# House Prices: Advanced Regression Techniques

EE 660 Project Type: Individual

Fangwei Lin, <a href="mailto:fangweil@usc.edu">fangweil@usc.edu</a>
4/12/2018

#### 1. Abstract

My project is about "house prices prediction" and the dataset contains 79 features describing nearly every aspect of residential homes in Ames, Iowa and the label is "SalesPrice". This project is according to these 79 variables to train a model to predict house prices. The approaches and techniques used in this project including:

- EDA with Pandas and Seaborn; Find features with strong correlation to target;
- (2) Data Wrangling, convert categorical to numerical;
- (3) Apply the basic Regression models of sklearn;
- (4) "GridsearchCV" to find the best parameters for each model;
- (5) Compare the performance of the Regressors and choose best one.

I used "train\_test\_split" from "sklearn" to extract 30% data randomly from training data which has been cleaned as test data. In training regression models process, many advanced regression techniques are applied like Linear Regression, Ridge, Lasso, Decision Tree Regressor, Random Forest Regressor. The best model is Random Forest Regressor after compared all these models.

#### 2. Introduction

#### 2.1.

# Problem Type, Statement and Goals

Type of this problem: Regression Variable to predict: SalesPrice

Difficulty (nontriviality) and goals to achieve include:

- (1) Missing values: In this project, it has two kinds of missing value. After reading data description, we know that in some features that "NaN" does not mean missing data. Like for "PoolQC", it means that house has no pool. So, I replaced "NaN" with "None" in these columns. After that, I filled the remaining values with mean.
- (2) Not normally distributed: This can reduce the performance of the ML models because they assume to be normal distribution. The target variable "SalePrice" is not normally distributed and I made log transform to it. And for not normally distributed features, we do not need to make log transform for all of them. This one is a little tricky, because after I log transform all of them, some features are still highly skewed. Besides not for all of them the correlation coefficient (to "SalePrice") increases after log transform. So, I only pick "GrLivArea" which did increase. Surely, I surely did not check all possible settings here, since the performance also depends on the models and their hyperparameters.
- (3) Multicollinearity of features: Some features are correlated strongly to each other. I plotted heat map to find these strongly correlated features and dropped one of them which is much weaker correlated to target.
- (4) Find features with strong correlation to target: For numerical: Calculated a correlation matrix and plotted a heatmap Chose the most correlated features (correlation coefficient>0.4) and dropped those features below this threshold. For categorical: I plotted box plot to find strongly correlated features. I just look if the "SalePrice" (mean value and distribution) is significantly different for the different categories of each feature. More different means stronger correlated.
- (5) Convert categorical to numerical: Each feature has its different categories. I made violin plots for these categorical features. And look at the mean of "SalePrice" as function of categories of each feature. Then I group by these categories in each feature according to their relation to target and labeled their as "1","2","3","4".
- (6) Hyperparameters tuning: Hyperparameters is important for training a good model. For "Random Forest Regressor", I used "Random Hyperparameter Grid" to select best Hyperparameters in a much wider range. Then do grid search for the nearby of those hyperparameter values.
- (7) Select best model

2.2.

# 2.3. Prior and Related Work (Mandatory)

Prior and Related Work - None

# 2.4. Overview of Approach

Overview of the models and algorithms:

- (1) Linear Regression
- (2) Ridge
- (3) Lasso
- (4) Decision Tree Regressor
- (5) Random Forest Regressor
- (6) RandomizedSearchCV
- (7) GridresearchCV
- (8) StandardScaler

And I chose "Root Mean Square Error" (RMSE) as performance metric. The lower value the better model.

# 3. Implementation

The following models are all imported from "sklearn". And for all of models I used "fit()" and "score()" methods and chose score as "neg mean squared error". "fit(X,y)" fits linear model.

- (1) Linear Regression:
- (2) Ridge
- (3) Lasso
- (4) Decision Tree Regressor
- (5) Random Forest Regressor

"RandomizedSearchCV" and "GridSearchCV" are imported from "sklearn". For both of them I used "best\_estimator\_" and "best\_params\_" methods. "best\_estimator\_" returns the estimator that was chosen by the search. "best\_params\_": returns parameter setting that gave the best results on the hold out data.

"StandardScaler" is also imported from "sklearn". I used "fit\_transform" on training data to standardize features.

For one-hot encoding, I imported "get\_dummies" from "pandas", for more details, I stated in the next part "3.1. Data Set".

#### 3.1. Data Set

The dataset has 79 features which includes 36 numerical features and 43 categorical features, and one output label is "SalePrice". And it has 1460 data points and I chose 30% as testing data which is 438 data points.

Note: The following cells in shade means this is the feature used for final regression models training. The others are dropped.

# 79 features:

| Feature's name | Meaning                                                                |
|----------------|------------------------------------------------------------------------|
| MSSubClass     | Identifies the type of dwelling involved in the sale.                  |
| LotFrontage    | Linear feet of street connected to property.                           |
| LotArea        | Lot size in square feet.                                               |
| OverallQual    | Rates the overall material and finish of the house                     |
| OverallCond    | Rates the overall condition of the house                               |
| YearBuilt      | Original construction date                                             |
| YearRemodAdd   | Remodel date (same as construction date if no remodeling or additions) |
| MasVnrArea     | Masonry veneer area in square feet                                     |
| BsmtFinSF1     | Type 1 finished square feet                                            |
| BsmtFinSF2     | Type 2 finished square feet                                            |
| BsmtUnfSF      | Unfinished square feet of basement area                                |
| TotalBsmtSF    | Total square feet of basement area                                     |
| 1stFlrSF       | First Floor square feet                                                |
| 2ndFlrSF       | Second floor square feet                                               |
| LowQualFinSF   | Low quality finished square feet (all floors)                          |
| GrLivArea      | Above grade (ground) living area square feet                           |
| BsmtFullBath   | Basement full bathrooms                                                |
| BsmtHalfBath   | Basement half bathrooms                                                |
| FullBath       | Full bathrooms above grade                                             |
| HalfBath       | Half baths above grade                                                 |
| BedroomAbvGr   | Bedrooms above grade (does NOT include basement bedrooms)              |
| KitchenAbvGr   | Kitchens above grade                                                   |
| TotRmsAbvGrd   | Total rooms above grade (does not include bathrooms)                   |
| Fireplaces     | Number of fireplaces                                                   |
| GarageYrBlt    | Year garage was built                                                  |
| GarageCars     | Size of garage in car capacity                                         |
| GarageArea     | Size of garage in square feet                                          |
| WoodDeckSF     | Wood deck area in square feet                                          |
| OpenPorchSF    | Open porch area in square feet                                         |
| EnclosedPorch  | Enclosed porch area in square feet                                     |
| 3SsnPorch      | Three season porch area in square feet                                 |
| ScreenPorch    | Screen porch area in square feet                                       |
| PoolArea       | Pool area in square feet                                               |
| MiscVal        | \$Value of miscellaneous feature                                       |
| MoSold         | Month Sold (MM)                                                        |
| YrSold         | Year Sold (YYYY)                                                       |
| MSZoning       | Identifies the general zoning classification of the sale.              |
| Street         | Type of road access to property                                        |
| Alley          | Type of alley access to property                                       |

| LotShape      | General shape of property                                           |
|---------------|---------------------------------------------------------------------|
| LandContour   | Flatness of the property                                            |
| Utilities     | Type of utilities available                                         |
| LotConfig     | Lot configuration                                                   |
| LandSlope     | Slope of property                                                   |
| Neighborhood  | Physical locations within Ames city limits                          |
| Condition1    | Proximity to various conditions                                     |
| Condition2    | Proximity to various conditions (if more than one is present)       |
| BldgType      | Type of dwelling                                                    |
| HouseStyle    | Style of dwelling                                                   |
| RoofStyle     | Type of roof                                                        |
| RoofMatl      | Roof material                                                       |
| Exterior1st   | Exterior covering on house                                          |
| Exterior2nd   | Exterior covering on house (if more than one material)              |
| MasVnrType    | Masonry veneer type                                                 |
| ExterQual     | Evaluates the quality of the material on the exterior               |
| ExterCond     | Evaluates the present condition of the material on the exterior     |
| Foundation    | Type of foundation                                                  |
| BsmtQual      | Evaluates the height of the basement                                |
| BsmtCond      | Evaluates the general condition of the basement                     |
| BsmtExposure  | Refers to walkout or garden level walls                             |
| BsmtFinType1  | Rating of basement finished area                                    |
| BsmtFinType2  | Rating of basement finished area (if multiple types)                |
| Heating       | Type of heating                                                     |
| HeatingQC     | Heating quality and condition                                       |
| CentralAir    | Central air conditioning                                            |
| Electrical    | Electrical system                                                   |
| KitchenQual   | Kitchen quality                                                     |
| Functional    | Home functionality (Assume typical unless deductions are warranted) |
| FireplaceQu   | Fireplace quality                                                   |
| GarageType    | Garage location                                                     |
| GarageFinish  | Interior finish of the garage                                       |
| GarageQual    | Garage quality                                                      |
| GarageCond    | Garage condition                                                    |
| PavedDrive    | Paved driveway                                                      |
| PoolQC        | Pool quality                                                        |
| Fence         | Fence quality                                                       |
| MiscFeature   | Miscellaneous feature not covered in other categories               |
| SaleType      | Type of sale                                                        |
| SaleCondition | Condition of sale                                                   |

# 36 input variables(numerical):

| Feature's name | Туре    |
|----------------|---------|
| MSSubClass     | Integer |
| LotFrontage    | Float   |
| LotArea        | Integer |
| OverallQual    | Integer |
| OverallCond    | Integer |
| YearBuilt      | Integer |
| YearRemodAdd   | Integer |
| MasVnrArea     | Float   |
| BsmtFinSF1     | Integer |
| BsmtFinSF2     | Integer |
| BsmtUnfSF      | Integer |
| TotalBsmtSF    | Integer |
| 1stFlrSF       | Integer |
| 2ndFlrSF       | Integer |
| LowQualFinSF   | Integer |
| GrLivArea      | Integer |
| BsmtFullBath   | Integer |
| BsmtHalfBath   | Integer |
| FullBath       | Integer |
| HalfBath       | Integer |
| BedroomAbvGr   | Integer |
| KitchenAbvGr   | Integer |
| TotRmsAbvGrd   | Integer |
| Fireplaces     | Integer |
| GarageYrBlt    | Float   |
| GarageCars     | Integer |
| GarageArea     | Integer |
| WoodDeckSF     | Integer |
| OpenPorchSF    | Integer |
| EnclosedPorch  | Integer |
| 3SsnPorch      | Integer |
| ScreenPorch    | Integer |
| PoolArea       | Integer |
| MiscVal        | Integer |
| MoSold         | Integer |
| YrSold         | Integer |

Note: "Group and One-hot coding": for those remaining categorical features (in shade) used for regression models training, I group those categories has similar relation to target output and encode them as 1,2,3,4. And for features 'NbHd\_num', 'MSZ\_num', using one-hot encoding

| Feature's name | Range                           | Group and encoding  |
|----------------|---------------------------------|---------------------|
| MSZoning       | A Agriculture                   | ['A', 'C', 'l'] = 1 |
|                | C Commercial                    | ['RM', 'RH'] = 2    |
|                | FV Floating Village Residential | ['RL', 'FV'] = 3    |
|                | I Industrial                    |                     |
|                | RH Residential High Density     |                     |
|                | RL Residential Low Density      |                     |
|                | RP Residential Low Density Park |                     |
|                | RM Residential Medium Density   |                     |
|                |                                 |                     |
| Street         | Grvl Gravel                     |                     |
|                | Pave Paved                      |                     |
| Alley          | Grvl Gravel                     |                     |
|                | Pave Paved                      |                     |
|                | NA No alley access              |                     |
| LotShape       | Reg Regular                     |                     |
|                | IR1 Slightly irregular          |                     |
|                | IR2 Moderately Irregular        |                     |
|                | IR3 Irregular                   |                     |
| LandContour    | Lvl Near Flat/Level             |                     |
|                |                                 |                     |

|              | Bnk<br>rise from stre   | Banked - Quick and significant et grade to building |                                                                   |
|--------------|-------------------------|-----------------------------------------------------|-------------------------------------------------------------------|
|              | HLS<br>side to side     | Hillside - Significant slope from                   |                                                                   |
|              | Low                     | Depression                                          |                                                                   |
| Utilities    | AllPub                  | All public Utilities (E,G,W,& S)                    |                                                                   |
|              | NoSewr<br>(Septic Tank) | Electricity, Gas, and Water                         |                                                                   |
|              | NoSeWa                  | Electricity and Gas Only                            |                                                                   |
|              | ELO                     | Electricity only                                    |                                                                   |
| LotConfig    | Inside                  | Inside lot                                          |                                                                   |
|              | Corner                  | Corner lot                                          |                                                                   |
|              | CulDSac                 | Cul-de-sac                                          |                                                                   |
|              | FR2                     | Frontage on 2 sides of property                     |                                                                   |
|              | FR3                     | Frontage on 3 sides of property                     |                                                                   |
|              | 0.1                     |                                                     |                                                                   |
| LandSlope    | Gtl                     | Gentle slope                                        |                                                                   |
|              | Mod                     | Moderate Slope                                      |                                                                   |
|              | Sev                     | Severe Slope                                        |                                                                   |
| Neighborhood | Blmngtn                 | Bloomington Heights                                 | ['Blueste','<br>BrDale', 'BrkSide','                              |
|              | Blueste                 | Bluestem                                            | Crawfor', 'Edwards',' Gilbert',' IDOTRR','                        |
|              | BrDale                  | Briardale                                           | MeadowV', 'Mitchel','                                             |
|              | BrkSide                 | Brookside                                           | Names', 'NPkVill',' OldTown', 'SWISU',' Sawyer', 'SawyerW'] = 1   |
|              | ClearCr                 | Clear Creek                                         | Sanyer y Sanyer W j = 1                                           |
|              | CollgCr                 | College Creek                                       | ['Blmngtn', 'ClearCr', 'CollgCr', 'Crawfor', 'Gilbert', 'NWAmes', |

|            | Crawfor             | Crawford                    | 'Somerst', 'Timber',                     |
|------------|---------------------|-----------------------------|------------------------------------------|
|            | Edwards             | Edwards                     | 'Veenker'] = 2                           |
|            | Gilbert             | Gilbert                     | ['NoRidge', 'NridgHt',<br>'StoneBr'] = 3 |
|            | IDOTRR              | Iowa DOT and Rail Road      |                                          |
|            | MeadowV             | Meadow Village              |                                          |
|            | Mitchel             | Mitchell                    |                                          |
|            | Names               | North Ames                  |                                          |
|            | NoRidge             | Northridge                  |                                          |
|            | NPkVill             | Northpark Villa             |                                          |
|            | NridgHt             | Northridge Heights          |                                          |
|            | NWAmes              | Northwest Ames              |                                          |
|            | OldTown             | Old Town                    |                                          |
|            | SWISU<br>University | South & West of Iowa State  |                                          |
|            | Sawyer              | Sawyer                      |                                          |
|            | SawyerW             | Sawyer West                 |                                          |
|            | Somerst             | Somerset                    |                                          |
|            | StoneBr             | Stone Brook                 |                                          |
|            | Timber              | Timberland                  |                                          |
|            | Veenker             | Veenker                     |                                          |
| Condition1 | Artery              | Adjacent to arterial street |                                          |
|            | Feedr               | Adjacent to feeder street   |                                          |
|            | Norm                | Normal                      |                                          |

|            | RRNn<br>Railroad      | Within 200' of North-South                  |                                                    |
|------------|-----------------------|---------------------------------------------|----------------------------------------------------|
|            | RRAn<br>Railroad      | Adjacent to North-South                     |                                                    |
|            | PosN<br>park, greenbe | Near positive off-site feature<br>elt, etc. |                                                    |
|            | PosA<br>feature       | Adjacent to postive off-site                |                                                    |
|            | RRNe<br>Railroad      | Within 200' of East-West                    |                                                    |
|            | RRAe                  | Adjacent to East-West Railroad              |                                                    |
| Condition2 | Artery                | Adjacent to arterial street                 |                                                    |
|            | Feedr                 | Adjacent to feeder street                   | ['Artery',' Feedr',' RRNn','<br>RRAn',' RRNe'] = 1 |
|            | Norm                  | Normal                                      |                                                    |
|            | RRNn<br>Railroad      | Within 200' of North-South                  | ['Norm', 'RRAe'] = 2<br>['PosA', 'PosN'] = 3       |
|            | RRAn<br>Railroad      | Adjacent to North-South                     |                                                    |
|            | PosN<br>park, greenbe | Near positive off-site feature<br>elt, etc. |                                                    |
|            | PosA<br>feature       | Adjacent to postive off-site                |                                                    |
|            | RRNe<br>Railroad      | Within 200' of East-West                    |                                                    |
|            | RRAe                  | Adjacent to East-West Railroad              |                                                    |
| BldgType   | 1Fam<br>Detached      | Single-family                               |                                                    |

|            | 2FmCon<br>Conversion; o<br>dwelling | Two-family riginally built as one-family |  |
|------------|-------------------------------------|------------------------------------------|--|
|            | Duplx                               | Duplex                                   |  |
|            | TwnhsE<br>Unit                      | Townhouse End                            |  |
|            | Twnhsl<br>Unit                      | Townhouse Inside                         |  |
| HouseStyle | 1Story                              | One story                                |  |
|            | 1.5Fin<br>level finished            | One and one-half story: 2nd              |  |
|            | 1.5Unf<br>level unfinish            | One and one-half story: 2nd ed           |  |
|            | 2Story                              | Two story                                |  |
|            | 2.5Fin<br>level finished            | Two and one-half story: 2nd              |  |
|            | 2.5Unf<br>level unfinish            | Two and one-half story: 2nd ed           |  |
|            | SFoyer                              | Split Foyer                              |  |
|            | SLvl                                | Split Level                              |  |
| RoofStyle  | Flat                                | Flat                                     |  |
|            | Gable                               | Gable                                    |  |
|            | Gambrel                             | Gabrel (Barn)                            |  |
|            | Hip                                 | Hip                                      |  |
|            | Mansard                             | Mansard                                  |  |
|            | Shed                                | Shed                                     |  |
| RoofMatl   | ClyTile                             | Clay or Tile                             |  |

|             | CompShg | Standard (Composite) Shingle |  |
|-------------|---------|------------------------------|--|
|             | Membran | Membrane                     |  |
|             | Metal   | Metal                        |  |
|             |         |                              |  |
|             | Roll    | Roll                         |  |
|             | Tar&Grv | Gravel & Tar                 |  |
|             | WdShake | Wood Shakes                  |  |
|             |         | Wood Shingles                |  |
| Exterior1st | AsbShng | Asbestos Shingles            |  |
|             | AsphShn | Asphalt Shingles             |  |
|             | BrkComm | Brick Common                 |  |
|             | BrkFace | Brick Face                   |  |
|             | CBlock  | Cinder Block                 |  |
|             | CemntBd | Cement Board                 |  |
|             | HdBoard | Hard Board                   |  |
|             | ImStucc | Imitation Stucco             |  |
|             | MetalSd | Metal Siding                 |  |
|             | Other   | Other                        |  |
|             | Plywood | Plywood                      |  |
|             | PreCast | PreCast                      |  |
|             | Stone   | Stone                        |  |
|             | Stucco  | Stucco                       |  |
|             | VinylSd | Vinyl Siding                 |  |
|             | Wd Sdng | Wood Siding                  |  |

|             | WdShing | Wood Shingles     |                        |
|-------------|---------|-------------------|------------------------|
| Exterior2nd | AsbShng | Asbestos Shingles |                        |
|             | AsphShn | Asphalt Shingles  |                        |
|             | BrkComm | Brick Common      |                        |
|             | BrkFace | Brick Face        |                        |
|             | CBlock  | Cinder Block      |                        |
|             | CemntBd | Cement Board      |                        |
|             | HdBoard | Hard Board        |                        |
|             | ImStucc | Imitation Stucco  |                        |
|             | MetalSd | Metal Siding      |                        |
|             | Other   | Other             |                        |
|             | Plywood | Plywood           |                        |
|             | PreCast | PreCast           |                        |
|             | Stone   | Stone             |                        |
|             | Stucco  | Stucco            |                        |
|             | VinylSd | Vinyl Siding      |                        |
|             | Wd Sdng | Wood Siding       |                        |
|             | WdShing | Wood Shingles     |                        |
| MasVnrType  | BrkCmn  | Brick Common      | ['BrkCmn',' BrkFace',' |
|             | BrkFace | Brick Face        | CBlock',' None'] = 1   |
|             | CBlock  | Cinder Block      | ['Stone'] = 2          |
|             | None    | None              |                        |
|             | Stone   | Stone             |                        |

| ExterQual  | Ex Excellent               | ['Fa', 'Po'] = 1          |
|------------|----------------------------|---------------------------|
|            | Gd Good                    | ['TA'] = 2                |
|            | TA Average/Typical         | ['Gd'] = 3                |
|            | Fa Fair                    | ['Ex'] = 4                |
|            | Po Poor                    |                           |
| ExterCond  | Ex Excellent               |                           |
|            | Gd Good                    |                           |
|            | TA Average/Typical         |                           |
|            | Fa Fair                    |                           |
|            | Po Poor                    |                           |
|            |                            |                           |
| Foundation | BrkTil Brick & Tile        |                           |
|            | CBlock Cinder Block        |                           |
|            | PConc Poured Contrete      |                           |
|            | Slab Slab                  |                           |
|            | Stone Stone                |                           |
|            | Wood Wood                  |                           |
| BsmtQual   | Ex Excellent (100+ inches) | ['TA','Fa','Po','NA'] = 1 |
|            | Gd Good (90-99 inches)     | ['Gd'] = 2                |
|            | TA Typical (80-89 inches)  | ['Ex'] = 3                |
|            | Fa Fair (70-79 inches)     |                           |
|            | Po Poor (<70 inches        |                           |
|            | NA No Basement             |                           |
| BsmtCond   | Ex Excellent               |                           |

|                   | Gd Good   | d                                    |  |
|-------------------|-----------|--------------------------------------|--|
|                   | Gu Goo    | -                                    |  |
|                   | ТА Турі   | cal - slight dampness allowed        |  |
|                   | Fa Fair   | - dampness or some cracking or       |  |
|                   | settling  |                                      |  |
|                   | Po Poor   | - Severe cracking, settling, or      |  |
|                   | wetness   | - Severe cracking, setting, or       |  |
|                   |           |                                      |  |
|                   | +         | asement                              |  |
| BsmtExposure      | Gd Good   | d Exposure                           |  |
|                   | Av Aver   | age Exposure (split levels or foyers |  |
|                   |           | re average or above)                 |  |
|                   |           |                                      |  |
|                   | MnMim     | imum Exposure                        |  |
|                   | No No F   | xposure                              |  |
|                   | 110 110 2 | Aposa. C                             |  |
|                   | NA No B   | asement                              |  |
| BsmtFinType1      | GLQ       | Good Living Quarters                 |  |
|                   | ALQ       | Average Living Quarters              |  |
|                   | BLQ       | Below Average Living Quarters        |  |
|                   | Rec       | Average Rec Room                     |  |
|                   | Nec       | Average Rec Room                     |  |
|                   | LwQ       | Low Quality                          |  |
|                   | Unf       | Unfinshed                            |  |
|                   | NA No B   | asement                              |  |
| BsmtFinType2      | GLQ       | Good Living Quarters                 |  |
| D3iiiti iiii ypcz | JLQ       | Sood Eiving Quarters                 |  |
|                   | ALQ       | Average Living Quarters              |  |
|                   | BLQ       | Below Average Living Quarters        |  |
|                   | Rec       | Average Rec Room                     |  |

|             | LwQ                   | Low Quality                              |                                           |
|-------------|-----------------------|------------------------------------------|-------------------------------------------|
|             | Unf                   | Unfinshed                                |                                           |
|             | NA No Basement        |                                          |                                           |
| Heating     | Floor                 | Floor Furnace                            |                                           |
|             | GasA                  | Gas forced warm air furnace              |                                           |
|             | GasW                  | Gas hot water or steam heat              |                                           |
|             | Grav                  | Gravity furnace                          |                                           |
|             | OthW<br>than gas      | Hot water or steam heat other            |                                           |
|             | Wall                  | Wall furnace                             |                                           |
| HeatingQC   | Ex Excell             | ent                                      |                                           |
|             | Gd Good               |                                          |                                           |
|             | TA Avera              | ge/Typical                               |                                           |
|             | Fa Fair               |                                          |                                           |
|             | Po Poor               |                                          |                                           |
| CentralAir  | N No                  |                                          | ['N'] = 1                                 |
|             | Y Yes                 |                                          | ['Y'] = 2                                 |
| Electrical  | SBrkr<br>Romex        | Standard Circuit Breakers &              | ['FuseA',' FuseF',' FuseP','<br>Mix'] = 1 |
|             | FuseA<br>Romex wiring | Fuse Box over 60 AMP and all (Average)   | ['SBrkr'] = 2                             |
|             | FuseF<br>Romex wiring | 60 AMP Fuse Box and mostly (Fair)        |                                           |
|             | FuseP<br>knob & tube  | 60 AMP Fuse Box and mostly wiring (poor) |                                           |
|             | NAise                 | Miyad                                    |                                           |
| KitchenQual | Mix<br>Ex Excelle     | Mixed<br>ent                             | ['Fa', 'Po'] = 1                          |

|             | Gd Good                                                                                 |                              | ['TA'] = 2 |
|-------------|-----------------------------------------------------------------------------------------|------------------------------|------------|
|             | TA Typical/Average                                                                      |                              | ['Gd'] = 3 |
|             | Fa Fair                                                                                 |                              | ['Ex'] = 4 |
|             | Po Poor                                                                                 |                              |            |
| Functional  | Тур                                                                                     | Typical Functionality        |            |
|             | Min1                                                                                    | Minor Deductions 1           |            |
|             | Min2                                                                                    | Minor Deductions 2           |            |
|             | Mod                                                                                     | Moderate Deductions          |            |
|             | Maj1                                                                                    | Major Deductions 1           |            |
|             | Maj2                                                                                    | Major Deductions 2           |            |
|             | SevSeverely Damaged                                                                     |                              |            |
|             | Sal Salvag                                                                              | e only                       |            |
| FireplaceQu | Ex Excellent - Exceptional Masonry Fireplace  Gd Good - Masonry Fireplace in main level |                              |            |
|             |                                                                                         |                              |            |
|             | TA Averaş<br>main living arı<br>basement                                                |                              |            |
|             | Fa Fair - Prefabricated Fireplace in basement                                           |                              |            |
|             | Po Poor - Ben Franklin Stove                                                            |                              |            |
|             | NA No Fireplace                                                                         |                              |            |
| GarageType  | 2Types                                                                                  | More than one type of garage |            |
|             | Attchd                                                                                  | Attached to home             |            |
|             | Basment                                                                                 | Basement Garage              |            |

|              | BuiltIn Built-In (Garage part of house - |  |
|--------------|------------------------------------------|--|
|              | typically has room above garage)         |  |
|              | CarPort Car Port                         |  |
|              | Detchd Detached from home                |  |
|              | NA No Garage                             |  |
| GarageFinish | Fin Finished                             |  |
|              | RFn Rough Finished                       |  |
|              | Unf Unfinished                           |  |
|              | NA No Garage                             |  |
| GarageQual   | Ex Excellent                             |  |
|              | Gd Good                                  |  |
|              | TA Typical/Average                       |  |
|              | Fa Fair                                  |  |
|              | Po Poor                                  |  |
|              | NA No Garage                             |  |
| GarageCond   | Ex Excellent                             |  |
|              | Gd Good                                  |  |
|              | TA Typical/Average                       |  |
|              | Fa Fair                                  |  |
|              | Po Poor                                  |  |
|              | NA No Garage                             |  |
| PavedDrive   | Y Paved                                  |  |
|              | P Partial Pavement                       |  |
|              | N Dirt/Gravel                            |  |
| PoolQC       | Ex Excellent                             |  |

|             | Gd Good                |                                    |                                                      |
|-------------|------------------------|------------------------------------|------------------------------------------------------|
|             | TA Avera               | ge/Typical                         |                                                      |
|             | Fa Fair                |                                    |                                                      |
|             | NA No Po               | ol                                 |                                                      |
| Fence       | GdPrv                  | Good Privacy                       |                                                      |
|             | MnPrv                  | Minimum Privacy                    |                                                      |
|             | GdWo                   | Good Wood                          |                                                      |
|             | MnWw                   | Minimum Wood/Wire                  |                                                      |
|             | NA No Fence            |                                    |                                                      |
| MiscFeature | Elev                   | Elevator                           |                                                      |
|             | Gar2<br>garage sectio  | 2nd Garage (if not described in n) |                                                      |
|             | Othr                   | Other                              |                                                      |
|             | Shed                   | Shed (over 100 SF)                 |                                                      |
|             | TenC                   | Tennis Court                       |                                                      |
|             | NA None                |                                    |                                                      |
| SaleType    | WD                     | Warranty Deed - Conventional       | ['Oth'] = 1                                          |
|             | CWD                    | Warranty Deed - Cash               | ['WD',' VWD',' COD','<br>ConLw',' ConLl',' ConLD'] = |
|             | VWD                    | Warranty Deed - VA Loan            | 2                                                    |
|             | New                    | Home just constructed and sold     | ['CWD'] = 3                                          |
|             | COD                    | Court Officer Deed/Estate          | ['New', 'Con'] = 4                                   |
|             | Con<br>regular terms   | Contract 15% Down payment          |                                                      |
|             | ConLw<br>and low inter | Contract Low Down payment est      |                                                      |

|               | ConLl                                   | Contract Low Interest                                                  |  |
|---------------|-----------------------------------------|------------------------------------------------------------------------|--|
|               | ConLD                                   | Contract Low Down                                                      |  |
|               | Oth                                     | Other                                                                  |  |
| SaleCondition | Normal                                  | Normal Sale                                                            |  |
|               | Abnorml foreclosure, s                  | Abnormal Sale - trade,<br>hort sale                                    |  |
|               | AdjLand                                 | Adjoining Land Purchase                                                |  |
|               | Alloca<br>properties wi<br>condo with a | Allocation - two linked<br>th separate deeds, typically<br>garage unit |  |
|               | Family                                  | Sale between family members                                            |  |
|               | Partial last assessed                   | Home was not completed when (associated with New Homes)                |  |

#### 1 output variables:

| Name          | Туре  |
|---------------|-------|
| SalePrice_Log | Float |

Note: "SalePrice Log" is "SalePrice" after log transform

#### 3.2. Preprocessing, Feature Extraction, Dimensionality Adjustment

### Pre-processing and feature extraction techniques:

- (1) Checked the distribution of target variable "SalePrice", and found it is not normally distributed (Skewness:1.882876 Kurtosis: 6.536282) which can reduce the performance of the machine learning models. I made a log transformation for "SalePrice" to transform it to normal distribution more likely. (Skewness:0.121347 Kurtosis:0.809519).
- (2) Dealt with missing data
- (3) Checked skewness and kurtosis of numerical features. Some of the feature values are not normally distributed and it is better to use log values. I only chose features

- "GrLivArea" and "LotArea" to make a log transform because many of the features are skewed, but not for all of them the correlation coefficient (to SalePrice) increases after log transform. And I did not check all features but for "GrLivArea" it did increase. In order to not spend too much work on this part, since the performance also depends on the models and their hyperparameters, I only chose these two features.
- (4) Calculated a correlation matrix and plotted a heatmap. And make a list of numerical features and their correlation coefficient to target in descending order. Chose most correlated features (correlation coefficient>0.4) and dropped those features below this threshold.
- (5) Plotted box plots for all categorical features to "SalePrice". From the box plot we can see that for many of the categorical features have no strong relation to the target. So, I would drop those categorical features which has weak relation to target. After dropping all columns with weak correlation to target, only 24 features left.
- (6) Converted categorical to numerical. To investigate the relation of the categories to "SalePrice" in more detail, I made violin plots for these features. And I look at the mean of "SalePrice" as function of category. I put those categories together of each feature which has similar mean value to form a new category. And encode these categories as 1, 2, 3, and 4.
- (7) After converted categorical columns to numerical. I checked these new numerical features correlation to "SalePrice" and dropped the converted categorical columns and the new numerical columns with weak correlation.
- (8) Created a correlation matrix of those remaining features with strong correlation to target and made a heatmap. Then checked for multicollinearity. Selected strong correlation of these features to other (similar features) and drop the one has smaller correlation coefficient to target.
- (9) For those left categorical features (notice that we have converted these features to numerical in (6)), I used one-hot encoding. Please notice that there are two classes of categorical data, nominal and ordinal. So, actually I only one-hot encoding those nominal categorical features. But for ordinal categorical features like "kitchenQual" which means the quality of kitchen I left unchanged because "4" stands for excellent,"3" stands for good, "2" stands for Typical/Average and "1" stands for poor/fair which is meaningful.
- (10) Standardize features except those features after one-hot encoding.
- (11) Using "train\_test\_split" to extract 30% data randomly from training data which has been cleaned as testing data.

#### Dealt with missing data:

- (1) I found some features with 'NaN' values have meaning, like for feature 'PoolQC', 'NaN'means no pool. So, for those features I replaced 'NaN' with 'None'.
- (2) After that, I found that only a few numerical features have missing data and I filled the missing values with mean value.

#### 3.3. Dataset Methodology

When training my regression models, I used "GridSearchCV" which has parameter "cv". "cv" determines the cross-validation splitting strategy. And I chose cv = 5 which means 5-fold validation is used.

The training set is split into k smaller sets. And the following procedure is followed for each of the k"fold":

- (1) A model is trained using k-1 of the folds as training data;
- (2) The resulting model is validated on the remaining part of the data (i.e., it is used as a test set to compute a performance measure such as accuracy).

The performance measure reported by k-fold cross-validation is then the average of the values computed in the loop. This approach can be computationally expensive but does not waste too much data.

The cross validation here of my project is nested cross validation because it trains a model in which hyperparameters also need to be optimized. I used Nested CV to estimate the generalization error of the underlying model and its hyperparameter search. Choosing the parameters that maximize non-nested CV biases the model to the dataset, yielding an overly-optimistic score.

In the inner loop (executed by "GridSearchCV"), the score is approximately maximized by fitting a model to each training set, and then directly maximized in selecting hyperparameters over the validation set. After the best hyperparameters were chosen, I applied their parameters to the regression models. In the outer loop("cross\_val\_score"), generalization error is estimated by averaging test set scores (here is RMSE) over several dataset splits (here is CV = 5). I made these two inner and outer loops 30 trials and chose the best scores of these 30 trials and chose its corresponding parameters.

30 Trials:

Inner\_CV = 5Outer CV = 5

GridSearchCV(Inner\_CV = 5)
Get non nexted scores

# Cross\_val\_score(Outer\_CV = 5) Get non nexted scores

#### 3.4. Training Process

#### (1) Linear regression:

• Linear regression is a linear approach to modelling the relationship between a scalar response and one or more independent variables.

Given a data set  $\{yi, x_{i1},...,x_{ip}\}$  (i=1 to n) statistical units, a linear regression model assumes that the relationship between the dependent variable y and the p-vector of regressors x is linear. This relationship is modeled through a disturbance term or error variable  $\epsilon$  — an unobserved random variable that adds "noise" to the linear relationship between the dependent variable and regressors. Thus, the model takes the form

$$Y_i = \beta_0 1 + \beta_1 X_{i1} + ... + \beta_p X_{ip} + \epsilon_i$$
,  $i = 1,...,n$ 

- The goal of my project is to predict "SalesPrice" which is the response of 79 input variables. So, I chose linear regression.
- The parameters are chosen by nested cross validation, since I used "GridSearchCV" to train a model in which hyperparameters also need to be optimized. And the hyperparameters are {'cop y\_X': True, 'fit\_intercept': True, 'normalize': False}, and the coefficients of the linear model I trai ned are:

6.88058773e-02, 3.56044415e-01, 7.39500204e-02, -8.84556791e-05, 3.43553140e-02, 1.98871920e-02, 8.75932425e-05, -3.44931865e-02, 4.33341578e-04, 1.71874422e-03, 5.38244984e-02, -1.29350179e-06,

#### 6.51776805e-02, 1.77861383e-01, 3.21457098e-01, 4.36995978e-01



- To avoid overfitting cross validation was used.
- The RMSE (nested CV) of this model is 0.153411

#### (2) Ridge regression:

- Ridge regression is an extension for linear regression. It's basically a regularized linear regression model. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the I2-norm. And the formula is:  $L=\sum (\hat{Y}i-Yi)2+\lambda \sum \beta 2$
- $\bullet$  Compared to linear regression, it has regularization which can "punish" the loss function for high values of coefficients  $\beta$ . So, it can avoid overfitting. Cross validation can also prevent overfitting.
- The parameters are chosen by nested cross validation, just the same as the linear regression. And the coefficients of the Ridge regression model I trained are:
- 6.87345962e-02, 3.53130801e-01, 7.30701587e-02, 1.10768672e-03,
- 3.43354382e-02, 1.98722035e-02, 8.74652773e-05, -3.24581171e-02,
- 4.50194250e-04, 1.72653758e-03, 5.45383551e-02, 5.51201247e-07,
- 6.40145025e-02, 1.75459123e-01, 2.61434994e-01, 3.77349055e-01



• The RMSE (nested CV) of this model is 0.156399

#### (3) LASSO regression:

- Lasso is another extension built on regularized linear regression, but with a small twist. The loss function of Lasso is in the form:  $L=\sum(\hat{Y}i-Yi)2+\lambda\sum|\beta|$ , The only difference from Ridge regression is that the regularization term is in absolute value. Lasso method overcomes the disadvantage of Ridge regression by not only punishing high values of the coefficients  $\beta$  but actually setting them to zero if they are not relevant.
- The parameters are chosen by nested cross validation, just the same as the linear regression. And the coefficients of the LASSO regression model I trained are: 6.39494386e-02, 3.52096941e-01, 7.34645453e-02, 1.09733930e-03,
- 0.33434360e-02, 3.32030341e-01, 7.34043435e-02, 1.03733330e-03,
- 5.06300481e-02, 3.46560700e-02, 8.71855867e-05, -2.83620391e-02,
- 3.35148259e-04, 1.92712516e-03, 5.37091348e-02, 6.76171521e-06,
- 5.52087386e-02, 1.31624505e-01, 2.69014680e-01, 3.96810017e-01



• The RMSE (nested CV) of this model is 0.155921

#### (4) Decision Tree Regressor

- In a regression tree the idea is this: since the target variable does not have classes, we fit a regression model to the target variable using each of the independent variables. Then for each independent variable, the data is split at several split points. At each split point, the "error" between the predicted value and the actual values is squared to get a "Sum of Squared Errors (SSE)". The split point errors across the variables are compared and the variable/point yielding the lowest SSE is chosen as the root node/split point. This process is recursively continued.
- Decision Tree is commonly used tool in machine learning. Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks. So, I used it in this regressor problem.
- •. I used "GridSearchCV" to search the best parameters for Decision Tree Regressor and I set CV = 5. And the parameters are: { 'max\_depth': 10, 'max\_features': 12, 'max\_leaf\_nodes': None, 'min samples split': 20, 'presort': False}
- •. To avoid overfitting, cross validation wad applied when choosing parameters in "GridSearchCV".
- The RMSE of this model is 0.207669

#### (5) Random Forest Regressor

- Random forest builds multiple decision trees and merges them together to get a more accurate and stable prediction.
- Since I have used decision tree, no doubt that Random Forest Regressor will be used next. Random Forest is a flexible, easy to use machine learning algorithm that produces, even

without hyper-parameter tuning, a great result most of the time. It is also one of the most used algorithms, because it's simplicity and the fact that it can be used for both classification and regression tasks.

- Firstly, chose a wide range of parameters using "RandomizedSearchCV" which is imported form sklearn. In contrast to "GridSearchCV", not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. After parameters were chosen by "RandomizedSearchCV" setting a narrow range of parameters near those parameters in "GridSearchCV". Then chose the best parameters from "GridSearchCV". The parameters are:
- Most of the time overfitting won't happen that easy to a random forest regressor. That's because if there are enough trees in the forest, the regressor won't overfit the model. Besides, cross validation was applied. And the parameters are:

```
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=27, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=3, min_weight_fraction_leaf=0.0, n_estimators=800, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=False)
```

• The RMSE of this model is 0.139160

#### 3.5. Model Selection and Comparison of Results

Obviously, house prices prediction is a classic regression problem. So, I chose linear regression first. Then I chose LASSO and Ridge Regression which are both extensions for linear regression. Then I chose "Decision Tree Regressor" and "Random Forest Regressor" which were covered in class and wanted to find out the performances of these two models.

For linear, ridge and LASSO regression I repeated calculating error 30 trials and for Decision Tree Regressor I did 5 trials and random forest 1 trail since these two are time consuming. "nested CV": how I get "nested CV" have been stated in 3.3.

"testing error": using those 30% data I extracted as testing data and using got the error from the model I trained.

(1) Linear regression



# (2) Ridge regression



# (3) LASSO regression



## (4) Decision Tree Regressor



# (5) Random Forest Regressor

The testing RMSE of this model is 0.139160

# 4. Final Results and Interpretation

#### The final results:

Comparing all these models (linear regression, ridge regression, LASSO regression, decision tree regressor and random forest regressor), the best model is random forest regressor which has the smallest testing RMSE as the bar chart shows below. And the parameters for this model are {'bootstrap': True, 'max\_depth': 27, 'max\_features': 'sqrt', 'min\_samples\_leaf': 1, 'min\_samples\_s plit': 3, 'n\_estimators': 800}



Clearly that random forest regressor did better job than the other regression models I trained. I think training data has 16 features and do not has a strong linear shape. Random forest can capture the non-linear features better. And random forest is also a strong algorithm, even with default hyperparameters often produce a good prediction result. And we can see that though decision tree regressor did the worst job, a collection of decision trees (random forest) can get the best result.

# 5. Contributions of each team member

Not a team project

# 6. Summary and conclusions

I found that many techniques need to be applied to data cleaning and sometimes it is even a little tricky. And random forest regressor is a very handy and easy algorithm, without too much parameters tuning, it can always get good results. In this project, I did not apply deep learning technique, I think that deep learning would be better to this problem.

#### 7. References

Machine learning A Probabilistic Perspective, Kevin P. Murphy Learning from data, Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin

#### Your code

**Please submit your code in a separate file.** All your code should be in one pdf file, machine readable (no screen shots or scans).