Math 551 Homework 5

Theo Koss

November 2021

1 Section 4.5

• Problem 10: Let X be a Hausdorff space, A a subset of X, and x a limit point of A. Prove that every open set containing x contains infinitely many members of A.

Proof. By way of contradiction, suppose M is an open set which contains x and is finite. Then we can index the points $a_1, a_2, \ldots, a_n \in M$. By definition, since X is a Hausdorff space, for each $a_k \in M$, where $(1 \le k \le n)$,

 $\exists U_k, V_k \subset M$ Such that $a_k \in U_k, x \in V_k$ and $U_k \cap V_k = \emptyset$

Let

$$V = \bigcap_{k=1}^{n} V_k$$

Clearly V is an open set since it is the intersection of finitely many open sets. And for each k between 1 and n, $U_k \cap V = U_k \cap V_k$. Then $U_k \cap V = \emptyset$, equivalently, $a_k \notin V$.

Thus we have found an open subset of M which contains x but no other points of A. Which means x is not a limit point of A. Contradiction.

2 Section 5.1

• Problem 4: Let $(\mathbb{R}, \mathcal{T}')$ be the space of real numbers with the finite complement topology. Is $(\mathbb{R}, \mathcal{T}')$ connected or disconnected? Prove your answer.

Proof. The space is connected.

By way of contradiction, assume it is disconnected. Then there exists two sets U and V which are non-empty, open and disjoint sets such that $\mathbb{R} = U \cup V$. However:

$$U \cap V = \emptyset \implies U \subset \mathbb{R} \backslash V$$
, and $V \subset \mathbb{R} \backslash U$.

Since U and V are both nonempty and we are using the finite complement topology, $\mathbb{R}\backslash V$ and $\mathbb{R}\backslash U$ are both finite. By the equation above, U and V must be finite themselves.

Thus $\mathbb{R} = U \cup V$ is finite, which is a contradiction because of course \mathbb{R} is infinite. QED

3 Section 5.2

• Problem 4: Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of connected subsets of a space X such that for each integer $n \geq 1$, A_n has at least one point in common with one of the preceding sets A_1, \ldots, A_{n-1} . Then $\bigcup_{n=1}^{\infty} A_n$ is connected.

Proof. By way of contradiction, assume $\bigcup_{n=1}^{\infty} A_n$ is not connected. Then there must exist a separation of it, U, V where U, V are nonempty, open disjoint sets.

Consider some arbitrary $A_i \in \{A_n\}$. Then A_i lies entirely within U or V. There are 2 cases:

- 1. All of the A_i are entirely in U or V.
- 2. Some of the A_i are in U and some are in V.

In case 1, if they are all in U, then U, V are not a separation of $\bigcup_{n=1}^{\infty} A_n$. Same argument if they are all in V. Contradiction.

In case 2, if they are split then the $A_i \in U$ are disjoint from the $A_i \in V$. This contradicts the hypothesis that for each integer $n \geq 1$, A_n has at least one point in common with one of the preceding sets A_1, \ldots, A_{n-1} . Thus this is a contradiction.

$$\therefore \bigcup_{n=1}^{\infty} A_n \quad \text{is connected.}$$

QED

- Problem 5: Determine whether each of the following subspaces of \mathbb{R}^2 is connected or disconnected. Give a reason for each answer.
 - (a) Asymptotic curves: Disconnected, since even though they will get infinitely close to each other, they will never touch so you can find 2 nonempty disjoint open sets.
 - (b) Asymptotic curves and the asymptote: connected, since the Topologist's sine curve is connected and it's kind of the same deal.
 - (c) Intersecting lines: Connected, since it is clearly path-connected, which is stronger than simply being connected.
 - (d) Figure 5.2: Connected, as you can not find 2 nonempty disjoint open sets such that the union is the set.
- Problem 6: Prove that every countable subset of \mathbb{R} is totally disconnected.

Proof. We must show for every countable subset of \mathbb{R} each component is a single point. Also recall that any interval in \mathbb{R} is uncountable. (Since there is a bijection from arbitrary $(a,b) \to (0,1)$ and (0,1) uncountable.)

Consider an arbitrary countable subset of \mathbb{R} , call it X. Then consider some component A of X which contains 2 points. Call these points

 a_1, a_2 . Then $(a_1, a_2) \subset A$, which is uncountable, thus A itself is uncountable, and since $A \subset X$, X is also uncountable. Contradiction.

This reasoning can be extended if A contains more than 2 points. Thus each component must contain only 1 point. Therefore X is totally disconnected QED

4 Section 5.3

• Problem 3: Let $f:[a,b] \to [c,d]$ be a homeomorphism on the indicated intervals. Prove that f maps endpoints to endpoints.

Proof. Note that a homeomorphism between two topological spaces X, Y is a function $f: X \to Y$ which has the following properties:

- i. f is a bijection.
- ii. f is continuous.
- iii. f^{-1} is continuous.

Suppose, by way of contradiction, that f(a) maps to neither c nor d. Then $f(a) = x \in (c, d)$, then the image of the interval (a, b] must be $[c, x) \cup (x, d]$. However, we just showed that f must map an interval to $[c, x) \cup (x, d]$, which is *not* an interval, and since it is not an interval, it is not connected. This contradicts ii. above, that f is continuous.

The same argument shows that b must also go to one of the endpoints. Thus homeomorphism $f:[a,b]\to [c,d]$ must map endpoints to endpoints. QED

(Similarly I believe you could consider the non-cut points of the preimage and the image and notice that (a, b] has 1 non-cut point and $[c, x) \cup (x, d]$ has 2, thus they are topologically different spaces so f not a homeomorphism.)

5 Section 5.4

• Problem 1: Prove that every polynomial having real coefficients and odd degree has a real root.

Proof. Recall every polynomial on the real line is continuous. Since a polynomial is a sum of powers of x, powers of x are continuous thus every polynomial is continuous.

We want to show that if $P(x) = a_n x^n + \cdots + a_1 x^1 + a_0$ is a polynomial such that n odd and $a_n \neq 0$, then there exists a real c such that P(c) = 0. If $a_n > 0$:

$$\lim_{x \to \infty} P(x) = \infty$$
 and $\lim_{x \to -\infty} P(x) = -\infty$

Thus there are real numbers $x_0 < x_1$ such that $P(x_0) < 0$ and $P(x_1) > 0$. (If $a_n < 0$, the argument is similar but $P(x_0) > 0$ and $P(x_1) < 0$.) Then, by the IVT, there is a real number $c \in [x_0, x_1]$ such that P(c) = 0.

6 Section 5.5

• Problem 7: Prove that a space X is path connected iff there is a point a in X such that each point of X can be joined to a by a path in X.

Proof. (\Longrightarrow) : Assume X is a space where there is a point $a \in X$ such that each point of X can be joined to a by a path in X. We must show that $\forall x,y \in X$, the path starting at x and ending at y is in X. By the assumption, each point has a path to a. Also, for all $x \in X$, the path from $x \to a$ exists, as does the path from $a \to x$. Now notice that that the path product $p_1 * p_2 = \begin{cases} p_1(2t) & \text{if } 0 \le t \le \frac{1}{2} \\ p_2(2t-1) & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$, where $p_1(1) = p_2(0)$, is also in X.

Thus, $\forall x, y \in X$, there are two paths, $p_1 \in X$ from $x \to a$ and $p_2 \in X$ from $y \to a$. Then the reverse path $\bar{p_2}$ is in X. This is the path from

 $a \to y$. Since $p_1(1) = a$ and $\bar{p_2}(0) = a$, the path product $p_1 * \bar{p_2} \in X$ by definition.

 (\Leftarrow) : Assume X is a path connected space, we must show that there is a point $a \in X$ such that each point of X can be joined to a by a path in X.

Since X is path connected, $\forall x, y \in X$, $\exists p : x \to y \in X$ where p is a path. Fix some $a \in X$. Then for each $x_{i \in I} \in X$, the paths p_1, p_2, \ldots, p_i where $p_1 : x_1 \to a$, $p_2 : x_2 \to a$ and so on must be in X by definition of path connectedness. Thus we have showed that each point of X can be joined to a by a path in X. QED