Stochastic Optimization

王金鑫 (1701214260)

April 30, 2018

1 Variants of Stochastic Gradients Algorithms

consider problem:

$$\min_{w \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n f_i(w) + \lambda ||w||_1,$$

where $f_i(w) = \log(1 + \exp(-y^i w^T x_i))$, and $\lambda > 0$. the prediction is:

$$p(y = 1|x; w) = \frac{1}{1 + \exp(-w^T x)},$$

$$p(y = -1|x; w) = \frac{1}{1 + \exp(w^T x)}.$$

1.1 adagrad

$$w_{t+1} = w_t - \frac{\eta}{\sqrt{G_t + \epsilon I}} \cdot g_t, (\epsilon = 10^{-8}).$$

其中, G_t 是对角矩阵,对角元素 e_{ii} 为过去到当前第 i 个参数 θ_i 的梯度的平方和。

在训练过程中,首先取步长 0.003 ($\lambda=0.1$ or 0.001 时) 当训练误差累计超过 10 次下降不超过某个阈值时,我们将步长除以 10,继续迭代。

mnist 数据集上的结果:

λ	train_loss	test_loss
0.001	0.307	0.304
0.1	0.370	0.300

covertype 数据集上的结果:

λ	train_loss	test_loss
0.001	0.636	0.636
0.1	0.650	0.648

1.2 adam

$$m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t}$$

$$v_{t} = \beta_{2} v_{t-1} + (1 - \beta_{2}) g_{t}^{2}$$

$$\hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}}$$

$$\hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$$

$$w_{t+1} = w_{t} - \frac{\eta}{\sqrt{(\hat{v}_{t}) + \epsilon}} \hat{m}_{t}$$

$$\beta_{1} = 0.9, \beta_{2} = 0.999, \epsilon = 10^{-8}$$

mnist 数据集上的结果: 在训练过程中,首先取步长 $0.0008~(\lambda=0.1)$, $0.001~(\lambda=0.001)$ 当训练误差累计超过 10~次下降不超过某个阈值时,我们将步长除以 10, 继续迭代。

λ	train_loss	test_loss
0.001	0.358	0.360
0.1	0.332	0.301

covertype 数据集上的结果:

λ	train_loss	test_loss
0.001	0.586	0.579
0.1	0.636	0.631

1.3 **SVRG**

ref: https://papers.nips.cc/paper/4937-accelerating-stochastic-gradient-descent-using-predictive-variance pdf

ref: https://arxiv.org/pdf/1403.4699.pdf proxSVRG 算法描述:

在算法迭代中,我们先做几步 SGD, 然后再进行 SVRG 更新, 当内层循环结束后, 将内层循环得到的变量进行平均。

mnist 数据集上的结果:

>> + + + + + + + + + + + + + + + + + +		
λ	train_loss	test_loss
0.001	0.397	0.402
0.1	0.405	0.274

1.4 SVRG-BB

http://lanl.arxiv.org/pdf/1605.04131v2

ref: https://github.com/tanconghui/Stochastic_BB

算法描述:

Algorithm 2 SVRG with BB step size (SVRG-BB)

Parameters: update frequency m, initial point \tilde{x}_0 , initial step size η_0 (only used in the first epoch)

for
$$k = 0, 1, \cdots$$
 do
$$g_k = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{x}_k)$$
if $k > 0$ then

$$\eta_k = \frac{1}{m} \cdot \|\tilde{x}_k - \tilde{x}_{k-1}\|_2^2 / (\tilde{x}_k - \tilde{x}_{k-1})^\top (g_k - g_{k-1})$$
(3.2)

end if
$$x_0 = \tilde{x}_k$$
 for $t = 0, \dots, m-1$ do Randomly pick $i_t \in \{1, \dots, n\}$
$$x_{t+1} = x_t - \eta_k(\nabla f_{i_t}(x_t) - \nabla f_{i_t}(\tilde{x}_k) + g_k)$$
 end for
$$\tilde{x}_{k+1} = x_m$$
 end for

在算法迭代中, 我们先做几步 SGD, 然后再进行 SVRGBB 更新。

mnist 数据集上的结果:

λ	train_loss	test_loss
0.001	0.470	0.476
0.1	0.594	0.292

1.5 FTRL: follow the regularized leader

Reference:

1. 《Online Learning and Online Convex Optimization1》 section 2.2,2.3

URL: http://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf

3. 原始论文:

URL: https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf

2. from 美团点评技术团队

URL: https://tech.meituan.com/online-learning.html

4. 其他:

URL: http://www.datakit.cn/blog/2016/05/11/ftrl.html

Algorithm 1 Per-Coordinate FTRL-Proximal with L_1 and L_2 Regularization for Logistic Regression

#With per-coordinate learning rates of Eq. (2). Input: parameters
$$\alpha$$
, β , λ_1 , λ_2 ($\forall i \in \{1, \ldots, d\}$), initialize $z_i = 0$ and $n_i = 0$ for $t = 1$ to T do

Receive feature vector \mathbf{x}_t and let $I = \{i \mid x_i \neq 0\}$ For $i \in I$ compute

$$w_{t,i} = \begin{cases} 0 & \text{if } |z_i| \le \lambda_1 \\ -\left(\frac{\beta + \sqrt{n_i}}{\alpha} + \lambda_2\right)^{-1} (z_i - \text{sgn}(z_i)\lambda_1) & \text{otherwise.} \end{cases}$$

Predict $p_t = \sigma(\mathbf{x}_t \cdot \mathbf{w})$ using the $w_{t,i}$ computed above Observe label $y_t \in \{0, 1\}$

for all
$$i \in I$$
 do
$$g_i = (p_t - y_t)x_i \quad \#gradient \ of \ loss \ w.r.t. \ w_i$$

$$\sigma_i = \frac{1}{\alpha} \left(\sqrt{n_i + g_i^2} - \sqrt{n_i} \right) \quad \#equals \ \frac{1}{\eta_{t,i}} - \frac{1}{\eta_{t-1,i}}$$

$$z_i \leftarrow z_i + g_i - \sigma_i w_{t,i}$$

$$n_i \leftarrow n_i + g_i^2$$

end for

end for

以上算法是针对 0, 1 分类问题, 对于 1, -1 分类, 需稍加改动。

由于在线算法测评方式不太一样, 我们采用 regret/T, 和 test loss 两种指标。

2 future work

由于 mnist dataset 的样本向量比较稀疏,所以可以考虑稀疏矩阵运算将其加速,我了解到 xlearn 这个大规模稀疏数据机器学习库 (https://github.com/aksnzhy/xlearn) 实现了 SGD, AdaGrad, FTRL 等,可以借鉴。