CONCEITOS DE SOLUÇÃO ESTRUTURADA

Solução estruturada

O computador não tem discernimento para julgar culturalmente se algo é certo ou errado. No entanto, ele pode ser instruído para tomar decisões lógicas, baseadas em critérios objetivos, e seguir instruções ordenadas. A isso, chamamos **solução estruturada**.

Comentário

Embora possa parecer mais complexo dar instruções de forma estruturada a um computador, é só uma questão de prática para que você desenvolva esta habilidade. Além disso, existem diversas vantagens em instruir computadores a executar tarefas: eles não se cansam, não precisam parar para beber água, executam cálculos matemáticos muito mais rápido que seres humanos etc.

Propor uma solução estruturada para um problema consiste em elaborar uma sequência de passos a serem dados, de forma que, ao seguir esta sequência, exista uma resposta coerente para esse problema.

Já que os computadores podem seguir instruções adequadamente programadas para realizar certas tarefas, podemos concluir que eles têm comportamento previsível. Este fato nos permite prever o que determinado programa fará ao ser executado, caso tenhamos acesso ao conjunto de instruções que o gerou.

Pensamento computacional

Aplicar o pensamento computacional é o primeiro passo para conseguir instruir o computador a executar determinada tarefa. O pensamento computacional vai permitir que você proponha a solução de determinado problema de forma que o computador possa executá-la.

De acordo com Grover e Pea (2013), o pensamento computacional tem nove elementos que o levam a atender alunos interdisciplinarmente, além de avaliar seu desempenho. São eles:

- 1. Abstração e reconhecimento de padrões;
- 2. Processamento sistemático da informação;
- Noções de controle de fluxo em algoritmos;
- 4. Decomposição de problemas estruturados:
- 5. Sistema de símbolos e representações;
- 6. Pensamento iterativo, recursivo e paralelo:

- 7. Lógica condicional;
- 8. Eficiência e restrições de desempenho;
- 9. Depuração e detecção de erro sistemático.

De acordo com Brackmann (2017), o pensamento computacional tem quatro pilares para a resolução de problemas. São eles:

Decomposição

A decomposição consiste em dividir o problema inicial em partes menores, permitindo que cada parte menor seja mais facilmente resolvida. De maneira geral, problemas que não estão decompostos têm sua resolução mais difícil de enxergar e desenvolver.

Reconhecimento de padrões

Ao decompor o problema em partes menores, é possível aumentar a atenção aos detalhes e perceber que algumas destas partes menores já são conhecidas ou têm sua solução conhecida. O reconhecimento de padrões se caracteriza por identificar repetições ou regras de recorrência, aumentando a chance de se conhecer alguma solução para problemas similares.

Abstrações

A abstração consiste na filtragem e classificação dos dados, concentrando a atenção no que realmente é importante (BRACKMANN, 2017). Ela pode ser vista como o principal dos pilares, porque será utilizada em diversos momentos. Ao concentrar-se nos dados realmente importantes, a abstração permite que decisões sejam tomadas com maior qualidade.

Algoritmos

Os algoritmos são procedimentos para resolver um problema com as ações a serem executadas e a ordem em que elas devem acontecer. Na vida acadêmica, aprendemos diversos algoritmos no ensino fundamental e no ensino médio, como algoritmos para executar as operações básicas (soma, subtração, multiplicação e divisão).

Raciocínio lógico

Ao longo da vida acadêmica de um aluno, ao passar pelo ensino fundamental e ensino médio, é comum que ele se veja tentando reconhecer padrões em boa parte do tempo. Aprende-se a resolução de exercícios de Ciências Exatas, por exemplo, a partir da repetição de alguns passos a problemas similares. Isto é, ao se deparar com um problema de determinado tipo, o aluno reconhece que este obstáculo, para o qual ele já tem uma solução, encaixa-se em determinado **padrão**. Observe a sequência a seguir:

O próximo termo é (12), já que essa sequência tem como regra listar os números pares. Vamos agora treinar um pouco mais as suas habilidades para o reconhecimento de padrões e estimular seu raciocínio matemático. Vejamos:

Exemplo

Na sequência de números ímpares: 1, 3, 5, 7, 9, O próximo numero seria: 11.

Na sequência de números: 1, 6, 12, 19, 27,

Repare que a diferença entre dois elementos sempre aumenta uma unidade a cada par. O primeiro par (1 e 6) tem diferença 5. O próximo par (6 e 12) tem diferença 6. Como o par (19 e 27) tem diferença 8, a próxima diferença será 9. Assim, 27 + 9 = 36.