CT - TD 2

Mesures et incertitudes

I - Chiffres significatifs dans un résultat de mesurage

Compléter le tableau suivant en écrivant les résultats des mesures sous la forme :

(X : u(X)) unités

et en respectant les règles d'écriture des résultats de mesurage. On pourra utiliser l'écriture scientifique si nécessaire.

Grandeur	Valeur mesurée	Incertitude-type	Écriture
Distance L	$742310,1\mathrm{m}$	$777,32\mathrm{m}$	L =
Distance L	$8231,34 \mathrm{m}$	$3{,}449\mathrm{m}$	L =
Distance L	$9,42136\mathrm{mm}$	$4\mathrm{\mu m}$	L =
Temps T	$0{,}014280\mathrm{s}$	$0,000312\mathrm{s}$	T =
Temps T	$0,\!0028534\mathrm{s}$	$0,000451\mathrm{s}$	T =
Temps T	$0,000284\mathrm{s}$	$0,\!000436\mathrm{s}$	T =
Résistance R	$1{,}10876\mathrm{m}\Omega$	$333\mu\Omega$	R =
Résistance R	$4{,}2032\mathrm{M}\Omega$	$5.3\mathrm{k}\Omega$	R =
Intensité I	45 A	$0.32\mathrm{kA}$	I =
Intensité I	45 μΑ	$4{,}4\mathrm{mA}$	I =

II - Incertitudes de type A

On réalise en travaux pratiques (à Paris) n=6 mesures de la norme de l'accélération de la pesanteur g, dont les résultats exprimés en m s⁻² sont les suivants : 9,68 ; 9,85 ; 9,85 ; 9,77 ; 9,87 ; 9,79.

- 1. Avec un tableur ou python, déterminer l'incertitude-type associée à une valeur.
- 2. En déduire, à la main, l'incertitude-type associée à la valeur moyenne des valeurs.
- 3. Quel est le meilleur estimateur du mesurande? Donner son expression et sa valeur.
- 4. Écrire le résultat du mesurage de g.

La valeur référence à Paris est $g_{ref} = 9.81 \,\mathrm{m \, s^{-2}}$.

5. Le mesurage effectué en travaux pratiques est-il compatible avec la valeur référence?

On donne : $\sqrt{6} = 2,449$.

III - Cas gaussien

Dans une publication scientifique, on lit le paragraphe suivant :

- « On a réalisé 100 mesures du rayon d'un proton, qui suivent une distribution gaussienne, de moyenne $\bar{r} = 0.833\,152\,6\,\mathrm{fm}$ et dont on sait que la variance est $V = 7.225\times10^{-11}\,\mathrm{fm}^2$. On admet que la moyenne mesurée est égale à l'espérance de la distribution gaussienne.
 - 1. Déterminer l'incertitude-type sur la valeur du rayon.
 - 2. Déterminer le facteur d'élargissement k associé à un niveau de confiance de 95 % à l'aide d'une table de Student
 - 3. Déterminer l'incertitude-type élargie associée à un niveau de confiance de 95 %.
 - 4. Écrire le résultat du mesurage du rayon.

On donne : $\sqrt{72,25} = 8,5$.

IV - Incertitudes de type B

Sur un multimètre numérique, réglé en ohmmètre, l'afficheur numérique indique :

941.6 Ω

Déterminer l'incertitude-type sur la valeur mesurée puis écrire le résultat du mesurage. On fournit l'extrait de notice suivant :

Mesure de résistance

Gamme: $500,00\Omega$; $5,0000k\Omega$; $50,000k\Omega$; $500,00k\Omega$; $5,0000M\Omega$; $50,000M\Omega$

Précision : $[500,00\Omega] \pm (0,07\% \text{ de la lecture} + 10 \text{dgts})$

 $[5,0000k\Omega; 50,000k\Omega; 500,00k\Omega] \pm (0,07\% \text{ de la lecture} + 2dgts)$

 $[5,0000M\Omega] \pm (0,2\% \text{ de la lecture} + 6dgts)$ $[50,000M\Omega] \pm (2,0\% \text{ de la lecture} + 6dgts)$

Remarque : « dgts » signifie « digits ». Un digit est la valeur qu'aurait le chiffre 1 s'il était placé dans la position du dernier chiffre affiché.

V - Incertitudes composées

On mesure, avec l'aide d'un index sur un banc d'optique gradué au millimètre, les positions $x_1 = 100,3\,\mathrm{cm}$ et $x_2 = 104,2\,\mathrm{cm}$.

- 1. Quelles sont les incertitudes-types sur x_1 et x_2 associées à un modèle rectangulaire?
- 2. Quelle est l'incertitude-type composée sur la distance $d = x_2 x_1$?
- 3. Faire les applications numériques qui correspondent aux deux questions précédentes. Commenter la valeur de l'incertitude-type sur d au regard de la précision du banc d'optique.
- 4. Écrire le résultat du mesurage de la distance d.