

ICBP 2.0

Carbon Footprint Optimization in Supply Chain

Your Name : UMAMAHESWARD STICS

- Problem Statement
- Objective
- Dataset
- Exploratory Data Analysis (EDA)
- Model Selection
- Model Architecture (For Deep Learning Projects)
- Training & Evaluation
- Results
- Conclusion & Future Work
- References

- •The Challenge: Vehicular carbon dioxide (CO2) emissions are a significant contributor to greenhouse gases and climate change.
- •Need for Prediction: Accurately predicting CO2 emissions based on vehicle characteristics is crucial for:
 - Environmental policy-making and regulation.
 - Informing consumer choices towards more eco-friendly vehicles.
 - Automotive manufacturers in designing more fuel-efficient and lower-emission vehicles.
- •Complexity: CO2 emissions depend on a variety of inter-related vehicle specifications and fuel consumption patterns.

•Primary Goal: To develop a deep learning model capable of accurately predicting CO2 emissions (g/km) for vehicles based on their specifications.

•Specific Aims:

- Perform Exploratory Data Analysis (EDA) to understand the dataset and feature relationships.
- Preprocess the data, handling categorical features and scaling numerical features.
- Build, train, and evaluate a Neural Network model.
- Assess the model's performance using appropriate regression metrics (MAE, RMSE).

- •Source: CO2_Emissions_Canada.csv
 - •Contains specifications and CO2 emission data for various vehicle models.

•Size:

- •7385 entries (vehicles)
- •12 original columns

•Key Features (Original):

- Make, Model, Vehicle Class (Categorical)
- Engine Size(L), Cylinders (Numerical)
- Transmission, Fuel Type (Categorical)
- •Fuel Consumption City (L/100 km), Fuel Consumption Hwy (L/100 km), Fuel Consumption Comb (L/100 km), Fuel Consumption Comb (mpg) (Numerical)
- •Target Variable: CO2 Emissions(g/km) (Numerical)
- •Data Quality: The dataset was complete with no missing values across all 7385 entries.
- •Initial Cleaning: Column names were standardized (e.g., "Engine Size(L)" to "Engine_Size_L") for easier processing.

Exploratory Data Analysis (EDA)

Numerical Features

Categorical Features & Correlations(CO2 Emissions by Top 10 Make- boxplot)

Categorical Features & Correlations (CO2 Emissions by Vehicle_Class – boxplot)

Exploratory Data Analysis (EDA)

Categorical Features & Correlations(CO2 Emissions by Fuel_Type - boxplot)

Exploratory Data Analysis (EDA)

Categorical Features & Correlations(Correlation Matrix of Numerical Features - heatmap)

- •Model Choice: A Deep Learning model (Feedforward Neural Network) was selected.
 - Rationale: Capable of learning complex, non-linear relationships between vehicle features and CO2 emissions.
- •Target Variable: CO2_Emissions_g_km
- •Feature Selection for Model:
 - Numerical: Engine_Size_L, Cylinders, Fuel_Consumption_City_L_100km, Fuel_Consumption_Hwy_L _100km, Fuel_Consumption_Comb_L_100km, Fuel_Consumption_Comb_mpg.
 - Categorical: Make, Vehicle_Class, Transmission, Fuel_Type.
 - Excluded Model due to very high cardinality.

Preprocessing Steps:

- Numerical Features:
 - SimpleImputer (strategy='mean'): Applied, though no NaNs were in the original dataset used for this run.
 - StandardScaler: To scale features to have zero mean and unit variance.
- Categorical Features:
 - SimpleImputer (strategy='most_frequent'): Applied for robustness.
 - OneHotEncoder: To convert categorical variables into a numerical format suitable for the neural network. This resulted in an increase in feature dimensions.
- •Processed Features: After preprocessing, the input features for the model expanded to 95 columns.

•Type: Sequential Feedforward Neural Network

•Input Layer:

Shape: 95 features (derived from preprocessed data)

•Hidden Layers:

- Layer 1: Dense layer with 128 neurons, ReLU activation.
- Dropout layer with a rate of 0.3 (to prevent overfitting).
- Layer 2: Dense layer with 64 neurons, ReLU activation.
- Dropout layer with a rate of 0.3.
- Layer 3: Dense layer with 32 neurons, ReLU activation.

•Output Layer:

- Dense layer with 1 neuron, linear activation (for regression task).
- •Total Parameters: 22,657 (all trainable)

Data Splitting:

•Training set: 5169 samples

•Validation set: 1108 samples

•Test set: 1108 samples

•Training Configuration:

•Optimizer: Adam (learning rate = 0.001)

Loss Function: Mean Squared Error (MSE)

•Metrics: Mean Absolute Error (MAE), MSE

•Epochs: Maximum 150, Batch Size: 32

•Callbacks: EarlyStopping (monitor='val_loss', patience=15, restore_best_weights=True)

Training & Evaluation

Training Process:

•Test Set Performance:

- Test Loss (MSE): **38.32**
- Test Mean Absolute Error (MAE): 4.59 g CO2/km
 - Interpretation: On average, the model's CO2 emission predictions are off by approximately 4.59 g/km from the actual values on unseen test data.
- Test Root Mean Squared Error (RMSE): 6.19 g CO2/km
 - Interpretation: Provides another measure of prediction error in the same units as the target, penalizing larger errors more.

•Conclusion:

- The developed deep learning model demonstrates strong performance in predicting CO2 emissions for vehicles based on the provided Canadian dataset.
- Achieved a Test MAE of 4.59 g/km, indicating high accuracy.
- EDA revealed key features like fuel consumption metrics, engine size, and cylinders are highly correlated with CO2 emissions.
- Preprocessing techniques (scaling, one-hot encoding) and model regularization (dropout, early stopping) were effective.

•Future Work:

- Feature Engineering: Explore interaction terms (e.g., Engine Size * Cylinders) or polynomial features.
- Advanced Categorical Encoding: Investigate alternatives to one-hot encoding for high-cardinality features like Model (e.g., target encoding, embedding layers).
- Hyperparameter Tuning: Systematic optimization of learning rate, number of layers/neurons, dropout rates, and batch size using techniques like KerasTuner or Optuna.
- Alternative Models: Compare performance with other machine learning algorithms (e.g., Gradient Boosting Machines like XGBoost or LightGBM, Random Forest).
- Error Analysis: Deeper dive into instances where the model performs poorly to identify patterns or data issues.
- **Deployment:** Consider pathways for deploying the model for real-world use (e.g., as a web API).

Dataset: https://www.kaggle.com/datasets/debajyotipodder/co2-emission-by-

vehicles?resource=download

Libraries:

Pandas: https://pandas.pydata.org/

NumPy: https://numpy.org/

Scikit-learn: https://scikit-learn.org/ TensorFlow: https://www.tensorflow.org/

Keras: https://keras.io/

Matplotlib: https://matplotlib.org/

Seaborn: https://seaborn.pydata.org/

http://jmlr.org/papers/v15/srivastava14a.html

https://arxiv.org/abs/1604.06737

https://www.sciencedirect.com/science/article/abs/pii/S1361920921000651?via%3Dihub

https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html

Thank You