COMP S265F Design and Analysis of Algorithms Assignment 2 – Suggested Solution

Question 1 (30 marks).

```
def createGraph(self):
(a)
             for u,v in self.edges:
                self.graph[u].append(v)
       3
         def bfs(self):
(b)
             self.dist = [None] * self.n
             queue = []
      3
             self.dist[self.s] = 0
       4
             queue.append(self.s)
             while queue:
                u = queue.pop(0)
                for v in self.graph[u]:
                    if self.dist[v] == None:
      9
                       self.dist[v] = self.dist[u] + 1
      10
                       queue.append(v)
         def printResult(self):
(c)
             if self.dist[self.d] == None or self.dist[self.d] > self.dl:
                print(-1)
             else:
                print(self.dist[self.d])
```

Question 2 (15 marks).

(a) The required information of each vertex is shown below:

discovered order	1	2	3	4	5	6
vertex v	S	A	В	D	С	Е
d[v]	1	2	3	4	5	8
f[v]	12	11	10	7	6	9
$\pi[v]$	_	S	A	В	D	В

Below is the depth-first tree obtained:

(b) Classification of edges:

Type	Edges
tree edge	(S, A), (A, B), (B, C), (B, E), (D, C)
back edge	_
forward edge	(S,C),(A,C)
cross edge	(E,D)

(c) The topological sort order is: S, A, B, E, D, C.

Question 3 (15 marks). The Kruskal's algorithm sorted all edges in non-descending order and consider whether to include it in the resultant minimum spanning tree (MST) one by one:

			T
order	$_{ m edge}$	weight	include or not?
1	(W,X)	1	Yes
2	(A,B)	2	Yes
3	(C,D)	2	Yes
4	(D,E)	2	Yes
5	(W,Y)	2	Yes
6	(X,Y)	2	No
7	(Y,Z)	2	Yes
8	(A,C)	3	Yes
9	(B,C)	3	No
10	(B,D)	3	No
11	(X,Z)	3	No
12	(D,W)	6	Yes
13	(E,X)	6	No

The resultant MST is as follows:

The weight of the MST is 20.

Question 4 (40 marks).

(a) The transition table f_{ε} of the NFA including the lambda closure of the states is, as follows:

$f_arepsilon$	s	a	b	c	ε	$\lambda(s)$
start	0	Ø	Ø	Ø	{1}	
	1	{2}	Ø	Ø	$\{3\}$	$\{1, 3\}$
	2	Ø	$\{1\}$	Ø	Ø	{2}
	3	{4}	Ø	$\{4\}$	Ø	$\{3\}$
final	4	Ø	Ø	Ø	Ø	$\{4\}$

(b) Let f_D be the transition function of the DFA.

f_D	s	a	b	c
start	$\{0, 1, 3\}$	$\{2,4\}$	Ø	$\overline{\{4\}}$
final	$\{2, 4\}$	Ø	$\{1, 3\}$	Ø
final	$\{4\}$	Ø	Ø	Ø
	$\{1, 3\}$	$\{2,4\}$	Ø	$\{4\}$
	Ø	Ø	Ø	Ø

Then, we replace the names of the states to obtain the transition table f_D of the DFA:

f_D	s	a	b	c
start	0	1	4	2
final	1	4	3	4
final	2	4	4	4
	3	1	4	2
	4	4	4	4

(c) We can combine state 0 and 3 into a new state $\{0,3\}$.

f_D	s	a	b	c
start	$\{0, 3\}$	1	4	2
final	1	4	$\{0, 3\}$	4
final	2	4	4	4
	4	4	4	4

Renaming:

f_D	s	a	b	c
start	0	1	3	2
$_{\mathrm{final}}$	1	3	0	3
$_{ m final}$	2	3	3	3
	3	3	3	3

(d) The DFA is shown, as follows:

