Modelagem Caixa Branca

Prof. Lucas S. Oliveira

Disciplina: Laboratório de Análise de Sistemas Lineares

November 6, 2021

Organização do Documento

Objetivos

Modelagem Escoamento de Fluido

- Identificar a entrada e saída do sistema.
- Analisar os fenômenos físicos relacionados ao processo.
- Obter um modelo matemático que descreva a dinâmica do sistema.
- Apresentar e justificar as hipóteses assumidas durante a modelagem.
- Definir a região de validade do modelo.

Modelagem Escoamento de Fluido

Exemplo 2.12 Livro do DORF.

Figure 1: Diagrama esquemático do tanque de escoamento de fluido.

Identificação das Variáveis

- Altura da coluna de líquido: H
- Vazão de entrada: Q₁
- Vazão de saída: Q₂

Da dinâmica do processo, têm-se:

$$\Delta H = 0$$

quando
$$Q_1 = Q_2$$
.

Hipóteses Iniciais

- 1. O fluido é incompreenssível.
- 2. O fluido é não viscoso.

Princípio de Conservação da Massa

$$m = \rho V \tag{1}$$

em que: m é a massa de fluido no reservatório, ρ a massa específica ou densidade e V o volume de fluido armazenado no reservatório.

$$V = A_1 H \tag{2}$$

em que A_1 é a área da seção transversal do tanque e H a altura da coluna de fluido. Ao substituir (2) em (1), têm-se

$$m = \rho A_1 H \tag{3}$$

Resposta Temporal

Ao derivar (3) em relação ao tempo, obtêm-se:

$$\dot{\mathbf{m}} = \rho A_1 \dot{H} \tag{4}$$

Note que $\dot{\rho} = 0$ devido a hipótese do fluido ser incompreenssível.

Regime Permanente

$$\Delta H = 0$$

Isso implica, que $\dot{m}=0$, o que resulta em

$$\dot{m} = Q_1 - Q_2 \tag{5}$$

Sendo $Q_2 = \rho A_2 v_2$, em A_2 é área de saída do tanque e v_2 é a velocidade de saída do fluido do tanque. Portanto, (5) pode ser reescrita como:

$$\dot{m} = Q_1 - \rho A_2 v_2 \tag{6}$$

Dependência de v_2 por H

A partir da equação de Bernouli, têm-se a seguinte relação:

$$\frac{1}{2}\rho v_1^2 + P_1 + \rho gH = \frac{1}{2}\rho v_2^2 + P_2 \tag{7}$$

em que: v_1 é velocidade do fluido no reservatório, P_1 e P_2 são as pressões na entrada e saída do tanque, g é a aceleração gravitacional. A partir de uma análise detalhada do sistema pode-se assumir que:

- 1. $A_2 \ll A_1$, portanto a velocidade do fluido no reservatório é desprezível.
- 2. $P_1 = P_2$, a vazão de entrada e saída possuem o mesmo valor, pressão atmosférica.

$$v_2 = \sqrt{2gH} \tag{8}$$

Obtenção da Equação Diferencial

Ao substituir (8) em(6) obtêm-se:

$$\dot{m} = Q_1 - \rho A_2 \sqrt{2gH} \tag{9}$$

Ao igualar (4) com (9), têm-se a equação diferencial da dinâmica do fluido, dado por:

$$\dot{H} = \frac{Q_1 - \rho A_2 \sqrt{2gH}}{\rho A_1} \tag{10}$$