BPR: Bayesian Personalized Ranking

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, Lars Schmidt-Thieme

Presenter: 山田倫太郎

February 17, 2020

研究背景

推薦システムにおいて個人の嗜好を予測することは重要

大別すると2種類のデータが考えられる

- Explicit feedback
 - ユーザの興味が明示的に与えられているデータ 例) Amazon の☆や facebook の「いいね」
- Implicit feedback
 - ▶ ユーザの興味が明示的に与えられてないデータ 例) 購入履歴や閲覧履歴

目標

Implicit feedback を元にユーザの嗜好をランキングする

従来法

閲覧されたか否かを {0,1} のラベルで表現

u: ユーザ

i: アイテム

+: 閲覧済み

?: 未閲覧

問題点

未閲覧のデータ中で以下を区別できない

- ユーザの興味がないもの
- ユーザの興味があるが閲覧していないもの

提案手法

方針

ユーザの選好関係をモデル化する

仮定: 閲覧済みアイテムの興味 > 未閲覧アイテムの興味

記法

- *U*: ユーザの全体集合
- I: アイテムの全体集合
- U_i^+ : アイテム i を閲覧したユーザの全体集合
- *I*_u⁺: ユーザ u が閲覧したアイテムの全体集合
- D_s : フィードバックが得られているデータセット
 - $D_s := \{(u, i, j) \mid i \in I_u^+ \land j \in I \backslash I_u^+ \}$
- >_u: ユーザ u の嗜好情報
- Θ: モデルパラメータ
- x_{ui}: ユーザ u のアイテム i の選好度合い

 x_{ui} は推論モデルによって既定される値なのでパラメータ Θ に依存

 D_s よりパラメータ Θ を導出したいので $p(\Theta \mid D_s)$ を最適化

モデリング

ベイズの定理より次の式が導かれる:

$$p(\Theta \mid D_s) \propto p(D_s \mid \Theta)p(\Theta)$$

ユーザ,アイテムの好みが独立であると仮定し,尤度を以下で定める:

$$\prod_{(u,i,j)\in D_s} p(i>_u j\mid\Theta)$$

ここでシグモイド関数を σ として:

$$p(i>_u j\mid\Theta)\coloneqq\sigma(\hat{x}_{ui}-\hat{x}_{uj})$$

目的関数: BPR-Opt

- 事前分布 $p(\Theta)$ は正規分布 $N(0, \lambda_{\Theta}I)$ とする
- MAP 推定を行う

$$\hat{\Theta} = \underset{\Theta}{\operatorname{arg max}} \ln p(\Theta \mid D_s)$$

$$= \underset{\Theta}{\operatorname{arg max}} \ln p(D_s \mid \Theta)p(\Theta)$$

$$= \underset{\Theta}{\operatorname{arg max}} \ln \prod_{(u,i,j)\in D_s} \sigma(\hat{x}_{ui} - \hat{x}_{uj})p(\Theta)$$

以下の目的関数を最大化する

BPR-Opt :=
$$\sum_{(u,i,j)\in D_s} \ln \sigma(\hat{x}_{ui} - \hat{x}_{uj}) - \frac{1}{2\lambda_{\Theta}} \|\Theta\|^2$$

目的関数: BPR-Opt

• BPR-Opt を微分すると

$$\frac{\partial \text{BPR-Opt}}{\partial \Theta} = \sum_{(u,i,j) \in D_s} \frac{\partial}{\partial \Theta} \ln \sigma (\hat{x}_{ui} - \hat{x}_{uj}) - \frac{1}{2\lambda_{\Theta}} \frac{\partial}{\partial \Theta} \|\Theta\|^2$$
$$= \frac{-e^{\hat{x}_{ui} - \hat{x}_{uj}}}{1 + e^{\hat{x}_{ui} - \hat{x}_{uj}}} \cdot \frac{\partial}{\partial \Theta} (\hat{x}_{ui} - \hat{x}_{uj}) - \frac{\Theta}{\lambda_{\Theta}}$$

• $(u,i,j) \in D_s$ は膨大となりやすいので確率的勾配法を用いて解く

学習アルゴリズム: Learn-BPR

- 1: **procedure** Learn-BPR(D_s, Θ)
- 2: initialize Θ
- 3: repeat
- 4: draw (u,i,j) from D_s

5:
$$\Theta \longleftarrow \Theta + \alpha \left(\frac{-e^{\hat{x}_{ui} - \hat{x}_{uj}}}{1 + e^{\hat{x}_{ui} - \hat{x}_{uj}}} \cdot \frac{\partial}{\partial \Theta} (\hat{x}_{ui} - \hat{x}_{uj}) - \frac{\Theta}{\lambda_{\Theta}} \right)$$

- 6: **until** convergence
- 7: return $\hat{\Theta}$
- 8: end procedure
- ・ $\frac{\partial}{\partial \Theta}(\hat{x}_{ui} \hat{x}_{uj})$ については次に示す

xui の具体例1: Matrix Facterization

次元削減を行って \hat{x}_{ui} を推定する

$$\hat{x}_{ui} = \langle w_u, h_i \rangle$$

$$= \sum_{f=1}^k w_{uf} \cdot h_{if}$$

$$\frac{\partial}{\partial \Theta} (\hat{x}_{ui} - \hat{x}_{uj}) = \begin{cases} (h_{if} - h_{jf}) & \text{if } \theta = w_{uf} \\ w_{uf} & \text{if } \theta = h_{if} \\ -w_{uf} & \text{if } \theta = h_{jf} \\ 0 & \text{else} \end{cases}$$

xui の具体例 2: Adaptive k-Nearest Neighbor

観測済みアイテムとの類似度をもとに \hat{x}_{ui} を推定する

$$\hat{x}_{ui} = \sum_{i \in I_u^+ \land l \neq i} c_{il}$$

$$\frac{\partial}{\partial \Theta}(\hat{x}_{ui} - \hat{x}_{uj}) = \begin{cases} +1 & \text{if } \theta \in \{c_{il}, c_{li}\} \land l \in I_u^+ \land l \neq i \\ -1 & \text{if } \theta \in \{c_{jl}, c_{lj}\} \land l \in I_u^+ \land l \neq j \\ 0 & \text{else} \end{cases}$$

実験

- Rossmann オンラインショップの購入履歴から、ユーザが次に買いたい品物を予測
- ② Netflix の過去の映画の評価履歴をもとに、与えられた映画に評価を行うかを予測

	ユーザー(人)	アイテム(個)	観測済み(個)
Rossmann	10,000	4,000	436,612
Netflix	10,000	5,000	565,738

• ROC 曲線の AUC を評価

比較手法

- BPR-MF
 - ▶ パラメータの更新に BPR-Opt を用いた MF
- BPR-kNN
 - ▶ パラメータの更新に BPR-Opt を用いた k 近傍
- SVD-MF
 - ▶ SVD(特異値分解)を適応したもの
- WR-MF
 - ▶ SVD(特異値分解)の過学習を抑えるように改良したもの
- Cosine-kNN
 - コサイン類似度を用いた k 近傍法
- most popular
 - ▶ 学習データの中で最も人気のものを推薦する
- np_{max}
 - ▶ テストデータの中で最も人気のものを推薦する

結果

実験において提案手法が他のモデルよりも優れた結果を示した

まとめ

BPR の手法

- 閲覧済みアイテムは未閲覧アイテムより興味があると仮定を置く
- ユーザのアイテム同士の選好関係をモデル化する
- パラメータ最適化に確率的勾配法を用いる

結果

BPR によるパラメータ最適化が他のモデルよりも優れている