M1105 Chapter 1

Set \mathbb{R}^n and sequence in \mathbb{R}^n .

1.1.1 The space \mathbb{R}^n

We define the space $\underbrace{\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \cdots \times \mathbb{R}}_{n \ times}$

Addition:

$$x+y=(x_1\ldots x_n)+(y_1\ldots y_n)=(x_1+y_1\ldots x_n+y_n)$$

For
$$n = 2, \mathbb{R}^2 = \{X = (x, y) : x, y \in \mathbb{R}\}$$

Definition 1.2

When you multiply x by y,

$$x \cdot y = \langle x, y \rangle$$

Theorem

Cauchy-Schwarz inequality:

$$\left|\sum_{i=1}^n x_i y_i
ight| \leq \left(\sum_{i=1}^n x_i^2
ight)^{1/2} \left(\sum_{i=1}^n y_i^2
ight)^{1/2}$$

Proof:

Let us suppose that x and y are not colinear.

We then have
$$\sum_{i=1}^n (tx_i+y_i)^2>0$$
, for all $t\in\mathbb{R}$. Then $\sum_{i=1}^n (tx_i+y_i)^2=\sum_{i=1}^n (t^2x_i^2+2tx_iy_i+y_i^2)=\left(\sum_{i=1}^n x_i^2\right)t^2+2\left(\sum_{i=1}^n x_iy_i\right)t+\left(\sum_{i=1}^n y_i^2\right)>0$

Let
$$a = \sum_{i=1}^n x_i^2$$
, $b = \sum_{i=1}^n x_i y_i$ and $c = \sum_{i=1}^n y_i^2 \implies at^2 + 2bt + c > 0$, as $a > 0 \implies \Delta' = b^2 - ac < 0 \implies b^2 < ac$ $\implies \left(\sum_{i=1}^n x_i y_i\right)^2 < \left(\sum_{i=1}^n x_i^2\right) \left(\sum_{i=1}^n y_i^2\right)$, hence the inequality.

If x and y are indeed collinear, then $\exists t_0 \in \mathbb{R}^*$ such that $y = t_0 x$, therefore

$$\begin{array}{l} \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^n y_i^2\right)^{\frac{1}{2}} = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^n t_0^2 x_i^2\right)^{\frac{1}{2}} = |t_0| \sum_{i=1}^n x_i^2 \\ \text{and } \left|\sum_{i=1}^n x_i y_i\right| = |t_0| \sum_{i=1}^n x_i^2, \text{ hence the inequality.} \end{array}$$

1.1.2 Norms and distances

A norm on \mathbb{R}^n is all mapping

$$N:\mathbb{R}^n o [0,\infty[$$

verifying the properties:

$$\begin{cases} (N_1) \ \ \forall x \in \mathbb{R}^n, N(x) = 0 \iff x = 0; \text{(Positivity)} \\ (N_2) \ \ \forall \alpha \in \mathbb{R}, \forall x \in \mathbb{R}^n, N(\alpha x) = |\alpha|N(x); \text{(Homogeneity)} \\ (N_3) \ \ \forall x, y \in \mathbb{R}^n, \ N(x+y) \leq N(x) + N(y); \text{(Triangular inequality)} \end{cases}$$

A distance on \mathbb{R}^n is all mapping:

$$d:\mathbb{R}^n imes\mathbb{R}^n o[0,\infty[,$$

verifying the properties:

$$egin{cases} (D_1) \;\; orall x, yin\mathbb{R}^n, d(x,y) = 0 \iff x = y \ (D_2) \;\; orall x, y \in \mathbb{R}^{n,} d(x,y) = d(y,x) \ (D_3) \;\; orall x, y, z \in \mathbb{R}^n, d(x,z) \leq d(x,y) + d(y,z) \end{cases}$$

1.1.3 Usual norms and associated distances

• First usual norm on \mathbb{R}^2 : Let $x=(x_1,x_2)$ and $y=(y_1,y_2)\in\mathbb{R}^2$

The first usual norm on \mathbb{R}^2 is defined by:

$$||x||_1 = |x_1| + |x_2|$$

and its associated distance is given by:

$$d_1(x,y) = ||y-x||_1 = |y_1-x_1| + |y_2-x_2|$$

- Second usual norm on \mathbb{R}^2 : Let $x=(x_1,x_2)$ and $y=(y_1,y_2)\in\mathbb{R}^2.$

The second usual norm, called euclidean norm, on \mathbb{R}^2 is defined by

$$||x||_2 = \sqrt{x_1^2 + x_2^2}$$

and its associated distance is given by

$$d_2(x,y) = ||y-x||_2 = \sqrt{(y_1-x_2)^2 + (y_2-x_2)^2}$$

• Third usual norm on \mathbb{R}^2 :

1.2.3 Equivalent norms

Definition: Two norms N_1 and N_2 on \mathbb{R}^n are said to be equivalent if there exists $\alpha>0$ and $\beta>0$ such that:

$$orall x \in \mathbb{R}^n, \quad lpha N_2(x) \leq N_1(x) \leq eta N_2(x)$$

1.4.3 Convex and Connected sets

Definition 1.25

Let $a,b\in\mathbb{R}^n$ we define the segment denoted [a,b] by

$$[a,b]=\{x\in R^n: x=lpha a+eta b; lpha,eta\in\mathbb{R}^+ ext{ and } lpha+eta=1\}$$

Equation of a line

$$egin{cases} x = a + tlpha \ y = b + teta \ z = c + t\gamma \end{cases}$$

Equation of a plane

Let A(a,b,c) and $ec{N}=lphaec{i}+etaec{j}+\gammaec{k}$

We define the plane P having \vec{N} as a normal vector and A belonging to P by:

$$ec{AM} = egin{cases} x-a \ y-b \ z-c \end{cases}$$

$$ec{AM} \cdot ec{N} = 0 \implies lpha(x-a) + eta(y-b) + \gamma(z-c) = 0 \ \implies \left[lpha x + eta y + \gamma z = lpha a + eta b + \gamma c
ight]$$

1.3 Convergence on \mathbb{R}^n

Definition

A vector sequence of \mathbb{R}^n is all sequence $(x_k)_{k\geq 0}$ such that $x_k=(x_k^1,\ldots,x_k^n)$ with $x^{i_k}\in\mathbb{R},\ \forall i=1,\ldots n.$

Definition 1.13

Let $(x_k)_{k\geq 0}$ be a vector sequence of \mathbb{R}^n , $a=(a_1,\ldots,a_n)\in\mathbb{R}^n$ and $||\cdot||$ be a norm on \mathbb{R}^n . We say that $(x_k)_{k\geq 0}$ converges to a with respect to $||\cdot||$ if one of the following properties is verified:

$$(i) \ (orall \epsilon>0) (\exists k_0\in\mathbb{N}) (orall k\geq k_0, ||x_k-a||<\epsilon) \ (ii) \ ext{The numerical sequence} \ (||x_k-a||_{k>0}) \ ext{tends to } 0$$

In this case, we denote $x_k \stackrel{||\cdot||}{\to} a$ when $k \to \infty$ and we say that a is the limit of (x_k) .

Example:

Show that $\lim_{n\to\infty} (\frac{n}{n+2}, 2 - \frac{1}{n^2}) = (1, 2)$.

solution:

Let the vector sequence $(x_n)_{n\geq 1}$ such that $x_n=(\frac{n}{n+2},2-\frac{1}{n^2})$.

$$||x_n-(1,2)||_{\infty}=\max(|rac{n}{n+2}-1|,|2-rac{1}{n^2}-2|)=\max(|rac{2}{n+2}|,|rac{1}{n^2}|).$$

We have $\lim_{n \to \infty} |rac{2}{n+2}| = \lim_{n \to \infty} rac{1}{n^2} = 0 \implies \lim_{n \to \infty} ||x_n - (1,2)||_{\infty} = 0.$

Proposition 1.7

A vector sequence $(x_k)_k$ is convergent on \mathbb{R}^n if and only if the sequences $(x_k^1)_k, \ldots, (x_k^n)_k$ are convergent in \mathbb{R} , and we have:

$$\lim_{k o\infty}x_k=(\lim_{k o\infty}x_k^1,\ldots,\lim_{k o\infty}x_k^n)$$

Definition 1.14

A vector sequence is said to be divergent if it doesn't admit a limit.

Example

Study the convergence of $(x_n)_{n\geq 1}$ such that $x_n=(2^n,\frac{1}{n})$.

Solution:

 $\lim_{n\to\infty}x_n=\lim_{n\to\infty}(2^{n,\frac{1}{n}})=(\lim_{n\to\infty}2^n,\lim_{n\to\infty}\frac{1}{n})=(\infty,0)$, therefore the sequence is divergent.

Definition 1.15

We call sub-sequence of the sequence $(x_k)_{k\geq 0}$ of \mathbb{R}^n , every sequence of the form $(x_{\alpha(k)})$ where $\alpha: \mathbb{N} \to \mathbb{N}$ is a strictly increasing mapping.

Example:

Study the convergence of the sequence $(x_n)_{n\geq 1}$ such that $x_n=(\frac{(-1)^n n}{n+1},\frac{n+(-1)^n}{n^2})$.

Solution:

We have
$$\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} (\frac{2n}{2n+1}, \frac{2n+1}{4n^2}) = (1,0)$$
 and $\lim_{n\to\infty} x_{2n+1} = \lim_{n\to\infty} (\frac{-(2n+1)}{2n+2}, \frac{2n}{(2n+1)^2}) = (-1,0)$. Therefore $(x_n)_{n\geq 1}$ is divergent.

Proposition 1.10

Let x_k be a vector sequence on \mathbb{R}^n . If $x_k \stackrel{||\cdot||}{\to} a$ when $k \to \infty$, then the numerical sequence $(||x_k||_k)$ converges to ||a||.

Definition 1.16

Let x_k be a vector sequence on \mathbb{R}^n and $||\cdot||$ be a norm on \mathbb{R}^n . We say that $(x_k)_k$ is bounded in \mathbb{R}^n if there exists M>0 such that $\forall k\geq 0$, $||x_k||\leq M$.

Proposition 1.11

Let $(x_k)_k$ be a vector sequence on \mathbb{R}^n . If $x_k \stackrel{||\cdot|}{\to} a$ when $k \to \infty$, then the sequence $(x_k)_k$ is bounded in \mathbb{R}^n .

Proof:

First, let us recall that $(x_k)_k$ is bounded in $\mathbb{R}^n \iff$ the sequences $(x_k^1)_k, \dots, (x_k^n)_k$ are also bounded in \mathbb{R} .

Then, as
$$x_k\stackrel{||\cdot||}{ o} a$$
, $(orall \epsilon>0)(\exists k_0\in\mathbb{N})(orall k\geq k_0,||x_k-a||<\epsilon)$

Now, for
$$\epsilon=1$$
, $(\exists k_0\in\mathbb{N})(\forall k\geq k_0,||x_k||<1+||a||)$

Take
$$M=max\{||x_k||,\ldots,||x_{k_0}||,1+||a||\} \implies orall k\geq 0,||x_k||\leq M$$

Remark

For a sequence to be divergent, we can simply show that it is not bounded. Or we can show that at least one component is divergent.

If a sequence is bounded, it does not necessarily mean it is convergent. But, if a sequence is convergent, then we can say it is bounded.

Example

Let
$$x_n=(\cos n,\sin n), \ \text{for}\ n\geq 0$$

$$||x_n||_1=|\cos n|+|\sin n|\leq 2, \forall n\geq 0, \ \text{but}\ (x_k)_{n\geq 0} \ \text{is not convergent}.$$

Theorem 1.2

Let $(x_k)_k$ and $(y_k)_k$ be two vector sequence of \mathbb{R}^n . If $x_k \stackrel{||\cdot||}{\to} a$ and $y_k \stackrel{||\cdot||}{\to} b$ when $k \to \infty$, then the sequence $(\alpha x_k + \beta y_k)$ converges to $\alpha a + \beta b$, for $\alpha, \beta \in \mathbb{R}$.

Proof:

$$\begin{split} \text{We have } \forall k \geq 0, \ \alpha x_k + \beta y_k - \alpha a - \beta b &= \alpha(x_k - a) + \beta(y_k - b) \\ \Longrightarrow \ \forall k \geq 0, 0 \leq ||\alpha x_k + \beta y_k - \alpha a - \beta b|| \leq |\alpha|||x_k - a|| + |\beta|||y_k - b|| \\ \Longrightarrow \ 0 \leq \lim_{k \to \infty} ||\alpha x_k + \beta y_k - \alpha a - \beta b|| \leq |\alpha| \lim_{k \to \infty} ||x_k - a|| + |\beta| \lim_{k \to \infty} ||y_k - b|| \leq 0 \\ \Longrightarrow \ \lim_{k \to \infty} ||\alpha x_k + \beta y_k - \alpha a - \beta b|| = 0. \end{split}$$

Theorem 1.3

Let $(x_k)_k$ be a vector sequence of \mathbb{R}^n and $(\alpha_k)_k$ be a scalar sequence of \mathbb{R} . If $x_k \stackrel{||\cdot||}{\to} a$ and $\alpha_k \to a$ when $k \to \infty$, then the sequence $(\alpha_k x_k)$ converges to αa .

Proof:

We have
$$\forall k \geq 0, \alpha_k x_k - \alpha a = \alpha_k x_k - \alpha_k a + \alpha_k a - \alpha a$$

$$\implies \forall k \geq 0, 0 \leq ||\alpha_k x_k - \alpha a|| \leq |\alpha_k|||x_k - a|| + |\alpha_k - a|||a||$$

$$\implies 0 \leq \lim_{k \to \infty} ||\alpha_k x_k - \alpha a|| \leq \lim_{k \to \infty} |\alpha_k|||x_k - a|| + ||a|| \lim_{k \to \infty} |\alpha_k - \alpha| \leq 0$$

$$\implies \lim_{k \to \infty} ||\alpha_k x_k - \alpha a|| = 0.$$