```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import plotly.offline as py
    py.init_notebook_mode()
    %matplotlib inline
    import seaborn as sns
    from pylab import rcParams
```

```
In [2]: df = pd.read_csv("Sparkling.csv",parse_dates=True,index_col=0)
```

In [3]: df.head(10)

Out[3]:

Sparkling

YearMonth	
1980-01-01	1686
1980-02-01	1591
1980-03-01	2304
1980-04-01	1712
1980-05-01	1471
1980-06-01	1377
1980-07-01	1966
1980-08-01	2453
1980-09-01	1984
1980-10-01	2596

Out[4]:

Sparkling

YearMonth	
1994-10-01	3385
1994-11-01	3729
1994-12-01	5999
1995-01-01	1070
1995-02-01	1402
1995-03-01	1897
1995-04-01	1862
1995-05-01	1670
1995-06-01	1688
1995-07-01	2031

##Plotting the distribution of Sparkling sales:

Out[5]: Text(0, 0.5, 'Sparkling Sales')


```
In [6]: df.shape
Out[6]: (187, 1)
In [7]: df.describe()
Out[7]:
                  Sparkling
                 187.000000
          count
                2402.417112
          mean
                1295.111540
                1070.000000
                1605.000000
                1874.000000
                2549.000000
           max 7242.000000
In [8]: |df.isnull().sum()
Out[8]: Sparkling
                        0
         dtype: int64
```

#Plotting the year-on-year sales of 'Sparkling':

```
In [9]: fig, ax = plt.subplots(figsize=(20,10))
    sns.boxplot(df.index.year, df.values[:,0], ax=ax,whis=1.5)
    plt.grid();
    plt.xlabel('Years',color='blue',fontsize=18);
    plt.ylabel('Sparking Sales',color='blue',fontsize=18);
    plt.title('Year-on-Year Sparkling Sales Distribution',color='blue',fontsize=20)
```

Out[9]: Text(0.5, 1.0, 'Year-on-Year Sparkling Sales Distribution')


```
In [10]: #Plotting month-wise sales distribution across years:

fig, ax = plt.subplots(figsize=(20,12))
    sns.boxplot(df.index.month_name(), df.values[:,0], ax=ax,whis=1.5)
    plt.grid();
    plt.xlabel('Months',color='blue',fontsize=18);
    plt.ylabel('Sparking Sales',color='blue',fontsize=18);
    plt.title('Month-wise Sparkling Sales Distribution across years',color='blue',fontsize=20)
```

Out[10]: Text(0.5, 1.0, 'Month-wise Sparkling Sales Distribution across years')

Out[11]: Text(0.5, 1.0, 'Year-wise distribution across months of Sparkling Sales')

Out[12]:

YearMonth	April	August	December	February	January	July	June	March	May	November	October	September
YearMonth												
1980	1712.0	2453.0	5179.0	1591.0	1686.0	1966.0	1377.0	2304.0	1471.0	4087.0	2596.0	1984.0
1981	1976.0	2472.0	4551.0	1523.0	1530.0	1781.0	1480.0	1633.0	1170.0	3857.0	2273.0	1981.0
1982	1790.0	1897.0	4524.0	1329.0	1510.0	1954.0	1449.0	1518.0	1537.0	3593.0	2514.0	1706.0
1983	1375.0	2298.0	4923.0	1638.0	1609.0	1600.0	1245.0	2030.0	1320.0	3440.0	2511.0	2191.0
1984	1789.0	3159.0	5274.0	1435.0	1609.0	1597.0	1404.0	2061.0	1567.0	4273.0	2504.0	1759.0
1985	1589.0	2512.0	5434.0	1682.0	1771.0	1645.0	1379.0	1846.0	1896.0	4388.0	3727.0	1771.0
1986	1605.0	3318.0	5891.0	1523.0	1606.0	2584.0	1403.0	1577.0	1765.0	3987.0	2349.0	1562.0
1987	1935.0	1930.0	7242.0	1442.0	1389.0	1847.0	1250.0	1548.0	1518.0	4405.0	3114.0	2638.0
1988	2336.0	1645.0	6757.0	1779.0	1853.0	2230.0	1661.0	2108.0	1728.0	4988.0	3740.0	2421.0
1989	1650.0	1968.0	6694.0	1394.0	1757.0	1971.0	1406.0	1982.0	1654.0	4514.0	3845.0	2608.0
1990	1628.0	1605.0	6047.0	1321.0	1720.0	1899.0	1457.0	1859.0	1615.0	4286.0	3116.0	2424.0
1991	1279.0	1857.0	6153.0	2049.0	1902.0	2214.0	1540.0	1874.0	1432.0	3627.0	3252.0	2408.0
1992	1997.0	1773.0	6119.0	1667.0	1577.0	2076.0	1625.0	1993.0	1783.0	4096.0	3088.0	2377.0
1993	2121.0	2795.0	6410.0	1564.0	1494.0	2048.0	1515.0	1898.0	1831.0	4227.0	3339.0	1749.0
1994	1725.0	1495.0	5999.0	1968.0	1197.0	2031.0	1693.0	1720.0	1674.0	3729.0	3385.0	2968.0
1995	1862.0	NaN	NaN	1402.0	1070.0	2031.0	1688.0	1897.0	1670.0	NaN	NaN	NaN

```
In [13]: monthly_sales_across_years.plot(figsize=(20,10))
    plt.grid()
    plt.legend(loc='best');
    plt.xlabel('Years',color='blue',fontsize=18);
    plt.ylabel('Sparking Sales',color='blue',fontsize=18);
    plt.title('Monthly Sparkling Sales Distribution across Years',color='blue',fontsize=20)
```

Out[13]: Text(0.5, 1.0, 'Monthly Sparkling Sales Distribution across Years')


```
In [14]: # Computing and plotting mean sales for each year:

df_yearly_mean = df.resample('Y').mean()
df_yearly_mean.head()
```

Out[14]:

Sparkling

YearMonth	
1980-12-31	2367.166667
1981-12-31	2185.583333
1982-12-31	2110.083333
1983-12-31	2181.666667
1984-12-31	2369.250000

```
In [15]: df_yearly_mean.plot();
    plt.grid()
    plt.xlabel('Mean Sales per year',color='blue',fontsize=18);
    plt.ylabel('Mean Sales',color='blue',fontsize=18);
    plt.title('Mean Sparkling Sales distribution across Years',color='blue',fontsize=20)
```

Out[15]: Text(0.5, 1.0, 'Mean Sparkling Sales distribution across Years')


```
In [16]: # Computing and plotting mean sales for each quarter:

df_quarterly_mean = df.resample('Q').mean()
df_quarterly_mean.head()
```

Out[16]:

Sparkling

YearMonth	
1980-03-31	1860.333333
1980-06-30	1520.000000
1980-09-30	2134.333333
1980-12-31	3954.000000
1981-03-31	1562.000000

```
In [17]: df_quarterly_mean.plot(figsize=(20,10));
    plt.grid()
    plt.xlabel('Mean Sales per quarter',color='blue',fontsize=18);
    plt.ylabel('Mean Sales',color='blue',fontsize=18);
    plt.title('Mean Sparkling Sales distribution across Quarters',color='blue',fontsize=20)
```

Out[17]: Text(0.5, 1.0, 'Mean Sparkling Sales distribution across Quarters')

#Decomposing the Time Series:

In [20]: decomposition_multi = seasonal_decompose(df,model='multiplicative')
 decomposition_multi.plot();

In [21]: # Computing the various components of the decomposed data:

trend = decomposition_multi.trend
seasonality = decomposition_multi.seasonal
residual = decomposition_multi.resid

```
In [22]: # Checking the components:
         print('Trend in Sparkling Sales','\n',trend.head(12),'\n')
         print('Seasonality in Sparkling Sales','\n', seasonality.head(12),'\n')
         print('Residual','\n',residual.head(12),'\n')
         Trend in Sparkling Sales
          YearMonth
         1980-01-01
                                NaN
                                NaN
         1980-02-01
         1980-03-01
                                NaN
         1980-04-01
                                NaN
         1980-05-01
                                NaN
         1980-06-01
                                NaN
          1980-07-01
                        2360.666667
         1980-08-01
                        2351.333333
         1980-09-01
                        2320.541667
         1980-10-01
                        2303.583333
         1980-11-01
                        2302.041667
         1980-12-01
                        2293.791667
         Name: trend, dtype: float64
          Seasonality in Sparkling Sales
          YearMonth
         1980-01-01
                        0.649843
         1980-02-01
                        0.659214
         1980-03-01
                        0.757440
         1980-04-01
                        0.730351
         1980-05-01
                        0.660609
         1980-06-01
                        0.603468
          1980-07-01
                        0.809164
         1980-08-01
                        0.918822
         1980-09-01
                        0.894367
         1980-10-01
                        1.241789
         1980-11-01
                        1.690158
         1980-12-01
                        2.384776
         Name: seasonal, dtype: float64
         Residual
          YearMonth
         1980-01-01
                             NaN
         1980-02-01
                             NaN
          1980-03-01
                             NaN
```

```
1980-04-01
                   NaN
1980-05-01
                   NaN
1980-06-01
                   NaN
1980-07-01
              1.029230
1980-08-01
              1.135407
1980-09-01
              0.955954
1980-10-01
              0.907513
1980-11-01
              1.050423
1980-12-01
              0.946770
Name: resid, dtype: float64
```

```
In [23]: # Checking how the data looks without seasonality:
    deaseasonalized_ts = trend + residual
    deaseasonalized_ts.head(12)
```

Out[23]: YearMonth 1980-01-01 NaN 1980-02-01 NaN 1980-03-01 NaN 1980-04-01 NaN 1980-05-01 NaN 1980-06-01 NaN 1980-07-01 2361.695896 1980-08-01 2352.468741 1980-09-01 2321.497620 1980-10-01 2304.490847 1980-11-01 2303.092089 1980-12-01 2294.738436

dtype: float64

```
In [24]: df.plot()
    deaseasonalized_ts.plot()
    plt.legend(["Original Time Series", "Deseasonalised Time Series"]);
    plt.xlabel('Years',color='blue',fontsize=18);
    plt.ylabel('Sparkling Sales',color='blue',fontsize=18);
    plt.title('Original v/s Deseasonalised Sparkling Sales distribution',color='blue',fontsize=20)
```

Out[24]: Text(0.5, 1.0, 'Original v/s Deseasonalised Sparkling Sales distribution')

Original v/s Deseasonalised Sparkling Sales distribution

#Splitting data into train and test set:

```
In [27]: print('First few rows of Training Data','\n',train.head(),'\n')
         print('Last few rows of Training Data','\n',train.tail(),'\n')
         print('First few rows of Test Data','\n',test.head(),'\n')
         print('Last few rows of Test Data','\n',test.tail(),'\n')
         First few rows of Training Data
                       Sparkling
         YearMonth
         1980-01-01
                           1686
                           1591
         1980-02-01
         1980-03-01
                           2304
         1980-04-01
                           1712
         1980-05-01
                           1471
         Last few rows of Training Data
                       Sparkling
         YearMonth
         1990-08-01
                           1605
                           2424
         1990-09-01
                           3116
         1990-10-01
         1990-11-01
                           4286
         1990-12-01
                           6047
         First few rows of Test Data
                       Sparkling
         YearMonth
         1991-01-01
                           1902
         1991-02-01
                           2049
         1991-03-01
                           1874
         1991-04-01
                           1279
         1991-05-01
                           1432
         Last few rows of Test Data
                       Sparkling
         YearMonth
         1995-03-01
                           1897
         1995-04-01
                           1862
         1995-05-01
                           1670
         1995-06-01
                           1688
         1995-07-01
                           2031
```

```
In [28]: # Plotting the train and test data:
    train['Sparkling'].plot(figsize=(15,8), fontsize=14)
    test['Sparkling'].plot(figsize=(15,8), fontsize=14)
    plt.grid()
    plt.legend(['Training Data','Test Data'])
    plt.xlabel('Years',color='blue',fontsize=18);
    plt.ylabel('Sparking Sales',color='blue',fontsize=18);
    plt.title('Sparkling Sales - Train & Test Data',color='blue',fontsize=20)
    plt.show()
```



```
In [29]: #Triple exponential smothing using the Holt-Winter's method:
In [30]: import statsmodels.tools.eval measures as em
         from sklearn.metrics import mean_squared_error
         from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt
         from IPython.display import display
         from pylab import rcParams
In [31]: model TES = ExponentialSmoothing(train, trend='multiplicative', seasonal='multiplicative')
         # Fitting the model
         model TES = model_TES.fit()
         print('')
         print('~~~ Holt Winters model Exponential Smoothing Estimated Parameters ~~~')
         print('')
         print(model_TES.params)
         /opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa model.py:159: ValueWarni
         ng:
         No frequency information was provided, so inferred frequency MS will be used.
         ~~~ Holt Winters model Exponential Smoothing Estimated Parameters ~~~
         {'smoothing level': 0.1533370898171079, 'smoothing slope': 1.3387629728833717e-20, 'smoothing seasona
         1': 0.369040099605268, 'damping slope': nan, 'initial level': 1640.0000699266104, 'initial slope': 1.0
         02822904757003, 'initial seasons': array([1.00842317, 0.96873745, 1.24208978, 1.13203929, 0.93995306,
                0.93800969, 1.22519687, 1.5458432 , 1.27400584, 1.63515799,
                2.48733686, 3.12532974]), 'use boxcox': False, 'lamda': None, 'remove bias': False}
```

```
In [32]: # Forecasting using this model for the duration of the test set
TES_predict = model_TES.forecast(len(test))
TES_predict
```

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:342: FutureWarn
ing:

The 'freq' argument in Timestamp is deprecated and will be removed in a future version.

```
Out[32]: 1991-01-01
                        1603.408052
         1991-02-01
                        1375.868826
         1991-03-01
                        1808.629451
         1991-04-01
                        1706.429435
         1991-05-01
                        1603.480417
         1991-06-01
                        1416.360471
         1991-07-01
                        1946.556945
         1991-08-01
                        1914.505494
         1991-09-01
                        2435.737064
         1991-10-01
                        3335.385360
         1991-11-01
                        4411.830520
         1991-12-01
                        6335.097945
         1992-01-01
                        1658.574554
         1992-02-01
                        1423.206663
         1992-03-01
                        1870.856754
         1992-04-01
                        1765.140467
         1992-05-01
                        1658.649408
         1992-06-01
                        1465.091455
         1992-07-01
                        2013.529751
         1992-08-01
                        1980.375544
         1992-09-01
                        2519.540492
         1992-10-01
                        3450.141888
         1992-11-01
                        4563.622980
         1992-12-01
                        6553.061918
         1993-01-01
                        1715.639101
         1993-02-01
                        1472.173196
         1993-03-01
                        1935.225036
         1993-04-01
                        1825.871498
         1993-05-01
                        1715.716531
         1993-06-01
                        1515.499066
         1993-07-01
                        2082.806808
         1993-08-01
                        2048.511905
         1993-09-01
                        2606.227243
```

1993-10-01	3568.846703
1993-11-01	4720.637979
1993-12-01	6778.525110
1994-01-01	1774.666999
1994-02-01	1522.824460
1994-03-01	2001.807959
1994-04-01	1888.692027
1994-05-01	1774.747092
1994-06-01	1567.640990
1994-07-01	2154.467396
1994-08-01	2118.992551
1994-09-01	2695.896518
1994-10-01	3691.635650
1994-11-01	4883.055200
1994-12-01	7011.745539
1995-01-01	1835.725797
1995-02-01	1575.218420
1995-03-01	2070.681718
1995-04-01	1953.673945
1995-05-01	1835.808647
1995-06-01	1621.576897
1995-07-01	2228.593523
Freq: MS, dtyp	e: float64

```
In [33]: ## Plotting the Training data, Test data and the forecasted values

plt.plot(train, label='Train')
plt.plot(test, label='Test')

plt.plot(TES_predict, label='Alpha=0.15, Beta=1.34, Gamma=0.37: TES predictions on Test Set')

plt.legend(loc='best')
plt.grid()
plt.title('Triple Exponential Smoothing Predictions',color='blue',fontsize=20);
plt.xlabel('Years',color='blue',fontsize=18);
plt.ylabel('Sparking Sales',color='blue',fontsize=18);
```


/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

```
~~~ Holt Winters Exponential Smoothing Tweaked Parameters ~~~
```

```
In [39]: #Forecasting data using tweaked TES model:
    TES_predict_tweaked = model_TES_tweaked.forecast(len(test))
    TES_predict_tweaked
```

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:342: FutureWarn
ing:

The 'freq' argument in Timestamp is deprecated and will be removed in a future version.

```
Out[39]: 1991-01-01
                        1602.184272
          1991-02-01
                        1373.875569
         1991-03-01
                        1807.428191
         1991-04-01
                        1704.559896
         1991-05-01
                        1602.365129
         1991-06-01
                        1415.471251
         1991-07-01
                        1944.839173
         1991-08-01
                        1910.035018
         1991-09-01
                        2435.185926
          1991-10-01
                        3333.435905
         1991-11-01
                        4407.750452
         1991-12-01
                        6328.489537
         1992-01-01
                        1656.041881
         1992-02-01
                        1419.929545
         1992-03-01
                        1867.846602
         1992-04-01
                        1761.381358
         1992-05-01
                        1655.631960
         1992-06-01
                        1462.395248
         1992-07-01
                        2009.134517
         1992-08-01
                        1973.006273
         1992-09-01
                        2515.250723
         1992-10-01
                        3442.734180
         1992-11-01
                        4551.880046
         1992-12-01
                        6534.863270
         1993-01-01
                        1709.899489
         1993-02-01
                        1465.983521
         1993-03-01
                        1928.265013
         1993-04-01
                        1818.202820
         1993-05-01
                        1708.898791
         1993-06-01
                        1509.319245
         1993-07-01
                        2073.429862
         1993-08-01
                        2035.977528
```

1993-09-01	2595.315519
1993-10-01	3552.032456
1993-11-01	4696.009639
1993-12-01	6741.237002
1994-01-01	1763.757098
1994-02-01	1512.037496
1994-03-01	1988.683424
1994-04-01	1875.024282
1994-05-01	1762.165622
1994-06-01	1556.243242
1994-07-01	2137.725206
1994-08-01	2098.948783
1994-09-01	2675.380316
1994-10-01	3661.330731
1994-11-01	4840.139233
1994-12-01	6947.610735
1995-01-01	1817.614706
1995-02-01	1558.091472
1995-03-01	2049.101835
1995-04-01	1931.845744
1995-05-01	1815.432453
1995-06-01	1603.167240
1995-07-01	2202.020551
Freq: MS, dtyp	e: float64

```
In [40]: # Plotting the Training data, Test data and the forecasted values:

plt.plot(train, label='Train')
plt.plot(test, label='Test')

plt.plot(TES_predict, label='Alpha=0.15, Beta=1.34, Gamma=0.37:TES predictions on Test Set')
plt.plot(TES_predict_tweaked, label='Alpha=0.15, Beta=1.28e-21, Gamma=0.37:Tweaked TES predictions on Test

plt.legend(loc='best')
plt.grid()
plt.title('TES Predictions - Normal & Tweaked', color='blue', fontsize=20);
plt.xlabel('Years',color='blue',fontsize=18);
plt.ylabel('Sparking Sales',color='blue',fontsize=18);
```

TES Predictions - Normal & Tweaked

In [41]: print('TES_tweaked RMSE:', mean_squared_error(test.values, TES_predict_tweaked.values, squared=False))

TES_tweaked RMSE: 383.1384642466706

Out[42]:

Test RMSE

TES: Alpha=0.15, Beta=1.34, Gamma=0.37 392.932696

TES tweaked: Alpha=0.15, Beta=1.28e-21, Gamma=0.37 383.138464

```
In [43]: # Double exponential smothing using the Holt's method:
```

```
In [44]: model_DES = Holt(train)
# Fitting the model
model_DES = model_DES.fit()

print('')
print('~~~ Holt DES model Estimated Parameters ~~~')
print('')
print(model_DES.params)
```

```
~~~ Holt DES model Estimated Parameters ~~~
```

{'smoothing_level': 0.6478091609267566, 'smoothing_slope': 0.0, 'smoothing_seasonal': nan, 'damping_sl
ope': nan, 'initial_level': 1686.0838036944974, 'initial_slope': 27.068228572915256, 'initial_season
s': array([], dtype=float64), 'use_boxcox': False, 'lamda': None, 'remove_bias': False}

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

```
In [45]: # Forecasting using this model for the duration of the test set
DES_predict = model_DES.forecast(len(test))
DES_predict
```

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:342: FutureWarn
ing:

The 'freq' argument in Timestamp is deprecated and will be removed in a future version.

```
Out[45]: 1991-01-01
                        5281.501604
          1991-02-01
                        5308.569832
          1991-03-01
                        5335.638061
          1991-04-01
                        5362.706289
         1991-05-01
                        5389.774518
         1991-06-01
                        5416.842746
         1991-07-01
                        5443.910975
         1991-08-01
                        5470.979204
          1991-09-01
                        5498.047432
         1991-10-01
                        5525.115661
          1991-11-01
                        5552.183889
         1991-12-01
                        5579.252118
         1992-01-01
                        5606.320347
         1992-02-01
                        5633.388575
         1992-03-01
                        5660.456804
         1992-04-01
                        5687.525032
         1992-05-01
                        5714.593261
          1992-06-01
                        5741.661489
          1992-07-01
                        5768.729718
          1992-08-01
                        5795.797947
         1992-09-01
                        5822.866175
         1992-10-01
                        5849.934404
         1992-11-01
                        5877.002632
         1992-12-01
                        5904.070861
          1993-01-01
                        5931.139089
          1993-02-01
                        5958.207318
          1993-03-01
                        5985.275547
          1993-04-01
                        6012.343775
          1993-05-01
                        6039.412004
          1993-06-01
                        6066.480232
          1993-07-01
                        6093.548461
          1993-08-01
                        6120.616689
          1993-09-01
                        6147.684918
```

1993-10-01	6174.753147
1993-11-01	6201.821375
1993-12-01	6228.889604
1994-01-01	6255.957832
1994-02-01	6283.026061
1994-03-01	6310.094289
1994-04-01	6337.162518
1994-05-01	6364.230747
1994-06-01	6391.298975
1994-07-01	6418.367204
1994-08-01	6445.435432
1994-09-01	6472.503661
1994-10-01	6499.571889
1994-11-01	6526.640118
1994-12-01	6553.708347
1995-01-01	6580.776575
1995-02-01	6607.844804
1995-03-01	6634.913032
1995-04-01	6661.981261
1995-05-01	6689.049489
1995-06-01	6716.117718
1995-07-01	6743.185947
Freq: MS, dtyp	e: float64

```
In [46]: # Plotting the Training data, Test data and the forecasted values:
    plt.plot(train, label='Train')
    plt.plot(test, label='Test')

plt.plot(TES_predict, label='Alpha=0.15, Beta=1.34, Gamma=0.37: TES predictions on Test Set')
    plt.plot(TES_predict_tweaked, label='Alpha=0.15, Beta=1.28e-21, Gamma=0.37: Tweaked TES predictions on Test plt.plot(DES_predict, label='Alpha=0.65, Beta=0.0: DES predictions on Test Set')

plt.legend(loc='best')
    plt.grid()
    plt.title('TES, Tweaked TES & DES Predictions', color='blue', fontsize=20);
    plt.xlabel('Years & Months', color='blue', fontsize=18);
    plt.ylabel('Sparking Sales', color='blue', fontsize=18);
```

TES, Tweaked TES & DES Predictions

In [47]: print('DES RMSE:', mean_squared_error(test.values, DES_predict.values, squared=False))

DES RMSE: 3851.2790161127123

```
In [48]: results_smoothing_2 = pd.DataFrame({'Test RMSE': [mean_squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,squared_error(test.values,DES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_predict.values,SES_p
```

TES tweaked: Alpha=0.15, Beta=1.28e-21, Gamma=0.37 383.138464

DES: Alpha=0.65, Beta=0.0 3851.279016

```
In [49]: # Using the Linear Regression model for forecasting:
```

```
In [50]: # Modifying the data to incorporate order against the sales values:
    train_time = [i+1 for i in range(len(train))]
    test_time = [i+133 for i in range(len(test))]
    print('Training Time instance','\n',train_time)
    print('Test Time instance','\n',test time)
```

Training Time instance
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132]

Test Time instance
[133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187]

```
In [51]: # Working on copies of Train & test data:
    LinearRegression_train = train.copy()
    LinearRegression_test = test.copy()
```

In [52]: #Cross-checking the data: LinearRegression_train['time'] = train_time LinearRegression_test['time'] = test_time print('First few rows of Training Data') display(LinearRegression_train.head()) print('Last few rows of Training Data') display(LinearRegression_train.tail()) print('First few rows of Test Data') display(LinearRegression_test.head()) print('Last few rows of Test Data') display(LinearRegression_test.tail())

First few rows of Training Data

Sparkling ti	me
--------------	----

YearMonth		
1980-01-01	1686	1
1980-02-01	1591	2
1980-03-01	2304	3
1980-04-01	1712	4
1980-05-01	1471	5

Last few rows of Training Data

Sparkling	time
-----------	------

YearMonth		
1990-08-01	1605	128
1990-09-01	2424	129
1990-10-01	3116	130

	Sparkling	time
YearMonth		
1990-11-01	4286	131
1990-12-01	6047	132

First few rows of Test Data

Sparkling		time
YearMonth		
1991-01-01	1902	133
1991-02-01	2049	134
1991-03-01	1874	135
1991-04-01	1279	136
1991-05-01	1432	137

Last few rows of Test Data

	Sparkling	
YearMonth		
1995-03-01	1897	183
1995-04-01	1862	184
1995-05-01	1670	185
1995-06-01	1688	186
1995-07-01	2031	187

In [54]: #Predicting values: train predictions lr = lr.predict(LinearRegression train[['time']]) LinearRegression train['LR on time'] = train predictions lr test predictions lr = lr.predict(LinearRegression test[['time']]) LinearRegression test['LR on time'] = test predictions lr plt.plot(train['Sparkling'], label='Train') plt.plot(test['Sparkling'], label='Test') plt.plot(TES predict, label='Alpha=0.15, Beta=1.34, Gamma=0.37: TES predictions on Test Set') plt.plot(TES predict tweaked, label='Alpha=0.15, Beta=1.28e-21, Gamma=0.37: Tweaked TES predictions on Tes plt.plot(DES predict, label='Alpha=0.65, Beta=0.0: DES predictions on Test Set') plt.plot(LinearRegression test['LR on time'], label='Regression On Time Test Data') plt.legend(loc='best') plt.grid(); plt.title('TES, Tweaked TES, DES & LR Predictions',color='blue',fontsize=20); plt.xlabel('Years & Months',color='blue',fontsize=18); plt.ylabel('Sparking Sales',color='blue',fontsize=18);

TES, Tweaked TES, DES & LR Predictions

In [55]: # Evaluating the model:
 print('LR RMSE:', mean_squared_error(test['Sparkling'], test_predictions_lr, squared=False))

LR RMSE: 1389.135174897992

Out[56]:

Test RMSE

TES: Alpha=0.15, Beta=1.34, Gamma=0.37 392.932696

TES_tweaked: Alpha=0.15, Beta=1.28e-21, Gamma=0.37 383.138464

DES: Alpha=0.65,Beta=0.0 3851.279016

LR RSME 1389.135175

```
In [57]: # Using the Naive Approach for forecasting:
```

```
In [58]: # Working on copies of Train & test data:
    Naive_train = train.copy()
    Naive_test = test.copy()
```

In [59]: train.head()

Out[59]:

Sparkling

YearMonth	
1980-01-01	1686
1980-02-01	1591
1980-03-01	2304
1980-04-01	1712
1980-05-01	1471

```
In [60]: train.tail()
```

Out[60]:

Sparkling

YearMonth	
1990-08-01	1605
1990-09-01	2424
1990-10-01	3116
1990-11-01	4286
1990-12-01	6047

```
In [61]: Naive_test['naive'] = np.asarray(train['Sparkling'])[len(np.asarray(train['Sparkling']))-1]
Naive_test['naive'].head()
```

Out[61]: YearMonth

1991-01-01 6047 1991-02-01 6047 1991-03-01 6047 1991-04-01 6047 1991-05-01 6047

Name: naive, dtype: int64

```
In [62]: plt.plot(Naive_train['Sparkling'], label='Train')
    plt.plot(test['Sparkling'], label='Test')

plt.plot(TES_predict, label='Alpha=0.15, Beta=1.34, Gamma=0.37: TES predictions on Test Set')
    plt.plot(TES_predict_tweaked, label='Alpha=0.15, Beta=1.28e-21, Gamma=0.37: Tweaked TES predictions on Test
    plt.plot(DES_predict, label='Alpha=0.65, Beta=0.0: DES predictions on Test Set')
    plt.plot(LinearRegression_test['LR_on_time'], label='Regression On Time_Test Data')

plt.plot(Naive_test['naive'], label='Naive Forecast on Test Data')

plt.legend(loc='best')
    plt.title("Various Model Forecasts")
    plt.grid();
```



```
In [63]: print('Naive RMSE:', mean_squared_error(test['Sparkling'], Naive_test['naive'], squared=False))
          Naive RMSE: 3864.2793518443914
In [64]: results_smoothing_4 = pd.DataFrame({'Test RMSE': [mean_squared_error(test['Sparkling'], Naive_test['naive
                                        ,index=['Naive RSME'])
          results = pd.concat([results, results_smoothing_4])
          results
Out[64]:
                                                       Test RMSE
                                                       392.932696
                     TES: Alpha=0.15, Beta=1.34, Gamma=0.37
           TES_tweaked: Alpha=0.15, Beta=1.28e-21, Gamma=0.37
                                                       383.138464
                                                      3851.279016
                                 DES: Alpha=0.65,Beta=0.0
                                             LR RSME 1389.135175
                                           Naive RSME 3864.279352
In [65]: \# Using the Simple Average method:
```

Out[67]:

Sparkling mean_forecast

YearMonth		
1991-01-01	1902	2403.780303
1991-02-01	2049	2403.780303
1991-03-01	1874	2403.780303
1991-04-01	1279	2403.780303
1991-05-01	1432	2403.780303

```
In [68]: plt.plot(SA_train['Sparkling'], label='Train')
    plt.plot(SA_test['Sparkling'], label='Test')

plt.plot(TES_predict, label='Alpha=0.15, Beta=1.34, Gamma=0.37: TES predictions on Test Set')
    plt.plot(TES_predict_tweaked, label='Alpha=0.15, Beta=1.28e-21, Gamma=0.37: Tweaked TES predictions on Test plt.plot(DES_predict, label='Alpha=0.65, Beta=0.0: DES predictions on Test Set')
    plt.plot(LinearRegression_test['LR_on_time'], label='Regression On Time_Test Data')
    plt.plot(Naive_test['naive'], label='Naive Forecast on Test Data')

plt.plot(SA_test['mean_forecast'], label='Simple Average on Test Data')

plt.legend(loc='best')
    plt.title("Various Model Forecasts")
    plt.grid();
```


In [69]: print('SA RMSE:', mean_squared_error(test['Sparkling'], SA_test['mean_forecast'], squared=False))

SA RMSE: 1275.0818036965309

Out[70]:

	Test RMSE
TES: Alpha=0.15, Beta=1.34, Gamma=0.37	392.932696
TES_tweaked: Alpha=0.15, Beta=1.28e-21, Gamma=0.37	383.138464
DES: Alpha=0.65,Beta=0.0	3851.279016
LR RSME	1389.135175
Naive RSME	3864.279352
SA RSME	1275.081804

```
In [71]: #Using the Moving Average method on a copy of the original data:

MA = df.copy()
MA.head()
```

Out[71]:

Sparkling

YearMonth	
1980-01-01	1686
1980-02-01	1591
1980-03-01	2304
1980-04-01	1712
1980-05-01	1471

Out[72]:

	Sparkling	Trailing_2	Trailing_4	Trailing_6	Trailing_9
YearMonth					
1980-01-01	1686	NaN	NaN	NaN	NaN
1980-02-01	1591	1638.5	NaN	NaN	NaN
1980-03-01	2304	1947.5	NaN	NaN	NaN
1980-04-01	1712	2008.0	1823.25	NaN	NaN
1980-05-01	1471	1591.5	1769.50	NaN	NaN
1980-06-01	1377	1424.0	1716.00	1690.166667	NaN
1980-07-01	1966	1671.5	1631.50	1736.833333	NaN
1980-08-01	2453	2209.5	1816.75	1880.500000	NaN
1980-09-01	1984	2218.5	1945.00	1827.166667	1838.222222
1980-10-01	2596	2290.0	2249.75	1974.500000	1939.333333

```
In [73]: # Plotting on the entire data:

plt.plot(MA['Sparkling'], label='Train')
plt.plot(MA['Trailing_2'], label='2 Point Moving Average')
plt.plot(MA['Trailing_4'], label='4 Point Moving Average')
plt.plot(MA['Trailing_6'], label = '6 Point Moving Average')
plt.plot(MA['Trailing_9'], label = '9 Point Moving Average')

plt.legend(loc = 'best')
plt.grid();
plt.title('Various MA Forecasts on entire data', color='blue', fontsize=20);
plt.xlabel('Years & Months', color='blue', fontsize=18);
plt.ylabel('Sparking Sales', color='blue', fontsize=18);
```

Various MA Forecasts on entire data

In [75]: trailing_MA_train.tail()

Out[75]:

	Sparkling	Trailing_2	Trailing_4	Trailing_6	Trailing_9
YearMonth					
1990-08-01	1605	1752.0	1644.00	1677.166667	2199.777778
1990-09-01	2424	2014.5	1846.25	1771.333333	1725.333333
1990-10-01	3116	2770.0	2261.00	2019.333333	1880.444444
1990-11-01	4286	3701.0	2857.75	2464.500000	2209.888889
1990-12-01	6047	5166.5	3968.25	3229.500000	2675.222222

```
In [76]: # Plotting on Test data:

plt.figure(figsize=(16,8))
  plt.plot(trailing_MA_train['Sparkling'], label='Train')
  plt.plot(trailing_MA_test['Sparkling'], label='Test')

plt.plot(trailing_MA_test['Trailing_2'], label='2 Point Trailing Moving Average on Test Set')
  plt.plot(trailing_MA_test['Trailing_4'], label='4 Point Trailing Moving Average on Test Set')
  plt.plot(trailing_MA_test['Trailing_6'], label = '6 Point Trailing Moving Average on Test Set')
  plt.plot(trailing_MA_test['Trailing_9'], label = '9 Point Trailing Moving Average on Test Set')

plt.legend(loc = 'best')
  plt.grid();
  plt.title('Various MA Forecasts on Test data',color='blue',fontsize=20);
  plt.xlabel('Years & Months',color='blue',fontsize=18);
  plt.ylabel('Sparking Sales',color='blue',fontsize=18);
```

Various MA Forecasts on Test data


```
In [77]: # Evaluating using RSME:
         from sklearn import metrics
         # 2 point Trailing RSME
         rmse test 2 = metrics.mean squared error(test['Sparkling'],trailing MA test['Trailing 2'],squared=False
         print("For 2 point MA Model, RMSE is %3.3f" %(rmse test 2))
         # 4 point Trailing RSME
         rmse test 4 = metrics.mean squared error(test['Sparkling'],trailing MA test['Trailing 4'],squared=False
         print("For 4 point MA Model, RMSE is %3.3f" %(rmse test 4))
         # 6 point Trailing RSME
         rmse test 6 = metrics.mean squared error(test['Sparkling'],trailing MA test['Trailing 6'],squared=False
         print("For 6 point MA Model, RMSE is %3.3f" %(rmse test 6))
         # 9 point Trailing RSME
         rmse test 9 = metrics.mean squared error(test['Sparkling'],trailing MA test['Trailing 9'],squared=False
         print("For 9 point MA Model, RMSE is %3.3f" %(rmse test 9))
```

```
For 2 point MA Model, RMSE is 813.401
For 4 point MA Model, RMSE is 1156.590
For 6 point MA Model, RMSE is 1283.927
For 9 point MA Model, RMSE is 1346.278
```

Out[78]:

	Test RMSE
TES: Alpha=0.15, Beta=1.34, Gamma=0.37	392.932696
TES_tweaked: Alpha=0.15, Beta=1.28e-21, Gamma=0.37	383.138464
DES: Alpha=0.65,Beta=0.0	3851.279016
LR RSME	1389.135175
Naive RSME	3864.279352
SA RSME	1275.081804
2-point MA	813.400684
4-point MA	1156.589694
6-point MA	1283.927428
9-point MA	1346.278315

In [79]: # Plotting the comparison of all model predictions: plt.figure(figsize=(16,8)) plt.plot(train['Sparkling'], label='Train') plt.plot(test['Sparkling'], label='Test') plt.plot(TES predict, label='Alpha=0.15, Beta=1.34, Gamma=0.37: TES predictions on Test Set') plt.plot(TES predict tweaked, label='Alpha=0.15, Beta=1.28e-21, Gamma=0.37: Tweaked TES predictions on Tes plt.plot(DES predict, label='Alpha=0.65, Beta=0.0: DES predictions on Test Set') plt.plot(LinearRegression test['LR on time'], label='Regression On Time Test Data') plt.plot(Naive test['naive'], label='Naive Forecast on Test Data') plt.plot(SA test['mean forecast'], label='Simple Average on Test Data') plt.plot(trailing MA test['Trailing 2'], label='2-Point Trailing MA on Training data') plt.legend(loc='best') plt.title("Model Comparison Plots") plt.grid(); plt.title('Model Comparison Plots',color='blue',fontsize=20); plt.xlabel('Years & Months',color='blue',fontsize=18); plt.ylabel('Sparking Sales',color='blue',fontsize=18);

Model Comparison Plots


```
In [80]: # Checking for stationarity of data using ADF test:
In [81]: from statsmodels.tsa.stattools import adfuller
In [82]: stat_test = adfuller(df,regression='ct')
    print('Test statistic is %3.3f' %stat_test[0])
    print('Test p-value is' ,stat_test[1])
    print('Number of lags used' ,stat_test[2])

Test statistic is -1.798
    Test p-value is 0.7055958459932584
    Number of lags used 12
```

```
In [83]: # P-value > alpha, so data is non-stationary. Using level-1 differencing to make data stationary:

In [84]: stat_test = adfuller(df.diff().dropna(),regression='ct')
    print('Test statistic is %3.3f' %stat_test[0])
    print('Test p-value is' ,stat_test[1])
    print('Number of lags used' ,stat_test[2])

Test statistic is -44.912
    Test p-value is 0.0
    Number of lags used 10

In [85]: # Now data is stationary. Plotting the differenced data:
```

```
In [86]: df.diff().dropna().plot(grid=True);
    plt.title('Sparkling Sales Distribution (Post Differencing)',color='blue',fontsize=16)
    plt.xlabel('Year/Month',color='blue',fontsize=14)
    plt.ylabel('Sparkling Sales',color='blue',fontsize=14)
```

Out[86]: Text(0, 0.5, 'Sparkling Sales')

In [89]: plot_acf(df,alpha=0.05);


```
In [90]: plot_pacf(df,zero=False,alpha=0.05);
```



```
In [91]: #Splitting data to build the models:
    train = df[df.index<'1991']
    test = df[df.index>='1991']
```

```
In [92]: #Plotting the train data:
    train.plot(grid=True);
    plt.title('Train data',color='blue',fontsize=16)
    plt.xlabel('Year/Month',color='blue',fontsize=14)
    plt.ylabel('Sparkling Sales',color='blue',fontsize=14)
```

Out[92]: Text(0, 0.5, 'Sparkling Sales')


```
In [93]: #Checking for stationarity of the train data:
         stat test = adfuller(train,regression='ct')
         print('Test statistic is %3.3f' %stat test[0])
         print('Test p-value is' ,stat_test[1])
         print('Number of lags used' ,stat test[2])
         Test statistic is -2.062
         Test p-value is 0.56741103885937
         Number of lags used 12
In [94]: # P-value > alpha, so data is non-stationary. Using level-1 differencing to make data stationary:
In [95]: stat test = adfuller(train.diff().dropna(),regression='ct')
         print('Test statistic is %3.3f' %stat test[0])
         print('Test p-value is' ,stat_test[1])
         print('Number of lags used' ,stat test[2])
         Test statistic is -7.968
         Test p-value is 8.479210655513744e-11
         Number of lags used 11
```

Out[96]: Text(0, 0.5, 'Sparkling Sales')

In [97]: # Since there is seasonality in the data set, we will build SARIMA model:
Building automated version of SARIMA:

```
In [98]: import itertools
         p = q = range(0, 4)
         d = range(1,2)
         D = range(0,1)
         pdq = list(itertools.product(p, d, q))
         PDQ = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, D, q))]
         print('Examples of the parameter combinations for the Model are')
         for i in range(1,len(pdq)):
             print('Model: {}{}'.format(pdq[i], PDQ[i]))
         Examples of the parameter combinations for the Model are
         Model: (0, 1, 1)(0, 0, 1, 12)
         Model: (0, 1, 2)(0, 0, 2, 12)
         Model: (0, 1, 3)(0, 0, 3, 12)
         Model: (1, 1, 0)(1, 0, 0, 12)
         Model: (1, 1, 1)(1, 0, 1, 12)
         Model: (1, 1, 2)(1, 0, 2, 12)
         Model: (1, 1, 3)(1, 0, 3, 12)
         Model: (2, 1, 0)(2, 0, 0, 12)
         Model: (2, 1, 1)(2, 0, 1, 12)
         Model: (2, 1, 2)(2, 0, 2, 12)
         Model: (2, 1, 3)(2, 0, 3, 12)
         Model: (3, 1, 0)(3, 0, 0, 12)
         Model: (3, 1, 1)(3, 0, 1, 12)
         Model: (3, 1, 2)(3, 0, 2, 12)
         Model: (3, 1, 3)(3, 0, 3, 12)
In [99]: #Creating dataframe for storing AIC values:
         SARIMA AIC = pd.DataFrame(columns=['param', 'seasonal', 'AIC'])
         SARIMA AIC
Out[99]:
```

param seasonal AIC

```
In [100]: import statsmodels.api as sm
          for param in pdq:
              for param seasonal in PDQ:
                  SARIMA model = sm.tsa.statespace.SARIMAX(train['Sparkling'].values,
                                                      order=param,
                                                      seasonal order=param seasonal,
                                                      enforce_stationarity=False,
                                                      enforce invertibility=False)
                  results SARIMA = SARIMA model.fit(maxiter=1000)
                  print('SARIMA{}x{} - AIC:{}'.format(param, param seasonal, results SARIMA.aic))
                  SARIMA AIC = SARIMA AIC.append({'param':param,'seasonal':param seasonal ,'AIC': results SARIMA.a
          SARIMA(0, 1, 0)x(0, 0, 0, 12) - AIC:2251.3597196862966
          SARIMA(0, 1, 0)x(0, 0, 1, 12) - AIC:1956.2614616843318
          SARIMA(0, 1, 0)x(0, 0, 2, 12) - AIC:1723.1533640234898
          /opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/base/model.py:567: ConvergenceWarnin
          g:
          Maximum Likelihood optimization failed to converge. Check mle retvals
          SARIMA(0, 1, 0)x(0, 0, 3, 12) - AIC:2763.334195884304
          SARIMA(0, 1, 0)x(1, 0, 0, 12) - AIC:1837.4366022456675
          SARIMA(0, 1, 0)x(1, 0, 1, 12) - AIC:1806.990530137321
          SARIMA(0, 1, 0)x(1, 0, 2, 12) - AIC:1633.2108735940249
          /opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/base/model.py:567: ConvergenceWarnin
          g:
          Maximum Likelihood optimization failed to converge. Check mle_retvals
```

Out[101]:

	param	seasonal	AIC
236	(3, 1, 2)	(3, 0, 0, 12)	1387.234721
220	(3, 1, 1)	(3, 0, 0, 12)	1387.788333
237	(3, 1, 2)	(3, 0, 1, 12)	1388.602615
221	(3, 1, 1)	(3, 0, 1, 12)	1388.681480
252	(3, 1, 3)	(3, 0, 0, 12)	1389.142191

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

SARIMAX Results

========		=======		:=======		========	=====
Dep. Variab		MAX/2 1 2	-	,	o. Observations	•	<i>c</i> 0
Model:	SARI	, , ,)x(3, 0, [],	,	og Likelihood		-68
Date:			Sat, 09 Oct		IC		138
Time:					IC		140
Sample:			01-01-	-1980 H	QIC		139
			- 12-01-	1990			
Covariance	Type:			opg			
========	========	=======	========	=======	==========	=======	
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	-0.5372	0.339	-1.586	0.113	-1.201	0.126	
ar.L2	0.0256	0.187	0.137	0.891	-0.340	0.392	
ar.L3	0.0785	0.130	0.604	0.546	-0.176	0.333	
ma.L1	-0.1878	0.326	-0.575	0.565	-0.828	0.452	
ma.L2	-0.6875	0.272	-2.531	0.011	-1.220	-0.155	
ar.S.L12	0.5713	0.103	5.542	0.000	0.369	0.773	
ar.S.L24	0.2605	0.117	2.222	0.026		0.490	

0.055

-0.005

0.430

1.916

0.2126

0.111

ar.S.L36

sigma2	1.682e+05	2.52e+04	6.671	0.000	1.19e+05	2.18e+05	
Ljung-Box	(Q):		27 . 31	Jarque-Bera	========= (JB):	8.81	
Prob(Q):			0.94	Prob(JB):		0.01	
Heterosked	dasticity (H):	:	1.17	Skew:		0.36	
Prob(H) (t	two-sided):		0.67	Kurtosis:		4.33	

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [103]: results_auto_SARIMA.plot_diagnostics();


```
In [104]: | # Using SARIMA model to predict test set:
          predicted auto SARIMA = results auto SARIMA.get forecast(steps=len(test))
In [105]: # Defining Mean Absolute Percentage Error (MAPE):
          def mean absolute percentage error(y true, y pred):
              return np.mean((np.abs(y true-y pred))/(y true))*100
          from sklearn.metrics import mean squared error
In [106]: # Evaluating the predictions:
          rmse = mean squared_error(test['Sparkling'],predicted auto SARIMA.predicted mean,squared=False)
          mape = mean absolute percentage error(test['Sparkling'], predicted auto SARIMA.predicted mean)
          print('RMSE:',rmse,'\nMAPE:',mape)
          RMSE: 543.0401637640175
          MAPE: 23.232450291356987
In [107]: # Storing results for comparison:
          results_models = pd.DataFrame({'Test RMSE': rmse,'MAPE':mape}
                                      ,index=['SARIMA(3,1,2)(3,0,0,12)'])
          results_models
Out[107]:
                             Test RMSE
                                        MAPE
           SARIMA(3,1,2)(3,0,0,12) 543.040164 23.23245
```

```
In [108]: # Building a manual SARIMA model by selecting values of p, q from correlation plots:

plot_acf(train.diff(),title='Training Data Autocorrelation',missing='drop')
plot_pacf(train.diff().dropna(),title='Training Data Partial Autocorrelation',zero=False)
plt.show()
```


In [109]: # As per the ACF and PACF plots, we will take the values as p=0, q=0, d=1 and seasonal components P=0,

SARIMAX Results

==========		=======		=======	========	
Dep. Variable:	Spark	ling No.	Observations	:	132	
Model:	SARIMAX(0, 1	, 0) Log	Likelihood		-1124.680	
Date:	Sat, 09 Oct 2	2021 AIC			2251.360	
Time:	07:01	1:13 BIC			2254.227	
Sample:	01-01-3	1980 HQI	С		2252.525	
	- 12-01-1	1990				
Covariance Type:		opg				
=======================================	========	=======	========	=======	=======	
co	ef std err	Z	P> z	[0.025	0.975]	
sigma2 1.899e+	06 1.31e+05	14.543	0.000	1.64e+06	2.16e+06	
Ljung-Box (Q):		345.63	Jarque-Bera	(JB):	 19	4.29
Prob(Q):		0.00	Prob(JB):			0.00
Heteroskedasticity	(H):	2.46	Skew:		_	1.92
Prob(H) (two-sided)	:	0.00	Kurtosis:			7.60
=======================================	=========	=======	========	=======	========	====

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

In [112]: predicted_manual_SARIMA = results_manual_SARIMA.get_forecast(steps=len(test))

```
In [113]: rmse = mean_squared_error(test['Sparkling'],predicted_manual_SARIMA.predicted_mean,squared=False)
          mape = mean absolute percentage error(test['Sparkling'], predicted manual SARIMA.predicted mean)
          print('RMSE:',rmse,'\nMAPE:',mape)
           RMSE: 3864.2793518443914
          MAPE: 201.32764950352743
In [114]: results_1 = pd.DataFrame({'Test RMSE': [rmse],'MAPE':mape}
                                       ,index=['SARIMA(0,1,0)(0,0,0,12)'])
          results_models = pd.concat([results_models,results_1])
          results_models
Out[114]:
                               Test RMSE
                                           MAPE
           SARIMA(3,1,2)(3,0,0,12)
                              543.040164
                                         23.23245
           SARIMA(0,1,0)(0,0,0,12) 3864.279352 201.32765
  In [ ]:
In [115]: # Trying different parameters:
```

SARIMAX Results

============	:==========	=======================================	
Dep. Variable:	Sparkling	No. Observations:	132
Model:	SARIMAX(1, 1, 1)	Log Likelihood	-1099.467
Date:	Sat, 09 Oct 2021	AIC	2204.934
Time:	07:01:14	BIC	2213.513
Sample:	01-01-1980	HQIC	2208.420
	- 12-01-1990		

Covariance Type: opg

=======						
	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	0.4323	0.106	4.074	0.000	0.224	0.640
ma.L1	-0.9865	0.080	-12.294	0.000	-1.144	-0.829
sigma2	1.756e+06	2.14e+05	8.215	0.000	1.34e+06	2.17e+06
Ljung-Box	x (Q):		343.21	Jarque-Bera	(JB):	11.75
Prob(Q):			0.00	Prob(JB):		0.00
Heterosk	edasticity (H):		2.69	Skew:		0.55
Prob(H)	(two-sided):		0.00	Kurtosis:		4.00

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

```
In [117]: predicted_manual_SARIMA = results_manual_SARIMA.get_forecast(steps=len(test))
          rmse = mean_squared_error(test['Sparkling'],predicted_manual_SARIMA.predicted_mean,squared=False)
          mape = mean absolute percentage error(test['Sparkling'], predicted manual SARIMA.predicted mean)
          print('RMSE:',rmse,'\nMAPE:',mape)
          RMSE: 1325.3488296929725
          MAPE: 46.401952104149196
  In [ ]:
In [118]: results 2 = pd.DataFrame({'Test RMSE': [rmse], 'MAPE':mape}
                                      ,index=['SARIMA(1,1,1)(0,0,0,12)'])
          results_models = pd.concat([results_models,results_2])
          results_models
Out[118]:
                              Test RMSE
                                           MAPE
                                        23.232450
           SARIMA(3,1,2)(3,0,0,12)
                              543.040164
```

SARIMA(0,1,0)(0,0,0,12)

SARIMA(1,1,1)(0,0,0,12) 1325.348830

3864.279352 201.327650

46.401952

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

SARIMAX Results

Dep. Varia			-	,	o. Observatio			132
Model:	SAR	IMAX(3, 1,		- '	og Likelihood			-935 . 568
Date:			Sat, 09 0		_			1885.137
Time:			_		IC			1904.412
Sample:					QIC			1892.961
			- 12-	01-1990				
Covariance	e Type:			opg				
	coef	std err	z	P> z	[0.025	0.975]		
ar.L1	1.1988	0.116	10.309	0.000	0.971	1.427		
ar.L2	-0.4623	0.178	-2.604	0.009	-0.810	-0.114		
ar.L3	-0.0446	0.117	-0.383	0.702	-0.273	0.184		
ma.L1	-1.9965	0.148	-13.503	0.000	-2.286	-1.707		
ma.L2	0.9888	0.150	6.604	0.000	0.695	1.282		
ma.S.L12	0.7484	0.088	8.540	0.000	0.577	0.920		
sigma2	4.683e+05	6.55e-07	7.15e+11	0.000	4.68e+05	4.68e+05		
Ljung-Box	(Q):		151 . 18	Jarque-Ber	======== a (JB):		9.80	
Prob(Q):			0.00	Prob(JB):			0.01	
Heterosked	lasticity (H)	:	2.91	Skew:			0.59	
Prob(H) (t	wo-sided):		0.00	Kurtosis:			3.80	

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 2.73e+27. Standard errors may be unstable.

Out[121]:

	Test RMSE	MAPE
SARIMA(3,1,2)(3,0,0,12)	543.040164	23.232450
SARIMA(0,1,0)(0,0,0,12)	3864.279352	201.327650
SARIMA(1,1,1)(0,0,0,12)	1325.348830	46.401952
SARIMA(3,1,2)(0,0,1,12)	1206.659117	42.203993

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

SARIMAX Results

========		=======	=======	========			
Dep. Variab			_	-	Observations	S:	132
Model:	SAR	IMAX(3, 1, 2		1], 6) Log			-1030.311
Date:			Sat, 09 Oc	t 2021 AIC	•		2074.622
Time:			07	:01:17 BIC			2094.250
Sample:			01-0	1-1980 HQI	:C		2082.594
			- 12-0	1-1990			
Covariance	Type:			opg			
========	coef	std err	======== Z	P> z	[0.025	0.975]	
ar.L1	-0.4444	0.125	-3.554	0.000	-0.690	-0.199	
ar.L2	0.2271	0.133	1.713	0.087	-0.033	0.487	
ar.L3	-0.3279	0.174	-1.886	0.059	-0.669	0.013	
ma.L1	-0.0246	0.205	-0.120	0.904	-0.426	0.377	
ma.L2	-1.0247	0.153	-6.686	0.000	-1.325	-0.724	
ma.S.L6	-0.1899	0.193	-0.983	0.325	-0.568	0.189	
sigma2	1.153e+06	3.04e-07	3.79e+12	0.000	1.15e+06	1.15e+06	
Ljung-Box (======== (Q) :	=======	======== 294.38	Jarque-Bera	. (JB):	=======	7.48
Prob(Q):		0.00	Prob(JB):			0.02	
Heteroskedasticity (H):			2.50	Skew:			0.57
Prob(H) (tw	- ' '		0.00	Kurtosis:			3.41

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 1.6e+29. Standard errors may be unstable.

Out[124]:

	Test RMSE	MAPE
SARIMA(3,1,2)(3,0,0,12)	543.040164	23.232450
SARIMA(0,1,0)(0,0,0,12)	3864.279352	201.327650
SARIMA(1,1,1)(0,0,0,12)	1325.348830	46.401952
SARIMA(3,1,2)(0,0,1,12)	1206.659117	42.203993
SARIMA(3.1.2)(0.0.1.6)	1268.739259	43.543972

In [125]: #Building a comparison table for comparing all the different models built: frames=[results,results_models] result=pd.concat(frames)

result

Out[125]:

	Test RMSE	MAPE
TES: Alpha=0.15, Beta=1.34, Gamma=0.37	392.932696	NaN
TES_tweaked: Alpha=0.15, Beta=1.28e-21, Gamma=0.37	383.138464	NaN
DES: Alpha=0.65,Beta=0.0	3851.279016	NaN
LR RSME	1389.135175	NaN
Naive RSME	3864.279352	NaN
SA RSME	1275.081804	NaN
2-point MA	813.400684	NaN
4-point MA	1156.589694	NaN
6-point MA	1283.927428	NaN
9-point MA	1346.278315	NaN
SARIMA(3,1,2)(3,0,0,12)	543.040164	23.232450
SARIMA(0,1,0)(0,0,0,12)	3864.279352	201.327650
SARIMA(1,1,1)(0,0,0,12)	1325.348830	46.401952
SARIMA(3,1,2)(0,0,1,12)	1206.659117	42.203993
SARIMA(3,1,2)(0,0,1,6)	1268.739259	43.543972

In [126]: #Comparing RSME of all models, we can go with TES model as best model for time series forecasting:

```
In [127]: #Building the final model using TES model:
          model final = ExponentialSmoothing(df, trend='multiplicative', seasonal='multiplicative')
          # Fitting the model
          model final = model final.fit()
          print('')
          print('~~~ Holt Winters model Exponential Smoothing Estimated Parameters ~~~')
          print('')
          print(model final.params)
          ~~~ Holt Winters model Exponential Smoothing Estimated Parameters ~~~
          {'smoothing level': 0.061258628360488704, 'smoothing slope': 0.06123982807099429, 'smoothing seasona
          l': 0.27190057291568354, 'damping slope': nan, 'initial level': 1580.0000060857483, 'initial slope':
          0.9964964857441378, 'initial seasons': array([1.06255314, 1.00343217, 1.44340795, 1.0857587, 0.929895
          5,
                 0.87297234, 1.24270319, 1.55334083, 1.2574631 , 1.64853144,
                 2.58866164, 3.28435007]), 'use boxcox': False, 'lamda': None, 'remove bias': False}
          /opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa model.py:159: ValueWarni
          ng:
```

No frequency information was provided, so inferred frequency MS will be used.

```
In [136]: df.plot()
    model_final.forecast(steps=12).plot()

plt.legend(['Observed series','Forecasted series'])
    plt.title('Forecasted Sparkling Sales (TES Model)',color='blue',fontsize=20)
    plt.xlabel('Year/Month',color='blue',fontsize=18)
    plt.ylabel('Sparkling Sales',color='blue',fontsize=18)
    plt.grid();
```

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:342: FutureWarn
ing:

The 'freq' argument in Timestamp is deprecated and will be removed in a future version.

Forecasted Sparkling Sales (TES Model)

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

/opt/anaconda3/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarni
ng:

No frequency information was provided, so inferred frequency MS will be used.

SARIMAX Results

=======		========		========	-========	=======	:=======
Dep. Varia	ble:		Spark	ling No.	. Observations:		18
Model:	SARI	MAX(3, 1,	2)x(3, 0, [],	12) Log	g Likelihood		-1088.25
Date:			Sat, 09 Oct	2021 AIC			2194.50
Time:			07:0	1:27 BIC			2221.41
Sample:			01-01-	1980 HQI	IC .		2205.43
			- 07-01-	1995			
Covariance	Type:			opg			
=======	========	========	========	=======	=========	======	
	coef	std err	Z	P> z	[0.025	0.975]	
	0 5212	0.604	0 751	0 453	1 002	0.040	
ar.L1	-0.5213	0.694	-0.751		-1.882	0.840	
ar.L2	0.0118	0.157	0.075	0.940	-0.296	0.319	
ar.L3	0.0183	0.104	0.176	0.860	-0.185	0.221	
ma.L1	-0.3226	0.698	-0.462	0.644	-1.691	1.046	
ma.L2	-0.6298	0.676	-0.932	0.351	-1.954	0.694	
ar.S.L12	0.4978	0.074	6.694	0.000	0.352	0.644	
ar.S.L24	0.3234	0.096	3.384	0.001	0.136	0.511	
ar.S.L36	0.1887	0.097	1.942	0.052	-0.002	0.379	

```
1.557e+05
              1.69e+04
                       9.217
                             0.000
                                   1.23e+05
                                          1.89e+05
sigma2
______
Ljung-Box (Q):
                      23.13
                           Jarque-Bera (JB):
                                               24.97
Prob(Q):
                       0.98
                           Prob(JB):
                                                0.00
Heteroskedasticity (H):
                                               0.52
                       0.91
                           Skew:
Prob(H) (two-sided):
                       0.74
                           Kurtosis:
                                                4.74
_____
```

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [131]: pred_SARIMA = predicted_full_data.summary_frame(alpha=0.05)
pred_SARIMA.head()
```

Out[131]:

Sparkling	mean	mean_se	mean_ci_lower	mean_ci_upper
1995-08-01	1941.248027	394.580175	1167.885096	2714.610958
1995-09-01	2451.224570	399.355354	1668.502460	3233.946680
1995-10-01	3305.033728	399.450055	2522.126007	4087.941449
1995-11-01	3954.622572	400.668704	3169.326341	4739.918802
1995-12-01	6171.799475	400.683867	5386.473526	6957.125424

In [132]: pred_SARIMA.tail()

Out[132]:

Sparkling	mean	mean_se	mean_ci_lower	mean_ci_upper
1996-03-01	1816.844449	401.415537	1030.084455	2603.604444
1996-04-01	1843.101124	401.598084	1055.983343	2630.218906
1996-05-01	1676.311269	401.801687	888.794434	2463.828104
1996-06-01	1631.770697	401.995276	843.874435	2419.666959
1996-07-01	2012.405778	402.193311	1224.121373	2800.690183

```
In [133]: # Plotting the predictions:

axis = df['Sparkling'].plot(label='Observed series')
pred_SARIMA['mean'].plot(ax=axis, label='Forecasted series', alpha=0.7)

plt.title('Forecasted Sparkling Sales (SARIMA model)',color='blue',fontsize=20)
plt.xlabel('Year/Month',color='blue',fontsize=18)
plt.ylabel('Sparkling Sales',color='blue',fontsize=18)

plt.legend(loc='best')
plt.grid();
```


Forecasted Sparkling Sales (SARIMA model)

In [134]: ## THE END