Actual and hypothetical discourse referents

Patrick D. Elliott

March 15, 2022

Contents

1	Some data	2
2	Epistemic modality in dynamic semantics 2.1 Test semantics	3
3	Modals introduce hypothetical discourse referents	4
4	Integrating epistemic modality and EDS 4.1 First order EDS. 4.2 Lifting EDS into an update semantics 4.3 EDS as an update semantics 4.3.1 Atomic sentences 4.3.2 Negative sentences 4.3.3 Conjunctive sentences 4.3.4 Random assignment 4.3.5 Closure 4.3.6 Test semantics 4.3.7 Pragmatics 4.3.8 An alternative semantics for might 4.3.9 Bathrooms and contextual entailment 4.3.10 Conjunctive possibilities	5 6 6 6 7 7 7 7 8 8 8 9 9
5	Inquisitive semantics (the absolute basics)	10
6	References	11

1 Some data

A generalization that emerges from EDS: an assertion of a sentence ϕ containing an existential statement "a" linguist P-ed" introduces a dref v if the assertion is accepted and contextually entails the existence of a linguist that P-ed.

Interaction with modality draws this generalization into question.

Modal subordination and anaphora (Roberts 1989):

- (1) Maybe there's \mathbf{a}^v bathroom, and maybe it_v's upstairs.
- (2) There might be a^v bathroom, and it_v might be upstairs.

Modal subordination with negation; data from (Hofmann 2019):

(3) There is no bathroom in this house. It would be easier to find.

Not possible with disjunction:

- (4) ??Maybe there's a^v bathroom, or maybe it_v's upstairs.
- (5) ??There might be a^v bathroom, or it_v might be upstairs.

Surprisingly, conjunctive possibility statements can pattern with disjunction:

- (6) There might be no v bathroom, and it v might be upstairs.
- (7) Maybe there's no^v bathroom, and maybe it_v's upstairs.
- (8) Either There's no bathroom, or it 's upstairs.

Note that this parallel is perhaps unsurprising, given modal theories of disjunction which validate $\phi \lor \psi \vdash \Diamond \phi \land \Diamond \psi$ (Zimmermann 2000, Geurts 2005, Goldstein 2019).

2 Epistemic modality in dynamic semantics

2.1 Test semantics

The locus classicus is Veltman's test semantics (Veltman 1996).

Veltman's idea: a sentence $\Diamond \phi$ is an instruction to hypothetically update a context c with ϕ , returning c unchanged if c can be consistently updated with ϕ , and the absurd state otherwise.

- (9) c[it might be raining]
 - a. Compute c[it's raining]; store the result as c'.
 - b. Is c' are non-absurd information state? If so, return c.
 - c. Otherwise, return c'.

An update semantics for a simple propositional fragment (Veltman 1996).

Definition 2.1. Test semantics for might.

$$c[\lozenge \phi] := \begin{cases} c & c[\phi] \neq \emptyset \\ \phi & \text{otherwise} \end{cases}$$

In Veltman's update semantics, \emptyset is the *absurd state*, i.e., the information state from which everything follows.

If we define update-semantic negation, we can treat must as the dual of might.

(10)
$$c[\neg \phi] := c - c[\phi]$$

Definition 2.2. Test semantics for must.

$$c[\Box \phi] := c[\neg \Diamond \neg \phi]$$

$$c[\Box \phi] := \begin{cases} c & c[\phi] = c \\ \emptyset & \text{otherwise} \end{cases}$$

In Veltman's terms, must ϕ is true in a context c if ϕ is accepted in c.

Note that test semantics for must is **strong** (von Fintel & Gillies 2010, 2021).

Definition 2.3. Entailment in update semantics.

$$\phi$$
 entails $\psi \iff \forall c[c[\phi] = c \to c[\psi] = c]$

If $c[\Box \phi] = c$ then $c[\phi] = c$, simply by the update rule for $\Box \phi$.

3 Modals introduce hypothetical discourse referents

Conjecture: asserting "possibly ϕ " is analogous to asserting " ϕ or not ϕ ".

In a classical setting $\phi \lor \neg \phi$ is of course informationally trivial, but in a dynamic setting (specifically, in the context of EDS), $\phi \lor \neg \phi$, can introduce anaphoric information.

A consideration of the disjunctive case will help give a feel for the explanation.

- (11) Either there's a^v bathroom, or there's no^v bathroom.
- (12) $\exists_v [B(v)] \lor \neg \exists_v [B(v)]$

Predicted (positive) meaning in EDS is as follows. Note:

- Since the disjuncts are mutually exclusive, we can ignore the case of both disjuncts being true.
- Since neither disjunct contains a free variable, we can ignore the case of either disjunct being undefined (ignoring the novelty condition for simplicity).
- There are therefore two ways of dynamically verifying the disjunction to consider:
 - The first disjunct is true, and the second is false (a bathroom dref).¹
 - The first disjunct is false and the second is true (no bathroom dref).

(13)
$$\lambda(w,g)$$
 . { $g^{[v\to x]} \mid \mathbf{bathroom}_w(x)$ } \cup { $g \mid \mathbf{bathroom}_w = \emptyset$ }

An assertion of (13) relative to a context c will introduce a bathroom discourse referent at worlds $\in c$ where a bathroom exists, but otherwise leave the context unchanged, e.g.:

$$(14) \quad \{ (w_{\emptyset}, g), (w_{1}, g), (w_{2}, g), (w_{12}, g) \}$$

$$\Rightarrow \{ (w_{\emptyset}, g), (w_{b_{1}}, g^{[v \to b_{1}]}), (w_{b_{2}}, g^{[v \to b_{2}]}), (w_{b_{1}, b_{2}}, g^{[v \to b_{1}]}), (w_{b_{1}, b_{2}}, g^{[v \to b_{2}]}) \}$$

¹There's a subtlety here involving the novelty condition and downdate that we're glossing over here. Can you spot it?

N.b. we already account for the impossibility of anaphora in the following discourse, due to the universal presupposition introduced by the pronoun.²

(15) Either there's a_v bathroom, or there isn't a bathroom. ??It_v's upstairs.

4 Integrating epistemic modality and EDS

EDS can be framed as an update semantics quite easily. Let's start with first-order EDS.

4.1 First order EDS

A concise presentation of EDS as a semantics for a first order calculus.

(16) Static semantics for atomic sentences:

$$[P(v_1, \dots, v_n)]^{w,g} = \begin{cases} \mathbf{defined} & g(v_1), \dots, g(v_n) \neq \#_e \\ \mathbf{true} & [P(v_1, \dots, v_n)]^{w,g} \text{ is } \mathbf{defined} \text{ and } \langle g(v_1), \dots, g(v_n) \rangle \in I_w(P) \end{cases}$$

(17) Atomic sentences in EDS:

$$[\![P(v_1,\ldots,v_n)]\!]_+^w := \{ (g,h) \mid g = h \land |P(v_1,\ldots,v_n)|^{w,h} \text{ is true} \}
 [\![P(v_1,\ldots,v_n)]\!]_-^w := \{ (g,h) \mid g = h \land |P(v_1,\ldots,v_n)|^{w,h} \text{ is false} \}
 [\![P(v_1,\ldots,v_n)]\!]_u^w := \{ (g,h) \mid g = h \land |P(v_1,\ldots,v_n)|^{w,g} \text{ is undefined} \}$$

(18) Negative sentences:

$$[\![\neg\phi]\!]_+^w := [\![\phi]\!]^-$$

$$[\![\neg\phi]\!]_-^w := [\![\phi]\!]^+$$

$$[\![\neg\phi]\!]_u^w := [\![\phi]\!]^u$$

(19) Conjunctive sentences:

$$\begin{split} & [\![\phi \wedge \psi]\!]_+^w := [\![\phi]\!]_+^w \circ [\![\psi]\!]_+^w \\ & [\![\phi \wedge \psi]\!]_-^w := [\![\phi]\!]_-^w \circ [\![\psi]\!]_{+,-,u}^w & [\![\phi \wedge \psi]\!]_u^w := [\![\phi]\!]_+^w \circ [\![\psi]\!]_u^w \\ & \qquad \qquad \cup [\![\phi]\!]_{+,u}^w \circ [\![\psi]\!]_-^w & \qquad \qquad \cup [\![\phi]\!]_u^w \circ [\![\psi]\!]_{+,u}^w \end{split}$$

²Given partial assignments, a standard bridge principle predicts that v should be defined at every assignment in the file context.

(20) Random assignment:

$$\begin{aligned}
& [\![\varepsilon_v]\!]_+^w := \{ (g, h) \mid g[v]h \} \\
& [\![\varepsilon_v]\!]_-^w := \emptyset \\
& [\![\varepsilon_v]\!]_u^w := \emptyset
\end{aligned}$$

(21) Positive closure:

$$\begin{split} & \llbracket \dagger \phi \rrbracket_+^w := \llbracket \phi \rrbracket_+^w \\ & \llbracket \dagger \phi \rrbracket_-^w := \{ \ (g,h) \mid g = h \land \llbracket \phi \rrbracket_+^w = \emptyset \land \llbracket \phi \rrbracket_-^w \neq \emptyset \, \} \\ & \llbracket \dagger \phi \rrbracket_u^w := \llbracket \dagger \rrbracket_u^w \end{split}$$

To appreciate the isomorphism between this presentation, and the previous presentation, consider that a trivalent relational semantics can be framed instead as a set of relations, each paired with one of three truth values.

4.2 Lifting EDS into an update semantics

As usual, we'll model information states using Heimian files, supplemented with a failure state $\#_c$. EDS can be lifted into a multivalent update semantics, where we define $c[.]_+$, $c[.]_-$, and $c[.]_u$.

(22) a.
$$c[\phi]_{+} := \bigcup_{(w,g)\in c} \{ (w,h) \mid (g,h) \in \llbracket \phi \rrbracket_{+}^{w} \}$$

b. $c[\phi]_{-} := \bigcup_{(w,g)\in c} \{ (w,h) \mid (g,h) \in \llbracket \phi \rrbracket_{-}^{w} \}$
c. $c[\phi]_{u} := \bigcup_{(w,g)\in c} \{ (w,h) \mid (g,h) \in \llbracket \phi \rrbracket_{u}^{w} \}$

4.3 EDS as an update semantics

4.3.1 Atomic sentences

Atomic sentences in EDS update semantics induce a tripartition of the input file, since no anaphoric information can be introduced.

(23)
$$c[P(v_1,\ldots,v_n)]_+ := \{ (w,g) \in c \mid |P(v_1,\ldots,v_n)|^{w,g} \text{is true} \}$$

(24)
$$c[P(v_1,\ldots,v_n)]_- := \{ (w,g) \in c \mid |P(v_1,\ldots,v_n)|^{w,g} \text{is false} \}$$

(25)
$$c[P(v_1, \dots, v_n)]_u := \{ (w, g) \in c \mid |P(v_1, \dots, v_n)|^{w, g} \text{is undefined } \}$$

4.3.2 Negative sentences

(26)
$$c[\neg \phi]_+ := c[\phi]_-$$

(27)
$$c[\neg \phi]_{-} := c[\phi]_{+}$$

$$(28) \quad c[\neg \phi]_u := c[\phi]_u$$

4.3.3 Conjunctive sentences

(29)
$$c[\phi \wedge \psi]_+ := c[\phi]_+[\psi]_+$$

(30)
$$c[\phi \wedge \psi]_{-} := c[\phi]_{-}[\psi]_{+} \cup c[\phi]_{-}[\psi]_{-} \cup c[\phi]_{-}[\psi]_{u}$$

 $c[\phi]_{+}[\psi]_{-} \cup c[\phi]_{u}[\psi]_{-}$

(31)
$$c[\phi \wedge \psi]_u := c[\phi]_+ [\psi]_u$$
$$c[\phi]_u [\psi]_+ \cup c[\phi]_u [\psi]_u$$

4.3.4 Random assignment

(32)
$$c[\varepsilon_v]_+ := \{ (w,h) \mid \exists g[(w,g) \in c \land g[v]h] \}$$

(33)
$$c[\varepsilon_v]_- := \emptyset$$

$$(34) \quad c[\varepsilon_v]_- := \emptyset$$

4.3.5 Closure

$$(35) \quad c[\dagger \phi]_+ := c[\phi]_+$$

$$(36) \quad c[\dagger\phi]_-:=\{\,(w,g)\in c\mid c[\phi]_+=\emptyset\wedge c[\phi]_-\neq\emptyset\,\}$$

(37)
$$c[\dagger \phi]_u := c[\phi]_u$$

4.3.6 Test semantics

Let's stick to Veltman's idea that a modalized statement, if true, adds no information to the CG.

(38) Might (first attempt):

a.
$$c[\lozenge \phi]_+ := \{ (w,g) \in c \mid c[\phi]_+ \neq \emptyset \}$$

b.
$$c[\lozenge \phi]_- := \{ (w,g) \in c \mid c[\phi]_+ = \emptyset \land c[\phi]_- \neq \emptyset \}$$

c.
$$c[\diamond \phi]_u := c[\phi]_u$$

By definition, modalized sentences are *tests* on information states (they can't introduce any anaphoric information).

4.3.7 Pragmatics

What kind of bridge principle do we want for a trivalent update semantics?

Definition 4.1. Assertion. An assertion of ϕ in c, $c[\phi]$, is defined as follows:

$$c[\phi] := \begin{cases} c[\phi]_+ & c[\phi]_u = \emptyset \\ & \#_c \\ \text{otherwise} \end{cases}$$

4.3.8 An alternative semantics for might

Let's start by specifying the positive contribution of *might*.

(39) Might (first attempt):

a.
$$c[\lozenge \phi]_+ := \begin{cases} c[\phi]_+ \cup c[\phi]_- & c[\phi]_+ \neq \emptyset \\ \emptyset & \text{otherwise} \end{cases}$$

We'll come back to the negative update associated with $\diamond \phi$.

4.3.9 Bathrooms and contextual entailment

This has the virtue of accounting for a variant of Rothshchild discourses involving epistemic modals.

- (40) Context: It's common ground that a restaurant critic will be here on Monday, but it's not common ground what day it is.
 - a. A: It's possible that a restaurant critic is here.
 - b. B: It's Monday, so they, 're here right now.
- (41) a. It's possible that a restaurant critic is here.
 - b. $\Diamond(\exists_v[C(v)])$

$$(42) \quad c[\lozenge(\exists_v[C(v)])]_+ = \begin{cases} c[\neg \exists_v[C(v)]]_+ \cup c[\exists_v[C(v)]]_+ & \exists w \in c[I_w(C) \neq \emptyset] \\ \emptyset & \text{otherwise} \end{cases}$$

In plain English, "it's possible that a^v critic is here" is an instruction to take a file c, and:

- Check that there is at least one world where a critic is here (Veltman's consistency test).
- Update c with the information that there is a critic v, giving back c'.
- Update c with the information that there is no critic, giving back c''.
- Return $c \cup c'$.

If a subsequent update eliminates all non-critic worlds in c', then anaphora may subsequently be licensed (since familiarity will be satisfied).

4.3.10 Conjunctive possibilities

The following is an acceptable sentence.

(43) There might be no bathroom and it might be upstairs.

Let's compute the positive contribution of the first sentence.

$$(44) \quad c[\lozenge(\neg \exists_v [B(v)])]_+ = \begin{cases} c[\neg \exists_v [B(v)]]_+ \cup c[\exists_v [B(v)]]_+ & \exists w \in c[I_w(B) = \emptyset] \\ \emptyset & \text{otherwise} \end{cases}$$

This update ensures that c is consistent with their being no bathroom, and pairs bathroom worlds with bathroom drefs, and leaves non-bathroom worlds unchanged.

Let's move on to the second sentence.

- (45) It $_v$ might be upstairs.
- (46) $\Diamond(U(v))$

This update ensures that c is consistent with v being upstairs, and simply returns the union of the v-upstairs and v-not-upstairs worlds.

$$(47) \quad c[\lozenge(U(v))]_{+} = \begin{cases} c[U(v)]_{+} \cup c[U(v)]_{-} & c[U(v)]_{+} \neq \emptyset \\ \emptyset & \text{otherwise} \end{cases}$$

We can now think through, what happens when we chain these updates together. That's pretty easy for conjunction.

$$(48) \quad c[\lozenge(\neg \exists_v [B(v)]) \land \lozenge(U(v))]_+ = c[\lozenge(\neg \exists_v [B(v)])]_+ [\lozenge(U(v))]_+$$

Oh no! something has gone wrong here. Concretely, the update expressed by the second sentence requires that the familiarity presupposition is met *throughout* the input context. If the test imposed by the first epistemic modal is successful, there are guaranteed to be worlds in which there are no bathrooms, and the second update will fail.

The structure introduced by disjunction needs to be retained.

Intuition:

• might p tests at c whether p is consistent, and introduces two alternatives: $c[p]_+$ and $c[p]_-$.

To make sense of this, we need to enrich the structure of information states, along the same lines as *inquisitive semantics* (Ciardelli, Groenendijk & Roelofsen 2019).

5 Inquisitive semantics (the absolute basics)

Sentences don't denote information states, but sets of information states (those that resolve the question/make the assertion true).

Inquisitive semantics for a simple propositional fragment.

- $(49) \quad [\![p]\!] := \{ s \mid s \vdash p \}$
- $(50) \quad \llbracket \phi \wedge \psi \rrbracket := \llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket$
- $(51) \quad \llbracket \phi \lor \psi \rrbracket := \llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket$
- (52) $[\neg \phi] := ???$

In inquisitive semantics, it's typically assumed that information states are sets of worlds, instead we'll assume that information states are sets of world-assignment pairs (Dotlačil & Roelofsen 2019, Dotlacil & Roelofsen 2021).

6 References

References

- Ciardelli, Ivano, J. A. G. Groenendijk & Floris Roelofsen. 2019. *Inquisitive semantics*. First edition (Oxford Linguistics 6). Oxford, United Kingdom: Oxford University Press. 1 p.
- Dotlacil, Jakub & Floris Roelofsen. 2021. A dynamic semantics of single-wh and multiple-wh questions. Semantics and Linguistic Theory 30(0). 376–395. https://journals.linguisticsociety.org/proceedings/index.php/SALT/article/view/30.376 (6 December, 2021).
- Dotlačil, Jakub & Floris Roelofsen. 2019. Dynamic inquisitive semantics: Anaphora and questions. Proceedings of Sinn und Bedeutung. 365–382 Pages. https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/view/538 (4 July, 2021).
- von Fintel, Kai & Anthony S. Gillies. 2021. Still Going Strong. Natural Language Semantics 29(1). 91–113.
- Geurts, Bart. 2005. Entertaining Alternatives: Disjunctions as Modals. *Natural Language Semantics* 13(4). 383–410. https://doi.org/10.1007/s11050-005-2052-4 (21 July, 2020).
- Goldstein, Simon. 2019. Free choice and homogeneity. Semantics and Pragmatics 12(0). 23. https://semprag.org/index.php/sp/article/view/sp.12.23 (4 March, 2022).
- Hofmann, Lisa. 2019. The anaphoric potential of indefinites under negation and disjunction. In Julian J. Schlöder, Dean McHugh & Floris Roelofsen (eds.), *Proceedings of the 22nd Amsterdam Colloquium*, 181–190.
- Roberts, Craige. 1989. Modal Subordination and Pronominal Anaphora in Discourse. *Linguistics* and Philosophy 12(6). 683–721.
- Veltman, Frank. 1996. Defaults in Update Semantics. *Journal of Philosophical Logic* 25(3). 221–261. von Fintel, Kai & Anthony S. Gillies. 2010. Must... stay... strong! *Natural Language Semantics* 18(4). 351–383.
- Zimmermann, Thomas Ede. 2000. Free Choice Disjunction and Epistemic Possibility. *Natural Language Semantics* 8(4). 255–290. https://doi.org/10.1023/A:1011255819284 (21 July, 2020).