \Delta t) \Rightarrow X(t, \tau) = x(t - \tau)$$

а если взять $\Delta t = -\tau$, то мы получим $X(t,\tau) = X(t-\tau,0)$, то есть мы с помощью сдвига избавились от τ , ну а теперь возьмем матрицу X(t,0) равную матричной экспоненте, то есть $X(t,0) = e^{At}$, которая равна, ровно как и для обычной экспоненты, соответствующему ряду:

$$X(t,0) = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}$$
 (1.12)

Для корректности этого определения требуется равномерная сходимость ряда.

Лемма 2. Ряд в правой части (1.12) сходится равномерно.

Доказательство. Для простоты дальнейших рассуждений обозначим коэффициенты матрицы A^k , как $\left(a_{ij}^{(k)}\right)$; $i,j=\overline{1,n}$. Так как $A\in\mathbb{R}^{n\times n}$, то все степени матрицы A будут иметь тот же размер.

Нас интересует оценивание $\max |a_{ij}^{(k)}|$. Пусть $\max |a_{ij}| = c$. Запишем формулу для коэффициентов квадрата матрицы A: $a_{ij}^{(2)} = \sum_{l=1}^n a_{il} a_{lj} \Rightarrow |a_{ij}^{(2)}| \leqslant \sum_{l=1}^n |a_{il}| \cdot |a_{lj}|$, откуда получаем конечную оценку: $\max |a_{ij}^{(2)}| \leqslant nc^2$. Применяя метод математической индукции, мы получим оценку для любой степени матрицы A:

$$\max |a_{ij}^{(k)}| \leqslant n^{k-1}c^k; \quad c = \max |a_{ij}|, \quad i, j = \overline{1, n}.$$

Итак, мажорируем e^{At} с помощью ряда $\sum_{k=1}^{\infty} \frac{n^{k-1}c^kt^k}{k!}$:

$$e^{At} \leqslant \sum_{k=1}^{\infty} \frac{n^{k-1}c^kt^k}{k!}$$
:

Ряд в правой части сходится по признаку Вейерштрасса.

Отметим, что $e^{A\cdot 0}=E$. Проверим свойство дифференцируемости:

$$\frac{d}{dt}\left(e^{At}\right) = \sum_{k=1}^{\infty} \frac{kA^k t^{k-1}}{k!} = A \sum_{k=1}^{\infty} \frac{A^{k-1} t^{k-1}}{(k-1)!} = Ae^{At}.$$

Значит, фундаментальная матрица имеет вид $X(t,\tau)=e^{A(t-\tau)}.$

Отметим, что для матричной экспоненты выполняются многие свойства обычной экспоненты, например $e^{As} \cdot e^{At} = e^{A(t+s)}$. Это свойство отражает полугрупповое свойство фундаментальной матрицы.

Считать по определению матричную экспоненту достаточно трудно, хотя для n=2,3 это возможно сделать, особенно если вид коэффициентов $\{a_{ij}^{(k)}\}$ зависит от k, и матрицы периодичны.

Задача 2. Найдите
$$e^{At}$$
 для матрицы $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Что же делать, если «в лоб» посчитать экспоненту не удалось? Давайте рассмотрим характеристическое уравнение матрицы $A: |A - \lambda E| = 0; \lambda_1, \ldots, \lambda_l$ — собственные значения с кратностями k_1, \ldots, k_l , (напомним, что $k_1 + \ldots + k_l = n$), и далее ищем фундаментальную систему решений:

- 1. $k_j = 1$
 - (a) $\lambda_i \in \mathbb{R} \Rightarrow e^{\lambda_j t} \cdot v_i$ (где v_i собственный вектор);
 - (b) $\lambda_j \in \mathbb{C} \Rightarrow e^{\lambda_j t} \cdot v_j$ с тем только учетом, что экспоненту надо раскладывать на вещественную и мнимую части, а также надо не забывать о том, что комплексные собственные значения могут появляться только одновременно со своим сопряженным $\overline{\lambda_j}$.
- 2. $k_j \ge 2$
 - (a) $\lambda_j \in \mathbb{R}$, тогда вклад имеет вид $\left(\sum_{i=1}^{k_j-1} \frac{v_j^{k_j-i}t^{(i-1)}}{(i-1)!}\right) e^{\lambda_j t};$
 - (b) $\lambda_i \in \mathbb{C}$, тогда надо взять вещественные и мнимые части.

Конкатенируя (объединяя) полученные решения в фундаментальную матрицу, имеем $e^{At} = \Phi(t)\Phi^{-1}(0)$.

Пример 3.

$$A = \left(\begin{array}{cc} 3 & 5 \\ -1 & 1 \end{array}\right).$$

посчитаем $\det A$, и найдём собственные значения: $(3-\lambda)(1-\lambda)+5=0 \Rightarrow \lambda^2-4\lambda+8=0$ $\Rightarrow \lambda_{1,2}=2\pm 2i$ Теперь найдём собственный вектор для собственного значения $\lambda_s=2+2i$, он равен $(1+2i,-1)^T$. После этого умножаем полученный вектор $(1+2i,-1)^T$ на $e^{2t}(\cos 2t+i\sin 2t)$, после перемножения, приводим подобные вещественные и мнимые части, итого получаем:

$$\begin{pmatrix} 1+2i \\ -1 \end{pmatrix} * e^{2t}(\cos 2t + i\sin 2t) = e^{2t} \begin{pmatrix} \cos 2t - 2\sin 2t \\ -\cos 2t \end{pmatrix} + ie^{2t} \begin{pmatrix} \cos 2t + \sin 2t \\ -\sin 2t \end{pmatrix}$$

Теперь из соответствующих столбцов-коэффициентов при e^{2t} составляем матрицу M, после этого составляем матрицу из коэффициентов при $\cos 2t$ — матрица B, считаем обратную к B матрицу, и умножаем $M*B^{-1}=C$, после чего выписываем ответ.

$$M = \begin{bmatrix} \cos 2t - 2\sin 2t & 2\cos 2t + \sin 2t \\ -\cos 2t & -\sin 2t \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$$
$$B^{-1} = \begin{bmatrix} 0 & -1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}, \quad C = M \times B^{-1} = \begin{bmatrix} \cos 2t + \frac{1}{2}\sin 2t & \frac{5}{2}\sin 2t \\ -\frac{1}{2}\sin 2t & \cos 2t - \frac{1}{2}\sin 2t \end{bmatrix}$$

Ответ:

$$e^{At} = e^{2t} \begin{bmatrix} \cos 2t - 2\sin 2t & 2\cos 2t + \sin 2t \\ -\cos 2t & -\sin 2t \end{bmatrix}$$

К сожалению, для случая, когда $A \neq const$ не придумано общих методов. Однако разберем случай, когда n=1. Итак, $\dot{x}=a(t)x; \frac{dx}{x}=a(t)dt. \Rightarrow X(t,\tau)=\exp\left\{\int\limits_{\tau}^{t}A(s)ds\right\}$.

Интересен вопрос, при каких условиях фундаментальная матрица находится аналогичным выражением, т.е. когда $X(t,\tau)=\exp\left\{\int\limits_{\tau}^{t}A(s)\right\}ds$? Для этого дифференцируем по t:

$$X(t,\tau) = \exp\left\{\int A(s)ds\right\} = \sum_{k=1}^{\infty} \frac{1}{k!} \left[\int_{\tau}^{t} A(t)ds\right]^{k}$$

$$\frac{\partial X(t,\tau)}{\partial t} = \sum_{k=1}^{\infty} \frac{1}{k!} \{A(t) \left[\int_{\tau}^{t} A(s) ds \right]^{k-1} + \left[\int_{\tau}^{t} A(s) ds \right] A(t) \cdot \left[\int_{\tau}^{t} A(s) ds \right]^{k-2} + \dots
\dots + \left[\int_{\tau}^{t} A(s) ds \right]^{k-1} A(t) \} = kA(t) \left[\int_{\tau}^{t} A(s) ds \right]^{k-1}$$
(1.13)

Но когда же справедлив последний переход в (1.13)? Только тогда, когда A(a)A(b) = A(b)A(a) верно для $\forall a, b$, что является весьма сильным (и редко встречающимся) условием.

1.2.2 Периодические системы

Определение 2. Если матрица A(t) такова, что $\exists T > 0: A(t+T) = A(t) \ \forall t,$ то A(t) называется nepuodureckoŭ (с периодом T).

Утверждение 3. Если $x(\cdot)$ — решение системы

$$\begin{cases} \dot{x}(t) = A(t)x(t), \\ A(t+T) = A(t) \ \forall t, \end{cases}$$
 (1.14)

mo x(t+T) — moжe pewenue (1.14).

Доказательство.
$$\dot{x}(t+T) = A(t+T)x(t+T) = A(t)x(t+T)$$

Стоит заметить, что из того, что x(t) и x(t+T) — решения (1.14), вообще говоря, не следует, что $x(t) \equiv x(t+T)$. Условия, при которых эти решения совпадают, будут рассмотрены ниже.

Рассмотрим решение (1.14): используя формулу Коши $x(t) = X(t,0) \cdot x(0)$, обозначив $\Phi(t) = X(t,0)$, получим:

$$x(t+T) = \Phi(t+T)x(0).$$

С другой стороны, x(t) есть решение исходной системы с начальным условием $x^0 = x(T)$, поэтому

$$x(t+T) = \Phi(t)x(T) = \Phi(t)\Phi(T)x(0).$$

Отсюда видно, что

$$\Phi(t+T) = \Phi(t) \cdot \Phi(T).$$

А т. к. $X(t,\tau) = \Phi(t)\Phi^{-1}(\tau)$, то

$$\Phi(t) = (\Phi(T))^k \Phi(s)$$
 при $t = kT + s, k \in \mathbb{Z}, s \in [0, T].$

Определение 3. Матрица Ф называется *матрицей монодромии*, а её собственные значения — *мультипликаторами*.

Утверждение 4. Для того, чтобы ρ являлся мультипликатором системы (1.14), необходимо и достаточно, чтобы нашлось такое x(t) — ненулевое решение (1.14) — что за любой период его координаты умножались бы на ρ , то есть $x(t+T) = \rho x(t) \ \forall t$.

Доказательство. Необходимость: Если ρ — собственное значение Φ , то $\exists v \neq 0$ — собственный вектор $\Phi(T)$:

$$\Phi(T)v = \rho v$$
.

Возьмём v за начальное условие. Пусть x(t) — решение (1.14) при условии x(0) = v. Тогда

$$x(t+T) = \Phi(t+T)v = \Phi(t)\Phi(T)v = \rho\Phi(t)v = \rho x(t).$$

Достаточность: Пусть $x(t+T) = \rho x(t) \ \forall t$. Тогда

$$x(t+T) = \Phi(t+T)x(0) = \Phi(t) \cdot \Phi(T)x(0),$$

$$x(t+T) = \rho x(t) = \Phi(t) \cdot \rho x(0).$$

 $\Phi(t)$ невырождена, следовательно x(0) — собственный вектор $\Phi(T)$, а ρ — собственное значение $\Phi(T)$.

Отсюда следует, что периодическое решение системы (1.14) существует тогда и только тогда, когда у её матрицы монодромии существует единичный мультипликатор.

Теорема 5 (Флоке). Для всякой системы (1.14) с периодической матрицей найдутся такие матрицы $\Psi(t)$ и $\bar{A} = {\rm const.}$, что $\Psi(t+T) = \Psi(t) \ \forall t, \ |\Psi| \neq 0, \ u$

$$\Phi(t) = \Psi(t)e^{\bar{A}t}.\tag{1.15}$$

Доказательство. Конструктивно построим такие $\Psi(t)$ и \bar{A} .

Так как $\Phi(t) = X(t,0)$, то $\dot{\Phi} = A(t)\Phi$, и если равенство (1.15) выполняется, то

$$\dot{\Phi} = \dot{\Psi}e^{\bar{A}t} + \Psi(t)\bar{A}e^{\bar{A}t} = A(t)\Psi(t)e^{\bar{A}t},$$

откуда

$$\dot{\Psi} = A(t)\Psi(t) - \Psi(t)\bar{A}.$$

Потребуем, чтобы $\Phi(T)=\Psi(T)e^{\bar{A}T}=\Psi(0)e^{\bar{A}T}$ и $\Psi(0)=I$. Тогда \bar{A} найдётся из условия $\Phi(T)=e^{\bar{A}T}$.

Таким образом, для того чтобы найти матрицу \bar{A} нам необходимо «прологарифмировать» матрицу. В курсе линейной алгебры такая операция не рассматривалась, однако мы можем ввести её в полной аналогии с вещественными числами. Например, логарифм вещественных чисел можно вводить как сумму ряда $\ln(1+z) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}z^k}{k}$. Соответственно для матриц положим по определению

$$\ln \Phi(t) \stackrel{\text{def}}{=} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (\Phi(t) - I).$$

Ниже будет показано, что этот ряд сходится. Тот факт, что $e^{\ln z}=z$ легко проверяется с использованием свойств вещественных рядов.

Итак, $\bar{A}=\frac{\ln\Phi(T)}{T}$. Положим $\Psi(t)=\Phi(t)e^{-\bar{A}t}$. Проверим периодичность матрицы $\Psi(t)$: учитывая, что $\Phi(T)e^{-\bar{A}T}=\Psi(0)=I$, получим

$$\Psi(t+T) = \Phi(t+T)e^{-\bar{A}(t+T)} = \Phi(t)\Phi(T)e^{-\bar{A}T}e^{-\bar{A}t} = \Phi(t)e^{-\bar{A}t} = \Psi(t).$$

Требуемое в условии равенство тоже, очевидно, выполняется:

$$\Psi(t)e^{\bar{A}t} = \Phi(t)e^{-\bar{A}t}e^{\bar{A}t} = \Phi(t).$$

Таким образом, все утверждения теоремы справедливы, и теорема доказана.

Сходимость матричного логарифма. Покажем, что ряд в определении матричного логарифма всегда сходится:

Если A — матрица простой структуры, т.е. $A = T^{-1}\Lambda T$, то $\ln A = T^{-1}\ln \Lambda T$, а

$$\ln \left[\begin{array}{ccc} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{array} \right] = \left[\begin{array}{ccc} \ln \lambda_1 & & \\ & \ddots & \\ & & \ln \lambda_n \end{array} \right],$$

где $\ln \lambda_k$ — вообще говоря — комплексные числа.

Если A — произвольная, то

$$A = T^{-1} \begin{bmatrix} L_1(\lambda_1) & & \\ & \ddots & \\ & & L_n \lambda_n \end{bmatrix} T,$$

где L_j — жордановы ящики; прологарифмируем поблочно: учитывая

$$\ln(\lambda_j + x) = \ln \lambda_j + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k\lambda_j^k} x^k,$$

получим

$$\ln L_j(\lambda_j) = \ln (\lambda_j I + L_j(\lambda_j) - \lambda_j I) = \ln \lambda_j I + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k \lambda_j^k} \left[L_j(\lambda_j) - \lambda_j I \right]^k.$$

Т. к $[L_j(\lambda_j) - \lambda_j I]$ — нильпотентная матрица, то ряд в правой части обращается в конечную сумму, а следовательно исходный ряд сходится, что и требовалось.

Сингулярное разложение матрицы. Это представление нам нужно для выявления качественных свойств системы. Проведём сингулярное разложение матрицы A из (1.14): $A = U\Lambda V$. Тогда

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!} U \Lambda V U \Lambda V \dots U \Lambda V.$$

И если $A=A^T$, то $U=V^T$, причём т. к. $U^{-1}=U^T$, то $e^A=Ue^\Lambda U^T$ и о собственных значениях e^A можно судить по e^Λ . В теории устойчивости и стабилизации это позволяет судить о поведении системы по собственным значениям $\Phi(t)$ при отсутствии необходимости знания самой $\Phi(t)$ в явном виде.

Системы с измеримой правой частью. Рассмотрим дискретную систему

$$x(k+1) = A(k)x(k) + B(k)u(k) + f(k), k \in \mathbb{Z}.$$

Пусть пока что $A, B, f \equiv \text{const.}$ Тогда

$$x(k+1) = Ax(k) + Bu(k) + f, k \in \mathbb{Z}$$

Рассмотрим сначала однородную систему: x(k+1) = Ax(k). Фундаментальная матрица для неё есть

$$X(k,s)$$
, t. q.
$$\begin{cases} X(s,s) = I, \\ X(k+1,s) = AX(k,s). \end{cases}$$

Видно, что $X(k,s) = A^{k-s}$. По формуле Коши

$$x(k) = X(k,s)x(s) + \sum_{l=s}^{k-1} X(k,l)[Bu(l) + f],$$

тогда

$$x(k+1) = Ax(k) + Bx(k) + f = A(X(k,s)x(s) + \sum_{l=s}^{k-1} X(k,l)[Bu(l) + f] + Bx(k) + f,$$

и по индукции получим

$$x(k) = A^{k-s}x(s) + \sum_{l=s}^{k-1} A^{k-s-1}[Bu(l) + f].$$

На самом деле, тут матрица X может быть вырожденной, и это понятно, ибо в дискретном случае

$$\dot{x}(t) = A(t)x(t),$$

$$x(t + \Delta t) - x(t) \approx \Delta t A(t) x(t + \Delta t) \approx [I + \Delta t A] x(t).$$

И в k-ой степени $(I+\Delta tA)^k \to e^A t$ при $\Delta t = \frac{t}{k}, \ k \to \infty.$

1.2.3 Сведения из выпуклого анализа

Определение 4. Пусть X — пространство с введённым скалярным произведением $\langle \cdot, \cdot \rangle$, $l \in X$, $A \subset X$. Тогда опорной функцией множества A называется функция

$$\rho\left(l \mid A\right) = \sup_{x \in A} \langle l, x \rangle$$

Геометрический смысл опорной функции достаточно прост: при фиксированном l множество $\{l \mid \langle l,z\rangle=c=\mathrm{const}\}$ есть гиперплоскости, ортогональные l, сдвинутые от начала координат вдоль l на $\frac{c}{\|l\|}$.

Если ||l||=1, то $c=\langle l,z\rangle$ есть расстояние от начала координат до гиперплоскости, ортогональной l и проходящей через z.

Получается, что опорная функция множества показывает максимальное расстояние от начала координат до гиперплоскости заданной ориентации, ещё имеющей какие-то общие точки с нашим множеством. Эта наиболее удалённая гиперплоскость называется опорной гиперплоскостью $\pi_l = \{z : \langle l, z \rangle = \rho (l \mid Z) \}, \ (l \neq 0).$

Опорная функция обладает следующими свойствами:

- 1. Она положительно-однородна: $\rho(\alpha L \mid Z) = \alpha \rho(l \mid Z)$, $\alpha \geqslant 0$.
- 2. Она *полуаддитивна*: $\rho(l^1 + l^2 \mid Z) \leq \rho(l^1 \mid Z) + \rho(l^2 \mid Z)$. (неравенство треугольника).
- 3. Из первого и второго пунктов следует, что она выпукла.
- 4. Между выпуклыми компактами и $\rho\left(l\,|\,Z\right)$ существует взаимно-однозначное соответствие.

Действительно: прямо из определения следует, что $\forall z \in Z$ имеет место быть

$$\langle l, z \rangle \leqslant \rho \left(l \mid Z \right), \ \forall l \in \mathbb{R}^n.$$
 (1.16)

Если же $Z \in \text{conv }\mathbb{R}^n$ (является выпуклым компактом), то справедливо и обратное утверждение, то есть (1.16) $\Rightarrow z \in Z$. И тогда $Z = \bigcap_{l \in \mathbb{R}^n} \pi_l^-$, где $\pi_l^- = \{z: z \leqslant \rho(l \mid X)\}$.

Глава 2

Дискретная задача моментов

2.1 Дискретный процесс управления — часть I

2.1.1 Постановка задачи

Рассмотрим задачу управления линейной дискретной системой:

$$x(k+1) = Ax(k) + Bu(k) + f,$$

$$x \in \mathbb{R}^{n}, u \in \mathbb{R},$$

$$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times 1}, f \in \mathbb{R}^{n}.$$

$$(2.1)$$

Наша цель — найти управление, переводящее систему из состояния $x(k_0) = x^0$ в состояние $x(k_1) = x^1$ ($k_0 < k_1$).

Выпишем формулу Коши решения нашей дискретной системы:

$$x(k_1) = X(k_1, k_0)x^0 + \sum_{k=k_0}^{k_1-1} X(k_1, k) [Bu(k) + f] = x^1.$$

Обозначим

$$c = x^{1} - X(k_{1}, k_{0})x^{0} - \sum_{k=k_{0}}^{k_{1}-1} X(k_{1}, k)f.$$

Тогда исходная задача сводится к решению системы из n уравнений с k_1-k_0-1 неизвестными u(k) при всех k

$$\sum_{k=k_0}^{k_1-1} X(k_1, k) Bu(k) = c, \tag{2.2}$$

называемой задачей моментов.

Мы хотим управлять нашей системой неким оптимальным образом. Будем рассматривать критерий вида

$$\sum_{k=k_0}^{k_1-1} |u(k)|^2 \to \min.$$

Перепишем его в виде

$$||u||_E^2 = \sum_{k=k_0}^{k_1-1} |u(k)|^2 \leqslant \mu^2.$$
 (2.3)

Мы иногда будем пользоваться эквивалентным неравенством без квадратов

$$||u||_E \leqslant \mu. \tag{2.4}$$

Итак, наша задача — найти наименьшее μ , при котором (2.2) имеет решение, удовлетворяющее (2.3), и выписать это (эти?) решение.

2.1.2 Множество достижимости и его свойства

Для решения поставленной задачи нам понадобится понятие множества достижимости.

Определение 5. Будем называть *множеством достижимости* для задачи (2.2), (2.3) следующее множество

$$\mathcal{X}_{\mu}[k_1, k_0] = \left\{ c \middle| c = \sum_{k=k_0}^{k_1 - 1} X(k_1 - 1, k) Bu(k) \text{ if } (2.3) \right\}$$
 (2.5)

Утверждение 6. $\mathcal{X}_{\mu}[k_1, k_0] \in \operatorname{conv} \mathbb{R}^n$ (непустой выпуклый компакт в \mathbb{R}^n).

Доказательство. Докажем выпуклость, замкнутость, ограниченность.

Bыпуклость: Пусть $c_1, c_2 \in \mathcal{X}_{\mu}$, значит $\exists u_1(\cdot), u_2(\cdot)$, удовлетворяющие (2.3), $c_j = \sum_{k=k_0}^{k_1-1} X(k_1,k) Bu_j(k)$.

Рассмотрим точки отрезка $c = \lambda c_1 + (1 - \lambda)c_2$, $\lambda \in (0, 1)$. Выпуклость равносильна выполнению включения $c \in \mathcal{X}_{\mu}$ для $\forall \lambda$.

Возьмём $u = \lambda u_1 + (1-\lambda)u_2$. Легко заметить, что $c = \sum_{k=k_0}^{k_1-1} X(k_1,l)Bu(k)$, следовательно нам достаточно проверить, что для u выполняется условие (2.3). Это следует из выпуклости евклидовой нормы (вследствие неравенства треугольника):

$$||u||_E = ||\lambda u_1 + (1 - \lambda)u_2|| \le \lambda ||u_1|| + (1 - \lambda)||u_2|| \le \lambda \mu + (1 - \lambda)\mu = \mu.$$

Ограниченность: В первом условии из определения множества достижимости перейдём к норме

$$||c|| = \left\| \sum_{k=k_0}^{k_1-1} X(k_1-1,k) Bu(k) \right\|.$$

Оценим норму суммы сверху суммой норм, воспользуемся соотношением $\|XBu\| \leqslant \|XB\| \|u\|$ (также именуемое субмультипликативностью матричной нормы). Получили конечную сумму, $\|u\|$ ограничена по требованию оптимальности (2.3), $\|XB\|$ ограничена т. к. XB — фиксированная матрица. В силу указанной цепочки неравенств $\|c\|$ ограничена.

$$\left\| \sum_{k=k_0}^{k_1-1} X(k_1-1,k) Bu(k) \right\| \leqslant \sum_{k=k_0}^{k_1-1} \|X(k_1-1,k) Bu(k)\| \leqslant \sum_{k=k_0}^{k_1-1} \|XB\| \|u\| \leqslant \sum_{k=k_0}^{k_1-1} C_k \mu.$$

3амкнутость: Для любой фундаментальной последовательности $\{c_j\}$ из \mathcal{X}_μ возьмём соответствующую последовательность $\{u_j\}$ (они существуют по определению множества достижимости). Все u_j лежат в шаре по условию (2.3). В конечномерном пространстве шар является компактом. А значит существует подпоследовательность $u_{j_m} \to u$ из шара. Т. к. u из шара (удовлетворяет условию (2.3)), то $c = \sum_{k=k_0}^{k_1-1} X(k_1,k) B u(k)$ будет лежать в множестве достижимости и будет пределом последовательности $\{c_j\}$. А это и есть замкнутость.

То же самое утверждение о выпуклости можно доказать, используя аппарат опорных функций. Покажем это.

Утверждение 7. $\mathcal{X}_{\mu}[k_1, k_0] \in \operatorname{conv} \mathbb{R}^n$ (не пустой выпуклый компакт в \mathbb{R}^n).

Доказательство. Рассмотрим опорную функцию множества достижимости.

$$\rho\left(l \mid \mathcal{X}_{\mu}[k_{1}, k_{0}]\right) = \sup_{c \in \mathcal{X}_{\mu}[k_{1}, k_{0}]} \langle l, c \rangle = \sup_{u(k_{0}), \dots, u(k_{1} - 1)} \left\langle l, \sum_{k = k_{0}}^{k_{1} - 1} X(k_{1} - 1, k) B u(k) \right\rangle = \sup_{u(k_{0}), \dots, u(k_{1} - 1)} \sum_{k = k_{0}}^{k_{1} - 1} \left\langle \underbrace{B^{T} X^{T}(k_{1} - 1, k) l}_{\text{обозначим за } s(k, l)}, u(k) \right\rangle = \sup_{u(k_{0}), \dots, u(k_{1} - 1)} \sum_{k = k_{0}}^{k_{1} - 1} \langle s(k, l), u(k) \rangle. \quad (2.6)$$

Это можно записать в виде $\sup_{u(\cdot)} \langle s(\cdot,l), u(\cdot) \rangle$. Если u(k) — скаляр, то можно составить из него вектор $u(\cdot)$. Если это был вектор, то можно записать для всех k его компоненты в один большой вектор $u(\cdot)$. Если же u(k) — элемент бесконечномерного пространства, то тоже можно как-то аккуратно сделать их него $u(\cdot)$. То есть вся наша теория верна для u(k) любой размерности, но мы пишем все формулы для скаляра, как было указанно в постановке задачи.

Итак,

$$\rho(l \mid \mathcal{X}_{\mu}[k_1, k_0]) = \sup_{u(\cdot)} \langle s(\cdot, l), u(\cdot) \rangle.$$

$$u(\cdot) = \frac{\mu s(\cdot)}{\|s(\cdot)\|}; \quad u(k) = \mu \frac{s(k)}{\sqrt{\sum_{k=k_0}^{k_1 - 1} s^2(k)}}.$$

Следовательно, максимум опорной функции достигается, а значит множество достижимости — компакт.

Отметим, что если максимум достигается, то

$$\rho(l \mid \mathcal{X}_{\mu}[k_1, k_0]) = \sum_{k=k_0}^{k_1 - 1} s(k) \mu \frac{s(k)}{\sqrt{\sum_{k=k_0}^{k_1 - 1} s^2(k)}} = \mu \sqrt{\sum_{k=k_0}^{k_1 - 1} |s(k)|^2}.$$
 (2.7)

2.1.3 Исследование разрешимости задачи моментов

Вернёмся к решению нашей исходной задачи:

$$x(k+1) = Ax(k) + Bu(k) + f.$$

Управлением перевести систему из $x(k_0) = x^0$ в $x(k_1) = x^1$ так, чтобы при этом $||u(\cdot)||$ была минимально возможной.

Мы свели её к следующей задаче моментов (найти наименьшее μ и соответствующее управление):

$$\sum_{k=k_0}^{k_1-1} X(k_1, k) Bu(k) = c,$$

$$||u||_E^2 = \sum_{k=k_0}^{k_1-1} |u(k)|^2 \leqslant \mu^2.$$

Замечание 2. Следующие утверждения эквивалентны:

- Пара $u(\cdot)$, μ является решением задачи моментов;
- $c(u) \in \mathcal{X}_{\mu}$ множеству достижимости;
- $\langle l, c(u) \rangle \leqslant \mu \sqrt{\sum_{k=k_0}^{k_1-1} |s(k,l)|^2} \ \forall l.$

Из третьего пункта следует, что для решения задачи моментов нам нужно найти наименьшее μ , при котором выполняется соотношение:

$$\mu \geqslant \mu_0 = \sup_{l \neq 0} \frac{\langle l, c \rangle}{\sqrt{\sum_{k=k_0}^{k_1 - 1} |s(k, l)|^2}}.$$
 (2.8)

То же самое можно записать так:

$$\mu_0 = \left\{ \sup \langle l, c \rangle \left| \sum_{k=k_0}^{k_1-1} |s(k,l)|^2 = 1 \right\} \right.$$
 или, что то же, $\frac{1}{\mu_0} = \inf \left\{ \sqrt{\sum_{k=k_0}^{k_1-1} |s(k,l)|^2} \middle| \langle l, c \rangle = 1 \right\}.$

Заметим, что μ_0 может быть равным $+\infty$ даже при условии $l \neq 0$ (все s могут стать равными нулю). В таком случае задача моментов не будет иметь решения (не существует требуемых μ).

Получается, что задача моментов не разрешима, когда

$$\sum_{k=k_0}^{k_1-1} |s(k,l)|^2 = 0.$$

Рассмотрим все такие l, при которых выполняется равенство, т. е. рассмотрим

$$l$$
 т. ч. $\forall k |s(k,l)| = 0$.

Это эквивалентно включению

$$l \in \bigcap_{k=k_0}^{k_1-1} \ker B^T X^T (k_1 - 1, k),$$

так как $s(k,l) = B^T X^T (k_1 - 1, k) l$ и для равенства нулю всех k требуется принадлежность l ядрам при всех k.

Пересечение ядер является линейным подпространством (так как каждое из них является линейным подпространством). Возможны два случая:

- 1. Это подпространство тривиально \Rightarrow sup в (2.8) конечен, μ существует \Rightarrow задача моментов разрешима.
- 2. Оно нетривиально. Тогда требуется, чтобы c было ортогонально этому пересечению ядер для конечности супремума.

Если

$$c \not\perp \bigcap_{k=k_0}^{k_1-1} \ker B^T X^T (k_1-1,k),$$

то возьмём l из пересечения ядер. Что-то сделаем с каким-то неравенством. Там что-то занулится, а что-то нет. Оно не получается, значит $c \notin \mathcal{X}_{\mu}[k_1, k_0] \forall \mu$. Задача моментов не разрешима.

Пусть

$$c \perp \bigcap_{k=k_0}^{k_1-1} \ker B^T X^T (k_1 - 1, k).$$

В этом случае в неравенстве если правая часть ноль, то и левая ноль. Задача моментов разрешима. Интересно, когда правая часть не ноль (подпространство).

$$\bigcap_{k=k_0}^{k_1-1} \ker B^T X^T(k_1-1,k) = \left\{ \left(\underbrace{0,\dots,0}_{p}, x_{p+1},\dots, x_n \right) \right\}$$

Тогда для супремума

$$\sup_{l \neq 0} \frac{\langle l, c \rangle}{\sqrt{\sum_{k=k_0}^{k_1 - 1} |s(k, l)|^2}}$$

достаточно рассмотреть l, у которых $x_{p+1}, \ldots, x_n = 0$.

$$\sup_{\substack{(l_1...l_p)\neq 0}} \frac{\sum_{j=1}^p l_j c_j}{\sqrt{\sum_{k=k_0}^{k_1-1} |s(k,l)|^2}}.$$

Тогда знаменатель не равен нулю, супремум достигается, можно брать его по $(l_1 \dots l_p) \neq 0$, $\sum_{i=1}^p l_i = 1$.

2.1.4 Геометрический смысл (отступление)

Посмотрим на выкладки с геометрической точки зрения. С учётом вышесказанного, для разрешимости задачи моментов (а значит принадлежности c множеству достижимости) ?необходимо? и достаточно, чтобы c было ортогонально пересечению ядер, если это пересечение нетривиально, и любым, если оно тривиально. Следовательно:

$$\mathcal{X}_{\mu}[k_1, k_0] \subseteq \left(\bigcap_{k=k_0}^{k_1-1} \ker B^T X^T(k_1-1, k)\right)^{\perp}.$$

И при $\forall \mu$ множество достижимости будет находится в этом ортогональном дополнении. И для $\forall c \in (\cap \ker(\dots))^{\perp}$ найдётся μ , что $\mathcal{X}_{\mu}[k_1, k_0]$ обхватит c. При этом

$$\lim_{\mu \to \infty} \mathcal{X}_{\mu}[k_1, k_0] = (\cap \ker(\ldots))^{\perp}.$$

Также оказывается, что $(\cap \ker(...))^{\perp}$ — такая гиперплоскость, относительная внутренность $\mathcal{X}_{\mu}[k_1, k_0]$ относительно которой не пуста.

2.1.5 Решение задачи моментов

Итак, мы нашли μ_0 . Осталось найти управление. Для этого найдём, на каком именно l_0 достигается супремум

$$\mu_0 = \left\{ \sup \langle l, c \rangle \middle| \sum_{k=k_0}^{k_1-1} |s(k, l)|^2 = 1 \right\}.$$

$$\sum_{k=k_0}^{k_1-1} |s(k,l)|^2 = 1 \Leftrightarrow \sum_{k=k_0}^{k_1-1} |B^T X^T (k_1 - 1, k) l|^2 = 1.$$

Если ядро нетривиально, то это эллипсоид. Если ядро тривиально — эллипсоидальный цилиндр.

Итак, в выражении для μ_0 можно брать sup по M^{\perp} — эллипсоид в сечении ограничен \Rightarrow супремум достигается.

2.2 Дискретный процесс управления — часть II

2.2.1 Постановка задачи и её решение

Рассмотрим дискретный процесс управления:

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) + f, \\ x(k_0) = x^0 \longrightarrow x(k_1) = x^1, \\ c = x^1 - X(k_1, k_0)x^0 - \sum_{k=k_0}^{k_1 - 1} X(k_1 - 1, k)f, \\ \sum_{k=k_0}^{k_1 - 1} X(k_1 - 1, k)Bu(k) = c, \end{cases}$$
(2.9)

где $X(k,l) = A^{k-l}$.

Система (2.9) разрешима тогда и только тогда, когда $c \in \left(\bigcap_{k=k_0}^{k_1-1} \operatorname{Ker}\left(B^T X^T \left(k_1-1,k\right)\right)\right)^{\perp}$.

Наложим ограничение на величину управления:

$$\sum_{k=k_0}^{k_1-1} (u(k))^2 \leqslant \mu^2. \tag{2.10}$$

Множество достижимости: $\mathcal{X}_{\mu}[k_1] = \left\{ \sum_{k=k_0}^{k_1-1} X(k_1-1,k) B(u(k)) \mid (2.10) \right\}.$

Опорная функция рассматриваемого множества выглядит следующим образом:

$$\rho(l \mid \mathcal{X}_{\mu}[k_1]) = \mu \sqrt{\left\langle l, \left[\sum_{k=k_0}^{k_1-1} X(k_1-1, k) B B^T X^T(k_1-1, k) \right] l \right\rangle},$$

где [...] обозначим за $W(k_1, k_0)$. Минимальное $\mu^0 = \sup_{l \neq 0} \frac{\langle l, c \rangle}{\sqrt{\langle l, W(l) \rangle}}$.

Если $\mu^0 < \infty$ (т. е. если задача разрешима), то

$$l^0 \in \underset{\substack{l \notin \operatorname{Ker} W \\ l \neq 0}}{\operatorname{Argmax}} \frac{\langle \langle l, c \rangle}{\sqrt{\langle l, W(l) \rangle}}; \quad s^0(k) = B^T X^T(k_1 - 1, k) l^0.$$

Положим $u_0 \stackrel{\text{def}}{=} \mu^0 \frac{s^0(k)}{\|s^0(k)\|}$ — это и есть решение нашей задачи.

Выпишем условия на значение c: $\langle l,c\rangle\leqslant \mu^0\sqrt{\langle l,Wl\rangle},\langle l^0,c\rangle=\rho(l^0\,|\,\mathcal{X}_{\mu^0})$. Тогда выпишем те множества, на которых находится точка c (в этом нам поможет рисунок):

- с принадлежит множеству достижимости;
- с принадлежит опорной гиперплоскости;
- с принадлежит эллипсоиду.

Следовательно, точка c единственна. $\pi_{l^0} \cap \mathcal{X}_{\mu^0} = \{c\}$. Распишем u^0 (при условии, что $||s^0(k)|| = 1$):

$$\mu^{0} \sum_{k=k_{0}}^{k_{1}-1} X(k_{1}-1,k)BB^{T}X^{T}(k_{1}-1,k)l^{0} = \mu^{0}W(k_{1},k_{0})l^{0}.$$

Опорная функция $\rho(l \mid \varepsilon(p, P)) = \langle l, p \rangle + \sqrt{\langle l, Pl \rangle}$.

Из условия касания в точке опорной гиперплоскости $z^* = \frac{Pl}{\sqrt{\langle l, Pl \rangle} + p}$.

Мы хотим показать, что $\mu^0 W(k_1, k_0) l^0 = \frac{P l_0}{\sqrt{\langle l_0, P l_0 \rangle} + p}$. Очевидно, что $||s^0|| = 1$ рав-

носильно $\langle l^0,Wl^0\rangle=1$. Тогда $\mathcal{X}_{\mu^0}=\varepsilon\left(0,(\mu^0)^2W(k_1,k_0)\right),\ Pl_0=(\mu^0)^2W(k_1,k_0)l^0$. Из этого следует, что $z^*=\mu^0Wl^0$ (на самом деле всё следует из $\pi_{l^0}\cap\mathcal{X}_{\mu^0}=\{c\}$, мы только подтвердили, что всё так и есть).

Замечание об эллипсоидах. Рассмотрим эллипсоид, задаваемый матрицей $P=P^T\geqslant 0.$

Если P > 0, то

$$\langle z - p, P^{-1}(z - p) \rangle \leqslant 1.$$
 (2.11)

Всегда выполнено: $P=U^T\Lambda U$. Приведём эллипсоид к главным осям: $\zeta=U(z-p),\,z-p=U^T\zeta$. Тогда (2.11) превращается в $\langle\zeta,\Lambda^{-1}\zeta\rangle\leqslant 1$. Поэтому справедливо следующее неравенство:

$$\lambda_{-1}\zeta_1^2 + \ldots + \lambda_{-1}\zeta_n^2 \leqslant 1.$$

Если $\lambda_i=0$, то $\zeta_i=0$ (убиваем бесконечность и сохраняем неравенство). Поэтому мы можем считать вырожденный эллипсоид и эллипсоидальный цилиндр предельными случаями.

2.2.2 Геометрическая интерпретация

Введём в рассмотрение следующие матрицы:

$$\bar{u} = \begin{bmatrix} u(k_0) \\ u(k_0 + 1) \\ \dots \\ u(k_1 - 1) \end{bmatrix} \in \mathbb{R}^{k_1 - k_0}$$

$$\mathbb{R}^{n \times (k_1 - k_0)} \ni \Gamma = [X(k_1 - 1, k_0)B \mid \dots \mid X(k_1 - 1, k_1 - 1)B] = [A^{k_1 - k_0 - 1}B \mid \dots \mid AB \mid B].$$

Тогда $(2.9)\Leftrightarrow \Gamma \bar{u}=c$. Система (2.9) разрешима $\Leftrightarrow c\in \operatorname{Im}\Gamma=\operatorname{Im}\left[A^{\min{(k_1-k_0,n)-1}}B\mid\ldots\mid AB\mid B\right]$. В данном соотношении min берётся по той причине, что если $k_1-k_0>n$, то по теореме Гамильтона–Кэли степени выше n-1 к образу ничего нового не добавят. (По теореме Гамильтона–Кэли A — матрица-корень своего характеристического многочлена, поэтому любая её степень выражается через A^{n-1},A^{n-2},\ldots,I : имеем соотношение $A^n+c_{n-1}A^{n-1}+\ldots+c_0I=0$ или $A^n=-c_{n-1}A^{n-1}-\ldots-c_1A-c_0I)$.

Минимальное по норме решение представляет собой нормальное псевдорешение:

$$\|\Gamma \bar{u} - c\|^2 \to \min.$$

Минимальное псевдорешение подразумевает также $\|\bar{u}\| \to \min$. Решим вопрос о нахождении данного решения.

Имеем Ax=b. Тогда $A^*Ax=A^*b$, причём эта система всегда совместна. Выпишем то же относительно Γ : $\Gamma^T\Gamma\bar{u}=\Gamma^Tc$. Отметим, что $\Gamma^T\Gamma=\sum\limits_{k=k_0}^{k_1-1}B^TX^T(k_1-1,k)X(k_1-1,k)B$

— симметрическая и положительно определённая матрица. Заменой её можно свести к диагональной. Решение будем искать в виде $\bar{u} = \Gamma^T l$, тогда

$$\underbrace{\Gamma\Gamma^{T}}_{W}l = c.
\tag{2.12}$$

Рассмотрим два случая.

- 1. W невырожденная, тогда $\tilde{l}^0 = W^{-1}c \Leftrightarrow \bar{u} = \Gamma^T W^{-1}c = \Gamma^T \tilde{l}^0$. Но, как мы знаем, $\Gamma^T \tilde{l}^0 = \bar{s}^0 = [s^0(k_0), \dots, s^0(k_1 1)]^T$.
- 2. W вырожденная, тогда $W^{-1} \stackrel{\text{def}}{=} W^{\oplus}$ псевдообратная Мура–Пенроуза (обращение нуля на диагонали даёт снова ноль); $l^0 = W^{\oplus}c$.

Разрешимость (2.12) эквивалентна разрешимости $\Gamma \bar{u} = c$, поскольку из линейной алгебры известно, что $\operatorname{Im} \Gamma \Gamma^T = \operatorname{Im} \Gamma$, т. к. $\operatorname{Im} \Gamma \Gamma^T = (\operatorname{Ker} \Gamma \Gamma^T)^\perp$, $\operatorname{Im} \Gamma = (\operatorname{Ker} \Gamma^T)^\perp$. Осталось доказать, что $\operatorname{Ker} \Gamma \Gamma^T = \operatorname{Ker} \Gamma$. Действительно, пусть $\Gamma \Gamma^T l = 0$, $\Gamma^T l \in \operatorname{Ker} \Gamma = (\operatorname{Im} \Gamma^T)^\perp$, но из $\Gamma^T l \in \operatorname{Im} \Gamma^T$ следует, что $\Gamma^T l = 0$, что и требовалось.

Пример 4. Пусть $k_1 - k_0 = 3, n = 2;$ $\Gamma = [g_1^T, g_2^T]^T,$ $\Gamma \in \mathbb{R}^{2 \times 3}$. Тогда имеем следующее:

$$\Gamma \bar{v} = c \Leftrightarrow \begin{cases} \langle g_1, \bar{u} \rangle = c_1, \\ \langle g_2, \bar{u} \rangle = c_2. \end{cases}$$

Если g_1, g_2 линейно независимы, то $\Gamma\Gamma^T = W$ — матрица Грама (невырожденная). Минимальное по норме решение — это пересечение f и плоскости, проходящей через g_1 и g_2 .

Вычисление оптимального управления 2.2.3

Зададимся вопросом о том, чему равна норма $\|u_0\| = \mu^0 = ?$

Найдём $\mu^0=\sup_{\substack{l\in (\mathrm{Ker}\,W)^\perp\\l\neq 0}}\frac{\langle l,c\rangle}{\sqrt{\langle l,Wl\rangle}}$ — опорная функция некоторого эллипсоида (при условинь имерического операции).

вии, что $|W| \neq 0$ — случай полной управляемости). Тогда $\mu^0 = \sup_{\langle l, Wl \rangle = 1} \langle l, c \rangle$. $\mu^0 = \sqrt{\langle c, W^{-1}c \rangle}, \quad l_0 = \frac{W^{-1}c}{\sqrt{\langle c, W^{-1}c \rangle}} = \frac{W^{-1}c}{\mu^0}.$

$$\mu^{0} = \sqrt{\langle c, W^{-1}c \rangle}, \quad l_{0} = \frac{W^{-1}c}{\sqrt{\langle c, W^{-1}c \rangle}} = \frac{W^{-1}c}{\mu^{0}}.$$

Тогда μ^0 — это сопряжённая норма.

Если же |W|=0, то внизу полунорма (нет свойства, что $||x||=0 \Leftrightarrow x=0$).

Глава 3

Непрерывная задача моментов

3.1 Постановка задачи

Рассмотрим следующую задачу

$$\begin{cases} \dot{x}(t) = A(t)X(t) + B(t)u(t) + f(t); \\ A(t) \in \mathbb{R}^{n \times n}, \ B(t) \in \mathbb{R}^{n \times m}, \ f(t) \in \mathbb{R}^{n \times 1}, \\ x \in \mathbb{R}^{n}, \ u \in \mathbb{R}^{m}. \end{cases}$$
(3.1)

Будем полагать, что A, B и f — непрерывные функции. Если же они измеримы, то задачу стоит понимать «почти всюду», а решение — решением по Каратеодори. Систему, находящуюся в начальном состоянии, необходимо привести в конечное состояние:

$$x(t_0) = x^0 \longrightarrow x(t_1) = x^1. \tag{3.2}$$

Задача слишком «свободная», поэтому поставим дополнительное условие:

$$\int_{t_0}^{t_1} \|u(t)\|^2 dt \leqslant \mu^2. \tag{3.3}$$

Это ограничение также можно записать как $\|u\|_{\mathcal{L}_2}^2 \leqslant \mu^2$.

Задача 3. Найти минимальное μ , при котором задача (3.1), (3.2) разрешима.

3.2 Решение

По формуле Коши получим:

$$x^{1} = X(t_{1}, t_{0})x^{0} + \int_{t_{0}}^{t_{1}} X(t_{1}, \tau)B(\tau)u(\tau)d\tau + \int_{t_{0}}^{t_{1}} X(t_{1}, \tau)f(\tau)d\tau.$$

Это утверждение эквивалентно следующей задаче моментов:

$$\begin{cases} c = x^{1} - X(t_{1}, t_{0})x^{0} - \int_{t_{0}}^{t_{1}} X(t_{1}, \tau)f(\tau)d\tau, \\ H(t_{1}, \tau) = X(t_{1}, \tau)B(\tau), \\ \int_{t_{0}}^{t_{1}} H(t_{1}, \tau)u(\tau)d\tau = c. \end{cases}$$
(3.4)

Введём множество достижимости:

$$\mathcal{X}_{\mu}(t_1, t_0) = \mathcal{X}_{\mu}[t_1] = \left\{ \int_{t_0}^{t_1} H(t_1, \tau) u(\tau) d\tau \middle| (3.3) \right\}.$$

Утверждение 8. $\mathcal{X}_{\mu} \in \operatorname{conv} \mathbb{R}^{n}$.

Доказательства. Для доказательства исходного утверждения необходимо доказать три свойства: выпуклость, ограниченность и замкнутость.

Выпуклость:

$$c^{1}, c^{2} \in \mathcal{X}_{\mu} \Rightarrow c^{j} = \int_{t_{0}}^{t_{1}} H(t_{1}, \tau) u^{j}(\tau) d\tau; \|u^{j}\|_{\mathcal{L}_{2}} \leqslant \mu.$$

Требуется показать, что:

$$c = \lambda c^1 + (1 - \lambda)c^2 \in \mathcal{X}_{\mu}, \quad \lambda \in (0, 1).$$

Если мы возьмем

$$u(t) = \lambda u^{1}(t) + (1 - \lambda)u^{2}(t),$$

то в силу выпуклости нормы имеем:

$$||u||_{\mathcal{L}_2} \leqslant \lambda ||u^1||_{\mathcal{L}_2} + (1 - \lambda) ||u^2||_{\mathcal{L}_2} \leqslant \mu.$$

Домножаем c^1 на $\lambda,\,c^2$ на $(1-\lambda),\,$ складываем и получаем, что:

$$c = \int_{t_0}^{t_1} H(t_1, \tau) u(\tau) d\tau; \|u\|_{\mathcal{L}_2} \leqslant \mu.$$

Таким образом, $c \in \mathcal{X}_{\mu}$, что и требовалось доказать.

Ограниченность: Воспользуемся неравенством Коши-Буняковского:

$$\left\| \int_{t_0}^{t_1} H(t_1, \tau) u(\tau) d\tau \right\| \leqslant \int_{t_0}^{t_1} \|H(t_1, \tau)\| \|u(\tau)\| d\tau \leqslant \left(\int_{t_0}^{t_1} \|H(t_1, \tau)\|^2 d\tau \right)^{\frac{1}{2}} \mu \equiv \text{const.}$$

Замкнутость: По-человечески доказать это мы пока не сможем. Этот шар не компактен. В частности, это связано с различием сходимости по норме и покоординатной сходимостью. Но всё-таки приведем доказательство замкнутости:

$$u^j \leftrightarrow c^j \in \mathcal{X}_{\mu}$$
.

3.2. РЕШЕНИЕ 29

Определение 6.
$$u^j \xrightarrow[j \to \infty]{\text{слабо}} u^0$$
, если $\forall g \in \mathcal{L}_2 : \int_{t_0}^{t_1} g(t) u^j(t) dt \to \int_{t_0}^{t_1} g(t) u^0(t) dt$.

Так как это слабый компакт, то без ограничения общности будем считать, что

$$u^{j} \xrightarrow[j \to \infty]{\text{cna60}} u,$$

$$c^{j} = \int_{t_{0}}^{t_{1}} H(t_{1}, \tau) u^{j}(\tau) d\tau,$$

$$H(t_{1}, \tau) = \begin{bmatrix} H_{1}(t_{1}, \tau) \\ \vdots \\ H_{n}(t_{1}, \tau) \end{bmatrix} \in \mathbb{R}^{n \times m}.$$

Тогда получим:

$$c_i^j = \int_{t_0}^{t_1} H_i(t_1, \tau) u^j(\tau) d\tau \xrightarrow[j \to \infty]{} \int_{t_0}^{t_1} H_i(t_1, \tau) u(\tau) d\tau = c \in \mathcal{X}_{\mu}.$$

Найдём опорную функцию:

$$\rho\left(l \mid \mathcal{X}_{\mu}\right) = \sup_{C} \left\{ \langle l, c \rangle \mid c = \int_{t_{0}}^{t_{1}} H(t_{1}, \tau) u(\tau) d\tau \right\} = \sup_{u(\cdot):(3.3)} \int_{t_{0}}^{t_{1}} \langle l, H(t_{1}, \tau) u(\tau) \rangle d\tau =$$

$$= \sup_{u(\cdot):(3.3)} \int_{t_{0}}^{t_{1}} \left\langle H^{T}(t_{1}, \tau) l, u(\tau) \right\rangle d\tau \stackrel{\text{K.-B.}}{\leqslant} \sup_{u(\cdot):(3.3)} \left(\left[\int_{t_{0}}^{t_{1}} \|h(t_{1}, \tau)\|^{2} d\tau \right]^{\frac{1}{2}} \|u\|_{\mathcal{L}_{2}} \right) =$$

$$= \mu \|h(t_{1}, \tau)\|_{\mathcal{L}_{2}}, \text{ где } h(t_{1}, \tau) = H^{T}(t_{1}, \tau).$$

Поэтому $u(t) = \lambda h(t_1, \tau)$, $\lambda = \text{const} \geqslant 0$; sup достигается на $u^*(\tau) = \frac{h(t_1, \tau)}{\|h(t_1, \tau)\|}$, если $h(t_1, \tau) \neq 0$.

3.2.1 Исследование разрешимости задачи моментов

(3.4) разрешима
$$\Leftrightarrow \forall l \neq 0, \ \langle l, c \rangle \leqslant \rho \left(l \mid \mathcal{X}_{\mu} \right) = \mu \|h\|_{\mathcal{L}_{2}} \Leftrightarrow \mu \geqslant \frac{\langle l, c \rangle}{\|h\|_{\mathcal{L}_{2}}} \Leftrightarrow \mu \geqslant \mu^{0} = \sup_{l \neq 0} \frac{\langle l, c \rangle}{\|h\|_{\mathcal{L}_{2}}}.$$

Имея в виду, что sup конечен, распишем $||h||_{\mathcal{L}_2}$:

$$||h||_{\mathcal{L}_2} = \left[\int_{t_0}^{t_1} \langle H^T l, H^T l \rangle d\tau\right]^{\frac{1}{2}} = \left[\left\langle l, \left(\int_{t_0}^{t_1} H(t_1, \tau) H^T(t_1, \tau) d\tau\right) l \right\rangle\right]^{\frac{1}{2}}.$$

Обозначим через $W(t_1, \tau)$ следующее выражение:

$$W(t_1, \tau) = \int_{t_0}^{t_1} H(t_1, \tau) H^T(t_1, \tau) d\tau.$$

Рассмотрим различные случаи:

1. $|W(t_1, t_0)| \neq 0$.

Заметим, что W — матрица Грамма строк матрицы H, а т. к. $|W| \neq 0$, то строки $H(t_1, \cdot)$ линейно независимы.

 $\forall l$ верно, что $\langle l, Wl \rangle \neq 0$, где $\sqrt{\langle l, Wl \rangle}$ — норма.

 μ_0 — норма от c, сопряженная к $\sqrt{\langle l,Wl \rangle}$, выпишем это явно:

$$\mu_0 = \sup \{ \langle l, c \rangle \mid \langle l, Wl \rangle = 1 \} = \sqrt{\langle c, W^{-1}c \rangle}.$$

Максимум достигается на $l^0=\frac{W^{-1}c}{\sqrt{\langle c,W^{-1}c\rangle}},$ тогда $h^0(t_1,\tau)=H^T(t_1,\tau)l^0.$

Используя то, что $\langle l^0, W l^0 \rangle = 1$, найдём управление:

$$u^{0}(\tau) = \mu^{0} \frac{H^{T}(t_{1}, \tau) l^{0}}{\sqrt{\langle l^{0}, W l^{0} \rangle}} = \sqrt{\langle c, W^{-1} c \rangle} H^{T}(t_{1}, \tau) \frac{W^{-1} c}{\sqrt{\langle c, W^{-1} c \rangle}} = H^{T}(t_{1}, \tau) W^{-1}(t_{1}, \tau) c.$$

Для задачи моментов $\int\limits_{t_0}^{t_1} H(t_1,\tau)u(\tau)d\tau=c$ имеем $\Gamma u=c$, тогда $u=\Gamma^T l(\Gamma^T-c)$ сопряженный оператор), отсюда $\Gamma\Gamma^T l=c$.

Множество достижимости для этого случая — невырожденный эллипсоид \mathcal{X}_{μ} . W называют матрицей управляемости. Это случай полной управляемости, то есть если мы решили задачу для [a,b], то можем решить и на $[c,d]\supset [a,b]$ (просто берём управление на [c,a] и [b,d] как угодно, а на [a,b] уже решаем).

2. $|W(t_1, t_0)| = 0$.

Задача в этом случае является не всегда разрешимой.

$$\rho(l|\mathcal{X}_{\mu}) = \mu \sqrt{\langle l, Wl \rangle},
l \in \ker W \Leftrightarrow \rho(l|\mathcal{X}_{\mu}) = 0,
\langle l, c \rangle \leqslant \rho(l|\mathcal{X}_{\mu}).$$
(3.5)

Тогда если левая часть неравенства (3.5) положительна, а правая равна нулю, то (3.5) не выполнено, поэтому:

$$c \notin (\ker W)^{\perp} \Rightarrow c \notin \mathcal{X}_{\mu}, \ \forall \mu.$$

На самом деле, $c \in \mathcal{X}_{\mu} \Leftrightarrow c \in (\ker W)^{\perp}$. Если мы покажем, что $c \in \mathcal{X}_{\mu} \Leftarrow c \in (\ker W)^{\perp}$, то $c \notin (\ker W)^{\perp} \Leftarrow c \notin \mathcal{X}_{\mu}$, $\forall \mu$.

Если $c \in (\ker W)^{\perp}$, то $\langle l, c \rangle \leqslant \rho(l|\mathcal{X}_{\mu})$, надо проверить лишь, что $l \in (\ker W)^{\perp}$ (т. к. $l = l^1 + l^2$, где $l \in W$, $l^1 \in \ker W$, $l^2 \in (\ker W)^{\perp}$).

$$\langle l, c \rangle = \langle l^2, c \rangle,$$

$$\rho(l|\mathcal{X}_{\mu}) = \mu \sqrt{\langle l^1 + l^2, W l^2 \rangle} = \sqrt{\langle l^1, W l^2 \rangle + \langle l^2, W l^2 \rangle} = \sqrt{\langle l^2, W l^2 \rangle} = \rho(l^2|\mathcal{X}_{\mu}).$$

Теперь находим μ_0 :

$$\mu_0 = \sup_{l \in (\ker W)^{\perp}} \frac{\langle l, c \rangle}{\sqrt{\langle l, Wl \rangle}} = \sup \left\{ \langle l, c \rangle \mid \langle l, Wl \rangle = 1, \ l \in (\ker W)^{\perp} \right\}.$$

3.3 Непрерывная задача оптимального управления.

3.3.1 Система с постоянными коэффициентами

Рассмотрим систему

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ A = \text{const}, \\ B = \text{const}. \end{cases}$$
 (3.6)

Для неё наша матрица W имеет вид

$$W(t_1, t_0) = \int_{t_0}^{t_1} X(t_1, \tau) BB^T X^T(t_1, \tau) d\tau = \int_{t_0}^{t_1} e^{A(t_1 - \tau)} BB^T e^{A^T(t_1 - \tau)} d\tau.$$

Изучим Ker W: т. к. $W = W^T \ge 0$, то

$$l \in \operatorname{Ker} W \Leftrightarrow l^T W l = 0 = \int_{t_0}^{t_1} (B^T e^{A^T (t_1 - \tau)} l)^T B^T e^{A^T (t_1 - \tau)} l \ d\tau = \int_{t_0}^{t_1} \left\| B^T e^{A^T (t_1 - \tau)} l \right\| \ d\tau \Leftrightarrow l^T e^{A(t_1 - \tau)} B \equiv 0.$$

Последнее равенство следует, вообще говоря, понимать как равенство почти всюду, но мы будем считать, что у нас все функции достаточно хорошие, и оно выполняется вообще везде.

Утверждение 9. $|W| \neq 0 \Leftrightarrow \operatorname{rang} M = n$, где $M = [B|AB|\dots|A^{n-1}B] - \operatorname{матрица}$, составленная из матриц $B, AB, \dots, A^{n-1}B$, поставленных в плотную друг к дружке. $M \in \mathbb{R}^{n \times mn}$.

Доказательство. \Leftarrow (Достаточность): Пойдём от противного: Пусть M — матрица полного ранга, но найдётся $l \in \text{Ker } W, l \neq 0$. Тогда $l^T e^{A(t_1 - \tau)} B \equiv 0$. Продифференцируем это равенство по τ n-1 раз:

$$-l^{T}e^{A(t_{1}-\tau)} AB \equiv 0,$$

$$...$$

$$(-1)^{n-1}l^{T}e^{A(t_{1}-\tau)}A^{n-1}B \equiv 0.$$
(3.7)

Но тогда $l^T e^{A(t_1-\tau)} \perp B, AB, \dots, A^{n-1}B$, что противоречит предположению.

 \Longrightarrow (Heoбxoдимость): Опять-таки, предположим противное, т. е. $|W|\neq 0$, но rang M< n. Тогда найдётся вектор $l\neq 0$, т. ч. $l^TB=\cdots=l^TA^{n-1}B=0$. Вспомним теорему Гамильтона–Кэли, которая гласит, что любая матрица является корнем своего характеристического многочлена. Из неё следует, что любая степень матрицы является линейной комбинацией её первых n-1 степеней.

Посему $l^TA^kB\equiv 0\ \forall k\geqslant 0$, а следовательно $l^Te^{A(t_1-\tau)}B\equiv 0$, и |W|=0, что противоречит предположению.

Условие rang M=n называется также *полноранговым условием Калмана* (?). Правда сам Калман занимался не столько управлением, сколько наблюдением за стохастическими процессами. Но это не суть важно =).

Утверждение 10. $\operatorname{Im} W = \operatorname{Im} M$, или, что то же, $\operatorname{Ker} W = \{l : l \perp \operatorname{Im} M\}$.

Доказательство. Доказательство идёт по той же самой схеме, что и предыдущее:

$$l\perp {\rm Im}\, M \ \Rightarrow \ l\perp B, AB, \ldots A^{n-1}B \ \stackrel{{\rm нер.}\ \Gamma_{\rm амильтона-Kели}}{\Rightarrow} \ l^T e^{A(t- au)}B \equiv 0 \ \Rightarrow \ l\in {\rm Ker}\, W.$$
 Обратно:

$$y \in \operatorname{Ker} W \Rightarrow l^T e^{A(t_1 - \tau)} \perp B, AB, \dots, A^{n-1}B \Rightarrow l \perp \operatorname{Im}[B|AB|\dots|A^{n-1}B].$$

Чем непрерывный случай принципиально отличается от дискретного? Тем, что в дискретном случае матрица M выглядела как $[B|\dots|A^{min(k_1-k_0,n)}B]$, ибо у нас было лишь ограниченное число шагов, и их могло просто не хватить.

Определение 7. Пара матриц A, B называется [полностью(?)] управляемой, если $\operatorname{rang}[B|AB|\dots|A^{n-1}B] = n$.

Пример 5. Рассмотрим маятник: $\ddot{x} + \omega^2 x = u$. x — координата маятника, u — сила, которую мы к нему прилагаем.

Управляема ли эта система? Сейчас узнаем.

Обозначим $x_1 = x, x_2 = \dot{x}$. Тогда

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -\omega^2 x_1 + u, \end{cases}$$
 (3.8)

и тогда наши матрицы имеют вид

$$A = \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

$$[B|AB] = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

То есть наша система управляема, что в общем-то согласуется с бытовыми представлениями— с помощью сколь угодно большой силы можно поставить маятник в любое положение и придать ему любую скорость за сколь угодно малое время

Ещё стоит заметить, что, казалось бы, в (3.8) координата маятника не зависит от управления, поэтому на неё нельзя влиять управлением, но, на самом деле, это не так, ибо она зависит от скорости, которая в свою очередь зависит от управления очень даже.

Если система не полностью управляема, то

$$\mathcal{X}[t_1] = \mathcal{X}(t, t_0, x^0) = \{x^1 \mid \exists u(\cdot), \exists x^0 \in \mathcal{X}^0 : x(t_1, t_0, x^0 | u(\cdot)) = x^1\} = e^{A(t_1 - t_0)} \mathcal{X}^0 + \operatorname{Im}[B| \dots | A^{n-1}B],$$

 $x^{1} \in \mathcal{X}[t_{1}] \Leftrightarrow \exists \mu, \exists x^{0} \in \mathcal{X}^{0} : x^{1} - e^{A(t_{1} - t_{0})}x^{0} = c \in \mathcal{X}_{\mu}[t_{1}], \ a \underset{\mu}{\cup} \mathcal{X}_{\mu} = \operatorname{Im}[B| \dots |A^{n-1}B].$

Так вот, если $\mathcal{X}^0 = \{x^0\}$, то $\mathcal{X}[t_1]$ — есть линейное многообразие, и можно сказать, что $e^{A(t_1-t_0)}x^0$ — есть центр сплющенного эллипсоида \mathcal{X}_{μ} , а в остальном всё (???) то же самое. (то же самое, как и что? наборщик недоумевает...).

Приведём следующую немаловажную теорему:

Теорема 11 (о декомпозиции). Для любой линейной системы с постоянными коэффициентами (3.6) найдётся такое [невырожденное] преобразование координат $y = Tx \ T \neq 0$, что $y = (y^1, y^2), \ y^1 \in \mathbb{R}^k, \ y^2 \in \mathbb{R}^{n-k}$, где $k = \text{rang}[B|AB|\dots|A^{n-1}B]$, и система преобразуется κ виду

$$\dot{y}^1 = A_{11}y^1 + A_{12}y^2 + B_1u, \dot{y}^2 = A_{22}y^2,$$

 $причём (A_{11}, B) - полностью управляема.$

Собственно, это теорема (как следует из названия) о декомпозиции системы на полностью управляемую и неуправляемую части. y^2 «плывёт» сам по себе, а y^1 можно привести куда угодно (даже несмотря на добавку $A_{12}y^2$, ибо система для y^1 полностью управляема).

Мы рассматриваем непрерывную систему с постоянными коэффициентами без свободного члена:

Теорема 12 ((о декомпозиции состояния)). Существует замена

$$\exists T \in \mathbb{R}^{n \times n}; y = Tx$$

$$y = (y^1; y^2)^T, y^1 \in \mathbb{R}^k, y^2 \in \mathbb{R}^{n-k}, \epsilon \partial e$$

$$k = \operatorname{rg}[B|AB| \dots |A^{n-1}B],$$

обладающая свойством:

$$\dot{y} = T\dot{x} = TAT^{-1}y + TBu$$

$$TAT^{-1} = \tag{3.9}$$

То есть, систему можно записать в виде

$$\dot{y}^1 = A_{11}y^1 + A_{12}y^2 + B_1u$$
$$\dot{y}^2 = A_{22}y^2 \quad (3.10)$$

3.4 О декомпозиции состояния нелинейной системы (отступление)

Рассмотрим более общую систему, линейную по управлению.

$$\dot{x}(t) = f(x(t)) + g_1(x(t))u_1 + \ldots + g_m(x(t))u_m$$

В линейном случае

$$f(x) = Ax$$
$$g_i(x) = B^j$$

Определение 8. Будем называть *скобкой* Πu двух векторных полей следующее ?поле?:

$$[f_1(\cdot), f_2(\cdot)] = \frac{\partial f_1}{\partial x} f_2 - \frac{\partial f_2}{\partial x} f_1.$$

Если $[f_1, f_2] = 0$, то говорят, что поля f_1 и f_2 коммутируют.

В линейном случае

$$[f, g_j] = AB_j$$
$$[f, [f, g_j]] = A_2B_j$$

и коммутируемость полей равносильна коммутируемости (перестановочности) матриц.

Прикладной смысл скобки Ли:

3.5 Доказательство теоремы о декомпозиции состояний для случая постоянных коэффициентов

Рассмотрим пространство $L = \text{Im}(B|AB|...A^{n-1}B)$. Докажем

Пемма 13. *L* инвариантно относительно нашей линейной системы с постоянными коэффициентами ?Ссылка?

Доказательство. Пусть $x^0 \in L$. Это верно, если x^0 имеет вид

$$x^{0} = Bv^{0} + ABv^{1} + \ldots + A^{n-1}Bv^{n-1}$$
(3.11)

Выпишем формулу Коши и разложим матричную экспоненту в ряд.

Из теоремы Гамильтона-Кэли следует, что любую степень матрицы можно представить в виде линейной комбинации

Подставим, соберём коэффициенты и получим, что x(t) также представим в виде (3.11), следовательно $x(t) \in L$, что и означает инвариантность L относительно нашей системы.

3.6 Достаточное условие управляемости для непрерывных систем с переменными коэффициентами

Важное отличие непрерывных систем с переменными коэффициентами от непрерывных с постоянными коэффициентами и рассмотренных дискретных в том, что в этом случае управляемость может зависеть от рассматриваемого промежутка времени. В то время, как в случае постоянных коэффициентов или дискретном, если система управляема на некотором промежутке, то она управляема и на любом меньшем. Только берите управление побольше.

Рассмотрим однородную систему с переменными коэффициентами Обозначим

$$L_1 = B(t)$$

 $L_k = A(t)L_{k-1}(t) - \frac{dL_{k-1}}{dt}, k = 2, \dots, n.$

Теорема 14 ((достаточное условие управляемости для непр. системы)). $Ecnu \ \exists \overline{t} \in [t_0, t_1] \ makoŭ, \ umo$

$$\operatorname{rg}[L_1(\bar{t})|\ldots|L_n(\bar{t})]=n,$$

то система полностью управляема на $[t_0,t_1]$ (и больших - ??очевидно??).

Доказательство. Вспомним наш критерий управляемости.

3.7 Достаточное условие управляемости для непрерывных систем с периодическими коэффициентами

Мы рассматриваем ту же систему но уже когда A(t) и B(t) периодические с периодом T.

Потребуем аналитичности A(t) и B(t).

Теорема 15 ((достаточное условие управляемости для непр. системы с периодич. коэффициентами)). Ecnu

$$rg[B(t_0)|X(T,0)B(t_0)|\dots|X^{n-1}(T,0)B(t_0)] = n,$$

то система полностью управляема на ?любом? промежутке времени.

Доказательство. Предположим противное. Пусть
$$\exists \ l \neq 0$$
 т.ч. $l^T X(t_1, \tau) B(\tau) = 0$ Посмотрим на это равенство в точках $t_0, t_0 - T, \dots, t_0 - (n-1)T$

Глава 4

Задача моментов в \mathcal{L}_p и \mathcal{L}_{∞}

4.1 Пространство \mathcal{L}_p , 1

Рассмотрим случай $\mathcal{L}_p, \quad 1 Рассмотрим задачу:$

$$\dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t),$$

$$x(t_0) = x^0 \longrightarrow x(t_1) = x^1,$$

$$\|u(\cdot)\|_{\mathcal{L}_p} = \left[\int_{t_0}^{t_1} \|u(\cdot)\|^p d\tau\right]^{\frac{1}{p}} \longrightarrow \inf.$$

Ограничение на возможные значения управления: $\|u\|_{\mathcal{L}_p} \leqslant M$. Задача моментов:

$$c = x^{1} - X(t_{1}, t_{0})x^{0} - \int_{t_{0}}^{t_{1}} X(t_{1}, \tau)f(\tau)d\tau,$$
$$H(t_{1}, \tau) = X(t_{1}, \tau)B(\tau),$$
$$\int_{t_{1}}^{t_{1}} H(t_{1}, \tau)u(\tau)d\tau = c.$$

Введём множество достижимости $\mathcal{X}_{\mu}[t_1,t_0] = \left\{ \int\limits_{t_0}^{t_1} H(t_1,\tau)u(\tau)d\tau \,\middle|\, \|u\|_{\mathcal{L}_p} \leqslant \mu \right\}.$

Утверждение 16. $\mathcal{X}_{\mu} \in \operatorname{conv} \mathbb{R}^{n}$.

Доказательство. Докажем выпуклость, ограниченность и замкнутость нашего множества:

Выпуклость и ограниченность:

$$u = \lambda u^{1} + (1 - \lambda)u^{2} \Rightarrow \|u\|_{\mathcal{L}_{p}} \leqslant \lambda \|u^{1}\|_{\mathcal{L}_{p}} + (1 - \lambda) \|u^{2}\|_{\mathcal{L}_{p}} \leqslant \mu;$$

3амкнутость: Аналогично случаю \mathcal{L}_2 , так как пространство \mathcal{L}_p , 1 рефлексивно (единичный шар представляет из себя слабый компакт).

Найдём опорную функцию:

$$\begin{split} \rho\left(l \mid \mathcal{X}_{\mu}[t_{1}]\right) &= \sup_{u(\cdot)} \int_{t_{0}}^{t_{1}} \left\langle l, H(t_{1}, \tau) u(\tau) \right\rangle d\tau = \sup_{u(\cdot)} \int_{t_{0}}^{t_{1}} \left\langle H^{T}(t_{1}, \tau) l, u(\tau) \right\rangle d\tau \leqslant \\ &\leqslant \left\{ \text{Неравенство Коши-Буняковского для внутренней нормы} \right\} \leqslant \\ &\leqslant \sup_{u(\cdot)} \int_{t_{0}}^{t_{1}} \left\| H^{T}(t_{1}, \tau) l \right\| \left\| u(\tau) \right\| d\tau \leqslant \left\{ \text{Неравенство Гёльдера} \right\} \leqslant \\ &\leqslant \sup_{u(\cdot)} \left[\int_{t_{0}}^{t_{1}} \left\| H^{T}(t_{1}, \tau) l \right\|^{q} d\tau \right]^{1/q} \left[\int_{t_{0}}^{t_{1}} \left\| u(\tau) \right\|^{p} d\tau \right]^{1/p} \leqslant \mu \left\| H^{T}(t_{1}, \cdot) l \right\|_{\mathcal{L}_{q}}, \end{split}$$

где $\frac{1}{p} + \frac{1}{q} = 1$. Чуть ниже понадобится следующее соотношение, которое легко вывести:

$$q - p = \frac{p(2-p)}{p-1}.$$

Неравенство Коши–Буняковского превращается в равенство ровно в том случае, когда $\|u(\tau)\|=\lambda(\tau)\,\|H^T(t_1,\tau)l\|$, где $\lambda(\tau)\neq {\rm const.}$ Поскольку мы ищем максимум скалярного произведения, то $u(\tau)=\lambda(\tau)H^T(t_1,\tau)l$ и $\lambda(\tau)\geqslant 0$. Неравенство Гёльдера превращается в равенство ровно в том случае, когда $\|u(\tau)\|^p=\tilde{\lambda}\,\|H^T(t_1,\tau)l\|^q$, $\tilde{\lambda}={\rm const.}\,\tilde{\lambda}\geqslant 0$, т. е. налицо линейная зависимость двух величин. Осталось выявить зависимость между $\lambda(\tau),\tilde{\lambda}$ и μ (а она должна быть, поскольку все неравенства можно превратить в равенства и наша цель по вычислению опорной функции будет достигнута, т. к. мы получим точную верхнюю грань):

$$\|u(\tau)\| = \lambda(\tau) \|H^{T}(t_{1},\tau)l\|,$$

$$\|u(\tau)\|^{p} = \lambda^{p}(\tau) \|H^{T}(t_{1},\tau)l\|^{p} = \tilde{\lambda} \|H^{T}(t_{1},\tau)l\|^{q},$$

$$\lambda^{p} = \tilde{\lambda} \|H^{T}(t_{1},\tau)l\|^{q-p} = \tilde{\lambda} \|H^{T}(t_{1},\tau)l\|^{\frac{2p-p^{2}}{p-1}},$$

$$\int_{t_{0}}^{t_{1}} \|u(\tau)\|^{p} d\tau = \tilde{\lambda} \int_{t_{0}}^{t_{1}} \|H^{T}(t_{1},\tau)l\|^{q} d\tau,$$

$$\mu^{p} = \tilde{\lambda} \|H^{T}(t_{1},\cdot)l\|_{\mathcal{L}_{q}}^{q},$$

$$\lambda^{p} = \mu^{p} \|H^{T}(t_{1},\cdot)l\|_{\mathcal{L}_{q}}^{-q} \|H^{T}(t_{1},\tau)l\|^{q-p} = \mu^{p} \|H^{T}(t_{1},\cdot)l\|_{\mathcal{L}_{q}}^{-\frac{p}{p-1}} \|H^{T}(t_{1},\tau)l\|^{\frac{p(2-p)}{p-1}},$$

$$\lambda = \mu \|H^{T}(t_{1},\cdot)l\|_{\mathcal{L}_{q}}^{-\frac{1}{p-1}} \|H^{T}(t_{1},\tau)l\|^{\frac{2-p}{p-1}},$$

39

Поскольку $\frac{2-p}{p-1}=\frac{1}{p-1}-1$, то управление, на котором достигается максимум опорной функции в направлении l вычисляется как

$$u^{l}(\tau) = \mu \left(\frac{\left\| H^{T}(t_{1}, \tau) l \right\|}{\left\| H^{T}(t_{1}, \cdot) l \right\|_{\mathcal{L}_{q}}} \right)^{\frac{1}{p-1}} \frac{H^{T}(t_{1}, \tau) l}{\left\| H^{T}(t_{1}, \tau) l \right\|}.$$

Соответствующее значение для опорной функции запишется как

$$\rho(l \mid \mathcal{X}_{\mu}[t_1]) = \mu \left\| H^T(t_1, \cdot) l \right\|_{\mathcal{L}_{\sigma}}.$$

 \mathcal{X}_{μ} — строго выпукло, ибо максимизатор один, правда получается уже не эллипсоид. Аналогично, найдём μ^0 :

$$\langle l, c \rangle \leqslant \mu \left\| H^T(t_1, \cdot) l \right\|,$$

$$\mu^0 = \sup_{l \neq 0} \frac{\langle l, c \rangle}{\left\| H^T(t_1, \cdot) l \right\|_{\mathcal{L}_q}} = \sup \left\{ \left| \langle l, c \rangle \right| \left\| H^T(t_1, \cdot) l \right\|_{\mathcal{L}_q} = 1 \right\}.$$

Если система вполне управляема, то μ^0 — сопряжённая норма; если нет, то есть условие разрешимости (заметим, что сопряжённая норма в \mathcal{L}_q — это норма в \mathcal{L}_p).

Пример 6 (Пример разрешимой системы).

$$A = 0, B = \text{const}, |B| \neq 0; \mu^0 = ||B^{-1}c||_{\mathcal{L}_n}.$$

Найдём l^0 : $l^0\in \operatorname{Argmax}\Big\{\left.\langle l,c\rangle\,\Big|\, \big\|H^Tl\big\|_{\mathcal{L}_q}=1\,\Big\}$. Тогда $u^0(\tau)=u^{l^0}(\tau)$.

4.2 Пространство \mathcal{L}_{∞}

Философское отступление: в зависимости от значения величины p минимизация нормы управления следующим образом соотносится с физическими характеристиками:

- p = 1 минимизируем топливо (этот случай мы не рассматриваем, потому что пространство \mathcal{L}_1 не рефлексивно, и задача может не иметь решения);
- p = 2 минимизируем энергию;
- $p = \infty$ минимизируем силу.

Займёмся теперь управлением с минимальной силой. Норма в \mathcal{L}_{∞} по определению вводится как

$$\|u\|_{\mathcal{L}_{\infty}} \stackrel{\text{def}}{=} \underset{\tau \in [t_0,t_1]}{\operatorname{esssup}} \|u(\tau)\| = \underset{\tau \in [t_0,t_1]}{\operatorname{vraimax}} \|u(\tau)\| = \inf_{E:\mu(E)=0} \sup_{[t_0,t_1] \setminus E} \|u(\tau)\|,$$

т.е. существенный супремум (супремум, который вычисляется почти всюду на отрезке).

Введём множество достижимости:
$$\mathcal{X}_{\mu}[t_1] = \left\{ \int_{t_0}^{t_1} X(t_1, \tau) B(\tau) u(\tau) d\tau \right\}.$$

Утверждение 17. $\mathcal{X}_{\mu}[t_1] \in \operatorname{conv} \mathbb{R}^n$.

Доказательство. Докажем выпуклость, ограниченность и замкнутость множества достижимости:

Bыпуклость: Доказывается аналогично случаю \mathcal{L}_p ;

Oграниченность: Доказывается аналогично случаю \mathcal{L}_p ;

 $3 a m \kappa н y m o c m v$: Единичный шар в \mathcal{L}_{∞} , вообще говоря, не является слабо компактным. Рассмотрим последовательность функций u^{j} :

$$u^j \in \mathcal{L}_{\infty}, \ \|u^j\| \leqslant \mu, \ c^j = \int_{t_0}^{t_1} X(t_1, \tau) B(\tau) u^j(\tau) d\tau.$$

Тогда $u^j \in \mathcal{L}_2$ и $||u^j||_{\mathcal{L}_2} \leqslant \mu |t_1 - t_0|$. В пространстве \mathcal{L}_2 со сходимостью всё в порядке: $u^j \xrightarrow[\mathcal{L}_2,j \to \infty]{\text{слабо}} u^0$. По теореме Лебега предел u^0 тоже ограничен: $||u^0|| \leqslant \mu$. Ещё заметим, что произведение $X(t_1,\tau)B(\tau)$ непрерывно, если функция $B(\tau)$ непрерывна. В итоге:

• $u^0 \in \mathcal{L}_{\infty}$;

•
$$c^j \xrightarrow[j\to\infty]{} c = \int_{t_0}^{t_1} X(t_1,\tau)B(\tau)u^0(\tau)d\tau.$$

Найдём опорную функцию множества достижимости (считаем, что внутренняя норма $\|u(\tau)\|$ евклидова):

$$\rho\left(l \mid \mathcal{X}_{\mu}[t_{1}]\right) = \sup_{u(\cdot)} \int_{t_{0}}^{t_{1}} \left\langle \underbrace{B^{T}(\tau)X^{T}(t_{1},\tau)l}_{s(\tau)}, u(\tau) \right\rangle d\tau \overset{\text{K.-B.}}{\leqslant} \sup_{u(\cdot)} \int_{t_{0}}^{t_{1}} \|s(\tau)\| \cdot \|u(\tau)\| d\tau \leqslant$$
$$\leqslant \mu \int_{t_{0}}^{t_{1}} \|s(\tau)\| d\tau = \mu \|s(\cdot)\|_{\mathcal{L}_{1}}.$$

Найдём максимизатор:

$$u^{l}(\tau) = \lambda(\tau)B^{T}(\tau)X^{T}(t_{1}, \tau)l, \quad \lambda(\tau) \geqslant 0.$$

Хотим показать, что для п. в. $\tau \in \{t \mid \|s(\tau)\| \neq 0\}$ верно, что $\|u(\tau)\| = \mu$. Предположим противное. Тогда $\exists A \subseteq \{t \mid \|s(\tau)\| \neq 0\} : \mu(A) \neq 0, \forall \tau \in A \|u(\tau)\| \leqslant \mu - \varepsilon$. Разбиваем исходный интеграл на два: на множестве A и на дополнении A. Тогда он на множестве меры $\mu(A)$ больше максимума. Получили противоречие.

Итак,
$$u^l(\tau) = \mu \frac{B^T(\tau) X^T(t_1, \tau) l}{\|B^T(\tau) X^T(t_1, \tau) l\|}.$$

В конечном счёте,

$$u^l(\tau) = \begin{cases} \mu \frac{s(\tau)}{\|s(\tau)\|}, & s(\tau) \neq 0, \\ \text{любое}, & s(\tau) = 0. \end{cases}$$

Потенциально, максимум может достигаться не в одной точке. Тогда

$$\mu^{0} = \sup_{l \neq 0} \frac{\langle l, c \rangle}{\int\limits_{t_{0}}^{t_{1}} \|s(\tau)\| d\tau}, \quad l^{0} \in \underset{\text{He } (\|s(\tau)\| \stackrel{\text{\tiny H.B.}}{=} 0)}{\operatorname{Argmax}} \frac{\langle l, c \rangle}{\int\limits_{t_{0}}^{t_{1}} \|s(\tau)\| d\tau}.$$

Необходимое условие оптимальности: $s^0(\tau) = B^T(\tau) X^T(t_1,\tau) l^0$. Если u^* решает задачу, то $\forall \tau: s^0(\tau) \neq 0, u^*(\tau) = \frac{s^o(\tau)}{\mu \|s^0(\tau)\|}$ (утверждение в обратную сторону, вообще говоря, неверно). Или же $u^*(\tau) \in \mathop{\rm Argmax}_{\|u\| \leqslant \mu} \langle s^0(\tau), u \rangle$, т. е. $\langle s^0(\tau), u^*(\tau) \rangle = \mathop{\rm max}_{\|u\| \leqslant \mu} \langle s^0(\tau), u \rangle$.

4.3 Принцип максимума Понтрягина

Рассмотрим $\psi(\tau) = X^T(t_1, \tau)l$, рассмотрим сопряжённую систему

$$\begin{cases} \dot{\psi} = -A^T(t)\psi, \\ \psi(t_1) = l. \end{cases}$$

Теорема 18 (Принцип максимума Понтрягина, ПМП). u^* pewaem нашу задачу \Rightarrow $\exists \, l^0 \neq 0 : \exists \, \psi^0 \ncong 0 : \left\{ \begin{array}{ccc} \dot{\psi}^0 &=& -A^T \psi, \\ \psi^0(t_1) &=& l^0 \end{array} \right.$

$$\langle B^T(\tau)\psi^0(\tau), u^*(\tau)\rangle \stackrel{\text{n. e.}}{=} \max_{\|u\| \leqslant \mu} \langle B^T(\tau)\psi^0(\tau), u\rangle.$$

Доказательство.

Когда можно утверждать, что $s^0(\tau) \neq 0$ всюду?

B, X — хорошие, непрерывные; рассмотрим, когда $s^0(\tau) = B^T(\tau) X^T(t_1, \tau) l^0 = 0$. Если $s^0(\tau) = 0$ при $\tau \in (\tilde{t_0}, \tilde{t_1})$, то наша система не является вполне управляемой на $(\tilde{t_0}, \tilde{t_1})$. Тогда ПМП превращается в достаточное условие путём требования полной управляемости на любом интервале.

Утверждение 19. $A = \text{const}, B = \text{const}, \ napa\ (A,B) - ynpaвляема.$ Тогда u^* решает нашу задачу $\Leftrightarrow \langle s^0(\tau), u^*(\tau) \rangle \stackrel{n.s.}{=} \max_{\|u\| \leqslant \mu} \langle s^0(\tau), u \rangle.$

Рассмотрим два примера:

Пример 7 (Когда всё плохо (а может, несмотря ни на что, очень даже хорошо)).

$$\begin{cases} \dot{x}_1 &= u, \\ \dot{x}_2 &= u, \end{cases} |u| \leqslant 1.$$

$$x^0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad x^1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

$$A = E$$
, $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Задача моментов: $\int\limits_{t_0}^{t_1} \left(\begin{array}{c} 1 \\ 1 \end{array} \right) u d \tau = \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$

$$t_0 = 0, \quad t_1 = 2.$$

Скалярно умножим на $l(l_1,l_2)$ и максимизируем: $\max_{u(\cdot)} \int_{t_0}^{t_1} (l_1+l_2)u(\tau)d\tau = 2\mu(l_1+l_2),$

$$\sup_{l_1+l_2\neq 0}\frac{l_1+l_2}{2\,|l_1+l_2|}=\frac{1}{2}=u.$$

То есть сидим и ждём момента.

Множество достижимости является отрезком.

Пример 8 (А вот здесь уже кажется и плохо бывает, и хорошо).

$$\begin{cases} \dot{x}_1 &= u-1, \\ \dot{x}_2 &= u+1, \end{cases} |u| \leqslant 1.$$

$$x^0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad x^1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

$$\int\limits_{t_0}^{t_1} \left(\begin{array}{c} 1 \\ 1 \end{array}\right) u d\tau = \left(\begin{array}{c} -1 \\ 1 \end{array}\right) - (t_1 - t_0) \left(\begin{array}{c} -1 \\ 1 \end{array}\right) = (1 + t_0 - t_1) \left(\begin{array}{c} -1 \\ 1 \end{array}\right) = \\ = \{t_0 = 0; \text{Тогда при } t_1 \neq 1 \text{ задача неразрешима; далее } t_1 = 1\} = \left(\begin{array}{c} 0 \\ 0 \end{array}\right).$$

То есть при $t_1 = 1$ задача разрешима.

Если же
$$x^1=\left(\begin{array}{c}1\\0\end{array}\right),$$
 то $\int\limits_{t_0}^{t_1}\left(\begin{array}{c}1\\1\end{array}\right)ud\tau=\left(\begin{array}{c}t_1-t_0\\1+t_0-t_1\end{array}\right).$

Считаем, что $t_0=0$. Система разрешима только при $t_1=1-t_1$, т. е. при $t_1=\frac{1}{2}$. Тогда интеграл равен $\binom{1/2}{1/2}$, $\mu^0=\sup\frac{\frac{1}{2}(l_1+l_2)}{\frac{1}{2}|l_1+l_2|}$.

Глава 5

Задача быстродействия

5.1 Постановка задачи

Преступим к изучению следующего типа задач оптимального управления — *задач быстродействия* - задач перевода системы из начального фиксированного положения в конечное, также фиксированное, положение, за минимальное время.

Пусть наша система описывается следующими условиями:

$$\begin{cases} \dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t), \\ x(t_0) = x^0, \\ x(t_1) = x^1, \\ u(\tau) \in \mathcal{P}(\tau) \in \text{conv } \mathbb{R}^m, \\ t_1 - t_0 \to \text{inf}, \end{cases}$$

$$(5.1)$$

где x_0, x_1, t_0 - фиксированы, A(t), B(t), f(t) — непрерывны, а \mathcal{P} непрерывно как многозначное отображение (это требование гарантирует нам, что для любого l $\rho(l|\mathcal{P}(\tau))$ по τ непрерывна¹).

Отметим, что отказ от требования $u(\tau) \in \mathcal{P}(\tau) \in \text{conv }\mathbb{R}^m$ возможен; в этом случае $\overline{\mathcal{X}_{\mathcal{P}}[t_1]} = \mathcal{X}_{\overline{\mathcal{P}}}[t_1]$. Разумность такого отказа показывает следующий

Пример 9. Пусть уравнения (5.1) имеют вид

$$\begin{cases} \dot{x} = u, \\ x(0) = 0, \\ u(\tau) \in [-1, 1]. \end{cases}$$

Тогда множеством достижимости \mathcal{X}_1 будет бесконечный треугольник в I и IV координатных четвертях, лежащий внутри прямых x = t и x = -t. При этом геометрически ясно, что при замена множества допустимых управлений с отрезка [-1,1] на

 $^{^{1}}$ В частности, при m=1 множество $\mathcal P$ выглядит как $\mathcal P=[a(\tau),b(\tau)];$ непрерывность многозначного отображения означает, что $a(\tau),b(\tau)$ - непрерывны.

двухточечное множество $\{-1,1\}$ не изменит множества достижимости: любую точку, лежащую внутри \mathcal{X}_1 , можно соединить с началом координат ломанной, содержащей звенья, параллельные прямым x=t и x=-t.

Именно этот прием используется при управлении парусными судами при отсутствии попутного ветра (при этом говорят, что судно *udem галсом*).

Введём множество достижимости

$$\mathcal{X}[t_1] = \mathcal{X}(t_1, t_0, x^0) = \{x = x(t_1, t_0, x^0 | u(\cdot)), \ u(\tau) \in \mathcal{P}\}.$$

Введём также *трубку достижимости* как² $\mathcal{X}[\cdot]$. Её графиком будем называть множество $\mathcal{X}[\cdot] = \{(t, x) : x \in \mathcal{X}[t]\}.$

Ключевую роль играет следующее очевидное

Утверждение 20. Если $t_1^* - t_0$ — время оптимального взаимодействия, x^*, u^* — соответственно траектория и управления, отвечающие этому времени, то $(t_1^*, x^*(t_1^*)) \in \partial \mathcal{X}[\cdot]$.

Доказательство. Достаточно заметить, что если $(t_1^*, x^*(t_1^*)) \notin \partial \mathcal{X}[\cdot]$, то достаточно сместится назад во времени к некоему моменту t_2^* , такому, что $(t_2^*, x^*(t_1^*)) \in \partial \mathcal{X}[\cdot]$ (такая точка существует в силу выпуклости и непрерывности); это приводит к противоречию с тем, что $t_1^* - t_0$ - время оптимального взаимодействия.

Следующий пример показывает, что в криволинейных координатах это утверждение, вообще говоря, неверно.

Пример 10. Пусть уравнения (5.1) записаны в полярных координатах и имеют вид

$$\begin{cases} \dot{\rho} = u_1, \ |u_1| \leqslant 1, \\ \dot{\varphi} = u_2, \ |u_2| \leqslant 1, \\ \rho(0) = \rho^0 > 0, \\ \phi(0) = \phi^0. \end{cases}$$

Если бы это были декартовы координаты на плоскости, то трубкой достижимости был бы «распухающий квадрат» $\mathcal{X}[t_1] = \{|x-x^0| \leqslant t_1, |y-y^0| \leqslant t_2\}$. В нашем же случае это будет «распухающий кольцевой сектор», и множество достижимости не будет выпуклым. Это приведет к тому, что если финальная точка будет отвечать углу в π , то $(t^*, x^*(t^*)) \notin \partial \mathcal{X}[t_1^*]$.

Введём функцию $\varepsilon[t_1] = d(x^1, \mathcal{X}[t_1])$. Тогда очевидно

Утверждение 21. $t_1^*-t_0$ - время оптимального взаимодействия $\Leftrightarrow t_1^*$ — наименьший корень уравнения $\varepsilon[t_1]=0,\ t_1\geqslant t_0.$

При этом стоит иметь ввиду, что если некое множество Z — компакт, то $x \in Z \Leftrightarrow d(x,Z) = 0$.

 $^{^2}$ Следует понимать, что множество достижимости — это множество, а трубка достижимости — это функция, отображающее время на соответствующее множество достижимости.

45

5.2 Свойства множества достижимости

Утверждение 22. $\mathcal{X}[t_1] \in \operatorname{conv} \mathbb{R}^n$.

Доказательство. 1. Докажем выпуклость. Пусть $\hat{x}_1, \ \hat{x}_2 \in \mathcal{X}[t_1], \ u^1, u^2$ — отвечающие им управления, $u^1, u^2 \in \mathcal{P}$; тогда для j = 1, 2 по формуле Коши имеем

$$\hat{x}_j = X(t_1, t_0)x^0 + \int_{t_0}^{t_1} X(t_1, \tau)[B(\tau)u^j(\tau) + f(\tau)]d\tau$$
(5.2)

Пусть $\hat{x} = \lambda \hat{x}^1 + (1 - \lambda)\hat{x}^2$, $u(\tau) = \lambda u^1(\tau) + (1 - \lambda)u^2(\tau)$. Домножая первое соотношение в (5.2) на λ , а второе — на $1 - \lambda$, и, складывая, получаем, что траектории \hat{x} отвечает управление $u(\tau) \in \mathcal{P}(\tau)$ (ибо $\mathcal{P}(\tau)$ — выпукло), что и означает выпуклость $\mathcal{X}[t_1]$.

2. Докажем ограниченность. Покажем, что существует такое c > 0, что $\mathcal{P}(\tau) \subseteq c \cdot B_1(0)$. Так как $\rho(l|\mathcal{P}(\tau))$ непрерывно по τ , то возьмём $c = \max_{||l||=1, \tau \in [t_0,t_1]} \rho(l|\mathcal{P}(\tau))$. Тогда для любых l и любых $\tau \in [t_0,t_1]$ в силу положительной однородности опорной функции $\rho(l|\mathcal{P}(\tau)) \leqslant c ||l||$. Тогда в формуле Коши

$$\hat{x} = X(t_1, t_0)x^0 + \int_{t_0}^{t_1} X(t_1, \tau)[B(\tau)u(\tau) + f(\tau)]d\tau$$

все компоненты в правой части ограничены, что даёт ограниченность и левой части.

3. Докажем замкнутость. Пусть $\hat{x}^j \to \hat{x}$. Надо доказать, что $\hat{x} \in \mathcal{X}[t_1]$. Пусть траекториям \hat{x}^j отвечают управления $u^j(\tau) \in \mathcal{P}(\tau)$. Без ограничения общности считаем, что $u^j \xrightarrow[j \to \infty]{\text{слабо в } L_2}{i \to \infty} u$.

Докажем, что $u(\tau) \in \mathcal{P}(\tau)$ для почти всех τ . Для произвольных $l(\tau) \in L_2$ и почти всех τ верно соотношение⁴:

$$\langle l(\tau), u^j(\tau) \rangle \leqslant \rho(l(\tau) \mid \mathcal{P}(\tau)).$$

Проинтегрируем это соотношение от t_0 до t_1 :

$$\int_{t_0}^{t_1} \langle l(\tau), u^j(\tau) \rangle \ d\tau \leqslant \int_{t_0}^{t_1} \rho(l(\tau) \mid \mathcal{P}(\tau)) \ d\tau.$$

³Т. е., возможно, переходя к подпоследовательностям.

 $^{^4}$ Напоминаем, что если $A\subseteq B$, то $\rho(l|A)\leqslant \rho(l|B)$ для любого l.

Учитывая, что $u^j \xrightarrow[j\to\infty]{\text{слабо в } L_2} u$, получаем:

$$\int_{t_0}^{t_1} \langle l(\tau), u(\tau) \rangle \ d\tau \leqslant \int_{t_0}^{t_1} \rho(l(\tau) \mid \mathcal{P}(\tau)) \ d\tau. \tag{5.3}$$

Итак, предположим противное. Пусть существует подмножество $Z\subseteq [t_0,t_1]$ ненулевой меры, где $u(\tau)\notin \mathcal{P}(\tau)$. Тогда найдутся такие $l(\tau),\ \varepsilon>0$, что

$$\langle l(\tau), u(\tau) \rangle > \rho(l(\tau) \mid \mathcal{P}(\tau)) + \varepsilon.$$

Заменим значения $u(\tau)$ вне Z на ноль; тогда

$$\int_{t_0}^{t_1} \langle l(\tau), u(\tau) \rangle \ d\tau \geqslant \int_{t_0}^{t_1} \rho(l(\tau) \mid \mathcal{P}(\tau)) \ d\tau - \varepsilon \mu Z,$$

что противоречит (5.3). Значит, $u(\tau) \in \mathcal{P}(\tau)$.

Запишем формулу Коши:

$$\hat{x}^{j} = X(t_{1}, t_{0})x^{0} + \int_{t_{0}}^{t_{1}} X(t_{1}, \tau)[B(\tau)u^{j}(\tau) + f(\tau)]d\tau.$$

Устремляя $j \to \infty$, получаем:

$$\hat{x} = X(t_1, t_0)x^0 + \int_{t_0}^{t_1} X(t_1, \tau)[B(\tau)u(\tau) + f(\tau)]d\tau.$$

И, так как $u(\tau) \in \mathcal{P}(\tau)$, то $\hat{x} \in \mathcal{X}[t_1]$, что и означает замкнутость $\mathcal{X}[t_1]$.

Найдем опорную функцию множества достижимости:

$$\rho(l \mid \mathcal{X}[t_1]) = \sup_{u(\cdot)} \left[\langle l, X(t_1, t_0) \rangle + \int_{t_0}^{t_1} \langle B^T(\tau) X^T(t_1, \tau) l, u(\tau) \rangle \right] d\tau + \int_{t_0}^{t_1} \langle l, X(t_1, \tau) f(\tau) \rangle d\tau \right] = \langle l, X(t_1, t_0) \rangle + \int_{t_0}^{t_1} \langle l, X(t_1, \tau) f(\tau) \rangle d\tau + \sup_{u(\cdot)} \left[\int_{t_0}^{t_1} \langle B^T(\tau) X^T(t_1, \tau) l, u(\tau) \rangle d\tau \right]. \quad (5.4)$$

Обозначим для краткости $s(\tau) = B^T(\tau) X^T(t_1,\tau) l$. Для дальнейшего продвижения нам потребуется следующая

Лемма 23.
$$\sup_{u(\cdot)} \left[\int_{t_0}^{t_1} \langle s(\tau), u(\tau) \rangle \ d\tau \right] = \int_{t_0}^{t_1} \sup_{u \in \mathcal{P}} \langle s(\tau), u \rangle \ d\tau.$$

Доказательство. Так как $s(\tau)$ — непрерывная функция, то $\sup_{u \in \mathcal{P}(\tau)} \langle s(\tau), u \rangle = \rho(s(\tau) \mid \mathcal{P}(t))$ непрерывно по τ , u, следовательно, интегрируема.

Рассмотрим $\operatorname{Argmax}_{u(\cdot)\in\mathcal{P}(\tau)}\langle s(\tau),u\rangle=\mathcal{P}^*(\tau)$. Проверим, что это многозначное отображение является измеримым. Для этого докажем его полунепрерывность сверху⁵. Так как полунепрерывность сверху равносильна замкнутости графика $\mathcal{P}^*(\tau)$, то нам надо показать, что из $\tau^j \to \tau$, $u^j \to u$, $u^j \in \mathcal{P}^*(\tau^j)$ следует, что $u \in \mathcal{P}^*(\tau)$. Это равносильно соотношениям

$$\langle s(\tau^j), u^j \rangle = \rho(s(\tau^j) \mid \mathcal{P}(\tau^j)),$$

 $\langle l, u^j \rangle \leqslant \rho(l \mid \mathcal{P}^*(\tau^j)),$

для любого l. Тогда

$$\langle s(\tau), u \rangle = \rho(s(\tau) \mid \mathcal{P}(\tau)),$$

 $\langle l, u \rangle \leqslant \rho(l \mid \mathcal{P}^*(\tau)),$

что верно, и, стало быть, $u \in \mathcal{P}^*(\tau)$, что и дает нам замкнутость графика, и, следовательно, измеримость.

Воспользуемся леммой об измеримом селекторе из курса многозначного анализа: если многозначное отображение \mathcal{P}^* измеримо, то существует такая измеримая функция (селектор) $u^*(\cdot)$, что $u^*(\tau) \in \mathcal{P}^*(\tau)$ для почти всех τ .

Для этого селектора $\langle s(\tau), u^*(\tau) \rangle = \rho(s(\tau) \mid \mathcal{P}(\tau))$, интегралы в условии леммы существуют, что влечет достижение точной верхней грани на $u(\tau) \in \mathcal{P}^*(\tau)$, что и требовалось доказать.

Таким образом, мы можем выписать окончательный вид опорной функции:

$$\rho(l \mid \mathcal{X}[t_1]) = \langle l, X(t_1, t_0) \rangle + \int_{t_0}^{t_1} \langle l, X(t_1, \tau) f(\tau) \rangle \ d\tau + \int_{t_0}^{t_1} \rho(B^T(\tau) X^T(t_1, \tau) l \mid \mathcal{P}(\tau)) \ d\tau.$$

Итак, оптимальное управление доставляет максимум выражению

$$\max_{u \in \mathcal{P}(\tau)} \left\langle B^T(\tau) X^T(t_1, \tau) l, u \right\rangle.$$

Обозначая $\psi(\tau) = X^T(t_1, \tau)l$, получим из (5.4):

$$\rho(l \mid \mathcal{X}[t_1]) = \langle l, \psi(t_0), x_0 \rangle + \int_{t_0}^{t_1} \langle \psi(\tau), f(\tau) \rangle d\tau + \int_{t_0}^{t_1} \rho(B^T(\tau)\psi(\tau)| \mathcal{P}(\tau)) d\tau.$$

При этом $\psi(\tau)$ называют *сопряженной переменной*. Из определения фундаментальной матрицы ясно, что $\psi(\tau)$ удовлетворяет следующим соотношениям:

$$\begin{cases} \dot{\psi} = -A^T(\tau)\psi, \\ \psi(t_1) = l. \end{cases}$$

⁵Ибо, как известно, полунепрерывность есть достаточное условие измеримости.

5.3 Условие максимума

Перейдем теперь непосредственно к решению задачи быстродействия. Выпишем в терминах опорных функций условие $x^1 \in \mathcal{X}[t_1]$:

$$\langle l, x^1 \rangle \leqslant \rho(l \mid \mathcal{X}[t_1])$$

для любого l, или, в терминах расстояний до множества, $d(x^1, \mathcal{X}[t_1]) = \varepsilon[t_1] = 0$. Фиксируем произвольной число $\hat{\varepsilon}$. Тогда верна следующая цепочка равносильных переходов:

$$d(x^1, \mathcal{X}[t_1]) \leqslant \hat{\varepsilon} \Leftrightarrow x^1 \in \mathcal{X}[t_1] + \hat{\varepsilon}B_1(0) \Leftrightarrow \langle l, x^1 \rangle \leqslant \rho(l \mid \mathcal{X}[t_1]) + \hat{\varepsilon} ||l||.$$

В силу положительной однородности левой и правой части по l, последнее соотношение можно нормировать и записать в виде

$$\sup_{\|l\|=1} \left(\left\langle l, x^1 \right\rangle - \rho(l \mid \mathcal{X}[t_1]) \right) \leqslant \hat{\varepsilon},$$

откуда следует, что $\varepsilon[t_1]=\sup_{\|l\|=1}(\langle l,x^1\rangle-\rho(l\mid\mathcal{X}[t_1])).$ Таким образом, отсюда время

быстродействия t_1^* находится как наименьшей корень уравнения $\varepsilon[t_1^*]=0.$

Возьмём вектор $l^0 \in \operatorname{Argmax}_{\|l\|=1}(\langle l, x^1 \rangle - \rho(l \mid \mathcal{X}[t_1]))$. Тогда $\langle l^0, x^1 \rangle = \rho(l^0 \mid \mathcal{X}[t_1^*])$, что означает, что x^1 лежит на пересечении опорной гиперплоскости и самого множества. Отсюда $u^*(\tau) = u^{l_0}(\tau)$. Таким образом, мы можем записать необходимое условие максимума:

 $E c n u^* e c m b y n p a b n e h u e, do c m a b n s m u m a n b h o e y n p a b n e h u e, m o e m u m a n b h o e y n p a b n e h u$

$$\langle B^T(\tau)\psi(\tau), u^*(\tau)\rangle = \max_{u \in \mathcal{P}(\tau)} \langle B^T(\tau)\psi(\tau), u\rangle.$$
 (5.5)

Естественно встает вопрос: является ли это условие достаточным? Оказывается, что нет — следующий пример показывает, что условию максимума может удовлетворять вообще любое допустимое управление!

Пример 11. Рассмотрим следующую задачу быстродействия:

$$\begin{cases} \dot{x}_1 = u - 1, \\ \dot{x}_2 = u + 1, \\ x^0 = [0, 0]^T, \\ x^1 = [-1, 1]^T, \\ |u(t)| \leqslant 1. \end{cases}$$

В этой задаче, $\mathcal{P}(t) \equiv \mathcal{P} = [-1, 1]$. Найдем опорную функцию для этой задачи:

$$\rho(l \mid \mathcal{X}[t_1]) = \int_0^{t_1} \langle l, [-1, 1]^T \rangle + \int_0^{t_1} \rho([1, 1]^T l \mid \mathcal{P}(\tau)) \ d\tau = t_1(l_2 - l_1) + t_1|l_1 + l_2|.$$

Легко видеть, что это сумма опорных функций одноточечного множества и отрезка. С геометрической точки зрения, множество достижимости есть отрезок, соединяющий на плоскости точки $[-1,-1]^T$ и $[1,1]^T$, который «ползает» по плоскости. Очевидно, что для быстрейшего достижения точки $[-1,1]^T$ надо «ползти» вверх по прямой y=-x. Тогда в момент $t^*=1$ мы достигнем финальной точки.

Однако для нахождения оптимального управления нам (формально) надо было бы найти вектор-максимизатор l_0 . На эту роль подходят вектора $\frac{1}{\sqrt{2}}[-1,1]^T$ и $\frac{1}{\sqrt{2}}[1,-1]^T$. Выпишем условие максимума:

$$\langle B^T l^0, u^* \rangle = \max_{u \in \mathcal{P}} \langle B^T l^0, u \rangle,$$

которое в нашем случае принимает вид 0 = 0.

Хотя приведенный пример показывает редкую для линейных систем ситуацию, стоит поставить вопрос о условиях, позволяющих использовать условие максимума как необходимое и достаточное условие.

5.3.1 Условие нормальности (общности положения)

Рассмотрим частный случай задачи (5.1): пусть A, B — const, а \mathcal{P} — выпуклый многогранник с непустой внутренностью, построенный на точках u^1, u_2, \ldots, u_M , причем $u_j \in \partial \mathcal{P}, \ j = \overline{1, M}$. Пусть $w = w^{k,l} = u^k - u^l$, где k, l соединены ребром. Потребуем, что бы выполнялось условие нормальности (или условие общности положения):

$$Bектора\ Bw, ABw, \dots, A^{n-1}Bw$$
 линейно независимы.

Отметим, что если \mathcal{P} имеет вид «параллелепипеда», $\mathcal{P} = \{ u \in \mathbb{R}^m \mid a_i \leqslant u_i \leqslant b_i, i = \overline{1,m} \}$, а матрица B состоит из столбцов b^1, b^2, \ldots, b^m , то условие нормальности требует линейной независимости векторов $b^i, Ab^i, \ldots, A^{n-1}b^i$ для всех i, что представляет собой в точности условие полной управляемости.

Роль этого условия раскрывает следующая

Теорема 24. Если выполняется условие нормальности, то условию максимума удовлетворяет единственно управление.

Доказательство. Покажем, что при $l^0 \neq 0$ существует и при том единственное $u^*(\cdot)$, удовлетворяющее (5.5). Предположим противное, пусть \hat{u}^1, \hat{u}^2 удовлетворяют (5.5), и на множестве положительной меры $\hat{u}^1 \neq \hat{u}^2$. Так как $\max_{u \in \mathcal{P}} \left\langle B^T \psi(\tau), u \right\rangle = \rho(B^T \psi(\tau) \mid \mathcal{P})$, то $\left\langle B^T \psi(\tau), \hat{u}^1 - \hat{u}^2 \right\rangle = 0$ для почти всякого τ . Это можно переписать в виде

$$\left\langle B^T e^{-A^T(\tau - t_1)} l^0, w \right\rangle = 0,$$

 $^{^6\}mathrm{T}$. e. все u_j «существенно»влияют на вид многогранника.

что равносильно условию $l^{0T}e^{A(t_1-\tau)}Bw=0$ на некотором множестве положительной меры. Дифференцируя это тождество, получаем

$$l^{0T}e^{A(t_1-\tau)}Bw = 0,$$

$$-l^{0T}e^{A(t_1-\tau)}ABw = 0,$$

$$.....$$

$$(-1)^{n-1}l^{0T}e^{A(t_1-\tau)}A^{n-1}Bw = 0.$$

Но, ибо $l^0 \neq 0$, получаем противоречие с условием нормальности.

Покажем теперь, что, если управление u удовлетворяет (5.5), то $u \in \mathcal{P}$ почти всюду. Предположим противное: пусть существует интервал времени, на котором $B^T\psi(\tau)$ ортогонален ребру; но это невозможно: дифференцируя, как в первой части доказательства, соотношение $\langle B^T\psi(\tau),w\rangle=0$, мы получим противоречие с условием нормальности. Что и требовалось доказать.

Замечание 3. На самом деле, мы доказали, что условие нормальности гарантирует строгую выпуклость множества достижимости.

Пример 12. Рассмотрим задачу

$$\begin{cases} \dot{x}_1 = u_1, \ |u_1| \leqslant 1, \\ \dot{x}_2 = u_2, \ |u_2| \leqslant 1. \end{cases}$$

Эта система вполне управляема, но не сильно вполне управляема. Множество достижимости в данном случае — квадрат (т.е. не строго выпуклое). Случай, в котором условие максимума выделяет единственное управление, бывает тогда, когда финальная точка оказывается на углу квадрата (проверьте!).

5.3.2 Условие управляемости при выпуклости множества ${\cal P}$

Теорема 25. Пусть \mathcal{P} строго выпукло и имеет непустую внутренность, и выполнено условие полной управляемости,

$$\operatorname{rg}[B|AB|\cdots|A^{n-1}B] = n.$$

Тогда условие максимума определяет оптимальное управление единственным образом.

Доказательство. Максимум, очевидно, достигается в единственной точки в силу строгой выпуклости; осталось показать, что он ненулевой, т.е. что $B^T\psi(\tau)\neq 0$ на любом интервале. Предположим противное, пусть $B^T\psi(t)\equiv 0$ для любого t. Дифференцируя это тождество и полагая $t=t_1$, получим противоречие с условием полной управляемости.

⁷В силу аналитичности.

Глава 6

Задача из множества во множество

6.1 Постановка задачи

Хочется сказать, что множество ω , на котором условие нормальности не выполняется, имеет меру нуль. Рассмотрим иные множества ограничений:

Утверждение 26. Если \mathcal{P} строго выпукло, $\operatorname{Int} \mathcal{P} \neq \emptyset$, $\operatorname{rg} [B|AB|\dots|A^{n-1}B] = n$, то $u^l(\tau)$ выделяется из условия максимума единственным образом.

Доказательство. Максимум достигается в единственной точке в силу выпуклости. Надо лишь доказать, что $B^T \psi(t) \neq 0$ на любом интервале.

Предположим противное: $B^T \psi(t) \equiv 0, \forall t, \text{ тогда: } l^T e^{A(t_1-t)} B \equiv 0.$

Продифференцируем обе части (n-1) раз:

$$-l^{T}e^{A(t_{1}-t)}AB \equiv 0,$$

$$\vdots$$

$$(-1)^{n-1}l^{T}e^{A(t_{1}-t)}A^{n-1}B \equiv 0.$$

Положим $t=t_1$, тогда ненулевой вектор ортогонален всем столбцам, получили противоречие с условием полной управляемости.

Перейдём к задачам оптимального управления при переходе из множества в множество. Расширим понятие множества достижимости:

$$\mathcal{X}[\tau] = \mathcal{X}\left(\tau, t_0, \mathcal{X}^0\right) = \left\{x : \exists u(\cdot), \exists x^0 \in \mathcal{X} : x = x\left(\tau, t_0, x^0 \mid u(\cdot)\right)\right\}.$$

А также множества разрешимости:

$$W[\tau] = W(\tau, t_1, M) = \{x : \exists u(\cdot), \exists x^1 \in M : x = x (\tau, t_1, x^1 | u(\cdot)) \} = \{x : \exists u(\cdot), x (t_1, \tau, x | u(\cdot)) \in M \}.$$

6.2 Вспомогательные утверждения

Задача 4. $\dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t), \ x(t_0) = x^0 \in \mathcal{X}^0, \ x(t_1) = x^1 \in \mathcal{X}^1, \ \text{где}$ $\mathcal{X}^0, \mathcal{X}^1 \in \text{conv}\,\mathbb{R}^n. \ x^0$ переходит в $x^1; t_1 - t_0 \to \text{inf}, \ t_0 - \Phi$ иксировано, $t_1 - \text{свободно}$ (или наоборот), а $x^0, x^1 - \text{свободны}$ (их тоже надо указать). Требуется найти t_1^* :

$$t_1^* = \inf \left\{ t \geqslant t_0 : \mathcal{X} \left(\tau, t_0, \mathcal{X}^0 \right) \cap \mathcal{X}^1 \neq \emptyset \right\}$$

Отметим, что $\mathcal{X}(\tau, t_0, \mathcal{X}^0) \cap \mathcal{X}^1 \neq \emptyset \Leftrightarrow d(\mathcal{X}[\tau], \mathcal{X}^1) = 0.$ $d(z_1, z_2) = \inf \{ \|z_1 - z_2\|, \ z_i \in Z_j, \ j = 1, 2 \}.$ Введём $\varepsilon [\tau] = d(\mathcal{X}[\tau], \mathcal{X}^1).$

Теорема 27. $t_1^* - t_0 - \epsilon p \epsilon m s$ оптимального быстродействия $\Leftrightarrow t_1^* - наименьший корень <math>t_1^* \geqslant t_0$ уравнения $\varepsilon(\tau) = 0, x(t_0) = x^0 \in \mathcal{X}^0$.

Докажем следующее утверждение:

Утверждение 28. $\mathcal{X}[\tau] \in \operatorname{conv} \mathbb{R}^n$.

Замечание 4. $\mathcal{X}[\tau]$ — выпуклый компакт, но наиболее существенным является именно то, что он компакт.

Доказательство. Выпуклость доказывается как обычно. Ограниченность — из аналогичной теоремы об интеграле. Замкнутость — чуть сложнее, надо выбрать подпоследовательность из начальных точек. □

Формула расстояний между компактами:

$$\rho\left(l \mid Z_{1}\right) < -\rho\left(-l \mid Z_{2}\right) \Leftrightarrow \max_{z_{1} \in Z_{1}}\left\langle l, z_{1}\right\rangle < \min_{z_{2} \in Z_{2}}\left\langle l, z_{2}\right\rangle, \text{ значит:}$$

$$Z_{1} \cap Z_{2} = \varnothing, Z_{1}, Z_{2} \in \operatorname{conv}\mathbb{R}^{n} \Leftrightarrow \max_{\|l\|=1}\left[-\rho\left(l \mid Z_{1}\right) - \rho\left(-l \mid Z_{2}\right)\right] > 0.$$

Если множество $Z_2 = \{z_2\}$, то:

$$\rho(-l \mid Z_2) = -\langle l, z_2 \rangle$$
.

Воспользуемся индикаторными функциями из выпуклого анализа:

$$\delta_{Z_1\cap Z_2}(z)=\delta_{Z_1}(z)+\delta_{Z_2}(z),$$
 при этом знаем, что $\rho\left(\cdot\,|\,z_j\right)=(\delta_{z_j}(\cdot))^*.$

Утверждение 29.
$$d(z,Z) = \sup_{\|l\|=1} \left[\langle l,z \rangle - \rho \left(l \, | \, Z \right) \right].$$

Доказательство. Найдём сопряжённую к расстоянию:

$$\begin{split} \sup_{Z}[\langle l,z\rangle - d(z,Z)] &= \sup_{Z}[\langle l,z\rangle - \inf_{\zeta\in Z}\|z-\zeta\|] = \sup_{Z}\sup_{\zeta\in Z}[\langle l,z\rangle - \|z-\zeta\|] = \\ &= \{\text{пусть } z-\zeta = y\} = \sup_{\zeta\in Z}\sup_{y}[\langle l,z+y\rangle - \|y\|] = \\ &= \rho\left(l\,|\,Z\right) + \sup_{y}[\langle l,y\rangle - \|y\|] = \rho\left(l\,|\,Z\right) + \delta(l\,|\,B_1(0)). \end{split}$$

По теореме Фенхеля-Моро это действительно расстояние.

Утверждение 30.
$$d(z_1, Z_2) = \min_{z_1 \in Z_1} d(z_1, Z_2) = \min_{z_1 \in Z_1} \sup_{\|l\|=1} [\langle l, z_1 \rangle - \rho(l \mid Z_2)].$$

Для доказательства потребуется следующая теорема:

Теорема 31 (Джон фон Нойманн). Пусть $f: X \times Y \to \mathbb{R}$, $X, Y - выпуклые компакты, <math>f(x, \cdot) - вогнута$, $f(\cdot, y)$ полунепрерывна снизу, $f(x, \cdot)$ полунепрерывна сверху, тогда:

$$\inf_{x \in X} \sup_{y \in Y} = \sup_{y \in Y} \inf_{x \in X} f(x, y).$$

Оставим эту теорему без доказательства.

$$\varepsilon[\tau] = \sup_{\|l\| \leqslant 1} \left[-\rho\left(l \mid \mathcal{X}[\tau]\right) - \rho\left(-l \mid \mathcal{X}^{1}\right) \right];$$

Найдем опорную функцию:

$$\langle l, x(t) \rangle = \langle l, X(t_1, t_0) x^0 \rangle + \int_{t_0}^t \langle l, X(t, \tau) B(\tau) u(\tau) \rangle d\tau + \int_{t_0}^{t_1} \langle l, X(t, \tau) f(\tau) \rangle d\tau;$$

Из предыдущего пункта имеем:

$$\begin{split} \rho\left(l \mid \mathcal{X}[t]\right) &= \rho\left(X^T(t,t_0)l \mid \mathcal{X}^0\right) + \int\limits_{t_0}^t \left\langle X^t(t,\tau)l, f(\tau)\right\rangle d\tau + \int\limits_{t_0}^t \rho\left(B^TX^T(t,\tau)l \mid \mathcal{P}(\tau)\right) d\tau = \\ &= \rho\left(\psi(t_0) \mid \mathcal{X}^0\right) + \int\limits_{t_0}^t \left\langle \psi(\tau), f(\tau)\right\rangle d\tau + \int\limits_{t_0}^t \rho\left(B^T\psi(\tau) \mid \mathcal{P}(\tau)\right) d\tau; \\ \varepsilon\left[t\right] &= \sup_{\|\psi(t_1)\| \leqslant 1} \left[\rho\left(\psi(t_0) \mid \mathcal{X}^0\right) - \int\limits_{t_0}^t \rho\left(B^T\psi \mid \mathcal{P}\right) d\tau - \rho\left(-\psi(t_1) \mid \mathcal{X}^1\right)\right], \text{ рде } \psi(\tau) = X^T(t,\tau)l. \end{split}$$

Допустим, что t_1^* численно найдено. Тогда максимизатор l^* — одно из тех направлений, по которым происходит отделение множеств, поэтому l — нормаль.

6.3 Решение задачи

Покажем, что в задаче в обратном времени те же l^* и там перпендикуляр. Покажем это, честно выписав опорную функцию:

$$\rho(l \mid W[t]) = \rho\left(l \mid W(t, t_2^*, \mathcal{X}^1)\right) = \sup_{x^1, u(\cdot)} \left[\langle l, x \left(t, t_1^*, x_2 \mid u \left(\cdot\right)\right) \rangle \mid u(\tau) \in \mathcal{P}(\tau), x^1 \in \mathcal{X}^1 \right],$$

$$x\left(t, t_1^*, x^1 \mid u(\cdot)\right) = X(t, t_1^*) x^1 + \int_{t_1^*}^t X(t, \tau) B(\tau) u(\tau) d\tau =$$

$$= X(t_1, t_1^*) x^1 - \int_{t_1^*}^{t_1^*} X(t, \tau) B(\tau) u(\tau) d\tau.$$

Подставим это в опорную функцию:

$$\rho(l \mid W[t]) = \sup_{x^1, u(\cdot)} \left[\left\langle \tilde{l}, X(t, t_1^*) x^1 \right\rangle + \int_t^{t_1^*} \left\langle -\tilde{l}, X(t, \tau) B(\tau) u(\tau) \right\rangle d\tau \right] =$$

$$= \rho\left(X^T(t, t_1^*) \tilde{l} \mid \mathcal{X}^1 \right) + \int_t^{t_1} \rho\left(-B^T X^T(t, \tau) \tilde{l} \mid \mathcal{P}(\tau) \right) d\tau,$$

$$X^T(t, \tau) l = \tilde{\psi}(\tau), \quad \dot{\tilde{\psi}} = -A^T \tilde{\psi}(t) = \tilde{l},$$

$$\dots = \rho\left(\tilde{\psi}(t_1^*) \mid \mathcal{X}^1 \right) + \int_t^{t_1} \rho\left(-B^T(\tau) \tilde{\psi}(\tau) \mid \mathcal{P}(\tau) \right) d\tau,$$

$$\mathcal{X}^0 \cap W[t_0] \neq \varnothing.$$

Итак, у нас было

$$\sup_{\|\psi_1(t)\|=1} \left[-\rho\left(\psi(t_0) \mid \mathcal{X}^0\right) - \int_t^{t_1^*} \rho\left(B^T(\tau)\psi(\tau) \mid \mathcal{P}(\tau)\right) d\tau - \rho\left(-\psi(t_1) \mid \mathcal{X}^1\right) \right] = 0$$

Легко видеть, что

$$[\ldots] = -\rho \left(\psi(t_0) \mid \mathcal{X}^0 \right) - \rho \left(-\psi(t_0) \mid W[t_0] \right)$$

(Положим $\tilde{l}=-l\Rightarrow \tilde{\psi}=-\psi$) Равенство $\sup[\ldots]=0$ говорит, что $\mathcal{X}^0\cap W[t_0]\neq\varnothing$, т. к. это можно записать как

$$\sup_{\psi(t_0): \|X^T(t_0, t_1^*) \psi(t_0)\| = 1} \left[-\rho \left(\psi(t_0) \mid \mathcal{X}^0 \right) - \rho \left(-\psi(t_0) \mid W[t_0] \right) \right] = 0.$$

И нам без разницы, по чему перебирать, главное, чтобы везде было <0 и в одной точке =0. Итак, действительно $\mathcal{X}^0\cap W[t_0]\neq\varnothing;\;\psi(t_0)$ — внешняя нормаль к $\mathcal{X}^0,$ — $\psi(t_0)$ — внешняя нормаль к $W[t_0]$. Осталось найти оптимальные управление и траекторию; $u^*(\tau)\equiv u^{l^*}(\cdot)$ — управление, доставляющее максимум в опорной функции, что равносильно принципу максимума:

$$\left\langle B^T \psi(\tau), u^*(\tau) = \max_{u \in \mathcal{P}(\tau)} \left\langle B^T \psi(\tau), u \right\rangle \right\rangle$$

почти всюду. Ситуация с необходимыми и достаточными условиями та же, что и в предыдущей задаче. Тогда при достаточности (?) принципа максимума множество сильно выпукло. Польза условия трансверсальности: при гладком начальном множестве ψ однозначно определяется по начальной точке. Оказывается, что задача некорректна: t_1^* не непрерывно зависит от \mathcal{X}^0 .

Задача 5. Приведите пример, когда время t_1^* разрывно зависит от \mathcal{X}^0 .

Указание 1. Рассмотрите $\dot{x} = Ax + u$ на \mathbb{R}^2 .

Глава 7

Линейно-выпуклые задачи

7.1 Постановка задачи (начало)

В этой лекции мы рассмотрим уже нелинейные задачи, в которых, однако, принцип максимума Понтрягина все еще является необходимым и достаточным условием оптимальности.

Итак, рассмотрим задачи вида:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t); \tag{7.1}$$

$$u \in \mathcal{P};$$
 (7.2)

$$x(t_0) = x_0; (7.3)$$

$$J(u(\cdot)) = \int_{t_0}^{t_1} [g(t, x(t)) + h(t, u(t))] dt + \varphi(x(t_1)) \to \inf.$$
 (7.4)

Здесь t_1 фиксировано, $x(t_1)$ свободно, $g(t,\cdot), h(t,\cdot), \varphi(\cdot)$ — выпуклые функции, A, B - непрерывны, \mathcal{P} — непрерывное многозначное отображение, g непрерывно по (t,x), h непрерывно по $(t,u), \varphi$ конечна (т.е. непрерывна).

7.2 Решение задачи

По теореме Фенхеля-Моро

$$g(t,x) = \sup_{\lambda(t)} \left[\langle x(t), \lambda(t) \rangle - g^*(t, \lambda(t)) \right]; \tag{7.5}$$

$$\varphi(x) = \sup_{l} \left[\langle x, l \rangle - \varphi^*(l) \right]; \tag{7.6}$$

подставим (7.5), (7.6) в выражение для минимизируемого функционала (7.4):

$$J = \int_{t_0}^{t_1} \sup_{\lambda(t)} \left[\langle x(t), \lambda(t) \rangle - g^*(t, \lambda(t)) + h(t, u(t)) \right] dt + \sup_{l} \left[\langle x, l \rangle - \varphi(l) \right] =$$

$$= \sup_{\lambda(t), l} \left\{ \int_{t_0}^{t_1} \left[\langle x(t), \lambda(t) \rangle - g^*(t, \lambda(t)) + h(t, u(t)) \right] dt + \langle x, l \rangle - \varphi^*(l) \right\}. \quad (7.7)$$

Распишем x(t) по формуле Коши и подставим в (7.7):

$$J = \sup_{\lambda(t),l} \left\{ \int_{t_0}^{t_1} \left[\left\langle X(t,t_0)x^0 + \int_{t_0}^t X(t,\tau)B(\tau)u(\tau)d\tau, \lambda(t) \right\rangle - g^*(t,\lambda(t)) + h(t,u(t)) \right] dt + \left\langle l, X(t,t_0)x^0 + \int_{t_0}^{t_1} X(t_1,\tau)B(\tau)u(\tau)d\tau \right\rangle - \varphi^*(l) \right\}.$$
(7.8)

Поменяем в (7.8) последовательность интегрирования и перепишем скалярные произведения в виде $\langle x^0, \cdot \rangle$ и $\langle u(t), \cdot \rangle$:

$$J = \sup_{\lambda(t),l} \left\{ \left\langle x^{0}, X^{T}(t_{1}, t_{0}) + \int_{t_{0}}^{t_{1}} X^{T}(t, t_{0}) \lambda(t) dt \right\rangle + \int_{t_{0}}^{t_{1}} \left\langle B^{T}(\tau) \left(X^{T}(t_{1}, \tau) l + \int_{\tau}^{t_{1}} X^{T}(t, \tau) \lambda(t) dt \right), u(t) \right\rangle + \int_{t_{1}}^{t_{0}} \left(-g^{*}(t, \lambda) + h(t, u(t)) \right) dt - \varphi^{*}(l) \right\}.$$
 (7.9)

Введём следующее обозначения:

$$\psi(\tau) = X^{T}(t_1, \tau)l + \int_{\tau}^{t_1} X^{T}(t, \tau)\lambda(t)dt;$$

тогда $\psi(t)$ удовлетворяет сопряженной системе

$$\begin{cases}
\dot{\psi}(t) = -A^T \psi(t) + \lambda(t), \\
\psi(t_1) = l.
\end{cases}$$
(7.10)

С учетом этих обозначений получим

$$J = \sup_{\lambda(t),l} \left\{ \left\langle x^0, \psi(t_0) \right\rangle + \int_{t_0}^{t_1} \left(\left\langle B^T(\tau)\psi(\tau), u(t) \right\rangle - g^*(t,\lambda) + h(t,u(t)) \right) dt - \varphi^*(l) \right\}. \tag{7.11}$$

7.3 Теория минимаксов

Обозначим то, что стоит в фигурных скобках, за Ф, тогда

$$J = \sup_{\lambda(t),l} \Phi, \ J^* = \inf_{u(\cdot)} J = \inf_{u(\cdot)} \sup_{u(\cdot)} \Phi.$$

Функция Φ выпукла по u. Так как функция ψ линейна по l и λ , функция g^* выпукла (значит $-g^*$ вогнута), то Φ вогнута по l, λ .

Теорема 32. Пусть функция $\Phi(x,y)$ выпукла по x и вогнута по y, тогда

$$\inf_{x} \sup_{y} \Phi(x, y) = \sup_{y} \inf_{x} \Phi(x, y).$$

Для нашей задачи получим:

$$J^* = \sup_{\lambda(t),l} \left\{ \int_{t_0}^{t_1} \left(\min_{u \in \mathcal{P}} \left[\left\langle B^T(\tau) \psi(\tau), u(t) \right\rangle + h(t, u(t)) \right] - g^*(t, \lambda) \right) dt + \left\langle x^0, \psi(t_0) \right\rangle - \varphi^*(l) \right\}.$$

Определение 9. (x^0,y^0) называется седловой точкой функции f(x,y), если $f(x^0,y) \leqslant f(x^0,y^0) \leqslant f(x,y^0) \ \forall x,y$.

Теорема 33. 1. Если $\exists (x^0, y^0)$ - седловая точка, то

$$\min_{x} \sup_{y} f(x, y) = \max_{y} \inf_{x} f(x, y) = f(x^{0}, y^{0}).$$

2. Если

$$\min_{x} \sup_{y} f(x, y) = \max_{y} \inf_{x} f(x, y),$$

 $mo \exists (x^0, y^0) - ce \partial no в a s mo ч к a, причем$

$$x^{0} \in \underset{x}{\operatorname{Argmin}} \sup_{y} f(x, y), \ y^{0} \in \underset{y}{\operatorname{Argmax}} \inf_{x} f(x, y).$$

7.4 Решение задачи (окончание)

Вернёмся к нашей задаче:

$$J^* = \inf_{u(\cdot)} \sup_{\lambda(\cdot),l} \Phi = \sup_{\lambda(\cdot),l} \inf_{u(\cdot)} \Phi.$$

Пусть sup достигается, пусть $\{\lambda^0(\cdot), l^0\}$ — максимизатор, пусть u^* - оптимальное управление, тогда $(u^*, \{\lambda^0(\cdot), l^0\})$ — седловая точка.

$$\Phi[l, \lambda(\cdot), u^*(\cdot)] \leqslant \Phi[l^0, \lambda^0(\cdot), u^*(\cdot)] \leqslant \Phi[l^0, \lambda^0(\cdot), u(\cdot)];$$

второе неравенство дает нам Принцип Максимума Понтрягина:

$$\left\langle -B^T(t)\psi^0(t), u^*(t)\right\rangle - h(t, u^*(t)) = \max_{u \in \mathcal{P}} \left[\left\langle -B^T(t)\psi^0(t), u(t)\right\rangle - h(t, u(t))\right].$$

Здесь принцип максимума — необходимое условие. Выясним, при каких условиях он будет являться и достаточным. Запишем функцию Φ , интегрируя систему в обратном времени:

$$\Phi[l,\lambda(\cdot),u^*(\cdot)] = \int_{t_0}^{t_1} \left[\langle x^*(t),\lambda(t) \rangle - g^*(t,\lambda(t)) + h(t,u^*(t)) \right] dt + \langle l,x^*(t_1) \rangle - \varphi^*(l);$$

здесь $x^*(t)$ — оптимальная траектория.

Пусть

$$l^0 \in \operatorname{Argmax} \left[\langle l, x^*(t_1) \rangle - \varphi^*(l) \right];$$
 (7.12)

$$\lambda^{0}(t) \in \operatorname{Argmax}\left[\langle x^{*}(t), \lambda(t) \rangle - g^{*}(t, \lambda(t))\right]. \tag{7.13}$$

Вспомним, что такое субдифференциал:

отсюда и из теоремы Фенхеля–Моро для функции φ сразу получаем, что $(7.12) \Leftrightarrow l^0 \in \partial \varphi(x^*(t_1))$. Аналогично, $(7.13) \Leftrightarrow \lambda^0(t) \in \partial g(t,x^*(t))$. То есть, для существования максимизатора $(l^0,\lambda^0(\cdot))$ необходимо и достаточно, чтобы субдифференциалы $\partial \varphi(x^*(t_1))$ и $\partial g(t,x*(t))$ были не пусты.

Если функции φ и g дифференцируемы по x и строго выпуклы, то соответствующие субдифференциалы состоят из единственных точек, и мы получаем условия трансверсальности на правом конце:

$$l^{0} = \nabla \varphi(x^{*}(t_{1}));$$
$$\lambda^{0}(t) = \nabla_{x}g(t, x^{*}(t)).$$

Эти условия вместе с Принципом Максимума Понтрягина являются критерием оптимальности.