Date	19 September 2022
Team ID	PNT2022TMID51065
Project Name	Deep Learning Fundus Image Analysis For Early Detection Of Diabetic Retinopathy
Maximum Marks	4 Marks

DEEP LEARNING FUNDUS IMAGE ANALYSIS FOR EARLY DETECTION OF DIABETIC RETINOPATHY

Brainstorm

Write down any ideas that come to mind that address your problem statement.

10 minutes

A.Elavarasi		A.C	Oharini	
We can increase the performance by training on more datasets	We can use Nano 33DLE arduino to implement		For early tection of DR, regular screening of retina is essential	Hybrid approach can be used for detection
Auto encoder, sparse coding, restricted boltzmann machines are also can be used	Ouery driven approach can be used for heterogenous integrated data	d	DR can be etected by orand new framework	Waveshare OV9655 Camera can be used for image detection along with arduino
K.Dharshini		B.Keerthi	ka	
We can use the Convolutional Neural Network(CNN) for retina image detection	Using Edge Impulse, we can implement it	DR is best di with two methods Flu Angiography Optical Col Tomograph	main Usir lorescein SOU (FA) and We herence	ng MATLAB urce code, can do this ffectively
Optomap can be used for DR detection	High accuracy algorithms should be used for medical image analysis	Using S and dec trees, im can b analys	cision Ret nages sca be	inal image ns can be used

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

1 20 minutes

PHASE 1 DATA COLLECTION	We can increase the performance by training on more datasets	DR is best diagnosed with two main methods: Fluorescein Angiography (FA) and Optical Coherence Tomography (OCT)	Using SVM and decision trees, images can be analysed	For early detection of DR, regular screening of retina is essential
PHASE 2 PROGRAMMING	Using MATLAB source code, we can do this effectively	High accuracy algorithms should be used for medical image analysis	Query driven approach can be used for heterogenous integrated data	Auto encoder, sparse coding, restricted boltzmann machines are also can be used
PHASE 3 TRAINING THE MODEL	DR can be detected by brand new framework	We can use the Convolutional Neural Network(CNN) for retina image detection	Optomap can be used for DR detection	Hybrid approach can be used for detection
PHASE 4 TESTING& IMPLEMENTATION	We can use Nano 33BLE arduino to implement	Waveshare OV9655 Camera can be used for image detection along with arduino	Using Edge Impulse, we can implement it	Retinal image scans can be used

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

1 20 minutes

