

INE 5643 Data Warehouse Aula 10b - Back Room - Extração

Prof. Mateus Grellert

Prof. Renato Fileto

Créditos: Prof. Tite Todesco (slides originais, adaptados pelos professores atuais)

Departamento de Informática e Estatística (INE) Universidade Federal de Santa Catarina (UFSC)

TÓPICOS

- Projeto Físico
- Área de Transição

TÓPICOS

- Projeto Físico
- Área de Transição

Próxima Aula - Ciclo de Projeto DW

O Projeto Físico

- Seleção do SGDB;
- Modelo físico de dados;
- Plano de Indexação e Particionamento;
- Projeto Inicial de Agregados.

Considerações sobre o Modelo Físico

DEFINIÇÃO DE PADRÕES

RELACIONE OS OBJETOS DO BANCO DE DADOS UTILIZADO E DEFINA OS PADRÕES DE NOMENCLATURA A SEREM ADOTADOS PARA: TABELAS, COLUNAS, ÍNDICES, ÁREA ETC

PROJETO FÍSICO DAS TABELAS E COLUNAS

APLIQUE OS PADRÕES DE NOMENCLATURA DO BANCO DE DADOS SOBRE OS OBJETOS DO MODELO LÓGICO

DEFINA OS DATA TYPES

DEFINA NULL OU NOT NULL

DEFINA A PRIMARY KEY E FOREIGN KEYS

ESTIMATIVA DO TAMANHO DO BANCO DE DADOS

APURE A QTDE DE TABELAS, TAMANHO DAS LINHAS, QTDE DE LINHAS, QTDE DE ÍNDICES, ÁREA DE ÍNDICE, ÁREA PARA METADADOS E A TAXA DE CRESCIMENTO

DEFINIÇÃO DE ÍNDICES

DEFINA AS REGRAS A SEREM UTILIZADAS PARA CRIAÇÃO DE ÍNDICES

A DECISÃO ACERCA DA CRIAÇÃO DE ÍNDICES DEVE ESTAR TOTALMENTE VINCULADA AO TIPO DE ÍNDICE UTILIZADO PELO RDBMS (B-TREE, BITMAP, HASH, OUTROS)

DEFINIÇÃO DE PARTIÇÕES

DEFINA AS REGRAS PARA CRIAÇÃO DE PARTIÇÕES DE TABELAS; CONSIDERAR A QUANTIDADE DE AGREGAÇÕES UM FATOR INTERVENIENTE PARA A DEFINIÇÃO DESTAS REGRAS

ESPECIFIQUE OS CRITÉRIOS PARA DETERMINAR UNICAMENTE EM QUAL PARTIÇÃO UMA LINHA DEVE ESTAR LOCALIZADA

Projeto Físico: Modelo Físico

- Ponto de Partida: Modelo Lógico e seguir padrões de nomenclatura;
- Utilizar a ferramenta de modelagem de dados padrão;
- Projeto da Estrutura Física dos Dados:
 - Determinar os tipos de dados para as colunas;
 - Determinar opções de NULL/NOT NULL;
 - Chaves naturais devem ser substituídas por chaves artificiais (surrogate keys - SKs);
 - Especificação de chave primárias e secundárias.

Projeto Físico: Padronização da Nomenclatura

- Nome para objetos da base de dados
 - Identificador do objeto: Conta;
 - Tipo de objeto: Data;
 - Qualificadores (opcional): Inicial;

Exemplo: Data_Inicial_Conta

- Similaridade dos nomes nos vários ambientes
- Definição em conjunto com a comunidade de usuários

Projeto Físico: Estimativas de Tamanho

- Qual será o tamanho do data warehouse?
- Uma estimativa é importante para:
 - dimensionamento de máquina (poder de processamento);
 - o área de armazenamento necessária.

Projeto Físico: Estimativas de Tamanho

VOLUMES (exemplo) Estimativa de Ocorrências Iniciais

Data 1.825 (5 anos)

Hora 24

Produto **5.000**

Loja **2.500**

Cliente **200.000**

Fato Atômico 1,1 bilhão

Agregação 1 50 milhões

Agregação 2 35 milhões

ESTRATÉGIAS DE IMPLEMENTAÇÃO

ROLAP MOLAP HOLAP

TAMANHO ESTIMADO

	Inicial	Final (6 meses)
Dimensões	33,5 Mb	76,5 Mb
Fatos	78 Gb	180 Gb
Índices	105 Gb	135 Gb
Espaço		
Temporário	73 Gb	90 Gb
Total	± 256 Gb	± 405 Gb

Projeto da Agregação

PROJETO FÍSICO: AGREGADOS

- Definir o que deve ser agregado.
- Pontos de Avaliação:
 - Requisitos das consultas mais frequentes;
 - Considerar a distribuição estatística dos dados;
- Definir tabelas de fato agregados e dimensões;

Exemplo: Sem Agregação

Exemplo: Agregado para Categoria

Dimensão calendario

chave data

dia_da_semana
data_inicio_semana
calendario semanal
calendario mensal
calendario_trimestral
calendario_anual
semana_fiscal
mes_fiscal
trimestre_fiscal
ano_fiscal

Dimensão clientes

chave cliente

nome_cliente endereço_cliente data_cadastro grupo_renda pontuacao_rentabilidade

Exemplo de substituição

```
select p.categoria, sum(f.qtde venda)
from fatos vendas f, dimensao produtos p,
        dimensao tempo t, dimensao mercado l
where f.chave produto = p.chave produto and
           f.chave loja = 1.chave loja and
           f.chave cal = t.chave cal and
           t.dia da semana = 'Sábado' and
           1.regiao = 'SUL'
group by p.categoria
```

Exemplo de substituição

```
select p.categoria, sum(f.qtde venda)
from fatos_vendas_agg_cat f, dimensao_categoria p,
        dimensao tempo t, dimensao mercado l
where f.chave produto = p.chave produto and
           f.chave loja = l.chave loja and
           f.chave cal = t.chave cal and
           t.dia da semana = 'Sábado' and
           1.regiao = 'SUL'
group by p.categoria
```

TÓPICOS

- Projeto Físico
- Área de Transição

Como implementar eficientemente extração, transformação e carga de dados íntegros a partir de uma ou mais base de dados de atualizadas continuamente por sistemas corporativos online?

Prática Comum

Área de Transição - Staging Area

- Responsável pela correta extração de dados do ponto A para o ponto B na formatação e tempo apropriado;
- É onde o processo de ETL de dados ocorre;
- Exige definição da arquitetura necessária.

Área de Transição - Staging Area

- Tipo de Armazenamento
 - Flat Files;
 - Tabelas Relacionais;
 - Estruturas proprietárias usadas pelas ferramentas de estagiamento de dados.
- A escolha depende da qualidade e cronograma do projeto envolvido.

Visão do Projeto da Área de Transição

Planejamento

- 1 Plano básico (visão geral do processo);
- 2 Seleção de ferramenta de extração;
- 3 Projeto detalhado;

Carga das Dimensões

- 4 Construir a carga de uma dimensão estática;
- 5 Construir a carga de uma dimensão de modificação lenta;
- 6 Construir a carga das dimensões remanescentes;

Carga das Tabelas de Fatos e Automação

- 7 Construir a carga das tabelas de fatos;
- 8 Construir a carga incremental;
- 9 Construir a carga de tabela agregação/MOLAP;
- 10 Desenvolver a automação da transição.

Área de Transição

CAMADA ONDE OS DADOS NÃO INTEGRADOS DO AMBIENTE TRANSACIONAL SÃO COMBINADOS E TRANSFORMADOS EM DADOS CORPORATIVOS.

Instabilidade da Área de Transição

- o ambiente das aplicações é constantemente alterado
- o DWH normalmente é construído de forma incremental
- o DWH normalmente é construído de forma iterativa

Avaliação da Complexidade do Processo

Identificação das Fontes de Dados

A PARTIR DO SIGNIFICADO DO DADO NO DATA WAREHOUSE DEVE SER IDENTIFICADO, ENTRE OS SISTEMAS OPERACIONAIS, O DADO A SER UTILIZADO COMO FONTE DE DADO

Um Exemplo de Extração com PDI

Modelo transacional

<u>Fonte</u>: https://holowczak.com/building-etl-transformations-in-pentaho-data-integration-kettle/

Um Exemplo de Extração com PDI

 Vamos ver como extrair esses dados e criar as devidas dimensões com o Pentaho

<u>Fonte</u>: https://holowczak.com/building-etl-transformations-in-pentaho-data-integration-kettle/

Por hoje é só! 6

Próxima aula:

- Transformação de Dados
- Prática no PDI