Math 6417 Homework 2

Jacob Hauck

October 19, 2023

Question 1.

A continuous function $\sigma: \mathbf{R} \to \mathbf{R}$ is called **sigmoidal** if there exists T > 0 such that

$$\sigma(t) = \begin{cases} 1 & t \ge T, \\ 0 & t \le -T. \end{cases} \tag{1}$$

Let σ be sigmoidal in the following.

1.1) Fix $y, \theta, \phi \in \mathbf{R}$, and define

$$\sigma_{\lambda}(x) = \sigma(\lambda(yx + \theta) + \phi), \qquad x \in \mathbf{R}.$$
 (2)

Then

$$\lim_{\lambda \to \infty} \sigma_{\lambda}(x) = \gamma(x) = \begin{cases} 1 & yx + \theta > 0 \\ 0 & yx + \theta < 0 \\ \sigma(\phi) & yx + \theta = 0. \end{cases}$$
 (3)

Proof. We use proof by cases. For any $x \in \mathbf{R}$, there are exactly three possibilities.

I. $yx + \theta > 0$.

Set $\Lambda = \frac{T - \phi}{yx + \theta}$. Then $\lambda \ge \Lambda$ implies that $\lambda(yx + \theta) + \phi \ge T$, so $\sigma_{\lambda}(x) = 1$ because σ is sigmoidal. Therefore, $\sigma_{\lambda}(x) \to 1 = \gamma(x)$ as $\lambda \to \infty$.

II. $yx + \theta < 0$. Set $\Lambda = \frac{-T - \phi}{yx + \theta}$. Then $\lambda \ge \Lambda$ implies that $\lambda(yx + \theta) + \phi \le -T$, so $\sigma_{\lambda}(x) = 0$ because σ is sigmoidal. Therefore, $\sigma_{\lambda}(x) \to 0 = \gamma(x)$ as $\lambda \to \infty$.

III. $yx + \theta = 0$.

In this case, $\sigma_{\lambda}(x) = \sigma(\phi)$ for all λ , so clearly $\sigma_{\lambda}(x) \to \sigma(\phi) = \gamma(x)$ as $\lambda \to \infty$.

1.2) For any $y, \theta \in \mathbf{R}$, define

$$\Pi_{u,\theta} = \{ x \in [0,1] : yx + \theta = 0 \}, \qquad H_{u,\theta} = \{ x \in [0,1] : yx + \theta > 0 \}. \tag{4}$$

If μ is a finite Borel measure on [0, 1], then we say that μ has property (*) if and only if

$$\int_0^1 \sigma_{\lambda}(x) \, d\mu(x) = 0 \quad \text{for all } \lambda, y, \theta, \phi \in \mathbf{R}. \tag{*}$$

If μ has property (*), then

$$0 = \mu(H_{u,\theta}) + \sigma(\phi)\mu(\Pi_{u,\theta}) \quad \text{for all } y, \theta, \phi \in \mathbf{R}.$$
 (5)

1

Proof. Let $y, \theta, \phi \in \mathbf{R}$ be given. Since σ is continuous, it is bounded on [-T, T], say by M > 0. Since σ is sigmoidal, it follows that $\{\sigma(t) : t \notin [-T, T]\} = \{0, 1\} \subseteq \{\sigma(t) : t \in [-T, T]\}$, so $|\sigma(t)| \le M$ for all $t \in \mathbf{R}$. This implies that $|\sigma_{\lambda}(x)| = |\sigma(\lambda(yx + \theta) + \phi)| \le M$ for all $x \in [0, 1]$ and all λ .

The constant function M is integrable on [0,1], and $\sigma_{\lambda} \to \gamma$ pointwise on [0,1] as $\lambda \to \infty$ by the previous part, so, by the Dominated Convergence Theorem¹,

$$\lim_{\lambda \to \infty} \int_0^1 \sigma_\lambda \, d\mu = \int_0^1 \gamma \, d\mu. \tag{6}$$

Define $N_{y,\theta} = [0,1] \setminus (H_{y,\theta} \cup \Pi_{y,\theta})$, so that $[0,1] = H_{y,\theta} \cup \Pi_{y,\theta} \cup N_{y,\theta}$ disjointly. Then²

$$0 = \int_0^1 \gamma \, d\mu = \int_{H_{y,\theta}} \gamma \, d\mu + \int_{\Pi_{y,\theta}} \gamma \, d\mu + \int_{N_{y,\theta}} \gamma \, d\mu$$
 (7)

$$= \mu(H_{y,\theta}) + \sigma(\phi)\mu(\Pi_{y,\theta}) \tag{8}$$

because $\gamma|_{H_{y,\theta}} = 1$, $\gamma|_{\Pi_{y,\theta}} = \sigma(\phi)$, and $\gamma|_{N_{y,\theta}} = 0$ by definition.

1.3) If μ has property (*), then $\mu = 0$.

Proof. Let μ have property (*). If we choose $\phi = -T$, then $\sigma(\phi) = 0$, so by the previous part, $\mu(H_{y,\theta}) = 0$ for all $y, \theta \in \mathbf{R}$. Then, if we choose $\phi = T$ so that $\sigma(\phi) = 1$, we see that, by the previous part, $\mu(\Pi_{y,\theta}) = 0$ for all $y, \theta \in \mathbf{R}$, as well.

A simple series of deductions shows that $\mu([a,b)) = 0$ for all $0 \le a \le b \le 1$:

- If we choose y=0 and $\theta=0$, then $\Pi_{y,\theta}=[0,1],$ so $\mu([0,1])=0.$
- Given $a \in [0,1]$, if we choose y = -1 and $\theta = a$, then $H_{y,\theta} = [0,a)$, so $\mu([0,a)) = 0$.
- Hence, given $a \in [0,1]$, we have $0 = \mu([0,1]) = \mu([0,a)) + \mu([a,1]) = 0 + \mu([a,1])$, so $\mu([a,1]) = 0$.
- Finally, given $0 \le a \le b \le 1$, we have $0 = \mu([a, 1]) = \mu([a, b)) + \mu([b, 1]) = \mu([a, b)) + 0$, so $\mu([a, b)) = 0$.

The set of finite Borel measures on [0,1] can be shown to be isomorphic as a Banach space⁴ to $(C([0,1]))^*$ by defining the action of a measure μ on a continuous function $h \in C([0,1])$ by

$$\mu(h) = \int_0^1 h \, \mathrm{d}\mu. \tag{9}$$

Hence, we only need to show that $\mu = 0$ as an element of $(C([0,1]))^*$, that is, $\mu(h) = 0$ for all $h \in C([0,1])$.

We start by showing that $\mu\left(\chi_{[a,b)}\right)=0$ for all $0\leq a\leq b\leq 1$. This is easy enough because

$$\mu\left(\chi_{[a,b)}\right) = \int_0^1 \chi_{[a,b)} \, \mathrm{d}\mu = \mu([a,b)) = 0. \tag{10}$$

Given $h \in C([0,1])$ and a natural number n, we can choose $\delta > 0$ such that $|h(t) - h(s)| < \frac{1}{n}$ for all $t, s \in [0,1]$ satisfying $|t-s| < \delta$. Choose a partition $\{t_i\}_{i=1}^{N_n}$ of [0,1] such that $t_i - t_{i-1} < \delta$ for $i = 1, 2, \ldots, N_n$.

 $^{^{1}\}sigma_{\lambda}$ is inetgrable because it is continuous

Each of $H_{y,\theta},\,\Pi_{y,\theta}$ and $N_{y,\theta}$ is measurable because they are just intervals, and μ is Borel

 $^{^{3}[}a,b)$ is measurable because μ is Borel

⁴Using the uniform norm in C([0,1])

Define the function

$$h_n(t) = \begin{cases} \sum_{i=1}^{N_n} m_i \cdot \chi_{[t_{i-1}, t_i)}(t) & t \in [0, 1) \\ h(1) & t = 1, \end{cases}$$
 (11)

where $m_i = \min_{t \in [t_{i-1}, t_i]} h(t)$. Since h is continuous, it achieves the value m_i for some $t^* \in [t_{i-1}, t_i]$. On the other hand, $h_n(t) = m_i$ for all $t \in [t_{i-1}, t_i)$. For all $t \in [t_{i-1}, t_i)$, we have $|t^* - t| < \delta$ by the construction of the partition, so for all $t \in [t_{i-1}, t_i)$,

$$|h(t) - h_n(t)| = |h(t) - m_i| = |h(t) - h(t^*)| < \frac{1}{n}.$$
(12)

Since this holds for all i, and $h_n(1) = h(1)$ for all n, it follows that $h_n \to h$ uniformly on [0, 1].

Clearly h_n is simple by construction, so h_n is measurable for all n. Therefore, by the uniform convergence of h_n to h,

$$\mu(h) = \int_0^1 h \, d\mu = \lim_{n \to \infty} \int_0^1 h_n \, d\mu \tag{13}$$

$$= \lim_{n \to \infty} \left[h(1) \int_{\{1\}} d\mu + \sum_{i=1}^{N_n} m_i \int_{[t_{i-1}, t_i)} \chi_{[t_{i-1}, t_i)} d\mu \right]$$
 (14)

$$= \lim_{n \to \infty} \left[h(1)\mu(\{1\}) + \sum_{i=1}^{N_n} m_i \mu([t_{i-1}, t_i)) \right]$$
(15)

$$= \lim_{n \to \infty} h(1)\mu([1,1]) \tag{16}$$

$$=\lim_{n\to\infty} 0 = 0 \tag{17}$$

because $\mu([t_{i-1}, t_i)) = 0$ for all i, and $\mu(\{1\}) = \mu([1, 1]) = 0$ by the third bullet near the beginning of the proof.

Thus,
$$\mu(h) = 0$$
 for all $h \in C([0,1])$, that is, $\mu = 0$.

1.4) Let \mathcal{N} denote the set of functions $G:[0,1]\to\mathbf{R}$ of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j x + \theta_j)$$
(18)

for some positive integer N and parameters $\alpha_j, y_j, \theta_j \in \mathbf{R}, j = 1, 2, ..., N$. Then \mathcal{N} is dense in C([0, 1]) in the uniform norm.

Proof. Since σ is continuous, it follows easily that G is continuous for all $G \in \mathcal{N}$. Hence, $\mathcal{N} \subseteq C([0,1])$. It is obvious that \mathcal{N} is nonempty, but \mathcal{N} is also closed under linear combinations of elements of \mathcal{N} because, given $G, G' \in \mathcal{N}$ and $p, p' \in \mathbf{R}$, there exist positive integers N, N', parameters $\alpha_j, y_j, \theta_j, j = 1, 2, \ldots, N'$ such that

$$pG + p'G' = p\sum_{j=1}^{N} \alpha_{j}\sigma(y_{j}x + \theta_{j}) + p'\sum_{j=1}^{N'} \alpha'_{j}\sigma(y'_{j}x + \theta'_{j})$$
(19)

$$= \sum_{j=1}^{N+N'} \beta_j \sigma(z_j x + \vartheta_j), \tag{20}$$

taking $\beta_j = p\alpha_j$, $z_j = y_j$, $\vartheta_j = \theta_j$ if $j \leq N$, and $\beta_j = p'\alpha'_{j-N}$, $z_j = y'_{j-N}$, $\vartheta_j = \theta'_{j-N}$ if j > N. Thus, $pG + p'G' \in \mathcal{N}$ by definition, and \mathcal{N} is a vector subspace of C([0,1]).

Then $\overline{\mathcal{N}}$ is also a subspace. Suppose that $\overline{\mathcal{N}} \neq C([0,1])$. Then we can choose some $g \in C([0,1]) \setminus \overline{\mathcal{N}}$. Let $d = \operatorname{dist}(g, \overline{\mathcal{N}})$. Then d > 0 because $\overline{\mathcal{N}}$ is closed. By the Mazur separation lemma 1, there exists some $\mu \in (C([0,1]))^*$ such that $\mu(g) = d$, and $\mu(G) = 0$ for all $G \in \overline{\mathcal{N}}$.

Clearly $\sigma_{\lambda} \in \mathcal{N} \subseteq \overline{\mathcal{N}}$ for any choice of $\lambda, y, \theta, \phi \in \mathbf{R}$; thus, $\mu(\sigma_{\lambda}) = 0$ for all σ_{λ} . Using the fact that μ is a finite Borel measure on [0, 1] (as mentioned in the previous part) with

$$\mu(h) = \int_0^1 h \, d\mu \quad \text{for all } h \in C([0, 1]),$$
 (21)

we see that

$$0 = \mu(\sigma_{\lambda}) = \int_0^1 \sigma_{\lambda} \, \mathrm{d}\mu \tag{22}$$

for all σ_{λ} . That is, μ has property (*). Therefore, by the previous part, $\mu = 0$. This contradicts the fact that $\mu(g) = d \neq 0$. Hence, $\overline{\mathcal{N}} = C([0,1])$, which is equivalent to saying that \mathcal{N} is dense in C([0,1]).

Question 2.

For any positive integer n, define the linear functional $\ell_n: C([0,1]) \to \mathbf{R}$ by

$$\ell_n(f) = \sum_{j=0}^n w_j^n f(x_j^n),$$
 (23)

where $\{x_j^n\}_{j=0}^n$ is a partition of [0,1], and $\{w_j^n\}_{j=0}^n$ is a sequence of real numbers. $\ell_n(f)$ is meant to be a numerical quadrature formula for the integral of f on [0,1] with weight function $w \in L^1([0,1])$.

2.1) Equipping C([0,1]) with the uniform norm, the functional ℓ_n is a bounded, linear functional, and the induced norm of ℓ_n is given by

$$\|\ell_n\| = \sum_{j=0}^n |w_j^n|. \tag{24}$$

Proof. Let $f, g \in C([0,1])$, and let $\alpha, \beta \in \mathbf{R}$. Then

$$\ell_n(\alpha f + \beta g) = \sum_{j=0}^n w_j^n(\alpha f(x_j^n) + \beta g(x_j^n)) = \alpha \sum_{j=0}^n w_j^n f(x_j^n) + \beta \sum_{j=0}^n w_j^n g(x_j^n)$$
 (25)

$$= \alpha \ell_n(f) + \beta \ell_n(g), \tag{26}$$

so ℓ_n is linear.

Let $f \in C([0,1])$ have $||f|| \le 1$. Then $|f(x)| \le 1$ for all $x \in [0,1]$ by the definition of ||f||, and

$$|\ell_n(f)| \le \sum_{j=0}^n |w_j^n| \cdot |f(x_j^n)| \le \sum_{j=0}^n |w_j^n|.$$
 (27)

Since f was arbitrary with norm bounded by 1,

$$\|\ell_n\| \le \sum_{j=0}^n |w_j^n|. \tag{28}$$

On the other hand, we can choose $f \in C([0,1])$ such that ||f|| = 1, and $f(x_j^n) = \operatorname{sgn}(w_j^n)$, the sign of w_j^n , by considering the piecewise linear function that interpolates between the points $\{(x_j^n, \operatorname{sgn}(w_j^n))\}_{j=0}^n$ (if all the w_j^n are zero for some fixed n, then choose f = 1). Hence,

$$\|\ell_n\| \ge \frac{|\ell_n(f)|}{\|f\|} = \left| \sum_{j=0}^n w_j^n f(x_j^n) \right| = \sum_{j=0}^n |w_j^n|$$
 (29)

because $|w_i^n| = w_i^n \cdot \operatorname{sgn}(w_i^n) = w_i^n f(x_i^n)$. Therefore,

$$\|\ell_n\| = \sum_{j=0}^n |w_j^n|. \tag{30}$$

2.2) Suppose that the formula converges in the sense that

$$\lim_{n \to \infty} \left| \int_0^1 f(x) w(x) \, \mathrm{d}x - \ell_n(f) \right| = 0 \quad \text{for all } f \in C([0, 1]).$$
 (31)

Then

$$\sup_{n\geq 0} \left(\sum_{j=0}^{n} |w_j^n| \right) < \infty. \tag{32}$$

Proof. By the Banach-Steinhaus theorem (with X = C([0,1]), $Y = \mathbf{R}$, and $T_{\alpha} = \ell_{\alpha}$, $\alpha = 1, 2, ...$, in the notation of the slides), either $\{\|\ell_n\|\}_{n=1}^{\infty}$ is bounded, or $\sup_{n\geq 0} |\ell_n(f)| = \infty$ for some $f \in C([0,1])$.

The second possibility is false, because, by the convergence assumption (31), the sequence $\{\ell_n(f)\}_{n=1}^{\infty}$ converges to a finite number for all $f \in C([0,1])$, and convergent sequences are bounded. Therefore, $\{\|\ell_n\|\}$ is bounded.

Since

$$\|\ell_n\| = \sum_{j=0}^n |w_j^n|,\tag{33}$$

it follows that

$$\left\{ \sum_{j=0}^{n} |w_j^n| \right\}_{n=1}^{\infty} \tag{34}$$

is bounded, that is,

$$\sup_{n\geq 0} \left(\sum_{j=0}^{n} |w_j^n| \right) < \infty. \tag{35}$$

2.3) Suppose that

$$\sup_{n\geq 0} \left(\sum_{j=0}^{n} |w_j^n| \right) < \infty. \tag{36}$$

Suppose furthermore that for any polynomial p(x) defined on [0,1]

$$\lim_{n \to \infty} \left| \int_0^1 p(x) w(x) \, dx - \ell_n(p) \right| = 0.$$
 (37)

Then the quadrature formula ℓ_n works on all of C([0,1]) in the sense that

$$\lim_{n \to \infty} \left| \int_0^1 f(x) w(x) \, \mathrm{d}x - \ell_n(f) \right| = 0 \quad \text{for all } f \in C([0, 1]).$$
 (38)

Proof. Let $f \in C([0,1])$, and let $\varepsilon > 0$ be given. By the Weierstrass Approximation Theorem, we can choose a polynomial p(x) defined on [0,1] such that

$$||p - f||_{C([0,1])} < \varepsilon, \tag{39}$$

where $\|\cdot\|_{C([0,1])}$ is the usual uniform norm.

Furthermore, by (37), we can choose N large enough that

$$\left| \int_0^1 p(x)w(x) \, \mathrm{d}x - \ell_n(p) \right| < \varepsilon \tag{40}$$

for all n > N, and, by (36), we can choose M > 0 such that

$$\sum_{j=0}^{n} |w_j^n| < M \tag{41}$$

for all $n \geq 0$. Therefore, if n > N, then

$$\left| \int_0^1 f(x)w(x) \, \mathrm{d}x - \ell_n(f) \right| \le \left| \int_0^1 (f(x) - p(x))w(x) \, \mathrm{d}x \right| \tag{42}$$

$$+ |\ell_n(p) - \ell_n(f)| + \left| \int_0^1 p(x)w(x) \, \mathrm{d}x - \ell_n(p) \right| \tag{43}$$

$$\leq \varepsilon \int_0^1 |w(x)| \, \mathrm{d}x + \sum_{j=0}^n |p(x_j^n) - f(x_j^n)| \cdot |w_j^n| + \varepsilon \tag{44}$$

$$\leq (\|w\|_{L^1} + M + 1)\varepsilon. \tag{45}$$

Since $||w||_{L^1} + M + 1$ is independent of n and $\varepsilon > 0$ was arbitrary, it follows that

$$\lim_{n \to \infty} \left| \int_0^1 f(x)w(x) \, \mathrm{d}x - \ell_n(f) \right| = 0. \tag{46}$$

Thus, the quadrature rule works for the arbitrary continuous function $f \in C([0,1])$, and, consequently, for all functions in C([0,1]).