Sprawozdanie z ćw 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

Michał Puchyr

23 marca 2023

1 Cel ćwiczenia

- Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego
- Wyznaczenie stałej siatki dyfrakcyjnej

2 Opis ćwiczenia

2.1 Wstęp teoretyczny

Siatka dyfrakcyjna - przyrząd do przeprowadzania analizy widmowej światła. Tworzy ją układ równych, równoległych i jednakowo rozmieszczonych szczelin.

Stała siatki dyfrakcyjnej to parametr charakteryzujący siatkę dyfrakcyjną. Wyraża on rozstaw szczelin siatki (odległość między środkami kolejnych szczelin).

Działanie siatki dyfrakcyjnej polega na wykorzystaniu zjawiska dyfrakcji i interferencji światła do uzyskania jego widma. W tym celu pomiędzy źródłem światła a ekranem umieszcza się siatkę dyfrakcyjną. Na ekranie uzyskuje się w ten sposób widmo światła.

Przyrządy i materiały wykorzystane do pomiarów :

- Transmisyjne siatki dyfrakcyjne (S): typ "A" -50 linii na milimetr oraz typ "B"
- Laser emitujący zielone światło (PM)
- Ekran ze skalą milimetrową (E)
- Ława optyczna ze skala milimetrowa
- Szczelina (O)

Schemat układu eksperymentalnego

3 Pomiary układu

Wyniki pomiarów dla wyznaczenia dł. fali linii monochromatycznej źródła							
$L_i(mm)$	$\mathrm{u}(\mathrm{L}_i)(\mathrm{mm})$	n	$\mathbf{x}_{lni}(\mathrm{mm})$	$u(\mathbf{x}_{lni})(\mathbf{mm})$	$\mathbf{x}_{lpi}(\mathrm{mm})$	$\mathrm{u}(\mathrm{x}_{lpi})(\mathrm{mm})$	
300	0,58	1	8	2	8	2	
	0,58	2	17	2	17	2	
	0,58	3	24	2	24	2	
350	0,58	1	9	2	9	2	
	0,58	2	19	2	19	2	
	0,58	3	28	2	28	2	
400	0,58	1	11	2	11	2	
	0,58	2	22	2	22	2	
	0,58	3	33	2	32	2	
450	0,58	1	13	2	13	2	
	0,58	2	24	2	24	2	
	0,58	3	37	2	37	2	
500	0,58	1	14	2	14	2	
	0,58	2	27	2	26	2	
	0,58	3	40	2	40	2	

Wyniki pomiarów dla wyznaczenia stałej siatki dyfrakcyjnej						
$L_i(mm)$	$u(L_i)(mm)$	$x_{li}(mm)$	$u(\mathbf{x}_{li})(\mathbf{mm})$	$x_{pi}(mm)$	$u(\mathbf{x}_{pi})(\mathbf{mm})$	
50	0,58	32	2	32	2	
80	0,58	49	2	49	2	
110	0,58	69	2	69	2	
140	0,58	87	2	87	2	
170	0,58	105	2	106	2	
200	0,58	125	2	125	2	
230	0,58	143	2	144	2	
260	0,58	162	2	162	2	
290	0,58	181	2	181	2	
320	0,58	200	2	200	2	
350	0,58	218	2	217	2	
380	0,58	237	2	238	2	
410	0,58	255	2	255	2	
440	0,58	275	2	275	2	
470	0,58	295	2	295	2	

Wyniki ob	Wyniki obliczeń dla wyznaczenia dł. fali linii monochromatycznej źródł					
$L_{n,i}(\text{mm})$	$\mathrm{u}(\mathrm{L}_{n,i})(\mathrm{mm})$	$\overline{x}_{n,i}$	$\mathrm{u}(\overline{x}_{n,i})(\mathrm{mm})$	$\sin\Theta$	$u(\sin\Theta)$	$\lambda(nm)$
300	0,58	8	2	0,027	0,007	540,00
300	0,58	17	2	0,057	0,007	570,00
300	0,58	24	2	0,080	0,007	533,34
350	0,58	9	2	0,026	0,006	520,00
350	0,58	19	2	0,055	0,006	550,00
350	0,58	28	2	0,080	0,006	533,34
400	0,58	11	2	0,028	0,005	560,00
400	0,58	22	2	0,055	0,005	550,00
400	0,58	33	2	0,081	0,005	540,00
450	0,58	13	2	0,029	0,005	580,00
450	0,58	24	2	0,054	0,005	540,00
450	0,58	37	2	0,082	0,005	546,67
500	0,58	14	2	0,028	0,004	560,00
500	0,58	27	2	0,053	0,004	530,00
500	0,58	40	2	0,080	0,004	533,34
Wartość średnia: $\overline{\lambda}(nm) =$						545,78
Odchylenie standardowe: $u(\overline{\lambda})(nm) =$					4,19	

Wyniki obliczeń dla wyznaczenia stałej siatki dyfrakcyjnej					
$L_i(mm)$	$\overline{x_i}(\text{mm})$	$u(\overline{x}_i)(mm)$	$\sin\Theta$	$u_c(\sin\Theta)$	
50	32	2	0,540	0,025	
80	49	2	0,523	0,016	
110	69	2	0,532	0,012	
140	87	2	0,528	0,009	
170	106	2	0,530	0,008	
200	125	2	0,530	0,007	
230	144	2	0,531	0,006	
260	162	2	0,529	0,005	
290	181	2	0,530	0,005	
320	200	2	0,530	0,004	
350	218	2	0,529	0,004	
380	238	2	0,531	0,004	
410	255	2	0,529	0,004	
440	275	2	0,530	0,003	
470	295	2	0,532	0,003	
Wartość	średnia : s	0,531			
Odchyler	nie standar	0,0009			
d(nm)		1029,78			
$u_c(d)(nn)$	n) =	8,08			

4 Przykładowe obliczenia

4.1 Obliczenia dla pierwszej części eksperymentu

Obliczenie średniej wartości odległości linii dyfrakcyjnej od pozycji zerowego rzędu dyfrakcji :

$$\overline{x}_{n,i} = \frac{x_{nli} + x_{npi}}{2} = \frac{17 + 17}{2} = 17[mm]$$
$$u(\overline{x}_{n,i}) = \frac{u(x_{nli}) + u(x_{npi})}{2} = \frac{2+2}{2} = 2[mm]$$

Obliczenie sinusa kata ugięcia:

$$\sin \Theta_{n,i} = \frac{\overline{x}_{n,i}}{\sqrt{\overline{x}_{n,i}^2 + L_i^2}} = \frac{8}{\sqrt{8^2 + 300^2}} = 0.02665 \approx 0,027$$

$$u_c(\sin \Theta_{n,i}) = \sqrt{\left(\frac{L_i \overline{x}_{n,i}}{\left(L_i^2 + \overline{x}_{n,i}^2\right)^{\frac{3}{2}}}\right)^2 u^2(L) + \left(\frac{L_i^2}{\left(L_i^2 + \overline{x}_{n,i}^2\right)^{\frac{3}{2}}}\right)^2 u^2(\overline{x}_{n,i})} =$$

$$= \sqrt{\left(\frac{300 \cdot 8}{(300^2 + 8^2)^{\frac{3}{2}}}\right)^2 \cdot (0,58)^2 + \left(\frac{300^2}{(300^2 + 8^2)^{\frac{3}{2}}}\right)^2 \cdot 2^2} = 0,00665 \approx 0,007$$

Długość fali emisji światła emitowanego przez laser:

$$\lambda_{n,i} = \frac{d \cdot (\sin \Theta_{n,i})}{n} = \frac{\frac{1}{50} \cdot 0,007}{1} = 0,00054[mm] \approx 540[nm]$$

$$\overline{\lambda}_{n,i} = \frac{\sum_{i=1}^{n} \lambda_i}{n} = \frac{540,00 + 570,00 + \dots + 530,00 + 533,34}{15} = \frac{8186,69}{15} = 545,7793 \approx 545,78[nm]$$

$$u(\overline{\lambda}) = \sqrt{\frac{\sum_{i=1}^{n} (\lambda_i - \overline{\lambda})^2}{n(n-1)}} = \sqrt{\frac{33,40 + 586,64 + \dots + 248,98 + 154,737}{15 \cdot 14}}$$
$$= \sqrt{\frac{3676,545}{210}} = 4,18418 \approx 4,19$$

4.2 Obliczenia dla drugiej części eksperymentu

Obliczenia dla pierwszych trzech danych są identyczne jak w pierwszej części eksperymentu.

Obliczenie średniej $\overline{\sin \Theta}$

$$\overline{\sin\Theta} = \frac{\sum_{i=1}^{n} \sin\Theta_i}{n} = \frac{0,540 + 0,523 + \dots + 0,530 + 0,532}{15} = \frac{7,954}{15} = 0,53026 \approx 0,531$$

Obliczenie odchylenia standardowego $u(\overline{\sin \Theta})$

$$u(\overline{\sin \Theta}) = \sqrt{\frac{\sum_{i=1}^{n} \left(\sin \Theta_i - \overline{\sin \Theta}\right)^2}{n(n-1)}} = \sqrt{\frac{0,000166}{210}} = 0,00088908 \approx 0,0009$$

Obliczenie stałej siatki dyfrakcyjnej d (dla widma n = 1):

$$d = \frac{n\overline{\lambda}}{\sin\Theta} = \frac{1 \cdot 545, 78}{0, 53} = 1029, 774 \approx 1029, 78[nm]$$

Obliczenie wartości niepewności związanej z wyznaczeniem stałej siatki dyfrakcyjnej (dla widma n=1):

$$u_c(d) = \sqrt{\left(\frac{n}{\overline{\sin\Theta}}\right)^2 u^2(\overline{\lambda}) + \left(\frac{n\overline{\lambda}}{\overline{\sin\Theta}^2}\right)^2 u^2(\overline{\sin\Theta})} = \sqrt{\left(\frac{1}{0,531}\right)^2 \cdot 4,19^2 + \left(\frac{1 \cdot 545,78}{0,531^2}\right)^2 \cdot 0,0009^2}$$
$$= \sqrt{62,26428 + 3,03488} = \sqrt{65,29916} = 8,08079 \approx 8,08[nm]$$

5 Wnioski

Przy pomocy pomiarów odczytanych z ekranu udało się wyznaczyć długość fali lasera. Jest ona zgodna z teoretycznymi przewidywaniami, zakres długości fali świetlnej dla zielonej barwy mieści się w przedziale od około 520 nm do 565 nm. Zmierzona średnia długość fali świetlnej w eksperymencie wynosi 545,78 \pm 4,19 nm co potwierdza poprawność przeprowadzonych pomiarów.

W drugiej części eksperymentu wyznaczona została stała siatki dyfrakcyjnej B, która według pomiarów wynosi 1029,78 \pm 8,08 nm co daje nam około 972 $\frac{rys}{mm}$.

6 Bibliografia

- https://pl.wikipedia.org/wiki/Barwy_proste
- https://pl.wikipedia.org/wiki/Siatka_dyfrakcyjna