Convolutional Neural Network

Convolutional neural networks, also known as convnet, or CNNs, are a special kind of neural network for processing data that has a known grid-like topology like time series data(1D) or images(2D).

Why Not Use ANNs

Intuition of CNN

Application of CNN

Image Classification

Image Localization

Object Detection

Facial Recognition

Image Segmentation

Pose Estimation

images -> Visual Corka edges **Image** CNN → NN special Convolutions

Convolution Operation (Edge Detection)

Vertical(Edge Detection)

Horizontal (Edge Detection)

Convolution Operation (Edge Detection) Example

0	0	0	0	0	0						
0	0	0	0,	0	0		1	1	1		
0	0	0	0	0	0	*	-1	-1	-1	=	
		_	-		_	10.80	0	0	0		
255	255	255	255	255	255		1	1	1		
255	255	255	255	255	255			1	1		
255	255	255	255	255	255						

Convolution Operation (Edge Detection) Demo

https://deeplizard.com/resource/pavq7noze2

-1 -1 -1 -						0						
0 0 0 0 0 0 0 0 0 0	0	0	0	9	0	0		-1	-1	-1		
255 255 255 255 255 255 255 255 255 255	0	0	0	0	0	0	*	100 To 100			=	
255 255 255 255 255 255 255 255 255 255	255	255	255	255	255	255						
(6x6) (3x3) (4x4)	255	255	255	255	255	255		1	1	1		
	255	255	255	255	255	255						
(28×28) (3×3) \longrightarrow 7		(6 X	6)				(3 <i>x</i>	3)		(4×4)
		(2	8x.	28)				(3	$3x^2$	3)		2

255	255	255	255	255	0 0 0 255 255 255	*	-1 0 1	-1 0 1	-1 0 1	=		
	(6)	(6)				l	3 x	3)		(4×	4)
		8x 1×r	28°) 1)				3χ· n √i		—) —)	? (n-	(26×26) $m_{+1} \times (n-m_{+1})$

https://medium.com/swlh/convolutional-neural-networks-part-3-convolutions-over-volume-and-the-convnet-layer-91fb7c08e28b

Tmxmxc) [nxnxc] -> (m-n+1) (m-n+1)

single channe

Padding & Stride

https://medium.com/latinxinai/convolutional-neural-network-from-scratch-6b1c856e1c07

	0	0	0	0	0	ט
	7	2	3	3	8	6
	4	5	3	8	4	0
	3	3	2	8	4	C
	2	8	7	2	7	
	5	4	4	5	4	
-1						

$$5\times5 \rightarrow 3\times3$$
 $(\eta - f+1)$
 \downarrow
 $(\eta + 2p - f+1)$
 $5 + 2(1) - 3 + 1$
 $= 7 - 3 + 1 = 6$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	₽ 0	0	0

0	0	1
1	0	0
0	1	1

Special case - Stride=2 7×6 k

Max Pooling in CNN

Problem with Convolution

Pooling

Maxpooling
Minpooling
Avg pooling
Le proling
Global
Pooling

https://deeplizard.com/resource/pavq7noze3

Problem on volumes

Advantages

3) Enhanced features [only in case of Max pooling]

Disadvantages

Image Segmentation

Image NET

1) [Lenet] -> Yann Leann

5) Resnte

2) Alex NET

3) Google NET

Pre-trained Models

- 1- Data Hungry
- 2- Time

A pre-trained model is a (DL) model that has been trained on a large dataset and can be fine-tuned for a specific task. Pretrained models are often used as a starting point for developing DL models, as they provide a set of initial weights and biases that can be fine-tuned for a specific task.

$$\begin{array}{c}
2010 \rightarrow 281. \\
2011 \rightarrow 25\%. \\
\hline
2012 \rightarrow 16\%.
\end{array}$$

$$\begin{array}{c}
2012 \rightarrow DL \\
\downarrow \\
\hline
2012 \rightarrow DL
\end{array}$$

$$\begin{array}{c}
4100 \text{ NET} \rightarrow \overline{CNN} \\
\hline
2013 \rightarrow \overline{CNN}
\end{array}$$

$$\begin{array}{c}
2013 \rightarrow \overline{CNN} \\
\hline
2013 \rightarrow \overline{CNN}
\end{array}$$

$$\begin{array}{c}
2013 \rightarrow \overline{CNN} \\
\hline
2013 \rightarrow \overline{CNN}
\end{array}$$

AlexNet

2010 → ML model → 28%

2011 -> ML Model -> 25%

ZOIL -> Alex NET -> 16.4.1.

2013 → ZFNET ---> 11.7%

2019 -> V49 -> 7.3%

2015 - Goggle NET -> 6.71

2016 → RESNET ->> 3.5%