

G.PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY::KURNOOL

(Autonomous)

Il B.Tech Il SEM (R23) MID-I Examinations – Feb'2025 Department of Electronics and Communication Engineering

Sub: EMTL (A40408) Time: 90 min Date: 01-03-2025 Max. Marks: 30

Answer all the Questions (3X10=30M)

		Marks	Unit	со	Cognitive Level
X	Define electric field intensity. Point charges of 5nC and -2nC are located at (2, 0, 4) and (-3, 0, 5) respectively. Find the electric field E at (1, -3, 7).	10M		CO3	Apply
and the second space of the second	(OR)				
2	State and prove Gauss's law. Express Gauss's law in both integral and differential forms. Also discuss its applications.	10M		соз	Understand
3	 (a) Determine electric flux density, D at (4, 0, 3), if there is point charge of -5π mC at (4, 0, 0) and line charge 3π mC/m along the y-axis. (b) What are the isotropic and homogeneous dielectric materials. 	5+5 M	The state of the s	CO3	Apply
	(OR)	200			
A	a) Differentiate self-inductance and mutual inductance. b) Discuss about the magnetic vector potential.	5+5 M	II.	CO4	Analyze
15	Define Ampere's law. Plane y=1 carries current k= 100 ax mA/m. Find H at (i) (0, 0, 0) (ii) (1, 3, -3)	10M	11	CO4	Apply
	(OR)				
28	(a) State and explain Faraday's law. (b) Explain Maxwell's equations integral and differential form.	5+5 M	<u>I</u> Î	CO4	■ Understand

Ihri Burang Signature of faculty

Signature of HOD

G.PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY::KURNOOL

(Autonomous)

II B.Tech II SEM (R23)MID-II Examinations-April/May 2025 Department of Electronics and Communication Engineering

Sub: EMTL (A40408)

Time: 90 min

Date:29-04-2025

Max.Marks:30

Answer all the Questions (3X10=30M)

		Marks	Unit	со	Cognitive Level
1	State and prove Poynting theorem? Derive the expression for Poynting vector.	10M	111	CO1	Understand
	(OR)				
7	a) Describe the concept of Reflection of an EM wave by a perfect dielectric at oblique incidence.b) Explain the concept of Brewster Angle.	5+5 M	Ш	CO1	Understand
3	A distortion less line has $Zo=60\Omega$, $\alpha=20Np/m$, $u=0.6c$, where c is the Speed of light in a vacuum. Find R,L,G,C,and λ at 100MHz.	10M	IV	CO2	Apply
	(OR)				
29	Draw the equivalent circuit of a 2-wire transmission line. Explain primary & secondary constants.	10 M	IV	CO2	Understand
5	Write a note on a) Quarter wave transformer b)Single stub matching	5+5 M	V	CO2	Analyze
-	(OR)				
6	Analyze the input impedance of 2- wire transmission, when load is S/C, O/C and Matched.	10M	٧	CO2	Analyze

Fig Swar Signature of faculty

Signature of HOD

CODE: A40408

R23

H.T.No:

G.PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS)

B.Tech II Year II Semester Regular Examinations May 2025 Subject Name: EM WAVES AND TRANSMISSION LINES

Branch: Electronics and Communication Engineering

	_		
Time:	3	Hours	

SET-1

Max. Marks: 70

Instructions:
1. Answer all 10 questions from Part-A. Each question carries two marks

2. Answer one full question from each unit in Part-B. Each full question carries 10 marks

		PART-A	- 1		7
1,	a	Define Electric potential.	2M	CO1	BTL2
	b	Distinguish between convection and conduction currents.	2M	CO1	BTL4
	С	State Biot Savart's law and write its expression.	2M	CO2	BTL1
	d	State Faraday's Law	2M	CO2	BTL1
	e	Define total internal reflection and mention its conditions.	2M	соз	BTL2
	f	What is a uniform plane wave?.	2M	СОЗ	BTL1
	g	Define primary and secondary constants? Give the relation between them.	2 M	CO4	BTL1
	h	Define group velocity and write its expression.	2 M	CO4	BTL3
	i	What is Stub Matching?	2 M	CO5	BTL1
	j	Write short notes on Quarter wave transformer.	2M	CO5	BTL1
	,	PART-B		(*)	(5) k
	/	UNIT-I			
2		Develop the expression for electric field intensity at any point due to finite length line charge with suitable sketches.	10M	CO1	BTL6
	/	OR	10, 11, 11		
23		Define capacitance and also explain the parallel plate and co axial capacitors.	10M	CO1	BTL2
•		UNIT-II		\$100 y	E.
2	2	Derive the boundary conditions at the interface between Dielectric-Dielectric and Dielectric-Conductor	10M	CO2	BTL4
		OR		19 2	

5 a		Explain the principle of transformer emf and motional emf	5M	CO2	BTL2
	b	Given $J=10^3 \sin\theta$ ar A/m^2 . Solve for the current passing through a spherical shell of r=0.2cm.	5M	CO2	BTL3
		UNIT-III			
9		Define Brewster's Angle and obtain an expression for the same in terms of medium parameters.	10M	соз	BTL4
		OR			1:
7	а	Define the following terms with their expressions i) Critical Angle, ii) Total Internal Reflection, iii) Surface Impedance	5M	соз	BTL1
	b	Investigate the relation between E and H in a lossless medium	5M	соз	BTL6
		UNIT-IV	5		
8	- 1	Develop the expressions for transmission line equations for voltage and current.	10M	CO4	BTL
		OR			1
ß	r !	A transmission line has $R=30$ ohm/m, $G=0$, $L=100$ nH/m, $C=200$ nF/m and operating at $f=1$ MHz. Determine its characteristic impedance and phase constant. ii) The attenuation constant on a 50Ω distortion less transmission line is 0.01 dB/m. The line has a capacitance of 0.1 nF/m. Find the resistance, inductance and conductance per meter of the line.		CO4	BTL
		. UNIT-V	2	Į.	
1	0	Define what Impedance Transformation is and Derive the Z_{in} expressions for Eighth wave ($\lambda/8$), Quarter wave ($\lambda/4$), and Half wave ($\lambda/2$) line impedance transformations.	10M	CO5	BTL2
	(8)	OR	1 10		
1/	/	Explain about single stub matching and Explain the procedure to determine the length and location of Single	10M	CO5	BTL2

UNIT-III

- 1. State and prove Poynting theorem? Derive the expression for Poynting vector.
- 2. a) Describe the concept of Reflection of an EM wave by a perfect dielectric at oblique incidence.
 - b) Explain the concept of Brewster Angle.
- 3. Analyze plane wave propagation in good conductor and free space medium.
- 4. Explain reflection and refraction of plane wave at normal incidence.
- 5. a) What is polarization? Explain different types of polarization.
 - b) Discuss about skin depth and loss tangent.
- 6. a) Describe the concept of Reflection of an EM wave by a perfect dielectric at oblique incidence.
- b) Explain the concept of standing waves.
- 7. Analyze plane wave propagation in lossless dielectric, good conductor and free space medium.
- 8. Derive EM wave equations which is travelling in z-direction.

UNIT-IV

- 1. a) Draw the equivalent circuit of a 2-wire transmission line. Explain primary & secondary constants.
- b) Given a 2-wire transmission line with the following parameters per unit length: R= 20 Ω /km, L=1 mH/km, G=0.01 μ S/m, C=100 nF/km, Operating frequency f=1 MHz. Calculate the characteristic impedance Z0.
- 2. Derive transmission line equations? State the condition for lossless and distortion less transmission?
- 3. a) What are the different types of transmission lines? Draw equivalent circuit of a 2-wire transmission line.
- b) A distortion less line has Zo=60 Ω , α =20Np/m, u=0.6c, Where c is the Speed of light in a vacuum. Find R,L,G,C,and λ at 100MHz.
- 4. (a) Discuss about Input Impedance of a two-wire Transmission line?
 - (b) Describe the impact of Reflection coefficient on transmission line?

- 5. What are the transmission line parameters? State the condition for lossless and distortion less transmission?
- 6. Define the term characteristic impedance? Relate the expression in distortion less and loss less media.
- 7. A distortion less line has Zo=60 Ω , α =20Np/m, u=0.6c, where c is the Speed of light in a vacuum. Find R,L,G,C,and λ at 100MHz.

UNIT-V

- 1. Write a note on a) Quarter wave transformer
- b) Single stub matching
- 2. Analyze the input impedance of 2- wire transmission, when load is S/C, O/C and Matched.
- 3. a) Write a short note on Smith Chart
- b) A generator of 1 V, 1 kHz supplies power to 1000 km long open wire line terminated in Z0 with the primary constants R=10.4 Ω , L=3.7 mH, G=0.5 ∇ , and C=0.00835 μF . Calculate the: (i) Characteristic impedance. (ii) Propagation constant
- 4. Derive the equation for input impedance of a 2-wire transmission line.
- 5. Relate Quarter wave transformer with a Single stub in impedance matching
- 6. Derive the equations of attenuation constant and phase constant of a lossless and distortion less transmission line in terms of R, L, C & G.
- 7. a) Explain about UHF transmission lines.
- b) Derive expression for Reflection Coefficient and VSWR of a 2-wire transmission line.
- 8. Explain about Smith Chart and Write the applications of Smith Chart.