CMPSC 464: Introduction to the Theory of Computation

(Date: 09/21/2022)

Recitation #4 Solution

Instructor: Dr. Young Kun Ko TAs: Hamed Mahdavi, Levent Toksoz, Neha Sanjay Rathod, Yuzhang Wang

Problem 1

The claim is wrong. Let $L = \Sigma^*$. This is surely a decidable language, however, any language L' is now a subset of L. Then any undecidable language L' (and we know that undecidable languages exist -e.g HALT_{TM}) will satisfy the precondition of the claim (being a subset of L) but will break the conclusion as L' is not a decidable language.

Problem 2

By contradiction assume that there is a decider H for $HALT_{TM}$:

$$H(\langle M, w \rangle) = \begin{cases} \frac{\text{accept}}{\text{reject}}, & \text{if } M \text{ halts on } w \\ \frac{\text{reject}}{\text{reject}}, & \text{if } M \text{ loops on } w \end{cases}$$

From H we can build the following Turing matter project Exam Help

D = "On input $\langle M \rangle$

- Run H on \langle M, \langle M \rangle \rangle\$
 If H accepted then by the an intrite top TCAS reference D accepts."

What happens if we run D on $\langle D \rangle$?

- 1. D halts on $\langle D \rangle$, but then H rejected $\langle D, \langle D \rangle$ and hence D halted on $\langle D \rangle$, contradiction! 2. D loops on $\langle D \rangle$, but then H rejected $\langle D, \langle D \rangle \rangle$ and hence D halted on $\langle D \rangle$, contradiction!

Clearly either 1 or 2 has to happen but in both cases we get a contradiction. This implies that D cannot exist, and so H cannot exist either (D was built from H). This means that $HALT_{TM}$ is undecidable.

Problem 3

(a) We want

$$\tilde{\mathbf{D}}(\langle M \rangle) = \begin{cases} \text{accept, if } M \text{ runs on } \langle M \rangle \text{ for an even number of steps} \\ \text{reject, otherwise} \end{cases}$$

To achieve this, \tilde{D} with input $\langle D \rangle$ runs H with input $\langle M, \langle M \rangle \rangle$ and accepts/rejects as H does.

- (b) If \tilde{Q} is the set of states of \tilde{D} , then $(\tilde{Q}, \{\text{odd, even}\})$ can be the set of states of D. Initially D behaves exactly like \dot{D} , except that D keeps track of the parity (even or odd) of its steps with the help of the second component of Q. The start state is (q_0, even) . $(q_{accept}, \text{even})$ and (q_{reject}, odd) are not halting states. There is one additional move going to the halting states (q_{accept}, odd) or $(q_{reject}, even)$ respectively. Remark: Actually, it does not matter whether D accepts or rejects an input. Thus, (q_{accept}, odd) and $(q_{reject}, even)$ could be merged into one halting state.
- (c) Note that D with input $\langle M \rangle$ runs for an odd number of steps, if M on input $\langle M \rangle$ runs for an even number of steps. Otherwise (i.e., if M on input $\langle M \rangle$ runs for an odd number of steps or does not halt), D with input $\langle M \rangle$ runs for an even number of steps.

Now, run the TM D on the input $\langle D \rangle$. D on $\langle D \rangle$ runs for an even number of steps iff D on $\langle D \rangle$ does not run for an even number of steps.

This is a contradiction. Thus, the assumption that H exists is false. (Thus also \tilde{D} and D don't exist.) (Because, D halts on all inputs, we also know that D on $\langle D \rangle$ runs for an even number of steps iff D on $\langle D \rangle$ runs for an odd number of steps.)

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs