Lecture 2 Markov Decision Processes

MDP

- formally describe an environment for reinforcement learning
- Where the environment is fully observable
- The current state completely characterises the process

Markov Property:

- "The future is independent of the past given the present"
- The state captures all relevant information from the history
- A state S_t is Markov if and only if......

Markov Process:

- A Markov process or Markov chain is a tuple < S, P >
- S: a finite set of states
- P: transition probability matrix

Markov Reward Process:

- In this process, the only stochastic process is transition to next state.
- A Markov Reward Process is a tuple $< S, P, R, \gamma >$
- R is a reward function, $R_s := E[R_{t+1}|S_t = s]$
- Important : R_t depends on a state. It is deterministic. Therefore, R_{t+1} means reward of S_{t+1} .
- γ is a discount factor, $\gamma \in [0,1]$
- Return $G_t = R_{t+1} + \gamma R_{t+2} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
- Therefore, $G_t = R_{t+1} + \gamma G_{t+1}$
- Question: Why G_t doesn't include R_t ?
- The value of receiving reward R after k+1 time-steps is $\gamma^k R$

Value Function

- The value function v(s) gives the long-term value of state s.
- The state value function v(s) of an MRP is the expected return
- starting from state s
- $-v(s) = E[G_t|S_t = s]$
- Therefore, for transition matrix $P := P_{ss'} = P[S_{t+1} = s' | S_t = s]|_{P \in M_{N \times N}}$, reward vector $r := r_k = R_{s_k}$, and state probability vector $s := s_k = P[S_t = s_k]$,

$$v(s) = E[G_t|S_t = s] = \left(\sum_{k=0}^{\infty} \gamma^k P^k\right)(sr)$$

Bellman Equation for MRP

- $\begin{aligned} &-v(s) = E[G_t|S_t = s] \\ &v(s) = E[R_{t+1} + \gamma G_{t+1}|S_t = s] \\ &v(s) = E[R_{t+1}|S_t = s] + E[\gamma G_{t+1}|S_t = s] \\ &v(s) = R_s + E[\gamma G_{t+1}|S_t = s] \end{aligned}$
- Question : According to ppt, $G_{t+1}=v(S_{t+1})$. At least $E[G_{t+1}|S_t=s]=E[v(S_{t+1})|S_t=s]$. Why?
- According to my calculation, $v(s) = \left(\sum_{k=0}^{\infty} \gamma^k P^k\right) (sr)$ $= \left(\left(\sum_{k=0}^{0} \gamma^k P^k\right) + \left(\sum_{k=1}^{\infty} \gamma^k P^k\right)\right) (sr)$ $= \left(I + \gamma P \left(\sum_{k=0}^{\infty} \gamma^k P^k\right)\right) (sr)$ $= sr + \gamma P \left(\sum_{k=0}^{\infty} \gamma^k P^k\right) (sr)$ $= sr + \gamma P v(s)$
- Therefore, $v(s) = sr + \gamma P v(s)$ $\therefore v(s)(1 - \gamma P) = sr$ $\therefore v(s) = sr(1 - rP)^{-1}$

Markov Decision Process

- A Markov decision process (MDP) is a Markov reward process with decisions. It is an environment in which all states are Markov
- A Markov Decision Process is a tuple $< S, A, P, R, \gamma >$
- A is a finite set of actions
- P is a state transition probability matrix, $P_{ss'}^a = P[S_{t+1} = s' | S_t = s, A_t = a]$
- Therefore, P can be written in $M \times N \times N$ matrix that M = n(A) and N = n(S)
- R is a reward function, $R_s^a = E[R_{t+1}|S_t = s, A_t = a]$

Policy

- A policy π is a distribution over actions given states, $\pi(a,s) = P[A_t = a | S_t = s]$ 1)
- Therefore, π can be written in $M \times N$ matrix that M = n(S) and N = n(A).
- MDP policies depend on the current state
- Policies are stationary(time-independent), $A_t \sim \pi(\: \bullet \: , S_t), \: \forall \: t > 0$
- Then, my question is What is P^π ? By definition, $P^\pi = P^\pi_{ss'} = \sum_{a \in A} \pi(a,s) P^a_{ss'}$.

$$\begin{split} &-P^{\pi}_{ss'} = \sum_{a \in A} \pi(a,s) P^a_{ss'} \\ & \therefore P^{\pi}_{ss'} = \sum_{a \in A} P[a|s] P^a_{ss'} \\ & \therefore P^{\pi}_{ss'} = E[P^A_{ss'}] \end{split}$$

- It means that, P^{π} means ultimate probability considering action.
- 1) Note that I used $\pi(a,s)$ instead $\pi(a|s)$