Step-1

(a) In the course of discussion, we are needed to distinguish the words orthogonal and orthogonal complement.

 V^{\perp} is the orthogonal complement of V. but it is not necessary that any two orthogonal spaces are complements of each other.

We follow that dim V+ dim V^{\perp} = dim \mathbf{R}^{n}

Step-2

we observe that a straight line in \mathbb{R}^3 is a space of dimension 1.

We follow that if V is a straight line, and then V^{\perp} is the plane orthogonal to V

Now, we consider V and W are two perpendicular straight lines in \mathbb{R}^3 .

So, V and W are subspaces of \mathbb{R}^3 whose dimension is 1

Then it follows that V^{\perp} and W^{\perp} are two perpendicular planes whose dimensions are 2.

But V^{\perp} and W^{\perp} are not orthogonal complements while the sum of their dimensions is $4 > \dim \mathbb{R}^3$

Step-3

(b) Suppose V is orthogonal to W and W is orthogonal to Z, then to say V is not necessarily orthogonal to Z, we give an example.

Suppose V=2x-y+z=0, W=x-2y=0, Z=4x $\hat{a}\in 2y+2z=0$ are straight lines in \mathbb{R}^3

We easily see that $V^{\perp}W = 0$, and $W^{\perp}Z = 0$

But V and W are parallel while one is a multiple of the other.

This confirms that the statement $\hat{a} \in \mathcal{C}V$ is orthogonal to W and W is orthogonal to Z makes V is orthogonal to $Z\hat{a} \in V$ is orthogonal to Z makes V is orthogonal to Z makes Z make