DI/PPGI/UFES

2^{o} Exercício Computacional de Algoritmos Numéricos II/Computação Científica - 19/1 Métodos Iterativos não estacionários usando o Octave

Objetivos

• Observar o comportamento dos métodos iterativos não estacionários para um conjunto de matrizes esparsas da SuiteSparse Matrix Collection¹.

Conceitos/comandos importantes:

A coleção de matrizes esparsas SuiteSparse Matrix Collection disponibiliza matrizes das mais variadas áreas do conhecimento. Um dos formatos disponíveis para as matrizes é <nome>.mat. Arquivo binário que armazena as informações para gerar uma matriz esparsa no formato Compressed Column Sparse(CCR) para o Octave:

A seguir listamos alguns comandos do Octave para gerar e resolver um sistema cuja matriz esparsa foi obtida da SuiteSparse Matrix Collection:

- load <nome>.mat carrega dados da matriz em uma estrutura auxiliar A.
- A = Problem.A; Armazena os dados da estrutura A na matriz esparsa A no formato CCR.
- n = rows(A);
- b = A*ones(n,1);
- [x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit) encontra a solução de um sistema Ax = b pelo método dos Gradientes Conjugados, onde:
 - A: Matriz dos coeficientes simétrica definida positiva²;
 - b: Vetor dos termos independentes;
 - tol: Tolerância relativa;
 - maxit: número máximo de iterações;

¹https://sparse.tamu.edu/

² default: armazenamento na estrutura CCR (Compressed Column Sparse)

- x: vetor solução aproximada;
- flag: 0 convergência atingida; 1 número máximo de iterações atingido; 3 estagnação do resíduo;
- relres: valor final do resíduo relativo;
- iter: número de iterações executadas;
- resvec: vetor contendo o resíduo relativo em cada iteração;
- [x,flag,relres,iter,resvec] = gmres(A,b,k,rtol,maxit) encontra a solução de um sistema Ax = b pelo método GMRES, onde:
 - A: Matriz dos coeficientes;
 - b: Vetor dos tewrmos independentes;
 - k: Número de vetores para o restart;
 - rtol: Tolerância relativa;
 - maxit: número máximo de ciclos;
 - x: vetor solução aproximada;
 - flag: 0 convergência atingida; 1 número máximo de iterações atingido; 3 estagnação do resíduo;
 - relres: valor final do resíduo relativo;
 - iter: vetor contendo o número de ciclos (iter(1,1)) e o número de iterações do último ciclo (iter(1,2))³;
 - resvec: vetor contendo o resíduo relativo em cada iteração;
- 1. Escolha um conjunto de 4 matrizes simétricas A com valores reais de ordem 10^p para p = 1, 3, 5, 7 da SuiteSparse Matrix Collection. Para cada uma das matrizes:
 - (a) Resolva o sistema trivial Ax = b, sendo b = A * ones(n, 1) pelo método dos gradientes conjugados;
 - (b) Plote o gráfico do resíduo;
 - (c) Discuta as características do processo iterativo;
 - (d) Construa uma tabela contendo métricas importantes como: número de iterações, valor do resíduo ao final do processo, norma da solução, características da matriz, etc ...
- 2. Escolha um conjunto de 4 matrizes não simétricas A com valores reais de ordem 10^p para p = 1, 3, 5, 7 da $SuiteSparse\ Matrix\ Collection$. Para cada uma das matrizes:
 - (a) Resolva o sistema trivial Ax = b, sendo b = A * ones(n, 1) pelo método GMRES para diferentes valores de k de tal forma que as potencialidades e fragilidades do método possam ser discutidas;
 - (b) Na sua análise, organize os dados em uma tablea utilizando diversas métricas para avaliar os experimentos: convergência ou não, número de iterações, tempo de processamento, norma da solução trivial, norma do resíduo relativo.
 - (c) Plote o gráfico do resíduo relativo (no mesmo sistema de eixos) para diferentes valores de k.

Relatório

Escreva um relatório suscinto com suas conclusões sobre os objetivos listados acima. Entregar uma cópia em pdf via email (nome do arquivo CC191-EXE2-<nome1><nome2>) (luciac@inf.ufes.br)até 11/04/2019. O título do email dve ser CC191-EXE2-<nome1><nome2>.

³número de iterações gmres é igual a iter(1,1)*k+iter(1,2)