Interrogation nº0. Corrigé

1) Supposons par l'absurde que x est rationnel, c'est-à-dire de la forme $x=\frac{p}{a}$, avec p et $q\in\mathbb{N}^*$, car x>0. On a alors $q \ln 3 = p \ln 2$, d'où $3^q = 2^p$.

Comme q est non nul, 2p est un entier pair, d'où une contradiction, car 3q est un entier impair

2) a) On a $n = \prod_{i=1}^r p_i^{m_i} \ge 2^{m_1 + m_2 + \dots + m_r}$, donc $m_1 + m_2 + \dots + m_r \le \log n$.

Donc a fortiori, $m_i \leq \lfloor \log n \rfloor$, puisque que les m_i sont positifs et entiers.

- b) Par a), on a nécessairement $0 \le m_i \le \lfloor \log n \rfloor$. Donc $D_N \le (1 + \lfloor \log N \rfloor)^r \le (1 + \log N)^r$.
- c) Supposons par l'absurde que l'ensemble des nombres premiers est fini, qu'on note $\{p_1, p_2, ..., p_r\}$.

Par croissances comparées de N et de $(\log N)^r$, on a $N > (1 + \log N)^r$ pour N assez grand.

Donc $D_N < N$ pour N assez grand.

Or, on sait que tout entier est produit de nombres premiers, donc $D_N = N$ pour tout N. D'où une contradiction.

3) a) On associe à une telle partie A la partie $B = A \setminus \{k+1\}$. Ainsi, B est une partie de cardinal p de [1, k]. On obtient ainsi une bijection de l'ensemble des parties A sur l'ensemble des parties de cardinal p de [1,k].

Donc il y a $\binom{k}{p}$ parties A.

b) Donc $S(p,n) = \sum_{k=0}^{n} {k \choose p} = \sum_{k=p}^{n} {k \choose p}$ est le nombre de parties de E de cardinal p+1, qui sont comptées en les regroupant selon la valeur de leur élément maximum. Donc $\sum_{k=p}^{n} {k \choose p} = {n+1 \choose p+1}$.

Remarque : Il s'agit de la formule dite de la crosse de Hockey. S(p,n) représente une somme de coefficients binômiaux situés dans une même colonne du triangle de Pascal:

Par télescopage: $S(p,n) = \sum_{k=p}^{n} {n+1 \choose k+1} - {n \choose k+1} = {n+1 \choose p+1} - {n \choose n+1} = {n+1 \choose p+1}$.

4) a) Chaque réel y_i appartenant à un (unique) intervalle $J_k = \left| \frac{k-1}{n} (b-a), \frac{k}{n} (b-a) \right|$, où $1 \le k \le n$.

Par le principe des tiroirs, l'un des n intervalles J_k contient au moins deux éléments y_i et y_j , avec $i \neq j$, et quitte

à les permuter, on a : $0 \le y_j - y_i < \frac{b-a}{\pi}$.

b) On a $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$ et $t = \tan\left(\frac{\pi}{12}\right)$ vérifie $\frac{2t}{1-t^2} = \tan\left(\frac{\pi}{6}\right)$, car $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$.

Donc $t^2 + 2\sqrt{3}t - 1 = 0$. Comme t > 0, on obtient $t = -\sqrt{3} + \sqrt{4} = 2 - \sqrt{3}$.

c) On note $x_0, ..., x_{12}$ les réels. On considère $\theta_k = \arctan(x_k) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

On a alors $\frac{x_j - x_i}{1 + x_i x_i} = \frac{\tan(\theta_j) - \tan(\theta_j)}{1 - \tan(\theta_i)\tan(\theta_i)} = \tan(\theta_j - \theta_i).$

Or, par a), il existe i et j distincts tels $0 \le \theta_j - \theta_i < \frac{\pi}{12}$, donc $0 \le \tan(\theta_j - \theta_i) < \tan(\frac{\pi}{12}) = 2 - \sqrt{3}$.

- 5) a) On a card $(A \cap B) = (\operatorname{card} A) + (\operatorname{card} B) \operatorname{card} (A \cup B)$, et on conclut avec card $(A \cup B) \leq n$.
- b) Première preuve :

Avec a), on montre d'abord par récurrence sur $p \in \mathbb{N}^*$ que $\operatorname{card}(A_1 \cap A_2 \cap ... \cap A_p) \geq \sum_{i=1}^p \operatorname{card}(A_i) - n(p-1)$.

En effet, la propriété est immédiate pour p=1. Supposons la propriété est vraie au rang p.

On pose $B = A_1 \cap A_2 \cap ... \cap A_p$. Ainsi, $A_1 \cap A_2 \cap ... \cap A_p \cap A_{p+1} = B \cap A_{p+1}$.

D'une part, on applique a) à B et A_{p+1} et d'autre part on applique l'hyp de rec à $B = A_1 \cap A_2 \cap ... \cap A_p$.

On en déduit que card $(B \cap A_{p+1}) \ge (\sum_{i=1}^{p} \operatorname{card}(A_i) - n(p-1)) + \operatorname{card}(A_{p+1}) - n = \sum_{i=1}^{p+1} \operatorname{card}(A_i) - np$.

On peut alors conclure: Si $\sum_{i=1}^{p} \operatorname{card}(A_i) > n(p-1)$, alors $\operatorname{card}(A_1 \cap A_2 \cap ... \cap A_p) \ge 1$, d'où le résultat.