

Air Quality index

Куратор – Кирилл Козлов

Студент – Анастасия Довгаль

Признаки

AQI Значение индекса качества воздуха (min:6, max:500)

со Значение угарного газа (min:0, max:133)

Ozone Значение озона (min:0, max:235)

NO₂ Значение диоксида азота (min:0, max:91)

РМ2.5 Значение твердых частиц (min:0, max:500)

Подготовка данных

Проблема: Отсутствие данных

В датасете не хватало данных для анализа его полноты. Датасет был дополнен координатами городов с помощью вспомогательного датасета, а также с помощью библиотеки geopandas.

Проблема: Ошибки в названиях стран

В датасете присутствовали некорректные названия стран, что усложняло визуализацию. Была применена корректировка названий с помощью сервиса geolocator имеющихся координат.

Итог:

Было удалено менее 1% данных после всех обработок. И мы можем визуализировать разнообразие данных.

Проблема: Наличие выбросов

В датасете целевая переменная распределена неравномерно, для оценки объема выбросов использовался фильтр Хэмпеля с 3 стандартными отклонениями. Но таких строк оказалось более 3500 (~13%).

Проблема: Поиск выбросов

После оценки с помощью фильтра Хэмпеля были выбраны строки выходящие за рамки 0.975 квантиля и при этом по всем показателям, кроме PM2.5, стоят относительно низкие значения.

Итог:

Было удалено менее 1% данных после всех обработок. Мы сохранили разнообразие данных и удалили те строки, в которых были данные несоизмеримые с реальностью.

Country	City	AQI Value	AQI Category	CO AQI Value	CO AQI Category	Ozone AQI Value	Ozone AQI Category	NO2 AQI Value	NO2 AQI Category	PM2.5 AQI Value	PM2.5 AQI Category	countryAverage
India	Gohana	500	Hazardous	1	Good	47	Good	1	Good	500	Hazardous	153,83
India	Pilkhuw a	500	Hazardous	2	Good	61	Moderate	2	Good	500	Hazardous	153,83
United States	Durango	500	Hazardous	133	Unhealthy for Sensitive Groups	0	Good	53	Moderate	500	Hazardous	59,60

Корреляция с AQI

60%
Угарный газ (СО)

44 % Озон (О₃)

28%
Диоксид азота (NO₂)

98Твердые частицы (РМ_{2.5})

Корреляция между целевой переменной AQI и PM2.5

Задача регрессии

Для решение нашей задачи важно минимизировать возможную ошибку в предсказаниях, поэтому на всех моделях оценивалась MSE.

Простые модели

Так как данные сильно скоррелированы с целевой переменной, то начать было решено с линейной регрессии.

Итог:

Качество на простых моделях было неудовлетворительным. Поэтому были проведены эксперименты с более сложными: RandomForestRegressor, KNeighborsRegressor.

Результаты тестирования

Модель	Train	Test
LinearRegression	58.55	64.71
Lasso	60.33	66.73
ElasticNet	58.55	64.73
RandomForestRegressor	16.12	19.43
KNeighborsRegressor	2.83	4.41

Результаты кросс-валидации на вещественных

признаках

- Linear Regression
- Ridge(alpha=0.1)
- Lasso
- Elastic Net(alpha=0.0004, l1_ratio=0.1)
- RandomForest Regressor(n_estimators=100, max_depth=5)
- Kneighbors Regressor(n_neighbors=10)

Результаты кросс-валидации без признака РМ2.5

- Linear Regression
- Ridge(alpha=0.1)
- Lasso
- Elastic Net(alpha=0.0004, l1_ratio=0.1)
- Random Forest Regressor(n_estimators=100, max_depth=5)
- Kneighbors Regressor(n_neighbors=10)

Настройки Страна China Город (Страна - China) Размер меток AQI Value ЧВет меток PM2.5 AQI Value

Streamlit визуализация

Пример работы TgBot

Грядущие планы

• Добавить к сервисам (Streamlit и TGBot) возможность получения данных из

https://open-meteo.com/

- Изучить данные с годовыми показателями
- Делать предсказания на период времени
- Обучить нейросеть без признака РМ2.5