Introduction to Matroid Theory

Congduan Li

Adaptive Signal Processing and Information Theory Research Group ECE Department, Drexel University

November 21, 2011

- Fundamentals of Matroid
 - General Definition of Matroids
 - Equivalent Definitions
 - Operations
- 2 Some Classes of Representable Matroids
 - Representable Matroids
 - Excluded Minors Summary
 - Relationships between Various Classes of Matroids
- Summary

- Fundamentals of Matroid
 - General Definition of Matroids
 - Equivalent Definitions
 - Operations
- Some Classes of Representable Matroids
 - Representable Matroids
 - Excluded Minors Summary
 - Relationships between Various Classes of Matroids
- Summary

General Definition of Matroids

Vector Independence

Properties of Vector Independence

- \bullet is independent to any vector;
- Hereditary: subset of some independent vectors are also independent;
- Augmentation: we can add a new vector to a smaller independent set to keep independency.

Example

Let A be the following matrix over field \mathbb{R} of real numbers.

Hereditary: $\{1,2,3\} \rightarrow \{1,2\}$ Augmentation:

$$\{1,2\},\{2,3,5\} \to \{1,2,3\}$$

General Definition of Matroids Cycles in Graphs

Properties of Graphs

- \bullet contains no cycle;
- e Hereditary: subgraph of a cycle-free graph is cycle-free;
- Augmentation: Add a new edge to a smaller cycle-free subgraph.

Example

Graph associated with A

Example

Let *A*, *B* be the following subgraphs.

Hereditary:

$$\{1,3,4,5\} \rightarrow \{1,3,4\}$$

Augmentation:

$$\{1,4\},\{1,3,4,5\} \to \{1,3,4\}$$

General Definition of Matroids

Collinear & Coplanar in Geometry

Geometry Diagram

- Collinear/planar points are dependent (at least 3);
- \bullet is not collinear/coplanar to any point;
- Mereditary: subset of some non-collinear/coplanar points are still non-collinear/coplanar;
- Augmentation: we can add a new point to a smaller set of some non-collinear/coplanar points.

Example

See the following geometry diagram.

Associated with

Generalize → Matroid

General Definition of Matroids Independent sets

Definition

A matroid M is an ordered pair (E, \mathcal{I}) consisting of a finite set E and a collection \mathcal{I} of subsets of E having the following three properties:

- $\phi \in \mathcal{I}$;
- **Q** Hereditary: If $I \in \mathcal{I}$ and $I' \subseteq I$, then $I' \in \mathcal{I}$;
- **③** Augmentation: If I_1 and I_2 are in \mathcal{I} and $|I_1| < |I_2|$, then there is an element e of I_2 – I_1 such that $I_1 \cup e \in \mathcal{I}$.

Demo

 \mathcal{I} is a collection of subset of E

Hereditary

General Definition of Matroids Independent sets

Definition

A matroid M is an ordered pair (E, \mathcal{I}) consisting of a finite set E and a collection \mathcal{I} of subsets of E having the following three properties:

- $\phi \in \mathcal{I}$;
- **2** Hereditary: If $I \in \mathcal{I}$ and $I' \subseteq I$, then $I' \in \mathcal{I}$;
- **3** Augmentation: If I_1 and I_2 are in \mathcal{I} and $|I_1| < |I_2|$, then there is an element e of I_2 – I_1 such that $I_1 \cup e \in \mathcal{I}$.

- Fundamentals of Matroid
 - General Definition of Matroids
 - Equivalent Definitions
 - Operations
- Some Classes of Representable Matroids
 - Representable Matroids
 - Excluded Minors Summary
 - Relationships between Various Classes of Matroids
- Summary

Equivalent Definations Base/Basis

Definition

Bases $\mathcal{B}(M)$ of a matroid are the maximal independent sets.

Properties

- Same cardinality for all bases;
- The matroid is a span of any base;

Example

Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Equivalent Definations Base/Basis

Definition

A collection of subsets $\mathcal{B} \subseteq 2^{\mathcal{E}}$ of a ground set \mathcal{E} are the bases of a matroid if and only if:

- B is non-empty;
- base exchange: If $B_1, B_2 \in \mathcal{B}$, for any $x \in (B_1 B_2)$, there is an element $y \in (B_2 B_1)$ such that $(B_1 x) \cup y \in \mathcal{B}$.

Example

Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Bases: {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,4}, {2,3,5}, {3,4,5}

Equivalent Definitions

Definition

The circuits C(M) of a matroid are the minimal dependent sets.

Property

- If any one element is deleted from a circuit, it will become an independent set.
- Independent sets $\mathcal{I}(M)$ does not contain any element in $\mathcal{C}(M)$.

Consider the graph

Circuits: {1,2,3,4}, {1,3,5}, {2,4,5}, {6}

Equivalent Definitions

Definition

A collection of sets \mathcal{C} is the collection of circuits of a matroid if and only if:

- $\phi \notin \mathcal{C}$
- if $C_1, C_2 \in \mathcal{C}$ with $C_1 \subseteq C_2$ then $C_1 = C_2$
- if $C_1, C_2 \in \mathcal{C}, C_1 \neq C_2$ and $e \in C_1 \cap C_2$ then there is some $C_3 \in C$ with $C_3 \subseteq (C_1 \cup C_2) e$.

Consider the graph

Circuits: {1,2,3,4}, {1,3,5}, {2,4,5}, {6}

Equivalent Definitions Rank Function

Definitions

Rank: maximun number of linearly independent vectors.

For any base of a matroid,

$$r(B) = r(M)$$
.

Formally, a rank function is $r: 2^E \to \mathbb{N} \cup \{0\}$, for which

- For $X \subseteq E, 0 \le r(X) \le |X|$
- If $X \subseteq Y \subseteq E$, $r(X) \le r(Y)$
- $\forall X, Y \subseteq E, r(X \cap Y) + r(X \cup Y) \le r(X) + r(Y)$

Example

Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 3 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Bases: [1,2,3], {1,2,4},

$$\{1,2,5\}, \{1,3,4\}, \{1,4,5\},$$

$${2,3,4}, {2,3,5}, {3,4,5};$$

Rank:
$$r(M) = r(B) = 3$$

Equivalent Definitions Closure

Definitions

Given a rank function of a matroid, the closure operation $cl:2^E\to 2^E$ is defined as

$$\operatorname{cl} X = \{ x \in E | r(X \cup x) = r(X) \}.$$

Closure is a span of a subspace. cl B = E(M);

Independent Set:

$$\mathcal{I} = \{X \subseteq E | x \notin \operatorname{cl}(X - x) \forall x \in X\}$$

Definition

A subset X of E(M) is said to be a flat if $\operatorname{cl} X = X$.

Example

Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

cl
$$\{1,2\} = \{1,2,\} \rightarrow \text{flat}$$

cl $\{1,3\} = \{1,3,5\}$

Equivalent Definitions Closure

Definitions

A function $cl: 2^E \to 2^E$ is closure for a matroid $M = (E, \mathcal{I})$ iff

- If $X \subseteq E$ then $X \subseteq \operatorname{cl} X$
- If $X \subseteq Y \subseteq E$, then $clX \subseteq clY$
- If $X \subseteq E$ then $\operatorname{cl}(\operatorname{cl}(X)) = \operatorname{cl}X$
- If $X \subseteq E$ and $x \in E$ and $y \in \operatorname{cl}(X \cup x) \operatorname{cl}(X)$ then $x \in \operatorname{cl}(X \cup y)$

Example

Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$cl \ \{1,2\} = \{1,2,\} \rightarrow flat$$

$$cl \ \{1,3\} = \{1,3,5\}$$

- Fundamentals of Matroid
 - General Definition of Matroids
 - Equivalent Definitions
 - Operations
- Some Classes of Representable Matroids
 - Representable Matroids
 - Excluded Minors Summary
 - Relationships between Various Classes of Matroids
- Summary

Operations Dual

Definition

The dual matroid M^* to a matroid M is the matroid with bases that are complements of the bases of M.

$$\mathcal{B}(M^*) = \{E - B | B \in \mathcal{B}(M)\}.$$

- $(M^*)^* = M$ and X is a base if and only if E X is a cobase.
- Rank function of the dual matroid M*:

$$r^*(X) = |X| + r(E - X) - r(M).$$

Operations

Contraction, Restriction, Minor

Definitions

Restriction of M to X ($X \subset E$) is the matroid M' with ground set X and independent sets $\mathcal{I}' = \{A \in \mathcal{I} | A \subset X\}$. We denote it as M|X.

Definitions

Deletion: $M \setminus T$ is the restriction of M on E - T; $M \setminus T = M | (E - T)$

Example

Operations

Contraction, Restriction, Minor

Definitions

Contraction is the dual operation of deletion. $M/T = (M^* \backslash T)^*$

Definition

Minor: If a matroid M' can be obtained by operating combination of restrictions and contractions on a matroid M, then M' is called a minor of M.

Operations Excluded Minor

Definition

Minor-closed matroids are a class of matroids of which every minor of a member is also in the class.

 Minor-closed classes of matroids have excluded minor characterization, that is, matroids that are not in the class but have all their proper minors in the class.

Example

If a matroid contains $U_{2,4}$ as a minor, it cannot be represented by binary vector space. $U_{2,4}^* = U_{2,4}$.

- Fundamentals of Matroid
 - General Definition of Matroids
 - Equivalent Definitions
 - Operations
- Some Classes of Representable Matroids
 - Representable Matroids
 - Excluded Minors Summary
 - Relationships between Various Classes of Matroids
- Summary

Representable Matroids Binary

Definition

A matroid that is isomorphic to a vector matroid, where all elements take values from field \mathbb{F} , is called \mathbb{F} -representable.

Example

Fano matroid is only representable over field of characteristic 2 (Binary).

Binary matroids have excluded minor: $U_{2,4}$

Representable Matroids Ternary

Definition

Ternary matroids are those who can be represented over field with characteristic 3.

Regular Matroids

- Representable over every field
- Both Binary and Ternary

Example

 $U_{2,k}$ is \mathbb{F} -representable if and only if $|\mathbb{F}| \geq k-1$. $|U_{2,4}|$ is 3-representable (Ternary).

$$B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Ternary matroids have excluded minor: $U_{2,5}$, $U_{3,5}$, F_7 and F_7^* .

Representable Matroids Graphic Matroid

Definition

In a graph G = (V, E), let $C \subseteq 2^E$ be the sets of the graph cycles. Then C forms a set of circuits for a matroid with ground set E. The matroid M(G) derived in this manner is called a cycle matroid (Graphic Matroid).

Excluded minors for graphic matroids:

 $U_{2,4}, F_7, F_7^*, M^*(K_5), M^*(K_{3,3})$

Example

 K_5 matroid and $K_{3,3}$ matroid:

Figure: K₅ matroid

Figure: $K_{3,3}$ matroid

Representable Matroids Cographic and Planar

Definition

A matroid is called cographic if its dual is graphic.

Ex: $M^*(K_5)$ and $M^*(K_{3,3})$

Definitions

A both graphic and cographic matroid is called planar, isomorphic to a cycle matroid derived from a planar. In a planar, all edges can be drawn on a plane without intersections.

Example

Excluded minors for cographic: $U_{2,4}$, F_7 , F_7^* , $M(K_5)$, $M(K_{3,3})$ Excluded minors for planar: those excluded minors of graphic and cographic

- Fundamentals of Matroid
 - General Definition of Matroids
 - Equivalent Definitions
 - Operations
- Some Classes of Representable Matroids
 - Representable Matroids
 - Excluded Minors Summary
 - Relationships between Various Classes of Matroids
- Summary

Excluded Minors

Various Classes of Representable Matroids

Excluded Minors:

Matroid Class	Excluded Minor(s)
Binary	$U_{2,4}$
Ternary	$U_{2,5}, U_{3,5}, F_7, F_7^*$
Regular	$U_{2,4}, F_7, F_7^*$
Graphic	$U_{2,4}, F_7, F_7^*, K_5^*, K_{3,3}^*$
Cographic	$U_{2,4}, F_7, F_7^*, K_5, K_{3,3}$
Planar	$U_{2,4}, F_7, F_7^*, K_5, K_{3,3}, K_5^*, K_{3,3}^*$

- Fundamentals of Matroid
 - General Definition of Matroids
 - Equivalent Definitions
 - Operations
- Some Classes of Representable Matroids
 - Representable Matroids
 - Excluded Minors Summary
 - Relationships between Various Classes of Matroids
- Summary

Relationships

Relationships between various classes of matroids:

Figure: Relationships between various classes matroids: $U_{2,4}$, F_7 , etc. in the graph are examples of the matroid class in which they lie. If an example is not contained in one class, it is called an excluded minor of this class.

Summary

Today's talk

- Some Equivalent Definitions of Matroids: Sets, Base, Circuit, Rank, Closure
- 2 Operations of Matroids: Dual, Restriction, Contraction, Minor
- Representable Matroids: Binary, Ternary, Regular, Graphic, Cographic, Planar
- Excluded Minors and relationships between various classes of matroids

Q&A

Thank you!

Next: Matroid, Network and Coding.

James Oxley, Matroid Theory, Oxford University Press, 2011