Package 'cophescan'

June 11, 2024

Title Adaptation of the Coloc Method for PheWAS

Version 1.4.1

Maintainer Ichcha Manipur <im504@cam.ac.uk>

Description A Bayesian method for Phenome-wide association studies (PheWAS) that identifies causal associations between genetic variants and traits, while simultaneously addressing confounding due to linkage disequilibrium. For details see

Manipur et al (2023) <doi:10.1101/2023.06.29.546856>.

License GPL-3

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.2.3

Depends R (>= 3.5.0)

URL https://github.com/ichcha-m/cophescan,

https://ichcha-m.github.io/cophescan/

BugReports https://github.com/ichcha-m/cophescan/issues

Imports Rcpp (>= 1.0.7), coloc, data.table, ggplot2, ggrepel, pheatmap, methods, viridis, stats, grDevices, magrittr, utils, matrixStats, dplyr

Suggests knitr, testthat (>= 3.0.0), rmarkdown, RColorBrewer, ggpubr

Collate 'cophescan-package.R' 'singlevar.R' 'multivarsusie.R' 'multitrait.R' 'cophe_hyp_predict.R' 'copheplots.R' 'testdata.R' 'RcppExports.R' 'metrop_hier_priors.R' 'zzz.R'

LinkingTo Rcpp, RcppArmadillo

Config/testthat/edition 3

ByteCompile true

NeedsCompilation yes

Author Ichcha Manipur [aut, cre], Chris Wallace [aut]

Repository CRAN

Date/Publication 2024-06-11 15:20:20 UTC

2 Contents

Contents

Index

cophescan-package	3
ndjust_priors	3
average_piks	4
nverage_piks_list	4
average_posterior_prob	5
average_posterior_prob_list	6
combine.bf	6
cophe.hyp.predict	7
cophe.multitrait	8
cophe.single	9
	11
	12
cophe.susie.lbf	13
cophe_heatmap	14
cophe_multi_trait_data	15
cophe_plot	15
get_beta	16
get_posterior_prob	17
Hc.cutoff.fdr	17
	18
ogd_alpha	18
	19
ogd_gamma	19
oglik	20
ogpost	20
ogpriors	21
ogsum	22
ogsumexp	22
metrop_run	23
multitrait.simplify	24
pars2pik	24
pars_init	25
per.snp.priors	25
piks	26
. - -	27
	27
prepare_plot_data	28
propose	29
run_metrop_priors	29
sample_alpha	31
sample_beta	31
sample_gamma	32
√ 1	32
arget	33

34

cophescan-package 3

cophescan-package	The 'cophescan' package.	
-------------------	--------------------------	--

Description

Coloc adapted Phenome-wide Scans

```
adjust_priors adjust_priors
```

Description

adjust fixed priors when nsnps in region is high

Usage

```
adjust_priors(
  nsnps,
  pa = 3.82e-05,
  pc = 0.00182,
  p1 = NULL,
  p2 = NULL,
  p12 = NULL
)
```

Arguments

nsnps	number of SNPs
ра	prior probability that a non-query variant is causally associated with the query trait (cophescan prior), default 3.82e-5
рс	prior probability that the query variant is causally associated with the query trait (cophescan prior), default 1.82e-3 (cophescan prior)
p1	prior probability a SNP is associated with trait 1, (coloc prior), pc derived by using $pc=p12/p1+p12$; use p1, p2, p12 only when pa and pc are unavailable (See vignettes)
p2	prior probability a SNP is associated with trait 2, (coloc prior), pa derived by using $pa=p2$
p12	prior probability a SNP is associated with both traits, (coloc prior), pc derived by using $pc=p12/p1+p12$

Value

vector of pn, pa and pc adjusted prior probabilities

4 average_piks_list

average_piks Average of priors: pnk, pak and pck

Description

Average of priors: pnk, pak and pck

Usage

```
average_piks(params, nsnps, covar_vec, nits, thin, covar = FALSE)
```

Arguments

nsnps number of snps

covar_vec Vector of the covariate

nits Number of iterations run in mcmc

thin thinning

covar logical: was the covariate inflormation used? default: False

Value

average pik matrix of priors: pnk, pak and pck

Description

Average of priors: pnk, pak and pck from list (memory intensive)

Usage

```
average_piks_list(params, nsnps, covar_vec, nits, thin, covar = FALSE)
```

Arguments

params Vector of parameters: α , β and γ

nsnps number of snps

covar_vec Vector of the covariate

nits Number of iterations run in mcmc

thin thinning

covar logical: was the covariate inflormation used? default: False

average_posterior_prob

5

Value

average pik matrix of priors: pnk, pak and pck

```
average_posterior_prob
```

Average of posterior probabilities: Hn, Ha and Hc

Description

Average of posterior probabilities: Hn, Ha and Hc

Usage

```
average_posterior_prob(
  params,
  lbf_mat,
  nsnps,
  covar_vec,
  nits,
  thin,
  covar = FALSE
)
```

Arguments

params Vector of parameters: α , β and γ

1bf_mat matrix of log bayes factors: lBF.Ha and lBF.Hc

nsnps number of snps

covar_vec Vector of the covariate

nits Number of iterations run in mcmc

thin thinning

covar logical: was the covariate inflormation used? default: False

Value

matrix with average of all the posterior probabilities: Hn, Ha and Hc

6 combine.bf

```
average\_posterior\_prob\_list
```

Average of posterior probabilities: Hn, Ha and Hc from list (memory intensive)

Description

Average of posterior probabilities: Hn, Ha and Hc from list (memory intensive)

Usage

```
average_posterior_prob_list(
  params,
  lbf_mat,
  nsnps,
  covar_vec,
  nits,
  thin,
  covar = FALSE
)
```

Arguments

params Vector of parameters: α , β and γ

1bf_mat matrix of log bayes factors: lBF.Ha and lBF.Hc

nsnps number of snps

covar_vec Vector of the covariate

nits Number of iterations run in mcmc

thin thinning

covar logical: was the covariate inflormation used? default: False

Value

matrix with average of all the posterior probabilities: Hn, Ha and Hc

combine.bf combine.bf

Description

Calculate posterior probabilities for all the configurations

cophe.hyp.predict 7

Usage

```
combine.bf(lBF_df, pn, pa, pc)
```

Arguments

lBF_df	dataframe with log bayes factors of hypothesis Ha and Hn: column names should be lBF.Ha and lBF.Hc
pn	prior probability that none of the SNPs/variants in the region are associated with the query trait
ра	prior probability that a non-query variant is causally associated with the query trait
рс	prior probability that the query variant is causally associated with the query trait

Value

named numeric vector of posterior probabilities and bayes factors

Author(s)

Ichcha Manipur

cophe.hyp.predict

Predict cophescan hypothesis for tested associations

Description

Predict cophescan hypothesis for tested associations

Usage

```
cophe.hyp.predict(
  cophe.res,
  grouping.vars = c("querysnp", "querytrait"),
  Hc.cutoff = 0.6,
  Hn.cutoff = 0.2
)
```

Arguments

cophe.res	results obtained from cophe.single, cophe.susie or cophe.multitrait or data.frame with the following columns: PP.Hn, PP.Hc, PP.Ha, querysnp, query-trait
grouping.vars	This is important for results from cophe. susie where there are multiple signals. These will be collapsed into one call. If you want to return all signals set this to a single variable eg: grouping.vars = $c('querysnp')$
Hc.cutoff	threshold for PP.Hc above which the associations are called Hc
Hn.cutoff	threshold for PP.Hn above which the associations are called Hn

8 cophe.multitrait

Value

returns dataframe with posterior probabilties of Hn, Hc and Ha with the predicted hypothesis based on the provided cut.offs.

See Also

```
cophe.single, cophe.susie, cophe.multitrait,, multitrait.simplify
```

cophe.multitrait

Run cophescan on multiple traits at once

Description

Run cophescan on multiple traits at once

Usage

```
cophe.multitrait(
   trait.dat,
   querysnpid,
   querytrait.names,
   LDmat = NULL,
   method = "single",
   simplify = FALSE,
   predict.hyp = TRUE,
   Hn.cutoff = 0.2,
   Hc.cutoff = 0.6,
   est.fdr.based.cutoff = FALSE,
   fdr = 0.05,
   ...
)
```

Arguments

trait.dat Named(traits) list of coloc structured data for k traits (Total number of traits)

querysnpid vector of query variant ids = length(trait.dat), if the same variant

querytrait.names

vector of names for the query traits, if the names of the multi.dat list contain the

trait names please pass querytrait.names=names(multi.dat)

LD matrix

method either 'single' for cophe.single or 'susie' for cophe.susie

simplify if TRUE removes intermediate results from output using 'multitrait.simplify' predict.hyp if TRUE predicts the hypothesis based on the provided thresholds for pp.Hc and

pp.Hn (overrides simplify) using cophe.hyp.predict

Hn. cutoff threshold for PP.Hc above which the associations are called Hc

cophe.single 9

```
Hc.cutoff threshold for PP.Hc above which the associations are called Hn est.fdr.based.cutoff if True calculates the Hc.cutoff using 1-mean(PP.Hc)|PP.Hc > cutoff fdr threshold to estimate Hc.cutoff additional arguments of priors for cophe.susie or cophe.single
```

Value

if simplify is False returns multi-trait list of lists, each with:

- a summary data.frame of the cophescan results
- · priors used
- querysnp
- querytrait

if simplify is TRUE only returns dataframe with posterior probabilties of Hn, Hc and Ha with no intermediate results if predict.hyp is TRUE returns a dataframe with output of simplify and the predicted hypotheses for all associations

Author(s)

Ichcha Manipur

cophe.single

Bayesian cophescan analysis using Approximate Bayes Factors

Description

Bayesian cophescan analysis under single causal variant assumption

Usage

```
cophe.single(
  dataset,
  querysnpid,
  querytrait,
  MAF = NULL,
  pa = 3.82e-05,
  pc = 0.00182,
  p1 = NULL,
  p2 = NULL,
  p12 = NULL
)
```

10 cophe.single

Arguments

dataset	a list with specifically named elements defining the query trait dataset to be analysed.
querysnpid	Id of the query variant, (id in dataset\$snp)
querytrait	Query trait name
MAF	Minor allele frequency vector
pa	prior probability that a non-query variant is causally associated with the query trait (cophescan prior), default 3.82e-5
рс	prior probability that the query variant is causally associated with the query trait (cophescan prior), default 1.82e-3 (cophescan prior)
p1	prior probability a SNP is associated with trait 1, (coloc prior), pc derived by using $pc=p12/p1+p12$; use p1, p2, p12 only when pa and pc are unavailable (See vignettes)
p2	prior probability a SNP is associated with trait 2, (coloc prior), pa derived by using $pa=p2$
p12	prior probability a SNP is associated with both traits, (coloc prior), pc derived by using $pc=p12/p1+p12$

Details

This function calculates posterior probabilities of different causal variant configurations under the assumption of a single causal variant for each trait.

If regression coefficients and variances are available, it calculates Bayes factors for association at each SNP. If only p values are available, it uses an approximation that depends on the SNP's MAF and ignores any uncertainty in imputation. Regression coefficients should be used if available. Find more input data structure details in the coloc package

Value

a list of two data. frames:

- summary is a vector giving the number of SNPs analysed, and the posterior probabilities of Hn (no shared causal variant), Ha (two distinct causal variants) and Hc (one common causal variant)
- results is an annotated version of the input data containing log Approximate Bayes Factors and intermediate calculations, and the posterior probability SNP.PP.Hc of the SNP being causal for the shared signal *if* Hc is true. This is only relevant if the posterior support for Hc in summary is convincing.

Author(s)

Ichcha Manipur

cophe.single.lbf

Examples

```
library(cophescan)
data(cophe_multi_trait_data)
query_trait_1 <- cophe_multi_trait_data$summ_stat[['Trait_1']]
querysnpid <- cophe_multi_trait_data$querysnpid
res.single <- cophe.single(query_trait_1, querysnpid = querysnpid, querytrait='Trait_1')
summary(res.single)</pre>
```

cophe.single.lbf

cophe.single.lbf

Description

Calculate log bayes factors for each hypothesis (Single causal variant assumption)

Usage

```
cophe.single.lbf(dataset, querysnpid, querytrait, MAF = NULL)
```

Arguments

dataset a list with specifically named elements defining the query trait dataset to be

analysed.

querysnpid Id of the query variant, (id in dataset\$snp)

querytrait Query trait name

MAF Minor allele frequency vector

Value

data frame with log bayes factors for Hn and Ha hypotheses

Author(s)

Ichcha Manipur

See Also

```
cophe.single
```

Examples

```
library(cophescan)
data(cophe_multi_trait_data)
query_trait_1 <- cophe_multi_trait_data$summ_stat[['Trait_1']]
querysnpid <- cophe_multi_trait_data$querysnpid
res.single.lbf <- cophe.single.lbf(query_trait_1, querysnpid = querysnpid, querytrait='Trait_1')
res.single.lbf</pre>
```

12 cophe.susie

cophe.susie

run cophe. susie using susie to detect separate signals

Description

Check if a variant causally associated in one trait might be causal in another trait

Usage

```
cophe.susie(
  dataset,
  querysnpid,
  querytrait,
  pa = 3.82e-05,
  pc = 0.00182,
  p1 = NULL,
  p2 = NULL,
  susie.args = list()
)
```

Arguments

dataset	either a list with specifically named elements defining the dataset to be analysed. (see check_dataset)
querysnpid	Id of the query variant
querytrait	Query trait name
pa	prior probability that a non-query variant is causally associated with the query trait (cophescan prior), default 3.82e-5
рс	prior probability that the query variant is causally associated with the query trait (cophescan prior), default $1.82e-3$
p1	prior probability a SNP is associated with trait 1, (coloc prior), pc derived by using $pc=p12/p1+p12$; use p1, p2, p12 only when pa and pc are unavailable (See vignettes)
p2	prior probability a SNP is associated with trait 2, (coloc prior), pa derived by using $pa=p2$
p12	prior probability a SNP is associated with both traits, (coloc prior), pc derived by using $pc=p12/p1+p12$
susie.args	a named list of additional arguments to be passed to runsusie

Value

- a list, containing elements
 - summary a data.table of posterior probabilities of each global hypothesis, one row per pairwise comparison of signals from the two traits

cophe.susie.lbf

• results a data.table of detailed results giving the posterior probability for each snp to be jointly causal for both traits *assuming Hc is true*. Please ignore this column if the corresponding posterior support for H4 is not high.

• priors a vector of the priors used for the analysis

Author(s)

Ichcha Manipur

Examples

```
library(cophescan)
data(cophe_multi_trait_data)
query_trait_1 <- cophe_multi_trait_data$summ_stat[['Trait_1']]
querysnpid <- cophe_multi_trait_data$querysnpid
query_trait_1$LD <- cophe_multi_trait_data$LD
res.susie <- cophe.susie(query_trait_1, querysnpid = querysnpid, querytrait='Trait_1')
summary(res.susie)</pre>
```

cophe.susie.lbf

cophe.susie.lbf

Description

Calculate log bayes factors for each hypothesis (SuSIE - multiple causal variant assumption)

Usage

```
cophe.susie.lbf(
  dataset,
  querysnpid,
  querytrait,
  switch = TRUE,
  susie.args = list(),
  MAF = NULL
)
```

Arguments

a list with specifically named elements defining the query trait dataset to be analysed.

querysnpid Id of the query variant, (id in dataset\$snp)

querytrait Query trait name

switch Set switch=TRUE to obtain single BF when credible sets not found with SuSIE a named list of additional arguments to be passed to runsusie

MAF Minor allele frequency vector

14 cophe_heatmap

Value

data frame with log bayes factors for Hn and Ha hypotheses

Author(s)

Ichcha Manipur

See Also

```
cophe.susie
```

Examples

cophe_heatmap

Heatmap of multi-trait cophescan results

Description

Heatmap of multi-trait cophescan results

Usage

```
cophe_heatmap(
  multi.dat,
  querysnpid,
  query_trait_names,
  thresh_Hc = 0.5,
  thresh_Ha = 0.5,
  ...
)
```

Arguments

```
multi.dat multi trait cophescan results returned from cophe.multitrait or formatted in the same way with multitrait.simplify

querysnpid query variant
query_trait_names
names of phenotypes corresponding to the multi.dat results
```

cophe_multi_trait_data 15

```
thresh_Hc Hc threshold to be displayed thresh_Ha Ha threshold to be displayed
```

... additional arguments to be passed to pheatmap

Value

heatmap of posterior probabilities of the phentypes above the set threshold

Description

Simulated multi-trait data

Usage

```
data(cophe_multi_trait_data)
```

Format

list of coloc structred datasets for 24 traits (cophe_multi_trait_data\$summ_stat), LD matrix (cophe_multi_trait_data\$LD) and the id of the query snp (cophe_multi_trait_data\$querysnpid). #' The trait dataset are simulated summary statistics (1000 SNPs) for 10 Hn, 10 Ha and 10 Hc.

cophe_plot

cophe_plots showing the Ha and Hc of all traits and labelled above the specified threshold

Description

cophe_plots showing the Ha and Hc of all traits and labelled above the specified threshold

Usage

```
cophe_plot(
  multi.dat,
  querysnpid,
  query_trait_names,
  thresh_Hc = 0.5,
  thresh_Ha = 0.5,
  beta_p = NULL,
  traits.dat = NULL,
  group_pheno = NULL)
```

16 get_beta

Arguments

multi .dat multi trait cophescan results returned from cophe.multitrait or multitrait.simplify

query snpid query variant (only a single variant for PheWAS plots)

query_trait_names

list of phenotype names

thresh_Hc Hc threshold to be displayed thresh_Ha Ha threshold to be displayed

beta_p data.frame (from the get.beta function) with four columns: 1. "beta plot":

indicating beta direction (p or n) 2. "beta_plot": -log10(pval) of the queried

variant 3. "querysnp" 4. "querytrait".

traits.dat list of multi-trait coloc structured datasets

group_pheno Vector with additional grouping of phenotypes

Value

cophescan plots of Ha and Hc

See Also

```
cophe.single, cophe.susie, cophe.multitrait,, multitrait.simplify
```

get_beta Extract beta and p-values of queried variant

Description

Extract beta and p-values of queried variant

Usage

```
get_beta(traits.dat, querysnpid, querytrait)
```

Arguments

traits.dat list of coloc structured dataset

querysnpid vector of querysnpid

querytrait vector of querytrait names

Value

data.frame with one column named beta_plot: indicating beta direction (n/p) and another column named pval_plot with -log10(pval) of the queried variant

get_posterior_prob

get_posterior_prob

Calculation of the posterior prob of Hn, Ha and Hc

Description

Calculation of the posterior prob of Hn, Ha and Hc

Usage

```
get_posterior_prob(params, lbf_mat, nsnps, covar_vec, covar = FALSE)
```

Arguments

params Vector of parameters: α , β and γ

1bf_mat matrix of log bayes factors: lBF.Ha and lBF.Hc

nsnps number of snps

covar_vec Vector of the covariate

covar logical: should the covariate inflormation be used? default: False

Value

posterior prob of Hn, Ha and Hc

Hc.cutoff.fdr

Estimate the Hc.cutoff for the required FDR

Description

Estimate the Hc.cutoff for the required FDR

Usage

```
Hc.cutoff.fdr(ppHc, fdr = 0.05, return_plot = TRUE)
```

Arguments

ppHc a vector containing the PP.Hc (the posterior probability of causal association) of

all tests

fdr FDR default: 0.05

return_plot default: TRUE, plot the fdr estimated at the different Hc.cutoff

Value

the Hc.cutoff value for the specified FDR, if return_plot is True returns a plot showing the FDR calculated at different Hc thresholds

logd_alpha

hypothesis.priors

hypothesis.priors

Description

Estimate priors for each hypothesis

Usage

```
hypothesis.priors(nsnps, pn, pa, pc)
```

Arguments

nsnps number of SNPs

pn prior probability that none of the SNPs/variants in the region are associated with

the query trait

pa prior probability that a non-query variant is causally associated with the query

trait

pc prior probability that the query variant is causally associated with the query trait

Value

hypotheses priors

Author(s)

Ichcha Manipur

logd_alpha

dnorm for alpha

Description

dnorm for alpha

Usage

```
logd_alpha(a, alpha_mean = -10, alpha_sd = 0.5)
```

Arguments

a current alpha

alpha_mean prior for the mean of alpha

alpha_sd prior for the standard deviation of alpha

logd_beta 19

Value

log dnorm

logd_beta

dgamma for beta

Description

dgamma for beta

Usage

```
logd_beta(b, beta_shape = 2, beta_scale = 2)
```

Arguments

b current beta

beta_shape prior for the shape (gamma distibution) of beta

beta_scale prior for the scale of beta

Value

log dgamma

 ${\tt logd_gamma}$

dgamma for gamma

Description

dgamma for gamma

Usage

```
logd_gamma(g, gamma_shape = 2, gamma_scale = 2)
```

Arguments

g current gamma

gamma_shape prior for the shape (gamma distibution) of gamma

gamma_scale prior for the scale of gamma

Value

log dgamma

20 logpost

loglik Log likelihood calculation

Description

Log likelihood calculation

Usage

```
loglik(params, lbf_mat, nsnps, covar_vec, covar = FALSE)
```

Arguments

params Vector of parameters: α , β and γ

1bf_mat matrix of log bayes factors: lBF.Ha and lBF.Hc

nsnps number of snps

covar_vec Vector of the covariate

covar logical: should the covariate inflormation be used? default: False

Value

logpost flog of the posteriors

logpost Log posterior calculation

Description

Log posterior calculation

Usage

```
logpost(params, lbf_mat, nsnps, covar_vec, covar = FALSE)
```

Arguments

params Vector of parameters: α , β and γ

lbf_mat matrix of log bayes factors: lBF.Ha and lBF.Hc

nsnps number of snps

covar_vec Vector of the covariate

covar logical: should the covariate inflormation be used? default: False

Value

logpost flog of the posteriors

logpriors 21

logpriors Calculate log priors

Description

Calculate log priors

Usage

```
logpriors(
  params,
  covar = FALSE,
  alpha_mean = -10,
  alpha_sd = 0.5,
  beta_shape = 2,
  beta_scale = 2,
  gamma_shape = 2,
  gamma_scale = 2
```

Arguments

params	Vector of parameters: α , β and γ
covar	logical: Should the covariate inflormation be used? default: False
alpha_mean	prior for the mean of alpha
alpha_sd	prior for the standard deviation of alpha
beta_shape	prior for the shape (gamma distibution) of beta
beta_scale	prior for the scale of beta
gamma_shape	prior for the shape (gamma distibution) of gamma
gamma_scale	prior for the scale of gamma

Value

log priors

22 logsumexp

logsum

logsum

Description

Internal function, logsum Function directly taken from coloc This function calculates the log of the sum of the exponentiated logs taking out the max, i.e. insuring that the sum is not Inf

Usage

```
logsum(x)
```

Arguments

Х

numeric vector

Value

```
\max(x) + \log(\sup(\exp(x - \max(x))))
```

logsumexp

Log sum

Description

Log sum

Usage

logsumexp(x)

Arguments

Х

vector of log scale values to be added

Value

log sum of input

metrop_run 23

metrop_run

Run the hierarchical mcmc model to infer priors

Description

Run the hierarchical mcmc model to infer priors

Usage

```
metrop_run(
  lbf_mat,
  nsnps,
  covar_vec,
  covar = FALSE,
  nits = 10000L,
  thin = 1L,
  alpha_mean = -10,
  alpha_sd = 0.5,
  beta_shape = 2,
  beta_scale = 2,
  gamma_shape = 2,
  gamma_scale = 2
```

Arguments

lbf_mat matrix of log bayes factors: lBF.Ha and lBF.Hc number of snps nsnps Vector of the covariate covar_vec logical: Should the covariate inflormation be used? default: False covar nits Number of iterations run in mcmc thinning thin alpha_mean prior for the mean of alpha prior for the standard deviation of alpha alpha_sd beta_shape prior for the shape (gamma distibution) of beta beta_scale prior for the scale of beta gamma_shape prior for the shape (gamma distibution) of gamma gamma_scale prior for the scale of gamma

Value

named list of log likelihood (ll) and parameters: alpha, beta and gamma

24 pars2pik

Description

Simplifying the output obtained from cophe.multitrait, cophe.single or cophe.susie

Usage

```
multitrait.simplify(multi.dat, only_BF = FALSE)
```

Arguments

multi.dat output obtained from cophe.multitrait, cophe.single or cophe.susie only_BF return only bayes factors and not posterior probabilities (default=FALSE)

Value

dataframe with posterior probabilties of Hn, Hc and Ha

pars2pik	Conversion of parameters alpha, beta and gamma to pnk, pak and pck

Description

Conversion of parameters alpha, beta and gamma to pnk, pak and pck

Usage

```
pars2pik(params, nsnps, covar_vec, covar = FALSE)
```

Arguments

params Vector of parameters: α , β and γ

nsnps number of snps

covar_vec Vector of the covariate

covar logical: should the covariate information be used? default: False

Value

pik matrix of priors: pnk, pak and pck

pars_init 25

pars_init

Initiate parameters alpha, beta and gamma

Description

Initiate parameters alpha, beta and gamma

Usage

```
pars_init(
  covar = FALSE,
  alpha_mean = -10,
  alpha_sd = 0.5,
  beta_shape = 2,
  beta_scale = 2,
  gamma_shape = 2,
  gamma_scale = 2
```

Arguments

covar logical: Should the covariate inflormation be used? default: False alpha_mean prior for the mean of alpha alpha_sd prior for the standard deviation of alpha beta_shape prior for the shape (gamma distibution) of beta beta_scale prior for the scale of beta gamma_shape prior for the scale of gamma distibution) of gamma prior for the scale of gamma

Value

```
params \alpha, \beta and \gamma
```

per.snp.priors

per.snp.priors

Description

Estimate per snp priors

26 piks

Usage

```
per.snp.priors(
   nsnps,
   pa = 3.82e-05,
   pc = 0.00182,
   p1 = NULL,
   p2 = NULL,
   p12 = NULL
)
```

Arguments

nsnps	number of SNPs
pa	prior probability that a non-query variant is causally associated with the query trait (cophescan prior), default 3.82e-5
рс	prior probability that the query variant is causally associated with the query trait (cophescan prior), default 1.82e-3 (cophescan prior)
p1	prior probability a SNP is associated with trait 1, (coloc prior), pc derived by using $pc=p12/p1+p12$; use p1, p2, p12 only when pa and pc are unavailable (See vignettes)
p2	prior probability a SNP is associated with trait 2, (coloc prior), pa derived by using $pa=p2$
p12	prior probability a SNP is associated with both traits, (coloc prior), pc derived by using $pc=p12/p1+p12$

Value

priors at the query variant

Author(s)

Ichcha Manipur

piks

List of priors: pn, pa and pc over all iterations

Description

List of priors: pn, pa and pc over all iterations

Usage

```
piks(params, nsnps, covar_vec, covar = FALSE)
```

plot_trait_manhat 27

Arguments

params Vector of parameters: α , β and γ

nsnps number of snps

covar_vec Vector of the covariate

covar logical: was the covariate inflormation used? default: False

Value

List of priors (len: iterations): pnk, pak and pck

plot_trait_manhat

Plot region Manhattan for a trait highlighting the queried variant

Description

Plot region Manhattan for a trait highlighting the queried variant

Usage

```
plot_trait_manhat(trait.dat, querysnpid, alt.snpid = NULL)
```

Arguments

trait.dat dataset used as input for running cophescan

querysnpid the id of the causal variant as present in trait.dat\$snp, plotted in red alt.snpid the id of the other variants as a vector to be plotted, plotted in blue

Value

regional manhattan plot

posterior_prob

List of posterior probabilities: Hn, Ha and Hc over all iterations

Description

List of posterior probabilities: Hn, Ha and Hc over all iterations

Usage

```
posterior_prob(params, lbf_mat, nsnps, covar_vec, covar = FALSE)
```

28 prepare_plot_data

Arguments

params Vector of parameters: α , β and γ

1bf_mat matrix of log bayes factors: lBF.Ha and lBF.Hc

nsnps number of snps

covar_vec Vector of the covariate

covar logical: was the covariate inflormation used? default: False

Value

List of posterior probabilties (len: iterations): Hn, Ha and Hc

prepare_plot_data

Prepare data for plotting

Description

Prepare data for plotting

Usage

```
prepare_plot_data(
   multi.dat,
   querysnpid,
   query_trait_names,
   thresh_Ha = 0.5,
   thresh_Hc = 0.5,
   hmp = FALSE,
   cophe.plot = TRUE
)
```

Arguments

multi .dat multi trait cophescan results returned from cophe.multitrait or multitrait.simplify

querysnpid query variant

query_trait_names

vector of names of the query traits

thresh_Ha Ha threshold to be displayed thresh_Hc Hc threshold to be displayed

hmp return for heatmap

cophe.plot default: TRUE, return for cophe_plot

Value

plot list

propose 29

See Also

cophe_plot, cophe.susie, cophe.multitrait, multitrait.simplify default NULL

propose

Proposal distribution

Description

Proposal distribution

Usage

```
propose(params, propsd = 0.5)
```

Arguments

params

Vector of parameters: α , β and γ

propsd

Standard deviation for the proposal

Value

vector: proposal

run_metrop_priors

Run the hierarchical Metropolis Hastings model to infer priors

Description

Run the hierarchical Metropolis Hastings model to infer priors

Usage

```
run_metrop_priors(
  multi.dat,
  covar = FALSE,
  covar_vec = NULL,
  is_covar_categorical = FALSE,
  nits = 10000,
  thin = 1,
  posterior = FALSE,
  avg_pik = TRUE,
  avg_posterior = TRUE,
  pik = FALSE,
  alpha_mean = -10,
  alpha_sd = 0.5,
```

30 run_metrop_priors

```
beta_shape = 2,
beta_scale = 2,
gamma_shape = 2,
gamma_scale = 2
)
```

Arguments

multi.dat matrix of bf values, rows=traits, named columns=("lBF.Ha","lBF.Hc","nsnps")

covar whether to include covariates

covar_vec vector of covariates

is_covar_categorical

only two categories supported (default=FALSE) - Experimental

nits number of iterations

thin burnin

posterior default: FALSE, estimate posterior probabilities of the hypotheses

avg_pik default: FALSE, estimate the average of the pik

avg_posterior default: FALSE, estimate the average of the posterior probabilities of the hy-

potheses

pik default: FALSE, inferred prior probabilities

alpha_mean prior for the mean of alpha

alpha_sd prior for the standard deviation of alpha

beta_shape prior for the shape (gamma distibution) of beta

beta_scale prior for the scale of beta

gamma_shape prior for the shape (gamma distibution) of gamma

gamma_scale prior for the scale of gamma

Value

List containing the posterior distribution of the parameters alpha, beta, gamma (if covariate included) and the loglikelihood

if avg_posterior=TRUE matrix with average of all the posterior probabilities of Hn, Ha and Hc

if avg_pik=TRUE matrix with average of all the priors: pn, pa and pc

data, nits and thin contain the input data, number of iterations and burnin respectively specified for the hierarchical model sample_alpha 31

sample_alpha

sample alpha

Description

sample alpha

Usage

```
sample_alpha(alpha_mean = -10, alpha_sd = 0.5)
```

Arguments

alpha_mean

prior for the mean of alpha

alpha_sd

prior for the standard deviation of alpha

Value

sample from rnorm for α

sample_beta

sample beta

Description

sample beta

Usage

```
sample_beta(beta_shape = 2, beta_scale = 2)
```

Arguments

beta_shape

prior for the shape (gamma distibution) of beta

beta_scale

prior for the scale of beta

Value

sample from rgamma for β

32 summary.cophe

 $sample_gamma$

sample gamma

Description

sample gamma

Usage

```
sample_gamma(gamma_shape = 2, gamma_scale = 2)
```

Arguments

gamma_shape prior for the shape (gamma distibution) of gamma

gamma_scale prior for the scale of gamma

Value

sample from rgamma for γ

summary.cophe

print the summary of results from cophescan single or susie

Description

print the summary of results from cophescan single or susie

Usage

```
## S3 method for class 'cophe'
summary(object, ...)
```

Arguments

object Result from either cophe.susie or cophe.single ... additional arguments affecting the summary produced.

Value

log bayes and posterior probabilities

See Also

```
cophe.single, cophe.susie
```

target 33

t Target distribution

Description

Target distribution

Usage

```
target(params, lbf_mat, nsnps, covar_vec, covar = FALSE)
```

Arguments

params Vector of parameters: α , β and γ

lbf_mat matrix of log bayes factors: lBF.Ha and lBF.Hc

nsnps number of snps

covar_vec Vector of the covariate

covar logical: Should the covariate inflormation be used? default: False

Value

target

Index

* datasets	pars2pik, <mark>24</mark>
<pre>cophe_multi_trait_data, 15</pre>	pars_init,25
	per. $snp.priors, 25$
adjust_priors, 3	pheatmap, 15
average_piks, 4	piks, 26
average_piks_list, 4	plot_trait_manhat, 27
average_posterior_prob, 5	posterior_prob,27
<pre>average_posterior_prob_list, 6</pre>	prepare_plot_data, 28 propose, 29
check_dataset, 12	
combine.bf, 6	run_metrop_priors, 29
<pre>cophe.hyp.predict, 7</pre>	runsusie, <i>12</i> , <i>13</i>
cophe.multitrait, 8, 8, 16, 29	
cophe.single, 8, 9, 11, 16, 32	sample_alpha, 31
cophe.single.lbf, 11	sample_beta, 31
cophe.susie, 8, 12, 14, 16, 29, 32	sample_gamma, 32
cophe.susie.lbf, 13	summary.cophe, 32
cophe_heatmap, 14	torget 22
<pre>cophe_multi_trait_data, 15</pre>	target, 33
cophe_plot, 15, 29	
cophescan (cophescan-package), 3	
cophescan-package, 3	
get_beta, 16	
get_posterior_prob, 17	
Hc.cutoff.fdr, 17	
hypothesis.priors, 18	
logd_alpha, 18	
logd_beta, 19	
logd_gamma, 19	
loglik, 20	
logpost, 20	
logpriors, 21	
logsum, 22	
logsumexp, 22	
metrop_run, 23	
multitrait.simplify, 8, 16, 24, 29	