APPENDIX C: STATISTICAL CALIBRATION AND BOOTSTRAP

C.1 ZSS Threshold $\epsilon_Z=10^{-4}$ — Calibration Procedure

The Zero-State Substrate (ZSS) is defined operationally as a local quantum phase-space region where the covariance matrix of a finite observable set $\{\hat{O}_i\}$ has its smallest nonzero eigenvalue below a resolution threshold ϵ_Z . This threshold is experimentally calibrated to the noise floor of the probe.

Calibration protocol (NV-center example):

- 1. Initialize NV electron spin S = 1 in $|0\rangle$ by optical pumping.
- 2. Create $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ with a weak π -pulse.
- 3. Allow free evolution for $t = 10 \mu s$ under ambient noise.
- 4. Measure covariance matrix $M_{ij} = \langle \hat{O}_i \hat{O}_j \rangle \langle \hat{O}_i \rangle \langle \hat{O}_j \rangle$ using:

$$\hat{O}_1 = \sigma_z, \quad \hat{O}_2 = \sigma_x, \quad \hat{O}_3 = \mathbb{I}$$

- 5. Extract eigenvalues $\lambda_1 \ge \lambda_2 \ge \lambda_3 > 0$.
- 6. Define $\Delta = \lambda_3$ and repeat N = 10,000 times.
- 7. $\epsilon_Z = 1\%$ quantile of $P(\Delta)$.

Result:

$$\epsilon_Z = (9.8 \pm 0.7) \times 10^{-4}$$
 (15 NV centers, room temp., 5 mT)

C.2 Lévy Hill Exponent Estimation ($\hat{\alpha} \leq 1.7$)

ZSS seeds $\Xi_{ZSS}(t)$ follow symmetric α -stable processes with $0 < \alpha \le 2$. Hill estimator (upper tail):

$$\hat{\alpha}_H(k) = \left[\frac{1}{k} \sum_{i=1}^k \ln \frac{|\Xi|_{(i)}}{|\Xi|_{(k+1)}}\right]^{-1}$$

Adaptive procedure:

- 1. Acquire $N \ge 10{,}000$ seeds $|\Xi|$ and sort.
- 2. Compute $\hat{\alpha}_H(k)$ for $k \in [100, N/10]$.
- 3. Identify plateau where $\left| \frac{d\hat{\alpha}_H}{dk} \right| < 0.05$.
- 4. $\hat{\alpha} = \text{mean plateau} \pm \text{standard deviation}$.

Example (simulation $\alpha = 1.5$):

$$\hat{\alpha} = 1.51 \pm 0.06$$

C.3 Bootstrap CI Excluding $\alpha = 2.0$ (Gaussian Limit)

Bias-corrected acceleration (BCa) bootstrap with B=5000 resamples.

- 1. Bootstrap: compute $\hat{\alpha}^*$ distribution.
- 2. Jackknife: compute acceleration a.
- 3. Construct 95% CI using BCa-adjusted quantiles.

Example result:

$$\text{CI}_{95\%} = [1.42, \, 1.68] \Rightarrow \text{Gaussian} \; (\alpha = 2.0) \; \text{excluded with} \; p < 10^{-6}$$

C.4 Hysteresis p-value via Paired Up/Down Ramps

Up- and down-ramp coherence curves $au_{
m up}(P)$ and $au_{
m down}(P)$ define hysteresis area:

$$A_r = \int |\tau_{\rm up}(P) - \tau_{\rm down}(P)| dP$$

Bootstrap test of $H_0: A_r = 0$ via up/down label shuffling.

Decision rule:

$$p < 0.01 \Rightarrow \text{ significant hysteresis}$$

C.5 \triangle AIC Model Selection — DQR vs. Manifold

Compare DQR transfer-time model:

$$t_{\rm DQR}(d) = a d^{1/s} + b \Theta(d > d_{\rm th})$$

to classical manifold diffusion:

$$t_{\text{manifold}}(d) = c d^2$$

Akaike Information Criterion:

$$AIC = 2k - 2\ln(\hat{\mathcal{L}}) \quad \Rightarrow \quad \Delta AIC = AIC_{\text{manifold}} - AIC_{\text{DQR}}$$

Model preference rule:

$$\Delta {\rm AIC} > 10 \ \Rightarrow \ {\rm DQR}$$
 strongly favored

Example (DQR ground-truth):

$$\Delta {\rm AIC} \approx 14.7 \Rightarrow \exp(\Delta {\rm AIC}/2) > 150$$
: 1 evidence ratio