

Hierarchical Multi-Label Object Detection to Analyze Panoramic Dental Xrays

Amruta Parulekar (20D070009)

Annie D'Souza(20D070028)

Bhavya Kohli(20D070021)

Bhavya Singh(200040036)

Sanjhi Priya(20D070070)

Tejaswee Sulekh(20D070082)

PROBLEM STATEMENT

Interpreting panoramic X-rays in dental radiology is time-consuming and prone to misdiagnosis due to work exhaustion.

Challenges Faced

- Variations in Anatomy
- Insufficient publicly available annotated data

Objective

Develop algorithms for accurate detection of abnormal teeth and associated diagnosis to enhance treatment

Goal

- Improve computation time and efficiency using techniques like wavelet transforms.
- Address class imbalance using advanced loss functions for classification.
- Experiment with object detection techniques to surpass baseline performance.

PIPELINE

The main model was implemented by first performing **object detection** followed by **classification**:

- ☐ Detect all teeth first
- Extract teeth patches and classify individual teeth as *good* or *diseased*.

DATASET

• 3 datasets, each with different images and different labels

Dataset 1:

- Contains bounding boxes for only quadrants
- Bounding boxes have quadrant labels

- o Contains bounding boxes for only enumerations
- Bounding boxes have quadrant and enumeration labels

- Contains bounding boxes for only diseased teeth
- o Bounding boxes for normal teeth are not available
- o Bounding boxes have quadrant, enumeration, and disease labels

PRE-PROCESSING: WAVELET COMPRESSION

HAAR Decomposition

of the image produces these components, where

H = Highpass

L = Lowpass

Finding the correct weights:

- Grid search over all possibilities, keeping the weight ratio (M: N: N: N)
- Calculating the MSE between the original and compressed image
- 3. Interpolated using different transformation such as
 - INTER_LINEAR
 - INTER_AREA
 - INTER_CUBIC

М	Error (MSE)
0.1	483115.2
0.228	5663.8
0.357	2323.2
0.485	2626.9
0.613	3055.6
0.742	3453.3
0.87	3773.7

PRE-PROCESSING: WAVELET COMPRESSION

Sample compressed images:

Original: (1316, 2765)

3-Times: (165, 346)

5-Times: (42, 87)

OBJECT DETECTION MODELS M1 & M2

- Two models—M1 and M2—used for quadrant and tooth detection respectively
- DETRs with Collaborative Hybrid Assignments (Co-DETR), the current SOTA on object detection benchmarks, is the choice of architecture for both models
- Rationale behind this dual-model setup:
 - We do not need all images to have all types of annotations
 - Allows use of smaller, more specialized models instead of a single large model with low interpretability
 - Can use targeted human supervision to finetune specific portions of the workflow instead of re-training the whole (very deep) model from scratch every time

PROCESSING BETWEEN MODELS

• WHY?

 Third dataset only contains bounding boxes for diseased teeth so without this pipeline, we can't obtain bounding boxes for normal teeth

For training M2:

- Second dataset → M1 → Quadrant bounding boxes
- Crop images to get 4 quadrants and reflect quadrant 2,3,4 to align with quadrant 1
- For the enumeration bounding box labels in annotations file:
 - Shift the bounding boxes according to quadrant positions
 - Reflect the bounding box coordinates and update them to the required format.

For training M3:

- Third dataset \rightarrow M1 \rightarrow Quadrant bounding boxes \rightarrow Quadrant images w/ shifted bbox labels
- Quadrant images → M2 → Enumeration bounding boxes
 - For bounding boxes with **valid confidence scores**, crop to obtain patches
 - Go through the annotations file and for existing teeth w/o labels, assign normal

RESULTS OF COMPRESSION

Model	Compression Degree	AP IoU 0.50:0.95	AP IoU 0.75	AR IoU 0.50:0.95	
M1	0	0.713	0.907	0.797	
	3	0.713	0.890	0.795	
	4	0.699	0.867	0.791	
	5	0.698	0.900	0.776	
Quad	SOTA (2020)	0.651	0.524	0.727	
M2	0	0.543	0.583	0.718	
	3	0.542	0.587	0.727	
	4	0.343	0.275	0.650	
Enum	SOTA (2020)	0.494	0.394	0.668	

- For M1, compression gives comparative results with slight decrease in each degree.
- For M2, we find compression degree 3 to be optimal, degree 4 suffers greatly.

CLASSIFIER WITH LONG-TAIL SOLUTIONS

MODEL: EFFICIENTNETB0

OPTIMIZER: ADAM

LR SCHEDULER: STEPLR

EARLY STOPPING: 6 EPOCHS

CRITERION: CATEGORICAL CROSS ENTROPY

Carries - 604

Deep Carries - 2189

Periapical Lesions - 158 Impacted Teeth – 578

TOOTH PATCHES

Normal - 16595

CLASS IMBALANCE

Focal Loss

- Alpha=[3,1,13,3], Gamma=2
- Addresses class imbalance by emphasizing difficult-to-classify examples from less represented classes during training.

Intelligent Data subset selection

- Clustered normal class patches
 2000 clusters
- Pick patch closest to centroid as representative
- 16000 images reduced to 2000 representative images

Geometric Augmentations

- Random flips and rotations of rarer classes during training
- Done such that every class has approximately 2000 net images

FEATURE EXTRACTION WITH WAVELETS

- Extracted features using the pre final layer of the efficient-net model (1028)
- Concatenated them with:
 - flattened wavelet compressed features
 - o flattened wavelet compressed features passes through a linear layer
- Passed this concatenated vector through the final efficient-net layer and trained
- Compression ratios used = 3, 4
- Linear layer divisions used:
 - o For R=3: 9 (3196->348)
 - o For R=4: 3 (784->261)

LOSS PLOTS

RESULTS

Expt	Class-wise Accuracy(%)					Overall
Baseline	83.22	75.44	8.54	31.7	90.66	72.7%
Geometric augmentations	80.95	83.50	28.57	63.74	82.26	75.6%
Focal Loss	85.39	70.85	41.67	42.65	86.04	74.88%
Wavelets compression degree 3 w GA	91.35	80.24	24.78	34.59	87.32	78.9%
Wavelets compression degree 4 w GA	89.87	78.18	31.82	30.34	86.22	76.0%
(Number of Images)	604	2189	158	578	2000	5529

CONTRIBUTIONS

- Literature survey Everyone
- Wavelet compression for preprocessing Tejaswee
- M1, M2 Setup- Bhavya K., Annie
- Data Processing b/w models Bhavya S.
- M1, M2 experiments The Bhavyas
- M3 classifier + class imbalance correction Amruta, Sanjhi
- Wavelets for classifier Annie
- M3 experiments Sanjhi, Amruta, Annie

THANK YOU!

Questions?