Uber New York Trip Data Analysis

```
In [1]:
import pandas as pd
import numpy as np
                                          # import library to analysis and preprosing the Data
import matplotlib.pyplot as plt
                                         # import the library to batter visulization the data
import seaborn as sns
In [2]:
import os
            # to check path and intract with system we import os module
In [3]:
os.listdir(path = 'C:\\Users\\RAJAT\\Desktop\\my notes\\Data Analysis Projects\\uber-pickups-in-ne
w-york-city')
# to show the uber new york list of data csv file avilable in my pc
Out[3]:
['other-American B01362.csv',
 'other-Carmel B00256.csv',
 'other-Dial7 B00887.csv',
 'other-Diplo B01196.csv',
 'other-Federal 02216.csv',
 'other-FHV-services jan-aug-2015.csv',
 'other-Firstclass B01536.csv',
 'other-Highclass B01717.csv',
 'other-Lyft B02510.csv',
 'other-Prestige B01338.csv',
 'other-Skyline_B00111.csv',
 'Uber-Jan-Feb-FOIL.csv',
 'uber-raw-data-apr14.csv',
 'uber-raw-data-aug14.csv',
 'uber-raw-data-janjune-15.csv',
 'uber-raw-data-jul14.csv',
 'uber-raw-data-jun14.csv',
 'uber-raw-data-may14.csv',
 'uber-raw-data-sep14.csv']
File = os.listdir(path = 'C:\\Users\\RAJAT\\Desktop\\my notes\\Data Analysis Projects\\uber-pickup
s-in-new-york-city')[-7:]
File
Out[4]:
['uber-raw-data-apr14.csv',
 'uber-raw-data-aug14.csv',
 'uber-raw-data-janjune-15.csv',
 'uber-raw-data-jul14.csv',
 'uber-raw-data-jun14.csv',
 'uber-raw-data-may14.csv',
 'uber-raw-data-sep14.csv']
In [5]:
File.remove('uber-raw-data-janjune-15.csv') # to remove the file
```

collect and importing the Data

```
' # path of our csv files
In [7]:
final = pd.DataFrame()
                                                                                      # create blank (
a frame
for f in File:
    Data = pd.read csv(Path+"/"+f,encoding="utf-8")
                                                                                      # read all data
    final = pd.concat([Data,final])
                                                                        # cancat all files with the bi
nk final dataframe
In [8]:
final.shape
                                # check the dimansion of data ("its very Big Amount of Data")
Out[8]:
(4534327, 4)
Preparing Data For Analysis (Data Preprocessing)
df = final.copy() # create a copy of orignal data
In [10]:
df.head()
Out[10]:
       Date/Time
                  Lat
                         Lon Base
0 9/1/2014 0:01:00 40.2201 -74.0021 B02512
1 9/1/2014 0:01:00 40.7500 -74.0027 B02512
2 9/1/2014 0:03:00 40.7559 -73.9864 B02512
3 9/1/2014 0:06:00 40.7450 -73.9889 B02512
4 9/1/2014 0:11:00 40.8145 -73.9444 B02512
In [11]:
df.dtypes
                         # checking the Data types of our DataFrame
Out[11]:
Date/Time
             object
            float64
Lat
Lon
            float64
Base
             object
dtype: object
In [12]:
# Data time having object data so we need to convert itno pandas date time module
df['Date/Time'] = pd.to_datetime(df['Date/Time'],format="%m/%d/%Y %H:%M:%S") # covert and formate
Date Time
```

Path = 'C:\\Users\\RAJAT\\Desktop\\my notes\\Data Analysis Projects\\uber-pickups-in-new-york-city

```
In [14]:
```

```
df.dtypes
```

Out[14]:

Date/Time datetime64[ns]
Lat float64
Lon float64
Base object

dtype: object

In [15]:

```
df["WeekDays"] = df['Date/Time'].dt.day_name()
```

In [16]:

```
df["Day"] = df['Date/Time'].dt.day
df["Month"] = df['Date/Time'].dt.month
df["Year"] = df['Date/Time'].dt.year
df["Hours"] = df['Date/Time'].dt.hour
df["Minutes"] = df['Date/Time'].dt.minute
```

In [17]:

df.head()

Out[17]:

	Date/Time	Lat	Lon	Base	WeekDays	Day	Month	Year	Hours	Minutes
0	2014-09-01 00:01:00	40.2201	-74.0021	B02512	Monday	1	9	2014	0	1
1	2014-09-01 00:01:00	40.7500	-74.0027	B02512	Monday	1	9	2014	0	1
2	2014-09-01 00:03:00	40.7559	-73.9864	B02512	Monday	1	9	2014	0	3
3	2014-09-01 00:06:00	40.7450	-73.9889	B02512	Monday	1	9	2014	0	6
4	2014-09-01 00:11:00	40.8145	-73.9444	B02512	Monday	1	9	2014	0	11

In [18]:

df.tail()

Out[18]:

	Date/Time	Lat	Lon	Base	WeekDays	Day	Month	Year	Hours	Minutes
564511	2014-04-30 23:22:00	40.7640	-73.9744	B02764	Wednesday	30	4	2014	23	22
564512	2014-04-30 23:26:00	40.7629	-73.9672	B02764	Wednesday	30	4	2014	23	26
564513	2014-04-30 23:31:00	40.7443	-73.9889	B02764	Wednesday	30	4	2014	23	31
564514	2014-04-30 23:32:00	40.6756	-73.9405	B02764	Wednesday	30	4	2014	23	32
564515	2014-04-30 23:48:00	40.6880	-73.9608	B02764	Wednesday	30	4	2014	23	48

In [19]:

df.dtypes

Out[19]:

Date/Time datetime64[ns]
Lat float64
Lon float64
Base object
WeekDays object
Day int64
Month int64
Year int64

Hours int64
Minutes int64
dtype: object

1. Analysis data --->> journey according Weekdays

```
In [20]:
df['WeekDays'].value_counts()
Out[20]:
Thursday 755145
Friday 741139
Wednesday 696488
Tuesday 663789
Saturday 646114
Monday 541472
Monday
             490180
Sunday
Name: WeekDays, dtype: int64
In [21]:
df['WeekDays'].value_counts().index
Out[21]:
Index(['Thursday', 'Friday', 'Wednesday', 'Tuesday', 'Saturday', 'Monday',
       'Sunday'],
      dtype='object')
In [22]:
import plotly.express as px
In [23]:
px.bar(x = df['WeekDays'].value_counts().index,
     y = df['WeekDays'].value_counts())
```

so in weekday thursday Having high Journeys and sunday have low journeys

so on Thursday we required more uber cabs becouse we have very high rush on thursday

2. Analysis data --->> Journey according Hours

```
In [25]:
(df["Month"].unique())
Out[25]:
array([9, 5, 6, 7, 8, 4], dtype=int64)
In [26]:
for i,month in enumerate(df["Month"].unique()):
    print(i)
    print(month)
0
9
1
5
2
6
7
4
8
5
4
In [27]:
plt.figure(figsize=(30,20))
for i,month in enumerate(df["Month"].unique()):
    plt.subplot(3,2,i+1)
    df[df["Month"] == month]['Hours'].hist()
```


so in above graph we see that in evening Time 3:00 pm to 9:00 pm having very high rush.

3.which month having maximum rides?

```
In [29]:
df.head()
Out[29]:
           Date/Time
                                        Base WeekDays Day Month Year Hours Minutes
0 2014-09-01 00:01:00 40.2201 -74.0021 B02512
                                                                  9 2014
                                                 Monday
 1 2014-09-01 00:01:00 40.7500 -74.0027 B02512
                                                                  9 2014
                                                                               0
                                                 Monday
                                                                                       1
2 2014-09-01 00:03:00 40.7559 -73.9864 B02512
                                                                                       3
                                                 Monday
                                                                  9 2014
                                                                               0
 3 2014-09-01 00:06:00 40.7450 -73.9889 B02512
                                                                  9 2014
                                                                                       6
                                                 Monday
 4 2014-09-01 00:11:00 40.8145 -73.9444 B02512
                                                 Monday
                                                                  9 2014
                                                                               0
                                                                                      11
```

```
In [30]:
```

```
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
```

In [31]:

```
df.groupby("Month")['Hours'].count()
Out[31]:
Month
```

4 564516 5 652435 6 663844 7 796121 8 829275 9 1028136

Name: Hours, dtype: int64

In [32]:

```
df.groupby("Month")['Hours'].count().index
```

Out[32]:

Int64Index([4, 5, 6, 7, 8, 9], dtype='int64', name='Month')

In [33]:

```
G1=go.Bar(x=df.groupby("Month")['Hours'].count().index,y=df.groupby("Month")['Hours'].count(),)
G1
```

Out[33]:

```
Bar({
    'x': array([4, 5, 6, 7, 8, 9], dtype=int64),
    'y': array([ 564516, 652435, 663844, 796121, 829275, 1028136], dtype=int64)
})
```

In [34]:

so 9 month sept having maximum rides and in month 4 having low rides

4.jurneny of each day

```
In [36]:
```

```
plt.figure(figsize=(10,5))
plt.hist(df['Day'],bins = 30,rwidth=0.8,range=(0.5,30.5))
plt.xlabel("date of month")
plt.ylabel("Total Journey")
plt.title("Journey of each day")
```

Out[36]:

Text(0.5, 1.0, 'Journey of each day')

5. Analysis of total rides Month Wise

```
In [38]:
```

```
plt.figure(figsize=(20,10))
for i,month in enumerate(df["Month"].unique(),1):
    plt.subplot(3,2,i)
    df_out = df[df['Month']==month]
    plt.hist(df_out['Day'])
    plt.xlabel(f"Month {month} Days")
    plt.ylabel("total Rides")
```


last week of each month having higest Rush

6.analysis hours of days according Latitude

```
In [40]:
```

```
ax = sns.pointplot(x = "Hours", y = "Lat", data = df , hue= "WeekDays")
ax.set_title("hours of days according Latitude")
```

Out[40]:

Text(0.5, 1.0, 'hours of days according Latitude')

so Thursday (Red graph) having very Rush

```
In [41]:
```

```
df.head()
```

Out[41]:

	Date/Time	Lat	Lon	Base	WeekDays	Day	Month	Year	Hours	Minutes
0	2014-09-01 00:01:00	40.2201	-74.0021	B02512	Monday	1	9	2014	0	1
1	2014-09-01 00:01:00	40.7500	-74.0027	B02512	Monday	1	9	2014	0	1
2	2014-09-01 00:03:00	40.7559	-73.9864	B02512	Monday	1	9	2014	0	3
3	2014-09-01 00:06:00	40.7450	-73.9889	B02512	Monday	1	9	2014	0	6
4	2014-09-01 00:11:00	40.8145	-73.9444	B02512	Monday	1	9	2014	0	11

7. Analysis which base number get popular by Month

In [42]:

```
Base = df.groupby(["Base","Month"])["Date/Time"].count().reset_index()
Base
```

Out[42]:

	Base	Month	Date/Time
0	B02512	4	35536
1	B02512	5	36765
2	B02512	6	32509
3	B02512	7	35021
4	B02512	8	31472
5	B02512	9	34370
6	B02598	4	183263
7	B02598	5	260549
8	B02598	6	242975
9	B02598	7	245597
10	B02598	8	220129
11	B02598	9	240600
12	B02617	4	108001
13	B02617	5	122734
14	B02617	6	184460
15	B02617	7	310160
16	B02617	8	355803
17	B02617	9	377695
18	B02682	4	227808
19	B02682	5	222883
20	B02682	6	194926
21	B02682	7	196754
22	B02682	8	173280
23	B02682	9	197138
24	B02764	4	9908
25	B02764	5	9504
26	B02764	6	8974

```
        27
        B02764 Base
        Month
        Date/Time

        28
        B02764
        8
        48591

        29
        B02764
        9
        178333
```

```
In [43]:
```

```
plt.figure(figsize=(10,6))
sns.lineplot(x='Month',y='Date/Time',hue="Base",data=Base)
```

Out[43]:

<matplotlib.axes._subplots.AxesSubplot at 0x22a015ba448>

so by this graph base no. B02617 green line is most popular in month 7,8,9

8. Cross Analysis of Data

1.heatmap acc. to Hours and weekdays

2.heatmap acc. to Hours and Days

3.heatmap acc. to Month and Days

4.heatmap acc. to Month and weekdays

```
In [45]:
```

```
def count_rows(rows):
    return len(rows)
```

```
In [46]:
```

```
cross = df.groupby(['WeekDays',"Hours"]).apply(count_rows)
```

In [47]:

```
cross
```

Out[47]:

```
WeekDays Hours
Friday 0 13716
```

```
1
                    отоэ
           2
                    5350
           3
                    6930
           4
                    8806
                   47017
Wednesday 19
           20
                    47772
           21
                    44553
           22
                    32868
           23
                   18146
Length: 168, dtype: int64
```

In [48]:

```
pivot = cross.unstack()
pivot
```

Out[48]:

Hours	0	1	2	3	4	5	6	7	8	9	 14	15	16	17	18	19	
WeekDays																	
Friday	13716	8163	5350	6930	8806	13450	23412	32061	31509	25230	 36206	43673	48169	51961	54762	49595	43
Monday	6436	3737	2938	6232	9640	15032	23746	31159	29265	22197	 28157	32744	38770	42023	37000	34159	32
Saturday	27633	19189	12710	9542	6846	7084	8579	11014	14411	17669	 31418	38769	43512	42844	45883	41098	38
Sunday	32877	23015	15436	10597	6374	6169	6596	8728	12128	16401	 28151	31112	33038	31521	28291	25948	25
Thursday	9293	5290	3719	5637	8505	14169	27065	37038	35431	27812	 36699	44442	50560	56704	55825	51907	51
Tuesday	6237	3509	2571	4494	7548	14241	26872	36599	33934	25023	 34846	41338	48667	55500	50186	44789	44
Wednesday	7644	4324	3141	4855	7511	13794	26943	36495	33826	25635	 35148	43388	50684	55637	52732	47017	47

7 rows × 24 columns

In [49]:

```
plt.figure(figsize=(10,9))
sns.heatmap(pivot)
```

Out[49]:

<matplotlib.axes._subplots.AxesSubplot at 0x22a0149ed08>


```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
```

so acc to heatmap evening(4:00pm to 11:00pm) time having most Rush

In [51]:

```
# i will create a function for further all 3 analysis
```

In [52]:

```
def heatmap(col1,col2):
    cross = df.groupby([col1,col2]).apply(count_rows)
    pivot = cross.unstack()
    return sns.heatmap(pivot)
```

In [53]:

```
heatmap("Hours","Day") # 2nd
```

Out[53]:

<matplotlib.axes._subplots.AxesSubplot at 0x22a011e0b08>

In [54]:

```
heatmap("Month","Day") # 3rd
```

Out[54]:

<matplotlib.axes._subplots.AxesSubplot at 0x22a014d75c8>

--- [- - 1 ·

```
heatmap("Month","WeekDays") # 4th
```

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x22a0150b408>

Analysing the results

We observe that the number of trips increases each month, we can say that from April to September 2014, Uber was in a continuous improvement process.

9. Analysis Location of Data Points

In [56]:

```
plt.figure(figsize=(10,6))
plt.plot(df['Lon'],df['Lat'],"c+",ms=0.5)
plt.xlim(-74.2, -73.7)
plt.ylim(40.6,41)
```

Out[56]:

(40.6, 41)

We can see a number of hot spots here. Midtown Manhattan is clearly a huge bright spot.

& these are made from Midtown to Lower Manhattan.

Followed by Upper Manhattan and the Heights of Brooklyn.

In [57]:

```
df_out=df[df['WeekDays']=='Sunday']
df_out.head()
```

Out[57]:

	Date/Time	Lat	Lon	Base	WeekDays	Day	Month	Year	Hours	Minutes
8011	2014-09-07 00:00:00	40.7341	-74.0005	B02512	Sunday	7	9	2014	0	0
8012	2014-09-07 00:00:00	40.7344	-73.9900	B02512	Sunday	7	9	2014	0	0
8013	2014-09-07 00:00:00	40.7806	-73.9582	B02512	Sunday	7	9	2014	0	0
8014	2014-09-07 00:01:00	40.7293	-73.9859	B02512	Sunday	7	9	2014	0	1
8015	2014-09-07 00:01:00	40.7713	-74.0133	B02512	Sunday	7	9	2014	0	1

In [58]:

```
df_out.groupby(['Lat','Lon'])['WeekDays'].count().reset_index()
```

Out[58]:

	Lat	Lon	WeekDays
0	39.9374	-74.0722	1
1	39.9378	-74.0721	1
2	39.9384	-74.0742	1
3	39.9385	-74.0734	1
4	39.9415	-74.0736	1
209225	41.3141	-74.1249	1
209226	41.3180	-74.1298	1
209227	41.3195	-73.6905	1
209228	41.3197	-73.6903	1
209229	42.1166	-72.0666	1

209230 rows × 3 columns

In [59]:

```
import folium
from folium.plugins import HeatMap
basemap = folium.Map()
```

In [90]:

```
HeatMap(df_out.groupby(['Lat','Lon'])['WeekDays'].count().reset_index(),zoom=20,radius=15).add_to(b
asemap)
basemap
```

Out[90]:

Make this Notebook Trusted to load map: File -> Trust Notebook

In [61]:

#Lets create a function for a specific day

In [62]:

```
def Heatmap(df,Day):
    df_out=df[df['WeekDays']==Day]
    df_out.groupby(['Lat','Lon'])['WeekDays'].count().reset_index()
    HeatMap(df_out.groupby(['Lat','Lon'])['WeekDays'].count().reset_index(),zoom=20,radius=15).add_
to(basemap)
    return basemap
```

In [63]:

Heatmap(df,'Monday')

Out[63]:

10. Analysis the Data of Uber Jan to June

```
In [64]:
```

```
Uber = pd.read csv("C://Users//RAJAT//Desktop//my notes//Data Analysis Projects//uber-pickups-in-n
ew-york-city//uber-raw-data-janjune-15.csv")
```

In [65]:

```
Uber.head()
```

Out[65]:

	Dispatching_base_num	Pickup_date	Affiliated_base_num	locationID
0	B02617	2015-05-17 09:47:00	B02617	141
1	B02617	2015-05-17 09:47:00	B02617	65
2	B02617	2015-05-17 09:47:00	B02617	100
3	B02617	2015-05-17 09:47:00	B02774	80
4	B02617	2015-05-17 09:47:00	B02617	90

In [66]:

```
Uber.dtypes
```

Out[66]:

Dispatching_base_num object object Pickup_date object Affiliated_base_num locationID int64

dtype: object

In [67]:

```
Uber['Pickup date'] = pd.to datetime(Uber['Pickup date'],format='%Y-%m-%d %H:%M:%S')
```

In [68]:

```
Uber.dtypes
```

Out[68]:

Dispatching base num object datetime64[ns] Pickup date Affiliated_base_num object locationID int64 dtype: object

In [69]:

```
Uber['weekday']=Uber['Pickup date'].dt.day name()
Uber['Day']=Uber['Pickup_date'].dt.day
Uber['Minute']=Uber['Pickup date'].dt.minute
Uber['Month']=Uber['Pickup date'].dt.month
Uber['Hour']=Uber['Pickup_date'].dt.hour
```

In [70]:

```
Uber.head()
```

Out[70]:

0	Dispatching_base_num	2015-05-17 09:47:00 Pickup_date	Affiliated_base_num	locationID	Sunday weekday	Day	Minute 47	Month 5	Hour
1	B02617	2015-05-17 09:47:00	B02617	65	Sunday	17	47	5	9
2	B02617	2015-05-17 09:47:00	B02617	100	Sunday	17	47	5	9
3	B02617	2015-05-17 09:47:00	B02774	80	Sunday	17	47	5	9
4	B02617	2015-05-17 09:47:00	B02617	90	Sunday	17	47	5	9

11. Uber pickups by the month in NYC

so in month 6 haveing highest pickups

jan having lowest pickups

12. Analysing Rush in New York City

In [75]:

```
plt.figure(figsize=(12,6))
sns.countplot(Uber["Hour"])
```

Out[75]:

<matplotlib.axes._subplots.AxesSubplot at 0x22a7ce76e08>

In evening time having high Rush (4:00 to 11:00pm)

In afternoon Rush are equal not much more But in morning time Rush is very low

13. Analysing In-Depth Analysis of Rush in New york City Day & hour wise

```
In [76]:
```

```
Uber.groupby(["weekday","Hour"])['Pickup_date'].count()
Out[76]:
weekday
           Hour
Friday
           0
                    85939
           1
                    46616
                    28102
                   19518
                   23575
Wednesday
          19
                   143751
           20
                   136003
           21
                   133993
                  127026
           2.2
                    99490
Name: Pickup_date, Length: 168, dtype: int64
```

In [77]:

```
summary = Uber.groupby(["weekday","Hour"])['Pickup_date'].count().reset_index()
```

In [78]:

```
summary.head()
```

Out[78]:

	weekday	Hour	Pickup_date
0	Friday	0	85939
1	Friday	1	46616
2	Friday	2	28102
3	Friday	3	19518
4	Friday	4	23575

In [79]:

```
summary=summary.rename(columns = {'Pickup_date':'Counts'})
summary
```

Out[79]:

		weekday	Hour	Counts
	0	Friday	0	85939
	1	Friday	1	46616
	2	Friday	2	28102
	3	Friday	3	19518
	4	Friday	4	23575
1	63	Wednesday	19	143751
1	64	Wednesday	20	136003
1	65	Wednesday	21	133993
1	66	Wednesday	22	127026
1	67	Wednesday	23	99490

168 rows × 3 columns

In [80]:

```
plt.figure(figsize=(10,6))
sns.pointplot(x="Hour", y="Counts", hue="weekday", data=summary)
```

Out[80]:

<matplotlib.axes._subplots.AxesSubplot at 0x22af1c8af88>

14. Which dispatching_base_number is highly active

In [81]:

uber_foil = pd.read_csv("C://Users//RAJAT//Desktop//my notes//Data Analysis Projects//uber-pickups
-in-new-york-city//Uber-Jan-Feb-FOIL.csv")

In [82]:

```
uber_foil.head()
```

Out[82]:

	dispatching_base_number	date	active_vehicles	trips
0	B02512	1/1/2015	190	1132
1	B02765	1/1/2015	225	1765
2	B02764	1/1/2015	3427	29421
3	B02682	1/1/2015	945	7679
4	B02617	1/1/2015	1228	9537

In [83]:

```
uber_foil["dispatching_base_number"].unique()
```

Out[83]:

In [84]:

```
plt.figure(figsize=(10,6))
sns.boxplot(x="dispatching_base_number",y="active_vehicles",data=uber_foil)
```

Out[84]:

<matplotlib.axes._subplots.AxesSubplot at 0x22a94ac5788>


```
In [95]:
```

```
plt.figure(figsize=(10,6))
sns.boxplot(x = 'dispatching_base_number', y = 'trips', data = uber_foil)
```

Out[95]:

<matplotlib.axes._subplots.AxesSubplot at 0x22a981bc2c8>

so Base No. B02764 is highly use on trips

15.how Average trips/vehicle inc/decreases with dates with each of base uber

```
In [86]:
```

```
# Finding the ratio of trips/active_vehicles
uber_foil['trips/vehicle'] = uber_foil['trips']/uber_foil['active_vehicles']
```

In [87]:

```
uber_foil.head()
```

Out[87]:

	dispatching_base_number	date	active_vehicles	trips	trips/vehicle
0	B02512	1/1/2015	190	1132	5.957895
1	B02765	1/1/2015	225	1765	7.844444
2	B02764	1/1/2015	3427	29421	8.585060
3	B02682	1/1/2015	945	7679	8.125926
4	B02617	1/1/2015	1228	9537	7.766287

In [88]:

```
uber_foil.set_index('date')
```

Out[88]:

date	dispatching_base_number	active_vehicles	trips	trips/vehicle
1/1/2015	B02512	190	1132	5.957895
1/1/2015	B02765	225	1765	7.844444
1/1/2015	B02764	3427	29421	8.585060
1/1/2015	B02682	945	7679	8.125926
1/1/2015	B02617	1228	9537	7.766287

2/28/2015	B02764	3952	39812	10.073887
2/28/2015	B02617	1372	14022	10.220117
2/28/2015	B02682	1386	14472	10.441558
2/28/2015	B02512	230	1803	7.839130
2/28/2015	B02765	747	7753	10.378849

354 rows × 4 columns

In [89]:

```
plt.figure(figsize=(10,6))
uber_foil.set_index('date').groupby(['dispatching_base_number'])['trips/vehicle'].plot()
plt.ylabel('Average trips/vehicle')
plt.title('Demand vs Supply chart (Date-wise)')
plt.legend()
```

Out[89]:

<matplotlib.legend.Legend at 0x22a949e0b48>

Acc. to Graph base no. B02764 & B02682 & B02617 is avarage highly use

And Base No. B02512 is very low use

```
In [ ]:
```

This Complete Analysis of Uber New York trip Data I am find very insides for given row data of uber that are very helpful insides.

**Completed This Project

By Rajat Kumar pancholi

In []: