Introductory Microeconomics

Tutorial 4
Nhan La

- Note on ε_D
 - Percentage change in quantity demanded per percent change in price
 - Conventionally reported as a positive number

$$|\varepsilon_D| = \left| \frac{\partial Q_D / Q_D}{\partial P / P} \right| = \left| \frac{\partial Q_D}{\partial P} \times \frac{P}{Q_D} \right|$$

• Value range and price elasticity (applied for both ε_D and ε_S)

*D*₁: Very inelastic. A small change (decrease) in quantity demanded followed a big change (increase) in price.

 D_2 : Very elastic. Why?

*S*₁: Very inelastic. A small change (increase) in quantity supplied followed a big change (increase) in price.

 S_2 : Very elastic. Why?

a/ Own price $\boldsymbol{\varepsilon_D}$

Services	∂P/P	$\partial Q_D/Q_D$	ε_D
Regular mails	1	-1.5	Elastic
Parcels	1	-1	Unit elastic
Home broadband	1	-0.5	Inelastic

b/ Cross-price ε_{AB}

Services	$\partial P^A/P^A$	∂Q^{B}_{D}	ε_{AB}	Relationship
		$/Q^{B}_{D}$		
Regular mails vs. Home broadband	1	>0	>0	Substitutes
Parcels vs. Home broadband	1	<0	<0	Complements
Regular mails vs. Parcels	1	=0	=0	Neither

b/ Cross-price $\boldsymbol{\varepsilon}_{AB}$

Services	$\partial P/P$	$\partial Q_D/Q_D$	ε_D	$R = P \times Q$
Regular mails	1	-1.5	Elastic	Decrease
Home broadband	1	-0.5	Inelastic	Increase

- Consumers:
 - Price increases from P^* to P_D
 - Tax borne: $P_D P^*$
- Sellers:
 - Price decreases from P^* to P_S
 - Tax borne: $P^* P_S$
- Who bears more tax?
 - Compare $P_D P^*$ and $P^* P_S$
 - Or, compare ε_D and ε_S
- Quantity traded:
 - Decrease from Q^* to Q_t

- Less elastic (or more inelastic) side bears more tax.
- Use absolute value of slopes to compare elasticities of demand and supply
- General forms

Demand:
$$Q_D = a_D P + b_D$$
, $a_D < 0$
Supply: $Q_S = a_S P + b_S$, $a_S > 0$

- If $|a_D| > a_S$
 - Demand is more elastic than supply
 - That means, as price increases from P_1 to P_2 , the decrease in Q_D is greater than the increase in Q_S
 - Suppliers will bear more tax if there is one.
- If $|a_D| < a_S$? Similar rules apply.

Demand: $L_D = 2000 - 50W$

Supply: $L_S = 1000 + 50W$

a/ To find wage W^* and labour traded

 L^* at the equilibrium E_1 , solve:

$$\begin{cases} L^* = 2000 - 50W^* \\ L^* = 1000 + 50W^* \end{cases}$$

• From this, to find *W**, set:

$$2000 - 50W^* = 1000 + 50W^*$$

$$\Leftrightarrow W^* = 10$$

$$L^* = 1000 + 50 \times 10 = 1500$$

Or:
$$L^* = 2000 - 50 \times 10 = 1500$$

b/ Recall

$$\varepsilon = \frac{\partial Q/Q}{\partial P/P} = \frac{\partial Q}{\partial P} \times \frac{P}{Q}$$

• Here, Q = labour; S = wage, so:

$$\varepsilon = \frac{\partial L/L}{\partial W/W} = \frac{\partial L}{\partial W} \times \frac{W}{L}$$

• Hence, for ε_D at E_1 :

$$\varepsilon_D = \frac{\partial L_D}{\partial W} \mathbf{x} \frac{W^*}{L^*} = -50 \mathbf{x} \frac{10}{1500} \approx -0.33$$

• For ε_S at E_1 :

$$\varepsilon_S = \frac{\partial L_S}{\partial W} x \frac{W^*}{L^*} = 50 x \frac{10}{1500} \approx 0.33$$

Both supply and demand are inelastic.

c/ Wage subsidy only applies on workers.

Demand is unchanged. New curves:

Demand:
$$L_D = 2000 - 50W$$

Supply:
$$L_S = 1000 + 50(W + 2)$$

Supply (labour) curve is shifted to the right

• To find wage W^* (W'_D) and labour traded $L^*(L')$ at the equilibrium E_2 , solve:

$$\begin{cases}
L^* = 2000 - 50W^* \\
L^* = 1000 + 50(W^* + 2)
\end{cases}$$

That gives: $W^* = 9$; $L^* = 1550$

• But workers will get: $W_S' = W^* + \text{subsidy} = 9 + 2 = 11$.

