680. Yarra Gnisrever

Let N and K be two positive integers.

 F_n is the n-th Fibonacci number: $F_1=F_2=1$, $F_n=F_{n-1}+F_{n-2}$ for all $n\geq 3$. Let $s_n=F_{2n-1}\mod N$ and let $t_n=F_{2n}\mod N$.

Start with an array of integers $A=(A[0],\cdots,A[N-1])$ where initially every A[i] is equal to i. Now perform K successive operations on A, where the j-th operation consists of reversing the order of those elements in A with indices between s_i and t_i (both ends inclusive).

Define R(N,K) to be $\sum_{i=0}^{N-1} i \times A[i]$ after K operations.

For example, R(5,4)=27, as can be seen from the following procedure: Initial position: (0,1,2,3,4)

Step 1 - Reverse A[1] to A[1]: (0,1,2,3,4) Step 2 - Reverse A[2] to A[3]: (0,1,3,2,4) Step 3 - Reverse A[0] to A[3]: (2,3,1,0,4) Step 4 - Reverse A[3] to A[1]: (2,0,1,3,4)

$$R(5,4) = 0 \times 2 + 1 \times 0 + 2 \times 1 + 3 \times 3 + 4 \times 4 = 27$$

Also, $R(10^2,10^2)=246597$ and $R(10^4,10^4)=249275481640$. Find $R(10^{18},10^6)$ giving your answer modulo 10^9 .

680. 数组翻转

令 N 和 K 为两个正整数。

 F_n 是第 n 个斐波那契数 , 其中 $F_1=F_2=1$, 且对于 $n\geq 3$, $F_n=F_{n-1}+F_{n-2}$ 。 再令 $s_n=F_{2n-1}\mod N$ 且 $t_n=F_{2n}\mod N$.

现在给定一个正整数数组 $A=(A[0],\cdots,A[N-1])$, 一开始的时候 , A[i] 等于 i 。 现在接连对数组 A 进行 K 次操作 , 对于第 j 次操作 , 你需要将 A 中的 $[s_i,t_i]$ 这段区间翻转。

然后,定义 R(N,K) 为经过 K 次操作后, $\sum_{i=0}^{N-1} i \times A[i]$ 的值。

比如说, R(5,4) = 27, 其过程如下: 初始位置: (0,1,2,3,4)

- 第一步 翻转 [1,1]: (0,1,2,3,4)
- 第二步 翻转 [2,3]: (0,1,3,2,4)
- 第三步 翻转 [0,3]:(2,3,1,0,4)
- 第四步 翻转 [3,1]:(2,0,1,3,4)

 $R(5,4) = 0 \times 2 + 1 \times 0 + 2 \times 1 + 3 \times 3 + 4 \times 4 = 27$

并且, $R(10^2,10^2)=246597$ 且 $R(10^4,10^4)=249275481640$ 。 请计算 $R(10^{18},10^6)$ 模 10^9 的值。