Differential Equations

MAT244 Student Slides

Jason Siefken Bernardo Galvão-Sousa

You are observing starfish that made their way to a previously uninhabited tide-pool. You'd like to predict the year-on-year population of these starfish.

You start with a simple assumption

#new children per year \sim size of current population

- 1.1 Come up with a mathematical model for the number of star fish in a given year. Your model should
 - Define any notation (variables and parameters) you use
 - Include at least one formula/equation
 - Explain how your formula/equation relates to the starting assumption

Let

(Birth Rate) K = 1.1 children per starfish per year (Initial Pop.) $P_0 = 10$ star fish

and define the model \mathbf{M}_1 to be the model for starfish population with these parameters.

2.1 Simulate the total number of starfish per year using Excel.

Recall the model M_1 (from the previous question).

Define the model \mathbf{M}_{1}^{*} to be

$$P(t) = P_0 e^{0.742t}$$

- 3.1 Are \mathbf{M}_1 and \mathbf{M}_1^* different models or the same?
- 3.2 Which of \mathbf{M}_1 or \mathbf{M}_1^* is better?
- 3.3 List an advantage and a disadvantage for each of M_1 and M_1^* .

In the model \mathbf{M}_1 , we assumed the starfish had K children at one point during the year.

- 4.1 Create a model \mathbf{M}_n where the starfish are assumed to have K/n children n times per year (at regular intervals).
- 4.2 Simulate the models \mathbf{M}_1 , \mathbf{M}_2 , \mathbf{M}_3 in Excel. Which grows fastest?
- 4.3 What happens to \mathbf{M}_n as $n \to \infty$?

Exploring \mathbf{M}_n

We can rewrite the assumptions of \mathbf{M}_n as follows:

- At time t there are $P_n(t)$ starfish.
- $P_n(0) = 10$
- During the time interval (t, t + 1/n) there will be (on average) K/n new children per starfish.
- 5.1 Write an expression for $P_n(t+1/n)$ in terms of $P_n(t)$.
- 5.2 Write an expression for ΔP , the change in population from time t to $t + \Delta t$.
- 5.3 Write an expression for $\frac{\Delta P}{\Delta r}$.
- 5.4 Write down a differential equation relating P'(t) to P(t) where $P(t) = \lim_{n \to \infty} P_n(t)$.

Recall the model M_1 defined by

•
$$P_1(0) = 10$$

•
$$P_1(t+1) = KP(t)$$
 for $t \ge 0$ years and $K = 1.1$.

Define the model \mathbf{M}_{∞} by

•
$$P(0) = 10$$

•
$$P'(t) = kP(t)$$
.

6.1 If k = K = 1.1, does the model \mathbf{M}_{∞} produce the same

population estimates as M_1 ?

Fill out the table indicating which models have which properties.

Model	Accuracy	Explanatory	(your favourite property)
\mathbf{M}_1			
\mathbf{M}_1^*			
$ m M_{\infty}$			

Recall the model M_1 defined by

•
$$P_1(0) = 10$$

•
$$P_1(t+1) = KP(t)$$
 for $t \ge 0$ years and $K = 1.1$.

Define the model \mathbf{M}_{∞} by

•
$$P(0) = 10$$

•
$$P'(t) = kP(t)$$
.

© Bernardo Galvão-Sousa & Jason Siefken, 2024 @ 00

8.1 Suppose that M_1 accurately predicts the population.

dicts the population?

Can you find a value of k so that \mathbf{M}_{∞} accurately pre-

After more observations, scientists notice a seasonal effect on starfish. They propose a new model called S:

- P(0) = 10
- $P'(t) = k \cdot P(t) \cdot |\sin(2\pi t)|$
- 9.1 What can you tell about the population (without trying to compute it)?
- 9.2 Assuming k = 1.1, estimate the population after 10 years.
- 9.3 Assuming k = 1.1, estimate the population after 10.3 years.

stant.

Consider the following argument for the population model 10.1 Do you believe this argument? Can it be improved? **S** where $P'(t) = P(t) \cdot |\sin(2\pi t)|$ with P(0) = 10:

10.2 Simulate an improved version using a spreadsheet.

At t=0, the change in population $\approx P'(0)=0$, so $P(1)\approx P(0)+P'(0)\cdot 1=P(0)=10.$ At t=1, the change in population $\approx P'(1)=0$, so $P(2)\approx P(1)+P'(1)\cdot 1=P(0)=10.$ And so on.

So, the population of starfish remains con-

0.0

0.1

0.2

0.3

0.4

Time | Pop. (
$$\Delta = 0.1$$
) | Time

10

(Simulating \mathbf{M}_{∞} with different Δs)

10	0.0	10
11.1	0.2	12.2
12.321	0.4	14.884
13.67631	0.6	18.15848
15.1807041	0.8	22.1533456
		•

ΛΛ

Pop. ($\Delta = 0.2$)

 $\Delta = 0.2$ on the same plot. What does the graph show? 11.3 What Δ s give the largest estimate for the population at time *t*?

11.1 Compare $\Delta = 0.1$ and $\Delta = 0.2$. Which approximation

11.2 Graph the population estimates for $\Delta = 0.1$ and

grows faster?

11.4 Is there a limit as $\Delta \rightarrow 0$?

(Simulating \mathbf{M}_{∞} with different Δs)

- 11.1 Compare $\Delta = 0.1$ and $\Delta = 0.2$. Which approximation grows faster?
- 11.2 Graph the population estimates for $\Delta = 0.1$ and $\Delta = 0.2$ on the same plot. What does the graph show?

- 11.3 What Δs give the largest estimate for the population at time *t*?
- 11.4 Is there a limit as $\Delta \rightarrow 0$?

Consider the following models for starfish growth

- M # new children per year ∼ current population
- N # new children per year ∼ resources available per individual
- **O** # new children per year ~ current population times the fraction of total resources remaining
- 12.1 Guess what the population vs. time curves look like for each model.
- 12.2 Create a differential equation for each model.
- 12.3 Simulate population vs. time curves for each model (but pick a common initial population).

Recall the models

- **M** # new children per year ∼ current population
- N # new children per year ∼ resources available per individual
- **O** # new children per year \sim current population times the fraction of total resources remaining
- 13.1 Determine which population grows fastest in the short term and which grows fastest in the long term.
- 13.2 Are some models more sensitive to your choice of Δ when simulating?
- 13.3 Are your simulations for each model consistently underestimates? Overestimates?
- 13.4 Compare your simulated results with your guesses from question 12.1. What did you guess correctly? Where were you off the mark?

A simple model for population growth has the form

$$P'(t) = kP(t)$$

where *k* is the *birth rate*.

14.1 Create a better model for population that includes both births and deaths.

The Lotka-Volterra Predator-Prey models two populations, F (foxes) and R (rabbits), simultaneously. It takes the form

$$F'(t) = (B_F - D_F) \cdot F(t)$$

$$R'(t) = (B_R - D_R) \cdot R(t)$$

where B_2 stands for births and D_2 stands for deaths.

- 15.1 Come up with appropriate formulas for B_F , B_R , D_F , and D_R , given your knowledge about how foxes and rabbits might interact.
- 15.2 When would B_F and D_F be at their max/min?
- 15.3 When would B_R and D_R be at their max/min?

Suppose the population of *F* (foxes) and *R* (rabbits) evolves over time following the rule

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$

$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

- 16.1 Simulate the population of foxes and rabbits with a spreadsheet.
- 16.2 Do the populations continue to grow/shrink forever? Are they cyclic?
- 16.3 Should the humps/valleys in the rabbit and fox populations be in phase? Out of phase?

Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$

$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

- 17.1 Is the max population of the rabbits being over/under estimated? Sometimes over, sometimes under?
- 17.2 What about the foxes?
- 17.3 What about the min populations?

Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$

$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

Component Graph & Phase Plane. For a differential equation involving the functions F_1, F_2, \ldots, F_n , and the variable t, the *component graphs* are the n graphs of $(t, F_1(t)), (t, F_2(t)), \dots$ The phase plane or phase space associated with the differential equation is the *n*-dimensional space with axes corresponding to the values of F_1, F_2, \ldots, F_n .

- 18.1 Plot the Fox vs. Rabbit population in the *phase plane*.
- 18.2 Should your plot show a closed curve or a spiral?
- 18.3 What "direction" do points move along the curve as time increases? Justify by referring to the model.
- 18.4 What is easier to see from plots in the phase plane than from component graphs (the graphs of fox and rabbit population vs. time)?

Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$

$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

Equilibrium Solution. An *equilibrium solution* to a differential equation or system of differential equations is a solution that is constant in the independent variable(s).

- 19.1 By changing initial conditions, what is the "smallest" curve you can get in the phase plane? What happens at those initial conditions?
- 19.2 What should F' and R' be if F and R are equilibrium solutions?
- 19.3 How many equilibrium solutions are there for the foxand-rabbit system? Justify your answer.19.4 What do the equilibrium solutions look like in the
- phase plane? What about their component graphs?

Recall the logistic model for starfish growth:

O # new children per year ∼ current population times the fraction of total resources remaining

which can be modeled with the equation

$$P'(t) = k \cdot P(t) \cdot \left(1 - \frac{R_i}{R} \cdot P(t)\right)$$

where

- P(t) is the population at time t
- k is a constant of proportionality

- *R* is the total number of resources
- R_i is the resources that one starfish wants to consume

Use k = 1.1, R = 1, and $R_i = 0.1$ unless instructed otherwise.

20.1 What are the equilibrium solutions for model **O**?

decreasing, oscillating?

- 20.2 What does a "phase plane" for model **O** look like?
- What do graphs of equilibrium solutions look like? 20.3 Classify the behaviour of solutions that lie between the equilibrium solutions. E.g., are they increasing,

Classification of Equilibria. An equilibrium solution

f is called **attracting** if solutions locally converge to *f*

- **repelling** if solutions locally diverge from *f*
- **stable** if solutions do not locally diverge from *f*
- **unstable** if solutions do not locally converge to *f*
 - **semi-stable** if solutions locally converge to *f* from one side and locally diverge from f on another.

Let

F'(t) = ?

- be an unknown differential equation with equilibrium solution f(t) = 1.
- 21.1 Draw an example of what solutions might look like if f is attracting.
- 21.2 Draw an example of what solutions might look like if f is repelling.
- 21.3 Draw an example of what solutions might look like if f is stable.
- 21.4 Could *f* be stable but *not* attracting?

f is called

attracting if solutions locally converge to f

- attracting it solutions locally converge to
- \blacksquare *repelling* if solutions locally diverge from f
- **stable** if solutions do not locally diverge from f

Classification of Equilibria. An equilibrium solution

- *unstable* if solutions do not locally converge to *f*
 - *semi-stable* if solutions locally converge to *f* from one side and locally diverge from *f* on another.

Recall the starfish population model **O** given by

$$P'(t) = k \cdot P(t) \cdot \left(1 - \frac{R_i}{R} \cdot P(t)\right)$$

Use k = 1.1, R = 1, and $R_i = 0.1$ unless instructed otherwise.

- 22.1 Classify the equilibrium solutions for model **O** as attracting/repelling/stable/unstable/semi-stable.22.2 Does changing *k* change the nature of the equilibrium
- 22.2 Does changing k change the nature of the equilibrium solutions? How can you tell?

A *slope field* is a plot of small segments of tangent lines to solutions of a differential equation at different initial conditions.

On the left is a slope field for model ${\bf O},$ available at https://www.desmos.com/calculator/ghavqzqqjn

- 23.1 If you were sketching the slope field for model **O** by hand, what line would you sketch (a segment of) at (5,3)? Write an equation for that line.
- 23.2 How can you recognize equilibrium solutions in a slope field?
- 23.3 Describe different solutions to the *differential equation* using words. Do all of those solutions make sense in terms of *model O*?

3d slope fields are possible, but hard to interpret.

On the left is a slope field for the Foxes–Rabbits model.

https://www.desmos.com/3d/fsfbhvy2h9

- 24.1 What are the three dimensions in the plot?
- 24.2 What should the graph of an equilibrium solution look like?
- 24.3 What should the graph of a typical solution look like?
- 24.4 What are ways to simplify the picture so we can more easily analyze solutions?

Phase Portrait. A phase portrait or phase diagram is the plot of a vector field in phase space where each vector rooted at (x, y) is tangent to a solution curve passing through (x, y) and its length is given by the speed of a solution passing through (x, y).

On the left is a phase portrait for the Foxes–Rabbits model. https://www.desmos.com/calculator/vrk0q4espx

- 25.1 What do the x and y axes correspond to?
- 25.2 Identify the equilibria in the phase portrait. What are the lengths of the vectors at those points?
- 25.3 Classify each equilibrium as stable/unstable.
- 25.4 Why is the vector at (5, 100) longer than the vector at (10, 100)? Justify numerically.

Sketch your own vector field where the corresponding system of differential equations:

- 26.1 Has an attracting equilibrium solution.
- 26.2 Has a repelling equilibrium solution.
- 26.3 Has no equilibrium solutions.

Recall the slope field for model **O**.

- 27.1 What would a phase portrait for model **O** look like? Draw it.
- 27.2 Where are the arrows the longest? Shortest?
- 27.3 How could you tell from a 1d phase portrait whether an equilibrium solution is attracting/repelling/etc.?

The following differential equation models the life cycle of a tree. In the model

- H(t) = height (in meters) of tree trunk at time t
- A(t) = surface area (in square meters) of all leaves at time t

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$

 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$

and 0 < b < 2

to make a phase portrait for the tree model.

https://www.desmos.com/calculator/vrk0q4espx

- 28.2 What do equilibrium solutions mean in terms of tree growth?
- 28.3 For b = 1 what are the equilibrium solution(s)?

The following differential equation models the life cycle of a tree. In the model

- H(t) = height (in meters) of tree trunk at time t
- A(t) = surface area (in square meters) of all leaves at time t

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$

 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$

and 0 < b < 2

29.1 Fix a value of b and use a spreadsheet to simulate some solutions with different initial conditions. Plot the results on your phase portrait from 28.1.

29.2 What will happen to a tree with (H(0),A(0)) =

- (20, 10)? Does this depend on b?

 29.3 What will happen to a tree with (H(0), A(0)):
- 29.3 What will happen to a tree with (H(0),A(0)) = (10,10)? Does this depend on b?

was based on the premises

 $P_{\text{height 1}}$ CO₂ is absorbed by the leaves and turned directly

into trunk height.

The tree is in a swamp and constantly sinks at a speed proportional to its height.

 $P_{\mathrm{leaves}\ 1}$ Leaves grow proportionality to the energy available.

31

a tree?

equations?

plane. Is this realistic? Describe the life cycle of such

ity to the leaf area.

that pass from the 1st to 4th quadrants of the phase

30.2 What does the parameter *b* represent?

 $P_{\text{energy 2}}$ It costs energy proportional to the square of the

height for the tree to maintain its current size.

The tree absorbs energy from the sun proportional-

30.1 How are the premises expressed in the differential

30.3 Applying Euler's method to this system shows solutions

Recall the tree model

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$

 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$

- 31.1 Find all equilibrium solutions for $0 \le b \le 2$.
- 31.2 For which *b* does a tree have the possibility of living forever? If the wind occasionally blew off a few random leaves, would that change your answer?
- 31.3 Find a value b_5 of b so that there is an equilibrium with H = 5.
- Find a value b_{12} of b so that there is an equilibrium with H = 12.
- 31.4 Predict what happens to a tree near equilibrium in condition b_5 and a tree near equilibrium in condition b_{12} .

Consider the system of differential equations

$$x'(t) = x(t)$$
$$y'(t) = 2y(t)$$

- 32.1 Make a phase portrait for the system.
- 32.2 What are the equilibrium solution(s) of the system?
- 32.3 Find a formula for x(t) and y(t) that satisfy the initial conditions $(x(0), y(0)) = (x_0, y_0)$.
- 32.4 Let $\vec{r}(t) = (x(t), y(t))$. Find a matrix *A* so that the differential equation can be equivalently expressed as

$$\vec{r}'(t) = A\vec{r}(t).$$

32.5 Write a solution to $\vec{r}' = A\vec{r}$ (where *A* is the matrix you came up with).

Let *A* be an unknown matrix and suppose \vec{p} and \vec{q} are solutions to $\vec{r}' = A\vec{r}$.

- 33.1 Is $\vec{s}(t) = \vec{p}(t) + \vec{q}(t)$ a solution to $\vec{r}' = A\vec{r}$? Justify your answer.
- 33.2 Can you construct other solutions from \vec{p} and \vec{q} ? If yes, how so?

Recall from MAT223:

Linearly Dependent & Independent (Algebraic).

The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly dependent if there is a non-trivial linear combination of $\vec{v}_1, \dots, \vec{v}_n$ that equals the zero vector. Otherwise they are linearly independent.

Define

$$\vec{p}(t) = \begin{bmatrix} e^t \\ 0 \end{bmatrix}$$
 $\vec{q}(t) = \begin{bmatrix} 4e^t \\ 0 \end{bmatrix}$ $\vec{h}(t) = \begin{bmatrix} 0 \\ e^{2t} \end{bmatrix}$ $\vec{z}(t) = \begin{bmatrix} 0 \\ e^{3t} \end{bmatrix}$.

- 34.1 Are \vec{p} and \vec{q} linearly independent or linearly dependent? Justify with the definition.
- 34.2 Are \vec{p} and \vec{h} linearly independent or linearly dependent? Justify with the definition.
- 34.3 Are \vec{h} and \vec{z} linearly independent or linearly dependent? Justify with the definition.
- 34.4 Is the set of three functions $\{\vec{p}, \vec{h}, \vec{z}\}$ linearly independent or linearly dependent? Justify with the definition.

Recall

$$\vec{p}(t) = \begin{bmatrix} e^t \\ 0 \end{bmatrix} \qquad \vec{q}(t) = \begin{bmatrix} 4e^t \\ 0 \end{bmatrix} \qquad \vec{h}(t) = \begin{bmatrix} 0 \\ e^{2t} \end{bmatrix} \qquad \vec{z}(t) = \begin{bmatrix} 0 \\ e^{3t} \end{bmatrix}.$$

- 35.1 Intuitively, describe span $\{\vec{p},\vec{h}\}$. What is its dimension? What is a basis for it?
- 35.2 Let S be the set of all solutions to $\vec{r}'(t) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \vec{r}(t)$. w (You've seen this equation before.) Intuitively, is S a subspace? If so, what is its dimension?
- 35.3 Provided S is a subspace, give a basis for S.

Consider the differential equation

$$y'(t) = 2 \cdot y(t).$$

- 36.1 Write a solution whose graph passes through the point (t, y) = (0, 3).
- 36.2 Write a solution whose graph passes through the point $(t, y) = (0, y_0)$.
- 36.3 Write a solution whose graph passes through the point $(t, y) = (t_0, y_0)$.
- 36.4 Consider the following argument:

For every point (t_0, y_0) , there is a corresponding solution to $y'(t) = 2 \cdot y(t)$.

Since $\{(t_0, y_0) : t_0, y_0 \in \mathbb{R}\}$ is two dimensional, this means the set of solutions to $y'(t) = 2 \cdot y(t)$ is two dimensional.

Do you agree? Explain.

equation (whose solutions are defined on all of \mathbb{R}), a solution that passes through (t_0, y_0) also passes through $(0, y_0^*)$ for some y_0^* .

Theorem. For an *autonomous* ordinary differential

Theorem (Uniqueness 1). The differential equation $y'(t) = a \cdot y(t) + b$ has a unique solution passing through every point.

- 37.1 Explain why the *autonomous* condition is important for the first theorem.
- 37.2 Suppose that f and g are solutions to $y' = a \cdot y + b$.

If the graph of f passes through (0,1) and the graph of g passes through (1,0), does the second theorem (Uniqueness 1) say that $f \neq g$? Explain.

For every point (t_0, y_0) , there is a corre-

sponding solution to $y'(t) = 2 \cdot y(t)$.

37.3 Consider the following argument:

Since $\{(t_0, y_0) : t_0, y_0 \in \mathbb{R}\}$ is two dimensional, this means the set of solutions to $y'(t) = 2 \cdot y(t)$ is two dimensional. Apply the above theorems to decide if the argument is

true or false.

Theorem. For an *autonomous* ordinary differential equation (whose solutions are defined on all of \mathbb{R}), a solution that passes through (t_0, y_0) also passes through $(0, y_0^*)$ for some y_0^* .

Theorem (Uniqueness 1). The differential equation $y'(t) = a \cdot y(t) + b$ has a unique solution passing through every point.

Let *S* be the set of all solutions to $\vec{r}'(t) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \vec{r}(t)$.

38.1 What is the dimension of *S*? Justify your answer.

Consider the system

the system.

$$x'(t) = 2x(t)$$
$$y'(t) = 3y(t)$$

- 39.1 Rewrite the system in matrix form.
- 39.2 Classify the following as solutions or non-solutions to

$$\vec{r}_1(t) = e^{2t}$$

$$\vec{r}_3(t) = \begin{bmatrix} e^{2t} \\ 4e^{3t} \end{bmatrix}$$

$$\vec{r}_5(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\vec{r}_2(t) = \begin{bmatrix} e^{2t} \\ 0 \end{bmatrix}$$

$$\vec{r}_4(t) = \begin{bmatrix} 4e^{3t} \\ e^{2t} \end{bmatrix}$$

- 39.3 State the definition of an eigenvector for the matrix M.
- 39.4 What should the definition of an *eigen solution* be for this system?
- 39.5 Which functions from 39.2 are eigen solutions?
- 39.6 Find an eigen solution \vec{r}_6 that is linearly independent from \vec{r}_2 .
- 39.7 Let $S = \operatorname{span} \vec{r}_2, \vec{r}_6$. Does S contain all solutions to the system? Justify your answer.

Recall the system

$$x'(t) = 2x(t)$$
$$y'(t) = 3y(t)$$

has eigen solutions
$$\vec{r}_2(t) = \begin{bmatrix} e^{2t} \\ 0 \end{bmatrix}$$
 and $\vec{r}_6(t) = \begin{bmatrix} 0 \\ e^{3t} \end{bmatrix}$.

- 40.1 Sketch \vec{r}_2 and \vec{r}_6 in the phase plane.
- 40.2 Use

https://www.desmos.com/calculator/h3wtwjghv0

to make a phase portrait for the system.

In which phase plane above is the dashed (green) curve the graph of a solution to the system? Explain.

40.3

Suppose \vec{s}_1 and \vec{s}_2 are eigen solutions to $\vec{r}' = A\vec{r}$ with eigenvalues 1 and -1, respectively.

- suppose s_1 and s_2 are eigen solutions to t = At with eigenvalues 1 and -1, respectively.
- 41.2 Sketch a phase plane with graphs of \vec{s}_1 and \vec{s}_2 on it.
- 41.3 Add a non-eigen solution to your sketch.
- 41.4 Sketch a possible phase portrait for $\vec{r}' = A\vec{r}$. Can you extend your phase portrait to all quadrants?

41.1 Write possible formulas for $\vec{s}_1(t)$ and $\vec{s}_2(t)$.

Consider the following phase portrait for a system of the 42.1 Can you identify any eigen solutions? form $\vec{r}' = A\vec{r}$ for an unknown matrix A.

- 42.2 What are the eigenvalues of *A*? What are their sign(s)?

Consider the differential equation
$$\vec{r}'(t) = M \vec{r}(t)$$
 where $M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

- 43.1 Find the eigenvectors and eigenvalues for *M*.
- 43.2 Verify that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ are eigenvectors for M. What are the corresponding eigenvalues?
- 43.3 (a) Is $\vec{r}_1(t) = e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ a solution to the differential equation?
 - (b) Is $\vec{r}_2(t) = e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ a solution to the differential equation?
 - (c) Is $\vec{r}_3(t) = e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ a solution to the differential equation?
- 43.4 Find an eigen solution for the system corresponding to the eigenvalue -1. Write your answer in vector form.

© Bernardo Galvão-Sousa & Jason Siefken, 2024 @ 00

Recall the differential equation
$$\vec{r}'(t) = M \vec{r}(t)$$
 where $M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

- 44.1 Write down a general solution to the differential equation.
- 44.2 Write down a solution to the initial value problem $\vec{r}(0) = \begin{bmatrix} x_0 \\ v_0 \end{bmatrix}$.
- 44.3 Are your answers to the first two parts the same? Do they contain the same information?

The phase portrait for a differential equation arising from the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (left) and $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (right) are shown.

Both have eigenvalues ± 1 , but they have different eigenvectors.

- 45.1 How are the phase portraits related to each other?
- Suppose P is a 2×2 matrix with eigenvalues ± 1 . In what ways could the phase portrait for $\vec{r}'(t) = P \vec{r}(t)$ look different from the above portraits? In what way(s) must it look the same?

Consider the following phase plane with lines in the direction of \vec{a} (red) and \vec{b} (dashed green).

 $46.1\,$ Sketch a phase portrait where the directions \vec{a} and \vec{b}

correspond to eigen solutions with eigenvalues that are

	sign for \vec{a}	sign for \vec{b}
(1)	pos	pos
(2)	neg	neg
(3)	neg	pos
(4)	pos	neg
(5)	pos	zero

- 46.2 Classify the solution at the origin for situations (1)-(5) as stable or unstable.
- 46.3 Would any of your classifications in 46.2 change if the directions of \vec{a} and \vec{b} changed?

You are examining a differential equation $\vec{r}'(t) = M \vec{r}(t)$ for an unknown matrix M.

You would like to determine whether $\vec{r}(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is stable/unstable/etc.

- 47.1 Come up with a rule to determine the nature of the equilibrium solution $\vec{r}(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ based on the eigenvalues of M.
- 47.2 Consider the system of differential equations

$$x'(t) = x(t) + 2y(t)$$

 $y'(t) = 3x(t) - 4y(t)$

- (a) Classify the stability of the equilibrium solution (x(t), y(t)) = (0, 0) using any method you want.
- (b) Justify your answer analytically using eigenvalues.

Consider the following model of Social Media Usage where

$$x(t)$$
 = number of social media posts at year t $y(t)$ = number of social media users at year t

- (P1_x) Ignoring all else, each year posts decay proportionally to the current number of posts with proportionality constant 1.
- (P2_r) Ignoring all else, social media users increase/decrease in proportion to the number of posts.
- (P1_v) Ignoring all else (independent of decay), posts grow by a constant amount of 2 million posts every year.
- (P2_v) Ignoring all else, social media users increase/decrease in proportion to the number of users.

(P3_v) Ignoring all else, 1 million people stop using the platform every year.

A school intervention is described by the parameter $a \in$ [-1/2, 1]:

- After the intervention, the proportionality constant for $(P1_v)$ is 1-a.
- After the intervention, the proportionality constant for $(P2_v)$ is a.
- Model this situation using a system of differential equations. Explain which parts of your model correspond to which premise(s).

The **SM** model of Social Media Usage is x' = -x + 2

$$y' = (1-a)x + ay - 1$$

where

$$x(t)$$
 = number of social media posts at year t
 $y(t)$ = number of social media users at year t
 $a \in [-1/2, 1]$

49.2 Make a phase portrait for the system. 49.3 Use phase portraits to conjecture: what do you think

49.1 What are the equilibrium solution(s)?

happens to the equilibrium solution(s) as a transitions from negative to positive? Justify with a computation.

The **SM** model of Social Media Usage is x' = -x + 2

$$y' = (1-a)x + ay - 1$$

where

$$x(t)$$
 = number of social media posts at year t
 $y(t)$ = number of social media users at year t
 $a \in [-1/2, 1]$

 $a \in [-1/2, 1]$ 50.1 Can you rewrite the system in matrix form? (I.e., in

the form $\vec{r}'(t) = M \vec{r}(t)$ for some matrix M.)

(a) Write \vec{s} in terms of x and y.

50.2 Define $\vec{s}(t)$ to be the displacement from equilibrium

(a) Write 3 in terms of x and y.

in the **SM** model at time t.

(b) Write a differential equation governing \vec{s} .

written in matrix form?

(d) Analytically classify the equilibrium solution for your differential equation for \vec{s} when a=-1/2, 1/2, and 1. (You may use a calculator for computing eigenvectors/values.)

© Bernardo Galvão-Sousa & Jason Siefken, 2024 @ 00

(c) Can your differential equation governing \vec{s} be

The SM model of Social Media Usage is

$$x' = -x + 2$$
$$y' = (1-a)x + ay - 1$$

where

$$x(t)$$
 = number of social media posts at year t
 $y(t)$ = number of social media users at year t
 $a \in [-1/2, 1]$

Some politicians have been looking at the model. They made the following posts on social media:

1. The model shows the number of posts will always be increasing. SAD!

- 2. I see the number of social media users always increases. That's not what we want!
- 3. It looks like social media is just a fad. Although users initially increase, they eventually settle down.
- 4. I have a dream! That one day there will be social media posts, but eventually there will be no social media users!
- 51.1 For each social media post, make an educated guess about what initial conditions and what value(s) of a the politician was considering.
- 51.2 The school board wants to limit the number of social media users to fewer than 10 million. Make a recommendation about what value of a they should target.

Consider the following **DF** model of Dogs and Fleas where (P1_c) Anti-flea collars remove 2 million fleas per year. x(t) = number of parasites (fleas) at year t (in millions) (P1c) Constant dog breeding adds 1 thousand dogs per

(P1_x) Ignoring all else, the number of parasites decays in proportion to its population (with constant 1).

y(t) = number of hosts (dogs) at year t (in thousands)

(P2_v) Ignoring all else, parasite numbers grow in proportion to the number of hosts (with constant 1).

(P1_v) Ignoring all else, hosts numbers grow in proportion

to their current number (with constant 1). $(P2_v)$ Ignoring all else, host numbers decrease in propor- 52.4 What should solutions to the system look like in the tion to the number of parasites (with constant 2).

52.1 Write a system of differential equations for the **DF**

vear.

model. 52.2 Can you rewrite the system in matrix form $\vec{r}' = M \vec{r}$? What about in affine form $\vec{r}' = M \vec{r} + \vec{b}$?

53

52.3 Make a phase portrait for your mode.

phase plane? What are the equilibrium solutions?

Recall the **DF** model of Dogs and Fleas where x(t) = number of parasites (fleas) at year t (in millions)

$$y(t)$$
 = number of parasites (neas) at year t (in thousands)

and

$$\vec{r}'(t) = \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix} \vec{r}(t) + \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

53.2 Can you find a matrix M so that $\vec{s}'(t) = M \vec{s}(t)$? 53.3 What are the eigen solutions for $\vec{s}' = M \vec{s}$?

at time t.

Define $\vec{s}(t)$ to be the displacement of $\vec{r}(t)$ from equilibrium

53.1 Find a formula for \vec{s} in terms of \vec{r} .

Recall the **DF** model of Dogs and Fleas where

$$x(t)$$
 = number of parasites (fleas) at year t (in millions) $y(t)$ = number of hosts (dogs) at year t (in thousands)

$$\vec{r}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$
 $\vec{s}(t) = \vec{r}(t) - \begin{bmatrix} 3 \\ 5 \end{bmatrix}$

and

$$\vec{s}'(t) = M \vec{s}(t)$$
 where $M = \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix}$.

This equation has eigen solutions

$$\vec{s}_1(t) = \begin{bmatrix} 1-i\\2 \end{bmatrix} e^{it}$$

$$\vec{s}_2(t) = \begin{bmatrix} 1+i\\2 \end{bmatrix} e^{-it}$$

- 54.1 Recall Euler's formula $e^{it} = \cos(t) + i\sin(t)$.
 - (a) Use Euler's formula to expand $\vec{s}_1 + \vec{s}_2$. Are there any imaginary numbers remaining?
 - (b) Use Euler's formula to expand $\vec{s}_1 \vec{s}_2$. Are there any imaginary numbers remaining?
- 54.2 Verify that your formulas for $\vec{s}_1 + \vec{s}_2$ and $\vec{s}_1 \vec{s}_2$ are solutions to $\vec{s}'(t) = M \vec{s}(t)$.
- 54.3 Can you give a third real solution to $\vec{s}'(t) = M \vec{s}(t)$?

Recall the **DF** model of Dogs and Fleas where x(t) = number of parasites (fleas) at year t (in millions) y(t) = number of hosts (dogs) at year t (in thousands)

$$\vec{r}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \qquad \vec{s}(t) = \vec{r}(t) - \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} y(t) \end{bmatrix}$$

and

$$\vec{s}'(t) = M \vec{s}(t)$$
 where $M = \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix}$.

56

55.3 Find a solution satisfying
$$\vec{s}(0) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
.

 $\vec{s}'(t) = M \vec{s}(t)$?

55.1 What is the dimension of the space of solutions to

Using what you know, find a general formula for $\vec{r}(t)$.

© Bernardo Galvão-Sousa & Jason Siefken, 2024 @ 👵 🔘

55.2 Give a basis for all solutions to $\vec{s}'(t) = M \vec{s}(t)$.

55.5 Find a formula for $\vec{r}(t)$ satisfying $\vec{r}(0) = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$.