Práctica 5. Diferenciación e integración numérica

Universidad Nacional del Comahue Centro Regional Universitario Bariloche

Noviembre de 2016

Métodos de diferencias finitas. Diferenciación polinómica. Extrapolación de Richardson.

Nota: trate de resolver "TODOS" los ejercios en papel para luego comparar los resultados obtenidos con los métodos numéricos implementados.

- 1) Determinar $d[\sin(x)]/dx$ en x = 0.8 utilizando el método de diferencias finitas, central y no central. Varíe el valor de h y utilice el que produzca el mínimo error en la derivada. Grafique el error relativo de la derivada en el punto que se pide como función de h.
- 2) Utilice interpolación polinómica para determinar f' y f'' en x=0 para los valores de la siguiente tabla. Puede emplear el método de mínimos cuadrados para determinar los coeficientes del polinomio derivado, o bien puede utilizar las ecuaciones derivadas del método de spline cúbico. Para evaluar la precisión del método calcule el error relativo a partir del polinomio $f(x) = x^3 0.3x^2 8.56x + 8.448$. Discuta la precisión del método con el aumento del orden de la derivada.

x	-2.2	-0.3	8.0	1.9	
f(x)	15.180	10.962	1.920	-2.040	

3) Las estaciones de radares A y B separadas por una distancia de 500 m permiten determinar la trayectoria del avión C monitoreando los ángulos α y β a intervalos regulares de un segundo, ver el diagrama de más abajo. Dadas las lecturas que se muestran en la tabla calcular las componentes de la velocidad del avión y el ángulo γ para $t=10\,s$.

<i>t</i> (s)	9	10	11
α	54.80°	54.06°	53.34°
β	65.59°	64.59°	63.62°

La relación entre las coordenadas del avión y los ángulos está dada por

$$x = a \frac{\tan(\beta)}{\tan(\beta) - \tan(\alpha)}$$

$$y = a \frac{\tan(\alpha) \tan(\beta)}{\tan(\beta) - \tan(\alpha)}$$

4) Utilice los datos en la tabla de abajo para calcular f'(0,2) con la mayor precisión posible. Hint: método de extrapolación de Richardson.

x	0	0.1	0.2	0.3	0.4
f(x)	0.000 000	0.078348	0.138910	0.192916	0.244 981

5) La relación entre tensión, σ , y deformación, ϵ , de ciertos materiales biológicos sometidos a tensión uniaxial está dada por

$$\frac{d\sigma}{d\epsilon} = a + b\,\sigma\tag{1}$$

siendo a y b constantes. La tabla con los valores medidos se da a continuación. Determine los parámetros a y b por regresión lineal.

Strain ε	Stress σ (MPa)		
0	0		
0.05	0.252		
0.10	0.531		
0.15	0.840		
0.20	1.184		
0.25	1.558		
0.30	1.975		
0.35	2.444		
0.40	2.943		
0.45	3.500		
0.50	4.115		

Integración por reglas de los trapecios y de Simpson. Método de Romberg. Cuadratura Gauss-Legendre.

- 6) Integre $\int_0^{\frac{\pi}{4}} \ln[1 + \tan(x)] dx$. Utilice la regla de los trapecios y discuta los resultados. 7) Integre $\int_1^{\infty} (1 + x^4)^{-1} dx$. Utilice la regla de los trapecios con cinco paneles. Compare con el resultado exacto 0.24375. Hint: utilice la sustitución $x^3 = 1/t$.

- 8) Integre $\int_{-1}^{1} \cos[2\arccos(x)] dx$. Utilice la regla de Simpson 1/3 con dos, cuatro y seis paneles. Discuta los resultados.

 9) Integre $\int_0^2 (\mathbf{x}^5 + 3\mathbf{x}^3 - 2) \, dx$ empleando el método de Romberg.

 10) Estime $\int_0^{\pi} f(\mathbf{x}) \, dx$ a partir de los siguientes datos

х	0	$\pi/4$	$\pi/2$	$3\pi/4$	π
f(x)	1.0000	0.3431	0.2500	0.3431	1.0000

11) Integre $\int_1^{\pi} \frac{\ln(x)}{[x^2-2x+2]} dx$ mediante la cuadratura de Gauss-Legendre. Utilice (a) dos y (b) cuatro nodos.

Referencias

[1] Numerical Methods in Engineering with Python 3 3rd Edition (2013). Cambridge University Press. Jaan Kiusalaas. ISBN-10: 1107033853 ISBN-13: 978-1107033856