

## **General information**

### Designation

Fraxinus americana (L)

### Typical uses

handles; oars; vehicle parts; baseball bats & other sporting & athletic

## **Composition overview**

### **Compositional summary**

Hardness - Janka

Fatigue strength at 10^7 cycles

| Cellulose/Hemicellulose/Lignin/12%H2O   |               |                 |        |          |  |  |
|-----------------------------------------|---------------|-----------------|--------|----------|--|--|
| Material family                         | Natural       | Natural         |        |          |  |  |
| Base material                           | Wood (h       | Wood (hardwood) |        |          |  |  |
| Renewable content                       | 100           | 100             |        |          |  |  |
| Composition detail (polymers and nature | al materials) |                 |        |          |  |  |
| Wood                                    | 100           |                 |        | %        |  |  |
| Price                                   |               |                 |        |          |  |  |
| Price                                   | * 2.01        | -               | 2.68   | USD/kg   |  |  |
| Price per unit volume                   | * 1.21e3      | -               | 1.98e3 | USD/m^3  |  |  |
| Physical properties                     |               |                 |        |          |  |  |
| Density                                 | 600           | -               | 740    | kg/m^3   |  |  |
| Mechanical properties                   |               |                 |        |          |  |  |
| Young's modulus                         | * 11.9        | -               | 14.5   | GPa      |  |  |
| Yield strength (elastic limit)          | * 47.5        | -               | 58     | MPa      |  |  |
| Tensile strength                        | * 86.6        | -               | 106    | MPa      |  |  |
| Elongation                              | * 1.97        | -               | 2.41   | % strain |  |  |
| Compressive strength                    | 46            | -               | 56.2   | MPa      |  |  |
| Flexural modulus                        | 10.8          | -               | 13.2   | GPa      |  |  |
| Flexural strength (modulus of rupture)  | 93.1          | -               | 114    | MPa      |  |  |
| Shear modulus                           | * 0.88        | -               | 1.07   | GPa      |  |  |
| Shear strength                          | 11.9          | -               | 14.5   | MPa      |  |  |
| Bulk modulus                            | * 0.93        | -               | 1.04   | GPa      |  |  |
| Poisson's ratio                         | * 0.35        | -               | 0.4    |          |  |  |
| Shape factor                            | 5.2           |                 |        |          |  |  |
| Hardness - Vickers                      | * 6.07        | -               | 7.42   | HV       |  |  |
| Hardness - Brinell                      | * 49          | -               | 60     | НВ       |  |  |
|                                         |               |                 |        |          |  |  |

\* 6.07

\* 27.9

kΝ

MPa

7.42

34.1



# Ash (fraxinus americana) (I)

| <b>EDUPIACK</b>                              |                           |  |  |  |  |  |
|----------------------------------------------|---------------------------|--|--|--|--|--|
| Mechanical loss coefficient (tan delta)      | * 0.0069 - 0.0084         |  |  |  |  |  |
| Differential shrinkage (radial)              | * 0.17 - 0.2 %            |  |  |  |  |  |
| Differential shrinkage (tangential)          | * 0.28 - 0.34 %           |  |  |  |  |  |
| Radial shrinkage (green to oven-dry)         | 4.4 - 5.4 %               |  |  |  |  |  |
| Tangential shrinkage (green to oven-dry)     | 7 - 8.6 %                 |  |  |  |  |  |
| Volumetric shrinkage (green to oven-dry)     | 12 - 14.6 %               |  |  |  |  |  |
| Work to maximum strength                     | 103 - 126 kJ/m^3          |  |  |  |  |  |
| Impact & fracture properties                 |                           |  |  |  |  |  |
| Fracture toughness                           | * 5.4 - 6.6 MPa.m^0.5     |  |  |  |  |  |
| Thermal properties                           |                           |  |  |  |  |  |
| Glass temperature                            | 77 - 102 °C               |  |  |  |  |  |
| Maximum service temperature                  | 120 - 140 ℃               |  |  |  |  |  |
| Minimum service temperature                  | * -7323 °C                |  |  |  |  |  |
| Thermal conductivity                         | 0.27 - 0.33 W/m.℃         |  |  |  |  |  |
| Specific heat capacity                       | 1.66e3 - 1.71e3 J/kg.℃    |  |  |  |  |  |
| Thermal expansion coefficient                | * 2 - 11 µstrain/℃        |  |  |  |  |  |
| Electrical properties                        |                           |  |  |  |  |  |
| Electrical resistivity                       | 2.98e13 - 3.64e13 µohm.cm |  |  |  |  |  |
| Dielectric constant (relative permittivity)  | * 6.64 - 8.12             |  |  |  |  |  |
| Dissipation factor (dielectric loss tangent) | * 0.078 - 0.095           |  |  |  |  |  |
| Dielectric strength (dielectric breakdown)   | * 0.4 - 0.6 MV/m          |  |  |  |  |  |
| Magnetic properties                          |                           |  |  |  |  |  |
| Magnetic type                                | Non-magnetic              |  |  |  |  |  |
| Optical properties                           |                           |  |  |  |  |  |
| Transparency                                 | Opaque                    |  |  |  |  |  |
| Critical materials risk                      |                           |  |  |  |  |  |
| Contains >5wt% critical elements?            | No                        |  |  |  |  |  |
| Durability                                   |                           |  |  |  |  |  |
| Water (fresh)                                | Limited use               |  |  |  |  |  |
| Water (salt)                                 | Limited use               |  |  |  |  |  |
| Weak acids                                   | Limited use               |  |  |  |  |  |
| Strong acids                                 | Unacceptable              |  |  |  |  |  |
| Weak alkalis                                 | Acceptable                |  |  |  |  |  |
| Strong alkalis                               | Unacceptable              |  |  |  |  |  |
| Organic solvents                             | Acceptable                |  |  |  |  |  |
|                                              |                           |  |  |  |  |  |



## Ash (fraxinus americana) (I)

| Oxidation at 500C       | Unacceptable     |
|-------------------------|------------------|
| UV radiation (sunlight) | Good             |
| Flammability            | Highly flammable |

## Primary production energy, CO2 and water

| Embodied energy, primary production | 11.6 | - 1 | 2.8 | MJ/kg |  |
|-------------------------------------|------|-----|-----|-------|--|
|-------------------------------------|------|-----|-----|-------|--|

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production 0.574 - 0.633 kg/kg

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

| Water usage | * 665 | - | 735 | l/kg |  |  |
|-------------|-------|---|-----|------|--|--|
|-------------|-------|---|-----|------|--|--|

### Processing energy, CO2 footprint & water

| Coarse machining energy (per unit wt removed) | * 1.2   | - | 1.33   | MJ/kg |
|-----------------------------------------------|---------|---|--------|-------|
| Coarse machining CO2 (per unit wt removed)    | * 0.09  | - | 0.0995 | kg/kg |
| Fine machining energy (per unit wt removed)   | * 7.72  | - | 8.54   | MJ/kg |
| Fine machining CO2 (per unit wt removed)      | * 0.579 | - | 0.64   | kg/kg |
| Grinding energy (per unit wt removed)         | * 15    | - | 16.5   | MJ/kg |
| Grinding CO2 (per unit wt removed)            | * 1.12  | - | 1.24   | kg/kg |

## Recycling and end of life

| Recycle                            | ×                   |
|------------------------------------|---------------------|
| Recycle fraction in current supply | 8.55 - 9.45 %       |
| Downcycle                          | ✓                   |
| Combust for energy recovery        | ✓                   |
| Heat of combustion (net)           | * 19.8 - 21.3 MJ/kg |
| Combustion CO2                     | * 1.69 - 1.78 kg/kg |
| Landfill                           | ✓                   |
| Biodegrade                         | <b>√</b>            |

### **Notes**

#### Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

### Links

| rocessUniverse |  |
|----------------|--|
| eference       |  |
| hape           |  |