Моделиране на изискванията

Моделиране на изискванията: Сценарии,
 Данни и Аналитични класове

Slide Set to accompany
Software Engineering: A Practitioner's Approach, 8/e
by Roger S. Pressman

Лектор: Доц. д-р Ася Стоянова-Дойчева

Модел на данните

- Изучаване на данните независимо от обработката
- Фокусиране върху домейна на данните
- Създаване на модел на потребителско ниво на абстракция
- Определяне как обектите от данни са свързани един с друг

Какво е обект на данните?

- Представяне на почти всяка съставна информация, която трябва да бъде разбрана от софтуера.
 - Съставна информация—нещо, което има характеристики или атрибути
- може да бъде external entity нещо, което произвежда или консумира информация)
- Описанието на обектите от данни обекта от данни и всичките му атрибути.
- Обекта от данни капсулира само данни няма връзка от данните към операциите които действат върху данните.

Data Objects and Attributes

Обекта от данни съдържа множество от атрибути

attributes:
 make
 model
 body type
 price
 options code

Какво е връзката

- Обектите от данни са свързани един с друг по различен начин.
 - Има връзка между човек и кола, защото двата обекта са свързани
 - Човека притежава кола
 - Човека има право да управлява кола
- Връзките притежава and има право да управлява дефинират съответни връзки между обектите човек и кола.
- Могат да съществуват няколко инстанции на връзките
- Обектите могат да бъдат свързани по много различни начини

ERD нотация

Първо представяне:

Разработване на ERD

- *Hueo1*—моделиране на всички обекти от данни(entities) и връзките им един с друг
- Hueo2—моделиране на всички entities и връзки
- ниво3—моделиране на всички entities, връзки и атрибути

ERD: Пример

Базирано на класове моделиране

- Базираното на класове моделиране включва:
 - Обекти които системата ще манипулира
 - Операции (също наречени методи или услуги), които ще бъдат приложени върху обектите
 - Връзки (йерархични) между обектите
 - Взаимодействия който се случват между дефинираните класове.
- Елементите на базирания на класове модел включва класове, обекти, атрибути, операции, CRC модели collaboration диаграми и пакети

Идентифициране на аналитичните класове

- Проучване на потребителските сценарии, разработени като част от модела на изискванията.
- Това са съществителни имена или фрази със съществителни имена, за които говори крайният потребител.
- Трябва да извадим всички потенциални такива.

Проявяване на аналитичните класове

- Аналитичните класове проявяват себе си по един от следните начини:
 - External entities (други системи, устройства, хора), които произвеждат или използват информация
 - Things (справки, показвания, писма, сигнали), които са част от информационния домейн за проблема
 - Occurrences or events които се случват в контекста на системните операции
 - Roles изпълнявани от хора, които си взаимодействат със системата
 - Organizational units, които са свързани с приложението
 - Places, които определят контекста на проблема и общата функция
 - Structures които дефинират клас обекти или свързани класове от обекти

Дефиниране на атрибути

 Атрибутите описват клас, който е включен в аналитичния модел.

Дефиниране на операции

- Правим граматичен разбор на потребителските изисквания и търсим глаголите
- Операциите могат да бъдат разделени в 4 категории:
 - (1) операции, които манипулират данни (добавяне, изтриване, редактиране, избор)
 - (2) операции, които извършват изчисления
 - (3) операции, които отговарят за състоянието на обектите
 - (4) операции, които наблюдават обектите за появяване на контролни събития

CRC Модели

- Class-responsibility-collaborator (CRC)
 моделирането предоставя прост начин за
 идентифициране и организиране на класовете,
 които съответстват на системата или
 изискванията към нея. Ambler [Amb95]
 описваСКС моделирането по следния начин:
 - A CRC модел реално е колекция от стандартни индекс карти, които представят класовете. Картите са разделени на три секции. В най-горната секция записвате името на класа. В тялото на картата изброявате отговорностите на класа в лявата страна и сътрудничества в дясната.

CRC Моделиране

Типове Класове

- Entity classes, наречени още model или business classes, извлечени са от проблемния домейн (FloorPlan and Sensor).
- Boundary classes се използват за създаване на интерфейси, които потребителя вижда и взаимодейства, при използване на софтуера.
- Controller classes управлява"unit of work" [UML03] от началото до края. Controller classes могат да бъдат проектирани да управляват:
 - Създаване и обновяване на entity objects; ;
 - Сложна комуникация между множество от обекти;
 - Валидация на данни при комуникация между обекти или между потребител и приложението.

Отговорности

- Интелигентността на системата трябва да бъде разпределена между класовете, за да се достигнат решаване на проблема
- Всяка отговорност трябва да се посочи колкото е възможно по-просто
- Информацията и поведението трябва да са в един клас
- Информация за едно нещо трябва да бъде в един клас не разпределена между множество класове
- Отговорностите трябва да бъдат разпределени между свързани класове, когато е подходящо

Сътрудничество

- Класовете изпълняват техните отговорности по един от двата начина:
 - Класа може да използва собствени операции, за да манипулира собствени атрибутиА class can use its own operations to manipulate its own attributes като по този начин изпълнява собствена отговорност или
 - класа може да си сътрудничи с други класове
- Сътрудничествата идентифицират връзките между класовете
- Сътрудничествата са идентифицирани чрез определяне дали класа може да изпълни всяка от отговорностите си
- Три различни връзки между класове [WIR90]:
 - is-part-of
 - has-knowledge-of
 - depends-upon

Composite Aggregate Class

Associations u Dependencies

- Два аналитични класа често са свързани по някакъв начин
 - В UML тези връзки се наричат associations
 - Associations могат да бъдат усъвършенствани чрез multiplicity (cardinality се използва в моделирането)
- В много случаи съществуват клиент-сървър връзки между два аналитични класа.
 - В такива случаи клиент-класа зависи от сървъркласа по някакъв начин и се установява dependency връзка

Multiplicity

Dependencies

Аналитични Пакети

 Различните елементи на аналитичния модел (use cases, аналитични класове) са категоризирани по начин, който ги пакетира като група.

Analysis Packages

Преглед на CRC модела

- На всички участници в прегледа на модела са дадени множество CRC индексни карти.
 - Картите които си сътрудничат трябва да бъдат отделени (две сътрудничещи си карти не трябва да са в един участник).
- Всички use case сценарии (и съответните use-case diagrams) трябва да бъдат организирани в категории.
 - Когато водещия на прегледа стигне до име на обект, той символично минава към човека, който държи съответната клас индекс карта.
- Когато се намира на определен обект, този който държи карата е помолен да опише отговорностите отбелязани на картата.
 - Групата определя дали една или повече от отговорностите удовлетворяват изискванията на use case.
- Ако отговорностите и сътрудничествата отбелязани в индекс картата не могат да удовлетворят use case, се правят модификации на картата.
 - Това може да включва дефиниции на нови класове (и съответни СКС карти), или спецификации на нови или прегледани отговорности или сътрудничества на съществуваща карта.