

Sirbool of Computing and Information Technologies

LASS NUMBER & () \	SECTION
LAME AbritA Linky MAC	DATE

Exercise 1. Design an algorithm and the corresponding flowchart for adding the test scores as given below: 85, 65, 78, 52, 98, 83

a) Algorithm

- Start 13 Sum = 0Get the first testscore Add first testscore to sum Get the second testscore Add the record testrecore to came Get the third testrecore to care Add to are third testrecor to care 6. 7. 8. 9. bet fourth tearcore 10. Add yourse testecore to own 11. het fifth bet T4032697 12. to ron test score 13. but theh terrere 14. told. sight texture te son 15. Output 16. thop
- b) Draw the corresponding flowchart of the above algorithm

At the Back

September 12, Zem

School of Computing and Information Technologies

CLASS NUMBER: 401

SECTION: THIRT HEART

DATE

Flowcharting Exercises

Exercise 2: The problem with the algorithm from Exercise 1 is that, some of the steps appear more than once, i.e. step 5 get second number, step 7, get third number, etc.

One could shorten the algorithm as follows:

- 1. Start
- 2 Sum = 0
- 3. Get a value
- 4. sum = sum + value
- 5. Go to step 3 to get next Value
- 6. Output the sum
- 7. Stop

This algorithm and its corresponding flowchart are a bit shorter than the first one. In this algorithm, step 3 to 5 will be repeated, where a number is obtained and added to sum. Similarly, the flowchart indicates a flow line being drawn back to the previous step indicating that the portion of the flowchart is being repeated.

Draw the corresponding flowchart of the above algorithm.

PROGCON

School of Computing and Information Technologies

CLASS NUMBER & DI

DATE SEPTEMBER 12, 2019

Flowcharting Exercises

Exercise 3: From the exercise 2, one problem indicates that these steps will be repeated endlessly, resulting in an endless algorithm or flowchart.

The algorithm needs to be improved to eliminate this problem. In order to solve this problem, we need to add a last value to the list of numbers given. This value should be unique so that, each time we get a value, we test the value to see if we have reached the last value.

In this way our algorithm will be a finite algorithm which ends in a finite number of steps as shown below. There are many ways of making the algorithm finite.

The new list of numbers will be 10, 20, 300, 4000, 50000, 1, -1. The value -1 is a unique number since all other numbers are positive.

- 1. Start
- 2. Sum = 0
- 3. Get a value
- 4. If the value is equal to -1, go to step 7
- 5. Add to sum (sum = sum + value)
- 6. Go to step 3 to get next Value
- 7. Output the sum
- 8. Stop

Draw the corresponding flowchart of the above algorithm.

