

SC1015 Mini Project

Boslyn PangU2221298ATan Yue HuiU2221209KShen Jia ChengU2220979E

O1 Motivation & Problem Definition

Our Motivation

Our Problem Statement

How might we determine if news on online platforms is real or fake?

Automated Detection and Classification by using Machine Learning Techniques

Different Prediction
Models to determine the
validity of the news

Dataset Used

Raw data is

title of article **5 Variables** news_url: **URL** of article assessed from: **Kaggle.com** source_domain: Q Search Register web domain of article **Fake News** FAKE □ Datasets Fake News dataset based on FakeNewsNet tweet_num: Data Card Code (9) Discussion (0) number of retweets Usability 0 **About Dataset** This dataset contains news articles and information about it. CC0: Public Domain Real: **Expected update frequency** Context Real = 1 Fake = 0

O2Data Preparation And Exploration

1

Calculating total number of words in title

Storing the result in new column "title count"

```
#Creating new column for number of words in title

def word_count(title):
    count = 1
    for x in title:
        if x == " ":
            count += 1
    return count

df["title count"] = word_count(df['title'])
for y in range(0,23196):
    df["title count"][y] = word_count(df['title'][y])
```

	title	news_url	source_domain	tweet_num	real	title count
0	Kandi Burruss Explodes Over Rape Accusation on	http://toofab.com/2017/05/08/real-housewives-a	toofab.com	42	True	13
1	People's Choice Awards 2018: The best red carp	https://www.today.com/style/see-people-s-choic	www.today.com	0	True	9
2	Sophia Bush Sends Sweet Birthday Message to 'O	https://www.etonline.com/news/220806_sophia_bu	www.etonline.com	63	True	15
3	Colombian singer Maluma sparks rumours of inap	https://www.dailymail.co.uk/news/article-33655	www.dailymail.co.uk	20	True	10
4	Gossip Girl 10 Years Later: How Upper East Sid	https://www.zerchoo.com/entertainment/gossip-g	www.zerchoo.com	38	True	17

2

Removing Stop Words and Tokenization

Removing of stop words and splitting of **title** into individual words

```
#Cleaning of title by removing stop words and lemmatizing of words

def clean_data(text):
    text = text.lower()
    text = re.sub('[^a-zA-Z]' , ' ' , text)
    token = text.split()
    token = [lemmatizer.lemmatize(word) for word in token if not word in stop_words]
    clean_news = ' '.join(token)

    return clean_news

df['title'] = df['title'].apply(lambda x : clean_data(x))
```


3

Removing missing values

Removing Null

Values

[7] df.isnull().sum()

title 0
news_url 330
source_domain 330
tweet_num 0
real 0
dtype: int64

3

Removing Null Values

Removing missing values

```
df.dropna(inplace=True)
```

```
[11] df.isnull().sum()
```

```
title 0
news_url 0
source_domain 0
tweet_num 0
real 0
dtype: int64
```


3

Converting variable type

Variable: real
Converting var type of
int64 (binary) to
boolean

```
# Converting int64 variable (real) to boolean (True/False)
df['real'] = df['real'].astype('bool')
print(df.dtypes)
```

```
title object
news_url object
source_domain object
tweet_num int64
real bool
dtype: object
```


Exploratory Data Analysis (Univariate and Bivariate)

Categorical Plot (Univariate Plot)

True vs False news articles

Data type: Categorical

Name: real, dtype: int64

Analysis:

Number of real articles are significantly higher than false articles

Data set is skewed towards TRUE ARTICLES

```
# plotting the cat plot of True vs False (univariate)
print(df["real"].value counts())
sb.catplot(data=df, y='real',kind='count')
True
         17441
False
          5755
```

<seaborn.axisgrid.FacetGrid at 0x7f5fe6dd7e50>

Source Domain

Data Type: Categorical Number of different sources: 2441

~73% of articles of the dataset came from the same source: People.com

```
print('Number of sources: ', len(df['source_domain'].unique()))
print(df['source_domain'].value_counts())
```

```
Number of sources: 2441
people.com
                          1786
www.dailymail.co.uk
                           964
en.wikipedia.org
                           741
www.usmagazine.com
                           709
www.etonline.com
                           666
bioguide.congress.gov
dailyheadlines.net
www.duggarfamily.com
www.naturallycurly.com
flashnewscorner.com
Name: source domain, Length: 2441, dtype: int64
```

Number of Retweets

Variable name: tweet_num

Data Type: Numerical

Average number of retweets: ~89 / article

Median: 37 / article

Data is very skewed as:

- Maximum is a lot higher than the 75th percentile
- Std = ~489
- Mean > median

```
# describe data for number of retweets
df['tweet num'].describe()
         22866.000000
count
            88.398802
mean
           488.712092
std
min
             0.000000
25%
            11.000000
50%
            38.000000
75%
            65.000000
         29060.000000
max
Name: tweet num, dtype: float64
```

```
#Plot distribution for number of retweets
sb.kdeplot(df['tweet_num'])
```

<Axes: xlabel='tweet num', ylabel='Density'>


```
# Plot boxplot for number of retweets
sb.boxplot(df['tweet_num'])
```


0

Title count

title count: Number of words in title

Data Type: Numerical

```
# Statistical summary of number of words in title
df['title count'].describe()
```

count	228	366.000	000	
mean		11.044	564	
std		4.125	675	
min		1.000	000	
25%		9.000	000	
50%		11.000	000	
75%		14.000	000	
max		53.000	000	
Namo.	+++10	gount	d+ rmo .	float

Name: title count, dtype: float64

Title count

title count: Number of words in title

Data Type: Numerical

Observations:

- Not a lot of outliers, therefore do not have to clean data based on this variable
- Distribution is similar to a normal distribution as mean=median=11, and mode is ~10.

Bivariate Statistics

Machine Learning

T=True	F=False
P=Positive	N=Negative

1. Logistic Regression Model

Used when the **response variable** is **categorical**

- LogReg Accuracy Score: 83.4%
- TPs > FPs
- TNs>FNs
- FN rate = 0.0301 (3 s.f.)
- FP rate = 0.583 (3 s.f.)
- **HIGH FPR, LOW FNR**

- BI • -			• _		
2. Naive-B	SWAC Drad		ion N		Δl
Z. Naive-L	aves rieu	IICU	יו וועו	IUU	CL

T=True	F=False
P=Positive	N=Negative

Handles both continuous and discrete data

- Naive-Bayes Accuracy Score:
 - 82.7%
- TPs > FPs
- TNs>FNs
- FN rate = 0.0158 (3 s.f.)
- FP rate = 0.680 (3 s.f.)
- **HIGH** FPR, **LOW** FNR

		• •			
Ľ.		cicion	Traa (lassifier N	
7	74 74 74				

T=True	F=False
P=Positive	N=Negative

- ❖ Lay out the problem and **all** possible outcomes
- ♦ Gini Index

- **Dec Tree** Accuracy Score: **80.0**%
- TPs > FPs
- TNs>FNs
- FN rate = 0.122 (3 s.f.)
- FP rate = 0.453 (3 s.f.)

		• (
L Daccivo	MAYARE	IVA CIDER	HOY MAG	
4. Passive-	1551622	ive ciassi		
	1221000	IIC Clussi	1101 1-100	

T=True	F=False
P=Positive	N=Negative

Updates its model based on each new instance it encounters

- LogReg Accuracy Score: **78.6**%
- TPs > FPs
- TNs>FNs
- FN rate = 0.147 (3 s.f.)
- FP rate = 0.428 (3 s.f.)

5. Ensemble

- T=True F=False
 P=Positive N=Negative
- LogReg Accuracy Score: 85.2%
- · TPs > FPs
- TNs>FNs
- FN rate = 0.0346 (3 s.f.)
- FP rate = 0.515 (3 s.f.)
- **HIGH** FPR, **LOW** FNR

SUMMARY:

	Model	Accuracy	True Pos	False Pos	True Neg	False Neg
0	Log Reg	84.6	85.1	14.9	81.1	18.9
1	Naive-Bayes	82.7	82.4	17.6	86.3	13.7
2	Decision Tree	80.0	86.2	13.8	58.2	41.8
3	Pas-Agg	78.6	86.5	13.5	54.6	45.4
4	SVM	84.8	86.6	13.4	75.9	24.1
5	Ensemble	85.2	85.8	14.2	81.3	18.7
	Highest Accura	су	Lo	owest Accuracy		

05 Insights & Evaluation

Model Evaluation

Future Recommendations

Other Models

Other ensemble models such as stacking

Other Variables

Eg. No. of words in article, pictures, etc.

Thank You!