AP Calculus Homework 25

Please write your answer on a separate piece of paper and submit it on Classkick or write your answer directly on Classkick.

Please write all answers in exact forms. For example, write π instead of 3.14.

1. Find the power series representation for the function and determine the interval of convergence.

a)
$$f(x) = \frac{1}{1+x}$$
 b) $f(x) = \frac{2}{3-x}$ c) $f(x) = \frac{1}{x+10}$

b)
$$f(x) = \frac{2}{3-x}$$

c)
$$f(x) = \frac{1}{x+10}$$

$$d) f(x) = \frac{x}{9 + x^2}$$

d)
$$f(x) = \frac{x}{9+x^2}$$
 e) $f(x) = \frac{x}{2x^2+1}$ f) $f(x) = \frac{1+x}{1-x}$

f)
$$f(x) = \frac{1+x}{1-x}$$

2. Differentiate to find a power series representation for

$$f(x) = \frac{1}{(1+x)^2}$$

What is the radius of convergence?

3. Find the Maclaurin series for f(x) using the definition of Maclaurin series. Also find the associated radius of convergence.

a)
$$f(x) = (1-x)^{-2}$$

a)
$$f(x) = (1-x)^{-2}$$
 b) $f(x) = \ln(1+x)$ c) $f(x) = \sin \pi x$

c)
$$f(x) = \sin \pi x$$

d)
$$f(x) = e^{5x}$$
 e) $f(x) = xe^x$

e)
$$f(x) = xe^x$$

4. Find the Taylor series for f(x) centered at the given value of a.

a)
$$f(x) = x^4 - 3x^2 + 1$$
, $a = 1$

b)
$$f(x) = x - x^3$$
, $a = -2$

b)
$$f(x) = 1/x$$
, $a = -3$

5. The coefficient of x^3 in the Taylor series for e^{3x} about x=0 is

(A)
$$\frac{1}{6}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{3}{2}$ (E) $\frac{9}{2}$

(B)
$$\frac{1}{3}$$

(C)
$$\frac{1}{2}$$

(D)
$$\frac{3}{2}$$

(E)
$$\frac{9}{2}$$

6. The coefficient of x^6 in the Taylor series expansion about x=0 for $f(x)=\sin{(x^2)}$

(A)
$$-\frac{1}{6}$$
 (B) 0 (C) $\frac{1}{120}$ (D) $\frac{1}{6}$ (E) 1

(C)
$$\frac{1}{120}$$

(D)
$$\frac{1}{6}$$

7. Let f be a function given by $f(x) = \ln(3-x)$. The third degree Taylor polynomial for f about x = 2 is

(A)
$$-(x-2) + \frac{(x-2)^2}{2} - \frac{(x-2)^3}{3}$$

(B)
$$-(x-2) - \frac{(x-2)^2}{2} - \frac{(x-2)^3}{3}$$

(C)
$$(x-2) + (x-2)^2 + (x-2)^3$$

(D)
$$(x-2) + \frac{(x-2)^2}{2} + \frac{(x-2)^3}{3}$$

(E)
$$(x-2) - \frac{(x-2)^2}{2} + \frac{(x-2)^3}{3}$$

8. What is the approximation of the value of sin 1 obtained by using the fifth-degree Taylor polynomial about x = 0 for $\sin x$?

(A)
$$1 - \frac{1}{2} + \frac{1}{24}$$

(B)
$$1 - \frac{1}{2} + \frac{1}{4}$$

(C)
$$1 - \frac{1}{3} + \frac{1}{5}$$

(D)
$$1 - \frac{1}{4} + \frac{1}{8}$$

(E)
$$1 - \frac{1}{6} + \frac{1}{120}$$

9. If $\sum_{n=0}^{\infty} a_n x^n$ is a Taylor series that converges to f(x) for all real x, then f'(1) = 1

(B)
$$a_1$$

(C)
$$\sum_{r=0}^{\infty} a_r$$

(D)
$$\sum_{n=1}^{\infty} na_n$$

(C)
$$\sum_{n=0}^{\infty} a_n$$
 (D) $\sum_{n=1}^{\infty} na_n$ (E) $\sum_{n=1}^{\infty} na_n^{n-1}$