Question number	Scheme	Marks
9 (a)	a = -1, b = -2	B1,B1 [2]
(b)	Gradient of $l_1 = -2, \Rightarrow$ Gradient of $l_2 = \frac{1}{2}$	B1,B1
	$180 = (x+1)^2 + (y-6)^2$	M1
	$\frac{1}{2} = \frac{y - 6}{x + 1} \Rightarrow x = 2y - 13$	M1
	Solves simultaneous equations; $180 = ([2y-13]+1)^{2} + (y-6)^{2} \Rightarrow 0 = 5y^{2} - 60y$	M1M1
	or $180 = (x+1)^2 + \left(\frac{1}{2}x + \frac{13}{2} - 6\right)^2 \Rightarrow 0 = x^2 + 2x - 143 = 0$ $y = 0, y = 12 \Rightarrow x = -13, x = 11$ or $x = -13, x = 11 \Rightarrow y = 0, y = 12$ Coordinates are $(-13, 0)$ and $(11, 12)$	A1A1 [8]
(c)	Area of triangle PQR	[,]
	$PQ = \sqrt{(6+2)^2 + (-1-3)^2} = 4\sqrt{5}$	M1
	Area = $\frac{1}{2} \times 4\sqrt{5} \times 6\sqrt{5} = 60 \text{ (units)}^2$	M1A1 [3]
	ALT	
	Area = $\frac{1}{2} \begin{pmatrix} -13 & -1 & 3 & -13 \\ 0 & 6 & -2 & 0 \end{pmatrix} = \frac{1}{2} (-78 + 2 + 0 - 0 - 18 - 26) = -60$	{M1} {M1}
	\Rightarrow 60 (units) ²	{A1} [3]
(d)	Coordinates of R required are $(-13, 0)$	
	$\angle RPQ = 90^{\circ}$ so RQ is a diameter	
	$\left(\frac{-13+3}{2},\frac{0-2}{2}\right) \Rightarrow (-5, -1)$	M1A1 [2]
	To	tal 15 marks
(a) B1 B1	a = -1 $b = -2$	

(b)		
B1	Gradient of $l_1 = -2$	
B1	Gradient of $l_2 = \frac{1}{2}$	
M1	Use of $PR = 6\sqrt{5}$ to obtain an equation	
M1	Use of gradient of the perpendicular to obtain an equation	
M1	Solves simultaneously	
M1	Simplifies to $5y^2 - 60y = 0$ or $x^2 + 2x - 143 = 0$	
A1	All 4 values identified 0, 12, –13, 11	
A1	(11, 12) and $(-13, 0)$ (must be paired correctly and if written as a coordinate then must be in the correct order)	
(c)	then must be in the correct order)	
M1	$PQ = 4\sqrt{5}$	
M1	Use of Area = $\frac{1}{2} \times PQ \times PR$	
A1	60 (units) ²	
ALT		
M1	Use of Area = $\frac{1}{2} \begin{pmatrix} -13 & -1 & 3 & -13 \\ 0 & 6 & -2 & 0 \end{pmatrix}$ ft <i>R</i> provided $e < 0$	
M1	$\frac{1}{2}(-78+2+0-0-18-26)$ ft R provided $e < 0$	
A1	60 (units) ²	
(d)		
	$\left(\frac{-13+3}{2}, \frac{0-2}{2}\right) \text{ ft } R \text{ provided } e < 0$	
A1	(-5, -1)	