РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей ОТЧЕТ

ПО ЛАБОРАТОРНОЙ РАБОТЕ № 3

"Планирование локальной сети организации"

дисциплина: Сетевые технологии

Студент:

Шагабаев Давид

Группа:

НПИбд-02-18

МОСКВА

2021 г.

Оглавление

1.	Цель работы	.3
2.	Описание процесса выполнения работы	. 4
3.	Вывод	. 4

1. Цель работы

Познакомится с принципами планирования локальной сети организации.

2. Описание процесса выполнения работы

Постановка задачи

Предположим, что в некоторой учебной организации требуется спланировать сетевую инфраструктуру.

Особенности организации с точки зрения планирования локальной сети:

- организация располагается в одном городе (предположим в Москве), но на двух территориях (назовём их «Донская» и «Павловская»);
- группы пользователей организации:
- администрация (A);
- преподавательский состав кафедр (К);
- пользователи дисплейных классов общего пользования (ДК);
- другие пользователи (Д);
- предполагается, что на территории «Донская» будут располагаться:
- устройства управления сетью;
- серверная инфраструктура;
- оборудование всех групп пользователей;
- предполагается, что на территории «Павловская» будет располагаться оборудование групп пользователей «ДК» и «Д».

Сеть организации должна соответствовать так называемой «иерархической модели сети», т.е. оборудование сетевой инфраструктуры при планировании должно быть распределено по трём уровням:

- 1) уровень ядра (Core Layer) высокопроизводительные сетевые устройства (коммутаторы, маршрутизаторы), обеспечивающие скоростную передачу трафика между сегментами уровня распределения;
- 2) уровень распределения (Distribution Layer) устройства (коммутаторы, маршрутизаторы), обеспечивающие применение политик безопасности и качества обслуживания (QoS), агрегацию и маршрутизацию трафика посредством VLAN, определение широковещательных доменов;

3) уровень доступа (Access Layer) — устройства для подключения серверов и оконечного оборудования пользователей к сети организации.

Далее при проектировании сети необходимо:

- разработать схемы сети, соответствующие физическому, канальному и сетевому уровням эталонной модели взаимодействия открытых систем (OSI);
- составить план IP-адресация сети;
- составить план VLAN сети;
- составить план подключения интерфейсов оборудования;
- зафиксировать перечень устройств, используемых в сети организации, с указанием модели, версии операционной системы, объёма RAM/NVRAM, списка интерфейсов;
- обеспечить маркировку всех задействованных как сетевых и других типов кабелей (откуда и куда идёт), так и устройств сети;
- разработать и внедрить единый регламент эксплуатации сети.

Схемы сети

Сеть 10.128.0.0/16

Примерная схема планируемой сети с указанием типов и номеров портов подключения устройств, соответствующая физическому уровню модели OSI (L1), будет иметь вид, изображённый на рис. 1.

Рис. 1. Физические устройства сети с номерами портов (Layer 1)

В качестве оборудования уровня ядра будем использовать маршрутизатор Cisco 2811, на уровне распределения — коммутаторы Cisco 2960 с возможностью настройки VLAN, а на уровне доступа — коммутаторы Cisco 2950.

Далее следует спланировать распределение VLAN. Рекомендуется выделять в отдельные подсети (VLAN) устройства управления сетью, а также различные группы пользователей (см. табл. 1).

Таблица 1

1	Таблица VLAN						
2	Nº VLAN ▼	Имя VLAN ▼	Примечание				
3	1	default	Не используется				
4	2	management	Для управления устройствами				
5	3	servers	Для серверной фермы				
6	4-100		Зарезервировано				
7	101	dk	Дисплейные классы (ДК)				
8	102	departments	Кафедры				
9	103	adm	Администрация				
10	104	other	Для других пользователей				

Примерная схема сети с указанием номеров VLAN, соответствующая канальному уровню модели OSI (L2), будет иметь вид, изображённый на рис. 2.

Рис. 2. Схема VLAN сети (Layer 2)

Далее необходимо определить адресное пространство, ассоциированное с выделенными VLAN. Примерная схема сети, соответствующая сетевому уровню модели OSI (L3), будет иметь вид, изображённый на рис. 3.

Рис. 3. Схема маршрутизации сети (Layer 3)

Более детальное распределение ІР-адресов в сети представлено в табл. 2.

При планировании IP-адресация (разбиении адресного пространства сети на подсети) следует учитывать потенциальное количество устройств подсети, а также возможность увеличения их числа.

В табл. 3 приведён план подключения оборудования сети по портам.

	Таблица IP	
ІР-адреса ▼	Примечание J VLAN	-
10.128.0.0/16	Вся сеть	
10.128.0.0/24	Серверная ферма	3
10.128.0.1	Шлюз	
10.128.0.2	Web	
10.128.0.3	File	
10.128.0.4	Mail	
10.128.0.5	Dns	
10.128.0.6-10.128.0.254	Зарезервировано	
10.128.1.0/24	Управление	2
10.128.1.1	Шлюз	
10.128.1.2	msk-donskaya-dashagabaev-sw-1	
10.128.1.3	msk-donskaya-dashagabaev-sw-2	
10.128.1.4	msk-donskaya-dashagabaev-sw-3	
10.128.1.5	msk-donskaya-dashagabaev-sw-4	
10.128.1.6	msk-pavlovskaya-dashagabaev-sw-1	
10.128.1.6-10.128.1.254	Зарезервировано	
10.128.2.0/24	Сеть Point-to-Point	
10.128.2.1	Шлюз	
10.128.2.2-10.128.2.254	Зарезервировано	
10.128.3.0/24	Дисплейные классы (ДК)	101
10.128.3.1	Шлюз	
10.128.3.2-10.128.3.254	Пул для пользователей	
10.128.4.0/24	Кафедры (К)	102
10.128.4.1	Шлюз	
10.128.4.2-10.128.4.254	Пул для пользователей	
10.128.5.0/24	Администрация (А)	103
10.128.5.1	Шлюз	
10.128.5.2-10.128.5.254	Пул для пользователей	
10.128.6.0/24	Другие пользователи (Д)	104
10.128.6.1	Шлюз	
10.128.6.2-10.128.6.254	Пул для пользователей	

Таблица 3

		Таблица портов	
Устройство	Порт ▽	Примечание	Access VLAN ▼ Trunk VLAN ▼
msk-donskaya-dashagabaev-gw-1	f0/1	UpLink	
	f0/0	msk-donskaya-dashagabaev-sw-1	2, 3, 101, 102, 103, 104
msk-donskaya-dashagabaev-sw-1	g1/1	msk-donskaya-dashagabaev-gw-1	
	g1/2	msk-donskaya-dashagabaev-sw-2	2, 3
	f0/1	msk-donskaya-dashagabaev-sw-4	2, 101, 102, 103, 104
	f0/2	msk-pavlovskaya-dashagabaev-sw-1	2, 101, 104
msk-donskaya-dashagabaev-sw-2	g1/1	msk-donskaya-dashagabaev-sw-1	2, 3
	g1/2	msk-donskaya-dashagabaev-sw-3	2, 3
	f0/1	Web-server	3
	f0/2	File-server	3
msk-donskaya-dashagabaev-sw-3	f1/1	msk-donskaya-dashagabaev-sw-2	2, 3
	f0/1	Mail-server	3
	f0/2	Dns-server	3
msk-donskaya-dashagabaev-sw-4	f0/24	msk-donskaya-dashagabaev-sw-1	2, 101, 102, 103, 104
	f0/1-f0/5	dk	101
	f0/6-f0/10	departments	102
	f0/11-f0/15	adm	103
	f0/16-f0/24	other	104
msk-pavlovskaya-dashagabaev-sw-1	f0/24	msk-donskaya-dashagabaev-sw-1	2, 101, 104
	f0/1-f0/15	dk	101
	f0/20	other	104

Регламент выделения ір-адресов дан в табл. 4.

Регламент выделения ір-адресов (для сети класса С)			
IР-адреса		Назначение	
	1	Шлюз	
2-19		Сетевое оборудование	
20-29		Серверы	
30-199		Компьютеры, DHCP	
200-219		Компьютеры, Static	
220-229		Принтеры	
230-254		Резерв	

Рассмотренный выше пример планирования адресного пространства сети базируется на разбиении сети 10.128.0.0/16 на соответствующие подсети. Требуется сделать аналогичный план адресного пространства для сетей 172.16.0.0/12 и 192.168.0.0/16 с соответствующими схемами сети и сопутствующими таблицами VLAN, IP-адресов и портов подключения оборудования.

Сеть 172.16.0.0/12

В данной сети можно разместить большее количество хостов.

Примерная схема планируемой сети с указанием типов и номеров портов подключения устройств, соответствующая физическому уровню модели OSI (L1), будет иметь вид, изображённый на рис. 4.

Рис. 4. Физические устройства сети с номерами портов (Layer 1)

В качестве оборудования уровня ядра будем использовать маршрутизатор Cisco 2811, на уровне распределения — коммутаторы Cisco 2960 с возможностью настройки VLAN, а на уровне доступа — коммутаторы Cisco 2950.

Далее следует спланировать распределение VLAN. Рекомендуется выделять в отдельные подсети (VLAN) устройства управления сетью, а также различные группы пользователей (см. табл. 5).

Таблица 5

_		7-6-					
- 1	Таблица VLAN						
2	Nº VLAN ▼	VAIV RMN	Примечание				
3	1	default	Не используется				
4	2	management	Для управления устройствами				
5	3	servers	Для серверной фермы				
6	4-100		Зарезервировано				
7	101	dk	Дисплейные классы (ДК)				
8	102	departments	Кафедры				
9	103	adm	Администрация				
10	104	other	Для других пользователей				

Примерная схема сети с указанием номеров VLAN, соответствующая канальному уровню модели OSI (L2), будет иметь вид, изображённый на рис. 5.

Рис. 5. Схема VLAN сети (Layer 2)

Далее необходимо определить адресное пространство, ассоциированное с выделенными VLAN. Примерная схема сети, соответствующая сетевому уровню модели OSI (L3), будет иметь вид, изображённый на рис. 6.

Рис. 6. Схема маршрутизации сети (Layer 3)

Более детальное распределение ІР-адресов в сети представлено в табл. 6.

При планировании IP-адресация (разбиении адресного пространства сети на подсети) следует учитывать потенциальное количество устройств подсети, а также возможность увеличения их числа.

В табл. 7 приведён план подключения оборудования сети по портам.

	Таблица IP	
IР-адреса ▼	Примечание VLAM	4
172.16.0.0/12	Вся сеть	
172.16.0.0/24	Серверная ферма	3
172.16.0.1	Шлюз	
172.16.0.2	Web	
172.16.0.3	File	
172.16.0.4	Mail	
172.16.0.5	Dns	
172.16.0.6-172.16.0.254	Зарезервировано	
172.16.1.0/24	Управление	2
172.16.1.1	Шлюз	
172.16.1.2	msk-donskaya-dashagabaev-sw-1	
172.16.1.3	msk-donskaya-dashagabaev-sw-2	
172.16.1.4	msk-donskaya-dashagabaev-sw-3	
172.16.1.5	msk-donskaya-dashagabaev-sw-4	
172.16.1.6	msk-pavlovskaya-dashagabaev-sw-1	
172.16.1.6-172.16.1.254	Зарезервировано	
172.16.2.0/24	Сеть Point-to-Point	
172.16.2.1	Шлюз	
172.16.2.2-172.16.2.254	Зарезервировано	
172.16.3.0/24	Дисплейные классы (ДК)	101
172.16.3.1	Шлюз	
172.16.3.2-172.16.3.254	Пул для пользователей	
172.16.4.0/24	Кафедры (К)	102
172.16.4.1	Шлюз	
172.16.4.2-172.16.4.254	Пул для пользователей	
172.16.5.0/24	Администрация (А)	103
172.16.5.1	Шлюз	
172.16.5.2-172.16.5.254	Пул для пользователей	
172.16.6.0/24	Другие пользователи (Д)	104
172.16.6.1	Шлюз	
172.16.6.2-172.16.6.254	Пул для пользователей	

Таблица 7

Устройство	Порт	Примечание	Access VLAN Trunk VLAN
msk-donskaya-dashagabaev-gw-1	f0/1	UpLink	
	f0/0	msk-donskaya-dashagabaev-sw-1	2, 3, 101, 102, 103, 104
msk-donskaya-dashagabaev-sw-1	g1/1	msk-donskaya-dashagabaev-gw-1	
	g1/2	msk-donskaya-dashagabaev-sw-2	2, 3
	f0/1	msk-donskaya-dashagabaev-sw-4	2, 101, 102, 103, 104
	f0/2	msk-pavlovskaya-dashagabaev-sw-1	2, 101, 104
msk-donskaya-dashagabaev-sw-2	g1/1	msk-donskaya-dashagabaev-sw-1	2, 3
	g1/2	msk-donskaya-dashagabaev-sw-3	2, 3
	f0/1	Web-server	3
	f0/2	File-server	3
msk-donskaya-dashagabaev-sw-3	f1/1	msk-donskaya-dashagabaev-sw-2	2, 3
	f0/1	Mail-server	3
	f0/2	Dns-server	3
msk-donskaya-dashagabaev-sw-4	f0/24	msk-donskaya-dashagabaev-sw-1	2, 101, 102, 103, 104
	f0/1-f0/5	dk	101
	f0/6-f0/10	departments	102
	f0/11-f0/15	adm	103
	f0/16-f0/24	other	104
msk-pavlovskaya-dashagabaev-sw-1	f0/24	msk-donskaya-dashagabaev-sw-1	2, 101, 104
	f0/1-f0/15	dk	101
	f0/20	other	104

Регламент выделения ір-адресов дан в табл. 8.

Регламент выделения ір-адресов (для сети класса С)			
IР-адреса		Назначение	
	1	Шлюз	
2-19		Сетевое оборудование	
20-29		Серверы	
30-199		Компьютеры, DHCP	
200-219		Компьютеры, Static	
220-229		Принтеры	
230-254		Резерв	

Сеть 192.168.0.0/16

Примерная схема планируемой сети с указанием типов и номеров портов подключения устройств, соответствующая физическому уровню модели OSI (L1), будет иметь вид, изображённый на рис. 7.

Рис. 7. Физические устройства сети с номерами портов (Layer 1)

В качестве оборудования уровня ядра будем использовать маршрутизатор Cisco 2811, на уровне распределения — коммутаторы Cisco 2960 с возможностью настройки VLAN, а на уровне доступа — коммутаторы Cisco 2950.

Далее следует спланировать распределение VLAN. Рекомендуется выделять в отдельные подсети (VLAN) устройства управления сетью, а также различные группы пользователей (см. табл. 9).

Таблица 9

1	Таблица VLAN						
2	Nº VLAN ▼	✓ NAJV RMN	Примечание				
3	1	default	Не используется				
4	2	management	Для управления устройствами				
5	3	servers	Для серверной фермы				
6	4-100		Зарезервировано				
7	101	dk	Дисплейные классы (ДК)				
8	102	departments	Кафедры				
9	103	adm	Администрация				
10	104	other	Для других пользователей				

Примерная схема сети с указанием номеров VLAN, соответствующая канальному уровню модели OSI (L2), будет иметь вид, изображённый на рис. 8.

Рис. 8. Схема VLAN сети (Layer 2)

Далее необходимо определить адресное пространство, ассоциированное с выделенными VLAN. Примерная схема сети, соответствующая сетевому уровню модели OSI (L3), будет иметь вид, изображённый на рис. 9.

Рис. 9. Схема маршрутизации сети (Layer 3)

Более детальное распределение ІР-адресов в сети представлено в табл. 10.

При планировании IP-адресация (разбиении адресного пространства сети на подсети) следует учитывать потенциальное количество устройств подсети, а также возможность увеличения их числа.

В табл. 11 приведён план подключения оборудования сети по портам.

	Таблица IP	
ІР-адреса	▼ Примечание ▼ \	/LAN 🔻
192.168.0.0/16	Вся сеть	
192.168.0.0/24	Серверная ферма	3
192.168.0.1	Шлюз	
192.168.0.2	Web	
192.168.0.3	File	
192.168.0.4	Mail	
192.168.0.5	Dns	
192.168.0.6-192.168.0.254	Зарезервировано	
192.168.1.0/24	Управление	2
192.168.1.1	Шлюз	
192.168.1.2	msk-donskaya-dashagabaev-sw-1	
192.168.1.3	msk-donskaya-dashagabaev-sw-2	
192.168.1.4	msk-donskaya-dashagabaev-sw-3	
192.168.1.5	msk-donskaya-dashagabaev-sw-4	
192.168.1.6	msk-pavlovskaya-dashagabaev-sw-1	
192.168.1.6-192.168.1.254	Зарезервировано	
192.168.2.0/24	Сеть Point-to-Point	
192.168.2.1	Шлюз	
192.168.2.2-192.168.2.254	Зарезервировано	
192.168.3.0/24	Дисплейные классы (ДК)	101
192.168.3.1	Шлюз	
192.168.3.2-192.168.3.254	Пул для пользователей	
192.168.4.0/24	Кафедры (К)	102
192.168.4.1	Шлюз	
192.168.4.2-192.168.4.254	Пул для пользователей	
192.168.5.0/24	Администрация (А)	103
192.168.5.1	Шлюз	
192.168.5.2-192.168.5.254	Пул для пользователей	
192.168.6.0/24	Другие пользователи (Д)	104
192.168.6.1	Шлюз	
192.168.6.2-192.168.6.254	Пул для пользователей	

Таблица 11

		Таблица портов	
Устройство	Порт	Примечание	▼ Access VLAN ▼ Trunk VLAN
msk-donskaya-dashagabaev-gw-1	f0/1	UpLink	
	f0/0	msk-donskaya-dashagabaev-sw-1	2, 3, 101, 102, 103, 104
msk-donskaya-dashagabaev-sw-1	g1/1	msk-donskaya-dashagabaev-gw-1	
	g1/2	msk-donskaya-dashagabaev-sw-2	2, 3
	f0/1	msk-donskaya-dashagabaev-sw-4	2, 101, 102, 103, 104
	f0/2	msk-pavlovskaya-dashagabaev-sw-1	2, 101, 104
msk-donskaya-dashagabaev-sw-2	g1/1	msk-donskaya-dashagabaev-sw-1	2, 3
	g1/2	msk-donskaya-dashagabaev-sw-3	2, 3
	f0/1	Web-server	3
	f0/2	File-server	3
msk-donskaya-dashagabaev-sw-3	f1/1	msk-donskaya-dashagabaev-sw-2	2, 3
	f0/1	Mail-server	3
	f0/2	Dns-server	3
msk-donskaya-dashagabaev-sw-4	f0/24	msk-donskaya-dashagabaev-sw-1	2, 101, 102, 103, 104
	f0/1-f0/5	dk	101
	f0/6-f0/10	departments	102
	f0/11-f0/15	adm	103
	f0/16-f0/24	other	104
msk-pavlovskaya-dashagabaev-sw-1	f0/24	msk-donskaya-dashagabaev-sw-1	2, 101, 104
_	f0/1-f0/15	dk	101
	f0/20	other	104

Регламент выделения ір-адресов дан в табл. 12.

Регламент выделения ір-адресов (для сети класса С)	
ІР-адреса ▼	Назначение
1	Шлюз
2-19	Сетевое оборудование
20-29	Серверы
30-199	Компьютеры, DHCP
200-219	Компьютеры, Static
220-229	Принтеры
230-254	Резерв

3. Вывод

В ходе выполнения данной работы я познакомился с принципами планирования локальной сети организации.

4. Контрольные вопросы

1. Что такое модель взаимодействия открытых систем (OSI)? Какие уровни в ней есть? Какие функции закреплены за каждым уровнем модели OSI?

Сетевая модель OSI (The Open Systems Interconnection model) — сетевая модель стека (магазина) сетевых протоколов OSI/ISO. Посредством данной модели различные сетевые устройства могут взаимодействовать друг с другом. Модель определяет различные уровни взаимодействия систем. Каждый уровень выполняет определённые функции при таком взаимодействии.

Физический уровень — нижний уровень модели, который определяет метод передачи данных, представленных в двоичном виде, от одного устройства (компьютера) к другому.

Канальный уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля ошибок, которые могут возникнуть.

Сетевой уровень модели предназначен для определения пути передачи данных.

Транспортный уровень модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю.

Сеансовый уровень модели обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время.

Уровень представления обеспечивает преобразование протоколов и кодирование/декодирование данных.

Прикладной уровень — верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью.

2. Какие функции выполняет коммутатор?

Коммутатор работает на канальном (втором) уровне сетевой модели OSI. Его основная задача - анализ MAC- адреса порта-отправителя и отправка данных на другой порт, при этом таблица коммутации формируется им же самим.

3. Какие функции выполняет маршрутизатор?

Маршрутизатор работает на сетевом уровне сетевой модели OSI и организовывает соединение подсетей.

Основная функция маршрутизатора заключается в считывании и анализе служебной информации пакетов по каждому порту с целью принятия решения о дальнейшем направлении данных по сети.

Функции:

- создание и ведение таблиц маршрутизации;
- определение маршрутов;
- фильтрация пакетов;
- ведение очередей;
- преобразование сетевых адресов в локальные;
- распределение данных по портам.
- 4. В чём отличие коммутаторов третьего уровня от коммутаторов второго уровня?

Более сложные коммутаторы позволяют управлять коммутацией на сетевом (третьем) уровне модели OSI.

Основное различие между коммутаторами второго уровня и третьего уровня — это функция маршрутизации. Коммутатор второго уровня работает только с МАС-адресами, игнорируя IP-адреса и элементы более высоких уровней. Коммутатор третьего уровня выполняет все функции коммутатора второго уровня. Кроме того, он может осуществлять статическую и динамическую маршрутизацию.

5. Что такое сетевой интерфейс?

Сетевой интерфейс — физическое или виртуальное устройство, предназначенное для передачи данных между программами через компьютерную сеть.

6. Что такое сетевой порт?

Сетевой порт — это сетевой ресурс, отображаемый в виде числа, которое определяет назначение входящих или исходящих сетевых потоков данных на заданном устройстве. Записывается в заголовках протоколов транспортного уровня сетевой модели OSI (TCP, UDP, SCTP, DCCP).

7. Кратко охарактеризуйте технологии Ethernet, Fast Ethernet, Gigabit Ethernet.

Ethernet— семейство технологий пакетной передачи данных между устройствами для компьютерных и промышленных сетей.

Fast Ethernet (FE) — общее название для набора стандартов передачи данных в компьютерных сетях по технологии Ethernet со скоростью до 100 Мбит/с, в отличие от исходных 10 Мбит/с.

Gigabit Ethernet (GE, GbE, или 1 GigE) в компьютерных сетях — термин, описывающий различные технологии передачи Ethernet-кадров со скоростью 1 гигабит в секунду, определяемые рядом стандартов группы IEEE 802.3.

8. Что такое IP-адрес (IPv4-адрес)? Определите понятия сеть, подсеть, маска подсети. Охарактеризуйте служебные IP-адреса. Приведите пример с пояснениями разбиения сети на две или более подсетей с указанием числа узлов в каждой подсети.

IP-адрес (от англ. Internet Protocol) — это уникальный числовой идентификатор устройства в компьютерной сети, работающий по протоколу TCP/IP. В сети Интернет требуется глобальная уникальность адреса; в случае работы в локальной сети требуется уникальность адреса в

пределах сети. В версии протокола IPv4 IP-адрес имеет длину 4 байта, а в версии протокола IPv6 — 16 байт.

Компьютерная сеть — система, обеспечивающая обмен данными между вычислительными устройствами — компьютерами, серверами, маршрутизаторами и другим оборудованием или программным обеспечением.

Подсеть — это логическое разделение сети IP.

Маска подсети — битовая маска для определения по IP-адресу адреса подсети и адреса узла (хоста, компьютера, устройства) этой подсети.

Некоторые IP-адреса являются зарезервированными. Для таких адресов существуют соглашения об их особой интерпретации:

127.0.0.0 - 127.255.255.255 -используется для коммуникаций внутри хоста (localhost);

0.0.0.0 — адрес узла, который сгенерировал этот пакет;

255.255.255.255 — пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast);

127.0.0.1 — зарезервирован для организации обратной связи при тестировании работы программного обеспечения узла без реальной отправки пакета по сети. Этот адрес имеет название loopback;

0 во всех двоичных разрядах поля номера узла — такие IP-адреса используются для записи адресов сетей в целом;

1 во всех двоичных разрядах поля номера узла — такие IP-адреса являются широковещательными адресами для сетей, номера которых определяются этими адресами.

9. Дайте определение понятию VLAN. Для чего применяется VLAN в сети организации? Какие преимущества даёт применение VLAN в сети организации? Приведите примеры разных ситуаций.

VLAN (аббр. Virtual Local Area Network) — виртуальная локальная компьютерная сеть. Представляет собой группу хостов с общим набором требований, которые взаимодействуют так, как если бы они были подключены к широковещательному домену независимо от их физического местонахождения.

Можно объединить в одну сеть отдел компании, сотрудники которого работают в разных зданиях и подключены к разным коммутаторам. Или,

наоборот, создать отдельные сети для устройств, подключённых к одному коммутатору, если этого требует политика безопасности.

Преимущества: группирование устройств, повышение безопасности, сокращение физического оборудования и т. д.

10. В чём отличие Trunk Port от Access Port? Access port (порт доступа) — к нему подключаются, как правило, конечные узлы. Трафик между этим портом и устройством нетегированный. За каждым аccess-портом закреплён определённый VLAN.

Trunk port (магистральный порт) — порт, передающий тегированный трафик. Как правило, этот порт поднимается между сетевыми устройствами