Lecture 7: Convergence and Limit Theorems

- Almost sure convergence
- Convergence in mean square
- Convergence in probability
- Convergence in distribution

1

Motivation: Estimating Mean

- Want to estimate the mean $\mathbb{E}[X]$ of a distribution.
- ullet Generate X_1, X_2, \ldots, X_n i.i.d. drawn from the distribution and compute the sample mean

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

• Does S_n converge to $\mathbb{E}[X]$? In what sense? Note that S_n is a random variable.

2

Motivation: Estimating Mean

- Example: X_1, X_2, \ldots, X_n i.i.d. $\mathcal{N}(0, 1)$
 - Generate 6 sets of X_1, X_2, \ldots, X_n (sample paths).
 - ightharpoonup Note that every sample path appears to be converging to the mean 0 as n increases.

Almost Sure Convergence

- Recall that a sequence of numbers x_1, x_2, \ldots converges to x if given any $\epsilon > 0$, there exists an $n(\epsilon)$ such that for all $n \geq n(\epsilon)$, $|x_n x| < \epsilon$. Equivalently, $\max_{i \geq n} |x_i x| \to 0$ as $n \to \infty$.
- Suppose a sequence of random variables X_1, X_2, \ldots defined over the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For every $\omega \in \Omega$, we get a sample path $X_1(\omega), X_2(\omega), \ldots$, which is a sequence of numbers.
- We say $X_n \to X$ almost surely (a.s.) or with probability 1 (w.p. 1) if

$$\mathbb{P}\Big(\Big\{\omega: \lim_{n\to\infty} X_n(\omega) = X(\omega)\Big\}\Big) = 1.$$

• This means that the set of ω such that the sample path or sequence $X_1(\omega), X_2(\omega), \ldots$ converges to $X(\omega)$ has probability 1.

4

Almost Sure Convergence

Lemma.
$$\mathbb{P}\left(\max_{i\geq n}|X_i-X|>\epsilon\right)\to 0 \text{ for any }\epsilon>0 \text{ iff }X_n\xrightarrow{\mathrm{a.s.}}X.$$

We prove the forward direction. We will see that the converse holds when discussing convergence in probability.

Let $M_n = \max_{i \geq n} |X_i - X|$, which is a decreasing sequence bounded below by 0. Therefore $M_n \downarrow M$ for some M.

Then, for all $\epsilon > 0$, $\mathbb{P}(M > \epsilon) \leq \mathbb{P}(M_n > \epsilon) \to 0$ as $n \to \infty$.

Therefore, from continuity of \mathbb{P} , $\mathbb{P}(M=0)=1$ and $M_n\to 0$ a.s. This is equivalent to saying that $X_n\to X$ a.s.

5

• Example †: X_1, X_2, \ldots i.i.d. $\sim \mathrm{Bern}\,(1/2)$. Let $Y_n = 2^n \prod_{i=1}^n X_i$. Show that the sequence Y_n converges to 0 a.s. For $0 < \epsilon < 1$, we have

$$\mathbb{P}\left(\max_{i \ge n} |Y_i - 0| > \epsilon\right) \le \mathbb{P}(X_i = 1 \ \forall i \le n)$$
$$= \frac{1}{2^n} \to 0$$

as $n \to \infty$.

• Important example of a.s. convergence is the Strong Law of Large Numbers (SLLN): If X_1, X_2, \ldots are i.i.d. (in fact *pairwise* independence suffices) with finite mean μ , then

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{\text{a.s.}} \mu$$

as $n \to \infty$. Proof of the SLLN is beyond the scope of this course. See [Github: https://github.com/wptay/aipt].

Convergence in Mean Square

ullet We say $X_n o X$ in mean square or L^2 if

$$\lim_{n \to \infty} \mathbb{E}(X_n - X)^2 = 0.$$

ullet Let X_1,X_2,\ldots be i.i.d. with finite mean $\mathbb{E}[X]$ and $\mathrm{var}(X)$. Then $S_n o\mathbb{E}[X]$ in mean square.

$$\mathbb{E}\left[(S_n - \mathbb{E}[X])^2\right] = \mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^n (X_i - \mathbb{E}[X])\right)^2\right]$$

$$= \frac{1}{n^2}\mathbb{E}\left[\sum_{i,j} (X_i - \mathbb{E}[X])(X_j - \mathbb{E}[X])\right]$$

$$= \frac{1}{n^2}\sum_{i=1}^n \mathbb{E}(X_i - \mathbb{E}[X])^2 \quad \because \quad X_i \text{s are independent}$$

$$= \frac{1}{n}\operatorname{var}(X) \to 0$$

as $n \to \infty$.

ullet Note proof works even if the X_i s are only pairwise independent or even only uncorrelated.

Convergence in Mean Square

- Convergence in mean square does not imply convergence a.s.
- Example \clubsuit : Let X_1, X_2, \ldots be independent random variables such that

$$X_n = \begin{cases} 0 & \text{w.p. } 1 - \frac{1}{n}, \\ 1 & \text{w.p. } \frac{1}{n}. \end{cases}$$

- $\mathbb{E}\left[(X_n-0)^2\right]=\frac{1}{n}\to 0$ as $n\to\infty$. Therefore, this sequence converges to 0 in mean square.
- For any $0<\epsilon<1$, using the inequalities $\log(1-x)\leq -x$ and $\sum_{i=n}^m \frac{1}{i}\geq \log \frac{m}{n}$,

$$\begin{split} & \mathbb{P}\bigg(\max_{i \geq n} |X_i| < \epsilon\bigg) = \lim_{m \to \infty} \mathbb{P}\bigg(\max_{n \leq i \leq m} |X_i| < \epsilon\bigg) = \lim_{m \to \infty} \prod_{i = n}^m \bigg(1 - \frac{1}{i}\bigg) \\ & = \lim_{m \to \infty} \exp\Bigg(\sum_{i = n}^m \log\bigg(1 - \frac{1}{i}\bigg)\Bigg) \leq \lim_{m \to \infty} \exp\Bigg(-\sum_{i = n}^m \frac{1}{i}\Bigg) \leq \lim_{m \to \infty} \frac{n}{m} = 0. \end{split}$$

Therefore, it does not converge a.s.

Convergence in Mean Square

• Convergence a.s. does not imply convergence in mean square.

 \bullet From Example †, Y_n converges to 0 a.s., but

$$\mathbb{E}[(Y_n - 0)^2] = 2^{2n} \frac{1}{2^n} = 2^n,$$

the sequence does not converge in mean square.

Convergence in Probability

• A sequence X_1, X_2, \ldots converges to a random variable X in probability if for any $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| > \epsilon) = 0,$$

• If $X_n \to X$ a.s., then $X_n \stackrel{\mathrm{p}}{\longrightarrow} X$. For proof, see [Github: https://github.com/wptay/aipt]. If $X_n \to X$ a.s., then $\mathbf{1}_{\{|X_n-X|>\epsilon\}} \to 0$ a.s. The Dominated Convergence Theorem tells us that

$$\mathbb{E}\mathbf{1}_{\{|X_n-X|>\epsilon\}} = \mathbb{P}(|X_n-X|>\epsilon) \to 0.$$

• Example **\(\Pi \)**:

$$\mathbb{P}(|X_n - 0| > \epsilon) = \frac{1}{n} \to 0,$$

so the sequence converges in probability. But we saw before that it does not converge a.s.

Convergence in Probability

• If $X_n \to X$ in mean square, then $X_n \stackrel{\mathrm{p}}{\longrightarrow} X$.

From the Markov inequality,

$$\mathbb{P}(|X_n - X| > \epsilon) \le \frac{1}{\epsilon^2} \mathbb{E}(X_n - X)^2 \to 0.$$

• Converse is not true. Example:

$$X_n = \begin{cases} 0 & \text{w.p. } 1 - \frac{1}{n}, \\ n & \text{w.p. } \frac{1}{n}. \end{cases}$$

Convergence in probability:

$$\mathbb{P}(|X_n - 0| > \epsilon) = \frac{1}{n} \to 0.$$

But,

$$\mathbb{E}(X_n - 0)^2 = n^2 \cdot \frac{1}{n} = n \to \infty.$$

• Convergence in probability is weaker than both convergence a.s. and in mean square.

Weak Law of Large Numbers

Suppose X_1,X_2,\ldots are such that $\mathbb{E}X_i=0$, $\mathbb{E}X_i^2=\sigma^2<\infty$ and $\mathbb{E}[X_iX_j]\leq 0$ for $i\neq j$. Then,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{\mathrm{p}}{\longrightarrow}0\text{ as }n\rightarrow\infty.$$

Proof:

We have

$$\mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)^{2}\right] = \frac{1}{n^{2}}\mathbb{E}\left[\sum_{i=1}^{n}X_{i}^{2} + 2\sum_{i < j}X_{i}X_{j}\right]$$
$$\leq \frac{1}{n^{2}}\sum_{i=1}^{n}\mathbb{E}X_{i}^{2} = \frac{\sigma^{2}}{n}.$$

Weak Law of Large Numbers

From Chebyshev's inequality, we then have for any $\epsilon > 0$,

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}\right| > \epsilon\right) \leq \frac{1}{\epsilon^{2}}\frac{\sigma^{2}}{n} \to 0,$$

 $\text{ as } n\to\infty.$

Convergence in distribution

ullet We say that $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$ if for all continuous bounded functions f,

$$\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)].$$

- Equivalent to saying $X_n \stackrel{\mathrm{d}}{\longrightarrow} X \iff F_{X_n}(t) \to F_X(t)$ for all continuity points t of $F_X(\cdot)$. [Github: https://github.com/wptay/aipt]
- Central Limit Theorem (CLT) for i.i.d. sequences. Consider i.i.d. random variables X_1, X_2, \ldots , with $\mathbb{E} X_i = \mu$ and $\operatorname{var} X_i = \sigma^2 < \infty$. Let $S_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then

$$Z_n = \frac{S_n - \mu}{\sigma/\sqrt{n}} \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0, 1).$$

CLT Example

• Example: Let X_1, X_2, \ldots be i.i.d. U[-1,1] r.v.s and Z_n be as defined before. The following plots show the pdf of Z_n for n=1,2,4,16. Note how fast the pdf of Z_n becomes close to gaussian

Characteristic Functions

ullet Given a random variable X, the characteristic function of X is $\varphi:\mathbb{R}\mapsto\mathbb{C}$ given by

$$\varphi(t) = \mathbb{E}[e^{itX}],$$

= $\mathbb{E}[\cos(tX)] + i\mathbb{E}[\sin(tX)],$

where $i = \sqrt{-1}$.

- ullet This is the Fourier transform of pdf of X.
- \bullet Example: The characteristic function of the Gaussian distribution $N(\mu,\sigma^2)$ is

$$\varphi(t) = e^{i\mu t - \frac{\sigma^2 t^2}{2}}.$$

In particular, when $\mu = 0, \sigma^2 = 1$,

$$\varphi(t) = e^{-\frac{t^2}{2}}.$$

Fourier Inversion

• Suppose that $\varphi(t)$ is a characteristic function of a r.v. X. If $\int |\varphi(t)| \, \mathrm{d}t < \infty$, then X has pdf

$$f_X(x) = \frac{1}{2\pi} \int \varphi(t)e^{-itx} dt.$$

• If $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$ then $\varphi_n(t) \to \varphi(t), \ \forall t \in \mathbb{R}$. Obvious because $\varphi_n(t) = \mathbb{E}\big[e^{\mathrm{i}tX_n}\big] = \mathbb{E}[\cos tX_n] + \mathrm{i}\mathbb{E}[\sin tX_n], \ \cos(tx)$ and $\sin(tx)$ are bounded continuous functions, and $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$.

Fourier Inversion

• Converse not true. The sequence $X_n \sim \mathcal{N}(0,n)$ has characteristic function $\varphi_n(t) = e^{-\frac{nt^2}{2}} \xrightarrow{n \to \infty} 0, \ \forall \, t \neq 0 \ \text{and} \ \varphi_n(0) = 1, \ \forall \, n.$ Therefore, $\varphi_n(t)$ converges. But for all $x \in \mathbb{R}$,

$$\mathbb{P}(X_n < x) = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{x}{\sqrt{2n}}\right) \right) \to \frac{1}{2},$$

when $n \to \infty$, which implies that this sequence does not converge in distribution.

Levy's Continuity Theorem

- Suppose X_n has characteristic function $\varphi_n(t) \to \varphi(t)$, and $\varphi(t)$ is continuous at t=0. Then there exists X s.t. $\varphi(t)$ is the characteristic function of X and $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$. For proof, see [Github: https://github.com/wptay/aipt].
- Proof of CLT for i.i.d. sequence. Without loss of generality, we assume that $\mu=0, \sigma=1$. We have

$$Z_n = \frac{1}{\sqrt{n}} \sum_{j=1}^n X_j.$$

Let

$$\varphi_n(t) = \mathbb{E}\left[\exp\left(it\frac{\sum_{j=1}^n X_j}{\sqrt{n}}\right)\right]$$

$$= \prod_{j=1}^n \mathbb{E}\left[\exp\left(it\frac{X_j}{\sqrt{n}}\right)\right]$$

$$= \left(\mathbb{E}e^{it\frac{X_1}{\sqrt{n}}}\right)^n$$

$$= \varphi_1\left(\frac{t}{\sqrt{n}}\right)^n.$$

CLT Proof

• From the Taylor series expansion, we have

$$\varphi_1(t) = \varphi_1(0) + \varphi_1'(0)t + \frac{\varphi_1''(0)}{2!} + o(t^2).$$

Since $\varphi_1(0)=1$, $\varphi_1'(0)=\mathbb{E}\big[\mathfrak{i}X_1e^{i0X_1}\big]=\mathfrak{i}\mathbb{E}X_1=0$, $\varphi_1''(0)=\mathbb{E}\big[(\mathfrak{i}X_1)^2\big]=-1$, we obtain

$$\varphi_1(t) = 1 - \frac{t^2}{2} + o(t^2).$$

Therefore,

$$\varphi_n(t) = \varphi_1 \left(\frac{t}{\sqrt{n}}\right)^n$$
$$= \left(1 - \frac{t^2}{2n} + o(t^2/n)\right)^n \xrightarrow{n \to \infty} e^{-\frac{t^2}{2}},$$

the characteristic function of $\mathcal{N}(0,1)$ (certainly continuous at t=0). From Levy's Continuity Theorem, we then have

$$Z_n \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0,1).$$

CLT for Discrete R.V.

Example: X_1, X_2, \ldots are i.i.d. $\sim \mathrm{Bern}\,(1/2)$. Note that $Z_n = \sum_{i=1}^n \frac{X_i - 1/2}{\sqrt{n}/2}$ is discrete and has no pdf. But its cdf converges to the Gaussian cdf.

CLT for Random Vectors

- The CLT applies to i.i.d. sequences of random vectors.
- Let X_1, X_2, \ldots be i.i.d. with each having finite mean μ and non-singular covariance matrix Σ .

$$\mathbf{Z}_n = rac{1}{\sqrt{n}} \sum_{i=1}^n (\mathbf{X}_i - oldsymbol{\mu}) \overset{\mathrm{d}}{\longrightarrow} \mathcal{N}(\mathbf{0}, oldsymbol{\Sigma})$$

Summary

