МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ Житомирський військовий інститут ім. С.П. Корольова Національний авіаційний університет

О.Г. Водчиць, С.Н. Єгоров, В.М. Павільч

Загальні відомості про військову авіаційну техніку та бортові авіаційні комплекси

Навчальний посібник

УДК 623.746 (075.8) ББК Ц531.0я7 В627

Рецензенти: *С.М. Туренко* — канд. техн. наук, доц., головний конструктор, технічний директор науково-виробничої фірми «Адрон»;

М.В. Тапол - канд. техн. наук, доц., професор кафедри ремонту та експлуатації літаків, вертольотів і авіаційного озброєння

Затверджено вченою радою факультету підготовки офіцерів запасу Житомирського військового інституту ім. С.П. Корольова Національного авіаційного університету (протокол N24 від 15.04. 2008 р.).

Водчиць О.Г.

Загальні відомості про військову авіаційну техніку та бортові В62 авіаційні комплекси: навч. посіб. / О.Г. Водчиць, 7 С.Н. Єгоров, В.М. Павільч. – Винниця: Консоль, 2008. – 128 с.

Розглянути загальні відомості про військову авіаційну техніку та бортові авіаційні комплекси.

Для студентів факультету підготовки офіцерів запасу за спеціальністю – авіаційне озброєння.

УДК 623.746 (075.8) ББК Ц531.0я7

© О.Г. Водчиць, С.Н Єгоров, В.М. Павільч, 2008

ПЕРЕЛІК СКОРОЧЕНЬ

ЛА - літальний апарат НГ - несучий гвинт

ПРД - повітряно – реактивний двигун

ТГД - турбогвинтовий двигун

ITC - інженерно – технічний склад

АТ - авіаційна техніка

РУД - ручка управління двигуном

АО - авіаційне обладнання

ПНК - пілотажно - навігаційний комплекс

СТО - світло – технічне обладнання

РЛС - радіо – локаційні станції

РЕО - радіо — електронне обладнання РЕБ - радіо — електронна боротьба РЕП - радіо — електронне придушення РЕЗ - радіо — електронне знищення

РЕЗ - радіо – електронне знищен
 ППО - проти – повітряна оборона
 ЕПВ - ефективна площа відбиття
 ККР - курсовий кут радіостанції
 ППЛ - істинний пеленг літака

ВСТУП

Сучасні бойові літаки та вертольоти уявляють собою дуже складні людино – машинні системи, які функціонують в різних умовах польоту і бойової обстановці.

Тому, авіаційний спеціаліст, який обслуговує сучасний бойовий літак, повинен не тільки добре знати функціонування та експлуатацію системи, за яку він відповідає, але і добре уявляти собі, як функціонують інші системи і підсистеми літака (вертольоту).

В даному навчальному посібнику наводяться коротки відомості про схеми і конструкції літаків (вертольотів) та двигунів, основні ботові системи літаків (вертольотів), їх призначення і функціонування. Крім цих відомостей, посібник містить відомості про авіаційне та радіолокаційне обладнання сучасних бойових літаків (вертольотів). Надані відомості про заходи безпеки, якими потрібно керуватись при експлуатації літака (вертольоту) та його систем.

1. Загальні відомості про літак та його двигун

1.1.1. Класифікація літальних апаратів по конструктивним прикметам та призначенню, ї їх тактико-технічним даним.

Сучасні літальні апарати, не зважаючи на велику різноманітність задач, що вони виконують, можна уявити наступними типами:

- Винищувачі;
- Штурмовики;
- Бомбардувальники;
- Розвідники;
- Військово транспортні;
- Навчально тренувальні;
- Літальні апарати підтримки наземних військ;
- Спеціального і допоміжного призначення.

Винищувачі призначені для винищення літаків і інших літальних апаратів супротивника в повітрі, вони виконують задачі протиповітряної оборони військ, комунікацій, бо винищувачі призначені для ведення повітряного бою, де вони повинні володіти можливо більшими горизонтальною і вертикальною швидкостями, більшою дальністю, високою маневреністю.

По ходу своєї роботи сучасні винищувачі можна поділити на наступні типи:

- Винищувачі ППО (перехоплювачі), для перехоплювання і знищення бомбардувальників і ракетоносіїв супротивника;
- Фронтові для завоювання домінування в повітрі над полем бою і тактичній глибині супротивника.

Основними типами літаків, які стоять на озброєння авіації ЗСУ являються тики, як Cy-27, Mir-29, Cy-24, Cy-25. Розглянемо коротко їх льотно — тактичні характеристики.

Льотно – тактичні данні Су-27

	, ,
Швидкість у землі	- 1400 км/год;
Максимальна швидкість	- 2,85 м;
Висота практична	- 20 км;
Довжина розбігу	- 500 м;
Максимальна вага	- 28 т;
Вага бойового навантаження	- 8 T;
Пере гоночна дальність	- 400 км;
Довжина фюзеляжу	- 21,5 м;
Площа крила	- 62 м ² ;
Розмах крила	- 14,7 м;
Допустиме перевантаження	- 9;

Кут стріловидності по передній кромці - 420; Кількість заправленного палива - 11975 м; - АН-31 Ф (виріб 99); Двигун Максимальна тяга на форсажі - 12,5 T; - 7,7 T; Максимальна тяга - 3,3-4,2 т; Тяга на крейсерському режимі - 16500 K; Температура Тг Ступінь стиску сумарна ПК - 23; Питома витрата палива -0.076 kg/m/s;Льотно – тактичні данні МІГ-29 Довжина літака - 11,32 м; - 11,36 м; Розмах крила Максимальна швидкість при Н-О - 1500 км/год; Вертикальна швидкість - 320 км/год; Висота (практична) -17 км; Злітна вага нормальна - 15 т; Злітна вага максимальна - 16 т; - 2ДТРД(Р-33); Силова настанова Тяга максимальна - 10400 кг; - 1,1; Тягоозброєність Перевантаження - 9-12 год. Довжина розбігу - 240 м; Довжина пробігу - 600 м(з гальмовим парашутом); Дальність польоту - 2100 м(з підвісними); максимальна Льотно-тактичні данні Су - 24 Макс. злітна вага з коротким розбігом - 39 700 кг; Маса навантаження на зовнішніх вагах підвіски - 4 000 кг; - 2 320 км/год; Максимальна швидкість польоту Практична межа - більше 15 км; Практична дальність польоту - 4 200 км; Довжина літака - 24, 53 m; Маса пустого літака - 22 320 кг; - 6,19 м; Висота Льотно-технічні дані літака Су-25 - 15,53 м; Довжина - 14,36 м; Розмах крила Макс. злітна вага - 17600 кг; Макс. швидкість - 975 мк/год (Н-O); - 7000 м; Макс. дальність польоту з макс. злітною вагою 2 двигуна Р-96111 з тягою - 4100 кг; Бойове навантаження

1.2. Основні відомості про бойові вертольоти

1.2.1 Класифікація вертольотів по конструктивним прикметам ї їх тактико-технічним даним.

Вертольотом називають літальний апарат, у якого підйомна сила і тяга для поступового польоту створюється лопостями одного або декількома обертаемих несучих гвинтів. На відміну від крила літака лопості несучого гвинта (НГ) обтикаються набігаючим потоком не тільки при поступовому польоті, а і при роботі на місці. Це забезпечує вертольоту висіти нерухомо , злітати вертикально.

Протягом зародження і розвитку вертольотів було випробувана велика кількість різноманітних схем, від простих до складних комбінованих Л.А.

В наслідок були відкинуті невдалі і з'явилися життєздатні схеми вертольотів, які використовуються в даний час.

Двогвинтові вертольоти соосної схеми розташовані один над одним і не потребують синхронізації обертання, що значно спрощує і полегшує трансмісію.

Недоліки:

- Складна система керування;
- недостатня путьова стійкість;
- значні вібрації;
- небезпека зіткнення лопастей НГ обертаемих в протилежних напрямах;
- складність посадки на режимі самообертання НГ.

Максимальна швидкість горизонтального польоту звичайних вертольотів не перевищує 320-340 км/год.

Для подальшого збільшення швидкості польоту необхідно розвантажити НГ. З цією метою на вертольоті встановлюється крило. Додаткова тяга в напряму польоту вертольота може створюватися повітряним гвинтом або турбореактивним двигуном. Швидкість таких комбінованих Л.А. може досягати 500 км/год.

Розглянемо основні характеристики сучасних вертольотів Mi-28 та Ka-50.

Льотно-тактичні данні МІ-28 «Руйнувач»

 Нормальна злітна вага
 -10400 кг

 Максимальна злітна вага
 -11200 кг

 Максимальна вага бойового навантаження
 -3640 кг

 Дальність польоту
 -475 км

Екіпаж -2 чол.

Калібр -30 мм

Льотно-тактичні дані Ка-50

Макс. допустиме перевантаження Пу=3

-4000 м Статична межа Максимальна швидкість на Н=2500 м -10 m/c-14,5 MДіаметр НГ Довжина гелікоптеру з Н.Г що обертається -16м Макс. швидкість -350 км/годину ПТУР -8-10км Дальність пуску Бронепробиваемість -8000мм з динам. захистом. Система наведення -лазерна **HAP** Дальність пуску -80км Кількість в баках -80шт Гармата Тип -2a42Калібр -30мм Боєкомплект -500шт

1.2.2. Особливості конструктивного виконання бойового вертольота.

В процесі розвитку вертольотобудування складає визначний вид сучасного вертольота, до якого відноситься вертоліт Mi-24.

Основною частиною вертольота ϵ фюзеляж, призначений для розміщення вантажів, екіпажу, обладнання, палива.

Він ϵ силовою базою, до якої кріпляться всі частини вертольота і передаються навантаження від них.

Фюзеляж представляє собою тонкостінну підкріплену конструкцію. Центральна частина фюзеляжу є вантажною кабіною, носова - кабіна екіпажу.

Хвостова і кінцева балки являються продовженням фюзеляжу і призначені для розміщення рульового гвинта і оперення вертольоту.

На потолоченій панелі центральної частини фюзеляжу встановлюються двигуни, вихідні вали яких з'єднуються з головним редуктором.

Головний редуктор розподіляє потужність, яка поступає від двигунів, між агрегатами вертольота . Основним споживачем потужності двигунів є H, Γ , встановлений на валу головного редуктора. Він призначений для створення сили тяги, необхідної для польоту вертольота, а також для вздовжнього і поперечного керування. Основними частинами $H\Gamma$, є: втулка і прикріплені до неї лопасті, які створюють підйомну силу.

При обертанні НГ на вертоліт діє реактивний момент, який бажає розвернути його в протилежному напряму. Для рівноваження цього моменту служить рульовій гвинт. Його привод здійснюється від головного редуктора через систему валів і редукторів. Крім того рульовий гвинт використовується для шляхового керування вертольота.

Шасі забезпечує спирання вертольота при стоянці і пересуванні по землі, а також зниження навантаження при посадці.

Найбільш розповсюдження отримала трьохопорна схема шасі з носовим колесом і основні опори розташовані позаду центра мас вертольота, передня - під носовою частиною фюзеляжу. На швидкісних вертольотах шасі може убиратись під час польоту.

Оперення призначено для підвищення стійкості вертольота. Воно складається зі стабілізатора і кіля, роль якого грає спеціально спрофільована кінцева балка.

Компоновка двогвинтового вертольота соосної схеми відрізняється компактністю меншого діаметра гвинтів і відсутністю рульового гвинта з хвостовою і кінцевими балками. Але соосне розташування НГ забезпечує висоту вертольота, а недостатня шляхова стійкість потребує установки достатньо міцного вертикального оперення.

1.2.3. Призначення та загальна характеристика систем вертольота.

Енергетичні системи вертольотів призначені для забезпечення енергією виконавчих пристроїв об'єктів керування. В залежності від типу затосуемого робочого тіла на вертольотах використовують гідравлічні, пневматичні, електричні та змішані системи. Робочим тілом гідравлічної системи е рідина, пневматичної - повітря.

Переваги та недоліки енергетичних систем визначають області їх застосування. Гідравлічні системи використовують тяги, а потребує плавний рух керуемих агрегатів, фіксація виконавчих пристроїв в проміжних положеннях і стяжний принцип дії. Пневматичні системи застосовуються для керування агрегатами короткострокової дії.

Пневматична система.

Пневматична система сучасних вертольотів розподіляється на основні і аварійні. Основні пневмоситеми застосовуються для керування агрегатами, які потребують невеликих зусиль, но швидкого спрацювання. Крім того, пневмосистеми застосовують там, де використання рідини небажано по міркуванням безпеки.

Гідравлічна система

Гідравлічні системи використовуються на сучасних вертольотах для керування положення лопостей несучих і рульових гвинтів, трапів і створок вантажних люків, стійок і створок шасі, механізмів замків зовнішньої підвіски, а також рядом других агрегатів і пристроїв.

Паливна система.

Паливна система призначена для розміщення необхідного запасу палива і забезпечення безперебійної подачі його к двигунам в достатній кількості і з необхідним тиском на всіх режимах польоту вертольота. Крім

того паливна система повинна забезпечувати такий порядок палива, при якому центровка вертольота зберігається в заданих межах.

Протипожежна система.

Протипожежна система призначена для запобігання виникнення очагів пожежі, а в разі їх виникнення - для швидкої їх локалізації і ліквідації. В протипожежну систему входить система сигналізації о положенні, система гасіння пожежі і система захисту від вибуху (система нейтрального газу).

Система кондиціювання повітря.

Ситема кондиціювання повітря призначена для створення нормальних умов життєдіяльності людини, а також для надійної роботи обладнання при польотах вертольота на висотах більших за 2км.

Згідно з вирішуемими задачами в системі кондиціювання повітря можна виділити дві підсистеми: одна з них робить очистку повітря яке подається для вентиляції і терморегулювання кабіни, друга тиск в ній.

1.2.4. Заходи безпеки при обслуговуванні бойового вертольота.

До роботи на авіаційній техніці допускається особовий склад який вивчив правила по техніці безпеки і який прошов перевірку на їх освоєння.

Перед проведенням оглядів і виконання регламентних робіт необхідно прийняти всі заходи забезпечення безпеки які включатимуть розрядку статичного електричества вертольота через людей, пожежу на вертольоті і травмування людей.

Забороняється

- при роботі двигуна знаходитися в редукторному відсіку та відсіку двигуна, а також в зоні рульового гвинта;
- одночасне знаходження на кришках капотів більш двох людей;
- застосовувати при виконанні робіт на вертольоті несправні підйомні засоби;
- торкатися до вертольота після зарулювання на стоянку при відсутності заземлення;
- залишати незаезольованими кінці електропроводів;
- залишати відкритими електрощітки і клемні панелі апаратури під напругою;
- проводити роботу з кисневим обладнанням руками, які забрудненні мастилом.

СПИСОК ЛІТЕРАТУРИ

- 1. Доброленский Ю.П. (под ред.) и др. Авиационное оборудование. М.: Воениздат, 1989.
- 2. Артеменко Ю.Д. и ∂р. (noð peð. Чинаева П.И.). Авиационное оборудование самолетов. M.: Воениздат, 1976.
- 3. Лебедев А.А. Автоматическое и электрическое оборудование летательных аппаратов.- М.: Воениздат, 1979.
- 4. *Иваненко А.П. (под ред. Брускина Д.Э.)*. Автоматическое, приборное и высотное оборудование летательных аппаратов. М.: Воениздат, 1971.
- 5. Демушкин С.К. и др. (под ред. Лебедева А.А.). Системы электронной автоматики, приборное и высотное оборудование летательных аппаратов. М.: Воениздат, 1978.
- 6. *Шумихин В.А. и др. (под ред. Лебедева А.А.)*. Основы авиационной техники. Ч.ІІ. Авиационное оборудование. Радиоэлектронное оборудование. М.: Воениздат, 1978.
- 7. Бабич O.A. и $\partial p.$ (под ред. Бабича O.A.). Авиационные приборы и навигационные системы. M.: ВВИА им. проф.. Н.Е. Жуковского, 1981.
- 8. *Красовский А.А.* Пилотажно-навигационные комплексы. М.: ВВИА им. проф.. Н.Е. Жуковского, 1975.
- 9. *Под ред. Ганулича А.К.* Пилотажно-навигационные системы и комплексы. М.: Воениздат, 1990.
- 10.Вертолет Ми-24В (МИ-24Д). Инструкция по технической эксплуатации. Книга VI. Авиационное оборудование. Ч.1. Электрооборудование. М.: Машиностроение, 1982.
- 11.Вертолет Ми-24В (МИ-24Д). Инструкция по технической эксплуатации. Книга VI. Авиационное оборудование. Ч.2. Приборное и кислородное оборудование. М.: Машиностроение, 1982.

3MICT

	Перелік скорочень	3
	Вступ	4
1.		
1.1.	Загальні відомості про літак та його двигун	5
1.1.1.	Класифікація літальних апаратів по конструктивним	5
1 1 0	прикметам та призначенню, ї їх тактико-технічним даним	7
1.1.2.	Особливості конструкції планера літака.	7
1.1.3.	Призначення та загальна характеристика систем літака.	8
1.1.4.		10
1.2.	•	11
1.2.1.	Класифікація вертольотів по конструктивним прикметам ї їх тактико-технічним даним.	11
1.2.2.	Особливості конструктивного виконання бойового вертольота.	12
1.2.3.	_ •	13
1.2.4.	Заходи безпеки при обслуговуванні бойового вертольота.	14
1.3.	Силові установки військових літальних апаратів	15
1.3.1.	Класифікація авіаційних реактивних двигунів	15
1.3.2.	Призначення елементів і особливості конструкції ТРДФ	17
1.3.3.		18
1.3.4.		19
2.	Загальні відомості про авіаційне обладнання	21
2.1.	Загальна характеристика комплексів авіаційного	21
	обладнання	
2.1.1.	Класифікація авіаційного обладнання, призначення та характеристика	21
2.1.2.	Умови роботи і технічні вимоги до авіаційного обладнання.	22
2.2.	Бортові системи авіаційного обладнання.	23
2.2.1.	Системи електропостачання електроприводів	23
2.2.2.	Системи керування польотом літака	25
2.2.3.	Навігаційні системи	27
2.2.4.	Аерометричні і курсові прибори і системи	28
2.2.5.	Системи забезпечення життєдіяльності екіпажу	30
2.2.6.	Світлотехнічне обладнання літака	32
3.	Радіотехнічне обладнання літака.	34
3.1.	Радіотехнічне обладнання військових літальних апаратів.	34
3.1.1.	Загальна характеристика радіоелектронного обладнання та його класифікація	34
3.1.2.		34
3.2	Раліоелектронне обладнання військових літальних апаратів	40

3.2.1.	Авіаційні радіолокаційні системи	40
3.2.2.	Авіаційні радіонавігаційні пристрої та системи	45
3.2.3.	Заходи безпеки при роботі на АТ з радіоелектронним обладнанням (РЕО)	48
	Тестові питання	50
	Список літератури	54

Навчальне видання

ВОДЧИЦЬ Олександр Григорович Єгоров Сергій Никонорович ПАВІЛЬЧ Валентин Миколайович

Загальні відомості про військову авіаційну техніку та комплекси авіаційного озброєння

Навчальний посібник

Технічний редактор Р.С. Ткаченко

Підп. до друку 01.10.08. Формат 60х84/16. Папір офс. Офс. друк. Ум. фарбовідб. 29. Ум. друк. арк. 1,75. Обл.-вид. арк. 3,23 Тираж 50 пр. Замовлення № 0318/010. Вид. № 88/194.

Свідоцтво про внесення до Державного реєстру ДК №1655 від 15.09.2003