РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>1</u>

дисциплина: Операционные системы

Студент: Леон Атупанья Хосе Фернандо

Группа: НПМбд-02-20

МОСКВА

2021_

1. Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2. Ход работы

Для начала надо скачать VirtualBox, необходимую для запуска виртуальных машин. Скачать можно на сайте: https://www.virtualbox.org/ (рисунок 1). Необходимо выбрать версию своей операционной системы (рисунок 2).

Рисунок 1

Рисунок 3

Рисунок 4

Далее создаём на рабочем столе папку, в которой будет храниться наша виртуальная машина. Имя папки — имя пользователя (логин студента в дисплейном классе). В данном случае «leonjose». Проверяем в свойствах

VirtualBox месторасположения папки для виртуальных машин. Для этого открываем VirtualBox, далее «файл» → «Свойства» → вкладка «Общие» и в поле «Папка для машин по умолчанию» указываем путь к папке, созданной ранее (рисунок 5).

Переходим к созданию виртуальную машину. Для этого нажимаем «Машина» → «Создать» и указываем имя виртуальной машины (логин в дисплейной классе, «leonjose») и тип операционной системы – Linux, RedHat 64 bits. (рисунок 6)

Указываем размер основной памяти виртуальной машины – 1024 МБ (рисунок 7)

Рисунок 7

Создаем новый виртуальный жесткий диск (рисунок 8)

Задаем конфигурацию жесткого диска – VDI (VirtualBox disk Image), динамический виртуальный жесткий диск (рисунки 9 и 10).

		?	\times
←	Создать виртуальный жёсткий диск		
	Укажите тип		
	Пожалуйста, укажите тип файла, определяющий формат, который Вы хотите использовать при создании нового жёсткого диска. Если у Вас нет необходимости использовать диск с другими продуктами программной виртуализации, Вы можете оставить данный параметр без изменений.		
	VDI (VirtualBox Disk Image)		
	○ VHD (Virtual Hard Disk)		
	○ VMDK (Virtual Machine Disk)		
		1	
	<u>Э</u> кспертный режим <u>Д</u> алее	Отме	на

Рисунок 9

Рисунок 10

Задаем расположение и размер диска. В данном случае:

«C:\Users\Fernando\OneDrive\Pабочийстол\leonjose\leonjose\leonjose.vdi» И 20 гв. (рисунок 11)

Рисунок 11

Далее нам необходимо скачать образ операционной системы. В данном

случае это « CentOS 7 x86_64 DVD 2009.iso ». Скачать можно на сайте: https://mirror.yandex.ru/centos/7/isos/x86_64/ (рисунок 12)

Index of /centos/7/isos/x86_64/

Рисунок 12

Теперь в VirtualBox для нашей виртуальной машины выбираем «Свойства» \rightarrow «Носитель». Добавляем новый природ оптических дисков и выбираем образ «CentOS 7 x86_64 DVD 2009.iso» (рисунок 13)

Рисунок 13

После этого необходимо запустить виртуальную машину и продолжить настройку (Рисунок 14)

Рисунок 14

Следовательно, мы запустили и начали настраивать Centos7. Мы редактируем дату и время и добавляем имя пользователя и пароль для доступа к Centos7. (рисунок 15, 16,17,18)

Рисунок 15

Рисунок 16

Рисунок 17

Рисунок 18

После того наш личный аккаунт начинает работать (рисунок 19 и 20).

Рисунок 19

Рисунок 20

В конце мы подключаемся образ диска к ОС (рисунок 21 и 22).

Рисунок 21

Рисунок 22

Из терминала мы можем извлечь информацию о системе. (рисунок 23)

Рисунок 23

Открываем консоль и анализируем последовательность загрузки системы, используя команду «sudo dmesg» и введя пароль. (рисунок 24)

Домашнее задание

1) Версия ядра Linux: команда «sudodmesg | grep -i "Linux version"» (рисунок 25)

Рисунок 25

2) Частота процессора : команда « sudo dmesg | grep -i "MHz » (рисунок 26)

```
[leonjose@leonjose ~]$ dmesg | grep -i "MHz"
[ 0.000000] tsc: Detected 2112.002 MHz processor
[ 1.523281] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:8d:3c:5b
[ 1.633071] tsc: Refined TSC clocksource calibration: 2107.015 MHz
[leonjose@leonjose ~]$ ■
```

Рисунок 26

3) Модель процессора : команда « sudo dmesg | grep i CPU 0 » (рисунок 27)

```
|leonjose@leonjose ~]$ dmesg | grep -1 "CPUO"
| 0.131287] smpboot: CPUO: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz (fam: 06, model
| 8e, stepping: 0c)
|leonjose@leonjose ~]$ |
```

Рисунок 27

4) Объем доступной оперативной памяти : команда « sudo dmesg | grep -i «Метогу» (рисунок 28)

```
[leonjose@leonjose ~]$ dmesg | grep -i "Memory"
     0.000000] Base memory trampoline at [ffff9fc340099000] 99000 size 24576
     0.000000] crashkernel=auto resulted in zero bytes of reserved memory.
     0.000000] Early memory node ranges
     0.000000] PM: Registered nosave memory: [mem 0x0009f000-0x0009ffff]
     0.000000] PM: Registered nosave memory: [mem 0x000a0000-0x000efffff]
0.000000] PM: Registered nosave memory: [mem 0x000f0000-0x000fffff]
     0.000000] Memory: 981000k/1048512k available (7788k kernel code, 392k absent, 6712
0k reserved, 5954k data, 1984k init)
     0.000000] please try 'cgroup disable=memory' option if you don't want memory cgrou
     0.042385] Initializing cgroup subsys memory
     0.229808] x86/mm: Memory block size: 128MB
     0.627525] Freeing initrd memory: 30816k freed
     0.654538] Non-volatile memory driver v1.3
     0.654646] crash memory driver: version 1.1
     0.714145] Freeing unused kernel memory: 1984k freed
     0.715000] Freeing unused kernel memory: 392k freed
     0.715906] Freeing unused kernel memory: 536k freed
     1.529219] [drm] Max dedicated hypervisor surface memory is 507904 kiB
     1.529220] [drm] Maximum display memory size is 16384 kiB
     1.529380] [TTM] Zone
                            kernel: Available graphics memory: 507378 kiB
[leonjose@leonjose ~]$
```

5) Тип обнаруженного гипервизора : команда « sudo dmesg grep -i «Hypervisor detected »(рисунок 29)

```
[leonjose@leonjose ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[leonjose@leonjose ~]$ ■
```

Рисунок 29

 б) Тип файловой системы корневого раздела и последовательность монтирования файловых систем: команда « sudo dmesg grep -i Mount » (рисунок 30)

```
[leonjose@leonjose ~]$ dmesg | grep -i "Mount"

[ 0.042276] Mount-cache hash table entries: 2048 (order: 2, 16384 bytes)

[ 0.042278] Mountpoint-cache hash table entries: 2048 (order: 2, 16384 bytes)

[ 2.040406] XFS (dm-0): Mounting V5 Filesystem

[ 2.050008] XFS (dm-0): Ending clean mount

[ 3.316010] XFS (sdal): Mounting V5 Filesystem

[ 7.929195] XFS (sdal): Ending clean mount

[leonjose@leonjose ~]$
```

Рисунок 30

7) Последовательность монтирования файловых систем. Мы создаем новой точки монтирования с помощью утилиты mkdir. После того, как точка монтирования создана, а файловая система присутствует на разделе жесткого диска, утилита mount может быть использована для монтирования файловой системы в директорию, которая станет точкой монтирования. После монтирования пользователи получат доступ к файловой системе. (рисунок 31)

```
root@leonjose:~
Файл Правка Вид Поиск Терминал Справка
[root@leonjose ~]# mkdir /home/project42
[root@leonjose ~]# mount -t ext2 /dev/sdb1 /home/project42/
nount: special device /dev/sdb1 does not exist
[root@leonjose ~]# ls
42 anaconda-ks.cfg initial-setup-ks.cfg
[root@leonjose ~]# cat /etc/filesystems
ĸfs
ext4
ext3
ext2
nodev proc
nodev devpts
iso9660
√fat
ıfs
nfsplus
[root@leonjose ~]#
```

Вывод

В ходе данной лабораторной работы я научился, как установить операционную систему на виртуальную машину и настроить их основные и необходимые для дальнейшей работы сервисы.

Контрольные вопросы

- 1. Какую информацию содержит учётная запись пользователя?
 - Учетная запись пользователя содержит: имя пользователя ()
 - Идентификационный номер пользователя ()
 - Идентификационный номер группы ()
 - Пароль
 - Полное имя
 - Домашний каталог
 - Начальную оболочку
- 2. Укажите команды терминала и приведите примеры:
 - для получения справки по команде;man [команда]. Например, команда « man ls » выведет справку о команде « ls »
 - для перемещения по файловой системе;
 cd [путь]. Например, команда «cd newdir» осуществляет переход в каталог newdir
 - для просмотра содержимого каталога;
 - ls [опции] [путь]. Например, команда «ls –a ~/newdir» отобразит имена скрытых файлов в каталоге newdir
 - для определения объёма каталога;
 du [опция] [путь]. Например, команда «du −k ~/newdir» выведет размер каталога newdir в килобайтах
 - для создания / удаления каталогов / файлов;mkdir [опции] [путь] / rmdir [опции] [путь] / rm [опции] [путь].

Например, команда «mkdir –p ~/newdir1/newdir2»

- для задания определённых прав на файл / каталог;
 chmod [опции] [путь]. Например, команда «chmod g+r ~/text.txt» даст
 группе право на чтение файла text.txt
- для просмотра истории команд;
 history [опции]. Например, команда «history 5» покажет список последних 5 команд
- 3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система имеет два значения: с одной стороны – это архитектура хранения битов на жестком диске, с другой – это организация каталогов в соответствии с идеологией Unix.

Существует несколько типов файловых систем:

XFS, ReiserFS, JFS, ext, ext2, ext3, Reiser4, ext4, Btrfs, Tux2, Tux3, Xiafs, ZFS.

- 4. Как посмотреть, какие файловые системы подмонтированы в ОС? Команда «findmnt» или «findmnt --all» будет отображать все подмонтированные файловые системы или искать файловую систему.
- 5. Как удалить зависший процесс?

Необходимо завершить дочерние процессы, удалить временные файлы, сокеты и так далее. Но в зависимости от сложности ситуации процесс может реагировать не на все сигналы. Рассмотрим основные сигналы, которые используются для завершения процесса:

SIGINT, SIGQUIT, SIGHUP, SIGTERM, SIGKILL