SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY

Subject: Engineering Physics

Subject Code: BAS 101

Semester: 1st

Course: B. Tech.

Branch: ALL

Sections: A,B,E

SECOND SESSIONAL EXAMINATION, ODD SEMESTER, (2022-2023)

Time - 2 hrs.

Maximum Marks – 45

SECTION - A

1. Attempt ALL questions in brief.

QN	QUESTION	Marks	CO	DI
a.	Missing order of grating	7	-	BL
b.	Why newton's rings are circular and center spot is dark.	2	CO3	LI
c.	State of Population inversion	2	CO3	L2
d.	Dispersion loss in fibre.		CO4	L2
	Persistent current	2	CO4	L2
	High temperature superconductor.	2	CO5	L1
	angu temperature superconductor.	2	CO5	LI

SECTION - B

2. Attempt any <u>ONE</u> part of the following:

	-				
QN	QUESTION				
a.	Show that interference pattern obtained by thin film in reflect 1111	Marks	CO	BL	-
	ambinition light are combining plant to each other	`	CO3	L4	grammatal state
b.	Write Rayleigh's criteria of just resolution. Derive an expression for the				-
	resolving power of plane transmission grating.	5	CO3	L4	
					1

Attempt any ONE part of the following:

N	QUESTION			
	calculate the numerical aperture, acceptance angle, critical and	Marks	CO	BL
a.	$\mu_{\rm core} = 1.50$, $\mu_{\rm cladding} = 1.45$, Diameter of core = 50 $\mu \rm m$, wave length of light $\lambda = 0.85$ $\mu \rm m$.	5	CO4	L5
).	In N.R experiment, the diameters of 4 th and 12 th rings are 0.4 cm and 0.7 cm			
	respectively. Find the diameter of 20 th ring.	5	CO4	L5

Attempt any <u>ONE</u> part of the following:

AT	part of the following.			
11	QUESTION	The state of the s	1	1
	The optical power, after propagating through a fibre that is 500m long is	Marks	CO	BL.
	1 reduced to 25% of its original value, calculate the fibre loss in 4D a		CO5	LS
	Superconducting mercury has a critical temperature of 4 2k at		The same started	SECURIOR DESCRIPTION
	field and a critical magnetic field 0.0306 tesla at 0K. Find the critical magnetic field at 2 K.	5	COS	1.5
_		The same of the sa		

SECTION - C

5. Attempt any <u>ONE</u> part of the following:

QN	OUESTION	Marks	CO	BL
a.	Discuss the phenomena of Fraunhoffer's diffraction due to single slit and show that the relative intensity of first secondary maxima is about 4.5% of the principal maxima. i.e $I_0: I_1: I_2: \dots = 1: \frac{1}{21}: \frac{1}{62}: \dots$	6	CO3	L2
b.	 (i) Prove that for reflected light in Newton's rings Experiment, the diameters of dark rings are proportional to square root of natural number. (ii) Light of wave length 6000A falls normally on a wedge shape film of refractive index 1.4 forming fringes that are 2.0 mm apart. Find the angle of wedge in seconds. 	3	CO3	L2 L5

6. Attempt any ONE part of the following:

ON	QUESTION	Marks	CO	BL
a.	Differentiate 3 level and 4 Level Laser on the basis of construction and energy level diagram.	6	CO4	Ļ4
b	What do you mean by acceptance cone, acceptance angle and numerical aperture? Classify fibers based on mode of propagation and refractive index profile	6	CO4	L2

7. Attempt any <u>ONE</u> part of the following:

7. Atten	inpt any <u>0142</u> part of the following.	2.7	00	DI
QN	QUESTION	Marks	CO	BL
ä.	What is Meissner's Effect? Show that magnetic susceptibility of superconductor is negative. Distinguish between Type I (soft) and Type II (hard) superconductor.	6	CO5	L2
b .	Explain quantum well, quantum wire and quantum dot. Explain the synthesis, properties of Nano Material using top down approach (CVD- chemical vapour deposition).	6	CO5	L2