Exercice 1. On considère la fonction f définie sur $\mathbb R$ par :

$$f(t) = 0 \text{ si } t < 0 \text{ et } f(t) = e^{-t/2} - e^{-t} \text{ si } t \ge 0$$

- **1. a)** Montrer que f est positive sur \mathbb{R} .
 - **b)** Établir que f est continue sur \mathbb{R} .
- c) Soit a un réel strictement positif. Montrer que l'intégrale $\int_0^{+\infty} e^{-at} dt$ converge et que $\int_0^{+\infty} e^{-at} dt = \frac{1}{a}$.
 - \mathbf{d}) Déduire des questions précédentes que f est une densité de probabilité.

Soit X une variable aléatoire ayant f pour densité.

- **2.** Soit F la fonction de répartition de X.
 - a) Calculer F(x) pour tout réel x < 0.
 - **b)** Montrer que pour tout réel $x \ge 0$ on a : $F(x) = 1 2e^{-x/2} + e^{-x}$.
- **3. a)** Soit Y une variable aléatoire à densité suivant une loi exponentielle de paramètre $a \in]0, +\infty[$. Donner une densité de Y. Rappeler l'espérance de Y.
 - **b)** En déduire que $\int_0^{+\infty} t e^{-at} dt$ converge et que $\int_0^{+\infty} t e^{-at} dt = \frac{1}{a^2}$.
 - c) Montrer que X admet une espérance et que $\mathbf{E}[X] = 3$.