Linear Methods for Regression

Zed

March 5, 2017

1 Ordinary Least Squares

We write the linear regression model

$$f(X) = \beta_0 + \sum_{i=1}^{p} X_i \beta_i = X^{\top} \beta$$

where $\beta = (\beta_0, \beta_1..., \beta_p)^{\top}$. $X = (1, X_1, ..., X_p)^{\top}$ is a p+1 column vector, with the inputs X_j being quantitative, factor variables $(X_j = \mathbbm{1}_{\{G = \mathcal{G}_j\}})$, transformation of quantitative (say $\sin X_j$, $\log X_j$), basis expansions $(X_2 = X_1^2, X_3 = X_1^3, ...)$ or cross terms $(X_3 = X_2X_1)$. We have a quick review of the familiar OLS estimator before proceeding to new concepts and models.

Def. Least Squares Estimator: We choose squared error as loss function, and solve

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^{\top} \beta)^2 = \underset{\beta}{\operatorname{argmin}} (\boldsymbol{y} - \boldsymbol{X} \beta)^{\top} (\boldsymbol{y} - \boldsymbol{X} \beta)$$

by the familiar method of moments, and get $\hat{\beta} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$;

the prediction for training set is $\hat{\boldsymbol{y}} = \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$, which is, geometrically, an orthogonal projection of \boldsymbol{y} onto the column space of \boldsymbol{X} , i.e. $\mathcal{C}(\boldsymbol{X}) = \operatorname{span}\{\operatorname{Cols}(\boldsymbol{X})\}$. A few recap and highlights:

- · (Orthogonal Projection) $\hat{\mathbf{y}}$ is within $\mathcal{C}(X)$, since $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$, a linear combination of the columns of \mathbf{X} . The residual $\mathbf{y} \hat{\mathbf{y}}$ is orthogonal to the subspace $\mathcal{C}(\mathbf{X})$, since $\mathbf{X}^{\top}(\mathbf{y} \hat{\mathbf{y}}) = \mathbf{X}^{\top}(\mathbf{y} \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}) = 0$.
- · (Orthogonal Complement) Our sample $\boldsymbol{y} \in \mathbb{R}^N$, which can always be decomposed as $\mathbb{R}^N = V \oplus V^{\perp}$, where V is a subspace, V^{\perp} is the orthogonal complement of V. We already have the column space $\mathcal{C}(\boldsymbol{X})$, and we can show that $\mathcal{C}(\boldsymbol{X})^{\perp} = \mathcal{N}(\boldsymbol{X}^{\top})$, the null space of \boldsymbol{X}^{\top} , which has dimension N p 1.

Proof. Suppose $\mathbf{z} \in \mathcal{C}(\mathbf{X})^{\perp}$, then $\mathbf{z}^{\top} \mathbf{X} \boldsymbol{\beta} = 0$ for all linear combination parameter $\beta \neq 0$. Hence the only way is $\mathbf{z}^{\top} \mathbf{X} = \mathbf{0}$, i.e. $\mathbf{X}^{\top} \mathbf{z} = \mathbf{0}$. \square

· (Hat Matrix) The matrix $H_X := X(X^\top X)^{-1}X^\top$ is called the "hat" matrix, which maps a vector to its orthogonal projection on $\mathcal{C}(X)$. (symmetric, idempotent, and maps columns of X to itself.) A curious object is the trace of this matrix:

$$\operatorname{tr}(\boldsymbol{H}_{\boldsymbol{X}}) = \operatorname{tr}(\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}) = \operatorname{tr}(\boldsymbol{I}_{p+1}) = p+1$$

· (Residual) We are also interested in the error of the estimator within the training set, i.e. define $\hat{u} = y - \hat{y}$ as the residual term. It follows immediately that the residual sum of

square $RSS = \hat{\boldsymbol{u}}^{\top}\hat{\boldsymbol{u}}$. And apply the hat matrix we see $\hat{\boldsymbol{u}} = (\boldsymbol{I}_N - \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{y}$. The object in between is also symmetric, idempotent, due to these property of $\boldsymbol{H}_{\boldsymbol{X}}$; consider

$$(I - H_X)(I - H_X) = I - 2H_X + H_X$$

· (When $X^{\top}X$ is Singular) When columns of X are linearly dependent, $X^{\top}X$ becomes singular, and $\hat{\beta}$ is not uniquely defined. But \hat{y} is still the orthogonal projection onto $\mathcal{C}(X)$, just with more than one way to do the projection.

(**Linear Assumptions**) To discuss statistical properties of $\hat{\beta}$, we assume that the linear model is the true model for the mean, i.e. the conditional expectation of Y is $X\beta$, and that the devation of Y from the mean is additive, distributed as $\epsilon \sim \mathcal{N}(0, \sigma^2)$. That is

$$Y = \mathbb{E}[Y|X] + \epsilon = X\beta + \epsilon$$

We further assume that the inputs X in the training set are fixed (non-random).

Under these assumptions, a few other highlights on statistical properties of OLS estimator:

- · $(Expectation \ of \ \hat{\beta}) \ \mathbb{E}(\hat{\beta}) = \mathbb{E}\left[(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{\beta} + \epsilon)\right] = \beta$, i.e. it is an unbiased estimator.
- · (Variance of $\hat{\beta}$) \mathbb{V} ar($\hat{\beta}$) = $\mathbb{E}\left[(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}\right] = \sigma^{2}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$. That is, the estimator $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^{2}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1})$
- · (Residual Revisited) With the assumption of the real model of \boldsymbol{y} , we can further write $\hat{\boldsymbol{u}} = (\boldsymbol{I} \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{y} = (\boldsymbol{I} \boldsymbol{H}_{\boldsymbol{X}})(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}) = (\boldsymbol{I} \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{\epsilon}$. It is easy to see that $\mathbb{E}\left[\hat{\boldsymbol{u}}\right] = \mathbb{E}\left[\boldsymbol{X}(\boldsymbol{\beta} \hat{\boldsymbol{\beta}}) + \boldsymbol{\epsilon}\right] = 0$. And therefore

$$\operatorname{Var}\left[\hat{\boldsymbol{u}}\right] = \mathbb{E}\left[\hat{\boldsymbol{u}}\hat{\boldsymbol{u}}^{\top}\right] = \mathbb{E}\left[(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})\right] = \sigma^{2}(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})$$

So, although the errors ϵ are i.i.d., residuals \hat{u} are correlated.

· (*Individual Residual Term*) Pick any individual residual \hat{u}_i , \mathbb{V} ar $[\hat{u}_i] = \sigma^2(1 - h_i)$, where h_i is the i-th diagonal entry of $\mathbf{H}_{\mathbf{X}}$. Furthermore \mathbb{C} ov $[\hat{u}_i, \hat{u}_j] = \sigma^2 h_{ij}$, $i \neq j$, h_{ij} is the row i, column j entry in $\mathbf{H}_{\mathbf{X}}$.

An unbiased estimator of residual variance (square of residual standard error: RSE^2) is

$$\hat{\sigma}^2 = \frac{RSS}{N - p - 1} = \frac{\hat{\boldsymbol{u}}^\top \hat{\boldsymbol{u}}}{N - p - 1}$$

Prop. $\mathbb{E}(\hat{\sigma}^2) = \sigma^2$. Proof.

$$(N - p - 1)\mathbb{E}(\hat{\sigma}^2) = \mathbb{E}\left[\hat{\boldsymbol{u}}^{\top}\hat{\boldsymbol{u}}\right] = \mathbb{E}\left[\boldsymbol{y}^{\top}(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})^{\top}(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{y}\right]$$
$$= \mathbb{E}\left[\boldsymbol{\epsilon}^{\top}(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{\epsilon}\right]$$
(1)

While on the other hand,

$$\mathbb{E}\left[\hat{\boldsymbol{u}}^{\top}\hat{\boldsymbol{u}}\right] = \mathbb{E}\left[\sum_{i=1}^{N}\hat{u}_{i}^{2}\right] = \sum_{i=1}^{N}\mathbb{V}\operatorname{ar}\left[\hat{u}_{i}\right] = \sum_{i=1}^{N}\sigma^{2}(1-h_{i})$$
(2)

By the trace formula we have discussed, $\sum h_i = \operatorname{tr}(\boldsymbol{H}_{\boldsymbol{X}}) = p+1$. Hence $(2) = \sigma^2(N-p-1)$. We conclude that

$$(N-p-1)\mathbb{E}(\hat{\sigma}^2) = \mathbb{E}\left[\boldsymbol{\epsilon}^{\top}(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{\epsilon}\right] = (N-p-1)\sigma^2 \quad \Box.$$