# Z6110X0035: Introduction to Cloud Computing - Cloud-Edge Computing

Lecturer: Prof. Zichen Xu

# Recap from Previous Class

# Finals!

# Cloud-edge Computing Paradigm

物联网

建筑 更多

云计算

# Why do we need edge computing

Push from cloud services



Pull from IoT

Change From Data Consumer to Producer

# What is edge computing

We define "edge" as any computing and network resources along the path between data sources and cloud data centers.

Edge computing is interchangeable with fog computing.



# Case study

- 1. Cloud offloading (online shopping services)
- 2. Video analytics (finding a lost child in the city)
- 3. Smart home
- 4. Smart city
- 5. Collaborative edge



Fig. 4. Collaborative edge example: connected health.

## Programmability

Computing stream that is defined as a serial of functions/computing applied on the data along the data propagation path.

The function/computing distribution metric could be latency-driven, energy cost, TCO, and hardware/software specified limitations.

## Naming



Fig. 5. Naming mechanism in edgeOS.

## Data abstraction



Fig. 6. Data abstraction issue for edge computing.

Service Management differentiation, extensibility, isolation, and reliability

Privacy and Security

Optimization Metrics(latency, bandwidth, energy, cost)

# Quantifying the Impact of Edge Computing on Mobile Applications

How much can edge computing actually benefit end users Latency and energy consumption Compute-intensive and latency-sensitive applications such as mobile augmented reality

# Experimental applications

# Comet: a existing tool that can transparently migrate threads from a mobile device to a remote server and back

| Application | Request size (avg) | Response size (avg) |
|-------------|--------------------|---------------------|
| FACE        | 62 KB              | < 60 bytes          |
| MAR         | 26 KB              | < 20 bytes          |
| FLUID       | 16 bytes           | 25 KB               |

Figure 1: Network load of prepartitioned apps

| Application   | Total Transfer Size       | # of Transfers † |  |  |
|---------------|---------------------------|------------------|--|--|
| Linpack       | $\approx 10  \mathrm{MB}$ | 1                |  |  |
| CPU Benchmark | $\approx 80 \text{ KB}$   | 1                |  |  |
| PI Benchmark  | $\approx 10 \text{ MB}$   | 15               |  |  |

<sup>†</sup> Number of thread migrations for each run

Figure 2: Network load of COMET apps

# **Experimental Setup**

Cloudlet: a mobility-enhanced small-scale cloud datacenter that is located at the edge of the Internet.

| Smartphone             | Netbook              |  |  |  |
|------------------------|----------------------|--|--|--|
| (Samsung Galaxy Nexus) | (Dell Latitude 2120) |  |  |  |
| ARM® Cortex-A9         | Intel® Atom™ N550    |  |  |  |
| 1.2 GHz, 2 cores       | 1.5 GHz, 2 cores     |  |  |  |
| 1 GB RAM               | 2 GB RAM             |  |  |  |
| 32 GB Flash            | 250 GB HDD           |  |  |  |
| 802.11a/b/g/n WiFi     | 802.11a/g/n WiFi     |  |  |  |

Figure 4: HW configuration of mobile devices

| Cloudlet                                     | Cloud (Amazon AWS)      |
|----------------------------------------------|-------------------------|
| VM on Dell Optiplex 9010                     | c3.2xlarge instance     |
| Intel <sup>®</sup> Core <sup>®</sup> i7-3770 | Intel® Xeon E5-2680 v2  |
| 2.7 GHz <sup>†</sup> , 4 VCPUs               | 2.8 GHz, 8 VCPUs        |
| 4 GB RAM                                     | 15 GB RAM               |
| 8 GB Virtual disk                            | 160 GB SSD              |
| 1 Gbps Ethernet                              | Amazon Enhanced Network |

<sup>&</sup>lt;sup>†</sup>We limit the CPU to 2.7 GHz and disable Turbo boost.

Figure 3: VM and HW specs at offloading sites

# **Experimental Setup**

No offload Cloud-WiFi Cloudlet-WiFi Cloudlet-LTE Cloud-LTE



Figure 5: Network setup for the experiments

# WiFi offloading performance



# WiFi offloading and energy

|                    | Offload   | None  | Cloudlet | East  | West  | Europe | Asia   |
|--------------------|-----------|-------|----------|-------|-------|--------|--------|
| Face†              | (J/query) | 12.4  | 2.6      | 4.4   | 6.1   | 9.2    | 9.2    |
|                    |           | (0.5) | (0.3)    | (0.0) | (0.2) | (4.1)  | (0.2)  |
| Fluid <sup>†</sup> | (J/frame) | 0.8   | 0.3      | 0.3   | 0.9   | 1.0    | 2.2    |
|                    |           | (0.0) | (0.0)    | (0.0) | (0.0) | (0.0)  | (0.1)  |
| MAR <sup>†</sup>   | (J/query) | 5.4   | 0.6      | 3.0   | 4.3   | 5.1    | 7.9    |
| WAK                | (s/query) | (0.1) | (0.1)    | (0.8) | (0.1) | (0.1)  | (0.1)  |
| Linpack            | (J/run)   | 40.3  | 13.0     | 13.3  | 16.9  | 18.2   | 38.1   |
|                    |           | (2.6) | (0.7)    | (2.3) | (1.8) | (1.9)  | (4.1)  |
| CPU                | (J/run)   | 9.6   | 5.7      | 5.9   | 5.8   | 5.9    | 6.0    |
|                    |           | (1.4) | (0.3)    | (0.3) | (0.3) | (0.2)  | (0.2)  |
| PI                 | (J/run)   | 129.7 | 53.9     | 57.6  | 107.6 | 162.8  | 203.4  |
| 11                 | (3/Tull)  | (2.9) | (2.1)    | (1.8) | (8.6) | (18.0) | (16.7) |

Numbers in parentheses are standard deviations from three runs. †The display is turned off during energy measurement.

Figure 9: Energy consumption on mobile devices

# LTE offloading performance







# Mobile Edge Computing: Progress and Challenges



## A Edge Analytics Demo

## **An Edge Analytics Demo**

This demo is to showcase the following

- 1.How sensors and digitized elements get locally connected with one or more IoT gateway instances in order to gather and transmit any useful and usable data to the IoT gateway. In other words, multi-structed and massive data getting generated by various sensors and sensors-attached assets in a particular environment (say, homes, hotels, hospitals, etc.) are received and temporarily stocked by IoT gateways / middleware/brokers for purpose-specific data analytics.
- 2.By deploying an edge analytics and application development platform in the IoT gateway (Raspberry Pi was used for our demo), all kinds of data getting collected are getting cleansed and crunched in real-time in order to emit out actionable and timely insights.
- 3. The IoT gateway also contributes in filtering out irrelevant data at the source itself so that a very limited amount of useful data gets transmitted to the faraway clouds to facilitate historical and comprehensive big data analytics. The IoT gateway acts as an intermediary between scores of on-premise edge systems and off-premise clouds.
- 4.IoT gateway modules (typically touted as fog devices) act as the master node/leader in monitoring, measuring and managing various dynamic edge devices and their operational parameters
- 5.IoT gateway modules seamlessly and spontaneously integrate the physical world with the cyber world (cloud services, applications, databases, platforms, etc.)
- 6.IoT gateway activates, augments, and adapts actuation devices (edge) based on the insights extricated through analytics in real time



Sensors/Device Controllers





## **The Demo Components**

#### •Raspberry Pi Configuration Steps:

- •https://www.raspberrypi.org/documentation/configuration/
- \*Model 3 b+, Configuration 1 GB RAM, 64GB SD card
- \*Processor Type: Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.4 GHz
- Ports: 3 USBs, HDMI, 2 WLAN, 1 Ethernet, Bluetooth

#### •IR/Motion Sensor / Pulse Rate Monitor





#### \*Apache Edgent 1.2.0

 $\verb| ^*https://developer.ibm.com/recipes/tutorials/setting-up-apache-edgent-on-my-raspberry-pi-3/$ 

- \*Docker Container through the clustering of heterogeneous edge / fog devices
- AWS Compute Instance
- \*Apache Flink 1.4.2

\*https://data-flair.training/blogs/install-configure-apache-flink-ubuntu/

- •Not used for this demo/workshop:
  - •Kafka
  - Kubernetes





## The Raspberry Pi PIN Layout





# Modern online services



Processing streaming data from different sources

# Modern online services



# Approximate computing

## **Many applications:**

Approximate output is good enough!

The proportion of data is useful for this application



Live taxi heatmap

# Approximate computing

Idea: To achieve low latency, compute over a sub-set of data items instead of the entire data-set



# State-of-the-art system

StreamApprox [Middleware'17]



## **Limitations:**

- It wastes bandwidth
- It utilizes only cloud datacenter resources

# Edge computing

Allows data to be processed at the edge node before it's sent to the cloud



## **Opportunities:**

- Providing more computing resources
- Saving bandwidth

# Edge infrastructure



Microsoft Azure IoT edge



Google's network infrastructure has three distinct elements:





Source: <a href="https://peering.google.com/#/infrastructure">https://peering.google.com/#/infrastructure</a>

# Problem statement

# To build a stream analytics system

By utilizing the cloud and edge computing resources By leveraging approximate computing

# Design goals

**Efficiency**: Efficient utilization of computing resources

Adaptability: Adaptive execution based on the available resources

<u>Transparency</u>: No code change required and resource management

# ApproxIoT: Overview



# Naïve algorithm

Simple random sampling (SRS)



# Background: Stratified sampling



Advantage: The sub-streams are sampled fairly

Disadvantage: Requires the knowledge of each sub-stream size

# Background: Reservoir sampling



### **Advantage:**

No pre-knowledge required of sub-stream size

## **Disadvantages:**

- The sub-streams are sampled unfairly
- Difficult to run on multiple nodes

# ApproxIoT sampling algorithm

Weighted hierarchical sampling (WHS)
Combining stratified and reservoir sampling



Easy to parallelize, requires no synchronization between sub-streams

# WHS on edge nodes



Reservoir size equals 2

Easy to parallelize, requires no synchronization between computing nodes

# ApproxIoT in the cloud



Reservoir size equals 1

# Implementation



# Experimental setup

## Evaluation questions

Accuracy vs. sample size Throughput vs. sample size

Testbed: 25 nodes

15 nodes for ApproxIoT deployment 10 nodes for Kafka cluster

## Datasets:

Synthetic: Poisson and Gaussian distribution Real: Brasvo pollution and New York Taxi Ride See the paper for more results!

# Accuracy vs. sample size



ApproxIoT: ~2600X higher accuracy over SRS

# Throughput vs. sample size



- ApproxIoT has low overhead compared to the native execution
- ApproxIoT has similar throughput as SRS

# Conclusion: The promise of edge computing

Infrastructure and design

Measurement works

Related applications

The Design and Implementation of a Wireless Video Surveillance System