Universidade Federal de Santa Catarina Prof. Rafael Heleno Campos

rafaelcampos.fsc@gmail.com - tinyurl.com/profrafaelcampos Lista de exercícios 4 - Termodinâmica

Dicas para resolver a lista: Use sempre o número apropriado de algarismos significativos para as respostas, uniformize as unidades de acordo com o S.I. (m, kg, s, K,...), use $g = 9,80m/s^2$, $c_{agua} = 4,19J/g \cdot K$ e bons estudos!

- 1. Quais são as temperaturas de fusão do gelo e de ebulição da água nas escalas Kelvin e Fahrenheit?
- 2. Quanto de calor é necessário para aquecer um copo de água $(180cm^3)$ de $20^{\circ}C$ a $90^{\circ}C$? Expresse o resultado em calorias e em joules.
- 3. Um bloco de cobre com massa de 3,00kg, inicialmente à temperatura de $90^{\circ}C$, é colocado em um recipiente contendo 1,00 litro de água cuja temperatura inicial é $20^{\circ}C$. A capacidade térmica do recipiente é desprezível, em comparação com a da água, e a do cobre é $c_{cobre} = 0,385J/g \cdot K$. A que temperatura o sistema água bloco irá se estabilizar?
- 4. Quanto de energia se gasta em um banho. Em um banho que leve 10 minutos, gastam-se cerca de 40 litros de água. suponha que a água seja aquecida de uma temperatura inicial de $24^{\circ}C$ à uma temperatura final de $42^{\circ}C$. Quantos joules são consumidos nesse banho?
- 5. Isolamento de geladeiras. Os isolantes térmicos mais usados hoje em geladeiras e freezers são espumas rígidas de poliuretano. Sua condutividade térmica típica é $\kappa = 0.017W/(m \cdot K)$. Considere uma geladeira cujas paredes tem uma área total de $5, 2m^2$. Dentro da parede há uma camada de espuma de poliuretano com espessura de 20mm. As temperaturas interna e externa da geladeira são, respectivamente, $5^{\circ}C$ e $26^{\circ}C$. Qual é a taxa de calor que penetra na geladeira?
- 6. Uma janela de vidro tem área de $2,0m^2$, espessura de 3,0mm e o vidro tem condutividade térmica de $0,80W/m \cdot K$ As temperaturas no exterior e no interior da casa são, respectivamente $12,0^{\circ}C$ e $20,0^{\circ}C$. Quantos joules de calor se perdem por segundo através da janela?
- 7. Uma piscina olímpica contém $1200m^3$ de água. Quanto de energia é necessário para que se aqueça sua água de $18^{o}C$ até $26^{o}C$?
- 8. 400g de alumínio, cujo calor específico é $0.987J/(g \cdot K)$ inicialmente a $35.0^{\circ}C$ são imersos em 500g de água, dentro de uma caixa térmica cuja capacidade térmica é muito pequena. A temperatura inicial da água é $10.0^{\circ}C$. Qual é a temperatura do sistema ao atingir o equilíbrio?
- 9. Uma rede de transmissão elétrica usa cabos de alumínio, com $\alpha = 2, 4 \times 10^{-5} K^{-1}$. Estando as torres separadas pela distância de 200m, qual é a variação do comprimento do cabo que liga dois postes entre um dia de inverno em que a temperatura atinge $-20^{\circ}C$ e um dia de verão, no qual a temperatura do cabo exposto ao Sol atinge $50^{\circ}C$?
- 10. Uma garrafa de vidro aberta está completamente prenchida com álcool. O volume interno dela é 1L à $0^{o}C$. Quanto de álcool transborda quando a garrafa é aquecida de $0^{o}C$ à $30^{o}C$? (Utilize $\beta_{vidro} = 2,7 \times 10^{-5}K^{-1}$ e $\beta_{alcool} = 1,1 \times 10^{-3}K^{-1}$.)
- 11. Um pistão de aço está emperrado dentro de um cilindro de latão. Para desemperrá-lo, o sistema deve ser resfriado ou aquecido?
- 12. Quanto calor é necessário para fundir 300g de cobre, partindo de uma tempertura de $25,0^{\circ}C$? (Busque as informações necessárias.)
- 13. Quanto calor é necessário para passar 2,00kg de gelo à $-20,0^{\circ}C$ para vapor de água à $120,0^{\circ}C$? Esse calor é capaz de aquecer quantos kilogramas de cobre sólido em $20,0^{\circ}C$? (Busque as informações necessárias, mas considere o calor específico da água constante em todos os 3 estados possíveis.)
- 14. Desafio: Em um aquecedor solar a radiação do Sol é absorvida pela água que circula em tubos em um coletor situado no telhado. A radiação solar penetra no coletor através de uma cobertura transparente e aquece a água dos tubos. Essa água é bombeada para um tanque de armazenamento. Suponha que a eficiência global do sistema seja 20% (ou seja, 80% da energia solar incidente são perdidos). Que área de coleta é necessária para aumentar a temperatura de 200L de água de $20^{\circ}C$

para $40^{\circ}C$ em 6 horas se a intensidade da luz solar incidente é $850W/m^2$?

Parte 2 - P3

- 15. Um gás em uma câmara fechada passa pelo ciclo mostrado no diagrama p-V da Figura 1. A escala do eixo horizontal é definida por $V_s=4,0m^3$. Calcule a energia líquida adicionada ao sistema em forma de calor durante um ciclo completo.
- 16. Um trabalho de 200J é realizado sobre um sistema e uma quantidade de calor de 70,0cal é removida do sistema. Qual é o valor (incluindo o sinal)
 - (a) de W?
 - (b) de Q?
 - (c) de ΔU ?
- 17. Na Figura 2 uma amostra de gás se expande de V_0 para $4,0V_0$ enquanto a pressão diminui de P_0 para $P_0/4,0$. Com $V_0=1,0m^3$ e $P_0=40Pa$, qual é o trabalho realizado pelo gás se a pressão varia com o volume de acordo
 - (a) com a trajetória A.
 - (b) com a trajetória B.
 - (c) com a trajetória C.
- 18. Calcule o trabalho realizado por um gás ideal contendo 1 mol de partículas que dobra o seu volume em um processo isotérmico à temperatura de 300K.
- 19. Um cilindro com um pistão móvel contém 12,0g de oxigênio à temperatura de 300K e à pressão de 1,00atm. O pistão é puxado lentamente até que a pressão seja reduzida a metade do valor inicial, mantida constante a temperatura. Qual é o trabalho realizado pelo gás nesse processo?
- 20. O calor latente de fusão da água é $3, 3 \times 10^5 J/kg$. Calcule aproximadamente a diferença entre as energias internas de 1,0kg de gelo a $0,0^oC$ e 1,0kg de vapor de água a 100^oC , ambos a pressão atmosférica. (Use o volume do vapor de água como $1,671m^3$ e o do gelo como 1,1L.)

Figura 1.

Figura 2.

Formulário

Trabalho à pressão constante: $W = P\Delta V$

Trabalho de um gás ideal em um processo isotérmico: $W = nRTln(V_f/V_i)$

Respostas

1. $273, 15K \text{ e } 375, 15K; 32^{o}F \text{ e } 212^{o}F$

2. 12,6kcal ou $5, 3 \times 10^4 J$

3. $3\bar{1}0K$

4. $3{,}0MJ$ ou $3{,}0 \times 10^6J$

5. 93W

 $6.~4\bar{3}00J/s$

7. $10 \times 10^{10} J$

8. 287K

9. 0,34m

 $10. \ 32cm^3$

11. Aquecido

12. $1,9 \times 10^5 J$

13. $6,35\times 10^6 J,\ 16\bar{5}0kg$ (A água é um monstro ladrão de calor!)

14. $4,6m^2$

Referências

CHAVES, ALAOR - Física Básica: Gravitação, Fluidos, Ondas, Termodinâmica HALLIDAY; RESNICK; WALKER, JEARL - Fundamentos de Física - Volume 2: Gravitação, Ondas e Termodinâmica