Linear Algebra 2 Notes

paraphrased by Tyler Wright

An important note, these notes are absolutely **NOT** guaranteed to be correct, representative of the course, or rigorous. Any result of this is not the author's fault.

1 Groups, Rings, and Fields

1.1 Definition of a Group

A group is a set G combined with a group operation $\circ: G \times G \to G$ such that:

- For all g, h, j in G, g(hj) = (gh)j (associativity)
- There exists e in G such that eg = ge = g for all g in G
- For all g in G, there exists g^{-1} in G such that $gg^{-1} = g^{-1}g = e$ where e is the identity of G.

1.2 Definition of a Homomorphism

A homomorphism between two groups G, H is a function $f: G \to H$ such that f(gh) = f(g)f(h) for all g, h in G.

1.3 Properties of Homomorphisms

We can derive some properties of homomorphisms, for G, H groups, and $f: G \to H$ a homomorphism:

- The image of the identity in G is the identity in H
- The kernel of f is a subgroup of G
- The image of f is a subgroup of H
- Bijective homomorphisms are isomorphisms.

1.4 Definition of a Ring

A ring with unity is a set R along with an addition map +, and a multiplication map \circ where $+, \circ : R \times R \to R$ such that:

- (R, +) is an abelian group (of which the identity is called zero)
- The multiplication operation is associative
- The multiplication operation has a two-sided identity not equal to the zero identity (called one)
- For all a, b, c in R, a(b+c) = ab + ac and (a+b)c = ac + bc.

A ring is commutative if the multiplication operation is commutative.

1.5 Definition of a Subring

For the ring $R = (R', +, \circ)$ and S a set, S is a subring of R if $S \subseteq R'$ and $(S, +, \circ)$ is a ring.

1.6 Definition of a Ring Homomorphism

For rings with unity R and S, $f:R\to S$ is a ring homomorphism if for all a,b in R:

$$f(a+b) = f(a) + f(b)$$
$$f(ab) = f(a)f(b)$$
$$f(1) = 1$$

Essentially, this says that f is a homomorphism for the groups formed by R and S under addition and multiplication. It is also important to note that $R \ni f(1) = 1 \in S$.

1.7 Definition of a Field

A field \mathbb{F} is a ring with unity with the following properties:

• $(\mathbb{F} \setminus \{0\}, \circ)$ is an abelian group.

1.8 Definition of the Field Characteristic

For a field \mathbb{F} , the field characteristic char(\mathbb{F}) is the smallest positive integer n such that:

$$\sum_{i=1}^{n} 1 = 1 + 1 + \ldots + 1 = 0,$$

or zero if no such value n exists.

1.9 Definition of the Algebraic Closure of Fields

A field \mathbb{F} is called algebraically closed if all non-constant polynomials with coefficients in \mathbb{F} also has a root in \mathbb{F} .

2 Vector Spaces

2.1 Definition of a Vector Space

A vector space over a field \mathbb{F} is a set V with an addition operation $+: V \times V \to V$ and a scalar multiplication operations $\circ: \mathbb{F} \times V \to V$ such that for all a, b in \mathbb{F} and v, w in V:

- (V, +) is an abelian group
- $1 \circ v = v$ where 1 is the multiplicative identity of \mathbb{F}
- $(ab) \circ v = a \circ (b \circ v)$
- $(a+b) \circ v = a \circ v + b \circ v$
- $a \circ (v + w) = a \circ v + a \circ w$.

2.2 Definition of a Subspace

For V a vector space over the field \mathbb{F} and W a set, W is a subspace of V if it is a subset of V and is a vector space with respect to the addition and scalar multiplication defined by V.

It is sufficient to verify that for any a in \mathbb{F} and v, w in W we have that a(v+w) is in W.

2.3 Definition of a Linear Combination

For a set V with addition operation +, a field \mathbb{F} and n in \mathbb{N} , a linear combination of v_1, \ldots, v_n in V is:

$$\sum_{i=1}^{n} a_i v_i,$$

for a_1, \ldots, a_n in \mathbb{F} .

2.4 Definition of the Span

For a set V with addition operation + and a field \mathbb{F} , the span of $W \subseteq V$ is the set of all the linear combinations of the values in W. Denoted by span(W).

2.5 Definition of Linear Independence

For a vector space V and $W \subseteq V$, we say W is linearly dependent if there exists a non-trivial linear combination of all the vectors in W equal to zero (and linearly independent otherwise).

2.6 Properties of Linear Independence

For a vector space V with $W \subseteq V$:

- $0 \in W \Rightarrow W$ is linearly independent
- W linearly independent \Rightarrow any $X \subseteq W$ is linearly independent
- If there's a linearly dependent subset of W, then W is linearly dependent.

2.7 Definition of a Basis

For a vector space V with $W \subseteq V$, if W is linearly independent and $\operatorname{span}(W) = V$, we say that W is a basis of V.

Saying W is a basis is equivalent to saying that each vector in V can be **uniquely** written as a linear combination of vectors in W.

Additionally, for finite vector spaces, we have that all bases have the same amount of elements.

2.8 Definition of Dimension

For non-infinite bases, we say that the value of the basis is the dimension of the vector space it is a member of. Vector spaces with such bases are called finite-dimensional and all other vector spaces are infinite-dimensional.