Récurrence

Romain Lemahieu

December 13, 2023

Première récurrence 1

Soit $(u_n)_{n\in\mathbb{N}}$

$$\begin{cases} u_0 = 0 \\ u_{n+1} = 2u_n + 1 \end{cases}$$

Montrer que

$$\forall n \in \mathbb{N}, \quad u_n = 2^n - 1$$

Définition 1.1

Une propriété est une "fonction" qui est soit vraie ou fausse, par exemple :

 $\mathcal{P}_1(x)$: "x+1=4" $\qquad \qquad \mathcal{P}_1(2)$ est fausse

 $\mathcal{P}_1(3)$ est vraie

 $\mathcal{P}_2(x)$: "x < 2" $\qquad \qquad \mathcal{P}_2(2)$ est fausse $\qquad \qquad \mathcal{P}_1\left(-\sqrt{3}\right)$ est vraie

 $\mathcal{P}_3(x;y)$: "x>y" $\mathcal{P}_3(2;4)$ est fausse $\mathcal{P}_3(-2;t^2)$ est vraie pour tout réel t

Dans le raisonnement par récurrence classique utilise une propriété définie sur un sous ensemble d'un entier avec qu'un paramètre

Rédaction :

Soit la propriété définie pour tout entier naturel $\mathcal{P}(n)$: " $u_n = 2^n - 1$ "

$$\forall n \in \mathbb{N}, u_n = 2^n - 1 \Leftrightarrow \mathcal{P}(n)$$
 est vraie

Initialisation

Ne pas faire:

$$u_0 = 2^0 - 1 = 0$$

Rédaction:

Montrons que $\mathcal{P}(0)$ est vraie :

$$u_0 = 0 \quad 2^0 - 1 = 0$$

Donc \mathcal{P} est initialisée.

1.3 Hérédité

En supposant pour un certain entier naturel k que $\mathcal{P}(k)$ est vraie montrons que $\mathcal{P}(k+1)$ l'est : Broullion:

Hypothèse de récurrence : $\mathcal{P}(k)$: " $u_k = 2^k - 1$ "

Ce que on veut démontrer : $\mathcal{P}(k+1)$: " $u_{k+1} = 2^{k+1} - 1$ "

1.3.1 En partant d'énoncé :

$$u_{k+1}=2u_k+1$$
d'après l'énoncé
$$u_{k+1}=2\times(2^k-1)+1$$
par hypothèse de récurrence
$$u_{k+1}=2\times2^k-2+1$$

$$u_{k+1}=2^{k+1}-1$$

Donc \mathcal{P} est héréditaire.

En partant de la propriété:

$$u_k=2^k-1$$
par hypothèse de récurrence
$$2u_k=2\times \left(2^k-1\right)$$

$$u_{k+1}=2\times 2^k-2+1$$
 d'après l'énoncé
$$u_{k+1}=2^{k+1}-1$$

d'après l'énoncé

Donc \mathcal{P} est héréditaire

Conclusion 1.4

La propriété \mathcal{P} étant initialisée au rang 0 et héréditaire $\mathcal{P}(n)$ est vraie pour tout entier naturel n donc :

$$\forall n \in \mathbb{N}, \quad u_n = 2^n - 1$$

$\mathbf{2}$ Exercice

1. Soit u_n definie pour tout entier naturel n tel que :

$$\begin{cases} u_0 = -2\\ u_{n+1} = -3u_n + 2 \end{cases}$$

Montrer que $\forall n \in \mathbb{N}, \quad u_n = -2, 5 \times (-3)^n + 0, 5$

- 2. Montrer que la somme des angles d'un polygone de n côtés est égale à 180 + 180n
- 3. Montrer l'inégalité de bernoulli :

$$(x+1)^n > 1 + nx$$

pour tout entier naturel non nul réel x non nul supérieur ou égal à -1

4. (Récurrence Double) Exercice 7 LLG. Soit u_n definie pour tout entier naturel n tel que :

$$\begin{cases} u_0 = 2 \\ u_1 = 5 \\ u_{n+2} = 5u_{n+1} - 6u_n. \end{cases}$$

Montrer que $\forall n \in \mathbb{N} \quad u_n = 2^n + 3^n$

5. Montrer pour tout entier n et tout réel q différent de 1 que :

$$\sum_{k=0}^{n} q^{n} = \frac{1 - q^{n+1}}{1 - q}$$

- 6. (Récurrence forte) Montrer que pour tout entier naturel n strictement supérieur à 1 s'exprime comme un produit de facteurs premiers d'une unique façon, à l'ordre près des facteurs.
- 7. Polynômes de Tchebychev de première espèce (Ex CGL 2023). Soit T_n definie pour tout entier naturel n tel que :

$$\begin{cases} T_0(x) &= 0 \\ T_1(x) &= x \\ T_{n+2} &= 2xT_{n+1}(x) - T_n(x) \end{cases}$$

Montrer que $T_n(\cos(\theta)) = \cos(n\theta)$, sachant que:

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$
$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

8. soit

$$\begin{cases} a_0 = 1 \\ b_0 = 0 \\ c_0 = 0 \end{cases}$$

et

$$\begin{cases} a_{n+1} = \frac{1}{3}a_n + \frac{1}{4}b_n \\ b_{n+1} = \frac{2}{3}a_n + \frac{1}{2}b_n + \frac{2}{3}c_n \\ c_{n+1} = \frac{1}{4}b_n + \frac{1}{3}c_n \end{cases}$$

montrer que $\forall n \in \mathbb{N}$:

$$\begin{cases} a_n = \frac{3}{14} + \frac{2}{7} \left(\frac{1}{3}\right)^n + \frac{2}{7} \left(-\frac{1}{6}\right)^n \\ b_n = \frac{4}{7} - \frac{4}{7} \left(-\frac{1}{6}\right)^n \\ c_n = \frac{3}{14} - \frac{1}{2} \left(\frac{1}{3}\right)^n + \frac{2}{7} \left(-\frac{1}{6}\right)^n \end{cases}$$