Тема: «Методы оптимальных решений» Тест № 0*

для студентов заочного факультета.

За каждое правильно выполненное задание начисляется максимум два балла.

ПН	9	10	8	v_j		
8	4	5	8 4			
7	7	7 3	0 2			
12	9 9	3 4	3			
u_i						
тоб 1						

таб.1

- І. На рис. 1 изображена область допустимых значений (ОДЗ). Известно, что в т. С целевая функция z(x,y) достигает наибольшего значения, тогда z(x,y)=:
- 2. 3x+y
- 3. x + 5y
- 4. -x + 5y
- II. На рис. 1 изображена ОДЗ. Известно, что в т. В целевая функция z(x,y) достигает наибольшего значения, тогда z(x,y)=:
 - $5. -3x+y \rightarrow min$
- 6. $x+3y \rightarrow max$
- 7. $-x-y \rightarrow \min$
- 8. $2x+3y \rightarrow max$
- III. Целевая функция для ОДЗ на рис. 1 имеет вид z=2x-3y→max. Тогда оптимальный план достигается в точке:
 - 9. A
- 10. B
- 11. C
- 12. D
- IV. Целевая функция для ОДЗ на рис. 1 имеет вид z(x,y)=-2x+y, тогда:
 - 13. z(A)>z(C)
- 14. z(D) < z(C)
- 15. z(A)=z(F)
- 16. z(B)=z(E)
- V. Верно ли, что в цикл, улучшающий решение входят клетки:
 - 17. (1,1) и (1,2)
- 18. (2,1) и (2,3)
- 19. (1,2) и (1,3)
- 20. (1,3) и (2,3).
- VI.Область допустимых планов задачи линейного программирования (ЗЛП) может быть:
 - 21. выпуклой
- 22. звёздной
- 23. ограниченной
- 24. круг

- VII. Оптимальное решение ЗЛП:
 - 25. находится в угловой точке;
 - 26. находится во внутренней точке области;
 - 27. это обязательно опорное решение;
 - 28. может находиться во внутренней точке отрезка границы.
- VIII. При решении задачи симплекс-методом
 - 29. специальным образом перебираются всевозможные решения и выбирается оптимальное;
 - 30. число базисных переменных совпадает с числом столбцов;
 - 31. индексная строка указывает на оптимальное;
 - 32. оптимальных решений может быть несколько.
- IX. Дана платёжная матрица $C = \begin{pmatrix} 1 & 5 & 3 \\ 3 & 4 & 7 \\ 1 & 3 & 6 \end{pmatrix}$, где строки стратегии игрока A, а столбцы
 - стратегии игрока В. Тогда
- 33. 1 стратегия игрока В является доминирующей (лучше каждой).
- 34. Платёжная матрица С имеет седловую точку из чистых стратегий.
- 35. Цена игры равна 3
- 36. 2 стратегия игрока А является доминирующей (лучше каждой).
- 37. Для игрока А первая стратегия доминирует третью.

Часть II.

За каждое правильно выполненное задание даётся максимум три балла.

1. Если целевая функция $z(x,y)=2x-3y \to max$, то z(B) равно

A). -2

Б). 2

B). 0

Γ). 1

2. Если целевая функция z(x,y)=-2x-3y→ max, то её наибольшее значение равно

A). -3

Б). –5

B). 4

 Γ). -1

3. Пусть в транспортной задаче таб.1 потенциал u_1 =0. Найдите потенциал u_2 :

A). 2

Б). 5

B). 1

 Γ). -4

5. Вычислите стоимость перевозки, указанной в таблице 1:

A). 220

Б). 150

B). 170

 Γ). 200

6. Вычислите оценку клетки (1,3):

A). -1

Б). 1

B). 0

Γ). 2

7. Укажите изменение решения таб. 1 после его улучшения:

A). 10

Б). 5

B). 15

 Γ). 20

баз.	\mathbf{x}_1	\mathbf{x}_2	X 3	X4	X5	X6	b_0
	1	2	0	4	0	2	2
	0	10	1	20	0	1	5
	0	16	0	4	1	3	8
20	0	-4	0	4	0	0	

8. В таб. 2 указана таблица ЗЛП, тогда базисными переменными являются:

A). x_1, x_2, x_3

Б). x₁, x₅, x₃

B). x_2, x_4

 Γ). x_4, x_5, x_3

9. Разрешающим столбцом в симплекс-таблице 2 является

A). x2

Б). x₄

B). x₅

 Γ). x_6

10. Оптимальное значение ЗЛП таб. 2 равно:

A). 28

Б). 20

B). 24

 Γ). 21

Часть III.

За каждое правильно выполненное задание даётся максимум двадцать баллов, в противном случае баллы не начисляются.

1. Решить ЗЛП графическим методом:

$$z(x, y) = 5x_1 + 3x_2 \to \max, \begin{cases} x_2 \le 2\\ 4x_1 + 3x_2 \le 10,\\ x_1 + 2x_2 \le 5\\ x_1, x_2 \ge 0 \end{cases}$$

Укажите оптимальное значение целевой функции.

2. Решите транспортную задачу и укажите оптимальное значение стоимости перевозки.

ПН	15	25	15
30	5	7	2
25	4	3	1

3. Решите задачу симплекс-методом:

$$z(x, y) = x_2 + 2x_3 \rightarrow \max, \begin{cases} x_1 + 2x_2 + 3x_3 = 12, \\ x_2 - 2x_3 \le 10 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

4. Дана платёжная матрица некоторой антагонистической матричной игры $\begin{pmatrix} 7 & 6 & 3 \\ 2 & 8 & 7 \\ 1 & 3 & 6 \end{pmatrix}$.

Найти оптимальную стратегию. В ответ укажите оптимальную цену игры.

*Примерный тест отличается от экзаменационного теста количеством задач каждого раздела.