•	C	
Cx	Secret Key of Entity X	
Dx	Private Key of Entity X (a pair dx, nx)	
dx	Private Exponent of Dx	
Ex	Public Key of Entity X (a pair ex, nx)	
ex	Public Exponent of Ex	
K	Any cryptographic key, Symmetric Key	
Ko	Group Symmetric Key	
Koo	Master Symmetric Key	
$K\{M\}$	The Encryption Function of Message M using the Key K	
Kxy	Session Key, Common Secret Key between X and Y	
Lx	License or Certificate issued to X	
M	Plain Message, Plaintext	
Mx	Message to or from Entity X	
Nx	ID # of Entity X	
Ni	ID # of User I	
Nj	ID # of System Terminal J	
nx	Modulus of the key pair Dx, Ex	
0	System Authority	
P	Encrypted Message, Cipher Message, Ciphertext	
PWx	Password of X	
Qx	Challenge Question, Random Number sent to X	
Rx	Response, Signed by X	
Sx	Message Signed by X	
X	Unknown Entity	
Y	Unknown Entity (Authenticator)	
$\hat{\mathbf{z}}$	Unknown Entity (Authenticatee)	
~	ommon Dinty (Hamondouto)	

FIG. 1: Notation

FIG. 2: Block Diagram of this Invention, S-RSA

where

Y : Authenticator
Z : Authenticatee
Nz : ID # of Z
PWz : Password of Z

FIG. 3: Flow of Conventional Password Authentication

21

Encrypt

$$\mathbf{P} = \mathbf{K} \{ \mathbf{M} \} \tag{402}$$

M is encrypted by K

Decrypt

$$\mathbf{M} = \mathbf{K} \{ \mathbf{P} \} \tag{404}$$

P is decrypted by K

where

P : Ciphertext K : Symmetric Key

M : Plaintext

{ } : Cryptographic Function

FIG. 4: Formulae of Symmetric Key Encryption

FIG. 5: Flow of Conventional Symmetric Key Authentication

23

Encrypt

$$P = E \{M\}$$

$$= M^{e} \pmod{n}$$
(602)

M is encrypted by E

Decrypt

$$M = D \{P\}$$

$$= P^{d} \pmod{n}$$

$$= M^{e^{*d}} \pmod{n}$$

$$= M$$
(604)

P is decrypted by D

Sign

$$\mathbf{S} = \mathbf{D} \left\{ \mathbf{M} \right\} \tag{606}$$

M is signed by D

S is verified by E

Verify

 $\mathbf{E}\left\{\mathbf{S}\right\} \Longrightarrow \mathbf{M}$

where

P : Ciphertext

E : Public Key (pair e, n)
D : Private Key (pair d, n)
n : Modulus of Key pair E, D

M : Plaintext

S : Signed Message

{ } : Cryptographic Function

FIG. 6: Standard Formulae of RSA

FIG. 7: Preparation Flow of RSA

FIG. 8: Flow of Regular RSA Key Authentication

where

Nx : ID # of X

Do : Private Key of System Authority OEo : Public Key of System Authority O

do : Private Exponent

no : Modulus of key pair Do, Eo

Cx : Secret Key of X

FIG. 9: Preparation Flow of This Invention, S-RSA

27

Sign

$$Sx = Mx \{Cx\}$$

$$= Cx^{Mx} \pmod{n0}$$
(1006)

Verify

Since $Nx^{do^*eo} \pmod{no} = Nx$

where

Nx : ID # of X or License # issued to X Do : Private Key of System Authority O

do : Private Exponent

Eo : Public Key of System Authority O

eo : Public Exponent

no : Modulus of key pair Do, Eo

Cx: Secret Key of X where $Cx = Nx^{do} \pmod{no}$

Mx : Message of X

Sx : Message Signed by X

FIG. 10: Signing Formulae of This Invention, S-RSA

FIG. 11: Authentication Flow of This Invention, S-RSA

FIG. 12: Signing Payment Flow of This Invention, S-RSA

30

$$Pz = Ey \{Mz\}$$

$$= Mz^{ey} \pmod{ny}$$
(1302)

Z sends message Mz to Y, wrapping it with Y's public key Ey

where

Y : Authenticator Z : Authenticatee

Ey: Public Key of Entity Y

ey : Public Exponent

ny : Modulus of Y's Public Key

Mz: Message of Z

Pz : Encrypted Message of Z

$$\mathbf{P} = \mathbf{M}^{\mathbf{e}} \pmod{\mathbf{n}} \tag{1304}$$

$$P = (M^{2})^{16} *(M) \pmod{n}$$

$$= (M^{2})^{2} ...)^{2} * (M) \pmod{n}$$
since $E = 2^{16} + 1$ (1306)

Multiplicative and modular operations must be repeated 17 times

where

E : Public Key

n : Modulus of Public Key

M : Plain MessageP : Encrypted Message

FIG. 13: Secure Socket Layer Communication

31

If
$$Qz$$
 is a 16 bit number
and $Qz = 2^{15*b15+14*b14+...+1*b1+0*b0}$
where $bi = 0$ or 1, then

$$Qz \{Cz\} = (Cz^2)^{15*b15}*(Cz^2)^{14*b14}*...*(Cz^2)^{1*b1}*(Cz)^{b0} \pmod{N0}$$
if bi = 0.
$$(Cz^2)^{i*bi} = 1$$
(1402)

Therefore, if a table of $(Cz^2)^i$ is pre-calculated, only eight multiplicative and modular operations must be performed on average.

The table size is

$$16 \times 1024 \text{ bit} = 2\text{KB}$$
 (1404)

FIG. 14: Calculation Time of This Invention, S-RSA

Patent Application of Y. Tsukamura for "Simplified Method of RSA" continued

Cz	x x xx x x x x
(Cz ²) ¹ (mod no)	
$(Cz^2)^2 \pmod{no}$	
$(Cz^2)^3 \pmod{no}$	
	ļ
(Cz ²) ¹⁵ (mod no)	x x xx x x x x
2 Bytes	1024 bit

Total 32 Bytes + 2 KBytes

FIG. 15: Table of Powers of Cz