PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 07/04/2005 – TRACCIA A

PARTE II

ESERCIZIO 1:

Progettare una rete R sequenziale con una linea di ingresso x ed una linea di uscita z. Ad ogni colpo di clock, R riceve un bit sulla linea x. I primi due bit b_1 e b_0 ricevuti sulla linea x indicano alla rete R quante volte riconoscere la sottosequenza 11. Al termine del riconoscimento la rete restituisce 1 sulla linea z e riconosce una nuova sequenza. Si noti che, nel caso in cui sia b_1 che b_0 sono uguali a zero, la rete non dovrà riconoscere alcuna sottosequenza e quindi leggere una nuova coppia b_1 e b_0 .

Segue un esempio di possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8
x(t):	1	0	0	1	1	1	0	1	1
z(t):	0	0	0	0	0	0	0	0	1

In questo caso i primi due bit in ingresso ad R sono $b_1=1$ e $b_0=0$ e formano il numero $b_1b_0=10=2$. Quindi la rete restituisce 1 nel momento in cui riceve in ingresso esattamente 2 volte la sequenza 11. All'istante t=9, la rete inizia a riconoscere una nuova coppia di bit b_1 e b_0 e le nuove sottosequenze di 11.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione CNTVm X che, dati due vettori V e W di 32 elementi, posti in RAM a partire rispettivamente dagli indirizzi memorizzati nelle locazioni M[X] e M[X+1], restituisce nell'accumulatore il numero di coppie di elementi V[i] e W[i] ($0 \le i \le 31$) che occupano la stessa posizione nei rispettivi vettori e tali che V[i] < W[i].

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 07/04/2005 – TRACCIA A

PARTE I

DOMANDA 1:

Descrivere il funzionamento e mostrare la struttura interna di un registro a scorrimento sinistro.

DOMANDA 2:

Spiegare perchè una forma somma di prodotti (prima forma normale) minima è sempre costituita da un insieme irridondante di implicanti primi.

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 07/04/2005 – TRACCIA B

PARTE II

ESERCIZIO 1:

Progettare una rete R sequenziale con una linea di ingresso x ed una linea di uscita z. Ad ogni colpo di clock, R riceve un bit sulla linea x. I primi due bit b_1 e b_0 ricevuti sulla linea x indicano alla rete R quante volte riconoscere la sottosequenza 01. Al termine del riconoscimento la rete restituisce 1 sulla linea z e riconosce una nuova sequenza. Si noti che, nel caso in cui sia b_1 che b_0 sono uguali a zero, la rete non dovrà riconoscere alcuna sottosequenza e quindi leggere una nuova coppia b_1 e b_0 .

Segue un esempio di possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8
x(t):	1	0	0	0	1	1	0	0	1
z(t):	0	0	0	0	0	0	0	0	1

In questo caso i primi due bit in ingresso ad R sono b_1 =1 e b_0 =0 e formano il numero b_1b_0 =10=2. Quindi la rete restituisce 1 nel momento in cui riceve in ingresso esattamente 2 volte la sequenza 01. All'istante t=9, la rete inizia a riconoscere una nuova coppia di bit b_1 e b_0 e le nuove sottosequenze di 01.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione CNTVMe X che, dati due vettori V e W di 32 elementi, posti in RAM a partire rispettivamente dagli indirizzi memorizzati nelle locazioni M[X] e M[X+1], restituisce nell'accumulatore il numero di coppie di elementi V[i] e W[i] ($0 \le i \le 31$) che occupano la stessa posizione nei rispettivi vettori e tali che V[i] \ge W[i].

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 07/04/2005 – TRACCIA B

PARTE I

DOMANDA 1:

Descrivere il funzionamento e mostrare la struttura interna di un registro circolare destro.

DOMANDA 2:

Descrivere il procedimento di calcolo di una forma prodotto di somme (seconda forma normale) minima

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 07/04/2005 – TRACCIA C

PARTE II

ESERCIZIO 1:

Progettare una rete R sequenziale con una linea di ingresso x ed una linea di uscita z. Ad ogni colpo di clock, R riceve un bit sulla linea x. I primi due bit b_1 e b_0 ricevuti sulla linea x indicano alla rete R quante volte riconoscere la sottosequenza $\mathbf{00}$. Al termine del riconoscimento la rete restituisce 1 sulla linea z e riconosce una nuova sequenza. Si noti che, nel caso in cui sia b_1 che b_0 sono uguali a zero, la rete non dovrà riconoscere alcuna sottosequenza e quindi leggere una nuova coppia b_1 e b_0 .

Segue un esempio di possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8
x(t):	1	0	1	0	0	0	1	0	0
z(t):	0	0	0	0	0	0	0	0	1

In questo caso i primi due bit in ingresso ad R sono b_1 =1 e b_0 =0 e formano il numero b_1b_0 =10=2. Quindi la rete restituisce 1 nel momento in cui riceve in ingresso esattamente 2 volte la sequenza 00. All'istante t=9, la rete inizia a riconoscere una nuova coppia di bit b_1 e b_0 e le nuove sottosequenze di 00.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione CNTVme X che, dati due vettori V e W di 32 elementi, posti in RAM a partire rispettivamente dagli indirizzi memorizzati nelle locazioni M[X] e M[X+1], restituisce nell'accumulatore il numero di coppie di elementi V[i] e W[i] ($0 \le i \le 31$) che occupano la stessa posizione nei rispettivi vettori e tali che V[i] \le W[i].

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 07/04/2005 – TRACCIA C

PARTE I

DOMANDA 1:

Descrivere il funzionamento e mostrare la struttura interna di un registro a scorrimento destro.

DOMANDA 2:

Spiegare perché gli implicati primi essenziali appartengono ad ogni forma prodotto di somme (seconda forma normale) prima irridondante.

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 07/04/2005 – TRACCIA D

PARTE II

ESERCIZIO 1:

Progettare una rete R sequenziale con una linea di ingresso x ed una linea di uscita z. Ad ogni colpo di clock, R riceve un bit sulla linea x. I primi due bit b_1 e b_0 ricevuti sulla linea x indicano alla rete R quante volte riconoscere la sottosequenza $\mathbf{10}$. Al termine del riconoscimento la rete restituisce 1 sulla linea z e riconosce una nuova sequenza. Si noti che, nel caso in cui sia b_1 che b_0 sono uguali a zero, la rete non dovrà riconoscere alcuna sottosequenza e quindi leggere una nuova coppia b_1 e b_0 .

Segue un esempio di possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8
x(t):	1	0	0	1	0	0	1	1	0
z(t):	0	0	0	0	0	0	0	0	1

In questo caso i primi due bit in ingresso ad R sono b_1 =1 e b_0 =0 e formano il numero b_1b_0 =10=2. Quindi la rete restituisce 1 nel momento in cui riceve in ingresso esattamente 2 volte la sequenza 10. All'istante t=9, la rete inizia a riconoscere una nuova coppia di bit b_1 e b_0 e le nuove sottosequenze di 10.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione CNTVM X che, dati due vettori V e W di 32 elementi, posti in RAM a partire rispettivamente dagli indirizzi memorizzati nelle locazioni M[X] e M[X+1], restituisce nell'accumulatore il numero di coppie di elementi V[i] e W[i] ($0 \le i \le 31$) che occupano la stessa posizione nei rispettivi vettori e tali che V[i] > W[i].

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 07/04/2005 – TRACCIA D

PARTE I

DOMANDA 1:

Descrivere il funzionamento e mostrare la struttura interna di un registro circolare sinistro.

DOMANDA 2:

Sia NAND l'operatore binario definito come "x NAND y = NOT(x AND y)". Dimostrare che l'insieme {NAND} è funzionalmente completo.