Fixed point itercation

Lo Root Finding algorithm

The algorathm will continue to run until it

The Troot of a function, f(x) is the point where f(x) = 0 which means

the point where the function

intersects the x-axis.

(*) Given $f(x) = x^2 - 2x - 3$. Find the troot force this function?

$$f(x) = 0$$

$$x^{2} - 2x - 3 = 0$$

$$x^{2} - 3x + x - 3 = 0$$

$$x(x - 3) + 1(x - 3) = 0$$

$$(x + 1) (x - 3) = 0$$

$$x = -1, 3$$

He Hhy we use troot Finding algorithm?

For lowers - degree polynomials, we can easily find the troot by using the middle term breaking method. Howevers, for higher - degree polynomials, this process become quite complicated, that's why we use troot Finding algorithms to find the roots in such cases.

Fixed point Itercation

mathemetically manipulate this function we try to manipulate this function this f(x) = 0 to f(x) = 0 this f(x) = 0 the troot of f(x) if it follows the condition

Example: Given
$$f(x) = x^2 - 2x - 3$$

Construct three g(x) from f(x).

$$f(x) = 0$$

$$x^{2} - 2x - 3 = 0$$

$$x^{2} = 2x + 3$$

$$x = \sqrt{2x + 3}$$

$$\sqrt{3(x)} = \sqrt{2x + 3}$$

$$\chi^{2} - 2\chi - 3 = 0$$

$$\chi^{2} - \chi - \chi - 3 = 0$$

$$-\chi = -\chi^{2} + \chi + 3$$

$$\chi = \chi^{2} - \chi - 3$$

$$\frac{1}{2}(\chi) = \chi^{2} - \chi - 3$$

$$\chi^{2} - 2x - 3 = 0$$

$$2\chi^{2} - \chi^{2} - 2x - 3 = 0$$

$$2\chi^{2} - 2\chi = \chi^{2} + 3$$

$$\chi(2\chi - 2) = \chi^{2} + 3$$

$$\chi = \frac{\chi^{2} + 3}{2\chi - 2}$$

$$\frac{\chi}{3}(\chi) = \frac{\chi^{2} + 3}{2\chi - 2}$$

Example: show that
$$g_3(x) = \frac{\chi^2 + 3}{2\chi - 2}$$
 where $f(x) = \chi^2 - 2\chi - 3$.

* Step 1 do it tore sly

Trough worth

$$\frac{1}{3}(x) = \frac{x^2 + 9}{2x - 2}$$

$$2 = \frac{x^2 + 9}{2x - 2}$$

$$2 (2x - 2) = x^2 + 9$$

$$2x^2 - 2x = x^2 + 9$$

$$2x^2 - 2x - 2 = 0$$
Main Worth

$$x^2 - 2x - 3 = 0$$

$$x^2 - 2x - 2 =$$

Example: Now find the toot using fixed point Iteration. Initial point X = 0. [use 3 significant figure]

$$g_2(x) = x^2 - x - 3$$

$$g_3(\alpha) = \frac{\alpha^2 + 3}{2\alpha - 2}$$

we get it, Fitcom the pravious example

$$g_1(2.54) = 2.84$$

work with 3 significant figure

[It's very important to maintain the mentioned Significant tigute

Fixed point reach

Convergence

treached the

Toot

[we have

$$\frac{3}{3}(x) = x^{2} - x - 3$$

$$\frac{3}{2}(0) = -3.00$$

$$\frac{3}{2}(-3) = 9.00$$

$$\frac{3}{2}(9) = 69.0$$

$$\frac{3}{2}(69.0) = 4.69 \times 10^{3}$$
The Toot)

$$\frac{3}{3}(x) = \frac{x^{2} + 3}{2x - 2}$$

$$\frac{3}{3}(0) = -1.50$$

$$\frac{3}{3}(-1.05) = -1.05$$
The have function of two point reach of the initial point $x_{0} = 42$, then

$$\frac{3}{3}(x) = x$$
[Fixed point reach of two point reach of the initial point $x_{0} = 42$, then

$$\frac{3}{3}(407) = 3.19$$
Treached of $\frac{3}{3}(407) = 3.01$
The troot we converge to depend on the limit of the initial point $\frac{3}{3}(3.01) = 3.00$

The troot we converge to depend on the limit of the initial point $\frac{3}{3}(3.01) = 3.00$

The troot was converged to depend on the limit of the initial point $\frac{3}{3}(3.01) = 3.00$

choice of the initial point

* important x

8(x)=x

** The root we converge to depends on the choice of the initial point.