Chapitre 3 : Probabilités conditionnelles et évènements indépendants

1-Rappels

1.1-Définitions

1.1.1-Expérience aléatoire

Expérience dont on connait les issues, mais pas laquelle sortira.

1.1.2-Univers

Ensemble de toutes les issues possibles. Noté $\boldsymbol{\Omega}$

1.1.3-Inter/Ou

La probabilité d'obtenir l'évènement A \underline{et} B se note $P(A \cap B)$. La probabilité d'obtenir l'évènement A \underline{ou} B se note $P(A \cup B)$.

1.2-Règle

La somme de toutes les probabilités d'une expérience est égale à 1.

2-Probabilité conditionnelle

2.1-Définition

 $P_A(B)$ est la probabilité que l'évènement B se réalise sachant que l'évènement A est déjà réalisé.

2.2-Formules

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$
 ou $P_B(A) = \frac{P(A \cap B)}{P(B)}$

$$P(A \cap B) = P(A) \times P_A(B) = P(B) \times P_B(A)$$

3-Arbre pondéré

3.1-Définition

C'est un arbre dans lequel on inscrit les probabilités de chaque évènements sur les branches.

3.2-Règles

- La somme des probabilités des branches issues d'un même noeud est 1.
- La probabilité de l'évènement indiqué au bout du chemin est égal aux produit des probabilités rencontrées sur les branches.

3.3-Modèle

3.3.1-Général

- disjointes deux à deux
- et dont la réunion est Ω

$P(A \cap B)$ 5.2-Propriétés

Si A_1 , A_2 , A_3 , A_n forment une partition de l'univers, B est un évènement tels que : $P(B) = P(B \cap A_1) + P(B \cap A_2) + P(B \cap A_3) + P(B \cap A_n)$

$$P(\overline{A} \cap B)$$

 $P(A \cap \overline{B})$

5.3-Exemple

On reprend l'arbre de 3.3.2.

$$P(\overline{A} \cap \overline{B}) \quad P(B) = P(A \cup B) + P(\overline{A} \cup B) = \frac{6}{56} + \frac{20}{56} = \frac{26}{56}$$

3.3.2-Exemple

Remarques

$$\frac{-\frac{3}{8} + \frac{5}{8} = \frac{8}{8} = 1}{-P(A \cap B) = \frac{3}{8} \cdot \frac{2}{7} = \frac{6}{56}}$$

4-évènements indépendants

A et B sont indépendants

—
$$\operatorname{si} P_A(B) = P(B)$$
 (ou $P_B(A) = P(A)$) ou — $\operatorname{si} P(A \cap B) = P(A) \times P(B)$

5-Probabilités totales

5.1-Définitions

Une partition de l'univers sont les parties de Ω qui sont