

EN.601.482/682 Deep Learning

What does this network do?

Mathias Unberath, PhD

Assistant Professor

Dept of Computer Science

Johns Hopkins University

When I improve model accuracy by copying from Github an architecture I don't understand.

Fast R-CNN

- ROIs?
- Fast?
- Multi-task loss?
- Design choices?

Fast R-CNN

- FCN layers?
 - Constant size of region proposals → Bad proposals are classified as catch-all "background"
 - Remaining ROIs are pooled into constant size for compatibility with FCN
- Why is it fast?
 - Features are extracted only once for entire image, not for every ROI
- Multi-task loss?
 - Simultaneous learning of both classification and ROI BB refinement
 - Multiple losses: Multiple sources of information for SGD
- Design choices specific to object detection?
 - BB refinement is unique
 - Adaptive ROI alignment and pooling

DeepLabV3+

- Outperforming U-net?
- Atrous convolutions?
- Depth-wise separable convolutions?

DeepLabV3+

- Why could this outperform U-net?
 - Atrous convolutions to gather information on multiple scales during encoding
- Advantage of atrous convolutions?
 - Process information at multiple scales without additional parameters
- Depth-wise separable convolutions?
 - Filter kernel size k * k (3), input channels n_in (64), output channels n_out (128)
 - Regular convolution: (k * k * n_in) * n_out [3*3*64*128=73728]
 - Depthwise seperable: (k * k * n_in) + n_in * n_out [3*3*64 + 64*128=8768]

WaveNet

Why atrous convolutions?

Conditional WaveNet?

WaveNet

- Why are atrous convolutions helpful for this architecture?
 - Raw audio is very high frequency, at least 16,000 samples per second
 - Network requires very short inference times, but sufficiently long temporal context
 - Atrous convolutions allow for drastic receptive field increase without additional parameters
- Difference between WaveNet and conditional WaveNet?
 - WaveNet simply generates audio, no control over what is generated
 - Conditional WaveNets introduce additional latent variable (either constant for speaker ID or lower frequency for words, e.g. via embedding) → This allows for control over generation

