实验 4-2 报告

学号:2016K8009929060

姓名: 王晨赳

一、实验任务(10%)

本次实验在之前的基础上添加 break 例外、地址错、整数溢出、保留指令例外的支持,并增加对中断的支持。 lab4-2 功能测试行为仿真通过后,再上板检验。

二、实验设计(30%)

break 例外和保留指令例外与之前的 syscall 例外类似,可在 ID 阶段标记,送到 MEM 阶段统一报出。整数溢出例外的判断在 EX 阶段,设计 ALU 的时候就在其中加入了溢出的判断,所以根据 ALU 的输出结果可判断是否标记整数溢出例外。对于地址错例外分为访存地址出错和取指地址出错,在发送地址之前应该对地址做一下检测,若地址出错则访存或取指不会成功。为了处理地址错例外,需要添加 CP0_BADVADDR 寄存器。这个寄存器对软件来说是只读的,CPU 将出错的那个地址记录在此。 为了支持时钟中断,需要添加 CP0_COUNT 和CP0_COMPARE 寄存器。Count 寄存器每过两拍便增一,软件也可对其进行设置。Compare 寄存器由软件进行设置。时钟中断接到硬件中断 5 号上,即 cause_ip7 上,另外的硬件中断分别接到 cause_ip6~2 上,两个软件中断接到cause_ip1~0上。当一个中断被触发,如果此时 status_ie 为高,status_exl 为低,且 status_im 没有屏蔽该中断,那么对应的 IP 位会置位,对于时钟中断还会置 cause_ti 位。时钟中断在 count 和 compare 寄存器相等时会被触发,软件中断在软件向 cp0_cause 寄存器的 IP1 或 IP0 位写 1 后被触发。此外对于同一条指令,如果同时发生了多种例外,那么要根据例外优先级来选择何种例外报出。

三、实验过程(60%)

(一) 实验流水账

2018.11.22 20:00~22:00 构思, 写代码

2018.11.24 20:00~23:00 写代码,调试

2018.11.25 18:00~23:00 调试

2018.11.26 18:00~23:00 调试

(二) 错误记录

具体描述实验过程中的错误,环境问题、仿真阶段、上板阶段的都可以记录。

1

1、错误1

(1) 错误现象

测试用例一开始便跳到了例外处理入口。

(2) 分析定位过程

检查发生例外的原因。

(3) 错误原因

时钟中断被响应,在关中断的情况下没有使不响应中断。

(4) 修正效果

完善了中断即及例外响应的代码, 问题解决。

2、错误2

(1) 错误现象

例外处理入口没有向寄存器堆写回值。

(2) 分析定位过程

观察写寄存器堆的信号,是否拉高。

(3) 错误原因

执行该指令的时候写寄存器堆信号未拉高,原因是它之前的那条指令也发生例外,导致拉低了原本的信号。

(4) 修正效果

完善当例外未提交之前,多条指令都发生例外的处理,问题解决。

3、错误3

(1) 错误现象

发生了 badvaddr 例外,但是写回的错误地址不对。

(2) 分析定位过程

查看发生错误的地址,以及 badvaddr 例外的代码。

(3) 错误原因

Badvaddr 例外的判断出错,本来不是地址错的报成了地址错例外。

(4) 修正效果

修改了判断 badvaddr 例外的相关代码,问题解决。

4、错误4

(1) 错误现象

向寄存器堆写的值不对。

(2) 分析定位过程

回溯向寄存器写回值的那条指令。

(3) 错误原因

有些信号未初始化,导致某些控制信号出错为 X。

(4) 修正效果

初始化相关信号,问题解决。

5、错误5

(1) 错误现象

Debug信号写回寄存器堆的值不对。

(2) 分析定位过程

发现是 Epc 寄存器的值不对。找到最近发生例外的指令,对比应写到 epc 寄存器的 PC。

(3) 错误原因

发生了多个例外,但是 epc 寄存器记录的不是第一个发生例外的 PC。

(4) 修正效果

完善处理多个例外发生时的代码。问题解决。

6、错误6

(1) 错误现象

Debug信号写回寄存器堆的值不对。

(2) 分析定位过程

Cause 寄存器的值不对。查看 cause 寄存器被置位的那几位的含义。

(3) 错误原因

时钟中断未清除。

(4) 修正效果

在向 compare 写值的时候会清除时钟中断。问题解决。

7、错误7

(1) 错误现象

Debug信号写回寄存器堆的值不对。

(2) 分析定位过程

发现是 Epc 寄存器的值不对。找到最近发生例外的指令,对比应写到 epc 寄存器的 PC。

(3) 错误原因

时钟中断发生在一条延迟槽指令上,但写回 epc 寄存器的 PC 不是前一条分支指令的 PC。

(4) 修正效果

修改对 epc 进行赋值的代码,问题解决。

8、错误8

(1) 错误现象

Debug信号写回寄存器堆的值不对。

(2) 分析定位过程

发现是Badvaddr寄存器的值出错。查看错误地址,以及cp0寄存器的写使能信号。

(3) 错误原因

发生例外后没有阻止对 cp0 寄存器的修改,导致处理器状态改变。

(4) 修正效果

发生例外之后的指令不能修改 cp0 寄存器,将其写 cp0 寄存器的信号拉低,问题解决。

9、错误9

(1) 错误现象

执行某个测试点很长时间, 但仍未停止。

(2) 分析定位过程

定位陷入死循环的指令,查看其周围指令。

(3) 错误原因

没有处理软件中断。

(4) 修正效果

添加对软件中断的处理,问题解决。

10、错误10

(1) 错误现象

Debug 信号写回寄存器堆的值不对。

(2) 分析定位过程

发现是 cause 寄存器的值不对,而且是 cause_bd 位未置 1.

(3) 错误原因

参考的讲义内容有错, cause 寄存器应该是 29~16 位只读恒为 0.讲义上写为了 30~16 位只读恒为 0.

域名称	位	功能描述	读/写	复位值
BD	31	标识最近发生例外的指令是否处于分支延迟槽。1: 在延迟槽中;0: 不在延迟槽中	R	0x0
п	30	计时器中断指示。1. 有待处理的计时器中断;0. 没有计时器中断。	R	0x0
0	3016	只读恒为0.	0	0
		the street was to the first time for the street of the first time on the street of the way to the street		

图 1: 讲义截图

(4) 修正效果

修改 cause 寄存器的赋值,问题解决。