Special Topic: Light Sources

There are a lot more light sources than frontier research machines

Wikipedia lists about 60 light sources worldwide

Fundamental Principle

Bending electrons emit radiation along their path

$$P = \frac{1}{6\pi\varepsilon_0} \frac{e^2 c}{\rho^2} \gamma^4$$

$$x = \frac{\omega}{\omega_{crit}}$$
; where $\omega_{crit} = \frac{3\gamma^3}{2} \frac{c}{\rho}$

First Observation of Synchrotron Radiation

- Synchrotron Radiation was first searched for in 1944 at GE's 100 MeV electron
 - Energy loss was seen, but because of a calculational error, they searched in the microwave region and missed the visible light, because the acceleration chamber was opaque

 In 1947, John Paul Blewett got permission to build a 70 MeV synchrotron at GE with transparent windows, and observed synchrotron radiation for the

first time.

First Generation: Parasitic Operations

- Examples
 - SURF (1961): 180 MeV UV synchrotron at NBS
 - CESR (CHESS, 70's): 6 GeV synchrotron at Cornell
 - Numerous others
- Typically large emittances, which limited brightness of the beam

Second Generation: Dedicated

• Examples:

1981: 2 GeV SRS at Daresbury

1982: 800 MeV BESSY in Berlin

1990: SPEAR II becomes dedicated light source

(e=106 nm-rad)

(e=38 nm-rad)

(e=160 nm-rad)

Often include "wigglers" to enhance SR

Typical 2nd Generation Parameters

Beam sizes

- s_y~1 mm
- s_v,~.1 mrad
- s_x~.1 mm
- s_x.~.03 mrad
- Broad spectrum

High flux

■ Typicall 10¹³ photons/second/mradian for 3 GeV, 100 mA dipole source at E_{crit}

Undulators

Periodic Magnets

- In rest frame of electron $\lambda^* = \frac{\lambda_U}{\gamma}$
- Electron oscillates coherently with (contracted) structure, and releases photons with the same wavelength.
- In the lab frame, this is Doppler shifted, so

$$\lambda = \frac{\lambda^*}{2\gamma} = \frac{\lambda_U}{2\gamma^2}$$

 \odot So, I on the order of 1cm \rightarrow X-rays.

Bends, Undulators, and Wigglers*

3rd Generation (Undulator) Sources

High Brightness

- 10¹⁹ compared to 10¹⁶ for 2nd generation sources
- Emittance ~1-20 nm-rad

Summary of Parameters

