Appl. No. 09/832,631 Amdt.AF dated May 24, 2006 Reply to Final Office Action of February 28, 2006

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

- 1. (Currently Amended) A spectrometer system for performing spectroscopic determination on biological media, the spectrometer system comprising:
 - a light source for generating light;
- an optical filter positioned to receive light from the light source, the filter having a plurality of bandpass regions, wherein light within a bandpass region is transmitted through the filter such that for each bandpass region there is a corresponding passband of light;
- an optical encoding unit positioned for encoding selected passbands of light corresponding to bandpass regions of the optical filter, the optical encoding unit configured for selecting subsets of the passbands of light;
- a sampler for transmitting the light into the sample and for receiving the non-absorbed light from the sample; and
- a detector for receiving the non-absorbed light and for generating an electric signal indicative of the non-absorbed light;

wherein the sampler is configured to receive the filtered, encoded light from the encoder.

- 2. (Previously Presented) A spectrometer system as in claim 1, wherein the optical filter substantially reflects light when the incident light is of a wavelength outside the plurality of bandpass regions.
- 3. (Original) A spectrometer system as in claim 2, further comprising an optical integrating chamber wherein light reflected from the optical filter is substantially directed into the chamber and then reflected back to the optical filter.
- 4.(Original) A spectrometer system as in claim 3, wherein the spectrometer system has a signal-to-noise ratio, and wherein the integrating chamber increases the signal-to-noise ratio.

Appl. No. 09/832,631 Amdt AF dated May 24, 2006 Reply to Final Office Action of February 28, 2006

- 5. (Original) A spectrometer system as in claim 4, wherein the integrating chamber allows direct illumination of the filter from the light source.
- 6. (Original) A spectrometer system as in claim 5, wherein the integrating chamber is an orthogonal design to preserve angular qualities of the light entering the integrating chamber.
- 7. (Original) A spectrometer system as in claim 3, wherein the light source is disposed inside the integrating chamber.
- 8. (Withdrawn) A spectrometer system as in claim 3, wherein the light source is disposed outside the integrating chamber.
- 9. (Original) A spectrometer system as in claim 1, wherein the sampler is disposed adjacent the detector.
- 10. (Withdrawn) A spectrometer system as in claim 1, wherein the sampler is disposed adjacent the light source.
- 11. (Original) A spectrometer system as in claim 1, wherein the optical filter is disposed adjacent the light source.
- 12. (Withdrawn) A spectrometer system as in claim 1, wherein the optical encoding unit is disposed adjacent the light source.
- 13. (Original) A spectrometer system as in claim 1, wherein the optical filter comprises one or more dielectric bandpass filters.
- 14. (Original) A spectrometer system as in claim 13, wherein the optical filter comprises a linear variable filter.

Appl. No. 09/832,631 Amdt.AF dated May 24, 2006 Reply to Final Office Action of February 28, 2006

- 15. (Original) A spectrometer system as in claim 13, wherein the optical filter comprises a non-linear variable filter.
- 16. (Original) A spectrometer system as in claim 1, wherein the optical filter comprises a plurality of individual bandpass filters.
- 17. (Withdrawn) A spectrometer system as in claim 1, wherein the optical bandpass filters are embodied in optical fibers.
- 18. (Original) A spectrometer system as in claim 1, wherein the optical filter comprises a circular variable filter.
- 19. (Original) A spectrometer system as in claim 1, wherein the encoding unit comprises a spatial light modulator.
- 20. (Withdrawn) A spectrometer system as in claim 19, wherein the encoding unit comprises a rotary mask having an aperture array.
- 21. (Withdrawn) A spectrometer system as in claim 19, wherein the encoding unit comprises a linear translation mask having an aperture array.
- 22. (Withdrawn) A spectrometer system as in claim 19, wherein the encoding unit comprises a liquid crystal spatial light modulator.
- 23. (Withdrawn) A spectrometer system as in claim 19, wherein the encoding unit comprises a micro-electromechanical system.
- 24. (Withdrawn) A spectrometer system as in claim 23, wherein the individual micro-apertures are controllable to be either substantially transmissive or opaque.

Amdt AF dated May 24, 2006
Reply to Final Office Action of February 28, 2006

- 25. (Withdrawn) A spectrometer system as in claim 23, wherein the individual microapertures are controllable to be either an optical bandpass filter or opaque.
- 26. (Withdrawn) A spectrometer system as in claim 23, wherein the individual micro-apertures are controllable to be one of a plurality of optical bandpass filters.
- 27. (Withdrawn) A spectrometer system as in claim 1, wherein the encoding unit comprises a digital mirror device.
- 28. (Withdrawn) A spectrometer system as in claim 1, wherein the optical filter and the encoding unit are combined into a single unit.
- 29. (Currently Amended) A spectrometer for use in a spectroscopic system, the spectroscopic system including a light source for generating light and a detector for receiving light, the spectrometer comprising:

an optical filter for receiving light from the light source, the filter having a plurality of bandpass regions, wherein light within a bandpass region is transmitted through the optical filter such that for each bandpass region there is a corresponding passband of light, the optical filter further disposed such that a plurality of passbands of light pass through the optical filter from the light source simultaneously; and

an encoding unit for encoding selected passbands of light corresponding to bandpass regions of the optical filter, the optical encoding unit configured for selecting subsets of the passbands of light:

wherein the encoding unit is operable to select at least a first subset of the passbands of light or a second subset of the passbands of light for transmission to a sampler adapted to interrogate a biological sample.

30. (Previously Presented) A spectrometer as in claim 29, wherein the optical filter substantially reflects light when the incident light is of a wavelength outside the plurality of bandpass regions.

MAY-24-06 12:54

Reply to Final Office Action of February 28, 2006

31. (Original) A spectrometer as in claim 30, further comprising an optical integrating chamber wherein light reflected from the optical filter is substantially directed into the chamber and then reflected back to the optical filter.

+6123599349

- 32. (Original) A spectrometer as in claim 31, wherein the spectrometer has a signal-tonoise ratio, and wherein the integrating chamber increases the signal-to-noise ratio.
- 33. (Original) A spectrometer as in claim 32, wherein the integrating chamber allows direct illumination of the filter from the light source.
- 34. (Original) A spectrometer as in claim 33, wherein the integrating chamber is an orthogonal design to preserve angular qualities of the light entering the integrating chamber.
- 35. (Onginal) A spectrometer as in claim 29, wherein the optical filter is disposed adjacent the light source.
- 36. (Withdrawn) A spectrometer system as in claim 29, wherein the optical encoding unit is disposed adjacent the light source.
- 37. (Original) A spectrometer as in claim 29, wherein the optical filter comprises one or more dielectric bandpass filters.
- 38. (Original) A spectrometer as in claim 37, wherein the optical filter comprises a linear variable filter.
- 39. (Original) A spectrometer as in claim 37, wherein the optical filter comprises a nonlinear variable filter.
- 40. (Original) A spectrometer as in claim 37, wherein the optical filter comprises a plurality of individual bandpass filters.

- 41. (Withdrawn) A spectrometer as in claim 40, wherein the bandpass optical filters are embodied in optical fibers.
- 42. (Original) A spectrometer as in claim 37, wherein the optical filter comprises a circular variable filter.
- 43. (Original) A spectrometer as in claim 29, wherein the encoding unit comprises a spatial light modulator.
- 44. (Withdrawn) A spectrometer as in claim 43, wherein the encoding unit comprises a rotary mask having an aperture array.
- 45. (Withdrawn) A spectrometer as in claim 43, wherein the encoding unit comprises a linear translation mask having an aperture array.
- 46. (Withdrawn) A spectrometer as in claim 43, wherein the encoding unit comprises a liquid crystal spatial light modulator.
- 47. (Withdrawn) A spectrometer as in claim 43, wherein the encoding unit comprises a micro-electromechanical system.
- 48. (Withdrawn) A spectrometer as in claim 47, wherein the individual micro-apertures are controllable to be either substantially transmissive or opaque.
- 49. (Withdrawn) A spectrometer as in claim 47, wherein the individual micro-apertures are controllable to be either an optical bandpass filter or opaque.
- 50. (Withdrawn) A spectrometer as in claim 47, wherein the individual micro-apertures are controllable to be one of a plurality of optical bandpass filters.

Appl. No. 09/832,631 Amdr.AF dated May 24, 2006 Reply to Final Office Action of February 28, 2006

- 51. (Withdrawn) A spectrometer as in claim 29, wherein the encoding unit comprises a digital mirror device.
- 52. (Withdrawn) A spectrometer as in claim 29, wherein the optical filter and the encoding unit are combined into a single unit.
- 53. (Previously Presented) A spectrometer for use in selected applications of a spectroscopic system, the spectroscopic system including a light source for generating light and a detector for receiving light, the spectrometer comprising:

an optical filter for receiving light from the light source, the filter having a plurality of bandpass regions, wherein light within a bandpass region is transmitted through the optical filter such that for each bandpass region there is a corresponding passband of light, the optical filter further disposed such that a plurality of passbands of light pass through the optical filter from the light source simultaneously, wherein said regions are sized from final regression coefficients derived from said selected application; and

an encoding unit for encoding selected passbands of light corresponding to bandpass region of the optical filter, the optical encoding unit configured for selecting subsets of the passbands of light.

54-64. (Cancelled).