# Bikeshare Trip Duration and Nearby Infrastructure in San Francisco

CPLN 505 Spring 2020

Chen (Chelsea) Zhang & Dennis (Jiazheng) Zhu

## Agenda

- 1. Introduction
- 2. Data Collection
- 3. Data Analysis
- 4. Results and Interpretation
- 5. Conclusion and Limitations

## Introduction

### **Research Question**

Does infrastructure around bikeshare stations affect bikeshare trip duration in San Francisco?

### Literature Review



"Public transit usage is significantly positively associated with bikesharing usage."





"Cyclists most preferred to ride on dedicated **bike infrastructure**, with physically separated lanes and paths."

## **Data Collection**

Joining datasets & Cleaning Data

### **Datasets**







- Data SF (datasf.org)
  - SFMTA Bikeway Network
  - Bicycle Parking
  - Transit stations
- Lyft Bay Wheels Trip Data
  - **1**0/2019 12/2019

## **Unit of Analysis**



- Each Bay Wheels station in SF
- Average trip duration for all trips that end at a given station
  - Same-day trip > 3 mins

## Origin vs. Destination



## Data Analysis

Variable Selection & Analysis Methods

**Bikeshare Station** 

**Density** 



Average Trip Duration



#### **Average Duration**

- 437 688
- 688 753
- o 753 844
- 844 1005
- 1005 1382
- 1382 25473

Bikeway

### **Transit Stations**



Bikeway

### Passenger\_Rail\_Stations mode

- Rapid Rail
- Commuter Rail
- Light Rail

#### Commuter Rail(Caltrain)



Rapid Rail (BART)



Light Rail (Muni Mero Light Rail)



### **Half-Mile Buffer**



### Correlation Matrix



### Correlation **Matrix**



### **Infrastructure Variables**

\*within 0.5 mile of a bikeshare station

Safe-Hit Posts



Green Sharrows



Back-In Angled
Parking



### Correlation Matrix



#### Correlation Sum\_buffer **Matrix** Sum\_shap\_1 Count\_1 0.8 Ave durati Sum\_biap Total number of buffer between car 0.6 Sum\_buffer and bikes Sum\_contra 0.4 Total number of greenway bike lanes Sum\_greenw Total length of bike lanes Sum\_length 0.2 Sum raised Sum sharro Sum\_sm\_swe Total number of concrete as buffer Sum\_concre Sum\_parkin Total number of parking as buffer -0.2 Total number of safe-hit posts Sum\_sh\_pos Total number of back-in angled parking Sum\_back\_i -0.4Sum\_bshare Sum k rail -0.6 Total number of walkway as buffer Sum\_walkwa Total number of green paints Sum\_gr\_pai -0.8 Sum\_gr\_sha Total number of green sharrows Sum khaki

### Infrastructure Index

```
dat$infrascore <-
5*dat$Sum_sh_pos + 4*dat$Sum_concre +
4*dat$Sum_parkin + 4*dat$Sum_gr_pai +
4*dat$Sum_gr_sha + 3*dat$Sum_length +
3*dat$Sum_buffer + 3*dat$Sum_greenw +
3*dat$Sum_walkwa - 4*dat$Sum_back_i</pre>
```

### **Correlation Analysis**



## Results & Interpretation

## Regression

```
model <- lm(Ave_durati ~ transit_buffer +
transit_n1 + bike_p_parcel_buffer +
bike_p_sidewalk_buffer + transit_light_n1 +
transit_buffer_light + transit_commuter_n1 +
transit_rapid_n1 + transit_buffer + transit_n1 +
transit_n2 + station_buffer + station_n2 +
station_n3 + infrascore, data = mod)</pre>
```

```
bike_p_sidewalk_buffer + transit_light_n1 + transit_buffer_light +
   transit_commuter_n1 + transit_rapid_n1 + transit_buffer +
   transit n1 + transit n2 + station buffer + station n2 + station n3 +
    infrascore, data = mod)
Residuals:
    Min
              10
                   Median
                               3Q
                                       Max
-1150.00 -112.14
                  -10.57
                            94.08
                                   834.57
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       9.877e+02 1.111e+02 8.893 3.46e-16 ***
transit_buffer
                      1.728e+02 3.407e+01 5.071 8.95e-07 ***
transit_n1
                      1.592e-01 8.128e-02 1.959 0.05147.
bike_p_parcel_buffer -2.011e+01 9.360e+00 -2.148 0.03287 *
bike_p_sidewalk_buffer -1.205e+00 3.659e-01 -3.294 0.00117 **
                      1.575e-01 5.973e-02 2.637 0.00901 **
transit_light_n1
transit_buffer_light -1.668e+02 3.517e+01 -4.744 3.97e-06 ***
transit_commuter_n1
                      5.255e-02 5.441e-03 9.658 < 2e-16 ***
transit_rapid_n1
                       5.276e-02 7.756e-03 6.803 1.15e-10 ***
transit n2
                      -3.429e-01 1.180e-01 -2.905 0.00409 **
station_buffer
                      -3.217e+01 6.266e+00 -5.135 6.65e-07 ***
station_n2
                       7.595e-02 2.301e-01
                                            0.330 0.74172
station n3
                      -3.249e-01 1.755e-01 -1.852 0.06555 .
                       2.620e-01 8.110e-02 3.230 0.00145 **
infrascore
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 238.9 on 201 degrees of freedom
Multiple R-squared: 0.7729, Adjusted R-squared: 0.7582
F-statistic: 52.63 on 13 and 201 DF, p-value: < 2.2e-16
```

lm(formula = Ave\_durati ~ transit\_buffer + transit\_n1 + bike\_p\_parcel\_buffer +

Call:

## Regression (Stepwise)

```
model_sw <- step(lm(Ave_durati ~ transit_buffer +
transit_n1 + bike_p_parcel_buffer +
bike_p_sidewalk_buffer + transit_light_n1 +
transit_buffer_light + transit_commuter_n1 +
transit_rapid_n1 + transit_buffer + transit_n1 +
transit_n2 + station_buffer + station_n2 +
station_n3 + infrascore, data = mod),
direction= "backward")</pre>
```

#### Coefficients:

Call:

lm(formula = Ave durati ~

bike p parcel buffer +

transit buffer light +

transit commuter n1 +

transit light n1 +

transit rapid n1 +

station buffer +

bike p sidewalk buffer +

transit buffer +

transit n1 +

transit n2 +

station n3 +

infrascore,

data = mod)

```
(Intercept) 9.716e+02 9.947e+01 9.767 < 2e-16 ***
transit buffer 1.725e+02 3.398e+01 5.076 8.72e-07 ***
transit n1 1.626e-01 8.046e-02 2.021 0.04461 *
bike p parcel buffer -2.004e+01 9.337e+00 -2.146 0.03304 *
bike p sidewalk buffer -1.187e+00 3.606e-01 -3.291 0.00118 **
transit buffer light -1.667e+02 3.509e+01 -4.750 3.85e-06 ***
transit commuter n1 5.252e-02 5.428e-03 9.676 < 2e-16 ***
transit rapid n1 5.301e-02 7.703e-03 6.882 7.28e-11 ***
transit n2 -3.443e-01 1.177e-01 -2.926 0.00383 **
station buffer -3.150e+01 5.908e+00 -5.331 2.60e-07 ***
station n3 -2.680e-01 3.254e-02 -8.235 2.21e-14 ***
infrascore 2.595e-01 8.058e-02 3.220 0.00149 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

Estimate Std. Error t value Pr(>|t|)

Residual standard error: 238.3 on 202 degrees of freedom

Multiple R-squared: 0.7728, Adjusted R-squared: 0.7593

F-statistic: 57.26 on 12 and 202 DF, p-value: < 2.2e-16

### **Distribution of Duration**



### **Distribution of Model Error**



### **Duration Absolute Error**



## **Conclusion & Limitation**

### Conclusion

#### **Shorter** trips when there are

- more subway stations
- more bikeshare stations
- more sidewalk/parcel parking spots for bikes

#### **Longer** trips when there are

- more Caltrain/BART station
- more bicycle-specific infrastructure

...at the destination bikeshare station.

### Limitation

- No route data available
- Infrastructure index could be improved

### References

- Open data SF
- Lyft Bay Wheels System Data
- Jaffe, Eric, et al. "The Methodology of Bike-Share Station Placement in New York City." CityLab, 5 Oct. 2011, www.citylab.com/transportation/2011/10/how-new-york-city-will-choose-its-bike-share-stations/248/.
- Zhang, Yuanyuan, and Yuming Zhang. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States." Sustainability, vol. 10, no. 6, Apr. 2018, p. 1868., doi:10.3390/su10061868.
- Buehler, Ralph, and Jennifer Dill. "Bikeway Networks: A Review of Effects on Cycling." Transport Reviews 36, no. 1 (January 2, 2016): 9–27.
- Park, Yujin, and Gulsah Akar. "Why Do Bicyclists Take Detours? A Multilevel Regression Model Using Smartphone GPS Data." Journal of Transport Geography 74 (2019): 191–200.
- Wergin, Jon, and Ralph Buehler. "Where Do Bikeshare Bikes Actually Go?: Analysis of Capital Bikeshare Trips with GPS Data." Transportation Research Record: Journal of the Transportation Research Board 2662, no. 1 (2017): 12–21.

