Math 104 Worksheet 4

UC Berkeley, Summer 2021 Tuesday, June 29

1	T	/ \	1		. c	nonnegative real	1	1 1		1 .	
	LÆT	101	ne a	seamence	Ω T	nonnegative real	numners	wnich	converges	$T \cap$	c
		しいかし	$D \subset a$	boduciico	OI	monnice autro roar	Humbers	WILL	COLLACI	UU	0

(a) Show that $s \geq 0$. (*Hint*: Argue by contradiction.)

(b) Show that $\sqrt{s_n} \to \sqrt{s}$. (*Hint*: Consider the cases s=0 and s>0 separately. For the case s>0, observe that $|\sqrt{s_n}-\sqrt{s}|=\frac{|s_n-s|}{\sqrt{s_n}+\sqrt{s}}\leq \frac{|s_n-s|}{\sqrt{s}}$.)

2. (Theorem 9.9) Let (s_n) and (t_n) be sequences such that $\lim s_n = \infty$ and (t_n) converges to t > 0. Then $\lim s_n t_n = \infty$.

Proof. Let M > 0. Goal: Show that there exists $N \in \mathbb{N}$ such that ...

First, since $t_n \to t > 0$, we can find $N_1 \in \mathbb{N}$ such that $|t_n - t| < \frac{t}{2}$ for all $n \geq N_1$. Then $t_n \geq \frac{t}{2}$ for all $n \geq N_1$. Now since $s_n \to \infty$, there exists $N_2 \in \mathbb{N}$ such that

$$s_n > \underline{\hspace{1cm}}$$

for all $n \geq N_2$. Set $N = \max(N_1, N_2)$. Then for $n \geq N$,

$$s_n t_n > \underline{\hspace{1cm}} = M.$$

- **3**. Give an example of . . .
 - 1. a sequence (s_n) of rational numbers which converges to an irrational number.
 - 2. a sequence (s_n) of irrational numbers which converges to a rational number.
 - 3. a divergent sequence (s_n) such that $(|s_n|)$ converges.
 - 4. a sequence (s_n) of nonzero real numbers which converges to 0 such that the sequence $(1/s_n)$ does not have a limit.
 - 5. two divergent sequences (s_n) and (t_n) such that the sequence $(s_n + t_n)$ converges.
 - 6. a sequence (s_n) of nonzero real numbers and a divergent sequence (t_n) such that the sequence $(s_n t_n)$ converges.
 - 7. two convergent sequences (s_n) and (t_n) such that $s_n < t_n$ for all n and $\lim s_n = \lim t_n$.
 - 8. a divergent sequence (s_n) of positive real numbers such that $\lim |s_{n+1}/s_n| = 1$. (cf. Homework 2 Problem 8)
 - 9. a bounded divergent sequence (s_n) such that $|s_n|$ is strictly increasing.
 - 10. a divergent sequence (s_n) such that $|s_{n+1} s_n| < \frac{1}{n}$ for all n.