Mathematical Preliminaries

Exercise Set 1.1, page 11

1. d. Show that the equation $x - (\ln x)^x = 0$ has at least one solution in the interval [4, 5].

SOLUTION: It is not possible to algebraically solve for the solution x, but this is not required in the problem, we must show only that a solution exists. Let

$$f(x) = x - (\ln x)^x = x - \exp(x(\ln(\ln x))).$$

Since f is continuous on [4,5] with $f(4) \approx 0.3066$ and $f(5) \approx -5.799$, the Intermediate Value Theorem 1.11 implies that a number x must exist in (4,5) with $0 = f(x) = x - (\ln x)^x$.

4. c. Find intervals that contain a solution to the equation $x^3 - 2x^2 - 4x + 3 = 0$.

SOLUTION: Let $f(x) = x^3 - 2x^2 - 4x + 3$. The critical points of f occur when

$$0 = f'(x) = 3x^2 - 4x - 4 = (3x + 2)(x - 2);$$

that is, when $x=-\frac{2}{3}$ and x=2. Relative maximum and minimum values of f can occur only at these values. There are at most three solutions to f(x)=0, because f(x) is a polynomial of degree three. Since f(-2)=-5 and $f\left(-\frac{2}{3}\right)\approx 4.48$; f(0)=3 and f(1)=-2; and f(2)=-5 and f(4)=19; solutions lie in the intervals [-2,-2/3], [0,1], and [2,4].

5. a. Find $\max_{0 \le x \le 1} |f(x)|$ when $f(x) = (2 - e^x + 2x)/3$.

SOLUTION: First note that $f'(x) = (-e^x + 2)/3$, so the only critical point of f occurs at $x = \ln 2$, which lies in the interval [0,1]. The maximum for |f(x)| must consequently be

$$\max\{|f(0)|, |f(\ln 2)|, |f(1)|\} = \max\{1/3, (2\ln 2)/3, (4-e)/3\} = (2\ln 2)/3.$$

- 11. Find the second Taylor polynomial for $f(x) = e^x \cos x$ about $x_0 = 0$, and
 - **a.** Use $P_2(0.5)$ to approximate f(0.5), find an upper bound for $|f(0.5) P_2(0.5)|$, and compare this to the actual error.
 - **b.** Find a bound for the error $|f(x) P_2(x)|$, for x in [0, 1].
 - **c.** Approximate $\int_0^1 f(x) dx$ using $\int_0^1 P_2(x) dx$.
 - **d.** Find an upper bound for the error in part (c).

2 Exercise Set 1.1

SOLUTION: Since

$$f'(x) = e^x(\cos x - \sin x), \quad f''(x) = -2e^x(\sin x), \quad \text{and} \quad f'''(x) = -2e^x(\sin x + \cos x),$$
 we have $f(0) = 1$, $f'(0) = 1$, and $f''(0) = 0$. So

$$P_2(x) = 1 + x$$
 and $R_2(x) = \frac{-2e^{\xi}(\sin \xi + \cos \xi)}{3!}x^3$.

a. We have $P_2(0.5) = 1 + 0.5 = 1.5$ and

$$|f(0.5) - P_2(0.5)| \le \max_{\xi \in [0,0.5]} \left| \frac{-2e^{\xi}(\sin \xi + \cos \xi)}{3!} (0.5)^2 \right| \le \frac{1}{3} (0.5)^2 \max_{\xi \in [0,0.5]} |e^{\xi}(\sin \xi + \cos \xi)|.$$

To maximize this quantity on [0, 0.5], first note that $D_x e^x(\sin x + \cos x) = 2e^x \cos x > 0$, for all x in [0, 0.5]. This implies that the maximum and minimum values of $e^x(\sin x + \cos x)$ on [0, 0.5] occur at the endpoints of the interval, and

$$e^{0}(\sin 0 + \cos 0) = 1 < e^{0.5}(\sin 0.5 + \cos 0.5) \approx 2.24.$$

Hence

$$|f(0.5) - P_2(0.5)| \le \frac{1}{3}(0.5)^3(2.24) \approx 0.0932.$$

b. A similar analysis to that in part (a) gives

$$|f(x) - P_2(x)| \le \frac{1}{3} (1.0)^3 e^1 (\sin 1 + \cos 1) \approx 1.252.$$

c.

$$\int_0^1 f(x) \, dx \approx \int_0^1 (1+x) \, dx = \left[x + \frac{x^2}{2} \right]_0^1 = \frac{3}{2}.$$

d. From part (b),

$$\int_0^1 |R_2(x)| \, dx \le \int_0^1 \frac{1}{3} e^1(\cos 1 + \sin 1) x^3 \, dx = \int_0^1 1.252 x^3 \, dx = 0.313.$$

Since

$$\int_0^1 e^x \cos x \, dx = \left[\frac{e^x}{2} (\cos x + \sin x) \right]_0^1 = \frac{e}{2} (\cos 1 + \sin 1) - \frac{1}{2} (1 + 0) \approx 1.378,$$

the actual error is $|1.378 - 1.5| \approx 0.12$.

16. Use the error term of a Taylor polynomial to estimate the error involved in using $\sin x \approx x$ to approximate $\sin 1^{\circ}$.

SOLUTION: First we need to convert the degree measure for the sine function to radians. We have $180^\circ = \pi$ radians, so $1^\circ = \frac{\pi}{180}$ radians. Since $f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, and $f'''(x) = -\cos x$, we have f(0) = 0, f'(0) = 1, and f''(0) = 0. The approximation $\sin x \approx x$ is given by $f(x) \approx P_2(x)$ and $R_2(x) = -\frac{\cos \xi}{3!}x^3$. If we use the bound $|\cos \xi| \leq 1$, then

$$\left| \sin \left(\frac{\pi}{180} \right) - \frac{\pi}{180} \right| = \left| R_2 \left(\frac{\pi}{180} \right) \right| = \left| \frac{-\cos \xi}{3!} \left(\frac{\pi}{180} \right)^3 \right| \le 8.86 \times 10^{-7}.$$

Mathematical Preliminaries

3

22. Use the Intermediate Value Theorem 1.11 and Rolle's Theorem 1.7 to show that the graph of $f(x) = x^3 + 2x + k$ crosses the x-axis exactly once, regardless of the value of the constant k.

SOLUTION: For x < 0, we have f(x) < 2x + k < 0, provided that $x < -\frac{1}{2}k$. Similarly, for x > 0, we have f(x) > 2x + k > 0, provided that $x > -\frac{1}{2}k$. By Theorem 1.11, there exists a number c with f(c) = 0.

If f(c) = 0 and f(c') = 0 for some $c' \neq c$, then by Theorem 1.7, there exists a number p between c and c' with f'(p) = 0. However, $f'(x) = 3x^2 + 2 > 0$ for all x. This gives a contradiction to the statement that f(c) = 0 and f(c') = 0 for some $c' \neq c$. Hence there is exactly one number c with f(c) = 0.

- 27. In Example 3 it is stated that x we have $|\sin x| \le |x|$. Use the following to verify this statement.
 - **a.** Show that for all $x \ge 0$ the function $f(x) = x \sin x$ is non-decreasing, which implies that $\sin x \le x$ with equality only when x = 0.
 - **b.** Use the fact that the sine function is odd to reach the conclusion.

SOLUTION: First observe that for $f(x) = x - \sin x$ we have $f'(x) = 1 - \cos x \ge 0$, because $-1 < \cos x < 1$ for all values of x.

a. The observation implies that f(x) is non-decreasing for all values of x, and in particular that f(x) > f(0) = 0 when x > 0. Hence for $x \ge 0$, we have $x \ge \sin x$, and $|\sin x| = \sin x \le x = |x|$.

b. When x < 0, we have -x > 0. Since $\sin x$ is an odd function, the fact (from part (a)) that $\sin(-x) \le (-x)$ implies that $|\sin x| = -\sin x \le -x = |x|$.

As a consequence, for all real numbers x we have $|\sin x| \le |x|$.

- **29.** Suppose $f \in C[a, b]$, that x_1 and x_2 are in [a, b].
 - **a.** Show that a number ξ exists between x_1 and x_2 with

$$f(\xi) = \frac{f(x_1) + f(x_2)}{2} = \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2).$$

b. Suppose that c_1 and c_2 are positive constants. Show that a number ξ exists between x_1 and x_2 with

$$f(\xi) = \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}.$$

c. Give an example to show that the result in part (b) does not necessarily hold when c_1 and c_2 have opposite signs with $c_1 \neq -c_2$.

SOLUTION:

a. The number

$$\frac{1}{2}(f(x_1) + f(x_2))$$

is the average of $f(x_1)$ and $f(x_2)$, so it lies between these two values of f. By the Intermediate Value Theorem 1.11 there exist a number ξ between x_1 and x_2 with

$$f(\xi) = \frac{1}{2}(f(x_1) + f(x_2)) = \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2).$$

1:00pm May 31, 2015

4 Exercise Set 1.2

b. Let $m = \min\{f(x_1), f(x_2)\}$ and $M = \max\{f(x_1), f(x_2)\}$. Then $m \le f(x_1) \le M$ and $m \le f(x_2) \le M$, so

$$c_1 m \le c_1 f(x_1) \le c_1 M$$
 and $c_2 m \le c_2 f(x_2) \le c_2 M$.

Thus

$$(c_1 + c_2)m \le c_1 f(x_1) + c_2 f(x_2) \le (c_1 + c_2)M$$

and

$$m \le \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} \le M.$$

By the Intermediate Value Theorem 1.11 applied to the interval with endpoints x_1 and x_2 , there exists a number ξ between x_1 and x_2 for which

$$f(\xi) = \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}.$$

c. Let $f(x) = x^2 + 1$, $x_1 = 0$, $x_2 = 1$, $x_1 = 2$, and $x_2 = -1$. Then for all values of x,

$$f(x) > 0$$
 but $\frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} = \frac{2(1) - 1(2)}{2 - 1} = 0.$

Exercise Set 1.2, page 25

4. c. Find the largest interval in which p^* must lie to approximate $\sqrt{2}$ with relative error at most 10^{-4} . SOLUTION: We need

$$\frac{\left|p^* - \sqrt{2}\right|}{|\sqrt{2}|} \leq 10^{-4}, \quad \text{so} \quad \left|p^* - \sqrt{2}\right| \leq \sqrt{2} \times 10^{-4};$$

that is,

$$-\sqrt{2} \times 10^{-4} \le p^* - \sqrt{2} \le \sqrt{2} \times 10^{-4}.$$

This implies that p^* must be in the interval $(\sqrt{2}(0.9999), \sqrt{2}(1.0001))$.

7. a. Use three-digit rounding arithmetic to compute

$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4},$$

and determine the absolute and relative errors.

SOLUTION: Using three-digit rounding arithmetic gives $\frac{13}{14} = 0.929$, $\frac{6}{7} = 0.857$, and e = 2.72. So

$$\frac{13}{14} - \frac{6}{7} = 0.0720$$
 and $2e - 5.4 = 5.44 - 5.40 = 0.0400$.

Hence

$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4} = \frac{0.0720}{0.0400} = 1.80.$$

The correct value is approximately 1.9535, so the absolute and relative errors to three digits are

$$|1.80 - 1.9535| = 0.154$$
 and $\frac{|1.80 - 1.9535|}{1.9535} = 0.0786$,

respectively.