DIFFERENTIAL EQUATION

Serial no.	Form	Substitution	Full Differential
1.	$dx \pm dy$	$x \pm y = v$	$d(x \pm y)$
2.	x dx + y dy	$x^2 + y^2 = v$	$\frac{1}{2}d(x^2+y^2)$
3.	x dy + y dx	xy = v	d(xy)
4.	x dy - y dx	y = vx	$x^2d(\frac{y}{x})$
5.	ydx - xdy	x = vy	$y^2d(\frac{x}{y})$
6.	$\frac{xdy - ydx}{xy}$	$\log \left \frac{y}{x} \right = v$	$d(\log \left \frac{y}{x} \right)$
7.	$\frac{xdy - ydx}{x^2 + y^2}$	$\tan^{-1}\left(\frac{y}{x}\right) = v$	$d(\tan^{-1}\frac{y}{x})$
8.	$\frac{ydx - xdy}{x^2 + y^2}$	$\tan^{-1}\left(\frac{x}{y}\right) = v$	$d(\tan^{-1}\frac{x}{y})$
9.	$\frac{xdy - ydx}{\sqrt{1 - x^2y^2}}$	$\sin^{-1}(xy) = v$	$d(\sin^{-1}xy)$
10.	$\frac{xdx + ydy}{x^2 + y^2}$	$x^2 + y^2 = v$	$\frac{1}{2}d(\log x^2+y^2)$

Order of Differential Equation:-

Highest order derivative in a differential equation.

Degree of Differential Equation:-

Power of highest order derivative in a differential equation.

Techniques of solving a Differential Equation

$$\underline{\text{Type 1:-}} \quad \frac{dy}{dx} = f(x)$$

$$dy = f(x)dx$$

$$\underline{\text{Type 2:-}} \quad \frac{dy}{dx} = P(x)Q(y)$$

$$\frac{dy}{Q(y)} = P(x)dx$$