

Applied NLP on Reddit Comments

Final Presentation

Alex Mead & Wafer Hsu

Outline

Executive Summary

Goals

Methods

Results

- 1. Regression
- 2. Topic Modeling
- 3. Clustering
- 4. Classification

Q&A

Executive Summary

Executive Summary

- Attempted through multiple threads: <u>sentiment analysis</u>, <u>linear modelling</u>, <u>topic modelling</u>, and through more traditional machine learning algorithms such as <u>clustering and</u> <u>classification</u>
- 2. Subsetted original dataset to one subreddit r/politics for the majority of the analysis
- 3. Cleaned, normalized, and created variables of interest
- 4. Created a **net sentiment score variable** which was used in multiple regression models
 - The models we trained proved to be weak at predicting the score of reddit comments
- 5. Assigned to one of ten clusters based on document similarity
 - Results suggested that the model accurately clustered comments based on their underlying topics
- 6. Original dataset was re-visited and re-subsetted to see if it was possible to train a classification model to tag comments from similar themed subreddits
 - The results showed that the classification algorithm was able to be trained with remarkable accuracy

Sentiment Scoring \rightarrow Regression \rightarrow Topic Modelling \rightarrow Clustering \rightarrow Classification

Goals

Goals

- See whether comment valence contributes to its score Regression
 - TF-IDF matrix
 - General linear regression on pandas dataframe
- Analyze the topic distribution of the corpus Topic Modelling
- Find popular subtopics via document clustering Clustering
 - What do people like to talk about in this subreddit?
 - What language do they use?
- Train a clustering algorithm to classify subreddit Classification
 - Can a classification algorithm be trained to predict what subreddit a comment belongs to?

Methods

Methods - "politics"

Retrieve Data Resize Data

Pre-processing

Imported the .csv file as a pandas dataframe, EDA

Took a subset data which subreddit is "politics"

EDA, Cleaned, normalized, and lemmatized Reddit comments

Sentiment Analysis

Lexicon: Harvard IV-4,
ANEW, slangSD, and VADER

Regression

- OLS Regression
- TF-IDF Regression

Topic Modeling

K-Means Clustering

Sentiment Analysis

- Generated sentiment scores using different datasets
 - Harvard IV-4
 - ANEW
 - SlangSD
 - VADER
- Cleaned each dictionary set
- Different scales → Rescale using `MinMaxScaler()`

net_score	anew_score	vader_score
-0.111111	2.222222	0.4203
0.100000	0.568000	0.1531
0.142857	1.047143	0.0000
0.000000	1.221667	0.1511
0.000000	1.053333	0.0000
-0.166667	0.885833	0.3182
-0.083333	1.180833	0.1531
0.000000	0.877500	0.0000
0.000000	0.000000	-0.1779
0.250000	0.545000	0.7579

Sentiment Analysis

	subreddit	body	controversiality	score	body_length	net_score	slang_score	anew_score	overall_sent_score
0	politics	yes difference gentle suppression hard suppres	0	1	9	0.444444	0.444444	0.274348	0.387746
1	politics	also got married filed jointly husband income \dots	0	12	10	0.550000	0.400000	0.070123	0.340041
2	politics	think tell people longer right express themselves	0	1	7	0.571429	0.357143	0.129277	0.352616
3	politics	itt lot people without job complaining	0	-6	6	0.500000	0.333333	0.150823	0.328052
4	politics	you boy wan na shovel coal	0	17	6	0.500000	0.250000	0.130041	0.293347
5	politics	everything power make sure biden get nominatio	0	9	12	0.416667	0.541667	0.109362	0.355898
6	politics	according mueller bar lied misrepresented pret	0	4	12	0.458333	0.541667	0.145782	0.381927
7	politics	disenfranchised group disenfranchised everywhe	0	1	8	0.500000	0.500000	0.108333	0.369444
8	politics	could republican healthcare plan touting long	0	1	6	0.500000	0.416667	0.000000	0.305556
9	politics	go ahead post another subreddit please contact	0	3	16	0.625000	0.437500	0.067284	0.376595

Regression

- TF-IDF Matrix
 - (1, 1) grams, no more frequent than 90% of comments and in at least 10 comments
- Pandas Dataframe
- Train/test \rightarrow 75% to 25%

20.	0	1	2	3	4	5	6	7	8	9	 4125	4126	4127	4128	4129	4130	score	body_length	overall_sent_score	controversiality
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	1	9	0.468815	0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	12	10	0.399522	0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	1	7	0.389751	0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	-6	6	0.390280	0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	17	6	0.345299	0

Topic Modelling/Clustering

- TF-IDF vectorizing → NMF
- Print top topics and words
- K Means clustering using TF-IDF
 - o 10 clusters
 - Hyperparameters (1,2) grams, minimum 10 comments, maximum 90% of comments

Methods - "sports"

Retrieve Data Resize Data

Pre-processing

Imported the .csv file as a pandas dataframe, EDA

Took a subset data which subreddits are "sports"

Cleaned, normalized, lemmatized Reddit comments, and create a new variable "category"

Classification

- 2 Classes
- 4 Classes

Classification

- Trained two classification models
- Re-defined our initial dataset
- Cleaned the body variable
- Subsetted to four subreddits (NBA, NFL, Hockey, Soccer)
 - Subreddits that were similar to each other but had subtle differences
 - 80/20 train/test split
- Classified by two subreddits and by four subreddits

Results Alex & Wafer | 2020

OLS - Regression

Multiple Regression

Independent Variable (x): "overall_sent_score", "controversiality",

"body length"

Dependent Variable (y): "score"

R-squared = 0.0246, RMSE = 3.19

Coefficient Values

overall sent score: -0.7711052668422776 controversiality: -2.2835054224167903

body length: -0.007888327217905578

TFIDF - Regression

- Independent Variable (x): BoW transform matrix + "body_length" + "controversiality" + "overall_sent_score"
- Dependent Variable (y): score

Feature	Betas
subredditmessagecomposeto	-121.547640
exclusive	-32.278267
completing	-27.876721
authorize	-21.881004
drama	-19.906210
division	-17.152455
survey	-16.793191
flooding	-16.663777
represented	-16.433434
score	-16.172874

Feature	Betas
performed	78.073305
soundclips	63.856618
notability	63.856618
placed	35.344362
keywords	27.026346
alleviate	23.863951
cheated	20.318238
examined	17.027156
expansion	16.666208
stuni	16.498403

S	core
	1
	12
	1
	-6
	17

TFIDF - Regression

- R-squared = **-0.3442**, RMSE = **3.74565**

Topic Modeling

- Retrieve **top 20 words** from each topic

Topic #0: violation rule automatically subredditmessagecomposeto question performed automatically action performed bo taction contact moderator moderator subredditmessagecomposeto subredditmessagecomposeto automatically contact questi on concern performed report bot ban comment harm rule rule violation wishing deathphysical advocating wishing comment violation

Topic #1: people right republican know time want vote thing going need good make way democrat really point sure year mean let

Topic #2: submission removal regarding removal regarding question removal submission thank removed megathread feel fr ee removal feel moderator regarding question removal free message thank participating question regarding message mode rator participating message free

Topic #3: barr mueller said letter summary congress medium doj mueller said report testify thought inaccurate officia 1 memo mueller letter mueller report lied testimony coverage

Topic #4: like look look like sound sound like feel like feel barr look like trump like barr guy people like post lol lot act act like eye thing like thing

Topic #5: trump president supporter trump supporter biden donald obstruction donald trump crime justice evidence russ ia election investigation campaign like trump russian impeachment collusion trump campaign

Topic #6: public letter investigation department context summary counsel special special counsel substance nature sub stance context nature nature work capture conclusion capture context released march fully

Topic #7: read report say read report obstruction mueller report collusion article president report say justice evide nce page lol mueller read article crime thing redacted saying

Topic #8: graham lindsey lindsey graham shit fucking fuck email hillary fucking idiot idiot lindsay clinton lindsay graham lol talking piece shit piece trump fucking hearing holy

Topic #9: think really think barr got people think think trump make guy wrong think going happen going tell really think job think mueller actually reason think mean lol

Clustering

- Retrieve **top 10 words** which are nearing to the each centroids

Cluster 0: right, graham, shit, fucking, lindsey, lindsey graham, fuck, thing, piece shit, read, like, piece, time, l indsay, email Cluster 1: public, department, investigation, letter, fully capture, context nature, capture, nature substance, captu re context, substance, fully, office work, work conclusion, nature, march Cluster 2: like, think, time, republican, say, going, good, need, thing, make, want, way, president, really, mean Cluster 3: violation, rule, insult shill, deathphysical, violation result, idea user, general courteous, rule violati on, subreddit civil, personal insult, permanent ban, advocating wishing, accusation hate, wishing deathphysical, resu lt permanent Cluster 4: mueller, barr, report, letter, said, mueller report, summary, doj, congress, medium, say, mueller said, ob struction, investigation, conclusion Cluster 5: submission, removal, regarding removal, regarding, removal submission, question, thank, removed, megathrea d, free message, moderator regarding, removal feel, question removal, thank participating, question regarding Cluster 6: people, like, want, think, vote, thing, make, american, right, trump, republican, need, time, dont, way Cluster 7: barr, summary, report, letter, like, trump, mueller, congress, testimony, going, think, tomorrow, lied, wi lliam, look Cluster 8: know, dont, dont know, like, trump, people, think, want, right, really, barr, thing, let, say, talking Cluster 9: trump, like, think, president, supporter, trump supporter, going, biden, republican, election, democrat, d onald, donald trump, time, say

Clustering

- Counts of each clusters
 - Unbalanced distribution
- View the text from each cluster
 - Find the index of comments from each cluster to see if the contents are similar

Cluster = 7 Index = 16, 209, 24956

- 1. anyone in general sense file complaint whatever board control barr license internalgovernment only
- 2 mueller public testimony likely watched event u congressional history barr perjured congress barr lied public need mueller speak like now like immediately 3 lindsey would like align blatant partisan hack thus writing article them barr yes

Classification

- Pick subreddits that were similar enough to be tough to train a model on but also distinct enough to tell differences
- Sports themes subreddits seemed to fit the mold
- 2 Classes "nba", "nfl"
 - F1-score 0.71, Contribute to a better result

		precision	recall	f1-score	support
1	NBA	0.67	0.85	0.75	4995
1	NFL	0.79	0.58	0.67	5005
accur	асу			0.71	10000
macro	avg	0.73	0.71	0.71	10000
weighted	avg	0.73	0.71	0.71	10000

Classification

- 4 Classes "nba", "nfl", "hockey", "soccer"
 - Tougher but not bad
 - F1-score 0.39 → Less accurate and precise

	precision	recall	f1-score	support
NBA	0.41	0.51	0.45	5003
NFL	0.35	0.41	0.38	4921
Hockey	0.35	0.28	0.31	5011
Soccer	0.42	0.33	0.37	5065
accuracy			0.38	20000
macro avg	0.38	0.38	0.38	20000
weighted avg	0.38	0.38	0.38	20000

Questions

References

Dataset retrieved from Kaggle

1 million reddit comments on Kaggle

Email

Alex Mead: am7306a@student.american.edu

Wafer Hsu: wh0225a@student.american.edu