

Digital Signal Processing

Module 2: Discrete-time signals

Video Introduction

Module Overview:

- ▶ Module 2.1: discrete-time signals and operators
- ▶ Module 2.2: the discrete-time complex exponential
- ▶ Module 2.3: the Karplus-Strong algorithm

2

Digital Signal Processing

Module 2.1: Discrete-time signals

Overview:

- ▶ discrete-time signals
- signal classes
- elementary operators
- ▶ shifts
- energy and power

Discrete-time signals have a long tradition...

Meteorology (limnology): the floods of the Nile

Representations of flood data: circa 2500 BC

Discrete-time signals have a long tradition...

Representations of flood data: circa AD 2000

Probably your first scientific experiment...

Probably your first scientific experiment...

Astronomy

History and sociology

Economics

a purely man-made signal: the Dow Jones industrial average

- one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is dimension-less "time"
- analysis: periodic measurement
- synthesis: stream of generated samples

- one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is dimension-less "time"
- analysis: periodic measurement
- synthesis: stream of generated samples

- one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is dimension-less "time"
- ▶ analysis: periodic measurement
- synthesis: stream of generated samples

- one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is dimension-less "time"
- ▶ analysis: periodic measurement
- synthesis: stream of generated samples

- one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is dimension-less "time"
- ▶ analysis: periodic measurement
- synthesis: stream of generated samples

- one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is dimension-less "time"
- ▶ analysis: periodic measurement
- synthesis: stream of generated samples

The delta signal

.1 10

How do you synchronize audio and video...

UNIVERSAL STUDIOS.		
PRODUCER		
DIRECTOR		
SCENE	TAKE	ROLL
DATE	PROD. NO.	

How do you synchronize audio and video...

The unit step

The Frankenstein switch...

The exponential decay

How fast does your coffee get cold...

How fast does your coffee get cold...

Newton's law of cooling:

$$\frac{dT}{dt} = -c(T - T_{\mathsf{env}})$$

$$T(t) = T_{\mathsf{env}} + (T_0 - T_{\mathsf{env}})e^{-ct}$$

In practice:

- must have convection only
- must have large conductivity

How fast does your coffee get cold...

Newton's law of cooling:

$$\frac{dT}{dt} = -c(T - T_{\mathsf{env}})$$

$$T(t) = T_{\mathsf{env}} + (T_0 - T_{\mathsf{env}})e^{-ct}$$

In practice:

- must have convection only
- must have large conductivity

The sinusoid

Oscillations are everywhere!

- ▶ finite-length
- ▶ infinite-length
- periodic
- ► finite-support

- ▶ finite-length
- ▶ infinite-length
- periodic
- ► finite-support

- ▶ finite-length
- ▶ infinite-length
- periodic
- ► finite-support

- ▶ finite-length
- ▶ infinite-length
- periodic
- ► finite-support

Finite-length signals

- ▶ sequence notation: x[n], n = 0, 1, ..., N 1
- ightharpoonup vector notation: $\mathbf{x} = [x_0 x_1 \dots x_{N-1}]^T$
- practical entities, good for numerical packages (Matlab and the like)

Finite-length signals

- ▶ sequence notation: x[n], n = 0, 1, ..., N 1
- vector notation: $\mathbf{x} = [x_0 x_1 \dots x_{N-1}]^T$
- practical entities, good for numerical packages (Matlab and the like)

Finite-length signals

- ▶ sequence notation: x[n], n = 0, 1, ..., N 1
- vector notation: $\mathbf{x} = [x_0 x_1 \dots x_{N-1}]^T$
- practical entities, good for numerical packages (Matlab and the like)

Infinite-length signals

- sequence notation: $x[n], n \in \mathbb{Z}$
- ▶ abstraction, good for theorems

Infinite-length signals

- sequence notation: $x[n], n \in \mathbb{Z}$
- ▶ abstraction, good for theorems

Periodic signals

- ▶ *N*-periodic sequence: $\tilde{x}[n] = \tilde{x}[n + kN], \quad n, k, N \in \mathbb{Z}$
- ▶ same information as finite-length of length *N*
- "natural" bridge between finite and infinite lengths

Periodic signals

- ▶ *N*-periodic sequence: $\tilde{x}[n] = \tilde{x}[n + kN], \quad n, k, N \in \mathbb{Z}$
- ▶ same information as finite-length of length N
- "natural" bridge between finite and infinite lengths

Periodic signals

- ▶ *N*-periodic sequence: $\tilde{x}[n] = \tilde{x}[n + kN], \quad n, k, N \in \mathbb{Z}$
- ▶ same information as finite-length of length N
- "natural" bridge between finite and infinite lengths

Finite-support signals

Finite-support sequence:

$$ar{x}[n] = \left\{ egin{array}{ll} x[n] & ext{if } 0 \leq n < N \ 0 & ext{otherwise} \end{array}
ight. \quad n \in \mathbb{Z}$$

- ▶ same information as finite-length of length N

Finite-support signals

► Finite-support sequence:

$$ar{x}[n] = \left\{ egin{array}{ll} x[n] & ext{if } 0 \leq n < N \ 0 & ext{otherwise} \end{array}
ight. \quad n \in \mathbb{Z}$$

- ▶ same information as finite-length of length *N*
- another bridge between finite and infinite lengths

Finite-support signals

► Finite-support sequence:

$$ar{x}[n] = \left\{ egin{array}{ll} x[n] & ext{if } 0 \leq n < N \ 0 & ext{otherwise} \end{array}
ight. \quad n \in \mathbb{Z}$$

- ▶ same information as finite-length of length *N*
- another bridge between finite and infinite lengths

scaling:

$$y[n] = \alpha x[n]$$

► sum:

$$y[n] = x[n] + z[n]$$

product:

$$y[n] = x[n] \cdot z[n]$$

▶ shift by k (delay):

$$y[n] = x[n-k]$$

scaling:

$$y[n] = \alpha x[n]$$

sum:

$$y[n] = x[n] + z[n]$$

product:

$$y[n] = x[n] \cdot z[n]$$

ightharpoonup shift by k (delay):

$$y[n] = x[n-k]$$

scaling:

$$y[n] = \alpha x[n]$$

sum:

$$y[n] = x[n] + z[n]$$

product:

$$y[n] = x[n] \cdot z[n]$$

ightharpoonup shift by k (delay):

$$y[n] = x[n-k]$$

scaling:

$$y[n] = \alpha x[n]$$

sum:

$$y[n] = x[n] + z[n]$$

product:

$$y[n] = x[n] \cdot z[n]$$

▶ shift by *k* (delay):

$$y[n] = x[n-k]$$

$$[x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7]$$

2.1 26

$$\bar{x}[n-1]$$
 ... 0 0 0 0 $x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 0 0 ...$

$$\bar{x}[n-2]$$
 ... 0 0 0 0 $x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 0 ...$

$$\bar{x}[n-3]$$
 ... 0 0 0 0 0 x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 ...

$$\bar{x}[n-4]$$
 ... 0 0 0 0 0 0 x_0 x_1 x_2 x_3 x_4 x_5 x_6 ...

 $\begin{bmatrix} x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \end{bmatrix}$

$$\tilde{x}[n-1]$$
 ... x_4 x_5 x_6 x_7 x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_0 x_1 ...

$$\tilde{x}[n-2]$$
 ... $x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_0 \ x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_0 \ ...$

$$\tilde{x}[n-3]$$
 ... $x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_0 \ x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ ...$

$$\tilde{x}[n-4]$$
 ... x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_0 x_1 x_2 x_3 x_4 x_5 x_6 ...

Energy and power

$$E_{x} = \sum_{n=-\infty}^{\infty} |x[n]|^{2}$$

$$P_{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^{2}$$

Energy and power

$$E_{x} = \sum_{n=-\infty}^{\infty} |x[n]|^{2}$$

$$P_{\mathsf{X}} = \lim_{\mathsf{N} \to \infty} \frac{1}{2\mathsf{N} + 1} \sum_{n = -\mathsf{N}}^{\mathsf{N}} |x[n]|^2$$

Energy and power: periodic signals

$$\textit{E}_{\tilde{x}} = \infty$$

$$P_{\tilde{x}} \equiv \frac{1}{N} \sum_{n=0}^{N-1} |\tilde{x}[n]|^2$$

Energy and power: periodic signals

$$\textit{E}_{\tilde{x}} = \infty$$

$$P_{\tilde{x}} \equiv \frac{1}{N} \sum_{n=0}^{N-1} |\tilde{x}[n]|^2$$

END OF MODULE 2.1

Digital Signal Processing

Module 2.2: the complex exponential

Overview:

- ▶ the complex exponential
- periodicity
- wagonwheel effect and maximum "speed"
- digital and real-world frequency

Oscillations are everywhere

31

The oscillatory heartbeat

Ingredients:

- ightharpoonup a frequency ω (units: radians)
- ightharpoonup an initial phase ϕ (units: radians)
- ▶ an amplitude A (units depending on underlying measurement)
- ► a trigonometric function

e.g.
$$x[n] = A\cos(\omega n + \phi)$$

The oscillatory heartbeat

Ingredients:

- ightharpoonup a frequency ω (units: radians)
- \blacktriangleright an initial phase ϕ (units: radians)
- ▶ an amplitude A (units depending on underlying measurement)
- ► a trigonometric function

e.g.
$$x[n] = A\cos(\omega n + \phi)$$

The oscillatory heartbeat

Ingredients:

- \triangleright a frequency ω (units: radians)
- \blacktriangleright an initial phase ϕ (units: radians)
- an amplitude A (units depending on underlying measurement)
- ► a trigonometric function

e.g.
$$x[n] = A\cos(\omega n + \phi)$$

The oscillatory heartbeat

Ingredients:

- ightharpoonup a frequency ω (units: radians)
- ightharpoonup an initial phase ϕ (units: radians)
- ▶ an amplitude A (units depending on underlying measurement)
- ► a trigonometric function

e.g.
$$x[n] = A\cos(\omega n + \phi)$$

The oscillatory heartbeat

Ingredients:

- ightharpoonup a frequency ω (units: radians)
- ightharpoonup an initial phase ϕ (units: radians)
- ▶ an amplitude A (units depending on underlying measurement)
- ► a trigonometric function

e.g.
$$x[n] = A\cos(\omega n + \phi)$$

the trigonometric function of choice in DSP is the complex exponential:

$$x[n] = Ae^{j(\omega n + \phi)}$$
$$= A[\cos(\omega n + \phi) + j\sin(\omega n + \phi)]$$

Why complex exponentials?

- makes sense: sines and cosines always go together
- ▶ simpler math: trigonometry becomes algebra
- ▶ we can use complex numbers in digital systems

Why complex exponentials?

- makes sense: sines and cosines always go together
- ▶ simpler math: trigonometry becomes algebra
- ▶ we can use complex numbers in digital systems

Why complex exponentials?

- makes sense: sines and cosines always go together
- ▶ simpler math: trigonometry becomes algebra
- ▶ we can use complex numbers in digital systems

$$cos(\omega n + \phi) = a cos(\omega n) + b sin(\omega n),$$
 $a = cos \phi, b = -sin \phi$

- each sinusoid is always a sum of sine and cosine
- we have to remember complex trigonometric formulas
- we have to carry more terms in our equations

$$cos(\omega n + \phi) = a cos(\omega n) + b sin(\omega n),$$
 $a = cos \phi, b = -sin \phi$

- each sinusoid is always a sum of sine and cosine
- we have to remember complex trigonometric formulas
- we have to carry more terms in our equations

$$cos(\omega n + \phi) = a cos(\omega n) + b sin(\omega n),$$
 $a = cos \phi, b = -sin \phi$

- each sinusoid is always a sum of sine and cosine
- ▶ we have to remember complex trigonometric formulas
- we have to carry more terms in our equations

$$cos(\omega n + \phi) = a cos(\omega n) + b sin(\omega n),$$
 $a = cos \phi, b = -sin \phi$

- each sinusoid is always a sum of sine and cosine
- ▶ we have to remember complex trigonometric formulas
- ▶ we have to carry more terms in our equations

$$Re\{e^{j(\omega n+\phi)}\}=Re\{e^{j\omega n}e^{j\phi}\}$$

- sine and cosine "live" together
- phase shift is simple multiplication
- notation is simpler

$$\mathsf{Re}\{e^{j(\omega n + \phi)}\} = \mathsf{Re}\{e^{j\omega n} e^{j\phi}\}$$

- ► sine and cosine "live" together
- phase shift is simple multiplication
- notation is simpler

$$\operatorname{\mathsf{Re}}\{e^{j(\omega n+\phi)}\}=\operatorname{\mathsf{Re}}\{e^{j\omega n}\,e^{j\phi}\}$$

- sine and cosine "live" together
- phase shift is simple multiplication
- notation is simpler

$$\operatorname{\mathsf{Re}}\{e^{j(\omega n+\phi)}\}=\operatorname{\mathsf{Re}}\{e^{j\omega n}\,e^{j\phi}\}$$

- sine and cosine "live" together
- phase shift is simple multiplication
- notation is simpler

$$e^{j\alpha}=\cos\alpha+j\sin\alpha$$

z: point on the complex plane

Im	
	• z
	Re

rotation: $\mathbf{z}' = \mathbf{z} \, e^{j\alpha}$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

Initial phase

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

Initial phase

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

Initial phase

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

Periodicity

$$e^{j\omega n}$$
 periodic $\iff \omega = rac{M}{N}2\pi, M, N \in \mathbb{N}$

$$e^{j\omega} = e^{j(\omega + 2k\pi)} \quad \forall k \in \mathbb{N}$$

Periodicity

$$e^{j\omega n}$$
 periodic $\iff \omega = rac{M}{N}2\pi, M, N \in \mathbb{N}$

$$e^{j\omega}=e^{j(\omega+2k\pi)}\quad orall k\in \mathbb{N}$$

..2

How "fast" can we go?

How "fast" can we go?

$$\omega = 2\pi/12$$

$$\omega = 2\pi/6$$

$$\omega=2\pi/5$$

$$\omega = 2\pi/4$$

$$\omega = 2\pi/3$$

$$\omega = 2\pi/2 = \pi$$

$$\omega = 2\pi/2 = \pi$$

What if we go "faster"?

$$\pi < \omega < 2\pi$$

What if we go "faster"?

$$\pi < \omega < 2\pi$$

$$\omega = 2\pi - \alpha$$
, α small

$$\omega = 2\pi - \alpha, \quad \alpha \text{ small}$$

$$\omega = 2\pi - \alpha$$
, α small

$$\omega = 2\pi - \alpha$$
, α small

$$\omega = 2\pi - \alpha$$
, α small

The wagonwheel effect

2.2

Discrete time:

- n: no physical dimension (just a counter)
- periodicity: how many samples before pattern repeats

"Real world":

- periodicity: how many seconds before pattern repeats
- frequency measured in Hz (s^{-1})

- Discrete time:
 - n: no physical dimension (just a counter)
 - periodicity: how many samples before pattern repeats
- "Real world":
 - periodicity: how many seconds before pattern repeats
 - frequency measured in Hz (s^{-1})

- Discrete time:
 - n: no physical dimension (just a counter)
 - periodicity: how many samples before pattern repeats
- "Real world":
 - periodicity: how many seconds before pattern repeates
 - frequency measured in Hz (s^{-1})

- Discrete time:
 - n: no physical dimension (just a counter)
 - periodicity: how many samples before pattern repeats
- "Real world":
 - periodicity: how many seconds before pattern repeats
 - ullet frequency measured in Hz (s^{-1})

- Discrete time:
 - n: no physical dimension (just a counter)
 - periodicity: how many samples before pattern repeats
- "Real world":
 - periodicity: how many seconds before pattern repeats
 - ullet frequency measured in Hz (s^{-1})

- Discrete time:
 - n: no physical dimension (just a counter)
 - periodicity: how many samples before pattern repeats
- "Real world":
 - periodicity: how many seconds before pattern repeats
 - ullet frequency measured in Hz (s^{-1})

How your PC plays sounds

2.2

How your PC plays sounds

2.2

- \triangleright set T_s , time in seconds between samples
- $lackbox{}$ periodicity of M samples \longrightarrow periodicity of MT_s seconds
- real world frequency:

$$f = \frac{1}{MT_s}$$

- \triangleright set T_s , time in seconds between samples
- lacktriangledown periodicity of MT_s seconds
- real world frequency:

$$f = \frac{1}{MT_s}$$

- \triangleright set T_s , time in seconds between samples
- lacktriangledown periodicity of MT_s seconds
- real world frequency:

$$f=\frac{1}{MT_s}$$

END OF MODULE 2.2

Digital Signal Processing

 $Module\ 2.3:\ the\ Karplus-Strong\ algorithm$

Overview:

- ► DSP building blocks
- moving averages and simple feedback loops
- ▶ a sound synthesizer

2.3

Overview:

- ▶ DSP as Lego: The fundamental building blocks
- Averages and moving averages
- ▶ Recursion: Revisiting your bank account
- ▶ Building a simple recursive synthesizer
- Examples of sounds

DSP as Lego

Building Blocks: Adder

Building Blocks: Adder

Building Blocks: Adder

Building Blocks: Multiplier

Building Blocks: Multiplier

$$x[n] \xrightarrow{\alpha} \alpha x[n]$$

Building Blocks: Multiplier

$$x[n] \xrightarrow{\alpha} \alpha x[n]$$

Building Blocks: Unit Delay

Building Blocks: Unit Delay

Building Blocks: Unit Delay

Building Blocks: Arbitrary Delay

Building Blocks: Arbitrary Delay

Building Blocks: Arbitrary Delay

The 2-point Moving Average

simple average:

$$m=\frac{a+b}{2}$$

▶ moving average: take a "local" average

$$y[n] = \frac{x[n] + x[n-1]}{2}$$

The 2-point Moving Average

simple average:

$$m=\frac{a+b}{2}$$

▶ moving average: take a "local" average

$$y[n] = \frac{x[n] + x[n-1]}{2}$$

The 2-point Moving Average Using Lego

$$x[n] = \delta[n]$$

$$x[n] = \delta[n]$$

$$x[n] = u[n]$$

$$x[n] = u[n]$$

$$x[n] = \cos(\omega n), \quad \omega = \pi/10$$

$$x[n] = \cos(\omega n), \quad \omega = \pi/10$$

$$x[n] = \cos(\omega n), \quad \omega = \pi$$

$$x[n] = \cos(\omega n), \quad \omega = \pi$$

What if we reverse the loop?

What if we reverse the loop?

- ► constant interest/borrowing rate of 5% per year
- ▶ interest accrues on Dec 31
- ightharpoonup deposits/withdrawals during year n: x[n]
- ▶ balance at year *n*

$$y[n] = 1.05 y[n-1] + x[n]$$

- ► constant interest/borrowing rate of 5% per year
- ▶ interest accrues on Dec 31
- ▶ deposits/withdrawals during year n: $\times [n]$
- ▶ balance at year *n*:

$$y[n] = 1.05 y[n-1] + x[n]$$

- ► constant interest/borrowing rate of 5% per year
- ▶ interest accrues on Dec 31
- deposits/withdrawals during year n: x[n]
- ▶ balance at year *n*

$$y[n] = 1.05 y[n-1] + x[n]$$

- ► constant interest/borrowing rate of 5% per year
- ▶ interest accrues on Dec 31
- deposits/withdrawals during year n: x[n]
- ▶ balance at year *n*:

$$y[n] = 1.05 y[n-1] + x[n]$$

First-order recursion

y[n] = 1.05 y[n-1] + x[n]

$$x[n] = 100 \delta[n]$$

- y[0] = 100
- y[1] = 105
- y[2] = 110.25, y[3] = 115.7625 etc.
- ▶ In general: $y[n] = (1.05)^n 100 u[n]$

$$x[n] = 100 \delta[n]$$

- y[0] = 100
- y[1] = 105
- y[2] = 110.25, y[3] = 115.7625 etc.
- ▶ In general: $y[n] = (1.05)^n 100 u[n]$

$$x[n] = 100 \delta[n]$$

- y[0] = 100
- y[1] = 105
- y[2] = 110.25, y[3] = 115.7625 etc.
- ▶ In general: $y[n] = (1.05)^n 100 u[n]$

$$x[n] = 100 \delta[n]$$

- y[0] = 100
- y[1] = 105
- y[2] = 110.25, y[3] = 115.7625 etc.
- ▶ In general: $y[n] = (1.05)^n 100 u[n]$

Example: the one-time investment

$$x[n] = 100 \delta[n]$$

- y[0] = 100
- y[1] = 105
- y[2] = 110.25, y[3] = 115.7625 etc.
- ► In general: $y[n] = (1.05)^n 100 u[n]$

$$x[n] = 100 u[n]$$

- y[0] = 100
- y[1] = 205
- y[2] = 315.25, y[3] = 431.0125 etc.
- ▶ In general: $y[n] = 2000 ((1.05)^{n+1} 1) u[n]$

$$x[n] = 100 u[n]$$

- y[0] = 100
- y[1] = 205
- y[2] = 315.25, y[3] = 431.0125 etc.
- ▶ In general: $y[n] = 2000((1.05)^{n+1} 1)u[n]$

$$x[n] = 100 u[n]$$

- y[0] = 100
- y[1] = 205
- y[2] = 315.25, y[3] = 431.0125 etc.
- ▶ In general: $y[n] = 2000((1.05)^{n+1} 1)u[n]$

$$x[n] = 100 u[n]$$

- y[0] = 100
- y[1] = 205
- y[2] = 315.25, y[3] = 431.0125 etc.
- ▶ In general: $y[n] = 2000 ((1.05)^{n+1} 1) u[n]$

$$x[n] = 100 u[n]$$

- y[0] = 100
- y[1] = 205
- y[2] = 315.25, y[3] = 431.0125 etc.
- ► In general: $y[n] = 2000 ((1.05)^{n+1} 1) u[n]$

$$x[n] = 100 \delta[n] - 5 u[n-1]$$

- y[0] = 100
- y[1] = 100
- y[2] = 100, y[3] = 100 etc.
- ▶ In general: y[n] = 100 u[n]

$$x[n] = 100 \,\delta[n] - 5 \,u[n-1]$$

- y[0] = 100
- y[1] = 100
- y[2] = 100, y[3] = 100 etc.
- ▶ In general: y[n] = 100 u[n]

$$x[n] = 100 \,\delta[n] - 5 \,u[n-1]$$

- y[0] = 100
- y[1] = 100
- y[2] = 100, y[3] = 100 etc.
- ▶ In general: y[n] = 100 u[n]

$$x[n] = 100 \delta[n] - 5 u[n-1]$$

- y[0] = 100
- y[1] = 100
- y[2] = 100, y[3] = 100 etc.
- ▶ In general: y[n] = 100 u[n]

$$x[n] = 100 \delta[n] - 5 u[n-1]$$

- y[0] = 100
- y[1] = 100
- y[2] = 100, y[3] = 100 etc.
- ▶ In general: y[n] = 100 u[n]

A simple generalization

2.3

 $y[n] = \alpha y[n - M] + x[n]$

$$M = 3$$
, $\alpha = 0.7$, $x[n] = \delta[n]$

- y[0] = 1, y[1] = 0, y[2] = 0
- y[3] = 0.7, y[4] = 0, y[5] = 0
- $y[6] = 0.7^2$, y[7] = 0, y[8] = 0, etc.

$$M = 3, \ \alpha = 0.7, \ x[n] = \delta[n]$$

- y[0] = 1, y[1] = 0, y[2] = 0
- y[3] = 0.7, y[4] = 0, y[5] = 0
- $y[6] = 0.7^2$, y[7] = 0, y[8] = 0, etc.

$$M = 3$$
, $\alpha = 0.7$, $x[n] = \delta[n]$

- y[0] = 1, y[1] = 0, y[2] = 0
- y[3] = 0.7, y[4] = 0, y[5] = 0
- $y[6] = 0.7^2$, y[7] = 0, y[8] = 0, etc.

$$M = 3$$
, $\alpha = 0.7$, $x[n] = \delta[n]$

- y[0] = 1, y[1] = 0, y[2] = 0
- y[3] = 0.7, y[4] = 0, y[5] = 0
- $y[6] = 0.7^2$, y[7] = 0, y[8] = 0, etc.

$$M = 3$$
, $\alpha = 1$, $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2]$

- v[0] = 1, v[1] = 2, v[2] = 3
- y[3] = 1, y[4] = 2, y[5] = 3
- y[6] = 1, y[7] = 2, y[8] = 3, etc.

$$M = 3$$
, $\alpha = 1$, $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2]$

- y[0] = 1, y[1] = 2, y[2] = 3
- y[3] = 1, y[4] = 2, y[5] = 3
- y[6] = 1, y[7] = 2, y[8] = 3, etc.

$$M = 3$$
, $\alpha = 1$, $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2]$

- y[0] = 1, y[1] = 2, y[2] = 3
- y[3] = 1, y[4] = 2, y[5] = 3
- y[6] = 1, y[7] = 2, y[8] = 3, etc.

$$M = 3$$
, $\alpha = 1$, $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2]$

- y[0] = 1, y[1] = 2, y[2] = 3
- y[3] = 1, y[4] = 2, y[5] = 3
- y[6] = 1, y[7] = 2, y[8] = 3, etc.

- ▶ build a recursion loop with a delay of M
- lacktriangle choose a signal $ar{x}[n]$ that is nonzero only for $0 \le n < M$
- choose a decay factor
- ▶ input $\bar{x}[n]$ to the system
- play the output

- ▶ build a recursion loop with a delay of *M*
- lacktriangle choose a signal $ar{x}[n]$ that is nonzero only for $0 \leq n < M$
- choose a decay factor
- ▶ input $\bar{x}[n]$ to the system
- play the output

- ▶ build a recursion loop with a delay of *M*
- lacktriangle choose a signal $ar{x}[n]$ that is nonzero only for $0 \le n < M$
- choose a decay factor
- ▶ input $\bar{x}[n]$ to the system
- play the output

- ▶ build a recursion loop with a delay of *M*
- lacktriangle choose a signal $ar{x}[n]$ that is nonzero only for $0 \le n < M$
- choose a decay factor
- ▶ input $\bar{x}[n]$ to the system
- play the output

- ▶ build a recursion loop with a delay of *M*
- lacktriangle choose a signal $ar{x}[n]$ that is nonzero only for $0 \le n < M$
- choose a decay factor
- input $\bar{x}[n]$ to the system
- play the output

- ► *M*-tap delay → *M*-sample "periodicity"
- ▶ associate time *T* to sample interval
- periodic signal of frequency

$$f = \frac{1}{MT} Hz$$

• example: $T = 22.7 \mu s$, M = 100

$$f \approx 440 \text{Hz}$$

- ► *M*-tap delay → *M*-sample "periodicity"
- ▶ associate time *T* to sample interval
- periodic signal of frequency

$$f = \frac{1}{MT} Hz$$

• example: $T = 22.7 \mu s$, M = 100

$$f \approx 440 \text{Hz}$$

- ► *M*-tap delay → *M*-sample "periodicity"
- ▶ associate time *T* to sample interval
- periodic signal of frequency

$$f = \frac{1}{MT}$$
Hz

• example: $T = 22.7 \mu s$, M = 100

$$f \approx 440 \text{Hz}$$

- ► *M*-tap delay → *M*-sample "periodicity"
- associate time T to sample interval
- periodic signal of frequency

$$f = \frac{1}{MT}$$
Hz

• example: $T = 22.7 \mu s$, M = 100

$$f \approx 440 \text{Hz}$$

Playing a sine wave

$$M=100, \ \alpha=1, \ \bar{x}[n]=\sin(2\pi\,n/100)$$
 for $0\leq n<100$ and zero elsewhere

Playing a sine wave

$$M=100, \ \alpha=1, \ \bar{x}[n]=\sin(2\pi \ n/100)$$
 for $0\leq n<100$ and zero elsewhere

Introducing some realism

- M controls frequency (pitch)
- ightharpoonup lpha controls envelope (decay)
- $ightharpoonup \bar{x}[n]$ controls color (timbre)

Introducing some realism

- ► *M* controls frequency (pitch)
- ightharpoonup lpha controls envelope (decay)
- $ightharpoonup \bar{x}[n]$ controls color (timbre)

Introducing some realism

- M controls frequency (pitch)
- ightharpoonup lpha controls envelope (decay)
- $ightharpoonup \bar{x}[n]$ controls color (timbre)

A proto-violin

 $M=100,~\alpha=0.95,~\bar{x}[n]$: zero-mean sawtooth wave between 0 and 99, zero elsewhere

A proto-violin

 $M=100,~\alpha=0.95,~\bar{x}[n]$: zero-mean sawtooth wave between 0 and 99, zero elsewhere

The Karplus-Strong Algorithm

 $M=100,~\alpha=0.9,~\bar{x}[n]$: 100 random values between 0 and 99, zero elsewhere

The Karplus-Strong Algorithm

 $M=100, \ \alpha=0.9, \ \bar{x}[n]$: 100 random values between 0 and 99, zero elsewhere

Recap

- ▶ We have seen basic elements:
 - adders
 - multipliers
 - delays
- ▶ We have seen two systems
 - moving averages
 - recursive systems
- ▶ We were able to build simple systems with interesting properties
- to understand all of this in more details we need a mathematical framework!

END OF MODULE 2.3

END OF MODULE 2