Similarity and Distances

Lijun Zhang

z1j@nju. edu. cn

http://cs.nju.edu.cn/zlj

Outline

- Introduction
- Multidimensional Data
- □ Text Similarity Measures
- □ Temporal Similarity Measures
- □ Graph Similarity Measures
- Supervised Similarity Functions
- Summary

Introduction

Motivation

"Love is the power to see similarity in the dissimilar."—Theodor Adorno

Definition

Given two objects O_1 and O_2 , determine a value of the similarity $Sim(O_1, O_2)$ (or distance $Dist(O_1, O_2)$) between the two objects.

- Distance functions for spatial data
- Similarity functions for text
- Representation
 - Closed-form, such as Euclidean distance
 - Defined algorithmically

Outline

- Introduction
- Multidimensional Data
- □ Text Similarity Measures
- □ Temporal Similarity Measures
- ☐ Graph Similarity Measures
- Supervised Similarity Functions
- □ Summary

Multidimensional Data (Vectors)

Quantitative Data

- □ Categorical Data
- Mixed Quantitative and Categorical Data

Quantitative Data (1)

- \square L_p -Norm $(p \ge 1)$
 - Given $\overline{X} = (x_1 \dots x_d)$ and $\overline{Y} = (y_1 \dots y_d)$

$$Dist(\overline{X}, \overline{Y}) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{1/p}$$

Given a vector space V over a subfield F of the complex numbers, a **norm** on V is a function $p: V \to \mathbf{R}$ with the following properties:^[1] For all $a \in F$ and all $\mathbf{u}, \mathbf{v} \in V$,

- 1. $p(a\mathbf{v}) = |a| p(\mathbf{v})$, (absolute homogeneity or absolute scalability).
- 2. $p(\mathbf{u} + \mathbf{v}) \le p(\mathbf{u}) + p(\mathbf{v})$ (triangle inequality or subadditivity).
- If p(v) = 0 then v is the zero vector (separates points).

https://en.wikipedia.org/wiki/Norm_(mathematics)

Quantitative Data (2)

- \square L_p -Norm $(p \ge 1)$
 - Given $\overline{X} = (x_1 \dots x_d)$ and $\overline{Y} = (y_1 \dots y_d)$

$$Dist(\overline{X}, \overline{Y}) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{1/p}$$

- p = 1: Manhattan norm
 - ✓ Sum of absolute values
- p = 2: Euclidean norm
 - ✓ Square root of sum of squares
 - ✓ Rotation-invariant
- $p = \infty$: Infinity norm
 - ✓ Largest absolute value

Quantitative Data (3)

- \square " L_p -Norm" (p < 1)
 - Given $\overline{X} = (x_1 \dots x_d)$ and $\overline{Y} = (y_1 \dots y_d)$

$$Dist(\overline{X}, \overline{Y}) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{1/p}$$

- p=0: Zero norm
 - ✓ Number of nonzero elements
 - Nonconvex
- \blacksquare 0 < p < 1: Fractional-norm
 - ✓ Nonconvex

Impact of Domain-Specific Relevance

- □ Some Features are more Important
 - Credit-scoring
 - ✓ Salary is more important than Gender
- \square Generalized L_p -Norm

$$Dist(\overline{X}, \overline{Y}) = \left(\sum_{i=1}^{d} a_i \cdot |x_i - y_i|^p\right)^{1/p}$$

- \blacksquare $a_1, ..., a_d$ are nonnegative coefficients
- Generalized Minkowski distance

Impact of High Dimensionality (1)

Curse of Dimensionality

 Distance-based algorithms lose their effectiveness as the dimensionality increases

□ An Example

- A unit cube of dimensionality d in the nonnegative quadrant
- lack X is a random point in the cube
- Manhattan distance between \bar{O} and \bar{X}

Impact of High Dimensionality (2)

lacksquare Manhattan distance between $ar{\it O}$ and $ar{\it X}$

$$Dist(\overline{O}, \overline{X}) = \sum_{i=1}^{d} (Y_i - 0).$$

where $\bar{X} = [Y_1, ..., Y_d]$

- $Dist(\bar{O}, \bar{X})$ is a random variable
 - ✓ Since \bar{X} is a random variable
 - ✓ Mean is $\mu = d/2$
 - ✓ Standard deviation $\sigma = \sqrt{d/12}$
- With a probability at least 8/9

$$Dist(\bar{O}, \bar{X}) \in [\underbrace{\mu - 3\sigma}_{D_{min}}, \underbrace{\mu + 3\sigma}_{D_{max}}]$$

Impact of High Dimensionality (2)

Manhattan distance between \bar{o} and \bar{X}

■ With a probabin 1 least 8/9

$$Dist(\bar{O}, \bar{X}) \in [\underbrace{\mu - 3\sigma}_{D_{min}}, \underbrace{\mu + 3\sigma}_{D_{max}}]$$

Impact of High Dimensionality (3)

Manhattan distance between \bar{O} and \bar{X}

$$Dist(\overline{O}, \overline{X}) = \sum_{i=1}^{d} (Y_i - 0).$$

- $Dist(\bar{O}, \bar{X})$ is a random variable
 - ✓ Mean is $\mu = d/2$
 - ✓ Standard deviation $\sigma = \sqrt{d/12}$
- With a probability at least 8/9

$$Dist(\overline{O}, \overline{X}) \in [\underbrace{\mu - 3\sigma}_{D_{min}}, \underbrace{\mu + 3\sigma}_{D_{max}}]$$

Contrast

Contrast
$$(d) = \frac{D_{max} - D_{min}}{\mu} = \sqrt{12/d}$$
.

Impact of High Dimensionality (4)

- \square Contrast $\rightarrow 0$, as $d \rightarrow \infty$
 - As *d* increases, variation become neglectable

(a) Contrasts with dimensionality

Impact of Locally Irrelevant Features

- Many features are likely to be irrelevant
 - Especially in high-dimensional data
- □ An Example
 - A cluster containing diabetic patients
 - ✓ Blood glucose level are more important
- $\square L_p$ -Norm
 - Suffer from the additive noise effects of the irrelevant features

Impact of Different L_p -Norms (1)

- \square Different L_p -Norms do not behave in a similar way
 - When the dimensionality is high
 - When there exist irrelevant features
- $\square L_{\infty}$ -Norms

$$dist(\overline{X}, \overline{Y}) = \max_{i} |x_i - y_i|$$

- Sensitive to noise
- □ Irrelevant attributes are emphasized for large values of p

Impact of Different L_p -Norms (2)

□ Distance contrasts are also poorer for large values of p

(b) Contrasts with norms

Impact of Different L_p -Norms (3)

□ Distance contrasts are also poorer for large values of p

Match-Based Similarity Computation

- □ The Key Idea
 - De-emphasize irrelevant features
- Proximity Thresholding
 - Discretized each feature into k_d equidepth buckets
- □ Similarity Evaluation

$$\overline{X} = [x_1, x_2, \cdots, x_d] \longrightarrow [1, 3, \cdots, k_d]$$

 $\overline{Y} = [y_1, y_2, \cdots, y_d] \longrightarrow [5, 3, \cdots, k_d]$

 $S(\bar{X}, \bar{Y}, k_d)$ is the set of features mapped to the same bucket

Match-Based Similarity Computation

- □ The Key Idea
 - De-emphasize irrelevant features
- Proximity Thresholding
 - Discretized each feature into k_d equidepth buckets
- □ Similarity Evaluation

$$PSelect(\overline{X}, \overline{Y}, k_d) = \left[\sum_{i \in \mathcal{S}(\overline{X}, \overline{Y}, k_d)} \left(1 - \frac{|x_i - y_i|}{m_i - n_i} \right)^p \right]^{1/p} \in [0, S(\overline{X}, \overline{Y}, k_d)]$$

 $S(\bar{X}, \bar{Y}, k_d)$ is the set of features mapped to the same bucket

Match-Based Similarity Computation

- □ The Key Idea
 - De-emph
- ☐ Proxim
 - Disc

Picking $k_d \propto d$ achieves a constant level of contrast in high dimensional space for equide certain data distributions.

☐ Similarity Eva

$$PSelect(\overline{X}, \overline{Y}, k_d) = \left[\sum_{i \in \mathcal{S}(\overline{X}, \overline{Y}, k_d)} \left(1 - \frac{|x_i - y_i|}{m_i - n_i} \right)^p \right]^{1/p} \in [0, S(\overline{X}, \overline{Y}, k_d)]$$

 \blacksquare $S(\bar{X}, \bar{Y}, k_d)$ is the set of features mapped to the same bucket

Impact of Data Distribution (1)

$$\Box$$
 $A = (1,2)$ and $B = (1,-2)$

Impact of Data Distribution (2)

- \Box A = (1,2) and B = (1,-2)
 - 0—A is alignedwith a high-variance direction
 - O—B is aligned with a low-variance direction
 - O A ought to be less than O B

Impact of Data Distribution (3)

□ The Mahalanobis distance

Let Σ be the covariance matrix

$$Maha(\overline{X}, \overline{Y}) = \sqrt{(\overline{X} - \overline{Y})\Sigma^{-1}(\overline{X} - \overline{Y})^T}.$$

- Projection + Normalization
 - \checkmark Let $\Sigma = U \Lambda U^{\top} = \sum_{i=1}^{d} \sigma_i \mathbf{u}_i \mathbf{u}_i^{\top}$
 - \checkmark Then, $\Sigma^{-1} = U\Lambda^{-1}U^{\top} = \sum_{i=1}^{d} \sigma_i^{-1} \mathbf{u}_i \mathbf{u}_i^{\top}$

$$Maha(\bar{X}, \bar{Y}) = \sqrt{(\bar{X} - \bar{Y}) \left(\sum_{i=1}^{d} \sigma_i^{-1} \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}} \right) (\bar{X} - \bar{Y})^{\mathsf{T}}} = \sqrt{\sum_{i=1}^{d} \frac{\left((\bar{X} - \bar{Y}) \mathbf{u}_i \right)^2}{\sigma_i}}$$

NAN LITTO UNITY

Nonlinear Distributions: ISOMAP (1)

\square Which one of B and C is closer to A?

□ Geodesic Distances

- Compute the k-nearest neighbors of each point
- Construct a weighted graph G with nodes representing data points, and edge weights representing (Euclidean) distance of these k-nearest neighbors

■ $Dist(\bar{X}, \bar{Y})$ is the shortest path between \bar{X} and \bar{Y} in the graph

- Nonlinear Dimensionality Reduction by ISOMAP
 - Compute the *k*-nearest ...
 - Construct a weighted graph G ...
 - Compute the distances between all pairs of data points
 - \checkmark A $d \times d$ distance matrix
 - Find vector representations by multidimensional scaling (MDS)
 - $Dist(\bar{X}, \bar{Y})$ is the Euclidean distance of the new representations

Nonlinear Distributions: ISOMAP (4)

■ An Example of ISOMAP

(a) A and C seem close (original data)

(b) A and C are actually far away (ISOMAP embedding)

Manifold Learning (ISOMAP, LLE, LE)

Impact of Local Data Distribution (1)

- □ Local Density Variation
 - \blacksquare C—D should be longer than A—B

Impact of Local Data Distribution (2)

■ Local Density Variation

 \blacksquare C—D should be longer than A—B

(b) local orientation variation

Impact of Local Data Distribution (3)

□ Generic Methods

- Partition the data into a set of local regions (Nontrivial)
- For any pair of objects, determine the most relevant region for the pair
- If they belong to the same region
 - Compute the pairwise distances using the local statistics of that region
 - ✓ Local Mahalanobis distance
- If they belong to different regions
 - ✓ Global statistics or averaged statistics
- □ Shared Nearest-Neighbor Similarity

Multidimensional Data (Vectors)

Quantitative Data

- □ Categorical Data
- Mixed Quantitative and Categorical Data

Categorical Data (1)

- \square Given $\overline{X} = (x_1 \dots x_d)$ and $\overline{Y} = (y_1 \dots y_d)$
 - Sum of similarities on the individual features

$$Sim(\overline{X}, \overline{Y}) = \sum_{i=1}^{d} S(x_i, y_i).$$

■ The simplest $S(x_i, y_i)$

$$S(x_i, y_i) = \begin{cases} 1, & x_i = y_i \\ 0, & x_i \neq y_i \end{cases}$$

- ✓ Ignore the relative frequencies
 - Two documents containing "Science" is less similar than two documents containing "Data Mining"

Categorical Data (2)

- \square Given $\overline{X} = (x_1 \dots x_d)$ and $\overline{Y} = (y_1 \dots y_d)$
 - Sum of similarities on the individual features

$$Sim(\overline{X}, \overline{Y}) = \sum_{i=1}^{d} S(x_i, y_i).$$

Inverse occurrence frequency

$$S(x_i, y_i) = \begin{cases} 1/p_i(x_i)^2, & x_i = y_i \\ 0, & x_i \neq y_i \end{cases}$$

 \checkmark $p_i(x_i)$ is the fraction of records in which the i-th feature takes on the value of x_i

Categorical Data (3)

- \square Given $\overline{X} = (x_1 \dots x_d)$ and $\overline{Y} = (y_1 \dots y_d)$
 - Sum of similarities on the individual features

$$Sim(\overline{X}, \overline{Y}) = \sum_{i=1}^{d} S(x_i, y_i).$$

Goodall measure

$$S(x_i, y_i) = \begin{cases} 1 - p_i(x_i)^2, & x_i = y_i \\ 0, & x_i \neq y_i \end{cases}$$

 \checkmark $p_i(x_i)$ is the fraction of records in which the i-th feature takes on the value of x_i

Multidimensional Data (Vectors)

Quantitative Data

- □ Categorical Data
- Mixed Quantitative and Categorical Data

Mixed Quantitative and Categorical Data

- \square Given $\overline{X} = (\overline{X_n}, \overline{X_c})$ and $\overline{Y} = (\overline{Y_n}, \overline{Y_c})$
 - Where $\overline{X_n}$, $\overline{Y_n}$ are the subsets of numerical attributes and $\overline{X_c}$, $\overline{Y_c}$ are the subsets of categorical attributes
 - Weighted Average

$$Sim(\overline{X}, \overline{Y}) = \lambda \cdot NumSim(\overline{X_n}, \overline{Y_n}) + (1 - \lambda) \cdot CatSim(\overline{X_c}, \overline{Y_c})$$

- \checkmark λ is difficult to decide
- Normalized Weighted Average

$$Sim(\overline{X}, \overline{Y}) = \lambda \cdot NumSim(\overline{X_n}, \overline{Y_n})/\sigma_n + (1 - \lambda) \cdot CatSim(\overline{X_c}, \overline{Y_c})/\sigma_c.$$

Outline

- Introduction
- Multidimensional Data
- □ Text Similarity Measures
- □ Temporal Similarity Measures
- ☐ Graph Similarity Measures
- Supervised Similarity Functions
- Summary

Text Similarity Measures (1)

- As Quantitative Multidimensional Data
 - Bag of words model
 - It is very sparse
 - \blacksquare L_p -norm does not work well
 - ✓ Long documents have long distance
- □ Dimensionality Reduction (A Possible Solution)
 - Latent Semantic Analysis (SVD)
 - \blacksquare L_p -norm in the new space

Text Similarity Measures (2)

- □ Cosine Similarity
 - The angle between two documents

$$\cos(\overline{X}, \overline{Y}) = \frac{\sum_{i=1}^{d} x_i \cdot y_i}{\sqrt{\sum_{i=1}^{d} x_i^2} \cdot \sqrt{\sum_{i=1}^{d} y_i^2}}.$$

- Ignore the relative frequencies
 - ✓ Two documents containing "Science" is less similar than two documents containing "Data Mining"

Text Similarity Measures (3)

- □ Cosine Similarity with TF-IDF
 - Inverse document frequency

$$id_i = \log(n/n_i).$$

where n_i is number of documents in which the i-th word occurs

A damping function may be applied to term frequencies

$$f(x_i) = \sqrt{x_i}$$
$$f(x_i) = \log(x_i)$$

✓ The excessive presence of single word does not throw off the similarity measure

Text Similarity Measures (4)

- Cosine Similarity with TF-IDF
 - Normalized frequency for the *i*-th word

$$h(x_i) = f(x_i) \cdot id_i.$$

■ Then, we define

$$\cos(\overline{X}, \overline{Y}) = \frac{\sum_{i=1}^{d} h(x_i) \cdot h(y_i)}{\sqrt{\sum_{i=1}^{d} h(x_i)^2} \cdot \sqrt{\sum_{i=1}^{d} h(y_i)^2}}.$$

■ Jaccard coefficient

$$J(\overline{X}, \overline{Y}) = \frac{\sum_{i=1}^{d} h(x_i) \cdot h(y_i)}{\sum_{i=1}^{d} h(x_i)^2 + \sum_{i=1}^{d} h(y_i)^2 - \sum_{i=1}^{d} h(x_i) \cdot h(y_i)}$$

Binary and Set Data

- ☐ Given $\bar{X} = (x_1, ..., x_d)$ and $\bar{Y} = (y_1, ..., y_d)$ with $x_i, y_i \in (0,1)$
 - They can be treated as vector representations of two sets

$$S_X = \{i | x_i = 1\}$$

 $S_Y = \{i | y_i = 1\}$

Jaccard coefficient

$$J(\overline{X}, \overline{Y}) = \frac{\sum_{i=1}^{d} x_i \cdot y_i}{\sum_{i=1}^{d} x_i^2 + \sum_{i=1}^{d} y_i^2 - \sum_{i=1}^{d} x_i \cdot y_i} = \frac{|S_X \cap S_Y|}{|S_X \cup S_Y|}.$$

Outline

- Introduction
- Multidimensional Data
- □ Text Similarity Measures
- □ Temporal Similarity Measures
- ☐ Graph Similarity Measures
- Supervised Similarity Functions
- Summary

Temporal Similarity Measures

- □ Temporal data
 - Continuous time series
 - Discrete sequences

Time-Series Similarity Measures (1)

- Distortion Factors
 - Behavioral attribute scaling and translation
 - Temporal (contextual) attribute translation
 - Temporal (contextual) attribute scaling
 - Noncontiguity in matching

Time-Series Similarity Measures (2)

Impact of scaling, translation, and noise

Time-Series Similarity Measures (3)

- ☐ Impact of Behavioral Attribute Normalization
 - Behavioral attribute translation
 - The behavioral attribute is mean centered
 - Behavioral attribute scaling
 - ✓ The standard deviation is scaled to 1
- \square L_p -Norm

$$Dist(\overline{X}, \overline{Y}) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{1/p}$$

Combined with wavelet transformations

Dynamic Time Warping Distance (1)

Address contextual attribute scaling

Can be used either for time-series or sequence data

Dynamic Time Warping Distance (2)

- \square Given $\overline{X} = (x_1 \dots x_m)$ and $\overline{Y} = (y_1 \dots y_n)$
 - The two series have different lengths
- \square DTW(i,j)
 - The distance between the first i elements of \bar{X} and the first j elements of \bar{Y}
- An Recursive Definition

$$DTW(i,j) = distance(x_i,y_j) + \min \begin{cases} DTW(i,j-1) & \text{repeat } x_i \\ DTW(i-1,j) & \text{repeat } y_j \\ DTW(i-1,j-1) & \text{repeat neither} \end{cases}$$

Dynamic Time Warping Distance (3)

- Implementation
 - Recursive computer program

$$DTW(i,j) = distance(x_i,y_j) + \min \begin{cases} DTW(i,j-1) & \text{repeat } x_i \\ DTW(i-1,j) & \text{repeat } y_j \\ DTW(i-1,j-1) & \text{repeat neither} \end{cases}$$

Nested Loop

```
for i = 1 to m
for j = 1 to n
compute DTW(i, j) using Eq. 3.18
```

Equation 3.18 yields a natural iterative approach. The approach starts by initializing DTW(0,0) to 0, DTW(0,j) to ∞ for $j \in \{1...n\}$, and DTW(i,0) to ∞ for $i \in \{1...m\}$. The algorithm computes DTW (i, j) by repeatedly executing Eq. 3.18 with increasing index values of i and j. This can be achieved by a simple nested loop in which the indices i and j increase from 1 to m and 1 to n, respectively

Dynamic Time Warping Distance (3)

☐ Optimal Warping = Optimal Path

Temporal Similarity Measures

- □ Temporal data
 - Continuous time series
 - Discrete sequences

Edit Distance (1)

- Edit Distance of Two Sequences
 - The cost of "edits" to transfer the first one to the second one
- □ Edits
 - Insertions
 - Deletions
 - Replacements
- Sequence abababab to babababa
 - 8 Replacements
 - 1 Deletion+1 Insertion

Edit Distance (2)

- \square Two Sequences $\overline{X} = (x_1 \dots x_m)$ and $\overline{Y} = (y_1 \dots y_n)$
 - Edit (\bar{X}, \bar{Y}) may not be the same as $Edit(\bar{Y}, \bar{X})$
- \square *Edit*(i,j)
 - The edit distance between the first i symbols of \bar{X} and the first j symbols of \bar{Y}
- An Recursive Definition

$$Edit(i, j) = \min \begin{cases} Edit(i - 1, j) + \text{Deletion Cost} \\ Edit(i, j - 1) + \text{Insertion Cost} \\ Edit(i - 1, j - 1) + I_{ij} \cdot (\text{Replacement Cost}) \end{cases}$$

Furthermore, the bottom of the recursion also needs to be set up. The value of Edit(i, 0) is equal to the cost of i deletions for any value of i, and that of Edit(0,j) is equal to the cost of j insertions for any value of j. This nicely sets up the dynamic programming approach.

Longest Common Subsequence (LCSS)

- \square LCSS of $\overline{X} = (x_1 \dots x_m)$ and $\overline{Y} = (y_1 \dots y_n)$:
 - Length of the longest common subsequence
- \square LCSS (i,j)
 - The LCSS between the first i symbols of \bar{X} and the first j symbols of \bar{Y}
- □ An Recursive Definition

$$LCSS(i,j) = \max \begin{cases} LCSS(i-1,j-1) + 1 & \text{only if } x_i = y_j \\ LCSS(i-1,j) & \text{otherwise (no match on } x_i) \\ LCSS(i,j-1) & \text{otherwise (no match on } y_j) \end{cases}$$

Furthermore, the boundary conditions need to be set up. The values of LCSS(i,0) and LCSS(0,j) are always equal to 0 for any value of i and j. As in the case of the DTW and edit-distance computations, a nested loop can be set up to compute the final value.

Outline

- Introduction
- Multidimensional Data
- □ Text Similarity Measures
- □ Temporal Similarity Measures
- ☐ Graph Similarity Measures
- Supervised Similarity Functions
- □ Summary

Similarity between Two Nodes in a Single Graph

- Structural Distance-Based Measure
 - Shortest-path on the graph
 - Dijkstra algorithm
- □ Random Walk-Based Similarity
 - Accounts for multiplicity in paths during similarity computation

Similarity Between Two Graphs

- Extremely Challenging
 - Even the graph isomorphism problem is NP-hard
- Possible Solutions
 - Maximum common subgraph distance
 - Substructure-based similarity
 - Graph-edit distance
 - Graph kernels

Outline

- Introduction
- Multidimensional Data
- □ Text Similarity Measures
- □ Temporal Similarity Measures
- ☐ Graph Similarity Measures
- Supervised Similarity Functions
- □ Summary

Supervised Similarity Functions

User Feedback

$$S = \{(O_i, O_j) : O_i \text{ is similar to } O_j\}$$

 $\mathcal{D} = \{(O_i, O_j) : O_i \text{ is dissimilar to } O_j\}.$

- Learn a distance function that fits the feedback
 - Find parameter 0 to minimize

$$E = \sum_{(O_i, O_j) \in \mathcal{S}} (f(O_i, O_j, \Theta) - 0)^2 + \sum_{(O_i, O_j) \in \mathcal{D}} (f(O_i, O_j, \Theta) - 1)^2$$

where $f(O_i, O_j, \Theta)$ is a distance function with parameter Θ

Outline

- Introduction
- Multidimensional Data
- □ Text Similarity Measures
- □ Temporal Similarity Measures
- ☐ Graph Similarity Measures
- Supervised Similarity Functions
- □ Summary

Summary

- Multidimensional Data
 - L_p -Norm, Generalized Minkowski distance
 - Match-Based Similarity Computation
 - Mahalanobis distance, Geodesic distances
 - Inverse Occurrence Frequency
- □ Text Similarity Measures
 - Cosine, TF-IDF
- □ Temporal Similarity Measures
 - Dynamic Time Warping
 - Edit Distance, Longest Common Subsequence
- ☐ Graph Similarity Measures
 - Shortest-path, Random Walk
- Supervised Similarity Functions