1. Long Division

Definition 0.1. Given two integers a and b with $b \neq 0$, there exist unique integers q and r such that a = bq + r and $0 \leq r < |b|$.

2. Greatest Common Divisor

Definition 0.2. Let a and b be integers, not both zero. The largest integer d such that d|a and d|b is called the greatest common divisor of a and b.

3. Euclidean Algorithm

Theorem 0.1. Let a and b be integers, not both zero. Then the greatest common divisor of a and b is the same as the greatest common divisor of b and a mod b.

4. Bézout Identity

Theorem 0.2. Given integers a and b, not both zero,

$$a\mathbb{Z} + b\mathbb{Z} = \{ax + by : x, y \in \mathbb{Z}\} = \gcd(a, b)\mathbb{Z}$$
(1)

5. Coprime Integers

Definition 0.3. Two integers a and b are said to be coprime if gcd(a,b) = 1.

6. Prime and Composite Numbers

Definition 0.4. An integer p > 1 is said to be prime if its only positive divisors are 1 and p. Otherwise, it is said to be composite.

7. The fundamental theorem of arithmetic

Theorem 0.3. Every integer greater than 1 can be written as a product of prime numbers, and this factorization is unique up to the order of the factors.

8. Diophantine Equations

Definition 0.5. A Diophantine equation is an equation where the unknowns are required to be integers or rational numbers.

9. Rational Root Test

Theorem 0.4. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial with integer coefficients. If r = p/q is a rational root of f(x), then p divides a_0 and q divides a_n .

10. Eisenstein's Criterion

Theorem 0.5. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial with integer coefficients. If there exists a prime p such that p divides a_i for $i = 0, 1, \ldots, n-1$, p does not divide a_n , and p^2 does not divide a_0 , then f(x) is irreducible over \mathbb{Q} .

11. Linear Diophantine Equations

Theorem 0.6. Consider the linear Diophantine equation ax+by=c, where gcd(a,b,c)=1.

If $gcd(a,b) \neq 1$ then, the equation has no solution.

If gcd(a, b) = 1, then the equation has the following general solution:

$$x = x_0 + bt, \quad y = y_0 - at \tag{2}$$

where x_0 and y_0 are particular solutions and t is an integer.

12. Chinese Remainder Theorem

Theorem 0.7. Let m_1, m_2, \ldots, m_k be pairwise coprime integers, and let a_1, a_2, \ldots, a_k be any integers. Then the system of congruences

$$x \equiv a_1 \pmod{m_1}, \quad x \equiv a_2 \pmod{m_2}, \quad \dots, \quad x \equiv a_k \pmod{m_k}$$
 (3)

has a unique solution modulo $m_1m_2\cdots m_k$.

The solution is given by

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \dots + a_k M_k y_k \tag{4}$$

where $M_i = m_1 m_2 \cdots m_k / m_i$ and y_i is the modular inverse of M_i modulo m_i .