A complete solution for scattering in a kind of quiver gauge theory

Su Yingze

Nagoya University

April 21st 2025

Contents

Preliminary

A brief introduction to BCFW

BCFW recursion relation is a method to compute scattering amplitude, especially in Yang-Mills theory and gravity.

- Ruth Britto
- Freddy Cachazo
- Bo Feng
- Edward Witten

From real to complex – Analytic Continuation

Why is analytic continuation valid?

- Tree level scattering amplitudes are rational functions of Lorentz invariants, such as $p_{i\mu}p_{j}^{\mu}$, $p_{i\mu}\epsilon_{j}^{\mu}$.
- **Locality** tells us that any pole of a tree-level amplitude must correspond to a on-shell propagating particle.
- There's only single pole, no branch cuts (logs, square roots, etc) at tree level.

Ampltudes can be shifted to complex plane

Momentum Shift in BCFW

What did BCFW do to make the shift?

Here we consider the case in which all particles are massless, $p_i^2=0$ for all $i=1,2,\ldots,n$. Then introduce n complex-valued vectors r_i^μ .

- (i) $\sum_{i=1}^{n} r_i^{\mu} = 0$,
- (ii) $r_i \cdot r_j = 0$ for all $i, j = 1, 2, \dots, n$. In particular $r_i^2 = 0$,
- (iii) $p_i \cdot r_i = 0$ for each i (no sum).

These vectors r_i are used to define n shifted momenta

$$\hat{p}_i^\mu \equiv p_i^\mu + z r_i^\mu \qquad \text{with} z \in \mathcal{C}$$

Note that,

- (A) By property (i), momentum conservation holds for the shifted momenta: $\sum_{i=1}^n \hat{p}_i^\mu = 0$,
- (B) By (ii) and (iii), we have $\hat{p}_i^2=0,$ so each shifted momentum is on-shell,
- (C) For a non-trival subset of generic momenta $\{p_i\}_{i\in I}$, define $P_I^\mu=\sum_{i\in I}p_i^\mu.$

Then, \hat{P}_{I}^{2} is linear in z:

$$\hat{P}_I^2 = \left(\sum_{i \in I} \hat{p}_i\right)^2 = P_I^2 + 2zP_I \cdot R_I \quad \text{with} \quad R_I = \sum_{i \in I} r_i,$$

because the z^2 term vanishes by property (ii). We can write

$$\hat{P}_I^2 = -\frac{P_I^2}{z_I}(z-z_I) \quad \text{with} \quad z_I = -\frac{P_I^2}{2P_I \cdot R_I}$$

Fantasitic result from Cauchy Theorem

As a result of (A) and (B) (momentum conservation and on-shell), we can consider amplitude A_n in terms of shifted momentum \hat{p}_i^μ instead of original real momentum.

$$A_n \longrightarrow \hat{A}_n(z)$$

and we have known the possible positions of single poles, z_I , different propagators give us different single poles in the z-plane.

If we consider the meromorphic function $\frac{\hat{A}_n(z)}{z}$ in the complex plane, pick a contour that surrounds the simple pole at the origin. \bigstar The most important point here is that

$$Res|_{z=0} \frac{\hat{A}_n(z)}{z} = \hat{A}_n(0) = A_n$$

It means that the orignal ampltude equals to the residue at orign.

From Cauchy Theorem, we can ontain

$$A_n = -\sum_{z_I} Res|_{z=z_I} \frac{\hat{A}_n(z)}{z} + B_n,$$

where B_n is the residue of the pole at $z = \infty$, called boundary term.

Then, at a z_I pole, the propagator \hat{P}_I^2 goes to on-shell. In that limit, the shifted amplitude factorizes into to on-shell parts (Unitarity)

$$\hat{A}_n(z) \quad \xrightarrow{z \; \mathrm{near} \, z_I} \quad \hat{A}_L(z_I) \frac{1}{\hat{P}_I^2} \hat{A}_R(z_I) = -\frac{z_I}{z-z_I} \hat{A}_L(z_I) \frac{1}{P_I^2} \hat{A}_R(z_I)$$

This makes it easy to evaluate the residue at $z=z_I$

$$-Res|_{z=z_I} \frac{\hat{A}_n(z)}{z} = \hat{A}_L(z_I) \frac{1}{P_I^2} \hat{A}_R(z_I) =$$