Logika dla informatyków

Egzamin poprawkowy (pierwsza część)

21 lutego 2017

Zadanie 1 (2 punkty). Jeśli formuła $\neg(p \land q \Rightarrow r) \land \neg(s \lor t)$ jest spełnialna, to w prostokąt poniżej wpisz dowolne wartościowanie spełniające tę formułę. W przeciwnym przypadku wpisz słowo "SPRZECZNA".

$$\sigma(p) = \sigma(q) = \mathsf{T}, \quad \sigma(r) = \sigma(s) = \sigma(t) = \mathsf{F}$$

Zadanie 2 (2 punkty). W prostokąty poniżej wpisz dwie formuły równoważne formule $(p \Leftrightarrow q) \lor r$, odpowiednio w koniunkcyjnej oraz dysjunkcyjnej postaci normalnej.

CNF $(\neg p \lor q \lor r) \land (p \lor \neg q \lor r)$ DNF $(p \land q) \lor (\neg p \land \neg q) \lor r$

Zadanie 3 (2 punkty). Jeśli formuła $((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow ((p \lor q) \Rightarrow r)$ jest tautologią rachunku zdań, to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz wartościowanie, dla którego ta formuła jest fałszywa.

Zadanie 4 (2 punkty). Mówimy, że formuła φ logiki I rzędu jest w preneksowej postaci normalnej, jeśli jest postaci $Q_1x_1\dots Q_nx_n\psi$, gdzie x_i są zmiennymi, Q_i są kwantyfikatorami (czyli $Q_i\in\{\forall,\exists\}$ dla $i=1,\dots,n$), a formuła ψ nie zawiera kwantyfikatorów. Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule $\Big(\forall n\exists x(f(x)>n)\Big) \wedge \neg \Big(\exists n\forall xf(x)>n\Big)$, to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

$$\forall n \exists x_1 \exists x_2. \ f(x_1) > n \land \neg (f(x_2) > n)$$

Zadanie 5 (2 punkty). Różnicę symetryczną $\dot{}$ zbiorów A i B definiujemy w sposób następujący: $A \dot{} = B = (A \setminus B) \cup (B \setminus A)$. Nie używając symbolu $\dot{}$ wpisz w prostokąt poniżej wyrażenie równoważne z $(A \dot{} = B) \dot{} = C$.

$$\Big(\big((A \setminus B) \cup (B \setminus A)\big) \setminus C\Big) \cup \Big(C \setminus \big((A \setminus B) \cup (B \setminus A)\big)\Big)$$

Zadanie 6 (2 punkty). Jeśli równość $\bigcap_{t \in T} (A_t \setminus B_t) = \bigcap_{t \in T} A_t \setminus \bigcap_{t \in T} B_t$ zachodzi dla wszystkich zbiorów indeksów T oraz wszystkich indeksowanych rodzin zbiorów $\{A_t\}_{t \in T}$ oraz $\{B_t\}_{t \in T}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$T = \{1, 2\}, A_1 = \{1\}, A_2 = \{1\}, B_1 = \{1\}, B_2 = \emptyset$$

Zadanie 7 (2 punkty). Jeśli zbiór klauzul $\{\neg p \lor q, \ \neg q \lor r, \ p \lor q, \ \neg q \lor \neg r\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.

Zadanie 8 (2 punkty). Dla $n \in \mathbb{N}$ niech $A_n = \{f \in \mathbb{N}^{\mathbb{N}} \mid f(n) = 42\}$. Jeśli zbiór $\bigcap_{m=2}^{2017} \bigcup_{n=m}^{m+9} A_n$ jest niepusty, to w prostokąt poniżej wpisz dowolny element tego zbioru. W przeciwnym przypadku wpisz słowo "PUSTY".

$$f: \mathbb{N} \to \mathbb{N}, \quad f(n) = 42$$

Numer indeksu:

WZORCOWY

Zadanie 9 (2 punkty). Rozważmy zbiory osób O, kin K i filmów F oraz relacje $Bywa \subseteq O \times K$, $Obejrzal \subseteq O \times F$ i $Wyświetla \subseteq K \times F$ informujące odpowiednio o tym jakie osoby bywają w jakich kinach, jakie osoby obejrzały jakie filmy oraz jakie kina wyświetlają jakie filmy. W prostokąt poniżej wpisz taką formułę φ , że $\{k \in K \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz kin, które wyświetlają wszystkie filmy, które obejrzał Jan Kowalski.

$$\forall f \ Obejrzal('Jan \ Kowalski', f) \Rightarrow Wyświetla(k, f)$$

Zadanie 10 (2 punkty). Jeśli istnieje najmniejsza (ze względu na inkluzję ⊆) relacja równoważności na zbiorze $\{0,1,2\}$, która zawiera pary (0,2) i (1,2), to w prostokat poniżej wpisz tę relację. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje.

$$\{0,1,2\} \times \{0,1,2\}$$

Zadanie 11 (2 punkty). Jeśli istnieje relacja równoważności na N, która ma 2016 klas abstrakcji, z których każda ma 2017 elementów, to w prostokąt poniżej wpisz dowolną taką relację. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje.

Każdy zbiór, na którym istnieje taka relacja, jest skończony i ma dokładnie 4066272 elementy, natomiast zbiór N nie ma tej własności.

Zadanie 12 (2 punkty). Rozważmy funkcję $sgn: \mathbb{R} \to \mathbb{R}$ zdefiniowaną $sgn(x) = \begin{cases} -1, & \text{dla } x < 0, \\ 0, & \text{dla } x = 0, \end{cases}$

W prostokaty poniżej wpisz odpowiednio obrazy i przeciwobrazy podanych zbiorów w odwzorowaniu sqn.

$$sgn \big[[1,3] \big] = \begin{cases} \{1\} & sgn \big[[-5,4] \big] = \\ \\ sgn^{-1} \big[[1,3] \big] = \end{cases} & \{x \in \mathbb{R} \mid x > 0\} & sgn^{-1} \big[[-5,4] \big] = \end{cases} \mathbb{R}$$

Zadanie 13 (2 punkty). Rozważmy funkcję $F:[1,2]^{\{0,1\}\times\mathbb{N}}\to[3,4]^{\mathbb{N}}$ daną dla $f\in[1,2]^{\{0,1\}\times\mathbb{N}}$ wzorem (F(f))(n) = f(n mod 2, 2 * n) + 2. Jeśli istnieje funkcja odwrotna do F, to w prostokat poniżej wpisz tę funkcję. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

$$F$$
 nie jest różnowartościowa, np. dla $f_1(x,y)=1$ oraz $f_2(x,y)=\begin{cases} 2, & \text{dla }y=1\\ 1, & \text{wpp} \end{cases}$ mamy $F(f_1)=F(f_2)$

Zadanie 14 (2 punkty). Niech $R = \{\langle n, m \rangle \in \mathbb{N} \times \mathbb{N} \mid m = n + 2\}$. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle n, m \rangle \in \mathbb{N} \times \mathbb{N} \mid \varphi\}$ jest przechodnim domknięciem relacji R.

$$\exists k > 0. \ m = n + 2k$$

Zadanie 15 (2 punkty). W prostokąty poniżej wpisz te spośród liter A, \dots, K , które oznaczają odpo-	
viednio zbiory o mocy 16, ℵ₀ i c.	

A		В	C	D	E	F	G	H		J	K
$\bigcup_{n=1}^{\infty} \mathbb{N}^n$		$\{1,2,3,4\}^{\{5,6\}}$	$\mathcal{P}(\mathbb{N} \times \mathbb{Q})$	$\emptyset^{\mathbb{N}}$	\mathbb{N}^{\emptyset}	$\mathbb{Q}^{\mathbb{N}}$	$\mathcal{P}(\{1,2,3,4\}$) {1,	$\{2\}^{\{3,4,5,6\}}$	$\mathbb{N}^{\{1,2,3,4\}}$	$\{0\}^{\mathbb{N}}$
16:		B,G,H	ℵ₀:			A,	J	c:		C, F	

Zadanie 16 (2 punkty). Rozważmy funkcję $f: A \to B$. Nie używając słów języka naturalnego (czyli używając jedynie formuł) uzupełnij poniższy tekst tak, aby otrzymać poprawny dowód twierdzenia: Dla dowolnego podzbioru Y zbioru B zachodzi inkluzja $f[f^{-1}[Y]] \subseteq Y$.

Dowód. Dowód przeprowadzimy wprost. Weźmy dowolny podzbiór Y zbioru B i dowolny element y zbioru $f[f^{-1}[Y]]$. Wtedy istnieje taki element x w zbiorze $f^{-1}[Y]$, że f(x) = y.

Z definicji przeciwobrazu zbioru otrzymujemy, że $f(x) \in Y$. Zatem $y \in Y$, cokończy dowód.

Zadanie 17 (2 punkty). Rozważmy zbiór $\{n \in \mathbb{N} \mid n \geq 2 \land n \leq 20\}$ uporządkowany relacją podzielności |. W prostokąty poniżej wpisz odpowiednio wszystkie elementy minimalne i maksymalne w tym porządku lub słowo "BRAK" gdy takich elementów nie ma.

Zadanie 18 (2 punkty). W prostokąt poniżej wpisz przykład trzech parami nieizomorficznych porządków na zbiorach nieprzeliczalnych.

$$\langle \mathbb{R}, \leq
angle, \qquad \langle \mathcal{P}(\mathbb{N}), \subseteq
angle, \qquad \langle \mathbb{R} imes \mathbb{R}, =
angle$$

Zadanie 19 (2 punkty). Jeśli porządki $\langle \mathbb{Z}, \leq \rangle$ i $\langle \mathbb{Z}, \geq \rangle$, gdzie \leq jest zwykłym porządkiem na liczbach całkowitych, są izomorficzne, to w prostokąt poniżej wpisz dowolny izomorfizm tych porządków. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki izomorfizm nie istnieje.

$$f(x) = -x$$

Zadanie 20 (2 punkty). W tym zadaniu f i g są symbolami funkcyjnymi, a jest symbolem stałej, natomiast x, y i z są zmiennymi. W prostokąty obok tych spośród podanych par termów, które są unifikowalne, wpisz najogólniejsze unifikatory tych termów. W prostokąty obok termów, które nie są unifikowalne, wpisz słowo "NIE".

$$f(y,g(z),x) \stackrel{?}{=} f(a,x,z)$$
 NIE $f(x,g(x),a) \stackrel{?}{=} f(x,y,z)$ $[y/g(x),z/a]$ $f(g(y),a,g(z)) \stackrel{?}{=} f(x,y,g(z))$ $[x/g(a),y/a]$ $f(x,g(y),x) \stackrel{?}{=} f(a,x,x)$ NIE