Animating a Simple 2D Kinematic Steering Model

ME695B, Advanced Vehicle Dynamics
Spring 2016

Marc Compere, Ph.D.

Department of Mechanical Engineering
Embry-Riddle Aeronautical University

Kinematic Steering Model – Rolling Without Slipping

- Given this simple kinematic, low speed vehicle
 and
- Given a constant speed and steering input of:
 - RIGHT
 - LEFT
 - RIGHT
- Which trace do you think is correct?

Which trace do you think is correct, and why?

Answer:

BOTH traces are correct.

The trace connected by smooth, continuous segments is the position trace from the rear axle's center at point 'o':

$$v_o^{xy} = \begin{bmatrix} v_x \,\hat{\imath} \\ 0 \,\hat{\jmath} \end{bmatrix}$$

The trace with discontinuously connected segments is the trace from the vehicle's geometric center, 'g'.

$$v_g^{xy} = v_o^{xy} + \vec{\omega} \times \vec{r}_{og}$$

Using the coordinate transformation matrix, T, transform the velocity of point 'g' in the body-fixed xy frame to the inertial, or terrain-fixed XY frame with:

$$v_g^{XY} = \begin{bmatrix} \cos(\psi) & -\sin(\psi) \\ \sin(\psi) & \cos(\psi) \end{bmatrix} \cdot v_g^{xy}$$

Then integrate the terrain-frame velocities to achieve position in XY as a function of body-fixed steering input, delta:

$$\begin{bmatrix} X_g \\ Y_g \end{bmatrix} = \int v_g^{XY} dt \qquad \psi = \int \dot{\psi} dt$$

$$\dot{\psi} = \left(\frac{v_{\chi}}{I_{\cdot}}\right) \delta_{steer}$$

 Dragging the pen while moving the car shows the smooth rear axle trace and the vehicle center trace.

• The smooth trace is from the center of the rear axle, at 'o'

 The discontinuous trace is from the pen's trace at the center of the vehicle, at 'g'

Constant Radius Turning Scenarios

Turning with Constant Radius. Where is the circle centered?

Tangential Entry and Exit

