Multi-Cast Key Management Protocols Design, Specification, and Analysis

Christopher A. Wood

February 3, 2012

Agenda

- Project goal
- 2 Review group key management problem
- Protocol design limiting constraints
- Viral protocol design and performance
- ARK protocol design performance

Project Goal

Develop a practical method to support tactical group key establishment

Group Key Management Problem

- Existing PKI based EKE and Authentication methods are inherently PtP protocols
- Previously proposed solutions to group and multi-case applications are limited
 - Most require the presence of a trusted server or network manager
 - PtP transactions can require up to 9 symmetric exchanges
 - Non-PtP based methods involve a great deal of pre-placed information
- Need to be secure against common attacks (e.g. Man in the Middle)

Group Key Management Problem

- Lack of pre-placed information calls for solutions with strong PKI-based Electronic Key Exchange (EKE) mechanisms
- EKE techniques suffer from the need for large key sizes
- Standardized EKE mechanisms are traditionally sequential for SA establishment among peers
- A complete EKE capability is required to enable widespread adoption by the military customer

Multi-Cast Key Management

Multi-Cast Key Management

Multi-Cast Key Management

Design Constraints

- Wireless channel is bandwidth constrained
- Radio units are somewhat computationally constrainted
- Limitations on shared secret and pre-placed information
- Group membership can consist of the entire battlefield
- Adding group members is easy, removing them requires full network rekey

Proposed Solutions

Two different protocols for targeting different deployment settings (wideband/multiband and narrowband channels)

- Viral EKE Protocol
- ARK EKE Protocol

Viral EKE Protocol - Design Principles

- Re-key events are triggered from a single key manager, but the work is partially offloaded to the rest of the group
 - Key manager role is propogated throughout the members of the group to form pariwise security associations (SAs) that are then used to distribute the session key
 - Pairwise SA establishment can be done in parallel with members throughout the group
- Parallel implementation of the standardized Internel Key Exchange (IKE) protocol for ad-hoc group re-keys
 - Allows overhead of each exchange to be distributed among all members of the group
- Closely tied to the underlying data-link layer spanning tree orientation of groups to perform key distribution
- Support for an AUL to determine valid nodes is being integrated into the scheme

Viral EKE Protocol - Targets

- Targeted towards wideband and multiband networks
 - AN/PRC-117G, 30 Mhz 2 Ghz RF channel bandwidth
 - SATCOM, Wideband (WB)
 - Data rates
 - On-air rates up to 10 Mbps

Viral EKE Protocol - Exchange Paths

Viral EKE Protocol - Exchange Paths

Sequence Diagram

Viral EKE Protocol - Performance Review

- The group re-key time grows logarithmically with the number of allowed children in the transaction spanning tree
- Balanced spanning tree orientations with limited children nodes result in highest performance benchmarks

ARK EKE Protocol - Design Principles

- Automatic group key management with utilization of a one-way cryptosystem for key exchanges over the air
 - An asymmetric cipher is used with both the encryption and decryption key kept secret
 - This creates three kinds of users in the group
 - Sender A member who can only encrypt messages
 - Receiver A member who can only decrypt messages
 - Intruder A member who possesses neither the encryption or decryption key and cannot encrypt or decrypt any messages.
- Encryption and decryption keys are stored as pre-placed information before the start of a mission
- Further pre-placed information (e.g. user authentication lists) can be added for additional security

ARK EKE Protocol - Targets

- Targeted towards a tactical HF radio
 - 3 and 30 MHz, 3 KHz channels
 - Data rates
 - MIL-STD-188-110B (9600 bps and 12,800 bps uncoded)

ARK EKE Protocol - Exchange Paths

ARK EKE Protocol - Exchange Paths

Sequence Diagram

ARK EKE Protocol - Performance Summary

- The group re-key time grows logarithmically with the number of allowed children in the transaction spanning tree
 - Since the group key is distributed in a single packet the prospect of parallel transactions to distribute communication overhead is not as significant as in the Viral technique
- Scalable to other target waveforms
 - The single group re-key message is all-inclusive and is suitable for any channel bandwidths at the cost of pre-placed information

Simulation Notes

- Manually introduced timing delays on packet transactions
 - Avoidance of signal interference
 - Emulation of TDMA ring access
- Computational overhead is estimated
 - Will likely change based on the properties of each physical unit used with each key management technique

Future Work

- Formal mathematical analysis of each protocol
 - Will be used for comparison with simulated results
- Security analysis of each protocol
 - Will be used to ensure the structure and content of key exchange messages is appropriate and not susceptible to compromising attacks