WEB CHAT APPLICATION

Presented By: Bhuwan Paneru Sandip Ghimire

AGENDA

1 Introduction

2 Problem Statement

3 Objective

4 Literature Review

5 Methodology

6 Result

7 Conclusion

8 Demo

INTRODUCTION

Chat applications are a type of messaging service that allows users to communicate in real-time, either through text messages, voice calls, or video calls.

Examples:

WhatsApp

Facebook Messenger

Telegram

PROBLEM STATEMENT

It includes:

Realtime Communication

Secure Communication

OBJECTIVE

- 1. Designing Web-Based Chat Application for Seamless Communication
- 2. User-Friendly Interface Design
- 3. Secure Chat with End-to-End Encryption

Study of Existing System

Telegram

Transport Layer Security with MTProto

End-to-End Encryption of Secret Chats with AES and DHKE

Viber

Viber Encryption Protocol, a combination of Symmetric

and Asymmetric Encryption algorithm

Diffie Hellman Key Exchange

Advanced Encryption Standard

Integration with Key Derivation Function(KDF)

- A Key Derivation Function is a cryptographic function that derives one or more secret keys from a secret value such as a shared secret key.
- A KDF typically takes as input a shared secret key and some additional parameters such as a salt and an iteration count.
- There are many different KDFs available such as HKDF, PBKDF2, bcrypt, scrypt, etc.

METHODOLOGY

Step 1: By implementing Diffie Hellman Key Exchange Algorithm, we generate a shared secret key for the two users.

Step 2: Integration using PBKDF2

Step 3: Encryption and Decryption of messages using Advanced Encryption Standard.

RESULT

Testing for generation of shared secret key.

Sender

p: 1597 **g:** 11

Public key: Secret key:

646 2211

Shared Secret key:

e74e44fb37416d1259a078e24b8 491e03d5e947dc7d485b4076686 287c052248

Receiver

p: 1597 **g:** 11

Public key: Secret key:

1537 7647

Shared Secret key:

e74e44fb37416d1259a078e24b8 491e03d5e947dc7d485b4076686 287c052248

RESULT

Testing for encryption and decryption of message

Sender

Message: hello

Shared Secret key:

e74e44fb37416d1259a078e24b8 491e03d5e947dc7d485b4076686 287c052248

Encrypted Message:

U2FsdGVkX18ECSQSAJh1CYOz7M 4p9cOJp+ggVX5LGIM=

Receiver

Encrypted Message:

U2FsdGVkX18ECSQSAJh1CYOz7M 4p9cOJp+ggVX5LGIM=

Shared Secret key:

e74e44fb37416d1259a078e24b8 491e03d5e947dc7d485b4076686 287c052248

Decrypted Message: hello

CONCLUSION

In conclusion, implementing end-to-end encryption in a chat application is a significant security measure that provides a high level of privacy and security for users. By encrypting messages on the sender's device and decrypting them only on the recipient's device, end-to-end encryption ensures that messages are protected from interception or reading by third parties, including chat application providers or attackers.

DEMO

AUTHENTICATION

THANK YOU!