```
In [14]:
         #data analysis
         import numpy as np
         import pandas as pd
         import random as rnd
         #for visualization
         import seaborn as sb
         import matplotlib.pyplot as plt
         %matplotlib inline
         # Loading the data
         titrain = pd.read_csv("D:/Kaggle/titanic/train.csv")
         titest = pd.read_csv("D:/Kaggle/titanic/test.csv")
In [15]: #Combining a Large training set
         combine=[titrain, titest]
         #look at the columns in the table
         print(" Columns in the table")
         print(titrain.columns.values)
          Columns in the table
         ['PassengerId' 'Survived' 'Pclass' 'Name' 'Sex' 'Age' 'SibSp' 'Parch'
          'Ticket' 'Fare' 'Cabin' 'Embarked']
In [16]: #to look at the data type of the column
         titrain.head(1).info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1 entries, 0 to 0
         Data columns (total 12 columns):
         PassengerId 1 non-null int64
         Survived
                       1 non-null int64
         Pclass
                      1 non-null int64
                     1 non-null object
1 non-null object
1 non-null float64
         Name
         Sex
         Age
                      1 non-null int64
         SibSp
                      1 non-null int64
         Parch
                      1 non-null object
         Ticket
                       1 non-null float64
         Fare
         Cabin
                      0 non-null object
         Embarked
                        1 non-null object
         dtypes: float64(2), int64(5), object(5)
```

memory usage: 176.0+ bytes

```
In [17]:
         #to find the total number of null values in each column
         titrain.info()
         print('-'*40)
         titest.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
```

Data columns (total 12 columns): PassengerId 891 non-null int64 Survived 891 non-null int64 Pclass 891 non-null int64 891 non-null object Name Sex 891 non-null object 714 non-null float64 Age SibSp 891 non-null int64 Parch 891 non-null int64 891 non-null object Ticket 891 non-null float64 Fare 204 non-null object Cabin Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.6+ KB -----<class 'pandas.core.frame.DataFrame'> RangeIndex: 418 entries, 0 to 417 Data columns (total 11 columns): PassengerId 418 non-null int64

Pclass 418 non-null int64 418 non-null object Name Sex 418 non-null object 332 non-null float64 Age 418 non-null int64 SibSp 418 non-null int64 Parch Ticket 418 non-null object Fare 417 non-null float64 91 non-null object Cabin Embarked 418 non-null object dtypes: float64(2), int64(4), object(5)

memory usage: 36.0+ KB

In [18]: #to look at the mean and std
print(titrain.describe())

	PassengerId	Survived	Pclass	Age	SibSp	\
count	891.000000	891.000000	891.000000	714.000000	891.000000	
mean	446.000000	0.383838	2.308642	29.699118	0.523008	
std	257.353842	0.486592	0.836071	14.526497	1.102743	
min	1.000000	0.000000	1.000000	0.420000	0.000000	
25%	223.500000	0.000000	2.000000	20.125000	0.000000	
50%	446.000000	0.000000	3.000000	28.000000	0.000000	
75%	668.500000	1.000000	3.000000	38.000000	1.000000	
max	891.000000	1.000000	3.000000	80.000000	8.000000	

Parch Fare count 891.000000 891.000000 0.381594 32.204208 mean std 0.806057 49.693429 min 0.000000 0.000000 25% 0.000000 7.910400 50% 0.000000 14.454200 75% 0.000000 31.000000 6.000000 512.329200 max

In [22]: titrain.describe(include = ['0'])

Out[22]:

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	Fortune, Mr. Mark	male	1601	C23 C25 C27	S
freq	1	577	7	4	644

Out[24]:

	Pclass	Survived
0	1	0.629630
1	2	0.472826
2	3	0.242363

In [25]: titrain[['Sex','Survived']].groupby(['Sex'], as_index= False).mean().sort_values(by='Survived', ascending= False)

Out[25]:

	Sex	Survived
0	female	0.742038
1	male	0.188908

Out[26]:

	SibSp	Survived
1	1	0.535885
2	2	0.464286
0	0	0.345395
3	3	0.250000
4	4	0.166667
5	5	0.000000
6	8	0.000000

Out[27]:

	Parch	Survived
3	3	0.600000
1	1	0.550847
2	2	0.500000
0	0	0.343658
5	5	0.200000
4	4	0.000000
6	6	0.000000

Out[28]: <seaborn.axisgrid.FacetGrid at 0x1e0c6a99908>

In [32]: #figuring out the correlation of Pclass and survival
 grid=sb.FacetGrid(titrain, col='Survived', row='Pclass', size=2.2, aspect=1.6)
 grid.map(plt.hist,'Age',alpha=.5,bins=20)
 grid.add_legend();

In [39]: # correlating categorical value
 grid=sb.FacetGrid(titrain,row='Embarked', size=2.2, aspect=1.6)
 grid.map(sb.pointplot,'Pclass','Survived','Sex', palette='deep')
 grid.add_legend();

C:\Users\uthir\Anaconda3\lib\site-packages\seaborn\axisgrid.py:703: UserWarning: Using the pointplot function without specifying `order` is likely to produce an incorrect plo t.

warnings.warn(warning)

C:\Users\uthir\Anaconda3\lib\site-packages\seaborn\axisgrid.py:708: UserWarning: Using the pointplot function without specifying `hue_order` is likely to produce an incorrect plot.

warnings.warn(warning)

In [42]: #correlating Embarked (Categorical non-numeric),
 #Sex (Categorical non-numeric), Fare (Numeric continuous), with Survived (Categorical nu
 meric).
 grid = sb.FacetGrid(titrain, row='Embarked', col='Survived', size=2.2, aspect=1.6)
 grid.map(sb.barplot, 'Sex', 'Fare', alpha=.5, ci=None)
 grid.add_legend()

C:\Users\uthir\Anaconda3\lib\site-packages\seaborn\axisgrid.py:703: UserWarning: Using
the barplot function without specifying `order` is likely to produce an incorrect plot.
 warnings.warn(warning)

Out[42]: <seaborn.axisgrid.FacetGrid at 0x1e0c8f04c88>

In [48]: #figuring out the correlation of age and survival
g=sb.FacetGrid(titrain, col='Embarked', size=2.2, aspect=1.6)
g.map(sb.barplot,'Fare',alpha=.6, ci=None)
g.add_legend()

C:\Users\uthir\Anaconda3\lib\site-packages\seaborn\axisgrid.py:703: UserWarning: Using
the barplot function without specifying `order` is likely to produce an incorrect plot.
 warnings.warn(warning)

Out[48]: <seaborn.axisgrid.FacetGrid at 0x1e0c8963470>


```
In [49]: print("Before", titrain.shape, titest.shape, combine[0].shape, combine[1].shape)

titrain = titrain.drop(['Ticket', 'Cabin'], axis=1)
titest = titest.drop(['Ticket', 'Cabin'], axis=1)
combine = [titrain, titest]

print("After", titrain.shape, titest.shape, combine[0].shape, combine[1].shape)

Before (891, 12) (418, 11) (891, 12) (418, 11)
After (891, 10) (418, 9) (891, 10) (418, 9)
```

Out[51]:

Sex	female	male
Title		
Capt	0	1
Col	0	2
Countess	1	0
Don	0	1
Dr	1	6
Jonkheer	0	1
Lady	1	0
Major	0	2
Master	0	40
Miss	182	0
MIIe	2	0
Mme	1	0
Mr	0	517
Mrs	125	0
Ms	1	0
Rev	0	6
Sir	0	1

Out[52]: _

	Title	Survived
0	Master	0.575000
1	Miss	0.702703
2	Mr	0.156673
3	Mrs	0.793651
4	Rare	0.347826

```
In [53]: title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
for dataset in combine:
    dataset['Title'] = dataset['Title'].map(title_mapping)
    dataset['Title'] = dataset['Title'].fillna(0)

titrain.head()
```

Out[53]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	7.2500	S	1
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	71.2833	С	3
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	7.9250	S	2
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	53.1000	S	3
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	8.0500	S	1

```
In [54]: titrain = titrain.drop(['Name', 'PassengerId'], axis=1)
    titest = titest.drop(['Name'], axis=1)
    combine = [titrain, titest]
    titrain.shape, titest.shape
```

Out[54]: ((891, 9), (418, 9))

Out[55]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	0	3	0	22.0	1	0	7.2500	S	1
1	1	1	1	38.0	1	0	71.2833	С	3
2	1	3	1	26.0	0	0	7.9250	S	2
3	1	1	1	35.0	1	0	53.1000	S	3
4	0	3	0	35.0	0	0	8.0500	S	1

```
In [62]: #looking for co realtion btw pclass and sex to determine age
    grid=sb.FacetGrid(titrain, row='Pclass', col='Sex', size=2.8, aspect=2.6)
    grid.map(plt.hist,'Age', alpha=0.9, bins=20)
    grid.add_legend()
```

Out[62]: <seaborn.axisgrid.FacetGrid at 0x1e0c832b8d0>


```
In [63]: guess_ages=np.zeros((2,3))
guess_ages
```

Out[63]: array([[0., 0., 0.], [0., 0., 0.]])

```
In [64]: for i in range(0,2):
              print(i)
         0
         1
In [66]:
         for dataset in combine:
             for i in range(0,2):
                  for j in range(0,3):
                      guess_df=dataset[(dataset['Sex']==i) & (dataset['Pclass']==j+1)]['Age'].drop
         na()
                      age_guess=guess_df.median()
                      guess_ages[i,j]=int(age_guess/0.5+0.5)*0.5
         guess_ages
Out[66]: array([[42., 28., 24.],
                [41., 24., 22.]])
In [68]:
         for dataset in combine:
              for i in range(0,2):
                  for j in range(0,3):
                      dataset.loc[(dataset.Age.isnull())& (dataset.Sex == i) & (dataset.Pclass ==
         j+1), 'Age'] = guess_ages[i,j]
             dataset['Age']=dataset['Age'].astype(int)
         titrain.head()
```

Out[68]: _

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	0	3	0	22	1	0	7.2500	S	1
1	1	1	1	38	1	0	71.2833	С	3
2	1	3	1	26	0	0	7.9250	S	2
3	1	1	1	35	1	0	53.1000	S	3
4	0	3	0	35	0	0	8.0500	S	1

In [69]: titrain['AgeBrand']=pd.cut(titrain['Age'],5)

In [71]: titrain[['AgeBrand','Survived']].groupby(['AgeBrand'], as_index= False).mean().sort_valu
es(by='AgeBrand',ascending=True)

Out[71]:

	AgeBrand	Survived
0	(-0.08, 16.0]	0.550000
1	(16.0, 32.0]	0.337374
2	(32.0, 48.0]	0.412037
3	(48.0, 64.0]	0.434783
4	(64.0, 80.0]	0.090909

Out[72]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title	AgeBrand
0	0	3	0	1	1	0	7.2500	S	1	(16.0, 32.0]
1	1	1	1	2	1	0	71.2833	С	3	(32.0, 48.0]
2	1	3	1	1	0	0	7.9250	S	2	(16.0, 32.0]
3	1	1	1	2	1	0	53.1000	S	3	(32.0, 48.0]
4	0	3	0	2	0	0	8.0500	S	1	(32.0, 48.0]

In [73]: titrain=titrain.drop(['AgeBrand'],axis=1)
 combine=[titrain, titest]
 titrain.head()

Out[73]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	0	3	0	1	1	0	7.2500	S	1
1	1	1	1	2	1	0	71.2833	С	3
2	1	3	1	1	0	0	7.9250	S	2
3	1	1	1	2	1	0	53.1000	S	3
4	0	3	0	2	0	0	8.0500	S	1

Out[75]:

	FamilySize	Survived
3	4	0.724138
2	3	0.578431
1	2	0.552795
6	7	0.333333
0	1	0.303538
4	5	0.200000
5	6	0.136364
7	8	0.000000
8	11	0.000000

Out[78]:

	IsAlone	Survived
0	0	0.505650
1	1	0.303538

In [79]: titrain=titrain.drop(['Parch','SibSp','FamilySize'],axis=1)
 titest=titest.drop(['Parch','SibSp','FamilySize'], axis=1)
 combine=[titrain, titest]
 titrain.head()

Out[79]:

	Survived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone
0	0	3	0	1	7.2500	S	1	0
1	1	1	1	2	71.2833	С	3	0
2	1	3	1	1	7.9250	S	2	1
3	1	1	1	2	53.1000	S	3	0
4	0	3	0	2	8.0500	S	1	1

In [81]: for dataset in combine:
 dataset['Age*Class'] = dataset.Age * dataset.Pclass

titrain.loc[:, ['Age*Class', 'Age', 'Pclass']].head(10)

Out[81]: ___

	Age*Class	Age	Pclass
0	3	1	3
1	2	2	1
2	3	1	3
3	2	2	1
4	6	2	3
5	3	1	3
6	3	3	1
7	0	0	3
8	3	1	3
9	0	0	2

In [82]: frq_port=titrain.Embarked.dropna().mode()[0]
frq_port

Out[82]: 'S'

```
In [86]:
          for dataset in combine:
               dataset['Embarked'] = dataset['Embarked'].fillna(frq_port)
          titrain[['Embarked','Survived']].groupby(['Embarked'],as_index=False).mean()
In [154]:
Out[154]:
             Embarked
                       Survived
                        0.339009
             0
                        0.553571
             1
           2 2
                       0.389610
In [156]: for dataset in combine:
               dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} )
In [163]: | titrain.isnull().values.sum()
Out[163]: 0
In [165]: | titrain[['Embarked','Survived']].groupby(['Embarked'],as_index=False).mean()
Out[165]:
             Embarked
                       Survived
           0
             0
                        0.339009
             1
                        0.553571
           2 2
                        0.389610
In [119]: | train = pd.read_csv("D:/Kaggle/titanic/train.csv")
In [160]: | titrain['Embarked']=train['Embarked']
In [147]: frq_port
Out[147]: 0
          dtype: object
In [162]:
          titrain['Embarked'] = titrain['Embarked'].fillna((titrain['Embarked']).mode()[0])
In [169]:
          titest['Embarked'] = titest['Embarked'].fillna('S')
In [166]:
          test = pd.read_csv("D:/Kaggle/titanic/test.csv")
In [171]:
          titest['Embarked'] = titest['Embarked'].fillna((titest['Embarked']).mode()[0])
In [175]:
          titest['Embarked'] = titest['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} )
In [176]:
          titrain['Embarked']=titrain['Embarked'].astype(int)
In [177]: | titest['Embarked']=titest['Embarked'].astype(int)
```

In [178]: titrain['Fare'].fillna(titrain['Fare'].dropna().median(), inplace=True)
 titrain.head()

Out[178]:

	Survived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class
0	0	3	0	1	7.2500	0	1	0	3
1	1	1	1	2	71.2833	1	3	0	2
2	1	3	1	1	7.9250	0	2	1	3
3	1	1	1	2	53.1000	0	3	0	2
4	0	3	0	2	8.0500	0	1	1	6

Out[180]:

	FareBand	Survived
0	(-0.001, 7.91]	0.197309
1	(7.91, 14.454]	0.303571
2	(14.454, 31.0]	0.454955
3	(31.0, 512.329]	0.581081

```
In [182]: titrain['Fare'].isnull().values.sum()
```

Out[182]: 0

```
In [184]: titrain['Fare']=titrain['Fare'].astype(int)
```

```
In [189]: titest['Fare']=titest['Fare'].astype(int)
```

```
In [188]: titest['Fare'].isnull().values.sum()
```

Out[188]: 0

```
In [187]: titest['Fare'].fillna(titest['Fare'].dropna().median(), inplace=True)
```

Out[190]:

	Survived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class
0	0	3	0	1	0	0	1	0	3
1	1	1	1	2	0	1	3	0	2
2	1	3	1	1	0	0	2	1	3
3	1	1	1	2	0	0	3	0	2
4	0	3	0	2	0	0	1	1	6
5	0	3	0	1	0	2	1	1	3
6	0	1	0	3	0	0	1	1	3
7	0	3	0	0	0	0	4	0	0
8	1	3	1	1	0	0	3	0	3
9	1	2	1	0	0	1	3	0	0

In [191]: titest.head(10)

Out[191]:

	Passengerld	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class
0	892	3	0	2	0	2	1	1	6
1	893	3	1	2	0	0	3	0	6
2	894	2	0	3	0	2	1	1	6
3	895	3	0	1	0	0	1	1	3
4	896	3	1	1	0	0	3	0	3
5	897	3	0	0	0	0	1	1	0
6	898	3	1	1	0	2	2	1	3
7	899	2	0	1	0	0	1	0	2
8	900	3	1	1	0	1	3	1	3
9	901	3	0	1	0	0	1	0	3

```
In [192]: # machine Learning
```

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier

```
In [194]: y_train=titrain["Survived"]
          x_train=titrain.drop("Survived",axis=1)
          x_test=titest.drop("PassengerId", axis=1).copy()
          x_train.shape, y_train.shape, x_test.shape
Out[194]: ((891, 8), (891,), (418, 8))
In [195]: | #logistic Regression
          logreg=LogisticRegression()
           logreg.fit(x_train,y_train)
          y_pred=logreg.predict(x_test)
          acc_log=round(logreg.score(x_train,y_train)*100,2)
Out[195]: 80.36
In [197]: | coeff=pd.DataFrame(titrain.columns.delete(0))
          coeff.columns=['Feature']
           coeff['Correlation']=pd.Series(logreg.coef_[0])
          coeff.sort_values(by='Correlation',ascending=False)
Out[197]:
               Feature
                       Correlation
             Sex
                       2.199198
           5 Title
                       0.389811
                       0.275644
             Age
             Embarked | 0.271167
           6 IsAlone
                       0.210186
           3 Fare
                       0.000000
           7 Age*Class
                       -0.300404
             Pclass
                       -0.705445
In [198]:
          #Support Vector Machine
           svc=SVC()
           svc.fit(x_train,y_train)
          y_pred=svc.predict(x_test)
          acc_svc=round(svc.score(x_train,y_train)*100,2)
          acc_svc
Out[198]: 82.38
In [201]:
          #K-Nearest Neighbor
           knn=KNeighborsClassifier(n_neighbors=3)
           knn.fit(x_train,y_train)
          y_pred=knn.predict(x_test)
          acc_knn=round(knn.score(x_train, y_train)*100,2)
```

acc_knn

Out[201]: 81.93

```
In [202]: # Gaussian Naive Bayes
          gaussian=GaussianNB()
          gaussian.fit(x_train,y_train)
          y_pred=gaussian.predict(x_test)
          acc_gaussian=round(gaussian.score(x_train,y_train)*100,2)
          acc_gaussian
Out[202]: 72.17
In [203]: #perceptron
          perceptron=Perceptron()
          perceptron.fit(x_train,y_train)
          y_pred=perceptron.predict(x_test)
          acc_perceptron=round(perceptron.score(x_train,y_train)*100,2)
          acc_perceptron
          C:\Users\uthir\Anaconda3\lib\site-packages\sklearn\linear_model\stochastic_gradient.py:
          128: FutureWarning: max iter and tol parameters have been added in <class 'sklearn.line
          ar model.perceptron.Perceptron'> in 0.19. If both are left unset, they default to max i
          ter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21,
          default max iter will be 1000, and default tol will be 1e-3.
            "and default tol will be 1e-3." % type(self), FutureWarning)
Out[203]: 75.65
In [204]: #Linear SVC
          linear svc=LinearSVC()
          linear_svc.fit(x_train,y_train)
          y_pred=linear_svc.predict(x_test)
          acc_linear_svc=round(linear_svc.score(x_train,y_train)*100,2)
          acc_linear_svc
Out[204]: 78.79
In [206]: #Stochastic Gradient Descent
          sgd=SGDClassifier()
          sgd.fit(x_train,y_train)
          y_pred=sgd.predict(x_test)
          acc_sgd=round(sgd.score(x_train,y_train)*100,2)
          C:\Users\uthir\Anaconda3\lib\site-packages\sklearn\linear_model\stochastic_gradient.py:
          128: FutureWarning: max_iter and tol parameters have been added in <class 'sklearn.line
          ar_model.stochastic_gradient.SGDClassifier'> in 0.19. If both are left unset, they defa
          ult to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000.
          From 0.21, default max_iter will be 1000, and default tol will be 1e-3.
            "and default tol will be 1e-3." % type(self), FutureWarning)
Out[206]: 78.11
In [207]: #Decision Tree
          decision tree=DecisionTreeClassifier()
          decision_tree.fit(x_train,y_train)
          y_pred=decision_tree.predict(x_test)
          acc_decision_tree=round(decision_tree.score(x_train,y_train)*100,2)
          acc_decision_tree
```

Out[207]: 84.29

'Stochastic Gradient Decent', 'Linear SVC',

acc_random_forest, acc_gaussian, acc_perceptron,
acc_sgd, acc_linear_svc, acc_decision_tree]})

Out[209]:

	Model	Score
3	Random Forest	84.29
8	Decision Tree	84.29
0	Support Vector Machines	82.38
1	KNN	81.93
2	Logistic Regression	80.36
7	Linear SVC	78.79
6	Stochastic Gradient Decent	78.11
5	Perceptron	75.65
4	Naive Bayes	72.17

'Decision Tree'],
'Score': [acc_svc, acc_knn, acc_log,

models.sort_values(by='Score', ascending=False)