Basic Electronic Circuits (IEC-103)

Lecture-03

Operational Amplifiers

Operational Amplifier

- ☐ Typically called 'Op Amp' for short.
- ☐ Used in large variety of electronic circuits.
- ☐ It acts like a voltage controlled voltage source.
- ☐ In combination with other elements it can be made into other dependent sources
- ☐ It performs mathematical operations on analog signals

741 Op Amp IC

741 Op Amp IC (Pin Diagram)

741 Op Amp IC (Circuit Diagram)

741 Op Amp IC

- ☐ It is most versatile IC available.
- ☐ It is a linear amplifier.
- ☐ It is an 8 Pin Chip.
- Applications Filters, ECG amplification, strain gauges, signal conditioning in transducers, control systems.
- ☐ Available in 2 configurations 8 Pin and 14 Pin.

14 Pin Op-amp Chip

Operational Amplifiers

The op amp is capable of many math operations, such as addition, subtraction, multiplication, differentiation, and integration.

There are five terminals found on all op-amps

- The inverting input
- The noninverting input
- The output
- The positive and negative power supplies.

Operational Amplifier

Powering an Op-amp

- ☐ As an active element, the op-amp requires a power source.
- ☐ Often in circuit diagrams the power supply terminals are obscured.
- ☐ It is taken for granted that they must be connected.
- ☐ Most op-amps use two voltage sources, with a ground reference between them.
- ☐ This gives a positive and negative supply voltage.

Output Voltage of an Op-amp

☐ The voltage output of an op-amp is proportional to the difference between the noninverting and inverting inputs

$$v_o = Av_d = A(v_+ - v_-)$$

- ☐ A is called the open loop gain
- □ Ideally it is infinite
- \square In real devices, it is still high: 10^5 to 10^8 volts/volt

Equivalent Circuit of an Op-amp

Typical Ranges of Op-amp Parameters

TABLE 5.1

Typical ranges for op amp parameters.

Parameter	Typical range	Ideal values
Open-loop gain, A	10^5 to 10^8	∞
Input resistance, R_i	$10^{5} \text{ to } 10^{13} \Omega$	$\Omega \infty$
Output resistance, R_o	10 to 100Ω	0Ω
Supply voltage, V_{CC}	5 to 24 V	

Transfer Characteristics of an Opamp

Transfer Characteristics of an Opamp

Feedback

- Op-amps take on an expanded functional ability with the use of feedback.
- ☐ The idea is that the output of the op-amp is fed back into the inverting terminal.
- □ Depending on what elements this signal passes through the gain and behavior of the op-amp changes.
- ☐ Feedback to the inverting terminal is called negative feedback.
- ☐ Positive feedback would lead to oscillations.

Op-amp Analysis

Unity Gain Buffer

Analysis using Circuit Model

Analysis using Circuit Model

$$\frac{V_o}{V_s} = \frac{1}{1 + \frac{R_i}{R_O + A_O R_i}}$$

Ideal Op-amp Rules

□ No current ever flows into either of the input terminals.

Ideal Op-amp Rules

□ No current ever flows into either of the input terminals.

☐ There is no voltage difference between the two input terminals.

Analysis using Ideal Op-amp

Analysis using Ideal Op-amp

$$\frac{V_o}{V_s} = 1$$

$$V_o = V_s - R_s I$$

$$V_o = V_s$$

This is called the inverting amplifier.

- This is called the inverting amplifier.
- Here the noninverting input is grounded.

- This is called the inverting amplifier.
- Here the noninverting input is grounded.
- The inverting terminal is connected to the output via a feedback resistor, R_f •

- This is called the inverting amplifier.
- Here the noninverting input is grounded.
- The inverting terminal is connected to the output via a feedback resistor, R_f .
- The input is connected to the inverting terminal via another resistor, R_1 .

- This is called the inverting amplifier.
- Here the noninverting input is grounded.
- The inverting terminal is connected to the output via a feedback resistor, R_f .
- The input is connected to the inverting terminal via another resistor, R_1 .

The inverting amplifier's equivalent circuit is shown here.

- The inverting amplifier's equivalent circuit is shown here.
- Note that it has a finite input resistance.

- The inverting amplifier's equivalent circuit is shown here.
- Note that it has a finite input resistance.
- It is also a good candidate for making a current-to-voltage converter

Another important opamp circuit is the noninverting amplifier.

- Another important opamp circuit is the noninverting amplifier.
- The basic configuration of the amplifier is the same as the inverting amplifier

- Another important opamp circuit is the noninverting amplifier.
- The basic configuration of the amplifier is the same as the inverting amplifier
- Except that the input and the ground are switched

- Another important opamp circuit is the noninverting amplifier.
- The basic configuration of the amplifier is the same as the inverting amplifier

$$v_o = \left(1 + \frac{R_f}{R_1}\right) v_i$$

 Except that the input and the ground are switched

 Gain here is positive, thus the amplifier is noninverting.

- Gain here is positive, thus the amplifier is noninverting.
- This amplifier retains the infinite input impedance of the op-amp.

- Gain here is positive, thus the amplifier is noninverting.
- This amplifier retains the infinite input impedance of the op-amp.
- One aspect of this amplifier's gain is that it can never go below 1.

- Gain here is positive, thus the amplifier is noninverting.
- This amplifier retains the infinite input impedance of the op-amp.
- One aspect of this amplifier's gain is that it can never go below 1.
- One could replace the feedback resistor with a wire and disconnect the ground and the gain would still be 1 (voltage follower).