

ELEMENTS DE CORRECTION DES EXERCICES DU TD3 DE TRAITEMENT DU SIGNAL Sciences du Numérique - Première année

Exercice 1 : Effet de l'échantillonnage

Soit le signal suivant : $x(t) = \cos(2\pi f_0 t)$, $f_0 = 10$ kHz.

1. Tracer la transformée de Fourier de x(t): X(f). La transformée de Fourier de x(t), X(f), est tracée sur la figure 1.

FIGURE 1 – Transformée de Fourier de $x(t) = \cos(2\pi f_0 t)$, $f_0 = 10$ kHz.

- 2. Est-il possible d'échantillonner x(t) sans perte d'information? Si oui à quelle condition? Il est possible d'échantillonner x(t) sans perte d'information en utilisant une fréquence d'échantillonnage $F_e > 2f_0 = 20$ kHz (respect de la condition de Shannon).
- 3. Tracer, entre 0 et F_e , la transformée de Fourier de x(t) échantillonné à $T_e = 1/F_e$ quand :
 - (a) $F_e = 30 \text{ kHz}.$
 - (b) $F_e = 8 \text{ kHz}.$

avec $f_1 = 2$ kHz pour $F_e = 8$ kHz.

La transformée de Fourier de x(t), échantillonné à $T_e = 1/F_e$, est tracée entre 0 et F_e sur la figure 2 quand $F_e = 30$ kHz et sur la figure 3 quand $F_e = 8$ kHz.

FIGURE 2 – Transformée de Fourier de $x(t) = \cos(2\pi f_0 t), f_0 = 10$ kHz, $F_e = 30$ kHz.

FIGURE 3 – Transformée de Fourier de $x(t) = \cos(2\pi f_0 t)$, $f_0 = 10$ kHz, $F_e = 8$ kHz.

4. A partir des échantillons nous souhaitons reconstruire x(t) par filtrage passe-bas à $F_e/2$. Quels seront les signaux obtenus pour chaque fréquence d'échantillonnage précédente? Par filtrage passe-bas à $F_e/2$, nous obtenons $x(t) = \cos(2\pi f_0 t)$, avec $f_0 = 10$ kHz pour $F_e = 30$ kHz, et $x(t) = \cos(2\pi f_1 t)$,

Exercice 2: Echantillonneur moyenneur

L'échantillonneur moyenneur est une méthode pratique d'échantillonnage qui consiste à calculer, toutes les T_e secondes (période d'échantillonnage), la valeur moyenne du signal pendant un intervalle de temps θ ($\theta \ll T_e$) et à affecter cette valeur moyenne à l'échantillon discrétisé :

$$y(kT_e) = \frac{1}{\theta} \int_{kT_e-\theta}^{kT} x(u) du$$
$$x_{ech}(t) = \sum_{k} y(kT_e) \, \delta(t - kT_e)$$

1. Démontrer que le signal échantillonné $x_{ech}(t)$ peut se mettre sous la forme :

$$x_{ech}(t) = \frac{1}{\theta} \left[\Pi_{\theta} \left(t \right) * x \left(t - \frac{\theta}{2} \right) \right] . \coprod_{T_e} (t)$$

où $\Pi_{\theta}\left(t\right)$ et $\coprod_{T_{e}}\left(t\right)$ représentent respectivement la fenêtre rectangulaire de largeur θ et le peigne de Dirac de période T_{e} . $x_{ech}(t) = \sum_{k} y\left(kT_{e}\right) \delta\left(t-kT_{e}\right) = y(t) \sum_{k} \delta\left(t-kT_{e}\right) = y(t)$. $\coprod_{T_{e}}\left(t\right)$. Reste à montrer que $y(t) = \frac{1}{\theta}\left[\Pi_{\theta}\left(t\right) * x\left(t-\frac{\theta}{2}\right)\right] : y(t) = \frac{1}{\theta} \int_{t-\theta}^{t} x(u) du = \frac{1}{\theta} \int_{-\infty}^{+\infty} x(u) \times \Pi_{\theta}\left(u-\left(t-\frac{\theta}{2}\right)\right) du = \frac{1}{\theta} \int_{-\infty}^{+\infty} x(u) \times \Pi_{\theta}\left(t-\frac{\theta}{2}\right) - u\right) du = \frac{1}{\theta} \left(x * \Pi_{\theta}\right) \left(t-\frac{\theta}{2}\right)$

2. En déduire la transformée de Fourier correspondante $X_{ech}\left(f\right).$

$$X_{ech}(f) = Y(f) * \frac{1}{T_e} \coprod_{1/T_e} (f) = \frac{1}{T_e} \sum_{k} Y\left(f - \frac{k}{T_e}\right)$$
, avec $Y(f) = sinc(\pi f\theta)X(f)e^{-j\pi f\theta}$

3. En considérant un signal à support spectral borné $2\Delta f$ et en prenant en compte que la fonction $sinc(\pi\theta f)$ peut être supposée constante sur l'intervalle $\left[-\frac{1}{3\theta},\frac{1}{3\theta}\right]$

$$sinc(\pi\theta f) = \frac{\sin(\pi\theta f)}{\pi\theta f} \approx 1 \text{ pour } f \in \left[-\frac{1}{3\theta}, \frac{1}{3\theta} \right]$$

- (a) quelle(s) condition(s) doit vérifier θ pour que le signal x(t) puisse être restitué par filtrage de $x_{ech}(t)$? Il faut que $\Delta f \leq \frac{1}{3\theta} \Leftrightarrow \theta \leq \frac{1}{3\Delta f}$
- (b) Dans ces conditions peut-on échantillonner à la fréquence de Shannon? Après filtrage antialiasing on pourra prendre F_e tel que $\Delta f < \frac{F_e}{2} = \frac{1}{2T_e} \Leftrightarrow T_e < \frac{1}{2\Delta f}$