Online Radiation Dose Monitoring System in ATLAS Detector

<u>I. Mandić</u>^a, V. Cindro^a, I. Dolenca, M. Deliyergiyeva, A. Gorišeka, G. Krambergera, M. Mikuža, J. Hartertc, S. Franzd

^aJožef Stefan Institute, Jamova 39, Ljubljana, Slovenia ^bFaculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia ^cPhysikalisches Institut Universität Freiburg, Hermann-Herder-Str. 3, Freiburg, Germany ^dCERN, Geneva, Switzerland

Lot of work with radiation sensors (characterization, selection, calibration, annealing studies etc...) was done by F. Ravotti, M. Glaser, M. Moll et al. from the CERN RADMON team http://lhc-expt-radmon.web.cern.ch/lhc-expt-radmon/

Introduction

- online radiation dose monitoring system measures accumulated total ionizing dose TID, displacement damage in silicon (NIEL) and fluences of thermal neutrons.
- doses are monitored at 14 locations in the Inner Detector and at 48 locations at larger radii
- sensors are read out every 60 minutes and readings are stored in the DCS database.

More information about the monitoring system in:

- ➤ I. Mandić et al., "Online integrating radiation monitoring system for the ATLAS detector at the large hadron collider," *IEEE Trans. Nucl. Sci.*, vol. 54, no. 4, pp. 1143–1150, Aug. 2007.
- ➤ J. Hartert et al., "The ATLAS radiation dose measurement system and its extension to SLHC experiments," in *Proc. Topical Workshop Electronics for Particle Physics*, Naxos, Greece, 2008.
- ▶I. Mandić et al., "First Results from the Online Radiation Dose Monitoring System in ATLAS experiment", 2011 IEEE Nuclear Science Symposium Conference Record NP3.M-40.
- ▶ http://indico.cern.ch/getFile.py/access?contribId=121&sessionId=15&resId=0&materialId=paper&confId=21985
- https://twiki.cern.ch/twiki/bin/viewauth/Atlas/AtlasInDetRadMon

TID measurements with RadFETs

- RadFETs: p-MOS transistor
- radiation induced holes trapped in the gate oxide:
 - increase of threshold voltage with dose: $\Delta V = a \times (TID)^b$
- sensitivity and dynamic range depend on oxide thickness:

NIEL measurements with diodes

- bulk damage in silicon: increased resistance, reduction of carrier lifetime, increase of reverse current
 - \rightarrow forward bias: voltage at given forward current increases $\Delta V = k \cdot \Phi_{eq}$
 - \rightarrow reverse bias: reverse current increases $\Delta I = \Phi_{eq}/\alpha V$

Forward bias:

- •high sensitivity diode (CMRP, University of Wollongong, AU) 10⁹ to ~10¹² n/cm²,
- commercial (Osram) silicon PIN photodiode BPW34F 10¹² to ~10¹⁵ n/cm²

Reverse bias:

- 25 μm x 0.5 cm x 0.5 cm pad diode with guard ring structure processed on epitaxial silicon
 - \rightarrow thin epitaxial diode can be depleted with V_{bias} < 30 V also after irradiation with 10^{15} n/cm²

Thermal neutrons

- DMILL bipolar transistors produced by ATMEL
- measure base current at 10 uA collector current in common emitter configuration
 - > sensitive to fast and thermal neutrons
 - → same transistors as ABCD3T input transistor
 - → monitoring the status of chips

 $\Delta I_b/I_c = k_{eq} \cdot \Phi_{eq} + k_{th} \cdot \Phi_{th}$; k_{eq} , k_{th} and Φ_{eq} known $\rightarrow \Phi_{th}$ can be determined

Radiation Monitor Sensor Board (RMSB)

Inner Detector

- for dose monitoring in the Inner Detector:
- large range of doses
- no access in 10 years
 - need many sensors

- large temperature variations (5 to 20°C) at different locations
 - → stabilize temperature to 20 ± 1°C by heating back side of the ceramic hybrid

Thick film resistive layer R = 320 Ω

Back side

Radiation Monitor Sensor Board (RMSB)

Other locations (Calorimeters, Muons, PP2)

- lower dose ranges
- \rightarrow mGy to 10 Gy, 10⁹ to ~10¹² n/cm²
- no temperature stabilization
- → correct read out values with known temperature dependences

Results: Inner Detector

• 14 monitors in the Inner Detector

Location	<i>r</i> (cm)	z (cm)
Pixel Support Tube (PST)	23	90
ID end plate small r	54	345
ID end plate large r	80	345
Cryostat Wall	110	90

Results TID

- REM 0.13 μm RadFETs
- plot shows averages for each location type, error bars = sqrt(spread² + (20%)²)
- simulated curves: Dose = Integrated_luminosity * dose_factor
 → Dose factors (Gy/pb⁻¹) from:

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/BenchmarkingAtTheLHC (Fluka simulations, I. Dawson, L. Nicolas et al.).

Results NIEL (equivalent fluence of 1 MeV neutrons)

- PST and IDE endplates: measured with Epi-diodes
- Cryostat: measured with CMRP diode (high sensitivity)
 - → annealing correction made

- increase of base current correlated with integrated luminosity observed
- several sharp jumps not yet understood
- consistent with thermal neutron fluences ~ 10¹² n/cm²
 - → consistent with FLUKA

Monitoring locations at larger radius

Line: average, shaded area: sqrt(spread² + 20%²)

TID: good agreement with FLUGG simulation (simulation numbers from C. Young et al.)

Muons NIEL

→ problem: for some sensors readout voltage increases with time also when no beam

- try to correct this drift:
 - → linear fit during no beam period → subtract the drift contribution

Muons NIEL

Line: average, shaded area: sqrt(spread² + 20%²)

• good agreement with simulation → annealing correction to be done

LAr Calorimeter dose

Side A:

Location	R (m)	Z (m)	Phi (°)	Last Point (Gy)
A.FS03.L03	3075	6430	150	0.16
A.FS07.L29	3075	6430	45	0.08
I.FS03.L07-1	3075	2859	45	0.06
I.FS09.L31-1	3075	2859	180	0.05
I.FS15.L55-1	3075	2859	-45	0.09
I.FS03.L07-2	4130	3169	45	0.15
I.FS09.L31-2	4130	3169	180	0.08
I.FS15.L55-2	4130	3169	-45	0.48

Side C:

Location	R (m)	Z (m)	Phi (°)	Last Point (Gy)
H.FS01.L01-1	3075	-2859	0	0.45
H.FS06.L21-1	3075	-2859	135	0.08
H.FS01.L01-2	3075	-2859	225	0.63
H.FS06.L21-2	4130	-3169	0	0.09
H.FS12.L45-2	4130	-3169	135	0.07
C.FS05.L24	4130	-3169	225	0.64
C.FS01.L03	3075	-6430	135	#
C.FS12.L45-2	3075	-6430	30	#

→ no obvious correlation between location and dose

LAr Calorimeter fluence

Side A:

Location	R (m)	Z (m)	Phi (°)	Last Point
A.FS03.L03	3075	6430	150	1
A.FS07.L29	3075	6430	45	8
I.FS03.L07-1	3075	2859	45	9
I.FS09.L31-1	3075	2859	180	0
I.FS15.L55-1	3075	2859	-45	3
I.FS03.L07-2	4130	3169	45	0
I.FS09.L31-2	4130	3169	180	4
I.FS15.L55-2	4130	3169	-45	12

Side C:

Location	R (m)	Z (m)	Phi (°)	Last Point
H.FS01.L01-1	3075	-2859	0	23
H.FS06.L21-1	3075	-2859	135	5
H.FS01.L01-2	3075	-2859	225	34
H.FS06.L21-2	4130	-3169	0	7
H.FS12.L45-2	4130	-3169	135	6
C.FS05.L24	4130	-3169	225	31
C.FS01.L03	3075	-6430	135	#
C.FS12.L45-2	3075	-6430	30	#

→ no obvious correlation between location and dose

Tile Calorimeter:

Location	R (m)	Z (m)	Phi (°)
LBA43	4050	2970	90
LBA15	4050	2970	-45
EBA49	4050	6260	-135
EBC49	4050	-6260	-135
LBC17	4050	-2970	-45
LBC42	4050	-2970	90

→ larger doses and fluences on side A than on side C?

Patch Panel 2

- increase of doses proportional to integrated luminostiy
- fluences too low to be measured

Conclusions

- Inner Detector: measurements in good agreement with simulations Largest doses measured at the end of 2012:
 TID = 3500 Gy, NIEL = 7e12 n/cm², Thermal neutrons: ~10¹² n/cm²
- Muons: Small Wheels: TID \sim 0.7 Gy, NIEL = 3e10 n/cm² Big Wheels: TID \sim 0.2 Gy, NIEL = 6e9 n/cm²
 - → good TID measurements, agreement with simulations
 - → NIEL: increase of readout voltage with time in some sensors
- Calorimeters: largest measured values: TID ~ 0.6 Gy, NIEL ~ 3e10 n/cm²
 - → large spread between locations, drift of NIEL sensors as for muons
- Patch panel 2: increase of dose proportional to integrated luminosity

 Dose at the end of 2012: TID ~ 0.02 Gy, NIEL too small to be measured

Would be nice to have for calorimeters:

- comparison with some other dosimetry results
- check the differences between monitoring locations (e.g. shielding by cables)

 Correlations between TID and 1 MeV eqivalent neutron fluences for LAr and Tile calorimeters

Readout

- use standard ATLAS Detector Control System components
 - ELMB:
 - 64 ADC channels
 - can bus communication
 - ELMB-DAC:
 - current source, 16 channels $(I_{max} = 20 \text{ mA}, U_{max} = 30 \text{ V})$
- sensors are biased only during readout (~ few minutes every hour)
- software written in PVSS
- readout values available in the ATLAS control room and archived for offline analysis

