

MEKATRONİK BÖLÜMÜ BİLGİSAYARLI KONTROL SİSTEMLERİ

Ders Kodu:	MKT2002	Taril	:
Sınav Türü:	Genel Sınav	Saa	:
Dönemi:	2024-2025	Süre	: 50dk

Soru:	1	2	3	4	5	Toplam
Puan:	20	20	20	20	20	100
Not:						

-	-				
	T 7	•	r	1	
·	, v	а		1	

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- ullet İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

ullet Yuvarlamalar 2 hane yapılacaktır. $1.99456 pprox 1.99$ olarak alınacaktır.
S1. (20p) Aşımı %16.3 yapacak ζ değerini hesaplayınız.
Co (00) A (710 0 1 1 1 2 1 1 1 1
S2. (20p) Aşımı %16.3 yerleşme zamanını $t_s=2s$ yapacak ω_n değerini hesaplayınız.
S3. (20p) Aşımı %16.3 yerleşme zamanını $t_s=2s$ yapacak ideal polinomu oluşturunuz.

S4. (20p) Açık çevrim transfer fonksiyonu

$$G(s) = \frac{1}{s + 0.2} \tag{1}$$

ve PI kontrolör

$$F(s) = k_p + \frac{k_i}{s} \tag{2}$$

olmak üzere, birim geri besleme bağlantısı için oluşacak kapalı çevrim transfer fonksiyonunu elde ediniz.

S5. (20p) PI kontrolörü isterleri sağlayacak şekilde tasarlayınız. $k_p =?,\ k_i =?$

