APPRENTISSAGE PAR RENFORCEMENT

M2 DAC

TME 4. Policy Gradients

Ce TME a pour objectif d'expérimenter les approches de renforcement Policy Gradients vues en cours.

Online A2C

Implémenter l'algorithme online actor-critic donné dans la figure ci-dessous et l'appliquer aux 3 problèmes du TP précédent (CartPole, LunarLander et GridWorld)

online actor-critic algorithm:

1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$ 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$ 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') - \hat{V}_{\phi}^{\pi}(\mathbf{s})$ 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$

À l'étape 2, la fonction V est mise à jour par un coût de Huber pour faire tendre la différence temporelle TD(0) vers 0 comme au TP précédent.

Batch A2C

Implémenter l'algorithme batch actor-critic donné dans la figure ci-dessous et comparer les performances avec l'algorithme précédent (au moins sur LunarLander).

batch actor-critic algorithm:

- 1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot) 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums
 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}) = r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}') - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i})$ 4. $\nabla_{\theta}J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i})\hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i})$ 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta}J(\theta)$

Dans cette version, plutôt que de mettre à jour après chaque action, on attend la fin d'une trajectoire avant toute optimisation. On pourra considérer une version Rollout Monte-Carlo (où V_t est comparé à R_t) et une version TD(0) (où V_t est comparé à $r_t + \gamma V_{t+1}$ comme dans l'algorithme précédent).