VE311 Electronic Circuit Homework 4

Due: July 4th

Note:

- 1) Please use A4 size paper or page.
- 2) Please clearly state out your final result for each question.
- 3) Please attach the screenshot of Pspice simulation result if necessary.

Question 1. MOSFET DC Biasing

Use the drain current equations below. Don't consider channel-length modulation and body effect. Assuming $\mu_n = 350 \times 10^{-4} m^2 / V/s$, $\mu_p = 350 \times 10^{-4} m^2 / V/s$, $V_{TH} = 0.7V$ (NMOS), $V_{TH} = -0.8V$ (PMOS), $W_{drawn}/L_{drawn} = 20 \mu m/2 \mu m$, $t_{ox} = 9 \times 10^{-9} m$, $L_D = 0.08 \mu m$, sketch I_X of M_1 as a function of V_X increasing from 0V to $V_{DD} = 5V$.

(1)
$$I_D = \mu_n C_{ox} \frac{W}{L_{eff}} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$
(NMOS in triode region)

(2)
$$I_D = \mu_n C_{ox} \frac{W}{L_{eff}} (V_{GS} - V_{TH})^2$$
 (NMOS in saturation region)

(3)
$$I_D = \mu_p C_{ox} \frac{W}{L_{eff}} \left[\left(V_{SG} - |V_{TH}| \right) V_{SD} - \frac{1}{2} V_{SD}^2 \right]$$
(PMOS in triode region)

(4)
$$I_D = \mu_p C_{ox} \frac{W}{L_{eff}} (V_{SG} - |V_{TH}|)^2 \text{ (PMOS in saturation region)}$$

Question 2. Combination of MOSFET

For the circuit below, find the labeled node voltages. The NMOS transistor has $V_{TH}=0.9V$, $k_n=\mu_n C_{ox}(W/L)=1.5mA/V^2$.

Question 3. Small Signal of of MOSFET

The circuit shown below is a MOSFET cascode amplifier. Draw the small signal model and derive R_{out} for the amplifier. Assume transistors M_1 and M_2 are in saturation and include r_O in your calculation.

Question 4. Common-Source with Resistive Load

Assume $\lambda = 0$ and $\gamma = 0$. For $V_{DD} = 5V$, $V_{in} = 0.9 \text{ V} + \text{small signal}$, $R_D = 15k\Omega$ and $L_{drawn} = 2\mu m$, find out the value W_{drawn} to obtain a voltage gain $|A_v| > 10$ and V_{OUT} (the DC biasing voltage at the output) close to 2.5 V as much as possible.

NMOS Model			
LEVEL=1	VTO=0.7	GAMMA=0.45	PHI=0.9
NSUB=9e+14	LD = 0.08e-6	UO = 350	LAMBDA=0.1
TOX=9e-9	PB = 0.9	CJ = 0.56e-3	CJSW = 0.35e-11
MJ = 0.45	MJSW=0.2	CGDO=0.4e-9	JS=1.0e-8
PMOS Model			
LEVEL=1	VTO=-0.8	GAMMA=0.4	PHI=0.8
NSUB=5e+14	LD = 0.09e-6	UO = 100	LAMBDA=0.2
TOX=9e-9	PB = 0.9	CJ = 0.94e - 3	CJSW = 0.32e-11
MJ = 0.5	MJSW=0.3	CGDO=0.3e-9	JS = 0.5e-8

VTO : threshold voltage with zero V_{SB} (unit : V) GAMMA : body effect coefficient (unit : $V^{1/2}$)

PHI: $2\Phi_F$ (unit: V)

TOX : gate oxide thickness (unit : m) NSUB : substrate doping (unit : cm^{-3}) LD : source/drain side diffusion (unit : m) UO : channel mobility (unit : $cm^2/V/s$)

LAMBDA : channel-length modulation coefficient (unit : V^{-1})

CJ : source/drain bottom-plate junction capacitance per unit area (unit : F/m^2) CJSW : source/drain sidewall junction capacitance per unit length (unit : F/m)

PB: source / drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit : F/m)

CGSO : gate-source overlap capacitance per unit width (unit : F/m)

JS : source/drain leakage current per unit area (unit A/m^2)

Vacuum permittivity $(\epsilon_o) = 8.85 \times 10^{-12} (F/m)$

Silicon oxide dielectric constant $(\epsilon_r) = 3.9$