Outline

- · Sets and Functions
 - Notations
 - · Logic
 - · Graphs and visualisations.
- · Univariate Calculus
 - · Continuity and differentiability
 - · Derivatives and Linear approximations
 - · Applications/Advanced rules
- · Multivariate Calculus
 - · Lines and planes in high dimensional space.
 - · Partial derivatives
 - · Gradients
 - · Linear approximations and Alternate gradient interpretations
 - · Applications/Advanced rules

Continuity of Functions

is continuous at
$$x^* \in \mathbb{R}$$
 if for all sequences x_1, x_2, \dots converging to x^* We have that $f(x_i)$ converges to $f(x^*)$

$$\lim_{x \to \infty} x_i = x^* = \lim_{x \to \infty} f(x_i) = f(x^*)$$

$$\lim_{x \to \infty} f(x) = f(x^*)$$

$$\lim_{x \to x^*} f(x) = f(x^*)$$

$$\lim_{x \to x^*} f(x) = x^* = 2$$

$$\lim_{x \to x^*} f(x) = 2$$

Continuity of Functions

d;:-1,-1/2,-1/4,...

f(x;):-1,-1,-1,

e.g 2:
$$f(x)$$
: sign (x) : $\begin{cases} S-1 & \text{if } x < 0 \\ +1 & \text{if } x = 0 \\ +1 & \text{if } x > 0 \end{cases}$

$$\chi^{\dagger} = 0$$

$$\chi^{\dagger$$

Continuity of Functions

E.g.3:
$$f(x)$$
: $\begin{cases} 2x^{x+1} & \text{if } x > 1 \\ 3 & \text{if } x \leq 1 \end{cases}$

E.g.3: $f(x)$: $\frac{1}{x}$
 x_i : $1, \frac{1}{x}, \frac{1}{4}, \dots$
 $f(x)$: (x^2, x^2)
 $f(x)$: (x^2, x^2)

f(x1;) = cos(1), cos(2), cos(4),

A function
$$f: \mathbb{R} \to \mathbb{R}$$
 is differentiable at $x^* \in \mathbb{R}$

if $\lim_{X \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$ exhibits.

$$f'(x^*)$$

F is NOT

Continuous \Rightarrow differentiable

$$E \cdot g \cdot 1 \qquad f(x) : |x|$$

$$\Rightarrow 0 \qquad |x| : -1, -1/2, -1/4 \cdots$$

$$E \cdot q : \lambda$$

$$f(x) : \begin{cases} 4x + 2 & \text{if } x \ge 2 \\ 2x + 8 & \text{if } x \ge 2 \end{cases}$$

$$E \cdot g : 3$$

$$f(x) : \begin{cases} 4x + 2 & \text{if } x \ge 2 \\ 2x + 6 & \text{if } x \ge 2 \end{cases}$$

$$2x + 6 & \text{if } x \ge 2$$

$$\begin{array}{cccc}
1im & f(x)-f(x) \\
2x-2 & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

E.g.4:

$$f(x): \begin{cases} 4x+2 & \text{if } x \geqslant 2 \\ x^2+6 & \text{if } x < 2 \end{cases}$$

$$\lim_{X \to 2^+} \lim_{X \to 2^-} \lim_{X \to 2^-} \frac{f(x)-f(x)}{x-2} = 4$$

Outline

- · Sets and Functions
 - Notations
 - · Logic
 - · Graphs and visualisations.
- · Univariate Calculus
 - · Continuity and differentiability
 - · Derivatives and Linear approximations
 - · Applications/Advanced rules
- · Multivariate Calculus
 - · Lines and planes in high dimensional space.
 - · Partial derivatives
 - · Gradients
 - · Linear approximations and Alternate gradient interpretations
 - · Applications/Advanced rules