Számsorozatok 4.

2020. szeptember 21.

Mennyi $\lim_{n\to\infty} a_n \cdot b_n = X$?

1. Ha
$$\lim_{n\to\infty} a_n = A \in \mathbb{R}$$
 és $\lim_{n\to\infty} b_n = B \in \mathbb{R}$ \Longrightarrow $X = AB\sqrt{}$

2.
$$\lim_{n \to \infty} a_n = 0$$
 és (b_n) korlátos $\implies X = 0\sqrt{}$

3.
$$\lim_{n\to\infty} a_n = +\infty$$
 és $b_n > k > 0$, $\forall n \implies X = +\infty \sqrt{ }$

4.
$$\lim_{n \to \infty} a_n = 0$$
 és $\lim_{n \to \infty} b_n = \infty$ \Longrightarrow $X = ???$

A
$$\lim_{n\to\infty} a_n b_n = \infty \cdot 0$$
 típusú határérték "bármi" lehet. $(-\infty is?)$

1. Példa. $a_n = np^n$.

Tfh.
$$0 . $\lim_{n \to \infty} np^n = ?$.$$

Átírjuk ilyen alakba: $a_n = np^n = (\sqrt[n]{np})^n$.

Mivel
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$
, ezért $\exists N$

$$\sqrt[n]{n} < \frac{1}{p}$$
 $\forall n \geq N$, \Longrightarrow $\sqrt[n]{n}p < \frac{1}{p}p(=1)$

Tehát létezik 0 < q < 1, melyre

$$\sqrt[n]{n}p < q < 1.$$

Ezért $0 < a_n < q^n$, ha $n \ge N$, így a rendőrelv alapján $\lim_{n \to \infty} a_n = 0$.

1*. Példa. Legyen $k \in \mathbb{N}$ tetszőleges és $a_n = n^k p^n$. 0 .

Mit várunk?

Ekkor is $\lim_{n \to \infty} a_n = 0$.

Bizonyítás.
$$a_n = n^k p^n = (\sqrt[n]{n^k} p)^n$$
.

$$\sqrt[n]{n} \to 1 \implies \sqrt[n]{n^k} \to 1.$$

Ezért
$$\sqrt[n]{n^k} < \frac{1}{n}$$
, ha $n > N$. $\implies \sqrt[n]{n^k} p < q < 1$.

Most is
$$0 < a_n < q^n$$
, ha $n \ge N$, $\implies \lim_{n \to \infty} a_n = 0$.

$$p > 1$$
 esetén mit mondhatunk?

2. Példa.

$$a_n = 3^n \cdot \frac{1}{n!}$$
 $\lim_{n \to \infty} a_n = ?$

Legyen n > 3. Ekkor

$$a_n = \frac{3^n}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} = \frac{3 \cdot 3 \cdot 3 \cdot \dots \cdot 3}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} =$$

$$= (\frac{3}{1} \cdot \frac{3}{2} \cdot \frac{3}{3}) \cdot \frac{3}{4} \dots \frac{3}{n} \le \frac{9}{2} \cdot (\frac{3}{4})^{n-3} \to 0.$$

Tehát

$$\lim_{n\to\infty}\frac{3^n}{n!}=0.$$

 2^* . Példa. a > 0 tetszőleges.

$$a_n = \frac{a^n}{n!}$$

akkor $\lim_{n\to\infty} a_n = 0$. a < 1 vagy a > 1?

Rekurzív számsorozatok

P'elda. (a_n) rekurzióval van definiálva:

$$a_1 = 1$$
, $a_{n+1} = a_n + 1$ ha $n = 1, 2, ...$

Számoljuk ki néhány elemét:

$$a_1 = 1$$
, $a_2 = 1 + 1 = 2$, $a_3 = 2 + 1 = 3$, ...

Látszik, hogy $a_n \to \infty$.

Példa. (an) kétlépéses rekurzióval van definiálva:

$$a_1 = a_2 = 1$$
, $a_{n+2} = a_{n+1} + a_n$ ha $n = 3, 4, ...$

Számoljuk ki néhány elemét:

$$a_1 = 1$$
, $a_2 = 1$ $a_3 = 1 + 1 = 2$, $a_4 = 3$, $a_5 = 5$...

Fibonacci sorozat. (XII.sz. pl. képzeletbeli nyúlcsalád növekedése.)

Egy példa

 (a_n) így van definiálva **rekurzióval**:

$$a_1 = 2$$
, $a_{n+1} = \frac{1}{2}(a_n + 6)$ ha $n = 1, 2, ...$

Számoljuk ki néhány elemét:

$$a_1 = 2$$
, $a_2 = \frac{1}{2}(2+6) = 4$, $a_3 = \frac{1}{2}(4+6) = 5$,... $a_6 = 5.875$.

"Látszik", hogy $(a_n) \nearrow$. Vajon $+\infty$ -be tart most is?

Állítás.
$$a_n < a_{n+1}$$
, $\forall n$. Teljes indukció.

- 1. lépés. $a_1 < a_2 \sqrt{.}$
- 2. lépés. Tfh. $a_n < a_{n+1}$ egy fix n-re.

$$a_{n+2} = \frac{1}{2}(a_{n+1} + 6) > \frac{1}{2}(a_n + 6) = a_{n+1} \quad \sqrt{}$$

$$a_{n+1}=\frac{1}{2}(a_n+6),$$

Beláttuk, hogy (a_n) ✓

Állítás.
$$a_n < 6$$
, $\forall n$. Teljes indukció.

1. lépés.
$$a_1 = 2 < 6 \sqrt{.}$$

2. lépés. Tfh. $a_n < 6$ egy fix n-re.

$$a_{n+1} = \frac{1}{2}(a_n + 6) < \frac{1}{2}(6 + 6) = 6.$$
 $\sqrt{}$

Együtt: (a_n) monoton és korlátos. \implies (a_n) konvergens.

Mennyi $A = \lim_{n \to \infty} a_n$?

$$a_{n+1} = \frac{1}{2}(a_n + 6) \implies A = \frac{1}{2}(A + 6) \implies A = \lim_{n \to \infty} a_n = 6$$

.

Az e számról.

(Ism) **Definíció.** Az e - EULER-FÉLE SZÁM:
$$e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$$
,

 $\forall (n_k)$ indexsorozatra

$$\lim_{n_k\to\infty}(1+\frac{1}{n_k})^{n_k}=e.$$

Folytatás: vajon $\lim_{n\to\infty} (1+\frac{2}{n})^n = ?$

$$(1+\frac{2}{n})^n=(1+\frac{1}{n/2})^{2\cdot\frac{n}{2}}=\left((1+\frac{1}{n/2})^{n/2}\right)^2.$$

$$\implies \lim_{n \to \infty} (1 + \frac{2}{n})^n = e^2, \quad \text{S\"OT:} \qquad \lim_{n \to \infty} (1 + \frac{a}{n})^n = e^a \quad \forall a \in \mathbb{R}.$$

Számtani átlag sorozatok

Állítás. Tfh. (a_n) nullsorozat. Legyen

$$A_n:=\frac{a_1+\ldots+a_n}{n}=\frac{1}{n}\cdot\sum_{k=1}^n a_k.$$

Ekkor $\lim_{n\to\infty} A_n = 0$.

Bizonyítás. Első becslés: (a_n) korlátos is, $\implies |a_n| \leq K$.

Következő becslés:

$$|A_n| = \frac{1}{n} |\sum_{k=1}^n a_k| \le \frac{1}{n} \sum_{k=1}^n |a_k|.$$

$$\forall \varepsilon > 0$$
-hoz $\exists N$ küszöbindex: $\forall n \geq N$: $|a_n| < \frac{\varepsilon}{2}$.

Ezekre az n indexekre

$$|A_n| \le \frac{|a_1| + \ldots + |a_N| + |a_{N+1}| + \ldots + |a_n|}{n} \le \frac{N}{n}K + \frac{\varepsilon}{2}\frac{n - N}{n} < \frac{N}{n}K + \frac{\varepsilon}{2},$$

Vajon
$$\frac{N}{n}K \leq \frac{\varepsilon}{2}$$
? Hát persze, ha: $n \geq \frac{2NK}{\varepsilon} = N_1.\sqrt{.}$

$$\forall n > N, \ N_1 \implies |A_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Megjegyzés.

Az állítás megfordítása nem igaz!

$$A_n \to 0 \implies a_n \to 0.$$

Ellenpélda: Ha $a_n = (-1)^n$, akkor a számtani átlag sorozat

$$A_n = \begin{cases} 0, & \text{ha} \quad n = 2k \\ -\frac{1}{n}, & \text{ha} \quad n = 2k+1 \end{cases}$$

 A_n nullsorozat, bár (a_n) divergens.

1. Következmény

Legyen (a_n) konvergens, $\lim_{n\to\infty}a_n=A$. Ekkor a számtani átlag sorozatra

$$\lim_{n\to\infty}A_n=A$$

Bizonyítás. Tudjuk, hogy $\lim_{n\to\infty} a_n = A \iff (a_n - A)$ nullsorozat.

Legyen $b_n := a_n - A$. A számtani átlag sorozata

$$B_n = \frac{b_1 + \cdots + b_n}{n} = \frac{a_1 - A + \cdots + a_n - A}{n} = \frac{a_1 + \cdots + a_n}{n} - A.$$

Az előző tétel ⇒

$$\lim_{n\to\infty} B_n = 0. \qquad \Longrightarrow \quad \lim_{n\to\infty} A_n - A = 0.$$

Valóban
$$\lim_{n\to\infty} A_n = A$$
.

2. Következmény

Állítás. Legyen (a_n) pozitív tagú sorozat, és

$$G_n := \sqrt[n]{a_1 \dots a_n}$$

a mértani átlagok sorozata. Tfh. (a_n) nullsorozat, ekkor

$$\lim_{n\to\infty}G_n=0.$$

Bizonyítás. A számtani-mértani közép közti egyenlőtlenség miatt

$$0 < G_n \leq A_n$$
.

Mivel (A_n) nullsorozat, ezért (G_n) is az.

Torlódási pont

Definíció. Az (a_n) sorozat TORLÓDÁSI PONTJA t, ha t bármely környezetében végtelen sok tagja van a sorozatnak.

Más szavakkal: $\forall \varepsilon>0$ esetén a $(t-\varepsilon,t+\varepsilon)$ intervallumban a sorozatnak végtelen sok tagja van.

Határérték mennyiben más?

→ környezeten kívüli tagok száma?

Példa. $a_n = (-1)^n$.

Ennek két torlódási pontja van, $t_1 = 1$ és $t_2 = -1$.

Példa

"Összefésült" sorozatok. Legyen két konvergens sorozat:

$$a_n=\frac{1}{n}, \qquad b_n=\frac{n}{n+1}.$$

Definiáljunk egy harmadik sorozatot:

$$c_n = \begin{cases} a_n & \text{ha} & n = 2k \\ \\ b_n & \text{ha} & n = 2k + 1 \end{cases}$$

A (c_n) sorozatnak **két** torlódási pontja van, 0 és 1.

Torlódási pontokról

Állítás. Ha (a_n) -nek $t\ddot{o}bb$ torlódási pontja van, akkor **nem konvergens**.

Állítás. Ha (a_n) konvergens, akkor egyetlen torlódási pontja van.

Fordítva?

Ha (a_n) -nek *egyetlen* torlódási pontja van, akkor. **konvergens**?

Példa olyan (a_n) sorozatra, melynek torlódási pontjai $1, 2, 3, \ldots$?

Definíció. Legyen $\mathcal{T} := torlódási pontok halmaza.$

Ha \mathcal{T} felülről korlátos, akkor sup $\mathcal{T} := \text{LIMES SUPERIOR}$. Jelölése

$$\limsup_{n\to\infty} a_n = \overline{\lim_{n\to\infty}} a_n.$$

Ha $\mathcal T$ alulról korlátos, akkor inf $\mathcal T:=\mathtt{LIMES}$ INFERIOR, Jelölése

$$\lim \inf_{n \to \infty} a_n = \underline{\lim} a_n$$
.