Introducción a la Visión

Tabla de contenido

- Ultrasonido
- LiDAR
- Visión en el reino Animal
 - Un Ocelo
 - Compuesto de Omatidios
 - Ojos con lente, cámara y retina
- Profundidad
- Color

SENSOR DE ULTRASONIDO

- El emisor (transductor) genera un pulso ultrasónico.
- El pulso viaja por el aire hasta chocar con un objeto.
- El eco reflejado vuelve al receptor.
- El sensor mide el tiempo de ida y vuelta (t).
- Se calcula la distancia con la fórmula:
- Distancia = $\frac{v \cdot t}{2}$
- Donde v es la velocidad del sonido (~343 m/s en aire).
- Resolución 1 cm aprox.

Distancia

Imagen tomada de: https://www.ingmecafenix.com/automatizacion/sensores/ultrasonico/

- Ventajas
 - Bajo costo
 - No depende de la luz (funciona en la oscuridad)
 - Fácil de implementar
- Limitaciones y defectos
 - No direccional: Las ondas se dispersan en un ángulo amplio (~30°), dificultando precisión.
 - Rebotes falsos: Superficies anguladas reflejan el eco en otra.
 - Interferencias: Otros sonidos o sensores ultrasónicos cercanos pueden generar errores.
 - Material absorbente: Telas, espumas o superficies irregulares absorben o difunden el sonido.

Pregunta:

• ¿Se puede mejorar utilizando interferometría?

LÍDAR (Light Detection and Ranging)

- •El sensor emite un pulso láser (infrarrojo o visible).
- ·La luz rebota en el objeto.
- •El sistema mide el tiempo de ida y vuelta del pulso.

$$Distancia = \frac{c \cdot t}{2}$$

Donde c es la velocidad de la luz (~3×1083 \times

Imagen tomada de https://www.researchgate.net/figure/D-micro-scanning-LiDAR-illuminating-the-scenery-with-a-vertical-laser-beam-line-

- Ventajas
 - Alta precisión (mm)
 - Mapea entornos en 2D o 3D
 - Funciona a largas distancias (decenas o cientos de metros)
 - Se puede montar en drones, autos, aviones, trípodes
 - Ángulo de apertura menor a 1º
- Problemas
 - Sensibilidad a niebla, lluvia
 - Alto costo
 - Alto consumo
 - Superficies reflectantes u oscuras
- Preguntas
 - ¿Puede ser peligros mirar un LiDAR?
 - ¿Qué requisitos de velocidad de respuesta debe tener el circuito asociado?

Comparación de tipos de ojos

https://www.thewebfoto.com/ 2-hacer-fotos/206-el-objetivo

Característica Ocelo		Ojo compuesto de omatidios	Ojo de cámara, lente y retina	
Analogía tecnológica Fotocelda		Matriz de fotoceldas en conos	Cámara digital (con lente y sensor)	
Estructura básica	Una lente simple + receptores	Muchos omatidios, cada uno con su propia lente	Una lente + retina (capa de fotorreceptores)	
¿Forma imagen?	imagen? No Sí (imagen tipo mosaico)		Sí (imagen enfocada y detallada)	
Direccionalidad	cionalidad Muy limitada Alta (cada omatidio apunta en una dirección distinta)		Alta (enfocada por la lente)	
Percepción de color	No (usualmente)	A veces (en insectos con conos especiales)	Sí (conos especializados)	
Resolución visual	olución visual Muy baja Media (depende del número de omatidios)		Alta (muy detallada en vertebrados y cefalópodos)	
Ejemplos de animales	Arañas, insectos, medusas	Moscas, abejas, libélulas, crustáceos	Vertebrados, pulpos, arañas saltadoras	
Origen evolutivoMuy primitivoPresente en artró		Presente en artrópodos	Evolución convergente en vertebrados y cefalópodos	
Uso principal	Luz ambiental, orientación	Detección de movimiento, campo amplio	Visión precisa, caza, manipulación de entorno	

Percepción de profundidad

No	Método de percepción	Tipo de pista	Usado por	Precisión relativa	Observaciones clave
1	Estereopsis (visión binocular)	Geométrica	Humanos, primates, aves rapaces	***	Muy precisa a corta distancia
2	Parallax de movimiento	Dinámica	Arañas saltadoras, camaleones	***	Requiere movimiento activo del observador
3	Tamaño relativo y perspectiva	Visual/geom étrica	Casi todos los animales	**	Basado en experiencia previa del tamaño
4	Oclusión	Visual	Humanos, vertebrados, cefalópodos	**	No da distancia exacta, pero ordena objetos
5	Gradiente de textura/desenfoque	Óptica	Humanos, aves, algunos cefalópodos	**	Utiliza densidad o nitidez de detalles
6	Aberración cromática	Óptica/espe ctral	Pulpos, sepias (posible)	**	Detecta profundidad mediante el enfoque cromático
7	Tiempo de vuelo (ToF óptico)	Física (luz)	Tecnología (LiDAR, sensores RGB-D)	***	Usa la velocidad de la luz para medir distancia
8	Eco-localización (ToF acústico)	Física (sonido)	🏄 Murciélagos, ಶ delfines, 👺 aves nocturnas	***	Muy precisa, incluso en oscuridad o agua

Espectros, Colores y otros

No		Longitud de onda (aprox.)	¿Visible para humanos?	Usado por	Ejemplo de aplicación
1	Ultravioleta (UV)	10 – 400 nm	No	Abejas, mariposas, aves, camarones mantis	Polinización, detección de señales ocultas
2	Visible (RGB)	400 – 700 nm	Sí	Humanos, primates, cámaras digitales	Visión cotidiana, procesamiento de imágenes
3	Infrarrojo cercano (NIR)	700 – 1400 nm	No	Cámaras de seguridad, visión nocturna	Visión en oscuridad, sensores 3D
4	Infrarrojo medio/lejos	1400 – 15,000+ nm	No	Serpientes, cámaras térmicas	Detección de calor corporal, vigilancia
5	Espectros múltiples (hiperespectral es)	300 – 2500+ nm	No (más allá del RGB)	Satélites, drones agrícolas, diagnóstico	Agricultura, medicina, geología
6	Polarización	No es espectro, es orientación de ondas	Parcialmente (con filtros)	Camarón mantis, insectos acuáticos	Visión submarina, camuflaje, contraste
7	Aberración cromática (óptica)	Basada en enfoque diferencial por color	No directo	Pulpos, Calamares, Arañas saltarina	Detección de color sin conos múltiples