Álgebra Exercícios

1. Diga, justificando, se as expressões seguintes definem operações binárias nos conjuntos indicados:

- (a) $x * y = x y \text{ em } \mathbb{Z} \setminus \{0\}$
- (b) $x * y = x|y| \text{ em } \mathbb{Z}$
- (c) x * y = x + y + xy em $\mathbb{R} \setminus \{-1\}$
- (d) $x * y = \frac{x+y}{2}$ em N

Quais das operações binárias encontradas são comutativas?

- 2. Seja X um conjunto com 2 elementos. Quantas operações binárias é possível definir em X? Quantas destas são comutativas? E se X tiver n elementos com $n \ge 1$?
- 3. Para cada um dos seguintes casos, verifique se $(\mathbb{R}, *)$ é um semigrupo.
 - (a) $x * y = \frac{x+y}{2}$
 - (b) x * y = x + y 1
 - (c) x * y = |x + y|
 - (d) x * y = |x|y

Quais dos semigrupos encontrados são monóides?

4. Seja (G, *) um grupóide com elemento neutro tal que

$$\forall a, b, c, d \in G \quad (a * b) * (c * d) = (a * d) * (b * c).$$

Mostre que G é um monóide comutativo.

- 5. Seja S um conjunto com pelo menos dois elementos. Considere a operação * definida em $S \times S$ por (a,b)*(c,d)=(a,d). Mostre que $(S \times S,*)$ é um semigrupo sem elemento neutro.
- 6. Sejam S um semigrupo e $a, b \in S$ tais que ab = ba. Mostre que para qualquer inteiro $n \ge 1$, $a^nb = ba^n$ e $(ab)^n = a^nb^n$.
- 7. Dê exemplo de um semigrupo S no qual existem dois elementos $a \in b$ tais que $(ab)^2 \neq a^2b^2$.
- 8. Considere o grupóide (M,*) em que $M=\{(x,y,z)\in\mathbb{R}^3\,|\,x+y+z=1\}$ e a operação * é dada por

$$(x, y, z) * (a, b, c) = (xa, b + ya, c + za).$$

Mostre que (M, *) é um monóide e que um elemento $(x, y, z) \in M$ é invertível se e só se $x \neq 0$. Se $(x, y, z) \in M$ é invertível, qual é o seu inverso?

- 9. Sejam M um monóide e $a,b\in M$. Diga, justificando, quais das seguintes afirmações são verdadeiras e quais são falsas:
 - (a) Se a é invertível e ab = e, então $b = a^{-1}$.
 - (b) Se a é invertível à esquerda, então para quaisquer dois elementos $x, y \in M$, $ax = ay \Rightarrow x = y$.
 - (c) Se para quaisquer dois elementos $x,y\in M,\ ax=ay\Rightarrow x=y,$ então a é invertível à esquerda.
- 10. Verifique quais dos grupóides seguintes são grupos:

- (a) $(\mathbb{N}, *)$ onde $a * b = 2^{ab}$
- (b) $(\mathbb{R} \setminus \{-1\}, *)$ onde a * b = a + b + ab
- (c) $(\mathbb{Q}, *)$ onde a * b = ab + a + b + 1
- 11. Mostre que existe no máximo uma estrutura de grupo no conjunto $V = \{e, a, b, c\}$ tal que e é o elemento neutro e $a^2 = b^2 = e$. Se existir, será um grupo abeliano? Nota-se que existe um tal grupo, é chamado grupo de Klein.
- 12. Diga quais das aplicações seguintes são homomorfismos de grupos e, nesses casos, classifiqueos.
 - (a) $f: (\mathbb{Z}, +) \to (\mathbb{Z}, +), f(x) = x + 3$
 - (b) $g: (\mathbb{Z}, +) \to (\mathbb{Z}, +), g(x) = 4x$
 - (c) $h: (\mathbb{R}, +) \to (\mathbb{R}, +), h(x) = x^2$
 - (d) $\ln: (]0, +\infty[, \cdot) \to (\mathbb{R}, +)$
 - (e) det : $(GL_n(\mathbb{R}), \cdot) \to (\mathbb{R} \setminus \{0\}, \cdot)$
- 13. Considere a operação binária * definida em \mathbb{Z} por x * y = x + y 3. Mostre que:
 - (a) $(\mathbb{Z}, *)$ é um grupo
 - (b) A aplicação $f: (\mathbb{Z}, +) \to (\mathbb{Z}, *)$ definida por f(x) = x + 3 é um isomorfismo.
- 14. Sejam G um grupo e $n \in \mathbb{Z}$. Considere a aplicação $f: G \to G$ definida por $f(x) = x^n$. Mostre que, se G é abeliano, então a aplicação f é um endomorfismo de G.
- 15. Quais dos seguintes conjuntos é um subgrupo do grupo $(GL_2(\mathbb{R}), \cdot)$?
 - (a) $C = \{ \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} : a \in \mathbb{R} \setminus \{-1, +1\} \}.$
 - (b) $C = \left\{ \begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix} : a \neq 0, b \in \mathbb{R} \right\}.$
 - (c) $O(2) = \{ A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) : A \cdot A^T = A^T \cdot A = I_2 \}.$
- 16. Sejam G um grupo e $a \in G$. Mostre que o conjunto $C(a) = \{x \in G \mid xa = ax\}$ é um subgrupo de G. O conjunto C(a) é chamado centralizador de a.
- 17. Seja G um grupo. Seja $H \neq \emptyset$ um subconjunto finito de G tal que para quaisquer $x,y \in H$, tem-se $xy \in H$.
 - (a) Justifique que H é um semi-grupo.
 - (b) Justifique que H é subgrupo de G.
- 18. Considere o grupo simétrico S_3 . Seja H o subgrupo gerado pela permutação σ dada por $\sigma(1)=2,\ \sigma(2)=1$ e $\sigma(3)=3$ e seja K o subgrupo gerado pela permutação τ dada por $\tau(1)=1,\ \tau(2)=3$ e $\tau(3)=2$. Determine HK. É um subgrupo de S_3 ?
- 19. Sejam G um grupo e H e K subgrupos de G. Mostre que HK é um subgrupo de G se e só se HK = KH.
- 20. Sejam G um grupo, H um subgrupo de G e $x \in G$. Mostre que as três seguintes afirmações são equivalentes:
 - (a) Hx é subgrupo de G
 - (b) $x \in H$
 - (c) Hx = H

- 21. Seja G um grupo finito tal que |G| é primo. Usando o Teorema de Lagrange, mostre que para todo o $a \in G \setminus \{e\}$ tem-se $G = \langle a \rangle$. Podemos concluir que G é abeliano?
- 22. Sejam G um grupo e H e K dois subgrupos finitos de G tais que |H| e |K| são primos entre si. Mostre que $H \cap K = \{e\}$.
- 23. Sejam G um grupo e H um subgrupo de índice 2. Prove que para todo o $x \in G$, $x^2 \in H$.
- 24. Seja G um grupo e sejam H e K subgrupos finitos de G. Mostre que se $H \cap K = \{e\}$ então a aplicação $f: H \times K \to HK$ dada por f(h,k) = hk é bijetiva.
- 25. Seja G um grupo de ordem 20 e sejam H e K subgrupos de G de ordem 5. Mostre que H = K (Sugestão: Usando o exercício anterior, comece por mostrar que $|H \cap K| = 5$.). Qual o índice de H em G?
- 26. Considere o grupo simétrico S_3 e o subgrupo $H = \langle \sigma \rangle$ gerado pela permutação σ dada por $\sigma(1) = 2$, $\sigma(2) = 1$ e $\sigma(3) = 3$.
 - (a) Qual a ordem de σ ? Qual o índice $|S_3:H|$?
 - (b) Usando a permutação τ dada por $\tau(1)=1,\ \tau(2)=3$ e $\tau(3)=2,$ mostre que H não é normal em S_3 .
- 27. Seja G um grupo. Mostre que o centro de G dado por $Z(G) = \{x \in G : \forall g \in G, gx = xg\}$ é um subgrupo normal de G.
- 28. Sejam G um grupo e H e K normais de G tais que $H \cap K = \{e\}$. Mostre que para todos os $h \in H$ e $k \in K$, hk = kh.
- 29. Seja G um grupo tal que, para quaisquer $a, b \in G$, $(ab)^{10} = a^{10}b^{10}$. Sejam $H = \{a^{10} \mid a \in G\}$ e $K = \{a \in G \mid a^{10} = e\}$.
 - (a) Mostre que $f: G \to G$ dado por $f(a) = a^{10}$ é um endomorfismo.
 - (b) Usando o Teorema do Homomorfismo, mostre que |H| = |G:K|.
- 30. Considere o grupo ortogonal $O(2) = \{A \in \mathcal{M}_{2\times 2}(\mathbb{R}) : A \cdot A^T = A^T \cdot A = I_2\}$ bem como o seu subgrupo $SO(2) = \{A \in O(2) : \det(A) = 1\}$. Recorrendo ao Teorema do Homomorfismo mostre que |O(2) : SO(2)| = 2.
- 31. Seja $f: G \to G'$ um epimorfismo de grupos em que G e G' são finitos. Mostre que a ordem de G' divide a ordem de G.
- 32. Seja $G = \langle a \rangle$ um grupo cíclico em que $a \neq e$. Diga, justificando, se é verdadeiro ou falsa cada uma das afirmações seguintes:
 - (a) Se |G| = 18, então $a^{30} = a^{12}$.
 - (b) Se $a^{30} = a^{12}$, então |G| = 18.
 - (c) Se $a^{25} = a^{38}$, então |G| = 13.
 - (d) Se G é infinito então G admite exactamente dois geradores distintos: $a \in a^{-1}$.
 - (e) Se os geradores distintos de G são exactamente a e a^{-1} , então G é infinito.
- 33. Seja G um grupo finito e $a \in G$. Mostre que $a^{|G|} = e$.
- 34. Seja $G = \langle a \rangle$ um grupo cíclico de ordem 15.
 - (a) Mostre que G admite exactamente 8 geradores distintos.
 - (b) Indique todos os subgrupos de G.

- 35. Seja $G = \langle a \rangle$ um grupo cíclico de ordem 30 e $H = \langle a^{25} \rangle$.
 - (a) Determine H.
 - (b) Indique, caso existam, os elementos de H que têm ordem 3.
 - (c) Diga, justificando, se G admite subgrupos de ordem 5 e, em caso afirmativo, indique-os.
- 36. Considere em S_8 as permutações

e $\sigma_3 = (1,3,6)(2,7,4)(5,8)$.

- (a) Decomponha σ_1 e σ_2 em cíclos dois a dois disjuntos.
- (b) Determine as permutações σ_1^{-1} , $\sigma_1\sigma_2$, $\sigma_1\sigma_3$, σ_2^2 , σ_2^3 e $\sigma_2^2\sigma_3$ e factorize-os em cíclos dois a dois disjuntos.
- (c) Indique a ordem e a paridade de cada uma das permutações da alínea anterior.
- 37. Considere em S_9 a permutação $\sigma = (9, 5, 7)(3, 4, 1, 5, 7, 6)(1, 2, 8, 4)(3, 4, 8)$.
 - (a) Determine a ordem e a paridade de σ .
 - (b) Determine σ^{339} .
- 38. Considere o grupo simétrico S_8 .
 - (a) Exiba um elemento de S_8 de ordem 15.
 - (b) Mostre que não existe um elemento de S_8 de ordem 14.
- 39. Considere o seguinte subconjunto de $\mathcal{M}_{2\times 2}(\mathbb{R})$:

$$D = \left\{ \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right] : a, b \in \mathbb{R} \right\}.$$

- (a) Mostre que D é um subanel de $\mathcal{M}_{2\times 2}(\mathbb{R})$.
- (b) Mostre que a aplicação $f: \mathbb{C} \to D$ dada por $f(a+bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ é um isomorfismo de anéis.
- (c) Seja $A \in D$ com $\det A \neq 0$. Calculando $A \cdot A^T$, verifique que $A^{-1} \in D$.
- (d) Mostre que todo o elemento não nulo de \mathbb{C} é invertível (uma unidade do anel \mathbb{C}) e indique o seu inverso.
- 40. Determine todos os endomorfismos do anel \mathbb{Z} .
- 41. Mostre que os anéis \mathbb{Z}_6 e $\mathbb{Z}_2 \times \mathbb{Z}_3$ são isomorfos.
- 42. Mostre que o centro de um anel $A, Z(A) = \{x \in A \mid \forall y \in A \ xy = yx\}, \text{ \'e um subanel de } A.$
- 43. Seja $n \ge 1$ um inteiro. Mostre que $[k]_n \in \mathbb{Z}_n \setminus \{[0]_n\}$ é uma unidade do anel \mathbb{Z}_n se e só se k e n são primos entre si.
- 44. Sejam A um anel e $n \in \mathbb{Z}$. Verifique que $nA = \{nx \mid x \in A\}$ é um ideal de A.
- 45. Seja A um anel comutativo e seja $a \in A$. Verifique que $I = \{x \in A \mid ax = 0\}$ é um ideal de A.
- 46. Sejam m e n dois números inteiros primos entre si. Mostre que o único ideal de \mathbb{Z} que contém m e n é \mathbb{Z} .

- 47. Sejam A um anel e I um ideal de A. Mostre que o anel quociente A/I é comutativo se e só se $ab ba \in I$ para todos os $a, b \in A$.
- 48. Sejam A um anel e d um divisor de zero. Prove que d não é invertível.
- 49. Um elemento a de um anel A diz-se nilpotente se $a^n = 0$ para algum número natural n > 0.
 - (a) Seja A é um domínio de integridade. Mostre que 0 é o único elemento nilpotente de A.
 - (b) Seja A um anel comutativo e sejam $x, y \in A$ tais que $x^2 = 0$ e $y^3 = 0$. Mostre que x + y é um elemento nilpotente de A.
- 50. Seja A um anel comutativo não nulo tal que A=(a) para todo o $a\in A\setminus\{0\}$. Mostre que A é um corpo.
- 51. Seja A um anel comutativo.
 - (a) Mostre que qualquer ideal maximal de A é primo.
 - (b) Mostre que um ideal I de A é maximal se e só se A/I é um corpo.
 - (c) Mostre que o ideal $2\mathbb{Z} \times \mathbb{Z}$ do anel $\mathbb{Z} \times \mathbb{Z}$ é um ideal maximal.
 - (d) Mostre que o ideal $\{0\} \times \mathbb{Z}$ do anel $\mathbb{Z} \times \mathbb{Z}$ é um ideal primo que não é maximal.
- 52. Diga, justificando, se é verdadeira ou falsa cada uma das seguintes afirmações:
 - (a) O anel $\mathbb{Z}_2 \times \mathbb{Z}$ é um domínio de integridade.
 - (b) O anel $\mathbb{Z}_2 \times \mathbb{Z}_3$ é um corpo.
 - (c) O anel \mathbb{Z}_7 contém elementos nilpotentes não nulos.
 - (d) $\operatorname{car}(\mathbb{Z}_2 \times \mathbb{Z}_3) = 6$.
 - (e) $\operatorname{car}(\mathbb{Z}_6 \times \mathbb{Z}_4) = 24$.
- 53. Sejam p um número primo, A um anel comutativo de característica p e $a, b \in A$. Mostre que $(a+b)^p = a^p + b^p$.
- 54. Seja $f: A \to B$ um isomorfismo de anéis. Mostre que car(A) = car(B).
- 55. Seja A um domínio de integridade e sejam $a, b \in A$. Mostre que a e b são associados (isto é, a|b e b|a) se e só se existir $u \in A$ invertível tal que a = bu.
- 56. Considere o seguinte subconjunto de \mathbb{C} :

$$\mathbb{Z}[i\sqrt{3}] = \{a + ib\sqrt{3} : a, b, \in \mathbb{Z}\}.$$

- (a) Mostre que $\mathbb{Z}[i\sqrt{3}]$ é um subanel de \mathbb{C} (e, portanto, um domínio de integridade).
- (b) Mostre que a aplicação $N: \mathbb{Z}[i\sqrt{3}] \to \mathbb{N}$ dada por $N(a+ib\sqrt{3}) = a^2 + 3b^2$ satisfaz N(zw) = N(z)N(w) para todos os $z, w \in \mathbb{Z}[i\sqrt{3}]$.
- (c) Determine as unidades de $\mathbb{Z}[i\sqrt{3}]$.
- (d) Mostre que o elemento $1 + i\sqrt{3}$ é irredutível mas não é primo (para mostrar que não é primo, considere o produto $(1 + i\sqrt{3})(1 i\sqrt{3})$).
- 57. Seja A um domínio de integridade. Suponha que A é um domínio de ideais principais isto é todo o ideal de A é um ideal principal. Sejam $a, b \in A \setminus \{0\}$.
 - (a) Justifique que existe $d \in A$ tal que (a) + (b) = (d) e que este elemento é único a menos de um fator invertível.
 - (b) Mostre que o elemento d da alínea anterior é um $m\'{a}ximo\ divisor\ comum$ de a e b, isto é:

$$d|a, d|b \in \forall x \in A, x|a \in x|b \Rightarrow x|d.$$