UG 5th Semester Examination 2021 COMPUTER SCIENCE (Honours)

Paper Code : DSE-2 [CBCS]

Full Marks: 32 Time: 2 hours

DSE - 2A

Operation Research

The figures in the margin indicate full marks.

Group -A
$$(2 \times 6 = 12)$$

Answer any six questions.

- 1. (a) What do you mean by feasible solution of a Linear Programming Problem(L.P.P.)?
 - (b) What do you mean by artificial variables?
 - (c) What is Assignment Problem in L.P.P.?
 - (d) What is symmetric game?
 - (e) What is meant by non-degenerate basic feasible solution of a transportation problem?
 - (f) What is saddle point?
 - (g) What do you mean by PERT?

Group -B
$$(10 \times 2 = 20)$$

Answer any two questions.

2. a) Make the graphical representation of the set of constraints in the following L.P.P.:

$$\label{eq:maximize} \begin{aligned} \text{Maximize} \quad & z = 10x_1 + 15x_2 \\ \text{Subject to} \quad & x_1 + x_2 \geq 2, \\ & 3x_1 + 2x_2 \leq 6, \\ & x_1, \, x_2 \geq 0 \;. \end{aligned}$$

and find the extreme points of the region of feasible solutions. Find also the maximum value of the objective function.

- b) Describe Critical Path Method (CPM) Scheduling Technique briefly. 5+5
- 3. a) Obtain the dual of the following L.P.P.

Maximize
$$z = 2x_1 + 5x_2 + 6x_3$$

Subject to
$$5x_1 + 6x_2 - x_3 \le 3$$
,

$$-2x_1+x_2+4x_3 \le 4,$$

$$x_1-5x_2+3x_3 \le 1,$$

$$-3x_1-3x_2+7x_3 \le 6,$$

$$x_1, x_2, x_3 \ge 0.$$

Also verify that the dual of the dual problem is the primal problem.

b) Use dual simplex method to solve the L.P.P.:

$$\label{eq:subject} \begin{split} \text{Minimize} & z = 10x_1 + 6x_2 + 2x_3 \\ \text{Subject to} & -x_1 + x_2 + x_3 \geq 1, \\ & 3x_1 + x_2 - x_3 \geq 2, \\ & x_1, \, x_2 \, , x_3 \geq 0. \end{split}$$

5+5

4. a) Obtain an optimal basic feasible solution to the following transportation problem using VAM:

	W1	W2	W3	W4	
F1	19	30	50	10	7
F2	70	30	40	60	9
F3	40	8	70	20	18
	5	8	7	14	_

b) Consider the problem of assigning four operators to four machines. The assignment costs in rupees are given here. Operator 1 cannot be assigned to machine III and operator 3 cannot be assigned to machine IV. Find the optimal cost of assignment.

	I	II	III	IV
1	5	5	-	2
2	7	4	2	3
3	9	3	5	-
4	7	2	6	7

5+5

DSE-2B (Intelligent System)

Time: 2 hrs Full Marks: 32

Group- A

Answer any Six questions from question no.1. Each question carries two marks $[2\times6=10]$

- 1. a) Explain rational agents and rationality?
 - b) What is game theory? How is it important in AI?
 - c) Why do we need Artificial Intelligence?
 - d) What are the types of AI?
 - e) What is the intelligent agent in AI, and where are they used?
 - f) What is heuristic search?
 - g) What do you infer from hill-climbing search algorithm?

Group-B

Answer any <u>Two</u> questions	$[10 \times 2 = 20]$
2) a. Explain various properties of knowledge representation.	
b. Give a brief introduction to the Turing test in AI?	5+5=10
3) a. Write down the A* algorithm.	
b. Explain the Min-Max algorithms.	5+5=10
4) Write a short note (any two)	
a) Depth First Search	
b) Alpha-Beta pruning algorithms	
c) Hill Climbing Algorithm	5+5=10