4.4

Problem

Solution

In pooling equilibria, both sender types play the same message.

- 1. Pooling on ${\cal L}$:
- Sender strategy: Both t_1 and t_2 choose L. o Receiver strategy:
- Upon observing L, play d.
- Upon observing R (off-equilibrium), play d.
 o Beliefs:
- At L information set: $P\left(t_{1}\right)=0.5, P\left(t_{2}\right)=0.5$ (consistent with pooling).
- At R information set: $P\left(t_1\right) \leq 1/3$ (off-equilibrium, arbitrary but must justify playing d). o Equilibrium justification:
- On-path (L): Receiver's expected payoff from u is $0.5 \times 1 + 0.5 \times 0 = 0.5$; from d is $0.5 \times 0 + 0.5 \times 1 = 0.5$. Receiver is indifferent, so playing d is optimal.
- Off-path (R): With belief $P\left(t_1\right) \leq 1/3$, receiver's expected payoff from u is $2 \times P\left(t_1\right) \leq 2/3$, and from d is $1-P\left(t_1\right) \geq 2/3$. Thus, playing d is optimal (strictly if $P\left(t_1\right) < 1/3$, weakly if $P\left(t_1\right) = 1/3$).
- Sender incentives:
- t_1 : Gets 2 from L (receiver plays d). Deviating to R: Receiver plays d, so payoff is 0 (worse than 2). No incentive to deviate.
- t_2 : Gets 1 from L (receiver plays d). Deviating to R: Receiver plays d, so payoff is 1 (same as equilibrium). Indifferent, so no strict incentive to deviate.
- 2. Pooling on ${\it R}$:
- Sender strategy: Both t_1 and t_2 choose R. o Receiver strategy:
- ullet Upon observing R, play u.
- Upon observing L (off-equilibrium), play any action (e.g., u or d) depending on belief. o Beliefs:

- At R information set: $P\left(t_{1}\right)=0.5, P\left(t_{2}\right)=0.5$ (consistent with pooling).
- At L information set: Any belief $P\left(t_{1}\right)=q$ for $q\in\left[0,1\right]$, and receiver plays a best response to this belief.
- Equilibrium justification:
- On-path (R) : Receiver's expected payoff from u is $0.5 \times 2 + 0.5 \times 0 = 1$; from d is $0.5 \times 0 + 0.5 \times 1 = 0.5$. Playing u is strictly optimal (1 > 0.5).
- Off-path (L): Receiver plays a best response to belief q. For example:
- If q > 0.5, play u (since q > 1 q).
- If q < 0.5, play d (since q < 1 q).
- If q = 0.5, indifferent, can play either.
- Sender incentives:
- t_1 : Gets 2 from R (receiver plays u). Deviating to L: If receiver plays u, payoff is 1 < 2; if receiver plays d, payoff is 2 (same as equilibrium). Thus, deviation not profitable.
- t_2 : Gets 1 from R (receiver plays u). Deviating to L: If receiver plays u, payoff is 0 < 1; if receiver plays d, payoff is 1 (same as equilibrium). Thus, deviation not profitable.

In separating equilibria, sender types choose different messages.

- 3. Separating: t_1 plays L, t_2 plays R :
 - Sender strategy: t_1 chooses L, t_2 chooses R. o Receiver strategy:
 - Upon observing L, play u.
 - Upon observing R, play d.
 - Beliefs:
 - At L information set: $P\left(t_{1}\right)=1, P\left(t_{2}\right)=0$ (consistent: only t_{1} plays L).
 - At R information set: $P\left(t_{1}\right)=0, P\left(t_{2}\right)=1$ (consistent: only t_{2} plays R). o Equilibrium justification:
 - Receiver best response:
 - At L (Node_A1): u gives receiver 1,d gives 0 ; play u.
 - At R (Node_B2): u gives receiver 0,d gives 1 ; play d.
 - Sender incentives:
 - t_1 : Plays L, receiver plays u, payoff is 1 . Deviating to R : Receiver plays d, payoff is 0 < 1. No incentive.
 - t_2 : Plays R, receiver plays d, payoff is 1 . Deviating to L : Receiver plays u, payoff is 0< 1. No incentive.
 - 4. Separating: t_1 plays R, t_2 plays L :

- Sender strategy: t_1 chooses R, t_2 chooses L. o Receiver strategy:
- Upon observing R, play u.
- Upon observing L, play d.
 o Beliefs:
- At R information set: $P\left(t_{1}\right)=1, P\left(t_{2}\right)=0$ (consistent: only t_{1} plays R).
- At L information set: $P\left(t_{1}\right)=0, P\left(t_{2}\right)=1$ (consistent: only t_{2} plays L). o Equilibrium justification:
- · Receiver best response:
- At R (Node_A2): u gives receiver 2,d gives 0; play u.
- At L (Node_B1): u gives receiver 0, d gives 1; play d.
- · Sender incentives:
- t_1 : Plays R, receiver plays u, payoff is 2 . Deviating to L: Receiver plays d, payoff is 2 (same). Indifferent, but no strict incentive to deviate.
- t_2 : Plays L, receiver plays d, payoff is 1. Deviating to R: Receiver plays u, payoff is 1 (same). Indifferent, but no strict incentive to deviate.

Summary of all pure-strategy PBEs:

- Pooling on L : Both types play L; receiver plays d on L and d on R with belief $P\left(t_{1}\right)\leq1/3$ at R
- Pooling on R : Both types play R; receiver plays u on R and any action on L with any belief.
- Separating ($t_1:L,t_2:R$): Receiver plays u on L,d on R.
- Separating ($t_1:R,t_2:L$): Receiver plays u on R,d on L.

1. Pooling on ${\cal L}$:

- Sender strategy: Both t_1 and t_2 send L.
- · Receiver beliefs:
- After $L:P\left(t_{1}
 ight)=0.5,P\left(t_{2}
 ight)=0.5$ (consistent with pooling).
- After R (off-equilibrium): $P\left(t_{1}\right)\leq\frac{2}{3}$ (arbitrary but must support equilibrium).
- Receiver strategy:
- After L : Plays u (expected payoff 0.5 imes 0 + 0.5 imes 3 = 1.5 > 0.5 imes 1 + 0.5 imes 1 = 1).
- After R : Plays u (optimal if $P\left(t_{1}\right)\leq\frac{2}{3}$ since $2\left(1-P\left(t_{1}\right)\right)\geq P\left(t_{1}\right)$).
- Incentive compatibility:
- t_1 : Gets 3 (plays L, receiver plays u). Deviating to R: Receiver plays u, payoff 0 (worse).
- t_2 : Gets 3 (plays L, receiver plays u). Deviating to R : Receiver plays u, payoff 1 (worse).

- Conclusion: This is a PBE if off-equilibrium belief satisfies $P\left(t_1 \mid R\right) \leq \frac{2}{3}$.
- 2. Pooling on ${\it R}$:
- Sender strategy: Both t_1 and t_2 send R.
- · Receiver beliefs:
- \circ After $R: P(t_1) = 0.5, P(t_2) = 0.5$ (consistent).
 - After L (off-equilibrium): Any $P\left(t_{1}\right)=q\in\left[0,1\right]$.
 - Receiver strategy:
 - After R : Plays u (expected payoff $0.5 \times 0 + 0.5 \times 2 = 1 > 0.5 \times 1 + 0.5 \times 0 = 0.5$).
 - After L : Plays best response to q :
 - If $q<\frac{2}{3}$, plays u (since 3(1-q)>1).
 - If $q>\frac{2}{3}$, plays d (since 3(1-q)<1).
 - If $q = \frac{2}{3}$, indifferent.
 - · Incentive compatibility fails:
 - ullet t_1 : In equilibrium, gets 0 (plays R, receiver plays u). Deviating to L :
 - If receiver plays u, gets 3 > 0.
 - If receiver plays d, gets 1 > 0.
 - Always profitable to deviate.
 - Conclusion: No pooling equilibrium on R.
 - 1. Separating: t_1 sends L, t_2 sends R
 - Sender strategy: $t_1 o L, t_2 o R$.
 - · Receiver beliefs:
 - After $L: P(t_1) = 1, P(t_2) = 0$ (consistent).
- 。 After $R:P\left(t_{1}\right)=0,P\left(t_{2}\right)=1$ (consistent).
 - Receiver strategy:
 - o After L : Plays d (payoff 1>0 for u at A_1).
 - After R : Plays u (payoff 2>0 for d at B_2).
 - Incentive compatibility:
 - t_1 : Gets 1 (plays L, receiver plays d). Deviating to R: Receiver plays u, payoff 0 (worse).
 - ullet t_2 : Gets 1 (plays R, receiver plays u). Deviating to L : Receiver plays d, payoff 0 (worse).
 - Conclusion: This is a PBE.
 - 2. Separating: t_1 sends R, t_2 sends L
 - Sender strategy: $t_1 o R, t_2 o L.$

- · Receiver beliefs:
 - o After $L:P\left(t_{1}
 ight)=0,P\left(t_{2}
 ight)=1$ (consistent).
- After $R:P\left(t_{1}\right)=1,P\left(t_{2}\right)=0$ (consistent).
- · Receiver strategy:
- After L : Plays u (payoff 3>1 for d at B_1).
- After R : Plays d (payoff 1>0 for u at A_2).
- Incentive compatibility:
- t_1 : Gets 4 (plays R, receiver plays d). Deviating to L: Receiver plays u, payoff 3 (worse).
- t_2 : Gets 3 (plays L, receiver plays u). Deviating to R : Receiver plays d, payoff 2 (worse).
- Conclusion: This is a PBE.

Summary of All Pure-Strategy PBEs

- 1. Pooling on L :
- Both types send L.
- ullet Receiver plays u after L and u after R.
- Belief after $R:P\left(t_1\mid R\right)\leq \frac{2}{3}$.
- 2. Separating Equilibrium 1:
- t_1 sends L, t_2 sends R.
- Receiver plays d after L,u after R.
- Beliefs: Certainty at each information set.
- 3. Separating Equilibrium 2:
- t_1 sends R, t_2 sends L.
- $\bullet \ \ {\rm Receiver\ plays}\ u\ {\rm after}\ L,d\ {\rm after}\ R.$
- Beliefs: Certainty at each information set.