A. <u>Désigner un terme d'une suite.</u>

Définition. Une suite est une liste infinie de nombres.

Exemples.

- La liste des entiers naturels (0; 1; 2; 3; 4; ...) est une suite.
- La liste des multiples de 3 supérieurs à 5, est une suite dont les termes sont (6; 9; 12; 15; ...).

Notation. On note u_n le terme de rang n d'une suite u.

Exemple. Si u = (1; 3; 5; 7; ...) est la suite des entiers impairs, alors

Le premier terme est : $u_0 =$ Le deuxième terme est :

Le troisième terme est : Le quatrième terme est :

Notation. Une suite u est aussi notée (u_n) .

Attention : Ne pas confondre u_n qui est un simple nombre et (u_n) qui désigne toute la suite u

Remarque. Le rang initial est souvent 0. Mais on peut définir une suite $(u_n)_{n\geq k}$ avec un rang initial k différent de 0.

Exemple. Si $u=(-3;4;-5;6;-7;8;...)_{n\geq 1}$ est une suite commençant au rang 1, alors :

Le premier terme est : $u_1 =$ Le deuxième terme est : $u_2 =$

Le troisième terme est : Le quatrième terme est :

B. <u>Calculer un terme d'une suite définie explicitement.</u>

Vocabulaire. Une suite (u_n) est **définie explicitement** si on peut écrire u_n en fonction du rang n.

Méthode. Pour calculer le terme de rang k d'une suite définie explicitement par la formule $u_n = f(n)$

• On recopie la formule en remplaçant la variable n par la valeur k, puis on simplifie.

Exemple. Soit la suite (u_n) définie par $u_n = n^2 - 1$ pour tout $n \in \mathbb{N}$. Calculer u_0 , u_1 , u_2 , u_3 et u_4 .

$$u_0 = (0)^2 - 1 = -1$$

$$u_3 =$$

$$u_1 = u_4 = 0$$

$$u_2 =$$

Donc
$$u = (; ; ; ; ...)$$

 $u_1 =$

Exercice B1. Soit (u_n) la suite définie par $u_n=2n+3$ pour tout $n\in\mathbb{N}$. Calculer u_0,u_1 , et u_2

Exercice B2. Soit (u_n) la suite définie par $u_n = \frac{n+1}{2n-3}$ pour tout $n \in \mathbb{N}$. Calculer u_0, u_5 , et u_{10}

Exercice B3. Soit (u_n) la suite définie par $u_n = 2^n - 1$ pour tout $n \ge 5$. Calculer les cinq premiers termes de (u_n)

Exercice B4. Soit (u_n) la suite définie par $u_n = 2n - 1$ pour tout $n \in \mathbb{N}$.

Exprimer u_{n+1} , u_{n-1} , u_{2n} et $u_n + 1$ en fonction de n.

Exercice B5. Thomas paye $45 \in \text{un}$ abonnement résidentiel annuel pour garer sa voiture dehors. Il doit ensuite payer $1,5 \in \text{supplémentaire}$ par jour de stationnement. On note u_n le prix que Thomas paye pour son abonnement et n jours de stationnements. Exprimer u_n en fonction de $n \in \mathbb{N}$.

Combien payera-t-il au total s'il gare sa voiture dehors 300 jours par an?

C. Calculer un terme d'une suite définie par récurrence.

Vocabulaire. Une suite (u_n) est **définie par récurrence** si :

- On donne un premier terme de la suite (ou plusieurs premiers termes)
- On donne une formule exprimant tout terme, en fonction d'un ou plusieurs termes précédents

Exemple. Soit la suite
$$(u_n)$$
 définie par $\begin{cases} u_0 = -6 \\ u_{n+1} = 3u_n + 15 \end{cases}$ pour $n \in \mathbb{N}$

Vocabulaire. Si le terme <u>courant</u> est u_n alors u_{n+1} est le terme <u>suivant</u> et u_{n-1} est le terme <u>précédent</u>. <u>Attention</u> à ne jamais confondre u_{n+1} (le terme suivant) et $u_n + 1$ (le terme courant + 1)

Méthode. Pour calculer le terme de rang k d'une suite u définie par récurrence à partir, par exemple, du rang 0

- ullet On calcule u_1 à partir de u_0 en utilisant la formule de récurrence.
- ullet On calcule u_2 à partir de u_1 en utilisant la formule de récurrence.

...

ullet On calcule u_k à partir de u_{k-1} en utilisant la formule de récurrence.

Exemple. Soit la suite
$$(u_n)$$
 définie par $\begin{cases} u_0 = -6 \\ u_{n+1} = 3u_n + 15 \end{cases}$ pour $n \in \mathbb{N}$ Calculer u_3 . La formule de récurrence $u_{n+1} = 3u_n + 15$ peut s'interpréter par : suivant = $3 \times$ courant + 15×10^{-1} suivant = 3×10^{-1} courant + 15×10^{-1} suivant = 3×10

$$u_2 = 3 \times (-3) + 15 = 6$$

$$u_3 = 3 \times (6) + 15 = 33$$

Exercice C1. Soit (u_n) la suite définie par $u_0 = -5$ et $u_{n+1} = 2u_n + 1$ pour tout $n \in \mathbb{N}$. Calculer u_1 et u_2 .

Exercice C2. Soit
$$(u_n)$$
 la suite définie par $u_0=2$ et $u_{n+1}=\frac{2u_n-2}{u_n-3}$ pour tout $n\in\mathbb{N}$. Calculer u_1 et u_2 .

Exercice C3. Soit (u_n) la suite définie par $u_2 = -3$ et $u_{n+1} = u_n^2 - 6$ pour tout $n \ge 2$. Calculer les 4 premiers termes de (u_n) .

Exercice C4. Une ludothèque possède 100 jeux de société en 2019. Chaque année, elle donne 5 % de ses jeux à une œuvre de charité et décide d'acheter 10 nouveaux jeux.

- a) Combien aura-t-elle de jeux en 2020?
- b) On note u_n le nombre de jeux de société de la ludothèque en 2019+n. Donner l'expression de u_{n+1} en fonction de u_n .

Exercice C5. Un matin, Mathéo décide de poser un récipient dans son jardin, contenant 200 g de noisettes. Chaque après-midi, un écureuil vient manger la moitié du récipient, puis Mathéo remet 80 g de noisettes le soir. On note u_n la quantité en grammes de noisettes dans le récipient le n-ième jour au matin.

- a) Donner la valeur de u_1 et de u_2 .
- b) Exprimer u_{n+1} en fonction de u_n .

D. Représenter graphiquement les termes d'une suite définie explicitement.

Méthode. Pour représenter une suite (u_n) dans un repère, on place les points de coordonnées $(n; u_n)$.

Exercice D1. Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = f(n)$.

On donne ci-contre la courbe représentative de la fonction f.

Déterminer la valeur des cinq premiers termes de la suite (u_n) .

E. <u>Représenter graphiquement les termes d'une suite définie par récurrence.</u>

• Si la suite (u_n) est définie par récurrence, ($u_0 \in \mathbb{R}$ et $u_{n+1} = f(u_n)$), alors on peut construire les termes à l'aide de la courbe représentative de la fonction f et de la droite d'équation y = x.

Exercice E1. Soit (v_n) la suite définie par $v_0 = 1$ et $v_{n+1} = f(v_n)$ pour tout $n \in \mathbb{N}$.

On donne ci-dessous la courbe représentative de la fonction f.

Déterminer la valeur des cinq premiers termes de la suite (v_n) .

F. Montrer qu'une suite est croissante / décroissante.

Définitions. • Une suite (u_n) est **croissante** si et seulement si, pour tout entier $n \in \mathbb{N}$, $u_{n+1} \ge u_n$

- Une suite (u_n) est **décroissante** si et seulement si, pour tout entier $n \in \mathbb{N}$, $u_{n+1} \le u_n$
- Une suite (u_n) est **constante** si et seulement si, pour tout entier $n \in \mathbb{N}$, $u_{n+1} = u_n$
- Si on remplace les inégalités larges par des inégalités strictes, on parle de suite *strictement* croissante ou *strictement* décroissante.
- Déterminer le sens de variation d'une suite, c'est déterminer si elle est croissante, décroissante ou constante.

Exemples. (1; 3; 5; 19; 33; 200; ...) est le début d'une suite strictement croissante.

(-11; -3; 5; 5; 5; 6; 8; 8; 10; 11; ...) est le début d'une suite croissante (mais pas strictement).

(6; 2; 0; -1; -3; -10; ...) est le début d'une suite décroissante.

(1; -1; 2; -2; 3; -3; ...) n'est ni croissante, ni décroissante.

Exemples. Allure d'une suite croissante, d'une suite décroissante.

Remarque. La suite définie par $u_n=(-1)^n$ n'est pas croissante ni décroissante

Méthode. Pour déterminer le sens de variation d'une suite (u_n) , on étudie le signe de $u_{n+1} - u_n$

- ullet On exprime $u_{n+1}-u_n$ puis on simplifie l'expression
- Si $u_{n+1} u_n \ge 0$ pour tout n, alors la suite (u_n) est croissante.
- Si $u_{n+1} u_n \le 0$ pour tout n, alors la suite (u_n) est décroissante.

Exemple. Déterminer le sens de variation de la suite (u_n) définie par $u_n = n^2 + 3$ pour tout $n \in \mathbb{N}$.

Soit
$$n \in \mathbb{N}$$
. $u_{n+1} - u_n = ((n+1)^2 + 3) - (n^2 + 3) =$

Exercice F1. Déterminer le sens de variations des suites suivantes :

$$u_n = n^2 + 3n$$

$$v_n = \frac{4}{n+1}$$

$$w_n = -2n^2 + 5$$

$$x_n = -5^n$$

Méthode. Pour déterminer le sens de variation d'une suite $\frac{\grave{a}}{}$ valeurs positives, on peut comparer $\frac{u_{n+1}}{u_n} \grave{a} 1$.

- ullet On vérifie que u_n reste de signe positif.
- ullet On exprime $rac{u_{n+1}}{u_n}$ puis on simplifie l'expression
- Si $\frac{u_{n+1}}{u_n} \ge 1$ pour tout n, alors la suite (u_n) est croissante.
- Si $\frac{u_{n+1}}{u_n} \le 1$ pour tout n, alors la suite (u_n) est décroissante.

Exemple. Déterminer le sens de variation de la suite (u_n) définie par $u_n=2^n$ pour tout $n\in\mathbb{N}$.

Soit $n \in \mathbb{N}$.

$$\frac{u_{n+1}}{u_n} =$$

Exercice F2. Déterminer le sens de variations des suites suivantes :

$$u_n = 7 \times 0.5^n$$

$$v_n = 4 \times 9^n$$

Exercice F3. Déterminer le sens de variations des suites suivantes :

$$u_n = 2n^2 - 3n + 1$$

$$v_n = \frac{3^n}{2^{n-1}}$$

$$w_n = \frac{n-3}{2n+1}$$

G. Montrer qu'une suite n'est pas croissante / décroissante.

Méthode.

- ullet Pour montrer qu'une suite n'est <u>pas</u> croissante, il suffit de trouver un certain rang n tel que $u_n > u_{n+1}$
- Pour montrer qu'une suite n'est pas décroissante, il suffit de trouver un certain n tel que $u_n < u_{n+1}$
- En pratique, on peut calculer quelques premiers termes de la suite pour trouver un rang défaillant.

Exemple. On note $u_n = (-1)^n$ pour $n \in \mathbb{N}$. $(u_n) = (1; -1; 1; -1; 1; -1; 1; ...)$

 (u_n) n'est pas croissante car pour n=0 on a : $u_0=1>u_1=-1$

 (u_n) n'est pas décroissante car pour n=1 on a : $u_1=-1 < u_2=1$

Exercice G1. Montrer que la suite $u_n = (-3)^n$ n'est ni croissante ni décroissante.

Exercice G2. Montrer que la suite $v_n = -n^2 + 4n$ n'est ni croissante ni décroissante.

H. Conjecturer la limite d'une suite par lecture graphique.

Définition. Soit l un réel. Une suite (u_n) a pour limite finie l si les termes u_n deviennent tous aussi proches de l que l'on veut en prenant n suffisamment grand. On dit aussi que (u_n) converge vers l. On dit aussi que u_n tend vers l quand n tend vers l = l quand n tend vers l = l quand n tend vers n quand n quand n tend vers n quand n tend vers n quand n

Exemples.

On observe que les termes successifs de (u_n) semblent se rapprocher de 4. On peut conjecturer que (u_n) converge vers 4.

$$\lim_{n\to\infty}u_n=4$$

On observe que les termes successifs de (u_n) semblent se rapprocher de -2. On peut conjecturer que (u_n) converge vers -2.

$$\lim_{n\to\infty}u_n=-2$$

Définition.

Une suite (u_n) a pour limite $+\infty$ si les termes u_n deviennent tous aussi grands que l'on veut en prenant n suffisamment grand.

Définition.

Une suite (u_n) a pour limite $-\infty$ si les termes u_n deviennent tous aussi <u>négativement grands</u> que l'on veut en prenant n suffisamment grand.

On dit aussi:

 (u_n) diverge vers $+\infty$ u_n tend vers $+\infty$ quand n tend vers $+\infty$

On note : $\lim_{n \to \infty} u_n = +\infty$

On dit aussi : $(u_n) \text{ diverge vers } -\infty \\ u_n \text{ tend vers } -\infty \text{ quand } n \text{ tend vers } +\infty$

On note : $\lim_{n \to \infty} u_n = -\infty$

Remarque. Une suite (u_n) peut n'avoir aucune limite. $(-1)^n$ n'a pas de limite quand n tend vers $+\infty$.

Les termes ne deviennent ni de plus en plus grand, ni de plus en plus petits, ni ne se rapprochent d'un réel.

Exercice H1. Conjecturer, si elle existe, la limite des suites ci-dessous :

a)

b)

c)

Exercice H2. Conjecturer, si elle existe, la limite des suites dont certaines valeurs sont données ci-dessous :

1)
$$u_1 = -1$$
, $u_{10} = -20$, $u_{1000} = -4000$, $u_{10000} = -5000$

2)
$$v_1 = 3$$
, $v_{10} = -2$, $v_{100} = 3$, $v_{1000} = -2$, $v_{10000} = 3$

3)
$$w_1 = -1$$
, $w_{100} = -1,95$, $w_{1000} = -1,98$, $w_{10000} = -1,99$

Exercice H3. Conjecturer la limite de :

1) La suite définie par $u_n=n$ pour tout n.

2) La suite définie par $v_n=\frac{1}{n}$ pour tout $n\geq 1$

I. <u>Modéliser un problème par une suite.</u>

Exercice 11. Le directeur d'une réserve marine a recensé 3 000 cétacés dans cette réserve au 1er juin 2019. Il est inquiet car il sait que le classement de la zone en « réserve marine » ne sera pas reconduit si le nombre de cétacés de cette réserve devient inférieur à 2000.

Une étude lui permet d'élaborer chaque année un modèle selon lequel :

- Entre le 1er juin et le 31 octobre, 80 cétacés arrivent dans la réserve ;
- Entre le 1er novembre et le 31 mai, la réserve subit une baisse de 5% de son effectif par rapport à celui du 31 octobre qui précède.

On modélise l'évolution du nombre de cétacés par une suite (u_n) . Selon ce modèle, pour tout entier naturel n, u_n désigne le nombre de cétacés au 1^{er} juin de l'année 2019 + n. On a donc $u_0 = 3000$.

- 1. Justifier que $u_1 = 2926$
- 2. Justifier que $u_{n+1} = 0.95u_n + 76$ pour tout entier naturel n.
- 3. A l'aide d'un tableur, le directeur a calculé les 8 premiers termes de la suite (u_n) . Il a configuré le format des cellules pour que ne soient affichés que des nombres arrondis à l'unité.

	Α	В	С	D	Е	F	G	Н	1
1	n	0	1	2	3	4	5	6	7
2	u_n	3000	2926	2856	2789	2725	2665	2608	2554

Quelle formule peut-on entrer dans la cellule C2 afin d'obtenir, par recopier vers la droite, les termes de la suite (u_n) ?

4. Compléter l'algorithme ci-dessous pour déterminer l'année à partir de laquelle le nombre de cétacés présents dans la réserve marine sera strictement inférieure à 2000.

$$n = 0$$
 $u = 3000$
while
 $u =$
 $n =$
print(n)

5. La réserve marine fermera-t-elle un jour ? Si oui, déterminer l'année de la fermeture à l'aide de la calculatrice.

Exercice 12. Des algues prolifèrent dans un étang. Pour s'en débarrasser, le propriétaire installe un système de filtration. En journée, la masse d'algues augmente de 2% puis, à la nuit tombée, le propriétaire actionne pendant une heure le système de filtration qui retire $100 \, \text{kg}$ d'algues. On admet que les algues ne prolifèrent pas pendant la nuit. Le propriétaire estime que la masse d'algues dans l'étang au matin de l'installation du système de filtration est de $2000 \, \text{kg}$. On modélise par a_n la masse d'algues dans l'étang, exprimée en kg, après utilisation du système de filtration pendant n jours.

- 1. Calculer les termes a_0 , a_1 , a_2
- 2. Exprimer a_{n+1} en fonction de a_n pour tout entier naturel n.
- 3. Faire un tableau de valeurs de la suite (a_n) sur la calculatrice. En déduire la masse d'algues encore présente après une semaine de traitement. On donnera une valeur arrondie à l'unité.
- 4. A l'aide du tableau de valeurs de la suite (a_n) , déterminer au bout de combien de jours la quantité d'algues sera inférieure à 1000 kg.
- 5. Compléter l'algorithme Python suivant afin qu'il de répondre à la question précédente :

```
n = 0
a = 2000
while .....:
a = .....
n = n + 1
print(n)
```