

Implementation of a DRM+ transmitter in the GNU Radio software radio framework

Felix Wunsch Mentor: Jens Elsner

Communications Engineering Lab Prof. Dr.rer.nat. Friedrich K. Jondral

Outline

- Introduction
- **DRM Standard**
- Implementation in GNU Radio
- Performance
- **Demonstration**
- Conclusion

Felix Wunsch

Implementation of a DRM+ transmitter in the GNU Radio software radio framework

Introduction

- Why digital radio?
 - News and data streams possible
 - Multiple services on one channel
 - Better performance in low SNR environments
- DRM: Digital Radio Mondiale
 - Standard for transmission below 30 MHz (DRM30)
 - Inaugural transmission took place in 2003

Implementation of a DRM+ transmitter in the GNU Radio software radio framework

- DRM+ was added to support 30 MHz 174 MHz band in 2009
- First open source implementation of DRM+

Felix Wunsch

Introduction – Development Process

- Understand the standard
 - Design transmitter and its inverse in MATLAB
- **Test against Dream**
 - Implements DRM30 receiver
 - Developed at the TU Darmstadt
- Test against commercial DRM receiver
- Port to GNU Radio
- Create unit tests and optimize performance

DRM Standard

- OFDM system
- Variable data rate, bandwidth and error robustness
- Subset of MPEG-4 standard used for audio coding
 - AAC, CELP, HVXC
- Three logical channels

Felix Wunsch

- Main Service Channel (MSC)
- Service Description Channel (SDC)

Implementation of a DRM+ transmitter in the GNU Radio software radio framework

- Fast Access Channel (FAC)
- All stages' parameters tightly intertwined to optimize performance

DRM Standard – Physical Layer

- Two main parameters:
 - RM: Robustness Mode (A E, error robustness)
 - SO: Spectrum Occupancy (0 5, occupied bandwidth)

	DRM30	DRM+
Bandwidth	4.5 kHz 20 kHz	100 kHz
Symbol Duration	9.33 ms 24 ms	2.25 ms
Guard Interval	2.66 ms 7.33 ms	0.25 ms
Bit Rate	4.8 kbps 72 kbps	37.3 kbps 186.4 kbps
Frame Duration	400 ms	100 ms

DRM Standard – Flow graph

Conceptual DRM transmission block diagram

Conceptual DRM transmission block diagram Audio AAC Source Encoder Cell Mux Scrambler MLC Interleaver Data Source Pilot Generator OFDM Symbol Cell Bit Domain complex **OFDM** Domain Mapping baseband SDC Scrambler MLC **FAC** Scrambler MLC Multi Level Coding (MLC) Channel Bit to Bit Encoding Symbol Interleaver

Conceptual DRM transmission block diagram

Conceptual DRM transmission block diagram

12

Conceptual DRM transmission block diagram

Conceptual DRM transmission block diagram

14

- Different pilot cells
 - Frequency reference cells
 - Time reference cells
 - Gain reference cells
 - AFS reference cells
- Variable no. of subcarriers
- Variable carrier spacing

09.09.12

Conceptual DRM transmission block diagram

Implementation in GNU Radio

- New module "gr-drm"
- Fully integrated into GRC
 - No deep knowledge of DRM required
 - Flow graphs can be used as-is
- As modular as possible
 - Generic blocks
 - Puncturing
 - Interleaver
 - **.** . . .
- http://github.com/kit-cel/gr-drm

Implementation in GNU Radio – Wish List

- Reload XML definitions
 - Saves time

- Hier block transparency
 - More depth

Performance

Test environment

Intel i5-2520M

GNU Radio 3.6.1

Ubuntu 12.04 (64 bit)

USRP N210 with BasicTX

Transmitter configuration

RM A, SO 3 (10 kHz), 64 QAM

26.56 kbps (AAC mono)

- Real-time capable
- Low CPU consumption
- Suboptimal buffer allocation
- AAC encoder library dominates CPU consumption

```
top - 16:25:11 up 5 min, 4 users, load average: 0.64, 0.70, 0.34
Tasks: 160 total, 3 running, 157 sleeping, 0 stopped, 0 zombie
        4.1%us, 5.1%sy, 0.0%ni, 90.6%id, 0.0%wa, 0.0%hi, 0.2%si,
                                                                    0.0%st
      8058848k total, 1676924k used, 6381924k free, 78624k buffers
Mem:
Swap: 8267772k total, 0k used, 8267772k free,
                                                     952892k cached
  PID USER
               PR
                                                         COMMAND
                      VIRT
                            RES SHR S %CPU %MEM
                                                   TIME+
 2323 felixwun -30
                                                  3:06.79 python
                   0 3172m 298m 255m S
                                            3.8
```


Demonstration

- Signal generation with gr-drm GRC flow graph
- Decoding with NEWSTAR DR-111 (live)
- Parameters can be changed directly in GRC

Configuration: 10 kHz bandwidth, RM A, 24 kHz wav-file, 64-QAM

20

Conclusion

- Great GSoC experience
 - Over 5000 lines of code
 - Daily interaction with mentor
 - Very helpful community

- DRM30 transmitter has been implemented in GNU Radio
 - DRM+ is implemented but untested
- Next steps:
 - Integration of Fraunhofer AAC encoder
 - Implementation of DRM Receiver in GNU Radio
- DRM+ might become the new standard for digital broadcasting in Brazil

ETSI ES 201 980 V3.1.1 (2009-08)

Figure 29: Multilevel coding with 3 levels for SM

3-level coding for SM

GNU Radio))

Felix Wunsch

22