- Which of the following medical imaging types has scattering configuration, uses radio frequency and is non-ionizing, anatomical, three-dimensional imaging?			
a) SPECTd) Ultrasound	b) Computed tomographye) Fluorescence	c) Magnetic resonance	
- Which of the following stateme	ents is correct, which is incorrec	et?	
	vis, and extremities	uite versatile and valuable for imaging the	
mathematical method - For	urier transform	need for the computerization of the noninvasive imaging technique.	
 In PET detector and source Computed tomography is t body rather than structure. Artifacts are random flucture. 	e are surrounding a patient and rothe first imaging modality that wa	otating around a patient	
 Noise is reproducible scan Distribution of photons per 		fier is modeled by Gaussian random variable.	
 Aliasing is an example of r Chest X-ray, fluoroscopy, 		stems are examples of PR	
incorrect?		ignal" matching is correct , which is	
 precession of spin systems total internal reflection of l scattering of radio-frequen emission of gamma rays fr 	– ultrasound	······· <mark></mark> ······	
 SPECT – generated two gamma 	al imaging modality – working p ma rays move exactly in opposite dir emproys reflection/scattering con	principle" matching is correct ? rections and if not scattered they reach the gamma figuration of X-rays taken at different angles	
- Explain why ultrasound imagin	ng systems are widespread and in	common usage.	

- Determine whether the system g(x,y)=xyf(x,y) is (1) linear and/or (2) shift-invariant.

- Find the transfer function of PSF given as $h(x)=e^{-x^2/3\theta}$. Then determine the MTF of the system and sketch it roughly. On the sketch indicate the region which is responsible for the resolution of the system, explain it.

Signal	Fourier Transform	
1	$\delta(u,v)$	
$\delta(x,y)$	1	
$\delta\left(x-x_0,y-y_0\right)$	$e^{-j2\pi(ux_0+\nu y_0)}$	
$\delta_s(x, y; \Delta x, \Delta y)$	$comb(u\Delta x, v\Delta y)$	
$e^{j2\pi(u_0x+v_0y)}$	$\delta(u-u_0,v-v_0)$	
$\sin\left[2\pi\left(u_0x+v_0y\right)\right]$	$\frac{1}{2i} \left[\delta \left(u - u_0, v - v_0 \right) - \delta \left(u + u_0, v + v_0 \right) \right]$	
$\cos\left[2\pi\left(u_0x+v_0y\right)\right]$	$\frac{1}{2} \left[\delta \left(u - u_0, v - v_0 \right) + \delta \left(u + u_0, v + v_0 \right) \right]$	
rect(x, y)	$\operatorname{sinc}(u,v)$	
sinc(x, y)	rect(u, v)	
comb(x, y)	comb(u, v)	
$e^{-\pi(x^2+y^2)}$	$\rho^{-\pi}(u^2+v^2)$	

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(ux+vy)} dx dy$$

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v)e^{j2\pi(ux+vy)} dudv$$

Property	Signal	Fourier Transform
	f(x,y)	F(u, v)
	g(x, y)	G(u,v)
Linearity	$a_1f(x,y) + a_2g(x,y)$	$a_1F(u,v) + a_2G(u,v)$
•	$f(x-x_0,y-y_0)$	$F(u, v)e^{-j2\pi(ux_0+vy_0)}$
Conjugation	$f^*(x,y)$	$F^*(-u,-v)$
Conjugate	f(x, y) is real-valued	$F(u,v) = F^*(-u,-v)$
symmetry		$F_R(u,v) = F_R(-u,-v)$
		$F_R(u,v) = F_R(-u,-v)$ $F_I(u,v) = -F_I(-u,-v)$
	<i>f</i> ∞ +	F(u, v) = F(-u, -v)
:	, s , ,	$\angle F(u,v) = -\angle F(-u,-v)$
a: 1	Au s	F(-u,-v) = -21 (-u,-v)
Signal	f(-x,-y) $f(ax,by)$	1 (-4, -0)
reversing	36/ 5-	1 (u v)
Scaling	$f(a\hat{x},by)$	$\frac{1}{ ab }F\left(\frac{u}{a},\frac{v}{b}\right)$
Rotation	$f(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$	$F(u\cos\theta - v\sin\theta, u\sin\theta + v\cos\theta)$
Circular	f(x, y) is circularly symmetric	F(u, v) is circularly symmetric
1.	/(x, y) is circularly symmetric	1 (13,0) 10 011-111-1, 0,1
symmetry,		F(u,v) = F(u,v)
		$\angle F(u,v) = 0$
Convolution	f(x, y) * g(x, y)	F(u,v)G(u,v)
Product	f(x, y) * g(x, y) f(x, y)g(x, y)	F(u,v)*G(u,v)
Separable	f(x)g(y)	F(u)G(v)
•	1 (x)8(y)	2 () = ()
product		

$$g(x,y) = h(x,y) * f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi,\eta)h(x-\xi,y-\eta) d\xi d\eta$$

$$\int_{-\infty}^{\infty} e^{-a^2\tau^2} d\tau = \frac{\sqrt{\pi}}{a}, \quad \text{for } a \neq 0$$