Problem Set Section 7.3

Trigonometric Substitution

For,
$$\sqrt{a^2 - x^2}$$
, use $x = a \sin \theta$, $0 \le \theta \le \pi$.

For,
$$\sqrt{a^2 + x^2}$$
, use $x = a \tan \theta$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

For,
$$\sqrt{x^2 - a^2}$$
, use $x = a \sec \theta$, $0 \le \theta < \frac{\pi}{2}$ or $\pi \le \theta < \frac{3\pi}{2}$.

Find the integral
$$\int \frac{x^2}{\sqrt{4-x^2}} dx$$
.

Evaluate the integral $\int_{5}^{5\sqrt{3}} \frac{1}{x^2\sqrt{x^2+25}} dx$.

Find the integral
$$\int \frac{\sqrt{x^2 - 1}}{x} dx$$
, $x > 1$.

Find the integral
$$\int \frac{x}{\sqrt{x^2 - 6x + 13}} dx$$
.

Find the integral $\int (5+4x-x^2)^{3/2} dx$.

Term 203