

(11)Publication number:

2002-287891

(43) Date of publication of application: 04.10.2002

(51)Int.CI.

G06F 3/033

G01L 5/16

(21)Application number : 2001-318509

(71)Applicant: NAGANO FUJITSU COMPONENT KK

(22)Date of filing:

16.10.2001

(72)Inventor: NISHINO TAKESHI

NAKAMURA SHUJI KIRYU KOICHI

KOBAYASHI KAZUO

(30)Priority

Priority number : 2001012082

Priority date: 19.01.2001

Priority country: JP

(54) POINTING DEVICE, PORTABLE INFORMATION DEVICE, METHOD FOR PROCESSING SIGNAL AND METHOD FOR MANUFACTURING CIRCUIT BOARD

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce outside dimension of a magnetoelectric converting element type pointing device to a level realizable to be loaded on a portable information device without damaging operativity of an operating section.

SOLUTION: This pointing device 10 comprises a base 12, the operating section 14 supported on the base 12 movably in an optional horizontal direction for the base 12, a magnet 16 to be mounted on the section 14, and a magnetoelectric converting element 18 to be mounted on the base 12 in the vicinity of the magnet 16. The section 14 comprises a holding section 20 holding the magnet 16 and horizontally movably supported on the base 12, and an elastic section 22 to generate elastic power to return the section 20 to an original position of the horizontally moving range involved with the horizontal move of the section 20 on the base 12. The section 22 integrally comprises a main section 50 surrounding the section 20 essentially for the whole circumference, a first connecting section 52 to be connected with the section 20 at one end of the section 50, and a second connecting section 54 to be connected with the base 12 at the other end of the section 50.

LEGAL STATUS

[Date of request for examination]

26.12.2003

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-287891 (P2002-287891A)

(43)公開日 平成14年10月4日(2002.10.4)

(51) Int CL'

酸別配号

FΙ G06F テーマコート*(参考)

G06F 3/033 G01L 5/16

310

3/033

310Y 2F051

G01L 5/16 5B087

審査請求 未請求 請求項の数36 OL (全 46 頁)

(21)出剧番号

特題2001-318509(P2001-318509)

(22)出願日

平成13年10月16日(2001.10,16)

(31)優先権主張番号

特願2001-12082(P2001-12082)

(32) 優先日

平成13年1月19日(2001.1.19)

(33)優先権主張国

日本 (JP)

(71) 出願人 595100679

長野宮士通コンポーネント株式会社

長野県須坂市大字須坂1174番地

(72)発明者 西野 武志

東京都品川区東五反田2丁目3番5号 富

士通コンポーネント株式会社内

(72)発明者 中村 修二

東京都品川区東五反田2丁目3番5号 富

士通コンポーネント株式会社内

(74)代理人 100077517

弁理士 石田 敬 (外3名)

最終頁に続く

(54) 【発明の名称】 ポインティングデパイス、携帯型情報機器、信号処理方法及び回路基板製造方法

(57)【要約】

【課題】 磁電変換案子型ポインティングデバイスの外 形寸法を、操作部の操作性を損なうことなく、携帯型情 報機器への搭載が実現可能な水準まで削減する。

【解決手段】 ポインティングデバイス10は、基部1 2と、基部12に対して任意の水平方向へ移動可能に基 部12上に支持される操作部14と、操作部14に設置 される磁石16と、磁石16の近傍で基部12に設置さ れる磁電変換素子18とを備える。操作部14は、磁石 16を保持して基部12上に水平移動可能に支持される 保持部20と、基部12上での保持部20の水平移動に 伴い、保持部20を水平移動範囲の原点位置に復帰させ る弾性力を発揮する弾性部22とを備える。弾性部22 は、保持部20を実質的全周に渡って囲繞する主部分5 0と、主部分50の一端で保持部20に連結される第1 連結部分52と、主部分50の他端で基部12に連結さ れる第2連結部分54とを一体に有する。

【特許請求の範囲】

Ù.

【請求項1】 基部と、該基部に対して任意の水平方向へ変位可能に該基部上に支持される操作部と、該基部及び該操作部の一方に設置される磁石と、該磁石の近傍で該基部及び該操作部の他方に設置される磁電変換案子とを具備するポインティングデバイスにおいて、

前記操作部は、前記磁石及び前記磁電変換素子の一方を 固定的に保持して前記基部上に前記水平方向へ移動可能 に支持される保持部と、該保持部に連結され、該基部上 での該保持部の水平移動に伴い、該保持部を水平移動範 囲の原点位置に復帰させる弾性力を発揮する弾性部とを 具備することを特徴とするポインティングデバイス。

【請求項2】 前記弾性部は、前記保持部を実質的全周に渡って囲繞する主部分と、該主部分の一端で該保持部に連結される第1連結部分と、該主部分の他端で前記基部に連結される第2連結部分とを一体に有し、該主部分が、該基部上での該保持部の移動方向に関わらず一様な前記弾性力を発揮する請求項1に記載のポインティングデバイス。

【請求項3】 前記基部は、前記弾性部の前記第2連結部分を包囲するカバー部材を備え、該カバー部材が、該弾性部の前記主部分及び前記第1連結部分を水平移動可能に挿通させる中心開口を有する請求項2に記載のボインティングデバイス。

【請求項4】 前記基部は、前記磁電変換案子に電気的に接続される回路基板と、該回路基板に連結される支持部材とを備え、該支持部材が、該回路基板の表面から突出した位置に、前記保持部を前記水平方向へ摺動自在に支持する略平坦な支持面を有する請求項1~3のいずれか1項に記載のポインティングデバイス。

【請求項5】 前記支持部材は、前記回路基板の前記表面からの高さが前記支持面よりも高い位置まで突設されて該支持面を囲繞する方向に延びる壁を有し、前記弾性部が、その一部分で該壁に当接されて該支持部材に取り付けられる請求項4に記載のポインティングデバイス。

【請求項6】 前記支持部材は、前記回路基板の前記表面からの高さが前記支持面よりも低い位置まで凹設されて該支持面を囲繞する方向に延びる溝を有し、前記弾性部が、その一部分で該溝に挿入されて該支持部材に取り付けられる請求項4に記載のポインティングデバイス。

【請求項7】 前記支持部材が、前記回路基板から離隔 した位置に、前記支持面を有する支持部分を備える請求 項4~6のいずれか1項に記載のポインティングデバイス。

【請求項8】 前記回路基板と前記支持部材の前記支持部分との間に形成される空所の内部で該回路基板に実装され、前記保持部を該支持部分に押し付けることにより作動するスイッチ機構をさらに具備する請求項7に記載のポインティングデバイス。

【請求項9】 前記支持部材は、互いに協働して前記支

持部分を構成する複数の弾性梁部分を有し、前記保持部を該支持部分に押し付けることによりそれら弾性梁部分が弾性的に撓んで、少なくとも1つの該弾性梁部分が前記スイッチ機構を作動させる請求項8に記載のボインティングデバイス。

【請求項10】 前記回路基板と前記支持部材との間に 介在する別体の弾性部材をさらに具備し、前記保持部を 前記支持部分に押し付けることにより該弾性部材が弾性 的に撓んで、該支持部分が前記スイッチ機構を作動させ る請求項8に記載のポインティングデバイス。

【請求項11】 前記回路基板と前記支持部材の前記支持部分との間に形成される空所の内部で、前記磁石及び前記磁電変換衆子の一方が該回路基板に実装される請求項7~10のいずれか1項に記載のポインティングデバイス。

【請求項12】 前記支持部材を設置する側の反対側で、前記磁石及び前記磁電変換素子の一方が前記回路基板に実装される請求項4~10のいずれか1項に記載のポインティングデバイス。

【請求項13】 前記基部は、前記磁電変換素子に電気的に接続される回路基板を備え、該回路基板の表面に、前記保持部を前記水平方向へ摺動自在に支持する略平坦な支持面が形成される請求項1~3のいずれか1項に記載のポインティングデバイス。

【請求項14】 前記支持面の反対側で、前記磁石及び前記磁電変換素子の一方が前記回路基板に実装される請求項13に記載のポインティングデバイス。

【請求項15】 前記弾性部が、その一部分で前記回路 基板に直接に取り付けられる請求項13又は14に記載 のポインティングデバイス。

【請求項16】 前記保持部と前記弾性部とが別部材から形成されて互いに組み合わされる請求項1~15のいずれか1項に記載のポインティングデバイス。

【請求項17】 前記保持部と前記弾性部とが異種材料から一体的に成形される請求項1~15のいずれか1項に記載のポインティングデバイス。

【請求項18】 前記弾性部が、前記保持部を被覆する 部分を有し、該部分に、前記操作部を移動操作するため の操作面が形成される請求項16又は17に記載のポイ ンティングデバイス。

【請求項19】 前記弾性部から独立して前記保持部に 装着されるキートップをさらに備え、該キートップに、 前記操作部を移動操作するための操作面が形成される請 求項16又は17に記載のポインティングデバイス。

【請求項20】 前記保持部と前記弾性部とが同一材料から一体成形される請求項1~15のいずれか1項に記載のボインティングデバイス。

【請求項21】 前記基部と前記操作部との間に配置され、前記弾性部と協働して前記保持部を前記原点位置に復帰させる補助弾性部をさらに具備する請求項1~20

のいずれか1項に記載のポインティングデバイス。

【請求項22】 前記基部と前記操作部との間に配置されるスイッチ機構をさらに具備し、該操作部は、前記保持部から独立して、前記基部上に前記水平方向に略直交する鉛直方向へ移動可能に配置される作動部を備え、該作動部を該スイッチ機構に押し付けることにより該スイッチ機構が作動する請求項1~7及び13~21のいずれか1項に記載のボインティングデバイス。

【請求項23】 前記作動部が前記弾性部から分離されて、前記スイッチ機構に支持される請求項22に記載のポインティングデバイス。

【請求項24】 前記作動部が前記弾性部に一体的に連結される請求項22に記載のポインティングデバイス。

【請求項25】 前記基部は、前記作動部を前記スイッチ機構の直上で前記鉛直方向に案内する案内部分を有する請求項22~24のいずれか1項に記載のポインティングデバイス。

【請求項26】 前記作動部が、前記弾性部から分離したキートップを備え、該キートップに、該作動部を前記鉛直方向へ押下操作するための押下操作面が形成される請求項22~25のいずれか1項に記載のポインティングデバイス。

【請求項27】 前記基部は、前記スイッチ機構を担持する回路基板を備え、前記磁石及び前記磁電変換素子の一方が、該スイッチ機構を担持する側の反対側で該回路基板に実装される請求項22~26のいずれか1項に記載のポインティングデバイス。

【請求項28】 前記基部は、前記磁電変換素子に電気的に接続される回路基板と、該回路基板を他の実装基板に接続するコネクタとを具備し、該コネクタは、絶縁部材と該絶縁部材に整列支持される複数の端子とを備え、それら端子が、該回路基板の外縁近傍領域に形成された複数のスルーホールに個別に固定される請求項1~27のいずれか1項に記載のポインティングデバイス。

【請求項29】 前記複数のスルーホールの各々の開口 緑に隣接して前記回路基板の表面にランドが形成され、 該ランドが、該開口縁と該回路基板の外縁との間の部分 でそれ以外の部分よりも狭い幅を有する請求項28に記 載のポインティングデバイス。

【請求項30】 基部と、該基部に対して任意の方向へ 変位可能に該基部上に支持される操作部と、該基部及び 該操作部の一方に設置される磁石と、該磁石の近傍で該 基部及び該操作部の他方に設置される磁電変換索子とを 具備するポインティングデバイスにおいて、

前記基部は、前記磁電変換案子に接続される回路基板と、該回路基板を他の実装基板に接続するコネクタとを 具備し、該コネクタは、絶縁部材と該絶縁部材に整列支持される複数の端子とを備え、それら端子が、該回路基板の外縁近傍領域に形成された複数のスルーホールに個別に固定されることを特徴とするポインティングデバイ ス.

【請求項31】 前記複数のスルーホールの各々の開口 緑に隣接して前記回路基板の表面にランドが形成され、 該ランドが、該開口縁と該回路基板の外縁との間の部分 でそれ以外の部分よりも狭い幅を有する請求項30に記 載のポインティングデバイス。

【請求項32】 請求項1~31のいずれか1項に記載のボインティングデバイスを搭載した携帯型情報機器であって、前記基部及び前記操作部の少なくとも一部分が、携帯型情報機器の構成部品に一体化されていることを特徴とする携帯型情報機器。

【請求項33】 基部と、該基部に対して任意の方向へ変位可能に配置され操作部と、該基部と該操作部との間の相対変位を検出してアナログ信号を発生する信号発生部と、該相対変位とは異なる方向への該基部と該操作部との相対移動により作動するスイッチ機構と、前記信号発生部及び前記スイッチ機構から受け取った信号をデータ化する処理部とを具備するポインティングデバイスの、出力信号処理方法において、

前記スイッチ機構が作動状態にある間は、前記相対変位 の有無に関わらず、前記信号発生部が発生するアナログ 信号を前記処理部がデータ化しないようにすることを特 徴とする出力信号処理方法。

【請求項34】 前記スイッチ機構が作動状態から非作動状態に移行した後に、所定時間の間は、前記相対変位の有無に関わらず前記信号発生部が発生するアナログ信号を前記処理部がデータ化しないようにする請求項33に記載の出力信号処理方法。

【請求項35】 外縁に沿って取り付けたコネクタを有する回路基板の製造方法であって、

電子部品を実装するための実装領域と該実装領域に隣接する捨て領域とを有する回路基板を用意し、

絶縁部材と該絶縁部材に整列支持される複数の端子とを 有するコネクタを用意し、

前記回路基板の前記実装領域に、各々のランドが該実装 領域から前記捨て領域まで連続して広がるようにして、 複数のランド付きスルーホールを形成し、

前記コネクタの前記複数の端子を、前記回路基板の前記 複数のランド付きスルーホールに個別に挿入して、前記 ランドにはんだ付けし、

前記コネクタを前記回路基板の前記実装領域に取り付け たままの状態で、該実装領域と前記捨て領域との境界線 に沿って、該捨て領域を該実装領域から分離すること、 を特徴とする方法。

【請求項36】 請求項35に記載の方法によって作製 されるコネクタ付き回路基板を備えたポインティングデ バイス。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、データ処理装置に

組み込まれるポインティングデバイスに関する。さらに本発明は、ポインティングデバイスを搭載した携帯型情報機器に関する。さらに本発明は、ポインティングデバイスの出力信号処理方法に関する。さらに本発明は、ポインティングデバイス等の電子機器に装備されるコネクタ付き回路基板の製造方法に関する。

[0002]

【従来の技術】パーソナルコンピュータやワードプロセッサ等の、ディスプレイ及びキーボードを備えたデジタルデータ処理装置において、オペレータが手操作してアナログ的な情報を入力することにより、ディスプレイ上のカーソル移動データ等の座標データを指示する補助入力装置としてのボインティングデバイスを備えたものは周知である。特に、携帯可能な小型データ処理装置では、処理装置の筐体にボインティングデバイスを一体的に組み込んだ構成が一般的である。

【0003】この種のポインティングデバイスとして、基部と、基部上に移動自在に支持される操作部と、基部に設置される磁電変換索子と、磁電変換索子に近接して操作部に設置される磁石とを具備するものが知られている。このポインティングデバイスでは、オペレータが操作部を基部上で任意の曲面方向へ移動操作することにより、磁石と磁電変換索子との相対的位置関係を変化させて磁電変換索子の出力電圧を変動させ、以って操作部の移動方向及び移動距離に対応したアナログ情報を入力することができる。

【0004】また、上記構成に加えて、基部と操作部との間にスイッチ機構を装備し、オペレータが操作部を基部に向けて押し込むことによりスイッチ機構を作動させるようにしたポインティングデバイスも知られている(例えば特公平7-117875号公報参照)。このポインティングデバイスでは、アナログ情報の入力に加えて、操作部を押下操作することにより、例えば搭載対象機器のディスプレイ上のポインタに関連してクリック操作を実施することができる。

[0005]

【発明が解決しようとする課題】一般に、磁電変換素子型のボインティングデバイスは、座標データ入力に必要な操作部の移動量が少なく、かつ消費電力が比較的低いことから、電子手帳、携帯情報端末(PDA)、携帯電話等の、手持操作可能な種々の携帯型情報機器に、とりわけ有利に搭載できると考えられる。しかし、上記した従来の磁電変換素子型のボインティングデバイスにおいては、操作部を基部上で曲面方向へ移動させる構成を採用しているので、基部と操作部との相互係合部位に所要の曲率及び面積を有する曲面を形成する必要があり、結果としてボインティングデバイスの外形寸法を、携帯型情報機器への搭載を実現可能とする程度に削減することが困難になっていた。

【0006】例えば、ディスプレイ部とキーボード部と

が互いに螺番連結された折り畳み可能な携帯型情報機器においては、キーボード部に設置したスイッチ類のキーボード部表面からの突出を極力排除することが、折り畳み時の機器の厚みを削減して携帯性を一層向上させる観点で望ましい。したがって、磁電変換素子型のボインティングデバイスをこのような携帯型情報機器のキーボード部に搭載する場合は、ボインティングデバイスの特に高さ方向の寸法を可及的に低減することが要求される。【0007】また、携帯型情報機器にボインティングデバイスを搭載する場合には、機器筐体の狭小な内部空間で、ボインティングデバイスと情報機器の主回路基板(実装基板)との電気的及び機械的接続を、確実かつ安定的に実現することが要求される。さらに、携帯型情報機器に磁電変換素子型のボインティングデバイスを搭載する場合、小型化されたボインティングデバイスの各種

作業性が悪化することが懸念される。 【0008】さらに、クリック機能を有する磁電変換索子型のポインティングデバイスでは、操作部の押下操作に伴って、磁石と磁電変換素子との間に必然的に相対移動が生じる。このとき、両者の相対移動方向によっては、クリック操作の直前に、磁電変換素子の出力電圧の変動により、カーソル移動データ等のアナログデータの信号がポインティングデバイスから出力されてしまう懸念がある。そこで、適正なクリック操作を実施するためには、操作部を基部に対して正確に鉛直方向へ押し込むことが必要となり、そのための案内構造を追加装備するか、さもなければオペレータの熟練が要求されることに

構成部品の取り扱いが煩雑になり、情報機器全体の組立

【0009】したがって本発明の目的は、磁電変換素子型のポインティングデバイスにおいて、操作部の操作性を損なうことなく、携帯型情報機器への搭載が実現可能な水準まで外形寸法を削減できるポインティングデバイスを提供することにある。本発明の他の目的は、磁電変換素子型のポインティングデバイスにおいて、搭載対象機器の実装基板への電気的及び機械的接続を狭小な空間で確実かつ安定的に実現できるポインティングデバイスを提供することにある。

なる。

【0010】本発明のさらに他の目的は、ボインティングデバイス等の電子部品を実装基板に対し狭小な空間で確実かつ安定的に接続するためのコネクタ付き回路基板の製造方法を提供することにある。本発明のさらに他の目的は、磁電変換素子型のボインティングデバイスを搭載した携帯型情報機器において、組立作業性を向上させる構造を有する携帯型情報機器を提供することにある。【0011】本発明のさらに他の目的は、クリック機能を有する磁電変換素子型のボインティングデバイスにおいて、案内構造を追加装備やオペレータの熱練を要することなく、適正なクリック操作を容易に実施できるボインティングデバイス、及びその出力信号処理方法を提供

することにある。 【0012】

【課題を解決するための手段】上記目的を達成するために、請求項1に記載の発明は、基部と、該基部に対して任意の水平方向へ変位可能に該基部上に支持される操作部と、該基部及び該操作部の一方に設置される磁石と、該磁石の近傍で該基部及び該操作部の他方に設置される磁電変換案子とを具備するポインティングデバイスにおいて、前記操作部は、前記磁石及び前記磁電変換案子の一方を固定的に保持して前記基部上に前記水平方向へ移動可能に支持される保持部と、該保持部に連結され、該基部上での該保持部の水平移動に伴い、該保持部を水平移動範囲の原点位置に復帰させる弾性力を発揮する弾性部とを具備することを特徴とするポインティングデバイスを提供する。

【0013】 請求項2に記載の発明は、請求項1に記載のポインティングデバイスにおいて、前記弾性部は、前記保持部を実質的全周に渡って囲続する主部分と、該主部分の一端で該保持部に連結される第1連結部分と、該主部分の他端で前記基部に連結される第2連結部分とを一体に有し、該主部分が、該基部上での該保持部の移動方向に関わらず一様な前記弾性力を発揮するボインティングデバイスを提供する。

【0014】請求項3に記載の発明は、請求項2に記載のポインティングデバイスにおいて、前記基部は、前記 弾性部の前記第2連結部分を包囲するカバー部材を備え、該カバー部材が、該弾性部の前記主部分及び前記第1連結部分を水平移動可能に挿通させる中心開口を有するポインティングデバイスを提供する。

【0015】請求項4に記載の発明は、請求項1~3のいずれか1項に記載のポインティングデバイスにおいて、前記基部は、前記磁電変換索子に電気的に接続される回路基板と、該回路基板に連結される支持部材とを備え、該支持部材が、該回路基板の表面から突出した位置に、前記保持部を前記水平方向へ摺動自在に支持する略平坦な支持面を有するポインティングデバイスを提供する

【0016】請求項5に記載の発明は、請求項4に記載のポインティングデバイスにおいて、前記支持部材は、前記回路基板の前記表面からの高さが前記支持面よりも高い位置まで突設されて該支持面を囲続する方向に延びる壁を有し、前記弾性部が、その一部分で該壁に当接されて該支持部材に取り付けられるポインティングデバイスを提供する。

【0017】 請求項6に記載の発明は、請求項4に記載のポインティングデバイスにおいて、前記支持部材は、前記回路基板の前記表面からの高さが前記支持面よりも低い位置まで凹設されて該支持面を囲榜する方向に延びる溝を有し、前記弾性部が、その一部分で該溝に挿入されて該支持部材に取り付けられるポインティングデバイ

スを提供する。

【0018】請求項7に記載の発明は、請求項4~6のいずれか1項に記載のボインティングデバイスにおいて、前記支持部材が、前記回路基板から離隔した位置に、前記支持面を有する支持部分を備えるボインティングデバイスを提供する。

【0019】請求項8に記載の発明は、請求項7に記載のポインティングデバイスにおいて、前記回路基板と前記支持部材の前記支持部分との間に形成される空所の内部で該回路基板に実装され、前記保持部を該支持部分に押し付けることにより作動するスイッチ機構をさらに具備するポインティングデバイスを提供する。

【0020】請求項9に記載の発明は、請求項8に記載のポインティングデバイスにおいて、前記支持部材は、互いに協働して前記支持部分を構成する複数の弾性梁部分を有し、前記保持部を該支持部分に押し付けることによりそれら弾性梁部分が弾性的に撓んで、少なくとも1つの該弾性梁部分が前記スイッチ機構を作動させるボインティングデバイスを提供する。

【0021】請求項10に記載の発明は、請求項8に記載のポインティングデバイスにおいて、前記回路基板と前記支持部材との間に介在する別体の弾性部材をさらに具備し、前記保持部を前記支持部分に押し付けることにより該弾性部材が弾性的に撓んで、該支持部分が前記スイッチ機構を作動させるポインティングデバイスを提供する。

【0022】請求項11に記載の発明は、請求項7~1 0のいずれか1項に記載のボインティングデバイスにおいて、前記回路基板と前記支持部材の前記支持部分との間に形成される空所の内部で、前記磁石及び前記磁電変換案子の一方が該回路基板に実装されるボインティングデバイスを提供する。

【0023】請求項12に記載の発明は、請求項4~1 0のいずれか1項に記載のポインティングデバイスにおいて、前記支持部材を設置する側の反対側で、前記磁石 及び前記磁電変換索子の一方が前記回路基板に実装され るポインティングデバイスを提供する。

【0024】請求項13に記載の発明は、請求項1~3 のいずれか1項に記載のポインティングデバイスにおい て、前記基部は、前記磁電変換素子に電気的に接続され る回路基板を備え、該回路基板の表面に、前記保持部を 前記水平方向へ摺動自在に支持する略平坦な支持面が形 成されるポインティングデバイスを提供する。

【0025】請求項14に記載の発明は、請求項13に 記載のポインティングデバイスにおいて、前記支持面の 反対側で、前記磁石及び前記磁電変換素子の一方が前記 回路基板に実装されるポインティングデバイスを提供する。

【0026】請求項15に記載の発明は、請求項13又は14に記載のポインティングデバイスにおいて、前記

弾性部が、その一部分で前記回路基板に直接に取り付けられるポインティングデバイスを提供する。

【0027】請求項16に記載の発明は、請求項1~15のいずれか1項に記載のポインティングデバイスにおいて、前記保持部と前記弾性部とが別部材から形成されて互いに組み合わされるポインティングデバイスを提供する。

【0028】請求項17に記載の発明は、請求項1~15のいずれか1項に記載のポインティングデバイスにおいて、前記保持部と前記弾性部とが異種材料から一体的に成形されるポインティングデバイスを提供する。

【0029】請求項18に記載の発明は、請求項16又は17に記載のポインティングデバイスにおいて、前記 弾性部が、前記保持部を被覆する部分を有し、該部分に、前記操作部を移動操作するための操作面が形成されるポインティングデバイスを提供する。

【0030】請求項19に記載の発明は、請求項16又は17に記載のポインティングデバイスにおいて、前記 弾性部から独立して前記保持部に装着されるキートップ をさらに備え、該キートップに、前記操作部を移動操作するための操作面が形成されるポインティングデバイスを提供する。

【0031】請求項20に記載の発明は、請求項1~1 5のいずれか1項に記載のポインティングデバイスにおいて、前記保持部と前記弾性部とが同一材料から一体成形されるポインティングデバイスを提供する。

【0032】請求項21に記載の発明は、請求項1~2 0のいずれか1項に記載のボインティングデバイスにおいて、前記基部と前記操作部との間に配置され、前記弾 性部と協働して前記保持部を前記原点位置に復帰させる 補助弾性部をさらに具備するボインティングデバイスを 提供する。

【0033】請求項22に記載の発明は、請求項1~7及び13~21のいずれか1項に記載のポインティングデバイスにおいて、前記基部と前記操作部との間に配置されるスイッチ機構をさらに具備し、該操作部は、前記保持部から独立して、前記基部上に前記水平方向に略直交する鉛直方向へ移動可能に配置される作動部を備え、該作動部を該スイッチ機構に押し付けることにより該スイッチ機構が作動するポインティングデバイスを提供する。

【0034】請求項23に記載の発明は、請求項22に 記載のポインティングデバイスにおいて、前記作動部が 前記弾性部から分離されて、前記スイッチ機構に支持さ れるポインティングデバイスを提供する。

【0035】 請求項24に記載の発明は、請求項22に 記載のポインティングデバイスにおいて、前記作動部が 前記弾性部に一体的に連結されるポインティングデバイ スを提供する。

【0036】請求項25に記載の発明は、請求項22~

24のいずれか1項に記載のポインティングデバイスにおいて、前記基部は、前記作動部を前記スイッチ機構の直上で前記鉛直方向に案内する案内部分を有するポインティングデバイスを提供する。

【0037】請求項26に記載の発明は、請求項22~25のいずれか1項に記載のポインティングデバイスにおいて、前記作動部が、前記弾性部から分離したキートップを備え、該キートップに、該作動部を前記鉛直方向へ押下操作するための押下操作面が形成されるポインティングデバイスを提供する。

【0038】 請求項27に記載の発明は、請求項22~26のいずれか1項に記載のポインティングデバイスにおいて、前記基部は、前記スイッチ機構を担持する回路基板を備え、前記磁石及び前記磁電変換案子の一方が、該スイッチ機構を担持する側の反対側で該回路基板に実装されるポインティングデバイスを提供する。

【0039】請求項28に記載の発明は、請求項1~27のいずれか1項に記載のポインティングデバイスにおいて、前記基部は、前記磁電変換案子に電気的に接続される回路基板と、該回路基板を他の実装基板に接続するコネクタとを具備し、該コネクタは、絶縁部材と該絶縁部材に整列支持される複数の端子とを備え、それら端子が、該回路基板の外縁近傍領域に形成された複数のスルーホールに個別に固定されるポインティングデバイスを提供する。

【0040】請求項29に記載の発明は、請求項28に記載のポインティングデバイスにおいて、前記複数のスルーホールの各々の開口縁に隣接して前記回路基板の表面にランドが形成され、該ランドが、該開口縁と該回路基板の外縁との間の部分でそれ以外の部分よりも狭い幅を有するポインティングデバイスを提供する。

【0041】請求項30に記載の発明は、基部と、該基部に対して任意の方向へ変位可能に該基部上に支持される操作部と、該基部及び該操作部の一方に設置される磁石と、該磁石の近傍で該基部及び該操作部の他方に設置される磁電変換索子とを具備するポインティングデバイスにおいて、前記基部は、前記磁電変換索子に接続される回路基板と、該回路基板を他の実装基板に接続するコネクタとを具備し、該コネクタは、絶縁部材と該絶縁部材に整列支持される複数の端子とを備え、それら端子が、該回路基板の外縁近傍領域に形成された複数のスルーホールに個別に固定されることを特徴とするポインティングデバイスを提供する。

【0042】 請求項31に記載の発明は、請求項30に記載のボインティングデバイスにおいて、前記複数のスルーホールの各々の開口縁に隣接して前記回路基板の表面にランドが形成され、該ランドが、該開口縁と該回路基板の外縁との間の部分でそれ以外の部分よりも狭い幅を有するポインティングデバイスを提供する。

【0043】請求項32に記載の発明は、請求項1~3

弾性部が、その一部分で前記回路基板に直接に取り付け られるポインティングデバイスを提供する。

【0027】請求項16に記載の発明は、請求項1~15のいずれか1項に記載のポインティングデバイスにおいて、前記保持部と前記弾性部とが別部材から形成されて互いに組み合わされるポインティングデバイスを提供する

【0028】請求項17に記載の発明は、請求項1~15のいずれか1項に記載のポインティングデバイスにおいて、前記保持部と前記弾性部とが異種材料から一体的に成形されるポインティングデバイスを提供する。

【0029】請求項18に記載の発明は、請求項16又は17に記載のポインティングデバイスにおいて、前記 弾性部が、前記保持部を被覆する部分を有し、該部分 に、前記操作部を移動操作するための操作面が形成されるポインティングデバイスを提供する。

【0030】請求項19に記載の発明は、請求項16又は17に記載のポインティングデバイスにおいて、前記 弾性部から独立して前記保持部に装着されるキートップ をさらに備え、該キートップに、前記操作部を移動操作 するための操作面が形成されるポインティングデバイスを提供する。

【0031】請求項20に記載の発明は、請求項1~15のいずれか1項に記載のポインティングデバイスにおいて、前記保持部と前記弾性部とが同一材料から一体成形されるポインティングデバイスを提供する。

【0032】請求項21に記載の発明は、請求項1~2 0のいずれか1項に記載のボインティングデバイスにおいて、前記基部と前記操作部との間に配置され、前記弾 性部と協働して前記保持部を前記原点位置に復帰させる 補助弾性部をさらに具備するボインティングデバイスを 提供する。

【0033】請求項22に記載の発明は、請求項1~7及び13~21のいずれか1項に記載のポインティングデバイスにおいて、前記基部と前記操作部との間に配置されるスイッチ機構をさらに具備し、該操作部は、前記保持部から独立して、前記基部上に前記水平方向に略直交する鉛直方向へ移動可能に配置される作動部を備え、該作動部を該スイッチ機構に押し付けることにより該スイッチ機構が作動するポインティングデバイスを提供する。

【0034】請求項23に記載の発明は、請求項22に記載のポインティングデバイスにおいて、前記作動部が前記弾性部から分離されて、前記スイッチ機構に支持されるポインティングデバイスを提供する。

【0035】 請求項24に記載の発明は、請求項22に 記載のポインティングデバイスにおいて、前記作動部が 前記弾性部に一体的に連結されるポインティングデバイ スを提供する。

【0036】請求項25に記載の発明は、請求項22~

24のいずれか1項に記載のポインティングデバイスにおいて、前記基部は、前記作動部を前記スイッチ機構の直上で前記鉛直方向に案内する案内部分を有するポインティングデバイスを提供する。

【0037】請求項26に記載の発明は、請求項22~25のいずれか1項に記載のポインティングデバイスにおいて、前記作動部が、前記弾性部から分離したキートップを備え、該キートップに、該作動部を前記鉛直方向へ押下操作するための押下操作面が形成されるポインティングデバイスを提供する。

【0038】請求項27に記載の発明は、請求項22~26のいずれか1項に記載のポインティングデバイスにおいて、前記基部は、前記スイッチ機構を担持する回路基板を備え、前記磁石及び前記磁電変換案子の一方が、該スイッチ機構を担持する側の反対側で該回路基板に実装されるポインティングデバイスを提供する。

【0039】請求項28に記載の発明は、請求項1~27のいずれか1項に記載のボインティングデバイスにおいて、前記基部は、前記磁電変換素子に電気的に接続される回路基板と、該回路基板を他の実装基板に接続するコネクタとを具備し、該コネクタは、絶縁部材と該絶縁部材に整列支持される複数の端子とを備え、それら端子が、該回路基板の外縁近傍領域に形成された複数のスルーホールに個別に固定されるボインティングデバイスを提供する。

【0040】請求項29に記載の発明は、請求項28に記載のボインティングデバイスにおいて、前記複数のスルーホールの各々の開口縁に隣接して前記回路基板の表面にランドが形成され、該ランドが、該開口縁と該回路基板の外縁との間の部分でそれ以外の部分よりも狭い幅を有するボインティングデバイスを提供する。

【0041】請求項30に記載の発明は、基部と、該基部に対して任意の方向へ変位可能に該基部上に支持される操作部と、該基部及び該操作部の一方に設置される磁石と、該磁石の近傍で該基部及び該操作部の他方に設置される磁電変換素子とを具備するポインティングデバイスにおいて、前記基部は、前記磁電変換素子に接続するコネクタとを具備し、該コネクタは、絶縁部材と該絶縁部材に整列支持される複数の端子とを備え、それら端子が、該回路基板の外縁近傍領域に形成された複数のスルーホールに個別に固定されることを特徴とするポインティングデバイスを提供する。

【0042】請求項31に記載の発明は、請求項30に記載のボインティングデバイスにおいて、前記複数のスルーホールの各々の開口縁に隣接して前記回路基板の表面にランドが形成され、該ランドが、該開口縁と該回路基板の外縁との間の部分でそれ以外の部分よりも狭い幅を有するボインティングデバイスを提供する。

【0043】請求項32に記載の発明は、請求項1~3

1のいずれか1項に記載のポインティングデバイスを搭載した携帯型情報機器であって、前記基部及び前記操作部の少なくとも一部分が、携帯型情報機器の構成部品に一体化されていることを特徴とする携帯型情報機器を提供する。

【0044】請求項33に記載の発明は、基部と、該基部に対して任意の方向へ変位可能に配置され操作部と、該基部と該操作部との間の相対変位を検出してアナログ信号を発生する信号発生部と、該相対変位とは異なる方向への該基部と該操作部との相対移動により作動するスイッチ機構と、前記信号発生部及び前記スイッチ機構から受け取った信号をデータ化する処理部とを具備するポインティングデバイスの、出力信号処理方法において、前記スイッチ機構が作動状態にある間は、前記相対変位の有無に関わらず、前記信号発生部が発生するアナログ信号を前記処理部がデータ化しないようにすることを特徴とする出力信号処理方法を提供する。

【0045】請求項34に記載の発明は、請求項33に記載の出力信号処理方法において、前記スイッチ機構が作動状態から非作動状態に移行した後に、所定時間の間は、前記相対変位の有無に関わらず前記信号発生部が発生するアナログ信号を前記処理部がデータ化しないようにする出力信号処理方法を提供する。

【0046】請求項35に記載の発明は、外縁に沿って取り付けたコネクタを有する回路基板の製造方法であって、電子部品を実装するための実装領域と該実装領域に隣接する捨て領域とを有する回路基板を用意し、絶縁部材と該絶縁部材に整列支持される複数の端子とを有するコネクタを用意し、前記回路基板の前記実装領域に、各々のランドが該実装領域から前記拾て領域まで連続して広がるようにして、複数のランド付きスルーホールを形成し、前記コネクタの前記複数の端子を、前記回路基板の前記複数のランド付きスルーホールに個別に挿入して、前記ランドにはんだ付けし、前記コネクタを前記回路基板の前記実装領域に取り付けたままの状態で、該実装領域と前記捨て領域との境界線に沿って、該捨て領域を該実装領域から分離すること、を特徴とする方法を提供する。

【0047】請求項36に記載の発明は、請求項35に記載の方法によって作製されるコネクタ付き回路基板を備えたボインティングデバイスを提供する。

[0048]

【発明の実施の形態】以下、添付図面を参照して、本発明の実施の形態を詳細に説明する。図面において、同一又は類似の構成要素には共通の参照符号を付す。図1は本発明の第1の実施形態によるポインティングデバイス10の分解斜視図、図2はポインティングデバイス10の組立斜視図、図3はポインティングデバイス10は、パーソナルコンピュータ、パーソナルワードプロセッサ等の

データ処理装置や、電子手帳、携帯情報端末(PDA)、携帯電話等の携帯型情報機器において、ディスプレイ上の二次元座標データを指示する補助入力装置として機器筐体に一体的に組み込んだ構成で使用できるものである。

【0049】ポインティングデバイス10は、基部12 と、基部12に対して任意の水平方向へ変位可能に基部 12上に支持される操作部14と、操作部14に設置される円板状の磁石(例えば永久磁石)16と、磁石16 の近傍で基部12に設置される複数の磁電変換案子(例えばホール案子)18とを備える。操作部14は、磁石 16を固定的に保持して基部12上に水平方向へ移動可能に支持される保持部20と、保持部20に連結され、 基部12上での保持部20の水平移動に伴い、保持部20を水平移動範囲の原点位置に復帰させる弾性力を発揮する弾性部22とを備える。

【0050】基部12は、図示しないCPU等の電子部品が実装される回路基板24と、回路基板24に固定的に連結される支持部材26とを備える。支持部材26は、回路基板24の表面24aから離隔した位置に、操作部14の保持部20を任意の水平方向へ摺動自在に支持する支持部分28を有する。なお、この実施形態において「水平方向」とは、回路基板24の略平坦な表面24aに実質的平行な方向を意味する。したがって支持部材26の支持部分28には、回路基板24から離れた側に、回路基板24の表面24aに実質的平行に広がる平坦かつ円形の支持面28aが形成される。支持面28aは、回路基板24の表面24aから突出した位置で、保持部20を任意の水平方向へ摺動自在に支持する。

【0051】支持部材26にはさらに、支持面28aを囲続するようにして、操作部14の保持部20の水平移動範囲を規定する円筒壁30が突設される。円筒壁30は、回路基板24の表面24aからの高さが支持面28aよりも高い位置まで突設され、後述するように弾性部22がその一部分で円筒壁210を包囲して支持部材26に取り付けられる。支持面28a上での保持部30の中心軸線は、ポインティングデバイス10の中心軸線Pを構成するとともに、支持面28a上での保持部20の水平移動範囲の原点位置を規定する。また支持部材26の外縁には、円筒壁30の反対側に突出する複数(図では4個)の弾性爪32が形成される。支持部材26は、回路基板24の対応位置に設けられた複数の穴34にそれら弾性爪32をスナップ式に嵌入することにより、回路基板24上の所定位置に固定的に組み付けられる

【0052】回路基板24の表面24aには、回路基板24と支持部材26の支持部分28との間に形成される空所の内部で、計4個の磁電変換案子18が中心軸線Pを中心とした等間隔分散配置で実装される。このような磁電変換案子18の配置構成により、ポインティングデ

バイス 1 0は二次元座標系におけるアナログデータ信号 を出力できるようになっている。

【0053】基部12はさらに、支持部材26の外縁領 域を実質的に遮蔽して回路基板24に固定的に連結され るカバー部材36を備える。カバー部材36は、円筒状 の外周壁38と、外周壁38の軸線方向一端から径方向 内方へ延長される円環状の端壁40とを備え、端壁40 の内縁が、後述する操作部14の主要操作部分を水平移 動可能に挿通させる中心開口42を画定する。カバー部 材36の外周壁38の軸線方向他端には、端壁40の反 対側に突出する複数 (図では4個) の弾性爪44が一体 的に連結される。カバー部材36は、矩形平板状の回路 基板24の一組の対向外縁にそれら弾性爪44をスナッ プ式に嵌着することにより、回路基板24上の所定位置 に固定的に組み付けられる。カバー部材36は、中心開 口42を通して操作部14の主要操作部分を外方に突出 させた状態で、操作部14を基部12から脱落しないよ うに保持する。

【0054】図示実施形態では、操作部14の保持部20及び弾性部22は、別部材として個別に作製されて、互いに固定的に組み合わされる。保持部20は、操作部14を基部12上で水平移動操作する間に実質的に変形しない程度の剛性を有する段付き円筒状の部材からなり、その軸線方向一端側の大径部分に、磁石16を収容する凹所46が形成される。磁石16は、例えば接着剤を用いたり圧入したりすることにより、保持部20の凹所46に固定できる。保持部20は、凹所46を画定する円筒状の外周壁48の先端(図で下端)を、基部12の支持部28の支持面28aに一様に当接した状態で、支持面28a上で360・全方位へ摺動しつつ平行移動できる。このような構成は、保持部20と支持面28aとの接触面間の摩擦を低減して、操作部14の水平移動操作性を向上させる点で有利である。

【0055】弾性部22は、操作部14を基部12上で水平移動操作する間に比較的容易に弾性変形する椀状の部材からなり、保持部20の周囲に隙間を介して延長される主部分50と、主部分50の一端で保持部20に連結される第1連結部分52と、主部分50の他端で基部12に連結される第2連結部分54とを一体に有する。弾性部22の主部分50は、保持部20を実質的全周に渡って囲機するとともに、無負荷状態で保持部20に対し同軸に配置される円錐台状又はドーム状の輪郭形状を有する。したがって弾性部22は、その主部分50が、基部12上での保持部20の水平移動に伴い弾性変形するとともに、変形量に対応する弾性力を、保持部20の水平移動方向に関わらず一様に発揮する。

【0056】 弾性部22の第1連結部分52は、円錐台 状輪郭の主部分50の小径端から軸線方向へ皿状に突出 して一体に延長され、その内側に形成される窪みに、保 特部20の軸線方向他端側の小径部分56が固定的に嵌 入される。弾性部22の第1連結部分52は、例えば接着剤により保持部20の小径部分56に固定できる。第1連結部分52は、保持部20の小径部分56を密接被覆して延び、その外面に、オペレータが操作部14を移動操作する際に例えば手の指先を接触させる操作面58が形成される。

【0057】弾性部22の第2連結部分54は、円錐台 状輪郭の主部分50の大径端から径方向及び軸線方向へ フランジ状に突出して一体に延長され、その肉厚部分 で、基部12を構成する支持部材26の円筒壁30の外 側領域とカバー部材36の外周壁38及び端壁40との 間に固定的に挟持かつ掛止される。第1及び第2連結部 分52、54は、基部12上で保持部20が水平移動す る間に実質的に変形することなく、弾性部22を保持部 20及び基部12にそれぞれ固定的に連結する。

【0058】なお弾性部22は、合成ゴム、天然ゴム等の種々の弾性材料から形成できる。特に、ポインティングデバイス10を搭載対象機器の主回路基板に実装する際にリフロー工程を実施することを考慮すれば、シリコンゴム等の、高温下でも性質が劣化し難い材料から形成することが有利である。

【0059】上記した各種構成部品を適正に組み合わせた状態で、操作部14は、弾性部22の主部分50及び第1連結部分52を、基部12のカバー部材36の中心開口42に水平移動可能に挿通するとともに、保持部20の小径部分56及びそれを被覆する弾性部22の第1連結部分52を、基部12のカバー部材36の端壁40から外方に突出した位置に配置する。この状態でオペレータは、弾性部22の第1連結部分52に形成される操作面58を、例えば手指により操作して、保持部20を基部12上で水平移動させることができる。

【0060】図3に示すように、操作部14の弾性部2 2が平衡状態にあるときには、保持部20及びその凹所 46に保持される磁石16の中心軸線Qは、ポインティ ングデバイス10の中心軸線Pに合致する。この状態で 保持部20は、基部12の支持部材26上で水平移動範 囲の原点位置に位置決めされ、回路基板24上の4個の 磁電変換索子18が磁石16から等距離の位置に配置さ れる。この状態から、図4に示すように、オペレータが 操作面58に指先を当接して保持部20を任意の水平方 向へ平行移動させると、弾性部22の主部分50が、保 持部20の移動方向及び移動距離に対応して、全周に渡 り異なる形態の弾性変形を生じる。それにより弾性部2 2は、主部分50の全体で合力としての弾性力を発揮 し、保持部20をその移動方向と反対の方向に付勢す る。したがってオペレータは、弾性部22の主部分50 が生ずるばわ付勢力に抗して、操作部14を水平移動操 作することになる。

【0061】操作部14を図3の原点位置から図4に示す位置に水平移動操作すると、磁石16と各磁電変換器

子18との相対的位置関係が変化し、各磁電変換素子18の出力電圧が変動する。各磁電変換案子18の出力電圧の変動は、回路基板24上の図示しないCPUでアナログ情報として処理されてデジタル座標データに変換され、回路基板24に設けられるゴネクタ部(図示せず)を介して、搭載対象機器(図示せず)のデータ処理回路に出力される。このようにして、操作部14の保持部20の移動方向及び移動距離に対応して、例えば搭載対象機器のディスプレイ上のカーソルやボインタを所望方向に所望距離だけ移動することができる。

【0062】図4のデータ入力位置から、オペレータが操作部14から指を離して操作力を解除すると、弾性部22の主部分50が生じているばね付勢力により、直ちに保持部20が磁石16と一体的に原点位置に向けて移動し、弾性部22の主部分50が平衡状態に到達した時点で原点位置に復帰する。なお、保持部20が原点位置に復帰する間に、磁石16の迅速な移動に伴って生じる各磁電変換索子18の出力電圧の急激な変動は、例えばCPUにおける処理フローでキャンセルしてデジタル座標データに変換しないように構成することができる。

【0063】上記構成を有するポインティングデバイス 10によれば、基部12の支持部材26に設けた平坦な 支持面28a上で、操作部14の保持部20を移動させ る構成としたから、曲面状の支持面を採用した従来の構 成に比べて、基部12の外形寸法を削減することができ る。また操作部14に、保持部20を水平移動範囲の原 点位置に復帰させる弾性部22を設けたから、保持部2 0を迅速かつ正確に原点位置に復帰させることができ、 操作部14の操作性を向上させることができる。しかも 弾性部22は、保持部20を実質的全周に渡って囲繞す る主部分50で、保持部20の移動方向に関わらず一様 な弾性力を発揮する構成であるから、基部と操作部との 間に復帰ばねを介在させた従来の構成に比べて、操作性 を損なうことなく、特に高さ方向の外形寸法を削減でき る. 保持部20の小径部分56を被覆する弾性部22の 第1連結部分52は、基部12のカバー部材36から外 方に突出した位置で操作面58を形成するので、オペレ ータが基部12上での操作部14の位置を触覚で容易に 確認できる利点もある。このように、ポインティングデ バイス10は、操作部14の操作性を損なうことなく、 電子手帳、携帯情報端末(PDA)、携帯電話等の、手 持操作可能な種々の携帯型情報機器への搭載が実現可能 な水準まで、外形寸法を削減できる。

【0064】図5及び図6は、本発明の第2の実施形態によるポインティングデバイス60を、それぞれ分解斜視図及び組立断面図で示す。ポインティングデバイス60は、基部の回路基板に連結される支持部材の構成以外は、前述した第1実施形態によるポインティングデバイス10と実質的同一の構成を有するので、対応する構成要素には共通の参照符号を付してその説明を省略する。

【0065】ポインティングデバイス60は、基部62 と、基部62に対して任意の水平方向へ移動可能に基部 62上に支持される操作部14と、操作部14に設置さ れる磁石16と、磁石16の近傍で基部62に設置され る複数の磁電変換素子18とを備える。基部62は、図 示しないCPU等の電子部品が実装される回路基板24 と、回路基板24に固定的に連結される支持部材64 と、支持部材64を実質的に遮蔽して回路基板24に固 定的に連結されるカバー部材36とから構成される。 【0066】支持部材64は、円形の中心開口を画定す る中空の円筒壁66を備える.さらに支持部材64は、 その外縁に沿って、円筒壁66の反対側に突出する複数 (図では4個)の弾性爪68を有し、それら弾性爪68 により、回路基板24上の所定位置に固定的に組み付け られる。そして回路基板24の表面24aには、支持部 材64の円筒壁66に包囲された円形領域に、操作部1

【0067】支持部材64の円筒壁66は、回路基板24の表面24aに形成される支持面70内での、操作部14の保持部20の水平移動範囲を規定する。また、支持面70の中心を通る円筒壁66の中心軸線は、ポインティングデバイス60の中心軸線Pを構成するとともに、支持面70上での保持部20の水平移動範囲の原点位置を規定する。保持部20は、大径部分の外周壁48の先端(図で下端)を、回路基板24上の支持面70に一様に当接した状態で、支持面70上で360°全方位へ摺動しつつ平行移動できる。そして、4個の磁電変換案子18は、支持面70の反対側に位置する回路基板24の裏面24bに、中心軸線Pを中心とした等間隔分散配置で実装される。

4の保持部20を任意の水平方向へ摺動自在に支持する

平坦な支持面70が形成される。

【0068】ポインティングデバイス60は、前述したポインティングデバイス10と同様にして、基部62上で操作部14を水平移動操作することにより、アナログデータを入力することができる。このとき、操作部14に設けた弾性部22の作用により、保持部20を水平移動範囲の原点位置に迅速かつ正確に復帰させることができる。特にポインティングデバイス60では、基部62の回路基板24の表面24aに直接、操作部14の保持部20を搭載するとともに、磁電変換素子18を回路基板24の裏面24bに実装しているので、前述したポインティングデバイス10に比べて、高さ方向の寸法を一層効果的に削減することができる。

【0069】なお上記構成では、支持部材64は、上記したように保持部20の水平移動範囲を規定するとともに、カバー部材36と協働して弾性部22の第2連結部分54を固定的に挟持するように作用する。したがって、カバー部材36の中心開口42の寸法を調整して中心開口42により保持部20の水平移動範囲を規定できるように構成するとともに、弾性部22の第2連結部分

54とカバー部材36の連結強度を例えば一体成形等により向上させることによって、支持部材64を省略することもできる。

【0070】図7及び図8は、本発明の第3の実施形態によるポインティングデバイス80を、それぞれ分解斜視図及び組立断面図で示す。ポインティングデバイス80は、基部の回路基板に連結される支持部材の構成と、クリック機能を付加するためのスイッチ機構を内蔵した構成以外は、前述した第1実施形態によるポインティングデバイス10と実質的同一の構成を有するので、対応する構成要素には共通の参照符号を付してその説明を省略する。

【0071】ポインティングデバイス80は、基部82 と、基部82に対して任意の水平方向へ移動可能に基部 82上に支持される操作部14と、操作部14に設置さ れる磁石16と、磁石16の近傍で基部82に設置され る複数の磁電変換素子18と、基部82と操作部14と の間に配置されるスイッチ機構84とを備える。基部8 2は、図示しないCPU等の電子部品が実装される回路 基板24と、回路基板24に固定的に連結される支持部 材86と、支持部材86の外縁領域を実質的に遮蔽して 回路基板24に固定的に連結されるカバー部材36とを 備える。支持部材86は、回路基板24の表面24aか ら離隔した位置に、操作部14の保持部20を任意の水 平方向へ摺動自在に支持する支持部分を構成する複数 (図では4個)の弾性梁部分88を有する。支持部材8 6のそれら弾性梁部分88には、回路基板24から離れ た側に、無負荷状態で回路基板24の表面24aに実質 的平行に広がる平坦な支持面88 aがそれぞれ形成され

【0072】支持部材86の複数の弾性梁部分88は、ボインティングデバイス80の中心軸線Pを中心として放射状に配置され、それらの径方向外端を支点として、互いに独立して弾性的に変位できる。各弾性梁部分88の基端すなわち径方向外端には、各々の支持面88aを囲繞するようにして、操作部14の保持部20の水平移動範囲を規定する円弧壁90がそれぞれ突設される。それら円弧壁90は、中心軸線Pを中心とする同一円周上に配置され、中心軸線Pが、複数の支持面88a上での保持部20は、大径部分の外周壁48の先端(図で下端)を、複数の弾性梁部分88の支持面88aに一様に当接した状態で、それら支持面88a上で360°全方位へ摺動しつつ平行移動できる。

【0073】また、複数の弾性梁部分88のうちで所望の1つの弾性梁部分88には、その径方向内端の自由端に、支持面88aの反対側に局部的に隆起する押圧点92が形成される。押圧点92は、ボインティングデバイス80の中心軸線P上に整合して配置される。支持部材86は、その外縁に設けた複数(図では4個)の弾性爪

94により、回路基板24上の所定位置に固定的に組み付けられる。

【0074】回路基板24の表面24aには、回路基板 24と支持部材86の複数の弾性梁部分88との間に形 成される空所の内部で、クリック機能を付加するための スイッチ機構84が実装される。スイッチ機構84は、 可動接点と固定接点とを有する周知の開閉構造を備え、 それら両接点がポインティングデバイス80の中心軸線 Pに実質的に整合する位置に配置される。すなわち、ス イッチ機構84の可動接点は、支持部材86の1つの弾 性梁部分88に設けた押圧点92の直下に位置決めされ る。そして、4個の磁電変換索子18は、スイッチ機構 84の反対側に位置する回路基板24の裏面24bに、 中心軸線Pを中心とした等間隔分散配置で実装される。 【0075】なお、スイッチ機構84の構成は任意であ り、可動接点がばねに担持されるメカニカルスイッチ や、一対のフレキシブル回路基板を有するメンブレンス イッチ等、様々なものを採用できる。また、スイッチ機 構84の外形寸法によっては、複数の磁電変換素子18 を、回路基板24と複数の弾性梁部分88との間の空所 内に設置することもできる。

【0076】ポインティングデバイス80は、前述した ポインティングデバイス10と同様にして、基部82上 で操作部14を水平移動操作することにより、アナログ データを入力することができる。このとき、操作部14 に設けた弾性部22の作用により、保持部20を水平移 動範囲の原点位置に迅速かつ正確に復帰させることがで きる。 さらにポインティングデバイス80では、図8に 示す原点位置において、オペレータが操作部14の操作 面58を例えば指先で押下して、保持部20の外周壁4 8の下端を複数の弾性梁部分88に押し付けることによ り、それら弾性梁部分88の下方に位置するスイッチ機 構84を閉成させることができる。この実施形態では、 図9に示すように、操作部14を押下することにより、 各弾性梁部分88が径方向外端を支点に弾性的に撓み、 1つの弾性梁部分88に設けた押圧点92がその直下の スイッチ機構84を押圧して作動させる。

【0077】スイッチ機構84が閉成作動すると、回路基板24上のCPUがクリック信号として処理して、搭載対象機器のデータ処理回路に出力する。このようにして、操作部14を原点位置で押下することにより、例えば搭載対象機器のディスプレイ上のポインタに関連してクリック操作を実施することができる。そして図9の押下位置から、オペレータが押下力を解除すると、複数の弾性梁部分88が弾性的に復原して、スイッチ機構84が開成されるとともに、操作部14が図8の原点位置に復帰する。なお、操作部14の水平移動操作中に、オペレータが操作部14に負荷する操作力によってスイッチ機構84を不用意に作動させてしまわないようにするために、支持部材86の材料や弾性梁部分88の寸法を適

宜選択してそれら弾性梁部分88の弾性力を調整することが望ましい。

【0078】上記したスイッチ機構を有するポインティングデバイスは、他の構成によっても実現できる。図1 0及び図11は、そのような本発明の第4の実施形態によるポインティングデバイス100を、それぞれ分解斜 視図及び組立断面図で示す。ポインティングデバイス1 00は、基部の回路基板に連結されてスイッチ機構を作動させる支持部材の構成以外は、前述した第3実施形態によるポインティングデバイス80と実質的同一の構成を有するので、対応する構成要素には共通の参照符号を付してその説明を省略する。

【0079】ポインティングデバイス100は、基部102と、基部102に対して任意の水平方向へ移動可能に基部102上に支持される操作部14と、操作部14に設置される磁石16と、磁石16の近傍で基部102に設置される複数の磁電変換案子18と、基部102と操作部14との間に配置されるスイッチ機構84とを備える。基部102は、図示しないCPU等の電子部品が実装される回路基板24と、回路基板24に固定的に連結される第1支持部材104と、弾性部材106を介して第1支持部材104上に弾性変位可能に支持される第2支持部材108と、第1支持部材104を実質的に遮蔽して回路基板24に固定的に連結されるカバー部材36とを備える。

【0080】第1支持部材104は、同心かつ周方向等間隔に配置される複数の円弧壁110を備え、それら円弧壁110によって円形の中心開口を画定する。さらに第1支持部材104は、その外縁に沿って、各円弧壁110の反対側に突出する複数(図では4個)の弾性爪112を有し、それら弾性爪112により、回路基板24上の所定位置に固定的に組み付けられる。例として圧縮コイルばわからなる弾性部材106は、第1支持部材104の複数の円弧壁110を同心状に取り巻いて配置される。

【0081】第2支持部村108は、円板状の支持部分114と、支持部分114の外縁に沿って周方向等間隔に配置され、径方向外方へ延設される複数(図では4個)のフランジ部分116とを備える。第2支持部村108の支持部分114は、第1支持部村104の複数の円弧壁110によって画定される中心開口にがたつき無く軸線方向摺動自在に収容される寸法及び形状を有する。また、複数のフランジ部分116は、第1支持部村104の周方向へ隣り合う円弧壁110の間に各々ががたつき無く軸線方向摺動自在に受容される寸法及び形状を有する

【0082】第2支持部村108を第1支持部村104 に適正に組み付けた状態で、複数のフランジ部分116 は、複数の円弧壁110を取り巻いて配置された弾性部 村106の上端に載せられる。この状態で、第2支持部 材108の支持部分114は、回路基板24の表面24 aから離隔した位置に配置される。支持部分114に は、回路基板24から離れた側に、弾性部材106が無 負荷の状態で回路基板24の表面24aに実質的平行に 広がる平坦かつ円形の支持面114aが形成される。

【0083】第2支持部村108の複数のフランジ部分116は、支持面114aを囲繞する円弧面をそれぞれに有し、第1支持部村104の複数の円弧壁110と協働して、操作部14の保持部20の水平移動範囲を規定する。支持面114aの中心を通るそれら円弧壁110の中心軸線とでであるとともに、支持面114a上での保持部20の水平移動範囲の原点位置を規定する。また、第2支持部村108の支持部分114には、中心軸線P上で支持面114aの反対側に局部的に隆起する押圧点118が形成される。保持部20は、その大径部分の外周壁48の先端(図で下端)を、第2支持部村108の支持面114aに一様に当接した状態で、支持面114a上で360・全方位へ摺動しつつ平行移動できる。

【0084】ポインティングデバイス100は、前述し たポインティングデバイス10と同様にして、基部10 2上で操作部14を水平移動操作することにより、アナ ログデータを入力することができる。このとき、操作部 14に設けた弾性部22の作用により、保持部20を水 平移動範囲の原点位置に迅速かつ正確に復帰させること ができる。さらにポインティングデバイス100では、 図11に示す原点位置において、オペレータが操作部1 4の操作面58を例えば指先で押下して、保持部20の 外周壁48の下端を第2支持部材108の支持部分11 4に押し付けることにより、支持部分114の下方に位 置するスイッチ機構84を閉成させることができる。こ の実施形態では、図12に示すように、操作部14を押 下することにより、弾性部材106が第2支持部材10 8の複数のフランジ部分116を介して弾性的に圧縮さ れ、支持部分114に設けた押圧点118がその直下の スイッチ機構84を押圧して作動させる。

【0085】そして図12の押下位置から、オペレータが押下力を解除すると、弾性部材106が弾性的に復原して、スイッチ機構84が開成されるとともに、操作部14が図11の原点位置に復帰する。なお、操作部14の水平移動操作中に、オペレータが操作部14に負荷する操作力によってスイッチ機構84を不用意に作動させてしまわないようにするために、弾性部材106のばね定数を適宜調整することが望ましい。

【0086】上記した各実施形態によるポインティングデバイス10、60、80、100には、様々な修正及び変形を施すことができる。例えば、操作部14は、異種材料から別部材として個別に作製した保持部20及び弾性部22を互いに固定的に組み合わせた上記構成に代えて、図13に示すように、保持部20と弾性部22と

を異種材料から一体的に成形した構成を採用することもできる。図13に示すポインティングデバイス10の変形例では、同一又は異なる樹脂材料から予め個別に成形された保持部20及びカバー部材36に対し、インサート成形工程により、ゴム材料からなる弾性部22を一体成形している。このような構成によれば、弾性部22の第1連結部分52と保持部20の小径部分56との連結強度を向上させることができるとともに、弾性部22をその第2連結部分54でカバー部材36と一体化できるので組立作業が容易になる利点がある。

【0087】この場合、図14に示すように、保持部2 0がその小径部分56で、弾性部22の第1連結部分5 2を貫通して外部に突出し、その突出部分120に、別 部材として形成したキートップ122を装着する構成と することもできる。キートップ122の外面には、オペ レータが操作部14を移動操作する際に例えば手の指先 を接触させる操作面124が形成される。この構成で は、上記したように保持部20と弾性部22とを一体的 に成形することにより、保持部20の小径部分56と弾 性部22の第1連結部分52との十分な連結強度を確保 することができる。また、キートップ122の裏側に設 けた凹部126に保持部20の突出部分120を圧入す るだけで、キートップ122を保持部20に強固に固定 的に連結することができる。この構成によれば、キート ップ122の外面に種々の符号や図柄を印刷したり、キ ートップ122を着色したりすることにより、ポインテ ィングデバイスの意匠性を向上させることができる。

【0088】或いは、図15に示すように、保持部20と弾性部22とを同一のゴム材料から一体成形することにより、操作部14を作製することもできる。この構成によれば、操作部14の部品点数が削減され、組立作業性が向上する。また、弾性部22の第1連結部分52における保持部20との組付強度を考慮する必要が無いので、操作部14の小形化を一層促進することができる。

【0089】また、図16~図20に示すように、弾性部による原点位置復帰機能を補助するための補助弾性部を、基部と操作部との間に配置することもできる。例えば、図16及び図17に示すポインティングデバイス10の変形例では、基部12の支持部材26と操作部14の保持部20との間に、補助弾性部として機能する板ばね128が設置されている。板ばね128は、円環状の基礎部分130と、基礎部分130の内周縁に沿って等間隔に配置され、中心軸線Pに向けて凸状に湾曲して径方向内方へ延設される複数(図では4個)の腕部分132とを有する。板ばね128の基礎部分130は、支持部材26の円筒壁30の内面に一様に接触して支持面28a上に搭載される寸法及び形状を有する。

【0090】ポインティングデバイス10の構成部品を 適正に組み合わせた状態で、板ばね128の複数の腕部 分132は、それらの自由端で、保持部20の大径部分 の外周壁48に当接される。そして、弾性部22と板ば ね128との双方が平衡状態にあるときに、操作部14 は基部12上で原点位置に位置決めされる(図17)。 操作部14を図17の原点位置から水平移動操作する と、弾性部22の主部分50及び板ばね128の任意の 腕部分132が、保持部20の移動方向及び移動距離に 対応して弾性変形し、それにより保持部20をその移動 方向と反対の方向に付勢する(図18)。

【0091】図18のデータ入力位置から、オペレータが操作部14から指を離して操作力を解除すると、弾性部22の主部分50及び板ばね128の腕部分132が生じているばね付勢力により、直ちに保持部20が磁石16と一体的に原点位置に向けて移動し、弾性部22及び板ばね128の双方が平衡状態に到達した時点で原点位置に復帰する。このように、補助弾性部として板ばね128を用いることにより、保持部20を水平移動範囲の原点位置にさらに迅速かつ正確に復帰させることができる。また、ゴム製の弾性部22の経年劣化による操作性の低下を、板ばね128の作用により抑制することができる。

【0092】上記した板ばね128の代わりに、図19及び図20に示すように、平坦形状に巻かれたコイルばね134を、補助弾性部として使用することもできる。この場合、コイルばね134は、その外方端136で支持部材26の円筒壁30の内面に嵌着され、その内方端138で、保持部20の大径部分の外周壁48に嵌着される。なお、保持部20の外周壁48の下端には、コイルばね134の内方端138を掛止するビード140を形成することが好ましい。そして、弾性部22とコイルばね134との双方が平衡状態にあるときに、操作部14は基部12上で原点位置に位置決めされる(図2

0)。操作部14を図20の原点位置から水平移動操作すると、弾性部22の主部分50及びコイルばね134が、保持部20の移動方向及び移動距離に対応して弾性変形し、それにより保持部20をその移動方向と反対の方向に付勢する。

【0093】以上、説明したように、本発明に係る磁電変換素子型のボインティングデバイスは、その外形寸法を、操作部の操作性を損なうことなく、電子手帳、携帯情報端末(PDA)、携帯電話等の手持操作可能な携帯型情報機器へ搭載可能な水準まで削減できる。ところで、このような携帯型情報機器にボインティングデバイスを搭載する場合には、機器筐体の狭小な内部空間で、ボインティングデバイスと搭載対象機器の主回路基板(電話形態)との電気の異なり間に対して

(実装基板)との電気的及び機械的接続を確実かつ安定 的に実現することが要求されている。

【0094】図21及び図22は、そのような高機能の 電気的接続構造及び機械的接続構造を有する本発明の第 5の実施形態によるポインティングデバイス150を示 す。なおポインティングデバイス150は、電気的及び 機械的接続構造の構成以外は、前述した第3実施形態によるボインティングデバイス80と実質的同一の構成を有するものとし、対応する構成要素には共通の参照符号を付してその説明を省略する。

【0095】ポインティングデバイス150は、基部82の回路基板24に実装された磁電変換素子18及びスイッチ機構84を、搭載対象機器の主回路基板(実装基板)Mに電気的に接続するための2個のコネクタ152を備える。各コネクタ152は、絶縁部材154と、絶縁部材154に等間隔配置で整列支持される複数の端子156とを備える。矩形平板状の回路基板24の外縁近傍領域には、カバー部材36の弾性爪44を嵌着しない側の一組の対向外縁に沿って、複数のスルーホール158が、コネクタ152の端子156に対応する等間隔配置で整列してそれぞれ形成される。それらスルーホール158は、回路基板24上の磁電変換素子18及びスイッチ機構84に例えば印刷回路を介して電気的に接続される。

【0096】各コネクタ152の絶縁部材154は、樹脂材料から一体成形される角棒状部材であり、例えばインサート成形工程により複数の端子156を埋設した状態に成形される。各端子156は、プレス工程により打ち抜いたビン状金属片をL字状に屈曲して形成される。各端子156は、その一端156aを絶縁部材154の頂面154aから突出させるとともに、他端156bを絶縁部材154の側面154bから突出させて、絶縁部材154に固定的に支持される。各コネクタ152の絶縁部材154の頂面154aには、端子配列方向の両端部位に、それぞれ位置決め突起160が形成される。他方、回路基板24には、各列のスルーホール158の配列方向両側に、位置決め突起160を受容する位置決め孔162が形成される。

【0097】各コネクタ152は、絶縁部材154に設けた位置決め突起160を回路基板24の対応の位置決め孔162に嵌入するとともに、複数の端子156の一端156aを回路基板24の対応のスルーホール158に個別に挿入した状態で、回路基板24に装着される。このとき各コネクタ152は、複数の端子116の他端116bが回路基板24の外方へ張り出すように方向付けされる。この状態で、各端子156はその一端156aで、はんだ164により各スルーホール158に固着されて、磁電変換案子18及びスイッチ機構84に電気的に接続される。また各コネクタ152は、複数の端子156の他端156bを、実装基板Mの表面に設けた複数の電極(図示せず)にそれぞれ位置合せした状態で、はんだ166を介して実装基板Mに実装される。

【0098】このように、上記構成を有するコネクタ152は、棒状の絶縁部材154に複数の端子156を埋設した極めて単純な構成を有するので、小形化及び狭ピッチ化が容易である利点を有する。しかも、回路基板2

4に設けた対応のスルーホール158に各端子156を固定するようにしたから、例えば電極バッドに端子をはんだ付けする構成に比べて、回路基板24上で各端子156の固定に要する面積を効果的に縮減できる利点がある。したがって、携帯型情報機器にポインティングデバイス150を搭載する場合に、機器筐体の狭小な内部空間で、ポインティングデバイス150と情報機器の主回路基板との電気的接続を確実かつ安定的に実現することが可能になる。

【0099】なお、図示実施形態では、ボインティングデバイス150の一対のコネクタ152と実装基板Mとの間のはんだ付けによる電気的及び機械的接続を補強するための機械的連結構造として、一対の取付部材168が使用されている。各取付部材168は、例えば板金材料から打ち抜きかつ折曲して形成され、一端のフック部分170と他端の脚部分172とを一体に有する。他方、基部82の支持部材86には、その外縁に沿って互いに対向する位置に、一対のフック受け174が延長形成されている。

【0100】ポインティングデバイス150を実装基板 Mに実装する際には、上記したように各コネクタ152 をはんだ付けした後に、一対の取付部材168を、各々 のフック部分170を対応のフック受け174に掛着して支持部材86に取り付ける。その状態で、各取付部材 168の脚部分172を、はんだ176によって実装基 板Mの表面の所望位置に固定する。このようにして、ポインティングデバイス150は、オペレータが操作部1 4に負荷する力に抗して、実装基板M上に強固に固定保 持される。

【0101】ポインティングデバイス150においては、回路基板24に形成される複数のスルーホール158に対し、回路基板24上で種々の電子部品を実装するために要する実装面積を効果的に拡大し得る特殊な形状のランドを形成することができる。例えば図23に示すように、回路基板24の各スルーホール158の開口縁158aに隣接して、開口縁158aと回路基板24の外縁24cとの間の部分でそれ以外の部分よりも狭い幅を有するランド178を、回路基板24の表面24aに形成することができる。このような形状のランド178を採用すれば、スルーホール158を回路基板24の外縁24cに可及的に近接して形成できるので、回路基板24上の電子部品実装面積を効果的に拡大できる。

【0102】このような特徴的形状のランド178を有するスルーホール158に接続されたコネクタ152を備える回路基板24は、以下の方法で作製することが有利である。まず、図24に示すように、図示しない電子部品を実装するための矩形の実装領域180と、実装領域180の両側に隣接する一対の捨て領域182とを有する回路基板24を用意する。このような捨て領域182は、電子部品の実装や回路の形成を行わない領域であ

って、一般的な基板実装工程で回路基板を搬送する際の 支持及び位置決め用に使用されるものとして知られてい る.

【0103】次いで、回路基板24の実装領域180に、各々の円環状のランド178が実装領域180から捨て領域182まで連続して広がるようにして、複数のランド付きスルーホール158を、実装領域180と捨て領域182との境界線184に沿って形成する。ここで、各スルーホール158は、例えば図25(a)に示すような、回路基板24の両面にランド178を有する両面めっきスルーホールとして、一般的な印刷回路板の製造方法によって形成することができる。さらに、スルーホール158を形成した後に、回路基板24の両面に、境界線184に沿って延びる溝186(図25(b))を形成することが有利である。

【0104】次に、コネクタ152の複数の端子156を、それらの一端156aで、複数のスルーホール158に個別に挿入して、対応のランド178にはんだ付けする。それにより一対のコネクタ152を、捨て領域182を有する回路基板24の実装領域180に固定する。最後に、各コネクタ152を実装領域180に取り付けたままの状態で、境界線184上に形成した溝186に沿って、捨て領域182を実装領域180から折り取って分離する。このようにして、図26に示すように、一組の対向外縁24cに沿って取り付けた一対のコネクタ152を有する回路基板24が作製される。

【0105】なお、上記したランド付きスルーホール158は、はんだ164による端子固着強度を確保できることを前提に、回路基板24の外縁24cに部分的に開口するような形状とすることもできる。この場合、各スルーホール158には、C形状のランドが形成されることになる。

【0106】以上、図面を参照して幾つかの好適な実施形態を説明したが、本発明は、それら図示実施形態以外の様々な形態を採ることができる。例えば、本発明に係るポインティングデバイスの操作部の特徴的構成は、磁石16と複数の磁電変換素子18との位置関係が、図示実施形態とは逆の構成、すなわち基部12、62、82、102に設置した磁石16に対し、操作部14に設置した磁電変換素子18が変位するように構成されたポインティングデバイスにおいても、有効に採用でき、かつ同様に格別の作用効果を奏するものである。また、本発明に係るコネクタ付き回路基板の製造方法は、上記したポインティングデバイス150への適用に限らず、他の様々な電子機器における回路基板接続構造に適用できるものである。

【0107】ところで、本発明に係る磁電変換素子型のポインティングデバイスは、例えば、ディスプレイ部とキーボード部とが互いに蝶番連結された折り畳み可能な携帯型情報機器(例えば携帯電話)に搭載することがで

きる。この場合、ポインティングデバイスを含む各種スイッチ類の、キーボード部表面からの突出量を極力低減することが、折り畳み時の機器全体の厚みを削減して携帯性を一層向上させる観点で望ましい。図27~図29は、このような携帯型情報機器のキーボード部に好適に搭載可能な低背構造を有する本発明の第6の実施形態によるポインティングデバイス190を示す。なおポインティングデバイス190は、前述した第1実施形態によるポインティングデバイス10と機能的に実質的同一の基本構造を有するものである。

【0108】ボインティングデバイス190は、基部192と、基部192に対して任意の水平方向へ移動可能に基部192上に支持される操作部194と、操作部194に設置される円板状の磁石(例えば永久磁石)196と、磁石196の近傍で基部192に設置される複数の磁電変換案子(例えばホール素子)198とを備える。操作部194は、磁石196を固定的に保持して基部192上に水平方向へ移動可能に支持される保持部200と、保持部200に連結され、基部192上での保持部200の水平移動に伴い、保持部200を水平移動範囲の原点位置に復帰させる弾性力を発揮する弾性部202とを備える。

【0109】基部192は、図示しないCPU等の電子 部品が実装される回路基板204と、回路基板204に 固定的に連結される支持部材206とを備える。支持部 材206は、平面視で略正方形の板状部材であり、回路 基板204の表面204aに隙間を介さずに搭載される とともに、その中央の略円形の凹状領域に、操作部19 4の保持部200を任意の水平方向へ摺動自在に支持す る支持部分208を有する。なお、この実施形態におい て「水平方向」とは、回路基板204の略平坦な表面2 04aに実質的平行な方向を意味する。したがって支持 部材206の支持部分208には、回路基板204から 離れた側に、回路基板204の表面204aに実質的平 行に広がる平坦かつ円形の支持面208aが形成され る。支持面208aは、回路基板204の表面204a から突出した位置で、保持部200を任意の水平方向へ 摺動自在に支持する。

【0110】支持部材206にはさらに、支持面208 aを囲繞するようにして、操作部194の保持部200の水平移動範囲を規定する円筒壁210が突設される。円筒壁210は、回路基板204の表面204aからの高さが支持面208aよりも高い位置まで突設され、後述するように弾性部202がその一部分で円筒壁210を包囲して支持部材206に取り付けられる。支持面208aの中心を通る円筒壁210の中心軸線は、ボインティングデバイス190の中心軸線Pを構成するとともに、支持面208a上での保持部200の水平移助範囲の原点位置を規定する。また支持部材206の支持部分208には、その略中央で支持面208a及び円筒壁2

10の反対側に突出する1個の位置決めピン212が形成される。支持部材206は、回路基板204の対応位置に設けられた穴214に位置決めピン212を嵌入することにより、回路基板204上の所定位置に固定的に組み付けられる。なお、支持部材206を回路基板204に強固に固定するために、接着剤を補助的に用いることもできる。

【0111】回路基板204の表面204aの反対側(すなわち裏面204b)には、計4個の磁電変換素子198が、中心軸線Pを中心とした等間隔分散配置で実装される。このような磁電変換素子198の配置構成により、ポインティングデバイス190は二次元座観系におけるアナログデータ信号を出力できるようになっている。

【0112】基部192はさらに、支持部材206の外 縁領域206aを実質的に遮蔽して支持部材206に固 定的に連結されるカバー部材216を備える。カバー部 材216は、支持部材206に対応する平面視略正方形 状を有する薄板状部材であり、その端板部分216aの 中央領域に、後述する操作部194の主要操作部分を水 平移動可能に挿通させる略円形の中心開口218を有す る。カバー部材216の外縁には、四辺に沿ってそれぞ れ延長片220が端板部分216aに略直交する方向へ 延設され、各延長片220に、板厚方向へ貫通する取付 孔222が貫通形成される。カバー部材216は、支持 部材206の四辺に沿って側方へ突設された複数の爪2 24を、それら延長片220の対応の取付孔222に、 各延長片220の弾性変形を利用してスナップ式に嵌着 することにより、支持部材206に固定的に組み付けら れる。カバー部材216は、中心開口218を通して操 作部194の主要操作部分を外方に突出させた状態で、 操作部194を基部192から脱落しないように保持す る。なお、このような構成を有するカバー部材216 は、所望の板金材料から作製できる。

【0113】図示実施形態では、操作部194の保持部 200及び弾性部202は、別部材として個別に作製さ れて、互いに固定的に組み合わされる。保持部200 は、操作部194を基部192上で水平移動操作する間 に実質的に変形しない程度の剛性を有する中空円筒状の 部材からなり、その円筒状の外周壁226の内側に、磁 石196を収容する空洞部226aが形成される。磁石 196は、例えば接着剤を用いたり圧入したりすること により、保持部200の空洞部226aに固定できる。 保持部200は、外周壁48の軸線方向一端(図で下 端)に径方向外方へ延設したフランジ部分228の軸線 方向端面を、基部192の支持部材206の支持面20 8aに一様に当接した状態で、支持面208a上で36 0°全方位へ摺動しつつ平行移動できる。このような構 成は、保持部200と支持面208aとの接触面間の摩 擦を低減して、操作部194の水平移動操作性を向上さ せる点で有利である。

【0114】保持部200には、磁石196と弾性部2 02との間に介在するヨーク230が取り付けられる。 ヨーク230は、平面視で略円形の蓋状部材であり、そ の円板状の端壁部分230aで、保持部200に収容さ れた磁石196を一面(図で上面)から遮蔽するととも に、端壁部分230aの外縁から延設される円筒状の周 壁部分230bで、保持部200の外周壁226を包囲 して保持部200に取り付けられる。ヨーク230は、 例えば接着剤を用いたり圧入したりすることにより、保 持部200の外周壁226に固定できる。ヨーク230 は所望の磁性金属材料からなり、磁石196と磁電変換 索子198との間で磁路を積極的に閉じることにより、 弾性部202を通した外部への磁気漏洩を防止するよう に作用する。このようなヨーク230は、低背型のポイ ンティングデバイス190に特に有効に装備されるもの である.

【0116】弾性部202の第1連結部分234は、円錐台状輪郭の主部分232の小径端から軸線方向へ皿状に突出して一体に延長され、その内側に形成される窪みに、保持部200に取り付けたヨーク230が固定的に嵌入される。弾性部202の第1連結部分234は、例えば接着削を用いたり圧入したりすることによりヨーク230に固定できる。第1連結部分234は、ヨーク230に固定できる。第1連結部分234は、ヨーク230の端壁部分230a及び周壁部分230bを密接被覆して延び、その外面に、オペレータが操作部194を移動操作する際に例えば手の指先を接触させる操作面238が形成される。

【0117】 弾性部202の第2連結部分236は、円錐台状輪郭の主部分232の大径端から径方向及び軸線方向へフランジ状に突出して一体に延長され、その肉厚部分で、基部192を構成する支持部材206の円筒壁210の外側環状溝領域210aとカバー部材216の端板部分216aとの間に固定的に挟持かつ掛止される。第1及び第2連結部分234、236は、基部192上で保持部200が水平移動する間に実質的に変形す

ることなく、弾性部202を保持部200及び基部19 2にそれぞれ固定的に連結する。

【0118】なお弾性部202は、合成ゴム、天然ゴム等の種々の弾性材料から形成できる。特に、ポインティングデバイス190を搭載対象機器の主回路基板に実装する際にリフロー工程を実施することを考慮すれば、シリコンゴム等の、高温下でも性質が劣化し難い材料から形成することが有利である。

【0119】上記した各種構成部品を適正に組み合わせた状態で、操作部194は、弾性部202の主部分232及び第1連結部分234を、基部192のカバー部材216の中心開口218に水平移動可能に挿通するとともに、ヨーク230を介して保持部200に連結される弾性部202の第1連結部分234を、基部192のカバー部材216の端板部分216aから外方に突出した位置に配置する。この状態でオペレータは、弾性部202の第1連結部分234に形成される操作面238を、例えば手指により操作して、保持部200を基部192上で水平移動させることができる。

【0120】図29に示すように、操作部194の弾性 部202が平衡状態にあるときには、保持部200及び その空洞部226 aに保持される磁石196の中心軸線 Qは、ポインティングデバイス190の中心軸線Pに合 致する。この状態で保持部200は、基部192の支持 部材206上で水平移動範囲の原点位置に位置決めさ れ、回路基板204上の4個の磁電変換案子198が磁 石196から等距離の位置に配置される。この状態か ら、オペレータが操作面238に指先を当接して保持部 200を任意の水平方向へ平行移動させると、弾性部2 02の主部分232が、保持部200の移動方向及び移 動距離に対応して、全周に渡り異なる形態の弾性変形を 生じる。それにより弾性部202は、主部分232の全 体で合力としての弾性力を発揮し、保持部200をその 移動方向と反対の方向に付勢する。したがってオペレー タは、弾性部202の主部分232が生ずるばね付勢力 に抗して、操作部194を水平移動操作することにな

【0121】このように、ボインティングデバイス190は、前述したボインティングデバイス10における基部12及び操作部14と機能的に同一の基部192および操作部194を備えるので、ボインティングデバイス10と同様の操作により、操作部194の移動方向及び移動距離に対応したアナログ情報を入力することができる。しかも、基部192及び操作部194を構成する各構成要素を薄型化するとともに、磁電変換素子198を回路基板204の裏面204bに実装する構成としたから、ボインティングデバイス10に比べて、全体として低背化を実現したボインティングデバイス190が提供される。

【0122】図30~図32は、ポインティングデバイ

ス190に比べてさらなる低背化を可能にする本発明の第7の実施形態によるポインティングデバイス240を示す。ポインティングデバイス240は、基部の回路基板に連結される支持部材の構成以外は、前述した第6実施形態によるポインティングデバイス190と実質的同一の構成を有するので、対応する構成要素には同一の参照符号を付してその説明を省略する。

【0123】ポインティングデバイス240は、基部242と、基部242に対して任意の水平方向へ変位可能に基部242上に支持される操作部194と、操作部194に設置される磁石196と、磁石196の近傍で基部242に設置される複数の磁電変換素子198とを備える。基部242は、図示しないCPU等の電子部品が実装される回路基板204と、回路基板204に固定的に連結される支持部材244と、支持部材244の外縁領域244aを実質的に連蔽して支持部材244に固定的に連結されるカバー部材216とから構成される。

【0124】支持部材244は、平面視で略正方形の板状部材であり、回路基板204の表面204aに隙間を介さずに搭載されるとともに、その中央の略円形の凹状領域に、操作部194の保持部200を任意の水平方向へ摺動自在に支持する支持部分246を有する。支持部材244の支持部分246には、回路基板204から離れた側に、回路基板204の表面204aに実質的平行に広がる平坦かつ円形の支持面246aが形成される。支持面246aは、回路基板204の表面204aから突出した位置で、保持部200を任意の水平方向へ摺動自在に支持する。

【0125】支持部材244はさらに、回路基板204の表面204aからの高さが支持面246aよりも低い位置まで凹設され、支持面246aを囲繞する方向に円弧状に延びる複数(図では4個)の溝248を有する。図示実施形態では、支持部材244の支持部分246と外縁領域244aとが、支持面246aの周方向へ等間隔配置された複数(図では4個)の連結片250のみによって互いに一体的に連結され、それにより、支持面246aを囲繞する同一円周上に、連結片250を介して互いに分離された複数の溝248が、板厚方向へ貫通形成される。

【0126】支持面246aの中心を通る複数の溝248の中心軸線は、ポインティングデバイス240の中心軸線Pを構成するとともに、支持面246a上での保持部200は、そのフランジ部分228の軸線方向端面を、支持部材244の支持面246aに一様に当接した状態で、支持面246a上で360°全方位へ摺動しつつ平行移動できる。

【0127】また、支持部材244の支持部分246には、その略中央で支持面246aの反対側に突出する1個の位置決めピン252が形成される。支持部材244

は、回路基板204の対応位置に設けられた穴214に位置決めピン252を嵌入することにより、回路基板204上の所定位置に固定的に組み付けられる。なお、カバー部材216は、支持部材244の四辺に沿って側方へ突設された複数の爪254を、各延長片220の対応の取付孔222にスナップ式に嵌着することにより、支持部材244に固定的に組み付けられる。

【0128】支持部材244の複数の溝248には、弾性部202の第2連結部分236が挿入される。すなわち、弾性部202の第2連結部分236は、その肉厚部分で、支持部材244の複数の溝248とカバー部材216の端板部分216aとの間に固定的に挟持かつ掛止される。したがって、弾性部202の第2連結部分236には、支持部材244の複数の連結片250に対応する位置に、連結片250を受容する切欠き236aが形成される。弾性部202の第1及び第2連結部分234、236は、基部242上で保持部200が水平移動する間に実質的に変形することなく、弾性部202を保持部200及び基部242にそれぞれ固定的に連結する。

【0129】ポインティングデバイス240は、前述したポインティングデバイス190と同様にして、基部242上で操作部194を水平移動操作することにより、アナログデータを入力することができる。特にポインティングデバイス240では、基部242を構成する支持部材244に、ポインティングデバイス190で支持部材206に設けた円筒壁210の代わりに、支持面246aよりも低い位置まで凹設される複数の溝248を形成し、これら溝248に第2連結部分236を挿入して弾性部202を支持部材244に取り付ける構成としたから、支持部材244のさらなる薄型化が可能となる。したがってポインティングデバイス240では、前述したポインティングデバイス190に比べて、高さ方向の寸法を一層効果的に削減することができる。

【0130】図33及び図34は、上記したボインティングデバイス240に比べてさらなる低背化を可能にする本発明の第8の実施形態によるボインティングデバイス260は、基部の構成以外は、前述した第6実施形態によるボインティングデバイス190と実質的同一の構成を有するので、対応する構成要素には同一の参照符号を付してその説明を省略する。

【0131】ポインティングデバイス260は、基部262と、基部262に対して任意の水平方向へ変位可能に基部262上に支持される操作部194と、操作部194に設置される磁石196と、磁石196の近傍で基部262に設置される複数の磁電変換素子198とを備える。基部262は、図示しないCPU等の電子部品が実装される回路基板264と、操作部194の弾性部202を基部262に固定的に連結するためのカバー部材

216とから構成される。したがって基部262は、操作部194の保持部200を摺動自在に支持する支持部材を備えない構成となっている。

【0132】回路基板264は、その表面264aの所 望の円形領域に、操作部194の保持部200を任意の 水平方向へ摺動自在に支持する平坦な支持面266を有 する。回路基板264はさらに、支持面266を囲繞す る方向に円弧状に延びる複数(図では4個)の溝孔26 8を有する。それら溝孔268は、支持面266を囲繞 する同一円周上に互いに分離して配置され、板厚方向へ 貫通形成される。隣接する溝孔268の間には、回路基 板264の一部分として連結片270が形成される。 【0133】支持面266の中心を通る複数の溝孔26 8の中心軸線は、ポインティングデバイス260の中心 軸線Pを構成するとともに、支持面266上での保持部 200の水平移動範囲の原点位置を規定する。保持部2 00は、そのフランジ部分228の軸線方向端面を、回 路基板264上の支持面266に一様に当接した状態 で、支持面266上で360°全方位へ摺動しつつ平行 移動できる。そして、4個の磁電変換素子198は、支 持面266の反対側で回路基板264の裏面264b に、中心軸線Pを中心とした等間隔分散配置で実装され る、なお、カバー部材216は、その四辺に延設した延 長片220のそれぞれに、取付孔222 (図27) の代 わりに差込片272を有し、それら差込片272を、回 路基板264の対応位置に貫通形成したスリット274 に挿入して適宜折曲することにより、回路基板264に 固定される。

【0134】回路基板264の複数の溝孔268には、 弾性部202の第2連結部分236が挿入される。すな わち、弾性部202の第2連結部分236は、その肉厚 部分で、回路基板264の複数の溝孔268とカバー部 材216の端板部分216aとの間に固定的に挟持かつ 掛止される。したがって、弾性部202の第2連結部分 236には、回路基板264の複数の連結片270に対 応する位置に、連結片270を受容する切欠き236a が形成される。弾性部202の第1及び第2連結部分2 34、236は、基部262上で保持部200が水平移 動する間に実質的に変形することなく、弾性部202を 保持部200及び基部262にそれぞれ固定的に連結する。

【0135】ポインティングデバイス260は、前述したポインティングデバイス190、240と同様にして、基部262上で操作部194を水平移動操作することにより、アナログデータを入力することができる。特にポインティングデバイス260では、支持部材206、244を省略して、基部262の回路基板264の表面264aに直接、支持面266を形成して操作部194の保持部200を搭載する構成としたから、前述したポインティングデバイス190、240に比べて、高

さ方向の寸法を一層効果的に削減することができる。 【0136】図35~図37は、低背型でかつクリック 機能を有する本発明の第9の実施形態によるボインティ ングデバイス280を示す。ボインティングデバイス2 80は、基部の回路基板に連結される支持部材の構成 と、クリック機能を付加するためのスイッチ機構を内蔵 した構成以外は、前述した第6実施形態によるボインティングデバイス190と実質的同一の構成を有するの で、対応する構成要素には同一の参照符号を付してその 説明を省略する。なおボインティングデバイス280 は、前述した第3実施形態によるボインティングデバイス80と機能的に実質的同一の基本構造を有するもので ある。

【0137】ポインティングデバイス280は、基部282と、基部282に対して任意の水平方向へ変位可能に基部282上に支持される操作部194と、操作部194に設置される磁石196と、磁石196の近傍で基部282に設置される複数の磁電変換案子198と、基部282と操作部194との間に配置されるスイッチ機構284とを備える。基部282は、図示しないCPU等の電子部品が実装される回路基板204と、回路基板204に固定的に連結される支持部材286と、支持部材286の外線領域286aを実質的に遮蔽して支持部材286に固定的に連結されるカバー部材216とを備える。

【0138】支持部材286は、平面視で略正方形の板状部材であり、その中央の略円形の凹状領域に、操作部194の保持部200を任意の水平方向へ摺動自在に支持する支持部分として機能する複数(図では4個)の弾性梁部分288を、回路基板204の表面204aから離隔した位置に備える。支持部材286のそれら弾性梁部分288には、回路基板204から離れた側に、無負荷状態で回路基板204の表面204aに実質的平行に広がる平坦な支持面288aがそれぞれ形成される。それら支持面288aは互いに協働して、回路基板204の表面204aから突出した位置で、保持部200を任意の水平方向へ摺動自在に支持する。

【0139】支持部材286の複数の弾性梁部分288は、ボインティングデバイス280の中心軸線Pを中心として放射状に配置され、それらの径方向外端を支点として、互いに独立して弾性的に変位できる。特にこの実施形態では、各弾性梁部分288を、支持部材286の平面視で略正方形輪郭の各項点部位から径方向へ延設したので、小型化かつ薄型化した支持部材286において、弾性梁部分288の長さを最大限に確保できる。その結果、弾性梁部分288の弾性力の増加及びスイッチ作動時の押下操作力の軽減を図ることができる。

【0140】支持部材286にはさらに、隣り合う弾性 梁部分288の間にそれぞれ扇形に広がる取付部分29 0が形成される。それら取付部分290の径方向内縁に は、各弾性染部分288の支持面288aを囲続するようにして、操作部194の保持部200の水平移動範囲を規定する円弧壁292が突設される。各円弧壁292は、回路基板204の表面204aからの高さが各支持面288aよりも高い位置まで突設され、後述するように弾性部202が第2連結部分236で全ての円弧壁292を包囲して支持部材286に取り付けられる。それら円弧壁292は、中心軸線Pを中心とする同一円周上に配置され、中心軸線Pが、複数の支持面288a上での保持部200は、そのフランジ部分228の軸線方向端面を、複数の弾性梁部分288の支持面288a上で360°全方位へ摺動しつつ平行移動できる。

【0141】また、複数の弾性梁部分288のうちで所望の1つの弾性梁部分288には、その径方向内端の自由端に、支持面288aの反対側に局部的に隆起する押圧点294が形成される。押圧点294を有する弾性梁部分288は、他の弾性梁部分288よりも若干長く、ボインティングデバイス280の中心軸線Pを越える位置まで延設される。それにより押圧点294は、ボインティングデバイス280の中心軸線P上に整合して配置される。

【0142】さらに、支持部材286の互いに対向する一対の取付部分290には、円弧壁292の反対側に位置決めピン296が突設される。支持部材286は、それら位置決めピン296を、回路基板204の対応位置に設けられた穴298に嵌入することにより、回路基板204上の所定位置に固定的に組み付けられる。なお、カバー部材216は、支持部材286の四辺に沿って側方へ突設された複数の爪300を、各延長片220の対応の取付孔222にスナップ式に嵌着することにより、支持部材286に固定的に組み付けられる。

【0143】弾性部202の第2連結部分236は、その肉厚部分で、支持部材286の各円弧壁292の外側環状溝領域292aとカバー部材216の端板部分216aとの間に固定的に挟持かつ掛止される。弾性部202の第1及び第2連結部分234、236は、基部282上で保持部200が水平移動する間に実質的に変形することなく、弾性部202を保持部200及び基部282にそれぞれ固定的に連結する。

【0144】回路基板204の表面204aには、回路基板204と支持部材286の複数の弾性梁部分288との間に形成される空所の内部で、クリック機能を付加するためのスイッチ機構284が実装される。スイッチ機構284は、可動接点と固定接点とを有する周知の開閉構造を備え、それら両接点がボインティングデバイス280の中心軸線Pに実質的に整合する位置に配置される。すなわち、スイッチ機構284の可動接点は、支持部材286の1つの弾性梁部分288に設けた押圧点2

94の直下に位置決めされる。そして、4個の磁電変換 案子198は、スイッチ機構284の反対側に位置する 回路基板204の裏面204bに、中心軸線Pを中心と した等間隔分散配置で実装される。

【0145】なお、スイッチ機構284の構成は任意であり、可動接点がばねに担持されるメカニカルスイッチや、一対のフレキシブル回路基板を有するメンブレンスイッチ等、様々なものを採用できる。また、スイッチ機構284の外形寸法によっては、複数の磁電変換素子198を、回路基板204と複数の弾性梁部分288との間の空所内に設置することもできる。

【0146】上記構成を有するポインティングデバイス280では、図37に示す原点位置において、オペレータが操作部194の操作面238を例えば指先で押下して、保持部200のフランジ部分228を複数の弾性梁部分288に押し付けることにより、それら弾性梁部分288の下方に位置するスイッチ機構284を閉成させることができる。この実施形態では、操作部194を押下することにより、各弾性梁部分288が径方向外端を支点に弾性的に撓み、長尺の弾性梁部分288に設けた押圧点294がその直下のスイッチ機構284を押圧して作動させる。

【0147】このように、ボインティングデバイス28 0は、前述したボインティングデバイス80における基 部82及び操作部14と機能的に同一の基部282及び 操作部194を備えるので、ポインティングデバイス8 0と同様の操作により、操作部194の移動方向及び移 動距離に対応したアナログ情報を入力できるとともに、 例えば搭載対象機器のディスプレイ上のポインタに関連 してクリック操作を実施することができる。しかも、基 部282及び操作部194を構成する各構成要素を薄型 化したから、ポインティングデバイス80に比べて、全 体として低背化を実現したポインティングデバイス28 0が提供される。

【0148】図38~図40は、ポインティングデバイス280に比べてさらなる低背化を可能にする本発明の第10の実施形態によるポインティングデバイス310を示す。ポインティングデバイス280は、基部の回路基板に連結される支持部材の構成以外は、前述した第9実施形態によるポインティングデバイス280と実質的同一の構成を有するので、対応する構成要素には同一の参照符号を付してその説明を省略する。

【0149】ポインティングデバイス310は、基部312と、基部312に対して任意の水平方向へ変位可能に基部312上に支持される操作部194と、操作部194に設置される磁石196の近傍で基部312に設置される複数の磁電変換索子198とを備える。基部312は、図示しないCPU等の電子部品が実装される回路基板204と、回路基板204に固定的に連結される支持部材314と、支持部材314の外縁

領域314aを実質的に遮蔽して支持部材314に固定的に連結されるカバー部材216とから構成される。

【0150】支持部材314は、平面視で略正方形の板状部材であり、その中央の略円形の凹状領域に、操作部194の保持部200を任意の水平方向へ摺動自在に支持する支持部分として機能する複数(図では4個)の弾性梁部分316を、回路基板204の表面204aから離隔した位置に備える。支持部材314のそれら弾性梁部分316には、回路基板204から離れた側に、無負荷状態で回路基板204の表面204aに実質的平行に広がる平坦な支持面316aがそれぞれ形成される。それら支持面316aは互いに協働して、回路基板204の表面204aから突出した位置で、保持部200を任意の水平方向へ摺動自在に支持する。

【0151】支持部材314の複数の弾性梁部分316は、ポインティングデバイス310の中心軸線Pを中心として放射状に配置され、それらの径方向外端を支点として、互いに独立して弾性的に変位できる。特にこの実施形態では、各弾性梁部分316を、支持部材314の平面視で略正方形輪郭の各項点部位から径方向へ延設したので、小型化かつ薄型化した支持部材314において、弾性梁部分316の長さを最大限に確保できる。その結果、弾性梁部分316の弾性力の増加及びスイッチ作動時の押下操作力の軽減を図ることができる。また、この実施形態では、全ての弾性梁部分316が同一の長さを有し、中心軸線Pの周囲に対称に配置される。

【0152】支持部材314にはさらに、隣り合う弾性 梁部分316の間にそれぞれ扇形に広がる取付部分318が形成される。それら取付部分318の径方向外縁には、各弾性梁部分316の支持面316aを囲繞する方向に円弧状に延びる複数(図では4個)の溝320が凹設される。各溝320は、回路基板204の表面204aからの高さが支持面316aよりも低い位置まで凹設される。それら溝320は、中心軸線Pを中心とする同一円周上に配置され、中心軸線Pが、複数の支持面316a上での保持部200は、そのフランジ部分228の軸線方向端面を、複数の弾性梁部分316の支持面316aに一様に当接した状態で、それら支持面316aに一様に当接した状態で、それら支持面316a上で360・全方位へ摺動しつつ平行移動できる。

【0153】また、複数の弾性梁部分316のうちで所望の1つの弾性梁部分316には、その径方向内端の自由端に、支持面316aの反対側に局部的に隆起する押圧点322が形成される。押圧点322は、ポインティングデバイス310の中心軸線Pから径方向へずれた位置に配置される。そして、回路基板204の表面204aに実装されるスイッチ機構284は、支持部材314の1つの弾性梁部分316に設けた押圧点322の直下に位置決めされる。

【0154】さらに、支持部材314の互いに対向する

一対の取付部分318には、溝320の反対側に位置決めピン324が突設される。支持部材314は、それら位置決めピン324を、回路基板204の対応位置に設けられた穴298に嵌入することにより、回路基板204上の所定位置に固定的に組み付けられる。なお、カバー部材216は、支持部材314の四辺に沿って側方へ突設された複数の爪326を、各延長片220の対応の取付孔222にスナップ式に嵌着することにより、支持部材314に固定的に組み付けられる。

【0155】支持部材314の複数の溝320には、弾性部202の第2連結部分236が挿入される。すなわち、弾性部202の第2連結部分236は、その肉厚部分で、支持部材314の複数の溝320とカバー部材216の端板部分216aとの間に固定的に挟持かつ掛止される。したがって、弾性部202の第2連結部分236には、支持部材314の複数の弾性梁部分316に対応する位置に、弾性梁部分316の一部分を受容する切欠き236aが形成される。弾性部202の第1及び第2連結部分234、236は、基部312上で保持部200が水平移動する間に実質的に変形することなく、弾性部202を保持部200及び基部312にそれぞれ固定的に連結する。

【0156】上記構成を有するポインティングデバイス 310は、前述したポインティングデバイス280と同 様にして、基部312上で操作部194を水平移動操作 することによりアナログデータを入力できるとともに、 操作部194を押下操作することにより例えば搭載対象 機器のディスプレイ上のポインタに関連してクリック操 作を実施することができる。特にポインティングデバイ ス310では、基部312を構成する支持部材314 に、ポインティングデバイス280で支持部材286に 設けた複数の円弧壁290の代わりに、支持面316a よりも低い位置まで凹設される複数の溝320を形成 し、これら溝320に第2連結部分236を挿入して弾 性部202を支持部材314に取り付ける構成としたか ら、支持部材314のさらなる薄型化が可能となる。し たがってポインティングデバイス310では、前述した ポインティングデバイス280に比べて、高さ方向の寸 法を一層効果的に削減することができる。

【0157】なお、ボインティングデバイス310においては、図39に示すように、支持部材314の各弾性 梁部分316及び各取付部分318に、支持面316 a 上での操作部194の保持部200の水平移動範囲を規定する円弧状のリブ328を突設することもできる。これらのリブ328は、弾性部202の固定には関与しないので、支持面316aからの突出高さを可及的に削減でき、したがって支持部材314の薄型化を妨げないものである。

【0158】さらに、ポインティングデバイス310では、支持部材314に設けた複数の弾性梁部分316

を、全て同一の寸法及び形状に形成して中心軸線Pの周囲に対象に配置したので、オペレータが操作部194に押下力を加えたときの弾性梁部分316からの反発力が平衡し、結果として正確なスイッチ押下操作を遂行可能とする利点が得られる。特に、図41に示すように、スイッチ機構284を押圧するための押圧点322を、1つの弾性梁部分316上で、水平移動範囲の原点位置にある保持部200のフランジ部分228に重量する位置に配置すれば、操作部194の保持部200から複数の弾性梁部分316に加えられる押下力を、無駄なくスイッチ機構284に伝達することができる。その結果、オペレータによる押下操作力が軽減され、スイッチ操作性が向上する。

【0159】上記のように押圧点322をポインティングデバイス310の中心軸線Pからずれた位置に配置する構成では、支持部材314と回路基板204との間に、組立時に互いに合致させるべき方向性が生じる。したがって、図42に示すように、互いに対向する一対の弾性梁部分316に押圧点322を設けたり(図42(a))、全ての弾性梁部分316に押圧点322を設けたり(図42(b))することが、組立作業性を向上させる観点で有利である。

【0160】クリック機能を有する上記したポインティングデバイス280、310においては、操作部194を押下操作する際に、操作部194を基部282、312及びスイッチ機構284に対して正確に鉛直方向(すなわち操作部194の水平移動方向に略直交する方向)へ変位させることが、カーソル移動データ等のアナログデータの意図しない入力を回避する点で肝要である。そこで、ポインティングデバイス280、310に、操作部194をスイッチ機構284に対して鉛直方向に案内する案内部分を設けることが有利である。

【0161】図43及び図44は、そのような案内部分を有したポインティングデバイス310の変形例を示す。この変形例では、支持部材314に設けた複数の取付部分318の各々に、径方向内方へ扇形に延長される案内部分330は、それぞれの内周縁330aが、保持部200のフランジ部分228の外径寸法よりも僅かに大きな直径の、ポインティングデバイス310の中心軸線Pを中心とした同一円周上に配置される。また、各案内部分330の表面330bは、無負荷時の弾性梁部分316の支持面316aと同一の平面上に配置され、複数の支持面316aと協働して、保持部200を任意の水平方向へ摺動自在に支持する。

【0162】このような構成によると、保持部200が水平移動範囲の原点位置にあるときに操作部194を押下操作すれば、保持部200のフランジ部分228が支持部材314の複数の案内部分330によってスイッチ機構284に対し鉛直方向へ正確に案内される。この

間、磁石196と複数の磁電変換素子198との間に水平方向への相対移動は生じないので、カーソル移動データ等のアナログデータの意図しない入力が回避される。また、保持部200が水平移動範囲の原点位置から移動している間は、操作部194に押下力を負荷しても、保持部200のフランジ部分228が支持部材314の案内部分330に干渉するので、弾性梁部分316を押し下げることができない。したがってこの構成によれば、クリック操作等を行う際のスイッチ操作位置を、保持部200の水平移動範囲の原点位置のみに特定することができる。

83

【0163】ところで、前述した本発明の種々の実施形態による磁電変換素子型のポインティングデバイスを、携帯電話等の携帯型情報機器に搭載する場合、小型化されたポインティングデバイスの各種構成部品の取り扱いが煩雑になり、情報機器全体の組立作業性が悪化することが懸念される。図45~図55は、本発明に係るポインティングデバイスを搭載した携帯型情報機器であって、それ自体の組立作業性を向上させる構造を有する本発明の種々の実施形態による携帯型情報機器の主要部を示す。

【0164】図45は、本発明の一実施形態による携帯型情報機器(例えば携帯電話)の構成部品である回路基板340及びキーパネル342を示す。この携帯型情報機器は、前述した第8実施形態によるポインティングデバイス260を、組立作業性を向上させる構造の下で搭載したものであり、対応する構成要素には同一の参照符号を付してその説明を省略する。

【0165】図45(a)に示すように、回路基板340は、その表面340aに、携帯型情報機器の主入力部である複数のスイッチ344を、所定の整列配置で搭載して備えている。さらに回路基板340には、表面340aの所定位置に、ボインティングデバイス260の弾性部202を取り付けるための複数(図で4個)の円弧状の溝孔346が形成される。各溝孔346は、図33に示す回路基板264の溝孔268に対応し、それら溝孔346に囲繞される円形領域に、操作部194の保持部200を任意の水平方向へ摺動自在に支持する平坦な支持面266が画定される。回路基板340の裏面340には、支持面266に対応する位置に、4個の磁電変換素子198が、ボインティングデバイス260の中心軸線Pを中心とした等間隔分散配置で実装される(図45(b))。

【0166】キーパネル342は、例えばゴム等の弾性 材料から一体成形された薄板状部材であり、その表面3 42aには、回路基板340の複数のスイッチ344に 対応する位置に複数のキートップ348が突設される。 さらにキーパネル342には、回路基板340の支持面 266に対応する位置に、ポインティングデバイス26 0の弾性部202が一体的に形成される。つまり、弾性 部202は、その第2連結部分236で、複数のキートップ348を有するキーパネル342に一体に連結される。そして、弾性部202の主部分232及び第1連結部分234が、キーパネル342の表面342aに突設されるとともに、第2連結部分236の複数の肉厚部分236bが、キーパネル342の裏面342bに突設される。

【0167】図46(a)に示すように、キーパネル3 42に形成した弾性部202には、磁石196を収容し た保持部200及び保持部200に取り付けられたヨー ク230が、第1連結部分234の裏側の凹所に固定的 に受容される。この状態でキーパネル342は、その裏 面342bを回路基板340の表面340aに接触させ て、各キートップ348と各スイッチ344とが整合す る所定の相対位置関係で回路基板340に組み付けられ る。このとき、弾性部202の第2連結部分236に形 成した複数の肉厚部分236bが、回路基板340の対 応の溝孔346にそれぞれ嵌入される。それにより保持 部200は、回路基板340の支持面266上に適正に 位置決めして摺動可能に載置される。さらに、回路基板 340に組み付けられたキーパネル342に、携帯型情 報機器の筐体350を被せることにより、弾性部202 の第2連結部分236が、回路基板340と筐体350 との間に固定的に挟持かつ掛止される(図46

(b))。このようにして、携帯型情報機器に一体的に 組み込まれたポインティングデバイス260が完成する。

【0168】上記構成によれば、ポインティングデバイス260の本来の構成要素である弾性部202と回路基板264とを、ポインティングデバイス260を搭載する携帯型情報機器の必須の構成要素であるキーパネル342と回路基板340とに、それぞれ一体化したから、ポインティングデバイス260自体の独立した構成部品の点数が削減される。しかも、ポインティングデバイス260を組み立てる際に、携帯型情報機器の主要部品を装備した大判のキーパネル342及び回路基板340に対して、他の小寸の構成部品群を組み合わせていくことができるので、ポインティングデバイス260自体の組立作業性、及びポインティングデバイス260を搭載した携帯型情報機器の組立作業性が、著しく向上する。

【0169】上記した携帯型情報機器は、回路基板34 0とキーパネル342とを組み合わせた後に筐体350 を取り付ける構成となっているが、先にキーパネルに筐 体を取り付け、次いでキーパネルを回路基板に組み付け る手順が採られる場合がある。図47は、このような手 順に対応できる変形例としてのキーパネル342及び筐 体350を示す。

【0170】この変形例では、キーパネル342に一体成形された弾性部202は、その第2連結部分236の 肉厚部分236bを、キーパネル342の表面342a に突設して備えている(図47(a)。これに対応して、筐体350の裏面350aには、弾性部202を挿入する開口部352の問囲に、第2連結部分236の肉厚部分236bをそれぞれに受容する複数の溝354が形成される(図47(b))。そこで、キーパネル342を、弾性部202及び複数のキートップ348を筐体350に設けた開口部352及び複数のキー孔356にそれぞれ挿入しつつ、筐体350に組み付ける。このとき、弾性部202の第2連結部分236に形成した複数の肉厚部分236bが、筐体350の対応の溝354にそれぞれ嵌入される。

【0171】このようにして筺体350を取り付けたキーパネル342は、弾性部202に磁石196、保持部200及びヨーク230を受容した状態で、その裏面342bを回路基板340の表面340aに接触させて、各キートップ348と各スイッチ344とが整合する所定の相対位置関係で回路基板340に組み付けられる。それにより、保持部200は、回路基板340の支持面266上に適正に位置決めして摺動可能に載置され、弾性部202の第2連結部分236は、回路基板340と筺体350との間に固定的に挟持かつ掛止される(図48)。このようにして、携帯型情報機器に一体的に組み込まれたポインティングデバイス260が完成する。

【0172】図49~図51は、本発明の他の実施形態による携帯型情報機器(例えば携帯電話)の構成部品である回路基板360、キーパネル362及び筺体364を示す。この携帯型情報機器は、前述した第1実施形態によるポインティングデバイス10に類似した構成を有するポインティングデバイス366を、組立作業性を向上させる構造の下で搭載したものであり、ポインティングデバイス10に対応する構成要素には同一の参照符号を付してその説明を省略する。

【0173】図49に示すように、回路基板360は、その表面360aに、携帯型情報機器の主入力部である複数のスイッチ368を、所定の整列配置で搭載して備えている。また、キーパネル362は、例えばゴム等の弾性材料から一体成形された薄板状部材であり、その表面362aには、回路基板360の複数のスイッチ368に対応する位置に複数のキートップ370が突設される。

【0174】筐体364は、樹脂材料から一体成形された薄板状部材であり、キーパネル362の複数のキートップ370に対応する位置に複数のキー孔372が貫通形成される。さらに筐体364には、その表面364aの所定位置に凹状領域が設けられ、この凹状領域の底部に、ボインティングデバイス366の支持部材26が一体的に形成される。つまり、支持部材26は、その円筒壁30の外側領域にて、複数のキー孔372を有する筐体364に一体に連結される。そして、支持部材26の支持面28a及び円筒壁30が、筐体364の表面36

4 a 側に配置される.

【0175】図50及び図51に示すように、筐体364に形成した支持部材26には、磁石16を収容した保持部20及び保持部20に取り付けられた弾性部22が、保持部20の軸線方向端縁を支持面28a上に摺動可能に載置した状態で搭載される。さらに、弾性部22の第2連結部分54を覆うようにして、環状のカバー部材36を筐体364に取り付けることにより、弾性部22の第2連結部分54が、筐体364上で固定的に掛止される。

【0176】この状態で、回路基板360、キーパネル362及び筐体364を、それぞれのスイッチ368、キートップ370及びキー孔372が互いに整合する所定の相対位置関係で相互に組み付ける。このとき、キーパネル362は、筐体364に形成した支持部材26に重畳しない輪郭形状を有し、また回路基板360の裏面360bには、支持部材26の支持面28aに対応する位置に、4個の磁電変換素子18が、ボインティングデバイス366の中心軸線Pを中心とした等間隔分散配置で実装されている。このようにして、携帯型情報機器に一体的に組み込まれたボインティングデバイス366が完成する。

【0177】上記構成によれば、ポインティングデバイス366の本来の構成要素である支持部材26と回路基板24とを、ポインティングデバイス366を搭載する携帯型情報機器の必須の構成要素である筐体364と回路基板360とに、それぞれ一体化したから、ポインティングデバイス366自体の独立した構成部品の点数が削減される。しかも、ポインティングデバイス366を組み立てる際に、携帯型情報機器の主要部品を装備した大判の筐体364及び回路基板360に対して、他の小寸の構成部品群を組み合わせていくことができるので、ポインティングデバイス366自体の組立作業性、及びポインティングデバイス366を搭載した携帯型情報機器の組立作業性が、著しく向上する。

【0178】さらに上記構成では、図51に示すように、回路基板360の表面360aと筺体364に形成した支持部村26との間に空間を形成することができるので、回路基板360上の電子部品の実装可能領域が拡大される利点がある。なお、上記構成において、ボインティングデバイス366にクリック機能を有するスイッチ機構を付加する場合は、支持部村26の代わりに、図52に示すように、前述したボインティングデバイス310における複数の弾性梁部分316を有する支持部材314を、筐体364に一体成形すればよい。

【0179】図53~図55は、本発明のさらに他の実施形態による携帯型情報機器(例えば携帯型キーボード)の構成部品である下部パネル380、メンブレンシート382、スイッチパネル384及びキートップ386を示す。この携帯型情報機器は、前述した第1実施形

態によるポインティングデバイス10に類似した構成を 有するポインティングデバイス388を、粗立作業性を 向上させる構造の下で搭載したものであり、ポインティ ングデバイス10に対応する構成要素には同一の参照符 号を付してその説明を省略する。

【0180】図53に示すように、スイッチパネル384は、樹脂材料から一体成形された薄板状部材であり、メンブレンシート382に形成された複数のスイッチ(図示せず)に対応する位置に複数の開口部390が貫通形成される。さらにスイッチパネル384には、その表面384aの所定位置に凸状領域が設けられ、この凸状領域の底部に、ボインティングデバイス388の支持部材26が一体的に形成される。つまり、支持部材26は、その円筒壁30の外側領域にて、複数の開口部390を有するスイッチパネル384に一体に連結される。そして、支持部材26の支持面28a及び円筒壁30が、スイッチパネル384の表面384a側に配置される。

【0181】図54及び図55に示すように、スイッチパネル384に形成した支持部材26には、磁石16を収容した保持部20及び保持部20に取り付けられた弾性部22が、保持部20の軸線方向端縁を支持面28a上に摺動可能に載置した状態で搭載される。さらに、弾性部22の第2連結部分54を覆うようにして、カバー部材36をスイッチパネル384上で固定的に掛止される。

【0182】この状態で、メンブレンシート382とスイッチパネル384とを、それぞれのスイッチと開口部390とが互いに整合する所定の相対位置関係で相互に組み付けて、下部パネル380上に裁置する。このとき、メンブレンシート382とスイッチパネル384との間には、磁電変換索子18を実装した回路基板24が、支持部材26の支持面28aの反対側に形成される空間に磁電変換索子18を挿入した状態で配置されている。さらに、スイッチパネル384の各開口部390に設置されるスイッチ作動機構(図示せず)に対応のキートップ386を組み付けるとともに、ポインティングデバイス388の弾性部22にキートップ392を取り付ける。このようにして、携帯型情報機器に一体的に組み込まれたポインティングデバイス388が完成する。

【0183】上記構成においても、ポインティングデバイス388の本来の構成要素である支持部材26を、ポインティングデバイス388を搭載する携帯型情報機器の必須の構成要素であるスイッチパネル384に一体化したから、ポインティングデバイス388自体の独立した構成部品の点数が削減されるとともに、ポインティングデバイス388自体の組立作業性、及びポインティングデバイス388を搭載した携帯型情報機器の組立作業性が、著しく向上する。

【0184】ところで、前述したクリック機能を有する 本発明の種々の実施形態によるポインティングデバイス 80、100、280、310は、操作部14、194 を、基部82、102、282、312に対して鉛直方 向へ押下操作することにより、スイッチ機構84、28 4を作動させるように構成される。この構成では、操作 部14、194の押下操作に伴って、保持部20、20 0に保持された磁石16、196が基部82、102、 282、312上の複数の磁電変換索子18、198に 対して必然的に移動する。このときの磁石16、196 の移動方向が、複数の磁電変換素子18、198に対し て水平方向成分を含んでいる場合には、クリック操作の 直前に、それら磁電変換素子18、198の出力電圧の 変動により、カーソル移動データ等のアナログデータの 信号がポインティングデバイス80、100、280、 310から出力されてしまう懸念がある。そこで、適正 なクリック操作を実施するためには、操作部14、19 4を基部82、102、282、312に対して正確に 鉛直方向へ押し込むことが必要となり、そのための案内 構造を追加装備するか、さもなければオペレータの熟練 が要求されることになる。

【0185】これに対し、図56~図58に示す本発明 の第11の実施形態によるポインティングデバイス40 Oは、低背型でかつ適正なクリック操作を極めて容易に 実施できる構造を有する。ポインティングデバイス40 0は、基部402と、基部402に対して任意の水平方 向へ変位可能に基部402上に支持される操作部404 と、操作部404に設置される円環状の磁石(例えば永 久磁石)406と、磁石406の近傍で基部402に設 置される複数の磁電変換素子 (例えばホール素子) 40 8と、基部402と操作部404との間に配置されるス イッチ機構410とを備える。操作部404は、磁石4 06を固定的に保持して基部402上に水平方向へ移動 可能に支持される保持部412と、保持部412に連結 され、基部402上での保持部412の水平移動に伴 い、保持部412を水平移動範囲の原点位置に復帰させ る弾性力を発揮する弾性部414と、保持部412から 独立して、基部402上に、水平方向に略直交する鉛直 方向へ移動可能に配置される作動部416とを備えて構 成される.

【0186】基部402は、図示しないCPU等の電子部品が実装される回路基板418と、回路基板418に固定的に連結される支持部材420とを備える。支持部材420は、平面視で略正方形の板状部材であり、その中央の略円形の凹状領域に、操作部404の保持部412を任意の水平方向へ摺動自在に支持する円環状の支持部分422を有するとともに、支持部分422の中心に形成される円形の開口424にスイッチ機構410を挿入した状態で、回路基板418の表面418aに隙間を介さずに搭載される。なお、この実施形態において「水

平方向」とは、回路基板418の略平坦な表面418aに実質的平行な方向を意味する。したがって支持部材420の支持部分422には、回路基板418から離れた側に、回路基板418の表面418aに実質的平行に広がる平坦かつ円環状の支持面422aが形成される。支持面422aは、回路基板418の表面418aから突出した位置で、保持部412を任意の水平方向へ摺動自在に支持する。

Į.

【0187】支持部材420にはさらに、支持面422 aを囲機するようにして、操作部404の保持部412の水平移動範囲を規定する円筒壁426が突設される。円筒壁426は、回路基板418の表面418aからの高さが支持面422aよりも高い位置まで突設され、後述するように弾性部414がその一部分で円筒壁426を包囲して支持部材420に取り付けられる。開口424の中心を通る円筒壁426の中心軸線は、ボインティングデバイス400の中心軸線Pを構成するとともに、支持面422a上での保持部412の水平移動範囲の原点位置を規定する。支持部材420は、例えば接着剤を用いて、回路基板418上の所定位置に固定的に組み付けられる。

【0188】回路基板418の表面418aには、平面 視で略円形輪郭を有するスイッチ機構410が、中心軸 線Pを中心として搭載される。また、回路基板418の 裏面418bには、計4個の磁電変換素子408が、中 心軸線Pを中心とした等間隔分散配置で実装される。こ のような磁電変換素子408の配置構成により、ポイン ティングデバイス400は二次元座標系におけるアナロ グデータ信号を出力できるようになっている。

【0189】基部402はさらに、支持部材420の外 縁領域420aを実質的に遮蔽して支持部材420に固 定的に連結されるカバー部材428を備える。カバー部 材428は、支持部材420に対応する平面視略正方形 状を有する薄板状部材であり、その端板部分428aの 中央領域に、後述する操作部404の主要操作部分を水 平移動可能に挿通させる略円形の中心開口430を有す る.カバー部材428の外縁には、四辺に沿ってそれぞ れ延長片432が端板部分428aに略直交する方向へ 延設され、各延長片432に、板厚方向へ貫通する取付 孔434が貫通形成される。カバー部材428は、支持 部材420の四辺に沿って側方へ突設された複数の爪4 36を、それら延長片432の対応の取付孔434に、 各延長片432の弾性変形を利用してスナップ式に嵌着 することにより、支持部材420に固定的に組み付けら れる。カバー部材428は、中心開口430を通して操 作部404の主要操作部分を外方に突出させた状態で、 操作部404を基部402から脱落しないように保持す る。なお、このような構成を有するカバー部材428 は、所望の板金材料から作製できる。

【0190】図示実施形態では、操作部404の保持部

412及び弾性部414は、別部材として個別に作製されて、互いに固定的に組み合わされる。保持部412 は、操作部404を基部402上で水平移動操作する間に実質的に変形しない程度の剛性を有する円環状の部材からなる。保持部412の軸線方向一端面(図で上端面)には、同心円状に突設された内周盤438と中間壁440との間に、磁石406を収容する環状凹部442が形成される。磁石406は、例えば接着剤を用いたり圧入したりすることにより、保持部412の環状凹部442に固定できる。保持部412は、その軸線方向他端面を、基部402の支持部材420の支持面422aに一様に当接した状態で、支持面422a上で360°全方位へ摺動しつつ平行移動できる。

【0191】弾性部414は、操作部404を基部40 2上で水平移動操作する間に比較的容易に弾性変形する 椀状の部材からなり、保持部412の周囲に隙間を介し て延長される主部分444と、主部分444の一端で保 持部412に連結される第1連結部分446と、主部分 444の他端で基部402に連結される第2連結部分4 48とを一体に有する。弾性部414の主部分444 は、保持部412を実質的全周に渡って囲繞するととも に、無負荷状態で保持部412に対し同軸に配置される 円錐台状又はドーム状の輪郭形状を有する。したがって 弾性部414は、その主部分444が、基部402上で の保持部412の水平移動に伴い弾性変形するととも に、変形量に対応する弾性力を、保持部412の水平移 動方向に関わらず一様に発揮する。

【0192】 弾性部414の第1連結部分446は、円錐台状輪郭の主部分444の小径端から径方向内方へ円環状に一体に延長され、その内側に形成される窪みに、磁石406を保持した保持部412の内周壁438と中間壁440とが固定的に嵌入される。弾性部414の第1連結部分446は、例えば接着剤を用いたり圧入したりすることにより保持部412に固定できる。さらに第1連結部分446は、その中央に、保持部412の内周壁438及び中間壁440に対して同心に貫通形成される円筒状の受容穴450を有する。第1連結部分446は、保持部412及び磁石406の軸線方向一端面を密接被覆して延び、その外面に、オペレータが操作部404を移動操作する際に例えば手の指先を接触させる操作面452が形成される。

【0193】弾性部414の第2連結部分448は、円錐台状輪郭の主部分444の大径端から径方向及び軸線方向へフランジ状に突出して一体に延長され、その肉厚部分で、基部402を構成する支持部材420の円筒壁426の外側環状満領域426aとカバー部材428の端板部分428aとの間に固定的に挟持かつ掛止される。第1及び第2連結部分446、448は、基部402上で保持部412が水平移動する間に実質的に変形することなく、弾性部414を保持部412及び基部40

2にそれぞれ固定的に連結する.

【0194】なお弾性部414は、合成ゴム、天然ゴム等の種々の弾性材料から形成できる。特に、ボインティングデバイス400を搭載対象機器の主回路基板に実装する際にリフロー工程を実施することを考慮すれば、シリコンゴム等の、高温下でも性質が劣化し難い材料から形成することが有利である。

【0195】作動部416は、基部402上で鉛直移動 操作される間に実質的に変形しない程度の剛性を有する 円柱状の部材からなる。作動部416の軸線方向一端 (図で下端)には、径方向外方へ突縁部分416aが一 体的に延設される。また、作動部416の軸線方向他端 には、オペレータが作動部416を押下操作する際に例 えば手の指先を接触させる押下操作面454が形成され る。作動部416は、弾性部414から分離されて、弾 性部414の第1連結部分446に設けた受容穴450 に隙間を介して受容される。このとき作動部416は、 その突縁部分416aが、保持部412の内周壁438 から径方向内方へ僅かに突設された肩部分438aに、 磁石406とは反対側で係合できるように方向付けされ る。作動部416の突縁部分416aが保持部412の 肩部分438aに係合した状態で、作動部416の押下 操作面454は、弾性部414の操作面452の中央で 僅かに隆起して配置される。

【0196】作動部416の軸線方向一端面(図で下端面)には、その中央に、局部的に隆起する押圧点456が形成される。押圧点456は、ボインティングデバイス400の中心軸線P上に整合して配置される。操作部404を基部402に適正に組み付けた状態で、作動部416は、その押圧点456を、支持部材420の開口424内に配置されたスイッチ機構410に当接して、操作部404内で鉛直方向へ移動可能に、スイッチ機構410に支持される。

【0197】なお、スイッチ機構410の構成は任意であり、可動接点がばねに担持されるメカニカルスイッチや、一対のフレキシブル回路基板を有するメンブレンスイッチ等、様々なものを採用できる。また、スイッチ機構410の外形寸法によっては、複数の磁電変換素子408を、支持部材420の開口424内に設置することもできる。

【0198】上記した各種構成部品を適正に組み合わせた状態で、操作部404は、弾性部414の主部分444及び第1連結部分446並びに作動部416の押下操作面454を含む部分を、基部402のカバー部材428の中心開口430に水平移動可能に揮通するとともに、カバー部材428の端板部分428aから外方に突出した位置に配置する。この状態でオペレータは、弾性部414の第1連結部分446に形成される操作面238を、例えば手指により操作して、保持部412を基部402上で水平移動させることができるとともに、作動

部416の押下操作面454を、例えば手指により押下操作して、作動部416を基部402上で鉛直移動させることができる。

【0199】図58に示すように、操作部404の弾性 部414が平衡状態にあるときには、保持部412及び その環状凹部442に保持される磁石406並びに作動 部416の中心軸線Qは、ポインティングデバイス40 0の中心軸線Pに合致する。この状態で保持部412 は、基部402の支持部材420上で水平移動範囲の原 点位置に位置決めされ、回路基板418上の4個の磁電 変換素子408が磁石406から等距離の位置に配置さ れる。この状態から、オペレータが操作面452に指先 を当接して保持部412を任意の水平方向へ平行移動さ せると、弾性部414の主部分444が、保持部412 の移動方向及び移動距離に対応して、全周に渡り異なる 形態の弾性変形を生じる(図59(a))。それにより 弾性部414は、主部分444の全体で合力としての弾 性力を発揮し、保持部412をその移動方向と反対の方 向に付勢する。したがってオペレータは、弾性部414 の主部分444が生ずるばね付勢力に抗して、操作部4 04を水平移動操作することになる。

【0200】また、図58に示す原点位置において、オペレータが操作部404の作動部416の押下操作面454を例えば指先で押下して、作動部416の押圧点456をスイッチ機構410に押し付けることにより、スイッチ機構284を閉成させることができる(図59(b))。このとき、保持部412は、支持部材420の支持面422a上に静止支持されているので、オペレータの押下操作力が弾性部414の操作面452に負荷されたとしても、保持部412すなわち磁石406の鉛直方向移動は確実に回避される。

【0201】このように、ボインティングデバイス400では、操作部404に実質的水平方向への操作力を負荷することにより、保持部412の移動方向及び移動距離に対応したアナログ情報を入力できるとともに、原点位置にある操作部404に実質的鉛直方向への押下操作力を負荷することにより、例えば搭載対象機器のディスプレイ上のボインタに関連してクリック操作を実施することができる。しかも押下操作時には、基部402に対する保持部412の鉛直方向移動を確実に防止できるので、磁石406と複数の磁電変換案子408との相対移動が排除される。したがってボインティングデバイス400では、適正なクリック操作を極めて容易に実施できる

【0202】また、ポインティングデバイス400では、前述した第9実施形態によるポインティングデバイス280と同様に、基部402及び操作部404を構成する各構成要素を薄型化したから、全体として低背化を実現することができる。なお、第10実施形態によるポインティングデバイス310と同様に、支持部材420

に、弾性部414の第2連結部分448を取り付ける環状の溝を、円筒壁426に代えて形成することにより、 さらなる低背化を実現することもできる。

【0203】図60及び図61は、低背型でかつ適正なクリック操作を極めて容易に実施できる本発明の第12の実施形態によるポインティングデバイス460を示す。ポインティングデバイス460は、操作部の作動部の構成以外は、前述した第11実施形態によるポインティングデバイス400と実質的同一の構成を有するので、対応する構成要素には同一の参照符号を付してその説明を省略する。

【0204】ポインティングデバイス460は、基部402と、基部402に対して任意の水平方向へ変位可能に基部402上に支持される操作部462と、操作部462に設置される磁石406と、磁石406の近傍で基部402に設置される複数の磁電変換索子408と、基部402と操作部462との間に配置されるスイッチ機構410とを備える。基部402は、図示しないCPU等の電子部品が実装される回路基板418と、回路基板418に固定的に連結される支持部材420と、支持部材420の外縁領域420aを実質的に遮蔽して支持部材420に固定的に連結されるカバー部材428とを備える。

【0205】操作部462は、磁石406を保持して基部402上に水平移動可能に支持される保持部412 と、保持部412をその水平移動範囲の原点位置に復帰させる弾性部414と、保持部412から独立して、基部402上に、水平方向に略直交する鉛直方向へ移動可能に配置される作動部464とを備えて構成される。作動部464は、弾性部414の第1連結部分446に一体的に連結されて、受容穴450内に収容される。詳述すれば、作動部464は、その軸線方向一端(図で下端)に径方向外方へ延設された突縁部分464aにて、弾性部414の第1連結部分446の受容穴450を画定する内周壁に、例えば弾性部414と同一の材料から一体的に成形される。

【0206】作動部464の軸線方向他端には、オペレータが作動部464を押下操作する際に例えば手の指先を接触させる押下操作面466が形成される。作動部464に押下力が負荷されない状態では、作動部464の押下操作面466は、弾性部414の操作面452の中央で僅かに隆起して配置される。また、作動部464に押下力が負荷されたときには、弾性部414と作動部464との相互連結領域が弾性変形しつつ、作動部464が弾性部414の受容穴450内で鉛直方向へ移動する。なお、作動部464に押下力が負荷されたときに、弾性部414と作動部464との相互連結領域が障害無く弾性部414と作動部464との相互連結領域が障害無く弾性変形できるように、図示のように保持部412の内周壁438(図56)を省略することが望ましい。

【0207】作動部464の軸線方向一端面(図で下端

面)には、その中央に、局部的に隆起する押圧点468が形成される。押圧点468は、ポインティングデバイス460の中心軸線P上に整合して配置される。操作部462を基部402に適正に組み付けた状態で、作動部464は、その押圧点468を、支持部材420の開口424内に配置されたスイッチ機構410に当接して、操作部462内で鉛直方向へ移動可能に、スイッチ機構410に支持される。

【0208】上記構成を有するポインティングデバイス 460は、前述したポインティングデバイス400と同 様にして、操作部462に実質的水平方向への操作力を 負荷することにより、基部402上での保持部412の 移動方向及び移動距離に対応したアナログ情報を入力で きる(図62(a))。また、図61に示す原点位置に おいて、オペレータが操作部462の作動部464の押 下操作面466を例えば指先で押下して、作動部464 の押圧点468をスイッチ機構410に押し付けること によりスイッチ機構410を作動させることができる (図62(b))。このとき、基部402に対する保持 部412の鉛直方向移動が確実に防止されるので、例え ば搭載対象機器のディスプレイ上のポインタに関連し て、適正なクリック操作を極めて容易に実施できる。特 にポインティングデバイス460では、操作部462の 弾性部414と作動部464とを一体化したので、部品 点数が削減され、組立作業性が向上する利点が得られ る。

【0209】押下操作専用の作動部416、464を有する上記したポインティングデバイス400、460においては、押下操作時に、作動部416、464を正確に鉛直方向へ移動させることだけでなく、保持部412を支持部材420上で無意識に水平方向へ移動させないようにすることが、カーソル移動データ等のアナログデータの意図しない入力を回避する点で肝要である。そこで、ポインティングデバイス400、460に、作動部416、464をスイッチ機構410の直上の限られた位置でのみ鉛直方向に案内する案内部分を設けることが有利である。

【0210】図63は、そのような案内部分を有したポインティングデバイス460の変形例を示す。この変形例では、支持部材420に設けた開口424が、作動部464の突縁部分464aの外径寸法よりも僅かに大きな径寸法を有するように形成されている。また、作動部464に押下力を負荷しない状態では、作動部464の底面が支持部材420の支持面422aよりも回路基板418の表面418aから僅かに違い位置に配置されるように形成されている。

【0211】このような構成によると、作動部464に押下力を負荷しないようにして操作部462を水平移動操作すれば、作動部464が支持部材420に干渉することなく、保持部412が支持面422a上で所望の水

平方向へ円滑に摺動する(図63(a)). 保持部41 2が水平移動している間に、作動部464に押下力を加 えたとしても、作動部464が支持部材420の支持面 422aに衝突するので、スイッチ機構410を作動さ せることができない。また、保持部412が水平移動範 囲の原点位置にあるときに作動部464を押下操作すれ ば、作動部464の突縁部分464aが、支持部材42 0の開口424によってスイッチ機構410の直上で鉛 直方向へ正確に案内される(図63(b))。この間、 操作部462に無意識に水平方向分力が負荷されたとし ても、作動部464が開口424内で支持部材420に 衝突するので、保持部412は水平方向へ移動しない。 したがってこの構成によれば、クリック操作等を行う際 のスイッチ操作位置を、保持部412の水平移動範囲の 原点位置のみに特定できるとともに、スイッチ操作時に カーソル移動データ等のアナログデータの意図しない入 力を確実に回避できる.

【0212】また、弾性部414に一体成形した作動部464を有する上記したポインティングデバイス460においては、図64に他の変形例として示すように、作動部464に、弾性部414から独立したキートップ470を装備することができる。この場合、作動部464は、弾性部414に連結される突縁部分464aの近傍領域のみを弾性部414と一体的に成形するとともに、この一体成形部分の、弾性部414の操作面452側に、キートップ470を固定することにより構成できる(図65(a))。そしてキートップ470には、操作面452に近接するその軸線方向端面に、作動部464を鉛直方向へ押圧操作するための押圧操作面472が形成される。

【0213】この構成によれば、弾性部414とは異な る材料から作製されるキートップ470を装備すること により、作動部464の視認性及び押下操作性、並びに 操作部462全体の意匠性を向上させることができる。 特に、図示のように、キートップ470の軸線方向他端 面の中央に押圧ピン474を突設し、この押圧ピン47 4を、作動部464の一体成形部分の中央に設けた貫通 孔464bに挿通して、その先端を作動部464からス イッチ機構410に向けて突出させることが好ましい。 この構成によれば、弾性部414よりも硬質の材料から 形成されるキートップ470の押圧ピン474により、 スイッチ機構410を正確に作動させることができる。 【0214】さらに、操作部462の寸法の増加を許容 できる場合は、図65(b)に示すように、磁石406 の内径寸法よりも大きな外径の押下操作面476を有す るキートップ478を、作動部464に装備することも できる。この構成では、作動部464の視認性及び押下 操作性を一層向上させることができる。

【0215】図66及び図67は、押下操作専用の作動 部を有する本発明の第13の実施形態によるポインティ ングデバイス480を示す。ポインティングデバイス480は、操作部の構成以外は、前述した第11実施形態によるポインティングデバイス400と実質的同一の構成を有するので、対応する構成要素には同一の参照符号を付してその説明を省略する。

【0216】ボインティングデバイス480は、基部402と、基部402に対して任意の水平方向へ変位可能に基部402上に支持される操作部482と、操作部482に設置される磁石484と、磁石484の近傍で基部402に設置される複数の磁電変換案子408と、基部402と操作部482との間に配置されるスイッチ機構410とを備える。基部402は、図示しないCPU等の電子部品が実装される回路基板418と、回路基板418に固定的に連結される支持部材420と、支持部材420に固定的に連結されるカバー部材428とを備える。スイッチ機構410は、回路基板418上でボインティングデバイス480の中心軸線Pからずれた位置に搭載され、支持部材420は、スイッチ機構410に対応する位置に開口424を有する。

【0217】操作部482は、磁石484を保持して基 部402上に水平移動可能に支持される保持部486 と、保持部486をその水平移動範囲の原点位置に復帰 させる弾性部488と、保持部486から独立して、基 部402上に、鉛直方向へ移動可能に配置される作動部 490とを備えて構成される。保持部486は、中央に 収容溝492を有する板状部材であり、収容溝492に 近接する位置に、支持部材420の開口424に対応す る寸法の開口494が形成される。保持部486の開口 494は、保持部486が基部402上で水平移動範囲 の原点位置にあるときに、支持部材420の開口424 に整合かつ重畳して配置される。保持部486は、収容 溝492に円板状の磁石484を固定的に収容して、弾 性部488に取り付けられる。保持部486は、その軸 線方向端面を、支持部材420の支持面422aに一様 に当接した状態で、支持面422a上で360°全方位 へ摺動しつつ平行移動できる。

【0218】弾性部488は、保持部486の周囲に隙間を介して延長される主部分496と、主部分496の一端で保持部486に連結される第1連結部分498と、主部分496の他端で基部402に連結される第2連結部分500とを一体に有する。弾性部488は、その主部分496が、基部402上での保持部486の水平移動に伴い弾性変形するとともに、変形量に対応する弾性力を、保持部486の水平移動方向に関わらず一様に発揮する。弾性部488の第1連結部分498には、オペレータが操作部482を移動操作する際に例えば手の指先を接触させる操作面502が形成される。さらに第1連結部分498は、保持部486の開口494に対応する位置に、円筒状の受容穴504を有する。

【0219】作動部490は、軸線方向一端(図で下端)に径方向外方へ延設された突縁部分490aにて、弾性部488の第1連結部分498に一体的に連結されて、受容穴504内に収容される。作動部490の軸線方向他端には、オペレータが作動部490を押下操作する際に例えば手の指先を接触させる押下操作面506が形成される。また、作動部490の軸線方向一端面(図で下端面)には、その中央に、局部的に隆起する押圧点508が形成される。操作部482を基部402に適正に組み付けた状態で、作動部490は、その押圧点508を、支持部材420の開口424内に配置されたスイッチ機構410に当接して、操作部482内で鉛直方向へ移動可能に、スイッチ機構410に支持される。

【0220】上記構成を有するポインティングデバイス 480は、前述したポインティングデバイス460と同 様にして、操作部482に実質的水平方向への操作力を 負荷することにより、基部402上での保持部486の 移動方向及び移動距離に対応したアナログ情報を入力で きる。また、図67に示す原点位置において、オペレー タが操作部482の作動部490の押下操作面506を 例えば指先で押下して、作動部490の押圧点508を スイッチ機構410に押し付けることによりスイッチ機 構410を作動させることができる。このとき、基部4 02に対する保持部486の鉛直方向移動が確実に防止 されるので、例えば搭載対象機器のディスプレイ上のポ インタに関連して、適正なクリック操作を極めて容易に 実施できる。特にポインティングデバイス480では、 中心軸線Pからずれた位置に作動部490を配置したの で、単純な円板形状の磁石484を使用できる利点が得 られる。また、回路基板418上に複数のスイッチ機構 410を搭載するとともに、操作部482にそれらスイ ッチ機構410に対応する複数の作動部490を設ける ことができるので、多様な機能性をポインティングデバ イス480に付加することができる。

【0221】クリック機能を有する前述した種々の実施 形態によるボインティングデバイスでは、操作部の正確 な鉛直移動操作を可能にする案内部分を設ける等、構造 上の工夫により、スイッチ押下操作時にアナログデータ の意図しない入力を回避することができる。しかし、こ のような案内構造に代えて、又は補足的に追加して、ポインティングデバイスから出力される信号処理上の工夫 により、スイッチ押下操作時にアナログデータの意図し ない入力を回避することもできる。図68は、そのよう な工夫を施した本発明の一実施形態による信号処理方法 を示す。

【0222】例えば前述した第11実施形態によるポインティングデバイス400において、作動部416を押下操作してスイッチ機構410を作動させると、回路基板418に実装したCPUが、スイッチ機構410から受け取ったオン信号をクリック信号として処理して、ポ

インティングデバイス400を搭載したデータ処理装置の処理機構に出力する。ここで、図68に示すように、スイッチ機構410がオン状態にある間は、仮に保持部412が水平移動したとしても、CPUがカーソル移動データ信号を出力しないように、信号処理プログラムを設定する。それにより、スイッチ押下操作時に、意図しないアナログデータ入力を回避することができる。

【0223】さらにポインティングデバイス400で は、作動部416の押下操作を解除した後にも、保持部 412に無意識の水平移動が生じたときに、カーソル移 動データ信号が出力されてしまう場合がある。そこで、 図68に示すように、スイッチ機構410がオフ状態に なった後に、所定時間Tの間は、仮に保持部412が水 平移動したとしても、CPUがカーソル移動データ信号 を出力しないように、信号処理プログラムを設定するこ とが有利である。それにより、スイッチ押下操作の解除 後にも、意図しないアナログデータ入力を回避すること ができる。なお、この構成における時間Tは、ポインテ ィングデバイスの操作性を考慮して様々に設定できる。 例えば、パーソナルコンピュータ等で多用されるダブル クリック操作の間に、ディスプレイ画面上でポインタを 一定位置に容易に保持し得る程度の時間に設定すること ができる。

【0224】以上、低背化及び操作性向上を主目的とし た殷つかの好適な実施形態を説明したが、それら実施形 態においても図示構成以外の様々な形態を採ることがで きる。例えば、本発明に係る低背型ポインティングデバ イスの特徴的構成は、磁石と複数の磁電変換素子との位 置関係が、図示実施形態とは逆の構成、すなわち基部に 設置した磁石に対し、操作部に設置した磁電変換索子が 変位するように構成されたポインティングデバイスにお いても、有効に採用でき、かつ同様に格別の作用効果を 奏するものである。また、上記した種々の低背型ポイン ティングデバイスに、前述した本発明に係るコネクタ付 き回路基板の製造方法を適用することもできる。さら に、前述した本発明に係るポインティングデバイスの出 力信号処理方法は、図示実施形態による磁電変換素子型 のポインティングデバイスへの適用に限らず、他の様々 なアナログデータ入力構造を有するポインティングデバ イスに適用できるものである。

[0225]

【発明の効果】以上の説明から明らかなように、本発明によれば、磁電変換素子型のポインティングデバイスにおいて、操作部の操作性を損なうことなく、携帯型情報機器への搭載が実現可能な水準まで外形寸法を削減することが可能になる。また、磁電変換素子型のポインティングデバイスにおいて、搭載対象機器の実装基板への電気的及び機械的接続を狭小な空間で確実かつ安定的に実現することが可能になる。したがって本発明によれば、電子手帳、携帯情報端末(PDA)、携帯電話等の、手

持操作可能な種々の携帯型情報機器へ有利に搭載できる ボインティングデバイスが提供される。

【0226】また、本発明によれば、ポインティングデバイス等の電子部品を実装基板に対し狭小な空間で確実かつ安定的に接続するためのコネクタ付き回路基板の製造方法が提供される。さらに、磁電変換案子型のポインティングデバイスを搭載した携帯型情報機器の、組立作業性を向上させることが可能になる。さらに、クリック機能を有する磁電変換案子型のポインティングデバイスにおいて、案内構造を追加装備やオペレータの熟練を要することなく、適正なクリック操作を容易に実施することが可能になる。

【図面の簡単な説明】

- 【図1】本発明の第1実施形態によるポインティングデバイスの分解斜視図である。
- 【図2】図1のポインティングデバイスの組立斜視図である。
- 【図3】図2の線IIIーIIIに沿ったポインティングデバイスの縦断面図で、操作部が原点位置にある状態を示す。
- 【図4】図3に対応する縦断面図で、操作部を水平移動させた状態を示す。
- 【図5】本発明の第2実施形態によるポインティングデバイスの分解斜視図である。
- 【図6】図5のポインティングデバイスの縦断面図で、 操作部が原点位置にある状態を示す。
- 【図7】本発明の第3実施形態によるポインティングデバイスの分解斜視図である。
- 【図8】図7のポインティングデバイスの縦断面図で、 操作部が原点位置にある状態を示す。
- 【図9】図8に対応する縦断面図で、操作部を押下操作した状態を示す。
- 【図10】本発明の第4実施形態によるポインティング デバイスの分解斜視図である。
- 【図11】図10のポインティングデバイスの縦断面図で、操作部が原点位置にある状態を示す。
- 【図12】図11に対応する縦断面図で、操作部を押下操作した状態を示す。
- 【図13】変形例によるポインティングデバイスの縦断面分解図である。
- 【図14】他の変形例によるポインティングデバイスの 級断面分解図である。
- 【図15】さらに他の変形例によるポインティングデバイスの縦断面分解図である。
- 【図16】さらに他の変形例によるポインティングデバイスの分解斜視図である。
- 【図17】図16のポインティングデバイスの縦断面図で、操作部が原点位置にある状態を示す。
- 【図18】図17に対応する縦断面図で、操作部を水平 移動させた状態を示す。

- 【図19】さらに他の変形例によるポインティングデバイスの分解斜視図である。
- 【図20】図19のポインティングデバイスの縦断面図で、操作部が原点位置にある状態を示す。
- 【図21】本発明の第5実施形態によるポインティング デバイスを、実装基板に実装した状態で示す組立斜視図 である。
- 【図22】図21のポインティングデバイスの分解斜視 図である。
- 【図23】図21のポインティングデバイスにおけるコネクタ付き回路基板の平面図である。
- 【図24】図23の回路基板の製造工程を説明する図で、コネクタを取り付ける前段階の回路基板の平面図で
 ある
- 【図25】図24の回路基板の(a)部分拡大断面図、
- 及び(b)部分拡大平面図である。
- 【図26】図23の線XXVI-XXVIに沿った回路基板の断面図である。
- 【図27】本発明の第6実施形態によるポインティング デバイスの分解斜視図である。
- 【図28】図27のポインティングデバイスの組立斜視図である。
- 【図29】図28の線XXIX-XXIXに沿ったポインティングデバイスの網断面図で、操作部が原点位置にある状態を示す。
- 【図30】本発明の第7実施形態によるポインティング デバイスの分解斜視図である。
- 【図31】図30のポインティングデバイスにおける支持部材の斜視図である。
- 【図32】図30のポインティングデバイスの縦断面図で、操作部が原点位置にある状態を示す。
- 【図33】本発明の第8実施形態によるポインティング デバイスの分解斜視図である。
- 【図34】図33のポインティングデバイスの縦断面図で、操作部が原点位置にある状態を示す。
- 【図35】本発明の第9実施形態によるポインティング デバイスの分解斜視図である。
- 【図36】図35のポインティングデバイスにおける支持部材の図で、(a)上方から見た斜視図、及び(b)下方から見た斜視図である。
- 【図37】図35のポインティングデバイスの縦断面図で、(a)図36の線XXXVIIA-XXXVIIAに沿って示す図、及び(b)図36の線XXXVIIB-XXXVIIBに沿って示す図である。
- 【図38】本発明の第10実施形態によるポインティングデバイスの分解斜視図である。
- 【図39】図38のポインティングデバイスにおける支持部材の図で、(a)上方から見た斜視図、及び(b)下方から見た斜視図である。
- 【図40】図38のポインティングデバイスの縦断面図

で、(a)図41の線XXXXA-XXXXAに沿って示す図、及び(b)図36の線XXXXB-XXXXBに沿って示す図である。

【図41】図38のポインティングデバイスの変形例における支持部材の底面図である。

【図42】(a)図38のポインティングデバイスの他の変形例における支持部材の平面図、及び(b)さらに他の変形例における支持部材の平面図である。

【図43】図38のポインティングデバイスの変形例における支持部材の平面図である。

【図44】図43の支持部材を備えた変形例によるポインティングデバイスの縦断面図である。

【図45】本発明の一実施形態による携帯型情報機器の 主要構成要素を示す分解斜視図で、(a)上方から見た 図、及び(b)下方から見た図である。

【図46】図45の主要構成要素の組立時の縦断面図で、(a) 筐体組み付け前、及び(b) 筐体組み付け後の状態を示す。

【図47】本発明の他の実施形態による携帯型情報機器の主要構成要素を示す分解斜視図で、(a)上方から見た図、及び(b)下方から見た図である。

【図48】図47の主要構成要素の組立時の縦断面図である。

【図49】本発明のさらに他の実施形態による携帯型情報機器の主要構成要素を示す分解斜視図である。

【図50】図49に示す筐体にポインティングデバイスの構成要素を取り付けた状態を示す斜視図である。

【図51】図49の主要構成要素の組立時の図で、図5 0の線XXXXI-XXXXIに沿って示す報断面図である。

【図52】図49に示す筺体の変形例の拡大斜視図である。

【図53】本発明のさらに他の実施形態による携帯型情報機器の主要構成要素を示す分解斜視図である。

【図54】図53の主要構成要素の組立時の斜視図である。

【図55】図53の主要構成要素の組立時の図で、図54の線XXXXXV-XXXXXVに沿って示す報断面図である。

【図56】本発明の第11実施形態によるポインティングデバイスの分解斜視図である。

【図57】図56のポインティングデバイスの組立斜視 図である。

【図58】図57の線XXXXXVIIIーXXXXXVIIIに沿ったポインティングデバイスの縦断面図で、操作部が原点位置にある状態を示す。

【図59】図56のポインティングデバイスの縦断面図で、(a)水平移動操作時、及び(b)押下操作時の状態を示す。

【図60】本発明の第12実施形態によるポインティングデバイスの分解斜視図である。

【図61】図60のポインティングデバイスの組立斜視

図である。

【図62】図60のポインティングデバイスの縦断面図で、(a)水平移動操作時、及び(b)押下操作時の状態を示す。

【図63】図60のポインティングデバイスの変形例の 縦断面図で、(a)水平移動操作時、及び(b)押下操 作時の状態を示す。

【図64】図60のポインティングデバイスの他の変形 例の分解斜視図である。

【図65】(a)図64の変形例の縦断面図、及び(b)他の変形例の縦断面図である。

【図66】本発明の第13実施形態によるポインティン グデバイスの組立斜視図である。

【図67】図66のポインティングデバイスの、線XXXX XXVII-XXXXXXVIIに沿った縦断面図である。

【図68】本発明の実施形態による信号処理方法を示す 線図である。

【符号の説明】

10、60、80、100、150、190、240、260、280、310、400、460、480…ポインティングデバイス

12、62、82、102、192、242、262、 282、312、402···基部

14、194、404、462、482…操作部

16、196、406、484…磁石

18、198、408…磁電変換素子

20、200、412…保持部

22、202、414、488…彈性部

24、204、418…回路基板

26、64、86、206、244、286、314、 420…支持部材

28、208、422…支持部分

28a, 70, 88a, 114a, 208a, 288

a、316a、422a…支持面

36、216、428…カバー部材

50、232、444、496…主部分

52、234、446、498…第1連結部分

54、236、448、500…第2連結部分

58、238、452、502…操作面

84、284、410…スイッチ機構

88、288、316…弾性梁部分

104…第1支持部材

106…弹性部材

108…第2支持部材

122、470、478…キートップ

128…板ばね

134…コイルばね

152…コネクタ

154…絶縁部材

156…端子

(81)102-287891 (P2002-28JL8

158…スルーホール 164、166、176…はんだ 168…取付部材 178…ランド

【図1】

【図3】

180…実装領域 182…捨て領域 184…境界線 416、464、490…作動部

【図2】

[図4]

【図13】

【図6】

【図7】

الله المالية

【図17】

【図18】

【図26】

【図23】

【図24】

(1212)

【図28】

【図27】

【図33】

262 …基部 264 …回路基板 266 …支持面

266

198

【図3.5】

図42

(a)

【図37】

-264a

[図42]

【図45】

【図46】

【図50】

2245

【図47】

【図61】

【図48】 【図49】 【図51】 【図52】 【図54】 図 52 **図54** 388 ×××××× ³⁶⁶ 【図58】 図58 412 …保持部 422 a …支持面

【図57】

【図59】

【図60】

【図62】

【図63】

【図65】

【図64】

【図68】

フロントページの続き

(72)発明者 桐生 幸一

長野県飯山市大字野坂田935番地 株式会 社しなの富士通内 (72)発明者 小林 和男

長野県飯山市大字野坂田935番地 株式会 社しなの富士通内

Fターム(参考) 2F051 AA21 AB05 BA07 DA02 5B087 AA06 AB02 BC12 BC13 BC19 BC26 BC34 DD03

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.