Exponent Properties

What are exponents?

Exponents are when a number is multiplied by itself multiple times

For example: 2^3 or 7^4 (Pronounced as "7 to the power of 4") The bottom number is the base and the top number is the exponent In this case, 7 is the base and 4 is the exponent.

The exponent determines how many times the base is multiplied by itself

In this case, $7^4 = 7 \cdot 7 \cdot 7 = 2401$

Exponent Properties

<u>Property</u>	<u>Examples</u>	
Product of Powers $a^n \bullet a^m = a^{n+m}$	$5^3 \cdot 5^4 = 5^{3+4} = 5^7$	$8^2 \bullet 8^8 = 8^{2+8} = 8^{10}$
Power of a Product $(a \bullet b)^n = a^n \bullet b^n$	$(4 \bullet 5)^6 = 4^6 \bullet 5^6$	$(11 \cdot 2)^3 = 11^4 \cdot 2^3$
Quotient of Powers $\frac{a^n}{a^m} = a^{n-m}$	$\frac{7^{24}}{7^9} = 7^{24-9} = 7^{15}$	$\frac{17^4}{17^2} = 17^{4-2} = 17^2$
Power of a Quotient $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\left(\frac{3}{4}\right)^2 = \frac{3^2}{4^2}$	$\left(\frac{19}{7}\right)^3 = \frac{19^3}{7^3}$
Power of a Power Property $(a^n)^m = a^{n \cdot m}$	$(8^4)^5 = 8^{4 \cdot 5} = 8^{20}$	$(4^3)^3 = 4^{3 \cdot 3} = 4^9$
Negative Exponent $a^{-n} = \frac{1}{a^n}$	$5^{-3} = \frac{1}{5^3}$	$6^{-2} = \frac{1}{6^2}$
Fractional Exponent $a^{rac{n}{m}}=\sqrt[m]{a^n}$	$10^{\frac{2}{3}} = \sqrt[3]{10^2}$	$7^{\frac{3}{7}} = \sqrt[7]{7^3}$