Research Internship

SAFRAN TECH / DST / CASPer

Adaptation de modèles de perception aux intempéries pour la conduite autonome hors-route

GOLEBIEWSKI ADRIEN (Master 2 IASD – PSL)

Contexte

Stage au sein de l'équipe CASPer (Confiance AI, Simulation, Perception) de la DST (Digital Science and Technologies - Safran Tech)

Objectif du véhicule autonome : percevoir l'environnement pour capter, traiter l'information et prendre des décisions.

Les algorithmes traditionnels de perception sont basés sur de l'IA, des modèles profonds (Deep Learning)

<u>Défis</u>: S'assurer que les algorithmes d'IA de perception fonctionnent aussi dans des conditions hors-route avec intempéries

Constats:

- → Les modèles de perception ne sont pas performants avec intempéries
- → Difficile d'acquérir des séquences de données captées par les véhicules dans ces conditions

Segmentation sémantique d'image

Motivation : comprendre la sémantique des images avec des scènes complexes

From "Improving Network Architectures & Training for Semantic Segmentation - Lukas Hoyer CVPR SDAS 2023" - YouTube

Unsupervised Domain Adaptation (UDA)

Objectif : réduire le cout de l'annotation par l'exploitation de données source (ex. données synthétiques)

Training on Source Domain (Synthetic)

Problème : Chute de la performance du modèle sur le Domaine cible

Inference on Target Domain (Real)

Without Annotation

Définition du problème

Objectifs du stage :

- Confirmer que l'UDA peut être une solution aux problèmes de segmentation d'images pour des conditions météorologiques défavorables
 - Tester sur un « use case » Safran Tech : les données « Samba ».
 Mais faible diversité des classes (navigable/non navigable) ...
 - Définir un dataset « proxy » de Samba pour réaliser les expérimentations
 - Modélisation de conditions météorologiques difficiles à partir du proxy
- Evaluer la pertinence du proxy
 - Est-ce un bon proxy de Samba?
 - Les résultats/interprétations sont-ils transposables sur Samba?

Clear Weather to Adverse Weather

Etat de l'art - DAFormer

- Approche basé Self-Training
- 2 réseaux de neurones
- Prédictions des target images comme « pseudo-labels »

- Modèle de segmentation basé Transformer : SegFormer
- Modules supplémentaires dans le framework :
 - Rare class Sampling
 - Thing-Class Features Distance
 - Cross Domain Mixed Sampling (DACS)

Définition de la stratégie

Trois types d'expérimentations à réaliser :

- Oracle supervisé : entraînement et test d'un SegFormer sur les données cibles
- **Source only** : Entraînement d'un SegFormer sur un domain donné puis inférence sur un autre domain.
- Adaptation de domaine non supervisé : Test du DAFormer entre deux domaines représentés par deux jeux de données

Définition d'un baromètre pour évaluer la performance d'un modèle d'UDA ET d'une nouvelle métrique du « gain » de l'UDA

$$Gain UDA = \frac{MIoUUDA - MIoUSourceonly}{MIoUOracle - - MIoUSourceonly}$$

Dataset RUGD

Cityscapes to Rugd

Instruct Pix2Pix - Data Augmentation des données RUGD

D

Outil d'édition d'images (image-to-image + astuce prompt-to-prompt)

Types of augn

Flooded ground
Winter ambiance
Light fog

For each image of RUGD dataset

Résultats quantitatifs - DAFormer RUGD to RUGD augmenté

• Tâches de pre-processing offline en amont des training des modèles.

Méthode	MIou on train set (%)	MIou o	n test set (%)	Gain (%)
Source only RUGD augmented	19.12		16.85	
DAFormer RUGD to RUGD augmented	28.11		23.0	47 %
Oracle RUGD augmented	33.11	l	29.78	

- Décision prise de conserver les classes d'origine de RUGD pour RUGD Augmenté
- Gain de performance du DAFormer par rapport au source only
 dans l'intervalle du baromètre
- Cas d'étude de certaines classes : classes "gravel" et "bush" mieux prédites par l'oracle.
- Instruct Pix2Pix provoque de mauvaises predictions sur certaines classes "atteintes" par l'augmentation. Apparition de biais: ex. cas du brouillard / inondation sur une route.

Class	Source only	DAFormer	Oracle
void	0	0	0
dirt	0	0.03	0.51
sand	0	0	0
grass	54.26	58.18	62.19
tree	74.28	83.96	84.2
pole	2.01	2.06	2.06
water	31.69	34.2	36.2
sky	30.12	46.56	48.29
vehicle	32.45	41.09	56.09
container	1.67	2.73	10.2
азрнан	00.02	02.0	01.20
gravel	29.94	42.81	53.51
locibling	10.61	92.75	20.67
mulch	20.32	50.99	72.19
rock-bed	0	0	0
log	11.4	16.75	21.29
bicycle	nan	nan	nan
person	0.0	0.67	0.0
fence	19.12	28.56	32.51
bush	9.87	10.2	43.47
sign	0	0	0
rock	16.56	20.87	23.23
bridge	nan	nan	nan
concrete	0.0	0.63	1.82
picnic table	0	0	0

Résultats – DAFormer RUGD to RUGD augmenté

Résultats - DAFormer RUGD to RUGD augmenté

Environnement « Parking » Augmentation « Inondation »

Oracle

Résultats quantitatifs – RUGD to SAMBA

- Tâches de pre-processing offline en amont des training des modèles.
- Mapping des classes de RUGD en « navigable » ou « non navigable »

Méta classes	Navigable	Non Navigable
Initial	Dirt	Void, Tree, Pole, Water
classes	Sand	Sky, Vehicle, Container
	Grass	Building, Log, Bicycle
	Asphalt	Person, Fence, Bush
	Gravel	Sign, Rock, Bridge
	Mulch	Concrete, Picnic table
	Rock-bed	

Exemple de mapping de classes de RUGD vers Samba

- Gain de performance du DAFormer par rapport au source only → dans l'intervalle du baromètre
- Score DAFormer très proche du score de l'oracle supervisé
- ... qui se confirme visuellement : masques de segmentation obtenus par prédiction très proches

Méthode	MIou on train set (%)	MIou	on test set (%)	Gain(9	%)
Source only Samba	80.19		76.08		
DAFormer RUGD to Samba	85.83		84.17	81	
Oracle Samba	87.57		86.03		

Résultats – DAFormer RUGD to Samba

