SciPy Discrete Distribution Matrix

Distribution	Syntax Tips	MEAN	VAR	PMF	CDF
Bernoulli	p is the probabilityk is the event	p	p(1-p)	1-p for $k=0$ p for $k=1$	0 for $k=0$ $1-p$ for $0 \leq k < 1$ 1 for $k \geq 1$
<pre>bern_dist = scs.bernoulli(p=0.5) bern_sample = scs.bernoulli.rvs(p=0.5, loc=0, size=100)</pre>		bern_dist.mean()	bern_dist.var()	bern_dist.pmf(k=1)	bern_dist.cdf(x=0.75)
Binomial	 p is the probability n is the total number of events k is the # of successful events 	np	np(1-p)	$\tbinom{n}{k}p^k(1-p)^{n-k}$	$(n-k)inom{n}{k}\int_0^{1-p}t^{n-k-1}(1-t)^k\mathrm{d}t$
<pre>binom_dist = scs.binom(n=50, p=0.5) binom_dist_sample = scs.binom.rvs(n=50, p=0.5, loc=0, size=20)</pre>		binom_dist.mean()	binom_dist.var()	binom_dist.pmf(k=25)	binom_dist.cdf(x=25)
Poisson	mu is λ loc is typically 0	λ	λ	$rac{\lambda^k e^{-\lambda}}{k!}$	$e^{-\lambda}\sum_{k=0}^{\infty}rac{\lambda^i}{i!}$
<pre>pois_dist = scs.poisson(mu=3, loc=0) pois_sample = scs.poisson.rvs(mu=3, loc=0, size=20)</pre>		pois_dist.mean()	pois_dist.var()	pois_dist.pmf(k=2)	pois_dist.cdf(x=2)
Geometric	k is the # of trials until the first success loc is 1 for this these equations	1/p	$\frac{1-p}{p^2}$	$(1-p)^{k-1}p$	$1-(1-p)^k$
<pre>geom_dist = scs.geom(p=0.25, loc=0) geom_sample = scs.geom.rvs(p=0.25, loc=0, size=20)</pre>		geom_dist.mean()	geom_dist.var()	<pre>geom_dist.pmf(k=4)</pre>	<pre>geom_dist.cdf(x=4)</pre>

References

Mathematical equations are copied from Wikipedia.