Universidade Federal Fluminense (UFF)

Instituto de Matemática e Estatística (IME)

Departamento de Estatística (GET)

Disciplina: Modelos Lineares I

Professor: José Rodrigo de Moraes

2ª Lista de Exercícios - Data: 09/09/2019 (4ª feira)

Assunto: Inferência no modelo de RLS e análise dos resíduos.

1ª Questão: Mostre que os estimadores $\hat{\beta}_0$ e $\hat{\beta}_1$ de mínimos quadrados (MQ) são não-viciados para os parâmetros β_0 e β_1 , respectivamente.

2ª Questão: Encontre as variâncias dos estimadores $\hat{\beta}_0$ e $\hat{\beta}_1$ de MQ, e verifique de que parâmetro elas dependem.

3ª Questão: Considerando um modelo de RLS, demonstre que: $COV(\hat{\beta}_0,\hat{\beta}_1) = \frac{-\overline{X}\sigma^2}{\sum\limits_{i=1}^n \left(X_i - \overline{X}\right)^2} \text{ e diga qual o sentido da relação entre } \hat{\beta}_0 \text{ e } \hat{\beta}_1 \text{ para}$

4ª Questão: Uma reação química é executada n vezes, e a temperatura (X), em °C, e a produção (Y), em percentagem de um valor máximo teórico, são registradas para cada execução. As seguintes medidas estatísticas são registradas:

$$\overline{X} = 65$$
 $\overline{Y} = 29,05$ $\sum_{i=1}^{12} (X_i - \overline{X})^2 = 6.032$ $\sum_{i=1}^{12} (Y_i - \overline{Y})^2 = 835,42$

$$\sum_{i=1}^{12} (X_i - \overline{X})(Y_i - \overline{Y}) = 1.988,4$$

 $\overline{X} > 0$. $\overline{X} < 0$ e $\overline{X} = 0$.

- a) Calcule as estimativas de mínimos quadrados (MQ) dos parâmetros β_0 e β_1 do modelo, e escreva a equação do modelo ajustado.
- b) Calcule a estimativa da variância do erro aleatório do modelo.
- c) Determine os intervalos de confiança de 95% para os parâmetros $\beta_{\scriptscriptstyle 0}$ e $\beta_{\scriptscriptstyle 1}$.

Prof.: Dr. José Rodrigo de Moraes - Modelos Lineares I

Prof.: Dr. José Rodrigo de Moraes – Modelos Lineares I

d) Existe relação estatisticamente significante entre a temperatura e a produção, considerando um nível de significância de 5%.

- e) Determine um intervalo de confiança de 95% para a produção média a uma temperatura de 40°C.
- f) Determine um intervalo de previsão para a produção de uma determinada reação a uma temperatura de 40°C.
- **5ª Questão:** Para verificar o efeito da variável X (horas de estudo) sobre a variável Y (nota da VS em Estatística Geral-II) foi realizado um estudo com 11 alunos que forneceu os seguintes pares (X_i, Y_i) :

Pede-se:

- a) Construa um gráfico de dispersão entre X e Y e avalie se tem sentido ajustar um modelo de regressão linear normal aos dados. Nessa avaliação utilize também o coeficiente de correlação linear de Pearson.
- b) Escreva de equação do modelo a ser ajustado descrevendo os seus termos/variáveis.
- c) Ajuste um modelo de regressão linear normal e represente-o no gráfico de dispersão construído na letra (a).
- d) Interprete as estimativas dos parâmetros do modelo (contexto do problema).
- e) Verifique se existe associação estatisticamente significante entre as "horas de estudo" e o "desempenho na VS de EG-II". Defina as hipóteses a serem testadas, a estatística de teste (e o seu valor observado), a região crítica (RC) e a tomada de decisão, inclusive no contexto do problema.
- f) Construa a tabela de Análise de Variância (ANOVA) e com base na estatística de teste F informe qual a conclusão a respeito da associação entre as horas de estudo (X) e o desempenho (nota) na disciplina (Y). A conclusão é a mesma da letra (e)?
- g) Construa um IC de 95% para o efeito do tempo de estudo no desempenho do aluno na disciplina. Interprete-o. OBS: Cheque os limites de confiança encontrados por meio do software R, aplicando as expressões conhecidas dos limites do IC para β_1 .

Pede-se:

- h) Construa um IC para o intercepto (β_0) do modelo. OBS: Cheque os limites de confiança encontrados por meio do software R, aplicando as expressões conhecidas dos limites do IC para β_0 .
- i) Calcule o coeficiente de determinação do modelo, e interprete-o no contexto do problema.
- j) Usando os resíduos padronizados ou estudentizados, avalie a hipótese de normalidade dos erros do modelo. Use o histograma e o QQ-Plot.
- k) Com base nos resultados do ajuste do modelo, você diria que o modelo se ajusta bem aos dados observados?

OBS: Este exercício é para ser resolvido aplicando as fórmulas conhecidas dos estimadores de β_0 e β_1 , das somas dos quadrados, das estatísticas de teste e IC; e também deve ser resolvido usando algum pacote estatístico, preferencialmente o programa R. Caso tenha acesso ao SPSS, pode ser utilizado para comparar os resultados obtidos com o R.

6ª Questão: Os dados da tabela 1 se referem ao volume expiratório forçado (VEF) e a altura (com) de garotos na faixa etária de 10 a 14 anos. Estes dados foram coletados num hospital universitário por uma equipe multiprofissional.

Tabela 1: Dados sobre n=12 garotos.

Garoto	Altura	VEF
1	134	1,70
2	138	1,90
3	142	2,00
4	146	2,10
5	150	2,20
6	154	2,50
7	158	2,70
8	162	3,00
9	166	3,10
10	170	3,40
11	174	3,80
12	178	3,90

Prof.: Dr. José Rodrigo de Moraes - Modelos Lineares I

- a) Construa o gráfico de dispersão entre altura e VEF, e analise-o.
- b) Calcule o coeficiente de correlação linear de Pearson entre altura e VEF.
 Avalie o sentido e o grau da relação entre essas duas variáveis.
- c) Ajuste um modelo de RLS normal para explicar a variabilidade dos valores do VEF, a partir da altura dos garotos.
- d) Verifique se existe associação estatisticamente significante entre a altura e VEF. Justifique a sua resposta.
- e) Interprete o efeito estimado da altura sobre o VEF.
- f) Avalie as hipóteses de linearidade e normalidade dos erros usando a análise gráfica dos resíduos padronizados ou estudentizados.
- g) Escreva resumidamente as suas conclusões sobre a relação entre a altura e VEF, a partir dos resultados encontrados e das análises efetuadas. Se possível, escreva alguma recomendação no caso de existir violação da(s) hipótese(s) básica(s) do modelo.
- **7ª Questão:** O dono de uma academia levantou o tempo de prática de natação (*em meses*) e o escore de satisfação com a capacidade cardiorespiratória (*numa escala de 0 a 100: quanto maior o escore, maior o nível de satisfação*) para um grupo de alunos que praticam natação no turno da noite (Tabela 2). O dono da academia quer avaliar o efeito o tempo de prática deste esporte sobre o nível de satisfação dos alunos com a sua capacidade cardiorespiratória.
- a) Escreva a equação do modelo, descrevendo os seus termos e variáveis no contexto do problema.
- b) Ajuste o modelo pelo método de mínimos quadrados (MQ) e interprete as estimativas dos parâmetros e o coeficiente de determinação do modelo (contexto).
- c) Estime o nível médio de satisfação para o grupo de alunos que praticam natação a 1 ano e meio, e construa o seu respectivo IC de 95%. E para um grupo de alunos que praticam natação a 2 anos?
- d) Estime o nível de satisfação de um aluno que pratica natação a 1 ano e meio, e construa o seu respectivo IC de 95%. E para um aluno que pratica natação a 2 anos?
- e) Obtenha os intervalos de confiança e predição (usando o software R).

- f) Construa um gráfico de dispersão para representar as bandas de confiança e predição, incluindo os dados observados e o modelo (reta) de regressão linear ajustado.
- g) Avalie as hipóteses de homocedasticidade, independência e normalidade dos erros usando a análise gráfica dos resíduos padronizados ou estudentizados.

Tabela 2: Informações sobre n=20 alunos que praticam natação numa determinada academia.

	Tempo de	Nível de
Aluno	natação (X)	satisfação (Y)
1	1,15	90
2	1,05	89
3	1,20	91
4	1,35	93
5	1,50	96
6	1,40	94
7	1,00	87
8	1,35	91
9	1,50	99
10	1,45	93
11	1,25	93
12	1,10	92
13	1,00	90
14	1,05	89
15	1,10	90
16	1,20	90
17	1,30	94
18	1,35	94
19	1,42	96
20	1,05	88
Total	24,77	1.839

$$\sum_{i=1}^{n} X_i^2 = 31,2289$$

$$\sum_{i=1}^{n} Y_i^2 = 169.269$$

$$\sum_{i=1}^{n} X_{i} Y_{i} = 2.286,22$$

8ª Questão: Em um estudo da relação entre o teor de oxigênio (medido em *partes de mil*) e a resistência máxima (medida em *ksi*), foram obtidos os seguintes resultados do ajuste de um modelo de RLS para n=29 soldas usando o pacote estatístico *SPSS*¹:

Model Summary^b

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	,542ª	,294	,268	5,84090

a. Predictors: (Constant), Teor oxigenio

b. Dependent Variable: Resistência

ANOVA^b

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	383,094	1	383,094	11,229	,002ª
	Residual	921,136	27	34,116		
	Total	1304,230	28			

a. Predictors: (Constant), Teor_oxigenio

b. Dependent Variable: Resistência

Coefficients^a

			ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	49,780	7,751		6,423	,000
	Teor_oxigenio	16,923	5,050	,542	3,351	,002

a. Dependent Variable: Resistência

¹ SPSS - Statistical Package for the Social Sciences

Figura 1: Gráfico de dispersão entre o teor de oxigênio (X) e os resíduos padronizados do modelo.

Figura 2: Gráfico de dispersão entre a resistência estimada (\hat{Y}) e os resíduos padronizados do modelo.

Usando as saídas fornecidas, pede-se:

- a) Identifique a variável explicativa e a variável resposta do modelo, e escreva resumidamente qual o objetivo do estudo.
- b) Escreva a equação do modelo teórico, descrevendo os seus termos e variáveis no contexto do problema. Inclua também na descrição as hipóteses básicas do modelo de RLS.
- c) Escreva a equação do modelo ajustado pelo método de mínimos quadrados (MQ) e interprete as estimativas dos parâmetros do modelo (contexto).
- d) Obtenha e interprete o coeficiente de correlação entre a resistência e o teor de oxigênio das soldas.
- e) Obtenha e interprete o coeficiente de determinação do modelo (contexto).
- f) Estime a variância do erro aleatório do modelo.
- g) Determine e interprete os intervalos de confiança (IC) de 95% para os parâmetros do modelo.
- h) Analise a tabela ANOVA, explicando o significado dos seus componentes no contexto do problema; e interprete o teste F.

- i) Avalie a significância dos parâmetros do modelo. Você diria que existe relação estatisticamente significante entre o teor de oxigênio e a resistência das soldas ? Use o método do p-valor, mas é preciso justificar a sua resposta.
- j) Determine o intervalo de confiança de 95% para a resistência média das soldas com teor de oxigênio de 1,7 partes por mil. **OBS:** Sabe-se que o teor médio de oxigênio é de 1,5197 partes de mil.
- k) Determine o intervalo de predição de 95% para a resistência de uma solda cujo teor de oxigênio é 1,7 partes por mil.
- I) Avalie as hipóteses de *homocedasticidade*, *independência* e *normalidade* dos erros usando a análise gráfica dos resíduos padronizados (Figuras 1, 2 e 3).
- m) Em sua opinião, o modelo é adequado? Justifique a sua reposta.
- n) Refaça o exercício considerando agora as saídas do **programa R**. Para tanto, os dados são fornecidos na tabela a seguir:

Teor de oxigênio (partes de mil)	Resistência (<i>ksi</i>)	Teor de oxigênio – cont. (partes de mil)	Resistência – cont. (ksi)
1,08	63,00	1,78	84,40
1,19	76,00	1,50	75,05
1,57	66,33	1,70	84,45
1,72	79,67	1,30	70,25
1,80	72,50	1,40	68,05
1,65	78,40	1,17	73,00
1,50	72,00	1,40	81,00
1,60	83,20	1,69	75,00
1,20	71,85	1,71	75,33
1,80	87,15	1,63	73,70
1,16	68,00	1,70	91,20
1,32	79,67	1,60	79,55
1,61	71,00	1,60	73,95
1,70	81,00	1,30	66,05
1,69	68,65		

- **9ª Questão:** Os dados sobre o número de questões resolvidas de uma lista de exercícios indicada pelo professor da disciplina, contendo ao todo 50 exercícios, e a nota numa determinada prova final (0 a 100) são fornecidos na tabela 3.
- a) Defina as variáveis X e Y, e classifique-as.
- b) Construa o gráfico de dispersão entre X e Y, e analise-o.
- Prof.: Dr. José Rodrigo de Moraes Modelos Lineares I

- c) Calcule o coeficiente de correlação linear de Pearson. Avalie o sentido e o grau da relação entre X e Y.
- d) Ajuste um modelo de RLS normal para representar a relação entre X e Y, e avaliar a significância dessa relação usando um nível de significância de 5%.
- e) Interprete as estimativas dos parâmetros do modelo, no contexto do problema.
- f) Calcule uma medida de qualidade do ajuste do modelo da letra (d), e interprete-a no contexto do problema.

Tabela 3: Alunos matriculados numa determinada disciplina (n=28).

Aluno	Nº de questões resolvidas	Nota
1	1	0,6
2	1	1,6
3	1	0,5
4	1	1,2
5	2	2,0
6	2	1,3
7	2	2,5
8	3	2,2
9	3	2,4
10	3	1,2
11	4	3,5
12	4	4,1
13	4	5,1
14	5	5,7
15	6	3,4
16	6	9,7
17	6	8,6
18	7	4,0
19	7	5,5
20	7	10,5
21	8	17,5
22	8	13,4
23	8	4,5
24	9	30,4
25	11	12,4
26	12	13,4
27	12	26,2
28	12	7,4

10ª Questão: Usando as notas de estatística descritiva (escala de 0 a 100), o professor ajustou um modelo de RLS para explicar a nota da 2ª verificação, a partir da nota obtida na 1ª verificação da referida disciplina. Analise e interprete os resultados do ajuste do modelo ("Saidas do SPSS"), e faça a análise gráfica dos resíduos (Figuras 2, 3 e 4) à luz das hipóteses básicas do modelo. Elabore um pequeno relatório, com as principais conclusões obtidas por você.

ANOVA^b

Mode	·l	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3157,267	1	3157,267	39,759	,000ª
	Residual	1985,252	25	79,410		
	Total	5142,519	26			

a. Predictors: (Constant), Nota_1

Coefficients^a

		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	18,383	9,234		1,991	,058
	Nota_1	,774	,123	,784	6,305	,000

a. Dependent Variable: Nota_2

Prof.: Dr. José Rodrigo de Moraes – Modelos Lineares I

Figura 1: Gráfico de dispersão entre as notas da 1ª verificação (X) e 2ª verificação (Y), incluindo o modelo de RLS ajustado e o seu coeficiente de determinação.

Figura 2: Gráfico de dispersão entre a nota da 1ª verificação (X) e os resíduos padronizados do modelo.

Prof.: Dr. José Rodrigo de Moraes - Modelos Lineares I

b. Dependent Variable: Nota 2

Figura 3: Gráfico de dispersão entre a nota estimada da 2^a verificação (\hat{Y}) e os resíduos padronizados do modelo.

Figura 4: QQ Plot (normalidade) dos resíduos padronizados do modelo.

Respostas da 2ª Lista de Exercícios: "Modelos Lineares I"

1ª Questão:

Tem que demonstrar que $E(\hat{\beta}_0) = \beta_0$ e $E(\hat{\beta}_1) = \beta_1$. Consultar as notas de Aula do Prof. Dr. José Rodrigo, e/ou referências indicadas pelo professor.

2ª Questão:

Consultar notas de Aula do Prof. Dr. José Rodrigo, e/ou referências indicadas pelo professor.

3ª Questão:

Consultar notas de Aula do Prof. Dr. José Rodrigo, e/ou referências indicadas pelo professor.

4ª Questão:

a)
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i = 7,6233 + 0,32964 X_i$$
; $i = 1, 2, ..., 12$

b) 17,996

c) IC
$$_{\beta_0.95\%} = [-0.744;15,991]$$
 e IC $_{\beta_1.95\%} = [0.208;0.451]$

d) O teste é significativo.

e)
$$IC_{E(Y/X=45):95\%} = [16,722;24,896]$$

f)
$$IC_{Y/X=45:95\%} = [10,512;31,106]$$

5ª Questão:

a) Sim, com base na observação do gráfico de dispersão, é possível dizer que tem sentido ajustar um modelo linear para os dados em questão. Veja você mesmo !!! Coeficiente de correlação linear de Pearson: R = 0,951

b)
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$
; $i = 1, 2, ..., 11$

c)
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i = 0.452 + 0.316 X_i$$
; $i = 1, 2, ..., 11$

Escrever o significado de X_i , \hat{Y}_i , $\hat{\beta}_0$ e $\hat{\beta}_1$ no contexto.

- nodolos Ellicaros i
- d) $\hat{\beta}_0 = 0.452 \rightarrow$ é a nota estimada em EG-II no caso do aluno não ter estudado para a VS.
- $\hat{\beta}_{\rm l}=0,316
 ightarrow \acute{\rm e}$ o quanto aumenta a nota estimada em EG-II ao aumentar em o tempo de estudo em 1 hora.
- e) As hipóteses a serem testadas e a Região crítica (RC) ficam por conta do aluno.

Valor observado da estatística de teste: t_{obs} =9,225. OBS: É preciso ainda escrever a expressão da estatística de teste !!!

Tomada de decisão: Como $t_{\text{obs}} \in \Re C$ rejeita-se H₀: β_1 =0 ao nível de significância de 5%, ou seja, existe relação estatisticamente significante entre o "tempo de estudo (X)" e a "nota da VS (Y) de EG-II". Equivalentemente, usando o método do p-valor, temos que: p-valor < 0,001 \rightarrow a relação é estatisticamente significante entre X e Y.

f) OBS: É preciso construir a tabela ANOVA !!! SQM=7,404 (gl=1); SQRes= 0,786 (gl=9) e SQT= 8,187 (gl=10) Valor observado da Estatística de Teste F: $f_{\rm obs}$ =85,108

Como o $f_{\text{obs}} \in RC$ (ou equivalentemente: p-valor<0,001< α =0,05), conclui-se, com base no teste F, que existe uma relação estatisticamente significante entre X (horas de estudo) e Y (nota da VS).

- g) Pacote SPSS: IC $_{6.95\%}$ = [0,238; 0,393]
- h) Pacote SPSS: IC $_{\beta_0.95\%}$ = [0,034; 0,870]
- i) R²=90,4%. OBS: É preciso interpretar no contexto!!!
- i) Por conta do aluno !!!
- k) Por conta do aluno !!!

6ª Questão:

- a) Sugestão: Colocar altura no eixo X e VEF no eixo Y.
- b) R= 0,998 → relação linear positiva forte. OBS: É preciso justificar no contexto !!!
- c) $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i = -5.313 + 0.051 X_i$; i = 1, 2, ..., 12
- d) Como p-valor < 0,001 → existe relação estatisticamente significante entre altura e FEV.

Prof.: Dr. José Rodrigo de Moraes - Modelos Lineares I

Prof.: Dr. José Rodrigo de Moraes – Modelos Lineares I

- e) Por conta do aluno !!! Ver notas de aula do Prof. Dr. José Rodrigo, e/ou referências indicadas.
- f) Há evidências de violação da hipótese básica de linearidade. Já a distribuição dos erros parece ser aproximadamente normal. OBS: Cabe ressaltar que, para a análise de regressão ser válida, é necessário que as hipóteses básicas do modelo sejam pelo menos aproximadamente satisfeitas.

7ª Questão:

a)
$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

b)
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i = 72,587 + 15,634 X_i$$
; $i = 1, 2, ..., 20$

c)
$$IC_{E(Y/X=1.5):95\%} = [94,76;97,32]$$

d)
$$IC_{Y/X=1.5 \cdot 95\%} = [92,72; 99,35]$$

- e) Por conta do aluno !!! Usar o Programa R.
- f) **Figura**: Gráfico de dispersão entre o tempo de prática de natação (X) e o nível de satisfação (Y), incluindo o modelo de regressão ajustado e as bandas de confiança e predição.

g) Não se observou nenhuma violação das hipóteses básicas do modelo; sendo assim pode-se dizer que o modelo é adequado.

8ª Questão:

a) variável explicativa: Teor de oxigênio (X); variável resposta: Resistência (Y)

b) Modelo de RLS teórico:

 $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$; $\varepsilon_i \sim N(0, \sigma^2) \forall i = 1, 2, ..., n$ e $COV(\varepsilon_i, \varepsilon_j) = 0 \quad \forall i \neq j = 1, 2, ..., n$

c) Modelo de RLS ajustado: $\hat{Y}_i = 49,780 + 16,923 X_i$; i = 1, 2, ..., 29

d) R=0,542 → moderada relação positiva entre X e Y.

e) R²=0,294 → interpretação: Ver notas de aula !!!

f) $\hat{\sigma}^2 = V \hat{A} R(\varepsilon_i) = 34,116$. OBS: Tem basicamente duas formas de obter esta estimativa !!!

g) IC $_{\beta_0,95\%}$ = [33,877; 65,683] e IC $_{\beta_1,95\%}$ = [6,561; 27,285]

h) O teste F é significativo (p-valor = 0,002 < α =0,05) \rightarrow existe relação significativa entre o teor de oxigênio e a resistência, ao nível de 5%.

i) Existe relação significativa entre o teor de oxigênio e a resistência.

j)
$$IC_{E(Y/X=1,7):95\%} = [75,64;81,45]$$
 OBS: $t_{0,025;27} = 2,052$

k) $IC_{Y/X=1.7:95\%} = [66,22;90,88]$

I) Todas as hipóteses básicas do modelo são satisfeitas. OBS: È necessário explicar !!!

m) Sim, pois ...

n) Ajuste o modelo de RLS usando o programa R. Use os comandos: *lm*, *summary* e *anova*.

9ª Questão:

- a) $X \rightarrow N^{o}$ de questões resolvidas e $Y \rightarrow$ nota
- b) Sugestão: Usar a variável explicativa no eixo das abscissas e a variável resposta no eixo das ordenadas. OBS: É preciso checar se a relação é do tipo linear ou não !!!
- c) R=0,736 → relação linear positiva forte. OBS: É preciso justificar !!!
- d) $\hat{Y_i} = \hat{\beta}_0 + \hat{\beta}_1 X_i = -1,452 + 1,558 X_i; i = 1, 2,..., 28.$ p-valor < 0,001 \rightarrow existe relação estatisticamente significante entre X e Y.
- e) Por conta do aluno !!! Ver notas de aula do Prof. Dr. José Rodrigo e referências indicadas.

Prof.: Dr. José Rodrigo de Moraes - Modelos Lineares I

Prof.: Dr. José Rodrigo de Moraes – Modelos Lineares I

f) R²=54,2%. OBS: É preciso interpretar essa medida no contexto do problema !!!

10ª Questão: Basta analisar as saídas do programa estatístico, mas é preciso representar o modelo, identificar os testes estatísticos incluindo todas as etapas até a tomada de decisão no contexto do problema.