Boolean Logic

CS 231 Dianna Xu

Proposition/Statement

- A proposition is either true or false but not both
 - "The sky is blue"
 - "Lisa is a Math major"
 - "x == y"
- Not propositions:
 - "Are you Bob?"
 - "x := 7"

Boolean variables

- We use Boolean variables to refer to propositions
 - Usually denoted with lower case letters starting with p (i.e. p, q, r, s, etc.)
 - A Boolean variable can have one of two values true (T) or false (F)
- A proposition can be...
 - A single variable: p
 - A compound statement: $p \land (q \lor \sim r)$

Introduction to Logical Operators

- About a dozen logical operators
 - Similar to algebraic operators + * /
- In the following examples,
 - -p = "It is Tuesday"
 - -q ="It is 9/3"

Logical operators: Not

- Negation
- Not switches (negates) the truth value
- Symbol: ~ or ¬
- In C/C++ and Java,
 the operand is !

p	~p
Т	F
F	Т

~p = "It is not Tuesday"

Logical operators: And

- Conjunction
- And is true if both operands are true
- Symbol: ∧
- In C/C++ and Java,
 the operand is & &

p	q	$p \wedge q$
Τ	Т	Т
Т	F	F
F	Т	F
F	F	F

• $p \land q$ = "It is Tuesday and it is 9/3"

Logical operators: Or

- Disjunction
- Or is true if either operands is true
- Symbol:
- In C/C++ and Java,
 the operand is | |

p	q	p∨q
Т	Τ	Т
Т	F	Т
F	Т	Т
F	F	F

• $p \lor q =$ "It is Tuesday or it is 9/3 (or both)"

Logical operators: Exclusive Or

- Exclusive Or is true if one of the operands are true, but false if both are true
- Symbol: ⊕
- Often called XOR
- $p \oplus q \equiv (p \vee q) \wedge \sim (p \wedge q)$
- In Java, the operand is ^ (but not in C/C++)
- $p \oplus q =$ "It is Tuesday or it is 9/3, but not both"

p	q	p⊕q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Inclusive Or versus Exclusive Or

- Do these sentences mean inclusive or exclusive or?
 - Experience with C++ or Java is required
 - Lunch includes soup or salad
 - To enter the country, you need a passport or a driver's license
 - Publish or perish

Logical Equivalence

 Two statements are logically equivalent if and only if they have identical truth values for all possible substitutions of statement variables

$$-p \equiv q$$

Conditional

- A conditional means "if p then q" or "p implies q"
- Symbol: →
- $p \rightarrow q =$ "If it is Tuesday, then it is 9/3"

p	q	$p \rightarrow q$	~p v q
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Conditional 2

- Let p = "I am elected" and q = "I will lower taxes"
- p → q = "If I am elected, then I will lower taxes"

 The statement doesn't say anything about ~p

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

If ~p, then the conditional is true
 regardless of whether q is true or false

Conditional 3

				Conditional	Inverse	Converse	Contra- positive
p	q	~p	~q	$p \rightarrow q$	~p→~q	$q{\rightarrow}p$	~q→~p
Т	Т	F	F	Т	Т	Т	Т
Т	F	F	Т	F	Т	Т	F
F	Т	Т	F	Т	F	F	Т
F	F	T	T	Т	Т	Т	Т

- The conditional and its contra-positive are equivalent
- So are the inverse and converse

Logical operators: Conditional 4

- Alternate ways of stating a conditional:
 - -p implies q
 - If p, q
 - -p is sufficient for q
 - -q if p
 - q whenever p
 - -q is necessary for p (if $\sim q$ then $\sim p$)
 - -p only if q

Bi-conditional

- A bi-conditional means "p if and only if q"
- Symbol: ↔
- Alternatively, it means "(if p then q) and (if q then p)"
- $p \leftrightarrow q \equiv p \rightarrow q \land q \rightarrow p$
- Note that a bi-conditional has the opposite truth values of the exclusive or

p	q	$p \leftrightarrow q$
Т	T	Т
Т	F	F
F	Т	F
F	F	Т

Bi-conditional

Let p = "You get a grade" and q = "You take this class"

p

Then p↔q means
 "You get a grade if and only if you take this class"

•	Alternatively, it means "If	F	F	٦
	you get a grade, then			
	you took (take) this class and if	you ta	ke (too	ok)
	this class then you get a grade"	•		

Boolean operators summary

		not	not	and	or	xor	conditional	bi- conditional
p	q	~p	~q	p∧q	p∨q	p⊕q	$p \rightarrow q$	p↔q
Т	Т	F	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	Т	F	F
F	Т	Т	F	F	Т	Т	Т	F
F	F	Т	Т	F	F	F	Т	Т

 Learn what they mean, don't just memorize the table!

Precedence of operators

Precedence order (from highest to lowest):

$$\sim \land \lor \longrightarrow \longleftrightarrow$$

– The first three are the most important

Not is always performed before any other operation

Translating English Sentences

• Problem:

```
-p = "It is below freezing"
```

- -q = "It is snowing"
- It is below freezing and it is snowing
- It is below freezing but not snowing
- It is not below freezing and it is not snowing
- It is snowing or below freezing (or both)
- If it is below freezing, it is also snowing
- It is either below freezing or it is snowing, $(p \lor q) \land (p \to \sim q)$ but it is not snowing if it is below freezing
- That it is below freezing is necessary and $p \leftrightarrow c$ sufficient for it to be snowing

 $p \wedge q$

 $p \vee q$

p∧~q

~*p*∧~*q*

Tautology and Contradiction

- A tautology t is a statement that is always true
 - $-p \lor \sim p$ will always be true (Negation Law)
- A contradiction c is a statement that is always false
 - $-p \land \sim p$ will always be false (Negation Law)

p	<i>p</i> ∨ ~ <i>p</i>	<i>p</i> ∧ ~ <i>p</i>
Т	Т	F
F	Т	F

DeMorgan's Law

- Probably the most important logical equivalence
- To negate p∧q (or p∨q), you "flip" the sign, and negate BOTH p and q
 - Thus, $\sim (p \land q) \equiv \sim p \lor \sim q$
 - Thus, $\sim (p \lor q) \equiv \sim p \land \sim q$

p	q	~p	~q	$p \wedge q$	~(<i>p</i> ∧ <i>q</i>)	~p∨~q	$p \lor q$	~(<i>p</i> ∨ <i>q</i>)	~p∧~q
Т	\dashv	ш	Т	Τ	П	H	Т	П	F
Т	H	F	Τ	H	Τ	Т	Т	H	F
F	Т	Т	F	F	Т	Т	Т	F	F
F	F	Т	Τ	F	Т	Т	F	Т	Т

Logical Equivalences

Communicative	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$		
Associative	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$		
Distributive	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p\lor(q\land r)\equiv(p\lor q)\land(p\lor r)$		
Identity	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$		
Negation	$p \lor \sim p \equiv \mathbf{t}$	$p \land \sim p \equiv \mathbf{c}$		
Double Negative	~(~p) ≡ p			
Idempotent	$p \wedge p \equiv p$	$p \lor p \equiv p$		
Universal bound	$p \wedge \mathbf{c} \equiv \mathbf{c}$	$p \vee \mathbf{t} \equiv \mathbf{t}$		
De Morgan's	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \vee q) \equiv \sim p \wedge \sim q$		
Absorption	$p \lor (p \land q) \equiv p$	$p \wedge (p \vee q) \equiv p$		
Negation of t and c	~t ≡ c ~c ≡ t			

How to prove two propositions are equivalent?

- Two methods:
 - Using truth tables
 - Not good for long formulae
 - Should not be your first method to prove logical equivalence!
 - Using the logical equivalences and laws
 - The preferred method
- Example: show that:

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

Using Truth Tables

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

р	q	r	p→r	q →r	$(p\rightarrow r)\lor(q\rightarrow r)$	p∧q	(p∧q) →r
Т	Т	\dashv	Т	Т	Т	Т	Т
Т	Т	F	F	F	F	Т	F
Т	F	Т	Т	Т	Т	F	Т
Т	F	F	F	Т	Т	F	Т
F	Т	Т	Т	Т	Т	F	Т
F	Т	F	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	F	Т
F	F	F	Т	Т	Т	F	Т

Using Logical Equivalences

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

$$(\sim p \lor r) \lor (\sim q \lor r) \equiv \sim (p \land q) \lor r$$

$$(\sim p \lor r) \lor (\sim q \lor r) \equiv (\sim p \lor \sim q) \lor r$$

$$\sim p \lor r \lor \sim q \lor r \equiv \sim p \lor \sim q \lor r$$

$$\sim p \lor \sim q \lor r \lor r \equiv \sim p \lor \sim q \lor r$$

$$\sim p \lor \sim q \lor r \lor r \equiv \sim p \lor \sim q \lor r$$

Original statement

Definition of implication

DeMorgan's Law

Associativity of Or

Re-arranging

Idempotent Law