

KOREAN PATENT ABSTRACTS(KR)

Document Code:A

(11) Publication No.1020030013661

(43) Publication. Date. 20030215

(21) Application No.1020010047779

(22) Application Date. 20010808

(51) IPC Code:

H01M 8/02

(71) Applicant:

KOREA INSTITUTE OF ENERGY RESEARCH

(72) Inventor:

HAN, SU BIN JUNG, BONG MAN JUNG, HAK GEUN

LEE, WON YONG

(30) Priority:

(54) Title of Invention
REAL TIME FUEL CELL SIMULATOR

Representative drawing

(57) Abstract:

PURPOSE: A real time fuel cell simulator is provided, for simulating the dynamic and stationary operation characteristic of a fuel cell without a fuel cell in real time under the same condition to the operation condition of the real operated fuel cell system.

CONSTITUTION: The real time fuel cell simulator comprises a power system(31), and an information processing and control system(32). The power system(31) comprises an energy supply device(31A) for supplying a direct current; and a power transformation device(31B) for transforming the power from the energy supply device into a direct power of desired voltage and current. The information processing and control system

(32) comprises a data communication part(32A); a fuel cell information storage device(32C); an operation point estimation part(32B) for comparing the output characteristic of a fuel cell provided from the fuel cell information storage device (32C) with the operation condition and the external loading condition input through the data communication part(32A) and estimating the output voltage of the power system for allowing a real fuel cell to be operated and the position of the operation point respective to the current; and an active characteristic embodiment module (32D) for controlling the retention time and raising time for the measured real voltage and current to reach the operation point estimated at the operation estimation part (32B) and making the estimated point to coincide with the real measured value.

© KIPO 2003

If display of image is failed, press (F5)

(19) 대한민국특허청(KR) (12) 등록특허공보(B1)

	•	•	_	
(51) Int. CI. ⁷		(45) 공고일자	2003년08월27일	
H01M B/02		(11) 등록번호	10-0396198	
		(24) 등록일자	2003년 08월 18일	
(21) 출원번호 <u>(22) 출원일자</u>	10-2001-0047779 2001년08월08일	(65) 공개번호 (43) 공개일자	독2003-0013661 2003년02월 15일	_
(73) 특허권자	한국에너지기술연구원 배달	··· · · · · · · ·		_
(72) 발명자	대전 유성구 장동 71-2 . 한수빈			
	대전광역시서구월명2동무긍화아파트103-1202 이원용			
	. 대전광역시유성구어은등한빚아파트 108-1702 정학근			
	·대전광역시유성구장동71~2 정봉만			
(74) 대리인	대전광역시서구삼원등극화이파 김영관	≣506–302		
A1175 . 01041				

실사관 : 이우식

(54) 실시간 연료전지 시뮬레이터

出む

본 말명은 실제 운전 중인 연료전지 시스템의 운전 조건과 통일한 상태에서 방휘될 수 있는 연료전지의 통적 및 정적 특성을 연료전지 없이 실시간으로 가상구현시킬 수 있는 실시간 연료전자 시뮬레이터에 관한 것이다.

문 발명의 시뮬레이터는, 상은의 전원을 정류하거나 욕전지를 사용하여 직유 전력을 공급하는 에너지 공급 장치(31A)와, 에너지 공급 장치로부터 공급되는 전력을 조절하여 출력하는 전력 변한 장치(31B)로 구성된 전력 시스템(31)과; 연료전지가 작동되어야 할 문전조건 및 외부 부하에서 필요로 되는 출력 전력에 대한 영령에 대한 정보들을 입력받는 직렬통신 방식의 데이터 등신부(32A)와, 연료전지의 등작 특성과 관련된 기본 데이터가 저장되는 연료전지 정보 저장 장치(32C)와, 상기 연료전지 정보 저장 장치에서 제공되는 연료전지의 출력 특성과 상기 데이터 등신부들 통하여 입력된 운전 조건 및 외부 부하 조건을 비교연산하여 연료전지가 등작되어야 함 등작정의 위치를 추분하는 등작정 추른무(32B)와. 상기 전력시스템으로부터 솔릭되는 실시간 전압 및 전류의 측정값이 상기 동작점 추른부에서 추른된 동작점에 실제 도달하기까지의 지연시간 및 상습시간을 조절하여 추론된 등작정과 실제 측정값이 일치되도록 하는 역할을 수행하는 동특성 구된 모듈(320)로 구성되는 정보 처리 및 제어 시스템(32)으로 이루어진다.

본 발명의 실시간 연료전지 시뮬레이터는 고가의 연료전지와 복잡한 부대 설비가 없이도 실제 연료전지 시스템의 등작 특성은 실시간 가상구현시킬 수 있기 때문에 연료전지의 특성 시명과 구성 설비들의 개발 에 소요되는 경비와 시간을 적기적으로 출할 수 있으며, 연료전지의 종류 및 용량에 관계 없이 모든 연 료전지 시스템에 대한 시뮬레이션이 가능한 장점이 있다.

대표도

£3

색인어

연료전지. 시뮬레이터.

명세시

도면의 간단한 설명

도 1은 연료전지의 전형적인 등작 전압-전류 특성 그래프.

등록특허10-0396198

- 도 2는 연료전지 시스템의 구성도.
- 도 3은 본 발명 일실시예 시뮬레이터의 구성도.
- 도 4는 본 발명은 구성하는 에너지 공급 장치의 구성을 보인 것으로.
- (가)는 정류기를 사용한 전기 회로도이고,
- (나)는 측전지를 사용한 전기 외로도이다.
- 도 5는 본 발명을 구성하는 연료전지 정보 저장 장치에 저장되는 정보의 유형도.
- 도 6은 본 발명을 구성하는 등작정 추른부의 연산 흐름도.
- 도 7은 연료전지의 출력 지연 현상을 보인 개념도.
- 도 8은 본 방명을 구성하는 동특성 구현 모음의 연산 호흡도:
- 도 9는 일실시에 전압-전류 특성 그래프

((도면의 주요 부분에 대한 부호의 설명))

- 3. 본 발명 시뮬레이터 11,12,13. 전압-전류 특성 곡선
- 21. 연료전지 시스템
- 22. 인터페이스 장치
- 23. 부하
- 24. 시스템 제어 장치
- . 31. 전력 시스템
- 32. 정보 처리 및 제어 시스템
- 41. 정류회르
- 2. B2 AG & AG A-
- 41. 842
- 42. 강압용 회로
- 43. 숙전치
- 44. 승압용 회로
- 45. 반도체 스위치
- 46. 스위치 구듭부
- 91: 저장 데이터

발명의 상세한 설명

발명의 목적

` 발명이 숙하는 기술 및 그 분야의 증례기송

본 발명은 실제 운전 중인 면료전지 시스템의 운전 조건과 동일한 상태에서 발휘될 수 있는 연료전지의 동적 및 정적 특성을 연료전지 없이 실시간으로 가상구현시킬 수 있는 연료전지 시뮬레이터에 관한 것으로, 더 자세하게는 전기 에너지를 공급하기 위한 에너지 공급 장치와 이 에너지 공급 장치로부터 일정한 작휴 전원을 입력받아 전압 및 전류를 조절하는 전력 변환 장치로 구성된. 전기 에너지를 변환시키는 전력 시스템과, 이 전력 시스템의 전기적 조력을 원하는 형태로 제어할 수 있는 정보 처리 및 제어 시스템으로 구성되므로써, 고가의 연료전지를 직접 사용하지 않고도 연료전지 시스템의 전체적인 성능 시험을 수행할 수 있는 동시에, 연료전지 시스템에 필요한 주변 장치들의 개발에도 이용될 수 있도록 한, 실시간 연료전지 시뮬레이터에 관한 것이다.

연료전지는 수소와 같은 연료 가스의 화학 에너지른 전기 에너지로 직접 변환시키는 장치로서, 연료전지 는 직류 전류를 생산하는 병력을 갖는 전지이며, 종래의 전지와는 달리 외부에서 연료와 공기를 공급받 아 연속적으로 전기를 생산한다.

즉, 연료전지는 메탄을이나 천연가스 등과 같은 탄화수소 계열의 물질 내에 함유되어 있는 수소와 공기 중의 산소들 연료로 하여 일어나는 전기화학 만응에 의하여 화학 에너지를 직접 전기 에너지로 변환시키 는 발전 시스템으로서, 고효율의 청정 에너지 변환 장치이며, 연소 과정이 없이 연료 가소와 산화제 가 스의 전기 화탁적인 반응에 의해 생성되는 전기와 그 부산물인 열을 동시에 사용할 수 있다는 특징을 갖 고 있다.

상기 연료전지는 사용되는 전해질의 종류에 따라 크게 150~200℃ 부근에서 작동하는 인산령, 상은 내지 100℃ 이하에서 작동하는 고본자 전해질형 및 알칼리형, 600~700℃의 고온에서 작동하는 용용탄산염형 그리고, 1000℃ 이상의 고온에서 작동하는 고체 산화물형 등의 연료전지로 분류되며;~각 연료전지는 근 본적으로 같은 원리에 의해서 작동하나, 서로 다른 점은 연료의 종류, 운전 온도, 촉매와 전해질이다.

상기와 같이 고효을 경쟁 에너지의 생산원인 연료전지는 도 1에 도시된 전형적인 연료전지의 전압-전류 숙성곡선(11)과 같이, 연로전지의 전압은 전류에 따라 크게 면등되는 특성이 있으며, 상기 녹성 곡선(11)은 연료전지의 문전 조건인 온도, 압력, 유랑 등의 몸리적 변수들에 의해 다른 특성 곡선들(12)(13)로 변화되기도 한다.

족, 연료전지는 가스 유랑 및 압력, 작등 온도 등의 연료전지 문전 조건과 연료전지에 연결된 외부 부하 조건에 따라 연료전지의 솔력 전압이 변화될 수 있으나, 상기 외부 부하에서 필요로 되는 것은 일정한 전압이 유지되는 전력이기 때문에, 외부 부하와 운전 조건에 따라 전압-전류가 변화하는 연료전지와 외 부 부하 사이에는 인터페이스 장치로서의 직휴 전압 조절 장치와, 직류는 교류로 전환시키는 인버터가 설치된다.

상기 직휴 전압 조절 장치는 외부 부하에 필요한 전휴에 따라 변화하게 되는 연료전지의 전압을 전기적으로 제어하여 연료전지의 전압을 일정하게 유지시키기 위한 역할을 수행하고, 필요에 따라서는 전압을 승압시키는 기능과 외부 부하를 제어하는 역할도 하며, 상기와 감이 조절된 직류 전원은, 교류 전원이 필요할 경우, 인버터로 입력되어 교류 전원으로 변환된 후 외부 부하에 공급된다.

그리고, 연료전지의 성능은 단위 전지에 걸리는 전압이 너무 높거나 낮은 경우 저하하게 되는데, 예는 들어 인산령 연료전지의 경우, 각 단위 전지당 0.9V 이상의 전압 강하가 발생하게 되면 단위 전지의 성 능이 저하되고, 단위 전지당 전압이 0.5V 이하의 낮은 전압이 되어도 단위 전지의 과부하에 의해 전국의 육매가 손상되거나, 일부 단위 전지에서는 역극 현상이 발생되어 전지가 손상될 수 있다.

더욱이, 연료전지가 부부하 상태에서 작동되거나 연후게 되는 경우, 작용 또는 엄청 시점에서 연료전지 내에 잔족하는 잔여 가스에 의해 전기화학 반응이 진행되므로써 순간적으로 높은 피크 전압이 발생하여 연료전지에 충격을 줄 수 있다.

상기와 같은 현상들은 연료전지의 종류에 따라 그 정도가 다르기는 하지만, 연료전지에서 나타나는 일반 적인 운전 특성이다.

그러나. 연료전지가 작동되는 전지 전압의 영역 범위에는 도 1에 도시된 바와 같이 연료전지의 손상과 성능 저하가 방지될 수 있는 동작 안전 영역이 존재하게 되며, 연료전지의 정상 운전 상태와 과도적인 운전 상태를 모두 포함한 전제적인 문전 조건하에서 연료전지의 손상과 성능 저하가 방지될 수 있도록 연료전지를 상기 안전 명역내에서 작동시켜이 한다.

도 2는 살제 연료전지 시스템(21)의 개념적 구성을 보인 것으로, 연료전지 (21A)를 중심으로 연료인 수소가스, 산화제인 공기 및 냉각수 저장탱크(21B)(21C)(21D)가 연결되고, 상기 각 가스와 냉각수의 공급량을 조절하기 위한 제어밸브(V)들이 각 배관에 구비된다.

연료전지에서 생성되는 슬력 에너지는 전압 조적 장치 등으로 구성된 외부의 인터페이스 장치(22)를 등해서 외부 부하(23)에 전달되고, 연료전지 시스템과 외부 장치들을 포함하는 전체 시스템을 원활히 제어하기 위한 시스템 제어 장치(24)가 구비된다.

상기 시스템 제어 장치(24)는 연료전지(21A)의 통작 온도와 압력 신호(S1), 총력 전압과 전류 신호(S2). 외부 부하에 공급되는 천압과 전류 신호(S3)및 연료전지에 대한 총력 전력 명령(S4)을 외부로부터 입력 받고, 이를 연산하여 연료전지 시스템(21)의 제어 뱉보(V)들을 조절하기 위한 제어 신호(S5)분 출력하게 된다.

따라서, 연료전지와 외부 부하글 연결시키는 인터페이스 장치를 개발하기 위해서는 연료전지 전체 시스템을 설계하여 각각 제작한 후, 연료전지와의 실제 연계를 통한 성능 검증이 필요하게 된다.

그러나, 중래에는 연료전지, 부대 설비 및 제어 설비로 실제 시스템을 구성한 후, 이 시스템에 인터페이스 장치를 연계시켜 그 성능을 실험하였는 바, 인터페이스의 성능 검증을 위한 시간과 경비가 많이 소요되는 문제가 있었다.

그리고, 연료전지 시스템 개발 단계에서는 연료전지를 안정성 있게 운전하기가 어려워 인터페이스 장치의 정확한 성능 검정이 어려울 뿐 아니라. 연료전지가 외부 부하와 연계되어 운전 중 부대 설비 및 외부부하와의 연계 상태나 연료전지의 운전 상태에 문제가 있는 경우에는 연료전지가 쉽게 적정한 운전 영역을 벗어나게 되어 연료전지의 성능과 수명이 떨어지게 되는 운제가 있다.

현재, 연료전지는 매우 고가일 뿐 아니라, 수소와 공기를 공급하기 위한 설비 및 냉각수 처리 장치 등 주변 부대 설비와 안전 장치가 필요하기 때문에 연료전지 시스템의 가격은 더욱 높아진다.

또한, 연료전지와 주변 부대 설비 및 전기적인 인터페이스 장치는 등상적으로 서로 다른 회사에서 각각 제조되기 때문에, 연료전지 시스템 개말 단계에서 이들 설비들을 연계시켜 성능 실험을 할 경우 각 부품 간의 부조화에 의해 연료전지가 손상될 위험성이 있다.

마라서, 고가의 연료전지를 직접 사용함 필요 없이 연료전지 전체 시스템의 성능 시당을 수명할 수 있는 동시에, 연료전지 시스템의 주면 기기 개발에도 이용할 수 있도록 연료전지의 다양한 특성을 가상적으로 구현할 수 있는 연료전지 시뮬레이터가 필요하다.

특히, 연료전지는 공급되는 연료 가스와 공기의 양 및 그 비율에 따라 음력 특성이 변화될 뿐만 아니라, 연료전지의 작동 온도와 압력 및 외부 부하 등에 따라서도 그 충력 특성이 면화하기 때문에 다양한 연 료전지의 육성을 구현시킬 수 있는 시율레이터가 매우 필요하나, 학습적인 관점에서 연료전지 자체에 대한 모델링 및 특성 문석이 이루진 정도에 지나지 않았다.

본 발명은 다양한 운전 조건하에서 발휘되는 연료전지의 등작 특성과 부대 설비 및 인터페이스 장치 등의 성능을 파악하기 위하여 실제 연료전지 시스템을 사용하는 증래의 실험 및 평가 방법이 갖는 제반 문제평을 해결하기 위한 것으로, 연료전지 시스템의 운전 조건 및 외부 부하 조건을 감안하여 실제 연료전지 시스템과 같은 슬록 독성을 구현할 수 있는 실시간 시뮬레이터를 제공함에 목적이 있다.

즉. 자제 에너지원을 가지며, 연료전지의 등작 특성에 대한 데이터베이스를 기초로 하여 전기적 출력을 제어하도록 하되, 연료전지 운전에 필요한 부수적 시스템이 필요 없이 연료전지의 운전 조건만을 임력시 키면 실제 연료전지 시스템과 같은 출력이 발생되도록 참으로써. 인산형 연료전지, 용용탄산염 연료전 지. 고본자 연료전지 등 모든 연료전지의 등작 특성을 가상적으로 구현할 수 있는 등시에, 그 등작 특성 이 일반성을 갖는 시뮬레이터를 제공하고자 한다.

발명의 구성 및 작용

본 발명의 상기 목적은 전기 에너지를 공급하고 이를 변환하는 전력 시스템과, 전력 시스템의 전기적 출력을 제어하기 위한 정보 처리 및 제어 시스템에 의하여 달성된다.

른 말명의 실시간 연료전지 시뮬레이터는 실제 연료전지의 중작 특성을 실시간으로 구현하는 가상의 연료전지라 말 수 있으며, 크게 연료전지와 같이 전력을 굴룩할 수 있는 전력 시스템과, 이를 제어하기 위한 정보 처리 및 제어 시스템으로 구성된다.

상기 전력 시스템은 전기를 공급하기 위한 에너지 공급 장치와, 에너지 공급 장치로부터 직류 전원을 입력받은 후 이름 조절하여 필요로 되는 전앙과 전류의 전력을 출력하는 전력 변환 장치로 구성된다.

그리고. 상기 정보 처리 및 제어 시스템은 연료전지 정보 저장 장치와, 데이터 통신부와, 동작점 추론부와. 동특성 구현 모듈로 구성되며, 각각의 역할은 다음과 같다.

상기 연료전지 정보 저장 공치는 름(ROM), 이피름(EPROM), 이이피름(EPROM), 플래쉬 메모리(flash memory) 등과 같은 반도체 기억 소자로 구성될 수 있으며, 연료전지의 동작 특성과 관련된 기본 데이터 가 저장되어 실제 연료전지가 작동되는 것과 같은, 연료전지의 동작에 관한 기본 정보를 제공하는 역할 음 수행한다.

그리고, 데이터 등신부는 RS232C나 RS485 등을 사용한 직렬들신 방식이 사용되며, 연료전지가 작동되어 야 할 운전 조건 및 외부 부하에서 필요로 되는 즐럭 전력에 대한 명령 등 외부로부터의 정보들을 입력 받는 장치이다.

통착점 추론부는 상기 연료전지, 정보 저장 장치에서 제공되는 연료전지의 출력 측성과 상기 데이터 당신 부글 등하여 입력되는 운전조건 및 외부 부하 조건을 비교연산하여 실제 연료전지가 동작되어야 할 전력. 시스템의 출력 전압과 전류에 대한 통작점의 위치를 추론하는 역할을 수행하며, 동특성 구현 모듈은 상 가 전력 시스템으로부터 출력되는 실시간 전압 및 전류의 측정값이 상기 동작점 추론부에서 추근된 동작 점에 실제 도달하기까지의 지연시간 및 상습시간을 조절하여 추론된 동작점과 실제 측정값이 일치되도록 하는 역할을 한다.

즉, 본 말명의 시뮬레이터는 최종적으로 등록성 구현 모듈의 출력 제어신호에 의해서 전력 시스템을 구성하는 습력 조절용 전력 변환 장치의 동작이 제어되기 때문에, 시뮬레이터의 슬력 전압과 전류의 등작정이 동작인 옥성을 갖게 되고, 추론된 목표 동작점을 향하여 실시간 추종하게 된다.

상기 본 발명의 목적과 기술적 구성을 비롯한 그에 따른 작용 효과에 관한 자세한 사항은 본 고안의 바람직한 실시예쁠 도시하고 있는 도면을 참조한 아래의 설명에 의해 명확하게 이해될 것이다.

도 3에 본 발명 일실시예 실시간 연료전자 시뮬레이터의 구성도를 도시하였다.

도시된 바와 같이, 본 발명의 시뮬레이터(3)는, 에너지 공급 장치(31A)와 전력 변환 장치(31B)로 구성된 전력 시스템(31)과; 이름 제어하기 위한 데이터 통신부(32A). 등작점 추론부(32B), 연료전지 정보 저장 장치(32C) 및 동특성 구현 모듈(32D)로 구성되는 정보 처리 및 제어 시스템(32)으로 이루어진다.

상기 전력 시스템(31)을 구성하는 에너지 공급 장치(31A)는 상용의 단상 내지는 삼상 전원을 정류하여 조절된 직휴 전원을 사용하거나, 육전지를 직 명열시켜 사용할 수 있다.

그리고, 상용 전원을 정류하는 경우에는 다이오드를 사용한 정류회로를 이용할 수 있으며, 정류 전압을 제어하기 위해서는 아이커비티(Insulated Gate Bipolar Transistor) 또는 모스펫(Metal Oxide Semiconductor Field Effect Transistor)과 같은 반도체 스위치를 사용하는 것이 좋고, 상기 에너지 공 급 장치의 용량은 시뮬레이션 대상인 연료전지의 최대 용량을 기준으로 설정한다.

상기 에너지 공급 장치의 출력 조점용 전력 변환 장치(31B)는 에너지 공급 장치(31A)의 구성에 따라 여 러 형태로 구현이 가능하다.

즉, 도 4의 (가) 또는 (나)에 도시된 바와 같이. 에너지 공급 장치로서 상용 전원의 정유 회로(41)를 채택한 경우에는 강압용 회로(42)가, 측전지(43)를 사용한 경우에는 승압용 회로(44)가 추가적으로 필요하게 되며. 전기적인 절면이 필요한 경우에도 또한 회로의 구조가 바뀌게 될 수 있다.

그러나, 반도체 스위치(45)를 사용할 경우에는 공통적으로 선형 방식이 아닌 완전 단탁과 개방에 의한 스위치 구동 방식으로 전력이 변환되며, 스위치 구동부(46)는 정보 처리 및 제어 시스템으로부터 제공되 는 최종 즉력 신호를 받아서 제어된다.

이때 상기 클릭 신호는, 목표로 하는 용작점 정보와 전력 시스템의 클릭 측정값을 기초로 하여 동특성 구한 모듈에서 연산된 듀티비로 변화하는 페이더블유엥(Pulse Width Modulation) 파명 형태의 신호이다.

그리고, 연료전지가 등작할 때 연료 가스 및 공기의 이용들이 일정하게 유지되는 문전 상태에서는 연료 전지의 전기적 출력 전압-전류 곡선이 결정되는 바, 상기 연료전지 정보 저장 장치에는 연료전지의 운전 상태에 따른 연르전지의 출력 전압-전류 독성 곡선에 대한 정보가 저장되며, 저장되는 정보는 실제 시율 레이션 대상인 연료전지의 운전 데이터로부터 추출되고 정보가 저장되는 방식은 다양하게 구성될 수 있다.

정보가 저장되는 방식의 하나로서, 도 5에 도시된 바와 같이 연료전지의 여러 문전 상태 중에서 실제 주요 조건으로 작용하는 연료전지의 온도와 압력을 매개변수로 하고, 이에 따른 전압-전류 극선의 정보를 저장한다.

이때, 연르전지의 온도와 압력의 조합이 (T1, P1)인 경우(51)는 이에 대응되는 전압-전류의 특성 꼭선(51A)이 저장되고, (T2, P2)인 경우(52)는 특성곡선이(52A)가 저장되는 것이며, 이는 면료 가스 및 공기의 이용물이 일정하도록 제어되는 연료전지 시스템에서 특정 온도와 압력에 따라 하나의 전압-전류 목성 곡선이 검정되는 즉성을 이용하는 것이다.

그리고, 이를 실제 구현시에는 연료전지의 작용시 나타나는 수 않은 온도와 압력의 조함을 증에서, 저장 장치의 용량을 고격하여, 한정된 조합들에 대응하는 각 전압-전유의 특성 국선들에 대한 정보를 저장하고, 저장된 운전 상태와 일치되지 않는 운전 조건의 경우에는 등작점 추론무에서 보간병 또는 전용 추론 알고리즘에 의해 천압-전류의 특성 국선을 연신하도록 한다.

이때, 상기 보긴법은 한정적인 성보를 가지고 실제 운전 조건에 대한 근사적인 동작점을 추론하는 방법으로서, 이를 살펴보면 다음과 같다..

도 9와 같은 연료전지의 전압-전류 그래프를 구성하기 위하여 저장된 다수의 데이터들(91) 중 출력 전류(I_0)에 인접한 두 전류(I_1)(I_2)에 각각 대통하는 전압(V_1)(V_2)을 이용하여 상기 중력 전류(I_0)에 대용하는 미지의 울력 전압(V_0)을 추론식인 다음의 수학식 1에 의해 결정하게 되며, 이와 같은 보간법을 이용하여 연료전지의 전압-전류 특성곡선을 구성하는 한정적인 정보만으로 모든 운전조건에 대한 근사적인 동작점을 추론함수 있게된다.

$$V_0 = V_1 + \frac{V_2 - V_1}{I_2 - I_1} (I_0 - I_1)$$

도 6은 등작정 주론부의 연산을 위한 일실시에 프로그램의 흐름도이다.

도시된 바와 같이, 등작정 추른부의 연산은, 데이터 동신부를 통하여 연료전지의 출력 영령과 연료전지 운전 조건이 각각 입력되는(61A)(61B) 단계와: 상기 출력 명령으로부터 필요로 되는 종력 전류를 산출하 고(62A), 운전 조건에 적합한 전함-전류에 입치되는 전함-전류 특성 곡선을 연료전지 정보 저장 장치에 서 검색하는(62B) 단계와; 상기 산출된 중력 전류와 검색된 전압-전류 특성 곡선을 기초로 하여 보간법 에 의해 목표 동작점을 연산하는 단계(63)와; 연산된 목표 동작점에 대한 영령값을 등특성 구현 모듈로 출력하는 단계(64)로 이루어진다.

이때, 상기 검색 단계(628)에서 운전 조건에 일치되는 전압-전류 곡선을 검색하지 못한 경우에는 가장 근접한 2개의 전압-전류 국선을 찾은 후, 이들 전압-전류 곡선물로부터 상기 전 단계(62A)에서 산출된 전류에 대중하는 전압을 추분하여 결정하므로써 연료전지 슬력의 동작점이 결정된다.

그러나, 도 7에 도시된 바와 같이 실제 연료전지 시스템의 경우에는 제어 명령(72)에 대한 연료전지의 출력(73)이 지연되는 현상이 발생하게 되며, 이와 같이 연료전지의 출력이 지연되는 것은 시스템내의 제 어가 연료 가스와 공기 등의 제어 밸브와 같은 기계적인 장치에 의하여 톱작되기 때문이다.

더욱이, 공급 가스로부터 연료 기스인 수소 가스를 생성시키기 위한 개작기가 설치되는 경우에는 수소 가스를 생성시키기 위한 화학반응에 의하여 연료 가스의 공급시간이 더욱 늦어지게 되며, 보통의 연료전 지 시스템은 3차 이상 다수계의 화학공정 시스템으로서, 이러한 경우에는 지연을 갖는 1차 시스템으로 근사화가 된다.

상기 1차계의 지면 시스템은, 일정한 지면시간(Ta)과 명령값에 도달하기 위하여 소요되는 안정시간(Ta)으로 결정될 수 있으며, 연료전지의 실립적 특성에 의해서 상기 지연시간과 안정시간은 모두 측정이 가능하므로 이글 연료전지 정보 저장장치에 저장할 수 있다.

도 8은 중국성 구원 모들의 통작을 위한 프로그램 호흡도로서, 동특성 구원 모습은 목표로 하는 흡력 전력과 전력 시스템에서 실제 흡력되는 전력 사이에서 등적 특성이 나타나도록 하는 역함을 수행하게 된다.

도시된 바와 같이 상기 동특성 구현 모듈의 동작은. 동작정 추론부로부터 출력된 목표 동작정의 정보와 전략 시스템으로부터 출력되는 실제 전합-전류의 측정값(실제 동작정)이 각각 압력되는 단계(81A)(81B) 와, 각각 압력된 목표 및 실제 동작정들로부터 홍작정 오차를 연산하는 단계(82)와, 연산된 동작정 오차 애 해당하는 지연시간(Ta)과 안정시간(Tz)을 연료전지 정보 저장장치에서 검색하는 단계(83)와, 동작정 오차에 해소하면서 목표 동작정에 도달하도록 상기 지연시간(Ta)과 안정시간(Ta)으로부터 제어에 필요한목성값을 주출하여 파이아이디(Proportional Integral Differential) 제어 출력값을 연산하는 단계(84)와, 파이아이디 제어 즉력값인 아날로그 값과 모듈(32D)의 등작 프로그램상에 주어진 주파수(F)에 따라 튜틴비가 변화하는 디지털 제어 신호를 말생시키는 단계(85)와, 상기 디지털 제어 신호를 만도제 스위치의 구등부로 출력하는 단계(86)로 이루어진다.

본명의 京과

이상에서 산펴진 바와 같이, 본 말명의 실시간 연료전지 시뮬레이터는 실제 연료전지 시스템이 등작하는데 필요한 고가의 연료전지와 복잡한 부대 설비가 없이도 실제 연료전지 시스템의 등작 특성은 실시간 가상구현시킬 수 있기 때문에 연료전지의 특성 시험과 구성 설비들의 개말에 소요되는 경비와 시간을 위 기적으로 즐일 수 있는 장점이 있다.

또한, 본 발명의 시뮬레이터는 연료전지의 종류 및 응량에 관계 없이 모든 연료전지 시스템에 대한 시뮬레이션이 가능한 효용성이 있다.

등록특허 10-0396 198

(57) 청구의 범위

원구랑 1

연료전지의 점작 특성을 시합레이션하는 장치로서, 직류 전력을 공급하는 메너지 공급 장치(31A)와, 에너지 공급 장치로부터 공급되는 전력할 조절하여 필요로 되는 전앙과 전류를 갖는 직류 전력을 충격하는 전력 변환 장치(31B)로 구성된 전력 시스템(31)과:

DILVII.C

연료전지가 작동되어야 할 운전조건 및 외부 부하에서 필요로 되는 음력 전력에 대한 명령에 대한 정보 등을 외부로부터 입력받는 데이터 등신무(32A)와. 연료전지의 등작 특성과 관련된 기본 데이터가 저장되 는 연료전지 정보 저장 장치(32C)와. 상기 연르전지 정보 저장 장치에서 제공되는 연료전지의 출력 육성 과 상기 데이터 통신무별 통하여 입력되는 군전 조건 및 외부 부하 조건을 비교연산하여 실제 연료전지 가 동작되어야 할 전력 시스템의 품력 전압과 전투에 대한 동작점의 위치를 추른하는 육작점 수른부(32B)와, 상기 전력 시스템으로부터 울력되는 실시간 전압 및 전류의 측정값이 등작점 추론부에 서 주론된 동작점에 실제 도답하기까지의 지연시간 및 상승시간을 조절하여 추론된 동작정과 실제 측정 값이 일치되도록 하는 역할을 수행하는 등특성 구현 모듈(320)로 구성되는 정보 저리 및 제어 시스템(32)으로 이루어짐을 특징으로 하는 실시간 연료전지 시율레이터

정구함 2

제 1항에 있어서, 상거 데이터 동신부(32A)는 직렬통신 방식임을 특징으로 하는 실시간 연료전지 시율레이터.

경구함 3

·제 1항에 있어서, 상기 에너지 공급 장치(31A)는 상읍의 전원을 정류하여 조절된 직류 전원을 사용함을 특징으로 하는 실시간 연료전지 시뮬레이터.

청구함 4

제 1항에 있어서, 상기 에너지 공급 장치(31A)는 직·명열로 연결된 축전지임을 특징으로 하는 실시간 연료전지 시율레이터.

청구랑 5 .

제 1항에 있어서, 상기 등작점 추른부(328)의 연산은. 데이터 통신부를 통하여 연료전지의 출력 명령과 연료전지 운전 조건이 각각 입력되는(61A)(61B) 단계와;

상기 출력 명령으로부터 필요로 되는 출력 전류를 산출하고(62A). 운전 조건에 적합한 전압-전류에 일치 되는 전압-전류 특성 곡선을 연료전지 정보 저장 장치에서 검색하는(62B) 단계와:

상기 산출된 출력 전류(Io)에 인정한 두 전류(Ii)(I2)와 이에 각각 대응하는 전압(Vi)(V2)을 연료전지 정보 저장 장치에서 검색한 후 상기 출력 전류(Io)에 대응하는 이지의 출력 전압(V0)을 아래의 수학식에 의한 보간법으로 계산하여 목표 등작점을 결정하는 단계(63)와;

연산된 목표 동작점에 대한 명령값을 통독성 구현 모듈로 출력하는 단계(64)로 이루짐을 특징으로 하는 실시간 연료전지 시뮬레이터.

<u> 수학식</u>

$$V_0 = V_1 + \frac{V_2 - V_1}{I_2 - I_1} (I_0 - I_1)$$

청구함 6

제 1항에 있어서, 상기 등특성 구현 모듈(320)의 연산은, 중작정 주론부로부터 출력된 욕표 중작점의 청보와 전력 시스템으로부터 출력되는 실제 전압-전류의 실제 동작정이 각각 입력되는 단계(81A)(61B)와;

라라 일찍된 목표 및 실제 동작점들로부터 등작정 오차를 연산하는 단계(82)와; 연산된 등작점 오차에 해당하는 지연시간(T_e)과 안정시간(T_e)을 연료전지 정보 저장 장치에서 검색하는 단계(83)와;

통작점 오차에 해소하면서 목표 등작점에 도달하도록 상기 지연시간(Ta)과 인정시간(Ta)으로부터 제어에 필요한 특성값을 추출하여 피이아이디 제어 올려값을 연산하는 단계(84)와:

피이아이디 제어 출력값인 아날로그 값과 모듈(320)의 등자 프로그램상에 주어진 주파수(F)에 따라 유티비가 변화하는 디지털 제어 신호를 발생시키는 단계(85)와;

상기 디지털 제어 신호를 반도체 스위치의 구등부로 출력하는 단계(86)로 이루어징을 특징으로 하는 설시간 연료전지 사람레이터.

도연

도명1

<u>£</u>22

등록특허 10-0396198

⊊83

등록특허 10-0396 198

도연4

£295

(온도 T, 압력 P) → (전압 V, 전류 I)

££6

ŧ

STEVT

도연7

도면8

04 3A1 11.10 PAA 02 2001 0211

dr.

ŀ

