

第3章 向量

通识教育部

向量的基本概念

03

极大线性无关组和向量组的秩

02

向量组的线性相关性

04

向量的内积与正交矩阵

- 1. 我们用小写的希腊字母 α , β , γ , ξ , η , 或者小写字母x, y, z, a, b, c表示向量,手写体注意在字母上方加箭头" \rightarrow ",
- 2. n维向量组成的集合称为n维向量空间,记作 R_n ,故R是数轴上的点; R_2 是平面点集; R_3 是空间点集.

若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组.

设非齐次线性微分方程组可表示成一个 $m \times (n+1)$ 矩阵:

这个矩阵既可以表示成由m个n+1维行向量所组成的向量组:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{pmatrix}$$

又可以表示成由n + 1个m维列向量所组成的向量组:

$$A = (\beta_1, \beta_2, \cdots, \beta_n, b)$$

设
$$\alpha = (a_1, a_2, \cdots a_n),$$
 $\beta = (b_1, b_2, \cdots b_n),$ 如果 $a_i = b_i (i = 1, 2, \cdots, n)$,则称两向量相等.

1

向量相等

2零向量

分量全为0的向量称为零向量,记作o,即 $o = (o, o, \cdots, o)$

向量 $-\alpha = (-a_1, -a_2, \dots -a_n)$ 称为向量 $\alpha = (a_1, a_2, \dots a_n)$, 的负向量.

> **3** 负向量

$$\boldsymbol{\alpha}^{T} = (a_{1}, a_{2}, \cdots, a_{n})$$
称为 $\boldsymbol{\alpha} = \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix}$ 的转置向量

乘法

$$\alpha^T \beta$$
, $\alpha \beta^T$

1. 设 $\alpha = (2, -3, 7)^T$, $\beta = (11, -12, 8)^T$, 向量 γ 满足方程 $-3\gamma - 2\alpha = 2(\beta - 5\gamma)$, 求向量 γ .

PART []

向量组的线性相关性

定义2

设 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 是一个n维向量组, k_1, k_2, \cdots, k_m 是一组数,称向量

$$k_1 \boldsymbol{\alpha_1} + k_2 \boldsymbol{\alpha_2} + \dots + k_m \boldsymbol{\alpha_m}$$

是向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 的一个线性组合, k_1, k_2, \cdots, k_m 称为这个线性组合的组合系数.

定义3

如果向量 β 可以表示向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 的一个线性组合,即存在组合系数

$$k_1, k_2, \cdots, k_m$$
,使

$$\boldsymbol{\beta} = k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_m \boldsymbol{\alpha}_m$$

则称向量 β 可以由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性表示或线性表出.

1. 已知向量组 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (0,2,5)^T$, $\alpha_3 = (2,4,7)^T$,则 α_3 能否用 α_1 , α_2 表示.

 α_1 , α_2 , α_3 线性相关

2. 已知向量组 $\alpha_1 = (1,1,0)^T$, $\alpha_2 = (1,2,0)^T$, $\alpha_3 = (1,3,1)^T$,则 α_3 能否用 α_1 , α_2 表示.

 α_1 , α_2 , α_3 线性无关

定义4

设n维向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$,如果存在一组不全为0的数 k_1, k_2, \cdots, k_m ,使

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m = \mathbf{0}$$

成立,则称向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关;反之,则称线性无关.

推论:向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关的充要条件是:向量组中任何一个向量都不可以由其余m-1个向量线性表示.

向量组的线性相关性的有关性质

称n个n维向量 $\pmb{\varepsilon}_1=(1,0,\cdots,0)^T$, $\pmb{\varepsilon}_2=(0,1,\cdots,0)^T$, \cdots , $\pmb{\varepsilon}_n=(0,0,\cdots,1)^T$, 组成的的向量组为n维单位坐标向量组,简称单位向量组.

单位向量组线性无关.

任意n维非零向量均可由单位向量组线性表示.

如果向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 中的一部分线性相关,则向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关。

给线性无关向量组中的每一个向量在相同位置上任意添加1个分量,所得向量组任然线性无关.

向量组的线性相关性的有关性质

如果向量组 α_1 , α_2 , …, α_m , β 线性相关,而向量组 α_1 , α_2 , …, α_m 线性无关,则 β 可以由 α_1 , α_2 , …, α_m , 线性表示,且表示法唯一.

设有两个向量组

I: α_1 , α_2 , \cdots , α_s ; Π : β_1 , β_2 , \cdots , β_t .

向量组 Π 中的每个向量 $\beta_j(j=1,2,\cdots,t)$ 都可以由向量组 Π 线性表示,则称向量组 Π 能由向量组 Π 线性表示,则有如下结论:

- (1)如果s < t,则向量组∏线性相关;
- (2) 如果向量组 Π 线性无关,则s ≥ t.

如果向量组I和II可以相互线性表示,且I和II都是线性无关向量组,则s=t.

1. 设向量组 α_1 , α_2 , α_3 线性无关,设 $b_1=\alpha_1+\alpha_2$, $b_2=\alpha_2+\alpha_3$, $b_3=\alpha_3+\alpha_4$, $b_4=\alpha_1+\alpha_4$, 证明向量组 b_1 , b_2 , b_3 , b_4 线性相关.

2. 设向量组 α_1 , α_2 , α_3 线性无关,证明向量组 α_1 +3 α_2 , $2\alpha_2$ – α_3 , $4\alpha_3$ + $3\alpha_1$ 也线性无关.

1. $\alpha_1 = (1, 2, 3)^T$, $\alpha_2 = (1, x, 1)^T$, $\alpha_3 = (0, 2, x)^T$, 当x何值时, α_1 , α_2 , α_3 线性相关.

2. 若向量组 α_1 , α_2 , α_3 与向量组 $l\alpha_1+\alpha_2$, $\alpha_2+\alpha_3$, $m\alpha_3+\alpha_1$ 均线性无关,求l,m的值.

用矩阵的秩判别向量组的线性相关性

向量组与矩阵的关系

m个n维列向量所组成的向量组构成一个n×m矩阵

$$A = (\alpha_1, \alpha_2, \cdots, \alpha_m)$$

m个n维行向量所组成的向量组构成一个m×n矩阵

$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{pmatrix}$$

— 一对应.

定理 设矩阵A是m个n维对应的矩阵向量 α_1 , α_2 , ..., α_m 线性相关的充要条件 是R(A) < m. 线性无关的充要条件是R(A) = m.

m个n维向量 α_1 , α_2 , ..., α_m 相关性的判别方法:

- (1) 当m > n时,向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性相关;
- (2) 当m < n时,向量组构成的矩阵 $A = \left(a_{ij}\right)_{m \times n}$

$$A \longrightarrow$$
 阶梯阵 B ,

R(A) = B的非零行行数,固有

- a. R(A) < m , 线性相关 ;
- b. R(A) = m,线性无关;
 - (3) m = n, A是n阶方阵, |A| = 0, 线性相关; $|A| \neq 0$, 线性无关.

1. 判定下列向量组的线性相关性:

$$(1)(-1,3,1),(2,1,0),(1,4,1);$$

$$(2) (2,1,-1,-1)^T, (0,3,-2,0)^T, (2,4,-3,-1)^T.$$

2. 设向量组= $(a, 1, 1)^T$, α_2 , = $(1, a, 1)^T$, α_3 = $(1, 1, a)^T$ 线性相关,则 a的值为?

及大线性无关组和向量组的秩

如果在向量组 α_1 , α_2 , ..., α_m 中选出 α_{i1} , α_{i2} , ..., α_{ir} 满足条件:

- (1)向量组 α_{i1} , α_{i2} , ..., α_{ir} 线性无关;
- (2)向量组 α_1 , α_2 , …, α_m 中任意向量都可以由 α_{i1} , α_{i2} , …, α_{ir} 线性表示,则称向量组 α_{i1} , α_{i2} , …, α_{ir} 是向量组 α_1 , α_2 , …, α_m 的一个极大线性无关组,简称极大无关组.

- (1)向量组的极大无关组可以不唯一;
- (2)向量组的不同极大无关组所含向量个数相同;
- (3)一个线性无关向量组的极大无关组就是其自身.

向量组 的秩

如果在向量组 α_1 , α_2 , ..., α_m 的极大无关组所含向量的个数r称为该<mark>向量组</mark>

的秩,记作

$$R(\alpha_1, \alpha_2, \cdots, \alpha_m) = r$$

PART

03

矩阵的秩与向量组的秩之间的关系

矩阵 $A = (a_{ij})_{m \times n}$ 的秩R(A)等于它的列向量组的秩,也等于它的行向量

组的秩.

设有两个向量组I: α_1 , α_2 ,…, α_s ; Π : β_1 , β_2 ,…, β_t ,如果向量组I和II可以相互表示,则称向量组等价,记作 $I\sim\Pi$.

性质

(1)反身性;(2)对称性;(3)传递性.

定理 (1)等价向量组同秩.

(2)对矩阵A施行初等行变换化为矩阵B,则A的列向量组与B的列向量组有相同的线性关系.

求向量组的极大无关组的方法:

A(列向量组) \longrightarrow 行最简形B,

B的单位列向量组 $\varepsilon_1, \varepsilon_2, \cdots \varepsilon_r$ 所在列的序号依次为 i_1, i_2, \cdots, i_r ,则A的第 i_1, i_2, \cdots, i_r 列所对应的列向量就是给定向量组的一个极大无关组.

注意:若给出的是行向量组,必须用用列向量构成矩阵

1. 求下列向量组的秩和一个极大无关组,并把其他向量用极大无关组线性表示:

 $(1) (1, 2, 1, 3)^T, (4, -1, -5, -6)^T, (1, -3, -4, -7)^T.$

 $(2) (1, 2, -1, 4)^T, (9, 100, 10, 4)^T, (-2, -4, 2, -8)^T.$

1. 求向量组的秩、极大无关组,并将其余向量用极大无关组表示出来

 $(1, 2, -5)^T$, $(2, -1, 2)^T$, $(4, 3, -8)^T$, $(7, -1, 1)^T$.

PART 向量的内积与正交矩阵

内积

设n维向量
$$\alpha=(a_1,a_2,\cdots,a_n)^T$$
, $\beta=(b_1,b_2,\cdots,b_n)^T$, 称实数

$$[\alpha , \beta] = \alpha^T \beta = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

为向量 $\vec{\alpha}$ 与 β 的内积,也可记作(α , β).

性质

- (1) 对称性 $[\alpha, \beta] = [\beta, \alpha]$;
- (2) 非负性 当 $\alpha = \vec{0}$ 时,才有 $[\alpha, \alpha] = 0$,否则 $[\alpha, \alpha] > 0$;
- (3) 线性性质 $[\lambda \alpha, \beta] = \lambda [\alpha, \beta]$

$$[\alpha + \beta , \gamma] = [\alpha , \gamma] + [\beta , \gamma].$$

柯西—施瓦茨公式 $[\alpha, \beta]^2 \leq [\alpha, \alpha][\beta, \beta]$

向量α的长度称为α的范数,记作

范数

$$\|\alpha\| = \sqrt{[\alpha, \alpha]} = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

当 $\|\alpha\| = 1$ 时,称为 $\vec{\alpha}$ 的单位向量,记作 α^0 ,则 $\alpha^0 = \frac{\alpha}{\|\alpha\|}$.

性质

- (1) 非负性 当 $\alpha = \vec{0}$ 时,才有 $\|\alpha\|$,否则 $\|\alpha\| > 0$;
- (2) 齐次性 $\|\lambda\alpha\| = |\lambda| \|\alpha\|$;
- (3) 三角不等式 $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$.

向量 α , β 的夹角 θ

$$\theta = \arccos \frac{[\alpha , \beta]}{\|\alpha\| \|\beta\|}.$$

当 $[\alpha, \beta] = 0$,称向量 α 与 β 正交.

注意:零向量与任意向量正交.

如果n维向量 α_1 , α_2 , ..., α_r 是一组两两正交的非零向量,即当 $i \neq j$ 时

$$\left[\alpha_{i}, \alpha_{j}\right] = 0$$
, $i, j = 1, 2, \dots r$

则称 α_1 , α_2 , ..., α_r 是正交向量组.

定理 正交向量组是线性无关向量组.

n维正交向量组 α_1 , α_2 , ..., α_n , 称为 R^n 的一组正交基

设
$$\alpha_1 = (1,1,1)^T$$
, $\alpha_2 = (1,-2,1)^T$ 正交,求 α_3 ,使 α_1 , α_2 , α_3 成为正交向量组.

设
$$\alpha_3 = (x_1, x_2, x_3)^T$$
 , 与 α_1, α_2

正交,则有

得
$$\begin{cases} x_1 = -x_3 \\ x_2 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 - 2x_2 + x_3 = 0 \end{cases}$$

得
$$\alpha_3 = (-1,0,1)^T$$

练习

设 $\alpha_1 = (1,1,1)^T$ 正交,求 α_2 , α_3 ,使 α_1 , α_2 , α_3 成为 R^3 的一组正

交向量组.

设
$$\alpha_i = (x_1, x_2, x_3)^T$$
 , 与 α_1, α_2 ,

 α_3 正交,则有

$$x_1 + x_2 + x_3 = 0$$

得
$$\begin{cases} x_1 = -x_2 - x_3 \\ x_2 = x_2 \\ x_3 = x_3 \end{cases}$$

得
$$\alpha_2 = (-1,1,0)^T$$
, $\alpha_3 = (-1,0,1)^T$

n维正交向量组 α_1 , α_2 , …, α_n , 称为 R^n 的一组正交基,且每个向量都是单位向量的,则称 α_1 , α_2 , …, α_n 是 R^n 的一组规范正交基.

n维单位向量组 $\varepsilon_1, \varepsilon_2, \cdots \varepsilon_n$ 就是 R^n 的一组最简单、最基本的<mark>规范正交基</mark>.

把向量空间 R^n 的一个极大无关组 α_1 , α_2 , …, α_n 经过先正交,后单位化,得到的一个规范正交基的计算过程,称之为施密特正交化法.

1. 正交化

$$\Rightarrow \beta_1 = \alpha_1;$$

$$\beta_2 = \alpha_2 - \frac{[\beta_1, \alpha_2]}{[\beta_1, \beta_1]} \beta_1;$$

$$\beta_3 = \alpha_3 - \frac{[\beta_1, \alpha_3]}{[\beta_1, \beta_1]} \beta_1 - \frac{[\beta_2, \alpha_3]}{[\beta_2, \beta_2]} \beta_2;$$

2. 单位化

$$e_i = \frac{\beta_i}{\|\beta_i\|}$$

练习 1.将线性无关向量组 $\alpha_1 = (1,1,1)^T$, $\alpha_2 =$

$$(1,-2,1)^T$$
, $\alpha_3 = (-1,0,1)^T$ 化为规范正交基.

练习 2.将线性无关向量组 $\alpha_1 = (1,0,-1)^T$, $\alpha_2 = (2,1,1)^T$, $\alpha_3 = (0,-2,1)^T$ 化为规范正交基.

如果n阶矩阵A满足

$$A^{T}A = AA^{T} = E$$
 ($\mathbb{R} DA^{T} = A^{-1}$)

称A为正交矩阵,简称正交阵.

- (1) 如果A是正交阵,则 A^T 也是正交阵.
- (2) 如果A是正交阵,则 $|A| = \pm 1$.
- (3)如果A,B是正交阵,则AB也是正交阵

定理 如果n阶方阵A为正交阵的充要条件是A的列(行)向量组是规范正交基.

练习

验证矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$
是正交阵.

D5 矩阵的特征值与特征向量

 $|A - \lambda E| = 0$,称为特征方程

定义 设A是n阶矩阵,如果数 λ 和n维列向量x,使

$$Ax = \lambda x$$
,

成立,则称数 λ 为方阵A的特征值,称 \vec{x} 为A的对应于特征值的特征向量.

- (1)特征向量 $x = (x_1, x_2, \dots, x_n)^T \neq 0$;
- (2) 方阵A的特征值 λ 的特征向量不唯一.

PART 02

求方阵A的特征值与特征向量

- (1) 求出特征方程 $|A \lambda E| = 0$ 的全部特征值 $\lambda_i(i = 1, 2, \dots, n)$;
- (2)对于每一个特征值 λ_i (重根合并计算),解齐次线性方程组 $(A \lambda_i E)x = 0$,求出一个基础解系

$$\xi_{i1}$$
, ξ_{i2} , $\cdots \xi_{i,n-r_i}$,

(3)写出方阵A的特征值 λ_i 所对应的全部特征向量

$$k_1 \xi_{i1} + k_2 \xi_{i2} + \dots + k_{n-r_i} \xi_{i,n-r_i}$$

求下列方阵的特征值和特征向量

$$(1) A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}; (2) A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

THANK YOU TO LISTEN TO CRITICISM GUIDANCE

