Sheet 10

Solutions to be handed in before class on Friday December 20.

Problem 43. In this problem we consider the Chow ring of \mathbb{P}^2 and \mathbb{P}^3 .

- 1. Compute explicitly $A(\mathbb{P}^2)$ (resp. $A(\mathbb{P}^3)$) by expressing the products of Schubert classes $[\Omega_w]$ for $w \in \{e, s_1, s_2 s_1\}$ (resp. $w \in \{e, s_1, s_2 s_1, s_3 s_2 s_1\}$) in terms of Schubert classes.
- 2. Use the labelling of Schubert varieties Ω_{λ} via partitions λ for

$$\lambda \in \left\{\emptyset, \square, \square\right\}, \text{ resp. } \lambda \in \left\{\emptyset, \square, \square, \square\right\}$$
 (24)

and consider the Littlewood–Richardson coefficients

$$[\Omega_{\lambda}][\Omega_{\mu}] = \sum_{\nu} c_{\lambda,\mu}^{\nu}[\Omega_{\nu}]. \tag{25}$$

Show that

 $c_{\lambda,\mu}^{\nu} = \#\{\text{semistandard (skew) tableaux of shape } \nu/\lambda \text{ of weight } \mu\}. (26)$

3. Show that if $|\lambda| + |\mu| = |\nu|$ that

$$c_{\lambda \mu}^{\nu} = [S(\nu) : S(\lambda) \otimes S(\mu)] \tag{27}$$

where $S(\lambda)$ for λ a partition of n denotes the corresponding irreducible S_n -module.

(5 points)

Problem 44. Calculate or describe via a picture the geometric representation for the Coxeter group (W, S) attached to

• •

and

<u>3</u> ←

(2 points)

Problem 45. Consider the following set of periodic permutations of the integers

$$\left\{ f \colon \mathbb{Z} \to \mathbb{Z} \mid f(i+n) = f(i) + n, \sum_{i=1}^{n} f(i) = \sum_{i=1}^{n} i \right\}.$$
 (28)

Show that this defines (via composition of maps) a group which is isomorphic to the Coxeter group with Coxeter diagram

(3 points)

Problem 46. Consider the Coxeter group (W, S) associated to

with $S = \{s, t\}$.

- 1. Describe all the elements of W.
- 2. Show that $W \cong S_2 \ltimes \mathbb{Z}$ as abstract groups.
- 3. Realise W as an affine reflection group. For this, consider the subspace $U = \mathbb{R}\alpha_s$ of the geometric representation and the affine hyperplanes

$$H_{\alpha,r} := \{ \lambda \in W \mid 2(\lambda, \alpha) = r \}. \tag{29}$$

Show that W is isomorphic to the affine reflection group generated by $s_{\alpha} = s_{\alpha,0}$ and $s_{\alpha,1}$, where

$$s_{\alpha,r} \colon \lambda \mapsto \lambda - (2(\lambda, \alpha) - r)\alpha$$
 (30)

is the affine reflection in the hyperplane $H_{\alpha,r}$.

4. Give an analogous description for the Coxeter group (W, S) associated to

(6 points)

Optional problem 3. Show that the Coxeter group attached to the Coxeter diagram

is isomorphic to $\operatorname{PGL}_2(\mathbb{Z}) := \operatorname{GL}_2(\mathbb{Z})/\{\pm 1\}.$

Here you can use that

1. $\operatorname{PGL}_2(\mathbb{Z})$ is generated by the order two elements

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \tag{31}$$

which gives a morphism $\varphi \colon W \to \mathrm{PGL}_2(\mathbb{Z})$;

2. the subgroup $\operatorname{PSL}_2(\mathbb{Z})$ of index 2 is the free product of the groups of order 2 and 3 generated by $\varphi(s_1s_2)$ and $\varphi(s_2s_3)$.

(4 points)