NLP games и автоматизация пайплайнов с Kubeflow

Mikhail Rozhkov

web: ml-repa.ru

telegram: t.me/mlrepa

Al-hat game

Игра на загадывание и отгадывание слов.

Player 1:

 пытается объяснить вытянутое из шляпы слово с помощью набора неоднокоренных слов, которые называются по очереди

Other players:

• предлагают несколько вариантов отгадок

Scoring

- guess score: чем раньше игрок из Other players угадает вытянутое из шляпы слово, тем больше очков он получит.
- explain score: чем больше Other players угадают вытянутое из шляпы слово и чем раньше они это сделают, тем больше очков Player 1

Al Hat competition on Raiffeisen bootcamp 2019

Task

- teams develops their own model, which implement the logic of guessing and explaining
- model serving as a web service with REST API endpoints
 - o /guess
 - /explain

Text

- financial news
- words: financial terms

Game train/serve architecture

Text processing

Методы:

- 1) Remove symbols and word reduction forms (- -> ' ', 'll -> will and etc.)
- 2) Remove links and tags (www, /, .com and etc.)
- 3) Lower-case
- 4) Lemmatization
- 5) Remove multiple spaces

Train embeddings (fasttext)

CBOW - for guessing

o dim=50, epoch=120, charNgram=(3, 4), wordNgram=3, window=5

SKIPGRAM - for explain

o dim=50, epoch=140, charNgram=(4, 6), wordNgram=3

Evaluation

Metrics

- total score = guess + explain
- separate validation set
- competition among models

Approach 1: dvc & mlflow

- dvc
 - pipelines automation
 - artifacts and models versioning
- mlflow
 - metrics tracking and experiment management

Approach 2: kubeflow

- pipeline configuration
- metrics tracking
- artifacts

Kubeflow: a platform for building ML products

- A curated set of compatible tools and artifacts that lays a foundation for running production ML apps
- Run containers on Kubernetes cluster
 - Kubernetes runs everywhere
 - Enterprises can adopt shared infrastructure and patterns for ML and non ML services
- Key features
 - Easy, repeatable, portable deployments on a diverse infrastructure
 - Deploying and managing loosely-coupled microservices
 - Scaling based on demand

- Pipelines
- Notebooks
- TensorFlow model training
- Model serving
- Multi-framework

Pipeline

dvc + mlflow

DS решает вопросы с конфигом и логированием метрик/параметров*

kubeflow

kubeflow предлагает UI для конфига, логирует все inputs/outputs этапов**

^{*} можно не выделять в отдельные этапы

^{**} это не всегда удобно

dvc + mlflow

```
config/
docker/ - Dockerfile
dvc/
src/
     game/
     pipelines/
           load.py
           processing.py
           . . .
```

kubeflow

```
docker/
     base/ - Dockerfile
     load/ - Dockerfile
     processing/ - Dockerfile
      . . .
src/
     full-pipeline/
           components/ - .yaml for each stage
           pipeline.py
     pipelines/
           load.py
           processing.py
           . . .
```

dvc + mlflow

```
kubeflow
```

```
config/
                                                 docker/
docker/ - Dockerfile
                                                      base/ - Dockerfile
dvc/
                                                      load/ - Dockerfile
     .dvc files
                                                      processing/ - Dockerfile
src/
     game/
                                                 src/
                                                      full-pipeline/
     pipelines/
          load.py
                                                            components/ - .yaml for each stage
          processing.py
                                                            pipeline.py
                                                      pipelines/
           . . .
                                                            load.py
                                                            processing.py
```

different approach to config pipeline

dvc + mlflow

config/ docker/ - Dockerfile dvc/ src/ game/ pipelines/ src/ load.py processing.py

kubeflow

```
docker/
     base/ - Dockerfile
     load/ - Dockerfile
     processing/ - Dockerfile
     full-pipeline/
          components/ - .yaml for each stage
          pipeline.py
     pipelines/
          load.py
          processing.py
```

~ same .py for stages

Find experiments / runs

dvc + mlflow

kubeflow

list of experiments

New experiment

dvc + mlflow

```
nlp-1-aihat-game ~/dev/mlrepa/nlp-1-a
▶ 🖿 .dvc
► 🖿 confia
▶ 🖿 data
▶ D docker
▶ 🖿 dvc
experiments
▶ Dun
▶ b reports
  ▶ D app
  ▼ 🖿 game
       __init__.py
     # player.py

    & evaluate explain model.pv

                                               model path: models/quess.model

    & evaluate_guess_model.py

     % prepare_configs.py
    ▶ processing.py

    train_explain_model.py

     # train_guess_model.py
  ▶ Lutils.py
  .gitignore
```

\$ dvc repro last_pipeline_stage.dvc

kubeflow

Run experiment (kubeflow)

Metrics tracking

dvc + mlflow

```
log_experiment(
    experiment_name=current_experiment,
    client=mlflow_client,

common_params={
        'docs_number': docs_number,
        'min_words_per_sentence': min_words_per_sentence
},

train_params={
        'model_type': train_explain_config.get('type'),
        'model_dim': train_explain_config.get('dim'),
        'model_epoch': train_explain_config.get('epoch'),
        'model_wordNgrams': train_explain_config.get('wordNgrams'),
},

metrics=json.load(open(explain_metrics_file))
```

```
mlflow.log_metric('name', value)
в коде
```

kubeflow

```
определяем в конфиге MLPipeline
Metrics
+ сохраняем .json файл в коде
```

Metrics tracking for a Run (kubeflow)

Metrics tracking for a Run (mlflow)

GuessExperiment 1 > Run 4f6051f36e98433d890888c362a7923f ▼

Date: 2019-10-23 19:05:36

▼ Notes 🗹

None

Source:

▼ Parameters

Name	Value
docs_number	100000
min_words_per_sentence	4
model_dim	50
model_epoch	15
model_type	cbow
model_wordNgrams	1

▼ Metrics

Name Value

guess_accuracy ೬² 0.131

Run ID: 4f6051f36e98433d890888c362a7923f

User: user

guess_accuracy и explain_accuracy можно логировать в одном RUN

Benchmark results

dvc + mlflow

kubeflow

Models / artifacts

dvc + mlflow

models/artifact versioning with DVC

kubeflow

Artifacts	Input/Output	Volumes	Manifest	Logs
Input param	neters			
bucket		visi	on-storage1	
explain-model-c	dim	70		
explain-model-e	epoch	20		
explain-model-p	oath	nlp	-1-aihat-game-m	odels/explain.model
explain-model-t	hread	4		
explain-model-t	уре	ski	ogram	
explain-model-v	wordngrams	2		
processing-corp	ous-file-output	gs:	//vision-storage1/r	nlp-1-aihat-game-data/corpus.txt
project		visi	on-230607	
Output para	ameters			
train-explain-m	odel-model-path-ou	itput gs:	//vision-storage1/r	nlp-1-aihat-game-models/explain.model

need manual edit for model path each run

Benchmark approaches of DVC, MLflow and kubeflow

	DVC	MLflow	kubeflow
Artifacts version control (models, datasets, etc.)	yes dvc run args	yes log_artifact()	yes* via metadata API
Pipeline execution DAG	yes	no*	yes
Caching of intermediate results	yes	no	no
Experiment management (tracking metrics, comparison, visualization)	yes-no*	yes	yes
Metadata	.dvc files	params, metrics, artifacts meta	kfmd library
Deployment/serving	no	yes	yes
Works locally	yes	yes	no*

^{*} not out of the box or not flexible enough but possible to do/use/hack

Benchmark approaches of DVC, MLflow and kubeflow

	DVC	MLflow	kubeflow
Learning rate level (for DS)	moderate (git, shell cmd)	low (python only)	high* *k8s, GCP
Efforts for start with	moderate	low	high*
Cost of money	free	free	k8s cluster
Maintainability / customization efforts	low	low	high 50+ microservices

^{*} not out of the box or not flexible enough but possible to do/use/hack

Benchmark approaches of DVC, MLflow and kubeflow

	DVC	MLflow	kubeflow
pipelines	Complex pipeline with intermediate data saved into separate files. No duplicated computations and copy of artifacts.	Simple pipelines, one model. Serving model out of the box.	Pipelines with different resources requirements.
cool feature	Handful for experimentation local or collaboration (shared resources).	Nice UI for tracking metrics/params and experiment benchmark.	Reusable components, experiments benchmark and computation graph visualization
reproducibility	Reproducibility out of the box. Easy to checkout to previous version.	Need to save a copy for all data/code and artifacts to get reproducibility	Work in progress to versioning but still many drawbacks. Users' responsibility.

Thank you

Mikhail Rozhkov

ml-repa.ru

Some links

- DVC tutorials
- MLflow tracking
- Kubeflow pipelines quickstart
- Reproducibility in Machine Learning
- Kubeflow v0.6: support for artifact tracking, data versioning & multi-user
- The Data Science Bill of Rights
- KFServing