Probabilités et Variables aléatoires

Chap. 1&2&3 du polycopié

Chargés de cours

V. Léger & F. Leblanc (resp. UE)

Loi de probabilité

Soit P une loi de probabilité sur Ω , $A \subset \Omega$ et $B \subset \Omega$ On définit P comme la fonction définie sur l'ensemble de toutes les parties de Ω (noté $\mathcal{P}(\Omega)$) telle que :

- $P(\Omega) = 1$
- **9** pour une famille dénombrable d'ensembles $(A_i)_i$ deux à deux disjoints (t.q. $A_i \cap A_j = \emptyset$ pour tous $i \neq j$) $P(A_1 \cup A_2 ... \cup A_i ...) = \sum_{i=1}^{\infty} P(A_i)$

Quelques notations :

- A décrit un évènement (par ex dans EX3 "la durée de vie d'une ampoule dépasse 10h")
- \bar{A} le complémentaire de A dans Ω décrit l'évènement contraire
- \emptyset l'évènement impossible (complémentaire de Ω dans Ω)
- Ω l'évènement certain
- $A \setminus B$ (noté aussi A B ou $A \triangle B$) l'évènement A réalisé et B non réalisé défini par $A \setminus B = A \cap \bar{B}$

Propriétés d'une probabilité :

$$P(\emptyset) = 0$$

$$P(\bar{A}) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) si A \cap B = \emptyset$$

$$P(A \cap \bar{B}) = P(A) - P(A \cap B)$$

3
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Loi de probabilité conditionnelle

On définit la loi de probabilité conditionnelle à B t.q. $P(B) \neq 0$ par :

$$P^{B}(A) = P(A|B) = \frac{P(A \cap B)}{P(B)} \quad \forall A \subset \Omega$$

Evènements indépendants :

A et B seront dits indépendants si

$$P(A \cap B) = P(A)P(B)$$

et si $P(B) \neq 0$ on aura $P^B(A) = P(A|B) = P(A)$ que B soit réalisé ou non ne conditionne pas que A le soit. **Incompatibilité :** A et B sont dits incompatibles si $P(A \cap B) = 0$

Formule des probabilités totale :

$$P(A) = P(A|B)P(B) + P(A|\bar{B})P(\bar{B})$$

Formule de Bayes :

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\bar{A})P(\bar{A})}$$

Fonction de répartition

$$F_X(x) = P(X \le x) \quad \forall x \in]-\infty, +\infty[$$

et on établit que pour tout a et b réels on a toujours

$$P(X \in]a,b]) = P(X \le b) - P(X \le a) = F_X(b) - F_X(a)$$

Preuve : $\{X \le b\} = A$ et $\{X \le a\} = B$ alors $B \subset A$ et on applique la propriété 7.

Ensuite selon que X est discrète ou continue on définit

• si X discrète et à valeur dans $\mathcal{X} = \{m_1, ..., m_q\}$ sa loi de probabilité donnée par $\{p_k, 1 \le k \le q\}$ où

$$p_k = P(X = m_k) = P(X \in]m_{k-1}, m_k]) = F(m_k) - F(m_{k-1})$$

On a évidemment $p_k \in [0,1]$ et $\sum_k p_k = 1$. chaque p_k est l'accr. de la FdR entre m_{k-1} et m_k et

$$P(X \le x) = F_X(x) = \sum_{m_k \le x} P(X = m_k).$$

Attention ici $P(X = m_k) \neq 0$

 si X est continue et que sa FdR est dérivable sa densité de probabilité est donnée par

$$f_X(x) = F_X'(x) \approx P(X \in [x, x + \delta])/\delta$$
 si δ petit.

On a f_X positive et telle que $\int_{-\infty}^{+\infty} f_X(t) dt = 1$ de plus

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$$

Rem.:
$$P(X = x) = 0$$
 d'où $P(X < x) = P(X \le x)$

Ex:

- Soit X le résultat d'un dé equilibré à six faces. Donner sa loi de prob. sa Fdr et $P(X \in [0.5, 1])$
- Soit X une variable de densité $f_X(x) = 1$ si $x \in [0, 1]$ et 0 sinon. Calculer sa FdR et $P(X \in [0.5, 1])$.

Espérance

cas discret

$$E(X) = \sum_{m_k \in \mathcal{X}} m_k P(X = m_k) = \mu.$$

cas continu

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \mu.$$

Ex de l'espérance du tirage d'un dé équilibré

Variance $E[(X - E(X))^2]$

cas discret

$$V(X) = \sum_{m_k \in \mathcal{X}} (m_k - \mu)^2 P(X = m_k) = \sigma^2.$$

cas continu

$$V(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f_X(x) dx = \sigma^2.$$

Ecart type (continu et discret) $\sigma = \sqrt{V(X)}$. Propriétés :

- E(aX + b) = aE(X) + b et en part. E(b) = b
- E(X + Y) = E(X) + E(Y)
- $V(aX + b) = a^2V(X)$ et en part. V(b) = 0
- si de plus X et Y tq $P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$ elles sont dites indépendantes et V(X + Y) = V(X) + V(Y).
- $V(X) = E(X^2) E(X)^2$

Exercice : On tire ensemble deux dés un rouge (X) et un noir (Y) indépendants

- Calculer E(X), E(Y) et E(X + Y).
- ② Dans un jeu on lance les deux dés et le gain est 2X + Y. Calculer l'espérance et l'écart-type du gain.

Centrer et réduire

Soit X d'espérance μ et variance σ^2 alors :

- $E(X \mu) = 0$ et $X \mu$ est dite centrée
- ② $V(X/\sigma) = 1$ et X/σ est dite réduite
- **3** $(X \mu)/\sigma$ est la centrée réduite de X en effet :

$$E\left(\frac{X-\mu}{\sigma}\right)=0$$
 et $V\left(\frac{X-\mu}{\sigma}\right)=1$

Ex : Calculer la variable centrée réduite de Z=2X+Y défini dans le jeu de dé précédent

Cas discret

- Uniforme sur $\{m_1,...,m_q\}$ (ex le dé) notée $\mathcal{U}(\{m_1,...,m_q\})$: $\mathcal{X}=\{m_1,...,m_q\}$
- **Bernoulli** de paramètre $p \in]0,1[$ notée $\mathcal{B}(p): \mathcal{X} = \{0,1\}$

$$P(X = 1) = p$$
 et $P(X = 0) = 1 - p$.

variable indicatrice de succès (A réalisé avec proba. p)

• Binômiale de paramètres $p \in]0,1[$ et n>0 et entier notée $\mathcal{B}(p,n): \mathcal{X} = \{0,1,...,n\}$

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}$$
, pour tout $k \in \{0, ..., n\}$.

variable donnant le nombre de succès de A après n essais indép.

Géométrique, Poisson....

Cas continu

- Uniforme sur [a, b] noté $\mathcal{U}([a, b])$
- Normale de paramètres $\mu \in]-\infty,\infty[$ et $\sigma^2 \in]0,\infty[$ noté $\mathcal{N}(\mu,\sigma^2)$
- Chi-deux de paramètre entier ν noté \mathcal{X}_{ν} ou $\mathcal{X}(\nu)$
- **Student** de paramètre entier ν noté \mathcal{T}_{ν} ou $\mathcal{T}(\nu)$
-

Rem.:

- -Pour toutes les variables usuelles on connait l'expression des densités ou loi de proba, FdR, espérance, variance,....(voir tableaux recap. dans poly)
- -La $\mathcal{N}(0,1)$ et la $\mathcal{T}_{
 u}$ sont symétriques autour de [0,y)

densité de la loi normale pour différents couples de paramètres

Savoir utiliser les abaques

• Loi normale (page 1 des tables) : FdR de la $\mathcal{N}(0,1)$, notée Φ , pour $x \geq 0$ et si x < 0 on utilise :

$$\Phi(x) = 1 - \Phi(-x)$$

• Loi normale (page 2) : fonction quantile $\Phi^{-1}(p)$ de la $\mathcal{N}(0,1)$ pour $p \geq 0.5$ et si p < 0.5 on utilise :

$$\Phi^{-1}(1-p) = -\Phi^{-1}(p)$$

- ullet Loi de Student (page 3) : fonction quantile de la $\mathcal{T}(
 u)$
- ullet Loi du Chi-deux (page 4) : fonction quantile de $\mathcal{X}(
 u)$
- Loi de Fisher-Snedecor (page 5 à 8) : certains quantiles

Savoir utiliser les menus de la calculette

Ex:

- Soit X une $\mathcal{N}(2,9)$ calculer $P(1 \le X \le 2)$ avec les tables et avec le programme adapté de votre calculette
- Trouver a tel que $P(X \ge a) = 0.05$ avec les deux outils
- Soit T de loi de Student $\mathcal{T}(2)$ calculer $P(T \le 2.9)$ et comparer avec $\Phi(2.9)$. Le refaire avec une $\mathcal{T}(100)$.
- Soit T de loi de Student $\mathcal{T}(5)$, trouver t tels que $P(|T| \ge t) = 0.05$.
- Soit V de loi $\mathcal{X}(3)$ donner le quantile d'ordre 0.95 lu dans la table et le calculer avec le programme de la calculette

Pourquoi elle?

- construite par Gauss à l'aide d'observations répétées d'une mesure
- simplicité : nombreuses propriétés simples et remarquables, facile à manipuler dans les calculs
- FdR, densite, quantile disp. dans tous les outils de calc.
- la symétrie autour de la moyenne :

$$P(X > \mu + a) = P(X < \mu - a)$$

- elle a deux paramètres ajustables indépendamment l'un de l'autre : gamme de modèles assez riche et peu coûteuse
- souvent adaptée à des situations variées
- Et si elle ne l'est pas avec de grands échantillons on s'y ramenera avec le Théorème Central Limit

densité de la loi normale pour différents couples de paramètres

Ses propriétés :

- si X suit une loi $\mathcal{N}(\mu, \sigma^2)$ alors pour tous a et b réels Y = aX + b suit une loi $\mathcal{N}(E(Y), V(Y))$ où $E(Y) = a\mu + b$ et $Var(Y) = a^2\sigma^2$.
- ② U suit une loi $\mathcal{N}(0,1)$ alors $X = \sigma U + \mu$ suit une loi $\mathcal{N}(\mu, \sigma^2)$.
- 3 si X suit une loi normale $\mathcal{N}(\mu, \sigma^2)$ alors $U = (X \mu)/\sigma$ suit une loi normale $\mathcal{N}(0, 1)$.
- X_1 de loi $\mathcal{N}(\mu_1, \sigma_1^2)$ et X_2 de loi $\mathcal{N}(\mu_2, \sigma_2^2)$ et indépendantes alors $aX_1 + bX_2$ suit la loi $\mathcal{N}(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$.

Concentration d'une var normale X autour de E(X)

X de loi $\mathcal{N}(\mu, \sigma^2)$. La probabilité de dévier de μ pour X d'une distance maximum d est donnée par $P(|X - \mu| \leq d)$. EX: Montrer que

$$P(|X - \mu| \le d) = 2\Phi\left(\frac{d}{\sigma}\right) - 1$$

Quelles valeurs obtient-t-on pour $d = \sigma, 2\sigma$ ou 3σ ?

Différence ou somme de deux variables normales

 $Ex: X \text{ et } Y \text{ resp. de loi } \mathcal{N}(\mu_X, \sigma_X^2) \text{ et } \mathcal{N}(\mu_Y, \sigma_Y^2), \text{ on pose } S = X + Y \text{ et } D = X - Y, \text{ loi de } S \text{ et de } D ?$