Quantum Mechanics and Spectroscopy CHEM 3PA3 Assignment 20

- 1. (a) Write down the simple 1s-orbital-bases "valence bond" wavefunction for the hydrogen molecule (H_2) , including the ionic contribution.
 - (b) Write down the simplee 1s-orbital-based "molecular orbital" wavefunction for the hydrogen molecule including the configuration interaction with the state where both electrons are in the antibonding orbital.
 - (c) Show that these two wavefunctions are equivalent; i.e., show that the coefficients of the bonding/antibonding configurations in molecular orbital theory can be derived in terms of the coefficients of the ionic/covalent contributions in valence bond theory.
- 2. In Lithium Hydride, LiH, in the molecular orbital approximation, the ground state is predicted to be a singlet state, and the occupied molecular orbitals are both sigma orbitals. The electron configuration can then be written as $1\sigma^2 2\sigma^2$. Let $\phi_{1\sigma}(\mathbf{r})$ and $\phi_{2\sigma}(\mathbf{r})$ denote these molecular orbitals.
 - (a) Write the Slater determinant for the $1\sigma^2 2\sigma^2$ electron configuration of LiH. Write the determinant out in its entirety, showing all the occupied orbitals and the coordinates of all the electrons explicitly. Remember the normalization factor.
 - (b) Write a reasonable expression for the highest (the 2σ) occupied molecular orbital in LiH.
- 3. Draw the molecular orbital diagram for C_2 , N_2 , and F_2 . For each of these molecules A_2 , the cationic specie, A_2^2 , and the anionic specie A_2^- :
 - (a) Predict the ground state configuration.
 - (b) Calculate the bond order.
 - (c) Determine its multiplicity.
- 4. Draw the molecular orbital diagram for methane (CH_4) .