Distribution stuff compendium

July 14, 2025

Distribution	Support	p.m.f. $P(X = x)$	c.d.f. $F(x)$
Bernoulli (p)	$\{0, 1\}$	$p^x (1-p)^{1-x}$	$1_{x\geqslant 1}p + 1_{0\leqslant x<1}(1-p)$
Binomial(n, p)	$\{0,\ldots,n\}$	$\binom{n}{x} p^x (1-p)^{n-x}$ $(1-p)^{x-1} p$	$\sum_{k=0}^{\lfloor x\rfloor} \binom{n}{k} p^k (1-p)^{n-k}$
Geometric (p) (shift-1)	$\{1,2,\dots\}$	$(1-p)^{x-1}p$	$1-(1-p)^{\lfloor x\rfloor}$
Negative Binomial (r, p)	$\{0,1,\dots\}$	$\binom{r+x-1}{x}(1-p)^r p^x$	$1 - B_r(\lfloor x \rfloor + 1, r)$ (B _p = regularized Beta)
$\mathrm{Poisson}(\lambda)$	$\{0,1,\dots\}$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$e^{-\lambda} \sum_{k=0}^{\lfloor x \rfloor} \frac{\lambda^k}{k!}$
${\bf Hypergeometric}(N,K,n)$	$\{0,\ldots,n\}$	$\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$	$\sum_{k=0}^{\lfloor x\rfloor} \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$
Discrete $Uniform(a:b)$	$\{a,a+1,\ldots,b\}$	$\frac{1}{b-a+1}$	$\frac{\lfloor x \rfloor - a + 1}{b - a + 1} 1_{x \geqslant a}$

Table 1: Common discrete distributions. Here $\mathbf{1}_A$ is the indicator of event A.

1 Useful Identities

1.1 Normal

Conditional distributions for MVN. Relationship between conditional distributions (mean) and OLS. If mean 0, then $E[Y|Z] = \frac{EYZ}{EZ^2}Z$, ala $Z(Z^TZ)^{-1}Z^TY$ add this

1.2 Cauchy

"Sample median is a better estimator than sample mean". Sample mean is consistent, sample mean is not.

1.3 Exponential

"Sum of independent exponential with the same rate parameter is Gamma". If $X_i \sim Expo(\lambda)$, then:

$$\sum_{i=1}^{n} X_i \sim \Gamma(n, \lambda).$$

If $X_i \sim Laplace(\mu, \theta)$, then $Y_i = \frac{|X_i - \mu|}{\theta} \sim Expo(1)$. Minimum of iid Exp(1) is Exp(n).

Distribution	Support	$\mathbf{p.d.f.}$ $f(x)$	$\mathbf{c.d.f.}\ F(x)$
$\overline{\mathrm{Uniform}(a,b)}$	(a,b)	$\frac{1}{b-a}$	$\frac{x-a}{b-a}, \ a < x < b$
$\operatorname{Exponential}(\lambda)$	$(0,\infty)$	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$
$\operatorname{Gamma}(\alpha,\theta)$	$(0,\infty)$	$\frac{x^{\alpha-1}e^{-x/\theta}}{\Gamma(\alpha)\theta^{\alpha}}$	$\frac{\gamma(\alpha, x/\theta)}{\Gamma(\alpha)} (\gamma = \text{lower incomplete } \Gamma)$
χ_k^2	$(0,\infty)$	$\frac{x^{k/2-1}e^{-x/2}}{2^{k/2}\Gamma(k/2)}$	$P(k/2, x/2)$ (regularized Γ)
$\mathrm{Normal}(\mu,\sigma^2)$	$(-\infty,\infty)$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$ (Φ = standard normal c.d.f.)
$\operatorname{Lognormal}(\mu,\sigma)$	$(0,\infty)$	$\frac{1}{x\sigma\sqrt{2\pi}}\exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right]$	$\Phi\left(\frac{\ln x - \mu}{\sigma}\right)$
Student- $t(\nu)$	$(-\infty,\infty)$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-(\nu+1)/2}$	$\frac{1}{2} + x \frac{{}_{2}F_{1}(\frac{1}{2}, \frac{\nu+1}{2}; \frac{3}{2}; -\frac{x^{2}}{\nu})}{\sqrt{\nu\pi} B(\frac{\nu}{2}, \frac{1}{2})} $ (symmetric)
Cauchy (x_0, γ)	$(-\infty,\infty)$	$\frac{1}{\pi\gamma\left[1+((x-x_0)/\gamma)^2\right]}$	$\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}$
$\operatorname{Laplace}(\mu,b)$	$(-\infty,\infty)$	$\frac{1}{2b} \exp\left(-\frac{ x-\mu }{b}\right)$	$\begin{cases} \frac{1}{2} \exp\left(\frac{x-\mu}{b}\right), & x < \mu, \\ 1 - \frac{1}{2} \exp\left(-\frac{x-\mu}{b}\right), & x \geqslant \mu, \end{cases}$
$\mathrm{Weibull}(k,\lambda)$	$(0,\infty)$	$\frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$	$1 - e^{-(x/\lambda)^k}$
Pareto (x_m, α)	(x_m,∞)	$\frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}$	$1 - \left(\frac{x_m}{x}\right)^{\alpha}$
$\mathrm{Beta}(\alpha,\beta)$	(0, 1)	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}$	$I_x(\alpha, \beta)$ $(I_x = \text{regularized Beta})$
$\operatorname{Rayleigh}(\sigma)$	$(0,\infty)$	$\frac{x}{\sigma^2} \exp(-x^2/(2\sigma^2))$	$1 - \exp(-x^2/(2\sigma^2))$
Triangular (a, c, b)	(a,b)	$\frac{2(x-a)}{(b-a)(c-a)} 1_{a \leqslant x < c} + \frac{2(b-x)}{(b-a)(b-c)} 1_{c \leqslant x < b}$	piecewise quadratic (integral of pdf)

 $\hbox{ Table 2: Common $\underline{$ continuous $}$ distributions. Special-function notation follows standard texts. } \\$

1.4 Uniform

$$U_{(k)} \sim Beta(k, n+1-k)$$

 $-\log U \sim Exp(1)$

1.5 Cauchy

$$X \sim Cauchy \implies 1/X \sim Cauchy.$$

Table 3: Effect of multiplying a random variable by a positive constant c > 0

\checkmark/\times	Distribution X	Shape-only pdf/pmf	Law of cX	Notes
√	Exponential $\text{Exp}(\lambda)$	$\lambda e^{-\lambda x}, \ x > 0$	$cX \sim \text{Exp}(\lambda/c)$	Pure scale family
✓	Gamma $\Gamma(k,\theta)$	$\frac{x^{k-1}e^{-x/\theta}}{\Gamma(k)\theta^k}$	$cX \sim \Gamma(k, c\theta)$	Includes χ^2 , Erlang
\checkmark	Weibull $\operatorname{Wei}(k,\lambda)$	$\frac{k}{\lambda}(x/\lambda)^{k-1}e^{-(x/\lambda)^k}$	$cX \sim \text{Wei}(k, c\lambda)$	Shape k unchanged
\checkmark	Log-normal $\mathcal{LN}(\mu, \sigma^2)$	^	$cX \sim \mathcal{LN}(\mu + \ln c, \sigma^2)$	Scaling shifts log-mean
\checkmark	Pareto $Par(\alpha, x_m)$	$\frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}, \ x > x_m$	$cX \sim \text{Par}(\alpha, cx_m)$	Heavy-tailed example
\checkmark	Normal $\mathcal{N}(\mu, \sigma^2)$	d ·	$cX \sim \mathcal{N}(c\mu, c^2\sigma^2)$	Locationscale family
\checkmark	Student- $t_{ u}(0,\sigma)$		$cX \sim t_{\nu}(0, c\sigma)$	Same d.f. ν
\checkmark	Cauchy Cauchy (μ, γ)		$cX \sim \text{Cauchy}(c\mu, c\gamma)$	Stable, heavy tail
\checkmark	Uniform $\mathcal{U}(0,\theta)$	$1/\theta$	$cX \sim \mathcal{U}(0, c\theta)$	Classic scale
\checkmark	Inverse-Gamma		Multiply the scale parameter by c	Same pattern as Gamma
×	Poisson $\operatorname{Poi}(\lambda)$	$\frac{e^{-\lambda}\lambda^k}{k!}$	cX not integer-valued \Rightarrow not Poisson	Closed under addition, no
×	Binomial / Bernoulli		Support $\{0, \ldots, n\}$ broken by c	Sums, not scaling, stay i
×	${\it Geometric / Negative-Binomial}$		Same integer-support issue	
×	Beta Beta (α, β)		Lives on $(0,1)$; cX usually leaves interval	
×	Discrete uniform on $\{1,\ldots,n\}$		Breaks discreteness unless c integer	

2 Conjugate Priors

3 Identities

3.1 Convolution

Discrete:

$$P(Z=z) = \sum_{k=-\infty}^{\infty} P(X=k)P(Y=z-k)$$

Continuous. CDF:

$$H(z) \int_{-\infty}^{\infty} F(z-t)g(t)dt = \int_{-\infty}^{\infty} G(t)f(z-t)dt$$

Density:

$$f_Z(z) = \int_{-\infty}^{\infty} f_{XY}(x, z - x) dx.$$

3.2 Characteristic functions

Table 4: Conjugate priorposterior relationships after n observations $\mathbf{x} = (x_1, \dots, x_n)$

Likelihood (parameter)	$f(x \mid \theta)$	Conjugate prior $\pi(\theta)$	Posterior hyper-parameters
$ \begin{array}{c} \mathbf{Bernoulli/Binomial} \\ (m) \end{array} $	$\binom{m}{x}p^x(1-p)^{m-x}$	Beta (α, β) $\pi(p) = \frac{p^{\alpha - 1} (1 - p)^{\beta - 1}}{B(\alpha, \beta)}$	$\alpha' = \alpha + \sum_{i} x_{i}, \ \beta' = \beta + nm - \sum_{i} x_{i}$
$ \begin{array}{c} \textbf{Negative-Binomial} \\ (r) \end{array} $	$\binom{x+r-1}{x}(1-p)^r p^x$	same $\operatorname{Beta}(\alpha, \beta)$	$\alpha' = \alpha + rn, \ \beta' = \beta + \sum_{i} x_i$
Poisson	$\frac{e^{-\lambda}\lambda^x}{x!}$	$ \frac{\operatorname{Gamma}(\alpha, \beta)}{\pi(\lambda)} = \frac{\beta^{\lambda}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda} $	$\alpha' = \alpha + \sum_{i} x_i, \ \beta' = \beta + n$
Exponential (rate)	$\lambda e^{-\lambda x}$	same $\operatorname{Gamma}(\alpha, \beta)$	$\alpha' = \alpha + n, \ \beta' = \beta + \sum_{i} x_i$
Exponential (scale) θ	$\theta^{-1}e^{-x/ heta}$		$\alpha' = \alpha + n, \ \beta' = \beta + \sum_i x_i$
Gamma (k known, scale) θ	$\frac{x^{k-1}e^{-x/\theta}}{\Gamma(k)\theta^k}$	same Inv– $\Gamma(\alpha, \beta)$	$\alpha' = \alpha + nk, \ \beta' = \beta + \sum_{i} x_i$
Gamma (k known, rate) β	$\frac{\beta^k x^{k-1} e^{-\beta x}}{\Gamma(k)}$	$\begin{array}{l} \operatorname{Gamma}(\alpha,\eta) \\ (\text{hyper-rate } \eta) \end{array}$	$\alpha' = \alpha + nk, \ \eta' = \eta + \sum_i x_i$
Gamma (β fixed, shape) α	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$	$\pi(\alpha) \propto a^{\alpha-1} \left[\Gamma(\alpha)\right]^{-b}$	$a' = a \prod_i x_i, \ b' = b + n$
$\mathbf{Multinomial}\ (K)$	$\frac{n!}{\prod_k x_k!} \prod_{k=1}^K p_k^{x_k}$	Dirichlet($\boldsymbol{\alpha}$) $\pi(\mathbf{p}) = \frac{\Gamma(\alpha_0)}{\prod_k \Gamma(\alpha_k)} \prod_{k=1}^K p_k^{\alpha_k - 1}$	$\alpha_k' = \alpha_k + x_k, \ k = 1:K$
Normal $(\sigma^2$ known)	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\mathcal{N}(\mu_0, \sigma_0^2) = \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}}$	$\sigma_n^2 = (\sigma_0^{-2} + n\sigma^{-2})^{-1}, \mu' = \sigma_n^2(\mu_0\sigma_0^{-2} + n\overline{x}\sigma^{-2})$
Normal (µ known)		same Inv– $\Gamma(\alpha, \beta)$	$\alpha' = \alpha + \frac{n}{2}, \ \beta' = \beta + \frac{1}{2} \sum (x_i - x_i)^2$
			$\mu)^2$
Normal (both un- known)		\mathcal{N} -Inv- Γ $(\mu_0, \lambda, \alpha, \beta)$	$\lambda' = \lambda + n, \mu' = \frac{\lambda \mu_0 + n\overline{x}}{\lambda + n}$ $\alpha' = \alpha + \frac{n}{\beta'} = \beta^{\frac{n}{2}} + \frac{1}{2} \sum_{i} (x_i - \overline{x})^2$
			$\frac{\lambda n(\overline{x} - \mu_0)^2}{2(\lambda + n)}$

Table 5: Characteristic functions $\varphi_X(t) = \mathbb{E}[e^{itX}]$ of selected distributions

Table 5: Characteris	tic functions $\varphi_X(t) = \mathbb{E}[e^{\omega x}]$ of selected distributions
Distribution (common parameterizations)	Characteristic function $\varphi_X(t)$
Bernoulli(p)	$1 - p + pe^{it}$
Binomial(n, p)	$(1-p+pe^{it})^n$
$Poisson(\lambda)$	$\exp(\lambda(e^{it}-1))$
Geometric (p) , support $\{0, 1, \dots\}$	$\frac{p e^{it}}{1 - (1 - p)e^{it}}, (1 - p)e^{it} < 1$
Negative Binomial (r, p) , failures r before r -th success	$\left(\frac{p}{1-(1-p)e^{it}}\right)^r$
Discrete Uniform $\{a,\ldots,b\}$	$\frac{e^{ita} \left(1 - e^{it(b-a+1)}\right)}{(b-a+1)\left(1 - e^{it}\right)}$
$\overline{\text{Normal}(\mu, \sigma^2)}$	$\exp(it\mu - \frac{1}{2}\sigma^2t^2)$
Exponential(λ) (rate)	$\frac{\lambda}{\lambda - it}$
Gamma (k, θ) (shapescale)	$(1 - it\theta)^{-k} (1 - it/\beta)^{-\alpha}$
or $Gamma(\alpha, \beta)$ (shaperate)	
$\operatorname{Chisquare}(\nu)$	$(1-2it)^{-\nu/2}$
Uniform (a,b)	$\frac{e^{itb}-e^{ita}}{it(b-a)}$
$Laplace(\mu, b)$	$e^{it\mu} \left(1 + b^2 t^2\right)^{-1}$
Cauchy (μ, γ)	$\exp(it\mu - \gamma t)$
$\operatorname{Logistic}(\mu, s)$	$e^{it\mu} \frac{\pi st}{\sinh(\pi st)}$
Student $t(\nu)$	$\frac{\left(\sqrt{\nu} t \right)^{\nu/2}K_{\nu/2}\left(\sqrt{\nu} t \right)}{2^{\nu/2-1}\Gamma(\nu/2)} (K_{\nu/2} = \text{modified Bessel})$
$\overline{\operatorname{Beta}(\alpha,\beta)}$	$_{1}F_{1}(\alpha; \alpha + \beta; it)$ (confluent hypergeometric)
$LogNormal(\mu, \sigma^2)$	$\exp(it\mu - \frac{1}{2}\sigma^2t^2)_1F_1(\frac{it}{2}; \frac{1}{2}; \frac{\sigma^2t^2}{2})$
Cauchy (x_0 location, $\gamma > 0$ scale)	$\exp(x_0it - \gamma t)$