A chain	cf	40	y id	en-	ica	5	Drive	73 l	inke	b	evl	Jo	ev		NOG	5 01		
Stiffuess	cf	47	0	m.	Wl	101+	is	He	sti	ffv	0 5 8 (c¥ c	Me	spri	noj ?			
k n spr	rivos	- In	k,	5pring														
470	= 10	k,	Spriv	2														
k Ispril	= 	88	00		ท													
10 iden	lical	Sp	on Ne	s c	lve	place	e d	side	hr	si d	e	and	OW	æv	NUCC 9	ted	to	
Ol Wassive	blo	ck.	<u>T[</u>	u 🤇	Aitte	NSS	c¥	the	10									
What is	; 11	n S	stiff	fues.	CH	c cv	e <	priv	·g)									
Kuspr	ihogs =	N	. 6	SPliv	15													
4400) = (0	o k	LSPVI	19														
k, sp	riva =	440	y 1/ ₁	M														

One mole of iron (6 \times 10²³ atoms) has a mass of 56 grams, and its density is 7.87 grams per cubic centimeter, so the center-to-center distance between atoms is 2.28 \times 10⁻¹⁰ m. You have a long thin bar of iron, 2.1 m long, with a square cross section, 0.11 cm on a side.

You hang the rod vertically and attach a 125 kg mass to the bottom, and you observe that the bar becomes 1.06 cm longer. From these measurements, it is possible to determine the stiffness of one interatomic bond in iron.

$k_s =$ 2) Ho one i	ow many	N/m side-by- n is (2.28	-side atom 3 × 10 ⁻¹⁰)	of the entir nic chains (² m ² . ains of ato	(long sprii								s on the l	oottom su	rface of th	ne <mark>iron</mark> wi	re. Note t	hat the cr	oss-sectio	nal area o
			mic bonds otal length	are there	in one at	comic cha	n running	the leng	th of the v	wire?										
4) W k _{s,i} =		e stiffnes N/r		gle interato	omic "spri	ing"?														
An in	teratomi	ic bond i	n iron is st	tiffer than	a slinky, t	but less s	tiff than a	pogo stic	k. The sti	ffness of a	single int	teratomic	bond is v	ery much	smaller th	nan the st	iffness of	the entire	wire.	
Po	w}	Or	ne																	
	F	=	RS																	
	·																			
	W	1g=	ks																	
		125	ks/	(9.	8 W/	2)=	k(0.0	[[m)										
	k	Wive	=),	155	7e	5 Y	m													
		VVVV																		
Pa	avt	Tv	VO																	
	N	pavail	= 1	Naton	2															
			= /	0.00	Ilm	\int_{-}^{2}														

	=7.3	27e13	~l												_
Paut 3	L 10 / 3	7617	VI TEMS												
	1 2.1	m_\													_
	$= \left(\frac{2 \cdot 1}{2 \cdot 186}\right)$														_
	= 9.211,	e 9													_
Part 4															_
K wie	$= \frac{1}{N_s}$	l series V	l paralle	,)k	hev d										_
Kiand	= Kwive V	1 sevirs													_
	= 45.74	6 Vm													_
A haug	ing Wiv	e ma	be of	Tva	W W	ilh a	diar	meder	cf	C.12	- <i>C</i> M	ΐS	2.	811	1
lous ini-															
	$s = \frac{F_t}{A}$		(1)		vailn =										_
	•					0.0146	m								_
	= Mg T(2)					2.91	n								_
	= 1.0	398e9	V _{M²}		-	5.21	4e-3								_

Y:	Str Str	iss win	٥ (،	994	Fell	Ww	2												
			バレク	डनेस	Hues	s if	c 41	re d	iame	·lev	c¥	CNE	ci le m	of	Tvcv	1 is	2.7	18e-	·V.
	= 7																		
	= \																		
	=4	-> ,	467	7															