CS 30: Theory of Automata Midterm Exam 1 Solutions

QUESTION 1

Marks: 20

i. Tick all regular expressions which express

L = $\{w \mid w \in \{0,1\}^* \text{ and } w \text{ has no consecutive } 0 \text{ and no consecutive } 1\}$

b.
$$(10 + 01)$$
*

c.
$$(0(10)^* + 1(01)^*)^*$$

$$d. ((01)*0 + (10)*1)*$$

ANSWER: None of these answers are correct

ii. Tick all regular expressions which express

L = $\{w \mid w \in \{0,1\}^* \text{ and length of } w \text{ is at least 2 and } w \text{ does not end with 10}\}$

a.
$$(0+1)*(00 + 11 + 01)$$

b.
$$(0+1)*((00)* + (11)* + (01)*)$$

c.
$$0*(00 + 11 + 01) + 1*(00 + 11 + 01)$$

$$d. (0+1)*((0+1)1) + (0+1)*00$$

ANSWER: a,d

iii. Write down all strings of the language given by the regular expression: $(1+010+\epsilon)(0+\epsilon)$ {0,010,0100,1,10, ϵ }

iv. Write down the first three shortest strings that belong to: $L = \{(a^k b^k)^k \mid k > 1\}$ {aabbaabb, aaabbbaaabbbaaabbb, aaaabbbbaaaabbbbaaaabbbb}

v. Is it possible that for any language (denoted by L) L*=L? If so what is L? Yes, L = $\{\epsilon\}$

vi. Suppose
$$L_1 = \phi L_2 = \{a,b,c\}$$
 then $L_1L_2 = \phi$

For parts vii-x consider the NFA machine M of Figure 1.

vii. What is $\delta^*(q_1,1)$ for M? $\{q_0,q_1,q_2,q_3\}$

viii. What is $\delta^*(q_0,11)$ for M? $\{q_0,q_1,q_2,q_3\}$

ix. What is the null closure $\varepsilon\{q_0,q_1\}$? $\{q_0,q_1,q_2,q_3\}$

Figure 1: NFA-ε Machine M

x. When ϵ transitions are removed from M to make an NFA without any null transitions, then what is the set of final states? **Answer:** { q_0 , q_2 , q_3 }

QUESTION 2 Marks: 5

Construct a DFA using the method of subset construction from the following NFA machine N. Only fill out the given **state transition table** of the resulting DFA. No additional working is required.

State	0	1
→ { Q 0} * { Q 1, Q 2}	φ { Q1,Q 2}	{ q 1, q 2} { q 0}

Figure 2: NFA Machine N

QUESTION 3 Marks: 5

Make a state transition diagram for a DFA for:

 $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ has at least one } 0 \text{ and at least one } 1\}$

