CS584 Assignment 2: Report

Gady Agam Department of Computer Science Illinois Institute of Technology March 10, 2016

Abstract

This report is for assignment in CS584. The problems that we confront Classification problem by different algorithms viz. Gaussian Discriminant Analysis - 1- Feature 2 Class, Gaussian Discriminant Analysis - N- Features 2 Class, Gaussian Discriminant Analysis - N- Feature k Class, Naïve Bayes – Bernoulli distribution, Naïve Bayes – Binomial distribution. Their performance in terms of mean squared error, confusion matrix is evaluated.

Problems Solved:

- 1. 1D 2-Class Gaussian Discriminant Analysis
 - a. To do this analysis, I have chosen the credit_Score data set from UCI Repository. The data has been cleaned to omit the samples with missing values and equal amount of samples for both the classes (i.e. Class 0 and Class 1) have been used as Training Dataset.

b.

The Model Parameters are μ and σ

Compute the mean and variance of samples with y=0 and y= 1 separately on X_Train

$$egin{aligned} &\mu_j = 1/m_j \sum_{i=1}^{m_j} X^{(i)} \ & \\ &\sigma_j^2 = 1/m_j \sum_{i=1}^{m_j} (X^{(i)} - \mu_j)^2 \end{aligned}$$

c. From the Model Parameters we can predict the labels for the new Test Data

Univariate Gaussian Discriminant

$$g_j(X) = -log(\sigma_j) - (X - \mu_j)^2 / \sigma_j^2 + log(\alpha_j)$$

using,

d. We compute the confusion matrix using the predicted and actual classes. Confusion Matrix:

Prediction outcome

Mean Squared Error 0.438735177866

Evaluation Measures from Confusion Matrix for label 0.0:

Accuracy : 0.561264822134 Recall : 0.302083333333

False Negative : 0.697916666667

Precision : 0.397260273973 False Positive : 0.28025477707 True Negative : 0.71974522293 F Square : 0.343195266272

Evaluation Measures from Confusion Matrix for label 1.0:

Accuracy : 0.561264822134 Recall : 0.71974522293

False Negative : 0.28025477707

Precision : 0.62777777778

False Positive : 0.697916666667

True Negative : 0.30208333333

F Square : 0.670623145401

2. nD 2-Class Gaussian Discriminant Analysis

a. To do this analysis, I have chosen the credit_Score data set from UCI Repository. The data has been cleaned to omit the samples with missing values and equal

amount of samples for both the classes (i.e. Class 0 and Class 1) have been used as Training Dataset. The Training Set has 6 continuous features.

b. Model Parameter for multi feature Gaussian distribution.

$$egin{aligned} \mu_j &= 1/m_j \sum_{i=1}^{m_j} I(Y^j = i) X^{(i)} \ &\sum_i &= 1/m_j \sum_{i=1}^{m_j} (X^{(i)} - \mu_j) (X^{(i)} - \mu_j)^T \end{aligned}$$

c. From the computed model parameter mu and sigma, we can predict the labels for any new X. d.

$$g_j(X) = -log(|\sum_j|) - 1/2(X - \mu_j)^T \sum^{-1} (X - \mu_j) + log(\alpha_j)$$

d. Performance Evaluation:

Mean Squared Error 0.237154150198

Evaluation Measures from Confusion Matrix for label 0.0:

Accuracy : 0.762845849802 Recall : 0.552083333333

False Negative : 0.447916666667

Precision : 0.757142857143 False Positive : 0.108280254777 True Negative : 0.891719745223 F Square : 0.638554216867

Evaluation Measures from Confusion Matrix for label 1.0:

Accuracy : 0.762845849802 Recall : 0.891719745223

False Negative : 0.108280254777

Precision : 0.765027322404
False Positive : 0.447916666667
True Negative : 0.55208333333
F Square : 0.823529411765

Area Under the PR Curve using Trapezium rule 7.34445326274

Fig1. Precision Recall Curve – using averages.

3. a.

nD k-Class Gaussian Discriminant Analysis

Compute the mean and variance of samples with y=0 and y= 1 separately on X_Train

$$\mu_j = 1/m_j \sum_{i=1}^{m_j} I(Y^j = i) X^{(i)}$$

$$\sum_{j} = 1/m_{j} \sum_{i=1}^{m_{j}} (X^{(i)} - \mu_{j}) (X^{(i)} - \mu_{j})^{T}$$

b. From the computed model parameter mu and sigma, we can predict the labels for any new X.

$$g_j(X) = -log(|\sum_j|) - 1/2(X - \mu_j)^T \sum_{j=1}^{n-1} (X - \mu_j) + log(\alpha_j)$$

c. Performance Evaluation:

Mean Squared Error 1.36082474227

Evaluation Measures from Confusion Matrix for label 0.0:

Accuracy : 0.701030927835 Recall : 0.702127659574

False Negative : 0.297872340426

Precision : 0.6875 False Positive : 0.3 True Negative : 0.7

F Square : 0.694736842105

Evaluation Measures from Confusion Matrix for label 1.0:

Accuracy : 0.711340206186

Recall : 0.8125

Evaluation Measures from Confusion Matrix for label 2.0:

Accuracy : 0.752577319588 Recall : 0.853658536585

False Negative : 0.146341463415

Precision : 0.853658536585

False Positive: 0.8 True Negative: 0.2

F Square : 0.853658536585

Evaluation Measures from Confusion Matrix for label 3.0:

Accuracy : 0.835051546392 Recall : 0.894117647059

False Negative : 0.105882352941

Precision : 0.915662650602 False Positive : 0.583333333333 True Negative : 0.416666666667 F Square : 0.904761904762

Evaluation Measures from Confusion Matrix for label 4.0:

Accuracy : 0.969072164948

Recall : 1.0

False Negative : 0.0

Precision : 0.969072164948

False Positive: 1.0 True Negative: 0.0

F Square : 0.984293193717

Fig2. Precision – Recall curve.

- 4. Naive Bayes with Bernoulli Features.
 - a. The credit_Score data set of UCI, has been used in this experiment. It has two classes (ie. Good Credit: 1 Bad Credit: 0). The dataset contains text categorical values as 0s and 1s.
 - b. Model Parameter:

$$egin{aligned} lpha_{p|y=1} &= 1/m_j \sum_{i=1}^{m_j} X_p^i \ &Prior_i &= 1/m_j \sum_{i=1}^{m_j} I(Y^j=i) \end{aligned}$$

c.

Membership Function

$$g_l(X) = \sum_{j=1}^n log({p\choose X_j} lpha_{j/y=l}^{X_j} (1-lpha_{j/y=l})^{p-X_j}) + log(lpha_l)$$
 Classification: $\hat{y} = rg \max_l g_l(X)$

d. Performance Evaluation:
Mean Squared Error 0.399209486166

Evaluation Measures from Confusion Matrix for label 0. :

Accuracy : 0.600790513834 Recall : 0.202380952381

False Negative : 0.797619047619

Evaluation Measures from Confusion Matrix for label 1.0:

Accuracy : 0.600790513834 Recall : 0.798816568047

False Negative : 0.201183431953

Precision : 0.668316831683 False Positive : 0.797619047619 True Negative : 0.202380952381 F Square : 0.727762803235

- 5. Naive Bayes Binomial Features.
 - a. Used a new Text based Dataset Spmbase.csv, it contains the frequency of the words, as a part of Data Cleaning, the frequencies are converted into whole numbers and the features. The two classes are 0 (not spam) and 1(spam).
 - b. Model Parameter

$$\alpha_{j/y=l} = (\sum_{i=1}^m I(Y^i=l)X^i_j)/(\sum_{i=1}^m I(Y^i=l)P^i)$$

Membership Function

$$g_l(X) = \sum_{j=1}^n log(inom{P}{X_j} lpha_{j/y=l}^{X_j} (1-lpha_{j/y=l})^{p-X_j}) + log(lpha_l)$$

Classification: $\hat{y} = \arg \max_{l} g_{l}(X)$

c.

d. Performance Evaluation:

Mean Squared Error 0.15

Evaluation Measures from Confusion Matrix for label 0.0:

Accuracy : 0.85

Recall : 0.626666666667 False Negative : 0.373333333333 Precision : 0.959183673469

False Positive : 0.016 True Negative : 0.984

F Square : 0.758064516129

Evaluation Measures from Confusion Matrix for label 1.0:

Accuracy : 0.85 Recall : 0.984 False Negative : 0.016

Precision : 0.814569536424 False Positive : 0.373333333333 True Negative : 0.626666666667 F Square : 0.891304347826