Reg. No.

B.Tech. / M.Tech. (Integrated) DEGREE EXAMINATION, MAY 2024

Second and Fourth Semester

21MAB301T - PROBABILITY AND STATISTICS

(For the candidates admitted during the academic year 2021-2022, 2022-2023 & 2023-2024) (Use of statistical tables permitted graph sheets can be provided)

- (i) Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute

(ii)		$\mathbf{r} \mathbf{t} - \mathbf{B}$ and $\mathbf{Part} - \mathbf{C}$ should be answ						
Time: 3	Hour	rs			Max.	Ma	rks:	75
		PART - A (20 ×	1 = 20N	Aarks)	Marks	BL	со	PO
		Answer ALL						
1.	sam	persons A and B appear in	an inte	rview for two vacancies for the is 1/7 and that of B selection is		1	1	1
		12/35	(B)					
	` '	5/7	, ,	1/35				
	~~~			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	1	1	1
2.		and Y two independent rander (aX+bY)=	om varı	ables, a and b are constants then	1	1	1	1
	(A)	aVar(X) - bVar(Y)	(B)	$a^2Var(X) + b^2Var(Y)$				
	(C)	aVar(X)+bVar(Y)	(D)	$a^2Var(X) - b^2Var(Y)$				
3.		is the distribution function of $a < X \le b$ ) =	the ran	dom variable X and if a < b, then	1	1	1	2
	`	,	(D)	$\mathbf{p}(\mathbf{x}_{i})$ , $\mathbf{p}(\mathbf{x}_{i})$				
		P(a < X < b) + P(X = a)						
	(C)	F(b)-F(a)-P(X=b)	(D)	F(b)-F(a)				
4.	If $E$	$E(X^2) = 8$ and $E(X) = 2$ then	Var(X) i	is	1	1	1	1
	(A)	,	(B)					
	(C)		(D)					
5.	The	mean of a geometric distributi	on who	se pdf is $pq^{r-1}, r = 1, 2, 3$	1	1	2	1
	(A)	1/p	(B)	p/q				
	` ′	q/p		1/q				
6.	pass			se has the probability of 0.8 in the probability that he will pass		1	2	1
	(A)	0.0046	(B)	0.0064				
	(C)	0.0604	(D)	0.0406				
7.	If th	ne random variables X has the l	P.D.F <i>C</i>	$e^{-x/5}$ ; $x > 0$ then the value of C is	1	1	2	2

(B) -1/5

(D) -5

(A) 5 (C) 1/5

8.	The	mean of uniform distribution is			1	1	2	1
	(A)	a+b	(B)	a+b				
		2		4				
	(C)	$\frac{a-b}{a-b}$	(D)	a+b				
		2		8				
					1	2	3	2
9.			,h sar	nple, he/she will almost always	1	2	3	2
	obta	n Virtually significant results	(R)	Practically significant results				
	(C)			Statistically significant results				
	(0)	results	(D)	Statistically significant results				
10.	Whi	ch of the following values is not	typic	ally used for $\alpha$ ?	1	2	3	1
	(A)	0.01	(B)	0.05				
	(C)	0.10	(D)	0.25				
	~1 ·	90	C .1	1	1	1	3	1
11.		square test is not very effective i			1/2	1	3	1
	` '	Small	` '	Large				
	(C)	Irregular	(D)	Heterogeneous				
12	Area	a of the rejection region depends	on	*	1	2	3	1
· <del>- ·</del>		Test statistic		Number of values				
	(C)	Size of α	` ′	Size of β				
	` '			•				
13.	For	the equation y=3x-2, if the mean	ofy	is 10, what is the mean of x?	1	1	4	1
	(A)		(B)					
	(C)	4	(D)	12				
1 /1	In (	one way elegification the de	to or	e classified according to only	1	1	4	1
14.	111 (	criterion.	ta ai	e classified according to only				
	$\overline{(A)}$	Two	(B)	One				
	• /	Five		Six				
15	Dec	ression coefficient is independen	t of t1	ne change of	1	1	4	2
1).	(A)			Origin				
	` /	Both origin and scale	` '	Neither origin nor scale				
	` ,	_	. ,		1	2	4	1
16.				regression coefficient of x on y	1	_		•
	-	1.468 and regression on coefficience 0.9045		0.9685				
	(A)	0.9568	` /	0.9600				
	` '		. ,		1	1	_	2
17.				technique for effective diagnosis	1	1	5	2
		ack of quality in any of the mater		Overtitative				
	` '	Productivity Non-productivity	` ′	Quantitative				
	(C)	Non-productivity	(D)	Cost				
18.	-		_	alified and trained personal will	1	1	5	2
	_	<del>-</del>		er quality production through the				
		lication skill and reduce the						
		Production cost	` ′	Quantity				
	(C)	Material	(D)	Business				

19.	If d is the number of proportion defective $(A)$ $p = d/n$ $(C)$ $p = d/s$	is	imple of size n then the sample $p = d$ $p = d / \sqrt{n}$	1	1	5	1
20.	c-chart is used when (A) 1 (C) 3	$\overline{c} \ge $ (B) (D)	2 4	1	1	5	1
		RT - B (5 × 8 = 40 M Answer ALL Question		Marks	BL	CO	РО
21. a.	80% of the chips and rated higher quality	the plant II the rest. and in plant II, only	re IC chips. Plant I manufactures At plant I, 85 out of 100 chips are 65 out of the 100 chips are rated. en at random came from plant II.	8	2	1	2
b.	The pdf of a continuous $f(x) = \begin{cases} 6x(1-x) & \text{if } 0 \\ 0 & \text{if } 0 \end{cases}$		X as follows	8	3	1	2
	Find the CDF for X.	otherwise		× 1			
22. a.	₹ 150 and S.D of ₹ distributed.  (i) What percential what percential (ii) What percential (iii) what percential (iiii) what percential (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	50. Assuming that the entage of account is contage.	etween ₹ 120 and ₹ 170?	8.	3	2	2
		(OR)				2	2
b.	Starting at 5.00 am airport to Los Angerplane tickets is compassengers. A personandom time between waits (i) atmost 10 m	8	4	2	2		
23. a.	independent sample	e of size 500, the me size 400, the mean is ple population with S	ean is found to be 20. In another 15. Could the samples have been .D 4?	8	3	3	2
•	1000 - 1 1	(OR)	ad according to their I O and their	8	4	3	2
b.	1000 students at col economic condition data.	s. What conclusion	ed according to their I.Q and their can you draw from the following			-	
		Economic condition	s I.Q level High Low				
		Rich	460 140				
		Poor	240 160				

24. a. Two lines of regression are 8x-10y+66=0; 40x-18y-214=0 the ⁸ ³ ⁴ variance of X is 9. Find (i) mean values of x and y (ii) correlation coefficient between X and Y.

(OR)

b. Calculate the correlation coefficient for the following data.

X	10	14	18	22	26	30	
Y	18	12	24	6	30	36	

25. a. 15 samples of 200 items each were drawn from the output of a process. The number of defective items in the samples are given below. Prepare a control chart for the fraction of defective and comment on the state of control.

Sample No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No. of	12	15	10	0	10	1.5	17	11	12	20	10	0	^	_	
defectives	12	13	10	0	19	13	1 /	11	13	20	10	8	9	5	8

(OR)

b. Given below are the sample mean  $\overline{X}$  and sample range R for 10 samples each of size 5. Draw the appropriate mean chart and comment on the state of control of the process.

Sample No:	1	2	3.	4	5	6	7	8	9	10
Mean:	43	49	37	44	45	37	51	46	43	47
Range:	5	6	5	7	7	4	8	6	4	6

## $PART - C (1 \times 15 = 15 Marks)$

Answer ANY ONE Questions

elected day are X 15 4 1 2

26. The sales of a convenience store on a randomly selected day are X thousand dollars, where X is a random variable with a cdf

$$F(x) = \begin{cases} 0 & ; & x < 0 \\ \frac{x^2}{2} & ; & 0 < x < 1 \\ K(4x - x^2); 1 < x < 2 \\ 1 & ; & x \ge 2 \end{cases}$$

Suppose that this convenience store's total sales on any given day are less than \$2000.

- (a) Find the value of K
- (b) Let A and B be the events such that the stores total sales are between 500 and 1500 dollars, and over 1000 dollars respectively.
- (c) Find P(A) and P(B).
- 27. The following data represent the number of units of a product produced by 3 different workers using 3 different types of machines.

	Wantrons	Machines								
	Workers	$M_1$	$M_2$	$M_3$						
	$W_1$	8	32	20						
	$W_2$	28	36	38						
	$W_3$	6	28	14						

Test (i) whether the mean productivity is the same for the different machine types and (ii) whether the three workers differ with respect to mean productivity.

* * * *