• Correctness (Intuitive): Does the receiver (Bob) recover the intended plaintext when decrypting the ciphertext?

Claim

For all $k, m \in \{0, 1\}^n$, it holds that Dec(k, Enc(k, m)) = m.

Proof. For all $k, m \in \{0, 1\}^n$, we have:

$$\begin{aligned} \mathsf{Dec}(k,\mathsf{Enc}(k,m)) &= \mathsf{Dec}(k,(k \oplus m)) \\ &= k \oplus (k \oplus m) \\ &= 0^n \oplus m \\ &= m \end{aligned}$$

Consider the following two interactions between Eve and a challenger.

- Interaction with a challenger helps us model what Eve can see during encryption, and what remains hidden.
- ullet We say that an encryption scheme is secure if for any m chosen by Eve, the above two scenarios seem identical to Eve.

Comparing Both Security Notions

Theoren

If an encryption scheme achieves one-time uniform ciphertext security, then it also achieves one-time perfect security.

We are given that for each $m \in \mathcal{M}$ (where \mathcal{M} is the message space), the following distributions are identical:

$$\mathcal{D}_2 := \left\{ c \overset{\$}{\leftarrow} \mathcal{C} \right\}$$

We want to show that for each $m_0, m_1 \in \mathcal{M}$, the following distributions are also identical:

$$\bullet \ \mathcal{D}_1' \coloneqq \{c \coloneqq \mathsf{Enc}(k, m_0); k \gets \mathsf{KeyGen}(1^n) \}$$

$$2c := \{c := \operatorname{Enc}(k, m_1); k \leftarrow \operatorname{KeyGen}(1^n) \}$$

Negligible Functions: Examples

Problem

Let $f(\cdot)$ and $g(\cdot)$ be a negligible functions. Show that f(n)+g(n) is negligible.

We need to show that $\forall c, \exists n_0, \text{ such that } \forall n > n_0, f(n) + g(n) \leq \frac{1}{n^c}$.

• Since $f(\cdot)$ and $g(\cdot)$ are both negligible functions, we know that $\exists n_f, n_g$ corresponding to c+1, such that $\forall n > n_f, f(n) \leqslant \frac{1}{n^{c+1}}$ and $\forall n > n_g, g(n) \leqslant \frac{1}{n^{c+1}}$.

For a given c, let $n_0 = \max(n_f, n_g, 2)$. $\forall n > n_0$:

$$\begin{split} f(n) + g(n) &\leqslant \frac{1}{n^{c+1}} + \frac{1}{n^{c+1}} \\ &\leqslant \frac{2}{n^{c+1}} \\ &\leqslant \frac{n}{n^{c+1}} \text{ (Since } n \geqslant n_0 \geqslant 2) \\ &\leqslant \frac{1}{n^c} \end{split}$$

Example (Double OTP)

Prove uniform ciphertext security of the following scheme:

- KeyGen $(1^n): k_1 \stackrel{\$}{\leftarrow} \{0,1\}^n, k_2 \stackrel{\$}{\leftarrow} \{0,1\}^n$ and output (k_1,k_2)
- $Enc((k_1, k_2), m) : c_1 = k_1 \oplus m, c_2 = k_2 \oplus m \text{ and output } (c_1, c_2).$
- $Dec((k_1, k_2), (c_1, c_2))$: Output $m = k_1 \oplus c_1$.

We need to show that for each m, the following distributions are identical:

$$\{(c_1, c_2) \xleftarrow{\$} \{0, 1\}^{2n} \}$$

We consider the following set of distributions called hybrids.

$$\mathcal{H}_1$$
: $\{c_1 = k_2 \oplus m, c_2 = k_2 \oplus m; k_1 \leftarrow \mathsf{KeyGen}(1^n), k_2 \not \vdash \mathsf{KeyGen}(1^n)\}$

$$\mathcal{H}_2$$
: $\left\{c_1 \overset{\$}{\leftarrow} \{0,1\}^n, c_2 = k_2 \oplus m; k_2 \leftarrow \mathsf{KeyGen}(1^n)\right\}$

$$\mathcal{H}_3: \left\{ c_1 \stackrel{\$}{\leftarrow} \{0,1\}^n, c_2 \stackrel{\$}{\leftarrow} \{0,1\}^n \right\}$$

Encryption: One-Time Perfect Security

One-Time Perfect Security

We say that an encryption scheme is one-time perfectly secure if $\forall m_0, m_1 \in \mathcal{M}$ chosen by Eve, the following distributions are identical:

As earlier, from adversary's viewpoint, the ciphertext carries no information about the plaintext.

Negligible Functions: Examples

Problem

Let $\nu(\cdot)$ be a negligible function and $p(\cdot)$ be a polynomial s.t. $p(n) \ge 0$, $\forall n > 0$. Show that $\nu(n) \cdot p(n)$ is negligible.

We need to show that $\forall c, \exists n_0, \text{ such that } \forall n > n_0, \nu(n) \cdot p(n) \leqslant \frac{1}{n^c}$.

- Since $p(\cdot)$ is a polynomial function, we know that $\exists n_p, c_p$, such that, $\forall n > n_p, p(n) \leq n^{c_p}$.
- Since $\nu(\cdot)$ is a negligible function, we know that $\exists n_{\nu}$ corresponding to $c + c_p$, such that $\forall n > n_{\nu}$, $\nu(n) \leqslant \frac{1}{n^{c+c_p}}$.

For a given c, let $n_0 = \max(n_{\nu}, n_p)$. $\forall n > n_0$:

$$\nu(n) \cdot p(n) \leqslant \frac{1}{n^{c+c_p}} \cdot n^{c_p}$$

$$\leqslant \frac{1}{n^{c+c_p-c_p}}$$

$$\leqslant \frac{1}{n^c}$$

ロン・ロン・モン・モン き かなく

Distributions & Ensembles

• <u>Recall</u>: X is a distribution over sample space S if it assigns probability p_s to the element $s \in S$ s.t. $\sum_s p_s = 1$

Ensemble

A sequence $\{X_n\}_{n\in\mathbb{N}}$ is called an ensemble if for each $n\in\mathbb{N}$, X_n is a probability distribution over $\{0,1\}^*$.

• Generally, X_n will be a distribution over the sample space $\{0,1\}^{\ell(n)}$ (where $\ell(\cdot)$ is a polynomial)

Computationally Indistinguishability: Definition

Definition (Computationally Indistinguishability)

Two ensembles of probability distributions $X = \{X_n\}_{n \in \mathbb{N}}$ and $Y = \{Y_n\}_{n \in \mathbb{N}}$ are said to be **computationally indistinguishable** if for every non-uniform PPT \mathcal{A} there exists a negligible function $\nu(\cdot)$ s.t.:

$$\left| \Pr \left[x \leftarrow X_n; \mathcal{A}(1^n, x) = 1 \right] - \Pr \left[y \leftarrow Y_n; \mathcal{A}(1^n, y) = 1 \right] \right| \leq \nu(n).$$

- The quantity
- $\left|\Pr\left[x\leftarrow X_n; D(1^n,x)=1\right] \Pr\left[y\leftarrow Y_n; D(1^n,y)=1\right]\right| \text{ is called the } \mathbf{advantage} \text{ or bias of } \mathcal{A} \text{ in distinguishing } X \text{ and } Y.$
- ullet Therefore, X and Y are computationally indistinguishable if all non-uniform PPT ${\mathcal A}$ have negligible advantage in distinguishing them.

Computational Indistinguishability

- \mathcal{A} 's output can be encoded using just one bit: 1 = "from X" and 0 = "from Y"
- \bullet We want $\mathcal A$ to output 1, with "almost similar" probability in both the above scenarios.

$$\Pr\left[x \leftarrow X; \mathcal{A}(1^n, x) = 1\right] \approx \Pr\left[y \leftarrow Y; \mathcal{A}(1^n, y) = 1\right] \implies$$

$$\left| \Pr \left[x \leftarrow X; \mathcal{A}(1^n, x) = 1 \right] - \Pr \left[y \leftarrow Y; \mathcal{A}(1^n, y) = 1 \right] \right| \leqslant \nu(n).$$

Computationally Indistinguishability: Definition

Definition (Computationally Indistinguishability)

Two ensembles of probability distributions $X = \{X_n\}_{n \in \mathbb{N}}$ and $Y = \{Y_n\}_{n \in \mathbb{N}}$ are said to be **computationally indistinguishable** if for every non-uniform PPT \mathcal{A} there exists a negligible function $\nu(\cdot)$ s.t.:

$$\left| \Pr\left[x \leftarrow X_n; \mathcal{A}(1^n, x) = 1 \right] - \Pr\left[y \leftarrow Y_n; \mathcal{A}(1^n, y) = 1 \right] \right| \leqslant \nu(n).$$

- The quantity $\left| \Pr\left[x \leftarrow X_n; D(1^n, x) = 1 \right] \Pr\left[y \leftarrow Y_n; D(1^n, y) = 1 \right] \right|$ is called the **advantage** or bias of \mathcal{A} in distinguishing X and Y.
- \bullet Therefore, X and Y are computationally indistinguishable if all non-uniform PPT $\mathcal A$ have negligible advantage in distinguishing them.

Properties of Computational Indistinguishability

- Notation: $\{X_n\} \approx_c \{Y_n\}$ means computational indistinguishability
- • Closure: If we apply an efficient operation on X and Y, they remain computationally indistinguishable. That is, \forall non-uniform PPT M

$$\{X_n\} \approx_c \{Y_n\} \implies \{M(X_n)\} \approx_c \{M(Y_n)\}$$

Proof Idea: If not, A can use M to tell them apart!

 Transitivity: If X, Y are computationally indistinguishable, and Y, Z are computationally indistinguishable; then X, Z are also computationally indistinguishable.

Generalizing Transitivity: Hybrid Lemma

Lemma (Hybrid Lemma)

Let X^1,\ldots,X^m be distribution ensembles for $m=\operatorname{poly}(n)$. If for every $i\in[m-1]$, X^i and X^{i+1} are computationally indistinguishable, then X^1 and X^m are computationally indistinguishable.

This is the hybrid technique, stated more generally, in the computational setting.

Used in most crypto proofs!

Pseudorandom Generators (PRG)

Definition (Pseudorandom Generator)

A deterministic algorithm G is called a <u>pseudorandom generator</u> (PRG) if

- \bullet G can be computed in polynomial time
- |G(x)| > |x|
- $\left\{x \stackrel{\$}{\leftarrow} \{0,1\}^n; G(x)\right\} \approx_c \left\{U_{\ell(n)}\right\}$ where $\ell(n) = |G(0^n)|$

The **stretch** of G is defined as: |G(x)| - |x|

Game Based Definition of PRG

$$\begin{split} \Pr[b'=1|b=1] \approx \Pr[b'=1|b=0] \\ \Big| \Pr[b'=1|b=1] - \Pr[b'=1|b=0] \Big| \leqslant \nu(n) \\ \Big| \Pr[\mathcal{A}(1^n,r)=1|\ s \overset{\mathfrak{s}}{\leftarrow} \{0,1\}^n, r := G(s)] - \Pr[\mathcal{A}(1^n,r)=1|r \overset{\mathfrak{s}}{\leftarrow} \{0,1\}^{\ell(n)}] \Big| \leqslant \nu(n) \end{split}$$

Security of Pseudorandom OTP

Lemma

Pseudorandom OTP satisfies one-time computational security.

Proof. We need to show that $\forall m_0, m_1 \in \{0,1\}^{\ell(n)}$ chosen by an adversary, the following two distributions are computationally indistinguishable:

•
$$\mathcal{D}_1 := \{c := m_0 \oplus G(k); k \leftarrow \{0, 1\}^n\}$$

②
$$D_2 := \{c := m_1 \oplus G(k); k \leftarrow \{0, 1\}^n\}$$

Consider the following hybrids:

•
$$\mathcal{H}_1 := \{c := m_0 \oplus G(k); k \overset{\$}{\leftarrow} \{0, 1\}^n \}$$

$$\mathcal{H}_2 := \left\{ c := m_0 \oplus r; \ r \overset{\$}{\leftarrow} \{0, 1\}^{\ell(n)} \right\}$$

•
$$\mathcal{H}_4 := \{c := m_1 \oplus G(k); k \overset{\$}{\leftarrow} \{0, 1\}^n \}$$

Security of Pseudorandom OTP

$$\bullet \mathcal{H}_1 := \left\{ c := m_0 \oplus G(k); \ k \stackrel{\$}{\leftarrow} \{0, 1\}^n \right\}$$

$$3 := \{c := m_1 \oplus r; r \xleftarrow{\$} \{0, 1\}^{\ell(n)} \}$$

$$\bullet \mathcal{H}_4 := \left\{ c := m_1 \oplus G(k); \ k \stackrel{\$}{\leftarrow} \{0, 1\}^n \right\}$$

 \$\mathcal{H}_1 \approx_c \mathcal{H}_2\$: From the security of PRG, we know that

$$\{G(k);\ k \xleftarrow{\$} \{0,1\}^n\} \approx_c \{r;\ r \xleftarrow{\$} \{0,1\}^{\ell(n)}\}$$

From closure property of computational indistinguishability, we get

$$\{m_0 \oplus G(k); k \stackrel{\$}{\leftarrow} \{0,1\}^n\} \approx_c \{m_0 \oplus r; r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell(n)}\}$$

Security of Pseudorandom OTP

•
$$\mathcal{H}_1 := \{c := m_0 \oplus G(k); k \overset{\$}{\leftarrow} \{0, 1\}^n \}$$

$$\mathcal{H}_1 := \left\{ c := m_0 \oplus \sigma(n), \ n = \{0, 1\} \right\}$$

$$\mathcal{H}_2 := \left\{ c := m_0 \oplus r; \ r \overset{\$}{\leftarrow} \{0, 1\}^{\ell(n)} \right\}$$

•
$$\mathcal{H}_3 := \left\{ c := m_1 \oplus r; \ r \overset{\$}{\leftarrow} \{0, 1\}^{\ell(n)} \right\}$$

•
$$\mathcal{H}_4 := \{c := m_1 \oplus G(k); k \xleftarrow{\$} \{0, 1\}^n \}$$

 H₃ ≈_c H₄: Similar to H₁ ≈_c H₂.

$$\mathcal{H}_1 \approx_c \mathcal{H}_2 \equiv \mathcal{H}_3 \approx_c \mathcal{H}_4$$

By hybrid lemma, \mathcal{H}_1 is computationally indistinguishable to \mathcal{H}_4 .

One-bit stretch PRG \implies Poly-bit stretch PRG

- We will now show that once you can construct a PRG with tiny stretch (even 1 bit), you can also construct arbitrary polynomial stretch PRG.
- Intuition: Iterate the one-bit stretch PRG poly times

Construction of $G_{poly}: \{0,1\}^n \to \{0,1\}^{\ell(n)}$

Let $G: \{0,1\}^n \to \{0,1\}^{n+1}$ be a one-bit stretch PRG.

$$\begin{array}{rcl} s & = & x_0 \\ G(x_0) & = & x_1 \| b_1 \\ & \vdots \\ G(x_{\ell(n)-1}) & = & x_{\ell(n)} \| b_{\ell(n)} \end{array}$$

$$G_{poly}(s) := b_1 \dots b_{\ell(n)}$$

Pseudorandomnes of G_{poly}

- $\bullet \text{ We want to show } \left\{ G_{poly}(s); \ s \xleftarrow{\$} \{0,1\}^n \right\} \ \approx_c \ \left\{ r \xleftarrow{\$} \{0,1\}^{\ell(n)} \right\}$
- Consider the following hybrid experiments:

Experiment \mathcal{H}_1	Experiment \mathcal{H}_2	Experiment $\mathcal{H}_{\ell(n)}$
$s = x_0$	$s = x_0$	$s = X_0$
$G(x_0) = x_1 b_1$	$s_1 u_1 = x_1 u_1$	$s_1 u_1 = x_1 u_1$
$G(x_1) = x_2 b_2$	$G(x_1) = x_2 b_2$	$s_2 u_2 = x_2 u_2$

$G(x_{\ell(n)-1}) = x_{\ell(n)} b_{\ell(n)} $	$G(X_{\ell(n)-1}) = x_{\ell(n)} b_{\ell(n)} $	$s_{\ell(n)} u_{\ell(n)} = x_{\ell(n)} u_{\ell(n)}$
Output $G(s) := b_1b_2 \dots b_{\ell(n)}$	Output $G(s) := u_1b_2 \dots b_{\ell(n)}$	Output $G(s) := u_1u_2 \dots u_{\ell(n)}$

• In order to show that G_{poly} is a PRG, it suffices to show that $\mathcal{H}_1 \approx_c \mathcal{H}_{\ell(n)}.$

Pseudorandomnes of G_{poly}

Experiment \mathcal{H}_1	Experiment \mathcal{H}_2	Experiment $\mathcal{H}_{\ell(n)}$
$s = x_0$	$s = x_0$	$s = X_0$
$G(x_0) = x_1 b_1 $	$s_1 u_1 = x_1 u_1 $	$s_1 u_1 = x_1 u_1$
$G(x_1) = x_2 b_2 $	$G(x_1) = x_2 b_2$	$s_2 u_2 = x_2 u_2$
2.5.5	30.00	300
0.00	10.00	***
$x_{\ell(n)-1}) = x_{\ell(n)} b_{\ell(n)} $	$G(X_{\ell(n)-1}) = x_{\ell(n)} b_{\ell(n)} $	$s_{\ell(n)} u_{\ell(n)} = x_{\ell(n)} u_{\ell(n)} u_{$

 $\boxed{ \text{Output } G(s) \coloneqq b_1b_2\dots b_{\ell(n)} } \boxed{ \text{Output } G(s) \coloneqq u_1b_2\dots b_{\ell(n)} } \boxed{ \text{Output } G(s) \coloneqq u_1u_2\dots u_{\ell(n)} }$

•
$$\mathcal{H}_1 \approx_c \mathcal{H}_2$$
: From the security of PRG, we know that
$$\{G(s); s \overset{\$}{=} \{0,1\}^n\} \approx_c \{s_1 || u_1 \overset{\$}{=} \{0,1\}^{n+1}\}$$

In distinguishability of \mathcal{H}_1 and \mathcal{H}_2 follows from the closure property of computational indistinguishability.

- Similarly, $\forall i \in [\ell(n) 1], \mathcal{H}_i \approx_c \mathcal{H}_{i+1}$.
- By Hybrid lemma, H₁ ≈_c H_{ℓ(n)}

Contrapositive Point of View

- So far, we have only considered security proofs in the "forward" direction.
- A more classical (although initially potentially confusing) way is to prove security by arriving at a contradiction.
- First, we establish the following definitions.

Definition (Non-Negligible Functions)

A function $\nu(n)$ is non-negligible if $\exists c$, such that $\forall n_0, \, \exists n > n_0, \, \nu(n) \geqslant \frac{1}{n^c}.$

Lemma (Alternate way to state Hybrid Lemma)

Let X^1,\ldots,X^m be distribution ensembles for $m=\mathsf{poly}(n)$. Suppose there exists a distinguisher/adversary $\mathcal A$ that distinguishes between X^1 and X^m with probability μ . Then $\exists i \in [m-1]$, such that $\mathcal A$ distinguishes between X^i and X^{i+1} with advantage at least μ/m .

Contrapositive Point of View

- ullet So far, we have proved statements of the following form. "If G is a one-bit stretch PRG, then G_{poly} is a poly-bit stretch PRG."
- Let's now think about the contrapositve of these statements.
 "If G_{poly} is a not poly-bit stretch PRG, then G is not a one-bit stretch PRG."
- If G_{poly} is not a PRG, then there exists a n.u. PPT adversary A
 who can distinguish between its output on a random input and a
 uniformly sampled string with some non-negligible advantage μ.

Contrapositive Point of View

- \bullet We just proved security of G_{poly} using a sequence of hybrids.
- If we assume that an adversary \mathcal{A} exists, who has non-negligible advantage in breaking the security of G_{poly} , then at least one of the steps of our previous proof must break down.
- By hybrid lemma, \mathcal{A} can distinguish between at least 1 pair of consecutive hybrids (say \mathcal{H}_i and \mathcal{H}_{i+1}) with at least $\mu/\ell(n)$ advantage.

Lemma (Alternate way to state Hybrid Lemma)

Let X^1,\ldots,X^m be distribution ensembles for $m=\mathsf{poly}(n)$. Suppose there exists a distinguisher/adversary $\mathcal A$ that distinguishes between X^1 and X^m with probability μ . Then $\exists i \in [m-1]$, such that $\mathcal A$ distinguishes between X^i and X^{i+1} with advantage at least μ/m .

Contrapositive Point of View

- \bullet We just proved security of G_{poly} using a sequence of hybrids.
- If we assume that an adversary \mathcal{A} exists, who has non-negligible advantage in breaking the security of G_{poly} , then at least one of the steps of our previous proof must break down.
- By hybrid lemma, A can distinguish between at least 1 pair of consecutive hybrids (say H_i and H_{i+1}) with at least μ/ℓ(n) advantage.
- ullet In our previous proof, we relied on the security of G to argue indistinguishability of each pair of consecutive hybrids.
- We will now use A that has non-negligible advantage in distinguishing between H_i and H_{i+1}, to construct another adversary B to break security of G.
- However, since G is a secure PRG, no such n.u. PPT A should exist. This will give us a contradiction and imply that our assumption was incorrect. G_{poly} is in fact secure.

Proof via Reduction

- How do we construct B?
- We consider the game-based definition of PRG.

 $\left|\Pr[b'=1|b=1] - \Pr[b'=1|b=0]\right| \leqslant \nu(n)$

Proof by Reduction

• This proof technique is also called **proof by reduction**.

Proof by Reduction

- If y is pseudorandom, i.e., sampled as y = G(s), then the input to \mathcal{A} is distributed identically to the output of \mathcal{H}_i .
- Otherwise, i.e., y is (truly) random, and therefore the input to A is distributed identically to the output of H_{i+1}.
- Hence, B has the same advantage in distinguishing between the output of G and a pseudorandom string that A has in distinguishing between H_i and H_{i+1}.
- Moreover, since \mathcal{A} is n.u. PPT, so is \mathcal{B} . This is a contradiction!
- \bullet Hence, $G_{\mathsf{poly}(n)}$ is a PRG.

Proof by Reduction: Key Points

- These are four important things that you must work through for a valid reduction:
 - Input Mapping: How to map the input that "outer adversary" B recieves from the challenger to an input to the "internal adversary" A?
 - Input Distribution: Does the input mapping provide the right distribution of inputs that A expects?
 - distribution of inputs that \mathcal{A} expects?

 Output Mapping: How do we map the output that \mathcal{A} provides to an output for \mathcal{B} ?

 Probability: When we assume existence of \mathcal{A} , we also assume that
 - Probability: When we assume existence of A, we also assume that A wins with non-negligible advantage. What is the probability/advantage that B wins, given the mappings above?

One Way Functions: Definition

Definition (One Way Function)

A function $f:\{0,1\}^*\to\{0,1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

• Easy to compute: there is a polynomial-time algorithm $\mathcal C$ s.t. $\forall x \in \{0,1\}^*,$

$$\Pr\left[\mathcal{C}(x) = f(x)\right] = 1.$$

• Hard to invert: there exists a <u>negligible</u> function $\nu : \mathbb{N} \to \mathbb{R}$ s.t. for every non-uniform PPT adversary $\overline{\mathcal{A}}$ and $\forall n \in \mathbb{N}$:

$$\Pr\left[x \xleftarrow{\$} \{0,1\}^n, x' \leftarrow \mathcal{A}(1^n, f(x)) : f(x') = f(x)\right] \leqslant \nu(n).$$

• The above definition is also called strong one-way functions.

One Way Functions: Game Based Definition

It is also instructive to think of that definition in this game-based form.

We say that $f:\{0,1\}^* \to \{0,1\}^*$ is a one-way function if there exists a negligible function $\nu:\mathbb{N}\to\mathbb{R}$ s.t. for every n.u. PPT adversary $\mathcal A$ and $\forall n\in\mathbb{N}$:

 $\Pr[\mathcal{A} \text{ wins}] \leqslant \nu(n).$

Noticeable Functions

Let us start by formally defining noticeable functions. These are functions that are **at most polynomially small**.

Definition (Noticeable Function)

A function $\nu(n)$ is noticeable if $\exists c, n_0$ such that $\forall n > n_0, \, \nu(n) \geqslant \frac{1}{n^c}$.

Note that a non-negligible function is not necessarily a noticeable function. Example:

$$f(n) = \begin{cases} 1 & \text{if } n \text{ is even} \\ 2^{-n} & \text{if } n \text{ is odd} \end{cases}.$$

Weak One Way Functions

Definition (Weak One Way Function)

A function $f:\{0,1\}^* \to \{0,1\}^*$ is a weak one-way function if it satisfies the following two conditions:

• Easy to compute: there is a polynomial-time algorithm C s.t. $\forall x \in \{0,1\}^*$,

$$\Pr\left[\mathcal{C}(x) = f(x)\right] = 1.$$

• Somewhat hard to invert: there is a noticeable function $\varepsilon : \mathbb{N} \to \mathbb{R}$ s.t. for every non-uniform PPT \mathcal{A} and $\forall n \in \mathbb{N}$:

$$\Pr\left[x \leftarrow \{0,1\}^n, x' \leftarrow \mathcal{A}(1^n, f(x)) : f(x') \neq f(x)\right] \geqslant \varepsilon(n).$$

Proof via Reduction

Goal: Given an adversary \mathcal{A} that breaks weak one-wayness of f_{\times} with probability at least $1-\frac{1}{q(n)}$, we will construct an adversary \mathcal{B} that breaks the factoring assumption with noticeable probability

Weak to Strong OWFs

Theorem

For any weak one-way function $f:\{0,1\}^n \to \{0,1\}^n$, there exists a polynomial $N(\cdot)$ s.t. the function $F:\{0,1\}^{n\cdot N(n)} \to \{0,1\}^{n\cdot N(n)}$ defined as

$$F(x_1,...,x_N(n)) = (f(x_1),...,f(x_N(n)))$$

is strongly one-way.

Weak to Strong OWFs: Intuition

- Recall: OWFs only guarantee average-case hardness
- GOOD inputs: hard to invert, BAD inputs: easy to invert
- A OWF is weak when the fraction of BAD inputs is noticeable.
- In a strong OWF, the fraction of BAD inputs is negligible
- To convert weak OWF to strong, use the weak OWF on many (say N) inputs independently
- \bullet In order to successfully invert the new OWF, adversary must invert ALL the N outputs of the weak OWF
- If N is sufficiently large and the inputs are chosen independently at random, then the probability of inverting all of them should be small

Hard Core Predicate

- \bullet A hard core predicate for a OWF f
 - is a function over its inputs $\{x\}$
 - its output is a single bit (called "hard core bit")
 - it can be easily computed given x
 - but "hard to compute" given only f(x)
- <u>Intuition</u>: f may leak many bits of x but it does not leak the hard-core bit.
- In other words, learning the hardcore bit of x, even given f(x), is "as hard as" inverting f itself.
- <u>Think</u>: What does "hard to compute" mean for a single bit?
 you can always guess the bit with probability 1/2.

Hard Core Predicate: Definition

• Hard-core bit cannot be learned or "predicted" or "computed" with probability $> \frac{1}{2} + \nu(|x|)$ even given f(x) (where ν is a negligible function)

Definition (Hard Core Predicate)

A predicate $h:\{0,1\}^* \to \{0,1\}$ is a hard-core predicate for $f(\cdot)$ if h is efficiently computable given x and there exists a negligible function ν s.t. for every non-uniform PPT adversary $\mathcal A$ and $\forall n \in \mathbb N$:

$$\Pr\left[x \leftarrow \{0,1\}^n : \mathcal{A}(1^n, f(x)) = h(x)\right] \leq \frac{1}{2} + \nu(n).$$

Hard Core Predicate: Game Based Definition

It is also instructive to think of that definition in this game-based form.

We want that for all n.u. PPT adversary \mathcal{A} , the adversary wins with probability only at most negligible more than 1/2.

$$\Pr[A \text{ wins}] \leq \frac{1}{2} + \nu(n).$$

Hard Core Predicate: Construction

- Can we construct hard-core predicates for general OWFs f?
- Define $\langle x, r \rangle$ to be the **inner product** function mod 2. I.e.,

$$\langle x, r \rangle = \left(\sum_i x_i r_i\right) \mod 2$$

Theorem (Goldreich-Levin)

Let f be a OWF. Define function

$$g(x,r) = (f(x),r)$$

where |x| = |r|. Then g is a OWF and

$$h(x,r) = \langle x,r \rangle$$

is a hard-core predicate for f

Warmup Proof (1)

- Assumption: Given g(x,r)=(f(x),r), adversary $\mathcal A$ always (i.e., with probability 1) outputs h(x,r) correctly
- - Compute x_i^{*} ← A(f(x), e_i) for every i ∈ [n] where:

$$e_i = (\underbrace{0, \dots, 0}_{(i-1)\text{-times}}, 1, \dots, 0)$$

• Output $x^* = x_1^* \dots x_n^*$

Warmup Proof (2)

- Assumption: Given g(x,r)=(f(x),r), adversary $\mathcal A$ outputs h(x,r)with probability $3/4 + \varepsilon(n)$ (over choices of (x, r))
- Main Problem: Adversary may not work on "improper" inputs (e.g., $r = e_i$ as in previous case)
- Main Idea: Split each query into two queries s.t. each query individually looks random
- Inverter B:
 - Let $a:=\mathcal{A}(f(x),e_i+r)$ and $b:=\mathcal{A}(f(x),r),$ for $r\stackrel{\$}{\leftarrow}\{0,1\}^n$ Compute $c:=a\oplus b$

 - $c = x_i$ with probability at least $\frac{1}{2} + \varepsilon$ (Union Bound)
 - Repeat and take majority to obtain x_i^* s.t. $x_i^* = x_i$ with prob. $1 - \mathsf{negl}(n)(n)$

Next-bit Unpredictability

Definition (Next-bit Unpredictability)

An ensemble of distributions $\{X_n\}$ over $\{0,1\}^{\ell(n)}$ is next-bit unpredictable if, for all $0 \le i < \ell(n)$ and n.u. PPT \mathcal{A} , \exists negligible function $\nu(\cdot)$ s.t.:

$$\Pr[t = t_1 \dots t_{\ell(n)} \leftarrow X_n : \mathcal{A}(t_1 \dots t_i) = t_{i+1}] \leq \frac{1}{2} + \nu(n)$$

Theorem (Completeness of Next-bit Test)

If $\{X_n\}$ is next-bit unpredictable then $\{X_n\}$ is pseudorandom.

PRG with 1-bit stretch

- Let $f:\{0,1\}^* \to \{0,1\}^*$ be a **OWP**
- Let $h:\{0,1\}^* \to \{0,1\}$ be a hardcore predicate for f
- Construction: $G(s) = f(s) \parallel h(s)$

Theorem (PRG based on OWP)

 $G\ is\ a\ pseudorandom\ generator\ with\ 1-bit\ stretch.$

- Think: Proof?
- ullet Proof Idea: Use next-bit unpredictability. Since first n bits of the output are uniformly distributed (since f is a permutation), any adversary for next-bit unpredictability with non-negligible advantage $\frac{1}{p(n)}$ must be predicting the (n+1)th bit with advantage $\frac{1}{p(n)}.$ Build an adversary for hard-core predicate to get a contradiction.

Random Functions

There are two ways to define a random function:

- First method: A random function F from n bits to n bits is a function selected uniformly at random from all 2^{n2^n} functions that map n bits to n bits
- Second method: Use a randomized algorithm to describe the function. Sometimes more convenient to use in proofs
 - \bullet randomized program M to implement a random function F
 - M keeps a table T that is initially empty.
 - ullet on input $x,\,M$ has not seen x before, choose a random string y and add the entry (x, y) to the table T
 - otherwise, if x is already in the table, M picks the entry corresponding to x from T, and outputs that
- M's output distribution identical to that of F.

Pseudorandom Functions

- Keep the description of PRF secret from D?
 - Security by obscurity not a good idea (Kerckoff's priniciple)
- Solution: PRF will be a keyed function. Only the key will be secret, and the PRF evaluation algorithm will be public
- Security via a Game based definition
 - Players: a challenger Ch and D. Ch is randomized and efficient
 - Game starts by Ch choosing a random bit b. If $b=0,\,Ch$ implements a random function, otherwise it implements a PRF
 - D send queries x_1, x_2, \ldots to Ch, one-by-one
 - Ch answers by correctly replying $F(x_1), F(x_2), \ldots$
 - Finally, D outputs his guess b' (of F being random or PRF)
 - D wins if b' = b
- PRF Security: No D can win with probability better than 1/2.

Pseudorandom Functions: Definition

Definition (Pseudorandom Functions)

A family $\{F_k\}_{k\in\{0,1\}^n}$ of functions, where : $F_k:\{0,1\}^n\to\{0,1\}^n$ for all k, is pseudorandom if:

- ullet Easy to compute: there is an efficient algorithm M such that $\forall k, x : M(k, x) = F_k(x).$
- \bullet Hard to distinguish: for every non-uniform PPT D there exists a negligible function ν such that $\forall n \in \mathbb{N}$:

$$|\Pr[D \text{ wins GuessGame}] - 1/2| \leq \nu(n).$$

where GuessGame is defined below

Pseudorandom Functions: Game Based Definition

 $\mathbf{GuessGame}(1^n)$ incorporates D and proceeds as follows:

- \bullet The games choose a PRF key k and a random bit b.
- ullet It runs D answering every query x as follows:
- If b = 0: (answer using PRF)
 - output F_k(x)
- If b = 1: (answer using a random F)
 - (keep a table T for previous answers)
 - if x is in T: return T[x].
 - else: choose $y \leftarrow \{0,1\}^n,\, T[x] = y,$ return y.
- \bullet Game stops when D halts. D outputs a bit b'

D wins GuessGame if b' = b.

Remark: note that for any b only one of the two functions is ever used.

PRF from PRG

Theorem (Goldreich-Goldwasser-Micali (GGM))

 ${\it If pseudorandom generators \ exist \ then \ pseudorandom \ functions \ exist}$

• Notation: define G_0 and G_1 as

$$G(s) = G_0(s) \|G_1(s)$$

i.e., G_0 chooses left half of G and G_1 chooses right half

• Construction for *n*-bit inputs $x = x_1 x_2 \dots x_n$

$$F_k(x) = G_{x_n}(G_{x_{n-1}}(\dots(G_{x_1}(k))_{\dots})$$

Proof Strategy (contd.)

Two layers of hybrids:

- First, define hybrids over the n levels in the tree. For every i, H_i is such that the nodes up to level i are random, but the nodes below are pseudorandom.
- $\bullet\,$ Now, hybrid over the nodes in level i+1 that are "affected" by adversary's queries, replacing each node one by one with random
- Use PRG security to argue indistinguishability

Discrete Logarithm Problem: Definition

Definition (Discrete Logarithm Problem)

Let (G,\cdot) be a cyclic group of order p (where p is a safe prime) with generator g, then for every non-uniform PPT adversary \mathcal{A} , there exists a negligible function ε such that

$$\Pr[a \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}, a' \leftarrow \mathcal{A}(G, p, g, g^a) : a = a'] \leqslant \varepsilon$$

Computational Diffie-Hellman Assumption: Definition

Definition (Computational Diffie-Hellman Assumption)

Let (G, \cdot) be a cyclic group of order p (where p is a safe prime) with generator g, then for every non-uniform PPT adversary \mathcal{A} , there exists a negligible function ε such that

$$\Pr[a, b \overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \{0, \dots, p-1\}, y \leftarrow \mathcal{A}(G, p, g, g^a, g^b) : g^{ab} = y] \leqslant \varepsilon$$

Decisional Diffie-Hellman Assumption

- Let (G, \cdot) be a cyclic group of order p with generator g, where p is an n-bit safe prime number.
- Pick $b \stackrel{\$}{\leftarrow} \{0, 1\}$
- If b = 0, send (g, g^a, g^b, g^{ab}) , where $a, b \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$
- If b=1, send (g,g^a,g^b,g^r) , where $a,b,r \stackrel{\$}{\leftarrow} \{0,\ldots,p-1\}$
- ullet Adversary has to guess b
- Effectively: $(g, g^a, g^b, g^{ab}) \approx (g, g^a, g^b, g^r)$, for $a, b, r \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and any g

Decisional Diffie-Hellman Assumption: Definition

Definition (Decisional Diffie-Hellman Assumption)

Let (G,\cdot) be a cyclic group of order p (where p is a safe prime) with generator g, then the following two distributions are computationally indistinguishable:

- $\bullet \ \{a,b \xleftarrow{\$} \{0,\ldots,p-1\}: (G,p,g,g^a,g^b,g^{ab})\}$
- $\{a, b, r \stackrel{\$}{\leftarrow} \{0, \dots, p-1\} : (G, p, g, g^a, g^b, g^r)\}$

Key Agreement: Construction (Diffie-Hellman)

- Let (G, \cdot) be a cyclic group of order p (where p is a safe prime) with generator q.
- Alice picks $a \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends g^a to Bob
- \bullet Bob picks $b \overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \{0,\dots,p-1\}$ and sends g^b to Alice
- \bullet Alice outputs $(g^b)^a$ and Bob outputs $(g^a)^b$
- \bullet Adversary sees: (g^a,g^b)
- Correctness?
- Security? Use DDH to say that g^{ab} is hidden from adversary's view
- Think: Is this scheme still secure if the adversary is allowed to modify the messages?

Multi-message Secure Encryption

Definition (Multi-message Secure Encryption)

A secret-key encryption scheme (Gen, Enc, Dec) is multi-message secure if for all n.u. PPT adversaries A, for all polynomials $q(\cdot)$, there exists a negligible function $\mu(\cdot)$ s.t.:

$$\Pr\left[\begin{array}{l} s \overset{\$}{\underset{\leftarrow}{\in}} \operatorname{Gen}(1^n), \\ \left\{\left(m_0^i, m_1^i\right)\right\}_{i=1}^{q(n)} \leftarrow \mathcal{A}(1^n), \quad : \mathcal{A}\left(\left\{\operatorname{Enc}\left(m_b^i\right)\right\}_{i=1}^{q(n)}\right) = b \end{array}\right] \leqslant \frac{1}{2} + \mu(n)$$

• Think: Security against adaptive adversaries (who may choose message pairs in an adaptive manner based on previously seen ciphertexts)?

Encryption using PRFs

Let $\{f_s:\{0,1\}^n \to \{0,1\}^n\}$ be a family of PRFs

- $\operatorname{Gen}(1^n)$: $s \stackrel{\$}{\leftarrow} \{0,1\}^n$
- $\mathsf{Enc}(s,m)$: $\mathsf{Pick}\ r \overset{\$}{\leftarrow} \{0,1\}^n$. $\mathsf{Output}\ (r,m \oplus f_s\ (r))$
- Dec (s, (r, c)): Output $c \oplus f_s(r)$

Theorem (Encryption from PRF)

(Gen, Enc, Dec) is a multi-message secure encryption scheme

• Think: Proof?

Proof of Security

Proof via hybrids:

- H_1 : Real experiment with $m_0^1, \ldots, m_0^{q(n)}$ (i.e., b=0)
- H_2 : Replace f_s with random function $f \stackrel{\$}{\leftarrow} \mathcal{F}_n$
- H₃: Switch to one-time pad encryption
- H_4 : Switch to encryption of $m_1^1, \dots, m_1^{q(n)}$
- H_5 : Use random function $f \stackrel{\$}{\leftarrow} \mathcal{F}_n$ to encrypt
- H_6 : Encrypt using f_s . Same as real experiment with $m_0^1,\dots,m_0^{q(n)}$ (i.e., b = 1)

Think: Non-adaptive vs adaptive queries

Semantic Security

Definition (Semantic Security)

A secret-key encryption scheme (Gen, Enc, Dec) is semantically secure if there exists a PPT simulator algorithm $\mathcal S$ s.t. the following two experiments generate computationally indistinguishable outputs:

$$\left\{\begin{array}{c} (m,z) \leftarrow M(1^n), \\ s \leftarrow \mathsf{Gen}(1^n), \\ \mathsf{Output} \ (\mathsf{Enc}(s,m),z) \end{array}\right\} \approx \left\{\begin{array}{c} (m,z) \leftarrow M(1^n), \\ \mathsf{Output} \ S(1^n,z) \end{array}\right\}$$

where M is a machine that randomly samples a message from the message space and arbitrary auxiliary information.

• Indistinguishability security \Leftrightarrow Semantic security

Definition

- Syntax:

 - $\begin{array}{l} \bullet \ \ \mathsf{Gen}(1^n) \to (pk,sk) \\ \bullet \ \ \mathsf{Enc}(pk,m) \to c \\ \bullet \ \ \mathsf{Dec}(sk,c) \to m' \ \mathrm{or} \ \bot \end{array}$

All algorithms are polynomial time

- Correctness: For every m, $\mathsf{Dec}(sk,\mathsf{Enc}(pk,m)) = m$, where $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$
- Security: ?

Security

Definition ((Weak) Indistinguishability Security)

A public-key encryption scheme $(\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$ is weakly indistinguishably secure under chosen plaintext attack (weak IND-CPA) if for all n.u. PPT adversaries \mathcal{A} , there exists a negligible function $\mu(\cdot)$ s.t.:

$$\Pr\left[\begin{array}{l} (pk,sk) \overset{\$}{\leftarrow} \mathsf{Gen}(1^n), \\ (m_0,m_1) \leftarrow \mathcal{A}(1^n), \quad : \mathcal{A}\left(pk,\mathsf{Enc}\left(pk,m_b\right)\right) = b \\ b \overset{\$}{\leftarrow} \{0,1\} \end{array}\right] \leqslant \frac{1}{2} + \mu(n)$$

1 Think: Semantic security style definition?

Security (contd.)

A stronger definition:

Definition (Indistinguishability Security)

A public-key encryption scheme ($\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ is indistinguishably secure under chosen plaintext attack (IND-CPA) if for all n.u. PPT adversaries \mathcal{A} , there exists a negligible function $\mu(\cdot)$ s.t.:

$$\Pr\left[\begin{array}{c} (pk,sk) \overset{\$}{\leftarrow} \mathsf{Gen}(1^n), \\ (m_0,m_1) \leftarrow \mathcal{A}(1^n,pk), \quad : \mathcal{A}(pk,\mathsf{Enc}\,(m_b)) = b \\ b \overset{\$}{=} \{0,1\} \end{array}\right] \leqslant \frac{1}{2} + \mu(n)$$

• Think: IND-CPA is stronger than weak IND-CPA