ISPH-0587

ANTISENSE MODULATION OF HORMONE-SENSITIVE LIPASE EXPRESSION

FIELD OF THE INVENTION

The present invention provides compositions and methods for modulating the expression of hormone-sensitive lipase. In particular, this invention relates to compounds, particularly oligonucleotides, specifically hybridizable with nucleic acids encoding hormone-sensitive lipase. Such compounds have been shown to modulate the expression of hormone-sensitive lipase.

BACKGROUND OF THE INVENTION

The mobilization of fatty acid from triglycerides and cholesterol esters provides the primary source of energy in mammals. Hormone-sensitive lipase (also known as HSL, LIPE and hydrolase; NCEH) is а ester 15 neutral cholesterol multifunctional tissue lipase that plays a critical role in this process. The enzyme has broad specificity, catalyzing the hydrolysis of tri-, di-, and monoacylglycerols, as well as cholesterol esters. Hormone-sensitive lipase has been studied 20 most extensively in adipose tissue, where it is thought to catalyze the major rate-limiting step in lipolysis (Saltiel, Proc. Natl. Acad. Sci. U S A, 2000, 97, 535-537).

Hormone-sensitive lipase is acutely activated by cAMP-dependent phosphorylation and its regulation in adipocytes is the primary means by which lipolytic agents, such as catecholamines, control the circulating levels of free fatty acids.

Free fatty acids in the plasma profoundly influence carbohydrate and lipid utilization, storage, and synthesis,

both in liver and muscle. Products of fatty acid metabolism are also thought to bind directly to nuclear receptors, thus regulating transcription of genes involved in lipid synthesis and breakdown. These observations suggest that hormonesensitive lipase is an important player in controlling the balance of substrate utilization and storage (Saltiel, Proc. Natl. Acad. Sci. U S A, 2000, 97, 535-537).

In addition to adipocytes, hormone-sensitive lipase is expressed in skeletal muscle, heart, brain, pancreatic beta 10 cells, adrenal gland, ovaries, testes, and macrophages. Although triglyceride hydrolysis is also important in muscle and pancreas, cholesterol ester hydrolysis appears to play a separate biological role in these tissues (Saltiel, Proc. Natl. Acad. Sci. U S A, 2000, 97, 535-537).

The human hormone-sensitive lipase gene was cloned in 1988 (Holm et al., Science, 1988, 241, 1503-1506) and mapped to chromosome 19q13.1-13.2 (Levitt et al., Cytogenet. Cell Genet., 1995, 69, 211-214).

The size of hormone-sensitive lipase gene products is variable. In rat, the heart, skeletal muscle, placenta and ovaries express slightly larger mRNAs (3.5 kb) than the mRNAs expressed in adipose tissue (3.3 kb). In addition, a 3.9 kb mRNA is expressed in testis (HSL_{tes}) (Holm et al., Science, 1988, 241, 1503-1506; Holst et al., Genomics, 1996, 35, 441-447).

Macrophage-specific overexpression of hormone-sensitive lipase in transgenic mice has indicated a greater susceptibility for development of atherosclerosis (Escary et 30 al., J. Lipid Res., 1999, 40, 397-404).

Targeted disruption of the gene in transgenic mice has further shown that hormone-sensitive lipase is required for spermatogenesis but is not the only enzyme involved in mediation of hydrolysis of triacylglycerol stored in

adipocytes (Osuga et al., Proc. Natl. Acad. Sci. U S A, 2000, 97, 787-792).

It has been demonstrated that diabetic patients are at increased risk to develop atherosclerotic vascular disease. 5 Support for this conclusion can be found in studies of rat and mouse beta cells wherein hormone-sensitive lipase activation via lipid-derived signals, contributes to the overall release of insulin. This release may adversely affect beta-cells in events leading to non-insulin dependent diabetes mellitus 10 (NIDDM), where hyperglycemia is accompanied by abnormalities in lipid metabolism (Mulder et al., Diabetes, 1999, 48, 228-232).

Results from study of ovarian cancer patients have demonstrated increased levels of hormone-sensitive lipase in 15 normal adipocytes and suggest a critical role for hormonein cancer-mediated defects of lipase sensitive metabolism (Gercel-Taylor et al., Gynecol. Oncol., 1996, 60, 35-41).

lipase has been hormone-sensitive defect in 20 demonstrated to confer resistance to catecholamine-induced lipolysis which leads to an adipocyte abnormality associated with familial obesity (Hellstrom et al., Diabetologia, 1996, 39, 921-928).

Several inhibitors of hormone-sensitive lipase have been 25 described in the art. These include antibodies, molecules, and antisense nucleic acids.

Small molecule inhibitors of hormone-sensitive lipase have been disclosed and claimed in PCT publications WO 01/17981 (Petry et al., **2001**), WO 00/67025 (Mueller et al.,

30 2000), and WO 00/27388 (Wagle et al., 2000).

Tolbutamide was demonstrated to reduce the activity of hormone-sensitive lipase in rat adipocytes in vitro. However, treatment of type 2 diabetic patients with tolbutamide showed no benefit compared to placebo-treated patients (Agardh et al., Diabetes Res. Clin. Pract., 1999, 46, 99-108).

Disclosed and claimed in PCT publication WO 01/26664 is the use of an antisense inhibitor to inhibit fertility in a 5 male animal wherein said antisense inhibitor is substantially complementary to a portion of an mRNA encoding hormonesensitive lipase and wherein said inhibitor comprises at least five contiguous bases (Mitchell and Wang, 2001).

A vector containing a 387-nucleotide fragment of rat hormone-sensitive lipase in the antisense direction was used in investigations of the role of the hormone-sensitive lipase gene in the activity of neutral cholesterol ester hydrolase in Chinese hamster ovary (CHO) cells and concluded that, in fact, hormone-sensitive lipase and neutral cholesterol ester hydrolase are the same enzyme in macrophages (Osuga et al., Biochem. Biophys. Res. Commun., 1997, 233, 655-657).

And the state of t

1

The involvement of hormone-sensitive lipase in disorders caused by aberrant lipid metabolism make it a potentially useful therapeutic target for intervention in conditions such 20 as obesity, diabetes and atherosclerotic vascular disease.

Currently, inhibitors of hormone-sensitive lipase include natural metabolites (Jepson and Yeaman, FEBS Lett., 1992, 310, 197-200; Plee-Gautier et al., Biochem. J., 1996, 318, 1057-1063) and the previously cited small molecules, antibodies and antisense inhibitors. There remains, however, a long felt need for additional agents capable of effectively and selectively inhibiting the function of hormone-sensitive lipase.

Antisense technology is emerging as an effective means 30 for reducing the expression of specific gene products and may therefore prove to be uniquely useful in a number of therapeutic, diagnostic, and research applications for the modulation of expression of hormone-sensitive lipase.

The present invention provides compositions and methods for modulating expression of hormone-sensitive lipase, including modulation of isoforms of hormone-sensitive lipase, including the testis-specific hormone-sensitive lipase known as HSL_{tes}.

SUMMARY OF THE INVENTION

The Wall Town

Hard Hart

The present invention is directed to compounds, particularly antisense oligonucleotides, which are targeted to a nucleic acid encoding hormone-sensitive lipase, and which of hormone-sensitive 10 modulate the expression Pharmaceutical and other compositions comprising the compounds of the invention are also provided. Further provided are methods of modulating the expression of hormone-sensitive lipase in cells or tissues comprising contacting said cells 15 or tissues with one or more of the antisense compounds or compositions of the invention. Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of hormone-sensitive lipase by administering 20 a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention employs oligomeric compounds, particularly antisense oligonucleotides, for use in modulating the function of nucleic acid molecules encoding hormonesensitive lipase, ultimately modulating the amount of hormonesensitive lipase produced. This is accomplished by providing antisense compounds which specifically hybridize with one or more nucleic acids encoding hormone-sensitive lipase. As used herein, the terms "target nucleic acid" and "nucleic acid encoding hormone-sensitive lipase" encompass DNA encoding hormone-sensitive lipase, RNA (including pre-mRNA and mRNA)

transcribed from such DNA, and also cDNA derived from such The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This modulation of function of 5 a target nucleic acid by compounds which specifically hybridize to it is generally referred to as "antisense". The functions of DNA to be interfered with include replication and The functions of RNA to be interfered with transcription. functions such include all vital as, for 10 translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function 15 is modulation of the expression of hormone-sensitive lipase. In the context of the present invention, "modulation" means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene. In the context of the present invention, inhibition is the preferred form of modulation of 20 gene expression and mRNA is a preferred target.

It is preferred to target specific nucleic acids for "Targeting" an antisense compound to a particular nucleic acid, in the context of this invention, is a multistep process. The process usually begins with the identification 25 of a nucleic acid sequence whose function is to be modulated. This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, 30 the target is a nucleic acid molecule encoding hormonesensitive lipase. The targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, e.g., detection or modulation of expression of the protein, 35 will result. Within the context of the present invention, a

preferred intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene. Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in 5 transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 10 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is 15 also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the 20 invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding hormone-sensitive lipase, regardless the sequence(s) of such codons.

is also known in the art that a translation 25 termination codon (or "stop codon") of a gene may have one of i.e., 5'-UAA, three sequences, 5'-UAG and 5'-UGA corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, terms "start codon region" respectively). The 30 "translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiquous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination codon region" 35 refer to a portion of such an mRNA or gene that encompasses

init. 4D

from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

The open reading frame (ORF) or "coding region," which 5 is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA 10 in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA 15 in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue 20 of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.

25 Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a 30 continuous mRNA sequence. mRNA splice sites, i.e., intronexon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. 35 Aberrant fusion junctions due to rearrangements or deletions

ing.

The state of the s

darib

are also preferred targets. It has also been found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.

Once one or more target sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

In the context of this invention, "hybridization" means 10 hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary For example, adenine and nucleoside or nucleotide bases. thymine are complementary nucleobases which pair through the formation of hydrogen bonds. "Complementary," as used herein, 15 refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are 20 considered to be complementary to each other at that position. The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically 25 hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the oligonucleotide and the DNA or RNA target. understood in the art that the sequence of an antisense 30 compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of 35 utility, and there is a sufficient degree of complementarity

to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.

Antisense and other compounds of the invention which hybridize to the target and inhibit expression of the target are identified through experimentation, and the sequences of these compounds are hereinbelow identified as preferred embodiments of the invention. The target sites to which these preferred sequences are complementary are hereinbelow referred to as "active sites" and are therefore preferred sites for targeting. Therefore another embodiment of the invention encompasses compounds which hybridize to these active sites.

Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes. Antisense compounds are also used, for example, to distinguish between functions of various members of a biological pathway. Antisense modulation has, therefore, been harnessed for research use.

25 For use in kits and diagnostics, the antisense compounds of the present invention, either alone or in combination with other antisense compounds or therapeutics, can be used as tools in differential and/or combinatorial analyses to elucidate expression patterns of a portion or the entire 30 complement of genes expressed within cells and tissues.

Expression patterns within cells or tissues treated with one or more antisense compounds are compared to control cells or tissues not treated with antisense compounds and the patterns produced are analyzed for differential levels of gene expression as they pertain, for example, to disease

association, signaling pathway, cellular localization, expression level, size, structure or function of the genes examined. These analyses can be performed on stimulated or unstimulated cells and in the presence or absence of other compounds which affect expression patterns.

Examples of methods of gene expression analysis known in the art include DNA arrays or microarrays (Brazma and Vilo, FEBS Lett., 2000, 480, 17-24; Celis, et al., FEBS Lett., 2000, 480, 2-16), SAGE (serial analysis of gene expression) (Madden, Today, 2000, 5, 415-425), 10 et al., Drug Discov. (restriction enzyme amplification of digested cDNAs) (Prashar and Weissman, Methods Enzymol., 1999, 303, 258-72), TOGA (total gene expression analysis) (Sutcliffe, et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 1976-81), protein arrays 15 and proteomics (Celis, et al., FEBS Lett., 2000, 480, 2-16; Jungblut, et al., Electrophoresis, 1999, 20, 2100-10), expressed sequence tag (EST) sequencing (Celis, et al., FEBS Lett., 2000, 480, 2-16; Larsson, et al., J. Biotechnol., 2000, 80, 143-57), subtractive RNA fingerprinting (SuRF) (Fuchs, et 20 al., Anal. Biochem., 2000, 286, 91-98; Larson, et al., 203-208), subtractive cloning, Cytometry, 2000, 41, differential display (DD) (Jurecic and Belmont, Curr. Opin. genomic Microbiol., 2000, 3, 316-21), comparative hybridization (Carulli, et al., J. Cell Biochem. Suppl., 1998, 286-96), FISH (fluorescent in situ hybridization) 25 31, techniques (Going and Gusterson, Eur. J. Cancer, 1999, 35, 1895-904) and mass spectrometry methods (reviewed in (To, Comb. Chem. High Throughput Screen, 2000, 3, 235-41).

The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotide drugs, including ribozymes, have been safely and effectively administered to humans and

numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans.

invention, the term of this Tn the context "oligonucleotide" refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) This term includes oligonucleotides mimetics thereof. 10 composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well oligonucleotides having non-naturally-occurring portions which substituted Such modified or function similarly. oligonucleotides are often preferred over native forms because 15 of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.

While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. The antisense compounds in accordance with this invention preferably comprise from about 8 to about 50 nucleobases (i.e., from about 8 to about 50 linked nucleosides). Particularly preferred antisense compounds are antisense oligonucleotides, even more preferably those comprising from about 12 to about 30 nucleobases. Antisense compounds include ribozymes, external guide sequence (EGS) oligonucleotides (oligozymes), and other short catalytic RNAs or catalytic oligonucleotides which hybridize to the target nucleic acid and modulate its expression.

As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such 35 heterocyclic bases are the purines and the pyrimidines.

Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of include nucleosides that For those nucleoside. pentofuranosyl sugar, the phosphate group can be linked to 5 either the 2', 3' or 5' hydroxyl moiety of the sugar. forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric In turn the respective ends of this linear polymeric structure can be further joined to form a circular 10 structure, however, open linear structures are generally Within the oligonucleotide structure, preferred. phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of and DNA is а 3*'* RNA15 phosphodiester linkage.

Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionoalkylphosphoramidates, thionoalkylphosphotriesters, selenophosphates and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs

of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Preferred oligonucleotides having inverted polarity comprise a single 3' to 3' linkage at the 3'-most internucleotide linkage, i.e., a single inverted nucleoside residue which may be abasic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included.

Representative United States patents that teach the 10 preparation of the above phosphorus-containing linkages include, but are not limited to, U.S.: 3,687,808; 4,469,863; 5,177,196; 5,188,897; 5,264,423; 4,476,301; 5,023,243; 5,286,717; 5,321,131; 5,399,676; 5,278,302; 5,276,019; 5,455,233; 5,466,677; 5,476,925; 5,405,939; 5,453,496; 15 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

Preferred modified oligonucleotide backbones that do not 20 include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside cycloalkyl alkyl heteroatom and orlinkages, mixed chain or more short internucleoside linkages, or one 25 heteroatomic or heterocyclic internucleoside linkages. include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and backbones; methylene formacetyl and thioformacetyl riboacetyl backbones; alkene 30 thioformacetyl backbones; containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S.: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. units are maintained for hybridization with an appropriate 15 nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugarbackbone of an oligonucleotide is replaced with an amide 20 containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited 25 to, U.S.: 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.

Most preferred embodiments of the invention are oligonucleotides with phosphorothicate backbones and oligonucleosides with heteroatom backbones, and in particular -CH₂-NH-O-CH₂-, -CH₂-N(CH₃)-O-CH₂- [known as a methylene (methylimino) or MMI backbone], -CH₂-O-N(CH₃)-CH₂-, -CH₂-N(CH₃)-N(CH₃)-CH₂- and -O-N(CH₃)-CH₂-CH₂- [wherein the native phosphodiester backbone is represented as -O-P-O-CH₂-] of the

above referenced U.S. patent 5,489,677, and the amide backbones of the above referenced U.S. patent 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. patent 5,034,506.

Modified oligonucleotides may also contain one or more Preferred oligonucleotides substituted sugar moieties. comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may 10 be substituted or unsubstituted C_1 to C_{10} alkyl or C_2 to C_{10} Particularly preferred and alkynyl. alkenvl $O[(CH_2)_nO]_mCH_3$, $O(CH_2)_nCH_3$ $O(CH_2)_nH_2$ $O(CH_2)_nH_3$ $O(CH_2)_nH_3$ and $O(CH_2)_nON[(CH_2)_nCH_3)]_2$, where n and m are from 1 to about Other preferred oligonucleotides comprise one of the 15 following at the 2' position: C_1 to C_{10} lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, heterocycloalkyl, NH_2 , ONO_2 , NO_2 , N_3 , SOCH₂, SO₂CH₃, heterocycloalkaryl, aminoalkylamino, polyalkylamino, 20 substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. preferred Α 25 modification includes 2'-methoxyethoxy (2'-O-CH₂CH₂OCH₃, also known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy A further preferred modification includes dimethylaminooxyethoxy, i.e., a $O(CH_2)$ $ON(CH)_3$ $_2group$, also 30 known as 2'-DMAOE, as described in examples hereinbelow, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-0dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., 2'-O- $\mathrm{CH_2}$ -O- $\mathrm{CH_2}$ -N(CH₂)₂, also described in examples hereinbelow.-

A further prefered modification includes Locked Nucleic 35 Acids (LNAs) in which the 2'-hydroxyl group is linked to the

3' or 4' carbon atom of the sugar ring thereby forming a bicyclic sugar moiety. The linkage is preferably a methelyne $(-CH_2-)_n$ group bridging the 2' oxygen atom and the 4' carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226.

Other preferred modifications include 2'-methoxy (2'-O- CH_3), 2'-aminopropoxy (2'-OCH ÇH ÇH NH), 2'-allyl (2'-CH - 2 $CH=CH_2$), 2'-O-allyl (2'-O- CH_2 - $CH=CH_2$) and 2'-fluoro (2'-F). The 2'-modification may be in the arabino (up) position or 10 ribo (down) position. A preferred 2'-arabino modification is Similar modifications may also be made at other 2'-F. positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the position of 5' 5 ' Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are limited to, U.S.: 4,981,957; 5,118,800; 5,319,080; 20 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, certain of which are commonly owned with the instant application, and each of which 25 is herein incorporated by reference in its entirety.

Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine

and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (-C=C-CH3) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 5 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-halo 5-bromo, 5-trifluoromethyl and particularly substituted uracils and cytosines, 7-methylguanine and 7methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 10 8-azaadenine, 7-deazaquanine and 7-deazaadenine and deazaquanine and 3-deazaadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine(1Hpyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-15 clamps such as a substituted phenoxazine cytidine (e.g., 9-(2aminoethoxy)-H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido[4,5-b]indol-2-one), (H-pyrido[3',2':4,5]pyrrolo[2,3cytidine pyridoindole d]pyrimidin-2-one). Modified nucleobases may also include 20 those in which the purine or pyrimidine base is replaced with heterocycles, for example 7-deaza-adenine, deazaguanosine, 2-aminopyridine and 2-pyridone. nucleobases include those disclosed in United States Patent No. 3,687,808, those disclosed in The Concise Encyclopedia Of 25 Polymer Science And Engineering, pages 858-859, Kroschwitz, J.I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y.S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, 30 S.T. and Lebleu, B. , ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C (Sanghvi, Y.S., Crooke, S.T. and Lebleu, B., eds., Antisense Research and 5 Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

Representative United States patents that teach the 10 preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. 3,687,808, as well as U.S.: 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,432,272; 5,596,091; 15 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; and 5,681,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference, and United States patent 5,750,692, which is 20 commonly owned with the instant application and also herein incorporated by reference.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular uptake of the distribution or 25 cellular oligonucleotide. The compounds of the invention can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include intercalators, reporter molecules, 30 polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugates groups include cholesterols, lipids, phospholipids, biotin, phenazine, 35 folate, phenanthridine, anthraquinone, acridine, fluoresceins,

rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve oligomer uptake, enhance oligomer resistance to degradation, and/or strengthen sequence-specific 5 hybridization with RNA. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve oligomer uptake, distribution, metabolism or excretion. Representative conjugate groups are disclosed in International Patent Application PCT/US92/09196, filed 10 October 23, 1992 the entire disclosure of which is incorporated herein by reference. Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 15 **1994**, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or 20 undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate ammonium 25 (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 30 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937. Oligonucleotides of the invention may also be conjugated to active drug

substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2,3,5-triiodobenzoic acid, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indomethicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic. Oligonucleotide-drug conjugates and their preparation are described in United States Patent Application 09/334,130 (filed June 15, 1999) which is incorporated herein by reference in its entirety.

Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S.: 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 15 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 20 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 25 5,688,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference.

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly

oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region 5 wherein the oligonucleotide is modified so as to confer upon oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for 10 enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA: DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide 15 inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared phosphorothicate deoxyoligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely 20 detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

Chimeric antisense compounds of the invention may be formed composite structures of two or as oligonucleotides, modified oligonucleotides, oligonucleosides 25 and/or oligonucleotide mimetics as described above. compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S.: 5,013,830; 5,149,797; 5,220,007; 5,256,775; 30 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

The antisense compounds used in accordance with this invention may be conveniently and routinely made through the

well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The antisense compounds of the invention are synthesized in vitro and do not include antisense compositions of 10 biological origin, or genetic vector constructs designed to direct the in vivo synthesis of antisense molecules.

The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as 15 for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include,

- 20 but are not limited to, U.S.: 5,108,921; 5,354,844; 5,416,016;
 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020;
 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921;
 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619;
 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295;
 25 5 527 528: 5 534 259: 5 543 152: 5 556 948: 5 580 575: and
- 25 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

And the first training to the first training to the first training training

The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or 5 conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510 to Gosselin et al., published December 9, 1993 or in WO 94/26764 and U.S. 10 5,770,713 to Imbach et al.

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.

Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the of 20 like. Examples suitable amines are N, N'-dibenzylethylenediamine, chloroprocaine, dicyclohexylamine, diethanolamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci., 1977, 66, 1-The base addition salts of said acidic compounds are 25 19). prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the 30 free acid in the conventional manner. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention. As used herein, 35 a "pharmaceutical addition salt" includes a pharmaceutically

acceptable salt of an acid form of one of the components of the compositions of the invention. These include organic or inorganic acid salts of the amines. Preferred acid salts are hydrochlorides, acetates, salicylates, nitrates and 5 phosphates. Other suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of a variety of inorganic and organic acids, such as, for example, with inorganic acids, such as for example hydrochloric acid, hydrobromic acid, sulfuric acid 10 phosphoric acid; with organic carboxylic, sulfonic, sulfo or phospho acids or N-substituted sulfamic acids, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, 15 gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid; and with amino acids, such as the 20 alpha-amino acids involved 20 in the synthesis of proteins in nature, for example glutamic acid or aspartic acid, and also with phenylacetic acid, methanesulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfoic 25 naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, 2 -3-phosphoglycerate, orglucose-6-phosphate, N-cyclohexylsulfamic acid (with the formation of cyclamates), or with other acid organic compounds, such as ascorbic acid. Pharmaceutically acceptable salts of compounds may also be 30 prepared with a pharmaceutically acceptable cation. Suitable pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium and quaternary ammonium cations. Carbonates or hydrogen carbonates are also possible.

35 For oligonucleotides, preferred examples of

pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with 5 inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, 10 malic acid, ascorbic acid, benzoic acid, tannic palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from 15 elemental anions such as chlorine, bromine, and iodine.

The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder 20 which can be treated by modulating the expression of hormonesensitive lipase is treated by administering antisense compounds in accordance with this invention. The compounds invention can be utilized in pharmaceutical compositions by adding an effective amount of an antisense 25 compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense compounds and methods of the invention may also be useful prophylactically, e.g., to prevent or delay infection, inflammation or tumor formation, for example.

The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding hormone-sensitive lipase, enabling sandwich and other assays to easily be constructed to exploit this fact. Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding hormone-

sensitive lipase can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of hormone-sensitive lipase in a sample may also be prepared.

The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The pharmaceutical compositions 10 of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by 15 inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or 20 intracranial, e.q., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2'-0methoxyethyl modification are believed to be particularly useful for oral administration.

Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful. Preferred topical formulations include those in which the oligonucleotides of the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Preferred lipids and liposomes include neutral (e.g., dioleoylphosphatidyl DOPE ethanolamine,

20 its entirety.

dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g., dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g., dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). 5 Oligonucleotides of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, oligonucleotides may be complexed to lipids, in particular to cationic lipids. Preferred fatty acids and esters include but are not limited 10 arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, 15 acylcholine, or a C_{1-10} alkyl ester (e.g., isopropylmyristate monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in United States patent application 09/315,298 filed on May 20, 1999 which is incorporated herein by reference in

Compositions and formulations for oral administration powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or nonaqueous media, capsules, gel capsules, sachets, tablets or 25 minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which oligonucleotides of the invention are administered conjunction with one or more penetration enhancers surfactants 30 and chelators. Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Prefered bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, 35 glycholic acid, glycodeoxycholic acid, taurocholic acid,

35 polyethyleneglycol

taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium qlycodihydrofusidate. Prefered fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, 5 stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g., sodium). Also prefered are 10 combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. particularly prefered combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-15 cetyl ether. Oligonucleotides of the invention may be delivered orally in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. Oligonucleotide complexing agents include poly-amino acids: polyimines; polyacrylates; 20 polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized qelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Particularly preferred 25 complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g., p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), 30 poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, hexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and

(PEG).

Oral formulations

for

oligonucleotides and their preparation are described in detail in United States applications 08/886,829 (filed July 1, 1997), 09/108,673 (filed July 1, 1998), 09/256,515 (filed February 23, 1999), 09/082,624 (filed May 21, 1998) and 09/315,298 (filed May 20, 1999) each of which is incorporated herein by reference in their entirety.

Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

The pharmaceutical formulations present of the 20 invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active with ingredients the pharmaceutical carrier(s) 25 excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media.

35 Aqueous suspensions may further contain substances which

increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention.

Emulsions

15 The compositions of the present invention may be prepared and formulated as emulsions. Emulsions are typically heterogenous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter. (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and 20 Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, York, N.Y., Volume New 1, p. 245; Block Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker 25 (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 1985, p. 301). Emulsions are often biphasic systems comprising of two immiscible liquid phases intimately mixed and dispersed with 30 each other. In general, emulsions may be either water-in-oil (w/o) or of the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase the resulting composition is called a The state of the s

water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain 5 additional components in addition to the dispersed phases and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as 10 needed. Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w)emulsions. Such formulations often provide certain advantages that simple 15 binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise a system of oil droplets enclosed in globules of water stabilized in an oily continuous provides an o/w/o emulsion.

20 Emulsions are characterized by little orno thermodynamic stability. Often, the dispersed discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the 25 formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that incorporated into either phase of the emulsion. Emulsifiers 30 may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker 5 (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic 10 portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different 15 classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (Rieger, Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).

20 Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous 25 lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, 30 hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.

A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the

properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.

Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben,

25 propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl

30 gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.

The application of emulsion formulations via dermatological, oral and parenteral routes and methods for

their manufacture have been reviewed in the literature (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of reasons of ease of formulation, efficacy from an absorption and bioavailability standpoint. (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.

15 In one embodiment of the present invention, compositions of oligonucleotides and nucleic acids formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid 20 solution (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient 25 amount of a fourth component, generally an intermediate chainlength alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-30 active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant

and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 1985, p. 271).

The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.

20 Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol 25 monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DAO750), alone or in combination cosurfactants. The cosurfactant, usually a short-chain 30 alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions may, however, be prepared without

the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.

Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w and w/o) have 15 been proposed to enhance the oral bioavailability of drugs, including peptides (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug 20 from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (Constantinides et al., 25 Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermolabile drugs, peptides 30 oligonucleotides. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption

of oligonucleotides and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of oligonucleotides and nucleic acids within the gastrointestinal tract, vagina, buccal cavity and other areas of administration.

Microemulsions of the present invention may also contain components and additives such as monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance 10 the absorption of the oligonucleotides and nucleic acids of the present invention. Penetration enhancers used in the microemulsions of the present invention may be classified as belonging to one of five broad categories - surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-15 surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.

Liposomes

gadi.

There are many organized surfactant structures besides
20 microemulsions that have been studied and used for the
formulation of drugs. These include monolayers, micelles,
bilayers and vesicles. Vesicles, such as liposomes, have
attracted great interest because of their specificity and the
duration of action they offer from the standpoint of drug
25 delivery. As used in the present invention, the term
"liposome" means a vesicle composed of amphiphilic lipids
arranged in a spherical bilayer or bilayers.

Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Non-cationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.

In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores.

Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated 10 drugs in their internal compartments from metabolism and degradation (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). considerations in the preparation of liposome formulations are 15 the lipid surface charge, vesicle size and the aqueous volume of the liposomes.

Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes. As the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.

Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.

Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the

And the state of t

ļ.

skin. Compounds including analgesics, antibodies, hormones and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis.

Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., Biochem. Biophys. Res. Commun., 1987, 147, 980-985).

Liposomes which are pH-sensitive or negatively-charged,
entrap DNA rather than complex with it. Since both the DNA and
the lipid are similarly charged, repulsion rather than complex
formation occurs. Nevertheless, some DNA is entrapped within
the aqueous interior of these liposomes. pH-sensitive
liposomes have been used to deliver DNA encoding the thymidine
kinase gene to cell monolayers in culture. Expression of the
exogenous gene was detected in the target cells (Zhou et al.,
Journal of Controlled Release, 1992, 19, 269-274).

major type of liposomal composition includes phospholipids other than naturally-derived 25 phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are 30 formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.

Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g., as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).

Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin,

in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome™ I (glyceryl dilaurate/cholesterol/polyoxyethylene10-stearyl ether) and Novasome™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al., S.T.P.Pharma. Sci., 1994, 4, 6, 466).

25 Liposomes also include "sterically stabilized" liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized 30 lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside G_{M1} , or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) 35 moiety. While not wishing to be bound by any particular

theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a 5 reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., FEBS Letters, 1987, 223, 42; Wu et al., Cancer Research, 1993, 53, 3765). Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al., (Ann. N.Y. Acad. Sci., 1987, 507, 64) 10 reported the ability of monosialoganglioside galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al., (Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 6949). U.S. Patent No. 4,837,028 and WO 88/04924, both Allen et al., disclose liposomes comprising sphingomyelin and (2) the ganglioside G_{M1} galactocerebroside sulfate ester. U.S. Patent No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are 20 disclosed in WO 97/13499 (Lim et al.).

Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (Bull. Chem. Soc. Jpn., 1980, 53, 2778) described liposomes comprising a 25 nonionic detergent, $2C_{12}15G$, that contains a PEG moiety. et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups 30 of polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Patent Nos. 4,426,330 and 4,534,899). Klibanov et al. $(\mathit{FEBS}$ Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG

stearate have significant increases in blood circulation halflives. Blume et al. (Biochimica et Biophysica Acta, 1990, 1029, 91) extended such observations to other PEG-derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of 5 distearoylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use 10 thereof, are described by Woodle et al. (U.S. Patent Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Patent No. 5,213,804 and European Patent No. EP 0 496 813 B1). Liposomes comprising a number of other lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Patent No. 5,225,212 (both 15 to Martin et al.) and in WO 94/20073 (Zalipsky et al.) Liposomes comprising PEG-modified ceramide lipids described in WO 96/10391 (Choi et al.). U.S. Patent Nos. 5,540,935 (Miyazaki et al.) and 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be 20 derivatized with functional moieties on their surfaces.

A limited number of liposomes comprising nucleic acids are known in the art. WO 96/40062 to Thierry et al. discloses methods for encapsulating high molecular weight nucleic acids in liposomes. U.S. Patent No. 5,264,221 to Tagawa et al. discloses protein-bonded liposomes and asserts that the contents of such liposomes may include an antisense RNA. U.S. Patent No. 5,665,710 to Rahman et al. describes certain methods of encapsulating oligodeoxynucleotides in liposomes. WO 97/04787 to Love et al. discloses liposomes comprising antisense oligonucleotides targeted to the raf gene.

Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are

smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g., they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersomemediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.

Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the "head") provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, NY, 1988, p. 285).

If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products 25 and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, 30 and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.

If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.

If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, Nalkylbetaines and phosphatides.

The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in *Pharmaceutical Dosage Forms*, Marcel Dekker, Inc., New York, NY, **1988**, p. 25 285).

Penetration Enhancers

In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a

penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.

Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.

Surfactants: In connection with the present invention, surfactants (or "surface-active agents") are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of oligonucleotides through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).

Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac-30 glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C₁₋₁₀ alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof

(i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 5 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).

Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fatsoluble vitamins (Brunton, Chapter 38 in: Goodman & Gilman's 10 The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, Thus the term "bile salts" act as penetration enhancers. includes any of the naturally occurring components of bile as 15 well as any of their synthetic derivatives. The bile salts of the invention include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), 20 qlycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-25 24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, PA, 1990, 30 pages 782-783; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., **1990**, 79, 579-583).

<u>Chelating Agents</u>: Chelating agents, as used connection with the present invention, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of 5 oligonucleotides through the mucosa is enhanced. With regards to their use as penetration enhancers in the present invention, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are 10 thus inhibited by chelating agents (Jarrett, J. Chromatogr., **1993**, *618*, 315-339). Chelating agents of the invention include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates salicylate, 5-methoxysalicylate sodium (e.q., 15 homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 20 **1990**, 14, 43-51).

Non-chelating non-surfactants: As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of oligonucleotides through the alimentary mucosa (Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This class of penetration enhancers include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and

phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).

Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and 5 other compositions of the present invention. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Patent No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731), are also known to enhance the 10 cellular uptake of oligonucleotides.

Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2pyrrol, azones, and terpenes such as limonene and menthone.

15 Carriers

144

Certain compositions of the present invention also incorporate carrier compounds in the formulation. herein, "carrier compound" or "carrier" can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not 20 possess biological activity per se) but is recognized as a acid by in vivo processes that reduce bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. 25 coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier 30 compound and the nucleic acid for a common receptor. example, the recovery of a partially phosphorothioate oligonucleotide in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4'isothiocyano-stilbene-2,2'-

disulfonic acid (Miyao et al., Antisense Res. Dev., 1995, 5, 115-121; Takakura et al., Antisense & Nucl. Acid Drug Dev., 1996, 6, 177-183).

Excipients

5 In contrast to a carrier compound, a "pharmaceutical carrier" or "excipient" is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the 10 planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., 15 pregelatinized maize starch, polyvinylpyrrolidone hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium 20 stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, 25 etc.).

Pharmaceutically acceptable organic or inorganic excipient suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present invention.

30 Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Formulations for topical administration of nucleic acids

may include sterile and non-sterile aqueous solutions, nonaqueous solutions in common solvents such as alcohols, or
solutions of the nucleic acids in liquid or solid oil bases.

5 The solutions may also contain buffers, diluents and other
suitable additives. Pharmaceutically acceptable organic or
inorganic excipients suitable for non-parenteral
administration which do not deleteriously react with nucleic
acids can be used.

10 Suitable pharmaceutically acceptable excipients include,

Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

15

inik

Other Components

compositions of the present invention additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established 20 usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage 25 forms of the compositions of the present invention, such as flavoring agents, preservatives, antioxidants, dyes, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions 30 of the present invention. The formulations can be sterilized if desired, mixed with auxiliary agents, lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like

il più

which do not deleteriously interact with the nucleic acid(s) of the formulation.

Aqueous suspensions may contain substances which increase the viscosity of the suspension including, for 5 example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

of the provide embodiments invention Certain pharmaceutical compositions containing (a) one or more antisense compounds and (b) one or more other chemotherapeutic 10 agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include but are not limited daunorubicin, daunomycin, dactinomycin, doxorubicin, epirubicin, idarubicin, esorubicin, bleomycin, mafosfamide, ifosfamide, cytosine arabinoside, bis-chloroethylnitrosurea, 15 busulfan, mitomycin C, actinomycin D, mithramycin, prednisone, hydroxyprogesterone, testosterone, tamoxifen, dacarbazine, procarbazine, hexamethylmelamine, pentamethylmelamine, mitoxantrone, amsacrine, chlorambucil, methylcyclohexylnitrosurea, nitrogen mustards, melphalan, 20 cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine, hydroxyurea, deoxycoformycin, 5-azacytidine, hydroxyperoxycyclophosphoramide, 5-fluorouracil (5-FU), fluorodeoxyuridine (5-FUdR), methotrexate (MTX), colchicine, etoposide taxol, vincristine, vinblastine, (VP-16), 25 trimetrexate, irinotecan, topotecan, gemcitabine, teniposide, cisplatin and diethylstilbestrol (DES). See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed. 1987, pp. 1206-1228, Berkow et al., eds., Rahway, N.J. When used with the compounds of the invention, such chemotherapeutic agents 30 may be used individually (e.g., 5-FU and oligonucleotide), sequentially (e.g., 5-FU and oligonucleotide for a period of time followed by MTX and oligonucleotide), or in combination with one or more other such chemotherapeutic agents (e.g., 5-MTX and oligonucleotide, or 5-FU, radiotherapy and 35 oligonucleotide). Anti-inflammatory drugs, including but not

limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. See, 5 generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 2499-2506 and 46-49, respectively). Other non-antisense chemotherapeutic agents are also within the scope of this invention. more combined compounds may be used together or sequentially.

In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Numerous examples of 15 antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially.

The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and 20 responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body 25 of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50s found to be effective in in vitro and 30 in vivo animal models. In general, dosage is from 0.01 ug to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured 35 residence times and concentrations of the drug in bodily

The teach and then then that I have been made by the teach and by the teach that I have

fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 ug to 100 g per kg of body weight, once or more daily, to once every 20 years.

While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.

EXAMPLES

Example 1

Nucleoside Phosphoramidites for Oligonucleotide Synthesis Deoxy and 2'-alkoxy amidites

2'-Deoxy and 2'-methoxy beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial sources (e.g., Chemgenes, Needham, MA, or Glen Research, Inc., Sterling, VA). Other 2'-O-alkoxy substituted nucleoside amidites are prepared as described in U.S. Patent 5,506,351, herein incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amidites, the standard cycle for unmodified oligonucleotides was utilized, except the wait step after pulse delivery of tetrazole and base was increased to 360 seconds.

Oligonucleotides containing 5-methyl-2'-deoxycytidine
(5-Me-C) nucleotides were synthesized according to published
methods (Sanghvi et al., Nucleic Acids Research, 1993, 21,
3197-3203) using commercially available phosphoramidites (Glen
Research, Sterling, VA, or ChemGenes, Needham, MA).

2'-Fluoro amidites

30 2'-Fluorodeoxyadenosine amidites

2'-fluoro oligonucleotides were synthesized as described

previously [Kawasaki, et. al., J. Med. Chem., 1993, 36, 831-841] and United States patent 5,670,633, herein incorporated by reference. Briefly, the protected nucleoside N6-benzoyl-2'-deoxy-2'-fluoroadenosine was synthesized utilizing 5 commercially available 9-beta-D-arabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'-alpha-fluoro atom is introduced by a S_N2 displacement of a 2'-beta-trityl group. Thus N6-benzoyl-9beta-D-arabinofuranosyladenine was selectively protected in 10 moderate yield as the 3',5'-ditetrahydropyranyl intermediate. Deprotection of the THP and N6-benzoyl groups was accomplished using standard methodologies and standard methods were used to obtain the 5'-dimethoxytrityl-(DMT) and 5'-DMT-3'-phosphoramidite intermediates.

15 2'-Fluorodeoxyguanosine

2'-deoxy-2'-fluoroguanosine was synthesis of accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9-beta-D-arabinofuranosylguanine as starting material, and conversion to the intermediate diisobutyryl-20 arabinofuranosylguanosine. Deprotection of the TPDS group was followed by protection of the hydroxyl group with THP to give di-THP protected arabinofuranosylquanine. diisobutyryl Selective O-deacylation and triflation was followed by treatment of the crude product with fluoride, then 25 deprotection of the THP groups. Standard methodologies were used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.

2'-Fluorouridine

Synthesis of 2'-deoxy-2'-fluorouridine was accomplished by the modification of a literature procedure in which 2,2'-30 anhydro-1-beta-D-arabinofuranosyluracil was treated with 70% hydrogen fluoride-pyridine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-Fluorodeoxycytidine

2'-deoxy-2'-fluorocytidine was synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N4-benzoyl-2'-deoxy-2'-fluorocytidine. Standard 5 procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-O-(2-Methoxyethyl) modified amidites

2'-O-Methoxyethyl-substituted nucleoside amidites are 10 prepared as follows, or alternatively, as per the methods of Martin, P., Helvetica Chimica Acta, 1995, 78, 486-504.

2,2'-Anhydro[1-(beta-D-arabinofuranosyl)-5-methyluridine]

15 5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), diphenylcarbonate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) were added to DMF (300 mL). The mixture was heated to reflux, with stirring, allowing the evolved carbon dioxide 20 gas to be released in a controlled manner. After 1 hour, the slightly darkened solution was concentrated under reduced pressure. The resulting syrup was poured into diethylether (2.5 L), with stirring. The product formed a gum. The ether was decanted and the residue was dissolved in a minimum amount 25 of methanol (ca. 400 mL). The solution was poured into fresh ether (2.5 L) to yield a stiff gum. The ether was decanted and the gum was dried in a vacuum oven (60°C at 1 mm Hq for 24 hours) to give a solid that was crushed to a light tan powder (57 g, 85% crude yield). The NMR spectrum was consistent with 30 the structure, contaminated with phenol as its sodium salt (ca. 5%). The material was used as is for further reactions (or it can be purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to give a white solid, mp 222-4°C).

2'-O-Methoxyethyl-5-methyluridine

2,2'-Anhydro-5-methyluridine (195 q, 0.81 M), tris(2methoxyethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel and 5 placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel was opened and the solution evaporated to dryness and triturated with MeOH (200 mL). residue was suspended in hot acetone (1 L). The insoluble salts were filtered, washed with acetone (150 mL) and the 10 filtrate evaporated. The residue (280 g) was dissolved in CH₃CN (600 mL) and evaporated. A silica gel column (3 kg) was packed in CH₂Cl₂/acetone/MeOH (20:5:3) containing 0.5% Et₃NH. The residue was dissolved in CH_2Cl_2 (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product 15 was eluted with the packing solvent to give 160 g (63%) of product. Additional material was obtained by reworking impure fractions.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

2'-O-Methoxyethyl-5-methyluridine (160 g, 0.506 M) was 20 co-evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 L). A first aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxytrityl chloride (94.3 q, 0.278 M) was 25 added and the reaction stirred for an additional one hour. Methanol (170 mL) was then added to stop the reaction. showed the presence of approximately 70% product. The solvent was evaporated and triturated with CH3CN (200 mL). residue was dissolved in CHCl₃ (1.5 L) and extracted with 30 2x500 mL of saturated $NaHCO_3$ and 2x500 mL of saturated NaCl.The organic phase was dried over Na₂SO₄, filtered and evaporated. 275 g of residue was obtained. The residue was purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/hexane/acetone (5:5:1) containing 0.5% Et₃NH. The pure

fractions were evaporated to give 164 g of product. Approximately 20 g additional was obtained from the impure fractions to give a total yield of 183 g (57%).

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (106 q, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and stirred at 10 room temperature for 24 hours. The reaction was monitored by TLC by first quenching the TLC sample with the addition of MeOH. Upon completion of the reaction, as judged by TLC, MeOH (50 mL) was added and the mixture evaporated at 35°C. residue was dissolved in CHCl3 (800 mL) and extracted with 15 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers were back extracted with 200 mL of CHCl3. The combined organics were dried with sodium sulfate and evaporated to give 122 g of residue (approx. 90% product). The residue was purified on a 3.5 kg silica gel 20 column and eluted using EtOAc/hexane(4:1). Pure product fractions were evaporated to yield 96 g (84%). An additional 1.5 g was recovered from later fractions.

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine

A first solution was prepared by dissolving 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (96 g, 0.144 M) in CH₃CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) was added to a solution of triazole (90 g, 1.3 M) in CH₃CN (1 L), cooled to -5°C and stirred for 0.5 hour using an overhead stirrer. POCl₃ was added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10°C, and the resulting mixture stirred for an additional 2 hours.

The first solution was added dropwise, over a 45 minute period, to the latter solution. The resulting reaction mixture was stored overnight in a cold room. Salts were filtered from the reaction mixture and the solution was evaporated. The residue was dissolved in EtOAc (1 L) and the insoluble solids were removed by filtration. The filtrate was washed with 1x300 mL of NaHCO₃ and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue was triturated with EtOAc to give the title compound.

2'-0-Methoxyethyl-5'-0-dimethoxytrityl-5-methylcytidine

A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH₄OH (30 mL) was stirred at room temperature for 2 hours. The dioxane solution was evaporated and the residue azeotroped with MeOH (2x200 mL). The residue was dissolved in MeOH (300 mL) and transferred to a 2 liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH₃ gas was added and the vessel heated to 100°C for 2 hours (TLC showed complete conversion). The vessel contents were evaporated to dryness and the residue was dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics were dried over sodium sulfate and the solvent was evaporated to give 85 g (95%) of the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (85 g, 0.134 M) was dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) was added with stirring. After stirring for 3 hours, TLC showed the reaction to be approximately 95% complete. The solvent was evaporated and the residue azeotroped with MeOH (200 mL). The residue was dissolved in CHCl₃ (700 mL) and extracted with saturated NaHCO₃ (2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO₄ and

evaporated to give a residue (96 g). The residue was chromatographed on a 1.5 kg silica column using EtOAc/hexane (1:1) containing 0.5% Et₃NH as the eluting solvent. The pure product fractions were evaporated to give 90 g (90%) of the 5 title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine-3'-amidite

M4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (74 g, 0.10 M) was dissolved in CH₂Cl₂ (1 L).

Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxy-tetra-(isopropyl)phosphite (40.5 mL, 0.123 M) were added with stirring, under a nitrogen atmosphere. The resulting mixture was stirred for 20 hours at room temperature (TLC showed the reaction to be 95% complete). The reaction mixture was extracted with saturated NaHCO₃ (1x300 mL) and saturated NaCl (3x300 mL). The aqueous washes were back-extracted with CH₂Cl₂ (300 mL), and the extracts were combined, dried over MgSO₄ and concentrated. The residue obtained was chromatographed on a 1.5 kg silica column using EtOAc/hexane (3:1) as the eluting solvent. The pure fractions were combined to give 90.6 g (87%) of the title compound.

2'-0-(Aminooxyethyl) nucleoside amidites and 2'-0-(dimethylaminooxyethyl) nucleoside amidites

2'-(Dimethylaminooxyethoxy) nucleoside amidites

2'-(Dimethylaminooxyethoxy) nucleoside amidites (also known in the art as 2'-O-(dimethylaminooxyethyl) nucleoside amidites) are prepared as described in the following paragraphs. Adenosine, cytidine and guanosine nucleoside amidites are prepared similarly to the thymidine (5-30 methyluridine) except the exocyclic amines are protected with a benzoyl moiety in the case of adenosine and cytidine and

with isobutyryl in the case of guanosine.

$5'-0-tert-Butyldiphenylsilyl-0^2-2'-anhydro-5-methyluridine$

O²-2'-anhydro-5-methyluridine (Pro. Bio. Sint., Varese, Italy, 100.0 g, 0.416 mmol), dimethylaminopyridine (0.66 g, 0.013 eq, 0.0054 mmol) were dissolved in dry pyridine (500 ml) at ambient temperature under an argon atmosphere and with mechanical stirring. tert-Butyldiphenylchlorosilane (125.8 g, 119.0 mL, 1.1 eq, 0.458 mmol) was added in one portion.

- The reaction was stirred for 16 hours at ambient temperature.

 TLC (Rf 0.22, ethyl acetate) indicated a complete reaction.

 The solution was concentrated under reduced pressure to a thick oil. This was partitioned between dichloromethane (1 L) and saturated sodium bicarbonate (2x1 L) and brine (1 L).
- 15 The organic layer was dried over sodium sulfate and concentrated under reduced pressure to a thick oil. The oil was dissolved in a 1:1 mixture of ethyl acetate and ethyl ether (600 mL) and the solution was cooled to -10°C. The resulting crystalline product was collected by filtration,
- 20 washed with ethyl ether (3x200 mL) and dried (40°C, 1 mm Hg, 24 hours) to 149 g (74.8%) of white solid. TLC and NMR were consistent with pure product.

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine

- In a 2 L stainless steel, unstirred pressure reactor was added borane in tetrahydrofuran (1.0 M, 2.0 eq, 622 mL). In the fume hood and with manual stirring, ethylene glycol (350 mL, excess) was added cautiously at first until the evolution of hydrogen gas subsided. 5'-O-tert-Butyldiphenylsilyl-O²-2'-30 anhydro-5-methyluridine (149 g, 0.311 mol) and sodium bicarbonate (0.074 g, 0.003 eg) were added with manual
 - bicarbonate (0.074 g, 0.003 eq) were added with manual stirring. The reactor was sealed and heated in an oil bath

until an internal temperature of 160 $^{\circ}\text{C}$ was reached and then maintained for 16 hours (pressure < 100 psig). The reaction vessel was cooled to ambient and opened. TLC (Rf 0.67 for desired product and Rf 0.82 for ara-T side product, ethyl 5 acetate) indicated about 70% conversion to the product. order to avoid additional side product formation, the reaction was stopped, concentrated under reduced pressure (10 to 1 $\ensuremath{\mathsf{mm}}$ Hg) in a warm water bath (40-100°C) with the more extreme conditions used to remove the ethylene qlycol. 10 (Alternatively, once the low boiling solvent is gone, the remaining solution can be partitioned between ethyl acetate and water. The product will be in the organic phase.) residue was purified by column chromatography (2 kg silica gel, ethyl acetate-hexanes gradient 1:1 to 4:1). 15 appropriate fractions were combined, stripped and dried to product as a white crisp foam (84 g, 50%), contaminated starting material (17.4 g) and pure reusable starting material The yield based on starting material less pure recovered starting material was 58%. TLC and NMR were consistent with 20 99% pure product.

2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5methyluridine (20 g, 36.98 mmol) was mixed with 25 triphenylphosphine (11.63 g, 44.36 mmol) hydroxyphthalimide (7.24 g, 44.36 mmol). It was then dried over P_2O_5 under high vacuum for two days at 40°C. The reaction mixture was flushed with argon and dry THF (369.8 mL, Aldrich, sure seal bottle) was added to get a clear solution. Diethyl-30 azodicarboxylate (6.98 mL, 44.36 mmol) was added dropwise to the reaction mixture. The rate of addition is maintained such that resulting deep red coloration is just discharged before adding the next drop. After the addition was complete, the

reaction was stirred for 4 hours. By that time TLC showed the completion of the reaction (ethylacetate:hexane, 60:40). The solvent was evaporated in vacuum. Residue obtained was placed on a flash column and eluted with ethyl acetate:hexane 5 (60:40), to get 2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine as white foam (21.819 g, 86%).

5'-0-tert-butyldiphenylsilyl-2'-0-[(2-formadoximinooxy)ethyl]-5-methyluridine

10 2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5methyluridine (3.1 g, 4.5 mmol) was dissolved in dry CH₂Cl₂ (4.5 mL) and methylhydrazine (300 mL, 4.64 mmol) was added dropwise at $-10\,^{\circ}\text{C}$ to $0\,^{\circ}\text{C}$. After 1 hour, the mixture was filtered, the filtrate was washed with ice cold CH2Cl2 and the 15 combined organic phase was washed with water, brine and dried over anhydrous $\mathrm{Na_2SO_4}$. The solution was concentrated to get 2'-O-(aminooxyethyl) thymidine, which was then dissolved in MeOH (67.5 mL). To this formaldehyde (20% aqueous solution, w/w, 1.1 eq.) was added and the resulting mixture was strirred Solvent was removed under vacuum; residue 20 for 1 hour. chromatographed to get 5'-O-tert-butyldiphenylsilyl-2'-O-[(2formadoximinooxy) ethyl]-5-methyluridine as white foam (1.95 g, 78%).

5'-0-tert-Butyldiphenylsilyl-2'-0-[N,N-dimethylaminooxyethyl]-5-methyluridine

5'-0-tert-butyldiphenylsilyl-2'-0-[(2-formadoximinooxy)ethyl]-5-methyluridine (1.77 g, 3.12 mmol) was dissolved in a solution of 1 M pyridinium ptoluenesulfonate (PPTS) in dry MeOH (30.6 mL). Sodium cyanoborohydride (0.39 g, 6.13 mmol) was added to this solution at 10°C under inert atmosphere. The reaction mixture was stirred for 10 minutes at 10°C. After that, the reaction

vessel was removed from the ice bath and stirred at room temperature for 2 hours, the reaction monitored by TLC (5% MeOH in CH₂Cl₂). Aqueous NaHCO₃ solution (5%, 10mL) was added and extracted with ethyl acetate (2x20 mL). Ethyl acetate 5 phase was dried over anhydrous Na₂SO₄, evaporated to dryness. Residue was dissolved in a solution of 1 M PPTS in MeOH (30.6 mL). Formaldehyde (20% w/w, 30 mL, 3.37 mmol) was added and the reaction mixture was stirred at room temperature for 10 Reaction mixture cooled to 10°C in an ice bath, 10 sodium cyanoborohydride (0.39 g, 6.13 mmol) was added and reaction mixture stirred at 10°C for 10 minutes. After 10 minutes, the reaction mixture was removed from the ice bath and stirred at room temperature for 2 hours. To the reaction mixture 5% $NaHCO_3$ (25 mL) solution was added and extracted 15 with ethyl acetate (2x25 mL). Ethyl acetate layer was dried over anhydrous Na_2SO_4 and evaporated to dryness . obtained was purified by flash column chromatography and eluted with 5% MeOH in CH₂Cl₂ to get 5'-0-tertbutyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5-20 methyluridine as a white foam (14.6 g, 80%).

2'-0-(dimethylaminooxyethyl)-5-methyluridine

Triethylamine trihydrofluoride (3.91 mL, 24.0 mmol) was dissolved in dry THF and triethylamine (1.67 mL, 12 mmol, dry, kept over KOH). This mixture of triethylamine-2HF was then 25 added 5'-0-tert-butyldiphenylsilyl-2'-0-[N,Nto dimethylaminooxyethyl]-5-methyluridine (1.40 g, 2.4 mmol) and stirred at room temperature for 24 hours. Reaction was monitored by TLC (5% MeOH in CH₂Cl₂). Solvent was removed under vacuum and the residue placed on a flash column and 30 eluted with 10% MeOH in CH₂Cl₂ to get (dimethylaminooxyethyl)-5-methyluridine (766 mg, 92.5%).

5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine

2'-O-(dimethylaminooxyethyl)-5-methyluridine (750 mg, 2.17 mmol) was dried over P₂O₅ under high vacuum overnight at 40°C. It was then co-evaporated with anhydrous pyridine (20 5 mL). The residue obtained was dissolved in pyridine (11 mL) under argon atmosphere. 4-dimethylaminopyridine (26.5 mg, 2.60 mmol), 4,4'-dimethoxytrityl chloride (880 mg, 2.60 mmol) was added to the mixture and the reaction mixture was stirred at room temperature until all of the starting material disappeared. Pyridine was removed under vacuum and the residue chromatographed and eluted with 10% MeOH in CH₂Cl₂ (containing a few drops of pyridine) to get 5'-O-DMT-2'-O-(dimethylamino-oxyethyl)-5-methyluridine (1.13 g, 80%).

5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine (1.08 g, 1.67 mmol) was co-evaporated with toluene (20 mL). To the residue N, N-diisopropylamine tetrazonide (0.29 q, 1.67 20 mmol) was added and dried over P2O5 under high vacuum overnight at 40°C. Then the reaction mixture was dissolved in anhydrous acetonitrile (8.4 2-cyanoethyl-N,N,N1,N-1 mL) and tetraisopropylphosphoramidite (2.12 mL, 6.08 mmol) was added. The reaction mixture was stirred at ambient temperature for 25 4 hours under inert atmosphere. The progress of the reaction was monitored by TLC (hexane:ethyl acetate 1:1). The solvent was evaporated, then the residue was dissolved in ethyl acetate (70 mL) and washed with 5% aqueous $NaHCO_3$ (40 mL). Ethyl acetate layer was dried over anhydrous Na2SO4 and Residue obtained was chromatographed (ethyl 30 concentrated. acetate as eluent) to get 5'-O-DMT-2'-O-(2-N,N-

10

dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite] as a foam (1.04 g, 74.9%).

2'-(Aminooxyethoxy) nucleoside amidites

2'-(Aminooxyethoxy) nucleoside amidites (also known in the art as 2'-O-(aminooxyethyl) nucleoside amidites) are prepared as described in the following paragraphs. Adenosine, cytidine and thymidine nucleoside amidites are prepared similarly.

N2-isobutyryl-6-0-diphenylcarbamoyl-2'-0-(2-ethylacetyl)-5'-0-(4,4'-dimethoxytrityl)guanosine-3'[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

The 2'-O-aminooxyethyl quanosine analog may be obtained

by selective 2'-0-alkylation of diaminopurine riboside. Multigram quantities of diaminopurine riboside 15 purchased from Schering AG (Berlin) to provide 2'-O-(2ethylacetyl) diaminopurine riboside along with a minor amount 3'-O-isomer. 2'-0-(2-ethylacetyl) diaminopurine riboside may be resolved and converted to 2'-0-(2ethylacetyl) guanosine by treatment with adenosine deaminase. 20 (McGee, D. P. C., Cook, P. D., Guinosso, C. J., WO 94/02501 Al 940203.) Standard protection procedures should afford 2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)quanosine and 2-N-isobutyryl-6-0-diphenylcarbamoyl-2'-0-(2-ethylacetyl)-5'-0-(4,4'-dimethoxytrityl) guanosine which may be reduced to 2-N-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-25 provide hydroxyethyl)-5'-O-(4,4'-dimethoxytrityl)quanosine. As before the hydroxyl group may be displaced by N-hydroxyphthalimide via a Mitsunobu reaction, and the protected nucleoside may phosphitylated usual yield 2-N-isobutyryl-6-0as to 30 diphenylcarbamoyl-2'-O-([2-phthalmidoxy]ethyl)-5'-O-(4,4'dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,Ndiisopropylphosphoramidite].

2'-dimethylaminoethoxyethoxy (2'-DMAEOE) nucleoside amidites

2'-dimethylaminoethoxyethoxy nucleoside amidites (also known in the art as 2'-O-dimethylaminoethoxyethyl, i.e., 2'-O-5 CH₂-O-CH₂-N(CH₂)₂, or 2'-DMAEOE nucleoside amidites) are prepared as follows. Other nucleoside amidites are prepared similarly.

2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl]-5-methyl uridine

2[2-(Dimethylamino)ethoxy]ethanol (Aldrich, 6.66 g, 50 10 mmol) is slowly added to a solution of borane in tetrahydrofuran (1 M, 10 mL, 10 mmol) with stirring in a 100 mL Hydrogen gas evolves as the solid dissolves. O^2 -,2'anhydro-5-methyluridine (1.2)g, 5 mmol), and 15 bicarbonate (2.5 mg) are added and the bomb is sealed, placed in an oil bath and heated to 155°C for 26 hours. The bomb is cooled to room temperature and opened. The crude solution is concentrated and the residue partitioned between water (200 mL) and hexanes (200 mL). The excess phenol is extracted into 20 the hexane layer. The aqueous layer is extracted with ethyl acetate (3x200 mL) and the combined organic layers are washed once with water, dried over anhydrous sodium sulfate and The residue is columned on silica gel using concentrated. methanol/methylene chloride 1:20 (which has 2% triethylamine) 25 as the eluent. As the column fractions are concentrated a colorless solid forms which is collected to give the title compound as a white solid.

5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethyl-aminoethoxy)ethyl)]-5-methyl uridine

To 0.5 g (1.3 mmol) of 2'-O-[2(2-N,N-dimethylamino-ethoxy)ethyl)]-5-methyl uridine in anhydrous pyridine (8 mL), triethylamine (0.36 mL) and dimethoxytrityl chloride (DMT-Cl,

10

0.87 g, 2 eq.) are added and stirred for 1 hour. The reaction mixture is poured into water (200 mL) and extracted with CH_2Cl_2 (2x200 mL). The combined CH_2Cl_2 layers are washed with saturated NaHCO₃ solution, followed by saturated NaCl solution and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica gel chromatography using MeOH: CH_2Cl_2 : Et_3N (20:1, v/v, with 1% triethylamine) gives the title compound.

5'-O-Dimethoxytrity1-2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)]-5-methyl uridine-3'-O-(cyanoethyl-N,N-diisopropyl)phosphoramidite

Diisopropylaminotetrazolide (0.6 g) and 2-cyanoethoxy-N,N-diisopropyl phosphoramidite (1.1 mL, 2 eq.) are added to a solution of 5'-O-dimethoxytrityl-2'-O-[2(2-N,N-15 dimethylaminoethoxy)ethyl)]-5-methyluridine (2.17 g, 3 mmol) dissolved in CH₂Cl₂ (20 mL) under an atmosphere of argon. The reaction mixture is stirred overnight and the solvent evaporated. The resulting residue is purified by silica gel flash column chromatography with ethyl acetate as the eluent to give the title compound.

Example 2

Oligonucleotide synthesis

Unsubstituted and substituted phosphodiester (P=O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 380B) using standard phosphoramidite chemistry with oxidation by iodine.

Phosphorothioates (P=S) are synthesized as for the phosphodiester oligonucleotides except the standard oxidation bottle was replaced by 0.2 M solution of 3H-1,2-benzodithiole-30 3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation wait step was increased to 68 sec and was followed by the capping step.

After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55°C (18 hours), the oligonucleotides were purified by precipitating twice with 2.5 volumes of ethanol from a 0.5 M NaCl solution. Phosphinate oligonucleotides are prepared as described in U.S. Patent 5,508,270, herein incorporated by reference.

Alkyl phosphonate oligonucleotides are prepared as described in U.S. Patent 4,469,863, herein incorporated by reference.

3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Patents 5,610,289 or 5,625,050, herein incorporated by reference.

Phosphoramidite oligonucleotides are prepared as described in U.S. Patent, 5,256,775 or U.S. Patent 5,366,878, 15 herein incorporated by reference.

Alkylphosphonothioate oligonucleotides are prepared as described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference.

3'-Deoxy-3'-amino phosphoramidate oligonucleotides are prepared as described in U.S. Patent 5,476,925, herein incorporated by reference.

Phosphotriester oligonucleotides are prepared as described in U.S. Patent 5,023,243, herein incorporated by 25 reference.

Borano phosphate oligonucleotides are prepared as described in U.S. Patents 5,130,302 and 5,177,198, both herein incorporated by reference.

Example 3

30 Oligonucleoside Synthesis

Methylenemethylimino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as MDH linked oligonucleosides, and methylenecarbonylamino linked

oligonucleosides, also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P=O or P=S linkages are prepared as described in U.S. Patents 5,378,825, 5,386,023, 5,489,677, 5,602,240 and 5,610,289, all of which are herein incorporated by reference.

Formacetal and thioformacetal linked oligonucleosides 10 are prepared as described in U.S. Patents 5,264,562 and 5,264,564, herein incorporated by reference.

Ethylene oxide linked oligonucleosides are prepared as described in U.S. Patent 5,223,618, herein incorporated by reference.

15 Example 4

PNA Synthesis

Peptide nucleic acids (PNAs) are prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential 20 Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 5-23. They may also be prepared in accordance with U.S. Patents 5,539,082, 5,700,922, and 5,719,262, herein incorporated by reference.

Example 5

25 Synthesis of Chimeric Oligonucleotides

Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between 30 5' and 3' "wing" segments of linked nucleosides and a second "open end" type wherein the "gap" segment is located at either the 3' or the 5' terminus of the oligomeric compound.

Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers".

[2'-0-Me]--[2'-deoxy]--[2'-0-Me] Chimeria

5 [2'-0-Me]--[2'-deoxy]--[2'-0-Me] Chimeric Phosphorothioate Oligonucleotides

Chimeric oligonucleotides having 2'-0-alkyl phosphorothicate and 2'-deoxy phosphorothicate oligonucleotide segments are synthesized using an Applied Biosystems automated 10 DNA synthesizer Model 380B, as above. Oligonucleotides are synthesized using the automated synthesizer and 2'-deoxy-5'dimethoxytrityl-3'-O-phosphoramidite for the DNA portion and 5'-dimethoxytrityl-2'-O-methyl-3'-O-phosphoramidite for 5' and The standard synthesis cycle is modified by 15 increasing the wait step after the delivery of tetrazole and base to 600 s repeated four times for RNA and twice for 2'-0methyl. The fully protected oligonucleotide is cleaved from the support and the phosphate group is deprotected in 3:1 ammonia/ethanol at room temperature overnight then lyophilized 20 to dryness. Treatment in methanolic ammonia for 24 hrs at room temperature is then done to deprotect all bases and sample was again lyophilized to dryness. The pellet is resuspended in 1M TBAF in THF for 24 hrs at room temperature to deprotect the 2' positions. The reaction is then quenched 25 with 1M TEAA and the sample is then reduced to 1/2 volume by rotovac before being desalted on a G25 size exclusion column. The oligo recovered is then analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

[2'-0-(2-Methoxyethyl)]--[2'-deoxy]--[2'-0(Methoxyethyl)] Chimeric Phosphorothioate
Oligonucleotides

[2'-O-(2-methoxyethyl)]--[2'-deoxy]--[-2'-O-(methoxy-

ethyl)] chimeric phosphorothioate oligonucleotides were prepared as per the procedure above for the 2'-O-methyl chimeric oligonucleotide, with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites.

[2'-0-(2-Methoxyethyl)Phosphodiester]--[2'-deoxy Phosphorothioate]--[2'-0-(2-Methoxyethyl) Phosphodiester] Chimeric Oligonucleotides

[2'-O-(2-methoxyethyl phosphodiester]--[2'-deoxy phosphorothioate]--[2'-O-(methoxyethyl) phosphodiester] chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites, oxidization with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.

Other chimeric oligonucleotides, chimeric oligonucleo20 sides and mixed chimeric oligonucleotides/oligonucleosides are
synthesized according to U.S. Patent 5,623,065, herein
incorporated by reference.

Example 6

Oligonucleotide Isolation

25 After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides or oligonucleosides are purified by precipitation twice out of NaCl with 2.5 volumes ethanol. Synthesized 30 oligonucleotides were analyzed by polyacrylamide electrophoresis on denaturing gels and judged to be at least 85% full length material. The relative amounts of

phosphorothicate and phosphodiester linkages obtained in synthesis were periodically checked by ³¹P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides were purified by HPLC, as described by Chiang et al., *J. Biol.* 5 *Chem.* 1991, 266, 18162-18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

Example 7

Oligonucleotide Synthesis - 96 Well Plate Format

10 Oligonucleotides were synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences simultaneously in a standard 96 Phosphodiester internucleotide linkages were well format. afforded by oxidation with aqueous iodine. Phosphorothioate 15 internucleotide linkages were generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial vendors (e.g., PE-Applied Biosystems, Foster 20 City, CA, or Pharmacia, Piscataway, NJ). Non-standard nucleosides are synthesized as per known literature or patented methods. They are utilized as base protected betacyanoethyldiisopropyl phosphoramidites.

Oligonucleotides were cleaved from support and deprotected with concentrated NH_4OH at elevated temperature (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.

Example 8

Oligonucleotide Analysis - 96 Well Plate Format

The concentration of oligonucleotide in each well was assessed dilution of by samples and UV absorption 5 spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACE^{TM} MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACE^{M} 5000, ABI 270). Base and backbone 10 composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate were 15 at least 85% full length.

Example 9

Cell culture and oligonucleotide treatment

The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following 5 cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis, Ribonuclease protection assays, or RT-PCR.

T-24 cells:

The human transitional cell bladder carcinoma cell line 30 T-24 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). T-24 cells were routinely cultured in complete McCoy's 5A basal media (Gibco/Life Technologies,

Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

A549 cells:

The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). A549 cells were routinely cultured in DMEM basal media (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence.

NHDF cells:

Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetics Corporation (Walkersville, MD). NHDFs were routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville, MD) supplemented as recommended by the supplier. Cells were maintained for up to 10 passages as recommended by the supplier.

30 <u>HEK cells</u>:

Human embryonic keratinocytes (HEK) were obtained from the Clonetics Corporation (Walkersville, MD). HEKs were

routinely maintained in Keratinocyte Growth Medium (Clonetics Corporation, Walkersville, MD) formulated as recommended by the supplier. Cells were routinely maintained for up to 10 passages as recommended by the supplier.

5 <u>HepG2 cells</u>:

The human hepatoblastoma cell line HepG2 was obtained from the American Type Culure Collection (Manassas, VA). HepG2 cells were routinely cultured in Eagle's MEM supplemented with 10% fetal calf serum, non-essential amino acids, and 1 mM sodium pyruvate (Gibco/Life Technologies, Gaithersburg, MD). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

Treatment with antisense compounds:

When cells reached 80% confluency, they were treated with oligonucleotide. For cells grown in 96-well plates, wells were washed once with 200 μL OPTI-MEM™-1 reduced-serum medium (Gibco BRL) and then treated with 130 μL of OPTI-MEM™-1 containing 3.75 μg/mL LIPOFECTIN™ (Gibco BRL) and the desired concentration of oligonucleotide. After 4-7 hours of treatment, the medium was replaced with fresh medium. Cells were harvested 16-24 hours after oligonucleotide treatment.

The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. For human cells the positive control oligonucleotide is ISIS 13920, TCCGTCATCGCTCCTCAGGG,

SEQ ID NO: 1, a 2'-O-methoxyethyl gapmer (2'-O-methoxyethyls shown in bold) with a phosphorothicate backbone which is targeted to human H-ras. For mouse or rat cells the positive control oligonucleotide is ISIS 15770, ATGCATTCTGCCCCCAAGGA,

- 5 SEQ ID NO: 2, a 2'-O-methoxyethyl gapmer (2'-O-methoxyethyls shown in bold) with a phosphorothioate backbone which is targeted to both mouse and rat c-raf. The concentration of positive control oligonucleotide that results in 80% inhibition of c-Ha-ras (for ISIS 13920) or c-raf (for ISIS
- 10 15770) mRNA is then utilized as the screening concentration for new oligonucleotides in subsequent experiments for that cell line. If 80% inhibition is not achieved, the lowest concentration of positive control oligonucleotide that results in 60% inhibition of H-ras or c-raf mRNA is then utilized as
- 15 the oligonucleotide screening concentration in subsequent experiments for that cell line. If 60% inhibition is not achieved, that particular cell line is deemed as unsuitable for oligonucleotide transfection experiments.

Example 10

20 Analysis of oligonucleotide inhibition of hormone-sensitive lipase expression

Antisense modulation of hormone-sensitive lipase expression can be assayed in a variety of ways known in the art. For example, hormone-sensitive lipase mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are taught in, for example, ausubel, F.M. et al., Current Protocols in Molecular Biology,

Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F.M. et al., Current

Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley & Sons, Inc., 1996. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM™ 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, CA, and used according to manufacturer's instructions.

Protein levels of hormone-sensitive lipase can be quantitated in a variety of ways well known in the art, such immunoprecipitation, Western blot analysis 10 (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to hormone-sensitive lipase can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional antibody generation 15 methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.12.9, John Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for example, Ausubel, F.M. et al., 20 Current Protocols in Molecular Biology, Volume 2, pp. 11.4.1-11.11.5, John Wiley & Sons, Inc., 1997.

Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.16.1-25 10.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.1-10.8.21, John Wiley & Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.1-11.2.22, John Wiley & Sons, Inc., 1991.

ISPH-0587

Example 11

Poly(A) + mRNA isolation

Poly(A) + mRNA was isolated according to Miura et al., Clin. Chem., 1996, 42, 1758-1764. Other methods for poly(A)+ 5 mRNA isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 60 10 μL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room temperature for five minutes. 55 μL of lysate was transferred to Oligo d(T) coated 96-well plates 15 (AGCT Inc., Irvine CA). Plates were incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate was blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 µL of 20 elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C was added to each well, the plate was incubated on a 90°C hot plate for 5 minutes, and the eluate was then transferred to a fresh 96-well plate.

Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

Example 12

Total RNA Isolation

Total RNA was isolated using an RNEASY 96^{M} kit and buffers purchased from Qiagen Inc. (Valencia, CA) following the manufacturer's recommended procedures. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 100 μL Buffer RLT was added to each well and the plate vigorously

The state of the s

agitated for 20 seconds. 100 μL of 70% ethanol was then added to each well and the contents mixed by pipetting three times up and down. The samples were then transferred to the RNEASY 96[™] well plate attached to a QIAVAC[™] manifold fitted with a 5 waste collection tray and attached to a vacuum source. Vacuum was applied for 15 seconds. 1 mL of Buffer RW1 was added to each well of the RNEASY 96™ plate and the vacuum again applied for 15 seconds. 1 mL of Buffer RPE was then added to each well of the RNEASY $96^{\text{\tiny M}}$ plate and the vacuum applied for a 10 period of 15 seconds. The Buffer RPE wash was then repeated and the vacuum was applied for an additional 10 minutes. plate was then removed from the QIAVAC™ manifold and blotted dry on paper towels. The plate was then re-attached to the QIAVAC™ manifold fitted with a collection tube rack containing 15 1.2 mL collection tubes. RNA was then eluted by pipetting 60 μ L water into each well, incubating 1 minute, and then applying the vacuum for 30 seconds. The elution step was repeated with an additional 60 μL water.

The repetitive pipetting and elution steps may be automated using a QIAGEN Bio-Robot 9604 (Qiagen, Inc., Valencia, CA). Essentially, after lysing of the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out.

25 **Example 13**

Real-time Quantitative PCR Analysis of hormone-sensitive lipase mRNA Levels

Quantitation of hormone-sensitive lipase mRNA levels was determined by real-time quantitative PCR using the ABI PRISM™ 30 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain

reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are This is accomplished by quantitated as they accumulate. 5 including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye or VIC, obtained from either Operon FAM, JOE, Technologies Inc., Alameda, CA, or PE-Applied Biosystems, 10 Foster City, CA) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, obtained from either Operon Technologies Inc., Alameda, CA, or PE-Applied Biosystems, Foster City, CA) is attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is 15 quenched by the proximity of the 3' quencher dye. amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq 20 polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequencespecific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored 25 at regular intervals by laser optics built into the ABI $PRISM^{TM}$ 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense

Prior to quantitative PCR analysis, primer-probe sets specific to the target gene being measured are evaluated for their ability to be "multiplexed" with a GAPDH amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a

30 oligonucleotide treatment of test samples.

single sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-probe sets specific for GAPDH only, target only ("single-plexing"), orboth (multiplexing). 5 Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed samples. the slope and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% 10 of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed multiplexable. Other methods of PCR are also known in the art.

PCR reagents were obtained from PE-Applied Biosystems,

Foster City, CA. RT-PCR reactions were carried out by adding

25 µL PCR cocktail (1x TAQMAN™ buffer A, 5.5 mM MgCl₂, 300 µM

each of dATP, dCTP and dGTP, 600 µM of dUTP, 900 nM of forward

primer, 50 nM of reverse primer, and 100 nM of probe, 20 Units

RNAse inhibitor, 1.25 Units AMPLITAQ GOLD™, and 12.5 Units

MuLV reverse transcriptase) to 96 well plates containing 25

µL total RNA solution. The RT reaction was carried out by

incubation for 30 minutes at 48°C. Following a 10 minute

incubation at 95°C to activate the AMPLITAQ GOLD™, 40 cycles

of a two-step PCR protocol were carried out: 95°C for 15

25 seconds (denaturation) followed by 60°C for 1.5 minutes

(annealing/extension).

Gene target quantities obtained by real time RT-PCR are normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreen™ (Molecular Probes, Inc. Eugene, OR). GAPDH expression is quantified by real time RT-PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RiboGreen™ RNA quantification reagent from Molecular Probes. Methods of RNA quantification by RiboGreen™ are taught in Jones, L.J., et al., Analytical

Biochemistry, 1998, 265, 368-374.

In this assay, 175 µL of RiboGreen™ working reagent (RiboGreen™ reagent diluted 1:2865 in 10mM Tris-HCl, 1 mM EDTA, pH 7.5) is pipetted into a 96-well plate containing 25uL purified, cellular RNA. The plate is read in a CytoFluor 4000 (PE Applied Biosystems) with excitation at 480nm and emission at 520nm.

Probes and primers to human hormone-sensitive lipase were designed to hybridize to a human hormone-sensitive lipase sequence, using published sequence information (GenBank accession number NM_005357, incorporated herein as SEQ ID NO: 3). For human hormone-sensitive lipase the PCR primers were: forward primer: ACCTGCGCACAATGACACA (SEQ ID NO: 4) reverse primer: TGGCTCGAGAAGAAGGCTATG (SEQ ID NO: 5) and the PCR probe was: FAM-CCTCCGCCAGAGTCACCAGCG-TAMRA (SEQ ID NO: 6) where FAM (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye. For human GAPDH the PCR primers were:

forward primer: GAAGGTGAAGGTCGGAGTC (SEQ ID NO: 7)
reverse primer: GAAGATGGTGATGGGATTTC (SEQ ID NO: 8) and the
PCR probe was: 5' JOE-CAAGCTTCCCGTTCTCAGCC- TAMRA 3' (SEQ ID
NO: 9) where JOE (PE-Applied Biosystems, Foster City, CA) is
the fluorescent reporter dye) and TAMRA (PE-Applied
Biosystems, Foster City, CA) is the quencher dye.

Probes and primers to mouse hormone-sensitive lipase were designed to hybridize to a mouse hormone-sensitive lipase sequence, using published sequence information (GenBank accession number U08188, incorporated herein as SEQ ID NO:

30 10). For mouse hormone-sensitive lipase the PCR primers were: forward primer: TGCACCACTGAACTGAGCTG (SEQ ID NO: 11) reverse primer: CCGCCCCACTTACTGTCTC (SEQ ID NO: 12) and the PCR probe was: FAM-CGGCGGGGGGGGCGCACTAAAAGACCTCTTGCTCCCATCTGCGCGGGGCTTC-TAMRA

35 (SEQ ID NO: 13) where FAM (PE-Applied Biosystems, Foster City,

CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye. For mouse GAPDH the PCR primers were:

forward primer: GGCAAATTCAACGGCACAGT (SEQ ID NO: 14)

5 reverse primer: GGGTCTCGCTCCTGGAAGCT (SEQ ID NO: 15) and the PCR probe was: 5' JOE-AAGGCCGAGAATGGGAAGCTTGTCATC- TAMRA 3' (SEQ ID NO: 16) where JOE (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.

10 Example 14

Northern blot analysis of hormone-sensitive lipase mRNA levels

after antisense treatment, hours monolayers were washed twice with cold PBS and lysed in 1 mL $RNAZOL^{TM}$ (TEL-TEST "B" Inc., Friendswood, TX). Total RNA was 15 prepared following manufacturer's recommended protocols. RNA was fractionated by Twenty micrograms of total electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, RNA was transferred from the gel to HYBOND™-N+ nylon 20 membranes (Amersham Pharmacia Biotech, Piscataway, NJ) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST "B" Inc., Friendswood, TX). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKER™ UV 25 Crosslinker 2400 (Stratagene, Inc, La Jolla, CA) and then robed using QUICKHYB™ hybridization solution (Stratagene, La Jolla, CA) using manufacturer's recommendations for stringent conditions.

To detect human hormone-sensitive lipase, a human hormone-sensitive lipase specific probe was prepared by PCR using the forward primer ACCTGCGCACAATGACACA (SEQ ID NO: 4) and the reverse primer TGGCTCGAGAAGAAGGCTATG (SEQ ID NO: 5). To normalize for variations in loading and transfer efficiency

membranes were stripped and probed for human glyceraldehyde-3phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, CA).

To detect mouse hormone-sensitive lipase, a mouse hormone-sensitive lipase specific probe was prepared by PCR 5 using the forward primer TGCACCACTGAACTGAGCTG (SEQ ID NO: 11) and the reverse primer CCGCCCCACTTACTGTCTC (SEQ ID NO: 12). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for mouse glyceraldehyde-3phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, CA).

Hybridized membranes were visualized and quantitated PHOSPHORIMAGER^M and IMAGEQUANT M Software V3.3 using a (Molecular Dynamics, Sunnyvale, CA). Data was normalized to GAPDH levels in untreated controls.

Example 15

15 Design of chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap targeting human hormone-sensitive lipase

In accordance with the present invention, a series of oligonucleotides were designed to target different regions of 20 the human hormone-sensitive lipase RNA, using published sequences (GenBank accession number NM_005357, incorporated herein as SEQ ID NO: 3, GenBank accession number L11706, incorporated herein as SEQ ID NO: 17 and GenBank accession number AA635891, incorporated herein as SEQ ID NO: 18). 25 oligonucleotides are shown in Table 1. "Target site" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 1 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central 30 "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by fivenucleotide "wings". The wings are composed of 2'-methoxyethyl

(2'-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothicate (P=S) throughout the oligonucleotide.

TABLE 1

Design of human hormone-sensitive lipase mRNA chimeric

phosphorothicate oligonucleotides having 2'-MOE wings and a

deoxy gap

	ISIS #	REGION	TARGET	TARGET	SEQUENCE	SEQ ID
	TRIR #	REGION	SEQ ID	SITE	52521102	NO
	ļ		NO SEQ ID	2112		Ì
	129365	5'UTR	3	172	TTGATTCCTCATGATGGCAC	19
	129365	5'UTR	3	174	CATTGATTCCTCATGATGGC	20
10	129366	5'UTR	3	185	CACAGATCTCTCATTGATTC	21
TO	129367	5'UTR	3	189	TCTTCACAGATCTCTCATTG	22
	129369	5'UTR	3	226	CAGGTTCTATCCTTCTGGGC	23
	129370	5'UTR	3	250	CCCTCACGGGAGATATTGAT	24
	129370	5'UTR	3	269	CCTGGCTCCATTGTTATTTC	25
15	129371	Start Codon	3	280	CTGACTTAGAACCTGGCTCC	26
13	129372	Coding	3	348	TTCTGGCCCAGGCTCTAGCG	27
	129373	Coding	3	401	TGGGTATTGGATCCCTGCAG	28
	129374	Coding	3	617	CCTAGCCCAGGTCCCTGCTG	29
	129375	Coding	3	752	GCTCCAGGTTTAGCCTGGGC	30
20	129376	Coding	3	929	GCCTTCCACTCTAGGGCTGA	31
20	129377	Coding	3	951	ATCTGCGACCCACTCAGAAA	32
	129378	Coding	3	994	AATCTGTGTCTGAAGATGAT	33
	129379	Coding	3	1007	ATCGTGGCTGGAGAATCTGT	34
	129381	Coding	3	1143	GGCTGTATCCTGGTAGTGTC	35
25	129381	Coding	3	1174	TGCGCAGGTCCATGTTGTGG	36
ر ک	129383	Coding	3	1202	GCCAGAGTCACCAGCGACTG	37
	129384	Coding	3	1214	ATGTTGTCCTCCGCCAGAGT	38
	129385	Coding	3	1242	CCCAGGACCCTGGCTCGAGA	39
	129385	Coding	3	1384	GGCTGCGGTACCCGTTGGCC	40
30	129389	Coding	3	1403	CAGCGGGCTGTGTGCACTAG	41
50	129391	Coding	3	1427	TTGTGCAGGAGGTGCGCCAG	42
	129394	Coding	3	1439	ACATAGCGGGATTTGTGCAG	43
	129396	Coding	3	1451	CGGTTGGAGGCCACATAGCG	44
	129398	Coding	3	1506	CAGGTAGGCCTCCAGCTCGG	45
35	129400	Coding	3	1595	TCGCCCTCAAAGAAGAGTAC	46
55	129402	Coding	3	1643	TTATGCAGCGTGACATACTC	47
	129404	Coding	3	1651	AGCATCCCTTATGCAGCGTG	48
	129406	Coding	3	1674	GAAGCCCAGGCAGCGGCCAT	49
	129408	Coding	3	1715	GAGATGGTCTGCAGGAATGG	50
40	129410	Coding	3	1718	ATGGAGATGGTCTGCAGGAA	51
10	129412	Coding	3	1852	GTGTGATCCGCTCAAACTCA	52
	129414	Coding	3	1919	AGAGACGATAGCACTTCCAT	53
	129416	Coding	3	2091	ACGCAGGTCATAGGAGATGA	54
	129418	Coding	3	2130	CTTTATCAGGCTGCTGAGCT	55
45	129420	Coding	3	2227	CCACAAAGCCACCGCCGTGG	56
	129422	Coding	3	2233	TCTGGGCCACAAAGCCACCG	57
	129424	Coding	3	2352	GCACTCCTCCAGCGCACGGG	58
	129426	Coding	3	2368	AGCAGTAGGCGAAGAAGCAC	59
	129428	Coding	3	2413	TTCGTTCCCCTGTTGAGCCA	60
50		Coding	3	2450	CAGAGGTTCCCGCCTGCACT	61
50	129432	Coding	3	2456	GTGAAGCAGAGGTTCCCGCC	62
	129434	Coding	3	2466	AAGAGCCACGGTGAAGCAGA	63
	129436	Coding	3	2639	TCCTCCGTCTTTGCACCAGC	64
	129438	Coding	3	2700	GGCTGTGTCCCGCCGCACCA	65

Г	129441	Coding	3	2765	CCACTTAACTCCAGGAAGGA	66
ł	129443	Coding	3	2780	TTCTGGGACTTGCGCCCACT	67
ŀ	129445	Coding	3	2835	CAGTGCTGCTTCAGACACAC	68
ŀ	129447	Coding	3	2879	AGGTTCTTGAGGGAATCCGT	69
5	129447	Coding	3	3035	TTTTTGGCCTCAGCCTCTTC	70
2			3	3041	AGCTCATTTTTGGCCTCAGC	71
	129452	Coding	3	3152	ACTATGGGTGAGGAGTAGAG	72
	129454	Coding		3294	CTGGCCCAGGTTGCGCAGTC	73
	129456	Coding	3		ACAGGCTTTTAGTGTCGCCC	$\frac{73}{74}$
	129458	Stop Codon	3	3497		75
10	129460	3'UTR	3	3534	AAGGCATTCATGACGGAGGC	76
	129462	3′UTR	3	3536	GGAAGGCATTCATGACGGAG	77
	129464	3'UTR	3	3676	GCAGGTCCAGCCGTCTCGGT	
	129466	5'UTR	17	31	GGTCCCCATTCTCAGGACCC	78
	129468	5'UTR	17	51	AGAAGTCTAAACCTCCAGTT	79
15	129470	5'UTR	17	232	CCTGGCCTCCTCGAATCCGG	80
	129472	5'UTR	17	265	CTATCACCTCTTTGGGACTC	81
	129474	5'UTR	17	450	TTCCTCCTCCTTAGACATAA	82
	129476	5'UTR	18	29	ACACATTCATTCAGTAAACG	83
	129478	5'UTR	18	95	GTCACCCACCGCTCAAGAGA	84
20	148862	Coding	3	1158	GTGGATGAGCCTTGAGGCTG	85
20	148863	Coding	3	1164	CATGTTGTGGATGAGCCTTG	86
	148864	Coding	3	1193	ACCAGCGACTGTGTCATTGT	87
	148865	Coding	3	1222	AGAAGGCTATGTTGTCCTCC	88
		Coding	3	1229	CTCGAGAAGAAGGCTATGTT	89
2 -	148866		3	1237	GACCCTGGCTCGAGAAGAAG	90
25	148867	Coding		1343	AAGAGGTGCGCCACACCCAG	91
	148868	Coding	3	1343	CTGGGTCCAGGTCAAAGAGG	92
	148869	Coding			GTACCCGTTGGCCGGTGTCT	93
30	148870	Coding	3	1377	GTGCACTAGGCTGCGGTACC	94
	148871	Coding	3	1392		95
	148872	Coding	3	1501	AGGCCTCCAGCTCGGCCAGG	96
	148873	Coding	3	1515	GAGGCAGCCAGGTAGGCCT	96
	148874	Coding	3	1545	GGCGTAGTAGACCAGAGCGC	
	148875	Coding	3	1590	CTCAAAGAAGAGTACCCCCG	98
	148876	Coding	3	1631	ACATACTCCCGGAGGAAGTC	99
35	148877	Coding	3	1658	CCATAGAAGCATCCCTTATG	100
	148878	Coding	3	1663	AGCGGCCATAGAAGCATCCC	101
	148879	Coding	3	1736	CCGAAGGACACCAGCCCAAT	102
	148880	Coding	3	1788	GAGAGAGCTGGCGGCCACAC	103
	148881	Coding	3	1805	AAGCGGCCGCTGGTGAAGAG	104
40	148882	Coding	3	1902	CATCTCGGTGATGTTCCAGA	105
- 0	148883	Coding	3	1910	AGCACTTCCATCTCGGTGAT	106
	148884	Coding	3	1955	CGGCTTACCCTCACGGTGGC	107
	148885	Coding	3	1986	CTCAAAGGCTTCGGGTGGCA	108
	148886	Coding	17	1444	GTGGCATCTCAAAGGCTTCG	109
45		Coding	3	1998	AGTCAGTGGCATCTCAAAGG	110
40		Coding	3	2070	CCTGACGAGGACGGCCCAG	111
	148888	Coding	3	2070	TGTCCTTCACGCAGGTCATA	112
	148889			2140	GGCCGTTGGACTTTATCAGG	113
	148890	Coding	3	2140	CCAGGCTCCGTTGGCCGTTG	114
- ^	148891	Coding	3		ACCGCCGTGGAAGTGCACTA	115
50		Coding	3	2217	TGGGCCCAGCTCTTGAGGTA	116
	148893	Coding	3	2273		117
	148894	Coding	3	2362	AGGCGAAGAAGCACTCCTCC	
	148895		3	2373	GGCCCAGCAGTAGGCGAAGA	118
	148896	Coding	3	2382	GTGCTTGATGGCCCAGCAGT	119_
55	148897	Coding	3	2393	AGGAGGCGCAGTGCTTGAT	120
	148898	Coding	3	2405	CCTGTTGAGCCAAGGAGGGC	121
	148899	Coding	17	1928	GCTGCTGCCCGAAGAGCCAC	122
	148900	Coding	3	2504	ATGCCATCTGGCACCCGCAC	123
	148901	Coding	3	2531	AGCATTGTGGCCGGGTAGGC	124
			3	2541	GGCAGGCTGCAGCATTGTGG	125
60	148902	Couring				
60				2571	CATGAGGCTCAGCAGGCGGG	126
60	148902 148903 148904	Coding	3		CATGAGGCTCAGCAGGCGGG GACACACTTGGAGAGCACAC	126 127

ſ	148906	Coding	3	2646	GGAGTGGTCCTCCGTCTTTG	129
1	148907	Coding	3	2665	GGGCTTTCTGGTCTGAGTTG	130
	148908	Coding	3	2707	GGAGCAGGGCTGTGTCCCGC	131
	148909	Coding	3	2717	AAGTCTCGGAGGAGCAGGGC	132
5	148910	Coding	3	2740	GCCATGAGGAGGCACCCAGG	133
	148911	Coding	3	2757	CTCCAGGAAGGAGTTGAGCC	134
	148912	Coding	3	2771	TTGCGCCCACTTAACTCCAG	135
	148913	Coding	3	2796	TATGGGCTCCGACATCTTCT	136
	148914	Coding	3	2805	CGGCTCTGCTATGGGCTCCG	137
10	148915	Coding	3	2828	GCTTCAGACACTGCGGCG	138
	148916	Coding	3	2899	GGCTCAAGTCCCTCAGGGTC	139
	148917	Coding	3	2954	TCAGCTGACAGCGACATCTC	140
	148918	Coding	3	2997	TAATAAGAAGTTGACATCGG	141
	148919	Coding	3	3017	TCCCCTGCATCCTCAGGTGG	142
15	148920	Coding	3	3068	ACGCCCAGGCCTCTGTCCAT	143
	148921	Coding	3	3121	TGGCACCCTGGCTGGAGCGT	144
	148922	Coding	3	3185	GGTGCCAGCAGCGGCGACAT	145
	148923	Coding	3	3199	TGAGCATGCTGTCGGGTGCC	146
	148924	Coding	3	3222	GATGTGCACAGGTGGCAGGC	147
20	148925	Coding	3	3304	GCGTCACCGGCTGGCCCAGG	148
	148926	Coding	3	3331	CGTGCGGCAGGTCCTCCACC	149
	148927	Coding	3	3350	GCCGCTAGGGTCAGGAAGCC	150
	148928	Coding	3	3396	GCGCTCCACGCACAGCTCTG	151
	148929	3'UTR	3	3516	GCCGCCGCAGATGGGAACAA	152
25	148930	3'UTR	3	3544	CCCGGCCCGGAAGGCATTCA	153
	148931	3'UTR	3	3574	TTAAGTAAGCACAGCCCGCG	154
	148932	3'UTR	3	3585	CCACCCCGACTTAAGTAAG	155
	148933	3'UTR	3	3625	GGCGAGGGTCTCAGCTTTCG	156
	148934	3'UTR	3	3685	CGGTGCGTGCAGGTCCAGC	157
30	148935	3'UTR	3	3756	AAACCGACCTGCAAGGGAGG	158

Example 16

Antisense inhibition of human hormone-sensitive lipase expression by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap

In accordance with the present invention, a subset of the series of oligonucleotides which were designed to target different regions of the human hormone-sensitive lipase RNA, using published sequences (GenBank accession number NM_005357, incorporated herein as SEQ ID NO: 3, GenBank accession number 40 L11706, incorporated herein as SEQ ID NO: 17 and GenBank accession number AA635891, incorporated herein as SEQ ID NO: 18) were analyzed for their effect on human hormone-sensitive lipase mRNA levels by quantitative real-time PCR as described in other examples herein.

Data are averages from two experiments. If present, 45 "N.D." indicates "no data". The oligonucleotides are shown

15

in Table 2. "Target site" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 2 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothicate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines.

TABLE 2

Inhibition of human hormone-sensitive lipase mRNA levels by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap

10								
	ISIS #	REGION	TARGET	TARGET	SEQUENCE	%INHIB	SEQ ID	
			SEQ ID	SITE			NO	
			МО					
	129432	Coding	3	2456	GTGAAGCAGAGGTTCCCGCC	72	62	
	129449	Coding	3	3035	TTTTTGGCCTCAGCCTCTTC	78	70	
1	148865	Coding	3	1222	AGAAGGCTATGTTGTCCTCC	5	88	
20	148876	Coding	3	1631	ACATACTCCCGGAGGAAGTC	50	99	
	148878	Coding	3	1663	AGCGGCCATAGAAGCATCCC	0	101	
	148880	Coding	3	1788	GAGAGAGCTGGCGGCCACAC	33	103	
	148882	Coding	3	1902	CATCTCGGTGATGTTCCAGA	36	105	
	148884	Coding	3	1955	CGGCTTACCCTCACGGTGGC	78	107	
25	148885	Coding	3	1986	CTCAAAGGCTTCGGGTGGCA	79	108	
	148888	Coding	3	2070	CCTGACGAGGACGGGCCCAG	64	111	
	148889	Coding	3	2099	TGTCCTTCACGCAGGTCATA	46	112	
	148892	Coding	3	2217	ACCGCCGTGGAAGTGCACTA	72	115	
	148893	Coding	3	2273	TGGGCCCAGCTCTTGAGGTA	15	116	
30	148894	Coding	3	2362	AGGCGAAGAAGCACTCCTCC	44	117	
	148895	Coding	3	2373	GGCCCAGCAGTAGGCGAAGA	0	118	
	148898	Coding	3	2405	CCTGTTGAGCCAAGGAGGGC	85	121	
	148899	Coding	3	1928	GCTGCTGCCCGAAGAGCCAC	Ô	122	
	148900	Coding	3	2504	ATGCCATCTGGCACCCGCAC	68	123	
35	148901	Coding	3	2531	AGCATTGTGGCCGGGTAGGC	65	124	
	148904	Coding	3	2610	GACACACTTGGAGAGCACAC	29	127	
	148906	Coding	3	2646	GGAGTGGTCCTCCGTCTTTG	4	129	
	148907	Coding	3	2665	GGGCTTTCTGGTCTGAGTTG	0	130	
	148908	Coding	3	2707	GGAGCAGGGCTGTGTCCCGC	0	131	
40	148909	Coding	3	2717	AAGTCTCGGAGGAGCAGGGC	60	132	
	148910	Coding	3	2740	GCCATGAGGAGGCACCCAGG	67	133	
	148911	Coding	3	2757	CTCCAGGAAGGAGTTGAGCC	0	134	
	148916	Coding	3	2899	GGCTCAAGTCCCTCAGGGTC	0	139	
	148919	Coding	3	3017	TCCCCTGCATCCTCAGGTGG	71	142	
45	148923	Coding	3	3199	TGAGCATGCTGTCGGGTGCC	61	146	
	148929	3'UTR	3	3516	GCCGGCGCAGATGGGAACAA	22	152	

	2 / 7 7 777		2544	TOGGGGGGGGGA A CCCATTCA	85	153
148930	3'UTR	3	3544	CCCGGCCCGGAAGGCATTCA	0.5	3 5 5
148934	3'UTR	3	3685	CGGTGGCGTGCAGGTCCAGC	3	157

As shown in Table 2, SEQ ID NOs 62, 70, 99, 107, 108, 111, 112, 115, 117, 121, 123, 124, 132, 133, 142, 146, and 153 demonstrated at least 40% inhibition of human hormonesensitive lipase expression in this assay and are therefore preferred. The target sites to which these preferred sequences are complementary are herein referred to as "active sites" and are therefore preferred sites for targeting by compounds of the present invention.

Example 17

Design of chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a deoxy gap targeting mouse hormone-sensitive lipase

In accordance with the present invention, a series of 15 oligonucleotides were designed to target different regions of the mouse hormone-sensitive lipase RNA, using published sequences (GenBank accession number U08188, incorporated herein as SEQ ID NO: 10). The oligonucleotides are shown in "Target site" indicates the first (5'-most) 20 Table 3. nucleotide number on the particular target sequence to which All compounds in Table 3 are the oligonucleotide binds. chimeric oligonucleotides ("gapmers") 20 nucleotides length, composed of a central "gap" region consisting of ten 25 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are 2'-methoxyethyl (2'-MOE) nucleotides. The of composed internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide.

TABLE 3

Design of mouse hormone-sensitive lipase mRNA chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap

5 [ISIS #	REGION	TARGET	TARGET	SEQUENCE	SEQ
5	1919 #	KEGION	SEQ ID	SITE	_	ID NO
			NO NO) TIE	}	
	126910	5'UTR	10	238	GCTCCTCTTCAGAATTAGAA	159
ł	126911	5'UTR	10	469	ACCAAGTATTCAAACCTAGG	160
	126912	5'UTR	10	521	TTTGCTCTGTCAGGCCCAGG	161
	126913	Start	10	585	GCGTAAATCCATGCTGTGTG	162
		Codon				
10	126914	Coding	10	645	CTGGCTTGAGAAGAAGGCCA	163
	126915	Coding	10	665	CGTGCTGTCTCTCCTGGGCC	164
	126916	Coding	10	700	GTTCCCGAACACCTGCAAAG	165
	126917	Coding	10	710	CCCAGTGCCTGTTCCCGAAC	166
	126918	Coding	10	755	AAATGGTGTGCCACACCCAA	167
15	126919	Coding	10	790	GGTATCCGTTGGCTGGTGTC	168
	126920	Coding	10	835	GTAGTAGGTGTGCCAGGCAG	169
	126921	Coding	10	854	GCCACATAGCGGGATTTGTG	170
	126922	Coding	10	890	TGGCTGGCACGGAAGAAGAT	171
	126923	Coding	10	900	TGCTAGGTTGTGGCTGGCAC	172
20	126924	Coding	10	974	ATGGTCAGCAGGCGCTGGGC	173
	126925	Coding	10	994	AGAGCACTCCTGGTCGGTTG	174
	126926	Coding	10	1093	TGAACTGGAAGCCCAGGCAG	175
	126927	Coding	10	1103	ATGGCAGGTGTGAACTGGAA	176
	126928	Coding	10	1120	TCTGCAGGAACGGCCGGATG	177
25	126929	Coding	10	1140	CACCAGCCCGATGGAGAGAG	178
	126930	Coding	10	1172	GTCTCGTTGCGTTTGTAGTG	
	126931	Coding	10	1230	TGGGTCTATGGCGAATCGGC	180
	126932	Coding	10	1250	AATTCAGCCCCACGCAACTC	
	126933	Coding	10	1274	TCCAGGTTCTGTATGATGCG	
30	126934	Coding	10	1295	AAGGCTTTCCAGAAGTGCAC	183
	126935	Coding	10	1300	TCCAGAAGGCTTTCCAGAAG	
	126936	Coding	10	1345	ATGCCATGTTGGCCAGAGAC	
	126937	Coding	10	1373	AGCAGGCGGCTTACCCTCAC	
	126938	Coding	10	1405	GTGGCATCTCAAAGGCCTCA	
35	126939	Coding	10	1441	GTGAGATGGTAACTGTGAGC	188
	126940	Coding	10	1454	TGTGCCAAGGGAGGTGAGAT	
	126941	Coding	10	1464	TGGTCCCGTGTGTGCCAAGG	
	126942	Coding	10	1487	ATGAGCCTGGCTAGCACAGG	
	126943		10	1499	AGGTCATAGGAGATGAGCCT	
40	126944	Coding	10	1544	GATTTTGCCAGGCTGTTGAG	
	126945	Coding	10	1554	TGGGCCCTCAGATTTTGCCA	
	126946		10	1646	GAGGTCTGTGCCACAAAGCC	
	126947		10	1680	GGCCCAGTTCTTGAGGTAGG	
	126948		10	1690	CTAGCTCCTGGGCCCAGTTC	
45	126949		10	1723	CCAGGGAGTAGTCGATGGAG	
	126950	Coding	10	1785	GACAGCCCAGCAGTAGGCAA	199

FIRE
4.
1
17
irei.
12.00
鎶
San S
1
The same
M
144
and the second

	126951	Coding	10	1795	CACAGTGCTTGACAGCCCAG	200
	126952	Coding	10	1832	GCAAGGCATATCCGCTCTCC	201
	126953	Coding	10	1886	GCTGCTGCCCGAAGGGACAC	202
	126954	Coding	10	1920	TGCCATGATGCCATCTGGCA	203
5	126955	Coding	10	1925	TAGGCTGCCATGATGCCATC	204
	126956	Coding	10	1946	GACTGCAGGGTGGTAACTGG	205
	126957	Coding	10	1967	AGACGAGAGGAGAAGCAGA	206
	126958	Coding	10	2003	ACGCTCAGTGGTAGAAGAGG	207
	126959	Coding	10	2063	TCTGAGTCAAAATGGTCCTC	208
10	126960	Coding	10	2073	TGCCTTCTGGTCTGAGTCAA	209
	126961	Coding	10	2105	GTGTCTCTCTGCACCAGCCC	210
	126962	Coding	10	2129	CGGAGGTCTCTGAGGAACAG	211
	126963	Coding	10	2156	GAGTTGAGCCATGAGGAGGC	212
	126964	Coding	10	2243	CTCCTGCGCATAGACTCCGT	213
15	126965	Coding	10	2263	CCAGGGCTGCCTCAGACACA	214
	126966	Coding	10	2278	AGCCCTCAGGCTGGGCCAGG	215
	126967	Coding	10	2366	ATTGACTGTGACATCTCGGG	216
	126968	Coding	10	2376	AAGTGTCTCCATTGACTGTG	217
	126969	Coding	10	2438	GCCTCTTCCTGGGAATTCCC	218
20	126970	Coding	10	2535	GACACCTTGGCTTGAGCGCC	219
	126971	Coding	10	2545	GCATGTGGAGGACACCTTGG	220
	126972	Coding	10	2575	GGTTCTTGACTATGGGTGAC	221
	126973	Coding	10	2595	CAGCAGAGGAGACATGAAGG	222
	126974	Coding	10	2687	CGCGCGAACATGACCGAGTC	223
25	126975	Coding	10	2732	TCTACCACTTTCAGCGTCAC	224
	126976	Coding	10	2820	CAGCCGGATGCGCTGCACGC	225
	126977	3'UTR	10	2890	AAGAGGTCTTTTAGTGCCGC	226
	126978	3'UTR	10	2999	TTACTGTCTCAAGTTAAGCA	227
	126979	3'UTR	10	3030	GGTTCAGCTTTTGGCCCCTG	228
30	126980	3'UTR	10	3093	AAGGCAGTGGTAGAGTGCAG	229
	126981	3'UTR	10	3148	TAACTTTTATTTACAAAAAG	230

Example 18 Western blot analysis of hormone-sensitive lipase protein levels

Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 hours after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 ul/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to hormonesensitive lipase is used, with a radiolabelled or fluorescently labeled secondary antibody directed against the

primary antibody species. Bands are visualized using a $PHOSPHORIMAGER^{TM}$ (Molecular Dynamics, Sunnyvale, CA).

Example 19

Effects of antisense inhibition of hormone-sensitive lipase 5 (ISIS 126930) on blood glucose levels

db/db mice are used as a model of Type 2 diabetes. These mice are hyperglycemic, obese, hyperlipidemic, and insulin resistant. The db/db phenotype is due to a mutation in the leptin receptor on a C57BLKS background. However, a mutation in the leptin gene on a different mouse background can produce obesity without diabetes (ob/ob mice). These mice were used in the following studies.

In accordance with the present invention, ISIS 126930 (GTCTCGTTGCGTTTGTAGTG, SEQ ID NO: 179) was investigated in experiments designed to address the role of hormone-sensitive lipase in glucose metabolism and homeostasis in ob/ob mice.

ISIS 126930 is completely complementary to sequences in the coding region of the human and mouse hormone-sensitive lipase nucleotide sequences incorporated herein as SEQ ID No: 3 (starting at nucleotide 1760 of human hormone-sensitive lipase; Genbank Accession No. NM_005357) and SEQ ID NO: 10 (starting at nucleotide 1172 of mouse hormone-sensitive lipase; Genbank Accession No. U08188).

Male ob/ob mice were divided into groups (n=8) with the same average blood glucose levels and treated by intraperitoneal injection twice a week with saline or ISIS 126930. Ob/ob mice were treated at a dose of 25 mg/kg of ISIS 126930. Treatment was continued for 5 weeks with blood glucose levels being measured on day 0, 7, 14, 21, 28 and 35.

By day 28 in ob/ob mice treated with ISIS 126930, blood glucose levels were reduced from a starting level of 300 mg/dL to 160 mg/dL and remained at this level through week five. These final levels are within normal range for wild-type mice

(170 mg/dL). The saline treated levels averaged 250 mg/dL throughout the study.

Example 20

Effects of antisense inhibition of hormone-sensitive lipase 5 (ISIS 126930) on mRNA expression in liver

Male ob/ob mice were divided into groups (n=8) with the same average blood glucose levels and treated by intraperitoneal injection twice a week with saline or ISIS 126930 as in Example 19. Treatment was continued for 5 weeks 10 after which the mice were sacrificed and tissues collected for mRNA analysis. RNA values were normalized and are expressed as a percentage of saline treated control.

ISIS 126930 successfully reduced hormone-sensitive lipase mRNA levels in the livers of ob/ob mice (60% reduction of hormone-sensitive lipase mRNA).

Example 21

Effects of antisense inhibition of hormone-sensitive lipase (ISIS 126930) on liver and fat organ weight

Male ob/ob mice were divided into groups (n=8) with the 20 same average blood glucose levels and treated by intraperitoneal injection twice a week with saline or ISIS 126930 as in Example 19. Treatment was continued for 5 weeks. At day 35 mice were sacrificed and final body weights of mouse liver and fat were measured.

25 Treatment of ob/ob mice with ISIS 126930 resulted in a decrease in liver weight compared to saline-treated controls and no change in fat content. Liver weight was reduced from an average of 4.7 grams to 3.5 grams while fat weight remained the same (average 1.8 grams/mouse).

Example 22

Effects of antisense inhibition of hormone-sensitive lipase (ISIS 126930) on serum insulin levels

Male ob/ob mice were divided into groups (n=8) with the 5 same average blood glucose levels and treated by intraperitoneal injection twice a week with saline or ISIS 126930 as in Example 19. Treatment was continued for 5 weeks with serum insulin levels being measured on day 35.

Mice treated with ISIS 126930 showed a decrease in serum 10 insulin levels compared to controls (57 ng/mL for controls compared to 8 ng/mL for oligonucleotide-treated animals).

Example 23

Effects of antisense inhibition of hormone-sensitive lipase (ISIS 126930) on serum AST and ALT levels

Male ob/ob mice were divided into groups (n=8) with the same average blood glucose levels and treated by intraperitoneal injection twice a week with saline or ISIS 126930 as in Example 19. Treatment was continued for 5 weeks with AST and ALT levels being measured on day 35. Increased levels of the liver enzymes ALT and AST indicate toxicity and liver damage.

Mice treated with ISIS 126930 showed a decrease in AST and ALT levels compared to controls (330 IU/L for AST levels and 520 IU/L for ALT levels in control animals compared to 250 IU/L for both levels in oligonucleotide-treated animals). These results indicate no ongoing toxic effects of the oligonucleotide treatment.

Example 24

Effects of antisense inhibition of hormone-sensitive lipase 30 (ISIS 126930) on serum cholesterol and triglyceride levels

Male ob/ob mice were divided into groups (n=8) with the same average blood glucose levels and treated by

intraperitoneal injection twice a week with saline or ISIS 126930 as in Example 19. Treatment was continued for 5 weeks with serum cholesterol and triglyceride levels being measured on day 35.

Mice treated with ISIS 126930 showed a decrease in both serum cholesterol (250 mg/dL for control animals and 150 mg/dL for oligonucleotide-treated animals) and triglycerides (140 mg/dL for control animals and 100 mg/dL for oligonucleotide-treated animals) to normal levels.

10 EXAMPLE 25

5

Effects of antisense inhibition of hormone-sensitive lipase (ISIS 126930) in the P-407 murine model of hyperlipidemia

copolymer inert block (P-407), an 407 Poloxamer by hydrophilic comprising a hydrophobic core flanked 15 polyoxyethelene units, has been shown to induce hyperlipidemia in rodents (Palmer, et al., Atherosclerosis, 1998, 136, 115-123). In the mouse, one injection, intraperitoneally, of P-407 (0.5g/kg) produced hypercholesterolemia that peaked at 24 hours and returned to control levels by 96 hours following 20 treatment (Saltiel, Proc. Natl. Acad. Sci. U S A, 2000, 97, 535-537).

C57BL/6 mice, a strain reported to be susceptible to hyperlipidemia-induced atherosclerotic plaque formation were used in the following studies to evaluate antisense oligonucleotides as potential lipid lowering compounds.

Female C57BL/6 mice were divided into three matched groups; (1) wild-type control animals; (2) P-407 injected (0.5g/kg every 3 days) animals and (3) animals receiving a high-cholesterol diet. Control animals received no treatment and were maintained on a normal rodent diet. Mice from each group were dosed intraperitoneally every three days, after fasting overnight, with saline or 50 mg/kg ISIS 126930. Five mice/group were sacrificed at days 0, 0.16, 1, 2, 7, 14, 21,

28, 42, 70 and 140 and evaluated for cholesterol and triglyceride levels, liver enzyme levels, serum glucose levels. At day 140 the remaining animals were sacrificed and evaluated for organ weight and mRNA expression of hormonesensitive lipase.

Example 26

Evaluation of the P-407 murine model of hyperlipidemia-Time course measurements of serum cholesterol, triglycerides, glucose and liver enzyme levels

In order to validate the P-407 model of hyperlipidemia, female C57BL/6 mice of the P-407 treatment group receiving a normal diet (described in Example 25) were evaluated for baseline levels of serum cholesterol and triglycerides, glucose and liver enzyme levels over a time course of 140 days. Measurements were taken on days 0, 0.16, 1, 2, 7, 14, 21, 28, 42, 70 and 140.

During the course of the study, all measurments were relatively constant with average serum cholesterol levels remaining at 500 mg/dL; triglyceride levels at 1500 mg/dL; AST levels at 200 IU/L and ALT levels at 100 IU/L. Glucose levels averaged 500 mg/dL over the timecourse of the study.

Example 27

Effects of antisense inhibition of hormone-sensitive lipase (ISIS 126930) in the P-407 murine model of hyperlipidemia-

25 liver and spleen weights

Female C57BL/6 mice were divided into three matched groups; (1) wild-type control animals; (2) P-407 injected (0.5 g/kg every 3 days) animals and (3) animals receiving a high-cholesterol diet. Control animals received no treatment and were maintained on a normal rodent diet. Mice from each group were dosed intraperitoneally every three days, after fasting overnight, with saline or 50 mg/kg ISIS 126930. Five

mice/group were sacrificed at day 147 and evaluated for changes in spleen and liver weight as a percent of body weight.

Mice in the saline-injected wild-type group had liver weights that were 4 percent of body weight while those animals receiving ISIS 126930 had liver weights that were 5.5 percent of body weight. Spleen weights in this treatment group were 0.4 percent of body weight for saline-injected animals and 0.58 percent of body weight for animals receiving ISIS 126930.

10 Therefore, antisense treatment of control animals had no deleterious effects on liver or spleen as a function of organ weight compared to saline-injected animals.

The time was the second

Mice in the P-407 treatment group receiving saline had liver weights that were 7 percent of body weight while those animals receiving ISIS 126930 had liver weights that were 7.8 percent of body weight. Spleen weights in this treatment group were 0.5 percent of body weight for saline-injected animals and 0.58 percent of body weight for animals receiving ISIS 126930. Therefore, antisense treatment of P-407 treated animals had no deleterious effects on liver or spleen as a function of organ weight compared to saline-injected animals.

Mice in the high cholesterol diet treatment group receiving saline had liver weights that were 13 percent of body weight while those animals receiving ISIS 126930 had 25 liver weights that were comparable at 12 percent of body weight. Spleen weights in this treatment group were 0.58 percent of body weight for saline-injected animals and 0.6 percent of body weight for animals receiving ISIS 126930.

While liver weights were a greater percent of body weight in animals fed high cholesterol diets than in the other treatment groups, antisense treatment was not found to affect liver weight compared to saline treatment. Consequently, these animals had no deleterious effects on liver or spleen as a function of organ weight compared to saline-injected animals.

Example 28

Effects of antisense inhibition of hormone-sensitive lipase (ISIS 126930) in the P-407 murine model of hyperlipidemiamRNA expression in liver

Female C57BL/6 mice were divided into three matched groups; (1) wild-type control animals; (2) P-407 injected (0.5 g/kg every 3 days) animals and (3) animals receiving a high-cholesterol diet as in Example 25. Control animals received no treatment and were maintained on a normal rodent diet. Mice form each group were dosed intraperitoneally every three days, after fasting overnight, with saline or 50 mg/kg ISIS 126930. Five mice/group were sacrificed at day 147 and evaluated for hormone sensitive lipase expression levels in the liver.

In all three treatment groups, expression levels of hormone sensitive lipase mRNA in the liver were reduced to below 10 percent of control.

Example 29

Effects of antisense inhibition of hormone-sensitive lipase (ISIS 126930) in the P-407 murine model of hyperlipidemiaserum cholesterol and triglyceride levels

Female C57BL/6 mice were divided into three matched groups; (1) wild-type control animals; (2) P-407 injected (0.5 g/kg every 3 days) animals and (3) animals receiving a 25 high-cholesterol diet as in Example 25. Control animals received no treatment and were maintained on a normal rodent diet. Mice form each group were dosed intraperitoneally every three days, after fasting overnight, with saline or 50 mg/kg ISIS 126930. Five mice/group were sacrificed at day 147 and evaluated for serum cholesterol and triglyceride levels.

In both the wild-type control group and the high-cholesterol diet, there was no difference in the levels of serum cholesterol or triglycerides in animals treated with

either saline or ISIS 126930. All animals in the wild-type control group had serum cholesterol levels of 80 mg/dL while all animals in the high-cholesterol group maintained serum cholesterol levels of 400 mg/dL. Serum triglyceride levels of animals in both wild-type and high-cholesterol groups were below 100 mg/dL.

However, in the P-407 model of hyperlipidemia there was a decrease in both serum cholesterol and triglycerides in the antisense-treated animals. Levels of serum cholesterol in this group dropped from 800 mg/dL in saline-treated animals to 600 mg/dL in animals treated with the antisense compound. Levels of triglycerides showed an even more dramatic decrease going from 1800 mg/dL in saline-treated animals to 600 mg/dL in antisense-treated animals.