Numerical Solution of PDEs Using the Finite Element Method

EXERCISE 6: SHARED MEMORY PARALLELISATION

Jean-Paul Pelteret (jean-paul.pelteret@fau.de)
Luca Heltai (luca.heltai@sissa.it)

20 March 2018

Some useful resources

https://www.dealii.org/8.5.1/doxygen/deal.II/step_6.html

https://dealii.org/8.5.1/doxygen/deal.II/group__threads.html

https://dealii.org/8.5.1/doxygen/deal.II/classThreads_1_1TaskGroup.html https://www.dealii.org/8.5.1/doxygen/deal.II/namespaceWorkStream.html

- 1. Using step-6 or the outcome of the previous exercise as a base:
 - (a) Parallelise the following parts of your code using TaskGroup class:
 - i. The system setup function. Can you parallelise the two calls the fill the constraints?
 - ii. The assembly loop.
 - iii. The (manual) calculation of the solution \mathcal{L}^2 norm.
 - (b) Parallelise the following parts of your code using TBB via the WorkStream class:
 - i. The assembly loop.
 - ii. The (manual) calculation of the solution \mathcal{L}^2 norm.
 - (c) Investigate the possible speed-up by playing around with the number of threads set in the call to Utilities::MPI_InitFinalize.

Tip: This class needs to be created in the main file before you create and execute your problem class.

2. Additional tasks

- (a) What influence do the queue_length and chunk_size have on the efficiency of the various parallel operations that you have implemented?
- (b) Perform some timings and compare the results:
 - i. The serial version of this code.
 - ii. The TBB threaded version of the code, but enforcing the use of one thread via the call to Utilities::MPI::MPI_InitFinalize.
 - iii. The TBB threaded version of the code using the maximum number of threads.