CPT Lecture Notes 6: Support functions

Levent Ülkü

September 20, 2019

Support functions for maximization problems

For any nonempty $S \subseteq \mathbb{R}^n$, let

$$b(S) = \{ p \in \mathbb{R}^n : \max_{x \in S} p \cdot x \text{ is well-defined} \}$$

and let

$$\sigma_{S}(p) = \max_{x \in S} p \cdot x$$

for any $p \in b(S)$. Hence $\sigma_S : b(S) \to \mathbb{R}$.

The set b(S) is the barrier cone of S and the function σ_S is the support function of S.

Note that if $p \in b(S)$ and $\lambda \in \mathbb{R}_+$, then $\lambda p \in b(S)$ as well. Hence b(S) is a cone and in particular $0 \in b(S)$.

If
$$S = \{x \in \mathbb{R}^2 : ||x|| \le 1\}$$
, then $b(S) = \mathbb{R}^2$.

If
$$S = \{x \in \mathbb{R}^2 : ||x|| < 1\}$$
, then $b(S) = \{0\}$.

b(S) need not be convex even if S is. For instance if $S=\{x\in\mathbb{R}^2:\|x\|<1\}\cup\{(1,0),(0,1)\},$ then $b(S)=\{x\in\mathbb{R}^2:x_1\geq 0\text{ and }x_2=0\}\cup\{x\in\mathbb{R}^2:x_1=0\text{ and }x_2\geq 0\}.$

Theorem: Let $S \subseteq \mathbb{R}^n$ be nonempty.

- 1. If x_1 solves $\max_{x \in S} p_1 \cdot x$ and x_2 solves $\max_{x \in S} p_2 \cdot x$, then $(x_1 x_2) \cdot (p_1 p_2) \ge 0$.
- 2. $\sigma_S(tp) = t\sigma_S(p)$ for every $p \in b(S)$ and $t \ge 0$.
- 3. If b(S) is convex, then σ_S is convex.
- 4. Suppose $S \subseteq \mathbb{R}^n$ is closed and convex, and $p \in b(S)$. x_P solves $\max_{x \in S} p \cdot x$ iff x_p is a subgradient of σ_S at p.
- 5. Suppose $S \subseteq \mathbb{R}^n$ is closed and convex, $p \in intb(S)$ and σ_S is differentiable at p. Then, x_p solves $\max_{x \in S} p \cdot x$ iff $x_p = \nabla \sigma_S(p)$.

Proof: Let $S \subseteq \mathbb{R}^n$ be nonempty.

TS1: If x_1 solves $\max_{x \in S} p_1 \cdot x$ and x_2 solves $\max_{x \in S} p_2 \cdot x$, then $(x_1 - x_2) \cdot (p_1 - p_2) \ge 0$.

Suppose x_i solves $\max_{x \in S} p_i \cdot x$ for i = 1, 2.

Then $p_1 \cdot x_1 \geq p_1 \cdot x_2$ and $p_2 \cdot x_2 \geq p_2 \cdot x_1$.

Manipulating, we get $(x_1 - x_2) \cdot (p_1 - p_2) \ge 0$.

TS2: $\sigma_S(tp) = t\sigma_S(p)$ for every $p \in b(S)$ and $t \ge 0$.

Let $p \in b(S)$ and $t \geq 0$.

Then $tp \in b(S)$ since b(S) is a cone.

Furthermore $\sigma_S(tp) = \max_{x \in S} (tp) \cdot x = t \max_{x \in S} p \cdot x = t\sigma_S(p)$.

TS3: If b(S) is convex, then σ_S is convex.

Suppose b(S) is convex.

Pick $p, q \in b(S)$ and $t \in [0, 1]$. Let r = tp + (1 - t)q. Since b(S) is convex, $r \in b(S)$ as well.

Take any $x \in S$.

Note $\sigma_S(p) \ge p \cdot x$ and $\sigma_S(q) \ge q \cdot x$.

Hence $t\sigma_S(p) + (1-t)\sigma_S(q) \ge r \cdot x$.

Since x is arbitrary, $\sigma_S(r) \leq t\sigma_S(p) + (1-t)\sigma_S(q)$ and σ_S is convex.

TS4: Suppose $S \subseteq \mathbb{R}^n$ is closed and convex, and $p \in b(S)$. x_P solves $\max_{x \in S} p \cdot x$ iff x_p is a subgradient of σ_S at p.

Suppose $S \subseteq \mathbb{R}^n$ is closed and convex, and $p \in b(S)$.

Suppose x_p solves $\max_{x \in S} p \cdot x$. Hence $\sigma_S(p) = p \cdot x_p$. If $q \in b(S)$, then $\sigma_S(q) \geq q \cdot x_p$. Therefore $\sigma_S(q) \geq q \cdot x_p + \sigma_S(p) - p \cdot x_p$, i.e., $\sigma_S(q) \geq \sigma_S(p) + x_P \cdot (q-p)$. It follows that x_p is a subgradient of σ_S at p.

Now suppose that x_p is a subgradient of σ_S at p. Hence $\sigma_S(q) \geq \sigma_S(p) + x_P \cdot (q-p)$ for every $q \in b(S)$. Note that $0 \in b(S)$ and therefore $0 \geq \sigma_S(p) - x_p \cdot p$. Furthermore $2p \in b(S)$ and $\sigma_S(2p) = 2\sigma_S(p)$ and therefore $2\sigma_S(p) \geq \sigma_S(p) + x_p \cdot p$. It follows that $\sigma_S(p) = p \cdot x_p$. It remains to show that $x_p \in S$. If not, by Minkowski's Theorem, there exists some $q \neq 0$ and $x_0 \in S$ such that $q \cdot x_p > q \cdot x_0 \geq q \cdot x$ for every $x \in S$. Then $q \in b(S)$ and $\sigma_S(q) = q \cdot x_0$. It follows that $\sigma_S(p) - p \cdot x_p + q \cdot x_p > \sigma_S(q)$, a contradiction.

TS5: Suppose $S \subseteq \mathbb{R}^n$ is closed and convex, $p \in intb(S)$ and σ_S is differentiable at p. Then, x_p solves $\max_{x \in S} p \cdot x$ iff $x_p = \nabla \sigma_S(p)$.

Follows from the observation that the only subgradient of σ_S at p is $\nabla \sigma_S(p)$ if $p \in intb(S)$ and σ_S is differentiable at p.

Application: Profit maximization

Suppose there are n commodities.

A production set is any $Y \subseteq \mathbb{R}^n$.

If $y \in Y$, then y is a feasible production plan.

If $y = (y_1, ..., y_n) \in Y$ and $y_i < 0 < y_j$, then the *i*th commodity is used as input and the *j*th commodity is an output.

Depending on the context, various assumptions can be placed on Y, such as closedness, boundedness and convexity. If $0 \in Y$, inactivity is feasible. If $Y = -\mathbb{R}^n_+$, then the only technology available is free disposal. If we would like to assume irreversibility of production, we impose y = 0 whenever $y, -y \in Y$.

Example:

Consider a firm producing output y_1 using n-1 inputs $y_2, ..., y_n$.

Let $f: \mathbb{R}^{n-1}_+ \to \mathbb{R}$ denote the firm's production function.

The production set is given by

$$Y = \{(y_1, ..., y_n) : y_1 \le f(-y_2, ..., -y_n)\}.$$

Let $p \in \mathbb{R}^n$ denote the price vector.

The profit maximization problem is $\max_{y \in Y} p \cdot y$.

The barrier cone b(Y) consists of those price vectors for which the profit maximization problem is well-defined.

The profit function $\pi_Y(p)$ is the support function for this maximization problem, i.e., $\pi_Y(p) = \max_{y \in Y} p \cdot y$ for every $p \in b(Y)$. (I will simply write $\pi(p)$ instead of $\pi_Y(p)$.)

Let $Y \subseteq \mathbb{R}^n$ be nonempty. By Theorem above, it follows that:

- 1. If y(p) solves $\max_{y \in Y} p \cdot y$ and y(p') solves $\max_{y \in Y} p' \cdot y$, then $(y(p) y(p')) \cdot (p p') \ge 0$.
- 2. $\pi(tp) = t\pi(p)$ for every $p \in b(Y)$ and $t \ge 0$.
- 3. If b(Y) is convex, then π is convex.
- 4. Suppose $Y \subseteq \mathbb{R}^n$ is closed and convex, and $p \in b(Y)$. y(p) solves $\max_{y \in Y} p \cdot y$ iff y(p) is a subgradient of π at p.
- 5. (Hotelling's Lemma) Suppose $Y \subseteq \mathbb{R}^n$ is closed and convex, $p \in intb(Y)$ and π is differentiable at p. y(p) solves $\max_{y \in Y} p \cdot y$ iff $y(p) = \nabla \pi(p)$.

Many results in economics relate suitably defined notions of optimality and efficiency.

For instance, given Y, say that $y \in Y$ is efficient if y = y' whenever $y' \ge y$ and $y' \in Y$.

Proposition: If $p \in \mathbb{R}^n_{++}$ and y^* solves $\max_{y \in Y} p \cdot y$, then y^* is efficient.

Proof: If y is not efficient, then there exists $y' \in Y$ such that $y' \ge y$ and $y'_i > y_i$ for some coordinate i. If in addition p has strictly positive coordinates, then $p \cdot y' - p \cdot y \ge p_i(y'_i - y_i) > 0$.

Proposition: Suppose Y is convex and $y^* \in Y$ is efficient. There exists $p \in \mathbb{R}^n_+ \setminus \{0\}$ such that $\pi(p) = p \cdot y^*$.

Proof: Fix convex Y and efficient $y^* \in Y$.

Let
$$B = \{y^*\} + (\mathbb{R}^n_+ \setminus \{0\})$$
.

Then B is convex and $Y \cap B = \emptyset$.

By the SHT, there exists some $p \in \mathbb{R}^n \setminus \{0\}$ such that $p \cdot y \leq p \cdot b$ for every $y \in Y$ and every $b \in B$.

Let $y^k = y^* + (\frac{1}{k}, ..., \frac{1}{k})$. Hence $y^k \in B$ for every k and $p \cdot y \leq p \cdot y^k$ for every $y \in Y$. Taking the limit, we conclude that $\pi(p) = p \cdot y^*$.

It only remains to show that $p \in \mathbb{R}^n_+$. For any i=1,...,n, let e_i be the unit vector in \mathbb{R}^n whose ith coordinate is 1 and other coordinates are 0. Then $y^*+e_i \in B$ and therefore $p \cdot (y^*+e_i) \geq p \cdot y^*$. It follows that the ith coordinate of p is nonnegative. Since i is arbitrary, we conclude that $p \in \mathbb{R}^n_{++}$ as desired. \blacksquare

Support functions for minimization problems:

Let $x \in S \subseteq \mathbb{R}^n$ and $f : S \to \mathbb{R}$. We say that $p \in \mathbb{R}^n$ is a supergradient of f at x if $f(y) \le f(x) + p \cdot (y - x)$ for every $y \in S$.

Let $b^-(S) = \{ p \in \mathbb{R}^n : \min_{x \in S} p \cdot x \text{ is well-defined} \}$. Let $\tau_S : b^-(S) \to \mathbb{R}$ be given by $\tau_S(p) = \min_{x \in S} p \cdot x$.

Note that $b^-(S)=-b(S)=\{p\in\mathbb{R}^n:-p\in b(S)\}$. Furthermore $\tau_S(p)=-\sigma_S(-p)$.

Theorem: Take a nonempty set $S \subseteq \mathbb{R}^n$.

- 1. If x_1 solves $\min_{x \in S} p_1 \cdot x$ and x_2 solves $\min_{x \in S} p_2 \cdot x$, then $(x_1 x_2) \cdot (p_1 p_2) \leq 0$.
- 2. $\tau_S(tp) = t\tau_S(p)$ for every $p \in b^-(S)$ and $t \ge 0$.
- 3. If $b^-(S)$ is convex, then τ_S is concave.
- 4. Suppose $S \subseteq \mathbb{R}^n$ is closed and convex, and $p \in b^-(S)$. x_P solves $\min_{x \in S} p \cdot x$ iff x_p is a supergradient of τ_S at p.
- 5. Suppose $S \subseteq \mathbb{R}^n$ is closed and convex, $p \in intb^-(S)$ and τ_S is differentiable at p. Then, x_p solves $\min_{x \in S} p \cdot x$ iff $x_p = \nabla \tau_S(p)$.

Proof: Homework.

Application: Cost minimization

Suppose a firm produces a single output using n inputs: $Y \subseteq \mathbb{R}_+ \times \mathbb{R}_-^n$.

Define $V(q)=\{x\in\mathbb{R}^n:(q,-x)\in Y\}$ for every output level $q\in\mathbb{R}$.

Let $w \in \mathbb{R}^n$ denote the price vector for inputs.

The cost minimization problem is $\min_{x \in V(q)} w \cdot x$.

The barrier cone b(V(q)) consists of those price vectors for which the cost minimization is well-defined for output level q.

The cost function is given by $c(w,q) = \min_{x \in V(q)} w \cdot x$ for every $w \in b(V(q))$. Hence $c(\cdot,q)$ is the support function for $\min_{x \in V(q)} w \cdot x$.

Let $V(q) \subseteq \mathbb{R}^n$ be nonempty. By Theorem above, it follows that:

- 1. If x(w) solves $\min_{x \in V(q)} w \cdot x$ and x(w') solves $\min_{x \in V(q)} w' \cdot x$, then $(x(w) x(w')) \cdot (w w') \leq 0$.
- 2. c(tw, q) = tc(w, q) for every $w \in b(V(q))$ and $t \ge 0$.
- 3. If b(V(q)) is convex, then $c(\cdot, q)$ is convex.
- 4. Suppose V(q) is closed and convex, and $w \in b(V(q))$. x(w) solves $\min_{x \in V(q)} w \cdot x$ iff x(q) is a supergradient of $c(\cdot, q)$ at w.
- 5. (Shephard's Lemma) Suppose V(q) is closed and convex, $w \in intb(V(q))$ and $c(\cdot, q)$ is differentiable at w. x(w) solves $\min_{x \in V(q)} w \cdot x$ iff $x(w) = \nabla_w c(w, q)$.