Comp202 Midterm Review

Topics We Have Covered So Far

- Introduction (Why does this class exist?)
- 2. OO-Programming Basics
- 3. **Analysis**
- 4. Recursion
- 5. Arrays (Static, Dynamic)
- 6. Linked Lists (Single, Double)
- List ADT
- 8. Stack ADT, Queue ADT
- 9. Tree ADT, Binary Tree ADT, Tree Traversal, Tree Implementations
- 10. Binary Search Trees, AVL, 24, RB Trees
- 11. Priority Queue ADT, Heaps
- 12. Maps, Hashing

Analysis

Given that foo(i,j) runs in O(1) time, calculate the asymptotic time complexities of the following

```
1. for(i = 0; i < n; i +=10)
    for(j = 0; j < i; j++)
    foo(i,j);</pre>
```

```
for(i = 0; i < n; i +=10)
for(j = 1; j < n; j *= 2)
foo(i,j);</pre>
```

Recursion

Pseudo code for recursive squaring?

$$p(x,n) = \begin{cases} 1 & \text{if } n = 0 \\ x \cdot p(x,(n-1)/2)^2 & \text{if } n > 0 \text{ is odd} \\ p(x,n/2)^2 & \text{if } n > 0 \text{ is even} \end{cases}$$

□ Time complexity?

The java.util.List ADT

- The java.util.List interface includes the following methods:
 - size(): Returns the number of elements in the list.
- isEmpty(): Returns a boolean indicating whether the list is empty.
 - get(i): Returns the element of the list having index i; an error condition occurs if i is not in range [0, size() 1].
 - set(i, e): Replaces the element at index i with e, and returns the old element that was replaced; an error condition occurs if i is not in range [0, size() 1].
 - add(i, e): Inserts a new element e into the list so that it has index i, moving all subsequent elements one index later in the list; an error condition occurs if i is not in range [0, size()].
- remove(i): Removes and returns the element at index i, moving all subsequent elements one index earlier in the list; an error condition occurs if i is not in range [0, size() 1].

Implementing the List ADT

- With arrays?
- With linked lists?
- With trees?

Complexities of the methods in each implementation

The Stack ADT

- The Stack ADT stores arbitrary objects
- Main stack operations:
 - push(object): inserts an element
 - object pop(): removes and returns the last inserted element
- Insertions (push) and deletions (pop) follow the last-in first-out (LIFO) scheme

- object top(): returns the last inserted element without removing it
- integer size(): returns the number of elements stored
- boolean isEmpty(): indicates whether no elements are stored

Array-based Stack

- A simple way of implementing the Stack ADT is to use an array
- We add elements from left to right
- A variable keeps track of the index of the top element

9

The Queue ADT

Hitti

- The Queue ADT stores arbitrary objects
- Main queue operations:
 - enqueue(object): inserts an element at the end of the queue
 - object dequeue(): removes and returns the element at the front of the queue
- Insertions and deletions follow the first-in first-out (FIFO) scheme
- Insertions are at the rear of the queue and removals are at the front of the queue

Auxiliary queue operations:

- object first(): returns the element at the front without removing it
- integer size(): returns the number of elements stored
- boolean isEmpty(): indicates whether no elements are stored

Boundary cases:

 Attempting the execution of dequeue or first on an empty queue returns null

Array-based Queue

- \Box Use an array of size N in a **circular** fashion
- Two variables keep track of the front and size
 f index of the front element
 sz number of stored elements
- □ When the queue has fewer than N elements, array location $r = (f + sz) \mod N$ is the first empty slot past the rear of the queue

Tree ADT

- Hierarchical collection of nodes
- Generic methods:
 - integer size()
 - boolean isEmpty()
 - Iterator iterator()
 - Iterable positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - Iterable children(p)
 - Integer numChildren(p)

- Generic methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)
- The BinaryTree ADT extends the Tree ADT with additional methods:
 - node left(p)
 - node right(p)
 - node sibling(p)

These methods could be part of a given node or the tree class itself...

Euler Tour Traversal - BTs

Algorithm eulerTour(T, p)

```
pre-visit (p)
pl = left(p)
if pl \neq null
    eulerTour (T, pl)
visit (p)
pr = right(p)
if pr \neq null
    eulerTour (T, pr)
post-visit (p)
```

Pre-order
In-order
Post-order

Linked Structure for Binary Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- the Position ADT

Array-Based Representation of Binary Trees

Binary Search

Example: find(7)

Binary Search Trees

- Most important property?
- What type of traversal "makes sense"?
- Search?
- Insert
- Delete?
- E.g.: find(4), add(5),add(2), remove(3)

Performance

AVL Trees

AVL Trees are balanced binary search trees that satisfy the height-balance property:

For every internal node v of T, heights of the children of v can differ by at most 1

Any subtree of an AVL tree, is itself an AVL tree

An example of an AVL tree where the heights are shown next to the nodes

Insertion and Deletion

- Find where to insert/remove
- Insert/remove as if it was an ordinary BST
- Re-balance if needed (only need to check the ancestors)

Insert 54

AVL Insertion

AVL Insertion

AVL Insertion

Red-Black Trees

- A red-black tree can also be defined as a binary search tree that satisfies the following properties:
 - Root Property: the root is black
 - External Property: every leaf is black
 - Internal Property: the children of a red node are black
 - Depth Property: all the leaves have the same black depth

Insertion

Algorithm insert(k, o)

- 1. We search for key **k** to locate the insertion node **z**
- 2. We add the new entry (k, o) at node z and color z red
- 3. while doubleRed(z)
 if isBlack(sibling(parent(z)))
 z ← restructure(z)
 return
 else { sibling(parent(z) is red }

 $z \leftarrow recolor(z)$

Case 1:

Case 2:

Restructuring

 There are four restructuring configurations depending on whether the double red nodes are left or right children

25

Recoloring

- \Box The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root
- \Box The double red violation may propagate to the grandparent u

Priority Queue ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the PriorityQueue ADT
 - insert(k, v)inserts an entry with key kand value v
 - removeMin()
 removes and returns the entry with smallest key, or null if the the priority queue is empty

- Additional methods
 - min()
 returns, but does not remove, an entry with smallest key, or null if the the priority queue is empty
 - size(), isEmpty()
- Note that the max version is also possible

Heaps

- A heap is a <u>binary tree</u> satisfying:
- □ Heap-Order: $key(v) \ge key(parent(v))$
 - Complete Binary Tree:
- The last node of a heap is the rightmost node of maximum depth

Array-based Heap Implementation

- We can represent a heap with n keys by means of an array of length n
- □ For the node at rank *i*
 - the left child is at rank 2i + 1
 - the right child is at rank 2i + 2
- Operation add corresponds to inserting at rank n + 1
- Operation remove_mincorresponds to removing at rankn, after the swap

2	5	6	9	7
0	1	2	3	4

Heap Insertion

Priority Queue Sorting

Algorithm **PQ-Sort**(S, C)

Input list *S*, comparator *C* for the elements of *S*

Output list S sorted in increasing order according to C

 $P \leftarrow$ priority queue with comparator C

while $\neg S.isEmpty$ ()

 $e \leftarrow S.remove(S.first())$

 $P.insert(e,\emptyset)$

while $\neg P.isEmpty()$

 $e \leftarrow P.removeMin().getKey()$

S.addLast(e)

Sorted List as PQT?
Unsorted List as PQT?
Heap as PQT?
AVL or RB Tree as PQT?

The Map ADT

- get(k): if the map M has an entry with key k, return its associated value; else, return null
- put(k, v): insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k
- remove(k): if the map M has an entry with key k, remove it from M and return its associated value; else, return null
- size(), isEmpty()
- entrySet(): return an iterable collection of the entries in M
- keySet(): return an iterable collection of the keys in M
- values(): return an iterator of the values in M

Hash Functions

A hash function is usually specified as the composition of two functions:

Hash code:

 h_1 : keys \rightarrow integers

Compression function:

 h_2 : integers $\rightarrow [0, N-1]$

 The hash code is applied first, and the compression function is applied next on the result, i.e.,

$$\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{h}_2(\boldsymbol{h}_1(\boldsymbol{x}))$$

The goal of the hash function is to
 "disperse" the keys in an apparently random way

Hashing

Hash Codes:

Memory address

Polynomial accumulation

$$k = a_0 a_1 \dots a_{n-1}$$

 $h(k) = a_0 + a_1 z + a_2 z^2 + \dots$
 $+ a_{n-1} z^{n-1}$

at a fixed value z, ignoring overflows

Compression:

MAD

 $(abs(\boldsymbol{a} \cdot \boldsymbol{h}(\boldsymbol{k}) + \boldsymbol{b}) \mod \boldsymbol{P}) \mod N$

Collision Handling

- Separate Chaining: Buckets are containers
 - Linked-lists
 - Balanced Binary Search Trees (Java 8)
- Open Addressing: Check other buckets
 - Linear probing (check the adjacent ones in circular fashion)
 - Double Hashing (calculate the offset using another hash function)

Example

	•	•
 \boldsymbol{k}	h(k)	d(k)
 18	5	3
 41	2	1
22	9	6
 44	5	5
 59	7	4
 32	6	3
 31	5	4
73	8	4

