Problem kolorowania grafów (GCP)

Dawid Trzeciak 144331 Tomasz Lipowski 145404

Algorytm genetyczny

1. Inicjalizacja

Problem będziemy rozwiązywać dla podanej poniżej przykładowej instancji grafu, na której numerami oznaczone są poszczególne kolory.

2. Opis Algorytmu

Algorytm, który zaimplementowaliśmy do rozwiązania problemu kolorowania grafów, opiera się na metaheurystycznym algorytmie genetycznym. Na samym początku stosujemy algorytm zachłanny aby ustalić listę kolorów, z których będziemy korzystać do kolorowania grafu. Początkową populację osobników stanowi u nas kilkadziesiąt losowych rozwiązań w postaci listy krawędzi wraz z przypisanymi kolorami dla poszczególnych wierzchołków. Dla tej populacji stosujemy funkcję kosztu w celu oceny poszczególnych rozwiązań oraz posortowania ich ze względu na wyniki tej funkcji. Następnie w petli, która wykonuje się ustaloną liczbę razy (chyba że najlepsze rozwiązanie przez długi czas pozostaje niezmienne) dokonujemy najpierw operacji wyboru rodziców, których dobieramy w sposób losowy 4 razy, z czego następnie wybieramy 2 najlepszych. Następnie wykonujemy krzyżowanie, które wygląda tak, że potomek otrzymuje połowę rozwiązania z jednego rodzica oraz połowę z drugiego. W ten sposób otrzymujemy dwójkę dzieci. Kolejnym krokiem naszego algorytmu jest wykonanie ponownie funkcji kosztu oraz posortowanie. Następnie w losowy sposób wybieramy jednego osobnika, którego poddajemy mutacji, która przebiega w następujący sposób: jeżeli znajdziemy konflikty pomiędzy wierzchołkami, to zamieniamy kolor na pierwszy możliwy z listy kolorów, a jeżeli jest to niemożliwe to przypisujemy mu kolor losowy. Ponownie dokonujemy funkcji kosztu, po czym naszych nowych 3 osobników dodajemy do populacji usuwając jednocześnie 3 najsłabszych.

3. Pseudokod

 $ilosc_iteracji = 20000$

rozmiar_populacji = 50
losowy wybór 50 osobników

pętla (dopóki (i != 20000))
 wybór 4 rodziców
 wybranie 2 najlepszych z tej 4
 pętla (wykonuje się dwa razy)
 krzyżowanie rodziców – tworzenie potomka
 nadanie fukncji kosztu
 wylosowanie jednego osobnika
 dokonanie mutacji wybranego osobnika
 nadanie fukncji kosztu
 dodanie do populacji 2 dzieci oraz zmutowanego osobnika
 usunięcie 3 najsłabszych

4. Przykład obrazujący działanie algorytmu

Rys. Przykładowe dwa początkowe rozwiązanie z populacji

Rys. Zastosowanie krzyżowania na dwóch powyższych grafach

Obrazowanie operacji mutacji na przykładowym osobniku:

5. Finalizacja

Wykresy

1. Wykresy porównujące wynik działania algorytmu genetycznego w porównaniu do algorytmu zachłannego. Instancje zostały wygenerowane losowo, 15 punktów pomiarowych.

2. Wykres obrazujący błąd względny algorytmu w porównaniu do benchmarków

3. Wyniki dla wybranych instancji

le_450_5a	14
gc500	87
gc1000	154
miles250	9
queen6	9