

FedSplit FedDR Extension

Talk 9: Operator Splitting and Federated Learning

WEN Hao

2021-10-28

FedSplit FedDR

1 FedSplit

2

3

Motivation

FedSplit FedDR

The Optimization Problem

Let f_j be finite convex, with Lipschitz gradient.

$$\min F(x) := \sum_{j=1}^{m} f_j(x_j)$$

s.t.
$$x_1 = \cdots = x_m \in \mathbb{R}^d$$
, $x = (x_1, \cdots, x_m)$

Main issues of existing FL algorithms (FedSGD, FedProx, etc)

- Convergence
- Correctness: fail to preserve the fixed points of the original optimization problem i.e. fixed points produced by the algorithm need not be stationary.

FedSplit

More on the Issue of Correctness (FedGD)

Proposition

The sequence $\{x^{(t)}\}_{\infty}^{t=1}$ generated by FedGD(s, e) satisfy

- if $x^{(t)}$ convergent, then $x_j^{(t)}$ share a common limit x^*
- x^* satisfy the fixed point relation $\sum_{i=1}^{e} \sum_{j=1}^{m} \nabla f_j(G_j^{i-1}(x^*)) = 0$

Notations (FedGD)

- \blacksquare $G_i(x_i) := x_i s\nabla f_i(x_i)$ the gradient mappings
- $G_j^e(x_j) := \underbrace{G_j \circ \cdots \circ G_j}_{e-\text{times}}(x_j)$

More on the Issue of Correctness (FedGD)

FedSplit FedDR Note the abuse of the notation x!

Sketch:

Assume $x^{(t)} = (x_1^{(t)}, \dots, x_m^{(t)}) \to (x_1^*, \dots, x_m^*)$, then

$$(x_1^*,\cdots) = \operatorname{FedGD}(s,e)(x_1^*,\cdots) = \left(\frac{1}{m}\sum_{j=1}^m G_j^e(x_j^*),\cdots\right)$$

Hence $x_1^* = \cdots = x_m^* = x^*$. Write $\frac{1}{m} \sum_{j=1}^m G_j^e(x^*) = x^*$, and substitute G_j^e by its definition, one has

$$\sum_{i=1}^{m} \sum_{j=1}^{m} \nabla f_j(G_j^{i-1}(x^*)) = 0.$$

More on the Issue of Correctness (FedGD)

Indeed, one has

FedSplit

Extensio

$$0 = \frac{1}{m} \sum_{j=1}^{m} G_{j}^{e}(x^{*}) - x^{*} = \frac{1}{m} \sum_{j=1}^{m} G_{j}(G_{j}^{e-1}(x^{*})) - x^{*}$$

$$= \frac{1}{m} \sum_{j=1}^{m} (G_{j}^{e-1}(x^{*}) - s \nabla f_{j}(G_{j}^{e-1}(x^{*}))) - x^{*}$$

$$= \frac{1}{m} \sum_{j=1}^{m} G_{j}^{e-1}(x^{*}) - x^{*} - \frac{s}{m} \sum_{j=1}^{m} \nabla f_{j}(G_{j}^{e-1}(x^{*}))$$

$$\vdots$$

$$= \frac{1}{m} \sum_{j=1}^{m} G_{j}^{0}(x^{*}) - x^{*} - \frac{s}{m} \sum_{i=1}^{e} \sum_{j=1}^{m} \nabla f_{j}(G_{j}^{i-1}(x^{*}))$$

$$= -\frac{s}{m} \sum_{i=1}^{e} \sum_{j=1}^{m} \nabla f_{j}(G_{j}^{i-1}(x^{*}))$$

More on the Issue of Correctness (FedProx)

FedSplit FedDR

Proposition

The sequence $\{x^{(t)}\}_{\infty}^{t=1}$ generated by FedProx satisfy

- *if* $x^{(t)}$ *convergent, then* $x_i^{(t)}$ *share a common limit* x^*
- x^* satisfy the fixed point relation $\sum_{j=1}^m \nabla M_{sf_j}(x^*) = 0$

Notations (FedProx)

- Arr $\operatorname{prox}_{sf_j}(z) := \arg\min\left\{f_j(x_j) + \frac{1}{2s}\|z x_j\|^2\right\}$
- $M_{sf_j} := \inf_{\mathbf{x}} \left\{ f_j(\mathbf{x}_j) + \frac{1}{2s} ||z \mathbf{x}_j||^2 \right\}$
- $x_j^{(t+1/2)} := \operatorname{prox}_{sf_j}(x_j^{(t)}), x_j^{(t+1)} = \overline{x}^{(t+1/2)}.$

More on the Issue of Correctness (FedProx)

edSplit

Extensi

Sketch:

As f_i are smooth convex, one has

$$\operatorname{prox}_{sf_i}(z) = z - s \nabla M_{sf_i}(z)$$

Hence

$$0 = x^* - \frac{1}{m} \sum_{j=1}^{m} \operatorname{prox}_{sf_j}(x^*)$$

$$= x^* - \frac{1}{m} \sum_{j=1}^{m} (x^* - s \nabla M_{sf_j}(x^*))$$

$$= x^* - \frac{1}{m} \sum_{j=1}^{m} x^* + \frac{s}{m} \sum_{j=1}^{m} \nabla M_{sf_j}(x^*)$$

$$= \frac{s}{m} \sum_{i=1}^{m} \nabla M_{sf_j}(x^*)$$

Least Square Problem (LSP)

$$f_j(x_j) = \frac{1}{2} ||A_j x_j - b_j||^2$$
, and A_j has "full rank" (= d).

LSP has unique solution

$$x_{ls}^* = \left(\sum_{j=1}^m A_j^T A_j\right)^{-1} \sum_{j=1}^m A_j^T b_j$$

Least Square Problem (LSP)

 $f_j(x_j) = \frac{1}{2} ||A_j x_j - b_j||^2$, and A_j has "full rank" (= d).

LSP has unique solution

$$x_{ls}^* = \left(\sum_{j=1}^m A_j^T A_j\right)^{-1} \sum_{j=1}^m A_j^T b_j$$

By previous propositions,

FedSplit FedDR Indeed, for example for FedGD, one has

$$\nabla f_j(x_j) = A_j^T A_j x_j - A_j^T b_j$$

$$G_j(x_j) = x_j - s f_j(x_j) = (I - s A_j^T A_j) x_j + s A_j^T b_j$$

$$G_j^{e+1}(x_j) = G_j(G_j^e(x_j)) = (I - s A_j^T A_j) G_j^e(x_j) + s A_j^T b_j$$

Hence

$$G_j^e(x_j) = (I - sA_j^T A_j)^e x_j + (I - (I - sA_j^T A_j)^e)(A_j^T A_j)^{-1} A_j^T b_j$$

= $(I - sA_j^T A_j)^e x_j + (A_j^T A_j)^{-1} (I - (I - sA_j^T A_j)^e) A_j^T b_j$

From the fixed point relation $\sum_{i=1}^{e} \sum_{j=1}^{m} \nabla f_j(G_j^{i-1}(x^*)) = 0$, one has

$$0 = \sum_{j=1}^{m} \left(A_j^T A_j (I - s A_j^T A_j)^{i-1} x^* - (I - s A_j^T A_j)^{i-1} A_j^T b_j \right).$$

Settings: m = 25, d = 100, $A_j \in \text{Mat}_{500 \times 100}$, $(A_j)_{kl} \sim N(0, 1)$, $b_j = A_j x_0 + \varepsilon_j$ with $\varepsilon_j \sim N(0, 0.25I)$

FedSplit

Problem Reformulation

The original problem can be reformulated as

$$\min F(x) := \sum_{j=1}^{m} f_j(x_j)$$

s.t. Ax = 0

where
$$x = (x_1, \dots, x_m), A = \begin{pmatrix} I & -I & & \\ & I & -I & \\ & & \ddots & \ddots \\ & & & \ddots & -I \\ -I & & & & I \end{pmatrix}$$

Consider the first-order optimal condition for $L(x, y) = F(x) - \langle y, Ax \rangle$, i.e. $\nabla F(x) - A^T y = 0$, or equiv.

$$\nabla F(x) - \begin{pmatrix} y_1 - y_m \\ \vdots \\ y_m - y_{m-1} \end{pmatrix} = 0$$

Problem Reformulation

Hence is a monotone inclusion problem

$$0 \in \nabla F(x) + \mathcal{N}_E(x)$$

where

$$\mathcal{N}_E(x) = \begin{cases} E^{\perp} & \text{if } x \in E \\ \emptyset & \text{otherwise} \end{cases}$$
 normal cone $E = \{x \mid x_1 = \dots = x_m\}$

Indeed for $x \in E$,

$$\mathcal{N}_{E}(x) = \{ y \mid \langle y, \widetilde{x} - x \rangle \leqslant 0 \ \forall \widetilde{x} \in E \}$$

$$= \left\{ y \mid \left\langle \sum_{j=1}^{m} y_{j}, \ \widetilde{x}_{1} - x_{1} \right\rangle \leqslant 0, \ \forall \widetilde{x}_{1} \in \mathbb{R}^{d} \right\}$$

$$= \left\{ y \mid \sum_{j=1}^{m} y_{j} = 0 \right\} = E^{\perp}$$

Problem Reformulation

FedSplit FedDR

Another Perspective of Problem Reformulation

Let ι_E be the indicator function of E, then the constrained problem can be reformulated as the following unconstrained one

$$\min F(x) + \iota_E(x), \quad x \in \mathbb{R}^{md}$$

The first-order optimal condition gives

$$0 \in \nabla F(x) + \partial \iota_E(x) = \nabla F(x) + \mathcal{N}_E(x)$$

FedSplit FedDR Extension

Let
$$\mathcal{F} = A + B$$
, with A , B maximal monotone. Write $R_A = (I + sA)^{-1}$, $R_B = (I + sB)^{-1}$ $C_A = 2R_A - I$, $C_B = 2R_B - I$

Then

- \blacksquare $C_A, C_B, C_A C_B$ nonexpansive

i.e. we are reduced to finding fixed points of the nonexpansive operator $C_A C_B$.

FedSplit
FedDR

Now consider $\mathcal{F} = \nabla F + \mathcal{N}_E$, one is reduced to find fixed points of $C_A C_B$ with $A = \nabla F$, $B = \mathcal{N}_E$. One has

$$R_{\nabla F} = \operatorname{prox}_{sF}, \quad R_{\mathcal{N}_E} = \Pi_E$$

and

$$\operatorname{prox}_{sF}(x) = \arg\min_{z} \left\{ F(z) + \frac{1}{2s} \|z - x\|^{2} \right\}$$

$$= \arg\min_{z} \left\{ \sum_{j=1}^{m} f_{j}(z_{j}) + \frac{1}{2s} \sum_{j=1}^{m} \|z_{j} - x_{j}\|^{2} \right\}$$

$$= (\operatorname{prox}_{sf_{s}}(x_{j}))_{j=1}^{m}$$

FedSplit FedDR

- Peaceman-Rachford $z^{(t+1)} = C_A C_B(z^{(t)})$
- \blacksquare Douglas-Rachford $z^{(t+1)} = \frac{1}{2}(I + C_A C_B)(z^{(t)})$

Peaceman-Rachford

$$x^{(t+1/2)} = R_B(z^{(t)})$$

$$z^{(t+1/2)} = 2x^{(t+1/2)} - z^{(t)}$$

$$x^{(t+1)} = R_A(z^{(t+1/2)})$$

$$z^{(t+1)} = z^{(t)} + 2x^{(t+1)}$$

$$-2x^{(t+1/2)}$$

Douglas-Rachford

$$x^{(t+1/2)} = R_B(z^{(t)})$$

$$z^{(t+1/2)} = 2x^{(t+1/2)} - z^{(t)}$$

$$x^{(t+1)} = R_A(z^{(t+1/2)})$$

$$z^{(t+1)} = z^{(t)} + x^{(t+1)}$$

$$- x^{(t+1/2)}$$

More generally,
$$z^{(t+1)} = z^{(t)} + \alpha(x^{(t+1)} - x^{(t+1/2)})$$

By adjusting ordering and change of variable names

More General and Compressed Form 1

$$z^{(t+1/2)} = R_A(2x^{(t)} - z^{(t)})$$

$$z^{(t+1)} = z^{(t)} + \alpha(z^{(t+1/2)} - x^{(t)})$$

$$x^{(t+1)} = R_B(z^{(t+1)})$$

More General and Compressed Form 2

$$z^{(t+1)} = z^{(t)} + \alpha(y^{(t)} - x^{(t)})$$

$$x^{(t+1)} = R_B(z^{(t+1)})$$

$$y^{(t+1)} = R_A(2x^{(t+1)} - z^{(t+1)})$$

The FedSplit Algorithm

FedSplit FedDR

Algorithm 1: FedSplit

```
Given initiation x \in \mathbb{R}^d, proximal solvers prox_update<sub>i</sub>: \mathbb{R}^d \to \mathbb{R}^d
Initialize x^{(1)} = z_1^{(1)} = \cdots = z_m^{(1)} = x
for t = 1, 2, \cdots do
      for j = 1, \dots, m in parallel do
             Local prox step: z_i^{(t+1/2)} \leftarrow \text{prox\_update}_i(2x^{(t)} - z_i^{(t)})
             Local centering step: z_i^{(t+1)} \leftarrow z_i^{(t)} + 2(z_i^{(t+1/2)} - x_i^{(t)})
      Compute global average: x^{(t+1)} \leftarrow \bar{z}^{(t+1)}
      if meet convergent criteria then
             \mathbf{r}^* \leftarrow \mathbf{r}^{(t+1)}
             break
return x*
```

Note the difference against previous iteration form of Peaceman-Rachford:

first step -> last step; 2, 3 step merges; parameters renamed

Correctness and Convergence

FedSplit FedDR

Proposition (Correctness)

If $z^* = (z_1^*, \dots, z_m^*)$ is a fixed point of FedSplit, then $x^* := \prod_E (z^*) = \frac{1}{m} \sum_{j=1}^m z_j^*$ is an optimal solution to the original problem $\min_x \sum_{j=1}^m f_j(x)$.

Theorem (Convergence)

Let f_j be ℓ_j -strongly convex and L_j -smooth, $\ell_* = \min \ell_j$, $L^* = \max L_j$, $\kappa = L^*/\ell_*$. Take step size $s = 1/\sqrt{\ell_* L^*}$, and assume $\|prox_update_j(z) - prox_{sf_j}(z)\| \leq b$, then

$$||x^{(t+1)} - x^*|| \le \left(1 - \frac{2}{\sqrt{\kappa} + 1}\right)^t \frac{||z^{(1)} - z^*||}{\sqrt{m}} + (\sqrt{\kappa} + 1)b$$

FedSplit

Non Strongly Convex Case

Consider a suitable regularization

$$\min F_{\lambda}(z) = \sum_{j=1}^{m} \left(f_{j}(z_{j}) + \frac{\lambda}{2} ||z_{j} - x^{(1)}||^{2} \right)$$

 $s.t.z_1 = \cdots z_m$

Theorem

Let $\lambda \in \left(0, \frac{\varepsilon}{m\|x^* - x^{(1)}\|^2}\right)$, error bound $F(\widehat{x}) - F^* \leqslant \varepsilon$, FedSplit with regularized objective F_{λ} and step size $s = 1/\sqrt{\lambda(L^* + \lambda)}$ converges in at most

$$O\left(\sqrt{\frac{L^*||x^* - x^{(1)}||^2}{\varepsilon}}\right)$$

iterations

FedSplit FedDR

1 FedSplit

2 FedDR

3 Extension

Motivation and Formulation

FedSplit FedDR

Motivation

- Nonconvex Douglas-Rachford splitting
- randomized block-coordinate strategy

Problem Formulation

$$\min_{x} F(x) = f(x) + g(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) + g(x)$$

- \blacksquare f_i nonconvex, L-smooth,
- *g* closed proper convex

Optimal Condition

FedSplit FedDR

Necessary Optimal Condition

$$0 \in \nabla f(x) + \partial g(x)$$

This Condition has equivalent forms:

$$0 \in \nabla f(x) + \partial g(x) \Longleftrightarrow x - \beta \nabla f(x) \in (I + \beta \partial g)(x)$$
$$\iff (I + \beta \partial g)^{-1}(x - \beta \nabla f(x)) = x$$
$$\iff \frac{1}{\beta}(x - \operatorname{prox}_{\beta g}(x - \beta \nabla f(x))) = 0$$

Gradient mapping

$$\mathcal{G}_{\beta}(x) := \frac{1}{\beta}(x - \operatorname{prox}_{\beta g}(x - \beta \nabla f(x)))$$

Problem Reformulation

FedSplit FedDR

Block Split Constrained Reformulation

min
$$F(X) = f(X) + g(X) = \sum_{i=1}^{n} f_i(x_i) + g(x_{n+1})$$

s.t. $x_1 = \dots = x_{n+1} \in \mathbb{R}^d$, $X = (x_1, \dots, x_{n+1})$

Block Split Unconstrained Reformulation

min
$$F(X) = f(X) + g(X) + \iota_E(X)$$

= $\sum_{i=1}^{n} f_i(x_i) + g(x_{n+1}) + \iota_E(x)$

Optimal Condition and Operator Splitting

FedSplit
FedDR

Extension

Necessary Optimal Condition

$$0 \in \nabla f(X) + \partial(g + \iota_E)(X)$$

Douglas-Rachford Splitting

Let $B = \nabla f$, $A = \partial(g + \iota_E)$, then $R_B = \text{prox}_{nsf}$, $R_A = \text{prox}_{ns(g + \iota_E)}$. Iteration of DR splitting is

$$Y^{(t+1)} = Y^{(t)} + \alpha(\overline{X}^{(t)} - X^{(t)})$$

$$X^{(t+1)} = \operatorname{prox}_{nsf}(Y^{(t+1)})$$

$$\overline{X}^{(t+1)} = \operatorname{prox}_{ns(\sigma+t,\epsilon)}(2X^{(t+1)} - Y^{(t+1)})$$

Operator Splitting - Further Analysis

FedSplit
FedDR

 $\blacksquare f = \frac{1}{n} \sum_{i=1}^{n} f_i(x_i)$ splits, hence

$$X^{(t+1)} = \operatorname{prox}_{nsf}(Y^{(t+1)}) \Rightarrow \begin{cases} x_i^{(t+1)} = \operatorname{prox}_{sf_i}(y_i^{(t+1)}), i \in [n] \\ x_{n+1}^{(t+1)} = y_{n+1}^{(t+1)} =: y^{(t+1)} \end{cases}$$

■ write $\widehat{X}^{(t+1)} = 2X^{(t+1)} - Y^{(t+1)}, \ \widetilde{x}^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} \widehat{x}_{k}^{(t+1)},$ then $\overline{X}^{(t+1)} = \operatorname{prox}_{ns(g+\iota_{E})} (2X^{(t+1)} - Y^{(t+1)})$ can be simplified (for all $i \in [n+1]$)

$$\overline{x}^{(t+1)} := \overline{x}_i^{(t+1)} = \operatorname{prox}_{\frac{ns}{n+1}g} \left(\frac{1}{n+1} \sum_{i=1}^{n+1} \widehat{x}_i^{(t+1)} \right)$$
$$= \operatorname{prox}_{\frac{ns}{n+1}g} \left(\frac{n}{n+1} \widetilde{x}^{(t+1)} + \frac{1}{n+1} y^{(t+1)} \right)$$

FedDR

Operator Splitting - Further Analysis

Hence the (n + 1)d-dim. DRS splits (reduces) to d-dim. parallel DRS

Parallel DRS

$$y_{i}^{(t+1)} = y_{i}^{(t)} + \alpha(\overline{x}^{(t)} - x_{i}^{(t)}), i \in [n]$$

$$x_{i}^{(t+1)} = \operatorname{prox}_{sf_{i}}(y_{i}^{(t+1)}), i \in [n]$$

$$\widehat{x}_{i}^{(t+1)} = 2x_{i}^{(t+1)} - y_{i}^{(t+1)}, i \in [n]$$

$$\widetilde{x}^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} \widehat{x}_{i}^{(t+1)}$$

$$y^{(t+1)} = y^{(t)} + \alpha(\overline{x}^{(t)} - y^{(t)})$$

$$\overline{x}^{(t+1)} = \operatorname{prox}_{\frac{ns}{n+1}g} \left(\frac{n}{n+1} \widetilde{x}^{(t+1)} + \frac{1}{n+1} y^{(t+1)} \right)$$

FedDR

The FedDR Algorithm

Algorithm 2: FedDR

```
Initiation: x^{(0)} \in \text{dom}(F), s > 0, \alpha > 0, \varepsilon_{i,0} \ge 0
         Init server: \bar{x}^{(0)} = \tilde{x}^{(0)} = v^{(0)} = x^{(0)}
        Init users: y_i^{(0)} = x^{(0)}, x_i^{(0)} \approx \text{prox}_{cf}(y_i^{(0)}), \widehat{x}_i^{(0)} = 2x_i^{(0)} - y_i^{(0)}
for t = 1, 2, \dots, T do
        [Active users] Sample S_t \subseteq [n]
        [Comm] Each user i \in S_t receives \bar{x}^{(t)} from server
        [Local update] for each user i \in S_t do
                Choose \varepsilon_{i,t+1} \geqslant 0, update v_i^{(t+1)} \leftarrow v_i^{(t)} + \alpha(\overline{x}^{(t)} - x_i^{(t)}),
                x_i^{(t+1)} \approx \text{prox}_{s_i}(y_i^{(t+1)}), \ \widehat{x}_i^{(t+1)} \leftarrow 2x_i^{(t+1)} - v_i^{(t+1)}
        [Comm] Each user i \in \mathcal{S}_t sends \Delta \widehat{x}_i^{(t)} = \widehat{x}_i^{(t+1)} - \widehat{x}_i^{(t)} to server
        [Server update]: v^{(t+1)} \leftarrow v^{(t)} + \alpha(\bar{x}^{(t)} - v^{(t)}),
          \widetilde{x}^{(t+1)} \leftarrow \widetilde{x}^{(t)} + \frac{1}{n} \sum_{i \in S_t} \Delta \widehat{x}_i^{(t)},
          \bar{x}^{(t+1)} \leftarrow \text{prox}_{\frac{ns}{n+1}g}(\frac{n}{n+1}\tilde{x}^{(t+1)} + \frac{1}{n+1}y^{(t+1)})
```


The FedDR Algorithm - Convergence

FedSplit FedDR As in FedSplit, inexact proximal operator is used

$$x_i^{(t)} \approx \operatorname{prox}_{sf_i}(y_i^{(t)}) =: z_i^{(t)}$$

approximated up to a given accuracy $\varepsilon_{i,t}$, i.e.

$$x_i^{(t)} = z_i^{(t)} + e_i^{(t)}, \quad \text{ with } ||e_i^{(t)}|| \leqslant \varepsilon_{i,t}$$

Convergence Results

Let $\{(\bar{x}^{(t)}, x_i^{(t)})\}$ be the sequence generated by FedDR, then

■ Global-Local Difference $(\gamma_1 > 0)$

$$\begin{split} \|\bar{x}^{(t)} - x_i^{(t)}\|^2 & \leq \frac{2(1 + s^2 L^2)}{\alpha} \left[(1 + \gamma_1) \|x_i^{(t+1)} - x_i^{(t)}\|^2 + \frac{2(1 + \gamma_1)}{\gamma_1} (\|e_i^{(t+1)}\|^2 + \|e_i^{(t)}\|^2) \right] \end{split}$$

The FedDR Algorithm - Convergence

FedSplit FedDR

Convergence Results (Continued)

■ Bounded Global Gradient Mapping $(\gamma_2 > 0)$

$$\|\mathcal{G}_{\frac{ns}{n+1}}(\bar{x}^{(t)})\|^{2} \leqslant \frac{n+1}{n^{2}s^{2}} \left\{ (1+sL)^{2} \sum_{i=1}^{n} (1+\gamma_{2}) \left[\|\bar{x}^{(t)} - x_{i}^{(t)}\|^{2} + \frac{1+\gamma_{2}}{\gamma_{2}} \|e_{i}^{(t)}\|^{2} \right] + \|y^{(t)} - \bar{x}^{(t)}\|^{2} \right\}$$

■ Global Convergence $(C_1, C_2, C_3 \text{ are constants})$

$$\frac{1}{T+1} \sum_{t=1}^{T} \mathbb{E}\left[\|\mathcal{G}_{\frac{ns}{n+1}}(\bar{x}^{(t)})\|^{2}\right] \leqslant \frac{C_{1}(F(x^{(0)} - F^{*})}{T+1} + \frac{1}{n(T+1)} \sum_{t=1}^{T} \sum_{i=1}^{n} (C_{2}\varepsilon_{i,t}^{2} + C_{3}\varepsilon_{i,t+1}^{2})$$

FedDR

1 FedSplit

2 FedDR

3 Extension

Personalization and Operator Splitting

Consider a general form of personalization in FL

$$\sum_{i=1}^{n} \{ f_i(x_i) + g(x_i, x) \}$$

or for the most cases

$$\sum_{i=1}^{n} \{ f_i(x_i) + g(x_i - x) \}$$

which can be reformulated as a constrained problem

$$\min \sum_{i=1}^n \{f_i(x_i) + g(y_i)\}\$$

s.t.
$$u_i = x_i - y_i, u_1 = \cdots = u_n$$

How can operator splitting be applied in such problems?

Customized DR

Customized DR Model

min
$$F(x) + G(y)$$

s.t. $Ax + By = b$
 $x \in \mathcal{X}, y \in \mathcal{Y}$

Let
$$F(x) = \sum_{i=1}^{n} f_i(x_i)$$
, $G(y) = \sum_{i=1}^{n} g(y_i)$,
$$A = \begin{pmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

 $\min F(x) + G(y)$ s.t. Ax - Ay = 0

References I

FedSplit FedDR

- [1] R. Pathak and M. J. Wainwright, "FedSplit: An Algorithmic Framework for Fast Federated Optimization," in *Advances in Neural Information Processing Systems* (H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33, pp. 7057–7066, Curran Associates, Inc., 2020.
- [2] Q. Tran-Dinh, N. Pham, D. T. Phan, and L. M. Nguyen, "FedDR Randomized Douglas-Rachford Splitting Algorithms for Nonconvex Federated Composite Optimization," in *Advances in Neural Information Processing Systems* (A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), 2021.

