Positive Data Languages

28th August 2023

Florian Frank, Stefan Milius, and Henning Urbat

48th International Symposium on Mathematical Foundations of Computer Science

Chair for Theoretical Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg

What is 'Positivity'?

D: Admissible User IDs for a Server (→ Infinite Set)

What is 'Positivity'?

$$L_0 = \left\{ \left. d_1 \cdots d_n \in \mathbb{D}^{\star} \; \middle| \; d_i
eq d_n \; \text{for all} \; i < n \;
ight\}$$

D: Admissible User IDs for a Server (→ Infinite Set)

$$L_1 = \Set{d_1 \cdots d_n \in \mathbb{D}^\star \mid d_i = d_j ext{ for some } i
eq j}$$

D: Admissible User IDs for a Server (→ Infinite Set)

→ Both languages involve assertions of (in-)equality of data values!

$$L_1 = \left\{ \left. d_1 \cdots d_n \in \mathbb{D}^\star \mid d_i = d_j \text{ for some } i
eq j \,
ight\}$$
 'some user has logged in twice'

'last user has not logged in before'

$$L_0 = \left\{ \left. d_1 \cdots d_n \in \mathbb{D}^* \mid d_i \neq d_n \text{ for all } i < n \right. \right\}$$

D: Admissible User IDs for a Server (→ *Infinite Set*)

What happens if we restrict this to just equalities?

→ Both languages involve assertions of (in-)equality of data values!

$$L_1 = \left\{ \left. d_1 \cdots d_n \in \mathbb{D}^\star \mid d_i = d_j \text{ for some } i
eq j \,
ight\}$$
 'some user has logged in twice'

What is 'Positivity'?

Definition (*Positive Data Language* **)**

A *positive data language* is closed under arbitrary renamings $\rho\colon \mathbb{D}\to \mathbb{D}$ of data values.

Definition (*Positive Data Language* **)**

A *positive data language* is closed under arbitrary renamings $\rho\colon \mathbb{D}\to \mathbb{D}$ of data values.

$$L_0 = \left\{ \left. d_1 \cdots d_n \in \mathbb{D}^\star \mid d_i
eq d_n ext{ for all } i < n
ight.
ight\}$$

Definition (*Positive Data Language* **)**

A *positive data language* is closed under arbitrary renamings $\rho\colon \mathbb{D}\to \mathbb{D}$ of data values.

$$L_0 = \left\{ \left. d_1 \cdots d_n \in \mathbb{D}^\star \mid d_i \neq d_n \text{ for all } i < n \right.
ight\}$$

$$L_1 = \left\{ \left. d_1 \cdots d_n \in \mathbb{D}^\star \mid d_i = d_j \text{ for some } i \neq j \right.
ight\}$$

Definition (*Positive Data Language* **)**

A *positive data language* is closed under arbitrary renamings $\rho\colon \mathbb{D}\to \mathbb{D}$ of data values.

→ Fix a (countably infinite) set

D of 'names'.

→ Data Values

Definition (*Nominal Sets* **)**

Gabbay, Pitts '99

A *nominal set* is a set whose elements depend on a *finite* number of these names.

```
\rightarrow \operatorname{supp}(x)
```


→ Fix a (countably infinite) set

D of 'names'.

→ Data Values

Definition (*Nominal Sets* **)**

Gabbay, Pitts '99

A *nominal set* is a set whose elements depend on a *finite* number of these names.

 $\rightarrow \operatorname{supp}(x)$

→ Fix a (countably infinite) set

D of 'names'.

→ Data Values

Definition (*Nominal Sets* **)**

Gabbay, Pitts '99

A $nominal\ set$ is a set whose elements depend on a finite number of these names.

```
\rightarrow \operatorname{supp}(x)
```

- Proper 'finiteness' is now replaced by finiteness up to such permutations.
 Orbit-Finiteness
- Nominal Sets and permutationpreserving maps form a category Nom.

→ Fix a (countably infinite) set

D of 'names'.

Data Values

Output

Description:

Data Values

D of 'names'.

Data Values

D of 'names'.

D of 'nam

Definition (*Nominal Sets* **)**

Gabbay, Pitts '99

A *nominal set* is a set whose elements depend on a *finite* number of these names. $\rightarrow \operatorname{supp}(x)$

7 Supp(x)

- Proper 'finiteness' is now replaced by finiteness up to such permutations.
 Orbit-Finiteness
- Nominal Sets and permutationpreserving maps form a category Nom.
- \leadsto Nominal Sets can also be understood as specific presheaves. (Nom \leadsto Set $^{\mathbb{I}}$)

→ Fix a (countably infinite) set

D of 'names'. ← Data Values

D of 'names'. ← Data

Definition (*Nominal Sets* **)**

Gabbay, Pitts '99

A *nominal set* is a set whose elements depend on a *finite* number of these names.

 $\rightarrow \operatorname{supp}(x)$

 \leadsto We can change the names of an element using permutations $\pi\colon \mathbb{D} \xrightarrow{\simeq} \mathbb{D}$ which act upon these elements.

```
chook id="bk007">
```

Proper 'finiteness' is now replaced

What happens if we give up injectivity of these permutations like before?

 $ightarrow \mathbf{RnNom}$ (Renaming Nominal Sets, Gabbay, Hofmann '08)

```
<title value="Biggy"/>
<price cur="USD"
    amount="12.95"/>
</book>
```

 Nominal Sets and permutationpreserving maps form a category Nom.

 \leadsto Nominal Sets can also be understood as specific presheaves. $(\mathbf{Nom} \leadsto \mathbf{Set}^{\mathbb{I}})$

Bojańczyk, Klin, Lasota '14

A nondeterministic orbit-finite automaton $A = (Q, \delta, I, F)$ consists of:

- lacktriangledown an orbit-finite nominal set $Q\in \mathbf{Nom}$ specifying *states*;
- an equivariant *transition* relation $\delta \subseteq Q \times \mathbb{D} \times Q$;
- equivariant sets $I \subseteq Q$ and $F \subseteq Q$ specifying *initial* and *final* states.

Acceptance of words $w \in \mathbb{D}^*$ is defined classically over runs.

$$L_0 = \{ d_1 \cdots d_n \in \mathbb{D}^* \mid d_i \neq d_n \text{ for all } i < n \}$$

$$L_1 = \{ d_1 \cdots d_n \in \mathbb{D}^* \mid d_i = d_j \text{ for some } i \neq j \}$$

Bojańczyk, Klin, Lasota '14

A nondeterministic orbit-finite

automaton $A = (Q, \delta, I, F)$ consists of:

- an orbit-finite nominal set $Q \in Nom$ specifying *states*;
- an equivariant $\texttt{\textit{\#ansition}}$ relation $\delta \subseteq Q \times \mathbb{D} \times Q$;
- equivariant \checkmark ts $f \subseteq Q$ and $F \subseteq Q$ specifying *initia*

Acceptance of words $w \in \mathbb{D}^*$ is defined classically

closed under arbitrary permutations $\pi\colon \mathbb{D} \overset{\circ}{\to} \mathbb{D}$

$$L_0 = \{ d_1 \cdots d_n \in \mathbb{D}^* \mid d_i \neq d_n \text{ for all } i < n \}$$

$$L_1 = \{ d_1 \cdots d_n \in \mathbb{D}^* \mid d_i = d_j \text{ for some } i \neq j \}$$

Bojańczyk, Klin, Lasota '14

A nondeterministic orbit-finite automaton $A = (Q, \delta, I, F)$ consists of:

- lacktriangledown an orbit-finite nominal set $Q\in \mathbf{Nom}$ specifying *states*;
- an equivariant *transition* relation $\delta \subseteq Q \times \mathbb{D} \times Q$;

 $L_0 = \{ d_1 \cdots d_n \in \mathbb{D}^* \mid d_i \neq d_n \text{ for all } i < n \}$

• equivariant sets $I \subseteq Q$ and $F \subseteq Q$ specifying *initial* and *final* states.

Acceptance of words $w \in \mathbb{D}^*$ is defined classically over runs.

$$L_0$$
 and L_1 are both NOFA-recognizable. $L_1=\{\;d_1\cdots d_n\in\mathbb{D}^*\;|\;d_i=d_i\; ext{for some}\;i
eq j\;\}$

A nondeterministic orbit-finite renaming automaton $A = (Q, \delta, I, F)$ consists of:

- lacktriangledown an orbit-finite renaming nominal set $Q \in \mathbf{RnNom}$ specifying *states*;
- an equivariant *transition* relation $\delta \subseteq Q \times \mathbb{D} \times Q$;
- equivariant sets $I \subseteq Q$ and $F \subseteq Q$ specifying *initial* and *final* states.

Acceptance of words $w \in \mathbb{D}^*$ is defined classically over runs.

$$L_0 = \{ d_1 \cdots d_n \in \mathbb{D}^* \mid d_i \neq d_n \text{ for all } i < n \}$$

$$L_1 = \{ d_1 \cdots d_n \in \mathbb{D}^* \mid d_i = d_j \text{ for some } i \neq j \}$$

A nondeterministic orbit-finite renaming automaton $A = (Q, \delta, I, F)$ consists of:

- an orbit-finite renaming nominal set Q ∈ RnNom specifying states;
- lacksquare an equivariant $extit{\#ansition relation } \delta \subseteq \mathbf{G} \times \mathbb{D} \times \mathbf{Q};$
- equivariant sts / ⊆ Q and / ∫ ⊆ Q specifying initial a

Acceptance of words $w \in \mathbb{D}^*$ is defined classically or

closed under arbitrary renamings

$$L_0 = \{ d_1 \cdots d_n \in \mathbb{D}^* \mid d_i \neq d_n \text{ for all } i < n \}$$

$$L_1 = \{ d_1 \cdots d_n \in \mathbb{D}^* \mid d_i = d_j \text{ for some } i \neq j \}$$

A nondeterministic orbit-finite renaming automaton $A = (Q, \delta, I, F)$ consists of:

- an orbit-finite renaming nominal set $Q \in \mathbf{RnNom}$ specifying *states*;
- an equivariant *transition* relation $\delta \subseteq Q \times \mathbb{D} \times Q$;
- equivariant sets $I \subseteq Q$ and $F \subseteq Q$ specifying *initial* and *final* states.

Acceptance of words $w \in \mathbb{D}^*$ is defined classically over runs.

$$\int_{0} = \int_{0}^{1} \int_{0}^$$

$$L_1 = \{ d_1 \cdots d_n \in \mathbb{D}^* \mid d_i = d_j \text{ for some } i \neq j \}$$

A nondeterministic orbit-finite renaming automaton $A = (Q, \delta, I, F)$ consists of:

- an orbit-finite renaming nominal set Q ∈ RnNom specifying states;
- an equivariant *transition* relation $\delta \subseteq Q \times \mathbb{D} \times Q$;
- equivariant sets $I \subseteq Q$ and $F \subseteq Q$ specifying *initial* and *final* states.

Acceptance of words $w \in \mathbb{D}^*$ is defined classically over runs.

Proposition (Positive Languages)

Every NOFRA accepts a positive language.

A nondeterministic orbit-finite renaming automaton $A = (Q, \delta, I, F)$ consists of:

- an orbit-finite renaming nominal set Q ∈ RnNom specifying states;
- an equivariant *transition* relation $\delta \subseteq Q \times \mathbb{D} \times Q$;
- equivariant sets $I \subseteq Q$ and $F \subseteq Q$ specifying *initial* and *final* states.

Acceptance of words $w \in \mathbb{D}^*$ is defined classically over runs.

Proposition (Positive Languages)

Every NOFRA accepts a positive language.

Theorem (First Equivalence)

A language is positive and NOFA-recognizable iff it is recognized by a NOFRA.

A Slight Problem

The state set of NOFRAs is not truly finite, but just *orbit-finite*.

Store the names of states now explicitly in a finite amount of registers.

Idea (Kaminski, Francez '94, Bojańczyk, Klin, Lasota '14): Change transitions to Boolean formulae of equations of register values and input symbols.

A Slight Problem

The state set of NOFRAs is not truly finite, but just orbit-finite.

Store the names of states now explicitly in a finite amount of registers.

Idea (Kaminski, Francez '94, Bojańczyk, Klin, Lasota '14): Change transitions to Boolean formulae of equations of register values and input symbols.

Registers which can store data values

A Slight Problem

The state set of NOFRAs is not truly finite, but just orbit-finite.

Store the names of states now explicitly in a finite amount of registers.

→ Our Idea:

Let the transition formulae be positive, i.e. without negation.

Theorem (Second Equivalence)

A language is positive and NOFA-recognizable iff it is accepted by a positive RA.

Theorem (Third Equivalence)

Positive register automata are equivalent to *finite-state unification based automata*.

Introduced by Tal '99 and Kaminski, Tan '06

Neven, Schwentick, Vianu '04

$$\phi, \psi := x < y \mid x \sim y \mid X(x) \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \mid \exists x. \phi \mid \exists X. \phi \mid \forall x. \phi \mid \forall X. \phi$$

■ Formulae are interpreted over a fixed data word $w = d_1 \cdots d_n \in \mathbb{D}^*$.

Neven, Schwentick, Vianu '04

$$\phi, \psi := x < y \mid x \sim y \mid X(x) \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \mid \exists x. \phi \mid \exists X. \phi \mid \forall x. \phi \mid \forall X. \phi$$

Formulae are interpreted over a fixed data word $w=d_1\cdots d_n\in \mathbb{D}^\star.$

$$L_0 = \left\{ \begin{array}{c|c} d_1 \cdots d_n \in \mathbb{D}^\star & d_i \neq d_n \text{ for all } i < n \end{array} \right\}$$
 describes the last position
$$\varphi_0 = \forall y. \ \mathsf{last}(y) \Rightarrow (\forall x. \ x < y \Rightarrow \neg (x \sim y))$$

Neven, Schwentick, Vianu '04

$$\phi, \psi := x < y \mid x \sim y \mid X(x) \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \mid \exists x. \phi \mid \exists X. \phi \mid \forall x. \phi \mid \forall X. \phi$$

Formulae are interpreted over a fixed data word $w = d_1 \cdots d_n \in \mathbb{D}^*$.

$$L_1 = \left\{ egin{array}{ll} extbf{d}_1 \cdots extbf{d}_n \in \mathbb{D}^\star \ \middle| \ extbf{d}_i = extbf{d}_j ext{ for some } i
eq j \end{array}
ight.
ight.$$

$$\varphi_1 = \exists x. \ \exists y. \ x < y \land x \sim y$$

Neven, Schwentick, Vianu '04

$$\phi, \psi := x < y \mid x \sim y \mid X(x) \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \mid \exists x. \phi \mid \exists X. \phi \mid \forall x. \phi \mid \forall X. \phi$$

Formulae are interpreted over a fixed data word $w=d_1\cdots d_n\in\mathbb{D}^\star.$

Definition ($MSO^{\sim,+}$)

We restrict MSO $^{\sim}$ formulae to those whose NNF contains no subformula of the form $\neg(x \sim y)$.

Neven, Schwentick, Vianu '04

$$\phi, \psi := x < y \mid x \sim y \mid X(x) \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \mid \exists x. \phi \mid \exists X. \phi \mid \forall x. \phi \mid \forall X. \phi$$

Formulae are interpreted over a fixed data word $w = d_1 \cdots d_n \in \mathbb{D}^*$.

Definition ($MSO^{\sim,+}$)

We restrict MSO $^{\sim}$ formulae to those whose NNF contains no subformula of the form $\neg(x \sim y)$.

Theorem (Fourth Equivalence)

A NOFA-recognizable language is positive iff it is definable within MSO $^{\sim,+}$.

Categorical Automata

There are equivalences of categories for both Nom and RnNom:

There are equivalences of categories for both Nom and RnNom:

 \hookrightarrow We developed a notion of NA on those presheaf categories as well.

There are equivalences of categories for both Nom and RnNom:

 $\,\hookrightarrow\,$ We developed a notion of NA on those presheaf categories as well.

Definition (*Nondeterministic %* -*Automata* **)**

A nondeterministic \mathscr{C} -Automaton $A = (Q, \Sigma, \delta, I, F)$ consists of:

- objects $Q \in \mathscr{C}$ (*states*) and $\Sigma \in \mathscr{C}$ (*input alphabet*);
- a subobject m_δ : $\delta \mapsto Q \times \Sigma \times Q$ specifying *transitions*; and
- subobjects $m_l: I \rightarrow Q$ and $m_F: F \rightarrow Q$ for *initial* and *final* states.

The accepted language is then a family of subobjects of Σ^n for each $n \in \mathbb{N}$ defined over generalized runs.

Categorical Automata (Presheaf Automata)

Example (*Instances of Categorical Automata* **)**

Classical NFA, NOFA, and NOFRA with $\Sigma=\mathbb{D}$ are all instances of categorical automata for $\mathscr{C}=\mathbf{Set},\mathbf{Nom},\mathbf{RnNom}.$

Example (*Instances of Categorical Automata* **)**

Classical NFA, NOFA, and NOFRA with $\Sigma=\mathbb{D}$ are all instances of categorical automata for $\mathscr{C}=\mathbf{Set},\mathbf{Nom},\mathbf{RnNom}.$

Finiteness is expressed through the use of finitely presentable objects.

Example (*Instances of Categorical Automata* **)**

Classical NFA, NOFA, and NOFRA with $\Sigma=\mathbb{D}$ are all instances of categorical automata for $\mathscr{C}=\mathbf{Set},\mathbf{Nom},\mathbf{RnNom}.$

- Finiteness is expressed through the use of finitely presentable objects.
- While presheaf automata accept presheaf languages, we can also look at the accepted *word languages* (subsets of \mathbb{D}^*).

Example (*Instances of Categorical Automata*)

Classical NFA, NOFA, and NOFRA with $\Sigma=\mathbb{D}$ are all instances of categorical automata for $\mathscr{C}=\mathbf{Set},\mathbf{Nom},\mathbf{RnNom}.$

- Finiteness is expressed through the use of finitely presentable objects.
- While presheaf automata accept presheaf languages, we can also look at the accepted *word languages* (subsets of \mathbb{D}^*).

Theorem (Fifth Equivalence)

A word language is NOFA-recognizable iff it is accepted by a finitely presentable $\mathbf{Set}^{\mathbb{I}}$ -automaton.

A word language is positive and NOFA-recognizable iff it is accepted by a finitely presentable $\mathbf{Set}^\mathbb{F}$ -automaton.

 We looked at a restricted subclass of data languages, which has a rich theory and many equivalent perspectives: (→ Regular Languages)

- Bojańczyk, Mikołaj, Bartek Klin, Sławomir Lasota. 'Automata theory in nominal sets'. *Log. Methods Comput. Sci.* 10.3 (2014).
- Gabbay, Murdoch J., Martin Hofmann. 'Nominal Renaming Sets'. Proc. 15th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008). Springer, 2008, pp. 158–173. isbn: 9783540894384.
- Gabbay, Murdoch J., Andrew M. Pitts. 'A new approach to abstract syntax involving binders'. *Proc. 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999).* IEEE Computer Society, 1999, pp. 214–224.
- Kaminski, Michael, Nissim Francez. 'Finite-Memory Automata'. *Theor. Comput. Sci.* 134.2 (1994), pp. 329–363.
- Kaminski, Michael, Tony Tan. 'Regular Expressions for Languages over Infinite Alphabets'. *Fundam. Informaticae* 69.3 (2006), pp. 301–318.

References (2)

- - Neven, Frank, Thomas Schwentick, Victor Vianu. 'Finite State Machines for Strings over Infinite Alphabets'. *ACM Trans. Comput. Logic* 5.3 (2004), pp. 403–435.
- - Tal, A. 'Decidability of inclusion for unification based automata'.

 MA thesis. Department of Computer Science, Technion Israel Institute of Technology, 1999.

Definition (Register Automata) Bojańczyk, Klin, Lasota '14

A register automaton $A = (C, m, \delta, I, F)$ consists of:

- a finite set C of control states;
- lacksquare a number $m\in\mathbb{N}$ of registers; lacksquare Boolean formulae with Φ as atoms.
- a transition relation $\delta \subseteq C \times \mathbb{B}(\Phi) \times C$, where

$$\Phi = (\{1, \dots, m\} \times \{\text{BEF}, \text{AFT}\} \cup \{\bullet\})^2; \text{ and}$$
Equations: Compare register

• sets $I \subseteq C$ and $F \subseteq C$ of *initial* and *final* states.

values with one another or the input value (•).

Configurations: (c,r) with $c\in C$ and $r\in (\mathbb{D}\cup\{\perp\})^m$ (partial assignments to registers) A move $(c,r)\stackrel{\partial}{\to}(c',r')$ is defined iff it is *consistent* with some transition $c\stackrel{\varphi}{\to}c'$. Acceptance is defined over runs of moves.

Definition (*Positive Register Automata* **)**

A positive register automaton $A = (C, m, \delta, I, F)$ consists of:

- a *finite* set C of control states:
- a number $m \in \mathbb{N}$ of registers; Positive Boolean formulae (i.e. no negations) with Φ as atoms.
- a transition relation $\delta \subseteq C \times \mathbb{B}^+(\Phi) \times C$, where

$$\Phi = (\{1, \dots, m\} \times \{\text{BEF}, \text{AFT}\} \cup \{\bullet\})^2; \text{ and}$$

$$\Phi = (\{1, \dots, m\} \times \{\text{BEF}, \text{AFT}\} \cup \{\bullet\})^2; \text{ and}$$
Equations: Compare register values with one another

• sets $I \subseteq C$ and $F \subseteq C$ of *initial* and *final* states.

or the input value (•).

Configurations: (c, r) with $c \in C$ and $r \in (\mathbb{D} \cup \{\perp\})^m$ (partial assignments to registers) A move $(c, r) \xrightarrow{\partial} (c', r')$ is defined iff it is *consistent* with some transition $c \xrightarrow{\varphi} c'$. Acceptance is defined over runs of moves.