Baseline

- (1) автоматическое деление в CountVectorizer и TfidfVectorizer, убираются ссылки
- (2) стоп-слова при I1 penalty зануляются, если они не важны, в обратном случае, нам они важны
- (2) **нет**
- (3) CountVectorizer и TfidfVectorizer
- (4) LogisticRegression(penalty='I1')

Улучшения

- (1) разбиваем на токены **nltk.tokenize.TweetTokenizer** с хорошим учетом знаков препинания, которые выражают тональность
- (2) стопслова могут быть значимыми
- (2) pymorpy2 или стеммер (SnowballStemmer из nltk)
- (3) TF-IDF с разными параметрами
- (4) разные классификаторы
 - 1. Токенизатор

В твитах особенно важно учитывать знаки препинания, что важно при оценке тональности. В модуле nltk есть специальный адаптированный токенизатор.

2. Лемматизация

Два варианта:

- лемматизация
 - лемматизация с помощью pymorphy, так как он обучался на более современных текстах, хорошо работает с нестандартными формами (которые часты в онлайн-речи), работает быстрее (по опыту).
- стемминг SnowballStemmer('russian') из nltk
- 3. TF-IDF

_

- 4. Классификаторы
- SVC(class_weight='balanced',kernel = 'rbf')
 GridSearchCV c f1_weighted оценкой
- SVC(class_weight='balanced',kernel = 'rbf',decision_function_shape='ovo')
 GridSearchCV с той же оценкой
- RandomForestClassifier(n_estimators=50, random_state=23, class_weight='balanced')
- LogisticRegressionCV(Cs=list(np.power(10.0, np.arange(-20, 20))),

```
scoring='f1_weighted',
class_weight='balanced',
multi_class='multinomial',
random state=23)
```

- 5. Подбор параметров
- подбор параметров с помощью GridSearchCV
- B LogisticRegressionCV задающий параметр Cs=list(np.power(10.0, np.arange(-20, 20)))
- 6. Отбор параметров
- отбор параметров с помощью логистической регрессии с L1 для минимизации нерелевантных признаков и их сокращения, что важно для GridSearchCV, где хотелось бы работать быстрее (а не на тысячах признаков)

Результаты baseline

CountVectorizer							TfidfVectorizer							
precision recall f1-score support							precision recall f1-score support							
	-1 0 1 , / total	0.69 0.61 0.30							-1 0 1 g / total				972 5 180 65 2054	
	Макросредняя F1 мера - 0.46306421211286786 Микросредняя F1 мера - 0.6387536514118792						5						7260400863327 0886075949367	
			Confusion ma	atrix				Confusion matrix						
٣	533				11		750	Υ	61	9			18	600
0	196	3	773		3		450	0	21	9	742		11	450
~~	38		136		6		150	2.5	4	3	120		17	150
	-1		0		1				-1		0		1	

Лучший вариант

Предобрботка

TweetTokenizer

SnowballStemmer

TfidfVectorizer(ngram_range =(1,2), token_pattern='\S+')

pr	ecision	recall	f1-score	support	
-1	0.70	0.83	0.76	902	
0	0.76	0.66	0.71	972	
1	0.40	0.32	0.36	180	
avg / total	0.70	0.70	0.70	2054	

Макросредняя F1 мера - 0.6063155158358028 Микросредняя F1 мера - 0.7035053554040895

Для сравнения:

 CV
 TFIDF

 Макр F1 мера - 0.4631
 Макро F1 мера - 0.5173

 Микро F1 мера - 0.6388
 Микро F1 мера - 0.6709

Лучше выделяется отрицательный класс, увеличился ТР для 1 класса.

Релевантные признаки

Стемминг

Лемматизация

Признаки из лучшей модели

-1		0		1	
не	10.099923	. #билайн	7.040962	спасиб	8.283071

нет	7.629972	beeline_rus	7.014003	любл	7.293637
туп	6.796865	#новост сам	5.080018	узбекиста	6.706562
крым	6.524265	ru	4.971660 связ #новост		6.694028
сук	6.419232	доллар	4.911762 хорош		6.614154
отключ	6.388011	прос	4.714097 бесплатн		6.173741
говн	6.342778	. ru	4.658166 защит		5.992362
	6.229170	_beeline_kz	4.647269	4.647269 доступн	
не работа	6.132987	: билайн	4.574640	мегафон запуст	5.742683
из-з	5.716777	карт	4.548090	запуст	5.718056
гавн	5.653767	. ^	4.542625	Ite	5.665452
мтс-украин	5.554610	инструкц	4.456220	:)	5.635844
опя	5.430235	۸	4.448988	тепер	5.425020
плох	5.403415	настройк	4.417643	лучш	5.402298
ебан	5.268444	клиент #читаювзаим н	4.408769	заработа	5.397983
проблем	5.263139	для	4.380005	мил	5.241363
оштрафова	5.113329	на трет	4.290498	4g	5.010560
заеба	4.946864	телефон	4.260406 расширя		4.993089
сбо	4.923528	: вчер	4.212640	4.212640 : в	
уж	4.876214	спасиб .	4.194919	появ	4.869797

Для нейтрального класса не очень понятно, почему эти ключевые слова. Они коллекционные (актуальны в рамках этого набора данных). Для отрицательного и положительного довольно интуитивно понятные слова.