Assignment for Section 2.7: Transposes and permutations

(1) Let

$$A = \left[\begin{array}{cc} 1 & 0 \\ 9 & 3 \end{array} \right].$$

Find A^{\top} and A^{-1} and $(A^{\top})^{-1}$ and $(A^{-1})^{\top}$.

(2) Let

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}.$$

Verify that $(AB)^{\top}$ equals $B^{\top}A^{\top}$ but those are different from $A^{\top}B^{\top}$.

- (3) Factor the symmetric matrix $S = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ into $S = LDL^{\top}$ with the diagonal pivot matrix D.
- (4) Let

$$A = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 3 & 4 \end{array} \right].$$

Find the factorization PA = LU.