Transcription

Eukaryotic transcription

RNAP forms PIC on the promoter

Promoter complex opens

DNA-dependent RNA synthesis then generates an initially transcribing complex

RNAP escapes promoter

Promoter

Region of transcription initiation

Located upstream of gene

Enhancer

DNA region that binds transcription factors (TFs) to facilitate transcription

Eukaryotic transcription

RNAPII associates with different proteins during the transcription cycle

Condensate model

TFs form condensates to recruit RNAPII to promoters

RNAPII shuttles between promoter and gene-body condensates

Transcription factors and genome architecture

Linear view of genome is outdated - 3D structure matters

Transcription factors help shape 3D structure for altering functionality of genome

Chromosome territories

Chromosomes are organized into specific compartments in the nucleus

Interactions with nuclear lamina important for their maintenance

Territories rarely intersect

Compartments in territories

Each territory can be divided into A and B compartments

A is mostly euchromatic

B is lamina-associated and mostly heterochromatic

Transcription factors (TFs) can reposition genes between compartments

Nuclear hubs

Higher order structures that form between different chromosomes

TF-induced condensates

Transcription factors form phase-separated droplets via their activating domains

These droplets also contain Mediator

Mediator

Communicates regulatory signals from DNA-bound TFs directly to the RNA polymerase II (pol II) enzyme

Mediator

Huge multisubunit complex

Allen, 2015

Mediator

Different components of mediator are regulated via different signal pathways

TF-induced condensates

Multiple different TFs form droplets with Mediator

Estrogen receptor forms droplets with Mediator in estrogen-dependent manner

Transcription factories

Colocalization of RNAPII and UTP incorporation

100-8000 depending on cell state

Transcription occurs at discrete sites called factories

Transcription factories

Contain 4–30 stationary RNA polymerase II molecules which are located on the surface of a protein-rich core

Contain co-activators, chromatin remodelers, transcription factors, histone modification enzymes, RNPs, RNA helicases, and splicing and processing factors

40 to 198 nm in size

Transcription factories

Transcription factories are probably stationary

They may have TF preference

Can cause chromatin looping

Features of transcription factories

Several models of gene clustering

Models for gene clustering

Nuclear speckles

Contain splicing machinery (snRNP and SR proteins)

Some other proteins - translation factors, transcription factors

Interchromosomal domains

Topologically associating domains (TADs)

TAD formation

Cohesin serves as a loop for DNA extrusion

CTCF is a stopping signal. Separates heterochromatin

Topology and gene functioning

A - maintaining expression levels to ensure stability of cell fate

C - TFs initiate locus contraction to ensure that all VDJ segments are equally available

Topology and gene functioning

- B TFs may ensure that genes are primed for rapid activation
- D Genome architecture alteration alone can active genes without signal transmission

Overall regulatory scheme

3D structure is not everything

Drosophila lines with highly rearranged genome

TAD disruption

Disrupted both long and short-range interactions

Gene expression changes

Gene expression near rearrangements was mostly unaltered

CTCF loss

CTCF degradation leaves genomic compartmentalization mostly unaffected

Manipulating 3D architecture to learn

Motor learning causes chromatin rearrangement

Depletion of cohesin impairs learning

Treadmill-coupled to rotary encoder

Manipulating 3D architecture for therapy

Song et al. Mol. Cell, 2007 Yun et al. NAR, 2014

The mammalian β-globin loci embryo AY GY human fetus embrvo OR genes Tolhuis et al. Mol. Cell, 2002 Palstra et al. Nat. Genet., 2003 Locus control region (LCR) enhancer loops to genes determining which one is active as development proceeds FOG) Tal1 LMO2 LDB1 Drissen et al. Genes Dev., 2004 LDB1 complex Vakoc et al. Cell. 2005.

Why do we need biological replicates?

Cell-to-cell variation

Living cells are not homogenous even in the same environment

There are different reasons for that

Expression noise

Biochemical reactions rely on interacting molecules

Diffusion and binding are stochastic

Isogenic cells in the same environment can be different

Stochasticity in cells

Intrinsic stochasticity is "generated by the dynamics of the system from the random timing of individual reactions" and extrinsic stochasticity is "generated by the system interacting with other stochastic systems in the cell or its environment." (Shahrezaei and Swain, 2008)

Transcription noise

Intrinsic - gene-specific (promoter architecture, transcription factors)

Extrinsic - cell-specific (availability of RNAP, DNA topology, ribosomes, copy number variation)

Extrinsic gene independent	Noise	Intrinsic gene specific
RNA polymerase, ribosome, gene	copy numbers	Transcription factor
DNA topology	DNA	Promoter architecture

Measuring transcription noise

A - extrinsic noise. Cells may differ but all genes are equally affected

B - intrinsic noise. Genes differ

Measure different noises

YFP and CFP controlled by lac promoter

Genes are equidistant from oriC

Fluorescent intensity difference tells about intrinsic noise

Total noise ^ 2 = Intrinsic noise ^ 2 + Extrinsic noise ^ 2

Wild-type (i.e. lacl+) strains are noisy

Strain without lacl is not noisy

Blocking lacI with IPTG reduces noise

Repressilator

Oscillatory behaviour because of mutually repressed genes

42

Repressilator

Oscillatory behaviour rapidly falls apart :(

Repressilator induces noise

Also note increased total noise

Intrinsic noise is increased when not in a steady state

Noisy vs non-noisy strain

RecA decreases intrinsic noise

Elowitz, 2002

recA deletion increases intrinsic noise

Feedback regulation

Feedback regulation decreases noise

May be the reason why it is so popular in gene regulatory networks

Feedback regulation

Repressing feedback regulation increases noise

Can be done via mutating repressor or deleting operators

Fighting noise in circadian clocks

Circadian systems should be noise resistant

Transcription bursts

In prokaryotes and eukaryotes, most genes appear to be transcribed during short periods called transcriptional bursts, interspersed by silent intervals

Transcription bursts

Burst kinetics is gene-specific

Transcription bursts

Promoter structure influences burst kinetics

Core promoter regulates bursts

TATA increases bursts

Initiator increases bursts if TATA is present

Enhancers also regulate bursts

Transcription bursts are cell type-specific

Enhancers also regulate bursts

Mutating enhancer can alter burst kinetics

Noise is random but noisiness is not

Biological noise differs highly across biological groups

Housekeeping genes tend to be less noisy

Chromatin remodeling tends to induce noise in target genes

Noise is random but noisiness is not

mRNA or protein copy number and the variation in mRNA expression are very strongly correlated with CV and DM values, respectively

Noisiness is important in evolution

Older genes are less noisy

Noisiness is important in evolution

Genes that encode highly connected proteins are less noisy

Protein position in PPI network defines transcriptional noise

Noisiness and mean expression are separate parameters in evolution

Cell fate vs noise

Somite differentiation

Highly uniform process despite potential noise sources

Clock and wavefront model

Longitudinal positional information gradient down the AP

Interaction with cellular oscillator

Clock determines the time of catastrophe - rapid change of cell state

Breaking clock disrupts somites

Zebrafish mutants with disrupted clock have larger variation in somite size

64

Other ways to buffer noise

A - RNA levels are buffered across syncytium

B - transcription is noisy but translocation is not

Olfactory receptors (ORs)

Encoded by a huge multigene family

Mice have ~1000 functional genes (3% of genome)

Humans have around 400

Olfactory sensory neurons

Each mature olfactory sensory neuron expresses one olfactory receptor gene in monoallelic and stochastic fashion

Greek islands

OR gene choice is controlled by multiple enhancers scattered across genome

Greek islands and ORs

Greek islands are bound by LHX2 and LDB1

Greek islands only interact with active OR genes

Control mOSNs OMP-GFP OR cluster (chr9)

OR cluster (chr9)

Greek islands

Greek islands

Greek islands

Hi-C contacts per billion

50-kb resolution

Questions?