### 5.1. Случайные величины. Закон распределения вероятностей

Под случайной величиной понимается величина, которая в результате опыта со случайным исходом принимает то или иное значение. Возможные значения случайной величины образуют множество  $\Xi$ , которое называется множеством возможных значений случайной величины. Обозначения случайной величины: X, Y, Z; возможные значения случайной величины: x, y, z.

Примеры случайных величин:

- 1. Опыт –бросание двух монет. Тогда  $\Xi = \{(\Gamma, \Gamma), (\Gamma, \Pi), (\Pi, \Gamma), (\Pi, \Pi)\}$ . Числовая функция X (CB X)— число выпадений герба, определенная на множестве  $\Xi = \{0,1,2\}$  герб может выпасть 0,1,2 раза.
- 2. Опыт работа ЭВМ после ремонта, случайная величина T время наработки на отказ. Множество возможных значений  $\Xi$  теоретически вся правая половина оси абсцисс. Множество возможных значений для этого опыта несчетно.

В зависимости от вида множества  $\Xi$  случайные величины могут быть дискретными и недискретными. СВ X называется **дискретной**, если множество ее возможных значений  $\Xi$  – счетное или конечное. Если множество возможных значений СВ несчетно, то такая СВ является **недискретной**.

В теоретико-множественной трактовке основных понятий теории вероятностей случайная величина X есть функция элементарного события:  $X=\varphi(\omega)$ , где  $\omega$  – элементарное событие, принадлежащее пространству  $\Omega$ . При этом множество  $\Xi$  возможных значений CB X состоит из всех значений, которые принимает функция  $\varphi(\omega)$ .

Законом распределения СВ называется любое правило (таблица, функция), позволяющее находить вероятности всевозможных событий, связанных со случайной величиной. (То есть, всякое соотношение, устанавливающее связь между возможными значениями СВ и их вероятностями.)

СВ будет полностью описана с вероятностной точки зрения, если мы зададим это распределение, т.е. в точности укажем, какой вероятностью обладает каждое событие. Про случайную величину мы будем говорить, что она подчинена данному закону распределения.

# 5.2. Ряд распределения дискретной случайной величины.

Наиболее простую форму можно придать закону распределения дискретной случайной величины. Pядом распределения дискретной случайной величины называется таблица, в которой перечислены в порядке возрастания все возможные значения случайной величины  $X: x_1, x_2, ..., x_n, ...$  и вероятности этих значений  $p_1, p_2, ..., p_n, ...$ , где  $p_i = P\{X = x_i\}$  — вероятность того, что в результате опыта CB X примет значение  $x_i$  (i=1,2,...,n,...).

Ряд распределения записывается в виде таблицы:

| X | $x_1$ | $x_2$ | ••• | $\chi_n$ | ••• |
|---|-------|-------|-----|----------|-----|
| P | $p_1$ | $p_2$ |     | $p_n$    |     |

Так как события  $\{X=x1\}$ ,  $\{X=x2\}$ , ... несовместны и образуют полную группу, то сумма всех вероятностей, стоящих в нижней строке равна единице:

$$\sum_{i} P\{X = x_i\} = 1. \tag{5.1}$$

*Многоугольник вероятностей* — есть графическое изображение ряда вероятностей — по оси абсцисс откладываются возможные значения случайной величины, а по оси ординат — вероятности этих значений. Для наглядности полученные точки соединяются отрезками прямых. Многоугольник распределения, так же как и ряд распределения полностью характеризует случайную величину — и является одной из форм закона распределения.

### 5.3. Функция распределения

Наиболее общей формой закона распределения, пригодной для *всех* случайных величин (как дискретных, так и недискретных) является функция распределения.

**Функцией распределения** случайной величины X называется вероятность того, что она примет значение меньшее, чем аргумент функции x:  $F(x)=P\{X < x\}$ .

Геометрически функция распределения интерпретируется как вероятность того, что случайная точка Х попадет левее заданной точки X (рис. 5.1). Из геометрической интерпретации наглядно онжом вывести основные свойства функции распределения.



Рис. 5.1

1. 
$$\lim_{x \to \infty} F(x) = F(-\infty) = 0.$$
 (5.2)

2. 
$$\lim_{x \to +\infty} F(x) = F(+\infty) = 1.$$
 (5.3)

3. F(x) — неубывающая функция своего аргумента, т.е. при  $x_1 < x_2$ 

$$X_1$$
  $X_2$ 

$$F(x_1) \le F(x_2).$$

Доказательство этого свойства иллюстрируется рис. 5.2.

Представим событие  $C=\{X< x_2\}$  как сумму двух несовместных событий C=A+B, где  $A=\{X< x_1\}$  и  $B=\{x_1\le X< x_2\}$ .

По правилу сложения вероятностей

$$P(C)=P(A)+P(B)$$
,

т.е. 
$$P{X < x_2} = P{X < x_1} + P{x_1 \le X < x_2}$$
, или

$$F(x_2)=F(x_1)+P\{x_1 \le X < x_2\}.$$

Но  $P{x_1 \le X < x_2} \ge 0$ , следовательно,  $F(x_1) \le F(x_2)$ 

4. 
$$P(\alpha \le X < \beta) = F(\beta) - F(\alpha)$$
, для  $\forall [\alpha, \beta] \in \mathbb{R}$ . (5.4)

Доказательство этого свойства вытекает из предыдущего доказательства. Вероятность того, что случайная величина X в результате опыта попадет на участок от  $\alpha$  до  $\beta$  (включая  $\alpha$ ) равна приращению функции распределения на этом участке.

Таким образом, функция распределения F(x)любой случайной величины есть неубывающая функция своего аргумента, значения которой заключены между 0 и  $1: 0 \le F(x) \le 1$ , причем  $F(-\infty) = 0$ ,  $F(+\infty) = 1$ .

## 5.4. Функция распределения дискретной случайной величины

Исходной информацией для построения функции распределения дискретной случайной величины X является ряд распределения этой CB.

| $x_i$    | $x_1$ | $x_2$ | $x_3$       | ••• | $x_n$          | $>x_n$ |
|----------|-------|-------|-------------|-----|----------------|--------|
| $p_i$    | $p_1$ | $p_2$ | $p_3$       | ••• | $p_n$          | 0      |
| $F(x_i)$ | 0     | $p_1$ | $p_1 + p_2$ |     | $p_1++p_{n-1}$ | 1      |

$$F(x_i)=P\{X < x_i\}=P\{(X=x_1)\cup (X=x_2)\cup ...\cup (X=x_{i-1})\}=p_1+...+p_{i-1}.$$

 $F(x) = \sum_{x_i < x} P(X = x_i)$ , то есть суммирование распространяется на все

значения  $x_i$ , которые меньше x.

Функция распределения любой дискретной СВ есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятности этих значений.

$$F(x) = \begin{cases} 0, x \le x_1, \\ p_1, x_1 < x \le x_2, \\ p_1 + p_2, x_2 < x \le x_3, \\ \dots \\ p_1 + p_2 + \dots \\ p_1 + p_2 + \dots \\ 1, x > x_n \end{cases}$$
(5.5)

Пример: СВ X — количество выпавших гербов при подбрасывании двух монет. Случайная величина X принимает следующие значения  $X=\{0, 1, 2\}$ . Вероятности этих значений: P(X=0)=0.25; P(X=1)=0.5; P(X=2)=0.25. Тогда функция распределения этой случайной величины имеет вид:



# 5.5. Непрерывная случайная величина (HCB). Плотность вероятности

**С**лучайная величина X называется непрерывной, если ее функция распределения F(x) есть непрерывная, кусочно-дифференцируемая функция с непрерывной производной.

Так как для таких случайных величин функция F(x) нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю

$$P{X=\alpha}=0$$
 для любого  $\alpha$ .

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин существует понятие *плотности* распределения или *плотности* вероятности.

Вероятность попадания непрерывной случайной величины X на участок от x до  $x+\Delta x$  равна приращению функции распределения на этом участке:

$$P\{x \le X < x + \Delta x\} = F(x + \Delta x) - F(x).$$

Плотность вероятности на этом участке определяется отношением

$$f(x) = \lim_{\Delta x \to 0} \frac{P\{x \le X \le x + \Delta x\}}{\Delta x} = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \frac{dF(x)}{dx}$$
 (5.6)

**Плотностью** распределения (или плотностью вероятности) непрерывной случайной величины X в точке x называется производная ее функции распределения в этой точке и обозначается f(x). График плотности распределения называется кривой распределения.

Пусть имеется точка x и прилегающий к ней отрезок dx. Вероятность попадания случайной величины X на этот интервал равна f(x)dx. Эта величина называется элементом вероятности.

Вероятность попадания случайной величины X на произвольный участок [a,b[ равна сумме элементарных вероятностей на этом участке:

$$P\{a \le X < b\} = \int_{a}^{b} f(x)dx.$$
 (5.7)

В геометрической интерпретации  $P\{\alpha \le X \le \beta\}$  равна площади, ограниченной сверху кривой плотности распределения f(x) и опирающейся на участок  $(\alpha,\beta)$  (рис. 5.4).

Это соотношение позволяет выразить функцию распределения F(x) случайной величины X через ее плотность:

$$F(x) = P\{X < x\} = P\{-\infty < X < x\} = \int_{-\infty}^{x} f(x)dx.$$
(5.8)

В геометрической интерпретации F(x)равна площади, ограниченной сверху кривой плотности распределения f(x) и лежащей левее точки x (рис. 5.5).



1. Плотность распределения неотрицательна:  $f(x) \ge 0$ . Это свойство следует из определения производная неубывающей функции

не может быть отрицательной.





Рис. 5.5

**2. Условие** нормировки: 
$$\int_{-\infty}^{\infty} f(x)dx = 1$$
.

Это свойство следует из формулы (5.8), если положить в ней  $x=\infty$ .

Геометрически основные свойства плотности f(x) интерпретируются так:

- 1. вся кривая распределения лежит не ниже оси абсцисс;
- 2. полная площадь, ограниченная кривой распределения и осью абсцисс, равна единице.

# 5.6. Смешанная случайная величина

Случайная величина называется смешанной, если функция распределения F(x) на некоторых участках непрерывна, а в отдельных точках имеет разрывы (скачки).

На тех участках, где F(x) непрерывна, вероятность каждого отдельного значения случайной величины равна нулю. Вероятность тех значений, где функция распределения совершает скачки, отличны от нуля и равны величине скачка.

Пример 5.1. По одной и той же стартовой позиции противника производится пуск из пяти ракет, причем вероятность попадания в цель при каждом пуске одной ракеты равна 0,8. Построить ряд распределения числа попаданий.

Pешение. Случайная величина X (число попаданий в цель) может принимать следующие значения: 0, 1, 2, 3, 4, 5. Найдем вероятность принятия величиной X этих значений, используя формулу Бернулли:

$$P{X = 0} = (1 - p)^5 = 0.2^5 = 0.00032$$
,  
 $P{X = 1} = C_5^1 p(1 - p)^4 = 5 \cdot 0.8 \cdot 0.2^4 = 0.0064$ ,

$$P\{X = 2\} = C_5^2 p^2 (1-p)^3 = 10 \cdot 0.8^2 \cdot 0.2^3 = 0.0512,$$

$$P\{X = 3\} = C_5^3 p^3 (1-p)^2 = 10 \cdot 0.8^3 \cdot 0.2^2 = 0.2048,$$

$$P\{X = 4\} = C_5^4 p^4 (1-p) = 5 \cdot 0.8^4 \cdot 0.2 = 0.4096,$$

$$P\{X = 5\} = p^5 = 0.8^5 = 0.32768.$$

Ряд распределения имеет вид:

| $x_i$ | 0       | 1      | 2      | 3      | 4      | 5       |
|-------|---------|--------|--------|--------|--------|---------|
| $p_i$ | 0,00032 | 0,0064 | 0,0512 | 0,2048 | 0,4096 | 0,32768 |

*Пример* 5.2. Случайная величина X распределена по закону, определяемому плотностью вероятности вида

$$f(x) = \begin{cases} c\cos x, -\pi/2 \le x \le \pi/2 \\ 0, |x| > \pi/2 \end{cases}.$$

Найти константу c, функцию распределения F(x) и вычислить  $P\{|x| < \pi/4\}$ .

Pешение. Константу c вычислим исходя из условия нормировки:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\pi/2}^{\pi/2} c\cos x dx = c\sin x \Big|_{-\pi/2}^{\pi/2} = c + c = 2c = 1,$$

откуда c = 0.5.

Так как плотность вероятности задана различными формулами на разных интервалах, то и функцию распределения будем искать для каждого интервала в отдельности.

Для 
$$x < -\pi/2$$
,  $F(x) = \int_{-\infty}^{\infty} f(y) dy = \int_{-\infty}^{\infty} 0 dy = 0$ 

для  $-\pi/2 \le x \le \pi/2$   $F(x) = \int_{-\infty}^{-\pi/2} 0 dy + \int_{-\pi/2}^{x} \frac{\cos y}{2} dy = \frac{\sin y}{2} \bigg|_{-\pi/2}^{x} = \frac{1 + \sin x}{2}$ ,

для  $x > \pi/2$ ,  $F(x) = \int_{-\infty}^{-\pi/2} 0 dy + \int_{-\pi/2}^{\pi/2} \frac{\cos y}{2} dy + \int_{\pi/2}^{x} 0 dy = 1$ .

Окончательно имеем

$$F(x) = \begin{cases} 0, x < -\pi/2 \\ (1+\sin x)/2, |x| \le \pi/2 \\ 1, x > \pi/2 \end{cases}$$

Вероятность 
$$P\{|x| < \pi/4\} = F\left(\frac{\pi}{4}\right) - F\left(-\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{4} + \frac{1}{2}\right) - \left(-\frac{\sqrt{2}}{4} + \frac{1}{2}\right) = \frac{\sqrt{2}}{2}$$
.