Apriori Variants to overcome the repeated scans limitation

- DHP (Park '95): Dynamic Hashing and Pruning
- Candidate large 2-itemsets are huge.
 - DHP: trim them using hashing
- Transaction database is huge that one scan per iteration is costly
 - DHP: prune both number of transactions and number of items in each transaction after each iteration

Hash Table Construction

- Consider two items sets, all itesms are numbered as i1,
 i2, ...in. For any any pair (x, y), has according to
 - Hash function bucket #=h({x y}) = ((order of x)*I0+(order of y)) % 7
- Example:
 - Items = A, B, C, D, E, Order = 1, 2, 3 4, 5,
 - \circ H({C, E})= (3*10 + 5)% 7 = 0
 - Thus, {C, E} belong to bucket 0.

Example

TID	Items	
100	ACD	
200	ВСЕ	
300	ABCE	
400	BE	

Generation of CI & LI(Ist iteration)

2
_
3
3
1
3

Itemset	Sup
{A}	2
{B}	3
{C}	3
{E}	3

Hash Table Construction

• Find all 2-itemset of each transaction

TID	2-itemset
100	{A C} {A D} {C D}
200	{B C} {B E} {C E}
300	{A B} {A C} {A E} {B C} {B E} {C E}
400	{B E}

Hash Table Construction

Hash function
 h({x y}) = ((order of x)*10+(order of y)) % 7

Hash table

3 1 2 0 3 1 3

Bucket 0 1 2 3 4 5 6

C2 Generation (2nd iteration)

L1*L1	# in the bucket
{A B}	1
{A C}	3
{A E}	1
{B C}	2
{B E}	3
{C E}	3

Resulted C2	
{A C}	
{B C}	
{B E}	
{C E}	

C2 of Apriori
{A B}
{A C}
{A E}
{B C}
{B E}
{C E}

 H_2

Create hash table H_2 using hash function $h(x, y) = ((order \ of \ x) \times 10 + (order \ of \ y)) \ mod \ 7$

bucket address	0	1	2	3	4	5	6
bucket count	2	2	4	2	2	4	4
bucket contents	{I1, I4}	{I1, I5}	{I2, I3}	{I2, I4}	{I2, I5}	{I1, I2}	{I1, I3}
	{I3, I5}	{I1, I5}	$\{I2,I3\}$	{I2, I4}	{I2, I5}	{I1, I2}	{I1, I3}
			$\{I2, I3\}$			{I1, I2}	{I1, I3}
			{I2, I3}			{I1, I2}	{I1, I3}

Apriori Transaction Reduction

- Suppose the minimum support count min_sup=3.
- The algorithm is as follows:
- Step I: First we have to convert database into the desired database that is with SOT column.
- Step 2: In the first iteration of the algorithm, each item is a member of the set of candidate 1-itemsets, C1. The algorithm simply scans all of the transactions in order to count the number of occurrences of each item.
- Step 3:This algorithm will then generate number of items in each transaction. We called this Size_Of_Transaction (SOT). Step 4: Because of min_sup=3, the set of frequent I-itemset, LI can be determined. It consists of the candidate I-itemset, CI, satisfying minimum support. Step 5: Since the support count of I5,I6,I7 are less than 3, they won't appear in LI. Delete these data from D. In addition, when LI is generated, now, the value of k is 2, delete those records of transaction having SOT=I in D. And there won't exist any elements of C2 in the records we find there is only one

- data in the T9. We delete the data and obtain transaction database D1.
- Step 6:To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 ∞L1 to generate a candidate set of 2- itemsets, C2. Step 7:The transactions in D1 are scanned and the support count and SOT of each candidate itemset in C2 is accumulated.
- Step 8: The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate 2-itemsets in C2 having minimum support.
- Step 9:After L2 is generated, we can find the transaction record of T1,T2,T4,T6,T10 are only two in D1.Now,the value of k is 2,delete those records of transaction having SOT=2.And there won't exist any elements of C3 in the records. Therefore, these records can be deleted and we obtain transaction database D2.

- Step 10:To discover the set of frequent 3-itemsets, L3, the algorithm uses the join L2∞ L2 to generate a candidate set of 3- itemsets C3, where C3= L2 ∞L2= I1, I2, I3},{ I2, I3, I4}}. There are a number of elements in C3. According to the property of Apriori algorithm, C3 needs to prune. Because {II, I2} not belongs to L2, we remove it from C3. Because the 2-subsets {I2, I3}, I2, I4} and {I3, I4} all belong to L2, they should remain in C3.
- Step II: The transactions in D2 are scanned and the support count of each candidate itemset in C3 is accumulated. Use C3 to generate L3.
- Step 12: L3 has only one 3-itemsets so that $C4 = \square$. The algorithm will stop and give out all the frequent itemsets.
- Step 13:Algorithm will be generated for Ck until Ck+1 becomes empty

L1

Itemset	Sup_count
I1	5
12	7
13	9
14	3

D1

C₁

D1

Tid	Items	SOT
T1	11,13	2
T2	12,13	2
T3	11,12,13	3
T4	12,13	2
T5	12,13,14	3
T6	12,13	2
T7	11,12,13,14	4
T8	12,13,14,16	3
T10	11,13	2

Itemset	Sup_count
11,12	2
11,13	4
11,14	1
12,13	7
12,14	3
13,14	3

D2

Tid	Items	SOT	
Т3	11,12,13	3	
T5	12,13,14	3	
T7	11,12,13,14	4	
T8	12,13,14,18	3	

Itemset	Sup count
11,13	4
12,13	7
12,14	3
13,14	3

Itemset	Sup_count
12,13,14	3

	Itemset	Sup_count			
1	12,13,14	3			

L3

Vertical Transaction Approach to FIM

itemset	TID_set
I1	{T100, T400, T500, T700, T800, T900}
I2	{T100, T200, T300, T400, T600, T800, T900}
I3	{T300, T500, T600, T700, T800, T900}
I4	{T200, T400}
I5	{T100, T800}

2-Itemsets in Vertical Data Format

itemset	TID_set
{I1, I2}	{T100, T400, T800, T900}
{I1, I3}	{T500, T700, T800, T900}
{I1, I4}	{T400}
{I1, I5}	{T100, T800}
{I2, I3}	{T300, T600, T800, T900}
{I2, I4}	{T200, T400}
{I2, I5}	{T100, T800}
{I3, I5}	{T800}

3-Itemsets in Vertical Data Format

itemset	TID_set			
{I1, I2, I3}	{T800, T900}			
{I1, I2, I5}	{T100, T800}			

Partitioning Variant to Apriori

Sample Database

Al	A2	A3	A4	A5	A6	A7	A8	A9
1	0	0	0	1	. 1	0	1	0
0	1	0	1	0	0	0	1	0
0	0	0	1	1	0	1	0	0
0	1	1	0	0	0	0	0	. 0
0	0	0	0	1	1	1	0	0
0	1	1	1	0	0	0_	0	0
0	1	0	0	0	1	1	0	1
0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	1	0
0	0	1	0	1	0	1	0	0
0	0	1	0	1	0	1	0	0
0	0	0	0	1	1	0	1	0
0	1	0	1 .	0	1	1	0	0
1	0	1	0	1	0	1	0	0
0	1	1	0	0	0	0	0	1

```
P = \text{partition} database(T); n = \text{Number of partitions}
// Phase I
     for i = 1 to n do begin
           read in partition(T_i in P)
           L^i = generate all frequent itemsets of T_i using a priori method in main memory.
      end
// Merge Phase
     for (k = 2; L_k^i \neq \emptyset, i = 1, 2, ..., n; k++) do begin
            C_k^G = \bigcup_{i=1}^n L_i^k
     end
// Phase II
     for i = 1 to n do begin
            read in partition(T_i in P)
            for all candidates c \in C^G compute s(c)_{T_i}
     end
     L^G = \{c \in C^G \mid s(c)_{T_i} \ge \sigma\}
      Answer = L^G
```


The local frequent sets of the T_1 partition are the itemsets X, such that $s(X)_{T_1} \ge \sigma_1$.

$$L^1 := \{ \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{1, 5\}, \{1, 6\}, \{1, 8\}, \{2, 3\}, \{2, 4\}, \{2, 8\}, \{4, 5\}, \{4, 7\}, \{4, 8\}, \{5, 6\}, \{5, 8\}, \{5, 7\}, \{6, 7\}, \{6, 8\}, \{1,5,6\}, \{1,5,8\}, \{2,4,8\}, \{4,5,7\}, \{5,6,8\}, \{5,6,7\}, \{1,5,6,8\} \}$$

Similarly,

$$L^2 := \{ \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}, \{2,3\}, \{2,4\}, \{2,6\}, \{2,7\}, \{2,9\}, \{3,4\}, \{3,5\}, \{3,7\}, \{5,7\}, \{6,7\}, \{6,9\}, \{7,9\}, \{2,3,4\}, \{2,6,7\}, \{2,6,9\}, \{2,7,9\}, \{3,5,7\}, \{2,6,7,9\} \}$$

$$L^3 := \{ \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}, \{1,3\}, \{1,5\}, \{1,7\}, \{2,3\}, \{2,4\}, \{2,6\}, \{2,7\}, \{2,9\}, \{3,5\}, \{3,7\}, \{3,9\}, \{4,6\}, \{4,7\}, \{5,6\}, \{5,7\}, \{5,8\}, \{6,7\}, \{6,8\}, \{1,3,5\}, \{1,3,7\}, \{1,5,7\}, \{2,3,9\}, \{2,4,6\}, \{2,4,7\}, \{3,5,7\}, \{4,6,7\}, \{5,6,8\}, \{1,3,5,7\}, \{2,4,6,7\} \}$$

In Phase II, we have the candidate set as

$$C := L^1 \cup L^2 \cup L^3$$

$$C := \{ \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}, \{1,3\}, \{1,5\}, \{1,6\}, \{1,7\}, \{1,8\}, \{2,3\}, \{2,4\}, \{2,6\}, \{2,7\}, \{2,8\}, \{2,9\}, \{3,4\}, \{3,5\}, \{3,7\}, \{3,9\}, \{4,5\}, \{4,6\}, \{4,7\}, \{4,8\}, \{5,6\}, \{5,7\}, \{5,8\}, \{5,7\}, \{6,7\}, \{6,8\}, \{6,9\}, \{7,9\}, \{1,3,5\}, \{1,3,7\}, \{1,5,6\}, \{1,5,7\}, \{1,5,8\}, \{1,6,8\}, \{2,3,4\}, \{2,3,9\}, \{2,4,6\}, \{2,4,7\}, \{2,4,8\}, \{2,6,7\}, \{2,6,9\}, \{2,7,9\}, \{3,5,7\}, \{4,5,7\}, \{4,6,7\}, \{5,6,8\}, \{5,6,7\}, \{1,5,6,8\}, \{2,6,7,9\}, \{1,3,5,7\}, \{2,4,6,7\} \}$$

Read the database once to compute the global support of the sets in C and get the final set of frequent sets.