Algebraic Geometry 2 Tutorial session 3

Lecturer: Rami Aizenbud TA: Shai Shechter

May 4, 2020

The image presheaf

Example

Let $X = \mathbb{R}^2 \setminus \{(0,0)\}$ and let $\mathcal{F} = C^{\infty}$ be the sheaf of smooth real-valued functions on X.

The image presheaf

Example

Let $X = \mathbb{R}^2 \setminus \{(0,0)\}$ and let $\mathcal{F} = C^{\infty}$ be the sheaf of smooth real-valued functions on X. Put

$$\mathcal{G}(U) = \left\{ \xi = (\xi_1, \xi_2) : U \to \mathbb{R}^2 \text{ smooth } | \frac{\partial \xi_1}{\partial y} = \frac{\partial \xi_2}{\partial x} \right\}.$$

The image presheaf

Example

Let $X = \mathbb{R}^2 \setminus \{(0,0)\}$ and let $\mathcal{F} = C^{\infty}$ be the sheaf of smooth real-valued functions on X. Put

$$\mathcal{G}(U) = \left\{ \xi = (\xi_1, \xi_2) : U o \mathbb{R}^2 \text{ smooth } | \ rac{\partial \xi_1}{\partial y} = rac{\partial \xi_2}{\partial x}
ight\}.$$

Define $\varphi: \mathcal{F} \to \mathcal{G}$ by $\varphi_U(f) = \nabla f = \left(\frac{df}{dx}, \frac{df}{dy}\right)$ for any $f \in \mathcal{F}(U)$.

• Given $U \subseteq X$ simply connected, by a theorem from calculus, any $\xi \in \mathcal{G}(U)$ is conservative, and hence of the form $\varphi_U(f)$ for some $f \in \mathcal{F}(U)$. Therefore, φ_U is surjective for U simply connected.

- Given $U \subseteq X$ simply connected, by a theorem from calculus, any $\xi \in \mathcal{G}(U)$ is conservative, and hence of the form $\varphi_U(f)$ for some $f \in \mathcal{F}(U)$. Therefore, φ_U is surjective for U simply connected.
- On the other hand, φ_X is *not* surjective. For example, the field $\xi_0(x,y) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$ lies in $\mathcal{G}(X)$ and admits no preimage under φ_X .

- Given $U \subseteq X$ simply connected, by a theorem from calculus, any $\xi \in \mathcal{G}(U)$ is conservative, and hence of the form $\varphi_U(f)$ for some $f \in \mathcal{F}(U)$. Therefore, φ_U is surjective for U simply connected.
- On the other hand, φ_X is *not* surjective. For example, the field $\xi_0(x,y) = (\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2})$ lies in $\mathcal{G}(X)$ and admits no preimage under φ_X .
- Let $X=\bigcup U_{\alpha}$ be an open cover by simply connected sets. For any α , $\xi_{\alpha}:=\xi_0\mid_{U_{\alpha}}$ lies in $\mathrm{Im}\varphi_{U_{\alpha}}$. Also, the ξ_{α} 's agree on intersections.

- Given $U \subseteq X$ simply connected, by a theorem from calculus, any $\xi \in \mathcal{G}(U)$ is conservative, and hence of the form $\varphi_U(f)$ for some $f \in \mathcal{F}(U)$. Therefore, φ_U is surjective for U simply connected.
- On the other hand, φ_X is *not* surjective. For example, the field $\xi_0(x,y) = (\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2})$ lies in $\mathcal{G}(X)$ and admits no preimage under φ_X .
- Let $X = \bigcup U_{\alpha}$ be an open cover by simply connected sets. For any α , $\xi_{\alpha} := \xi_0 \mid_{U_{\alpha}}$ lies in $\mathrm{Im} \varphi_{U_{\alpha}}$. Also, the ξ_{α} 's agree on intersections. However, they glue uniquely (by identity) to $\xi_0 \in \mathcal{G}(X)$, which is not an element of $\mathrm{Im} \varphi_X$.

- Given $U \subseteq X$ simply connected, by a theorem from calculus, any $\xi \in \mathcal{G}(U)$ is conservative, and hence of the form $\varphi_U(f)$ for some $f \in \mathcal{F}(U)$. Therefore, φ_U is surjective for U simply connected.
- On the other hand, φ_X is *not* surjective. For example, the field $\xi_0(x,y) = (\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2})$ lies in $\mathcal{G}(X)$ and admits no preimage under φ_X .
- Let $X = \bigcup U_{\alpha}$ be an open cover by simply connected sets. For any α , $\xi_{\alpha} := \xi_0 \mid_{U_{\alpha}}$ lies in $\mathrm{Im} \varphi_{U_{\alpha}}$. Also, the ξ_{α} 's agree on intersections. However, they glue uniquely (by identity) to $\xi_0 \in \mathcal{G}(X)$, which is not an element of $\mathrm{Im} \varphi_X$.
- Therefore the assignment $U \mapsto \operatorname{Im} \varphi_U$ is not a sheaf.

This example shows that, usually, the obvious candidate for the image of a morphism of sheaves is *not* a sheaf.

This example shows that, usually, the obvious candidate for the image of a morphism of sheaves is *not* a sheaf. The true (in the categorical sense) image of a sheaf is defined by applying the sheafification operation to the image presheaf, which we now recall.

Definition (Leray sheaf)

A Leray sheaf on a topological space X is a pair (E,p), where E is a topological space and $p:E\to X$ is a local homeomorphism.

Definition (Leray sheaf)

A Leray sheaf on a topological space X is a pair (E, p), where E is a topological space and $p: E \to X$ is a local homeomorphism.

We'll usually write L-sheaf a Leray sheaf, and G-sheaf (or just sheaf) for Grothendieck sheaves, i.e. sheaves as defined in Hartshorne.

Definition (Leray sheaf)

A Leray sheaf on a topological space X is a pair (E, p), where E is a topological space and $p: E \to X$ is a local homeomorphism.

We'll usually write L-sheaf a Leray sheaf, and G-sheaf (or just sheaf) for Grothendieck sheaves, i.e. sheaves as defined in Hartshorne. The terminology G-Sheaves and L-Sheaves is uncommon; usually both are referred to as sheaves.

Definition (Leray sheaf)

A Leray sheaf on a topological space X is a pair (E, p), where E is a topological space and $p: E \to X$ is a local homeomorphism.

We'll usually write L-sheaf a Leray sheaf, and G-sheaf (or just sheaf) for Grothendieck sheaves, i.e. sheaves as defined in Hartshorne. The terminology G-Sheaves and L-Sheaves is uncommon; usually both are referred to as sheaves. Historically, Leray was the first to formalize the notion of a sheaf in trying to prove certain fixed-point theorems for PDEs.

From L-sheaves to G-sheaves

From L-sheaves to G-sheaves

Given an L-sheaf E over a top space X, we can construct a G-sheaf G(E) by taking continuous sections. That is

$$G(E)(U) = \Gamma(U, E) := \{s : U \to E \text{ continuous } | p \circ s = \mathbf{1}_U \}$$
 for all $U \subseteq X$ open.

From L-sheaves to G-sheaves

Given an L-sheaf E over a top space X, we can construct a G-sheaf G(E) by taking continuous sections. That is

$$G(E)(U) = \Gamma(U, E) := \{s : U \rightarrow E \text{ continuous } | p \circ s = \mathbf{1}_U \}$$

for all $U \subseteq X$ open.

G(E) is easily verified to be a sheaf.

From G-sheaves to L-sheaves

From G-sheaves to L-sheaves

Given a G-sheaf ${\mathcal F}$ over X, we construct a Leray sheaf whose underlying set is

$$L(\mathcal{F}) = \bigsqcup_{x \in X} \{x\} \times \mathcal{F}_x,$$

with $p: L(\mathcal{F}) \to X$ the projection onto the first coordinate.

From G-sheaves to L-sheaves

Given a G-sheaf $\mathcal F$ over X, we construct a Leray sheaf whose underlying set is

$$L(\mathcal{F}) = \bigsqcup_{x \in X} \{x\} \times \mathcal{F}_x,$$

with $p: L(\mathcal{F}) \to X$ the projection onto the first coordinate. The topology on $L(\mathcal{F})$ is generated by the sets

$$V_{\xi,U}=\{(x,\sigma_x):x\in U \text{ and } \sigma_x=[\xi,U] \text{ in } \mathcal{F}_x\}$$
 $(U \text{ open, } \xi\in\mathcal{F}(U)).$

Lemma (Home exercise)

 $p\mid_{V_{\varepsilon,U}}$ is a homeomorphism onto U.

Note that the construction of $\mathcal{L}(\mathcal{F})$ can also be applied to presheaves.

Let \mathcal{F} be a presheaf over X. Find a natural map $\varphi: \mathcal{F} \to G(L(\mathcal{F}))$. Show that it is injective if \mathcal{F} satisfies the identity axiom and that φ_U is for all U surjective if \mathcal{F} satisfies gluing.

Let \mathcal{F} be a presheaf over X. Find a natural map $\varphi: \mathcal{F} \to G(L(\mathcal{F}))$. Show that it is injective if \mathcal{F} satisfies the identity axiom and that φ_U is for all U surjective if \mathcal{F} satisfies gluing.

Proof.

Given $U \subseteq X$ open, we define $\varphi_U : \mathcal{F}(U) \to \Gamma(U, L(\mathcal{F}))$ by $\varphi_U(\xi) = s_{\xi}$ where $s_{\xi} : U \to L(\mathcal{F})$ is defined by

$$s_{\xi}(x) = (x, [\xi, U]) \in \{x\} \times \mathcal{F}_x.$$

Let \mathcal{F} be a presheaf over X. Find a natural map $\varphi: \mathcal{F} \to G(L(\mathcal{F}))$. Show that it is injective if \mathcal{F} satisfies the identity axiom and that φ_U is for all U surjective if \mathcal{F} satisfies gluing.

Proof.

Given $U \subseteq X$ open, we define $\varphi_U : \mathcal{F}(U) \to \Gamma(U, L(\mathcal{F}))$ by $\varphi_U(\xi) = s_{\xi}$ where $s_{\xi} : U \to L(\mathcal{F})$ is defined by

$$s_{\xi}(x) = (x, [\xi, U]) \in \{x\} \times \mathcal{F}_x.$$

Claim: s_{ε} is continuous.

Let \mathcal{F} be a presheaf over X. Find a natural map $\varphi: \mathcal{F} \to G(L(\mathcal{F}))$. Show that it is injective if \mathcal{F} satisfies the identity axiom and that φ_U is for all U surjective if \mathcal{F} satisfies gluing.

Proof.

Given $U \subseteq X$ open, we define $\varphi_U : \mathcal{F}(U) \to \Gamma(U, L(\mathcal{F}))$ by $\varphi_U(\xi) = s_{\xi}$ where $s_{\xi} : U \to L(\mathcal{F})$ is defined by

$$s_{\xi}(x) = (x, [\xi, U]) \in \{x\} \times \mathcal{F}_{x}.$$

<u>Claim</u>: s_{ξ} is continuous. Assume $s_{\xi}(x) \in V_{\nu,U'}$ for some $x \in U$ and $V_{\nu,U'} \subseteq L(\mathcal{F})$ basic open. By definition of $V_{\nu,U'}$, this means that $[\xi,U]=[\nu,U']$ as elements of \mathcal{F}_x .

Let \mathcal{F} be a presheaf over X. Find a natural map $\varphi: \mathcal{F} \to G(L(\mathcal{F}))$. Show that it is injective if \mathcal{F} satisfies the identity axiom and that φ_U is for all U surjective if \mathcal{F} satisfies gluing.

Proof.

Given $U \subseteq X$ open, we define $\varphi_U : \mathcal{F}(U) \to \Gamma(U, L(\mathcal{F}))$ by $\varphi_U(\xi) = s_{\xi}$ where $s_{\xi} : U \to L(\mathcal{F})$ is defined by

$$s_{\xi}(x) = (x, [\xi, U]) \in \{x\} \times \mathcal{F}_{x}.$$

<u>Claim</u>: s_{ξ} is continuous. Assume $s_{\xi}(x) \in V_{\nu,U'}$ for some $x \in U$ and $V_{\nu,U'} \subseteq L(\mathcal{F})$ basic open. By definition of $V_{\nu,U'}$, this means that $[\xi,U]=[\nu,U']$ as elements of \mathcal{F}_x . Thus $\exists W \subseteq U \cap U'$ such that $\xi\mid_{W}=\nu\mid_{W}$, and $s_{\xi}(W)\subseteq V_{\nu,U'}$.

 \bullet Assume ${\cal F}$ has identity.

ullet Assume ${\mathcal F}$ has identity. For $\xi\in{\mathcal F}(U)$ we have that

$$\varphi_U(\xi) = s_{\xi} = 0 \quad \iff \quad \xi = 0 \text{ in } \mathcal{F}_x \text{ for all } x \in U$$

which occurs iff any $x \in U$ has a neighbourhood V_x such that $\xi \mid_{V_x} \equiv 0$.

• Assume $\mathcal F$ has identity. For $\xi \in \mathcal F(U)$ we have that

$$\varphi_U(\xi) = s_{\xi} = 0 \quad \iff \quad \xi = 0 \text{ in } \mathcal{F}_x \text{ for all } x \in U$$

which occurs iff any $x \in U$ has a neighbourhood V_x such that $\xi \mid_{V_x} \equiv 0$. As \mathcal{F} has the identity axiom, this implies $\xi = 0$, and therefore $\mathrm{Ker}(\varphi) = 0$.

• Assume $\mathcal F$ has identity. For $\xi \in \mathcal F(U)$ we have that

$$\varphi_U(\xi) = s_{\xi} = 0 \quad \iff \quad \xi = 0 \text{ in } \mathcal{F}_x \text{ for all } x \in U$$

which occurs iff any $x \in U$ has a neighbourhood V_x such that $\xi \mid_{V_x} \equiv 0$. As \mathcal{F} has the identity axiom, this implies $\xi = 0$, and therefore $\mathrm{Ker}(\varphi) = 0$.

ullet Assume ${\mathcal F}$ has gluing.

• Assume $\mathcal F$ has identity. For $\xi \in \mathcal F(U)$ we have that

$$\varphi_U(\xi) = s_{\xi} = 0 \quad \iff \quad \xi = 0 \text{ in } \mathcal{F}_x \text{ for all } x \in U$$

which occurs iff any $x \in U$ has a neighbourhood V_x such that $\xi \mid_{V_x} \equiv 0$. As \mathcal{F} has the identity axiom, this implies $\xi = 0$, and therefore $\mathrm{Ker}(\varphi) = 0$.

• Assume \mathcal{F} has gluing. Let U be open and $s: U \to L(\mathcal{F})$ be a continuous section. Note that $s(x) = (x, s_2(x))$ for some $s_2(x) \in \mathcal{F}_x$.

• Assume $\mathcal F$ has identity. For $\xi \in \mathcal F(U)$ we have that

$$\varphi_U(\xi) = s_{\xi} = 0 \quad \iff \quad \xi = 0 \text{ in } \mathcal{F}_x \text{ for all } x \in U$$

which occurs iff any $x \in U$ has a neighbourhood V_x such that $\xi \mid_{V_x} \equiv 0$. As \mathcal{F} has the identity axiom, this implies $\xi = 0$, and therefore $\mathrm{Ker}(\varphi) = 0$.

• Assume \mathcal{F} has gluing. Let U be open and $s:U\to L(\mathcal{F})$ be a continuous section. Note that $s(x)=(x,s_2(x))$ for some $s_2(x)\in\mathcal{F}_x$. The continuity of s implies that for any $x\in U$ there exists an open set $x\in W_x\subseteq U$ and $\xi_x\in\mathcal{F}(W_x)$ such that $s_2(y)=[\xi_x,W_x]\in\mathcal{F}_y$ for all $y\in W_x$.

• Assume $\mathcal F$ has identity. For $\xi \in \mathcal F(U)$ we have that

$$\varphi_U(\xi) = s_{\xi} = 0 \quad \iff \quad \xi = 0 \text{ in } \mathcal{F}_x \text{ for all } x \in U$$

which occurs iff any $x \in U$ has a neighbourhood V_x such that $\xi \mid_{V_x} \equiv 0$. As \mathcal{F} has the identity axiom, this implies $\xi = 0$, and therefore $\mathrm{Ker}(\varphi) = 0$.

• Assume \mathcal{F} has gluing. Let U be open and $s:U\to L(\mathcal{F})$ be a continuous section. Note that $s(x)=(x,s_2(x))$ for some $s_2(x)\in\mathcal{F}_x$. The continuity of s implies that for any $x\in U$ there exists an open set $x\in W_x\subseteq U$ and $\xi_x\in\mathcal{F}(W_x)$ such that $s_2(y)=[\xi_x,W_x]\in\mathcal{F}_y$ for all $y\in W_x$. Refining the cover $\{W_x\}$ if necessary and applying the gluing axiom, the ξ_x 's give rise to an element $\xi\in\mathcal{F}(U)$ such that $\xi\mid_{W_x}=\xi_x$. Then $s=\varphi_U(\xi)$.

Question

Given an L-sheaf $E \xrightarrow{p} X$, can we construct a natural map

Sheafification

Definition

The sheafification of a presheaf \mathcal{F} over X is the sheaf $\mathcal{F}^+ := G(L(\mathcal{F}))$ described above.

Definition

The sheafification of a presheaf \mathcal{F} over X is the sheaf $\mathcal{F}^+ := G(L(\mathcal{F}))$ described above.

It has the following properties:

Definition

The sheafification of a presheaf \mathcal{F} over X is the sheaf $\mathcal{F}^+ := G(L(\mathcal{F}))$ described above.

It has the following properties:

1 It is unique up to unique isomorphism.

Definition

The sheafification of a presheaf \mathcal{F} over X is the sheaf $\mathcal{F}^+ := G(L(\mathcal{F}))$ described above.

It has the following properties:

- 1 It is unique up to unique isomorphism.
- ② If $\mathcal F$ is already a sheaf then $\mathcal F^+\simeq \mathcal F.$

Definition

The sheafification of a presheaf \mathcal{F} over X is the sheaf $\mathcal{F}^+ := G(L(\mathcal{F}))$ described above.

It has the following properties:

- It is unique up to unique isomorphism.
- ② If $\mathcal F$ is already a sheaf then $\mathcal F^+\simeq \mathcal F.$
- **3** For any $x \in X$ we have $\mathcal{F}_x \simeq \mathcal{F}_x^+$.

Definition

The sheafification of a presheaf \mathcal{F} over X is the sheaf $\mathcal{F}^+ := G(L(\mathcal{F}))$ described above.

It has the following properties:

- 1 It is unique up to unique isomorphism.
- ② If \mathcal{F} is already a sheaf then $\mathcal{F}^+ \simeq \mathcal{F}$.
- **3** For any $x \in X$ we have $\mathcal{F}_x \simeq \mathcal{F}_x^+$.
- **③** Given \mathcal{G} a sheaf on X and $\varphi: \mathcal{F} \to \mathcal{G}$ a morphism of presheaves, there exists a unique $\widetilde{\varphi}: \mathcal{F}^+ \to \mathcal{G}$ such that

$$\begin{array}{c}
\mathcal{F} \xrightarrow{\varphi} \mathcal{G} \\
\downarrow & \swarrow \\
\mathcal{F}^{+}
\end{array}$$

commutes.

Definition

The sheafification of a presheaf \mathcal{F} over X is the sheaf $\mathcal{F}^+ := G(L(\mathcal{F}))$ described above.

It has the following properties:

- It is unique up to unique isomorphism.
- ② If \mathcal{F} is already a sheaf then $\mathcal{F}^+ \simeq \mathcal{F}$.
- **3** For any $x \in X$ we have $\mathcal{F}_x \simeq \mathcal{F}_x^+$.
- **③** Given \mathcal{G} a sheaf on X and $\varphi: \mathcal{F} \to \mathcal{G}$ a morphism of presheaves, there exists a unique $\widetilde{\varphi}: \mathcal{F}^+ \to \mathcal{G}$ such that

$$\begin{array}{c}
\mathcal{F} \xrightarrow{\varphi} \mathcal{G} \\
\downarrow & \swarrow \\
\mathcal{F}^{+}
\end{array}$$

commutes. That is $\operatorname{Hom}_{\operatorname{\mathbf{PSh}}_X}(\mathcal{F},\mathcal{G}^{\operatorname{forget}})=\operatorname{Hom}_{\operatorname{\mathbf{Sh}}_X}(\mathcal{F}^+,\mathcal{G}).$

Sheafification - contd

① The assertion $\mathcal{F}_x \simeq \mathcal{F}_x^+$ for any $x \in X$ may be verified directly. It follows from the more general fact that, for any Leray sheaf $E \xrightarrow{p} X$, the stalk of G(E) over a point x is canonically isomorphic to the fiber $p^{-1}(x)$. (this is a consequence of p being a local homeomorphism.)

Sheafification - contd

- The assertion $\mathcal{F}_x \simeq \mathcal{F}_x^+$ for any $x \in X$ may be verified directly. It follows from the more general fact that, for any Leray sheaf $E \xrightarrow{p} X$, the stalk of G(E) over a point x is canonically isomorphic to the fiber $p^{-1}(x)$. (this is a consequence of p being a local homeomorphism.)
- ② One possible way to define the map $\widetilde{\varphi}: \mathcal{F}^+ \to \mathcal{G}$ is by defining a map $\varphi^+: \mathcal{F}^+ \to \mathcal{G}^+$, by setting

$$\widetilde{\varphi}_U(s)(x) = (x, \varphi_x(s(x))) \quad (s \in \mathcal{F}(U), \ U \ \text{open}),$$

where φ_x denotes the induced homomorphism $\mathcal{F}_x \to \mathcal{G}_x$. To get $\widetilde{\varphi}$, compose φ^+ with the isomorphism $\mathcal{G}^+ \xrightarrow{\sim} \mathcal{G}$.

Another construction – a remark

There is another construction of the sheafification which is independent of choosing points. Let \mathcal{F} be a presheaf over a top space X.

① Given U open and an open cover $U = \bigcup V_{\alpha}$, we can define

$$\mathcal{F}_{U=\bigcup V_\alpha}^\oplus(U):=\left\{(\xi_\alpha)_\alpha\mid \xi_\alpha\in\mathcal{F}(V_\alpha) \text{ and } \xi_\alpha\mid_{V_\alpha\cap V_\beta}=\xi_\beta\mid_{V_\alpha\cap V_\beta}\right\}.$$

Another construction – a remark

There is another construction of the sheafification which is independent of choosing points. Let \mathcal{F} be a presheaf over a top space X.

① Given U open and an open cover $U = \bigcup V_{\alpha}$, we can define

$$\mathcal{F}_{U=\bigcup V_{\alpha}}^{\oplus}(U) := \left\{ (\xi_{\alpha})_{\alpha} \mid \xi_{\alpha} \in \mathcal{F}(V_{\alpha}) \text{ and } \xi_{\alpha} \mid_{V_{\alpha} \cap V_{\beta}} = \xi_{\beta} \mid_{V_{\alpha} \cap V_{\beta}} \right\}.$$

We then take a direct limit and define

$$\mathcal{F}^{\oplus}(U) := \lim_{U=\bigcup V_{\alpha}} \mathcal{F}^{\oplus}_{U=\bigcup V_{\alpha}}(U).$$

Another construction – a remark

There is another construction of the sheafification which is independent of choosing points. Let \mathcal{F} be a presheaf over a top space X.

① Given U open and an open cover $U = \bigcup V_{\alpha}$, we can define

$$\mathcal{F}_{U=\bigcup V_{\alpha}}^{\oplus}(U) := \left\{ (\xi_{\alpha})_{\alpha} \mid \xi_{\alpha} \in \mathcal{F}(V_{\alpha}) \text{ and } \xi_{\alpha} \mid_{V_{\alpha} \cap V_{\beta}} = \xi_{\beta} \mid_{V_{\alpha} \cap V_{\beta}} \right\}.$$

We then take a direct limit and define

$$\mathcal{F}^{\oplus}(U) := \lim_{U = \bigcup V_{\alpha}} \mathcal{F}^{\oplus}_{U = \bigcup V_{\alpha}}(U).$$

③ If \mathcal{F} has the identity axiom then $\mathcal{F}^{\oplus} \simeq \mathcal{F}^+$ is a sheaf. Otherwise \mathcal{F}^{\oplus} has identity, and then $\mathcal{F}^{\oplus \oplus}$ is a sheaf, isomorphic to \mathcal{F}^+ .

Operations on sheaves

Let $f: X \to Y$ a continuous map of topological spaces.

Definition (Direct image sheaf)

Given a sheaf $\mathcal F$ on X, we can define a new sheaf on Y by setting

$$f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}(V)),$$

for any $V \subseteq Y$ open.

Let $f: X \to Y$ be a finite covering map and $y \in Y$. What is $(f_*\mathcal{F})_y$?

Let $f: X \to Y$ be a finite covering map and $y \in Y$. What is $(f_*\mathcal{F})_y$?

Solution.

Since f is a finite covering map, there exists $V \ni y$ open such that $f^{-1}V = \bigsqcup_{i=1}^n U_i$ with $f \mid_{U_i}$ a homeomorphism onto V.

Let $f: X \to Y$ be a finite covering map and $y \in Y$. What is $(f_*\mathcal{F})_y$?

Solution.

Since f is a finite covering map, there exists $V \ni y$ open such that $f^{-1}V = \bigsqcup_{i=1}^n U_i$ with $f \mid_{U_i}$ a homeomorphism onto V. Let $f^{-1}(y) = \{x_1, \ldots, x_n\}$ with $x_i \in U_i$.

Let $f: X \to Y$ be a finite covering map and $y \in Y$. What is $(f_*\mathcal{F})_y$?

Solution.

Since f is a finite covering map, there exists $V \ni y$ open such that $f^{-1}V = \bigsqcup_{i=1}^n U_i$ with $f \mid_{U_i}$ a homeomorphism onto V. Let $f^{-1}(y) = \{x_1, \ldots, x_n\}$ with $x_i \in U_i$. Then

$$(f_*\mathcal{F})_y = \lim_{y \in W \text{ open}} (f_*\mathcal{F})(W) = \lim_{y \in W \subseteq V} \mathcal{F}(f^{-1}(W))$$

$$= \lim_{y \in W \subseteq V} \mathcal{F}(\bigsqcup_i (f^{-1}(W) \cap U_i)) = \lim_{y \in W \subseteq V} \prod_i \mathcal{F}((f \mid_{U_i})^{-1}(W))$$

$$= \prod_{i=1}^n \lim_{x_i \in U' \subseteq U} \mathcal{F}(U') = \prod_{x \in f^{-1}(y)} \mathcal{F}_x.$$

Operations on sheaves - Pullback

Now let \mathcal{F} be a sheaf on Y and $f: X \to Y$ a continuous map. We want to obtain a sheaf $f^{-1}(\mathcal{F})$ on X. We describe it in the context of L-sheaves.

Recall that, given another continuous map $p: E \to Y$, the fiber product $X \times_Y E$ is defined by $\{(x,e) \mid f(x) = p(e)\} \subseteq X \times E$, with the subspace topology.

Lemma

Let $E \xrightarrow{p} Y$ be an L-sheaf over Y. Then $X \times_Y E \to X$ is an L-sheaf on X, wrt projection onto the first coordinate.

Proof of lemma.

Let π_1 denote the projection $X \times_Y E \to X$ and $(x, e) \in X \times_Y E$.

Proof of lemma.

Let π_1 denote the projection $X \times_Y E \to X$ and $(x, e) \in X \times_Y E$.

Proof of lemma.

Let π_1 denote the projection $X \times_Y E \to X$ and $(x, e) \in X \times_Y E$. Assume $e \in U \subseteq E$ is open such that $p \mid_U$ is a homeomorphism. Put $W = f^{-1}(p(U))$. Then $x \in W$, since $f(x) = p(e) \in p(U)$. Let $V := (W \times U) \cap (X \times_Y E)$. Claim. $\pi_1 \mid_V$ is a homeomorphism

Proof of lemma.

Let π_1 denote the projection $X \times_Y E \to X$ and $(x, e) \in X \times_Y E$. Assume $e \in U \subseteq E$ is open such that $p \mid_U$ is a homeomorphism. Put $W = f^{-1}(p(U))$. Then $x \in W$, since $f(x) = p(e) \in p(U)$. Let $V := (W \times U) \cap (X \times_Y E)$.

<u>Claim</u>. $\pi_1 \mid_V$ is a homeomorphism It is continuous and open, as the restriction of a continuous open map.

Proof of lemma.

Let π_1 denote the projection $X \times_Y E \to X$ and $(x, e) \in X \times_Y E$. Assume $e \in U \subseteq E$ is open such that $p \mid_U$ is a homeomorphism. Put $W = f^{-1}(p(U))$. Then $x \in W$, since $f(x) = p(e) \in p(U)$. Let $V := (W \times U) \cap (X \times_Y E)$.

 $\underline{\text{Claim}}.\pi_1\mid_V$ is a homeomorphism It is continuous and open, as the restriction of a continuous open map. to verify that $\pi_1\mid_V$ is injective, note that

$$\pi_1(x_1, e_1) = \pi_1(x_2, e_2) \quad \Rightarrow \quad x_1 = x_2 \quad \Rightarrow \quad f(x_1) = f(x_2),$$

which, for $(x_i, e_i) \in X \times_Y E$ implies $p(e_1) = p(e_2)$. Since $p \mid_U$ is bijective, this implies $e_1 = e_2$ as well.

Proof of lemma.

Let π_1 denote the projection $X \times_Y E \to X$ and $(x, e) \in X \times_Y E$. Assume $e \in U \subseteq E$ is open such that $p \mid_U$ is a homeomorphism. Put $W = f^{-1}(p(U))$. Then $x \in W$, since $f(x) = p(e) \in p(U)$. Let $V := (W \times U) \cap (X \times_Y E)$.

 $\underline{\text{Claim}}.\pi_1\mid_V$ is a homeomorphism It is continuous and open, as the restriction of a continuous open map. to verify that $\pi_1\mid_V$ is injective, note that

$$\pi_1(x_1, e_1) = \pi_1(x_2, e_2) \quad \Rightarrow \quad x_1 = x_2 \quad \Rightarrow \quad f(x_1) = f(x_2),$$

which, for $(x_i, e_i) \in X \times_Y E$ implies $p(e_1) = p(e_2)$. Since $p \mid_U$ is bijective, this implies $e_1 = e_2$ as well. Therefore π_1 is a local homeomorphism.

Question

What is the analog of pullback on G-sheaves?

Question

What is the analog of pullback on G-sheaves?

Note that, given $W \subseteq X$ open, $f(W) \subseteq V \subseteq Y$ open and a section $s: V \to E$ of p, we can cook-up a section $\widetilde{s}: W \to X \times_Y E$ by the formula $\widetilde{s}(w) = (w, s \circ f(w))$.

$$\begin{array}{c|c}
X \times_Y E \longrightarrow E \\
\downarrow & \downarrow \\
\widetilde{s} \mid & \downarrow \\
X \longrightarrow Y
\end{array}$$

Question

What is the analog of pullback on G-sheaves?

Note that, given $W \subseteq X$ open, $f(W) \subseteq V \subseteq Y$ open and a section $s: V \to E$ of p, we can cook-up a section $\widetilde{s}: W \to X \times_Y E$ by the formula $\widetilde{s}(w) = (w, s \circ f(w))$.

$$\begin{array}{ccc}
X \times_Y E \longrightarrow E \\
\widetilde{s} & \downarrow \pi_1 & p \downarrow & \searrow s \\
X \longrightarrow Y
\end{array}$$

We get an inclusion $\lim_{f(W)\subset V} G(E)(V) \hookrightarrow G(X\times_Y E)(W)$.

Are these all sections on $G(X \times_Y E)(W)$?

Are these all sections on $G(X \times_Y E)(W)$?

Answer

If $W \subseteq f^{-1}(p(U))$ for $U \subseteq E$ open such that $p \mid U$ is a homeomorphism, then YES (home exercise).

Are these all sections on $G(X \times_Y E)(W)$?

Answer

If $W \subseteq f^{-1}(p(U))$ for $U \subseteq E$ open such that $p \mid U$ is a homeomorphism, then YES (home exercise). Moreover, such W's form a basis for the topology of X. Thus- we obtain a description of $G(X \times_Y E)$ by sheafification.

Are these all sections on $G(X \times_Y E)(W)$?

Answer

If $W \subseteq f^{-1}(p(U))$ for $U \subseteq E$ open such that $p \mid U$ is a homeomorphism, then YES (home exercise). Moreover, such W's form a basis for the topology of X. Thus- we obtain a description of $G(X \times_Y E)$ by sheafification.

Definition (Pullback of a sheaf)

Given $f: X \to Y$ a continuous map and \mathcal{F} a sheaf on Y, the *pullback sheaf* $f^{-1}(\mathcal{F})$ is the sheaf obtained by sheafifying the presheaf

$$U\mapsto \lim_{f(U)\subseteq V \text{ open}} \mathcal{F}(V).$$

Adjointness of pullback and direct image

Exercise

Let $f:X\to Y$ be a continuous map, $\mathcal F$ a sheaf on X and $\mathcal G$ a sheaf on Y. Then there exists a natural bijection

$$\operatorname{Hom}_{\operatorname{\mathbf{Sh}}(X)}(f^{-1}\mathcal{G},\mathcal{F}) \simeq \operatorname{Hom}_{\operatorname{\mathbf{Sh}}(Y)}(\mathcal{G},f_*\mathcal{F}).$$

Adjointness of pullback and direct image

Exercise

Let $f:X\to Y$ be a continuous map, $\mathcal F$ a sheaf on X and $\mathcal G$ a sheaf on Y. Then there exists a natural bijection

$$\operatorname{Hom}_{\operatorname{\mathbf{Sh}}(X)}(f^{-1}\mathcal{G},\mathcal{F}) \simeq \operatorname{Hom}_{\operatorname{\mathbf{Sh}}(Y)}(\mathcal{G},f_*\mathcal{F}).$$

Proof.

We construct natural maps going in both directions, and verify that their compositions are equivalent to identity (some details are left as exercises).

• $F: \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}(\mathcal{G}, f^*\mathcal{F})$:

• $F: \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}(\mathcal{G}, f^*\mathcal{F})$: Let $\varphi: f^{-1}\mathcal{G} \to \mathcal{F}$ and let $V \subseteq Y$ be open. Put $U = f^{-1}(V)$. Since f(U) is open, we have that $f^{-1}\mathcal{G}(U) = \lim_{V' \supset f(U)} \mathcal{G}(V') = \mathcal{G}(V)$ (Ex).

• $F: \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}(\mathcal{G}, f^*\mathcal{F})$: Let $\varphi: f^{-1}\mathcal{G} \to \mathcal{F}$ and let $V \subseteq Y$ be open. Put $U = f^{-1}(V)$. Since f(U) is open, we have that $f^{-1}\mathcal{G}(U) = \lim_{V' \supseteq f(U)} \mathcal{G}(V') = \mathcal{G}(V)$ (Ex). Furthermore, by definition, $\mathcal{F}(U) = f^*\mathcal{F}(V)$.

• $F: \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}(\mathcal{G}, f^*\mathcal{F})$: Let $\varphi: f^{-1}\mathcal{G} \to \mathcal{F}$ and let $V \subseteq Y$ be open. Put $U = f^{-1}(V)$. Since f(U) is open, we have that $f^{-1}\mathcal{G}(U) = \lim_{V' \supseteq f(U)} \mathcal{G}(V') = \mathcal{G}(V)$ (Ex). Furthermore, by definition, $\mathcal{F}(U) = f^*\mathcal{F}(V)$. Therefore, we may define $F(\varphi)$ by setting

$$F(\varphi)_V = \varphi_{f^{-1}(V)} \in \text{Hom}(\mathcal{G}(V), f^*\mathcal{F}(V)).$$

The definition $F(\varphi)$ is compatible with restrictions, and therefore $F(\varphi)$ is a morphism of sheaves (Ex).

• $G: \operatorname{Hom}(\mathcal{G}, f^*\mathcal{F}) \to \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F})$: Given $\psi: \mathcal{G} \to f^*\mathcal{F}$, $U \subseteq X$ open and $f(U) \subseteq V \subseteq Y$ open, we have a map $g_{V,U}: \mathcal{G}(V) \to \mathcal{F}(U)$, given by the composition

$$\mathcal{G}(V) \xrightarrow{\psi_V} f^* \mathcal{F}(V) = \mathcal{F}(f^{-1}V) \xrightarrow{\operatorname{res}_{f^{-1}(V),U}} \mathcal{F}(U).$$

• $G: \operatorname{Hom}(\mathcal{G}, f^*\mathcal{F}) \to \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F})$: Given $\psi: \mathcal{G} \to f^*\mathcal{F}$, $U \subseteq X$ open and $f(U) \subseteq V \subseteq Y$ open, we have a map $g_{V,U}: \mathcal{G}(V) \to \mathcal{F}(U)$, given by the composition

$$\mathcal{G}(V) \xrightarrow{\psi_V} f^* \mathcal{F}(V) = \mathcal{F}(f^{-1}V) \xrightarrow{\operatorname{res}_{f^{-1}(V),U}} \mathcal{F}(U).$$

The universal property of direct limit then gives a map

$$g_U = \lim_{V \supseteq f(U)} g_{V,U} : \lim_{V \supseteq f(U)} \mathcal{G}(V) o \mathcal{F}(U),$$

which makes a suitable diagram commutative.

• $G: \operatorname{Hom}(\mathcal{G}, f^*\mathcal{F}) \to \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F})$: Given $\psi: \mathcal{G} \to f^*\mathcal{F}$, $U \subseteq X$ open and $f(U) \subseteq V \subseteq Y$ open, we have a map $g_{V,U}: \mathcal{G}(V) \to \mathcal{F}(U)$, given by the composition

$$\mathcal{G}(V) \xrightarrow{\psi_V} f^* \mathcal{F}(V) = \mathcal{F}(f^{-1}V) \xrightarrow{\operatorname{res}_{f^{-1}(V),U}} \mathcal{F}(U).$$

The universal property of direct limit then gives a map

$$g_U = \lim_{V \supseteq f(U)} g_{V,U} : \lim_{V \supseteq f(U)} \mathcal{G}(V) o \mathcal{F}(U),$$

which makes a suitable diagram commutative. The maps (g_U) comprise a morphisms of presheaves form $(U \mapsto \lim_{V \supseteq f(U)} \mathcal{G}(V))$ to \mathcal{F} (Ex).

• $G: \operatorname{Hom}(\mathcal{G}, f^*\mathcal{F}) \to \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F})$: Given $\psi: \mathcal{G} \to f^*\mathcal{F}$, $U \subseteq X$ open and $f(U) \subseteq V \subseteq Y$ open, we have a map $g_{V,U}: \mathcal{G}(V) \to \mathcal{F}(U)$, given by the composition

$$\mathcal{G}(V) \xrightarrow{\psi_V} f^* \mathcal{F}(V) = \mathcal{F}(f^{-1}V) \xrightarrow{\operatorname{res}_{f^{-1}(V),U}} \mathcal{F}(U).$$

The universal property of direct limit then gives a map

$$g_U = \lim_{V \supseteq f(U)} g_{V,U} : \lim_{V \supseteq f(U)} \mathcal{G}(V) o \mathcal{F}(U),$$

which makes a suitable diagram commutative. The maps (g_U) comprise a morphisms of presheaves form $(U \mapsto \lim_{V \supseteq f(U)} \mathcal{G}(V))$ to \mathcal{F} (Ex). Sheafifying, we set $\mathcal{G}(\psi) = \widetilde{g} : f^{-1}\mathcal{G} \to \mathcal{F}$.

• Given $\psi : \mathcal{G} \to f^*\mathcal{F}$ and $V \subseteq Y$ open, we have $(FG\psi)_V = (G\psi)_{f^{-1}(V)}$, where the RHS is given by a direct limit over open sets containing $f(f^{-1}(V)) = V$.

• Given $\psi: \mathcal{G} \to f^*\mathcal{F}$ and $V \subseteq Y$ open, we have $(FG\psi)_V = (G\psi)_{f^{-1}(V)}$, where the RHS is given by a direct limit over open sets containing $f(f^{-1}(V)) = V$. Hence it is over a filtered limit with a terminal object, and equals to its value at V.

• Given $\psi: \mathcal{G} \to f^*\mathcal{F}$ and $V \subseteq Y$ open, we have $(FG\psi)_V = (G\psi)_{f^{-1}(V)}$, where the RHS is given by a direct limit over open sets containing $f(f^{-1}(V)) = V$. Hence it is over a filtered limit with a terminal object, and equals to its value at V. It follows that $(FG\psi)_V = (G\psi)_{f^{-1}(V)} = \psi_V$.

- Given $\psi: \mathcal{G} \to f^*\mathcal{F}$ and $V \subseteq Y$ open, we have $(FG\psi)_V = (G\psi)_{f^{-1}(V)}$, where the RHS is given by a direct limit over open sets containing $f(f^{-1}(V)) = V$. Hence it is over a filtered limit with a terminal object, and equals to its value at V. It follows that $(FG\psi)_V = (G\psi)_{f^{-1}(V)} = \psi_V$.
- The equivalence $(GF\varphi)_U = \varphi_U$ for all $\varphi : f^{-1}\mathcal{G} \to \mathcal{F}$ follows similarly, by unfolding the definitions (Ex).

