STA732

Statistical Inference

Lecture 16: Hypothesis testing

Yuansi Chen

Spring 2023

Duke University

https://www2.stat.duke.edu/courses/Spring23/sta732.01/

Recap from Lecture 15

• Consistency and Asymptotic normality of MLE

Recap on point estimation

Typical ways to argue for an optimal estimator in point estimation given model P_{θ} , data X, estimand $g(\theta)$, loss function L.

- Restrict to samller class: unbiased, equivariant
- Apply global measures of optimality: Bayes, minimax
- Large sample approach: MLE or estimators related to MLE

We have finished the Lehmann and Casella book, congrats!

Goal of Lecture 16

- 1. Hypothesis testing
- 2. The Neyman-Pearson Paradigm
- 3. Neyman-Pearson Lemma

Chap. 12.1 - 12.4 of Keener or Chap. 3 of Lehmann and Romano

Hypothesis testing

Suppose $X\sim P_{\theta}$ for some $\theta\in\Omega$. We divide the model space Ω into two mutually exclusive subsets $\Omega=\Omega_0\cup\Omega_1$ and $\Omega_0\cap\Omega_1=\emptyset$. Consider the following two hypotheses

$$H_0: \theta \in \Omega_0$$
 (null hypothesis)
$$H_1: \theta \in \Omega_1 \mbox{ (alternative hypothesis)}$$

The decision to make is either

- accept H_0 (fail to reject, no definite conclusion)
- or reject H_0 (conclude H_0 is likely to be false)

Examples

•
$$X \sim \mathcal{N}(\theta, 1)$$

$$H_0: \theta \leq 0 \text{ vs } H_1: \theta > 0$$
 or $H_0: \theta = 0 \text{ vs } H_1: \theta \neq 0$

-
$$X_1,\dots,X_n\sim P,Y_1,\dots,Y_m\sim Q$$

$$H_0:P=Q\mbox{ vs }H_1:P\neq Q$$

Decision rule in hypothesis testing: test function

A decision rule can be expressed as a test function (also critical function) $\phi(X)$ which takes values in [0,1], defined as

$$\phi(X)=$$
 the probability of rejecting H_0 given $X.$

Note the above definition allows the the decision to be randomized

- If $\phi(x)$ takes values in (0,1) for some x, we way that it is a randomized test
- For a non-randomized test ϕ , the rejection region is

$$\mathcal{R} = \{x : \phi(x) = 1\}$$

The accept region is $\mathcal{A} = \mathbf{S} \setminus \mathcal{R}$

Examples of test function (1)

For x on the boundary of the reject and accept regions, we reject H_0 with probability γ .

$$\phi(x) = \begin{cases} 1 & x \in \mathcal{R} \\ \gamma & x \text{ on the boundary} \\ 0 & x \in \mathcal{A} \end{cases}$$

Examples of test fucntion (2)

$$X\sim\mathcal{N}(\theta,1)$$
 , $H_0:\theta=0$, $H_1:\theta\neq0$ Let $z_\alpha=\Phi^{-1}(1-\alpha)$, Φ is the normal cdf. Here are some test functions

- $\phi_1(x)=\mathbf{1}_{x>z_{\alpha}}$, 1-sided test
- + $\phi_2(x)=\mathbf{1}_{|x|>z_{lpha/2}}$, 2-sided test
- $\bullet \ \phi_3(x) = \mathbf{1}_{x < z_{\alpha/3} \text{ or } x > z_{2\alpha/3}}$

Power and level of significance

• The power function of a test $\phi(X)$ is

$$\beta_{\phi}(\theta) = \mathbb{E}_{\theta}\phi(X) = P_{\theta}(X \in \mathcal{R})$$

It is the probabilty that the test rejects the null hypothesis for a given θ

• The significance level of a test $\phi(X)$ is

$$\sup_{\theta \in \Omega_0} \mathbb{E}_{\theta}(\phi(X)) = \sup_{\theta \in \Omega_0} \beta_{\phi}(\theta)$$

• We say ϕ is a level- α test if its significance level is $\leq \alpha$

Examples

These are also level- α tests:

$$X \sim \mathcal{N}(\theta, 1)$$
, $H_0: \theta = 0$, $H_1: \theta \neq 0$

Let $z_{\alpha}=\Phi^{-1}(1-\alpha)$, Φ is the normal cdf. Here are some test functions

- $\phi_1(x)=\mathbf{1}_{x>z_{\alpha}}$, 1-sided test
- + $\phi_2(x)=\mathbf{1}_{|x|>z_{lpha/2}}$, 2-sided test
- $\bullet \ \phi_3(x) = \mathbf{1}_{x < z_{\alpha/3} \text{ or } x > z_{2\alpha/3}}$

draw the power function

Simple versus simple

A hypothesis is called simple if it completely specifies the distribution of the data. For example, $H_i:\theta\in\Omega_i$ is simple when Ω_i contains a single parameter value θ_i Simple versus simple testing is the case where both H_0 and H_1 are simple.

A loss function for simple versus simple hypothesis testing

Under simple versus simple testing, consider the loss function

$$L(0,\phi) = \mathbf{1}_{\phi=1}$$
$$L(1,\phi) = c\mathbf{1}_{\phi=0}$$

where $c \geq 0$ constant

Then the risk functions are

$$\begin{split} R(0,\phi) &= \mathbb{E}_{\theta_0} L(0,\phi(X)) = \mathbb{P}_{\theta_0}(\phi(X)=1) = \beta_\phi(\theta_0) \\ R(1,\phi) &= \mathbb{E}_{\theta_0} cL(1,\phi(X)) = c \cdot \mathbb{P}_{\theta_1}(\phi(X)=0) = c \cdot (1-\beta_\phi(\theta_1)) \end{split}$$

When H_0 and H_1 are composite, we can't really write the risk function this way, need to deal with θ

With the above, we are back to the decision theoretic framework:

Ask the question of finding the "optimal" ϕ under the risk function

The Neyman-Pearson Paradigm

The Neyman-Pearson Paradigm

The Neyman-Pearson Paradigm

Fix the level of significance α , find the ϕ such that

$$\beta_{\phi}(\theta) = \mathbb{E}_{\theta} \phi$$
 is large if $\theta \in \Omega_1$.

In the simple versus simple testing

We look for a level- α test that has the largest probability of rejecting the null when the truth is alternative (this probability is also called power). In other words

$$\max_{\phi} \beta_{\phi}(\theta_1)$$
 s.t. $\beta_{\phi}(\theta_0) \leq \alpha$

X	1	2	3	4	5
$P_0(X=i)$	$\frac{1}{4}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{3}{100}$	$\frac{7}{10}$
$P_1(X=i)$	$\frac{1}{2}$	$\frac{1}{10}$	$\frac{2}{100}$	$\frac{5}{100}$	$\frac{33}{100}$
$P_1(X=i)/P_0(X=i)$	2	10	2	5/3	33/70

 Calculate the significance level and power function of the following test

$$\phi(X) = \begin{cases} 1 & \text{if } X \le 3 \\ 0 & \text{otherwise} \end{cases}$$

• If we set $\alpha = \frac{1}{100}$, what would be an optimal test? (grocery shopper analogy)

Likelihood ratio test

In the simple versus simple testing, a likelihood ratio test is

$$\phi^*(x) = \begin{cases} 1 & \text{if } \frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} > c \\ \gamma & \text{if } \frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} = c \\ 0 & \text{otherwise} \end{cases}$$

The level- α likelihood ratio test (LRT) is the one that chooes c,γ such that

$$\mathbb{E}_{\theta_0}\phi^*(X) = \alpha.$$

Neyman-Pearson Lemma

Neyman-Pearson Lemma

Neyman-Pearson Lemma, Keener Prop 12.2

Given any level $\alpha \in [0,1]$, there exists a LRT ϕ_{α} with level α . And any level- α LRT maximizes \mathbb{E}_{θ} , ϕ among all tests with level at most α .

Neyman-Pearson Lemma

Neyman-Pearson Lemma, Keener Prop 12.2

Given any level $\alpha \in [0,1]$, there exists a LRT ϕ_{α} with level α . And any level- α LRT maximizes \mathbb{E}_{θ} , ϕ among all tests with level at most α .

Prop 12.3 shows that if a test is optimal, then it must be a LRT

The power function has two values in simple vs simple testing

$$\begin{split} \beta_{\phi}(\theta_0) &= \mathbb{E}_{\theta_0} \phi = \int \phi(x) p_{\theta_0}(x) d\mu(x) \\ \beta_{\phi}(\theta_1) &= \mathbb{E}_{\theta_1} \phi = \int \phi(x) p_{\theta_1}(x) d\mu(x) \end{split}$$

The use of Lagrangian multiplier

Prop 12.1 in Keener

Suppose $k \geq 0$, ϕ^* maximizes

$$\mathbb{E}_{\theta_1}\phi - k\mathbb{E}_{\theta_0}\phi$$

among all test functions, and $\mathbb{E}_{\theta_0}\phi^*=\alpha$. Then ϕ^* maximizes $\mathbb{E}_{\theta_1}\phi$ over all ϕ with level at most α

proof: For ϕ with level at most α , $\mathbb{E}_{\theta_0}\phi(X) \leq \alpha$. Then

$$\begin{split} \mathbb{E}_{\theta_1}[\phi(X)] &\leq \mathbb{E}_{\theta_1}[\phi(X)] + k(\alpha - \mathbb{E}_{\theta_0}[\phi(X)]) \\ &\leq \mathbb{E}_{\theta_1}[\phi^*(X)] - k\mathbb{E}_{\theta_0}[\phi^*(X)] + k\alpha \\ &= \mathbb{E}_{\theta_1}[\phi^*(X)] \end{split}$$

Proof of the Neyman Pearson Lemma

According to Prop 12.1, it is sufficient to show that likelihood ratio test with level α maximizes the Lagrangian form

$$\begin{split} &\mathbb{E}_{\theta_1}\phi(X) - k\mathbb{E}_{\theta_0}\phi(X) \\ &= \int (p_{\theta_1}(x) - kp_{\theta_0}(x))\phi(x)d\mu(x) \\ &= \int_{p_{\theta_1} > kp_{\theta_0}} \left| p_{\theta_1} - kp_{\theta_0} \right| \phi d\mu - \int_{p_{\theta_1} < kp_{\theta_0}} \left| p_{\theta_1} - kp_{\theta_0} \right| \phi d\mu \end{split}$$

To maximize the above expression, ϕ^* must have

$$\begin{split} \phi^*(x) &= 1 \text{ when } p_{\theta_1}(x) > k p_{\theta_0}(x) \\ \phi^*(x) &= 0 \text{ when } p_{\theta_1}(x) < k p_{\theta_0}(x) \end{split}$$

So the test is based on LR. It remains to set the correct level.

Proof of the Neyman Pearson Lemma (2)

Choose minimum $k \geq 0$, such that

$$\mathbb{P}_{\theta_0}\left[\frac{p_{\theta_1}(X)}{p_{\theta_0}(X)} > k\right] \leq \alpha \leq \mathbb{P}_{\theta_0}\left[\frac{p_{\theta_1}(X)}{p_{\theta_0}(X)} \geq k\right]$$

And choose γ to "top up" the significane level

$$\mathbb{P}_{\theta_0}\left[\frac{p_{\theta_1}(X)}{p_{\theta_0}(X)} > k\right] + \gamma \mathbb{P}_{\theta_0}\left[\frac{p_{\theta_1}(X)}{p_{\theta_0}(X)} = k\right] = \alpha$$

Picture for choosing $k_{\alpha}, \gamma_{\alpha}$ for ϕ^*

Lower bound on the power of LRT

Cor 12.4 in Keener

If $p_{\theta_0} \neq p_{\theta_1}$ and ϕ_{α} is a level- α likelihood ratio test with $\alpha \in (0,1)$, then $\mathbb{E}_{\theta_1} \phi_{\alpha} > \alpha$.

Example: LRT for exponential family

$$X \sim p_{\eta}(x) = e^{\eta T(x) - A(\eta)} h(x)$$

$$H_0: \eta = \eta_0 \text{ vs } H_1: \eta = \eta_1 > \eta_0$$

does the optimal test depend on the exact value of η_1 ?

Summary

- Hypothesis testing is a model choice problem, which can be formulated as a decision theoretic problem
- Neyman-Pearson paradigm took a constrained optimization formulation
- Neyman-Pearson lemma show that likelihood-ratio tests are optimal (in simple vs simple)

What is next?

Uniformly most powerful (UMP) tests

Thank you