Formulation

$$p(y;\eta) = b(y)e^{\eta^T T(y) - a(\eta)}$$

- Base measure b(y) when exponent is zero
- Sufficient statistic T(y)
- Log-partition function $a(\eta)$ normalizes to sum 100%
- Why exponential tilting: lots of convenience
- η natural parameter

Bernoulli Distribution

$$p(y;\phi) = \phi^{y}(1-\phi)^{1-y} = \exp\log\phi^{y}(1-\phi)^{1-y} = \exp(y\log\phi + (1-y)\log(1-\phi)) = \exp(\log\frac{\phi}{1-\phi}y + \log(1-p))$$

- $\eta = \log \frac{\phi}{1-\phi}$, invert to get $\phi = \frac{1}{1+e^{-\eta}}$ logistic function
- $a(\eta) = -\log(1 \phi) = -\log\left(1 \frac{1}{1 + e^{-\eta}}\right) = -\log\left(\frac{e^{-\eta}}{1 + e^{-\eta}}\right) = \log(1 + e^{-\eta})$ Hypothesis: $h_{\theta}(x) = E[y|x, \theta] = \phi = \frac{1}{1 + e^{-\eta}} = \frac{1}{1 + e^{-\theta^T x}}$

Univariate Gaussian

$$p(y;\mu) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{2}} = \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}e^{\mu y - \frac{\mu^2}{2}}$$

- T(y) = y• $a(\eta) = \frac{\mu^2}{2} = \frac{\eta^2}{2}$
- $b(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$
- Hypothesis: $h_{\theta}(x) = E[y|x, \theta] = \mu = \eta = \theta^{T}x$

Properties

- 1. $\log p(y; \eta)$ is concave in η , MLE is concave in η (NNL convex in η)
- 2. $E[y;\eta] = \frac{\partial a(\eta)}{\partial \eta}$, first moment 3. $Var[y;\eta] = \frac{\partial^2 a(\eta)}{\partial^2 \eta}$, second moment
- 4. $a(\eta)$ is moment generating function

Generalized Linear Model

Three assumptions

- $y|x; \theta \sim ExpFamily(\eta)$
- $h_{\theta}(x) = E[y|x, \theta] = g(\theta^T x)$
- Natural parameter is a linear combination: $\eta = \theta^T x$
 - o Beyond GLM, can be arbitrarily complex (neural net)
- Update rule: $\theta \leftarrow \theta + \alpha (y h_{\theta}(x))x$

Response	Exponential Family	Name
Real value	Gaussian, Laplace	Regression
{0, 1}	Bernoulli	Classification
{1, K}	Categorical	Multi-class Classification
Natural Number	Poisson	Count Regression, Poisson Regression
Positive real value	Exponential, Gamma	Survival analysis
Bernoulli Distribution	Beta	