算法作业 2

张昊 1927405160

2021年10月6日

3.2 - 3

证明. **首先证明**: $\lg(n!) = \Theta(n \lg n)$, 即证明: $0 \le c_1 n \lg n \le \lg(n!) \le c_2 n \lg n$.

显然,当 $n \le 2$ 时, $n! < n^n$,故有 $\lg(n!) \le \lg(n^n) = n \lg n$ 。因此取 $c_2 = 1$,有 $\lg(n!) = O(n \lg n)$ 。由斯特林近似公式,

$$\lg(n!) = \lg(\sqrt{2\pi n} (\frac{n}{e})^n (1 + \Theta(\frac{1}{n})))$$

$$= \lg(\sqrt{2\pi n}) + n\lg(\frac{n}{e}) + \lg(1 + \Theta(\frac{1}{n}))$$

$$\geq n\lg(\frac{n}{e})$$
(1)

目标是要证: $\lg(n!) \ge c_1 n \lg n$, 故只要证:

$$n\lg(\frac{n}{e}) \ge c_1 n\lg n \tag{2}$$

2式可化简为:

$$n \lg(\frac{n}{e}) \geq c_1 n \lg n$$

$$\lg(\frac{n}{e}) \geq \lg(n^{c_1})$$

$$\frac{n}{e} \geq n^{c_1}$$

$$n^{1-c_1} \geq e$$
(3)

因此可以取任意的 $c_1 \in (0, 1)$,使得2式成立,即 $\lg(n!) \ge c_1 n \lg n$ 成立。 这里取 $c_1 = \frac{1}{2}$,有 $\lg(n!) = \Omega(n \lg n)$ 。

由**3**式可得,取 $c_1 = \frac{1}{2}$ 时, $n \ge e^2$ 。

综上所述,取 $c_1 = \frac{1}{2}$, $c_2 = 1$, $n_0 = \max(e^2, 2) = e^2$ 可以证明此结论。

接下来证明: $n! = \omega(2^n)$, 即证明: $0 \le c2^n < n!$ 。

由斯特林近似公式,

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

$$\geq \left(\frac{n}{e}\right)^n$$

$$= \left(\frac{n}{2e}\right)^n 2^n$$
(4)

目标是要证: $n! > c2^n$, 故只要证:

$$\left(\frac{n}{2e}\right)^n 2^n > c2^n \tag{5}$$

5式可化简为: $(\frac{n}{2e})^n > c$.

因为当 $n \ge 2e$ 时, $(\frac{n}{2e})^n$ 单调递增,且 $(\frac{n}{2e})^n \ge 1$ 。

故取 $n_0 = 2e + 1$, c = 1, 可证明5式成立, 即 $n! = \omega(2^n)$ 。

接下来证明: $n! = o(n^n)$, 即证明: $0 \le n! < cn^n$ 。

由斯特林近似公式,

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

由于 $n \in \mathbb{Z}_+$ 时, $\Theta(\frac{1}{n}) \le 1$,所以

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

$$\leq 2\sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$= \frac{2\sqrt{2\pi n}}{e^n} n^n$$
(6)

目标是要证: $n! < cn^n$, 故只要证:

$$\frac{2\sqrt{2\pi n}}{e^n} \ n^n < cn^n \tag{7}$$

7式可化简为: $\frac{2\sqrt{2\pi n}}{e^n} < c$ 。 当 $n \geq \frac{1}{2}$ 时, $\frac{2\sqrt{2\pi n}}{e^n}$ 单调递减,且 $\frac{2\sqrt{2\pi n}}{e^n} \leq 2\sqrt{\frac{\pi}{e}}$ 。

故取 $n_0 = 1$, $c = 2\sqrt{\frac{\pi}{e}}$, 可证明7式成立, 即 $n! = o(n^n)$.

思考题 3.2

解. 如下表所示。

	A	B	0	o	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}	否	否	是	是	否
b.	n^k	c^n	否	否	是	是	否
c.	\sqrt{n}	$n^{\sin n}$	否	否	否	否	否
d.	$\overline{2^n}$	$n^{\frac{n}{2}}$	是	是	否	否	否
e.	$n^{\lg c}$	$c^{\lg n}$	是	否	是	否	是
f.	$\lg(n!)$	$\lg(n^n)$	是	否	是	否	是