DEBLAECKER Jérémy B2A Info TP Assembleur :

Table des matières

Exercice 1 : De transistor aux portes logiques	. 1
Partie 1 : Du transistor à la porte NAND	
Question 1.a:	
Partie 3 : De la porte NAND aux autres portes logiques	
Question 1.I:	.3
Exercice 2 : L'additionneur	.6
Partie 1 : L'additionneur 1 bit	.6
Question 2.b : Réutilisation d'un circuit	.6
Question 2.c : L'additionneur 1 bit	.6
Partie 3 : L'additionneur 8 bits	.6
Question 2.e à f	.6
Exercice 3 : Le multiplexeur	. 7
Question 3.a : 2x1-mux	. 7
Question 3.b : 2x8-mux	. 7
Question 3.c : 2x3-mux	٤.
Question 3.d : 8x8-mux	.8

Exercice 1 : De transistor aux portes logiques

Pour consulter mes circuits vous pouvez vous rendre sur : https://circuitverse.org/users/28310

Partie 1 : Du transistor à la porte NAND

Question 1.a:

Lorsque A (ou B) est égal à 0, le transistor associé empêche le courant de passer entre la source et le drain, donc Out n'arrive pas à se connecter à vss, le transistor du haut associé laisse le courant passer entre vdd qui vaut 1 et out, out prendra la valeur 1.

Enfin, lorsque A et B valent 1, les transistors du haut empêchent le courant de passer, ce qui déconnecte out. Les transistors A et B du bas laissent passer le courant jusqu'à out, qui vaut 0.

Partie 3 : De la porte NAND aux autres portes logiques

Question 1.l:

NOT

AND

OR

NOR

XOR

XNOR

XNOR

Exercice 2: L'additionneur

Partie 1: L'additionneur 1 bit

Question 2.b : Réutilisation d'un circuit

Question 2.c: L'additionneur 1 bit

Partie 3: L'additionneur 8 bits

Question 2.e à f

Exercice 3 : Le multiplexeur

Question 3.a: 2x1-mux

Question 3.b : 2x8-mux

Deblaecker Jérémy B2A

Question 3.c: 2x3-mux

Question 3.d: 8x8-mux

