Introdução ao Alzheimer

O Alzheimer é uma doença neurodegenerativa que afeta milhões de pessoas em todo o mundo. É a forma mais comum de demência, causando problemas de memória, cognição e comportamento. Neste slide iremos mostrar um Datset com o registro de óbitos por Alzheimer em vários países no ano de 2019.

Por: Jefferson Martins, Amadeu Seabra, Ryan Gabriel, Gustavo Junqueira.

Dados sobre a doença no mundo

Prevalência Global

Estima-se que existam cerca de 50 milhões de pessoas com Alzheimer no mundo.

Mortes em 2019

Em 2019, o Alzheimer foi a causa de mais de 1,5 milhão de mortes em todo o mundo.

Aumento Projetado

Prevê-se que o número de pessoas com Alzheimer dobre a cada 20 anos, chegando a 152 milhões em 2050.

Custos Econômicos

Os custos diretos e indiretos relacionados ao Alzheimer atingem centenas de bilhões de dólares por ano em todo o mundo.

O dataset está delimitado por ponto e vírgula (;). O conteúdo está sendo lido como uma única coluna. Este dataset e sobre Alzheimer e contém 106 entradas e 4 colunas, que são:

- Entidade: Nome do país ou região.
- Código: Código do país ou região.
- Ano: Ano em que os dados foram coletados.
- Óbitos: Taxa de óbitos por Alzheimer (presumivelmente por 100.000 habitantes).

Tabela do Dataset

Este código lê um arquivo CSV chamado 'dataset-alzheimer.csv' usando a biblioteca pandas, carregando em um DataFrame. Ele usa ';' como separador de campo e a codificação ISO 8859-1 para interpretar os caracteres, e salva isso em uma variável chamada 'dataset'

datas datas	et = pd.read_csv(' <mark>dataset-al</mark> et	zheimer	.csv',	sep=';'	, encoding='iso-8859-1')
	Entidade	Código	Ano	Óbitos	
0	Afghanistan	AFG	2019	30.79	
1	African Region (WHO)	RSA	2019	25.62	7
2	Albania	ALB	2019	24.00	
3	Algeria	DZA	2019	26.97	
4	American Samoa	ASM	2019	23.03	
			•••		
101	Kuwait	KWT	2019	25.08	
102	Kyrgyzstan	KGZ	2019	23.47	
103	Laos	LAO	2019	22.35	
104	Latin America & Caribbean (WB)	LAC	2019	23.65	
105	Latvia	LVA	2019	21.34	
106 ro	ws × 4 columns				

Comandos

Este comando retorna um objeto Index contendo os nomes das colunas, e **dataset.columns.str.strip()** aplica o método **strip()** a cada nome de coluna para remover os espaços em branco. Em seguida, os nomes das colunas são atualizados no DataFrame usando **dataset.columns =** O **print(dataset.columns)** exibe os nomes das colunas após a remoção dos espaços em branco.

```
dataset.columns = dataset.columns.str.strip()
print(dataset.columns)

Index(['Entidade', 'Código', 'Ano', 'Óbitos'], dtype='object')
```

Esses 6 comandos retornam a Soma, Mediana, Mínimo, Máximo, Média e o Desvio Padrão de Óbitos registrados.

```
mediana obtios = dataset ['Óbitos'].median()
    print("Mediana de registro de óbitos:", mediana obtios)
A mediana de registro de óbitos é: 23.03
[ ] soma obtios = dataset ['Óbitos'].sum()
    print("Soma do registro de óbitos:", soma obtios)
A soma do registro de óbitos é: 2511.24
[ ] min_obtios = dataset ['Óbitos'].min()
    print("Menor registro de óbitos:", min obtios)

→ 0 menor registro de óbitos é: 18.23
[ ] max_obtios = dataset ['Óbitos'].max()
    print("Maior registro de óbitos:", max_obtios)
→ 0 maior registro de óbitos é: 33.29
[ ] media_obtios = dataset ['Óbitos'].mean()
    print("Média do registro de óbitos:", media obtios)
A média do registro de óbitos é: 23.475566037735852
[ ] desvio_obtios = dataset ['Óbitos'].std()
    print("Desvio padrão do registro de óbitos:", desvio obtios)
→ O desvio padrão do registro de óbitos é: 2.61708334817186
```


Esse comando de GroupBy retorna as estatísticas descritivas da coluna óbitos com o seu Código (to)

US	0	dataset.	groupby	/('Óbito	s')['(ódigo
			count	unique	top	freq
		Óbitos				
		18.23	1	1	BGD	1
		19.12	1	1	IND	1
		19.69	1	1	DNK	1
		20.10	1	1	FIN	1
		20.12	1	1	AUT	1
			***		***	
		27.63	1	1	COG	1
		27.82	1	1	ETH	1
		28.59	1	1	GAB	1
		30.79	1	1	AFG	1
		33.29	1	1	KIR	1
		100 rows	× 4 colur	mns		

① E possível que algumas linhas de óbitos tenha alguns valores iguais aos de outras linhas, por isso são mostrado apenas 100 rows, ao invés das 106 rows.

Gráficos

Gráfico de Dispersão

O gráfico apresentado mostra os 30 países com o menor número de óbitos por Alzheimer, com base em dados agrupados.

Gráfico de Colunas

O gráfico apresentado mostra 15 registro óbitos entre 20 a 30, não mostra todos os registros entre 20 a 30 registros de óbitos, pois o gráfico e dividido em somente 15 bins (15 colunas).

Gráfico de Pizza

represente os registros abaixo da média e o Azul representa os registros acima da média

Este gráfico mostra a quantidade de registros óbitos em relação a média(23.475...), a parte Laranja

Este gráfico mostra os 20 países com o registros de óbitos de forma decrescente

Gráfico de Colunas

Entidade