DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING IBM NALAIYA THIRAN PROJECT

Project Design Phase-I

Date	24 September 2022
Team ID	PNT2022TMID03479
Project Name	IoT Based Smart Crop Protection System for Agriculture
Maximum Marks	2 Marks

Proposed Solution:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Our project's primary goals are to safeguard crops from animal damage and safely move animals away from crops.
2.	Idea / Solution description	Using latest technology ultrasonic sensors, we can find a solution by detecting the animal's presence and sending a signal to the controller to tell it to do something about it.
3.	Novelty / Uniqueness	Although the system is already employed by many, but this project promises to give an accurate results and also act unique in many of the regions of operation.
4.	Social Impact / Customer Satisfaction	To secure a field, farmers cannot barricade off vast tracts of land or stay there all day, they can take immediate action, which results in improved crop yields and increased profitability. Also limited from often visiting the farm and may feel more at peace with this approach.
5.	Business Model (Revenue Model)	Highly reliable, reduction of cost, and fully/partial automatic that makes the system pretty smarter.
6.	Scalability of the Solution	The potential to expand because smart farming is a modern emerging technology, minimal soil disturbance, plant diversity, ongoing live plant/root, and livestock integration are examples of soil armor.