

Smart Distribution Systems Exercise session 1

Mahtab Kaffash – mahtab.kaffash@kuleuven.be

Thijs Peirelinck – thijs.peirelinck@kuleuven.be

Regression

- Statistical model
- Estimating relationships among variables
 - Dependent variable
 - Independent variables
- Linear regression
- Non-linear regression

Artificial Neural Networks

- Computing system capable of massive data processing and knoweldge representation
- <u>Universal approximation theorem</u>: "the standard multilayer feed-forward network with a single hidden layer, which contains finite number of hidden neurons, is a universal approximator among continuous functions on compact subsets of Rn, under mild assumptions on the activation function."

Artificial Neural Networks - Structure

- Organized in layers: neurons, inputs, outputs and activation function
- Number of neurons in output layer = number of outputs
- Used in optimization, control and forecasting

Artificial Neural Networks – Activation functions

Set-up Machine Learning Environment

- Download and install Anaconda
- Install deep learning libraries
- More info on Toledo

Anaconda navigator

Get started

- Download all exercises: https://github.com/thijsp/Machine-Learning-in-Power-Systems
- Open Anaconda
- Import environment.yml
- Launch jupyter lab (in correct environment)
- Brows to exercise folder
- Launch exercise_session_1.ipynb
- Read all information (go to provided links with additional information) and complete the exercises.

Documentation

- Numpy: https://docs.scipy.org/doc/
- Pandas: https://pandas.pydata.org/pandas-docs/stable/
- Scikit-learn: http://scikit-learn.org/stable/documentation.html
- Keras: https://keras.io/

Lab session tasks

- 1. Linear regression
 - 1. Generating data
 - 2. Plotting
- 2. Non-linear regression: kernel regression
- 3. Non-linear regression: neural networks
- 4. Overfitting
- 5. Regularization: early-stopping
- 6. Importing real data: DataFetcher

Data set

- Training set: for training/learning network parameters
- Validation set: tuning hyperparameters: number of hidden layers/neurons
- **Test set:** to evaluate final network performance

Cross-validation

- To avoid losing training data for validation set
- Check scikit-learn!

Final Accuracy = Average(Round 1, Round 2, ...)

Data

- DataFetcher collects real-time data
- Data from:
 - Belgian day-ahead electricity market: https://www.belpex.be/
 - Belgian TSO: http://www.elia.be/en/grid-data/dashboard
 - Wind production
 - Solar production
 - Total load
- Extra challenges related to using real data!

Competition

- Create a neural network to forecast day-ahead electricity prices
 - Try to have a good prediction:
 - Gain insight in data and preproces inputs
 - Use additional (relevant) features (use DataFetcher as an example)
 - Tune network architecture
- Submit your results
- See which team did best!
 - Evaluation is based on the Mean Squared Error

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

Final report

- Create a **predictions.csv** file with 24 rows, each row should contain the forecast for that hour. Predict the belpex prices for **27 April 2018**.
- Write a report of max. 5 pages (including plots) with the results of your work
 - The data you used and the preprocessing you performed.
 - The architecture of the neural network and the reason why you chose this architecture (explain the experiments you performed to make your decision).
 - The final results and performance of the model, e.g. what is the test-set performance.
- Deadline: 26 April 2018, at 2 pm

