## Chapitre 7

# Tentative de réponse à la NP-complétude

# Table des matières

| 0        | Motivation                                  | 2 |
|----------|---------------------------------------------|---|
| 1        | Problèmes d'optimisation                    | 2 |
| 2        | Algorithmes d'approximations                | 3 |
| 3        | Branch and Bound — Séparation et évaluation | 6 |
| Anneve A | Programmation dynamique                     | 7 |

#### 0 Motivation

On considère le problème **NP**-complet du *voyageur de commerce* : étant donné un graphe pondéré G quel est le tour de longueur  $^1$  minimale i.e. quelle est la permutation de sommets telle que la longueur totale est minimale.

On se ramène à un problème de décision : étant donné une constante  $K \in \mathbb{R}$ , existe-t-il un chemin de longueur inférieure à K.

Un algorithme glouton, allant d'un sommet à son voisin le plus proche, ne permet pas de résoudre ce problème en complexité polynômiale.

On ne cherche plus le « tour optimal » mais on cherche une solution proche : on veut trouver une constante  $\rho$  telle que, quelque soit l'entrée, le chemin obtenu est de longueur inférieure à  $\rho$  fois la longueur optimale.

# 1 Problèmes d'optimisation

Dans un premier temps, on s'intéresse à un problème où l'on cherche à minimiser quelque chose. On réalise la transformation réalisée dans la partie précédente : étant donné un seuil K, on est ce que la valeur est inférieure à K. On se ramène donc à un problème de décision.

**Définition:** Soit  $Q \subseteq \mathcal{C} \times \mathcal{S}$  un problème. Soit opt  $\in \{\min, \max\}$ . On dit que Q est un problème d'optimisation (i.e. problème de minimisation, maximisation), si pour toute entrée  $e \in \mathcal{C}$ , il existe

- un ensemble sol(e) de solutions,
- une fonction  $c_e : sol(e) \to \mathbb{R}^+$ ,

tels que  $c_e^\star = \mathrm{opt}\{c_e(s) \mid s \in \mathrm{sol}(e)\}$  est bien défini, et

$$\forall s \in \text{sol}(e), \quad (e, s) \in Q \implies c_e(s) = c_e^*.$$

#### On nomme:

- sol(e) l'ensemble des solutions pour l'entrée e,
- $c_e$  la fonction objectif,
- $c_e^*$  la valeur optimale (minimale ou maximale),
- pour une solution  $s \in sol(e)$ ,  $c_e(s)$  est appelée la *valeur de la solution*.

On appelle solution optimale une solution de valeur optimale.

**Définition :** Le problème de décision associé à un problème d'optimisation est le problème obtenu en ajoutant une constante aux entrées et en demandant en sortie s'il est possible de dépasser cette constante.

REMARQUE

Soit  $Q_{\mathcal{O}}$  un problème d'optimisation et Q le problème de décision associé. Étant donné

<sup>1.</sup> poids des arrêtes total

un algorithme  $\mathcal{A}_{\mathcal{O}}$  pour  $Q_{\mathcal{O}}$ , on fabrique l'algorithme  $\mathcal{A}$  suivant résolvant Q.

#### Algorithme 1 Solution à un problème de seuil

**Entrée** e une entrée de  $Q_O$  et K un seuil

1: **retourner**  $c_e(\mathcal{A}_O) \stackrel{.}{\bowtie} K \qquad \triangleright o \stackrel{.}{u} \bowtie est \geqslant pour si \text{ opt } est \text{ max, } et \leqslant si \text{ opt } est \text{ min}$ 

Ainsi, le problème  $Q_{\rm O}$  est plus difficile à résoudre que le problème Q de décision associé. Alors, lorsque le problème de décision Q associé à un problème d'optimisation  $S_{\rm O}$  est **NP**-difficile, c'est mal engagé.

# 2 Algorithmes d'approximations

Remarque (Vocabulaire):

On fixe dans la suite un problème d'optimisation Q, on note  $\mathrm{OPT}(e)$  la valeur optimale pour une entrée e.

**Définition** (Algorithme d'approximation pour un problème de maximisation): On dit d'un algorithme  $\mathcal{A}: \mathscr{C}_Q \to \mathbb{R}^+$  qu'il approxime un problème Q de maximisation avec un ratio d'approximation  $\rho < 1$  dès lors que

$$\forall e \in \mathscr{C}_Q, \quad \mathscr{A}(e) \geqslant \rho \cdot \mathrm{OPT}(e).$$

On dit alors que l'algorithme  $\mathcal A$  est une  $\rho$ -approximation (standard).



Figure 1 - Algorithme d'approximation pour un problème de maximisation

**Définition** (Algorithme d'approximation pour un problème de minimisation) : On dit d'un algorithme  $\mathcal{A}:\mathcal{E}_Q\to\mathbb{R}^+$  qu'il approxime un problème Q de minimisation avec un ratio d'approximation  $\rho>1$  dès lors que

$$\forall e \in \mathscr{E}_Q, \quad \mathscr{A}(e) \leqslant \rho \cdot \mathrm{OPT}(e).$$

On dit alors que l'algorithme  ${\mathcal A}$  est une  $\rho\text{-approximation}$  (standard).



 $F_{\tt IGURE} \ 2 - Algorithme \ d'approximation \ pour \ un \ problème \ de \ minimisation$ 

Dans la définition suivante, on suppose connu une fonction  ${\rm Pire}(e)$  donnant la pire valeur de solution pour une entrée e.

**Définition :** On dit qu'un algorithme  $\mathscr{A}:\mathscr{C}_Q\to\mathbb{R}$  est une  $\rho$ -approximation différen-

tielle dès lors que

$$\frac{\left|\mathcal{A}(e) - \operatorname{Pire}(e)\right|}{\left|\operatorname{Pire}(e) - \operatorname{OPT}(e)\right|} \geqslant \rho.$$



Figure  $3 - \rho$ -approximation différentielle

#### Remarque:

Dans le cadre d'un problème de minimisation, on ne calcule pas  $\mathrm{OPT}(e)$  en général. On minore OPT(e), et alors

$$\frac{\mathcal{A}(e)}{\mathrm{OPT}(e)} \leqslant \underbrace{\frac{\mathcal{A}(e)}{B}}_{\rho}$$



Figure 4 – Calcul de  $\mathrm{OPT}(e)$ 

## Algorithme 2 Algorithme glouton de recherche de stables

**Entrée** G = (S, A) un graphe

 $1 \colon S' \leftarrow \varnothing$ 

2: tant que  $S \neq \varnothing$  faire

 $v^* = \arg\min_{v \in S} \deg_G(v)$  $S' \leftarrow S' \cup \{v^*\}$  $S \leftarrow S \setminus (\{v^*\} \cup \text{voisins}(v^*))$ ⊳ les degrés sont modifiés à chaque itération 3:

4:

6:  $A \leftarrow \text{restriction de } A \ \text{a} \ S$ 

7: retourner S'

Cet algorithme n'est pas correct, la figure ci-après en est un contre-exemple.



Figure 5 – Contre-exemple à l'algorithme 2

**Propriété :** L'algorithme 2 est une  $\frac{1}{\Delta(G)}$ -approximation.

#### Remarque :

Cette preuve ne fait pas d'hypothèses sur le résultat de l'algorithme. Tout algorithme répondant au problème est une  $\frac{1}{\Delta(G)}$ -approximation.

#### EXEMPLE :

On appelle  $couverture\ par\ sommets$  d'un graphe G=(S,A) la donnée d'un ensemble  $X\subseteq S$  tel que

$$\forall \{u,v\} \in A, \quad u \in X \text{ ou } v \in X.$$

On considère le problème

**Entrée** : G = (S, A) un graphe

Sortie : une couverture de cardinal maximal.

Ce problème peut-être résolu à l'aide du calcul de couplages maximal.

Algorithme 3 Calcul d'un couplage maximal (CouplageMaximal)

**Entrée** G = (S, A) un graphe

Sortie C un couplage maximal, non nécessairement maximum

 $1: C \leftarrow \emptyset$ 

2: tant que  $\exists \{u, v\} \in A$ , u libre dans C et v libre dans C faire

3: Soit  $\{u, v\}$  une telle arrête.

 $4: \qquad C \leftarrow C \cup \big\{\{u,v\}\big\}$ 

5: retourner C

L'algorithme retourne un couplage maximal d'après la négation de la condition de boucle. On répond donc au problème avec l'algorithme ci-dessous.

Algorithme 4 Approximation de couverture par sommets

**Entrée** G = (S, A) un graphe

Sortie Une couverture par sommets

 $1: \ C \leftarrow \mathbf{CouplaxeMaximal}(G)$ 

 $\mathbf{2}: \mathbf{retourner} \; \{u \in S \mid \exists v \in S, \; \{u,v\} \in C\}.$ 

L'algorithme retourne une couverture : soit X la valeur retournée pour une entrée G=(S,A). Soit  $\{u,v\}\in A$ . Si  $u\not\in X$  et  $v\not\in X$ , alors le couplage C calculé pour l'algorithme n'est pas maximal, on peut y ajouter  $\{u,v\}$ . Montrons que l'algorithme  $\mathscr A$  est une 2-approximation du problème « couverture par sommets. »

$$\forall G \in \mathscr{E}, \quad \mathscr{A}(G) \leqslant 2 \text{ OPT}(G).$$

Soit  $G\in \mathcal E$ . Soit X la couverture par sommets calculé par  $\mathcal A$  sur G, et C le couplage calculé par cet algorithme. Soit  $X^\star$  la couverture par sommets optimale. Soit donc

$$\varphi: \qquad C \longrightarrow X^{\star}$$
 
$$\{u, v\} \longmapsto \begin{cases} u & \text{si } u \in X^{\star} \\ v & \text{si } v \in X^{\star} \end{cases}$$

Soit  $(c_1,c_2)\in C^2$ , tels que  $\varphi(c_1)=\varphi(c_2)$ , alors  $c_1$  et  $c_2$  partagent un sommet, ce qui est absurde (c.f. définition de couplage). Donc  $\varphi$  est injective, d'où  $|C|\leqslant |X^\star|$ . Or,  $\mathscr{A}(X)=|X|=2|C|\leqslant 2\,|X^\star|\leqslant 2\,\mathrm{OPT}(X)$ .

# 3 Branch and Bound — Séparation et évaluation

 $Branch\ and\ Bound\ n'est\ pas\ un\ algorithme,\ mais\ une\ famille\ d'algorithmes,\ similairement\ au\ algorithmes\ diviser\ pour\ régner.\ Ces\ algorithmes\ répondent\ à\ des\ problèmes\ de\ maximisation.$  Les algorithmes\ Branch\ and\ Bound\ sont\ des\ algorithmes\ enrichit\ de\ trois\ fonctions\ :

- une fonction branch de branchement, i.e. découpage en sous-problèmes,
- une fonction valeur donnant un résultat, pas forcément optimal, i.e. elle associe une solution partielle à une solution,
- une fonction bound donnant un majorant de la solution optimale, complétant cette solution partielle.

Avec les deux dernières fonctions, on borne la valeur de la solution optimale.

# Annexe A. Programmation dynamique

On rappelle le problème Knapsack :

$$\begin{cases} \textbf{Entr\'ee} &: n \in \mathbb{N}, \ w \in (\mathbb{N}^{\star})^n, \ v \in (\mathbb{N}^{\star})^n, \ P \in \mathbb{N} \\ \textbf{Sortie} &: \max_{x \in \{0,1\}^n} \big\{ \langle x, v \rangle \mid \langle x, w \rangle \leqslant P \big\}. \end{cases}$$

On pose

$$\mathrm{SAD}(n,w,v,P) = \max_{x \in \{0,1\}^n} \big\{ \left\langle x,v \right\rangle \ \big| \ \left\langle x,w \right\rangle \leqslant P \big\},$$

et

$$sol(n, w, v, P) = \{ \langle x, v \rangle \mid \langle x, w \rangle \leqslant P, \ x \in \{0, 1\}^n \}.$$

Lorsque  $y \in \mathbb{R}^n$ , avec  $y = (y_1, \dots, y_n)$ , on note  $\mathbb{R}^{n-1} \ni \tilde{y} = (y_2, y_3, \dots, 0)$ . Ainsi, si n > 0,

$$sol(n, w, v, P) = \{\langle x, v \rangle \mid \langle x, w \rangle \leqslant P, \ x \in \{0, 1\}^n \text{ et } x_1 = 0\}$$

$$\cup \{\langle x, v \rangle \mid \langle x, w \rangle \leqslant P, \ x \in \{0, 1\}^n \text{ et } x_1 = 1\}$$

$$= \{\langle \tilde{x}, \tilde{v} \rangle \mid \langle \tilde{x}, \tilde{w} \rangle \leqslant P, \ xu \in \{0, 1\}^n \text{ et } x_1 = 0\}$$

$$\cup \{v_1 + \langle \tilde{x}, \tilde{v} \rangle \mid \langle \tilde{x}, \tilde{w} \rangle \leqslant P - w_1, \ x \in \{0, 1\}^n \text{ et } x_1 = 1\}$$

$$= \{\langle y, \tilde{v} \rangle \mid \langle y, \tilde{w} \rangle \leqslant P \text{ et } y \in \{0, 1\}^{n-1}\}$$

$$\cup \{v_1 + \langle y, \tilde{v} \rangle \mid \langle y, \tilde{w} \rangle \leqslant P - w_1 \text{ et } y \in \{0, 1\}^{n-1}\}$$

D'où, par passage au  $\max$ , si n > 0,

$$\begin{split} \operatorname{SAD}(n,w,v,P) &= \max(\\ &\max\{\langle y \mid \tilde{v} \rangle \mid \langle y,\tilde{w} \rangle \leqslant P \text{ et } y \in \{0,1\}^{n-1}\}\\ &v_1 + \max\{\langle y \mid \tilde{v} \rangle \mid \langle y,\tilde{w} \rangle \leqslant P - w_1 \text{ et } y \in \{0,1\}^{n-1}\}\\ ) &= \max(\operatorname{SAD}(n-1,\tilde{w},\tilde{v},P),v_1 + \operatorname{SAD}(n-1,\tilde{w},\tilde{v},P - w_1)). \end{split}$$

Si n = 0, alors sad(0, v, w, P) = 0.

#### REMARQUE :

Si on le code tel quel, il y aura  $\mathfrak{G}(2^n)$  appels récursifs. Mais, on a (n+1)(P+1) sousproblèmes.

Notons alors, pour n, v, w, P fixés,  $(s_{i,j})_{\substack{i \in [\![ 1,n ]\!] \\ i \in [\![ 0,P ]\!]}}$  tel que

$$s_{i,j} = \mathrm{SAD}\Big(n-i, v_{\left| \llbracket i+1, n \rrbracket}, w_{\left| \llbracket i+1, n \rrbracket}, j \Big).$$

On a alors  $\mathrm{SAD}(n,v,w,P)=s_{0,P}.$  Ainsi, pour  $j\in\llbracket 0,P
rbracket,s_{n,j}=0$ ; pour  $i\in\llbracket 0,n
rbracket,s_{i,0}=0$ ;

$$s_{i,j} = \max(s_{i+1,j}, v_{i+1} + s_{i+1,j-w_{i+1}});$$

et, si  $w_{i+1} > j$ , alors  $s_{i,j} = s_{i+1,j}$ .

La complexité de remplissage de la matrice est en  $\mathfrak{G}(n\,P)$  en temps et en espace. On n'a pas prouvé  ${\bf P}={\bf NP}$ , la taille de l'entrée est

- pour un entier  $n : \log_2(n)$ ,
- pour un tableau de n entiers :  $n \log_2(n)$ ,
- pour un tableau de n entiers :  $n \log_2(n)$ ,
- pour un entier  $P : \log_2(P)$ .

Vis à vis de la taille de l'entrée, la complexité de remplissage est exponentielle.