Pricing a Caplet

The payoff of a **caplet** C_i at time T_{i+1} is given by $C_i(T_{i+1}) = \Delta_i(L_i(T_i) - K)^+.$

Choosing D_{i+1} as a numeraire and working under the associated $\underline{\text{martingale}}$ measure \mathbb{Q}^{i+1} , we know that

$$\frac{C_i(0)}{D_{i+1}(0)} = \mathbb{E}^{i+1} \left[\frac{C_i(T_{i+1})}{D_{i+1}(T_{i+1})} \right]$$

$$\Rightarrow C_i(0) = D_{i+1}(0)\Delta_i \mathbb{E}^{i+1} [(L_i(T_i) - K)^+].$$

The remaining steps required to derive a formula for a caplet price is identical to how we would handle a vanilla European option.

Pricing a Caplet

$$\underline{\underline{\mathbb{L}}}_{i+1} \left[L_{\lambda}(\tau) \right] = \underline{\underline{\mathbb{L}}}_{i+1} \left[L_{\lambda}(\circ) e^{-\frac{1}{\lambda} C_{\lambda}^{1} \tau + G_{\lambda} \omega^{H_{i}}(\tau)} \right]$$

The LIBOR rate follows the stochastic differential equation = (°) e (°)

$$dL_i(t) = \sigma_i L_i(t) dW^{i+1}(t),$$

where $W^{i+1}(t)$ is a standard Brownian motion under the risk-neutral measure \mathbb{Q}^{i+1} associated with the numeraire $D_{i+1}(t)$. The solution is given by

$$L_i(T) = L_i(0)e^{-\frac{1}{2}\sigma_i^2T + \sigma_i W^{i+1}(T)}.$$

Evaluating the expectation, we obtain

where

$$d_1 = \frac{\log \frac{L_i(0)}{K} + \frac{1}{2}\sigma_i^2 T}{\sigma_i \sqrt{T}}, \quad d_2 = d_1 - \sigma_i \sqrt{T}.$$

$$\frac{C_{i+1}(c)}{B_{o}} = \mathbb{I}_{E}^{*} \left[\begin{array}{c} C_{i+1}(T_{i+1}) \\ \\ \end{array} \right]$$

$$\frac{C_{i+1}(c)}{B_{o}} = \mathbb{I}_{E}^{*} \left[\begin{array}{c} C_{i+1}(T_{i+1}) \\ \\ \end{array} \right]$$

$$\frac{C_{i+1}(c)}{B_{o}} = \mathbb{I}_{E}^{*} \left[\begin{array}{c} C_{i+1}(T_{i+1}) \\ \\ \end{array} \right]$$

$$\beta_{o} = \frac{|E|}{|S_{o} + \Delta_{s}(|L_{s}(T) - E)|^{T}}$$

$$C_{s, t}(0) = \frac{|E|}{|E|} \frac{|S_{o} + \Delta_{s}(|L_{s}(T) - E)|^{T}}{|S_{o}|_{0} |S_{o}|_{0} |S_{o}|_{0} |S_{o}|_{0}}$$

$$= \frac{1}{\mathbb{E}^{*}} \left[\frac{\mathcal{B}_{0} \cdot \Delta_{x} \left(L_{x}(T) - k \right)^{T}}{\mathcal{B}_{0} e^{\int_{0}^{T} \nabla_{y} du}} \right] \cdot \mathcal{D}(0,T)$$

$$= \frac{1}{\mathbb{E}^{*}} \left[\Delta_{x} \left(L_{x}(T) - k \right)^{T} \cdot \frac{\mathcal{D}(0,T)}{\mathcal{B}_{T}} \right] \cdot \mathcal{D}(0,T)$$

$$C_{i,1}(e) = \mathbb{E}^{*} \left[\frac{R_{o} \cdot \Delta_{i} \left(L_{i}(\tau) - k \right)^{*}}{R_{o} e^{\int_{0}^{\tau} \Gamma_{i} du}} \right]$$

$$= |J(0,T)| \stackrel{\text{L}}{=} \Delta_{x} \left(L_{x}(T) - K \right)^{T} \cdot \frac{dQ^{T}}{dQ^{*}}$$

$$= |J(0,T)| \stackrel{\text{L}}{=} T \left[\Delta_{x} \left(L_{x}(T) - K \right)^{T} \right]$$

$$\frac{C_o}{\beta_o} = \mathbb{E}^* \left[\frac{C_T}{\beta_T} \right]$$

$$\begin{array}{cccc}
C_{\bullet} & = & \mathbb{E}^{T} \begin{bmatrix} & C_{T} \\ & & & \end{bmatrix}
\end{array}$$

$$\beta_{o} \mathbb{E}^{*} \left[\begin{array}{c} C_{1} \\ \beta_{T} \end{array} \right] = \beta_{o} \mathbb{E}^{T} \left[\begin{array}{c} C_{1} \\ \beta_{T} \end{array} \right]$$

$$\beta_{\circ} \stackrel{\text{\tiny TE}}{=} \frac{C_{\mathsf{T}}}{\beta_{\mathsf{T}}} = \beta_{\circ} \stackrel{\text{\tiny TE}}{=} \frac{C_{\mathsf{T}}}{\beta_{\mathsf{T}}}$$

$$\stackrel{\text{\tiny TE}}{=} \frac{C_{\mathsf{T}}}{\beta_{\mathsf{T}}} = \stackrel{\text{\tiny TE}}{=} \frac{C_{\mathsf{T}}}{\beta_{\mathsf{T}}} \cdot \frac{\gamma_{\circ}}{\beta_{\circ}}$$

$$\underline{\mathbb{F}}_{\underline{I}} = \underline{\mathbb{F}}_{\underline{I}} = \underline{\mathbb$$

Swap Market Model

Let us denote the par swap rate for the $[T_n, T_N]$ swap as $S_{n,N}$:

$$S_{n,N}(t) = \frac{D_n(t) - D_N(t)}{\sum_{i=n+1}^{N} \Delta_{i-1} D_i(t)}.$$

The term in the denominator is also called the **present value of a basis point** (PVBP)

$$P_{n+1,N}(t) = \sum_{i=n+1}^{N} \Delta_{i-1} D_i(t).$$

Note that a one-period swap rate $S_{i,i+1}$ is equal to the LIBOR rate. We can now write the value of a payer and receiver swap as

Payer Swap =
$$P_{n+1,N}(t)(S_{n,N}(t) - K)$$

Receiver Swap = $P_{n+1,N}(t)(K - S_{n,N}(t))$

$$= \left[\int_{\Lambda} (t) - \mathcal{D}_{N}(t) \right] - \left[\int_{\Lambda+I_{1},N} (t) \cdot K \right]$$

$$= \int_{\Lambda+I_{1},N} (t) \left[\int_{\Lambda+I_{1},N} (t) - \mathcal{D}_{N}(t) - \mathcal{D}_{N}(t) \right]$$

$$= P_{nH_1,N}(t) \left[S_{n,N}(t) - K \right]$$

Pricing a Swaption

$$dL_{i}(t) = G_{i}L(t) dW^{i+1}(t)$$

The <u>PVBP</u> is a portfolio of traded assets and has strictly positive value. It can therefore be used as a numeraire.

If we use $P_{n+1,N}(t)$ as a numeraire, then under the measure $\mathbb{Q}^{n+1,N}$ associated to the numeraire $P_{n+1,N}(t)$, all $P_{n+1,N}$ rebased values must be martingales in an arbitrage-free world.

In particular, the par swap rate $S_{n,N}$ must be a martingale under $\mathbb{Q}^{n+1,N}$. The swap market model makes the assumption that $S_{n,N}$ is a lognormal martingale under $\mathbb{Q}^{n+1,N}$. We write down the process

$$dS_{n,N}(t) = \sigma_{n,N} S_{n,N}(t) dW^{n+1,N}(t),$$

where $W^{n+1,N}(t)$ is a Brownian motion under $\mathbb{Q}^{n+1,N}$.

A swaption (short for swap option) gives the right to enter at time T_n into a swap with fixed rate K. A receiver swaption gives the right to enter into a receiver swap, and a payer swaption gives the right to enter into a payer swap.

Pricing a Swaption

expiry x tene?

Swaptions are often denoted as $T_n \times (T_N - T_n)$, where T_n is the option expiry date (and also the start of the underlying swap), and $T_N - T_n$ is the tenor of the underlying swap.

The payoff of a payer swaption is given by

$$[P_{n+1,N}(T)(S_{n,N}(T)-K)]^{+} = P_{\text{Atyph}}(\tau) \left[\int_{\text{nph}}(\tau) - k \right]^{\tau}$$

Using $P_{n+1,N}$ as a numeraire, we can value the payer swaption under the measure $\mathbb{Q}^{n+1,N}$

$$\begin{split} &\frac{V_{n,N}^{\mathsf{payer}}(0)}{P_{n+1,N}(0)} = \mathbb{E}^{n+1,N} \left[\frac{V_{n,N}^{\mathsf{payer}}(T_n)}{P_{n+1,N}(T_n)} \right] = \underline{\mathbb{F}}^{\mathsf{Atl}_{\mathsf{J}}\mathsf{N}} \left[\frac{P_{\mathsf{Atl}_{\mathsf{J}}\mathsf{N}}\left(\mathsf{T}_{\mathsf{A}}\right) \cdot \left(\mathsf{f}_{\mathsf{A}_{\mathsf{J}}\mathsf{N}}\left(\mathsf{T}_{\mathsf{A}}\right) \cdot \left(\mathsf{f}_{\mathsf{A}_{\mathsf{J}}\mathsf{N}}\right) \cdot \left(\mathsf{f}_{\mathsf{A}_{\mathsf{J}}\mathsf{N}}\left(\mathsf{T}_{\mathsf{A}}\right) \cdot \left(\mathsf{f}_{\mathsf{A}_{\mathsf{J}}\mathsf{N}}\right) \cdot \left(\mathsf{f}_{\mathsf{A}_{\mathsf{J}}\mathsf{N}}\left(\mathsf{T}_{\mathsf{A}}\right) \cdot \left(\mathsf{f}_{\mathsf{A}_{\mathsf{J}}\mathsf{N}}\right) \cdot \left(\mathsf{f}_{\mathsf{J}}\mathsf{N}\right) \cdot \left(\mathsf{f}_{\mathsf{J}}\mathsf{N}\right) \cdot \left(\mathsf{f}_{\mathsf{J}}\right) \cdot \left(\mathsf{f}_{\mathsf{J}}\mathsf{N}\right) \cdot \left(\mathsf{f}_{\mathsf{J}}\right) \cdot \left(\mathsf{f}_{\mathsf{J}}\mathsf{N}\right) \cdot \left(\mathsf{f}_{\mathsf{J}}\right) \cdot \left(\mathsf{J}_{\mathsf{J}}\right) \cdot \left(\mathsf{f}_{\mathsf{J}}\right) \cdot \left(\mathsf{f}_{\mathsf{J}}\right) \cdot \left(\mathsf{f}_{\mathsf{J}}\right) \cdot \left(\mathsf{f}_{\mathsf{J}}\right) \cdot \left$$

The remaining steps required to derive a formula for a swaption is identical to how we would handle a vanilla European option.

コト 4周 ト 4 恵 ト 4 恵 ト - 恵 - 釣4@ - -

Pricing a Swaption

The swap rate follows the stochastic differential equation

$$dS_{n,N}(t) = \sigma_{n,N} S_{n,N}(t) dW^{n+1,N}(t),$$

where $W^{n+1,N}(t)$ is a Brownian motion under $\mathbb{Q}^{n+1,N}.$ The solution is given by

$$S_{n,N}(T) = S_{n,N}(0)e^{-\frac{1}{2}\sigma_{n,N}^2T + \sigma_{n,N}W^{n+1,N}(T)}.$$

Evaluating the expectation, we obtain

$$V_{n,N}^{payer}(0) = P_{n+1,N}(0)\mathbb{E}^{n+1,N}[(S_{n,N}(T) - K)^{+}]$$

= $P_{n+1,N}(0)[S_{n,N}(0)\Phi(d_{1}) - K\Phi(d_{2})],$

where

$$d_1 = \frac{\log \frac{S_{n,N}(0)}{K} + \frac{1}{2}\sigma_{n,N}^2 T}{\sigma_{n,N}\sqrt{T}}, \quad d_2 = d_1 - \sigma_{n,N}\sqrt{T}. \quad \triangleleft$$

$$V_{\text{pry}}(0) = \overline{\mathbb{I}}^{*} \left[\frac{|\zeta_{0}| P_{\text{Atj},N}(\tau) (|\zeta(\tau) - \kappa|)^{\dagger}}{|\zeta_{\overline{1}}|} \right]$$

$$= \overline{\mathbb{I}}^{*} \left[(|\zeta(\tau) - \kappa|)^{\dagger} \cdot \frac{|P_{\text{Atj},N}(\tau)|}{|\zeta_{\overline{1}}|} P_{\text{Atj},N}(0) \cdot P_{\text{Atj},N}(0) \right] \cdot P_{\text{Atj},N}(0)$$

= PAN(0) IF (SCI)-K)+

 $= \hat{P}_{AH_1,N}(c) \quad \underline{\tilde{I}_{E}}^{AH_1,N} \left(S(7) - K \right)^{+}$

 $\mathbb{Q}^{*} : \frac{V_{\text{pry}}(\circ)}{R_{-}} = \mathbb{I}_{-}^{*} \left[\frac{V_{\text{pry}}(\tau)}{R_{+}} \right]$

Swaption Vols – ATM Vols

14/22

Swaption ATM Vols

Swaption ATM Vols

SMM 000000●0

Swaption Vols – Smile/Skew

					ebon Info					
E	UR Swapt	tion Vol	latilit	y Smile	based or	Spot Pi	remium a	and IBO	R curve	
OPTION/				(Normal	Volatili	ty)				ATM
TENOR	-200	-100	-50	-25	ATM	25	50	100	200	STRIKE
1717	51.9	36.2	24.4	18.5	16.8	22.4	29.1	42.1	65.6	-0.57
3M2Y	74.2	48.9	31.4	21.3	15.0	25.3	36.2	56.1	91.8	-0.54
2Y2Y	46.5	34.5	26.7	24.1	24.4	27.9	32.5	42.4	61.5	10.47
1Y5Y	57.5	42.2	32.0	27.4	26.9	30.8	36.6	48.7	71.7	-0.43
5Y5Y	46.0	42.4	41.3	41.7	42.4	43.4	44.7	48.0	56.0	-0.08
3M10Y	88.3	61.5	43.7	35.3	32.2	39.6	50.1	70.9	109.3	-0.26
1Y10Y	66.0	50.7	41.0	37.6	36.8	39.3	43.8	54.8	77.0	-0.21
2Y10Y	58.4	48.7	42.9	41.2	40.8	41.9	44.1	50.4	65.0	-0.13
5Y10Y	52.5	49.2	47.6	47.2	47.4	47.9	48.7	51.0	57.5	0.087
10Y10Y	52.4	51.9	51.7	51.7	52.3	52.9	53.4	54.9	59.1	0.236
15Y15Y	49.9	49.3	49.0	49.1	49.7	50.4	50.8	51.9	55.0	0.010
10Y20Y	51.9	49.9	48.9	48.7	49.3	49.9	50.2	51.3	55.1	0.073
5Y30Y	54.3	50.0	48.5	48.1	48.2	48.5	49.1	50.8	56.6	-0.00
	-200	-100	-50	-25	ATM	25	50	100	200	

Swaption Vol Calibration

Suppose the implied volatility across strike for a given swaption maturity and tenor is given by the green markers in the following figure:

The at-the-money volatility is 0.36, and the forward swap rate is 0.05.

Extension to the Black Model

An immediate and straightforward extension is the Black Normal model:

$$dS_{n,N}(t) = \sigma_{n,N} dW^{n+1,N}(t).$$

This is an arithmetic Brownian motion.

If the implied volatility skew we observed in the market is between normal and lognormal, then we can make use of the displaced-diffusion (shifted lognormal) model: $d\mathcal{F}_{\epsilon} = \sigma \left[\beta \mathcal{F}_{\epsilon} + (1-\beta) \mathcal{F}_{\nu} \right] d\omega_{\epsilon}$

$$dS_{n,N}(t) = \sigma_{n,N}[\beta S_{n,N}(t) + (1-\beta)S_{n,N}(0)]dW^{n+1,N}(t).$$

Recall that the solution is given by

$$S_{n,N}(T) = \frac{S_{n,N}(0)}{\beta} e^{\sigma_{n,N}\beta W^{n+1,N}(T) - \frac{\sigma_{n,N}^2 \beta^2 T}{2}} - \frac{1-\beta}{\beta} S_{n,N}(0)$$

The swaption price under the displaced-diffusion model is

$$V_{n,N}(0) = P_{n+1,N}(0) \mathsf{Black}\left(\frac{S_{n,N}(0)}{\beta}, \ K + \frac{1-\beta}{\beta} S_{n,N}(0), \ \sigma\beta, \ T\right)$$

Swaption Vol Calibration – Displaced Diffusion

SABR Model

Displaced-diffusion model can only fit to implied volatility skew – there will be mismatch if the implied volatility surface also exhibit "smile" characteristic.

SABR Model

SABR model is able to fit both skew and smile in the implied volatility surface – this is the standard volatility model used in fixed-income market.

Session 5 Constant Maturity Swap Payoffs Tee Chyng Wen

QF605 Fixed Income Securities

Swap-Settled Swaptions

IRR-Settled Swaptions

Swap-Settled Swaptions

The swaptions we have covered so far in our Market Model discussion are **swap-settled swaptions** — when you exercise, you <u>enter into a swap contract</u> with your counterparty.

The payoff of the swaptions are

$$\mbox{Payer Swaption} = \Big[P_{n+1,N}(T)\big(S_{n,N}(T)-K\big)\Big]^+$$

$$\mbox{Receiver Swaption} = \Big[P_{n+1,N}(T)\big(K-S_{n,N}(T)\big)\Big]^+$$

where

$$P_{n+1,N}(T) = \sum_{i=n+1}^{N} \Delta_{i-1} D_i(T).$$

Upon exercising, we get

$$\label{eq:Payer Swaption} \begin{aligned} & \text{Payer Swaption} = V^{flt}(T) - V^{fix}(T) \\ & \text{Receiver Swaption} = V^{fix}(T) - V^{flt}(T) \end{aligned}$$

4/22

1 CA;

IRR-Settled Swaptions

An Internal-Rate-of-Return (IRR)-settled swaption has the following payoff:

$$\begin{aligned} \text{Payer Swaption} &= \Big[\text{IRR}(S_{n,N}(T))(S_{n,N}(T) - K) \Big]^+ \\ \text{Receiver Swaption} &= \Big[\text{IRR}(S_{n,N}(T))(K - S_{n,N}(T)) \Big]^+ \end{aligned}$$

where

$$\mathsf{IRR}(S) = \sum_{i=1}^{(T_N - T_n) \times m} \frac{\frac{1}{m}}{\left(1 + \frac{S}{m}\right)^i}$$

and $\frac{1}{m}=\Delta$ is the day count fraction corresponding to the payment frequency (m) of the swap.

IRR-settled swaptions are settled in cash based on the value of the payoff observed on the maturity date.

Swap-settled swaptions are common in the USD market, while IRR-settled swaptions are common in the European (EUR & GBP) markets.

IRR-Settled Swaptions

The Market Model used to value IRR-settled swaptions is:

$$V_{n,N}(0) \approx D(0,T) \cdot \mathsf{IRR}(S_{n,N}(0)) \cdot \mathsf{Black}(S_{n,N}(0),K,\sigma_{n,N},T)$$

Historical Note:

- In the USD market, participants agree on the value of the PV01 $P_{n+1,N}$, i.e. there is no dispute on the discount factors.
- In the earlier days, market participants disagree on the PV01 value in the Euro and Sterling market.
- To avoid ambiguity, market participants agree to use the IRR formula to discount cashflows in the EUR and GBP market.
- The rational was that since $D(0,T)=\frac{1}{(1+r)^T}$, a good approximation would be to use the observed swap rate $S_{n,N}(T)$ for discounting.

6/22