









| PHYC90045 Introduction to Quantum Computing U1                                                                    | MEROUSNE |
|-------------------------------------------------------------------------------------------------------------------|----------|
| U1 is a rotation around Z by angle lambda, which is equivalent to a rotation around the z-axis by an angle lambda |          |
| $U_1 = \left[ egin{array}{cc} 1 & 0 \ 0 & \exp i \lambda \end{array}  ight]$                                      |          |
| Most easily understood as:                                                                                        |          |
| $$ $R_z(\lambda)$ $$                                                                                              |          |
| In the QUI, to emulate these z-rotations, use a global phase of lambda/2.<br>No global phase for the y-rotation.  |          |





| PHYC90045 Introduction to Quantum Computing  Euler Angle Decomposition | S<br>INT |
|------------------------------------------------------------------------|----------|
| Any rotation can be represented as a rotation around orthogonal axes:  |          |
| $ R_n(lpha)$ = $ R_z(\lambda)$ $ R_y(	heta)$ $ R_z(\phi)$ $-$          |          |
| QUI IBM Quantum Experience                                             |          |
|                                                                        |          |







































































| 45 Introduction to Quantum Comp |                                   | 1   |
|---------------------------------|-----------------------------------|-----|
|                                 | Week 7                            | MEL |
|                                 |                                   |     |
| Lecture 13 - Introdu            | uction to IBM Quantum Experience  |     |
| Introduction to IBM             | Quantum Experience: Guest Lecture |     |
|                                 |                                   |     |
| Lecture 14 - IBM an             | nd Optimizations                  |     |
| 14.1 Rotation opera             | itors: QUI and IBM conversion     |     |
| 14.2 QASM                       |                                   |     |
| 14.3 Optimizing circ            | cuits                             |     |
|                                 |                                   |     |
| Lab 7                           |                                   |     |
| Using the IBM Q sys             | stem                              |     |