

STF16N65M5, STI16N65M5 STP16N65M5, STU16N65M5, STW16N65M5

N-channel 650 V, 0.230 Ω, 12 A MDmeshTM V Power MOSFET in TO-220FP, I²PAK, TO-220, IPAK, TO-247

Features

Туре	V _{DSS} @ T _{Jmax}	R _{DS(on)} max	I _D
STF16N65M5			
STI16N65M5			
STP16N65M5	710 V	< 0.279 Ω	12 A
STU16N65M5			
STW16N65M5			

- Worldwide best R_{DS(on)}
- Higher V_{DSS} rating
- High dv/dt capability
- Excellent switching performance
- Easy to drive
- 100% avalanche tested

Applications

■ Switching applications

Description

These devices are N-channel MDmesh™ V Power MOSFETs based on an innovative proprietary vertical process technology, which is combined with STMicroelectronics' well-known PowerMESH™ horizontal layout structure. The resulting product has extremely low onresistance, which is unmatched among siliconbased Power MOSFETs, making it especially suitable for applications which require superior power density and outstanding efficiency.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Marking	Package	Packaging
STF16N65M5		TO-220FP	
STI16N65M5		I ² PAK	
STP16N65M5	16N65M5	TO-220	Tube
STU16N65M5		IPAK	
STW16N65M5		TO-247	

October 2011 Doc ID 15210 Rev 4 1/20

Contents STF/I/P/U/W16N65M5

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	. 6
3	Test circuits	. 9
4	Package mechanical data	10
5	Revision history	19

STF/I/P/U/W16N65M5 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

			Value	
Symbol	Parameter	TO-220FP	TO-220, I ² PAK, IPAK, TO-247	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)		650	V
V _{GS}	Gate-source voltage		± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	12 ⁽¹⁾	12	Α
I _D	Drain current (continuous) at T _C = 100 °C	7.3 ⁽¹⁾ 7.3		Α
I _{DM} ⁽²⁾	Drain current (pulsed)	48 ⁽¹⁾ 48		Α
P _{TOT}	Total dissipation at T _C = 25 °C	90	25	W
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _j max)	4		А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	200		mJ
dv/dt (3)	Peak diode recovery voltage slope	15		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C)	2500		V
T _{stg}	Storage temperature	- 55 to 150		°C
T _j	Max. operating junction temperature		150	°C

^{1.} Limited by maximum junction temperature

Table 3. Thermal data

Symbol Parameter -		Value					Unit
Symbol	Faiametei	TO-220FP	I ² PAK	TO-220	IPAK	TO-247	Oille
R _{thj-case}	Thermal resistance junction-case max	5 1.38			°C/W		
R _{thj-amb}	Thermal resistance junction- ambient max	62.5		100	50	°C/W	
T _I	Maximum lead temperature for soldering purpose	300				ပ္	

^{2.} Pulse width limited by safe operating area

^{3.} $I_{SD} \leq$ 12 A, di/dt \leq 400 A/ μ s, V_{DD} = 400 V, V_{Peak} < $V_{(BR)DSS}$

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage (V _{GS} = 0)	I _D = 1 mA	650			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 650 V V _{DS} = 650 V, T _C =125 °C			1 100	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 6 \text{ A}$		0.230	0.279	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0	-	1250 30 3	-	pF pF pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 520 V, V _{GS} = 0	-	100	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	V _{DS} = 0 to 320 v, v _{GS} = 0	-	30	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	2	-	Ω
Qg	Total gate charge	$V_{DD} = 520 \text{ V}, I_D = 6 \text{ A},$		31		nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	8	-	nC
Q_{gd}	Gate-drain charge	(see Figure 20)		12		nC

^{1.} $C_{oss\,eq.}$ time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

^{2.} $C_{oss\ eq.}$ energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _d (v)	Voltage delay time	$V_{DD} = 400 \text{ V}, I_D = 8 \text{ A},$		25		ns
t _r (v)	Voltage rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$		7		ns
t _f (i)	Current fall time	(see Figure 21)	-	6	_	ns
t _c (off)	Crossing time	(see Figure 24)		8		ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		12 48	A A
V _{SD} (2)	Forward on voltage	I _{SD} = 12 A, V _{GS} = 0	-		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 12 A, di/dt = 100 A/μs V _{DD} = 100 V (see <i>Figure 24</i>)	1	300 3.5 23		ns μC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 12 \text{ A, di/dt} = 100 \text{ A/µs}$ $V_{DD} = 100 \text{ V, T}_{j} = 150 \text{ °C}$ (see <i>Figure 24</i>)	-	350 4 24		ns μC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STF/I/P/U/W16N65M5

Electrical characteristics (curves) 2.1

Figure 2. Safe operating area for TO-220FP Figure 3. Thermal impedance for TO-220FP

Figure 4. Safe operating area for TO-220, I²PAK, TO-247

Figure 5. Thermal impedance for TO-220, I2PAK, TO-247

Figure 6. Safe operating area for IPAK

AM08609v1 10µs 10 10⁰ 100µs 1 1ms 10ms 10^{-1} 0.1 Tj=150°C SINGLE PULSE Tc=25°C Single pulse 10 0.01 10^{-5} 10-4 10^{-3} 100 VDS(V)

Figure 7. Thermal impedance for IPAK

Figure 8. Output characteristics

Figure 9. Transfer characteristics

Figure 10. Normalized B_{VDSS} vs temperature

Figure 11. Static drain-source on resistance

Figure 12. Output capacitance stored energy

Figure 13. Capacitance variations

Figure 14. Gate charge vs gate-source voltage Figure 15. Normalized on resistance vs temperature

Figure 16. Normalized gate threshold voltage Figure 17. Source-drain diode forward vs temperature characteristics

Figure 18. Switching losses vs gate resistance

1. Eon including reverse recovery of a SiC diode

STF/I/P/U/W16N65M5 Test circuits

3 Test circuits

Figure 19. Switching times test circuit for resistive load

Figure 20. Gate charge test circuit

Figure 21. Test circuit for inductive load switching and diode recovery times

Figure 22. Unclamped inductive load test circuit

Figure 23. Unclamped inductive waveform

Figure 24. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

10/20 Doc ID 15210 Rev 4

Table 8. TO-220FP mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
А	4.4		4.6		
В	2.5		2.7		
D	2.5		2.75		
E	0.45		0.7		
F	0.75		1		
F1	1.15		1.70		
F2	1.15		1.70		
G	4.95		5.2		
G1	2.4		2.7		
Н	10		10.4		
L2		16			
L3	28.6		30.6		
L4	9.8		10.6		
L5	2.9		3.6		
L6	15.9		16.4		
L7	9		9.3		
Dia	3		3.2		

Figure 25. TO-220FP drawing

Table 9. I²PAK (TO-262) mechanical data

DIM		mm.	
DIM.	min.	typ	max.
Α	4.40		4.60
A1	2.40		2.72
b	0.61		0.88
b1	1.14		1.70
С	0.49		0.70
c2	1.23		1.32
D	8.95		9.35
е	2.40		2.70
e1	4.95		5.15
Е	10		10.40
L	13		14
L1	3.50		3.93
L2	1.27		1.40

Figure 26. I²PAK (TO-262) drawing

Table 10. TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

0015988_typeA_Rev_S

14/20

Figure 27. TO-220 type A drawing

Doc ID 15210 Rev 4

Table 11. IPAK (TO-251) mechanical data

DIM	mm.			
DIM.	min.	typ	max.	
Α	2.20		2.40	
A1	0.90		1.10	
b	0.64		0.90	
b2			0.95	
b4	5.20		5.40	
B5		0.3		
С	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
E	6.40		6.60	
е		2.28		
e1	4.40		4.60	
Н		16.10		
L	9.00		9.40	
L1	0.80		1.20	
L2		0.80	1.00	
V1		10 °		

Figure 28. IPAK (TO-251) drawing

Table 12. TO-247 mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
Α	4.85		5.15	
A1	2.20		2.60	
b	1.0		1.40	
b1	2.0		2.40	
b2	3.0		3.40	
С	0.40		0.80	
D	19.85		20.15	
Е	15.45		15.75	
е		5.45		
L	14.20		14.80	
L1	3.70		4.30	
L2		18.50		
ØP	3.55		3.65	
ØR	4.50		5.50	
S		5.50		

Figure 29. TO-247 drawing

STF/I/P/U/W16N65M5 Revision history

5 Revision history

Table 13. Document revision history

Date	Revision	Changes	
12-Feb-2009	1	First release.	
21-Oct-2010	2	 Document status promoted from preliminary data to datasheet. Added new package, mechanical data: I²PAK. Removed DPAK, D²PAK packages and mechanical data. 	
10-Feb-2011	3	Modified R _{DS(on)} value (see <i>Table 4</i> and <i>Figure 11</i>).	
13-Oct-2011	Modified Section 2.1: Electrical characteristics (curves): - Figure 8, Figure 9, Figure 10, Figure 11, Figure 15 and Figure 1 - Added Figure 18 Updated R _{DS(on)} value in Table 4 Updated values in Table 6 Minor text changes.		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

20/20 Doc ID 15210 Rev 4

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

STF16N65M5 STU16N65M5 STI16N65M5 STW16N65M5 STP16N65M5