Classification Example

Differentiate between low-risk and high-risk customers from their *income* and *savings*

Classification Applications

Aka Pattern recognition

- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Spam Detection: Emails spam/no spam
- Speech recognition: Temporal dependency.
 - Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Medical diagnosis: From symptoms to illnesses
- Web Advertising: Predict if a user clicks on an ad on the Internet.
- <u>Biometrics</u>: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc

Regression Example

Price of a used car

x : car attributes (e.g. mileage)

y: price

Regression Applications

Economics/Finance: predict the value of a stock

Epidemiology (high blood pressure, mental illness and obesity)

Car/plane navigation: angle of the steering wheel, acceleration, ...

Temporal trends: weather over time

Unsupervised learning applications

• Customer/Market Segmentation (i.e. grouping)

Social Network Analysis

Astronomical Data Analysis

- unlabeled data/ No right answer
- do not need to supervise

-

- unlabeled data/ No right answer
- do not need to supervise

-

X1

- unlabeled data/ No right answer
- do not need to supervise

-

X1

- unlabeled data/ No right answer
- do not need to supervise
- output variable: Y

Identify the patterns/structure

X1

- unlabeled data/ No right answer
- do not need to supervise
- output variable: Y

Identify the patterns/structure similarities /differences

X1

- unlabeled data/ No right answer
- do not need to supervise
- output variable: Y

Identify the patterns/structure similarities /differences Clustering

X1

- unlabeled data/ No right answer
- do not need to supervise
- output variable: Y

Identify the patterns/structure

similarities /differences

Clustering

Dimensionality reduction
Used for preprocessing dataset

Recommender System

X1

- unlabeled data/ No right answer
- do not need to supervise
- output variable: Y

Identify the patterns/structure

similarities /differences

Clustering

Dimensionality reduction
Used for preprocessing dataset

Recommender System

$$Y = f(X)$$

X1

Clustering: groups unlabeled data based on their similarity/difference Association: Rule based method used to find the relationship between variables; Market Basket Analysis

Dimensionality Reduction: PCA

Anomaly Detection

Unsupervised learning applications

- <u>Customer segmentation</u>: understanding different customer groups to build marketing or other business strategies.
- Genetics: clustering DNA patterns to analyze evolutionary biology.
- **Recommender systems**: grouping together users with similar viewing patterns in order to recommend similar content.
- **Anomaly detection:** fraud detection or detecting defective mechanical parts (i.e., predictive maintenance).

Reinforcement learning

left, right, straight, left, left, left, straight	GOOD
left, straight, straight, left, right, straight, straight	BAD
left, right, straight, left, left, straight	18.5
left, straight, straight, left, right, straight, straight	-3

Given a *sequence* of examples/states and a *reward* after completing that sequence, learn to predict the action to take in for an individual example/state

Reinforcement learning example

Backgammon

Given sequences of moves and whether or not the player won at the end, learn to make good moves

Challenges in Machine Learning

- What algorithms can approximate functions well and when and how does the number of training examples influence accuracy
- Problem representation/feature extraction
- Intention/independent learning
- Integrating learning with systems
- ☐ What are the theoretical limits of learnability
- How can prior knowledge of learner help
- What clues can we get from biological learning systems
- How can systems alter their own representation