<u>Documentation for ballantyne13432788 Schema</u>

This document illustrates the description of the database, discussion of the assumptions made, discussion of the reaction policies used, a description of the operating system used and ER Diagram.

Description:

This database contains the advertising of positions for Hospitals which require specific skills. Included are databases containing information for interview details, position details, position skills required, candidate details, candidate skills and hospital details. By detailing the position and skills involved combined with the candidate and the candidate skills alongside the hospital details. A clear and concise interview process can be formulated in the interview details table.

Assumptions Made:

- An application_status column was made to track whether a candidate is offered a position. If
 a decision has not been reached on the status of an applicant, a variation of "Pending"
 should be used.
- One hospital can request many interviews for a position.
- One candidate can be invited to many interviews for the same position.
- A hospital can hire many candidates in relation to a position.
- Interviews can occur on particular dates.
- In general, in regard to the stored procedures, parametric queries were used where a "given" piece of data was required.
- Stored procedures that include parametric queries allowing you to insert a new row are labelled as follows "table_name_" + "addrow".
- Step 4, Q1 & Q2: All columns of the hospitals were intentionally left in for additional information.
- Step 4 Q8: This returns only the type_of_position column but is ordered by the hospitals advertising the positions.
- Step 4 Q10: This returns the candidate_id of the applicant that was interviewed ONLY on the date given.

Reaction Policies:

- Candidates can have multiple skills. This required a one-to-many relationship and the
 creation of a new table called candidate_skills. A foreign key was made linking the
 candidate_id of the candidate_skills to the candidate_id of the candidate_details table.
- Similarly, positions can require multiple skills. This also required a one-to-many relationship and the creation of another table called position_skills_required. A foreign key was made to link the position_id of the position_skills_required table to the position_id of the position_details table.

- The interview_details table required the following information: interview_id (Primary Key), position_id, candidate_id, hospital_id, date and application_status. Foreign keys were made for the position_id, candidate_id and hospital_id to create a relationship back to their respective tables.
- Not Null was used on the data on the tables. This was used to prevent any loss of important information on the candidate, the position, the hospital or details regarding the interview.
- Primary Keys used were candidate_id, skills, hospital_identifier, interview_id, position_id
 and skills. This was to ensure a combination of not null and to uniquely identify each row
 were present.
- Columns including telephone numbers were purposely detailed as varchar(45) to allow for international dialling such as "+353".
- A combination of int and varchar(45) were used as datatypes for this schema. Varchar(45) was used for optimisation and has enough available characters to deal with any of the inputs.

Operating System:

• The operating system used for this assignment was Windows. I am running 64-bit Windows 10.

ER Diagram:

• Please see an ER Diagram on the following page.

