

A very basic introduction

THE WRIGHT-FISHER MODEL

The paper and the idea

OPEN & ACCESS Freely available online

PLOS GENETICS

The Population Genetics of dN/dS

Sergey Kryazhimskiy¹, Joshua B. Plotkin^{1,2}*

1 Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Program in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

Abstract

Evolutionary pressures on proteins are often quantified by the ratio of substitution rates at non-synonymous and synonymous sites. The dN/dS ratio was originally developed for application to distantly diverged sequences, the differences among which represent substitutions that have fixed along independent lineages. Nevertheless, the dN/dS measure is often applied to sequences sampled from a single population, the differences among which represent segregating polymorphisms. Here, we study the expected dN/dS ratio for samples drawn from a single population under selection, and we find that in this context, dN/dS is relatively insensitive to the selection coefficient. Moreover, the hallmark signature of positive selection over divergent lineages, dN/dS>1, is violated within a population. For population samples, the relationship between selection and dN/dS does not follow a monotonic function, and so it may be impossible to infer selection pressures from dN/dS. These results have significant implications for the interpretation of dN/dS measurements among population-genetic samples.

Citation: Kryazhimskiy S, Plotkin JB (2008) The Population Genetics of dN/dS. PLoS Genet 4(12): e1000304. doi:10.1371/journal.pgen.1000304

Editor: Takashi Gojobori, National Institute of Genetics, Japan

Received September 11, 2008; Accepted November 10, 2008; Published December 12, 2008

Copyright: © 2008 Kryazhimskiy, Plotkin. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Meet the model...

- describing the genealogical relationship among genes
- dynamic description of the evolution of an idealised population and the transmission of genes from one generation to the next.

Schematic overview

Haploid

Diploid

Assumptions of the model

- Discrete and non-overlapping generations
- Haploid individuals or two subpopulations (males and females)
- The population size is constant
- All individuals are equally fit
- The population has no geographical or social structure
- The genes (or sequences) in the population are not recombining

→ Modelling Genetic Drift! (but selection can be included)

How the model works

- We consider a diploid population of size N
- At a given locus, there could be either one of the two alleles A1 and A2
- The population reproduces in discrete time steps
- the alleles in generation n+1 (children) are chosen by <u>random sampling with</u> <u>replacement</u> from the ones in generation n (parents)

Let vi be the number of descendants of gene i in generation t, then

$$P(v_i = k) = {2N \choose k} \left(\frac{1}{2N}\right)^k \left(1 - \frac{1}{2N}\right)^{2N-k}$$
 A2

This is an example of the binomial distribution, Bi(m,p), with parameters:

The number of genes descending from a given gene is binomially distributed