Упражнение «Дерево отрезков»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

Дана последовательность операций CHANGE и SUM над деревом отрезков. Выполнить эти операции.

Вход

Во входном файле записана последовательность команд "С k d" или "S a b" или "Е". Здесь k, a, b — натуральные числа, не превосходящие 10^5 , причём $a \le b$, d — целое число, не превосходящее по модулю 10^4 . Команда "С k d" означает "увеличить счётчик элемента k на d", команда "S a b" - "найти сумму счётчиков элементов с a по b включительно". Команда "Е" означает "завершить операции с деревом". Каждая команда записана в отдельной строке, начиная с первой позиции. Буквы "С" и "S" отделены от чисел пробелом. Первоначально все счётчики равны нулю. Количество команд в файле не превосходит 10^5 .

Выход

Запишите в выходной файл результаты выполнения команд "S a b" в том порядке, в котором они присутствуют во входном файле. Для каждой команды выведите найденную сумму.

input.txt	output.txt
C 3 1	10
C 2 5	11
C 1 4	
S 1 4	
C 3 1	
S 1 4	
E	

Упражнение «Дерево Фенвика»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

Дана последовательность операций CHANGE и SUM над деревом Фенвика. Выполнить эти операции.

Вход

Во входном файле записана последовательность команд "С k d" или "S a b" или "Е". Здесь k, a, b — натуральные числа, не превосходящие 10^5 , причём $a \le b$, d — целое число, не превосходящее по модулю 10^4 . Команда "С k d" означает "увеличить счётчик элемента k на d", команда "S a b" - "найти сумму счётчиков элементов с a по b включительно". Команда "Е" означает "завершить операции с деревом". Каждая команда записана в отдельной строке, начиная с первой позиции. Буквы "С" и "S" отделены от чисел пробелом. Первоначально все счётчики равны нулю. Количество команд в файле не превосходит 10^5 .

Выход

Запишите в выходной файл результаты выполнения команд "S a b" в том порядке, в котором они присутствуют во входном файле. Для каждой команды выведите найденную сумму.

input.txt	output.txt
C 3 1	10
C 2 5	11
C 1 4	
S 1 4	
C 3 1	
S 1 4	
E	

Задача «Галактика» Входной файл: galaxy.in Выходной файл: galaxy.out

Ограничение памяти: 128 М байт

Ограничение времени: 2 секунды на тест

В Галактике N обитаемых планет. Для обеспечения населения мобильной связью Галактический Совет планирует установить на двух планетах ретрансляционные станции. К сожалению, мощность имеющихся ретрансляторов не столь велика, как хотелось бы, и есть опасение, что не все планеты окажутся в зоне действия станций. Вы должны написать программу, которая будет вычислять количество планет, находящихся в зоне действия хотя бы одного из ретрансляторов. Планета считается находящейся в зоне действия ретранслятора, если расстояние от неё, до планеты, где установлен ретранслятор, не превышается заданного радиуса действия ретранслятора.

Вход

В первой строке входного файла записано количество планет N ($3 \le N \le 500000$). В следующих N строках содержатся целочисленные декартовы координаты планет x_i , y_i , z_i (- $500000 \le x_i$, y_i , $z_i \le 500000$). Ретрансляторы установлены на первой и второй планете. В следующей строке записано количество запросов Q ($1 \le Q \le 500000$). И последние Q строк файла содержат Q пар целых чисел R_I , R_2 – радиусы действия первого и второго ретрансляторов ($1 \le R_I$, $R_2 \le 10^7$).

Выход

Для каждого запроса запишите в выходной файл количество планет, попадающих в зону действия хотя бы одного ретранслятора.

примеры входа и выхода		
galaxy.in	galaxy.out	
5	2	
1 1 1	3	
5 5 5	4	
2 2 2	5	
3 3 3		
4 4 4		
4		
1 1		
2 1		
2 2		
6 6		

Задача «Монеты» Входной файл: coins.in Выходной файл: coins.out

Ограничение памяти: 128 М байт

Ограничение времени: 1 секунда на тест

Белый Кролик поступил на госслужбу, и теперь у него в норе N ящиков с золотыми монетами, пронумерованных от 1 до N. Мартовский Заяц интересуется, сколько всего монет у Белого Кролика (он тоже подумывает о поступлении на госслужбу), но Кролик не хочет отвечать. Мартовский Заяц придумал такую хитрость. Он говорит Кролику — «ну ладно, не хочешь говорить — не говори, но скажи хотя бы, какое минимальное количество монет лежит у тебя в ящиках с номерами от a до b включительно». На такие вопросы Белый Кролик соглашается отвечать. Мартовский Заяц задал много вопросов и получил много ответов. Теперь он нуждается в программе, которая может найти минимально возможное количество золотых монет у Белого Кролика.

Вход

В первой строке входного файла записаны целые числа N — количество ящиков с монетами и Q — количество вопросов, заданных Мартовским Зайцем ($1 \le N \le 10^9$, $1 \le Q \le 10^5$). В остальных строках содержится Q троек целых чисел a, b, m ($1 \le a \le b \le N$, $0 \le m \le 10^9$), где a, b - заданный Мартовским Зайцем вопрос, а m — ответ Белого Кролика.

Выход

Запишите в выходной файл минимально возможное количество золотых монет у Белого Кролика. Если ответы Кролика противоречивы, запишите в выходной файл число -1 (минус единица).

примеры влода и выхода			
coins.in	coins.out		
100000000 1	0		
1 1000000000 0			
100000000 1	500000000		
1 100000000 5			
100000000 3	211		
3 4 1 5 6 10 4 5 100			
100000000 3	-1		
3 4 100 5 6 10 4 5 1			
1000000000 5	1120		
6 6 1000 4 4 100 3 4 10			
4 5 10 3 6 10			

Задача «Блинчики»

Входной файл: pancakes.in Выходной файл: pancakes.out

Ограничение времени: 1 секунда на тест

Ограничение памяти: 64 М байт

Василий Пупкин владеет фирмой по выпечке блинчиков. Выпекаемые блинчики Василий стремится продать, а не проданные съедает сам. Ежедневно Василий записывает количество проданных блинчиков. Кроме того, каждый день за исключением первого дня существования фирмы, Пупкин вычисляет и записывает отдельно количество прошедших дней, за которые было продано не больше блинчиков, чем за текущий день. Последнюю величину он считает показателем процветания своей фирмы. Однако, с каждым днём Василию становится всё труднее и труднее вычислять показатель процветания, и он решил заказать вам специальное программное обеспечение.

Итак, фирма В. Пупкина изготовила и продала $a_1, a_2, ..., a_n$ блинчиков за первые n дней своего существования. Эти данные Пупкин вам предоставит. В каждый из дней, начиная со второго, вы должны вычислить величину b_j , равную количеству чисел, не превосходящих a_j среди $a_1, ..., a_{j-1}$. Чтобы проверить, насколько правильно работает ваша программа, заказчик попросил для начала вычислить сумму $b_2 + b_3 + ... + b_n$.

Вход

В первой строке входного файла записано число n – время существования фирмы в днях (2 \leq $n \leq 100000$). В остальных строках записаны числа $a_1, a_2, ..., a_n$ (0 $\leq a_i \leq 10^9$).

Выход

Запишите в выходной файл сумму $b_2 + b_3 + \ldots + b_n$.

pancakes.in	pancakes.out		
5	0		
4 3 2 1 0			
5	10		
0 1 2 3 4			

Задача «Выборы»

Входной файл: election.in Выходной файл: election.out

Ограничение времени: 2 секунды на тест

Ограничение памяти: 64 М байт

Скоро в Тьмутараканском Удельном Княжестве выборы в боярскую думу. За места в думе борются две главные политические коалиции — «Свободная Тьмутаракания» и «Красивая Тьмутаракания». Поскольку никому пока не удалось обнаружить ни одного отличия в платформах этих коалиций, их для простоты обозначают буквами А и В. Для предвыборной агитации в центре Тьмутараканска воздвигнут рекламный щит размером 10.24 метра на 10.24 метра, разделённый на 1024 * 1024 квадратных ячеек площадью в 1 кв. см. Каждая из коалиций заготовила большое количество квадратных наклеек размером 1 на 1 см, на которых, соответственно, написана буква А или буква В. Первоначально активисты коалиций заклеили рекламный щит своими наклейками в шахматном порядке, вот так

При этом в левом верхнем углу оказалась буква «А». В ночь перед выборами, стремясь получить преимущество, активисты коалиций скрытно подобрались к щиту и принялись наклеивать на него свои буквы. После того, как сверху наклеивалась буква, прежняя буква становилась полностью невидимой. В спешке активисты нередко заклеивали и свои собственные буквы. Вся эта незаконная деятельность была заснята многочисленными камерами наблюдения, установленными в центре Тьмутараканска. При этом были чётко зафиксированы в хронологическом порядке и координаты ячеек, которые были заклеены, и буквы, которыми они были заклеены. Наказание (или поощрение) за незаконную агитацию по Тьмутараканским законам зависит от того, насколько был нарушен баланс в пользу той или иной коалиции. Иными словами, насколько больше одних букв, чем других оказалось в некоторой прямоугольной области рекламного щита.

Ваша задача — написать программу, которая по имеющейся видеозаписи будет вычислять количество букв А и В в заданной прямоугольной области на данный момент времени.

Формат входных данных

В первой строке входного файла записано целое число N — суммарное количество актов заклеивания и запросов ($1 \le N \le 10^6$). В остальных N строках записано:

- или буква **A** (или **B**) и два целых числа x, y ($1 \le x, y \le 1024$);
- или буква **R** и четыре целых числа x_1, y_1, x_2, y_2 ($1 \le x_1 \le x_2 \le 1024, 1 \le y_1 \le y_2 \le 1024$).

Строка первого вида (АВ-строка) означает, что в данный момент зафиксировано заклеивание ячейки с координатами x, y буквой \mathbf{A} (\mathbf{B}). Строка второго вида (\mathbf{R} -строка) означает, что программа должна подсчитать количество букв \mathbf{A} и букв \mathbf{B} в прямоугольной области с координатами противоположных углов \mathbf{x}_1 , \mathbf{y}_1 и \mathbf{x}_2 , \mathbf{y}_2 в данный момент времени.

Формат выходных данных

Для каждой R-строки во входном файле запишите в выходной файл количество букв A и количество букв B в заданной области.

примеры вноди и выноди	
election.in	election.out
7	5 4
R 1 1 3 3	6 3
A 2 3	1 3
A 1 3	
R 1 1 3 3	
B 2 2	
в 3 3	
R 2 2 3 3	