	Kod ucznia									
			-			-				
	Dzi	eń		Miesiąc			Rok			
pieczątka WKK	DATA URODZENIA UCZNIA									

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

ETAP WOJEWÓDZKI

Drogi Uczniu,

witaj na III etapie konkursu z matematyki. Przeczytaj uważnie instrukcję i postaraj się prawidłowo odpowiedzieć na wszystkie pytania.

- Arkusz liczy 15 stron i zawiera 19 zadań. Na stronie 14 znajduje się karta odpowiedzi.
- Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny.
 Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- Zadania <u>czytaj uważnie</u> i ze zrozumieniem.
- Odpowiedzi wpisuj czarnym lub niebieskim długopisem bądź piórem.
- Dbaj o czytelność pisma i precyzję odpowiedzi.
- Prawidłowe odpowiedzi wskazuj zaznaczając wybraną kratkę w następujący sposób:
- W zadaniach od 1 do 10 prawidłową odpowiedź zaznacz na karcie odpowiedzi wybierając jedną z podanych odpowiedzi i zaznacz kratkę z odpowiadającą jej literą.
- Jeżeli w zadaniach od 1 do 10 się pomylisz, błędne zaznaczenie otocz kółkiem i zamaluj kratkę z inną odpowiedzią.
- Rozwiązania zadań od 11 19 zapisz w wyznaczonych miejscach.
- Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.
- Obok każdego numeru zadania podano maksymalną liczbę punktów możliwą do uzyskania za jego rozwiązanie.
- Pracuj samodzielnie.
- Nie używaj kalkulatora.

Powodzenia!

Czas pracy:

90 minut

Liczba punktów możliwych do uzyskania:

40

Zadanie 1. (0-1)

Odwrotność liczby $\frac{1}{1+\frac{1}{1+\frac{1}{2}}}$ jest równa:

A.
$$\frac{3}{5}$$

B.
$$\frac{2}{3}$$

B.
$$\frac{2}{3}$$
 C. $\frac{5}{3}$

D.
$$\frac{8}{5}$$

E.
$$\frac{5}{8}$$

Zadanie 2. (0-1)

Różnica liczb $6001^2 - 5999^2$ wynosi:

A. 34000

B. 24000 **C.** 400

D. 28000

E. 4

Zadanie 3. (0-1)

Wartość wyrażenia $|\sqrt{7}-2|-|2\sqrt{7}-9|$ jest równa:

A.
$$3\sqrt{7} - 11$$

B.
$$\sqrt{7} + 7$$

C.
$$\sqrt{7} - 7$$

A.
$$3\sqrt{7} - 11$$
 B. $\sqrt{7} + 7$ **C.** $\sqrt{7} - 7$ **D.** $-3\sqrt{7} - 7$ **E.** $-3\sqrt{7} + 11$

E.
$$-3\sqrt{7} + 11$$

Zadanie 4 (0-1)

lle cyfr posiada liczba będąca wynikiem działania: $\frac{1}{999} \cdot (10^{1998} - 1)$?

A. 1990

B. 1992

C. 1994

D. 1995

E. 1996

Zadanie 5. (0-1)

Końce odcinka CD mają współrzędne C=(-2,-4) i D=(x, y). Punkt A= $(5,\frac{1}{2})$ jest środkiem tego odcinka. Znajdź współrzędne punktu D.

C.
$$(7, 4\frac{1}{2})$$

A.(-12, 5) **B.** (12, -5) **C.** (7,
$$4\frac{1}{2}$$
) **D.** (3, $-3\frac{1}{2}$) **E.** (12, 5)

Zadanie 6. (0-1)

W trójkącie prostokątnym ABC przeciwprostokątna |BC| = 10 cm, natomiast przyprostokątna |AB| = 6 cm. Ile wynosi suma wszystkich wysokości tego trójkata?

A. 18,8 cm **B.** 18,2 cm **C.** 16,8 cm **D.** 16,4 cm

E. 24 cm

Zadanie 7. (0-1)

Średni wiek pewnej jedenastoosobowej drużyny piłkarskiej był równy 32 lata. Ze względu na kontuzję jednego z zawodników drużyna musiała dokończyć spotkanie grając w dziesięcioosobowym składzie. Średni wiek zawodników wynosił wówczas 31 lat. Ile lat miała kontuzjowana osoba?

A. 34

B. 36

C. 38

D. 40

E. 42

Brudnopis (nie podlega ocenie)

Zadanie 8. (0-1)

W prostokącie ABCD punkt E dzieli odcinek DC o długości 36 cm w ten sposób, że długość odcinka EC stanowi $\frac{1}{8}$ długości odcinka DE. Pole trójkąta AED wynosi 1,6 dm². Ile jest równe pole prostokąta ABCD?

- **A.** 180 cm² **B.** 240 cm² **C.** 360 cm² **D.** 300 cm² **E.** 0.36 dm²

Zadanie 9. (0-1)

Podstawą ostrosłupa o objętości V jest prostokąt. Wymiary tego ostrosłupa zmieniono w następujący sposób: jeden bok prostokąta zmniejszono trzykrotnie, drugi zwiększono o 200%, natomiast wysokość ostrosłupa zwiększono dwukrotnie. Objętość nowego ostrosłupa jest równa:

- **A.** 3V

- **B.** 2V **C.** V **D.** $\frac{2}{3}$ V **E.** $\frac{4}{3}$ V

Zadanie 10. (0-1)

Wykonując działanie (2x – 9)² otrzymamy:

A.
$$4x^2 - 81$$

A.
$$4x^2 - 81$$
 B. $4x^2 + 36x - 81$ **C.** $2x^2 - 81$ **D.** $4x^2 - 36x + 81$ **E.** $4x^2 + 81$

C.
$$2x^2 - 81$$

D.
$$4x^2 - 36x + 81$$

$$E.4x^2 + 8^2$$

Brudnopis (nie podlega ocenie)

Zadanie 11. (0-3) Wykaż, że liczba $3^{79} + 9^{40} + 27^{27} - 81^{20}$ jest podzielna przez 30.

Zapisz obliczenia.

Zadanie 12. (0-3)

Wykaż, że liczba
$$\frac{8+8^2+8^3+...+8^{300}}{73}$$
 jest liczbą naturalną.

Zapisz obliczenia.

Zadanie 13. (0-3)

Sprzedawca w sklepie sportowym posiada pewną ilość piłek do tenisa ziemnego. Może je zapakować do pojemników po 4 piłki lub po 6 piłek. W każdym przypadku zostanie mu 3 piłki. Wybierając tylko większe pojemniki, zużyje o 10 pojemników mniej, niż gdyby użył tylko mniejszych pojemników. Ile piłek do tenisa ziemnego było w sklepie sportowym?

Zadanie 14. (0-3)

W prostokącie ABCD punkt E jest środkiem boku BC, zaś F środkiem boku CD. Pole trójkąta AEF jest równe $12\sqrt{3}$ cm². Oblicz pole prostokąta ABCD.

Zadanie 15. (0-3)

Średnica koła jest podstawą trójkąta równobocznego o boku długości 8 cm. Oblicz pole powierzchni części wspólnej koła i tego trójkąta.

Zadanie 16. (0-3)

Pole powierzchni całkowitej czworościanu foremnego jest równe $16\sqrt{3}$ cm². Oblicz ile wynosi kwadrat długości wysokości podstawy.

Zadanie 17. (0-4)

Dwadzieścia cztery zatrudnione osoby miało wykonać pewną pracę w ciągu 30 dni. Po sześciu dniach zatrudniono dodatkowo 8 pracowników. O ile dni skróci się czas wykonania tej pracy. (zakładamy stałą i równą wydajność pracy wszystkich zatrudnionych).

Zadanie 18. (0-4)

Dany jest graniastosłup prawidłowy sześciokątny, którego wszystkie krawędzie mają jednakową długość. Pole powierzchni całkowitej graniastosłupa jest równe $27(\sqrt{3}+2)$ cm². Oblicz łączną długość wszystkich jego krawędzi.

Zadanie 19. (0-4)

Na środku każdej ze ścian sześcianu o krawędzi długości 7 cm przyklejono sześcian o krawędzi długości 6 cm. Jakie jest pole powierzchni całkowitej oraz objętość uzyskanej bryły?

KARTA ODPOWIEDZI

Zadanie	Α	В	С	D	Е
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					

WYPEŁNIA KOMISJA

Zadanie	Liczba punktów
11.	
12.	
13.	
14.	
15.	
16.	
17.	
18.	
19.	

Brudnopis (nie podlega ocenie)

