SenML

Giacomo Tanganelli PhD student @ University of Pisa g.tanganelli@iet.unipi.it

Concept

- SensorML (SenML) provides standard models and encodings for describing the measurements obtained by sensors.
- Can be used also to set parameters on sensors.
- Different encodings: JASON, XML, EXI
- It contains
 - A set of optional attributes
 - A mandatory array of one or more entries

JSON

Optional

Mandatory

4	L	L	ı
SenML	JSON	Type	<u> </u>
Base Name Base Time Base Units Version Measurement or Parameters	bn bt bu ver e	String Number Number Number Array	

+	+ -	+
SenML	JSON	Notes
Name	n	String
Units	u	String
Value	v	Floating point
String Value	sv	String
Boolean Value	bv	Boolean
Value Sum	s	Floating point
Time	t	Number
Update Time	ut	Number
+	+	+

Multiple DataPoint


```
{"e":[
    { "v": 20.0, "t": 0 },
    { "sv": "E 24' 30.621", "u": "lon", "t": 0 },
    { "sv": "N 60' 7.965", "u": "lat", "t": 0 },
    { "v": 20.3, "t": 60 },
    { "sv": "E 24' 30.622", "u": "lon", "t": 60 },
    { "sv": "N 60' 7.965", "u": "lat", "t": 60 },
  "bn": "coap://[aaaa::c30c:0:0:1]",
  "bt": 1320067464,
  "bu": "%RH"
```


Symbol	Description
m	meter
kg	kilogram
S	second
А	ampere
K	kelvin
cd	candela
mol	mole
Hz	hertz
rad	radian
sr	steradian
N	newton
Pa	pascal
J	joule

	Symbol	Description
	W	watt
	С	coulomb
	V	volt
	F	farad
	Ohm	ohm
	S	siemens
	Wb	weber
Ę	Т	tesla
	Н	henry
	Cel	degrees Celsius
	lm	lumen
	lx	lux
	Bq	becquerel

Symbol	Description
Gy	gray
Sv	sievert
kat	katal
рН	pH acidity
%	Value of a switch. A value of 0.0 indicates
	the switch is off while 100.0 indicates on.
count	counter value
%RH	Relative Humidity
m2	area
l	volume in liters
m/s	velocity
m/s2	acceleration
I/s	flow rate in liters per second

Symbol	Description	
W/m2	irradiance	
cd/m2	luminance	
Bspl	bel sound pressure level	
bit/s	bits per second	
lat	degrees latitude	
lon	degrees longitude	
%EL	remaining battery energy level in percents	
EL	remaining battery energy level in seconds	
beet/m	Heart rate in beets per minute	
beets	Cumulative number of heart beats	
W/m2	irradiance	
cd/m2	luminance	
Bspl	bel sound pressure level	

Exercise 1

- Write a server in Californium with two resources:
 - Light Sensor
 - Dimmer switch
- Use the SenML representation in JASON to encode the information.

 Enhance the server with a 3rd resource witch provide both the light and the dimmer status.

Exercise 2

- Write a client in Californium which parse the output of the previous server by exploiting the Java API for JSON processing:
 - https://jsonp.java.net/

Exercise 3

 Rewrite the first server but in Contiki and interact with the developed client.