AP, GP, HP

Arithmetic Progression

Introduction

For starting term a, common difference d, an A.P. of n terms could be formed as:

$$a, a + d, a + 2d, \dots, a + (n-1)d$$

Properties:

- General term: $a_n = a + (n-1)d$ (Also called last term l)
- Sum of an A.P.: $S_n = \frac{n}{2} \{2a + (n-1)d\}$ $S_n = \frac{n}{2} \{a + l\}$
- In A.P. of m terms: n^{th} term from end = $(m-n+1)^{th}$ term from n^{th} term from end: a + (m-n)d n^{th} term from end: l-(n-1)d
- If a, b, c are in A.P.: 2b = a + c $a_1 + a_n = a_2 + a_{n-1} = \cdots$ $2a_n = a_{n+k} + a_{n-k}$
- Middle term of A.P.: ODD $\Rightarrow \frac{n+1}{2}$, CD $\rightarrow d$ EVEN $\Rightarrow \frac{\overline{n}}{2}$ or $\frac{n}{2} + 1$, CD $\rightarrow 2d$

Results of sum of AP:

- Seq is AP \rightarrow if sum of n terms form $An^2 + Bn$
- if ratio of sum is given, then ratio of n^{th} term \rightarrow replace n by 2n-1
- if ratio of n^{th} term is given, then ratio of sum is \rightarrow replace n by $\frac{n+1}{2}$

Arithmetic Mean (AM)

Arithmetic mean between a and b be:

$$A = \frac{a+b}{2}$$

AM of *n* terms: $\frac{1}{n}[a_1 + a_2 + a_3 + \dots + a_n]$ n AM between two numbers:

For a and b, n AMs are:

$$a, A_1, A_2, A_3, \cdots, A_n, b$$

- number of terms: n+2
- common difference: $\frac{b-a}{n+1}$
- n^{th} term of n AM: a + nd

1.3 Sum of some Sequence

First *n* natural number : $\frac{n(n+1)}{2}$

First n odd number:

n(n+1)First n even number :

Square of first n number : $\frac{n(n+1)(2n+1)}{6}$ Cube of first n number : $\left\{\frac{n(n+1)}{2}\right\}^2$

 4^{th} power of n no : $\frac{n(n+1)(2n+1)(3n^2+3n-1)}{20}$

Geometric Progression

Introduction

For starting term a, common difference r, an G.P. could be formed as:

$$a, ar, ar^2, ar^3, \cdots, ar^{n-1}, ar^n, \cdots$$

Properties:

- General term: $a_n = ar^{n-1}$ (Also called last term l)
- Sum of it terms: $S_n = \begin{cases} a\left(\frac{1-r^n}{1-r}\right), & r \neq 1 \\ na, & r = 1 \end{cases}$ $S_n = \frac{a - lr}{1 - r} = \frac{lr - a}{r}$
- Sum of ∞ terms: $S_{\infty} = \begin{cases} \frac{a}{1-r} & |r| < 1\\ \infty & |r| > 1 \end{cases}$
- In G.P. of m terms: n^{th} term from end: $a_n = ar^{m-n}$ n^{th} term from end: $a_n = l \left(\frac{1}{\pi}\right)^{n-1}$

- If a, b, c are in G.P.: $b^2 = ac$ $a_1 a_n = a_2 a_{n-1} = \cdots = a_k a_{n-k+1}$
- \bullet GP divided/multiplied by constant, stays GP
- reciprocal of GP, is GP
- if $a_1, a_2 \dots a_n \Rightarrow GP$ $\log a_1, \log a_2 \dots \log a_n \Rightarrow AP$ and vice-versa

2.2 Geometric Mean (GM)

Geometric mean between a and b be:

$$G = \sqrt{ab}$$

GM of n terms: $(a_1 \cdot a_2 \cdot a_3 \cdots a_n)^{\frac{1}{n}}$ **n GM between two numbers:** For a and b, n GMs are:

$$a, G_1, G_2, G_3, \cdots, G_n, b$$

- number of terms: n+2
- common difference: $r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$
- n^{th} term of n GM: ar^n

3 Harmonic Progression

3.1 Introduction

A series $H=a_1,\,a_2,\,a_3,\,\cdots,\,a_n$ is said to be in H.P., iff $\frac{1}{a_1},\,\frac{1}{a_2},\,\frac{1}{a_3},\,\cdots,\,\frac{1}{a_n}$ is in an arithmetic progression.

Example: 2, 3, 6
$$\Leftarrow$$
 H.P. $\frac{1}{2}, \frac{1}{3}, \frac{1}{6} \Leftarrow$ A.P.

Properties:

- Common difference: $d = \frac{1}{a_2} \frac{1}{a_1}$
- General term: If a and d are two terms of A.P.: $h_n = \frac{1}{a+(n-1)d}$ If a and d are two terms of H.P.: $h_n = \frac{1}{\frac{1}{a}+(n-1)\left(\frac{1}{b}-\frac{1}{a}\right)}$

3.2 Harmonic Mean

Harmonic mean between a and b be:

$$H = \frac{2ab}{a+b}$$

HM of n terms: $\frac{n}{\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \cdots, \frac{1}{a_n}}$

n HM between two numbers:

For a and b, n HMs are:

$$a, H_1, H_2, H_3, \cdots, H_n, b$$

- number of terms: n+2
- common difference: $\frac{a-b}{(n+1)ab}$
- n^{th} term of n HM: $\frac{1}{a} + (n+1)D$

4 Relation between AP, GP and HP

• A,G and H between 2 numbers(a and b):

$$A = \frac{a+b}{2}$$
 $G = \sqrt{AB}$ $H = \frac{2ab}{a+b}$

- $A \ge G \ge H$
- quadratic equation having a and b as its roots

$$x^2 - 2Ax + G^2 = 0$$

- the two numbers (a,b) are $A \pm \sqrt{A^2 G^2}$
- if A and G are in the ratio m:n, then the number(a,b) are in ratio

$$m + \sqrt{m^2 - n^2} : m - \sqrt{m^2 - n^2}$$

• A,G and H between 3 numbers (a, b, c):

$$A = \frac{a+b+c}{3}$$
 $G = \sqrt[3]{abc}$ $\frac{1}{H} = \frac{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}{3}$

• cubic equation where a,b,c are the roots

$$x^3 - 3Ax^2 + \frac{3G^3}{H}x - G^3 = 0$$

• Example: for 1 and 9

$$A = 5 \quad G = 3 \quad H = \frac{9}{5}$$
$$G^2 = AH \Rightarrow 9 = 5 \cdot \frac{9}{5}$$

5 Arithmetico-geometric Progression (AGP)

 $a,(a+d)r,(a+2d)r^2,\cdots,(a+nd)r^n$ is a AGP sequence

$$n^{th}$$
 term: $a_n = \{a + (n-1)d\}.r^{n-1}$

Sum of ∞ term:

$$S_{\infty} = \begin{cases} \frac{a}{1-r} + \frac{d.r}{(1-r)^2}, & |r| < 1\\ \infty, & |r| > 1 \end{cases}$$

Sum of n terms:

$$S_n = \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{a - [a + (n-1)d]r^n}{1-r}$$

Tips and Tricks

(black space for tips, tricks and important question)

Finding sum of AGP through diference method

- 1. multiply r in the series
- 2. subtract new series from old series $S_n rS_n$
- 3. Now you are left with an AP, find sum as of an AP