Building a Simple Machine Learning Model with scikit-learn

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Classic problems in machine learning

Regression for predicting continuous data

Classification for predicting categorical data

Implementing simple linear and logistic regression in scikit-learn

Building Regression Models

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

X Causes Y

Cause Independent variable

EffectDependent variable

X Causes Y

CauseExplanatory variable

EffectDependent variable

Linear regression involves finding the "best fit" line

Let's compare two lines, Line 1 and Line 2

Minimizing Least Square Error Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

Drop vertical lines from each point to the lines 1 and 2

Minimizing Least Square Error Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

Drop vertical lines from each point to the lines 1 and 2

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines are minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines are minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines are minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors are minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors are minimum

Demo

Training a linear regression model and using it for prediction

Building Classification Models

Two Approaches to Deadlines

Start 5 minutes before deadline
Good luck with that

Start 1 year before deadline

Maybe overkill

Neither approach is optimal

Starting a Year in Advance

Probability of meeting the deadline

100%

Probability of getting other important work done

Starting Five Minutes in Advance

Probability of meeting the deadline

0%

Probability of getting other important work done

100%

The Goldilocks Solution

Work fast

Start very late and hope for the best

Work smart

Start as late as possible to be sure to make it

Work hard

Start very early and do little else

As usual, the middle path is best

Working Smart

Probability of meeting the deadline

95%

Probability of getting other important work done

95%

Probability of meeting deadline

(1 year, 100%)

Start 1 year before deadline

Start 5 minutes before deadline

(5 mins, 0%)

Time to deadline

Time to deadline

Time to deadline

Time to deadline

Time to deadline

Logistic Regression helps find how probabilities are changed by actions

Time to deadline

Time to deadline

Start too late, and you'll definitely miss

Time to deadline

Start too early, and you'll definitely make it

Time to deadline

Working smart is knowing when to start

y: Hit or miss? (0 or 1?)

x: Start time before deadline

p(y): Probability of y = 1

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Logistic regression involves finding the "best fit" such curve

- A is the intercept
- B is the regression coefficient

(e is the constant 2.71828)

S-curves are widely studied, well understood

Logistic regression uses S-curve to estimate probabilities

$$p(y) = \frac{1}{1 + e^{-(A+Bx)}}$$

Whales: Fish or Mammals

Mammal

Member of the infraorder *Cetacea*

Fish

Looks like a fish, swims like a fish, and moves like a fish

ML-based Binary Classifier

Corpus

Classification algorithm

ML-based classifier

ML-based Predictor

Corpus

Logistic regression

ML-based predictor $p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$

ML-based Predictor

Corpus

Logistic regression

ML-based predictor $p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$

Applying Logistic Regression

Probability of whales being fish < Pthreshold

Applying Logistic Regression

Probability of whales being fish > Pthreshold

Finding the best fit S-curve through these points

Demo

Training a logistic regression model and using it for classification

Summary

Classic problems in machine learning

Regression for predicting continuous data

Classification for predicting categorical data

Implementing simple linear and logistic regression in scikit-learn

Related Courses

Building Clustering Models with scikit-learn

Employing Ensemble Methods with scikit-learn

Building Neural Networks with scikit-learn