### Tafelmitschriften zur Vorlesung "Beschreibungslogik" im Sommersemester 2019

Prof. Dr. Thomas Schneider AG Theorie der Künstlichen Intelligenz Fachbereich 3



Stand: 12. Mai 2019

Dieses Dokument ist noch unvollständig und wird regelmäßig aktualisiert.

### Inhaltsverzeichnis

| 2   | Grundlagen                               | 3  |
|-----|------------------------------------------|----|
| 3   | Ausdrucksstärke und Modellkonstruktionen | 11 |
| 4   | Tableau-Algorithmen                      | 18 |
| 5   | Komplexität                              | 24 |
| 6   | Effiziente Beschreibungslogiken          | 25 |
| 7   | ABoxen und Anfragebeantwortung           | 26 |
| Lit | eraturverzeichnis                        | 27 |

# Teil 2 Grundlagen

### T2.1 Beispiele für ALC-Konzepte

Mit den Konzeptnamen

Student, Naturwissenschaft, Professor, Emeritus, PflichtVL, VL, Einfach, Interessant, A,B

und den Rollennamen

```
studiert, hält, hat Übungsaufgabe, r
```

kann man z. B. folgende zusammengesetzte  $\mathcal{ALC}$ -Konzepte bilden:

- Student □ ∃studiert.Naturwissenschaft (beschreibt Studierende, die mindestens eine Naturwissenschaft studieren)
- Professor 

  Emeritus 

  ∀hält.¬PflichtVL

  (beschreibt Professor\*innen im Ruhestand, die keine Pflichtvorlesungen halten)
- VL ¬ ¬PflichtVL ¬ ∀hatÜbungsaufgabe.(Einfach ⊔ Interessant) (beschreibt Wahlvorlesungen, bei denen alle Übungsaufgaben einfach oder interessant sind)
- $A \sqcap \exists r. (\neg B \sqcup \forall r. A)$

(Die Beschreibungen in Klammern werden eigentlich erst richtig klar, wenn die Semantik definiert ist.)

### T2.2 Beispiele für Interpretationen und Extensionen

Wir betrachten die Interpretation  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$  mit

$$\begin{split} \Delta^{\mathcal{I}} &= \{s_1, s_2, s_3, v_1, v_2\} \\ &\text{Mensch}^{\mathcal{I}} = \{s_1, s_2, s_3\} \\ &\text{Student}^{\mathcal{I}} = \{s_1, s_2, s_3\} \\ &\text{Vorlesung}^{\mathcal{I}} = \{v_1, v_2\} \\ &\text{PflichtVL}^{\mathcal{I}} = \{v_1\} \\ &\text{WahlVL}^{\mathcal{I}} = \{v_2\} \\ &\text{h\"{o}rt}^{\mathcal{I}} = \{(s_1, v_1), (s_2, v_1), (s_2, v_2), (s_3, v_1)\} \\ &\text{bekanntMit}^{\mathcal{I}} = \{(s_1, s_2), (s_2, s_1), (s_1, s_1), (s_2, s_2), (s_3, s_3)\}. \end{split}$$

Jede Interpretation kann in offensichtlicher Weise als (knoten- und kantenbeschrifteter) gerichteter Graph aufgefasst werden; für unsere Beispielinterpretation  $\mathcal{I}$ :



Beispiele für die Extensionen einiger zusammengesetzter Konzepte in dieser Interpretation:

$$\begin{aligned} (\mathsf{VL} \sqcap \mathsf{PflichtVL})^{\mathcal{I}} &= \{v_1, v_2\} \cap \{v_1\} &= \{v_1\} \\ &(\neg \mathsf{VL})^{\mathcal{I}} &= \Delta^{\mathcal{I}} \setminus \{v_1, v_2\} &= \{s_1, s_2, s_3\} \\ &(\mathsf{Student} \sqcup \mathsf{VL})^{\mathcal{I}} &= \{s_1, s_2, s_3\} \cup \{v_1, v_2\} &= \Delta^{\mathcal{I}} \\ &(\exists \mathsf{bekanntMit.Student})^{\mathcal{I}} &= \{s_1, s_2, s_3\} \\ &(\exists \mathsf{bekanntMit.} \exists \mathsf{bekanntMit.Student})^{\mathcal{I}} &= \{s_1, s_2, s_3\} \\ &(\forall \mathsf{h\"{o}rt.PflichtVL})^{\mathcal{I}} &= \{s_1, s_3, v_1, v_2\} \end{aligned}$$

In der letzten Zeile beachte man die Besonderheit der Werterestriktion  $(\forall)$ , dass ein Domänenelement d, welches keine ausgehenden r-Kanten besitzt, immer eine Instanz von  $\forall r.C$  ist, für jedes beliebige Konzept C.

### T2.3 Semantik von $\top$ und $\bot$

Dabei folgt die erste Gleichheit jeder Zeile aus der Definition von  $\top$  bzw.  $\bot$  auf Folie 2.9, die zweite Gleichheit aus der Semantik (Def. 2.2) und die dritte aus der Mengenlehre.

### T2.4 Beispiele für "unerfüllbar" und "subsumiert"

(a) Das Konzept  $C = \exists r.A \sqcap \forall r.\neg A$  is *nicht* erfüllbar:

Angenommen, C sei erfüllbar, d. h. es gibt eine Interpretation  $\mathcal{I}$  mit  $C^{\mathcal{I}} \neq \emptyset$ . Sei  $d \in C^{\mathcal{I}}$ . Wegen  $d \in (\exists r.A)^{\mathcal{I}}$  gibt es ein Element  $e \in A^{\mathcal{I}}$  mit  $(d,e) \in r^{\mathcal{I}}$ . Wegen  $d \in (\forall r. \neg A)^{\mathcal{I}}$  gilt aber  $e \in (\neg A)^{\mathcal{I}}$ , also  $e \notin A^{\mathcal{I}}$ , was ein Widerspruch zu  $e \in A^{\mathcal{I}}$  ist. Also ist die Annahme falsch.

(b)  $\exists r.(A \sqcap B) \sqsubseteq \exists r.A \sqcap \exists r.B$ :

Sei  $\mathcal{I}$  eine Interpretation und  $d \in (\exists r.(A \sqcap B))^{\mathcal{I}}$ . Dann gibt es ein Element  $e \in (A \sqcap B)^{\mathcal{I}}$  mit  $(d, e) \in r^{\mathcal{I}}$ . Wegen  $e \in A^{\mathcal{I}}$  gilt  $d \in (\exists r.A)^{\mathcal{I}}$ ; wegen  $e \in B^{\mathcal{I}}$  gilt  $d \in (\exists r.B)^{\mathcal{I}}$ . Also ist  $d \in (\exists r.A \sqcap \exists r.B)^{\mathcal{I}}$ .

Die Rückrichtung dieser Subsumtion gilt nicht – finde ein Gegenbeispiel, d. h. eine Interpretation  $\mathcal{I}$  mit  $(\exists r.A \sqcap \exists r.B)^{\mathcal{I}} \nsubseteq (\exists r.(A \sqcap B))^{\mathcal{I}}$ .

### T2.5 Beispiele für TBoxen und deren Semantik

Wir betrachten folgende TBox.

$$\mathcal{T} = \{ & \mathsf{Student} \ \equiv \ \mathsf{Mensch} \ \sqcap \ \exists \mathsf{h\"{o}rt}. \mathsf{Vorlesung} \\ \mathsf{Vorlesung} \ \equiv \ \mathsf{PflichtVL} \ \sqcup \ \mathsf{WahlVL} \\ \mathsf{Student} \ \sqcap \ \exists \mathsf{h\"{o}rt}. \mathsf{Vorlesung} \ \sqsubseteq \ \exists \mathsf{bekanntMit}. \mathsf{Student} \\ \mathsf{PflichtVL} \ \sqcap \ \mathsf{WahlVL} \ \sqsubseteq \ \bot \qquad \qquad \}$$

Die Interpretation aus T2.2 ist Modell von  $\mathcal{T}$ . Sie erfüllt z. B. auch die folgende Konzeptinklusion.

$$\mathsf{Student} \sqsubseteq \exists \mathsf{bekanntMit.Mensch} \tag{1}$$

Ein weiteres Modell ist z.B. folgende Interpretation  $\mathcal{J}$ .



 $\mathcal J$ erfüllt ebenfalls die Konzeptinklusion (1) sowie z. B.  $\mathsf{VL} \equiv \mathsf{PflichtVL}.$ 

### T2.6 Beispiele für "erfüllbar" und "subsumiert" bzgl. TBoxen

Sei  $\mathcal{T}$  die TBox aus dem vorangehenden Beispiel.

### (a) Das Konzept

### $C = \mathsf{Student} \sqcap \forall \mathsf{h\"{o}rt}.\mathsf{PflichtVL}$

ist erfüllbar bezüglich  $\mathcal{T}$ , denn folgende Interpretation  $\mathcal{I}'$  ist ein Modell von  $\mathcal{T}$  mit  $s_1 \in C^{\mathcal{I}'}$ :



Ebenso ist die Interpretation  $\mathcal{I}$  aus T2.2 ein Modell von  $\mathcal{T}$  mit  $s_1 \in C^{\mathcal{I}}$ .

### (b) Das Konzept

### $C = \mathsf{Student} \sqcap \forall \mathsf{h\"{o}rt}.\mathsf{PflichtVL} \sqcap \exists \mathsf{h\"{o}rt}.\mathsf{WahlVL}$

ist unerfüllbar bezüglich  $\mathcal{T}$ : Angenommen, C sei erfüllbar bzgl.  $\mathcal{T}$ . Dann gibt es ein Modell  $\mathcal{I}$  von  $\mathcal{T}$  mit einer Instanz  $d \in C^{\mathcal{I}}$ . Nach der Semantik von " $\sqcap$ " (Def. 2.2) gelten (i)  $d \in (\forall \mathsf{h\"{o}rt}.\mathsf{PflichtVL})^{\mathcal{I}}$  und (ii)  $d \in (\exists \mathsf{h\"{o}rt}.\mathsf{WahlVL})^{\mathcal{I}}$ . Wegen (ii) gibt es ein Element  $e \in \mathsf{WahlVL}^{\mathcal{I}}$  mit  $(d,e) \in \mathsf{h\"{o}rt}^{\mathcal{I}}$ . Wegen (i) ist dann auch  $e \in \mathsf{PflichtVL}^{\mathcal{I}}$ , also  $e \in (\mathsf{PflichtVL} \sqcap \mathsf{WahlVL})^{\mathcal{I}}$ . Weil  $\mathcal{I}$  jedoch ein Modell von  $\mathcal{T}$  ist, kann es wegen der Konzeptinklusion  $\mathsf{PflichtVL} \sqcap \mathsf{WahlVL} \sqsubseteq \bot$  aus  $\mathcal{T}$  ein solches Element e nicht geben; ein Widerspruch. Also ist die Annahme falsch.

### (c) Für die Konzepte

$$C = \mathsf{Student} \quad \text{und} \quad D = \exists \mathsf{bekanntMit.Student}$$

gilt  $\mathcal{T} \models C \sqsubseteq D$ : Sei  $\mathcal{I}$  ein Modell von  $\mathcal{T}$  und  $d \in C^{\mathcal{I}}$ , d. h.  $d \in \mathsf{Student}^{\mathcal{I}}$ . Zu zeigen ist  $d \in D^{\mathcal{I}}$ , d. h.  $d \in (\exists \mathsf{bekanntMit.Student})^{\mathcal{I}}$ .

Wegen der ersten Zeile von  $\mathcal{T}$  gilt  $d \in (\exists \mathsf{h\"{o}rt.Vorlesung})^{\mathcal{I}}$ , also auch  $d \in (\mathsf{Student} \sqcap \exists \mathsf{h\"{o}rt.Vorlesung})^{\mathcal{I}}$ . Mit Zeile 3 von  $\mathcal{T}$  folgt wie gewünscht  $d \in (\exists \mathsf{bekanntMit.Student})^{\mathcal{I}}$ .

Dies ist bereits Schlussfolgern, denn wir haben implizites Wissen aus  $\mathcal{T}$  abgeleitet:

- (a) Es kann Student\*innen geben, die nur Pflichtvorlesungen hören.
- (b) Es kann *keine* Student\*innen geben, die nur Pflichtvorlesungen, aber mindestens eine Wahlvorlesung hören.
- (c) Jede\*r Student\*in ist mit mindestens einer/m Student\*in bekannt.

### T2.7 Beweis der Monotonie von $\mathcal{ALC}$ (Lemma 2.7)

**Lemma 2.7** Seien  $\mathcal{T}_1$  und  $\mathcal{T}_2$  TBoxen mit  $\mathcal{T}_1 \subseteq \mathcal{T}_2$ . Dann gilt:

- (1) Wenn C erfüllbar bezüglich  $\mathcal{T}_2$  ist, dann ist C erfüllbar bezüglich  $\mathcal{T}_1$ .
- (2) Wenn  $\mathcal{T}_1 \models C \sqsubseteq D$ , dann  $\mathcal{T}_2 \models C \sqsubseteq D$ .

### Beweis.

- (1) Sei C erfüllbar bezüglich  $\mathcal{T}_2$ . Dann gibt es ein Modell  $\mathcal{I}$  von  $\mathcal{T}_2$  mit  $C^{\mathcal{I}} \neq \emptyset$ . Da  $\mathcal{I}$  Modell von  $\mathcal{T}_2$  ist, erfüllt  $\mathcal{I}$  alle Konzeptinklusionen in  $\mathcal{T}_2$ , also wegen  $\mathcal{T}_1 \subseteq \mathcal{T}_2$  auch alle Konzeptinklusionen in  $\mathcal{T}_1$ , und somit ist  $\mathcal{I}$  auch Modell von  $\mathcal{T}_1$ . Also gibt es ein Modell  $\mathcal{I}$  von  $\mathcal{T}_1$  mit  $C^{\mathcal{I}} \neq \emptyset$ ; d. h. C ist erfüllbar bezüglich  $\mathcal{T}_1$ .
- (2) Wir beweisen die Kontraposition. Es gelte  $\mathcal{T}_2 \not\models C \sqsubseteq D$ . Dann gibt es ein Modell  $\mathcal{I}$  von  $\mathcal{T}_2$  mit  $C^{\mathcal{I}} \not\subseteq D^{\mathcal{I}}$ . Wie in (1) ist  $\mathcal{I}$  auch Modell von  $\mathcal{T}_1$ , also  $\mathcal{T}_1 \not\models C \sqsubseteq D$ .  $\square$

Auf der Folie steht auch: "Die Umkehrungen von (1) und (2) sind im Allgemeinen *nicht* richtig." Davon kann man sich mittels einfacher Gegenbeispiele überzeugen: z. B. ist mit  $\mathcal{T}_1 = \emptyset$  und  $\mathcal{T}_2 = \{A \sqsubseteq B\}$  die Umkehrung von (2) widerlegt, denn  $\mathcal{T}_2 \models A \sqsubseteq B$ , aber  $\mathcal{T}_1 \not\models A \sqsubseteq B$ .

### T2.8 Beispiel für Subsumtion als Ordnungsrelation

Wir betrachten folgende TBox.

Die dritte Zeile von  $\mathcal{T}$  ist äquivalent zu Desktop  $\sqcap$  Laptop  $\sqsubseteq \bot$ , wie man leicht zeigt (probiere es selbst aus).

Die Ordnung " $\sqsubseteq$  bezüglich  $\mathcal{T}$ " kann man durch folgendes Hasse-Diagramm darstellen:



<sup>&</sup>lt;sup>1</sup>Das Zeichen  $\not\models$  steht für "nicht  $\models$ ", also bedeutet  $\mathcal{T} \not\models C \sqsubseteq D$ , dass die Beziehung  $\mathcal{T} \models C \sqsubseteq D$  nicht gilt (d. h. bezüglich  $\mathcal{T}$  wird C nicht von D subsumiert).

Dass die Relation " $\sqsubseteq$  bezüglich  $\mathcal{T}$ " nicht antisymmetrisch ist, zeigt sich in diesem Beispiel dadurch, dass der Knoten unten rechts zwei Beschriftungen hat, also  $\mathcal{T} \models \mathsf{Laptop} \equiv \mathsf{MobilerPC}$ . Wäre die Relation antisymmetrisch, dann dürfte nicht gleichzeitig  $\mathcal{T} \models \mathsf{Laptop} \sqsubseteq \mathsf{MobilerPC}$  und  $\mathcal{T} \models \mathsf{MobilerPC} \sqsubseteq \mathsf{Laptop}$  gelten.

### T2.9 Wechselseitige Reduktion der Schlussfolgerungsprobleme

### Lemma 2.9

(1) Subsumtion ist polynomiell reduzierbar auf (Un)erfüllbarkeit:

$$\mathcal{T} \models C \sqsubseteq D$$
 gdw.  $C \sqcap \neg D$  unerfüllbar bezüglich  $\mathcal{T}$ 

- (2) Erfüllbarkeit ist polynomiell reduzierbar auf (Nicht-)Äquivalenz:
  - C erfüllbar bezüglich  $\mathcal{T}$  gdw.  $\mathcal{T} \not\models C \equiv \bot$
- (3) Äquivalenz ist polynomiell reduzierbar auf Subsumtion:

$$\mathcal{T} \models C \equiv D \quad \text{gdw.} \quad \mathcal{T} \models \top \sqsubseteq (C \sqcap D) \sqcup (\neg C \sqcap \neg D)$$

**Beweis.** Wir beweisen exemplarisch Punkt (1). Die Beweise der anderen zwei Punkte sind analog.

$$\mathcal{T} \models C \sqsubseteq D \quad \text{gdw.} \quad \text{für alle Modelle } \mathcal{I} \text{ von } \mathcal{T} \text{ gilt } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$
 
$$\text{gdw.} \quad \text{für alle Modelle } \mathcal{I} \text{ von } \mathcal{T} \text{ gilt } C^{\mathcal{I}} \cap (\Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}) = \emptyset$$
 
$$\text{gdw.} \quad \text{für alle Modelle } \mathcal{I} \text{ von } \mathcal{T} \text{ gilt } (C \sqcap \neg D)^{\mathcal{I}} = \emptyset$$
 
$$\text{gdw.} \quad C \sqcap \neg D \text{ unerfüllbar bezüglich } \mathcal{T}$$

Hier gilt das erste "gdw." wegen der Definition von Subsumtion (Def. 2.6), und die zweite Zeile ist äquivalent zur ersten, weil für beliebige Mengen  $M_1, M_2$  gilt, dass  $M_1 \subseteq M_2$  gdw.  $M_1 \cap \overline{M_2} = \emptyset$ , wobei  $\overline{M_2}$  das Komplement von  $M_2$  ist. Man überzeuge sich davon anhand eines Venn-Diagramms. Die dritte Zeile ist schließlich äquivalent zur dritten wegen der Semantik von  $\sqcap$  und  $\lnot$  (Def. 2.2), und die vierte ist äquivalent dazu wegen der Definition von Unerfüllbarkeit (Def. 2.6).

### T2.10 Beispiel für inverse Rollen

Betrachte folgende  $\mathcal{ALC}$ -TBox:

$$\mathcal{T} = \{ \text{ Professor } \sqsubseteq \text{ Verrückt } \sqcap \exists \text{gibt.Vorlesung }$$
  
Vorlesung  $\sqsubseteq \forall \text{wirdGegebenVon.} \neg \text{Verrückt } \}$ 

Intuitiv sollte Professor unerfüllbar bezüglich  $\mathcal{T}$  sein; dies ist aber nicht der Fall, weil Professor in folgendem Modell von  $\mathcal{T}$  eine Instanz hat:



In  $\mathcal{ALCI}$  kann man die zweite Konzeptinklusion in  $\mathcal T$  durch

$$Vorlesung \sqsubseteq \forall gibt^-. \neg Verrückt$$

ersetzen. Dann wird Professor unerfüllbar bezüglich  $\mathcal{T}$  (aber  $\mathcal{T}$  hat immer noch Modelle).

### T2.11 Beispiele für Zahlenrestriktionen

Definition einer Hand als ein Organ mit genau fünf Fingern:

$$\mathsf{Hand} \, \equiv \, \mathsf{Organ} \, \sqcap \, (\geqslant 5 \, \mathsf{hatTeil.Finger}) \, \sqcap \, (\leqslant 5 \, \mathsf{hatTeil.Finger})$$

Forderung, dass in jedem Semester mindestens zwei Wahlpflichtmodule angeboten werden:

Semester  $\sqsubseteq (\geqslant 2 \text{ angeboten.Wahlpflichtmodul})$ 

### Teil 3

### Ausdrucksstärke und Modellkonstruktionen

### T3.1 Beispiele für Bisimulationen

1. Für die Interpretationen





ist  $\rho = \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$  eine Bisimulation.

2. Für die Interpretationen





ist  $\rho = \{(d, x), (e, y), (e, y')\}$  eine Bisimulation.

3. Für die Interpretationen





ist  $\rho = \{(d, x), (d, y), (e, z)\}$  eine Bisimulation.

### T3.2 Beweis des Bisimulationstheorems

**Theorem 3.2** Seien  $\mathcal{I}_1, \mathcal{I}_2$  Interpretationen,  $d_1 \in \Delta^{\mathcal{I}_1}$  und  $d_2 \in \Delta^{\mathcal{I}_2}$ .

Wenn  $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$ , dann gilt für alle  $\mathcal{ALC}$ -Konzepte C:

$$d_1 \in C^{\mathcal{I}_1}$$
 gdw.  $d_2 \in C^{\mathcal{I}_2}$ 

**Beweis.** Sei  $\rho$  eine Bisimulation zwischen  $\mathcal{I}_1$  und  $\mathcal{I}_2$  mit  $d_1\rho d_2$ . Wir beweisen die Behauptung per Induktion über die Struktur von C.

Induktionsanfang. Hier ist C=A für einen Konzeptnamen A. Nach Bedingung (1) für Bisimulationen (Definition 3.1) gilt wie gewünscht:  $d_1 \in A^{\mathcal{I}_1}$  gdw.  $d_2 \in A^{\mathcal{I}_2}$ 

**Induktionsschritt.** Wir müssen fünf Fälle gemäß des äußersten Konstruktors von C unterscheiden  $(\neg, \sqcap, \sqcup, \exists, \forall)$ . Wegen der (leicht nachzuweisenden) Äquivalenzen

$$C \sqcup D \equiv \neg(\neg C \sqcap \neg D)$$
 und  $\forall r.C \equiv \neg \exists r. \neg C$ 

genügt es, wenn wir uns auf die drei Fälle  $\neg, \neg, \exists$  beschränken.

$$C = \neg D$$

$$d_1 \in C^{\mathcal{I}_1}$$
 gdw.  $d_1 \notin D^{\mathcal{I}_1}$  (Semantik "¬")  
gdw.  $d_2 \notin D^{\mathcal{I}_2}$  (Induktionsvoraussetzung)  
gdw.  $d_2 \in C^{\mathcal{I}_2}$  (Semantik "¬")

$$C = D \sqcap E$$

$$d_1 \in C^{\mathcal{I}_1}$$
 gdw.  $d_1 \in D^{\mathcal{I}_1}$  und  $d_1 \in E^{\mathcal{I}_1}$  (Semantik " $\sqcap$ ") gdw.  $d_2 \in D^{\mathcal{I}_2}$  und  $d_1 \in E^{\mathcal{I}_2}$  (Induktionsvoraussetzung) gdw.  $d_2 \in C^{\mathcal{I}_2}$  (Semantik " $\sqcap$ ")

$$C = \exists r.D$$

Für die Richtung " $\Rightarrow$ " argumentieren wir so:

$$d_{1} \in C^{\mathcal{I}_{1}}$$

$$\Rightarrow \text{ es gibt } e_{1} \in \Delta^{\mathcal{I}_{1}} \text{ mit } (d_{1}, e_{1}) \in r^{\mathcal{I}_{1}} \text{ und } e_{1} \in D^{\mathcal{I}_{1}} \text{ (Semantik ,,}\exists\text{``})$$

$$\Rightarrow \text{ es gibt } e_{2} \in \Delta^{\mathcal{I}_{2}} \text{ mit } (d_{2}, e_{2}) \in r^{\mathcal{I}_{2}} \text{ und } e_{1}\rho e_{2} \text{ (Bedingung (2) Bisim.)}$$

$$\Rightarrow e_{2} \in D^{\mathcal{I}_{2}} \text{ (Induktionsvorauss.)}$$

$$\Rightarrow d_{2} \in (\exists r.D)^{\mathcal{I}_{2}} \text{ (Semantik ,,}\exists\text{``})$$

Das Argument für die Richtung " $\Leftarrow$ " ist analog, unter Verwendung von Bedingung (3) für Bisimulationen.  $\Box$ 

### T3.3 Nichtausdrückbarkeit konkreter Eigenschaften

**Theorem 3.4** In  $\mathcal{ALC}$  sind *nicht ausdrückbar:* 

- das  $\mathcal{ALCI}$ -Konzept  $\exists r^-. \top$
- die  $\mathcal{ALCQ}$ -Konzepte
  - $(\leqslant n r. \top)$ , für alle n > 0
  - $(\geqslant n \, r. \top)$ , für alle n > 1

Beweis. Siehe Proposition 3.3 und 3.4 in [BHLS17].

### T3.4 Beispiel für ein Baummodell

Sei  $C = A \cap \exists s.B \cap \forall s.\exists r.A$  und  $\mathcal{T} = \{ \top \sqsubseteq \exists s.A \}$ . Ein Baummodell von C und  $\mathcal{T}$ :



### T3.5 Beispiel für das Unravelling

Wir betrachten folgende Interpretation  $\mathcal{I}$ .



Dann gibt es beispielsweise folgende d-Pfade:

- $\rho = ddedee \ \mathrm{mit} \ \mathrm{end}(\rho) = e$
- $\rho' = deeed \text{ mit } end(\rho') = d$

Das Unravelling von  $\mathcal{I}$  an Stelle d gemäß Definition 3.7 ist folgende Interpretation  $\mathcal{J}$ .



### T3.6 Beweis des Unravelling-Lemmas

**Lemma 3.8** Für alle  $\mathcal{ALC}$ -Konzepte C und alle  $p \in \Delta^{\mathcal{J}}$  gilt:

$$\operatorname{end}(p) \in C^{\mathcal{I}}$$
 gdw.  $p \in C^{\mathcal{J}}$ 

**Beweis.** Mit dem Bisimulationstheorem (Theorem 3.2) genügt es zu zeigen, dass end(p) und p bisimilar sind, d. h.  $(\mathcal{I}, end(p)) \sim (\mathcal{J}, p)$ . Siehe dazu Lemma 3.22 in [BHLS17].

### T3.7 Beweis der Baummodelleigenschaft von $\mathcal{ALC}$

**Theorem 3.6** Wenn ein  $\mathcal{ALC}$ -Konzept C bezüglich einer  $\mathcal{ALC}$ -TBox  $\mathcal{T}$  erfüllbar ist, dann haben C und  $\mathcal{T}$  ein gemeinsames Baummodell  $\mathcal{I}$ .

Beweis. Siehe Theorem 3.24 in [BHLS17].

### T3.8 Gegenbeispiel für Rückrichtung Bisimulationstheorem

**Behauptung.** Es gibt Interpretationen  $\mathcal{I}$  und  $\mathcal{J}$  und  $d \in \mathcal{I}$ ,  $e \in \mathcal{J}$ , so dass

- (i)  $d \in C^{\mathcal{I}}$  gdw.  $e \in C^{\mathcal{I}}$  für alle  $\mathcal{ALC}$ -Konzepte C,
- (ii) aber  $(\mathcal{I}, d) \not\sim (\mathcal{J}, e)$ .

**Beweis.** Betrachte die folgenden Interpretationen  $\mathcal{I}$  und  $\mathcal{J}$ .

Es gilt (ii): versucht man, eine Bisimulation  $\rho$  mit  $d \rho e$  zu konstruieren, so benötigt man wegen  $(e, e') \in r^{\mathcal{I}}$  einen r-Nachfolger d' von d mit  $d' \rho e'$ . Da jeder r-Nachfolger von d aber nur endlich viele weitere Nachfolger hat, kann man wegen des unendlichen r-Pfads unterhalb von e' irgendwann nicht mehr Bedingung (3) von Bisimulationen gewährleisten.

Außerdem kann man mittels struktureller Induktion zeigen, dass (i) gilt.

### T3.9 Beispiel für Teilkonzepte

Sei 
$$C = \forall r. \exists r. (A \sqcap B)$$
. Dann ist  $\mathsf{sub}(C) = \{A, B, A \sqcap B, \exists r. (A \sqcap B), \forall r. \exists r. (A \sqcap B)\}$ .  
Sei  $\mathcal{T} = \{A \sqsubseteq \exists r. B, \ \forall r. B \sqsubseteq A\}$ . Dann ist  $\mathsf{sub}(\mathcal{T}) = \{A, B, \exists r. B, \ \forall r. B\}$ .

### T3.10 Beispiel für Typen und Filtration

Seien  $C = A \sqcap B$  und  $\mathcal{T} = \{A \sqsubseteq \exists r.A\}$ . Dann ist  $\mathsf{sub}(C, \mathcal{T}) = \{A, B, A \sqcap B, \exists r.A\}$ . Wir betrachten die folgende Interpretation  $\mathcal{I}$ .



Dann gilt für d und die vier Teilkonzepte in  $\mathsf{sub}(C,\mathcal{T})$ :  $d \in A^{\mathcal{I}}, d \notin B^{\mathcal{I}}, d \notin (A \sqcap B)^{\mathcal{I}}$  und  $d \in (\exists r.A)^{\mathcal{I}}$ . Also ist

$$t_{\mathcal{I}}(d) = \{A, \exists r.A\}.$$

Analog erhält man:

$$t_{\mathcal{I}}(e) = \{A, \exists r.A\}$$
  $t_{\mathcal{I}}(f) = \{A, B, A \cap B, \exists r.A\}$   $t_{\mathcal{I}}(g) = \{A, \exists r.A\}$ 

Es gilt also  $d \simeq e \simeq g \not\simeq f$ , und somit gibt es zwei Äquivalenzklassen bezüglich  $\simeq$ :

$$[d]=\{d,e,g\} \qquad [f]=\{f\}$$

Die Filtration von  $\mathcal{I}$  bezüglich C und  $\mathcal{T}$  gemäß Definition 3.17 ist dann folgende Interpretation  $\mathcal{J}$ .



### **T3.11** Beweis des Filtrationstheorems

**Theorem 3.17** Sei  $\mathcal{I}$  ein Modell von C und  $\mathcal{T}$ , und sei  $\mathcal{J}$  die Filtration von  $\mathcal{I}$  bezüglich C und  $\mathcal{T}$ . Dann ist auch  $\mathcal{J}$  ein Modell von C und  $\mathcal{T}$ .

Beweis. Wir verwenden die folgende Hilfsaussage.

Für alle  $d \in \Delta^{\mathcal{I}}$  und  $D \in \mathsf{sub}(C, \mathcal{T})$  gilt:  $d \in D^{\mathcal{I}}$  gdw.  $[d] \in D^{\mathcal{I}}$ Für den Beweis dieser Hilfsaussage siehe Lemma 3.15 in [BHLS17].

Da  $\mathcal{I}$  ein Modell von C und  $\mathcal{T}$  ist, gibt es ein Element  $d \in C^{\mathcal{I}}$ . Mit der Hilfsaussage folgt  $[d] \in C^{\mathcal{I}}$ ; somit ist  $\mathcal{I}$  ein Modell von C.

Um zu zeigen, dass  $\mathcal{J}$  auch ein Modell von  $\mathcal{T}$  ist, betrachten wir eine beliebige Konzeptinklusion  $D \sqsubseteq E \in \mathcal{T}$  und eine beliebige Instanz  $[d] \in D^{\mathcal{J}}$ . Mit der Hilfsaussage folgt  $d \in D^{\mathcal{I}}$ ; also  $d \in E^{\mathcal{I}}$  (da  $\mathcal{T}$  Modell von  $\mathcal{I}$  ist); also mit der Hilfsaussage  $[d] \in E^{\mathcal{J}}$ .

### T3.12 $\mathcal{ALCQI}$ hat nicht die endliche Modelleigenschaft

Betrachte die TBox  $\mathcal{T} = \{(1) \top \sqsubseteq \exists r. \neg A, (2) \top \sqsubseteq (\leqslant 1 r^-. \top)\}$ . Dann hat der Konzeptname A bezüglich  $\mathcal{T}$  nur unendliche Modelle:

Sei  $\mathcal{I}$  ein Modell von A und  $\mathcal{T}$  und  $d_0 \in \Delta^{\mathcal{I}}$ . Wir müssen zeigen, dass  $|\Delta^{\mathcal{I}}| = \infty$ .

Da  $\mathcal{I}$  Modell von  $\mathcal{T}$  ist, muss es wegen (1) einen r-Nachfolger  $d_1$  von  $d_0$  geben mit  $d_1 \in (\neg A)^{\mathcal{I}}$ . Da  $d_0 \in A^{\mathcal{I}}$ , muss  $d_1 \neq d_0$  gelten.

Wegen (1) muss es wiederum einen r-Nachfolger  $d_2$  von  $d_1$  geben mit  $d_2 \in (\neg A)^{\mathcal{I}}$ . Wie im vorigen Fall muss  $d_1 \neq d_0$  gelten. Außerdem muss  $d_2 \neq d_1$  gelten, da sonst  $d_1$  zwei r-Vorgänger hätte ( $d_0$  und  $d_1$ ) und dann (2) verletzt wäre.

Dieses Argument kann man so fortsetzen und immer wieder die Existenz eines neuen Elements  $d_{i+1}$  folgern, dass verschieden von allen  $d_0, \ldots, d_i$  sein muss. Deshalb muss  $\Delta^{\mathcal{I}}$  unendlich sein.

### T3.13 Anzahl der Interpretationen der Größe $\leq 2^n$

**Behauptung.** Sei  $n = |C| + |\mathcal{T}|$ . Dann gibt es höchstens  $2^{2^{5n}}$  Interpretationen  $\mathcal{I}$  mit  $|\Delta^{\mathcal{I}}| \leq 2^n$ .

**Beweis.** Zunächst betrachten wir die Anzahl aller Interpretationen  $\mathcal{I}$  mit  $|\Delta^{\mathcal{I}}| = 2^n$ . Jedes Element  $d \in \Delta^{\mathcal{I}}$  kann in  $A^{\mathcal{I}}$  sein oder nicht, für jeden der  $\leq n$  Konzeptnamen A in  $\mathsf{sub}(C,\mathcal{T})$ . Also gibt es  $2^{2^n \cdot n}$  Möglichkeiten für die Extensionen der Konzeptnamen in C und  $\mathcal{T}$ .

Jedes Paar von Elementen  $(d,e) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$  kann in  $r^{\mathcal{I}}$  sein oder nicht, für jeden der  $\leq n$  Rollennamen r in  $\mathsf{sub}(C,\mathcal{T})$ . Also gibt es  $2^{2^n \cdot 2^n \cdot n}$  Möglichkeiten für die Extensionen der Rollenamen in C und  $\mathcal{T}$ .

Die Gesamtzahl der möglichen Extensionen aller Konzept- und Rollennamen in C und  $\mathcal{T}$  ist dann das Produkt dieser beiden Zahlen, also:

$$2^{2^{n} \cdot n} \cdot 2^{2^{n} \cdot 2^{n} \cdot n} = 2^{2^{n} \cdot n + 2^{2n} \cdot n}$$

$$\leq 2^{2^{2n} + 2^{3n}}$$

$$\leq 2^{2 \cdot 2^{3n}}$$

$$= 2^{2^{3n+1}}$$

$$\leq 2^{2^{4n}}$$

Betrachtet man nun die Anzahl der Interpretationen  $\mathcal{I}$  mit  $|\Delta^{\mathcal{I}}| \leq 2^n$ , dann sind dies maximal  $2^n \cdot 2^{2^{4n}} = 2^{2^{4n}+n} \leq 2^{2^{5n}}$ .

# Teil 4 Tableau-Algorithmen

### **T4.1 Umwandlung in NNF**

**Lemma 4.2.** Jedes Konzept kann in Linearzeit in ein äquivalentes Konzept in NNF umgewandelt werden.

Beweis. Dies geschieht durch erschöpfendes Anwenden folgender Regeln.

- Auflösen doppelter Negation: ersetze  $\neg \neg C$  durch C
- de Morgan: ersetze  $\neg (C \sqcap D)$  durch  $\neg C \sqcup \neg D$ ; ersetze  $\neg (C \sqcup D)$  durch  $\neg C \sqcap \neg D$

• Dualität von  $\exists$  und  $\forall$ : ersetze  $\neg \exists r.C$  durch  $\forall r. \neg C$ ; ersetze  $\neg \forall r.C$  durch  $\exists r. \neg C$ 

Jede Regelanwendung ist äquivalenzerhaltend und schiebt die entsprechende Negation weiter nach innen (oder löst sie auf).

Man kann zeigen, dass linear viele Regelanwendungen ausreichen.

### T4.2 Beispiel I-Baum

Sei  $C_0 = A \sqcap \forall r. (\neg A \sqcap \exists r. B).$ 

Dann ist  $sub(C_0) = \{A, B, \neg A, \exists r.B, \neg A \sqcap \exists r.B, \forall r.(\neg A \sqcap \exists r.B), C_0\}.$ 

Der folgende Baum ist ein I-Baum für  $C_0$ .



Beachte, dass die Knotenbeschriftung im Allgemeinen nicht der Semantik genügen muss; die Tableau-Regeln werden jedoch dafür sorgen, dass sie das (größtenteils) tut.

### T4.3 Beispiel Tableau-Algorithmus

Sei  $C_0 = (\exists r.A \sqcap \exists r.\neg A) \sqcap (\forall r.A \sqcup \forall r.B)$ . Im Folgenden ist ein möglicher<sup>2</sup> Lauf des Tableau-Algorithmus auf  $C_0$  angegeben. Nach den ersten drei Schritten liefert dieser folgendes Zwischenergebnis:

$$\begin{array}{ccc}
C_0 & (1) \\
\exists r.A \sqcap \exists r. \neg A & (2a) \\
\forall r.A \sqcup \forall r.B & (2b) \\
\exists r.A, \exists r. \neg A & (3)
\end{array}$$

<sup>&</sup>lt;sup>2</sup>Da die Reihenfolge der Regelanwendungen nicht festgelegt ist, gibt es im Allgemeinen mehrere Läufe. Das Ergebnis (Menge der vollständigen I-Bäume) ist jedoch nicht von der Reihenfolge abhängig.

Dabei wurden folgende Regeln angewendet.

(1) initialer Baum 
$$B_{ini}$$
  
(2a), (2b)  $\sqcap$ -Regel auf (1)  
(3)  $\sqcap$ -Regel auf (2a)

Als nächstes wenden wir die  $\sqcup$ -Regel auf  $\forall r.A \sqcup \forall r.B$  (2b) an. Dadurch erhalten wir zwei I-Bäume  $B_1$  und  $B_2$ :

$$B_1 = \begin{cases} C_0 & (1) \\ \exists r.A \sqcap \exists r. \neg A & (2a) \end{cases} \qquad B_2 = \begin{cases} C_0 & (1) \\ \exists r.A \sqcap \exists r. \neg A & (2a) \end{cases}$$
$$\forall r.A \sqcup \forall r.B & (2b) \\ \exists r.A, \exists r. \neg A & (3) \\ \forall r.A & (4a) \end{cases} \qquad \forall r.B \qquad (4b)$$

In  $B_1$  lässt sich die  $\exists$ -Regel auf die beiden Konzepte in (3) anwenden, wodurch jeweils ein neuer r-Nachfolger des Wurzelknotens erzeugt wird:



Nun lässt sich die  $\forall$ -Regel auf (4a) und den rechten Nachfolger anwenden (der linke ist bereits mit A beschriftet), und wir erhalten:



Dieser I-Baum ist vollständig (denn es ist keine weitere Regel anwendbar), und er enthält einen offensichtlichen Widerspruch wegen (6) und (7) – ab jetzt immer mit dem Symbol 4 gekennzeichnet.

Schließlich wenden wir in  $B_2$  dieselben Regeln an und erhalten folgenden I-Baum:



Es wurden also folgende Regeln angewendet:

- (8)  $\exists$ -Regel auf  $\exists r.A$  (3)
- (9)  $\exists$ -Regel auf  $\exists r. \neg A$  (3)
- (10)  $\forall$ -Regel auf (4b) und linken r-Nachfolger
- (11)  $\forall$ -Regel auf (4b) und rechten r-Nachfolger

Dieser Baum ist vollständig, enthält aber keinen offensichtlichen Widerspruch. Somit gibt der Algorithmus auf der Eingabe  $C_0$  "erfüllbar" zurück.

### T4.4 Verzweigungsgrad der I-Bäume

**Behauptung 1.** Es werden nur I-Bäume mit einem Verzweigungsgrad von maximal  $|C_0|$  generiert.

**Beweis.** Nur die  $\exists$ -Regel generiert Nachfolgerknoten, und zwar höchstens einen pro Konzept  $\exists r.C$  in  $\mathsf{sub}(C_0)$ . Nach Lemma 3.13 ist aber  $|\mathsf{sub}(C_0)| \leq C_0$ .

### T4.5 Tiefe der I-Bäume

**Behauptung 2.** Es werden nur I-Bäume mit einer Tiefe von maximal  $|C_0|$  generiert.

Beweis. Dazu genügt es, folgende Behauptung zu beweisen:

**Behauptung 2a.** Wenn v ein Knoten mit Tiefe i ist, dann gilt für alle  $C \in \mathcal{L}(v)$ :

$$\operatorname{rd}(C) \le \operatorname{rd}(C_0) - i \tag{(*)}$$

Dabei zählen wir die Tiefe eines Knotens beginnend von der Wurzel, welche die Tiefe 0 hat. Behauptung 2a besagt also, dass die Rollentiefe der Konzepte in den Knotenbeschriftungen mit der Tiefe eines Knotens abnimmt.

Es ist leicht zu sehen, dass die gewünschte Behauptung 2 bereits aus Behauptung 2a folgt: Wegen der Tableau-Regeln ist jeder Knoten mit mindestens einem Konzept beschriftet

(der initiale Knoten mit  $C_0$  und alle weiteren Knoten mit dem C aus der  $\exists$ -Regel). Wenn ein generierter I-Baum also eine Tiefe  $k > |C_0|$  hätte, dann gäbe es einen Knoten v der Tiefe k und in dessen Beschriftung  $\mathcal{L}(v)$  ein Konzept C. Wegen Behauptung 2a wäre dann aber  $\mathsf{rd}(C) < 0$ , was nicht möglich ist.

Beweis von Behauptung 2a. Wir verwenden Induktion über die Anzahl der Regelanwendungen.

Induktionsanfang. Nach 0 Regelanwendungen gibt es nur den initialen Knoten  $v_{\text{ini}}$  mit  $\mathcal{L}(v_{\text{ini}}) = \{C_0\}$ . Ungleichung (\*) folgt, da i = 0.

**Induktionsschritt.** Hier unterscheiden wir vier Fälle nach der Regel, durch deren Anwendung das Konzept C zur Knotenbeschriftung  $\mathcal{L}(v)$  hinzugefügt wurde.

- $\sqcap$ -Regel. Vor der Anwendung der Regel gab es ein Konzept  $C \sqcap D \in \mathcal{L}(v)$ , und durch die Anwendung wurden C und D zu  $\mathcal{L}(v)$  hinzugefügt. Nach Induktionsvoraussetzung ist  $\mathsf{rd}(C \sqcap D) \leq \mathsf{rd}(C_0) i$ , also auch  $\mathsf{rd}(C) \leq \mathsf{rd}(C_0) i$  wegen  $C \leq \mathsf{rd}(C \sqcap D)$ . Analog für  $\mathsf{rd}(D)$ .
- ⊔-Regel. Analog (probiert es selbst aus).
- $\exists$ -Regel. Vor der Anwendung der Regel gab es einen Vorgängerknoten v' von v mit  $\exists r.C \in \mathcal{L}(v')$ , und durch die Anwendung wurde (v', r, v) zu E hinzugefügt und  $\mathcal{L}(v) = \{C\}$  gesetzt. Nun gilt:

$$\mathsf{rd}(C) = \mathsf{rd}(\exists r.C) - 1$$
 (Definition rd) 
$$\leq \left(\mathsf{rd}(C_0) - (i-1)\right) - 1$$
 (Induktions voraus s.;  $v'$  hat Tiefe  $i-1$ ) 
$$= \mathsf{rd}(C_0) - i$$

∀-**Regel.** Ähnlich (probiert es selbst aus).

### T4.6 Anzahl der Regelanwendungen pro I-Baum

Es bleibt nur noch zu zeigen, dass für  $k := |C_0|$  gilt:

$$k^k \cdot k < 2^{2k^2}$$

Das kann man wie folgt sehen:

$$\begin{array}{ll} k^k \cdot k = k^{k+1} & \text{(Potenzgesetze)} \\ & \leq k^{2k} & \text{(da } k \leq 1) \\ & = \left(2^{\log k}\right)^{2k} & \text{(Definition Zweierlogarithmus log)} \\ & = 2^{\log k \cdot 2k} & \text{(Potenzgesetze)} \\ & \leq 2^{k \cdot 2k} & \text{(da } \log(k) \leq k) \\ & = 2^{2k^2} \end{array}$$

### **T4.7** Letzter Schritt im Terminierungsbeweis

Wir ordnen jeder Menge  $M_i$  von I-Bäumen eine Multimenge  $\mathsf{MM}_i$  wie folgt zu: Für jeden Baum  $B \in M_i$  enthält  $\mathsf{MM}_i$  die Zahl

 $m(B)=\mbox{,}n$ minus die Anzahljder Regelanwendungen, mittels derer Bgeneriert wurde".

Somit ist  $\mathsf{MM}_i$  eine Multimenge über der Grundmenge  $\mathbb{N}$ . Da < auf  $\mathbb{N}$  wohlfundiert ist, ist mit Theorem 4.7 auch  $<_{\mathsf{mul}}$  auf  $\mathsf{MM}(\mathbb{N})$  wohlfundiert. Außerdem gilt  $\mathsf{MM}_i <_{\mathsf{mul}}$   $\mathsf{MM}_{i+1}$  für jedes  $i \geq 0$ , denn mit jeder Regelanwendung wird in  $M_i$  ein I-Baum durch maximal zwei I-Bäume  $B_1, B_2$  ersetzt mit  $m(B_1), m(B_2) < m(B)$ ; somit erhält man  $\mathsf{MM}_{i+1}$  aus  $\mathsf{MM}_i$ , indem man m(B) durch die kleineren Zahlen  $m(B_1), m(B_2)$  ersetzt.

Wegen der Wohlfundiertheit von  $<_{\text{mul}}$  und der Beobachtung  $\mathsf{MM}_i <_{\mathsf{mul}} \mathsf{MM}_{i+1}$  muss die Folge der  $\mathsf{MM}_i$  endlich sein.

### Teil 5 Komplexität

## Teil 6 Effiziente Beschreibungslogiken

## Teil 7 ABoxen und Anfragebeantwortung

### Literaturverzeichnis

[BHLS17] Baader, Franz, Ian Horrocks, Carsten Lutz und Uli Sattler: An Introduction to Description Logic. Cambridge University Press, 2017. https://tinyurl.com/suub-intro-dl-ebook.