2022년 봄학기

JAVA

나사렛대학교 IT융합학부 김광기

STANSE & MEDIA

ORANGE MEDIA 윤성우의 프로그래밍 윤성우 저 초보자를 위한 인터넷 무료 강의를 제공합니다.

열혈 Java 프로그래밍

Chapter 12. 콘솔 입력과 출력

12-1. 콘솔 출력

toString 메소드

```
class Box {
    private String conts;

    Box(String cont) {
        this.conts = cont;
    }

    public String toString() {
        return conts; // 문자열 반환
    }

public static void main(String[] args) {
        StringBuilder stb = new StringBuilder("12");
        stb.append(34);
        System.out.println(stb.toString());
        System.out.println(stb);

        Box box = new Box("Camera");
        System.out.println(box.toString());
        System.out.println(box);
    }
}
```

println 또는 print에 인스턴스의 참조 값이 전달되면 해당 참조 값이 참조하는 인스턴스의 toString 메소드가 반환하는 문자열 출력!

```
© 명령 프롬프트
C:♥JavaStudy>java AutoCallToString
1234
1234
Camera
Camera
C:♥JavaStudy>■
```

문자열의 조합 printf 메소드

System.out.printf("정수는 %d, 실수는 %f, 문자는 %c, 12, 24.5, ('A');

printf 메소드 호출의 예

```
name: YOON SUNG WOO
                                                    age: 20
                                                    height: 1.782000e+02
public static void main(String[] args) {
                                                    77 - 115 - 4d
   int age = 20;
   double height = 178.2;
                                                    0.000140000
                                                    1.40000e-05
   String name = "YOON SUNG WOO";
                                                   |C:#JavaStudy>_
   System.out.printf(" name: %s \n", name);
   System.out.printf(" age: %d \n height: %e \n\n", age, height);
   System.out.printf(" %d - %o - (%) \n\n", 77, 77, 77);
   System.out.printf(" %g \n", 0.00014);
   System.out.printf(" %g \n", 0.000014);
```

₫ 명령 프롬프트

C:#JavaStudy>java FormatString

12-2. 콘솔 입력

Scanner 클래스

Scanner(File source)
Scanner(String source)
Scanner(InputStream source)

Scanner 클래스의 인스턴스 생성은 데이터를 뽑아 올 대상과의 연결을 의미한다. 연결 후에는 데이터 스캔 가능!

```
國 명령 프롬프트
C:₩JavaStudy>java ScanningString
1 + 3 + 5 = 9
C:₩JavaStudy>■
```

Scanner 클래스의 키보드 적용 (생선시 만드는 기자일)

```
public static void main(String[] args) {
  Scanner sc = new Scanner(System.in);
                                      Scanner 인스턴스 생성 이후에 데이터를 스캔하는 방법에
  int num1 = sc.nextInt();
                                      있어서는 차이가 없다! 즉 연결 대상에 의존적이지 않은 코드의
  int num2 = sc.nextInt();
  int num3 = sc.nextInt();
                                      작성이 가능하다!
  int sum = num1 + num2 + num3;
  System.out.printf("%d + %d + %d = %d \n", num1, num2, num3, sum);
                                            ystem.in(7458)
· 명령 프롬프트
|C:#JavaStudy>java ScanningKeyboard
```

12 + 24 + 36 = 72

C: #JavaStudy>_

Scanner 클래스의 주요메소드를 = (lext a () (기하다)

```
public static void main(String[] args) {
    Scanner sc = new Scanner(System.in);

    System.out.print("문자열 입력: ");
    String str1 = sc.nextLine();

    System.out.print("문자열 입력: ");
    String str2 = sc.nextLine();

    System.out.printf("입력된 문자열 1: %s \n", str1);
    System.out.printf("입력된 문자열 2: %s \n", str2);
}
```

```
int nextInt()
byte nextByte()
String nextLine()
double nextDouble()
boolean nextBoolean()
```

명령 프롬프트

C:₩JavaStudy>java ReadString 문자열 입력: Today is Friday 문자열 입력: I love Java 입력된 문자열 1: Today is Friday 입력된 문자열 2: I love Java

C:#JavaStudy>_

ORANGE MEDIA 윤성우_의 프로그래밍 윤성우 저 초보자를 위한 인터넷 무료 강의를 제공합니다.

열혈 Java 프로그래밍

Chapter 13. 배열

13-1.

1차원 배열의 이해와 활용

1차원 배열의 이해와 선언 방법

1차원 배열이란?

1차원 배열의 선언 방법

```
int[] ref = new int[5]; // 길이가 5인 int형 1차원 배열의 생성문
```

배열 선언문에 대한 세세한 이해와 결과

```
int 형 변수로 이뤄진
                  배열을 참조하는
int형 변수로
이뤄진
public static void main(String[] args) {
  int[] ref;
  ref = new int[5];
    배열의 참조변수와 인스턴스의 선언도 분리 가능!
```


멤버 변수 length는 배열의 길이 정보 저장

1차원 배열의 예

```
public static void main(String[] args) {
  // 길이가 5인 int형 1차원 배열의 생성
  int[] ar1 = new int[5];
  // 길이가 7인 double형 1차원 배열의 생성
  double[] ar2 = new double[7];
  // 배열의 참조변수와 인스턴스 생성 분리
  float[] ar3;
  ar3 = new float[9];
  // 배열의 인스턴스 변수 접근
  System.out.println("배열 ar1 길이: " + ar1.length);
  System.out.println("배열 ar2 길이: " + ar2.length);
  System.out.println("배열 ar3 길이: " + ar3.length);
```

```
로 명령프롬프트
C:₩JavaStudy>java ArrayIsInstance
배열 ar1 길이: 5
배열 ar2 길이: 7
배열 ar3 길이: 9
C:₩JavaStudy>■
```

인스턴스 대상 1차원 배열의 예

```
class Box {
  private String conts;
  Box(String cont) { this.conts = cont; }
  public String toString() {
     return conts;
class ArrayIsInstance2 {
  public static void main(String[] args) {
     Box[] ar = new Box[5]; // 길이가 5인 Box형 1차원 배열의 생성
     System.out.println("length : " + ar.length); // length: 5
```

📆 명령 프롬프트

C:\JavaStudy>java ArrayIsInstance2 length: 5

C:#JavaStudy>_

배열의 활용: 값의 저장과 참조

값의 저장과 참조의 예

```
public static void main(String[] args) {
                                    "First"
                                                   Box[] ar = new Box[3];
              참조변수
                                    "Second"
                        length = 3
                                                   // 배열에 인스턴스 저장
                                    "Third"
                        배열 인스턴스
                                                   ar[0] = new Box("First");
class Box {
                                    Box 인스턴스
                                                   ar[1] = new Box("Second");
  private String conts;
                                                   ar[2] = new Box("Third");
  Box(String cont) { this.conts = cont; }
                                                   // 저장된 인스턴스의 참조
  public String toString() {
                                                   System.out.println(ar[0]);
      return conts;
                                                   System.out.println(ar[1]);
                                                   System.out.println(ar[2]);
```

배열 기반 반복문 활용의 예

```
public static void main(String[] args) {
   String[] sr = new String[7];
   sr[0] = new String("Java");
   sr[1] = new String("System");
   sr[2] = new String("Compiler");
   sr[3] = new String("Park");
   sr[4] = new String("Tree");
   sr[5] = new String("Dinner");
   sr[6] = new String("Brunch Cafe");
   int cnum = 0;
   for(int i = 0; i < sr.length; i++)</pre>
      cnum += sr[i].length();
   System.out.println("총 문자의 수: " + cnum);
```

```
 명령프롬프트
C:₩JavaStudy>java StringArray
총 문자의 수: 43
C:₩JavaStudy>■
```

배열 요소는 반복문을 통해 순차적 접근이 가능하며, 이것은 배열이 가진 큰 장점 중 하나이다.

배열을 생성과 동시에 초기화

```
배열 생성
int[] arr = new int[3];
배열 생성 및 초기화1
int[] arr = new int[] {1, 2, 3};
배열 생성 및 초기화2
int[] arr = {1, 2, 3};
```

배열 대상 참조변수 선언의 두 가지 방법

```
int[] ar = new int[3];  // 조금 더 선호하는 방법
int ar[] = new int[3];
```

배열의 참조 값과 메소드

```
public static void main(String[] args) {
   int[] ar = {1, 2, 3, 4, 5, 6, 7};
   int sum = sumOfAry(ar); // 배열의 참조 값 전달
   . . . .
static int sumOfAry(int[] ar) {
                                                 static int[] makeNewIntAry(int len) {
   int sum = 0;
                                                    int[] ar = new int[len];
   for(int i = 0; i < ar.length; i++)</pre>
                                                    return ar;
      sum += ar[i];
   return sum;
                                               배열의 참조 값 반환 가능
```

배열의 디폴트 초기화

```
기본 자료형 배열은 모든 요소 0으로 초기화 int[] ar = new int[10];
```

인스턴스 배열(참조변수 배열)은 모든 요소 null로 초기화 String[] ar = new String[10];

배열의초기화메소드 수·//((X, MM)/

public static void fill(int[] a, int val)

→ 두 번째 인자로 전달된 값으로 배열 초기화

public static void fill(int[] a, int from Index, int to Index, int val

→ 인덱스 fromIndex ~ (toIndex-1)의 범위까지 val의 값으로 배열 초기화

java.util.Arrays 클래스에 정의되어 있는 메소드, 원하는 값으로 배열 전부 또는 일부를 채울 때사용하는 메소드

배열복사메소드 oxyoycopyC

public static void

arraycopy(Object src,int srcPos, Object dest int destPos, int length)

- → 복사 원본의 위치: 배열 src의 인덱스 srcPos
- → 복사 대상의 위치: 배열 dest의 인덱스 destPos
- → 복사할 요소의 수: length

java.lang.System 클래스에 정의되어 있는 메소드, 한 배열에 저장된 값을 다른 배열에 복사할 때사용하는 메소드

배열 초기화와 복사의 예

Mill, mayory

```
import java.util.Arrays;
class ArrayUtils {
   public static void main(String[] args) {
      int[] ar1 = new int[10];
      int[] ar2 = new int[10];
      Arrays.fill(ar1, 7); // 배열 ar1을 7로 초기화
     System.arraycopy(ar1, 0, ar2, 3, 4); // 배열 ar1을 ar2로 부분 복사
      for(int i = 0; i < ar1.length; i++)</pre>
        System.out.print(ar1[i] + " ");
      System.out.println(); // 단순 줄 바꿈
                                                                  JavaStudy>java ArrayUtils
      for(int i = 0; i < ar2.length; i++)</pre>
                                                               C:#JavaStudy>_
        System.out.print(ar2[i] + "
```

main 메소드의 매개변수선언 (갈성)않는다니요)

```
public static void main(String[] args) {....}
    main을 호출해야 한다면 다음과 같이...
    String[] arr = new String[] {"Coffee", "Milk", "Orange"};
    main(arr);
C:\JavaStudy>java Simple
  String[] arr = new String[] { };
  main(arr);
C:\JavaStudy>java Simple Coffee Milk Orange
  String[] arr = new String[] {"Coffee", "Milk", "Orange"};
  main(arr);
```

main의 매개변수로 인자를 전달하는 예

```
class Simple {
  public static void main(String[] args) {
    for(int i = 0; i < args.length; i++ )
        System.out.println(args[i]);
  }
}</pre>
```

```
C:#JavaStudy>java Simple Coffee Milk Orange
Coffee
Milk
Orange

생성된 배열
String[] arr = new String[] {"Coffee", "Milk", "Orange"};
```

13-2. enhanced for문

enhanced for문(for-each문) 의 이해

```
코드의 특징: 배열 요소의 순차적 접근
 int[] ar = {1, 2, 3, 4, 5};
 for(int i = 0; i < ar.length; i++) {</pre>
   System.out.println(ar[i]);
위 유형의 보는 for-each문으로 다음과 같이 구성 가능
 System.out.println(e)
   코드의 양이 줄고 배열의 길이와 요소에 신경 쓸 필요 없다.
```

for-each문의 예

```
public static void main(String[] args) {
  int[] ar = {1, 2, 3, 4, 5};
  // 배열 요소 전체 출력
  for(int e: ar) {
     System.out.print(e)
                              순 줄 바꿈을 목적으로
  System.out.println()
  int sum = 0;
  // 배열 요소의 전체 합 출력
                                          🖭 명령 프롬프트
  for(int e: ar) {
                                         C:#JavaStudy>java EnhancedFor
  System.out.println("sum: " + sum);
                                         C: #JavaStudy>_
```

인스턴스 배열 대상 for-each문의 예

```
public static void main(String[] args) {
  Box[] ar = new Box[5];
  ar[0] = new Box(101, "Coffee");
  ar[1] = new Box(202, "Computer");
  ar[2] = new Box(303, "Apple");
  ar[3] = new Box(404, "Dress");
  ar[4] = new Box 509, "Fairy-tale book");
  // 배열에서 번호가 505인 Box를 찾아 그 내용물을 출력하는 반복문
  for(Box e: ar)
                                         명령 프롬프트
     if(e.getBoxNum() == 505)
                                        C:\JavaStudy>java EnhancedForInst
        System out.println(e);
                                        Fairy-tale book
                                        C:#JavaStudy>_
```

13-3.

다차원 배열의 이해와 활용

2차원 배열의 생성

```
int[] arr1 = new int[4]

arr1 ---- arr1[0] arr1[1] arr1[2] arr1[3]
```


2차원 배열의 접근

$$arr[2][2] = 9;$$

$$arr[1][0] = 5;$$

$$arr[0][1] = 7;$$

2차원 배열의 예

```
public static void main(String[] args) {
  int[][] arr = new int[3][4];
  int num = 1;
  // 배열에 값을 저장
                                        2차원 배열 요소 전체의 순차적 접근은 중첩된 반복문으로...
  for(int i = 0; i < 3; i++) {
     for(int j = 0; j < 4; j++) {
                                       for문의 중첩으로...
        arr[i][j] = num;
        num++;
  // 배열에 저장된 값을 출력
                                              쨰 명령 프롬프트
  for(int i = 0; i < 3; i++) {
                                              |C:₩JavaStudy>java TwoDimenArray
     for(int j = 0; j < 4; j++) {
        System.out.print(arr[i][j] + "\t");
                                                     10
                                              C:#JavaStudy>_
     System.out.println();
```

2차원 배열의 실제 구조

다수의 1차원 배열을 엮어서 구성이 되는 2차원 배열

2차원 배열의 초기화

```
int[][] arr = {
                           22
                     11
                                 33
   {11, 22, 33},
   {44, 55, 66},
                     44
                           55
                                 66
   {77, 88, 99}
                     77
                           88
                                 99
};
int[][] arr = {
   {11},
                     22
   {22, 33},
   {44, 55, 66}
                     44
                           55
                                 66
};
```

```
public static void main(String[] args) {
   int[][] arr = {
      {11},
      {22, 33},
      {44, 55, 66}
   };
   // 배열의 구조대로 내용 출력
   for(int i = 0; i < arr.length; i++) {</pre>
      for(int j = 0; j < arr[i].length; j++) {</pre>
         System.out.print(arr[i][j] + "\t");
      System.out.println();
               ☞ 명령 프롬프트
              C:\JavaStudy>java PartiallyFilledArray
                     33
55
                           66
              C: #JavaStudy>_
```