Example K-map simplification

- Let's consider simplifying f(x,y,z) = xy + y'z + xz.
- First, you should convert the expression into a sum of minterms form, if it's not already.
 - The easiest way to do this is to make a truth table for the function, and then read off the minterms.
 - You can either write out the literals or use the minterm shorthand.
- Here is the truth table and sum of minterms for our example:

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f(x,y,z) = x'y'z + xy'z + xyz' + xyz$$

= $m_1 + m_5 + m_6 + m_7$

Unsimplifying expressions

- You can also convert the expression to a sum of minterms with Boolean algebra.
 - Apply the distributive law in reverse to add in missing variables.
 - Very few people actually do this, but it's occasionally useful.

$$xy + y'z + xz = (xy \cdot 1) + (y'z \cdot 1) + (xz \cdot 1)$$

= $(xy \cdot (z' + z)) + (y'z \cdot (x' + x)) + (xz \cdot (y' + y))$
= $(xyz' + xyz) + (x'y'z + xy'z) + (xy'z + xyz)$
= $xyz' + xyz + x'y'z + xy'z$

- In both cases, we're actually "unsimplifying" our example expression.
 - The resulting expression is larger than the original one!
 - But having all the individual minterms makes it easy to combine them together with the K-map.

Making the example K-map

- Next up is drawing and filling in the K-map.
 - Put 1s in the map for each minterm, and 0s in the other squares.
 - You can use either the minterm products or the shorthand to show you where the 1s and 0s belong.
- In our example, we can write f(x,y,z) in two equivalent ways.

$$f(x,y,z) = x'y'z + xy'z + xyz' + xyz$$
 $f(x,y,z) = m_1 + m_5 + m_6 + m_7$

$$T(x,y,z) = m_1 + m_5 + m_6 + m_6$$

			,	y
	x'y'z'	x'y'z	x'yz	x'yz'
X	xy'z'	xy'z	xyz	xyz'

			\ \ \ \	/
	m_0	m_1	m_3	m_2
X	m ₄	m ₅	m ₇	m ₆
OW		Z	7	

• In either case, the resulting K-map is shown below.

			•	У
	0	1	0	0
X	0	1	1	1
·		Z	7	

K-maps from truth tables

- You can also fill in the K-map directly from a truth table.
 - The output in row i of the table goes into square m_i of the K-map.
 - Remember that the rightmost columns of the K-map are "switched."

Grouping the minterms together

- The most difficult step is grouping together all the 1s in the K-map.
 - Make rectangles around groups of one, two, four or eight 1s.
 - All of the 1s in the map should be included in at least one rectangle.
 - Do not include any of the Os.

- Each group corresponds to one product term. For the simplest result:
 - Make as few rectangles as possible, to minimize the number of products in the final expression.
 - Make each rectangle as large as possible, to minimize the number of literals in each term.
 - It's all right for rectangles to overlap, if that makes them larger.

Reading the MSP from the K-map

- Finally, you can find the MSP.
 - Each rectangle corresponds to one product term.
 - The product is determined by finding the common literals in that rectangle.

• For our example, we find that $xy + y'z \mathbb{Z}xz = y'z + xy$. (This is one of the additional algebraic laws from last time.)

Practice K-map 1

• Simplify the sum of minterms $m_1 + m_3 + m_5 + m_6$.

			>	/
	m_0	m_1	m ₃	m_2
X	m ₄	m ₅	m_7	m_6
		Z	<u>7</u>	

Solutions for practice K-map 1

- Here is the filled in K-map, with all groups shown.
 - The magenta and green groups overlap, which makes each of them as large as possible.
 - Minterm m_6 is in a group all by its lonesome.

• The final MSP here is x'z + y'z + xyz'.

Four-variable K-maps

- We can do four-variable expressions too!
 - The minterms in the third and fourth columns, and in the third and fourth rows, are switched around.
 - Again, this ensures that adjacent squares have common literals.

			У						\ \ \	/	_	
	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'				m_0	m_1	m ₃	m ₂	
	w'xy'z'	w'xy'z	w'xyz	w'xyz'				m ₄	m 5	m ₇	m ₆	
W	wxy'z'	wxy'z	wxyz	wxyz'	^_		W	m ₁₂	m ₁₃	m ₁₅	m ₁₄	
VV	wx'y'z'	wx'y'z	wx'yz	wx'yz'			VV	m ₈	m 9	m ₁₁	m ₁₀	
		Z	<u></u>				•		Z	7		-

- Grouping minterms is similar to the three-variable case, but:
 - You can have rectangular groups of 1, 2, 4, 8 or 16 minterms.
 - You can wrap around all four sides.

Example: Simplify $m_0 + m_2 + m_5 + m_8 + m_{10} + m_{13}$

• The expression is already a sum of minterms, so here's the K-map:

			>	/	_
	1	0	0	1	
	0	1	0	0	_
\A/	0	1	0	0	X
W	1	0	0	1	
		Z	7		

			\ \	/	
	m_0	m_1	m_3	m ₂	
	m ₄	m ₅	m_7	m_6	>
\A/	m_{12}	m ₁₃	m ₁₅	m ₁₄	X
W	m ₈	m ₉	m ₁₁	m ₁₀	
		Z	7		

• We can make the following groups, resulting in the MSP x'z' + xy'z.

			>	/	_
_	1	0	0	1	
	0	1	0	0	\
\ A /	0	1	0	0	^
W -	1	0	0	1	
·		7	7		-

			`	/	_
	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
	w'xy'z'	w'xy'z	w'xyz	w'xyz'	X
\4/	wxy'z'	wxy'z	wxyz	wxyz'	
W -	wx'y'z'	wx'y'z wx'yz		wx'yz'	
		Z	7		_

K-maps can be tricky!

• There may not necessarily be a unique MSP. The K-map below yields two valid and equivalent MSPs, because there are two possible ways to include minterm m_7 .

Remember that overlapping groups is possible, as shown above.

Prime implicants

- The challenge in using K-maps is selecting the right groups. If you don't minimize the number of groups and maximize the size of each group:
 - Your resulting expression will still be equivalent to the original one.
 - But it won't be a *minimal* sum of products.
- What's a good approach to finding an actual MSP?
- First find all of the largest possible groupings of 1s.
 - These are called the prime implicants.
 - The final MSP will contain a subset of these prime implicants.
- Here is an example Karnaugh map with prime implicants marked:

Essential prime implicants

- If any group contains a minterm that is not also covered by another overlapping group, then that is an essential prime implicant.
- Essential prime implicants must appear in the MSP, since they contain minterms that no other terms include.
- Our example has just two essential prime implicants:
 - The red group (w'y') is essential, because of m_0 , m_1 and m_4 .
 - The green group (wx'y) is essential, because of m_{10} .

Covering the other minterms

- Finally pick as few other prime implicants as necessary to ensure that all the minterms are covered.
- After choosing the red and green rectangles in our example, there are just two minterms left to be covered, m_{13} and m_{15} .
 - These are both included in the blue prime implicant, wxz.
 - The resulting MSP is w'y' + wxz + wx'y.
- The black and yellow groups are not needed, since all the minterms are covered by the other three groups.

Practice K-map 2

Simplify for the following K-map:

Solutions for practice K-map 2

Simplify for the following K-map:

All prime implicants are circled.

Essential prime implicants are xz', wx and yz.

The MSP is xz' + wx + yz. (Including the group xy would be redundant.)

I don't care!

- You don't always need all 2ⁿ input combinations in an n-variable function.
 - If you can guarantee that certain input combinations never occur.
 - If some outputs aren't used in the rest of the circuit.
- We mark don't-care outputs in truth tables and K-maps with Xs.

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	X
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	X
1	. 1	1	1

 Within a K-map, each X can be considered as either 0 or 1. You should pick the interpretation that allows for the most simplification.

Example: Seven Segment Display

Input: digit encoded as 4 bits: ABCD

$$f / \frac{a}{b}$$

$$e / \frac{g}{c}$$

Table for e

Assumption: Input represents a legal digit (0-9)

d

CD AB	00	01	11	10
00	1	0	0	1
01	0	0	0	1
11	X	X	X	X
10	1	0	X	X

June 17, 2002

Basic circuit analysis and design

	Α	В	С	D	e
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	1 0
8	1	0	0	0	1
9	1	0	0	1	0
X					X
X					X
X					X
X					X
1 2 3 4 5 6 7 8 9 X X X X					0 X X X X X X
X					X

Example: Seven Segment Display

$$A + C + BD + B'D'$$

June 17, 2002

Basic circuit analysis and design

	Α	В	C	D	a
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
1 2 3 4 5	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
X					X
X					X
X					X
X					X
6 7 8 9 X X X X					X X X X X 19
X					X

Practice K-map 3

Find a MSP for

$$f(w,x,y,z) = \sum m(0,2,4,5,8,14,15), d(w,x,y,z) = \sum m(7,10,13)$$

This notation means that input combinations wxyz = 0111, 1010 and 1101 (corresponding to minterms m_7 , m_{10} and m_{13}) are unused.

				У	
	1	0	0	1	
	1	1	X	0	_
W	0	X	1	1	
	1	0	0	X	
		Z	7		_

Solutions for practice K-map 3

Find a MSP for:

$$f(w,x,y,z) = \sum m(0,2,4,5,8,14,15), d(w,x,y,z) = \sum m(7,10,13)$$

All prime implicants are circled. We can treat X's as 1s if we want, so the red group includes two X's, and the light blue group includes one X.

The *only* essential prime implicant is x'z'. The red group is not essential because the minterms in it also appear in other groups.

The MSP is x'z' + wxy + w'xy'. It turns out the red group is redundant; we can cover all of the minterms in the map without it.

Summary

- K-maps are an alternative to algebra for simplifying expressions.
 - The result is a *minimal sum of products*, which leads to a minimal two-level circuit.
 - It's easy to handle don't-care conditions.
 - K-maps are really only good for manual simplification of small expressions... but that's good enough for CS231!
- Things to keep in mind:
 - Remember the correct order of minterms on the K-map.
 - When grouping, you can wrap around all sides of the K-map, and your groups can overlap.
 - Make as few rectangles as possible, but make each of them as large as possible. This leads to fewer, but simpler, product terms.
 - There may be more than one valid solution.