C9: Mining Association Rules: Apriori and Its Related Issues

Ming-Syan Chen

November 6, 2019

Tentative Class Agenda

- Class 8 (10/30) Introduction to data
- Class 9 (11/6) Association (Project announced, HW#4)
- Class 10 (11/13) More on data, OLAP, Intro. to Classification
- Class 11 (11/20) More on Classification (HW#5)
- Class 12 (11/27) Clustering and others; go over project abs.
- Class 13 –(12/4) R (HW#6)
- Class 14 (12/11) Exam (in class, closed book)
- Class 15 (12/18) Project presentation I
- Class 16 (12/25) Project presentation II

2

Procedure of Data Mining

- Obtain and look over the data
- Decide your goal (usually a stretched and reachable one)
- Data cleaning/cleansing
- Choose data granularity, feature selection
- Apply mining methods
- Decide what to output and in what form
- Interpret your results (may have iterative refinements); convince your receiver/boss

Mining Capabilities

- Association
- Classification
- Clustering
- Sequential Pattern
- and more

M.-S. Chen

Mining Association Rules

- Transaction data analysis: Mining association rules
 - Given: (1) a database of transactions(2) each tx has a list of items purchased
- Find all asso. rules: the presence of one set of items implies the presence of another set of items
 - people who purchased hammers also purchased nails

Two Parameters

- Confidence (how true)
 - the rule X&Y => Z has 90% conf. means 90%
 of customers who bought X and Y also bought
 Z
- Support (how useful is the rule)
 - useful rules should have some minimum tx support

Mining Association Rules in Transaction DBs

• Measurement of rule strength in a transaction DB.

$$A \rightarrow B$$
 [support, confidence]

$$support = Prob(A \cup B) = \frac{\#_of_trans_that_contain_both\ A\ and\ B}{total_\#_of_trans}$$

$$confidence = Prob(B|A) = \frac{\#_of_trans_that_contain_both\ A\ and\ B}{\#_of_trans_containing\ A}$$

- We are often interested in only strong associations, i.e. $support \ge min \ sup \ and \ confidence \ge min \ conf.$
- Examples.

```
milk \rightarrow bread [5%, 60%].
```

tire \land auto_accessories \rightarrow auto_services [2%, 80%].

Two Steps for Mining Asso.

- Determining "large itemsets"
 - the main factor for overall performance
- Generating rules

Two approaches for Large Itemset Counting

- Apriori-Based
 - R. Agrawal and R. Srikant
- FP-Tree-Based
 - J. Han and J. Pei, etc (SIGMOD 2000)

Methods for Mining Association Rules

- Apriori (Agrawal & Srikant'94).
- Itemset generation
 - derivation of large 1-itemsets L1: At the first iteration, scan all the transactions and count the number of occurrences for each item.
 - level-wise derivation: At the k-th iteration, the candidate set Ck are those whose every (k 1)-item subset is in Lk-1. Scan DB and count the # of occurrences for each candidate itemset.
 - the cardinality of C2 is huge
 - the exe time for the first 2 iterations is the dominating factor to overall performance

Support=2 tx's (i.e., 50%)

Database D

TID	Items
100	ACD
200	ВСЕ
300	ABCE
400	BE

(7	1

c_1	
Itemset	Sup.
{A}	2
{ B }	3
{C}	3
{D}	1
$\{E\}$	3
	•

 L_1

<u></u>			
Itemset	Sup.		
{A}	2		
{B}	3		
{C}	3		
{E}	3		

Itemset		
{A B}		
{A C}		
{A E}		
{B C}		
{B E}		
{C E}		

Scan

Scan

D

C_2			
Itemset	Sup.		
{A B}	1		
{A C}	2		
{A E}	1		
{B C}	2		
$\{\mathbf{B}\ \mathbf{E}\}$	3		
(C E)	2		

 L_2

<u>L2</u>			
Itemset	Sup.		
{A C}	2		
{B C}	2		
{ B E}	3		
(C E)	2		

 C_3

3
Itemset
{B C E}

Scan

\sim	
C	3
	Т.

<u></u>		
Itemset	Sup.	
{B C E}	2	

 L_3

Itemset	Sup.
{B C E}	2

BE=>C conf:66%

Two Steps for Mining Asso. (cont'd)

- for each large itemset m do
 for each subset p of m do
 if (sup(m)/sup(m-p)>= minconf) then
 output the rule (m-p)=>p
 with conf= sup(m)/sup(m-p) and
 support=sup(m)
- m={a,c,d,e,f,g} 2000 tx's
 p={a,d} 5000 tx's
 {a,d}=>{c,e,f,g} conference: 40%, support: 2000 tx's

Properties of Apriori

- Downward closure for large (also called frequent) itemset generation
- The bottleneck is usually in C2
- Database scan is expensive
- The setting of "support" and "confidence"
- Using "top-k" itemsets instead of support
 - How to do itemset generation

Follow-ups of Apriori

- Data Stream mining
 - W.-G. Teng, M.-S. Chen and P. S. Yu, ``A Regression-Based Temporal Pattern Mining Scheme for Data Streams," *Proc. of the 29th Intern'l Conf. on Very Large Data Bases (VLDB-2003)*, September 9-12, 2003.
- Upper bound on the number of large itemsets
 - F. Geerts and B. Goethals and J. V. D. Bussche, "Tight upper bounds on the number of candidate patterns", TODS 2005)
- "closed large itemset"
- Spawned many works to improve its efficiency and also to explore its variations

Closed Itemsets and Maximal Itemsets

- An itemset X is called closed if there does not exist a larger itemset Y, s.t. Y contains X and s(Y)=s(X)
- A large itemset X is called maximal if there does not exist a large itemset Y, s.t., Y contains X
- Q1: if a large itemset X is closed, is X always maximal?
- Q2: if a large itemset X is maximal large itemset, is X always closed?

Redundant Rules

- For the same support and confidence, if we have a rule $\{a,d\} = > \{c,e,f,g\}$, do we have
 - $\{a,d\} = > \{c,e,f\}$
 - $\{a\} = > \{c,e,f,g\}$
 - $\{a,d,c\} = > \{e,f,g\}$
 - $\{a\} = > \{d,c,e,f,g\}$

Scan Reduction

• Use candidate sets to generate candidate sets

```
e.g., Instead of Ci\rightarrow Li\rightarrowCi+1 (dbscan)\rightarrowLi+1
We use Ci\rightarrowCi+1'\rightarrowCi+2' (dbscan)\rightarrowLi+1,Li+2...
```

- Save the runs of database scans
- May get back to use large itemsets to generate candidate sets if so necessary

Improvement for Aprior

DHP

J. Park, M.-S. Chen, and P. Yu. "An effective hash based algorithm for mining association rules." Proceedings of ACM SIGMOD, May 1995. A complete version in Using A Hash-Based Method with Transaction Trimming for Mining Association Rules," IEEE Trans. on Knowledge and Data Eng., vol. 9, no. 5, pp. 813-825, Sept./Oct. 1997.

Hash table scheme

- Eliminate infrequent candidate itemsets in the early phase

Transaction items pruning

– Eliminate infrequent items from the database

Candidate Itemsets Pruning

Transaction Items Pruning (from L2 to L3)

Trimming information collecting (A appears in L2 once, C in L2 3 times, D not in L2)

Transaction trimming

A misleading "strong" association rule

- 10000 transactions
 - 6000 of them included computer games.
 - 7500 of them included video.
 - 4000 of them included computer games and video.
- Minimum support: 30%, minimum confidence: 60%

```
buys (computer games) \Rightarrow buys (videos) [support = 40\%, confidence = 66\%]
```

• However, P({video})=0.75

From Association Analysis to Correlation Analysis

• The support and confidence measures are insufficient at filtering out uninteresting association rules.

 $A \Rightarrow B[support, confidence, correlation]$

Lift

• The **lift** between the occurrence of A and B can be measured by computing

The probability of a transaction contains the *union* of sets A and B.

It doesn't mean P(A or B).

$$lift(A,B) = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(B|A)}{P(B)} = \frac{conf(A \Rightarrow B)}{\sup(B)}$$

- < 1, negatively correlated
- > 1, positively correlated
- = 1, no correlation (A and B are independent)
- Lift assesses the degree to which the occurrence of one "lifts" the occurrence of the other.

Interestingness Measure: Correlations (Lift)

- $play\ basketball \Rightarrow eat\ cereal\ [40\%, 66.7\%]$ is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift(B, \neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

Generalized Association Rules

- Given the class hierarchy (taxonomy), one would like to choose proper data granularities for mining.
- Different confidence/support may be considered.

