Cardinality

- How can you count to infinity?
- We are familiar with infinite sets. Should we think of them as being of different sizes?
- We need to come up with a different strategy

Defining Cardinality

- Let f:A o B where there are more elements in set B than A,f can be injective but not surjective
- For injective $|A| \leq |B|$ and $|A| \geq |B|$ for surjective
- Therefore for a function to be bijective |A| = |B|
- We extend these ideas to infinite sets!

Definition

Two sets have the same cardinality if there exists a bijection between them *Notation*: If two sets have the same cardinality, then we write |A| = |B|

- If two sets have the equal cardinality can be said to be equinumerous
- denumerable: same cardinality as $\mathbb N$
- countable: set is finite
- uncountable: set is not countable
- Do (0,1) and (0,1] have the same cardinality? yes, this is hard as fuck to prove though

Definition

Let A and B be sets

- We write $|A| \leq |B|$ if there is an injection from A o B
- We write |A| < |B| if $|A| \le |B|$ and $|A| \ne |B|$
- We write $|A| \geq |B|$ if there is a surjection from A o B
- We write |A|>|B| if $|A|\geq |B|$ and $|A|\neq |B|$

Pigeon hole principle

Theorem

If n objects are placed in k boxes

If n > k then there exists at least one box which has two objects in it

If n < k then there exists a box that is empty

Infinity Tower

Let S be a set. Then the power set of S, denoted by $\mathcal{P}(S)$ satisfies

$$|S| \leq |\mathcal{P}(S)|$$

Cantor-Schroder-Berstein (CSB)

1 Theorem

Let A and B be sets. If $|A| \leq |B|$ and $|A| \geq |B|$ then |A| = |B|

Examples

\equiv Example

- **I.** Lets show that |(0,1)|=|0,2|
- **2.** Show that $|[3,\infty)|=|5,\infty)$
- I. Define f:(0,1) o (0,2)
 - let f(x) = 2x
 - Now lets prove that the function is bijective
 - Injective: $f(a)=f(b), a,b\in (0,1)$ $f(a)=2a, f(b)=2b \implies a=b$ so injective
 - Surjective: Given $c\in(0,2)$ then let $x=rac{c}{2}\in(0,1)$ then $f\left(rac{c}{2}
 ight)=rac{2\cdot c}{2}=c$
 - Since f is bijective then |(0,1)| = |0,2|
- 2. Define $g:[3,\infty) \to [5,\infty)$
 - Let g(x) = x + 2
 - find the inverse
 - $\bullet \ \ h: [5,\infty) \to [3,\infty)$
 - h(y) = y 2

- Then $g \circ h(x) = h(g(x)) = x$
- And $h \circ g(y) = h(g(y)) = y$
- So h is a two sided inverse of g, so g is bijective. So $|[3,\infty)| = |[5,\infty)|$

Problems

/ Problem 1

Show that $|(0,1)| = |(0,\infty)|$

- $\tan\left(\frac{\pi}{2}x\right)$ lmao
- Let $f:(0,1) \to (0,\infty)$
- let $f(x) = \frac{1}{x}$
- $ullet g:(1,\infty) o (0,\infty), g(y)=y-1$
- Then other things posted in the notes online

Problem 2

Prove or disprove: for every $n \in \mathbb{N}, \exists$ distinct $k,l \in \mathbb{N}$ s.t. $11 \mid (a^k - a^l)$

- send help lmao prof save me ;-;
- Scratch:
 - Boxes: number of of values in (mod 11), 11 of them
 - Birds, powers of *a*
 - So there must be a box with two powers in it
 - $-a^k \equiv a^l \pmod{11}$

// Proof

Consider a^1, a^2, \dots, a^{12} .

There are eleven equivalence classes in mod II.

By the PHP least two of a^1, a^2, \dots, a^{12} must be in the same equivalence class in mod II.

So
$$\exists k,l\in\mathbb{N}$$
 s.t. $k
eq l$ and $a^k\equiv a^l\pmod{11}\implies a^k-a^l\equiv 0\pmod{11}$ so $11\mid a^k-a^l$

Problem 3

Given an example of two sets A and B that are both uncountable but |A|
eq |B|

• Lets take $|A|=\mathbb{R}$ and $|B|=\mathcal{P}(S)$ then |A|<|B| due to a theorem from class

Problem 4

Prove that |(0,1)| = |(0,1]|

- Lets use CSB
- for (0,1) o (0,1] we take f(x)=x which is injective(gotta actually prove this) so $|(0,1)|\le |(0,1]|$
- for (0,1] o (0,1) we take $g(x) = rac{x}{2}$ which is injective so $|(0,1]| \leq |(0,1)|$
- Since $|(0,1)| \leq |(0,1]|$ and $|(0,1]| \leq |(0,1)|$ so by CSB theorem |(0,1)| = |(0,1]|