FÍSICA 2 (FÍSICOS) - Prof. Hernán Grecco - 1. er cuat. 2015 GUÍA 0: Repaso de matemática

- 1. Desarrollar a 2.º orden:
 - a) $\sqrt{a^2 + x^2}$ alrededor de $x = 0, x \ll a$
 - b) $(a^2 + x^2)^{-\frac{1}{2}}$ alrededor de $x = 0, x \ll a$
 - c) $\operatorname{sen}(kx)$ alrededor de $x = 0, kx \ll 1$
 - d) sen [k(x+d)] a orden 0, alrededor de $x=x_0$ ¿Qué condición debe pedir?
 - e) e^{kx} alrededor de $x=0, kx \ll 1$
 - $f) (a+x)^{-1}$ alrededor de $x=0, x \ll a$
- 2. Integrar
 - $a) \int_a^b e^{cx+d} dx$
 - b) $\int_a^b \cos(kx + \varphi) \, \mathrm{d}x$
 - c) $\int_a^b x \cos(kx + \varphi) \, \mathrm{d}x$
 - d) $\int_a^b e^{cx+d} \cos(kx+\varphi) dx$
 - e) $\int_a^b e^{cx+d} \left(\alpha + \beta x + \gamma x^2\right) dx$
- 3. Graficar esquemáticamente y hallar los ceros
 - a) $e^{cx+d}\cos(kx+\varphi)$
 - b) $e^{cx+d} \operatorname{sen}(kx+\varphi)$
- 4. Probar que, dadas las constantes reales A_1 , A_2 , φ_1 y φ_2 , existen constantes A y φ tal que se cumple la siguiente igualdad:

$$A_1 \cos(kx + \varphi_1) + A_2 \cos(kx + \varphi_2) = A \cos(kx + \varphi)$$

5. Discutir si es posible satisfacer la siguiente igualdad. En caso de que lo sea, hallar A, ω y φ en función de $A_1, A_2, \varphi_1, \varphi_2, \omega_1$ y ω_2

$$A_1 \cos(\omega_1 t + \varphi_1) + A_2 \cos(\omega_2 t + \varphi_2) = A \cos(\omega t + \varphi)$$

6. Discutir, en función del parámetro (λ) , el siguiente sistema:

$$x + 2y + \lambda z = -3$$
$$3x - 2y - 4z = -\lambda$$
$$-7x + 2y + 4z = -2$$

· · · - g

7. Encuentre para $z=|z|\,\mathrm{e}^{i\theta}$ su parte real ($\Re\mathfrak{e}\,z$), módulo (|z|), fase (θ) y su conjugado (\bar{z})

a)
$$z = (a + ib)^{-1}$$

Resolver cuando sea posible.

b)
$$z = \rho e^{i\phi} e^{i\omega t}$$

c)
$$z = e^{a+ib}$$

$$d) z = e^{i\varphi} + e^{i\phi}$$

$$e) z = Ae^{i\varphi} + Be^{i\phi}$$

siendo $A, B, \rho, \varphi y \phi$ reales.