Échelle d'évaluation standard : C (% de réussite compris entre 25 et 50%)

Échelle d'évaluation pondérée : C (% de réussite compris entre 25 et 50%)

DL₁

Échelle d'évaluation standard : **C (% de réussite compris entre 25 et 50%)**

@ Question 1

Un constructeur de composants électroniques fabrique des résistances. La probabilité qu'une résistance soit défectueuses est égale à 0,001. Soit X le nombre de résistances défectueuses dans un lot de 1500 résistances choisies au hasard dans la production de l'usine.

Choisir toutes les affirmations correctes (ici 2)

N.B: Identifier la loi de X et ses paramètres avant de répondre.

2 discordances Réponses partiellement correctes Réponse Réponse Réponse attendue saisie discordante \square Oui (+1) Α La loi de X peut être approchée par une loi de Poisson de paramètre 1,5. В $\overline{\mathbf{A}}$ $oldsymbol{\triangle}$ Non La variable aléatoire X suit une loi binomiale de paramètres n=1500 et p=0,001C Non La probabilité d'avoir au plus deux résistances défectueuses est -1.2. D Non La loi de X peut être approchée par une loi normale de moyenne 1,5 et de variance 1,4985 \Box Ε Oui (+1) La probabilité d'avoir au plus deux résistances défectueuses est de 0.

Soit X une variable aléatoire à valeurs dans $\{0, 1, 2\}$ et de loi donnée par P(X = 0) = P(X = 2) = a et P(X = 1) = 1 - 2a où a est une constante réelle.

Quelles valeurs la constante a a-t-elle le droit de prendre ? (choisir la bonne réponse)

Réponses partiellement correctes 2 discordances

	Réponse attendue	Réponse saisie	Réponse discordante	
Α			Non	Seulement la valeur a = 1/4.
В	V		Oui (+1)	Toutes les valeurs de]0, 1/2[.
С			Non	Toutes les valeurs de $]0,$ 1[car $P(X = 0) + P(X = 1)$ + $P(X = 2) = 1.$
D		V	Oui (+1)	Une autre réponse que les précédentes.

● Commentaire de correction de la question

Explications: Les probabilités P(X = k) doivent appartenir à]0, 1[(ni 0 ni 1, sinon une ou plusieurs modalités ne pourraient pas être déclarées dans l'espace d'état de X), d'où la réponse.

? Question 3

Soit X une variable aléatoire à valeurs dans $\{0, 1, 2\}$ et de loi donnée par P(X = 0) = P(X = 2) = a et P(X = 1) = 1 - 2a où a est une constante réelle.

Quel est le graphe de la **fonction de répartition** de X parmi les graphes suivants ? (1 bonne réponse)

Réponses correctes

0 discordance

	Réponse attendue	Réponse saisie	Réponse discordante	
Α			Non	Le premier.
В			Non	Le troisième
С		abla	Non	Le second

● Commentaire de correction de la question

Soit X une variable aléatoire à valeurs dans $\{0, 1, 2\}$ et de loi donnée par P(X = 0) = P(X = 2) = a et P(X = 1) = 1 - 2a où a est une constante réelle.

Que valent l'espérance et la variance de X?

Réponses partiellement correctes 2 discordances

	Réponse attendue	Réponse saisie	Réponse discordante	
А			Non	E(X) = a et Var(X) = 2.
В			Non	E(X) = 1 et Var(X) = 2.
С		V	Oui (+1)	E(X) = 2a et Var(X) = $4a^2$
D			Oui (+1)	E(X) = 1 et Var(X) = 2a.
Е			Non	E(X) = 1 et Var(X) = 1 + 2a.

● Commentaire de correction de la question

Soit E une expérience aléatoire et Ω l'univers qui lui a été associé. Soient A et B deux événements de probabilités respectives 0,5 et 0,6. Supposons que P(AU B) = 4/5. A et B sont-ils indépendants ?

Répor	nses partiellement corr	2 discordances		
	Réponse attendue	Réponse saisie	Réponse discordante	
А	abla		Oui (+1)	Oui
В		\Box	Oui (+1)	Non
С			Non	On ne peut pas se prononcer car on ne dispose pas de détails sur l'expérience, sur Ω, A et B.
D			Non	On ne peut pas se prononcer car on ne dispose pas de P(A∩ B).

● Commentaire de correction de la question

Explications: Oui. Il suffit d'utiliser $P(A \cap B) = P(A) + P(B) - P(A \cup B)$

Question 6

Choisir la proposition fausse parmi les suivant	res:

	Réponse attendue	Réponse saisie	Réponse discordante	
A			Non	Pour modéliser le nombre de succès dans n répétitions indépendantes d'une expérience de Bernoulli, on peut utiliser la loi binomiale.
В			Non	La loi binomiale possède deux paramètres : n le nombre de répétitions indépendantes et p la probabilité associée au succès.
С			Non	Pour modéliser un schéma succès-échec, on peut utiliser une loi de Bernoulli dont le paramètre est la probabilité associée au succès.
D			Oui (+1)	Pour déterminer le nombre moyen de succès parmi n répétitions indépendantes d'une expérience de Bernoulli, on peut utiliser l'espérance d'une loi binomiale.

	Réponse attendue	Réponse saisie	Réponse discordante	
E			Oui (+1)	La loi binomiale est une loi qui peut modéliser des données continues.

On lance un dé pipé dont les faces sont numérotées de 1 à 6.

Sachant que:

- les événements élémentaires {1}, {2}, {3} et {4} sont équiprobables.
- la probabilité des événements {5} et {6} est 8 fois celle des autres événements.

Déterminer la valeur de \(P(\{1\})\)

Réponses correctes	0 discordance
--------------------	---------------

Réponse attendue	Réponse saisie	Réponse discordante
[0.05; 0.05]	0.05	Non

● Commentaire de correction de la proposition

Commentaire de correction de la question