通知实验安排

数字逻辑电路课程有16个学时的实验,初步安排: 具体安排参见公共邮箱中的word文档。

本周开始进行实验环节,实验结束后16周周日(6月16号)晚23点前,各班学委要提交实验报告的电子版给我的邮箱ahhfdxq@163.com。不用收纸质报告了。

实验地点:综合实验楼306房间

第六章作业布置

- 1、本周有实验。
- 2、下次交作业第11周。
- 3、本周作业:从第6章课后习题中选2题写到作业本上。

数字逻辑

丁贤庆

ahhfdxq@163.com

第六章

时序逻辑电路

6.5 若干典型的时序逻辑集成电路

6.5.1 寄存器和移位寄存器

1、寄存器

寄存器:是数字系统中用来存储代码或数据的逻辑部件。 它的主要组成部分是触发器。

一个触发器能存储1位二进制代码,存储n位二进制代码的寄存器需要用n个触发器组成。寄存器实际上是若干触发器的集合。

2、移位寄存器

•移位寄存器的逻辑功能

移位寄存器是既能<mark>寄存</mark>数码,又能在时钟脉冲的作用下使数码向高位或向低位移 动的逻辑功能部件。

•移位寄存器的逻辑功能分类

单向移位寄存器

按移动方式分

双向移位寄存器

左移位寄存器

右移位寄存器

(1) 基本移位寄存器

(a) 电路

(2) 多功能双向移位寄存器

实现多种功能双向移位寄存器的一种方案(仅以FF...为例)

$$S_1S_0=00$$
 $Q_m^{n+1}=Q_m^n$ 保持不变 $S_1S_0=10$ $Q_m^{n+1}=Q_{m+1}^n$ 向低位

$$S_1 S_0 = 01$$
 $Q_m^{n+1} = Q_{m-1}^n$ (低位移 $Q_m^{n+1} = Q_m^{n+1} = Q_m^{n+1}$) 有高位 $Q_m^{n+1} = Q_m^{n+1}$

(b) 典型集成电路

CMOS 4位双向移位寄存器74HC/HCT194

74HCT194 的功能表

	输入									输出				
清零		訓信 号	串行	丁输	时	并行输入								
CR	S_1	S_0	右 移 D _{SR}	左移 D _{SL}	钟 CP	DI_0	DI_1	DI_2	DI_3	Q_0^{n+1}	Q_1^{n+}	${}^{1}Q_{2}^{n+}$	Q_3^{n+1}	行
L	×	×	×	×	×	×	×	×	×	L	L	L	L	1
Н	L	L	×	×	×	×	×	×	×	Q_0^n	Q_1^n	Q_2^n	Q_3^n	2
Н	L	Н	L	×	1	×	×	×	×	L	Q_0^n	Q_1^n	Q_2^n	3
Н	L	Н	Н	×	↑	×	×	×	×	Н	Q_0^n	Q_1^n	Q_2^n	4
H	H	L	×	L	1	×	×	×	×	Q_1^n	Q_2^n	Q_3^n	$ar{\mathbf{L}}$	5
Н	Н	L	×	Н	↑	×	×	×	×	Q_1^n	Q_2^n	Q_3^n	Н	6
Н	Н	Н	×	×	↑	DI_0	DI_1	DI_2	DI_3	\widetilde{D}_0^1	\tilde{D}_1^2	D_2	D_3	7

例: 时序脉冲产生器。电路如图所示。画出 Q_0 — Q_3 波形,分析逻辑功能。

解: 启动信号为0: $S_1=1$ $S_0=1$,同步置数 $Q_A \sim Q_D=0111$

启动信号为1后: S1=0 S0=1, 低位移向高位状态, Q3 = DSR

因为Q0~Q3总有一个为0, S1S0=01,则74194始终工作在低位向高位移动循环移位的状态。

6.5.2 计数器

概述

(1) 计数器的逻辑功能

计数器的基本功能是<mark>对输入时钟脉冲进行计数。它也可用于分频、定时、</mark> 产生节拍脉冲和脉冲序列及进行数字运算等等。

- (2) 计数器的分类
- •按脉冲输入方式,分为同步和异步计数器
- •按进位体制,分为二进制、十进制和任意进制计数器
- •按逻辑功能,分为加法、减法和可逆计数器

1、 二进制计数器

(1) 异步二进制计数器---4位异步二进制加法计数器

工作原理

1、 二进制计数器

(1) 异步二进制计数器---4位异步二进制加法计数器

工作原理

1、 二进制计数器

(1) 异步二进制计数器---4位异步二进制加法计数器

工作原理

结论: 计数器的功能:不仅可以计数也可作为分频器。

如考虑每个触发器都有 $1t_{pd}$ 的延时,电路会出现什么问题?

ightharpoonup异步计数脉冲的最小周期 $T_{min}=n\ t_{pd}$ 。(n为位数)

(2)二进制同步加计数器

Q_0 在每个CP都翻转一次

 FF_0 可采用T=1的T触发器 Q_1 仅在 $Q_0=1$ 后的下一个CP 到来时翻转

 FF_1 可采用 $T=Q_0$ 的T触发器 Q_2 仅在 $Q_0=Q_1=1$ 后的下一个 CP到来时翻转

FF₂可采用T= Q₀Q₁T的触发器
Q₃仅在Q₀=Q₁=Q₂=1后的下一个CP到来时翻转
FF₃可采用T= Q₀Q₁Q₂T的触发器

计数顺序		电路	进位输出		
	Q_3	Q_2	Q_1	Q_0	红江州山
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0		0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0		0	0
9	1	0	0	1	0
10	1	0	4	0	0
11	1	0	1	1	0
12	1	1		0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1
16	0	0	0	0	0

(a) 4位二进制同步加计数器逻辑图---由T触发器构成

4位二进制同步加计数器时序图

(c) 计数使能和并行进位

CET、CEP为计数使能,并行进位TC=Q3Q2Q1Q0·CET

(d) 异步清零和同步并行置数

74LVC161 逻辑功能表

	输入										输出			
清零	预置					预置数据输入			计 数			进 位		
CR	PE	CEP	CE T	СР	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0	TC	
L	×	×	×	×	×	×	×	×	L	L	L	L	L	
Н	L	×	×	↑	D_3	D_2	D_1	D_0	D_3	D_2	D_1	D_0	*	
Н	Н	L	×	×	×	×	×	×		保	持		*	
Н	Н	×	L	×	×	×	×	×		保	持		*	
H	Н	H	H	↑	×	×	×	×		计	数		*	

CR的作用?

PE的作用?

(4)应用

例 用74LVC161构成九进制加计数器。

(a) 反馈清零法:利用异步置零输入端,在M进制计数器的 计数过程中,跳过M-N个状态,得到N进制计数器的方法。

CP	Q_3	Q_2	Q_1	Q_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
•••		•••	• • • •	
8	1	0	0	0
9	1	0	0	1
		•••		
15	1	1	1	1

$$CR = \overline{Q_0 \cdot Q_3} = 0$$

设法跳过16-9=7个状态

工作波形

状态图

利用同步置数端构成九进制计数器

(b) 反馈置数法:利用同步置数端,在M进制计数器的计数过程中,跳过M-N个状态,得到N进制计数器的方法。

采用后九种状态作为有效状态,用反馈置数法构成九进制加计数器。

$$TC = CET \cdot Q_3 \cdot Q_2 \cdot Q_1 \cdot Q_0 = 1$$

波形图:

该计数器的模为9。

分析下图所示的时序逻辑电路,试画出其状态图和在CP脉冲作用下 Q_3 、 Q_2 、 Q_1 、 Q_0 的波形,并指出计数器的模是多少?

例 用74VC161组成256进制计数器。

解: 设计思想

- · 1片74161是16进制计数器
- $256 = 16 \times 16$
- 所以256进制计数器需用两片74161构成

•片与片之间的连接通常有两种方式:

并行进位 (低位片的进位信号作为高位片的使能信号)

串行进位 (低位片的进位信号作为高位片的时钟脉冲,即异步计数方式)

并行进位: 低位片的进位作为高位片的使能

计数状态:0000 0000 ~1111 1111

 $N = 16 \times 16 = 256$

串行进位:低位片的进位作为高位片的时钟

计数状态:0000 0000 ~1111 1111

采用串行进位时,为什么低TC要经反相器后作为高位的CP?

小结

用集成计数器构成任意进制计数器的一般方法

1) N < M 的情况:

(已有的集成计数器是M 进制,需组成的是N 进制计数器)

实现的方法:

反馈清零法

利用清零输入端,使电路计数到某状态时产生清零操作, 清除M-N个状态实现N进制计数器。

反馈置数法

利用计数器的置数功能,通过给计数器重复置入某个数码的方法减少(M-N)个独立状态,实现N进制计数器。

2) N>M 的情况

实现的方法: ----采用多片M进制计数器构成。

按芯片连接方式可分为:

(1) 串行进位方式: 构成异步计数器

(2)并行进位方式: 构成同步计数器

应用举例

序列信号发生器

在CP的作用下,Y端产生00010111循环序列信号

如要求Y端产生10110010循环序列信号,如何改变电路的连接?

2. 异步二-十进制计数器

将图中电路按以下两种方式连接:

- (1) \overline{CP}_0 接计数脉冲信号,将 Q_0 与 \overline{CP}_1 相连;
- (2) \overline{CP}_1 接计数脉冲信号,将 Q_3 与 \overline{CP}_0 相连

试分析它们的逻辑输出状态。

两种连接方式的状态表

计数顺序	连接	方式1	(8421	连接方式2(5421码)				
レーダメ川火ノナ	Q_3	Q_2	Q_1	Q_0	Q_0	Q_3	Q_2	Q_1
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

3. 环形计数器

(1)工作原理

① 基本环形计数器

置初态 $Q_3Q_2Q_1Q_0=0001$,

第一个 $CP:Q_3Q_2Q_1Q_0=0010$,

第二个 $CP:Q_3Q_2Q_1Q_0=0100$,

第三个 $CP:Q_3Q_2Q_1Q_0=1000$,

第四个 $CP:Q_3Q_2Q_1Q_0=0001$,

第五个 $CP:Q_3Q_2Q_1Q_0=0010$,

② 扭环形计数器

- a、电路
- b、状态表

置初态 $Q_3Q_2Q_1Q_0=0001$,

c、状态图

状态编号	Q_4	Q_3	Q_2	Q_1	Q_0
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	1
3	0	0	1	1	1
4	0	1	1	1	1
5	1	1	1	1	1
6	1	1	1	1	0
7	1	1	1	0	0
8	1	1	0	0	0
9	1	0	0	0	0

状态编号	Q_4	Q_3	Q_2	Q_1	Q_0
0	0_	0	0	0	
1	0	0	0	0	1
2	0	0 (0	1	1
3	0 (1	1	1
4	$\begin{bmatrix} \bar{0} \end{bmatrix}$	1	1	1	1
5	17	1	1	1 [1
6	1	1	1	1_1_	ار0_
7	1	1	[1	0;	0
8	1	1	0	0	0
9	$\begin{bmatrix} 1 \end{bmatrix}$	j	0	0	0

译码电路简单,且不会出现竞争冒险

$$Y_{0} = \overline{Q}_{4}\overline{Q}_{0}$$

$$Y_{1} = \overline{Q}_{1}Q_{0}$$

$$Y_{2} = \overline{Q}_{2}Q_{1}$$

$$Y_{3} = \overline{Q}_{3}Q_{2}$$

$$Y_{4} = \overline{Q}_{4}Q_{3}$$

$$Y_{5} = Q_{4}Q_{0}$$

$$Y_{6} = Q_{1}\overline{Q}_{0}$$

$$Y_{7} = Q_{2}\overline{Q}_{1}$$

$$Y_{8} = Q_{3}\overline{Q}_{2}$$

$$Y_{9} = Q_{4}\overline{Q}_{3}$$