HW1

Problem 1

Claim: $\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}$ is invertible for $\lambda > 0$.

To prove this claim we can use eigendecomposition. Matrix $\mathbf{X}^T\mathbf{X}$ is symmetric, and we can apply eigendecomposition to it:

$$\mathbf{X}^T\mathbf{X} = \mathbf{Q}\Lambda\mathbf{Q}^T$$

 \mathbf{Q} is the orthogonal matrix with the eigenvectors of $\mathbf{X}^T\mathbf{X}$

 Λ is the diagonal matrix with the eigenvalues of $\mathbf{X}^T\mathbf{X}$

 $\mathbf{X}^T\mathbf{X} = \mathbf{Q}\Lambda\mathbf{Q}^T$ is a square matrix. If we can show all the eqigenvalues of this matrix are strictly greater than 0, we can prove the claim is true, which $\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}$ is invertible for $\lambda > 0$.

Eigenvalues of $\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}$ are the diagonals of $\Lambda + \lambda \mathbf{I}$. Since the all elements of Λ are greater than or equal to 0, all the eigenvalues of $\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}$ are strictly greater than 0 because $\lambda > 0$. \square

Problem 2.a

From the problem definition, the expected loss of a prediction function f(x) in modeling y using loss function $\ell(f(x), y)$ is given by;

$$\mathbb{E}_{(x,y)}[\ell(f(x),y)] = \int_x \int_y \ell(f(x),y) p(x,y) \, dy \, dx = \int_x \left\{ \int_y \ell(f(x),y) p(y|x) dy \right\} p(x) dx$$

We take the gradient of the given expected loss function with respect to f and make it equal to 0 to find the optimal f(x):

$$\frac{\partial}{\partial f} \mathbb{E}_{(x,y)}[\ell(f(x),y)] = 0$$

$$= \int_{x} \frac{\partial}{\partial f} \left\{ \int_{y} (f(x) - y)^{2} p(y|x) dy \right\} p(x) dx = 0$$

$$= \int_{x} 2 \left\{ \int_{y} (f(x) - y) p(y|x) dy \right\} p(x) dx = 0,$$
we can eliminate 2 from this equality.
Assign optimal $f(x)$ as $f^{*}(x)$

$$\implies \int_{x} \left\{ \int_{y} (f^{*}(x) - y) p(y|x) dy \right\} p(x) dx = 0$$

$$\implies \int_{y} (f^{*}(x) - y) p(y|x) dy = 0$$

$$\implies \int_{y} f^{*}(x) p(y|x) dy = \int_{y} y p(y|x) dy$$

The optimal prediction function $f^*(x) = \mathbb{E}[y|x]$ means that, when using the loss function $\ell(f(x),y)=(f(x)-y)^2$, estimating y as the expected value of y given x is the best way in modeling the variable y which is our target.

 $\implies f^*(x) = \mathbb{E}[y|x].$

Problem 2.b

Use $\ell(f(x), y) = |f(x) - y|$.

$$\mathbb{E}_{(x,y)}[\ell(f(x),y)] = \int_{x} \left\{ \int_{y} |f(x) - y| p(y|x) dy \right\} p(x) dx = 0$$

Following this,

$$\underset{f}{\operatorname{arg\,min}} \mathbb{E}_{(x,y)}[|f(x)-y|]$$
 will yield optimum value for $f(x), f^*(x)$

Consider two different cases: $f(x) \ge y$ and f(x) < y

When $f(x) \geq y$:

$$\mathbb{E}_{(x,y)}[|f(x) - y|] = \int_{x} \left\{ \int_{y} (f(x) - y)p(y|x)dy \right\} p(x)dx = 0$$

When f(x) < y:

$$\mathbb{E}_{(x,y)}[|f(x) - y|] = \int_x \left\{ \int_y (y - f(x))p(y|x)dy \right\} p(x)dx = 0$$

Taking the gradient of $\mathbb{E}_{(x,y)}[|f(x)-y|]$ with respect to f(x) and equating it to 0 will give the optimal prediction, $f^*(x)$:

$$\int_{x} \left\{ \int_{y} sgn(f(x) - y)p(y|x)dy \right\} p(x)dx = 0$$

$$\implies f^*(x) = median(y|x).$$

The optimal prediction $f^*(x) = median(y|x)$ means, when using the loss function $\ell(f(x), y) = |f(x) - y|$, estimating y as the conditional median of y given x is the best way in modeling he variable y.

Problem 3

An output example is the following:

```
Ridge regression CV MSE values ['0.52182', '0.52482', '0.53391', '0.56698', '0.55272', '0.47963', '0.52045', '0.53880', '0.49403', '0.51004', 'Mean: 0.52432 Std: 0.02463'] Logistic Regression CV error rates ['0.01786', '0.07143', '0.01786', '0.00000', '0.10714', '0.08929', '0.07143', '0.07143', '0.03571', '0.05357', 'Mean: 0.05357 Std: 0.03293']
```

Please see my_cross_val.py for details.

Problem 4

			N	ISE for Ri	idge Regre	ession	$\lambda = 0.0$)1			
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.50053	0.52606	0.54548	0.55008	0.49656	0.53474	0.48806	0.51549	0.58072	0.50555	0.52433	0.03177

			N	MSE for R	idge Regr	ession	$\lambda = 0.$	1			
F1 F2 F3 F4 F5 F6							F8	F9	F10	Mean	SD
0.46847	0.57921	0.55187	0.50076	0.55503	0.48657	0.48536	0.56731	0.56390	0.48940	0.52479	0.01838

				MSE for 1	Ridge Reg	ression	$\lambda = 1$				
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.57144	0.52921	0.56122	0.51490	0.51280	0.55965	0.55227	0.49218	0.53942	0.57396	0.54070	0.01611

			I	MSE for F	Ridge Regr	ression	$\lambda = 10$)			
F1	F2	F3	F4	F8	F9	F10	Mean	SD			
0.59823	0.56545	0.60869	0.58888	0.57241	0.61952	0.56662	0.63420	0.56114	0.56391	0.58790	0.02428

			N	ASE for R	idge Regr	ession	$\lambda = 10$	0			
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.59391	0.60637	0.57598	0.60588	0.60146	0.61539	0.57209	0.61453	0.63485	0.60729	0.60278	0.02812

				N	ISE for La	asso Regre	ession	$\lambda = 0.0$	1			
	F1	F2	F3	F4	F7	F8	F9	F10	Mean	SD		
(0.55108	0.50055	0.51191	0.50764	0.62514	0.52050	0.52077	0.52644	0.54068	0.48929	0.52940	0.03626

			MSE for Lasso Regression $\lambda = 0.1$												
ĺ	F1	F2	F3	F4	F7	F8	F9	F10	Mean	SD					
	0.60795	0.58397	0.63233	0.60449	0.61354	0.62158	0.54487	0.62279	0.60334	0.62015	0.60550	0.02389			

				MSE for 1	Lasso Reg	ression	$\lambda = 1$				
F1	F2	F3	F4	F5	F7	F8	F9	F10	Mean	SD	
0.93240	0.94889	0.96051	0.98593	0.97911	0.89187	0.92342	0.93550	0.99874	0.96073	0.95171	0.03053

]	MSE for I	lasso Regi	ression	$\lambda = 10$)			
F1	F1 F2 F3 F4 F5 F6 F7							F9	F10	Mean	SD
1.38949	1.33062	1.32248	1.36551	1.25132	1.33459	1.31729	1.28809	1.34931	1.35949	1.33082	0.03771

				N	ASE for L	asso Regre	ession	$\lambda = 10$	0			
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD											SD	
	1.23668	1.30486	1.33603	1.36577	1.28324	1.34158	1.37368	1.27391	1.39811	1.40165	1.33155	0.05271

As the λ increases mean of the folds increases for both MSE types. Lower λ means more optimal. However, note that, too small λ could result in overfitting. Larger λ means more regularization and it makes the model less effective at fitting the data.

 $\lambda = 0.01$ is the most optimal for both methods.

]	MSE for F	Ridge Regr	ression on	the Test 1	Data	$\lambda = 0.01$	1		
F1	F2	F3	F4	F8	F9	F10	Mean	SD			
0.52205	0.42542	0.46055	0.48274	0.46784	0.53433	0.49746	0.50033	0.44498	0.46261	0.47983	0.03237

]	MSE for I	asso Regr	ression on	the Test I	Data	$\lambda = 0.01$	L	MSE for Lasso Regression on the Test Data $\lambda = 0.01$													
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean S												SD												
	0.56778	0.50461	0.45643	0.49001	0.44344	0.50803	0.59268	0.43418	0.44206	0.41352	0.48527	0.05609												

Overall, Ridge Regression gives better results than Lasso as the corresponding fold values are smaller and therefore their means are smaller compared to Lasso.

Problem 5

Based on the projected data points and trial-and-error, optimal values of lambda lie between [-0.08,0]. Therefore, you'll only see $\lambda \in [-0.008, -0.007, -0.006, -0.005, -0.004, -0.003, -0.002, -0.001, 0]$ in hw1_q5.py.

In general, as $|\lambda|$ increases mean of the error folds also increases. However, this is true until the optimal λ is reached. Beyond the optimal λ , model starts to overfit therefore mean increases. Among the experienced λ values, -0.002 gives the best results for the error folds as it yields the least mean. Therefore, this optimal λ is used on the test data. As you can see, the mean of the folds is the least, smaller than all the means found using several $\lambda's$. This shows that training was successful.

Please see the tables below.

Error Rates for LDA $\lambda = -0.008$											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.09000	0.05500	0.07000	0.09000	0.12500	0.09000	0.07000	0.06500	0.05500	0.07500	0.07850	0.02001
Error Rates for LDA $\lambda = -0.007$											
F1	F2	F3	F4	F5	F6	F7		F9	F10	Mean	SD
0.03500	0.05500	0.06000	0.04500	0.04500	0.03500	0.05000	0.08500	0.03000	0.05000	0.04900	0.01497
Error Rates for LDA $\lambda = -0.006$											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.04000	0.02000	0.02500	0.04000	0.02000	0.03500	0.04000	0.02500	0.04000	0.00000	0.02850	0.01246
Error Rates for LDA $\lambda = -0.005$											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.00500	0.03000	0.01000	0.00000	0.03500	0.03500	0.01500	0.00500	0.02500	0.03000	0.01900	0.01281
Error Rates for LDA $\lambda = -0.004$											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.01000	0.02500	0.00500	0.01000		0.02500			0.01500			0.00709
					es for LDA		=-0.003				0.5
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.01000	0.01000	0.00000	0.00000	0.01500	0.02000	0.01500	0.01000	0.02000	0.02000	0.01200	0.00714
Error Rates for LDA $\lambda = -0.002$											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.01000	0.01000	0.01000	0.02000	0.01500	0.00000	0.01500	0.01000	0.00500	0.01000	0.01050	0.00522
Error Rates for LDA $\lambda = -0.001$											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.01000	0.00000	0.01000	0.01500	0.03000	0.01000	0.00500	0.01500	0.02500	0.03500	0.01550	0.01059
Error Rates for LDA $\lambda = 0$											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.02000	0.00000	0.03500	0.02000	0.02500	0.01000	0.02500	0.05000	0.02500	0.03000		0.01281
		1					1		1	1	

Error Rates for LDA on the Test Data $\lambda = -0.002$											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.02500	0.02500	0.00000	0.00000	0.00000	0.00000	0.02500	0.02500	0.00000	0.00000	0.01000	0.01225