Algoritmos - AULA 3

Sumário

Operadores de Atribuição Aritmética e Operadores Incrementais	1
Teste de Mesa	1
	Operadores de Atribuição Aritmética e Operadores Incrementais Teste de Mesa 2.1 Como fazer um teste de mesa? Funções matemáticas Exemplo completo Exercícios

1 Operadores de Atribuição Aritmética e Operadores Incrementais

Algumas vezes podemos usar uma forma reduzida para realizar instruções mais longas de uma forma mais curta, a saber:

Exemplo de	Exemplo de	Exemplo				
uma Forma	uma Forma	Valor de X antes da		Valor de X depois da		
Normal	Reduzida	instrução		instrução		
x = x + 1;	X++;	2		2 3		
x = x - 1;	X;	2			1	
x = x + 5;	x += 5;	2			7	
x = x - 5;	x -= 5;	2		-	3	
x = x * 3;	x *= 3;	2			6	
x = x / 3;	x /= 3;	6			2	
Evenuelo de	Evample de	Exemplo				
Exemplo de	Exemplo de	Valor de x	Valor de y	Valor de x	Valor de y	
uma Forma	uma Forma	antes da	antes da	depois da	depois da	
Normal	Reduzida	instrução	instrução	instrução	instrução	
x = x + 1; y = x;	y = ++x;	3	7	4	4	
x = x - 1; y = x;	y =x;	3	7	2	2	
y = x; $x = x + 1;$	y = x++;	3	7	4	3	
y = x; $x = x - 1;$	y = x;	3	7	2	3	

2 Teste de Mesa

Na fase de desenvolvimento de um programa, muitas vezes precisamos testar se as funcionalidades implementadas em um algoritmo estão corretas. Para isso, é necessário verificar o conteúdo das variáveis passo a passo, o que chamamos de teste de mesa.

Ou seja, precisamos seguir passo a passo as instruções de um algoritmo, de maneira precisa, para verificar se o algoritmo foi implementado da forma correta, a partir dos resultados gerados e dos valores parciais de cada variável.

Com o teste de mesa é possível:

- Visualizar o comportamento de todo o processo;
- Identificar e corrigir eventuais erros ("bugs"), se existirem;
 - Erros de sintaxe: quando as instruções do programa não são escritas de acordo com a sintaxe da linguagem usada;
 - o Erros lógicos: quando o código escrito pelo programador não gera o resultado desejado pelo mesmo.

2.1 Como fazer um teste de mesa?

Usando o caderno ou algum bloco de anotação, faça o seguinte:

- Crie uma tabela e no cabeçalho coloque as variáveis declaradas. Crie uma coluna para cada variável declarada;
- Crie um espaço para anotar tudo o que deve aparecer na tela do computador;
- Execute o algoritmo, manual e visualmente, linha a linha, anotando nas colunas apropriadas cada mudança de valor das variáveis, e no lugar você criou tudo o que foi escrito na tela;
- Preste atenção nas estruturas condicionais (porque pode haver instruções que não serão executadas) e nas estruturas de repetição (porque pode haver trechos de instruções que devem ser executados mais de uma vez).
- Siga a execução até chegar ao final do algoritmo
- Execute o programa no computador e compare o resultado do seu teste de mesa com o resultado obtido no computador.

Exemplo

```
#include<stdio.h>
#include<stdlib.h>
int main()
  int a,b,c,d;
  a=0; b=0; c=0; d=0;
  a=8;
  b=12;
  d=a+a;
  c=a+b;
  a=c%b:
  d=d+1:
  a=a+c;
  c=d-b;
  printf("a:%d b:%d c:%d d:%d\n",a,b,c,d);
  system("pause");
  return 0;
}
```

Teste de Mesa

a	b	С	d			
0	0	0	0			
8	12	20	16			
8		5	17			
28						

Na tela:

a:28 b:12 c:5 d:17

3 Funções matemáticas

O math.h é um arquivo cabeçalho que fornece protótipos para funções, macros e definição de tipos da biblioteca padrão da linguagem de programação C para funções matemáticas básicas. São disponibilizadas, das quais podemos citar:

Trigonométricas

- sin(ângulo): retorna o valor do seno. Recebe como argumento o valor dos graus em radianos.
- cos(ângulo): retorna o valor do co-seno. Recebe como argumento o valor dos graus em radianos.
- tan(ângulo): retorna o valor da tangente. Recebe como argumento o valor dos graus em radianos.
- pow(base,expoente): retorna o valor da base elevada ao expoente. Recebe dois argumentos, o primeiro é a base e o segundo o expoente.
- sqrt(valor): retorna o valor da raiz quadrada. Recebe como argumento um número do qual ele deve extrair a raiz.

4 Exemplo completo

Entrar com o valor de 45 graus, em radianos, e mostrar o valor da tangente.

```
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
int main()
{
    float angulo;
    printf("Digite um angulo em radianos\n");
    scanf("%f",&angulo);
    printf("tan(%.1f) = %f\n",angulo,tan(angulo));
    system("pause");
    return 0;
}

Digite um angulo em radianos
0.785375
tan(0.8) = 0.999954
Pressione qualquer tecla para continuar...
```

5 Exercícios

1 Faça o teste de mesa e mostre o último valor armazenado em cada uma das variáveis.

```
#include <stdio.h>
#include <stdlib.h>
int main (void)
{
    float x,y=2.5;
    int a,b=1,c;
    x=++y;
    x*=2;
    a=b+1;
    a++;
```

```
c=2*a+b;
a=c--;
b=a++ + --c;
printf("x =%.1f\ny=%.1f\na=%i\nb=%i\nc=%i\n",x,y,a,b,c);
system("pause");
return 0;
}
```

- 2 Leia dois valores para as variáveis A e B e efetua a troca dos valores de forma que a variável A passe a ter o valor da variável B e a variável B passe a ter o valor da variável A. Apresente os valores trocados.
- 3 Calcule o salário de um vendedor ao final do mês. O salário final será o salário fixo mais 15% sobre as vendas efetuadas. Os dados de entrada serão o salário fixo e o valor total das vendas efetuadas no mês.
- 4 Leia um valor que foi depositado na poupança e exiba o valor com o rendimento após um mês. Considere que a taxa de juros da poupança é de 0,7% ao mês.
- 5 Leia um valor e armazene em x, depois calcule e mostre o resultado da seguinte equação:

$$y = \frac{2 * \sqrt{x+1}}{3x^3}$$

- 6 Leia o valor pelo teclado e informe o valor da raiz quadrada do referido valor.
- 7 Leia o valor de um ângulo, converta de graus para radianos, calcule e mostre o valor do seno e do cosseno desse ângulo. Utilize a constante M_PI, da biblioteca math.h, que fornece o valor de .

Lembre-se: 180 graus ---- pi radianos X graus ---- Y radianos

8 Leia o valor da base e do expoente, depois calcule e mostre o valor da potência.