Kernel methods I Basis expansion

Sanjoy Dasgupta

University of California, San Diego

Topics we'll cover

- 1 Two deviations from linear separability
- 2 Learning quadratic boundaries using basis expansion

Deviations from linear separability

Noise

Find a separator that minimizes a convex loss function related to the number of mistakes.

e.g. SVM, logistic regression.

Systematic deviation

What to do with this?

Adding new features

Actual boundary is something like $x_1 = x_2^2 + 5$.

- This is quadratic in $x = (x_1, x_2)$
- But it is linear in $\Phi(x) = (x_1, x_2, x_1^2, x_2^2, x_1x_2)$

Basis expansion: embed data in a higher-dimensional feature space. Then we can use a linear classifier!

Basis expansion for quadratic boundaries

How to deal with a quadratic boundary?

Idea: augment the regular features $x=(x_1,x_2,\ldots,x_d)$ with

$$x_1^2, x_2^2, \dots, x_d^2$$

 $x_1x_2, x_1x_3, \dots, x_{d-1}x_d$

Enhanced data vectors of the form:

$$\Phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, x_1 x_2, \dots, x_{d-1} x_d)$$

Quick question

Suppose $x = (x_1, x_2, x_3)$. What is the dimension of $\Phi(x)$?

Suppose $x = (x_1, \dots, x_d)$. What is the dimension of $\Phi(x)$?

Perceptron revisited

Learning in the higher-dimensional feature space:

- w = 0 and b = 0
- while some $y(w \cdot \Phi(x) + b) \leq 0$:
 - $w = w + y \Phi(x)$
 - b = b + y

Perceptron with basis expansion: examples

Perceptron with basis expansion: examples

