STUDI KASUS PRAKTIKUM STATISTIKA REGRESI BAGIAN 2 – REGRESI LINIER BERGANDA

Disusun oleh:

Chelsea Ayu Adhigiadany 21083010028 Statistika Regresi – B

Dosen Pengampu:

Trimono Pujiarto, S.Si, M.Si.

PROGRAM STUDI SAINS DATA FAKULTAS ILMU KOMPUTER UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN" JAWA TIMUR

Daftar Isi

BAB 1	1. PENDAHULUAN	3
1.1.	. Tujuan Praktikum	3
1.	1.1.1. Tujuan Instruksional Umum (TIU)	3
1.	1.1.2. Tujuan Instruksional Khusus (TIK)	3
1.2.	Permasalahan	3
BAB 2	2. TINJAUAN PUSTAKA	4
2.1.	. Regresi Linier Berganda	4
2.2.	2. Uji Kelayakan Model	4
•	Asumsi Normalitas	5
•	Asumsi Non-Multikolinieritas	5
•	Asumsi Nonautokorelasi	6
•	Asumsi homoskedastisitas	6
BAB 3	3. ANALISIS DAN PEMBAHASAN	7
BAB 4	4. KESIMPULAN	11
DAFT	TAR PUSTAKA	12
LAMI	IPIRAN	13
1.	Langkah-langkah analisis	13
2.	Output Analisis pada SPSS	16

BAB 1. PENDAHULUAN

1.1.Tujuan Praktikum

1.1.1. Tujuan Instruksional Umum (TIU)

Setelah mengikuti seluruh kegiatan praktikum ini, mahasiswa diharapkan dapat melakukan pengolahan, analisis dan membuat model regresi dari data atau informasi hasil pengamatan serta dapat melakukan prediksi berdasarkan model yang dibangun dan dianalisis dengan menggunakan paket program SPSS for Windows.

1.1.2. Tujuan Instruksional Khusus (TIK)

Setelah mengikuti praktikum ini mahasiswa diharakan mampu mengestimasi koefisien regresi linier serta menganalisis berbagai nilai statistik yang berkaitan dengan koefisien regresi linear yang diperoleh dari hasil pengolahan data pengamatan dengan menggunakan paket program SPSS for Windows.

1.2.Permasalahan

Diberikan data variable bebas X_1, X_2 , dan X_3 dengan variable terikat Y sebagai berikut :

Y	X_1	X_2	X_3	Y	X_1	X_2	<i>X</i> ₃
21.56	10274	4.99	8.7	18.97	10979	2.5	6.62
27.55	11240	4.87	8.41	20.81	10169	3.65	7.43
10.04	9586	2.68	8	26.95	10001	3.34	7.48
8.84	9160	2.66	7.28	14.73	11807	3.02	7.88
21.69	8757	3.46	7.34	10.68	9142	2.22	6.44
19	10048	2.08	7.7	22.91	11257	2.8	8.05
9.01	10503	2.3	6.75	11.89	9203	2.21	6.62
15.54	9025	3.71	7.57	12.55	10221	2.59	6.74
17.18	12758	2.84	7.55	14.81	8186	3.77	6.5
20.48	11738	3.4	7.24	27.35	9433	4.17	6.7
29.6	10100	2.57	8.84	21.03	9890	5.23	6.19
8.36	9117	2.77	6.88	28.75	11994	0.35	10.91
21.46	11223	2.55	8.51	35.93	14528	1.5	10.53
19.13	12391	2.57	7.22	47.67	15464	0.56	12.4
22.2	10097	3.98	6.67	49.39	14895	5.18	10.51
12.82	9385	2.55	6.46	14.81	12312	0.88	8.57
9.99	10191	1.84	6.95	26.88	12830	0.72	8.3
20.72	10190	3.63	7.18				

Keterangan:

Y: poin bonus

 X_1 : jumlah transaksi

 X_2 : rating

 X_3 : lama penggunaan aplikasi

Berdasarkan data tersebut, berikanlah uraian jawaban dari pertanyaan berikut:

- a. Bagaimana pengaruh variabel bebas X_1, X_2 , dan X_3 dengan variable terikat Y berdasarkan ujiF dan uji t. Berikan penjelasan secara lengkap disertai dengan asumsi-asumsinya.
- b. Tentukan estimasi parameter regresi.

BAB 2. TINJAUAN PUSTAKA

2.1.Regresi Linier Berganda

Regresi linier berganda adalah salah satu jenis model regresi yang digunakan menyatakan hubungan antara satu variabel dependen dengan beberapa variabel independen. Dalam kasus lain, regresi berganda digunakan untuk menguji pengaruh hasilsaat memperhitungkan lebih dari satu faktor yang dapat memengaruhi hasilnya. Bentuk umum persamaan regresi linier berganda yang terdiri dari 1 variabel dependen dan k variabel independen adalah sebagai berikut:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \varepsilon_i$$

2.2.Uji Kelayakan Model

Uji kelayakan model dilakukan untuk mengidentifikasi model regresi yang terbentuk layakatau tidak untuk menjelaskan pengaruh variabel bebas terhadap variabel terikat. Uji kelayakan model dilakukan melalui uji hipotesis. Secara khusus, uji hipotesis dapat membantu kita untuk menguji signifikansi koefisien regresi yang di dapat. Pengambilan keputusan hipotesis dilakukan dengan membandingkan t statisktik terhadap t tabel atau nilai probabilitas terhadap taraf signifikansi yang ditetapkan. Uji kelayakan model terdiri dari dua yaitu, uji F (uji kecocokan model) dan uji-t (signifikansi parameter).

2.2.1. Uji kecocokan model (uji F)

Pada model regresi berganda, uji ini digunakan untuk menguji koefisien (slope) regresi secara bersamaan dan memastikan bahwa model yang dipilih layak atau tidak untuk mengintepretasikan pengaruh variabel bebas terhadap variabel terikat. Uji ini sangat penting karena jika tidak lolus uji F maka hasil uji t tidak relevan. Menurut Gujarati (2003), ketentuan pengambilan keputusan adalah sebagai berikut:

- Jika nilai F hitung > F tabel atau nilai prob. F-statistik < taraf signifikansi, maka H0 ditolak, hal ini berarti bahwa variabel bebas secara bersama-sama mempengaruhi variabel terikat.
- Jika nilai F hitung < F tabel atau nilai prob. F-statistik > taraf signifikansi, maka H0 diterima, dengan kata lain variabel bebas secara simultan tidak mempengaruhi variabel terikat.

2.2.2. Uji signifikamsi parameter (uji T)

Uji t adalah uji yang digunakan untuk menguji koefisien model regresi secara individu. Menurut Mansyur (2017), pengambilan keputusan uji t dilakukan jika:

• Uji dua arah

Jika nilai thitung > ttabel atau nilai prob. t-statistik < taraf signifikansi, maka H0 ditolak, atau dengan kata lain variabel bebas berpengaruh di dalam model terhadap variabel terikat.

Jika nilai thitung < ttabel atau nilai prob. t-statistik > taraf signifikansi, maka H0 diterima, atau dengan kata lain variabel bebas tidak berpengaruh di dalam model terhadap variabel terikat.

• Uji satu arah sisi kanan (positif)

Jika nilai thitung > ttabel atau nilai prob. t-statistik < taraf signifikansi, maka H0 ditolak

atau dengan kata lain, variabel bebas berpengaruh positif terhadap variabel terikat. Jika nilai thitung < ttabel atau nilai prob. t-statistik > taraf signifikansi, maka H0 diterima atau dengan kata lain, variabel bebas tidak berpengaruh positif terhadap variabel terikat.

• Uji satu arah sisi kiri (negatif)

Jika nilai t hitung < -t tabel atau nilai prob. t-statistik < taraf signifikansi, maka H0 ditolak (variabel bebas berpengaruh negatif terhadap variabel terikat).

Jika nilai t hitung < -t tabel atau nilai prob. t-statistik < taraf signifikansi, maka H0 ditolak (variabel bebas berpengaruh negatif terhadap variabel terikat).

2.2.3. Koefisien determinasi

Nilai koefisien determinasi mencerminkan seberapa besar variasi dari variabel terikat Y dapat diterangkan oleh variabel bebas X (Nachrowi dan Hardius, 2006:20). Sebuah model dikatakan baik jika nilai R2 mendekati satu dan sebaliknya jika nilai R2 mendekati 0 maka model kurang baik (Um dan Ica, 2016).

2.2.4. Uji asumsi

Suatu model regresi harus memenuhi beberapa asumsi yaitu residual bersifat independen, identik, dan berdistribusi normal, asumsi ini sering disebut dengan IIDN (Gujarati, 2004). Juga ada tambahan satu asumsi yaitu tidak ada multikolinieritas antarvariabel independen jika variabel independen lebih dari satu.

• Asumsi Normalitas

Pada model regresi linier, asumsi normalitas residual dapat diuji denganmenggunakan uji Kolmogorov-Smirnov. Berikut ini adalah porsedur uji hipotesis yang harus dilakukan:

Hipotesis

H₀: residual berdistribusi normal

H₁: residual tidak berdistribusi normalTingkat signifikansi: α

 H_0 diterima jika nilai D kurang dari nilai kuantil tabel Kolmogorov-Smirnov ($D_{N,\alpha}$), selanjutnya H_0 ditolak jika nilai D sama atau lebih besar dari $D_{N,\alpha}$.

• Asumsi Non-Multikolinieritas

Menurut Sagar, Gupta, dan Kashyap (2021), uji multikolinearitas bertujuan untuk menguji apakah model regresi ditemukan adanya korelasi antar variabel bebas (independen). Model regresi yang baik seharusnya tidak terjadi korelasi antara variabel independen. Ada atau tidaknya multikolinearitas dapat dilihat dari koefisien masing masing variabel bebas jika koefisien korelasi di antara masing masing variabel bebas lebih dari 0,8 maka terjadi multikolinearitas dan sebaliknya, jika koefisien korelasi antara masing masing variabel bebas kurang dari 0,8 maka tidak terjadi multikolinearitas. Selaian itu untuk mengetahui apakah Asumsi Non- Multikolinieritas terpenuhi atau tidak dengan meilihat Nilai VIF, apabila nilai VIF

< 10 maka dapat disimpulkan Asumsi Non-Multikolinieritas terpenuhi dan apabila nilai VIF > 10 maka Asumsi Non-Multikolinieritas tidakn terpenuhi.

• Asumsi Nonautokorelasi

Autokorelasi diartikan sebagai korelasi yang terjadi antar observasi dalam satu variabel yang sama (Ng dan Ng, 2018). Jika pada Dengan adanya autokorelasi, estimator OLS tidak menghasilkan estimator yang BLUE hanya LUE (Ng dan Ng, 2018). Metode untuk mendeteksi autokorelasi antara lain metode grafik, durbinwatson, run dan lagrange multiplier. Uji autokorelasi menggunakan grafik maupun uji informal lainnya kurang direkomendasikan karena tanpa adanya angka statistik penafsiran tiap orang berbeda terhadap hasil pengujian.

• Asumsi homoskedastisitas

Uji heteroskedastisitas digunakan untuk melihat apakah residual dari model yang terbentuk memiliki varians yang konstan atau tidak. Uji heteroskedastisitas penting dilakukan pada model yang terbentuk. Dengan adanya heteroskedastisitas, hasil ujit dan uji F menjadi tidak akurat (Gujarati, 2003). Metode untuk mendeteksi heteroskedastisitas antara lain metode grafik, park, glesjer, korelasi spearman, goldfeld-quandt, breusch-pagan dan white. Uji heteroskedastisitas menggunakan grafik maupun uji informal lainnya karena tanpa adanya angka statistik penafsiran tiap orang berbeda terhadap hasil pengujian.

BAB 3. ANALISIS DAN PEMBAHASAN

3.1 Model regresi

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-42.740	6.826		-6.262	.000		
1	jumlah transaksi	.002	.001	.331	2.373	.024	.401	2.491
1	rating	3.011	.746	.381	4.038	.000	.874	1.144
	lama penggunaan	4.471	.968	.651	4.618	.000	.392	2.550

a. Dependent Variable: poin bonus

Berdasarkan tabel di atas, dapat diketahui bahwa:

$$\beta_0 = -42,740$$

$$\beta_1 = 0.002$$

$$\beta_2 = 3,011$$

$$\beta_3 = 4,471$$

Maka dapat disimpulkan bahwa persamaan regresinya adalah $Y=-42,740+0,002\beta_1X_1+3,011\beta_2X_2+4,471\beta_3X_3$

3.2 Uji hipotesis

Pada uji hipotesis dilakukan 2 macam uji yaitu untuk menguji kecocokan model dan juga menguji pengaruh variabel X_1, X_2, X_3 dan Y.

3.2.1. Uji f (uji kecocokan model)

a. Menentukan hipotesis

$$H_0$$
: $\beta_0 = \beta_1 = \beta_2 = \beta_3 = 0$ (model regresi tidak sesuai)
 H_1 : $\beta_1 \neq 0$; 1, 2, 3 (model regresi sesuai)

 $n_1: p_1 \neq 0, 1, 2, 3$

b. Taraf signifikansi

$$\alpha = 5\% = 0.05$$

c. Uji statistik

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2443.344	3	814.448	32.466	.000 ^b
	Residual	777.676	31	25.086		
	Total	3221.021	34			

a. Dependent Variable: poin bonus

Berdasarkan tabel anova dapat diketahui bahwa F = 32,466 dengan Sig = 0,000

d. Daerah kritis

Tolak H_0 jika nilai Sig $< \alpha$

e. Keputusan

Tolak H_0 karena nilai $Sig < \alpha \ (0.000 < 0.05)$

f. Kesimpulan

 H_0 ditolak karena nilai $Sig < \alpha$, yang berarti model regresi sesuai

3.2.2. Uji t (uji signifikansi)

a. Menentukan hipotesis

$$H_0$$
: $\beta_i = 0$ (variabel *X* tidak berpengaruh terhadap variabel *Y*)

$$H_1: \beta_i \neq 0$$
 (variabel *X* berpengaruh terhadap variabel *Y*)

b. Taraf signifikansi

$$\alpha = 5\% = 0.05$$

c. Uji statistik

b. Predictors: (Constant), lama penggunaan, rating, jumlah transaksi

		Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-42.740	6.826		-6.262	.000		
	jumlah transaksi	.002	.001	.331	2.373	.024	.401	2.491
	rating	3.011	.746	.381	4.038	.000	.874	1.144
	lama penggunaan	4.471	.968	.651	4.618	.000	.392	2.550

a. Dependent Variable; poin bonus

Berdasarkan tabel coefficient, diketahui bahwa

 $t_{hitung}\beta_1 = 2,373$ dengan Sig = 0,024

 $t_{hitung}\beta_2 = 4,038$ dengan Sig = 0,000

 $t_{hitung}\beta_3 = 4,618$ dengan Sig = 0,000

d. Daerah kritis

Tolak H_0 jika nilai Sig $< \alpha$

e. Keputusan

Tolak H_0 karena nilai $Sig < \alpha \ (0.024 < 0.05)$

Tolak H_0 karena nilai $Sig < \alpha \ (0.000 < 0.05)$

Tolak H_0 karena nilai $Sig < \alpha \ (0.000 < 0.05)$

f. Kesimpulan

 H_0 ditolak karena nilai $Sig < \alpha$, yang berarti variabel X berpengaruh terhadap variabel Y

3.3 Koefisien determinasi

	Model Summary*										
						Cha	ange Statisti	cs			
			Adjusted R	Std. Error of	R Square				Sig. F	Durbin-	
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Change	Watson	
1	.871ª	.759	.735	5.00863	.759	32.466	3	31	.000	1.813	

a. Predictors: (Constant), lama penggunaan, rating, jumlah transaksi
 b. Dependent Variable: poin bonus

Dari tabel summary diperoleh nilai $R^2 = 0.759 = 75.9\%$, artinya sebesar 75.9% variabel Y dipengaruhi oleh variabel X_1 , X_2 , dan X_3 , sisanya sebesar 24.1% Y dipengaruhi oleh faktor lain.

3.4 Uji asumsi

3.4.1. Normalitas

a. Secara visual

Pada Normal Q-Q Plot of Unstandardized Residual dapat dilihat bahwa plot-plot mengikuti garis lurus, sehingga dapat disimpulkan bahwa residual berdistribusi normal. Maka asumsi normalitas terpenuhi secara visual

b. Secara formal

• Menentukan hipotesis

 H_0 : residual berdistribusi normal

 H_1 : residual tidak berdistribusi normal

• Taraf signifikansi : $\alpha = 5\% = 0.05$

• Uji statistik

Tests of Normality

	Kolm	ogorov-Smir	nov ^a		Shapiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
Unstandardized Residual	.075	35	.200	.980	35	.755

- *. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction

Nilai Sig untuk Kolmogorov dan Shapiro adalah 0,200 dan 0,755

Daerah kritis

Tolak H_0 jika nilai Sig $< \alpha$

• Keputusan

 H_0 diterima karena nilai $Sig > \alpha \ (0.200 < 0.05)$

 H_0 diterima karena nilai $Sig > \alpha \ (0.755 < 0.05)$

• Kesimpulan

 H_0 diterima karena nilai $Sig > \alpha$, yang berarti residual berdistribusi normal

3.4.2. Linieritas

Berdasarkan grafik zresid by zpred scatterplot dapat dilihat bahwa sebaran data acak atau tidak membentuk pola tertentu maka dapat disimpulkan bahwa uji linieritas terpenuhi.

3.4.3. Homoskedastisitas

Berdasarkan grafik sresid by zpred scatterplot dapat dilihat bahwa asumsi Heteroskedastisitas terpenuhi jika residual menyebar secara acak dan tidak membentuk pola. Sehingga dapat disimpulkan bahwa asumsi homogenitas residual terpenuhi.

3.4.4. Non autokorelasi

a. Hipotesis

 H_0 : tidak ada autokorelasi

 H_1 : ada autokorelasi

b. Taraf signifikansi : $\alpha = 5\% = 0.05$

c. Uji statistik

Model Summary^b

						Cha	ange Statisti	s		
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson
1	.871ª	.759	.735	5.00863	.759	32.466	3	31	.000	1.813

a. Predictors: (Constant), lama penggunaan, rating, jumlah transaksi

Berdasarkan tabel Model Summary dapat diketahui : DW = 1,813

Dari tabel Durbin Watson $\alpha = 5\%$ dengan n = 35 dan k = 3 dapat diketahui :

dL = 1,2833

dU = 1,6528

d. Daerah krisis

0 < DW < dL : Menolak H0, mengalami autokorelasi positif

dL < DW < dU : Ragu-ragu

dU < DW < 4-dU: Menerima H0, tidak ada autokorelasi

4-dU < DW < 4-dL: Ragu-ragu

4-dL < DW < 4 : Menolak H0, mengalami autokorelasi negatif

e. Keputusan

 H_0 diterima karena dU (1,6528) < DW (1,813) < 4-dU (4-1,2833=2,7167)

f. Kesimpulan

 H_0 diterima karena dU < DW < 4-dU, tidak ada autokorelasi

b. Dependent Variable: poin bonus

BAB 4. KESIMPULAN

Dari permasalahan yang terdapat pada bab 2, ditemukan hasil dari model regresi, uji hipotesis, uji asumsi, koefisien korelasi, dan juga model akhir dari sebuah tabel tersebut dengan bantuan SPSS dalam perhitungan adalah sebagai berikut :

- 1 Model regresi : $Y = -42,740 + 0,002\beta_1X_1 + 3,011\beta_2X_2 + 4,471\beta_3X_3$
- 2 Dilakukan 2 uji pada tahapan uji hipotesis yaitu uji f dan uji t dengan hasil menolak H_0 karena nilai $Sig < \alpha$, yang berarti model regresi sesuai dan variabel X berpengaruh terhadap variabel Y
- Pada uji asumsi dilakukan 4 uji yaitu normalitas, linieritas, homoskedastisitas, dan juga non autokorelasi dengan hasil H_0 diterima karena nilai $Sig > \alpha$, yang berarti residual berdistribusi normal untuk uji normalitas, sebaran data yang acak menunjukkan bahwa uji linieritas dan homoskedastisitas terpenuhi. Sedangkan pada uji non autokorelasi diperoleh hasil H_0 diterima karena dU < DW < 4-dU, tidak ada autokorelasi
- 4 Koefisien determinasi diperoleh nilai $R^2 = 0.759 = 75.9\%$, artinya sebesar 75.9% variabel Y dipengaruhi oleh variabel X_1 , X_2 , dan X_3 , sisanya sebesar 24.1% Y dipengaruhi oleh faktor lain.

DAFTAR PUSTAKA

- Arya, D., Rochmawati, L., & Sonhaji, I. (2020). Koefisien Korelasi (R) Dan Koefisien Determinasi (R2). *Jurnal Penelitian*, 5(4), 289-296.
- Janie, D. N. A. (2012). Statistik deskriptif & regresi linier berganda dengan SPSS. Jurnal, April.
- Meiryani. "MEMAHAMI ASUMSI KLASIK DALAM PENELITIAN ILMIAH", https://accounting.binus.ac.id/2021/08/06/memahami-uji-asumsi-klasik-dalam-penelitian-ilmiah/, diakses pada 20 Februari 2022 pukul 12.00
- Sukestiyarno, Y. L., & Agoestanto, A. (2017). Batasan prasyarat uji normalitas dan uji homogenitas pada model regresi linear. *Unnes Journal of Mathematics*, 6(2), 168-177.
- Tupen, S. N., & Budiantara, I. N. (2011, May). Uji Hipotesis dalam Regresi Nonparametrik Spline. In *Prosiding Seminar Nasional Statistika Universitas Diponegoro 2011* (pp. 184-199). Program Studi Statistika FMIPA Undip.

LAMPIRAN

- 1. Langkah-langkah analisis
 - a. Buat file data. Sebelum memasukan data pada Data View, definisikan terlebih dahulu variabel respon Y dan variabel X pada Variabel View

b. Isikan data yang tersedia pada sel-sel yang sesuai pada Data View.

 Klik tombol Analyze – Regresion – Linear pada menu utama SPSS pada Data View

d. Isilah kotak Dependent dengan variabel Y (respon) dan kotak Independent dengan variabel X (predictor)

e. Klik statistics, sesuaikan dengan settingan di bawah

f. Klik plot, sesuaikan dengan setting berikut, tekan next untuk beralih ke scatter selanjutnya

g. Klik save

h. Klik continue kemudian klik ok ketika tampilan sudah berubah seperti dibawah

i. Setelah muncul output, pilih analyze -> secriptive statistics -> explore

j. Pilih kolom tambahan yang muncul ke dalam dependent list

k. Sesuaikan dengan setting berikut dan klik continue, maka pada bagian output akan muncul output tambahan

2. Output Analisis pada SPSS

Regression

Variables Entered/Removed^a

Mode	Variables Entered	Variables Removed	Method
1	lama penggunaan, rating, jumlah transaksi ^b		Enter

a. Dependent Variable: poin bonus

b. All requested variables entered.

Model Summary^b

						Cha	ange Statistic	s		
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson
1	.871ª	.759	.735	5.00863	.759	32.466	3	31	.000	1.813

a. Predictors: (Constant), lama penggunaan, rating, jumlah transaksi

b. Dependent Variable: poin bonus

ANOVA

	Model		Sum of Squares	df	Mean Square	F	Sig.
ı	1	Regression	2443.344	3	814.448	32.466	.000b
ı		Residual	777.676	31	25.086		
		Total	3221.021	34			

a. Dependent Variable: poin bonus

b. Predictors: (Constant), lama penggunaan, rating, jumlah transaksi

			Coef	ficients ^a				
		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Mode	el	В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-42.740	6.826		-6.262	.000		
	jumlah transaksi	.002	.001	.331	2.373	.024	.401	2.491
	rating	3.011	.746	.381	4.038	.000	.874	1.144
1	lama nenggunaan	4 471	969	651	4 619	000	302	2.550

a. Dependent Variable: poin bonus

Coefficient Correlations^a

Model			lama penggunaan	rating	jumlah transaksi
1	Correlations	lama penggunaan	1.000	.171	744
		rating	.171	1.000	.080
		jumlah transaksi	744	.080	1.000
	Covariances	lama penggunaan	.937	.123	001
		rating	.123	.556	4.645E-5
		jumlah transaksi	001	4.645E-5	5.992E-7

a. Dependent Variable: poin bonus

				Variance Proportions				
Model	Dimension	Eigenvalue	Condition Index	(Constant)	jumlah transaksi	rating	lama penggunaan	
1	1	3.831	1.000	.00	.00	.01	.00	
l	2	.152	5.026	.00	.01	.65	.01	
l	3	.012	18.197	.93	.04	.34	.24	
l	4	.006	24.868	.06	.96	.00	.75	

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	9.5311	47.2085	20.6080	8.47721	35
Std. Predicted Value	-1.307	3.138	.000	1.000	35
Standard Error of Predicted Value	.876	3.268	1.601	.560	35
Adjusted Predicted Value	9.4246	45.5914	20.5358	8.26396	35
Residual	-8.66646	10.25045	.00000	4.78255	35
Std. Residual	-1.730	2.047	.000	.955	35
Stud. Residual	-1.898	2.121	.006	1.013	35
Deleted Residual	-10.63840	11.00767	.07223	5.41164	35
Stud. Deleted Residual	-1.986	2.256	.005	1.038	35
Mahal. Distance	.070	13.502	2.914	3.047	35
Cook's Distance	.000	.227	.034	.053	35
Centered Leverage Value	.002	.397	.086	.090	35

a. Dependent Variable: poin bonus

Normal P-P Plot of Regression Standardized Residual

Scatterplot

٧

Scatterplot

	Cases						
	Valid		Missing		Total		
	N	Percent	N	Percent	N	Percent	
Unstandardized Residual	35	97.2%	1	2.8%	36	100.0%	

			Statistic	Std. Error
Unstandardized Residual	Mean	.0000000	.80839929	
	95% Confidence Interval for Mean	Lower Bound	-1.6428650	
		Upper Bound	1.6428650	
	5% Trimmed Mean	0330309		
	Median	.5491383		
	Variance	22.873		
	Std. Deviation	4.78255467		
	Minimum	-8.66646		
	Maximum	10.25045		
	Range	18.91691		
	Interquartile Range	5.90753		
	Skewness	044	.398	
	Kurtosis	473	.778	

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Unstandardized Residual	.075	35	.200	.980	35	.755	

^{*.} This is a lower bound of the true significance.
a. Lilliefors Significance Correction

S

