Sorting and Algorithm Analysis

Computer Science E-22 Harvard Extension School

David G. Sullivan, Ph.D.

Sorting an Array of Integers

- · Ground rules:
 - sort the values in increasing order
 - sort "in place," using only a small amount of additional storage
- · Terminology:
 - · position: one of the memory locations in the array
 - element: one of the data items stored in the array
 - element i: the element at position i
- Goal: minimize the number of **comparisons** *C* and the number of **moves** *M* needed to sort the array.
 - move = copying an element from one position to another example: arr[3] = arr[5];

Defining a Class for our Sort Methods

- Our Sort class is simply a collection of methods like Java's built-in Math class.
- Because we never create Sort objects, all of the methods in the class must be *static*.
 - outside the class, we invoke them using the class name: e.g., Sort. bubbl eSort(arr)

Defining a Swap Method

- It would be helpful to have a method that swaps two elements of the array.
- Why won't the following work?

```
public static void swap(int a, int b) {
   int temp = a;
   a = b;
   b = temp;
}
```

An Incorrect Swap Method

```
public static void swap(int a, int b) {
   int temp = a;
   a = b;
   b = temp;
}
```

• Trace through the following lines to see the problem:

A Correct Swap Method

This method works:

```
public static void swap(int[] arr, int a, int b) {
   int temp = arr[a];
   arr[a] = arr[b];
   arr[b] = temp;
}
```

 Trace through the following with a memory diagram to convince yourself that it works:

```
int[] arr = {15, 7, ...};
swap(arr, 0, 1);
```

Selection Sort

- · Basic idea:
 - consider the positions in the array from left to right
 - for each position, find the element that belongs there and put it in place by swapping it with the element that's currently there
- · Example:

Why don't we need to consider position 4?

Selecting an Element

When we consider position i , the elements in positions
 0 through i - 1 are already in their final positions.

example for
$$i = 3$$
:

0	1	2	3	4	5	6
2	4	7	21	25	10	17

- To select an element for position i :
 - consider elements i , i +1, i +2, ..., arr. I ength 1, and keep track of i ndexMi n, the index of the smallest element seen thus far

indexMin: 3, 5

0	1	2	3	4	5	6
2	4	7	21	25	10	17

- when we finish this pass, i ndexMi n is the index of the element that belongs in position i.
- swap arr[i] and arr[indexMin]:

0	1	2	3	4	5	6
2	4	7	10	25	21	17
			▼.	_	▼	

Implementation of Selection Sort

• Use a helper method to find the index of the smallest element:

```
private static int indexSmallest(int[] arr,
  int lower, int upper) {
    int indexMin = lower;

    for (int i = lower+1; i <= upper; i++)
        if (arr[i] < arr[indexMin])
            indexMin = i;

    return indexMin;
}</pre>
```

The actual sort method is very simple:

```
public static void selectionSort(int[] arr) {
   for (int i = 0; i < arr.length-1; i++) {
      int j = indexSmallest(arr, i, arr.length-1);
      swap(arr, i, j);
   }
}</pre>
```

Time Analysis

- Some algorithms are much more efficient than others.
- The *time efficiency* or *time complexity* of an algorithm is some measure of the number of "operations" that it performs.
 - for sorting algorithms, we'll focus on two types of operations: comparisons and moves
- The number of operations that an algorithm performs typically depends on the size, n, of its input.
 - for sorting algorithms, n is the # of elements in the array
 - C(n) = number of comparisons
 - M(n) = number of moves
- To express the time complexity of an algorithm, we'll express the number of operations performed as a function of n.

```
• examples: C(n) = n^2 + 3n
M(n) = 2n^2 - 1
```

Counting Comparisons by Selection Sort

```
private static int indexSmallest(int[] arr, int lower, int upper){
   int indexMin = lower;

   for (int i = lower+1; i <= upper; i++)
        if (arr[i] < arr[indexMin])
            indexMin = i;

   return indexMin;
}
public static void selectionSort(int[] arr) {
   for (int i = 0; i < arr.length-1; i++) {
        int j = indexSmallest(arr, i, arr.length-1);
        swap(arr, i, j);
   }
}</pre>
```

- To sort n elements, selection sort performs n 1 passes:
 on 1st pass, it performs n 1 comparisons to find i ndexSmallest
 on 2nd pass, it performs n 2 comparisons
 ...
 on the (n-1)st pass, it performs 1 comparison
- · Adding up the comparisons for each pass, we get:

$$C(n) = 1 + 2 + ... + (n - 2) + (n - 1)$$

Counting Comparisons by Selection Sort (cont.)

• The resulting formula for C(n) is the sum of an arithmetic sequence:

$$C(n) = 1 + 2 + ... + (n - 2) + (n - 1) = \sum_{i=1}^{n-1} i$$

Formula for the sum of this type of arithmetic sequence:

$$\sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

Thus, we can simplify our expression for C(n) as follows:

$$C(n) = \sum_{i=1}^{n-1} i$$

$$= \frac{(n-1)((n-1)+1)}{2}$$

$$= \frac{(n-1)n}{2}$$

$$C(n) = n^{2}/2 - n/2$$

Focusing on the Largest Term

 When n is large, mathematical expressions of n are dominated by their "largest" term — i.e., the term that grows fastest as a function of n.

• exam	nple: <u>n</u>	n ² /2	n/2	$n^2/2 - n/2$
	10	50	5	45
	100	5000	50	4950
	10000	50,000,000	5000	49,995,000

- In characterizing the time complexity of an algorithm, we'll focus on the largest term in its operation-count expression.
 - for selection sort, $C(n) = n^2/2 n/2 \approx n^2/2$
- In addition, we'll typically ignore the coefficient of the largest term (e.g., n²/2 → n²).

Big-O Notation

- We specify the largest term using big-O notation.
 - e.g., we say that $C(n) = \frac{n^2}{2} \frac{n}{2}$ is $O(n^2)$
- · Common classes of algorithms:

<u>name</u>	example expressions	big-O notation
constant time	1, 7, 10	0(1)
logarithmic time	$3\log_{10}n$, $\log_2 n + 5$	O(l og n)
linear time	5n, 10n – 2l og ₂ n	O(n)
nlogn time	4nl og ₂ n, nl og ₂ n + n	O(nI og n)
quadratic time	$2n^2 + 3n$, $n^2 - 1$	$O(n^2)$
exponential time	2^{n} , $5e^{n} + 2n^{2}$	$O(c^n)$

- For large inputs, efficiency matters more than CPU speed.
 - e.g., an O(I og n) algorithm on a slow machine will outperform an O(n) algorithm on a fast machine

J-WO

Mathematical Definition of Big-O Notation

- f(n) = O(g(n)) if there exist positive constants c and n₀ such that f(n) <= cg(n) for all n >= n₀
- Example: $f(n) = n^2/2 n/2$ is $O(n^2)$, because $n^2/2 n/2 <= n^2$ for all n >= 0. c = 1

 Big-O notation specifies an upper bound on a function f(n) as n grows large.

Big-O Notation and Tight Bounds

- Big-O notation provides an upper bound, *not* a tight bound (upper and lower).
- Example:
 - 3n 3 is $O(n^2)$ because $3n 3 \le n^2$ for all n > 1
 - 3n 3 is also $O(2^n)$ because $3n 3 \le 2^n$ for all $n \ge 1$
- However, we generally try to use big-O notation to characterize a function as closely as possible – i.e., as if we were using it to specify a tight bound.
 - for our example, we would say that 3n 3 is O(n)

Big-Theta Notation

- In theoretical computer science, big-theta notation (Θ) is used to specify a tight bound.
- $f(n) = \Theta(g(n))$ if there exist constants c_1 , c_2 , and n_0 such that $c_1g(n) <= f(n) <= c_2g(n)$ for all $n > n_0$
- Example: $f(n) = n^2/2 n/2$ is $\Theta(n^2)$, because $(1/4)^*n^2 <= n^2/2 n/2 <= n^2 \text{ for all } n>= 2$ $c_1 = 1/4$ $c_2 = 1$

Big-O Time Analysis of Selection Sort

- Comparisons: we showed that $C(n) = \frac{n^2}{2} \frac{n}{2}$
 - selection sort performs $O(n^2)$ comparisons
- Moves: after each of the n-1 passes to find the smallest remaining element, the algorithm performs a swap to put the element in place.
 - n-1 swaps, 3 moves per swap
 - M(n) = 3(n-1) = 3n-3
 - selection sort performs O(n) moves.
- Running time (i.e., total operations): ?

Sorting by Insertion I: Insertion Sort

- · Basic idea:
 - going from left to right, "insert" each element into its proper place with respect to the elements to its left, "sliding over" other elements to make room.
- · Example:

Comparing Selection and Insertion Strategies

- In selection sort, we start with the *positions* in the array and *select* the correct elements to fill them.
- In insertion sort, we start with the *elements* and determine where to *insert* them in the array.
- Here's an example that illustrates the difference:

_	0	1	2	3	4	5	6
	18	12	15	9	25	2	17

- · Sorting by selection:
 - consider position 0: find the element (2) that belongs there
 - consider position 1: find the element (9) that belongs there
 - ...
- Sorting by insertion:
 - consider the 12: determine where to insert it
 - consider the 15; determine where to insert it
 - ...

Inserting an Element

When we consider element i, elements 0 through i - 1 are already sorted with respect to each other.

example for i = 3:

- · To insert element i:
 - make a copy of element i, storing it in the variable to Insert:

toInsert 9

- consider elements i -1, i -2, ...
 - if an element > to Insert, slide it over to the right
 - stop at the first element <= tol nsert

tolnsert 9

• copy to Insert into the resulting "hole":

description of steps

14

19

Implementation of Insertion Sort

```
public class Sort {
    ...
public static void insertionSort(int[] arr) {
    for (int i = 1; i < arr.length; i++) {
        if (arr[i] < arr[i-1]) {
            int tolnsert = arr[i];

        int j = i;
        do {
            arr[j] = arr[j-1];
            j = j - 1;
            while (j > 0 && tolnsert < arr[j-1]);

            arr[j] = tolnsert;
        }
    }
}</pre>
```

Time Analysis of Insertion Sort

- The number of operations depends on the contents of the array.
- best case:
- · worst case:

average case:

Sorting by Insertion II: Shell Sort

- · Developed by Donald Shell in 1959
- Improves on insertion sort
- Takes advantage of the fact that insertion sort is fast when an array is almost sorted.
- Seeks to eliminate a disadvantage of insertion sort: if an element is far from its final location, many "small" moves are required to put it where it belongs.
- Example: if the largest element starts out at the beginning of the array, it moves one place to the right on every insertion!

0	1	2	3	4	5	 1000
999	42	56	30	18	23	 11

• Shell sort uses "larger" moves that allow elements to quickly get close to where they belong.

Sorting Subarrays

- Basic idea:
 - use insertion sort on subarrays that contain elements separated by some increment
 - increments allow the data items to make larger "jumps"
 - · repeat using a decreasing sequence of increments
- Example for an initial increment of 3:

0	1	2	3	4	5	6	7
36	<u>18</u>	10	27	<u>3</u>	20	9	<u>8</u>

- three subarrays:
 - 1) elements 0, 3, 6 2) elements 1, 4, 7 3) elements 2 and 5
- Sort the subarrays using insertion sort to get the following:

0	1	2	3	4	5	6	7
9	3	10	27	8	20	36	<u>18</u>

Next, we complete the process using an increment of 1.

Shell Sort: A Single Pass

- We don't consider the subarrays one at a time.
- We consider elements arr[i ncr] through arr[arr. I ength-1], inserting each element into its proper place with respect to the elements from its subarray that are to the left of the element.
- The same example (i ncr = 3):

Inserting an Element in a Subarray

• When we consider element i, the other elements in its subarray are already sorted with respect to each other.

0	1	2	3	4	5	6	7
27	3	10	36	18	20	9	8

the other element's in 9's subarray (the 27 and 36) are already sorted with respect to each other

- To insert element i :
 - make a copy of element i, storing it in the variable to Insert:

		0	1	2	3	4	5	6	7
toInsert	9	27	3	10	36	18	20	9	8

- consider elements i i ncr, i (2*i ncr), i (3*i ncr), ...
 - if an element > to Insert, slide it right within the subarray
 - stop at the first element <= tol nsert

• copy to Insert into the "hole": | 9 | 3 | 10 | 27 | 18 |

The Sequence of Increments

- Different sequences of decreasing increments can be used.
- Our version uses values that are one less than a power of two.
 - 2^k 1 for some k
 - ... 63, 31, 15, 7, 3, 1
 - can get to the next lower increment using integer division:

```
incr = incr/2;
```

- Should avoid numbers that are multiples of each other.
 - otherwise, elements that are sorted with respect to each other in one pass are grouped together again in subsequent passes
 - · repeat comparisons unnecessarily
 - get fewer of the large jumps that speed up later passes
 - example of a bad sequence: 64, 32, 16, 8, 4, 2, 1
 - what happens if the largest values are all in odd positions?

Implementation of Shell Sort

```
public static void shellSort(int[] arr) {
     int incr = 1;
    while (2 * incr <= arr.length)
    incr = 2 * incr;
incr = incr - 1;
    while (incr >= 1) {
         for (int i = incr; i < arr.length; i++) {</pre>
              if (arr[i] < arr[i-incr]) {
                   int tolnsert = arr[i];
                   int j = i;
                   do {
                         arr[j] = arr[j-incr];
                   j = j - incr;
} while (j > incr-1 &&
                       toInsert < arr[j -incr]);
                   arr[j] = toInsert;
                                                      (If you replace i nor with 1
                                                       in the for-loop, you get the
         incr = incr/2;
                                                      code for insertion sort.)
     }
}
```

Time Analysis of Shell Sort

- Difficult to analyze precisely
 - typically use experiments to measure its efficiency
- With a bad interval sequence, it's O(n²) in the worst case.
- With a good interval sequence, it's better than $O(n^2)$.
 - at least $O(n^{1.5})$ in the average and worst case
 - some experiments have shown average-case running times of $O(n^{1.25})$ or even $O(n^{7/6})$
- Significantly better than insertion or selection for large n:

n	n ²	n ^{1. 5}	n ^{1. 25}
10	100	31. 6	17. 8
100	10, 000	1000	316
10, 000	100,000,000	1, 000, 000	100, 000
106	10 ¹²	10 ⁹	3. 16 x 10 ⁷

 We've wrapped insertion sort in another loop and increased its efficiency! The key is in the larger jumps that Shell sort allows.

Sorting by Exchange I: Bubble Sort

- Perform a sequence of passes through the array.
- On each pass: proceed from left to right, swapping adjacent elements if they are out of order.
- · Larger elements "bubble up" to the end of the array.
- At the end of the kth pass, the k rightmost elements are in their final positions, so we don't need to consider them in subsequent passes.

•	Example:	0	1	2	3
	Example.	28	24	27	18
	after the first pass:	24	27	18	28
	after the second:	24	18	27	28
	after the third:	18	24	27	28

Implementation of Bubble Sort

- One for-loop nested in another:
 - the inner loop performs a single pass
 - the outer loop governs the number of passes, and the ending point of each pass

Time Analysis of Bubble Sort

- Comparisons: the kth pass performs _____ comparisons,
 so we get C(n) =
- Moves: depends on the contents of the array
 - in the worst case:
 - in the best case:
- · Running time:

Sorting by Exchange II: Quicksort

- Like bubble sort, quicksort uses an approach based on exchanging out-of-order elements, but it's more efficient.
- A recursive, divide-and-conquer algorithm:
 - divide: rearrange the elements so that we end up with two subarrays that meet the following criterion:

each element in the left array <= each element in the right array example:

- conquer: apply quicksort recursively to the subarrays, stopping when a subarray has a single element
- combine: nothing needs to be done, because of the criterion used in forming the subarrays

Partitioning an Array Using a Pivot

- The process that quicksort uses to rearrange the elements is known as partitioning the array.
- Partitioning is done using a value known as the *pivot*.
- We rearrange the elements to produce two subarrays:
 - left subarray: all values <= pivot

equivalent to the criterion

right subarray: all values >= pivot

on the previous page.

- Our approach to partitioning is one of several variants.
- Partitioning is useful in its own right. ex: find all students with a GPA > 3.0.

Possible Pivot Values

- · First element or last element
 - · risky, can lead to terrible worst-case behavior
 - · especially poor if the array is almost sorted

- Middle element (what we will use)
- · Randomly chosen element
- · Median of three elements
 - left, center, and right elements
 - · three randomly selected elements
 - taking the median of three decreases the probability of getting a poor pivot

Partitioning an Array: An Example

• Maintain indices i and j, starting them "outside" the array:

- Find "out of place" elements:
 - increment i until arr[i] >= pi vot
 - decrement j until arr[j] <= pi vot

Swap arr[i] and arr[j]:

Partitioning Example (cont.) from prev. page: Find: Swap: • Find: and now the indices have crossed, so we return \boldsymbol{j} . Subarrays: left = arr[fi rst: j], right = arr[j+1: last] fi rst last 15 | 12

(pivot = 13):

Find:

- Swap:
- Find: 18 | 24 20 | 19 and now the indices are equal, so we return j.
- Subarrays:

Partitioning Example 3 (done together)

• Start (pivot = 5): 4 14 7 5 2 19 26 6

• Find: 4 14 7 5 2 19 26 6

partition() Helper Method

Implementation of Quicksort

```
public static void quickSort(int[] arr) {
    qSort(arr, 0, arr.length - 1);
}

private static void qSort(int[] arr, int first, int last) {
    int split = partition(arr, first, last);

    if (first < split)
        qSort(arr, first, split); // left subarray
    if (last > split + 1)
        qSort(arr, split + 1, last); // right subarray
}
```

Counting Students: Divide and Conquer

- · Everyone stand up.
- You will each carry out the following algorithm:

```
count = 1;
while (you are not the only person standing) {
    find another person who is standing
    if (your first name < other person's first name)
        sit down (break ties using last names)
    else
        count = count + the other person's count
}
if (you are the last person standing)
    report your final count</pre>
```

Counting Students: Divide and Conquer (cont.)

• At each stage of the "joint algorithm", the problem size is divided in half.

- How many stages are there as a function of the number of students, n?
- This approach benefits from the fact that you perform the algorithm *in parallel* with each other.

A Quick Review of Logarithms

- I og_bn = the exponent to which b must be raised to get n
 - $l og_b n = p if b^p = n$
 - examples: $log_2 8 = 3$ because $2^3 = 8$ $log_{10}10000 = 4$ because $10^4 = 10000$
- Another way of looking at logs:
 - let's say that you repeatedly divide n by b (using integer division)
 - I og_bn is an upper bound on the number of divisions needed to reach 1
 - example: I og₂18 is approx. 4. 17
 18/2 = 9 9/2 = 4 4/2 = 2 2/2 = 1

A Quick Review of Logs (cont.)

- If the number of operations performed by an algorithm is proportional to I og_bn for any base b, we say it is a O(I og n) algorithm – dropping the base.
- I ogbn grows much more slowly than n

n	l og₂n		
2	1		
1024 (1K)	10		
1024*1024 (1M)	20		

- Thus, for large values of n:
 - a O(I og n) algorithm is much faster than a O(n) algorithm
 - a O(nI ogn) algorithm is much faster than a O(n²) algorithm
- We can also show that an O(nI ogn) algorithm is faster than a O(n^{1.5}) algorithm like Shell sort.

Time Analysis of Quicksort

- Partitioning an array requires n comparisons, because each element is compared with the pivot.
- best case: partitioning always divides the array in half
 - repeated recursive calls give:

- at each "row" except the bottom, we perform n comparisons
- there are _____ rows that include comparisons
- C(n) = ?
- Similarly, M(n) and running time are both ______

Time Analysis of Quicksort (cont.)

- worst case: pivot is always the smallest or largest element
 - one subarray has 1 element, the other has n 1
 - repeated recursive calls give:

- $C(n) = \sum_{i=2}^{n} i = O(n^2)$. M(n) and run time are also $O(n^2)$.
- average case is harder to analyze
 - $C(n) > n \log_2 n$, but it's still $O(n \log n)$

Mergesort

- All of the comparison-based sorting algorithms that we've seen thus far have sorted the array in place.
 - · used only a small amount of additional memory
- Mergesort is a sorting algorithm that requires an additional temporary array of the same size as the original one.
 - it needs O(n) additional space, where n is the array size
- It is based on the process of merging two sorted arrays into a single sorted array.
 - · example:

• To merge sorted arrays A and B into an array C, we maintain three indices, which start out on the first elements of the arrays:

- We repeatedly do the following:
 - compare A[i] and B[j]
 - copy the smaller of the two to C[k]
 - increment the index of the array whose element was copied
 - increment k

Merging Sorted Arrays (cont.)

• Starting point:

k C ______

• After the first copy:

k C 2

• After the second copy:

k C 2 5

• After the sixth copy:

 There's nothing left in B, so we simply copy the remaining elements from A:

Divide and Conquer

- Like quicksort, mergesort is a divide-and-conquer algorithm.
 - divide: split the array in half, forming two subarrays
 - *conquer:* apply mergesort recursively to the subarrays, stopping when a subarray has a single element
 - combine: merge the sorted subarrays

Tracing the Calls to Mergesort

the initial call is made to sort the entire array:

split into two 4-element subarrays, and make a recursive call to sort the left subarray:

split into two 2-element subarrays, and make a recursive call to sort the left subarray:

split into two 1-element subarrays, and make a recursive call to sort the left subarray:

base case, so return to the call for the subarray {12, 8}:

Tracing the Calls to Mergesort

make a recursive call to sort its right subarray:

base case, so return to the call for the subarray {12, 8}:

merge the sorted halves of {12, 8}:

end of the method, so return to the call for the 4-element subarray, which now has a sorted left subarray:

Tracing the Calls to Mergesort

make a recursive call to sort the right subarray of the 4-element subarray

split it into two 1-element subarrays, and make a recursive call to sort the left subarray:

return to the call for the subarray {14, 4}:

make a recursive call to sort its right subarray:

Tracing the Calls to Mergesort

return to the call for the subarray {14, 4}:

merge the sorted halves of {14, 4}:

merge the 2-element subarrays:

Tracing the Calls to Mergesort

end of the method, so return to the call for the original array, which now has a sorted left subarray:

perform a similar set of recursive calls to sort the right subarray. here's the result:

finally, merge the sorted 4-element subarrays to get a fully sorted 8-element array:

Implementing Mergesort

- One approach is to create new arrays for each new set of subarrays, and to merge them back into the array that was split.
- Instead, we'll create a temp. array of the same size as the original.
 - · pass it to each call of the recursive mergesort method
 - use it when merging subarrays of the original array:

• after each merge, copy the result back into the original array:

A Method for Merging Subarrays

```
private static void merge(int[] arr, int[] temp,
  int leftStart, int leftEnd, int rightStart, int rightEnd) {
    int i = leftStart; // index into left subarray
                           // index into right subarray
    int j = rightStart;
    int k = leftStart;
                            // index into temp
    while (i <= leftEnd && j <= rightEnd) {</pre>
        if (arr[i] < arr[j])</pre>
             temp[k++] = arr[i++];
        el se
             temp[k++] = arr[j++];
    }
    while (i <= leftEnd)</pre>
        temp[k++] = arr[i++];
    while (j <= rightEnd)</pre>
        temp[k++] = arr[j++];
    for (i = leftStart; i <= rightEnd; i++)</pre>
        arr[i] = temp[i];
}
```

Methods for Mergesort

• We use a wrapper method to create the temp. array, and to make the initial call to a separate recursive method:

```
public static void mergeSort(int[] arr) {
   int[] temp = new int[arr.length];
   mSort(arr, temp, 0, arr.length - 1);
}
```

• Let's implement the recursive method together:

```
private static void mSort(int[] arr, int[] temp,
  int start, int end) {
```

}

Time Analysis of Mergesort

- Merging two halves of an array of size n requires 2n moves. Why?
- Mergesort repeatedly divides the array in half, so we have the following call tree (showing the sizes of the arrays):

- at all but the last level of the call tree, there are 2n moves
- how many levels are there?
- M(n) =?
- C(n) = ?

Summary: Comparison-Based Sorting Algorithms

algorithm	best case	avg case	worst case	extra memory
selection sort	election sort $O(n^2)$ $O(n^2)$		O(n ²)	0(1)
insertion sort	nsertion sort $O(n)$ $O(n^2)$		O(n ²)	0(1)
Shell sort	O(n I og n)	O(n ^{1.5})	O(n ^{1. 5})	0(1)
bubble sort	O(n ²)	O(n ²)	O(n ²)	0(1)
quicksort	O(n I og n)	O(n I og n)	O(n ²)	0(1)
mergesort	O(n I og n)	O(n l og n)	O(nl og n)	O(n)

- Insertion sort is best for nearly sorted arrays.
- Mergesort has the best worst-case complexity, but requires extra memory – and moves to and from the temp array.
- Quicksort is comparable to mergesort in the average case.
 With a reasonable pivot choice, its worst case is seldom seen.
- Use SortCount. j ava to experiment.

Comparison-Based vs. Distributive Sorting

- Until now, all of the sorting algorithms we have considered have been *comparison-based:*
 - treat the keys as wholes (comparing them)
 - don't "take them apart" in any way
 - all that matters is the relative order of the keys, not their actual values.
- No comparison-based sorting algorithm can do better than O(n I og₂n) on an array of length n.
 - $O(n \log_2 n)$ is a *lower bound* for such algorithms.
- *Distributive* sorting algorithms do more than compare keys; they perform calculations on the actual values of individual keys.
- Moving beyond comparisons allows us to overcome the lower bound.
 - tradeoff: use more memory.

Distributive Sorting Example: Radix Sort

 Relies on the representation of the data as a sequence of m quantities with k possible values.

Examples:	<u>m</u>	<u>k</u>
integer in range 0 999	3	10
 string of 15 upper-case letters 	15	26
32-bit integer	32	2 (in binary)
	4	256 (as bytes)

• Strategy: Distribute according to the last element in the sequence, then concatenate the results:

• Repeat, moving back one digit each time:

get: | |

Analysis of Radix Sort

- Recall that we treat the values as a sequence of m quantities with k possible values.
- Number of operations is $O(n^*m)$ for an array with n elements
 - better than $O(n \log n)$ when $m < \log n$
- · Memory usage increases as k increases.
 - k tends to increase as m decreases
 - tradeoff: increased speed requires increased memory usage

Big-O Notation Revisited

- We've seen that we can group functions into classes by focusing on the fastest-growing term in the expression for the number of operations that they perform.
 - e.g., an algorithm that performs $n^2/2 n/2$ operations is a $O(n^2)$ -time or quadratic-time algorithm
- · Common classes of algorithms:

	<u>name</u>	example expressions	big-O notation
	constant time	1, 7, 10	0(1)
1	logarithmic time	$3\log_{10}n$, $\log_2 n + 5$	O(l og n)
	linear time	5n, 10n – 2l og₂n	O(n)
	nlogn time	$4nl og_2n, nl og_2n + n$	O(nl og n)
	quadratic time	$2n^2 + 3n$, $n^2 - 1$	$O(n^2)$
5	cubic time	$n^2 + 3n^3$, $5n^3 - 5$	$O(n^3)$
*	exponential time	2^n , $5e^n + 2n^2$	$O(c^n)$
	factorial time	3n! , 5n + n!	O(n!)

How Does the Number of Operations Scale?

- Let's say that we have a problem size of 1000, and we measure the number of operations performed by a given algorithm.
- If we double the problem size to 2000, how would the number of operations performed by an algorithm increase if it is:
 - O(n)-time
 - O(n2)-time
 - O(n³)-time
 - O(log₂n)-time
 - O(2ⁿ)-time

How Does the Actual Running Time Scale?

- How much time is required to solve a problem of size n?
 - assume that each operation requires 1 μsec (1 x 10⁻⁶ sec)

time	problem size (n)					
function	10	20	30	40	50	60
n	.00001 s	.00002 s	.00003 s	.00004 s	.00005 s	.00006 s
n ²	.0001 s	.0004 s	.0009 s	.0016 s	.0025 s	.0036 s
n ⁵	.1 s	3.2 s	24.3 s	1.7 min	5.2 min	13.0 min
2 ⁿ	.001 s	1.0 s	17.9 min	12.7 days	35.7 yrs	36,600 yrs

- sample computations:
 - when n = 10, an n² algorithm performs 10^2 operations. $10^2 * (1 \times 10^{-6} \text{ sec}) = .0001 \text{ sec}$
 - when n = 30, a 2^n algorithm performs 2^{30} operations. 2^{30} * (1 x 10^{-6} sec) = 1073 sec = 17.9 min

What's the Largest Problem That Can Be Solved?

 What's the largest problem size n that can be solved in a given time T? (again assume 1 μsec per operation)

time	time available (T)					
function	1 min	1 hour	1 week	1 year		
n	60,000,000	3.6 x 10 ⁹	6.0 x 10 ¹¹	3.1 x 10 ¹³		
n ²	7745	60,000	777,688	5,615,692		
n ⁵	n ⁵ 35 8		227	500		
2 ⁿ 25		31	39	44		

- sample computations:
 - 1 hour = 3600 sec that's enough time for $3600/(1 \times 10^{-6}) = 3.6 \times 10^{9}$ operations
 - n² algorithm:

$$n^2 = 3.6 \times 10^9$$
 \rightarrow $n = (3.6 \times 10^9)^{1/2} = 60,000$

• 2ⁿ algorithm:

$$2^n = 3.6 \times 10^9$$
 \rightarrow $n = \log_2(3.6 \times 10^9) \sim 31$