MA 4

Бабаев Минходж Зафарович

Признак Лейбница. Пусть $b_n \geq 0, \; \{b_n\}$ — монотонно (нестрого) убывающая последовательность и $b_n \to 0, n \to \infty$. Тогда ряд $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ сходится и верна следующая оценка на остаток этого ряда:

Признак Дирихле. Пусть

- 1) существует M>0, что $\forall n\in\mathbb{N}$ $\left|\sum_{k=1}^n a_k\right|\leq M$ (т.е. все частичные суммы ограничены сверхну одной константой)
- 2) последовательность $\{b_n\}$ (нестрого) монотонная (возрастающая или убывающая)

Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Признак Абеля. Пусть

- 1) ряд $\sum_{n=1}^{\infty} a_n$ сходится 2) последовательность $\{b_n\}$ (нестрого) монотонная (возрастающая или убывающая)
- 3) $\exists M > 0$: $\forall n \in \mathbb{N} |b_n| \leq M$

Тогда ряд $\sum\limits_{n=1}^{\infty}a_{n}b_{n}$ сходится.

$$|\sum \sin n| \leq rac{1}{\sin rac{1}{2}}$$

$$|\sum \cos n| \leq \tfrac{1}{\sin \frac{1}{2}}$$

Задание 1: $\sum_{n=1}^{\infty} \frac{\cos n}{n^p}$

Пусть $a_n = rac{\cos n}{n^p}$. Рассмотрим случаи

1)
$$p \leq 0$$
 $a_n o \infty, n o \infty$

2) $p>0\Rightarrow\sum_{n=1}^{\infty}rac{\cos n}{n^{p}}$ сходится по признаку Дирихле, т/к

2.1)
$$|\sum \cos n| \leq \frac{1}{\sin \frac{1}{2}}$$

2.2)
$$\frac{1}{n^p}$$
 - монотонна

2.3)
$$\frac{1}{n^p} \to 0$$

Рассмотрим ряд $|a_n|$

1) при р > 1 $|\frac{\cos n}{n^p}| \le \frac{1}{n^p}, \sum \frac{1}{n^p}$ при р > 1 сходится \Rightarrow по Вейерштрассу ряд $|\frac{\cos n}{n^p}|$ сходится

2)
$$p \leq 1$$
 $\frac{|\cos n|}{n^p} \geq \frac{\cos^2 n}{n^p} = \frac{\cos 2n}{2n^p} - \frac{1}{2n^p}$. Так как $\sum \frac{\cos 2n}{2n^p}$ сходится и $\sum \frac{1}{2n^p}$ расходится $\frac{|\cos n|}{n^p}$

Ответ:

р > 1 сходится абсолютно

0 сходится условно

 $p \leq$ 0 расходится

Задание 2:
$$\sum_{n=1}^{\infty} \sin\left(\frac{\sin n}{n}\right)$$

Воспользуемся

$$\sin x \sim x, x \rightarrow 0$$

$$\sin\left(rac{\sin n}{n}
ight)\sim rac{sinn}{n}$$
, при $n o\infty$, ряд $rac{sinn}{n}$ сходится по признаку Дирихле $|\sin\left(rac{\sin n}{n}
ight)|\sim |rac{sinn}{n}|$, при $n o\infty$, ряд $|rac{sinn}{n}|$ расходится, т/к $|rac{sinn}{n}|\geq rac{\sin^2 n}{n}=rac{1}{2}\frac{1}{n}-rac{1}{2}\frac{\cos 2n}{n}$. Первое слагаемое расходится, а второе сходится по признаку Дирихле

Следовательно, исходный ряд сходится условно

Задание 3:
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{\sqrt[5]{n}}\right) \operatorname{arctg}\left(\frac{\sin n}{n}\right)$$
 $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{\sqrt[5]{n}}\right) \operatorname{arctg}\left(\frac{\sin n}{n}\right) \sim \sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}} \left(\frac{\sin n}{n}\right) \Rightarrow a_n = \frac{1}{\sqrt[5]{n}} \left(\frac{\sin n}{n}\right)$ $\frac{1}{\sqrt[5]{n}} \left(\frac{\sin n}{n}\right) = \frac{\sin n}{n^{\frac{6}{5}}}$, при $n \to \infty$ такой ряд сходится сходится по Дирихле. $\left|\frac{\sin n}{n^{\frac{6}{5}}}\right| \leq \frac{1}{n^{\frac{6}{5}}}, \sum_{n=1}^{\infty} \frac{1}{n^p}, p > 1 \Rightarrow$ ряд сходится

Следовательно, ряд сходится абсолютно

Задание 4:
$$\prod_{n=1}^{\infty} \frac{n^2+n+2}{n^2+3n+1}$$

$$\prod p_n \sim \sum \ln p_n \Rightarrow \prod_{n=1}^\infty rac{n^2+n+2}{n^2+3n+1} \sim \sum_{n=1}^\infty \ln rac{n^2+n+2}{n^2+3n+1}$$

$$\ln\left(\frac{n^2+n+2}{n^2+3n+1}\right) = -\ln\left(1 + \frac{2n-1}{n^2+n+2}\right)$$

Так как
$$rac{2n-1}{n^2+n+2} o 0$$
 при $n o\infty\Rightarrow\ln\left(1+rac{2n-1}{n^2+n+2}
ight)\simrac{2n-1}{n^2+n+2}\geqrac{n}{2n^2}=rac{1}{2n},\sumrac{1}{n^p},p\leq 1\Rightarrow$ исходный ряд расходится \Rightarrow расходится абсолютно