

Inequações dos 1º e 2º graus

Resumo

Nós sabemos que muitos de vocês não sabem a diferença entre equação e função, certo? Então, vamos começar aprendendo essa diferença.

Equações

O conceito de equação é toda sentença que apresenta uma igualdade (=). Por exemplo, 3x + 2 = 5, em que x = 1 é a solução da equação, ou seja, esse é o valor que torna a sentença verdadeira.

Já função é uma relação específica entre dois números x e y. Por exemplo, y = x + 1 é uma função, mas, se fixarmos um valor para x ou y, teremos uma equação. Ou seja:

```
\rightarrow y = x+1 é uma função.
```

 $\rightarrow 2 = x+1$ é uma equação.

Inequações

As inequações se destacam por possuir os sinais > (maior que), < (menor que), ≥ (maior ou igual que) e ≤ (menor ou igual que) e diferentemente das equações, a solução é um intervalo. Em outras palavras, toda inequação possui infinitas soluções.

Por exemplo, lembra que falamos que 2 = x + 1 era uma equação? Agora, 2 > x + 1 é uma inequação! Quais valores de x fazem essa sentença ser verdadeira?

2 > x + 1

2-1 > x

1 > x

x < 1

Ou seja, a sentença é verdadeira desde que x seja menor do que 1. Faça o teste!

Obs: Repare que a inequação nos pede somente que x + 1 seja MENOR que 2, ou seja, x = 1 faz a x + 1 ser exatamente IGUAL a 2, o que não é o caso pedido, então x = 1 não é uma resposta para a inequação. Se a inequação tive pedido que x + 1 fosse MENOR OU IGUAL a 2, então x = 1 seria uma resposta. Fique ligado nisso!

Inequação do 1º grau

Resolvemos inequações do primeiro grau muito parecidamente com equações do primeiro grau, como vimos no exemplo anterior.

Inequações do 2º grau

Para resolvermos inequações do segundo grau, precisamos fazer um esboço da função quadrática fazer o estudo dos sinais, ou seja, analisar onde a função é positiva, negativa ou igual a 0.

Na análise dos sinais da função quadrática, são as raízes que delimitam os intervalos nos quais a função é positiva ou negativa. Então, o primeiro passo é encontrar as raízes! A partir daí, de acordo com os sinais de Δ e de $\bf a$, escolhe-se o esquema adequado para descrever o sinal da função.

Quer ver este material pelo Dex? Clique aqui

Exercícios

- **1.** Assinale a menor solução inteira da inequação 4x-10>2
 - **a)** 2
 - **b)** 3
 - **c)** 4
 - **d)** 12
 - **e)** 60
- 2. A capacidade de um reservatório de água é maior que 250 litros e menor que 300 litros. O número x de litros que há nesse reservatório satisfaz à inequação $\frac{x}{2} + 1 < 127$.

Assinale a alternativa que apresenta quantos litros de água há nesse reservatório.

- a) 250
- **b)** 251
- **c)** 252
- **d)** 253
- **e)** 255
- 3. O gerente de um estacionamento, próximo a um grande aeroporto, sabe que um passageiro que utiliza seu carro nos traslados casa-aeroporto-casa gasta cerca de R\$ 10,00 em combustível nesse trajeto. Ele sabe, também, que um passageiro que não utiliza seu carro nos traslados casa-aeroporto-casa gasta cerca de R\$ 80,00 com transporte.

Suponha que os passageiros que utilizam seus próprios veículos deixem seus carros nesse estacionamento por um período de dois dias.

Para tornar atrativo a esses passageiros o uso do estacionamento, o valor, em real, cobrado por dia de estacionamento deve ser, no máximo, de

- a) 35,00.
- **b)** 40,00.
- **c)** 45,00.
- **d)** 70,00.
- **e)** 90,00.

- **4.** No universo dos números reais a equação $\frac{\left(x^2 13x + 40\right)\left(x^2 13x + 42\right)}{\sqrt{x^2 12x + 35}} = 0$ é satisfeita por apenas
 - a) três números.
 - b) dois números.
 - c) um número.
 - d) quatro números.
 - e) cinco números.
- **5.** O número de soluções inteiras da inequação x-1 < 3x-5 < 2x+1 é
 - a) 4
 - **b)** 3.
 - **c)** 2.
 - **d)** 1.
 - **e)** 0.
- **6.** Tomando-se o conjunto dos números reais como universo, a inequação $\frac{3x^2}{7} \left(2x + \frac{3x^2}{7}\right) \le \frac{4}{5}$ tem como solução
 - $S = \left\{ x \in \mathbb{R} / x \le -\frac{7}{5} \right\}$
 - $S = \left\{ x \in \mathbb{R} / x \ge \frac{7}{5} \right\}$
 - $S = \left\{ x \in \mathbb{R} \ / \ x \ge -\frac{5}{2} \right\}$
 - $S = \left\{ x \in \mathbb{R} / x \le -\frac{2}{5} \right\}$
 - $S = \left\{ x \in \mathbb{R} \mid x \ge -\frac{2}{5} \right\}$
- **7.** A soma dos valores inteiros que satisfazem a desigualdade $x^2 + 6x \le -8$ é:
 - **a)** -9
 - **b)** -6
 - **c)** 0
 - **d)** 4
 - **e)** 9

8. A função f é tal que $f(x) = \sqrt{g(x)}$. Se o gráfico da função g é a parábola a seguir, o domínio de f é o conjunto:

$$S = \left\{ x \in \mathbb{R} \, / \, x \ge 0 \right\}$$

b)
$$S = \{x \in \mathbb{R} / x \le -2 \text{ ou } x \ge 2\}$$

c)
$$S = \{x \in \mathbb{R} / 0 \le x \le 2\}$$

d)
$$S = \{x \in \mathbb{R} / -2 \le x \le 2\}$$

9. Os gráficos cartesianos das funções f e g, de R em R interceptam-se num ponto do 1º quadrante. Se f(x) = x+7 e g(x) = -2x + k, onde k é constante, então k satisfaz a condição.

10. Para que o domínio da função $f(x) = \sqrt{x(x-k)+1}$ seja todo o conjunto dos reais, deve-se ter:

a)
$$k < 0$$

b)
$$k > -1$$

c)
$$-1 \le k \le 1$$

d)
$$-2 \le k \le 2$$

e)
$$-1 \le k \le 3$$

Gabarito

1. C

De
$$4x-10>2$$
, temos:

Logo, a menor solução inteira da inequação 4x −10 > 2 é o número 4.

2. B

Resolvendo a inequação temos:

$$\frac{x}{2}+1<127\Rightarrow\frac{x}{2}+\frac{2}{2}<\frac{254}{2}\Rightarrow x+2<254$$

$$x < 252 \Rightarrow x = 251$$
 litros.

3. A

Seja v o valor cobrado por dia no estacionamento. Para que o usuário prefira deixar seu carro no estacionamento por dois dias, deve-se ter

$$2v + 10 \le 80 \Leftrightarrow v \le R$35,00.$$

Portanto, o valor deve ser no máximo R\$ 35,00.

4. C

O conjunto de valores de x para os quais a equação possui raízes reais é tal que

$$x^2 - 12x + 35 > 0 \Leftrightarrow (x - 5)(x - 7) > 0$$

 $\Leftrightarrow x < 5 \text{ ou } x > 7.$

Desse modo, temos

$$\frac{(x^2 - 13x + 40)(x^2 - 13x + 42)}{\sqrt{x^2 - 12x + 35}} = 0 \Rightarrow (x - 5)(x - 6)(x - 7)(x - 8) = 0$$
$$\Rightarrow x = 8.$$

Portanto, a equação é satisfeita por apenas um número real.

5. B

Temos

$$x-1<3x-5<2x+1 \Leftrightarrow \begin{vmatrix} x-1<3x-5\\3x-5<2x+1\\ \Leftrightarrow 2< x<6. \end{vmatrix}$$

Portanto, se α é uma solução inteira de x-1<3x-5<2x+1, então $\alpha\in\{3,4,5\}$.

6. E

$$\frac{3x^2}{7} - \left(2x + \frac{3x^2}{7}\right) \leq \frac{4}{5} \iff \frac{3x^2}{7} - 2x - \frac{3x^2}{7} \leq \frac{4}{5} \iff -2x \leq \frac{4}{5} \iff x \geq -\frac{4}{10} \iff x \geq -\frac{2}{5} \iff -2x \leq \frac{4}{5} \iff -2x \leq \frac$$

$$S=\left\{x\in R;\, x\geq -\frac{2}{5}\right\}.$$

7. A

$$x^2 + 6x \le -8 \Rightarrow x^2 + 6x + 8 \le 0$$

Estudando o sinal da função $f(x) = x^2 + 6x + 8$, temos:

A soma S dos valores inteiros do intervalo considerado será dada por:

$$-4+(-3)+(-2)=-9$$

8. D

O domínio da função f é $g(x) \ge 0$, observando o gráfico resolvemos a inequação.

$$S = \{x \in \Re / -2 \le x \le 2\}$$

9. A

Note que f(x) é uma função crescente que intercepta o eixo y no ponto (0, 7), e g(x) é uma função decrescente que intercepta o eixo y no ponto (0, k). Portanto, a única forma das duas funções se interceptarem no primeiro quadrante, devemos ter o valor de k maior que 7.

10. D

Calculando:

$$f(x) = \sqrt{x \cdot (x - k) + 1}$$

$$x \cdot (x-k)+1 \ge 0 \Rightarrow x^2-xk+1=0$$

$$\Delta = k^2 - 4 \ge 0 \Leftrightarrow -2 \le k \le 2$$