MAT 300 2-26 HW

ID: 1213399809

Name: Lucas Saldyt (lsaldyt@asu.edu)

Collaborators: \varnothing

Problem 1.	4.1.10	1
Problem 2.	4.2.15	2
Problem 3.	4.2.4	3
Problem 4.	Title	4

Problem 1. 4.1.10

Indicate whether the following relations on the given sets are reflexive, symmetric, anti-symmetric, or transitive.

Solution

Part (a)

- (a) $A = \{p : p \text{ is a person in alaska}\}$. x y if x is at least as tall as y. Reflexive, not symmetric, anti-symmetric, and transitive.
- (b) $A = \mathcal{N}$. $x \ y$ if x + y is even. Reflexive, symmetric, not anti-symmetric, and transitive (though somewhat vacuously).
- (c) $A = \mathcal{N}$. $x \ y$ if x + y is odd. Reflexive, symmetric, not anti-symmetric, and transitive, as above.
- (d) $A = \mathcal{P}(\mathcal{N})$. $x \ y$ if $x \subseteq y$. Reflexive, not symmetric, anti-symmetric, and transitive.
- (e) $A = \mathcal{R}$. x y if x = 2y. Not reflexive, not symmetric, not anti-symmetric, and not transitive.
- (f) $A = \mathcal{R}$. $x \ y$ if x y is irrational. Not reflexive, symmetric, not anti-symmetric, and not transitive.
- (g) $A = \{l : l \text{ is a line in the Cartesian plane}\}$. x y if x and y are parallel lines or if x and y are the same line.Reflexive, symmetric, not anti-symmetric, and transitive.

Problem 2. 4.2.15

Let A be a partially ordered set. Prove that if A has a greatest element, then the greatest element is unique. (Assume two greatest elements and show they are the same).

Solution

Part (a)

Solution

Problem 3. 4.2.4

Let A be a set. Show that $\mathcal{P}(A)$ need not be totally ordered under the relation \subseteq .

Solution

Part (a)

Recall that a set A is said to be totally ordered if it has a relation which is anti-symmetric, transitive, and satisfies the "connex property": a b or b a for any a, b in the set A. While \subseteq satisfies anti-symmetry and transitivity for $\mathcal{P}(A)$, it does not satisfy the connex property. For instance, the powerset of $\{0,1\}$ contains the elements $\{0\}$ and $\{1\}$. Let these be the variables a and b in the connex property, and it is clear that it is not satisfied (because $\{0\} \not\subseteq \{1\}$ and $\{1\} \not\subseteq \{0\}$).

Problem 4. Title

Problem

Solution

Part (a)

Solution