





# Aula 2

# Fundamentos

Aula 2 - 27 de julho de 2015 - 13h às 14h

- Malhas
  - pontos (vértices)
  - segmentos de reta (arestas)
  - ► triângulos



- ightharpoonup O espaço afim euclidiano d-dimensional,  $\mathbb{E}^d$ .
  - pontos
  - vetores



- ightharpoonup O espaço afim euclidiano d-dimensional,  $\mathbb{E}^d$ .
  - pontos
  - vetores



Pontos e vetores não devem ser tratados da mesma forma!

- ightharpoonup Vetores em  $\mathbb{E}^d$ :
  - representados por segmentos de reta orientados
  - possuem comprimento e direção
  - não são afetados por translações



- ightharpoonup Vetores em  $\mathbb{E}^d$ :
  - representados por segmentos de reta orientados
  - possuem comprimento e direção
  - não são afetados por translações



- Pontos em  $\mathbb{E}^d$ :
  - não possuem comprimento
  - não possuem direção
  - possuem posição fixa (são afetados por translações)

- ▶ Vetores em  $\mathbb{E}^d$ :
  - adição
  - multiplicação por escalar





- ▶ Vetores em  $\mathbb{E}^d$ :
  - adição
  - multiplicação por escalar





- ▶ Pontos em  $\mathbb{E}^d$ :
  - faz sentido somar dois pontos?
  - faz sentido multiplicar um ponto por um escalar?

- ▶ Vetores em  $\mathbb{E}^d$ :
  - adição
  - multiplicação por escalar



- ▶ Pontos em  $\mathbb{E}^d$ :
  - faz sentido somar dois pontos?
  - faz sentido multiplicar um ponto por um escalar?
- ► Em geral, não! Mas, há uma exceção importante...

▶ Pontos e vetores em  $\mathbb{E}^d$ :

- ▶ Pontos e vetores em  $\mathbb{E}^d$ :
- Para quaisquer pontos p e q e vetores u e w em  $\mathbb{E}^d$ , temos:
  - (A1) p + 0 = p
  - (A2) (p + u) + w = p + (u + w)
  - (A3) há um único vetor  ${m v}$  em  ${\mathbb E}^d$  tal que  $q=p+{m v}$





- ▶ Pontos e vetores em  $\mathbb{E}^d$ :
- Para quaisquer pontos  $p \in q$  e vetores  $u \in w$  em  $\mathbb{E}^d$ , temos:
  - (A1) p + 0 = p
  - (A2) (p + u) + w = p + (u + w)
  - (A3) há um único vetor  ${m v}$  em  ${\mathbb E}^d$  tal que  $q=p+{m v}$





▶ Denotamos **v** em (A3) por **pq**.

A combinação afim de um conjunto de pontos em  $\mathbb{E}^d$ :

A combinação afim de um conjunto de pontos em  $\mathbb{E}^d$ :

Seja

$$p_0,\ldots,p_n$$

uma sequência qualquer de n+1 pontos de  $\mathbb{E}^d$  e seja

$$\alpha_0, \ldots, \alpha_n$$

uma sequência qualquer de n+1 números reais tais que

$$\sum_{i=1}^n \alpha_i = 1.$$

A combinação afim de um conjunto de pontos em  $\mathbb{E}^d$ :

Denotamos por

$$\sum_{i=0}^{n} \alpha_i \cdot p_i$$

o ponto

$$q = p_0 + \mathbf{v}$$
,

em que

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \cdot \mathbf{p_0} \mathbf{p_i}$$

é a combinação linear dos vetores  $p_0p_1, \ldots, p_0p_n$  obtida com os coeficientes  $\alpha_1, \ldots, \alpha_n$ . O ponto q é o baricentro ou combinação afim dos pontos  $p_0, p_1, \ldots, p_n$  associados aos pesos  $\alpha_0, \alpha_1, \ldots, \alpha_n$ .

► Como interpretamos uma combinação afim?

- Como interpretamos uma combinação afim?
- ▶ Sejam  $p_0$ ,  $p_1$  e  $p_2$  os vértices de um triângulo:



- Como interpretamos uma combinação afim?
- ▶ Sejam  $p_0$ ,  $p_1$  e  $p_2$  os vértices de um triângulo:



▶ Vamos determinar (no quadro negro) o ponto

$$\frac{1}{3} \cdot p_0 + \frac{1}{3} \cdot p_1 + \frac{1}{3} \cdot p_2$$

▶ Quando  $\alpha_i \ge 0$ , para todo i = 0, 1, ..., n, dizemos que  $\sum_{i=0}^{n} \alpha_i \cdot p_i$  é uma combinação convexa de  $p_0, p_1, ..., p_n$  com pesos  $\alpha_0, \alpha_1, ..., \alpha_n$ .

- ▶ Quando  $\alpha_i \ge 0$ , para todo i = 0, 1, ..., n, dizemos que  $\sum_{i=0}^{n} \alpha_i \cdot p_i$  é uma combinação convexa de  $p_0, p_1, ..., p_n$  com pesos  $\alpha_0, \alpha_1, ..., \alpha_n$ .
- Dado

$$P = \{p_1, \ldots, p_n\} \subset \mathbb{E}^d$$

definimos o fecho convexo, FC(P), de P como sendo o conjunto de todos os pontos obtidos por uma combinação *convexa* dos pontos de P:

$$FC(P) = \left\{ p \in \mathbb{E}^d \mid p = \sum_{i=1}^n \alpha_i \cdot p_i, \sum_{i=1}^n \alpha_i = 1, \alpha_i \ge 0 \right\}$$

- ▶ Quando  $\alpha_i \ge 0$ , para todo i = 0, 1, ..., n, dizemos que  $\sum_{i=0}^{n} \alpha_i \cdot p_i$  é uma combinação convexa de  $p_0, p_1, ..., p_n$  com pesos  $\alpha_0, \alpha_1, ..., \alpha_n$ .
- Dado

$$P = \{p_1, \ldots, p_n\} \subset \mathbb{E}^d$$

definimos o fecho convexo, FC(P), de P como sendo o conjunto de todos os pontos obtidos por uma combinação *convexa* dos pontos de P:

$$FC(P) = \left\{ p \in \mathbb{E}^d \mid p = \sum_{i=1}^n \alpha_i \cdot p_i, \sum_{i=1}^n \alpha_i = 1, \alpha_i \ge 0 \right\}$$

ightharpoonup Podemos mostrar que FC(P) é um subconjunto convexo de  $\mathbb{E}^d$ .

- ▶ Quando  $\alpha_i \ge 0$ , para todo i = 0, 1, ..., n, dizemos que  $\sum_{i=0}^{n} \alpha_i \cdot p_i$  é uma combinação convexa de  $p_0, p_1, ..., p_n$  com pesos  $\alpha_0, \alpha_1, ..., \alpha_n$ .
- Dado

$$P = \{p_1, \ldots, p_n\} \subset \mathbb{E}^d$$

definimos o fecho convexo, FC(P), de P como sendo o conjunto de todos os pontos obtidos por uma combinação *convexa* dos pontos de P:

$$FC(P) = \left\{ p \in \mathbb{E}^d \mid p = \sum_{i=1}^n \alpha_i \cdot p_i, \sum_{i=1}^n \alpha_i = 1, \alpha_i \ge 0 \right\}$$

ightharpoonup Podemos mostrar que FC(P) é um subconjunto convexo de  $\mathbb{E}^d$ .

▶ O que é um conjunto convexo?

- ► O que é um conjunto convexo?
- ▶ Um subconjunto convexo de  $\mathbb{E}^2$ :



- ▶ O que é um conjunto convexo?
- ▶ Um subconjunto convexo de  $\mathbb{E}^2$ :



lacksquare Um subconjunto de  $\mathbb{E}^2$  que não é convexo:



▶ Por que FC(P) é um conjunto convexo?

▶ Por que FC(P) é um conjunto convexo?



▶ Por que FC(P) é um conjunto convexo?



Por que FC(P) é um conjunto convexo?



ightharpoonup FC(P) é o "menor" conjunto convexo contendo todos os pontos de P!

▶ Um conjunto,  $\{p_0, \ldots, p_n\} \subset \mathbb{E}^d$ , é dito afimente independente (AI) se

$$\{ \mathbf{p}_i \mathbf{p}_i \mid j \in \{0, \dots, n\} - \{i\} \}$$

é linearmente independente (LI) em  $\mathbb{E}^d$  para algum i em  $\{0,\ldots,n\}$ . Se não for, o conjunto  $\{p_0,\ldots,p_n\}$  é afimente dependente (AD).





ightharpoonup Um subconjunto AI de  $\mathbb{E}^d$  possui, no máximo, d+1 pontos.



▶ Um subconjunto Al de  $\mathbb{E}^d$  possui, no máximo, d+1 pontos.



Triangulações consistem de elementos (vértices, arestas e triângulos) que nada mais são do que o fecho convexo de um subconjunto AI em  $\mathbb{E}^2$ .

▶ Seja  $P = \{p_0, \dots, p_k\}$  um conjunto AI com k+1 pontos de  $\mathbb{E}^d$ .

- ▶ Seja  $P = \{p_0, \dots, p_k\}$  um conjunto AI com k+1 pontos de  $\mathbb{E}^d$ .
- ▶ O simplexo  $\sigma$  gerado pelos pontos em P é o fecho convexo, FC(P), de P.



- ▶ Seja  $P = \{p_0, \dots, p_k\}$  um conjunto AI com k+1 pontos de  $\mathbb{E}^d$ .
- ▶ O simplexo  $\sigma$  gerado pelos pontos em P é o fecho convexo, FC(P), de P.



• Os pontos  $p_0, \ldots, p_k$  são os vértices de  $\sigma$ .

- ▶ Seja  $P = \{p_0, \dots, p_k\}$  um conjunto AI com k+1 pontos de  $\mathbb{E}^d$ .
- ▶ O simplexo  $\sigma$  gerado pelos pontos em P é o fecho convexo, FC(P), de P.



- ▶ Os pontos  $p_0, \ldots, p_k$  são os vértices de  $\sigma$ .
- ▶ A dimensão,  $dim(\sigma)$ , de  $\sigma$  é k e  $\sigma$  é dito um k-simplexo.

- ightharpoonup Seja  $P=\{p_0,\ldots,p_k\}$  um conjunto AI com k+1 pontos de  $\mathbb{E}^d$ .
- ▶ O simplexo  $\sigma$  gerado pelos pontos em P é o fecho convexo, FC(P), de P.



- ▶ Os pontos  $p_0, \ldots, p_k$  são os vértices de  $\sigma$ .
- A dimensão,  $dim(\sigma)$ , de  $\sigma$  é k e  $\sigma$  é dito um k-simplexo.
- ightharpoonup Em  $\mathbb{E}^d$ , há simplexos de dimensão  $0,1,\ldots,d$  apenas.



▶ Um 0-simplexo é um *ponto*.



- ▶ Um 0-simplexo é um *ponto*.
- ▶ Um 1-simplexo é um *segmento de reta*.



- Um 0-simplexo é um ponto.
- ▶ Um 1-simplexo é um *segmento de reta*.
- ▶ Um 2-simplexo é um *triângulo*.



- ▶ Um 0-simplexo é um *ponto*.
- ▶ Um 1-simplexo é um *segmento de reta*.
- ▶ Um 2-simplexo é um *triângulo*.
- ▶ Um 3-simplexo é um *tetraedro*.



- Um 0-simplexo é um ponto.
- ▶ Um 1-simplexo é um *segmento de reta*.
- ▶ Um 2-simplexo é um *triângulo*.
- ▶ Um 3-simplexo é um *tetraedro*.
- ightharpoonup O fecho convexo de qualquer subconjunto (próprio) não vazio do conjunto de vértices de  $\sigma$  também é um simplexo. (Por quê?)



- Um 0-simplexo é um ponto.
- ▶ Um 1-simplexo é um *segmento de reta*.
- ▶ Um 2-simplexo é um *triângulo*.
- ▶ Um 3-simplexo é um *tetraedro*.
- O fecho convexo de qualquer subconjunto (próprio) não vazio do conjunto de vértices de  $\sigma$  também é um simplexo. (Por quê?)
- Este simplexo é denominado de face (própria) de  $\sigma$ .



▶ Uma 0-face de  $\sigma$  é um vértice de  $\sigma$ .



- ▶ Uma 0-face de  $\sigma$  é um vértice de  $\sigma$ .
- ▶ Uma 1-face de  $\sigma$  é uma aresta de  $\sigma$ .



- ▶ Uma 0-face de  $\sigma$  é um vértice de  $\sigma$ .
- ▶ Uma 1-face de  $\sigma$  é uma aresta de  $\sigma$ .
- lacksquare Uma (d-1)-face de um d-simplexo em  $\mathbb{E}^d$  é denominada faceta.



- ▶ Uma 0-face de  $\sigma$  é um vértice de  $\sigma$ .
- ▶ Uma 1-face de  $\sigma$  é uma aresta de  $\sigma$ .
- ▶ Uma (d-1)-face de um d-simplexo em  $\mathbb{E}^d$  é denominada faceta.
- ▶ 0-, 1- e 2-simplexos são os "componentes" das triangulações!



- ▶ Uma 0-face de  $\sigma$  é um vértice de  $\sigma$ .
- ▶ Uma 1-face de  $\sigma$  é uma aresta de  $\sigma$ .
- ▶ Uma (d-1)-face de um d-simplexo em  $\mathbb{E}^d$  é denominada faceta.
- ▶ 0-, 1- e 2-simplexos são os "componentes" das triangulações!
- ▶ Veremos agora como combiná-los para formar triangulações.

▶ Um complexo simplicial, K, em  $\mathbb{E}^d$  é um conjunto não vazio e finito de simplexos em  $\mathbb{E}^d$  que goza das duas propriedades dadas a seguir:

- ▶ Um complexo simplicial,  $\mathcal{K}$ , em  $\mathbb{E}^d$  é um conjunto não vazio e finito de simplexos em  $\mathbb{E}^d$  que goza das duas propriedades dadas a seguir:
  - (1) se  $\sigma \in \mathcal{K}$  e  $\tau \leq \sigma$  então  $\tau \in \mathcal{K}$  e
  - (2) se  $\sigma \cap \tau \neq \emptyset$  então  $\sigma \cap \tau \preceq \sigma$  e  $\sigma \cap \tau \preceq \tau$ , para todo  $\sigma, \tau \in \mathcal{K}$ ,

em que  $a \leq b$  denota "a é uma face (não necessariamente própria) de b".



▶ A dimensão, dim(K), de K é o maior valor entre as dimensões de todos os simplexos de K. Um complexo simplicial de dimensão d (ou d-dimensional) é chamado, simplesmente, de d-complexo simplicial.



▶ Um complexo simplicial é um conjunto *discreto* (i.e., finito).



▶ Um complexo simplicial é um conjunto *discreto* (i.e., finito).



▶ Um k-simplexo, com  $k \ge 1$ , é um subconjunto (infinito) de pontos de  $\mathbb{E}^d$ .

O subconjunto de  $\mathbb{E}^d$  correspondente à união de todos os simplexos de um complexo simplicial,  $\mathcal{K}$ , é denominado de espaço subjacente de  $\mathcal{K}$ .



O subconjunto de  $\mathbb{E}^d$  correspondente à união de todos os simplexos de um complexo simplicial,  $\mathcal{K}$ , é denominado de espaço subjacente de  $\mathcal{K}$ .



lackbox O espaço subjacente do complexo simplicial  ${\mathcal K}$  é denotado por  $|{\mathcal K}|$ .

▶ Uma triangulação de um conjunto finito e não vazio, P, de pontos de  $\mathbb{E}^d$  é um complexo simplicial, denotado por  $\mathcal{T}(P)$ , tal que todos os vértices pertencem a P e cujo espaço subjacente,  $|\mathcal{T}(P)|$ , é igual a FC(P).



▶ Uma triangulação de um conjunto finito e não vazio, P, de pontos de  $\mathbb{E}^d$  é um complexo simplicial, denotado por  $\mathcal{T}(P)$ , tal que todos os vértices pertencem a P e cujo espaço subjacente,  $|\mathcal{T}(P)|$ , é igual a FC(P).



Puando o conjunto de vértices de  $\mathcal{T}(P)$  é o próprio P, dizemos que  $\mathcal{T}(P)$  é uma triangulação cheia (veja a triangulação à direita acima).

▶ Uma triangulação de um conjunto finito e não vazio, P, de pontos de  $\mathbb{E}^d$  é um complexo simplicial, denotado por  $\mathcal{T}(P)$ , tal que todos os vértices pertencem a P e cujo espaço subjacente,  $|\mathcal{T}(P)|$ , é igual a FC(P).



Note que a definição não implica a existência de um d-simplexo em  $\mathcal{T}(P)$ .

Logo, o complexo abaixo à direita é uma triangulação de P em  $\mathbb{E}^2$ :



Logo, o complexo abaixo à direita é uma triangulação de P em  $\mathbb{E}^2$ :



 $lacktriangulações em <math>\mathbb{E}^d$  sem um d-simplexo são ditas degeneradas.

De agora em diante, lidaremos apenas com triangulações cheias em  $\mathbb{E}^2...$ 



... e, por esta razão, omitiremos a palavra *cheia* daqui em diante.

▶ Mas, as triangulações (cheias) podem ou não ser degeneradas...



▶ Mas, as triangulações (cheias) podem ou não ser degeneradas...



lacktriangle Na próxima aula, veremos um tipo especial de triangulação em  $\mathbb{E}^2.$ 

### Exercícios

- Sugerimos a resolução dos seguintes problemas do livro:
  - ▶ 2.1
  - **2.2**
  - ▶ 3.8
  - **3.10**

### Exercícios

- Sugerimos a resolução dos seguintes problemas do livro:
  - ▶ 2.1
  - **2.2**
  - ▶ 3.8
  - ▶ 3.10
- Os problemas acima estão relacionados ao assunto da aula 2.