Comme		Teac	hing Sch	eme		Cuadita	ssigned				
Course Code	Course Name	(Coı	ıtact Hou	ırs)		Credits Assigned					
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total			
BSC102	Applied Physics	2		-	2		-	2			

			Theory					Pract /	Total
Course			ernal essmen ')	ıt Test	End Sem	Exam Duration	work	Oral	
Code	Course Name			IAT-I +	Exam	(in Hrs)			
				IAT-II					
		IAT-I	IAT-II	(Total)					
BSC102	Applied Physics	15	15	30	45	02			75

Rationale:

Most of the engineering branches are being off-spring of basic sciences where physics is playing a pivotal role in concept and understanding of foundation of core engineering branches. This syllabus is developed by keeping in mind, needs of all branches that we offer in University of Mumbai. In the distribution of modules, core physics and its applied form are given priority. Further, it is ensured that these modules will cover prerequisites needed for engineering courses to be introduced in higher semesters as core subjects or as interdisciplinary subjects in respective branches.

Course Objectives:

- 1. To provide students with a basic understanding of laser operation.
- 2. To explain the basic working principle of Optical fiber and its use in communication technology.
- 3. To demonstrate principles of interference in thin film.
- 4. To describe Maxwell's equations and their significance.
- 5. To build a foundation of quantum mechanics needed for modern technology.
- 6. To give exposure to the concept of Fermi level in semiconductors.

Course Outcomes:

- 1. Learners will be able to ILLUSTRATE the use of laser in LiDAR and Barcode reading.
- 2. Learners will be able to APPLY the foundation of fiber optics in the development of modern communication technology
- 3. Learners will be able to determine the wavelength of light and refractive index of liquid using the interference phenomenon.

- 4. Learners will be able to ARTICULATE the significance of Maxwell's equations.
- 5. Learners will be able to RELATE the foundations of quantum mechanics with the development of modern technology.
- 6. Learner will be able to CLASSIFY semiconductors and EXPLAIN variation of Fermi level with temperature and doping concentration.

DETAILED SYLLABUS:

	Name of	Detailed Content	Полия	CO
	Module	Detailed Content	Hours	Mapping
		Basic knowledge of optics and atomic structure,		
		Wavefront and Huygens principle, reflection and		
	Prerequisite	refraction, Interference by division of wavefront,		
		Refractive index of a material, Snell's law, Basics of		
		vector algebra, partial differentiation concepts, Dual		
		nature of radiation, Photoelectric effect, Matter		
		waves, Davisson-Germer experiment.		
		Intrinsic and extrinsic semiconductors, electrical		
		resistivity and conductivity concepts		
		Lasers: Spontaneous and stimulated emission,		
		population inversion, pumping, active medium &		
		ctive center, resonant cavity, coherence length and		
	Lasers	coherence time, Characteristics of lasers, He-Ne		
I		laser: construction and working. Fiber	04	CO1
1	Lasers	laser Construction and working	04	
		Application:		
		(i)Elementary knowledge of LiDAR(ii) Barcode		
		reader (iii) Application of		
		laser in metal work		
		Optical fibers: Critical angle, acceptance angle,		
		acceptance cone, numerical aperture, total internal		
		reflection and propagation of light, Types of optical		
II	Fibre Optics	fibers: Single mode & multimode, step index &	04	CO2
		graded index, attenuation, attenuation coefficient,		
		factors affecting attenuation, Fibre Optic		
		Communication System, Advantages of optical fiber		

		communication, numerical			
		Interference in thin film of uniform thickness,			
III		conditions of maxima and minima for reflected			
		system, Conditions for maxima and minima for			
	Interfenence	wedge shaped film (qualitative), engineering	04	CO2	
	In Thin Films	applications –	04	CO3	
		(i) Newton's rings for determination of unknown			
		monochromatic wavelength and refractive Index of			
		transparent liquid (ii) AntiReflecting Coating			
		Vector Calculus : Gradient, Divergence, Curl.			
		Gauss's law, Amperes' circuital Law, Faraday's law,			
IV	Electrodyna	Divergence theorem , Stokes theorem Maxwell's	04	CO4	
	mics	equations in point form, Integral form and their			
		significance(Cartesian coordinate only)			
		de Broglie hypothesis of matter waves, de Broglie			
		wavelength for electron, Properties of matter waves,			
		Wave function and probability density,			
		mathematicalconditions for wave function, problems			
V	Quantum	on de Broglie wavelength, Need and significance of	06	CO5	
V	Physics	Schrödinger's equations, Schrödinger's time	VV		
		independent and time dependent equations, Energy of			
		a particle enclosed in a rigidbox and related			
		numerical problems, Quantum mechanical tunneling,			
		Principles of quantum computing: concept of Qubit.			
		Direct and Indirect Band Gap Semiconductors,			
	Basics Of	Electrical Conductivity of Semiconductors, Drift			
VI	Semiconduct	Velocity, Mobility and Conductivity in Conductors	04	CO6	
	or Physics	Fermi- Dirac distribution function, Position of Fermi			
		Level in Intrinsic and Extrinsic Semiconductors.			

Text Books:

- 1. A Text book of Engineering Physics -Dr. M. N. Avadhanulu, Dr. P. G. Kshirsagar, S. Chand, Revised Edition 2014
- 2. Modern Engineering Physics A. S. Vasudeva, S. Chand, Revised Edition 2013
- 3. Engineering Physics D. K Bhattacharya, Poonam Tandon, Oxford Higher Education, 1st Edition 2015

- 4. Engineering Physics -R. K. Gaur, S. L. Gupta, DhanpatRai Publications, 2012
- 5. Engineering Physics -V. Rajendran, McGraw Hill Educations, 2017
- 6. A Textbook of Nanoscience and Nanotechnology, T. Pradeep Tata McGraw Hill Education Pvt. Ltd., 2012

References:

- 1. Concepts of Modern Physics ArtherBeiser, ShobhitMahajan, S. Choudhury, McGraw Hill, 7thEdition 2017
- 2. Fundamentals of optics Francis A. Jenkins, Harvey E. White, McGraw Hill Publication, India, 4th Edition
- 3. Fundamentals of Physics, Halliday and Resnick, Wiley publication
- 4. Introduction to Electrodynamics, D. J. Griffiths, Pearson PublicationOnline

References:

Sr. No.	Website Name
1.	https://archive.nptel.ac.in/courses/115/102/115102124/
2.	https://archive.nptel.ac.in/courses/115/102/115102025/
3.	https://archive.nptel.ac.in/courses/115/105/115105132/

Assessment:

Internal Assessment Test (IAT) for 15 marks each:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of the syllabus content must be covered in the IAT-I and the remaining 40% to 50% of the syllabus content must be covered in the IAT-II.

End Semester Theory Examination:

Question paper format

- Question Paper will comprise a total of five questions each carrying 15 marks Q.1 will be compulsory and should cover the maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **three questions** need to be answered

Course Code	Course Name		hing Sch ntact Hou		Credits Assigned			
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BSL101	Applied Physics Lab		1	-		0.5	-	0.5

				Theo	ory		Term	Pract /	Total
Course			ernal essmen ()	t Test	End Sem	Exam Duration	work	Oral	
Code	Course Name			IAT-I +	Exam	(in Hrs)			
		IAT-I	IAT-II	(Total)					
BSL101	Applied Physics Lab						25	1	25

Lab Objectives:

- 1. To develop scientific understanding of the physics concepts.
- 2. To develop the ability to explain the processes and applications related to science subjects.
- 3. To apply skills and knowledge in real life situations.
- 4. To improve the knowledge about the theory concepts of Physics learned in the class.
- 5. To improve ability to analyse experimental result and write laboratory report.
- 6. To develop understanding about inferring and predicting.

Lab Outcomes: Learners will be able to..

- 1. Determine wavelength / divergence of laser beam.
- 2. Determine parameters like numerical aperture / power attenuation of an optical fibre.
- 3. Perform experiments based on interference in thin film and determine radius of curvature of lens / diameter of wire / thickness of paper.
- 4. Calculate basic parameters / constants using semiconductors.
- 5. Determine energygap / resistivity of a semiconductor.
- 6. Learner to understand the concept for virtual lab as per syllabus.

List of Experiments. (Minimum five experiments required)

Sr No	List of Experiments	Hrs	LO Mapping
01	Determination of wavelength using Diffraction grating. (Laser source)	01	LO1
02	Study of divergence of laser beam	01	LO1
03	Determination of Numerical Aperture of an optical fibre.	01	LO2
04	Measuring optical power attenuation in your plastic optical fiber	01	LO2
05	Determination of radius of curvature of a lens using Newton's ring set up.	01	LO3
06	Determination of diameter of wire/hair or thickness of paper using Wedge shape film method.	01	LO3
07	Determination of 'h'photo cell	01	LO4
08	Determination of 'h' using LED	01	LO4
09	Determination of energy band gap of semiconductor.	01	LO5

10	Determination of resistivity by four probe method.	01	LO5
11	Any other experiment based on syllabus may be included, which would help the learner to understand concept. Virtual lab may be developed and used for performing the experiments, after defining a suitable LO	01	LO6

Term Work Marks: 25 Marks (Total marks) = 10 Marks (Experiment) + 10 Marks Project + 5 Marks (Attendance)

Project work will be extended to semester-2 as well. In semester 1, a group of four students will be formed; a domain may be provided by faculty, the group will frame a problem statement in consultation with faculty. A PPT presentation with problem statement, preliminary literature survey, execution plan and a probable outcome is to be considered for awarding marks. Proper rubrics must be framed by faculty member