

Home | Login | Logout | Access Information | Alerts |

Welcome United States Patent and Trademark Office

☐ Search Results

BROWSE

SEARCH

IEEE XPLORE GUIDE

Results for "((fir <in>metadata) <and> (dac <in>metadata))<and> (carrier<in>..."
Your search matched 1 of 1306777 documents.

⊠ e-mail

A maximum of 100 results are displayed, 25 to a page, sorted by Relevance in Descending order.

» Search Options

View Session History **Modify Search** New Search ((fir <in>metadata) <and>(dac <in>metadata))<and>(carrier<in>metadata) >> ☐ Check to search only within this results set » Key Citation C Citation & Abstract Display Format: IEEE JNL IEEE Journal or Magazine IEE Journal or Magazine **IEE JNL** 1. Design of a wideband transmit delta-sigma DAC IEEE CNF IEEE Conference Neitola, M.; Kivi, A.; Rahkonen, T.; Proceeding Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE Internatio **IEE CNF** IEE Conference Proceeding Volume 2, 2-5 Sept. 2001 Page(s):1053 - 1056 vol.2 IEEE STD IEEE Standard Digital Object Identifier 10.1109/ICECS.2001.957668 AbstractPlus | Full Text: PDF(288 KB) | IEEE CNF

Indexed by

Help Contact Us Privacy &:

© Copyright 2005 IEEE -

Home | Login | Logout | Access Information | Alerts |

Welcome United States Patent and Trademark Office

SDESearch Results

BROWSE

SEARCH

IEEE XPLORE GUIDE

Results for "((carrier <in>metadata) <and> (frequency <in>metadata))<and> (fir<'</and></in></and></in>	•
Your search matched 43 of 1306777 documents.	

⊠e-πail

A maximum of 100 results are displayed, 25 to a page, sorted by Relevance in Descending order.

» Search O	ptions	Modif	fy Search					
View Session History		((car	rier <in>metadata) <and> (frequency <in>metadata))<and> (fir<in>metadata) >></in></and></in></and></in>					
New Search		□с	heck to search only within this results set					
		Displ	ay Format: Citation C Citation & Abstract					
» Key								
IEEE JNL	IEEE Journal or Magazine	Select	Article Information					
IEE JNL	IEE Journal or Magazine	 ;	1 Convergence properties of optimal adaptive carrier phase litter predicts					
IEEE CNF	IEEE Conference Proceeding		 Convergence properties of optimal adaptive carrier phase jitter p jitter Sugar, G.L.; Tretter, S.A.; 					
IEE CNF	IEE Conference Proceeding		Communications, IEEE Transactions on					
IEEE STD	IEEE Standard		Volume 43, Issue 234, Feb-Mar-Apr 1995 Page(s):225 - 228 Digital Object Identifier 10.1109/26.380040					
ILLE STD	TEEL Standard		AbstractPlus Full Text: PDF(288 KB) IEEE JNL					
			 A new multicarrier transceiver based on the discrete cosine transform Al-Dhahir, N.; Hlaing Minn; Wireless Communications and Networking Conference, 2005 IEEE Volume 1, 13-17 March 2005 Page(s):45 - 50 Vol. 1 Digital Object Identifier 10.1109/WCNC.2005.1424474 					
			AbstractPlus Full Text: PDF(1797 KB) IEEE CNF					
			 OFDM for high bit rate data transmission over measured indoor radio c Nobles, P.; Halsall, F.; Radio LANs and MANs, IEE Colloquium on 6 Apr 1995 Page(s):5/1 - 5/5 					
			AbstractPlus Full Text: PDF(332 KB) IEE CNF					
			 Adaptive carrier recovery systems for digital data communications recovery. Cupo, R.L.; Gitlin, R.D.; Selected Areas in Communications, IEEE Journal on Volume 7, Issue 9, Dec. 1989 Page(s):1328 - 1339 Digital Object Identifier 10.1109/49.44576 					
			AbstractPlus Full Text: PDF(1012 KB) IEEE JNL					
			5. A double Nyquist digital product detector for quadrature sampling Pellon, L.E.; Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and SIEEE Transactions on] Volume 40, Issue 7, July 1992 Page(s):1670 - 1681 Digital Object Identifier 10.1109/78.143439					
			AbstractPlus Full Text: PDF(1012 KB) IEEE JNL					
			6. Single-carrier space-time block-coded transmissions over frequency-se					

channels Shengli Zhou; Giannakis, G.B.; Information Theory, IEEE Transactions on Volume 49, Issue 1, Jan. 2003 Page(s):164 - 179 Digital Object Identifier 10.1109/TIT.2002.806158 AbstractPlus | References | Full Text: PDF(977 KB) | IEEE JNL 7. Frequency offset and I/Q imbalance compensation for OFDM direct-convi Guanbin Xing; Manyuan Shen; Hui Liu; Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). International Conference on Volume 4, 6-10 April 2003 Page(s):IV - 708-11 vol.4 AbstractPlus | Full Text: PDF(325 KB) IEEE CNF 8. Adaptive time delay estimation method with signal selectivity Yan Zhang; Chun-Mei Wang; Collins, L.M.; Acoustics, Speech, and Signal Processing, 2002. Proceedings. (ICASSP '02). International Conference on Volume 2, 2002 Page(s):1477 - 1480 Digital Object Identifier 10.1109/ICASSP.2002.1006033 AbstractPlus | Full Text: PDF(413 KB) IEEE CNF 9. Design of cosine-modulated filter bank prototype filters using the frequer П masking approach Diniz, P.S.R.; Barcellos, L.C.R.; Netto, S.L.; Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). International Conference on Volume 6, 7-11 May 2001 Page(s):3621 - 3624 vol.6 Digital Object Identifier 10.1109/ICASSP.2001.940626 AbstractPlus | Full Text: PDF(280 KB) IEEE CNF 10. Frequency-hopped generalized MC-CDMA for multipath and interference Zhou, S.; Giannakis, G.B.; Swami, A.; MILCOM 2000. 21st Century Military Communications Conference Proceeding Volume 2, 22-25 Oct. 2000 Page(s):937 - 941 vol.2 Digital Object Identifier 10.1109/MILCOM.2000.904068 AbstractPlus | Full Text: PDF(452 KB) IEEE CNF 11. Joint blind estimation of channel and data symbols in OFDM Yu Song; Roy, S.; Akers, L.A.; Vehicular Technology Conference Proceedings, 2000. VTC 2000-Spring Tokyı Volume 1, 15-18 May 2000 Page(s):46 - 50 vol.1 Digital Object Identifier 10.1109/VETECS.2000.851415 AbstractPlus | Full Text: PDF(304 KB) | IEEE CNF 12. Global optimization of orthogonal FIR transmitter and receiver filters for transmission over noisy channels Tuqan, J.; Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Thir Conference on Volume 1, 24-27 Oct. 1999 Page(s):202 - 206 vol.1 Digital Object Identifier 10.1109/ACSSC.1999.832322 AbstractPlus | Full Text: PDF(400 KB) | IEEE CNF 13. Blind joint estimation of carrier frequency offset and channel using non-i periodic modulation precoders Serpedin, E.; Giannakis, G.B.; Chevreuil, A.; Loubaton, P.; Statistical Signal and Array Processing, 1998. Proceedings., Ninth IEEE SP W 14-16 Sept. 1998 Page(s):288 - 291

Digital Object Identifier 10.1109/SSAP.1998.739391 AbstractPlus | Full Text: PDF(360 KB) IEEE CNF 14. Adaptive filtering based DS/SS code acquisition in frequency selective at fading channels El-Tarhuni, M.G.; Sheikh, A.U.; Vehicular Technology Conference, 1997 IEEE 47th Volume 3, 4-7 May 1997 Page(s):1624 - 1628 vol.3 Digital Object Identifier 10.1109/VETEC.1997.605833 AbstractPlus | Full Text: PDF(408 KB) | IEEE CNF 15. Transfer function of an ideal theoretical distorsionless surface acoustic \ П El-Shennawy, Kh.; Mousa, M.; AFRICON, 1996., IEEE AFRICON 4th Volume 1, 24-27 Sept. 1996 Page(s):528 - 531 vol.1 Digital Object Identifier 10.1109/AFRCON.1996.563169 AbstractPlus | Full Text: PDF(280 KB) IEEE CNF 16. Decision directed coherent detection of 16-QAM on fading channels П Nakhjiri, M.F.; Svensson, A.; Vehicular Technology Conference, 1996. 'Mobile Technology for the Human R Volume 2, 28 April-1 May 1996 Page(s):988 - 992 vol.2 Digital Object Identifier 10.1109/VETEC.1996.501459 AbstractPlus | Full Text: PDF(480 KB) | IEEE CNF 17. Space-time coding with maximum diversity gains over frequency-selective channels Zhou, S.; Giannakis, G.B.; Signal Processing Letters, IEEE Volume 8, Issue 10, Oct. 2001 Page(s):269 - 272 Digital Object Identifier 10.1109/97.957268 AbstractPlus | References | Full Text: PDF(120 KB) | IEEE JNL 18. Equalization for discrete multitone transceivers to maximize bit rate Arslan, G.; Evans, B.L.; Kiaei, S.; Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions of IEEE Transactions on [see also Acoustics, IEEE Transactions of IEEE T IEEE Transactions on] Volume 49, Issue 12, Dec. 2001 Page(s):3123 - 3135 Digital Object Identifier 10.1109/78.969519 AbstractPlus | References | Full Text: PDF(251 KB) | IEEE JNL П 19. Frequency offset and I/Q imbalance compensation for direct-conversion Guanbin Xing; Manyuan Shen; Hui Liu; Wireless Communications, IEEE Transactions on Volume 4, Issue 2, March 2005 Page(s):673 - 680 Digital Object Identifier 10.1109/TWC.2004.842969 AbstractPlus | References | Full Text: PDF(448 KB) | IEEE JNL 20. A multicarrier QAM modulator for WCDMA base-station with on-chip D/A Kosunen, M.; Vankka, J.; Waltari, M.; Halonen, K.A.I.; Very Large Scale Integration (VLSI) Systems, IEEE Transactions on Volume 13, Issue 2, Feb 2005 Page(s):181 - 190 Digital Object Identifier 10.1109/TVLSI.2004.840778 AbstractPlus | Full Text: PDF(856 KB) IEEE JNL 21. Optimized transmultiplexers for multirate systems Martin-Martin, P.; Cruz-Roldan, F.; Saramaki, T.; Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on

23-26 May 2005 Page(s):1106 - 1109 Vol. 2 Digital Object Identifier 10.1109/ISCAS.2005.1464786 AbstractPlus | Full Text: PDF(264 KB) | IEEE CNF

22. Iterative frequency-domain equalization for single-carrier systems in dou channels Schniter, P.; Liu, H.; Signals, Systems and Computers, 2004. Conference Record of the Thirty-Eigh Conference on Volume 1, 7-10 Nov. 2004 Page(s):667 - 671 Vol.1

Digital Object Identifier 10.1109/ACSSC.2004.1399218

AbstractPlus | Full Text: PDF(663 KB) IEEE CNF

23. 8 GHz, 20mW, fast locking, fractional-N frequency synthesizer with optim order, 3/5-bit IIR and 3/sup rd/ order 3-bit-FIR noise shapers in 90nm CMC Ravi, A.; Bishop, R.E.; Carley, L.R.; Soumyanath, K.; Custom Integrated Circuits Conference, 2004. Proceedings of the IEEE 2004 3-6 Oct. 2004 Page(s):625 - 628

AbstractPlus | Full Text: PDF(539 KB) | IEEE CNF

24. Time-domain constraints for the design of FRM-based cosine-modulated DFT filter banks with a large number of bands and zero intersymbol inter Furtado, M.B., Jr.; Diniz, P.S.R.; Netto, S.L.; Saramaki, T.; Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Volume 3, 23-26 May 2004 Page(s):III - 189-92 Vol.3 Digital Object Identifier 10.1109/ISCAS.2004.1328715

AbstractPlus | Full Text: PDF(455 KB) IEEE CNF

25. Design of a wideband transmit delta-sigma DAC П

Neitola, M.; Kivi, A.; Rahkonen, T.;

Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE Internatic

Volume 2, 2-5 Sept. 2001 Page(s):1053 - 1056 vol.2 Digital Object Identifier 10.1109/ICECS.2001.957668

AbstractPlus | Full Text: PDF(288 KB) IEEE CNF

indexed by # Inspec Help Contact Us Privacy &: © Copyright 2005 IEEE -

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library C The Guide

+carrier +frequency +fir

SEARCH

Feedback Report a problem Satisfaction survey

Terms used carrier frequency fir

Found 27 of 169,866

Sort results by

Display

results

relevance

Save results to a Binder ? Search Tips Open results in a new

Try an Advanced Search Try this search in The ACM Guide

expanded form window

Results 1 - 20 of 27

Result page: 1 2 next

Relevance scale

1 A methodology for efficient high-level dataflow simulation of mixed-signal front-ends

of digital telecom transceivers

Gerd Vandersteen, Piet Wambacq, Yves Rolain, Petr Dobrovolný, Stéphane Donnay, Marc Engels, Ivo Bolsens

June 2000 Proceedings of the 37th conference on Design automation

Publisher: ACM Press

Full text available: pdf(241.33 KB)

Additional Information: full citation, abstract, references, citings, index terms

The explosion of the telecommunications market requires miniaturization and costeffective realization of the front-ends of transceivers for digital telecommunications. New architectures must therefore be simulated at high level. Current methodologies and corresponding tools suffer from common drawbacks, such as lower accuracy, slow simulation speed, etc. A new methodology has been developped for the efficient simulation, at the architectural level, of mixed-signal front-ends of digital tel ...

2 Listening to FM radio in software, step by step

Eric Blossom

September 2004 Linux Journal, Volume 2004 Issue 125

Publisher: Specialized Systems Consultants, Inc.

Full text available: html(18.64 KB) Additional Information: full citation, abstract

Software radio is a really big important technology. Don't takeour word for it—try this simple project.

3 CAD methods and synthesis: Task sheduling for power optimisation of multi

September 2005 Proceedings of the 18th annual symposium on Integrated circuits and system design SBCCI '05

Publisher: ACM Press

Full text available: pdf(262.92 KB) Additional Information: full citation, abstract, references, index terms

During recent years power optimisation has become one of the most challenging design goals in modern communication systems, particularly in the wireless domain. Many different approaches for task scheduling on single or multi-core systems exist, mostly addressing the minimisation of execution time or the number of processors used. The minimisation of the processor's clock frequency by adjusting the supply voltage or directly by frequency scaling according to the chosen task scheduling has shown ...

Keywords: frequency scaling, multi frequency systems, power optimisation, synchronous data flow graphs, task scheduling

4 Signal processing in SETI

Publisher: ACM Press

Additional Information: full citation, abstract, references, citings, index Full text available: pdf(3.96 MB)

terms, review

The Search for Extraterrestrial Intelligence (SETI), now being planned at NASA, will require a prodigious amount of highly concurrent signal processing to be done in real time by special-purpose hardware.

⁵ CAD for RF circuits

P. Wambacq, G. Vandersteen, J. Phillips, J. Roychowdhury, W. Eberle, B. Yang, D. Long, A. Demir

March 2001 Proceedings of the conference on Design, automation and test in Europe

Publisher: IEEE Press

Full text available: pdf(396.98 KB) Additional Information: full citation, references, citings, index terms

6 GNU radio: tools for exploring the radio frequency spectrum

Eric Blossom

June 2004 Linux Journal, Volume 2004 Issue 122

Publisher: Specialized Systems Consultants, Inc.

Publisher Site

Full text available: html(23.76 KB) Additional Information: full citation, abstract

Listen to ham, shortwave, AM and FM, and even watchHDTV and invent new communications modes, all on thesame hardware.

7 Design Space Exploration for a Wireless Protocol on a Reconfigurable Platform

Laura Vanzago, Bishnupriya Bhattacharya, Joel Cambonie, Luciano Lavagno

March 2003 Proceedings of the conference on Design, Automation and Test in Europe - Volume 1 DATE '03

Publisher: IEEE Computer Society

Full text available: pdf(175.69 KB)

Additional Information: full citation, abstract, index terms

Thi paper describes a design space exploration experiment for a real application from the embedded networking domain ¿ the physical layer of a wireless protocol. The application models both control oriented as well as data processing functions, and hence require composing tasks from different models of computation. We show how the cost and performance of communication and computation can be quickly evaluated, with a reasonable modeling cost. While the example uses a specific tool, the methodolog ...

8 Design and Analysis of a Programmable Single-Chip Architecture for DVB-T Base-**Band Receiver**

Chengzhi Pan, Nader Bagherzadeh, Amir Hosein Kamalizad, Arezou Koohi

March 2003 Proceedings of the conference on Design, Automation and Test in Europe - Volume 1 DATE '03

Publisher: IEEE Computer Society

http://portal.acm.org/results.cfm?CFID=37362561&CFTOKEN=65698102&adv=1&COLL=... 1/30/06

Full text available: pdf(342.20 KB) Additional Information: full citation, abstract, index terms Pu<u>blisher Site</u>

This work treats the design and analysis of a programmable (or reconfigurable) DSPdomain-specific architecture called MorphoSys, upon which worldy's first single-chip software solution for DVB-T base-band receiver can be implemented. Based on the first version of MorphoSys, many modifications have been made to improve greatly both computation power and data movement efficiency. Sequential codes and SIMD codes can be parallelized; temporal granularity adjustment boosts up performance up to 4 time ...

9 Area-efficient and reusable VLSI architecture of decision feedback equalizer for QAM

modern

Hyeongseok Yu, Byung Wook Kim, Yeon Gon Cho, Jun-Dong Cho, Jea Woo Kim, Hyun Cheol Park, Ki Won Lee

January 2001 Proceedings of the 2001 conference on Asia South Pacific design automation

Publisher: ACM Press

Full text available: pdf(176.90 KB) Additional Information: full citation, abstract, references, index terms

In this paper, an area efficient VLSI architecture of decision feedback equalizer is derived accommodating 64/256 QAM modulators. This architecture is implemented efficiently in reusable VLSI structure using EDA tool due to its regular structure. The main idea is to employ a time-multiplexed design scheme grouping the adjacent filter taps with correlated internal dataflow and with data transfer having same processing sequence between blocks. We simulated the proposed design scheme using SYN ...

10 Implementing a RAKE receiver for wireless communications on an FPGA-based

computer system

Ali M. Shankiti, Miriam Leeser

February 2000 Proceedings of the 2000 ACM/SIGDA eighth international symposium on Field programmable gate arrays

Publisher: ACM Press

Full text available: pdf(786.81 KB) Additional Information: full citation, abstract, references, index terms

RAKE receivers are widely used in the wireless communications industry. Currently, custom VLSI is the most popular implementation. Programmable and reconfigurable logic implementations are becoming more attractive because of their flexibility and due to technology advancements. We have implemented a RAKE receiver on an Annapolis Wildforce board with four Xilinx 4000 family chips for a total of 100,000 gate equivalents. Our system is able to implement a RAKE receiver for underwater data comm ...

Keywords: FPGA, RAKE receiver, wireless communications

11 An innovative simulation tool for advanced signal processing in UMTS systems

Dania Marabissi, Marco Michelini, Luca Simone Ronga September 2004 Wireless Networks, Volume 10 Issue 5

Publisher: Kluwer Academic Publishers

Full text available: pdf(545.12 KB) Additional Information: full citation, abstract, references, index terms

Link-level simulations are essential in the design of UMTS communication systems. The large number of interdependent variables makes it impossible to derive easy design steps without an efficient modeling of the environments and the implemented reception schemes. In this paper, a novel tool for UMTS design is presented. The tool includes a fast C++ simulation engine and a complete 3GPP library to model the uplink transmission chain. As an example, a series of Monte Carlo performance simulatio ...

Keywords: 3G-simulation environment, CDMA advanced receivers, DSP system design, code division multiple access (CDMA), fading channel models, multirate systems, object-oriented simulation tool

12 Case studies: A case study of mapping a software-defined radio (SDR) application on

a reconfigurable DSP core

Behzad Mohebbi, Eliseu Chavez Filho, Rafael Maestre, Mark Davies, Fadi J. Kurdahi
October 2003 Proceedings of the 1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis

Publisher: ACM Press

Full text available: pdf(446.86 KB) Additional Information: full citation, abstract, references, index terms

We present a case study involving the implementation of a complete Wideband CDMA (WCDMA) digital receiver part of an AMR channel onto a reconfigurable core. WCDMA is one of the two major standards for the third generation (3G) cellular systems. Traditionally most of the receiver components were confined to ASIC implementation for performance, size and power consumption reasons. The MS1 reconfigurable DSP core provides both a microprocessor and reconfigurable fabric as well as a variety of periph ...

Keywords: reconfigurable computing, software-defined radio

13 Low power DSP's for wireless communications (embedded tutorial session)

Ingrid Verbauwhede, Chris Nicol

August 2000 Proceedings of the 2000 international symposium on Low power electronics and design

Publisher: ACM Press

Full text available: pdf(424.32 KB)

Additional Information: full citation, abstract, references, citings, index terms

Wireless communications and more specifically, the fast growing penetration of cellular phones and cellular infrastructure are the major drivers for the development of new programmable Digital Signal Processors (DSPs). In this tutorial, an overview will be given of recent developments in DSP processor architectures, that makes them well suited to execute computationally intensive algorithms typically found in communications systems. DSP processors have adapted instruction sets, memory archi ...

Keywords: architectures, digital signal processing, programmable processors, wireless communications

14 Thermal Modeling, Characterization and Management of On-Chip Networks
Li Shang, Li-Shiuan Peh, Amit Kumar, Nirai K. Jha

Publisher: IEEE Computer Society

Full text available: pdf(551.38 KB) Additional Information: full citation, abstract, citings

Due to the wire delay constraints in deep submicron technology and increasing demand for on-chip bandwidth, networks are becoming the pervasive interconnect fabric to connect processing elements on chip. With ever-increasing power density and cooling costs, the thermal impact of on-chip networks needs to be urgently addressed. In this work, we first characterize the thermal profile of the MIT Raw chip. Our study shows networks having comparable thermal impact as the processing elements and contr ...

¹⁵ Fault-Tolerant Techniques for Ambient Intelligent Distributed Systems

Diana Marculescu, Nicholas H. Zamora, Phillip Stanley-Marbell, Radu Marculescu November 2003 Proceedings of the 2003 IEEE/ACM international conference on Computer-aided design

Publisher: IEEE Computer Society

Full text available: pdf(466.94 KB) Additional Information: full citation, abstract, index terms

Ambient Intelligent Systems provide an unexplored hardware platformfor executing distributed applications under strict energy constraints. These systems must respond quickly to changes in userbehavior or environmental conditions and must provide high availabilityand fault-tolerance under given quality constraints. Thesesystems will necessitate fault-tolerance to be built into applications. One way to provide such faulttolerance is to employ the use of redundancy. Hundreds of computational devices ...

16 Getting to the bottom of deep submicron

Dennis Sylvester, Kurt Keutzer

November 1998 Proceedings of the 1998 IEEE/ACM international conference on Computer-aided design

Publisher: ACM Press

Full text available: pdf(1.22 MB) Additional Information: full citation, references, citings, index terms

Keywords: ASIC, CMOS scaling, gate delay, interconnect modeling, power dissipation, signal integrity, wirelength

17 <u>Digital Computer System for Dynamic Analysis of Speech and Sound Feedback</u>

Mechanisms

K. U. Smith, S. D. Ansell, J. Koehler, G. H. Servos April 1964 Journal of the ACM (JACM), Volume 11 Issue 2

Publisher: ACM Press

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> Full text available: pdf(1.03 MB) terms

The aim of the research reported is to put the laboratory application of closed-loop digital computer systems to experimental control and analysis in biology and behavioral science on a formal basis, using special concepts of programming to quantitatively control different parameters of variation in sensory feedback of specific response systems. The theory is unconventional in that the computer and the techniques of closed-loop programming are designed to control time delays, space displace ...

18 Getting around the task-artifact cycle: how to make claims and design by scenario John M. Carroll, Mary Beth Rosson

April 1992 ACM Transactions on Information Systems (TOIS), Volume 10 Issue 2

Publisher: ACM Press

Additional Information: full citation, abstract, references, citings, index Full text available: pdf(2.41 MB) terms

We are developing an "action science" approach to human-computer interaction (HCI), seeking to better integrate activities directed at understanding with those directed at design. The approach leverages development practices of current HCI with methods and concepts to support a shift toward using broad and explicit design rationale to reify where we are in a design process, why we are there, and to guide reasoning about where we might go from there. We represent a designed artif ...

Keywords: design rationale, planning, user interfaces

19 An integrated temporal partioning and partial reconfiguration technique for design

latency improvement

Satish Ganesan, Ranga Vemuri

January 2000 Proceedings of the conference on Design, automation and test in Europe

Publisher: ACM Press

Full text available: pdf(90.90 KB)

Additional Information: full citation, references, index terms

20 Approximations for simulation run-time reduction

Publisher Site

G. M. Herman

December 1968 Proceedings of the second conference on Applications of simulations Publisher: Winter Simulation Conference

Full text available: pdf(667.39 KB) Additional Information: full citation, abstract, references, index terms

The age of more complex computing systems has made it increasingly important to have reliable means of evaluating the performance of existing systems, and of future systems during their design and development. This latter aspect is only beginning to come into being, and shows great promise of yielding large benefits to the industry. Where most evaluation was, and still is, applied to the evaluation of existing systems for various applications, it is becoming increasingly recognized as a val ...

Results 1 - 20 of 27 Result page: 1 2

> The ACM Portal is published by the Association for Computing Machinery. Copyright © 2006 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

> Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Player

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	23	"5008674"	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 08:29
L2	2	"5008674".pn.	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 08:29
L3	2	"5008674".pn. and coefficient	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 09:53
L4	356	carrier frequency fir	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	WITH	ON	2006/01/30 08:33
L5	95	carrier frequency fir	USPAT	WITH	ON	2006/01/30 08:33
L6	4	carrier frequency fir high	USPAT	WITH	ON	2006/01/30 08:36
L7	12	carrier frequency finite high	USPAT	WITH	ON	2006/01/30 08:38
L8	45	carrier finite high	USPAT	WITH	ON	2006/01/30 08:39
L9	9	carrier fir high	USPAT	WITH	ON	2006/01/30 08:41
L10	14	carrier fir dac	USPAT	WITH	ON	2006/01/30 08:44
L11	356	carrier dac	USPAT	WITH	ON	2006/01/30 08:44
L12	143	carrier frequency dac	USPAT	WITH	ON	2006/01/30 08:45
L13	19	carrier frequency filter dac	USPAT	WITH	ON	2006/01/30 09:27
L14	1	"4626803".pn. "30d"	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 13:12
L15	1	"4626803".pn. high	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 09:28

L16	1	"5008674".pn. and fir	US-PGPUB;	AND	ON	2006/01/30 10:03
			USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB			
L17	2	"5008674".pn. and converter	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 10:06
L18	2	"5008674".pn. and bit	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 10:19
L19	1	"5008674".pn. and time	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 10:20
L20	2	"5008674".pn. and delay	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 10:24
L21	1	"5008674".pn. and pulse	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 10:27
L22	1	"5008674".pn. and pulse WITH converter	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 10:29
L23	1	"5008674".pn. and pulse same converter SAME filter	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 10:30

L24	0	"5008674".pn. and broadband	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 10:30
L25	0	"4626803".pn. broadband	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/30 10:31
L26	2095	(341/126,144,150,152,153).CCLS.	USPAT	OR	OFF	2006/01/30 13:13
L27	2142	(375/229,230,343,350).CCLS.	USPAT	OR	OFF	2006/01/30 13:14
L28	0	(370/72,123).CCLS.	USPAT	OR	OFF	2006/01/30 13:14
L29	807	(331/32,36R,36C).CCLS.	USPAT	OR	OFF	2006/01/30 13:14

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	2	"5323157".pn.	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/27 07:51
L2	42	delay (d ADJ1 a or dac or digital ADJ1 analog) (high or hf) (fir or response)and carrier	USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	SAME	ON	2006/01/27 15:15
L3	5	delay (d ADJ1 a or dac or digital ADJ1 analog) (high or hf) (fir)and carrier	USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	SAME	ON	2006/01/27 10:02
L4	2	delay (d ADJ1 a or dac or digital ADJ1 analog) (high or hf) (fir) carrier	USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	SAME	ON	2006/01/27 08:13
L5	30	delay (d ADJ1 a or dac or digital ADJ1 analog) (high or hf) (fir)	USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	SAME	ON	2006/01/27 09:07
L6	14	"5521946"	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/27 09:15
L7	1	"5521946" and I5	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/27 09:17
L8	8	delay (d ADJ1 a or dac or digital ADJ1 analog) (high or hf) (fir)and carrier "l14"	USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/27 09:16
L9	0	"5521946".pn. carrier	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	AND	ON	2006/01/27 09:17