

ECG Circuit

Final Project - Bioelectronics (SBE3130)

Done by:

St: Asmaa Ibrahim Anwar	Sec: 1	BN: 12
St: Alaa Moselhy Farag	Sec: 1	BN: 13
St: Abdelrahman Khaled Ismail	Sec: 1	BN: 50
St: Mostafa Medhat Hakim	Sec: 2	BN: 32
St: Mohab Hesham Ahmed	Sec: 2	BN: 34
St: Hesham Gamal Abdelhady	Sec: 2	BN: 46

We designed a prototype circuit for an ECG in order to assess how the heart is functioning and can be used to diagnose a variety of cardiac diseases. It turns out that an ECG is very easily obtained with a few common circuit components, we use the following components to build our circuit:

1. Hardware components

Component	Value	Quantity
Op Amplifier	"TL084CN"	1
Capacitors	22 nF 100 μF	1 2
Resistor	$10~k\Omega$ $1~k\Omega$ $9~k\Omega$ $100~k\Omega$ $2~k\Omega$ $5~k\Omega$	3 2 2 1 1 1 1
Electrodes		3
Crocodile probes		3
Jumpers		1

2. ECG main circuit:

3. Circuit description:

Our circuit mainly depends on "TL084CN" op amp. as it can replace the 4 amplifiers that we need in our circuit:

3.1 instrumentation amplifier:

The fundamental component of an ECG is the instrumentation amplifier which probably the hallmark amplifier for bioelectrical measurements for a number of reasons, most notably: (1) high input impedance and (2) very good common mode rejection. then it is responsible for taking the voltage difference between leads and amplifying the signal.

It's basically built from 3 amplifiers and resistors, then first 3 amp in TL084CN amp are used to build the instrumentation amp.

3.2 Band-pass filter

A bandpass filter which combines from high and low pass filters only allows those frequencies within a certain band around (0.03~80 Hz) to pass through (Our ECG signal). It's built from an amplifier, resistors and capacitors.

4. Limitations:

We used just one lead (lead II) and 3 electrodes. Also we used a band-pass filter not high-pass filter, so normal ECGs only will be displayed on this circuit.

Lead II: one of limb leads. Lead II is the voltage difference between the left leg (LL) electrode and the right arm (RA) electrode.

Finally, we got our ECG circuit:

The output:

a. Using Proteus

b. In lab

Another Scale:

