Quant 2, Lab 3 DAGs, Sensitivity Analysis

Sylvan Zheng

2025-02-13

▶ **DAG** stands for Directed Acyclic Graph

- ▶ **DAG** stands for Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;

- ▶ **DAG** stands for Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;
 - ► *Acyclic*: No cycles

- ▶ **DAG** stands for Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;
 - Acyclic: No cycles
- ▶ Representation of the data generating process (DGP)

- DAG stands for Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;
 - Acyclic: No cycles
- Representation of the data generating process (DGP)
 - Nodes (X,D,Y) etc.) are random variables

- DAG stands for Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;
 - Acyclic: No cycles
- Representation of the data generating process (DGP)
 - \triangleright Nodes (X,D,Y) etc.) are random variables
 - ▶ Edges $(X \rightarrow Y)$ denote a direct causal effect of X on Y

- ▶ **DAG** stands for Directed Acyclic Graph
 - Directed: No reverse causality or simultaneity;
 - Acyclic: No cycles
- Representation of the data generating process (DGP)
 - \triangleright Nodes (X,D,Y) etc.) are random variables
 - ▶ Edges $(X \rightarrow Y)$ denote a direct causal effect of X on Y
- ► Tools to help understand whether a research design can identify a causal relationship

Example: Becker, 1994

 Main relationship of interest: Education effect on Income

Example: Becker, 1994

- Main relationship of interest: Education effect on Income
- Parental effects (income, education) affect both child income and education

Example: Becker, 1994

- Main relationship of interest: Education effect on Income
- Parental effects (income, education) affect both child income and education
- Unobserved family specific factors (ie, genetics) affect parent and child education

► To identify the effect of some D on Y

- To identify the effect of some D on Y
- DAG must satisfy the backdoor criterion (no backdoor paths)

- To identify the effect of some D on Y
- DAG must satisfy the backdoor criterion (no backdoor paths)
 - A backdoor path is an alternate path between
 D and Y that does not go through a collider (more on these later)

- ▶ To identify the effect of some D on Y
- DAG must satisfy the backdoor criterion (no backdoor paths)
 - ► A backdoor path is an alternate path between D and Y that does not go through a collider (more on these later)
- Eg, we cannot identify the effect of Edu on Inc because there is a backdoor path, eg through P_Inc

Controlling for a variable

► If we control for a variable in a DAG, we remove its node and corresponding edges

Controlling for a variable

- ► If we control for a variable in a DAG, we remove its node and corresponding edges
 - ► Unless it's a collider

Controlling for a variable

- ► If we control for a variable in a DAG, we remove its node and corresponding edges
 - ► Unless it's a collider
- Ex, if we control for P_Inc and P_Edu, we get the following DAGs:

 A collider is a node that has multiple arrows leading into it

- A collider is a node that has multiple arrows leading into it
- Consider the following DAG that includes a sibling's education S_Edu.

- A collider is a node that has multiple arrows leading into it
- Consider the following DAG that includes a sibling's education S_Edu.
- Suppose we are interested in understanding the relationship between sibling education (Edu -> S_Edu)

- A collider is a node that has multiple arrows leading into it
- Consider the following DAG that includes a sibling's education S_Edu.
- Suppose we are interested in understanding the relationship between sibling education (Edu -> S_Edu)
- ► Should we control for Inc?

- A collider is a node that has multiple arrows leading into it
- Consider the following DAG that includes a sibling's education S_Edu.
- Suppose we are interested in understanding the relationship between sibling education (Edu -> S_Edu)
- Should we control for Inc?
 - No. Because Inc is a collider, the backdoor path is closed.

 Collider bias often discussed in the context of sample selection

- Collider bias often discussed in the context of sample selection
- ► Super simple example

- Collider bias often discussed in the context of sample selection
- ► Super simple example
- Suppose alternative medicine has no true effect on health outcomes

- Collider bias often discussed in the context of sample selection
- Super simple example
- Suppose alternative medicine has no true effect on health outcomes
- But, the study selects (conditions) on experience with alternative medicine

- Collider bias often discussed in the context of sample selection
- Super simple example
- Suppose alternative medicine has no true effect on health outcomes
- But, the study selects (conditions) on experience with alternative medicine
- If health has any effect on study participation, conditioning on the study induces a relationship

- Collider bias often discussed in the context of sample selection
- Super simple example
- Suppose alternative medicine has no true effect on health outcomes
- But, the study selects (conditions) on experience with alternative medicine
- If health has any effect on study participation, conditioning on the study induces a relationship

Another example

- Another example
- Country military strength appears to be uncorrelated with winning a war

- Another example
- Country military strength appears to be uncorrelated with winning a war
 - But, unobserved factors U also affect whether countries get into wars in the first place and whether they win

- Another example
- Country military strength appears to be uncorrelated with winning a war
 - But, unobserved factors U also affect whether countries get into wars in the first place and whether they win
 - Conditioning on War opens a backdoor path through U

Colliders | Gender Wage Gap

► Should we control for Occupation (Occ)?

Colliders | Gender Wage Gap

- ➤ Should we control for Occupation (Occ)?
- Let's use simulation to illustrate (gender_wage_sim.R)

Colliders | Gender Wage Gap

- Should we control for Occupation (Occ)?
- Let's use simulation to illustrate (gender_wage_sim.R)
- ► Suppose the following DGP

- Should we control for Occupation (Occ)?
- Let's use simulation to illustrate (gender_wage_sim.R)
- ► Suppose the following DGP
 - ightharpoonup Occ = -0.1 * Fem + u + ϵ_1

- Should we control for Occupation (Occ)?
- Let's use simulation to illustrate (gender_wage_sim.R)
- ► Suppose the following DGP
 - ightharpoonup Occ = -0.1 * Fem + u + ϵ_1
 - ▶ Wage = -0.1 * Fem + $0cc + 2 * u + \epsilon_2$

- Should we control for Occupation (Occ)?
- Let's use simulation to illustrate (gender_wage_sim.R)
- Suppose the following DGP

 - ▶ Wage = $-0.1 * Fem + 0cc + 2 * u + \epsilon_2$
 - ► Fem ~ Bernoulli(0.5)

- Should we control for Occupation (Occ)?
- Let's use simulation to illustrate (gender_wage_sim.R)
- Suppose the following DGP

 - ▶ Wage = $-0.1 * \text{Fem} + 0 \text{cc} + 2 * u + \epsilon_2$
 - ► Fem ~ Bernoulli(0.5)
 - $ightharpoonup \epsilon_1, \epsilon_2, u \sim N(0,1)$

Simulation Setup

```
N < -10000
tb <- tibble(
    # Gender is exogenous
    female = sample(c(0, 1), N, replace = T),
    # U is exogenous
    u = rnorm(N).
    # Occupation choice a function of u and gender
    occupation = u - 0.1 * female + rnorm(N),
    # Wage is a function of u and occupation
    # AND very slightly directly affected by gender
    wage = -0.1 * female + occupation + 2 * u + rnorm(N)
```

Colliders | Gender Wage Gap Simulation Results

Dependent Variable:		wage	
Model:	(1)	(2)	(3)
Variables			
Constant	-0.0563	-0.0285	-0.0012
	(0.0461)	(0.0244)	(0.0142)
female	-0.1045	0.0197	-0.0986***
	(0.0653)	(0.0346)	(0.0202)
occupation		1.969***	0.9759***
		(0.0123)	(0.0101)
u			2.007***
			(0.0144)
Fit statistics			
Observations	10,000	10,000	10,000

C: :C C I *** 0 01 ** 0 05 * 0 1

➤ Same DAG as before, but let's say we are now interested in Occ->Wage

- ➤ Same DAG as before, but let's say we are now interested in Occ->Wage
- Suppose Selfish increases Occ but decreases Wages

- ➤ Same DAG as before, but let's say we are now interested in Occ->Wage
- Suppose Selfish increases Occ but decreases Wages
- Suppose we observe Selfish

- Same DAG as before, but let's say we are now interested in Occ->Wage
- Suppose Selfish increases Occ but decreases Wages
- Suppose we observe Selfish
- Should we control for Selfish?

Simulation Setup

```
tb <- tibble(
    # U and Selfish exogenous
    u = rnorm(N),
    selfish = rnorm(N),
    # Selfish positively affects occupation
    occupation = u + selfish + rnorm(N),
    # Selfish negatively affects wages
    wage = occupation + 2 * u - 0.5 * selfish + rnorm(N)
)</pre>
```

Simulation Results

Dependent Variable:	wage			
Model:	(1)	(2)		
Variables				
Constant	-0.0374*	-0.0313*		
	(0.0213)	(0.0175)		
occupation	1.495***	1.985***		
	(0.0123)	(0.0124)		
selfish		-1.485***		
		(0.0215)		
Fit statistics				
Observations	10,000	10,000		
IID standard-errors in parentheses				
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1				

Homola, Pereira, and Tavits (2020, APSR) argue that living closer to a Nazi era concentration camp increases modern day far right support.

- Homola, Pereira, and Tavits (2020, APSR) argue that living closer to a Nazi era concentration camp increases modern day far right support.
- Pepinsky, Goodman, Ziller (2023, APSR) argue that "state-level differences confound the relationship between distance to camps and out-group intolerance"

- Homola, Pereira, and Tavits (2020, APSR) argue that living closer to a Nazi era concentration camp increases modern day far right support.
- ► Pepinsky, Goodman, Ziller (2023, APSR) argue that "state-level differences confound the relationship between distance to camps and out-group intolerance"
 - They add state level fixed effects and show that the original effect disappears.

- Homola, Pereira, and Tavits (2020, APSR) argue that living closer to a Nazi era concentration camp increases modern day far right support.
- ► Pepinsky, Goodman, Ziller (2023, APSR) argue that "state-level differences confound the relationship between distance to camps and out-group intolerance"
 - ► They add state level fixed effects and show that the original effect disappears.
 - "Länder cannot be posttreatment variables unless we assume that the creation of Länder was caused by their distance from concentration camps."

- Homola, Pereira, and Tavits (2020, APSR) argue that living closer to a Nazi era concentration camp increases modern day far right support.
- ► Pepinsky, Goodman, Ziller (2023, APSR) argue that "state-level differences confound the relationship between distance to camps and out-group intolerance"
 - They add state level fixed effects and show that the original effect disappears.
 - "Länder cannot be posttreatment variables unless we assume that the creation of Länder was caused by their distance from concentration camps."
- ► HPT (2024, APSR) rebuttal. "contemporary state fixed effects induce post-treatment bias if any factor (observable or not) that varies across German Länder is a direct or indirect descendant of proximity to concentration camps." "

Should we give up on observational regression analysis? Maybe

- Should we give up on observational regression analysis? Maybe
 - ▶ Don't control enough => Omitted variable bias

- Should we give up on observational regression analysis? Maybe
 - ▶ Don't control enough => Omitted variable bias
 - Control on a collider => Collider bias

- Should we give up on observational regression analysis? Maybe
 - Don't control enough => Omitted variable bias
 - Control on a collider => Collider bias
 - Control on post treatment => Post treatment bias

- Should we give up on observational regression analysis? Maybe
 - ▶ Don't control enough => Omitted variable bias
 - Control on a collider => Collider bias
 - Control on post treatment => Post treatment bias
 - Control on something innocuous => Bias Amplification, sometimes

- Should we give up on observational regression analysis? Maybe
 - ▶ Don't control enough => Omitted variable bias
 - Control on a collider => Collider bias
 - Control on post treatment => Post treatment bias
 - Control on something innocuous => Bias Amplification, sometimes
- Always use a DAG and domain knowledge to justify your control strategy

- Should we give up on observational regression analysis? Maybe
 - ▶ Don't control enough => Omitted variable bias
 - Control on a collider => Collider bias
 - Control on post treatment => Post treatment bias
 - Control on something innocuous => Bias Amplification, sometimes
- Always use a DAG and domain knowledge to justify your control strategy
- Sensitivity analysis and Double ML can help, kind of

- Should we give up on observational regression analysis? Maybe
 - Don't control enough => Omitted variable bias
 - Control on a collider => Collider bias
 - Control on post treatment => Post treatment bias
 - Control on something innocuous => Bias Amplification, sometimes
- Always use a DAG and domain knowledge to justify your control strategy
- Sensitivity analysis and Double ML can help, kind of
 - (Double ML next week)

Sensitivity analysis

► General idea - quantify **how large** an omitted variable would have to be to mess up your results

Sensitivity analysis

- ► General idea quantify **how large** an omitted variable would have to be to mess up your results
 - Roman and D'Urso show a correlation between anti LGBTQ attitudes and dislike for "Latinx" group label, controlling for several factors

Sensitivity analysis

- ► General idea quantify **how large** an omitted variable would have to be to mess up your results
 - Roman and D'Urso show a correlation between anti LGBTQ attitudes and dislike for "Latinx" group label, controlling for several factors
 - Sensitivity analysis: Omitted variable would have to have as large an effect on "Latinx" favorability as partisanship

▶ 2003-2004 government violence against civilians

```
library(sensemakr)
data("darfur")
darfur.model <- feols(
    peacefactor ~ directlyharmed + female +
        age + farmer_dar + herder_dar + pastvoted +
        hhsize_darfur | village,
    data = darfur
)</pre>
```

- ▶ 2003-2004 government violence against civilians
- Outcome (Y): attitudes toward peace

```
library(sensemakr)
data("darfur")
darfur.model <- feols(
    peacefactor ~ directlyharmed + female +
        age + farmer_dar + herder_dar + pastvoted +
        hhsize_darfur | village,
    data = darfur
)</pre>
```

- ▶ 2003-2004 government violence against civilians
- ▶ Outcome (Y): attitudes toward peace
- Treatment (D): exposure to violence

```
library(sensemakr)
data("darfur")
darfur.model <- feols(
    peacefactor ~ directlyharmed + female +
        age + farmer_dar + herder_dar + pastvoted +
        hhsize_darfur | village,
    data = darfur
)</pre>
```

Sensitivity analysis: Attitudes in Darfur (Hazlett, 2019) • Specification with lots of

female

farmer dar

herder_dar

pastvoted

hhsize darfur

Fixed-effects village

age

controls shows a positive relationship

Dependent Variable:	peacefactor
Model:	(1)
Variables	0.0973***
directlyharmed	(0.0238)

-0.2321***

(0.0244) -0.0021***

(0.0007)

-0.0404 (0.0296) 0.0143

(0.0365) -0.0480*

(0.0269)

0.0012 (0.0022)

Yes

```
darfur.sensitivity <- sensemakr(
    model = darfur.model,
    treatment = "directlyharmed",
    benchmark_covariates = "female",
    kd = 1:3,
    ky = 1:3,
)</pre>
```

sensemakr package lets us conduct sensitivity analysis relative to a covariate of choice

```
darfur.sensitivity <- sensemakr(
    model = darfur.model,
    treatment = "directlyharmed",
    benchmark_covariates = "female",
    kd = 1:3,
    ky = 1:3,
)</pre>
```

- sensemakr package lets us conduct sensitivity analysis relative to a covariate of choice
- Ex, gender played an important role in exposure to violence: women were specifically targeted

```
darfur.sensitivity <- sensemakr(
    model = darfur.model,
    treatment = "directlyharmed",
    benchmark_covariates = "female",
    kd = 1:3,
    ky = 1:3,
)</pre>
```

- sensemakr package lets us conduct sensitivity analysis relative to a covariate of choice
- Ex, gender played an important role in exposure to violence: women were specifically targeted
- ▶ kd and ky arguments: we investigate a hypothetical confounder 1-3x as strong as female

Sensitivity Analysis

 $\verb"ovb_minimal_reporting" (darfur.sensitivity)"$

Outcome: peacefactor					
Treatment:	$R_{Y \sim D \mathbf{X}}^2$	$RV_{q=1}$	$RV_{q=1,\alpha=0.05}$		
directlyharmed	2.2%	13.9%	7.6%		
Bound (1x fema	le): $R_{Y \sim Z Y}^2$	$\chi_{,D} = 12.5\%$	$R_{D\sim Z X}^2 = 0.9\%$		

Sensitivity Analysis

summary(darfur.sensitivity)

Partial R2 of the treatment with the outcome: an extreme confounder (orthogonal to the covariates) that explains 100% of the residual variance of the outcome, would need to explain at least 2.19% of the residual variance of the treatment to fully account for the observed estimated effect.

Sensitivity Analysis

summary(darfur.sensitivity)

- ▶ Partial R2 of the treatment with the outcome: an extreme confounder (orthogonal to the covariates) that explains 100% of the residual variance of the outcome, would need to explain at least 2.19% of the residual variance of the treatment to fully account for the observed estimated effect.
- ▶ Robustness Value, q = 1: unobserved confounders (orthogonal to the covariates) that explain more than 13.88% of the residual variance of both the treatment and the outcome are strong enough to bring the point estimate to 0.

Sensitivity Analysis

summary(darfur.sensitivity)

- ▶ Partial R2 of the treatment with the outcome: an extreme confounder (orthogonal to the covariates) that explains 100% of the residual variance of the outcome, would need to explain at least 2.19% of the residual variance of the treatment to fully account for the observed estimated effect.
- ▶ Robustness Value, q = 1: unobserved confounders (orthogonal to the covariates) that explain more than 13.88% of the residual variance of both the treatment and the outcome are strong enough to bring the point estimate to 0.
- ▶ Robustness Value, q = 1, alpha = 0.05: unobserved confounders (orthogonal to the covariates) that explain more than 7.63% of the residual variance of both the treatment and the outcome are strong enough to bring the estimate to a range where it is no longer 'statistically different' from 0 at the significance level of alpha = 0.05.

Sensitivity: Plots

plot(darfur.sensitivity)

► Grades coming soon

- ► Grades coming soon
- $lackbox{Q2.3:}$ If $ar{Y_N} \to \mu$ and $ar{S_N} \to 1$ then by Slutsky $\hat{\mu} \to \frac{\mu}{1} = \mu$

- ► Grades coming soon
- $lackbox{ Q2.3: If } ar{Y_N} o \mu \ ext{and} \ ar{S_N} o 1 \ ext{then by Slutsky} \ \hat{\mu} o rac{\mu}{1} = \mu$
 - ▶ But how do we know that $\bar{Y_N} \to \mu$?

- Grades coming soon
- $lackbox{ Q2.3: If } ar{Y_N}
 ightarrow \mu$ and $ar{S_N}
 ightarrow 1$ then by Slutsky $\hat{\mu}
 ightarrow rac{\mu}{1} = \mu$
 - ▶ But how do we know that $\bar{Y}_N \to \mu$?
 - ▶ Technically, not sufficient to say that $E(\bar{Y}_N) = \mu$. Unbiased != consistency!

- Grades coming soon
- $lackbox{ Q2.3: If }ar{Y_N}
 ightarrow\mu$ and $ar{S_N}
 ightarrow1$ then by Slutsky $\hat{\mu}
 ightarrowrac{\mu}{1}=\mu$
 - ▶ But how do we know that $\bar{Y_N} \to \mu$?
 - ► Technically, not sufficient to say that $E(\bar{Y}_N) = \mu$. Unbiased != consistency!
 - In Q2.5 we derive $V(\bar{Y}_N) = (\frac{1}{N} \frac{1}{n})\frac{1}{n}\sum y_i^2$

- Grades coming soon
- $lackbox{Q2.3:}$ If $ar{Y_N}
 ightarrow \mu$ and $ar{S_N}
 ightarrow 1$ then by Slutsky $\hat{\mu}
 ightarrow rac{\mu}{1} = \mu$
 - ▶ But how do we know that $\bar{Y_N} \to \mu$?
 - ► Technically, not sufficient to say that $E(\bar{Y}_N) = \mu$. Unbiased != consistency!
 - ► In Q2.5 we derive $V(\bar{Y}_N) = (\frac{1}{N} \frac{1}{n}) \frac{1}{n} \sum y_i^2$
 - As N,n go to infinity $(\frac{1}{N} \frac{1}{n})$ approaches 0

- Grades coming soon
- $lackbox{ Q2.3: If } ar{Y_N}
 ightarrow \mu$ and $ar{S_N}
 ightarrow 1$ then by Slutsky $\hat{\mu}
 ightarrow rac{\mu}{1} = \mu$
 - ▶ But how do we know that $\bar{Y_N} \to \mu$?
 - ► Technically, not sufficient to say that $E(\bar{Y}_N) = \mu$. Unbiased != consistency!
 - In Q2.5 we derive $V(\bar{Y_N}) = (\frac{1}{N} \frac{1}{n})\frac{1}{n}\sum y_i^2$
 - As N,n go to infinity $(\frac{1}{N} \frac{1}{n})$ approaches 0
 - $ightharpoonup \frac{1}{n} \sum y_i^2$ approaches a finite value

- ► Grades coming soon
- $lackbox{ Q2.3: If }ar{Y_N}
 ightarrow\mu$ and $ar{S_N}
 ightarrow1$ then by Slutsky $\hat{\mu}
 ightarrowrac{\mu}{1}=\mu$
 - ▶ But how do we know that $\bar{Y_N} \to \mu$?
 - ► Technically, not sufficient to say that $E(\bar{Y}_N) = \mu$. Unbiased != consistency!
 - In Q2.5 we derive $V(\bar{Y_N}) = (\frac{1}{N} \frac{1}{n})\frac{1}{n}\sum y_i^2$
 - As N,n go to infinity $(\frac{1}{N} \frac{1}{n})$ approaches 0
 - $ightharpoonup \frac{1}{n} \sum y_i^2$ approaches a finite value
 - So $V(\bar{Y_N}) \to 0$ and now we can say unbiased = consistency for $\bar{Y_n}$

N	$\operatorname{Var}\left[\overline{Y}_{N}\right]$	$\mathrm{Var}[\hat{\mu}]$	$\operatorname{Var}\left[\overline{Y}_{N}\right] - \operatorname{Var}\left[\hat{\mu}\right]$	$\left(\frac{1}{N} - \frac{1}{n}\right)\mu^2$	μ
20	0.2097426	0.07680564	0.132937	0.132937	1.647119
50	0.08132877	0.02978178	0.05154699	0.05154699	1.647119
100	0.03852416	0.01410716	0.024417	0.024417	1.647119

▶ Table printed with knitr::kable. Good! But...

20 0.2097426 0.07680564 0.132937 0.132937 1.647119 50 0.08132877 0.02978178 0.05154699 0.05154699 1.647119 100 0.03852416 0.01410716 0.024417 0.024417 1.647119	N	$\operatorname{Var}\left[\overline{Y}_{N}\right]$	$\operatorname{Var}[\hat{\mu}]$	$\operatorname{Var}\left[\overline{Y}_{N}\right] - \operatorname{Var}[\hat{\mu}]$	$\left(\frac{1}{N} - \frac{1}{n}\right)\mu^2$	μ
	20	0.2097426	0.07680564	0.132937	0.132937	1.647119
100 0.03852416 0.01410716 0.024417 0.024417 1.647119	50	0.08132877	0.02978178	0.05154699	0.05154699	1.647119
	100	0.03852416	0.01410716	0.024417	0.024417	1.647119

- Table printed with knitr::kable. Good! But...
- ► The theoretical difference in variances should NOT be identical to the empirical difference in variances

N	$\operatorname{Var}\left[\overline{Y}_{N}\right]$	$\mathrm{Var}[\hat{\mu}]$	$\operatorname{Var}\left[\overline{Y}_{N}\right] - \operatorname{Var}[\hat{\mu}]$	$\left(\frac{1}{N} - \frac{1}{n}\right)\mu^2$	μ
20	0.2097426	0.07680564	0.132937	0.132937	1.647119
50	0.08132877	0.02978178	0.05154699	0.05154699	1.647119
100	0.03852416	0.01410716	0.024417	0.024417	1.647119

- ▶ Table printed with knitr::kable. Good! But...
- ► The theoretical difference in variances should NOT be identical to the empirical difference in variances
- ▶ Please indent your code (can do this automatically with Ctrl/Cmd+I in Rstudio)

N	$\operatorname{Var}\left[\overline{Y}_{N}\right]$	$\mathrm{Var}[\hat{\mu}]$	$\operatorname{Var}\left[\overline{Y}_{N}\right] - \operatorname{Var}[\hat{\mu}]$	$\left(\frac{1}{N} - \frac{1}{n}\right)\mu^2$	μ
20	0.2097426	0.07680564	0.132937	0.132937	1.647119
50	0.08132877	0.02978178	0.05154699	0.05154699	1.647119
100	0.03852416	0.01410716	0.024417	0.024417	1.647119

- ▶ Table printed with knitr::kable. Good! But...
- ► The theoretical difference in variances should NOT be identical to the empirical difference in variances
- ▶ Please indent your code (can do this automatically with Ctrl/Cmd+I in Rstudio)

	N	$\operatorname{Var}\left[\overline{Y}_{N}\right]$	$\operatorname{Var}[\hat{\mu}]$	$\operatorname{Var}\left[\overline{Y}_{N}\right] - \operatorname{Var}\left[\hat{\mu}\right]$	$\left(\frac{1}{N} - \frac{1}{n}\right)\mu^2$	μ
	20	0.2097426	0.07680564	0.132937	0.132937	1.647119
	50	0.08132877	0.02978178	0.05154699	0.05154699	1.647119
	100	0.03852416	0.01410716	0.024417	0.024417	1.647119
ŀ						

- Table printed with knitr::kable. Good! But...
- ► The theoretical difference in variances should NOT be identical to the empirical difference in variances
- ▶ Please indent your code (can do this automatically with Ctrl/Cmd+I in Rstudio)

```
for (N in sample_sizes) {
   do stuff
   for (j in 1:nsims) {
      do more stuff
   }
}
```