

Predicting Volatility in US Electricity Prices

Miles Franklin, David Harper, Adam Goldstein, Himanshu Ghritalhre

Recap

Target

The goal of this project is to produce a model predicting the price volatility of electricity for a given year. We measure the volatility using the Coefficient of Variation, to normalize the data and facilitate state to state comparisons.

Coefficient of Variation =
$$\frac{Standard Deviation}{Mean}$$

Features

- Futures Market Volume
 - How well do market participants understand market direction?
- Drought and Temperature Trends
 - Are the effects of climate patterns felt more by renewable sources?
- Distribution of Fuel Sources in a State
 - What percent of production is from coal, solar, etc.?
- Consumption measured in electricity sales
 - Do states that have more businesses and industry have a less stable price?

Phase 2 Project Overview

- Dataset
- Expanded dataset from 2008-2020 to 2001 2020
 - Backfilled electric accounts for RES, COM, and IND population
 - RES US Census
 - COM and IND Statistics of U.S. Businesses (SUSB, a program run by US Census)
- Started modeling with Decision Tree and Linear Regression
- Explored Research Questions

Dataset

Rows = 50_states * 20_years (2001-2020) = 1000

Features - 123 (Fuel Type - 37 unique)

Feature Counts

Back Fill Model

Problem - Electric Accounts data was not recorded for 2001-2008

Solution - Predict using other yearly data with greater than 0.75 R^2

Approach 1 - US Census

Approach 2 - SUSB Employment Count

BackFill 2001-2008 - Approach 2

- Was given a description of types of business
- Made assumption on key words for IND and COM classification
- Used a string search so plurals, prefixes, and suffixes did not impact the classification

Decision Tree Regression Model

- Grid Search Cross Validation for parameter optimization
 - Criterion (Loss Function)
 - Max Number of Features
 - Max Tree Depth
 - Minimum Number of Sample per Leaf

	R^2	Adjusted R^2	MSE	
Optimal Model from GridSearchCV Results	0.2715	-9.4416	0.0006	
Default Parameters	0.1139	-11.70	0.0007	

Ridge Regression

Feature Filtering

Comparing different models

Dealing with multicollinearity

Plain Linear Regression Model

MSE -> 0.0003 ; Adjusted R-squared -> 0.588

OLS Regression Results

 Dep. Variable:
 target_COV
 R-squared:
 0.591

 Model:
 OLS
 Adj. R-squared:
 0.588

 Method:
 Least Squares
 F-statistic:
 189.4

Date: Wed, 03 Nov 2021 Prob (F-statistic): 5.55e-149

Time: 22:32:37 Log-Likelihood: 2087.1

No. Observations: 794 AIC: -4160.

Df Residuals: 787 BIC: -4128

Df Model: 6

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Months Above Average Price Movement BZ=F	-0.0010	0.000	-5.203	0.000	-0.001	-0.001
Months Above Average Price Movement NG=F	-0.0021	0.000	-5.558	0.000	-0.003	-0.001
Months Above Average Price Volume NG=F	-0.0020	0.001	-3.871	0.000	-0.003	-0.001
Months Above Average Price Volume HO=F	0.0032	0.001	5.608	0.000	0.002	0.004
cov	0.7107	0.022	32.112	0.000	0.667	0.754
Agg_total_plant_count_x	8.325e-07	3.94e-07	2.111	0.035	5.82e-08	1.61e-06
Constant	0.0189	0.004	4.435	0.000	0.011	0.027

Next Steps

- Data Backfill
 - Improve accuracy of word classification by using lemmatization before searching
- Dataset Engineering to Improve Model Performance
 - Sampling
 - Synthetic Minority Over-Sampling Technique (SMOTE) for Regression
 - Feature Engineering
 - Reduce Plant Fuel Type by aggregation categories. Ex. Coal, Biomass
 - Remove features based on thresholds of correlation. Ex. corr > list(0.30,0.40,...)
- Modeling
 - Reframe problem to classification where classes are ranges of COV (i.e [0.05 0.10])
 - Evaluate what features are the strongest for our model (i.e LR Weights)
- Logging Log performance and model metadata to understand experiments overtime