

数据手册

Datasheet

APM32F405xG APM32F407xExG

基于 Arm® Cortex®-M4 内核的 32 位微控制器

芯片版本: A版本

手册版本: V1.5

1 产品特性

■ 内核

- 带有 FPU 的 32 位 Arm® Cortex®-M4 内核
- 最高 168MHz 工作频率

■ 存储器及接口

- Flash: 容量最高为 1MB
- SRAM: 系统(192KB)+备份(4KB)
- EMMC: 支持 CF 卡、SRAM、PSRAM、 SDRAM、NOR 和 NAND 存储器

■ 时钟

- HSECLK: 支持 4~26MHz 外部晶体/ 陶瓷振荡器
- LSECLK: 支持 32.768KHz 晶体/陶瓷 振荡器
- HSICLK: 出厂校准的 16MHz RC 振荡器
- LSICLK: 支持 28KHz RC 振荡器
- PLL1: 主锁相环,由四个参数配置输出频率
- PLL2: 专门给 I2S 提供时钟信号的锁相环,由三个参数配置输出频率

■ 电源与电源管理

- V_{DD} 范围: 1.8~3.6V
- V_{DDA}范围: 1.8~3.6V
- 备份域电源 V_{BAT} 范围: 1.65V~3.6V
- 支持上电/掉电/欠压复位 (POR/PDR/BOR)
- 支持可编程电源电压检测器 (PVD)

■ 低功耗模式

- 支持睡眠、停机、待机三种模式

DMA

 两个 DMA,每个 DMA 有 8 个数据流, 共 16 个

■ 调试接口

- JTAG
- SWD

I/O

- 最多有 140 个 I/O
- 所有 I/O 都可以映射到外部中断向量

最多有 138 个容忍 5V 输入的 I/O

■ 通信外设

- 4 个 USART,2 个 UART,支持 ISO7816、LIN 和 IrDA 等功能
- 3个I2C, 支持 SMBus/PMBus
- 3 个 SPI (2 个可复用 I2S)
- 2个CAN
- 3个USB OTG 控制器
- 1 个 SDIO 接口

■ 模拟外设

- 3 个 12 位的 ADC
- 2 个 12 位的 DAC

■ 定时器

- 2 个可以提供 7 通道 PWM 输出的 16 位高级定时器 TMR1/8,支持死区生成和刹车输入等功能
- 2个32位通用定时器 TMR2/5,每个定时器有4个独立通道可以用来输入捕获、输出比较、PWM与脉冲计数等功能
- 8 个 16 位通用定时器 TMR/3/4/9/10/11/12/13/14,每个定时器有 2 个独立通道可以用来输入捕获、输出比较、PWM 与脉冲计数等功能
- 2个16位基本定时器 TMR6/7
- 2 个看门狗定时器: 一个独立看门狗 IWDT 和一个窗口看门狗 WWDT
- 1 个 24 位自减型系统定时器 Sys Tick Timer

RTC

- 支持日历功能
- 可从停机/待机模式下报警和定期唤醒

■ CRC 计算单元

■ 国密算法

- BN
- SM3
- SM4

■ 96 位唯一设备 ID

目录

1	产品特性	1
2	产品信息	6
3	引脚信息	7
3.1	引脚分布	7
3.2	引脚功能描述	10
3.3	GPIO 复用功能配置	28
4	功能描述	42
4.1	系统架构	43
4.1.1	系统框图	43
4.1.2	地址映射	44
4.1.3	启动配置	46
4.2	内核	46
4.3	中断控制器	46
4.3.1	嵌套的向量式中断控制器(NVIC)	46
4.3.2	外部中断/事件控制器(EINT)	47
4.4	片上存储器	47
4.4.1	可配置的外部存储控制器(EMMC)	47
4.4.2	液晶显示器并行接口(LCD)	47
4.5	时钟	47
4.5.1	时钟树	47
4.5.2	时钟源	49
4.5.3	系统时钟	49
4.5.4	总线时钟	49
4.5.5	锁相环	49
4.6	电源与电源管理	49
4.6.1	电源方案	49
4.6.2	调压器	49
4.6.3	电源电压监控器	50

4.8 DMA	4.7	低功耗模式	50
4.10 通信外役	4.8	DMA	50
4.10.1 USART/UART 51 4.10.2 I2C 51 4.10.3 SPI/I2S 51 4.10.4 CAN 51 4.10.5 USB_OTG 52 4.10.6 Ethernet 52 4.10.7 SDIO 52 4.11 模拟外设 52 4.11.1 ADC 52 4.11.2 DAC 53 4.12 定时器 53 4.13 RTC 54 4.13 RTC 54 4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 55 5 电气特性 56 5.1 电气特性测试条件 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.3 典型曲线 56 5.1.3 典型曲线 56 5.1.4 电测方案 57	4.9	GPIO	50
4.10.2 I2C 51 4.10.3 SPI/I2S 51 4.10.4 CAN 51 4.10.5 USB_OTG 52 4.10.6 Ethernet 52 4.10.7 SDIO 52 4.11 模拟外设 52 4.11.1 ADC 53 4.11.2 DAC 53 4.12 定时器 53 4.13 RTC 54 4.13 RTC 54 4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17 加密算法 55 4.17.1 BN 55 4.17.3 SM4 55 1 电气特性 56 5.1 电气特性测试条件 56 5.1.1 最大值和最小值 56 5.1.1 最大值和最小值 56 5.1.1 最大值和最小值 56 5.1.1 典人值和最小值 56 5.1.1 典人值和最小值 56 5.1.1 典型曲线 56 5.1.3 典型曲线 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.10	通信外设	51
4.10.3 SPI/I2S	4.10.1	USART/UART	51
4.10.4 CAN 51 4.10.5 USB_OTG 52 4.10.6 Ethernet 52 4.10.7 SDIO 52 4.11 模拟外设 52 4.11.1 ADC 52 4.11.2 DAC 53 4.12 定时器 53 4.13 RTC 54 4.13.1 备份域 54 4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 55 5.1 电气特性 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.10.2	! I2C	51
4.10.5 USB_OTG	4.10.3	3 SPI/I2S	51
4.10.6 Ethernet 52 4.10.7 SDIO 52 4.11 模拟外设 52 4.11.1 ADC 52 4.11.2 DAC 53 4.12 定时器 53 4.13 RTC 54 4.13.1 各份域 54 4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 55 5 电气特性 56 5.1 电气特性测试条件 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.10.4	CAN	51
4.10.7 SDIO 52 4.11 模拟外设 52 4.11.1 ADC 52 4.11.2 DAC 53 4.12 定时器 53 4.13 RTC 54 4.13 A 份域 54 4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 55 5.1 电气特性测试条件 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.10.5	USB_OTG	52
4.11 模拟外设 52 4.11.1 ADC 52 4.11.2 DAC 53 4.12 定时器 53 4.13 RTC 54 4.13.1 备份域 54 4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 56 5.1 电气特性 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.10.6	Ethernet	52
4.11 模拟外设 52 4.11.1 ADC 52 4.11.2 DAC 53 4.12 定时器 53 4.13 RTC 54 4.13.1 备份域 54 4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 56 5.1 电气特性 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.10.7	' SDIO	52
4.112 DAC 53 4.12 定时器 53 4.13 RTC 54 4.13.1 备份域 54 4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 5.1 电气特性 56 5.1 电气特性测试条件 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57			
4.12 定时器 53 4.13 RTC 54 4.13.1 备份域 54 4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 5.1 电气特性 56 5.1 电气特性测试条件 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.11.1	ADC	52
4.13 RTC 54 4.13.1 备份域 54 4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 55 5.1 电气特性 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.11.2	DAC	53
4.13.1 备份域 54 4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 55 5.1 电气特性 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.12	定时器	53
4.14 RNG 54 4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 55 5.1 电气特性 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.13	RTC	54
4.15 DCI 54 4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 55 5 电气特性 56 5.1 电气特性测试条件 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.13.1	备份域	54
4.16 CRC 55 4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 55 5 电气特性 56 5.1 电气特性测试条件 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.14	RNG	54
4.17 加密算法 55 4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 56 5.1 电气特性 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.15	DCI	54
4.17.1 BN 55 4.17.2 SM3 55 4.17.3 SM4 55 5 电气特性 56 5.1 电气特性测试条件 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.16	CRC	55
4.17.2 SM3 55 4.17.3 SM4 55 5 电气特性 56 5.1 电气特性测试条件 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.17	加密算法	55
4.17.3 SM4 55 5 电气特性 56 5.1 电气特性测试条件 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.17.1	BN	55
5 电气特性 5.1 电气特性测试条件 5.1.1 最大值和最小值 5.1.2 典型值 5.1.3 典型曲线 5.1.4 电源方案	4.17.2	SM3	55
5.1 电气特性测试条件 56 5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	4.17.3	3 SM4	55
5.1.1 最大值和最小值 56 5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	5	电气特性	56
5.1.2 典型值 56 5.1.3 典型曲线 56 5.1.4 电源方案 57	5.1	电气特性测试条件	56
5.1.3 典型曲线 56 5.1.4 电源方案 57	5.1.1	最大值和最小值	56
5.1.4 电源方案	5.1.2	典型值	56
	5.1.3	典型曲线	56
5.1.5 负载电容	5.1.4	电源方案	57
	5.1.5	负载电容	58

5.2	通用工作条件下的测试	58
5.3	绝对最大额定值	59
5.3.1	最大温度特性	59
5.3.2	最大额定电压特性	59
5.3.3	最大额定电流特性	59
5.3.4	静电放电(ESD)	60
5.3.5	静态栓锁(LU)	60
5.4	片上存储器	60
5.4.1	Flash 特性	60
5.5	时钟	61
5.5.1	外部时钟源特性	61
5.5.2	内部时钟源特性	62
5.5.3	PLL 特性	62
5.6	电源与电源管理	63
5.6.1	内嵌复位和电源控制模块特性测试	
5.7	功耗	64
5.7.1	功耗测试环境	64
5.7.2	运行模式功耗	65
5.7.3	睡眠模式功耗	68
5.7.4	停机模式功耗	69
5.7.5	待机模式功耗	69
5.7.6	外设功耗	69
5.7.7	备份域功耗	72
5.8	低功耗模式唤醒时间	72
5.9	I/O 端口特性	72
5.10	NRST 引脚特性	75
5.11	通信外设	75
5.11.1	I2C 外设特性	75
5.11.2	SPI 外设特性	76
5.12	模拟外设	78
5 12 1	ADC	78

5.12.2	2 DAC	80
6	封装信息	81
6.1	LQFP176 封装信息	81
6.2	LQFP144 封装信息	83
6.3	LQFP100 封装信息	86
6.4	LQFP64 封装信息	89
7	包装信息	92
7.1	带状包装	92
7.2	托盘包装	93
8	订货信息	95
9	常用功能模块命名	97
10	版 术	98

2 产品信息

APM32F405xG 407xExG 产品功能和外设配置请参阅下表。

表格 1 APM32F405xG 407xExG 系列芯片功能和外设

	 产品	10011			APM32		<u> </u>	7 1 74 136	1021 94		APM32F405	5
	型号	RET6	RGTx	VET6	VGTx	ZET6	ZGT6	IET6	IGT6	RGT6	VGT6	ZGT6
封装		LQF	LQFP64 LQFP100 LQFP144 LQFP176					LQFP64	LQFP100	LQFP144		
内核及最大工作频率			Arm® 32-bit Cortex®-M4@168MHz									
I	作电压						1.8~	3.6V				
Fla	ash(KB)	512	1024	512	1024	512	1024	512	1024		1024	
系统+备	份 SRAM(KB)						192	2+4		l		
	SMC	()			1				0	1	
	DMC			()				1		0	
(GPIOs	5	51	8	32	1	14	14	40	51	82	114
	USART/UART						4.	/2				
	SPI/I2S						3.	/2				
	I2C						;	3				
通信接口	OTG_FS		1									
地口及口	OTG_HS		2									
	CAN		2									
	Ethernet	()			1					0	
	SDIO	1										
	16 位高级		2									
	32 位通用		2									
定时器	16 位通用		8									
AC P 1 HH	16 位基本						2	2				
	系统滴答定时器						•	1				
	看门狗						2	2				
实	时时钟						•	1		ı		
	DCI	()			1					0	
	RNG							1				
	单元					T		3		т		Г
12 位 ADC	外部通道		1	3			2′				13	21
	内部通道							3				
12 位 DAC	単元							2				
	通道							2				
I	作温度					∄温度:						
工 11		结温度: -40°C 至 105°C/-40°C 至 125°C										

注: x=6 时,环境温度为-40°C 至 85°C,结温度为-40°C 至 105°C; x=7 时,环境温度为-40°C 至 105°C,结温度为-40°C 至 125°C。

3 引脚信息

3.1 引脚分布

图 1 APM32F407xExG 系列 LQFP176 引脚分布图

图 2 APM32F405xG 407xExG 系列 LQFP144 引脚分布图

图 3 APM32F405xG 407xExG 系列 LQFP100 引脚分布图

图 4 APM32F405xG 407xExG 系列 LQFP64 引脚分布图

3.2 引脚功能描述

表格 2 输出引脚表中使用的图例/缩写

	名称	缩写	定义					
	引脚名称	除非引脚名称下方	除非引脚名称下方的括号中另有规定,否则复位期间和复位后的引脚功能与实际引脚名 称相同					
		Р	电源引脚					
	引脚类型	I	仅输入引脚					
		I/O	I/O 引脚					
		5T	5V 容忍 I/O					
		STDA	3.3V 标准、直接连接到 ADC 的 I/O					
	I/O 结构	STD	3.3V 标准 I/O					
		В	专用 Boot0 引脚					
		RST	内置上拉电阻的双向复位引脚					
	注意	除非注释另	3有规定,否则复位期间和复位后,所有 I/O 都设置为浮空输入					
引脚功	默认复用功能		通过外设寄存器直接选择/启用此功能					
能	重定义功能		通过 AFIO 的重映射寄存器选择此功能					

表格 3 APM32F405xG 407xExG 按引脚序号排序描述

Т		10.1	0711 WOZI 400XO 4		. 5111/11111	_		
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
PE2	I/O	5T	TRACECK, SMC_A23, ETH_MII_TXD3, EVENTOUT	-	-	1	1	1
PE3	I/O	5T	TRACED0, SMC_A19, EVENTOUT	-	-	2	2	2
PE4	I/O	5T	TRACED1, SMC_A20, DCI_D4, EVENTOUT	-	-	3	3	3
PE5	I/O	5T	TRACED2, SMC_A21, TMR9_CH1, DCI_D6, EVENTOUT	-	-	4	4	4
PE6	I/O	5T	TRACED3, SMC_A22, TMR9_CH2, DCI_D7, EVENTOUT	-	-	5	5	5
V _{BAT}	Р	-	-	-	1	6	6	6
PI8	I/O	5T	EVENTOUT, DMC_CAS	RTC_TAMP1, RTC_TAMP2, RTC_TS	-	-	-	7
PC13	I/O	5T	EVENTOUT	RTC_OUT, RTC_TAMP1, RTC_TS	2	7	7	8
PC14- OSC32_IN (PC14)	I/O	5T	EVENTOUT	OSC32_IN	3	8	8	9
PC15- OSC32_OUT (PC15)	I/O	5T	EVENTOUT	OSC32_OUT	4	9	9	10
PI9	I/O	5T	CAN1_RX, EVENTOUT, DMC_RAS	-	-	-	-	11
Pl10	I/O	5T	ETH_MII_RX_ER, EVENTOUT,	-	-	-	-	12
			DMC_CS					1

名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
			EVENTOUT,					
			DMC_BA					
Vss	Р	-	-	-	-	-	-	14
V_{DD}	Р	-	-	-	-	-	-	15
PF0	I/O	5T	SMC_A0, DMC_A10, I2C2_SDA, EVENTOUT	-	-	-	10	16
PF1	I/O	5T	SMC_A1, DMC_A0, I2C2_SCL, EVENTOUT	-	-	-	11	17
PF2	I/O	5T	SMC_A2, DMC_A1, I2C2_SMBAI, EVENTOUT	-	-	-	12	18
PF3	I/O	5T	SMC_A3, DMC_A2, EVENTOUT	ADC3_IN9	-	-	13	19
PF4	I/O	5T	SMC_A4, DMC_A3, EVENTOUT	ADC3_IN14	-	-	14	20
PF5	I/O	5T	SMC_A5, EVENTOUT	ADC3_IN15	-	-	15	21
Vss	Р	-	-	-	-	10	16	22
V_{DD}	Р	-	-	-	-	11	17	23
PF6	I/O	5T	TMR10_CH1, SMC_NIORD, DMC_A4, EVENTOUT	ADC3_IN4	-	-	18	24
PF7	I/O	5T	TMR11_CH1, SMC_NREG, DMC_A5, EVENTOUT	ADC3_IN5	-	-	19	25
PF8	I/O	5T	TMR13_CH1, SMC_NIOWR, DMC_A6, EVENTOUT	ADC3_IN6	-	-	20	26
PF9	I/O	5T	TMR14_CH1,	ADC3_IN7	-	-	21	27

								OCTOR •
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
			SMC_CD, DMC_A7 EVENTOUT					
PF10	I/O	5T	SMC_INTR, DMC_A8 EVENTOUT	ADC3_IN8	-	-	22	28
PH0-OSC_IN (PH0)	I/O	5T	EVENTOUT	OSC_IN	5	12	23	29
PH1-OSC_OUT (PH1)	I/O	5T	EVENTOUT	OSC_OUT	6	13	24	30
NRST	I/O	RST	-	-	7	14	25	31
PC0	I/O	5T	OTG_HS_ULPI_STP, EVENTOUT	ADC123_IN10	8	15	26	32
PC1	I/O	5T	ETH_MDC, EVENTOUT	ADC123_IN11	9	16	27	33
PC2	I/O	5T	SPI2_MISO, OTG_HS_ULPI_DIR, ETH_MII_TXD2, I2S2ext_SD, EVENTOUT	ADC123_IN12	10	17	28	34
PC3	I/O	5T	SPI2_MOSI, I2S2_SD, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, EVENTOUT	ADC123_IN13	11	18	29	35
V_{DD}	Р	-	-	-	-	19	30	36
Vssa	Р	-	-	-	12	20	31	37
V _{REF+}	Р	ı	-	-	-	21	32	38
V _{DDA}	Р	-	-	-	13	22	33	39
PA0-WKUP (PA0)	I/O	5T	USART2_CTS, UART4_TX, ETH_MII_CRS, TMR2_CH1_ETR, TMR5_CH1, TMR8_ETR, EVENTOUT	WKUP, ADC123_IN0	14	23	34	40
PA1	I/O	5T	USART2_RTS, UART4_RX, ETH_RMII_REF_CLK,	ADC123_IN1	15	24	35	41

					1		1	1
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
			ETH_MII_RX_CLK, TMR5_CH2, TMR2_CH2, EVENTOUT					
PA2	I/O	5T	USART2_TX, TMR5_CH3, TMR9_CH1, TMR2_CH3, ETH_MDIO, EVENTOUT	ADC123_IN2	16	25	36	42
PH2	I/O	5T	ETH_MII_CRS, EVENTOUT	-	-	-	-	43
PH3	I/O	5T	ETH_MII_COL, EVENTOUT, DMC_A9	-	-	-	-	44
PH4	I/O	5T	I2C2_SCL, OTG_HS_ULPI_NXT, EVENTOUT	-	-	ı	-	45
PH5	I/O	5T	I2C2_SDA, EVENTOUT DMC_CKE	-	-	-	-	46
PA3	I/O	5T	USART2_RX, TMR5_CH4, TMR9_CH2, TMR2_CH4 OTG_HS_ULPI_D0, ETH_MII_COL, EVENTOUT,	ADC123_IN3	17	26	37	47
Vss	Р	-	-	-	18	27	38	-
BYPASS_REG	-	5T	-	-	-	-	-	48
V _{DD}	Р	-	-	-	19	28	39	49
PA4	I/O	STDA	SPI1_NSS, SPI3_NSS, USART2_CK, DCI_HSYNC, OTG_HS_SOF, I2S3_WS, EVENTOUT	DAC_OUT1, ADC12_IN4	20	29	40	50
PA5	I/O	STDA	SPI1_SCK,	DAC_OUT2,	21	30	41	51

Γ	1	1			1	1	•	1
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
			OTG_HS_ULPI_CK, TMR2_CH1_ETR, TMR8_CH1N, EVENTOUT	ADC12_IN5				
PA6	I/O	5T	SPI1_MISO, TMR8_BKIN, TMR13_CH1, DCI_PIXCLK, TMR3_CH1, TMR1_BKIN, EVENTOUT	ADC12_IN6	22	31	42	52
PA7	I/O	5T	SPI1_MOSI, TMR8_CH1N, TMR14_CH1, TMR3_CH2, ETH_MII_RX_DV, TMR1_CH1N, ETH_RMII_CRS_DV, EVENTOUT	ADC12_IN7	23	32	43	53
PC4	I/O	5T	ETH_RMII_RX_D0, ETH_MII_RX_D0, EVENTOUT	ADC12_IN14	24	33	44	54
PC5	I/O	5T	ETH_RMII_RX_D1, ETH_MII_RX_D1, EVENTOUT	ADC12_IN15	25	34	45	55
PB0	I/O	5T	TMR3_CH3 TMR8_CH2N, OTG_HS_ULPI_D1, ETH_MII_RXD2, TMR1_CH2N, EVENTOUT	ADC12_IN8	26	35	46	56
PB1	I/O	5T	TMR3_CH4 TMR8_CH3N, OTG_HS_ULPI_D2, ETH_MII_RXD3, TMR1_CH3N, EVENTOUT	ADC12_IN9	27	36	47	57
PB2-BOOT1 (PB2)	I/O	5T	EVENTOUT	-	28	37	48	58
PF11	I/O	5T	DCI_D12,	-	-	-	49	59

								OCTOR •
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
			EVENTOUT, DMC_UDQM					
PF12	I/O	5T	SMC_A6, EVENTOUT	-	-	-	50	60
Vss	Р	-	-	-	-	-	51	61
V_{DD}	Р	-	-	-	-	-	52	62
PF13	I/O	5T	SMC_A7, EVENTOUT	-	-	-	53	63
PF14	I/O	5T	SMC_A8, EVENTOUT	-	-	-	54	64
PF15	I/O	5T	SMC_A9, EVENTOUT	-	-	-	55	65
PG0	I/O	5T	SMC_A10, EVENTOUT	-	-	-	56	66
PG1	I/O	5T	SMC_A11, DMC_CK, EVENTOUT	-	-	-	57	67
PE7	I/O	5T	SMC_D4, TMR1_ETR, EVENTOUT	-	-	38	58	68
PE8	I/O	5T	SMC_D5, TMR1_CH1N, EVENTOUT	-	-	39	59	69
PE9	I/O	5T	SMC_D6, TMR1_CH1, EVENTOUT	-	-	40	60	70
V _{SS}	Р	-	-	-	-	-	61	71
V _{DD}	Р	-	-	-	-	-	62	72
PE10	I/O	5T	SMC_D7, TMR1_CH2N, EVENTOUT	-	-	41	63	73
PE11	I/O	5T	SMC_D8, TMR1_CH2, EVENTOUT	-	-	42	64	74
PE12	I/O	5T	SMC_D9, TMR1_CH3N, EVENTOUT	-	-	43	65	75
PE13	I/O	5T	SMC_D10, TMR1_CH3,	-	-	44	66	76

		1		T	1	1	ı	1
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
			EVENTOUT					
PE14	I/O	5T	SMC_D11, TMR1_CH4, EVENTOUT	-	-	45	67	77
PE15	I/O	5T	SMC_D12, TMR1_BKIN, EVENTOUT	-	-	46	68	78
PB10	I/O	5T	SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_TX OTG_HS_ULPI_D3, ETH_MII_RX_ER, TMR2_CH3, EVENTOUT	-	29	47	69	79
PB11	I/O	5T	I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, ETH_RMII_TX_EN, ETH_MII_TX_EN, TMR2_CH4, EVENTOUT	-	30	48	70	80
VCAP_1	Р	-	-	-	31	49	71	81
V _{DD}	Р	1	-	-	32	50	72	82
PH6	I/O	5T	I2C2_SMBAI, TMR12_CH1, ETH_MII_RXD2, EVENTOUT	-	-	-	-	83
PH7	I/O	5T	I2C3_SCL, ETH_MII_RXD3, EVENTOUT	-	-	-	-	84
PH8	I/O	5T	I2C3_SDA, DCI_HSYNC, EVENTOUT, DMC_DQ8	-	-	-	-	85
PH9	I/O	5T	I2C3_SMBAI, TMR12_CH2, DCI_D0, EVENTOUT	-	-	-	-	86

名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176	
PH10	I/O	5T	TMR5_CH1, DCI_D1, EVENTOUT, DMC_DQ9	DCI_D1,					
PH11	I/O	5T	TMR5_CH2, DCI_D2, EVENTOUT	-	-	-	-	88	
PH12	I/O	5T	TMR5_CH3, DCI_D3, EVENTOUT	-	-	-	-	89	
Vss	Р	-	-	-	-	-	-	90	
V _{DD}	Р	-	-	-	-	-	-	91	
PB12	I/O	5T	SPI2_NSS, I2S2_WS, I2C2_SMBAI, USART3_CK, TMR1_BKIN, CAN2_RX, OTG_HS_ULPI_D5, ETH_RMII_TXD0, OTG_HS_ID, OTG_HS_ID, EVENTOUT	-	33	51	73	92	
PB13	I/O	5T	SPI2_SCK, I2S2_CK, USART3_CTS, TMR1_CH1N, CAN2_TX, OTG_HS_ULPI_D6, ETH_RMII_TXD1, ETH_MII_TXD1, EVENTOUT	OTG_HS_VBUS	34	52	74	93	
PB14	I/O	5T	SPI2_MISO, TMR1_CH2N, TMR12_CH1, OTG_HS_DM, USART3_RTS, TMR8_CH2N, I2S2ext_SD, EVENTOUT	-	35	53	75	94	

							SEMICOND	
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
PB15	I/O	5T	SPI2_MOSI, I2S2_SD, TMR1_CH3N, TMR8_CH3N TMR12_CH2, OTG_HS_DP, EVENTOUT	RTC_REFIN	36	54	76	95
PD8	I/O	5T	SMC_D13, USART3_TX, EVENTOUT	-	-	55	77	96
PD9	I/O	5T	SMC_D14, USART3_RX, EVENTOUT	-	-	56	78	97
PD10	I/O	5T	SMC_D15, DMC_DQ10 USART3_CK, EVENTOUT	-	-	57	79	98
PD11	I/O	5T	SMC_CLE, SMC_A16, USART3_CTS, EVENTOUT	-	-	58	80	99
PD12	I/O	5T	SMC_ALE, SMC_A17, DMC_DQ11, TMR4_CH1, USART3_RTS, EVENTOUT	-	-	59	81	100
PD13	I/O	5T	SMC_A18, DMC_DQ12 TMR4_CH2, EVENTOUT	-	-	60	82	101
Vss	Р	-	-	-	-	-	83	102
V_{DD}	Р	-	-	-	-	-	84	103
PD14	I/O	5T	SMC_D0, DMC_DQ13, TMR4_CH3, EVENTOUT	-	-	61	85	104
PD15	I/O	5T	SMC_D1, DMC_DQ14, TMR4_CH4,	-	-	62	86	105

	1	l		I	1		I	
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
			EVENTOUT					
			SMC_A12,					
PG2	I/O	5T	DMC_DQ15,	-	-	-	87	106
			EVENTOUT					
			SMC_A13,					
PG3	I/O	5T	DMC_DQ0,	-	-	-	88	107
			EVENTOUT					
			SMC_A14,					
PG4	I/O	5T	DMC_DQ1,	-	-	-	89	108
			EVENTOUT					
			SMC_A15,					
PG5	I/O	5T	DMC_DQ2,	-	-	-	90	109
			EVENTOUT					
PG6	I/O	5T	SMC_INT2,			_	91	110
PG0	1/0	31	DMC_DQ3 EVENTOUT	-	_	-	91	110
			SMC_INT3,					
PG7	I/O	5T	USART6_CK,	_	_	_	92	111
1 07	., 0	01	EVENTOUT				02	
			DMC_DQ4					
			USART6_RTS,					
PG8	I/O	5T	ETH_PPS_OUT,	-	-	-	93	112
			EVENTOUT					
Vss	Р	-	-	-	-	-	94	113
V _{DD}	Р	-	-	-	-	-	95	114
			I2S2_MCK,					
			TMR8_CH1,					
			SDIO_D6,					
PC6	I/O	5T	USART6_TX,	-	37	63	96	115
			DCI_D0,					
			TMR3_CH1,					
			EVENTOUT					
			I2S3_MCK,					
			TMR8_CH2,					
	,		SDIO_D7,					
PC7	I/O	5T	USART6_RX,	-	38	64	97	116
			DCI_D1,					
			TMR3_CH2,					
			EVENTOUT					

	_			ı	T	T	T	
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
PC8	I/O	5T	TMR8_CH3, SDIO_D0, TMR3_CH3, USART6_CK, DCI_D2, EVENTOUT	-	39	65	98	117
PC9	1/0	5T	I2S_CKIN, MCO2, TMR8_CH4, SDIO_D1, I2C3_SDA, DCI_D3, TMR3_CH4, EVENTOUT	-	40	66	99	118
PA8	I/O	5T	USART1_CK, TMR1_CH1, MCO, I2C3_SCL, OTG_FS_SOF, EVENTOUT	-	41	67	100	119
PA9	I/O	5T	USART1_TX, TMR1_CH2, I2C3_SMBAI, DCI_D0, EVENTOUT	OTG_FS_VBUS	42	68	101	120
PA10	I/O	5T	USART1_RX, TMR1_CH3, OTG_FS_ID, DCI_D1, EVENTOUT	-	43	69	102	121
PA11	I/O	5T	USART1_CTS, CAN1_RX, TMR1_CH4, OTG_FS_DM, EVENTOUT	-	44	70	103	122
PA12	I/O	5T	USART1_RTS, CAN1_TX, TMR1_ETR, OTG_FS_DP, EVENTOUT	SART1_RTS, CAN1_TX, TMR1_ETR, - 45 71 DTG_FS_DP,		104	123	

							SEMICOND	octor •
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
PA13 (JTMS-SWDIO)	I/O	5T	JTMS-SWDIO, EVENTOUT	PA13	46	72	105	124
VCAP_2	Р	-	-	-	47	73	106	125
V _{SS}	Р	-	-	-	-	74	107	126
V _{DD}	Р	-	-	-	48	75	108	127
PH13	I/O	5T	TMR8_CH1N, CAN1_TX, EVENTOUT, DMC_DQ5	-	-	-	-	128
PH14	I/O	5T	TMR8_CH2N, DCI_D4, EVENTOUT	-	-	-	-	129
PH15	I/O	5T	TMR8_CH3N, DCI_D11, EVENTOUT, DMC_DQ6	-	-	-	-	130
PI0	I/O	5T	TMR5_CH4, SPI2_NSS, I2S2_WS, DCI_D13, EVENTOUT	-	-	-	-	131
PI1	I/O	5T	SPI2_SCK, I2S2_CK, DCI_D8, EVENTOUT	-	-	-	-	132
PI2	I/O	5T	TMR8_CH4, SPI2_MISO, DCI_D9, I2S2ext_SD, EVENTOUT	-	-	-	-	133
PI3	I/O	5T	TMR8_ETR, SPI2_MOSI, I2S2_SD, DCI_D10, EVENTOUT, DMC_DQ7	-	-	-	-	134
Vss	Р	-	-	-	-	-	-	135
V _{DD}	Р	-	-	-	-	-	-	136
PA14	I/O	5T	JTCK-SWCLK,	-	49	76	109	137

								OCTOR •
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
(JTCK/SWCLK)			EVENTOUT					
PA15 (JTDI)	I/O	5T	JTDI, SPI3_NSS, I2S3_WS, TMR2_CH1_ETR, SPI1_NSS, EVENTOUT	-	50	77	110	138
PC10	I/O	5T	SPI3_SCK, I2S3_CK, UART4_TX, SDIO_D2, DCI_D8, USART3_TX, EVENTOUT	-	51	78	111	139
PC11	I/O	5T	UART4_RX, SPI3_MISO, SDIO_D3, DCI_D4, USART3_RX, I2S3ext_SD, EVENTOUT	-	52	79	112	140
PC12	I/O	5T	UART5_TX, SDIO_CK, DCI_D9, SPI3_MOSI, I2S3_SD, USART3_CK, EVENTOUT	-	53	80	113	141
PD0	I/O	5T	SMC_D2, CAN1_RX, EVENTOUT	-	-	81	114	142
PD1	I/O	5T	SMC_D3, CAN1_TX, EVENTOUT	-	-	82	115	143
PD2	I/O	5T	TMR3_ETR, UART5_RX, SDIO_CMD, DCI_D11, EVENTOUT	-	54	83	116	144
PD3	I/O	5T	SMC_CLK,	-	-	84	117	145

名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
			USART2_CTS, EVENTOUT					
PD4	I/O	5T	SMC_NOE, USART2_RTS, EVENTOUT	-	-	85	118	146
PD5	I/O	5T	SMC_NWE, USART2_TX, 86 1' EVENTOUT		119	147		
V _{SS}	Р	-	-	-	-	-	120	148
V_{DD}	Р	-	-	-	-	-	121	149
PD6	I/O	5T	SMC_NWAIT, USART2_RX, EVENTOUT	-	-	87	122	150
PD7	I/O	5T	SMC_NE1, SMC_NCE2, USART2_CK, EVENTOUT	-	-	88	123	151
PG9	I/O	5T	SMC_NE2, SMC_NCE3, USART6_RX, EVENTOUT	-	-	-	124	152
PG10	I/O	5T	SMC_NCE4_1, SMC_NE3, EVENTOUT	-	-	-	125	153
PG11	I/O	5T	SMC_NCE4_2, ETH_MII_TX_EN, ETH_RMII_TX_EN, EVENTOUT	-	-	-	126	154
PG12	I/O	5T	SMC_NE4, USART6_RTS, EVENTOUT	-	-	-	127	155
PG13	I/O	5T	SMC_A24, USART6_CTS, ETH_MII_TXD0, ETH_RMII_TXD0, EVENTOUT	-	-	-	128	156
PG14	I/O	5T	SMC_A25, USART6_TX, ETH_MII_TXD1, ETH_RMII_TXD1,	-	-	-	129	157

<u></u>	1			T	Т	T	SEMICOND		
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176	
			EVENTOUT						
Vss	Р	-	-	-	-	-	130	158	
V _{DD}	Р	_	-	-	_	-	131	159	
- 25			DMC_LDQM,						
DC45	1/0	c.T	USART6_CTS,				400	400	
PG15	I/O	5T	DCI_D13,	-	-	-	132	160	
			EVENTOUT						
			JTDO,						
			TRACESWO,						
PB3			SPI3_SCK,						
(JTDO/TRACESWO)	I/O	5T	I2S3_CK,	-	55	89	133	161	
(0120/110102000)			TMR2_CH2,						
			SPI1_SCK,						
			EVENTOUT						
			NJTRST,						
			SPI3_MISO,						
PB4	I/O	5T	TMR3_CH1,	_	56	90	134	162	
(NJTRST)	1,0	01	SPI1_MISO,		30	30	104	102	
			I2S3ext_SD,						
			EVENTOUT						
			I2C1_SMBAI,						
			CAN2_RX,						
			OTG_HS_ULPI_D7,						
			ETH_PPS_OUT,						
PB5	I/O	_	TMR3_CH2,	-	57	91	135	163	
			SPI1_MOSI,						
			SPI3_MOSI,						
			DCI_D10,						
			I2S3_SD,						
			EVENTOUT						
			I2C1_SCL,						
			TMR4_CH1,						
PB6	I/O	5T	CAN2_TX,	-	58	92	136	164	
			DCI_D5,						
			USART1_TX,						
			EVENTOUT						
			I2C1_SDA,						
PB7	I/O	5T	SMC_NL,	-	59	93	137	165	
			DCI_VSYNC,						
			USART1_RX,						

	1	1		T		T	1	OCTOR •
名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
	1		TMR4_CH2,					
			EVENTOUT					
воото	ı	В	-	V _{PP}	60	94	138	166
PB8	I/O	5T	TMR4_CH3, SDIO_D4, TMR10_CH1, DCI_D6, ETH_MII_TXD3, I2C1_SCL, CAN1_RX, EVENTOUT	-	61	95	139	167
PB9	I/O	5T	SPI2_NSS, I2S2_WS, TMR4_CH4, TMR11_CH1, SDIO_D5, DCI_D7, I2C1_SDA, CAN1_TX, EVENTOUT	-	62	96	140	168
PE0	I/O	5T	TMR4_ETR, SMC_NBL0, DCI_D2, EVENTOUT	-	-	97	141	169
PE1	I/O	5T	SMC_NBL1, DCI_D3, EVENTOUT	-	-	98	142	170
Vss	Р	-	-	-	63	99	-	-
PDR_ON	ı	5T	-	-	-	-	143	171
V _{DD}	Р	-	-	-	64	100	144	172
PI4	I/O	5T	TMR8_BKIN, DCI_D5, EVENTOUT	-	-	-	-	173
PI5	I/O	5T	TMR8_CH1, DCI_VSYNC, EVENTOUT	-	-	-	-	174
PI6	I/O	5T	TMR8_CH2, DCI_D6, EVENTOUT	-	-	-	-	175

名称 (复位后的功能)	类型	结构	复用功能	附加功能	LQFP64	LQFP100	LQFP144	LQFP176
PI7	1/0	5T	TMR8_CH3, DCI_D7, EVENTOUT, DMC_WE	-	-	-	-	176

注:

- (1) PC13、PC14 和 PC15 通过电源开关供电。由于开关仅吸收有限的电流(3 毫安),因此在输出模式下 GPIO 的 PC13 至 PC15 的使用受到限制:
 - ① 大负载为 30pF 时,速度不应超过 2MHz;
 - ② 不用作电流源(例如驱动发光二极管)。

3.3 **GPIO** 复用功能配置

表格 4 GPIOA 复用功能配置

Po rt	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	A F 14	AF15
PA 0	-	TMR2_CH 1_ETR	TMR5_ CH1	TMR8_ ETR	-	-	-	USART2 _CTS	UART4 _TX	-	-	ETH_MII_CR S	-	-	-	EVENT OUT
PA 1	-	TMR2_CH 2	TMR5_ CH2	-	-	-	-	USART2 _RTS	UART4 _RX	-	-	ETH_MII_RX _CLK ETH_RMII_R EF_CLK	-	-	-	EVENT OUT
PA 2	-	TMR2_CH	TMR5_ CH3	TMR9_ CH1	-	-	-	USART2 _TX	-	-	-	ETH_MDIO	-	-	-	EVENT OUT
PA 3	-	TMR2_CH 4	TMR5_ CH4	TMR9_ CH2	-	-	-	USART2 _RX	-	-	OTG_HS_U LPI_D0	ETH_MII_CO L	DMC_CK E	-	-	EVENT OUT
PA 4	-	-	-	-	-	SPI1_N SS	SPI3_ NSS I2S3_ WS	USART2 _CK	-	-	-	-	OTG_HS _SOF	DCI_HS YNC	-	EVENT OUT
PA 5	-	TMR2_CH 1_ETR		TMR8_ CH1N	-	SPI1_S CK	-	-	-	-	OTG_HS_U LPI_CK	-	-	-	-	EVENT OUT
PA 6	-	TMR1_BKI N	TMR3_ CH1	TMR8_ BKIN	-	SPI1_ MISO	-	-	-	TMR13 _CH1	-	-	-	DCI_PI XCK	-	EVENT OUT
PA 7	-	TMR1_CH 1N	TMR3_ CH2	TMR8_ CH1N	-	SPI1_ MOSI	-	-	-	TMR14 _CH1	-	ETH_MII_RX _DV ETH_RMII_C RS_DV	-	-	-	EVENT OUT

Po rt	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	A F 14	AF15
PA 8	MCO1	TMR1_CH	-	-	I2C3_S CL	-	-	USART1 _CK	-	-	OTG_FS_S OF	-	-	-	-	EVENT OUT
PA 9	-	TMR1_CH 2	-	-	I2C3_S MBA	-	-	USART1 _TX	-	-	-	-	-	DCI_D0	-	EVENT OUT
PA 10	-	TMR1_CH	-	-	-	-	ı	USART1 _RX	ı	-	OTG_FS_ID	-	-	DCI_D1	-	EVENT OUT
PA 11	1	TMR1_CH 4	-	-	-	-	-	USART1 _CTS	-	CAN1_ RX	OTG_FS_D M	-	-	-	-	EVENT OUT
PA 12	-	TMR1_ET R	-	-	-	-	-	USART1 _RTS	-	CAN1_ TX	OTG_FS_D P	-	-	-	-	EVENT OUT
PA 13	JTMS_S WDIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PA 14	JTCK_S WCLK	-	-	-	-	-	-	-	•	-	-	-	-	-	-	EVENT OUT
PA 15	JTDI	TMR2_CH 1 TMR2_ET R	-	-	-	SPI1_N SS	SPI3_ NSS I2C3_ WS	-	-	-	-	-	-	-	-	EVENT OUT

表格 5 GPIOB 复用功能配置

						, . ,	ī	フロ 交/11/5/17	1	_			I			1
Po rt	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	A F8	AF9	AF10	AF11	AF12	AF13	A F 14	AF15
РВ	_	TMR1_	TMR3_	TMR8_	_	_	-	_	_	_	OTG_HS_U	ETH_MII_R	-	_	_	EVENT
0		CH2N	CH3	CH2N							LPI_D1	XD2				OUT
РВ		TMR1_	TMR3_	TMR8_							OTG_HS_U	ETH_MII_R				EVENT
1	-	CH3N	CH4	CH3N	-	-	-	-	-	-	LPI_D2	XD3	-	-	-	OUT
PB 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PB 3	JTDO/TRAC ESWO	TMR2_ CH2	-	-	-	SPI1_SCK	SPI3_S CK I2S3_C K	-	-	-	-	-	-	-	-	EVENT OUT
PB 4	NJTRST	-	TMR3_ CH1	-	-	SPI1_MISO	SPI3_ MISO	I2S3ext_ SD	-	-	-	-	-	-	-	EVENT OUT
PB 5	-	-	TMR3_ CH2	-	I2C1_S MBA	SPI1_MOSI	SPI3_ MOSI I2S3_S D	-	-	CAN2_ RX	OTG_HS_U LPI_D7	ETH_PPS_ OUT	-	DCI_D1	-	EVENT OUT
PB 6	-	-	TMR4_ CH1	-	I2C1_S CL	-	-	USART1 _TX	-	CAN2_T X	-	-	-	DCI_D5	-	EVENT OUT
PB 7	-	-	TMR4_ CH2	-	I2C1_S DA	-	-	USART1 _RX	-	-	-	-	SMC_NL	DCI_VS YNC		EVENT OUT
PB 8	-	-	TMR4_ CH3	TMR10_ CH1	I2C1_S CL	-	-	-	-	CAN1_ RX	-	ETH_MII_T XD3	SDIO_D 4	DCI_D6	-	EVENT OUT
PB 9	-	-	TMR4_ CH4	TMR11_ CH1	I2C1_S DA	SPI2_NSS I2S2_WS	-	-	-	CAN1_T X	-	-	SDIO_D 5	DCI_D7	-	EVENT OUT

Po rt	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	A F8	AF9	AF10	AF11	AF12	AF13	A F 14	AF15
PB 10	-	TMR2_ CH3	-	-	I2C2_S CL	SPI2_SCK I2S2_CK	-	USART3 _TX	-	-	OTG_HS_U LPI_D3	ETH_MII_R X_ER	-	-	-	EVENT OUT
PB 11	-	TMR2_ CH4	-	-	I2C2_S DA	-	-	USART3 _RX	-	-	OTG_HS_U LPI_D4	ETH_MII_T X_EN/ ETH _RMII_TX_ EN	-	-	-	EVENT OUT
PB 12	-	TMR1_B KIN	-	-	I2C2_S MBA	SPI2_NSS I2S2_WS	-	USART3 _CK	-	CAN2_ RX	OTG_HS_U LPI_D5	ETH_RMII_ TXD0/ ETH_MII_T XD0	OTG_H S_ID	-	-	EVENT OUT
PB 13	-	TMR1_ CH1N	-	-	-	SPI2_SCK I2S2_CK	-	USART3 _CTS	-	CAN2_T X	OTG_HS_U LPI_D6	ETH_RMII_ TXD1/ ETH_MII_T XD1	-	-	-	EVENT OUT
PB 14	-	TMR1_ CH2N	-	TMR8_ CH2N	-	SPI2_MISO	I2S2ext _SD	USART3 _RTS	-	TMR12_ CH1	-	-	OTG_H S_DM	-	-	EVENT OUT
PB 15	RTC_REFIN	TMR1_ CH3N	-	TMR8_ CH3N	-	SPI2_MOSII2 S2_SD	-	-	-	TMR12_ CH2	-	-	OTG_H S_DP	-	-	EVENT OUT

表格 6 GPIOC 复用功能配置

Port	AF0	AF 1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF 9	AF10	AF11	AF12	AF13	AF1	AF15
PC0	•	1	-	-	-	-	-	-	-	-	OTG_HS_ULPI_ STP	-	-	-	-	EVENTO UT
PC1	•	-	-	-	-	-	-	-	-	-	-	ETH_MDC	-	-	-	EVENTO UT
PC2	-	-	-	-	-	SPI2_MI SO	I2S2ext_ SD	-	-	-	OTG_HS_ULPI_ DIR	ETH_MII_TXD 2	-	-	-	EVENTO UT
PC3	1	-	-	-	-	SPI2_M OSI I2S2_SD	1	-	-	-	OTG_HS_ULPI_ NXT	ETH_MII_TX_ CLK		1	-	EVENTO UT
PC4	-	•	-	-	-	-	-	-	-	-	-	ETH_MII_RXD 0 ETH_RMII_RX D0	-	-	-	EVENTO UT
PC5	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RXD 1 ETH_RMII_RX D1	-	-	-	EVENTO UT
PC6	•	-	TMR3_C H1	TMR8_C H1	-	I2S2_MC K	-	-	USART6_ TX	-	-	-	SDIO_ D6	DCI_ D0	-	EVENTO UT
PC7	-	-	TMR3_C H2	TMR8_C H2	-	-	I2S3_MC K	-	USART6_ RX	-	-	-	SDIO_ D7	DCI_ D1	-	EVENTO UT
PC8	-	-	TMR3_C H3	TMR8_C H3	-	-	-	-	USART6_ CK	-	-	-	SDIO_ D0	DCI_ D2	-	EVENTO UT
PC9	MCO 2	-	TMR3_C H4	TMR8_C H4	I2C3_S DA	I2S_CKI N	-	-	-	-	-	-	SDIO_ D1	DCI_ D3	-	EVENTO UT

Port	AF0	AF 1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF 9	AF10	AF11	AF12	AF13	AF1	AF15
PC1 0	-	-	-	-	-	-	SPI3_SC K/ I2S3_CK	USART3_ TX	UART4_T X	-	-	-	SDIO_ D2	DCI_ D8	-	EVENTO UT
PC1	-	1	-	-	-	I2S3ext_ SD	SPI3_MI SO/	USART3_ RX	UART4_R X	ı	-	-	SDIO_ D3	DCI_ D4	-	EVENTO UT
PC1	•	1	1	-	-	-	SPI3_MO SI I2S3_SD	USART3_ CK	UART5_T X	1	-	-	SDIO_ CK	DCI_ D9	-	EVENTO UT
PC1	•	1	-	-	-	-	-	-	-	1	-	-	-	-	-	EVENTO UT
PC1 4	-	1	-	-	-	-	-	-	-	ı	-	-	-	-	-	EVENTO UT
PC1 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTO UT

表格 7 GPIOD 复用功能配置

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PD0	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	SMC_D2	-	-	EVENTOUT
PD1	-	-	-	-	-	-	-	-	-	CAN1_TX	-	-	SMC_D3	-	-	EVENTOUT
PD2	-	-	TMR3_ETR	-	-	-	-	-	UART5_RX	-	-	-	SDIO_CMD	DCI_D11	-	EVENTOUT
PD3	-	-	-	-	-	-	-	USART2_CTS	-	-	-	-	SMC_CLK	-	-	EVENTOUT
PD4	-	-	-	-	-	-	-	USART2_RTS	-	-	-	-	SMC_NOE	-	-	EVENTOUT
PD5	-	-	-	-	-	-	-	USART2_TX	-	-	-	-	SMC_NWE	-	-	EVENTOUT
PD6	-	-	-	-	-	-	-	USART2_RX	-	-	-	-	SMC_NWAIT	-	-	EVENTOUT
PD7	-	-	-	-	-	-	-	USART2_CK	-	-	-	-	SMC_NE1/SMC_NCE2	-	-	EVENTOUT
PD8	-	-	-	-	-	-	-	USART3_TX	-	-	-	-	SMC_D13	-	-	EVENTOUT
PD9	-	-	-	-	-	-	-	USART3_RX	-	-	-	-	SMC_D14	-	-	EVENTOUT
PD10		_			_		_	USART3_CK				_	SMC_D15			EVENTOUT
PDIO	-	-	-	-	-	-	-	USAK 13_CK	-	-	-	-	DMC_DQ10	-	-	EVENTOUT
PD11	-	-	-	-	-	-	-	USART3_CTS	-	-	-	-	SMC_A16	-	-	EVENTOUT
PD12		_	TMR4_CH1					USART3_RTS					SMC_A17			EVENTOUT
PDIZ	-	-	TIVIK4_CHT	•	-	-	-	USAKI3_KIS	-	•	-	-	DMC_DQ11		-	EVENTOUT
PD13			TMR4 CH2		_								SMC_A18			EVENTOUT
PDIS	-	-	TIVIK4_CH2		-	-	-	-	•	,	-	-	DMC_DQ12		-	EVENTOUT
PD14			TMD4 CU2										SMC_D0			EVENTOUT
PD14		-	TMR4_CH3		-	-	-		-	<u> </u>	-		DMC_DQ13	-		EVENTOUT
PD15	_		TMR4_CH4		_		_					_	SMC_D1		_	EVENTOUT
פוטא	-	-	TIVIK4_CH4	-	-	-	-	-	-	-	-	-	DMC_DQ14	-	-	EVENTOUT

表格 8 GPIOE 复用功能配置

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PE0	-	-	TMR4_ETR	-	-	-	-	-	-	-	-	-	SMC_NBL0	DCI_D2	-	EVENTOUT
PE1	-	-	-	-		-	-	-	-	-	-	-	SMC_NBL1	DCI_D3	-	EVENTOUT
PE2	TRACECLK	-	-	-		-	-	-	-	-	-	ETH_MII_TXD3	SMC_A23	-	-	EVENTOUT
PE3	TRACED0	-	-	-		-	-	-	-	-	-	-	SMC_A19	-	-	EVENTOUT
PE4	TRACED1	-	-	-		-	-	-	-	-	-	-	SMC_A20	DCI_D4	-	EVENTOUT
PE5	TRACED2	-	-	TMR9_CH1		-	-	-	-	-	-	-	SMC_A21	DCI_D6	-	EVENTOUT
PE6	TRACED3	-	-	TMR9_CH2		-	-	-	-	-	-	-	SMC_A22	DCI_D7	-	EVENTOUT
PE7	-	TMR1_ETR	-	-	-	-	1	-	•	-	-	-	SMC_D4	-	ı	EVENTOUT
PE8	•	TMR1_CH1N	-	-		-	ı	-	ı	-	-	-	SMC_D5	-	ı	EVENTOUT
PE9	•	TMR1_CH1	-	-		-	ı	-	ı	-	-	-	SMC_D6	-	ı	EVENTOUT
PE10	•	TMR1_CH2N	-	-		-	ı	-	ı	-	-	-	SMC_D7	-	ı	EVENTOUT
PE11	•	TMR1_CH2	-	-		-	ı	-	ı	-	-	-	SMC_D8	-	ı	EVENTOUT
PE12	•	TMR1_CH3N	-	-		-	ı	-	ı	-	-	-	SMC_D9	-	ı	EVENTOUT
PE13	-	TMR1_CH3	-	-	-	-	-	-	-	-	-	-	SMC_D10	-	-	EVENTOUT
PE14	-	TMR1_CH4	-	-	-	-	1	-	-	-	-	-	SMC_D11	-	ı	EVENTOUT
PE15	-	TMR1_BKIN	-	-	-	-	1	-	-	-	-	-	SMC_D12	-	ı	EVENTOUT

表格 9 GPIOF 复用功能配置

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PF0	-	-	-	-	I2C2_SDA	-	-	-	-	-	-	-	SMC_A0 DMC_A10	-	-	EVENTOUT
PF1	-	1	1	-	I2C2_SCL	-	-	-	-	-	-	-	SMC_A1 DMC_A0	-	-	EVENTOUT
PF2	-	1	1	-	I2C2_SMBA	1	ı	,	-	-	-	-	SMC_A2 DMC_A1	-	1	EVENTOUT
PF3	-	1	1	-	-	-	1	-	-	-	-	-	SMC_A3 DMC_A2	-	-	EVENTOUT
PF4	-	ı	ı	-	-	ı	ı	ı	-	-	1	-	SMC_A4 DMC_A3	-	ı	EVENTOUT
PF5	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A5	-	-	EVENTOUT
PF6	-	-	-	TMR10_CH1	-		-	-	-	-	-	-	SMC_NIORD DMC_A4	-	-	EVENTOUT
PF7	-	-	-	TMR11_CH1	-	-	-	-	-	-	-	-	SMC_NREG DMC_A5	-	-	EVENTOUT
PF8	-	-	-	-	-	-	-	-	-	TMR13_CH1	-	-	SMC_NIOWR DMC_A6	-	-	EVENTOUT
PF9	-	ı	ı	-	-		ı	•	-	TMR14_CH1	-	-	SMC_CD DMC_A7	-	-	EVENTOUT
PF10	-	ı	ı	-	-	ı	ı	ı	-	-	1	-	SMC_INTR DMC_A8	-	ı	EVENTOUT
PF11	-	ı	-	-	-	-	-	-	-	-	-	-	DMC_UDQM	DCI_D12	-	EVENTOUT
PF12	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A6	-	-	EVENTOUT
PF13	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A7	-	-	EVENTOUT
PF14	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A8	-	-	EVENTOUT
PF15	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A9	-	-	EVENTOUT

表格 10 GPIOG 复用功能配置

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PG0	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A10	-	-	EVENTOUT
PG1	-	_		_	_	_	_	_	_	_	_	_	SMC_A11	_	-	EVENTOUT
6	•	-	•	-	-	-	_	_	-	-	-	-	DMC_CK	-		EVENTOOT
PG2										_			SMC_A12		-	EVENTOUT
PGZ	•	-	•	-	-	-	_	_	-	-	-	-	DMC_DQ15	-		EVENTOOT
PG3		_				_	_			_			SMC_A13		,	EVENTOUT
PG3	-	-	-	-	-	-	_	-	-	-	-	-	DMC_DQ0	-	-	EVENTOUT
PG4													SMC_A14			EVENTOUT
PG4	-	-	-	-	-	-	-	-	-	-	-	-	DMC_DQ1	-	-	EVENTOUT
PG5	_												SMC_A15			EVENTOUT
PG5	-	-	-	-	-	-	-	-	-	-	-	-	DMC_DQ2	-	-	EVENTOUT
PG6													SMC_INT2			FVENTOUT
PG6	-	-	-	-	-	-	-	-	-	-	-	-	DMC_DQ3	-	-	EVENTOUT
PG7	-	-	-	-	-	-	-	-	USART6_CK	-	-	-	SMC_INT3	-	-	EVENTOUT
PG8	-	-	-	-	-	-	-	-	USART6_RTS	-	-	ETH_PPS_OUT	DMC_DQ4	-	-	EVENTOUT
PG9	-	-	-	-	-	-	-	-	USART6_RX	-	-	-	SMC_NE2/SMC_NCE3	-	-	EVENTOUT
PG10	-	-	-	-	-	-	-	-	-	-	-	-	SMC_NCE4_1/SMC_NE3	-	-	EVENTOUT
D044												ETH_MII_TX_EN	OMO NOTA O			EVENTOUT
PG11	-	-	-	-	-	-	-	-	-	-	-	ETH_RMII_TX_EN	SMC_NCE4_2	-	-	EVENTOUT
PG12	-	-	-	-	-	-	-	-	USART6_RTS	-	-	-	SMC_NE4	-	-	EVENTOUT
D040									LICARTO OTO			ETH_MII_TXD0	0140 404			EVENTOUT.
PG13	-	-	-	-	-	-	-	-	USART6_CTS	-	-	ETH_RMII_TXD0	SMC_A24	-	-	EVENTOUT
DC44									LICADTO TV			ETH_MII_TXD1	CMC AGE			FVENTOUT
PG14	-	-	-	-	-	-	-	-	USART6_TX	-	-	ETH_RMII_TXD1	SMC_A25	-	-	EVENTOUT
PG15	-	-	-	-	-	-	-	-	USART6_CTS	-	-	-	DMC_LDQM	DCI_D13	-	EVENTOUT

表格 11 GPIOH 复用功能配置

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
РН0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PH2	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_CR S	-	-	-	EVENT OUT
РН3	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_CO L	DMC_A9	-	-	EVENT OUT
PH4	-	-	-	-	I2C2_SCL	-	-	-	-	-	OTG_HS _ULPI_N XT	-	-	-	-	EVENT OUT
PH5	-	-	-	-	I2C2_SDA	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PH6	-	-	-	-	I2C2_SMBA	-	-	-	-	TMR12_CH1	-	ETH_MII_RX D2	-	-	-	EVENT OUT
PH7	-	-	-	-	I2C3_SCL	-	-	-	-	-	-	ETH_MII_RX D3	-	-	-	EVENT OUT
PH8	-	-	-	-	I2C3_SDA	-	-	-	-	-	-	-	DMC_DQ8	DCI_HSYN C	-	EVENT OUT
PH9	-	-	-	-	I2C3_SMBA	-	-	-	-	TMR12_CH2	-	-	-	DCI_D0	-	EVENT OUT
PH1 0	-	-	TMR5_CH1	-	-	-	-	-	-	-	-	-	DMC_DQ9	DCI_D1	-	EVENT OUT
PH1 1	-	-	TMR5_CH2	-	-	-	-	-	-	-	-	-	-	DCI_D2	-	EVENT OUT

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PH1			TMR5_CH3											DCI D2		EVENT
2	-	-	TIVINO_CHS	1	•	-	-	-	-	•	-	•	-	DCI_D3	-	OUT
PH1		_		TMR8_	_	_	_	_	_	CAN1_TX	_	_	DMC_DQ5	_		EVENT
3	-	-	-	CH1N	-	-	-	-	_	CAN1_1X	-	-	DIVIC_DQ5	•	-	OUT
PH1				TMR8_												EVENT
4	-	-	-	CH2N	-	-	-	-	-	-	-	-	-	DCI_D4	-	OUT
PH1				TMR8_									DMC_DQ6	DCI_D11		EVENT
5	-	-	-	CH3N	•	-	-	-	-	-	-	-	DIVIC_DQ6	ווטכו_טוו	-	OUT

表格 12 GPIOI 复用功能配置

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PI0	-	-	TMR5_C H4	-	-	SPI2_NS S I2S2_WS	-	-	-	-	-	-	-	DCI_D13		EVENT OUT
PI1	-	-	-	-	-	SPI2_SC K I2S2_CK	-	-	-	-	-	-	-	DCI_D8	-	EVENT OUT
PI2	-	-	-	TMR8_ CH4	-	SPI2_MIS	I2S2ext _SD	-	-	-	-	-	-	DCI_D9	-	EVENT OUT
PI3	-	-	-	TMR8_ ETR	-	SPI2_MO SI I2S2_SD	-	-	-	-	-	-	DMC_DQ 7	DCI_D10	-	EVENT OUT
PI4	-	-	-	TMR8_ BKIN	-	-	-	-	-	-	-	-	-	DCI_D5	-	EVENT OUT
PI5	-	-	-	TMR8_ CH1	-	-	-	-	-	-	-	-	-	DCI_VSYN C	-	EVENT OUT
PI6	-	-	-	TMR8_ CH2	-	-	-	-	-	-	-	-	-	DCI_D6	-	EVENT OUT
PI7	-	-	-	TMR8_ CH3	-	-	-	1	ı	ı	-	-	DMC_W E	DCI_D7	-	EVENT OUT
PI8	1	1	1	-	-	-	-	ı	ı	ı	-	-	DMC_CA	-	-	EVENT OUT
PI9	-	-	-	-	-	-	-	-	-	CAN1_R X	-	-	DMC_RA	-	-	EVENT OUT
PI10	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RX_ ER	DMC_CS	-	-	EVENT OUT

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PI11	-	-	1	-		1	-	-	1	-	OTG_HS_ULPI_ DIR	-	DMC_BA		-	EVENT OUT

4 功能描述

本章主要介绍 APM32F405xG 407xExG 系列产品系统架构、中断、片上存储器、时钟、电源、外设特点,有关 Arm® Cortex®-M4 内核的相关信息,请参考 Arm® Cortex®-M4 技术参考手册,该手册可以在 Arm 公司的网站下载。

此版本适用 APM32F405、APM32F407 系列 A 版本型号产品。

4.1 系统架构

4.1.1 系统框图

图 5 APM32F405xG 407xExG 系统框图

4.1.2 地址映射

表格 13 APM32F405xG 407xExG 系列地址映射表格

区域	起始地址	外设名称
代码	0x0000 0000	代码映射区
代码	0x0800 0000	FLASH
代码	0x0810 0000	保留
代码	0x1FFF 0000	系统存储区
代码	0x1FFF C000	选项字节
代码	0x1FFF C008	保留
SRAM	0x2000 0000	SRAM
_	0x2002 0000	保留
APB1 总线	0x4000 0000	TMR2
APB1 总线	0x4000 0400	TMR3
APB1 总线	0x4000 0800	TMR4
APB1 总线	0x4000 0C00	TMR5
APB1 总线	0x4000 1000	TMR6
APB1 总线	0x4000 1400	TMR7
APB1 总线	0x4000 1800	TMR12
APB1 总线	0x4000 1C00	TMR13
APB1 总线	0x4000 2000	TMR14
APB1 总线	0x4000 2400	保留
APB1 总线	0x4000 2800	RTC
APB1 总线	0x4000 2C00	WWDT
APB1 总线	0x4000 3000	IWDT
APB1 总线	0x4000 3400	I2S2ext
APB1 总线	0x4000 3800	SPI2/I2S2
APB1 总线	0x4000 3C00	SPI3/I2S3
APB1 总线	0x4000 4000	I2S3ext
APB1 总线	0x4000 4400	USART2
APB1 总线	0x4000 4800	USART3
APB1 总线	0x4000 4C00	UART4
APB1 总线	0x4000 5000	UART5
APB1 总线	0x4000 5400	I2C1
APB1 总线	0x4000 5800	I2C2
APB1 总线	0x4000 5C00	I2C3
APB1 总线	0x4000 6000	保留
APB1 总线	0x4000 6400	CAN1
APB1 总线	0x4000 6800	CAN2
APB1 总线	0x4000 6C00	保留

区域	起始地址	外设名称
APB1 总线	0x4000 7000	PMU
APB1 总线	0x4000 7400	DAC
APB1 总线	0x4000 7800	保留
_	0x4000 8000	保留
APB2 总线	0x4001 0000	TMR1
APB2 总线	0x4001 0400	TMR8
APB2 总线	0x4001 0800	保留
APB2 总线	0x4001 1000	USART1
APB2 总线	0x4001 1400	USART6
APB2 总线	0x4001 1800	保留
APB2 总线	0x4001 2000	ADC1/2/3
APB2 总线	0x4001 2400	保留
APB2 总线	0x4001 2C00	SDI0
APB2 总线	0x4001 3000	SPI1
APB2 总线	0x4001 3400	保留
APB2 总线	0x4001 3800	SYSCFG
APB2 总线	0x4001 3C00	EINT
APB2 总线	0x4001 4000	TMR9
APB2 总线	0x4001 4400	TMR10
APB2 总线	0x4001 4800	TMR11
APB2 总线	0x4001 4C00	保留
_	0x4001 5800	保留
AHB bus	0x4002 0000	GPIOA
AHB bus	0x4002 0400	GPIOB
AHB bus	0x4002 0800	GPIOC
AHB bus	0x4002 0C00	GPIOD
AHB bus	0x4002 1000	GPIOE
AHB bus	0x4002 1400	GPIOF
AHB bus	0x4002 1800	GPIOG
AHB bus	0x4002 1C00	GPIOH
AHB bus	0x4002 2000	GPIOI
AHB 总线	0x4002 2400	保留
AHB 总线	0x4002 3000	CRC
AHB 总线	0x4002 3400	保留
AHB 总线	0x4002 3800	RCM
AHB 总线	0x4002 3C00	FMC Reg.
AHB 总线	0x4002 4000	备份 SRAM
AHB 总线	0x4002 5000	保留

区域	起始地址	外设名称
AHB 总线	0x4002 6000	DMA1
AHB 总线	0x4002 6400	DMA2
AHB 总线	0x4002 6800	保留
AHB 总线	0x4002 8000	MAC
AHB 总线	0x4002 9400	保留
AHB 总线	0x4004 0000	USB OTG_HS1/2
AHB 总线	0x4008 0000	保留
AHB 总线	0x5000 0000	USB OTG_FS
AHB 总线	0x5004 0000	保留
AHB 总线	0x5005 0000	DCI
AHB 总线	0x5005 0400	保留
AHB 总线	0x5006 0800	RNG
AHB 总线	0x5006 0C00	保留
AHB 总线	0x5008 0000	SM4
AHB 总线	0x5008 0400	SM3
AHB 总线	0x500A 0000	BN
AHB 总线	0xA000 0000	EMMC Reg.
	0xA000 1000	保留
内核	0xE000 0000	内核外设
_	0xE010 0000	保留

4.1.3 启动配置

启动时,用户可设置 Boot 引脚的高低电平选择以下三种启动模式中的一种:

- 从主存储器启动
- 从 BootLoader 启动
- 从内置 SRAM 启动

若从 BootLoader 启动,用户可使用串口接口重新编程用户 Flash。

4.2 内核

APM32F405xG 407xExG 的内核是带有 FPU 计算单元的 Arm® Cortex®-M4,基于该平台开发成本低、功耗低,可提供优良的计算性能和先进的系统中断响应,兼容所有 Arm 工具和软件。

4.3 中断控制器

4.3.1 嵌套的向量式中断控制器(NVIC)

内置 1 个嵌套向量中断控制器 (NVIC), NVIC 能够处理多达 85 个可屏蔽中断通道 (不包括 16 个 Cortex®-M4 的中断线)和 8 个优先级;可直接向内核传递中断向量入口地址,从而达到低延

迟的中断响应处理能优先处理晚到的较高优先级中断。

4.3.2 外部中断/事件控制器(EINT)

外部中断/事件控制器有 23 个边沿检测器,每个检测器包含边沿检测电路、中断/事件请求产生电路;每个检测器可配置为上升沿触发、下降沿、双边沿触发,也能够单独屏蔽;最多 140 个GPIO 可连接到 16 个外部中断线。

4.4 片上存储器

片上存储器包括主存储区、SRAM、信息块,其中信息块包括系统存储区、选项字节,系统存储区存放 BootLoader、96 位唯一设备 ID、主存储区容量信息;系统存储区出厂时已写入程序,不可擦写。

存储器	最大容量	功能
主存储区	1MB	存放用户程序和数据
SRAM	192 KB	CPU 能以 0 等待周期访问(读/写)
系统存储区	2KB	存放 BootLoader、96 位唯一设备 ID、主存储区容量信息
选项字节	16Bytes	配置主存储区读写保护、MCU工作方式

表格 14 片上存储区

4.4.1 可配置的外部存储控制器(EMMC)

APM32F405xG 407xExG 系列集成了 EMMC 模块,由 SMC (静态存储控制器)、DMC (动态存储控制器)组成,支持 PC 卡、SRAM、SDRAM、PSRAM、NorFlash 和 NandFlash。

功能介绍:

- 三个 EMMC 中断源,经过逻辑或连到 NVIC 单元
- 写 FIFO
- 代码可以在除 NAND 闪存和 PC 卡外的片外存储器运行
- 与 LCD 连接

4.4.2 液晶显示器并行接口(LCD)

EMMC 可以配置成与多数图形 LCD 控制器的无缝连接,它支持 Intel 8080 和 Motorola 6800 的模式,并能够灵活地与特定的 LCD 接口。使用这个 LCD 并行接口可以很方便地构建简易的图形应用环境,或使用专用加速控制器的高性能方案。

4.5 时钟

4.5.1 时钟树

APM32F405xG 407xExG 的时钟树见下图:

图 6 APM32F405xG 407xExG 时钟树

4.5.2 时钟源

时钟源按速度分为高速时钟、低速时钟,高速时钟有 HSICLK、HSECLK,低速时钟有 LSECLK、LSICLK; 另外,有些模块会有额外的时钟源引脚,通过外部电路获得需要的时钟频率。

4.5.3 系统时钟

可选择 HSICLK、PLLCLK、HSECLK 作为系统时钟,PLLCLK 的时钟源可选择 HSICLK、HSECLK 中的一种,配置 PLL 的倍频系数、分频系数可获得所需系统时钟。

产品复位启动时,默认选择 HSICLK 作为系统时钟,之后用户可自行选择上述时钟源中的一种作为系统时钟。当检测到 HSECLK 失效时,系统将自动地切换回 HSICLK,如果使能了中断,软件可以接收到相应的中断。

4.5.4 总线时钟

内置 AHB、APB1、APB2 总线,AHB 的时钟源是 SYSCLK,APB1、APB2 的时钟源是 HCLK; 配置分频系数可获得所需的时钟,AHB 最高频率为 168MHz,APB2 的最高频率为 84MHz,APB1 的最高频率是 42MHz。

4.5.5 锁相环

APM32F405xG 407xExG 系列有两个锁相环,一个是主 PLL (PLL1),一个是专门为 I2S 提供特定时钟频率的 PLL (PLL2)。它们都需要通过配置参数产生不同时钟频率,具体参数和配置寄存器请参见用户手册。

4.6 电源与电源管理

4.6.1 电源方案

表格 15 电源方案

名称	电压范围	说明						
V_{DD}	1.8∼3.6V	通过 V _{DD} 引脚给 I/O(具体 IO 见引脚分布图)、内部调压器供电。						
VDDA/VSSA	1.8~3.6V	为 ADC、DAC、复位模块、RC 振荡器和 PLL 的模拟部分供电;使用 ADC 或						
V DDA/ V SSA	1.6∼3.6∀	DAC 时,V _{DDA} 和 V _{SSA} 必须分别连接到 V _{DD} 和 V _{SS} 。						
\/	1.8∼3.6V	当关闭 Vod 时,通过内部电源切换器,为 RTC、外部 32KHz 振荡器和后备寄						
VBAT	1.0∼3.6∀	存器供电。						

4.6.2 调压器

表格 16 调压器工作模式

名称	说明
主模式 (MR)	用于运行模式
低功耗模式 (LPR)	用于停机模式
掉电模式	用于待机模式,此时调压器高阻输出,内核电路掉电,调压器功耗为零,寄存器和 SRAM
平电铁八	的数据会全部丢失。

注:调压器在复位后始终处于工作状态,在掉电模式下高阻输出。

4.6.3 电源电压监控器

产品内部集成了上电复位(POR)、掉电复位(PDR)和欠压复位(BOR)电路。这三种电路始终处于工作状态。当掉电复位电路监测到电源电压低于规定的阈值(V_{POR/PDR})时,即使外部复位电路,系统保持复位状态。

该产品内置能够监测 V_{DD} 并将其与 V_{PVD} 阈值比较的可编程电源电压监控器(PVD),当 V_{DD} 在 V_{PVD} 阈值范围外且中断使能时会产生中断,可通过中断服务程序将 MCU 设置成安全状态。

4.7 低功耗模式

APM32F405xG 407xExG 支持睡眠、停机、待机三种低功耗模式,这三种模式在功耗、唤醒时间长短、唤醒方式存在差异,可依据实际应用需求选择低功耗模式。

	农怕 17 成为代侯式
模式	说明
睡眠模式	内核停止工作,所有外设处于工作状态,可通过中断/事件唤醒
停机模式	在 SRAM 和寄存器数据不丢失的情况下,停机模式可达到最低的功耗; 内部 1.3V 供电模块的时钟都会停止,HSECLK 晶体谐振器、HSICLK、PLL 被禁止,调压器可配置普通模式或低功耗模式; 任何外部中断线可唤醒 MCU,外部中断线包括 16 个外部中断线之一、PVD 输出、RTC、USB_OTG。
待机模式	该模式功耗最低; 内部调压器被关闭,所有 1.3V 供电模块掉电,HSECLK 晶体谐振器、HSICLK 时钟关闭,SRAM 和 寄存器的数据消失,RTC 区域、后备寄存器内容仍然保留,待机电路仍工作; NRST 上的外部复位信号、IWDT 复位、WKUP 引脚上的上升边沿或 RTC 的事件都会唤醒 MCU 退出 待机模式。

表格 17 低功耗模式

4.8 **DMA**

内置 2 个 DMA,共 16 个数据流。每个数据流对应 8 个通道,但每个数据流同一时刻只能使用 1 个通道。支持 DMA 请求的外设有: ADC、SPI、USART、I2C、TMRx。可配置 4 级 DMA 通道优先级。支持"存储器→存储器、存储器→外设、外设→存储器"数据传输(存储器包括Flash、SRAM、SDRAM)。

4.9 **GPIO**

GPIO 可以配置为通用输入、通用输出、复用功能、模拟输入输出。通用输入可以配置成浮空输入、上拉输入、下拉输入,通用输出可以配置成推挽输出、开漏输出,复用功能可以用于数字外设,模拟输入输出可以用于模拟外设以及低功耗模式;可以配置使能/禁止上拉/下拉电阻;可以配置 2MHz、10MHz、50MHz、100MHz 的速度,速度越大,功耗、噪声也会越大。

4.10 通信外设

4.10.1 USART/UART

该芯片内置多达 6 个通用同步/异步收发器,USART1/6 接口通信速率可达 10.5Mbit/s,其它 USART/UART 的通信速率可达 5.25Mbit/s,所有 USART/UART 可配置波特率、奇偶校验位、停止位、数据位长度,都可以支持 DMA。各个 USART/UART 功能差异如下表:

USART 模式/功能 USART1 USART2 **USART3 USART6** UART4 **UART5** $\sqrt{}$ 调制解调器的硬件流控制 智能卡模式 \checkmark IrDA SIR 编码解码器功能 \checkmark \checkmark \checkmark \checkmark LIN 模式 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 标准特性 \checkmark SPI 主机 \checkmark \checkmark \checkmark 16 倍过采样下的最大波特率(Mbit/s) 5.25 2.62 5.25 2.62 2.62 2.62 8 倍过采样下的最大波特率 (Mbit/s) 10.5 5.25 5.25 5.25 5.25 10.5 APB 映射 APB2 APB1 APB1 APB1 APB1 APB2

表格 18 USART/UART 功能差异

注: √=支持。

4.10.2 I2C

内置 I2C1/2/3 总线接口,均可工作于多主模式或从模式,支持 7 位或 10 位寻址,7 位从模式时支持双从地址寻址,通信速率支持标准模式(最高 100kbit/s)、快速模式(最高 400kbit/s),内置了硬件 CRC 发生器/校验器;它们可以使用 DMA 操作并支持 SMBus 总线 2.0 版/PMBus 总线。

4.10.3 SPI/I2S

内置 3 个 SPI, 在主模式、从模式下均支持全双工、半双工通信,可使用 DMA 控制器,可配置 每帧 4~16 位,3 个 SPI 的最高通信速率分别为 42Mbit/s,21MBit/s,21MBit/s。

内置 2 个 I2S(分别与 SPI2、SPI3 复用),支持主模式、从模式半双工通信,支持同步传输,可配置 16 位或 32 位分辨率的 16 位、24 位、32 位数据传输,音频采样率可配置的范围是 8kHz~192kHz; 当一个或者两个 I2S 接口配置为主模式,其主时钟可以以 256 倍采样频率输出给外部的 DAC 或解码器(CODEC)。

4.10.4 CAN

内置 2 个 CAN,兼容 2.0A 和 2.0B (主动) 规范,通信速率最高可达 1Mbit/s。它可以接收和发送 11 位标识符的标准帧,也可以接收和发送 29 位标识符的扩展帧。具有 3 个发送邮箱和 2 个接收 FIFO,3 级 14 个可调节的滤波器。

4.10.5 USB_OTG

产品内嵌三个 USB 控制器,一个 OTG_FS 和两个 OTG_HS,都可同时支持主机和从机功能,符合 USB 2.0 规范的 On-The-Go 补充标准,也可配置为"仅主机"或"仅从机"模式,完全符合 USB 2.0 规范,OTG_FS 时钟(48MHz)由特定的 PLL 输出,OTG_HS 时钟(60MHz)由外部 PHY 提供。

4.10.6 Ethernet

提供一个兼容 IEEE -802.3-2002 的 MAC,用于通过 MII 或 RMII 进行以太网局域网通信。本型号需要一个 PHY 连接到物理 LAN 总线。PHY 连接到 MII 端口,使用 17 个信号用于 MII 或 9 个信号用于 RMII,并且可以使用来自内核的 25MHz 时钟(MII)。

4.10.7 SDIO

安全数字输入/输出接口能够连接 SD 卡,SD I/O 卡,多媒体卡(MMC)和 CE-ATA 卡主机接口, 提供 AHB 系统总线与 SD 存储卡、SD I/O 卡、MMC 和 CE-ATA 设备之间的数据传输。

4.11 模拟外设

4.11.1 ADC

内置 3 个 ADC,精度为 12 位,每个 ADC 最多有 21 个外部通道和 3 个内部通道,内部通道分别测量温度传感器电压、参考电压和备份电压。各通道 A/D 转换模式有单次、连续、扫描或间断,ADC 转换结果可以左对齐或右对齐存储在 16 位数据寄存器中;支持模拟看门狗,支持 DMA。

4.11.1.1 温度传感器

内置 1 个温度传感器(TSensor),内部连接 ADC_IN16 通道,传感器产生的电压随着温度线性变化,可通过 ADC 获取转换的电压值换算成温度。

校准值名称 描述		存储地址
V/	在 30℃温度,	0x1EFF 7A2C - 0x1EFF 7A2D
Vsensor_CAL1	V _{DDA} =3.3V 下采集的原始数据	UXTEFF TAZE - UXTEFF TAZE
V	在 110℃温度,	0x1FFF 7A2F - 0x1FFF 7A2F
V _{sensor_} CAL2	VDDA=3.3V 下采集的原始数据	UXIFFF TAZE - UXIFFF TAZF

表格 19 Tsensor 校准值

4.11.1.2 内部参考电压

内置参考电压 V_{REFINT},内部连接 ADC_IN17 通道,可通过 ADC 获取该 V_{REFINT}; V_{REFINT} 为 ADC 提供稳定的电压输出。

表格 20 内部参考电压校准值

校准值名称	描述	存储地址
V _{REFINT_CAL}	在 25℃(±5℃)温度, V _{DDA} =3.3V(±10mV)下采集的原始数据	0x1FFF 7A2A - 0x1FFF 7A2B

4.11.2 DAC

内置 2 个 12 位 DAC,每个 DAC 对应一个输出通道,可配置为 8 位、12 位模式,支持 DMA 功能,波形产生支持噪声波、三角波,转换方式支持单独或同时转换,触发方式支持外部信号触发、内部定时器更新触发。

4.12 定时器

内置 2 个 16 位高级定时器(TMR1/8)、8 个 16 位通用定时器(TMR3/4/9/10/11/12/13/14)、2 个 32 位通用定时器(TMR2/5)、2 个 16 位基本定时器(TMR6/7)、1 个独立看门狗定时器、1 个窗口看门狗定时器和 1 个系统滴答定时器。

看门狗定时器可以用来检测程序是否正常运行。

系统滴答定时器内核的外设,具有自动重装载功能,当计数器为 0 时能产生一个可屏蔽系统中断,可以用于实时操作系统和普通延时。

表格 21 高级/通用/基本和系统滴答定时器功能比较

ᄼᆎᄜ	女 作	口 41 问级/地片	11坐平川东	统滴答定时器功[16 FU 1X
定时器 类型	系统滴答定时器	基本定时器	通	用定时器	高级定时器
定时器 名称	Sys Tick Timer	TMR6/7	TMR2/5	TMR3/4/9/10/1 1/12/13/14	TMR1/8
计数器 分辨率	24 位	16 位	32 位	16 位	16 位
计数器 类型	向下	向上	向上,	向下,向上/下	向上,向下,向上/下
预分频 系数	-	1~65536 间任 意整数	1~6553	86 间任意整数	1~65536 间任意整数
产生 DMA 请 求	-	可以可以		可以	
捕获/比 较通道	-	-		4	4
互补输 出	-	没有		没有	有
引脚特性	-	•	1 路外部触脚; 4 路非互补	发信号输入引通道引脚。	1 路外部触发信号输入引脚; 1 路刹车输入信号引脚; 3 对互补通道引脚; 1 路非互补通道引脚。
功能说明	专用于实时操作系统。 具有自动重加载功能。 当计数器为0时能产生一个可屏蔽系统中断。	用于产生DAC 触发信号。可以作为 16位通用型时基计数器。	在调试模式 被冻结。 可用于产生	事件链接功能。 下,计数器可以 PWM 输出。 都有独立的 DMA	具有带死区插入的互补 PWM 输出。 配置为 16 位标准定时器时,它与 TMRx 定时器具有相同的功能。 配置为 16 位 PWM 发生器时,它具 有全调制能力(0~100%)。 在调试模式下,计数器可以被冻 结,同时 PWM 输出被禁止。

定时器 类型	系统滴答定时器	基本定时器	通用定时器	高级定时器
	可编程时钟源。		可以处理增量编码器的信 号。	提供同步或事件链接功能。

表格 22 IWDT 和 WWDT 功能比较

名称	计数器分辨率	计数器类型	预分频系数	功能说明
独立看门狗	12 位	向下	1~256 之间的 任意整数	由一个内部独立的 28KHz 的 RC 振荡器提供时钟;因为这个 RC 振荡器独立于主时钟,所以它可运行于停机和待机模式。 在发生问题时可复位整个系统。可以作为一个自由定时器为应用程序提供超时管理。 通过选项字节可以配置成是软件或硬件启动看门狗。 在调试模式下,计数器可以被冻结。
窗口看门狗	7位	向下	-	可以设置成自由运行。 在发生问题时可复位整个系统。 由主时钟驱动,具有早期预警中断功能; 在调试模式下,计数器可以被冻结。

4.13 **RTC**

内置 1 个 RTC,引脚有 LSECLK 信号输入引脚(OS32_IN、OS32_OUT)、2 个 TAMP 输入信号检测引脚(RTC_TAMP1/2);时钟源可选择外部 32.768kHz 的外部晶振、谐振器或振荡器、LSICLK、HSECLK/128;默认由 V_{DD} 供电,当 V_{DD} 断电时,可自动切换至 V_{BAT} 供电,RTC 配置及时间数据不丢失;产生系统复位、软件复位、电源复位时,RTC 配置及时间数据不丢失;支持闹钟、日历功能。

4.13.1 备份域

内置 4KB 的备份 SRAM,20 个备份寄存器,默认由 V_{DD} 供电,当 V_{DD} 断电时,可自动切换至 V_{BAT} 供电,备份寄存器数据不丢失;产生系统复位、软件复位、电源复位时,备份寄存器数据不丢失。

4.14 **RNG**

嵌入一个 RNG, 提供由集成模拟生成的 32 位随机数。

4.15 **DCI**

DCI 用于接收来自 CMOS 摄像头的高速数据流,它支持不同的数据格式,适用于黑白摄像头、X24 摄像头等。

4.16 **CRC**

内置 1 个 CRC (循环冗余校验) 计算单元,可产生 CRC 码,可操作 8 位、16 位、32 位数据。

4.17 加密算法

4.17.1 BN

BN 模块是 RSA 和 ECC 算法的低成本加速器,它实现了有限域上几乎所有的大数目运算和魏尔斯特拉斯方程定义的具有 K 不等于 2 或 3 特征 p 的椭圆曲线上的点运算。RSA 加密解密采用了模幂法(MEXP)。椭圆曲线点乘法(ECPM)、点加法(ECPA)和点验证(ECPV)是针对 ECC 密码体制,如 SM2。在 RSA 中生成公钥,在 SM2 中生成内部参数,实现了模块化反转(MINV)。对质数生成过程中的数进行了 Rabin-Miller 质数检验。还支持模加(MADD)、模减(MSUB)、模乘(MMUL)、加(ADD)、减(SUB)和最有效位检测(MSBD)。目前还支持预合成用户定义的可配置防御对策。

4.17.2 SM3

SM3_H 是一种支持 AHB 接口的高性能 IP 核,广泛应用于数字签名和消息认证。SM3 是我国政府采用的加密哈希函数标准。哈希函数是一个迭代的单向函数,它可以处理消息以产生一个被称为消息摘要的浓缩表示。

4.17.3 SM4

SM4_H 是一种支持 AHB 接口的高性能 IP 核,是 2006 年 1 月发布的一种对称加密算法,在中国无线局域网 WAPI(有线认证和隐私基础设施)中得到了广泛应用。该 IP 核实现 SM4 标准算法,支持 ECB 和 CBC 模式的加解密。SM4 算法是一种 128 位输入数据和密钥的对称分组密码。为了提高操作速度,数据路径模块采用 8 个 s 盒同时进行加解密操作和密钥扩展,完成一轮加解密操作只需 32 个周期。

5 电气特性

5.1 电气特性测试条件

5.1.1 最大值和最小值

除非特别说明,所有产品是在 T_A=25℃下在生产线上进行测试的。其最大和最小值可支持所定最恶劣的环境温度、供电电压和时钟频率。

在每个表格下方的注解中说明是通过综合评估、设计仿真或工艺特性得到的数据,没有在生产线上进行测试;在综合评估的基础上,通过样本测试,取其平均值再加减三倍的标准差(平均 $\pm 3\Sigma$)得到最大和最小数值。

5.1.2 典型值

除非特别说明,典型数据是基于 T_A=25℃、V_{DD}=V_{DDA}=3.3V 测量,这些数据仅用于设计指导。

5.1.3 典型曲线

除非特别说明,典型曲线仅用于设计指导而未经测试。

5.1.4 电源方案

图 7 电源方案

说明:图中的VDDx表示VDD的个数是x个

5.1.5 负载电容

图 8 测量引脚参数时的负载条件

图 9 引脚输入电压测量方案

图 10 功耗测量方案

5.2 通用工作条件下的测试

表格 23 通用工作条件

	711H 711	11 /4111				
符号	参数	条件	最小值	最大值	单位	
fHCLK	内部 AHB 时钟频率	-	-	168	MHz	
f _{PCLK1}	内部 APB1 时钟频率	-	-	42	IVIITZ	

符号	参数	条件	最小值	最大值	单位
fPCLK2	内部 APB2 时钟频率	-	-	84	
V_{DD}	主电源电压	-	1.8	3.6	V
Vdda	模拟电源电压		1.8	2.4	
	(都未使用 ADC、DAC 时)	必须与 V _{DD} 相同	1.0	2.1	V
V DDA	模拟电源电压	少次一, VDD 相同	2.4	3.6	V
	(使用 ADC、DAC 时)		2.4	3.0	
V _{BAT}	备份域电源电压	-	1.65	3.6	V
Ŧ	环境温度(温度标号6)	El _L _r_L _z = +	-40	85	$^{\circ}$
T _A	环境温度(温度标号7)	最大功率耗散	-40	105	$^{\circ}$

5.3 绝对最大额定值

器件上的载荷如果超过绝对最大额定值,可能会导致器件永久性的损坏。这里只是给出能承受的最大载荷,不保证在此条件下器件的功能运行正常。

5.3.1 最大温度特性

表格 24 温度特性

符号	描述	数值	单位
Тѕтс	储存温度范围	-65 ~ +150	$^{\circ}$
TJ	最大结温度	125	$^{\circ}\!$

5.3.2 最大额定电压特性

所有的电源(VDD, VDDA)和地(Vss, VssA)引脚必须始终连接到外部限定范围内的供电电源上。

表格 25 最大额定电压特性

	た情 二 がんがん 出土 村上			
符号	描述	最小值	最大值	単位
V _{DD} - V _{SS}	外部主供电电压	-0.3	4.0	
VIN	在 5V 容忍的引脚上的输入电压	Vss-0.3	V _{DD} +4	V
	在其它引脚上的输入电压	Vss-0.3	4.0	
ΔV_{DDx}	不同供电引脚之间的电压差	-	50	m)/
Vssx-Vss	不同接地引脚之间的电压差	-	50	mV

5.3.3 最大额定电流特性

表格 26 电流特性

符号	描述	最大值	单位
I _{VDD}	经过 VDD/VDDA 电源线的总电流(供应电流) (1)	240	mΛ
Ivss	经过 Vss 地线的总电流(流出电流) (1)	240	mA

符号	描述	最大值	単位
lia	任意 I/O 和控制引脚上的灌电流	25	
lio	任意 I/O 和控制引脚上的拉电流	25	
1	5T 引脚的注入电流	-5/+0	
I _{INJ(PIN)} ⁽²⁾	其他引脚的注入电流	±5	
$\Sigma I_{\text{INJ(PIN)}}^{(2)}$	所有 I/O 和控制引脚上的总注入电流 ⁽⁴⁾	±25	

- 1. 所有的电源(VDD, VDDA)和地(Vss, Vssa)必须始终在允许范围内。
- 2. 流出电流会干扰器件的模拟性能。
- 3. I/O 不能进行正注入; V_{IN}<V_{SS} 时, I_{INJ(PIN)}不能超过最大允许输入电压值。
- 4. 如果 Vin 超过最大值,必须在外部限制 linJ(Pin)不超过其最大值。当 Vin> Vod 时,电流流入引脚;当 Vin<Vss 时,电流流出引脚。
- 5. 当几个 I/O 口同时有注入电流时, Σ $I_{INJ(PIN)}$ 的最大值为流入电流与流出电流的即时绝对值之和。

5.3.4 静电放电 (ESD)

表格 27 ESD 绝对最大额定值

符号	参数	条件	范围	单位
VEODUIDAN	静电放电电压(人体模型)	TA = +25 ℃,符合 ANSI/ESDA/JEDEC JS-	±4000	V
VESD(HBM)	时电放电电压(八种疾生) ————————————————————————————————————	001-2017	±4000	V

注:由第三方测试机构测试,不在生产中测试。

5.3.5 静态栓锁(LU)

表格 28 静态栓锁

符号	参数	条件	类型
LU	静态栓锁类	T _A = +105℃,符合 JEDEC JESD78F-2022	II类A

注: 由第三方测试机构测试,不在生产中测试。

5.4 片上存储器

5.4.1 Flash 特性

表格 29 Flash 存储器特性

			201 Idon 11 Idan	最小			
符号	参数		条件	值	典型值	最大值	单位
t	8/16/32 位编程时间		T _A = -40~105°C		43	60	110
t _{prog}	0/10/32 1 处 3 相 4 至 中 1 中 1	l	V _{DD} =2.4~3.6V	_	43	00	μs
		8位		-	60	120	
t _{ERASE1}	页(16KBytes)擦除时间	16 位	_	-	60	120	
		32 位	$T_A = -40 \sim 105^{\circ}C$ $V_{DD} = 2.4 \sim 3.6V$	-	60	120	ms
terase2 页(64KBytes)扬		8位	VUU-2.4 '0.0 V	-	250	500	
	- 火(04NDyteS) 捺陈时间	16 位		-	250	500	

符号	参数		条件	最小 值	典型值	最大值	单位
		32 位		-	250	500	
		8位		-	500	1000	
terase3		16 位		-	500	1000	
		32 位		-	500	1000	
	整片擦除时间	8位		-	10	20	
tME		16 位	$T_A = -40 \sim 105^{\circ}C$ $V_{DD} = 2.4 \sim 3.6V$	-	10	20	ms
		32 位	VDD=2.4 · 0.0 V	-	10	20	
	8 位编程的电压			1.8	-	3.6	
V _{prog}	16 位编程的电压 32 位编程的电压		T _A = -40~105℃	2.1	-	3.6	V
				2.7	-	3.6	

注: 由综合评估得出,不在生产中测试。

5.5 时钟

5.5.1 外部时钟源特性

5.5.1.1 晶体谐振器产生的高速外部时钟

有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

表格 30 HSECLK4~26MHz 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{OSC_IN}	振荡器频率	-	4	8	26	MHz
R _F	反馈电阻	-	-	200	-	kΩ
I _{DD(HSECLK)}	HSECLK 电流消耗	V _{DD} =3.3V, C _L =10pF@8MHz		-	0.5	mA
tsu(HSECLK)	启动时间	V _{DD} 是稳定的	-	2	-	ms
Gm	振荡器跨导	启动	5.65	-	-	mA/V

注: 由综合评估得出,不在生产中测试。

5.5.1.2 晶体谐振器产生的低速外部时钟

有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

表格 31 LSECLK 振荡器特性(flseclk=32.768KHz)

	PVIH 9		±(12020211 0=	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
符号	参数	条件	最小值	典型值	最大值	单位
f _{OSC_IN}	振荡器频率	-	-	32.768	-	KHz
I _{DD(LSECLK)}	LSECLK 电流消耗	-	-	-	1	μA
t _{SU(LSECLK)} (1)	启动时间	V _{DD} 稳定	-	2	-	S

注:由综合评估得出,不在生产中测试。

(1) t_{SU(LSECLK)}是启动时间,是从软件使能 LSECLK 开始测量,直至得到稳定的 32.768KHz 振荡这段时间;这个数值是使用一个标准的晶体谐振器测量得到的,它可能因晶体制造商的不同而不同。

5.5.2 内部时钟源特性

5.5.2.1 高速内部 (HSICLK) RC 振荡器

表格 32 HSICLK 振荡器特性

	[20] (10] (10] (10] (10] (10] (10] (10] (1						
符号	参数		条件	最小值	典型值	最大值	单位
fhsiclk	频率		-	-	16	-	MHz
^	HSICLK 振荡	工厂	V _{DD} =3.3V, T _A =25℃	-1	-	1	%
Acc(hsiclk)	器的精度	校准	V_{DD} =2-3.6 V , T_A =-40~105 $^{\circ}$ C	-2	-	4	%
IDDA(HSICLK)	HSICLK 振荡 器功耗		-	-	100	120	μΑ
tsu(HSICLK)	HSICLK 振荡 器启动时间		V _{DD} =3.3V,T _A =-40~105℃	-	3.7	5	μs

注: 由综合评估得出,不在生产中测试。

5.5.2.2 低速内部 (LSICLK) RC 振荡器

表格 33 LSICLK 振荡器特性

符号	参数	最小值	典型值	最大值	单位
f _{LSICLK}	频率(V _{DD} =2-3.6V,T _A =-40~105℃)	20	28	35	KHz
I _{DD(LSICLK)}	LSICLK 振荡器功耗	-	0.4	0.6	μΑ
tsu(LSICLK)	LSICLK 振荡器启动时间,(V _{DD} =3.3V,T _A =-40~105℃)	-	16	40	μs

注:由综合评估得出,不在生产中测试。

5.5.3 PLL 特性

表格 34 PLL1 特性

符号	参数		单位			
10 2	多蚁	最小值	典型值	最大值	4×117	
f	PLL1 输入时钟	0.92	1	2.1	MHz	
f _{PLL1_IN}	PLL1 输入时钟占空比	40	-	60	%	
f _{PLL1_OUT}	PLL1 倍频输出时钟(V _{DD} =3.3V,T _A =-40~105℃)	24	-	168	MHz	
f _{PLL1_48_OUT}	PLL1 倍频输出 48MHz 时钟(V _{DD} =3.3V,T _A =-	_	48	75	MHz	
11 221_40_001	40~105℃)		.0	. •		
t _{LOCK1}	PLL1 锁相时间		-	120	μs	

注: 由综合评估得出,不在生产中测试。

表格 35 PLL2 特性

符号	参数		单位		
	参 数	最小值	典型值	最大值	平匹
4	PLL2 输入时钟	0.92	1	2.1	MHz
f _{PLL2_IN}	PLL2 输入时钟占空比	40	-	60	%
f _{PLL2_OUT}	PLL2 倍频输出时钟,(V _{DD} =3.3V,T _A =-40~105℃)	20	-	144	MHz
tLOCK1	PLL 锁相时间	82	-	150	μs

5.6 电源与电源管理

5.6.1 内嵌复位和电源控制模块特性测试

表格 36 内嵌复位和电源控制模块特性

符号	参数	条件	最小值	典型值	最大值	单位
V	上电/掉电复位阈值	下降沿	1.68	1.70	1.70	V
Vpor/pdr	上电/挥电发位阈值	上升沿	1.71	1.72	1.73	V
V ·	欠压阈值级别 1	下降沿	2.19	2.21	2.24	V
V_{BOR1}	人压网围级剂 I	上升沿	2.27	2.29	2.30	V
V	欠压阈值级别 2	下降沿	2.49	2.51	2.55	V
V _{BOR2}		上升沿	2.56	2.58	2.59	V
V		下降沿	2.81	2.84	2.87	V
V _{BOR3}	欠压阈值级别3	上升沿	2.89	2.91	2.92	V
VBORhyst	BOR 迟滞	-	-	100	-	mV
V _{PDRhyst}	PDR 迟滞	-	-	40.00	50.00	mV
T _{RSTTEMPO}	复位持续时间	-	0.70	0.95	1.48	ms

注: 由综合评估得出,不在生产中测试。

表格 37 可编程电源电压检测器特性

符号	参数	条件	最小值	典型值	最大值	单 位
		PLS[2:0]=000 (上升沿)	2.14	-	2.18	V
		PLS[2:0]=000 (下降沿)	2.03	-	2.10	V
	可编程电源电压检测器 电平选择 PLS[2:0]=0 PLS[2:0]=00	PLS[2:0]=000(PVD 迟滞)	80.00	-	120.00	mV
V_{PVD}		PLS[2:0]=001 (上升沿)	2.30	-	2.34	V
		PLS[2:0]=001 (下降沿)	2.18	-	2.23	V
		PLS[2:0]=001(PVD 迟滞)	90.00	-	120.00	mV
		PLS[2:0]=010 (上升沿)	2.44	-	2.48	V

符号	参数	条件	最小值	典型值	最大值	单 位
		PLS[2:0]=010 (下降沿)	2.32	-	2.37	V
		PLS[2:0]=010(PVD 迟滞)	110	-	120	mV
		PLS[2:0]=011 (上升沿)	2.58	-	2.63	V
		PLS[2:0]=011 (下降沿)	2.49	-	2.53	V
		PLS[2:0]=011(PVD 迟滞)	90	-	100	mV
		PLS[2:0]=100 (上升沿)	2.75	-	2.80	V
		PLS[2:0]=100 (下降沿)	2.64	-	2.68	V
		PLS[2:0]=100(PVD 迟滞)	110	-	120	mV
		PLS[2:0]=101 (上升沿)	2.91	-	2.97	V
		PLS[2:0]=101 (下降沿)	2.81	-	2.86	V
		PLS[2:0]=101(PVD 迟滞)	100	-	110	mV
		PLS[2:0]=110 (上升沿)	3.02	-	3.08	V
		PLS[2:0]=110 (下降沿)	2.90	-	2.96	V
		PLS[2:0]=110(PVD 迟滞)	110	-	120	mV
		PLS[2:0]=111 (上升沿)	3.12	-	3.19	V
		PLS[2:0]=111 (下降沿)	3.00	-	3.07	V
		PLS[2:0]=111(PVD 迟滞)	110	-	120	mV

注:由综合评估得出,不在生产中测试。

5.7 功耗

5.7.1 功耗测试环境

- (1) 执行 Dhrystone2.1,编译环境为 Keil.V5,编译优化等级为 L0 条件下测得的。
- (2) 所有的 I/O 引脚都处于模拟输入模式,并连接到一个静态电平上 V_{DD} 或 V_{SS} (无负载)
- (3) 除非特别说明,所有的外设都关闭
- (4) Flash 等待周期的设置与 f_{HCLK} 的关系:
 - 0~30MHz: 0 个等待周期
 - 30~60MHz: 1 个等待周期
 - 60~90MHz: 2 个等待周期
 - 90~120MHz: 3 个等待周期
 - 120~150MHz: 4 个等待周期
 - 150~168MHz: 5 个等待周期
- (5) 当外设开启时: fpclk1=fhclk/4, fpclk2=fhclk/2

5.7.2 运行模式功耗

表格 38 程序在 Flash(ART 开)执行,运行模式的功耗

			典型	业值 ⁽¹⁾	最大	值 ⁽¹⁾	
参数	条件	f _{HCLK}	T _A =25℃,	V _{DD} =3.3V	T _A =105℃,	V _{DD} =3.6V	
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (μA)	I _{DD} (mA)	
		168MHz	751.56	67.70	802.2	74.02	
		144MHz	693.94	52.75	745.2	57.66	
		120MHz	637.4	44.49	691.1	49.39	
		90MHz	780.88	34.37	831.7	39.375	
	(2) + 400 15 + 61	60MHz	636.86	23.86	689.6	28.7	
	HSECLK bypass ⁽²⁾ ,使能所有外 设 ⁽³⁾	30MHz	636.62	13.29	689.4	18.099	
	~	25MHz	115.372	10.83	127.76	15.627	
		16MHz	115.418	7.21	127.93	11.905	
		8MHz	115.36	3.93	127.77	8.587	
		4MHz	115.328	2.31	127.78	6.967	
运行模式功耗		2MHz	115.36	1.49	127.82	6.17	
色行侯八切杜		168MHz	750.88	28.35	801.4	34.352	
		144MHz	692.84	22.02	744.7	26.958	
		120MHz	636.82	18.54	691.1	23.48	
		90MHz	779.8	14.45	831.9	19.302	
		60MHz	636.52	10.04	689.8	14.924	
	HSECLK bypass ⁽²⁾ ,关闭所有外 设	30MHz	636.4	5.75	690.2	10.563	
	~	25MHz	115.318	4.38	128.66	9.115	
		16MHz	115.344	3.01	128.44	7.673	
		8MHz	115.358	1.86	127.8	6.481	
		4MHz	115.348	1.27	127.84	5.93	
		2MHz	115.36	0.99	127.86	5.645	

注:

- (1) 由综合评估得出,不在生产中测试。
- (2) 外部时钟为 4MHz, 当 fhclk>25MHz 时, 开启 PLL; 否则关闭 PLL。
- (3) 当 ADC、DAC、HSECLK、LSECLK、HSICLK、LSICLK等模拟外设打开时,需要考虑额外的功耗。

表格 39 程序在 Flash (ART 关) 执行,运行模式的功耗

			典型	型值 ⁽¹⁾	最大值(1)		
参数	条件	fhcLk	T _A =25℃,	V _{DD} =3.3V	T _A =105℃,	V _{DD} =3.6V	
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)	
		168MHz	751.66	64.25	802	70.52	
		144MHz	693.58	51.09	745.3	56.05	
		120MHz	637.26	43.99	690.2	48.92	
		90MHz	780.86	34.91	831.4	39.971	
	(2) Holie Contain	60MHz	636.78	25.02	689.4	29.894	
	HSECLK bypass ⁽²⁾ ,使能所有外 设 ⁽³⁾	30MHz	636.66	14.33	689	19.315	
	,	25MHz	115.362	11.80	127.72	16.725	
		16MHz	115.362	7.83	127.75	12.527	
		8MHz	115.35	4.27	127.8	8.994	
		4MHz	115.35	2.45	127.88	7.13	
运行模式功耗		2MHz	115.362	1.57	127.76	6.279	
色行侠八切代		168MHz	750.94	24.71	801.4	30.851	
		144MHz	692.82	20.21	744.7	25.179	
		120MHz	636.76	17.96	689.8	22.905	
		90MHz	780.46	15.03	831.6	20.009	
		60MHz	636.46	11.19	689.8	16.127	
	HSECLK bypass ⁽²⁾ ,关闭所有外 设	30MHz	636.38	6.79	689.9	11.675	
	~	25MHz	115.33	5.26	128.5	10.148	
		16MHz	115.32	3.65	127.96	8.458	
		8MHz	115.364	2.14	127.82	6.8	
		4MHz	115.35	1.43	127.68	6.114	
		2MHz	115.532	1.07	127.9	5.815	

注:

- (1) 由综合评估得出,不在生产中测试。
- (2) 外部时钟为 4MHz, 当 fhclk>25MHz 时,开启 PLL;否则关闭 PLL。
- (3) 当 ADC、DAC、HSECLK、LSECLK、HSICLK、LSICLK等模拟外设打开时,需要考虑额外的功耗。

表格 40 程序在 RAM 中执行,运行模式的功耗

参数			典型	型值 ⁽¹⁾	最大值 ⁽¹⁾	
	条件	fhcLK	$T_A=25^{\circ}\text{C}$, $V_{DD}=3.3\text{V}$		T _A =105℃, V _{DD} =3.6V	
			I _{DDA} (μA)	I _{DD} (mA)	I _{DDA} (μA)	I _{DD} (mA)
运行模式功耗		168MHz	752.14	70.29	803.8	76.51

			典型	型值 ⁽¹⁾	最大	值(1)
参数	条件	f _{HCLK}	T _A =25℃,	V _{DD} =3.3V	T _A =105℃,	V _{DD} =3.6V
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (μA)	I _{DD} (mA)
		144MHz	693.74	54.73	745.5	59.73
		120MHz	637.6	46.22	690.4	51.16
		90MHz	781	35.67	832	40.53
		60MHz	637.02	24.70	689.8	29.646
	HSECLK bypass ⁽²⁾ ,使能所有外	30MHz	636.74	13.74	689.2	18.596
	设 ⁽³⁾	25MHz	115.42	11.23	127.85	16.02
		16MHz	115.374	7.42	127.88	12.204
		8MHz	115.37	4.05	127.81	8.836
		4MHz	115.376	2.38	127.72	7.124
		2MHz	115.347	1.53	127.76	6.267
		168MHz	751.38	31.03	802.4	37.286
		144MHz	693	24.11	744.7	29.106
		120MHz	636.88	20.30	689.8	25.226
		90MHz	780.56	15.81	931.6	20.743
	(2) ¥ (3) ¥ (3) F	60MHz	636.68	10.92	690	15.802
	HSECLK bypass ⁽²⁾ ,关闭所有外 设	30MHz	636.62	6.19	689.7	11.021
		25MHz	115.364	4.75	128.42	9.478
		16MHz	115.348	3.26	128.79	8.067
		8MHz	115.378	1.97	127.76	6.706
		4MHz	115.364	1.33	127.73	6.037
		2MHz	115.34	1.02	127.74	5.703

注:

- (1) 由综合评估得出,不在生产中测试。
- (2) 外部时钟为 4MHz, 当 f_{HCLK}>25MHz 时,开启 PLL;否则关闭 PLL。
- (3) 当 ADC、DAC、HSECLK、LSECLK、HSICLK、LSICLK等模拟外设打开时,需要考虑额外的功耗。

5.7.3 睡眠模式功耗

表格 41 程序在 Flash(ART 关)中执行,睡眠模式下的功耗

			典型	型值 ⁽¹⁾	最大	值 ⁽¹⁾
参数	条件	f _{HCLK}	T _A =25℃,	V _{DD} =3.3V	T _A =105℃,	V _{DD} =3.6V
			I _{DDA} (μA)	I _{DD} (mA)	I _{DDA} (μA)	I _{DD} (mA)
		168MHz	751.34	54.18	802.1	60.33
		144MHz	693.26	42.25	745	47.12
		120MHz	637.24	35.75	689.8	40.53
		90MHz	780.6	27.69	831.2	32.539
		60MHz	636.72	19.33	689.2	24.149
	HSECLK bypass ⁽²⁾ ,使能所有外设	30MHz	636.46	11.02	689.2	15.8
		25MHz	115.356	8.96	127.77	13.7
		16MHz	115.34	5.99	127.71	10.68
		8MHz	115.334	3.33	127.78	8.01
		4MHz	115.332	2.00	127.84	6.669
睡吧 掛 土 小 杉		2MHz	115.352	1.34	127.82	6.017
睡眠模式功耗		168MHz	750.52	13.91	801	19.858
		144MHz	692.58	10.82	743.9	15.637
		120MHz	636.46	9.20	689	13.987
		90MHz	780.24	7.44	830.6	12.206
		60MHz	636.42	5.33	689	10.067
	HSECLK bypass ⁽²⁾ ,关闭所有外设	30MHz	636.36	3.38	688.8	8.099
		25MHz	115.374	2.41	127.84	7.075
		16MHz	115.346	1.79	127.74	6.459
		8MHz	115.354	1.23	127.83	5.914
		4MHz	115.36	0.96	127.86	5.63
		2MHz	115.422	0.83	127.84	5.535

注:

⁽¹⁾ 由综合评估得出,不在生产中测试。

⁽²⁾ 外部时钟为 4MHz, 当 fhclk>25MHz 时, 开启 PLL; 否则关闭 PLL。

5.7.4 停机模式功耗

表格 42 停机模式功耗

			典型值 ⁽¹⁾ ,(T _A =25℃)						查 ⁽¹⁾ , 3.6V)
	条件	V _{DD} =	V _{DD} =2.4V		V _{DD} =3.3V		3.6V	T _A =105℃	
		I _{DDA}	I _{DD}	I _{DDA}	I_{DD}	I _{DDA}	I _{DD}	I _{DDA}	I_{DD}
		(µA)	(mA)	(µA)	(mA)	(µA)	(mA)	(μΑ)	(mA)
	Flash 停止模式,RC 内部振								
调压器处于运行模	荡器和高速振荡器关闭(无独	9.28	0.69	9.80	0.70	10.05	0.71	12.36	20.00
式,所有振荡器处于	立看门狗)								
关闭状态	Flash 掉电模式,RC 内部振								
入加水原	荡器和高速振荡器关闭(无独	9.23	0.69	9.72	0.70	10	0.70	12.35	20.00
	立看门狗)								
	Flash 停止模式,RC 内部振								
调压器处于低功耗模	荡器和高速振荡器关闭(无独	4.18	0.21	4.65	0.21	4.87	0.21	5.91	15.00
式,所有振荡器处于	立看门狗)								
关闭状态	Flash 掉电模式,RC 内部振								
大阳状态	荡器和高速振荡器关闭(无独	4.19	0.20	4.64	0.20	4.86	0.20	5.86	15.00
	立看门狗)								

注:(1)由综合评估得出,不在生产中测试。

5.7.5 待机模式功耗

表格 43 待机模式功耗

			典	型值(1),	最大值 ⁽¹⁾ ,(V _{DD} =3.6V)				
条件		V _{DD} =	V _{DD} =2.4V		V _{DD} =3.3V		=3.6V	T _A =105℃	
		I _{DDA}	I _{DD}	I _{DDA}	I _{DD}	I _{DDA}	I _{DD}	I _{DDA}	I _{DD}
		(µA)	(µA)	(µA)	(µA)	(µA)	(µA)	(µA)	(µA)
	备份 SRAM 打开,低速振荡器	2.15	8.38	2.56	9.73	2.83	10.19	3.76	59.39
	和 RTC 打开								
待机模式下的电 源电流	备份 SRAM 关闭,低速振荡器和 RTC 打开	2.15	3.52	2.62	4.46	2.81	5.11	3.48	32.00
<i>03</i> , 300	备份 SRAM 打开,RTC 关闭	2.13	7.33	2.62	8.24	2.81	8.64	3.45	58.24
	备份 SRAM 关闭,RTC 关闭	2.13	2.51	2.61	3.31	2.78	3.68	3.45	19.20

注:(1)由综合评估得出,不在生产中测试。

5.7.6 外设功耗

外设功耗=使能该外设时钟的电流—禁止该外设的时钟的电流。

表格 44 外设功耗

⇔ ₩-		典型值 ⁽¹⁾ T _A =2	* 1	
参数	外设	168MHz	144MHz	─ 单位
	DMA1	5.4	4.21	
	DMA2	5.56	4.3	
	ETH	3	2.35	
	OTG_HS	4.21	3.26	
	GPIOA	0.32	0.25	
	GPIOB	0.31	0.24	
	GPIOC	0.32	0.24	
AHB1(最高 168MHz)	GPIOD	0.3	0.23	
	GPIOE	0.31	0.25	
	GPIOF	0.33	0.26	
	GPIOG	0.3	0.24	
	GPIOH	0.3	0.24	
	GPIOI	0.3	0.24	
	CRC	0.03	0.03	
	BAKPR	0.07	0.05	
	OTG_FS	3.12	2.41	μΑ/MHz
	DCI	0.79	0.61	
AHB2(最高 168MHz)	RNG	0.16	0.12	
	HASH	1.3	1	
	CRYP	0.25	0.19	
AHB3(最高 168MHz)	EMMC	1.68	1.3	
	TMR2	0.46	0.36	
	TMR3	0.35	0.27	
	TMR4	0.34	0.27	
	TMR5	0.46	0.35	
	TMR6	0.08	0.07	
APB1(最高 42MHz)	TMR7	0.08	0.06	
	TMR12	0.19	0.15	
	TMR13	0.14	0.11	
	TMR14	0.14	0.1	
	WWDT	0.02	0.02	
	SPI2/I2S2	0.12	0.1	
		1	i .	

₩	are ta	典型值 ⁽¹⁾ T _A =2	5℃, V _{DD} =3.3V	* *
参数 	外设	168MHz	144MHz	单位
	SPI3/I2S3	0.12	0.1	
	USART2	0.11	0.09	
	USART3	0.12	0.09	
	UART4	0.11	0.08	
	UART5	0.11	0.08	
	I2C1	0.12	0.09	
	I2C2	0.12	0.09	
	I2C3	0.12	0.1	
	CAN1	0.18	0.14	
	CAN2	0.16	0.13	
	PMU	0.01	0.01	
	DAC	0.08	0.06	
	SDIO	0.41	0.32	
	TMR1	0.99	0.77	
	TMR8	0.97	0.77	
	TMR9	0.41	0.32	
	TMR10	0.27	0.21	
	TMR11	0.26	0.22	
APB2(最高 84MHz)	ADC1	0.27	0.22	
	ADC2	0.27	0.22	
	ADC3	0.28	0.23	
	SPI1	0.12	0.11	
	USART1	0.22	0.18	
	USART6	0.21	0.18	
	SYSCFG	0.05	0.05	

注: 由综合评估得出,不在生产中测试。

5.7.7 备份域功耗

表格 45 VBAT 功耗

姓是	符号 参数	条件	典型值 ⁽¹⁾ ,	T _A =25℃	最大值 ⁽¹⁾ ,	V _{BAT} =3.6V	单位
10 7	多奴	ж т	V _{BAT} =2.4V	V _{BAT} =3.3V	T _A =85°C	T _A =105 °C	
		备用 SRAM 开启,低速振荡器和 RTC 开启	1.894	2.262	6	11	
	LSECLK、 RTC 处于开	备用 SRAM 关闭,低速振荡器和 RTC 开启	1.08	1.412	3	5	μA
	启状态	备用 SRAM 开启,RTC 关闭	0.926	1.116	5	10	
		备用 SRAM 关闭,RTC 关闭	0.02	0.128	2	4	

注:(1)由综合评估得出,不在生产中测试。

5.8 低功耗模式唤醒时间

低功耗唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令的时间,其中 VDD=VDDA。

表格 46 低功耗唤醒时间

次田 10 M(7)7年5月77						
符号	参数	条件	最小值	典型值	最大值	单位
twusleep	从睡眠模式唤醒	-	39.00	59	61.20	ns
	调压器处于运行模式,Flash 在停止模式	12.51	13.602	14.99		
	11 / 倉扣 掛 予 協 両	调压器处于低功耗模式,Flash 在停止模式	15.51	19.552	22.93	
twustop	从停机模式唤醒	调压器处于运行模式,Flash 在深度掉电模式	125.63	133.156	135.16	μs
		调压器处于低功耗模式,Flash 在深度掉电模式	133.52	136.956	139.60	
twustdby	从待机模式唤醒	-	173.03	214.056	227.96	

注:由综合评估得出,不在生产中测试。

5.9 **I/O** 端口特性

表格 47 直流特性(T_A=-40℃-105℃,V_{DD}=2~3.6V)

符号	参数	条件	最小值	典型值	最大值	单位
		STD 和 STDA I/O	1	-	0.3V _{DD} -0.04	V
VIL 输入低电平电压	5T 和 5Tf I/O	-	-	0.3V _{DD}		
		Boot0 引脚	-	-	0.1V _{DD} +0.1	
		STD 和 STDA I/O	0.45V _{DD} +0.3	-	-	
VIH	输入高电平电压	5T 和 5Tf I/O	0.7V _{DD}	-	-	V
		Boot0 引脚	0.17V _{DD} +0.7	-	-	
V _{hys}		STD、STDA和5T、5Tf I/O	10% V _{DD}	-	-	mV

符号	参数	条件	最小值	典型值	最大值	单位
	施密特触发器迟 滞	Boot0 引脚	0.1	-	-	
I _{Ikg}	输入漏电流	数字模式下 STDA, V _{DDIOx} ≪V _{IN} ≪V _{DDA}	-	-	±1	μA
		5T和 5Tf I/O,V _{DDIOx} ≪V _{IN} ≪5V	-	-	3	
Rpu	弱上拉等效电阻	除 PA10 和 PB12,V _{IN} =V _{SS}	30	40	50	
KPU	羽工业等双电阻	PA10 和 PB12	7	10	14	kΩ
R _{PD}	弱下拉等效电阻	除 PA10 和 PB12,V _{IN} =V _{DD}	30	40	50	K 22
INPD	物工证金双电阻	PA10 和 PB12	7	10	14	
Cıo	I/O 销电容	-	-	5	-	pF

表格 48 交流特性(T_A=25℃)

SPEED[1:0]	符号	参数	条件	最小值	最大值	单位
			C _L =50pF,V _{DD} >2.7V	-	4	
			C _L =50pF,V _{DD} >1.8V	-	2	
	f _{max(IO)out}	最大频率	C _L =10pF,V _{DD} >2.7V	-	8	MHz
00			C _L =10pF,V _{DD} >1.8V	-	4	
	tf(IO)out/tr(IO)out	输出高至低电平的下降时 间和输出低至高电平的上 升时间	C _L =50 pF,V _{DD} =1.8 V-3.6V	-	100	ns
			$C_L=50pF,V_{DD}>2.7V$	-	25	
	f _{max(IO)out}	最大频率	C _L =50pF,V _{DD} >1.8V	-	12.5	MHz
	Imax(IO)out	取入//火平	$C_L=10pF,V_{DD}>2.7V$	-	50	1711 12
0.4			C _L =10pF,V _{DD} >1.8V	-	20	
01			C _L =30pF,V _{DD} >2.7V	-	10	
	$t_{f(IO)out}/t_{r(IO)out}$	输出高至低电平的下降时 间和输出低至高电平的上	C _L =30pF,V _{DD} >1.8V	-	20	ns
	ti(iO)out ti(iO)out	升时间	C _L =10pF,V _{DD} >2.7V	-	6	113
			C _L =10pF,V _{DD} >1.8V	-	10	
			$C_L=30pF,V_{DD}>2.7V$	-	50	
	f _{max(IO)out}	最大频率	C _L =30pF,V _{DD} >1.8V	-	25	MHz
10	IIIIax(IO)out	#X <i>八ツ</i> 穴 守	$C_L=10pF,V_{DD}>2.7V$	-	100	IVII IZ
			C _L =10pF,V _{DD} >1.8V	-	50	
	t _{f(IO)out} /t _{r(IO)out}		$C_L=30pF,V_{DD}>2.7V$	-	6	ns

SPEED[1:0]	符号	参数	条件	最小值	最大值	单位
		输出高至低电平的下降时	$C_L=30pF,V_{DD}>1.8V$	-	10	
		间和输出低至高电平的上	C _L =10pF,V _{DD} >2.7V	-	4	
		升时间	C _L =10pF,V _{DD} >1.8V	-	6	
			$C_L=30pF,V_{DD}>2.7V$	-	100	
	f _{max(IO)out}	最大频率	$C_L=30pF,V_{DD}>1.8V$	-	50	MHz
	Tmax(IO)out	取入//火平	C _L =10pF,V _{DD} >2.7V	-	180	IVII IZ
11			C _L =10pF,V _{DD} >1.8V	-	100	
			$C_L=30pF,V_{DD}>2.7V$	-	4	
	tf(IO)out/tr(IO)out	输出高至低电平的下降时 间和输出低至高电平的上	$C_L=30pF,V_{DD}>1.8V$	-	6	
	ti(iO)ouv ti(iO)out	升时间	$C_L=10pF,V_{DD}>2.7V$	-	2.5	ns
			C _L =10pF,V _{DD} >1.8V	-	4	
-	teinTipw	EINT 控制器检测到的外 部信号的脉冲宽度	-	10	-	

图 11 输入输出交流特性定义

表格 49 输出驱动电压特性(T_A=25℃)

符号	参数	条件	最小值	最大值	单位
V _{OL}	I/O 引脚输出低电平电压	CMOS 端口, lio =8mA,	-	0.4	
Vон	I/O 引脚输出高电平电压	$2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$	V _{DD} -0.4	-	V
Vol	I/O 引脚输出低电平电压	TTL端口, I _{IO} =20mA,	-	0.4	V
Vон	I/O 引脚输出高电平电压	2.7 V < V _{DD} < 3.6 V	2.4	-	
VoL	I/O 引脚输出低电平电压	Iıo =20mA,	-	1.3	
Vон	I/O 引脚输出高电平电压	$2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$	V _{DD} -1.3	-	V
V _{OL}	I/O 引脚输出低电平电压	I _{IO} =6mA,	-	0.4	

符号	参数	条件	最小值	最大值	单位
Vон	I/O 引脚输出高电平电压	$2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$	V _{DD} -0.4	-	

注: 由综合评估得出,不在生产中测试。

5.10 NRST 引脚特性

NRST 引脚输入驱动采用 CMOS 工艺,它连接了一个永久性上拉电阻 Rpu。

表格 50 NRST 引脚特性 (T_A=-40~105℃,V_{DD}=2~3.6V)

符号	参数	条件	最小值	典型值	最大值	单位
VIL(NRST)	NRST 输入低电平电压	TTL 端口,	-	-	0.8	
VIH(NRST)	NRST 输入高电平电压	2.7V≤V _{DD} ≤3.6V	2	-	-	V
VIL(NRST)	NRST 输入低电平电压	CMOS 端口,	-	1	0.3V _{DD}	V
V _{IH(NRST)}	NRST 输入高电平电压	1.8V≤V _{DD} ≤3.6V	0.7V _{DD}	-	-	
V _{hys(NRST)}	NRST 施密特触发器电压迟滞	-	-	200	-	mV
R _{PU}	弱上拉等效电阻	V _{IN} =V _{SS}	30	40	50	kΩ
V _{F(NRST)}	NRST 输入滤波脉冲	-	-	-	100	20
V _{NF} (NRST)	NRST 输入未过滤的脉冲	V _{DD} >2.7V	300	-	-	ns
T _{NRST_OUT}	产生的复位脉冲持续时间	重置内部来源	20		-	μs

5.11 通信外设

5.11.1 I2C 外设特性

为达到标准模式 I2C 的最大频率,f_{PCLK1} 必须大于 2MHz。为达到快速模式 I2C 的最大频率,f_{PCLK1} 必须大于 4MHz。

表格 51 I2C 接口特性(T_A=25℃,V_{DD}=3.3V)

符号	参数	标准	12C	快速	单位	
<u>47.2</u>	多蚁	最小值	最大值	最小值	最大值	平位
tw(SCLL)	SCL 时钟低时间	4.7	-	1.3	-	
t _{w(SCLH)}	SCL 时钟高时间	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA 建立时间	250	-	100	-	
th(SDA)	SDA 数据保持时间	0	-	0	900	
tr(SDA)/tr(SCL)	SDA 和 SCL 上升时间	-	1000	20+0.1C _b	300	ns
$t_{f(SDA)}/t_{f(SCL)}$	SDA 和 SCL 下降时间	-	300	-	300	
t _{h(STA)}	开始条件保持时间	4.0	-	0.6	-	
t _{su(STA)}	重复的开始条件建立时间	4.7	-	0.6	-	μs

符号	参数	标准 I2C 快速 I2C		I2C	单位	
्रा च	多蚁	最小值	最大值	最小值	最大值	平位
t _{su(STO)}	停止条件建立时间	4.0	-	0.6	-	
tw(STO:STA)	停止条件至开始条件的时间(总线空闲)	4.7	-	1.3	-	
Сь	每条总线的容性负载	-	400	-	400	pF

注: 由综合评估得出,不在生产中测试。

图 12 总线交流波形和测量电路

注: 测量点设置于 CMOS 电平: 0.3V_{DD} 和 0.7V_{DD}。

5.11.2 SPI 外设特性

表格 52 SPI 特性(T_A=25℃,V_{DD}=3.3V)

符号	参数	条件	最小值	最大值	单位
,		主模式,SPI1, 2.7V <v<sub>DD<3.6V</v<sub>	-	42	
f _{SCK}	SPI 时钟频率	从模式,SPI1, 2.7V <v<sub>DD<3.6V</v<sub>	-	42	NALI-
	SPI 时 伊观平	主模式,SPI1/2/3, 1.7V <v<sub>DD<3.6V</v<sub>	-	21	- MHz
1/t _{c(SCK)}		从模式,SPI1/2/3, 1.7V <v<sub>DD<3.6V</v<sub>	-	21	
$t_{r(SCK)}$ $t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容: C=15pF	-	6	ns
t _{su(NSS)}	NSS 建立时间	从模式	4T _{PCLK}	-	

符号	参数	条件	最小值	最大值	单位
th(NSS)	NSS 保持时间	从模式	2T _{PCLK} + 10	-	
tw(SCKH) tw(SCKL)	SCK 高和低的时间	主模式,f _{PCLK} =36MHz, 预分频系数=4	T _{PCLK} /2-2	T _{PCLK} /2+1	
t _{su(MI)}	数据输入建立时间	主模式	4	-	
t _{su(SI)}	奴 /伯制/八建	从模式	5	-	
t _{h(MI)}	*************************************	主模式	4	-	
t _{h(SI)}	数据输入保持时间	从模式	5	-	
t _{a(SO)}	数据输出访问时间	从模式,f _{PCLK} =20MHz	0	3T _{PCLK}	
t _{dis(SO)}	数据输出禁止时间	从模式	0	18	
t _{v(SO)}	数据输出有效时间	从模式(使能边沿之后)	-	22.5	
t _{v(MO)}	数据输出有效时间	主模式(使能边沿之后)	-	6.97	
t _{h(SO)}	粉据於山伊桂时记	从模式(使能边沿之后)	11.5	-	
t _{h(MO)}	数据输出保持时间	主模式(使能边沿之后)	1	-	
DuCy(SCK)	SPI 时钟频率占空比	从模式	25	75	%

注:由综合评估得出,不在生产中测试。

图 13 SPI 时序图—从模式和 CPHA=0

图 14 SPI 时序图—从模式和 CPHA=1

注: 测量点设置于 CMOS 电平: 0.3V_{DD} 和 0.7V_{DD}。

图 15 SPI 时序图—主模式

注: 测量点设置于 CMOS 电平: 0.3V_{DD} 和 0.7V_{DD}。

5.12 模拟外设

5.12.1 ADC

测试参数说明:

- 采样率: ADC 每秒进行的模拟量转数字量的次数,
- 采样率=ADC 时钟 / (采样周期数 + 转换周期数)

5.12.1.1 12 位 ADC 特性

表格 53 12 位 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{DDA}	供电电压	-	1.8	-	3.6	V
I _{DDA}	ADC 功耗	-	-	1.6	1.8	mA
f _{ADC}	ADC 频率	V _{DDA} =1.8~2.4V	0.6	15	18	MHz
TADC	ADC MA	V _{DDA} =2.4~3.6V	0.6	30	36	IVII IZ
C _{ADC}	内部采样和保持电容	-	-	4	-	pF
RADC	采样电阻	-	-	-	6000	Ω
ts	采样时间	f _{ADC} =30MHz	0.1		16	μs
ts	本件型 回	-	3		480	1/f _{ADC}
		f _{ADC} =30MHz 12 位分辨率	0.50	-	16.40	μs
_	57 bk 10+4-40 p.1.00	f _{ADC} =30MHz 10 位分辨率	0.43	-	16.34	μs
T _{CONV}	采样和转换时间	f _{ADC} =30MHz 8 位分辨率	0.37	-	16.27	μs
		f _{ADC} =30MHz 6 位分辨率-	0.30	-	16.20	μs
lvref	转换模式下,ADC Vref 直流 功耗	-	-	300	500	μА

表格 54 12 位 ADC 精度

符号	参数	条件	典型值	最大值	单位
Ε _T	综合误差		±2	±5	
Eo	偏移误差	f _{PCLK} =56MHz,	±1.5	±2.5	
E _G	增益误差	f _{ADC} =14MHz, V _{DDA} =2.4V-3.6V	±1.5	±3	LSB
E _D	微分线性误差	T _A =-40°C~105°C	±1	±2	
EL	积分线性误差		±1.5	±3	

注:由综合评估得出,不在生产中测试。

5.12.1.2 内置参考电压特性测试

表格 55 内置参考电压特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{REFINT}	内置参照电压	-40°C < T _A < +105°C	1.19	1.20	1.20	٧

符号	参数	条件	最小值	典型值	最大值	单位
T _{S_vrefint}	当读出内部参照电压时,ADC 的 采样时间	-	10	-	-	μs
V _{RERINT}	内置参考电压扩展到温度范围	V _{DD} =3V	-	3	5	mV
T _{coeff}	温度系数	-	-	30	50	ppm/℃

注: 由综合评估得出,不在生产中测试。

5.12.2 DAC

测试参数说明:

- DNL 微分非线性误差:两个连续代码之间的偏差减去 1LSB
- INL 积分非线性误差:代码 i 处测得的值与代码 0 及最后一个代码 4095 之间连线上代码 i 处的值之间的差

表格 56 DAC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{DDA}	模拟电源电压	-	1.8	-	3.6	V
R _{LOAD}	阻性负载	缓冲器打开	5	-	-	kΩ
Ro	输出阻抗	缓冲器关闭,DAC_OUT 和 Vss 之间的 阻性负载是 1.5MΩ	-	-	15	kΩ
CLOAD	容性负载	缓冲器打开,在 DAC_OUT 引脚处的 最大容性负载	-	-	50	pF
DAC_OUT min	带缓冲器低 DAC_OUT 电压	DAC 的最大输出偏移,对应于 12 位输入代码(0x0E0)到 V _{REF+} = 3.6 V 处的	0.2	-	-	V
DAC_OUT max	更高的带缓冲器的 DAC_OUT 电压	(0xF1C)和 V _{REF+} = 1.8 V 处的 (0x1C7)和(0xE38)	-	-	V _{DDA} -0.2	V
DAC_OUT min	不带缓冲器低 DAC_OUT 电压	DAC 的最大输出偏移	-	0.5	-	mV
DAC_OUT max	更高的不带缓冲器的 DAC_OUT 电压	DAC的取入抽山侧砂	-	-	V _{REF+} -	V
DNL	微分非线性误差	配置 12 位 DAC	-	-	±2	LSB
INL	积分非线性误差	配置 12 位 DAC	-	-	±4	LSB
Offset	偏移误差	V _{REF+} =3.6V,配置 12 位 DAC	-	-	±12	LSB
Gain error	增益误差	配置 12 位 DAC	-	-	±0.5	%

注: 由综合评估得出,不在生产中测试。

6 封装信息

6.1 **LQFP176** 封装信息

图 16 LQFP176 封装图

- (1) 图不是按照比例绘制。
- (2) 所有的引脚都应该焊接在 PCB 上。

表格 57 LQFP176 封装数据

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX. 1.600	OVERALL HEIGHT
2	A2	1.400±0.050	PKG THICKNESS
3	D	26.000±0.200	LEAD TIP TO TIP
4	D1	24.000±0.100	PKG LENGTH
5	E	26.000±0.200	LEAD TIP TO TIP
6	E1	24.000±0.100	PKG WDTH
7	L	0.600±0.150	FOOT LENGTH
8	L1	1.000 REF	LEAD LENGTH
9	е	0.500 BASE	LEAD PITCH
10	H (REF)	(21.50)	CUM LEAD PITCH
11	b	0.22±0.050	LEAD WIDTH

注:尺寸以毫米表示。

图 17 LQFP176 -176 引脚, 24 x24 mm 焊接 Layout 建议

图 18 LQFP176-176 引脚, 24 x24 mm 示意图

6.2 **LQFP144** 封装信息

图 19 LQFP144 封装图

- (1) 图不是按照比例绘制。
- (2) 所有的引脚都应该焊接在 PCB 上。

表格 58 LQFP144 封装数据

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX. 1.600	OVERALL HEIGHT
2	A2	1.400±0.050	PKG THICKNESS
3	D	22.000±0.200	LEAD TIP TO TIP
4	D1	20.000±0.100	PKG LENGTH
5	E	22.000±0.200	LEAD TIP TO TIP
6	E1	20.000±0.100	PKG WDTH
7	L	0.600±0.150	FOOT LENGTH
8	L1	1.000 REF	LEAD LENGTH
9	е	0.500 BASE	LEAD PITCH
10	H (REF)	(17.50)	CUM LEAD PITCH
11	b	0.22±0.050	LEAD WIDTH

注:尺寸以毫米表示。

图 20 LQFP144-144 引脚, 20 x 20 mm 焊接 Layout 建议

注:尺寸以毫米表示。

6.3 **LQFP100** 封装信息

图 22 LQFP100 封装图

- (1) 图不是按照比例绘制。
- (2) 所有的引脚都应该焊接在 PCB 上。

表格 59 LQFP100 封装数据

	DIMENSION LIST (FOOTPRINT: 2.00)								
S/N	SYM	DIMENDIONS	REMARKS						
1	Α	MAX. 1.600	OVERALL HEIGHT						
2	A2	1.400±0.050	PKG THICKNESS						
3	D	16.000±0.200	LEAD TIP TO TIP						
4	D1	14.000±0.100	PKG LENGTH						
5	E	16.000±0.200	LEAD TIP TO TIP						
6	E1	14.000±0.100	PKG WDTH						
7	L	0.600±0.150	FOOT LENGTH						
8	L1	1.000 REF	LEAD LENGTH						
9	е	0.500 BASE	LEAD PITCH						
10	H (REF)	(12.00)	CUM LEAD PITCH						
11	b	0.22±0.050	LEAD WIDTH						

注:尺寸以毫米表示。

图 23 LQFP100 - 100 引脚, 14 x 14mm 焊接 Layout 建议

注:尺寸以毫米表示。

图 24 LQFP100 - 100 引脚, 14 x 14mm 示意图

6.4 **LQFP64** 封装信息

图 25 LQFP64 封装图

- (1) 图不是按照比例绘制。
- (2) 所有的引脚都应该焊接在 PCB 上。

表格 60 LQFP64 封装数据

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX.1.600	OVERALLHEIGHT
2	A2	1.400±0.050	PKGTHICKNESS
3	D	12.000±0.200	LEADTIPTOTIP
4	D1	10.000±0.100	PKGLENGTH
5	E	12.000±0.200	LEADTIPTOTIP
6	E1	10.000±0.100	PKGWIDTH
7	L	0.600±0.150	FOOTLENGTH
8	L1	1.000REF.	LEADLENGTH
9	е	0.500BASE	LEADPITCH
10	H(REF.)	(7.500)	GUM.LEADPITCH
11	b	0.220±0.050	LEADWIDTH

注:尺寸以毫米表示。

图 26 LQFP64 焊接 Layout 建议

注:尺寸单位为毫米。

图 27 LQFP64 - 64 引脚, 10 x 10mm 示意图

7 包装信息

7.1 带状包装

图 28 带状包装规格图

Quadrant Assignments for PIN1 Orientation in Tape

所有照片仅供参考,外观以产品为准。

表格 61 带状包装参数规格表

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	A0 (mm)	B0 (mm)	K0 (mm)	W (mm)	Pin1 Quadrant
APM32F407RET6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F407RGT6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F405RGT6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F407RET7	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F407RGT7	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F405RGT7	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1

7.2 托盘包装

图 29 托盘包装示意图

Tray Dimensions

所有照片仅供参考, 外观以产品为准

表格 62 托盘包装参数规格表

Device	Package Type	Pins	SPQ	X-Dimension (mm)	Y-Dimension (mm)	X-Pitch (mm)	Y-Pitch (mm)	Tray Length (mm)	Tray Width (mm)
APM32F407IET6	LQFP	176	400	27	27	30.4	31.5	322.6	135.9
APM32F407IGT6	LQFP	176	400	27	27	30.4	31.5	322.6	135.9
APM32F407ZET6	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F407ZGT6	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F407VET6	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F407VGT6	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F407RET6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F407RGT6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F405ZGT6	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F405VGT6	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F405RGT6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F407IET7	LQFP	176	400	27	27	30.4	31.5	322.6	135.9
APM32F407IGT7	LQFP	176	400	27	27	30.4	31.5	322.6	135.9
APM32F407ZET7	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F407ZGT7	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F407VET7	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F407VGT7	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F407RET7	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F407RGT7	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F405ZGT7	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F405VGT7	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F405RGT7	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9

8 订货信息

表格 63 订货信息列表

订货编码	FLASH (KB)	SRAM (KB)	封装	SPQ	温度范围	
APM32F407IGT6	1024	192+4	LQFP176	400	工业级 -40℃~85℃	
APM32F407IET6	512	192+4	LQFP176	400	工业级 -40℃~85℃	
APM32F407ZGT6	1024	192+4	LQFP144	600	工业级 -40℃~85℃	
APM32F407ZET6	512	192+4	LQFP144	600	工业级 -40℃~85℃	
APM32F407VGT6	1024	192+4	LQFP100	900	工业级 -40℃~85℃	
APM32F407VET6	512	192+4	LQFP100	900	工业级 -40℃~85℃	
APM32F407RGT6	1024	192+4	LQFP64	1600	工业级 -40℃~85℃	
APM32F407RET6	512	192+4	LQFP64	1600	工业级 -40℃~85℃	
APM32F407RGT6-R	1024	192+4	LQFP64	1000	工业级 -40℃~85℃	
APM32F407RET6-R	512	192+4	LQFP64	1000	工业级 -40℃~85℃	
APM32F405ZGT6	1024	192+4	LQFP144	600	工业级 -40℃~85℃	
APM32F405VGT6	1024	192+4	LQFP100	900	工业级 -40℃~85℃	
APM32F405RGT6	1024	192+4	LQFP64	1600	工业级 -40℃~85℃	
APM32F405RGT6-R	1024	192+4	LQFP64	1000	工业级 -40℃~85℃	
APM32F407IGT7	1024	192+4	LQFP176	400	工业级 -40℃~105℃	
APM32F407IET7	512	192+4	LQFP176	400	工业级 -40℃~105℃	
APM32F407ZGT7	1024	192+4	LQFP144	600	600 工业级 -40℃~105℃	

订货编码	FLASH (KB)	SRAM (KB)	封装	SPQ	温度范围	
APM32F407ZET7	512	192+4	LQFP144	600	工业级 -40℃~105℃	
APM32F407VGT7	1024	192+4	LQFP100	900	工业级 -40℃~105℃	
APM32F407VET7	512	192+4	LQFP100	900	工业级 -40℃~105℃	
APM32F407RGT7	1024	192+4	LQFP64	1600	工业级 -40℃~105℃	
APM32F407RET7	512	192+4	LQFP64	1600	工业级 -40℃~105℃	
APM32F407RGT7-R	1024	192+4	LQFP64	1000	工业级 -40℃~105℃	
APM32F407RET7-R	512	192+4	LQFP64	1000	工业级 -40℃~105℃	
APM32F405ZGT7	1024	192+4	LQFP144	600	工业级 -40℃~105℃	
APM32F405VGT7	1024	192+4	LQFP100	900	工业级 -40℃~105℃	
APM32F405RGT7	1024	192+4	LQFP64	1600	工业级 -40℃~105℃	
APM32F405RGT7-R	1024	192+4	LQFP64	1000	000 工业级 -40℃~105℃	

9 常用功能模块命名

表格 64 常用功能模块命名

中文描述	简称			
复位管理单元	RMU			
时钟管理单元	CMU			
复位和时钟管理	RCM			
外部中断	EINT			
通用 IO	GPIO			
复用 IO	AFIO			
唤醒控制器	WUPT			
蜂鸣器	BUZZER			
独立看门狗定时器	IWDT			
窗口看门狗定时器	WWDT			
定时器	TMR			
CRC 控制器	CRC			
电源管理单元	PMU			
DMA 控制器	DMA			
模拟数字转换器	ADC			
实时时钟	RTC			
外部存储控制器	EMMC			
控制器局域网络	CAN			
I2C 接口	I2C			
串行外设接口	SPI			
通用异步收发器	UART			
通用异步同步收发器	USART			
闪存接口控制单元	FMC			
安全数字输入输出	SDIO			
数字摄像头接口	DCI			

10 版本历史

表格 65 文件版本历史

日期	版本	变更历史
2021.10	1.0	新建
2022.4.1	1.1	(1) 修改引脚定义
		(2) 新增 APM32F405xG 型号
2022.7.12	1.2	(1)新增 3.3GPIO 复用功能配置
		(2) 修改 Arm 商标
		(3) 增加版权说明
		(4)增加 DMC 引脚描述
2022.8.10	1.3	(1) 修改 SPI 电气特性参数
		(2)增加订货编码
		(3) 修改时钟树
2022.9.21	1.4	(1) 修正 GPIOB 复用功能配置表格
	1.5	(1) 修改手册版本为适用于 A 版本芯片
2023.1.16		(2) 增加 HSECLK 的振荡器的跨导 Gm 参数
		(3) 增加 ADC Vref 直流功耗数据
		(4) 增加关于 T7 的包装信息和订货编码
		(5) 调整 ESD 参数
		(6) 修改引脚功能描述
		(7)增加内部参考电压和温度传感器校准值
		(8) 修改 NVIC 功能描述
		(9) 修改地址映射和定时器格式
		(10) 修改 GPIOF/G/H 地址映射

声明

本手册由珠海极海半导体有限公司(以下简称"极海")制订并发布,所列内容均受商标、著作权、软件著作权相关法律法规保护,极海保留随时更正、修改本手册的权利。使用极海产品前请仔细阅读本手册,一旦使用产品则表明您(以下称"用户")已知悉并接受本手册的所有内容。用户必须按照相关法律法规和本手册的要求使用极海产品。

1、权利所有

本手册仅应当被用于与极海所提供的对应型号的芯片产品、软件产品搭配使用,未经极海许可,任何单位或个人均不得以任何理由或方式对本手册的全部或部分内容进行复制、抄录、修改、编辑或传播。

本手册中所列带有"®"或"TM"的"极海"或"Geehy"字样或图形均为极海的商标,其他在极海产品上显示的产品或服务名称均为其各自所有者的财产。

2、无知识产权许可

极海拥有本手册所涉及的全部权利、所有权及知识产权。

极海不应因销售、分发极海产品及本手册而被视为将任何知识产权的许可或权利明示或默示地授予用户。

如果本手册中涉及任何第三方的产品、服务或知识产权,不应被视为极海授权用户使用前述第三方产品、服务或知识产权,除非在极海销售订单或销售合同中另有约定。

3、版本更新

用户在下单购买极海产品时可获取相应产品的最新版的手册。

如果本手册中所述的内容与极海产品不一致的,应以极海销售订单或销售合同中的约定为准。

4、信息可靠性

本手册相关数据经极海实验室或合作的第三方测试机构批量测试获得,但本手册相关数据难免会出现 校正笔误或因测试环境差异所导致的误差,因此用户应当理解,极海对本手册中可能出现的该等错误无需承 担任何责任。本手册相关数据仅用于指导用户作为性能参数参照,不构成极海对任何产品性能方面的保证。

用户应根据自身需求选择合适的极海产品,并对极海产品的应用适用性进行有效验证和测试,以确认极海产品满足用户自身的需求、相应标准、安全或其它可靠性要求;若因用户未充分对极海产品进行有效验证和测试而致使用户损失的,极海不承担任何责任。

5、合规要求

用户在使用本手册及所搭配的极海产品时,应遵守当地所适用的所有法律法规。用户应了解产品可能受

到产品供应商、极海、极海经销商及用户所在地等各国有关出口、再出口或其它法律的限制,用户(代表其本身、子公司及关联企业)应同意并保证遵守所有关于取得极海产品及/或技术与直接产品的出口和再出口适用法律与法规。

6、免责声明

本手册由极海"按原样"(as is)提供,在适用法律所允许的范围内,极海不提供任何形式的明示或暗示担保,包括但不限于对产品适销性和特定用途适用性的担保。

对于用户后续在针对极海产品进行设计、使用的过程中所引起的任何纠纷,极海概不承担责任。

7、责任限制

在任何情况下,除非适用法律要求或书面同意,否则极海和/或以"按原样"形式提供本手册的任何第 三方均不承担损害赔偿责任,包括任何一般、特殊因使用或无法使用本手册相关信息而产生的直接、间接或 附带损害(包括但不限于数据丢失或数据不准确,或用户或第三方遭受的损失)。

8、适用范围

本手册的信息用以取代本手册所有早期版本所提供的信息。

©2021-2023 珠海极海半导体有限公司 - 保留所有权利