Instructions

This package assumes you have numpy installed.

```
git clone https://github.com/bri25yu/Rhythms-of-the-brain.git
cd Rhythms-of-the-brain
python3 main.py # or your version of python
```

Description

We need to numerically approximate a solution to the Hodgkin-Huxley partial differential equation, so we write some approximation methods first, including the Euler, Runge-Kutta order 2 (RK2), and Taylor order 2 approximation methods.

We use the previous Euler approximation method to approximate solutions to voltage-clamped experiments and measure the response of the Sodium activation, Sodium inactivation, and Potassium activation.

Putting these activation gates together, we can finally model and approximate a solution to an action potential at different starting potentials.

We can further model an input current's effect on our action potential model, simulating an artificial	
example of the output of the presynaptic neuron potential into the current neuron.	

In order to produce theta and gamma rhythms, we investigate the behavior of several different types of neurons; specifically, we compare the original Hodgkin-Huxley neuron model with the Olufsen Pyramidal neuron, Wang-Buzsaki fast-spiking neuron, and the Tort O-LM interneuron models.

Using 80 Excitatory (pyramidal) and 20 Inhibitory (fast spiking basket) neurons, we can mimic PING rhythms. Neurons 1-20 are I and neurons 21-100 are E.

We can use signal processing to describe our rhythms using frequency.

