Тема 7.

Решение систем линейных алгебраических уравнений

Рассмотрим систему линейных алгебраических уравнений

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \quad det(\mathbf{A}) \neq 0. \tag{1}$$

Так как матрица А неособенная ее единственным решением является вектор

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \,. \tag{2}$$

До изложения известных методов решения системы (1), как это уже было, последуем полезному совету, данному американским ученым Р.В.Хеммингом читателям своей книги «Численные методы»: «Прежде, чем решать задачу, подумай, что делать с ее решением». Предлагается ответить на вопрос: «Как сильно изменяется решение (2) при малой вариации исходных данных (элементов матрицы **A** и вектора **b**)».

Плохая обусловленность матрицы

Численное решение линейных алгебраических систем подвержено влиянию нескольких источников ошибок. Два из них традиционны и очевидны: ограниченность разрядной сетки компьютера и погрешность представления исходных данных. Матрица и вместе с ней система (1) называются *плохо обусловленными*, если малым изменениям элементов \mathbf{A} отвечают большие изменения элементов \mathbf{A}^{-1} и, следовательно сильные изменения вектора решения (2). Получим количественную характеристику этого явления.

Первоначально будем считать, что матрица $\bf A$ известна точно, а вектор $\bf b-c$ некоторой погрешностью $\Delta \bf b$. Тогда система приобретет вид

$$\mathbf{A}(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{b} + \Delta \mathbf{b}$$

или после вычитания (1) и обращения матрицы:

$$\mathbf{A}\Delta\mathbf{x} = \Delta\mathbf{b} \; ; \qquad \qquad \Delta\mathbf{x} = \mathbf{A}^{-1}\Delta\mathbf{b} \; .$$

Далее при использовании любой нормы матрицы, согласованной с нормой вектора **х**, получаем

$$\|\Delta \mathbf{x}\| \le \|\mathbf{A}^{-1}\| \|\Delta \mathbf{b}\|, \qquad \|\mathbf{b}\| \le \|\mathbf{A}\| \|\mathbf{x}\|.$$

Перемножение этих двух неравенства в предположении, что $\mathbf{b} \neq \mathbf{0}$, и деление на $\|\mathbf{b}\| \cdot \|\mathbf{x}\|$ дает

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \le cond(\mathbf{A}) \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}, \qquad cond(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$
(3)

Число $cond(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$ будем называть *стандартным числом обусловленности*.

Вычисляя норму от обеих частей равенства $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{E}$, имеем $\|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\| \ge \mathbf{E}$, т.е. $cond(\mathbf{A}) \ge 1$. Равенство (3) допускает простую интерпретацию для практики. Число обусловленности матрицы \mathbf{A} является верхней границей "усиления" относительной ошибки вектора \mathbf{b} , т.е. относительное изменение вектора \mathbf{b} влечет за собой относительное изменение в решении не более чем в $cond(\mathbf{A})$ раз. Если величина $cond(\mathbf{A})$ невелика, то говорят о хорошей обусловленности матрицы \mathbf{A} , в противном случае — о плохой.

На практике плохая обусловленность часто сопровождается малой величиной определителя матрицы $det(\mathbf{A})$. В связи с этим широко распространено заблуждение, что малость $det(\mathbf{A})$ всегда сопровождается большим числом обусловленности $cond(\mathbf{A})$. Однако, это не всегда так. Так, например, для матрицы $\mathbf{A} = \varepsilon \mathbf{E}$ ее определитель $\left(det(\mathbf{A}) = \varepsilon^m\right)$ может быть близок к нулю при больших размерностях m матрицы \mathbf{A} и сравнительно не малых $\varepsilon < 1$. Однако матрица \mathbf{A} не является плохо обусловленной и не вызывает проблем с решением (1).

Для иллюстрации рассмотрим систему (1) с параметрами

$$\mathbf{A} = \begin{pmatrix} 1.00 & 0.99 \\ 0.99 & 0.98 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 1.99 \\ 1.97 \end{pmatrix}, \tag{4}$$

точным решением которой являются; $x^{(1)} = 1$, $x^{(2)} = 1$. Небольшое изменение в исходных данных резко изменяет решение:

$$\mathbf{b} + \Delta \mathbf{b} = \begin{pmatrix} 1.989903 \\ 1.970106 \end{pmatrix}, \ \Delta \mathbf{b} = \begin{pmatrix} -0.000097 \\ +0.000106 \end{pmatrix}, \ \Delta \mathbf{x} = \begin{pmatrix} +2.0000 \\ -2.0203 \end{pmatrix}, \ \mathbf{x} + \Delta \mathbf{x} = \begin{pmatrix} +3.0000 \\ -1.0203 \end{pmatrix}$$

Непосредственное вычисление оценки из (1) дает $cond(\mathbf{A}) \sim 40000$.

Рис. 1. Геометрическая иллюстрация решения линейной системы

Для этого простого случая есть хорошая геометрическая иллюстрация. Каждому уравнению системы соответствует прямая на плоскости, а точка пересечения этих прямых дает решение системы. Исходным данным (4) качественно отвечает на рис.1 случай (3): прямые пересекаются под очень острым углом и малейшее изменение исходных коэффициентов **A** или **b** значительно влияет на расположение точки пересечения. Случай (1) демонстрирует хорошую обусловленность, а случай (2) - отсутствие решения при нулевом определителе.

Теперь рассмотрим ситуацию, когда вектор **b** известен точно, а коэффициенты матрицы **A** заданы с погрешностью Δ **A**:

$$(\mathbf{A} + \Delta \mathbf{A})(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{b}.$$

Вычитая из этой формулы равенство (1), получаем:

$$\mathbf{A}\Delta\mathbf{x} = -\Delta\mathbf{A} \left(\mathbf{x} + \Delta\mathbf{x}\right),$$

$$\|\Delta\mathbf{x}\| \le \|\mathbf{A}^{-1}\| \cdot \|\Delta\mathbf{A}\| \cdot \|\mathbf{x} + \Delta\mathbf{x}\|,$$

$$\frac{\|\Delta\mathbf{x}\|}{\|\mathbf{x} + \Delta\mathbf{x}\|} \le cond(\mathbf{A}) \frac{\|\Delta\mathbf{A}\|}{\|\mathbf{A}\|}.$$
(5)

И в этом случае $cond(\mathbf{A})$ ограничивает сверху увеличение относительной ошибки решения по сравнению с относительной ошибкой исходных данных. Если в примере (4) заменить элемент a_{22} на $a_{22}+\Delta a_{22}=0.9802$, то "возмущенное" решение не будет совпадать с исходным даже по знаку ($x^{(1)}=2.98$, $x^{(2)}=-1.00$).

Существуют и другие количественные характеристики плохой обусловленности. Например, таким числом является величина, отражающая разброс спектра собственных значений $\bf A$:

$$k(\mathbf{A}) = \frac{\left|\lambda_{k}\right|_{\text{max}}}{\left|\lambda_{k}\right|_{\text{min}}}.$$

При этом легко показать, что $k(\mathbf{A}) \leq cond(\mathbf{A})$. Действительно, если λ_k собственные значения \mathbf{A} , то $\frac{1}{\lambda_k}$ собственные значения $\mathbf{A}^{\text{-1}}$. Поэтому

 $\max_{k} \left| \lambda_{k} \right| \leq \left\| \mathbf{A} \right\|$, а также $\frac{1}{\left| \lambda_{k} \right|_{\min}} \leq \left\| \mathbf{A}^{-1} \right\|$, и для плохо обусловленных матриц

имеем:

$$cond(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \ge k(\mathbf{A}) = \frac{\max_{k} |\lambda_{k}|}{\min_{k} |\lambda_{k}|} \gg 1$$

Учитывая этот факт, интересно рассмотреть механизм влияния погрешности в задании элементов A на решение (1), анализируя собственные значения A и A^{-1} . Предварительно обратимся к двум положениям.

<u>Положение 1</u>. Максимальные по модулю элементы матрицы A имеют величину по меньшей мере порядка максимальных по модулю собственных

значений матрицы $\left|\lambda_{k}\right|_{\max}$ (а, может быть, и значительно их превышают!). Действительно, это положение прямо следует из неравенства, связывающего собственные значения и норму матрицы: $\left|\lambda_{k}\right| \leq \|\mathbf{A}\|$.

<u>Положение</u> 2. Пусть λ_k - собственные значения матрицы **A**. В "возмущенной" матрице **A** + Δ **A** собственные значения могут измениться на величину порядка элементов матрицы возмущений Δ **A**.

В качестве примера достаточно обратиться к матрице $\mathbf{A} + \Delta \mathbf{A} = \mathbf{A} + \varepsilon \mathbf{E}$, все собственные значения которой изменились на одну величину: $\Delta \lambda_k = \varepsilon$.

На практике *положение* 2 крайне часто имеет место, хотя можно специально таким образом выполнить достаточно большое возмущение, что в матрицах \mathbf{A} и $\mathbf{A} + \Delta \mathbf{A}$ собственные значения не изменятся. Например:

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}, \qquad \mathbf{A} + \Delta \mathbf{A} = \begin{pmatrix} 5 & 1 \\ -6 & 0 \end{pmatrix}, \qquad \lambda_1 = 2, \quad \lambda_2 = 3.$$

Пусть теперь предельная относительная погрешность задания элементов матрицы A равна δ . Тогда в соответствии с *положением* 1 максимальные по модулю элементы матрицы $\Delta \mathbf{A}$ по меньшей мере имеют величину порядка $\delta \left| \lambda_k \right|_{\text{max}}$. В соответствии с *положением* 2 на эту величину могут измениться все собственные значения возмущенной матрицы.

Если величина δ мала, то максимальные по модулю собственные значения матрицы \mathbf{A} изменятся незначительно. В то же время, если разброс между λ_k велик, минимальные по модулю собственные значения λ_k могут измениться весьма существенно. Но величина, обратная минимальному по модулю собственному значению матрицы \mathbf{A} , является максимальным по модулю собственным значением для обратной матрицы \mathbf{A}^{-1} , элементы которой претерпят существенные изменения. Вместе с ними изменятся весьма сильно и компоненты вектора решения системы (1).

Описанный эффект будет проявляться тем сильнее, чем больше разброс

собственных значений матрицы **A,** т.е.,
$$k(\mathbf{A}) = \frac{\max\limits_{k} \left| \lambda_{k} \right|}{\min\limits_{k} \left| \lambda_{k} \right|} \gg 1$$
.

Обратим внимание еще на один аспект интерпретации неравенств (3) и (5). Если значение $cond(\mathbf{A})$ мало (близко к единице), то относительно малое изменение исходных данных <u>обязательно</u> приведет лишь к малому изменению решения. Если же значение $cond(\mathbf{A})$ велико, то малые изменения исходных данных <u>очень часто могут</u> привести (но не обязательно приводят!) к большому изменению решения.

В зависимости от числа двоичных разрядов, представляющих вещественные числа в данном компьютере, существует "критическое" число обусловленности. Если, например, $cond(\mathbf{A}) = 10^6$, то в решении может быть

потеряно шесть десятичных знаков. При длине мантиссы в семь десятичных разрядов это оказывается "вычислительной катастрофой", в то время как при работе с двойной точностью (15 десятичных разрядов) проблем может не быть. Формализовать это можно следующим образом.

Точность машинной арифметики характеризуется посредством "машинного эпсилон", т.е. наименьшего числа с плавающей точкой ε , такого, что $1 \oplus \varepsilon > 1$, где \oplus - сложение на компьютере. При записи в оперативную память элементов матрицы $\mathbf A$ предельная относительная погрешность составляет не менее ε . Как следует из приведенных выше утверждений, только этого искажения исходной информации вполне достаточно, чтобы решение не имело ни одного верного знака, если число обусловленности удовлетворяет условию $cond(\mathbf A) > 1/\varepsilon$ (разумеется, здесь предполагается, что $cond(\mathbf A)$ не является слишком завышенной мерой плохой обусловленности!). Последнее замечание не излишне, поскольку при решении системы (1) с диагональной матрицей $\mathbf A$ не возникает проблем, в то время как $cond(\mathbf A)$ может быть очень большим:

$$\mathbf{A} = \begin{pmatrix} 10^4 & 0 \\ 0 & 10^{-4} \end{pmatrix}, \quad \mathbf{A}^{-1} = \begin{pmatrix} 10^{-4} & 0 \\ 0 & 10^4 \end{pmatrix}, \quad cond(\mathbf{A}) = 10^8.$$

Все методы решения системы (1) делятся на два класса: *точные* методы и *итерационные* методы.

Метод Гаусса. LU – разложение матрицы. Программы *DECOMP* и *SOLVE*

Различают два больших класса методов решения систем (1): *точные* (или *прямые*) и *итерационные*. Точные методы за конечное число арифметических операций при отсутствии ошибок округления (что эквивалентно бесконечной разрядной сетке) дают точное решение задачи. В ходе применения итерационных методов рождается последовательность векторов, сходящаяся к решению.

В качестве наиболее популярного представителя методов первой группы рассмотрим метод Гаусса исключения неизвестных. Одна из его примитивных модификаций предполагает на первом шаге исключение $x^{(1)}$ с помощью первого уравнения из остальных уравнений. С этой целью первое уравнение умножается на $m_{k1} = -a_{k1}/a_{11}$ и складывается с k-м уравнением и т.д. На втором шаге с помощью преобразованного второго уравнения исключается $x^{(2)}$ из последующих уравнений. После исключения $x^{(n-1)}$ завершается так называемый *прямой ход* метода Гаусса, результатом которого является верхняя треугольная матрица. *Обратный ход* метода Гаусса (гораздо менее трудоемкий) сводится к последовательному получению неизвестных, начиная с последнего уравнения.

Алгоритм в таком виде нуждается в существенном замечании. Нельзя заранее предвидеть, что элемент, стоящий в левом верхнем углу обрабатываемой матрицы, всегда будет отличен от нуля. Если ситуация с нулевым элементом возникнет, то, чтобы избежать деления на нуль, необходимо переставить строки, сделав элемент в этой позиции (ведущий элемент) ненулевым. Более того, желательно избегать не только нулевых, но и относительно малых ведущих элементов. Подтвердим это примером.

$$0.100 \cdot 10^{-3} \cdot x^{(1)} + 0.100 \cdot 10^{1} \cdot x^{(2)} = 0.100 \cdot 10^{1}$$

$$0.100 \cdot 10^{1} \cdot x^{(1)} + 0.100.10^{1} \cdot x^{(2)} = 0.200 \cdot 10^{1}$$

Решение с малым ведущим элементом a_{11} =0.100·10⁻³ с шестью десятичными знаками таково: $x^{(1)}$ = 1.00010, $x^{(2)}$ = 0.999900, а с тремя знаками: $x^{(1)}$ = 0.000, $x^{(2)}$ = 1.00. Очевидно, что произошла "вычислительная катастрофа". Переставив уравнения (теперь a_{11} =0.100·10¹), решим систему с тремя значащими цифрами: $x^{(1)}$ =1.00, $x^{(2)}$ =1.00. (Рекомендуется самостоятельно проделать вычисления, корректно округляя).

Наиболее известны следующие две стратегии выбора ведущего элемента.

Вариант 1 - полный выбор. Здесь на k-ом шаге в качестве ведущего берется наибольший по модулю элемент в неприведенной части матрицы. Затем строки и столбцы переставляются так, чтобы этот элемент поменялся местами с a_{kk} . В этом случае каждый раз осуществляется деление на максимальный элемент, но перестановка столбцов фактически сводится к перенумерации компонент вектора \mathbf{x} .

Вариант 2 — частичный выбор. Здесь на k-ом шаге в качестве ведущего используют наибольший по модулю элемент первого столбца неприведенной части. Затем этот элемент меняют местами с a_{kk} , для чего переставляют только строки, избегая перенумерации компонент вектора \mathbf{x} .

В ходе многочисленных машинных экспериментов установлено, что, как правило, частичный выбор лишь немного уступает полному в скорости роста ошибок округления. При этом полный выбор гораздо более трудоемок, требует перенумерации переменных при перестановке столбцов и увеличивает время получения решения.

С современной точки зрения метод Гаусса интерпретируется как разложение матрицы системы (1) в произведение двух треугольных матриц (LU-разложение). Этот факт отражает следующая теорема, приводимая без доказательства.

<u>Теорема</u>. Пусть $\mathbf{A}^{(k)}$ - главные миноры квадратной матрицы \mathbf{A} порядка $m \times m$ (k=1,2..., m-1). Предположим, что $\det(\mathbf{A}^{(k)}) \neq 0$. Тогда существует единственная нижняя треугольная матрица $\mathbf{L} = (l_{ij})$, где $l_{11} = l_{22} = ... = l_{nn} = 1$, и единственная верхняя треугольная матрица $\mathbf{U} = (u_{ij})$, такие, что $\mathbf{L} \cdot \mathbf{U} = \mathbf{A}$. Более того, $\det(\mathbf{A}) = u_{11} \cdot u_{22} \cdot ... \cdot u_{nn}$.

Эта теорема позволяет представить решение (1) как решение двух систем с треугольными матрицами **L** и **U: Ly=b** и **Ux=y.** Решение первой системы с одновременным вычислением **L** и **U** соответствует прямому ходу метода Гаусса, а решение второй системы — обратному ходу. Технологию **LU-** разложения проиллюстрируем на примере системы четвертого порядка без выбора ведущего элемента. Пусть $m_{k1} = -a_{k1}/a_{11}.(k=2,3,4)$. Первый шаг прямого хода эквивалентен умножению матрицы **A** и вектора **b** слева на матрицу **M**₁:

$$\mathbf{M}_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ m_{21} & 1 & 0 & 0 \\ m_{31} & 0 & 1 & 0 \\ m_{41} & 0 & 0 & 1 \end{pmatrix}, \qquad \mathbf{A}_2 = \mathbf{M}_1 \mathbf{A}, \qquad \mathbf{b}_2 = \mathbf{M}_1 \mathbf{b}.$$

На втором шаге матрица \mathbf{A}_2 и вектор \mathbf{b}_2 умножаются на матрицу \mathbf{M}_2 , а на третьем шаге матрица $\mathbf{A}_3 = \mathbf{M}_2 \mathbf{A}_2$ и вектор $\mathbf{b}_3 = \mathbf{M}_2 \mathbf{b}_2$ умножаются на матрицу \mathbf{M}_3 ($\mathbf{A}_4 = \mathbf{M}_3 \cdot \mathbf{M}_2 \cdot \mathbf{M}_1 \cdot \mathbf{A}$): $m_{k2} = -a_{k2}^{(2)} / a_{22}^{(2)}$, $m_{k3} = -a_{k3}^{(2)} / a_{33}^{(2)}$,

$$\mathbf{M}_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & m_{32} & 1 & 0 \\ 0 & m_{33} & 0 & 1 \end{pmatrix}, \qquad \mathbf{M}_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & m_{43} & 1 \end{pmatrix}$$

Согласно построению A_4 есть верхняя треугольная матрица U:

$$\mathbf{M} = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1$$
, $\mathbf{M} = \mathbf{U}$, $\mathbf{L} = \mathbf{M}^{-1}$, $\mathbf{A} = \mathbf{L}\mathbf{U}$, где
$$\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -m_{21} & 1 & 0 & 0 \\ -m_{31} & -m_{32} & 1 & 0 \\ -m_{41} & -m_{42} & -m_{43} & 1 \end{pmatrix}.$$

Здесь учитывалось, что произведение однотипных треугольных матриц это треугольная матрица того же типа, а обратная матрица для треугольной (нижней или верхней) является треугольной того же типа.

Теперь сформулируем ряд условий, которым должна удовлетворять современная программа, реализующая метод Гаусса. Нужно предусмотреть: выбор ведущего элемента, эффективное решение нескольких систем уравнений (1) с одной и той же матрицей **A** и различными векторами **b**, оценку числа обусловленности. Реализованные в большинстве пакетов по линейной алгебре программы представляют собой набор из двух программ. В первой осуществляется **LU**-разложение, а во второй решаются две системы с треугольными матрицами **L** и **U** (**Ly**=**b** и **Ux**=**y**). Примером являются написанные на Фортране программы **DECOMP** и **SOLVE** из [14]. Программы имеют следующие параметры:

DECOMP (NDIM, N, A, COND, IPVT, WORK), SOLVE(NDIM, N, A, B, IPVT), где NDIM — объявленная в описании строчная размерность массива, в котором располагается матрица **A**;

N – порядок системы уравнений;

A — матрица, подвергающаяся разложению (по окончании работы программы на ее месте располагаются матрицы L и U),

COND – оценка числа обусловленности;

IPVT — вектор индексов ведущих элементов (размерность N);

WORK— рабочий одномерный массив (размерность N),

B — вектор правых частей системы (1), где по окончании работы программы SOLVE размещается вектор решения x.

Иногда функции **DECOMP** и **SOLVE** возлагаются на одну программу, имеющую в таком случае управляющий параметр. В ряде случаев предлагается совокупность разнообразных программ для решения систем (1) с различными матрицами (общего вида, ленточными, трехдиагональными, положительно определенными, симметрическими и пр.).

В заключение оценим число арифметических операций в методе Гаусса. На каждом шаге исключения мы встречаемся с операциями деления и умножения-вычитания. Возьмем за единицу измерения операцию именно такого типа. На κ -ом шаге в одной строке выполняется одно деление и k умножений—вычитаний. Тогда для всех k-1 строк имеем: $(\kappa+1)(\kappa-1) = \kappa^2-1$ операций. В прямом ходе Гаусса таких шагов m. В итоге получаем:

$$\sum_{k=1}^{m} (k^2 - 1) = \sum_{k=1}^{m} k^2 - m = \frac{2m^3 + 3m^2 - 5m}{6}.$$

При больших значениях m хорошим приближением для числа операций будет $m^3/3$. Для обратного хода нужно на порядок меньше операций (одно деление и κ -1 умножение-вычитание при вычислении $x^{(k)}$, что для всех компонент дает величину $\sum_{k=1}^{m} k = \frac{m^2 + m}{2}$). Для сравнения: в формуле Крамера требуется выполнить $m!(m^2-1)$ операций. (Вычисление одного определителя m-ого порядка требует m!(m-1) умножений, а всего нужно вычислить m+1 определитель, значит, всего $m!(m^2-1)$. Если m=10, то для **LU**-разложения число операций $10^3/3$, а для формул Крамера $10!*99\cong 3*10^8$.)

Итерационные методы

Итерационные методы (еще одно название — методы последовательных приближений) дают возможность для системы (1) $\mathbf{A}\mathbf{x}=\mathbf{b}$ строить последовательность векторов \mathbf{x}_0 , \mathbf{x}_1 , ..., \mathbf{x}_n , ... пределом которой должно быть точное решение \mathbf{x}^* :

$$\mathbf{x}^* = \lim_{n \to \infty} \mathbf{x}_n \,. \tag{6}$$

На практике построение последовательности обрывается, как только достигается желаемая точность. Чаще всего для достаточно малого значения $\epsilon > 0$ контролируется выполнение оценки $|\mathbf{x}^* - \mathbf{x}_n| < \epsilon$. Метод последовательных приближений может быть построен, например, по следующей схеме. Эквивалентными преобразованиями приведем систему (1) к виду

$$\mathbf{x} = \mathbf{C}\mathbf{x} + \mathbf{d}. \tag{7}$$

Под эквивалентными преобразованиями будем понимать преобразования, сохраняющие решение системы (т.е. решения (1) и (7) совпадают). Точное решение \mathbf{x}^* системы (7) имеет вид

$$\mathbf{x}^* = (\mathbf{E} - \mathbf{C})^{-1} \mathbf{d} \tag{8}$$

Вместо (7) будем решать систему разностных уравнений (9)

$$\mathbf{x}_{n+1} = \mathbf{C}\mathbf{x}_n + \mathbf{d} \tag{9}$$

пошаговым методом. При этом необходимо решить целый ряд вопросов. Сходится ли итерационный процесс (9)? Если сходится, что является пределом последовательности, и какова скорость сходимости?

Ранее было показано, что решение системы (9) записывается в виде

$$\mathbf{x}_n = \mathbf{C}^n \mathbf{x}_0 + (\mathbf{E} - \mathbf{C}^n) (\mathbf{E} - \mathbf{C})^{-1} \mathbf{d}$$
 (10)

Вычитая из (10) точное решение (8), получаем

$$\mathbf{x}_{n} - \mathbf{x}^{*} = \mathbf{C}^{n} \mathbf{x}_{0} - \mathbf{C}^{n} \left(\mathbf{E} - \mathbf{C} \right)^{-1} \mathbf{d} = \mathbf{C}^{n} \left(\mathbf{x}_{0} - \mathbf{x}^{*} \right)$$
(11)

Чтобы обеспечить условие сходимости (6), все элементы матрицы \mathbf{C}^n должны стремиться к нулю при $n \to \infty$. Для этого, в свою очередь, необходимо и достаточно, чтобы *все* собственные значения матрицы \mathbf{C} были бы по модулю меньше единицы

$$|\lambda_k| < 1. \tag{12}$$

Поскольку нахождение всех собственных значений доставляет значительные трудности, вместо условия (12) можно использовать достаточное условие сходимости

$$\|\mathbf{C}\| < 1, \tag{13}$$

которое справедливо для любой канонической нормы.

Количество итераций по формуле (9) будет тем меньше, чем меньше по модулю собственные значения матрицы \mathbf{C} и чем ближе к \mathbf{x}^* выбрано начальное приближение \mathbf{x}_0 . На практике при реализации на компьютере процесс (9) прерывается либо заданием максимального числа итераций, либо условием $\|\mathbf{x}_{n+1} - \mathbf{x}_n\| < \varepsilon$. Таким образом, основным неформальным моментом является такое приведение системы (1) к виду (7), чтобы выполнялось условие (12). В общем случае универсальный способ такого перехода с

малой трудоемкостью отсутствует, и поэтому часто используется специфика решаемой задачи. Рассмотрим следующий пример.

Пусть диагональные элементы матрицы **A** в (1) значительно превышают по модулю остальные элементы в соответствующих строках. Разделим каждое уравнение на соответствующий диагональный элемент и получим

$$\tilde{\mathbf{A}}\mathbf{x} = \tilde{\mathbf{b}}$$
, $\mathbf{x} = (\mathbf{E} - \tilde{\mathbf{A}})\mathbf{x} + \tilde{\mathbf{b}}$.

На главной диагонали у матрицы $\tilde{\bf A}$ стоят единицы, а у матрицы $({\bf E}-\tilde{\bf A})$ расположены нули. Вне главной диагонали у обеих матриц находятся малые по модулю элементы, что позволяет, выбрав ${\bf C}={\bf E}-\tilde{\bf A}$, легко обеспечить условие (13) и быструю сходимость итерационного процесса (9).

Остановимся на сравнении прямых и итерационных методов. Чаще всего преимущества итерационных методов сказываются в следующих ситуациях.

- 1) Имеется хорошее начальное приближение \mathbf{x}_0 к точному решению (1), что обеспечит сравнительно малое число итераций в (9).
- 2) Удалось получить матрицу C в (9) с весьма малыми по модулю собственными значениями, что гарантирует высокую скорость сходимости итерационного процесса.
- 3). Матрица А является разреженной, и в оперативной памяти компьютера относительно небольшое число ee ненулевых хранится элементов. (9) Использование формулы требует ЛИШЬ написания специальной программы умножения разреженной матрицы на вектор, в то время как в процессе реализации точных методов и преобразования матрицы А может происходить заметное увеличение ненулевых элементов.

Один из способов хранения ненулевых элементов — связный список, где каждый элемент какой-то строки это запись со следующими полями: номер столбца, значение элемента, ссылка на следующий ненулевой элемент строки. Дополнительно строится вектор, где каждый элемент это ссылка на первый ненулевой элемент соответствующей строки. Преимущество итерационных методов в ряде случаев разреженных матриц над точными методами иллюстрирует следующий пример, где ненулевые элементы матрицы, обозначенные звездочкой, расположены следующим образом:

Пусть элемент в позиции (1,1) самый большой по модулю. Деление на него и исключение $\mathbf{x}^{(1)}$ с помощью первого уравнения в методе Гаусса приводит уже на первом шаге к полному заполнению матрицы и резкому возрастанию числа ненулевых элементов.