Privacy Preserving Image Registration

Riccardo Taiello

Supervisors: Marco Lorenzi, Melek Önen, Olivier Humbert

> Epione Team, Inria Sophia Antipolis Eurecom, Sophia Antipolis

Introduction

Image registration goal: spatially align imaging features between two or multiple images.

Registration...

Image Registration

Problem

Privacy Concerns

Privacy Concerns

Background

Optimization problem - IR [Baker et al.]

$$ext{SSD}(I, J, \mathbf{p}) = rg \min_{\mathbf{p}} \sum_{i,j} \left[\left(I(W_{\mathbf{p}}(i,j)) \right) - J(i,j) \right]^2$$

$$\Delta \mathbf{p} \, = \, H^{-1} \cdot \, \, \sum_{i,j} \, S(i,j) \, \cdot \, \left(I(\mathbf{W_p}(i,j)) \, - \, J(i,j)
ight)$$

$$S(i,j) = \nabla I(i,j) \frac{\partial \mathbf{W_p}(i,j)}{\partial \mathbf{p}}$$

$$H = \sum_{i,j} \left(
abla I(i,j) \, rac{\partial \, \mathbf{W_p}(i,j)}{\partial \mathbf{p}}
ight)^T \left(
abla I(i,j) \, rac{\partial \, \mathbf{W_p}(i,j)}{\partial \mathbf{p}}
ight)$$

Method

Privacy Preserving Image Registration (PPIR)[Taiello et al.]

$$R = \sum_{i,j}^{\mathsf{Researcher\,(party}_1)} S(i,j) \cdot oxedsymbol{J}(i,j)$$

In a vectorized form:

Researcher (party₁) Hospital (party₂)
$$R = S^T \cdot J$$

Privacy Preserving Techniques

Multi Party Computation (MPC)

Fully Homomorphic Encryption (FHE)

PPIR protocols [Taiello et al.]

Multi Party Computation (MPC)

Fully Homomorphic Encryption (FHE)

Optimization

For MPC & FHE:

Large images, solutions:

- Uniformly Random Selection (URS)[Mattes et al.]
- Gradient Magnitude Sampling (GMS)[Viola et al.]

For FHE:

We propose to partition the image J into K sub-arrays, and the matrix S into K submatrices.

Moving Image I

Moving Image ${\cal I}$

Template Image ${\cal J}$

Moving Image I

Template Image ${\cal J}$

Transformed with Clear + URS

Moving Image ${\cal I}$

Template Image ${\cal J}$

Transformed with Clear + URS

Transformed with SPDZ + URS

Moving Image I

Template Image ${\cal J}$

Transformed with Clear + URS

Transformed with SPDZ + URS Transformed with CKKS + URS

Conclusions

PPIR a novel framework to allow image registration when images are confidential and **cannot be disclosed in clear**.

Future extensions:

- 3D medical image data;
- multimodal image registration problem.

References

Taiello, R., Önen, M., Humbert, O., Lorenzi, M.: Privacy Preserving Image Registration [ACCEPTED MICCAI 2022] https://arxiv.org/abs/2205.10120

Thanks!

Result - Linear Transformation

	Affine	Registration met	rics		
Solution	Intensity Error (SSD)	Num. Interation	Displacement RMSE	CLEAR vs PPIR (mm)	
Clear	4.31 ± 0.0	100 ± 0.0	-		
SPDZ	4.31 ± 0.0	91.8 ± 0.42	5.91 ± 0.14		
CKKS	X	X	×		
Clear + URS	4.32 ± 0.0	99.70 ± 4.25	-		
SPDZ + URS	4.31 ± 0.0	103.60 ± 4.67	12.17 ± 13.35		
CKKS $(D = 128) + URS$	4.48 ± 0.10	100.67 ± 3.32	19.54 ± 8.60		
Clear + GMS	4.31 ± 0.0	106 ± 0.0	-		
SPDZ + GMS	4.32 ± 0.0	101.10 ± 5.38	5.39 ± 2.29		
CKKS $(D = 128) + GMS$	4.36 ± 0.05	99 ± 4.27	13.64 ± 4.20		
	E	fficiency metrics			
Solution	Time party ₁ (s)	Time party ₂ (s)	Comm. party1 (MB)	Comm. party2 (MB)	
Clear	0.0	0.0	-	-	
SPDZ	0.73	0.73	14.15	14.15	
CKKS	X	x	X	X	
Clear + URS	0.0	0.0		-	
SPDZ + URS	0.06	0.06	0.52	0.52	
CKKS $(D = 128) + URS$	0.19	0.0	0.06	0.46f	
Clear + GMS	0.0	0.0		-	
SPDZ + GMS	0.07	0.07	0.54	0.54	
CKKS $(D = 128) + GMS$	0.19	0.0	0.06	0.46	

Result - Non Linear Transformation

	C	ubic splines Regi	stration metrics		
Solution	Intensity Error (SSD)	Num. Interation	Displacement RMSE	CLEAR vs PPIR (mm)	
CLEAR	6.73 ± 0.0	413 ± 0.0	-		
SPDZ	6.73 ± 0.1	413.70 ± 0.48	1.34 ± 0.08		
CKKS	6.40 ± 0.07	183 ± 17.19	1.15 ± 0.27		
		Cubic splines Effi	ciency metrics		
Solution	Time party ₁ (s)	Time party ₂ (s)	Comm. party1 (MB)	Comm. party ₂ (MB)	
CLEAR	0.0	0.22 ± 0.02	-	-	
SPDZ	0.53	0.53	16.32	20.12	
CKKS	0.17	0.17	0.06	0.07	

