Today
· HW 8 comments
· Cholesky factorization
· Applications
HW8
2) If A is SPD, then all
2) If A is SPD, then œ4 Evaporatives of A are positive.
0
Let v be a unot eigenvectored A with e-val h, consider
with e-ual A, consider
<a-, v=""></a-,>

· write SPD matrix A as
$$A = LLT$$

Find the Cholesky factorization of A.

Soln

$$\begin{pmatrix}
1 & 3 & -2 \\
3 & 25 & -2 \\
-2 & -2 & 30
\end{pmatrix}$$

$$\begin{pmatrix}
l_{11} & l_{21} & l_{31} \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{pmatrix}$$

$$\begin{pmatrix}
l_{11} & l_{21} & l_{31} \\
0 & l_{12} & l_{32} \\
0 & 0 & l_{32}
\end{pmatrix}$$

A, =1 =
$$(l_{11})^2 = 2 l_{11} = 1 (choice)$$

Au = 3 = $l_{21} l_{11} = 2 l_{21} = 3$

A₃₁ = -2 = $l_{31} l_{11} = 2 l_{31} = -2$

A₂₂ = 25 = $(l_{21})^2 + (l_{22})^2 = 2 l_{22} = 1$

A₃₂ = -2 = $l_{31} l_{21} + l_{32} l_{22} = 2 l_{32} = 1$

A₃₃ = 30 = $(l_{31})^2 + (l_{32})^2 + (l_{33})^2$

= $2 l_{33} = 5$

$$A = \begin{pmatrix} 1 & 0 & -3 \\ 0 & -2 & 4 \\ -3 & 4 & 2 \end{pmatrix}$$

What happens if we try to compute the Cholesky factorization of A?

> atteast one e-val is negative

1 1 2 2 1 2 2 2 2	,
Applications	_

(forward substitutes)

More concrete application:

· EL.

$$-u''(x) = f(x)$$

· Centered difference orpoximation

· Discretize domain:

(near system: - u"(x) = flx)

du = f