Remote Ischemic Conditioning System Arkitektur

Simon Vammen Grønbæk Karl-Johan Schmidt Aarhus University Aarhus School of Engineering Efteråret 2015

Ingeniørhøjskolen Aarhus

Finlandsgade 22 8200 Aarhus N Tlf: 8715 0000

http://www.ase.au.dk/

Titel:	Godkendelse:
System Arkitektur	
Projekt:	
Remote Ischemic Conditioning	Karl-Johan Schmidt
Projektperiode:	
Juli 2015 - December 2015	
Projektgruppe:	Simon Vammen Grønbæk
15155	Simon vanimen Grøndæk
Deltagere:	
Simon Vammen Grønbæk	
Karl-Johan Schmidt	Peter Johansen
Vejledere:	
Peter Johansen	
Projektudbyder:	Rolf Blauenfeldt
Rolf Blauenfeldt	ton planement
TOH DIAUCHICIU	

Oplagstal: 10 Sidetal: ??

Afsluttet 18-12-2014

In dholds for tegnelse

Kapite	l 1 Indledning	5
1.1	Formål	5
1.2	Projektreferencer	5
1.3	Læsevejledning og dokumentstruktur	5
1.4	Definitioner og forkortelser	5
Kapite	l 2 Systemets dele	7
2.1	Microcontroller	7
2.2	Manchetten	7
2.3	User interface, knapper og displays	7
2.4	Power system	7
2.5	Pumpe	8
2.6	Ventil	8
2.7	Tryksensor	8
2.8	SD kort	8
2.9	Pulsoximeter	8
Kapite	l 3 Arkitektur	9
3.1	4+1 view architecture	9
3.2	Logic	0
	3.2.1 Block definition diagram	0
	3.2.2 Domænemodel	0
	3.2.3 State machine diagram	1
3.3	Process	4
	3.3.1 Sekvensdiagrammer	4
	3.3.2 Konditionering - UC1	5
	3.3.3 Initialiser blodtryksmåling - UC2	6
	3.3.4 Mål blodtryk - UC3	7
	3.3.5 Overfør data - UC4	8
	3.3.6 Sikkerhedskontrol med pulsoximeter - UC5	8
	3.3.7 Okklusionstræning - UC6	9
	3.3.8 Afbryd - UC7	O
	3.3.9 Setup - UC8	1
3.4	Implementation	
	3.4.1 Hardware	2
3.5		9

$1 \mid Indledning$

Arkitektur beskrivelsen giver en formel præsentation og forklaring af systemet. Her beskrives hvordan systemet er organiseret, hvilke strukturelle elementer der indgår og hvordan elementer interagerer med hinanden. Der lægges både vægt på software og hardware, samt deres grænseflade. System arkitekturen beskriver hvordan Konditioneringsapparatet skal forstås og hvilke undersystemet det består af.

1.1 Formål

System arkitekturen har til formål at beskrive og give forståelse for systemet. Dokumentet fastlægger overordnede softwarekomponentet og hardwarekomponentet, samt strukturen og grænsefladerne mellem disse. Dokumentet udgør en slags plan for, hvordan systemet skal udvikles og hvilke undersystemer det skal bestå af.

1.2 Projektreferencer

- Reference til kravspecifikation
- Reference til accepttest

1.3 Læsevejledning og dokumentstruktur

Dokumentet ligger sig tæt op af kravspecifikation, da disse krav ligger til grunde for hvad systemet skal kunne. For at give en struktureret gennemgang af system arkitekturen gøres der brug af modellen "4+1 view arhitecture", der beskriver systemet fra flere forskellige vinkler. Forklaring af modellen kan læses nedenfor. Der gøres som udgangspunkt brugt af SysML til at beskrive systemet. Alt SysML udvikles og skrives på engelsk

1.4 Definitioner og forkortelser

Udtryk / Forkortelse	Forklaring
UML	Unified Modeling Language, sprog til forkla-
	ring af software arkitektur
SysML	System Modeling Language, sprog til forkla-
	ring af system arkitektur
PWM	Pulse-width modulation

Gruppe 15155 1. Indledning

Modeswitch	Knap til at styre hvilket program Konditio-
	neringsapparatet skal køre

2 | Systemets dele

Dette afsnit beskriver systemet, Konditionerings apparats, fysiske dele og deres funktionalitet

2.1 Microcontroller

Styring af alle systemets dele. Her processerer brugeren interagering med *Kondtionerings-apparat* og handlingen eksekveres. Microcontrolleren er en AtMega32 og styringen af chippen skrives i C++.

2.2 Manchetten

Trykmanchet til at skabe okklusion af armen. Manchetten skal kunne holde trykket, som skabes af pumpen. Manchetten kobles til apparatet via en lufttæt slange.

2.3 User interface, knapper og displays

Brugerfladen består af et display hvor blodtryk, antal okklusioner, resterende tid og mm. vises. Displayet skal bruges til at give brugeren feedback og fx. informere det medicinske personale hvor lang tid der er indtil konditioneringen er færdig.

På Konditioneringsapparatet er der to knapper [Start/Stop] og [Mål blodtryk]. Disse knapper bruges til at initierer konditioneringsbehandling, blodtryksmålinger og okklusionstræning. På bagsiden af apparatet sidder desuden en Modeswitch, hvor brugeren kan skifte mellem Okklusionstræning, Konditionering, eller Setup.

2.4 Power system

Forsyning af systemet foregår med 8 batterier af typen AAA for at opnå en spænding på 12V. Systemet af forsynes med et batteri løsning for at gøre det mere mobilt.

Foruden at forsyne apparatet, er power system også bestående af et motor shield. Når microcontroller fx ønsker at starte pumpen, sørge motorshieldet for at levere det korrekte spænding.

Gruppe 15155 2. Systemets dele

2.5 Pumpe

Består en motor og en luftindtag. Pumpe kan både bruges til at skabe tryk og vakuum. Pumpe skal bruges til at inflatere manchetten til måling af blodtryk og til okklusion af armen, både under konditionering og under træning. Pumpen skal forsynes med 12 V og hastigheden kan styres med PWM.

2.6 Ventil

Ventil indgår i systemet til at nedregulere trykket i manchetten. Ventilen er "Normally closed", det vil sige at ventilen først åbnes når den påtrykkes en spænding. Funktionen af ventilen under en blodtryksmåling er gradvis at lukke trykket ud, så det er muligt at registrere oscillationerne og det aktuelle tryk. Under okklusion har ventilen en anden funktion, her indgår ventilen i reguleringen.

2.7 Tryksensor

En 12 V tryksensor der bruges til registrering af trykket i manchetten og til efter regulering. Tryksensor skal også registrer oscillationerne der skabes i manchetten når trykket er omkring systolisk niveau og ved middeltrykket. Ved okklusionstræning skal tryksensor bruges til at holde trykket konstant omkring 100 mmHg

2.8 SD kort

Apparatet udstyres med ekstern hukommelse, for at det er muligt for *Konditioneringsap*paratet at gemme information omkring behandlingsforløbet. Der er valgt et SD kort, fordi når behandlingen er færdig, er det muligt at skifte SD kortet ud, og på den måde have backup af information og det er nemmere at overføre informationen.

2.9 Pulsoximeter

Som undersystemet i Konditioneringsapparatet indgår et pulsoximeter, der skal bruges til overvågning af patientens tilstand under konditioningsbehandling. Pulsoximeteret levere en saturation efter hver endt okklusion og den saturation er med til at bestemme om patientens kredsløb kan tåle behandlingen.

3 | Arkitektur

3.1 4+1 view architecture

Denne model beskriver arkitekturen af software baserede systemer. For at skabe en fyldestgørende gennemgang af systemet gøres brug af fire forskellige synsvinkler. Disse synsvinkler til for at tilfredsstille alle interessenter og sørge for at alle parter forstår systemet. Eksempler på parter kunne være kunden, projektleder eller udviklere. Med udgangspunkt i use cases består modellen af følgende punkter:

Logical view: Denne synsvinkel beskriver systemets funktionalitet via centrale elementer, mekanismer og stadier.

Process view: Beskæftiger sig med den ikke funktionelle del af systemet, og hvordan de centrale elementer fra logical view interagerer med hinanden.

Implementation view: Den vinkel involvere udviklerens perspektiv og beskæftiger sig med

hvordan software implementeres

Deployment view: Beskriver systemet fra en fysisk synsvinkel, hvordan eksekveres softwares på de brugtes devices, hvordan systemets fysisk setup ser ud

Modellen "4+1 view architecture" er beregnes primært til software baserede udviklingsprojekter og derfor bruges den som en retningslinje og inspiration til systemet arkitekturen. Da Konditioneringsapparatet er en prototype som involvere både hardware og software er modellen blevet tilpasset dertil. Endvidere vil systemet blive præsenteret og gennemgået ved hjælp af SysML standarden, selvom modellen er lavet til UML

3.2 Logic

3.2.1 Block definition diagram

Blokdiagrammer giver et indblik på den overordnede strukturen af Konditioneringsapparatet. Hver kasse skal ses som en del der indgår i systemet

3.2.2 Domænemodel

Diagrammer beskriver det systemet som helhed. Ved gennemgang af alle use cases findes væsentlig navneord og disse oprettet som konceptuelle klasser. Det konceptuelle klasser er derefter oversat til engelsk

3.2. Logic Aarhus Universitet

3.2.3 State machine diagram

Boot

Konditionering

3.2. Logic Aarhus Universitet

Okklusion

Setup

3.3 Process

3.3.1 Sekvensdiagrammer

Der er udarbejdet et sekvensdiagram for hver use case. Et sekvensdiagram viser hvordan systemets dele og aktører interagerer med hinanden, og hvilke processer der sker ved disse interaction. Det er beskrevet som sekventiel process og der illustreret diagrammet også hvilke rækkefølge processerne skal eksekveres i. Fordi at simplificeret store sekvensdiagrammer gør nogle af dem brug af andre use case, dette ses fx. i sekvensdiagrammet for use case 1.

3.3. Process Aarhus Universitet

3.3.2 Konditionering - UC1

3.3.3 Initialiser blodtryksmåling - UC2

3.3. Process Aarhus Universitet

3.3.4 Mål blodtryk - UC3

3.3.5 Overfør data - UC4

3.3.6 Sikkerhedskontrol med pulsoximeter - UC5

Mangler stadig...

3.3. Process Aarhus Universitet

3.3.7 Okklusionstræning - UC6

3.3.8 Afbryd - UC7

3.3. Process Aarhus Universitet

3.3.9 Setup - UC8

3.4 Implementation

3.4.1 Hardware

Diagrammet viser interaktioner mellem systemets hardware dele

(Skal rettes til PDF)

Beskrivelse af hardware

 $\ensuremath{\mathsf{INDS}}\xspace\ensuremath{\mathsf{ET}}$ reference til kapitel2

Arduino Mega og Motor Shield

3.5 Deployment