Functions or Mappings:

Let A be the set of 30 students and B be the set of 40 chairs in a class room. The correspondence between the set A and set B is "student sitting on a chair." Then the correspondence f from A to B is a function or a mapping if and only if

- (1) Every student is sitting on a chair.
- (2) No student is sitting on two different chairs.

If these conditions are satisfied, f is called a function or mapping and it is denoted by f: A \rightarrow B

Remarks: (1) If one student is standing, then *f* cannot be a function.

- (2) If one student is occupying two different chairs still *f* cannot be a function. i.e., *f* cannot be of the type one element is corresponding to many elements.
- ❖ Function deals with linking pair of elements from two sets and then introduce relations between the two elements in the pair.
- ❖ The function is a special relation from one set to another set, in which every element of first set is in relation (uniquely) with the elements of another set.
- ❖ Practically in every day of our lives, we pair the members of two sets of numbers. For example,
 - Each hour of the day is paired with the local temperature reading by T.V. Station's weatherman,
 - A teacher often pairs each set of score with the number of students receiving that score to see more clearly how well the class has understood the lesson.

Definition (Functions):

Let A and B be two non-empty sets. Then a function or mapping f from the set A to the set B is a rule which assigns to each element $a \in A$ to unique element $b \in B$.

We say that f maps element a of set A to element b of set B and that f maps set A to set B. The notation denote that f maps a to b is f(a) = b or $(a, b) \in f$.

Remarks: f is well defined if $f(a_1) = b$ and $f(a_1) = c \implies b = c$

Note: If n(A) = m & n(B) = n, then we can create nm different functions from A to B.

 \odot Let A = {1, 2, 3} and B = {a, b, c, d, e}, then

$$\circ f = \{(1, a), (2, b), (3, c)\}$$
 is function from A to B.(OR $f: A \to B, f(1) = a, f(2) = b, f(3) = c$).

$$\circ f = \{(1,a),(2,b),(3,b)\}$$
 is function from A to B.(OR $f: A \to B, f(1) = a, f(2) = b, f(3) = b$).

$$\circ f = \{(1, a), (2, a), (3, a)\}$$
 is function from A to B.(OR $f: A \to B, f(1) = a, f(2) = a, f(3) = a$),

Representation by Diagram:

Let the interior of the two closed areas represented the sets A and B. The mapping of function $f: A \to B$ is represented by means of arc of lines joining the points representing the elements of A to the elements of B.

- (1) Every $x \in A$ is joined to some $y \in B$. (Figure (1))
- (2) Two or more points in A may be joined to the same point B. (Figure (2))
- (3) For mapping, two or more points of B cannot be joined to the same point in A.

Here, Figure(3) is not a function as, f(1) = a and f(1) = d but $a \neq d$.

Also, Figure(4) is not a function as 3 from set A is not in correspondence with any element of set B.

Note: (1) Any function from \mathbb{R} to \mathbb{R} is called real function.

(2)A program written in a high-level language is mapped into a machine language by a compiler. Similarly, the output from a computer is a function of its input.

❖ Definition (Image, Domain, Co-domain and Range of a Function):

If $f: A \rightarrow B$ is a function from A to B, then

- (1) for f(a) = b, element b of B is called f image of element a of A and element a is called preimage of b.
- (2) Set A is known a domain of the function f.
- (3) Set B is known as co-domain of the function f.
- (4) Range of $(f) = \{b; b \in B \text{ and } f(a) = b, \text{ for some } a \in A\}$. In other words, range of f is the set of all images of the elements of set A under f.

Example: If $A = \{x, y, z\}$, $B = \{a, b, c, d\}$, decide whether or not the following are functions from A to B. If they are functions, give the range of each; if not, tell why?

$$(a)f = \{(x, a), (y, b), (z, c)\}$$

$$(b)f = \{(x,a), (y,c), (z,b), (x,c)\}$$

$$(c)f=\{(x,d),(y,b)\}$$

$$(d)f = \{(x,a), (y,b), (z,d)\}$$

$$(e)f = \{(y,a), (y,b), (y,c), (y,d)\}$$

$$(f)f = \{(x,b), (y,c), (z,d)\}$$

$$(f)f = \{(x,b), (y,c), (z,d)\}$$

Sol: $f: A \to B$

O
$$\beta(z) = \alpha$$
, $\beta(y) = b$, $\beta(x) = c$
Here, β is a function from A to B
Range of $\beta = \{\alpha, b, c\}$

②
$$f(x) = \alpha$$
, $f(y) = c$, $f(x) = b$, $f(x) = c$
Here, $f(x) = a$ and $f(x) = c$ but $a \neq c$.
 $= 0$, $= 0$, $= 0$ so $= 0$ function.

- (4) Here, of is a function and range of of = {a,b,d}
- (3) Here, image of y is not unique and so, of is not a function.
- (Here, f 15 a function and range of f={b,c,d}

* Equality of two functions:-

Two functions of and of from set A to set B are said to be equal functions iff f(x) = g(x), $\forall x \in A$. If I at least one element $y \in A$ s.t. $f(y) \neq g(y)$ then mapping of and g are not equal.

* Identity Function:

Let A be any set and f be any function defined on A i.e. $f:A \to A$ and f(x)=x, $\forall x \in A$ then f is known as identity mapping or identity function and generally denoted by I_A

Ex; Let $A = \{x, y, 3\}$ $f: A \rightarrow A$, f(x) = x

A constant Function:

The function defined from Set A to Set B S.t. f(a) = b, $\forall a \in A$ then f is called constant function

Types of Functions or mappings:

1 one to one mapping (Injective mapping)

A function $f:A \to B$ is said to be one to one mapping or one to one correspondence or injective function or univalent function if $\forall a_1, a_2 \in A$

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2 \quad \underline{or}$$

$$if \quad a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$$

* Many to one mapping:

Let $f: A \to B$ then f is many to one function if $q, \pm q_2$ but $f(q_1) = f(q_2)$. i.e. f is many to one function if two or more than two distinct elements of A have the same image in B under f

Note: D Identity function is one to one function

(2) Constant function is many to one function

* Into Mapping:-

If $f: A \rightarrow B$ then f is into mapping if \exists atteast one element in B which is not f-Image of any element of A.

* Onto mapping or subjective mapping:-

A function f: A - B is said to be onto mapping if each element of B is the f-image of at least one element of set A.

Note: If $f: A \rightarrow B$ is onto mapping then range of f = co-domainsetIn this case, we can write f(A) = B.

* many one into mapping:-

If f: A > B is many one mapping and also f is into mapping then f is said to be many one into mapping

$$f(1) = \chi = f(2) = f(3)$$

* Many one Onto mapping:

If f: A - B is many one mapping and also f is onto then f is said to be many one onto mapping

A One-one Into mapping:-

If f: A → B is one-one and also into mapping then f is said to be one-one into mapping

One-one onto mapping or Bijective mapping (Bijection): A mapping f: A > B which is one-one as well as onto is called one-one onto mapping or Bijective mapping

* Inverse mapping:-

If f: A → B is an one-ond onto (Bijection) mapping then the mapping f: B > A, which associates to element b < B, to the unique element a GA Such that f(a) = 6 15 called inverse of mapping f: A>B

If f(a) = b then f'(b) = a

>> Conditions for a function to be invertible:

- 1 If f: A→B is one-one and onto then only f exists and f is also one-one and onto mapping
- (2) In case of one-one into, many one into and many one onto inverse does not exist.

* Theorem: If f: A → B is one-one onto function then show that inverse of f; fib > A is also one-one onto function.

Proof: Here given that f is one-one and onto

(i)
$$\forall a_1, a_2 \in A$$

$$f(a_1) = f(a_2) \implies a_1 = a_2$$

$$|(ii) \forall b \in B \ni a \in A$$

$$\ni f(a) = b$$

$$\Rightarrow$$
 $f^{-1}(f(q_1)) = f^{-1}(b_1)$ and $f^{-1}(f(q_2)) = f^{-1}(b_2)$

$$\Rightarrow$$
 $q_1 = f^{-1}(b_1)$ and $q_2 = f^{-1}(b_2)$

Now,
$$f'(b_1) = f'(b_2) \Rightarrow a_1 = a_2 \Rightarrow f(a_1) = f(a_2)$$
 (" f is well defined" $\Rightarrow b_1 = b_2$.

Thus, ξ^{-1} is one-one function.

Again, YbeB J acA > f(a)=b

$$\Rightarrow f^{-1}(f(a)) = f^{-1}(b) \Rightarrow a = f^{-1}(b)$$

$$\Rightarrow f^{-1}(b) = a$$

Hence, taca J beb > f(b)=a Hence, f'is onto function.

$$Note:-\left(f^{-1} \right)^{-1} = f$$

Composition of functions or Product of functions:

Let A, B, c be three sets and $f: A \rightarrow B$ and $g: B \rightarrow C$ then the composition of two functions f and g can be defined as $g \circ f: A \rightarrow C$, $g \circ f(g) = g(f(g))$ = g(f(g))

The domain of Jof is set A and

the domain of gof is set A and co-domain of gof is set C.

Ex: Let $f: R \to R$, $f(x) = 2x^3 + 5$ $g: R \to R$, $g(x) = \cos x$ then find $f \circ f \neq f \circ g$ $f \circ f(x) = g(f(x)) = g(2x^3 + 5) = \cos(2x^3 + 5)$. $f \circ g(x) = f(g(x)) = f(\cos x) = 2\cos x + 5$ $f \circ g \neq g \circ f$

Ex: Let $f: R \to R$, $g(x) = 2x^3 + 5$, $g: R \to R$, g(x) = coox, $h: R \to R$, $h(x) = x^3 - 1$

Find ho (got) and (hog) of. Are they equal?

501. $h \circ (g \circ f)(x) = h \circ [g(f(x))] = h \circ [g(g(x))] = h \circ [g(g(x))] = h \circ [cos(g(x)^3+5)] = h \circ [cos(g(x)^3+5)] = h \circ [cos(g(x)^3+5)]^3 - 1 \rightarrow 0$

 $(h \cdot g) \cdot f(x) = (h \cdot g)(2x^3 + 5) = h[g(2x^3 + 5)]$ = $h[co(2x^3 + 5)] = [co(2x^3 + 5)]^3 - 1 \rightarrow @$

From (1 & 2), ho(gob) = (hog) of. Composition of function satisfies associative law

Ex: Let f and g be two functions defined by f(x) = 2x+1 and $g(x) = x^2 - 2$. Then find f(x) = 2x+1 and f(x) = 2x+1 and $f(x) = x^2 - 2$. Then find f(x) = 2x+1 and f(x) = 2x+1 a

Discrete Mathematics Page 8

$$50!$$
 - 0 $90f(4) = 9(f(4)) = 9(2(4)+1) = 9(9) = (9)^2 - 2 = 81 - 2 = 79$

(2)
$$f \circ g(4) = f(g(4)) = f((4)^2 - 2) = f(14) = 2(14) + 1 = 29$$

(3)
$$g \circ f(q+2) = g(f(q+2)) = g(2(q+2)+1) = g(2q+5)^2 - 2$$

$$= (2q+5)^2 - 2$$

$$= 4a^2 + 20a + 23$$

$$\begin{array}{lll}
\text{(4)} & \text{(3)} & \text{(4)} & \text{$$

Ex:- Represent the given function in:

(i) Graphical (ii) Tabular form and (iii) Matrix form $f = \{(1,3), (2,5), (3,5), (4,2), (5,3)\}$

501:- (1) Graphical representation

(2	Τ,	ebul	مد	- fe	ንኢY
Ł	l	2	3	4	5	
ľ			سسا			
2					-	
3					1	
4		14				
			_			

3 Bohog & hof

501:- ① $g \circ f(x) = g(f(x)) = g(x+2) = (x+2) - 2 = x$ } $f \circ g = g \circ f$ ② $f \circ g(x) = f(g(x)) = f(x-2) = (x-2) + 2 = x$

(3) $f \circ f(x) = f(f(x)) = f(x+2) = (x+2) + 2 = x+4$

(4) $h \circ g(x) = h(g(x)) = h(x-2) = 3(x-2) = 3x-6$

(5) $g \circ g(x) = g(g(x)) = g(x-2) = (x-2)-2 = x-4$

6 foh(x) = f(h(x)) = f(3x) = 3x+2

(1) $f \circ h \circ g(x) = f(h(g(x))) = f(h(x-2)) = f(3(x-2)) = f(3x-6)$ = (3x-6)+2= 3x-4

(8) $h \circ f(x) = h(f(x)) = h(x+2) = 3(x+2) = 3x+6$

A Some properties of composition of functions:-

Theorem-1:- If \$: A > B be a one-one onto fun, then

for = IB and for = IA identity fun! on set B and

where IB and IA are A respectively

proof. f: A → B, one-one and onto

→ f exists and f : B → A, one-one and onto

Now, fofis 3 > B

fof (b) = f(f-(b)) = f(a) = b, + b & B

Hence, fof = IB

Let fof; A → A fof(a) = for(f(a))

$$f'\circ f(a) = f'(f(a))$$

$$= f'(b) = Q, \forall a \in A$$
Hence, $f'\circ f = I_A$

Theorem-2: If $f: A \rightarrow B$ and $g: B \rightarrow C$ be two one-one onto functions then $g \circ f: A \rightarrow C$ is also one-one onto and $(g \circ f) = g^{-1} \circ g^{-1}$

Proof:

Let
$$g \circ f(q_1) = g \circ f(q_2) \Rightarrow g(f(q_1)) = g(f(q_2))$$

 $\Rightarrow g(b_1) = g(b_2)$
 $\Rightarrow b_1 = b_2 \ (\because g \text{ is one-one})$
 $\Rightarrow f(q_1) = f(q_2)$
 $\Rightarrow q_1 = q_2 \ (\because f \text{ is one-one})$

50, gof 15 one-one function

Since g is onto mapping from B to c, $\exists b \in B \ni f(b) = C$, $\forall c \in G'$ Also f is onto mapping from A to B, $\exists a \in A \ni f(a) = b$, $\forall b \in B$ $\forall c \in G$, $g \circ f(a) = g(f(a)) = g(b) = C$

Hence, gof is onto function Therefore, gof is one-one and onto function and so, inverse of gof is exist.

$$(g \circ g)^{-1}$$
: $C \to A$ is also one-one and onto $C g^{-1} B_{p^{-1}} A$

(Jud): - - 11 is and out

$$(g \circ f)(a) = g(f(a))$$

$$= g(b)$$

$$= c \Rightarrow (g \circ f)(a) = c$$

$$\Rightarrow (g \circ f)^{-1} [(g \circ f)(a)] = (g \circ f)^{-1}(c)$$

$$\Rightarrow a = (g \circ f)^{-1}(c), \forall c \in C$$

$$(f^{-1} \circ g^{-1})(c) = f^{-1}(g^{-1}(c)) = f^{-1}(b) = a, \forall c \in C$$

$$\therefore (f^{-1} \circ g^{-1})(c) = a \Rightarrow \emptyset$$
Hence, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Theorem-3:- composition of function satisfies associative property Let $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: C \rightarrow D$ then $(h \circ g) \circ f = h \circ (g \circ f)$

Prof:

$$(h \circ g) \circ f : A \rightarrow D$$
, $h \circ (g \circ f) = A \rightarrow D$

 $(h \circ g) \circ g(a) = h \circ g(g(a)) = h \circ g(b) =$

* Comparability of sets:

If A and B are two sets and if ACB or BCA, then A and B are said to be comparable. If A is not subset of B and B is not subset of A i.e. A & B and B & A then A and B are said to be incomparable sets

EX. O NEZERER

② Let $A = \{1, 2, 3\}$ and $B = \{x, y, 3\}$ then $A \not\leftarrow B$ and $B \not\leftarrow A$ so, A and B are incomparable sets

* one-one correspondence:

Let A and B be two sets. If J a function $f:A \to B$ such that f is one-one and onto function then it is known as A and B in one-one correspondence and it is denoted by $A \longleftrightarrow B$.

If A and B are in one-one correspondence then |A| = |B|.

* cardinally Equivalent Sets .-

Two sets A and B whose numbers can be placed in one-one correspondence are said to be cardinally equivalent or parlinumerous

In other words, if I a fun! f: A + B which is bytective then A and B one equivalent. They are denoted by ANB.

$$Ex:$$
 $A = \{1, 2, 3, 4\}$, $B = \{p, q, x, s\}$

So, f: A → B 15 bijection . So, ANB j.e. |A|= 4=18).

Ex:- IS N~Z?

Here, f is one-one and onto

$$f(-3) = 6$$
, $f(-2) = 4$,
 $f(-1) = 2$, $f(0) = 1$

$$f(1) = 3$$
, $f(2) = 5$, $f(3) = 7$

① if
$$a,b \ge 0$$
 \Rightarrow $f(a) = f(b)$ \Rightarrow $-2a = -2b$ \Rightarrow $a = b$

(a) if
$$a,b < 0 \Rightarrow f(a) = f(b) \Rightarrow 2a + 1 = 2b + 1 \Rightarrow a = b$$

Thus, f is one-one function

[suppose
$$a \neq b \Rightarrow a \neq ab \Rightarrow -aa \neq -ab \Rightarrow f(a) \neq f(b)$$
]

Thus, $f(a) = f(-\frac{b}{a}) = -2(-\frac{b}{a}) = b$ (a) if a > 0 then $f(a) = b \Rightarrow a = b - 1$ Thus, $f(a) = f\left(\frac{b-1}{a}\right) = a\left(\frac{b-1}{a}\right) + 1 = b$ Thus, f is onto function Hence, N~Z [IN]= |Z| EXI- IS XXX~NXN? $g((a,b)) = (f(a), f(b)), f: Z \rightarrow N, f(a) = \begin{cases} -2q, a < 0 \\ 2q + 1, q \ge 0 \end{cases}$ This is one-one and onto function as f 15 one-one and onto Ex. IS Z ~ Q? 501: Define $f: Q \rightarrow T$, $T = \{ (p,q) / p \in \mathbb{Z}, 2 \in \mathbb{N}, 3 cd (p,q) = 1 \}$ $\frac{P}{P}\left(\frac{P}{q}\right) = (P, Q), \forall P \in Q$ Here, f is one-one and onto i. Q T NOW, ZX{I} ST CZXN Now, g: Z → Z× {1}}, h: Z×{1}} → T, K: T → Z×N g(n) = (n,1) h(n,1) = (n,1) $k(a,b) \rightarrow (a,f(b))$ Here, g, h and k are one-one and onto function. Z~ ZXXI] ~ ZXN~T (A~B, B~C > A~C) : Z~T but T~Q → Z~Q [|Z|=|Q|]

* Celling Function:

* <u>Celling</u> Function:-

ceiling function is a function which maps x to the least integer greater than or equal to x and it is denoted by $\lceil x \rceil$. $f: R \to Z$, $f(x) = \lceil x \rceil$

* Floor Function;

The floor function is the function that takes as a input a real number in and gives as output the greatest integer less than or equal to x It is denoted by [x]

$$ex!$$
 $f(x) = [n]$ $f(x.5) = a$

A Integral part or Integer part function:

The integral part or integer part of number x is denoted by [x] is defined on

 $[x] = \begin{cases} LxJ; & x \text{ is non negative} \\ -1 & -1 \end{cases}$

$$[x] = \begin{cases} [x]; & x \text{ is non negative} \\ [x]; & \text{otherwise} \end{cases}$$

In words, this is the integer that has the largest absolute value less than or equal to the absolute value of x.

* Fractional part function:

The fractional part function is denoted by $\{x\}$ and is defined as $\{x\} = x - \lfloor x \rfloor$

Here, we can observe that $0 \le 2 \times 3 < 1$

fire [011), f(x)= {x} then f is onto

Ez:-

)				
x	LxJ	[2]	{x}	[x]
2 2 4 2 9 7 2 2	2 2 2 3 A 2	2 3 - 2 - 2	0 0.4 0.9 0.3 0	2227