Complexidade de algoritmos

emanoelim@utfpr.edu.br

Análise da complexidade de algoritmos

- Existem diferentes maneiras de resolver o mesmo problema, ou seja, diferentes algoritmos podem ser utilizados.
- Diante de várias possibilidades é importante analisar qual algoritmo é mais eficiente na resolução de um determinado problema.
- É aí que entra a análise da complexidade de algoritmos.

Análise da complexidade de algoritmos

- A análise da complexidade de algoritmos estuda o comportamento dos algoritmos para definir sua eficiência.
- Os dois aspectos mais analisados são o tempo de execução (complexidade de tempo) e a memória utilizada (complexidade de espaço).
- Primeiramente vamos analisar um algoritmo quanto ao tempo de execução.

• Experimental/empírica:

Executar o algoritmo mediante diversos tamanhos de entrada e tomar nota do tempo gasto para executar cada entrada, analisando os resultados posteriormente (montando gráficos, por exemplo).

Tempo médio (s)	Tempo 3 (s)	Tempo 2 (s)	Tempo 1 (s)	Entrada
0,031	0,031	0,031	0,031	5
0,036	0,047	0,031	0,031	10
0,031	0,031	0,031	0,031	15
0,047	0,047	0,031	0,063	20
0,037	0,047	0,033	0,031	25
0,070	0,069	0,078	0,063	30
0,439	0,357	0,536	0,423	35
3,739	4,124	3,836	3,258	40
34,236	33,913	41,387	27,408	45
317,732	311,999	347,575	293,622	50

Este tipo de análise vai variar conforme as configurações do computador utilizado, conforme a linguagem de programação utilizada, etc.

Método matemático

Esta forma é mais genérica. Conseguimos ter uma análise invariante às configurações do hardware ou linguagem utilizada. Depende somente da forma como a algoritmo foi construído.

Instruções simples (executadas diretamente pelo CPU (ou muito próximo disso) terão custo 1 (uma unidade de tempo):

- Atribuição de valores;
- Acesso a um elemento de um vetor via índice;
- Comparação entre dois valores;
- Operações matemáticas básicas: soma, multiplicação...

IF: o comando "If" não tem custo, o que tem custo é a condição do if. O if abaixo, por exemplo, tem somente uma comparação, ou seja, seu custo é 1.

O próximo if é composto por duas comparações, tendo custo 2:

FOR: segue a mesma ideia do if.

```
for(i = 0; i < n; i++) {</pre>
```

Mesmo que n seja 0, duas instruções serão executadas, a instrução i = 0 e a comparação i < n, gerando um custo de 2 unidades de tempo.

Se n não for igual o zero:

- A instrução i = 0 será executada uma vez.
- A instrução de incremento i++ será executada n vezes.
- A instrução de comparação i < n será executada n + 1 vezes.

Para exemplificar considere n = 4;

```
para i = 0: i < n -> sim -> i++
```


Então, este for (sem contar as instruções que possam estar dentro do for) terá um custo de:

$$f(n) = 1 + n + (n + 1)$$

$$f(n) = 2 + 2n$$

Considere agora um código para achar o maior número em um vetor:

```
int maior = v[0];
for(i = 0; i < n; i++) {
   if(v[i] > maior) {
      m = v[i];
   }
}
```


Antes de considerarmos as instruções de dentro do for, temos:

$$f(n) = 1 + 2 + 2n = 3 + 2n$$

Fórmula anterior

inicialização do maior

Considerando as instruções dentro do for:

- Dentro do for existe um if, ou seja, a execução das instruções pode acontecer ou não.
- Como definir o custo nesse caso?
- Vamos considerar duas situações.

- 1ª queremos achar o maior item no vetor [5, 4, 3, 2, 1] (melhor caso)
- 2ª queremos achar o maior item no vetor [1, 2, 3, 4, 5] (pior caso)

Na primeira situação, o resultado do if será sempre falso, então a atribuição m = v[i] nunca será executada. Logo, cada iteração do for executa apenas uma instrução que é a própria comparação. Assim temos:

$$f(n) = 3 + 2n * 1$$

$$f(n) = 3 + 2n$$

Na segunda situação, o resultado do if sempre será verdadeiro, então atribuição m = v[i] sempre será executada. Logo, cada iteração do for executa duas operações (a comparação e também a atribuição). Assim, temos:

$$f(n) = 3 + 2n * 2$$

$$f(n) = 3 + 4n$$

Quando escrevemos um algoritmo, nem sempre sabemos qual será nossa entrada, então, supomos que é possível que o pior caso aconteça. Assim, ao analisar a complexidade de um algoritmo, geralmente consideramos o pior caso.

Será que todos os termos de uma função são necessários para analisar o comportamento de um algoritmo conforme o tamanho da entrada cresce?

No caso anterior, por exemplo:

- inicialização do maior;
- a inicialização do for;
- a primeira comparação do for.

sempre serão feitas, independente do tamanho da entrada.

Ou seja, elas terão um custo constante para o algoritmo, não importa o tamanho de n.

Assim, na função:

$$f(n) = 3 + 4n$$

podemos descartar o que tiver custo constante, sobrando:

$$f(n) = 4n$$

Todas as constantes que multiplicam o termo "n" também podem ser descartadas, uma vez que queremos uma análise genérica, independente da linguagem de programação.

A seguinte instrução em C:

```
maior = v[i];
```

É escrita da seguinte forma na linguagem Pascal:

```
maior := v[i];
```

Que em C seria o mesmo que fazer:

```
if(i >= 0 && i <= n)
maior = v[i]</pre>
```


Ou seja: em C teríamos 1 instrução para fazer a atribuição. Em Pascal teríamos 3 instruções. Assim, desconsiderando os aspectos de linguagem, e considerando apenas a ideia do algoritmo, a função do exemplo anterior pode ser reduzida a: f(n) = n

Se a função possuir diversos termos envolvendo "n", por exemplo:

$$f(n) = n^2 + n$$

Podemos considerar apenas o termo com o maior expoente, pois sempre será ele o responsável pelo maior crescimento da função. Assim, no exemplo acima, teríamos: $f(n) = n^2$

Considere as duas funções:

- f(n) = 100n + 50
- $g(n) = n^2$

Apesar de inicialmente f(n) gerar valores maiores, existe um valor de n, a partir do qual g(n) passa a gerar resultados sempre maiores:

Assim fica claro ver, que a função ou termo com o maior expoente, a partir de um certo ponto, sempre irá ser o responsável pelo maior crescimento.

Qual a comportamento assintótico das funções abaixo?

a)
$$f(n) = 5$$

b)
$$f(n) = 3n + n + 2$$

c)
$$n^2 + n$$

d)
$$5n^3 + n^2 + n + 20$$

e)
$$200 + n$$

De modo geral, para saber a complexidade de um programa simples (sem recursividade) devemos analisar os laços aninhados:

- Programa sem laço: f(n) = constante = 1
- Programa com 1 laço: f(n) = n
- Programa com 2 laços aninhados: $f(n) = n^2$, e assim por diante.

Obs.: se o programa ou função analisada chamar outras funções, essas funções também devem ser analisadas e devem entrar na conta!

Comparação assintótica de funções

Se uma função f(x) tem um crescimento maior do que uma função f(y), dizemos que a função f(x) domina assintoticamente a função g(x). O gráfico a seguir mostra a curva de crescimento das funções mais comuns:

Comparação assintótica de funções

Comparação assintótica de funções

Hierarquia de funções do ponto de vista assintótico: $c < log(n) < n < n log(n) < n^2 < 2^n < n!$ c = constante

Notações de complexidade

A notação mais usada para medir a complexidade de algoritmos é a Big-O. Ela define qual é o limite superior de uma função, ou seja, qual será seu custo no pior caso. Por exemplo:

$$f(n) = n^2 + n + 1$$
, $O(n) = n^2$

quer dizer que o pior caso, o algoritmo terá um custo de n², nunca maior que isso.

f(n) = O(1):

- Complexidade constante;
- Instruções executadas um número fixo de vezes, independente do tamanho da entrada.

$f(n) = O(\log n)$:

- Complexidade logarítmica;
- Tipicamente são algoritmos que resolvem um problema dividindo-o em problemas menores.

f(n) = O(n):

- Complexidade linear;
- Em geral, uma quantidade definida de operações é realizada sobre cada item da entrada;
- No caso do uso de vetores, por exemplo (achar o maior, buscar um item, etc).

f(n) = O(n log n):

- Complexidade logarítmica;
- Tipicamente são algoritmos que resolvem um problema dividindo-o em problemas menores, resolvendo cada um independentemente e depois juntando as soluções.

$$f(n) = O(n^2)$$

- Complexidade quadrática;
- Caracterizam-se pelo processamento dos dados em pares, geralmente contém um aninhamento com dois comandos de repetição;

$$f(n) = O(n^3)$$

- Complexidade cúbica;
- Caracterizam-se pela presença de 3 comandos de repetição aninhados;
- Já começa a se tornar pouco eficiente para problemas grandes.

$f(n) = O(2^n)$

- Complexidade exponencial;
- Geralmente soluções que usam força bruta;
 - Ex.: quebrar uma senha de 8 caracteres tentando todas as 28 combinações possíveis;
- Não são úteis do ponto de vista prático;

$$f(n) = O(n!)$$

- Complexidade exponencial;
- Geralmente soluções que usam força bruta;
 - n * (n 1) * (n 2) * ...
- Não são úteis do ponto de vista prático.

 Link com as complexidades dos algoritmos mais comuns: http://bigocheatsheet.com/

Exercícios

- 1. Quais seriam o melhor caso e o pior caso para uma função com objetivo de remover um item de uma lista implementada por meio de vetores? Qual a complexidade no melhor caso? Qual a complexidade no pior caso?
- 2. Qual a complexidade de uma função que realiza a remoção do primeiro item de uma lista encadeada?
- 3. Qual a complexidade de uma função que realiza a remoção do último item de uma lista encadeada (sem usar um ponteiro para o último e usando um ponteiro para último)?

Exercícios

- 4. Escreva uma função que busca uma determinada chave dentro de uma lista e remove o item que contém esta chave (considere a implementação por vetores). Qual é a complexidade da função?
- 5. Dois algoritmos (A e B) possuem complexidade n^5 e 2^n, respectivamente. Você utilizaria o algoritmo B ao invés do A em algum caso? Cite exemplos.

