REPORT

[데이터 통신]

학 교	ւ	컴퓨터공학부	
	1	컴퓨터공학전공	
교수님]	서경룡 교수님	
학 반]	201911608	
이름	1	김지환	
제출일		2022.04.26	

목차

1.	CD 에서 사용하는 PCM 방식을 설명하라	.3
2.	FDM과 TDM 비교하라	.4
3.	대역확산방식의 종류 장,단점을 설명	.4
4.	꼬임선과 동축케이블을 비교하라	.4
5.	광섬유의 single-mode, multi-mode를 비교하라	.5
6.	wifi의 주파수대역, 전파적 특성	5
7.	회선교환방식과 패킷교환방식	.6

1. CD(Compact Disc) 는 음악을 PCM 방식으로 저장한다. CD 에서 사용하는 PCM 방식을 설명하라.(sample rate, 1초당data 량, CD1장에 저장하는 데이터 량 등)

Compact Disc Digital Audio는 이름 그대로 digital Audio라서 음악을 디지털로 기록한다. 음악은 원래 아날로그에서 디지털로 기록하기 위해 PCM 방식을 사용한다.

PCM 방식은 샘플링, 양자화, 부호화 3가지 과정으로 이루어진다. PCM 과정 중 sampling rate는 Nyquist theorem으로 신호에서 가장 높은 진동 수의 2배 이상이 되는 빈도로 일정한 간격이다. 그래야 원본에 가깝게 기록할 수 있기 때문이다.

CD의 sampling rate는 44.1kHz로 인간의 가청 영역인 20Hz~약20,000Hz로 20kHz에서 양자화로 주파수를 표현하는데 한계가 있어 앨리어싱이 발생한다. 이를 해결하기 위해 안티 앨리어싱 필터로 기준 주파수 보다 높은 주파수는 자르고 낮은 주파수만 샘플링하는데 roll-off를 감안해 10%의 여유를 둔 22.05KHz로 커버가 가능하다. 이는 인간의 가청 영역을 모두 담을 수 있고 22.05kHz의 Nyquist theorem으로 두 배인 44.1kHz가 CD의 sampling rate이다.

이렇게 sampling rate를 44.1kHz로 구하게 되면 양자화 과정에서도 앨리어싱 오류를 방지할 수 있으며 부호화 과정에서 이진 코드로 변경 후 전송하게 되는 과정이 CD에서 사용되는 PCM 방식이다.

CD의 초당 data 전송량(bps)는 1411.2Kbit/s = 176.4KB/s 이다. CD는 16bit-41.kHz의 규격으로 16bit는 비트깊이다. 약 85dB 이상의 소음에서 청력에 손상을 입기 시작한다. 오디오 피크가 시스템 또는 오디오 신호에 손상을 입히지 않고 노미널 레벨을 초과할 수 있도록 하는 안전지대인 헤드룸을 확보한다. 헤드룸을 확보하기 위해약 96dB의 다이나믹 레인지(소리의 최소크기와 최대크기의 비율)를 가지는 16bit를 사용한다. 여기에 좌우로 스테레오 채널이 2개가 있음. 44.1KHz * 16bit / 8(bit) * 2ch = 1411.2Kbit/s 이다.

CD는 초당 75프레임을 가진다. 74분을 저장하는 CD는 74 * 60 * 75 = 333,000개로 초당 333,000개의 블록을 가진다. 블록당 2048byte를 가지며 이를 계산하면 2,048 * 333,000 = 681,984,000byte => 650.39Mib로 CD 한 장에 650.39MiB가 저장됨을 알 수 있다.

2. 주파수 분할방식 멀티플렉싱과 시분할 멀티플렉싱을 비교하라.(방법, 장단점)

, , , , , , , , , , , , , , , , , ,					
종류	주파수 분할 멀티플렉싱	시분할 멀티플렉싱			
방법	별도의 주파수 채널 설정 후 정보를 같은 시간에 전송 -> 1. 각 송신측 장치들이 유사한 주파수 영역의 신호를 만들어 냄 2. 다중화기 내부에서 제각기 다른 반송주파수로 변조 3. 신호들은 하나의 복잡 신호로 합쳐짐 4. 복잡 신호를 수용하기에 충분한 대역폭을 가진 매체를 통해 전송	2가지- 1. 동기식 시분할 다중화 - 전송로 대역폭 하나를 시간 슬롯으로 나눈 채널에 할당, 채널 몇 개가 전송로 1개의 시간을 분할하여 사용 2. 비동기식 시분할 다중화 - 전송 요구가 있는 채널에만 시간 슬롯을 동적으로 할당. 전송 효율을 높이는 방법이다.			
장점	 회선을 채널로 합칠 수 있다. 구현하기 쉽다. 주파수 전송으로 여러개의 신호를 보낼 수 있다. 비용이 저렴하다. 사용자가 추가하기 쉽다. 	1. 효율적이다. 2. 잡음의 영향이 감소 3. 고속 데이터 전송에 좋다 4. 빠르다. 5. 누화에 강하다 6. 레벨 변동이 거의 없다.			
단점	1. 모든 사용자에게 할당할 만큼의 대역이 없다. 2. 가드밴드의 사용으로 대역폭이 낭비된다. 3. 넓은 주파수 대역이 필요하다. 4. 까다롭다	1. 통신이 필요 없는 장치에도 시간을 할당해 낭비가 생긴다. 2. 접속 시간이 길다 3. 가격이 비싸다 4. 구성이 복잡하다. 5. 점유 대역폭이 넓다			

3. 대역확산방식의 종류 장,단점을 설명하라.

종류	직접 시퀀스(Direct Sequence, DSSS)	주파수 도약(Frequency Hopping, FHSS)
장점	1. 속도가 빠르다 2. 성능이 좋다 3. 대역폭 효율이 좋다 4. 전력 효율이 좋다 5. 잡음 방지 성능 6. 보안성 우수	1. 잡음간섭을 방지한다. 2. 전파방해를 방지한다. 3. 부품이 저렴하다 4. 높은 출력을 요구하지 않는다. 5. 동일 지역에서 서로 다른 도약 시퀀스에 의해 네트워크 분리가 된다.
단점	1. 수신기 구조가 복잡하다. 2. 대역폭 이용효율이 띨어진다. 3. 고속 데이터 전송에 적용할 경우 다중경로 페이딩 채널하에서 인접 심볼간 간섭 및 다중접속간섭이 심해진다.	1. 시스템 구현이 복잡핟. 2. 팔로우 재머와 신호를 변장하거나 속이는 스마트 재밍환경에서 성능을 보장해주지 못한다.

4. Twisted Pair-Cable 과 Coxial Cable 의 데이터 전송 특성을 비교하고 용도를 설명

종류	Twisted Pair-Cable	Coxial Cable
데이터 전송 특성	1. 구리선의 꼬임을 강화 2. 개선된 절연체를 사용 3. 케이블 내에 플라스틱 추가 -> 1+2+3으로 전자기적 간섭을 줄여 데이터 전송, 전기신호가 구리로 전달돼 데이터 전송 구리의 특성상 전자기적 간섭에 약하므로 이를 보완하기 위한 shiled TP-cable, 기존 TP케이블에 쉴드를 추가해서 전자기적 간섭을 보완해서 데이터 전송 데이터 전송은 100m 정도 전송의 거리제한이 있다.	동축케이블도 꼬임선과 마찬가지로 전기 신호로 데이터를 전달. 꼬임선에 비해 쉴드가 개선되어 더 많은 데이터가 전송 가능하다. 전기 신호가 구리 또는 알루미늄을 이용해 데이터 전달 전도체의 굵기가 굵어 상대적으로 감쇠 현상이 적어 200~500m 정도의 전송 거리제한이 있다. 높은 주파수 브로드밴드 시그널 전송에 사용 되며 설치가 까다롭고 더 비싸다.
용도	군 내에서 HUB, 유선전화기, 선로단자에 사용한 경험이 있다.	CCTV, 무전기 등에 사용했었다.

5. 광섬유의 multi-mode 와 single-mode를 비교하라

종류	Multi-mode	Single-mode	
설명	직경을 크게 해서 빛의 전송로가 분산되는 방법이다. 굴절율 분포가 계단형과 언덕형으로 2종류가 있다.	직경을 작게 해서 전송로가 하나가 되도록 엄격히 설계된 방법이다.	
직경	50μm 또는 62.5μm	8~12µm	
클래드 직경	125µm	125µm	
대역폭	계단형: 수십 MHz, 언덕형: 수100MHz~수GHz	수십 GHz	
모드 분산	있다, 대역폭이 좁다.	전혀 없다, 대역폭이 넓다.	
접속 방법	용이하다.	어렵다.	
전파 방법	계단형: 반사형 전파 언덕형: 유선형 전파	직선 전파	
전파 손실	계단형: 1dB/Km 언덕형: 0.9dB/Km	0.22dB/Km	
용도	모드 내 분산으로 인해 단거리 구내 통신 선로의 간선계에 주로 적용	손실 및 분산 특성이 우수하여 광대역 및 장거리 전송 가능	
사용 파장	890nm/1300nm	1300nm/1500nm	
장점	근거리 전송에 효율적이다.	장거리 전송과 대용량 전송에 적합하다.	
단점	전송 손실이 크다. 거리를 확장하기 힘들다.	가격이 비싸다.	

6. wifi 의 주파수대역을 밝히고 이대역의 전파 특성을 설명하라.

구분	802.11	802.11b	802.11a	802.11g	802.11n	802.11ac
최대 속도	2 Mbps	11 Mbps	54 Mbps	54 Mbps	600 Mbps	2.6 Gbps
전송 방식	DSSS/FHSS	HR-DSSS	OFDM	DSSS/OFDM	OFDM	OFDM
변조 방식	1-	DSSS/CCK	64 QAM	64 QAM	64 QAM	256 QAM
공간 스트림 수	1	1	1	1	4	3 / 4 / 8 (AP)
최대 안테나 수	1x1 SISO	1x1 SISO	1x1 SISO	1x1 SISO	4x4 MIMO	8x8 MIMO
주파수 대역	2.4 GHz	2.4 GHz	5 GHz	2.4 GHz	2.4 / 5 GHz	5 GHz
채널 대역폭	20 MHz	20 MHz	20 MHz	20 MHz	20/40 MHz	20/40/80/160 MHz

wifi의 주파수 대역은 사진과 같이 2.4GHz와 5GHz이다.

전파는 주파수가 낮으면 멀리 진행하고 주파수가 높으면 곧게 진행하는 특성을 가지고 있어서 2.4GHz의 전파 특성은 5GHz에 비해 멀리 진행하지만 5GHz가 더 곧게 진행하므로 속도가 더 빠르다. 학교나 공공시설에서 5GHz가 약한 신호로 잡힐 때 2.4GHz는 더 강한 신호로 잡히는게 가장 대표적인 예시이다.

7. Circuit Switched Network 와 Packet Switched Network 을 비교설명하라

종류	Packet Switched Network	Circuit Switched Network
설명	네트워크 상에서 data를 패킷으로 나누어 저장 한 뒤 전달하는 방법. 패킷은 data를 일정한 크기로 나눠목적지와 발신지의 주소를 헤더에 추가. 라우팅 알고리즘을 통해 경로 설정 후 중간의 라우터들을 통해 최종목적지에 도착한다. 패킷은 전달 전까지 큐에서 저장(대기) 수용할 수 있는 범위를 초과하면 손실이 발생한다.	두 클라이언트가 하나의 링크를 공유해 data를 주고 받음. 링크가 연결되면 출발지-> 목적지까지 두 클라이언트가 회선 전체를 독점. 통신이 끝나기 전까지 접근불가하다. 전화와 같은 실시간 통신에 사용되고 FDM과 TDM 방법이 있다. FDM - 할당된 대역폭을 나누어 사용-> 여러 단말기가 사용 가능 TDM - 할당된 대역폭을 시간단위로 나누어 번갈아가며 사용하는 방식-> 여러 사람이 사용 가능
전달 방법	저장 후 전달	저장 없이 전달
회선 공유	공유됨	독점
대역폭	낭비가 없다	낭비가 있다.
딜레이	높다	낮다
접속 대기	큐에서 다음 패킷을 대기	회선 독점이라 대기 불가능
용도	인터넷	전화
신뢰도	Circuit보다 상대적으로 낮다	신뢰도 매우 높다
장점	1. 회선이 공유되어 짧은 시간동안 packet을 보내므로 효율적이다. 2. 링크 사용을 줄일 수 있어 가격이 저렴하다 3. 저장 후 전달이 되기 때문에 crc,에러 등을 체크 할 수 있다.	1. 링크의 독점으로 패킷 전송방식에 비해 속도가 항상 일정하다. 2. 패킷의 단점인 손실과 딜레이가 없다.
단점	1. 큐에 저장하는 방식이라 queue의 메모리가 부족하면 데이터 손실이 발 생하는 점이다. 2. 패킷이 많아질수록 큐에서 대기하 게 되고 그럼 딜레이도 높아진다.	회선 공유시 Circuit Switched Network는 독점하기 때문에 수많은 링크를 만들어야하는 단점이 있다.링크가 많아지면 가격이 비싸진다.