Fast Fourier Transform

$$x(0) = \{1,3,2,5,3,4,2,6\}$$

$$x(0) = \{2\pi(1) = 1\}$$

$$x(1) = \{2\pi(1) = 1\}$$

$$+x(2) \{6n = 1\}$$

$$+x(3) \{6n = 1\}$$

$$+x(4) \{6n = 1\}$$

$$+x(5) = \{2\pi(1) = 1\}$$

$$+x(6) = \{2$$

FFT(DFT)

- No. of Complex number computation increases with increase in N.
- DFT requires N² Complex multiplications and N(N-1)
 Complex additions
- Efficient computation of DFT is FFT as it requires (N/2)log₂N complex multiplications and Nlog₂N Complex additions.
- Exploits the symmetry of the DFT calculation to make its execution much faster
- Speedup increases with DFT size

• Discoveries :

1965 - algorithm rediscovered (not for the first time) by Cooley and Tukey

- In 1967, calculation of a 8192-point DFT on the top-of-the line IBM 7094 took
 - ~30 minutes using conventional techniques
 - ~5 seconds using FFTs

Radix p computation

 split the sum into 'p' subsequences of length N/p

continue until you have N/p subsequences of

length p

Properties to remember

Symmetry property

$$W_N^{nk+N/2} = -W_N^{nk}$$

$$X(N-k) = X^*(k) = X(-k)$$

Periodicity Property

$$W_N^{nk+N} = W_N^{nk}$$

O-jatink-jating

Radix-2 FFT Algorithm N = $^{\sim}$

• Let's take a simple example where only two points are given N=2.

(i.e.) n=0, n=1;
$$X(k) = \sum_{n=0}^{N-1} x(n)W_N^{nk}$$

$$\times (k) \Rightarrow N$$

$$X(k) = \sum_{n=0}^{1} x(n)W_2^{nk} = x(0) + x(1)W_2^{k}$$

$$W_2 = e^{-j\frac{2\pi}{2}} = e^{-j\pi} = -1$$

$$X(k) = \sum_{n=0}^{1} x(n)W_2^{nk} = x(0) + (-1)^k x(1)$$
$$k = 0; X(0) = x(0) + x(1)$$
$$k = 1; X(1) = x(0) - x(1)$$

Radix-2 FFT Algorithm

$$X(1) = x(0) - x(1)$$

Butterfly FFT

Linear computation of Radix-2 Decimation in Time

First break x[n] into even and odd

$$X(k) = \sum_{n=even} x(n)W_N^{nk} + \sum_{n=odd} x(n)W_N^{nk}$$

Let n=2m for even and n=2m+1 for odd

$$X(k) = \sum_{m=0}^{\frac{N}{2}-1} x(2m)W_N^{2mk} + \sum_{m=0}^{\frac{N}{2}-1} x(2m+1)W_N^{(2m+1)k}$$

Even and odd parts are both DFT of a N/2 point sequence

$$W_{N}^{2mk} = W_{\frac{N}{2}}^{mk}$$

$$X(k) = \sum_{m=0}^{N/2-1} W_{\frac{N}{2}}^{mk} x(2m) + W_{N}^{k} \left(\sum_{m=0}^{N/2-1} W_{\frac{N}{2}}^{mk} x(2m+1)\right)$$

$$X[k=0] = \sum_{m=0}^{0} W_{1}^{0.0} x[0] + W_{2}^{0} \left(\sum_{m=0}^{0} W_{1}^{0.0} x[1]\right)$$

$$= x[0] + x[1]$$

$$X[k=1] = \sum_{m=0}^{0} W_{1}^{0.1} x[0] + W_{2}^{1} \left(\sum_{m=0}^{0} W_{1}^{0.1} x[1]\right)$$

$$= x[0] + W_{2}^{1} x[1] = x[0] - x[1]$$

DIT continued

- Therefore if N=2^m
 - N-point DFT \rightarrow two N/2 point DFT
 - N/2-point DFT \rightarrow two N/4 point DFT
 - N/4-point DFT \rightarrow two N/8 point DFT
 -
 - two 2-point DFT
- 2-point DFT is the smallest unit which cannot be decomposed further

$$X(k) = \sum_{m=0}^{\frac{N}{2}-1} x(2m)W_N^{2mk} + \sum_{m=0}^{\frac{N}{2}-1} x(2m+1)W_N^{(2m+1)k}$$

$$W_N^{2mk} = W_{N/2}^{mk}$$

$$X(k) = \sum_{m=0}^{(N/2)-1} f_1(m) W_{N/2}^{km} + W_N^k \sum_{m=0}^{(N/2)-1} f_2(m) W_{N/2}^{km}$$

$$= F_1(k) + W_N^k F_2(k)$$

$$k = 0,1,\dots \frac{N}{2} - 1$$

$$X(k) = \sum_{m=0}^{(N/2)-1} f_1(m) W_{N/2}^{km} + W_N^k \sum_{m=0}^{(N/2)-1} f_2(m) W_{N/2}^{km}$$

$$= F_1(k) + W_N^k F_2(k)$$

$$k = O_1 I_1 ... \frac{N}{2} - I$$

$$X\left(k + \frac{N}{2}\right) = F_1(k) - W_N^k F_2(k)$$

 F_1 (k) and F_2 (k) are periodic with period N/2 .So, F_1 (k+N/2) = F_1 (k) and F_2 (k+N/2) = F_2 (k); $W_N^{(k+N/2)} = -W_N^{k}$

$$G_1(k) = F_1(k)$$
 $k = 0, 1, ..., \frac{N}{2} - 1$
 $G_2(k) = W_N^k F_2(k)$ $k = 0, 1, ..., \frac{N}{2} - 1$

$$X(k) = G_1(k) + G_2(k) \qquad k = 0, 1, \dots, \frac{N}{2} - 1$$
$$X(k + \frac{N}{2}) = G_1(k) - G_2(k) \qquad k = 0, 1, \dots, \frac{N}{2} - 1$$

This can be further decomposed by factor of 2

$$v_{11}(n) = f_1(2n)$$
 $n = 0, 1, ..., \frac{N}{4} - 1$
 $v_{12}(n) = f_1(2n+1)$ $n = 0, 1, ..., \frac{N}{4} - 1$

and $f_2(n)$ would yield

$$v_{21}(n) = f_2(2n)$$
 $n = 0, 1, ..., \frac{N}{4} - 1$
 $v_{22}(n) = f_2(2n + 1)$ $n = 0, 1, ..., \frac{N}{4} - 1$

By computing N/4 DFTs we obtain N/2 DFTs

$$F_{1}(k) = V_{11}(k) + W_{N/2}^{k} V_{12}(k) \qquad k = 0, 1, \dots, \frac{N}{4} - 1$$

$$F_{2}(k) = V_{21}(k) + W_{N/2}^{k} V_{22}(k) \qquad k = 0, 1, \dots, \frac{N}{4} - 1$$

$$F_{1}\left(k + \frac{N}{4}\right) = V_{11}(k) - W_{N/2}^{k} V_{12}(k) \qquad k = 0, 1, \dots, \frac{N}{4} - 1$$

$$F_{2}\left(k + \frac{N}{4}\right) = V_{21}(k) - W_{N/2}^{k} V_{22}(k) \qquad k = 0, \dots, \frac{N}{4} - 1$$

 The decimation of the data sequence can be repeated again and again until the resulting sequence reduces to one point sequence

Computation efficiency

For N = 2^m, this decimation can be

performed in $m = log_2 N$ stages $m = log_2 R \otimes 2 = 3$

 Thus the total number of complex multiplication is reduced to (N/2) log₂N

 The number of complex addition is Nlog₂N $\Lambda(N-1)$

Comparison of computational complexity b/w DFT and FFT

Number of Points, N	Complex Multiplications in Direct Computation, N^2	Complex Multiplications in FFT Algorithm, (N/2) log ₂ N	Speed Improvement Factor
4	16	4	4.0
8	64	12	5.3
16	256	32	8.0
32	1,024	80	12.8
64	4,096	192	21.3
128	16,384	448	36.6
256	65,536	1,024	64.0
512	262,144	2,304	113.8
1,024	1,048,576	5,120	204.8

Butterfly computation in FFT(DIT)

$$\times (1) = -j2-414$$

$$X(2) = 0$$

$$\frac{\chi(k) = \chi(N-k)}{\chi(1) = \chi(7)}$$

$$\begin{array}{c} \chi(3) = \chi(5) \\ \chi(2) = \chi(6) \end{array}$$

$X(2) = \sum_{n=0}^{N-1} X(n) W_N^n$

Decimation in Frequency

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} x(n)W_N^{nk} + \sum_{n=\frac{N}{2}}^{N-1} x(n)W_N^{nk}$$

$$= \sum_{n=0}^{(N/2)-1} x(n) W_N^{kn} + W_N^{Nk/2} \sum_{n=0}^{(N/2)-1} x \left(n + \frac{N}{2}\right) W_N^{kn}$$

$$W_N^{kN/2} = (-1)^k,$$

N (7

$$X(k) = \sum_{n=0}^{(N/2)-1} \left[x(n) + (-1)^k x \left(n + \frac{N}{2} \right) \right] W_N^{kn}$$

Butterfly computation

$$\chi(x) = \sum_{k=0}^{N-1} \chi(k) e^{-j2\pi i n x} = \sum_{k=0}^{N-1} \chi(k) e^{-j2\pi i n x}$$

$$\mathcal{H} = \frac{1}{N} \sum_{k=0}^{N-1} \chi(k) e^{j\frac{2\pi}{N}} d^{k} = \frac{1}{N} \sum_{k=0}^{N-1} \chi(k) e^{j\frac{2\pi}{N}} d^{k}$$

$$=\frac{1}{N}\left(\frac{N}{N}\right)NN$$

 $\left(AB^{*}\right)=\left(A^{*}B\right)^{2}$

