

Z= (X, Y)

AES	Z(A) ∈ R ²
HHH	(1,3)
HHT	(0/2)
H T H	(1,2)
HTT	(o', 1)
T H H	(1,2)
THT	(1,2)
TTH	(1',1)
TTT	(0,0)

Defui Bisariate CDF

The bivariate (joint) CDF is a fauction

$$F: \mathbb{R}^2 \to \mathbb{R}$$

So that for $(x,y) \in \mathbb{R}^2$ then $F(x,y) = P(X \leq x, Y \leq y)$

 $\frac{1}{(x,y)}$ $[uni: F(x) = P(X \le x)]$ Properties of Joint CDF (I) F(x,y) > 0 $\begin{array}{cccc}
1 & F(x,y) & = 1 \\
2 & \lim_{x \to \infty} F(x,y) & = 1
\end{array}$ $\begin{array}{cccc}
1 & \lim_{x \to \infty} F(x) & = 1 \\
2 & \lim_{x \to \infty} F(x) & = 1
\end{array}$ 3) $\lim_{X \to -\infty} F(x,y) = 0$ $\lim_{X \to -\infty} F(x,y) = 0$ $\lim_{X \to -\infty} F(x,y) = 0$ (4) F is non-decreasing and right-cts in each argument (x and y) Defni Marginal RVS/properties If (X, 11) is a bivariate RV then we Call X and I individually, the marginal RK.
Their properties are also called marginal.

Theorem: Rel. botum Joint/Marginal CDFs

(1)
$$F_{x}(x) = \lim_{y \to \infty} F(x,y)$$
 $F_{y}(y) = \lim_{x \to \infty} F(x,y)$

Proposition

$$F_{x}(x) = P(x \le x) = P(x \le x, y = anything)$$

$$F_{x}(x) = P(x \le x) = P(x \le x, y \le y)$$

$$F_{x}(x) = P(x \le x) = P(x \le x, y \le y)$$

$$F_{x}(x) = P(x \le x) = P(x \le x, y \le y)$$

$$F_{x}(x) = P(x \le x) = P(x \le x, y \le y)$$

$$F_{x}(x) = P(x \le x) = P(x \le x, y \le y)$$

$$F_{x}(x) = P(x \le x) = P(x \le x, y \le y)$$

$$F_{x}(x) = P(x \le x) = P(x \le x, y \le y)$$

$$F_{x}(x) = P(x \le x, y \le y)$$

Theorem: Rel. Lotur joint/magiral PME $f_{\chi}(x) = \sum_{y \in \mathcal{Y}} f(x,y)$ Recell: Ai partition S then P(B) = ZP(BnAi) - Ay = "/=y" C S $\beta = \sqrt{x} = x'' \in S$ $\pm_{\chi}(\chi) = \mathbb{P}(\chi = \chi) = \mathbb{P}(B)$ $= 2 P(B \cap A_y)$ $= \sum_{i,j} \mathbb{P}(\mathbb{X} = X^{ij})$ $= \sum_{y} P(x=x, y=y)$

Ex. Flip 3 coins

$$X = \begin{cases} 0 & \text{if last T} \\ 1 & \text{if last T} \end{cases}$$
 $Y = \# \text{ of H}$
 $Y = \# \text{ of H}$

Defn: Joint PDF

If X and Y are continuous RVs we call

the function $f: \mathbb{R}^2 \to \mathbb{R}$ the joint density of X and Y if $Y \subset C \mathbb{R}^2$ $P((X,Y) \in C) = \iint f(x,y) dxdy$

 $f(x,y) = \frac{\partial F}{\partial x \partial y}$ $[uni: f(x) = \frac{\partial F}{\partial x}]$

3) f is a valid Joint Density iff (1) f(x,y) > 0 $\forall x,y$ (2) $\iint f(x,y) dx dy = 1$

Theorem: Rel. Litur joint/marginel densitives

$$f_{\chi}(x) = \int_{\mathbb{R}} f(x,y) dy$$

(2) $f_{y}(y) = \int_{\mathbb{R}} f(x,y) dx$

χ<0 or y<0 1 -What's the joint density? DF DXDY fer 02X4 ad