2019W1_ELEC_201_101102

Assignment ASN7 due 11/20/2019 at 11:59pm PST

1. (5 points)

Consider a NPN transistor which exhibits a v_{BE1} =0.727011 V at i_{C1} =1 mA and v_{BE2} =0.786537 V at i_{C2} =10 mA. Calculate the transistor's temperature and I_s .

Boltzmann's constant = 1.38064852e-23

Charge of electron = 1.6021766208e-19

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) $T : _K$
- **(b)** I_s : ____ 10⁻¹⁸A

Correct Answers:

- 300
- 612

2. (5 points)

In the circuit below $R_B=100k\Omega$, $R_C=1k\Omega$, $V_{CC}=10V$, $\beta=100$, $V_{BE}=0.7V$, and $V_{CE(sat)}=0.2V$.

- a. Calculate V_C if V_B =0.5V.
- b. Calculate V_C if V_B =2.9V.
- c. Calculate V_C if $V_B=14.1$ V.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) $V_C : __V$
- **(b)** $V_C : __V$
- (c) $V_C : __V$

Correct Answers:

- 10
- 7.8
- 0.2

3. (10 points)

In the circuit below $R_B=109k\Omega$, $R_C=0.12k\Omega$, $R_E=1.1k\Omega$, $V_{CC}=12$ V, $V_{EE}=-12$ V, $\beta=100$, $V_{BE}=0.7$ V, and $V_{CE(sat)}=0.2$ V.

- a. Calculate I_B in μA .
- b. Calculate I_C in mA.
- c. Calculate I_E in mA.
- d. Calculate V_{CE} in V.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

1

- (a) $I_B : _{\mu}A$
- **(b)** I_C : ____ mA
- (c) I_E : ___ mA
- (d) $V_{CE} : __V$

- 51.3403
- 5.13403
- 5.18537
- 17.68

4. (10 points)

The zener diode in the circuit below is a 1N4740A with V_Z =10V @ I_{ZT} =25mA, r_Z =7 Ω . For the transistor β =60, V_{EB} =0.7V, and $V_{CE(sat)}$ =0.2V. V_i =-15.2V, R_{BZ} =186 Ω , and R_L =44 Ω .

- a. Calculate V_o in V using the constant voltage drop model to represent the zener.
- b. Calculate the base current I_B in mA using the constant voltage drop model to represent the zener.
- c. Calculate V_o in V using the incremental model $V_{Z0} + r_Z$ to represent the zener.
- d. Calculate the base current I_B in mA using the incremental model $V_{Z0} + r_Z$ to represent the zener.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) $V_o : _V$
- **(b)** I_B : ____ mA
- (c) V_o : ____ V
- (d) I_B : ___ mA

Correct Answers:

- -9.3
- 3.46498
- -9.29658
- 3.4637

5. (10 points)

For the transistor in the circuit below β =100, V_{BE} =0.7V, and $V_{CE(sat)}$ =0.2V. V_{CC} =14V, R_1 =1028 Ω , R_2 =2036 Ω , and R_E =42 Ω .

- a. Calculate the base current I_B in mA.
- b. Calculate V_E in V.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) I_B : ____ mA
- **(b)** V_E : ____ V

- 1.74674
- 7.40968

6. (10 points)

For the transistors in the circuit below β =100, V_{BE} =0.7V, and $V_{CE(sat)}$ =0.2V. V_{CC} =15V, R_1 =0.96 $M\Omega$, R_2 =1.44 $M\Omega$, and R_C =10 Ω .

- a. Calculate the base current I_B in μA .
- b. Calculate the collector current I_C in mA.
- c. Calculate the emitter current I_E in mA.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) $I_B : _{\mu}A$
- **(b)** I_C : ____ mA
- (c) I_E : ___ mA

When a couple of transistors are arranged in the manner shown in the figure above, the resulting combination is called a Darlington Pair, which is often represented with the symbol in the figure below. Calculate $\beta_{Darlington}$ of the equivalent transistor.

(d) $\beta_{Darlington}$:

Correct Answers:

- 13.1944
- 134.583
- 134.597
- 10200

7. (10 points)

For the transistor in the amplifier below $\beta=100$, $V_{BE}=0.7$ V, and $V_{CE(sat)}$ =0.2V. Also R_S =50 Ω , R_L =142 Ω , V_{CC} =13.6V, R_1 =6946 Ω , R_2 =3643 Ω , R_C =906 Ω , and R_E =501 Ω . Assume $V_T = 0.025 \text{ V}.$

- a. Calculate g_m in $\frac{A}{V}$. b. Calculate r_{π} in Ω .
- c. Calculate the voltage gain A_V in $\frac{V}{V}$.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

(a)
$$g_m : --- \frac{A}{V}$$

(b)
$$r_{\pi}$$
: ___ Ω

(c)
$$A_V$$
: $\frac{V}{V}$

Correct Answers:

- 0.300347
- 332.949
- -31.4837

8. (10 points)

For the transistor in the amplifier below $\beta=100$, $V_{EB}=0.7$ V, V_A =97V, and $V_{EC(sat)}$ =0.2V. Also R_S =50 Ω , R_L =2100 Ω , I_E =8.585mA, R_B =94.117 kΩ, R_C =588Ω. Assume V_T =0.025V.

- a. Calculate g_m in $\frac{A}{V}$. b. Calculate r_{π} in Ω .
- c. Calculate the voltage gain A_V in $\frac{V}{V}$.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

(a)
$$g_m : --- \frac{A}{V}$$

(b)
$$r_{\pi}$$
: ___ Ω

(c)
$$A_V:$$
 $\frac{V}{V}$

Correct Answers:

- 0.34
- 294.118
- -128.27

9. (10 points)

For both transistors in the amplifier below $\beta=100$, $V_{EB}=0.7$ V, V_A =98V, and $V_{EC(sat)}$ =0.2V. The zener diode can be modeled as a constant voltage source of V_Z =3.3V. Also R_S =50 Ω , R_L =2710 Ω , R_B =93.535 k Ω , R_C =584 Ω , R_1 =298 Ω , and R_2 =580 Ω . Assume V_T =0.025V and V_{DC} =15V.

- a. Calculate g_m in $\frac{A}{V}$. b. Calculate r_{π} in Ω .
- c. Calculate the voltage gain A_V in $\frac{V}{V}$.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

(a)
$$g_m : --- \frac{A}{V}$$

(b)
$$r_{\pi}$$
: ___ Ω

(c)
$$A_V : --- \frac{V}{V}$$

- 0.342117
- 292.298
- -134.653

10. (10 points)

For the transistor in the common base amplifier below β=100, $V_{BE}=0.7$ V, and $V_{CE(sat)}=0.2$ V. Also $I_E=9.4$ mA, $R_S=50Ω$, R_L =1260 Ω , R_C =620 Ω , V_T =0.025V, V_{CC} =15V, and V_{EE} =-15V.

a. Calculate
$$A_v = \frac{v_o}{v_s}$$
 in $\frac{V}{V}$.
b. Calculate R_i in Ω .

- c. Calculate R_o in Ω .

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

(a)
$$A_V : - \frac{V}{V}$$

(b)
$$R_i$$
: ___ Ω

(c)
$$R_o$$
: \square Ω

Correct Answers:

- 7.81278
- 2.65957

11. (5 points)

The circuit below is used to control a DC motor using a microcontroller for which logic one is 3V and logic zero is 0V. The motor consumes a maximum of 0.48A when turned on. For both Q_1 and Q_2 : $\beta=100$, $V_{BE}=V_{EB}=0.7V$, and $V_{CE(sat)}=V_{EC(sat)}=0.2V$. Also R_C =11.2 $k\Omega$ and V_{DC} =11.8V.

- a. Calculate the maximum allowed value of R_{B1} in Ω .
- b. Calculate the maximum allowed value of R_{B2} in Ω .

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) R_{B1} : ____ Ω
- **(b)** R_{B2} : ____ Ω

- 39412.5
- 2270.83

12. (5 points)

The circuit below is a Diode-Tansistor-Logic (DTL) NAND gate for which logic one is a voltage greater or equal than 1.4V and logic zero is a voltage less or equal than 0.2V. For the transistor β =100, V_{BE} =0.7V, and $V_{CE(sat)}$ =0.2V. All the diodes can be represented as a constant voltage drop of V_D =0.7V; also R_C =1360 Ω , R_B 1=1350 Ω , R_B 2=6750 Ω , and V_D C=5V. Both V_a and V_b can only be 0V (logic zero) or 5V (logic one).

a. Calculate the base current I_B in mA when the output V_o is logic zero.

 $Generated\ by\ \textcircled{c} WeBWorK, http://webwork.maa.org, Mathematical\ Association\ of\ America$

b. Calculate the current trough R_{B1} ($I_{R_{B1}}$) in mA when the output V_o is logic one.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) I_B : ____ mA
- **(b)** $I_{R_{R1}}$: ____ mA

Correct Answers:

- 2.56296
- 3.18519