Data Stream Clustering

Presented by: Sören Becker & Kumar Awanish

Agenda

- 1. Introduction & Basic Terminology
- 2. Challenges in online & offline Clustering
- 3. Different types of clustering
- 4. Simple Example: Doubling Algorithm
- 5. CluStream
- 6. DenStream
- 7. Stream clustering platforms
- 8. Summary

Introduction & Basic Terminology

Clustering:

- The process of organizing objects into groups whose members are similar in some way.
- A *cluster* is therefore a collection of objects which are "similar" between them and are "dissimilar" to the objects belonging to other clusters.

Possible Applications:

- Marketing
- Online Shopping

Introduction & Basic Terminology

Data stream clustering:

• It is defined as the clustering of data that arrive continuously such as telephone records, multimedia data, financial transactions etc.

Main Method:

Partitioning: K-Means ...

Hierarchical: BIRCH...

Density-Based: DBSCAN...

Challenges in Clustering

- Volume: Not possible to store all the data
- One-time access: Not possible to process the data using multiple passes
- Real-time analysis: Certain applications need real-time analysis of the data
- Cluster Validity

Challenges in Clustering

- Load- shedding in Data Streams
- High dimensional data stream
- Protecting privacy and confidentiality
- Temporal Locality: Data evolves over time, so model should be adaptive

Online vs Offline Approaches

Online:

- Pulling of data when required, on demand.
- Summarize the data into memory-efficient data structures.
- Micro-clustering component

Offline:

- Push of data in large database.
- Use a clustering algorithm to find the data partition.
- Macro-clustering component

K-center problem

Problem settings:

Parameter *k* (number of clusters)

Set of points *S* (data)

Distance function D

Goal:

Find set $C = \{c_1, ..., c_k\}$ from S such that $\max_{x \in S} \min_{c_i \in C} D(c_i, x)$

is minimized.

Approximation guarantees

Definition:

A p-approximation algorithm is defined for a minimization problem to be an algorithm that gives an approximate solution which is at most p times larger than the true minimum solution.

Offline:

Farthest point algorithm: 2-approximation for k-center problem

Online:

Doubling algorithm: 8-approximation for k-center (streaming) problem

Doubling algorithm

Input: sequence of points from a metric space, arriving one at a time.

Output: set of k centers.

Init Choose first k points as centers and $r \leftarrow 0$ for every new point i do

if i is within distance 4r from any center then

Suppose the centers are $c_1, ..., c_l$

```
assign i to that cluster (choose arbitrarily if there are more than
   one)
else
   if l < k then
       A. make c_{l+1} = i, i.e., start a new cluster with i as its center
   else
       A. Let the smallest distance between any pair of points in the
       set C = c_1, ..., c_k, i be t
       B. r \leftarrow \frac{t}{2}
       C. Pick a point from C and let this be a new center c'.
       Remove all points from C that are within distance 4r from this
       center c'. All the clusters (corresponding to the removed
       centers and possibly the singleton cluster i) are merged into a
       cluster with center c'.
       D. The above step is repeated until C is empty. These centers
       are carried over to handle the next point.
   end
```

Sudipto Guha & Nina Mishra: Clustering Data Streams, Springer 2016

Result: Output the remaining cluster centers

end

Doubling algorithm: Demo

Synthetic 2-d dataset with 5000 points from 15 Gaussian clusters

P. Fränti and O. Virmajoki, "Iterative shrinking method for clustering problems", *Pattern Recognition*, 39 (5), 761-765, May 2006.

Doubling algorithm: Results

- High sensitivity to order of data input
- No information about the evolution of the data

Distribution after 100 runs

Type of Clustering

CluStream:

2009 2010 2011 2012 2013 2014 2015

- Cluster streaming data
- Cope with temporal variations in the data
- Allow time-horizon analysis

CluStream

General Setting

- D-dimensional data chunks $X_1, ..., X_k$ arriving at time stamps $T_1, ..., T_k$
- For each chunk: $X_i = (x_i^1, ..., x_i^d)$

Core concepts:

- Microclusters
- Pyramidal Time Frame

Micro-clusters are (2*d + 3) tuples of simple statistics.

For chunks $(X_i)_1, ..., (X_i)_n$ with time stamps $(T_i)_1, ..., (T_i)_n$, a tuple consists of:

```
    CF2*: elementwise sum of squares over (X<sub>i</sub>)<sub>1</sub>, ..., (X<sub>i</sub>)<sub>n</sub> ([p x 1]-vector)
    CF1*: elementwise sum over (X<sub>i</sub>)<sub>1</sub>, ..., (X<sub>i</sub>)<sub>n</sub> ([p x 1]-vector)
```

N : number of data points (scalar)

A Micro-cluster M_i is a (2*d + 3) tuple of simple statistics.

For chunks $(X_i)_1, ..., (X_i)_n$ with time stamps $(T_i)_1, ..., (T_i)_n, M_i$ consists of:

- CF2^x: elementwise sum of squares over (X_i)₁, ..., (X_i)_n ([p x 1]-vector)
- CF1^x: elementwise sum over $(X_i)_1, ..., (X_i)_n$ ([p x 1]-vector)
- N : number of data points (scalar)
- CF2^t: elementwise sum of squares over $(T_i)_1$, ..., $(T_i)_n$ (scalar)
- CF1^t: elementwise sum over $(T_i)_1, ..., (T_i)_n$ (scalar)

Temporal extension of BIRCH cluster features!

Cluster Features contain information to easily obtain

Centroid:

$$\bar{x} = \frac{1}{N} \sum_{i}^{N} x_i$$

RMS deviation from centroid:

$$\sqrt{\frac{1}{N} \sum_{i}^{N} (x_i - \bar{x})^2} = \sqrt{\frac{1}{N} (\sum_{i}^{N} x_i^2 - 2\bar{x}x_i + \bar{x}^2)}$$

$$= \sqrt{\frac{1}{N} (\sum_{i}^{N} x_i^2 - 2\bar{x} \sum_{i}^{N} x_i + N\bar{x}^2)}$$

CF2^x: elementwise sum of squares over (X_i)₁, ..., (X_i)_n ([p x 1]-vector)

• CF1^x: elementwise sum over $(X_i)_1$, ..., $(X_i)_n$ ([p x 1]-vector)

N : number of data points (scalar)

Additivity property: merging clusters becomes easy

$$CF_{new} = CF_1 + CF_2$$

800000

900000

CluStream: Online clustering

1. Initialize:

- a. Store the first *initNumber* points on disk
- b. Use k-means to create q initial micro-clusters

2. Online updating:

- a. Absorb new data points into a micro-cluster or
- b. Create a new cluster for the data point

CluStream: Online clustering

- a) Absorbing the new data point:
 - i) Determine the closest micro-cluster centroid
 - ii) Absorb if within RMS deviation of that cluster

CluStream: Online clustering

- a) Creating a new cluster:
 - i) Create a new cluster with the new data point as centroid
 - ii) Reduce number of old clusters to make space for new cluster
 - 1) Delete an old cluster based on average and variance of timestamps:
 - 2) If no cluster can be deleted, merge the two closest cluster

Assume: Gaussian distribution of time stamps of a micro-cluster

Find time stamp of predefined percentile: delete cluster if above predefined threshold

Snapshots: (depend on parameters *a* and *L*)

- Micro-clusters are stored (in secondary memory) at particular moments in time.
- For any positive integer i, store a snapshot of order i whenever the current timestamp is divisible by αⁱ.
- Store at most $a^L + 1$ snapshots of order i.

• For any positive integer i, store a snapshot of order i whenever the current timestamp is divisible by a^{i} .

Store at most a^L + 1 snapshots of order i. L = 1Time Q = 2**2**⁰ Χ 2¹ 2² ... 2∞

- For any positive integer i, store a snapshot of order i whenever the current timestamp is divisible by a^{i} .
- Store at most $a^L + 1$ snapshots of order i.

Time							1	2
20							Х	Х
21								Х
22								
2∞								

- For any positive integer i, store a snapshot of order i whenever the current timestamp is divisible by a^{i} .
- Store at most $a^L + 1$ snapshots of order i.

Time							1	2	3
20							х	Х	Х
21								Х	
22									
2∞									

• For any positive integer i, store a snapshot of order i whenever the current timestamp is divisible by a^{i} .

L = 1

• Store at most $a^L + 1$ snapshots of order i.

- For any positive integer i, store a snapshot of order i whenever the current timestamp is divisible by α^i .
- Store at most $a^L + 1$ snapshots of order i.

Time						1	2	3	4	5
20								Х	х	x
21							Х		Х	
22									х	
2∞										

- For any positive integer i, store a snapshot of order i whenever the current timestamp is divisible by a^{i} .
- Store at most $a^L + 1$ snapshots of order i.

Time					1	2	3	4	5	6
20								х	х	x
21						Х		Х		х
22								х		
2∞										

- For any positive integer i, store a snapshot of order i whenever the current timestamp is divisible by a^i .
- Store at most $a^L + 1$ snapshots of order i.

Time					1	2	3	4	5	6	7
20									Х	Х	X
21						Х		х		Х	
2 ²								х			
2∞											

- For any positive integer i, store a snapshot of order i whenever the current timestamp is divisible by a^i .
- Store at most $a^L + 1$ snapshots of order i.

Time				1	2	3	4	5	6	7	8
20									x	х	х
21							Х		х		х
2 ²							Х				х
2∞											

User: "Where were the centroids in the last 5 [time units]"?

			5									
Time	 8	9	10	11	12	13	14					
2 ⁰					Х	Х	X					
21			Х		х		х					
22	X				х							
2∞												

- Find micro-clusters (CF₁₄)_{1...N} and (CF₈)_{1...N}
- For i = 1..N: ((CF₁₄)_i (CF₈)_i) approximates micro-cluster i of the desired period of 5 time units.
- Use an offline algorithm to cluster the micro-cluster snapshots of the desired period

CluStream: Quality vs. Space

Approximate any time horizon h with factor $(1 + 1/\alpha^{L-1})$ with storage requirement of $(\alpha^L + 1)*log_\alpha(T)$ snapshots.

Example: Stream running for 100 years, sending samples every second.

With a = 2 and L = 10:

Quality: Approximate any horizon within 0.2%.

Space: Need to store 32343 snapshots.

CluStream: Scalability

Samples per second

Figure 5: Stream Processing Rate (Charitable Donation dataset, stream_speed=2000)

Number of data dimensions

Figure 7: Scalability with Data Dimensionality (stream_speed=2000)

Number of clusters

Figure 8: Scalability with Number of Clusters (stream_speed=2000)

DenStream- Motivation

Martin Ester

Density-based clustering over an evolving data stream with noise

Feng Cao, Martin Estert, Weining Qian, Aoying Zhou

Publication date 2006/4/20

Proceedings of the 2006 SIAM international conference on data mining

328-339

Society for Industrial and Applied Mathematics

Total citations Cited by 655

- DenStream finds clusters of arbitrary shape.
- DenStream can handle noise.

DenStream- Terminology

Damped Window, weight of data objects decreases exponentially over time: $f(t) = 2^{-\alpha \cdot t}, \alpha > 0$

Micro-Clusters: $MC = (WLS, WSS, w, t_c)$, where

- $WLS = \sum_{i=1}^{n} f(t T_i) \cdot p_i$ (Weighted Linear Sum)
- $WSS = \sum_{i=1}^{n} f(t T_i) \cdot p_i^2$ (Weighted Squared Sum)
- w (Weight of MC)
- t_c (Creation Time of MC)

DenStream- Terminology

c = WLS / w (center of MC)

r=
$$\sqrt{\frac{\|WSS\|_2}{w} - \left(\frac{\|WLS\|_2}{w}\right)^2} \le \varepsilon$$
 ; ε = Maximum radius

If $w \ge \mu$, MC is a core -micro-cluster.

Potential core-micro-clusters (p-micro-clusters), with $w \ge \beta \cdot \mu$, β is a parameter of the algorithm.

Outlier micro-clusters (o-micro-clusters), with w < $\beta \cdot \mu$

Micro-Clusters can be maintained incrementally:

- MC = $(2^{-\alpha.\delta t} \cdot WLS, 2^{-\alpha.\delta t} \cdot WSS, 2^{-\alpha.\delta t} \cdot w, tc)$
- If a point p is merged, MC = (WLS +p,WSS +p 2,w +1,tc).

DenStream: Algorithm Overview

- Online and Offline Part
- Initialization with DBSCAN
- Maintains p-micro-clusters and o-micro-clusters during online-component
 New points are merged using a Merging Algorithm
- Pruning Strategy is performed periodically
- DBSCAN based offline component generates final clusters on demand using p-micro-clusters as virtual points

Merging Technique

- 1: Try to merge p into its nearest p-micro-cluster c_p ;
- 2: if r_p (the new radius of c_p) $\leq \epsilon$ then
- Merge p into c_p ;
- 4: else
 - Try to merge p into its nearest o-micro-cluster c_o ;
- if r_o (the new radius of c_o) $\leq \epsilon$ then 6:
- Merge p into c_o ;
- if w (the new weight of c_o) > $\beta \cdot \mu$ then
- Delete c_0 and create a new p-micro-cluster for 9:
- end if 10:

5:

- else 11:
- Create a new o-micro-cluster by p;
- end if 13:
- 14: end if

Pruning Strategy

- Pruning strategy is performed every Tp time steps
- Tp = $[1/\alpha \cdot \log_2(\beta \cdot \mu / \beta (\mu 1))]$
- All p-micro-clusters with weight $w < \beta \cdot \mu$ are pruned
- O-micro-clusters must be pruned too to release memory space
- If o-micro-clusters are pruned too early, they can't become p-micro-clusters

DenStream: The Algorithm

```
1: T_p \leftarrow \lceil \frac{1}{\alpha} \cdot \log_2 \left( \frac{\beta \cdot \mu}{\beta \mu - 1} \right) \rceil;
 2: Get the next point p at current time t from DataStream;
 3: Merging(p);
 4: if (t \mod T_p) = 0 then
        for each p-micro-cluster c_p do
          if w_p (the weight of c_p) < \beta \cdot \mu then
          Delete c_p;
          end if
        end for
        for each o-micro-cluster c_o do
10:
        \xi \leftarrow \frac{2^{-\alpha(t-t_0+T_p)}-1}{2^{-\alpha T_p}-1};
11:
         if w_o (the weight of c_o) < \xi then
12:
              Delete c_o;
13:
          end if
14:
        end for
15:
16: end if
17: if a clustering request arrives then
        Generate clusters;
18:
19: end if
```


Micro-clusters for initial distribution

- Resulting micro clusters of the initial distribution.
- Micro clusters are represented by circles.
- Red circles are p-micro-clusters.
- Blue circles denote o-micro-clusters.

Micro-Cluster for Fading & Final Distribution

Micro-Clusters for Fading Distribution

Final Distribution

Comparison of Clustering Algorithms

Table 1 Comparison between algorithms (WL: weighted links, 2 phases : online+offline)

Algorithms	Based on	Topology	WL	Phases	Remove	Merge	Split	Fade
SVStream	SVC, SVDD	×	×	online	1	✓	1	1
StreamKM++	k-means++	×	×	2 phases	✓	✓	1	1
StrAP	AP	×	×	2 phases	/	×	×	1
SOStream	DBSCAN, SOM	×	×	online	/	✓	×	1
OPTICS-Stream	OPTICS	×	×	2 phases	1	✓	×	1
IGNG	NG	✓	×	online	×	×	×	×
HCluStream	k-prototypes	×	×	2 phases	1	✓	/	1
GWR	NG	✓	×	online	×	×	×	×
G-Stream	NG	✓	/	online	1	×	×	1
E-Stream	k-means	×	×	2 phases	✓	✓	1	1
D-Stream	-	×	×	2 phases	✓	✓	1	1
DenStream	DBSCAN	×	×	2 phases	/	offline	×	1
ClusTree	k-means or DBSCAN	×	×	2 phases	✓	offline	✓	1
CluStream	k-means	×	×	2 phases	✓	offline	×	×
AING	NG	✓	×	online	×	✓	×	X

Streaming Platform - MOA (Massive On-Line Analysis)

- Open Source project
- Framework for data stream mining
- Support Machine Learning algorithm
- Goal is to provide a benchmark suite for the stream mining community
- It contains several stream clustering methods including: StreamKM++,
 CluStream, ClusTree, DenStream, D-Stream

Summary

- Concepts of Data Streaming Clustering
- Different types of Data Streaming Clustering
- Challenges in clustering
- Different platform for clustering
- Algorithms: Doubling, CluStream, DenStream
- Comparison of different clustering algorithms

References

- Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A framework for clustering evolving data streams. In Proceedings of the 29th International Conference on Very Large Data Bases - Volume 29, VLDB '03, pages 81–92. VLDB Endowment, 2003.
- [2] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Massive online analysis. J. Mach. Learn. Res., 11:1601–1604, August 2010.
- [3] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. Density-Based Clustering over an Evolving Data Stream with Noise, pages 328– 339.
- [4] P. Fränti and O. Virmajoki. Iterative shrinking method for clustering problems. Pattern Recognition, 39(5):761–765, 2006.
- [5] Mohammed Ghesmoune, Mustapha Lebbah, and Hanene Azzag. Stateof-the-art on clustering data streams. Big Data Analytics, 1(1):13, 2016.
- [6] Sudipto Guha and Nina Mishra. Clustering Data Streams, pages 169– 187. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.