1 Godeaux-Serre Varities

The main theorem:

Theorem 1.0.1. k field and G is a finite commutative k-group scheme then there exists a smooth projective geometrically connected 3-dimensional k-scheme X such that,

$$\operatorname{Pic}_{X/k}^{\tau} \cong G^{\vee}$$

1.1 Other examples

- (a) For any finite abstract group G there exists X with $\pi_1^{\text{\'et}}(X_{\bar{k}}) \cong G$
- (b) failure of Hodge symmetry in characteristic p
- (c) failure of lifting of surfaces in char p
- (d) if done in families then jumping of Hodge and de Rham numbers in mixed or equal char p

1.2 Finite Commutative Group Schemes

If H is a finite abstract group then then there is a finite constant k-group H.

If H is a finite abstract group with a $G_k = \operatorname{Gal}(k^{\operatorname{sep}}/k)$ -action α then we get a finite étale group scheme H_{α} representing the functor,

$$H_{\alpha}(k') = H^{\operatorname{Gal}(k^{\operatorname{sep}}/k')}$$

for k' finite separable over k.

Proposition 1.2.1. This is an equivalence of categories between finite étale k-groups and finite groups with a Galois action.

Remark. In characteristic 0, all finite group schemes are étale and thus all arise from the above constructions.

Example 1.2.2. μ_n over \mathbb{Q} corresponds to $\mu_n(\overline{\mathbb{Q}})$ as a $\operatorname{Gal}\left(\overline{\mathbb{Q}}/\mathbb{Q}\right)$ -module.

Example 1.2.3. μ_p and α_p in characteristic p are (nontrivial) connected finite group schemes

Remark. A sequence of k-groups,

$$1 \longrightarrow G' \longrightarrow G \stackrel{\pi}{\longrightarrow} G'' \longrightarrow 1$$

is exact if it is an exact sequence of fppf sheaves. This is equivalent to $\pi: G \to G''$ a faithfully flat surjection and G' is its kernel.

Theorem 1.2.4 (Connected-étale sequence). There is a canonical short exact sequence,

$$1 \, \longrightarrow \, G^0 \, \longrightarrow \, G \, \stackrel{\pi}{\longrightarrow} \, G/G^0 \, \longrightarrow \, 1$$

where G^0 is connected and G/G^0 is étale. Furthermore, if k is perfect then this sequence splits.

Remark. What is G/G^0 ? At first it is just the fppf quotient sheaf. However, we want this to be representable.

Theorem 1.2.5 (SGA3, Exp V, Thm. 4.1). Let X be a quasi-projective scheme over k and G is a finite k-group scheme acting on X. Then the ringed space quoteint X/G is a quasi-projective scheme and the map $\pi: X \to X/G$ is finite. If G acts freely then π is a G-torsor (meaning $\pi: G \to X/G$ if fppf and $G \times X \to X \times_{X/G} X$ is an isomorphism).

Remark. In general, if G acts freely, then "all good properties" of X descend to X/G e.g.

- (a) smoothness
- (b) normality
- (c) cohen-macaullayness

by faithfully flat descent.

Remark. Even if $G \odot X$ is not free X/G exists (in the generality of the theorem) and X/G is the coarse space of the stack [X/G].

1.3 Cartier Duality

For a finite commutative k-group scheme G we can construct the dual,

$$G^{\vee} = \mathcal{H}om(G, \mathbb{G}_m)$$

where this is the sheaf,

$$G^{\vee}(S) = \operatorname{Hom}_{\operatorname{gp}}(G_S, \mathbb{G}_m)$$

It turns out that G^{\vee} is representable by Spec $(k[G]^*)$ (see Mumford's book on abelian varities).

Theorem 1.3.1. The functor $G \mapsto G^{\vee}$ is an anti-equivalence sending short exact sequences to short exact sequences and $G \to (G^{\vee})^{\vee}$ is an isomorphism.

Example 1.3.2. $(\mathbb{Z}/n\mathbb{Z})^{\vee} = \mathcal{H}_{em}(\mathbb{Z}/n\mathbb{Z}, \mu_n) = \mu_n$. Furthermore, $\alpha_p^{\vee} = \alpha_p$. By double duality $\mu_n^{\vee} = \mathbb{Z}/n\mathbb{Z}$.

Remark. Therefore we can classify finite group schemes into four types: étale- étale, étale- infinitessimal, infinitessimal - étale, infinitessimal - infinitessimal. Examples of these three types are $\mathbb{Z}/n\mathbb{Z}$ for $p \nmid n$ and $\mathbb{Z}/p\mathbb{Z}$ and μ_p and α_p .

Remark. Cartier duality works for finite commutative group schemes over any base.

1.4 Picard Schemes

For X a k-scheme, define the functor,

$$\operatorname{Pic}^{\operatorname{pre}}_{X/k}(S) = \operatorname{Pic}\left(X \times_k S\right)$$

and define $\operatorname{Pic}_{X/k}$ to be the fppf sheafification.

Theorem 1.4.1. If X is projective and geometrically integral then $\operatorname{Pic}_{X/k}$ is represented by a locally finite type k-scheme and $\operatorname{Pic}_{X/k}(\bar{k})/\operatorname{Pic}_{X/k}^0(\bar{k})$ is a finitely generated abelian group.

Remark. We denote $\operatorname{Pic}_{X/k}^0$ the identity component. And $\operatorname{Pic}_{X/k}^\tau$ the union of components which are torsion in $\operatorname{Pic}_{X/k}/\operatorname{Pic}_{X/k}^0$ which is finite type.

Example 1.4.2. If X is a curve then $\operatorname{Pic}_{X/k}$ is smooth. To see this we can verify the infinitessimal criterion. If A is Artin local and $I \subset A$ is square zero then there is an exact sequence of sheaves,

$$1 \longrightarrow \mathcal{O}_X \otimes I \longrightarrow \mathcal{O}_{X_A}^{\times} \longrightarrow \mathcal{O}_{X_{A/I}}^{\times} \longrightarrow 0$$

and from the long exact sequence of cohomology,

$$H^1(X_A, \mathcal{O}_{X_A}^{\times}) \longrightarrow H^1(X_{A/I}, \mathcal{O}_{X_{A/I}}^{\times}) \longrightarrow H^2(X, \mathcal{O}_X \otimes I)$$

but dim X = 1 so $H^2(X, \mathcal{O}_X \otimes I) = 0$ and therefore the map $\operatorname{Pic}(X_A) \to \operatorname{Pic}(X_{A/I})$ is surjective.

Example 1.4.3. If X is smooth, then $\operatorname{Pic}_{X/k}^{\tau}$ is proper. Verify this using the valuative criterion.

Example 1.4.4. If X is a smooth curve of genus g then $\operatorname{Pic}_{X/k}^0$ is a smooth proper commutative group scheme of dimension g. We have,

$$T_0 \operatorname{Pic}_{X/k} \cong H^1(X, \mathcal{O}_X)$$

Use the previous construction with $A = k[\epsilon]$ and,

$$T_0 \operatorname{Pic}_{X/k} = \ker \left(\operatorname{Pic}_{X/k}(k[\epsilon]) \to \operatorname{Pic}_{X/k}(k) \right)$$

Remark. If $X(k) \neq \emptyset$ then $\operatorname{Pic}_{X/k}(S) = \operatorname{Pic}(X_S)/\operatorname{Pic}(S)$.

Remark. When X is not proper, why is $\operatorname{Pic}_{X/k}$ not nec. representable. The functorial criterion for loc. fin. pres: if Y is a scheme then Y is lpf iff for any direct limit $A = \varinjlim A_i$ we have $Y(A) = \varinjlim Y(A_i)$.

Using spreading out, $\operatorname{Pic}_{X/k}$ always satisfies this but $T_0\operatorname{Pic}_{X/k}=H^1(X,\mathcal{O}_X)$ is infinite dimensional so it can't be the tangent space of a finite type scheme.

Example 1.4.5. For X a nodal curve over k and Y a cuspidal curve over k we have $\operatorname{Pic}_{X/k}^0 = \mathbb{G}_m$ and $\operatorname{Pic}_{Y/k}^0 = \mathbb{G}_a$. "Pinching two points adds a \mathbb{G}_m " and "collapsing a tangent vector introduces a \mathbb{G}_a ".

Lemma 1.4.6. If $X \subset \mathbb{P}^n$ is a complete intersection of dimension ≥ 3 , then $\operatorname{Pic}_{X/k} \cong \mathbb{Z}$.

Proof. The claim that $\operatorname{Pic}(X) \cong \mathbb{Z}$ is a *Leftschetz-Theorem* (SGA2, Exp. XII, Cor. 3.7). The only other point is to show that it is étale which follows from $H^1(X, \mathcal{O}_X) = 0$.

Proposition 1.4.7. For X a complete intersection dim $X = d \ge 1$ and $N \ge 0$ then,

$$H^i(X, \mathcal{O}_X(-N)) = 0$$

for $1 \le i \le d - 1$ and,

$$H^0(X, \mathcal{O}_X(-N)) = \begin{cases} k & N = 0\\ 0 & \end{cases}$$

Proof. Induction.

Lemma 1.4.8. If $\pi: Y \to X$ is a G-torsor, then $\ker(\operatorname{Pic}_{X/k} \to \operatorname{Pic}_{Y/k}) \cong G^{\vee}$.

Proof. By fppf descent for line bundles: a line bundle on X is the same as a G-linearized line bundle on Y and the map forgets the linearization.

1.5 The Main Construction

We want to construct X smooth projective $\dim X = 3$ such that $\operatorname{Pic}_{X/k}^{\tau} \cong G^{\vee}$. In light of the previous lemmas, it would be enough to find a complete intersection $X \subset \mathbb{P}^n$ with a free action of G such that X/G is smooth because then because this is a finite group scheme,

$$\operatorname{Pic}_{X/G}^{\tau} = \ker\left(\operatorname{Pic}_{X/G}^{\tau} \to \operatorname{Pic}_{X}^{\tau}\right) \cong G^{\vee}$$

because $\operatorname{Pic}_X^{\tau} = 0$.

- (a) Find a projective space $P = \mathbb{P}^n$ with an action of G which is free away from codim ≥ 3 .
- (b) Let Z = P/G be a projective k-schemem and a finite map $\pi : P \to P/G$. If $U \subset P$ is the free locus for the action of G, then $U/G \hookrightarrow Z$ is smooth and open.
- (c) Bertini's theorem (Poonen's if k is finite) shows that after slicing by finitely many hypersurfaces H_1, \ldots, H_m so that if $Y = Z \cap H_1 \cap \cdots \cap H_m$ then Y is smooth and geometrically integral of dimension 3 and we can entirely miss the complement of U/G which lies in codimension 3. Then we get a Cartesian diagram,

$$\begin{array}{ccc} X & \longrightarrow & P \\ \downarrow & \downarrow & & \downarrow \\ Y & \longrightarrow & Z \end{array}$$

Given an ample line bundle \mathcal{L} on Z then $\pi^*\mathcal{L}$ is ample on P (because π is finite) so $\pi^{-1}(H_i)$ is also a hypersurface in P so X is a complete intersection and $X \subset U$ so $X \to Y$ is a G-torsor.

To do (1) let G act on $\mathbb{P}((k[G]^{\otimes n})^*)$ for some integer n (n=3) will work). Then the free locus of this action is complementary codimension ≥ 3 if $n \geq 3$. We will prove this when G has no nontrivial proper subgroups (if $k = \bar{k}$ this is equivalent to $G = \mu_{\ell}$ or $\mathbb{Z}/p\mathbb{Z}$ or α_p) but it's more difficult in general. If K is a field over k then any point $x \in P(K)$ can be lifted to $\varphi : G^n \to \mathbb{A}^1$ which is nonzero. This is because,

$$\mathbb{P}(K) = (K[G^n] \setminus \{0\})/K^*$$

and an element of $K[G^n]$ defines a map $G^n \to \mathbb{A}^1$ which has to be nonzero. The assumption shows that if $G_x \neq 0$ then $G_x = G$, so the G-invariance means,

$$\varphi(g+g_1, g+g_2, g+g_3) = \eta(g)\varphi(g_1, g_2, g_3)$$

for some $\eta: G \to \mathbb{G}_m$ because we lifted. Therefore we can define,

$$\psi(g_1, g_2, g_3) = \eta(-g_1)\varphi(g_1, g_2, g_3)$$

This is G-invariant if and only if ψ factors through $G^3 \to G^2$ but now $k[G^2]$ is codim $(\dim G)^3 - (\dim G)^2 \ge 4$ so the condition that $G_x \ne 0$ gives large enough codimension.

Remark. There is an issue with extending this proof that is for a finite commutative group scheme there might be ∞ -many distinct subgroups. E.g. α_p^2 contains ker F_L for any line L passing though $0 \in \mathbb{A}^2$.