

We claim:

1. A catalyst system for olefin polymerization comprising an organic transition metal compound and, as cocatalyst, an ionic compound made up of anions of the formula (Ia),

5

where

10

the radicals R¹ are identical or different and are each, independently of one another, a radical R²R³(CF₃)₂,

15

R² is a carbon or silicon atom and

R³

is hydrogen, C₁-C₂₀-alkyl, C₁-C₂₀-fluoroalkyl, C₆-C₂₀-aryl, C₆-C₂₀-fluoroaryl, C₇-C₄₀-arylalkyl, C₇-C₄₀-fluoroarylalkyl, C₇-C₄₀-alkylaryl, C₇-C₄₀-fluoroalkylaryl or an SiR⁴₃ group, where

20

R⁴ may be identical or different and is each C₁-C₂₀-alkyl, C₁-C₂₀-fluoroalkyl, C₆-C₂₀-aryl, C₆-C₂₀-fluoroaryl, C₇-C₄₀-arylalkyl, C₇-C₄₀-fluoroarylalkyl, C₇-C₄₀-alkylaryl or C₇-C₄₀-fluoroalkylaryl,

25

and Lewis-acid cations or Brönsted acids as cations.

2. A catalyst system as claimed in claim 1, wherein the cocatalyst comprises, as Lewis-acid cations, cations of the formula (Ib),

30

where

35

M¹ is an element of groups 1 to 16 of the Periodic Table of the Elements,

Q₁ to Q_z are singly negatively charged groups such as C₁-C₂₈-alkyl, C₆-C₁₅-aryl, alkylaryl, arylalkyl, haloalkyl, haloaryl each having from 6 to 20 carbon atoms in the aryl radical and from 1 to 28 carbon atoms in the alkyl radical, C₃-C₁₀-

40

cycloalkyl which may bear C₁-C₁₀-alkyl groups as substituents, halogen, C₁-C₂₈-alkoxy, C₆-C₁₅-aryloxy, silyl or mercaptyl groups,

a is an integer from 1 to 6 and

5

z is an integer from 0 to 5, and

d corresponds to the difference a-z, but d is greater than or equal to 1.

10 3. A catalyst system as claimed in claim 1, wherein the cocatalyst comprises, as cations, Brönsted acids of the formula (Ic),

15

where

A is an element of group 15 of the Periodic Table of the Elements and

20

R⁵ may be identical or different and is each, independently of one another, C₁-C₂₀-alkyl, C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxyl, C₆-C₂₀-aryl, C₆-C₂₀-haloaryl, C₆-C₂₀-aryloxy, C₇-C₄₀-arylalkyl, C₇-C₄₀-haloarylalkyl, C₇-C₄₀-alkylaryl or C₇-C₄₀-haloalkylaryl.

25 4. A catalyst system as claimed in claim 3, wherein the cocatalyst has the formula (II),

30

where

R¹ may be identical or different and is each, independently of one another, a radical R²R³(CF₃)₂,

35

R² is a carbon or silicon atom,

R³ is hydrogen, C₁-C₂₀-alkyl, C₁-C₂₀-fluoroalkyl, C₆-C₂₀-aryl, C₆-C₂₀-fluoroaryl, C₇-C₄₀-arylalkyl, C₇-C₄₀-fluoroarylalkyl, C₇-C₄₀-alkylaryl, C₇-C₄₀-fluoroalkylaryl or an SiR⁴₃ group, where

- R⁴ may be identical or different and is each C₁-C₂₀-alkyl, C₁-C₂₀-fluoroalkyl,
C₆-C₂₀-aryl, C₆-C₂₀-fluoroaryl, C₇-C₄₀-arylalkyl, C₇-C₄₀-fluoroarylalkyl, C₇-C₄₀-
alkylaryl or C₇-C₄₀-fluoroalkylaryl,
- 5 A is an element of group 15 of the Periodic Table of the Elements and
- R⁵ may be identical or different and is each, independently of one another,
C₁-C₂₀-alkyl, C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxyl, C₆-C₂₀-aryl, C₆-C₂₀-haloaryl,
C₆-C₂₀-aryloxy, C₇-C₄₀-arylalkyl, C₇-C₄₀-haloarylalkyl, C₇-C₄₀-alkylaryl or
10 C₇-C₄₀-haloalkylaryl.
5. A catalyst system as claimed in any of claims 1 to 4 which further comprises an organometallic compound.
- 15 6. A catalyst system as claimed in any of claims 1 to 5 which further comprises an inorganic or organic support.
7. A process for preparing a catalyst system as claimed in claim 6, which comprises firstly bringing the support into contact with an organometallic compound and adding the organic
20 transition metal compound and the cocatalyst to the reaction product.
8. A catalyst system for the polymerization of olefins which is obtainable as set forth in claim 7.
- 25 9. A process for the polymerization of olefins in which a catalyst system as set forth in any of claims 1 to 8 is used.

30

35

40