НАЦИОНАЛЕН ПРОЛЕТЕН ТУРНИР ПО ИНФОРМАТИКА Ямбол, 1 юни 2013 г., ГРУПА А, 11 – 12 КЛАС

ЗАДАЧА А1. САМОТНА ПЕЙКА

Автор: Красимир Георгиев

Пейката в метрото има n места, номерирани с числата от 1 до n. В началото пейката е празна — всичките n места са свободни. Последователно, един по един, през входа на метрото влизат пътници. Всеки влязъл човек сяда в центъра на първата максимална последователност от свободни места. В случай, че максималната последователност от свободни места съдържа четен брой места, човекът сяда на мястото с по-малък номер измежду двете централни места на последователността.

Например, ако пейката има n=6 места, първият човек сяда на място с номер 3, защото има единствена максимална последователност от свободни места — от 1 до 6, която съдържа четен брой места, и 3 е мястото с по-малък номер измежду двете централни места (3 и 4) на тази последователност. За втория човек има две последователности от свободни места — от място 1 до място 2 и от място 4 до място 6. Последователността от място 4 до място 6 е максимална, съдържаща 3 места, и вторият човек сяда в центъра $\hat{\mathbf{u}}$ — място 5. Третият човек сяда на място с номер 1 — "централното" за последователността от свободни места от първо до второ, четвъртият човек — на място 2, петият — на място 4 и шестият — на място 6.

Напишете програма **bench**, която определя мястото, на което сяда определен човек, и кой човек сяда на предварително зададено място.

Вход

От стандартният вход се въвежда един ред с три цели чиста: \mathbf{n} **i** \mathbf{p} , разделени с интервал, където:

- n е общият брой места на пейката;
- і е номер на човек, влязъл в метрото (първият влязъл има номер 1);
- р представлява номер на място от пейката.

Изход

Програмата трябва да извежда на стандартния изход един ред с две цели числа **q** и **j**, разделени с интервал, за които е изпълнено, че:

- і-тият човек, влязъл в метрото сяда на място с номер q и
- ј-тият човек, влязъл в метрото сяда на място с номер р.

Ограничения

 $1 \le \mathbf{i}, \, \mathbf{p} \le \mathbf{n} \le 10^{16}$

В 20% от тестовете е изпълнено $\mathbf{n} \le 10000$.

В други 30% от тестовете, $\mathbf{n} = 2^{\mathbf{k}} - 1$, където $\mathbf{k} > 0$ е цяло число.

Пример 1	Пример 2
Вход	Вход
6 1 5	10 2 6
Изход	Изход
3 2	8 5