Discrete Mathematics and Logic Tutorial 5

Andrey Frolov

Innopolis University

Definition

Any set $R \subseteq X_1 \times \cdots \times X_n$ is called a relation on X_1, \dots, X_n .

If $X_1 = \cdots = X_n$, then $R \subseteq X^n$ is an *n*-arity relation on X.

Definition

Any set $R \subseteq X_1 \times \cdots \times X_n$ is called a relation on X_1, \dots, X_n . If n = 1 then R is a unary relation on X.

- $R(x) \Leftrightarrow x$ is positive.
- $R(a person) \Leftrightarrow the person is a woman.$

Definition

Any set $R \subseteq X_1 \times \cdots \times X_n$ is called a relation on X_1, \dots, X_n . If $X_1 = \cdots = X_n$, then $R \subseteq X^n$ is an *n*-arity relation on X.

If n = 2 then R is a binary relation on X

- $R(x, y) \Leftrightarrow x < y$
- $R(a \text{ man, a woman}) \Leftrightarrow \text{these man and woman are married.}$

Definition

Any set $R \subseteq X_1 \times \cdots \times X_n$ is called a relation on X_1, \dots, X_n . If $X_1 = \cdots = X_n$, then $R \subseteq X^n$ is an *n*-arity relation on X.

If n = 3 then R is a binary relation on X.

- $R(x, y, z) \Leftrightarrow x + y = z$
- R(a man, a woman, a child)

 ⇔ a child is a son of these man and woman.

Definition

Any set $R \subseteq X \times Y$ is called a binary relation on X and Y. If X = Y, then $R \subseteq X^2$ is a binary relation on X.

$$(x,y) \in R \leftrightharpoons xRy$$

$$x \le y$$

Definitions

A binary relation R on a set X is called

- reflexive if $\forall x \in X \ xRx$,
- irreflexive if $\forall x \in X \neg (xRx)$,

- $x \leq y$,
- x < y,
- $R(a \text{ person } x, a \text{ person } y) \leftrightharpoons x \text{ likes } y.$

Definitions

A binary relation R on a set X is called

- symmetric if $\forall x, y \in X \ (xRy \rightarrow yRx)$,
- asymmetric if $\forall x, y \in X \neg (xRy \rightarrow yRx)$,
- antisymmetric if $\forall x, y \in X \ (xRy \& yRx \rightarrow x = y)$,

- $R(\Phi_1, \Phi_2) \leftrightharpoons$ the formula Φ_1 is equal to the formula Φ_2 .
- x < y,
- $x \le y$ If $x \le y \& y \le x \rightarrow x = y$.

Definitions

A binary relation R on a set X is called

• transitive if $\forall x, y, z \in X \ (xRy \& yRz \rightarrow xRz)$.

- $R(\Phi_1, \Phi_2) \leftrightharpoons$ the formula Φ_1 is equal to the formula Φ_2 ,
- $R(a \text{ city } c_1, a \text{ city } c_2) \leftrightharpoons \text{ there is way from } c_1 \text{ to } c_2,$
- $R(x, y) \leftrightharpoons x + y = 0$, if x + y = 0 and y + z = 0 then x - z = 0.
- $R(a \text{ person } x, a \text{ person } y) \leftrightharpoons x \text{ is a friend of } y.$

Definitions

A binary relation R on a set X is called

- reflexive if $\forall x \in X \ xRx$,
- irreflexive if $\forall x \in X \neg (xRx)$,
- symmetric if $\forall x, y \in X \ (xRy \rightarrow yRx)$,
- asymmetric if $\forall x, y \in X \neg (xRy \rightarrow yRx)$,
- antisymmetric if $\forall x, y \in X \ (xRy \& yRx \rightarrow x = y)$,
- transitive if $\forall x, y, z \in X \ (xRy \& yRz \rightarrow xRz)$.

Strict order relations

Definition

A binary relation R on a set X is called a strict order, if it is irreflexive, asymmetric and transitive, i.e.,

- $\forall x \in X \neg (xRx)$ (irreflexive),
- $\forall x, y \in X \neg (xRy \rightarrow yRx)$ (asymmetric),
- $\forall x, y, z \in X \ (xRy \& yRz \rightarrow xRz) \ (transitive).$

- x < y,
- a man x is higher than a man y.

Non-strict order relations

Definition

A binary relation R on a set X is called a non-strict order, if it is reflexive, antisymmetric and transitive, i.e.,

- $\forall x \in X \ xRx \ (reflexive),$
- $\forall x, y \in X \ (xRy \& yRx \rightarrow x = y) \ (antisymmetric),$
- $\forall x, y, z \in X \ (xRy \& yRz \rightarrow xRz) \ (transitive).$

- $x \leq y$,
- a man x is older than a man y.

Partial order

$$(x_1,\ldots,x_n) \leq (y_1,\ldots,y_n) \Leftrightarrow x_1 \leq y_1 \& \ldots \& x_n \leq y_n.$$

Linear orders

Definition

An order R is called linear if $\forall x \neq y(xRy \vee yRx)$.

- *x* ≤ *y*
- x < y
- a man x is higher than a man y.
- a man x is older than a man y.

Equivalence relations

Definition

A binary relation R on a set X is called equivalence, if it is reflexive, symmetric and transitive.

- $\forall x \in X \ xRx \ (reflexive),$
- $\forall x, y \in X \ (xRy \rightarrow yRx) \ (symmetric),$
- $\forall x, y, z \in X \ (xRy \& yRz \rightarrow xRz) \ (transitive).$

$$=,\sim,\simeq,\cong,\equiv$$

- x = y,
- |A| = |B|,
- a man x and a man y have the same age.

Equivalence relations

Definition

A binary relation R on a set X is called equivalence, if it is reflexive, symmetric and transitive.

An equivalence class is a set such that $x \sim y$ for any x, y form the class.

The intersection of two different equivalence classes is empty.

Definitions

A binary relation R on a set X is called

- $\forall x \in X \ xRx \ (reflexive),$
- $\forall x \in X \neg (xRx)$ (irreflexive),
- $\forall x, y \in X \ (xRy \rightarrow yRx) \ (symmetric),$
- $\forall x, y \in X \neg (xRy \rightarrow yRx)$ (asymmetric),
- $\forall x, y \in X \ (xRy \& yRx \rightarrow x = y) \ (antisymmetric),$
- $\forall x, y, z \in X \ (xRy \& yRz \rightarrow xRz) \ (transitive).$

- $X = \{1, 2, 3, 4\}, R = \{(1, 2), (1, 3), (2, 4), (4, 4)\},$
- X = "all humans", $R(x, y) \leftrightharpoons x$ is a father of y,
- $X = \{1, 2, 3, 4\}, R = \{(x, y) \mid x + y > 2\},\$
- $X = \mathbb{N}, R = \{(x, y) \mid \}$

Thank you for your attention!