abaisero.sty

Andrea Baisero

October 21, 2024

1 Options

Options are processes left-to-right. If no options are provided, or none are enabled by the end of the processing, then by default they are all considered to be enabled.

Option	Description
all	Enable all commands
(no-)math	Disable/enable mathematical commands
(no-)linalg	Disable/enable linear algebra commands
(no-)optim	Disable/enable optimization commands
(no-)stats	Disable/enable statistics commands
(no-)dists	Disable/enable distributions commands
(no-)ml	Disable/enable machine learning commands
(no-)rl	Disable/enable reinforcement learning commands
(no-)marl	Disable/enable multi-agent reinforcement learning commands
(no-)theorem	Disable/enable theorem commands
(no-)misc	Disable/enable miscellanea commands

2 Commands

Option [math]

Symbol	Command	Description	Example
N	\naturalset	the set of natural numbers	$\mathbb{N} \doteq \{1, 2, 3, \ldots\}$
$\mathbb Z$	\integerset	the set of integer numbers	$\mathbb{Z} \doteq \{0, 1, -1, 2, -3, \ldots\}$
\mathbb{R}	\realset	the set of real numbers	$\sqrt{2} \in \mathbb{R}$
*	\kstar	the Kleene star operator	$\mathcal{X}^* \doteq igcup_{k=0}^\infty \mathcal{X}^k$
+	\kplus	the Kleene plus operator	$\mathcal{X}^+ \doteq \bigcup_{k=1}^{\infty} \mathcal{X}^k$
\mathcal{P}	\powerset	power set	$\mathcal{P}(\mathcal{X}) \doteq \left\{ \hat{\mathcal{X}} \mid \hat{\mathcal{X}} \subseteq \mathcal{X} \right\}$
${\mathbb I}$	\Ind	Indicator function	$\Pr(x=0) = \mathbb{E}\left[\mathbb{I}\left[x=0\right]\right]$
$\llbracket \cdot rbracket$	\iverson{\cdot}	Iverson brackets	$[x \ge 0]$ maps x to binaries
sign	\sign		$x = \operatorname{sign} x \cdot x $
supp	\supp	support operator	$\operatorname{supp}(f) \doteq \{x \mid f(x) \neq 0\}$
softmax	\softmax	a.k.a. logsumexp, realsoftmax ¹	$\operatorname{softmax}(x_1, \dots, x_n) \doteq \log \sum_i \exp(x_i)$
$\operatorname{softmin}$	\softmin	_	$\operatorname{softmin}(x_1, \dots, x_n) \doteq -\log \sum_i \exp(-x_i)$
softargmax	\softargmax	a.k.a. softmax ¹	softargmax $(x_1, \dots, x_n)_i \doteq \frac{\exp(x_i)}{\sum_k \exp(x_k)}$

Option [linalg]

Symbol	Command	Description	Example
diag	\diag		
rank	\rank		
tr	\trace		$\operatorname{tr}(M) \doteq \sum_{i=1}^{n} M_{ii}$
col	\colspace		
ker	νll space	Nullspace (a.k.a kernel) of a linear mapping	
span	\spanspace		
Т	\ T	Transpose superscript	symmetric $M \implies M = M^{\top}$
-1	\I	Inverse superscript	invertible $M \implies MM^{-1} = I$
+	\PI	Pseudo-inverse superscript	$MM^+M=M$
$-\top$	\IT	Inverse transpose superscript	$M^{-\top} = (M^{-1})^{\top} = (M^{\top})^{-1}$
+T	\PIT	Pseudo-inverse transpose superscript	$M^{+\top} = (M^+)^{\hat{\top}} = (M^{\hat{\top}})^{\hat{+}}$

${\bf Option} \ [{\bf optim}]$

Symbol	Command	Description	Example
0	\argmax \argmin \opt	Optimality superscript	$\begin{aligned} & \operatorname{argmax}_{a} Q^{\pi}(s, a) \\ & \theta^{*} \doteq \operatorname{argmin}_{\theta} \mathcal{L}(\theta) \\ & \pi^{*}(s) = \operatorname{argmax}_{a} Q^{*}(s, a) \end{aligned}$
stop	\stopg	Stop-gradient operator	$\nabla_x \operatorname{stop}\left[f(x)\right] = 0$

¹The functions that in this document are called "softmax" and "softargmax" are poorly and inaccurately named in the broader math and ML fields (see https://en.wikipedia.org/wiki/Softmax_function and https://en.wikipedia.org/wiki/LogSumExp). Rather than stick to the more common naming conventions, I opt to rename the functions more accurately to appropriately reflect their actual properties. In any document where I would use these functions, I would need to define them anyway, so the risk of misunderstandings are minimal.

Option [stats]

Symbol	Command	Description	Example
	\indep	Independence	$X \perp Y \mid Z$
do	\causaldo	Pearl's do operator	$\Pr(Y \mid \operatorname{do}(X = x)) \neq \Pr(Y \mid X = s)$
\mathbb{C}	\Cov	Covariance	$\mathbb{C}(x,y) = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]$
H	\Ent	Entropy	$\mathbb{H}[x] = -\mathbb{E}\left[\log \Pr(x)\right]$
$\mathbb E$	\Exp	Expectation	$\mathbb{E}\left[f(x)\right] = \sum_{x} \Pr(x) f(x)$
KL	\KL	KL-divergence	$\mathrm{KL}\left(p\mid\mid q\right) \stackrel{=}{\doteq} \mathbb{E}_{x\sim p}\left[\log p(x) - \log q(x)\right]$
$\mathrm{D_{KL}}$	\DKL	KL-divergence (alternative)	• • • • • • • • • • • • • • • • • • • •
\mathbb{I}	\MI	Mutual Information	
\mathbb{B}	\Bias	Bias	$\mathbb{B}\left[\hat{f}(x)\right]$ is the bias of estimator \hat{f}
\mathbb{V}	\Var	Variance	$\mathbb{V}\left[\hat{f}(x)\right] = \mathbb{E}\left[\hat{f}(x)^2\right] - \mathbb{E}\left[\hat{f}(x)\right]^2$

Option [dists]

Symbol	Command	Description	Example
Categorical	\Categorical	Categorical	
Dirichlet	\Dirichlet	Dirichlet	
Geometric	\Geometric	Geometric	
Normal	\Normal	Normal	
Uniform	\Uniform	Uniform	

Option [ml]

Symbol	Command	Description	Example
\mathcal{D}	\data	Data set	$\mathcal{D} \doteq \{(x_i, y_i)\}_{i=1}^{N} \\ \mathcal{L}(\theta; x, y) = \frac{1}{2} y - f(x; \theta) ^2$
${\cal L}$	\loss	Loss function	$\mathcal{L}(\theta; x, y) = \frac{1}{2} y - f(x; \theta) ^2$
$_{ m nll}$	\nll	Neg-log-likelihood	$\operatorname{nll}(x) \doteq -\log \Pr(x)$
MSE	\mse	Mean-squared-error	
<i>~</i> →	\trainedto	Model is trained to approximate some value	$\hat{V}(s) \leadsto V^{\pi}(s) \stackrel{\text{hope}}{\Longrightarrow} \hat{V}(s) \approx V^{\pi}(s)$

Option [rl]

Symbol	Command	Description	Example
\mathcal{A}	\aset	Action set	
${\cal B}$	\bset	Belief set	
${\cal H}$	\hset	History set	
\mathcal{O}	\oset	Observation set	
${\cal R}$	\rset	Reward set	
<i>S</i>	\sset	State set	
ε	\nohistory	Empty history	
π	\policy	policy	
Q^{π}	\qpolicy	Q policy values	
Q^{μ}	\qpolicy[\mu]	Q policy values	
\hat{Q}	\qmodel	Parametric model	
V^{π}	\vpolicy	V policy values	
V^{μ}	\vpolicy[\mu]	V policy values	
\hat{V}	\vmodel	Parametric model	
A^{π}	\apolicy	A policy values	
A^{μ}	\apolicy[\mu]	A policy values	
\hat{A}	\amodel	Parametric model	
U^{π}	\upolicy	U policy values	
U^{μ}	\upolicy[\mu]	U policy values	
\hat{U}	\umodel	Parametric model	
B_{π}	\bpolicy	Policy Bellman operator	
B_{μ}	\bpolicy[\mu]	Policy Bellman operator	

Option [marl]

Symbol	Command	Description	Example
\overline{x}	\joint{x}	Joint formatting (redefinable)	
А О Н	\jaset \joset \jhset	Joint action set Joint observation set Joint history set	
$egin{array}{c} A, a \ O, o \ H, h \ b \end{array}$	\jA, \ja \jO, \jo \jH, \jh \jb	Joint action Joint observation Joint history Joint belief	$egin{aligned} A &= a \in \mathcal{A} \ O &= o \in \mathcal{O} \ H &= h \in \mathcal{H} \ b \colon \mathcal{H} ightarrow \Delta \mathcal{S} \end{aligned}$
π	\jpolicy	Joint policy	$\pi(\boldsymbol{h}, \boldsymbol{a}) \doteq \prod_i \pi_i(h_i, a_i)$
Q^{π} V^{π} A^{π} U^{π}	\jqpolicy \jvpolicy \japolicy \jupolicy	Q joint-policy values V joint-policy values A joint-policy values U joint-policy values	
$B_{\boldsymbol{\pi}}$ $B_{\boldsymbol{\mu}}$	\jbpolicy \jbpolicy[\joint\mu]	Joint policy Bellman operator Joint policy Bellman operator	
$f_{ m mix} \ f_{ m mono} \ f_{ m IGM}$	\fmix \fmono \figm	Mixing function Monotonic mixing function IGM mixing function	$f_{ ext{mix}}(oldsymbol{h},oldsymbol{a},Q_1(h_1),\ldots,Q_n(h_n)) \ f_{ ext{mono}}(u_1,\ldots,u_n) \ f_{ ext{IGM}}(oldsymbol{h},oldsymbol{a},Q_1(h_1),\ldots Q_n(h_n))$
$\hat{Q}_{ ext{VDN}} \ \hat{V}_{ ext{VDN}} \ \hat{A}_{ ext{VDN}}$	\qvdn \vvdn \avdn	VDN Q-model VDN V-model VDN A-model	
$\hat{Q}_{ ext{MIX}} \ \hat{V}_{ ext{MIX}} \ \hat{A}_{ ext{MIX}}$	\qmix \vmix \amix	QMIX Q-model QMIX V-model QMIX A-model	
$\hat{Q}_{ ext{TRAN}} \ \hat{V}_{ ext{TRAN}} \ \hat{A}_{ ext{TRAN}}$	\qtran \vtran \atran	QTRAN Q-model QTRAN V-model QTRAN A-model	
$\hat{Q}_{ ext{WMIX}}$ $\hat{V}_{ ext{WMIX}}$ $\hat{A}_{ ext{WMIX}}$	\wqmix \wvmix \wamix	WQMIX Q-model WQMIX V-model WQMIX A-model	
$\hat{Q}_{ ext{PLEX}} \ \hat{V}_{ ext{PLEX}} \ \hat{A}_{ ext{PLEX}}$	\qplex \vplex \aplex	QPLEX Q-model QPLEX V-model QPLEX A-model	
$\hat{Q}_{ ext{FIX}} \ \hat{V}_{ ext{FIX}} \ \hat{A}_{ ext{FIX}}$	\qfix \vfix \afix	QFIX Q-model QFIX V-model QFIX A-model	

Option [theorem]

Symbol	Command	Description	Example
	\begin{definition}, \end{definition} \begin{assumption}, \end{assumption} \begin{example}, \end{example}		
	<pre>\begin{axiom}, \end{axiom} \begin{conjecture}, \end{conjecture} \begin{proposition}, \end{proposition} \begin{lemma}, \end{lemma} \begin{theorem}, \end{theorem} \begin{corollary}, \end{corollary} \begin{generalization}, \end{generalization}</pre>		

Option [misc]

Symbol	Command	Description	Example
†	\D	Dagger superscript	
(k)	\iter{k}	Superscript indicating iteration	

Option [utils]

Symbol	Command	Description	Example
	\phantomeq	The width of an =, for alignment purposes (bounding box shown)	