

CSC/CSE 299: Hardware Projects for the Raspberry Pi

Presented by: Matthew Reyes, Brandon Berry

Project Overview

Our project aims to use facial recognition technology to lock and unlock doors based on seeing faces.

Purpose: To provide door access without the need for physical keys.

Project Objectives

 Develop a reliable door locking system that uses facial recognition. - Integrate hardware and software components to achieve real-time face detection.

Unlocking and Locking door

Hardware Components

- List of Hardware:
 - Raspberry Pi 4
 - Camera module (for facial recognition)
 - Servo motor (to control door lock)
 - Door lock mechanism
 - Power supply
- **Brief Explanation**: The Raspberry Pi controls the system, while the camera captures real-time images. The servo motor locks or unlocks the door based on facial recognition.

Software Components

• Technologies Used:

- GitHub Repo: Found and used for image processing and facial recognition
- Python: Programming language for controlling the system logic.
- Facial Recognition Library: From in Github repo and our own python library.

Project Approach

Development Process

- Researched hardware and software components suitable for facial recognition.
- Set up the Raspberry Pi and connected the camera and servo motor.
- Configured code and facial recognition libraries for real-time processing.

Challenges Faced

- Ensuring accurate recognition under different lighting conditions.
- Integrating hardware to function seamlessly with the software.

Demonstration & Results

VIDEO DEMONSTRATION:

RESULTS: THE SYSTEM SUCCESSFULLY LOCKS AND UNLOCKS THE DOOR BASED ON FACIAL RECOGNITION.

KEY OBSERVATIONS: ACCURACY IMPROVED AFTER ADJUSTING LIGHTING.

Conclusion

Summary of Objectives: Developed a secure, efficient facial recognition system using key hardware and software components.

Project Success: Successfully implemented real-time recognition with a high accuracy rate and robust performance.

Future Potential: Opportunities to improve accuracy and expand applications in different security settings.

Codes

Facial recognition code

Camera Code

Main code

```
## Addison by smartbuilds to
## Date: 27.09.20
## This win application serves a motion JPEG stream
## Import the necessary package
from flask import flask, momentemplate, Response, request
Import on
## Import on the necessary package
## Import on the necessary
```

