# Ecophysiological modelling of plant-nematode interactions to understand *(nrúa*-plant tolerance



Joseph Penlap\*<sup>1,2</sup>, Suzanne Touzeau<sup>1,2</sup>, Frédéric Grognard<sup>1</sup> and Valentina Baldazzi<sup>1,2</sup> NRAC

<sup>1</sup>Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORE, Sophia Antipolis, France

<sup>2</sup>Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France | \*joseph.penlap@inria.fr

#### 1. Context

Root-knot nematodes (RKN), Meloidogyne spp.

- small soil worms, obligate root endoparasites
- clonal reproduction
- ubiquitous polyphagous pest
- 14% of global crop losses worldwide [1] [1] Djian-Caporalino, EPPO Bulletin, 2012



#### **Symptoms**

- wilting and root deformation (galls)
- stunted growth
- reduced water and nutrient uptake
- hijacking of plant resources (carbon)

#### 2. Research question

Strong variability in plant response to RKN parasitism among species & cultivars



#### Which mechanisms underlie tolerance?

#### **Approach**

- experimental data (tomato, cucurbit, pepper) with and without RKN
- model coupling plant ecophysiology and pest population dynamics

#### Pest

- RKN stages:
  - eggs
  - free-living larvae J2
  - within-root larvae
  - mature females
- RKN demography

Flux

# 3. Integrated plant-pest model

**Plant** 

- Plant compartments: fruit, shoot, root
- Vegetative and reproductive phases
- Plant resources: carbon and water
- Resource uptake and transport

### **Plant-RKN interactions**

## Plant model



Root 
$$\begin{cases} \frac{dW_r}{dt} = \underbrace{G_r(C_r)W_r} - \underbrace{\gamma_rW_r} - \underbrace{\epsilon\beta J_2W_r}_{\text{Infected roots}} \\ \frac{dC_r}{dt} = \underbrace{T_r(W_r)} - \underbrace{G_r(C_r)W_r} - \underbrace{r_mW_r}_{\text{Respiration Rhizodeposition RKN feeding Gall formation}} \\ \begin{cases} \frac{dJ}{dt} = \underbrace{\Omega(C_r)\beta J_2W_r}_{\text{RKN entry Maturation Mortality}} \\ \frac{dF}{dt} = \underbrace{\theta(C_r)\eta J} - \underbrace{(\mu_F + \mu_r)F}_{\text{Maturation Mortality}} \end{cases}$$

#### 4. Model calibration



#### p/b) 0.08 transport Fruit onset: priority over root Carbon 0.00 100 80 120 20 40 60 Time (days)

# 5. Perspectives

- Identify key physiological and architectural traits underlying plant tolerance to guide the selection of new tolerant cultivars
- Long-term dynamics: effect of plant tolerance, cultural practices (rotations, etc.) and abiotic conditions on soil infestation and crop damages [2]
  - [2] Nilusmas et al., Evolutionary Applications, 2020