

Arquitectura y Diseño de Software

Atributo de Calidad Seguridad

- Cómo definir Software Seguro
 - Protección del Software una vez construido?
 - Construir Software Seguro
 - Diseñar Software Seguro
 - Saber si el software es seguro
 - Protejer los sistemas de software una vez terminados
 - Educar a todos los participantes en la construcción de software

- Seguridad de Aplicaciones Versus
 Seguridad de Software
- El software es transversal a muchos escenarios de seguridad
- Cuando no se construye el software se requieren ayudas adicionales
 - Firewalls

Software Seguro

Imagen tomada de "Sotware Security:Building Security In" Gary McGraw

- Manejo del Riesgo
 - Análisis de riesgo a nivel arquitectural
 - Threat modeling
 - Análisis de riesgos a lo largo del ciclo de desarrollo
- Puntos de Contacto en Seguridad
 - Seguridad en el Software no es Software para Seguridad
 - Seguridad es un atributo de calidad en el software tanto como desempeño, escalabilidad, etc.

- La seguridad es fundamental durante el desarrollo de software
 - Ejemplo: Microsoft's Trustworthy Computing Initiative
- Los desarrolladores, arquitectos y analistas no toman en cuenta la seguridad
- La seguridad no es solamente un password o usar SSL

- Los puntos de contacto
 - No están diseñados para un ciclo de desarrollo particular
 - Cascada
 - RUP
 - XP / Metodologías Agiles
 - FDD

- Conocimiento
 - Administración del conocimiento de la organización
 - Conocimiento sobre seguridad
 - Principios
 - Guías
 - Reglas
 - Vulnerabilidades
 - Patrones de Ataque
 - Riesgos históricos

Manejo de Conocimiento

Cinco etapas principales

Imagen tomada de "Sotware Security:Building Security In" Gary McGraw

- 1. Entender el contexto de negocio
 - Hacer explícito los motivadores de negocio
 - Niveles de servicio establecidos
 - Retorno de la inversión
- 2. Identificar los riesgos técnicos y de negocio
 - Los riesgos de negocio van encontra de los objetivos de negocio

- Identificar los riesgos de negocio ayuda a definir los artefactos de software claves para mitigar los riesgos de seguridad
- Un riesgo técnico es una situación que va encontra del diseño y/o la implementación de un sistema en consideración
- 3. Priorizar los Riesgos
 - Esta labor toma en cuenta los objetivos de negocio de la empresa
 - Se tiene en cuenta el impacto que generaría el riesgo

- 4. Definir la estrategía de mitigación del riesgo
 - □ Tan importante como descubrir los riesgos técnicos es saber como mitigarlos
 - Se debe generar una estrategia de mitigación de riesgos
- 5. Ejecutar la estrategia de mitigación
 - Los artefactos donde se hayan identificado fallas deben ser corregidos

Desarrollo de la Hoja de Trabajo 1

ID	Riesgo Tecnológico	Indicador	Prioridad	Impacto	Método de Mitigación
1	Mala selección de Passwords	Número de passwords	M	M	Cambios frecuentes
		vulnerados			Longitud mínima
					Listas negras

- Introducción
- Presentación Caso de Estudio
- Marco para Manejo de Riesgos
- Puntos de Contacto en Seguridad
- Casos de Abuso

- Buenas prácticas en desarrollo de software seguro
- Relativamente fáciles de integrar en el proceso de desarrollo de software
 - Conocer y entender riesgos de seguridad
 - Diseñar pensando en seguridad
 - Análisis y pruebas de los artefactos principales desde el punto de vista de seguridad

Los siete puntos de contacto

- 1. Revisiones de Código
 - Proceso de revisión de código
 - Mecanismo de verificación y validación estático
 - Normalmente se utiliza una lista de chequeo contra la cual se revisa e inspecciona el código
 - Revisión por pares

- 2. Análisis de riesgos arquitecturales
 - Se enfoca en los artefactos de especificación y diseño
 - Se buscan Defectos en
 - Autenticación
 - Seguridad de los Componentes
 - Seguridad de los nodos de ejecución
 - Problemas de protección de los datos

- 3. Pruebas de Penetración
 - Se utilizan los análisis de la evaluación de arquitectura
 - Permite probar el software en su ambiente de ejecución
 - Usualmente llamado hacking ético
 - Ejecutadas tarde en el ciclo de desarrollo
 - Guiadas por los casos de abuso
 - Se quiere saber cómo se comporta el sistema bajo ataque

- 4. Pruebas de seguridad basadas en riesgos
 - Se ejecutan pruebas basadas en
 - Patrones de ataque
 - Análisis de riesgos
 - Casos de abuso
 - Pueden ser ejecutada a nivel de componentes unitarios
 - En algunos casos construidas antes del desarrollo del software

- 5. Casos de Abuso
 - Se enfocan en los artefactos de requerimientos y casos de uso
 - Es una forma de entrar en la mente de los atacantes
 - Similares a los casos de uso
 - Describen el comportamiento del sistema bajo ataque
 - Se debe conocer lo que se quiere proteger, de quién y por cuanto tiempo

- 6. Requerimientos de Seguridad
 - Se detallan requerimientos de seguridad
 - Se especifican claramente
 - Entradas
 - Salidas
 - Cursos básicos de acción
 - Caminos de extensión y excepción
 - Es importante identificar y mantener los requerimientos de seguridad

- 7. Operaciones de Seguridad
 - □ Elementos de seguridad que enmarcan la ejecución del software
 - Seguridad de la red

- □ El objetivo de los puntos de contacto es desarrollar el software de manera segura
- Adicionalmente, encontrar y prevenir defectos de seguridad durante todo el ciclo de desarrollo de software
 - Se utilizan métodos estáticos y dinámicos de verificación y validación

Imagen tomada de "Sotware Security:Building Security In" Gary McGraw

- La seguridad es una propiedad del software no una característica
- Cuando actuamos como diseñadores de un sistema tenemos una ventaja sobre los atacantes ... conocemos mejor el software
- Este conocimiento es utilizado para mejorar la seguridad

- Cómo diseñadores de nuestro sistema debemos preguntarnos
 - Cuáles suposiciones están implícitas en nuestro sistema?
 - Qué cosas harían estas suposiciones falsas?
 - Qué clases de patrones de ataque usaría un atacante?

- Casos de Abuso
 - Propuestos inicialmente en 1999 (McDermont)
 - Extensión de los casos de uso con casos de mal uso (Opdahl 2000)
 - Uno de los objetivos de los casos de abuso es decidir y documentar cómo debe reaccionar el software ante su uso ilegítimo

- Cómo crear los casos de abuso?
 - Inicialmente responsabilidad de los diseñadores y los analistas de seguridad
 - Toman como entrada
 - Conjunto de Casos de Uso
 - Lista de patrones de ataque
 - □ El primer paso es identificar y documentar actores o agentes que podrían ejecutar un ataque
 - El segundo paso es crear anti-requerimientos
 - □ El tercer paso es crear un modelo de ataque

- Anti-requerimientos
 - Creados por los analistas de seguridad
 - Se analizan los casos de uso contra la lista de potenciales atacantes
 - Se documentan los ataques que causarian que el requerimiento fallara
 - Anti-requerimientos ayudan a entender como una amaneza puede abusar del sistema
 - Usualmente ligados a la ausencia o falla de una función de seguridad

- Crear un modelo de ataque
 - Dada una lista de casos de uso y una lista de amenazas se hace una comparación contra una lista de ataques
 - Se pueden utilizar patrones de ataque / STRIDE
 - Seleccione patrones de ataque relevantes para el sistema
 - Construya casos de abuso que describan como su sistema reacciona a un ataque

STRIDE

- Spoofing
 - Pretender ser otra persona
- Tampering
 - Modificar datos o código
- Repudiation
 - Negar una acción
- Information Disclosure
 - Exponer información a alguien no autorizado
- Deniel of Service
 - Denegar o degradar el servicio a los usuarios
- Elevation of Privilege
 - Ganar privilegios sin autorización

Imagen tomada de "Sotware Security:Building Security In" Gary McGraw

- Provee un conjunto común de requerimientos de seguridad de IT
- Procedimiento de evaluación para establecer un nivel de confianza
- Sirve como guía para el desarrollo de sistemas de software
- El sistema bajo evaluación se denomina Target of Evaluation (TOE)

- Direccionado a definir requerimientos para la protección de información en sistemas de software
 - Confidencialidad
 - Integridad
 - Disponibilidad

- Establece un conjunto de componentes funcionales para expresar requerimientos de seguridad en un TOE
 - Componentes
 - Familias
 - Clases
- Se utiliza como guía y referencia para la formulación de requerimientos de seguridad

Tomado de: ISO/IEC 15408-1:2005

Tomado de: ISO/IEC 15408-1:2005

Tomado de: ISO/IEC 15408-1:2005

Clase FAU: Auditoria de Seguridad

- Esta familia define requerimientos para analizar de forma automática actividades del sistema y auditar datos para encontrar posibles o reales violaciones de seguridad
- Ejemplo

"The TSF shall be able to maintain profiles of system usage, where an individual profile represents the historical patterns of usage performed by the member(s) of [assignment: the profile target group]." [11]

- FAU_ARP: Respuesta automática de auditoría de seguridad
 - 1. Alarmas de seguridad
- FAU_GEN: Generación de datos de auditoría de seguridad
 - 1. Define el nivel de los datos auditables
 - 2. Asociación de identidad del usuario
- FAU_SAA: Análisis de auditoría de seguridad
 - 1. Análisis de violación potencial
 - 2. Detección de anomalias con base en el perfil de usuarios meta
 - 3. Heurística de un ataque simple
 - 4. Heurística de un ataque complejo

- □ FAU_SAR: Revisión de la auditoría de seguridad
 - 1. Revisión de auditoría
 - 2. Revisión de auditoría restringida
 - 3. Revisión de auditoría seleccionable
- □ FAU_SEL: Selección de eventos de la auditoría de seguridad
 - 1. Auditoría selectiva
- FAU_STG: Almacenamiento de eventos de auditoría de seguridad
 - 1. Almacenamiento de indicios de auditoría
 - 2. Garantía de la disponibilidad de datos de auditoría
 - 3. Acción en caso de pérdida de datos de auditoría
 - 4. Prevención de pérdida de datos de auditoría

- Clase FCO: Comunicación
 - Provee dos familias para asegurar la identidad de un participante en un intercambio de datos
 - Non-repudiation of Origin
 - Non-repudiation of receipt
 - Ejemplo

"The TSF shall be able to generate evidence of receipt for received [assignment: list of information types] at the request of the [selection: originator, recipient, [assignment: list of third parties]]." [11]

- FCO_NRO: No repudio de origen
 - 1. Prueba de origen selectiva
 - 2. Prueba de origen obligatoria
- FCO_NRR: No repudio de recepción
 - 1. Prueba de recepción selectiva
 - 2. Prueba de selección obligatoria

Clase FCS : Soporte Criptográfico

- Soporte del ciclo de vida de las llaves criptográficas
 - Generación
 - Distribución
 - Acceso
 - Destrucción
- Ejemplo

"The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [assignment: cryptographic key generation algorithm] and specified cryptographic key sizes [assignment: cryptographic key sizes] that meet the following: [assignment: list of standards]." [11]

- FCS_CKM: Gestión de claves criptográficas
 - 1. Generación de claves criptográficas
 - 2. Distribución de claves criptográficas
 - 3. Acceso a las claves criptográficas
 - 4. Destrucción de las claves criptográficas
- □ FCS_COP: Operación criptográfica
 - 1. Una operación criptográfica se debe llevar a cabo de acuerdo a un algorítmo especificado

Clase FDP : Protección de los Datos de Usuario

- Esta familia especifica requerimientos para protección de datos
 - Control de Acceso
 - Autenticación de los Datos
 - Exportar fuera del control del TSF
 - Importar al TSF
 - Flujo de Información
 - Integridad de los datos almacenados
 - Transferencia segura de datos
- Ejemplo

"The TSF shall ensure that the protocol used provides for the unambiguous association between the security attributes and the user data received." [11]

- **FDP_ACC**: Política de control de acceso
- FDP_ACF: Funciones de control de acceso
- FDP_DAU: Autenticación de datos
- FDP_ETC: Exportación hacia fuera del control dela TSF
- FDP_IFC: Política de control de flujo de información
- □ **FDP_IFF**: Funciones de control de flujo de información
- □ FDP_ITC: Importación desde fuera del control de las TSF
- FDP_ITT: Transferencia interna en el TOE
- □ FDP_RIP: Protección de la información residual
- □ **FDP ROL**: Rollback
- □ FDP_SDI: Integridad de los datos almacenados
- FDP_UCT: Protección de la confidencialidad de la transferencia de datos de usuario inter-TSF
- FDP_UIT: Protección de la integridad de la transferencia de datos de usuario inter-TSF

Clase FIA : Identificación y Autenticación

- Esta familia de requerimientos busca establecer y verificar la supuesta identidad de un usuario
 - Fallas de autenticación
 - Definición de atributos de usuario
 - Especificación de secretos
 - Autenticación de usuarios
 - Identificación de usuarios
- Ejemplo

"The TSF shall ensure that the protocol used provides for the unambiguous association between the security attributes and the user data received." [11]

- FIA_AFL: Fallas de autenticación
- FIA_ATD: Definición de atributos de usuario
- FIA_SOS: Especificación de secretos
- FIA_UAU: Autenticación de usuarios
- □ FIA_UID: Identificación de usuarios
- □ FIA_USB: Vínculo usuario-sujeto

Clase FMT : Manejo de la Seguridad

- Esta clase especifica el manejo de atributos de seguridad, datos y funciones
 - Manejo de atributos de seguridad
 - Revocación
 - Expiración
 - Roles
- Ejemplo

"The TSF shall enforce the [assignment: access control SFP, information flow control SFP] to restrict the ability to [selection: change_default, query, modify, delete,[assignment: other operations]] the security attributes [assignment: list of security attributes] to [assignment: the authorised identified roles]." [11]

- FMT_MOF : Gestión de funciones en las TSF
- FMT_MSA: Gestión de atributos de seguridad
- FMT_MTB: Gestión de los datos de las TSF
- FMT_REV: Revocación
- FMT_SAE: Expiración de atributos de seguridad
- FMT_SMF: Especificación de funciones de gestión
- □ FMT_SMR: Roles de gestión de seguridad

Clase FPR: Privacidad

- Esta clase contiene requerimientos de privacidad para proveer protección al usuario contra descubrimiento y mal uso de su identidad por parte de otros usuarios
 - Anonimato
 - Pseudonimos
- Ejemplo

"The TSF shall ensure that [assignment: set of users and/or subjects] are unable to determine the real user name bound to [assignment: list of subjects and/or operations and/or objects]." [11]

- FPR_ANO: Anonimato
- FPR_PSE: Seudoanonimato
- FPR_UNL: Incapacidad para vincular
- FPR_UNO: Incapacidad para observar

Clase FRU: Utilización de Recursos

- Esta clase provee soporte a la disponibilidad de recursos requeridos (procesamiento/almacenamiento)
 - Tolerancia a Fallas
 - Prioridad del Servicio
 - Adjudicación de Recursos
- Ejemplo

"The TSF shall ensure the operation of [assignment: *list of TOE capabilities*] when the following failures occur: [assignment: *list of type of failures*]." [11]

- 1. Tolerancia degrada ante fallas, exige que el TOE continúe la operación ante fallas identificadas
- FRU_PRS: Prioridad del servicio
- FRU_RSA: Asignación de recursos

Clase FTA: Acceso al TOE

- Esta familia especifica los requerimientos para controlar una sesión establecida con un usuario
 - Limitación de sesiones concurrentes
 - Sesiones con bloqueo
 - Historia de acceso
 - Establecimiento de una sesión
- Ejemplo

"The TSF shall require the following events to occur prior to unlocking the session: [assignment: events to occur]." [11]

- FTA_LSA: Limitación del alcance de los atributos seleccionados
- FTA_MCS: Limitación de sesiones simultáneas múltiples
- □ FTA_SSL: Bloqueo de sesión
- FTA_TAB: Mensaje de acceso del TOE
- □ FTA_TAH: Historia de acceso del TOE
- □ FTA_TSE: Establecimiento de sesión de TOE

Clase FTP: Canales/Caminos Confiables

- Esta clase provee requerimientos de canales de comunicaciones seguros entre el usuario y el TSF o entre el TSF y otros sistemas
 - Canales Seguros
 - Caminos Seguros
- Ejemplo

"The TSF shall provide a communication channel between itself and a remote trusted IT product that is logically distinct from other communication channels and provides assured identification of its end points and protection of the channel data from modification or disclosure." [11]

FTP_ITC: Canal confiable inter TSF

■ FTP_TRP: Ruta confiable

Security Quality Requirements Engineering (SQUARE)

- Desarrollado en Carnegie-Mellon University
- Su objetivo es descubrir, categorizar y priorizar requerimientos de seguridad
- Compuesto por 9 pasos
- Se utilizan diferentes técnicas para descubrir y clasificar los requerimientos

SQUARE

- Paso 1. Unificar conceptos
- Paso 2. Identificar objetivos de seguridad
- Paso 3. Desarrollar artefactos para soportar las técnicas de descubrimiento
- Paso 4. Realizar evaluación de riesgos
- Paso 5. Seleccionar técnicas de descubrimiento
- Paso 6. Descubrir requerimientos de seguridad
- Paso 7. Categorizar requerimientos
- Paso 8. Priorizar requerimientos
- Paso 9. Inspeccionar Requerimientos

Paso 1. Unificar Conceptos

- Entradas
 - □ Definiciones tomadas de IEEE, Ontologías de Dominio, SWEBOK, ISO 15408, etc.
- Técnicas
 - Entrevistas, Grupos Objetivos
- Participantes
 - Analistas de Requerimientos, Usuarios
- Salidas
 - Documento de Definiciones

Paso 1. Unificar Conceptos

- El objetivo es tener una definición común de los términos involucrados en la aplicación a desarrollar
- Alinear términos del Dominio
- Lenguajes de Dominio Específico
- Modelos de Dominio Específico
- MIT Process Handbook
- APQC Process Classification Framework

- Entradas
 - Definiciones, Motivadores de Negocio, Políticas y procedimientos
- Técnicas
 - Entrevistas, Encuestas
- Participantes
 - Analistas de requerimientos, Usuarios
- Salidas
 - Objetivos

Paso 2. Identificar Objetivos de Seguridad

- Es posible que diferentes usuarios de la organización (stakeholders) tengan diferentes objetivos de seguridad en mente
 - Director de recursos humanos
 - Director de tecnología
 - Director Financiero

- Paso 3. Desarrollar artefactos para soportar la definición de requerimientos de seguridad
 - Entradas
 - Casos de Abuso
 - Técnicas
 - Sesiones de Trabajo
 - Participantes
 - Ingenieros de Requerimientos
 - Salidas
 - Artefactos requeridos, casos de abuso

Paso 3. Desarrollar artefactos para soportar la definición de requerimientos de seguridad

- Se elaboran los formatos necesarios para guardar y evaluar toda la información requerida
 - Casos de abuso
 - Requerimientos
 - Tablas de evaluación

- Entradas
 - Casos de Abuso, Escenarios, Objetivos de Seguridad
- Técnicas
 - Modelaje de Riesgos
- Participantes
 - Ingenieros de Requerimientos, Expertos en Seguridad, Usuarios
- Salidas
 - Resultados de la evaluación de riesgos

Paso 4. Realizar Evaluación de Riesgos

- Participan expertos en riesgos con amplio conocimiento en la organización
- Se utilizan mecanismos de evaluación
 - Matrices de Riesgos
 - Escenarios de Calidad
 - Fuente
 - Estimulo
 - Artefactos
 - Ambiente
 - Respuesta
 - Punto de Sensibilidad
 - Riesgo / no-riesgo

Paso 5. Seleccionar técnica de descubrimiento

- Entradas
 - □ Técnicas candidatas, objetivos de negocio, conocimiento de la organización, ISO 15408 (Componentes, Familias, Clases)
- Técnicas
 - Sesiones de Trabajo
- Participantes
 - Ingenieros de requerimientos
- Salidas
 - Técnicas seleccionadas

- Paso 5. Seleccionar técnica de descubrimiento
 - Util cuando se tienen diferentes tipos de usuarios
 - Evitan problemas de comunicación

Paso 6. Descubrimiento de requerimientos de Seguridad

- Entradas
 - Artefactos, Resultados de análisis de riesgos, técnicas selecionadas, casos de abuso
- Técnicas
 - □ Entrevistas, Encuestas, Listas de chequeo (ISO-15408-2:2005)
- Participantes
 - Usuarios
- Salidas
 - Requerimientos de seguridad iniciales

Paso 6. Descubrimiento de requerimientos de Seguridad

 Se utiliza la o las técnicas seleccionadas para descubrir los requerimientos de seguridad

- Entradas
 - Requerimientos Iniciales, Arquitectura, ISO15408
- Técnicas
 - Sesiones de trabajo
- Participantes
 - Ingenieros de Requerimientos
- Salidas
 - Requerimientos Categorizados

Paso 7. Categorización de Requerimientos

 Se busca diferenciar los requerimientos escenciales de los deseables

- Entradas
 - Requerimientos Categorizados, Resultados de la evaluación de riesgos
- Técnicas
 - Métodos de priorización: Triage
- Participantes
 - Usuarios
- Salidas
 - Requerimientos priorizados

 Priorización basada en análisis costo/ benficio y viabilidad técnica

- Entradas
 - Requerimientos Priorizados
- Técnicas
 - Inspección de métodos: Revisión de Pares
- Participantes
 - Equipo de Inspección
- Salidas
 - Requerimientos Inspeccionados

- Se buscan defectos inyectados en esta fase
- Apoyo de los Usuarios y expertos en seguridad

Agenda

- Introducción
- □ ISO/IEC 15408-2:2005
- SQUARE
- Hoja de Trabajo

Bibliografía

- [1] Gary McGraw. "Software Security Building Security In" Addison-Wesley. 2005
- [2] Greg Hoglund, Gary McGraw, "Exploiting Software – How to Break Code" Addison-Wesley, 2004
- □ [11] ISO/IEC 15408-2:2005