Admitere * Universitatea Politehnica din București 2000 Disciplina: Algebră și Elemente de Analiză Matematică

1. Să se determine suma S a soluțiilor ecuației $x^3 - 4x^2 = 5x$.

a)
$$S = 0$$
; b) $S = 6$; c) $S = 4$; d) $S = \sqrt{2}$; e) $S = 5$; f) $S = 2$.

Soluție. Din relațiile lui Viete rezultă $x_1 + x_2 + x_3 = 4$.

2. Să se calculeze $L = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{k+1}{10^k}$.

a)
$$L = \infty$$
; b) $L = \frac{10}{9}$; c) $L = \frac{10}{81}$; d) $L = \frac{1000}{9}$; e) $L = \frac{100}{81}$; f) $L = \frac{9}{10}$.

Soluție. Avem
$$S_n = \sum_{k=0}^n (k+1)(\frac{1}{10})^k$$
. Fie $f(x) = \sum_{k=0}^n x^{k+1}$. Pentru $x \neq 1$ avem suma unei

progresii geometrice de rație x deci $f(x) = \frac{x^{n+2} - x}{x - 1}$. Derivând obținem $f'(x) = \sum_{k=0}^{n} (k+1)x^k = \sum_{k=0}^{n} (k+1)x^k$

$$\frac{(n+1)x^{n+2} - (n+2)x^{n+1} + 1}{(x-1)^2}. \text{ Pentru } x = \frac{1}{10}, \text{ rezultă } S_n = \frac{\frac{n+1}{10^{n+2}} - \frac{n+2}{10^{n+1}} + 1}{(\frac{9}{10})^2}. \text{ Cum } \lim_{n \to \infty} \frac{n+1}{10^{n+2}} = 0,$$

3. Să se determine $m \in \mathbb{R}$ dacă ecuația $m(x+1) = e^{|x|}$ are exact două soluții reale și distincte.

a)
$$m \in (1, \infty)$$
; b) $m \in (-\infty, -e^2) \cup (1, \infty)$; c) $m \in (-\infty, -e^2] \cup [1, \infty)$;

d)
$$m \in (-\infty, -e^2) \cup (0, 1)$$
; e) nu există m ;

f) nici una dintre celelalte afirmații nu este adevărată.

Soluție. Cum x=-1 nu este soluție, ecuația se scrie $m=\frac{e^{|x|}}{x+1}$. Funcția $f:\mathbb{R}\setminus\{-1\}\to\mathbb{R},\ f(x)=\frac{e^{|x|}}{x+1}-m$ se scrie desfășurat

$$f(x) = \begin{cases} & \frac{e^{-x}}{x+1} - m, & x \in (-\infty, -1) \cup (-1, 0) \\ & \frac{e^{x}}{x+1} - m, & x \in [0, \infty) \end{cases} \Rightarrow f'(x) = \begin{cases} & -\frac{e^{-x}(x+2)}{(x+1)^2}, & x \in (-\infty, -1) \cup (-1, 0) \\ & \frac{e^{x} \cdot x}{(x+1)^2}, & x \in (0, \infty). \end{cases}$$

Pentru șirul lui Rolle se consideră valorile $\{-\infty, -2, -1, 0, \infty\} \subset \bar{\mathbb{R}}$,

$m \setminus x$	$-\infty$	-2	-1	0	∞	
f(x)	$-\infty$	$-m-e^2$	$-\infty \infty$	1-m	∞	Discuţie
$m \in (-\infty, -e^2)$	_	+	- +	+	+	$x_1 \neq x_2$
$m = -e^2$	_	0	- +	+	+	$x_1 = x_2 = -2$
$m \in (-e^2, 1)$	_	_	- +	+	+	nu are rădăcini
m=1	_	_	- +	0	+	$x_1 = x_2 = 0$
$m \in (1, \infty)$	_	_	- +	_	+	$x_1 \neq x_2$

Deci $m \in (-\infty, -e^2) \cup (1, \infty)$.

4. Să se calculeze
$$\lim_{x\to 2} \frac{x^3-8}{x^2-4}$$
.

a)
$$-4$$
; b) 2; c) 3; d) ∞ ; e) 0; f) 1.

Soluţie. Avem
$$\lim_{x\to 2} \frac{(x-2)(x^2+2x+4)}{(x-2)(x+2)} = 3.$$

5. Să se calculeze
$$\ell = \lim_{n \to \infty} \int_0^2 \frac{|x-n|}{x+n} dx$$
.

a)
$$\ell = 2$$
; b) $\ell = \infty$; c) $\ell = 1$; d) limita nu există; e) $\ell = 0$; f) $\ell = -3$.

Soluţie. Fie $I_n = \int_0^2 \frac{|x-n|}{x+n} dx$, pentru $n \ge 2$ avem

$$I_n = \int_0^2 \frac{n-x}{n+x} dx = \int_0^2 \left(\frac{2n}{x+n} - 1\right) dx = 2n \ln\left(1 + \frac{2}{n}\right) - 2 = \ln\left(1 + \frac{2}{n}\right)^{2n} - 2 = 4\ln\left(1 + \frac{2}{n}\right)^{n/2} - 2.$$

Deci $\lim_{n \to \infty} I_n = 4 \ln e - 2 = 4 - 2 = 2.$

6. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$. Să se calculeze $B = \frac{1}{2} (A^2 + A)$.

a)
$$\binom{25}{58}$$
; b) $\binom{35}{58}$; c) $\binom{85}{52}$; d) $\binom{38}{55}$; e) $\binom{00}{00}$; f) $B = \frac{1}{2}A$.

Soluție. Obținem
$$A^2 = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 8 \\ 8 & 13 \end{pmatrix}; B = \frac{1}{2} \begin{pmatrix} 6 & 10 \\ 10 & 16 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 5 & 8 \end{pmatrix}.$$

7. Să se determine n natural dacă $C_n^4 = \frac{5}{6}n(n-3)$.

a)
$$n=3;$$
b) $n=5;$ c) $n=4;$ d) $n=6;$ e) $n=12;$ f) nu există $n.$

Soluție. Avem
$$n \ge 4$$
 și $\frac{n(n-1)(n-2)(n-3)}{24} = \frac{5n(n-3)}{6} \Leftrightarrow (n-1)(n-2) = 20$, deci $n = 6$.

8. Să se determine două numere reale strict pozitive x și y astfel încât

$$x + y = xy = x^2 - y^2.$$

a)
$$x = \frac{3+\sqrt{5}}{2}$$
, $y = \frac{1+\sqrt{5}}{2}$; b) $x = \frac{3-\sqrt{5}}{2}$, $y = \frac{1+\sqrt{5}}{2}$; c) $x = 0, y = 0$; d) $x = \frac{3+\sqrt{5}}{2}$, $y = \frac{\sqrt{5}-1}{2}$; e) $x = 1, y = 0$; f) $x = \frac{1}{2}$, $y = -1$.

d)
$$x = \frac{3+\sqrt{5}}{2}$$
, $y = \frac{\sqrt{5}-1}{2}$; e) $x = 1, y = 0$; f) $x = \frac{1}{2}$, $y = -1$

Soluție. Din $\begin{cases} x,y>0, & x+y=xy=(x-y)(x+y) \\ x+y=(x-y)(x+y) \end{cases}$ rezultă x-y=1. Din x+y=xy, prin înlocuirea lui x-y=1.

$$y+1+y=(y+1)y \Leftrightarrow y^2-y-1=0 \Leftrightarrow y \in \left\{\frac{1\pm\sqrt{5}}{2}\right\}.$$

Dar
$$y > 0$$
, deci $y = \frac{1 + \sqrt{5}}{2}$ şi $x = \frac{3 + \sqrt{5}}{2}$.

- 9. Câte numere complexe distincte z verifică relația $z \cdot \bar{z} = 1$?
 - a) 3; b) două; c) nici unul; d) 1; e) 4; f) o infinitate.

Soluție. Avem $z \cdot \bar{z} = 1 \Leftrightarrow |z|^2 = 1 \Leftrightarrow |z| = 1$. Deci $z = \cos \alpha + i \sin \alpha$; $\alpha \in [0, 2\pi)$ și deci o infinitate de soluții.

- 10. Să se determine $m \in \mathbb{R}$ dacă inecuația $e^{2x} + me^x + m 1 > 0$ este verificată pentru orice x real.
 - a) nu există m; b) $m \in (1, \infty)$; c) m = 1; d) $m \in (-\infty, 1]$; e) $m \in [-1, 1]$; f) $m \in [1, \infty)$.

Soluție. Notăm $e^x = y$, iar condiția devine $y^2 + my + m - 1 > 0, \forall y > 0$. Descompunem $y^2 + my + m - 1 = 0$ $(y-1)(y+1)+m(y+1)=(y+1)(y-1+m)>0, \forall y>0.$ Dacă $y\to 0$, se obține condiția necesară (care este și suficientă) $m \geq 1$.

11. Să se determine câtul împărțirii polinomului $f = X^3 + X^2 + 2X - 3$ la $q = X^2 + 2X - 3$.

a)
$$X + 1$$
; b) $X - 1$; c) $X + 2$; d) X^2 ; e) $X + 3$; f) $X + 4$.

Soluție. Aplicând teorema împărțirii cu rest obținem $X^3 + X^2 + 2X - 3 = (X^2 + 2X + 3)(X - 1) + X$, deci câtul este X-1.

- 12. Să se calculeze f'(1) pentru funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{x-1}{x^2+1}$
 - a) 2; b) 0; c) 1; d) $\frac{3}{2}$; e) $\frac{1}{2}$; f) -3.

Soluţie. Avem
$$f'(x) = \frac{x^2 + 1 - 2x^2 + 2x}{(x^2 + 1)^2} = \frac{-x^2 + 2x + 1}{(x^2 + 1)^2}$$
. Deci $f'(1) = \frac{1}{2}$.

Enunţuri şi soluţii * Admiterea U.P.B. 2000 * M1A - 2

13. Să se calculeze $E = 0,02 \cdot \frac{314}{3,14} \cdot \sqrt{\frac{9}{4}}$.

a)
$$E = 30$$
; b) $E = \pi$; c) $E = 3$; d) $E = \sqrt{3}$; e) $E = 1$; f) $E = 300$.

Soluţie.
$$E = \frac{2}{100} \cdot \frac{314}{314} \cdot 100 \cdot \frac{3}{2} = 3.$$

14. Să se rezolve ecuația $\sqrt{x^2 + 1} - 1 = 0$.

a)
$$x_{1,2} = \pm \sqrt{2}$$
; b) $x_{1,2} = \pm 1$; c) $x = 2$; d) $x_1 = 0$, $x_2 = \sqrt{2}$; e) $x = 0$; f) $x_{1,2} = \pm i$.

Soluţie. Avem $\sqrt{x^2+1}=1$. Prin ridicare la pătrat, egalitatea devine $x^2+1=1 \Leftrightarrow x^2=0$, deci x=0.

- 15. Să se calculeze suma primilor 20 de termeni ai unei progresii aritmetice (a_n) , $n \ge 1$, știind că $a_6 + a_9 + a_{12} + a_{15} = 20$.
 - a) 100; b) 50; c) nu se poate calcula; d) 0; e) 20; f) 2000.

Soluție. Din $a_6 + a_9 + a_{12} + a_{15} = 20$, rezultă $a_1 + 5r + a_1 + 8r + a_1 + 11r + a_1 + 14r = 20$, deci $2a_1 + 19r = 10$. Prin urmare $S_{20} = \frac{(a_1 + a_{20})20}{2} = (2a_1 + 19r)10 = 100$.

16. Se consideră mulțimea $M = \{x^2 + x + 1 \mid x \in \mathbb{R}\}$. Atunci

a)
$$M = (\frac{3}{4}, \infty)$$
; b) $M = [\frac{3}{4}, \infty)$; c) $M = (-\infty, \frac{3}{4})$; d) $M = [-\frac{3}{4}, \frac{3}{4}]$; e) $M = \mathbb{R}$; f) $M = \emptyset$.

Soluție. Mulțimea valorilor funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = ax^2 + bx + c$, a > 0 este $\left[-\frac{\triangle}{4a}, \infty\right)$. În cazul nostru $\operatorname{Im} f = \left[\frac{3}{4}, \infty\right)$.

17. Să se determine elementul neutru pentru legea de compoziție

$$x \circ y = xy + 3x + 3y + 6$$

definită pe mulțimea \mathbb{R} .

a)
$$-2$$
; b) 1; c) 0; d) 3; e) nu există; f) -4 .

Soluţie. Din $x \circ e = x$ şi $e \circ x = x, \forall x \in \mathbb{R}$ rezultă $xe + 3x + 3e + 6 = x, \forall x \in \mathbb{R} \Leftrightarrow (x+3)(e+2) = 0, \forall x \in \mathbb{R} \Leftrightarrow e = -2.$

18. Să se calculeze aria mulțimii

$$M = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 0 \le x \le 1, \ 0 \le y \le xe^{x+1} \}.$$

a)
$$\ln 2$$
; b) e^2 ; c) $2e$; d) $e + 1$; e) e ; f) $2 \ln 2$.

Soluție. Folosind integrarea prin părți rezultă aria

$$A = \int_0^1 xe^{x+1} dx = xe^{x+1} \Big|_0^1 - \int_0^1 e^{x+1} dx = e^2 - e^2 + e = e.$$