Informed search algorithms

Chapter 3

Informed (Heuristic) Search

Idea: be **smart** about what paths to try.

Blind Search vs. Informed Search

What's the difference?

How do we formally specify this?

A node is selected for expansion based on an evaluation function that estimates cost to goal.

General Tree Search

General Graph Search

Paradigm function tree-search(root-node) fringe \(\text{successors} \) (root-node) explored [] empty while (notempty(fringe)) {node ☐ remove-first(fringe) state [] state(node) if goal-test(state) return solution(node) explored [] insert(node,explored) fringe \(\text{insert-all(successors(node),fringe, if node not in explored)} \) return failure end tree-search

Best-First Search

- Use an evaluation function f(n) for node n.
- Always choose the node from fringe that has the lowest f value.

Best-first search

- A search strategy is defined by picking the order of node expansion
- Idea: use an evaluation function f(n) for each node
 - estimate of "desirability"
 - ☐ Expand most desirable unexpanded node
- Implementation:
 Order the nodes in fringe in decreasing order of desirability
- Special cases:
 - greedy best-first search
 - A* search

Romania with step costs in km

Old (Uninformed) Friends

- Breadth First =
 - Best First
 - with f(n) = depth(n)
- Uniform cost search =
 - Best First
 - with f(n) = the sum of edge costs from start to n g(n)

Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic function) = estimate of cost from n to goal

• e.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to be closest to goal

Properties of greedy best-first search

Complete?

No – can get stuck in loops, e.g., lasi □ Neamt □ lasi □
 Neamt □

Time?

 $-O(b^m)$, but a good heuristic can give dramatic improvement

• Space?

 $-O(b^m)$ -- keeps all nodes in memory

Optimal?

– No

A^*

search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)

- $g(n) = \cos t \sin t \cos r = \cosh n$
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal

A* for Romanian Shortest

Path

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
	244	Zerind	374

Fig: Values of hSLD —straight-line distances to Bucharest.

A* for Romanian Shortest Path

Admissible heuristics

- A heuristic function h(n) is admissible if for every node n, h(n) ≤
 h*(n),
 where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal,
 i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Consistency of Heuristics

- h(n) is consistent if
 - for every node n
 - and for every successor s of n
 - $h(n) \le c(n, s) + h(s)$
- Consequences of consistency:

The f value along a path never decreases

$$h(A) <= c(A, C) + h(C)$$

A* graph search is optimal

• Theorem: If h(n) is consistent, A^* using GRAPH-SEARCH is optimal

Checking Consistency of a heuristic

A heuristic is consistent if:

$$h(n) \le c(n,s) + h(s)$$

* n = current node s = successor of n

For n = S and s = A $h(S) \le c(S, A) + h(A)$ $7 \le 4 + 1$ $7 \le 5$ X

For n = S and s = B $h(S) \le c(S, B) + h(B)$ $7 \le 2 + 5$ $7 \le 7$ For n = A and s = G $h(A) \le c(A, G) + h(G)$ $1 \le 4 + 0$ $1 \le 4$

For n = B and s = A $h(B) \le c(B, A) + h(A)$ $5 \le 1 + 1$ $5 \le 2$ X

- h(S) and h(B) are not consistent
- Therefore, the heuristics is not consistent
- Graph search will not guarantee optimal solution
- If we set h(S) = 5 and h(B) = 2, the heuristic will be consistent.
- Change these values in the graph and perform graph search. You will get the optimal path to the goal.