Reducing enteric methane emissions from dairy cattle

"Dairy Girls"

Methane emissions

- ☐ methane represents 11% of total U.S. greenhouse gas emissions
 - 2nd most important greenhouse gas after CO₂
- □ enteric fermentation accounts for 27% of total U.S. methane emissions
 - 2nd most important source after natural gas & petroleum systems
- □ enteric CH₄ represents a loss of energy, 6-12% of gross energy intake
 - energy that could otherwise be available for growth or production
- □ reducing enteric CH₄ would benefit the environment and improve efficiency

Integrating genomic, milk spectrometry, and microbial manipulations to mitigate enteric methane emissions from dairy cattle

overall goal: reduce enteric CH₄ emissions from dairy cattle by combining

- selective breeding
- milk mid-infrared spectra
- rumen microbiome interventions

Francisco Peñagaricano, quantitative genomics Hilario C Mantovani, rumen microbiology Heather M White, nutritional physiology Kent A Weigel, breeding & genetics

Michael J VandeHaar, sustainable food systems **Robert J Tempelman**, statistical genetics

James E Koltes, genomics & bioinformatics Ranga Appuhamy, nutrition/sustainable agriculture

José EP Santos, nutrition, health & fertility **Kwang C Jeong**, microbiology & food safety

Ransom L Baldwin, nutritional genomics
Paul M VanRaden, sustainable breeding goals
Asha Miles, genomics & microbiology
Elizabeth A French, precision feeding
Kenneth F Kalscheur, sustainable production

Kristen Parker Gaddis, genetics & genomics

Our plan

phenotyping 4,000 lactating cows

measure CH₄ production, feed intake, milk energy, body weight, and milk spectra for 6-8 weeks in mid-lactation selective breeding

microbiome

develop genomic evaluations for methane emission traits

milk spectrometry

evaluate the use of milk spectra to predict CH₄ emissions

reveal the composition/activity of the rumen microbiome of cows with low & high CH₄ emissions

using metagenomics and metabolomics

exchange ruminal contents of low and high methane-emitting cows

decipher the relative contributions of hosts and microbes to CH₄ production

Outcomes/Solutions

routine genomic evaluations for CH₄ emission traits in U.S. dairy cattle

changes achieved through genetic selection are incremental, cumulative and permanent (very cost-effective strategy)

reveal if milk spectra is a good predictor of CH₄ emissions

milk spectra could be used to increase the accuracy of genomic evaluations of CH₄ traits

milk spectra could be used to optimize cow management in the dairy farm (assign high methane-emitting cows to specific diets)

deeper understanding of how the host influences diversity/activity of methanogens

targeted strategies to reduce CH₄ formation in the rumen

microbial solutions

spectra-based solutions

genomic

solutions

GreenFeed system

GreenFeed system (C-Lock Inc.)

C-Lock web-interface

To create a custom workbook, please enter the systems you would like included (comma separated), and a date range then click "Generate Workbook"

Systems: 212, 304, 305, 579, 592, 593, 648, 716

Date Range: 05/29/2024 to 06/13/2024

Generate Workbook

Please Note: Data generated is preliminary and has not been reviewed by the C-Lock Team.

C-Lock web-interface

GreenFeed

https://greenfeed.c-lockinc.com/GreenFeed/greenfeed.php

Data

Animals

To create a custom workbook, please enter the systems you would like included (comma separated), and a date range then click "Generate Workbook"

Systems: 212, 304, 305, 579, 592, 593, 648, 716

Date Range: 05/29/2024 to 06/13/2024

Generate Workbook

Please Note: Data generated is preliminary and has not been reviewed by the C-Lock Team.

Due to database upgrades, daily auto-processed workbooks may be delayed by a few hours each day.

wattiaux

To generate custom workbooks guicker, follow the instructions at the bottom of this page.

University of Wisconsin-Madisor

GreenFeed system

Study: ADSA 2024

Unit: 579

Start Date: 11/30/2023 End Date: 01/11/2024 Day 1 Day 2 Day 3 Day 4

How many cows have records?

How many records per day? And per cow?

What is the average CH4 production per cow?

When are the cows visiting the GF? AM? PM?

Answer the following questions using the software you prefer:

- 1. How many cows do you have?
- 2. How many records do you have per cow?
- 3. What is the average methane production per cow?

- 1. Go to https://github.com/GMBog/GreenFeed/tree/main/ADSA/Challenge 1/
- 2. Download <u>ADSA2024 GFdata Day4.xlsx</u>
- 3. Using the software of your preference, answer the following questions:
 - How many cows (or unique RFID) do you have?
 - How many records do you have per cow (or unique RFID)?
 - What is the average methane production (or CH4GramsPerDay) per cow?
- 4. Open Report ADSA2024.pdf and compare your results

API & Data processing

Study: **ADSA 2024**

Unit: 579

Start Date: 12/04/2023 End Date: 01/11/2023

Last

C-Lock

Run download_data.R to get the Daily Report. Then, answer the questions:

- 1. How many cows do you have?
- 2. How many records do you have per cow?
- 3. What is the average methane production per cow?

- 1. Go to https://github.com/GMBog/GreenFeed/tree/main/ADSA/Challenge 2/
- 2. Download <u>ADSA2024_GFdata.xlsx</u>, <u>ADSA2024_EID.csv</u>, <u>download_dataADSA2024.R</u>, <u>ReportsGF.Rmd</u>

 Hint: Download Challenge 2/ folder using the following link (https://download-directory.github.io) and copy the path above.
- 3. Open download_dataADSA2024.R, inspect the code, and run it
- 4. Using R and Rmd, answer the following questions:
 - How many cows (or RFID) do you have?
 - How many records do you have per cow (or RFID)?
 - What is the average methane production (or CH4GramsPerDay) per cow?
- 5. Open Report ADSA2024.pdf in Downloads folder

Comparing daily and final reports Study 1 – Unit 579

Comparing daily and final reports Study 2 – Unit 212

Thank you for your attention!

Francisco Peñagaricano

fpenagarican@wisc.edu

Guillermo Martinez Boggio

guillermo.martinezboggio@wisc.edu

