MATEMATIKA ANGOL NYELVEN

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Instructions to examiners

Formal requirements:

- 1. Mark the paper in **ink**, **different in colour** from that used by the candidate. Indicate errors, incomplete solutions, etc. in the conventional way.
- 2. The first of the rectangles below each problem contains the maximum score attainable on that problem. The **points given by the examiner** are to be entered in the rectangle next to this.
- 3. **In case of a complete, unobjectionable solution** it is enough to enter the maximum score in the appropriate rectangle.
- 4. In case of incomplete or incorrect solutions, please indicate partial scores, too.
- 5. Do not assess anything written in pencil except diagrams.

Assessment of content:

- 1. For certain problems, the answer key may contain more than one marking schemes. If the **solution** given by the candidate **is different from those shown**, mark it by identifying parts of the solution equivalent to those given in the answer key.
- 2. Subtotals in the answer key **may be further divided**, but the scores awarded must always be whole numbers.
- 3. In case of a **calculation error** or inaccuracy in the solution, take points off only for the part where the error occurs. If the reasoning remains correct and the error is carried forward without altering the problem substantially, the points for the rest of the solution should be awarded.
- 4. In case of a **conceptual error**, no points should be awarded for that section of the solution, not even for steps that are formally correct. (Sections of the solution are separated by double lines in the answer key.) However, if the incorrect result obtained through the conceptual error is carried forward to the next section or the next part of the problem and it is used correctly, the maximum score is due for all parts thereafter, as long as the error has not altered the problem substantially.
- 5. Where the answer key indicates a unit or remark **in brackets**, the solution should be considered complete without that unit or remark as well.
- 6. In case of **more than one different approach** to a problem, assess only the one indicated by the candidate.
- 7. **Do not give extra points** (i.e. more than the maximum score for the problem or part of problem).
- 8. **Do not take points off** for steps or calculations that contain errors but are not actually used by the candidate in the solution of the problem.
- 9. Assess only two of the three problems in part B of Paper II. Candidates are requested to indicate in the appropriate square the number of the problem not to be assessed and counted in their total score. Any solution given to that problem must be ignored. However, if it is still not clear which problem the candidate does not want to be assessed, assume automatically that it is the last one in the question paper, and do not assess that problem.

I.

1.	
$A \cap B = \{3; 4; 5\}$	1 point
$B \cup C = \{3,4,5,6,7,8,9,10\}$	1 point
$A \setminus B = \{1; 2\}$	1 point
To	otal: 3 points

2.			
14		2 points	Not to be divided.
To	tal:	2 points	

3.			
A) true			Award 1 point for two
B) false		2 points	correct answers, 0 points
C) true			for one correct answer.
	Total:	2 points	

4.			
[-2; 2]		2 points	The correct answer is acceptable in any other form, too.
T	otal:	2 points	

5.		
$(a+9)(a-1) = a^2 + 9a - a - 9$	1 point	
$(a-4)^2 = a^2 - 8a + 16$	1 point	
Combining the like terms: $2a^2 + 7$.	1 point	
	Total: 3 points	

6.	
a) -3	1 point
b) –54	1 point
Total:	2 points

7.		
17 years old	2 points	
Total:	2 points	

9.		
Correct diagram.	1 point	This point is also due if the correct answer is given without a diagram.
The height of the cone (applying the Pythagorean Theorem) $\sqrt{41^2 - 9^2} =$	1 point	
= 40 (cm).	1 point	
Total:	3 points	

10.		
Five positive integers are given.	1 point	
The median of the numbers is 4,	1 point	
the mean is 3.	1 point	
Total:	3 points	

Note: There are only two possible solutions: {1; 1; 4; 4; 5} and {1; 2; 4; 4; 4}.

11.	
$x^2 + (y - 3)^2 =$	1 point
= 4	1 point
The radius of the circle is 2.	1 point
Total	l: 3 points

12.			
$\frac{1}{8}$ (= 0.125)		2 points	The correct answer is acceptable in percentage form, too.
	Total:	2 points	

II. A

13. a)		
$3 \cdot (-7) + 7p = 21$	1 point	
p=6	1 point	
Total:	2 points	

13. b)		
A normal vector of line e is $\mathbf{n}_e(3; 7)$.	1 point	
A normal vector of the perpendicular line f is \mathbf{n}_f (-7; 3).	1 point	
$-7x + 3y = (-7) \cdot 1 + 3 \cdot (-2)$	1 point	
The equation of line f is $-7x + 3y = -13$.	1 point	
Total:	4 points	

13. c) Solution 1		
The gradient of line g is $m_g = -\frac{3}{7}$.	1 point	
Rearrange the equation of line <i>e</i> : $y = -\frac{3}{7}x + 3$.	1 point	
The gradient of line <i>e</i> is $m_e = -\frac{3}{7}$.	1 point	
As the above gradients are equal the lines must be parallel.	1 point	
Total:	4 points	

13. c) Solution 2		
Express y from the equation of line g and substitute it into the equation of line e .	1 point	
3x - 3x + 35 = 21	1 point	
This equation does not have a solution,	1 point	
the two lines do not have a common point and so they must be parallel.	1 point	
Total:	4 points	

Note: Award 1 point if the candidate displays the two lines correctly in a coordinate system. Award another 1 point if, referring to the diagram but without formal proof, the candidate declares the lines to be parallel. If the candidate also proves the lines are parallel by reading off the diagram and correctly stating the gradients, the maximum score is due.

14. a)			
(Denote the angle in question by α)			
$\tan(180^{\circ} - \alpha) = \frac{6}{4}$		1 point	
$\alpha \approx 56.3^{\circ}$		1 point	
The measure of the angle is about 123.7°.		1 point	
	Total:	3 points	

14. b)			
Total number of cases: $\binom{28}{3}$ (= 3276).	1 point		
Number of favourable cases: $\binom{8}{1} \cdot \binom{20}{2} (=1520)$.	2 points		
The probability: $\frac{\binom{8}{1} \cdot \binom{20}{2}}{\binom{28}{3}} \approx 0.464.$	1 point	A different answer may be accepted as long as it is rounded reasonably (at least two decimal places) and correctly. Answers given in percentage form may also be accepted.	
Total:	4 points	,	

14. c)		
The solid obtained consists of a cylinder and two congruent truncated cones fitted on the circular ends of the cylinder.	1 point	This point is also due if the correct reasoning is reflected by the solution.
Both the radius of the base and the height of the cylinder are 6 cm.	1 point	
The volume is $V_h = 216\pi (\approx 678.58) (\text{cm}^3)$.	1 point	
Both the radius of the base and the height of the truncated cylinder are 6 cm, the radius of the top circle is 2 cm.	1 point	
The volume is $V_{\text{csk}} = \frac{\pi \cdot 6}{3} \cdot (6^2 + 6 \cdot 2 + 2^2) =$ = 104 π (\approx 326.73) (cm ³).	1 point	
The volume of the solid is $V_h + 2V_{csk} = 424\pi \approx$	1 point	
$\approx 1332 \text{ cm}^3$.	1 point	
Total:	7 points	

15. a)		
$f(6) = 3 \cdot 2^{6-1} =$	1 point	This point is also due if the correct reasoning is reflected by the solution.
= 96	1 point	
Total:	2 points	

15. b)		
$2^{x-1} = 0.125$	1 point	
$2^{x-1} = \frac{1}{8}$	1 point	$\log 2^{x-1} = \log 0.125$
$2^{x-1} = 2^{-3}$	1 point	$(x-1)\cdot\log 2 = \log 0.125$
(As the exponential function is monotonic) $x - 1 = -3$.	1 point	$x = \frac{\log 0.125}{\log 2} + 1$
x = -2	1 point	
Check by substitution or reference to equivalent steps.	1 point	
Total:	6 points	

15. c)		
The first term of the sequence is $a_1 = 3$,	1 point	
the quotient is $q = 2$.	1 point	
The sum of the first 10 terms is $S_{10} = 3 \cdot \frac{2^{10} - 1}{2 - 1} =$	1 point	
= 3 069.	1 point	
Total:	4 points	

Note: Award 4 points if the candidate calculates the first 10 terms of the sequence one by one and correctly adds them. Award 2 points in case of one error (miscalculation of a term or incorrect addition). Award no points for more than one error.

II. B

16. a)		
The number of families without children needs to be found in 1990 and 2011.	1 point	This point is also due if the correct reasoning is reflected by the solution.
The number of families without children in 1990 was $2896 \cdot 0.48 \approx 1390$ (thousands),	1 point	
in 2011 it was $2713 \cdot 0.52 \approx 1411$ (thousands).	1 point	
$\frac{1411}{1390} \approx 1.015$	1 point	
Between 1990 and 2011 the number of families without children grew by about 1.5%.	1 point	A different answer may also be accepted as long as it is rounded correctly to at least one decimal place.
Total:	5 points	

16. b) Solution 1		
$\frac{0.52 + 1.25 + 2.16 + 3.5 + 4.2}{100} =$	2 points	
(The average number of dependent children per family in 2011 is) = 0.8	1 point	Do not accept solutions rounded to the nearest integer.
Total:	3 points	·····Sc··

16.	16. b) Solution 2				
	Number of dependent children 0 1 2 3 4 or more	Number of families in 2011 (thousands) 1411 678 434 136 54	1 point		
$\frac{0.1411 + 1.678 + 2.434 + 3.136 + 4.54}{2.136 + 4.54} \approx$			1 point		
2713				4 1,00	
(The average number of dependent children per family in 2011 is about) ≈ 0.8			1 point	A different answer may also be accepted as long as it is rounded correctly to at least one decimal place.	
	Total: 3 points				

Note: Award 2 points if, instead of 2011, the candidate correctly calculates the 1990 average (0.84).

16. c) Solution 1		
Some quantity decreasing by 0.7% is equivalent to a multiplication by 0.993.	1 point	These 2 points are also due if the correct
Similarly, an increase by 6.3% is equivalent to a multiplication by 1.063.	1 point	reasoning is reflected by the solution.
Let x be the number of (thousand) households in 1990. In this case $x \cdot 0.993 \cdot 1.063 = 4106$.	1 point	
$x \approx 3890$,	1 point	
so, in 1990, there were about 3 890 thousand households in the country.	1 point	Do not award this point if the solution is not rounded or rounded incorrectly.
Total:	5 points	

16. c) Solution 2		
The number of (thousand) households in 2001 is		
$\frac{4106}{2} \approx$	1 point	
1.063 \approx	1	
≈ 3862.65.	1 point	
In 1990 it is $\frac{3862.65}{0.993} \approx$	1 point	
$x \approx 3890$,	1 point	
so, in 1990, there were about 3 890 thousand households in the country.	1 point	Do not award this point if the solution is not rounded or rounded incorrectly.
Total:	5 points	

16. d) Solution 1		
The ratio of the areas of the discs is		
$\lambda^2 = \frac{1317}{946} \ (\approx 1.39).$	2 points	
so $\lambda \approx 1.18$.	1 point	
The radius in question is $(4.5 \cdot \lambda \approx) 5.3$ cm.	1 point	
Total:	4 points	

16. d) Solution 2		
The area of the circle used for the 1990 data is $A_1 = 4.5^2 \pi (\approx 63.62) \text{ (cm}^2).$	1 point	
The area of the other circle is $A_2 = A_1 \cdot \frac{1317}{946} (\approx 88.57) \text{ (cm}^2).$	1 point	
The radius in question is = $\sqrt{\frac{A_2}{\pi}} \approx$	1 point	
≈ 5.3 cm.	1 point	
Total:	4 points	

Note: A different answer may be accepted as long as it is reasonably and correctly rounded.

17. a) Solution 1		
(Let <i>x</i> be the length of the shorter route. In this case,		
the length of the other route is $(x + 140)$ km.		
The equation based on the text is)	2 points	
$\frac{x}{x} = \frac{x + 140}{x}$	_	
$\frac{1}{71} = \frac{1}{106}$.		
106x = 71x + 9940	1 point	
x = 284	1 point	
The shorter route is 284 km long.	1 point	
Check based on the text.	1 point	
Total:	6 points	

17. a) Solution 2	
(Let y be the duration of the trip in hours. The equation based on the text is) $71y + 140 = 106y$	2 points
y=4	1 point
$71 \cdot 4 = 284$	1 point
The shorter route is 284 km long.	1 point
Check based on the text.	1 point
	Total: 6 points

17. b)		
The gas consumption of the car is $\frac{396}{100} \cdot 6.5 =$	1 point	
= 25.74 litres.	1 point	25.7 or 26 litres is also acceptable.
The cost of this is about 11 000 Ft.	1 point	Do not award this point if the solution is not rounded or rounded incorrectly.
Total:	3 points	

17. c) Solution 1		
(Let v be the average speed for the trip. The equation		
based on the text is) $\frac{396}{v} = \frac{396}{v + 16} + 1$.	2 points*	
396(v+16) = 396v + v(v+16)	2 points*	
$v^2 + 16v - 6336 = 0$	1 point	
$v_1 = -88, \ v_2 = 72$	1 point	
(The solution in this context may not be negative, so)		
the average speed must have been $72 \frac{\text{km}}{\text{h}}$.	1 point	
Check based on the text.	1 point	
Total:	8 points	

17. c) Solution 2		
(Let <i>t</i> be the duration of the trip. The equation based on the text is) $\frac{396}{t} + 16 = \frac{396}{t-1}$.	2 points*	
396(t-1) + 16t(t-1) = 396t	2 points*	
$16t^2 - 16t - 396 = 0$	1 point	$4t^2 - 4t - 99 = 0$
$t_1 = -4.5$, $t_2 = 5.5$	1 point	
(The solution in this context may not be negative, so) the average speed must have been $\frac{396}{5.5} = 72 \frac{\text{km}}{\text{h}}$.	1 point	
Check based on the text.	1 point	
Total:	8 points	

The 4 points marked by * may also be given for the following reasoning:

(Let v be the average speed and t be the duration of the trip. The equation system based on the text is) $v \cdot t = 396$ $(v+16)(t-1) = 396$	2 points	
Expand the second equation and substitute 396 for $v \cdot t$: 16t - v - 16 = 0.	1 point	
Express any of the variables and substitute it into the equation $v \cdot t = 396$.	1 point	

18. a) Solution 1	
There are 5 codes containing one 2 and four 9-s.	1 point
There are 5 codes containing one 9 and four 2-s.	1 point
There are 10 codes containing two 2-s and three 9-s.	1 point
There are 10 codes containing two 9-s and three 2-s.	1 point
The total number of appropriate codes is 30.	1 point
Total:	5 points

18. a) Solution 2		
Count all possible 5-digit numbers containing only		This point is also due if
2-s and 9-s and subtract the number of codes that do	1 point	the correct reasoning is
not contain both 2 and 9.		reflected by the solution.
The number of codes containing only 2-s and 9-s is	1	
$2^{5} =$	1 point	
= 32.	1 point	
There are 2 among these codes that do not contain	1 point	
both 2-s and 9-s.	1 point	
The total number of appropriate codes is 30.	1 point	
Total:	5 points	

18. b)		
The possible digits in Béla's code are: 2, 3, 5, or 7.	1 point	
As it is divisible by six, it must also be divisible by both 2 and 3.	1 point	This point is also due if the correct reasoning is reflected by the solution.
Since it is divisible by 2, the last digit must be a 2.	1 point	
It will only be divisible by 3 if the other two digits are 3 and 7	1 point	
in descending order.	1 point	This point is also due if the correct reasoning is reflected by the solution.
So the code is 732.	1 point	
Total:	6 points	

18. c) Solution 1		
The places for the 3-s may be selected in $\binom{6}{2}$	1 point	
different possible ways.		
The places for the 4-s may then be selected in $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$	1 point	
different possible ways.	1 point	
The other two digits may be placed into the remaining two slots in two different ways.	1 point	
The total number of possible codes is the product of		
the above: $\binom{6}{2} \cdot \binom{4}{2} \cdot 2 = 180$	1 point	
The number of favourable cases is 1.	1 point	
The probability is $\frac{1}{180} = 0.00\dot{5}$.	1 point	A different answer may be accepted as long as it is reasonably and correctly rounded. Answers given in percentage form may also be accepted.
Total:	6 points	•

18. c) Solution 2		
There are 6! different possibilities to list six different digits.	1 point	Award these points if the candidate refers to the
However, repeating digits halve this number.	1 point	formula of permutation
Twice.	1 point	with repeat.
The total number of appropriate codes is 180.	1 point	
The number of favourable cases is 1.	1 point	
The probability is $\frac{1}{180} = 0.00\dot{5}$.	1 point	A different answer may be accepted as long as it is reasonably and correctly rounded. Answers given in percentage form may also be accepted.
Total:	6 points	