Atomic transitions 1

Start with the perturbing Hamiltonian where E_0 is electric field strength.

$$H_1(\mathbf{r},t) = -\frac{eE_0\boldsymbol{\epsilon} \cdot \mathbf{p}}{m\omega}\cos(\mathbf{k} \cdot \mathbf{r} - \omega t)$$

In exponential form

$$H_1(\mathbf{r},t) = -\frac{eE_0\boldsymbol{\epsilon} \cdot \mathbf{p}}{m\omega} \left(\frac{1}{2} \exp(i\mathbf{k} \cdot \mathbf{r} - i\omega t) + \frac{1}{2} \exp(-i\mathbf{k} \cdot \mathbf{r} + i\omega t) \right)$$

Given the initial condition $c_b(0) = 0$ the first-order approximation for $c_b(t)$ is

$$c_b(t) = -\frac{i}{\hbar} \int_0^t \langle \psi_b | H_1(\mathbf{r}, t') | \psi_a \rangle \exp(i\omega_0 t') dt', \quad \omega_0 = \frac{E_b - E_a}{\hbar}$$

Factor the integrand.

$$c_b(t) = \frac{ieE_0}{2m\hbar\omega} \langle \psi_b | \boldsymbol{\epsilon} \cdot \mathbf{p} \exp(i\mathbf{k} \cdot \mathbf{r}) | \psi_a \rangle \int_0^t \exp(-i\omega t') \exp(i\omega_0 t') dt'$$
$$+ \frac{ieE_0}{2m\hbar\omega} \langle \psi_b | \boldsymbol{\epsilon} \cdot \mathbf{p} \exp(-i\mathbf{k} \cdot \mathbf{r}) | \psi_a \rangle \int_0^t \exp(i\omega t') \exp(i\omega_0 t') dt'$$

Solve the integrals to obtain

$$c_{b}(t) = \frac{eE_{0}}{2m\hbar\omega} \langle \psi_{b} | \boldsymbol{\epsilon} \cdot \mathbf{p} \exp(i\mathbf{k} \cdot \mathbf{r}) | \psi_{a} \rangle \frac{\exp(i(\omega_{0} - \omega)t) - 1}{\omega_{0} - \omega} + \frac{eE_{0}}{2m\hbar\omega} \langle \psi_{b} | \boldsymbol{\epsilon} \cdot \mathbf{p} \exp(-i\mathbf{k} \cdot \mathbf{r}) | \psi_{a} \rangle \frac{\exp(i(\omega_{0} + \omega)t) - 1}{\omega_{0} + \omega}$$
(1)

As an approximation, discard the second term since the first term dominates for $\omega \approx \omega_0$.

$$c_b(t) = \frac{eE_0}{2m\hbar\omega} \langle \psi_b | \boldsymbol{\epsilon} \cdot \mathbf{p} \exp(i\mathbf{k} \cdot \mathbf{r}) | \psi_a \rangle \frac{\exp(i(\omega_0 - \omega)t) - 1}{\omega_0 - \omega}$$

Rewrite $c_b(t)$ in the form of a sine function.

$$c_b(t) = \frac{ieE_0}{m\hbar\omega} \langle \psi_b | \boldsymbol{\epsilon} \cdot \mathbf{p} \exp(i\mathbf{k} \cdot \mathbf{r}) | \psi_a \rangle \frac{\sin(\frac{1}{2}(\omega_0 - \omega)t)}{\omega_0 - \omega} \exp(\frac{i}{2}(\omega_0 - \omega)t)$$
 (2)

Verify dimensions.

$$\frac{eE_0\boldsymbol{\epsilon} \cdot \mathbf{p}}{m\omega} \propto \frac{e}{\frac{\text{coulomb}}{m\omega} \cdot \frac{\text{E}_0}{\text{newton coulomb}^{-1}} \cdot \frac{\boldsymbol{\epsilon} \cdot \mathbf{p}}{\text{momentum}}}{m\omega} = \text{joule}$$
kilogram second⁻¹

$$c_b(t) \propto \frac{e}{m \quad \hbar \quad \omega} \frac{E_0}{\hbar \quad \omega} \frac{\langle \psi_b | \boldsymbol{\epsilon} \cdot \mathbf{p} \exp(i\mathbf{k} \cdot \mathbf{r}) | \psi_a \rangle}{m \quad \text{momentum}} = 1$$
kilogram joule second second⁻¹ second⁻¹

Wave functions ψ_a and ψ_b have dimension meter^{-1/2} hence they cancel with $dx \propto$ meter in the integral leaving units of momentum due to \mathbf{p} .