

King Mongkut's University of Technology Thonburi Final examination of semester 1/2013

CHE 241 7	hermod	lynamics l
Monday 2 ⁿ	^d Decen	iber 2013

2nd-year ChE students (Regular and International) 9:00 am-12:00 pm

Instructions: (Please read them carefully.)

- 1) This examination paper consists of 4 questions with 14 pages in total. The full score is 100.
- 2) <u>Answer all questions in this paper</u>. If you require more space to answer, please continue on the back page of each answer sheet.
- 3) This is a <u>close-book examination</u>. Students are not allowed to bring any document into the examination room.
- 4) Only scientific calculator complying with the university's regulation is allowed during the examination.

Name	Student ID
Name	

Important notes:

- Once completing your examination paper, please ask for permission from your proctor to leave the room.
- Students are not allowed to take any examination paper out of the room.
- Any cheating during the examination will not be tolerated. The maximum penalty is dismissal from university.

Examiner: Asst. Prof. Dr. Bunyaphat Suphanit

No.	Scores (100)
1	
2	
3	
4	
Total	

This paper was evaluated and approved by the ChE Dept.

(Assoc. Prof. Dr. Piyabutr Wanichpongpan) Head of Chemical Engineering Dept.

Nama	Student ID
Name	

- 1) A steam power plant operates on a simple Rankine cycle between the pressure limits of 9 MPa and 15 kPa. The heat transfer processes in boiler and condenser are isobaric. The condensate leaves the condenser as saturated liquid. The liquid compression in pump is isentropic while the steam expansion through turbine is irreversible adiabatic. The mass flow rate of steam through the cycle is 10 kg/s. In actual expansion of steam through turbine, the moisture content of steam at the turbine exit is 8%. However, if the turbine is isentropic, the moisture content of steam at the turbine exit will be 12%. Show the cycle on a T-s diagram with respect to saturation lines, and determine
 - a) the condenser exit and turbine inlet temperatures,
 - b) the isentropic efficiency of turbine,
 - c) the rate of heat input in the boiler (MW),
 - d) net work output (MW), and
 - e) the cycle thermal efficiency.

$$(1 \text{ kJ/m}^3 = 1 \text{ kPa})$$
 (25 points)

Property	State 1	State 2	State 3	State 4
P (MPa)	0.015	9	9	0.015
T (°C)		-		
Phase Condition	Sat. liquid			Mixed phase
h (kJ/kg)				
s (kJ/kg.K)		-		

TABLE	A 5											
Saturat	ed water-	Pressure t	able									
			fic volume, n ³ /kg	internal energy, ku/kg			Enthalpy, kJ/kg			Entropy, kJ/kg · K		
Press., P kPa	Sal. temp., T _{un} °C	Sat. liquid, v,	Sat. vapor, v _a	Sat. liquid, u,	Evap.,	Sal. vapor, u _g	Sat. Irquid, h _f	Evap.,	Sat. vapor, h _a	Sat. liquid, s,	Evap.,	Sat. vapor,
1.0 1.5	6.97 13.02	0.001000 0.001001	129.19 87.964	29.302 54.686	2355.2 2338.1	2384.5 2392.8	29.303 54.688	2484.4 2470.1	2513.7 2524.7	0.1059 0.1956	8.8690 8.6314	
2.0 2.5 3.0	17.50 21.08 24.08	0.001001 0.001002 0.001003	66.990 54.242 45.654	73.431 88.422 100.98	2325.5 2315.4 2306.9	2398.9 2403.8 2407.9	73.433 88.424 100.98	2459.5 2451.0 2443.9	2532.9 2539.4 2544.8		8.3302	
4.0 5.0	28.96 32.87	0.001004 0.001005	34.791 28.185	121.39 137.75	2293.1 2282.1	2414.5 2419.8	121.39 137.75	2432.3 2423.0	2553.7 2560.7	0.4224	8.0510	8.4734 8.3938
7.5 10 15	40.29 45.81 53.97	0.001008 0.001010 0.001014	19.233 14.670 10.020	168.74 191.79 225.93	2261.1 2245.4 2222.1	2429.8 2437.2 2448.0	168.75 191.81 225.94	2405.3 2392.1 2372.3	2574.0 2583.9 2598.3	0.6492	7,4996	8.2501 8.1488 8.0071
20 25	60.06 64.96	0.001017 0.001020	7.6481 6.2034	251.40 271.93	2204.6 2190.4	2456.0 2462.4	251.42 271.96	2357.5 2345.5	2617.5		7.0752 6.9370	7.9073 7.8302
30 40 50	69.09 75.86 81.32	0.001022 0.001026 0.001030	5.2287 3.9933 3.2403	289.24 317.58 340.49	2178.5 2158.8 2142.7	2467.7 2476.3 2483.2	289.27 317.62 340.54	2335.3 2318.4 2304.7	2624.6 2636.1 2645.2	1.0261	6.8234 6.6430 6.5019	

TABL	E A 6											
Supe	rheated wa	ter (<i>Con</i>	tinued)	_	_							
.c 1	v m³/kg	u kJ/kg	h kJ/kg	s k.i/kg · K	v m³/kg	u kJ/kg	h kU/kg	s k.i/kg · K	v m³/kg	и kJ/kg	h kJ/kg	s k.i/kg · K
	P	= 9.0 MF	a (303.35	°C)	P =	= 10.0 MF	Pa (311.00	rc)	P =	12.5 MP	a (327.8	1°C)
Sal.	0.020489	2558.5	2742.9	5.6791	0.018028	2545.2	2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284	2647.6	2857.1	5.8738	0.019877	2611.6	2810.3	5.7596				
350	0.025816	2725.0	2957.3	6.0380	0.022440	2699.6	2924.0	5.9460	0.016138	2624.9	2826.6	5.7130
400	0.029960	2849.2	3118.8	6.2876	0.026436	2833.1	3097.5	6.2141	0.020030	2789.6	3040.0	6.0433
450	0.033524	2956.3	3258.0	6.4872	0.029782	2944.5	3242.4	6.4219	0.023019	2913.7	3201.	5 6.2749
500	0.036793	3056.3	3387.4	6.6603	0.032811	3047.0	3375.1	6.5995	0.025630	3023.2	3343.0	6 6.4651
550	0.039885	3153.0	3512.0	6.8164	0.035655	3145.4	3502.0	6.7585	0.028033	3126.1	3476.	5 6.6317
600	0.042861	3248.4	3634.1	6.9605	0.038378	3242.0	3625.8	6.9045	0.030306	3225.8	3604.0	6.7828
650	0.045755	3343.4	3755.2	7.0954	0.041018	3338.0	3748.1	7.0408	0.032491	3324.1	3730.	2 6. 922 7
700	0.048589	3438.8	3876.1	7.2229	0.043597	3434.0	3870.0	7.1693	0.034612	3422.0	3854.	6 7.0540
800	0.054132	3632.0	4119.2	7.4606	0.048629	3628.2	4114.5	7.4085	0.038724	3618.8	4102.	8 7. 29 67
900	0.059562	3829.6	4365.7	7.6802	0.053547	3826.5	4362.0	7.6290	0.042720	3818.9	4352.	9 7.5195
1000	0.064919	4032.4	4616.7	7.8855	0.058391	4029.9	4613.8	7.8349	0.046641	4023.5	4606.	5 7.7269
1100	0.070224	4240.7	4872.7	8.0791	0.063183	4238.5	4870.3	8.0289	0.050510	4233.1	4864.	5 7.9220
1200	0.075492	4454.2	5133.6	8.2625	0.067938	4452.4	5131.7	8.2126	0.054342	4447.7	5127.	0 8.1065
1300	0.080733	4672.9	5399.5	8.4371	0.072667	4671.3	5398.0	8.3874	0.058147	4667.3	5394.	1 8.2819

Name	Student ID
1141110	

- 2) Consider a two-stage cascade refrigeration system using R-134a as working fluids in both stages (shown in the figure below).
 - Cycle A operates between the pressure limits of 0.9 and 0.32 MPa, while cycle B operates between 0.4 to 0.14 MPa.
 - The heat transfer in all evaporators and condensers are isobaric.
 - The isentropic efficiency of each compressor is 90%.
 - In cycle A, the refrigerant leaves the condenser at 34°C, 0.9 MPa (State 7). The refrigerant mass flow in this cycle is 0.14 kg/s.
 - In cycle B, the refrigerant leaves the heat exchanger as saturated liquid at 0.4 MPa (State 3). The refrigerant enters the compressor of this cycle at 0°C, 0.14 MPa (State 1) with flow rate of 0.11 kg/s.

Determine

- a) phase conditions at every state in the cycle (Subcooled liquid, Sat. liquid, Mixed phase, Sat. vapor or Superheated vapor),
- b) temperature at compressor inlet of cycle A.
- c) exit temperatures and power consumption of both compressors,
- d) % vapor quality and temperature at the outlets of both valves,
- e) the rate of heat exchange in the heat exchanger between the cycles,
- f) the rate of heat removal from the refrigerated space (tons cooling), and
- g) the COP of this refrigerator.
- h) Also, draw the T-s diagram of this cycle.

(1 ton cooling = 3.517 kW)

(35 points)

Property	State 1	2s	State 2	State 3	State 4	State 5	6s	State 6	State 7	State 8
P (MPa)	0.14	0.4	0.4	0.4	0.14	0.32	0.9	0.9	0.9	0.32
T (°C)	0								34	
Phase Condition			_	Sat.liq.						
h (kJ/kg)										
s (kJ/kg.K)			-	-	-			-		-

TABLE A 11

Satura	ted refrig	erant-134a	—Temperati	re table	(Continu	ued)						
		Specitic m³/		inte	irnal ene kJ/kg	180%		Enthalpy kJ/kg	: ——		Entropy, kJ/kg · K	
Temp.,	Sat. , press., P _{sat} kPa	Sat. liquid,	Sat. vapor, v _g	Sat. Ilquid, <i>u</i> ,	Evap.,	Sat. vapor, u _g	Sat. liquid, h,	Evap.,	Sat. vapor, h _g	Sat. liquid, s,	Evap.,	Sat. vapor, s _g
20	572.07	0.0008161	0.035969	78.86	162.16	241.02	79.32	182.27	261.59	0.30063	0.62172	0.92234
22	608.27	0.0008210	0.033828	81.64	160.42	242.06	82.14	180.49	262.64	0.31011	0.61149	0.92160
24	646.18	0.0008261	0.031834	84.44	158.65	243.10	84.98	178.69	263.67	0.31958	0.60130	0.92088
26	685.84	0.0008313	0.029976	87.26	156.87	244.12	87.83	176.85	264.68	0.32903	0.59115	0.92018
28	727.31	0.0008366	0.028242	90.09	155.05	245.14	90.69	1 74.9 9	265.68	0.33846	0.58102	0.91948
30	770.64	0.0008421	0.026622	92.93	153.22	246.14	93.58	173.08	266.66	0.34789	0.57091	0.91879
32	815.89	0.0008478	0.025108	95.79	151.35	247.14	96.48	171.14	267.62	0.35730	0.56082	0.91811
34	863.11	0.0008536	0.023691	98.66	149.46	248.12	99.40	1 69 .17	268 .57	0.36670	0.55074	0.91743
36	912.35	0.0008595	0.022364	101.55	147.54	249.08	102.33	167.16	269.49	0.37609	0.54066	0.91675
38	963.68	0.0008657	0.021119	104.45	145.58	250.04	105.29	165.10	270.39	0.38548	0.53058	0.91606

TABLE A 12

;	Satural	ed	refr	gerant	-	34	3	Tessure 1	table	5

		•	volume, /kg	Inter	rnal ener k.Vkg	18 7,		<i>nthalpy,</i> kJ/kg			<i>Entropy,</i> kJ/kg - K	
Press., <i>P</i> kPa	Sat. temp., T _{set} °C		Sat. vapor, v _g	Sat, liquid, u _f	Evap.,	Sat. vapor, u _g	Sat. liquid, h,	Evap.,	Sat. vapor, h _g	Sat. liquid, s,	Evap., S _{ig}	Sat. vapor, s _e
60	-36.95	0.0007098	0.31121	3.798	205.32	209.12	3.841	223.95	227.79	0.01634	0.94807	0.96441
70	-33.87	0.0007144	0.26929	7.680	203.20	210.88	7.730	222.00	229.73	0.03267	0.92775	0.96042
80	-31.13	0.0007185	0.23753	11.15	201.30	212.46	11.21	220.25	231.46	0.04711	0.90999	0.95710
90	-28.65	0.0007223	0.21263	14.31	199.57	213.88	14.37	218.65	233.02	0.06008	0.89419	0.95427
100	~26.37	0.0007259	0.19254	17.21	197.98	215.19	17.28	217.16	234,44	0.07188	0.87995	0.95183
120	-22.32	0.0007324	0.16212	22.40	195.11	217.51	22.49	214.48	236.97	0.09275	0.85503	0.9477
140	-18.77	0.0007383	0.14014	26.98	192.57	219.54	27.08	212.08	239.16	0.11087	0.83368	0.9445
160	-15.60	0.0007437	0.12348	31.09	190.27	221.35	31.21	209.90	241.11	0.12693	0.81496	0.9419
180	-12.73	0.0007487	0.11041	34.83	188.16	222.99	34.97	207.90	242.86	0.14139	0.79826	0.9396
200	-10.09	0.0007533	0.099867	38.28	186.21	224.48	38.43	206.03	244.46	0.15457	0.78316	0.9377
240	-5.38	0.0007620	0.083897	44.48	182.67	227.14	44.66	202.62	247.28	0.17794	0.75664	0.9345
280	-1.25	0.0007699	0.072352	49.97	179.50	229.46	50.18	199.54	249.72	0.19829	0.73381	0.9321
320	2.46	0.0007772	0.063604	54.92	176.61	231.52	55.16	196.71	251.88	0.21637	0.71369	0.9300
360	5.82	0.0007841	0.056738	59.44	173.94	233.38	59.72	194.08	253.81	0.23270	0.69566	0.9283
400	8.91	0.0007907	0.051201	63.62	171.45	235.07	63.94	191.62	255.55	0.24761	0.67929	0.9269

	given ic	que	241011	~ <i>)</i>								
TABLE	A 13											
Super	heated refi	igerant-	134a									
					Γ		$\overline{}$					
<i>T</i> ℃	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kgr⋅K	m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kag⋅K	v m³/kg	u kJ/kg	h kJ/kg	s kul/kag ⋅ K
	#II-\V\$	KJ/Kg	und	KUNK - K	131-7 FA	KU NE	NA NA	ICI/NB · IV	HEYNE	N/Ng	MAN .	KTNIK . V
	$P = 0.06 \text{ MPa } \{T_{\text{MS}} = -36.95^{\circ}\text{C}\}$				$P = 0.10 \text{ MPa} (T_{se} = -26.37^{\circ}\text{C})$				P = 0.14 MPa (T _{st} = ~18,77°C)			
Set.	0.31121	209.12	227.79	0.9644	0.19254	215.19	234.44	0.9518	0.14014	219.54	239.16	0.9446
~20	0.33608		240.76			219.66	239.50					
-10 0	0.35048 0.36476				0.20743			1.0030 1.0332	0.14605 0.15263	225.91 233.23		0.9724 1.0031
10	0.37893		264.66			241.30	263.81	1.0628	0.15263	240.66		1.0331
20	0.39302			1.1353	0.23373		272.17	1.0918	0.16544	248.22		1.0624
30	0.40705		281.37			256.44		1.1203	0.17172	255.93		1.0912
40	0.42102			1.1915	0.25088		289.34	1.1484	0.17794	263.79		1.1195
50 60	0.43495 0.44883		298.74 307.66		0.25937 0.26783	280.35		1.1762 1.2035	0.18412 0.19025	271.79 279.96	306.59	1.1474
70	0.46269			1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77	
80	0.47651	297.41	326.00	1.2997	0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09	1.2288
90	0,49032			1.3260	0.29303	305.69	334.99	1.2836	0.20847	305.38	334.57	
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814
	$P = 0.18 \text{ MPa} (T_{\text{sd}} = -12.73^{\circ}\text{C})$			$P = 0.20 \text{ MPa } \{T_{\text{set}} = -10.09^{\circ}\text{C}\}$				$P = 0.24 \text{ MPa } (T_{\text{sal}} = -5.38^{\circ}\text{C})$				
Set.	0.11041	222.99	242.86	0.9397	0.09987	224.48	244.46	0.9377	0.08390	227.14	247.28	0.9346
-10	0.11189			0.9484	0.09991	224.55	244.54	0.9380				
0	0.11722		253.58		0.10481		253.05		0.08617	231.29		0.9519
10	0.12240 0.12748			1.0102 1.0 399		239.67 247.35		1.0004 1.0303	0.09026 0.09423	238.98 246.74		0.9831
20 30	0.12748			1.0690		255.14	278.89	1.0505	0.09423	254.61		1.0134 1.0429
40	0.13741			1.0975	0.12322			1.0882	0.10193	262.59		1.0718
50	0.14230				0.12766			1.1163	0.10670	270.71	296.08	1.1001
60	0.14715			1.1532		279.37		1.1441	0.10942	278.97		1.1280
70 8 0	0.15196 0.15673			1.1805 1.2074	0.13641	287.73 296.25	315.01 324.40	1.171 4 1.1 983	0.11310 0.11675	287.36 295.91	314.51	1.1554 1.1825
90	0.16149			1.2339	0.14504	304.92	333.93	1.2249	0.12038	304.60		1.2092
100	0.16622			1.2602	0.14933	313.74	343.60	1.2512	0.12398	313,44	343.20	
	$P = 0.28 \text{ MPa } (T_{sal} = -1.25^{\circ}\text{C})$			P = 0.32 MPa (T _{est} = 2.46°C)				P = 0.40 MPa (T _{tot} = 8.91°C)				
Set.	0.07235					_	251.88		0.051201		_	
0	0.07282			0.9362	0.000	231.32	131.00	0.3501	0.03.20.	200,07	235.55	0.3203
10	0.07646	238.27	259.68	0.9680	0.06609	237.54	258.69	0.9544	0.051506	235.97	256.58	0.9305
20	0.07997			0.9987	0.06925		267.66	0.9856	0.054213		265.86	
30	0.08338				0.07231		276.65	1.0157	0.056796		275.07	
40 50	0.08672	270.27		1.0576 1.0862	0.07530	261.60 269.82	285.70 294.85	1,0451 1,0739	0.059292 0.061724		284.30 293.59	
60	0.09324			1.1142	0.08111	278.15	304.11	1.1021	0.064104		302.96	
70	0.09644	286.99		1.1418	0.08395	286.62	313.48	1.1298	0.066443			1.1094
80	0.09961	295.57		1.1690	0.08675	295.22	322.98	1.1571	0.068747			1.1369
90	0.10275			1.1958	0.08953	303.97	332.62	1.1840	0.071023		331.73	
100 110	0.10587 0.10897			1.2222	0.09229	312.86 321.89	342.39 352.30	1.2105 1.2367	0.073274		341.57 351.53	
120	0.11205					331.07		1.2626	0.077717		361.63	
130	0.11512					340.39		1.2882	0.079913			1.2688
140	0.11818	350.09	383.18	1.3250	0.10314	349.86	382.87	1,3135	0.082096	_349.41	382.24	1.2942
	$P = 0.80 \text{ MPa} (T_{\text{sat}} = 31.31^{\circ}\text{C})$			$P = 0.90 \text{ MPa} (T_{\text{tat}} = 35.51^{\circ}\text{C})$				P = 1.00 MPa (T _{stt} = 39.37°C)				
Set.	0.025621				0.022683	248.85	269.26	0.9169	0.020313	250.68		0.9156
40	0.027035				0.023375	253.13		0.9327	0.020406	251.30		0.9179
50	0.028547	_			0.024809		284.77	0.9660	0.021796	260.94		0.9525
60	0.029973				0.026146		295.13	0.9976	0.023068	270.32		0.9850
70 20	0.031340 0.032659				0.027413 0.028630		305.39 315.63	1.0280 1.0574	0.024261 0.025398	279.59 288.86		1.0160
80 90	0.032659				0.029806		325.89	1.0860	0.025398	298.15		1.0458
100	0.035193				0.030951		336.19	1.1140	0.027552	307.51		1.1031
110	0.036420	318.45	347.59	1.1530	0.032068	317.70		1.1414	0.028584	316.94		1.1308
120	0.037625				0.033164	327.18		1.1684	0.029592	326.47		1.1580
130	0.038813				0.034241	336.76	367.58	1.1949	0.030581	336.11		1.1846
140 150	0.039985				0.035302	346.46 356.28		1.2210 1.2467	0.031554 0.032512	345.85 355.71		1.2109 1.2368
160	0.041143				0.037384		399.88	1.2721	0.032512	365.70		1.2623
170	0.043427	376.81	411.55	1.3080	0.038408	376.31	410.88	1.2972	0.034392	375.81		1.2875
180	0.044554	386.99	422.64	1.3327	0.039423	386.52	422.00	1.3221	0.035317	386.04	421.36	1.3124

Name Student ID......

- 3) In a Linde liquefaction of ethane (see the figure below), the mixed gas to compressor (1*) is at 20 psia and 90°F. The enthalpy of mixed gas is given as shown in the table below. The mixed gas (1*) is fed into a two-stage compressor. Both stage compressions are isentropic. The outlet pressures are 100 and 1000 psia for the first and second stage compression, respectively. Between the compression stages, the compressed gas is cooled down isobarically to 80°F. The outlet temperature of the final cooler (3) is 100°F. The cooled gas is further cooled down isobarically to 60°F in a regenerator (HX) and then flashed through a J-T valve to 20 psia (point 4). From the flash drum, the flashed vapor (5) is heated up isobarically in the regenerator (point 5*) before recycle. Given some additional data in the table, determine;
 - a) vapor fraction in flash drum,
 - b) total compressor work per lb of liquefied ethane produced,
 - c) rate of heat transfer in the heat exchanger HX (in Btu/hr) when the gas feed rate is 15,000 lb/hr,
 - d) the temperatures of feed gas (point 1) and recycle gas at the regenerator exit (point 5*),
 - e) Also, draw the path of each process step on the given P-h diagram.

State	P (psia)	T (°F)	h (Btu/lb)
1	20		
1*	20	90	292
8	100	-	
b	100	80	
2	1,000	•	
3	1,000	100	
3*	1,000	60	
4	20	Mixed Phase	
5	20	Sat.Vap.	-
5*	20		
6	20	Sat. Liq.	

Name Student ID......

Name Student ID

4) Consider an ideal gas turbine cycle with an intercooler and a reheater as shown in the figure below. This cycle operates within a particular temperature and pressure range (T_A-T_B and P_A-P_B). Both intercooling and reheating processes are isobaric. From the given T-s diagram, the intercooling and inlet air temperatures (T₃ and T₁) are equal. On the other end, the reheating and combustion chamber outlet temperatures (T₅ and T₇) are also equal.

Determine the values of pressure ratio in all compression and expansion stages $(r_{pl}, r_{p2}, r_{p3}, and r_{p4})$ which give the maximum value of net work output (max w_{net}).

In your analysis, use the following notations for pressure ratios in each step:

$$\begin{aligned} r_{p1} &= P_2/P_1 \\ r_{p2} &= P_4/P_3 \\ r_{p3} &= P_5/P_6 \\ r_{p4} &= P_7/P_8 \\ r_p &= P_A/P_B \end{aligned}$$

