Prof. Dr. Carmen Gräßle Jannis Marquardt

Summer term 2022

Numerical Methods for Differential Equations

Assignment 12

Upload solutions until 25 July 2022, 3pm

Exercise 12.1 (Heat equation)

(20 points)

The temperature U(x,t) along a bar of **unit length** is governed by the equation

$$\frac{\partial U(x,t)}{\partial t} = \frac{\partial^2 U(x,t)}{\partial x^2}.$$

The ends of the bar are kept cooled at 0K the whole time, and the **initial temperature** of the bar is 10K.

$$U(0,t) = 0K \to \boxed{ \text{Bar of unit length}} \leftarrow U(1,t) = 0K$$

$$\downarrow U(x,0) = 10K$$

Write a Matlab script to evaluate numerically the temperature of the bar at the end of 0.25 seconds.

To do this, discretize the differential w.r.t x first. Use the finite difference method with step size $\Delta x = 0.01$ and take the boundary conditions into account. Thereafter, you can obtain an ODE of the form

$$\mathbf{U}'(t) = \frac{1}{\Delta x^2} \mathbf{A} \mathbf{U}(t).$$

Choosing the highest possible stable step size Δt for time variable, solve this ODE using the explicit Euler method (which you have already implemented in Assignment 9).

Make a plot showing how the temperature along the bar varies from the initial value to the obtained numerical solution.

Hint: You can verify your solution by keeping in mind the physics behind the problem!