8.7 TAYLOR AND MACLAURIN SERIES

A Click here for answers

1–2 Find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that $R_n(x) \to 0$.] Also find the associated radius of convergence.

$$f(x) = \frac{1}{(1+x)^2}$$

2.
$$f(x) = \frac{x}{1 - x}$$

3–6 • Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that $R_n(x) \rightarrow 0.$

3.
$$f(x) = 1/x$$
, $a = 1$

4.
$$f(x) = \sqrt{x}$$
, $a = 4$

5.
$$f(x) = \sin x$$
, $a = \pi/4$ **6.** $f(x) = \cos x$, $a = -\pi/4$

6.
$$f(x) = \cos x$$
, $a = -\pi/4$

7–13 • Use a Maclaurin series derived in this section to obtain the Maclaurin series for the given function.

7.
$$f(x) = e^{3x}$$

8.
$$f(x) = \sin 2x$$

9.
$$f(x) = x^2 \cos x$$

10.
$$f(x) = \cos(x^3)$$

11.
$$f(x) = x \sin(x/2)$$

12.
$$f(x) = xe^{-x}$$

13.
$$f(x) = \begin{cases} \frac{1 - \cos x}{x^2} & \text{if } x \neq 0\\ \frac{1}{2} & \text{if } x = 0 \end{cases}$$

14–15 Find the Maclaurin series of f (by any method) and its radius of convergence. Graph f and its first few Taylor polynomials on the same screen. What do you notice about the relationship between these polynomials and f?

14.
$$f(x) = 1/\sqrt{1+2x}$$

15.
$$f(x) = (1 + x)^{-3}$$

16. Find the Maclaurin series for ln(1 + x) and use it to calculate In 1.1 correct to five decimal places.

17-18 • Evaluate the indefinite integral as an infinite series.

$$17. \int \sin(x^2) \, dx$$

$$18. \int e^{x^3} dx$$

17. $\int \sin(x^2) dx$ **18.** $\int e^{x^3} dx$

S Click here for solutions.

19-20 • Use series to approximate the definite integral correct to three decimal places.

19.
$$\int_0^1 \sin(x^2) dx$$

20.
$$\int_0^{0.5} \cos(x^2) dx$$

$$y = \frac{\ln(1-x)}{e^x}$$

22-24 Find the sum of the series

22.
$$\sum_{n=2}^{\infty} \frac{x^{3n+1}}{n!}$$

23.
$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!}$$

24.
$$\sum_{n=0}^{\infty} \frac{x^n}{2^n(n+1)!}$$

25. Show that $e^x > 1 + x$ for all x > 0

26–31 • Use the binomial series to expand the function as a power series. State the radius of convergence.

26.
$$\sqrt[3]{1+x^2}$$

$$27. \ \frac{x}{\sqrt{1-x}}$$

28.
$$\frac{1}{\sqrt{2+x}}$$

29.
$$\frac{x^2}{\sqrt{1-x^3}}$$

$$30. \left(\frac{x}{1-x}\right)^5$$

31.
$$\sqrt[5]{x-1}$$

32. (a) Expand $1/\sqrt{1+x}$ as a power series.

(b) Use part (a) to estimate $1/\sqrt{1.1}$ correct to three decimal places.

33. (a) Expand $\sqrt[3]{8+x}$ as a power series.

(b) Use part (a) to estimate $\sqrt[3]{8.2}$ correct to four decimal places.

8.7

ANSWERS

E Click here for exercises.

1. $\sum_{n=0}^{\infty} (-1)^n (n+1) x^n, R = 1$

2.
$$\sum_{n=1}^{\infty} x^n, R = 1$$

3.
$$\sum_{n=0}^{\infty} (-1)^n (x-1)^n, R=1$$

4.
$$2 + \frac{x-4}{4} + \sum_{n=2}^{\infty} \frac{(-1)^{n-1} \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-3)}{2^{3n-1} n!} (x-4)^n$$

$$R = 4$$

5.
$$\frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} (-1)^n \left[\frac{1}{(2n)!} \left(x - \frac{\pi}{4} \right)^{2n} \right]$$

$$+ \, \frac{1}{(2n+1)!} \left(x - \frac{\pi}{4}\right)^{2n+1} \bigg], R = \infty$$

6.
$$\frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n(n-1)/2} \left(x + \frac{\pi}{4}\right)^n}{n!}, R = \infty$$

7.
$$\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}, R = \infty$$

8.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n+1} x^{2n+1}}{(2n+1)!}, R = \infty$$

9.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{(2n)!}, R = \infty$$

10.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{6n}}{(2n)!}, R = \infty$$

11.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{(2n+1)! 2^{2n+1}}, R = \infty$$

12.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{(n-1)!}, R = \infty$$

13.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+2)!}, R = \infty$$

14.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!} x^n, R = \frac{1}{2}.$$

S Click here for solutions.

15.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (n+1) (n+2) x^n}{2}$$
, $R=1$

17.
$$C + \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}$$

18.
$$C + \sum_{n=0}^{\infty} \frac{x^{3n+1}}{(3n+1) n!}$$

21.
$$-x + \frac{x^2}{2} - \frac{x^3}{3} + \cdots$$

22.
$$x\left(e^{x^3}-1-x^3\right)$$

73
$$e^x - 1$$

24.
$$\frac{2}{x} \left(e^{x/2} - 1 \right)$$

26.
$$1 + \frac{x^2}{3} + \sum_{n=2}^{\infty} \frac{(-1)^{n-1} \cdot 2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n-4) x^{2n}}{3^n n!},$$

27.
$$x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^n n!} x^{n+1}, R = 1$$

28.
$$\frac{\sqrt{2}}{2} \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) x^n}{2^{2n} \cdot n!} \right], R = 2$$

29.
$$x^2 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) x^{3n+2}}{2^n \cdot n!}, R = 1$$

30.
$$\sum_{n=0}^{\infty} \frac{(n+4)!}{4! \cdot n!} x^{n+5}, R = 1$$

31.
$$-1 + \frac{x}{5} + \sum_{n=2}^{\infty} \frac{4 \cdot 9 \cdots (5n-6) x^n}{5^n \cdot n!}, R = 1$$

32. (a)
$$1 + \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^n \cdot n!} x^n$$

33. (a)
$$2\left[1+\frac{x}{24}+\sum_{n=2}^{\infty}\frac{(-1)^{n-1}\cdot 2\cdot 5\cdot \cdots \cdot (3n-4)\,x^n}{24^n\cdot n!}\right]$$

8.7

SOLUTIONS

E Click here for exercises

1.

n	$f^{(n)}\left(x\right)$	$f^{(n)}\left(0\right)$
0	$(1+x)^{-2}$	1
1	$-2\left(1+x\right)^{-3}$	-2
2	$2 \cdot 3 \left(1 + x\right)^{-4}$	$2 \cdot 3$
3	$-2\cdot 3\cdot 4\left(1+x\right)^{-5}$	$-2 \cdot 3 \cdot 4$
4	$2\cdot 3\cdot 4\cdot 5\left(1+x\right)^{-6}$	$2\cdot 3\cdot 4\cdot 5$

So
$$f^{(n)}(0) = (-1)^n (n+1)!$$
 and
$$\frac{1}{(1+x)^2} = \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)!}{n!} x^n$$
$$= \sum_{n=0}^{\infty} (-1)^n (n+1) x^n$$
If $a_n = (-1)^n (n+1) x^n$, then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x|$, so $R = 1$.

2.

n	$f^{(n)}\left(x\right)$	$f^{(n)}\left(0\right)$
0	x/(1-x)	0
1	$(1-x)^{-2}$	1
2	$2(1-x)^{-3}$	2
3	$3 \cdot 2 \left(1 - x\right)^{-4}$	$3 \cdot 2$
4	$4 \cdot 3 \cdot 2 \left(1 - x\right)^{-5}$	$4 \cdot 3 \cdot 2$

 $f^{(n)}\left(0\right)=n! \text{ except when } n=0, \text{ so}$ $\frac{x}{1-x}=\sum_{n=1}^{\infty}\frac{n!}{n!}x^n=\sum_{n=1}^{\infty}x^n.\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=|x|<1 \text{ for convergence, so } R=1$

3.

n	$f^{(n)}\left(x\right)$	$f^{(n)}\left(1\right)$
0	x^{-1}	1
1	$-x^{-2}$	-1
2	$2x^{-3}$	2
3	$-3 \cdot 2x^{-4}$	$-3 \cdot 2$
4	$4\cdot 3\cdot 2x^{-5}$	$4 \cdot 3 \cdot 2$

So
$$f^{(n)}(1) = (-1)^n n!$$
, and
$$\frac{1}{x} = \sum_{n=0}^{\infty} \frac{(-1)^n n!}{n!} (x-1)^n = \sum_{n=0}^{\infty} (-1)^n (x-1)^n.$$
 If
$$a_n = (-1)^n (x-1)^n \text{ then } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x-1| < 1 \text{ for convergence, so } 0 < x < 2 \text{ and } R = 1.$$

4.

n	$f^{(n)}\left(x\right)$	$f^{(n)}\left(4\right)$
0	$x^{1/2}$	2
1	$\frac{1}{2}x^{-1/2}$	2^{-2}
2	$-\frac{1}{4}x^{-3/2}$	-2^{-5}
3	$\frac{3}{8}x^{-5/2}$	$3 \cdot 2^{-8}$
4	$-\frac{15}{16}x^{-7/2}$	$-15\cdot 2^{-11}$
	•••	•••

$$f^{(n)}(4) = \frac{(-1)^{n-1} \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-3)}{2^{3n-1}}$$
 for $n \ge 2$, so

$$\sqrt{x} = 2 + \frac{x-4}{4} + \sum_{n=2}^{\infty} \frac{(-1)^{n-1} \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-3)}{2^{3n-1} n!} (x-4)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{|x-4|}{8} \lim_{n \to \infty} \left(\frac{2n-1}{n+1} \right) = \frac{|x-4|}{4} < 1$$
 for convergence, so $|x-4| < 4 \implies R = 4$

5

n	$f^{(n)}\left(x\right)$	$f^{(n)}\left(\frac{\pi}{4}\right)$
0	$\sin x$	$\sqrt{2}/2$
1	$\cos x$	$\sqrt{2}/2$
2	$-\sin x$	$-\sqrt{2}/2$
3	$-\cos x$	$-\sqrt{2}/2$
4	$\sin x$	$\sqrt{2}/2$

$$\sin x = f\left(\frac{\pi}{4}\right) + f'\left(\frac{\pi}{4}\right)\left(x - \frac{\pi}{4}\right) + \frac{f''\left(\frac{\pi}{4}\right)}{2!}\left(x - \frac{\pi}{4}\right)^{2} + \frac{f^{(3)}\left(\frac{\pi}{4}\right)}{3!}\left(x - \frac{\pi}{4}\right)^{3} + \frac{f^{(4)}\left(\frac{\pi}{4}\right)}{4!}\left(x - \frac{\pi}{4}\right)^{4} + \cdots$$

$$= \frac{\sqrt{2}}{2}\left[1 + \left(x - \frac{\pi}{4}\right) - \frac{1}{2!}\left(x - \frac{\pi}{4}\right)^{2} - \frac{1}{3!}\left(x - \frac{\pi}{4}\right)^{3} + \frac{1}{4!}\left(x - \frac{\pi}{4}\right)^{4} + \cdots\right]$$

$$= \frac{\sqrt{2}}{2}\left[1 - \frac{1}{2!}\left(x - \frac{\pi}{4}\right)^{2} + \frac{1}{4!}\left(x - \frac{\pi}{4}\right)^{4} - \cdots\right] + \frac{\sqrt{2}}{2}\left[\left(x - \frac{\pi}{4}\right) - \frac{1}{3!}\left(x - \frac{\pi}{4}\right)^{3} + \cdots\right]$$

$$= \frac{\sqrt{2}}{2}\sum_{n=0}^{\infty} (-1)^{n}\left[\frac{1}{(2n)!}\left(x - \frac{\pi}{4}\right)^{2n} + \frac{1}{(2n+1)!}\left(x - \frac{\pi}{4}\right)^{2n+1}\right]$$

The series can also be written in the more elegant form

$$\sin x = \frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n(n-1)/2} \left(x - \frac{\pi}{4}\right)^n}{n!}.$$
 If

$$a_n = \frac{(-1)^{n(n-1)/2} \left(x - \frac{\pi}{4}\right)^n}{n!}$$
, then

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{\left|x-\frac{\pi}{4}\right|}{n+1}=0<1\text{ for all }x\text{, so }R=\infty.$$

n	$f^{(n)}\left(x\right)$	$f^{(n)}\left(-\frac{\pi}{4}\right)$
0	$\cos x$	$\frac{\sqrt{2}}{2}$
1	$-\sin x$	$\frac{\sqrt{2}}{2}$
2	$-\cos x$	$-\frac{\sqrt{2}}{2}$
3	$\sin x$	$-\frac{\sqrt{2}}{2}$
4	$\cos x$	$\frac{\sqrt{2}}{2}$

$$f^{(n)}\left(-\frac{\pi}{4}\right) = (-1)^{n(n-1)/2} \frac{\sqrt{2}}{2}, \text{ so}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{f^{(n)}\left(-\frac{\pi}{4}\right)}{n!} \left(x + \frac{\pi}{4}\right)^n$$

$$= \frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n(n-1)/2} \left(x + \frac{\pi}{4}\right)^n}{n!}$$

with $R = \infty$ by the Ratio Test (as in Problem 5).

7.
$$e^{3x} = \sum_{n=0}^{\infty} \frac{(3x)^n}{n!} = \sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$$
, with $R = \infty$.

8.
$$\sin 2x = \sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n+1} x^{2n+1}}{(2n+1)!},$$

9.
$$x^2 \cos x = x^2 \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{(2n)!}$$

10.
$$\cos\left(x^{3}\right) = \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n} \left(x^{3}\right)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n} x^{6n}}{(2n)!}, R = \infty.$$

11.
$$x \sin\left(\frac{x}{2}\right) = x \sum_{n=0}^{\infty} \frac{(-1)^n (x/2)^{2n+1}}{(2n+1)!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{(2n+1)! 2^{2n+1}}$ with $R = \infty$.

12.
$$xe^{-x} = x \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n!}$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{(n-1)!}, R = \infty.$$

13.
$$\frac{1 - \cos x}{x^2} = x^{-2} \left[1 - \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \right]$$
$$= x^{-2} \left[-\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \right]$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-2}}{(2n)!}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+2)!}$$

since the series is equal to $\frac{1}{2}$ when x=0; $R=\infty$.

14.

n	$f^{(n)}\left(x\right)$	$f^{(n)}\left(0\right)$
0	$(1+2x)^{-1/2}$	1
1	$-\frac{1}{2}(1+2x)^{-3/2}(2)$	-1
2	$\frac{3}{2}(1+2x)^{-5/2}(2)$	3
3	$-3 \cdot \frac{5}{2} (1+2x)^{-7/2} (2)$	$-3 \cdot 5$

$$f^{(n)}(0) = (-1)^n \cdot 1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1)$$
, so

$$(1+2x)^{-1/2} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!} x^n$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{2n+1}{n+1}\left|x\right|=2\left|x\right|<1\text{ for }$$

Another method: Use Exercise 33 from the text and differentiate.

15.
$$f(x) = (1+x)^{-3} = -\frac{1}{2} \frac{d}{dx} \left[\frac{1}{(1+x)^2} \right]$$

$$= -\frac{1}{2} \frac{d}{dx} \left[\sum_{n=0}^{\infty} (-1)^n (n+1) x^n \right] \quad \text{[from Problem 1]}$$

$$= -\frac{1}{2} \sum_{n=1}^{\infty} (-1)^n n (n+1) x^{n-1}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n (n+1) (n+2) x^n}{2}$$

with R = 1 since that is the R in Problem 1.

This is an alternating series with

 $b_5 = \frac{(0.1)^5}{5} = 0.000002$, so to five decimal places, $\ln(1.1) \approx \sum_{n=1}^4 \frac{(-1)^{n-1} (0.1)^n}{n} \approx 0.09531$.

17.
$$\int \sin(x^2) dx = \int \sum_{n=0}^{\infty} (-1)^n \frac{(x^2)^{2n+1}}{(2n+1)!} dx$$
$$= \int \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+2}}{(2n+1)!} dx$$
$$= C + \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}$$

18.
$$\int e^{x^3} dx = \int \sum_{n=0}^{\infty} \frac{(x^3)^n}{n!} dx = C + \sum_{n=0}^{\infty} \frac{x^{3n+1}}{(3n+1) n!}$$
 with $R = \infty$.

19. Using our series from Problem 17, we get

$$\int_0^1 \sin(x^2) dx = \sum_{n=0}^\infty \left[\frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!} \right]_0^1$$
$$= \sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}$$

and $|c_3| = \frac{1}{75.600} < 0.000014$, so by the

Alternating Series Estimation Theorem, we have

$$\sum_{n=0}^{2} \frac{(-1)^n}{(4n+3)(2n+1)!} = \frac{1}{3} - \frac{1}{42} + \frac{1}{1320} \approx 0.310$$

(correct to three decimal places).

20.
$$\cos(x^2) = \sum_{n=0}^{\infty} \frac{(-1)^n (x^2)^{2n}}{(2n)!}$$
, so
$$\int_0^{0.5} \cos(x^2) dx = \int_0^{0.5} \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{(2n)!} dx$$
$$= \sum_{n=0}^{\infty} \left[\frac{(-1)^n x^{4n+1}}{(4n+1)(2n)!} \right]_0^{0.5}$$
$$= 0.5 - \frac{(0.5)^5}{5 \cdot 2!} + \frac{(0.5)^9}{9 \cdot 4!} - \cdots$$

but $\frac{(0.5)^9}{9 \cdot 4!} \approx 0.000009$, so by the

Alternating Series Estimation Theorem,

$$\int_0^{0.5} \cos\left(x^2\right) dx \approx 0.5 - \frac{(0.5)^5}{5 \cdot 2!} \approx 0.497 \text{ (correct to three decimal places)}.$$

21.
$$-x + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \cdots$$

$$1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots$$

$$-x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \cdots$$

$$-x - x^2 - \frac{1}{2}x^3 - \cdots$$

$$\frac{1}{2}x^2 + \frac{1}{6}x^3 - \cdots$$

$$\frac{1}{2}x^2 + \frac{1}{2}x^3 + \cdots$$

$$-\frac{1}{3}x^3 + \cdots$$

$$-\frac{1}{3}x^3 + \cdots$$

From Example 6 in Section 8.6, we have $\ln{(1-x)} = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \cdots, |x| < 1. \text{ Therefore,}$ $y = \frac{\ln{(1-x)}}{e^x} = \frac{-x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \cdots}{1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots}. \text{ So by the}$ long division above, $\frac{\ln{(1-x)}}{e^x} = -x + \frac{x^2}{2} - \frac{x^3}{3} + \cdots,$

22.
$$\sum_{n=2}^{\infty} \frac{x^{3n+1}}{n!} = x \sum_{n=2}^{\infty} \frac{\left(x^3\right)^n}{n!} = x \left[\sum_{n=0}^{\infty} \frac{\left(x^3\right)^n}{n!} - 1 - x^3\right]$$
$$= x \left(e^{x^3} - 1 - x^3\right) \text{ by (11)}$$

23.
$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} = \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
$$= \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\right) - 1$$
$$= e^x - 1 \text{ by (11)}$$

24.
$$\sum_{n=0}^{\infty} \frac{x^n}{2^n (n+1)!} = \sum_{n=0}^{\infty} \frac{(x/2)^n}{(n+1)!} = \frac{2}{x} \sum_{n=0}^{\infty} \frac{(x/2)^n}{(n+1)!}$$
$$= \frac{2}{x} \left[(x/2) + \frac{(x/2)^2}{2!} + \frac{(x/2)^3}{3!} + \cdots \right]$$
$$= \frac{2}{x} \left(e^{x/2} - 1 \right)$$

25. By (12),
$$e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots$$
, but for $x>0$, all of the terms after the first two on the RHS are positive, so $e^x>1+x$ for $x>0$.

26.
$$(1+x^2)^{1/3} = \sum_{n=0}^{\infty} {1 \over 3 \choose n} x^{2n}$$

 $= 1 + \frac{x^2}{3} + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!} x^4 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!} x^6 + \cdots$
 $= 1 + \frac{x^2}{3} + \sum_{n=2}^{\infty} \frac{(-1)^{n-1} \cdot 2 \cdot 5 \cdot 8 \cdot \cdots \cdot (3n-4) x^{2n}}{3^n n!}$

with R = 1.

$$\mathbf{27.} \ [1+(-x)]^{-1/2} = \sum_{n=0}^{\infty} \binom{-\frac{1}{2}}{n} (-x)^n$$

$$= 1 + \left(-\frac{1}{2}\right) (-x) + \frac{\left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right)}{2!} (-x)^2 + \cdots$$

$$= 1 + \frac{x}{2} + \frac{1 \cdot 3}{2^2 2!} x^2 + \frac{1 \cdot 3 \cdot 5}{2^3 3!} x^3 + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2^4 4!} x^4 + \cdots$$

$$= 1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}{2^n n!} x^n$$
so $\frac{x}{\sqrt{1-x}} = x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}{2^n n!} x^{n+1}$ with $R = 1$.

$$\mathbf{28.} \ (2+x)^{-1/2} = \frac{1}{\sqrt{2}} \left(1 + \frac{x}{2}\right)^{-1/2}$$

$$= \frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} {\left(-\frac{1}{2} \choose n\right)} \left(\frac{x}{2}\right)^n$$

$$= \frac{\sqrt{2}}{2} \left[1 + {\left(-\frac{1}{2}\right)} \left(\frac{x}{2}\right) + \frac{{\left(-\frac{1}{2}\right)} \left(-\frac{3}{2}\right)}{2!} \left(\frac{x}{2}\right)^2 + \cdots \right]$$

$$= \frac{\sqrt{2}}{2} \left[1 + \sum_{n=1}^{\infty} \frac{{\left(-1\right)}^n \cdot 1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1) \cdot x^n}}{2^{2n} \cdot n!}\right]$$

with |x/2| < 1 so |x| < 2 and R = 2.

$$29. \left[1 + \left(-x^3\right)\right]^{-1/2} = \sum_{n=0}^{\infty} \left(-\frac{1}{2} \choose n\right) \left(-x^3\right)^n$$

$$= 1 + \left(-\frac{1}{2}\right) \left(-x^3\right) + \frac{\left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right)}{2!} \left(-x^3\right)^2 + \cdots$$

$$= 1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) x^{3n}}{2^n \cdot n!}$$
so
$$\frac{x^2}{\sqrt{1-x^3}} = x^2 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) x^{3n+2}}{2^n \cdot n!}$$
with $R = 1$.

30.
$$(1-x)^{-5} = 1 + (-5)(-x) + \frac{(-5)(-6)}{2!}(-x)^2 + \frac{(-5)(-6)(-7)}{3!}(-x)^3 + \cdots$$

$$= 1 + \sum_{n=1}^{\infty} \frac{5 \cdot 6 \cdot 7 \cdots (n+4)}{n!} x^n = \sum_{n=0}^{\infty} \frac{(n+4)!}{4! \cdot n!} x^n$$

$$\Rightarrow \frac{x^5}{(1-x)^5} = \sum_{n=0}^{\infty} \frac{(n+4)!}{4! \cdot n!} x^{n+5} \text{ or}$$

$$\sum_{n=0}^{\infty} \frac{(n+1)(n+2)(n+3)(n+4)}{24} x^{n+5}, \text{ with } R = 1.$$

31.
$$\sqrt[5]{x-1} = -\left[1 + (-x)\right]^{1/5} = -\sum_{n=0}^{\infty} {1 \over 5 \choose n} (-x)^n$$

$$= -\left[1 + \frac{1}{5}(-x) + \frac{\left(\frac{1}{5}\right)\left(-\frac{4}{5}\right)}{2!} (-x)^2 + \frac{\left(\frac{1}{5}\right)\left(-\frac{4}{5}\right)\left(-\frac{9}{5}\right)}{3!} (-x)^3 + \cdots\right]$$

$$= -1 + \frac{x}{5} + \sum_{n=2}^{\infty} \frac{4 \cdot 9 \cdots (5n-6) x^n}{5^n \cdot n!} \text{ with } R = 1.$$

32. (a)
$$(1+x)^{-1/2} = 1 + \left(-\frac{1}{2}\right)x + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}x^2 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}x^3 + \cdots$$

$$= 1 + \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}{2^n \cdot n!}x^n$$

(b) Take x=0.1 in the above series. $\frac{\frac{1\cdot 3\cdot 5\cdot 7}{2^44!}}{(0.1)^4}<0.00003, \text{ so}$ $\frac{1}{\sqrt{1.1}}\approx 1-\frac{0.1}{2}+\frac{1\cdot 3}{2^2\cdot 2!}\left(0.1\right)^2-\frac{1\cdot 3\cdot 5}{2^3\cdot 3!}\left(0.1\right)^3\approx 0.953$

33. (a)
$$(8+x)^{1/3} = 2\left(1+\frac{x}{8}\right)^{1/3} = 2\sum_{n=0}^{\infty} \left(\frac{1}{3}\right) \left(\frac{x}{8}\right)^n$$

$$= 2\left[1+\frac{1}{3}\left(\frac{x}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{x}{8}\right)^2 + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(\frac{x}{8}\right)^3 + \cdots\right]$$

$$= 2\left[1+\frac{x}{24} + \sum_{n=2}^{\infty} \frac{(-1)^{n-1} \cdot 2 \cdot 5 \cdot \cdots \cdot (3n-4) \cdot x^n}{24^n \cdot n!}\right]$$
(b) $(8+0.2)^{1/3} = 2\left[1+\frac{0.2}{24} - \frac{(0.2)^2}{24^2} + \frac{2 \cdot 5(0.2)^3}{24^3 \cdot 3!} - \cdots\right]$

$$\approx 2\left[1+\frac{0.2}{24} - \frac{(0.2)^2}{24^2}\right]$$

since $2 \cdot \frac{2 \cdot 5(0.2)^3}{24^3 \cdot 3!} \approx 0.000002$, so $\sqrt[3]{8.2} \approx 2.0165$.