

Problem formulation

- **◆**Inputs vector (I1, I2, I3, I4):
 - ➤ I1, I2, I3, I4 are 4 bits (serially given from MSB to LSB)
- ◆ Weights matrix (W):
 - \triangleright 4 rows x 2 columns: (W1, W2, W3, W4)₁, (W1, W2, W3, W4)₂
 - ➤ All weights are 4 bits (stored in latches by initial conditions)
- **♦**Output (O1, O2):
 - > O1, O2 are 10 bits
 - $ightharpoonup O1 = (I1 \times (W1)_1) + (I2 \times (W2)_1) + (I3 \times (W3)_1) + (I4 \times (W4)_1)$
 - $ightharpoonup O2 = (I1 \times (W1)_2) + (I2 \times (W2)_2) + (I3 \times (W3)_2) + (I4 \times (W4)_2)$

2024/12/6

Andy Yu-Guang Chen

Problem formulation Signals			
	Input signal	Bit width	Definition
	I1, I2, I3, I4	1 bit each	Input serial signals
	CLK	1 bit	Clock, period: 2 ns
	RST	1 bit	Asynchronous active-low reset
	IN_VAL	1 bit	Inputs are valid
	Output signal	Bit width	Definition
	O1, O2	10 bits each	Output signals
	OUT_VAL	1 bit	O1 and O2 are valid (finished)
	Other signal	Bit width	Definition
	ii1, ii2, ii3, ii4	1 bit each	The input from flip-flop
1	P1, P2	10 bits each	The output before flip-flop
	2024/12/6	2024/12/6 Andy Yu-Guang Chen 7	

Requirements

- ◆Clock period in this program is set to 2 ns
- ◆Rise and fall time will be 1 ps for all signals
- ◆The operating voltage (VDD) is set to 1.8V, VSS is set to 0V, and the operating temperature is 30°C
- ◆For transistors, set L=0.18um, NMOS W=0.36 um, and PMOS W=0.72um
- ◆ You must use the "cic018.1" to do this assignment, otherwise you will get 0 point

2024/12/0

Andy Yu-Guang Chen

Report

- ◆ The circuit diagram of your design and explaining your design (You can use screenshot to explain)
- ◆ The transistor level view of your CIM circuit and adder (You can just draw one of them and specified how you connect each)
- ◆ The bonus circuit if implemented
- ◆ Waveform of your simulation
- ◆ The delay and the power of the circuit
- ◆ The total number of transistors (NMOS and PMOS) you use in this program
- ◆ The hardness of this assignment and how you overcome it
- ◆ Any suggestions about this programming assignment

2024/12/6

Andy Yu-Guang Chen

15

Outline

- ◆ Problem formulation
- **♦**Bonus
- **◆**Requirements
- **♦**Report
- **♦**Grading
- **♦**Spice

2024/12/6

Andy Yu-Guang Chen

Grading

- ◆ Correctness (60%)
 - ➤ 5 test cases for each 12%
- ◆ Performance (20%): 5% (delay time) + 5% (power) + 10% (area)
 - ➤ Delay time and power by your simulation result
 - ➤ Area for your number of transistors in your program
 - ➤ Score function: maximum_score*(your result percentage of the class)
 - ➤ Your performance score will be 0 if you failed the testcase.
- ◆ Readability of HSPICE code (10%)
- lacktriangle The report (20%)
- ◆ Bonus (10%)
 - ➤ 1 test case, the bonus score will be 10 if all correct, otherwise 0.

2024/12/6

Andy Yu-Guang Chen

17

Outline

- ◆ Problem formulation
- **♦**Bonus
- **◆**Requirements
- **♦**Report
- **♦**Grading
- **♦**Spice

2024/12/6

Andy Yu-Guang Chen

Initial condition

- ◆To initialize the voltage.
- ◆.ic V(your_node_name)=voltage
 .ic V(W10)=1.8v
- ◆If your node is not the global signal, you can access it by *sub_circuit_name*. *your_node_name*

```
.ic V(Xdcim.Xcim_c11.W0)=1.8v
```

◆ You can also initialize more than one node in one .ic

.ic V(Xdcim.Xcim_c11.W0)=1.8v V(Xdcim.Xcim_c11.W1)=0v

2024/12/6

Andy Yu-Guang Chen

19

Delay time

- ◆Get the delay time from trigger signal to target signal (the first rising edge to half of voltage).
- ◆.measure TRAN element
- ◆+TRIG V(trigger_signal) VAL=0.9 RISE=1
- ◆+TARG V(target_signal) VAL=0.9 RISE=1

.measure TRAN td
+ TRIG V(Xdcim.ii1) VAL=0.9 RISE=1
+ TARG V(Xdcim.P10) VAL=0.9 RISE=1

2024/12/6

Andy Yu-Guang Chen

