Лекция №11

Классификация особых точек линейной автономной системы второго порядка с постоянными коэффицентами (продолжение).

II) Случай комплексных собственных значений матрицы A. Пусть $\lambda_{1,2}=\alpha\pm i\beta,\ \beta\neq 0$ — собственные значения матрицы A. Пусть $\omega=u+iv$ — собственный вектор для λ_1 . Тогда $\overline{\omega}=u-iv$ — собственный вектор для λ_2 . Векторы $u=(\omega+\overline{\omega})/2$ и $=(\omega-\overline{\omega})/2i$ линейно независимы, так как получаются из ω и $\overline{\omega}$ невырожденным линейным преобразованием.

Вектор-функция $x=ce^{(\alpha+\beta i)t}\omega$, где c – любое число, является решением системы (1). Подставляя $c=\rho e^{i\theta}$, $\omega=u+iv$, получаем

$$x = \rho e^{\alpha t + i(\beta t + \theta)} (u + iv) = (y_1(t) + iy_2(t))(u + iv), y_1(t) = \rho e^{\alpha t} \cos(\beta t + \theta), y_2(t) = \rho e^{\alpha t} \sin(\beta t + \theta).$$
(1)

Матрица A — вещественная, поэтому решением системы (1)является также $\operatorname{Re} x = uy_1(t) - vy_2(t)$. Вещественное решение $\operatorname{Re} x$ в вещественном базисе u, -v координаты $y_1(t), y_2(t)$. Переходя к полярным координатам r, φ , то есть полагая $y_1 = r \cos \varphi \ y_2 = r \sin \varphi$, получаем

$$r = \rho e^{\alpha t} \quad \varphi = \beta t + \theta, \tag{2}$$

где $\rho > 0$ и θ — произвольные постоянные. Формула (2) дает все вещественные решения, так как начальная точка решения $y_1(0) = \rho \cos \theta$, $y_2(0) = \rho \sin \theta$ есть произвольная точка плоскости y_1, y_2 .

В случае $\alpha = 0$, то есть $\lambda_{1,2} = \pm i\beta$, траектории (2) – окружности r = const. Особая точка называется центром.

Центр всегда устойчивая но не асимптотически устойчивая особая точка.

На плоскости x_1 , x_2 траектории (2) имеют вид эллипсов. Направление движения по траекториям выбирается в соответствии с вектором скорости w, построенным например в точке (1, 0) и равным w = (a, b) в этой точке.

центр

В случае $\alpha \neq 0$ траектории (2) — логарифмические спирали

$$\varphi = \frac{\beta}{\alpha} \ln \frac{r}{\rho} + \theta \quad (0 < r < \infty),$$

делающие бесконечно много оборотов вокруг начала координат. Особая точка называется фокусом. Фокус асимптотически устойчивый, если $\alpha < 0$, и неустойчивый, если $\alpha > 0$.

На плоскости x_1 , x_2 траектории (2) имеют вид спиралей. Направление движения по траекториям и вид спирали выбираются в соответствии со знаком числа α и с вектором скорости w, построенным например в точке (1, 0) и равным w=(a,b) в этой точке.

Если матрица A имеет одно или два собственных значения, равных нулю, то ее жорданова форма имеет один

из трех видов

$$\begin{pmatrix} 0 & 0 \\ 0 & \lambda \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Так как $\det A = 0$, то система

$$\begin{cases} ax_1 + bx_2 = 0\\ cx_1 + dx_2 = 0 \end{cases}$$

имеет бесконечно много решений, значит, осоых точек у системы (1) бесконечно много.

Системы с такими матрицами легко решаются. Рисунки здесь не приводятся, так как при добавлении в такую систему слагаемых, мылых по сравнению с линейными, картина траекторий обычно резко меняется.