Single cell technologies in sequence assembly and genome construction

Diana Lin^{1,2} October 3, 2019

¹ Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada

² Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada

What is Single Cell Sequencing?

 Sequencing of the DNA of a single cell, as opposed to bulk tissue cells (multi-cell)

Why do Single Cell Sequencing?

- Resolve cell-to-cell variations
- Identify rare cells in disease progression
- Allows detailed and comprehensive studies of individual cells

Single Cell Sequencing Method

Fig 1. The main steps in Single Cell Sequencing (SCS).

Wang et al. 2015. Molecular Cell.

Challenges of Single Cell Sequencing

- Limited number of DNA molecules
- This limited amount of input material for whole genome amplification results in technical errors
- Technical errors occur in initial rounds of amplification and then are propagated by all daughter molecules

Whole Genome Amplification (WGA)

Amplification Method	Advantages	Disadvantages
DOP-PCR ¹	Accurately retains copy number levels	Generates low physical coverage (~10%) of a single cell genome
MDA ²	Achieves high physical coverage (>90%) from a single cell genome	 Non-uniform coverage and causes distortions in read depth Poor method to measure DNA copy number

Table 1. Main methods for Whole Genome Amplification.

¹ Degenerate Oligonucleotide Primed PCR

² Multiple Displacement Amplification

DOP-PCR fragmentation degenerate priming lysis short DNA polymerization fragments (200-800bp) second priming

polymerization

Fig 2. The process of DOP-PCR.

6pg DNA

multiple-displacement-amplification

Technical Errors from WGA

Technical Artifact	Amplification Method	Error Type
coverage non-uniformity	MDA, DOP-PCR	copy number aberrations, false-negative SNVs
false positive amplification error	MDA, DOP-PCR	SNV, indel

Coverage Non-uniformity

- Amplification Method: MDA,
 DOP-PCR
- Error Type: copy number aberrations, false-negative SNVs
- Description: Under and over amplifications of different regions of the genome causes copy number aberrations and false-negative SNVs

Fig 4. Coverage non-uniformity across single cells of a population.

False Positive Amplification Error

- Amplification Method: MDA, DOP-PCR
- Error Type: SNV, indel
- Description: DNA polymerase introduces random false positive errors

Fig 5. False positive amplification error created by DNA polymerase.

Assembly of Microbial Genomes from Single Cells

- SPAdes
 - Constructs paired assembly graphs utilizing read pairs
- EULER+Velvet-SC
 - Uses lower initial coverage cutoff and then progressively increases the cutoff to incorporate more bases

reads are 3 bases long.

are 3 bases long.

Bankevich et al. 2012. Journal of Computational Biology.

k-mers of size = 2 and build DBG.

Fig 6b. Split the 3-base reads into k-mers of size = 2 and build DBG.

13

Bankevich et al. 2012. *Journal of Computational Biology.*

Fig 6c. Connect the adjacent identical k-mers.

Fig 7c. Connect the adjacent identical k-mer pairs.

Bankevich et al. 2012. Journal of Computational Biology.

Fig 7d. Connect all the identical k-mers pairs.

Bankevich et al. 2012. Journal of Computational Biology.

Fig 6e. Simplified DBG.

Fig 7e. Simplified paired DBG.

EULER+Velvet-SC

Fig 8a. Uneven coverage of reads to the genome.

EULER+Velvet-SC

Applications

- 1. Classifying cell types
- 2. Delineating population diversity
- 3. Tracing cell lineages
- 4. Genomic profiling of rare cells

Fig 9. Various applications of SCS across many fields.

Fig 10. The progression of sequencing.

3rd Generation Sequencing

- Characterized by:
 - Single molecule sequencing (SMS)
 - Sequencing in real time

PacBio: SMRT Sequencing

SMRT: Single Molecule Real Time

Fig 12. The process of PacBio's SMRT sequencing.

Oxford Nanopore Technologies: ONT Reads

Fig 13. The process of Nanopore sequencing.

10X Genomics: SLR **GEM** SLR: Synthetic Long Reads BC ~~ **Emulsion PCR amplification** BC: barcoded primers **Pooling** ~350-bp fragments Classical Illumina library preparation **GEM GEM** Sequencing BC A

Fig 14. The process of SLR library prep.

Long Read Assemblers

- Canu (PacBio or ONT)
 - Koren S, Walenz BP, Berlin K, Miller JR, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research. (2017).
- Flye (PacBio or ONT)
 - Yu Lin, Jeffrey Yuan, Mikhail Kolmogorov, Max W Shen, Mark Chaisson and Pavel Pevzner,
 "Assembly of Long Error-Prone Reads Using de Bruijn Graphs", PNAS, 2016
 doi:10.1073/pnas.1604560113
- Minimap/Miniasm (PacBio or ONT)
 - Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
 Bioinformatics. (2016).
- Wtdbg2 (PacBio or ONT)
 - Ruan, J. and Li, H. (2019) Fast and accurate long-read assembly with wtdbg2. bioRxiv. doi:10.1101/530972
- Falcon (PacBio)

Hybrid Assemblers

DBG2OLC

 Ye, C. et al. DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies. Sci. Rep. 6, 31900; doi: 10.1038/srep31900 (2016).

MaSuRCA

Zimin AV, Puiu D, Luo MC, Zhu T, Koren S, Yorke JA, Dvorak J, Salzberg S. Hybrid assembly
of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat,
with the mega-reads algorithm. Genome Research. 2017 Jan 1:066100

Unicycler

 Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. *PLoS Comput Biol* 2017.

Combining short- and long- read data for assembly

Fig 15. Various tools using different read technology in an assembly pipeline.

Conclusions

- Single cell sequencing is a technology applicable across various fields with many applications
- There is a need for more bioinformatics tools to filter out technical noise when conducting single cell data analysis
- Third generation sequencing has allowed for the resolution of many genomes with large repetitive elements in both standard (multi-cell) and single-cell studies
- The future of genome assembly is in hybrid assemblies, where the short- and long- read assemblers complement one another's deficits

Questions?

References

Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M. A. Alekseyev, and P. A. Pevzner. 2012. "SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing." *J Comput Biol* 19 (5):455-77. doi: 10.1089/cmb.2012.0021.

Chitsaz, H., J. L. Yee-Greenbaum, G. Tesler, M. J. Lombardo, C. L. Dupont, J. H. Badger, M. Novotny, D. B. Rusch, L. J. Fraser, N. A. Gormley, O. Schulz-Trieglaff, G. P. Smith, D. J. Evers, P. A. Pevzner, and R. S. Lasken. 2011. "Efficient de novo assembly of single-cell bacterial genomes from short-read data sets." *Nat Biotechnol* 29 (10):915-21. doi: 10.1038/nbt.1966.

Garvin, Tyler, Robert Aboukhalil, Jude Kendall, Timour Baslan, Gurinder S. Atwal, James Hicks, Michael Wigler, and Michael C. Schatz. 2015. "Interactive analysis and assessment of single-cell copy-number variations." *Nature methods* 12 (11):1058-1060. doi: 10.1038/nmeth.3578.

Jayakumar, Vasanthan, and Yasubumi Sakakibara. 2017. "Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data." *Briefings in Bioinformatics* 20 (3):866-876. doi: 10.1093/bib/bbx147.

References

Jung, H., C. Winefield, A. Bombarely, P. Prentis, and P. Waterhouse. 2019. "Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes." *Trends Plant Sci* 24 (8):700-724. doi: 10.1016/j.tplants.2019.05.003.

Lasken, R. S., and T. B. Stockwell. 2007. "Mechanism of chimera formation during the Multiple Displacement Amplification reaction." *BMC Biotechnol* 7:19. doi: 10.1186/1472-6750-7-19.

Navin, Nicholas E. 2014. "Cancer genomics: one cell at a time." *Genome biology* 15 (8):452-452. doi: 10.1186/s13059-014-0452-9.

Peng, Y., H. C. Leung, S. M. Yiu, and F. Y. Chin. 2012. "IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth." *Bioinformatics* 28 (11):1420-8. doi: 10.1093/bioinformatics/bts174.

van Dijk, E. L., Y. Jaszczyszyn, D. Naquin, and C. Thermes. 2018. "The Third Revolution in Sequencing Technology." *Trends Genet* 34 (9):666-681. doi: 10.1016/j.tig.2018.05.008.

Wang, Y., and N. E. Navin. 2015. "Advances and applications of single-cell sequencing technologies." *Mol Cell* 58 (4):598-609. doi: 10.1016/j.molcel.2015.05.005.

Supplemental Material

Single Cell Isolation

a

b

Sweeper Nanor

Navin 2014. Genome Biology

Isolation Methods for Abundant Cells

Isolation Methods for Abundant Cells				
Isolation Methods	Description	Advantages	Disadvantages	Cost
Serial dilution	serial dilution to about one cell per microliter	simple approach; low cost	high probability of isolating multiple cells	\$
Mouth pipetting	isolate single cells with glass pipettes	simple approach; low cost	technically challenging	\$
Flow sorting	microdroplets with single cells are isolated by electric charge at high pressure	high-throughput; fluorescent markers can be used to isolate subpopulations	expensive equipment; requires operator	\$\$
Robotic micromanipulation	robotic-controlled micropipettes isolate single cells	high accuracy; fluorescence can be used	low throughput	\$\$\$
Microfluid platforms	microfluidic chips isolate single cells in flow channels	high-throughput; reactions can be performed on-chip; reduced reagent costs	cell size must be uniform; expensive consumables	\$\$\$

Isolation Methods for Rare Cells

Isolation Methods for Rare Cells				
Isolation Methods	Description	Advantages	Disadvantages	Cost
Nanofilters	size discrimination on nanofabricated filters	cells are selected by size exclusion	cells can adhere to filters during backwash	\$
MagSweeper	rotating magnet with EpCAM antibodies	high enrichment of rare cells	biased toward markers used for isolation	\$\$
Laser-capture microdissection	cells are cut from a tissue section slide with lasers under a microscope	spatial context is preserved	cell slicing; UV damage to DNA/RNA	\$\$\$
CellSearch	magnets with nanoparticles conjugated to antibodies enrich surface markers	high-throughput	biased toward markers used for isolation	\$\$\$
CellCelector	robotic capillary micromanipulator	high-throughput	expensive system and large footprint	\$\$\$
DEP-Array	microchip with dielectropheretic cages	high sensitivity for isolating rare cells	time-consuming; low-throughput; cells are deposited into large final volumes	\$\$\$\$

This table summarizes the advantages and disadvantages of single-cell isolation methods for abundant populations and rare subpopulations.

Technical Errors from WGA

Technical Artifact	Amplification Method	Error Type
chimeric molecules	MDA	false-positive inversions
coverage non-uniformity	MDA, DOP-PCR	copy number aberrations, false-negative SNVs
false positive amplification error	MDA, DOP-PCR	SNV, indel
allelic dropout	MDA, DOP-PCR	false-negative errors
pileup regions	DOP-PCR	copy number amplifications

Chimeric Molecules

- Amplification Method: MDA
- **Error Type:** false-positive inversions
- **Description**: When the 3' end of a newly synthesized molecule hybridizes with the 5' end of a newly synthesized molecule causing inversions

Allelic Dropout

- Amplification Method: MDA, DOP-PCR
- **Error Type**: False-negative errors
- Description: Heterozygous (AB) variants undergo dropout during WGA leading to homozygous (AA or BB) genotypes

Pileup Regions

- Amplification Method: DOP-PCR
- **Error Type**: copy number amplifications
- Description: massive over-amplifications of focal genomic regions occur during DOP-PCR

Whole Transcriptome Amplification (WTA)

Coverage depth (X)

Coverage

Technical Errors from WTA

Technical Artifact	Amplification Method	Error Type	Description
amplification distortion	dt-anchor, Template-Switching	erroneous expression values	over/under amplification during WTA leads to erroneous expression values
transcript dropout	dt-anchor, Template-Switching, UMI	false-negative unexpressed genes	failure to amplify a transcript during WTA
3' bias	dt-anchors	failure of RT polymerase to fully synthesize the first cDNA strand	Strong bias toward amplification of 3' end of RNA transcripts

Challenges in Filtering Technical Noise

- Copy number aberrations
 - Reference genome is required
 - Use reference genome to make simulated reads
- Coverage non-uniformity
 - Adjust coverage cut-off threshold
- SNVs
 - Reference genome is required
 - Alignment to the reference genome

Ginkgo

- Quantifies single cell copy number profiles from read count data
- A variable-binning algorithm
 - Normalizes errors in mappability
 - Change bin size based on expected number of reads
 - Requires a reference genome

Overlap Consensus Graphs

IDBA-UD

Scaffolding

SPAdes

Stage 1	Assembly graph construction using the multisized de Bruijn graph, implementing new bulge/tip removal algorithms, detection/removal of chimeric reads, construction of distance histograms, backtracking of performed graph operations
Stage 2	Derivation of accurate distance estimates between <i>k</i> -mers in the genome using joint analysis of distance histograms and paths in assembly graph
Stage 3	Construction of paired assembly graph
Stage 4	Construction of DNA sequences of contigs and the mapping of reads to contigs by backtracking graph simplifications

DBG2OLC

assembly backbone

Ye et al. 2016. Scientific Reports.

assembly backbone

all aligned reads

high quality output

MaSuRCA

Zimin et al. 2017. Genome Research.

Unicycler

Bridges are merged

with their neighbours

to create long contigs.

Wick et al. 2017. PLoS Computational Biology.

Canu

Koren et al. 2017. *Genome Research.*

minimap/miniasm

Li et al. 2016. Bioinformatics.