Problem

Use the construction in the proof of Theorem 1.47 to give the state diagrams of NFAs recognizing the concatenation of the languages described in

- a. Exercises 1.6g and 1.6i.
- b. Exercises 1.6b and 1.6m.

THEOREM 1.47

The class of regular languages is closed under the concatenation operation.

Step-by-step solution

Step 1 of 8

(a) Languages are

 $L_1 = \{w \mid \text{the length of } w \text{ is at most 5} \} \text{ on } \Sigma = \{0,1\}$

And $L_2 = \{w | \text{ every odd position of } w \text{ is } a1\} \text{ on } \Sigma = \{0,1\}$

 $M_{\rm l}$ be the NFA that recognizes $L_{\rm l}$ and

 $M_{\scriptscriptstyle 2}$ be the NFA that recognizes $L_{\scriptscriptstyle 2}$.

Comment

Step 2 of 8

Let $L = L_1 0 L_2$

 \emph{M} be the NFA that recognizes \emph{L} .

• $L_1 = \{ w \mid \text{ the length of } w \text{ is at most 5} \}$

The state diagram of M_1 that recognizes L_1 is

Comment

Step 3 of 8

• $L_2 = \{w\}$ every odd position of w is a1

$$L_2 = (1\Sigma)^*$$

The state diagram of $\,M_2^{}$ that recognizes $\,L_2^{}$ is

Comment

Step 4 of 8

 $\it L$ is concatenation of $\it L_{\rm l}$ and $\it L_{\rm 2}$

So the state diagram of $\ M$ that recognizes L is described as follows

Comment

Step 5 of 8

(b) Given Languages are

 $L_1 = \{ w \mid w \text{ contains at least three 1s} \} \text{ on } \Sigma = \{0,1\}$

And $L_2 = \{w \mid w \text{ is a empty set}\}\ \text{on } \Sigma = \{0,1\}$

 $M_{_{\parallel}}$ be the NFA that recognizes $\ L_{_{\parallel}}$ and

 $M_{\rm 2}$ be the NFA that recognizes $\ L_{\rm 2}$.

Comment

Step 6 of 8

Let
$$L = L_1 0 L_2$$

M be the NFA that recognizes L.

• $L_1 = \{ w \mid w \text{ contains at least three 1s} \}$

$$L_1 = (0,1)^* 1(0,1)^* 1(0,1)^* (0,1)^*$$

The state diagram of $\,M_{_{\rm I}}$ that recognizes $\,L_{_{\rm I}}$ is

Comments (2)

Step 7 of 8

• $L_2 = \{ w \mid w \text{ is a empty set} \}$

$$L_2 = \phi = \{ \}$$

The state diagram of $\,M_2$ that recognizes $\,L_2$ is

Comments (2)

Step 8 of 8

 $\it L$ is concatenation of $\it L_{\rm l}$ and $\it L_{\rm 2}$

So the state diagram of $\ M$ that recognizes $\ L$ is described as follows

Comment