```
In [1]:
        import pandas as pd
        import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: # 1. Load the Data
        checkout1 = pd.read_csv('checkout_1.csv')
         checkout2 = pd.read_csv('checkout_2.csv')
        print("checkout_1.csv head:")
In [3]:
        display(checkout1.head())
         print("checkout_2.csv head:")
        display(checkout2.head())
       checkout_1.csv head:
          time today yesterday same_day_last_week avg_last_week avg_last_month
          00h
       0
                    9
                             12
                                                 11
                                                              6.42
                                                                              4.85
           01h
                              5
                                                  1
                                                              1.85
                                                                              1.92
           02h
                              0
                                                  0
       2
                    1
                                                              0.28
                                                                              0.82
                              0
       3
           03h
                    1
                                                  0
                                                              0.42
                                                                              0.46
                    0
                              0
                                                  1
           04h
                                                              0.42
                                                                              0.21
       checkout_2.csv head:
          time today yesterday same_day_last_week avg_last_week avg_last_month
                                                  5
       0
           00h
                    6
                              9
                                                              5.00
                                                                              4.92
           01h
                    3
                              3
                                                  2
                                                              2.00
                                                                              1.92
                              1
                                                  2
       2
           02h
                    3
                                                              0.42
                                                                              0.75
                    0
       3
           03h
                              1
                                                  1
                                                              0.42
                                                                              0.46
           04h
                              0
                                                  0
                    0
                                                                              0.21
                                                              0.14
In [4]:
        print("\ncheckout_1 info:")
```

```
In [4]: print("\ncheckout_1 info:")
    checkout1.info()
    print("\ncheckout_2 info:")
    checkout2.info()
```

```
checkout_1 info:
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 24 entries, 0 to 23
       Data columns (total 6 columns):
            Column
                       Non-Null Count Dtype
        0
           time
                              24 non-null
                                                object
        1
                              24 non-null
                                                int64
          today
                              24 non-null
        2
           yesterday
                                                int64
        3
            same_day_last_week 24 non-null
                                                int64
        4
            avg_last_week
                             24 non-null
                                                float64
        5
            avg_last_month
                                24 non-null
                                                float64
       dtypes: float64(2), int64(3), object(1)
       memory usage: 1.3+ KB
       checkout_2 info:
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 24 entries, 0 to 23
       Data columns (total 6 columns):
        #
            Column
                               Non-Null Count Dtype
                                -----
                               24 non-null
        0
            time
                                                object
        1
           today
                              24 non-null
                                                int64
           yesterday
                                                int64
        2
                                24 non-null
        3
            same_day_last_week 24 non-null
                                                int64
        4
                                24 non-null
                                                float64
            avg_last_week
            avg last month
        5
                                24 non-null
                                                float64
       dtypes: float64(2), int64(3), object(1)
       memory usage: 1.3+ KB
In [5]:
        print("\nMissing values in checkout_1:")
        print(checkout1.isnull().sum())
        print("\nMissing values in checkout_2:")
        print(checkout2.isnull().sum())
       Missing values in checkout_1:
       time
       today
                             0
                             0
       yesterday
       same_day_last_week
                             0
                             0
       avg_last_week
                             0
       avg_last_month
       dtype: int64
       Missing values in checkout_2:
       time
                             0
       today
                             0
       yesterday
                             0
       same_day_last_week
                             0
       avg_last_week
                             0
                             0
       avg_last_month
       dtype: int64
        Initial Analysis
        -> 24 rows: Representing 24 hours (00h to 23h) in a single day
        -> 6 columns: time, today, yesterday, same_day_last_week, avg_last_week, avg_last_month
        -> Clean dataset: No missing values, no duplicates
```

```
In [6]: # Descriptive Statistics
    print("\ncheckout_1.csv describe:")
    display(checkout1.describe())
    print("\ncheckout_2.csv describe:")
    display(checkout2.describe())
```

checkout_1.csv describe:

	t	oday	yesterday	same_day_last_week	avg_last_wee	k avg_last_month
cou	nt 24.00	00000	24.000000	24.000000	24.00000	0 24.000000
mean	an 21.91	16667	21.791667	23.833333	15.48291	7 14.630833
S	td 19.41	10702	17.222279	17.239153	11.10612	2 10.366863
min	in 0.00	00000	0.000000	0.000000	0.28000	0 0.210000
25% 50% 75% max	% 1.75	50000	2.500000	8.000000	4.89000	0 4.207500
	% 26.50	00000	26.500000	27.000000	18.06500	0 17.925000
	% 36.00	00000	35.250000	38.250000	25.92250	0 24.460000
	ax 55.00	00000	51.000000	49.000000	33.71000	0 28.500000

checkout_2.csv describe:

	today	yesterday	same_day_last_week	avg_last_week	avg_last_month
count	24.000000	24.000000	24.000000	24.000000	24.000000
	17.791667	21.916667	20.333333	11.936958	14.525417
std	16.699334	19.410702	15.813221	9.098644	10.384685
min	0.000000	0.000000	0.000000	0.140000	0.210000
25% 50% 75% max	2.750000	1.750000	4.250000	2.750000	4.215000
	15.000000	26.500000	18.000000	12.425000	17.730000
	29.750000	36.000000	32.000000	19.747500	24.350000
	46.000000	55.000000	47.000000	26.140000	28.570000

```
In [8]: # Check for duplicate rows
         print("Duplicate rows in checkout_1:", checkout1.duplicated().sum())
         print("Duplicate rows in checkout_2:", checkout2.duplicated().sum())
        Duplicate rows in checkout_1: 0
        Duplicate rows in checkout_2: 0
In [10]: # 4. Visualization: Compare Today's Transactions with Historical Data
         def plot_checkout(df, title):
             plt.figure(figsize=(12,6))
             plt.plot(df['time'], df['today'], marker='o', label='Today')
             plt.plot(df['time'], df['yesterday'], marker='o', label='Yesterday')
             plt.plot(df['time'], df['same_day_last_week'], marker='o', label='Same Day Last Week')
             plt.plot(df['time'], df['avg_last_week'], marker='o', label='Avg Last Week')
             plt.plot(df['time'], df['avg_last_month'], marker='o', label='Avg Last Month')
             plt.xlabel('Hour')
             plt.ylabel('Transactions')
             plt.title(title)
             plt.legend()
             plt.grid(True)
             plt.show()
         plot_checkout(checkout1, "Checkout 1: Hourly Transactions Comparison")
         plot checkout(checkout2, "Checkout 2: Hourly Transactions Comparison")
```


Checkout 1 Insights:

- -> Consistent Peak Pattern: 10h-17h shows elevated activity (35-55 transactions)
- -> 00h-06h maintains low but expected levels
- -> Positive Deviation: Today generally outperforms historical averages during peak hours

Checkout 2 Critical Findings:

- -> Complete transaction dropout at 15h-17h (0 transactions vs 22-27 expected)
- -> Unusual spikes at 08h-09h (25-36 vs 3.7-10.1 expected)
- -> Erratic patterns suggesting technical issues

Business Impact:

Checkout 1: Positive anomalies suggest successful operations or promotional effects

Checkout 2: Critical system failures requiring immediate technical intervention

```
In [11]: # 5. Anomaly Detection: Flagging hours where 'today' deviates significantly from historical averages
def detect_anomalies(df, threshold=2):
    # Calculate z-score for 'today' against avg_last_week
    df = df.copy()
    df['zscore_week'] = (df['today'] - df['avg_last_week']) / df['avg_last_week'].std()
    df['zscore_month'] = (df['today'] - df['avg_last_month']) / df['avg_last_month'].std()
    # Flag anomalies where z-score > threshold or < -threshold
    df['anomaly_week'] = df['zscore_week'].abs() > threshold
    df['anomaly_month'] = df['zscore_month'].abs() > threshold
    return df
```

Statistical Foundation:

- 1. **Threshold** = 2: Captures values beyond 95% confidence interval
- 2. **Z-score method:** Standardizes deviations relative to historical variance
- 3. Business relevance: Flags statistically significant deviations requiring attention

```
In [12]: checkout1_anom = detect_anomalies(checkout1)
    checkout2_anom = detect_anomalies(checkout2)

print("Anomalies in checkout_1 (vs last week):")
    display(checkout1_anom[checkout1_anom['anomaly_week']])
    print("Anomalies in checkout_2 (vs last week):")
    display(checkout2_anom[checkout2_anom['anomaly_week']])
```

Anomalies in checkout_1 (vs last week):

	time	today	yesterday	same_day_last_week	avg_last_week	avg_last_month	zscore_week	zscore_month	ano
10	10h	55	51	45	29.42	28.35	2.303234	2.570691	
12	12h	51	39	39	27.57	25.42	2.109647	2.467477	
15	15h	51	35	49	28.14	27.71	2.058324	2.246581	
17	17h	45	30	29	20.42	22.28	2.213194	2.191598	

Anomalies in checkout_2 (vs last week):

	time	today	yesterday	same_day_last_week	avg_last_week	avg_last_month	zscore_week	zscore_month	ano
8	08h	25	0	12	3.710	9.82	2.339909	1.461768	
9	09h	36	2	27	10.140	17.64	2.842182	1.767988	
11	11h	44	36	47	25.000	28.28	2.088223	1.513768	
12	12h	46	51	46	24.000	25.89	2.417943	1.936506	
13	13h	45	36	31	20.280	24.17	2.716888	2.005838	
15	15h	0	51	42	22.427	27.78	-2.464873	-2.675093	
16	16h	0	41	36	21.570	25.53	-2.370683	-2.458428	

Detected Anomalies Summary

Checkout 1 Anomalies (All Positive):

- -> At 10h, 12h, 15h, and 17h, sales were more than twice the standard deviation above normal.
- -> The consistency across these hours suggests a real surge, not a glitch.

Checkout 2 Critical Anomalies:

- -> **08h-09h:** Sudden spikes
- -> **11h-13h**: Elevated activity during midday

-> 15h-16h: Sales dropped to 0 when they were usually 20+ likely system failure/outage

```
In [13]:

def plot_anomalies(df, title):
    plt.figure(figsize=(12,6))
    plt.plot(df['time'], df['today'], marker='o', label='Today')
    plt.plot(df['time'], df['avg_last_week'], marker='o', label='Avg Last Week')
    # HighLight anomalies
    anomalies = df[df['anomaly_week']]
    plt.scatter(anomalies['time'], anomalies['today'], color='red', label='Anomaly', zorder=5)
    plt.xlabel('Hour')
    plt.ylabel('Transactions')
    plt.title(title + " (Anomalies Highlighted)")
    plt.legend()
    plt.grid(True)
    plt.show()

plot_anomalies(checkout1_anom, "Checkout 1: Anomalies vs Last Week")
plot_anomalies(checkout2_anom, "Checkout 2: Anomalies vs Last Week")
```


Visual Strategy: Red dots highlight anomalous hours against the baseline trend.

Key Insights:

-> Checkout 1: Clustered positive anomalies during business hours suggest systematic improvement

-> Checkout 2: Mixed pattern of spikes and drops indicates system instability or system failure

```
In [28]: 7. #SQL Query Examples (for reference/documentation)
         from IPython.display import Markdown
         sql_hourly_comparison = """
          -- Compare current hour with previous hour
         SELECT
             time,
             today,
             LAG(today, 1) OVER (ORDER BY time) as prev_hour,
             today - LAG(today, 1) OVER (ORDER BY time) as hourly_change,
             CASE
                 WHEN today > LAG(today, 1) OVER (ORDER BY time) THEN 'INCREASING'
                 WHEN today < LAG(today, 1) OVER (ORDER BY time) THEN 'DECREASING'
                 ELSE 'STABLE'
             END as trend
         FROM checkout 1
         ORDER BY time;
         sql_anomaly_detection = """
         --- Multi-criteria anomaly detection
         SELECT
             time,
             today,
             yesterday,
             avg_last_week,
             avg_last_month,
             CASE
                 WHEN today = 0 AND avg_last_week > 0 THEN 'COMPLETE_DROPOUT'
                 WHEN today < avg last week * 0.5 THEN 'SEVERE DROP'
                 WHEN today > avg_last_week * 2.0 THEN 'SPIKE'
                 WHEN ABS(today - yesterday) > avg_last_week * 0.3 THEN 'UNUSUAL_VARIANCE'
                 ELSE 'NORMAL'
             END as anomaly_type,
             ROUND((today - avg_last_week) / avg_last_week * 100, 2) as pct_change_vs_week
         FROM checkout 1
         WHERE today != avg_last_week
         ORDER BY ABS(today - avg_last_week) DESC; checkout_1;
         display(Markdown("**SQL Example: Hourly Comparison**"))
         display(Markdown(f"```sql\n{sql_hourly_comparison}\n```"))
         display(Markdown("**SQL Example: Anomaly Detection**"))
         display(Markdown(f"```sql\n{sql_anomaly_detection}\n```"))
```

SQL Example: Hourly Comparison

SQL Example: Anomaly Detection

-- Compare current hour with previous hour

```
time,
today,
LAG(today, 1) OVER (ORDER BY time) as prev_hour,
today - LAG(today, 1) OVER (ORDER BY time) as hourly_change,
CASE
WHEN today > LAG(today, 1) OVER (ORDER BY time) THEN 'INCREASING'
WHEN today < LAG(today, 1) OVER (ORDER BY time) THEN 'DECREASING'
ELSE 'STABLE'
END as trend
FROM checkout_1
ORDER BY time;
```

--- Multi-criteria anomaly detection

SELECT

time,

today,

yesterday,

```
avg_last_week,
         avg_last_month,
         CASE
           WHEN today = 0 AND avg_last_week > 0 THEN 'COMPLETE_DROPOUT'
           WHEN today < avg_last_week * 0.5 THEN 'SEVERE_DROP'
           WHEN today > avg_last_week * 2.0 THEN 'SPIKE'
           WHEN ABS(today - yesterday) > avg_last_week * 0.3 THEN 'UNUSUAL_VARIANCE'
           ELSE 'NORMAL'
         END as anomaly_type,
         ROUND((today - avg_last_week) / avg_last_week * 100, 2) as pct_change_vs_week
       FROM checkout_1
       WHERE today != avg_last_week
       ORDER BY ABS(today - avg_last_week) DESC; checkout_1;
In [23]: # Python equivalent of the anomaly detection SQL query
         def detect_anomalies_advanced(df):
             df = df.copy()
             # Calculate anomaly types
             conditions = [
                 (df['today'] == 0) & (df['avg_last_week'] > 0),
                 df['today'] < df['avg_last_week'] * 0.5,</pre>
                 df['today'] > df['avg_last_week'] * 2.0,
                 abs(df['today'] - df['yesterday']) > df['avg_last_week'] * 0.3
             choices = ['COMPLETE_DROPOUT', 'SEVERE_DROP', 'SPIKE', 'UNUSUAL_VARIANCE']
             df['anomaly_type'] = np.select(conditions, choices, default='NORMAL')
             # Calculate percentage change
             df['pct_change_vs_week'] = ((df['today'] - df['avg_last_week']) / df['avg_last_week'] * 100).round
             return df[['time', 'today', 'yesterday', 'avg_last_week', 'avg_last_month', 'anomaly_type', 'pct_c
         # Apply to both datasets
         checkout1_anomalies = detect_anomalies_advanced(checkout1)
         checkout2_anomalies = detect_anomalies_advanced(checkout2)
In [27]: # Visualization: Anomaly Distribution
         def plot_anomaly_distribution(df, title):
             plt.figure(figsize=(12, 8))
             # Create subplots
             fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 10))
             # Plot 1: Anomaly types by hour
             anomaly_counts = df['anomaly_type'].value_counts()
             colors = ['red' if x != 'NORMAL' else 'green' for x in anomaly counts.index]
             ax1.bar(anomaly_counts.index, anomaly_counts.values, color=colors)
             ax1.set_title(f'{title} - Anomaly Types Distribution')
             ax1.set ylabel('Count')
                # Plot 2: Percentage change over time
             normal_data = df[df['anomaly_type'] == 'NORMAL']
             anomaly data = df[df['anomaly type'] != 'NORMAL']
             ax2.scatter(normal_data['time'], normal_data['pct_change_vs_week'],
                          color='green', alpha=0.6, label='Normal')
             ax2.scatter(anomaly_data['time'], anomaly_data['pct_change_vs_week'],
                          color='red', s=100, label='Anomaly')
             ax2.axhline(y=0, color='black', linestyle='--', alpha=0.5)
             ax2.set xlabel('Hour')
```

```
ax2.set_ylabel('Percentage Change vs Last Week (%)')
ax2.set_title(f'{title} - Percentage Change by Hour')
ax2.legend()
ax2.grid(True, alpha=0.3)

plt.tight_layout()
plt.show()

plot_anomaly_distribution(checkout1_anomalies, "Checkout 1")
plot_anomaly_distribution(checkout2_anomalies, "Checkout 2")
```

<Figure size 1200x800 with 0 Axes>

<Figure size 1200x800 with 0 Axes>

Checkout 1 Analysis:

19h

20h

21h 00h

02h

03h

04h

05h

06h

07h

08h

09h

10h

11h 13h 14h 15h

Bar chart:

-100

Percentage Change vs Last Week (%)

- \rightarrow Normal = \sim 10 hours.
- -> High UNUSUAL_VARIANCE and SPIKE counts.
- -> Suggests demand was unstable and spiking.

Scatter Plot:

- -> Steady mid-day % changes but drastic morning drops.
- -> Peaks during 10–17h confirm SPIKE classification.

Checkout_2 Analysis

Bar Chart:

- -> More hours show SPIKE and COMPLETE_DROPOUT.
- -> Consistency problems.

Scatter Plot:

- -> Several hours with 400–500% increase (massive spike)
- -> Multiple hours with -100% (dropout), especially 15h–17h \rightarrow system failure suspected.

```
In [29]: def analyze_trends(df):
    df = df.copy()
```

```
# Calculate Lag values (previous hour)
df['prev_hour'] = df['today'].shift(1)
df['two_hours_ago'] = df['today'].shift(2)
df['hourly_change'] = df['today'] - df['prev_hour']

# Determine trend
df['trend'] = 'STABLE'
df.loc[df['today'] > df['prev_hour'], 'trend'] = 'INCREASING'
df.loc[df['today'] < df['prev_hour'], 'trend'] = 'DECREASING'

return df[['time', 'today', 'prev_hour', 'two_hours_ago', 'hourly_change', 'trend']]

# Apply to both datasets
checkout1_trends = analyze_trends(checkout1)
checkout2_trends = analyze_trends(checkout2)</pre>
```

```
In [31]: # Visualization: Trend Analysis
         def plot_trend_analysis(df, title):
             fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(12, 12))
             # Plot 1: Transaction volume with trend indicators
             colors = {'INCREASING': 'green', 'DECREASING': 'red', 'STABLE': 'blue'}
             for trend in df['trend'].unique():
                 trend_data = df[df['trend'] == trend]
                 ax1.scatter(trend_data['time'], trend_data['today'],
                             color=colors[trend], label=trend, alpha=0.7)
             ax1.plot(df['time'], df['today'], 'k-', alpha=0.3)
             ax1.set_xlabel('Hour')
             ax1.set_ylabel('Transactions')
             ax1.set_title(f'{title} - Transaction Volume with Trends')
             ax1.legend()
             ax1.grid(True, alpha=0.3)
             # Plot 2: Hourly change
             ax2.bar(df['time'], df['hourly_change'],
                      color=['green' if x > 0 else 'red' if x < 0 else 'gray' for x in df['hourly_change']])</pre>
             ax2.axhline(y=0, color='black', linestyle='--', alpha=0.5)
             ax2.set_xlabel('Hour')
             ax2.set_ylabel('Hourly Change')
             ax2.set_title(f'{title} - Hourly Change in Transactions')
             ax2.grid(True, alpha=0.3)
             # Plot 3: Trend distribution
             trend_counts = df['trend'].value_counts()
             ax3.pie(trend_counts.values, labels=trend_counts.index, autopct='%1.1f%%',
                      colors=[colors[x] for x in trend_counts.index])
             ax3.set_title(f'{title} - Trend Distribution')
             plt.tight_layout()
             plt.show()
         plot_trend_analysis(checkout1_trends, "Checkout 1")
```


Checkout 1: Trend Analysis

Plot 1:

- -> Night hours (00h–06h) show low and STABLE or slightly DECREASING trends.
- -> Massive rise after 10h sudden jump to 55 transactions.
- -> This sharp transition shows surging activity, likely a planned campaign, external trigger, or customer behavior spike.

Plot 2: Hourly Change

- -> 10h shows the largest positive jump (over +40 transactions in one hour!).
- -> But 16h–23h sees a string of negative bars = sales are dropping hourly.
- -> Suggests end-of-day slump or possible system fatigue (infra slowing down?).

Plot 3: Trend Distribution

- -> 50% of hours are DECREASING.
- -> Only ~37.5% are INCREASING.
- -> Few hours are STABLE.

→ This volatile pattern signals poor retention of peak hours — sales spike fast, but can't sustain.

Checkout 2 - Trend Distribution

Checkout 2: Trend Analysis

Plot 1:

- -> (00h–06h) = low volume, mostly STABLE.
- -> Sustained INCREASE from 06h to 13h strong growth momentum.
- -> But post-13h, trend sinks again into sharp decline.

Plot 2: Hourly Change

- -> 08h–11h show strong positive growth.
- -> 14h–17h have deep negative drops, especially 15h (-20+)

Plot 3: Trend Distribution

- -> 50% of hours are INCREASING = stronger than Checkout 1!
- -> DECREASING share is slightly smaller.

Shows better morning-to-afternoon sales ramp-up than Checkout 1

```
In [16]: # Percentage change of 'today' vs. avg_last_week and avg_last_month
         def plot_percentage_change(df, title):
             df = df.copy()
             df['pct change week'] = 100 * (df['today'] - df['avg last week']) / df['avg last week']
             df['pct_change_month'] = 100 * (df['today'] - df['avg_last_month']) / df['avg_last_month']
             plt.figure(figsize=(12,6))
             plt.plot(df['time'], df['pct_change_week'], marker='o', label='% Change vs Avg Last Week')
             plt.plot(df['time'], df['pct_change_month'], marker='o', label='% Change vs Avg Last Month')
             plt.axhline(0, color='gray', linestyle='--')
             plt.xlabel('Hour')
             plt.ylabel('Percentage Change (%)')
             plt.title(title + " - Today's % Change vs Historical")
             plt.legend()
             plt.grid(True)
             plt.show()
         plot_percentage_change(checkout1, "Checkout 1")
         plot_percentage_change(checkout2, "Checkout 2")
```


Checkout 1 Performance:

-> Peak deviations: +200-250% during low-volume hours (less concerning due to small absolute numbers) -> +50-100% increases (significant positive impact)

Checkout 2 Extreme Variations:

-> +500-600% increases (system anomalies) -> -100% drops (service outages)

```
In [17]: def plot_boxplots(df, title):
    plt.figure(figsize=(10,6))
    sns.boxplot(data=df.drop(columns=['time']))
    plt.title(title + " - Distribution of Transaction Counts")
    plt.ylabel('Transactions')
    plt.show()

plot_boxplots(checkout1, "Checkout 1")
    plot_boxplots(checkout2, "Checkout 2")
```

Checkout 1 - Distribution of Transaction Counts

Checkout 2 - Distribution of Transaction Counts

Used this to Understand the spread, central tendency, and outliers in transaction patterns.

Checkout 1 Distribution:

- -> Similar distributions across all time periods
- -> Few extreme values within expected ranges
- -> Predictable variance patterns

Checkout 2 Distribution:

- -> More unpredictable transaction patterns
- -> Lower performance: Today's median below historical averages
- -> System concerns: Irregular distribution patterns

```
In [19]:
    def plot_abs_diff(df, title):
        df = df.copy()
        df['abs_diff_week'] = (df['today'] - df['avg_last_week']).abs()
        df['abs_diff_month'] = (df['today'] - df['avg_last_month']).abs()
        plt.figure(figsize=(12,6))
        plt.bar(df['time'], df['abs_diff_week'], alpha=0.7, label='|Today - Avg_Last_Week|')
        plt.bar(df['time'], df['abs_diff_month'], alpha=0.7, label='|Today - Avg_Last_Month|', bottom=df['
        plt.xlabel('Hour')
        plt.ylabel('Absolute_Difference')
        plt.title(title + " - Absolute_Difference from Historical")
        plt.legend()
        plt.show()

plot_abs_diff(checkout1, "Checkout 1")
        plot_abs_diff(checkout2, "Checkout 2")
```


Checkout 2 - Absolute Difference from Historical

| Today - Avg Last Week| | Today - Avg Last Month|
| Today - Avg Last Mo

Hour

Used this to Quantify the actual business impact of deviations regardless of percentage changes.

Checkout 1: Consistent 10-30 transaction differences during peak hours (manageable)

Checkout 2: Extreme 40-50 transaction differences (significant business impact)

INSIGHTS

Checkout 1

- -> Consistent positive anomalies during business hours
- -> Predictable patterns with manageable variance
- -> Strong correlation between historical and current performance

Checkout 2

-> Service disruptions during peak revenue hours (15h-17h)

-> Erratic performance patterns indicating technical problems

- -> Disconnected from historical performance patterns
- -> Requires immediate technical intervention and investigation

RECOMMENDATIONS

- -> Investigate Checkout 2's complete service failure (15h-17h)
- -> Examine Checkout 2's system stability issues
- -> Study Checkout 1's success factors for system-wide implementation
- -> Predictive Analytics: Use historical patterns to forecast expected ranges