

第四届全国网络与信息安全防护峰会

用无害碎片制造程序攻击:蒙太奇攻击与程序异常检测

疏晓葵

Virginia Tech



### 对程序的攻击

独立恶意程序

病毒蠕虫

木马

• • •

对日常使用程序的攻击

栈溢出

堆溢出

ROP

DoS

在线暴力破解

• • •



Def 2015 对话·交流·合作

### 传统防御:基于特征匹配的IDS

### 特定攻击的特征

CA-2001-26 (IE/IIS vulnerability used by Nimda Worm)

GET /scripts/root.exe

GET /scripts/..\xc1\x1c../winnt/system32/cmd.exe

GET /scripts/..%35c../winnt/system32/cmd.exe

### 传统防御:基于特征匹配的IDS

### (抽象)行为特征

一类Javascript攻击 [Karanth et al. MSR 2010]

unescape()
replace()
new\_array()

## 零日漏洞攻击

Microsoft IE CMshtmlEd::Exec() Use-After-Free Vulnerability

| 日期         | 事件                  |
|------------|---------------------|
| 2012.09.14 | Eric Romang 发现了这个漏洞 |
| 2012.09.16 | binjo 公布了漏洞细节       |
| 2012.09.17 | Metasploit 提供了攻击代码  |
| 2012.09.17 | Microsoft 向用户提供安全建议 |
| 2012.09.21 | Microsoft 发布补丁      |

# 免疫学的启示

| 免疫学  | 特征匹配IDS    |
|------|------------|
| 人体   | 操作系统       |
| 细胞   | 程序         |
| 病毒   | 一种对程序的攻击   |
| 抗原   | 攻击的特征      |
| 人工免疫 | 向IDS提供攻击特征 |

### 免疫学的启示

| 免疫学  | 特征匹配IDS    |
|------|------------|
| 人体   | 操作系统       |
| 细胞   | 程序         |
| 病毒   | 一种对程序的攻击   |
| 抗原   | 攻击的特征      |
| 人工免疫 | 向IDS提供攻击特征 |



特异性免疫

基于特征的IDS

非特异性免疫

基于异常的IDS



# 程序异常检测:基于异常检测的IDS







下推自动机 [Feng 2003, Feng 2004, Giffin 2004] ▲

[Feng 2004]



数据流分析 [Giffin 2006, Bhatkar 2006]

程序运行时的系统调用序列



程序运行时的系统调用序列

... b g g b b ...

正常的

gram的规则

3-grams:

- ggb 跟随 bgg
- bgg gbb 跟随 ggb
- ggb
- gbb

建模及异常检测



### 程序运行时的系统调用序列

正常的 gram的规则

3-grams: • ggb 跟随 bgg

- bgg gbb 跟随 ggb
- ggb
- gbb

建模及异常检测



有限自动机 (FSA)

程序运行时的系统调用序列

... b g g b b ...

正常的

gram的规则

3-grams:

- ggb 跟随 bgg

- ggb
- gbb

• bgg • gbb 跟随 ggb

建模及异常检测

ggb bgg gbb

3-gram 的窗口

正则语言 RE (一种形式语言)



有限自动机 (FSA)



### 程序异常检测归一化模型 [Shu RAID15]



L-1: 上下文相关语言级

L-2: 上下文无关语言级

L-3: 正则语言级

L-4: 受限正则语言级



<sup>1</sup>[Forrest 1996] <sup>2</sup>[Sekar 2001] <sup>3</sup>[Wagner 2001]

<sup>4</sup>[Feng 2004] <sup>5</sup>[Feng 2003] <sup>6</sup>[Gin 2004]

<sup>7</sup>[Bhatkar 2006] <sup>8</sup>[Gin 2006] <sup>9</sup>[Shu CCS 2015]

### 程序异常检测归一化模型 [Shu RAID15]



L-1: 上下文相关语言级

L-2: 上下文无关语言级

L-3: 正则语言级

L-4: 受限正则语言级



<sup>1</sup>[Forrest 1996] <sup>2</sup>[Sekar 2001] <sup>3</sup>[Wagner 2001]

<sup>4</sup>[Feng 2004] <sup>5</sup>[Feng 2003] <sup>6</sup>[Gin 2004]

<sup>7</sup>[Bhatkar 2006] <sup>8</sup>[Gin 2006] <sup>9</sup>[Shu CCS 2015]

### 蒙太奇攻击







一个由正常程序执行碎片构成的运行异常。

传统异常检测方法等效为一阶自动机,无法分析多个事件的全局联系。

Def 2015 对话·交流·合作

### 蒙太奇攻击:例一 [Wagner 2002]

```
read() write() close() munmap() sigprocmask() wait4() sigprocmask()
sigaction() alarm() time() stat() read() alarm() sigprocmask()
setreuid() fstat() getpid() time() write() time() getpid()
sigaction() socketcall() sigaction() close() flock() getpid()
lseek() read() kill() lseek() flock() sigaction() alarm() time()
stat() write() open() fstat() mmap() read() open() fstat() mmap()
read() close() munmap() brk() fcntl() setregid() open() fcntl()
chroot() chdir() setreuid() lstat() lstat() lstat() open()
fcntl() fstat() lseek() getdents() fcntl() fstat() lseek()
getdents() close() write() time() open() fstat() mmap() read()
close() munmap() brk() fcntl() setregid() open() fcntl() chroot()
chdir() setreuid() lstat() lstat() lstat() open() fcntl()
brk() fstat() lseek() getdents() lseek() getdents() time() stat()
write() time() open() getpid() sigaction() socketcall() sigaction()
umask() sigaction() alarm() time() stat() read() alarm() getrlimit()
pipe() fork() fcntl() fstat() mmap() lseek() close() brk() time()
getpid() sigaction() socketcall() sigaction() chdir() sigaction()
sigaction() write() munmap() munmap() exit()
```

```
setreuid()
chroot()
chdir()
chroot()
open()
write()
close()
```

### 蒙太奇攻击:例二



218 call instructions in between

现存方法无法对大尺度下 的事件相关性建模

### sshd 指示变量改写攻击 [Chen 2005]

```
void do_authentication(...) {
  int authenticated = 0;
  while (!authenticated) {
    if (auth_password(...)) {
      memset(...);
      xfree(...);
      log_msg(...);
      authenticated = 1;
      break;
    memset(...);
    xfree(...);
    debug(...);
    break;
  if (authenticated) break;
```

我们提出了一个两段式 机器学习模型,为多样 化的正常程序行为建模。

#### 聚类间建模

Inter-cluster modeling 事件相关性分析 Event co-occurrence analysis

#### 聚类内建模

Intra-cluster modeling 频率相关性分析 Event occurrence frequency analysis 一个程序行为实例



(a) 建立档案





(b) 构造子空间



(e) 聚类内建模



(d) 聚类内降维



(c) 正常程序行为聚类









### 程序轨迹(待检测)



(a) 建立档案



(d) 聚类内异常检测



(c) 聚类内降维



#### sshd

4800 正常行为档案 平均 34511 事件

指示变量改写攻击

#### libpcre

11027 正常行为档案 平均 44893 事件

正则表达式拒绝服务攻击

#### sendmail

6579 正常行为档案 平均 1134 事件

邮件服务器目录收割攻击

#### 人工合成的异常行为

- 蒙太奇异常
- 不完整执行路径异常
- 高频异常
- 低频异常

### 行为分析开销





### 程序异常检测:发展与思考

- \* 工业界采纳现状
- \* 程序行为的监测
- \* 训练模型的完善

### 总结

- ▼ 异常行为检测与攻击特征匹配相辅相成
- ▼ 异常行为检测的领域地图 [Shu RAID 2015]
- ▼ 蒙太奇攻击与两段式机器学习模型 [Shu CCS 2015]
- \* 学术界与工业界的交流以及相互帮助

# 感谢您的关注!

Thank you for your attention