

Unit - III 3.3 Introduction to Transformers

Dr.Santhosh.T.K.

Syllabus

UNIT – III 10 Periods

Principles of Electro Magnetics and Electro-mechanics: Electricity and Magnetism - magnetic field and faraday's law - self and mutual inductance - Ampere's law - Magnetic circuit - Magnetic material and B-H Curve – Single phase transformer - principle of operation - EMF equation - voltage ratio - current ratio – KVA rating - Electromechanical energy conversion – Elementary generator and motors.

Problem

Example 9.24. Two coils A and B of 500 and 750 turns respectively are connected in series on the same magnetic circuit of reluctance 1.55×10^6 AT/Wb. Assuming that there is no flux leakage, calculate (i) self-inductance of each coil and (ii) mutual inductance between coils.

Transformer

- Transformer is a static device which transfers electric power from one circuit to another without changing its frequency
- The principle of operation of a transformer depends upon Faraday's Law of Electomagnetic Induction.
- Actually mutual inductance between 2 or more windings is responsible for transformation action in an electrical transformer.
- According to Faraday's Law, "Rate of change of flux linkages with respect to time is directly proportional to the induced EMF in a conductor or a coil".
- e = MdI/dt or $N.d\phi / dt$

Transformer

Types of transformer

Based on terminal voltage,

- Step-up transformer
- Step down transformer

Based on supply voltage,

- Single phase transformer
- Three phase transformer

Based on construction,

- Core type transformer
- Shell type transformer
- Spiral type or wound core type transformer (spirakore)

Based on type of cooling,

- Oil-filled self cooled
- Oil-filled water cooled
- Air blast type

Core Type Transformer

- The windings surround a considerable part of the core
- It is a single magnetic circuit
- Rectangular in shape having 2 limbs
- The coils used are of cylindrical type.
- The coils are wound in helical layers with different layers insulated from each other by paper or micaor cloth.
- The core is made up of large number of thin laminations.
- LV winding is placed nearest to the core with interleaved structure.

Construction - Core

- Core is either square or rectangular in size
- The vertical portion in which the coils are wound are called the limb and carries the windings
- The horizontal portion is called the yoke which carries the flux produced by one winding to another.

Laminations

 In core type transformers, the steel core laminations are in the shape of 'L', and these laminations are placed one above the other alternatively.

Laminations

 In shell type transformers, the steel core laminations are in the shape of 'E and I' and placed similar to that of core type.

Types of laminations

Windings

- Transformer windings are made of solid copper or aluminium strip conductors.
- The coils used are wound on the limbs and are insulated from each other.
- It carries the current and produces the flux necessary for the functioning of the transformer.

Core type

• Windings are wrapped around two sides of a laminated square core.

Shell type transformer

- The core surrounds a considerable portion of the windings.
- It is a double magnetic circuit
- The core has 3 limbs.
- The coils used are multilayered disc type or sandwich coils.
- The core is laminated.
- All the joints at alternate layers are staggered to avoid narrow airgaps at the joints. Such joints are called as overlapped or imbricated joints.
- Windings are wrapped around the center leg of a laminated core.

Shell type - sandwich coil structure

HV winding lies between two LV windings

Controls leakage

Sectional view of transformer

(a) Shell-type transformer, (b) core-type transformer

Windings are wrapped around the center leg of a laminated core.

• Windings are wrapped around two sides of a laminated square core.

Comparison between Core & Shell Type

Description	Core Type	Shell Type
Construction	Easy to assemble & Dismantle	Complex
Mechanical Strength	Low	High
Leakage reactance	Higher	Smaller
Cooling	Better cooling of Winding	Better cooling of Core
Repair	Easy	Hard
Applications	High Voltage & Low output	Low Voltages & Large Output

Summary

- Ideal transformer
- Transformer types
 - Core
 - Shell