Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

 $\triangle = 324 > 0$ $m_{1,2} = 9, -9$

Casel: $\Delta > 0$ $m_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the m-intercepts of multiplicity 1.

Given a quadratic $z(m) = a m^2 + b m + c$ compute its discriminant \triangle :

Example 1. $z(m) = 81 - m^2$ compute its discriminant \triangle :

60

-300

-400

-500

Case3: △<0

no m-intercepts.

However there is a z-intercept.

Example 3. $z(m) = -9 m^2 - 144 m - 640 \text{ compute its discriminant } \triangle:$ $\triangle = -2304 < 0$ z(0) = -640 z-intercept.

 $\sqrt{\,\mathsf{b}^2\,}$ – $4\,\mathsf{ac}\,$ has no value in Real Numbers. Therefore there are