Einführung in die Algebra

BLATT 9

Jendrik Stelzner

15. Dezember 2013

Aufgabe 9.1.

Die Multiplikation $\mathbb{Z} \times \mathbb{Q} \to \mathbb{Q}$ von \mathbb{Q} als \mathbb{Z} -Modul ist offenbar die Einschränkung der Multiplikation $\mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ des Körpers \mathbb{Q} . Die Torsionsfreiheit von \mathbb{Q} als \mathbb{Z} -Modul folgt daher direkt aus der Nullteilerfreiheit von \mathbb{Q} als Köper.

 $\mathbb Q$ ist als $\mathbb Z$ -Modul nicht endlich erzeugt: Sei $P\subseteq\mathbb N$ die Menge aller Primzahlen. Für $q\in\mathbb Q$ gibt es bekanntermaßen eindeutige $\nu_p(q)\in\mathbb Z$, für $p\in P$, und ein eindeutiges $\varepsilon(q)\in\{-1,1\}$ mit $q=\varepsilon(q)\prod_{p\in P}p^{\nu_p(q)}$. Aus der Definition der Addition auf $\mathbb Q$ folgt, dass für alle $r,s\in\mathbb Q\smallsetminus\{0\}$ und $n,m\in\mathbb Z$

$$\begin{split} & nr + ms \\ &= n\varepsilon(r) \prod_{p \in P} p^{\nu_p(r)} + m\varepsilon(s) \prod_{p \in P} p^{\nu_p(s)} \\ &= \left(n\varepsilon(s) \prod_{\substack{p \in P \\ \nu_p(s) > 0}} p^{\nu_p(s)} + m\varepsilon(r) \prod_{\substack{p \in P \\ \nu_p(r) > 0}} p^{\nu_p(r)} \right) \prod_{\substack{p \in P \\ \nu_p(r) < 0}} p^{\nu_p(r)} \prod_{\substack{p \in P \\ \nu_p(s) < 0}} p^{\nu_p(s)}. \end{split}$$

Inbesondere ist daher für jedes $p_0 \in P$

$$\begin{split} &\nu_{p_0}(nr+ms)\\ &=\nu_{p_0}\left(\left(n\varepsilon(s)\prod_{\substack{p\in P\\\nu_p(s)>0}}p^{\nu_p(s)}+m\varepsilon(r)\prod_{\substack{p\in P\\\nu_p(r)>0}}p^{\nu_p(r)}\right)\prod_{\substack{p\in P\\\nu_p(r)<0}}p^{\nu_p(r)}\prod_{\substack{p\in P\\\nu_p(s)<0}}p^{\nu_p(s)}\right)\\ &=\underbrace{\nu_{p_0}\left(n\varepsilon(s)\prod_{\substack{p\in P\\\nu_p(s)>0}}p^{\nu_p(s)}+m\varepsilon(r)\prod_{\substack{p\in P\\\nu_p(r)>0}}p^{\nu_p(r)}\right)}_{\geq 0}+\nu_{p_0}\left(\prod_{\substack{p\in P\\\nu_p(r)<0}}p^{\nu_p(r)}\prod_{\substack{p\in P\\\nu_p(s)<0}}p^{\nu_p(s)}\right)\\ &\geq 0\\ &\geq \nu_{p_0}\left(\prod_{\substack{p\in P\\\nu_p(r)<0}}p^{\nu_p(r)}\prod_{\substack{p\in P\\\nu_p(s)<0}}p^{\nu_p(s)}\right)\\ &\geq -|\nu_{p_0}(r)|-|\nu_{p_0}(s)| \end{split}$$

Induktiv ergibt sich, dass für alle $q_1, \ldots, q_t \in \mathbb{Q}, n_1, \ldots, n_t \in \mathbb{Z}$ und $p \in P$

$$\nu_p(n_1q_1 + \ldots + n_tq_t) \ge -\sum_{i=1}^t \nu_p(q_i).$$

Inbesondere lässt sich deshalb $p^{-1-\sum_{i=1}^t \nu_p(q_i)}$ für $p \in P$ nicht als \mathbb{Z} -Linearkombination von q_1,\ldots,q_t darstellen. Es hat deshalb \mathbb{Q} als \mathbb{Z} -Modul kein endliches Erzeugendensystem.

 \mathbb{Q} ist als \mathbb{Z} -Modul nicht frei: Für $\frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$ besitzt

$$rq\frac{p}{q} = pr = ps\frac{r}{s}$$

zwei unterschiedliche Linearkombinationen. Daher ist jede Familie von mindestens zwei rationalen Zahlen linear abhängig, insbesondere also jedes Erzeugendensystem von $\mathbb Q$ als $\mathbb Z$ -Modul, da ein solches unendlich ist.

Aufgabe 9.2.

Aufgabe 9.3.

Für die kurze exakte Sequenz

$$0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} P \longrightarrow 0$$

ist f injektiv, also $M\cong \operatorname{Im} f\subseteq N$, und g surjektiv, also $P\cong N/\ker g=N/\operatorname{Im} f$. Da die Länge eines Moduls invariant unter Isomorphie ist, können wir daher o.B.d.A. davon ausgehen, dass $M\subseteq N$ ein Untermodul ist und P=N/M. Es gilt also zu zeigen, dass

$$l_A(N) = l_A(M) + l_A(N/M).$$

Es bezeichne $\pi:N\to N/M$ die kanonische Projektion. Offenbar induziert π ein Bijektion zwischen den Untermodulen von N, die M beinhalten, und den Untermodulen von N/M. Daher ergibt sich aus jeder Kette von M

$$0 = M_0 \subsetneq M_1 \subsetneq \ldots \subsetneq M_r = M$$

der Länge r und Kette von N/M

$$0 = P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_s = N/M$$

der Länge s eine Kette von N

$$0 = M_0 \subsetneq \ldots \subsetneq M_r = \pi^{-1}(P_0) \subsetneq \ldots \subsetneq \pi^{-1}(P_r) = N$$

der Länge r + s. Daher ist

$$l_A(N) \ge l_A(M) + l_A(N/M).$$

Andererseits ergibt sich aus einer Kette

$$0 = N_0 \subsetneq N_1 \subsetneq \ldots \subsetneq N_t = N$$

der Länge t von N eine Kette

$$0 = M \cap N_0 \subseteq M \cap N_1 \subseteq \ldots \subseteq M \cap N_t = M$$

von M und eine Kette

$$0 = \pi(N_0) \subseteq \pi(N_1) \subseteq \ldots \subseteq \pi(N_t) = N$$

von N. Da ker $\pi = N$ und $N_i \subsetneq N_{i+1}$ für alle $i = 0, \ldots, t-1$ ist $M \cap N_i \subsetneq M \cap N_{i+1}$ oder $\pi(N_i) \subsetneq \pi(N_{i+1})$ für alle $i = 0, \ldots, t-1$. Deshalb ist

$$l_A(N) \leq l_A(M) + l_A(N/M).$$

Aufgabe 9.4.

Aufgabe 9.5.

(i)

Es bezeichne $T(\bigoplus_{i\in I} M_i)$ den Torsionsuntermodul von $\bigoplus_{i\in I} M_i$ und für alle $i\in I$ bezeichne $T(M_i)=T_i$ den Torsionsuntermodul von M_i . Es ist $\bigoplus_{i\in I} T_i\subseteq \bigoplus_{i\in I} M_i$ und

$$T\left(\bigoplus_{i\in I} M_i\right) = \bigoplus_{i\in I} T(M_i) = \bigoplus_{i\in I} T_i.$$

Für $(m_i)_{i\in I}\in T\left(\bigoplus_{i\in I}M_i\right)$ gibt ein $r\in R\smallsetminus\{0\}$ mit $r(m_i)_{i\in I}=(rm_i)_{i\in I}=0$, also $rm_i=0$ für alle $i\in I$. Daher ist $m_i\in T_i$ für alle $i\in I$. Da $m_i=0$ für fast alle $i\in I$ ist $(m_i)_{i\in I}\in\bigoplus_{i\in I}T_i$.

Für $(m_i)_{i\in I}\in\bigoplus T_i$ ist $m_i=0$ für fast alle $i\in I$. Es seien $i_1,\ldots,i_n\in I$ genau die Indizes mit $m_{i_j}\neq 0$. Da $m_{i_j}\in T_{i_j}$ für alle $j=1,\ldots,n$ gibt es für alle $j=1,\ldots,n$ ein $r_j\in R\smallsetminus\{0\}$ mit $r_jm_{i_j}\neq 0$. Da R kommutativ ist, ist daher $(r_1\cdots r_n)m_i=0$ für alle $i\in I$, also $(r_1\cdots r_n)(m_i)_{i\in I}=0$. Da R ein Integritätsring ist, ist $r_1\cdots r_n\neq 0$, da $r_j\neq 0$ für alle $j=1,\ldots,n$. Daher ist $(m_i)_{i\in I}\in T(\bigoplus_{i\in I}M_i)$.

(ii)

Es bezeichne $P \subsetneq \mathbb{N}$ die Menge aller Primzahlen. Für alle $p \in P$ ist $\mathbb{Z}/p\mathbb{Z}$ eine abelsche Gruppe, die wir in naheliegender Weise als \mathbb{Z} -Modul auffassen. Jedes $x \in \mathbb{Z}/p\mathbb{Z}$ mit $x \neq 0$ hat Ordnung p, weshalb $n \cdot x = 0 \Leftrightarrow p \mid n$ für alle $n \in \mathbb{Z}$. Da jedes $\mathbb{Z}/p\mathbb{Z}$ ein Torsionsmodul ist, ist

$$\prod_{p\in P} T(\mathbb{Z}/p\mathbb{Z}) = \prod_{p\in P} \mathbb{Z}/p\mathbb{Z}.$$

Dies ist kein Torsionsmodul: Für $(1_{\mathbb{Z}/p\mathbb{Z}})_{p\in P}\in\prod_{p\in P}\mathbb{Z}/p\mathbb{Z}$ und $n\in\mathbb{Z}$ mit

$$n \cdot (1_{\mathbb{Z}/p\mathbb{Z}})_{p \in P} = (n \cdot 1_{\mathbb{Z}/p\mathbb{Z}})_{p \in P} = 0$$

muss $n \mid p$ für alle $p \in P$, also n = 0. Deshalb ist $\prod_{p \in P} T(\mathbb{Z}/p\mathbb{Z})$ nicht isomorph zum Torsionsmodul $T(\prod_{p \in P} \mathbb{Z}/p\mathbb{Z})$.