Σπύρος Φρονιμός - Μαθηματικός

 \boxtimes : spyrosfronimos@gmail.com | \square : 6932327283 - 6974532090

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ 12 Απριλίου 2017

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Γ΄ Λυκείου ΤΥΠΟΛΟΓΙΟ

1. Συνάρτηση

Αντιστοίχηση με την οποία κάθε $x \in A$ αντιστοιχεί σε ένα μόνο $y \in B$.

- x: ανεξάρτητη, y εξαρτημένη μεταβλητή.
- y: τιμή της f στο x δηλαδή y = f(x).
- y = f(x): τύπος της συνάρτησης.
- Α: πεδίο ορισμού.
- f(A) σύνολο τιμών. $f(D_f) \subseteq B$.

Είδη συναρτήσεων.

Είδος	Τύπος	Πεδίο Ορισμού
Πολυωνυμική	$f(x) = a_{\nu}x^{\nu} + \ldots + a_0$	$D_f = \mathbb{R}$
Ρητή	$f(x) = \frac{P(x)}{Q(x)}$	$D_f = \{ x \in \mathbb{R} Q(x) \neq 0 \}$
Άρρητη	$f(x) = \sqrt{A(x)}$	$D_f = \{ x \in \mathbb{R} A(x) \ge 0 \}$
	$f(x) = \eta \mu x$, sunx	$D_f = \mathbb{R}$
Τριγωνομετρική	$f(x) = \varepsilon \varphi x$	$D_f = \left\{ x \in \mathbb{R} \mid x \neq \kappa \pi + \frac{\pi}{2} , \ \kappa \in \mathbb{Z} \right\}$
	$f(x) = \sigma \varphi x$	$D_f = \{ x \in \mathbb{R} \mid x \neq \kappa \pi , \kappa \in \mathbb{Z} \}$
Εκθετική	$f(x) = a^x , \ 0 < a \neq 1$	$D_f = \mathbb{R}$
Λογαριθμική	$f(x) = \log x \ , \ \ln x$	$D_f = (0, +\infty)$

Ταυτοτική

f(x) = x

Σταθερή
$$f(x) = c$$

Μηδενική f(x) = 0

2. Πράξεισ συναρτήσεων

Τύπος	Πεδίο ορισμού	
(f+g)(x) = f(x) + g(x)	$D_{f+g} = \{x \in \mathbb{R} x \in D_f \cap D_g\}$	
(f - g)(x) = f(x) - g(x)	$D_{f-g} = \{ x \in \mathbb{R} x \in D_f \cap D_g \}$	
$(f \cdot g)(x) = f(x) \cdot g(x)$	$D_{f \cdot g} = \{ x \in \mathbb{R} x \in D_f \cap D_g \}$	
$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$	$D_{\frac{f}{g}} = \{x \in \mathbb{R} x \in D_f \cap D_g \text{ kal } g(x) \neq 0\}$	

1. Συχνότητες

i. Απόλυτη συχνότητα ή Συχνότητα

 v_i : το **πλήθος** των παρατηρήσεων ίσες με την τιμή x_i .

ii. Σχετική συχνότητα

 $f_i = \frac{v_i}{v}$: το ποσοστό των παρατηρήσεων ίσες με την τιμή x_i από όλο το δείγμα. $f_i\% = \frac{v_i}{v} \cdot 100\%$

iii. **Αθροιστική συχνότητα**

 $N_i = v_1 + v_2 + \ldots + v_i$: το πλήθος των παρατηρήσεων που είναι μικρότερες ή ίσες της τιμής x_i (μόνο για ποσοτικές μεταβλητές).

iv. Σχετική αθροιστική συχνότητα

 $F_i = f_1 + f_2 + \ldots + f_i$: το ποσοστό των παρατηρήσεων που είναι μικρότερες ή ίσες της τιμής x_i (μόνο για ποσοτικές μεταβλητές).

$$F_i\% = F_i \cdot 100\%$$
.

2. Ιδιότητες συχνοτήτων

Το ν είναι το μέγεθος του δείγματος και το κ το πλήθος των τιμών x_i .

i.
$$0 \le v_i \le v$$
.

ii.
$$v_1 + v_2 + ... + v_{\kappa} = v$$

iii.
$$0 \le f_i \le 1$$
 kai $0 \le f_i \% \le 100\%$.

iv.
$$f_1 + f_2 + \ldots + f_{\kappa} = 1$$

v.
$$f_1\% + f_2\% + \ldots + f_{\kappa}\% = 100\%$$

vi.
$$v_i = N_i - N_{i-1}$$

xiv.
$$N_{\kappa} = v$$

vii.
$$f_i = F_i - F_{i-1}$$

xi.
$$v_1 = N$$

$$xv. F_{\kappa} = 1$$

ix.
$$F_i = \frac{N_i}{N_i}$$

$$y_1 = f_1 \% = F_1 \%$$

xvi.
$$F_{\nu}\% = 100\%$$

3. Μέση τιμή

Το κέντρο των παρατηρήσεων. Η μέση τιμή ενός δείγματος δίνεται από τους παρακάτω τύπους:

Όταν γνωρίζουμε	Μέση τιμή $ar{x}$
Παρατηρήσεις t_1, t_2, \ldots, t_{v}	$\bar{x} = \frac{1}{\nu} \sum_{i=1}^{\nu} t_i$
Συνχότητες $\nu_1, \nu_2, \ldots, \nu_{\kappa}$	$\bar{x} = \frac{1}{\nu} \sum_{i=1}^{\kappa} x_i \cdot \nu_i$
Σχετικές συχνότητες $f_1, f_2, \ldots, f_{\kappa}$	$\bar{x} = \sum_{i=1}^{k} x_i \cdot f_i$

3

4. Σταθμικός Μέσος :
$$\bar{x} = \frac{\sum\limits_{i=1}^{\nu}t_i\cdot w_i}{\sum\limits_{i=1}^{\nu}w_i}$$

5. Διάμεσος

6. Εύρος:
$$R = \max t_i - \min t_i$$

7. Διακύμανση

Όταν γνωρίζουμε	Διακύμανση s ²
Παρατηρήσεις t_i (μ.ο. ακέραιος)	$s^2 = \frac{1}{\nu} \sum_{i=1}^{\nu} (t_i - \bar{x})^2$
Παρατηρήσεις t_i (μ.ο. μη ακέραιος)	$s^{2} = \frac{1}{\nu} \left\{ \sum_{i=1}^{\nu} t_{i}^{2} - \frac{\left(\sum_{i=1}^{\nu} t_{i}\right)^{2}}{\nu} \right\}$
Συχνότητες v_i (μ.ο. ακέραιος)	$s^{2} = \frac{1}{\nu} \sum_{i=1}^{\kappa} (x_{i} - \bar{x})^{2} \nu_{i}$
Συχνότητες v_i (μ.ο. μη ακέραιος)	$s^{2} = \frac{1}{\nu} \left\{ \sum_{i=1}^{\kappa} x_{i}^{2} \nu_{i} - \frac{\left(\sum_{i=1}^{\kappa} x_{i} \nu_{i}\right)^{2}}{\nu} \right\}$
Σχετικές Συχν. f_i (μ.ο ακέραιος)	$s^{2} = \sum_{i=1}^{k} (x_{i} - \bar{x})^{2} f_{i}$
Σχετικές Συχν. f_i (μ.ο μη ακέραιος)	$s^2 = \sum_{i=1}^{\kappa} x_i^2 f_i - \bar{x}^2$
$t_i, \ v_i \ \acute{\eta} \ f_i$	$s^2 = \overline{x^2} - \bar{x}^2$

όπου
$$\overline{x^2} = \frac{1}{\nu} \sum_{i=1}^{\nu} t_i^2 = \frac{1}{\nu} \sum_{i=1}^{\kappa} x_i^2 \nu_i = \sum_{i=1}^{\kappa} x_i^2 f_i.$$

- **8.** Τυπική απόκλιση : $s = \sqrt{s^2}$.
- **9. Συντελεστής Μεταβλητότητας** : $CV = \frac{s}{|\bar{x}|}$. Αν CV < 10% το δέιγμα είναι ομοιογενές.