UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO

Računalništvo in matematika -2. stopnja

Kevin Štampar

ORODJE ZA GRAFIČNI PRIKAZ LASTNOSTI BÉZIERJEVIH IN PH KRIVULJ

Magistrsko delo

Mentor: prof. dr. Emil Žagar

Zahvala

Zahvaljujem se mentorju za zelo sproščen odnos!

Kazalo

T	Uvo	Od .	1
2	Béz	ierjeve krivulje	2
	2.1	Bernsteinovi bazni polinomi	2
	2.2	Večdimenzionalne oznake	4
	2.3	Bézierjeve krivulje	5
	2.4	De Casteljaujev algoritem	6
	2.5	Subdivizija	8
	2.6	Ekstrapolacija	10
	2.7	Višanje stopnje	10
	2.8	Odvodi Bézierjeve krivulje	12
3	Rac	cionalne Bézierjeve krivulje	14
	3.1	De Casteljaujev algoritem za racionalne Bézierjeve krivulje	
	3.2	Farinove točke	17
4	Zlej	oki Bézierjevih krivulj	19
	4.1	Geometrijska zveznost	20
	4.2	Konstrukcija zlepkov Bezierjevih krivulj	22
		4.2.1 Enostranska konstrukcija	22
		4.2.2 Alfa parametrizacije	25
5	ΡН	Krivulje	27
	5.1	Konstantna parametrična hitrost	27
	5.2	Polinomska parametrična hitrost	27
	5.3	Kontrolne točke Bézierjevih PH krivulj	29
	5.4	Parametrična hitrost Bezierjeve PH krivulje	31
	5.5	Enakomerna parametrizacija	32
	5.6	Tangenta, normala in ukrivljenost	33
	5.7	Racionalne odmik krivulje	33
6	Oro	odje za grafični prikaz konceptov	35
	6.1	Implementacija konceptov magistrskega dela	35
	6.2	Orodja	35
		6.2.1 Izvoz slik	35
		6.2.2 Ponastavitev grafa	35
		6.2.3 Prikaz mreže	35
		6.2.4 Povečava	35
		6.2.5 Prednastavitve	35
		6.2.6 Preklopnik za oznake točk	36
	6.3	Ukazi izbrane krivulje	36
	0.0	6.3.1 Vse krivulje	36
		6.3.2 Bézierjeva krivulja	36
		6.3.3 Racionalna Bézierjeva Krivulja	37
		6.3.4 PH Bézierjeva krivulja	37
		O.O.T III Demenjeva kiivuija	JI

	6.3.5 Ziepki	
7	Integrali po ω -kompleksih	38
	7.1 Definicija	38

Program dela

Mentor naj napiše program dela skupaj z osnovno literaturo.

Podpis mentorja:

Orodje za grafični prikaz lastnosti Bézierjevih in PH krivulj POVZETEK

Tool for graphical representation of properties of Bézier and PH curves ${\rm ABSTRACT}$

An abstract of the work is written here. This includes a short description of the content and not the structure of your work.

Math. Subj. Class. (2020): 74B05, 65N99

Ključne besede: integracija, kompleks

Keywords: integration, complex

1 Uvod

Napišite kratek zgodovinski in matematični uvod. Pojasnite motivacijo za problem, kje nastopa, kje vse je bil obravnavan. Na koncu opišite tudi organizacijo dela – kaj je v katerem razdelku.

Ker je v okviru magistrskega dela nastalo orodje za grafični prikaz konceptov, bo delo polno s slikovnimi primeri.

2 Bézierjeve krivulje

2.1 Bernsteinovi bazni polinomi

V tem podrazdelku bomo predstavili Bernsteinove bazne polinome in nekaj njihovih lastnosti, ki bodo ključne pri vpeljavi Bézierjevih krivulj. Začnimo z njihovo definicijo.

Definicija 2.1. Za nenegativna cela števila n je i-ti $Bernsteinov\ bazni\ polinom\ podan\ s\ predpisom$

$$B_i^n(t) := \binom{n}{i} t^i (1-t)^{n-i}, \quad i \in \mathbb{Z}.$$

Iz definicije je očitno, da so za indekse i > n, oziroma i < 0, Bernsteinovi bazni polinomi ničelni. Pri določeni stopnji n je neničelnih Bernsteinovih baznih polinomov torej n+1. Brez dokaza povejmo, da so linearno neodvisni in zato tvorijo bazo prostora polinomov stopnje manjše ali enake n (\mathbb{P}_n). Takšni bazi pravimo Bernsteinova baza, polinomu, izraženemu v njej, pa pravimo Bernsteinov polinom.

Primer 2.2. Za primer si bomo ogledali Bernsteinove bazne polinome stopenj n = 0, 1, 2, 3. Pri stopnji 0 imamo konstantni polinom s funkcijskim predpisom $B_0^0(t) = 1$. Za stopnjo 1 dobimo dva polinoma s funkcijskima predpisoma $B_0^1(t) = 1 - t$ in $B_1^1(t) = t$. Funkcijski predpisi kvadratnih in kubičnih Bernsteinovih baznih polinomov pa so:

$$B_0^2(t) = (1-t)^2$$
, $B_1^2(t) = 2t(1-t)$, $B_2^2(t) = t^2$, $B_0^3(t) = (1-t)^3$, $B_1^3(t) = 3t(1-t)^2$, $B_2^2(t) = 3t^2(1-t)$, $B_3^3(t) = t^3$.

Grafe polinomov iz primera si lahko ogledamo na sliki 1.

Brez dokaza v naslednjem izreku naštejmo nekaj osnovnih lastnosti Bernsteinovih baznih polinomov.

 \Diamond

Izrek 2.3. Za Bernsteinove bazne polinome B_i^n veljajo naslednje lastnosti.

1. So nenegativni na intervalu [0, 1].

2.
$$B_i^n(0) = \delta_{i,0} \text{ in } B_i^n(1) = \delta_{i,n}, \text{ kjer je } \delta_{i,j} = \begin{cases} 1, & i = j, \\ 0, & 1 \neq j. \end{cases}$$

- 3. So simetrični, tj. $B_i^n(1-t) = B_{n-i}^n(t), t \in \mathbb{R}$.
- 4. Tvorijo razčlenitev enote, tj. $\sum_{i=0}^{n} B_i^n(t) = 1, t \in \mathbb{R}$.

Prve tri lastnosti iz izreka lahko opazimo na že prej omenjeni sliki 1. Četrto lastnost pa je moč opaziti na sliki 2, kjer so prikazani naloženi ploščinski grafikoni Bernsteinovih baznih polinomov. Količina barve pri določenem parametru $t \in [0,1]$ pove, koliko pripadajoč polinom B_i^n prispeva k razčlenitvi enote.

S sledečim izrekom podamo rekurzivno zvezo za računanje vrednosti Bernsteinovih baznih polinomov.

Slika 1: Bernsteinovi bazni polinomi stopenj n = 0, 1, 2, 3.

Izrek 2.4. Za Bernsteinove bazne polinome stopnje $n \geq 1$ velja rekurzivna zveza

$$B_i^n(t) = (1-t)B_i^{n-1}(t) + tB_{i-1}^{n-1}(t), \ t \in \mathbb{R}.$$

Izrek je enostavno dokazati s pomočjo indukcije, zato bomo dokaz izpustili. V kasnejših razdelkih bomo potrebovali tudi odvode in integrale Bernsteinovih baznih polinomov. Ker Bernsteinovi bazni polinomi stopnje n tvorijo bazo prostora \mathbb{P}_n , lahko njihove odvode izrazimo v Bernsteinovi bazi dimenzije n-1. Z nekaj računanja pridemo do sledečega rezultata.

Izrek 2.5. Za odvode Bernsteinovih baznih polinomov velja zveza

$$B_i^{n\prime} = n(B_{i-1}^{n-1} - B_i^{n-1}).$$

S pomočjo prejšnjega izreka in indukcije pa pridemo do izreka za integrale.

Izrek 2.6. Za nedoločene integrale Bernsteinovih baznih polinomov velja izraz

$$\int B_i^n(t)dt = \frac{1}{n+1} \sum_{k=1}^{n-i+1} B_{i+k}^{n+1}(t) + C, \quad C \in \mathbb{R}.$$

preveri natančneje

Za konec podrazdelka izpeljimo še formulo za zmnožek dveh Bernsteinovih polinomov.

Izrek 2.7. Naj bosta f in g Bernsteinova polinoma definirana kot $f = \sum_{i=0}^{m} \alpha_i B_i^m$ in $g = \sum_{i=0}^{n} \beta_i B_i^n$. Potem za njun zmnožek velja

$$fg = \sum_{i=0}^{m+n} \left(\sum_{j=\max(0,i-n)}^{\min(m,i)} \frac{\binom{m}{j} \binom{n}{i-j}}{\binom{m+n}{i}} \alpha_i \beta_{i-j} \right) B_i^{m+n}.$$

Slika 2: Naloženi ploščinski grafikoni Bernsteinovih baznih polinomov.

Dokaz. Naj bosta f in g Bernsteinova polinoma iz predpostavk izreka. Polinoma zmnožimo in dobimo

$$fg = \sum_{i=0}^{m} \alpha_i B_i^m \sum_{j=0}^{n} \beta_j B_j^n = \sum_{i=0}^{m+n} \sum_{l=0}^{i} \alpha_l B_l^m \beta_{i-l} B_{i-l}^n.$$

V zadnji izraz vstavimo funkcijske predpise Bernsteinovih baznih polinomov, ga poenostavimo in dobimo

$$\sum_{i=0}^{m+n} \sum_{l=0}^{i} \alpha_l \beta_{i-l} \binom{m}{l} \binom{n}{i-l} t^i (1-t)^{m+n-i}.$$

Kar lahko z izpostavitvijo binoma $\binom{m+n}{i}$ predstavimo v Bernsteinovi bazi kot

$$\sum_{i=0}^{m+n} \left(\sum_{l=0}^{i} \alpha_l \beta_{i-l} \frac{\binom{m}{l} \binom{n}{i-l}}{\binom{m+n}{i}} \right) B_i^{m+n}.$$

V primerih, ko velja l>m ali i-l>n imamo v števcu ulomka 0, kar privede do zapisa iz izreka. \Box

2.2 Večdimenzionalne oznake

Da bodo zapisi v sledečih razdelkih bolj pregledni, bomo uvedli večdimenzionalne oznake. Točke v večdimenzionalnem prostoru bomo označili z odebeljenimi črkami, na primer $\mathbf{x} = (x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1}$. Podobno bomo odebelili črke funkcij, ki v večdimenzionalni prostor slikajo, na primer $\mathbf{f} : \mathbb{R} \to \mathbb{R}^{n+1}$.

2.3 Bézierjeve krivulje

Če v Bernsteinovem polinomu skalarne koeficiente zamenjamo s točkami, dobimo predpis parametrizacije Bézierjeve krivulje.

Definicija 2.8. Bézierjeva krivulja $\mathbf{B}:[0,1]\to\mathbb{R}^d$ stopnje $n\in\mathbb{N}$ je polinomska krivulja podana s točkami $\mathbf{p}_i\in\mathbb{R}^d,\,i=0,1,\ldots,n$, in parametrizacijo

$$\mathbf{B} = \sum_{i=0}^{n} \mathbf{p}_i B_i^n(t).$$

Točkam \mathbf{p}_i pravimo kontrolne točke. Če zaporedne kontrolne točke povežemo, dobimo kontrolni poligon.

Opomba 2.9. Kjer je potrebno, lahko definicijo razširimo tudi na stopnjo n = 0. Iz zgornje parametrizacije potem sledi $\mathbf{B}(t) = \mathbf{p}_0$.

Opomba 2.10. Pri slikovnem gradivu iz dela se bomo omejili na prostor dimenzije d = 2, torej na Bézierjeve krivulje v ravnini.

Na sliki 3 si lahko ogledamo primere Bézierjevih krivulj stopenjn=1,2,3,4 s pripadajočimi kontrolnimi poligoni.

Slika 3: Bézierjeve krivulje s pripadajočimi kontrolnimi poligoni za stopnje n=1,2,3,4.

Zapišimo sedaj nekaj osnovnih lastnosti Bézierjevih krivulj.

Izrek 2.11. Bézierjeva krivulja **B** s kontrolnimi točkami \mathbf{p}_i , $i = 0, 1, \ldots, n$, ima sledeče lastnosti.

- 1. Interpolira končni točki, tj. velja $\mathbf{B}(0) = \mathbf{p}_0$ in $\mathbf{B}(1) = \mathbf{p}_n$.
- 2. Je afino invariantna, tj. za poljubno afino transformacijo A velja

$$A\left(\sum_{i=0}^{n} \mathbf{p}_{i} B_{i}^{n}(t)\right) = \sum_{i=0}^{n} A(\mathbf{p}_{i}) B_{i}^{n}(t).$$

3. Leži znotraj konveksne ovojnice svojih kontrolnih točk.

Dokazi lastnosti so enostavni, zato jih izpustimo. Preden si lastnosti ogledamo na slikah, povejmo zakaj so pomembne za CAGD sisteme. Interpolacija končnih točk uporabniku omogoča kontrolo nad tem, kje se bo krivulja začela in kje zaključila. Zaradi afine invariance lahko uporabnikove transformacije krivulje v ozadju CAGD sistema prevedemo v transformacije kontrolnih točk. Tretja lastnost pa uporabniku s kontrolnimi točkami omogoča upravljanje krivulje, kjer je krivulja zmerom v bližini svojih kontrolnih točk. Lastnosti si sedaj oglejmo na slikah. Interpolacijo končnih točk je bilo moč videti že na sliki 3. Posledice afine invariance si lahko ogledamo na sliki 4. Na sliki 5 pa si lahko ogledamo konveksni ovojnici kontrolnih točk dveh Bézierjevih krivulj. Vidimo, da krivulji ležita znotraj njih.

Slika 4: Afine transformacije Bézierjeve krivulje.

Slika 5: Konveksni ovojnici kontrolnih točk Bézierjevih krivulj.

2.4 De Casteljaujev algoritem

Stabilnost metod je v CAD in CAGD sistemih bistvene narave. Direktno računanje vrednosti Bernsteinovih polinomov preko izrazov iz definicije 2.1 pa ni stabilno ??. Da lahko točke Bézierjevih krivulj računamo stabilno, potrebujemo sledeč izrek.

Izrek 2.12. Označimo z $\mathbf{B}_{[\mathbf{p}_0,\mathbf{p}_1,...,\mathbf{p}_n]}$ Bézierjevo krivuljo s kontrolnimi točkami $\mathbf{p}_0,\mathbf{p}_1,\ldots,\mathbf{p}_n$. Potem za poljubno realno število t in naravno število n velja rekurzivna zveza

$$\boldsymbol{B}(t)_{[\mathbf{p}_0,\mathbf{p}_1,\dots,\mathbf{p}_n]} = (1-t)\boldsymbol{B}(t)_{[\mathbf{p}_0,\mathbf{p}_1,\dots,\mathbf{p}_{n-1}]} + t\boldsymbol{B}(t)_{[\mathbf{p}_1,\mathbf{p}_2,\dots,\mathbf{p}_n]}.$$

Izrek s pomočjo indukcije tudi dokažimo.

Dokaz. Za n = 1 zveza drži, saj je

$$\mathbf{B}(t)_{[\mathbf{p}_0,\mathbf{p}_1]} = (1-t)\mathbf{p}_2 + t\mathbf{p}_1 = (1-t)\mathbf{B}(t)_{[\mathbf{p}_0]} + t\mathbf{B}(t)_{[\mathbf{p}_1]}.$$

Indukcijski korak pa dokažemo tako, da v desni del rekurzivne zveze iz izreka vstavimo parametrizaciji Bézierjevih krivulj in dobimo

$$(1-t)\mathbf{B}(t)_{[\mathbf{p}_0,\mathbf{p}_1,\dots,\mathbf{p}_{n-1}]} + t\mathbf{B}(t)_{[\mathbf{p}_1,\mathbf{p}_2,\dots,\mathbf{p}_n]} = (1-t)\sum_{i=0}^{n-1}\mathbf{p}_iB_i^{n-1}(t) + t\sum_{i=0}^{n-1}\mathbf{p}_{i+1}B_i^{n-1}(t).$$

Nato zamaknemo indeks desne vsote in skupne točke postavimo pod eno vsoto. Od tod sledi

$$(1-t)\sum_{i=0}^{n-1}\mathbf{p}_{i}B_{i}^{n-1}(t) + t\sum_{i=1}^{n}\mathbf{p}_{i}B_{i-1}^{n-1}(t)$$

$$= \mathbf{p}_{0}(1-t)B_{0}^{n-1}(t) + \sum_{i=1}^{n-1}\left((1-t)B_{i}^{n-1}(t) + tB_{i-1}^{n-1}(t)\right)\mathbf{p}_{i} + \mathbf{p}_{n}B_{n-1}^{n-1}(t).$$

Uporabimo še rekurzivno zvezo Bernsteinovih baznih polinomov iz izreka 2.4, da dobimo

$$\mathbf{p}_0 B_0^n(t) + \sum_{i=1}^{n-1} \mathbf{p}_i B_i^n(t) + \mathbf{p}_n B_n^n(t) = \sum_{i=0}^n \mathbf{p}_i B_i^n(t).$$

Na sliki 6 lahko vidimo, kako lahko točke Bézierjeve krivulje $\mathbf{B}_{[\mathbf{p}_0,\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3,\mathbf{p}_4]}$ računamo s pomočjo točk Bézierjevih krivulj $\mathbf{B}_{[\mathbf{p}_0,\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3]}$ in $\mathbf{B}_{[\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3,\mathbf{p}_4]}$.

Označimo sedaj $\mathbf{p}_i^r(t) = \mathbf{B}(t)_{[\mathbf{p}_i,\mathbf{p}_{i+1},\dots,\mathbf{p}_{i+r}]}$. Velja torej $\mathbf{p}_i^0(t) = \mathbf{p}_i$ in $\mathbf{p}_0^n(t) = \mathbf{B}(t)_{[\mathbf{p}_0,\mathbf{p}_1,\dots,\mathbf{p}_n]}$. Iz izreka 2.12 sledi, da lahko točke Bézierjeve krivulje $\mathbf{B}(t)_{[\mathbf{p}_0,\mathbf{p}_1,\dots,\mathbf{p}_n]}$ računamo s pomočjo de Casteljaujeve sheme, ki jo lahko vidimo na sliki 2.4. V shemi diagonalne puščice ponazarjajo množenje točke z vrednostjo t, vertikalne pa z vrednostjo 1-t. V vrhu puščic dobljene vrednosti seštejemo.

Slika 7: De Casteljaujeva shema.

Slika 6: Izračun točke Bézierjeve krivulje.

Izračun točke Bézierjeve krivulje pri poljubnem parametru t lahko sedaj podamo v obliki de Casteljaujevega algoritma 1.

```
Algoritem 1 De Casteljaujev algoritem
```

```
\mathbf{p} \leftarrow \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n
t \leftarrow t

for i = 0, 1, \dots n do
\mathbf{p}_i^0(t) = \mathbf{p}_i
end for

for r = 1, 2, \dots n do
\mathbf{for} \ i = 0, 1, \dots, n - r do
\mathbf{p}_i^r(t) = (1 - t)\mathbf{p}_i^{r-1}(t) + t\mathbf{p}_{i+1}^{r-1}(t)
end for
end for
end for
return \mathbf{p}_0^n(t)
```

De Casteljaujev algoritem ima tudi geometrijski pomen. Pri stopnji n=1 se prevede na interpolacijo dveh točk, kar lahko vidimo na sliki 8. Pri višjih stopnjah n pa algoritem predstavlja zaporedno interpolacijo točk, saj v njem za vsak nivo $r=1,2,\ldots,n$ interpoliramo sosednje točke prejšnjega nivoja. Slednje lahko vidimo na slikama 9 in 10.

2.5 Subdivizija

V CAGD in CAD sistemih se mnogokrat zgodi, da uporabnik želi ohraniti le en del Bézierjeve krivulje. Naj bo to tisti del krivulje, ki ga dobimo tako, da za prvotno krivuljo parameter t omejimo na interval $[0, t_0]$, za neko pozitivno realno število $t_0 < 1$. Ta del krivulje označimo z B_{t_0} . Izkaže se, da lahko krivuljo B_{t_0} podamo kot Bézierjevo krivuljo s kontrolnimi točkami $\mathbf{p}_0^i(t_0)$ za $i = 0, 1, \ldots, n$, kjer točke $\mathbf{p}_0^i(t_0)$

Slika 8: De Casteljaujev algoritem za n = 1.

Slika 9: De Casteljaujev algoritem za n = 2.

dobimo iz de Casteljaujeve sheme pri $t=t_0$. Podobno se izkaže tudi to, da lahko preostali del krivulje, B_{t_0+} , podamo kot Bézierjevo krivuljo s kontrolnimi točkami $\mathbf{p}_i^i(t_0)$, $i=0,1,\ldots,n$. Procesu deljenja krivulje na dva dela pravimo subdivizija. Radovedni bralci lahko dokaz trditev najdejo v delu ??. Primer si lahko ogledamo na sliki 11.

Če izberemo sedaj $t_0 = \frac{1}{2}$ in krivuljo subdiviziramo, dobimo dve krivulji. Če subdivizijo nato na dobljenih krivuljah ponavljamo, dobimo po k korakih 2^k krivulj. Na sliki 12 si lahko ogledamo postopek za prve tri korake. Opazimo, da so kontrolni poligoni dobljenih krivulj zmerom bližje krivulji.

Slika 10: De Casteljaujev algoritem za n = 3.

Slika 11: De Casteljaujeva shema pri $t=t_0$ razdeli krivuljo na dva dela, modrega, B_{t_0-} , in oranžnega, B_{t_0+} .

2.6 Ekstrapolacija

Ker so Bernsteinovi bazni polinomi definirani za vsa realna števila t, lahko Bézierjeve krivulje rišemo tudi izven domene [0,1]. Recimo, da želimo neko Bézierjevo krivuljo risati na domeni $[0,t_0]$, kjer je $t_0 > 1$. Bézierjevo krivuljo na domeni $[0,t_0]$ lahko predstavimo kot Bézierjevo krivuljo na domeni [0,1]. Pri tem kontrolne točke krivulje preberemo iz de Casteljaujeve sheme, kakor smo to storili za točke krivulje B_{t_0-} v prejšnjem razdelku, krivulja B_{t_0+} pa predstavlja ekstrapoliran del krivulje. Na sliki 13 lahko na prvem grafu vidimo risanje krivulje izven intervala [0,1], na drugem pa ekstrapolirano krivuljo.

2.7 Višanje stopnje

Nekateri algoritmi v CAD/CAGD sistemih za vhod potrebujejo dve Bézierjevi krivulji iste stopnje. Recimo, da imamo Bézierjevo krivuljo \mathbf{B} stopnje n, ki jo želimo predstaviti kot Bézierjevo krivuljo stopnje n+1. Upoštevajoč 1-t+t=1, lahko

Slika 12: Ponavljanje subdivizije.

Slika 13: Ekstrapolacija Bézierjeve krivulje.

parametrizacijo krivulje B zapišemo tudi kot

$$\mathbf{B}(t) = (1-t)\mathbf{B}(t) + t\mathbf{B}(t) = \sum_{i=0}^{n} \mathbf{p}_{i}(1-t)B_{i}^{n}(t) + \sum_{i=0}^{n} \mathbf{p}_{i}tB_{i}^{n}(t).$$
 (2.1)

Če sedaj zvezi za Bernsteinove bazne polinome

$$(1-t)B_i^n(t) = \frac{n+1-i}{n+1} \binom{n+1}{i} t^i (1-t)^{n+1-i} = \frac{n+1-i}{n+1} B_i^{n+1}(t),$$

$$tB_i^n(t) = \frac{i+1}{n+1} \frac{(n+1)!}{(n-i)!(i+1)!} t^{i+1} (1-t)^{n+1-i-1} = \frac{i+1}{n+1} B_{n+1}^{n+1}(t),$$

vstavimo v izraz 2.1, dobimo

$$\mathbf{B}(t) = \sum_{i=0}^{n} \mathbf{p}_{i} \frac{n+1-i}{n+1} B_{i}^{n+1}(t) + \sum_{i=0}^{n} \mathbf{p}_{i} \frac{i+1}{n+1} B_{i+1}^{n+1}(t)$$
$$= \sum_{i=0}^{n} \mathbf{p}_{i} \frac{n+1-i}{n+1} B_{i}^{n+1}(t) + \sum_{i=1}^{n+1} \mathbf{p}_{i-1} \frac{i}{n+1} B_{i}^{n+1}(t).$$

Od tod sledi, da lahko krivuljo ${\bf B}$ predstavimo kot Bézierjevo krivuljo stopnje n+1 s kontrolnimi točkami

$$c_0 = \mathbf{p}_0, \quad c_i = \mathbf{p}_i \frac{n+1-i}{n+1} + \mathbf{p}_{i-1} \frac{i}{n+1}, \quad c_{n+1} = \mathbf{p}_n.$$

Oglejmo si kako višanje stopnje izgleda na neki krivulji. Na sliki 14 je na prvem grafu narisana Bézierjeva krivulja stopnje 3. Na drugem grafu, smo stopnjo krivulje zvišali za 1, na tretjem in četrtem grafu pa smo naredili 10 oziroma 20 višanj stopnje začetne krivulje. Krivulja je na vseh grafih enaka, imamo le več kontrolnih točk. Opaziti je tudi možno, da so kontrolne točke z vsakim višanjem stopnje bližje začetni krivulji, kontrolni poligon pa se zmerom bolj prilega začetni krivulji.

Slika 14: Višanje stopnje Bézierjeve krivulje.

2.8 Odvodi Bézierjeve krivulje

V kasnejših razdelkih bomo potrebovali odvode Bézierjevih krivulj, zato jih na tem mestu izpeljimo. Z upoštevanjem izreka o odvodu Bernsteinovih baznih polinomov 2.5, dobimo naslednje

$$\mathbf{B}'(t) = \left(\sum_{i=0}^{n} \mathbf{p}_{i} B_{i}^{n}(t)\right)' = n \sum_{i=0}^{n} \mathbf{p}_{i} \left(B_{i-1}^{n-1}(t) - B_{i}^{n-1}(t)\right)$$

$$= n \left(\sum_{i=1}^{n} \mathbf{p}_{i} B_{i-1}^{n-1}(t) - \sum_{i=0}^{n-1} \mathbf{p}_{i} B_{i}^{n-1}(t)\right) = n \sum_{i=0}^{n-1} (\mathbf{p}_{i+1} - \mathbf{p}_{i}) B_{i}^{n-1}(t).$$

Za krajše zapise višjih odvodov Bézierjeve krivulje, bomo uvedli operator prema diferenca, ki ga označimo z Δ . Operator deluje na zaporedni točki \mathbf{p}_i , definiramo pa ga rekurzivno kot

$$\Delta^0 \mathbf{p}_i = \mathbf{p}_i, \quad \Delta \mathbf{p}_i = \mathbf{p}_{i+1} - \mathbf{p}_i, \quad \Delta^k \mathbf{p}_i = \Delta^{k-1} \mathbf{p}_{i+1} - \Delta^{k-1} \mathbf{p}_i.$$

Za naravno število k lahko v zaključeni obliki podamo ekvivalenten zapis

$$\Delta^k \mathbf{p}_i = \sum_{j=0}^k \binom{k}{j} (-1)^{k-j} \mathbf{p}_{i+j}.$$

Opomba 2.13. Iz definicije je očitno, da je operator Δ^k definiran le na kontrolnih točkah z indeksi manjšimi ali enakimi n-k.

Odvode Bézierjeve krivulje lahko sedaj predstavimo s pomočjo preme diference.

Izrek 2.14. Naj bo B Bézierjeva krivulja s kontrolnimi točkami \mathbf{p}_i , $i=0,1,\ldots,n$. Za njene odvode velja

$$\mathbf{B}^{(k)}(t) = \frac{n!}{(n-k)!} \sum_{i=0}^{n-k} \Delta^k \mathbf{p}_i B_i^{n-k}(t), \quad k = 0, 1, \dots, n.$$

Izrek je enostavno dokazati s pomočjo indukcije, zato bomo dokaz izpustili.

3 Racionalne Bézierjeve krivulje

Vseh krivulj ne moremo opisati s polinomskimi Bézierjevimi krivuljami. Med njimi so tudi takšne, ki so za CAGD sisteme zelo pomembne, na primer izseki krožnice. Za opis takšnih krivulj lahko posežemo po racionalnih Bézierjevih krivuljah. Racionalno Bézierjevo krivuljo stopnje n v \mathbb{R}^d dobimo tako, da Bézierjevo krivuljo stopnje n v \mathbb{R}^{d+1} projiciramo na hiperravnino w=1. Točke iz \mathbb{R}^{d+1} pri tem definiramo kot (w,x_1,\ldots,x_n) , projekcijo pa s predpisom $(w,\mathbf{x})\to(1,\frac{\mathbf{x}}{w})$. Takšna izpeljava privede do naslednje definicije.

Definicija 3.1. Racionalna Bézierjeva krivulja stopnje $n \in \mathbb{N}$ je racionalna krivulja podana s kontrolnimi točkami $\mathbf{p}_i \in \mathbb{R}^d$ in $utežmi \ w_i \in \mathbb{R}, \ i = 0, 1, \dots, n$, ter parametrizacijo $\mathbf{R} : [0, 1] \to \mathbb{R}^d$ določeno s predpisom

$$\mathbf{R}(t) = \frac{\sum_{i=0}^{n} w_i \mathbf{p}_i B_i^n(t)}{\sum_{i=0}^{n} w_i B_i^n(t)}.$$

Uteži so prosti parametri, ki jih lahko uporabimo pri oblikovanju. Kadar so vse uteži enake, je racionalna Bézierjeva krivulja enaka polinomski Bézierjevi krivulji z istimi kontrolnimi točkami. Da bi se izognili težavam pri deljenju z 0 ponavadi privzamemo, da so vse uteži pozitivne. Vpliv uteži si poglejmo na sliki 15. Utež spreminjamo le pri kontrolni točki \mathbf{p}_1 , vse ostale uteži puščamo enake 1. Na grafu (a) je utež nastavljena na število 1, krivulja na sliki je zato polinomska Bézierjeva krivulja. Na grafoma (b) in (c) lahko vidimo, da se z višanjem uteži, krivulja bliža točki \mathbf{p}_1 . Na grafu (c) pa lahko vidimo, da se z nižanjem uteži, krivulja od točke \mathbf{p}_1 oddaljuje.

Slika 15: Vpliv uteži na racionalno Bézierjevo krivuljo.

Iz zapisa parametrizacije v definiciji 3.1 lahko hitro vidimo, da množenje vseh uteži s poljubnim neničelnim številom krivulje ne spremeni. Tako lahko brez izgube

splošnosti poljubno utež fiksiramo na 1. Naslednji izrek pa pove, da lahko to storimo za dve uteži.

Izrek 3.2. Racionalno Bézierjevo krivuljo s pozitivnimi utežmi w_i in parametrizacijo \mathbf{R} , lahko reparametriziramo v parametrizacijo $\tilde{\mathbf{R}}$ s pozitivnimi utežmi \tilde{w}_i tako, da velja $\tilde{w}_0 = \tilde{w}_n = 1$.

Dokaz izreka bo konstrukcijske narave. Našli bomo torej uteži \tilde{w}_i , katere lahko zamenjamo z utežmi w_i tako, da ohranimo isto krivuljo.

Dokaz. Naj bo ${\bf R}$ racionalna Bézierjeva funkcija s poljubnimi pozitivnimi utežmi. Uporabimo reparametrizacijsko funkcijo $\varphi(t):[0,1]\to[0,1]$ s predpisom $\varphi(t)=\frac{t}{\rho(1-t)+t}$, kjer je ρ pozitivno realno število. Če reparametrizacijsko funkcijo vstavimo v i-ti Bernsteinov bazni polinom dobimo naslednje

$$\begin{split} B_{i}^{n}(\varphi(t)) &= \binom{n}{i} \left(\frac{t}{\rho(1-t)+t}\right)^{i} \left(1 - \frac{t}{\rho(1-t)+t}\right)^{n-i} \\ &= \binom{n}{i} \left(\frac{t}{\rho(1-t)+t}\right)^{i} \left(\frac{\rho(1-t)}{\rho(1-t)+t}\right)^{n-i} \\ &= \binom{n}{i} \frac{\rho^{n-1}t^{i}(1-t)^{n-i}}{(\rho(1-t)+t)^{n}} = \frac{\rho^{n-1}}{(\rho(1-t)+t)^{n}} B_{i}^{n}(t). \end{split}$$

Reparametrizirane Bernsteinove bazne polinome sedaj vstavimo v parametrizacijo racionalne Bézierjeve krivulje, da dobimo

$$\tilde{\mathbf{R}}(t) = \mathbf{R}(\varphi(t)) = \frac{\sum_{i=0}^{n} \rho^{n-i} w_i \mathbf{p}_i B_i^n(t)}{\sum_{i=0}^{n} \rho^{n-i} w_i B_i^n(t)}.$$

Nove uteži izrazimo s starimi $\hat{w}_i = \rho^{n-i}w_i$. Želimo, da bi veljalo $\hat{w}_0 = \hat{w}_n$, zato nastavimo $\rho = \sqrt[n]{\frac{w_n}{w_0}}$. Ker velja $\hat{w}_n = w_n$ lahko uteži \hat{w}_i delimo z utežjo w_n , da dobimo željene uteži

$$\tilde{w}_i = \frac{1}{w_n} \hat{w}_i = \frac{w_i}{\sqrt[n]{w_n^i w_0^{n-i}}}.$$

Posledica 3.3. Z uvedbo racionalnih Bézierjevih krivulj smo dobili le n-1 dodatnih prostih parametrov, glede na polinomske Bézierjeve krivulje z istim številom kontrolnih točk.

Opomba 3.4. Če velja $w_0 = w_n = 1$ pravimo, da je racionalna Bézierjeva krivulja predstavljena v *standardni formi*.

Brez dokaza povejmo, da lastnosti Bézierjevih krivulj, ki smo jih podali v izreku 2.11, veljajo tudi za racionalne Bézierjeve krivulje s pozitivnimi utežmi. Subdiviziranje, ekstrapoliranje in višanje stopnje polinomske Bézierjeve krivulje lahko na racionalne Bézierjeve krivulje stopnje d razširimo tako, da krivuljo zapišemo kot polinomsko Bézierjevo krivuljo stopnje d+1 s kontrolnimi točkami $(w_i, w_i \mathbf{p}_i) \in \mathbb{R}^{d+1}$. Polinomsko krivuljo nato subdiviziramo/ekstrapoliramo/ji zvišamo stopnjo in iz dobljenih kontrolnih točk $(\tilde{w}_i, \tilde{w}_i \tilde{\mathbf{p}}_i) \in \mathbb{R}^{d+1}$ preberemo nove kontrolne točke $\tilde{\mathbf{p}}_i \in \mathbb{R}^d$ in uteži $\tilde{w}_i \in \mathbb{R}$. Pri takšnem procesu samo ekstrapolacija ne ohranja pozitivnosti uteži. Primere si lahko ogledamo na sliki 16.

Slika 16: Subdivizija, ekstrapolacija ter višanje stopnje racionalne Bézierjeve krivulje.

3.1 De Casteljaujev algoritem za racionalne Bézierjeve krivulje

Točke racionalnih Bézierjevih krivulj dimenzije d bi lahko računali s pomočjo de Casteljaujevega algoritma za polinomske Bézierjeve krivulje stopnje d+1, na podoben način kot smo v prejšnjem razdelku razširili subdivizijo, ekstrapolacijo in višanje stopnje krivulje. Takšno računanje točk se izkaže za nestabilno ??, zato na tem mestu podamo razširitev de Casteljaujevega algoritma za racionalne Bézierjeve krivulje 2, ki točke racionalne Bézierjeve krivulje računa stabilno ??.

Algoritem 2 Racionalni de Casteljaujev algoritem

```
\begin{aligned} \mathbf{p} &\leftarrow \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n \\ w &\leftarrow w_0, w_1, \dots, w_n \\ \text{for } i = 0, 1, \dots n \text{ do} \\ \mathbf{p}_i^0(t) &= \mathbf{p}_i \\ w_i^0(t) &= w_i \\ \text{end for} \\ \text{for } r = 1, 2, \dots n \text{ do} \\ \text{for } i = 0, 1, \dots, n - r \text{ do} \\ w_i^r(t) &= (1 - t) w_i^{r-1}(t) + t w_{i+1}^{r-1}(t) \\ \mathbf{p}_i^r(t) &= (1 - t) \frac{w_i^{r-1}(t)}{w_i^r(t)} \mathbf{p}_i^{r-1}(t) + t \frac{w_{i+1}^{r-1}(t)}{w_i^r(t)} \mathbf{p}_{i+1}^{r-1}(t) \\ \text{end for} \\ \text{end for} \\ \text{return } \mathbf{p}_0^n(t) \end{aligned}
```

Brez dokaza z naslednjim izrekom podajmo pravilnost algoritma 2.

Izrek 3.5. Za vmesne točke $\mathbf{p}_i^r(t)$ iz algoritma 2 in poljubno realno število t velja izraz

$$\mathbf{p}_{i}^{r}(t) = \frac{\sum_{j=0}^{r} w_{i+j} \mathbf{p}_{i+j} B_{j}^{r}(t)}{\sum_{i=0}^{n} w_{i+j} B_{j}^{r}(t)}.$$

3.2 Farinove točke

Uporabniku CAGD sistema želimo nuditi čim bolj naraven način kontroliranja uteži racionalne Bézierjeve krivulje. V ta namen lahko uteži predstavimo s Farinovimi točkami. Farinove točke ležijo na daljicah kontrolnega poligona, kjer i-ta Farinova točka \mathbf{f}_i deli i-to daljico kontrolnega poligona v razmerju $w_{i+1}: w_i$. Slednje lahko zapišemo kot

$$\frac{|\mathbf{f}_i - \mathbf{p}_i|}{|\mathbf{f}_i - \mathbf{p}_{i+1}|} = \frac{w_{i+1}}{w_i}.$$

S kontrolnimi točkami in utežmi lahko Farinove točke izrazimo takole

$$\mathbf{f}_i \coloneqq \frac{w_i}{w_i + w_{i+1}} \mathbf{p}_i + \frac{w_{i+1}}{w_i + w_{i+1}} \mathbf{p}_{i+1}.$$

Da bi uporabnik lahko s Farinovimi točkami kontroliral uteži, pa želimo obratno – s Farinovimi točkami želimo izraziti uteži. Brez izgube splošnosti lahko za prvo utež izberemo $w_0=1$. Ostale točke lahko nato rekurzivno izračunamo s pomočjo naslednjega izraza

$$w_{i+1} = w_i \frac{|\mathbf{f}_i - \mathbf{p}_i|}{|\mathbf{f}_i - \mathbf{p}_{i+1}|}.$$

Po želji lahko uteži tudi standardiziramo s pomočjo formule

$$\tilde{w}_i = \frac{w_i}{\sqrt[n]{w_n^i}},$$

ki sledi iz dokaza izreka 3.2.

Na sliki 17 si lahko ogledamo delovanje Farinovih točk. Uteži na sliki niso standardizirane zato, da lahko bolje vidimo razmerja med njimi. Na grafu (a) Farinove točke ležijo na sredini pripadajočih daljic. Posledično so vsa razmerja $|\mathbf{p}_i - \mathbf{f}_i| : |\mathbf{p}_{i+1} - \mathbf{f}_i|$ enaka in vse uteži enake 1. Na grafu (b) lahko vidimo, da se s premikom prve Farinove točke bližje k točki \mathbf{p}_0 , k njej približa tudi krivulja. Utež w_1 , ki predstavlja razmerje $|\mathbf{p}_0 - \mathbf{f}_0| : |\mathbf{p}_1 - \mathbf{f}_0|$, je zato manjša kot 1. Na grafu (c) lahko vidimo premik Farinove točke bližje k točki \mathbf{p}_1 . Krivulja se točki približa, utež w_1 pa se poveča na več kot 1. Ker na grafoma (b) in (c) druga in tretja Farinova točka ležita na sredini svojih daljic, so uteži w_1, w_2 in w_3 enake. Na grafoma (d) in (e) lahko vidimo, kako se krivulja in uteži obnašajo ob premiku druge Farinove točke. Na grafoma (f) ter (g) pa lahko vidimo obnašanje krivulje, ko premaknemo prvo ter tretjo Farinovo točko hkrati gor oziroma dol. Poglejmo še, kaj se zgodi, če vse tri točke premaknemo pomaknemo tako, da so razmerja na vseh daljicah enaka. Na levem grafu slike 18 lahko vidimo, da krivulja izgleda kakor začetna. Če uteži standardiziramo, kar smo storili na desnem grafu, vidimo, da je temu res tako. Da bi preprečili takšno izbiro Farinovih točk, lahko po vsakem premiku Farinove točke uteži standardiziramo, ter ponovno izračunamo Farinove točke.

Slika 17: Kontroliranje krivulje s Farinovimi točkami.

Slika 18: Krivulja z enakimi premiki vseh Farinovih točk, pred in po standardizaciji.

4 Zlepki Bézierjevih krivulj

Če si ponovno ogledamo de Casteljaujev algoritem 1, lahko hitro opazimo, da je časovna kompleksnost algoritma $O(n^2)$. Računanje točk kompleksnejše Bézierjeve krivulje, z veliko kontrolnimi točkami, je zato zamudno. Da bi ohranili uporabniku naravno kontrolo krivulj ter hiter izračun točk, posežemo po zlepkih Bézierjevih krivulj.

Definicija 4.1. Zlepek krivulj $\mathbf{S}:[a,b]\to\mathbb{R}^d$ nad zaporedjem stičnih točk

$$a = u_0 < u_1 < \dots < u_{m-1} < u_m = b$$

je parametrično podana krivulja stopnje $n \in \mathbb{N}$, katere komponente so odsekoma polinomske funkcije $\mathbf{S}|_{[u_{l-1},u_l]} \in \mathbb{P}_n^d$.

Želimo si, da bi zlepki tvorili gladko neprekinjeno krivuljo, saj so takšne krivulje v CAGD sistemih najbolj uporabne. Krivulja je po definiciji na posameznih odsekih polinomska in zato tudi gladka, problem je le v stičnih točkah. Naj bo

$$\mathbf{S}(u) = \begin{cases} \mathbf{S}_{1}(u) = \sum_{i=0}^{n} \mathbf{p}_{i}^{(1)} B_{i}^{n} \left(\frac{u - u_{0}}{\Delta u_{0}} \right), & u \in [u_{0}, u_{1}), \\ \mathbf{S}_{2}(u) = \sum_{i=0}^{n} \mathbf{p}_{i}^{(2)} B_{i}^{n} \left(\frac{u - u_{1}}{\Delta u_{1}} \right), & u \in [u_{1}, u_{2}], \end{cases}$$
(4.1)

zlepek dveh Bézierjevih krivulj. Da bo zlepek zvezen, mora v stični točki u_1 veljati $\mathbf{S}_1(u_1) = \mathbf{S}_2(u_1)$ oziroma

$$\mathbf{p}_n^{(1)} = \mathbf{p}_0^{(2)}.\tag{4.2}$$

Takšen zlepek, si lahko ogledamo na sliki 19.

Slika 19: C^0 zlepek dveh Bézierjevih krivulj.

Da bo zlepek vsaj zvezno odvedljiv, mora veljati (4.2), morata pa v stični točki sovpadati tudi odvoda $\mathbf{S_1}'(u_1) = \mathbf{S_2}'(u_1)$. Iz izreka 2.14 sledi, da mora zato veljati

$$\frac{\mathbf{p}_n^{(1)} - \mathbf{p}_{n-1}^{(1)}}{\Delta u_0} = \frac{\mathbf{p}_1^{(2)} - \mathbf{p}_0^{(2)}}{\Delta u_1}.$$
(4.3)

Upoštevajoč (4.2) lahko enačbo zapišemo tudi kot

$$\mathbf{p}_{n}^{(1)} = \mathbf{p}_{0}^{(2)} = \frac{\Delta u_{0} \mathbf{p}_{1}^{(2)}}{\Delta u_{0} + \Delta u_{1}} + \frac{\Delta u_{1} \mathbf{p}_{n-1}^{(1)}}{\Delta u_{0} + \Delta u_{1}},$$

od koder je moč prebrati geometrijski pomen pogoja. Skupna točka $\mathbf{p}_n^{(1)} = \mathbf{p}_0^{(2)}$ mora namreč deliti daljico $\mathbf{p}_{n-1}^{(1)}\mathbf{p}_1^{(2)}$ v razmerju $\frac{\Delta u_0}{\Delta u_1}$. Primer takšnega zlepka si lahko ogledamo na sliki 20. Podobno lahko iz izreka 2.14 preberemo pogoje gladkosti za

Slika 20: C^1 zlepek dveh Bézierjevih krivulj, kjer je $\Delta u_0 = \Delta u_1$.

$$C^{r}([a,b]),$$

$$\frac{1}{(\Delta u_{0})^{k}} \Delta^{k} \mathbf{p}_{n-k}^{(1)} = \frac{1}{(\Delta u_{1})^{k}} \Delta^{k} \mathbf{p}_{0}^{(2)}, \quad k = 0, \dots, r.$$

Primer \mathbb{C}^2 oziroma \mathbb{C}^3 zlepka si lahko ogledamo na sliki 21 oziroma sliki 22.

Slika 21: C^2 zlepek dveh Bézierjevih krivulj, kjer je $\Delta u_0 = \Delta u_1$.

4.1 Geometrijska zveznost

Da bi zlepki bili gladki ne potrebujemo zvezne odvedljivosti v analitičnem smislu, dovolj je zvezna odvedljivost v geometrijskem smislu.

Slika 22: C^3 zlepek dveh Bézierjevih krivulj, kjer je $\Delta u_0 = \Delta u_1$.

Definicija 4.2. Zlepek krivulj

$$\mathbf{s}(u) = \begin{cases} \mathbf{s_1}(u), & u \in [u_0, u_1), \\ \mathbf{s_2}(u), & u \in [u_1, u_2], \end{cases}$$

je k-krat geometrijsko zvezno odvedljiv, G^k , če v okolici stične točke u_1 obstaja takšna regularna reparametrizacijska funkcija φ , da je $\varphi(u_1) = u_1$ in zlepek krivulj

$$\mathbf{s}(u) = \begin{cases} \mathbf{s_1}(u), & u \in [u_0, u_1), \\ \mathbf{s_2}(\varphi(u)), & u \in [u_1, u_2], \end{cases}$$

k-krat zvezno odvedljiv.

Izpeljimo sedaj pogoje gladkosti za G^k , k=0,1,2. Za G^0 mora veljati

$$\mathbf{s_1}(u_1) = \mathbf{s_2}(\varphi(u_1))$$

kar je enak pogoj, kakor za C^0 . Za G^1 mora veljati prejšnje in

$$\mathbf{s}_{\mathbf{1}}'(u_1) = \mathbf{s}_{\mathbf{2}}'(\varphi(u_1))\varphi'(u_1) = \mathbf{s}_{\mathbf{2}}'(u_1)\varphi'(u_1).$$

Za G^2 pa mora veljati prejšnje ter

$$\mathbf{s_1''}(u_1) = \mathbf{s_2''}(\varphi(u_1))(\varphi'(u_1))^2 + \mathbf{s_2'}(\varphi(u_1))\varphi''(u_1) = \mathbf{s_2''}(u_1)(\varphi'(u_1))^2 + \mathbf{s_2'}(u_1))\varphi''(u_1).$$

Če sedaj označimo odvode reparametrizacijske funkcije v točki u_1 z $\beta_i=\varphi^{(i)}(u_1)$ lahko pogoje za G^2 zveznost izrazimo s povezovalno matriko

$$\begin{bmatrix} \mathbf{s}_{1}'(u_{1}) \\ \mathbf{s}_{1}''(u_{1}) \end{bmatrix} = \begin{bmatrix} \beta_{1} & 0 \\ \beta_{2} & \beta_{1}^{2} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{2}'(u_{1}) \\ \mathbf{s}_{2}''(u_{1}) \end{bmatrix}.$$

Lahko pa naredimo tudi obratno - pri izbranih β_i lahko konstruiramo reparametrizacijsko funkcijo, ki ustreza pogojem $\varphi' > 0$, $\varphi'(u_1) = \beta_1$ in $\varphi'(u_1) = \beta_2$. Vzamemo lahko namreč kar Taylorjev polinom

$$\varphi(u) = u_1 + \beta_1(u - u_1) + \frac{1}{2}\beta_2(u - u_1)^2.$$

Oglejmo si sedaj, kako pogoji za geometrijsko zveznost vplivajo na zlepke Bézierjevih krivulj. Naj bosta s_1 in s_2 Bézierjevi krivulji. **iz prejšnjega zlepka?** Za G^1 mora veljati $\mathbf{s}'_1(u_1) = \beta_1 \mathbf{s}'_2(u_1)$, iz česar sledi

$$\frac{\mathbf{p}_n^{(1)} - \mathbf{p}_{n-1}^{(1)}}{\Delta u_0} = \beta_1 \frac{\mathbf{p}_1^{(2)} - \mathbf{p}_0^{(2)}}{\Delta u_1}.$$

Če označimo sedaj $\alpha_1=\frac{\beta_1\Delta u_0}{\Delta u_1}$ pa lahko pogoj zapišemo kot

$$\mathbf{p}_n^{(1)} - \mathbf{p}_{n-1}^{(1)} = \alpha_1(\mathbf{p}_1^{(2)} - \mathbf{p}_0^{(2)}). \tag{4.4}$$

Glede na C^1 smo torej pridobili prosti parameter, ki ga lahko v CAGD sistemih uporabimo za dodatno kontrolo nad krivuljo. G^1 zlepek in vpliv izbora β_1 si lahko ogledamo na sliki 23.

Slika 23: Vpliv izbora β_1 pri G^1 zlepku.

4.2 Konstrukcija zlepkov Bezierjevih krivulj

V tem podrazdelku bomo podali nekaj algoritmov za konstrukcijo zlepkov Bezierjevih krivulj.

4.2.1 Enostranska konstrukcija

Enačbe iz prejšnjega razdelka bi lahko izpeljali tudi drugače. Da bi zlepek (4.1) bil C^{∞} , bi morali krivulji \mathbf{S}_1 in \mathbf{S}_2 biti del iste Bezierjeve krivulje. Krivuljo \mathbf{S}_2 je tako moč dobiti z ekstrapolacijo krivulje \mathbf{S}_1 . Da je zlepek C^r zvezen je dovolj, da krivulja \mathbf{S}_2 ustreza ekstrapolirani krivulji v prvih r+1 kontrolnih točkah. C^r zlepek lahko konstruiramo tako, da začnemo z Bezierjevo krivuljo, ki jo ekstrapoliramo. Ekstrapoliranemu delu nato fiksiramo prvih r+1 točk, ostale pa izberemo poljubno. Postopek je podrobneje zapisan v algoritmu 3, kjer funkcija decasteljau_shema predstavlja funkcijo, ki vrača De Casteljaujevo shemo 2.4.

Algoritem 3 Enostranska konstrukcija C^r zlepka stopnje n

```
\begin{aligned} \mathbf{p} &\leftarrow \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_m \\ u &\leftarrow u_0, u_1, \dots, u_n \end{aligned} st_krivulj = \frac{m-n}{n-r} for i = 0, 1, \dots n do \mathbf{p}_i^{(1)} = \mathbf{p}_i end for for j = 2, 3 \dots st_krivulj do t_0 = \frac{\Delta u_j + \Delta u_{j+1}}{\Delta u_j} e = decasteljau_shema(\mathbf{p}^{(j-1)}, t_0) \{\mathbf{p}_i^{(j)}\}_{i=0}^r = \{\mathbf{e}_j^{(\mathbf{n})}\}_{j=n}^{n-r} for k = 0, 1, \dots (n-r) do \mathbf{p}_{n-r+k}^{(j)} = \mathbf{p}_{j(n-r)+k} end for end for
```

Zlepki generirani s takšnim algoritmom niso uporabniku prijazni, saj kontrolne točke različno močno vplivajo na obliko krivulje. Za primer si na sliki 24 oglejmo obnašanje tako generiranega kvadratnega C^1 zlepka.

Slika 24: Obnašanje enostranskega kvadratnega C^1 zlepka.

4.2.2 Simetrična konstrukcija

Uporabniku mnogo bolj prijazni so algoritmi simetričnih konstrukcij. Brez izpeljave podajmo algoritma 4, 5 za simetrični konstrukciji kvadratnega C^1 in kubičnega C^2 zlepka. Obnašanje tako generiranih zlepkov si lahko ogledamo na slikama 25 in 26.

Algoritem 4 Simetrična konstrukcija kvadratnega C^1 zlepka

```
egin{aligned} \mathbf{p} &\leftarrow \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_m \ u &\leftarrow u_0, u_1, \dots, u_n \ \mathbf{p}_0^{(1)} &= \mathbf{p}_0 \ \mathbf{p}_1^{(1)} &= \mathbf{p}_1 \ \mathbf{for} \ l &= 1, 2, \dots m-1 \ \mathbf{do} \ \mathbf{p}_1^{(l)} &= \mathbf{p}_l \ \mathbf{p}_2^{(l)} &= \mathbf{p}_0^{(l+1)} &= rac{\Delta u_l}{\Delta u_{l-1} + \Delta u_l} \mathbf{p}_l + rac{\Delta u_{l-1}}{\Delta u_{l-1} + \Delta u_l} \mathbf{p}_{l+1} \ \mathbf{end} \ \mathbf{for} \ \mathbf{p}_0^{(m)} &= \mathbf{p}_m \ \mathbf{p}_1^{(m)} &= \mathbf{p}_{m+1} \end{aligned}
```

Algoritem 5 Simetrična konstrukcija kubičnega C^2 zlepka

```
\mathbf{p} \leftarrow \mathbf{p}_{0}, \mathbf{p}_{1}, \dots, \mathbf{p}_{m}
u \leftarrow u_{0}, u_{1}, \dots, u_{n}
\mathbf{p}_{0}^{(1)} = \mathbf{p}_{0}
\mathbf{p}_{1}^{(1)} = \mathbf{p}_{1}
for l = 1, 2, \dots m - 3 do
\mathbf{p}_{2}^{(l)} = \mathbf{p}_{0}^{(l+1)} = \frac{\Delta u_{l}}{\Delta u_{l-1} + \Delta u_{l}} \mathbf{p}_{l} + \frac{\Delta u_{l-1}}{\Delta u_{l-1} + \Delta u_{l}} \mathbf{p}_{l+1}
\mathbf{p}_{1}^{(l)} = \mathbf{p}_{l}
end for
\mathbf{p}_{0}^{(m)} = \mathbf{p}_{m}
\mathbf{p}_{1}^{(m)} = \mathbf{p}_{m+1}
```


Slika 25: Obnašanje simetričnega kvadratnega C^1 zlepka.

Slika 26: Obnašanje simetričnega kubičnega \mathbb{C}^2 zlepka.

Tako konstruirani zlepki ustrezajo lastnostim Bezierjevih krivulj iz izreka 2.11. Primere afinih transformacij simetričnega C^2 zlepka si lahko ogledamo na sliki 27. Na sliki 28 pa si lahko ogledamo konveksni ovojnici dveh takšnih zlepkov. Algoritem za

Slika 27: Afini transformaciji simetričnih kubičnih C^2 zlepkov.

Slika 28: Konveksni ovojnici simetričnih kubičnih C^2 zlepkov.

simetrični kvadratni C^1 zlepek lahko adaptiramo tako, da upoštevamo pogoj 4.4 za G^1 zveznost. Dobimo algoritem za simetrično konstrukcijo kvadratnega G^1 zlepka 6, kjer števila β_l omejimo na interval (0,1). Obnašanje zlepka ob spreminjanju β_1 si lahko ogledamo na sliki 29.

```
Algoritem 6 Simetrična konstrukcija kvadratnega G^1 zlepka \mathbf{p} \leftarrow \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_m
```

```
eta \leftarrow eta_1, eta_2, \dots, eta m - 2
\mathbf{p}_0^{(1)} = \mathbf{p}_0
\mathbf{p}_1^{(1)} = \mathbf{p}_1
\mathbf{for} \ l = 1, 2, \dots m - 2 \ \mathbf{do}
\mathbf{p}_1^{(l)} = \mathbf{p}_l
\mathbf{p}_2^{(l)} = \mathbf{p}_0^{(l+1)} = (1 - \beta_l)\mathbf{p}_l + \beta_l\mathbf{p}_{l+1}
\mathbf{end} \ \mathbf{for}
\mathbf{p}_0^{(m)} = \mathbf{p}_m
\mathbf{p}_1^{(m)} = \mathbf{p}_{m+1}
```

4.2.3 Alfa parametrizacije

V praksi delilnih točk u_i dostikrat ne dobimo podanih ampak jih izračunamo sami. Smiselno jih je postaviti tako, da s parametrom t po krivulji potujemo čim bolj

Slika 29: Vpliv izbire β_1 pri simetričnem kvadratnem G^1 zlepku.

enakomerno. Točke u_i bi radi izbrali tako, da velja

$$\Delta u_i = dolzina_krivulje(\mathbf{s}^{(i)}).$$

Pri simetrično konstruiranih zlepkih iz prejšnjega razdelka lahko dolžine krivulj $\mathbf{s}^{(i)}$ aproksimiramo z dolžino premih diferenc Δp_i . Takšnem generiranju točk pravimo alfa parametrizacije. Točke u_i izberemo tako, da velja

$$\Delta u_i = |\Delta p_i|^{\alpha}, \quad \alpha \in [0, 1].$$

Vpliv izbire alfe si lahko ogledamo na sliki 30.

Slika 30: Vpliv izbire α pri izračunu točk u_i za simetrični kvadratni C^1 zlepek.

5 PH Krivulje

Za začetek razdelka definirajmo dva pojma, ki jih bomo tekom razdelka potrebovali.

Definicija 5.1. Polinomi a, b, c tvorijo pitagorejsko trojico, če zadoščajo enačbi

$$a^2 + b^2 = c^2$$
.

Opomba 5.2. Iz definicije 5.1 je očitno, da je vrstni red polinomov pomemben. Če polinomi a, b, c tvorijo pitagorejsko trojico, potem jo tvorijo tudi polinomi b, a, c, polinomi c, b, a pa je ne.

Definicija 5.3. Hodograf krivulje podane s parametrizacijo \mathbf{r} je krivulja podana s parametrizacijo \mathbf{r}' .

5.1 Konstantna parametrična hitrost

 $Parametrična\ hitrost\ krivulje\ {f r}\ s$ parametrizacijo ${f r}=(x,y)$ je definirana s funkcijskim predpisom

$$\sigma(t) = |\mathbf{r}'(t)| = \sqrt{x'^{2}(t) + y'^{2}(t)}.$$
(5.1)

Idealno bi bilo, da je parametrična hitrost $\sigma \equiv 1$. Krivulje s konstantno parametrično hitrostjo $\sigma \equiv C$ lahko reparametriziramo s reparametrizacijsko funkcijo $\varphi(t) = \frac{t}{C}$, da dobimo željeno. Za poljubno premico s parametrizacijo

$$\mathbf{r}(t) = \mathbf{p}_0 + t\mathbf{s}, \quad \mathbf{s} = (s_x, s_y),$$

lahko torej uporabimo reparametrizacijsko funkcijo s predpisom $\varphi(t) = \frac{t}{\sqrt{s_x^2 + s_y^2}}$. Polinomske krivulje višjih stopenj pa konstantne hitrosti ne morejo imeti. Naj bo vsaj ena izmed komponent parametrizacije $\mathbf{r} = (x,y)$ polinom stopnje n > 1. Ker sta vodilna koeficienta polinomov x'^2 in y'^2 pozitivna, iz izraza (5.1) hitro sledi, da polinom $\sigma^2 \in \mathbb{P}_{2n-2}$ ni konstanten.

5.2 Polinomska parametrična hitrost

V prejšnjem podrazdelku smo pokazali, da polinomske krivulje stopnje > 1 ne morejo imeti konstantne parametrične hitrosti. Če krivulje nekoliko omejimo, lahko dosežemo vsaj to, da bo funkcija hitrosti polinom. Iz enačbe (5.1) sledi, da bo to res v primerih, ko je polinom $x'^2 + y'^2 = z^2 - \text{takrat se namreč koren v enačbi okrajša.}$

Definicija 5.4. Naj bo $\mathbf{r}: \mathbb{R} \to \mathbb{R}^2$ parametrično podana krivulja s parametrizacijo $\mathbf{r} = (x, y)$. Krivulja \mathbf{r} je PH krivulja oziroma krivulja s pitagorejskim hodografom, če obstaja tak polinom z, da polinomi $\mathbf{x}', \mathbf{y}', \mathbf{z}$ tvorijo pitagorejsko trojico.

Pri konstrukciji Bézierjevih PH krivulj si bomo pomagali z naslednjim izrekom.

Izrek 5.5. Polinomi a, b, c tvorijo pitagorejsko trojico natanko tedaj, ko obstajata tuja si polinoma u in v ter nek polinom w, da veljajo izrazi

$$a = (u^2 - v^2)w$$
, $b = 2uvw$, $c = (u^2 + v^2)w$.

Izrek tudi dokažimo.

Dokaz.

- (\Leftarrow) Dokaz je enostaven, saj lahko definicije polinomov a,b in c iz izreka vstavimo v enačbo iz definicije 5.1 in preverimo.
- (\Rightarrow) Najprej definirajmo polinom $w \equiv \gcd(a,b,c)$. Pri tako definiranem polinomu w, so si polinomi

$$\tilde{a} = \frac{a}{w}, \quad \tilde{b} = \frac{b}{w}, \quad \tilde{c} = \frac{c}{w},$$

tuji in zadoščajo enačbi $\tilde{a}^2+\tilde{b}^2=\tilde{c}^2.$ Enačbo zapišimo nekoliko drugače

$$\tilde{b}^2 = \tilde{c}^2 - \tilde{a}^2 = (\tilde{c} + \tilde{a})(\tilde{c} - \tilde{a}).$$

Polinoma $\tilde{c} + \tilde{a}$ in $\tilde{c} - \tilde{a}$ ne moreta imeti skupnih ničel, saj bi to impliciralo skupne ničle polinomov $\tilde{a}, \tilde{b}, \tilde{c}$, kar bi bilo v nasprotju z njihovo definicijo. Ker skupnih ničel nimata, mora biti vsaka ničla polinoma \tilde{b} tudi ničla sode stopnje enega izmed polinomov $\tilde{c} + \tilde{a}$ ali $\tilde{c} - \tilde{a}$. Potemtakem lahko definiramo tuja si polinoma u in v, da velja $\tilde{c} + \tilde{a} = 2u^2$ in $\tilde{c} - \tilde{a} = 2v^2$. Iz enačb potem hitro sledi

$$\tilde{a} = u^2 - v^2$$
, $\tilde{b} = 2uv$, $\tilde{c} = u^2 + v^2$.

Enačbe pomnožimo s polinomom w in dobimo željeno obliko.

Iz konstrukcije dokaza lahko hitro vidimo, da sta za pitagorejske trojice katerih največji skupni delitelj je konstanta, konstantna tudi polinoma w in $\gcd(u,v)$. Takšnim trojicam pravimo primitivne pitagorejske trojice. Parametrizacijo ravninske PH krivulje $\mathbf{r}=(x,y)$ lahko konstruiramo tako, da vstavimo tuja si polinoma u,v in polinom w v izraza

$$x' = (u^2 - v^2)w, \quad y' = 2uvw$$
 (5.2)

in integriramo. Pri tem nekateri izbori polinomov u, v, w porodijo izrojene krivulje, takšne bi radi izločili. Izrojene krivulje dobimo v naslednjih izborih.

- 1. Če je polinom $w \equiv 0$ ali polinoma $u = v \equiv 0$, sta polinoma $x' = y' \equiv 0$. Polinoma x in y sta zato konstantna in definirata točko, ne pa krivulje.
- 2. Če so polinomi u, v, w konstantni in neničelni, potem sta konstantna tudi polinoma x' in y'. V tem primeru definirata parametrizacijo premice z konstantno hitrostjo.
- 3. Če sta polinoma u in v konstantna ter vsaj en neničelen, polinom w pa ni konstanten, potem za polinoma x', y' velja $x' = Cy', C \in \mathbb{R}$. Tudi tokrat polinoma definirata premico, a hitrost ni enakomerna.
- 4. Podobno kot v točki 3. dobimo tudi v primeru, ko je polinom w neničelen in en izmed polinomov u in v je ničelen.

Neizrojene PH krivulje dobimo torej pri izborih neničelnih polinomov u, v in w, kjer vsaj en izmed polinomov u in v ni konstanten. S številom λ označimo stopnjo polinoma w, s številom μ pa $\max(\deg(u), \deg(v))$. PH krivulja, pridobljena z integriranjem polinomov x' in y' iz 5.2, je stopnje $n = \lambda + 2\mu + 1$. Prostih parametrov

pa je manj. Vsak izmed polinomov u in v je namreč definiran z največ $\mu+1$ parametri. Brez izgube splošnosti lahko vodilni koeficient polinoma w fiksiramo na 1. Polinom w je zato definiran z λ parametri. Integracijska konstanta pri integriranju hodografa nam poda še 2 prosta parametra. Skupno je prostih parametrov torej $\lambda + 2(\mu + 1) + 2 = \lambda + 2\mu + 4 = n + 3$.

5.3 Kontrolne točke Bézierjevih PH krivulj

V tem podrazdelku bomo konstruirali *Bézierjeve PH krivulje*, to so Bézierjeve krivulje, ki so tudi PH krivulje. Krivulje bomo konstruirali s pomočjo izreka 5.2, kjer za polinomom w vzamemo $w \equiv 1$. Polinoma x', y' sta torej definirana kot

$$x' = u^2 - v^2, \quad y' = 2uv. \tag{5.3}$$

Za parametrično hitrost krivulje s parametrizacijo $\mathbf{r} = (x, y)$ potem velja

$$|\mathbf{r}'| = \sqrt{x'^2 + y'^2} = u^2 + v^2.$$

Od tod pa sledi $|\mathbf{r}'(t)| \neq 0$, $t \in R$, saj polinoma u in v nimata skupnih ničel. Krivulje so torej regularne in lihe stopnje $n = 2\mu + 1$. Najbolj osnovne netrivialne PH krivulje dobimo tako, da za polinoma u in v izberemo Bernsteinova polinoma

$$u = u_0 B_0^1 + u_1 B_1^1, \quad v = v_0 B_0^1 1 + v_1 B_1^1.$$

Zanju mora veljati $u_0v_1-u_1v_0\neq 0$, da sta si polinoma u in v tuja, in $(u_1-u_0)^2+(v_1-v_0)^2\neq 0$, da vsaj en od njiju ni konstanten. Ko polinoma vstavimo v izraza (5.3) dobimo

$$x' = (u_0^2 - v_0^2)B_0^2 + (u_0u_1 - v_0v_1)B_1^2 + (u_1^2 - v_1^2)B_2^2,$$

$$y' = 2u_0v_0B_0^2 + (u_0v_1 + u_1v_0)B_1^2 + 2u_1v_1B_2^2.$$

Polinoma x', y' integriramo s pomočjo izreka 2.6 in upoštevamo, da Bernsteinovi polinomi tvorijo razčlenitev enote. Dobimo

$$x = x_0(B_0^3 + B_1^3 + B_2^3 + B_3^3)$$

$$y = y_0(B_0^3 + B_1^3 + B_2^3 + B_3^3)$$

$$+ \frac{1}{3}(u_0^2 - v_0^2)(B_1^3 + B_2^3 + B_3^3)$$

$$+ \frac{1}{3}(u_0u_1 - v_0v_1)(B_2^3 + B_3^3)$$

$$+ \frac{1}{3}(u_0v_1 + u_1v_0)(B_2^3 + B_3^3)$$

$$+ \frac{1}{3}(u_0v_1 + u_1v_0)(B_2^3 + B_3^3)$$

$$+ \frac{1}{3}(u_1^2 - v_1^2)B_3^3,$$

$$+ \frac{1}{3}2u_1v_1B_3^3,$$

kar ustreza Bézierjevi krivulji s kontrolnimi točkami

$$\mathbf{p}_{1} = \mathbf{p}_{0} + \frac{1}{3}(u_{0}^{2} - v_{0}^{2}, 2u_{0}v_{0}),$$

$$\mathbf{p}_{2} = \mathbf{p}_{1} + \frac{1}{3}(u_{0}u_{1} - v_{0}v_{1}, u_{0}v_{1} + u_{1}v_{0}),$$

$$\mathbf{p}_{3} = \mathbf{p}_{2} + \frac{1}{3}(u_{1}^{2} - v_{1}^{2}, 2u_{1}v_{1}).$$
(5.4)

Kjer smo kontrolno točko $\mathbf{p}_0 = (x_0, y_0)$ izbrali poljubno, saj sta x_0 in y_0 integracijski konstanti. Kontrolni poligoni dobljeni z izrazi (5.4) imajo tudi geometrijsko interpretacijo.

Izrek 5.6. Naj bo **B** kubična Bezierjeva krivulja s kontrolnimi točkami $\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$. $Z L_i = |\Delta p_i|$ označimo dolžine stranic kontrolnega poligona, $z \theta_1$ in θ_2 pa kota kontrolnega poligona pri točkah \mathbf{p}_1 in \mathbf{p}_2 . Krivulja **B** je PH krivulja natanko tedaj, ko veljata izraza

$$L_1 = \sqrt{L_2 L_0} \quad in \quad \theta_1 = \theta_2.$$

Pogoji iz izreka so ekvivalentni temu, da morata trikotnika $\Delta \mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2$ in $\Delta \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ biti podobna, kar lahko vidimo na sliki 31.

Slika 31: Geometrija kontrolnega poligona kubične Bezierjeve PH krivulje.

V prejšnjem razdelku smo povedali, da ima PH krivulja n-te stopnje n+3 prostih parametrov. Za pravkar definirane kubične Bezierjeve PH krivulje to pomeni, da imajo le 6 prostih parametrov. Če želimo podoben nivo kontrole, kakor pri navadnih kubičnih Bézierjevih krivuljah, moramo poseči po kvintičnih Bézierjevih PH krivuljah. Izpeljemo jih podobno, le da tokrat za polinoma u in v izberemo Bernsteinova polinoma polinoma stopnje 2,

$$u = u_0 B_0^2 + u_1 B_1^2 + u_2 B_2^2, \quad v = v_0 B_0^2 + v_1 B_1^2 + v_2 B_2^2.$$

Da sta si polinoma u in v tuja, mora veljati izraz

$$(u_2v_0 - u_0v_2)^2 \neq 4(u_0v_1 - u_1v_0)(u_1v_2 - u_2v_1).$$

Polinoma vstavimo v izraza (5.3) in integriramo, z nekaj računanja dobimo Bézierjevo krivuljo s kontrolnimi točkami

$$\mathbf{p}_{1} = \mathbf{p}_{0} + \frac{1}{5}(u_{0}^{2} - v_{0}^{2}, 2u_{0}v_{0}),$$

$$\mathbf{p}_{2} = \mathbf{p}_{1} + \frac{1}{5}(u_{0}u_{1} - v_{0}v_{1}, u_{0}v_{1} + u_{1}v_{0}),$$

$$\mathbf{p}_{3} = \mathbf{p}_{2} + \frac{2}{5}(u_{1}^{2} - v_{1}^{2}, 2u_{1}v_{1}) + \frac{1}{5}(u_{0}u_{2} - v_{0}v_{2}, u_{0}v_{2} + u_{2}v_{0}),$$

$$\mathbf{p}_{4} = \mathbf{p}_{3} + \frac{1}{5}(u_{1}u_{2} - v_{1}v_{2}, u_{1}v_{2} + u_{2}v_{1}),$$

$$\mathbf{p}_{5} = \mathbf{p}_{4} + \frac{1}{5}(u_{2}^{2} - v_{2}^{2}, 2u_{2}v_{2}).$$

Primer takšne krivulje si lahko ogledamo na sliki 32.

Slika 32: Kvintična Bezierjeva PH krivulja.

5.4 Parametrična hitrost Bezierjeve PH krivulje

Parametrična hitrost Bezierjeve PH krivulje podane s parametrizacijo $\mathbf{r}=(x,y)$ je dana s polinomom

$$\sigma = |\mathbf{r}'| = \sqrt{x'^2 + y'^2} = u^2 + v^2.$$

Če je krivulja stopnje n, potem sta polinoma u in v stopnje $m=\frac{1}{2}(n-1)$. Zapišimo polinome u,v in σ v Bernsteinovi bazi

$$u = \sum_{j=0}^{m} u_j B_j^m, \quad v = \sum_{j=0}^{m} v_j B_j^m, \quad \sigma = \sum_{j=0}^{n-1} \sigma_j B_j^{n-1}.$$

S pomočjo pravila za množenje Bernsteinovih polinomov iz izreka 2.7, lahko koeficiente σ_j izrazimo s koeficienti polinomov u in v

$$\sigma_{j} = \sum_{k=\max(0,j-m)}^{\min(m,j)} \frac{\binom{m}{k} \binom{m}{j-k}}{\binom{n-1}{j}} (u_{k}u_{j-k} + v_{k}v_{j-k}).$$

Tako smo parametrično hitrost Bezierjeve PH krivulje izrazili v Bernsteinovi bazi. Parametrično hitrost lahko uporabimo za izračun dolžine krivulje. Dolžina izseka krivulje pri parametru $t \in [0, t_0], t_0 \in [0, 1]$ je podana z integralom

$$s(t_0) = \int_0^{t_0} \sigma(t)dt = \int_0^{t_0} \sum_{j=0}^{n-1} \sigma_j B_j^{n-1}(t)dt.$$

Integral izračunamo s pomočjo integracijskega pravila iz izreka 2.6. Dobimo dolžino izseka Bezierjeve PH krivulje pri parametru $t \in [0, t_0]$ izraženo v Bernsteinovi bazi

$$s(t_0) = \sum_{k=0}^{n} s_k B_k^n(t_0), \qquad s_0 = 0, \quad s_k = \frac{1}{n} \sum_{j=0}^{k-1} \sigma_j.$$

Iz zapisa hitro sledi, da je celotna dolžina Bézierjeve PH krivulje enaka

$$s(1) = \frac{\sigma_0 + \sigma_1 + \dots + \sigma_{n-1}}{n}.$$

Dolžino poljubnega izseka krivulje na intervalu $[a,b],\ 0 \le a < b \le 1$, pa lahko izračunamo s pomočjo izraza

$$\int_a^b \sigma(t)dt = \int_0^b \sigma(t)dt - \int_0^a \sigma(t)dt = s(b) - s(a).$$

5.5 Enakomerna parametrizacija

MOTIVACIJA: Želimo definirati enakomerno oddaljene točke na krivulji. Takšni problemi se naravno pojavijo pri

Bezierjevo PH Krivuljo želimo s parametri $\{t_i\}_{i=0}^N$ razdeliti na N delov. Če to naredimo tako, da parametre t_i postavimo ekvidistantno, tj. $\Delta t = t_i - t_{i-1}$ je enak za vse i, točke na krivulji ne bodo krivulje delile na enako dolge dele, saj parametrična hitrost krivulje ni konstantna. Slednje lahko vidimo na sliki 33. Čeprav

Slika 33: 10 točk na krivulji pri ekvidistantnih t_i .

parametrična hitrost Bezierjeve PH krivulje ni konstantna, lahko njen enostaven izračun izkoristimo, da najdemo parametre $\{t_i\}_{i=0}^N$ za katere velja $s(t_k) = k\Delta s$, kjer je $\Delta s = \frac{s(1)}{N}$. Ker je parametrična hitrost σ pozitivna za vsa realna števila $t \in [0,1]$, je funkcija dolžine s strogo naraščajoča. Parametri t_i so zato enolično določeni in ležijo med t_{i-1} in 1. Za iskanje parametrov t_i lahko uporabimo Newton-Raphsonovo iteracijo. Za začetni približek vzamemo $t_k^{(0)} = t_{k-1} + \frac{\Delta s}{\sigma(t_{k-1})}$ popravljamo pa ga z iteriranjem

$$t_k^{(r)} = t_k^{r-1} - \frac{s(t_k^{(r-1)})}{\sigma(t_k^{(r-1)})}, \quad r = 1, 2, \dots$$

Znano je, da takšna iteracija pri začetnih približkih, ki so dovolj blizu parametra t_k , konvergira s kvadratično hitrostjo. Za večino primerov zato izračun približka t_k , do natančnosti reda 10^{-12} , potrebuje le dva do tri korake iteracije. V praksi so takšni približki ponavadi zadovoljivi. Točke na PH krivulji pridobljene s takšnimi približki si lahko ogledamo na sliki 34.

Slika 34: 10 točk na krivulji pri ekvidistantnih t_i .

5.6 Tangenta, normala in ukrivljenost

V prejšnjem razdelku smo pokazali, da je parametrična hitrost Bezierjeve PH krivulje σ polinom. Od tod sledi, da so tangenta, normala in ukrivljenost PH krivulje racionalne funkcije.

Izrek 5.7. Tangenta, normala in ukrivljenost PH krivulje dobljene z integriranjem izraza (5.3) so enake

$$\mathbf{t} = \frac{(u^2 - v^2, 2uv)}{\sigma}, \quad \mathbf{n} = \frac{(2uv, v^2 - u^2)}{\sigma}, \quad \kappa = 2\frac{uv' - u'v}{\sigma^2}.$$

Izrek tudi dokažimo.

Dokaz. Dokaza za tangento in normalo sta enostavna, saj izraza (5.3) le vstavimo v izraza iz izreka in upoštevamo, da je polinom $\sigma = u^2 + v^2$. Dokažimo še izraz za ukrivljenost κ . V enačbo za ukrivljenost $\kappa = \frac{x'y'' - y'x''}{(x'^2 + y'^2)^{3/2}}$ vstavimo polinoma (5.3), ter njuna druga odvoda x'' = 2(uu' - vv') in y'' = 2(u'v + uv'), dobimo

$$\begin{split} \kappa &= 2 \frac{(u^2 - v^2)(u'v + uv') - 2uv(uu' - vv')}{(\sigma^2)^{3/2}} \\ &= 2 \frac{u^2vu' + u^3v' - v^3u' - v^2uv' - 2u^2vu' + 2uv^2v'}{\sigma^3} \\ &= 2 \frac{(u^2 - v^2 + 2v^2)uv' - (-u^2 + v^2 + 2u^2)u'v}{\sigma^3} \\ &= 2 \frac{(u^2 + v^2)uv' - (u^2 + v^2)u'v}{\sigma^3} \\ &= 2 \frac{(u^2 + v^2)(uv' - u'v)}{\sigma^3} = 2 \frac{uv' - u'v}{\sigma^2}. \end{split}$$

5.7 Racionalne odmik krivulje

Odmik krivulja z razdaljo d od krivulje \mathbf{r} , je krivulja podana s parametrizacijo

$$\mathbf{r}_d = \mathbf{r} + d\mathbf{n}$$
.

Takšne krivulje v splošnem niso racionalne, saj v imenovalcu funkcije za smer normale ${\bf n}$ nastopa koren. V prejšnjem razdelku smo pokazali, da je smer normale ${\bf n}$ za PH krivulje racionalna funkcija, iz česar sledi, da je tudi odmik krivulja PH krivulje racionalna funkcija. Še več, odmik krivuljo Bezierjeve PH krivulje ${\bf r}$ lahko izrazimo kot racionalno Bézierjevo krivuljo s kontrolnimi točkami izraženimi s kontrolnimi točkami krivulje ${\bf r}$. Zapišimo kontrolne točke Bezierjeve PH krivulje ${\bf r}$ v homogenih koordinatah

$$\mathbf{P}_k = (W_k, X_k, Y_k) = (1, x_k, y_k), \quad k = 0, 1 \dots, n.$$

Preme diference takšnih točk izgledajo takole

$$\Delta \mathbf{P}_k = \mathbf{P}_{k+1} - \mathbf{P}_k = (0, \Delta x_k, \Delta y_k), \quad k = 0, 1, \dots, n-1.$$

Označimo še pravokotno smer $\Delta \mathbf{P}_k^{\perp} = (0, \Delta y_k, -\Delta x_k)$. Parametrizacijo odmik krivulje lahko izrazimo kot

$$\mathbf{r}_d = \left(\frac{\tilde{X}}{\tilde{W}}, \frac{\tilde{Y}}{\tilde{W}}\right),$$

kjer so polinomi \tilde{W} , \tilde{X} in \tilde{Y} stopnje 2n-1, njihovi koeficienti v Bernsteinovi bazi pa definirajo kontrolne točke racionalne Bézierjeve krivulje s homogenimi koordinatami

$$\mathbf{O}_k = (\tilde{W}_k, \tilde{X}_k, \tilde{Y}_k), \quad k = 0, \dots, 2n - 1.$$

Homogene koordinate odmik krivulje lahko v zaključeni obliki izrazimo s kontrolnimi točkami Bezierjeve PH krivulje

$$\mathbf{O}_k = \sum_{j=\max(0,k-n)}^{\min(n-1,k)} \frac{\binom{n-1}{j}\binom{n}{k-j}}{\binom{2n-1}{k}} (\sigma_j \mathbf{P}_{k-j} + dn\Delta \mathbf{P}_j^{\perp}), \quad k = 0, \dots, 2n-1.$$

Za primer si oglejmo kontrolne točke odmik krivulje kubične PH krivulje

$$\mathbf{O}_{0} = \sigma_{0} \mathbf{P}_{0} + 3d\Delta \mathbf{P}_{0}^{\perp},
\mathbf{O}_{1} = \frac{1}{5} \left[2\sigma_{1} \mathbf{P}_{0} + 3\sigma_{0} \mathbf{P}_{1} + 3d(3\Delta \mathbf{P}_{0}^{\perp} + 2\Delta \mathbf{P}_{1}^{\perp}) \right],
\mathbf{O}_{2} = \frac{1}{10} \left[\sigma_{2} \mathbf{P}_{0} + 6\sigma_{1} \mathbf{P}_{1} + 3\sigma_{0} \mathbf{P}_{2} + 3d(3\Delta \mathbf{P}_{0}^{\perp} + 6\Delta \mathbf{P}_{1}^{\perp} + \Delta \mathbf{P}_{2}^{\perp}) \right],
\mathbf{O}_{3} = \frac{1}{10} \left[3\sigma_{2} \mathbf{P}_{1} + 6\sigma_{1} \mathbf{P}_{2} + 3\sigma_{0} \mathbf{P}_{3} + 3d(\Delta \mathbf{P}_{0}^{\perp} + 6\Delta \mathbf{P}_{1}^{\perp} + 3\Delta \mathbf{P}_{2}^{\perp}) \right],
\mathbf{O}_{4} = \frac{1}{5} \left[3\sigma_{2} \mathbf{P}_{2} + 2\sigma_{1} \mathbf{P}_{3} + 3d(2\Delta \mathbf{P}_{1}^{\perp} + 3\Delta \mathbf{P}_{2}^{\perp}) \right],
\mathbf{O}_{5} = \sigma_{2} \mathbf{P}_{3} + 3d\Delta \mathbf{P}_{2}^{\perp}.$$

Na sliki 35 lahko vidimo, da se kontrolne točke odmik krivulje v odvisnosti od razdalje premikajo po premicah.

Slika 35: Odmik krivulje, levo, skupaj z njihovimi kontrolnimi točkami, desno.

6 Orodje za grafični prikaz konceptov

Vsi koncepti predstavljeni v magistrskem delu so tudi implementirani na spletni strani. Slikovno gradivo skozi magistrsko delo je bilo ustvarjeno s pomočjo orodja. Za risanje grafov sem uporabil odprtokodno knjižnico JSxGraph. Za oblikovanje spletne strani sem uporabil ogrodje bootstrap. Za ogrodje same spletne strani pa React.

6.1 Implementacija konceptov magistrskega dela

6.2 Orodja

Na levi strani vsakega grafa se nahaja kartica 36 s funkcionalnostmi za vse grafe. V naslednjih podrazdelkih bomo predstavili posamezno funkcionalnost.

6.2.1 Izvoz slik

Uporabnik lahko s stiskom na gumb SVG oziroma PNG izvozi sliko v izbranem formatu. Pri izvozu v SVG format, zaradi pomankljivosti knjižnice JSXGraph, izgubimo oznake točk.

6.2.2 Ponastavitev grafa

Na kartici se nahaja priročen gumb za ponastavljanje grafa. Ob pritisku se graf ponastavi na izbrano prednastavitev.

6.2.3 Prikaz mreže

Če uporabnik ne želi prikazovati mreže koordinatnega sistema, lahko za to uporabi preklopnik za prikaz mreže.

6.2.4 Povečava

Drsnik za povečavo omogoča povečavo elementov na grafu.

6.2.5 Prednastavitve

Uporabnik lahko na posameznem grafu pripravi željeni prikaz in ga nato s poljubnim imenom shrani kot prednastavitev. Prednastavitve se shranjujejo lokalno v uporabnikovem brskalniku. Če uporabnik želi svoje prednastavitve prenesti na drug računalnik, lahko to stori tako, da pritisne gumb izvozi. S pritiskom na gumb se sproži prenos datoteke s podatki o prednastavitvah. Na drugem računalniku lahko nato datoteko uvozi s pritiskom na gumb uvozi. Uporabnik ima tudi možnost generirati slike svojih prednastavitev. Ob pritisku na gumb 'Generiraj slike' začne orodje preklapljati med prednastavitvami ter izvažati slike. Slike izvozi pod imenom prednastavitve, v PNG formatu.

6.2.6 Preklopnik za oznake točk

Preklopnik uporabniku omogoča izklop oznak točk na grafu.

Slika 36: Kartica z orodji

6.3 Ukazi izbrane krivulje

Na desni strani vsakega grafa se, v primeru, da imamo izbrano krivuljo, prikazujejo ukazi izbrane krivulje. V naslednjih podrazdelkih bomo predstavili katere ukaze premore kateri tip krivulje.

6.3.1 Vse krivulje

Vse krivulje omogočajo preklapljanje prikazovanja kontrolnega poligona, konveksne ovojnice kontrolnih točk, ter kontrolnih točk samih.

6.3.2 Bézierjeva krivulja

Bézierjeva krivulja premore poleg osnovih ukazov še ukaze za subdivizijo, ekstrapolacijo, skrčitev, višanje stopnje, ter prikazovanje decasteljaujeve sheme. Premik miške na posamezni ukaz na grafu predstavi nekakšen predogled rezultata ukaza.

6.3.3 Racionalna Bézierjeva Krivulja

Poleg funkcionalnosti bezierjeve krivulje ima še dodane ukaze za prikaz in spreminjanje uteži, ter drsnik za preklapljanje forme uteži.

6.3.4 PH Bézierjeva krivulja

PH Bézierjeve krivulje nimajo ukazov, ki so jih imele Bézierjeve krivulje, saj se pri nekaterih ukazih izgubi lastnost PH. Premorejo pa naslednje ukaze. Prikazovanje odmičnih krivulj in spreminjanje odmika. Prikaz kontrolnih točk odmik krivulj ter prikazovanje premic na katerih ležijo. Dodajanje/odstranjevanje odmik krivulj. Koordinatni sistem s hodografi, ki jih premikamo za premikanje krivulje. Gumba za povečanje ter pomanjšanje krivulje.

6.3.5 Zlepki

Zlepki imajo le ukaze osnovne krivulje.

6.4 Transformacije krivulje

Uporabnik lahko izbere krivuljo tako, da nanjo klikne. Ob kliku se okoli krivulje prikaže črtkan pravokotnik, ki izbrano krivuljo označuje. Uporabnik lahko nato s transformacijo pravokotnika transformira tudi izbrano krivuljo. Klik na oglišče pravokotnika zažene spreminjanje velikosti krivulje **referenca-slika**. Klik ob stranici pravokotnika pa zažene rotiranje krivulje **referenca-slika**. Klik znotraj pravokotnika zažene premikanje krivulje **referenca-slika**.

7 Integrali po ω -kompleksih

7.1 Definicija

Definicija 7.1. Neskončno zaporedje kompleksnih števil, označeno z $\omega = (\omega_1, \omega_2, \ldots)$, se imenuje ω -kompleks.¹

Črni blok zgoraj je tam namenoma. Označuje, da IATEX ni znal vrstice prelomiti pravilno in vas na to opozarja. Preoblikujte stavek ali mu pomagajte deliti problematično besedo z ukazom \hyphenation{an-ti-ko-mu-ta-ti-ven} v preambuli.

Trditev 7.2 (Znano ime ali avtor). Obstaja vsaj en ω -kompleks.

Dokaz. Naštejmo nekaj primerov:

$$\omega = (0, 0, 0, 0, = ...),$$
 (7.1)
 $\omega = (1, i, = -1, -i, 1, ...),$
 $\omega = (0, 0, 0, = ...),$ (7.1)

¹To ime je izmišljeno.