Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ε	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named sets

empty set	Ø
real numbers	\mathbf{R}
ordered pairs	${f R}^2$

integers	\mathbf{Z}
positive integers	$\mathbf{Z}_{>0}$
positive reals	$\mathbf{R}_{>0}$

Set symbols

Meaning	Symbol
is a member	€
subset	C
intersection	

Meaning	Symbol
union	U
complement	$superscript^{C}$
set minus	\

Logic symbols

Meaning	Symbol
negation	_
and	\wedge
or	V
implies	\implies

Meaning	Symbol
equivalent	=
iff	\iff
for all	\forall
there exists	∃

Arithmetic properties

$$\begin{split} (\forall a,b \in \mathbf{R})(a+b=b+a) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a+(b+c)=(a+b)+c) & \text{commutivity} \\ (\forall a,b \in \mathbf{R})(ab=ba) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(bc)=(ab)c) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(b+c)=ab+ac) & \text{distributive} \end{split}$$

Distance & Midpoint

The distance between the points (x_1, y_1) and (x_2, y_2) is

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$
.

The midpoint is the point

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right).$$

Exponents

For a, b > 0 and m, n real:

$$a^{0} = 1,$$
 $0^{a} = 0$
 $1^{a} = 1,$ $a^{n}a^{m} = a^{n+m}$
 $a^{n}/a^{m} = a^{n-m},$ $(a^{n})^{m} = a^{n \cdot m}$
 $a^{-m} = 1/a^{m},$ $(a/b)^{m} = a^{m}/b^{m}$

Solution of Equations

Algebraic

$$[ab = 0] \equiv [a = 0 \text{ or } b = 0]$$

$$[a^2 = b^2] \equiv [a = b \text{ or } a = -b]$$

$$[\frac{a}{b} = 0] \equiv [a = 0 \text{ and } b \neq 0]$$

$$[\frac{a}{b} = \frac{c}{d}] \equiv [ad = bc \text{ and } b \neq 0 \text{ and } d \neq 0]$$

$$[|a| = |b|] \equiv [a = b \text{ or } a = -b]$$

$$[\sqrt{a} = b] \equiv [a = b^2 \text{ and } b \geq 0]$$

For $a \neq 0$,

$$\left[ax^{2} + bx + c = 0\right] \equiv \left[x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\right]$$

Exponential

$$[\ln(a) = 0] \equiv [a = 1]$$

$$[\text{euler}^a = 1] \equiv [a = 0]$$

$$[\ln(a) = b] \equiv [a = \text{euler}^b]$$

$$[\ln(a) = b] \equiv [a = \text{euler}^b]$$

Parabolas & Lines

The vertex of the parabola $ax^2 + bx + c = y$ is

$$\left(x = -\frac{b}{2a}, y = c - \frac{b^2}{4a}\right).$$

An equation of the line that contains the points $(x = x_1, y = y_1), (x = x_2, y = y_2)$ is

$$y - y_1 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1).$$

The number $\frac{y_2 - y_1}{x_2 - x_1}$ is the slope.

Radicals

$$\sqrt[n]{a} = a^{1/n}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b} \quad \text{(provided } a, b \ge 0\text{)}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a}$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\sqrt[n]{a^n} = \begin{cases} a & n \text{ odd} \\ |a| & n \text{ even} \end{cases}$$

Identities

$$\begin{split} a(b+c) &= ab + ac \\ &((a+b))(c+d) = ac + ad + bc + bd \\ &\frac{ab+ac}{a} = b+c \quad \text{(provided } a \neq 0\text{)} \\ &\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc} \quad \text{(provided } b, d \neq 0\text{)} \\ &\sqrt{ab} = \sqrt{a}\sqrt{b} \quad \text{(provided } a \geq 0, b \geq 0\text{)} \\ &\ln(ab) = \ln(a) + \ln(b) \quad \text{(provided } a \geq 0, b \geq 0\text{)} \end{split}$$

Function notation

dom(F)	domain of function F
range(F)	range of function F

Domains, Ranges, and Zeros

Function	Domain	Range	Zeros
\ln, \log	$(0,\infty)$	$(-\infty,\infty)$	1
\exp	$(-\infty,\infty)$	$(0,\infty)$	Ø
abs	$(-\infty,\infty)$	$(0,\infty)$	0
\checkmark	$(0,\infty)$	$(0,\infty)$	0
3/	$(-\infty,\infty)$	$(-\infty,\infty)$	0
floor	(-5,5)	\mathbf{Z}	[0, 1)
ceiling	$(-\infty,\infty)$	\mathbf{Z}	(-1, 0]

Graph Translations

For the graph of F(x,y) = 0

- The graph of F(x h, y) = 0 is the graph of F(x, y) = 0 translated h units to the right.
- The graph of F(x, y k) = 0 is the graph of F(x, y) = 0 translated k units up.
- The graph of F(x/c, y) = 0 is the graph of F(x, y) = 0 stretched a factor of c horizontally.
- The graph of F(x, y/c) = 0 is the graph of F(x, y) = 0 stretched a factor of c vertically.

Graphs

Graph of natural logarithm

Graph of natural exponential

Revised January 16, 2023. Barton Willis is the author of this work. This work is licensed under Attribution 4.0 International (CC BY 4.0) For the current version of this document, visit