$\chi \sim \text{Geom}(p) := (1-p)^{\chi-1} p$ [Supp[χ] = N Parameter Space: $p \in (0,1)$ The stopping time of $\chi_1, \chi_2, ...$ is Bern (p)

* Questions on Midterm 2.

You play poker until you get a royal flush. $P(Royal Flush) = \frac{4}{52} = 1.53 / Million = :00000153$

a) Build a random variable model for the hand and number in which you get a royal flush. (Playing until you get a royal flush).

2 ~ Geom (.00000153)

- b) What's the probability you get a royal flush on the millionth hard? $P(x = .00000153) = (1 .00000153)^{.000000-1} .00000153$ = .9999985999999 .00000153
- e) What's the probability you get a royal flush on the millionth hand or sooner? $P(X \leq 1000000) = F(1000000) = 1 (1 1000000000)$ cdF = 1 (9999985)10000000 = .777 277%

Marshand Estate Contract of the state of the

William Bernowith

₩ For r=3 ... P(x=0)=0P(X=1) = 0 } Because you cannot get 3 successes in P(x=2)=00,1, or 2 experiments. $P(\chi=3)=p^3$ $\frac{1}{2}$ $\frac{1}{3}$ (The propor success) $\frac{3}{3}$ $P(x=4) = {3 \choose 2} (1-p)^{1} p^{3}$ $0 \quad 1 \quad 1 \quad 1$ You have toget a map by 0 = 3 You have end. What's youthur long boof 314 not labore left is 3 spaces here and $P(\chi=5) = {4 \choose a} {(1-p)^2} p^3 7 0 0 1$ 4 spaces here to Strang How the note to the stranger of decide where the last two I's go. EPLOGOGO PPPPPP ZEPPIPP 1 0 1 Hence why there is 1 a (3) and a (4). depolition with on reuse town on the P(7=x)=(2)(1-p)x3p3 0000100000101 X ~ Neg Bin (r,p) := (x-1) (1-p)

Supp $[X] = \{x, r+1, r+2, ...\}$ \rightarrow Has to be greater or equal to r b/c you can't get r successes r brane r times. So you can't try to get r =3 successes in $p \in (0,1)$ \rightarrow B/c it came r try.

from Bernowilli.

Negative binomial

waiting for first success.

$$\begin{array}{lll}
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times &$$

to start the second of the second sec

 \times X ~ Neg Bin $(r, p) = (x+r-1)(1-p)^{x} p^{r}$ Equivalent Parameterization the # of failures (x+r-1) = (x+r-1)!(r-1)! (x)! = (x+r-1)(x+r-2) ...r $= (-1)^{x} (-x) (1-p)^{x} p^{r}$ 47 This is why it's called a regative binomial.

* X ~ Bern(=) = LOWPZ

- · Big X refers to the model.
- · Coin is big X
- · Random variable.

Small x

· Small x is something that comes out of the model.

· Flipped coin that landed on

heads is small x.

· Allowed to have value of 1. It could have been 0 but it wasn't. It's become set in ston. E realization of r.v.

 $\chi_3 = 4$ $\chi_6 = 6$