ĐỀ THI TOÁN QUỐC GIA CỦA TRUNG QUỐC NĂM 2011

Đề thi này được dịch bởi Sharing

Bài 1. Cho a_1, a_2, \ldots, a_n là các số thực. Chứng minh rằng

$$\sum_{i=1}^{n} a_i^2 - \sum_{i=1}^{n} a_i a_{i+1} \le \lfloor \frac{n}{2} \rfloor (M-m)^2.$$

 $\dot{\sigma}$ đây $a_{n+1} = a_1, M = \max_{1 \le i \le n} a_i, m = \min_{1 \le i \le n} a_i.$

Bài 2. Trên đường tròn ngoại tiếp của tam giác nhọn ABC, D là điểm chính giữa của $\stackrel{\frown}{BC}$, gọi X là một điểm trên $\stackrel{\frown}{BD}$, E là điểm chính giữa của $\stackrel{\frown}{AX}$, S nằm trên $\stackrel{\frown}{AX}$, đường thẳng SD và BC giao nhau tại R, các đường thẳng SE và AX giao nhau tại T. Nếu $RT \parallel DE$. Chứng minh rằng tâm nội tiếp của tam giác ABC nằm trên RT.

Bài 3. Cho A là tập hữu hạn các số thực, A_1, A_2, \cdots, A_n là các tập con khác rỗng của A sao cho

- (a) Tổng các phần tử của A bằng 0,
- (b) Với mỗi $x_i \in A_i (i=1,2,\cdots,n)$, ta có $x_1+x_2+\cdots+x_n>0$.

Chứng minh rằng tồn tại $1 \le k \le n$, và $1 \le i_1 < i_2 < \cdots < i_k \le n$, sao cho

$$|A_{i_1}\bigcup A_{i_2}\bigcup\cdots\bigcup A_{i_k}|<\frac{k}{n}|A|.$$

Bài 4. Cho n là một số nguyên dương, tập $S=\{1,2,\cdots,n\}$. Với mỗi hai tập khác rỗng A và B, tìm giá trị bé nhất của $|A\Delta S|+|B\Delta S|+|C\Delta S|$, ở đây $C=\{a+b|a\in A,b\in B\}, X\Delta Y=X\cup Y-X\cap Y.$

Bài 5. Cho $a_i, b_i, i = 1, \dots, n$ là các số thực không âm và n > 3 sao cho $a_1 + a_2 + \dots + a_n = b_1 + b_2 + \dots + b_n > 0$. Tìm giá trị lớn nhất của $\frac{\sum_{i=1}^n a_i(a_i + b_i)}{\sum_{i=1}^n b_i(a_i + b_i)}$.

Bài 6. Cho m, n là các số nguyên dương. Chứng minh rằng có vô hạn cặp (a,b) các số nguyên dương sao cho $a+b|am^a+bn^b$ và $\gcd(a,b)=1$.