云南大学数学与统计学院 《运筹学通论实验》上机实践报告

课程名称:运筹学实验	年级: 2015 级	上机实践成绩:
指导教师: 李建平	姓名: 刘鹏	专业: 信息与计算科学
上机实践名称: 两阶段法求线性规划问题	学号: 20151910042	上机实践日期: 2018-07-07
上机实践编号: 3	组号:	

一、 实验目的

通过对两阶段法进行编程实现,让自己对单纯形算法理解得更加透彻;通过对 MATLAB 的 linprog 程序进行调用,学习使用 MATLAB 的优化功能。

二、 实验内容

写出两阶段法[1]的算法;

用 C 语言^[2]编程实现两阶段算法。

三、 实验平台

Microsoft Windows 10 Pro Workstation 1803;

MathWorks MATLAB R2018a;

Microsoft Visual Studio 2017 Enterprise.

四、 算法设计 1

单纯形算法是一个迭代方法,在每次迭代中,我们的目标是重新整理线性规划,使得基本解有一个更大的目标值。我们选择一个在目标函数中系数为正的非基本变量 x_e ,而且尽可能增加 x_e 的值而不违反任何约束。变量 x_e 称为基本变量,并且某个其他变量 x_l 变成非基本变量。

Algorithm

SIMPLEX, Simplex Method for solving LP problems can start with 0.

Input

- (1) 系数矩阵 $\mathbf{A} = (a_{ij})_{m \times n}$, $\mathbf{A} = (\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_m)$, \mathbf{A}_i 是系数矩阵的第i列;
- (2) 价值向量 $\mathbf{c} = (c_{ij})_{n \times 1} = (c_1, c_2, \dots, c_n);$
- (3) 常数向量 $\mathbf{b} = (b_{ij})_{m \times 1} = (b_1, b_2, \cdots, b_m) \ge \mathbf{0};$

It means to find MAX(cx), s.t. Ax = b, and $x \ge 0$.

Output

如果有最优解,输出最优解x,如果没有,输出 No Solution

Begin

1 此处的伪代码中,矩阵运算符的意义均与 MATLAB 语言一致,如矩阵的左除、右除和点除等。

Step 1
$$A' = (-c^{T}, A^{T})^{T} = (a'_{ij})_{(m+1)\times n};$$

Step 2
$$b' = (0, b^{T})^{T} = ((b'_{ij})_{(m+1)\times 1});$$

Step 3
$$A'' = (A', b') = (a''_{ij})_{(m+1)\times(n+1)};$$

- Step 4 记A''的第一行为 A_0 ;
- Step 5 从 $-A_0$ 中价值元素中的找寻最大的正数,命之为Pivot,记之在此行中的坐标为C,GOTO Step 6;如果经过标记之后回到这里而且找不到正数,说明循环结束,输出z = A''(1, n+1),x = A''(1, n+1),GOTO End.

如果在所有价值元素中找不到正数,说明这可能是通过变化 MIN 类型的价值向量得来的,如果原先的约束都是小于等于,那么毫无疑问0就是最优解,GOTO End;如果原先的约束有大于等于约束与等于约束或者其中之一,那么很显然0并不行,因为它要求松弛变量与剩余变量的最终解都为0,这是荒谬的,也就是说0并不行,还需要进行如下处理:在矩阵的第一行中,消去所有的非零变量,即通过基本行变换将那些负数变为0,这样更新过的元素中就有正数了(因为变零的操作是加法,如果所有变换都产生不了正数,那说明只有0这个不符合题意的解能单纯地满足约束方程),表现为A"的第一行有负数,MIN(A_0) < 0,从 A_0 中价值元素中的找寻最大的正数,命之为Pivot,记之在此行中的坐标为C,设置本次迭代不在经过此步骤,否则会有死循环,GOTO Step 6;

Step 6

利用条件除法作集合 $S = \{b_i/a_{i,C} \mid a_{i,C} > 0, i = 2, 3, \cdots, m+1\}$,t = MAX(S),最大值不止一个就选其中一个,记t在A"中的坐标为(R, C),GOTO Step 7

Step 7

$$\begin{split} & \boldsymbol{A}^{\prime\prime}(R,:) = \boldsymbol{A}^{\prime\prime}(R,:)/\boldsymbol{A}^{\prime\prime}(R,C); \\ & \text{for } i \text{ through } 1 \text{ to } m+1 \\ & \text{if } i \neq R \text{, then let } \boldsymbol{A}^{\prime\prime}(i,:) = \boldsymbol{A}^{\prime\prime}(i,:) - \boldsymbol{A}^{\prime\prime}(i,C)/\boldsymbol{A}^{\prime\prime}(R,C) \\ & \text{Go to Step 5}; \end{split}$$

End

下面是调用了上面的单纯形算法的两阶段算法。

Algorithm DUAL-SIMPLEX, 重点解决初值不能从0开始的 LP 问题

Input (1) 系数矩阵
$$\mathbf{A} = (a_{ij})_{m \times n}$$
, $\mathbf{A} = (\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_m)$, \mathbf{A}_i 是系数矩阵的第 i 列;

(2) 价值向量
$$c_1 = (c_{ij})_{n \times 1} = (c_1, c_2, , \dots, c_n);$$

(3) 价值向量
$$\mathbf{c_2} = (c_{ij})_{n \times 1} = (c_1, c_2, , \dots, c_n);$$

(4) 常数向量
$$\mathbf{b} = (b_{ij})_{m \times 1} = (b_1, b_2, \cdots, b_m) \ge \mathbf{0};$$

Output 如果有最优解,输出最优解x,如果没有,输出 No Solution

Begin

Step 1 SIMPLEX(A, c_1 , b),输出z = A''(1, n+1),此时如果z = 0,GOTO Step 2,若不为零,则输出无解,GOTO End;

Step 2 重新初始化单纯形表以为第二阶段做准备: 把A''中人工变量所在的行全部删除或者全部变为零,把第一行用 $(-c_2,\ 0)$ 代替; GOTO **Step 3**;

Step 3 将 A''传给 **SIMPLEX** 算法的 **Step 4**,完成计算。

End

五、 程序代码

5.1 程序描述

为了完成此项目,我创建了很多新的类,有读取类,动态数组类,矩阵类等,因为是针对单纯形算法进行量身打造,所以拓展性一般,在后来的几个新的项目里,我又在稍加修改的基础上复用了这几个类,并且针对其中几个可以通用的类进行了优化,比如加深抽象层次使之可以作为泛型容器。回过头来再看原先的代码并不足够优秀。但是时间有限,提交在即,这里就不再进行代码优化升级或者某些地方的重构了,毕竟这个程序做了大量的测试,并没有致命的 bug,特此说明。

因为程序很长,文件很多,这里就仅仅列出核心文件 Simplex.h 中的代码,其余的代码在附录中给出。本来头文件里不应该写实现,但是这里的程序不需要封装,所以实现与定义放在一起呈现。

5.2 程序代码

1 /* * Copyright (c) 2018, Liu Peng, School of Mathematics and Statistics, YNU 2 * Apache License. 3 4 5 * 文件名称: Simplex.h * 文件标识: 见配置管理计划书 6 * 摘 要: 对标准输入的单纯形问题进行求解 7 8 9 * 当前版本: 1.0 * 作 者: 刘鹏 10 * 创建日期: 2018年5月4日 11 * 完成日期: 2018年5月 12 13 * 14 * 取代版本: * 原作者: 刘鹏 15 16 * 完成日期: 17 18 19 #pragma once

```
20
21
     #include "Matrix Operation.h"
     #include "Divide.h"
22
23
24
    // Generally speaking, this data structure is not a table.
25
    // whatever, it works.
    typedef struct Simplex_Tableau {
26
27
        Matrix *Matrix;
        Dynamic Array *Objective Vector;
28
29
        Dynamic_Array *b;
    } Simplex_Tableau;
30
31
32
    // Initialize the table of simplex method.
33
    // This is a simple implementation, only can solve problems like "Ax = b"
    // with all the slack variables has been added.
34
35
     Simplex_Tableau *Simplex_Tableau_init(char *c, char *A, char *b) {
36
        Simplex_Tableau *ans = (Simplex_Tableau *)calloc(1, sizeof(Simplex_Tableau));
37
38
        Matrix *m = get_Matrix(A);
39
        ans->Objective_Vector = get_Dynamic_Array(c);
40
        ans->b = get_Dynamic_Array(b);
41
42
        int i = 0;
43
        int j = 0;
44
        Dynamic_Array *tmp = Dynamic_Array_init();
45
46
        // STEP 1: Append the zero'th row.
        for (i = 1; i <= ans->Objective_Vector->n; i++) {
47
48
            Dynamic_Array_append(tmp, -1 * Dynamic_Array_get_Element(ans->Objective_Vector, i));
49
        }
        Dynamic_Array_append(tmp, ∅);
50
51
52
        // STEP 2: Append the Coefficient Matrix.
        for (i = 1; i <= m->n_row; i++) {
53
54
            for (j = 1; j <= m->n_column; j++) {
                Dynamic_Array_append(tmp, Matrix_get_Element(m, i, j));
55
            }
56
            Dynamic_Array_append(tmp, Dynamic_Array_get_Element(ans->b, i));
57
58
        }
59
        ans->Matrix = Matrix_init(m->n_row + 1, m->n_column + 1);
60
        ans->Matrix->low level array = tmp->A;
61
62
63
        return ans;
64
    }
65
66
    // c2 is needed in the second phase.
67
   // The Objective Vector need to be changed. reshape the matrix.
```

```
68
     Simplex_Tableau *Simplex_Tableau_re_init(Simplex_Tableau *S, char *c2) {
69
        int i = 1;
70
        for (; i <= S->Objective Vector->n; i++) {
71
            double tmp = Dynamic_Array_get_Element(S->Objective_Vector, i);
72
            if (tmp > 1e-15 || tmp < -1e-15) {</pre>
73
                Matrix_column_to_zero(S->Matrix, i);
74
            }
75
        }
76
77
        Dynamic_Array *New_Objective_Vector = get_Dynamic_Array(c2);
78
        S->Objective_Vector = New_Objective_Vector;
79
80
        for (i = 0; i < New_Objective_Vector->n; i++) {
81
            // Cover the old value
82
            *(S->Matrix->low_level_array + i) = Dynamic_Array_get_Element(New_Objective_Vector, i +
     1);
83
        }
84
        Matrix_num_mul_vector(-1, S->Matrix, 1);
85
86
        return S;
87
    }
88
     // Iterations for simplex method.
89
    void Simplex(Simplex_Tableau *S) {
90
91
92
        // Pre-print the original Matrix.
93
        Matrix print(S->Matrix);
94
95
        // Checking the Problem type.
96
        int i = 1;
97
        int count_minus = 0;
98
        for (; i <= S->Objective_Vector->n; i++) {
99
            double tmp = Dynamic_Array_get_Element(S->Objective_Vector, i);
100
            if (tmp < 1e-15 || tmp == 0) {</pre>
101
                count_minus += 1;
102
            }
103
        }
104
        if (count_minus == S->Objective_Vector->n) {
105
            printf("This Linear Programming MAYBE a <MIN> type\n");
106
            printf("Simplex Matrix will be reshaped.\n");
107
            for (i = 1; i <= S->Objective_Vector->n; i++) {
108
                if (Dynamic Array get Element(S→Objective Vector, i) != 0) {
109
                    Matrix_pivot_Element_transInto_zero(S->Matrix, 1, i);
110
                    Matrix_print(S->Matrix);
111
                }
112
            }
        }
113
114
```

```
115
        int iter_deepth = 1;
116
117
        Dynamic Array *object = Matrix row to Vector(S->Matrix, 1, -1);
118
        int N_pivot_column = Dynamic_Array_find_Maximal(object);
119
        double Max = Dynamic_Array_get_Element(object, N_pivot_column);
120
121
        Dynamic_Array *pivot_column = Matrix_column_to_Vector(S->Matrix, N_pivot_column);
122
        Dynamic_Array *last_column = Matrix_column_to_Vector(S->Matrix, S->Matrix->n_column);
123
124
        Div_Dynamic_Array *tmp = Div_Dynamic_Array_init(last_column, pivot_column);
125
        int N_pivot_row = Div_Dynamic_Array_find_Minimal(tmp);
126
127
        Matrix_pivot_Element_Trans(S->Matrix, N_pivot_row, N_pivot_column);
128
129
        printf("Iter depth: %d\n", iter_deepth++);
130
        Matrix_print(S->Matrix);
131
132
        object = Matrix_row_to_Vector(S->Matrix, 1, -1);
133
        N_pivot_column = Dynamic_Array_find_Maximal(object);
134
        Max = Dynamic_Array_get_Element(object, N_pivot_column);
135
        while (Max > 0 && iter_deepth <=10000) {</pre>
136
137
138
            pivot_column = Matrix_column_to_Vector(S->Matrix, N_pivot_column);
139
            last_column = Matrix_column_to_Vector(S->Matrix, S->Matrix->n_column);
140
141
            tmp = Div Dynamic Array init(last column, pivot column);
142
            N_pivot_row = Div_Dynamic_Array_find_Minimal(tmp);
143
            Matrix_pivot_Element_Trans(S->Matrix, N_pivot_row, N_pivot_column);
144
145
            printf("Iter depth: %d\n", iter_deepth);
146
            Matrix_print(S->Matrix);
147
            object = Matrix_row_to_Vector(S->Matrix, 1, -1);
            N_pivot_column = Dynamic_Array_find_Maximal(object);
148
            Max = Dynamic_Array_get_Element(object, N_pivot_column);
149
150
151
            iter_deepth += 1;
152
        }
153 }
154
155 // For finding a initial solution, dual simplex method is needed.
156 // The input may be a little bit complex.
157 void dual_Simplex(Simplex_Tableau *S, char *c2) {
158
159
        // First Phase
        S->Objective_Vector = Matrix_row_to_Vector(S->Matrix, 1, -1);
160
161
        Simplex(S);
162
        if (Matrix_get_Element(S->Matrix, 1, S->Matrix->n_column) > 1e-14) {
```

```
printf("ANSWER of PHRASE ONE: %8.4f\n", Matrix_get_Element(S->Matrix, 1, S->Ma-
163
     trix->n_column));
            printf("No Feasible Solution.\n");
164
165
            return;
166
        }
        // else
167
168
        printf("First Phase completed.\n\n");
169
170
        Simplex_Tableau_re_init(S, c2);
        printf("NEW Objective Function is ");
171
        Dynamic_Array_print(S->Objective_Vector);
172
        printf("\n");
173
174
        Simplex(S);
175 }
```

程序代码 1

六、 运行结果

6.1 例 1

这个例子来自于算法导论[3]的 29.3 节

最大化

$$\max \, 3x_1 + x_2 + 2x_3$$

满足约束

$$\begin{aligned} x_1 + x_2 + 3x_3 &\leq 30 \\ 2x_1 + 2x_2 + 5x_3 &\leq 24 \\ 4x_1 + x_2 + 2x_3 &\leq 36 \\ x_1, \ x_2, \ x_3 &\geq 0 \end{aligned}$$

6.1.1 运行结果

-3.0000 1.0000 2.0000	-1.0000 1.0000 2.0000	-2. 0000 3. 0000 5. 0000	-0. 0000 1. 0000 0. 0000	-0. 0000 0. 0000 1. 0000	-0. 0000 0. 0000 0. 0000	0. 0000 30. 0000 24. 0000	
4. 0000	1. 0000	2.0000	0. 0000	0. 0000	1. 0000	36. 0000	
ter deepth: 1							
0. 0000 0. 0000 0. 0000 1. 0000	-0. 2500 0. 7500 1. 5000 0. 2500	-0. 5000 2. 5000 4. 0000 0. 5000	0.0000 1.0000 0.0000 0.0000	0.0000 0.0000 1.0000 0.0000	0. 7500 -0. 2500 -0. 5000 0. 2500	27. 0000 21. 0000 6. 0000 9. 0000	
1.000							‡
ter deepth: 2							
0. 0000 0. 0000	-0. 0625 -0. 1875	0. 0000 0. 0000	0. 0000 1. 0000	0. 1250 -0. 6250	0. 6875 0. 0625	27. 7500 17. 2500	Ť
0. 0000 1. 0000	0. 3750 0. 0625	1.0000 0.0000	0. 0000 0. 0000	0. 2500 -0. 1250	-0. 1250 0. 3125	1. 5000 8. 2500	
ter deepth: 3							
0. 0000 0. 0000	0. 0000 0. 0000	0. 1667 0. 5000	0. 0000 1. 0000	0. 1667 -0. 5000	0. 6667 0. 0000	28. 0000 18. 0000	
0.0000 1.0000	1.0000	2. 6667 -0. 1667	0.0000	0. 6667 -0. 1667	-0. 3333 0. 3333	4. 0000 8. 0000	

运行结果 1

6.1.2 代码分析

例子是算法导论^[3]给出的一个例子,并没有采用单纯形两阶段法,因为都是小于等于的约束,所以初值很好取。

6.2 例 2

这个例子来自运筹学导论[1]两阶段的章节。

最小化

 $0.4x_1 + 0.5x_2$

满足

$$\begin{aligned} 0.3x_1 + 0.1x_2 &\leq 2.7 \\ 0.5x_1 + 0.5x_2 &\leq 6 \end{aligned}$$

$$0.6x_1 + 0.4x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

因为存在非小于等于约束,所以先要把这些约束转化为等式约束 第一阶段问题

 $\min Z = \overline{x_4} + \overline{x_6}$

s.t.

$$0.3x_1 + 0.1x_2 + x_3 = 2.7$$
$$0.5x_1 + 0.5x_2 + \overline{x_4} = 6$$

 $0.6x_1 + 0.4x_2 - x_5 + \overline{x_6} = 6$

第二阶段问题

 $\min\,Z = 0.4x_1 + 0.5x_2$

s.t.

$$0.3x_1 + 0.1x_2 + x_3 = 2.7$$
$$0.5x_1 + 0.5x_2 = 6$$
$$0.6x_1 + 0.4x_2 - x_5 = 6$$

6.2.1 运行结果

0. 3000 0. 5000 0. 6000	-0. 0000 0. 1000 0. 5000 0. 4000	-0. 0000 1. 0000 0. 0000 0. 0000	1. 0000 0. 0000 1. 0000 0. 0000	-0.0000 0.0000 0.0000 -1.0000	1. 0000 0. 0000 0. 0000 1. 0000	0. 0000 2. 7000 6. 0000 6. 0000	
is Linear Pro	ogramming MAV	BE a <min> type</min>					
mplex Matrix	will be resh	aped. 					+
-0. 5000 0. 3000 0. 5000	-0. 5000 0. 1000 0. 5000	-0. 0000 1. 0000 0. 0000	0. 0000 0. 0000 1. 0000	-0. 0000 0. 0000 0. 0000	1. 0000 0. 0000 0. 0000	-6. 0000 2. 7000 6. 0000	
0. 6000	0. 4000	0.0000	0. 0000	-1. 0000	1. 0000	6. 0000	
-1. 1000 0. 3000	-0. 9000 0. 1000	-0. 0000 1. 0000	0. 0000 0. 0000	1. 0000 0. 0000	0. 0000 0. 0000	-12. 0000 2. 7000	
0. 5000 0. 6000	0. 5000 0. 4000	0. 0000 0. 0000	1. 0000 0. 0000	0. 0000 -1. 0000	0. 0000 1. 0000	6. 0000 6. 0000	
er depth: 1							
0. 0000 1. 0000	-0. 5333 0. 3333	3. 6667 3. 3333	0. 0000 0. 0000	1. 0000 0. 0000	0. 0000 0. 0000	-2. 1000 9. 0000	
0. 0000 0. 0000	0. 3333 0. 2000	-1. 6667 -2. 0000	1. 0000 0. 0000	0. 0000 -1. 0000	0. 0000 1. 0000	1. 5000 0. 6000	
er depth: 2							
0. 0000 1. 0000 0. 0000	0. 0000 0. 0000 0. 0000	-1. 6667 6. 6667 1. 6667	0. 0000 0. 0000 1. 0000	-1. 6667 1. 6667 1. 6667	2. 6667 -1. 6667 -1. 6667	-0. 5000 8. 0000 0. 5000	
0. 0000	1. 0000	-10. 0000	0. 0000	-5. 0000	5. 0000	3. 0000	
er depth: 3							
0. 0000 1. 0000	0. 0000 0. 0000	0. 0000 0. 0000	1. 0000 -4. 0000	0. 0000 -5. 0000	1. 0000 5. 0000	0. 0000 6. 0000	
0. 0000 0. 0000	0. 0000 1. 0000	1. 0000 0. 0000	0. 6000 6. 0000	1. 0000 5. 0000	-1. 0000 -5. 0000	0. 3000 6. 0000	
rst Phase com	-						
W Objective F		-0. 40	-0. 50	0.00	0.00	0.00	0.00
0. 4000 1. 0000 0. 0000	0. 5000 0. 0000 0. 0000	-0. 0000 0. 0000 1. 0000	-0. 0000 0. 0000 0. 0000	-0. 0000 -5. 0000 1. 0000	-0. 0000 0. 0000 0. 0000	-0. 0000 6. 0000 0. 3000	
0. 0000	1. 0000	0.0000	0. 0000	5. 0000	0.0000	6. 0000	
is Linear Pro mplex Matrix	ogramming MAY will be resh	BE a <min> type aped.</min>					
0. 0000 1. 0000	0. 5000 0. 0000	-0. 0000 0. 0000	-0. 0000 0. 0000	2. 0000 -5. 0000	-0. 0000 0. 0000	-2. 4000 6. 0000	
	0. 0000 1. 0000	1. 0000 0. 0000	0. 0000 0. 0000	1. 0000 5. 0000	0. 0000 0. 0000	0. 3000 6. 0000	
0. 0000 0. 0000							
0.0000	0.0000	-0, 0000	-0, 0000	-0. 5000	-0. 0000	-5, 4000	
	0. 0000 0. 0000 0. 0000 1. 0000	-0. 0000 0. 0000 1. 0000 0. 0000	-0. 0000 0. 0000 0. 0000 0. 0000	-0. 5000 -5. 0000 1. 0000 5. 0000	-0. 0000 0. 0000 0. 0000 0. 0000	-5. 4000 6. 0000 0. 3000 6. 0000	
0. 0000 0. 0000 1. 0000 0. 0000	0. 0000 0. 0000	0. 0000 1. 0000	0. 0000 0. 0000	-5. 0000 1. 0000	0. 0000 0. 0000	6. 0000 0. 3000	+
0. 0000 0. 0000 1. 0000 0. 0000 0. 0000	0. 0000 0. 0000	0. 0000 1. 0000	0. 0000 0. 0000	-5. 0000 1. 0000	0. 0000 0. 0000	6. 0000 0. 3000	

运行结果 2

6.2.2 代码分析

通过程序,得出了正确的答案。

七、实验体会

这个单纯形算法并不是真正基于矩阵的算法。比较遗憾。

八、 参考文献

- [1] HILLIER F S, LIEBERMAN G J. 运筹学导论 [M]. 9th ed. 北京: 清华大学出版社, 2010.
- [2] 林锐. 高质量 C++/C 编程指南 [M]. 1.0 ed., 2001.
- [3] CORMEN T H, LEISERSON C E, RIVEST R L, et al. 算法导论 [M]. 3rd ed. 北京: 机械工业出版社, 2013.