Homework 5 (Due Sept 22, 2023)

Jack Hyatt MATH 554 - Analysis I - Fall 2023

September 22, 2023

Justify all of your answers completely.

1. Let $f:[a,b] \to \mathbb{R}$ be a function such that

$$f(a) \le 0$$
 and $f(b) \ge 0$

and such that there is a M > 0 such that $\forall x_1, x_2 \in [a, b]$ the inequality

$$|f(x_2) - f(x_1)| \le M|x_2 - x_2|$$

holds. Prove that $\exists \xi[a,b]$ with

$$f(\xi) = 0$$

Proof. Let $S = \{x \in [a,b] : f(x) \le 0\}$. Then we know $a \in S$ and S is bounded above by b, so $\xi = \sup(S)$ exists.

Let $\epsilon > 0$. Assume f(a) < 0 and f(b) > 0 since if either one was 0, then we are done.

Then $\exists x_1 \in S \text{ s.t. } \xi - \epsilon < x_1 \leq \xi \text{ since } \xi \text{ wouldn't be a supremum of } S$ otherwise. Also, $f(x_1) \leq 0$ since $x_1 \in S$.

$$f(\xi) = f(x_1) + (f(\xi) - f(x_1)) \le 0 + |f(\xi) - f(x_1)|$$

$$\le M|\xi - x_1| \le M|\xi - (\xi - \epsilon)| = M|\epsilon| = M\epsilon$$

Note: $\exists x_2 \in [\xi, \xi + \epsilon]$ with $f(x_2) > 0$ since $x_2 > \xi \implies x_2 \notin S \implies f(x_2) > 0$ and an $x_2 > \xi$ exists since $\epsilon > 0$. We have $f(x_2) > 0$ and $|\xi - x_2| \le \epsilon$, then

$$f(\xi) = f(x_2) + (f(\xi) - f(x_2)) \ge 0 + |f(\xi) - f(x_2)| \ge -M|\xi - x_2| \ge -M\epsilon$$

So then $-M\epsilon \le f(\xi) \le M\epsilon \implies |f(\xi)| = |f(\xi) - 0| \le M\epsilon \forall \epsilon > 0$. So then $f(\xi) = 0$.

2. Prove on a bounded interval [a, b] the function $f(x) = x^n$ is Lipschitz for any positive integer n.

Proof. Let $x \in [a, b]$, then $|x| \le \max(|a|, |b|)$. Let $C = \max(|a|, |b|)$.

$$|f(x_2) - f(x_1)| = |x_2^n - x_1^n| = |x_2 - x_1|(x_2^{n-1} + x_2^{n-2}x_1 + \dots + x_2x_1^{n-2} + x_1^{n-1})$$

$$\leq |x_2 - x_1|(|x_2|^{n-1} + |x_2|^{n-2}|x_1| + \dots + |x_2||x_1|^{n-2} + |x_1|^{n-1}) \leq |x_2 - x_1|(nC^{n-1})$$

$$= M|x_2 - x_1|$$

where $M := nC^{n-1}$. Thus f is Lipschitz on [a, b].

3. Show that $f(x) = x^2$ is not Lipschitz on the interval $[0, \infty)$.

Proof. BWOC, assume $\exists M$ s.t.

$$|f(x_2) - f(x_1)| = |x_2^2 - x_1^2| \le M|x_2 - x_1| \Longrightarrow$$

 $|x_2 - x_1||x_2 + x_1| \le M|x_2 - x_1|$

Then $\forall x_1, x_2 \in [0, \infty), x_1 \neq x_2,$

$$|x_2 + x_1| \le M$$

Let $x_2 = M, x_1 = M + 1$. Then $|x_2 + x_1| \le M \implies 2M + 1 \le M$

4. Prove if n is a positive integer, then $x^n - c$ has a positive solution for all c > 0.

Proof. Let $p(x) = x^n - c$. Then p(0) = -c < 0. Consider $p(c+1) = (c+1)^n - c = (c^n + nc^{n-1} + ... + nc + 1) - c > 0$ since nc gets rid of the -c since $n \ge 1$.

5. Let $p(x) = x^3 + ax^2 + bx + c$. Prove that p(x) has at least one real root.

Proof.

$$p(x) = x^3 \left(1 + \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3}\right)$$

If $|x| \leq 1$, then

$$\frac{1}{|x|^3} \ge \frac{1}{|x|^2} \ge \frac{1}{|x|}$$

If $|x| \ge 1$

$$\left| \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3} \right| \le \frac{|a|}{|x|} + \frac{|b|}{|x|^2} + \frac{|c|}{|x|^3} \le \frac{|a| + |b| + |c|}{|x|}$$

Let S = |a| + |b| + |c|.

Looking at $|x| \ge \max(1, 2S)$, when $\max(1, 2S) = 1$ then $1 \ge 2S \implies S \le 1/2$.

$$\left| \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3} \right| \le \frac{S}{|x|} \implies \left| \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3} \right| \le \frac{1}{2}$$

When $\max(1, 2S) = 2S$

$$\left| \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3} \right| \le \frac{S}{|x|} \implies \left| \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3} \right| \le \frac{S}{2S} = \frac{1}{2}$$

So

$$\begin{split} |\frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3}| &\leq \frac{1}{2} \implies -\frac{1}{2} \leq \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3} \leq \frac{1}{2} \\ \Longrightarrow &\frac{1}{2} \leq 1 + \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3} \leq \frac{3}{2} \implies 1 + \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3} > 0 \end{split}$$

Finally, consider $\beta = 2S$ and $f(\beta)$.

Then $f(\beta) = (2S)^3$ (positive number) > 0

Consider $\alpha = -2S$ and $f(\beta)$.

Then $f(\beta) = (-2S)^3$ (positive number) = $-(2S)^3$ (positive number) < 0 By Intermediate value theorem, $\exists \xi$ s.t. $f(\xi) = 0$.