Tests for Multivariate Means

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Tests for one multivariate mean

Review of univariate tests i

- Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ be independently distributed, and let \bar{X} and s^2 be the sample mean and variance, respectively.
- When σ^2 is known
 - $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$, or equivalently $\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\right)^2 \sim \chi^2(1)$.
 - $100(1-\alpha)\%$ confidence interval: $(\bar{X}-z_{\alpha/2}(\sigma/\sqrt{n}),\bar{X}+z_{\alpha/2}(\sigma/\sqrt{n})).$
- When σ^2 is unknown
 - $\frac{\bar{X}-\mu}{s/\sqrt{n}} \sim t(n-1)$, or equivalently $\left(\frac{\bar{X}-\mu}{s/\sqrt{n}}\right)^2 \sim F(1,n-1)$.
 - $100(1-\alpha)$ % confidence interval: $(\bar{X}-t_{\alpha/2,n-1}(s/\sqrt{n}),\bar{X}+t_{\alpha/2,n-1}(s/\sqrt{n})).$

Review of univariate tests ii

• In particular, if we want to test $H_0: \mu = \mu_0$ when σ^2 is unknown, then we reject the null hypothesis if

$$\left|\frac{\bar{X}-\mu_0}{s/\sqrt{n}}\right| > t_{\alpha/2,n-1}, \text{ or } \left(\frac{\bar{X}-\mu_0}{s/\sqrt{n}}\right)^2 > F_{\alpha}(1,n-1).$$

The multivariate tests for a single mean vector have direct analogues.

4

Test for a multivariate mean: Σ **known**

- Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n \sim N_p(\mu, \Sigma)$ be independent.
- We saw in the previous lecture that

$$\bar{\mathbf{Y}} \sim N_p\left(\mu, \frac{1}{n}\Sigma\right).$$

This means that

$$n(\bar{\mathbf{Y}} - \mu)^T \Sigma^{-1} (\bar{\mathbf{Y}} - \mu) \sim \chi^2(p).$$

• In particular, if we want to test $H_0: \mu = \mu_0$ at level α , then we reject the null hypothesis if

$$n(\bar{\mathbf{Y}} - \mu_0)^T \Sigma^{-1}(\bar{\mathbf{Y}} - \mu_0) > \chi_{\alpha}^2(p).$$

Example i

```
library(dslabs)
library(tidyverse)
dataset <- gapminder %>%
  filter(year == 2012,
         !is.na(infant mortality)) %>%
  select(infant mortality,
         life expectancy,
         fertility) %>%
  as.matrix()
```

Example ii

```
# Assume we know Sigma
Sigma <- matrix(c(555, -170, 30, -170, 65, -10, 30, -10, 2), ncol = 3)

mu_hat <- colMeans(dataset)
mu_hat
```

```
## infant_mortality life_expectancy fertility
## 25.824157 71.308427 2.868933
```

Example iii

[1] TRUE

```
# Test mu = mu_0
mu_0 <- c(25, 50, 3)
test_statistic <- nrow(dataset) * t(mu_hat - mu_0) %*%
    solve(Sigma) %*% (mu_hat - mu_0)
drop(test_statistic) > qchisq(0.95, df = 3)
```

Test for a multivariate mean: Σ unknown i

 \blacksquare Of course, we rarely (if ever) know $\Sigma,$ and so we use its MLE

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{Y}_i - \bar{\mathbf{Y}}) (\mathbf{Y}_i - \bar{\mathbf{Y}})^T$$

or the sample covariance S_n .

• Therefore, to test $H_0: \mu = \mu_0$ at level α , then we reject the null hypothesis if

$$T^{2} = n(\bar{\mathbf{Y}} - \mu_{0})^{T} S_{n}^{-1}(\bar{\mathbf{Y}} - \mu_{0}) > c,$$

for a suitably chosen constant c that depends on α .

• **Note**: The test statistic T^2 is known as *Hotelling's* T^2 .

Test for a multivariate mean: Σ unknown ii

• It turns out that (under H_0) T^2 has a simple distribution:

$$T^{2} \sim \frac{(n-1)p}{(n-p)}F(p, n-p).$$

• In other words, we reject the null hypothesis at level lpha if

$$T^{2} > \frac{(n-1)p}{(n-p)} F_{\alpha}(p, n-p).$$

Example (revisited)

```
n <- nrow(dataset); p <- ncol(dataset)</pre>
# Test mu = mu 0
mu 0 < -c(25, 50, 3)
test statistic <- n * t(mu hat - mu 0) %*%
  solve(cov(dataset)) %*% (mu hat - mu 0)
critical val <- (n - 1)*p*qf(0.95, df1 = p,
                              df2 = n - p)/(n-p)
drop(test statistic) > critical val
## [1] TRUE
```

Confidence region for μ i

- Analogously to the univariate setting, it may be more informative to look at a confidence region:
 - The set of values $\mu_0 \in \mathbb{R}^p$ that are supported by the data, i.e. whose corresponding null hypothesis $H_0: \mu = \mu_0$ would be rejected at level α .
- Let $c^2 = \frac{(n-1)p}{(n-p)} F_{\alpha}(p,n-p)$. A $100(1-\alpha)\%$ confidence region for μ is given by the ellipsoid around $\bar{\mathbf{Y}}$ such that

$$n(\bar{\mathbf{Y}} - \mu)^T S_n^{-1}(\bar{\mathbf{Y}} - \mu) < c^2, \quad \mu \in \mathbb{R}^p.$$

Confidence region for μ ii

- We can describe the confidence region in terms of the eigendecomposition of S_n : let $\lambda_1 \geq \cdots \geq \lambda_p$ be its eigenvalues, and let v_1, \ldots, v_p be corresponding eigenvectors of unit length.
- \blacksquare The confidence region is the ellipsoid centered around \overline{Y} with axes

$$\pm c\sqrt{\lambda_i}v_i.$$

Visualizing confidence regions when p > 2 i

- When p > 2 we cannot easily plot the confidence regions.
 - Therefore, we first need to project onto an axis or onto the plane.
- Theorem: Let c>0 be a constant and A a $p\times p$ positive definite matrix. For a given vector $\mathbf{u}\neq 0$, the projection of the ellipse $\{\mathbf{y}^TA^{-1}\mathbf{y}\leq c^2\}$ onto \mathbf{u} is given by

$$c\frac{\sqrt{\mathbf{u}^T A \mathbf{u}}}{\mathbf{u}^T \mathbf{u}} \mathbf{u}.$$

Visualizing confidence regions when p > 2 ii

• If we take u to be the standard unit vectors, we get confidence intervals for each component of μ:

$$LB = \bar{\mathbf{Y}}_{j} - \sqrt{\frac{(n-1)p}{(n-p)} F_{\alpha}(p, n-p)(s_{jj}^{2}/n)}$$

$$UB = \bar{\mathbf{Y}}_{j} + \sqrt{\frac{(n-1)p}{(n-p)} F_{\alpha}(p, n-p)(s_{jj}^{2}/n)}.$$

Example

```
n <- nrow(dataset); p <- ncol(dataset)</pre>
\# Test mu = mu \ O
mu 0 < -c(25, 50, 3)
test statistic <- n * t(mu hat - mu 0) %*%
  solve(cov(dataset)) %*% (mu hat - mu 0)
critical val \leftarrow (n - 1)*p*qf(0.95, df1 = p,
                               df2 = n - p)/(n-p)
sample cov <- diag(cov(dataset))</pre>
cbind(mu hat - sqrt(critical val*
                        sample cov/n),
      mu hat + sort(critical val*
```

Visualizing confidence regions when p>2 (cont'd) i

■ Theorem: Let c>0 be a constant and A a $p\times p$ positive definite matrix. For a given pair of perpendicular unit vectors $\mathbf{u}_1, \mathbf{u}_2$, the projection of the ellipse $\{\mathbf{y}^TA^{-1}\mathbf{y} \leq c^2\}$ onto the plane defined by $\mathbf{u}_1, \mathbf{u}_2$ is given by

$$\left\{ (U^T\mathbf{y})^T(U^TAU)^{-1}(U^T\mathbf{y}) \leq c^2 \right\},$$
 where $U = (\mathbf{u}_1, \mathbf{u}_2).$

17

Example (cont'd) i

Example (cont'd) ii

Example (cont'd) iii

```
# Eigendecomposition
decomp <- eigen(t(U) %*% cov(dataset) %*% U)
first <- sqrt(decomp$values[1]) *
  decomp$vectors[,1] * sqrt(critical_val)
second <- sqrt(decomp$values[2]) *
  decomp$vectors[,2] * sqrt(critical_val)</pre>
```

Example (cont'd) iv

Simultaneous Confidence Statements i

- Let $w \in \mathbb{R}^p$. We are interested in constructing confidence intervals for $w^T \mu$ that are simultaneously valid (i.e. right coverage probability) for all w.
- Note that $w^T \bar{\mathbf{Y}}$ and $w^T S_n w$ are both scalars.
- If we were only interested in a particular w, we could use the following confidence interval:

$$\left(w^T \bar{\mathbf{Y}} \pm t_{\alpha/2, n-1} \sqrt{w^T S_n w/n}\right).$$

Simultaneous Confidence Statements ii

 \bullet Or equivalently, the confidence interval contains the set of values $w^T\mu$ for which

$$t^{2}(w) = \frac{n(w^{T}\bar{\mathbf{Y}} - w^{T}\mu)^{2}}{w^{T}S_{n}w} = \frac{n(w^{T}(\bar{\mathbf{Y}} - \mu))^{2}}{w^{T}S_{n}w} \le F_{\alpha}(1, n-1).$$

Strategy: Maximise over all w:

$$\max_{w} t^{2}(w) = \max_{w} \frac{n(w^{T}(\bar{\mathbf{Y}} - \mu))^{2}}{w^{T} S_{n} w}.$$

Simultaneous Confidence Statements iii

Using the Cauchy-Schwarz Inequality:

$$(w^{T}(\bar{\mathbf{Y}} - \mu))^{2} = (w^{T}S^{1/2}S^{-1/2}(\bar{\mathbf{Y}} - \mu))^{2}$$

$$= ((S^{1/2}w)^{T}(S^{-1/2}(\bar{\mathbf{Y}} - \mu)))^{2}$$

$$\leq (w^{T}S_{n}w)((\bar{\mathbf{Y}} - \mu)^{T}S_{n}^{-1}(\bar{\mathbf{Y}} - \mu)).$$

• Dividing both sides by $w^T S_n w/n$, we get

$$t^{2}(w) \leq n(\bar{\mathbf{Y}} - \mu)^{T} S_{n}^{-1}(\bar{\mathbf{Y}} - \mu).$$

Simultaneous Confidence Statements iv

• Since the Cauchy-Schwarz inequality also implies that the inequality is an *equality* if and only if w is proportional to $S_n^{-1}(\bar{\mathbf{Y}}-\mu)$, it means the upper bound is attained and therefore

$$\max_{w} t^{2}(w) = n(\bar{\mathbf{Y}} - \mu)^{T} S_{n}^{-1}(\bar{\mathbf{Y}} - \mu).$$

• The right-hand side is Hotteling's T^2 , and therefore we know that

$$\max_{w} t^{2}(w) \sim \frac{(n-1)p}{(n-p)} F(p, n-p).$$

Simultaneous Confidence Statements v

• **Theorem**: Simultaneously for all $w \in \mathbb{R}^p$, the interval

$$\left(w^T \bar{\mathbf{Y}} \pm \sqrt{\frac{(n-1)p}{n(n-p)} F_{\alpha}(p,n-p) w^T S_n w}\right).$$

will contain $w^T \mu$ with probability $1 - \alpha$.

 ${\color{red} \bullet}$ Corrolary: If we take w to be the standard basis vectors, we recover the projection results from earlier.

Further comments

- If we take $w=(0,\ldots,0,1,0,\ldots,0,-1,0,\ldots,0)$, we can also derive confidence statements about mean differences $\mu_i-\mu_k$.
- In general, simultaneous confidence statements are good for exploratory analyses, i.e. when we test many different contrasts.
- However, this much generality comes at a cost: the resulting confidence intervals are quite large.
 - Since we typically only care about a finite number of hypotheses, there are more efficient ways to account for the exploratory nature of the tests.

Bonferroni correction i

- Assume that we are interested in m null hypotheses $H_{0i}: w_i^T \mu = \mu_{0i}$, at confidence level α_i , for $i = 1, \ldots, m$.
- We can show that

$$P(\text{all }H_{0i} \text{ are true}) = 1 - P(\text{at least one }H_{0i} \text{ is false})$$

$$\geq 1 - \sum_{i=1}^m P(H_{0i} \text{ is false})$$

$$= 1 - \sum_{i=1}^m \alpha_i.$$

Bonferroni correction ii

• Therefore, if we want to control the overall error rate at α , we can take

$$\alpha_i = \alpha/m$$
, for all $i = 1, \dots, m$.

• If we take w_i to be the *i*-th standard basis vector, we get simultaneous confidence intervals for all p components of μ :

$$\left(\bar{\mathbf{Y}}_i \pm t_{\alpha/2p,n-1}(\sqrt{s_{ii}^2/n})\right).$$

Example i

```
# Let's focus on only two variables
dataset <- gapminder %>%
  filter(year == 2012,
         !is.na(infant mortality)) %>%
  select(infant mortality,
         life expectancy) %>%
  as.matrix()
n <- nrow(dataset); p <- ncol(dataset)</pre>
```

Example ii

```
alpha <- 0.05
mu hat <- colMeans(dataset)</pre>
sample cov <- diag(cov(dataset))</pre>
# Simultaneous CIs
critical val <-(n-1)*p*qf(1-0.5*alpha, df1 = p,
                              df2 = n - p)/(n-p)
simul ci <- cbind(mu hat - sqrt(critical val*
                                    sample cov/n),
                  mu hat + sqrt(critical val*
                                    sample cov/n))
```

Example iii

```
simul ci
                            \lceil .1 \rceil \qquad \lceil .2 \rceil
##
## infant mortality 20.95439 30.69392
## life expectancy 69.61504 73.00181
univ ci
##
                            [,1] \qquad [,2]
## infant mortality 22.33295 29.31537
## life expectancy 70.09441 72.52244
bonf ci
                            [,1] \qquad [,2]
##
## infant mortality 21.82491 29.8234
## life expectancy 69.91775 72.6991
```


Summary

- So which one should you use?
 - Use the confidence region when you're interested in a single multivariate hypothesis test.
 - Use the simultaneous (i.e. T^2) intervals when testing a large number of contrasts.
 - Use the Bonferroni correction when testing a small number of contrasts (e.g. each component of μ).
 - (Almost) **never** use the unadjusted intervals.
- We can check the coverage probabilities of each approach using a simulation study:
 - https://www.maxturgeon.ca/f19stat4690/simulation_coverage_probability.R

Likelihood Ratio Test i

- There is another important approach to performing hypothesis testing:
 - Likelihood Ratio Test.
- General strategy:
 - 1. Maximise likelihood under the null hypothesis: L_0
 - 2. Maximise likelihood over the whole parameter space: L_1
 - 3. Since the value of the parameters under the null hypothesis is in the parameter space, we have $L_1 \ge L_0$.
 - 4. Reject the null hypothesis if the ratio $\Lambda = L_0/L_1$ is small.

Likelihood Ratio Test ii

In our setting, recall that the likelihood is given by

$$L(\mu, \Sigma) = \prod_{i=1}^{n} \left(\frac{1}{\sqrt{(2\pi)^p |\Sigma|}} \exp\left(-\frac{1}{2} (\mathbf{y}_i - \mu)^T \Sigma^{-1} (\mathbf{y}_i - \mu)\right) \right).$$

Over the whole parameter space, it is maximised at

$$\hat{\mu} = \bar{\mathbf{Y}}, \quad \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{Y}_i - \bar{\mathbf{Y}}) (\mathbf{Y}_i - \bar{\mathbf{Y}})^T.$$

• Under the null hypothesis $H_0: \mu = \mu_0$, the only free parameter is Σ , and $L(\mu_0, \Sigma)$ is maximised at

$$\hat{\Sigma}_0 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{Y}_i - \mu_0) (\mathbf{Y}_i - \mu_0)^T.$$

Likelihood Ratio Test iii

With some linear algbera, you can check that

$$L(\hat{\mu}, \hat{\Sigma}) = \frac{\exp(-np/2)}{(2\pi)^{np/2} |\hat{\Sigma}|^{n/2}}$$
$$L(\mu_0, \hat{\Sigma}_0) = \frac{\exp(-np/2)}{(2\pi)^{np/2} |\hat{\Sigma}_0|^{n/2}}.$$

Therefore, the likelihood ratio is given by

$$\Lambda = \frac{L(\mu_0, \hat{\Sigma}_0)}{L(\hat{\mu}, \hat{\Sigma})} = \left(\frac{|\hat{\Sigma}|}{|\hat{\Sigma}_0|}\right)^{n/2}.$$

Likelihood Ratio Test iv

- The equivalent statistic $\Lambda^{2/n} = |\hat{\Sigma}|/|\hat{\Sigma}_0|$ is called *Wilks'* lambda.
- What is the sampling distribution of Λ under the null hypothesis? It turns out that

$$\Lambda^{2/n} = \left(1 + \frac{T^2}{n-1}\right)^{-1},\,$$

where T^2 is Hotelling's statistic.

- Therefore the two tests are equivalent.
- But note that $\Lambda^{2/n}$ involves computing two determinants, whereas T^2 involves inverting a matrix.