CPSC 471: Computer Communications

Network Performance

Figures from Computer Networks: A Systems Approach, version 6.02dev (Larry L. Peterson and Bruce S. Davie)

You may not distribute/post these lecture slides without written permission from Dr. Mike Turi, ECE Dept., California State University, Fullerton

Performance: Bandwidth/Throughput

- Also called data rate
- Number of bits that can be transmitted over the network in a certain period of time
 - E.g., 10 Mbps (Megabits per second or million bits per second)
 - Takes 0.1 µs (microsecond) to transmit each bit
- Mbits != MB
 - Mbits = 10⁶ bits per second
 - MB (megabyte) = 2²⁰ bits

Pulse Width of Bits

- (a) Bits transmitted at 1 Mbps
 - Each bit is 1 µs wide
- (b) Bits transmitted at 2 Mbps
 - Each bit is 0.5 µs wide

Bandwidth continued

- Analyze bandwidth of
 - Network as a whole
 - Single physical link
 - Logical process-to-process channel
 - Influenced by how often software that handles the channel must handle/transform the data

Bandwidth Definitions

- Bandwidth can also refer to range of signals that can be accommodated
 - Expressed in frequency
- Throughput: the measured performance of a system
 - E.g., A link with 10 Mbps may have a lower actual throughput
- Bandwidth Requirements
 - The number of bits per second an application needs to perform acceptably

Performance: Latency/Delay

- How long it takes a message to travel from source to destination
- Latency of
 - Single link
 - End-to-end channel
- Measured using time
 - Transcontinental network may have latency of 24 ms (one-way)
- Round-Trip Time (RTT) is often more useful

Components of Latency

- Speed of light propagation delay
 - Propagation delay: time for signal to propagate from one end of link to other
 - 3 x 10⁸ m/s in vacuum
 - 2.3 x 10⁸ m/s in a copper cable
 - 2 x 10⁸ m/s in an optical fiber
 - Propagation = Distance / Speed_of_Light

Components of Latency

- Transmit Delay
 - Amount of time it takes to transmit a unit of data
 - Transmit = Packet_Size / Bandwidth

- Queuing Delays
 - Switches usually need to store packets for some time before forwarding them on

Latency = Propagation + Transmit + Queue

Length of Bit Example

- How wide is a bit on a 100-Mbps link?
- Assume this link is a copper wire with a propagation speed of 2.3 x 10⁸ m/s

Solution to Length of Bit Example

• 100 Mbps link = $100 \times 10^6 \text{ bps} = 10^8 \text{ bits/s}$

- Therefore, 10-8 s/bit:
 - Each bit is 10-8 s or 10 ns wide

- If copper wire has a propagation speed of 2.3 x 10⁸ m/s:
 - 10^{-8} s/bit * 2.3×10^{8} m/s = 2.3 m/bit
- Each bit is 2.3 m long in this wire

Example Latency Problem

- Assume that hosts A and B are connected by a switch S: A-----B
- Assume that the links have a bandwidth of 1 Gbps and a propagation delay of 15 µs
- Assume that the switch is a store-andforward device and forwards the received packet 25 µs after receiving it
- Create a timeline of sending two consecutive 100,000-bit packets

Solution to Example Latency Problem (1/2)

- First, calculate the transmission delay:
 100,000 bits / 1 Gbps = 100 μs
- At t=0 μs: A starts transmitting Packet 1 to S
- At t=15 μs: 1st bit of Pkt 1 arrives at S
- At t=100 µs: A finishes transmitting Pkt 1 to S
 A starts transmitting Packet 2 to S
- At t=115 µs: Last bit of Pkt 1 arrives at S
 1st bit of Pkt 2 arrives at S
- At t=140 μs: S starts transmitting Pkt 1 to B

Solution to Example Latency Problem (2/2)

- At t=200 μs: A finishes transmitting Pkt2 to S
- At t=215 µs: Last bit of Pkt 2 arrives at S
- At t=240 μs: 1st bit of Pkt 1 arrives at B
 S finishes transmitting Pkt 1 to B
 S starts transmitting Pkt2 to B
- At t=255 µs: Last bit of Pkt 1 arrives at B
 1st bit of Pkt 2 arrives at B
- At t=340 μs: S finishes transmitting Pkt 2 to B
- At t=355 µs: Last bit of Pkt 2 arrives at B

Bandwidth and Latency Impact on Applications

Latency dominates for small messages

Bandwidth dominates for large messages

 Example: Consider message size for different applications

Figure 17

Delay x Bandwidth Product

- Number of bits that can be in transit (in flight) at a given instant
- How many bits the sender must transmit before the first bit arrives at the receiver
- Usually uses the RTT delay

Delay x Bandwidth Products

Link Type	Bandwidth	One-Way Distance	RTT	RTT x Bandwidth
Wireless LAN	54 Mbps	50 m	0.33 µs	18 bits
Satellite	1 Gbps	35,000 km	230 ms	230 Mb
Cross- country fiber	10 Gbps	4,000 km	40 ms	400 Mb

Table 1

Example Performance Problem

- Suppose a 128-kbps point-to-point link is set up between the Earth and a rover on Mars. Assume the distance between Earth and Mars is 55 million kilometers and data travels over the link at the speed of light (3 x 10⁸ m/s).
 - a. First, how quickly can a 5 MB image taken by the rover be transmitted to Earth?
 - b. Next, calculate the delay-bandwidth product for this link. Use the RTT of part a's delay.

Solution to Example Performance Problem (part a)

- a. One-way latency = Propagation Delay +
 Transmit Delay + Queuing Delay
 - Assuming Queuing Delay = 0 seconds
 - Prop. Delay = 55 x 10⁹ m / 3 x 10⁸ m/s
 Propagation Delay = 183.33 seconds
 - Image Size = 5 MB = 5 * 2²⁰ B = 5 * 1,048,576 B
 Image Size = 5,242,880 B * 8 bits/Byte
 = 41,943,040 b or approx. 41.9 Mb
 - Transmit Delay = 41,943,040 b / 128 x 10³ b/s
 = 327.68 s
 - One-way latency = 183.33 + 327.68 = 511.01 s
 or approx. 8.52 minutes

Solution to Example Performance Problem (part b)

- b. Delay-Bandwidth Product
 - RTT = 2 * One-way delay = 2 * 511.01 s
 = 1022.02 s or approx. 17.03 minutes
 - RTT * Bandwidth = 1022.02 s * 128 x 10³ b/s
 = 130,818,560 b or approx. 130.8 Mb
 = 16,352,320 B or approx. 15.59 MB

High-Speed Networks

- Bandwidth can increase for high-speed networks, but usually latency stays constant
 - Latency starts to dominate

Effective Throughput

Effective/Measured Throughput (end-to-end)= Transfer_Size / Transfer_Time

Transfer_Time =
RTT + 1/Bandwidth x Transfer Size

Application Performance Needs

- E.g., Video Applications
 - Have a resolution
 - E.g., ¼ of standard def. (352 x 240 pixels)
 - Have a color depth
 - E.g., 24-bit color
 - Requires 247.5 KB per frame
 - Have a frame rate
 - If frame rate is 30 fps, may need throughput rate of 75 Mbps

Average Bandwidth

- Can be misleading
- Example: An application has average bandwidth of 2 Mbps and the maximum channel bandwidth is 2 Mbps
 - What happens if application's actual bandwidth varies between 1 and 3 Mbps?

Peak Rate

- Need to know the peak rate or burst
- Can allocate storage/buffer capacity to handle a burst
 - Depends how large and how frequent the bursts are
- Need to consider queueing theory

Jitter

- Variation in latency
- A problem for video applications
- If spacing between packets (interpacket gap)
 varies, jitter is introduced into packet stream
 - Can happen due to different queuing delays

Figure 20