Trabajo Práctico 2 EDyAII Análisis de Costos

Farizano, Juan Ignacio

Mellino, Natalia

1. Implementación de Secuencias con Listas

1.1. Función mapS

Sea $xs = [x_{|xs|-1}, ..., x_0]$ una lista, n = |xs| su longitud y sea f la función que toma mapS como argumento.

1.1.1. Trabajo:

La recurrencia para el trabajo la podemos expresar de la siguiente manera:

$$W_{mapS}(n) = W_f(x_{n-1}) + W_{mapS}(n-1) + k$$

Donde k es una constante, y x_{n-1} es la cabeza de la lista.

Demostramos por inducción que $W_{mapS} \in O\left(\sum_{i=0}^{n-1} W_f(x_i)\right)$

$$\begin{split} W_{mapS}(n) &= W_f(x_{n-1}) + W_{mapS}(n-1) + k \\ &\leq W_f(x_{n-1}) + c \cdot \left(\sum_{i=0}^{n-2} W_f(x_i) - k\right) + k \to \text{HI (relajamos la hipótesis)} \\ &\leq c \cdot W_f(x_{n-1}) + c \cdot \sum_{i=0}^{n-2} W_f(x_i) - c \cdot k + k \\ &\leq c \cdot \sum_{i=0}^{n-1} W_f(x_i) \iff c \geq 1 \end{split}$$

Por lo tanto $W_{mapS} \in O\left(\sum_{i=0}^{n-1} W_f(x_i)\right)$.

1.1.2. Profundidad:

Para la profundidad, la recurrencia la podemos expresar de la siguiente manera:

$$S_{mapS}(n) = max(S_f(x_{n-1}), S_{mapS}(n-1)) + k$$

Podemos demostrar también que $S_{mapS} \in O\left(\sum_{i=0}^{n-1} S_f(x_i)\right)$:

$$S_{mapS}(n) = max(S_f(x_{n-1}), S_{mapS}(n-1)) + k$$

 $\leq S_f(x_{n-1}) + S_{mapS}(n-1) + k$

Si observamos la ecuación anterior, podemos ver que se obtuvo una similar a la del trabajo, por lo tanto, el análisis de la profundidad se realiza de la misma manera que en el trabajo. Entonces

podemos concluir que
$$S_{mapS} \in O\left(\sum_{i=0}^{n-1} S_f(x_i)\right)$$
.

1.2. Función appendS

Sean n la longitud de la primer lista que recibe como argumento la función appendS. Observemos, que tanto el trabajo como la profundidad se realizan con respecto n ya que es la lista que vamos consumiendo en cada llamada recursiva.

1.2.1. Trabajo:

Podemos ver que la recurrencia para el trabajo nos queda expresada como:

$$W_{appendS}(n) = W_{appendS}(n-1) + k$$

Donde k es una constante.

Podemos demostrar fácilmente por inducción que $W \in O(n)$:

$$W_{appendS}(n) = W_{appendS}(n-1) + k$$

$$\leq c \cdot (n-1) + k \to HI$$

$$\leq c \cdot n - c + k$$

$$\leq c \cdot n \iff c > k$$

Por lo tanto $W_{appendS} \in O(n)$

1.2.2. Profundidad:

Para la profundidad, la recurrencia nos queda expresada igual que la del trabajo:

$$S_{appendS}(n) = S_{appendS}(n-1) + k \in O(n)$$

Es decir, tanto el trabajo como la profundidad de la función appendS son del orden de la longitud de la primera lista.

1.3. Función reduceS

Sea n la longitud de la lista que reduceS recibe como argumento.

1.3.1. Trabajo:

La recurrencia para reduceS la podemos expresar de la siguiente manera (recordemos que se asume que la función que recibe como argumento es de orden constante):

$$W_{reduceS}(n) = W_{reduceS}(\lceil \frac{n}{2} \rceil) + W_{contract}(n) + k$$

Siendo que $\frac{n}{2}$ es una función suave, consideramos solo potencias de 2 y obtenemos (tenemos en cuenta esto cada vez que en una recurrencia se encuentre $\frac{n}{2}$):

$$W_{reduceS}(n) = W_{reduceS}(\frac{n}{2}) + W_{contract}(n) + k$$

Ahora necesitamos saber que orden tiene $W_{contract}(n)$, observemos que su recurrencia es de la forma:

$$W_{contract(n)} = W_{contract}(n-2) + k$$

Podemos demostrar que $W_{contract} \in O(n)$:

$$W_{contract}(n) = W_{contract}(n-2) + k$$

$$\leq c \cdot (n-2) + k \to HI$$

$$\leq c \cdot n - 2c + k$$

$$\leq c \cdot n \iff c \geq \frac{k}{2}$$

Ahora, utilizando el tercer caso del **Teorema Maestro** podemos probar que $W_{reduceS}(n) \in O(n)$, debemos ver dos cosas:

Sean
$$a = 1$$
, $b = 2$ y $f(n) = W_{contract}(n)$

- Existe $\epsilon > 0$ tal que $f(n) \in \Omega(n^{lg_2 1 + \epsilon})$: de hecho, como f(n) es O(n) basta tomar $\epsilon = 1$ y trivialmente se satisface la condición
- Existe c < 1 y $N \in \mathbb{N}$ tal que para todo n > N, $1 \cdot f(\frac{n}{2}) \le c \cdot f(n)$: nuevamente, como f(n) es O(n), podemos tomar $c = \frac{1}{2}$ y N = 1 y se cumple: $\frac{n}{2} \le \frac{1}{2}n$.

Entonces, como se cumplen las hipótesis del caso mencionado, podemos decir que $W_{reduceS} \in O(f(n))$ y como $f(n) \in O(n)$, por transitividad, resulta $W_{reduceS} \in O(n)$.

1.3.2. Profundidad:

Para la profundidad tenemos la siguiente recurrencia:

$$S_{reduceS}(n) = max(S_{contract}(n), S_{reduceS}(\frac{n}{2})) + k$$

Podemos ver que también, $S \in O(n)$:

$$S_{reduceS}(n) = max(S_{contract}(n), S_{reduceS}(\frac{n}{2})) + k$$

 $\leq S_{contract}(n) + S_{reduceS}(\frac{n}{2}) + k$

Observemos que ahora la recurrencia nos quedo expresada de manera similar a la del trabajo, por lo tanto, viendo el análisis anterior podemos concluir que $S_{reduceS} \in O(n)$.

1.4. Función scanS

Sea n la longitud de la lista que recibe scanS como argumento, y asumiendo que la función f que toma es de orden constante, tenemos las siguientes recurrencias:

1.4.1. Trabajo:

Para el trabajo se tiene que:

$$W_{scanS}(n) = W_{scanS}(\frac{n}{2}) + W_{contract}(n) + W_{evenExpand}(n) + k$$

Donde k es una constante. Como vimos anteriormente en reduceS, tenemos que $W_{contract}(n) \in O(n)$. Podemos ver que pasa lo mismo para la función evenExpand. Sea n lo suficientemente grande, entonces:

$$W_{evenExpand}(n) = W_{oddExpand}(n-1) + k = W_{evenExpand}(n-2) + k'$$

Donde es trivial que viendo esta última igualdad, $W_{evenExpand}(n) \in O(n)$. Luego, tenemos que:

$$W_{scanS}(n) = W_{scanS}(\frac{n}{2}) + W_{contract}(n) + W_{evenExpand}(n) + k$$

$$\leq W_{scanS}(\frac{n}{2}) + cn + c'n + k$$

$$= W_{scanS}(\frac{n}{2}) + (c + c')n + k$$

Ahora observemos que esta recurrencia es similar a la obtenida para el trabajo en **reduceS**, entonces utilizando el tercer caso del **Teorema Maestro** tomando f(n) = (c + c')n, a = 1 y b = 2, podemos concluir que $W_{scanS}(n) \in O(n)$.

1.4.2. Profundidad:

La recurrencia para la profundidad nos queda expresada de la siguiente manera:

$$S_{scanS}(n) = S_{scanS}(\frac{n}{2}) + S_{contract}(n) + S_{evenExpand}(n) + k$$

Sabemos que $S_{contract}(n) \in O(n)$ y podemos ver fácilmente que $S_{evenExpand} \in O(n)$:

$$S_{evenExpand}(n) = S_{oddExpand}(n-1) + k = S_{evenExpand}(n-2) + k'$$

Entonces, análogamente a la recurrencia del trabajo resuelta anteriormente se tiene que $S_{evenExpand}(n) \in O(n)$.

Veamos que la recurrencia S_{scanS} nos quedó igual a la del trabajo, entonces el razonamiento es análogo y podemos concluir que $S_{scanS} \in O(n)$.

2. Implementación de Secuencias con Arreglos

Por especificación tenemos que

$$W_{tabulate}(f \ n) \in O\left(\sum_{i=0}^{n-1} W_f(i)\right)$$
$$S_{tabulate}(f \ n) \in O\left(\max_{i=0}^{n-1} S_f(i)\right)$$

2.1. Función mapS

Sea f la función que se recibe como argumento, y n la longitud del arreglo sobre el cual se evaluará f sobre sus elementos.

2.1.1. Trabajo:

La recurrencia para el trabajo de la función mapS la podemos expresar como sigue:

$$W_{mapS}(f \ n) = W_{tabulate}(f \ n) + \underbrace{W_{lengthS}(n)}_{\in O(1)} + k$$

Por lo tanto
$$W_{mapS}(f \ n) \in O\left(\sum_{i=0}^{n-1} W_f(i)\right)$$

2.1.2. Profundidad:

Luego, para la profundidad tenemos la siguiente recurrencia:

$$S_{mapS}(f \ n) = S_{tabulate}(f \ n) + \underbrace{S_{lengthS}(n)}_{\in O(1)} + k$$

Por lo tanto
$$S_{mapS}(f \ n) \in O\left(\max_{i=0}^{n-1} S_f(i)\right)$$

2.2. Función appendS

Sea n y m la longitudes de los arreglos que reciben appendS como argumento.

2.2.1. Trabajo:

Podemos expresar la recurrencia para el trabajo de appendS de la siguiente manera:

$$W_{appendS}(n+m) = W_{tabulate}(f\ (n\ +\ m)) + \underbrace{W_{lengthS}(n)}_{\in\ O(1)} + \underbrace{W_{lengthS}(m)}_{\in\ O(1)} + k$$

Podemos ver fácilmente que la función que recibe tabulateS como argumento es O(1) ya que simplemente toma un índice y devuelve el elemento de la lista que corresponde. Por lo tanto:

$$W_{appendS}(n+m) \in O\left(\sum_{i=0}^{n+m-1} W_f(i)\right) \Rightarrow W_{appendS}(n+m) \in O(n+m)$$

2.2.2. Profundidad:

Podemos expresar la recurrencia para la profundidad de appendS de la siguiente manera:

$$S_{appendS}(n+m) = S_{tabulate}(f~(n~+~m)) + \underbrace{S_{lengthS}(n)}_{\in~O(1)} + \underbrace{S_{lengthS}(m)}_{\in~O(1)} + k$$

Igualmente al trabajo, $S_f \in O(1)$, por lo tanto:

$$S_{appendS}(n+m) \in O\left(\max_{i=0}^{n+m-1} S_f(i)\right) \Rightarrow S_{appendS}(n+m) \in O(1)$$

2.3. Función reduceS

Sea n la longitud del arreglo que recibe **reduceS** como argumento, y f una función de orden constante que toma la función como argumento.

2.3.1. Trabajo:

La recurrencia para el trabajo de reduceS la podemos expresar de la siguiente manera:

$$W_{reduceS}(n) = W_{reduceS}(\frac{n}{2}) + W_{contract}(n) + \underbrace{W_{lengthS}(n)}_{\in O(1)} + k$$

Primero debemos saber que orden tiene la función contract, su recurrencia tiene la forma:

$$W_{contract}(n) = W_{tabulateS}(f \frac{n}{2}) + \underbrace{W_{lengthS}(n)}_{\in O(1)} + k$$

Por lo tanto,
$$W_{contract}(n) \in O\left(\sum_{i=0}^{\left\lceil \frac{n}{2}\right\rceil} W_f(i)\right)$$
 y como $f \in O(1)$ resulta $W_{contract}(n) \in O(n)$

Ahora utilizando el tercer caso del **Teorema Maestro**, podemos demostrar de forma análoga a la función equivalente en listas que $W_{reduceS}(n) \in O(n)$.

2.3.2. Profundidad:

La recurrencia para la profundidad de reduceS podemos expresarla de la siguiente manera:

$$S_{reduceS}(n) = S_{reduceS}(\frac{n}{2}) + S_{contract}(n) + \underbrace{W_{lengthS}(n)}_{\in O(1)} + k$$

$$S_{contract}(n) = S_{tabulateS}(f|\frac{n}{2}) + \underbrace{S_{lengthS}(n)}_{\in O(1)} + k$$

$$S_{contract}(n) \in O\left(\max_{i=0}^{\left\lceil\frac{n}{2}\right\rceil} S_f(i)\right) \text{ y como } f \in O(1) \text{ resulta } S_{contract}(n) \in O(1)$$

Sabiendo esto, podemos ver que:

$$S_{reduceS}(n) = S_{reduceS}(\frac{n}{2}) + \underbrace{S_{contract}(n)}_{\in O(1)} + \underbrace{S_{lengthS}(n)}_{\in O(1)} + k = S_{reduceS}(\frac{n}{2}) + k'$$

Demostramos por inducción que $S_{reduceS}(n) \in O(\log n)$

$$S_{reduceS}(n) = S_{reduceS}(\frac{n}{2}) + k'$$

$$\leq c \cdot \log \frac{n}{2} + k' \to HI$$

$$= c \cdot \log n - c \cdot \underbrace{\log 2}_{=1} + k'$$

$$= c \cdot \log n - c + k'$$

$$\leq c \cdot \log n \iff c \geq k'$$

Por lo tanto, $S_{reduceS}(n) \in O(\log n)$.

2.4. Función scanS

Sea n la longitud del arreglo que recibe scanS como argumento. El análisis de costos para esta función será parecido al de reduceS. Veamos cómo nos quedan las recurrencias:

2.4.1. Trabajo:

Para el trabajo la recurrencia nos queda expresada de la siguiente manera:

$$W_{scanS}(n) = W_{scanS}(\frac{n}{2}) + W_{contract}(n) + W_{expand}(n) + \underbrace{W_{lengthS}(n)}_{\in O(1)} + k$$
$$= W_{scanS}(\frac{n}{2}) + W_{contract}(n) + W_{expand}(n) + k'$$

Donde k y k' son constantes. Ahora, razonando de forma análoga a **reduceS** sabemos que $W_{contract}(n) \in O(n)$. Luego, es fácil de ver que $W_{expand}(n) \in O(n)$. Veamos cómo es su recurrencia:

$$W_{expand}(n) = W_{tabulateS}(f \ n) + k$$

Como la función que se le pasa como argumento a tabulateS es de orden constante, sabiendo ya el costo de esta podemos decir que $W_{expand}(n) \in O(n)$. Entonces, sabiendo todo esto se tiene:

$$W_{scanS}(n) = W_{scaSn}(\frac{n}{2}) + W_{contract}(n) + W_{expand}(n) + k$$

$$\leq W_{scanS}(\frac{n}{2}) + cn + c'n + k$$

$$= W_{scanS}(\frac{n}{2}) + (c + c')n + k$$

Entonces, usando el tercer caso del **Teorema Maestro** tomando $f(n) = (c + c') \cdot n$, a = 1, b = 2, estamos nuevamente en un caso similar a la función reduceS y podemos concluir que $W_{scanS} \in O(n)$. Observemos que para scanS también asumimos que la función que toma como argumento es de orden constante.

2.4.2. Profundidad:

Para la profundidad tenemos la siguiente recurrencia:

$$S_{scanS} = S_{scanS}(\frac{n}{2}) + S_{contract}(n) + S_{expand}(n) + k$$

Observemos que tanto $S_{contract}(n)$ como $S_{expand}(n)$ son O(1), pues para la función contract ya analizamos su costo en reduceS y en el caso de expand, como está definida en términos de tabulateS, que es O(1), también resulta expand $\in O(1)$. Entonces, sabiendo todo esto, y observando de nuevo la recurrencia S_{scanS} , podemos ver que nos termina quedando similar a la de reduceS, entonces resulta $S_{scanS} \in O(\log n)$.