Symulowanie Procesów Losowych - Balanced Allocation

Jakub Kogut

1 Wstęp

Sprawodzanie do zadania domowego 3, zadanie 1. – The Power of Two Choices/Balanced Allocation.

2 Opis Zadania

Zadanie polegało na modyfikacji zadania z 2. listy w taki sposób, aby zaimplementować algorytm Balanced Allocation.

Celem zadania było wyznaczenie maksymalnej ilości kul w jednej z ur
n w zależności od parametru $\boldsymbol{d}.$

- 1. d=1 w sposób identyczny do zadania z 2. listy. Wyznaczamy $L_n^{(1)}$.
- 2. d=2 algorytm Balanced Allocation. Wyznaczamy ${\cal L}_n^{(2)}.$

3 Metodologia

Podana była ustalona wartość k=50 powtórzeń eksperymentu dla każdego n. Wartość n miała pochodzić ze zbioru $\{k\times 10^3:k\in\{1,...,10^3\}\}$. Dla każdego n wyznaczano średnią z k powtórzeń eksperymentu. Następnie wyznaczano odpowiednio wartość $L_n^{(1)}$ oraz $L_n^{(2)}$.

4 Wnioski

W analogii do rozłożenia requestów na serwery, algorytm Balanced Allocation działa lepiej niż algorytm Random Allocation. Wartość $L_n^{(2)}$ rośnie wolniej niż $L_n^{(1)}$ z zwiększającym się n.

Na podstawie przeprowadzonych symulacji i wygenerowanych wykresów można wyciągnać natępujące wnioski:

4.1 Brak Algorytmu Balanced Allocation

Wartość $L_n^{(1)}$ rośnie asymptotycznie do $\frac{log(n)}{log(log(n))}$ zgodnie z wykresem, koncentracja wyników w okół wartości średniej jest dość niska, co pokazuje ten wykres. Wynika to jednak z faktu, że wartości wyników są całkowite, a średnia jest jednak ułamkiem.

4.2 Algorytm Balanced Allocation

Wartość $L_n^{(2)}$ rośnie asymptotycznie do $\frac{log(log(n))}{log(2)}$ zgodnie z wykresem, koncentracja wyników w okół wartości średniej jest podobna do $L_n^{(1)}$, co pokazuje ten wykres.

5 Podsumowanie

Jeżeli chodzi o zastosowanie algorytmu Balanced Allocation w praktyce, to zdecydowanie warto go stosować, ponieważ zdecydowanie lepiej radziłby sobie z rozłożeniem requestów na serwery niż algorytm Random Allocation. Wartość $L_n^{(2)}$ rośnie wolniej niż $L_n^{(1)}$ z zwiększającym się n.

6 Wykresy

Rysunek 1: Wykres watosci $\frac{L_n^{(1)}}{f_1}$

Rysunek 2: Wykres watosci $\frac{L_n^{(2)}}{f_2}$

Rysunek 3: Wykres wartości ${\cal L}_n^{(1)}$

Rysunek 4: Wykres wartości ${\cal L}_n^{(2)}$