计算机组成与系统结构

课程设计报告

广州大学 计算机科学与网络工程学院 软件工程专业 17 级 xx 班

NAME

(学号:1706xxxx)

2019年6月

一.课设性质,目的,任务

《计算机组成与系统结构课程设计》是计算机学院各专业集中实践性环节之一,是学习完《计算机组成与系统结构》课程后进行的一次全面的综合练习。其目的是综合运用所学计算机原理知识,设计并实现一台模型计算机,以便巩固所学的知识,提高分析问题和解决问题的能力。

二.课设基本理论

- 1、掌握算术、逻辑、移位运算实验,熟悉 ALU 运算控制位的运用。
- 2、掌握存储器组织、读写方式及与总路线组成的数据通路,掌握地址总线、数据总线的工作原理。
 - 3、掌握指令结构和指令取指、执行工作过程。
 - 4、掌握 CPU 的微程序控制原理。

三.题目

综合运用所学计算机原理知识,设计并实现具有以下 16 条指令的指令集结构的模型计算机:

编 号	助记符	机器指令码	1	说明
0	SUB Rd,Rs	0000 RdRs		Rd-Rs→Rd
1	ADD Rd,Rs	0001 RdRs		Rd+Rs→Rd
2	AND Rd,Rs	0010 RdRs		Rd&Rs→Rd (Rd 和 Rs 相与)
3	DEC Rd	0011 Rd00		将 Rd 值减 1
4	CLR Rd	0100 Rd00		将 Rd 清零
5	RL Rd	0101 Rd00		Rd 循环左移一位
6	RR Rd	0110 Rd00		Rd 循环右移一位
7	MOV Rd,Rs	0111 RdRs		Rs→Rd
8	LDI Rd,*	1000 Rd00 XXXXXXXX		将指令中的立即数(第二字节) 送入 Rd
9	OUT IOH,Rs	1001 00Rs		Rs→I/O(数据开关)高字节
10	LDA Rd,M	1010 Rd00 XXXXXXXX	XXXXXXXX	[M] →Rd
11	STA M,Rs	1011 00Rs XXXXXXXX	XXXXXXXX	Rs→[M]
12	JMP M	1100 0000 XXXXXXXX	XXXXXXXX	[M]→PC,即跳转到 M 所指单元
13	JZ M	1101 0000 XXXXXXXX	XXXXXXXX	当 Z=1 时,跳转到 M 所指单元
14	JC M	1110 0000 XXXXXXXX	XXXXXXXX	当 CY=1 时,跳转到 M 所指单元
15	HALT	1111 0000		停机

设计提示:

1、上表中,机器指令码的高 4 位为指令操作码, M 为 16 位存储器地址, Rs 为源寄存器, Rd 为目的寄存器,占 2 位,并规定:

Rs 或 Rd	选定的寄存器
00	R0
01	R1
10	R2
11	R3

- 2、在微程序中, 微地址 001 为取指, 微指令为 BF FB F8。
- 3、各指令指行阶段微程序入口地址的确定方式:

微地址位号	10	9	8 7 6 5	4	3	2	1	0
内容	1	1	IR7~IR4	0	0	0	0	0

例如,第 5 条指令"RL Rd" 的指令码为 0101 Rd00 则指令码的高 4 位 IR7~IR4 为 0101,由上表知,微程序入口微地址为: 11 **0101** 00000 ,即 6A0H。

4、主要步骤:

- (1) 按照第 3 点的方法, 给出所有 16 条指令的微程序入口微地址;
- (2) 通过分析每条指令的功能明确其的微程序流程, 可参考实验指导书图 3-4-1、图 3-2-2、图 3-3-1;
- (3) 写出每条微指令的微命令,即 24 个微控制位信号,可参考实验指导书表 3.4.1、表 3.2.1、表 3.3.1 和"微控制器编程手册"第 2 章。
- (4) 建议采用逐条指令设计实现的方式,一条实现并用汇编语句测试通过后(指令功能、下址顺序均正确)再进行下一条的设计。

5、检查

模型计算机设计完成后,用所给的测试程序 check_1.asm (测 12 条非转移指令)和 check_2.asm (测 3 条转移指令)检查正确性。检查方法:在测试程序中#load s 本人的.IS 微指令程序,实验箱电源关闭重启并连接,装载后选择"运行"或"单步"执行。

check_1.asm 运行的正确结果为:寄存器 ROR1R2R3 分别显示 00112233, IOH 显示 33。check_2.asm 运行的正确结果为:寄存器 ROR1R2R3 分别显示 00112233,如果显示 EE则执行有错误。

check1.asm 程序的运行结果

check2.asm 程序的运行结果

四.数据格式定义

编号	助记符	机器指令码	入口地址	对应微程序
				600:F8 F9 7F
1	SUB Rd, Rs	0000 RdRs	600	601:FA C1 FF
				602:F0 6E 6D
				620:F8 F9 7F
2	ADD Rd,Rs	0001 RdRs	620	621:FA C1 FF
				622:F0 66 6D
				640:F8 F9 7F
3	AND Rd,Rs	0010 RdRs	640	641:FA C1 FF
				642:F0 EE 6D
	DEC Da	0044 P400	660	660:F8 F9 5F
4	DEC Rd	0011 Rd00	660	661:F0 D6 4D
5	CLR Rd	0100 Rd00	680	680:F0 DE 6D
6	RL Rd	0101 Pd00	6A0	6A0:F0 D6 4D
6	KL KU	0101 Rd00	0AU	6A1:F0 76 4D
7	RR Rd	0110 Pd00	600	6C0:F8 F9 5F
7	KK KU	0110 Rd00	6C0	6C1:F0 7E 4D
8	MOV Rd,Rs	0111 RdRs	6E0	6E0:F0 F9 ED
9	LDI Rd,*	1000 Rd00 XXXXXXXX	700	700:FA FB FF
9	LDI Ku,	1000 Rd00	700	701:B0 C6 6D
10	OUT IOH,Rs	1001 00Rs	720	720:F5 F9 ED
				740:F8 FB FF
11	LDA Rd,M	1010 Rd00 XXXXXXXX XXXXXXX	740	741:B9 FB FF
''	LDA Ru,W	1010 Rd00 XXXXXXX XXXXXX	740	742:BC FE 3F
				743:70 FB ED
				760:FA FB 7F
12	STA M,Rs	1011 00Rs XXXXXXXX XXXXXXX	760	761:BB FB FF
12	STA WI,NS	TOTT OURS ANAMANA ANAMANA	700	762:BC C6 3F
				763:5F F9 AD
				780:F8 FB FF
13	JMP M	1100 0000 XXXXXXXX XXXXXXX	780	781:B9 FB FF
				782:3F FE 2D
				7A0:FA C3 FF
14	JZ M	1101 0000 XXXXXXXX XXXXXXX	7A0	7A1:BB FB FC
'4	OZ IVI		170	7A4:FF FF ED
				7A5:3F C6 2D
15	JC M	1110 000 XXXXXXXX XXXXXXX	7C0	7C0:FA FB FF
'3	O IVI		'50	7C1:BB FB FD

i			•	
				7C4:FF FF ED
				7C5:3F C6 2D
10	11A1 T	4444 0000	750	7E0:F8 F8 3F
16	HALT	1111 0000	7E0	7E1:3F D6 0D

五.模型机指令系统

;助记符	操作数	指令研	马长	度
; ; 1 、减污	 - 			
SUB	R0,R0	00	1	;R0-R0->R0
SUB	R0,R1	01	1	;R0-R1->R0
SUB	R0,R2	02	1	;R0-R2->R0
SUB	R0,R3	03	1	;R0-R3->R0
SUB	R1,R0	04	1	;R1-R0->R1
SUB	R1,R1	05	1	;R1-R1->R1
SUB	R1,R2	06	1	;R1-R2->R1
SUB	R1,R3	07	1	;R1-R3->R1
SUB	R2,R0	08	1	;R2-R0->R2
SUB	R2,R1	09	1	;R2-R1->R2
SUB	R2,R2	0A	1	;R2-R2->R2
SUB	R2,R3	0B	1	;R2-R3->R2
SUB	R3,R0	0C	1	;R3-R0->R3
SUB	R3,R1	0D	1	;R3-R1->R3
SUB	R3,R2	0E	1	;R3-R2->R3
SUB	R3,R3	0F	1	;R3-R3->R3
0 4-5	L >=			
	法运算∶ 620h	4.0		Do Do Do
ADD	R0,R0	10	1	;R0+R0->R0
ADD	R0,R1	11	1	;R0+R1->R0
ADD	R0,R2	12	1	;R0+R2->R0
ADD	R0,R3	13	1	;R0+R3->R0
ADD	R1,R0	14	1	;R1+R0->R1
ADD	R1,R1	15	1	;R1+R1->R1
ADD	R1,R2	16	1	;R1+R2->R1
ADD	R1,R3	17	1	;R1+R3->R1
ADD	R2,R0	18	1	;R2+R0->R2
ADD	R2,R1	19	1	;R2+R1->R2
ADD	R2,R2	1A	1	;R2+R2->R2
ADD	R2,R3	1B	1	;R2+R3->R2
ADD	R3,R0	1C	1	;R3+R0->R3
ADD	R3,R1	1D	1	;R3+R1->R3

ADD	R3,R2	1E	1	;R3+R2->R3
ADD	R3,R3	1F	1	;R3+R3->R3
	,			·
;3、逻辑	与运算: 640h			
AND	R0,R0	20	1	;R0&R0->R0
AND	R0,R1	21	1	;R0&R1->R0
AND	R0,R2	22	1	;R0&R2->R0
AND	R0,R3	23	1	;R0&R3->R0
AND	R1,R0	24	1	;R1&R0->R1
AND	R1,R1	25	1	;R1&R1->R1
AND	R1,R2	26	1	;R1&R2->R1
AND	R1,R3	27	1	;R1&R3->R1
AND	R2,R0	28	1	;R2&R0->R2
AND	R2,R1	29	1	;R2&R1->R2
AND	R2,R2	2A	1	;R2&R2->R2
AND	R2,R3	2B	1	;R2&R3->R2
AND	R3,R0	2C	1	;R3&R0->R3
AND	R3,R1	2D	1	;R3&R1->R3
AND	R3,R2	2E	1	;R3&R2->R3
AND	R3,R3	2F	1	;R3&R3->R3
;4、Rd 1	值减 1:660			
DEC	R0	30	1	;R0-1
DEC	R1	34	1	;R1-1
DEC	R2	38	1	;R2-1
DEC	R3	3C	1	;R3-1
;5、Rd ;	清空: 680			
CLR	R0	40	1	;R0 清空
CLR	R1	44	1	;R1 清空
CLR	R2	48	1	;R2 清空
CLR	R3	4C	1	;R3 清空
;6、Rd ²	循环左移一位:64	۸0		
RL	R0	50	1	;R0 循环左移一位
RL	R1	54	1	;R1 循环左移一位
RL	R2	58	1	;R2 循环左移一位
RL	R3	5C	1	;R3 循环左移一位
;7、Rd ²	循环右移一位: 60	00		
RR	R0	60	1	;R0 循环右移一位
RR	R1	64	1	;R1 循环右移一位
RR	R2	68	1	;R2 循环右移一位
RR	R3	6C	1	;R3 循环右移一位

;8、将 F	Rs 移到 Rd:6E	:0		
MOV	R0,R0	70	1	;R0->R0
MOV	R0,R1	71	1	;R1->R0
MOV	R0,R2	72	1	;R2->R0
MOV	R0,R3	73	1	;R3->R0
MOV	R1,R0	74	1	;R0->R1
MOV	R1,R1	75	1	;R1->R1
MOV	R1,R2	76	1	;R2->R1
MOV	R1,R3	77	1	;R3->R1
MOV	R2,R0	78	1	;R0->R2
MOV	R2,R1	79	1	;R1->R2
MOV	R2,R2	7A	1	;R2->R2
MOV	R2,R3	7B	1	;R3->R2
MOV	R3,R0	7C	1	;R0->R3
MOV	R3,R1	7D	1	;R1->R3
MOV	R3,R2	7E	1	;R2->R3
MOV	R3,R3	7F	1	;R3->R3
·9 将扣	s 1令中的立即数i	¥λ Rd·7	00	
LDI	R0,*	80	2	;将指令中的立即数(第二字节)送入 R0
LDI	R1,*	84	2	;将指令中的立即数(第二字节)送入 R1
LDI	R2,*	88	2	;将指令中的立即数 (第二字节) 送入 R2
LDI	R3,*	8C	2	;将指令中的立即数 (第二字节) 送入 R3
·10 V⁄2	Do XX (A LOU)	720		
,IU、 _何 OUT	Rs 送往 IOH: IOH,R0	90	1	;将寄存器 R0 的数据写入到 IOH
OUT	IOH,R0	90		
	•		1	;将寄存器 R1 的数据写入到 IOH
OUT OUT	IOH,R2 IOH,R3	92 93	1 1	;将寄存器 R2 的数据写入到 IOH
001	IOH,R3	93	ı	;将寄存器 R3 的数据写入到 IOH
;11、[M] →Rd: 740			
LDA	R0,*	A0	3	;[M]->R0
LDA	R1,*	A4	3	;[M]->R1
LDA	R2,*	A8	3	;[M]->R2
LDA	R3,*	AC	3	;[M]->R3
;12、Rs	s→[M]: 760			
STA	*,R0	B0	3	;R0->[M]
STA	*,R1	B1	3	;R1->[M]
STA	*,R2	B2	3	;R2->[M]
STA	*,R3	B3	3	;R3->[M]
;13、跳	转到 M 所指单方	⊤: 7 80		

JMP C₀ 3 ;[M]→PC,即跳转到 M 所指单元 ;14、跳转到 M 所指单元: 7A0 JΖ D0 3 ;当 Z=1 时, 跳转到 M 所指单元 ;15、跳转到 M 所指单元: 7C0 JC ;当 CY=1 时, 跳转到 M 所指单元 E0 3 ;16、停机: 7E0 HALT F0 ;停机

六.微程序流程图

七.模型机微指令表

	M23	M22	M21	M20	M19	M18	M17	M16		M15	M14	M13	M12	M11	M10	M9	M8		M7	M6	M5	M4	M3	M2	M1	MO		后续	
微址	E/M	ΙP	MWR	R/M	o2	01	00	0P	代码	М	CN	\$2	S2	S0	Х2	Х1	X0	代码	ΧР	W	ALU	lu	ΙE	IR	lcz	lds	代码	微址	说明
0001	1	0	1	1	1	1	1	1	BF	1	1	1	1	1	0	1	1	FB	1	1	1	1	1	0	0	0	F8	+1	取指变值
0600	1	1	1	1	1	0	0	0	F8	1	1	1	1	1	0	0	1	F9	0	1	1	1	1	1	1	1	7F	+1	AX=REG
0601	1	1	1	1	1	0	1	0	FA	1	1	0	0	0	0	0	1	C1	1	1	1	1	1	1	1	1	FF	+1	BX=REG
0602	1	1	1	1	0	0	0	0	F0	0	1	1	0	1	1	1	0	6E	0	1	1	0	1	1	0	1	6D	0001	REG=A-B
0620	1	1	1	1	1	0	0	0	F8	1	1	1	1	1	0	0	1	F9	0	1	1	1	1	1	1	1	7F	+1	AX=REG
0621	1	1	1	1	1	0	1	0	FA	1	1	0	0	0	0	0	1	C1	1	1	1	1	1	1	1	1	FF	+1	BX=REG
0622	1	1	1	1	0	0	0	0	F0	0	1	1	0	0	1	1	0	66	0	1	1	0	1	1	0	1	6D	0001	REG=A+B
0640	1	1	1	1	1	0	0	0	F8	1	1	1	1	1	0	0	1	F9	0	1	1	1	1	1	1	1	7F	+1	AX=REG
0641	1	1	1	1	1	0	1	0	FA	1	1	0	0	0	0	0	1	C1	1	1	1	1	1	1	1	1	FF	+1	BX=REG
0642	1	1	1	1	0	0	0	0	F0	1	1	1	0	1	1	1	0	EE	0	1	1	0	1	1	0	1	6D	0001	REG=A&B
0660	1	1	1	1	1	0	0	0	F8	1	1	1	1	1	0	0	1	F9	0	1	0	1	1	1	1	1	5F	+1	TmpA=REG
0661	1	1	1	1	0	0	0	0	F0	1	1	0	1	0	1	1	0	D6	0	1	0	0	1	1	0	1	4D	+1	REG=A-1
0680	1	1	1	1	0	0	0	0	F0	1	1	0	1	1	1	1	0	DE	0	1	1	0	1	1	0	1	6D	0001	A 清零
06A0	1	1	1	1	1	0	0	0	F8	1	1	1	1	1	0	0	1	F9	0	1	0	1	1	1	1	1	5F	+1	TmpA=REG
06A1	1	1	1	1	0	0	0	0	FO	0	1	1	1	0	1	1	0	76	0	1	0	0	1	1	0	1	4 D	0001	左移
06C0	1	1	1	1	1	0	0	0	F8	1	1	1	1	1	0	0	1	F9	0	1	0	1	1	1	1	1	5F	+1	TmpA=REG
06C1	1	1	1	1	0	0	0	0	F0	0	1	1	1	1	1	1	0	7E	0	1	0	0	1	1	0	1	4 D	0001	右移
06E0	1	1	1	1	0	0	0	0	F0	1	1	1	1	1	0	0	1	F9	1	1	1	0	1	1	0	1	ED	0001	Rs->Rd
0700	1	1	1	1	1	0	1	0	FA	1	1	1	1	1	0	1	1	FB	1	1	1	1	1	1	1	1	FF	+1	BX=ROM
0701	1	0	1	1	0	0	0	0	в0	1	1	0	0	0	1	1	0	C6	0	1	1	0	1	1	0	1	6D	0001	REG=B
0701	1	0	1	1	0	U	U	U	О	1	1	0	U	0	1	1	0	Co	U	1	1	U	1	1	U	1	עט	0001	PC++
0720	1	1	1	1	0	1	0	1	F5	1	1	1	1	1	0	0	1	F9	1	1	1	0	1	1	0	1	ED	0001	Rs→I/O
0740	1	1	1	1	1	0	0	0	F8	1	1	1	1	1	0	1	1	FB	1	1	1	1	1	1	1	1	FF	+1	AL=ROM
0741	1	0	1	1	1	0	0	1	В9	1	1	1	1	1	0	1	1	FB	1	1	1	1	1	1	1	1	FF	. 1	AH=ROM
0 / 41	1	Ü	1	1		Ů	Ů	1	לם	1	1	1	_		Ů	1	1	ГD	_	_	_	1	_	_	_	1	FF	+1	PC++
0742	1	0	1	1	1	1	0	0	ВС	1	1	1	1	1	1	1	0	FE	0	0	1	1	1	1	1	1	3F	+1	AR=A
- 12	_	•	•	-			Ů	Ů			_			_		_			Ľ	Ľ		_					Ŭ-	' -	PC++
0743	0	1	1	1	0	0	0	0	70	1	1	1	1	1	0	1	1	FB	1	1	1	0	1	1	0	1	ED	0001	[M] →Rd
0760	1	1	1	1	1	0	1	0	FA	1	1	1	1	1	0	1	1	FB	0	1	1	1	1	1	1	1	7F	+1	BL=ROM
0761	1	0	1	1	1	0	1	1	ВВ	1	1	1	1	1	0	1	1	FB	1	1	1	1	1	1	1	1	FF	+1	BH=ROM PC++
0762	1	0	1	1	1	1	0	0	ВС	1	1	0	0	0	1	1	0	С6	0	0	1	1	1	1	1	1	3F	+1	AR=B PC++
0763	0	1	0	1	1	1	1	1	5F	1	1	1	1	1	0	0	1	F9	1	0	1	0	1	1	0	1	AD	0001	$Rs \rightarrow [M]$
0780	1	1	1	1	1	0	0	0	F8	1	1	1	1	1	0	1	1	FB	1	1	1	1	1	1	1	1	FF	+1	AL=ROM

0781	1	0	1	1	1	0	0	1	В9	1	1	1	1	1	0	1	1	FB	1	1	1	1	1	1	1	1	FF	+1	AH=ROM PC++
0782	0	0	1	1	1	1	1	1	3F	1	1	1	1	1	1	1	0	FE	0	0	1	0	1	1	0	1	2D	0001	[M]→PC
07A0	1	1	1	1	1	0	1	0	FA	1	1	1	1	1	0	1	1	FB	0	1	1	1	1	1	1	1	7 F	+1	BL=ROM
07A1	1	0	1	1	1	0	1	1	BB	1	1	1	1	1	0	1	1	FB	1	1	1	1	1	1	0	0	FC	07A4	BH=ROM PC++
07A4	1	1	1	1	1	1	1	1	FF	1	1	1	1	1	1	1	1	FF	1	1	1	0	1	1	0	1	ED	0001	空操作
07A5	0	0	1	1	1	1	1	1	3F	1	1	0	0	0	1	1	0	С6	0	0	1	0	1	1	0	1	2D	0001	跳到M
07C0	1	1	1	1	1	0	1	0	FA	1	1	1	1	1	0	1	1	FB	0	1	1	1	1	1	1	1	7F	+1	BL=ROM
07C1	1	0	1	1	1	0	1	1	BB	1	1	1	1	1	0	1	1	FB	1	1	1	1	1	1	0	1	FD	07C4	BH=ROM PC++
07C4	1	1	1	1	1	1	1	1	FF	1	1	1	1	1	1	1	1	FF	1	1	1	0	1	1	0	1	ED	0001	空操作
07C5	0	0	1	1	1	1	1	1	3F	1	1	0	0	0	1	1	0	С6	0	0	1	0	1	1	0	1	2D	0001	跳到M
07E0	1	1	1	1	1	0	0	0	F8	1	1	1	1	1	0	0	0	F8	0	0	1	1	1	1	1	1	3F	+1	PC->AX
07E1	0	0	1	1	1	1	1	1	3F	1	1	0	1	0	1	1	0	D6	0	0	0	0	1	1	0	1	0 D	0001	AX-1->PC

八.检测结果

check_1 程序	check_2 程序
#LOAD "XZ.IS"	#LOAD "XZ.IS"
org 0	org 0
start:	start:
LDI r0,12h	LDI r0,12h
sta 100h,r0	sub r0,r0
lda r1,100h	jz tag1
dec r1	ldi r3,0eeh
rl r0	jmp tag2
add r0,r1	tag1:ldi r3,33h
rr r0	tag2:ldi r0,88h
add r0,r1	add r0,r0
ldi r2,76h	jc tag3
and r2,r0	ldi r2,0eeh
mov r3,r2	jmp tag4
add r3,r1	tag3:ldi r2,22h
clr r0	tag4:ldi r1,11h
out ioh,r3	ldi r0,0
halt	add r1,r0
end	jz tag5
	jmp tag6
	tag5:ldi r1,0eeh
	tag6:jc tag7

ldi r0,0h jmp tag8 tag7:ldi r0,0eeh tag8:halt end

九.存在的问题及体会

通过本次课程设计,我对计算机系统结构和指令系统的创建有了进一步的认识,同时对程序运行过程有了更深入的理解,相信对以后的编程会有一定帮助。

实验的关键在于要理解 24 个微控制位 $M0\sim M23$ 对应的功能。新建指令首先要计算入口地址,同时将指令系统里的助记符写好,计算指令码。对于一些需要用到两个通用寄存器的指令,会有对应 16 (2^4) 种助记符。接着分析指令的作用,根据总线规则从原编码取数据送往目标编码地址。

在完成课程设计过程中会遇到很多问题,例如:

- 1. 在微单步微指令时,指令经常不按照预期转跳。其中的一个原因是没有处理好条件变址、 结尾变址等情况。
- 2. 在存取数据时会出现不能正确地把数据送往指定寄存器的问题,原因在于没有选对总线规则,其中 Rs 寄存器是奇数位, Rd 寄存器是偶数位。
- 3. 在研究 JZ、JC 指令的时候,需要条件变址,要搞清楚何时跳转第一条指令,何时跳转第二条指令,其中情况有两种,一种是零标志 Z 灯亮时,另一种是进位标志 CY 灯亮时,分别跳转不同的指令。这两条指令及 RR 指令都要连接实验箱才能进行调试。

.....