CS601: Software Development for Scientific Computing

Autumn 2023

Week2: Real Numbers, Programming Environment, ..

Recap: Toward Scientific Software

Real Numbers R

- Most <u>scientific software</u> deal with Real numbers.
 Our toy code dealt with Reals
 - Numerical software is scientific software dealing with Real numbers
- Real numbers include rational numbers (integers and fractions), irrational numbers (pi etc.)
- Used to represent values of <u>continuous quantity</u> such as time, mass, velocity, height, density etc.
 - Infinitely many values possible
 - But computers have limited memory. So, have to use approximations.

3

Representing Real Numbers

- Real numbers are stored as floating point numbers
 (floating point system is a scheme to represent real numbers)
- E.g. floating point numbers:
 - $-\pi = 3.14159$,
 - $-6.03*10^{23}$
 - $-1.60217733*10^{-19}$

3-digit Calculator

Suppose base, b=10 and

•
$$x = \pm d_0 \cdot d_1 d_2 \times 10^e$$
 where
$$\begin{cases} 1 \le d_0 \le 9, \\ 0 \le d_1 \le 9, \\ 0 \le d_2 \le 9, \\ -9 \le e \le 9 \end{cases}$$

- precision = length of mantissa
 - What is the precision here?
- Exercise: What is the smallest positive number?
- Exercise: What is the largest positive number?
- Exercise: How many numbers can be represented in this format?
- Exercise: When is this representation not enough?

- Precision (p) Length of mantissa
 - E.g. p=3 in 1.00 x 10⁻¹
- Unit roundoff (u) smallest positive number where the computed value of 1+u is different from 1
 - E.g. suppose p=4 and we wish to compute 1.0000+ 0.0001=1.0001
 - But we can't store the exact result (since p=4). We end up storing 1.000.
 - So, computed result of 1+u is same as 1
 - Suppose we tried adding 0.0005 instead. 1.0000+0.0005=1.0005
 Now, round this: 1.001
 - ⇒ u =0.0005
- Machine epsilon (ϵ_{mach}) smallest a-1, where a is the smallest representable number greater than 1
 - E.g. consider 1.001 1.000 = 0.001.
 - \Rightarrow usually $\epsilon_{mach} = 2 * u$

Forward error and backward error

Comp(f(x)) =
$$(1+\epsilon_1)$$
f($(1+\epsilon_2)$ x),
where $\epsilon_i \le u$ (u is unit roundoff)

Comp(f(x)) is the computed value i.e. machine representable value of f(x).

Suppose
$$\epsilon_2$$
 is zero. Then $\frac{\text{Comp}(f(x)) - f(x)}{f(x)} = \epsilon_1$

Forward error example

```
Let y=\sqrt{2}, z=y^2 and y=\sqrt{2} implemented as: y=\operatorname{sqrt}(2); z=y^2 implemented as: z=y*y; with double precision floating point system
```

Then forward error, $\frac{comp(f(x))-f(x)}{f(x)}$, cannote: f(x) = z = 2, and Comp(f(x)) = y*y) y:1.41421356237 z:2 res1=z-2:4.4408920985e-16 res2=res1/z:2.22044604925e-16

can be calculated

Absolute error / relative error

Forward error

(also happens to be u, unit rouondoff, for double)

Backward error example

Let $z = \sin(2\pi)$. Then forward error is infinity!

Subtract x with a multiple of 2π to make $0 \le x < 2\pi$ And then compute $\sin(x)$ to get the absolute error for $x \ge 2\pi$ at most u|x| (u is unit roundoff)

This is *perturbing* the argument x (*argument reduction*). Instead of computing sin(x) we are computing $sin(1+\epsilon_2)x$). This is example of backward error.

IEEE 754 Floating Point System

Prescribes single, double, and extended precision formats

Precision	u	Total bits used (sign, exponent, mantissa)
Single	6x10 ⁻⁸	32 (1, 8, 23)
Double	2x10 ⁻¹⁶	64 (1, 11, 52)
Extended	5x10 ⁻²⁰	80 (1, 15, 64)

IEEE 754 Floating Point System

 if exponent bits e₁-e₁₁ are not all 1s or 0s, then the normalized number

$$n = \pm (1.m_1 m_2..m_{52})_2 \times 2^{(e_1 e_2..e_{11})_2 - 1023}$$

- Machine epsilon is the gap between 1 and the next largest floating point number. $2^{-52} \approx 10^{-16}$ for double.
- Exercise: What is minimum positive normalized double number?
- Exercise: What is maximum positive normalized double number?

IEEE 754 Floating Point System

if exponent bits e₁-e₁₁ are all 0s, then:
 the subnormal number

$$n = \pm (0.m_1 m_2..m_{52})_2 \times 2^{(e_1 e_2..e_{11})_2 - 1022}$$

- if exponent bits e_1 - e_{11} are all 1s, then: we can get –inf, NaN, or +inf based on value of $m_1m_2..m_{52}$
 - If any m is non-zero, the number is NaN (not a number)

IEEE 754 Floating Point – Misc..

- +0, -0, Inf, and NaN -
 - Stop your program when you see a NaN (indicative of a bug)
 - How to check if a number is NaN?

if
$$(x == x)$$
 is false

Exercise: Give an example when you get a NaN?

- Rounding modes Round up, Round down, Round to nearest, Round towards zero
 - Default is round to nearest. Can be set using compiler options and library methods. Avoid changing rounding modes.
 - Can use this to flush out bugs! (change round modes and results shouldn't change drastically).

IEEE 754 Floating Point Arithmetic

- Order is important
 - Floating point arithmetic is not associative
 - (x+y)+z not the same as x+(y+z)
- Explicit coding of textbook formula may not be the best option to solve
 - $-x^{2}-2px-q=0$ p and q are positive: p=12345678, q=1
 - Exercise: find the minimum of the roots.
- Subtracting approximations of two nearby numbers results in a bad approximation of the actual difference – catastrophic cancellation