L'algorithme K-NN

- Fonctionnement
- Critères de qualité

FACULTÉ DE GESTION, ÉCONOMIE & SCIENCES

Algorithme kNN : sélection de la classe

Solution simple : rechercher le cas le plus proche et prendre la même décision (Méthode 1-NN).

Combinaison des k classes:

- Heuristique : k = nombre d 'attributs + 1
- Vote majoritaire : prendre la classe majoritaire.
- Vote majoritaire pondéré : chaque classe est pondérée. Le poids de c(xi) est inversement proportionnel à la distance d(y,xi).

Confiance : Définir une confiance dans la classe attribuée = rapport entre les votes gagnants et le total des votes.

Voisinage (K = 8)

5 de la classe O

3 de la classe +

Retour sur KNN : Exemple (1)

Customer	Age	Income	No. credit cards	Loyal		
John 🥌	35	35K	3	No		
Rachel Rachel	22	50K	2	Yes		
Hannah A	63	200K	1	No		
Tom 🕌	59	170K	1	No		
Nellie 👺	25	40K	4	Yes		
David	37	50K	2	?		

Retour sur KNN : Exemple (2)

K = 3

Customer	Age	Income	No. credit cards	Loyal
John 🥌	35	35K	3	No
Rachel	22	50K	2	Yes
Hannah	63	200K	1	No
Tom 🧗	59	170K	1	No
Nellie &	25	40K	4	Yes
David A	37	50K	2	Yes

Distance from David
sqrt [(35-37) ² +(35-50) ² +(3-2) ²]= 15.16
sqrt [(22-37) ² +(50-50) ² +(2-2) ²]= 15
sqrt [(63-37) ² +(200- 50) ² +(1-2) ²]= 152.2 3
sqrt [(59-37) ² +(170- 50) ² +(1-2) ²]= 122
sqrt [(25-37) ² +(40-50) ² +(4-2) ²]= 15.74

Comment évaluer un algorithme de classification supervisée ?

On part d'un groupe d'individus (cohorte si recherche médicale) dont le statut est connu

Individu	Ivre ?
1	0
2	N
3	N
4	0
5	0
6	N

On passe l'algorithme sur chacun des individus

Evaluation : exemple de mesure : l'exactitude

Classification accuracy (CA) = % de bien classés

individu	Ivre?	T1	T2
1	0		
2	N		
3	N		
4	0		
5	0		
6	N		

Test 1

• CA: 5/6

Test 2

• CA: 5/6

Evaluation : exemple de mesure : l'exactitude

Classification accuracy (CA) = % de bien classés

individu	lvre?	T1	T2
1	0		
2	N		
3	N		
4	0		
5	0		
6	N		

Test 1

• CA: 5/6

Test 2

• CA: 5/6

Evaluation : matrice de confusion

Plus de 50 mesures différentes Basées sur le comptage des :

- Vrais positifs (VP)
 - Ivre & test positif
- Vrais négatifs (VN)
 - Sobre & test négatif
- Faux positifs (FP)
 - Sobre & test positif
- Faux négatifs (FN)
 - Ivre & test négatif

Ex: Classification Accuracy (CA) =
$$\frac{VP + VN}{VP + VN + FP + FN}$$

Représentation :

C : l'individu a la condition

P : le test est positif

	P	\overline{P}
C	VP	FP
\overline{C}	FN	VN

Principales mesures en classification supervisée

(performances minimum) (performances maximum)

- **CA** (Classification Accuracy)
 - % d'individus correctement classés

$$\frac{VP + FP}{VP + FP + VN + FN}$$

- **Confiance** (precision)
 - Capacité à ne pas se tromper lorsque l'on trouve la cible
 - % d'individus détectés qui ont effectivement la cible

$$\frac{VP}{VP + FP}$$

- Sensibilité (recall / rappel)
 - Capacité à détecter la cible
 - % d'individus avec la condition identifiés par le test

$$\frac{VP}{VP + FN}$$

Principales mesures en classification supervisée

- F1-mesure
 - Moyenne harmonique de la Confiance et de la Sensibilité $2 \times \frac{confiance \times sensibilit\acute{e}}{confiance + sensibilit\acute{e}}$
- AUC (Area Under ROC curve)

C'est à vous : exemple d'évaluation

T1 et T2 détectent si la personne est ivre

- T1 ou T2 pour faire du préventif ? (ex: Ethylotest avant de prendre le volant) ?
- T1 ou T2 pour faire du curatif ? (ex: Emprisonnement si ivresse détectée au volant)
- T1 ou T2 pour un usage « polyvalent » ?

id	lvre?	T1	T2				T1						Į. T.	1		
				VP FP	FN	VN	CA	Se	Cf	F1	VP FP	FN	VN	CA	Se	Cf F1
1	0	0	O	1	0	0	0				1	0	0	0		
2	N	0	N	0	1	0	0				0	0	0	1		
3	N	N	N	0	0	0	1				0	0	0	1		
4	0	0	O	1	0	0	0				1	0	0	0		
5	0	O	N	1	0	0	0				0	0	1	0		
6	N	N	N	0	0	0	1				0	0	0	1		
	Scores			3	1	0	2 0,8	3 1	. 0,75	0,86	2	0	1	3 0,8	3 0,67	1 0,74

données

Le sur-apprentissage

Un algorithme d'apprentissage qui tourne trop longtemps « apprend par cœur » les

-> performances mauvaises sur nouvelles données

Le sur-apprentissage

Il est important d'évaluer les modèles obtenus sur des données différentes

R1: Fever → Flu

CA apprentissage: 5/6

CA test: 3/3

R2: F & MP & C → Flu

CA apprentissage: 5/6

CA test: **0/3**