ND=0.97, NB = 01-0.98=0.02 R=3.5 IF & (w/w) = 0.4 = 2 = (and/md) = - 0.4 TF & (w/w) = 0.4 = 2 = 0.44 Some there are no plates in stripping we can't achieve Xw=0.02. FB = 0.4 x 13000 = 69.0 4 End/4. France = 0-6 x 13010 = 88.56 knol/h. Fred total = 158-21 had/h. being this 1 2 = 0.44. Np (and by med) = 0.97 vt. Some saturated vapour enters, 9=039-line is ME y=0.44. wary Also Reute firation line is y = P (x-ND) + ND (-it passes through (ND, Mb) Verig these we find that, to obtain 97., distillate ne ned 8-7/= 7 brays. (: lest tray is partial repoils a) Yes It D possible Because we have 7 trays is No. of theorital ways - Actual X Eo 19 X = 17

A) (Also note that the last stage is very small, So there could be a \$4 vous would so, it could be that even 6 trays would be enough to achieve required purity.) From graph, Bottoms composition can be obtained As $\chi_B = 0.25$ (x-coordinate of allowe)

hottom-not point on the curve)

Material balance:

Fize

Fize

Bixs & Bib = F(ZF-XB) (NO-NB) 3 P= 41 tend th. >) D= 41.75 kmol/h. c) From part (6) ue infer that 2 residue = 21 B = 0.25 ades of field of marget inderental himse

Question 1

```
clear; close all;
F = 158.21;
xD = 0.9745;
R = 3.5;
m = R/(R+1);
yeqbm = [0.21 0.37 0.51 0.64 0.72 0.79 0.86 0.91 0.96 0.98];
xeqbm = [0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8 \ 0.9 \ 0.95];
pp = spline(yeqbm,xeqbm);
fun = @(x)(m*(x-xD)+xD);
y = xD;
zF = 0.43;
xcoords = zeros(1,7);
ycoords = zeros(1,7);
xcoords2 = zeros(1,8);
ycoords2 = zeros(1,8);
xcoords2(1)=xD;
ycoords2(1) = xD;
i = 0;
while y \ge zF
  i = i + 1;
  x = ppval(pp,y);
  xcoords(i) = x;
  xcoords2(i+1)=x;
  ycoords(i) = y;
  y = fun(x);
  ycoords2(i+1) = y;
end
x = linspace(0,1,15);
qline = @(x)(zeros(size(x))+zF);
plot(xeqbm,yeqbm,x,fun(x),x,qline(x),x,x,xcoords,ycoords,'x',xcoords2,ycoords2,'o');
```


09= L-C= 1- C= = 99=0.7 x 0 = 0 -95 1 2f = 05, xw=0.005 Bo M. WCS 2 > 76.19 & M. Wcely = to agreet of Converting all compositions to mole flection, [all in why ct] DD= 0.975, 24 = 0.5% = 0.67. 2000/10-67×76+0.31×154 = 39.32 kal/h. Using malicial of species bolance, D= f(2+ - hw) = 26.998 kned(4) W= F-) = 12.27 km xl/4 21 J- NW) : In ley (h, D= 26.918 x (76 x 0.97 + 0.03 x 154) 2/2/10 kg/h. a) W= 12-27 x (76x 0.01+104x0.89) 2 27 1880 mg/h. b) Romen can be obtained as follows: 1) Find intersection between 9- line & egbon in Join that point with the distillate point (45, xs) of slope of that line = 40 Rmm * Autol

SPenin = 0.9070

c) For mir no of theoritical trays, N= y line is the operating him the number of trays = per 8 (obstained from graph) (& nstages = \$9; includes a partial repoiler) d) Rz 2 Fmin = 1.814 Use this to get restification live. Stripping line until be the line joining the bottons point to the point of intersection of q-line & stripping line. Cyraphs are plat & musher of the stricted tray = [2]

e) optimum feed peatier is a the fournition 8 bage - tray of 6

Question 2

```
close all;clear;
xD = 0.97;
xW = 0.01;
zF = 0.67;
q = 0.7;
qline = @(x)(q/(q-1).*(x-zF) + zF);
xeqbm = [0,0.0296,0.0615,0.1106,0.1435,0.2585,0.3908,0.5318,0.663,0.7574,0.8604,1];
yegbm = [0,0.0823,0.1555,0.266,0.3325,0.495,0.634,0.747, 0.829, 0.878, 0.932,1];
ec = spline(xeqbm,yeqbm);
%finding intersection of eqbm curve and q line
fun = @(x)(qline(x)-ppval(ec,x));
x_int = fsolve(fun,1);
m_min = (qline(x_int)-xD)/(x_int-xD);
ycept = (qline(x_int)-xD)/(x_int-xD)*(-xD) + xD;
R min = (xD/ycept)-1;
R = 2*R min;
R_OL = @(x)(R/(R+1)*(x-xD)+xD);
fun2 = @(x)(qline(x)-R_OL(x));
xint = fsolve(fun2,0);
yint = qline(xint);
pp = spline(yeqbm,xeqbm);
i = 0;
y = xD;
S_OL = @(x)((yint-xW)/(xint-xW)*(x-xW) + xW);
xcoords = zeros(1,13);
ycoords = zeros(1,13);
xcoords2 = zeros(1,14);
ycoords2 = zeros(1,14);
xcoords2(1)=xD;
ycoords2(1) = xD;
%Last stage wont be a tray but is the partial reboiler
while y>=xW
  i = i + 1;
  x = ppval(pp,y);
  xcoords(i) = x;
  xcoords2(i+1)=x;
  ycoords(i) = y;
  if x >= xint
    y = R_OL(x);
  else
    y = S_OL(x);
  ycoords2(i+1) = y;
end
x = linspace(0,1,15);
N actual = i-1;
figure();
plot(xeqbm,yeqbm,x,R_OL(x),x,qline(x),x,x,x,S_OL(x),xcoords,ycoords,'x',xcoords2,ycoords2,'o');
figure();
plot(xeqbm,yeqbm,x,R_OL(x),x,x,x,S_OL(x),xcoords,ycoords,'x',xcoords2,ycoords2,'o');
```

```
figure();
%Min number of trays => R->infinity
xcoords = zeros(1,7);
ycoords = zeros(1,7);
xcoords2 = zeros(1,8);
ycoords2 = zeros(1,8);
y = xD;
xcoords2(1)=xD;
ycoords2(1) = xD;
i = 0;
while y>=xW
 i = i + 1;
 x = ppval(pp,y);
  xcoords(i) = x;
 xcoords2(i+1)=x;
 ycoords(i) = y;
 y = x;
 ycoords2(i+1) = y;
end
N_{th} = i-1;
plot(xeqbm,yeqbm,xeqbm,xcoords,ycoords2,ycoords2,ycoords2,'o');
```

Plot of q-line, Rectification line and Stripping line

Theoretical number of trays plot (last tray which is the partial reboiler is not drawn)

Minimum number of trays (last tray which is the partial reboiler is not drawn)

