

Besaran Vektor dan Skalar

- Besaran vektor: mempunyai nilai/harga dan arah.
- Besaran skalar: mempunyai nilai/harga saja (tidak memiliki arah)

Cara Geometri

Vektor \overline{OA} atau \overrightarrow{A} atau \overrightarrow{A} : $a \angle \theta$

Modulus/**besar** atau panjang nya: $|\mathbf{A}| = a$

Arahnya: θ terhadap horisontal

Cara Geometri

Vektor A dan B besarnya sama dan sejajar (arahnya

sama) \rightarrow dapat dikatakan vektor \mathbf{A} = vektor \mathbf{B}

Vektor A dan C besarnya sama tetapi berlawanan arah

 \rightarrow dapat dikatakan vektor $\mathbf{A} = -$ vektor \mathbf{C}

Cara Analitis

Merepresentasikan vektor dalam suatu sistem koordinat, misalnya kartesian. **Tidak perlu membuat gambar atau sketsa**, cukup dinyatakan dengan **vektor satuan**:

 $\hat{\imath}$ yang menyatakan arah ke sumbu x positip

 \hat{j} yang menyatakan arah ke sumbu y positip

 \hat{k} yang menyatakan arah ke sumbu z positip

Vektor satuan adalah vektor yang panjangnya satu satuan, yang berfungsi untuk menunjukkan arah, misal pada system koordinat kartesian dua dimensi:

Vektor Satuan

- Vektor satuan: vektor dengan nilai/harga 1 dan memiliki arah di sumbu tertentu.
- Kegunaan: menentukan/menunjukkan arah
- Vektor satuan yang mengarah ke sumbu positif dari sumbu x, y, dan z diberi label sebagai $\hat{\iota}$, $\hat{\jmath}$, dan \hat{k} ; dimana tanda menunjukkan bahwa vektor tersebut merupakan vektor satuan.

Vektor Satuan

$$\cos \alpha = \frac{a}{R}$$

$$\cos \beta = \frac{b}{R}$$

$$\cos \gamma = \frac{c}{R}$$

Vektor satuan $\overrightarrow{\mathbf{R}}$ = vektor itu dibagi besarnya

$$\widehat{R} = \frac{\overrightarrow{\mathbf{R}}}{\mathbf{R}}$$

$$\hat{R} = \cos \alpha \, \hat{\imath} + \cos \beta \, \hat{\jmath} + \cos \gamma \, \hat{k}$$

Cara Analitis

Misal ada vektor \boldsymbol{A} Dengan panjang \boldsymbol{a}

Secara analitis, cukup dinyatakan dalam bentuk $\overrightarrow{A} = a_x \, \hat{\imath} + a_y \, \hat{\jmath}$

Yang sebenarnya $a_x \ dan \ a_y$ adalah proyeksi \overrightarrow{A} ke sumbu x dan y, sehingga \overrightarrow{A} dapat dikatakan vektor yang dibentuk mulai dari titik O bergerak sebesar a_x ke arah sumbu x dan sebesar a_y ke arah sumbu y

Jika \vec{A} membentuk sudut θ dengan sumbu x, maka dipenuhi:

•
$$a_x = a \cos \theta$$
 ; $a_y = \sin \theta$

Panjang/modulus
$$\vec{A} = |\vec{A}| = \sqrt{a_x^2 + a_y^2}$$

• Besar sudut
$$\theta$$
 dihitung dari $\tan \theta = \frac{a_y}{a_x}$

Operasi Matematika pada Vektor dan Skalar

Operasi Skalar	Operasi Vektor
Penjumlahan	Penjumlahan
Pengurangan	Pengurangan
Perkalian	Perkalian titik (dot product)
Pembagian	Perkalian silang (cross product)
Pemangkatan	
Peng-akar-an	

Cara Geometris (kedua vektor harus dinyatakan dalam gambar)

Cara Analitis (tidak perlu digambar, kedua vektor harus dinyatakan dalam notasi vektor satuan dalam system koordinat)

Sifat Operasi Vektor - Penjumlahan

Sifat Operasi Vektor - Penjumlahan

Operasi Vektor: Penjumlahan

Berdasarkan komponennya

$$R = |\vec{A} + \vec{B}| = ? \qquad \overrightarrow{A} = a_x \,\hat{\imath} + a_y \,\hat{\jmath} \qquad \vec{B} = b_x \,\hat{\imath} + b_y \,\hat{\jmath}$$

$$\vec{A} = a_x \,\hat{\imath} + a_y \,\hat{\jmath}$$

$$\vec{B} = b_x \,\hat{\imath} + b_y$$

Dinyatakan dalam notasi vektor \vec{i} , \vec{j} , $\mathsf{dan}\, ec{k}$

$$\vec{A} + \vec{B} = (a_x + b_x)\hat{i} + (a_y + b_y)\hat{j}$$
 Komponen vektor yang searah dijumlahkan

$$|\vec{A} + \vec{B}| = R = \sqrt{(a_x + b_x)^2 + (a_y + b_y)^2}$$

Sesuai dengan teorema phytagoras

Sedangkan sudut $\vec{A} + \vec{B}$ terhadap horizontal adalah

$$\tan \varphi = \frac{a_y + b_y}{a_x + b_x} = \frac{R_y}{R_x}$$

Sifat Operasi Vektor - Pengurangan

$$\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$$

Operasi Vektor: Perkalian Titik

Cara Geometri

$$\vec{A} \cdot \vec{B} = ?$$

- Diperoleh dengan memproyeksikan salah satu vektor ke arah vektor yang lain
- Mengalikan kedua komponen vektor yang searah tersebut, sehingga

$$\vec{A} \cdot \vec{B} = a b \cos \theta$$

Operasi Vektor: Perkalian Titik

Cara Analitik

$$\vec{A} \cdot \vec{B} = ?$$
 $\vec{A} = a_x \, \hat{\imath} + a_y \, \hat{\jmath}$ $\vec{B} = b_x \, \hat{\imath} + b_y \, \hat{\jmath}$ Dinyatakan dalam notasi vektor satuan $\vec{\imath}, \vec{\jmath}$ $\vec{A} \cdot \vec{B} = (a_x \, \hat{\imath} + a_y \, \hat{\jmath}) \cdot (b_x \, \hat{\imath} + b_y \, \hat{\jmath})$ $= a_x b_x \, (\hat{\imath}.\hat{\imath}) + a_x b_y \, (\hat{\imath}.\hat{\jmath}) + \dots + a_y b_y \, (\hat{\jmath}.\hat{\jmath})$

Dengan menerapkan: $\hat{\imath}.\hat{\imath}=\hat{\imath}.\hat{\imath}=1.1.\cos 0^o=1$ karena searah; $\hat{\imath}.\hat{\jmath}=\hat{\jmath}.\hat{\imath}=1.1.\cos 90=0$ karena tegak lurus, maka

$$\vec{A} \cdot \vec{B} = a_x b_x + a_y b_y$$
Skalar

Contoh: Fluks Listrik

Contoh: Fluks Listrik

- (a) Surface is face-on to electric field:
 - \vec{E} and \vec{A} are parallel (the angle between \vec{E} and \vec{A} is $\phi = 0$).
 - The flux $\Phi_E = \vec{E} \cdot \vec{A} = EA$.

- **(b)** Surface is tilted from a face-on orientation by an angle ϕ :
 - The angle between \vec{E} and \vec{A} is ϕ .
 - The flux $\Phi_E = \vec{E} \cdot \vec{A} = EA \cos \phi$.

- (c) Surface is edge-on to electric field:
- \vec{E} and \vec{A} are perpendicular (the angle between \vec{E} and \vec{A} is $\phi = 90^{\circ}$).
- The flux $\Phi_E = \vec{E} \cdot \vec{A} = EA \cos 90^\circ = 0$.

Contoh: Fluks Listrik

1. Tentukan jumlah fluks listrik yang melewati kubus berikut!

Operasi Vektor: Perkalian Silang

Hasil = vektor (besar & arah) Besar $\rightarrow |\vec{A} \times \vec{B}| = a b \sin \theta$ Arah ???

Hasil perkalian silang antara dua vektor selalu mempunyai arah tegak lurus dengan vektor pengalinya (searah \hat{n} atau $-\hat{n}$), sesuai dengan arah putaran sekrup, **menghasilkan besaran vektor**

Operasi Vektor: Perkalian Silang

Cara Analitis $\overrightarrow{A} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}$

$$\vec{A} = a_x \,\hat{\imath} + a_y \,\hat{\jmath} + a_z \,\hat{\imath}$$

$$\vec{B} = b_x \,\hat{\imath} + b_y \,\hat{\jmath} + b_z \,\hat{k}$$

Dinyatakan dalam notasi vektor satuan \vec{i} , \vec{j} , \vec{k}

$$\vec{A} \times \vec{B} = (a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}) \times (b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k})$$

$$\vec{C} = \vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\vec{C} = \vec{A} \times \vec{B} = (a_y b_z - a_z b_y)\hat{i} - (a_x b_z - a_z b_x)\hat{j} + (a_x b_y - a_y b_x)\hat{k}$$

Contoh: Gaya magnet $(\overrightarrow{F_B})$

$$\overrightarrow{F_B} = q(\overrightarrow{v} \times \overrightarrow{B})$$

$$\overrightarrow{F_B} = q \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ v_x & v_y & v_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$\overrightarrow{F_B} = q \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} & \hat{\jmath} & \hat{\jmath} \\ v_x & v_y & v_z & v_x & v_y \\ B_x & B_y & B_z & B_x & B_y \\ & & & + & + & + \end{vmatrix}$$

$$\overrightarrow{F_B} = q \left[\left(v_y B_z - v_z B_y \right) \hat{i} + \left(v_z B_x - v_x B_z \right) \hat{j} + \left(v_x B_y - v_y B_x \right) \hat{k} \right]$$

Contoh soal

• Elektron bergerak dengan kecepatan $\vec{v}=(2.10^6~\hat{\imath}+3.10^6\hat{\jmath})$ m/s dalam medan magnet seragam $\vec{B}=(0.03~\hat{\imath}-0.15~\hat{\jmath})$ T, tentukan gaya pada elektron karena medan magnet?