▶ Sequoia Routing Protocol

White Paper 2.0

treeqiu ▶ Tencent Network Lab ▶ 2013/2/6
2013年2月6日开始撰写;
 2013年2月7日15:37发布第一版;
2013年2月7日21:55修订;
 2013年2月9日23:36修订,添加后记部分图表21;
2013年2月13日22:54修订,添加 SRP和 OSPF 层级对比、接收路由 Update 和发送路由 Update 的流程图;
 2013 年 2 月 21 日 17:56 修订,添加 Grid 修改行、列,Border 对内对外路由方案说明;
2013 年 2 月 25 日 17:33 修订,添加参考资料;
 2013年2月28日9:15修订,修改页眉

Sequoia Routing Protocol

White Paper 2.0

在网络路由协议领域中,OSPF 无疑就 是这个领域的名片。经过 20 多年的发 展,OSPF 已经可以稳定地在任意网络 拓扑中计算任意两点间的最短路径,甚 至在网络拓扑发生变化时,也能迅速地 重新计算最短路径,在数据中心网络领 域,OSPF 的统治地位依然非常显著, 那么在未来 IDC 网络中 OSPF 的统治地 位是否依然可以延续?

1. 产生背景

路由协议的理论基础是"图论"中一个非常著名的命题——任意两点间的最短路径,对此与许多学者提出了很多算法,如 OSPF 所依据的 Dijkstra 算法,RIP/BGP 所依赖的 Bellman-Ford 算法等,这些算法有 2 个共同点:

- 1. 可以工作在任意结构的图中;
- 2. 假设图中有 N 个节点,对于任意 2 个节点 间的最短路径计算复杂度开销为 O(N²)。

IDC 网络体现了更多批量化建设和规模运营的 思路,和传统网络相比也有两个非常明显的特点:

- 网络拓扑是固定的、已知的,而且是简单的 CLOS 结构;
- 2. 为了降低单位 IDC 网络成本,网络节点 N的数量是传统园区网络的 4 倍以上,甚至达到数 10 倍。

这就意味着不论是 Dijkstra 还是 Bellman Ford 在未来大规模 IDC 网络架构中并不适用,我们需要一种新的算法和路由协议。

2. 技术原理

在数据结构中对"树"和"图"对比,在"树"中寻找任意 2 点间的最短路径无疑要比"图"简单许多,那么 IDC 网络拓扑是 CLOS 类型,是否可以作为"树"型结构进行处理呢?

2.1. 理论依据——Multi-Root-Tree

图表 | 数据中心网络拓扑

如图表 | 所示,这是一个典型 CLOS 状的 IDC 网络结构:

- 1. 图中有 512 个 ToR 用于连接大规模服务器,作为 CLOS 结构的 I/O Stage;
- 有2至4个 Core 用于 ToR 之间互联, 作为 网络中的 CLOS Fabric;
- 有2个Border 用于访问 IDC 外部,和 ToR 一样,也是 I/O Stage。

这种结构中任意 2 台 ToR 或者 ToR 和 Border 之间的最短路径 Core 是必经之路,且 Core 的数量和最短路径 ECMP 数量一致。这种 CLOS 架构也被称为 Fat-Tree 模型,如果我们将 Fat Tree模型看作多棵树的组合——称之为 Multi-Root-Tree,那么最短路径的计算和维护就变得非常简单。

图表 2 将 IDC 网络架构拆成 4 棵不同的树

如图表 2 所示,将 Fat-Tree 当成 Multi-Root-Tree 后,可以将 IDC 网络结构拆分成 4 裸独立的 树:

- 在每一棵树上计算最短路径非常简单,可 以通过静态寻址方式计算任意2点间最短 路径,复杂度为0;
- 2. 将 4 棵树内计算的任意 2 点间最短路径进行叠加就是整个 IDC 最短路径计算结果;
- 3. ToR 作为多棵树的公共节点,需要隔离不同树的计算结果,不允许将从任意 Core 收到的流量再转发至任意 Core (这种方式也称之为"Vertical Split"——垂直分割),通过在 Core 上固定每个 IP 子网的可选 Next hop 方式实现。

Multi-Root-Tree 就是 Sequoia Routing Protocol 的理论依据。

2.2. 实现分析

IDC 网络除了是已知的简单网络外,它还是一个基本固定的网络结构:

- 1. 网络规模相对固定,如设计512个ToR的规模;
- 2. 每个 ToR 有固定的 IP子网用于连接服务器,并且 IP子网根据 ToR 的编号呈等差递增关系,可以通过公式自动化计算,而且这些 IP子网在运营过程中不会发生变化;
- 3. IDC内IP子网可以汇聚成一条路由,IDC 内外访问均通过 Border,IDC内网络类似于 OSPF的 Total Stub 区域,由 Border 发布 默认路由至 IDC内。

这就意味着 IDC 网络内路由是相对固定的,变化的是每个子网的状态:

- 某个ToR尚未开启或者关机,该ToR携带的IP子网处于Down状态;
- 2. 某个 ToR 已经开启,该 ToR 携带的 IP 子网 处于 Up 状态;
- 3. 某个TOR 至某个 Core 的连接中断,该 TOR 携带的 IP 子网在该 Core 为 Root 的树 中处于 Down 状态。

图表 3 转发系统内 SRP 与 OSPF/BGP 等协议的关系

基于如上因素,如图表 3 所示,SRP对 IDC 网络路由简化实现如下:

 每棵树的最短路径计算可以采用预设静态 路由方式实现;

- 对于预设静态路由范围之外的路由将会被 SRP拒绝;
- 设备之间运行 SRP 路由协议,建立并维护 Peer 关系;
- ToR、Core、Border 各自监控本地路由表中预设 IP子网或者外部路由状态,将预设 IP子网、外部路由、SRP静态路由状态通过 Peer 关系传递;
- 5. SRP 接收到 Peer 传递的消息或者 Peer 之间 关系变化修改预设 SRP 静态路由状态。

2.3. 技术优势

SRP 的优势体现在:

- 1. 面向运营,路由协议运行预先规划的 IP子网,实现规划到运营的闭环,而避免了OSPF/BGP 有学习未规划 IP子网的隐患,并且 SRP可以对路由进行全方位的匹配——只查看失效的路由、只查看生效的路由、只查看 TOR_X 发布的 IP子网、只查看业务IP子网等,这些都是在 OSPF 和 BGP 中无法实现或很难实现的;
- SRP在控制平面上动态地操作静态路由, 能够快速地实现和方便地移植到不同交换 机平台;
- 3. SRP在每台设备上为每个IP子网固定了可选 Next hop,避免计算许多无效路由,而 OSPF在局部网络故障肘依然会计算大量无效路由,BGP也会计算这些无效路由 (再通过有效性检查对无效路由进行丢弃),SRP是真正做到避免计算的路由协议;
- 4. SRP保留了 OSPF/BGP 中的邻居概念,用于传递消息,SRP的邻居关系维护和消息格式直接借鉴了 BGP的部分实现原理和格式;
- 5. SRP分工明确,并没有通过 SRP来实现所有工作,稳态的 IDC内 SRP运行模式和OSPF Total Stub 区/IS-IS 的 Level-I 区域,而

2个 Border 则相当于 ABR 和 Level-I-2 路由器,对 IDC 内发布 SRP默认路由 (Border 可以同射监控 N 条外部路由,只有 N 条路由同时失效,SRP默认路由才会失效),对 Outside IDC 重分布 IDC 内的汇总路由 (并非通过 SRP实现,而是人工配置一条 IDC 内的聚合静态路由重分布至 Outside IDC)。

基于以上5点优势,SRP更加贴近网络运营,精简并控制了路由计算,简化开发和实现,可以适应更大规模的网络,可以满足未来IDC 网络的要求。

3. 协议介绍

3.1. 协议数据库——SRP Grid

Subnets	Corei	Core2	Core3	Core4	Description	
10.1.1.64/26	- 1	- 1	- 1	1	T2_Production	
10.1.1.128/26	- 1	- 1	- 1	- 1	T3_Production	_
10.1.32.192/26	- 1	- 1	- 1	- 1	T128 Production	
0.0.0/0	- 1	- 1	- 1	1	B evit	1

Subnets	ToR1	ToR2		ToP128	Borderi	Border2	Description	1
10.1.1.0/26	1	*	*	*	*	*	T1 Production	1
10.1.33.0/26	1	*	*	*	*	*	T1 ILO	1
10.1.0.41/32	1	*	*	*	*	*	T1_Loopback	i
10.1.1.64/26	*	1	*	*	*	*	T2_Production	1
10.1.33.64/26	*	1	*	*	*	*	T2_ILO	Core1 Grid
10.1.0.42/32	*	- 1	*	*	*	*	T2_Loopback	Core1_Grid
]
10.1.32.192/26	*	*	*	1	*	*	T128_Production]
10.1.64.192/26	*	*	*	1	*	*	T128_ILO	1
10.1.0.168/32	*	*	*	1	*	*	T128_Loopback	[
0.0.0.0/0	*	*	*	*	1	1	B_exit]

Subnets	Corei	Core2	Core3	Core4	Border2	Description	
10.1.1.0/26	1	- 1	1	1	3	T1_Production	
10.1.33.0/26	1	- 1	- 1	- 1	3	T1 ILO	
10.1.0.41/32	1	- 1	- 1	- 1	3	T1 Loopback	
10.1.1.64/26	1	- 1	1	1	3	T2_Production	
10.1.33.64/26	1	1	1	1	3	T2_ILO	
10.1.0.42/32	1	- 1	- 1	- 1	3	T2 Loopback	
							■ Borderi Grid
10.1.32.192/26	1	- 1	1	1	3	T128_Production	
10.1.64.192/26	1	- 1	1	1	3	T128_ILO	
10.1.0.168/32	1	- 1	- 1	- 1	3	T128 Loopback	
10.1.0.1/32	1	*	*	*	3	C1_Loopback	
10.1.0.2/32	*	1	*	*	3	C2_Loopback	
10.1.0.3/32	*	*	1	*	3	C3_Loopback	
10.1.0.4/32	*	*	*	1	3	C4 Loopback	

图表 4 协议核心 SRP Grid

SRP实现的核心围绕着 SRP Grid, 它是 SRP 预设路由的数据库,每台设备均有独立的 SRP Grid, 如图表 4 所示:

 根据网络架构中的设备类型 ToR、Core 和 Border 共分为 3 类 Grid;

- Grid 是一种表格, 行表示目的 IP子网, 列表示 SRP 邻居;
- 3. 行和列所确定的 Cell 即为 SRP 邻居作为目的 IP 子网的可达性状态, Cell 内容有"*"和整数,字符"*"表示永远不可达 (是 SRP 初始化默认值之一,且永远不会改变) , SRP 不会为该 Cell 产生静态路由, Cell 数值为奇数表示目前可达,偶数表示目前不可达(也是 SRP 初始化的默认值之一);
- 4. ToR和 Border Grid 比较类似,可以看到不同树的转发路径,如 Corel 列就表示以 Corel 为根的树,以此类推,图中使用不同底色表示不同的树;
- 5. Core 的 Grid 非常简单,可以发现除了默认路由外每一行只有 I 个 Cell 是整数值,其余皆为*,这体现了树形转发的特点,也是避免计算无效路由的法门;
- 6. Border 的 Grid 可以看到有数值为 3 的 Cell,这种特殊的 Cell 只在 Border 之间存在,主要是为 IDC 外部访问 IDC 内部子网备份路径——当某一行中没有数值为 I 的 Cell 时 (该 Border 至该 IP 子网已无优选 Next hop),该 Cell 才会生效 (表示可以通过 Border 邻居作为 Next hop),不同数值的 Cell 通过设置静态路由的 Distance 以示区分。

SRP Grid 文件是 txt 格式的,为了使 Grid 更易于维护,句皮书中我们使用表格方式介绍。

3.2. Cell 数值变化的原则

不同的设备在初始化时加载各自的 Grid 文件,在运行过程中不会修改 Grid 的行和列,只会修改数值 Cell 的数值,修改 Cell 数值只有 2 种途径:

 SRP检测到邻居关系中断,将该邻居列所有 奇数 Cell 数值减 1,如 1-1=0,3-1=2;

图表 5 收到邻居通告后的处理流程

- 如图表5所示,若SRP邻居关系正常(包括 从中断恢复或一直正常),从邻居收到消息 做如下处理;
 - a) 消息中某个IP子网状态变化,检查本 地 Grid 中是否包含该 IP子网,如果没 有则丢弃该消息;
 - b) 若存在该 IP子网,则检查该 IP子网所在行、该邻居所在列的 Cell 数值是否是"*",如果是"*"则继续丢弃该消息;
 - c) 如果不是"*",则检查该 Cell 数值与消息通告状态是否一致,如果一致则保持数值不变;
 - d) 如果状态不一致则, Cell 数值为偶数 时加 | (如 0+1=1, 2+1=3), Cell 数 值为奇数时减 | (如 1-1=0, 3-1=2)。

当 Cell 数值从偶数变奇数时会产生 Ⅰ条静态路由,从奇数变偶数时会撤销这条静态路由。

3.3. 增加、删除子网和邻居

SRP的工作环境为规模化IDC,这类IDC的地址规划和网络架构规划类似,非常的稳定,很少发生变化,因此子网、邻居都是可以根据规划提前制定的(并非按照建设进度制定,如某个TOR还没有上架,但是这个TOR是在规划内的,相关的子网和邻居却早已在Grid中制定),这个现象已经通过现有大规模IDC的长期运营验证。

加入网络因为规划的变动需要增加、删除子网和邻居,则需要重新设计更新后的 Grid,所有的 Core、ToR、Border 需要重新重新加载 Grid 文件:

- 当前实现的加载方式为静态加载,即需要 重新启动 SRP 进程的方式加载;
- 2. 将来可以在实现方式上进行优化,实现动态加载,即只进行增量的添加或删除,对Grid 中未曾发生变化的单元格不改变 RIB和 FIB。

3.4. SRP 协议状态机和消息分类

Grid 是 SRP工作的核心,而 SRP的邻居关系是Cell 数值变化的唯一途径:

- 1. SRP 邻居协议状态机和 BGP 完全一致,监听 端口为 TCP 40079;
- 2. SRP邻居协议消息格式与BGP基本一致,但只只有3种; Open、Keepalive和 Update, 其中 Update 有2种子类型,一种是失效 IP 子网列表,另外一种是生效 IP子网列表;
- 3. SRP默认情况下使用 Keepalive 消息来维持 邻居关系,时间参数与 BGP 一致,也可以 和 BFD 结合加速邻居关系的探测;
- 4. SRP建立邻居也是和 BGP类似的,除了需要 指定邻居 IP 地址和建立邻居关系的 source interface 外,还需要指定邻居的类型(如

Core、ToR或Border)和编号(如1、2、 111等)以进行身份验证,值得一提的是 SRP作为IGP,目前不建议建立 multi-hop peer。

3.5. 根据 Grid 变化发送 Update 通告

图表6收到邻居通告后的处理流程

SRP作为IGP,有两种方式产生路由 Update:

- 1. 被 SRP 所卷入的 Connect 路由发生变化;
- 2. SRP所管理的路由状态发生变化。

第一种方式在所有 IGP 中都是通用的,而第二种则重点体现 IGP 的设计原理。

如图表 6 所示,邻居协议部分根据 Grid 发送 Update 消息:

1. 监听 Grid 各行 (IP子网) 状态, 当一行之中皆无数值为 I 的 Cell 时 (数值为 3 的 Cell 不作为可达性考察范围) , 表示该 IP子网不可达,需要向邻居发送 Update 消息通告该 IP子网类效;

- 若某行由2个数值为1的Cell变成1个或者3个,都不需要发送Update消息,因为该IP子网一直处于可达状态;
- 3. 若某行由 0 个数值为 1 的 Cell 变成至少 1 个,那么就需要向邻居发送 Update 消息通告该 IP 子网生效。
 - 3.6. 监听 Connect 路由和 Outside 路由 发送 Update 通告

SRP作为一种 IGP,其核心职责就是要将 Connect 路由或者 Outside 路由状态通过邻居协 议发布出去。SRP和 BGP一样,使用 network 命令来监控 Connect 路由或者 Outside 路由状 态:

- I. ToR、Core 都需要监听 Connect 路由状态 (根据 network 命令监听指定 IP子网), 当指定 IP子网 Connect 路由从不存在变成 存在时,即需要向所有邻居发送 Update 通 告该 IP子网生效,反之发送 Update 通告该 IP子网失效;
- 2. Border 则需要 network 多条 Outside 路由 (IDC 外部路由,有可能是 OSPF/BGP/IS-IS 类型),将这些路由状态取或后与发布的 默认路由状态绑定——只有当所有 Outside 路由都失效时,该 Border 才会发布 Update 消息通告所有邻居默认路由失效,否则默认路由都是生效的,因此在 Border 上选择外部路由条目时比较关键,尽量选择哪些必须使用、稳定使用的 Outside 路由,如集中网管服务器网段等,此外将来还可以通过 IP-Detection 结果与默认路由状态绑定方式加以实现。

4. Study Case

4.1. SRP 初始化时各个 Grid 的状态

如图表 I 所示,IDC 内运行 SRP,Border 和Outside IDC 运行其余路由协议

Subnets	Corei	Core2	Core3	Core4	Description]
10.1.1.64/26	0	0	0	0	T2_Production	ToR1 Grid
10.1.1.128/26	0	0	0	0	T ₃ Production	TOKI_GHU
]
10.1.32.192/26	0	0	0	0	T128 Production	1

Subnets	ToR1	ToR2		ToR128	Borderı	Border2	Description]
10.1.1.0/26	0	*	*	*	*	*	T1_Production	
10.1.33.0/26	0	*	*	*	*	*	T1_ILO]
10.1.0.41/32	0	*	*	*	*	*	T1_Loopback]
10.1.1.64/26	*	0	*	*	*	*	T2_Production	Core1 Grid
10.1.33.64/26	*	0	*	*	*	*	T2_ILO	Corei_did
10.1.0.42/32	*	0	*	*	*	*	T2_Loopback]
			:]
10.1.32.192/26	*	*	*	0	*	*	T128_Production]
10.1.64.192/26	*	*	*	0	*	*	T128_ILO]
10.1.0.168/32	*	*	*	0	*	*	T128_Loopback]

Subnets	Corei	Core2	Core3	Core4	Border2	Description	1	
10.1.1.0/26	0	0	0	0	2	T1_Production]	
10.1.33.0/26	0	0	0	0	2	T1 ILO	1	
10.1.0.41/32	0	0	0	0	2	T1_Loopback	1	
10.1.1.64/26	0	0	0	0	2	T2_Production]	
10.1.33.64/26	0	0	0	0	2	T2 ILO]	
10.1.0.42/32	0	0	0	0	2	T2_Loopback	Borde	r1 Grid
10.1.32.192/26	0	0	0	0	2	T128_Production	1	
10.1.64.192/26	0	0	0	0	2	T128_ILO]	
10.1.0.168/32	0	0	0	0	2	T128 Loopback]	
10.1.0.1/32	0	*	*	*	2	C1_Loopback	Ĭ	
10.1.0.2/32	*	0	*	*	2	C2_Loopback]	
10.1.0.3/32	*	*	0	*	2	C3 Loopback	1	

图表 7 初始化运行时 ToR、Core、Border 的 Grid 状态

如图表 7 所示,初始状态下除了"*"Cell 外,其余 Cell 均为偶数值 Cell,此时假设 ToR2 的 SRP 监控到路由表中存在 3 条 Connect 路由 10.1.1.64/26、10.1.33.64/26、10.1.0.42/32,则立刻发送 Update 给所有邻居 (Corel~Core4),Corel_Grid 如图表 8 所示:

Subnets	ToR1	ToR2		ToR128	Borders	Border2	Description	
10.1.1.0/26	0			*	*	*	T1 Production	İ
10.1.33.0/26	0	*	*	*	*	*	T1_ILO	ĺ
10.1.0.41/32	0	*	*	*	*	*	T1_Loopback	
10.1.1.64/26	*	- 1	*	*	*	*	T2_Production	Core1 Grid
10.1.33.64/26	*	1	*	*	*	*	T2_ILO	corei_dild
10.1.0.42/32	*	- 1	*	*	*	*	T2_Loopback	
10.1.32.192/26	*	*	*	0	*	*	T128_Production	
10.1.64.192/26	*	*	*	0	*	*	T128_ILO	
10.1.0.168/32	*	*	*	0	*	*	T128_Loopback	

图表 8 当 ToR2 发布 Update 后 Corel Grid 的状态

当 Corel 检测到这 3 个 IP 子网所在行有数值为 I 的 Cell 后,根据"Vertical Split"原则,发送 Update 给同行中"*"值邻居(除 ToR2 外的 ToR 和 Border),如图表 9、图表 10 所示:

Subnets	Corei	Core2	Core3	Core4	Description]	
10.1.1.64/26	- 1	0	0	0	T2_Production]_	ToR1 Grid
10.1.1.128/26	0	0	0	0	T ₃ Production	-	TOKI_GHG
						1	
10.1.32.192/26	0	0	0	0	T128 Production	1	

图表 9 当 Corel 发布 Update 后 ToRI Grid 的状态

Subnets	Coreı	Core2	Core3	Core4	Border2	Description	
10.1.1.0/26	0	0	0	0	2	T1_Production	
10.1.33.0/26	0	0	0	0	2	T1_ILO	
10.1.0.41/32	0	0	0	0	2	T1_Loopback	
10.1.1.64/26	1	0	0	0	2	T2 Production	
10.1.33.64/26	1	0	0	0	2	T2_ILO	
10.1.0.42/32	1	0	0	0	2	T2_Loopback	Border1_Grid
							,
10.1.32.192/26	0	0	0	0	2	T128_Production	
10.1.64.192/26	0	0	0	0	2	T128_ILO	
10.1.0.168/32	0	0	0	0	2	T128_Loopback	
10.1.0.1/32	0	*	*	*	2	C1_Loopback	
10.1.0.2/32	*	0	*	*	2	C2 Loopback	
10.1.0.3/32	*	*	0	*	2	C3 Loopback	1

图表 10 当 Corel 发布 Update 后 Borderl Grid 的状态

同时 Corel 发送的 Update 也会通知到 Border2, Border2 的 Grid 和 Border1 类似, Border2 检查到 3个 IP 子网所在行也有数值为 I 的 Cell, 也会向邻居 Border1 发送 Update 修改 数值为 2 的 Cell, 如图表 II 所示:

Subnets	Corei	Core2	Core3	Core4	Border2	Description	
10.1.1.0/26	0	0	0	0	2	T1_Production	
10.1.33.0/26	0	0	0	0	2	T1_ILO	
10.1.0.41/32	0	0	0	0	2	T1 Loopback	
10.1.1.64/26	1	0	0	0	3	T2_Production	
10.1.33.64/26	1	0	0	0	3	T2_ILO	0 1 611
10.1.0.42/32	1	0	0	0	3	T2_Loopback	■ Border1_Grid
10.1.32.192/26	0	0	0	0	2	T128_Production	
10.1.64.192/26	0	0	0	0	2	T128_ILO	
10.1.0.168/32	0	0	0	0	2	T128_Loopback	
10.1.0.1/32	0	*	*	*	2	C1 Loopback	
10.1.0.2/32	*	0	*	*	2	C2_Loopback	
10.1.0.3/32	*	*	0	*	2	C3_Loopback	

图表 II 当 Border2 发布 Update 后 Border1 Grid 的状态

4.2. 当 Border1 和 Core1 邻居关系中断

假设 Border I 和 Core I 在正常情况下 Cell 如图 表 12 所示:

Subnets	Corei	Core2	Core3	Core4	Border2	Description	
10.1.1.0/26	- 1	1	- 1	- 1	3	T1_Production	
10.1.33.0/26	1	1	1	- 1	3	T1 ILO	
10.1.0.41/32	- 1	1	- 1	- 1	3	T1_Loopback	
10.1.1.64/26	1	1	1	1	3	T2_Production	
10.1.33.64/26	1	1	1	1	3	T2_ILO	
10.1.0.42/32	1	1	1	1	3	T2_Loopback	
							■ Borderi Grid
10.1.32.192/26	- 1	1	- 1	- 1	3	T128_Production	
10.1.64.192/26	1	1	1	1	3	T128_ILO	
10.1.0.168/32	- 1	1	- 1	- 1	3	T128_Loopback	
10.1.0.1/32	1	*	*	*	3	C1_Loopback	
10.1.0.2/32	*	1	*	*	3	C2 Loopback]
10.1.0.3/32	*	*	1	*	3	C3_Loopback	
10.1.0.4/32	*	*	*	1	3	C4 Loopback	

图表 12 正常情况下 Border I 的 Grid 状态

当 Border I 检测到和 Core I 关系中断后,Grid 会发生如图表 13 样变化:

Subnets	Corei	Core2	Core3	Core4	Border2	Description	
10.1.1.0/26	0	1	1	1	3	T1 Production	1
10.1.33.0/26	0	1	1	1	3	T1_ILO	
10.1.0.41/32	0	1	- 1	- 1	3	T1 Loopback	
10.1.1.64/26	0	1	1	- 1	3	T2_Production	
10.1.33.64/26	0	1	- 1	- 1	3	T2_ILO	
10.1.0.42/32	0	1	- 1	1	3	T2_Loopback	
	0						■ Border1_Grid
10.1.32.192/26	0	1	1	- 1	3	T128 Production	
10.1.64.192/26	0	1	- 1	- 1	3	T128_ILO	
10.1.0.168/32	0	1	- 1	- 1	3	T128_Loopback	
10.1.0.1/32	0	*	*	*	3	C1_Loopback	
10.1.0.2/32	*	1	*	*	3	C2_Loopback	
10.1.0.3/32	*	*	1	*	3	C3 Loopback	
10.1.0.4/32	*	*	*	1	3	C4 Loopback	1

图表 13 当 Border 1 和 Corel 邻居关系中断后的 Grid

4.3. 当 Core2~Core4 与 ToR1 邻居中断

在 4.2 节的基础 (Border | 与 Corel 邻居中断) 上,网络继续发生变化,Core2~Core4 与 ToR | 邻居相继中断,网络拓扑如图表 | 4 所示:

图表 14 在 Border1-Core1 中新基础上 Core2~Core4-ToR1 中新

Core2~Core4 各自发送 Update 消息至 Border I 和 Border 2, 此时 Border I 的 Grid 会如图表 15 所示:

Subnets	Corei	Core2	Core3	Core4	Border2	Description	
10.1.1.0/26	0	0	0	0	3	T1_Production	1
10.1.33.0/26	0	0	0	0	3	T1_ILO]
10.1.0.41/32	0	0	0	0	3	T1_Loopback]
10.1.1.64/26	0	1	1	1	3	T2_Production]
10.1.33.64/26	0	1	1	1	3	T2_ILO]
10.1.0.42/32	0	- 1	- 1	- 1	3	T2_Loopback	
	0						■ Border1_Grid
10.1.32.192/26	0	1	1	1	3	T128_Production	
10.1.64.192/26	0	- 1	- 1	- 1	3	T128_ILO	1
10.1.0.168/32	0	- 1	- 1	1	3	T128 Loopback	1
10.1.0.1/32	0	*	*	*	3	C1_Loopback	1
10.1.0.2/32	*	- 1	*	*	3	C2 Loopback	1
10.1.0.3/32	*	*	1	*	3	C3_Loopback]
10.1.0.4/32	*	*	*	1	3	C4_Loopback]

图表 15 和 ToRI 相关的 IP 子网均无数值为 I 的 Cell—Border I Grid

由于 Border2 也接收到 Core2~Core4 发送的 Update 消息,对应 Core2~Core4 列 ToR1 相关 行的 Cell 也会变成 0,同 时此时 Border1 会发送 Update 至 Border2, Border2 的 Grid 会如图表 16 所示,对比图表 15 可以发现 Border1 和 Border2 之间并未产生 ToR1 各子网的环路:

Subnets	Coreı	Core2	Core3	Core4	Borderi	Description	
10.1.1.0/26	1	0	0	0	2	T1_Production]
10.1.33.0/26	1	0	0	0	2	T1 ILO]
10.1.0.41/32	1	0	0	0	2	T1_Loopback	
10.1.1.64/26	1	- 1	- 1	- 1	3	T2_Production]
10.1.33.64/26	1	1	1	1	3	T2_ILO	
10.1.0.42/32	1	- 1	- 1	- 1	3	T2_Loopback	Border2 Grid
	1						Border 2_drid
10.1.32.192/26	1	- 1	- 1	- 1	3	T128_Production	
10.1.64.192/26	1	- 1	- 1	- 1	3	T128_ILO]
10.1.0.168/32	1	1	1	1	3	T128 Loopback]
10.1.0.1/32	1	*	*	*	3	C1_Loopback	
10.1.0.2/32	*	- 1	*	*	3	C2_Loopback]
10.1.0.3/32	*	*	1	*	3	C3_Loopback	
10.1.0.4/32	*	*	*	1	3	C4_Loopback]

图表 16 在 Border2 上接收到 Core2~Core4、Border1 发送 Update 后

此时 Outside IDC 访问 ToRI 子网路径即会如图表 17 所示:

图表 17 当 Outside IDC 通过 Border1 访问 IDC 内 ToR1 射,路径经过 Border1 和 Border2 之间链路

通常 Border 与每个 Core 互联通常不会是单条链路,同时拥有 4个 Core 的网络中,因此发生这种故障(Border I-Corel 中断,同时Core2~Core4-ToRI 都中断)的概率极其小,但是在只有 2个 Core 的网络中的概率相比而言会大一些(Border I-Corel 中断,同时 Core2-ToRI 中断),而此时备份 Cell 的作用就会凸显。

4.4. 引进控制器后可以取消备份 Cell

未来 SRP 的另外一种做法可以取消 Border 间互 联链路:

- 设置集中控制器 SRP Orchestrator 监控 Border 1 和 Border 2 的 Grid 状态;
- 当 Border I 上对于某个的子网均无数值为 I 的 Cell, 而 Border 2 上相同子网存在数值为 I 的 Cell;
- 3. SRP Orchestrator 会在 Border2 上下发指令 将该子网对应的 SRP 路由注入到 Border2 与 Outside IDC 互联的路由进程中;
- 4. 由于 Outside IDC 从 Border I 上只学习到汇 聚路由,而从 Border 2 却学到更为精确的 SRP路由,因此 Outside IDC 访问该 IP子网 时会优选 Border 2,从而解决 IDC 内路由 汇聚后的高可用路径问题。

5. SRP 当前测试数据

5.1. 测试拓扑环境

图表 18 测试拓扑环境

如图表 18,测试拓扑分别运行 OSPF 和 SRP 后进行,操作为:

- ToR1~ToR2 之间通过测试仪模拟稳定的双 向流量;
- 在 ToR2 上 Shutdown 和 Corel 之间的链路;
- 在 ToR2 上执行 NO shutdown 和 Corel 之间链路;
- 分别观察 ToRI→ToR2 和 ToR2→ToRI 的 流量中断数量。

从使用收敛时间 = $\frac{\dot{\alpha} \cdot \vec{y} + \vec{y} \cdot \vec{y} \cdot \vec{y}}{\dot{\alpha} \cdot \vec{y} + \vec{y} \cdot \dot{x} \cdot \vec{x}}$, 对比 OSPF 和 SRP 的收敛时间,由于是在 ToR2 上执行 Shutdown 操作,所以 ToR2 \rightarrow ToR1 \rightarrow ToR1 \rightarrow ToR2 \rightarrow 有则 经历了;

- I. Corel 感受到与 ToR2 邻居中断;
- 2. Corel 向 ToRI 发布 Update;
- 3. ToRI 刷新 Grid;
- 4. ToRI 修改路由表;
- 5. ToRI 更新 FIB。

等 5 项动作,此收敛时间更具实际价值。

5.2. 测试结果

	ToR1→ToR2	<i>ToR2</i> →ToR1
	协议收敛时间	本地刷新时间
OSPF 链路	0.55s	0.51s
中断		
OSPF 链路	0.00s	0.08s
恢复		
SRP 链路中	0.87s	0.50s
断		
SRP 链路恢	0.00s	0.00s
复		

图表 19 测试结果对比

从对比结果来看 OSPF 在链路中断场景中拥有更 快的收敛时间,其余场景 SRP 均不弱于 OSPF。 这主要是 SRP 目前的机制尚未优化至最佳, 理 论上可以和 BGP 相同, 而 OSPF 在更大规模的 测试结果表明其收敛时间恶化较多。

6. 附录

6.1. SRP 消息头

Marker Length 图表 20 消息格式——SRP 消息头

Marker (标记): 该标记在 SRP 中还可以用于 邻居身份确认。

长度(Length):包含消息头在内的 SRP 消息长 度,单位是字节。

类型 (Type):一字节的无符号整数制定了消 息类型编码。如下定义:

- I. Open 消息——I;
- 2. Update 消息——2;
- 3. Keepalive 消息——4。

6.2. Open 消息格式

0 3 Prefix Len(俞缀长度): | 字节指示了子网掩码 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Switch Type -+-+-+-+-Device NO

图表 21 消息格式——Open 消息

Version (版本): 1 字节整数,指示消息的协议 版本号。当前的SRP版本号是2。

Switch Type (交换机类型): 2字节整数,指示 当前设备的类型,目前有3种:

- I. Core—0;
- 2. ToR——I;
- 3. Border——2.

Device NO (设备编号): 2字节无符号整数指 示当前设备的编号,从 | 开始。

Update 消息

表 22 消息格式——Update 消息

 $\begin{smallmatrix}0\\0&1&2&3&4&5&6&7&8&9\\0&1&2&3&4&5&6&7&8&9&0&1\end{smallmatrix}$ Update Type Route Number Updated Routes(variable)

Update Type(Update 消息类型): 1 字节无符 **号整数指示了该消息是通告路由添加还是撤** 铸, 1表示该消息通告添加路由, 2表示该消息 **逝告撤销路由。**

Route Number (路由条数): 2字节无符号整 数指示了该消息通告的路由更新条数。

Updated Routes(variable) (更新的路由,可变长 度):这是一个可变长字段,包括一系列的IP 前缀将要更新的路由。每一个IP前缀编码为 〈子网地址,子网掩码长度〉二元组,每个二 元组有5字节,如图表20描述:

Subnet Address Prefix Len

图表 23 消息格式----IP子网信息

Subnet Address(子网地址):4字节指示了子网的

的长度。

6.4. Keepalive 消息

SRP的 Keepalive 消息和 BGP一样,只包含消息 头,并未采用特殊消息格式,Keeplive 的发送周 期可以调节以实现不同的邻居关系检测速度。

6.5. 参考资料

I. Wikipedia.

http://en.wikipedia.org/wiki/Dijkstra%27s algorithm.

 Mohammad Al-Fares, Alexander Loukissas and Amin Vahdat. A Scalable, Commodity Data Center Network Architecture.

ucsd_sigcom08_fattree.pdf.

后记

SRP 的未来

SRP 当前以 3000 行左右的核心代码实现了作为 IGP 的必要功能,还有接近 4000 行的代码初步 实现了比较友好的人机接口。

Subnets	Cores	Core2	Core3	Core4	Description
10.1.1.64/26	50%	25%	25%	0	T2 Production
10.1.1.128/26	25%	25%	50%	0	T ₃ Production
10.1.32.192/26	25%	50%	25%	0	T128 Production

图表 24 消息格式——IP 子网信息

SRP的未来方向是要实现权重路由: TOR 和Border 的 Cell 数值不再是整数,而是百分比,如图表 21 所示,表示流量在 ECMP 链路上的负载分担因子,而百分比是受 SRP Orchestrator 管理的。为了朝这方面发展,SRP在未来的实现也许有可能和 OpenFlow 结合起来。