TD7 STRUCTURES ALGÉBRIQUES POUR L'INFORMATIQUE

Exercice 1.

1.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$

- 2. (19)(28)(37)(46).
- 3. (19)(28)(37)(46)

Exercice 2.

1. $card(S_n) = n!$.

2.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 2 & 1 & 5 & 3 \end{pmatrix}$$

3.

$$(1\ 3\ 5\ 2\ 4)$$
 $(1\ 7\ 5\ 3)(2\ 6\ 4)$ $(1\ 6)(3\ 5\ 8\ 4\ 7)$

Exercice 3 . Soit α un cycle de longueur r.

1.

$$\alpha = (4\ 5\ 1\ 2\ 3)$$
 $\alpha^2 = (4\ 1\ 3\ 5\ 2)$ $\alpha^3 = (4\ 2\ 5\ 3\ 1)$ $\alpha^4 = (4\ 3\ 2\ 1\ 5)$ $\alpha^5 = id$.

$$\langle \alpha \rangle = \{\alpha, \alpha^2, \alpha^3, \alpha^4, id\}$$
 et $ordre(\alpha) = 5$

2. Découle de la définition d'un cycle $\alpha = (i_1 \ i_2 \ \dots \ i_r)$ de longueur r:

$$\alpha(i_1) = i_2 \quad \alpha^2(i_1) = \alpha(\alpha(i_1)) = i_3 \quad \dots \quad \alpha^{r-1}(i_1) = i_r \text{ et } \alpha^r(i_1) = \alpha(\alpha^{r-1}(i_1)) = \alpha(i_r) = i_1$$

Plus généralement, pour $1 \le j \le r$, en notant $a \mod b$ le reste de la division de a par b, on a :

$$\alpha(i_j) = i_{j+1} \quad \alpha^k(i_j) = i_{j+(k \mod r)}$$
 et on a: $\alpha^r(i_j) = i_j$.

3. Pour $1 \le k \le r-1$, on a $k \mod r = k$. On a en particulier $\alpha^k(i_1) = i_{1+(k \mod r)} \in \{i_2, \dots i_r\}$, et $\alpha^k(i_1) \ne i_1$, donc $\alpha^k \ne id$.

4.

$$\langle \alpha \rangle = \{\alpha, \alpha^2, \dots, \alpha^{r-1}, id\}$$
 et $ordre(\alpha) = r$

Exercice 4.

K est bien non vide. Faire la table de multiplication de de K et vérifier que K est stable:

	id	f_1	f_2	f_3
id	id	f_1	f_2	f_3
f_1	f_1	id	f_3	f_2
f_2	f_2	f_3	id	f_1
f_3	f_3	f_2	f_1	id

On peut vérifier l'existence d'un élément symétrique pour chaque élément de K à l'aide de la table ou observer que comme K est fini, sa stabilité entraı̂ne l'existence d'un élément symétrique pour tout

élément de K: Tout élément x de K est alors d'ordre fini, disons r, et on a $x^r = x$ $x^{r-1} = x$ $x^{r-1} = 1$. Donc $x^{-1} = x^{r-1}$ qui, par la stabilité de K, est dans K.

On pourra remarquer que les élément différents de id, c'est à dire f_1, f_2 et f_3 sont d'ordre 2 (on a donc $f_i^{-1} = f_i$).

$$\langle K' \rangle = K$$
, car $f_2 f_1 = f_3$, donc $\{ \mathrm{Id}, f_1, f_2, f_3 \} \subset \langle K' \rangle$ et on sait que $K \leq S_4$.

EXERCICE 5. Fait dans les notes de cours

Exercice 6.

1.

$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix} \right\}$$

Ce n'est pas un sous-groupe (il ne contient pas l'identité)

2.

$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix} \right\}$$

C'est un sous-groupe isomorphe à S_3 : dans l'écriture des permutations précédentes si on supprime les deuxièmes colonnes, puis on renomme systématiquement les 1, 3, 4 par des 1, 2, 3, on retrouve exactement S_3 . La table de multiplication des six éléments précédents a, à un renommage près, exactement la même forme que la table de multiplication de S_3 .

3.

$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} \right\}$$

Ce n'est pas un sous-groupe (il ne contient pas l'identité)