

Universidade de Brasília

Instituto de Ciências Exatas – Departamento de Ciência da Computação

PLANO DE CURSO

1. Identificação

Código	Nome da Disciplina:	Turma:	Período:	Professor:
116432	Software Básico	A	2017/2	Marcelo Ladeira

- **2. Objetivos**: apresentar conceitos fundamentais sobre software de sistemas, programação Assembly e C. O entendimento de tais conceitos facilita compreender os componentes básicos do sistema operacional e desenvolver software eficiente, do ponto de vista de acesso aos recursos do hardware, requisitos de memória e tempo de execução.
- **3. Programa.** Linguagem C 99: revisão de programação C. Assembley: noções sobre NASM (mnemônicos e diretivas de montagem), instruções NASM, serviços do S.O. Integração de código NASM e C. Sistemas básicos: máquina virtual Java, carregadores, ligadores, montadores, noções sobre sistema operacional.

4. Bibliografia

Trevis J. Rothwell. "The GNU C Reference Manual", 2011

Sandra Loosemore et al. "The GNU C Library Reference Manual", 2014

Slides disponibilizados no Moodle www.aprender.unb.br, Software Básico, código de acesso CIC-2/2017-SB-A

Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley. "The Java Virtual Machine Specification, 7 Edition"

"NASM – The Netwide Assembly, version 2.11.02", 2012

Paul Carter; "PC Assembly Language", 2006

Softwares: GCC (versão mais recente), Java 7, jclasslib bytecode viewer 3.1, NASM 2.11.02

5. Metodologia

AULAS - Aulas expositivas, com uso de slides do Power Point, disponibilizados no Moodle

ATIVIDADES – Serão realizadas três provas, cada uma ao final dos módulos C, Assembly e Sistemas Básicos. Os alunos deverão, ao longo do curso, participar de três grupos distintos. No primeiro grupo resolverão a lista de programas em C. No segundo grupo resolverão a lista de programas em NASM. No terceiro grupo, os alunos deverão implementar em C99, um "leitor de arquivo ponto class e exibidor de bytecode Java" e uma máquina virtual (JVM) para executar programas Java no formato ponto class. Para incentivar a motivação e integração dos alunos será atribuído até um ponto adicional na nota final para aqueles que promoverem atividades que facilitem o riso, o bom humor e a integração de todos.

6. Avaliação

DO ALUNO – A menção será baseada nas notas das provas (peso 1 para C, peso 1,5 para Assembly e peso 2 para teoria), exercícios, leitor/exibidor de bytecodes, e máquina virtual Java. A nota **final** será calculada como $N_f = 0.5$ *testes+0.1*exercícios +0.4*JVM + ponto. Estará aprovado o aluno que obter $N_f \ge 5.0$ (cinco) e **freqüência mínima de 75%**

DA DISCIPLINA – Formulário on-line, disponibilizado no Portal do Aluno, para avaliação dessa disciplina.

7. Observações

Cola - Receberá nota zero qualquer trabalho ou teste de quem colou e de quem forneceu a cola.

Programas – Os programas em C99 devem ser compilados com a opção -std=c99.

JVM com opção de leitor/exibidor — Desenvolvida e defendida em grupo de até 5 membros. <u>Não será apresentada especificação por escrito</u>. O programa será executado para avaliação da corretude no sistema operacional Windows e com bytecode gerado pelo Javac e da qualidade da documentação apresentada.

Critérios de correção do leitor/exibidor e da JVM — Compilação com o GCC com opções —std=c99 e execução para análise da sua corretude. Serão elaborados pequenos programas Java que serão compilados com o Javac.

ATRIBUIÇÃO DA NOTA

- Leitor de ponto class e exibidor de bytecode - 1 (100)

Exibição das estruturas internas montadas após a leitura de um arquivo ponto *class* (70%) e os mnemônicos em assembly associado aos bytecodes Java (30).

- Corretude da máquina virtual (100)
 - Leitor de ponto class e exibidor de bytecode 2 (20)
- <u>Instruções</u>: instruções com categorias 1 e 2, arrays (uni e multidimensionais), strings, métodos estáticos e dinâmicos e atributos de classe ou de instância, herança, polimorfismo, reescrita, objetos, simulação de impressão (80). **Não incluem** debug, chamadas às API do Java ou S.O. checagem dinâmica de tipos ou coletor de lixo.
- Defesa individual (100)

Cada membro do grupo será argüido e avaliado em separado sobre a teoria da JVM, formato ponto class e a implementação propriamente dita. A resposta deve indicar funções e estruturas de dados no código elaborado.

- Documentação / site (100)

Páginas web descrevendo cada função implementada na JVM abrangendo um diagrama de ativação (diagrama de comunicação entre os módulos) e a descrição das principais estruturas de dados utilizadas. Para CADA FUNÇÃO deverá ser elaborada um frame contendo: nome da função, objetivo, parâmetros de entrada, parâmetros de saída, descrição do algoritmo que implementa, e links para a função chamadora e para as funções chamadas.

- Atribuição de nota para a JVM: → 0,1*leitor-exibidor + 0,4*corretude + 0,4*defesa individual+ 0,1*site

8. Cronograma de aulas

Aula	Dia	Conteúdo de SB		
1	07/08/17	Apresentação do plano de curso e do projeto da JVM		
2	09/08/17	Arquitetura von Neumann: conceituação, código e carregador absoluto, montador		
3	14/08/17	Ligador, biblioteca de ligação dinâmica e carregador de relocação		
4	16/08/17	Noções sobre sistemas operacionais		
5	21/08/17	Noções sobre sistemas operacionais		
6	23/08/17	1º Teste – Teoria de software básico		
7	28/08/17	Especificação do formato ponto class		
8	30/08/17	Especificação do formato ponto class		
9	04/09/17	Noções sobre Java		
10	06/09/17	Máquina virtual Java		
11	11/09/17	Máquina virtual Java		
12	13/09/17	Máquina virtual Java		
13	18/09/17	Seminário sobre analisadores estático e dinâmico de código		
14	20/09/17	Conceitos básicos de C99		
15	25/09/17	C99: strings e ponteiros		
16	27/09/17	C99:Tipos de dados avançados		
17	02/10/17	C99: tipos de dados definidos pelo usuário		
18	04/10/17	2º Teste – Linguagem C		
19	09/10/17	Apresentação do leitor/exibidor		
20	11/10/17	Projeto lógico da JVM		
21	16/10/17	Arquitetura Intel 32 bits		
22	18/10/17	Introdução à linguagem Assembly NASM: conceitos básicos		
23	23/10/17	Semana Universitária: introdução à linguagem Assembly NASM: conceitos básicos		
	25/10/17	Semana Universitária: não haverá aula		
24	30/10/17	Introdução à linguagem Assembly NASM: macros multi-linhas		
25	01/10/17	Introdução à linguagem Assembly NASM: diretivas		
26	06/11/17	Introdução à linguagem Assembly NASM: interface com C		
27	08/11/17	Comandos da linguagem Assembly		
28	13/11/17	Comandos da linguagem Assembly		
	15/11/17	Proclamação da República: não haverá aula		
29	20/11/17	Comandos da linguagem Assembly		
30	22/11/17	3º teste – Assembly.		
31	27/11/17	Defesa da JVM		
32	29/11/17	Defesa da JVM		
	04/12/17	Defesa da JVM		
	06/12/17	Defesa da JVM		

