Less is More: SlimG for Accurate, Robust, and Interpretable Graph Mining

Jaemin YOO*

Meng-Chieh
(Jeremy)

LEE*

Shubhranshu SHEKHAR

Christos FALOUTSOS

Outline

- Problem Definition
- Q1: Reasons
- Q2: Method
- Q3: Sanity Checks
- Experiments
- Conclusions

Outline

- Problem Definition
 - Motivation
 - Research Questions
 - Q1: Reasons
 - Q2: Method
 - Q3: Sanity Checks
 - Experiments
 - Conclusions

Legend

→ Reminder

Task Definition

Given:

- Graph A
- Node features **X**
- A few node labels

Predict: Rest labels

Task Definition

- Given
 - Graph (single edge-type)
 - Node features (black or green hair, etc.)
 - A few class labels ('vote', e.g., R/G)

- Predict
 - Rest labels

OUR Problem Definition

- Find good 'derived features' ≡ embeddings for each node
 - (Using A, X, AX, etc.)
- That best predict the unknown labels $Y_{unknown}$

Graph Neural Networks (GNNs)

- GNNs have shown their ability to handle different tasks in graph domain:
 - GCN
 - GAT
 - **—** ...

- Some GNNs remove the non-linear functions in their models:
 - SGC
 - DGC
 - **–** ...

Research Questions

• Q1) Reasons

- Q2) GNN that is
 - Accurate, Robust, Fast, Scalable, Interpretable

• Q3) Sanity Checks

Sneak Preview: Accurate & Robust

Real-World Datasets

7 Homophily

6 Heterophily

															_
Model	Cora	CiteSeer	PubMed	Comp.	Photo	ArXiv	Products	Cham.	Squirrel	Actor	Penn94	Twitch	Pokec	Avg. Rank	
LR	51.5±1.2	52.9±4.5	79.9±0.5	73.9±1.2	79.3±1.5	48.3±1.9	56.4±0.5	24.9±1.7	26.7±1.9	27.8±0.8	63.5±0.5	53.0±0.1	61.3±0.0	11.7 (4.2)	
Reg. Kernel	67.8±2.5	62.1±4.4	83.4±1.4	80.3±1.4	87.1±1.2	O.O.M.	O.O.M.	29.4±2.6	24.3±2.3	29.6±1.4	O.O.M.	O.O.M.	O.O.M.	12.2 (3.8)	
Diff. Kernel	70.6±1.5	62.7±3.8	82.1 ± 0.4	83.1±1.0	89.8±0.6	O.O.M.	O.O.M.	34.5±7.9	28.3 ± 1.5	24.7±0.9	53.5±0.8	O.O.M.	O.O.M.	11.8 (2.5)	W. Control
RW Kernel	72.7±1.7	64.1±3.9	83.1±0.7	84.2±0.7	90.6±0.7	63.2±0.2	74.2±0.0	34.9±3.5	25.0±1.6	26.4±1.1	63.1±0.7	57.6±0.1	59.5±0.0	8.3 (3.3)	9
SGC	76.2±1.1	65.8±3.9	84.1±0.8	83.7±1.6	90.1±0.9	65.0±3.4	74.6±5.1	38.1±4.5	33.1±1.0	24.6±0.8	64.0±1.1	56.5±0.1	69.8±0.0	6.6 (4.2)	
DGC	77.8±1.4	66.1±4.2	84.3±0.6	83.9 ± 0.7	90.4 ± 0.2	65.2±4.0	68.7±13.	37.2±3.7	29.2±1.2	25.2±2.1	62.5±0.4	58.2±0.2	60.7±0.1	6.6 (3.2)	W
S^2GC	78.3±1.5	66.9±4.4	84.3±0.3	83.1±0.8	90.1±0.8	62.0±7.4	58.3±18.	34.9±4.9	27.6 ± 1.8	26.7 ± 1.8	63.1±0.5	58.7±0.1	61.2±0.0	6.6 (2.7)	
G^2CN	76.6±1.5	64.2±3.3	81.4±0.6	82.8±1.6	88.8±0.5	O.O.M.	O.O.M.	40.7±2.9	32.1±1.5	24.3±0.5	O.O.M.	O.O.M.	O.O.M.	10.5 (4.5)	
GCN	76.0±1.2	65.0±2.9	84.3±0.5	85.1±0.9	91.6±0.5	62.8±0.6	O.O.M.	38.5±3.0	31.4±1.8	26.8±0.4	62.9±0.7	57.0±0.1	63.9±0.4	6.3 (2.4)	8
SAGE	74.6±1.3	63.7±3.6	82.9 ± 0.4	83.8±0.5	90.6±0.5	61.5±0.6	O.O.M.	39.8±4.3	27.0 ± 1.3	27.8±0.9	O.O.M.	56.6±0.4	68.9±0.1	8.5 (3.5)	
GCNII	77.8±1.7	63.4±3.0	84.9±0.8	82.3±1.8	90.8±0.6	45.7±0.5	O.O.M.	30.5±2.5	21.9 ± 3.0	29.0±1.3	64.5±0.5	56.9±0.6	62.1±0.3	8.4 (4.6)	
H^2GCN	77.6±0.9	64.7 ± 3.8	85.4±0.4	49.5±16.	75.8±11.	O.O.M.	O.O.M.	31.9±2.6	25.0 ± 0.5	28.9±0.6	63.9±0.4	58.7±0.0	O.O.M.	8.9 (4.9)	
APPNP	80.0±0.6	67.1±2.8	84.6±0.5	84.2±1.7	92.5±0.3	53.4±1.3	O.O.M.	30.9±4.7	23.9 ± 3.2	26.1±1.0	63.7±0.9	47.3±0.3	57.4±0.4	7.6 (4.8)	
GPR-GNN	78.8±1.3	64.2±4.0	85.1±0.7	85.0±1.0	92.6±0.3	58.5±0.8	O.O.M.	31.7±4.7	26.2±1.6	29.5±1.1	64.5±0.4	57.6±0.2	67.6±0.1	5.4 (3.7)	
GAT	78.2±1.2	65.8±4.0	83.6±0.2	85.4±1.4	91.7±0.5	58.2±1.0	O.O.M.	39.1±4.1	28.6±0.6	26.4±0.4	60.5±0.8	O.O.M.	O.O.M.	7.5 (3.7)	
SlimG	77.8±1.1	67.1±2.3	84.6±0.5	86.3±0.7	91.8±0.5	66.3±0.3	84.9±0.0	40.8±3.2	31.1±0.7	30.9±0.6	68.2±0.6	59.7±0.1	73.9±0.1	1.9 (1.5)	
															*

Sneak Preview: Interpretable

(a) No network effects

(b) Useless features

Sneak Preview: Fast & Scalable

Research Questions

- Q1) Reasons
- Q2) G "Careful Simplicity"
 - Accurate, Robust, Fast, Scalable, Interpretable

• Q3) Sanity Checks

Over-Arching Principle

"Careful Simplicity"

"Everything should be made as simple as possible, but not simpler."

This Photo by Unknown Author is licensed under CC BY

Outline

5

- Problem Definition
- Q1: Reasons
 - Q2: Method
 - Q3: Sanity Checks
 - Experiments
 - Conclusions

Q1: Reasons – Why?

- Why/when do GNNs succeed,
- ... and why/when do they fail?

• Q: How should we proceed?

Model

LR

SGC

DGC

 S^2GC

 G^2CN

PPNP*

APPNP*

GDC*

GPR-GNN*

ChebNet*

GCN*

SAGE*

GCNII*

 H_2GCN^*

GAT**

DA-GNN**

Q1: Reasons – Why?

- Why/when do GNNs succeed,
- ... and why/when do they fail?

- Q: How should we proceed?
- A: Drop non-linearities, to get the essence

GNNEXP

Model	Type	Propagator function $\mathcal{P}(A, X)$

Jaemin Yoo

Model	Type	Propagator function $\mathcal{P}(A, X)$
LR	Linear	X
SGC	Linear	$ ilde{\mathbf{A}}_{ ext{sym}}^K \mathbf{X}$
DGC	Linear	$[(1-T/K)\mathbf{I} + (T/K)\tilde{\mathbf{A}}_{\text{sym}}]^{K}\mathbf{X}$
S^2GC	Linear	$\sum_{k=1}^{K} (\alpha \mathbf{I} + (1 - \alpha) \hat{\mathbf{A}}_{\text{sym}}^{k}) \mathbf{X}$
G ² CN	Linear	$\ _{i=1}^{N} [\mathbf{I} - (T_i/K)((b_i - 1)\mathbf{I} + \mathbf{A}_{\text{sym}})^2]^K \mathbf{X}$
PPNP*	Decoupled	$(\mathbf{I} - (1 - \alpha)\tilde{\mathbf{A}}_{\text{sym}})^{-1}\mathbf{X}$
APPNP*	Decoupled	$\left[\sum_{k=0}^{K-1} \alpha (1-\alpha)^k \tilde{\mathbf{A}}_{\text{sym}}^k + (1-\alpha)^K \tilde{\mathbf{A}}_{\text{sym}}^K\right] \mathbf{X}$
GDC*	Decoupled	$S = \text{sparse}_{\epsilon} (\sum_{k=0}^{\infty} (1 - \alpha)^k \tilde{A}_{\text{sym}}^k) \text{ for } \tilde{S}_{\text{sym}} X$
GPR-GNN*	Decoupled	$\ \mathbf{k}_{k=0}^{K} \tilde{\mathbf{A}}_{\mathrm{sym}}^{k} \mathbf{X}\ $
ChebNet*	Coupled	$\ _{k=0}^{K-1} \mathbf{A}_{ ext{sym}}^k \mathbf{X} $ $ ilde{\mathbf{A}}_{ ext{sym}}^K \mathbf{X}$
GCN*	Coupled	$ ilde{\mathbf{A}}_{ ext{sym}}^{ ilde{K}}\mathbf{X}$
SAGE*	Coupled	$\ _{k=0}^K \mathbf{A}_{\mathrm{row}}^{k} \mathbf{X}\ $
GCNII*	Coupled	$\ _{k=0}^{K} \mathbf{A}_{\text{row}}^{k} \mathbf{X} \ \left((1-\alpha)\tilde{\mathbf{A}}_{\text{sym}}^{K} + \alpha \tilde{\mathbf{A}}_{\text{sym}}^{K-1} \right) \mathbf{X}$
H ₂ GCN*	Coupled	$\ _{k=0}^{2K} \mathbf{A}_{ ext{sym}}^k \mathbf{X}\ $
GAT**	Attention	$\prod_{k=1}^{K} [\operatorname{diag}(\mathbf{X}\mathbf{w}_{k,1})\tilde{\mathbf{A}} + \tilde{\mathbf{A}}\operatorname{diag}(\mathbf{X}\mathbf{w}_{k,2})] \mathbf{X}$
DA-GNN**	Attention	$\sum_{k=0}^{K} \operatorname{diag}(\tilde{\mathbf{A}}_{\operatorname{sym}}^{k} \mathbf{X} \mathbf{w}) \tilde{\mathbf{A}}_{\operatorname{sym}}^{k} \mathbf{X}$

'Derived' Features ≡ Embedding Carnegie Mellon

GNNEXP

Jaemin Yoo

Type	Propagator function $\mathcal{P}(A, X)$
Linear	X
Linear	$ ilde{\mathbf{A}}_{ ext{sym}}^K \mathbf{X}$
Linear	$[(1-T/K)\mathbf{I} + (T/K)\tilde{\mathbf{A}}_{\text{sym}}]^K \mathbf{X}$
Linear	$\sum_{k=1}^{K} (\alpha \mathbf{I} + (1-\alpha)\tilde{\mathbf{A}}_{sym}^{k}) \mathbf{X}$
Linear	$\ _{i=1}^{N} [\mathbf{I} - (T_i/K)((b_i - 1)\mathbf{I} + \mathbf{A}_{\text{sym}})^2]^K \mathbf{X}$
Decoupled	$(\mathbf{I} - (1 - \alpha)\tilde{\mathbf{A}}_{\text{sym}})^{-1}\mathbf{X}$
Decoupled	$\left[\sum_{k=0}^{K-1} \alpha (1-\alpha)^k \tilde{\mathbf{A}}_{\text{sym}}^k + (1-\alpha)^K \tilde{\mathbf{A}}_{\text{sym}}^K\right] \mathbf{X}$
Decoupled	$S = \text{sparse}_{\epsilon} (\sum_{k=0}^{\infty} (1 - \alpha)^k \tilde{A}_{\text{sym}}^k) \text{ for } \tilde{S}_{\text{sym}} X$
Decoupled	$\ _{k=0}^K ilde{\mathbf{A}}_{ ext{sym}}^k \mathbf{X}$
Coupled	$\ _{k=0}^{K-1} \mathbf{A}_{ ext{sym}}^k \mathbf{X} $ $ ilde{\mathbf{A}}_{ ext{sym}}^K \mathbf{X}$
Coupled	$ ilde{\mathbf{A}}_{ ext{sym}}^{ ilde{K}} \mathbf{X}$
Coupled	$\parallel_{k=0}^K \mathbf{A}_{\mathrm{row}}^k \mathbf{X}$
Coupled	$ \ \ _{k=0}^{K-2} \tilde{\mathbf{A}}_{\text{sym}}^{k} \mathbf{X} \ \left((1-\alpha) \tilde{\mathbf{A}}_{\text{sym}}^{K} + \alpha \tilde{\mathbf{A}}_{\text{sym}}^{K-1} \right) \mathbf{X} $
Coupled	$\ _{k=0}^{2K} \mathbf{A}_{ ext{sym}}^k \mathbf{X}\ $
Attention	$\prod_{k=1}^{K} [\operatorname{diag}(\mathbf{X}\mathbf{w}_{k,1})\tilde{\mathbf{A}} + \tilde{\mathbf{A}}\operatorname{diag}(\mathbf{X}\mathbf{w}_{k,2})] \mathbf{X}$
Attention	$\sum_{k=0}^{K} \operatorname{diag}(\tilde{\mathbf{A}}_{\operatorname{sym}}^{k} \mathbf{X} \mathbf{w}) \tilde{\mathbf{A}}_{\operatorname{sym}}^{k} \mathbf{X}$
	Linear Linear Linear Linear Linear Linear Decoupled Decoupled Decoupled Coupled Coupled Coupled Coupled Coupled Coupled Coupled Coupled Attention

- Successes
 - S1: Homophily
 - S2: [Heterophily]
- Pain Points
 - PP1: Lack of Robustness
 - PP2: Vulnerability to Noisy Features
 - PP3: Efficiency and Effectiveness
 - PP4: Many Hyperparameters

- Successes
 - ✓ S1: Homophily AX; A^2X ; ... \rightarrow neighbors' features
 - S2: [Heterophily]
- Pain Points
 - PP1: Lack of Robustness
 - PP2: Vulnerability to Noisy Features
 - PP3: Efficiency and Effectiveness
 - PP4: Many Hyperparameters

200 -400 -600 -800 -

- Successes
 - ✓S1: Homophily AX; A^2X ; ... \rightarrow neighbors' features

 A^2X : if concat., good

X S2: [Heterophily] AX: HURTS

0 200 -400 -600 -800 -

- Pain Points
 - PP1: Lack of Robustness
 - PP2: Vulnerability to Noisy Features
 - PP3: Efficiency and Effectiveness
 - PP4: Many Hyperparameters

Successes

- ✓ S1: Homophily AX; A^2X ; ... \rightarrow neighbors' features
- X S2: [Heterophily] AX: HURTS
 - Pain Points

 A^2X : if concat., good

 $(\dots)X$

- **X** PP1: Lack of Robustness
- \nearrow PP2: Vulnerability to Noisy Features (...+I)X
 - PP3: Efficiency and Effectiveness
 - PP4: Many Hyperparameters

GNNEXP

Model	Type	Propagator function $\mathcal{P}(A, X)$
LR	Linear	X
SGC	Linear	$ ilde{\mathbf{A}}_{ ext{sym}}^K\mathbf{X}$
DGC	Linear	$[(1-T/K)\mathbf{I} + (T/K)\tilde{\mathbf{A}}_{\text{sym}}]^K \mathbf{X}$
S^2GC	Linear	$\sum_{k=1}^{K} (\alpha \mathbf{I} + (1 - \alpha) \tilde{\mathbf{A}}_{sym}^{k}) \mathbf{X}$
G ² CN	Linear	$\ \sum_{i=1}^{N} [\mathbf{I} - (T_i/K)((b_i - 1)\mathbf{I} + \mathbf{A}_{\text{sym}})^2]^K \mathbf{X} \ $
PPNP*	Decoupled	$(\mathbf{I} - (1 - \alpha)\tilde{\mathbf{A}}_{\text{sym}})^{-1}\mathbf{X}$
APPNP*	Decoupled	$\left[\sum_{k=0}^{K-1} \alpha (1-\alpha)^k \tilde{\mathbf{A}}_{\text{sym}}^k + (1-\alpha)^K \tilde{\mathbf{A}}_{\text{sym}}^K\right] \mathbf{X}$
GDC*	Decoupled	$S = \text{sparse}_{\epsilon} (\sum_{k=0}^{\infty} (1 - \alpha)^k \tilde{A}_{\text{sym}}^k) \text{ for } \tilde{S}_{\text{sym}} X$
GPR-GNN*	Decoupled	$\ \mathbf{k}_{k=0}^{K} \mathbf{\tilde{A}}_{ ext{sym}}^{k} \mathbf{X}\ $
ChebNet*	Coupled	$\ _{k=0}^{K-1} \mathbf{A}_{ ext{sym}}^k \mathbf{X}$
GCN*	Coupled	$ ilde{\mathbf{A}}_{ ext{sym}}^{\check{K}}\mathbf{X}$
SAGE*	Coupled	$\ \sum_{k=0}^{K} \mathbf{A}_{\text{row}}^{k} \mathbf{X} \ $
GCNII*	Coupled	$\ _{k=0}^{K-2} \tilde{\mathbf{A}}_{\text{sym}}^{k} \mathbf{X} \ \left((1-\alpha) \tilde{\mathbf{A}}_{\text{sym}}^{K} + \alpha \tilde{\mathbf{A}}_{\text{sym}}^{K-1} \right) \mathbf{X}$
H ₂ GCN*	Coupled	$\ \mathbf{k}_{k=0}^{2K}\mathbf{A}_{ ext{sym}}^{k}\mathbf{X}\ $
GAT**	Attention	$\prod_{k=1}^{K} \left[\operatorname{diag}(\mathbf{X}\mathbf{w}_{k,1}) \tilde{\mathbf{A}} + \tilde{\mathbf{A}} \operatorname{diag}(\mathbf{X}\mathbf{w}_{k,2}) \right] \mathbf{X}$
DA-GNN**	Attention	$\sum_{k=0}^{K} \operatorname{diag}(\tilde{\mathbf{A}}_{\operatorname{sym}}^{k} \mathbf{X} \mathbf{w}) \tilde{\mathbf{A}}_{\operatorname{sym}}^{k} \mathbf{X}$

GNNEXP

Model	Type	Propagator function $\mathcal{P}(A, X)$
LR	Linear	X
SGC	Linear	(Å _{sym} X
DGC	Linear	$[(1-T/K)\mathbf{I} + (T/K)\mathbf{\hat{A}}_{\mathbf{X}\mathbf{m}}]^{K}\mathbf{X}$
S^2GC	Linear	$\sum_{k=1}^{K} (\alpha \mathbf{I} + (1 - \alpha \mathbf{A}_{\text{sym}}^{k}) \mathbf{X}$
G ² CN	Linear	$ _{i=1}^{N} [\mathbf{I} - (T_i/K)((b_i - 1)\mathbf{I} + \mathbf{A}_{\text{sym}})^2]^K \mathbf{X} $
PPNP*	Decoupled	$(\mathbf{I} - (1 - \alpha (\tilde{\mathbf{A}}_{\text{sym}})^{-1} \mathbf{X})$
APPNP*	Decoupled	$\left[\sum_{k=0}^{K-1} \alpha (1-\alpha)^k \widehat{\mathbf{A}}_{\text{sym}}^{K} + (1-\alpha)^k \widehat{\mathbf{A}}_{\text{sym}}^{K}\right] \mathbf{X}$
GDC*	Decoupled	$S = \text{sparse}_{\epsilon} (\sum_{k=0}^{\infty} (1 - \alpha)^k \tilde{A}_{sym}^k) \text{ for } \tilde{S}_{sym} X$
GPR-GNN*	Decoupled	$\ _{k=0}^K \tilde{\mathbf{A}}_{\mathrm{sym}}^k \mathbf{X}$
ChebNet*	Coupled	$\ _{k=0}^{K-1} \mathbf{A}_{\text{sym}}^k \mathbf{X}$
GCN*	Coupled	$\tilde{\mathbf{A}}_{\mathrm{sym}}^{K}\mathbf{X}$
SAGE*	Coupled	$\ _{k=0}^{K} \mathbf{A}_{\text{row}}^{k} \mathbf{X}$
GCNII*	Coupled	$\ \mathbf{\hat{A}}_{k=0}^{K-2} (\mathbf{\hat{A}}_{sym}^{K} \mathbf{X} \ ((1 - \alpha (\mathbf{\hat{A}}_{sym}^{K} + \mathbf{\hat{A}}_{sym}^{K-1}) \mathbf{X})$
H ₂ GCN*	Coupled	$\ \mathbf{a}_{k=0}^{2K}\mathbf{A}_{\mathrm{sym}}^{k}\mathbf{X}\ $
GAT**	Attention	$\prod_{k=1}^{K} [\operatorname{diag}(\mathbf{X}\mathbf{w}_{k,1} \tilde{\mathbf{A}} + \tilde{\mathbf{A}} \operatorname{diag}(\mathbf{X}\mathbf{w}_{k,2})] \mathbf{X}$
DA-GNN**	Attention	$\sum_{k=0}^{K} \operatorname{diag}(\tilde{\mathbf{A}})_{ym} \mathbf{X} \mathbf{w}(\tilde{\mathbf{A}})_{sym}^{k} \mathbf{X}$

Successes

- ✓S1: Homophily AX; A^2X ; ... \rightarrow neighbors' features
- X S2: [Heterophily] AX: HURTS
 - Pain Points

 A^2X : if concat., good

 $(\dots)X$

- **X** PP1: Lack of Robustness
- \nearrow PP2: Vulnerability to Noisy Features (...+I)X
- **X** PP3: Efficiency and Effectiveness 'too many cooks'
 - PP4: Many Hyperparameters

GNNEXP

Model	Type	Propagator function $\mathcal{P}(A, X)$
LR	Linear	X
SGC	Linear	$ ilde{\mathbf{A}}_{ ext{sym}}^K \mathbf{X}$
DGC	Linear	$[(1 - T/K)\mathbf{I} + (T/K)\tilde{\mathbf{A}}_{\text{sym}}]^K \mathbf{X}$
S^2GC	Linear	$\sum_{k=1}^{K} (\alpha \mathbf{I} + (1 - \alpha) \tilde{\mathbf{A}}_{\text{sym}}^{k}) \mathbf{X}$
G ² CN	Linear	$\left \left \left \left \frac{N}{i=1} \right \mathbf{I} - \left(T_i / K \right) ((b_i - 1) \mathbf{I} + \mathbf{A}_{\text{sym}})^2 \right ^K \mathbf{X} \right \right $
PPNP*	Decoupled	$(\mathbf{I} - (1 - \alpha)\tilde{\mathbf{A}}_{\text{sym}})^{-1}\mathbf{X}$
APPNP*	Decoupled	$\left[\sum_{k=0}^{K-1} \alpha (1-\alpha)^k \tilde{\mathbf{A}}_{\text{sym}}^k + (1-\alpha)^K \tilde{\mathbf{A}}_{\text{sym}}^K\right] \mathbf{X}$
GDC*	Decoupled	$S = \text{sparse}_{\epsilon} (\sum_{k=0}^{\infty} (1 - \alpha)^k \tilde{A}_{\text{sym}}^k) \text{ for } \tilde{S}_{\text{sym}} X$
GPR-GNN*	Decoupled	$\ \mathbf{\hat{k}}_{k=0}^{K}\mathbf{\hat{A}}_{\mathrm{sym}}^{K}\mathbf{X}\ $
ChebNet*	Coupled	$\mathbf{\tilde{A}}_{k=0}^{K-1}\mathbf{A}_{\mathrm{sym}}^{k}\mathbf{X}$
GCN*	Coupled	$ ilde{\mathbf{A}}_{ ext{sym}}^{ ilde{K}}\mathbf{X}$
SAGE*	Coupled	$\ _{k=0}^K \mathbf{A}_{\mathrm{row}}^k \mathbf{X}\ $
GCNII*	Coupled	$\ _{k=0}^{K-2} \tilde{\mathbf{A}}_{\text{sym}}^{k} \mathbf{X} \ \left((1-\alpha) \tilde{\mathbf{A}}_{\text{sym}}^{K} + \alpha \mathbf{A}_{\text{sym}}^{K-1} \right) \mathbf{X}$
H ₂ GCN*	Coupled	$\ \mathbf{a}_{k=0}^{2K}\mathbf{A}_{\mathrm{sym}}^{k}\mathbf{X}\ $
GAT**	Attention	$\frac{\prod_{k=1}^{K} \left[\operatorname{diag}(\mathbf{X}\mathbf{w}_{k,1})\tilde{\mathbf{A}} + \tilde{\mathbf{A}}\operatorname{diag}(\mathbf{X}\mathbf{w}_{k,2}) \right] \mathbf{X}}{\mathbf{A}}$
DA-GNN**	Attention	$\sum_{k=0}^{K} \operatorname{diag}(\tilde{\mathbf{A}}_{\operatorname{sym}}^{k} \mathbf{X} \mathbf{w}) \tilde{\mathbf{A}}_{\operatorname{sym}}^{k} \mathbf{X}$

Successes

- ✓S1: Homophily AX; A^2X ; ... \rightarrow neighbors' features
- X S2: [Heterophily] AX: HURTS
 - Pain Points

 A^2X : if concat., good

- **X** PP1: Lack of Robustness
- \nearrow PP2: Vulnerability to Noisy Features (...+I)X
- **PP3**: Efficiency and Effectiveness 'too many cooks'
- **X** PP4: Many Hyperparameters

'6 degrees'; $A^{100} \rightarrow \text{rank-1}$

 $(\dots)X$

GNNEXP

Model	Type	Propagator function $\mathcal{P}(A, X)$
LR	Linear	X
SGC	Linear	$\tilde{\mathbf{A}}_{\mathbf{SVM}}^{K}\mathbf{X}$
DGC	Linear	$[(1 - T/K)I + (T/K)\tilde{A}_{sym}]^{K}X$
S^2GC	Linear	$\sum_{k=1}^{K} \alpha \mathbf{I} + (1-\alpha) \tilde{\mathbf{A}}_{sym}^{k} \mathbf{X}$
G ² CN	Linear	$ \underbrace{N}_{i=1} [\mathbf{I} - \underbrace{T_i/K}] (b_i - 1) \mathbf{I} + \mathbf{A}_{\text{sym}})^2 \mathbf{K} \mathbf{X} $
PPNP*	Decoupled	$(\mathbf{I} - (1 - \alpha)\tilde{\mathbf{A}}_{\text{SVM}})^{-1}\mathbf{X}$
APPNP*	Decoupled	$\left[\sum_{k=0}^{K-1} \alpha (1-\alpha)^k \tilde{\mathbf{A}}_{\text{sym}}^k + (1-\alpha)^K \tilde{\mathbf{A}}_{\text{sym}}^K\right] \mathbf{X}$
GDC*	Decoupled	$S = \text{sparse}_{\epsilon} (\sum_{k=0}^{\infty} (1 - \alpha)^k \tilde{A}_{\text{sym}}^k) \text{ for } \tilde{S}_{\text{sym}} X$
GPR-GNN*	Decoupled	$ \mathbf{A}_{k=0}^{K} \tilde{\mathbf{A}}_{\mathrm{sym}}^{k} \mathbf{X} $
ChebNet*	Coupled	$ \mathbf{A}_{k=0}^{K-1}\mathbf{A}_{\text{even}}^{k}\mathbf{X} $
GCN*	Coupled	$\tilde{\mathbf{A}}_{\mathrm{sym}}^{K}\mathbf{X}$
SAGE*	Coupled	(K) (K)
GCNII*	Coupled	$\ \mathbf{K}^{K-2} \mathbf{\tilde{A}}_{\text{sym}}^{k} \mathbf{X}\ (1-\alpha) \mathbf{\tilde{A}}_{\text{sym}}^{K} + \alpha \mathbf{\tilde{A}}_{\text{sym}}^{K-1} \mathbf{X}$
H ₂ GCN*	Coupled	$\begin{vmatrix} 2K \\ k=0 \end{vmatrix} \mathbf{A}_{\text{sym}}^k \mathbf{X}$
GAT**	Attention	$\int_{k=1}^{K} \left[\operatorname{diag}(\mathbf{X}\mathbf{w}_{k,1})\tilde{\mathbf{A}} + \tilde{\mathbf{A}}\operatorname{diag}(\mathbf{X}\mathbf{w}_{k,2}) \right] \mathbf{X}$
DA-GNN**	Attention	$\sum_{k=0}^{K} \operatorname{diag}(\tilde{\mathbf{A}}_{\operatorname{sym}}^{k} \mathbf{X} \mathbf{w}) \tilde{\mathbf{A}}_{\operatorname{sym}}^{k} \mathbf{X}$

Outline

- Problem Definition
- Q1: Reasons
- Q2: Method
 - Q3: Sanity Checks
 - Experiments
 - Conclusions

Q2: Method – Desiderata

- Desiderata and Design Decisions
 - D0: Linear Classifier
 - D1: Concatenating Winning Components
 - D2: Structure Features
 - D3: Orthogonalization and Sparsification
 - D4: Multi-Level Neighborhood Aggregation

Q2: Method – Desiderata

- Desiderata and Design Decisions
- → − D0: Linear Classifier
 - D1: Concatenating Winning Components
 - D2: Structure Features
 - D3: Orthogonalization and Sparsification
 - D4: Multi-Level Neighborhood Aggregation

Design Decision #0

Q: What classifier?

- Decision Trees?
- Random Forests?
- XGBoost?

- MLP?

X

 $A? AX? A^2X?$

Design Decision #0

A: Logistic regression (1-node MLP), after we find 'good embeddings'

It's simple and interpretable.

Design Decision #0

Q: # layers?

A: N/A

Q: Activation function?

A: Linear only (except the final LR step)

Q2: Method – Desiderata

- Desiderata and Design Decisions
 - D0: Linear Classifier
- → − D1: Concatenating Winning Components
 - '||' not '+'
 - Heterophily
 - D2: Structure Features
 - D3: Orthogonalization and Sparsification
 - D4: Multi-Level Neighborhood Aggregation

Design Decision #1 – Concat.

• Concatenate | ?

• Or add +?

Design Decision #1 – Concat.

- Concatenate ||? -> Heterophily / Robustness $AX || A^2X$
- Or add +?

 $X? AX? A^2X?$

• How to handle both homophily, AND heterophily?

 How to handle both homophily, AND heterophily?

(If we add node features +

1-, 2-, ... k-step neighbor features

 How to handle both homophily, AND heterophily?

• Concatenate best homophily matrix,

• AND grand-neighbors (even powers)

• Is A the best, for homophily?

• Is A^2 heterophily?

• Is A the best, for homophily?

- $\widetilde{\mathbf{A}}_{sym}$ (symmetric norm. with self loops)
- Is A^2 heterophily?

• Is A the best, for homophily?

- $\widetilde{\mathbf{A}}_{sym}$ (symmetric norm. with self loops)
- Is A^2 heterophily?
- A_{row} (row-norm; NO self loops)

Q2: Method – Desiderata

- Desiderata and Design Decisions
 - D0: Linear Classifier
 - D1: Concatenating Winning Components
- → D2: Structure Features
 - D3: Orthogonalization and Sparsification
 - D4: Multi-Level Neighborhood Aggregation

- Q: What if (raw) features are useless?
 - i.e., uncorrelated to labels
 - E.g., hair color vs. voting pattern
 - Or, feature-less?

- Q: What if (raw) features are useless?
- A: Add structure info., A

- Q: What if (raw) features are useless?
- A: Add structure info., A
- (Q: but A is too wide, $1M \times 1M$)

- Q: What if (raw) features are useless?
- A: Add structure info., A
- (Q: but A is too wide, $1M \times 1M$)

• (A: U, where $U\Sigma V^T \approx A$ by SVD)

Reminder: SVD finds communities

Eg., if block-diagonal = communities ~ homophily

Reminder: SVD finds communities

Eg., if block-diagonal = communities ~ homophily

Person x community

Q2: Method – Desiderata

- Desiderata and Design Decisions
 - D0: Linear Classifier
 - D1: Concatenating Winning Components
 - D2: Structure Features
- → − D3: Orthogonalization and Sparsification
 - Improve consistency
 - Remove redundant dimension(s)/component(s)
 - D4: Multi-Level Neighborhood Aggregation

Design Decision D3 – Redundancy

• Q: Do we need all these 'derived features'?

Design Decision D3 – Redundancy

- Q: Do we need all these 'derived features'?
- A: No, dim. reduction g() → SVD/PCA on each component
 - Reduce correlated features

- Fewer, good features \rightarrow more accurate

Design Decision D3 – More?

• Q: Do we always need all the components?

Design Decision D3 – More?

- Q: Do we always need all the components?
- A: Not necessarily, an entire component can be useless as well sometime

'Muscles' ICDE 2000

Common sense: 'the longer the window, the lower the error'

run time

Online Data Mining for Co-Evolving Time Sequences B.-K. Yi, N.D. Sidiropoulos, T. Johnson, H.V. Jagadish, C. Faloutsos, A. Biliris, ICDE 2000, San Diego, CA, 2000.

'Muscles' ICDE 2000

Common sers the lower the

longer the window,

NOT always:

'too many cooks spoil the broth'

(b) 10-th modem (MODEM)

(c) 10-th stream (INTERNET)

Online Data Mining for Co-Evolving Time Sequences B.-K. Yi, N.D. Sidiropoulos, T. Johnson, H.V. Jagadish, C. Faloutsos, A. Biliris, ICDE 2000, San Diego, CA, 2000.

Design Decision D3 – More?

- Q: Do we always need all the components?
- A: Not necessarily, an entire component can be useless as well sometime

• A': Thus, 'group LASSO'

Design Decision D3 – More?

- Q: Do we always need all the components?
- A: Not necessarily, an entire component can be useless as well sometime

- A': Thus, 'group LASSO'
 - Interpretable

Q2: Method - Desiderata

- Desiderata and Design Decisions
 - D0: Linear Classifier
 - D1: Concatenating Winning Components
 - D2: Structure Features
 - D3: Orthogonalization and Sparsification
- → − D4: Multi-Level Neighborhood Aggregation

Design Decision D4 – Exponent

• Q: Influence horizon k = ??

Design Decision D4 – Exponent

- Q: Influence horizon k = ??
- A: Propose: k = 2 (up to grand-neighbors)

Design Decision D4 – Exponent

- Q: Influence horizon k = ??
- A: Propose: k = 2 (up to grand-neighbors)
- \rightarrow 0-, 1-, and 2-hop neighborhood
- → b/c influence dissipates with distance
- \rightarrow b/c no over-smoothing

$$\mathcal{P}(\mathbf{A}, \mathbf{X}) = \underbrace{\mathbf{U}}_{\text{Node features}} \parallel \underbrace{g(\mathbf{X})}_{\text{2-step neighbors}} \parallel \underbrace{g(\tilde{\mathbf{A}}_{\text{sym}}^2 \mathbf{X})}_{\text{Neighbors}} \parallel \underbrace{g(\tilde{\mathbf{A}}_{\text{sym}}^2 \mathbf{X})}_{\text{Neighbors}}$$

"Careful Simplicity"

$$\mathcal{P}(\mathbf{A}, \mathbf{X}) = \underbrace{\mathbf{U}}_{\text{Node features}} \| \underbrace{g(\mathbf{X})}_{\text{Node features}} \| \underbrace{g(\mathbf{A}_{\text{row}}^2 \mathbf{X})}_{\text{2-step neighbors}} \| \underbrace{g(\tilde{\mathbf{A}}_{\text{sym}}^2 \mathbf{X})}_{\text{Neighbors}} \|$$

Outline

- Problem Definition
- Q1: Reasons
- Q2: Method
- Q3: Sanity Checks
 - Experiments
 - Conclusions

Q3: Sanity Checks

- Q: What are possible settings?
- A: Cross-product of scenarios

Q3: Sanity Checks

- Q: What are possible settings?
- A: Cross-product of scenarios
 - S1: connectivity
 - Block-diagonal
 - Block-off-diagonal
 - Random

Possible (self/cross-) correlations?

block-diagonal = communities ~ homophily

block-off-diagonal = 'familiar strangers'~ heterophily

SLIMG - KDD'23

Random

Q3: Sanity Checks

- Q: What are possible settings?
- A: Cross-product of scenarios
 - S1: connectivity
 - S2: cross-correlations labels are correlated w/
 - Connectivity only (A)
 - Features only (X)
 - Both
 - (None)

Possible (self/cross-) correlations?

(omitted – obvious – everybody does well)

A~**Y X**~**Y**

Q3: Sanity Checks

Only X Only A helps

Both A, X help

	Only X helps	Only A	A helps		Both X ar	nd A help				-
Model	Semantic X	Random X	Random X	Structural X	Structural X	Semantic X	Semantic X	Avg. Acc	Avg. Rank	
	Uniform A	Homophily	Heterophily	Homophily	Heterophily	Homophily	Heterophily			
LR	83.7±0.6	24.2±0.7	24.2±0.7	71.4±0.9	66.8±2.2	83.4±0.6	83.4±0.6	62.4 (26.9)	10.7 (5.4)	_
Reg. Kernel	82.7±0.5	27.9±0.4	24.3±1.0	75.7±0.2	65.3±1.6	91.5±0.5	79.5±0.3	63.8 (27.0)	10.4 (4.3)	
Diff. Kernel	26.8±1.7	38.0±8.7	37.6 ± 7.5	79.5±0.3	73.5 ± 0.6	$70.9\pm23.$	56.1±27.	54.6 (20.7)	10.6 (4.0)	
RW Kernel	72.2±0.7	37.0±0.4	24.5±1.3	81.3±1.2	51.0±1.1	94.5±0.9	57.8±0.7	59.8 (24.7)	10.4 (3.6)	
SGC	44.6±9.8	64.3±0.7	50.2±14.	87.1±0.6	84.3±0.5	93.9±0.9	91.5±0.5	73.7 (20.4)	5.7 (3.1)	Ī
DGC	63.8±1.0	50.5±13.	26.0 ± 0.9	88.6±1.0	45.3±1.3	96.2±0.4	54.0±0.6	60.6 (24.6)	8.3 (5.9)	
S^2GC	79.9±0.6	38.5±12.	25.4 ± 0.9	88.4±1.0	67.9±1.5	95.9±0.6	78.0 ± 0.5	67.7 (26.2)	7.4 (3.4)	
G^2CN	25.2±0.3	24.2±1.1	25.0 ± 0.1	88.5±1.0	88.6±1.2	24.3±1.1	50.7±31.	46.6 (30.2)	11.6 (6.3)	
GCN	36.3±3.5	46.7±8.0	43.7±1.9	83.3±1.3	72.2±1.7	91.2±1.2	80.3±3.9	64.8 (22.1)	8.1 (3.0)	_
SAGE	80.3±1.1	31.1±0.7	34.6 ± 2.1	83.9±0.8	81.3 ± 0.7	94.4±0.5	94.4±0.9	71.4 (27.0)	5.7 (2.9)	
GCNII	73.5±1.2	30.7±0.7	27.1 ± 1.3	84.2±0.8	69.0 ± 1.4	90.6±0.9	80.4±1.2	65.1 (25.7)	8.7 (1.8)	
$\mathrm{H}^2\mathrm{GCN}$	80.2±1.5	27.0±1.0	27.5 ± 0.8	78.0±0.9	74.6 ± 1.3	91.9±0.7	92.2±0.9	67.3 (28.2)	8.0 (3.9)	
APPNP	66.0±2.6	30.3±1.2	25.2 ± 0.7	71.2±4.9	43.8 ± 2.0	83.2±3.8	58.7 ± 4.5	54.1 (21.6)	12.9 (2.0)	
GPR-GNN	73.4±0.4	74.6±0.7	65.9 ± 2.1	89.9±0.6	87.6±1.2	95.0±1.1	91.9±1.1	82.6 (11.2)	3.3 (2.1)	
GAT	32.7±5.5	42.6±4.8	36.8±5.7	64.0±5.7	55.6±6.8	68.5±7.1	67.0±12.	52.5 (15.0)	11.6 (4.1)	_
SLIMG (Ours)	81.0±1.1	87.1±1.4	89.2±1.2	88.1±0.5	88.9±0.7	94.4±0.6	93.9±0.5	88.9 (4.5)	2.6 (1.8)	

Q3: Sanity Checks – Part 1/3

Only X helps

Model	Only X helps Semantic X Uniform A
LR	83.7±0.6
Reg. Kernel	82.7±0.5
Diff. Kernel	26.8±1.7
RW Kernel	72.2±0.7
SGC	44.6±9.8
DGC	63.8±1.0
S^2GC	79.9±0.6
G ² CN	25.2±0.3
GCN	36.3±3.5
SAGE	80.3±1.1
GCNII	73.5±1.2
H^2GCN	80.2±1.5
APPNP	66.0±2.6
GPR-GNN	73.4±0.4
GAT	32.7±5.5
SLIMG (Ours)	81.0±1.1

- 1) Logistic Reg. does great
- 2) ... as well as SLIMG
- 3) Rest: confused
 - 1) ... often 1/4 (random)

Q3: Sanity Checks – Part 2/3

Only A helps

	Only A	A helps
Model	Random X	Random X
	Homophily	Heterophily
LR	24.2±0.7	24.2±0.7
Reg. Kernel	27.9±0.4	24.3±1.0
Diff. Kernel	38.0±8.7	37.6 ± 7.5
RW Kernel	37.0±0.4	24.5±1.3
SGC	64.3±0.7	50.2±14.
DGC	50.5±13.	26.0 ± 0.9
S^2GC	38.5±12.	25.4 ± 0.9
G^2CN	24.2±1.1	25.0 ± 0.1
GCN	46.7±8.0	43.7±1.9
SAGE	31.1±0.7	34.6 ± 2.1
GCNII	30.7±0.7	27.1 ± 1.3
H^2GCN	27.0±1.0	27.5 ± 0.8
APPNP	30.3±1.2	25.2 ± 0.7
GPR-GNN	74.6±0.7	65.9 ± 2.1
GAT	42.6±4.8	36.8±5.7
SLIMG (Ours)	87.1±1.4	89.2±1.2

As expected:

- 1) Only SLIMG works
- 2) All else fail

Q3: Sanity Checks – Part 3/3

Both A, X help

	Both X and A help									
Model	Structural X	Structural X	Semantic X	Semantic X						
	Homophily	Heterophily	Homophily	Heterophily						
LR	71.4±0.9	66.8±2.2	83.4±0.6	83.4±0.6						
Reg. Kernel	75.7±0.2	65.3±1.6	91.5±0.5	79.5±0.3						
Diff. Kernel	79.5±0.3	73.5 ± 0.6	$70.9\pm23.$	56.1±27.						
RW Kernel	81.3±1.2	51.0±1.1	94.5±0.9	57.8±0.7						
SGC	87.1±0.6	84.3±0.5	93.9±0.9	91.5±0.5						
DGC	88.6±1.0	45.3±1.3	96.2±0.4	54.0±0.6						
S^2GC	88.4±1.0	67.9±1.5	95.9±0.6	78.0 ± 0.5						
G^2CN	88.5±1.0	88.6±1.2	24.3±1.1	50.7±31.						
GCN	83.3±1.3	72.2±1.7	91.2±1.2	80.3±3.9						
SAGE	83.9±0.8	81.3±0.7	94.4±0.5	94.4±0.9						
GCNII	84.2±0.8	69.0±1.4	90.6±0.9	80.4±1.2						
$\mathrm{H}^2\mathrm{GCN}$	78.0±0.9	74.6 ± 1.3	91.9±0.7	92.2±0.9						
APPNP	71.2±4.9	43.8 ± 2.0	83.2±3.8	58.7 ± 4.5						
GPR-GNN	89.9±0.6	87.6±1.2	95.0±1.1	91.9±1.1						
GAT	64.0±5.7	55.6±6.8	68.5±7.1	67.0±12.						
SLIMG (Ours)	88.1±0.5	88.9±0.7	94.4±0.6	93.9±0.5						

- 1) Several do OK on hom.
- 2) Fewer work on het.
- 3) SLIMG: never 'red'

Outline

- Problem Definition
- Q1: Reasons
- Q2: Method
- Q3: Sanity Checks

- E1: Accurate & Robust
- E2: Interpretable
- E3: Fast & Scalable
- Conclusions

E1: Accurate & Robust

Real-World Datasets

7 Homophily

6 Heterophily

Model	Cora	CiteSeer	PubMed	Comp.	Photo	ArXiv	Products	Cham.	Squirrel	Actor	Penn94	Twitch	Pokec	Avg. Rank	
										1					
LR	51.5±1.2	52.9±4.5	79.9±0.5	73.9±1.2	79.3±1.5	48.3±1.9	56.4±0.5	24.9±1.7	26.7±1.9	27.8±0.8	63.5±0.5	53.0 ± 0.1	61.3±0.0	11.7 (4.2)	
Reg. Kernel	67.8±2.5	62.1±4.4	83.4±1.4	80.3±1.4	87.1±1.2	O.O.M.	O.O.M.	29.4±2.6	24.3±2.3	29.6±1.4	O.O.M.	O.O.M.	O.O.M.	12.2 (3.8)	
Diff. Kernel	70.6±1.5	62.7±3.8	82.1±0.4	83.1±1.0	89.8±0.6	O.O.M.	O.O.M.	34.5±7.9	28.3 ± 1.5	24.7±0.9	53.5±0.8	O.O.M.	O.O.M.	11.8 (2.5)	Ä
RW Kernel	72.7±1.7	64.1±3.9	83.1±0.7	84.2±0.7	90.6±0.7	63.2±0.2	74.2±0.0	34.9±3.5	25.0±1.6	26.4±1.1	63.1±0.7	57.6±0.1	59.5±0.0	8.3 (3.3)	
SGC	76.2±1.1	65.8±3.9	84.1±0.8	83.7±1.6	90.1±0.9	65.0±3.4	74.6±5.1	38.1±4.5	33.1±1.0	24.6±0.8	64.0±1.1	56.5±0.1	69.8±0.0	6.6 (4.2)	
DGC	77.8±1.4	66.1±4.2	84.3±0.6	83.9±0.7	90.4±0.2	65.2±4.0	68.7±13.	37.2±3.7	29.2±1.2	25.2±2.1	62.5±0.4	58.2±0.2	60.7±0.1	6.6 (3.2)	M
S^2GC	78.3±1.5	66.9±4.4	84.3±0.3	83.1±0.8	90.1±0.8	62.0±7.4	58.3±18.	34.9±4.9	27.6±1.8	26.7±1.8	63.1±0.5	58.7±0.1	61.2±0.0	6.6 (2.7)	
G^2CN	76.6±1.5	64.2±3.3	81.4±0.6	82.8±1.6	88.8±0.5	O.O.M.	O.O.M.	40.7±2.9	32.1±1.5	24.3±0.5	O.O.M.	O.O.M.	O.O.M.	10.5 (4.5)	
GCN	76.0±1.2	65.0±2.9	84.3±0.5	85.1±0.9	91.6±0.5	62.8±0.6	O.O.M.	38.5±3.0	31.4±1.8	26.8±0.4	62.9±0.7	57.0±0.1	63.9±0.4	6.3 (2.4)	
SAGE	74.6±1.3	63.7±3.6	82.9±0.4	83.8±0.5	90.6±0.5	61.5±0.6	O.O.M.	39.8±4.3	27.0 ± 1.3	27.8±0.9	O.O.M.	56.6±0.4	68.9±0.1	8.5 (3.5)	
GCNII	77.8±1.7	63.4±3.0	84.9±0.8	82.3±1.8	90.8±0.6	45.7±0.5	O.O.M.	30.5±2.5	21.9 ± 3.0	29.0±1.3	64.5±0.5	56.9±0.6	62.1±0.3	8.4 (4.6)	
H^2GCN	77.6±0.9	64.7±3.8	85.4±0.4	49.5±16.	75.8±11.	O.O.M.	O.O.M.	31.9±2.6	25.0 ± 0.5	28.9±0.6	63.9±0.4	58.7±0.0	O.O.M.	8.9 (4.9)	
APPNP	80.0±0.6	67.1±2.8	84.6±0.5	84.2±1.7	92.5±0.3	53.4±1.3	O.O.M.	30.9±4.7	23.9±3.2	26.1±1.0	63.7±0.9	47.3±0.3	57.4±0.4	7.6 (4.8)	
GPR-GNN	78.8±1.3	64.2±4.0	85.1±0.7	85.0±1.0	92.6±0.3	58.5±0.8	O.O.M.	31.7±4.7	26.2±1.6	29.5±1.1	64.5±0.4	57.6±0.2	67.6±0.1	5.4 (3.7)	
GAT	78.2±1.2	65.8±4.0	83.6±0.2	85.4±1.4	91.7±0.5	58.2±1.0	O.O.M.	39.1±4.1	28.6±0.6	26.4±0.4	60.5±0.8	O.O.M.	O.O.M.	7.5 (3.7)	
SLIMG	77.8±1.1	67.1±2.3	84.6±0.5	86.3±0.7	91.8±0.5	66.3±0.3	84.9±0.0	40.8±3.2	31.1±0.7	30.9±0.6	68.2±0.6	59.7±0.1	73.9±0.1	1.9 (1.5)	

E1: Accurate & Robust

Real-Warld Datasets

7 Homophil

6 Heterophily

															-
Model	Cora	CiteSeer	PubM			ArXiv	Products	Cham.	Squirrel	Actor	Penn94	Twitch	Pokec	Avg. Rank	
LR	51.5±1.2	52.9±4.5			9.3±1.5	48.3±1.9	56.4±0.5	24.9±1.7	26.7±1.9	27.8±0.8	63.5±0.5	53.0±0.1	61.3±0.0	11.7 (4.2)	
Reg. Kernel	67.8±2.5	62		£1.4	87.1±1.2	O.O.M.	O.O.M.	29.4±2.6	24.3±2.3	29.6±1.4	O.O.M.	O.O.M.	O.O.M.	12.2 (3.8)	
Diff. Kernel	70.6±1.5	40		83.1±1.0	89.8±0.6	O.O.M.	O.O.M.	34.5±7.9	28.3 ± 1.5	24.7 ± 0.9	53.5±0.8	O.O.M.	O.O.M.	11.8 (2.5)	M
RW Kernel	72-		≟ 0.7	84.2±0.7	90.6±0.7	63.2±0.2	74.2±0.0	34.9±3.5	25.0±1.6	26.4±1.1	63.1±0.7	57.6±0.1	59.5±0.0	8.3 (3.3)	9
SGC			84.1±0.8	83.7±1.6	90.1±0.9	65.0±3.4	74.6±5.1	38.1±4.5	33.1±1.0	24.6±0.8	64.0±1.1	56.5±0.1	69.8±0.0	6.6 (4.2)	•
DC		.1±4.2	84.3±0.6	83.9 ± 0.7	90.4 ± 0.2	65.2±4.0	68.7±13.	37.2±3.7	29.2±1.2	25.2±2.1	62.5±0.4	58.2±0.2	60.7±0.1	6.6 (3.2)	44
		66.9±4.4	84.3±0.3	83.1±0.8	90.1±0.8	62.0±7.4	58.3±18.	34.9±4.9	27.6±1.8	26.7±1.8	63.1±0.5	58.7±0.1	61.2±0.0	6.6 (2.7)	
	.o±1.5	64.2±3.3	81.4±0.6	82.8±1.6	88.8±0.5	O.O.M.	O.O.M.	40.7±2.9	32.1±1.5	24.3±0.5	O.O.M.	O.O.M.	O.O.M.	10.5 (4.5)	
GC	76.0±1.2	65.0±2.9	84.3±0.5	85.1±0.9	91.6±0.5	62.8±0.6	O.O.M.	38.5±3.0	31.4±1.8	26.8±0.4	62.9±0.7	57.0±0.1	63.9±0.4	6.3 (2.4)	i
SAGE	74.6±1.3	63.7 ± 3.6	82.9 ± 0.4	83.8±0.5	90.6±0.5	61.5±0.6	O.O.M.	39.8±4.3	27.0 ± 1.3	27.8±0.9	O.O.M.	56.6±0.4	68.9±0.1	8.5 (3.5)	
GCNII	77.8±1.7	63.4 ± 3.0	84.9±0.8	82.3±1.8	90.8±0.6	45.7±0.5	O.O.M.	30.5±2.5	21.9 ± 3.0	29.0±1.3	64.5±0.5	56.9±0.6	62.1±0.3	8.4 (4.6)	
$\mathrm{H}^2\mathrm{GCN}$	77.6±0.9	64.7 ± 3.8	85.4±0.4	49.5±16.	75.8±11.	O.O.M.	O.O.M.	31.9±2.6	25.0 ± 0.5	28.9±0.6	63.9±0.4	58.7±0.0	O.O.M.	8.9 (4.9)	
APPNP	80.0±0.6	67.1±2.8	84.6±0.5	84.2 ± 1.7	92.5±0.3	53.4±1.3	O.O.M.	30.9±4.7	23.9 ± 3.2	26.1±1.0	63.7±0.9	47.3 ± 0.3	57.4±0.4	7.6 (4.8)	
GPR-GNN	78.8±1.3	64.2±4.0	85.1±0.7	85.0±1.0	92.6±0.3	58.5±0.8	O.O.M.	31.7±4.7	26.2±1.6	29.5±1.1	64.5±0.4	57.6±0.2	67.6±0.1	5.4 (3.7)	П
GAT	78.2±1.2	65.8 ± 4.0	83.6±0.2	85.4±1.4	91.7±0.5	58.2±1.0	O.O.M.	39.1±4.1	28.6±0.6	26.4±0.4	60.5±0.8	O.O.M.	O.O.M.	7.5 (3.7)	
SLIMG	77.8±1.1	67.1±2.3	84.6±0.5	86.3±0.7	91.8±0.5	66.3±0.3	84.9±0.0	40.8±3.2	31.1±0.7	30.9±0.6	68.2±0.6	59.7±0.1	73.9±0.1	1.9 (1.5)) {

E2: Interpretable

Structures about neighb.
D'23

E2: Interpretable

Strictife Saldres and reight.

OD'23

E3: Fast & Scalable

E3: Fast & Scalable

Conclusions

✓ Q1: Reasons

Model	Cora	CiteSeer	PubMed	Comp.	Photo	ArXiv	Products	Cham.	Squirrel	Actor	Penn94	Twitch	Pokec	Avg. Ranl
LR	51.5±1.2	52.9±4.5	79.9±0.5	73.9±1.2	79.3±1.5	48.3±1.9	56.4±0.5	24.9±1.7	26.7±1.9	27.8±0.8	63.5±0.5	53.0±0.1	61.3±0.0	11.7 (4.2
Reg. Kernel	67.8±2.5	62.1±4.4	83.4±1.4	80.3±1.4	87.1±1.2	O.O.M.	O.O.M.	29.4±2.6	24.3±2.3	29.6±1.4	O.O.M.	O.O.M.	O.O.M.	12.2 (3.8
Diff. Kernel	70.6 ± 1.5	62.7±3.8	82.1±0.4	83.1±1.0	89.8±0.6	O.O.M.	O.O.M.	34.5±7.9	28.3±1.5	24.7±0.9	53.5±0.8	O.O.M.	O.O.M.	11.8 (2.
RW Kernel	72.7±1.7	64.1±3.9	83.1±0.7	84.2±0.7	90.6±0.7	63.2±0.2	74.2±0.0	34.9±3.5	25.0±1.6	26.4±1.1	63.1±0.7	57.6±0.1	59.5±0.0	8.3 (3.
SGC	76.2±1.1	65.8±3.9	84.1±0.8	83.7±1.6	90.1±0.9	65.0±3.4	74.6±5.1	38.1±4.5	33.1±1.0	24.6±0.8	64.0±1.1	56.5±0.1	69.8±0.0	6.6 (4.
DGC	77.8±1.4	66.1±4.2	84.3±0.6	83.9±0.7	90.4±0.2	65.2±4.0	68.7±13.	37.2±3.7	29.2±1.2	25.2±2.1	62.5±0.4	58.2±0.2	60.7±0.1	6.6 (3.
S ² GC	78.3±1.5	66.9±4.4	84.3±0.3	83.1±0.8	90.1±0.8	62.0±7.4	58.3±18.	34.9±4.9	27.6±1.8	26.7±1.8	63.1±0.5	58.7±0.1	61.2±0.0	6.6 (2.
G ² CN	76.6 ± 1.5	64.2±3.3	81.4±0.6	82.8±1.6	88.8±0.5	O.O.M.	O.O.M.	40.7±2.9	32.1±1.5	24.3±0.5	O.O.M.	O.O.M.	O.O.M.	10.5 (4.
GCN	76.0±1.2	65.0±2.9	84.3±0.5	85.1±0.9	91.6±0.5	62.8±0.6	O.O.M.	38.5±3.0	31.4±1.8	26.8±0.4	62.9±0.7	57.0±0.1	63.9±0.4	6.3 (2.
SAGE	74.6±1.3	63.7±3.6	82.9±0.4	83.8±0.5	90.6±0.5	61.5±0.6	O.O.M.	39.8±4.3	27.0±1.3	27.8±0.9	O.O.M.	56.6±0.4	68.9±0.1	8.5 (3.
GCNII	77.8±1.7	63.4±3.0	84.9±0.8	82.3±1.8	90.8±0.6	45.7±0.5	O.O.M.	30.5±2.5	21.9±3.0	29.0±1.3	64.5±0.5	56.9±0.6	62.1±0.3	8.4 (4.
H ² GCN	77.6±0.9	64.7±3.8	85.4±0.4	49.5±16.	75.8±11.	O.O.M.	O.O.M.	31.9±2.6	25.0±0.5	28.9±0.6	63.9±0.4	58.7±0.0	O.O.M.	8.9 (4.
APPNP	80.0±0.6	67.1±2.8	84.6±0.5	84.2±1.7	92.5±0.3	53.4±1.3	O.O.M.	30.9±4.7	23.9±3.2	26.1±1.0	63.7±0.9	47.3±0.3	57.4±0.4	7.6 (4.
GPR-GNN	78.8±1.3	64.2±4.0	85.1±0.7	85.0±1.0	92.6±0.3	58.5±0.8	O.O.M.	31.7±4.7	26.2±1.6	29.5±1.1	64.5±0.4	57.6±0.2	67.6±0.1	5.4 (3.
GAT	78.2±1.2	65.8±4.0	83.6±0.2	85.4±1.4	91.7±0.5	58.2±1.0	O.O.M.	39.1±4.1	28.6±0.6	26.4±0.4	60.5±0.8	O.O.M.	O.O.M.	7.5 (3
SLIMG	77.8±1.1	67.1±2.3	84.6±0.5	86.3±0.7	91.8±0.5	66.3±0.3	84.9±0.0	40.8±3.2	31.1±0.7	30.9±0.6	68.2±0.6	59.7±0.1	73.9±0.1	1.9 (1

- Accurate, Robust, Interpretable, Fast, Scalable

✓ Q3: Sanity Checks

√ Q2: Method

Accurate, Robust, Interpretable, Fast, Scalable

✓ Q3: Sanity Checks

Thank You!

Jaemin **YOO***

Meng-Chieh (Jeremy) LEE*

Shubhranshu *SHEKHAR*

Brandeis

Christos **FALOUTSOS**

√Q1: Reasons

SLIMG – KDD'23

J. Yoo*, M.C. Lee*, S. Shekhar, C. Faloutsos