

SimTech

Reaktions-Diffusions-Advektionsgleichung in 2D

Etienne Ott, Moritz Schleicher, Patrick Buchfink Numerische Simulation WS16/17

10. Februar 2017

Inhalt

SimTech

- Einführung und Motivation
- Theorie: Populationsdynamik
- Theorie: Gray-Scott Modell
- Implementierung
- Ergebnisse

Einführung und Motivation

Wiederholung: Diffusions-Advektionsgleichung

Motivation: Reaktionen

Theorie: Populationsdynamik

Idee der Populationsdynamik

Theorie: Gray-Scott Modell

Idee des Gray-Scott Modells

Zwei Substanzen A: Futter, B: Räuber

- Phänomene
- Parameter

Implementierung

Implementierung der Substanzen und deren Reaktionsterms

Ergebnisse

Ergebnisse - Populationsdynamik

Ergebnisse - Gray-Scott Modell

Danke für die Aufmerksamkeit! Fragen?