http://www.math.uni.wroc.pl/~aracz

18 marca 2018 r.

Równania liniowe jednorodne drugiego rzędu

Dwa rozwiązania $y_1(t)$ i $y_2(t)$ równania liniowego drugiego rzędu, spełniające

 $W[y_1(t), y_2(t)] \neq 0$, będziemy nazywali fundamentalnym zbiorem rozwiązań równania.

Zadanie 53. Udowodnij, że funkcje $y_1(t) = \sqrt{t}$ i $y_2(t) = 1/t$ tworzą fundamentalny zbiór rozwiązań równania $2t^2y'' + 3ty' - y = 0$. Znajdź rozwiązanie tego równania spełniające warunki początkowe: y(1) = 2, y'(1) = 1.

Zadanie 54. Udowodnij, że funkcje $y_1(t) = e^{-t^2/2}$ i $y_2(t) = e^{-t^2/2} \int_0^t e^{s^2/2} ds$ tworzą fundamentalny zbiór rozwiązań równania y'' + ty' + y = 0. Znajdź rozwiązanie tego równania spełniające warunki poczatkowe: y(0) = 0, y'(0) = 1.

Zadanie 55. Niech $y_1(t)$ i $y_2(t)$ będą rozwiązaniami równania y'' + p(t)y' + q(t)y = 0, gdzie p(t) i q(t) sa ciagłe w pewnym przedziale $[\alpha, \beta]$. Oznaczmy

$$W(t) = W[y_1(t), y_2(t)] = y_1(t)y_2'(t) - y_1'(t)y_2(t).$$

- a. Poprzez bezpośredni rachunek sprawdź, że W' + p(t)W = 0.
- b. Na podstawie poprzedniego punktu wywnioskuj, że dla każdych $t,t_0 \in [\alpha,\beta]$ jest prawdziwa równość $W[y_1(t),y_2(t)]=W[y_1(t_0),y_2(t_0)]\exp\left(-\int_{t_0}^t p(s)\,ds.\right)$
- c. Udowodnij, że wyznacznik Wrońskiego $W[y_1(t), y_2(t)]$ jest albo tożsamościowo równy 0 lub nigdy nie zeruje się na przedziale $[\alpha, \beta]$.

Zadanie 56. Udowodnij, że $y(t) = t^2$ nigdy nie może być rozwiązaniem równania y'' + p(t)y' + q(t)y = 0 dla ciagłych p(t) i q(t).

Zadanie 57. Załóżmy, że wyznacznik Wrońskiego rozwiązań równania y'' + p(t)y' + q(t)y = 0 jest stały (niezależny od t) i różny od t0. Udowodnij, że t0.

Zadanie 58. Znajdź rozwiązania następujących zagadnień:

- a) y'' + 3y' 10y = 0, y(1) = 5, y'(1) = 2;
- b) y'' + 2y' + 2y = 0, y(0) = 1, y'(0) = -2;
- c) 2y'' 2y' + 5y = 0, y(1) = 1, y'(1) = 1;
- d) 9y'' + 6y' + y = 0, y(0) = 1, y'(0) = 0;

Zadanie 59. Równanie postaci $t^2y'' + \alpha ty' + \beta y = 0$, α, β – stałe, nazywa się *równaniem Eulera*. Udowodnij, że funkcja $y(t) = t^r$ jest rozwiązaniem tego równania o ile $r^2 + (\alpha - 1)r + \beta = 0$.

Zadanie 60. Znajdź rozwiązanie ogólne równania $t^2y'' + 5ty' - 5y = 0$.

Zadanie 61. Znajdź rozwiązanie zagadnienia $t^2y'' - ty' - 2y = 0$, y(1) = 0, y'(1) = 1 na przedziale $0 < t < \infty$.

Zadanie 62. Sprawdź, że $W[e^{\alpha t}\cos\beta t, e^{\alpha t}\sin\beta t] = \beta e^{2\alpha t}$.

Zadanie 63. Załóżmy, że $a>0,\ b>0$ i c>0. Udowodnij, że każde rozwiązanie równania ay''+by'+cy=0 dąży do 0 gdy $t\to\infty$.

Równania liniowej drugiego rzędu niejednorodne

Zadanie 64. Załóżmy, że równanie y'' + p(t)y' + q(t)y = g(t) ma trzy rozwiązania: t^2 , $t^2 + e^{2t}$, $1 + t^2 + 2e^{2t}$. Znajdź rozwiązanie ogólne. Znajdź to równanie.

Zadanie 65. Załóżmy, że równanie y'' + p(t)y' + q(t)y = g(t) ma trzy rozwiązania: $3e^t + e^{t^2}$, $7e^t + e^{t^2}$, $5e^t + e^{-t^3} + e^{t^2}$. Znajdź rozwiązanie tego równania spełniające warunki początkowe y(0) = 1, y'(0) = 2.

Zadanie 66. Stosując metodę uzmieniania stałych znajdź rozwiązanie następujących równań:

$$y'' - 4y' + 4y = te^{2t}$$
, $2y'' - 3y' + y = (t^2 + 1)e^t$, $3y'' + 4y' + y = (\sin t)e^{-t}$.

Zadanie 67. Stosując metodę uzmieniania stałych znajdź rozwiązanie zagadnienia

$$y'' - y = f(t),$$
 $y(0) = y'(0) = 0.$

Zadanie 68. Znajdź jedno szczególne rozwiązanie równań:

- a) $y'' + 3y = t^3 1$, b) $y'' + 4y' + 4y = te^{\alpha t}$, c) $y'' y = t^2 e^t$,
- d) $y'' + y' + y = 1 + t + t^2$ e) $y'' + 4y = t \sin 2t$,
- f) $y'' 2y' + 5y = 2(\cos^2 t)e^t$, g) $y'' + y = \cos t \cos 2t$.

Zadanie 69. Znajdź rozwiązanie szczególne równania $(1-t^2)y'' - ty' + 9y = 0$, jeżeli wiadomo, że ma ono rozwiązanie szczególne będące wielomianem stopnia 3. Uwaga: równanie Czebyszewa $(1-t^2)y'' - ty' + n^2y = 0$ zawsze ma rozwiązanie szczególne będące wielomianem stopnia n.

Zadanie 70. Dla jakich wartości k i ω równanie $x'' + k^2 x = \sin \omega t$ ma przynajmniej jedno rozwiązanie okresowe?

Zadanie 71. Dla jakich wartości a zagadnienie y'' + ay = 1, y(0) = 0, y(1) = 0, nie ma rozwiązań? **Zadanie 72.** Szukamy rozwiązania szczególnego równania $y'' - 2y' + y = te^t$.

Sprawdź przez bezpośrednie podstawienie, że próba szukania rozwiązania szczególnego w postaci $\psi_1(t) = (a_0 + a_1 t)e^t$ lub $\psi_2(t) = (a_0 + a_1 t + a_2 t^2)e^t$ prowadzi do sprzeczności.

Wyjaśnij, dlaczego szukając rozwiązania w postaci $\psi_3(t) = (a_0 + a_1t + a_2t^2 + a_3t^3)e^t$ można przyjąć, że $a_0 = a_1 = 0$.

Andrzej Raczyński