

BEE Experiments Record.

10. VERIFICATION & INTERPRETATION OF LOGIC GATES.

- A PRE LAB QUESTIONS ->
- 1 Name the different Logic Gates. -> A Logic Gate is an idealized model of computation
 - or physical electronic device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binar

output. The different Logic Gates are as follows:

- 1) AND
- 2> OR
- 3> NOT 4) NAND
- 5) NOR
- 6> X-OR (Exclusive OR)
 - 7) X-NOR (Exclusive NOR)
- 2 List out the IC names for different Logic Gates. The IC names for different Logic Gates are as
- follows:
 - 1) AND Gate -- IC = 7408 2> OR Gate --> IC = 7432
 - 3> NOT Gate -> IC = 7404
 - ur NAND Gate -- IC = 7400
 - 5) NOR Gate --> IC = 7402
 - Gy X-OR Gate → IC = 7486
 - 7> X-NOR Gote -> IC = 74266
- 3 What is the Boolean expression for a NOR Gate? The Boolean expression for NOR Gate is as follows

-		
	9	How does a NOR Gate work?
	1	The NOR Gate is a digital logic gate that implements
		logical NOR - it behaves according to the truth table.
		A HIGH output (1) results if both the inputs to the
		gate are LOW(0); if one or both input is HIGH(1)
		a Low output (o) results.
		NOR is the result of the negation of OR operator.
		It follows: y = A+B as Boolean equation.
		Its Truth-Table is as follows:
		INPUT OUTPUT
9	0 3	Hora of benup in B A+B man valor of O
		OR Gote?
0	20	an order of the molifor to make on
		0 1 0
	Trisi	waland at berrup 10 and Octob 2011 unon wall
		1 1 0 5 3 50 B AMAM
	0.1	- Four NOS Gates are required to implement
	5	Expression for EX-OR and EX-NOR?
	\rightarrow	1> The Boolean expression for EX-OR: y = A⊕B
		so, $y = A \oplus B = \overline{A \cdot B} + A \cdot \overline{B}$
		27 The Boolean expression for EX-NOR: 4 = A⊕B
		50, y = A⊕B = A·B + A·B
	*	AIM =>
		To verify the Boolean expression using Logic
		Gates.
	*	APPARATUS REQUIRED =>
		Logic trainer kit, Logic Gates IICs, wires.
	1	

