第一章 复数与复变函数

第一章 复数与复变函数

- 复数、实部、虚部、模、辐角、共轭复数
- 复平面、复球面、∞
- 复数的四则运算、乘幂、方根
- 区域、复变函数
- 复变函数的极限和连续性

本章作业

- **1**, **5**, **7**(2)(4)(6), **8**(1)(3)
- 11, 12(3), 13, 14(1)(3), 19
- **21**(4)(7), **22**(5) (10), **27**(2)

• 复数起源于多项式方程的求根问题.

- 复数起源于多项式方程的求根问题.
- 考虑二次方程 $x^2 + bx + c = 0$, 由求根公式可知

$$x = \frac{-b \pm \sqrt{\Delta}}{2}$$
, 其中 $\Delta = b^2 - 4c$.

- 复数起源于多项式方程的求根问题.
- 考虑二次方程 $x^2 + bx + c = 0$, 由求根公式可知

$$x = \frac{-b \pm \sqrt{\Delta}}{2}$$
, 其中 $\Delta = b^2 - 4c$.

(1) 当 △ ≥ 0 时,有两个实根(计算重数);

- 复数起源于多项式方程的求根问题.
- 考虑二次方程 $x^2 + bx + c = 0$, 由求根公式可知

$$x = \frac{-b \pm \sqrt{\Delta}}{2}$$
, 其中 $\Delta = b^2 - 4c$.

- (1) 当 △ ≥ 0 时,有两个实根(计算重数);
- (2) 当 ∆ < 0, 无实根.

- 复数起源于多项式方程的求根问题.
- 考虑二次方程 $x^2 + bx + c = 0$, 由求根公式可知

$$x = \frac{-b \pm \sqrt{\Delta}}{2}$$
, 其中 $\Delta = b^2 - 4c$.

- (1) 当 △ ≥ 0 时,有两个实根(计算重数);
- (2) 当 ∆ < 0, 无实根.
- 然而,如果我们接受负数开方的话,此时仍然有两个根, 形式地计算可以发现它们满足原来的方程.

$$x = u + \frac{p}{u}$$
, $u^3 = q + \sqrt{\Delta}$, $\Delta = q^2 - p^3$.

• 对于三次方程 $x^3 - 3px - 2q = 0$, 我们也有求根公式

$$x = u + \frac{p}{u}$$
, $u^3 = q + \sqrt{\Delta}$, $\Delta = q^2 - p^3$.

• (1) 当 △ > 0, 有一个实根.

$$x = u + \frac{p}{u}$$
, $u^3 = q + \sqrt{\Delta}$, $\Delta = q^2 - p^3$.

- (1) 当 ∆ > 0, 有一个实根.
- (2) $\stackrel{\text{d}}{=} \Delta = 0, x = 2\sqrt[3]{q}, -\sqrt[3]{q}(2\underline{\pm}).$

$$x = u + \frac{p}{u}$$
, $u^3 = q + \sqrt{\Delta}$, $\Delta = q^2 - p^3$.

- (1) 当 △ > 0, 有一个实根.
- (2) $\stackrel{\text{d}}{=} \Delta = 0, x = 2\sqrt[3]{q}, -\sqrt[3]{q}(2\mathbb{1}).$
- (3) 当 Δ < 0, 看上去没有根,实际上有3个实根.这可以通过分析函数单调性得到.

$$x = u + \frac{p}{u}$$
, $u^3 = q + \sqrt{\Delta}$, $\Delta = q^2 - p^3$.

- (1) 当 △ > 0, 有一个实根.
- (2) $\stackrel{\text{d}}{=} \Delta = 0, x = 2\sqrt[3]{q}, -\sqrt[3]{q}(2\mathbb{1}).$
- (3) 当 Δ < 0, 看上去没有根,实际上有3个实根.这可以通过分析函数单调性得到.
- 但我们必须接受负数开方.

 尽管在十六世纪,人们已经得到了三次方程的求根公式, 然而对其中出现的虚数,却是难以接受。

 尽管在十六世纪,人们已经得到了三次方程的求根公式, 然而对其中出现的虚数,却是难以接受。

"圣灵在分析的奇观中找到了超凡的显示,这就是那个理想世界的端兆,那个介于存在与不存在之间的两栖物,那个我们称之为虚的—1的平方根。"

——Leibniz

$$u = \sqrt[3]{10 + \sqrt{108}} = 1 + \sqrt{3}, x = u - \frac{2}{u} = 1 + \sqrt{3} + 1 - \sqrt{3} = 2.$$

$$u = \sqrt[3]{10 + \sqrt{108}} = 1 + \sqrt{3}, x = u - \frac{2}{u} = 1 + \sqrt{3} + 1 - \sqrt{3} = 2.$$

• Ø
$$x^3 - 7x + 6 = 0$$
, $p = \frac{7}{3}$, $q = -3$, $\Delta = -\frac{100}{27} < 0$,

• 例 $x^3 + 6x - 20 = 0$, p = -2, q = 10, $\Delta = 108 > 0$,

$$u = \sqrt[3]{10 + \sqrt{108}} = 1 + \sqrt{3}, x = u - \frac{2}{u} = 1 + \sqrt{3} + 1 - \sqrt{3} = 2.$$

• Ø $x^3 - 7x + 6 = 0$, $p = \frac{7}{3}$, q = -3, $\Delta = -\frac{100}{27} < 0$,

$$u = \sqrt[3]{-3 + \frac{10}{9}\sqrt{-3}} = \frac{3 + 2\sqrt{-3}}{3}, \frac{-9 + \sqrt{-3}}{6}, \frac{3 - 5\sqrt{-3}}{6},$$

$$u = \sqrt[3]{10 + \sqrt{108}} = 1 + \sqrt{3}, x = u - \frac{2}{u} = 1 + \sqrt{3} + 1 - \sqrt{3} = 2.$$

• Ø
$$x^3 - 7x + 6 = 0, p = \frac{7}{3}, q = -3, \Delta = -\frac{100}{27} < 0,$$

$$u = \sqrt[3]{-3 + \frac{10}{9}\sqrt{-3}} = \frac{3 + 2\sqrt{-3}}{3}, \frac{-9 + \sqrt{-3}}{6}, \frac{3 - 5\sqrt{-3}}{6},$$

$$x = u + \frac{7}{3u} = 2, -3, 1.$$

• 例 $x^3 + 6x - 20 = 0$, p = -2, q = 10, $\Delta = 108 > 0$,

$$u = \sqrt[3]{10 + \sqrt{108}} = 1 + \sqrt{3}, x = u - \frac{2}{u} = 1 + \sqrt{3} + 1 - \sqrt{3} = 2.$$

• Ø $x^3 - 7x + 6 = 0, p = \frac{7}{3}, q = -3, \Delta = -\frac{100}{27} < 0,$

$$u = \sqrt[3]{-3 + \frac{10}{9}\sqrt{-3}} = \frac{3 + 2\sqrt{-3}}{3}, \frac{-9 + \sqrt{-3}}{6}, \frac{3 - 5\sqrt{-3}}{6},$$

$$x = u + \frac{7}{3u} = 2, -3, 1.$$

为什么这样做一定会得到三个实根?在学习了第一章的内容之后我们就可以回答了.

定义

固定一个记号 i, 复数就是形如 z = x + yi 的元素, 其中 x, y 均是实数,

定义

固定一个记号 i, **复数**就是形如 z = x + yi 的元素, 其中 x, y 均是实数, 且不同的 (x, y) 对应不同的复数.

定义

固定一个记号 i, **复数**就是形如 z = x + yi 的元素, 其中 x, y 均是实数, 且不同的 (x, y) 对应不同的复数.

• 换言之,复数全体构成一个二维实线性空间,{1,i} 是一组基.

定义

固定一个记号 i, **复数**就是形如 z = x + yi 的元素, 其中 x,y 均是实数, 且不同的 (x,y) 对应不同的复数.

- 换言之,复数全体构成一个二维实线性空间,{1,i} 是一组基.
- 将**全体复数集合记作** \mathbb{C} , 全体实数集合记作 \mathbb{R} , 则 \mathbb{C} = $\mathbb{R} + \mathbb{R}i$.

定义

称复数 z = x + yi 的**实部**为 Re z = x, 虚部为 Im z = y.

定义

称复数 z = x + yi 的**实部**为 Re z = x, 虚部为 Im z = y.

• 当 Im z = 0 时, z 是实数.

定义

称复数 z = x + yi 的<mark>实部</mark>为 Re z = x, 虚部为 Im z = y.

• 当 Im z = 0 时, z 是实数. 不是实数的复数是虚数.

定义

称复数 z = x + yi 的<mark>实部</mark>为 Re z = x, 虚部为 Im z = y.

- 当 Im z = 0 时, z 是实数. 不是实数的复数是虚数.
- 当 Re z = 0 且 $z \neq 0$ 时, 称 z 是纯虚数.

- 例 实数 x 取何值时, $(x^2-3x-4)+(x^2-5x-6)i$ 是:
- (1) 实数; (2) 纯虚数.

- 例 实数 x 取何值时, $(x^2-3x-4)+(x^2-5x-6)i$ 是:
- (1) 实数; (2) 纯虚数.
- 解 (1) $x^2 5x 6 = 0$, 即 x = -1 或 6.

- 例 实数 x 取何值时, $(x^2-3x-4)+(x^2-5x-6)i$ 是:
- (1) 实数; (2) 纯虚数.
- 解 (1) $x^2 5x 6 = 0$, 即 x = -1 或 6.

- 例 实数 x 取何值时, $(x^2-3x-4)+(x^2-5x-6)i$ 是:
- (1) 实数; (2) 纯虚数.
- \mathbf{m} (1) $x^2 5x 6 = 0$, \mathbf{m} x = -1 \mathbf{m} 6.
- 但同时要求 $x^2 5x 6 \neq 0$, 因此 $x \neq -1, x = 4$.

- 例 实数 x 取何值时, $(x^2-3x-4)+(x^2-5x-6)i$ 是:
- (1) 实数; (2) 纯虚数.
- 解 (1) $x^2 5x 6 = 0$, 即 x = -1 或 6.
- 但同时要求 $x^2 5x 6 \neq 0$, 因此 $x \neq -1, x = 4$.
- 练习 实数 x 取何值时, $x^2(1+i) + x(5+4i) + 4 + 3i$ 是纯虚数.

- 例 实数 x 取何值时, $(x^2-3x-4)+(x^2-5x-6)i$ 是:
- (1) 实数; (2) 纯虚数.
- 解 (1) $x^2 5x 6 = 0$, 即 x = -1 或 6.
- 但同时要求 $x^2 5x 6 \neq 0$, 因此 $x \neq -1, x = 4$.
- 练习 实数 x 取何值时, $x^2(1+i) + x(5+4i) + 4 + 3i$ 是纯虚数.
- 答案 x = -4.

• <math><math><math> $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i.$

- 由 C 是二维实线性空间可得复数的加法和减法

$$z_1 \pm z_2 = (x_1 \pm x_2) + (y_1 \pm y_2)i.$$

- <math><math><math> $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i.$
- 由 C 是二维实线性空间可得复数的加法和减法

$$z_1 \pm z_2 = (x_1 \pm x_2) + (y_1 \pm y_2)i.$$

• 规定 $i \cdot i = -1$.

- <math><math><math> $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i.$
- 由 C 是二维实线性空间可得复数的加法和减法

$$z_1 \pm z_2 = (x_1 \pm x_2) + (y_1 \pm y_2)i.$$

• 规定 $i \cdot i = -1$. 由乘法分配律和数乘可得复数的乘除法

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1)i,$$

$$\frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}i.$$

- <math><math><math> $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i.$
- 由 C 是二维实线性空间可得复数的加法和减法

$$z_1 \pm z_2 = (x_1 \pm x_2) + (y_1 \pm y_2)i.$$

• 规定 $i \cdot i = -1$. 由乘法分配律和数乘可得复数的乘除法

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1)i,$$

$$\frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}i.$$

• 定义 z^n 为 n 个 z 相乘, 也就是 z 的 n 次幂.

- <math><math><math> $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i.$
- 由 C 是二维实线性空间可得复数的加法和减法

$$z_1 \pm z_2 = (x_1 \pm x_2) + (y_1 \pm y_2)i.$$

• 规定 $i \cdot i = -1$. 由乘法分配律和数乘可得复数的乘除法

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1)i,$$

$$\frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}i.$$

- 定义 z^n 为 n 个 z 相乘, 也就是 z 的 n 次幂.
- 当 $z \neq 0$ 时定义 $z^{-n} = \frac{1}{z^n}$.

• 例 (1) $i^2 = -1$, $i^3 = -i$, $i^4 = 1$.

- 例 (1) $i^2 = -1$, $i^3 = -i$, $i^4 = 1$.
- 一般地 $i^{4n} = 1$, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

- 例 (1) $i^2 = -1$, $i^3 = -i$, $i^4 = 1$.
- 一般地 $i^{4n} = 1$, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.
- (2) $(1+i)^2 = 2i$, $(1+i)^3 = -2 + 2i$, $(1+i)^4 = -4$.

- 例 (1) $i^2 = -1$, $i^3 = -i$, $i^4 = 1$.
- 一般地 $i^{4n} = 1$, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.
- (2) $(1+i)^2 = 2i$, $(1+i)^3 = -2 + 2i$, $(1+i)^4 = -4$.
- (3) $\Leftrightarrow \omega = \frac{-1+\sqrt{3}i}{2}$, $\mathbb{M} \omega^2 = \frac{-1-\sqrt{3}i}{2}$, $\omega^3 = 1$.

- 例 (1) $i^2 = -1$, $i^3 = -i$, $i^4 = 1$.
- 一般地 $i^{4n} = 1$, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.
- (2) $(1+i)^2 = 2i$, $(1+i)^3 = -2 + 2i$, $(1+i)^4 = -4$.
- (3) $\Leftrightarrow \omega = \frac{-1+\sqrt{3}i}{2}$, $\mathbb{M} \omega^2 = \frac{-1-\sqrt{3}i}{2}$, $\omega^3 = 1$.
- (4) $\Leftrightarrow \zeta = \frac{1+\sqrt{3}i}{2}$, \mathbb{N}

$$\zeta^2 = \frac{-1 + \sqrt{3}i}{2} = \omega, \qquad \zeta^3 = -1, \qquad \zeta^6 = 1.$$

• 例 (1) $i^2 = -1$, $i^3 = -i$, $i^4 = 1$. $1, i, i^2, i^3$ 是四次单位根

- 一般地 $i^{4n} = 1$, $i^{4n+1} = i$, $i^{4n+2} = -1$. $i^{4n+3} = -i$.
- (2) $(1+i)^2 = 2i$, $(1+i)^3 = -2 + 2i$, $(1+i)^4 = -4$.
- (3) $\Leftrightarrow \omega = \frac{-1+\sqrt{3}i}{2}$, $\mathbb{M} \omega^2 = \frac{-1-\sqrt{3}i}{2}$, $\omega^3 = 1$.

• (4) $\Leftrightarrow \zeta = \frac{1+\sqrt{3}i}{2}$, \mathbb{N}

 $1, \omega, \omega^2$ 是三次单位根

$$\zeta^2 = \frac{-1 + \sqrt{3}i}{2} = \omega, \qquad \zeta^3 = -1, \qquad \zeta^6 = 1.$$

 $1,\zeta,\zeta^2,\dots$ 是六次单位根

• 例 (1) $i^2 = -1$, $i^3 = -i$, $i^4 = 1$. $1, i, i^2, i^3$ 是四次单位根

- 一般地 $i^{4n} = 1$, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.
- (2) $(1+i)^2 = 2i$, $(1+i)^3 = -2 + 2i$, $(1+i)^4 = -4$.
- (3) $\Leftrightarrow \omega = \frac{-1+\sqrt{3}i}{2}$, $\mathbb{M} \omega^2 = \frac{-1-\sqrt{3}i}{2}$, $\omega^3 = 1$.
- (4) $\Leftrightarrow \zeta = \frac{1+\sqrt{3}i}{2}$, \mathbb{N}

 $1, \omega, \omega^2$ 是三次单位根

$$\zeta^2 = \frac{-1 + \sqrt{3}i}{2} = \omega, \qquad \zeta^3 = -1, \qquad \zeta^6 = 1.$$

 $1,\zeta,\zeta^2,\dots$ 是六次单位根

 $\frac{1+i}{\sqrt{2}}$ 是单位根吗?

• 例 化简 (1) $\left(\frac{1-i}{1+i}\right)^7$; (2) $\frac{i}{1-i} + \frac{1-i}{i}$.

• 例 化简 (1) $\left(\frac{1-i}{1+i}\right)^7$; (2) $\frac{i}{1-i} + \frac{1-i}{i}$.

•
$$\Re$$
 (1) $\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{2} = -\frac{2i}{2} = -i$,

• 例 化简 (1) $\left(\frac{1-i}{1+i}\right)^7$; (2) $\frac{i}{1-i} + \frac{1-i}{i}$.

•
$$\Re$$
 (1) $\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{2} = -\frac{2i}{2} = -i$,

$$\left(\frac{1-i}{1+i}\right)^7 = (-i)^7 = i.$$

- 例 化简 (1) $\left(\frac{1-i}{1+i}\right)^7$; (2) $\frac{i}{1-i} + \frac{1-i}{i}$.
- \Re (1) $\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{2} = -\frac{2i}{2} = -i$,

$$\left(\frac{1-i}{1+i}\right)^7 = (-i)^7 = i.$$

• (2)
$$\frac{i}{1-i} = \frac{i(1+i)}{2} = \frac{-1+i}{2}$$
,

- 例 化简 (1) $\left(\frac{1-i}{1+i}\right)^7$; (2) $\frac{i}{1-i} + \frac{1-i}{i}$.
- \Re (1) $\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{2} = -\frac{2i}{2} = -i$,

$$\left(\frac{1-i}{1+i}\right)^7 = (-i)^7 = i.$$

• (2)
$$\frac{i}{1-i} = \frac{i(1+i)}{2} = \frac{-1+i}{2}$$
, $\frac{1-i}{i} = -i-1$,

- 例 化简 (1) $\left(\frac{1-i}{1+i}\right)^7$; (2) $\frac{i}{1-i} + \frac{1-i}{i}$.
- \Re (1) $\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{2} = -\frac{2i}{2} = -i$,

$$\left(\frac{1-i}{1+i}\right)^7 = (-i)^7 = i.$$

- (2) $\frac{i}{1-i} = \frac{i(1+i)}{2} = \frac{-1+i}{2}$, $\frac{1-i}{i} = -i-1$,
- 因此 $\frac{i}{1-i} + \frac{1-i}{i} = \frac{-1+i}{2} i 1 = -\frac{3}{2} \frac{i}{2}$.

• 例解方程 $z^2 - 2(1+i)z - 5 - 10i = 0$.

- 例解方程 $z^2 2(1+i)z 5 10i = 0$.
- 解 配方可得 $(z-1-i)^2 = 5 + 10i + (1+i)^2 = 5 + 12i$.

- 例解方程 $z^2-2(1+i)z-5-10i=0$.
- 解 配方可得 $(z-1-i)^2 = 5 + 10i + (1+i)^2 = 5 + 12i$.

- 例解方程 $z^2-2(1+i)z-5-10i=0$.
- 解 配方可得 $(z-1-i)^2 = 5 + 10i + (1+i)^2 = 5 + 12i$.

- 例解方程 $z^2 2(1+i)z 5 10i = 0$.
- 解 配方可得 $(z-1-i)^2 = 5 + 10i + (1+i)^2 = 5 + 12i$.
- 将 $y = \frac{6}{x}$ 代入可解得 $(x, y) = \pm (3, 2)$,

- 例解方程 $z^2 2(1+i)z 5 10i = 0$.
- 解 配方可得 $(z-1-i)^2 = 5 + 10i + (1+i)^2 = 5 + 12i$.
- 将 $y = \frac{6}{x}$ 代入可解得 $(x, y) = \pm (3, 2)$, 故 $z 1 i = \pm (3 + 2i)$, z = 4 + 3i 或 -2 i.

*复数域

*复数域

*复数域

定义

称 $\overline{z} = x - yi$ 是复数 z = x + yi 的共轭复数.

定义

称 $\overline{z} = x - yi$ 是复数 z = x + yi 的共轭复数.

性质

•
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$
, $\overline{z_1} \bullet \overline{z_2} = \overline{z_1} \bullet \overline{z_2}$, $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$.

定义

称 $\overline{z} = x - yi$ 是复数 z = x + yi 的共轭复数.

性质

•
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$
, $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$, $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$.

• *z* 是 *z* 的共轭复数.

定义

称 $\overline{z} = x - yi$ 是复数 z = x + yi 的共轭复数.

性质

•
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$
, $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$, $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$.

- z是 z 的共轭复数.
- $z\overline{z} = (\operatorname{Re} z)^2 + (\operatorname{Im} z)^2$.
- $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2i \operatorname{Im} z$.

定义

称 $\overline{z} = x - yi$ 是复数 z = x + yi 的共轭复数.

性质

•
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$
, $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$, $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$.

- z 是 z 的共轭复数.
- $z\overline{z} = (\operatorname{Re} z)^2 + (\operatorname{Im} z)^2$.
- $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2i \operatorname{Im} z$.
- z 是实数当且仅当 $z = \overline{z}$.
- z 是纯虚数当且仅当 $z = -\overline{z}$ 且 $z \neq 0$.

• 由于 zz 是一个实数,

• 由于 $z\overline{z}$ 是一个实数, 因此在做复数的除法运算时, 可以 利用

$$\frac{Z_1}{Z_2} = \frac{Z_1 \overline{Z}_2}{Z_2 \overline{Z}_2}$$

将其转化为乘法.

• 由于 $z\overline{z}$ 是一个实数, 因此在做复数的除法运算时, 可以 利用

$$\frac{Z_1}{Z_2} = \frac{Z_1 \overline{Z}_2}{Z_2 \overline{Z}_2}$$

将其转化为乘法.

• 例设 $z = -\frac{1}{i} - \frac{3i}{1-i'}$ 求 $\operatorname{Re} z$, $\operatorname{Im} z$ 以及 $z \bullet \overline{z}$.

• 由于 $z\overline{z}$ 是一个实数, 因此在做复数的除法运算时, 可以 利用

$$\frac{Z_1}{Z_2} = \frac{Z_1 \overline{Z}_2}{Z_2 \overline{Z}_2}$$

将其转化为乘法.

• 例设 $z = -\frac{1}{i} - \frac{3i}{1-i}$, 求 Re z, Im z 以及 $z \bullet \overline{z}$.

•
$$\mathbf{R} z = -\frac{1}{i} - \frac{3i}{1-i} = -\frac{i}{i \cdot i} - \frac{3i(1+i)}{(1-i)(1+i)} = \frac{3}{2} - \frac{1}{2}i,$$

• 由于 $z\overline{z}$ 是一个实数, 因此在做复数的除法运算时, 可以 利用

$$\frac{Z_1}{Z_2} = \frac{Z_1 \overline{Z}_2}{Z_2 \overline{Z}_2}$$

将其转化为乘法.

• 例设 $z = -\frac{1}{i} - \frac{3i}{1-i'}$ 求 $\operatorname{Re} z$, $\operatorname{Im} z$ 以及 $z \bullet \overline{z}$.

•
$$\mathbf{R} z = -\frac{1}{i} - \frac{3i}{1-i} = -\frac{i}{i \cdot i} - \frac{3i(1+i)}{(1-i)(1+i)} = \frac{3}{2} - \frac{1}{2}i,$$

• 因此
$$\operatorname{Re} z = \frac{3}{2}$$
, $\operatorname{Im} z = -\frac{1}{2}$, $z \bullet \overline{z} = \left(\frac{3}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 = \frac{5}{2}$.

• 例设
$$z_1 = 5 - 5i$$
, $z_2 = -3 + 4i$, 求 $\left(\frac{z_1}{z_2}\right)$.

• 例设
$$z_1 = 5 - 5i$$
, $z_2 = -3 + 4i$, 求 $\left(\frac{z_1}{z_2}\right)$.

•
$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$

• 例设
$$z_1 = 5 - 5i$$
, $z_2 = -3 + 4i$, 求 $\left(\frac{z_1}{z_2}\right)$.

•
$$\mathbf{\tilde{R}}$$

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$

$$= \frac{(-15 - 20) + (-20 + 15)i}{25} = -\frac{7}{5} - \frac{1}{5}i,$$

• 例设
$$z_1 = 5 - 5i$$
, $z_2 = -3 + 4i$, 求 $\left(\frac{z_1}{z_2}\right)$.

•
$$mathbb{H}$$

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$

$$= \frac{(-15 - 20) + (-20 + 15)i}{25} = -\frac{7}{5} - \frac{1}{5}i,$$

• 因此

$$\overline{\left(\frac{z_1}{z_2}\right)} = -\frac{7}{5} + \frac{1}{5}i.$$

典型例题: 利用共轭复数证明等式

• 例证明 $z_1 \bullet \overline{z}_2 + \overline{z}_1 \bullet z_2 = 2 \operatorname{Re}(z_1 \bullet \overline{z}_2)$.

典型例题: 利用共轭复数证明等式

- 例证明 $z_1 \bullet \overline{z}_2 + \overline{z}_1 \bullet z_2 = 2 \operatorname{Re}(z_1 \bullet \overline{z}_2)$.
- 解由 $\overline{z_1} \bullet \overline{z_2} = \overline{z_1} \bullet z_2$ 得

$$z_1 \bullet \overline{z}_2 + \overline{z}_1 \bullet z_2 = z_1 \bullet \overline{z}_2 + \overline{z_1 \bullet \overline{z}_2} = 2 \operatorname{Re}(z_1 \bullet \overline{z}_2).$$

• 例 设 z = x + yi 且 $y \neq 0, \pm 1$. 证明: $x^2 + y^2 = 1$ 当且仅 当 $\frac{z}{1+z^2}$ 是实数.

- 例 设 z = x + yi 且 $y \neq 0, \pm 1$. 证明: $x^2 + y^2 = 1$ 当且仅 当 $\frac{z}{1+z^2}$ 是实数.
- 解 $\frac{z}{1+z^2}$ 是实数当且仅当

$$\frac{z}{1+z^2} = \overline{\left(\frac{z}{1+z^2}\right)}$$

- 例 设 z = x + yi 且 $y \neq 0, \pm 1$. 证明: $x^2 + y^2 = 1$ 当且仅 当 $\frac{z}{1+z^2}$ 是实数.
- 解 $\frac{z}{1+z^2}$ 是实数当且仅当

$$\frac{z}{1+z^2} = \overline{\left(\frac{z}{1+z^2}\right)} = \frac{\overline{z}}{1+\overline{z}^2},$$

• $\mathbb{P}\left[z\left(1+\overline{z}^2\right)=\overline{z}\left(1+z^2\right),\ (z-\overline{z})(z\overline{z}-1)=0.\right]$

- 例 设 z = x + yi 且 $y \neq 0, \pm 1$. 证明: $x^2 + y^2 = 1$ 当且仅 当 $\frac{z}{1+z^2}$ 是实数.
- 解 $\frac{z}{1+z^2}$ 是实数当且仅当

$$\frac{z}{1+z^2} = \overline{\left(\frac{z}{1+z^2}\right)} = \frac{\overline{z}}{1+\overline{z}^2},$$

- $\mathbb{P}\left[z\left(1+\overline{z}^2\right)=\overline{z}\left(1+z^2\right),\ (z-\overline{z})(z\overline{z}-1)=0.\right]$
- 由于 $y \neq 0$,因此 $z \neq \overline{z}$.

- 例 设 z = x + yi 且 $y \neq 0, \pm 1$. 证明: $x^2 + y^2 = 1$ 当且仅 当 $\frac{z}{1+z^2}$ 是实数.
- 解 $\frac{z}{1+z^2}$ 是实数当且仅当

$$\frac{z}{1+z^2} = \overline{\left(\frac{z}{1+z^2}\right)} = \frac{\overline{z}}{1+\overline{z}^2},$$

- $\mathbb{P}\left[z\left(1+\overline{z}^2\right)=\overline{z}\left(1+z^2\right),\ (z-\overline{z})(z\overline{z}-1)=0.\right]$
- 由于 $y \neq 0$,因此 $z \neq \overline{z}$.
- 故 $z\overline{z} = 1$, 即 $x^2 + y^2 = 1$.

*复数的其它构造

• 复数也有其它的构造方式,

*复数的其它构造

• 复数也有其它的构造方式, 例如

$$\mathbb{C} = \left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} : x, y \in \mathbb{R} \right\} = \left\{ xE + yJ : x, y \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R})$$

$$\not \exists \psi \ E = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, J = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

*复数的其它构造

• 复数也有其它的构造方式, 例如

$$\mathbb{C} = \left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} : x, y \in \mathbb{R} \right\} = \left\{ xE + yJ : x, y \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R})$$
 其中 $E = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, J = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

 此时自然地有加法、乘法、取逆等运算,它和我们前面的 定义没有本质差别。