Assignment 6: GLMs (Linear Regressios, ANOVA, & t-tests)

Yinsu Wang

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on generalized linear models.

Directions

- 1. Change "Student Name" on line 3 (above) with your name.
- 2. Work through the steps, **creating code and output** that fulfill each instruction.
- 3. Be sure to **answer the questions** in this assignment document.
- 4. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 5. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai. Add your last name into the file name (e.g., "Fay_A06_GLMs.Rmd") prior to submission.

The completed exercise is due on Monday, February 28 at 7:00 pm.

Set up your session

- 1. Set up your session. Check your working directory. Load the tidyverse, agricolae and other needed packages. Import the *raw* NTL-LTER raw data file for chemistry/physics (NTL-LTER_Lake_ChemistryPhysics_Raw.csv). Set date columns to date objects.
- 2. Build a ggplot theme and set it as your default theme.

```
#1
getwd()
```

[1] "/Users/wangyinsu/Desktop/2022 Spring/Env872/Environmental_Data_Analytics_2022"
library(tidyverse)

```
## -- Attaching packages -----
                                             ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                     v purrr
                              0.3.4
## v tibble 3.1.6
                              1.0.7
                     v dplyr
## v tidyr
           1.1.4
                     v stringr 1.4.0
## v readr
           2.1.1
                     v forcats 0.5.1
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
#install.packages("agricolae")
library(agricolae)
library(lubridate)
```

##
Attaching package: 'lubridate'

Simple regression

Our first research question is: Does mean lake temperature recorded during July change with depth across all lakes?

- 3. State the null and alternative hypotheses for this question: > Answer: H0: mean lake temperature recorded during July is the same with depth across all lakes. Ha: mean lake temperature recorded during July changes with depth across all lakes.
- 4. Wrangle your NTL-LTER dataset with a pipe function so that the records meet the following criteria:
- Only dates in July.
- Only the columns: lakename, year4, daynum, depth, temperature_C

Warning: Removed 24 rows containing missing values (geom_smooth).

- Only complete cases (i.e., remove NAs)
- 5. Visualize the relationship among the two continuous variables with a scatter plot of temperature by depth. Add a smoothed line showing the linear model, and limit temperature values from 0 to 35 °C. Make this plot look pretty and easy to read.

```
#4
chemistry_physics<-chemistry_physics%>%
  filter(month(sampledate)==7)%>%
  select(lakename, year4, daynum, depth, temperature_C)%>%
  filter(!is.na(lakename))%>%
  filter(!is.na(year4))%>%
  filter(!is.na(daynum))%>%
  filter(!is.na(depth))%>%
  filter(!is.na(temperature_C))
depth_temp<-ggplot(chemistry_physics,aes(x=depth,y=temperature_C))+
  geom_point()+
  geom smooth(method = "lm", se=FALSE, color="dark blue")+
  ylim(0,35) +
  labs(x="Depth",y="Temperature")
print(depth_temp)
## `geom_smooth()` using formula 'y ~ x'
```


6. Interpret the figure. What does it suggest with regards to the response of temperature to depth? Do the distribution of points suggest about anything about the linearity of this trend?

Answer: From the figure we can see that as the lake goes deeper, the temperature goes lower and from the distribution of points we can suppose that in every fixed depth, the temperature is "normally" distributed across the line, meaning that there is trend of linearity.

7. Perform a linear regression to test the relationship and display the results

```
#7
depth.temp.regression<-lm(chemistry_physics$temperature_C~chemistry_physics$depth)
summary(depth.temp.regression)</pre>
```

```
##
## Call:
## lm(formula = chemistry_physics$temperature_C ~ chemistry_physics$depth)
##
## Residuals:
##
                1Q
                    Median
  -9.5173 -3.0192
                    0.0633
                            2.9365 13.5834
##
##
  Coefficients:
##
##
                            Estimate Std. Error t value Pr(>|t|)
                                                   323.3
                                                           <2e-16 ***
##
   (Intercept)
                            21.95597
                                        0.06792
   chemistry_physics$depth -1.94621
                                        0.01174
                                                 -165.8
                                                           <2e-16 ***
##
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
```

```
## Residual standard error: 3.835 on 9726 degrees of freedom
## Multiple R-squared: 0.7387, Adjusted R-squared: 0.7387
## F-statistic: 2.75e+04 on 1 and 9726 DF, p-value: < 2.2e-16
cor.test(chemistry_physics$depth,chemistry_physics$temperature_C)
##
##
   Pearson's product-moment correlation
##
## data: chemistry_physics$depth and chemistry_physics$temperature_C
## t = -165.83, df = 9726, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
  -0.8646036 -0.8542169
## sample estimates:
##
          cor
```

8. Interpret your model results in words. Include how much of the variability in temperature is explained by changes in depth, the degrees of freedom on which this finding is based, and the statistical significance of the result. Also mention how much temperature is predicted to change for every 1m change in depth.

Answer: about 73.87% variability in temperature is explained by changes in depth based on 9726 degrees of freedom. since p-value: < 2.2e-16, it means that our null hypothesis that mean lake temperature recorded during July is the same with depth across all lakes is not established and we have confidence in that temperature recorded varies with depth across all lakes. For every 1m change in depth, the temperature is predicted to change -1.94621 celsius.

Multiple regression

-0.8594989

Let's tackle a similar question from a different approach. Here, we want to explore what might the best set of predictors for lake temperature in July across the monitoring period at the North Temperate Lakes LTER.

- 9. Run an AIC to determine what set of explanatory variables (year4, daynum, depth) is best suited to predict temperature.
- 10. Run a multiple regression on the recommended set of variables.

```
AIC1<-lm(data=chemistry_physics,temperature_C~year4+daynum+depth)
step(AIC1)
## Start: AIC=26065.53
## temperature_C ~ year4 + daynum + depth
##
##
            Df Sum of Sq
                            RSS
                                   AIC
## <none>
                         141687 26066
## - year4
                     101 141788 26070
## - daynum 1
                    1237 142924 26148
## - depth
                  404475 546161 39189
##
## lm(formula = temperature_C ~ year4 + daynum + depth, data = chemistry_physics)
##
## Coefficients:
## (Intercept)
                      year4
                                   daynum
                                                 depth
```

```
##
      -8.57556
                    0.01134
                                 0.03978
                                             -1.94644
#10
model < -lm (data = chemistry physics, temperature C~year4+daynum+depth)
summary(model)
##
## Call:
## lm(formula = temperature_C ~ year4 + daynum + depth, data = chemistry_physics)
##
## Residuals:
                10 Median
                                30
##
       Min
##
  -9.6536 -3.0000 0.0902 2.9658 13.6123
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                                      -0.994 0.32044
## (Intercept) -8.575564
                           8.630715
## year4
                0.011345
                           0.004299
                                       2.639
                                              0.00833 **
## daynum
                0.039780
                           0.004317
                                       9.215
                                              < 2e-16 ***
## depth
               -1.946437
                           0.011683 -166.611 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.817 on 9724 degrees of freedom
## Multiple R-squared: 0.7412, Adjusted R-squared: 0.7411
## F-statistic: 9283 on 3 and 9724 DF, p-value: < 2.2e-16
```

11. What is the final set of explanatory variables that the AIC method suggests we use to predict temperature in our multiple regression? How much of the observed variance does this model explain? Is this an improvement over the model using only depth as the explanatory variable?

Answer: the final set of explanatory variables are year4, daynum, depth. this model can explain 74.12% observed variance. this is an improvent over the model using only depth as the explanatory variable where the variance can only be explained by 73.87%.

Analysis of Variance

12. Now we want to see whether the different lakes have, on average, different temperatures in the month of July. Run an ANOVA test to complete this analysis. (No need to test assumptions of normality or similar variances.) Create two sets of models: one expressed as an ANOVA models and another expressed as a linear model (as done in our lessons).

```
#12
#ANOVA model
lake.temp <- aov(data = chemistry_physics, temperature_C ~ lakename)</pre>
summary(lake.temp)
##
                 Df Sum Sq Mean Sq F value Pr(>F)
## lakename
                  8 21642
                            2705.2
                                         50 <2e-16 ***
## Residuals
               9719 525813
                               54.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#lm model
lake.temp2 <- lm(data = chemistry_physics, temperature_C ~ lakename)</pre>
summary(lake.temp2)
```

```
##
## Call:
## lm(formula = temperature C ~ lakename, data = chemistry physics)
##
## Residuals:
##
      Min
                1Q Median
                               3Q
                                      Max
## -10.769 -6.614 -2.679
                                   23.832
                            7.684
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            17.6664
                                        0.6501 27.174 < 2e-16 ***
## lakenameCrampton Lake
                            -2.3145
                                        0.7699 -3.006 0.002653 **
## lakenameEast Long Lake
                            -7.3987
                                        0.6918 -10.695 < 2e-16 ***
## lakenameHummingbird Lake -6.8931
                                        0.9429
                                                -7.311 2.87e-13 ***
## lakenamePaul Lake
                                        0.6656
                                                -5.788 7.36e-09 ***
                            -3.8522
## lakenamePeter Lake
                            -4.3501
                                        0.6645
                                                -6.547 6.17e-11 ***
                                        0.6769
                                                -9.746 < 2e-16 ***
## lakenameTuesday Lake
                            -6.5972
## lakenameWard Lake
                            -3.2078
                                        0.9429
                                                -3.402 0.000672 ***
## lakenameWest Long Lake
                            -6.0878
                                        0.6895 -8.829 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.355 on 9719 degrees of freedom
                                   Adjusted R-squared:
## Multiple R-squared: 0.03953,
                  50 on 8 and 9719 DF, p-value: < 2.2e-16
## F-statistic:
```

13. Is there a significant difference in mean temperature among the lakes? Report your findings.

Answer: the p-value of this F test is <2e-16, which means by p=0.05 cut-off, there is a significant difference in mean temperature among the lakes.

14. Create a graph that depicts temperature by depth, with a separate color for each lake. Add a geom_smooth (method = "lm", se = FALSE) for each lake. Make your points 50 % transparent. Adjust your y axis limits to go from 0 to 35 degrees. Clean up your graph to make it pretty.

```
#14.
temp.depth.plot<-ggplot(chemistry_physics,aes(x=depth,y=temperature_C, color=lakename))+
   geom_point(alpha = 0.5)+
   geom_smooth(method = "lm", se = FALSE)+
   ylim(0,35)+
   labs(y="Temperature (Celsius)")
print(temp.depth.plot)</pre>
```

```
## `geom_smooth()` using formula 'y ~ x'
```

Warning: Removed 73 rows containing missing values (geom_smooth).

15. Use the Tukey's HSD test to determine which lakes have different means.

```
#15
TukeyHSD(lake.temp)
```

```
##
     Tukey multiple comparisons of means
       95% family-wise confidence level
##
##
  Fit: aov(formula = temperature_C ~ lakename, data = chemistry_physics)
##
##
## $lakename
##
                                            diff
                                                         lwr
                                                                    upr
                                                                            p adj
## Crampton Lake-Central Long Lake
                                      -2.3145195 -4.7031913 0.0741524 0.0661566
                                      -7.3987410 -9.5449411 -5.2525408 0.0000000
## East Long Lake-Central Long Lake
## Hummingbird Lake-Central Long Lake -6.8931304 -9.8184178 -3.9678430 0.0000000
## Paul Lake-Central Long Lake
                                      -3.8521506 -5.9170942 -1.7872070 0.0000003
## Peter Lake-Central Long Lake
                                      -4.3501458 -6.4115874 -2.2887042 0.0000000
## Tuesday Lake-Central Long Lake
                                      -6.5971805 -8.6971605 -4.4972005 0.0000000
                                      -3.2077856 -6.1330730 -0.2824982 0.0193405
## Ward Lake-Central Long Lake
## West Long Lake-Central Long Lake
                                      -6.0877513 -8.2268550 -3.9486475 0.0000000
## East Long Lake-Crampton Lake
                                      -5.0842215 -6.5591700 -3.6092730 0.0000000
## Hummingbird Lake-Crampton Lake
                                      -4.5786109 -7.0538088 -2.1034131 0.0000004
                                      -1.5376312 -2.8916215 -0.1836408 0.0127491
## Paul Lake-Crampton Lake
## Peter Lake-Crampton Lake
                                      -2.0356263 -3.3842699 -0.6869828 0.0000999
## Tuesday Lake-Crampton Lake
                                      -4.2826611 -5.6895065 -2.8758157 0.0000000
## Ward Lake-Crampton Lake
                                      -0.8932661 -3.3684639 1.5819317 0.9714459
                                      -3.7732318 -5.2378351 -2.3086285 0.0000000
## West Long Lake-Crampton Lake
```

```
## Hummingbird Lake-East Long Lake
                                       0.5056106 -1.7364925
                                                             2.7477137 0.9988050
## Paul Lake-East Long Lake
                                       3.5465903 2.6900206
                                                             4.4031601 0.0000000
## Peter Lake-East Long Lake
                                                             3.8966879 0.0000000
                                       3.0485952 2.2005025
## Tuesday Lake-East Long Lake
                                       0.8015604 -0.1363286
                                                             1.7394495 0.1657485
## Ward Lake-East Long Lake
                                       4.1909554 1.9488523
                                                             6.4330585 0.0000002
## West Long Lake-East Long Lake
                                       1.3109897 0.2885003
                                                             2.3334791 0.0022805
## Paul Lake-Hummingbird Lake
                                       3.0409798 0.8765299
                                                             5.2054296 0.0004495
## Peter Lake-Hummingbird Lake
                                       2.5429846 0.3818755
                                                             4.7040937 0.0080666
## Tuesday Lake-Hummingbird Lake
                                       0.2959499 -1.9019508
                                                             2.4938505 0.9999752
## Ward Lake-Hummingbird Lake
                                       3.6853448 0.6889874
                                                             6.6817022 0.0043297
## West Long Lake-Hummingbird Lake
                                       0.8053791 -1.4299320
                                                             3.0406903 0.9717297
## Peter Lake-Paul Lake
                                      -0.4979952 -1.1120620
                                                             0.1160717 0.2241586
## Tuesday Lake-Paul Lake
                                      -2.7450299 -3.4781416 -2.0119182 0.0000000
                                       0.6443651 -1.5200848 2.8088149 0.9916978
## Ward Lake-Paul Lake
                                      -2.2356007 -3.0742314 -1.3969699 0.0000000
## West Long Lake-Paul Lake
## Tuesday Lake-Peter Lake
                                      -2.2470347 -2.9702236 -1.5238458 0.0000000
## Ward Lake-Peter Lake
                                      1.1423602 -1.0187489 3.3034693 0.7827037
## West Long Lake-Peter Lake
                                      -1.7376055 -2.5675759 -0.9076350 0.0000000
## Ward Lake-Tuesday Lake
                                      3.3893950 1.1914943 5.5872956 0.0000609
## West Long Lake-Tuesday Lake
                                       0.5094292 -0.4121051 1.4309636 0.7374387
## West Long Lake-Ward Lake
                                      -2.8799657 -5.1152769 -0.6446546 0.0021080
lake.temp.groups <- HSD.test(lake.temp, "lakename", group = TRUE)</pre>
lake.temp.groups
## $statistics
##
              Df
                                 CV
    MSerror
                      Mean
##
     54.1016 9719 12.72087 57.82135
##
## $parameters
##
            name.t ntr StudentizedRange alpha
     test
##
     Tukey lakename
                                4.387504 0.05
##
## $means
##
                     temperature_C
                                               r Min Max
                                                             Q25
                                                                   Q50
                                                                          Q75
                                        std
## Central Long Lake
                          17.66641 4.196292 128 8.9 26.8 14.400 18.40 21.000
## Crampton Lake
                          15.35189 7.244773
                                             318 5.0 27.5
                                                          7.525 16.90 22.300
## East Long Lake
                          10.26767 6.766804
                                             968 4.2 34.1
                                                           4.975 6.50 15.925
                          10.77328 7.017845 116 4.0 31.5
                                                          5.200 7.00 15.625
## Hummingbird Lake
## Paul Lake
                          13.81426 7.296928 2660 4.7 27.7
                                                           6.500 12.40 21.400
## Peter Lake
                          13.31626 7.669758 2872 4.0 27.0
                                                          5.600 11.40 21.500
## Tuesday Lake
                          11.06923 7.698687 1524 0.3 27.7
                                                           4.400 6.80 19.400
                         14.45862 7.409079 116 5.7 27.6 7.200 12.55 23.200
## Ward Lake
## West Long Lake
                         11.57865 6.980789 1026 4.0 25.7 5.400 8.00 18.800
##
## $comparison
## NULL
##
## $groups
##
                     temperature_C groups
## Central Long Lake
                          17.66641
## Crampton Lake
                          15.35189
                                       ab
## Ward Lake
                          14.45862
                                       bc
## Paul Lake
                          13.81426
                                        С
## Peter Lake
                          13.31626
                                        С
```

```
## West Long Lake 11.57865 d
## Tuesday Lake 11.06923 de
## Hummingbird Lake 10.77328 de
## East Long Lake 10.26767 e
##
## attr(,"class")
## [1] "group"
```

16. From the findings above, which lakes have the same mean temperature, statistically speaking, as Peter Lake? Does any lake have a mean temperature that is statistically distinct from all the other lakes?

Answer: Ward lake and Paul lake have the same mean temperature statistically speaking as Peter lake. From the Tukey's HSD test we can see that no lake has a mean temperature that is statistically distinct from all the other lakes.

17. If we were just looking at Peter Lake and Paul Lake. What's another test we might explore to see whether they have distinct mean temperatures?

Answer: Pairewise T-test.