

Video Game Play and Design: Procedural Directions

Dominic Mallinson

Director of Technology,
Research and Development,
Sony Computer Entertainment
of America

Tom Hershey

Vice President of Operations,
Sony Pictures Imageworks

SONY PICTURES
IMAGWORKS

Bill Swartout

Director of Technology, Institute
For Creative Technologies

Janet Murray
Director of Graduate Studies
Information Design and
Technology Program,
Georgia Institute of Technology

Video Game Play and Design: Procedural Directions

Procedural Techniques for Interactive CG

Dominic Mallinson

What do I mean by a “procedural technique?”

- Any description that is not explicit
 - triangle meshes are explicit
 - motion capture animation is explicit
- Procedural techniques
 - modify a description via an algorithm
 - change with the state of the simulation
 - are calculated on the fly

Dominic Mallinson

PROS of Procedural Techniques

- Interactivity
- Scalability
- Variety
- Cost
- Storage and bandwidth

Dominic Mallinson

CONS of Procedural Techniques

- Not suited to everything
- Not as good as Art and Capture
 - (in a fixed situation)
- Can use lots of processor power
- Can be complex and unpredictable

Dominic Mallinson

Modeling with Procedural Techniques

- Generally Good For
 - Plants
 - Terrain
 - Biological forms
- Generally Bad For
 - man made objects
 - precise representation

Dominic Mallinson

Animation with Procedural Techniques

- The goal is interaction
- Simulating the Physical World
 - dynamics, cloth, fluids, smoke, fire, fracture
- Modified Animation
 - I.K. , motion blending etc.
- Behavior and Autonomous Characters
- Controllers

Modified Animation

- Using key frame artist generated or motion capture data as basis
 - interactivity requires procedural modification of the animation
 - motion blending
 - inverse kinematics
 - physical modeling

Physical Simulation

- Makes interaction look real
- Computationally very intensive
- Difficult to make robust
- Can be inconsistent in performance
- Lots of research still to be done!

Autonomous Characters

- The goal is life like character behavior
- Simple scripting and FSM
- Cognitive modeling
- Steering behaviors and path finding
- Learning algorithms
 - neural nets, genetic algorithms
 - off line vs. real time learning

Controllers

- Where behavior meets physics
 - How an ‘action’ becomes a ‘motion’
 - “Walk Forward” through an arbitrary environment
 - Avoid obstacles, balance
 - Look natural

Examples

- Lifeforms :- Latham and Todd
 - an example of procedural modeling
- Bird-Fish-Mouse
 - autonomous characters
 - modified animation
 - procedural water

Video Game Play and Design: Procedural Direction

Procedural Simulation: Time To Get Real

Tom Troubridge

SIGGRAPH
2001

Procedural Simulation

- Realistic Behaviors - “A.I.”
- Any “On-The-Fly” Generated Action/Asset
 - NPC’s, Terrain, Textures, Weather, etc.
- Advantages:
 - Sophistication, Volume, Speed, Reusability
- Drawbacks:
 - Emerging Science, Complex, Expensive

Overview

- Evolution of Game Consoles
 - More cycles, more storage, dynamic content
 - Procedural simulation as emerging R&D
- Impact on 3 Fronts:
 - Users
 - Developers
 - Unlikely Partners

The Old Days: Cram It In...

- Graphics, Mechanics, Design
 - Balancing cycles, storage
- Procedural Simulation
 - Pushes boundaries of game technology
 - Often forced to utilize “leftover” resources

Fitting It All In The Box

A Bigger Box To Fill...

- Advanced UI,
- Physics Engines,
- Smart Cameras, etc.

- Massive Worlds,
- Hybrid Genres,
- Sophisticated Sound, Stories, etc.

- Higher-Res Models,
- Natural Movement,
- Photorealism, etc.

- Smarter NPC's,
- Responsive Environments,
- ???

Today: Still Cramming, But...

- Faster Hardware
- High Capacity Delivery
 - CD v. DVD
- Local Storage
- Additional Content Via Internet

Tom Hershey

All Lines Point To Procedural Simulation

The X Axis: The User

- Deeper, Richer Content
 - Experience to showcase hardware capability
- Enhanced Gameplay
 - Smarter NPC's,
 - Wider variety of interactions
 - Variations from session to session
- Immersive Style Over Hyperrealism

The Y Axis: The Developer

- “That’s A Damned Big Box...”
 - Producing enough content
 - Internet connectivity = even more content
 - More money + more time = greater risk
 - Mechanics, Design, Graphics & A.I. all demand higher levels of expertise
 - How can I supplement my talent pool & spread my risk?

Tom Hershey

The Z Axis: Unlikely Partners

- The Motion Picture/TV Effects Industry
 - Historically overlapping talent pool
 - Gap in CG and Procedural Simulation narrowing
- Academia
- Console Manufacturers
- Other Centers of CG Research
 - Architecture, Medicine, Engineering, Military

Tom Hershey

Procedural Simulation

Satisfying:

- The User
 - Provides deep and challenging content
- The Developer
 - Provides economic way to produce larger volume of rich, innovative content
- The Now-More-Likely Partners
 - Additional revenue source
 - Real World application of their code

Tom Hershey

Making Procedural Simulation Work

- Development of Modular Code
 - Approach like a Graphics Engine
 - Amortize over multiple titles
- Enlist 3rd Party Resources - Joint Ventures
- Strive For Balanced Gameplay
- Establish Defining Style Instead of Realism

Video Game Play and Design: Procedural Directions

SONY PICTURES
IMAGeworks

AI for Virtual Humans

Priscilla T

A bit of background...

- *Major goal at ICT:*
Create compelling VR environments for training
 - High quality graphics
 - Immersive sound
 - Strong storyline
 - Virtual humans

AI Virtual Humans

- Behaviors not pre-scripted
 - Behave by understanding situation and reasoning about possibilities
- Communicate in natural language
- Can explain actions & coach
- Respond emotionally to situation

Looking back....

- Early attempts failed to create unified intelligent systems exhibiting a broad variety of behaviors

What's different now?

- Faster, more powerful (& cheaper) hardware
- Some of the hard problems have working solutions
 - e.g. speech recognition
- Better software environments support modular architectures
 - Don't have to build it all yourself
- Hybrid approach: synergy through mixing techniques
 - Symbolic, probabilistic, neural nets, etc

What's different now? (cont')

- Model based programming

Example: Model Based Programming for Task Oriented Domain

Model

Task1

Preconditions:

Effects:

Task2

Preconditions:

Effects:

Task3

Preconditions:

Effects:

Task4

Preconditions:

Effects:

Reasoner

Task3 Task4 Task1

- Robust to changes in world state
- Model easier to modify
- Model explainable
- Model can be used to understand other's actions

Mission Rehearsal Project: Operations in the New Millennium

Mission Rehearsal Exercise Project

- Virtual Reality Environment
 - Immersive Audio and Graphics
 - Virtual Humans with reasoning and emotion
 - Locals
 - Friendly and hostile elements
 - Coach
 - Dilemmas and decisions

Bill Swartout

ICT Virtual Reality Theater

Mission Rehearsal Clip

Coaching

Missing Emotions

Adding Emotions

Summary

- Using AI we're beginning to create characters that have much richer behaviors and depth
- Opens up possibility for new kinds of games

Video Game Play and Design: Procedural Directions

SONY PICTURES
IMAGeworks

Procedural Character Design

Janet Murray

Computer as Storytelling

Medium can there be significant new forms of storytelling in the new digital medium?

- Yes, because it has its own expressive properties

Janet Murray

What would it take to get there?

Janet Murray

Characters Past

Tell me more about your mother.

Eliza's animation did NOT

- Still images
- Moving images
- Sound
- “Multi” media

Joseph Weizenbaum,
Eliza 1966

Why Eliza Works

Tell me more about your mother.

Joseph Weizenbaum, Eliza 1966

- Pattern matching
- Shtick=formula
- Scripting the interactor
- Scenario!!

Why Woggles Worked

**Joseph Bates,
Woggles 1992**

- Readable cartoon gestures of greeting, inviting, fear, menace...
- Shrimp's programming glitch provided needed dramatic focus
- Believability not realism

Janet Murray

Virtual Pets

Silas, Bruce Blumberg, MIT
1994

Janet Murray

Petz

Dogz, PFMagic 1990s

SIGGRAPH
2001

Silas

Autonomous Agent Architectures

- Based on science of animal behavior
- Elaborated model of inner states
- Everyday props, e.g. ball
- More complex, less dramatic

Dogz & Catz

- Based on shtick of cartoon critters
- Expressible model of inner states
- Dramatic props, e.g. mouse, catnip
- Less complex, more fun

Lessons from the Past

- Scenario shapes expectation
- Props shape participation
- Don't program what you cannot display
- Believability not realism
- Character elicited by interaction

Janet Murray

Characters Present

Characters in Immersive Worlds

- Genre fiction world provides scenarios, props, potential dramatic actions
- Detailing reinforces believability
- Range of characters limited

Janet Murray

Weapon/Target Characters

Targets or Characters?

- Do they have their own trajectories?
- Do they move and act when we can't see them?
- Are they most interesting when on fire?

Deus Ex

Buddy Character

Paul Deus Ex

Hero and brother/sidekick are extensions of their
weaponry

MMORGs: Massively Multiplayer Online Roleplaying Game

- Expressive gestures
derived from genre
scenarios
- Need for dramatic
compression
- More backstory
than can be
expressed in
gameplay

Asheron's Call, 1999

Will Wright's The Sims (2000)

Yuppy scenario: shop, work, party, marry, parent

Persistent, detailed, participatory world

Why the Sims Works

- Readable social actions
- Bildungsroman plot, courtship and work ethic scenarios
- Expressible states
- BUT: problem of focus remains

Improving Character Simulations

Dramatic Compression

- Time
- Event structure
- Episodic structure

Dramatic Actions

- Fewer Chores!
- Dramatic Props

Janet Murray

Characters Future

Parameterized Characters

Questing hero:

- Heritage Group
- Appearance
- Clothing
- Profession
- Attributes
- Skills

Parameterized Characters

Roommate:

- Neat
- Outgoing
- Active
- Playful
- Nice

Parameterized Characters

Danish Prince??

- melancholy?
- tolerance for flattery?
- irony?
- self-doubt?
- homicidal/suicidal?
- madness meter?!

Cyberdrama

Replay Story

Scenario

Stereotype

Behavior

the holodeck hamlet?

Dramatic Characters

?

Genre types

Robot Yuppies

Comical Pets

Superkiller's helper

Game Piece

Shooter's Targets

Artificial Life

Lifelike

Sarah Cooper: Reliving Last Night

SONY PICTURES
IMAGeworks

SIGGRAPH
2001

Janet Murray

Variant character / Variant POV

Janet Murray

Creative Applications Lab

Sarah Cooper
Reliving Last Night

Michael Mosely
Buford Highway

Janet Murray

Creative Applications Lab

Sarah Cooper
Reliving Last Night

Michael Mosely
Buford Highway

Janet Murray

Creative Applications Lab

Sarah Cooper
Reliving Last Night

Michael Mosely
Buford Highway

Video Game Play and Design: Procedural Directions

SONY PICTURES
IMAGeworks

