Assignment 4

September 15, 2020

1. If $\{a_n\}$ is a bounded sequence, then there exist subsequences $\{a_{n_k}\}$ and $\{a_{m_k}\}$ such that

 $\lim \sup a_n = \lim a_{n_k}$ and $\lim \inf a_n = \lim a_{m_k}$.

- 2. a) If there exists a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that $\lim_{k\to\infty}a_{n_k}=t$. Then $t\leq \beta=\lim\sup a_n$.
 - b) If there exists a subsequence $\{a_{m_k}\}$ of $\{a_n\}$ such that $\lim_{k\to\infty} a_{m_k} = s$. Then $s \ge \alpha = \lim \inf a_n$.
- 3. If $\{a_n\}$ and $\{b_n\}$ are bounded sequences of real numbers and if $a_n \leq b_n$ for all $n \in \mathbb{N}$, then

 $\lim \sup a_n \leq \lim \sup b_n$ and $\lim \inf a_n \leq \lim \inf b_n$.

4. If $\{a_n\}$ and $\{b_n\}$ are bounded sequences off real numbers. Then

$$\lim \sup(a_n + b_n) \le \lim \sup a_n + \lim \sup b_n$$

and

$$\lim \inf(a_n + b_n) \ge \lim \inf a_n + \lim \inf b_n.$$

5. Prove that $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$ assuming that $e = \lim_{n\to\infty} \sum_{k=1}^n \frac{1}{k!} = \sum_{k=1}^\infty \frac{1}{k!}$.