Elementi Finiti - Esercitazione 2 Mesh e quadratura numerica

Prof. Giancarlo Sangalli

Ivan Bioli

14 Marzo 2025

1 Meshing per Elementi Finiti

Riprendiamo come primo esercizio l'ultimo della precedente esercitazione. Come già anticipato, gli elementi finiti, invece, si basano su mesh; in questo corso, nello specifico, su *triangolazioni*, cioè mesh costituite da elementi triangolari. Ma come si descrive una triangolazione? La struttura dati essenziale per rappresentarla è formata dalle coordinate dei vertici e dalla matrice di incidenza.

Per la descrizione di una triangolazione, utilizzeremo due matrici:

- p: Una matrice di dimensioni $2 \times N_{\text{points}}$, dove ogni colonna rappresenta le coordinate di un vertice. In particolare, la prima riga contiene la coordinata x di ciascun punto, mentre la seconda riga contiene la coordinata y. Qui, N_{points} è il numero di nodi della mesh.
- T: Una matrice di dimensioni $3 \times N_{\rm tri}$, dove ogni colonna rappresenta un triangolo e ogni riga indica l'indice di uno dei tre vertici che compongono il triangolo. Qui, $N_{\rm tri}$ è il numero totale di triangoli nella mesh. Gli elementi della matrice sono interi che indicano gli indici dei vertici corrispondenti nella matrice delle coordinate.

La matrice T descrive la connettività della mesh, ossia come i punti sono connessi per formare i triangoli, mentre la matrice p memorizza le coordinate spaziali di ciascun vertice.

Vi forniremo gran parte delle routines necessarie per il meshing durante il corso, utilizzando il generatore di mesh Gmsh e il pacchetto Julia Gmsh.jl. Le routines si trovano nel file modules/Meshing.jl e verranno aggiornate man mano che il corso progredisce.

Esercizio 1

L'obiettivo di questo esercizio è familiarizzare con la struttura dati di una triangolazione. Ecco le prime linee di codice che dovreste aggiungere al vostro script Julia:

```
using Revise
includet("<PATH-TO-FOLDER>/Meshing.jl")
```

• using Revise: Questo comando carica il pacchetto Revise.jl, che consente di ricaricare automaticamente i file modificati durante la sessione, senza bisogno di riavviare Julia.

• includet("<PATH-TO-FOLDER>/Meshing.jl"): Questa riga include il modulo Meshing.jl, che contiene tutte le funzioni necessarie per lavorare con le mesh. Sostituite <PATH-TO-FOLDER> con il percorso corretto del file Meshing.jl.

Una volta che queste righe sono state aggiunte, potrete iniziare a sperimentare con le mesh, utilizzando anche la documentazione delle funzioni nel file Meshing.jl.

- 1. Usando le funzioni $mesh_square$, $mesh_circle$ e $get_nodes_connectivity$, eseguire alcune mesh per il quadrato e il cerchio unitario con diverse dimensioni della mesh h.
- 2. Definire una funzione plot_mesh che prende in input la matrice di incidenza T, le coordinate dei vertici p e disegna la triangolazione. La funzione deve iterare su ciascun triangolo e disegnare i bordi uno per uno. Non è necessario concentrarsi sull'efficienza in questa fase, l'obiettivo è essere sicuri di aver compreso correttamente la struttura dei dati.
- 3. Confrontare il risultato ottenuto con la vostra funzione di visualizzazione con quello ottenuto tramite il pacchetto Meshes. jl utilizzando il seguente codice:

```
import Meshes
mesh = to_Meshes(T, p)
Meshes.viz(mesh, showsegments = true)
```

Soluzione dell'esercizio 1

Una possibile implementazione è fornita con lo script tex02_1.jl.

2 Quadratura numerica

Data una triangolazione \mathcal{T}_h , per ogni triangolo $T \in \mathcal{T}_h$ denotiamo con $\{\mathbf{v}_T^1, \mathbf{v}_T^2, \mathbf{v}_T^3\}$ i suoi vertici e con

$$\mathbf{b}_T := \frac{\mathbf{v}_T^1 + \mathbf{v}_T^2 + \mathbf{v}_T^3}{3}$$

il suo baricentro. Indichiamo con $\mathbb{P}_0^{\mathrm{disc}}(\mathcal{T}_h)$ lo spazio delle funzioni costanti a tratti e con $\mathbb{P}_1(\mathcal{T}_h)$ lo spazio delle funzioni lineari a tratti e continue. Si noti che una funzione in $\mathbb{P}_0^{\mathrm{disc}}(\mathcal{T}_h)$ è individuata dai valori che assume nei baricentri (corrispondenza biunivoca), mentre una funzione in $\mathbb{P}_1(\mathcal{T}_h)$ è individuata dai valori che assume nei vertici di \mathcal{T}_h . Data una funzione $u:\Omega\to\mathbb{R}$, possiamo quindi definire le sue interpolazioni nei suddetti spazi:

• Interpolazione costante a tratti $\Pi_0 u \in \mathbb{P}_0^{\mathrm{disc}}(\mathcal{T}_h)$, imponendo

$$(\Pi_0 u)(\mathbf{b}_T) = u(\mathbf{b}_T), \quad \forall T \in \mathcal{T}_h.$$

• Interpolazione lineare a tratti $\Pi_1 u \in \mathbb{P}_1(\mathcal{T}_h)$, imponendo

$$(\Pi_1 u)(\mathbf{v}_T^i) = u(\mathbf{v}_T^i), \quad \forall T \in \mathcal{T}_h, \forall i = 1, 2, 3.$$

Questo ci permette di definire le seguenti formule di quadratura per approssimare $\int_{\Omega} u(\mathbf{x}) d\mathbf{x}$:

$$Q_0(u) := \int_{\Omega} (\Pi_0 u)(\mathbf{x}) \, d\mathbf{x} = \sum_{T \in \mathcal{T}_h} \int_{T} (\Pi_0 u)(\mathbf{x}) \, d\mathbf{x} = \sum_{T \in \mathcal{T}_h} |T| u(\mathbf{b}_T)$$
(1)

$$Q_1(u) := \int_{\Omega} (\Pi_1 u)(\mathbf{x}) \, d\mathbf{x} = \sum_{T \in \mathcal{T}_h} \int_T (\Pi_1 u)(\mathbf{x}) \, d\mathbf{x} = \sum_{T \in \mathcal{T}_h} |T| \frac{u(\mathbf{v}_T^1) + u(\mathbf{v}_T^2) + u(\mathbf{v}_T^3)}{3}$$
(2)

Le precedenti formule di quadratura sono entrambe esatte se u è lineare a tratti. Una formula di quadratura più accurata, esatta sulle funzioni quadratiche, è la seguente

$$Q_2(u) := \sum_{T \in \mathcal{T}_h} |T| \frac{u(\mathbf{m}_T^1) + u(\mathbf{m}_T^2) + u(\mathbf{m}_T^3)}{3}, \tag{3}$$

dove $\{\mathbf{m}_T^1,\mathbf{m}_T^2,\mathbf{m}_T^3\}$ sono i punti medi dei lati di ogni triangolo.

Esercizio 2

Dimostrare che Q_0 e Q_1 sono esatte se u è lineare a tratti.

Soluzione dell'esercizio 2

Se u è lineare, allora $\Pi_1(u) = u$ e quindi Q_1 è chiaramente esatta. Per quanto riguarda Q_0 , è sufficiente osservare che se u è lineare sul triangolo T allora:

$$u(\mathbf{b}_T) = u\left(\frac{\mathbf{v}_T^1 + \mathbf{v}_T^2 + \mathbf{v}_T^3}{3}\right) = \frac{u(\mathbf{v}_T^1) + u(\mathbf{v}_T^2) + u(\mathbf{v}_T^3)}{3},$$

e dunque $Q_0(u) = Q_1(u) = \int_{\Omega} u$.

Esercizio 3

Misurare numericamente l'ordine di convergenza delle precedenti formule di quadratura, cioè:

- 1. Scegliere una funzione $u:\Omega\to\mathbb{R}$ definita su un dominio Ω in modo che $\int_{\Omega}u(\mathbf{x})\,\mathrm{d}\mathbf{x}$ sia calcolabile analiticamente.
- 2. Calcolare l'errore di quadratura

$$e_i(u) = \left| \int_{\Omega} u(\mathbf{x}) \, d\mathbf{x} - Q_i(u) \right|$$

per i = 1, 2, 3 e diverse \mathcal{T}_h (con diversa meshsize h).

- 3. Fare un diagramma in scala logaritmica dell'errore contro h.
- 4. Provare con u lineare, quadratica o non polinomiale.

Per costruire una mesh del quadrato o del cerchio si utilizzino rispettivamente le funzioni mesh_square e mesh_circle, insieme alla funzione get_nodes_connectivity che permette di ottenere le coordinate dei nodi e la matrice di incidenza. Tutte le funzioni sono fornite nel file Meshing.jl. Alcuni esempi che si possono considerare per verificare la correttezza della propria implementazione sono mostrati nella Figura 1.

Soluzione dell'esercizio 3

Una implementazione è fornita con gli script ex02_2.jl, ex02_3.jl e Quadrature.jl.

Figura 1: Alcuni esempi che si possono considerare per verificare una corretta implementazione.