Machine Design Homework 4

June 17, 2022

Gabe Morris

```
[1]: # Notebook Preamble
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt

plt.style.use('maroon_ipynb.mplstyle')
```

Contents

1	Problem 6-1			
	1.1	Given	:	
		Find		
	1.3	Solution	:	

ME 4403 Homework 4 Gabe Morris gnm54

1 Problem 6-1

1.1 Given

A 10-mm steel drill rod was heat treated and ground. The measured hardness was found to be 300 Brinell.

1.2 Find

Estimate the endurance strength in MPa if the rod is used in rotating bending.

1.3 Solution

Eq. 6-10 on p. 305,

$$S_e' = \begin{cases} 0.5 S_{ut} & S_{ut} \leq 200 \ ksi \ (1400 \ MPa) \\ 100 & S_{ut} > 200 \ ksi \\ 700 \ MPa & S_{ut} > 1400 \ MPa \end{cases}$$

The ultimate strength of steel comes from Eq. 2-36,

$$S_{ut} = 3.4H_B$$

[2]: 510.0

This value is not the final value. The relationship for the refined value is,

$$S_e = k_a k_b k_c k_d k_e S'_e$$

The only necessary k values used for this analysis is k_a and k_b , whose equations are at 6-18 and 6-19 respectfully.

```
k_b = (d/sp.S('7.62'))**-(sp.S('0.107'))

S_e = k_a*k_b*S_e_prime

S_e # MPa
```

[3]: _{434.375608564977}

The answer in the back of the book appears to be heavily rounded.