

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.gitee.io

第五章 留数

- 1 孤立奇点
- 2 留数
- 3 留数在定积分的应用*

第一节 孤立奇点

- 孤立奇点的类型
- 零点与极点
- 函数在 ∞ 的性态

孤立奇点

我们先根据奇点附近洛朗展开的形式来对其进行分类,以便于分类计算留数.

例

考虑函数 $f(z)=\frac{1}{\sin(1/z)}$, 显然 $0,z_k=\frac{1}{k\pi}$ 是奇点, k 是非零整数. 因为 $\lim_{k\to +\infty}z_k=0$, 所以 0 的任何一个去心邻域内都有奇点. 此时无法选取一个圆环域 $0<|z|<\delta$ 作 f(z) 的洛朗展开, 因此我们不考虑这类奇点.

孤立奇点的定义

定义

如果 z_0 是 f(z) 的一个奇点, 且 z_0 的某个邻域内没有其它奇点, 则称 z_0 是 f(z) 的一个孤立奇点.

例

- z=0 是 $e^{\frac{1}{z}}, \frac{\sin z}{z}$ 的孤立奇点.
- z=-1 是 $\frac{1}{z(z+1)}$ 的孤立奇点.
- z=0 不是 $\frac{1}{\sin(1/z)}$ 的孤立奇点.

若 f(z) 只有有限多个奇点,则这些奇点都是孤立奇点.

孤立奇点的分类

如果 f(z) 在孤立奇点 z_0 的去心邻域 $0 < |z - z_0| < \delta$ 内解析,则可以作 f(z) 的洛朗展开. 根据该洛朗级数主要部分的项数,我们可以将孤立奇点分为三种:

孤立奇点类型	洛朗级数特点	$\lim_{z\to z_0} f(z)$
可去奇点	没有主要部分	存在且有限
<i>m</i> 阶极点	主要部分只有有限项非零 最低次为 -m 次	∞
本性奇点	主要部分有无限项非零	不存在且不为 ∞

可去奇点的定义

定义

 $\overline{F}(z)$ 在孤立奇点 z_0 的去心邻域的洛朗级数没有主要部分,即

$$f(z) = c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \cdots, \quad 0 < |z - z_0| < \delta,$$

是幂级数, 则称 z_0 是 f(z) 的可去奇点.

设 g(z) 为右侧幂级数的和函数, 则 g(z) 在 $|z-z_0|<\delta$ 上解析, 且除 z_0 外 f(z)=g(z). 通过补充或修改定义 $f(z_0)=g(z_0)=c_0$, 可使得 f(z) 也在 z_0 解析. 这就是 ''可去'' 的含义.

定理

 z_0 是 f(z) 的可去奇点 $\iff \lim_{z \to z_0} f(z)$ 存在且有限 $\iff \lim_{z \to z_0} (z - z_0) f(z) = 0.$

例题: 可去奇点

例

$$f(z) = \frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \cdots$$

没有负幂次项, 因此 0 是可去奇点. 也可以从 $\lim_{z} zf(z) = \sin 0 = 0$ 看出.

例

$$f(z) = \frac{e^z - 1}{z} = 1 + \frac{z}{2!} + \frac{z^2}{3!} + \cdots$$

没有负幂次项,因此 0 是可去奇点. 也可以从 $\lim_{z\to 0} zf(z) = e^0 - 1 = 0$ 看出.

本性奇点的定义

定义

若 f(z) 在孤立奇点 z_0 的去心邻域的洛朗级数主要部分有无限多项非零,则称 z_0 是 f(z) 的本性奇点.

例

由于
$$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2z^2} + \cdots$$
, 因此 0 是本性奇点.

定理

 z_0 是 f(z) 的本性奇点 $\iff \lim_{z \to z_0} f(z)$ 不存在也不是 ∞ .

事实上我们有皮卡大定理: 对于本性奇点 z_0 的任何一个去心邻域, f(z) 的像取遍所有复数, 至多有一个取不到.

可去奇点的性质比较简单,而本性奇点的性质又较为复杂,因此我们主要关心的是极点的情形.

定义

如果 f(z) 在孤立奇点 z_0 的去心邻域的洛朗级数主要部分只有有限多项非零,即

$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \dots + c_0 + c_1(z - z_0) + \dots, \ 0 < |z - z_0| < \delta,$$

其中 $c_{-m} \neq 0, m \geq 1$, 则称 z_0 是 f(z) 的 m 阶极点或 m 级极点.

极点的定义

$$g(z) = c_{-m} + c_{-m+1}(z - z_0) + c_{-m+2}(z - z_0)^2 + \cdots,$$

则 g(z) 在 z_0 解析且非零, 且

$$f(z) = \frac{g(z)}{(z - z_0)^m}, 0 < |z - z_0| < \delta.$$

定理

- (1) z_0 是 f(z) 的 m 阶极点 $\iff \lim_{z\to z_0} (z-z_0)^m f(z)$ 存在且非零.
- (2) z_0 是 f(z) 的极点 $\iff \lim_{z \to z_0} f(z) = \infty$.

典型例题: 函数的极点

例

$$f(z)=rac{3z+2}{z^2(z+2)}$$
, 由于 $\lim_{z o 0}z^2f(z)=1$, 因此 0 是二阶极点. 同理 -2 是一阶极点.

练习

求
$$f(z) = \frac{1}{z^3 - z^2 - z + 1}$$
 的奇点,并指出极点的阶.

答案

-1 是一阶极点, 1 是二阶极点.

我们来研究极点与零点的联系,并给出极点的阶的计算方法.

定义

如果 f(z) 在解析点 z_0 处的泰勒级数最低次项幂次是 $m \ge 1$, 即

$$f(z) = c_m(z - z_0)^m + c_{m+1}(z - z_0)^{m+1} + \cdots, \ 0 < |z - z_0| < \delta,$$

其中 $c_m \neq 0$, 则称 z_0 是 f(z) 的 m 阶零点.

此时
$$f(z) = (z - z_0)^m g(z)$$
, $g(z)$ 在 z_0 解析且 $g(z_0) \neq 0$.

定理

设 f(z) 在 z_0 解析. z_0 是 m 阶零点当且仅当

$$f(z_0) = f'(z_0) = \dots = f^{(m-1)}(z_0) = 0, \quad f^{(m)}(z_0) \neq 0.$$

例题: 函数的零点

例

 $\overline{f(z)} = z(z-1)^3$ 有一阶零点 0 和三阶零点 1.

- 1列

 $\overline{f(z)} = \sin z - z$. 由于

$$f(z) = \frac{z^3}{3!} - \frac{z^5}{5!} + \cdots$$

因此 0 是三阶零点.

定理

非零的解析函数的零点总是孤立的.

证明

设 f(z) 是区域 D 上的非零解析函数, $z_0 \in D$ 是 f(z) 的一个零点. 由于 f(z) 不恒为零, 因此存在 $m \ge 1$ 使得在 z_0 的一个邻域内 $f(z) = (z-z_0)^m q(z)$, q(z) 在 z_0 处解析且非零.

内
$$f(z)=(z-z_0)^mg(z)$$
, $g(z)$ 在 z_0 处解析且非零. 对于 $\varepsilon=\frac{1}{2}|g(z_0)|$, 存在 $\delta>0$ 使得当 $z\in \mathring{U}(z_0,\delta)\subseteq D$ 时, $|g(z)-g(z_0)|<\varepsilon$. 从而 $g(z)\neq 0$, $f(z)\neq 0$.

由此可知,一旦我们知道了解析函数在一串有极限的数列上的值,这个解析函数本身就被唯一决定了.

为了统一地研究零点和极点, 我们引入下述记号. 设 z_0 是 f(z) 的可去奇点、极点或解析点. 记 $\operatorname{ord}(f,z_0)$ 为 f(z) 在 z_0 的洛朗展开的最低次项幂次.

不难看出,

- (1) 如果 $ord(f, z_0) \ge 0$, 则 z_0 是可去奇点或解析点.
- (2) 如果 $ord(f, z_0) = m > 0$, 则 z_0 是可去奇点或 m 阶零点.
- (3) 如果 $\operatorname{ord}(f, z_0) = -m < 0$, 则 z_0 是 m 阶极点.

可去奇点和极点判定方法

如果 $ord(f, z_0) = m, ord(g, z_0) = n$, 那么

$$\operatorname{ord}\left(\frac{f}{g}, z_0\right) = m - n, \quad \operatorname{ord}(fg, z_0) = m + n.$$

函数的零点, 极点和阶

证明

设 $f_0(z)$ 为幂级数 $(z-z_0)^{-m}f(z)$ 的和函数, $g_0(z)$ 为幂级数 $(z-z_0)^{-n}g(z)$ 的和函数, 则 $f_0(z), g_0(z)$ 在 z_0 解析且非零.

因此 $\frac{f_0(z)}{g_0(z)}$, $f_0(z)g_0(z)$ 在 z_0 解析且非零. 由

$$\frac{f(z)}{g(z)} = (z - z_0)^{m-n} \frac{f_0(z)}{g_0(z)}, \quad f(z)g(z) = (z - z_0)^{m+n} f_0(z)g_0(z)$$

可知命题成立.

推论

设 z_0 是 f(z) 的 m 阶零点, 是 g(z) 的 n 阶零点.

- (1) 若 $m \ge n$, 则 z_0 是 $\frac{f(z)}{g(z)}$ 的可去奇点.
- (2) 若 m < n 时,则 z_0 是 $\frac{f(z)}{g(z)}$ 的 n m 阶极点.

典型例题: 函数的极点

例

单选题: (2021 年 B 卷) z=0 是函数 $f(z)=\frac{e^z-1}{z^2}$ 的(A)阶极点.

(A) 1

(B) 2

(C) 3

(D) 4

解

由于
$$e^z - 1 = z + \frac{z^2}{2!} + \cdots$$
, 所以 $0 \neq e^z - 1$ 的一阶零点.

因此 $\operatorname{ord}(f,0) = 1 - 2 = -1, 0$ 是一阶极点.

典型例题: 函数的极点

1列

$$z = 0$$
 是 $f(z) = \frac{(e^z - 1)^3 z^2}{\sin z^7}$ 的几阶极点?

解

由于 $(\sin z)'(0) = \cos 0 = 1$, 所以 0 是 $\sin z$ 的一阶零点. 因此 $\operatorname{ord}(f,0) = 3 + 2 - 7 = -2$, 0 是二阶极点.

练习

求 $f(z) = \frac{(z-5)\sin z}{(z-1)^2 z^2 (z+1)^3}$ 的奇点.

答案

1 是二阶极点, 0 是一阶极点, -1 是三阶极点.

当我们把复平面扩充成闭复平面后,从几何上看它变成了一个球面. 这样的一个球面是一种封闭的曲面,它具有某些整体性质. 当我们需要计算一个闭路上函数的积分的时候,我们需要研究闭路内部每一个奇点处的洛朗展开,从而得到相应的小闭路上的积分. 如果在这个闭路内部的奇点比较多,而外部的奇点比较少时,这样计算就不太方便. 此时如果通过变量替换 $z=\frac{1}{t}$,转而研究闭路外部奇点处的洛朗展开,便可减少所需考虑的奇点个数,从而降低所需的计算量. 因此我们需要研究函数在 ∞ 的性态.

定义

如果函数 f(z) 在 ∞ 的去心邻域 $R<|z|<+\infty$ 内没有奇点, 则 称 ∞ 是 f(z) 的孤立奇点.

设
$$g(t) = f\left(\frac{1}{t}\right)$$
, 则研究 $f(z)$ 在 ∞ 的性质可以转为研究 $g(t)$

在 0 的性质. g(t) 在圆环域 $0 < |t| < \frac{1}{R}$ 上解析, 0 是它的孤立奇点.

定义

如果 0 是 g(t) 的可去奇点 (m) 阶极点、本性奇点), 则称 ∞ 是 f(z) 的可去奇点 (m) 阶极点、本性奇点).

函数在 ∞ 的性态

设 f(z) 在圆环域 $R < |z| < +\infty$ 的洛朗展开为

$$f(z) = \dots + \frac{c_{-2}}{z^2} + \frac{c_{-1}}{z} + c_0 + c_1 z + c_2 z^2 + \dots$$

则 g(t) 在圆环域 $0 < |t| < \frac{1}{R}$ 的洛朗展开为

$$g(t) = \dots + \frac{c_2}{t^2} + \frac{c_1}{t} + c_0 + c_{-1}t + c_{-2}t^2 + \dots$$

∞ 类型	洛朗级数特点	$\lim_{z o \infty} f(z)$
可去奇点	没有正幂次部分	存在且有限
m 阶极点	正幂次部分只有有限项非零 最高次为 m 次	∞
本性奇点	正幂次部分有无限项非零	不存在且不为 ∞

例

$$f(z)=\frac{z}{z+1}$$
. 由 $\lim_{z\to\infty}f(z)=1$ 可知 ∞ 是可去奇点. 事实上此时 $f(z)$ 在 $1<|z|<+\infty$ 内的洛朗展开为

$$f(z) = \frac{1}{1 + \frac{1}{z}} = 1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \cdots$$

例

函数 $f(z)=z^2+\frac{1}{z}$ 含有正次幂项且最高次为 2, 因此 ∞ 是 2 阶 极点.

例题: ∞ 的奇点类型

例

 $\overline{\mathcal{Q}_p(z)}$ 是 $n \ge 1$ 次多项式, 则 ∞ 是 p(z) 的 n 阶极点.

例

函数

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots$$

含有无限多正次幂项, 因此 ∞ 是本性奇点.

事实上, 如果函数 f(z) 在复平面上处处解析, 且 f(z) 不是多项式, 则 ∞ 是它的本性奇点.

夏变函数与积分变换 ▶第五章 留数 ▶1 孤立奇点 ▶C 函数在 ∞ 的性态

典型例题: 奇点的类型

例

函数
$$f(z) = \frac{(z^2-1)(z-2)^3}{(\sin \pi z)^3}$$
 在扩充复平面内有哪些什么类型的

奇点,并指出极点的阶.

解

- 整数 $z = k \neq \pm 1, 2$ 是 $\sin \pi z$ 的一阶零点, 因此是 f(z) 的三阶极点.
- $z = \pm 1$ 是 $z^2 1$ 的一阶零点, 因此是 f(z) 的二阶极点.
- z = 2 是 $(z 2)^3$ 的三阶零点, 因此是 f(z) 的可去奇点.
- 由于奇点 $1, 2, 3, \dots \to \infty$, 因此 ∞ 不是孤立奇点.

典型例题: 奇点的类型

练习

函数 $f(z)=\frac{z^2+4\pi^2}{z^3(e^z-1)}$ 在扩充复平面内有哪些什么类型的奇点,并指出极点的阶.

答案

- $z = 2k\pi i$ 是一阶极点, $k \neq 0, \pm 1$.
- z=0 是四阶极点.
- $z = \pm 2\pi i$ 是可去奇点.
- $z = \infty$ 不是孤立奇点.

例题: 证明复数域是代数封闭的*

例

证明非常数复系数多项式 p(z) 总有复零点.

证明

假设多项式 p(z) 没有复零点, 那么 $f(z) = \frac{1}{p(z)}$ 在复平面上处处解析, 从而 f(z) 在 0 处可以展开为幂级数.

由于 ∞ 是 p(z) 的极点, $\lim_{z\to\infty} p(z) = \infty$. 因此 $\lim_{z\to\infty} f(z) = 0$, ∞ 是 f(z) 的可上奏点 注意味美 f(z) 在 0 外的沒明展开设有正算

是 f(z) 的可去奇点. 这意味着 f(z) 在 0 处的洛朗展开没有正幂次项. 二者结合可知 f(z) 只能是常数, 矛盾!

设 z_1 是 n 次多项式 p(z) 的零点, 则 $\frac{p(z)}{z-z_1}$ 是 n-1 次多项式 归纳可知, p(z) 可以分解为 $p(z)=(z-z_1)\cdots(z-z_n)$.

第二节 留数

- ■留数定理
- 留数的计算方法
- 在 ∞ 的留数 *

定义

设 z_0 为 f(z) 的孤立奇点, f(z) 在它的某个去心邻域内的洛朗展开为

$$f(z) = \cdots + \frac{c_{-1}}{z - z_0} + c_0 + c_1(z - z_0) + \cdots$$

称

$$\operatorname{Res}[f(z), z_0] := c_{-1} = \frac{1}{2\pi i} \oint_C f(z) \,dz$$

为函数 f(z) 在 z_0 的留数, 其中 C 为该去心邻域中绕 z_0 的一条闭路.

可以看出,知道留数之后可以用来计算积分.

留数定理

留数定理

若 f(z) 在闭路 C 上解析, 在 C 内部的奇点为 z_1, z_2, \ldots, z_n , 则

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \text{Res}[f(z), z_k].$$

证明

由复闭路定理可知,

$$\oint_C f(z) dz = \sum_{k=1}^n \oint_{C_k} f(z) dz = 2\pi i \sum_{k=1}^n \text{Res}[f(z), z_k].$$

可去奇点的留数

若 z_0 为 f(z) 的可去奇点, 则显然 $\operatorname{Res}[f(z), z_0] = 0$.

$$f(z) = \frac{z^3(e^z-1)^2}{\sin z^4}$$
. 由于 $\operatorname{ord}(f,0) = 3+2-4=1$, $z=0$ 是 $f(z)$ 的可夫奇占 因此

的可去奇点, 因此

Res[f(z), 0] = 0.

若 z_0 为 f(z) 的本性奇点,一般只能从定义计算。

例

$$\overline{f(z)} = z^4 \sin \frac{1}{z}.$$
 由于

$$f(z) = z^4 \sum_{n=0}^{\infty} (-1)^n \frac{z^{-2n-1}}{(2n+1)!} = z^3 - \frac{z}{3!} + \frac{1}{5!z} + \cdots$$

因此

$$Res[f(z), 0] = \frac{1}{120}.$$

极点的留数计算方法

设 z_0 为 f(z) 的极点.

极点留数计算公式 1

如果 z_0 是 $\leq m$ 阶极点或可去奇点, 那么

Res
$$[f(z), z_0] = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} [(z-z_0)^m f(z)].$$

极点留数计算公式 Ⅱ

如果 z₀ 是一阶极点或可去奇点, 那么

$$\operatorname{Res}[f(z), z_0] = \lim_{z \to z_0} (z - z_0) f(z).$$

极点的留数计算方法

证明

设

$$f(z) = c_{-m}(z - z_0)^{-m} + \dots + c_{-1}(z - z_0)^{-1} + c_0 + \dots ,$$

$$g(z) = c_{-m} + \dots + c_{-1}(z - z_0)^{m-1} + c_0(z - z_0)^m + \dots ,$$

则 $g(z)=(z-z_0)^mf(z)$. 由泰勒展开系数与函数导数的关系可知

Res
$$[f(z), z_0] = c_{-1} = \frac{1}{(m-1)!} g^{(m-1)}(z_0).$$

典型例题: 留数的计算

例

求 Res $\left[\frac{e^z}{z^n}, 0\right]$.

解

显然 0 是 n 阶极点,

Res
$$\left[\frac{e^z}{z^n}, 0\right] = \frac{1}{(n-1)!} \lim_{z \to 0} (e^z)^{(n-1)}$$

= $\frac{1}{(n-1)!} \lim_{z \to 0} e^z = \frac{1}{(n-1)!}$.

典型例题: 留数的计算

例

求 Res $\left[\frac{z-\sin z}{z^6}, 0\right]$.

解

因为 z = 0 是 $z - \sin z$ 的三阶零点, 所以是 $\frac{z - \sin z}{z^6}$ 的三阶极点. 如果用公式

$$\operatorname{Res}\left[\frac{z-\sin z}{z^6},0\right] = \frac{1}{2!} \lim_{z \to 0} \left(\frac{z-\sin z}{z^3}\right)''$$

计算会很繁琐.

典型例题: 留数的计算

续解

Res
$$\left[\frac{z - \sin z}{z^6}, 0\right] = \frac{1}{5!} \lim_{z \to 0} (z - \sin z)^{(5)}$$

= $\frac{1}{5!} \lim_{z \to 0} (-\cos z) = -\frac{1}{120}$.

$$\mathbf{Res}\left[\frac{e^z-1}{z^5},0\right] = \underbrace{\frac{1}{24}}_{2}$$

留数的计算方法

极点留数计算公式Ⅲ

设 P(z), Q(z) 在 z_0 解析且 z_0 是 Q 的一阶零点, 则

Res
$$\left[\frac{P(z)}{Q(z)}, z_0\right] = \frac{P(z_0)}{Q'(z_0)}.$$

证明

不难看出 z_0 是 $f(z) = \frac{P(z)}{Q(z)}$ 的一阶极点或可去奇点. 因此

$$\operatorname{Res}[f(z), z_0] = \lim_{z \to z_0} (z - z_0) f(z)$$

$$= \lim_{z \to z_0} \frac{P(z)}{Q(z) - Q(z_0)} = \frac{P(z_0)}{\lim_{z \to z_0} \frac{Q(z) - Q(z_0)}{z - z_0}} = \frac{P(z_0)}{Q'(z_0)}.$$

典型例题: 留数的计算

例

求 Res $\left| \frac{z}{z^8 - 1}, \frac{1 + i}{\sqrt{2}} \right|$.

解

由于
$$z = \frac{1+i}{\sqrt{2}}$$
 是分母的 1 阶零点, 因此

$$\operatorname{Res}\left[\frac{z}{z^{8}-1}, \frac{1+i}{\sqrt{2}}\right] = \frac{z}{(z^{8}-1)'}\Big|_{z=\frac{1+i}{6}} = \frac{z}{8z^{7}}\Big|_{z=\frac{1+i}{6}} = -\frac{i}{8}.$$

例题: 留数的应用

例

计算积分
$$\oint_{|z|=2} \frac{e^z}{z(z-1)^2} dz$$
.

解

$$f(z) = \frac{e^z}{z(z-1)^2}$$
 在 $|z| < 2$ 内有奇点 $z = 0, 1$.
$$\operatorname{Res}[f(z), 0] = \lim_{z \to 0} \frac{e^z}{(z-1)^2} = 1,$$

$$\oint_{|z|=2} \frac{e^z}{z(z-1)^2} dz = 2\pi i \left[\text{Res}[f(z), 0] + \text{Res}[f(z), 1] \right] = 2\pi i.$$

Res $[f(z), 1] = \lim_{z \to 1} \left(\frac{e^z}{z}\right)' = \lim_{z \to 1} \frac{e^z(z-1)}{z^2} = 0,$

定义

设 ∞ 为 f(z) 的孤立奇点, f(z) 在某个 $R<|z|<+\infty$ 内的洛朗 展开为

$$f(z) = \dots + c_{-1}z^{-1} + c_0 + c_1z + \dots$$

称

Res
$$[f(z), \infty] := -c_{-1} = \frac{1}{2\pi i} \oint_{C^{-}} f(z) dz$$

为函数 f(z) 在 ∞ 的留数, 其中 C 为该圆环域中绕 0 的一条闭路.

由于

$$f\left(\frac{1}{z}\right)\frac{1}{z^2} = \dots + \frac{c_1}{z^3} + \frac{c_0}{z^2} + \frac{c_{-1}}{z} + c_{-2} + \dots$$

因此

$$\operatorname{Res}[f(z), \infty] = -\operatorname{Res}\left[f\left(\frac{1}{z}\right)\frac{1}{z^2}, 0\right].$$

留数之和为 0*

需要注意的是,和普通复数不同,即便 ∞ 是可去奇点,也不意味着 $\mathrm{Res}[f(z),\infty]=0$.

定理

如果 f(z) 只有有限个奇点, 那么 f(z) 在扩充复平面内各奇点处的留数之和为 0.

证明

设闭路 C 内部包含除 ∞ 外所有奇点 z_1,\ldots,z_n . 由留数定理

$$-2\pi i \operatorname{Res}[f(z), \infty] = \oint_C f(z) \, dz = 2\pi i \sum_{k=1}^n \operatorname{Res}[f(z), z_k].$$

故
$$\sum_{k=0}^{n} \operatorname{Res}[f(z), z_k] + \operatorname{Res}[f(z), \infty] = 0.$$

例题: 留数的应用*

例

求
$$\oint_{|z|=2} f(z) dz$$
, 其中 $f(z) = \frac{\sin(1/z)}{(z+i)^{10}(z-1)(z-3)}$.

- 解

f(z) 在 |z| > 2 内只有奇点 $3, \infty$.

Res
$$[f(z), 3] = \lim_{z \to 3} (z - 3) f(z) = \frac{1}{2(3+i)^{10}} \sin \frac{1}{3}.$$

例题: 留数的应用:

续解

$$\begin{aligned} \operatorname{Res}[f(z), \infty] &= -\operatorname{Res}\left[f\left(\frac{1}{z}\right) \frac{1}{z^2}, 0\right] \\ &= -\operatorname{Res}\left[\frac{z^{10} \sin z}{(1+iz)^{10}(1-z)(1-3z)}, 0\right] = 0. \\ \oint_{|z|=2} f(z) \, \mathrm{d}z \\ &= 2\pi i \Big[\operatorname{Res}[f(z), -i] + \operatorname{Res}[f(z), 1] + \operatorname{Res}[f(z), 0]\Big] \\ &= -2\pi i \Big[\operatorname{Res}[f(z), 3] + \operatorname{Res}[f(z), \infty]\Big] = -\frac{\pi i}{(3+i)^{10}} \sin \frac{1}{3}. \end{aligned}$$

积分的计算方法汇总

在求有理函数的洛朗展开,以及之后在求有理函数的拉普拉斯逆变换时,我们需要将一个有理函数表达为分母只有一个零点的有理函数之和.例如:

$$\frac{z-3}{(z+1)(z-1)^2} = \frac{1}{z-1} - \frac{1}{(z-1)^2} - \frac{1}{z+1}.$$

我们可以用待定系数法计算,不过有时候使用留数会更为简便.

例题: 留数在有理函数分解中的应用

解

读
$$f(z) = \frac{z-3}{(z+1)(z-1)^2} = \frac{a}{z-1} + \frac{b}{(z-1)^2} + \frac{c}{z+1}$$
,则
$$a = \operatorname{Res}[f(z), 1] = \left(\frac{z-3}{z+1}\right)'\Big|_{z=1} = \frac{4}{(z+1)^2}\Big|_{z=1} = 1,$$

$$b = \operatorname{Res}[(z-1)f(z), 1] = \frac{z-3}{z+1}\Big|_{z=1} = -1,$$

$$c = \operatorname{Res}[f(z), -1] = \frac{z-3}{(z-1)^2}\Big|_{z=-1} = -1.$$
 故 $f(z) = \frac{1}{z-1} - \frac{1}{(z-1)^2} - \frac{1}{z+1}.$

第三节 留数在定积分的应用 *

- 正弦余弦的有理函数的积分
- 有理函数的广义积分
- 有理函数与三角函数之积的广义积分
- ■其它例子

形如 $\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$ 的积分

本节中我们将对若干种在实变中难以计算的定积分和广义积分 使用复变函数和留数的技巧进行计算.

考虑 $\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$, 其中 R 是一个有理函数. 令 $z = e^{i\theta}$, 则 $dz = iz d\theta$,

$$\cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right) = \frac{z^2 + 1}{2z}, \quad \sin \theta = \frac{1}{2i} \left(z - \frac{1}{z} \right) = \frac{z^2 - 1}{2iz},$$

$$\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta = \oint_{|z|=1} R\left(\frac{z^2+1}{2z}, \frac{z^2-1}{2iz}\right) \frac{1}{iz} dz.$$

由于被积函数是一个有理函数,它的积分可以由 |z| < 1 内奇点留数得到.

例题: 第一类积分

求
$$\int_0^{2\pi} \frac{\sin^2 \theta}{5 - 3\cos \theta} \, \mathrm{d}\theta.$$

解
$$\Leftrightarrow z = e^{i\theta}$$
, 则 $dz = iz d\theta$,

$$z=e$$
 , x_1 $dz=tz\,dv$,

$$\cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right) = \frac{z^2 + 1}{2z}, \quad \sin \theta = \frac{1}{2i} \left(z - \frac{1}{z} \right) = \frac{z^2 - 1}{2iz},$$

$$\int_0^{2\pi} \frac{\sin^2 \theta}{5 - 3\cos \theta} \, d\theta = \oint_{|z|=1} \frac{(z^2 - 1)^2}{-4z^2} \cdot \frac{1}{5 - 3\frac{z^2 + 1}{z^2}} \cdot \frac{dz}{iz}$$

$$J_0 \quad 5 - 3\cos\theta$$

$$= -\frac{i}{6} \oint_{|z|=1} \frac{(z^2 - 1)^2}{z^2 (z - 3)(z - \frac{1}{2})} dz.$$

续解

设
$$f(z) = \frac{(z^2 - 1)^2}{z^2(z - 3)(z - \frac{1}{2})}$$
,则

$$\operatorname{Res}[f(z), 0] = \frac{10}{3}, \quad \operatorname{Res}[f(z), \frac{1}{3}] = -\frac{8}{3},$$

$$\int_0^{2\pi} \frac{\sin^2 \theta}{5 - 3\cos \theta} d\theta = -\frac{i}{6} \cdot 2\pi i \left[\text{Res}[f(z), 0] + \text{Res}[f(z), \frac{1}{3}] \right]$$
$$= \frac{2\pi}{6}.$$

形如 $\int_{-\infty}^{+\infty} R(x) dx$ 的积分

考虑 $\int_{-\infty}^{+\infty} R(x) dx$, 其中 R(x) 是一个有理函数, 分母比分子至

少高 2 次,且分母没有实根。我们先考虑 $\int_{-r}^{r} R(x) dx$. 设

 $f(z)=R(z), C=C_r+[-r,r]$ 如下图所示,使得上半平面内 f(z) 的奇点均在 C 内,则

$$2\pi i \sum_{\operatorname{Im} a > 0} \operatorname{Res}[f(z), a] = \oint_C f(z) \, dz = \int_{-r}^r R(x) \, dx + \int_{C_r} f(z) \, dz.$$

由于 P(x) 分母次数比分子至少高 2 次, 当 $r \to +\infty$ 时,

$$\left| \int_{C_r} f(z) \, \mathrm{d}z \right| \leqslant \pi r \max_{|z|=r} |f(z)| = \pi \max_{|z|=r} |zf(z)| \to 0.$$

故

$$\int_{-\infty}^{+\infty} R(x) dx = 2\pi i \sum_{\text{Im } a>0} \text{Res}[R(z), a].$$

例___

求
$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(x^2 + a^2)^3}, a > 0.$$

解

$$\begin{split} f(z) &= \frac{1}{(z^2 + a^2)^3} \text{ 在上半平面内的奇点为 } ai. \\ \operatorname{Res}[f(z), ai] &= \frac{1}{2!} \lim_{z \to ai} \left[\frac{1}{(z + ai)^3} \right]'' \\ &= \frac{1}{2} \lim_{z \to ai} \frac{12}{(z + ai)^5} = \frac{3}{16a^5i}, \end{split}$$

故

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(x^2 + a^2)^3} = 2\pi i \mathrm{Res}[f(z), ai] = \frac{3\pi}{8a^5}.$$

形如 $\int_{-\infty}^{+\infty} R(x) \cos \lambda x \, dx$, $\int_{-\infty}^{+\infty} R(x) \sin \lambda x \, dx$ 的积分

考虑 $\int_{-\infty}^{+\infty} R(x)\cos\lambda x\,\mathrm{d}x$, $\int_{-\infty}^{+\infty} R(x)\sin\lambda x\,\mathrm{d}x$, 其中 R(x) 是一个有理函数, 分母比分子至少高 2 次, 且分母没有实根. 和前一种情形类似, 我们有

$$\int_{-\infty}^{+\infty} R(x)e^{i\lambda x} dx = 2\pi i \sum_{\text{Im } a>0} \text{Res}[R(z)e^{i\lambda z}, a],$$

因此所求积分分别为它的实部和虚部.

求 $\int_{-\infty}^{+\infty} \frac{\cos x \, dx}{(x^2 + a^2)^2}, a > 0.$

$$e^{iz}$$

$$f(z) = \frac{e^{iz}}{(z^2 + a^2)^2}$$
 在上半平面内的奇点为 ai ,

Res
$$[f(z), ai] = \lim_{z \to ai} \left[\frac{e^{iz}}{(z+ai)^2} \right]' = -\frac{e^{-a}(a+1)i}{4a^3}.$$

数
$$\int_{-\infty}^{+\infty} \frac{e^{ix} dx}{(x^2 + a^2)^2} = 2\pi i \operatorname{Res}[f(z), ai] = \frac{\pi e^{-a}(a+1)}{2a^3},$$
$$\int_{-\infty}^{+\infty} \frac{\cos x dx}{(x^2 + a^2)^2} = \frac{\pi e^{-a}(a+1)}{2a^3}.$$

最后我们再来看一个例子.

例

求积分
$$I = \int_0^{+\infty} \frac{x^p}{x(x+1)} dx, 0$$

$$I = \int_0^{+\infty} \frac{x^p}{x(x+1)} dx \xrightarrow{\frac{c}{2}} \int_{-\infty}^{+\infty} \frac{e^{pt}}{e^t + 1} dt.$$

考虑 $f(z) = \frac{e^{pz}}{e^z + 1}$ 在如下闭路 C 上的积分.

续解

由于 $l:z=t+2\pi i, -R\leqslant t\leqslant R$, 因此

$$\int_{R} f(z) dz = \int_{R}^{-R} \frac{e^{2p\pi i} \cdot e^{pt}}{e^{t} + 1} dt = -e^{2p\pi i} \int_{R}^{R} f(t) dt.$$

由于 $C_1: z = R + it, 0 \leqslant t \leqslant 2\pi$, 因此

$$\left| \int_{C_1} f(z) \, \mathrm{d}z \right| \leqslant \frac{e^{(p+1)R}}{e^R - 1} \cdot 2\pi \to 0 \quad (R \to +\infty).$$

同理

$$\left| \int_{C_2} f(z) \, \mathrm{d}z \right| \leqslant \frac{e^{-(p+1)R}}{1 - e^{-R}} \cdot 2\pi \to 0 \quad (R \to +\infty).$$

续解

由于

Res
$$[f(z), \pi i] = \frac{e^{pz}}{(e^z + 1)'} \bigg|_{z=\pi i} = -e^{p\pi i},$$

因此

$$\left(\int_{-R}^{R} + \int_{l} + \int_{C_1} + \int_{C_2} f(z) dz\right)$$
$$= \oint_{C} f(z) dz = 2\pi i \operatorname{Res}[f(z), \pi i] = -2\pi i e^{p\pi i},$$

令
$$R \to +\infty$$
, 则

$$(1 - e^{2p\pi i})I = -2\pi i e^{p\pi i}, \quad I = \frac{2\pi i}{e^{p\pi i} - e^{-p\pi i}} = \frac{\pi}{\sin p\pi}.$$