LING 572 Hw1

Due: 11:45pm on Jan 14, 2010

Q1 (25 points): Let X and Y be two random variables. The values for P(X,Y) are shown in Table 1, H(X) is the entropy of X, and MI(X,Y) is the mutual information of X and Y. Please write down the formulas and the results for the following.

- (a) 1 pt: P(X)
- **(b) 1 pt:** P(Y)
- (c) 1 pt: P(X | Y)
- (d) 1 pt: P(Y | X)
- (e) 2 pts: Are X and Y independent? Why or why not?
- (f) 2 pts: H(X)
- (g) 2 pts: H(Y)
- (h) 2 pts: H(X,Y)
- (i) 2 pts: H(X | Y)
- (j) 2 pts: $H(Y \mid X)$
- (k) 2 pts: MI(X,Y)
- (1) 7 pts: The value for Q(X,Y) are shown in Table 2. What is the value for KL(P(X,Y) || Q(X,Y))? What is the value for KL(Q(X,Y) || P(X,Y))? Are they the same?

Table 1: The joint probability P(X,Y)

	X=1	X=2	X=3
Y=a	0.10	0.20	0.30
Y=b	0.05	0.15	0.20

Table 2: The joint probability Q(X,Y)

	X=1	X=2	X=3
Y=a	0.10	0.20	0.40
Y=b	0.01	0.09	0.20

Q2 (10 points): Let X be a random variable for the result of tossing a coin. P(X = h) = p; that is, p is the possibility of getting a head, and 1 - p is the possibility of getting a tail.

(a) 1 pt: H(X) is the entropy of X. Write down the formula for H(X).

- (b) 2 pts: Let $p^* = arg \ max_p \ H(X)$; that is, p^* is the p that results in the maximal value of H(X). What is p^* ?
- (c) 7 pts: Prove that the answer you give in (b) is correct. Hint: recall how you calculate the optimal solution for a function f(x) in your calculus class? In this case, H(X) is a function of p.
- Q3 (15 points): Permutations and combinations:
- (a) 3 pts: There are 10 balls: 5 are red, 3 are blue, and 2 are white. Suppose you put the balls in a line, how many different color sequences are there?
- (b) 6 pts: Suppose you want to create a document of length N by using only the words in a vocabulary $\Sigma = \{w_1, w_2, ..., w_n\}$. How many different documents are there which satisfy the condition that for each w_i in Σ the occurrence of the word w_i in the document is exactly t_i ? That is, how many different word sequences are there which contain exactly t_i w_i 's for each w_i in Σ ?
 - Hint: The answer to (b) is very similar to the answer to (a).
- (c) 6 pts: Suppose you want to create a document of length N by using only the words in a vocabulary $\Sigma = \{w_1, w_2, ..., w_n\}$. The document is created with the following procedure: for each position in a document, you pick a word w_i from the vocabulary with probability p_i , where $\sum_i p_i = 1$. What is the probability that you will end up with a document where the occurrence of the word w_i (for each $w_i \in \Sigma$) in the document is exactly t_i , assuming $\sum_i t_i = N$?
 - Hint: As (b) shows, there will be many documents that contain exactly t_i w_i 's. The answer to (c) should be the sum of the probabilities of all these documents.
- Q4 (10 points): Suppose you want to build a trigram POS tagger. Let T be the size of the tagset and V be the size of the vocabulary.
 - (a) 2 pts: Write down the formula for calculating $P(w_1, ..., w_n, t_1, ..., t_n)$, where w_i is the i-th word in a sentence, and t_i is the tag for w_i .
 - (b) 8 pts: Suppose you will use an HMM package to implement the tagger.
 - What does each state correspond to? How many states are there?
 - What probabilities in the formula for (a) do transition probability a_{ij} and b_{jk} correspond to?
- Q5 (10 points): In a POS tagging task, let V be the size of the vocabulary (i.e., the number of words), and T be the size of the tagset. Suppose we want to build a POS tagger that predicts the tag of the current word by using the following features:
 - 1. Previous word w_{-1}
 - 2. Current word w_0

- 3. Next word w_{+1}
- 4. Surrounding words w_{-1} w_{+1}
- 5. Previous tag t_{-1}
- 6. Previous two tags t_{-2} t_{-1}
- (a) 3 pts: How many unique features are there in total?
- (b) 2 pts: A classifier predicts class label y given the input x. In this task, what is x? what is y?
- (c) 5 pts: For the sentence Mike/NN likes/VBP cats/NNS, write down the feature vector for each word in the sentence. The feature vector has the format "InstanceName classLabel feat-Name1 val1 featName2 val2". For the instanceName, just use the current word.

Q6 (30 free points): Same as Hw8 from Ling570, which is available at http://courses.washington.edu/ling570/fei_fall09/hw8.pdf.

Submission: In your submission, include the following:

- Your note file hw1.* that include your answers to Q1-Q5.
- If you did NOT take ling570 last quarter, you **must** turn in your code and solution to Q6 (The table/question numbers below refer to the ones in Hw8):
 - Shell scripts for proc_file.sh and create_vectors.sh, and the code called by the shell scripts.
 - The directories q2c, q2d and q2e created in Q2(c)-(e).
 - Completed Tables 1 and 2.
 - The answers to (e)-(h) in Q1.
 - No need to submit anything for (a)-(d) in Q1.