

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201 Email: info@thapar.edu THAPAR INSTITUTE
OF ENGINEERING & TECHNOLOGY
(Deemed to be University)

Ionic Solids

In ionic solids, cation being smaller is situated at the void position Rules for stable configuration

Ionic Solids

Ligacy	r _c /r _a	Configuration	E.g.	
				r _c /r _a
2	0 – 0.155	Linear		
3	0.155 – 0.225	Triangular		
4	0.225 - 0.414	Tetrahedral		
6	0.414 – 0.732	Octahedral	NaCl	0.54
8	0.732 – 1.0	Cubic	CsCl	0.91
12	1.0	FCC or HCP		

The ratio r_c / r_a (radius of cation : radius of anion) determines the coordination number / Ligacy for the cation \rightarrow the local packing

1. AB type (same no. of anions and cations)

A - cation, B - anion

- 2. ABO₃ type Perovskite structure
- 3. AB₂O₄ type Spinel structure

A/B – cation, O-oxygen ion (anion)

CsCl crystal structure

- Lattice type: Primitive cubic lattice.
- Void type: Cubic type
- No. of anion and cations: 1
- Relation a and R: $a\sqrt{3} = 2 Ra + 2 Rc$
- Motif: Anions (A): 000, Cations (B): ½½½
- 100% occupancy of sites according to the stoichiometry.
- Examples: Halides such as CSCI, AgI, AgBr, CsI, LiMg etc.

AX or AB type Ionic crystals

NaCl crystal structure

- Lattice type: FCC lattice.
- Void type: Octahedral.
- No. of anion and cations: 4
- Relation a and R: a = 2 Ra + 2 Rc
- Motif: Anions (A): 000, Cations (B): ½00
- Anions (A) form the cation sub lattice with FCC structure.
- Cations (B) fill the octahedral sites.
- 100% occupancy of sites according to the stoichiometry since there will be one octahedral site per anion.
- Examples NaCl, MgO, NiO, LiF, TiN, FeO etc.

AX or AB type Ionic crystals

ZnS crystal structure

- Lattice type: FCC lattice.
- Void type: Tetrahedral.
- No. of anion and cations: 4
- Relation a and R: $\frac{1}{4}$ x a $\sqrt{3}$ = Ra + Rc
- Motif: Anions (A): 0 0 0, Cations (B): 1/4 1/4
- 50% occupancy of sites according to the stoichiometry.
- Examples ZnO, ZnS, BeO, Sic, ZnTe etc.

Remember

 These are not BCC or FCC structures. These are formed by main lattice from anions and cations being at the void position.

- Lattice type: Primitive Cubic (NOT FCC!)
- Motif: A ion 0 0 0, B ion ½ ½ ½, O ion ½ ½ 0, 0 ½ ½, ½ 0 ½
- Oxygen atoms form an FCC-like (not FCC) cell with atoms missing from the corners which are occupied by A atoms.
- Coordination
 - B cation is surrounded by oxygen octahedra which share corners.
- e.g. A²⁺B⁴⁺O₃, BaTiO₃, PbTiO₃, CaTiO₃, SrTiO₃ etc.
- e.g. $A^{3+}B^{3+}O_3$, LaAlO₃, LaGaO₃, BiFeO₃ etc.

AB₂O₄ type ionic crystal

- A spinel unit-cell is made up of 8 FCC cells made by oxygen
- consisting of 32 oxygen atoms, 8 A atoms and 16 B atoms.

AB₂O₄ spinel The red cubes are also contained in the back half of the unit cell.

- Crystallize with FCC structure.
- Two cations occupy tetrahedral and octahedral sites in an FCC lattice made by O atoms.
- One unit-cell consists of eight formula units of AB₂O₄
- 1/8 of 64 TV occupied → A
- 1/2 of 32 OV occupied → B

AB₂O₄ type ionic crystal

Normal Spinel

Chemical formula: $(A^{2+})(B^{3+})O_4$

MgAl₂O₄, FeAl₂O₄, CoAl₂O₄ and a few ferrites such as ZnFe₂O₄ and CdFe₂O₄.

In this structure, all the A^{2+} ions occupy the tetrahedral sites and all the B^{3+} ions occupy the octahedral sites.

Inverse Spinel

Chemical formula: $(A^{2+})(B^{3+})_2O_4$ but can be more conveniently written as $B(AB)O_4$.

 Fe_3O_4 (or $FeO.Fe_2O_3$), $NiFe_2O_4$, $CoFe_2O_4$ etc.

In this structure, $\frac{1}{2}$ of the B³⁺ ions occupy the tetrahedral sites and remaining $\frac{1}{2}$ B³⁺ and all A²⁺ions occupy the octahedral sites.

Summary

- 1. In CsCl and NaCl structures, 100% of the void positions are occupied.
- 2. In ZnS type of structure, 50% of the void positions are occupied to maintain stoichiometry.
- 3. The spinel structure is made by 8 FCC lattices.

