## 第3节 外接球问题 (★★★☆)

## 强化训练

1. (2023 •长沙模拟 •★★)如图,边长为 2 的正方形 ABCD 中,点 E,F 分别是边 AB,BC 的中点,将  $\Delta AED$ ,  $\Delta EBF$ ,  $\Delta FCD$  分别沿 DE, EF, FD 折起,使 A, B, C 三点重合于 A',若四面体 A'EFD 的四个顶点在同一个球面上,则该球的半径为





答案:  $\frac{\sqrt{6}}{2}$ 

解析:由折叠过程可知折叠后的四面体中,A'E,A'F,A'D两两垂直,外接球属于长方体模型,

如图,由题意,A'E=A'F=1,A'D=2,所以四面体 A'EFD 的外接球半径  $R=\frac{1}{2}\sqrt{A'E^2+A'F^2+A'D^2}=\frac{\sqrt{6}}{2}$ .





2.  $(\bigstar \bigstar)$ 已知 A, B, C, D 在同一球面上, $AB \bot$  平面 BCD, $BC \bot CD$ ,若 AB = 3, $AC = \sqrt{13}$ , $BD = \sqrt{7}$ ,则该球的体积是\_\_\_\_.

答案:  $\frac{32\pi}{3}$ 

解析:由 $\begin{cases} BC \perp CD \\ AB \perp 平面 BCD \end{cases}$ 可发现有直角三角形和过其顶点的垂线段,故可按长方体模型处理,

如图, $BC = \sqrt{AC^2 - AB^2} = 2$ , $CD = \sqrt{BD^2 - BC^2} = \sqrt{3}$ ,

所以外接球的半径  $R = \frac{1}{2}\sqrt{AB^2 + BC^2 + CD^2} = 2$ ,体积  $V = \frac{4}{3}\pi R^3 = \frac{32\pi}{3}$ .



3.  $(2022 \cdot 安徽模拟 \cdot ★★★)$ 在正三棱锥 S-ABC中,AB=BC=CA=6,D 是 SA 的中点,若  $SB \bot CD$ ,则该三棱锥的外接球的表面积是 .

答案: 54π

解析:  $SB \perp CD$  怎么翻译? 若知道正三棱锥对棱垂直的性质,则可结合它推出线面垂直,下面先证明一下, 如图 1,取 AC 中点 E,连接 SE, BE,则  $SE \perp AC$ ,  $BE \perp AC$ ,所以  $AC \perp$ 平面 SBE,故  $SB \perp AC$ , 又 $SB \perp CD$ ,所以 $SB \perp$ 平面SAC,故 $SB \perp SA$ ,而正三棱锥三个侧面全等,所以SA,SB,SC 两两垂直, 有共顶点的两两垂直的棱,可按长方体模型处理,因为 AB = BC = CA = 6,所以  $SA = SB = SC = 3\sqrt{2}$ ,

如图 2,外接球半径  $R = \frac{1}{2}\sqrt{SA^2 + SB^2 + SC^2} = \frac{3\sqrt{6}}{2}$ ,所以外接球的表面积  $S = 4\pi R^2 = 54\pi$ .



【反思】①本题用到了一个比较好的性质: 正三棱锥的相对棱垂直, 中,需要我们用所给条件作出一些推理才能发现模型特征.

4.  $(2023 \cdot 全国乙卷 \cdot ★★)$  已知点 S, A, B, C 均在半径为 2 的球面上,  $\triangle ABC$  是边长为 3 的等边三角 形, $SA \perp$ 平面ABC,则 $SA = _____$ .

答案: 2

解析:有线面垂直,且  $\triangle ABC$  是等边三角形,属外接球的圆柱模型,核心方程是  $r^2 + (\frac{h}{2})^2 = R^2$ ,

如图,圆柱的高h = SA,底面半径r即为 $\Delta ABC$ 的外接圆半径,所以 $r = 3 \times \frac{\sqrt{3}}{2} \times \frac{2}{3} = \sqrt{3}$ ,

由题意,球的半径 R=2,因为  $r^2+(\frac{h}{2})^2=R^2$ ,所以  $3+(\frac{h}{2})^2=4$ ,解得: h=2,故 SA=2.



- 5.(2023•河南模拟•★★★)在直三棱柱  $ABC A_1B_1C_1$ 中, $\Delta ABC$  是边长为 6 的等边三角形,D 是 AB的中点, $DC_1$ 与平面 ABC 所成角的正切值为 1,则三棱柱  $ABC - A_1B_1C_1$ 的外接球的表面积为( )
- (A)  $75\pi$
- (B)  $68\pi$  (C)  $60\pi$
- (D)  $48\pi$

答案: A

解析: 直三棱柱只有底面边长,没有高,但高可求,故先由已知条件求高,

如图 1,因为  $\triangle ABC$  是边长为 6 的正三角形,所以  $CD = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$ ,

又  $ABC - A_1B_1C_1$  是直三棱柱,所以  $CC_1$  上平面 ABC,所以  $\angle CDC_1$  即为直线  $DC_1$  与平面 ABC 所成的角, 从而  $\tan \angle CDC_1 = \frac{CC_1}{CD} = 1$ ,故  $CC_1 = CD = 3\sqrt{3}$ ,

## 直三棱柱外接球问题可按内容提要第 2 点②的圆柱模型处理,如图 2,模型的核心方程是 $r^2 + (\frac{h}{2})^2 = R^2$ ,

由题意, $\triangle ABC$  的外接圆半径  $r = 6 \times \frac{\sqrt{3}}{2} \times \frac{2}{3} = 2\sqrt{3}$ ,圆柱的高  $h = CC_1 = 3\sqrt{3}$ ,

所以  $R = \sqrt{r^2 + (\frac{h}{2})^2} = \frac{5\sqrt{3}}{2}$ ,故外接球的表面积  $S = 4\pi R^2 = 75\pi$ .



6.(2022•福建模拟•★★★)若正三棱台  $ABC - A_1B_1C_1$  的各顶点都在表面积为 $65\pi$  的球 O 的球面上,

$$AB = 4\sqrt{3}$$
,  $A_1B_1 = 2\sqrt{3}$ , 则正三棱台的高为 ( )

- (A)  $\sqrt{3}$  (B) 4 (C)  $\sqrt{3}$  或 3 (D) 3 或 4

答案: D

解析: 球 O 的表面积  $S = 4\pi R^2 = 65\pi \Rightarrow R = \frac{\sqrt{65}}{2}$ ,  $A_1B_1 = 2\sqrt{3} \Rightarrow$ 上底面外接圆半径  $IA_1 = 2\sqrt{3} \times \frac{\sqrt{3}}{2} \times \frac{2}{3} = 2$ ,

 $AB = 4\sqrt{3} \Rightarrow$  下底面外接圆半径  $KA = 4\sqrt{3} \times \frac{\sqrt{3}}{2} \times \frac{2}{3} = 4$ ,

高没定,无法判断球心在棱台内部还是外部,故需讨论,

若为图 1,则 
$$IK = OI - OK = \sqrt{OA_1^2 - IA_1^2} - \sqrt{OA^2 - KA^2} = \sqrt{\frac{65}{4} - 4} - \sqrt{\frac{65}{4} - 16} = 3$$
;

若为图 2,则 
$$IK = OI + OK = \sqrt{OA_1^2 - IA_1^2} + \sqrt{OA^2 - KA^2} = \sqrt{\frac{65}{4} - 4} + \sqrt{\frac{65}{4} - 16} = 4$$
;

综上所述,正三棱台的高为3或4.



7. (2018•新课标Ⅲ卷•★★★)设A, B, C, D是同一个半径为 4 的球的球面上四点, $\Delta ABC$  为等边三 角形且其面积为9√3,则三棱锥D-ABC体积的最大值为( )

- (A)  $12\sqrt{3}$  (B)  $18\sqrt{3}$  (C)  $24\sqrt{3}$  (D)  $54\sqrt{3}$

答案: B

解析:三棱锥的底面  $\triangle ABC$  不变,故高最大时体积就最大,此时三棱锥 D-ABC 应为如图所示的正三棱锥, 正三棱锥可按圆锥模型处理,核心是到 $\Delta AOG$ 中用勾股定理计算有关量,下面先算 $\Delta ABC$ 的外接圆半径r,

设 
$$\triangle ABC$$
 边长为  $a$ ,则  $\frac{1}{2} \cdot a^2 \cdot \frac{\sqrt{3}}{2} = 9\sqrt{3} \Rightarrow a = 6$ ,由正弦定理,  $\frac{6}{\sin 60^\circ} = 2r \Rightarrow r = 2\sqrt{3} \Rightarrow AG = 2\sqrt{3}$ ,

又由题意,OA = OD = 4,所以 $OG = \sqrt{OA^2 - AG^2} = 2$ ,故 $(V_{D-ABC})_{max} = \frac{1}{3} \times 9\sqrt{3} \times (2+4) = 18\sqrt{3}$ .



8. (2023•贵阳模拟•★★★) 如图,在三棱锥 A-BCD中,平面 ABD 上平面 BCD,  $\Delta BCD$  是边长为 6 的等边三角形, $AB = AD = 3\sqrt{3}$ ,则该几何体的外接球表面积为 .





解析:没有线面垂直、侧棱长相等,不便套用模型,注意到 $\Delta BCD$ 的外心好找,故考虑内容提要中的通法,

如图,过 $\Delta BCD$ 的外心 G 作垂直于平面 BCD 的直线,则球心 O 在该直线上,取 BD 中点 I,连接 AI,

因为
$$AB = AD = 3\sqrt{3}$$
,  $BI = 3$ , 所以 $AI \perp BD$ , 且 $AI = \sqrt{AB^2 - BI^2} = 3\sqrt{2}$ ,

结合平面 ABD 山平面 BCD 可得 AI 山平面 BCD,所以 AI//OG,

作 
$$OH \perp AI \oplus H$$
,则  $OH = IG = \frac{1}{3} \times 6 \times \frac{\sqrt{3}}{2} = \sqrt{3}$ ,

要求外接球半径,可先设 OG,利用 OA = OB 来建立方程, OA, OB 分别在  $\triangle AHO$  和  $\triangle BGO$  中计算,

设 
$$OG = x$$
,则  $HI = x$ ,  $AH = AI - HI = 3\sqrt{2} - x$ ,所以  $OA = \sqrt{AH^2 + OH^2} = \sqrt{(3\sqrt{2} - x)^2 + 3}$ ,

又 
$$BG = \frac{2}{3} \times 6 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$$
,所以  $OB = \sqrt{BG^2 + OG^2} = \sqrt{12 + x^2}$ ,

由 
$$OA = OB$$
 可得  $\sqrt{(3\sqrt{2}-x)^2+3} = \sqrt{12+x^2}$  ,解得:  $x = \frac{3}{2\sqrt{2}}$ 

所以球 
$$O$$
 的半径  $R = OB = \sqrt{12 + x^2} = \sqrt{\frac{105}{8}}$ ,故球  $O$  的表面积  $S = 4\pi R^2 = \frac{105\pi}{2}$ .



【反思】发现该题条件在四大模型中没有对应的吧?这种情况常用通法处理. 另外,当题干出现面 时,使用通法会比较方便,因为过外心的垂线容易作出与分析.

9.  $(2023 \cdot 山东模拟 \cdot ★★★★★)$  已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上,  $\triangle ABC$  是等腰三角 形, $\angle BAC = 120^{\circ}$ , $BC = \sqrt{3}$ ,且球 O 的直径 SA = 4,则该三棱锥的体积为(

- (A)  $\frac{\sqrt{2}}{6}$  (B)  $\frac{\sqrt{3}}{6}$  (C)  $\frac{1}{2}$  (D)  $\frac{\sqrt{3}}{2}$

答案: C

解析:分析发现本题不能套用模型,故用通法,给了直径为SA,球心O即为SA中点,连接O与 $\Delta ABC$ 的 外心即为面 ABC 的垂线,

如图 1,设  $\triangle ABC$  的外心为  $O_1$ ,外接圆半径为 r,则  $\begin{cases} \angle BAC = 120^{\circ} \\ BC = \sqrt{3} \end{cases} \Rightarrow \frac{BC}{\sin \angle BAC} = 2 = 2r \Rightarrow r = 1,$ 

球 O 的直径  $SA = 4 \Rightarrow$  半径 R = 2, 所以球心 O 到平面 ABC 的距离  $OO_1 = \sqrt{R^2 - r^2} = \sqrt{3}$ ,

又 O 是 SA 的中点,所以点 S 到平面 ABC 的距离  $d=2OO_1=2\sqrt{3}$ ,算体积还差  $\triangle ABC$  的面积,

如图 2,设 D 为 BC 中点,则  $AD \perp BC$  ,且  $\angle ABD = 30^{\circ}$  ,所以  $AD = BD \cdot \tan 30^{\circ} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} = \frac{1}{2}$  ,

从而 $S_{\Delta ABC} = \frac{1}{2}BC \cdot AD = \frac{1}{2} \times \sqrt{3} \times \frac{1}{2} = \frac{\sqrt{3}}{4}$ ,故 $V_{S-ABC} = \frac{1}{3}S_{\Delta ABC} \cdot d = \frac{1}{3} \times \frac{\sqrt{3}}{4} \times 2\sqrt{3} = \frac{1}{3}$ .





10. (★★★★) 已知三棱锥S-ABC 的底面是等边三角形,且 $SA=SB=SC=\sqrt{6}$ ,则当三棱锥S-ABC 的 体积最大时,其外接球的表面积为( )

- (A)  $9\pi$  (B)  $12\pi$  (C)  $18\pi$  (D)  $27\pi$

答案: C

解析: 先看何时 $V_{S-ABC}$ 最大,已知侧棱长,不妨设底面边长为变量,到侧棱与高构成的截面中求高,

由题意,S-ABC是正三棱锥,如图 1,设其底面中心为 $O_1$ ,底面边长为a,则  $AO_1 = \frac{\sqrt{3}}{2}a \cdot \frac{2}{2} = \frac{\sqrt{3}}{2}a$ ,

$$SO_{1} = \sqrt{SA^{2} - AO_{1}^{2}} = \sqrt{6 - \frac{a^{2}}{3}}, \quad \text{If } \boxtimes V_{S-ABC} = \frac{1}{3}S_{\Delta ABC} \cdot SO_{1} = \frac{1}{3} \times \frac{1}{2}a^{2} \cdot \frac{\sqrt{3}}{2} \times \sqrt{6 - \frac{a^{2}}{3}} = \frac{\sqrt{a^{4}(18 - a^{2})}}{12} \quad \text{(1)},$$

由  $0 < AO_1 < SA$ 可得  $0 < \frac{\sqrt{3}}{3}a < \sqrt{6}$ ,所以  $0 < a < 3\sqrt{2}$ ,观察式①发现将  $a^2$  换元,研究根号内的最值即可,

令 
$$t = a^2$$
,则  $0 < t < 18$ ,且  $V_{S-ABC} = \frac{\sqrt{t^2(18-t)}}{12}$ ,设  $f(t) = t^2(18-t)(0 < t < 18)$ ,则  $f'(t) = 3t(12-t)$ ,

所以  $f'(t) > 0 \Leftrightarrow 0 < t < 12$ ,  $f'(t) < 0 \Leftrightarrow 12 < t < 18$ , 故 f(t) 在 (0,12)上之, 在 (12,18)上入,

所以当t=12时, f(t)取得最大值,故当 $V_{S-ABC}$ 最大时,  $a=2\sqrt{3}$  ,  $AO_1=2$  ,  $SO_1=\sqrt{2}$  ,

由 SA = SB = SC 识别出可用内容提要第 3 点的圆锥模型处理,如图 2,只需到  $\Delta AOO_1$ 中由勾股定理求 R,

设外接球半径为 R,则  $OO_1 = |SO_1 - SO| = |\sqrt{2} - R|$ ,在  $\Delta AOO_1$ 中,  $OO_1^2 + AO_1^2 = OA^2$ ,

所以 $\left|\sqrt{2}-R\right|^2+4=R^2$ ,解得:  $R=\frac{3}{\sqrt{2}}$ ,故外接球的表面积  $S=4\pi R^2=18\pi$ .



《一数•高考数学核心方图法