Automated system partitioning based on hypergraphs for 3D stacked integrated circuits

Integrated circuits: Let's go 3D

Transistors to build gates

Transistors to build gates

Gates to build logic functions

Transistors to build gates

Gates to build logic functions

Logic functions build ICs

Transistors to build gates

Gates to build logic functions

Logic functions build ICs

Transistors to build gates

Gates to build logic functions

Logic functions build ICs

System performance depends on transistor performance and the quality of the system interconnect

What does a 2D IC look like?

Planar 2D IC: only one transistor layer

What are its limitations?

If you want **more** of them, you need them **smaller**.

But scaling has **physical** and **financial** limitations.

You can't simply make it bigger

Constant amount of defects per wafer

Larger IC means lower yield

Split the IC to keep it small

Xilinx split its latest node to keep it relatively affordable.

Face-to-Back (past)

Face-to-Back (past) Face-to-Face (present)

Face-to-Back (past)

Face-to-Face (present)

Transistor-on-transistor (future)

Face-to-Back (past)

Face-to-Face (present)

Transistor-on-transistor (future)

Somebody needs to decide what goes where

3D benefit: shorter connections

Increased performance

Decreased system power consumption

Improved area utilisation

2D flow...

Hardware description: Verilog, VHDL, ...

RTL

2D flow...

Synthesis: Yosys, ODIN-II, ABC, ...

Yields a netlist.

2D flow...

Place and route (P&R): QRouter, Graywolf, FGR, ...

... Extended to 3D

Pick which standard cell or module goes where

This is not a design.

Bipartition this system

Objectives:

Area balance Limit 3D interconnectivity

Clustering: hide the shortest nets

Big clusters: Few nets ©

Long nets hidden 😊

Clustering: hide the shortest nets

Small clusters: Lots of nets 😕

Long nets apparent ©

Clusters become vertices

Interconnections become edges

Extraction complete

Single nets are split into different edges

From graph to hypergraph

Single nets are split into different edges

Hyperedges maintain their integrity

Hypergraph extraction

Partitioning

Minimize the crossing nets and maintain area balance

Split the netlist

Die 1

Replace the manual partitioning

- Export design properties
- Design clustering
- Export clusters connectivity

- From the clustering outputs
- Build hyperedges and merge identical ones
- Compute graph weights
- Format graph and call partitioning tool
- Export cut data and partition directives

hMETIS Karypis Lab, University of Minesota

PaToH Ümit Catalyürek, Bilkent University

- Early development stage
- Based on 2D netlist and partitioning directives

Designs tested

LDPC

RISC V (BoomCore)

OpenSparc T2: SPC, CCX and RTX

3D: up to 77% less total wire length

Experiments using different functional blocks from OpenSPARC T2 SoC

Different partitioning schemes

Different clustering options

3D: Up to 61% shorter critical path

Experiments using different functional blocks from OpenSPARC T2 SoC

Different partitioning schemes

Different clustering options

Open questions

What is the best clustering?

Does the clustering method have a significant impact?

Can we predict the "partitionability" of a design?

