Análisis Numérico

Nombres: Arcos Hernández Raul

Gómez Luna Alejandro

Números de lista: 2, 11

Grupo: 11 Trabajo: 2

Fecha: 24/04/2020

un escalar k diferente de 0

Instrucciones: Es importante que su respuesta sea lo más clara posible.

 Realizar un mapa conceptual de resolución de sistemas de ecuaciones lineales.

2. Resolver por el método de Gauss-Jordan los siguientes sistemas.

DESARROLLO

- Cuadro resumen

				Inciso A					
2x + 3y = 18									
		2	3	x	=	18			
x - y = 3		1	-1	У	_	3			
	R1	2	3	18	=	0	5	12	_
	R2	1	-1	3	-	1	-1	3	-
	R1	0	1	2.4	=	0	1	2.4	
	R2	1	-1	3	-	1	0	5.4	
						Х	_	5.4	
						Υ	=	2.4	

CONCLUSIÓN

El valor de x es 5.4 y el valor de y es 2.4.

DESARROLLO

- 1- R1*(1/2)
- 2- R1*(-2) + R2R1*(-3) + R3
- 3- R2*(1/4)
- $\begin{array}{ll} \text{4-} & R1*(0.5) + R1 \\ & R1*(\text{-}0.5) + R3 \end{array}$
- 5- R3*(-1/4.375)
- 6- R3*(0.25) + R2 R3*(-2.375) + R1

Cuadro resumen

				Inc	iso B						
2x - y + 5z = 13											
		2	-1	5	х		13				
2x + 3y + 4z = 20		2	3	4	у	=	20				
3x - y + 3z = 10		3	-1	3	z		10				
	R1	2	-1	5	13	`	1	-0.5	2.5	6.5	•
	R2	2	3	4	20	=	2	3	4	20	=
	R3	3	-1	3	10		3	-1	3	10	
	R1	1	-0.5	2.5	6.5	•	1	-0.5	2.5	6.5	•
	R2	0	4	-1	7	=	0	1	-0.25	1.75	=
	R3	0	0.5	-4.5	-9.5		0	0.5	-4.5	-9.5	
	R1	1	0	2.375	7.375	•	1	0	2.375	7.375	•
	R2	0	1	-0.25	1.75	=	0	1	-0.25	1.75	=
	R3	0	0	-4.375	-10.375		0	0	1	2.37142857	
	R1	1	0	0	1.74285714						
	R2	0	1	0	2.34285714						
	R3	0	0	1	2.37142857						
				х		1.74285714					
				у	=	2.34285714					
				Z		2.37142857					
	-	,						-			

- CONCLUSIÓN

El valor de x es 1.74285714, el valor de y es 2.34285714 y el valor de z es 2.37142857.

DESARROLLO

- Despejando las variables x, y, z:

$$x = \frac{19 - y - z}{3}$$
$$y = \frac{18 - 2x + z}{3}$$
$$z = \frac{6 - x + y}{4}$$

- Cuadro resumen

JACOBI						
19 - y - z	Vector de inicio u	0	1	2	16	17
$x = \frac{}{3}$	x=	0 6.33333333	3.83333333	5.10185185	4.9978277	4.99844859
	y=	0 6	2.27777778	3.91666667	3.00288181	3.002039
18 - 2x + z	z=	0 1.5	1.41666667	1.11111111	1.00177241	1.00126353
y =3		E_x	2.5	1.26851852	0.00090043	0.00062089
	Tolerancia	E_y	3.72222222	1.63888889	0.00113511	0.00084281
6-x+y	0.001	E_z	0.08333333	0.30555556	0.00072755	0.00050889
$z = \frac{1}{4}$		Criterio_x	Diverge	Diverge	Converge	Converge
		Criterio_y	Diverge	Diverge	Diverge	Converge
		Criterio_z	Diverge	Diverge	Converge	Converge

CONCLUSIÓN

El valor de x es 5, el valor de y es 3 y el valor de z es 1, con los valores ya redondeados para una tolerancia de 0.001

4. Resolver por el método de Gauss-Seidel el siguiente sistema.
$$x + 10y + 9z = 7$$
 a. $2x - 7y - 10z = -17$
$$10x + 2y + 6z = 28$$

DESARROLLO

- La matriz no cumple con diagonal dominante, por lo tanto se reacomodará la matriz para que cumpla con el criterio de diagonal dominante:

$$\begin{array}{cccc}
 10x & +2y & +6z = 28 \\
 x & +10y & +9z = 7 \\
 2x & -7y & -10z = -17
 \end{array}$$

- Despejando las variables x, y, z:

$$x = \frac{28 - 2y - 6z}{10}$$
$$y = \frac{7 - x - 9z}{10}$$
$$z = \frac{17 + 2x - 7y}{10}$$

- Cuadro resumen

GAUSS SEIDEL							
	Vector de inicio u		0	1	2	13	14
$x = \frac{28 - 2y - 6z}{100}$	x=	0	2.8	1.5364	1.3265632	1.00047919	1.00026503
x = 10	y=	0	0.42	-1.22304	-2.00972352	-2.99853392	-2.99918913
	z=	0	1.966	2.863408	3.3721191	3.99906958	3.9994854
7 - x - 9z			E_x	1.2636	0.2098368	0.0003872	0.00021416
$y = \frac{10}{10}$			E_y	1.64304	0.78668352	0.00118463	0.00065521
	Tolerancia		E_z	0.897408	0.5087111	0.0007518	0.00041581
17 + 2x - 7y	0.001		Criterio_x	Diverge	Diverge	Converge	Converge
$z = {10}$			Criterio_y	Diverge	Diverge	Diverge	Converge
			Criterio_z	Diverge	Diverge	Converge	Converge

CONCLUSIÓN

El valor de x es 1, el valor de y es -3 y el valor de z es 4, con los valores ya redondeados, para una tolerancia de 0.001.

5. Describe el método de descomposición LU.

El método de descomposición LU es otra forma de expresar las transformaciones del método de Gauss por medio de ecuaciones matriciales, que consiste en:

$$Ax = B$$
$$(LU)x = B$$

$$Ld = B \; ; d = L^{-1}B$$

$$Ux = d : x = U^{-1}d$$

Para este método existen dos maneras de descomponer la matriz A, la versión *Crout* y *Doolittle*:

Crout

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{bmatrix} \begin{bmatrix} 1 & U_{12} & U_{13} \\ 0 & 1 & U_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

Doolittle

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & L_{12} & L_{13} \\ 0 & 1 & L_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} U_{11} & 0 & 0 \\ U_{21} & U_{22} & 0 \\ U_{31} & U_{32} & U_{33} \end{bmatrix}$$

Nota: Suponiendo que la matriz A es de dimensiones 3x3, pero se puede con matrices de dimensión nxn

Ahora la construcción de la matriz L y U (para Crout) está dado por:

- Patra la matriz L:
 - a. La primera columna de L es la primera columna de A

$$l_{11} = a_{11}$$
; $l_{21} = a_{21}$; $\cdots l_{n1} = a_{n1}$

b. Para el resto de los elementos en la matriz L se usa el siguiente algoritmo:

$$l_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \qquad j \leq i$$

$$i = 1, 2, 3, , n$$

- Para la maitrz U:
 - a. El primer renglón de U es el primer renglón de A dividido por el elemento L_{1,1}

$$\therefore u_{12} = \frac{a_{12}}{l_{11}}; u_{13} = \frac{a_{13}}{l_{11}}; \cdots u_{1n} = \frac{a_{1n}}{l_{11}}$$

b. Para el resto de los elementos en la matriz U se usa el siguiente algoritmo:

$$u_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}}{l_{ii}} \qquad i < j$$

$$j = 2, 3, , n$$

Es importante mencionar que la construcción de la matriz L y U se da por partes, ya que los algoritmos de su construcción de L involucran a U y viceversa, por lo que la construcción de estas matrices será progresiva, utilizando los elementos que se vayan calculando.

 Un ingeniero supervisa la producción de tres tipos de automóvil. Se requieren tres clases de material (metal, plástico y caucho), para la producción. La cantidad necesaria para elaborar cada automóvil es de:

Aut	omóvil	Metal (Kg/auto)	Plástico (Kg/auto)	Caucho(kg/auto)
	1	1500	25	100
	2	1700	33	120
	3	1900	42	160

si se dispone de un total de 106 toneladas de metal, 2.17 toneladas de plástico y 8.2 toneladas de caucho diariamente, ¿Cuántos automóviles se pueden producir por día?. Resolver el sistema que se genera por el método de descomposición LU.

DESARROLLO

- Se plantean las incógnitas que se quieren encontrar.

x = Automóviles del tipo 1y = Automóviles del tipo 2

z = Autom'oviles del tipo 3

Ya planteadas las incógnitas que se quieren conocer, se plantea el sistema a resolver. Para plantearlo, se toma en cuenta la cantidad de material que necesita cada tipo de automovil para producirse y, al final, la suma de las cantidades de los materiales que necesita cada tipo de automóvil será igual al total disponible de dicho material, lo que resulta en el siguiente sistema:

$$\begin{cases} 1500x + 1700y + 1900z = 106000 \\ 25x + 33y + 42z = 2170 \\ 100x + 120y + 160z = 8200 \end{cases}$$

- Representando el sistema de ecuaciones en su forma matricial tenemos que:

$$\begin{bmatrix} 1500 & 1700 & 1900 \\ 25 & 33 & 42 \\ 100 & 120 & 160 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 106000 \\ 2170 \\ 8200 \end{bmatrix}$$

- Descomposición LU:

$$\begin{bmatrix} 1500 & 1700 & 1900 \\ 25 & 33 & 42 \\ 100 & 120 & 160 \end{bmatrix} = \begin{bmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{bmatrix} \begin{bmatrix} 1 & U_{12} & U_{13} \\ 0 & 1 & U_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

- Tenemos que la primera columna de L es la primera columna de A

$$\begin{bmatrix} 1500 & 1700 & 1900 \\ 25 & 33 & 42 \\ 100 & 120 & 160 \end{bmatrix} = \begin{bmatrix} 1500 & 0 & 0 \\ 25 & L_{22} & 0 \\ 100 & L_{32} & L_{33} \end{bmatrix} \begin{bmatrix} 1 & U_{12} & U_{13} \\ 0 & 1 & U_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

- También se sabe que el primer renglón de U es igual a el primer renglón de A dividido entre el elemento an

$$\begin{bmatrix} 1500 & 1700 & 1900 \\ 25 & 33 & 42 \\ 100 & 120 & 160 \end{bmatrix} = \begin{bmatrix} 1500 & 0 & 0 \\ 25 & L_{22} & 0 \\ 100 & L_{32} & L_{33} \end{bmatrix} \begin{bmatrix} 1 & \frac{17}{15} & \frac{19}{15} \\ 0 & 1 & U_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

- Calculando el elemento L22

$$l_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \qquad j \leq i$$

$$i = 1, 2, 3, \qquad , n$$

$$L_{22} = a_{22} - \sum_{k=1}^{1} L_{2k} U_{k2} = a_{22} - L_{21} U_{12} = 33 - (25) \left(\frac{17}{15}\right) = \frac{14}{3}$$

$$\begin{bmatrix} 1500 & 1700 & 1900 \\ 25 & 33 & 42 \\ 100 & 120 & 160 \end{bmatrix} = \begin{bmatrix} 1500 & 0 & 0 \\ 25 & \frac{14}{3} & 0 \\ 100 & L_{32} & L_{33} \end{bmatrix} \begin{bmatrix} 1 & \frac{17}{15} & \frac{19}{15} \\ 0 & 1 & U_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

- Calculando el elemento U23

$$u_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}}{l_{ii}} \qquad i < j$$

$$j = 2, 3, , n$$

$$U_{23} = \frac{(a_{23} - \sum_{k=1}^{1} L_{2k} U_{k3})}{L_{22}} = \frac{a_{23} - L_{21} U_{13}}{L_{22}} = \frac{42 - (25) \left(\frac{19}{15}\right)}{\frac{14}{3}} = \frac{31}{14}$$

$$\begin{bmatrix} 1500 & 1700 & 1900 \\ 25 & 33 & 42 \\ 100 & 120 & 160 \end{bmatrix} = \begin{bmatrix} 1500 & 0 & 0 \\ 25 & \frac{14}{3} & 0 \\ 100 & L_{32} & L_{33} \end{bmatrix} \begin{bmatrix} 1 & \frac{17}{15} & \frac{19}{15} \\ 0 & 1 & \frac{31}{14} \\ 0 & 0 & \frac{31}{14} \end{bmatrix}$$

- Calculando el elemento L₃₂ y L₃₃

$$L_{32} = a_{32} - \sum_{k=1}^{1} L_{3k} U_{k2} = a_{32} - L_{31} U_{12} = 120 - (100) \left(\frac{17}{15}\right) = \frac{20}{3}$$

$$L_{33} = a_{33} - \sum_{k=1}^{2} L_{3k} U_{k3} = a_{33} - (L_{31} U_{13} + L_{32} U_{23}) = 160 - (100) \left(\frac{19}{15}\right) - \left(\frac{20}{3}\right) \left(\frac{31}{14}\right)$$

$$= \frac{130}{12}$$

- Finalmente tendríamos que:

												- 1			U			
1500	1700	1900	х	1	106000		1500	1700	1900)	1500	0	0	1	1.1333333	33	1	1.266666667
25	33	42	у	=	2170		25	33	42	=	25	4.66666666	7 0	0	1		1	2.214285714
100	120	160	z		8200		100	120	160		100	6.6666666	7 18.57143	0	0			1
	'	L								'				U	'		H	,
1500		0		Т	0	d1				1	06000		1	1.13333333	1.26666667	х	П	70.66666667
25	4.6	666666	67	•	0	d2	!	=			2170		0	1	2.21428571	у	=	86.42857143
100	6.6	666666	67		18.57143	d3					8200		0	0	1	z		30
						d1				70.6	6666667					х		10
						d2	2	=		86.4	2857143					у	=	20
						d3					30					z	Ш	30

CONCLUSIÓN

Por día se pueden productir 10 vehículos del tipo 1, 20 vehículos del tipo 2 y 30 vehículos del tipo 3, dando como resultado un total de 60 vehículos por día.

7. Ana, Luis y Pedro tienen diferentes cantidades de dinero, Luis tiene dos veces lo que tiene Ana mas cinco pesos; Pedro tiene el doble de lo que tiene Luis quitándole doscientos cinco pesos a dicha cantidad y entre todos reunirían trecientos veinte pesos si pedro tuviera el triple de lo que tiene. ¿Cuánto tiene cada uno?, resuelva el problema planteando un sistema de tres ecuaciones lineales con tres incógnitas, utilice el método de descomposición LU.

DESARROLLO

- Se plantean las incógnitas que se quieren encontrar.

x = Dinero de Ana

y = Dinero de Luis

z = Dinero de Pedro

- Ya planteadas las incógnitas que se quieren conocer, se plantea el sistema a resolver. Para plantearlo, se toman en cuenta las relaciones que tienen las variables entre sí, quedando el sistema de la siguiente manera:

$$y = 2x + 5$$

 $z = 2y - 205$
 $x + y + 3z = 320$

- Reacomodando:

$$\begin{cases} x + y + 3z = 320 \\ -2x + y + 0z = 5 \\ 0x - 2y + z = -205 \end{cases}$$

- Representando el sistema de ecuaciones en su forma matricial tenemos que:

$$\begin{bmatrix} 1 & 1 & 3 \\ -2 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 320 \\ 5 \\ -205 \end{bmatrix}$$

- Descomposición LU:

$$\begin{bmatrix} 1 & 1 & 3 \\ -2 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} = \begin{bmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{bmatrix} \begin{bmatrix} 1 & U_{12} & U_{13} \\ 0 & 1 & U_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

- Ya que tenemos la descomposición utilizamos Excel recordando lo siguiente
 - La primera columna de L es la misma columna de A
 - La primera fila de U es la primera fila de A dividida entre a11
- Para los demás elementos utilizaremos los siguientes algoritmos:

$$u_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}}{l_{ii}}$$

$$j = 2, 3, , n$$

$$i < j$$

$$l_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \qquad j \leq i$$

$$i = 1, 2, 3, \qquad , n$$

- Finalmente tendríamos que:

											L					U		
1	1	3	x		320		1	1	3			1	0	0	1	1		3
-2	1	0	у	=	5		-2	1	0	=		-2	3	0	0	1		2
0	-2	1	z		-205		0	-2	1			0	-2	5	0	0		1
		L		÷									<u> </u>		U			
1	\top	0		Т	0	d1					32	0		1	1	3	x	320
-2		3		T	0	d2		=			5	_		0	1	2	y =	215
0		-2		T	5	d3					-20	5		0	0	1	z	45
						d1					32	0					×	60
						d2		=			21	5					у =	125
						d3					45	5					z	45

CONCLUSIÓN

Ana tiene 60 pesos, Luis tiene 125 pesos y Pedro tiene 45 pesos.

 Obtenga la ecuación característica de las siguientes matrices, aplicando el método de Krylov.

DESARROLLO

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \lambda^3 + b_1 \lambda^2 + b_2 \lambda + b_3 = 0$$

- Aplicando el teorema de Cayley-Hamilton

$$P(A) = A^3 + b_1 A^2 + b_2 A + b_3 I = 0$$

- Mutliplicando esta última ecuación por un vector de apoyo $y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$$A^3y + b_1A^2y + b_2Ay + b_3Iy = 0$$

- Finalmente tenemos

$$b_1A^2y + b_2Ay + b_3Iy = -A^3y$$
$$Ay = R_1$$
$$A^2y = AAy = AR_1 = R_2$$

$$A^3y = AA^2y = AR_2 = R_3$$

Obtenien	Obteniendo: $Ay = R_1$										
0	1	1	1		0						
1	2	1	0	=	1						
1	1	0	0		1						

Obtenien	$do: A^2y =$	AAy = A	$R_1 = R_2$		
0	1	1	0		2
1	2	1	1	=	3
1	1	0	1		1

Obtenien	do: $A^3y =$	$AA^2y = A$	$4R_2 = R_3$		
0	1	1	2		4
1	2	1	3	=	9
1	1	0	1		5

OŁ	teniendo:		b_1	$A^2y + b_2$	Obteniendo: $b_1A^2y + b_2Ay + b_3Iy = -A^3y$										
	2			0			1		4						
b1	3	+	b2	1	+	b3	0	=	-9						
	1			1			0		-5						

2	0	1	b1		4
3	1	0	b2	=	-9
1	1	0	b3		-5

Para resolver el sistema utilizaremos el concepto de la inversa

$$x=A^{-1}B$$

0	0.5	-0.5
0	-0.5	1.5
1	-1	1

b1		-2
b2	=	-3
b3		-8.882E-16

Polinomio característico:

$$P(\lambda) = \lambda^3 + b_1 \lambda^2 + b_2 \lambda + b_3 = 0$$

Finalmente tenemos que: $P(\lambda) = \lambda^3 - 2\lambda^2 - 3\lambda = 0$

	Solución								
b1		-2							
b2	-	-3							
b3		-8.882E-16							

CONCLUSIÓN

$$P(\lambda) = \lambda^3 - 2\lambda^2 - 3\lambda = 0$$

DESARROLLO

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 1 & 4 \\ 0 & 2 & 5 \end{bmatrix} = \lambda^3 + b_1 \lambda^2 + b_2 \lambda + b_3 = 0$$

- Aplicando el teorema de Cayley-Hamilton

$$P(A) = A^3 + b_1 A^2 + b_2 A + b_3 I = 0$$

- Mutliplicando esta última ecuación por un vector de apoyo $y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$$A^3y + b_1A^2y + b_2Ay + b_3Iy = 0$$

- Finalmente tenemos

$$b_1A^2y + b_2Ay + b_3Iy = -A^3y$$

$$Ay = R_1$$

$$A^2y = AAy = AR_1 = R_2$$

$$A^3y = AA^2y = AR_2 = R_3$$

Obtenien	Obteniendo: $Ay=R_1$										
2	0	1	1		2						
3	1	4	0	=	3						
0	2	5	0		0						
				ı							
Obtenien	$do: A^2y =$	AAy = A	$R_1 = R_2$								
2	0	1111 112			4						
3	1	4	2	_	9						
-	-	7	3	_							
0	2	5	0	L	6						
				1							
Obtanian	do: $A^3y =$	1 12	1D _ D								
Obtenien	$uo. M^{y} =$	$AA^{-}y = I$	$4\kappa_2 = \kappa_3$								
2	0	1	4		14						
3	1	4	9	=	45						
	_	_	-								

Ob	Obteniendo: $b_1A^2y + b_2Ay + b_3Iy = -A^3y$									
	4			2			1		-14	
b1	9	+	b2	3	+	b3	0	=	-45	
	6			0			0		-48	

4	2	1	b1		-14
9	3	0	b2	=	-45
6	0	0	b3		-48

Para resolver el sistema utilizaremos el concepto de la inversa

$$x = A^{-1}B$$

0	0	0.16666667
0	0.33333333	-0.5
1	-0.6666667	0.33333333

b1		-8
b2	=	9
b3		0

Polinomio característico:

$$P(\lambda) = \lambda^3 + b_1\lambda^2 + b_2\lambda + b_3 = 0$$

 Solución

 b1
 -8

 b2
 9

 b3
 0

Finalmente tenemos que: $P(\lambda) = \lambda^3 - 8\lambda^2 + 9\lambda = 0$

$$P(\lambda) = \lambda^3 - 8\lambda^2 + 9\lambda = 0$$

 Por medio del método iterativo de las potencias, obtenga el mayor y el menor valor característico con sus correspondientes vectores asociados, de las siguientes matrices.

DESARROLLO MAYOR VALOR CARACTERÍSTICO

tolerancia	Iteración		A	х		R	λ	V_normalizado	E_abs	Criterio
0.001	0	1	2	1	_	1	3	0.333333333		
	Ü	3	2	0	_	3	3	1		
	1	1	2	0.33333333	_	2.33333333	3	0.77777778		
	1	3	2	1	_	3	3	1		
	2	1	2	0.7777778	_	2.77777778	4.33333333	0.641025641	1.33333333	DIVERGE
	2	3	2	1	_	4.33333333	4.5555555	1	1.55555555	DIVERGE
	3	1	2	0.64102564	_	2.64102564	3.92307692	0.673202614	0.41025641	DIVERGE
	3	3	2	1	_	3.92307692	3.92307092	1	0.41023041	
	4	1	2	0.67320261	_	2.67320261	4.01960784	0.66504065	0.09653092	
	4	3	2	1	_	4.01960784	4.01500784	1	0.09053092	
	5	1	2	0.66504065	_	2.66504065	3.99512195	0.667073667	0.02448589	DIVERGE
	,	3	2	1	_	3.99512195	3.99512195	1	0.02448389	
	6	1	2	0.66707367	_	2.66707367	4.001221	0.666564948	0.00609905	DIVERGE
	Ü	3	2	1	_	4.001221	4.001221	1	0.00009903	DIVENGE
	7	1	2	0.66656495	_	2.66656495	3.99969484	0.666692098	0.00152616	DIVERGE
	,	3	2	1	_	3.99969484	3.33303464	1	0.00132010	DIVENGE
	8	1	2	0.6666921	_	2.6666921	4.0000763	0.666660309	0.00038145	CONVERGE
	0	3 2 1 4		4.0000763	4.0000763	1	0.00038143	CONVENGE		
				$\lambda_{mayor} =$	= -	4 asociado	con (0.66	66,1)		

DESARROLLO MENOR VALOR CARACTERÍSTICO

tolerancia	Iteración	1	4-1	х		R	λ	V_normalizado	E_abs	Criterio
0.001	0	-0.5	0.5	1	_	-0.5	0.75	-0.666666667		
	ŭ	0.75	-0.25	0	_	0.75	0.73	1		
	1	-0.5	0.5	-0.6666667	=	0.83333333	0.83333333	1		
	1	0.75	-0.25	1	_	-0.75	0.6555555	-0.9		
	2	-0.5	0.5	1	_	-0.95	0.975	-0.974358974	0.14166667	
	2	0.75	-0.25	-0.9	_	0.975	0.975	1	0.14100007	DIVERGE
	3	-0.5	0.5	-0.974359	=	0.98717949	0.98717949	1	0.01217949	
	3	0.75	-0.25	1	_	-0.9807692	0.56717545	-0.993506494	0.01217949	DIVERGE
	4	-0.5	0.5	1	_	-0.9967532	0.99837662	-0.998373984	0.01119714	
	7	0.75	-0.25	-0.9935065	_	0.99837662	0.99637002	1	0.01119714	DIVERGE
	5	-0.5	0.5	-0.998374	=	0.99918699	0.99918699	1	0.00081037	
	,	0.75	-0.25	1	_	-0.9987805	0.99918099	-0.999593165	0.00081037	CONVERGE
			λ	$m_{enor} = \frac{1}{0}$).9	$\frac{1}{9918} = 1$ a	sociado co	on (1,-1)		

CONCLUSIÓN

El mayor valor característico es 4, asociado con el vector (0.666,1) y el menor valor característico es 1, asociado con el vector (1,-1), para una tolerancia de 0.001.

b.
$$\begin{bmatrix} 2 & 2 & 3 \\ -10 & -1 & 2 \\ -2 & 4 & 9 \end{bmatrix}$$

DESARROLLO MAYOR VALOR CARACTERÍSTICO

tolerancia	Iteración	,	A		х		R	λ	V_normalizado	E_abs	Criterio
0.001		2	2	3	1		2		0.2		
	0	-10	-1	2	0	=	-10	10	-1		
		-2	4	9	0		-2		-0.2		
		2	2	3	0.2		-2.2		-0.35483871		
	1	-10	-1	2	-1	= -1.4	6.2	-0.225806452			
		-2	4	9	-0.2		-6.2		-1		
		2	2	3	-0.3548387		-4.1612903		-0.452631579		
	2	-10	-1	2	-0.2258065	= 1.77419355 -9.1935484	9.19354839	0.192982456	2.99354839	DIVERGE	
		-2	4	9	-1		-9.1935484		-1		
		2	2	3	-0.4526316		-3.5192982	7.32280702	-0.480594154	1.87074137	DIVERGE
	3	-10	-1	2	0.19298246	=	2.33333333		0.318639195		
		-2	4	9	-1		-7.322807		-1		
		2	2	3	-0.4805942		-3.3239099		-0.491393356		
	4	-10	-1	2	0.3186392	=	2.48730235	6.76425491	0.367712687	0.55855211	DIVERGE
		-2	4	9	-1		-6.7642549		-1		
		2	2	3	-0.499958		-3.1864393		-0.499980247		
	12	-10	-1	2	0.40673838	=	2.59284199	6.37313039	0.406839627	0.00095494	CONVERGE
		-2	4	9	-1		-6.3731304		-1		
				λ_{mayor}	= 6.3731	30	039 asocia	ido con (-0	.5,0.40683962	7,-1)	

DESARROLLO MENOR VALOR CARACTERÍSTICO

tolerancia	Iteración	1	4-1		х		R	λ	V_normalizado	E_abs	Criterio
0.001		-1.4166667	-0.5	0.58333333	1		-1.4166667		-0.197674419		
	0	7.16666667	2	-2.8333333	0	=	7.16666667	7.16666667	1		
		-3.5	-1	1.5	0	-3.5		-0.488372093			
		-1.4166667	-0.5	0.58333333	-0.1976744		-0.504845 = 1.96705426		-0.256650246		
	1	7.16666667	2	-2.8333333	1	=		1.96705426	1		
		-3.5	-1	1.5	-0.4883721	L	-1.0406977		-0.529064039		
		-1.4166667	-0.5	0.58333333	-0.2566502		-0.4450328		-0.268142468		
	2	7.16666667	2	-2.8333333	1	-0.8953202	1.65968801	1	0.30736625	DIVERGE	
		-3.5	-1	1.5	-0.529064			-0.539450903			
		-1.4166667	-0.5	0.58333333	-0.2681425		-0.4348112	1.60675653	-0.270614239	0.05293148	DIVERGE
	3	7.16666667	2	-2.8333333	1	-	1.60675653		1		
		-3.5	-1	1.5	-0.5394509		-0.8706777		-0.54188528		
		-1.4166667	-0.5	0.58333333	-0.2706142		-0.4327296	1.59593958	-0.271144083	0.01081695	DIVERGE
	4	7.16666667	2	-2.8333333	1	=	1.59593958		1		
		-3.5	-1	1.5	-0.5418853	L	-0.8656781		-0.542425349		
		-1.4166667	-0.5	0.58333333	-0.2711441		-0.432294		-0.271256476		
	5	7.16666667	2	-2.8333333	1	=	1.59367256	1.59367256	1	0.00226703	DIVERGE
		-3.5	-1	1.5	-0.5424253	L	-0.8646337		-0.542541645		
		-1.4166667	-0.5	0.58333333	-0.2712565		-0.4322026		-0.271280157		
	6	7.16666667	2	-2.8333333	1	=	1.59319658	1.59319658	1	0.00047597	CONVERGE
		-3.5	-1	1.5	-0.5425416		-0.8644148		-0.542566317		
		λ	$_{nenor} = \frac{1}{1}$	1 .59319658	= 0.62766	8	93 asocia	do con (-0.	271280157,1,-	0.5425663	17)

CONCLUSIÓN

El mayor valor característico es 6.37313039, asociado con el vector (-0.5, 0.406839627, -1) y el menor valor característico es 0.62766893, asociado con el vector (-0.271280157,1,-0.542566317) para una tolerancia de 0.001