Rochambeau. 2017. Enseignement de spécialité. Corrigé

EXERCICE 1

Partie A

- 1) La probabilité demandée est $P(X \ge 4000)$. La calculatrice donne $P(X \ge 4000) = 0,189$ arrondi au millième.
- 2) Soit α le montant minimum d'un devis demandé pour que celui-ci soit pris en compte. L'énoncé fournit $P(X \le \alpha) = 0, 1$. La calculatrice donne $\alpha = 1298$ arrondi à l'euro.

Partie B

1) L'énoncé donne $P_S(D) = 0,95, P(S) = 0,6$ et P(D) = 0,586.

$$P(S \cap D) = P(S) \times P_S(D) = 0,6 \times 0,95 = 0,57.$$

2) La probabilité demandée est $P_{\overline{S}}(D)$.

$$P_{\overline{S}}(D) = \frac{P(\overline{S} \cap D)}{P(\overline{S})} = \frac{P(D) - P(S \cap D)}{1 - P(S)} = \frac{0,586 - 0,57}{1 - 0,6} = \frac{0,016}{0,4} = 0,04.$$

3) La probabilité demandée est $P_{\overline{D}}(S)$.

$$P_{\overline{D}}(S) = \frac{P(\overline{D} \cap S)}{P(\overline{D})} = \frac{P(S) - P(S \cap D)}{1 - P(D)} = \frac{0,6 - 0,57}{1 - 0,586} = \frac{0,03}{0,414} = 0,072 \text{ arrondi à } 10^{-3}.$$

4) Ici, n=231 et on veut tester l'hypothèse p=0,027. On note que $n\geqslant 30$ puis np=6,237 et donc $np\geqslant 5$ puis n(1-p)=224,763 et donc $n(1-p)\geqslant 5$. Un intervalle de fluctuation asymptotique au seuil 95% est

$$\left[p - 1,96\sqrt{\frac{p(1-p)}{n}}, p + 1,96\sqrt{\frac{p(1-p)}{n}} \right] = \left[0,027 - 1,96\sqrt{\frac{0,027 \times 0,973}{231}}, 0,027 + 1,96\sqrt{\frac{0,027 \times 0,973}{231}} \right]$$

$$= \left[0,006; 0,048 \right]$$

en arrondissant de manière à élargir un peu l'intervalle. La fréquence observée est $f = \frac{13}{231} = 0,056$ arrondi à 10^{-3} . La fréquence observée n'est pas dans l'intervalle de fluctuation et on peut donc remettre en cause l'affirmation du fabricant au risque de se tromper de 5%.

EXERCICE 2

Partie A

1) Soit
$$x \in [-2, 2]$$
, $f(-x) = -\frac{b}{8} \left(e^{-\frac{x}{b}} + e^{\frac{x}{b}} \right) + \frac{9}{4} = -\frac{b}{8} \left(e^{\frac{x}{b}} + e^{-\frac{x}{b}} \right) + \frac{9}{4} = f(x)$.

On en déduit que l'axe des ordonnées est un axe de symétrie de la courbe représentative de f.

2) f est dérivable sur [-2,2] et pour tout réel x de [-2,2],

$$f'(x) = -\frac{b}{8} \left(\left(\frac{1}{b}\right) e^{\frac{x}{b}} + \left(-\frac{1}{b}\right) e^{-\frac{x}{b}} \right) + 0 = -\frac{1}{8} \left(e^{\frac{x}{b}} - e^{-\frac{x}{b}} \right).$$

3) Soit $x \in [-2, 2]$. Si x > 0, alors $-\frac{x}{b} < 0 < \frac{x}{b}$ puis $e^{-\frac{x}{b}} < e^{\frac{x}{b}}$ (par stricte croissance de la fonction exponentielle sur \mathbb{R}) puis $e^{\frac{x}{b}} - e^{-\frac{x}{b}} > 0$ et donc f'(x) < 0

 $\mathbb{R}) \text{ puis } e^{\frac{x}{b}} - e^{-\frac{x}{b}} > 0 \text{ et donc } f'(x) < 0.$ De même, si x < 0, alors $\frac{x}{b} < 0 < -\frac{x}{b}$ puis f'(x) > 0. Enfin, f'(0) = 0.

 ${\rm D'autre\ part,\ } f(0) = -\frac{b}{8}\left(e^0 + e^0\right) + \frac{9}{4} = -\frac{2b}{8} + \frac{9}{4} = \frac{9}{4} - \frac{b}{4}.$

On en déduit le tableau de variations de f :

χ	-2		0		2
f'(x)		+	0	_	
f	f(-2)		$\frac{9}{4} - \frac{b}{4}$		f(2)

La fonction f admet un maximum en 0 égal à $\frac{9}{4} - \frac{b}{4}$ ou encore le point S a pour coordonnées $\left(0, \frac{9}{4} - \frac{b}{4}\right)$

Partie B

$$\mathbf{1)} \ y_S = 2 \Leftrightarrow \frac{9}{4} - \frac{b}{4} = 2 \Leftrightarrow \frac{b}{4} = \frac{9}{4} - 2 \Leftrightarrow \frac{b}{4} = \frac{1}{4} \Leftrightarrow b = 1. \ \mathrm{Donc}, \ \mathrm{pour \ tout \ r\'eel} \ x \ \mathrm{de} \ [-2, 2], \ f(x) = -\frac{1}{8} \left(e^x + e^{-x}\right) + \frac{9}{4}.$$

2) $f(2) = -\frac{1}{8}(e^2 + e^{-2}) + \frac{9}{4} = 1,309...$ La fonction f est continue et strictement décroissante sur [0,2]. On en déduit que pour tout réel k de [f(2),f(0)] = [1,309...;2], l'équation f(x) = k admet une solution et une seule dans l'intervalle [0,2]. Puisque 1,5 est dans l'intervalle [1,309...;2], l'équation f(x) = 1,5 admet une solution et une seule dans l'intervalle [0,2]. Cette solution est a.

La calculatrice fournit f(1,76) = 1,501... et donc f(1,76) > 1,5 et f(1,77) = 1,494... et donc f(1,77) < 1,5. Ainsi, f(1,76) > f(a) > f(1,77) et donc, puisque f est strictement décroissante sur [0,2], 1,76 < a < 1,77.

Une valeur approchée de α à 10^{-2} près par défaut est 1,76.

3) L'unité d'aire est égale à 1 m². Puisque la fonction f est continue et positive sur [0;1,8], l'aire $\mathcal A$ d'un vantail, exprimée en m², est $\int_0^{1,8} f(x) \ dx$.

$$\mathcal{A} = \int_0^{1,8} \left(-\frac{1}{8} \left(e^x + e^{-x} \right) + \frac{9}{4} \right) dx = \left[-\frac{1}{8} \left(e^x - e^{-x} \right) + \frac{9}{4} x \right]_0^{1,8}$$

$$= \left(-\frac{1}{8} \left(e^{1,8} - e^{-1,8} \right) + \frac{9 \times 1,8}{4} \right) - \left(-\frac{1}{8} \left(e^0 - e^0 \right) + 0 \right)$$

$$= 4,05 - 0,125 \left(e^{1,8} - e^{-1,8} \right).$$

La masse exprimée en kg d'un vantail est donc $m=20\int_0^{1,8}f(x)~dx=81-2,5\left(e^{1,8}-e^{-1,8}\right)=66,2...$ La masse d'un vantail dépasse 60 kg et donc le client décide d'automatiser son portail.

Partie C

L'aire, exprimée en m^2 , du rectangle OCES est $2 \times 1, 8 = 3, 6$.

Une équation de la tangente à la courbe représentative de f en son point abscisse 1 est y = f(1) + f'(1)(x-1). $f(1) = \frac{9}{4} - \frac{1}{8} \left(e + e^{-1} \right) \text{ et } f'(1) = -\frac{1}{8} \left(e - e^{-1} \right).$

Quand x = 0, on obtient

OG =
$$y_G = f(1) - f'(1) = \frac{9}{4} - \frac{1}{8} (e + e^{-1}) + \frac{1}{8} (e - e^{-1}) = \frac{9}{4} - \frac{2e^{-1}}{8} = \frac{9 - e^{-1}}{4}.$$

Quand x = 1, 8, on obtient

$$\begin{split} CH &= y_H = f(1) + 0, 8f'(1) = \frac{9}{4} - \frac{1}{8} \left(e + e^{-1} \right) - \frac{0,8}{8} \left(e - e^{-1} \right) = \frac{9}{4} - \frac{1}{8} \left(e + e^{-1} + 0, 8e - 0, 8e^{-1} \right) \\ &= \frac{9}{4} - \frac{1}{8} \left(1, 8e + 0, 2e^{-1} \right) = \frac{9}{4} - \frac{2}{8} \left(0, 9e + 0, 1e^{-1} \right) = \frac{9 - 0, 9e - 0, 1e^{-1}}{4}. \end{split}$$

L'aire, exprimée en m², du trapèze OCHG est

$$\frac{\text{OG} + \text{CH}}{2} \times \text{OC} = \frac{1,8}{2} \left(\frac{9 - e^{-1}}{4} + \frac{9 - 0,9e - 0,1e^{-1}}{4} \right) = \frac{1,8 \left(18 - 0,9e - 1,1e^{-1} \right)}{8} = 3,408 \dots$$

La forme 2 est effectivement plus avantageuse. L'économie réalisée en termes de surface de bois, exprimée en m^2 , est de 3, 6-3, 408...=0, 191... soit environ 0, 2 m^2 pour un vantail.

EXERCICE 3

- 1) $u_0 = 3$. $u_0 + u_1 = u_0 u_1$ et donc $3 + u_1 = 3u_1$ puis $u_1 = \frac{3}{2}$. $u_0 + u_1 + u_2 = u_0 u_1 u_2$ et donc $3 + \frac{3}{2} + u_2 = \frac{9}{2} u_2$ puis $u_2 = \frac{9}{7}$.
- 2) a) Soit $n \in \mathbb{N}^*$. $s_{n+1} = u_0 + u_1 + \ldots + u_{n-1} + u_n = s_n + u_n$. D'autre part,

$$s_n = u_0 + \ldots + u_{n-1} \geqslant u_0 > 1.$$

- $b) \text{ Soit } n \in \mathbb{N}^*. \ s_n + u_n = s_{n+1} = u_0 \times \ldots \times u_{n-1} \times u_n = s_n \times u_n \text{ puis } s_n u_n u_n = s_n \text{ puis } u_n \left(s_n 1 \right) = s_n. \\ \text{Enfin, d'après la question précédente, } s_n \neq 1 \text{ et finalement } u_n = \frac{s_n}{s_n 1}.$
- c) Soit $n \in \mathbb{N}^*$.

$$u_n - 1 = \frac{s_n}{s_n - 1} - 1 = \frac{s_n - (s_n - 1)}{s_n - 1} = \frac{1}{s_n - 1}.$$

D'après la question 2)a), $s_n>1$ et donc $s_n-1>0$. On en déduit que $u_n-1>0$ et donc, $u_n>1$.

3) a) Algorithme complété.

Entrée	Saisir n Saisir u
Traitement	s prend la valeur u Pour i allant de 1 à n: u prend la valeur s/(s-1) s prend la valeur s + u Fin pour
Sortie	Afficher u

- b) Il semble que la suite (u_n) converge vers 1.
- 4) a) Montrons par récurrence que pour tout entier naturel non nul $n, s_n > n$.
 - $s_1 = u_0$ et donc $s_1 > 1$. L'inégalité est vraie quand n = 1.
 - Soit $n \ge 1$. Supposons que $s_n > n$.

$$\begin{split} s_{n+1} &= s_n + u_n \text{ (d'après la question 2.a)} \\ &> s_n + 1 \text{ (d'après la question 2.c)} \\ &> n + 1 \text{ (par hypothèse de récurrence)}. \end{split}$$

On a montré par récurrence que pour tout entier nature l $\mathfrak{n},\,s_{\mathfrak{n}}>\mathfrak{n}.$

 $\mathbf{b)} \text{ Pour tout } \mathfrak{n} \in \mathbb{N}^*, \, \mathfrak{s}_\mathfrak{n} > \mathfrak{n}. \text{ Puisque } \lim_{\mathfrak{n} \to +\infty} \mathfrak{n} = +\infty, \, \text{on en d\'eduit que } \lim_{\mathfrak{n} \to +\infty} \mathfrak{s}_\mathfrak{n} = +\infty. \, \text{Soit } \mathfrak{n} \in \mathbb{N}^*.$

Puisque
$$s_n \neq 0$$
, $u_n = \frac{s_n}{s_n - 1} = \frac{s_n}{s_n} \times \frac{1}{1 - \frac{1}{s_n}} = \frac{1}{1 - \frac{1}{s_n}}$. Puisque $\lim_{n \to +\infty} s_n = +\infty$, $\lim_{n \to +\infty} \frac{1}{s_n} = 0$ et donc $\lim_{n \to +\infty} u_n = \frac{1}{1 - 0} = 1$.

$$\lim_{n\to +\infty} u_n = 1.$$

EXERCICE 4.

Partie A

- 1) Soit $n \in \mathbb{N}$. L'année n + 1,
 - \bullet 0, $2a_n$ enfants prennent le programme A, 0, $4a_n$ prennent le programme B, et donc 0, $4a_n$ quittent l'association
 - \bullet 0,6 b_n enfants prennent le programme B, et donc 0,4 b_n quittent l'association
 - \bullet 0, $4a_n + 0$, $4b_n$ enfants au total quittent donc l'association et ils sont remplacés par des enfants suivant le programme A.

Finalement, $a_{n+1} = 0, 2a_n + (0, 4a_n + 0, 4b_n) = 0, 6a_n + 0, 4b_n$ et $b_{n+1} = 0, 4a_n + 0, 6b_n$. On en déduit que

$$U_{n+1} = \left(\begin{array}{cc} \alpha_{n+1} & b_{n+1} \end{array} \right) = \left(\begin{array}{cc} \alpha_n & b_n \end{array} \right) \left(\begin{array}{cc} 0,6 & 0,4 \\ 0,4 & 0,6 \end{array} \right) = U_n M.$$

On a montré que pour tout entier naturel $n,\,U_{n+1}=U_nM$

- 2) Montrons par récurrence que pour tout entier naturel n, $U_n = (75 + 75 \times 0, 2^n \quad 75 75 \times 0, 2^n)$.
 - $\bullet \ \left(\begin{array}{cc} 75+75\times 0, 2^0 & 75-75\times 0, 2^0 \end{array} \right) = \left(\begin{array}{cc} 150n & 0 \end{array} \right) = U_0. \ L'\'{e}galit\'{e} \ \mathrm{est} \ \mathrm{donc} \ \mathrm{vraie} \ \mathrm{quand} \ n = 0.$
 - Soit $n \ge 0$. Supposons que $U_n = (75 + 75 \times 0, 2^n \quad 75 75 \times 0, 2^n)$. Alors,

$$\begin{split} U_{n+1} &= U_n M = \left(\begin{array}{ccc} 75 + 75 \times 0, 2^n & 75 - 75 \times 0, 2^n \end{array} \right) \left(\begin{array}{ccc} 0, 6 & 0, 4 \\ 0, 4 & 0, 6 \end{array} \right) \\ &= \left(\begin{array}{ccc} 0, 6 \left(75 + 75 \times 0, 2^n \right) + 0, 4 \left(75 - 75 \times 0, 2^n \right) & 0, 4 \left(75 + 75 \times 0, 2^n \right) + 0, 6 \left(75 - 75 \times 0, 2^n \right) \end{array} \right) \\ &= \left(\begin{array}{ccc} (0, 6 + 0, 4) \times 75 + (0, 6 - 0, 4) \times 75 \times 0, 2^n & (0, 4 + 0, 6) \times 75 + (0, 4 - 0, 6) \times 75 \times 0, 2^n \end{array} \right) \\ &= \left(\begin{array}{ccc} 75 + 0, 2 \times 75 \times 0, 2^n & 75 - 0, 2 \times 75 \times 0, 2^n \end{array} \right) = \left(\begin{array}{ccc} 75 + 75 \times 0, 2^{n+1} & 75 - 75 \times 0, 2^{n+1} \end{array} \right). \end{split}$$

On a montré par récurrence que pour tout entier naturel n, $U_n = (75 + 75 \times 0, 2^n 75 - 75 \times 0, 2^n)$.

3) Puisque -1 < 0, 2 < 1, $\lim_{n \to +\infty} 0, 2^n = 0$. On en déduit que $\lim_{n \to +\infty} \alpha_n = \lim_{n \to +\infty} (75 + 75 \times 0, 2^n) = 75 + 75 \times 0 = 75$ et de même, $\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} (75 - 75 \times 0, 2^n) = 75 - 75 \times 0 = 75$.

Quand le temps passera, l'association tendra vers l'équilibre entre les deux programmes avec autant d'inscrits dans chaque programme.

Partie A

- 1) a) Si $\alpha = 3$, $S = c_1 + c_3 + c_5 + \alpha \times (c_2 + c_4) = 1 + 1 + 8 + 3 \times (1 + 3) = 22 = 2 \times 10 + 2$. Par suite, k = 2 et donc le numéro attribué à l'enfant devrait être : 111382. Le numéro 111383 ne peut pas être le numéro attribué à un enfant inscrit à l'association.
- b) Pour le numéro $08c_3c_4c_5k$, $0+c_3+c_5+3\times(8+c_4)=24+c_3+3c_4+c_5$. Pour le numéro $11c_3c_4c_5k$, $1+c_3+c_5+3\times(1+c_4)=4+c_3+3c_4+c_5$ et $4+c_3+3c_4+c_5$ sont congrus l'un à l'autre modulo 10, la clé k est la même pour les deux numéros. Cette clé ne permet donc pas de détecter l'erreur commise sur l'année de naissance.
- 2) a) Pour le premier numéro, $S_1 = c_1 + c_3 + c_5 + a(c_2 + c_4)$. Pour le deuxième numéro, $S_2 = c_1 + c_4 + c_5 + a(c_2 + c_3)$. La clé ne détecte pas l'erreur si et seulement si

$$c_1 + c_3 + c_5 + a(c_2 + c_4) \equiv c_1 + c_4 + c_5 + a(c_2 + c_3)$$
 (10)

Ensuite,

$$(*) \Leftrightarrow (c_1 + c_3 + c_5 + \alpha (c_2 + c_4)) - (c_1 + c_4 + c_5 + \alpha (c_2 + c_3)) \equiv 0$$
 (10)
$$\Leftrightarrow c_3 + \alpha c_4 - c_4 - \alpha c_3 \equiv 0$$
 (10)
$$\Leftrightarrow (\alpha - 1) (c_4 - c_3) \equiv 0$$
 (10)
$$\Leftrightarrow (\alpha - 1) (c_4 - c_3) \equiv 0$$
 (10)

b) $0 \times 0 \equiv 1$ (10), $2 \times 5 \equiv 0$ (10), $4 \times 5 \equiv 0$ (10), $5 \times 2 \equiv 0$ (10), $6 \times 5 \equiv 0$ (10) et $8 \times 5 \equiv 0$ (10). Donc, si $n \in \{0, 2, 4, 5, 6, 8, 10\}$, il existe un entier p entre 1 et 9 tel que $np \equiv 0$ (10).

Si $n \in \{1, 3, 7, 9\}$, alors n et $10 = 2 \times 5$ sont premiers entre eux. Par suite, si $p \in \mathbb{N}$,

 $np \equiv 0$ (10) \Rightarrow 10 divise $np \Rightarrow$ 10 divise p (d'après le théorème de Gauss).

Il n'existe pas d'entier p compris entre 1 et 9 qui soit un multiple de 10 et donc il n'existe pas d'entier p compris entre 1 et 9 tel que $np \equiv 0$ (10).

En résumé, les entiers n compris entre 0 et 9 pour lesquels il existe un entier p compris entre 1 et 9 tel que $np \equiv 0$ (10) sont 0, 2, 4, 5, 6 et 8.

c) Si a-1 est l'un des entiers précédents ou encore si $a \in \{1,3,5,6,7,9\}$, il existe un entier p compris entre 1 et 9 tel que $(a-1)p \equiv 0$ (10). Pour tout entier p compris entre 1 et 9, on peut toujours trouver deux chiffres c_3 et c_4 compris entre 0 et 9 tels que $c_4-c_3=p$ (par exemple, $c_3=0$ et $c_4=p$). Dans ce cas, d'après la question a), la clé ne détecte pas l'interversion quand par exemple, $c_3=0$ et $c_4=p$.

En résumé, si $a \in \{1, 3, 5, 6, 7, 9\}$, la clé ne détecte pas systématiquement l'interversion des chiffres c_3 et c_4 .

Supposons maintenant que $a \in \{2,4,8\}$. Alors, $a-1 \in \{1,3,7\}$ de sorte que a-1 est premier à 10. Dans ce cas, il n'existe pas d'entiers p compris entre 1 et 9 tel que $(a-1)p \equiv 0$ (10).

Puisque c_3 et c_4 sont deux chiffres distincts compris entre 0 et 9, $c_4 - c_3$ est un entier relatif compris entre -9 et -1 ou entre 1 et 9. Dans tous les cas, $c_4 - c_3$ est congru modulo 10 à un certain entier p compris entre 1 et 9. Mais alors, pour tous c_3 et c_4 , chiffres distincts compris entre 0 et 9, $(a-1)(c_4-c_3)\not\equiv 0$ (10). Dans ce cas, la clé détecte systématiquement l'interversion des chiffres c_3 et c_4 .

En résumé, la clé détecte systématiquement l'interversion des chiffres distincts c_3 et c_4 si et seulement si $\mathfrak a$ est l'un des entiers 2, 4 ou 8.