syml.foobar

Symmetry line for the band plot.

We can generate syml. foobar by getsyml.

Get symmetry lines for band plot and Brillouwin zone plot.

```
syml.* is generated from ctrl.*.syml.* is needed for band plot.
After generated, you can easily edit syml.* for job_band.
```

At ecalj/GetSyml, we have getsyml.py, which is based on the seekpath at https://github.com/giovannipizzi/seekpath/and spglib at https://anaconda.org/conda-forge/spglib

Usage:

We make softlink getsyml to ecalj/SRC/GetSyml/getsyml.py during the install by InstallAll.py. Run

```
getsyml nio
(or)
getsyml ctrls.nio
```

. This show 3D Brillouin zone together with symmetry lines for band plot.

See BZsamples here.

The symmetry lines are written into the syml. * file for ecalj.

The number of divisions for syml is give by a crude algorism, so edit it if necessary.

Needed citations for getsyml

PROF

In addition to usual ecalj acknowledgement, following citations are required when you make a publication.

```
1.Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, I. Tanaka,
Band structure diagram paths based on crystallography,
Comp. Mat. Sci. 128, 140 (2017)
```

2. You should also cite spglib that is an essential library used in the implementation. https://github.com/atztogo/spglib.git

• See Lincence.txt for spglib and seekpath.

(memo for developer)

a. Modify lmchk to write required information to supply reasonable. For example, ndiv (mesh size along lines).

b.Numerical accuracy of calculations. np.set printoptions(precision=16) is not meaningful since we read output of lmchk

symmetry-line file: input for plotting energy bands along selected symmetry lines or for generating constant-energy contours such as a Fermi surface. This file (whose name is specified as a modifier with the command-line argument --band, described in the "Command-line switches" section) can take on of several forms.

format of syml

generate bands along specific symmetry lines. The following sample input illustrates input for lines X->Gamma and Gamma->M for the simple cubic lattice.

+2/2+

The first number designates how many points along each line. The next six label the starting and ending q-points, respectively. Note that the last line must contain zeros.