

Raport

ĆWICZENIE	WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY
8	NA PODSTAWIE PRAWA STOKESA

Imię i Nazwisko,	
Nr indeksu, Wydział	
Termin zajęć:	
dzień tygodnia, godzina	
Data oddania	
sprawozdania	
Ocena końcowa	

Data i podpis prowadzącego kurs

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

1. Wstęp

Krótki opis zjawisk fizycznych, których dotyczy wykonywane ćwiczenie, uwzględniający podstawowe wzory i definicje. Cel wykonywanego ćwiczenia.

2. Wyniki pomiarów i ich opracowanie

- I. <u>Pomiar współczynnika lepkości cieczy za pomocą szklanego naczynia cylindrycznego</u>
- 1. Wyniki pomiaru odległości między pierścieniami (h) oraz gęstości badanej cieczy (ρ_c) i ich niepewności wpisz do tabeli 1. Niepewność pomiaru odległości u(h) oraz gęstości badanej cieczy $u(\rho_c)$ określ na podstawie dokładności pomiaru. <u>Uwaga:</u> W przypadku pojedynczego pomiaru wielkości x niepewność pomiaru u(x) wynika z dokładności przyrządu (Δx) i wyraża się zależnością:

$$u(x) = \frac{\Delta x}{\sqrt{3}}$$

2. Wyniki pomiaru masy m i jej niepewność u(m) oraz średnicy kulki d wpisz do tabeli 1. Oblicz wartość średnią średnicy \bar{d}) i jej niepewność u(d) oraz gęstość kulek ρ_k i jej niepewność $u(\rho_k)$ korzystając z poniższych wzorów. Wyniki wpisz do tabeli 1.

$$\overline{d} = \sum_{i=1}^{n} d_i / n$$

$$S_{\overline{d}} = \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} \left(d_i - \overline{d} \right)^2}$$

$$u(d) = \sqrt{(S_{\overline{d}})^2 + \frac{(\Delta d)^2}{3}}$$

Przykładowe obliczenia: Kulka 1

$$\bar{d}_1 =$$

$$S_{\bar{d}_1} =$$

$$u(d_1) =$$

Gęstość kulki

$$\rho_k = \frac{6m}{\pi d^3}$$

$$u_c(\rho_k) = \sqrt{\left|\frac{\partial \rho_k}{\partial m}\right|^2 \cdot u(m)^2 + \left|\frac{\partial \rho_k}{\partial d}\right|^2 \cdot u(d)^2} = \sqrt{\left|\frac{6}{\pi d^3}\right|^2 \cdot u(m)^2 + \left|\frac{18m}{\pi d^4}\right|^2 \cdot u(d)^2}$$

Przykładowe obliczenia: Kulka 1

$$\rho_{k1}$$
 =

$$u_c(\rho_k) =$$

3. Wyniki pomiaru czasu spadania kulek (t) wpisz do tabeli 1. Oblicz wartość średnią czasu \bar{t} oraz jego niepewność u(t) korzystając z podanych wzorów. Wyniki wpisz do tabeli 1.

$$\bar{t} = \sum_{i=1}^{n} t_i / n$$

$$S_{\bar{t}} = \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} \left(t_i - \bar{t}\right)^2}$$

$$u(t) = \sqrt{(S_{\tilde{t}})^2 + \frac{(\Delta t)^2}{3}}$$

Przykładowe obliczenia: Kulka 1

$$S_{\bar{t}} =$$

$$u(t) =$$

4. Na podstawie danych pomiarowych oblicz współczynnik lepkości (η) dla każdej kulki i jego niepewność $u_c(\eta)$; dane wpisz do tabeli 1.

$$\eta = \frac{d^2 \cdot g \cdot t \cdot (\rho_k - \rho_c)}{18h}$$

$$\eta_1 =$$

$$\eta_2 =$$

$$u_c(\eta) = \sqrt{\left|\frac{\partial \eta}{\partial d}\right|^2 \cdot u(d)^2 + \left|\frac{\partial \eta}{\partial t}\right|^2 \cdot u(t)^2 + \left|\frac{\partial \eta}{\partial \rho_k}\right|^2 \cdot u_c(\rho_k)^2 + \left|\frac{\partial \eta}{\partial \rho_c}\right|^2 \cdot u(\rho_c)^2 + \left|\frac{\partial \eta}{\partial h}\right|^2 \cdot u(h)^2} = \frac{1}{2} \left(\frac{\partial \eta}{\partial d}\right)^2 \cdot u(d)^2 + \left|\frac{\partial \eta}{\partial t}\right|^2 \cdot u(d)^2 + \left|\frac{\partial \eta}{\partial \rho_k}\right|^2 \cdot u(h)^2 + \left|\frac{\partial \eta}{\partial \rho_k}\right|^2 + \left|\frac{\partial \eta}{\partial \rho_k}$$

$$\sqrt{\left|\frac{d \cdot g \cdot t(\rho_k - \rho_c)}{9h}\right|^2 u(d)^2 + \left|\frac{d^2 \cdot g(\rho_k - \rho_c)}{18h}\right|^2 u(t)^2 + \left|\frac{d^2 \cdot g \cdot t}{18h}\right|^2 u_c(\rho_k)^2 + \left|\frac{d^2 \cdot g \cdot t}{18h}\right|^2 u(\rho_c)^2 + \left|\frac{d^2 \cdot g \cdot t(\rho_k - \rho_c)}{18h^2}\right|^2 u(h)^2}$$

$$u_c(\eta_1) =$$

$$u_c(\eta_2) =$$

$$\bar{\eta} = (\eta_1 + \eta_2)/2 =$$

$$u(\bar{\eta}) =$$

Tabela 1. Pomiary parametrów oraz czasów opadania dla kulki 1 wraz z obliczonym współczynnikiem lepkości cieczy

	m 10 ⁻³ [kg]	d 10 ⁻³ [m]	h [m]	t [s]	ρ_k [kg/m ³]	ρ _c [kg/m³]	η [Ns/m²]
1	10 [18]	10 [111]	[,,,]	[2]	[1/8/111]	[//8/111]	[143/111]
2							
3							
i							
n							
\bar{X}							
ΔX							
u(X)							
$u(X)$ $u_c(X)$							

$$\bar{\eta} = u(\bar{\eta})$$

II. Wyznaczanie współczynnika lepkości cieczy przy pomocy wiskozymetru

- 1. Wyniki czasu spadania kulki t oraz wartości gęstości kulki ρ_k , cieczy ρ_c i ich niepewności $u(\rho_k)$, $u(\rho_c)$ wpisz do tabeli.
- 2. Oblicz wartość średnią czas spadania kulki \bar{t} oraz jego niepewność u(t). Wyniki wpisz do tabeli.

$$\bar{t} = \sum_{i=1}^{n} t_i / n = S_{\bar{t}} = \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (t_i - \bar{t})^2} = S_{\bar{t}} = \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (t_i - \bar{t})^2}$$

$$u(t) = \sqrt{(S_{\bar{t}})^2 + \frac{(\Delta t)^2}{3}} =$$

3. Oblicz współczynnik lepkości (η) i jego niepewność ($\Delta\eta$). Wyniki obliczeń wpisz do tabeli.

$$\begin{split} \eta &= k \cdot \left(\rho_k - \rho_c\right) \cdot t \\ \eta &= \\ u_c(\eta) \\ &= \sqrt{|k \cdot t|^2 \cdot u(\rho_k)^2 + |k \cdot t|^2 \cdot u(\rho_c)^2 + |k \cdot (\rho_k - \rho_c)|^2 \cdot u(t)^2 + |(\rho_k - \rho_c)t|^2 \cdot u(k)^2} \\ u_c(\eta) &= \end{split}$$

Dane potrzebne do obliczeń:

- dla wiskozymetru z kulką **szklaną** $k = 0.7941 \cdot 10^{-6} \text{ m}^2/\text{s}^2$ $\rho_k = (2.41 \pm 0.01) \text{ g/cm}^3$ $\rho_c = (1.261 \pm 0.005) \text{ g/cm}^3$

- dla wiskozymetru z kulką **metalową**: $k = 0.1216 \cdot 10^{-6} \text{ m}^2/\text{s}^2$ $\rho_k = (8.12 \pm 0.01) \text{ g/cm}^3$ $\rho_c = (1.261 \pm 0.005) \text{ g/cm}^3$

lp.	t [s]	k [m²/s²]	ρ _k [kg/m³]	ρ _c [kg/m³]	η [Ns/m²]
1					
2					
3					
n					
\bar{X}					
ΔX					
u(X)					
$u_c(X)$					

3. Dyskusja wyników, wnioski