Одесский Национальный Политехнический Университет Кафедра информационных систем

Лабораторная работа № 2 по дисциплине: «Числовые методы» на тему «Решение уравнений»

Выполнил:

Ст. группы АИ-166

Дидух Э. Г.

Проверили:

Вариант 11

No. 11. 1).
$$3^{x} + 2x - 2 = 0$$
;
2). $2x^{4} - 8x^{3} + 8x^{2} - 1 = 0$;
3). $[(x - 2)^{2} - 1]2^{x} = 1$;
4). $(x - 2)\cos x = 1$; $-2\pi \le x \le 2\pi$.

Алгоритм:

Классический метод Ньютона или касательных заключается в том, что если x_n — некоторое приближение к корню х уравнения f(x) = 0, то следующее приближение определяется как корень касательной к функции f(x), проведенной в точке x_n .

Уравнение касательной к функции f(x)в точке x_n имеет вид:

$$f'(x_j) = \frac{y - f(x_n)}{x - x_n}$$

В уравнении касательной положим y = 0 и $x = x_{n+1}$.

Тогда алгоритм последовательных вычислений в методе Ньютона состоит в следующем:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Сходимость метода касательных квадратичная, порядок сходимости равен 2.

Без всяких изменений метод обобщается на комплексный случай.

Если корень х является корнем второй кратности и выше, то порядок сходимости падает и становится линейным.

К недостаткам метода Ньютона следует отнести его локальность, поскольку он гарантированно сходится при произвольном стартовом приближении только, если везде выполнено условие $|ff``|/(f^{(2)}) < 1$, в противной ситуации сходимость есть лишь в некоторой окрестности корня.

Недостатком метода Ньютона является необходимость вычисления производных на каждом шаге.

Комбинированный метод (хорд и касательных)

Суть комбинированного метода состоит в разбиении отрезка [a,b] (при условии f(a)f(b)<0) на три отрезка с помощью хорды и касательной и выборе нового отрезка от точки пересечения хорды с осью абсцисс до точки пересечения касательной с осью абсцисс, на котором функция меняет знак и содержит решение.

Построение хорд и касательных продолжается до достижения необходимой точности решения є.

Комбинированный метод применим для решения уравнения вида f(x)=0 на отрезке [a,b], если ни одна точка отрезка [a,b] не является ни стационарной, ни критической, т.е. $f'(x)\neq 0$ и $f'(x)\neq 0$.

Условие начальной точки для метода хорд f(x)f''(x) < 0.

Условие начальной точки для метода касательных f(x)f''(x)>0.

Сначала находим отрезок [a,b] такой, что функция f(x) дважды непрерывно дифференцируема и меняет знак на отрезке, т.е. f(a)f(b)<0.

Далее применяем алгоритм решения.

Входные данные: f(x), f'(x), f''(x), a, b, ϵ .

1. Ecmi
$$f(a)f''(a) < 0$$
, mo $a = a - f(a)\frac{a - b}{f(a) - f(b)}$, unave ecmi $f(a)f''(a) > 0$, mo $a = a - \frac{f(a)}{f'(a)}$.

2. Ecmi $f(b)f''(b) < 0$, mo $b = b - f(b)\frac{b - a}{f(b) - f(a)}$, unave ecmi $f(b)f''(b) > 0$, mo $b = b - \frac{f(b)}{f'(b)}$.

3. Ecmi $|a - b| > 2\varepsilon$, mo udmi κ 1.

4. $\kappa = \frac{a + b}{2}$.

Выходные данные: х.

Значение \mathbf{x} является решением с заданной точностью $\mathbf{\epsilon}$ нелинейного уравнения вида $\mathbf{f}(\mathbf{x}) = \mathbf{0}$.

Если f(x)=0, то x - точное решение.

Программа:

Метод половинного деления(Bisection):

```
# coding: utf-8
# In[6]:
def fn(x):
return 2*x**4-8*x**3+8*x**2-1
# define bisection method
def bisection( eq, segment, app = 0.3):
a, b = segment['a'], segment['b']
Fa, Fb = eq(a), eq(b)
if Fa * Fb > 0:
raise Exception('No change of sign - bisection not possible')
while (b - a > app):
x = (a + b) / 2.0
f = eq(x)
if f * Fa > 0: a = x
else: b = x
return x
#test it
print bisection(fn, {'a':2, 'b':3}, 0.00003) # => 1.32974624634
```

Метод касательных(Newton):

```
import math
b=2.5
x2=2.1
def f(x):
    """ Функция, определяющая уравнение """
    return 2*x**4-8*x**3-8*x**2-1
def df(x):
    """Производная функции f(x)"""
    return 8*x**3-24*x**2-16*x
```

Метод хорд и касательных(Hordes):

```
import math
from math import *
def f(x): return 2*x**4-8*x**3+8*x**2-1
x1,x2,e=2.1,2.5,0.000001
y1,y2=f(x1),f(x2)
print x1,y1,x2,y2
xx=x2
while 1:
x3=(abs(y2)*x1+abs(y1)*x2)/(abs(y2)+abs(y1))
y3=f(x3)
if y1*y3<0: x2,y2=x3,y3
else: x1,y1=x3,y3
if abs(x3-xx)<e: break
xx=x3
print x3,y3</pre>
```


Точность	Bisection	Newton	Hordes
E=0.1	-0.3	-0.3	-0.299880669326
	0.5	0.5	0.591957671958
	1.5	1.5	1.53328063241
	2.3	2.3	2.22010010537
E=0.001	-0.307	-0.307	-0.30646831253
	0.459	0.458	0.45889207968
	1.541	1.541	1.54119423092
	2.307	2.307	2.30541227263
E=0.000001	-0.306564	-0.306563	-0.306562724486
	0.458817	0.458804	0.458803926013
	1.541183	1.541196	1.54119609973
	2.306563	2.306563	2.30656155019

https://ideone.com/zGPRIO https://ideone.com/0KOaAq https://ideone.com/M9LFnk

Выводы: В данной лабораторной работе мы применили метод Ньютона и метод хорд и касательных для нахождения корня заданной функции. Полученные результаты совпали с результатами методом половинного деления, следовательно результаты корректны и цель работы достигнута.