

Activity Planning

Lecture 4 by Professor Vladimir Geroimenko
Module "Software Project Management"

18 October 2023 - Teaching Week 4

Textbook reference: Chapter 6

Lecture Outline

- Activity planning why, when and how
- Identifying project activity
 - Activity-based approach Work breakdown structure (WBS)
 - Product-based approach Product breakdown structure (PBS)
 - Hybrid approach
- Scheduling Activities
 - Simple sequencing
 - Precedence Network Models
- Critical Path Method (CPM)

Where we are now?

In SPMM: Stepwise Project Management Method (Described in detail in Lecture 2)

When to Plan

Planning is an ongoing process that is each iteration is more detailed and more accurate.

In each iteration the purpose and emphasis is different:

- 1. During feasibility study: purpose is time scale and risks to time and budget
- 2. During project: emphasis is production of activity plans for ensuring resources availability and cash availability
- 3. During project & at final delivery: monitoring and planning to ensure time and budget targets set are met

Objectives of Activity Planning

- Feasibility assessment
 - Can the project be delivered on time, within budget and resource constraints?
- Resource allocation
 - How to allocate the resources with best results?
 - When should those resources be ready?
- Detailed costing
 - A detailed estimates on the project cost and the timings.
 - A detailed forecast on when the expenditure is likely to take place.
- Motivation
 - Providing targets and being able to monitor the achievement of the targets at the end of the activity can be a good strategy to motivate staff.
- Coordination
 - Help to set the time and requirements of staff (possibly from different departments)
 provide a good way for the project teams to communicate and collaborate among
 themselves.

Activity Planning – From Plan to Schedule

A detailed plan for the project must include a **schedule** indicating the start and completion time for each activity.

Main **steps** in producing the project plan:

- 1. To identify activities (to decide **what activities** need to carried out and in **what order** they are to be done).
- 2. To construct an ideal activity plan (as if no problem with resources).
- 3. To allocate resources (and to correct the ideal plan)
- 4. To produce a **project schedule** (with planned start and completion date)

Projects and Activities

Activity planning is based on some assumptions:

- A project is composed of a number of activities.
- A project may **start** when at least one of its activities is ready to start.
- A project will be completed when all its activities are completed.
- An activity must have clearly defined start and end points.
- An activity must have resource requirements that are forecastable.
- An activity must have a duration that are forecastable.
- An activity may be dependent on other activities being completed first (precedence).

Identifying Project Activities

Three Approaches and Techniques:

- Activity-based approach = Work breakdown structure (WBS)
- 2. Product-based approach = Product breakdown structure (PBS)
- 3. Hybrid approach

Work Breakdown Structure (WBS)

- Each activity is broken down into tasks, until desired level of detail is reached (The amount of work that can be allocated to a single person)
- Maximum task size is <u>usually 10-20 hours</u>
- Shows "is contained in" relationships
- Does not show dependencies or durations

What does a WBS look like?

2 Formats

Outline (Indented Format)
Graphical Tree (Organizational Chart)

Outline Format

1 MANAGEMENT 1.1 Initiate 1.2 Plan 1.3 Execute 1.4 Control 1.5 Close REQUIREMENTS 2.1 Assess 2.2 Determine 2.3 Analyze 2.4 Propose 2.5 DESIGN 3.1 Engineer 3.2 Specify *3.3* 4.1 Construct 4.2 Test 4.3 Validate 4.4 Integrate DELIVER 5.1 Install 5.2 Train

Graphical Tree Format

WBS Outline Example

- 0.0 Retail Web Site
- 1.0 Project Management
- 2.0 Requirements Gathering
- 3.0 Analysis & Design
- 4.0 Site Software Development
 - 4.1 HTML Design and Creation
 - 4.2 Backend Software
 - 4.2.1 Database Implementation
 - 4.2.2 Middleware Development
 - 4.2.3 Security Subsystems
 - 4.2.4 Catalog Engine
 - 4.2.5 Transaction Processing
 - 4.3 Graphics and Interface
 - 4.4 Content Creation
- 5.0 Testing and Production

WBS Graphical Tree Example

Common Approaches to Creating WBS

Brainstorming all work to be done and then grouping into a hierarchy.

Using a general-tospecific structure to progressively detail the work.

WBS Guidelines -1 of 2

- Should be easy to understand
- Some companies have corporate **standards** for these schemes
- Some top-level items, like Project Mgmt. are in WBS for each project
 - Others vary by project
- What often hurts most is what's missing
- When to stop: Break down until you can generate accurate time & cost estimates
- Ensure each element corresponds to a deliverable

WBS Guidelines – 2 of 2

- How detailed should it be?
 - Not as detailed as the final MS-Project plan
 - Each level should have no more than <u>7 items</u>
 - It can evolve over time
- What tool should you use?
 - Excel, Word, Project
 - Org chart diagramming tool (Visio, etc)

Re-use a template if you have one

Product-Based Approach

- List the deliverable and intermediate products of project
- Identify the order in which products have to be created
- Work out the activities needed to create the products
- Create Product Breakdown Structure (PBS)

Product breakdown structure (PBS)

- Product Breakdown Structure (PBS) is a similar construct as WBS, but is based on the structure of product rather than the type of activities
- The top level of PBS is the final product
- Second level may consist of the major components of the product
- Lower levels in PBS describe the structure of item on level above

PBS Example

What is a Product?

- The result of an activity
- Could be (among other things)
 - physical thing ('installed pc'),
 - a document ('logical data structure')
 - a person ('trained user')
 - a new version of an old product ('updated software')

- The following are NOT normally products:
 - activities (e.g. 'training')
 - events (e.g. 'interviews completed')
 - resources and actors (e.g. 'software developer')
 - may be exceptions to this
- Products CAN BE deliverable or intermediate

Product Flow Diagram (PFD)

- PFD shows the order in which the products have to be completed
- PFD is generally from top to bottom and left to right.
- No loop back

The Hybrid Approach

This approach structures both products and activities (i.e. PBS + WBS)

IBM recommends the following five levels in a WBS:

- 1. Project
- 2. Deliverables (software, manuals, training courses)
- 3. Components (i.e. modules and tests requested to produce software)
- 4. Work-Packages (collection of tasks, requested to produce a component)
- 5. Tasks (normally for responsibility of a single person)

A Hybrid Approach – an Example

Summary: Identifying Activity

- Activity-based approach
 - WBS
 - Advantages: produce a task catalogue of non-overlapping activities
 - A structure that maybe refined as the project proceeds
- Product-based approach
 - PBS
 - Advantages: Less likely that a product is left out (an activity may be left out in WBS)
- Hybrid approach
 - Start with products (Based on deliverables)
 - For each product, list activities required
 - IBM recommends five levels in the hybrid approach (check them for your project)

Scheduling Activities

Once we have an **ideal activity plan**, we need to **schedule** the activities in a project taking into account the **resource constraints**.

/ˈʃedjuːl, ˈske- \$ ˈskedʒʊl, -dʒəl/

1 a plan of what someone is going to do and when they are going to do it:

on schedule (= at the planned time)

Scheduling Techniques

- Simple sequencing
 - Suitable for small projects
 - Sequencing and scheduling are combined
- Precedence Network Models
 - Suitable for large software projects
 - Separate sequencing from scheduling
 - Sequence according to logical relationship between activities

Simple sequencing

• A simple *sequencing* of the <u>tasks</u> and the <u>responsible personnel</u> taken into account of the <u>resources</u>

Easily presented in a simple bar chart

Suitable for allocating individuals to particular tasks at an early stage

A project plan as a bar chart

Activity key

A: Overall design

B: Specify module 1

C: Specify module 2

D: Specify module 3

E: Code module 1

F: Code module 3

G: Code module 2

H: Integration testing

1: System tesing

Note: The chart tells us who is doing what and

when.

Precedence Network Models

- Models the project activities and their precedence relationship as a network
- Time flows from left to right
- The most commonly used networking technique:
 - Critical Path Method (CPM)
 - Program Evaluation Review Technique (PERT) will be considered later
- Both techniques represented in either/or:
 - Activity-on-node (activities are represented as nodes)
 - Activity-on-arrow (activities are drown on arrows)

/¹pres₀¹d∌ns/

when someone or something is considered to be more important than someone or something else, and therefore comes first or must be dealt with first

Precedence Network Notations

Fragment of a Precedence Network (Activity-on-node)

Constructing Precedence Networks: Rules

- 1. A project network should have only one start node
- 2. A project network should have only one end node
- 3. A node has duration
- 4. Links normally have no duration
- 5. Precedents are the immediate preceding activities
- 6. Time moves from left to right
- 7. A network may not contain loops (see next slides)
- 8. A network should not contain dangles (see next slides)

Constructing Precedence Networks

7. No looping back is allowed – deal with iterations by hiding them within single activities

Constructing Precedence Networks

8. A network should not contain dangles

Lagged activities

 Where there is a fixed delay between activities e.g. seven days notice has to be given to users that a new release has been signed off and is to be installed

Start and finish times of activity

- Earliest start (ES)
- Earliest finish (EF) = ES + duration
- Latest finish (LF) = latest task can be completed without affecting project end
- Latest start = LF duration

Labelling conventions

British Standard BS4335

Example

Table 6.1 An example project specification with estimated activity durations and precedence requirements

Activity		Duration (weeks)	Precedents
A	Hardware selection	6	
В	Software design	4	
C	Install hardware	3	Α
D	Code & test software	4	В
E	File take-on	3	В
F	Write user manuals	10	
G	User training	3	E, F
Н	Install & test system	2	C, D

The activity network for the example

The Forward Pass

- Calculate the earliest date on which each activity may be started (ES) and completed (EF).
 - *ES* = *EF* for the previous
 - *EF = ES + Duration*
- When there is more than one previous activity, take the *latest* earliest finish

The network after the forward pass

The Backward Pass

Calculate the latest date at which each activity may be started (LS) and finished (LF) without delaying the end date of the project.

- Start from the *last* activity
- Latest finish (LF) for last activity = earliest finish (EF) for the preceding
- Work backwards
- Latest finish for current activity = Latest start for the following
- More than one following activity take the earliest LS
- Latest start (LS) = LF for activity duration

The network after the backward pass

Float

How much the start or completion date of an activity may be delayed without affecting the end date of the project

Float = Latest Finish - Earliest Start - Duration

The network example with floats

Critical Path

- Any delay in an activity on this path will delay the whole project
- The path through network with zero floats
- Sub-critical paths
 - chains of activities, not on the planned critical path, but with small floats

The Critical Path

The significance of the Critical Path

- In managing: Paying attention to monitoring its activities
- *In planning:* It is the critical path that we must shorten if we want to reduce the overall duration of the project

Example

- earliest start = day 5
- latest finish = day 30
- duration = 10 days

- earliest finish = ?
- latest start = ?

The earliest finish (EF) would be day 5 plus 10 days i.e. day 15.

The latest start (LS) would be day 30 – 10 days i.e. day 20

- Float = 30 5 10 = 15 days
- This also is the same as LF– EF or LS ES

Critical Path Method (CPM) – 1 of 2

- Developed by Du Pont Chemical Company and published in 1958
- Primary objectives:
 - Planning the project so that it can be completed as quickly as possible
 - Identifying those activities where their delays is likely to affect the overall project completion date

Critical Path Method – 2 of 2

- Capturing the activities and their inter-relationships using a graph
 - Nodes and lines are used to represent the activities and the start and stop
- Adding time dimension
 - The forward pass
 - The backward pass
- Identifying critical path and critical event
 - Critical activity: an activity that has zero float
 - Critical path: a path joining those critical activities

Thank you for your attention

Any questions, please?