DWRITEN HOMEWORK#2

(-)	Given	only an	8-1 multipl	exer &	constan	ts Oa	nd 1
	E.		cuit that be				
- 1			es x, x, o.				The second of th

	X2	X,	Xo	Y	m2 + m5 + m6 + m7
0	O	0	0	0	$(x_2 \times , x_0) + (x_2 \times , x_0)$
	0	0	1	0	$(\times_2 \times_1 \times_0) + (\times_2 \times_1 \times$
2	.0	1			X ₂ X ₁ X ₀
3	0	1		0	PWP.
4		0	0	0	000
5		0			001
, 0		1	0	1)	D2
7					D4 - 100
					D5 H-101
					06
				4	D7
				3	GND

3) Use only 2-1 multiplexers to create 8-1 multiplexer.

u fast o run 4.) What are the propagation delays at ea. marked point? @ Point 6 = 6 ns @ Point 1 = 1ns @ Point 2 = Ins @ Point 7 = 4ns @ Point 8 = 9ns @ Point 3 = 1ns @ Point 9= 11ns @ Point 4= Ons @ Point 5 = Ons Point1 Point 4 Poin+ 11ns = worst rase path Poin+ 7 Point 3 5.) Given that ca. XOR gate has delay of Ans, ca. AND has delay of Bns, ea. OR gate has delay of Cns, what is propagation delay of worst case path in an N bit ripple carry adder? XOR Ans AND Bas 1-bit full adder = OR Cos tod = Ans. XOR + Bos ... AND + Cos ... OR * this is worst case path through a Full adder using ripple carry which goes through 3 gates to output. * Since an N-bit ripple carry adder is made up of IN) full adders, the worst case path propagation delay is: N(tpd) tod = N(Ans. XOR + Bas...AND + Cas...OR) = N. (Ans + Bns + Cns) A - (B+c) - n

ment multage (OV) = ground/GND C 1540 Millterm 1