• 例題 🔏 15.2

-k = 200 N/m 的彈簧連接著-2 kg 物體。彈簧由被拉伸長 5 cm 處於 t = 0 時釋放。求:(a) 位移對時間的函數;(b) 當 x = +A/2 時的速度;(c) 當 x = +A/2 時的加速度。

解

(a) 要先求出 15.2 式中的 $A \times \omega \times \phi$ 。振幅即一開始的 伸長量,即 A = 0.05 m。 由 15.7 式,角頻率為

$$\omega = \sqrt{\frac{k}{m}} = 10 \text{ rad/s}$$

為了求 ϕ 要注意當t=0,x=+A且v=0。因此,由 15.2 式及 15.3 式

$$A = A \sin(0 + \phi)$$
$$0 = 10A \cos(0 + \phi)$$

因 $\sin \phi = 1$ 而 $\cos \phi = 0$, 故 $\phi = \pi/2$ rad 。 因此 ,

們只須知道相位,不必知道時間)。速度為
$$v = \frac{dx}{dt} = 0.5 \cos \left(10t + \frac{\pi}{2}\right) \text{m}$$

 $x = 0.05 \sin(10t + \frac{\pi}{2}) \text{ m}$

(b) 要求當 x = A/2 時的速度,由(i)式得 $1/2 = \sin(10t + \pi/2)$,由此知($10t + \pi/2$)= $\pi/6$ 或 $5\pi/6$ (我

=
$$0.5 \cos \frac{\pi}{6}$$
 或 $0.5 \cos \frac{5\pi}{6}$
= $+0.43 \text{ m/s}$ 或 -0.43 m/s

在一給定位置,有兩個速度值,等大而反向。

$$a = -\frac{k}{m}x = -\omega^2 x$$

$$= -(10 \text{ rad/s})^2 (0.05/2 \text{ m}) = -2.5 \text{ m/s}^2$$

(i)