2.3.2 MÉTODOS ITERATIVOS PARA SE OBTER ZEROS REAIS DE FUNÇÕES

I. MÉTODO DA BISSECÇÃO

Seja a função f(x) contínua no intervalo [a, b] e tal que f(a)f(b) < 0.

Vamos supor, para simplificar, que o intervalo (a, b) contenha uma única raiz da equação f(x) = 0.

O objetivo deste método é reduzir a amplitude do intervalo que contém a raiz até se atingir a precisão requerida: $(b - a) < \varepsilon$, usando para isto a sucessiva divisão de [a, b] ao meio.

GRAFICAMENTE

Figura 2.13

As iterações são realizadas da seguinte forma:

$$x_{0} = \frac{a_{0} + b_{0}}{2} \quad \begin{cases} f(a_{0}) < 0 \\ f(b_{0}) > 0 \\ f(x_{0}) > 0 \end{cases} \implies \begin{cases} \xi \in (a_{0}, x_{0}) \\ a_{1} = a_{0} \\ b_{1} = x_{0} \end{cases}$$

$$x_{1} = \frac{a_{1} + b_{1}}{2} \quad \begin{cases} f(a_{1}) < 0 \\ f(b_{1}) > 0 \\ f(x_{1}) < 0 \end{cases} \implies \begin{cases} \xi \in (x_{1}, b_{1}) \\ a_{2} = x_{1} \\ b_{2} = b_{1} \end{cases}$$

$$x_{2} = \frac{a_{2} + b_{2}}{2} \quad \begin{cases} f(a_{2}) < 0 \\ f(b_{2}) > 0 \\ f(x_{2}) < 0 \end{cases} \implies \begin{cases} \xi \in (x_{2}, b_{2}) \\ a_{3} = x_{2} \\ b_{3} = b_{2} \end{cases}$$

Exemplo 3

Já vimos que a função $f(x) = x\log(x) - 1$ tem um zero em (2, 3).

O método da bissecção aplicado a esta função com [2, 3] como intervalo inicial fornece:

$$\mathbf{x}_0 = \frac{2+3}{2} = 2.5 \quad \begin{cases} \mathbf{f}(2) = -0.3979 < 0 \\ \mathbf{f}(3) = 0.4314 > 0 \\ \mathbf{f}(2.5) = -5.15 \times 10^{-3} < 0 \end{cases} \Rightarrow \begin{cases} \xi \in (2.5, 3) \\ \mathbf{a}_1 = \mathbf{x}_0 = 2.5 \\ \mathbf{b}_1 = \mathbf{b}_0 = 3 \end{cases}$$

$$x_1 = \frac{2.5 + 3}{2} = 2.75 \quad \begin{cases} f(2.5) < 0 \\ f(3) > 0 \\ f(2.75) = 0.2082 > 0 \end{cases} \Rightarrow \begin{cases} \xi \in (2.5, 2.75) \\ a_2 = a_1 = 2.5 \\ b_2 = x_1 = 2.75 \end{cases}$$

ALGORITMO 1

Seja f(x) contínua em [a, b] e tal que f(a)f(b) < 0.

- 1) Dados iniciais:
 - a) intervalo inicial [a, b]
 - b) precisão ε
- 2) Se $(b-a) < \varepsilon$, então escolha para \bar{x} qualquer $x \in [a, b]$. FIM.
- 3) k = 1
- 4) M = f(a)
- $5) \quad x = \frac{a+b}{2}$
- 6) Se Mf(x) > 0, faça a = x. Vá para o passo 8.
- 7) b = x
- 8) Se $(b-a) < \varepsilon$, escolha para \overline{x} qualquer $x \in [a, b]$. FIM.
- 9) k = k + 1. Volte para o passo 5.

Terminado o processo, teremos um intervalo [a, b] que contém a raiz (e tal que $(b-a) < \varepsilon$) e uma aproximação \overline{x} para a raiz exata.

Exemplo 4

$f(\mathbf{x}) = \mathbf{x}^3 - 9\mathbf{x}$	I = [0, 1]	$\epsilon = 10^{-3}$	
Iteração	x	f(x)	b-a
1	.5	-1.375	.5
2	.25	.765625	.25
3	.375	322265625	.125
4	.3125	.218017578	.0625
5	.34375	0531311035	.03125
6	.328125	.0822029114	.015625
7	.3359375	.0144743919	7.8125×10^{-3}
8	.33984375	0193439126	3.90625×10^{-3}
9	.337890625	$-2.43862718 \times 10^{-3}$	1.953125×10^{-3}
10	.336914063	$6.01691846 \times 10^{-3}$	9.765625×10^{-4}

Então $\bar{x} = .337402344$ em dez iterações. Observe que neste exemplo escolhemos $\bar{x} = \frac{a+b}{2}$.

ESTUDO DA CONVERGÊNCIA

É bastante intuitivo perceber que se f(x) é contínua no intervalo [a, b] e f(a)f(b) < 0, o método da bissecção vai gerar uma sequência $\{x_k\}$ que converge para a raiz.

No entanto, a prova analítica da convergência requer algumas considerações. Suponhamos que $[a_0, b_0]$ seja o intervalo inicial e que a raiz ξ seja única no interior desse intervalo. O método da bissecção gera três sequências:

 $\{a_k\}$: não-decrescente e limitada superiormente por b_0 ; então existe $r \in \mathbb{R}$ tal que

$$\lim_{k \to \infty} a_k = r$$

 $\{b_k\}$: não-crescente e limitada inferiormente por a_0 , então existe $s \in \mathbb{R}$ tal que $\lim_{k \to \infty} b_k = s$

$$\{x_k\}$$
: por construção $(x_k = \frac{a_k + b_k}{2})$, temos $a_k < x_k < b_k$, $\forall k$.

A amplitude de cada intervalo gerado é a metade da amplitude do intervalo anterior.

Assim,
$$\forall k: b_k - a_k = \frac{b_0 - a_0}{2^k}$$

Então
$$\lim_{k \to \infty} (b_k - a_k) = \lim_{k \to \infty} \frac{(b_0 - a_0)}{2^k} = 0.$$

Como $\{a_k\}$ e $\{b_k\}$ são convergentes,

$$\lim_{k\to\infty} b_k - \lim_{k\to\infty} a_k = 0 \implies \lim_{k\to\infty} b_k = \lim_{k\to\infty} a_k. \text{ Então } r = s.$$

Seja $\ell = r = s$ o limite das duas sequências. Dado que para todo k o ponto x_k pertence ao intervalo (a_k, b_k) , o Cálculo Diferencial e Integral nos garante que

$$\lim_{k \to \infty} x_k = \ell$$

Resta provar que ℓ é o zero da função, ou seja, $f(\ell) = 0$.

Em cada iteração k temos $f(a_k) f(b_k) < 0$. Então

$$0 \ge \lim_{k \to \infty} f(a_k) f(b_k) = \lim_{k \to \infty} f(a_k) \lim_{k \to \infty} f(b_k) = f(\lim_{k \to \infty} a_k) f(\lim_{k \to \infty} b_k) =$$

$$= f(r) f(s) = f(\ell) f(\ell) = [f(\ell)]^2$$

Assim, $0 \ge [f(\ell)]^2 \ge 0$ donde $f(\ell) = 0$.

Portanto $\lim_{k\to\infty} x_k = \ell$ e ℓ é zero da função. Das hipóteses iniciais temos que $\ell = \xi$.

Concluímos, pois, que o método da bissecção gera uma sequência convergente sempre que f for contínua em [a, b] com f(a)f(b) < 0.

Ao leitor interessado nos resultados sobre convergência de seqüências de reais utilizados nesta demonstração recomendamos a referência [11].

ESTIMATIVA DO NÚMERO DE ITERAÇÕES

Dada uma precisão ε e um intervalo inicial [a, b], é possível saber, a priori, quantas iterações serão efetuadas pelo método da bissecção até que se obtenha b – a < ε , usando o Algoritmo 1.

Vimos que

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b_0 - a_0}{2^k}$$

Deve-se obter o valor de k tal que $b_k - a_k < \varepsilon$, ou seja,

$$\frac{b_0 - a_0}{2^k} < \varepsilon \Rightarrow 2^k > \frac{b_0 - a_0}{\varepsilon} \Rightarrow k \log(2) > \log(b_0 - a_0) - \log(\varepsilon) \Rightarrow$$

$$k > \frac{\log(b_0 - a_0) - \log(\epsilon)}{\log(2)}$$

Portanto se k satisfaz a relação acima, ao final da iteração k teremos o intervalo [a, b] que contém a raiz ξ , tal que $\forall x \in [a, b] \Rightarrow |x - \xi| \leq b - a < \varepsilon$.

Por exemplo, se desejarmos encontrar ξ , o zero da função $f(x) = x \log(x) - 1$ que está no intervalo [2, 3] com precisão $\varepsilon = 10^{-2}$, quantas iterações, no mínimo, devemos efetuar?

$$k > \frac{\log(3-2) - \log(10^{-2})}{\log(2)} = \frac{\log(1) + 2\log(10)}{\log(2)} = \frac{2}{0.3010} \approx 6.64 \Rightarrow k = 7$$

OBSERVAÇÕES FINAIS

- conforme demonstramos, satisfeitas as hipóteses de continuidade de f(x) em [a, b] e de troca de sinal em a e b, o método da bissecção gera uma seqüência convergente, ou seja, é sempre possível obter um intervalo que contém a raiz da equação em estudo, sendo que o comprimento deste intervalo final satisfaz a precisão requerida;
- as iterações não envolvem cálculos laboriosos;
- a convergência é muito lenta, pois se o intervalo inicial é tal que b₀ a₀ >> ε
 e se ε for muito pequeno, o número de iterações tende a ser muito grande,
 como por exemplo:

$$\begin{vmatrix} b_0 - a_0 = 3 \\ \epsilon = 10^{-7} \end{vmatrix} \Rightarrow k \ge 24.8 \Rightarrow k = 25.$$

O Algoritmo 1 pode incluir também o teste de parada com o módulo da função e o do número máximo de iterações.

II. MÉTODO DA POSIÇÃO FALSA

Seja f(x) contínua no intervalo [a, b] e tal que f(a)f(b) < 0.

Supor que o intervalo (a, b) contenha uma única raiz da equação f(x) = 0.

Podemos esperar conseguir a raiz aproximada \overline{x} usando as informações sobre os valores de f(x) disponíveis a cada iteração.

No caso do método da bissecção, x é simplesmente a média aritmética entre a e b:

$$x = \frac{a+b}{2}$$
.

No Exemplo 4, temos $f(x) = x^3 - 9x + 3$, [a, b] = [0, 1] e f(1) = -5 < 0 < 3 = f(0). Como |f(0)| está mais próximo de zero que |f(1)|, é provável que a raiz esteja mais próxima de 0 que de 1 (pelo menos isto ocorre quando f(x) é linear em [a, b]).

Assim, em vez de tomar a média aritmética entre a e b, o método da posição falsa toma a média aritmética ponderada entre a e b com pesos | f(b) | e | f(a) |, respectivamente:

$$x = \frac{a|f(b)| + b|f(a)|}{|f(b)| + |f(a)|} = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

visto que f(a) e f(b) têm sinais opostos.

Graficamente, este ponto x é a intersecção entre o eixo \overrightarrow{ox} e a reta r(x) que passa por (a, f(a)) e (b, f(b)):

Figura 2.14

E as iterações são feitas assim:

Figura 2.14

Exemplo 5

O método da posição falsa aplicado a $x\log(x) - 1$ em $[a_0, b_0] = [2, 3]$, fica:

$$f(a_0) = -0.3979 < 0$$

$$f(b_0) = 0.4314 > 0$$

$$\Rightarrow x_0 = \frac{af(b) - bf(a)}{f(b) - f(a)} = \frac{2 \times 0.4314 - 3 \times (-0.3979)}{0.4314 - (-0.3979)} = \frac{2.0565}{0.8293} = 2.4798$$

 $f(x_0) = -0.0219 < 0$. Como $f(a_0)$ e $f(x_0)$ têm o mesmo sinal,

$$\begin{cases} a_1 = x_0 = 2.4798 & f(a_1) < 0 \\ b_1 = 3 & f(b_1) > 0 \end{cases}$$

$$\Rightarrow x_1 = \frac{2.4798 \times 0.4314 - 3 \times (-0.0219)}{0.4314 - (-0.0219)} = 2.5049 \text{ e}$$

 $f(x_1) = -0.0011$. Analogamente,

$$\begin{cases} a_2 = x_1 = 2.5049 \\ b_2 = b_1 = 3 \end{cases}$$

ALGORITMO 2

Seja f(x) contínua em [a, b] e tal que f(a)f(b) < 0.

- 1) Dados iniciais
 - a) intervalo inicial [a, b]
 - b) precisões ε_1 e ε_2
- 2) Se $(b-a) < \varepsilon_1$, então escolha para \overline{x} qualquer $x \in [a, b]$. FIM.

se
$$|f(a)| < \epsilon_2$$
 ou se $|f(b)| < \epsilon_2$ escolha a ou b como \overline{x} . FIM.

- 3) k = 1
- 4) M = f(a)
- 5) $x = \frac{af(b) bf(a)}{f(b) f(a)}$
- 6) Se $|f(x)| < \varepsilon_2$, escolha $\overline{x} = x$. FIM.
- 7) Se Mf(x) > 0, faça a = x. Vá para o passo 9.
- 8) b = x
- 9) Se $b a < \epsilon_1$, então escolha para \overline{x} qualquer $x \in (a, b)$. FIM.
- 10) k = k + 1. Volte ao passo 5.

Exemplo 6

$$f(x) = x^3 - 9x + 3$$
 $I = [0, 1]$ $\varepsilon_1 = \varepsilon_2 = 5 \times 10^{-4}$

Aplicando o método da posição falsa, temos:

Iteração	x	f(x)	b - a	
1	.375	322265625	1	
2	.338624339	$-8.79019964 \times 10^{-3}$.375	
3	.337635046	-2.25883909 × 10 ⁻⁴	.338624339	

E portanto $\bar{x} = 0.337635046$ e $f(\bar{x}) = -2.25 \times 10^{-4}$.

CONVERGÊNCIA

Na referência [30] encontramos demonstrado o seguinte resultado:

"Se f(x) é contínua no intervalo [a, b] com f(a)f(b) < 0 então o método da posição falsa gera uma sequência convergente".

Embora não façamos aqui a demonstração, observamos que a idéia usada é a mesma aplicada na demonstração da convergência do método da bissecção, ou seja, usando as seqüências $\{a_k\}$, $\{x_k\}$ e $\{b_k\}$. Observamos, ainda, que quando f é derivável duas vezes em [a, b] e f''(x) não muda de sinal nesse intervalo, é bastante intuitivo verificar a convergência graficamente:

Em todos os casos da figura anterior os elementos da sequência $\{x_k\}$ se encontram na parte do intervalo que fica entre a raiz e o extremo $n\tilde{a}o$ -fixo do intervalo e $\lim_{k\to\infty} x_k = \xi$.

Analisando ainda estes gráficos, podemos concluir que em geral o método da posição falsa obtém como raiz aproximada um ponto \overline{x} , no qual $|f(\overline{x})| < \varepsilon$, sem que o intervalo I = [a, b] seja pequeno o suficiente. Portanto, se for exigido que os dois critérios de parada sejam satisfeitos simultaneamente, o processo pode exceder um número máximo de iterações.

III. MÉTODO DO PONTO FIXO (MPF)

A importância deste método está mais nos conceitos que são introduzidos em seu estudo que em sua eficiência computacional.

Seja f(x) uma função contínua em [a, b], intervalo que contém uma raiz da equação f(x) = 0.

O MPF consiste em transformar esta equação em uma equação equivalente $x = \phi(x)$ e a partir de uma aproximação inicial x_0 gerar a sequência $\{x_k\}$ de aproximações para ξ pela relação $x_{k+1} = \phi(x_k)$, pois a função $\phi(x)$ é tal que $f(\xi) = 0$ se e somente se $\phi(\xi) = \xi$. Transformamos assim o problema de encontrar um zero de f(x) no problema de encontrar um ponto fixo de $\phi(x)$.

Uma função $\varphi(x)$ que satisfaz a condição acima é chamada de função de iteração para a equação f(x) = 0.

Exemplo 7

Para a equação $x^2 + x - 6 = 0$ temos várias funções de iteração, entre as quais:

a)
$$\varphi_1(x) = 6 - x^2$$
;

b)
$$\varphi_2(x) = \pm \sqrt{6 - x}$$
;

c)
$$\varphi_3(x) = \frac{6}{x} - 1;$$

d)
$$\varphi_4(x) = \frac{6}{x+1}$$
.

A forma geral das funções de iteração $\varphi(x)$ é $\varphi(x) = x + A(x)f(x)$, com a condição que em ξ , ponto fixo de $\varphi(x)$, se tenha $A(\xi) \neq 0$.

Mostremos que $f(\xi) = 0 \Leftrightarrow \varphi(\xi) = \xi$.

(⇒) seja
$$\xi$$
 tal que $f(\xi) = 0$.

$$\varphi(\xi) = \xi + A(\xi)f(\xi) \Rightarrow \varphi(\xi) = \xi \text{ (porque } f(\xi) = 0).$$

$$(\Leftarrow) \text{ se } \varphi(\xi) = \xi \Rightarrow \xi + A(\xi)f(\xi) = \xi \Rightarrow A(\xi)f(\xi) = 0 \Rightarrow f(\xi) = 0 \text{ (porque } A(\xi) \neq 0).$$

Com isto vemos que, dada uma equação f(x) = 0, existem infinitas funções de iteração $\varphi(x)$ para a equação f(x) = 0.

Graficamente, uma raiz da equação $x = \varphi(x)$ é a abcissa do ponto de intersecção da reta y = x e da curva $y = \varphi(x)$:

Figura 2.16

Figura 2.16

Portanto, para certas $\varphi(x)$, o processo pode gerar uma sequência que diverge de ξ .

ESTUDO DA CONVERGÊNCIA DO MPF

Vimos que, dada uma equação f(x) = 0, existe mais de uma função $\phi(x)$, tal que $f(x) = 0 \Leftrightarrow x = \phi(x)$.

De acordo com os gráficos da Figura 2.16, não é para qualquer escolha de $\varphi(x)$ que o processo recursivo definido por $x_{k+1} = \varphi(x_k)$ gera uma seqüência que converge para ξ .

Exemplo 8

Embora não seja preciso usar método numérico para se encontrar as duas raízes reais $\xi_1 = -3$ e $\xi_2 = 2$ da equação $x^2 + x - 6 = 0$, vamos trabalhar com duas das funções de iteração dadas no Exemplo 7 para demonstrar numérica e graficamente a convergência ou não do processo iterativo.

Consideremos primeiramente a raiz $\xi_2 = 2$ e $\phi_1(x) = 6 - x^2$. Tomando $x_0 = 1.5$ temos $\phi(x) = \phi_1(x)$ e

$$x_1 = \varphi(x_0) = 6 - 1.5^2 = 3.75$$

 $x_2 = \varphi(x_1) = 6 - (3.75)^2 = -8.0625$
 $x_3 = \varphi(x_2) = 6 - (-8.0625)^2 = -59.003906$
 $x_4 = \varphi(x_3) = -(-59.003906)^2 + 6 = -3475.4609$

e podemos ver que $\{x_k\}$ não está convergindo para $\xi_2 = 2$.

GRAFICAMENTE

Figura 2.17

Seja agora $\xi_2=2$, $\phi_2(x)=\sqrt{6-x}$ e novamente $x_0=1.5$. Temos, assim, $\phi(x)=\phi_2(x)$ e

$$x_1 = \varphi(x_0) = \sqrt{6 - 1.5} = 2.12132$$

 $x_2 = \varphi(x_1) = 1.96944$
 $x_3 = \varphi(x_2) = 2.00763$
 $x_4 = \varphi(x_3) = 1.99809$
 $x_5 = \varphi(x_4) = 2.00048$

e podemos ver que $\{x_k\}$ está convergindo para $\xi_2 = 2$.

GRAFICAMENTE

Figura 2.18

O teorema a seguir nos fornece condições suficientes para que o processo seja convergente.

TEOREMA 2

Seja ξ uma raiz da equação f(x) = 0, isolada num intervalo I centrado em ξ . Seja $\varphi(x)$ uma função de iteração para a equação f(x) = 0.

Se

- i) $\varphi(x) \in \varphi'(x)$ são contínuas em I,
- ii) $|\phi'(x)| \le M < 1, \forall x \in I e$
- iii) $x_0 \in I$,

então a sequência $\{x_k\}$ gerada pelo processo iterativo $x_{k+1} = \phi(x_k)$ converge para ξ .

DEMONSTRAÇÃO

A demonstração deste teorema é feita em duas partes:

- 1) prova-se que se $x_0 \in I$, então $x_k \in I, \forall k$;
- 2) prova-se que $\lim_{k \to \infty} x_k = \xi$.
- 1) ξ é uma raiz exata da equação f(x) = 0.

Assim,
$$f(\xi) = 0 \Leftrightarrow \xi = \varphi(\xi) e$$
,

para qualquer k, temos: $x_{k+1} = \varphi(x_k)$

$$\Rightarrow x_{k+1} - \xi = \varphi(x_k) - \varphi(\xi) \tag{1}$$

Agora, $\phi(x)$ é contínua e diferenciável em I, então, pelo Teorema do Valor Médio, se $x_k \in I$, existe c_k entre x_k e ξ tal que

$$\varphi'(c_k)(x_k - \xi) = \varphi(x_k) - \varphi(\xi).$$

Portanto, temos

$$x_{k+1} - \xi = \phi(x_k) - \phi(\xi) = \phi'(c_k)(x_k - \xi), \forall k.$$

Assim,
$$x_{k+1} - \xi = \phi'(c_k)(x_k - \xi)$$
 (2)

Então, ∀ k,

$$|x_{k+1} - \xi| = |\underbrace{\phi'(c_k)|}_{\leq 1} |x_k - \xi| < |x_k - \xi|$$

ou seja, a distância entre x_{k+1} e ξ é estritamente menor que a distância entre x_k e ξ e, como I está centrado em ξ , temos que se $x_k \in I$, então $x_{k+1} \in I$.

Por hipótese, $x_0 \in I$, então $x_k \in I$, $\forall k$.

2) Provar que $\lim_{k \to \infty} x_k = \xi$.

De (1), segue que:

$$|x_1 - \xi| = |\varphi(x_0) - \varphi(\xi)| = |\varphi'(c_0)| |x_0 - \xi| \le M |x_0 - \xi|$$

$$(c_0 \text{ está entre } x_0 \in \xi)$$

$$|x_2 - \xi| = |\varphi(x_1) - \varphi(\xi)| = |\underline{\varphi'(c_1)}| |x_1 - \xi| \le M |x_1 - \xi| \le M^2 |x_0 - \xi|$$

$$\leq M |x_1 - \xi| \le M^2 |x_0 - \xi|$$
(c₁ está entre x₁ e \xi)

...

 $| x_k - \xi | = | \varphi(x_{k-1}) - \varphi(\xi) | = | \underbrace{\varphi'(c_{k-1})}_{\leq M} | | x_{k-1} - \xi | \leq M | x_{k-1} - \xi | \leq ... \leq M^k | x_0 - \xi |$ $(c_k \text{ está entre } x_k \text{ e } \xi)$

Então, $0 \le \lim_{k \to \infty} |x_k - \xi| \le \lim_{k \to \infty} M^k |x_0 - \xi| = 0$ pois 0 < M < 1.

Assim,
$$\lim_{k \to \infty} |x_k - \xi| = 0 \Rightarrow \lim_{k \to \infty} x_k = \xi$$
.

Exemplo 9

No Exemplo 8, verificamos que $\varphi_1(x)$ gera uma sequência divergente de ξ_2 = 2 enquanto $\varphi_2(x)$ gera uma sequência convergente para esta raiz.

A seguir, analisaremos as condições do Teorema 2 para estas funções:

a)
$$\varphi_1(x) = 6 - x^2$$
 e $\varphi_1'(x) = -2x$
 $\varphi_1(x)$ e $\varphi_1'(x)$ são contínuas em \mathbb{R} .

 $| \phi_1'(x) | < 1 \Leftrightarrow | 2x | < 1 \Leftrightarrow -\frac{1}{2} < x < \frac{1}{2}$. Então, não existe um intervalo I centrado em $\xi_2 = 2$, tal que $| \phi_1'(x) | < 1$, $\forall x \in I$. Portanto, $\phi_1(x)$ não satisfaz a condição (ii) do Teorema 2 com relação a $\xi_2 = 2$. Esta é a justificativa teórica da divergência da seqüência $\{x_k\}$ gerada por $\phi_1(x)$ para $x_0 = 1.5$.

b)
$$\varphi_2(\mathbf{x}) = \sqrt{6 - \mathbf{x}} \ \text{e} \ \varphi_2'(\mathbf{x}) = \frac{-1}{2\sqrt{6 - \mathbf{x}}}$$

$$\varphi_2(\mathbf{x}) \text{ \'e contínua em S} = \{\mathbf{x} \in \mathbb{R} \mid \mathbf{x} \le 6\}$$

$$\varphi_2'(\mathbf{x}) \text{ \'e contínua em S'} = \{\mathbf{x} \in \mathbb{R} \mid \mathbf{x} < 6\}$$

$$|\varphi_2'(\mathbf{x})| < 1 \Leftrightarrow |\frac{1}{2\sqrt{6 - \mathbf{x}}}| < 1 \Leftrightarrow \mathbf{x} < 5.75$$
(4)

De (3) e (4) temos que é possível obter um intervalo I centrado em ξ_2 = 2 tal que as condições do Teorema 2 sejam satisfeitas.

Exemplo 10

Analisaremos aqui a função $\varphi_3(x) = \frac{6}{x} - 1$ e a convergência da sequência $\{x_k\}$ para $\xi_1 = -3$; usando $x_0 = -2.5$:

$$\phi'(x) = \frac{-6}{x^2} < 0, \quad \forall \ x \in \mathbb{R}, \quad x \neq 0$$

$$|\phi'(x)| = \left|\frac{-6}{x^2}\right| = \frac{6}{x^2} \quad \forall \ x \in \mathbb{R}, \quad x \neq 0$$

$$|\phi'(x)| < 1 \Leftrightarrow \frac{-6}{x^2} < 1 \Leftrightarrow x^2 > 6 \Leftrightarrow x < -\sqrt{6} \text{ ou } x > \sqrt{6}$$

Assim, como o objetivo é obter a raiz negativa, temos que

I₁ tal que
$$| \varphi'(x) | < 1, \forall x \in I_1$$
, será: I₁ = $(-\infty; \sqrt{6})$.
 $(\sqrt{6} \approx 2.4494897)$

Podemos, pois, trabalhar no intervalo I = [-3.5, -2.5] que o processo convergirá, visto que $I \subset I_1$ está centrado na raiz $\xi_1 = -3$.

Tomando
$$x_0 = -2.5$$
, temos:
 $x_1 = -3.4$
 $x_2 = -2.764706$
 $x_3 = -3.170213$
 $x_4 = -2.892617$

Como a raiz $\xi_1 = -3$ é conhecida, é possível escolher um intervalo I centrado em ξ_1 , tal que em I as condições do teorema são satisfeitas. Contudo, ao se aplicar o MPF na resolução de uma equação f(x) = 0, escolhe-se I "aproximadamente" centrado em ξ . Quanto mais preciso for o processo de isolamento de ξ , maior exatidão será obtida na escolha de I.

CRITÉRIOS DE PARADA

No algoritmo do método do ponto fixo, escolhe-se x_k como raiz aproximada de ξ se $|x_k - x_{k-1}| = |\varphi(x_{k-1}) - x_{k-1}| < \epsilon$ ou se $|f(x_k)| < \epsilon$.

Devemos observar que $|x_k - x_{k-1}| < \epsilon$ não implica necessariamente que $|x_k - \xi| < \epsilon$ conforme mostra a Figura 2.19:

Figura 2.19

Contudo, se $\phi'(x) < 0$ em I (intervalo centrado em ξ), a seqüência $\{x_k\}$ será oscilante em torno de ξ e, neste caso, se $|x_k - x_{k-1}| < \epsilon \Rightarrow |x_k - \xi| < \epsilon$, pois $|x_k - \xi| < |x_k - x_{k-1}|$.

Figura 2.20

ALGORITMO 3

Considere a equação f(x) = 0 e a equação equivalente $x = \varphi(x)$.

Supor que as hipóteses do Teorema 2 estão satisfeitas.

- 1) Dados iniciais:
 - a) x₀: aproximação inicial;
 - b) ε_1 e ε_2 : precisões.
- 2) Se $|f(x_0)| < \varepsilon_1$, faça $\overline{x} = x_0$. FIM.
- 3) k = 1
- $4) \quad \mathbf{x}_1 = \mathbf{\varphi}(\mathbf{x}_0)$
- 5) Se $|f(x_1)| < \varepsilon_1$ ou se $|x_1 - x_0| < \varepsilon_2$ então faça $\overline{x} = x_1$. FIM.
- 6) $x_0 = x_1$
- k = k + 1
 Volte ao passo 4.

Exemplo 11

$$f(x) = x^3 - 9x + 3; \quad \varphi(x) = \frac{x^3}{9} + \frac{1}{3}; \quad x_0 = 0.5; \quad \varepsilon_1 = \varepsilon_2 = 5 \times 10^{-4}; \quad \xi \in (0,1)$$

Iteração	X	f(x)
1	.3472222	-0.8313799 × 10 ⁻¹
2	.3379847	$-0.3253222 \times 10^{-2}$
3	.3376233	$-0.1239777 \times 10^{-3}$

assim, $\bar{x} = 0.3376233$ e $f(\bar{x}) = -0.12 \times 10^{-3}$.

Deixamos como exercício a verificação de que $\varphi(x) = \frac{x^3}{9} + \frac{1}{3}$ satisfaz as hipóteses do Teorema 2 considerando a raiz de f(x) = 0 que se encontra no intervalo (0,1).

ORDEM DE CONVERGÊNCIA DO MÉTODO DO PONTO FIXO

Definição: "Seja $\{x_k\}$ uma seqüência que converge para um número ξ e seja $e_k = x_k - \xi$ o erro na iteração k.

Se existir um número p > 1 e uma constante C > 0, tais que

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = C \quad (5)$$

então p é chamada de ordem de convergência da sequência $\{x_k\}$ e C é a constante assintótica de erro.

Se
$$\lim_{k\to\infty} \frac{e_{k+1}}{e_k} = C$$
, $0 \le |C| < 1$, então a convergência é pelo menos linear."

Uma vez obtida a ordem de convergência p de um método iterativo, ela nos dá uma informação sobre a rapidez de convergência do processo, pois de (5) podemos escrever a seguinte relação:

$$|e_{k+1}| \approx C |e_k|^p$$
 para $k \to \infty$.

Considerando que a seqüência $\{x_k\}$ é convergente, temos que $e_k \to 0$ quando $k \to \infty$, portanto quanto maior for p, mais próximo de zero estará o valor $C \mid e_k \mid^p$ (independentemente do valor de C), o que implica uma convergência mais rápida da seqüência $\{x_k\}$. Assim, se dois processos iterativos geram seqüências $\{x_k^1\}$ e $\{x_k^2\}$, ambas convergentes para ξ , com ordem de convergência p_1 e p_2 , respectivamente, e se $p_1 > p_2 \ge 1$, o processo que gera a seqüência $\{x_k^1\}$ converge mais rapidamente que o outro.

A seguir, provaremos que o MPF, em geral, tem convergência apenas linear. Da demonstração do Teorema 2 temos a relação:

$$\begin{aligned} \mathbf{x}_{\mathbf{k}+1} - \xi &= \varphi(\mathbf{x}_{\mathbf{k}}) - \varphi(\xi) = \varphi'(\mathbf{c}_{\mathbf{k}}) \ (\mathbf{x}_{\mathbf{k}} - \xi) \ \text{com } \mathbf{c}_{\mathbf{k}} \text{ entre } \mathbf{x}_{\mathbf{k}} \in \xi \\ \\ \Rightarrow \frac{\mathbf{x}_{\mathbf{k}+1} - \xi}{\mathbf{x}_{\mathbf{k}} - \xi} &= \varphi'(\mathbf{c}_{\mathbf{k}}) \ . \end{aligned}$$

Tomando o limite quando k → ∞

$$\lim_{k\to\infty}\frac{x_{k+1}-\xi}{x_k-\xi}=\lim_{k\to\infty}\varphi'(c_k)=\varphi'(\lim_{k\to\infty}(c_k))=\varphi'(\xi).$$

Portanto, $\lim_{k\to\infty}\frac{e_{k+1}}{e_k}=\phi'(\xi)=C$ e |C|<1 pois $\phi'(x)$ satisfaz as hipóteses do Teorema 2.

A relação acima afirma que para grandes valores de k o erro em qualquer iteração é proporcional ao erro na iteração anterior, sendo que o fator de proporcionalidade é $\phi'(\xi)$. Observamos que a convergência será mais rápida quanto menor for $|\phi'(\xi)|$.

IV. MÉTODO DE NEWTON-RAPHSON

No estudo do método do ponto fixo, vimos que:

- i) uma das condições de convergência é que | φ'(x) | ≤ M < 1, ∀ x ∈ I, onde I é um intervalo centrado na raiz;
- ii) a convergência do método será mais rápida quanto menor for | φ'(ξ) |.

O que o método de Newton faz, na tentativa de garantir e acelerar a convergência do MPF, é escolher para função de iteração a função $\varphi(x)$ tal que $\varphi'(\xi) = 0$.

Então, dada a equação f(x) = 0 e partindo da forma geral para $\phi(x)$, queremos obter a função A(x) tal que $\phi'(\xi) = 0$.

$$\begin{split} &\phi(x) = x + A(x)f(x) \Rightarrow \\ &\Rightarrow \phi'(x) = 1 + A'(x)f(x) + A(x)f'(x) \\ &\Rightarrow \phi'(\xi) = 1 + A'(\xi)f(\xi) + A(\xi)f'(\xi) \Rightarrow \phi'(\xi) = 1 + A(\xi)f'(\xi). \end{split}$$

Assim, $\varphi'(\xi) = 0 \Leftrightarrow 1 + A(\xi)f'(\xi) = 0 \Rightarrow A(\xi) = \frac{-1}{f'(\xi)}$, donde tomamos $A(x) = \frac{-1}{f'(x)}$.

Então, dada f(x), a função de iteração $\phi(x) = x - \frac{f(x)}{f'(x)}$ será tal que $\phi'(\xi) = 0$, pois como podemos verificar:

$$\varphi'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

e, como $f(\xi) = 0$, $\varphi'(\xi) = 0$ (desde que $f'(\xi) \neq 0$).

Assim, escolhido x_0 , a seqüência $\{x_k\}$ será determinada por $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$, $k = 0, 1, 2, \dots$

MOTIVAÇÃO GEOMÉTRICA

O método de Newton é obtido geometricamente da seguinte forma:

dado o ponto $(x_k, f(x_k))$ traçamos a reta $L_k(x)$ tangente à curva neste ponto:

$$L_k(x) = f(x_k) + f'(x_k) (x - x_k).$$

 $L_k(x)$ é um modelo linear que aproxima a função f(x) numa vizinhança de x_k . Encontrando o zero deste modelo, obtemos:

$$L_k(x) = 0 \Leftrightarrow x = x_k - \frac{f(x_k)}{f'(x_k)}$$

Fazemos então $x_{k+1} = x$.

GRAFICAMENTE

Figura 2.21

Exemplo 12

Consideremos $f(x) = x^2 + x - 6$, $\xi_2 = 2 e x_0 = 1.5$

$$\varphi(x) = x - \frac{f(x)}{f'(x)} = x - \frac{x^2 + x - 6}{2x + 1}$$

Temos, pois,

$$x_0 = 1.5$$

 $x_1 = \varphi(x_0) = 2.0625$
 $x_2 = \varphi(x_1) = 2.00076$
 $x_3 = \varphi(x_2) = 2.00000$.

Assim, trabalhando com cinco casas decimais, $\bar{x} = x_3 = \xi$. Observamos que no MPF com $\phi(x) = \sqrt{6 - x}$ (Exemplo 8) obtivemos $x_5 = 2.00048$ com cinco casas decimais.

ESTUDO DA CONVERGÊNCIA DO MÉTODO DE NEWTON

TEOREMA 3

Sejam f(x), f'(x) e f''(x) contínuas num intervalo I que contém a raiz $x = \xi$ de f(x) = 0. Supor que $f'(\xi) \neq 0$.

Então, existe um intervalo $\bar{I} \subset I$, contendo a raiz ξ , tal que se $x_0 \in \bar{I}$, a sequência $\{x_k\}$ gerada pela fórmula recursiva $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ convergirá para a raiz.

DEMONSTRAÇÃO

Vimos que o método de Newton-Raphson é um MPF com função de iteração $\phi(x)$ dada por $\phi(x) = x - \frac{f(x)}{f'(x)}$.

Portanto, para provar a convergência do método, basta verificar que, sob as hipóteses acima, as hipóteses do Teorema 2 estão satisfeitas para $\varphi(x)$.

Ou seja, é preciso provar que existe $\overline{I} \subset I$ centrado em ξ , tal que:

- i) $\varphi(x) \in \varphi'(x)$ são contínuas em \bar{I} ;
- ii) $|\varphi'(x)| \leq M < 1, \forall x \in \overline{I}$.

Temos que

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$
 e $\varphi'(x) = \frac{f(x) f''(x)}{[f'(x)]^2}$

Por hipótese, $f'(\xi) \neq 0$ e, como f'(x) é contínua em I, é possível obter $I_1 \subset I$ tal que $f'(x) \neq 0$, $\forall x \in I_1$.

Assim, no intervalo $I_1 \subset I$, tem-se que f(x), f'(x) e f''(x) são contínuas e $f'(x) \neq 0$.

Portanto, $\varphi(x)$ e $\varphi'(x)$ são contínuas em I_1 .

Agora, $\varphi'(x) = \frac{f(x) f''(x)}{[f'(x)]^2}$. Como $\varphi'(x)$ é contínua em I_1 e $\varphi'(\xi) = 0$, é possível

escolher $I_2 \subset I_1$ tal que $| \phi'(x) | < 1$, $\forall x \in I_2$ e, ainda mais, I_2 pode ser escolhido de forma que ξ seja seu centro.

Concluindo, conseguimos obter um intervalo $I_2 \subset I$, centrado em ξ , tal que $\phi(x)$ e $\phi'(x)$ sejam contínuas em I_2 e $|\phi'(x)| < 1$, $\forall x \in I_2$. Assim, $\bar{I} = I_2$.

Portanto, se $x_0 \in \overline{I}$, a sequência $\{x_k\}$ gerada pelo processo iterativo $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ converge para a raiz ξ .

Em geral, afirma-se que o método de Newton converge desde que x_0 seja escolhido "suficientemente próximo" da raiz ξ .

A razão desta afirmação está na demonstração acima, onde se verificou que, para pontos suficientemente próximos de ξ, as hipóteses do teorema da convergência do MPF estão satisfeitas.

Exemplo 13

Comprovaremos neste exemplo que uma escolha cuidadosa da aproximação inicial é, em geral, essencial para o bom desempenho do método de Newton.

Consideremos a função $f(x)=x^3-9x+3$ que possui três zeros: $\xi_1\in I_1=(-4,-3)$ $\xi_2\in I_2=(0,\,1)$ e $\xi_3\in I_3=(2,\,3)$ e seja $x_0=1.5$. A seqüência gerada pelo método é

Iteração	x	f(x)
1	-1.6666667	0.1337037×10^2
2	18.3888889	0.6055725×10^4
3	12.3660104	0.1782694×10^4
4	8.4023067	0.5205716×10^{3}
5	5.83533816	0.1491821×10^3
6	4.23387355	0.4079022×10^{2}
7	3.32291096	0.9784511×10
8	2.91733893	0.1573032×10
9	2.82219167	0.7837065×10^{-1}
10	2.81692988	0.2342695×10^{-3}

Podemos observar que de início há uma divergência da região onde estão as raízes, mas, a partir de x_7 , os valores aproximam-se cada vez mais de ξ_3 . A causa da divergência inicial é que x_0 está próximo de $\sqrt{3}$ que é um zero de f'(x) e esta aproximação inicial gera $x_1 = -1.66667 \approx -\sqrt{3}$ que é o outro zero de f'(x) pois

$$f'(x) = 3x^2 - 9 \Rightarrow f'(x) = 0 \Leftrightarrow x = \pm \sqrt{3}$$
.

ALGORITMO 4

Seja a equação f(x) = 0.

Supor que estão satisfeitas as hipóteses do Teorema 3.

- 1) Dados iniciais:
 - a) x₀: aproximação inicial;
 - b) ε_1 e ε_2 : precisões
- 2) Se $|f(x_0)| < \varepsilon_1$, faça $\overline{x} = x_0$. FIM.
- 3) k = 1

4)
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

5) Se
$$|f(x_1)| < \varepsilon_1$$

ou se $|x_1 - x_0| < \varepsilon_2$ faça $\overline{x} = x_1$. FIM.

- 6) $x_0 = x_1$
- 7) k = k + 1Volte ao passo 4.

Exemplo 14

$$f(x) = x^3 - 9x + 3;$$
 $x_0 = 0.5;$ $\epsilon_1 = \epsilon_2 = 1 \times 10^{-4};$ $\xi \in (0,1).$

Os resultados obtidos ao aplicar o método de Newton são:

Iteração	x	f(x)	
0	0.5	-0.1375 × 10	
1	.33333333	0.3703703×10^{-1}	
2	.337606838	0.1834054×10^{-4}	

Assim, $\bar{x} = 0.337606838$ e $f(\bar{x}) = 1.8 \times 10^{-5}$.

ORDEM DE CONVERGÊNCIA

Inicialmente supomos que o método de Newton gera uma sequência $\{x_k\}$ que converge para ξ .

Ao observá-lo como um MPF, diríamos que ele tem ordem de convergência linear. Contudo, o fato de sua função de iteração ser tal que $\varphi'(\xi) = 0$ nos levará a demonstrar que a ordem de convergência é quadrática, ou seja, p = 2.

Vamos supor que estão satisfeitas aqui todas as hipóteses do Teorema 3.

Temos que
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} - \xi = x_k - \xi - \frac{f(x_k)}{f'(x_k)} \Rightarrow e_k - \frac{f(x_k)}{f'(x_k)} = e_{k+1}.$$

O desenvolvimento de Taylor de f(x) em torno de x_k nos dá

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{f''(c_k)}{2}(x - x_k)^2$$
, c_k entre x e x_k .

Assim,
$$0 = f(\xi) = f(x_k) - f'(x_k) (x_k - \xi) + \frac{f''(c_k)}{2} (x_k - \xi)^2$$

$$\Rightarrow f(x_k) = f'(x_k) (x_k - \xi) - \frac{f''(c_k)}{2} (x_k - \xi)^2 (+ f'(x_k))$$

$$\Rightarrow \frac{f''(c_k)}{2f'(x_k)} e_k^2 = -\frac{f(x_k)}{f'(x_k)} + e_k = e_{k+1}$$

$$\Rightarrow \frac{e_{k+1}}{e_k^2} = \frac{1}{2} \frac{f''(c_k)}{f'(x_k)}$$
Assim, $\lim_{k \to \infty} \frac{e_{k+1}}{e_k^2} = \frac{1}{2} \lim_{k \to \infty} \frac{f''(c_k)}{f'(x_k)} =$

$$= \frac{1}{2} \frac{f''[\lim_{k \to \infty} (c_k)]}{f'[\lim_{k \to \infty} (x_k)]} = \frac{1}{2} \frac{f''(\xi)}{f'(\xi)} = \frac{1}{2} \phi''(\xi) = C$$

Portanto, o método de Newton tem convergência quadrática.

Exemplo 15

Seja obter a raiz quadrada de um número positivo A, usando o método de Newton. Temos de resolver a equação $f(x) = x^2 - A = 0$. Tomando A = 7 e $x_0 = 2$, a sequência gerada é:

$$x_0 = 2$$

 $x_1 = 2.75$
 $x_2 = 2.647727273$
 $x_3 = 2.645752048$
 $x_4 = 2.645751311$
 $x_5 = 2.645751311$.

Portanto, trabalhando com nove casas decimais, $\bar{x} = 2.645751311$.

Os dígitos sublinhados são os dígitos decimais corretos de cada valor x_k obtido.

Podemos observar que estes dígitos corretos começam a surgir após x₂ e, a partir dele, a quantidade de dígitos corretos praticamente duplica. A duplicação de dígitos corretos ocorre à medida que os valores x_k se aproximam da raiz exata, e isto se deve ao fato do método de Newton ter convergência quadrática; como esta é uma propriedade assintótica, não se deve esperar a duplicação de dígitos corretos nas iterações iniciais.

V. MÉTODO DA SECANTE

Uma grande desvantagem do método de Newton é a necessidade de se obter f'(x) e calcular seu valor numérico a cada iteração.

Uma forma de se contornar este problema é substituir a derivada $f'(x_k)$ pelo quociente das diferenças:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

onde x_k e x_{k-1} são duas aproximações para a raiz.

Neste caso, a função de iteração fica

$$\varphi(x_k) = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}} =$$

$$x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

Ou ainda,
$$\varphi(x_k) = \frac{x_{k-1} f(x_k) - x_k f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Observamos que são necessárias duas aproximações para se iniciar o método.

INTERPRETAÇÃO GEOMÉTRICA

A partir de duas aproximações x_{k-1} e x_k , o ponto x_{k+1} é obtido como sendo a abcissa do ponto de intersecção do eixo ox e da reta secante que passa por $(x_{k-1}, f(x_{k-1}))$ e $(x_k, f(x_k))$:

Figura 2.22

Exemplo 16

Consideremos $f(x) = x^2 + x - 6$; $\xi_2 = 2$; $x_0 = 1.5$ e $x_1 = 1.7$. Então,

$$x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_2) - f(x_1)} = \frac{1.5(-1.41) - 1.7(-2.25)}{-1.41 + 2.25} = 2.03571$$

$$x_3 = \frac{x_1 f(x_2) - x_2 f(x_1)}{f(x_2) - f(x_1)} = \frac{1.7(0.17983) - (2.03571)(-1.41)}{0.17983 + 1.41} = 1.99774$$

$$x_4 = \frac{x_2 f(x_3) - x_3 f(x_2)}{f(x_3) - f(x_2)} = \frac{(2.03571)(-0.01131) - (1.99774)(0.17983)}{-0.01131 - 0.17983} =$$

= 1.99999

ALGORITMO 5

Seja a equação f(x) = 0.

- 1) Dados iniciais:
 - a) x₀ e x₁: aproximações iniciais;
 - b) ε_1 e ε_2 : precisões.
- 2) Se $|f(x_0)| < \varepsilon_1$, faça $\overline{x} = x_0$. FIM.
- 3) Se $|f(x_1)| < \varepsilon_1$ ou se $|x_1 - x_0| < \varepsilon_2$ faça $\overline{x} = x_1$. FIM.
- 4) k = 1
- 5) $x_2 = x_1 \frac{f(x_1)}{f(x_1) f(x_0)} (x_1 x_0)$
- 6) Se $|f(x_2)| < \varepsilon_1$ ou se $|x_2 - x_1| < \varepsilon_2$ então faça $\overline{x} = x_2$. FIM.
- 7) $x_0 = x_1$ $x_1 = x_2$
- 8) k = k + 1 Volte ao passo 5.

Exemplo 17

$$f(x) = x^3 - 9x + 3$$
, $x_0 = 0$, $x_1 = 1$, $\epsilon_1 = \epsilon_2 = 5 \times 10^{-4}$

Iteração	x	f(x)
1	.375	322265625
2	.331941545	.0491011376
3	.337634621	$-0.2222052 \times 10^{-3}$

Os resultados obtidos ao aplicarmos o método da secante são:

Assim, $\bar{x} = 0.337634621$ e $f(\bar{x}) = -2.2 \times 10^{-4}$

COMENTÁRIOS FINAIS

Visto que o método da secante é uma aproximação para o método de Newton, as condições para a convergência do método são praticamente as mesmas; acrescente-se ainda que o método pode divergir se $f(x_k) \approx f(x_{k-1})$.

A ordem de convergência do método da secante não é quadrática como a do método de Newton, mas também não é apenas linear. Na referência [5] Capítulo 3, § 5, está provado que para o método da secante p = 1.618...

2.4 COMPARAÇÃO ENTRE OS MÉTODOS

Finalizando este capítulo realizaremos alguns testes com o objetivo de comparar os vários métodos.

Esta comparação deve levar em conta vários critérios entre os quais: garantias de convergência, rapidez de convergência, esforço computacional.

Observamos que o único dado que os exemplos fornecem para se medir a rapidez de convergência é o número de iterações efetuadas, o que não nos permite tirar conclusões sobre o tempo de execução do programa, pois o tempo gasto na execução de uma iteração varia de método para método.

Conforme constatamos no estudo teórico, os métodos da bissecção e da posição falsa têm convergência garantida desde que a função seja contínua num intervalo [a, b] tal que f(a)f(b) < 0. Já o MPF e os métodos de Newton e secante têm condições mais restritivas de convergência. Porém, uma vez que as condições de convergência sejam satisfeitas, os dois últimos são mais rápidos que os três primeiros.

O esforço computacional é medido através do número de operações efetuadas a cada iteração, da complexidade destas operações, do número de decisões lógicas, do número de avaliações de função a cada iteração e do número total de iterações.

Tendo isto em mente, percebe-se que é difícil tirar conclusões gerais sobre a eficiência computacional de um método, pois, por exemplo, o método da bissecção é o que efetua cálculos mais simples por iteração enquanto que o de Newton requer cálculos mais elaborados, porque requer o cálculo da função e de sua derivada a cada iteração. No entanto, o número de iterações efetuadas pela bissecção pode ser muito maior que o número de iterações efetuadas por Newton.

Considerando que o método ideal seria aquele em que a convergência estivesse assegurada, a ordem de convergência fosse alta e os cálculos por iteração fossem simples, o método de Newton é o mais indicado sempre que for fácil verificar as condições de convergência e que o cálculo de f'(x) não seja muito elaborado. Nos casos em que é trabalhoso obter e/ou avaliar f'(x), é aconselhável usar o método da secante, uma vez que este é o método que converge mais rapidamente entre as outras opções.

Outro detalhe importante na escolha é o critério de parada, pois, por exemplo, se o objetivo for reduzir o intervalo que contém a raiz, não se deve usar métodos como o da posição falsa que, apesar de trabalhar com intervalo, pode não atingir a precisão requerida, nem secante, MPF ou Newton que trabalham exclusivamente com aproximações x_k para a raiz exata.

Após estas considerações, podemos concluir que a escolha do método está diretamente relacionada com a equação que se quer resolver, no que diz respeito ao comportamento da função na região da raiz exata, às dificuldades com o cálculo de f'(x), ao critério de parada etc.

Exemplo 18

$$f(x) = e^{-x^2} - \cos(x);$$
 $\xi \in (1, 2);$ $\epsilon_1 = \epsilon_2 = 10^{-4}$

	Bissecção	Posição Falsa	MPF $\varphi(x) = \cos(x) - e^{-x^2} + x$	Newton	Secante
Dados Iniciais	[1, 2]	[1, 2]	x ₀ = 1.5	$x_0 = 1.5$	$x_0 = 1; x_1 = 2$
x	1.44741821	1.44735707	1.44752471	1.44741635	1.44741345
f(x)	2.1921×10^{-5}	-3.6387 × 10 ⁻⁵	7.0258 × 10 ⁻⁵	1.3205 × 10 ⁻⁶	-5.2395 × 10 ⁻⁷
Erro em x	6.1035×10^{-5}	.552885221	1.9319 × 10 ⁻⁴	1.7072×10^{-3}	1.8553 × 10 ⁻⁴
Número de Iterações	14	6	6	2	5

Exemplo 19

$$f(x) = x^3 - x - 1; \quad \xi \in (1, 2); \quad \epsilon_1 = \epsilon_2 = 10^{-6}$$

	Bissecção	Posição Falsa	$\frac{MPF}{\varphi(x) = (x+1)^{1/3}}$	Newton	Secante
Dados Iniciais	[1, 2]	[1, 2]	x ₀ = 1	$x_0 = 0$	$x_0 = 0; x_1 = 0.5$
x	0.1324718×10^{1}	0.1324718×10^{1}	0.1324717×10^{1}	0.1324718×10^{1}	0.1324718×10^{1}
f(x)	-0.1847744 × 10 ⁻⁵	-0.7897615 × 10 ⁻⁶	-0.52154406 × 10 ⁻⁶	0.1821000 × 10 ⁻⁶	-0.8940697 × 10 ⁻⁷
Erro em x	0.9536743 × 10 ⁻⁶	0.6752825	0.3599538 × 10 ⁻⁶	0.6299186 × 10 ⁻⁶	0.8998843×10^{-5}
Número de Iterações	20	17	9	21	27

No método de Newton, o valor inicial $x_0 = 0$, além de estar muito distante da raiz $\xi(\approx 1.3)$, gera para x_1 o valor $x_1 = 0.5$ que está próximo de um zero da derivada de f(x); $f'(x) = 3x^2 - 1 \Rightarrow f'(x) = 0 \Leftrightarrow x = \pm \sqrt{3}/3 \approx 0.5773502$. Isto é uma justificativa para o método ter efetuado 21 iterações.

Argumentos semelhantes podem ser usados para justificar as 27 iterações do método da secante.

Exemplo 20

$$f(x) = 4sen(x) - e^x;$$
 $\xi \in (0, 1);$ $\epsilon_1 = \epsilon_2 = 10^{-5}$

	Bissecção	Posição Falsa	MPF $\varphi(x) = x - 2 \operatorname{sen}(x) + 0.5e^{x}$	Newton	Secante
Dados Iniciais	[0, 1]	[0, 1]	$x_0 = 0.5$	$x_0 = 0.5$	$x_0 = 0; x_1 = 1$
x	0.370555878	0.370558828	.370556114	.370558084	.370558098
f(x)	-1.3755 × 10 ⁻⁵	1.6695 × 10 ⁻⁶	-4.5191 × 10 ⁻⁶	-2.7632 × 10 ⁻⁸	5.8100 × 10 ⁻⁹
Erro em x	7.6294 × 10 ⁻⁶	.370562817	1.1528 × 10 ⁻⁴	+1.3863 × 10 ⁻⁴	5.7404 × 10 ⁻⁶
Número de Iterações	17	8	5	3	7

Exemplo 21

$$f(x) = x\log(x) - 1; \quad \xi \in (2, 3); \quad \epsilon_1 = \epsilon_2 = 10^{-7}$$

	Bissecção	Posição Falsa	MPF φ(x)= x-1.3(x log x - 1)	Newton	Secante
Dados Iniciais	[2, 3]	[2, 3]	$x_0 = 2.5$	$x_0 = 2.5$	$x_0 = 2.3; x_1 = 2.7$
x	2.506184413	2.50618403	2.50618417	2.50618415	2.50618418
f(x)	1.2573 × 10 ⁻⁸	-9.9419 × 10 ⁻⁸	2.0489 × 10 ⁻⁸	4.6566×10^{-10}	2.9337×10^{-8}
Erro em x	5.9605 × 10 ⁻⁸	.49381442	3.8426 × 10 ⁻⁶	3.9879 × 10 ⁻⁶	8.0561×10^{-5}
Número de Iterações	24	5	5	2	3

Exemplo 22

Métodos mais simples como o da bissecção podem ser usados para fornecer uma aproximação inicial para métodos mais elaborados como o de Newton que exigem um bom "chute inicial".

Consideremos
$$f(x) = x^3 - 3.5x^2 + 4x - 1.5 = (x - 1)^2 (x - 1.5)$$
.

Como vemos, $\xi_1 = 1$ é raiz dupla de f(x) = 0.

Nos testes a seguir, $\varepsilon = 10^{-2}$ para o método da bissecção e $\varepsilon = 10^{-7}$ para o método de Newton.

Nos testes 1, 2 e 3, executamos apenas o método de Newton. No teste 4, usamos o método conjugado bissecção-Newton no qual o valor que o método da bissecção encontra para \bar{x} é tomado como x_0 para o método de Newton.

	Teste 1	Teste 2	Teste 3
\mathbf{x}_0	0.5	1.33333	1.33334
$\overline{\mathbf{x}}$.999778284	.999708915	1.50000001
$f(\overline{x})$	-2.4214 × 10 ⁻⁸	-4.1910 × 10 ⁻⁸	1.3970 × 10 ⁻⁸
erro em x	2.2491 × 10 ⁻⁴	2.9079 × 10 ⁻⁴	3.5082×10^{-5}
nº de iterações	12	35	27

Observamos que nos testes 1 e 2 a raiz encontrada foi a raiz dupla $\xi_1 = 1$. Era de se esperar que o número de iterações fosse grande, pois $\xi_1 = 1$ é zero de f'(x). No entanto, o método conseguiu encontrar a raiz (pois, para as seqüências $\{x_k\}$ geradas, o valor de $f(x_k)$ tendeu a zero mais rapidamente que o valor de $f'(x_k)$).

Temos que f'(x) = $3x^2 - 7x + 4 \Rightarrow f'(x) = 0 \Leftrightarrow x_1 = 1$ e $x_2 = 4/3 = 1.33333...$ Observe que nos testes 2 e 3 tomamos propositadamente x_0 bem próximo de 4/3; no teste 2, $x_0 < 4/3$ e o método encontrou $\xi_1 = 1$ e, no teste 3, $x_0 > 4/3$ e a raiz encontrada foi $\xi_2 = 1.5$. Uma análise do gráfico de f(x) (Figura 2.23) nos ajuda a entender este fato.

No teste 4, aplicamos o método da bissecção até reduzir o intervalo [0.5, 2] a um intervalo de amplitude 0.01 e tomamos como aproximação inicial para o método de Newton o ponto médio desse intervalo: $x_0 = 1.50194313$. A partir desse ponto inicial foram executadas duas iterações do método de Newton e obtivemos os seguintes resultados:

$$\bar{x} = 1.5 \text{ e } f(\bar{x}) = 2.3 \times 10^{-10}.$$

Devemos observar que no intervalo inicial para o método da bissecção existem duas raízes distintas $\xi_1=1$ e $\xi_2=1.5$ e a raiz obtida foi $\overline{x}=1.5$; isto ocorreu porque o método da bissecção ignora raízes com multiplicidade par, que é o caso de $\xi_1=1$.