Structure-Zoo

Inhaltsverzeichnis

1	Topological spaces		
	1.1	Euclidean space	
	1.2	Compact Euclidean spaces	
	1.3	Euclidean space	
	1.4	Co-finite topology	
	1.5	Co-countable topology	
	1.6	Discrete topology	
	1.7	Indiscrete topology	
	1.8	Order topology	
		1.8.1 Order topology $\aleph_1 + 1 \ldots \ldots \ldots \ldots \ldots$	
		1.8.2 Order topology \mathbb{Q}	
		1.8.3 Order topology $\aleph_{\alpha} \times \mathbb{R}$ (lexiographic order)	
	1.9	Infinite-dimensional hypercubes	
	1.10	Sorgenfrey topology	
	1.11	The co-less-continuum topology	
	1.12	Axiomatization topology	

1 Topological spaces

1.1 Euclidean space

Definition	$ig \; (\mathbb{R}^n, au_{\mathrm{Eucl}})$
type	Normed space via $\ \cdot\ _2$
separation	T4
compact	no, $(ne_1)_{n\in\mathbb{N}}$ has no convergent subnet
Baire	yes, as completly metrizable
connected	connected
countability	second countable via $\{B_q(r) \mid q, r \in \mathbb{Q}, q > 0\}$; separable

Note that this is homeomorphic to each open ball.

1.2 Compact Euclidean spaces

1.3 Euclidean space

Definition	$\left \; ([0,1]^n, \tau_{\mathrm{Eucl}} \right _{[0,1]^n})$
type	Normed space via $\ \cdot\ _2$
separation	T4
compact	yes, by Heine-Borel
Baire	yes, as completly metrizable
connected	connected
countability	second countable; separable (see 1.1)

1.4 Co-finite topology

Let X be infinite.

Definition	$(X, \tau_{\text{co-finite}} := \{U \subseteq X \mid \text{card}(U^c) < \aleph_0\} \cup \emptyset)$
type	not metric, as not Hausdorff
separation	T1, as there are no disjoint open sets except \emptyset
compact	yes, as a chain of finite sets contains a smallest element
Baire	iff X is uncountable
connected	connected, as there are no disjoint, open, nonempty sets
countability	separable; if X is uncountable then not first countable

Note that each sequence converges to each point. If X is uncountable, the intersection of countably many open sets is co-countable, so nonempty (this proves the non-first-countability).

Also, each infinite set is dense. If X is countable, therefore all $\{x\}^c$ are open dense but have empty intersection. On the other hand, if X is uncountable, the intersection of countably many nonempty open sets has at most countable complement, so is dense.

1.5 Co-countable topology

Let X be uncountable.

Definition	$(X, \tau_{\text{co-countable}} := \{U \subseteq X \mid \text{card}(U^c) \le \aleph_0\} \cup \emptyset)$
type	not metric, as not Hausdorff
separation	T1, as there are no disjoint open sets except \emptyset
compact	no, as $(\{n, n+1,\})_{n \in \mathbb{N}}$ are closed, nonempty with empty intersection
Baire	yes
connected	connected, as there are no disjoint, open, nonempty sets
countability	not separable; not first countable (see 1.4)

The intersection of countably many nonempty open sets has countable complement, so is open and dense.

1.6 Discrete topology

Let X be a set of at least two elements.

Definition	$(X,2^X)$
type	metric by $d(x,y) = 1$ if $x \neq y$
separation	T4
compact	iff X is finite
Baire	yes, as the only dense set is X
connected	totally disconnected
countability	first countable; not separable resp. second countable if X is infinite

1.7 Indiscrete topology

Let X be a set of at least two elements.

Definition	$(X, \{\emptyset, X\})$
type	not metric, as not Hausdorff
separation	none
compact	yes
Baire	yes, as the only open, dense set is X
connected	connected, as there are no disjoint, open, nonempty sets
countability	second countable; separable

1.8 Order topology

Let (X, \leq) be a totally ordered set.

Definition	$(X, \tau_{\text{Ord}} \text{ generated by } X_{\leq x} \text{ and } X_{\geq x} \text{ for each } x \in X$
type	in general not metric, as not first countable
separation	T4
compact	iff \leq is order complete (i.e. sup and inf exist for all subsets)
Baire	not in general, see \mathbb{Q}
connected	iff (X, \leq) is dense and conditionally order complete
countability	in general neither separable nor first countable, see e.g. $\aleph_1 + 1$

For $x \notin C$ and $C \subseteq X$ closed have $x \in]y,z[$ and]y,z[disjoint to C by closedness of C. Then one easily sees that x can be separated from C by distinguishing the cases y < u < x or $[y,x[=\emptyset]$ and similarly for z (this shows T3).

For T4 see math SE.

For the characterizations of compactness and connectedness see topology exercise sheets.

1.8.1 Order topology \aleph_1+1

Definition	$\mid (\aleph_1 + 1, au_{\mathrm{Ord}} \mid$
type	not metric, as not first countable
separation	T4
compact	yes, as order complete
Baire	yes, as compact Hausdorff space
connected	not connected, as \leq not dense
countability	not first countable (\aleph_1 has no countable neighborhood basis), not se-
	parable (countable union of countable sets is countable)

1.8.2 Order topology $\mathbb Q$

Definition	$(\mathbb{Q}, au_{\mathrm{Ord}}$
type	metric, as subspace topology of $\tau_{\rm Eucl}$
separation	T4
compact	no, as not Baire
Baire	no, as there is no open singleton and \mathbb{Q} is countable
connected	totally disconnected, as $\mathbb{R} \setminus \mathbb{Q}$ dense in \mathbb{R}
countability	second countable, as \mathbb{Q} is countable

This is equal to the euclidean subspace topology on $\mathbb Q$

1.8.3 Order topology $\aleph_{\alpha} \times \mathbb{R}$ (lexiographic order)

Definition	$(\operatorname{card}(2^{\mathbb{R}}) \times \mathbb{R}, au_{\operatorname{Ord}})$
type	metric, via $d((\mu, x), (\mu, y)) = \frac{d(x,y)}{1+d(x,y)}$ and $d(u,v) = 1$ otherwise
separation	T4
compact	no, as \mathbb{R} is not compact
Baire	yes because it is metric and complete
connected	not connected, as (X, \leq) not conditionally order complete, e.g. $\{0\} \times \mathbb{R}$
	has no supremum
countability	first countable (for (μ, x) take $(\mu,]x - \frac{1}{n}, x + \frac{1}{n}[)$); second countable and
	separable iff α is countable

1.9 Infinite-dimensional hypercubes

Let α be a ordinal.

Definition	$\left ([0,1]^{\aleph_{\alpha}}, \tau) \text{ with product topology } \tau \text{ of } \tau_{\text{Eucl}} \right _{[0,1]}$
type	metric iff $\alpha = 0$, so α_{α} is countable (with $d(x,y) = \sum_{n} 2^{-n} x_n - y_n $)
separation	T4
compact	yes by Tychonoffs theorem
Baire	yes, as compact Hausdorff space
connected	connected
countability	first countable iff $\alpha = 0$; In this case, also second countable (see e.g.
	exercise problem 33); Separable iff $\aleph_{\alpha} \leq \operatorname{card}(\mathbb{R})$.

To prove non-first-countability for $\alpha > 0$ use that the sets $]\frac{1}{3}, \frac{2}{3}[\times \prod_{\xi \neq \chi}[0, 1]]$ are open and that the intersection of countably many open sets contains $\prod_{\xi \in A} S_{\xi} \times \prod_{\xi \notin A}[0, 1]$ for a countable A and any $S_{\xi} \subseteq [0, 1]$.

For the T4 property, consider $C_0, C_1 \subseteq [0,1]^{\aleph_{\alpha}}$ closed. Then as above $C_i \subseteq A_i \times \prod_{\alpha \notin \mathcal{F}_i} [0,1]$ for \mathcal{F}_i finite. Therefore, separating C_0, C_1 at the coordinates $\mathcal{F}_0 \cup \mathcal{F}_1$ is sufficient (this is possible, as the set is finite).

For separability see some blog.

By Urysohn's Lemma, each compact T4 space is homeomorphic to a subspace of $[0,1]^{\kappa}$, where κ is a big enough cardinal number. It suffices to take $\kappa = \operatorname{card}(X^2)$, but it even suffices if there is a base of cardinality κ . Note that because of this, every second countable compact T4 space is metrizable.

For connectedness, assume there was non-constant $\phi:[0,1]^{\aleph_{\alpha}} \to \{0,1\}$ with $\phi(x) \neq \phi(y)$. Consider the net $((z_{\beta,\gamma})_{\beta})_{\gamma}$ with $z_{\beta,\gamma} = x_{\beta}$ if $\beta \leq \gamma$ and $z_{\beta,\gamma} = y_{\beta}$ otherwise. By transfinite induction, it is easy to see that $\phi(x) = \phi(z_{\gamma})$ for each γ (in the limit ordinal case, use that the net up to now converges and $\phi^{-1}(\{\phi(x)\})$ is closed). This yields a contradiction as $\phi(x) = \phi(z_{\aleph_{\alpha}}) = \phi(y)$.

1.10 Sorgenfrey topology

Definition	$(\mathbb{R}, au_{\mathrm{Sorg}})$ where $ au_{\mathrm{Sorg}}$ is generated by $[a, b[$
type	not metric, as separable but not first countable
separation	T4
compact	no, even the subspace $[0,1]$ is not compact, as the cover $[1,2]$ and
	$\left[1-\frac{1}{n},1-\frac{1}{n+1}\right]$ has no finite subcover
Baire	yes
connected	totally disconnected
countability	first countable, separable; not second countable

Note that the Sorgenfrey is not connected. Assume there is a countable basis. Then there is some x such that x is not the infimum of any basis set. Then there is no basis set B with $x \in B \subseteq [x, x + \epsilon]$.

To see that it is a Baire space, consider $(U_n)_{n\in\mathbb{N}}$ open, dense and construct decreasing $[x_n, x_n + \epsilon_n[$ in $U_n \cap N$ for some open N. Then the x_n have a supremum x, and it is in $\bigcap_{n\in\mathbb{N}} U_n$.

1.11 The co-less-continuum topology

Let X be a set with $card(X) \ge card(\mathbb{R})$.

Definition	$(X, \tau = \{U \subseteq X \mid \operatorname{card}(U^c) < \operatorname{card}(\mathbb{R})\}) \cup \{\emptyset\}$
type	not metric, as not Hausdorff
separation	T1
compact	no
Baire	no
connected	connected, as there are no disjoint, open, nonempty sets
countability	not separable; not first countable

Note that the quotient topology of the euclidean space with the following, evil equivalence relation is of this form: Let $x \sim y : \Leftrightarrow x = y \lor x = x_{\xi}, y = y_{\xi}$ and $(x_{\xi})_{\xi}, (y_{\xi})_{\xi}$ are all distinct and constructed by transfinite induction such that for every $U \subseteq \mathbb{R}, U^{\circ} \neq \emptyset$, $\operatorname{card}(U) = \operatorname{card}(\mathbb{R})$ have ξ with $x_{\xi} \in U, y_{\xi} \notin U$ (using a countable basis of τ_{Eucl}). This is the case, since for all preimages $U \subseteq \mathbb{R}$ under the projection, have that if U is open, it is empty or its complement is of cardinality $< \operatorname{card}(\mathbb{R})$ (otherwise, it would contain x_{ξ} but not y_{ξ} , a contradiction to being a preimage).

Assuming the continuum hypothesis, this is the co-countable topology 1.5. In any case, its properties can be shown exactly the same way.

1.12 Axiomatization topology

Let \mathcal{L} be a formal language and $X(\mathcal{L})$ a representant system of all \mathcal{L} -structures modulo \equiv (elementary equivalence). Assume $\kappa(\mathcal{L}) = \aleph_0$.

Definition	Consider a topology on $X(\mathcal{L})$ where a set is closed iff it is axiomatizable
	by some $\Sigma \subseteq \operatorname{Sen}(\mathcal{L})$
type	metric (? iff $\kappa(\mathcal{L}) = \aleph_0$?)
separation	T4
compact	yes, by the compactness theorem
Baire	yes
connected	not connected, as $W(\gamma)$ and $W(\neg \gamma)$ is a disjoint, open, nontrivial cover
	of $X(\mathcal{L})$ for a suitable $\gamma \in \text{Sen}(\mathcal{L})$
countability	second countable, separable (? iff $\kappa(\mathcal{L}) = \aleph_0$?)

Denote by $W(\Sigma) \subseteq X(\mathcal{L})$ the set of models of Σ .

T4 follows, as the space is clearly T2 (two non-elementarily-equivalent models can be separated by a single sentence, so by open sets) and compact.

By the separation lemma, closed disjoint sets can even be separated by the open sets $W(\gamma)$ and $W(\neg \gamma)$ for a single \mathcal{L} -sentence γ . Therefore, the $W(\gamma)^c$ for each $\gamma \in \text{Sen}(\mathcal{L})$ for a countabale base (as by assumption, $\kappa(\mathcal{L}) = \aleph_0$).