Business Experimentation and Causal Methods

Prof. Fradkin

Topic: Regression for Experiments

This Time

Using Regression for Experiments

- 1. Regression to measure the ATE.
- 2. Adding covariates to increase precision.
- 3. Avoiding 'bad' covariates.

Example Experiment: TutorGPT

- Suppose we've designed an app called TutorGPT, that helps students learn by using a chat bot.
- We give half the students the app, and the other half are in the control.
- We want to measure the effect on GPA.

Data

	gpa_last_year	treatment	gpa_this_year	treatment_factor
0	2.681864	1	2.280444	Treatment
1	3.323482	0	2.908015	Control
2	2.778256	1	2.744848	Treatment
3	3.199914	0	2.403374	Control
4	3.800534	1	3.362648	Treatment

Estimate of the ATE

0.14132693716381084

Each point is a student, blue points are treated.

Each point is a student, blue points are treated.

$$Outcome_i = a + bT_i + \epsilon_i$$

A regression finds the a and b which best fit the data.

Blue line is when T = 1 and red line when T = 0

The sm.OLS.from_formula function

- It take two parts: a formula and the data set to use.
- •The formula separates the outcome variable from the explanatory variable with a '~'
- Make sure to specify 'robust' standard errors. From 'cov_type' = 'HC1'.

Formula

Data to use

```
# Linear regression with statsmodels
import statsmodels.api as sm
from stargazer.stargazer import Stargazer

lm = sm.OLS.from_formula("gpa_this_year ~ treatment", data = data)
fit = lm.fit()

reg_robust = smf.ols('gpa_this_year ~ treatment', data=data).fit(cov_type='HC1')
```


Dependent variable: gpa_this_year			
		(1)	(2)
Intercept		2.724***	2.724***
		(0.053)	(0.054)
treatment		0.141	0.141*
		(0.085)	(0.084)
Observations		100	100
R^2		0.027	0.027
Adjusted R ²		0.017	0.017
Residual Std. Error	0.4	l6 (df=98)	0.416 (df=98)
F Statistic	2.741	(df=1; 98)	2.807 [*] (df=1; 98)
Note:		*p<0.1; **p	<0.05; ****p<0.01

	Dependent variable: gpa_this_year	
	(1)	(2)
Intercept	2.724***	2.724***
	(0.053)	(0.054)
treatment	0.141	0.141*
	(0.085)	(0.084)
Observations	100	100
R^2	0.027	0.027
Adjusted R ²	0.017	0.017
Residual Std. Error	0.416 (df=98)	0.416 (df=98)
F Statistic	2.741 (df=1; 98)	2.807* (df=1; 98)

Note:

*p<0.1; **p<0.05; ***p<0.01

Coefficient

11

Stargazer	([fit, reg_ro	bust])	
✓ 0.0s			

	Dependent variable: gpa_this_year	
	(1)	(2)
Intercept	2.724***	2.724***
	(0.053)	(0.054)
treatment	0.141	0.141*
	(0.085)	(0.084)
Observations	100	100
R^2	0.027	0.027
Adjusted R ²	0.017	0.017
Residual Std. Error	0.416 (df=98)	0.416 (df=98)
F Statistic	2.741 (df=1; 98)	2.807* (df=1; 98)

Note:

*p<0.1; ***p<0.05; ****p<0.01

Standard Error

Stargazer([fi	t, reg_robust])	
✓ 0.0s		

	Dependent variable: gpa_this_year	
	(1)	(2)
Intercept	2.724***	2.724***
	(0.053)	(0.054)
treatment	0.141	0.141*
	(0.085)	(0.084)
Observations	100	100
R^2	0.027	0.027
Adjusted R ²	0.017	0.017
Residual Std. Error	0.416 (df=98)	0.416 (df=98)
F Statistic	2.741 (df=1; 98)	2.807* (df=1; 98)
Note:	*p<0.1; *	*p<0.05; ****p<0.01

Significance Stars

	Dependent variable: gpa_this_year	
	(1)	(2)
Intercept	2.724***	2.724***
	(0.053)	(0.054)
treatment	0.141	0.141*
	(0.085)	(0.084)
Observations	100	100
\mathbb{R}^2	0.027	0.027
Adjusted R ²	0.017	0.017
Residual Std. Error	0.416 (df=98)	0.416 (df=98)
F Statistic	2.741 (df=1; 98)	2.807* (df=1; 98)

*p<0.1; **p<0.05; ***p<0.01

Note:

R-squared

14

Less nice way to output results, without Stargazer

```
fit.summary()
   0.0s
                     OLS Regression Results
   Dep. Variable:
                                            R-squared:
                      gpa_this_year
                                                           0.027
          Model:
                               OLS
                                        Adj. R-squared:
                                                           0.017
         Method:
                      Least Squares
                                            F-statistic:
                                                            2.741
                   Thu, 08 Feb 2024
                                     Prob (F-statistic):
                                                            0.101
           Time:
                           10:06:25
                                                         -53.264
                                        Log-Likelihood:
No. Observations:
                                                            110.5
                                100
                                                  AIC:
                                 98
    Df Residuals:
                                                   BIC:
                                                            115.7
       Df Model:
Covariance Type:
                          nonrobust
                                              [0.025
                                                      0.975]
                                       P>|t|
                    std err
              coef
           2.7243
                                      0.000
                     0.053
                             51.104
                                               2.619
                                                       2.830
Intercept
            0.1413
                     0.085
                              1.656
                                      0.101
                                              -0.028
treatment
                                                        0.311
                 7.212
                           Durbin-Watson:
                                            2.122
      Omnibus:
Prob(Omnibus): 0.027
                        Jarque-Bera (JB): 3.324
         Skew: 0.163
                                Prob(JB):
                                            0.190
                                             2.44
      Kurtosis: 2.169
                                Cond. No.
```

Regress GPA this year on GPA last year

 $GPA_This_Year_i = \hat{a} + \hat{b}GPA_Last_Year_i + \hat{\epsilon}_i$

Plot residuals against last year's GPA

Much less variation in outcome!

Adjusting for a covariate in a regression

- We can add gpa last year as a covariate to a regression.
- This is also called 'controlling' for gpa last year.
- It is different from the 'control group'.

Controlling for a covariate in a regression

We can add gpa last year as a covariate to a regression.

This is also called 'controlling' for gpa last year.

It is different than the 'control group'.

No Covariates: $Outcome_i = a + bT_i + \epsilon_i$

One Covariate: $Outcome_i = a + bT_i + cX_i + \epsilon_i$

```
reg_covariate_treat = smf.ols('gpa_this_year ~ treatment + gpa_last_year', data=data).fit(cov_type='HC1')
Stargazer([reg_robust, reg_covariate_treat])
```

	Dependent	variable: gpa_this_year
	(1)	(2)
Intercept	2.724***	0.053
	(0.054)	(0.162)
gpa_last_year		0.831***
		(0.049)
treatment	0.141*	0.254***
	(0.084)	(0.044)
Observations	100	100
R^2	0.027	0.742
Adjusted R ²	0.017	0.737
Residual Std. Error	0.416 (df=98)	0.216 (df=97)
F Statistic	2.807* (df=1; 98)	145.837*** (df=2; 97)
Note:	*p<0	0.1; **p<0.05; ***p<0.01

✓ 0.0s

Add last year's gpa as covariate.

```
reg_covariate_treat = smf.ols('gpa_this_year ~ treatment + gpa_last_year', data=data).fit(cov_type='HC1')
Stargazer([reg_robust, reg_covariate_treat])

$\square$ 0.0s$
```

	Dependent	variable: gpa_this_year
	(1)	(2)
Intercept	2.724***	0.053
	(0.054)	(0.162)
gpa_last_year		0.831***
		(0.049)
treatment	0.141*	0.254***
	(0.084)	(0.044)
Observations	100	100
R^2	0.027	0.742
Adjusted R ²	0.017	0.737
Residual Std. Error	0.416 (df=98)	0.216 (df=97)
F Statistic	2.807* (df=1; 98)	145.837*** (df=2; 97)
Note: *p<0.1; **p<0.05; ***p<0.0		

Reduces standard error

Controlling for a covariate in a regression

It should not change our estimate of the treatment effect by much.

It can reduce our standard errors and p-values.

Bad Covariates!

Some controls make the regression invalid for learning the treatment effect.

Example of a bad covariate

- Example: Suppose we randomly increased the price of cigarettes and we were interested in the effect on health.
- The number of cigarettes smoked decreases and this improves our health.
- Adjusting for number of cigarettes smoked is bad, because the effect of the price increase on health is caused by the number of cigarettes smoked.
- So once we control for the number of cigarettes smoked, then a regression would say that the treatment had no effect. But this is obviously false, since it caused us to smoke fewer cigarettes.

Helpful to draw a diagram

Cigarettes block health. Bad covariate.

Controls for the learning app.

- Prior year's GPA: Good, since it is not affected by the treatment.
- How much you use the App: Bad since the treatment affects how much you use the app, and how much you use the app is correlated with this year's GPA.
- Student's SAT: Good, since it is not affected by the treatment.
- How many times you asked the professor a question: Bad, since it may be affected by having access to the app.

Summary: Regression

- More precision gain if covariate is predictive.
- Don't include bad covariates (bad controls). These are measures that occur after the treatment.