

การแข่งขันเคมีโอลิมปิกระดับชาติ ครั้งที่ 14 ณ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี วันอังคารที่ 12 มิถุนายน พ.ศ. 2561 เวลา 09.00 – 14.00 น.

🔊 เฉลยข้อสอบภาคทฤษฎี 🗷

คำตอบข้อที่ 1 (10 คะแนน)

1.1 (5 คะแนน)

วาดกราฟแสดงความสัมพันธ์ระหว่าง t กับ L และระหว่าง t กับ ln L

ปฏิกิริยาดีไฮเดรชันนี้เป็นปฏิกิริยาอันดับ

1 (1)

ค่าคงที่อัตราเร็วการเกิดปฏิกิริยา (k) =

0.50 (0.5) min⁻¹

ตอบทศนิยม 2 ตำแหน่ง

วิธีคำนวณ

จากปฏิกิริยาอันดับ 1; $\ln [A] = \ln [A]_0 - kt$ เมื่อวาดกราฟแสดงความสัมพันธ์ระหว่าง t กับ $\ln L$ จะได้ slope = -k ดังนั้น $k = -slope = -(-0.50) min^{-1}$ (1) $k = 0.50 min^{-1}$

ที่เวลา 5 นาที จะมีปริมาณไลโมไนต์เหลือ =

ตอบทศนิยม 2 ตำแหน่ง

วิธีคำนวณ

จาก $ln[A] = ln[A]_0 - kt$

ที่เวลา 5.00 นาที;
$$\ln [A] = \ln (10.00 \text{ g}) - (0.50 \text{ min}^{-1}) (5.00 \text{ min})$$
 (0.5)

$$ln[A] = 2.3026 - 2.50 = -0.20$$
 (0.5)

ดังนั้น [A] = 0.82 g

1.2 (5 คะแนน)

ในปีนี้จะพบว่ามี ¹⁴C อยู่ร้อยละ

1.16 (0.5) ของคาร์บอนทั้งหมด

ตอบทศนิยม 2 ตำแหน่ง

วิธีคำนวณ

เนื่องจาก ครึ่งชีวิต ($\mathsf{t}_{1/2}$) คือ ระยะเวลาที่สารสลายตัวเหลือครึ่งหนึ่ง

จะได้ปริมาณ
14
C ที่เวลา t ใด ๆ ; 14 C_t = 14 C₀(1/2) $^{(t/t_{1/2})}$ (0.5)

ปริมาณ
14
C ที่เวลา 4,125 ปี คือ 14 C_t = $(0.0194/1)(1/2)^{(4,125 \text{ y/5,730 y})}$ (0.5)

$$^{14}C_t = (0.0194/1)(0.607)$$
 (0.5)

$$^{14}C_t = (0.0118/1)$$
 (0.5)

ค่าคงที่การสลายตัว (k) =

$$1.21 \times 10^{-4}$$
 (0.5) y^-

ตอบเลขนัยสำคัญ 3 ตัว

วิธีคำนวณ

$$-4.440 = -3.942 - k(4,125 y)$$

$$k = (4.440 - 3.942)/4,125 y$$
 (0.5)

ดังนั้น $k = 1.21 \times 10^{-4} \text{ y}^{-1}$

คำตอบข้อที่ 2 (4 คะแนน)

พลังงานของการเกิด KCl(s)

- 437

kJ/mol (1)

วิธีคำนวณ

$$Na(s) \longrightarrow Na(g)$$

$$\Delta H_1 = 107 \text{ kJ}$$

$$Na(g) \longrightarrow Na^{+}(g) + e^{-}$$

$$\Delta H_2 = 496 \text{ kJ}$$

....(2)

$$Cl_2(g) \longrightarrow 2Cl(g)$$

$$\Delta H_3 = 244 \text{ kJ}$$

$$\Delta H_4 = -787 \text{ kJ}$$
(4)

$$Na^{+}(g) + Cl^{-}(g) \longrightarrow NaCl(s)$$

 $Na(s) + \frac{1}{2}Cl_{2}(g) \longrightarrow NaCl(s)$

$$\Delta H_5 = -411 \text{ kJ}$$
(5)

(3)/2;
$$\frac{1}{2}Cl_2(g) \rightarrow Cl(g)$$

$$\Delta H_6 = \frac{1}{2}\Delta H_3 = 122 \text{ kJ } \dots (6)$$

$$Cl(g) + e^{-} \longrightarrow Cl^{-}(g)$$

$$\Delta H_7 = x kJ$$

$$(1) + (2) + (6) + (4) + (7) = (5); \Delta H_1 + \Delta H_2 + \Delta H_6 + \Delta H_4 + \Delta H_7 = \Delta H_5$$

$$107 + 496 + 122 + (-787) + x = -411$$

$$x = EA = -349 \text{ kJ}$$

$$Cl(g) + e^{-} \longrightarrow Cl^{-}(g)$$

$$\Delta H_7 = -349 \text{ kJ}$$

(1 คะแนน)

$$K(s) \longrightarrow K(g)$$

$$\Delta H_9 = 107 - 18 = 89 \text{ kJ}$$

$$K(g) \longrightarrow K^{+}(g) + e^{-}$$

$$\Delta H_{10} = 496 - 77 = 419 \text{ kJ}$$

....(11)

$$K^{+}(g) + Cl^{-}(g) \longrightarrow KCl(s)$$

$$\Delta H_{11} = (-787) - (-69) \text{ kJ}$$

(1 คะแนน)

$$(9)+(10)+(6)+(8)+(11)$$
;

$$K(s) + \frac{1}{2}Cl_2(g) \longrightarrow KCl(s)$$

$$\Delta H_{12} = \Delta H_9 + \Delta H_{10} + \Delta H_6 + \Delta H_7 + \Delta H_{11}$$

$$= 89 + 419 + 122 + (-349) + (-718)$$

(1 คะแนน)

$$= -437 \text{ kJ}$$

คำตอบข้อที่ 3 (6 คะแนน)

	25.00 °C		727.00 °C	
ค่าคงที่สมดุล =	1.5×10^{-6}	(0.25)	3.1×10^3	(0.25)
		ตอบเลขเ	มัยสำคัญ 2 ตัว	

∆G° =	33.20	(0.25)	- 66.77	(0.25)	kJ
ΔH° =	92.40	(0.25)	92.40	(0.25)	kJ
ΔS° =	198.6	(0.25)	159.1	(0.25)	J/K

ตอบเลขนัยสำคัญ 4 ตัว

วิธีคำนวณ

ก. คำนวณค่าคงที่สมดุล, ΔG° , ΔH° และ ΔS° ที่อุณหภูมิ 25.00 °C (298.15 K)

$$\Delta G_1^{\circ} = \sum \Delta G_f^{\circ} \{ (N_2(g) + 3H_2(g) - 2NH_3(g)) \}$$

$$= 0 + 3(0) - 2(-16.60) = 33.20 \text{ kJ}$$
(0.5)

$$\Delta H_1^{\circ} = \sum \Delta H_f^{\circ} \{ (N_2(g) + 3H_2(g) - 2NH_3(g)) \}$$

$$= 0 + 3(0) -2(-46.20) = 92.40 \text{ kJ}$$
(0.5)

$$\Delta G_1^{\circ} = \Delta H_1^{\circ} - T_1 \Delta S_1^{\circ}$$

$$33.20 \times 1000 = 92.40 \times 1000 - 298.15 \Delta S_1^{\circ}$$

$$\Delta S_1^{\circ} = 198.6 \text{ J/K}$$
 (0.5)

$$\Delta G_1^{\circ} = - RT \ln K_1$$

$$33.20 \times 1000 = -8.314 \times 298.15 \ln K_1$$

$$K_1 = K_{298} = 1.5 \times 10^{-6}$$
 (0.5)

วิธีคำนวณ (ต่อ)

ข. คำนวณค่าคงที่สมดุล, ΔG° , ΔH° และ ΔS° ที่อุณหภูมิ 727.00 °C (1000.15 K) ที่ภาวะสมดุล สลายตัว 90.0%

$$2NH_3(g)$$
 \rightleftharpoons $N_2(g)$ + $3H_2(g)$ ความดันที่ภาวะสมดุล $2(1-X)P$ XP $3XP$

ความดันรวม =
$$P_T$$
 = $P\{(2NH_3(g) + N_2(g) + 3H_2(g)\} = 2(1-X)P + XP + 3XP = 10.0$
 $X = 0.900$; $P = 2.63$ atm

$$2NH_3(g) \iff N_2(g) + 3H_2(g)$$
 ความดันที่ภาวะสมดุล (atm)
$$2(1-X)P \qquad XP \qquad 3XP$$

$$2(1-0.900)\times 2.63 \qquad 0.900\times 2.63 \qquad 3\times 0.900\times 2.63$$

$$0.526 \qquad 2.37 \qquad 7.10$$

$$K_2 = K_{1000} = \frac{P_{N_2}P_{H_2}^3}{P_{NH_3}^2}$$

$$K_2 = K_{1000} = \frac{2.37 \times 7.10^3}{0.526^2} = 3.07 \times 10^3$$
 (1)

$$\Delta G_2^{\circ} = \Delta G_{1000}^{\circ} = - RT \ln K_{1000}$$

$$= -8.314 \times 1000.15 \ln 3.07 \times 10^3$$

$$= -6.677 \times 10^4 \text{ J} = -66.77 \text{ kJ}$$
(0.5)

$$\Delta S_2^{\circ} = \Delta S_{1000}^{\circ} = (\Delta H_{1000}^{\circ} - \Delta G_{1000}^{\circ})/1000.15$$

= $(92.40 \times 1000 - (-66.77 \times 1000))/1000.15$
= 159.1 J/K (0.5)

คำตอบข้อที่ 4 (10 คะแนน)

4.1 (3 คะแนน)	(เลือก "กรด" ได้ช่องละ 0.25 คะแนน, อ้างอิงเหตุผล <u>ตามนิยาม</u> ช่องละ 0.5 คะแนน)
ตามทฤษฎีกรด-เบสข	องอาร์รีเนียส B(OH)3 เป็น 🔲 กรด 🔲 เบส 🔲 ไม่สามารถพิจารณาได้
เนื่องจาก	B(OH) $_3$ → BO(OH) $_2^-$ + H $^+$ K = 5.8 x 10 $^{-10}$ กรด เนื่องจากละลายน้ำแล้วแตกตัวให้ H $^+$
ตามทฤษฎีกรด-เบสข	องบรอนสเตด-ลาวรี B(OH)3 เป็น 🔲 กรด 🔲 เบส 🔲 ไม่สามารถพิจารณาได้
เนื่องจาก	B(OH) $_3$ + H $_2$ O \longrightarrow BO(OH) $_2^-$ + H $_3$ O $^+$ K = 5.8×10^{-10} กรด 1 เบส 1 เนื่องจาก ให้ H $^+$ แก่โมเลกุล H $_2$ O
เ ตามทฤษฎีกรด-เบสข	องลิวอิส B(OH)3 เป็น <mark>D</mark> กรด D เบส D ไม่สามารถพิจารณาได้
เนื่องจาก	$B(OH)_3 + H_2O \longrightarrow B(OH)_4^- + H^+ \qquad K = 7.3 \times 10^{-10}$ หรือ $B(OH)_3 + 2 H_2O \longrightarrow B(OH)_4^- + H_3O^+$ กรด เนื่องจากรับคู่อิเล็กตรอนจากโมเลกุล H_2O (ตามด้วยการแตกตัว)
ั ดังนั้น สารละลาย B(OH) ₃ มีฤทธิ์เป็น <mark>ロ</mark> กรด ロ เบส ロ กลาง
เนื่องจาก	ทุกทฤษฎีสนับสนุนความเป็นกรด [ต้องเลือกคำตอบให้สอดคล้องกับค่า K ที่พิจารณาไว้ในแต่ละกรณี เช่น Arrhenius/Brønsted-Löwry ตอบเป็น กรด (K = 5.8×10^{-10}) แต่ Lewis ตอบเป็น เบส (K = 7.3×10^{-10}) เพราะสรุปจาก OH^- ในสมการ $B(OH)_3 + OH^- \longrightarrow B(OH)_4^-$ คำตอบสุดท้ายจะต้องสรุปว่า สารละลายนั้นเป็น เบส]

4.2 (3 คะแนน)

ธาตุ	1 <i>s</i>	โครงสร้าง 2 <i>s</i>	อิเล็กตรอน 2p	แสดงวิธีคำนวณค่า $\chi_{ m spec}$
В	↑ ↓	↑↓	↑	$(0.1691 \text{ eV}^{-1}) \cdot \frac{2 \times 14.045 + 1 \times 8.297}{3} = 2.051$
С	↑ ↓	↑↓	† †	$(0.1691 \mathrm{eV^{-1}}) \cdot \frac{2 \times 19.432 + 2 \times 10.664}{4} = 2.545$
N	↑ ↓	↑↓	† † †	$(0.1691 \mathrm{eV^{-1}}) \cdot \frac{2 \times 25.557 + 3 \times 13.180}{5} = 3.066$
0	↑↓	↑↓	↑↓ ↑ ↑	$(0.1691 \mathrm{eV^{-1}}) \cdot \frac{2 \times 32.376 + 4 \times 15.845}{6} = 3.611$

(0.5 คะแนน) จำนวนอิเล็กตรอน

(0.5 คะแนน) Hund's rule

(1 คะแนน) การเลือกค่า a, b และ ค่าพลังงาน

(1 คะแนน) ผลการคำนวณถูกต้อง

4.3 (4 คะแนน)

4.3.1 ชนิดของพันธะที่สารประกอบธาตุคู่ในบริเวณต่าง ๆ ของสามเหลี่ยม van Arkel-Ketelaar (ที่ตอบในกราฟหน้า ถัดไป) แสดงลักษณะชนิดของพันธะเด่นที่สุด

Zone	Р	Q	R	
แบบจำลองการเกิดพันธะ	พันธะไอออนิก	พันธะโลหะ	พันธะโคเวเลนต์	(1 คะแนน)

4.3.2 ผลคำนวณสำหรับสารประกอบไบนารี

สารประกอบ	★ B ₄ C	★ BN	★ B ₂ O ₃	
ค่าเฉลี่ยของค่า EN	2.298	2.558	2.831	(0.5 คะแนน)
ผลต่างของค่า EN	0.494	1.015	1.560	(0.5 คะแนน)

(0.5 คะแนน) สำหรับการพล็อตค่าลงในกราฟได้ถูกต้อง

4.3.3 ระบุชนิดของสารประกอบ X, Y และ Z

สารประกอบ	Х	Y	Z	
สูตรเคมีของสารประกอบ	B ₂ O ₃	B ₄ C	BN	(0.5 คะแนน)

เหตุผลในการพิจารณา (1 คะแนน)

- Character ผสม : แม้จะอยู่ในโซน covalent ทุกตัว แต่อยู่ใกล้กับ borderline / ตรงกลาง ๆ ของสามเหลี่ยม
- ระยะห่างจากจุดยอดของสามเหลี่ยม: ใกล้มุมใด (สีแดง) จะมี character ของพันธะชนิดนั้นมาก

	P: Ionic	Q: Metallic	R: Covalent	ลักษณะเด่น
Boron	3.55	1.39	2.14	(Metalloid)
B_4C	3.04	1.71	1.96	Metallic > Covalent >> Ionic
BN	2.52	2.15	1.92	Covalent > Metallic >> Ionic
B_2O_3	2.02	2.67	2.07	Ionic > Covalent >> Metallic

<u>หมายเหตุ</u> นักเรียนจะคำนวณระยะห่างระหว่างจุด ใช้ไม้บรรทัดวัดระยะ หรือประมาณด้วยสายตาก็ได้

- ช่องว่างระหว่างแถบพลังงาน: ความสามารถในการนำไฟฟ้า ซึ่งเป็น character ของการเกิดพันธะโลหะ Gap: Y (2.09) < Z (5.20) < X (>6 eV) ... Metallicity: $B_4C > BN > B_2O_3$
- ความต่อเนื่องของโครงสร้าง: โครงสร้างแบบโมเลกุล vs โครงสร้างแบบขยาย X ไม่มีความเป็น molecular เลย ... น่าจะเป็น B_2O_3 ซึ่งมีความเป็น ionic > covalent (diagonal relationship กับ SiO2)

แผนภาพสามเหลี่ยม van Arkel-Ketelaar (สำหรับข้อ 4.3)

คำตอบข้อที่ 5 (6 คะแนน)

5.1 (1 คะแนน) การจัดเรียงตัวของไอออนบวกและไอออนลบ

ไอออนบวก

บรรจุในช่องว่างออกตะฮีดรัล

(0.5)

ไอออนลบ

Face-centered cubic (FCC) หรือ cubic-closed packing (CCP) หรือ ABC... (0.5)

5.2 (3 คะแนน) สูตรเคมีของสารและสูตรการคำนวณ

สูตรเคมีของสาร

CdCl₂

(1)

สูตรการคำนวณโดยใช้ตัวแปร FW =

$$\frac{d \times N_A \times a^3}{2}$$

(0.5)

วิธีคำนวณ แสดงโดยใช้ตัวแปรในคำถาม, FW และ N_A

จากรูปมีแคดเมียม 2 ไอออน จำนวนหน่วยซ้ำ = 2 (ไอออนลบเป็น FCC มี 4 ตัว ควรเป็น CdX_2)

 $d = \frac{2 \times FW}{N_A \times a^3} \quad \therefore FW = \frac{d \times N_A \times a^3}{2}$

 $FW = 4.047 \frac{g}{cm^{3}} \times 6.02 \times 10^{23} \frac{\text{unit}}{\text{mol}} \times \left(5.32 \times 10^{-8} \text{cm}\right)^{3} \times \frac{1}{2} = 183.4 \text{ g/mol}$ (0.5)

MW Cd = 112.4 g/mol แสดงว่าส่วนของไอออนลบหนัก 71.0 g/mol พิจารณาแล้ว ควรเป็น ${\sf Cl}^-$

5.3 (1 คะแนน) เลขโคออร์ดิเนชันของไอออนบวก =

6 (0.5)

ของไอออนลบ =

3 (0.5)

5.4 (1 คะแนน) สารนี้ควรมีจุดหลอมเหลว 🗖 สูงกว่า 🗖 ต่ำกว่า wurtzite CdS เพราะ

คำตอบ 0.25 เหตุผล 0.75 คะแนน

สารนี้มีโครงสร้างเป็น layer lattice ทำให้มี<u>ความเป็นโคเวเลนต์</u>เนื่องจากมีชั้นของไอออนลบ (คลอไรด์) ที่ไม่มี ไอออนบวกคั่น แรงกระทำระหว่างสองชั้นนี้จึงเป็นแรงวันเดอร์วาลส์ ไม่ใช่แรงระหว่างประจุ จุดหลอมเหลวจึง ต่ำกว่า CdS ที่มีไอออนบวกสลับไอออนลบทุกชั้น

6.3 (1 คะแนน) สูตรเคมีและชื่อสะกดด้วยอักษรอังกฤษของกรดออกโซของ X Y หรือ Z ที่อ่อนที่สุด

6.4 (1 คะแนน)รูปโครงสร้าง tetraiodide ของ Y

info

	Y (P)	Z (S)	X (Cl)
IE ₁ (kJ/mol)	1060	1000	1250
EA	-72	-200	-349

แนวคิด คาบที่มีอโลหะ 3 ตัว คือคาบ 2 และ 3 จากลำดับค่า IE_1 และ EA ของ Y และ Z ที่สลับกัน แสดงว่า Y / Z ต้องเป็นหมู่ 5 / 6 (การดึงอิเล็กตรอนออกจาก p^4 ง่ายขึ้น การใส่อิเล็กตรอนยัง p^3 ซึ่ง half-filled คายพลังงาน น้อยลง) เนื่องจาก EA มีเครื่องหมายเดียวกันหมด (เป็นลบ) และมีมากกว่าหนึ่งสถานะ แสดงว่าไม่ใช่ N, O, F (N มี EA เป็นบวก) ดังนั้น X, Y, Z อยู่ในคาบที่ 3 (หมายเหตุ C, O, F มีลำดับ IE_1 และ EA เหมือนกัน)

คำตอบข้อที่ 7 (3.5 คะแนน)

7.1 (1.5 คะแนน)

ธาตุ **A** คือ Be หรือ Beryllium (0.5)

สูตรเคมีของผลิตภัณฑ์ที่ได้จากการละลายน้ำของสาร D

ในสภาวะที่เป็นกรดคือ $[Be(H_2O)_4]^{2+}$ (0.5) ในสภาวะที่เป็นเบสคือ $[Be(OH)_4]^{2-}$ (0.5)

7.2 (2 คะแนน)

คำตอบข้อที่ 8 (6.5 คะแนน)

คำตอบข้อที่ 9 (12 คะแนน)

9.1 (3 คะแนน)

	กรณี (1) paramagnetic	กรณี (2) diamagnetic
รูปร่างของ MA ₄	ทรงสี่หน้า (tetrahedral) (0.5)	สี่เหลี่ยมระนาบ (square planar) (0.5)
การแยกระดับ- พลังงาน และการ บรรจุอิเล็กตรอน	11 1 d _{xy} , d _{yz} , d _{xz}	
	(1)	$ \begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ & & & &$

แผนภาพการแยกระดับพลังงาน (0.5) ชื่อออร์บิทัลถูกทั้งหมด (0.25) การบรรจุอิเล็กตรอน (0.25)

9.2 (1.5 คะแนน) เขียนลูกศรแสด	งการเปลี่ยนแปลงระดับพลังงานของทั้งสองกรณีในแผนภาพของคำตอบข้อ 9.1
กรณีที่ใช้พลังงานมากกว่าคือ	🗖 กรณี (1) MA4 เป็น paramagnetic
	🗖 กรณี (2) MA ₄ เป็น diamagnetic

9.3 (1.5 คะแนน) [Xe] $4f^{14} 5d^8 6s^2$ หรือ $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^8 6s^2$ (หมายเหตุ - ของจริงคือ [Xe] $4f^{14} 5d^9 6s^1$) การจัดอิเล็กตรอนของ Z เพิ่มเติมสำหรับครู – จากข้อมูล ธาตุโลหะที่เป็นของเหลวคือ ปรอท (Hg) ดังนั้น Z คือแพลทินัม (Pt) ส่วน M ซึ่งอยู่หมู่เดียวกับ Z จะเป็นธาตุนิกเกิล (Ni) [Ar] $3a^8$ $4s^2$ โดยในสารเชิงซ้อน Ni จะมีเลข ออกซิเดชัน +2

9.4 (6 คะแนน)

9.4.1 (1) M(SCN)₂Cl₂

ไinkage isomer ชนิดไอโซเมอร์ จากข้อ 9.1 สารเชิงซ้อนนี้จะมีรูปร่างเป็นทรงสี่หน้า ไม่มี geometrical isomer แต่มี linkage isomer จากลิแกนด์ SCN (S หรือ N เป็น donor atom) (0.5) $[M(\underline{SCN})_2Cl_2], \ [M(\underline{NCS})_2Cl_2], \ [M(\underline{SCN}) \ (\underline{NCS})Cl_2] \ (1)$ (อะตอมที่ขีดเส้นใต้ทำหน้าที่ donor atom) นักเรียนตอบเพียง 2 สูตรก็พอแล้ว

(2) $M(CN)_2(NH_3)_2$

9.4.2

ชาตุ M คือ Ni (0.5)

ชื่อของสารเชิงซ้อน (ตอบเพียง 1 ไอโซเมอร์สำหรับแต่ละข้อ)

	สูตรของสารเชิงซ้อนที่ระบุธาตุ	ชื่อของสารเชิงซ้อนตามหลัก IUPAC
	และประจุ	
	$[Ni(\underline{SCN})_2Cl_2]^{2-}$ (มีประจุลบ)	dichlorodithiocyanatonickelate(II) ion
(1) NA(CCNI) CI	หรือ [Ni(<u>N</u> CS) ₂ Cl ₂] ²⁻	dichlorodiisothiocyanatonickelate(II) ion
(1) M(SCN) ₂ Cl ₂	หรือ [Ni(<u>S</u> CN) (<u>N</u> CS)Cl ₂] ²⁻	dichloroisothiocyanatothiocyanatonickelate(II) ion
	(0.5)	chloro = chlorido (0.75)
	<i>cis</i> -[Ni(CN) ₂ (NH ₃) ₂] (เป็นกลาง)	cis-diamminedicyanonickel(II)
(2) M(CN) ₂ (NH ₃) ₂	หรือ <i>trans-</i> [Ni(CN) ₂ (NH ₃) ₂]	trans-diamminedicyanonickel(II)
	(แสดงโครงสร้างก็ได้) (0.5)	(0.75)

คำตอบข้อที่ 10 (7 คะแนน)

10.1 (1 คะแนน)

รูปร่างโมเลกุล CH3SO2F คือ

ทรงสี่หน้า (tetrahedral)

(0.5)

(0.5)

10.2 (2 คะแนน)

197

(0.5)

g

ตอบเลขนัยสำคัญ 3 ตัว

วิธีคำนวณ

สมการที่คุลแล้วคือ
$$CH_3SO_2F + 3HF \longrightarrow CF_3SO_2F + 3H_2$$
 ต้องใช้ HF = 500.0 g $CF_3SO_2F \times \frac{1\,\text{mol}\,CF_3SO_2F}{152.0\,\text{g}\,CF_3SO_2F} \times \frac{3\,\text{mol}\,HF}{1\,\text{mol}\,CF_3SO_2F} \times \frac{20.0\,\text{g}\,HF}{1\,\text{mol}\,HF}$ ------ (0.5) ------ (0.5) (0.5)

10.3 (1 คะแนน)

จะเกิด
$$H_2$$
 ที่ \square แอโนด \square แคโทด ของเซลล์อิเล็กโทรไลต์ (0.5) ซึ่งต่อกับ \square ขั้วบวก \square ขั้วลบ ของแบตเตอรี่ (0.5)

10.4 (3 คะแนน)

ตอบเลขนัยสำคัญ 2 ตัว

วิธีคำนวณ

พลังงาน (J) = ประจุ × ศักย์ไฟฟ้า ประจุไฟฟ้าที่ใช้ (Q) = It = 250 A × 24 h ×
$$\frac{60 \text{ min}}{1 \text{ h}} \times \frac{60 \text{ s}}{1 \text{ min}} \times \frac{1 \text{ C}}{1 \text{ A} \cdot \text{s}} = 2.16 \times 10^7 \text{ C}$$
----- (0.5) ----- (0.25) (0.25)

เซลล์อิเล็กโทรไลต์นี้ใช้พลังงาน = (2.16 × 10^7 C) × (8.00 V) × $\left(\frac{1 \text{ J}}{1 \text{ C} \cdot \text{V}}\right)$ × $\left(\frac{1 \text{ W} \cdot \text{s}}{1 \text{ J}}\right)$ × $\left(\frac{1 \text{ kW}}{1000 \text{ W}}\right)$ ------- (0.25) (0.25)

× $\left(\frac{1 \text{ min}}{60 \text{ s}}\right)$ × $\left(\frac{1 \text{ h}}{60 \text{ min}}\right)$ (0.25)

= 48.0 kW·h

#\$30

(0.25) (0.25) (0.75)

= 48.0 kW·h

$$1J = 1 \text{ W} \cdot \text{s} \left(\frac{1 \text{ min}}{60 \text{ s}}\right) \left(\frac{1 \text{ h}}{60 \text{ min}}\right) \left(\frac{1 \text{ kW}}{1000 \text{ W}}\right) = \left(\frac{1 \text{ kW h}}{3.6 \times 10^6}\right)$$
$$1 \text{kW} \cdot \text{h} = 3.6 \times 10^6 \text{ J}$$

คำตอบข้อที่ 11 (3 คะแนน)

$$K_{\rm a}$$
 ของกรดอ่อน HA = 3.0×10^{-5} (0.5)

ตอบเลขนัยสำคัญ 2 ตัว

วิธีคำนวณ

$$E_{\text{cell}} = E_{\text{cathode}} - E_{\text{anode}}$$

$$-0.296 = E_{\text{cathode}} - 0.000$$

$$E_{\text{cathode}} = -0.296 \text{ V}$$
(0.5)

ครึ่งปฏิกิริยาที่แคโทดคือ $2H^+ + 2e^- \rightleftharpoons H_2(g)$ $E^{\circ} = 0.000 \ V$

$$E_{\text{cathode}} = E^{\circ}_{\text{cathode}} - \frac{RT}{nF} \ln \frac{P_{\text{H}_2}}{[\text{H}^+]^2}$$

$$E_{\text{cathode}} = E^{\circ}_{\text{cathode}} - \frac{(8.314 \text{ J/mol K})(298.15 \text{ K})}{(n \text{ mol e}^-)(96485 \text{ J/V})} \times 2.303 \log \frac{P_{\text{H}_2}}{[\text{H}^+]^2}$$

$$E_{\text{cathode}} = E^{\circ}_{\text{cathode}} - \frac{0.0592}{2} \log \frac{P_{\text{H}_2}}{[\text{H}^+]^2}$$
 (0.5)

$$-0.296 = 0.000 - \frac{0.0592}{2} \log \frac{1.00}{[H^+]^2}$$

$$= -\frac{0.0592}{2} (-2 \log [H^+])$$
(0.5)

$$[H^{+}] = 1.0 \times 10^{-5} M$$
 (0.5)

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

$$K_{a} = \frac{(1.0 \times 10^{-5})(0.030)}{0.010}$$

$$K_{a} = 3.0 \times 10^{-5}$$
(0.5)

คำตอบข้อที่ 12 (10 คะแนน)

12.1 (4 คะแนน)

วิธีคำนวณ

$$\% \text{EtOH} = \left\{ \left(\frac{0.1150 \text{ mol } \text{Cr}_2 \text{O}_7^{2^-}}{1000 \text{ mL } \text{Cr}_2 \text{O}_7^{2^-}} \times 25.00 \text{ mL } \text{Cr}_2 \text{O}_7^{2^-} \right) \times 25.00 \text{ mL } \text{Cr}_2 \text{O}_7^{2^-} \right\}$$

$$- \left(\frac{0.3440 \text{ mol } \text{Fe}^{2^+}}{1000 \text{ mL } \text{Fe}^{2^+}} \times 28.00 \text{ mL } \text{Fe}^{2^+} \times \frac{1 \text{ mol } \text{Cr}_2 \text{O}_7^{2^-}}{6 \text{ mol } \text{Fe}^{2^+}} \right) \right\}$$

$$(0.25 + 0.25)$$

$$\times \frac{3 \text{ mol } C_2H_5OH}{2 \text{ mol } Cr_2O_7^{2-}} \times \frac{46.0 \text{ g } C_2H_5OH}{1 \text{ mol } C_2H_5OH} \times \frac{1 \text{ mL } C_2H_5OH}{0.790 \text{ g } C_2H_5OH}$$
(0.75)

$$\times \frac{1}{5.00 \text{ mL dil sample}} \times \frac{100.00 \text{ mL dil sample}}{20.00 \text{ mL sample}} \times 100\%$$
 (0.5)

= 11.092

12.2 (6 คะแนน)

ความดันย่อยของแก๊สคาร์บอนไดออกไซด์ = 6.30 (0.5) atm
ค่าการละลายของแก๊สคาร์บอนไดออกไซด์ = 0.195 (0.5) mol/L

ตอบเลขนัยสำคัญ 3 ตัว

วิธีคำนวณ

ปฏิกิริยาการหมัก
$$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2(g)$$
 (0.5)

$$mol CO_2 = 745 \text{ mL} \times \frac{13.0 \text{ mL } C_2H_5OH}{100 \text{ mL}} \times \frac{0.790 \text{ g } C_2H_5OH}{1 \text{ mL } C_2H_5OH} \times \frac{1 \text{ mol } C_2H_5OH}{46.0 \text{ g } C_2H_5OH} \times \frac{2 \text{ mol } CO_2}{2 \text{ mol } C_2H_5OH}$$
(1)

$$= 1.66 \text{ mol}$$
 (0.25)

เมื่อปล่อยแก๊สคาร์บอนไดออกไซด์ที่เกิดขึ้นออกไปร้อยละ 90.0 ดังนั้น mol CO₂ ที่เหลือ = 0.166 mol (0.25) แก๊สคาร์บอนไดออกไซด์ที่เกิดขึ้นบางส่วนละลายได้ในน้ำองุ่น ดังนั้น

$$mol\ CO_2\$$
ทั้งหมด = $mol\ CO_2\ (g) + mol\ CO_2\ (aq)$ (0.25)
0.166 = $n(g) + n(aq)$ หรือ $n(aq) = 0.166 - n(g)$

จาก PV = nRT

$$P_{CO2} = \frac{n(g) \text{ mol} \times 0.0821 \text{ L atm/mol K} \times (25.0+273.15) \text{ K}}{(825-745) \times 10^{-3} \text{ L}} = 306 \text{ n(g)}$$
 (0.5+0.25)

จาก C = kP จะได้
$$P_{CO2} = \frac{n(aq) \text{ mol } / 745 \times 10^{-3} \text{ L}}{3.10 \times 10^{-2} \text{ mol/L atm}} = 43.3 \text{ n(aq)}$$
 (0.5+0.25)

จะได้ว่า 43.3 n(aq) = 306 n(g)

7.1878 - 43.3 n(g) = 306 n(g)

$$n(g) = 0.0206 \text{ mol}$$
 (0.5)

$$P_{CO2} = 306 \text{ n(g)} = 306 \times 0.0206 = 6.30 \text{ atm}$$
 (0.25)

C =
$$kP = 3.10 \times 10^{-2} \text{ mol/L-atm } \times 6.30 \text{ atm}$$
 (0.25)
= 0.195 mol/L

คำตอบข้อที่ 13 (10 คะแนน)

13.1 (1 คะแนน) ปฏิกิริยาที่เกิดขึ้นในการลอกกาวไหมด้วยการต้มในน้ำด่าง

การตรวจ - เขียนพันธะเปปไทด์ (0.3) H_2O (0.1) Heat/OH $^-$ (0.1) -COONa (0.3) $-NH_2$ (0.2)

วิธีคำนวณ

สารละลาย Na₂SO₄.7H₂O เข้มข้น 40% (w/w)

= 2.08955 mol/L

 $[Na^+] = 2 \times 2.08955 \text{ mol/L} = 4.17910 \text{ mol/L}, [SO_4^{2-}] = 2.08955 \text{ mol/L}$ (0.25+0.25+0.25)

ความแรงไอออนของสารละลาย (
$$\mu$$
)
$$= \frac{1}{2}([Na^+]Z_{Na^+}^2 + [SO_4^{2-}]Z_{SO_4^{2-}}^2)$$
$$= \frac{1}{2}((4.17910\,\mathrm{M})(+1^2) + (2.08955\,\mathrm{M})(-2)^2)$$
$$= 6.26865\,\mathrm{M}$$

วิธีคำนวณ

ละลาย CaO 250 g ในน้ำ 125 L หรือ 2.0 g/L

พรือ
$$\frac{2.0\,\mathrm{g\,CaO}}{1\,\mathrm{L}} \times \frac{1\,\mathrm{mol\,CaO}}{56.0\,\mathrm{g\,CaO}} \times \frac{1\,\mathrm{mol\,Ca(OH)}_2}{1\,\mathrm{mol\,CaO}} = 0.035714\,\mathrm{mol\,Ca(OH)}_2\,\mathrm{/L} \tag{0.5}$$

สารละลายบัฟเฟอร์ pH = pK_a + log
$$\frac{a_{OAc}}{a_{HOAc}}$$
 (0.5)

 $K_a (CH_3COOH) = 1.75 \times 10^{-5}$

$$5.00 = -\log(1.75 \times 10^{-5}) + \log \frac{a_{OAC}}{a_{HOAC}}$$
 (0.5)

$$\log \frac{a_{OAc^{-}}}{a_{HOAc}} = 5.00 - 4.76 = 0.24$$

$$\frac{a_{\text{OAC}}}{a_{\text{HOAC}}} = 1.75 = \frac{\gamma_{\text{OAC}}[\text{OAc}^{-}]}{\gamma_{\text{HOAC}}[\text{HOAC}]}$$
(0.5)

$$\gamma_{\text{\tiny OAC}^-} = 0.54$$
 และ $\gamma_{\text{\tiny HOAC}} = 1.0$

$$\frac{[OAc^{-}]}{[HOAc]} = \frac{1.0}{0.54} \times 1.75 = 3.24 \tag{0.5}$$

ปฏิกิริยาสะเทิน Ca(OH)
$$_2$$
 + 2CH $_3$ COOH \longrightarrow 2CH $_3$ COO $^-$ + Ca $^{2+}$ + 2H $_2$ O (0.5)

เริ่มต้น (M) 0.035714 0 0

สะเทิน (M) 0.035714 0.071428

หากต้องการให้ $Ca(OH)_2$ เกิดปฏิกิริยาหมด ต้องใช้ $CH_3COOH = 0.071428 \; mol/L$

หากต้องการเตรียมสารละลายบัฟเฟอร์ pH 5.00 ต้องเติม CH $_3$ COOH เพิ่มจนกระทั่ง $\frac{[OAc^-]}{[HOAc]} = 3.24$ (0.75)

แทนค่า [OAc⁻] = 0.071428 mol/L

$$\frac{0.071428 \text{ M}}{[\text{HOAc}]} = 3.24$$
 จะได้ [HOAc] = 0.022046 mol/L (0.5)

สารละลายปริมาตร 125 L ต้องเติม
$$CH_3COOH = \frac{0.093474 mol}{1 L} \times 125 L \times \frac{60.0 \, g}{1 \, mol \, HOAc}$$
 (0.5)

= 701.055 g

Answer to Problem 14 (8 points)

Citalopram, an antidepressant medicine, can be synthesized as follows.

Answer to Problem 15 (7 points)

Synthesis of Tazarotene

Precursor 1

Anion F

C₂H₅OOC

tazarotene

Answer to Problem 16 (13 points)

16.1 (1 point) Mark \checkmark in the box \square to show chirality of each compound.

16.2 (5 points) Mechanism of the formation of compound **A**. ***Do not forget to draw the structure of compound **A** even though you cannot write the mechanism!

- ไม่พิจารณาคะแนนสำหรับสารประกอบที่ใช้เป็นเบสหรือกรดในขั้นแรก ผู้สอบสามารถวาดโมเลกุลอะไรมา รับหรือส่งโปรตอนก็ได้ อย่างไรก็ตาม ขั้นตอนแรกที่สร้าง enol หรือ enolate จำเป็นต้องแสดง หากเริ่มที่ enol/enolate เลย จะถูกหัก 0.5 คะแนน
- พิจารณาขั้นปฏิกิริยาในเส้นประเป็นส่วนสำคัญที่สุด นั่นคือต้องมี enol (หรือ enolate ก็ได้) ที่เข้าชนตรง คาร์บอนิลของ acetyl CoA อีกโมเลกุล จุดนี้มีคะแนน 1.5 คะแนน โดยหากมีลูกศรที่โยงครบและไม่ผสม

ประจุบวกประจุลบ (ตามอธิบายด้านล่าง) จะได้เต็ม 1.5 คะแนน โดยไม่ขึ้นกับว่าสามารถเขียนต่อจนจบได้ หรือไม่

- ขั้นที่สาม (หลังจากกรอบเส้นประ) มีค่า 0.5 คะแนน หากไม่แสดงขั้นนี้จะถูกหัก 0.5 คะแนน
- ตามสภาวะของการเกิดปฏิกิริยา Claisen ควรจะมีเพียงประจุบวกหรือลบอย่างใดอย่างหนึ่งในกลไก ขึ้นกับว่าเป็นสภาวะกรดหรือเบส หากมีการผสมประจุบวกหรือลบ จะหัก 0.5 คะแนน
- ลูกศรแสดงการเคลื่อนที่ของ electron ผิดด้าน (โยงลูกศรกลับทิศ) หากมีตั้งแต่ 2 จุดขึ้นไป หัก 1 คะแนน
- เขียนลูกศรไม่ครบ หากมีตั้งแต่ 2 จุดขึ้นไป หัก 0.5 คะแนน
- ***ทั้งหมดเป็นเพียง guideline เท่านั้น โดยการตอบแบบอื่น ๆ นอกเหนือจากนี้ จะได้รับการพิจารณา แบบอิงกลุ่มอีกครั้งหนึ่ง

ส่วนการวาดสารประกอบ A (2 คะแนน)

- มี "-SCoA" ในตำแหน่งใด ๆ เพิ่มอีก 1 จุด จะเหลือ 1 คะแนน โดยที่จำนวนคาร์บอนหลักต้องครบ 4 อะตอม หากมีคาร์บอนไม่เท่ากับ 4 จะได้ 0 คะแนน

ผู้ตรวจจะพิจารณาโครงสร้างของ A ก็ต่อเมื่อผู้เข้าแข่งขันระบุอย่างชัดเจนว่าโครงสร้างใดคือ A เท่านั้น

16.3 (1.5 points) Structure of all different isomers of compound **B**.

สารประกอบนี้ ไม่เป็นไครัล จึงมีเพียงไอโซเมอร์เดียวเท่านั้น โดยจะได้คะแนนเต็มหากวาดเพียงตัวเดียวจาก ด้านบน หรือ วาดทั้งสองตัวแต่อธิบายชัดเจนว่าเป็นตัวเดียวกัน

หากวาดทั้งสองตัวโดยไม่มีคำอธิบายเพิ่มเติม จะได้ 0.5 คะแนน หากวาดเกินกว่านี้ได้ 0 คะแนน

16.4 (1 point) Structure of compound **C** that clearly shows any stereochemistry in the molecule.

16.5 (1.5 points) Structure of compound D

16.6 (3 points) Structure of acetyl CoA at pH 7.5.

- ประจุเกิน เช่น ที่ alcohol, amine หักจุดละ 0.5 คะแนน จนกระทั่งเป็นศูนย์ (ไม่มีติดลบข้ามไปข้ออื่น)
- การลอกโครงสร้างจากโจทย์ลงมาแล้วมีข้อผิดพลาดเล็กน้อย จะไม่มีการหักคะแนน หากเกี่ยวข้องกับ บริเวณที่ต้องแสดงประจุ จะมีการหักคะแนน กระบวนการนี้จะมีการพิจารณาแบบอิงกลุ่มอีกครั้งหนึ่ง