Luverser(:) (100 g) 5ANS X.A.

$$\Pi:=\begin{pmatrix} \Xi_2 & A \\ \Xi_2 & B \end{pmatrix}$$
 on $A:=\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ et $B:=\begin{pmatrix} 0 & \Delta \\ 0 & A \end{pmatrix}$.

En pensont à $GL_2(IK)$, an prode par block, et en choisins ant le "bor ens" our $AB \pm BA$, on a:

 $\begin{pmatrix} \Xi_2 & A \\ B & -A \end{pmatrix} = \begin{pmatrix} B & -A \\ C_2 & B & -A \end{pmatrix}$

Comme $B-A = \begin{pmatrix} -a & \Delta \\ -b & d \end{pmatrix}$, on doit even $S:=ad-b=\pm 0$.

 $S \neq O$ donne $(B-A)^{-1} = \frac{1}{5}\begin{pmatrix} -d & \Delta \\ -b & a \end{pmatrix}$

S $\notin O$ donne un inverse à droite, et donc tout court, de π comme suit.

 $\begin{pmatrix} B & -A \end{pmatrix} \begin{pmatrix} (B-A)^{-1} & C_2 & A \end{pmatrix} \begin{pmatrix} C_2 & A \end{pmatrix} \begin{pmatrix} C_3 & C_4 & C_5 \end{pmatrix} \begin{pmatrix} C_4 & C_5 & C_5 & C_5 \end{pmatrix} \begin{pmatrix} C_5 & C_6 & C_5 & C_6 \end{pmatrix} \begin{pmatrix} C_6 & C_6 & C_6 & C_6 & C_6 \end{pmatrix} \begin{pmatrix} C_6 & C_6 & C_6 & C_6 & C_6 \end{pmatrix} \begin{pmatrix} C_6 & C_6 & C_6 & C_6 & C_6 & C_6 \end{pmatrix} \begin{pmatrix} C_6 & C_6 &$