Kernel-Based Learning & Multivariate Modeling

MIRI Master - DMKM Master

Lluís A. Belanche

belanche@cs.upc.edu

Soft Computing Research Group

Universitat Politècnica de Catalunya

2016-2017

Kernel-Based Learning & Multivariate Modeling

Contents by lecture

- Sep 14 Introduction to Kernel-Based Learning
- Sep 21 The SVM for classification, regression & novelty detection (I)
- Sep 28 The SVM for classification, regression & novelty detection (II)
- Oct 05 Kernel design (I): theoretical issues
- Oct 19 Kernel design (II): practical issues
- Oct 26 Kernelizing ML & stats algorithms
- Nov 02 Advanced topics

Euclidean space \mathbb{R}^d , but not only

- Kernels on real vectors (whole families)
- Kernels on binary vectors (bitstrings = sets)
- General structured kernels:
 - All-subsets kernel
 - Convolution kernels
- Kernels on discrete structures:
 - Tree kernels
 - Graph kernels
- Kernels on distributions (generative kernels):
 - P-kernels
 - Marginalized kernels
- String kernels (text)

... and many others (functional data, categorical data, ...)

All-subsets kernel

Consider a feature space with one feature for every subset $A \subseteq \{1, \ldots, d\}$ of the input variables:

for
$$x \in \mathbb{R}^d$$
, the feature A is given by $\phi_A(x) = \prod_{i \in A} x_i$ (note $\phi_\emptyset(x) = 1$)

The kernel is defined by the mapping $\phi: x \to (\phi_A(x))_{A \subset \{1,...,d\}}$

$$k(\boldsymbol{x}, \boldsymbol{x'}) = \left\langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x'}) \right\rangle = \sum_{A \subseteq \{1, \dots, d\}} \phi_A(\boldsymbol{x}) \phi_A(\boldsymbol{x'})$$
$$= \sum_{A \subseteq \{1, \dots, d\}} \prod_{i \in A} x_i x_i' = \prod_{i=1}^d (1 + x_i x_i')$$

The last step is obtained by expanding $(1 + x_i x_i')(1 + u_2 v_2) \dots (1 + u_d v_d)$

All-subsets kernel

We have the freedom to downplay some features (and thus emphasize others) by introducing weighting factors $w_i \ge 0$ for each feature i:

$$\phi_A(\mathbf{x}) = \prod_{i \in A} \sqrt{w_i} x_i$$

therefore

$$kw(x, x') = \prod_{i=1}^{d} (1 + w_i x_i x_i')$$

Bitstring/Binary variables/Sets

Let $x, x' \in \{0, 1\}^d$. The Simple Matching Coefficient (SMC) is the fraction of 1-1 matches, and it is a kernel on $\{0, 1\}^d$.

Proof. For every $N \in \mathbb{N}$, and every choice $x_1, \ldots, x_N \in \{0, 1\}^d$, we form the matrix $K = (k_{ij})$, where $k_{ij} = k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \frac{1}{d} \sum_{k=1}^d x_{ik} x_{jk} = \frac{1}{d} \left\langle \boldsymbol{x}_i, \boldsymbol{x}_j \right\rangle$

Then we have, for any $c \in \mathbb{R}^N$:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} c_i c_j \frac{1}{d} \left\langle \boldsymbol{x}_i, \boldsymbol{x}_j \right\rangle = \frac{1}{d} \left\langle \sum_{i=1}^{N} c_i \boldsymbol{x}_i, \sum_{j=1}^{N} c_j \boldsymbol{x}_j \right\rangle = \frac{1}{d} \left\| \sum_{i=1}^{N} c_i \boldsymbol{x}_i \right\|^2 \ge 0$$

Bitstring/Binary variables/Sets

Given two finite sets A, B, consider

$$k(A,B) = \sum_{a \in A} \sum_{b \in B} k_{\mathsf{base}}(a,b)$$

If k_{base} is the overlap kernel:

$$k(a,b) = \begin{cases} 1 & \text{if } a = b; \\ 0 & \text{otherwise.} \end{cases}$$

we get $k(A,B) = |A \cap B|$, the same kernel as before.

Convolution kernels

- Kernels between composite objects by decomposition on the their respective parts, compare components and combine results
- Given two composite objects x, x' and a way \mathcal{D} to obtain all possible decompositions into a finite number P of parts, their \mathcal{D} -convolution is a kernel:

$$k_{\mathcal{D}}(x, x') = \sum_{x_0 \in \mathcal{D}(x)} \sum_{x'_0 \in \mathcal{D}(x')} \prod_{p=1}^{P} k_p(x_0(p), x'_0(p))$$

Convolution kernels

Examples of decomposable objects

P-Kernels

Given a probability distribution on $\mathcal{X} \times \mathcal{Z}$, we can compare data points by assigning a high value if both have high conditional probability:

$$k(x, x') = \sum_{z} p(x|z)p(x'|z)P(z)$$
 \mathcal{Z} is discrete

$$k(x, x') = \int p(x|z)p(x'|z)p(z) dz$$
 Z is continuous

The feature maps are $(\phi(x))_z = p(x|z)\sqrt{p(z)}$

Idea: p(x, x', z) = p(x, x'|z)p(z) = p(x|z)p(x'|z)p(z)

Marginalized kernels

Given a probability distribution on $\mathcal{X} \times \mathcal{Z}$, and a kernel on $\mathcal{X} \times \mathcal{Z}$ pairs, we can define:

$$k(\boldsymbol{x}, \boldsymbol{x'}) = \sum_{z} \sum_{z'} k((\boldsymbol{x}, z), (\boldsymbol{x'}, z')) p(z|\boldsymbol{x}) p(z'|\boldsymbol{x'})$$

Typical applications of both kernels are found on graphical models:

- \blacksquare \mathcal{X} are the *observed* variables and \mathcal{Z} are the *hidden* variables
- A kernel for the observed ones is obtained by taking the expectation w.r.t. the hidden ones (marginalizing them away)
- Examples: HMMs for sequences or stochastic context-free grammars for RNA sequences —see "Kernel methods in genomics and computational biology" (J.P. Vert)

The Spectrum (aka n-Gram) kernel

■ Let Σ be a finite alphabet: an n-Gram is a block of n adjacent characters in Σ

Define
$$k(x,x'):=\sum\limits_{s\in \Sigma^n}|s\in x|\cdot|s\in x'|=\sum\limits_{s\in \Sigma^n}f_s(x)f_s(x')$$

Example: Word aababc in alphabet $\Sigma = \{a, b, c\}$, n = 2:

■ While the feature space is large, the feature vectors are sparse; this kernel can be computed in O(|x| + |x'|) time and memory (the actual number of distinct n-Grams in a text is very small)

Kernels from graphs

- Consider a graph G = (V, E), where the set of vertices (nodes) V are the data points and E is the set of edges. Call N = |V|, the number of nodes
- The idea is to compute a (base) matrix $B_{N\times N}$ whose entries are the weights of the edges and consider $B^2=BB$ (B need not be symmetric)
- Typical use: **connectivity matrix** of G: the (i,j) element of B^2 is the number of paths of length exactly 2 between i and j

Examples:

- 1. protein-protein interactions
- 2. people-to-people interactions

In 2, the (i,j) element of B^2 is the number of common friends between data points i and j (it can be thought of as a measure of their similarity)

Kernels from graphs

Notes:

- 1. The entries of B may be real-valued numbers (e.g., symmetric bounded similarities)
- 2. Higher powers of B measure higher-order similarities
- 3. Only the even powers are guaranteed to be PSD

Consider, for a given $\lambda \in (0,1)$:

$$\sum_{k=0}^{\infty} \frac{1}{k!} \lambda^k B^k = \exp(\lambda B)$$

If $B = U\Lambda U^T$ is the spectral decomposition of B, then $B^2 = (U\Lambda U^T)(U\Lambda U^T) = U\Lambda^2 U^T$. In general, we have $B^k = U\Lambda^k U^T$ and therefore:

$$K = \exp(\lambda B) = U \exp(\lambda \Lambda) U^{T}$$

is an example of a diffusion kernel (the name comes from the heat equation in physics)

A worked example

Suppose we have designed a "kernel" on **image** objects x, x' in $\mathcal{X} = [-1, +1]^d$ from a set of D descriptors $f_i : \mathcal{X} \to \mathbb{R}$ as the function:

$$k(\boldsymbol{x}, \boldsymbol{x'}) = \frac{\left(\sum_{i=1}^{D} f_i(\boldsymbol{x}) f_i(\boldsymbol{x'}) + \theta\right)^3}{\sqrt{\theta - \exp(-||\boldsymbol{x} - \boldsymbol{x'}||^2)}}$$

where $\theta \in \mathbb{R}$ is a free parameter.

Under what conditions does this expression define a kernel?

A worked example

- 1. The numerator is simply the polynomial kernel of degree 3 applied to the descriptors and hence a kernel in itself for all $\theta \ge 0$
- 2. Since the denominator must be well-defined, we conclude that $\theta > 1$
- 3. Now define $f(z) = \frac{1}{\sqrt{\theta z}}$, for $\theta > 1$
- 4. We find the Taylor series expansion for f as $f(z) = \sum_{n=0}^{\infty} a_n z^n$, with $a_n = \left(2^n \theta^{(2n+1)/2}\right)^{-1} \prod_{i=1}^n (2i-1)$, which is positive for all $\theta > 0$
- 5. Therefore both the denominator and numerator are kernels and so is their product, for $\theta > 1$ (note the kernel is *not* normalized)

Kernels as similarity measures

- A kernel can be conceptually regarded as a similarity measure on the dtata, though many kernels do not fulfill the classical properties for a similarity (e.g. boundedness)
- In a very general sense, a similarity $s: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ should at least satisfy the **Similarity Principle**:

$$s(x,x) > s(x,y) \ge 0, \ \forall x \ne y \in \mathcal{X}$$

- It seems natural to base kernel design on classical similarity functions, for example on distance-based similarities
- In many domains, data is described by a **mixture** of variable types (binary, categorical, real, ...)

Gower-like similarity measures

- For any two vectors $x_i, x_j \in \mathcal{X}$ to be compared on the basis of feature k, a score s_{ijk} is defined based on their type
- Set $\delta_{ijk}=0$ when the comparison of x_i,x_j cannot be performed on the basis of feature k (e.g. presence of missing values), or we want to ignore it; otherwise, let $\delta_{ijk}=1$

Gower's **similarity** is defined as the average over all partial comparisons:

$$s_{ij} := s(\boldsymbol{x}_i, \boldsymbol{x}_j) = \frac{\sum\limits_{k=1}^{d} s_{ijk} \delta_{ijk}}{\sum\limits_{k=1}^{d} \delta_{ijk}}$$

Gower-like similarity measures

Binary (dichotomous) variables indicate the presence/absence of a trait, marked by the symbols + and -. Their similarities are given by:

	Values of feature k					
Object $oldsymbol{x}_i$	+	+	_	_		
Object $oldsymbol{x}_j$	+		+			
s_{ijk}	1	0	0	0		
δ_{ijk}	1	1	1	0		

Gower-like similarity measures

- A categorical variable takes discrete and unordered values, which are commonly known as modalities
- No order should be defined (the only meaningful relation being equality / non-equality)

Their overlap is:

$$s_{ijk} = \mathbb{I}_{\{x_{ik} = x_{jk}\}} = \begin{cases} 1, & \text{if } x_{ik} = x_{jk}; \\ 0, & \text{if } x_{ik} \neq x_{jk} \end{cases}$$

Gower-like similarity measures

Real-valued variables are compared with the standard metric in \mathbb{R} :

$$s_{ijk} = 1 - \frac{|x_{ik} - x_{jk}|}{R_k},$$

where R_k is the *range* of feature k (the difference between the maximum and minimum values)

Gower-like similarity measures

Theorem. If there are no missing values, the similarity matrix $S = (s_{ij})$ is PSD (Gower, 1971).

Consider three objects in $[1,5] \subset \mathbb{R}^4$, that is, $R_k = 4$ given by:

Feature no.	#1	#2	#3	#4
Object x_1	1.0	2.0	3.0	1.0
Object x_2	1.0	3.0	3.0	?
Object x_3	1.0	3.0	3.0	5.0

Gower-like similarity measures

Then we have

$$S = \begin{pmatrix} 1 & \frac{11}{12} & \frac{11}{16} \\ \frac{11}{12} & 1 & 1 \\ \frac{11}{16} & 1 & 1 \end{pmatrix}, \qquad \det(S) = -\frac{121}{2304} < 0$$

and therefore S is not PSD. However, if we replace ? by any value in [1,5], then the matrix S is certainly PSD.

Classification of DNA sequences

- DNA sequences of promoter and non-promoters
- A promoter is a region of DNA that initiates or facilitates transcription of a particular gene
- The dataset consists of 106 observations and 57 categorical variables describing the DNA sequence, represented as the nucleotide at each position: [A] adenine, [C] cytosine, [G] guanine, [T] thymine
- The response is a binary class: "+" for a promoter gene and "-" for a non-promoter gene

Classification of DNA sequences

Overlap kernel: the similarity between two multivariate categorical vectors is the fraction of the number of variables in which they match:

$$k_{O}(x, x') = \frac{1}{d} \sum_{l=1}^{d} \mathbb{I}_{\{x_{l} = x'_{l}\}}$$

Another kernel that can be used is the Gaussian RBF kernel:

$$k_{\mathsf{RBF}}(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-\gamma||\boldsymbol{x} - \boldsymbol{x}'||^2\right), \gamma > 0$$

In order to use this kernel, categorical variables with m modalities are coded using a binary expansion representation.

Classification of DNA sequences

Univariate kernel $k_1^{(U)}$:

$$k_1^{(U)}(z_i, z_j) = \begin{cases} h_{\alpha}(P_Z(z_i)) & \text{if } z_i = z_j \\ 0 & \text{if } z_i \neq z_j \end{cases}$$

Inverting function:

$$h_{\alpha}(z) = (1 - z^{\alpha})^{1/\alpha}, \ \alpha > 0$$

Classification of DNA sequences

The family of inverting functions $h_{\alpha}(z)$ for different values of α

Classification of DNA sequences

Multivariate kernel k_1 :

$$k_1(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(\frac{\gamma}{d} \sum_{l=1}^{d} k_1^{(U)}(x_l, x_l')\right), \ \gamma > 0$$

Proposition. The kernel matrix generated by the multivariate kernel k_1 is PSD.

Classification of DNA sequences

Test error distributions on the PromoterGene problem

(joint work with M. Villegas)

More Kernels!

Kernels abound in computational biology and computational chemistry (e.g., phylogenetic profiles, protein 3D structures)

Example: the prediction of **interacting proteins** to reconstruct an interaction network can be posed as a binary classification problem: given a pair of proteins, do they interact or not?

→ we need kernel between pairs of proteins!

More Kernels!

The available data is about each single protein; it is then natural to derive kernels for pairs of proteins k_{pair} from any kernel k for single proteins:

$$k_{\text{pair}}((A, B), (C, D)) := k(A, C)k(B, D) + k(A, D)k(B, C)$$

(there is usually no order in a protein pair, so we try both matches)

Using Product Kernels to Predict Protein Interactions. Advances in Biochemical Engineering/Biotechnology (110), pp 215-245 (2007)

Kernel methods for predicting protein-protein interactions. Bioinformatics. 2005

Conclusions

- The power of kernel methods partly relies in the ability to process virtually any sort of data as soon as a valid kernel is defined
- Importance of designing kernels that do not constitute explicit inner products between objects, and therefore fully exploit the kernel trick
- Possibility of learning the kernel function (or the kernel matrix) from the training data
- Theoretical analyses are needed on the implications of the kernel choice for the success of specific kernel-based methods