§ 10.5 Comparison Tests

Today we introduce two new tests for convergence Both of them require the seguence to have positive terms.

Theorem 10,14 Comparison Test

Suppose Σa_k and Σb_k have positive terms,

O If $a_k \leq b_k$ and Σb_k converges, then Σa_k converges

O If $b_k \leq a_k$ and Σb_k diverges, then Σa_k diverges

Ex $\sum_{k=1}^{\infty} \frac{2}{k+e^k}$ <- converge or diverge ?

Note $\frac{2}{K+e^K} \le \frac{2}{e^K}$ and $\sum_{K=1}^{\infty} \frac{2}{e^K}$ is a

convergent geometric series.

Thus $\sum_{K=1}^{\infty} \frac{2}{R+eK}$ converges.

 $E \times \sum_{k=1}^{\infty} \frac{1}{5k-3}$ \leftarrow converge or diverge?

 $\frac{1}{5R} \leq \frac{1}{5k-3} \quad \text{and} \quad \sum_{k=1}^{\infty} \frac{1}{5k} = 5 \sum_{k=1}^{\infty} \frac{1}{k}$

diverges (harmonic series) thus \(\frac{\sigma}{5k-3} \) diverges. Theorem 10.15 Limit Eumparison Test

Suppose Σa_{k} and Σb_{k} have positive terms, and lim $\frac{a_{k}}{k \to \infty} = L$ Of If $0 < L < \infty$ then both series diverge or both converge

Diff L = 0 and Σb_{k} converges, then Σa_{k} converges

The Limit Eumparison Test

Of Σb_{k} and Σb_{k} converges, then Σa_{k} converges

The Limit Eumparison Test

Of Σb_{k} and Σb_{k} diverges, then Σa_{k} diverges

The Σa_{k} diverges and Σb_{k} diverges, then Σa_{k} diverges

Rough idea of why it works:

O Suppose $\lim_{R \to \infty} \frac{a_R}{b_R} = L$ and $0 \le L \le \infty$.

Then for large k, $\frac{a_R}{b_R} \approx L \implies a_R \approx b_R L$ $\Rightarrow \sum a_R = \sum b_R \cdot L = L \ge b_R$ If one converges, so does other.

If one diverges, so does other.

② If L=0 then $\sum a_k = 0$ ③ If $L=\infty$ then $\sum a_k = \infty$.

Ex Does
$$\sum_{k=1}^{\infty} \frac{15}{k^2-k}$$
 converge or diverge?

Know $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is convergent poseries

Note $\lim_{k\to\infty} \frac{k^2-k}{k} = \lim_{k\to\infty} \frac{15k^2}{k^2-k} = \frac{15}{k^2-k}$

So both series converge. : $\left[\sum_{k=1}^{15} \frac{15}{k^2-k} + \frac{15}{k^$