Statistical graphics with ggplot2

Programming for Statistical Science

Shawn Santo

Supplementary materials

Full video lecture available in Zoom Cloud Recordings

Additional resources

- Chapter 3, R for Data Science
- ggplot2 Reference
- ggplot2 cheat sheet
- color brewer 2

ggplot2

- ggplot2 is a plotting system for R, based on the grammar of graphics
 - using the good parts of base and lattice
- It takes care of many of the fiddly details that make plotting a hassle
 - such as drawing legends and faceting
 - o particularly helpful for plotting multivariate data

Package ggplot2 is available in package tidyverse. Let's load that now.

library(tidyverse)

The Grammar of Graphics

- Visualization concept created by Leland Wilkinson (1999)
 - to define the basic elements of a statistical graphic
- Adapted for R by Wickham (2009)
 - consistent and compact syntax to describe statistical graphics
 - highly modular as it breaks up graphs into semantic components
- It is not meant as a guide to which graph to use and how to best convey your data (more on that later).

Today's data: MLB

```
teams <- read_csv("http://www2.stat.duke.edu/~sms185/data/mlb/teams.csv")</pre>
```

Object teams is a data frame that contains yearly statistics and standings for MLB teams from 2009 to 2018.

The data has 300 rows and 56 variables.

```
#> # A tibble: 300 x 56
      vearID lgID teamID franchID divID Rank
                                                     G Ghome
                                                                        L DivWin WCWin
#>
                                                                 W
       <dbl> <chr> <chr> <chr>
                                    <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <<rr> 
#>
                                                   162
#>
   1
        2009 NL
                   ARI
                           ARI
                                               5
                                                          81
                                                                70
                                                                       92 N
                                    W
        2009 NL
                           ATL
                                    Ε
                                               3
                                                   162
                                                          81
                                                                       76 N
#>
    2
                   ATL
                                                                86
                                                                                 Ν
#>
   3
        2009 AL
                   BAL
                           BAL
                                    Ε
                                               5
                                                   162
                                                          81
                                                                64
                                                                       98 N
                                                                                 Ν
#>
        2009 AL
                           BOS
                                    Ε
                                                   162
                                                          81
                                                                95
                                                                       67 N
                                                                                 Υ
    4
                   BOS
                                              3
   5
        2009 AL
                           CHW
                                    С
                                                   162
                                                          81
                                                                79
#>
                   CHA
                                                                       83 N
                                                                                 Ν
#>
   6
        2009 NL
                   CHN
                           CHC
                                    C
                                               2
                                                   161
                                                          80
                                                                83
                                                                       78 N
                                                                                 Ν
                                    С
                                               4
                                                   162
                                                          81
                                                                78
#>
   7
        2009 NL
                   CIN
                           CIN
                                                                       84 N
                                                                                 Ν
                           CLE
#>
   8
        2009 AL
                   CLE
                                    С
                                               4
                                                   162
                                                          81
                                                                65
                                                                       97 N
                                                                                 Ν
#>
   9
        2009 NL
                           COL
                                                   162
                                                          81
                                                                92
                                                                       70 N
                                                                                 Υ
                   COL
                                    W
                                               2
                           DET
                                    С
                                                   163
                                                          81
                                                                86
                                                                       77 N
#> 10
        2009 AL
                   DET
                                                                                 Ν
#> # ... with 290 more rows, and 44 more variables: LgWin <chr>, WSWin <chr>,
       R <dbl>, AB <dbl>, H <dbl>, X2B <dbl>, X3B <dbl>, HR <dbl>, BB <dbl>,
#> #
#> #
       SO <dbl>, SB <dbl>, CS <dbl>, HBP <dbl>, SF <dbl>, RA <dbl>, ER <dbl>,
#> #
       ERA <dbl>, CG <dbl>, SHO <dbl>, SV <dbl>, IPouts <dbl>, HA <dbl>,
#> #
       HRA <dbl>, BBA <dbl>, SOA <dbl>, E <dbl>, DP <dbl>, FP <dbl>, name <chr>,
#> #
       park <chr>, attendance <dbl>, BPF <dbl>, PPF <dbl>, teamIDBR <chr>,
#> #
       teamIDlahman45 <chr>, teamIDretro <chr>, TB <dbl>, WinPct <dbl>, rpg <dbl>,
       hrpg <dbl>, tbpg <dbl>, kpg <dbl>, k2bb <dbl>, whip <dbl>
#> #
```

Plot comparison

Using ggplot()

Using plot()

Code comparison

Using ggplot()

```
ggplot(teams, mapping = aes(x = R - RA, y = WinPct, color = DivWin)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  labs(x = "Win Percentage", y = "Run Differential")
```

Using plot()

What's in a ggplot()?

Terminology

A statistical graphic is a...

- mapping of data
- which may be **statistically transformed** (summarized, log-transformed, etc.)
- to aesthetic attributes (color, size, xy-position, etc.)
- using **geometric objects** (points, lines, bars, etc.)
- and mapped onto a specific facet and coordinate system.

What do I "need"?

1) Some data (preferably in a data frame)

```
ggplot(data = teams)
```

2) A set of variable mappings

ggplot(data = teams, mapping = aes(x = attendance / 1000, y = W))

3) A geom with arguments, or multiple geoms with arguments connected by +

```
ggplot(data = teams, mapping = aes(x = attendance / 1000, y = W)) +
   geom_point(color = "blue")
```


4) Some options on changing scales or adding facets

```
ggplot(data = teams, mapping = aes(x = attendance / 1000, y = W)) +
  geom_point(color = "blue") +
  facet_wrap(~yearID, nrow = 2)
```


5) Some labels

```
ggplot(data = teams, mapping = aes(x = attendance / 1000, y = W)) +
  geom_point(color = "blue") +
  facet_wrap(~yearID, nrow = 2) +
  labs(x = "Attendance", y = "Wins", caption = "Attendance in thousands")
```


6) Other options

```
ggplot(data = teams, mapping = aes(x = attendance / 1000, y = W)) +
  geom_point(color = "blue") +
  facet_wrap(~yearID, nrow = 2) +
  labs(x = "Attendance", y = "Wins", caption = "Attendance in thousands")
  theme_bw(base_size = 16) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


Anatomy of a ggplot

```
ggplot (
  data = [dataframe],
  aes (
    x = [var x], y = [var y],
    color = \overline{[var for color]},
    fill = [var for fill],
    shape = [var for shape],
    size = [var for size],
    alpha = [var for alpha],
    ... #other aesthetics
  geom <some geom>([geom arguments]) +
  ... # other geoms
  scale <some axis> <some scale>() +
  facet <some facet>([formula]) +
  ... # other options
```

To visualize multivariate relationships we can add variables to our visualization by specifying aesthetics: color, size, shape, linetype, alpha, or fill; we can also add facets based on variable levels.

Scatter plots

Base plot

```
ggplot(data = teams, mapping = aes(x = (R ^2 / (R ^2 + RA ^2 )), y = WinPct)) + geom_point()
```


Altering aesthetic color

```
ggplot(data = teams, mapping = aes(x = (R ^2 / (R ^2 + RA ^2 )), y = WinPct)) + geom_point(color = "#E81828")
```


Altering aesthetic color

```
ggplot(data = teams, mapping = aes(x = (R ^2 / (R ^2 + RA ^2)), y = WinPct, color = lgID)) + geom_point(show.legend = FALSE)
```


Altering aesthetic color

```
ggplot(data = teams, mapping = aes(x = (R ^2 / (R ^2 + RA ^2)), y = WinPct, color = lgID)) + geom_point()
```


Base plot

```
ggplot(data = teams[teams$yearID == 2018, ], mapping = aes(x = BB + H, y = SO)) + geom_point()
```


Altering multiple aesthetics

```
ggplot(data = teams[teams$yearID == 2018, ], mapping = aes(x = BB + H, y = SO)) +
   geom_point(size = 3, shape = 2, color = "#E81828")
```


Altering multiple aesthetics

Altering multiple aesthetics

Inside or outside aes()?

When does an aesthetic go inside function aes ()?

- If you want an aesthetic to be reflective of a variable's values, it must go inside aes.
- If you want to set an aesthetic manually and not have it convey information about a variable, use the aesthetic's name outside of aes and set it to your desired value.

Aesthetics for continuous and discrete variables are measured on continuous and discrete scales, respectively.

```
ggplot(data = teams, mapping = aes(x = R, y = WinPct, color = DivWin)) +
  geom_point(alpha = .8) +
  facet_grid(lgID~ .)
```



```
ggplot(data = teams, mapping = aes(x = R, y = WinPct, color = DivWin)) +
  geom_point(alpha = .8) +
  facet_grid(. ~lgID)
```



```
ggplot(data = teams, mapping = aes(x = R, y = WinPct, color = DivWin)) +
  geom_point(alpha = .8) +
  facet_grid(divID~lgID)
```



```
ggplot(data = teams, mapping = aes(x = R, y = WinPct, color = DivWin)) +
  geom_point(alpha = .8) +
  facet_wrap(~yearID)
```


Facet grid or wrap?

- Use facet_wrap() to wrap a one dimensional sequence into two dimensional panels.
- Use facet_grid() when you have two discrete variables and you want panels of plots to represent all possible combinations.

Exercise

Let's explore the relationship between runs and strikeouts for division winners and non-division winners. Use tibble teams to re-create the plot below.

A more effective visualization

Division winners generally score more runs and have fewer strike outs

Other geoms

Caution

- The following plots are not well-polished. They are designed to demonstrate the various geoms and options that exist within ggplot2.
- You should always have a well-labelled and polished visualization if it will be seen by an outside audience.

Box plots

```
ggplot(teams, mapping = aes(x = factor(yearID), y = kpg)) +
  geom_boxplot(color = "#E81828", fill = "#002D72", alpha = .7)
```


Box plots: flipped coordinates

```
ggplot(teams, mapping = aes(x = factor(yearID), y = kpg)) +
  geom_boxplot(color = "#E81828", fill = "#002D72", alpha = .7) +
  coord_flip()
```


Box plots: custom colors

```
ggplot(teams, mapping = aes(x = factor(yearID), y = kpg, fill = lgID)) +
  geom_boxplot(color = "grey", alpha = .7) +
  scale_fill_manual(values = c("#E81828", "#002D72")) +
  coord_flip() +
  theme_bw()
```


Bar plots

```
ggplot(teams[teams$yearID == 2018, ], mapping = aes(y = W, x = franchID)) + geom_bar(stat = "identity")
```


Bar plots: angled text

```
ggplot(teams[teams$yearID == 2018, ], mapping = aes(y = W, x = franchID)) +
  geom_bar(stat = "identity") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


Bar plots: sorted

```
ggplot(teams[teams$yearID == 2018, ], mapping = aes(y = W, x = reorder(franchID, -W))) +
  geom_bar(stat = "identity", color = "#E81828", fill = "#002D72", alpha = .7) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


Bar plots: granular scale

Histograms

```
ggplot(teams, mapping = aes(x = WinPct)) + geom_histogram(binwidth = .025, fill = "#E81828", color = "#002D72", alpha = .7)
```


Density plots

```
ggplot(teams, mapping = aes(x = WinPct)) +
geom_density(fill = "#E81828", color = "#002D72", alpha = .7)
```


Density plots: custom colors

```
ggplot(teams, mapping = aes(x = WinPct, fill = lgID)) +
  geom_density(alpha = .5) +
  scale_fill_manual(values = c("#E81828", "#002D72"))
```


Heat maps

```
ggplot(teams[teams$yearID == 2018, ], mapping = aes(x = Rank, y = divID, fill = RD)) +
   geom_raster()
```


Heat maps: color palette

```
ggplot(teams[teams$yearID == 2018, ], mapping = aes(x = Rank, y = divID, fill = RD)) +
   geom_raster() +
   scale_fill_gradientn(colours = terrain.colors(10))
```


Heat maps: color palette

```
ggplot(teams[teams$yearID == 2018, ], mapping = aes(x = Rank, y = divID, fill = RD)) +
   geom_raster() +
   scale_fill_gradient(low = "#fef0d9", high = "#b30000")
```


Choosing colors

Color Brewer 2

Effective visualization tips

- Provide a title that tells a story.
- Strive to have your visualization function in a closed environment.
- Be mindful of color and scale choices.
- Generally, color is better than shape to make things "pop".
- Not everything has to have a color, shape, transparency, etc.
- Add labels and annotation.
- Use your visualization to support your story.
- Use chunk options fig.width, fig.height, fig.align, and fig.show to manipulate your plot's size and placement.

Exercise

Energy data

energy <- read_csv("http://www2.stat.duke.edu/~sms185/data/energy/energy.csv")</pre>

energy

```
\#> \# A \text{ tibble: } 105 \times 6
     MWhperDay name
                              type location
                                                  note
                                                                                boe
#>
          <dbl> <chr>
                              <chr> <chr>
                                                  <chr>
                                                                               <dh1>
#> 1
              3 Chernobyl Solar Solar Ukraine
                                                  "On the site of the former...
         637 Solarpark Meuro Solar Germany
                                                                                 55
                                                 <NA>
           920 Tesla's propos... Solar South Aust... "50,000 homes with solar p...
                                                                                 79
          1280 Quaid-e-Azam Solar Pakistan
                                                  "Named in honor of Ouaid-e...
                                                                                110
         1760 Topaz
#> 5
                               Solar USA
                                                  <NA>
                                                                                152
          2025 Agua Caliente Solar USA
                                                  "Arizona"
                                                                                175
      2466 Kamuthi
                                                  "\"150,000\" homes"
                             Solar India
                                                                                213
      2720 Longyangxia Solar China
                                                 <NA>
                                                                                234
          3840 Kurnool
                              Solar India
                                                                                331
                                                  <NA>
          4950 Tengger Desert Solar China
#> 10
                                                  "Covers 3.2% of the land a...
                                                                                427
#> # ... with 95 more rows
```

Data dictionary

The power sources represent the amount of energy a power source generates each day as represented in daily MWh.

- MWhperDay: MWh of energy generated per day
- name: energy source name
- type: type of energy source
- location: country of energy source
- note: more details on energy source
- boe: barrel of oil equivalent
- Daily megawatt hour (MWh) is a measure of energy output.
- 1 MWh is, on average, enough power for 28 people in the USA

Objective

Re-create the plot on the following slide.

A few notes:

- base font size is 18
- hex colors: c("#9d8b7e", "#315a70", "#66344c", "#678b93", "#b5cfe1", "#ffcccc")
- use function order () to help get the top 30

Starter code:

```
energy_top_30 <- energy[order(energy$MWhperDay, decreasing = T)[1:30], ]</pre>
```


References

- 1. Grolemund, G., & Wickham, H. (2019). R for Data Science. R4ds.had.co.nz. https://r4ds.had.co.nz/data-visualisation.html
- 2. https://ggplot2.tidyverse.org/reference/
- 3. Lahman, S. (2019) Lahman's Baseball Database, 1871-2018, Main page, http://www.seanlahman.com/baseball-archive/statistics/
- 4. https://www.visualcapitalist.com/worlds-largest-energy-sources/