Applied Epidemiology I: Data Management

Enoch Yi-Tung Chen

Department of Medical Epidemiology and Biostatistics, Karolinska Insitutet

November 28, 2020

Acknowledgements

This course material in data management is based on my learning from Anna Johansson's workshop at KI library 1 , teachings in Good Data Management Practice in Epidemiological Research, and MEB Guidelines for Documentation and Archiving Version 6 2 . I personally want to thank for their effort on education in data management.

I especially want to thank Marlene Stratmann for reviewing the slides and Prof. Paul Dickman for providing me with suggestions to improving the teaching.

¹This workshop is currently available on KI Play as well.

²The Department of Medical Epidemiology and Biostatistics, Karolinska Institutet. MEB Guidelines for Documentation and Archiving Version 6. 2018.

Outline

- What if no data management?
- 2 Aims of data management (also learning outcomes)
- 3 Good folder structure
- 4 Good documents
- 6 Good Readme.txt
- 6 Good habits on coding
- Other do's and don'ts
- Wrap it up

In the beginning,

In the half-way of the research,

At the end, or saying you cannot even walk till the end?

Imagine now

 if you want to correct Table I, where is the do file for descriptive analysis?

Imagine now

- if you want to correct Table I, where is the do file for descriptive analysis?
- if your supervisor says, "Please summarise how far you've gone in this project." You probably cannot just drop him/her your syntax.

Imagine now

- if you want to correct Table I, where is the do file for descriptive analysis?
- if your supervisor says, "Please summarise how far you've gone in this project." You probably cannot just drop him/her your syntax.
- if your classmate asks you to teach her how to write a certain Stata code, you remember you've done it before, but where did you put it?

Imagine now

- if you want to correct Table I, where is the do file for descriptive analysis?
- if your supervisor says, "Please summarise how far you've gone in this project." You probably cannot just drop him/her your syntax.
- if your classmate asks you to teach her how to write a certain Stata code, you remember you've done it before, but where did you put it?
- if your collaborator needs to take over your analysis, can he/she understand what you've completed?

So I would say you need to have a friend called

Data Management

• To ensure the analysis is reproducible

- To ensure the analysis is reproducible
- To work coherently and efficiently with yourself

- To ensure the analysis is reproducible
- To work coherently and efficiently with yourself
- To ensure the project can be understood by others (supervisors, collaborators, and future readers)

- To ensure the analysis is reproducible
- To work coherently and efficiently with yourself
- To ensure the project can be understood by others (supervisors, collaborators, and future readers)
- To create a good work flow and enhance accuracy of work

Good folder structure

The core elements of folders are listed below:

- Data
- Documents
- Log
- Output
- Program

Figure: Good project folder structure. (Please bear with me that I am Mac user!)

Good documents

Besides good folder structure, you should also consider keeping good documents

- Analysis plan
- Codebook³
- Dummy table
- Logbook³
- Manuscript

Figure: Good project folder structure.

³can be included in analysis plan as well

Good Readme.txt

- You should illustrate how to use these documents/folders in the Readme.txt.
- A good Readme.txt is a good tourist guide in this project folder.

Figure: Good project folder structure.

Good habit on coding

- log on
- Filename
- Study
- Created
- Updated
- Purpose
- Note
- Program
- log close

```
// End of Stata code
```

// Start of Stata code

log close

Good habit on coding

- Talk to yourself what you are doing.
- You've got a friend in me! (Parallel analysis)
- Rubber duck debugging

 Use a shared drive/project server. (Required to do that because of data privacy.)

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.

- Use a shared drive/project server.
 (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)
 - For binomial variables, = 1 implies yes, and = 0 implies no.

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)
 - ullet For binomial variables, =1 implies yes, and =0 implies no.
 - Label your variables, please!

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)
 - For binomial variables, = 1 implies yes, and = 0 implies no.
 - Label your variables, please!
- 3. Same names for linking files (.do .r .sas \rightarrow .log \rightarrow .doc)

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)
 - For binomial variables, = 1 implies yes, and = 0 implies no.
 - Label your variables, please!
- 3. Same names for linking files (.do .r .sas \rightarrow .log \rightarrow .doc)
- 4. Don't replace the original files or variables.

- Use a shared drive/project server. (Required to do that because of data privacy.)
- 2. Give appropriate names to your files and variables.
 - No stupid names, such as new1, new2, new3, final1, final2, final3, latest1
 - No space, special character, dots (in case, the software cannot read.)
 - For binomial variables, = 1 implies yes, and = 0 implies no.
 - Label your variables, please!
- 3. Same names for linking files (.do .r .sas \rightarrow .log \rightarrow .doc)
- 4. Don't replace the original files or variables.
- 5. Don't edit the data directly. Please write syntax.

Wrap it up

- In summary, a good data management contains GOOD
 - 1. folder structure
 - 2. documents
 - 3. readme
 - 4. habits

Wrap it up

- In summary, a good data management contains GOOD
 - 1. folder structure
 - 2. documents
 - 3. readme
 - 4. habits
- How can this lecture help you?
- The templates you can use for DM your current and future projects.