

Universidad Tecnológica de la Mixteca

Clave DGP 509394

Ingeniería en Diseño

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA			
Química de los Materiales			

CICLO	CLAVE DE LA ASIGNATURA	TOTLA DE HORAS
Quinto Semestre	035051	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que el alumno conozca las características físicas y químicas básicas de los materiales utilizables en la Ingeniería.

TEMAS Y SUBTEMAS

1. Introducción a los materiales

- 1.1. Tipos de materiales
- 1.2. Relación estructura-propiedad-procesamiento
- 1.3. Efectos ecológicos sobre el comportamiento de los materiales
- 1.4. Diseño y selección de materiales

2. Estructura Atómica y elementos químicos

- 2.1. Estructura del átomo
- 2.2. Estructura electrónica del átomo
- 2.3. Configuración electrónica de los elementos
 - 2.3.1. Principio de construcción
 - 2.3.2. Principio de la Máxima multiplicidad
 - 2.3.3. Principio de exclusión
- 2.4 Elementos químicos
 - 2.4.1 Clasificación general de los elementos químicos en la tabla periódica
 - 2.4.2. Electronegatividad
- 2.5 Enlace químico
 - 2.5.1. Enlace iónico
 - 2.5.2. Enlace metálico
 - 2.5.3. Enlace covalente
 - 2.5.4 Propiedades que confieren a los materiales los tipos de enlace
- 2.6. Concepto de valencia y estado de oxidación

3. Organización atómica y molecular

- 3.1. Orden de corto y largo alcance
- 3.2. Celdas Unitarias
- 3.3. Transformaciones alotrópicas y polimórficas
- 3.4. Cristales Iónicos
- 3.5. Estructuras Covalentes
- 3.6. Concepto de compuesto químico

4. Materiales empleados en diseño

- 4.1. Materiales Metálicos
 - 4.1.1. Aleaciones ferrosas
 - 4.1.2. Aleaciones no ferrosas
- 4.2. Materiales Cerámicos y Vidrios
 - 4.2.1. Clasificación, propiedades y aplicaciones
- 4.3. Polímeros
 - 4.3.1 Clasificación, propiedades y aplicaciones
- 4.4. Materiales Compuestos
 - 4.4.1 Propiedades y aplicaciones

ACTIVIDADES DE APRENDIZAJE

El profesor enseñará los principios de la química y física de materiales, a través de la exposición de los principios teóricos con ejemplos orales y visuales; ejercicios y resolución de problemas teóricos así como del desarrollo de trabajos prácticos.

Fuera de clase, el estudiante realizará trabajos de investigación, tareas y asesorías. El curso se beneficiará también de actividades extra clase como visitas de campo involucradas en el ramo del manejo de materiales.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACION

Al inicio del curso el profesor deberá indicar el procedimiento de evaluación que deberá comprender evaluaciones parciales que tendrán una equivalencia de 50% de la calificación final y un examen ordinario que equivaldrá al restante 50%.

Las evaluaciones podrán ser escritas y/o prácticas y cada una consta de un examen teórico-práctico, tareas y proyectos. La parte práctica de cada evaluación deberá estar relacionada con la ejecución exitosa y la documentación de la solución del problema sobre temas del curso.

Pueden ser consideradas otras actividades como: el trabajo extra clase y la participación durante las sesiones del curso. El examen tendrá un valor mínimo de 50%, las tareas, proyectos y otras actividades, un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica

- 1.W.D. CALLISTER, Jr. Introducción a la Ciencia e Ingeniería de los Materiales (I, II). Editorial Reverté, S.A., (2003).
- 2.D. R. ASKELAND. Ciencia e Ingeniería de los Materiales. Editorial Paraninfo- Thomson Learning, (2001).
- 3.W. F. SMITH. Ciencia e Ingeniería de los Materiales. Editorial: McGraw-Hill, (2007).
- 4. Chang, R. Química. Editorial Mc. Graw Hill, 6ta edición, México, 1999.

De consulta

- 1. Paya Bernabeu, Jordi; Monzó Balbuena, José; Borrachero Rosado, María Victoria. *Química de los materiales*. Ed. Universidad Politécnica de Valencia. España, 1995.
- 2.F. Smith Willian., Hashemi Javad. Fundamentos de la Ciencia e Ingeniería de Materiales. McGRAW-HILL. México. 2006.
- 3. Carey, F. Química orgánica. McGraw-Hill, México, 2001.

PERFIL PROFESIONAL DEL DOCENTE

Profesionista con estudios de maestría o doctor con especialidad en el área de ingeniería en ciencia de materiales o afín y experiencia en impartir clases a nivel de licenciatura, postgrado, así como en la aplicación práctica de dichos conocimientos. Preferentemente con antecedentes en la generación y aplicación del conocimiento, tutorías y gestión académica.

Vo.Bo. Autorizó

I.D. Eruvid Cortés Camacho Jefe de Carrera Dr. Agustín Santiago Alvarado Vice-Rector Académico