Heuristic Two-level Logic Optimization

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Module 1

- Objective
 - **▲**Data structures for logic optimization
 - **▲**Data representation and encoding

Some more background

- Function f ($x_1, x_2, ..., x_i, ..., x_n$)
- Cofactor of f with respect to variable x_i

$$Af_{xi} = f(x_1, x_2, ..., 1, ..., x_n)$$

Cofactor of f with respect to variable x_i'

$$\Delta f_{xi'} = f(x_1, x_2, ..., 0, ..., x_n)$$

Boole's expansion theorem:

$$\triangle f(x_1, x_2, ..., x_i, ..., x_n) = x_i fx_i + x_{i'} fx_{i'}$$

▲ Also credited to Claude Shannon

Example

- ◆ Function: f = ab + bc + ac
- Cofactors:

$$\Delta f_a = b + c$$

$$\blacktriangle f_{a'} = bc$$

Expansion:

$$Af = a f_a + a' f_{a'} = a(b + c) + a'bc$$

Unateness

- Function f ($x_1, x_2, ..., x_i, ..., x_n$)
- **◆** *Positive unate* in x_i when:

$$ightharpoonup f_{xi} \ge f_{xi}$$

◆ Negative unate in x_i when:

 A function is positive/negative unate when positive/ negative unate in all its variables

Operators

- **◆** Function f ($x_1, x_2, ..., x_i, ..., x_n$)
- ◆ Boolean difference of f w.r.t. variable x_i:

$$\triangle \partial f/\partial x_i \equiv f_{xi} \oplus f_{xi'}$$

Consensus of f w.r.t. variable x_i:

$$ightharpoonup C_{xi} \equiv f_{xi} \cdot f_{xi'}$$

Smoothing of f w.r.t. variable x_i:

$$\blacktriangle S_{xi} \equiv f_{xi} + f_{xi'}$$

Example f = ab + bc + ac

- **◆** The Boolean difference $\partial f/\partial a = f_a \oplus f_{a'} = b'c + bc'$
- The consensus $C_a = f_a \cdot f_{a'} = bc$
- **◆** The smoothing $S_a \equiv f_a + f_{a'} = b + c$

Generalized expansion

- Given:
 - ▲ A Boolean function f.
 - **△**Orthonormal set of functions:

$$\phi_i$$
, i = 1, 2, ..., k

Then:

$$\blacktriangle f = \sum_{i}^{k} \phi_{i} \cdot f_{\phi_{i}}$$

- ightharpoonup Where f_{ϕ_i} is a generalized cofactor.
- The generalized cofactor is not unique, but satisfies:

$$\blacktriangle f \cdot \varphi_i \subseteq f \varphi_i \subseteq f + \varphi_i$$

Example

- ◆ Function: f = ab + bc + ac
- Basis: ϕ_1 = ab and ϕ_2 = a' + b'.
- Bounds:
 - \triangle ab \subseteq f $_{\phi_1}\subseteq$ 1
 - \triangle a'bc + ab'c \subseteq f $_{\phi_2}$ \subseteq ab + bc + ac
- Cofactors: $f_{\phi_1} = 1$ and $f_{\phi_2} = a'bc + ab'c$.

$$f = \phi_1 f_{\phi_1} + \phi_2 f_{\phi_2}$$

= ab1 + (a' + b')(a'bc + ab'c)
= ab + bc + ac

Generalized expansion theorem

- Given:
 - **▲**Two function f and g.
 - ▲ Orthonormal set of functions: ϕ_i , i=1,2,...,k
 - **▲**Boolean operator **⊙**
- Then:
- Corollary:

Matrix representation of logic covers

- Representations used by logic minimizers
- Different formats
 - **▲**Usually one row per implicant
- **Symbols:**

•Encoding:

Advantages of positional cube notation

- Use binary values:
 - **▲**Two bits per symbols
 - **▲**More efficient than a byte (char)
- Binary operations are applicable
 - **▲**Intersection bitwise **AND**
 - **▲**Supercube bitwise **OR**
- Binary operations are very fast and can be parallelized

Example

•
$$f = a'd' + a'b + ab' + ac'd$$

```
    10
    11
    11
    10

    10
    01
    11
    11

    01
    10
    11
    11

    01
    11
    10
    01
```

Cofactor computation

- Cofactor of α w.r. to β
 - \triangle Void when α does not intersect β

$$A_1 + b_1' a_2 + b_2' \dots a_n + b_n'$$

- Cofactor of a set $C = \{ \gamma_i \}$ w.r. to β :
 - \triangle Set of cofactors of γ_i w.r. to β

Example f = a'b' + ab

10

- ◆Cofactor w.r. to 01 11
 - ▲First row void
 - ▲Second row 11 01
- •Cofactor $f_a = b$

	10	TO	
	01	01	
	QQ	00	
_	01	11	
	00	00	void
_	10	00	
	11	01	

10

Multiple-valued-input functions

- Input variables can take many values
- Representations:
 - **▲**Literals: set of valid values
 - **▲**Function = sum of products of literals
- Positional cube notation can be easily extended to mvi
- Key fact
 - ▲ Multiple-output binary-valued functions represented as mvi single-output functions

Example

*****2-input, 3-output function:

$$\blacktriangle f_1 = a'b' + ab$$

$$\blacktriangle f_2 = ab$$

$$\blacktriangle f_3 = ab' + a'b$$

•Mvi representation:

```
10 10 100
10 01 001
01 10 001
01 01 110
```

Module 2

- Objective
 - **△**Operations on logic covers
 - **▲**Application of the recursive paradigm
 - **▲**Fundamental mechanisms used inside minimizers

Operations on logic covers

- Recursive paradigm
 - **▲** Expand about a mv-variable
 - **▲** Apply operation to co-factors
 - **▲**Merge results
- Unate heuristics
 - **▲**Operations on unate functions are simpler
 - ▲ Select variables so that cofactors become unate functions
- Recursive paradigm is general and applicable to different data structures
 - **▲** Matrices and binary decision diagrams

Tautology

- Check if a function is always TRUE
- Recursive paradigm:
 - **▲** Expend about a mvi variable
 - ▲ If all cofactors are TRUE, then the function is a tautology
- Unate heuristics
 - ▲ If cofactors are unate functions, additional criteria to determine tautology
 - ▲ Faster decision

Recursive tautology

TAUTOLOGY:

▲The cover matrix has a row of all 1s. (Tautology cube)

NO TAUTOLOGY:

▲ The cover has a column of 0s. (A variable never takes a value)

TAUTOLOGY:

▲The cover depends on one variable, and there is no column of 0s in that field

Decomposition rule:

▲ When a cover is the union of two subcovers that depend on disjoint sets of variables, then check tautology in both subcovers

Example f = ab + ac + ab'c' + a'

- Select variable a
- Cofactor w.r. to a' is
 - 11 11 11 Tautology.
- Cofactor w.r. to a is:

01	01	11	
01	11	01	
01	10	10	
10	11	11	
01 01 01 00	01 11 10 11 00	11 01 10 11 00	_
11	Q 1	11	
11	11	01	
11	10	10	

Example (2)

- **Select variable b.**
- No column of 0 Tautology
- **Cofactor w.r. to b is:**11 11 11
- **◆Function is a** *TAUTOLOGY***.**

11 11 11 11	01 11 10 00	11 01 10 11	
11 11 11 00	00 00 00	11 01 10 00	
11	11	01	

(c) Giovanni De Micheli

Containment

- Theorem:
 - ightharpoonup A cover ightharpoonup C contains an implicant ightharpoonup C if and only if $ightharpoonup F_{\alpha}$ is a tautology
- Consequence:
 - **▲**Containment can be verified by the tautology algorithm

Example f = ab + ac + a'

- ◆ Check covering of bc : 11 01 01.
- Take the cofactor:

01	11	11
01	11	11
10	11	11

Tautology – bc is contained by f.

Complementation

Recursive paradigm

$$\blacktriangle f' = \chi f'_{\chi} + \chi' f'_{\chi'}$$

- Steps:
 - **▲**Select variable
 - **▲**Compute co-factors
 - **▲**Complement co-factors
- Recur until cofactors can be complemented in a straightforward way

Termination rules

- The cover F is void
 - **▲** Hence its complement is the universal cube
- The cover F has a row of 1s
 - ▲ Hence F' is a tautology and its complement is void
- The cover F consists of one implicant.
 - **▲** Hence the complement is computed by DeMorgan's law
- All implicants of F depend on a single variable, and there is not a column of 0s.
 - **▲** The function is a tautology, and its complement is void

Unate functions

Theorem:

▲If f is positive unate in x, then

$$\nabla f' = f'_x + \chi' f'_{\chi'}$$

▲If f is negative unate in x, then

$$\nabla f' = \chi f'_x + f'_{x'}$$

Consequence:

- **▼** Complement computation is simpler
- **▼** Follow only one branch in the recursion

Heuristics

▲ Select variables to make the cofactor unate

Select binate variable a

- Compute cofactors:
 - ▲F_{a'} is a tautology, hence F'_{a'} is void.
 - ▲F_a yields:

11 01 11 11 11 01

Example (2)

- Select unate variable b
- Compute cofactors:
 - ▲ F_{ab} is a tautology, hence F'_{ab} is void
 - $Arr F_{ab'} = 11 \ 11 \ 01$ and its complement is 11 \ 11 \ 10

- Re-construct complement:
 - ▲11 11 10 intersected with *Cube*(b') = 11 10 11 yields 11 10 10
 - ▲11 10 10 intersected with Cube(a) = 01 11 11 yields 01 10 10
- **◆** Complement: F' = 01 10 10

Example (3)

Recursive search:

Complement: a b'c'

(c) Giovanni De Micheli

Boolean cover manipulation summary

- Recursive methods are efficient operators for logic covers
 - **▲**Applicable to matrix-oriented representations
 - **▲**Applicable to recursive data structures like BDDs
- Good implementations of matrix-oriented recursive algorithms are still very competitive
 - **▲**Heuristics tuned to the matrix representations

Module 3

- Objectives
 - **▲**Heuristic two-level minimization
 - **▲**The algorithms of ESPRESSO

Heuristic logic minimization

- Provide irredundant covers with "reasonably small" sizes
- Fast and applicable to many functions
 - **▲** Much faster than exact minimization
- Avoid bottlenecks of exact minimization
 - **▲**Prime generation and storage
 - Covering
- Motivation
 - **▲**Use as internal engine within multi-level synthesis tools

Heuristic minimization -- principles

- Start from initial cover
 - **▲**Provided by designer or extracted from hardware language model
- Modify cover under consideration
 - **▲** Make it prime and irredundant
 - ▲ Perturb cover and re-iterate until a small irredundant cover is obtained
- Typically the size of the cover decreases
 - **△** Operations on limited-size covers are fast

Heuristic minimization - operators

- Expand
 - **▲** Make implicants prime
 - **▲**Removed covered implicants
- Reduce
 - ▲ Reduce size of each implicant while preserving cover
- Reshape
 - **▲** Modify implicant pairs: enlarge one and reduce the other
- Irredundant
 - **▲** Make cover irredundant

Example

- Initial cover
 - **▲**(without positional cube notation)

0000	1
0010	1
0100	1
0110	1
1000	1
1010	1
0101	1
0111	1
1001	1

1011 1

1101 1

Example

Set of primes

α	0 * * 0	1
β	* 0 * 0	1
y	01**	1
δ	10**	1
3	1 * 0 1	1
7	*101	1

Example of expansion

- Expand 0000 to $\alpha = 0**0$.
 - ▲ Drop 0100, 0010, 0110 from the cover.
- Expand 1000 to $\beta = *0*0$.
 - **▲** Drop 1010 from the cover.
- Expand 0101 to y = 01**.
 - **▲** Drop 0111 from the cover.
- Expand 1001 to $\delta = 10**$.
 - **▲** Drop 1011 from the cover.
- Expand 1101 to $\varepsilon = 1*01$.
- Cover is: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.

Example of reduction

- **◆** Reduce 0**0 to nothing.
- Reduce $\beta = *0*0$ to $\beta' = 00*0$.
- Reduce $\varepsilon = 1*01$ to $\varepsilon' = 1101$.
- Cover is: $\{\beta', \vee, \delta, \epsilon'\}$.

Example of reshape

- Reshape {β', δ} to: {β, δ'}.
 - ▲ Where δ' = 10*1.
- **◆** Cover is: {β, ∨, δ', ε'}.

Example of second expansion

- Expand $\delta' = 10*1$ to $\delta = 10**$.
- Expand ε' = 1101 to ε = 1*01.

Example Summary of the steps taken by MINI

• Expansion:

- \triangle Cover: {α,β,γ,δ,ε}.
- **▲** Prime, redundant, minimal w.r. to scc.

Reduction:

- \triangle α eliminated.
- \triangle β = *0*0 reduced to β' = 00*0.
- \triangle ϵ = 1*01 reduced to ϵ ' = 1101.
- ▲ Cover: {β', γ,δ,ε'}.

Reshape:

 \blacktriangle { β ', δ } reshaped to: { β , δ '} where δ ' = 10*1.

Second expansion:

- ▲ Cover: {β,γ,δ,ε}.
- ▲ Prime, irredundant.

Example Summary of the steps taken by ESPRESSO

Expansion:

- \triangle Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
- **△**Prime, redundant, minimal w.r. to scc.
- Irredundant:
 - \triangle Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
 - **▲**Prime, irredundant.

Rough comparison of minimizers

- MINI
 - ▲ Iterate EXPAND, REDUCE, RESHAPE
- Espresso
 - ▲ Iterate EXPAND, IRREDUNDANT, REDUCE
- Espresso guarantees an irredundant cover
 - **▲** Because of the irredundant operator
- MINI may return irredundant covers, but can guarantee only minimality w.r.to single implicant containment

Expand Naïve implementation

- For each implicant
 - ▲ For each care literal
 - **▼** Raise it to don't care if possible
 - **▲** Remove all implicants covered by expanded implicant
- Issues
 - **▲** Validity check of expansion
 - **▲**Order of expansion

Validity check

- Espresso, MINI
 - **△** Check intersection of expanded implicant with OFF-set
 - **▲** Requires complementation
- Presto
 - **▲** Check inclusion of expanded implicant in the union of the ON-set and DC-set
 - **▲** Reducible to recursive tautology check

Ordering heuristics

 Expand the cubes that are unlikely to be covered by other cubes

Selection:

- **▲** Compute vector of column sums
- **△** *Weight*: inner product of cube and vector
- **▲** Sort implicants in ascending order of weight

Rationale:

▲Low weight correlates to having few 1s in densely populated columns

Example

Ordering:

▲ Vector: [3 1 3 1 3 1][⊤]

▲ Weights: (9, 7, 7, 7)

Select second implicant.

Example (2)

α 10 10 10

β 01 10 10

y 10 01 10

δ 10 10 01

Example (3)

OFF-set:

- Expand 01 10 10:
 - ▲11 10 10 valid.
 - ▲11 11 10 valid.
 - **▲11 11 11 invalid.**
- Update cover to:

11	11	10
10	10	01

Example (4)

- Expand 10 10 01:
 - **▲11 10 01 invalid.**
 - **▲**10 11 01 invalid.
 - ▲10 10 11 valid.
- Expand cover:

11	11	10
10	10	11

Expand heuristics in ESPRESSO

- Special heuristic to choose the order of literals
- Rationale:
 - **▲** Raise literals to that expanded implicant
 - **▼** Covers a maximal set of cubes
 - **▼** Overlaps with a maximal set of cubes
 - **▼** The implicant is as large as possible
- Intuitive argument
 - ▲ Pair implicant to be expanded with other implicants, to check the fruitful directions for expansion

Expand in Espresso

- Compare implicant with OFF-set.
 - **▲** Determine possible and impossible directions of expansion
- Detection of feasibly covered implicants
 - \triangle If there is an implicant β whose supercube with α is feasible, expand α to that supercube and remove β
- Raise those literals of α to overlap a maximum number of implicants
 - ▲ It is likely that the uncovered part of those implicant is covered by some other expanded cube
- Find the largest prime implicant
 - **▲** Formulate a covering problem and solve it heuristically

Reduce

- Sort implicants
 - **▲**Heuristics: sort by descending weight
 - **▲**Opposite to the heurstic sorting for expand
- Maximal reduction can be determine exactly
- Theorem:
 - Let α be in F and Q = F U D { α } Then, the maximally reduced cube is: $\dot{\alpha} = \alpha \cap \text{supercube } (Q'_{\alpha})$

Example

Expand cover:

- Select first implicant:
 - **▲** Cannot be reduced.
- Select second implicant:
 - ▲ Reduced to 10 10 01
- Reduced cover:

11	11	10
10	10	01

Irredundant cover

```
α 10 10 11
```


Irredundant cover

- Relatively essential set E^r
 - ▲ Implicants covering some minterms of the function not covered by other implicants
 - **▲**Important remark: we do not know all the primes!
- Totally redundant set Rt
 - **▲**Implicants covered by the relatively essentials
- Partially redundant set Rp
 - **▲**Remaining implicants

Irredundant cover

- ◆ Find a subset of R^p that, together with E^r covers the function
- Modification of the tautology algorithm
 - ▲ Each cube in Rp is covered by other cubes
 - **▲**Find mutual covering relations
- Reduces to a covering problem
 - **▲** Apply a heuristic algorithm.
 - ▲ Note that even by applying an exact algorithm, a minimum solution may not be found, because we do not have all primes.

Example

$$\bullet E^r = \{\alpha, \epsilon\}$$

$$Rt = \emptyset$$

$$\bullet R^p = \{\beta, \gamma, \delta\}$$

Example (2)

Covering relations:

- $\triangle \beta$ is covered by $\{\alpha, \gamma\}$.
- ightharpoonup is covered by $\{\beta, \delta\}$.
- $\triangle \delta$ is covered by $\{ \gamma, \varepsilon \}$.
- ◆ Minimum cover: **y** U *E*^r

ESPRESSO algorithm in short

- Compute the complement
- Extract essentials
- Iterate
 - **▲** Expand, irredundant and reduce
- Cost functions:
 - \triangle Cover cardinality φ_1
 - \triangle Weighted sum of cube and literal count φ_2

ESPRESSO algorithm in detail

```
espresso(F,D) {
    R = complement(F \cup D);
    F = expand(F,R);
    F = irredundant(F,D);
    E = essentials(F,D);
    F = F - E; D = D \cup E;
    repeat {
            \phi_2 = cost(F);
            repeat {
                  \phi_1 = |F|;
                 F = reduce(F,D);
                  F = expand(F,R);
                  F = irredundant(F,D);
            \} until (|F| \ge \phi_1);
            F = last\_gasp(F,D,R);
    \} until ( | F | \ge \phi_1);
    F = F \cup E; D = D - E;
    F = make_sparse(F,D,R);
```

Heuristic two-level minimization Summary

- Heuristic minimization is iterative
- Few operators are applied to covers
- Underlying mechanism
 - **▲** Cube operation
 - **▲** Unate recursive mechanism
- Efficient algorithms