# Construction of Families of Permutation Trinomials over Finite Fields

Christian A. Rodriguez Alex D. Santos

Department of Computer Science University of Puerto Rico, Río Piedras

March 4, 2014



## **Table of Contents**

- Introduction
- 2 Our Problem
- Results

## **Table of Contents**

- Introduction
- 2 Our Problem
- 3 Results

## Finite Fields

#### Definition

A **finite field**  $\mathbb{F}_q$  is a field with  $q = p^r$  elements where p is prime.

## Example

$$\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

**Addition:** 
$$2 + 2 = 4$$
  $4 + 4 = 8$ 

$$(\text{mod } 7) = 1$$

## **Multiplication:**

$$2 \cdot 2 = 4$$
  
 $4 \cdot 4 = 16$ 

$$4 \cdot 4 = 16$$

$$(\text{mod } 7) = 2$$

## Value Sets

#### Definition

Let f(x) be a polynomial defined over a finite field  $\mathbb{F}_q$ . Then the **value set** of f is defined as  $V(f) = \{f(a) \mid a \in \mathbb{F}_q\}$ 

#### Example

Consider 
$$f(x) = x^2$$
 defined over  $\mathbb{F}_5$ . Note:  $f(0) = 0, f(1) = 1, f(2) = 4, f(3) = 4, f(4) = 1$ , so  $V(f) = \{0, 1, 4\}.$ 

# Permutation Polynomials

#### **Definition**

A polynomial f(x) defined over  $\mathbb{F}_q$  is a **permutation** polynomial if and only if  $V(t) = \mathbb{F}_q$ .

# Permutation Polynomials

#### Definition

A polynomial f(x) defined over  $\mathbb{F}_q$  is a **permutation** polynomial if and only if  $V(t) = \mathbb{F}_q$ .

#### Example

Let  $f(x) = x^3$  over  $\mathbb{F}_5$ . Note:  $V(f) = \{0, 1, 3, 2, 4\}$  so f(x) is a permutation polynomial over  $\mathbb{F}_5$ 

# Permutation Polynomials

#### Definition

A polynomial f(x) defined over  $\mathbb{F}_q$  is a **permutation** polynomial if and only if  $V(t) = \mathbb{F}_q$ .

#### Example

Let  $f(x) = x^3$  over  $\mathbb{F}_5$ . Note:  $V(f) = \{0, 1, 3, 2, 4\}$  so f(x) is a permutation polynomial over  $\mathbb{F}_5$ 

#### Example

Let  $f(x) = x^2$  over  $\mathbb{F}_5$ . We have that  $V(f) = \{0, 1, 4\}$  so f(x) is not a permutation polynomial over  $\mathbb{F}_5$ .

#### **Definition**

A **primitive root**  $\alpha \in \mathbb{F}_q$  is a generator for the multiplicative group  $\mathbb{F}_q^{\times}$ 

#### Definition

A **primitive root**  $\alpha \in \mathbb{F}_q$  is a generator for the multiplicative group  $\mathbb{F}_q^{\times}$ 

 $\mathbb{F}_7$ 

#### Definition

A **primitive root**  $\alpha \in \mathbb{F}_q$  is a generator for the multiplicative group  $\mathbb{F}_q^{\times}$ 

$$\mathbb{F}_7$$
 $3^1 = 3$ 
 $3^2 = 2$ 
 $3^3 = 6$ 
 $3^4 = 4$ 
 $3^5 = 5$ 
 $3^6 = 1$ 

#### Definition

A **primitive root**  $\alpha \in \mathbb{F}_q$  is a generator for the multiplicative group  $\mathbb{F}_q^{\times}$ 

$$\mathbb{F}_7 \ 3^1 = 3 \ 3^2 = 2 \ 3^3 = 6 \ 3^4 = 4 \ 3^5 = 5 \ 3^6 = 1 \ 2^7 = 2 \ 2^2 = 4 \ 2^4 = 2 \ 2^5 = 4 \ 2^6 = 1$$

## **Table of Contents**

- Introduction
- 2 Our Problem
- 3 Results

## Our Problem

- Everyting is known about Permutation Monomials
- Permutation Binomials have been studied extensively
- The next case is to study Permutation Trinomials



## Our Polynomial

Let  $d_1, d_2 \in \mathbb{N}$  such that  $d_1 \mid (q-1)$  y  $d_2 \mid (q-1)$ . We are interested in the polynomial:

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

with  $a, b \in \mathbb{F}_q^{\times}$ .

Denote the value set of this polynomial  $V(f_{a,b})$ .

## Our Polynomial

Let  $d_1, d_2 \in \mathbb{N}$  such that  $d_1 \mid (q-1)$  y  $d_2 \mid (q-1)$ . We are interested in the polynomial:

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

with  $a, b \in \mathbb{F}_q^{\times}$ .

Denote the value set of this polynomial  $V(f_{a,b})$ .

#### Problem

#### Our Problem

Study the value set of polynomials of the form

 $f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$  and determine conditions in a, b such that they are permutation polynomials.

## **Table of Contents**

- Introduction
- 2 Our Problem
- Results

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

 $a = \alpha^i, b = \alpha^j, \alpha$  a primitive root in  $\mathbb{F}_q$ 

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

 $a = \alpha^i, b = \alpha^j, \alpha$  a primitive root in  $\mathbb{F}_q$ 

$$\sim$$
 defined as  $(a,b)\sim(a',b')\Longleftrightarrow$ 

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

$$a = \alpha^i, b = \alpha^j, \alpha$$
 a primitive root in  $\mathbb{F}_q$ 

$$\sim$$
 defined as  $(a,b) \sim (a',b') \iff$   
 $a' = \alpha^{i+h(\frac{q-1}{d_1} - \frac{q-1}{d_2})}$ 

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

$$\mathbf{a} = \alpha^{i}, \mathbf{b} = \alpha^{j}, \alpha$$
 a primitive root in  $\mathbb{F}_{q}$ 

$$\sim$$
 defined as  $(a,b) \sim (a',b') \iff$   $a' = \alpha^{i+h(\frac{q-1}{d_1} - \frac{q-1}{d_2})}$ 

$$b' = \alpha^{j+h(\frac{q-1}{d_1})}$$



$$q = 13$$
 $d_1 = 2$ 
 $d_2 = 3$ 
 $\alpha = 2$ 
 $a = 4 = 2^2$ 
 $b = 8 = 2^3$ 

$$egin{aligned} q &= 13 \ d_1 &= 2 \ d_2 &= 3 \ lpha &= 2 \ a &= 4 = 2^2 \ b &= 8 = 2^3 \end{aligned}$$

$$q = 13$$
 $d_1 = 2$ 
 $d_2 = 3$ 
 $\alpha = 2$ 
 $a = 4 = 2^2$ 
 $b = 8 = 2^3$ 

$$(2^2, 2^3) \sim (a', b') \iff a' = 2^{2+2h}, b' = 2^{3+6h}$$
  
Example  $(h = 1)$ :  $(2^2, 2^3) \sim (2^4, 2^9)$ .

#### Lemma

The relation  $\sim$  defined previously is an equivalence relation.

 $f_{a,b}$  with equivalence classes:

$$[f_{a,b}] = [f_{\alpha^i \ \alpha^j}] = \{f_{a',b'} \mid (a,b) \sim (a',b')\}$$

# Polynomial Results

#### **Number of Permutation Polynomials**



# Value set correspondence

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

#### **Theorem**

Suppose that  $f_{a,b} \sim f_{a',b'}$  then  $|V(f_{a,b})| = |V(f_{a',b'})|$ .

#### Example

Let 
$$q = 13$$
,  $d_1 = 2$ ,  $d_2 = 3$ ,  $a = 4$ ,  $b = 8$ . Since  $(2^2, 2^3) \sim (2^4, 2^9)$  we have that  $|V(f_{2^2, 2^3})| = |V(f_{2^4, 2^9})|$ 

## Size of equivalence classes

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

#### **Proposition**

 $|[f_{a,b}]| = lcm(d_1, d_2)$  where lcm(x, y) is the least common multiple of x and y.

#### Example

Let q = 13,  $d_1 = 2$ ,  $d_2 = 3$ , a = 4, b = 8. Note that lcm(2,3) = 6 These are the elements of (a, b):

$$(2^2, 2^3), (2^4, 2^9), (2^6, 2^3), (2^8, 2^9), (2^10, 2^3), (2^{12}, 2^9), (2^2, 2^3)$$



# Polynomials Results

#### **Number of Permutation Polynomials**



\* Note that the number of polynomials in each cell is 6 = lcm(2, 3)

\* The polynomials within each cell have value sets of the same size. The size of the value sets associated to different cells might or might not be equal.

# Polynomial Results

## **Proposition**

The number of polynomials of the form  $f_{a,b}(X)$  with  $|V(f_{a,b})| = n$  is a multiple of  $lcm(d_1, d_2)$ 

## Corollary

The number of permutation polynomials of the form  $f_{a,b}(X)$  is a multiple of  $lcm(d_1, d_2)$ 

## **Future Work**

- Find necessary and sufficient conditions such that  $V(f_{a,b}) = \mathbb{F}_q$
- Collect data on number of permutation polynomials of the form  $f_{a,b}$  for different values of  $d_1$  and  $d_2$  and compare results with number of permutation polynomials.