

Teacher: Yanjie Li Assignment Number: 2

Course: Linear Algebra in Control Theory Disclosure date: May 19, 2021

Problem 1

Suppose $e_1, ..., e_m$ is an orthonormal list of vectors in V. Let $v \in V$. Prove that

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$$

if and only if $v \in \text{span}(e_1, ..., e_m)$.

Problem 2

Suppose n is a positive integer. Prove that

$$\frac{1}{\sqrt{2\pi}},\frac{\cos x}{\sqrt{\pi}},\frac{\cos 2x}{\sqrt{\pi}},...,\frac{\cos nx}{\sqrt{\pi}},\frac{\sin x}{\sqrt{\pi}},\frac{\sin 2x}{\sqrt{\pi}},...,\frac{\sin nx}{\sqrt{\pi}}$$

is an orthonormal list of vectors in $C[-\pi, \pi]$, the vector space of continuous real-valued functions on $[-\pi, \pi]$ with inner product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x) g(x) dx.$$

Problem 3

On $\mathcal{P}_2(\mathbf{R})$, consider the inner product given by

$$\langle p, q \rangle = \int_0^1 p(x) q(x) dx$$

Apply the Gram-Schmidt Procedure to the basis 1, x, x^2 to produce an orthonormal basis of $\mathcal{P}_2(\mathbf{R})$.

Problem 4

For each of the following, use the Gram-Schmidt process find an orthonormal basis for R(A):

$$1.A = \begin{bmatrix} -1 & 3\\ 1 & 5 \end{bmatrix}$$

$$2.A = \begin{bmatrix} 2 & 5 \\ 1 & 10 \end{bmatrix}$$

where R(A) is the linear space spanned by the columns of A.

Problem 5

Given $\mathbf{x}_1 = \frac{1}{2} (1, 1, 1, -1)^T$ and $\mathbf{x}_2 = \frac{1}{6} (1, 1, 3, 5)^T$, verify that these vectors form an orthonormal set in \mathbb{R}^4 . Extend this set to an orthonormal basis for \mathbb{R}^4 by finding an orthonormal basis for the null space of

$$\begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 & 3 & 5 \end{bmatrix}$$

[Hint: First find a basis for the null space and then use the Gram-Schmidt process.]

Problem 6

Find a polynomial $q \in \mathcal{P}_2(\mathbf{R})$ such that

$$p\left(\frac{1}{2}\right) = \int_0^1 p(x) q(x) dx$$

for every $p \in \mathcal{P}_2(\mathbf{R})$.

Pay Attention

- a) Mark your class number, name and student number on the homework.
- b) Please hand in your homework to your TA before class next Wednesday (May 26).
- c) If you really cannot hand in your homework by the time mentioned above, please bring it to office D205a by yourself.

REFERENCES 3

References

[1] Axler, S. (1997). Linear algebra done right. Springer Science Business Media.

[2] Lay, D. C. . Linear algebra and its applications. Academic Press.