ITYM 2021 - Problem 2: Sequences of coprime integers

Presented by Philémon Varnet France

Definition : *n*-prime sequence

For a sequence of integers a_1, a_2, \ldots (finite or infinite), we say it is *n*-prime for some $n \in \mathbb{N}$ if all the terms

$$a_1 + n, a_2 + n, a_3 + n, \dots$$

are pairwise coprime.

Notations

- (a, b) the GCD of $a, b \in \mathbb{Z}$
- $\mathcal{P}(E) := \{ p \in \mathbb{P} \mid \exists a \in E, p \mid a \}$ the set of the prime divisors of a set E.
- we define, for an increasing sequence (a_i) of positive integers, $\mathbf{DP}(a_i) := \mathcal{P}(a_i a_j \mid i > j)$

Notations

- (a, b) the GCD of $a, b \in \mathbb{Z}$
- $\mathcal{P}(E) := \{ p \in \mathbb{P} \mid \exists a \in E, p \mid a \}$ the set of the prime divisors of a set E.
- we define, for an increasing sequence (a_i) of positive integers, $\mathbf{DP}(a_i) := \mathcal{P}(a_i a_j \mid i > j)$

Notations

- (a, b) the GCD of $a, b \in \mathbb{Z}$
- $\mathcal{P}(E) := \{ p \in \mathbb{P} \mid \exists a \in E, p \mid a \}$ the set of the prime divisors of a set E.
- we define, for an increasing sequence (a_i) of positive integers, $\mathbf{DP}(a_i) := \mathcal{P}(a_i a_j \mid i > j)$

Proposition 7: a positive and increasing sequence of integers $(a_i)_{1 \le i \le k}$ for $k \ge 2$ is *n*-prime for all $n \in \mathbb{N}$ iff k = 2 and $a_2 = a_1 + 1$.

4.a) 4/1

Invasivity: It is said that a sequence $(a_i)_{1 \leq i \leq k}$ of positive integers is *invasive* if there exists $p \in \mathbf{DP}(a_i)$ such that each element of \mathbb{Z}_p has at least 2 antecedents by $(a_i)_{1 \leq i \leq k}$.

Examples:

The sequence $(a_i)_{i \le 4} = (2, 5, 6, 9)$ gives $\mathbf{DP}(a_i) = \{2, 3, 7\}$ so it is invasive with p = 2 (2 odd and 2 even numbers).

The sequence (1,2,3) gives $\mathbf{DP}(a_i) = \{2\}$ so it is not invasive (only 1 even).

Invasivity: It is said that a sequence $(a_i)_{1 \leq i \leq k}$ of positive integers is *invasive* if there exists $p \in \mathbf{DP}(a_i)$ such that each element of \mathbb{Z}_p has at least 2 antecedents by $(a_i)_{1 \leq i \leq k}$.

Examples:

The sequence $(a_i)_{i \le 4} = (2, 5, 6, 9)$ gives $\mathbf{DP}(a_i) = \{2, 3, 7\}$ so it is invasive with p = 2 (2 odd and 2 even numbers).

The sequence (1,2,3) gives $\mathbf{DP}(a_i) = \{2\}$ so it is not invasive (only 1 even).

4.b) and c)

Invasivity: It is said that a sequence $(a_i)_{1 \leq i \leq k}$ of positive integers is *invasive* if there exists $p \in \mathbf{DP}(a_i)$ such that each element of \mathbb{Z}_p has at least 2 antecedents by $(a_i)_{1 \leq i \leq k}$.

Examples:

The sequence $(a_i)_{i \le 4} = (2, 5, 6, 9)$ gives $\mathbf{DP}(a_i) = \{2, 3, 7\}$ so it is invasive with p = 2 (2 odd and 2 even numbers).

The sequence (1,2,3) gives $\mathbf{DP}(a_i) = \{2\}$ so it is not invasive (only 1 even).

- **Proposition 8**: A finite increasing sequence of positive integers $(a_i)_{1 \le i \le k}$ isn't n-prime for all $n \in \mathbb{N}$ iff it's invasive.
- **Proposition 9**: A finite increasing sequence of positive integers is n-prime for infinitely many $n \in \mathbb{N}$ iff it isn't invasive.

4.b) and c)

Proposition 10: There isn't any infinite, increasing sequence of positive integers that is n-prime for all $n \in \mathbb{N}$.

Sketch of proof: such infinite sequence would contain a subsequence of arbitrary length n-prime for all n, contradicting prop. 5.

5.a) 7 /1

Proposition 10: There isn't any infinite, increasing sequence of positive integers that is n-prime for all $n \in \mathbb{N}$.

Sketch of proof: such infinite sequence would contain a subsequence of arbitrary length n-prime for all n, contradicting prop. 5.

5.a) 7/1

Now we look at sequences which are n-prime for infinitely many $n \in \mathbb{N}$.

We define:

- A-primality: A finite or infinite sequence of increasing integers is said to be A-prime for a subset A of \mathbb{N} when it is n-prime for all $n \in A$.
- A-coveringness: We say that a sequence $(a_i)_{1 \leqslant i \leqslant k}$ is A-covering if there exists $p \in \mathbb{P}$ such that for any $j \in \mathbb{N}$, there exists $n \in A$ such that $p \mid n + a_j$. It is thus said to be not A-covering if, for any $p \in \mathbb{P}$, there exists $j \in \mathbb{N}$ such that for any $n \in A$, $p \nmid a_j + n$.

5.b) 8 /17

Now we look at sequences which are n-prime for infinitely many $n \in \mathbb{N}$.

We define :

- A-primality : A finite or infinite sequence of increasing integers is said to be A-prime for a subset A of \mathbb{N} when it is n-prime for all $n \in A$.
- A-coveringness: We say that a sequence $(a_i)_{1 \leqslant i \leqslant k}$ is A-covering if there exists $p \in \mathbb{P}$ such that for any $j \in \mathbb{N}$, there exists $n \in A$ such that $p \mid n + a_j$. It is thus said to be not A-covering if, for any $p \in \mathbb{P}$, there exists $j \in \mathbb{N}$ such that for any $n \in A$, $p \nmid a_j + n$.

5.b) 8 /17

Now we look at sequences which are n-prime for infinitely many $n \in \mathbb{N}$.

We define:

- A-primality : A finite or infinite sequence of increasing integers is said to be A-prime for a subset A of \mathbb{N} when it is n-prime for all $n \in A$.
- A-coveringness: We say that a sequence $(a_i)_{1 \le i \le k}$ is A-covering if there exists $p \in \mathbb{P}$ such that for any $j \in \mathbb{N}$, there exists $n \in A$ such that $p \mid n + a_j$. It is thus said to be not A-covering if, for any $p \in \mathbb{P}$, there exists $j \in \mathbb{N}$ such that for any $n \in A$, $p \nmid a_i + n$.

5.b) 8 /17

Proposition 11: There exist infinitely many infinite, increasing sequences of positive integers that are n-prime for infinitely many $n \in \mathbb{N}$.

Sketch of proof: we use the following algorithm to generate $(a_i)_{i\in\mathbb{N}}$ and A (an infinite set) s.t. (a_i) is A-prime:

5.b) 9 /1

Proposition 11: There exist infinitely many infinite, increasing sequences of positive integers that are n-prime for infinitely many $n \in \mathbb{N}$.

Sketch of proof: we use the following algorithm to generate $(a_i)_{i\in\mathbb{N}}$ and A (an infinite set) s.t. (a_i) is A-prime:

5.b) 9/1

Algorithm 1 Generate $(a_i)_{i\in\mathbb{N}}$ and A

```
Generate (a_1, a_2, n) s.t. a_1 < a_2 is n-prime and not \{n\}-
covering (exists by Lemma 5)
A_1 \leftarrow \{n\}
k \leftarrow 2
loop
   Generate a_{k+1} s.t. (a_i)_{i \le k+1} is A_k-prime (exists by Lemma
   3)
   Generate A_{k+1} s.t. (a_i)_{i \le k+1} is A_{k+1}-prime, not A_{k+1}-
   covering and |A_{k+1}| = k+1 (exists by Lemma 4)
   k \leftarrow k + 1
end loop
A \leftarrow \bigcup_{k \in \mathbb{N}} A_k
```

5.b)

Partial answer: any infinite sequence containing a finite not n-prime for all n sequence is not n-prime for all n too. However, it is not a necessary criteria:

Proposition 12: There exist infinitely many increasing sequence of positive integers $(a_i)_{i\in\mathbb{N}}$ non n-prime for all $n\in\mathbb{N}$ such that any finite subsequence $(b_i)_{i\in I}$ (with finite $I\subseteq\mathbb{N}$) of $(a_i)_{i\in\mathbb{N}}$ is n-prime for some $n\in\mathbb{N}$.

Sketch of proof: we prove that all the sequences of the form $(p_i + a)_{i \in \mathbb{N}}$ where $a \in \mathbb{N}$ fit.

5.c) 11 /1

Partial answer : any infinite sequence containing a finite not n-prime for all n sequence is not n-prime for all n too. However, it is not a necessary criteria :

Proposition 12: There exist infinitely many increasing sequence of positive integers $(a_i)_{i\in\mathbb{N}}$ non n-prime for all $n\in\mathbb{N}$ such that any finite subsequence $(b_i)_{i\in I}$ (with finite $I\subseteq\mathbb{N}$) of $(a_i)_{i\in\mathbb{N}}$ is n-prime for some $n\in\mathbb{N}$.

Sketch of proof: we prove that all the sequences of the form $(p_i + a)_{i \in \mathbb{N}}$ where $a \in \mathbb{N}$ fit.

5.c) 11 /17

Partial answer : any infinite sequence containing a finite not n-prime for all n sequence is not n-prime for all n too. However, it is not a necessary criteria :

Proposition 12: There exist infinitely many increasing sequence of positive integers $(a_i)_{i\in\mathbb{N}}$ non n-prime for all $n\in\mathbb{N}$ such that any finite subsequence $(b_i)_{i\in I}$ (with finite $I\subseteq\mathbb{N}$) of $(a_i)_{i\in\mathbb{N}}$ is n-prime for some $n\in\mathbb{N}$.

Sketch of proof: we prove that all the sequences of the form $(p_i + a)_{i \in \mathbb{N}}$ where $a \in \mathbb{N}$ fit.

5.c) 11 /17

Most of the previous results does not generalize with P(n)-prime sequences.

For example, if $P(X) = X^2 - X$ and a sequence of even integers, then it is not P(n)-prime for all n.

In the other way, for example if for all $p \in \mathbf{DP}(a_i)$ and all $i \in [1, k]$, $a_i \not\equiv 0 \pmod{p}$ and $P(X) = \prod_{p \in \mathbf{DP}(a_i)} (X^p - X)$, then the sequence is n-prime for all n.

6. 12 /17

Most of the previous results does not generalize with P(n)-prime sequences.

For example, if $P(X) = X^2 - X$ and a sequence of even integers, then it is not P(n)-prime for all n.

In the other way, for example if for all $p \in \mathbf{DP}(a_i)$ and all $i \in [1, k]$, $a_i \not\equiv 0 \pmod{p}$ and $P(X) = \prod_{p \in \mathbf{DP}(a_i)} (X^p - X)$, then the sequence is n-prime for all n.

6. 12 /17

Most of the previous results does not generalize with P(n)-prime sequences.

For example, if $P(X) = X^2 - X$ and a sequence of even integers, then it is not P(n)-prime for all n.

In the other way, for example if for all $p \in \mathbf{DP}(a_i)$ and all $i \in [1, k]$, $a_i \not\equiv 0 \pmod{p}$ and $P(X) = \prod_{p \in \mathbf{DP}(a_i)} (X^p - X)$, then the sequence is n-prime for all n.

6. 12 /17

But some results generalize!

P-invasivity: We say that a sequence $(a_i)_{1 \leqslant i \leqslant k}$ is P-invasive if there exists $p \in \mathbf{DP}(a_i)$ such that each element of $P(\mathbb{Z}_p)$ has at least 2 antecedents by $(a_i)_{1 \leqslant i \leqslant k}$.

Proposition 13: An increasing sequence of positive integers $(a_i)_{1 \leqslant i \leqslant k}$ isn't *n*-prime for all $n \in \mathbb{N}$ iff it's *P*-invasive.

6. 13 /17

But some results generalize!

P-invasivity: We say that a sequence $(a_i)_{1 \leqslant i \leqslant k}$ is P-invasive if there exists $p \in \mathbf{DP}(a_i)$ such that each element of $P(\mathbb{Z}_p)$ has at least 2 antecedents by $(a_i)_{1 \leqslant i \leqslant k}$.

Proposition 13: An increasing sequence of positive integers $(a_i)_{1 \le i \le k}$ isn't *n*-prime for all $n \in \mathbb{N}$ iff it's P-invasive.

6. 13 /17

But some results generalize!

P-invasivity: We say that a sequence $(a_i)_{1\leqslant i\leqslant k}$ is P-invasive if there exists $p\in \mathbf{DP}(a_i)$ such that each element of $P(\mathbb{Z}_p)$ has at least 2 antecedents by $(a_i)_{1\leqslant i\leqslant k}$.

Proposition 13: An increasing sequence of positive integers $(a_i)_{1\leqslant i\leqslant k}$ isn't *n*-prime for all $n\in\mathbb{N}$ iff it's P-invasive.

6. 13 /17

We are now interested in the case where $P = X^k$ for some integer $k \geqslant 1$.

For some prime number p, a kwown arithmetical result is that $\mathbb{Z}_p \to \mathbb{Z}_p : x \mapsto x^k$ is bijective iff (p-1,k)=1. This leads to the following :

Proposition 14: If $P(X) = X^k$ and for all $p \in \mathbf{DP}(a_i)$, (p-1,k)=1, then $(a_i)_{i \leq k}$ is n^k -prime for some $n \in \mathbb{N}$ iff it is r-prime for some $r \in \mathbb{N}$.

We are now interested in the case where $P = X^k$ for some integer $k \geqslant 1$.

For some prime number p, a kwown arithmetical result is that $\mathbb{Z}_p \to \mathbb{Z}_p : x \mapsto x^k$ is bijective iff (p-1,k)=1. This leads to the following :

Proposition 14: If $P(X) = X^k$ and for all $p \in \mathbf{DP}(a_i)$, (p-1,k)=1, then $(a_i)_{i \leq k}$ is n^k -prime for some $n \in \mathbb{N}$ iff it is r-prime for some $r \in \mathbb{N}$.

We are now interested in the case where $P = X^k$ for some integer $k \geqslant 1$.

For some prime number p, a kwown arithmetical result is that $\mathbb{Z}_p \to \mathbb{Z}_p : x \mapsto x^k$ is bijective iff (p-1,k)=1. This leads to the following :

Proposition 14: If $P(X) = X^k$ and for all $p \in \mathbf{DP}(a_i)$, (p-1,k)=1, then $(a_i)_{i \leq k}$ is n^k -prime for some $n \in \mathbb{N}$ iff it is r-prime for some $r \in \mathbb{N}$.

Let's remark we just use the fact that $\mathbb{Z}_p \to \mathbb{Z}_p : x \mapsto P(x)$ is bijective for all $p \in \mathbf{DP}(a_i)$.

We then define

PP: Let p a prime number. We say that a polynomial with integers coefficients is a *Permutation Polynomial* (**PP**) of \mathbb{Z}_p if $x \mapsto P(x)$ is a bijection of \mathbb{Z}_p .

6. 15 /17

Let's remark we just use the fact that $\mathbb{Z}_p \to \mathbb{Z}_p : x \mapsto P(x)$ is bijective for all $p \in \mathbf{DP}(a_i)$.

We then define:

PP: Let p a prime number. We say that a polynomial with integers coefficients is a *Permutation Polynomial* (**PP**) of \mathbb{Z}_p if $x \mapsto P(x)$ is a bijection of \mathbb{Z}_p .

6. 15 /17

Let's remark we just use the fact that $\mathbb{Z}_p \to \mathbb{Z}_p : x \mapsto P(x)$ is bijective for all $p \in \mathbf{DP}(a_i)$.

We then define:

PP: Let p a prime number. We say that a polynomial with integers coefficients is a *Permutation Polynomial* (**PP**) of \mathbb{Z}_p if $x \mapsto P(x)$ is a bijection of \mathbb{Z}_p .

6. 15 /17

Proposition 15: Let $(a_i)_{i \leq k}$ a finite increasing sequence of positive integers. If P is a **PP** of \mathbb{Z}_p for all $p \in \mathbf{DP}(a_i)$, is P(n)-prime for a certain $n \in \mathbb{N}$ iff it is r-prime for some $r \in \mathbb{N}$.

Proposition 16 (Hermite's Criterion) : A polynomial with integers coefficients P is a **PP** of \mathbb{Z}_p for some $p \in \mathbb{P}$ iff :

- ightharpoonup P has exactly one root in \mathbb{Z}_p
- ▶ For each $t \in \mathbb{N}$ such that $t \leqslant q-2$ and $p \nmid t$, the reduction of $P(X)^t \mod X^p X$ has degree $\leqslant p-2$.

6. 16 /17

Proposition 15: Let $(a_i)_{i \leq k}$ a finite increasing sequence of positive integers. If P is a **PP** of \mathbb{Z}_p for all $p \in \mathbf{DP}(a_i)$, is P(n)-prime for a certain $n \in \mathbb{N}$ iff it is r-prime for some $r \in \mathbb{N}$.

Proposition 16 (Hermite's Criterion) : A polynomial with integers coefficients P is a **PP** of \mathbb{Z}_p for some $p \in \mathbb{P}$ iff :

- ▶ P has exactly one root in \mathbb{Z}_p
- ▶ For each $t \in \mathbb{N}$ such that $t \leqslant q-2$ and $p \nmid t$, the reduction of $P(X)^t \mod X^p X$ has degree $\leqslant p-2$.

Thank for listening!

6.

17 /17

Proposition 1: Let $a_1 < a_2$ be a sequence of two positive integers. There are infinitely many $n \in \mathbb{N}$ for which the sequence is n-prime.

Sketch of proof: n of the form $\ell(a_2 - a_1) - a_1 + 1$ work. **Example**: with $a_1 = 3$, $a_2 = 12$, we take n of the form $9\ell - 2$. Indeed,

$$1 = (10, 19) = (19, 28) = (28, 37) = (37, 46) = \dots$$

1.a)

Proposition 1: Let $a_1 < a_2$ be a sequence of two positive integers. There are infinitely many $n \in \mathbb{N}$ for which the sequence is n-prime.

Sketch of proof : *n* of the form $\ell(a_2 - a_1) - a_1 + 1$ work.

Example: with $a_1 = 3$, $a_2 = 12$, we take n of the form $9\ell - 2$. Indeed,

$$1 = (10, 19) = (19, 28) = (28, 37) = (37, 46) = \dots$$

1.a)

Proposition 1: Let $a_1 < a_2$ be a sequence of two positive integers. There are infinitely many $n \in \mathbb{N}$ for which the sequence is n-prime.

Sketch of proof : *n* of the form $\ell(a_2 - a_1) - a_1 + 1$ work.

Example: with $a_1 = 3$, $a_2 = 12$, we take n of the form $9\ell - 2$. Indeed,

$$1 = (10, 19) = (19, 28) = (28, 37) = (37, 46) = \dots$$

1.a)

Proposition 2: Let $a_1 < a_2$ be a sequence of two positive integers. Such sequence is *n*-prime for all $n \in \mathbb{N}$ iff $a_2 = a_1 + 1$.

Sketch of proof: If $a_2 > a_1 + 1$, if p is a prime divisor of $a_2 - a_1$, $n \equiv -a_1 \pmod{p}$ contradicts n-primality. Otherwise $a_1 + n$ and $a_2 + n$ are consecutive so coprime.

1.b)

Proposition 2: Let $a_1 < a_2$ be a sequence of two positive integers. Such sequence is *n*-prime for all $n \in \mathbb{N}$ iff $a_2 = a_1 + 1$.

Sketch of proof: If $a_2 > a_1 + 1$, if p is a prime divisor of $a_2 - a_1$, $n \equiv -a_1 \pmod{p}$ contradicts n-primality. Otherwise $a_1 + n$ and $a_2 + n$ are consecutive so coprime.

1.b)

■ **Proposition 3**: Let $a_1 < a_2 < a_3$ be a sequence of three positive integers. There are infinitely many $n \in \mathbb{N}$ for which the sequence is n-prime.

Sketch of proof: We choose appropriate n via CRT.

■ **Proposition 4**: There are no sequence of positive integers $a_1 < a_2 < a_3$ *n*-prime for all $n \in \mathbb{N}$.

Sketch of proof: if it is *n*-prime for all *n*, it would be the same for its 3 subsequences which yields to a contradiction by prop. 2.

Proposition 5: For $k \ge 4$, there are no sequence of positive integers $(a_i)_{1 \le i \le k}$ *n*-prime for all $n \in \mathbb{N}$.

Sketch of proof: direct corollary of prop. 4.

■ **Proposition 6**: For $k \ge 4$, there exists sequences of positive integers $(a_i)_{1 \le i \le k}$ which arert n-prime for all $n \in \mathbb{N}$.

Sketch of proof: the sequence defined by $a_k = k$ works by parity.

Proposition 5: For $k \ge 4$, there are no sequence of positive integers $(a_i)_{1 \le i \le k}$ *n*-prime for all $n \in \mathbb{N}$.

Sketch of proof: direct corollary of prop. 4.

■ **Proposition 6**: For $k \ge 4$, there exists sequences of positive integers $(a_i)_{1 \le i \le k}$ which arert n-prime for all $n \in \mathbb{N}$.

Sketch of proof: the sequence defined by $a_k = k$ works by parity.

Proposition 5: For $k \ge 4$, there are no sequence of positive integers $(a_i)_{1 \le i \le k}$ *n*-prime for all $n \in \mathbb{N}$.

Sketch of proof: direct corollary of prop. 4.

■ **Proposition 6**: For $k \ge 4$, there exists sequences of positive integers $(a_i)_{1 \le i \le k}$ which arert n-prime for all $n \in \mathbb{N}$.

Sketch of proof: the sequence defined by $a_k = k$ works by parity.

Proposition 5: For $k \ge 4$, there are no sequence of positive integers $(a_i)_{1 \le i \le k}$ *n*-prime for all $n \in \mathbb{N}$.

Sketch of proof: direct corollary of prop. 4.

■ **Proposition 6**: For $k \ge 4$, there exists sequences of positive integers $(a_i)_{1 \le i \le k}$ which arert n-prime for all $n \in \mathbb{N}$.

Sketch of proof: the sequence defined by $a_k = k$ works by parity.

the sequence of odd squares is non n-prime for all n

Dirichlet's theorem on arithmetic progression: Let m, n coprime positive integers. Then there exist infinitely primes p s.t. $p \equiv m \pmod{n}$.

Law of quadratic reciprocity: Let p, q distinct odd primes. We define the *Legendre symbol* as:

$$\left(rac{a}{q}
ight) = egin{cases} 1 & ext{if } n^2 \equiv q \mod p ext{ for some integer } n \ -1 & ext{otherwise} \end{cases}$$

Then:

$$\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) \left(-1\right)^{\frac{(p-1)(q-1)}{4}}$$

the sequence of odd squares is non *n*-prime for all *n*

Claim: The sequence of odd squares is non *n*-prime for all $n \in \mathbb{N}$.

Proof: Let $n \in \mathbb{N}$, and a prime $p \equiv 1 \pmod{8n}$ (which exist since 1 and 8n are coprime). We set $n = a^2m$ where $m = \prod q_i$ is squarefree. Then, by Law of quadratic reciprocity and properties of Legendre symbol:

$$\left(\frac{-n}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{a^2}{p}\right) \left(\frac{2}{p}\right)^{\varepsilon} \prod \left(\frac{q_i}{p}\right)$$
$$= (-1)^{\frac{p-1}{2}} 1^{\varepsilon} \prod \left(\frac{p}{q_i}\right) (-1)^{\frac{(p-1)(q_i-1)}{4}} = 1$$

the sequence of odd squares is non n-prime for all n

So there exist $a \in \mathbb{N}$ such that $a^2 \equiv -n \pmod{p}$. We can suppose a odd since if a is even, a+p is odd. So a^2 is odd, hence a^2 is in the sequence of odd squares, and $(a+2p)^2$ too, but $a^2+n \equiv (a+2p)^2+n \equiv 0 \pmod{p}$, so $p \mid (a^2+n,(a+2p)^2+n)$ which is then not 1, so the sequence is not n-prime!

finite P(n)-prime sequences

Lemma 6*: If a finite sequence of positive integers is P(n)-prime for some $n \in \mathbb{N}$, then it is r-prime for some $n \in \mathbb{N}$.

Lemma 7*: Let be an integer $k \ge 2$ and $(a_i)_{i \le k}$ an increasing finite sequence of positive integers P(m)-prime for some $m \in \mathbb{N}$. Then it is P(n)-prime for infinitely many $n \in \mathbb{N}$.

finite P(n)-prime sequences

Lemma 6* : If a finite sequence of positive integers is P(n)-prime for some $n \in \mathbb{N}$, then it is r-prime for some $n \in \mathbb{N}$.

Lemma 7*: Let be an integer $k \ge 2$ and $(a_i)_{i \le k}$ an increasing finite sequence of positive integers P(m)-prime for some $m \in \mathbb{N}$. Then it is P(n)-prime for infinitely many $n \in \mathbb{N}$.