Assignment Project Exam Help Vectorization

https://powcoder.com

BTRY/STSCI 4520

Add WeChat powcoder

On Computational Cost

- One of the key concerns of odmputer science how long does it take to run this?
- For small inputs, usually not too long; important question is too long; important question is too long; important question is
- Relevant to data size: I can produce an answer for a data set of size 100, but how long will data of size 100,000 take?
- And a culted the employer power of the provided and the control of the control

Example: The sort Problem

One of the classic problems in computer science.

Assignment Pirogett Exam Help

$$x_1 \leq x_2 \leq \cdots \leq x_n$$

- https://powcoder.com
- How does computing time change as *n* increases?

- Multiple ways to the chat powcoder selection of the chat powcoder
 - Insertion Sort
 - Bubble Sort
 - Quick Sort

and others - how you do this makes a difference!

A First Problem – Finding the Minimum

Suppose that we just want $min(x_1, \ldots, x_n)$.

```
Signment Project Exam Help
        foundmin = FALSE # Have we found the minimum?
        while the property power of the property pow
                    ismin = TRUE
                                                                                                                                                                       # Assume x[i] is the minimum
                    for(j in 1:length(x)){  # Check against all others
                    Add WeChat powcoder
                    # If nothing is less than x[i] it must be what we want.
                    if(ismin){ foundmin=TRUE }
        return(x[i])
```

An Analysis of Computing Time

Assignment Project Exam Help

- If x[1] is the minimum, stop; n comparisons.
- the minimum we have mide n* n comparisons get the DOW COGET. COM
- What about somewhere in the middle?

Advocoment half way, we consider n/2 entries, so make now is the power of the power

■ If we think about x being randomly arranged, we expect to have to look at a number of entries *proportional* to n.

A bit complicated; how do we simplify this?

Order Notation

Assignment 1 takes 3 n³ - 6 n + 2 operations and Help

- If *n* is large enough $3n^3 6n + 2 \gg 4n^2 + 3$, so Algorithm 1 will take more time for a big problem.
- Infer in their expressions; we can forget the -6n + 2 and +3.
- In fact, the 3 and 4 den't matter either: $an^3 + bn^2 + cn + d$ will always be dominated by 3 to 1 for any 3, b, C and C I
- We say that $an^3 + bn^2 + cn + d$ is $O(n^3)$.
- For the minimum search above, our algorithm requires $O(n^2)$ comparisons.

Technicalities

- "Big-O" notation:
- f(x) = O(g(x)) if |f(x)| < M|g(x)| for all x large enough and $\frac{\text{https://powcoder.com}}{\text{So that } |n(n-1)|^2| < 3|n^2| \text{ for all } n. }$
- We also have little-o notation (will come up later)
- le, Big-O means "bounded by", little-o means "much less than".

General Rules

Most expressions in terms of x^{α} , e^{x} , $\log(x)$

Assignment $P_{roject}^{\text{then for } \times \text{ large enough}}$ Help

hulf there is an exponential, take the largest one one the largest are the largest one of the largest one of

- Adding expressions doesn't change order, multiplying them does.
- If AddoW & Color $|x^{\alpha_1}| < |x^{\alpha_2}|$

expression dominated by the smallest power of x.

Note $e^x \to 1$, $|\log(x)| \to \infty$; even larger than powers if these appear.

A More Efficient Search

 $O(n^2)$ is pretty bad, can we make this better? Keep track of the

```
Assignment Project Exam Help
```

```
min = x[1] # Start at x[1]
 fohttps://powcoder.com
   if(x[i] < min)
    min = x[i] # Update minimum if x[i] is
  Add WeChat powcoder
 return(list(min=min,min.i=min.i))
Only does n-1=O(n) comparisons.
```

Selection Sort

Now that we can find the minimum easily. Sort by continually finding the minimum:

```
ssignment.Project Exam Help
          # Store the sorted vector
  ind = 0*x # Also store the indeces of sorted elements
     ttps://powcoder.com
   cur.min = FindMin2(x) # Find and record the current
       x = x[-cur.min\$min.i] # Delete that entry from x.
                     # Fix last element.
  y[n] = x
  return( list(y = y,ind = ind) )
```

Analyzing Selection Sort

Assignment of the minimum in x-1 entries, to find the minimum in x-1 entries to find the x-1 entries to find the minimum in x-1 entries to find the minimum

- Next iteration, x now length n-1, so we have n-2
- comparisons to do.

 attps://powcoder.com

Add
$$W^{(n-k)} = \frac{1}{2}n(n-1) = O(n^2)$$
comparisons.

comparisons.

So if my data is 10 times as long, I have to put in 100 times the effort to sort it.

Insertion Sort

No R code this time:

Assignment Project Exams Help

After k steps:

so that $y_j \leq x_1 \leq y_{j+1}$.

- Manager new to employ a to the terrents of the stop at first such that $y_i > x_1$
- Configuration of x changes number of comparison (what's fastest?)
- Tends to be faster than Selection Sort; but still generally $O(n^2)$.

Bubble Sort

Assignment. Project. Exam. Help swap entries

Repeat

- https://powcoder.com
 - If x[i] > x[i+1], swap them.

until x is sorted (and you make no more swaps).
Still A20 x rcive was stants powcoder

Tends to be slow; speed generally more an issue than memory.

Quick Sort

- Those less than x[1]; call this a
- Those greater than x[1]; call this b
- https://powcoder.com
- But why can't we do the same thing to sort a and b?
 - Split a and produce c(d,a[1],e)
- Add WeChatepowscoder
- Nice Wikipedia animation.
- But how are we going to set this scheme up?

Graphically

Divide and conquer:


```
Recursive Programming
    It's ok to have a function call itself!
    QuickSort = function(x){
Assignment Project Exam Help
      lower = c() # Empty vectors for those less than
      upper = c() #/9r greater than x[1] https://powcoder.com
      for(i in 2:length(x)){
       if(x[i] \le x[1]) \{ lower = c(lower, x[i]) \}
      Add We Chat powcoder
```

```
lower = QuickSort(lower) # Now sort each of these
upper = QuickSort(upper) # and put them back together
return( c(lower,x[1],upper) )
```

40 + 48 + 43 + 43 +

Graphically

Strategy goes left to right:

Analyzing QuickSort

for a total of O(n)

Suppose that we (luckly!) exactly partition the data set in 2 each time.

Assignmente Project nsExam Help Assignment nsExam Help Assignment nsExam Assignment nsExam Help nsExam

- At the third level process our lots of the third level process of the thi
- So every level has O(n) comparisons, but if there are $n=2^k$ objects, there are $k = \log(n)/\log(2)$ levels.
- That nais the total cost and power of the property of the power of the
- Worse case: x already sorted, then we still have $O(n^2)$.
- Start by randomly permuting x: expected cost is still $O(n \log n)$.

To iterate is human, to recurse divine! - L. Peter Deutsch

Graphically

At each level, divide the data by 2, but twice as many nodes; but $log_2(n)$ levels.

Why Should Statisticians Care?

n usually = size of data set

- - feasible at n = 10,000.
 - But shouldn't Moore's law take care of that for us? (Moore's In tompsting specific DIMPIS OF Broth)
 - Equivalent rate of growth of data (recent developments: web-commerce, social networking, brain imaging, satellite images and ranole sensing high-thruput genetic screens, astronomical surveys, eitizen selenge,...)
 - Each now produces either millions of records, or hundreds of thousands of variables, or both.
 - Historically: data sets grow as fast as computing speed.
 - Lesson: if it isn't O(n), in the long-run it will be too slow. (but note the long run can be some time away)

P and NP

■ Much of the topic of *algorithms* in CS devoted to

Assignment character Exam Help

- Important distinction between polynomial-time algorithms $O(n^k)$ for some k) and exponential run time algorithms $O(n^k)$ some $O(n^k)$ $O(n^k)$
- Exponential algorithms become infeasible much faster than polynomial time algorithms.
- PAble of the set of problems that can be solved in
 - P The set of problems that can be solved in polynomial time.
 - NP The set of problems for which a solution can be verified in polynomial time (eg: is this vector sorted?)

Example and a Question

Assignment Project Exam Help

- We are given distances between each city.
- There a route through all cities for which the total distance is less than some hamber D. COTET. COTT

A solution is easy to check; but finding out if there is one is hard!

Questandd We Chat powcoder Clearly anything in P is in NP, but what about the other way around?

One of the great unsolved problems of mathematics.

NP Hard

Formally, NP Hard is defined in terms of reducing NP problems to NP Hard problems (eg. you can find the minimum with a sort Sedigmum at Mauld belonger Exam Help

Sometimes informally used to describe problems where you can't even check a solution in polynomial time.

Statility Sind powender.com

- Linear regression: $y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ik} + \epsilon_i$
- But only some of the covariates x_i are important which substitutes the distant powcoder
- 2^k possible subsets to check increases exponentially in k.

$$2^{30} = 1,073,741,824$$

Require approximate solutions, often heuristic.

Some Caveats

- $1,000,000 n > 0.1 n^2$ if n < 1,000: constants can matter.
- Tyqueknow that/n is not going to grow, you care much less about the erder of computational complexity.
- You also care about readable understandable code. Recursion, like the divine, can be pretty ineffable.
- Madche Minte Contait in sprovince Ger operation and the context make a difference, too.

Other Speed Considerations

Assign meant: Projectish xkann time elp take more time than assignment.

- * Assigning blocks of memory is much faster than concatenating veetors together. POW COGET. COM
- If R stores memory in RAM; if it runs out, it creates virtual
- RAM on your hard disk this runs much slower.

 Small dunt of nenory Middle CDO Wn Get Cley fold school).
- Programming language also matters.

Compiled versus Interpreted Code

Most important distinction to be aware of.

Assignment Project Exam Help

- Task scheduling.
- Memory allocation.

hese per coded in bits. WCOCE COM

- Compiled code (C, C++, Fortran, COBOL, ALGOL,...) is translated into a string of bit instructions that work directly with the OS, velocities of stex color to the color of the
- Interpreted code (R, Matlab, Java, Perl, Python,...) is translated into OS instructions as the program runs.
- Because of overhead in translating, interpreted code is much slower than compiled code.

Compiled versus Interpreted Code

why interpreted the? Project Exam Help Relation independent (if you have the right interpreter): R

- works on Windows, Mac, Linux,...
- Saves the annovance of compiling; dealing with compile errors.

 More epily debuggable. WCOGET.COM
- Fewer hassles (no memory allocation, ease of changing array

sizes and types...)
Manyandad Myuccihatg powcoderode to be used to evaluate "chunks" of instructions much faster.

Many R built-in functions are pre-compiled.

Measuring Speed in R

AssisenmentiProjectseExam Help

- system.time reports the time it takes to evaluate some code.
 intto Sgives proswitched tan Geost for the same thing.

a = c() # vector of no length system told for the length poweoder

You can put a number of lines of code inside the call to system.time if you put everything inside { }.

```
proc.time
```

```
nsim = 25000; n = 30; p = 0.07; mu = (1-p)/p
res https://powcoder.com
for(i in 1:nsim){
   X = rnbinom(n, 1, p)
   Add tweethat poweoder
proc.time()-start # time elapsed
Which I find easier to put down directly
```

```
proc.time()
```

Assignment Project Exam Help

148.16 8.75 1659.96

- 13- 15- 15 System 10 Sys
- Difference between the two is subtle and unimportant: how much time spectron user instructions versus executing CPU functions.
- elapsed is clock time; can vary depending on other processes running.

R and Vectorization

R has compiled functions built in for vector/matrix operations

Assignment tiple of the Element wise multiplication and addition and other built-in

 Element-wise multiplication and addition and other built-in functions for vectors/matrices/arrays.

These parters be wip to the corp faster if used explicitly.

```
x = rnorm(100000)
```

star Add til eChat powcoder

```
m = x[1]
for(i in 2:length(x)){ m = ((i-1)/i)*m + x[i]/i }
proc.time()-start
```

```
system.time( \{m2 = mean(x)\} )
```

Making Use of Vectorization

Assignment Project Exam Help Eg: never loop through a vector if you are just doing arithmetical

Eg: never loop through a vector if you are just doing arithmetical operations to its entries.

comhttps://powcoder.com

- **+**, -, *, /, ′
- sqrt, log, exp, dnorm, ...

Vector Add de ti We Chat powcoder

■ mean, sum, var, sd, cumsum, diff, ...

Matrix-vector operations:

■ t, %*%, %x%, diag, solve

Vectorization and Linear Algebra

Linear algebra often helps: taking column means of a matrix

Assignment Project Exam Help

for(i in 1:ncol(X)){ ms[i] = mean(X[,i]) }

Alternation: Alternation Alter

Add
$$W_{e_{n} \sum_{i=1}^{n} x_{ip}}^{\frac{1}{2} \sum_{i=1}^{n} x_{ip}}$$

In code:

```
ms2 = rep(1/nrow(X), nrow(X))%*%X
```

But remember: clarity vs efficiency trade-off!

apply Functions

apply allows you to apply a function to the rows or columns of a matrix

Assignment Project Exam Help

- X the matrix to which we're applying something
- https://poweriscomolumn
- mean function to apply; must take a vector as input

Not actually any faster than a for loop; just saves typing.

The control of the c

lapply/sapply applies to each element in a list (eg vectors of different lengths), differ in output format.

Summary

■ The way a task is computed can have a big impact on ...

Assignments Project, Exam Help not always).

- Scaling measured in "big-O" notation; handy short-hand for the tip survey of WCOCET.COM
- Recursion: functions calling themselves is frequently both elegant and efficient.
- BAnder We Calinat poweroder

 Output

 Description:

 BAnder We Calinat poweroder

 Output

 Description:

 Descrip
- In R, vectorization can have a dramatic impact on computational efficiency; most important thing to think about.
- Both complexity and vectorization can cost code readability requires a balance, and good commenting.