Tema 11: Comportamiento local de una función holomorfa

Variable Compleja I

Principio del módulo máximo

2 Teorema de la aplicación abierta

- 3 Comportamiento local
 - Teorema de la función inversa
 - Comportamiento local en un cero de la derivada

Propiedad de la media

Motivación

Fórmula de Cauchy: $\Omega = \Omega^{\circ} \subset \mathbb{C}$, $f \in \mathcal{H}(\Omega)$, $\overline{D}(a,r) \subset \Omega$

$$f(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{w - z} dw \qquad \forall z \in D(a,r)$$

Conociendo f en $C(a,r)^*$ la conocemos en D(a,r)

Usaremos el caso más sencillo: z = a

Propiedad de la media

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega), \quad \overline{D}(a,r) \subset \Omega$$

$$f(a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(a + re^{it}) dt$$

Por tanto,

$$|f(a)| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(a+re^{it})| dt$$

Principio del módulo máximo

Teorema

$$\Omega$$
 dominio $y f \in \mathcal{H}(\Omega)$

Supongamos que |f| tiene un máximo relativo en un punto $a \in \Omega$, es decir:

$$\exists \, \delta > 0 \; : \; D(a,\delta) \subset \Omega \quad \text{ y } \quad |f(z)| \, \leqslant \, |f(a)| \ \, \forall z \in D(a,\delta)$$

Entonces f es constante

Corolario 1

 Ω dominio acotado, $f: \overline{\Omega} \to \mathbb{C}$ continua en $\overline{\Omega}$ y holomorfa en Ω , es decir $f \in C(\overline{\Omega}) \cap \mathcal{H}(\Omega)$. Entonces:

$$\max\big\{\,|\,f(z)\,|\ :\ z\in\overline{\Omega}\,\big\}=\max\big\{\,|\,f(z)\,|\ :\ z\in\mathrm{Fr}\,(\Omega)\,\big\}$$

En particular:

$$f(z) = 0 \quad \forall z \in \operatorname{Fr}(\Omega) \implies f(z) = 0 \quad \forall z \in \overline{\Omega}$$

Principio del módulo mínimo

Corolario 2

$$\Omega$$
 dominio acotado, $f_n \in C(\overline{\Omega}) \cap \mathcal{H}(\Omega) \ \forall n \in \mathbb{N}$

Supongamos que $\{f_n\}$ converge uniformemente en $\operatorname{Fr}\left(\Omega\right)$

Entonces $\{f_n\}$ converge uniformemente en $\overline{\Omega}$

a una función $f \in C(\overline{\Omega}) \cap \mathcal{H}(\Omega)$

Principio del módulo mínimo

$$\Omega$$
 dominio y $f \in \mathcal{H}(\Omega)$

Supongamos que |f| tiene un mínimo relativo en un punto $a\in\Omega\colon$

$$\exists \delta > 0 \ : \ D(a,\delta) \subset \Omega \quad \ \, \mathbf{y} \quad \ \, |f(z)| \geqslant |f(a)| \ \, \forall z \in D(a,\delta)$$

Entonces, o bien f(a) = 0, o bien f es constante

Corolario

 Ω dominio acotado, $f \in C(\overline{\Omega}) \cap \mathcal{H}(\Omega)$, no constante

Si |f| es constante en Fr (Ω) , entonces existe $a \in \Omega$ tal que f(a) = 0.

Teorema de la aplicación abierta

Teorema

 Ω dominio, $f \in \mathcal{H}(\Omega)$ no constante

Entonces f es una aplicación abierta, es decir:

$$U=U^{\circ}\subset\Omega\quad\Longrightarrow\quad f(U)=f(U)^{\circ}$$

Teorema de la función inversa local

Lema

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega)$$

La función $\Phi: \Omega \times \Omega \to \mathbb{C}$ definida por

$$\Phi(w,z) = \begin{cases} \frac{f(w) - f(z)}{w - z} & \text{si } w \neq z \\ f'(w) = f'(z) & \text{si } w = z \end{cases}$$

es continua

Teorema de la función inversa local

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega), \quad a \in \Omega \text{ con } f'(a) \neq 0$$

Entonces existe un abierto U, con $a \in U \subset \Omega$ tal que:

- f es inyectiva en U y $f'(z) \neq 0 \quad \forall z \in U$
- El conjunto V = f(U) es abierto
- Si $\varphi = f|_U$, entonces $\varphi^{-1} \in \mathcal{H}(V)$ con $(\varphi^{-1})'(f(z)) = \frac{1}{f'(z)} \quad \forall z \in U$

Logaritmos holomorfos

Ejemplo

$$m \in \mathbb{N}, \quad m \geqslant 2, \quad f(z) = z^m \quad \forall z \in \mathbb{C} \quad f'(0) = 0$$

Fijado
$$\delta \in \mathbb{R}^+\,,$$
para cada $w \in D(0,\delta^m) \setminus \{0\}$

la ecuación f(z)=w tiene exactamente m soluciones en $D(0,\delta)$

Logaritmos holomorfos

 Ω dominio estrellado, $\ f\in \mathcal{H}(\Omega)$ con $f(z)\neq 0 \ \forall z\in \Omega.$ Entonces:

• f admite un logaritmo holomorfo en Ω , es decir,

$$\exists g \in \mathcal{H}(\Omega) : f(z) = e^{g(z)} \ \forall z \in \Omega$$

• Para cada $m \in \mathbb{N}$, f admite una raíz m-ésima holomorfa en Ω , es decir,

$$\exists h \in \mathcal{H}(\Omega) : f(z) = (h(z))^m \ \forall z \in \Omega$$

Comportamiento local en un cero de la derivada

Teorema

 Ω dominio, $f \in \mathcal{H}(\Omega)$ no constante, $a \in \Omega$ tal que f'(a) = 0 y b = f(a)Sea $m \in \mathbb{N}$ el orden del cero de la función $z \mapsto f(z) - b$ en el punto aEntonces existen un abierto U con $a \in U \subset \Omega$ y un $\varepsilon > 0$ tales que:

- $\bullet \ f(U) = D(b, \mathbf{E})$
- $z \in U$, $f(z) = b \implies z = a$
- Para cada $w \in \mathbb{C}$ con $0 < |w-b| < \varepsilon$ la ecuación f(z) = w tiene exactamente m soluciones distintas en U, es decir, el conjunto $\{z \in U : f(z) = w\}$ tiene exactamente m elementos.

Caracterización de la invectividad local

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega), \quad a \in \Omega$$

f inyectiva en un entorno de $a \iff f'(a) \neq 0$

Teorema de la función inversa global

Teorema

U dominio, $f \in \mathcal{H}(U)$ inyectiva. Entonces:

- V = f(U) es un dominio
- $f'(z) \neq 0 \quad \forall z \in U$
- $f^{-1} \in \mathcal{H}(V)$ con: $(f^{-1})'(f(z)) = \frac{1}{f'(z)} \quad \forall z \in U$

Reglas de derivación de la función inversa

funa función inyectiva definida en $A\neq \emptyset \quad a\in A\,, \quad b=f(a)$

Funciones reales de variable real

 $A \subset \mathbb{R}, \ f: A \to \mathbb{R}$ derivable en $a \in A'$. Entonces $b \in f(A)'$ y:

 f^{-1} derivable en $b\iff f^{-1}$ continua en b y $f'(a)\neq 0$ en cuyo caso $\left(f^{-1}\right)'(b)=1/f'(a)$

Funciones de \mathbb{R}^N en \mathbb{R}^N

 $A \subset \mathbb{R}^N, \ f: A \to \mathbb{R}^N$ diferenciable en $a \in A^{\circ}, \ \text{con} \ b \in f(A)^{\circ}$. Entonces:

 f^{-1} diferenciable en $b\iff f^{-1}$ continua en b y $|Jf(a)|\neq 0$ en cuyo caso $Df^{-1}(b)=Df(a)^{-1}$

Funciones complejas de variable compleja

 $A \subset \mathbb{C}, \ f: A \to \mathbb{C}$ derivable en $a \in A'$. Entonces $b \in f(A)'$ y:

 f^{-1} derivable en $b\iff f^{-1}$ continua en b y $f'(a)\neq 0$ en cuyo caso $\left(f^{-1}\right)'(b)=1/f'(a)$

Teoremas locales de la función inversa

Funciones reales de variable real

$$\Omega = \Omega^{\circ} \subset \mathbb{R}, \ f : \Omega \to \mathbb{R}$$
 derivable en Ω , con f' continua en $a \in \Omega$.

$$f'(a) \neq 0 \implies \exists U \text{ con } a \in U = U^{\circ} \subset \Omega \text{ tal que } f \text{ es inyectiva en } U$$

Funciones de \mathbb{R}^N en \mathbb{R}^N

$$\Omega = \Omega^{\circ} \subset \mathbb{R}^N, \ f: \Omega \to \mathbb{R}^N \ \text{diferenciable en } \Omega, \ \text{con } Df \ \text{continua en } a \in \Omega.$$

$$|Jf(a)| \neq 0 \implies \exists U \text{ con } a \in U = U^{\circ} \subset \Omega \text{ tal que } f \text{ es inyectiva en } U$$

Funciones complejas de variable compleja

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \ f \in \mathcal{H}(\Omega), \ a \in \Omega.$$

$$f'(a) \neq 0 \iff \exists U \text{ con } a \in U = U^{\circ} \subset \Omega \text{ tal que } f \text{ es inyectiva en } U$$

Teoremas globales de la función inversa

Funciones reales de variable real

 $\Omega \subset \mathbb{R}$, Ω intervalo abierto, $f: \Omega \to \mathbb{R}$ derivable en Ω .

Suponemos que $f'(x) \neq 0 \ \forall x \in \Omega$. Entonces:

f es inyectiva, $f(\Omega)$ es un intervalo abierto y f^{-1} es derivable en $f(\Omega)$

Funciones de \mathbb{R}^N en \mathbb{R}^N

 $\Omega \subset \mathbb{R}^N$, Ω dominio, $f \in C^1(\Omega, \mathbb{R}^N)$.

Suponemos que $|Jf(x)| \neq 0 \ \forall x \in \Omega$ y que f es inyectiva. Entonces:

 $f(\Omega)$ es un dominio y f^{-1} es diferenciable en $f(\Omega)$

Funciones complejas de variable compleja

 $\Omega \subset \mathbb{C}$, Ω dominio, $f \in \mathcal{H}(\Omega)$.

Suponemos que f es inyectiva. Entonces:

Entonces $f'(z)\neq 0$ para todo $z\in \Omega,\ f(\Omega)$ es un dominio y $f^{-1}\in \mathcal{H}(\Omega)$