Formal Languages Simplifications of CFGs

A Substitution Rule

$$S \rightarrow aB$$
 $A \rightarrow aaA$
 $A \rightarrow abBc$
 $B \rightarrow aA$

Equivalent grammar

$$S \rightarrow aB \mid ab$$
 $A \rightarrow aaA$
 $A \rightarrow abBc \mid abbc$
 $B \rightarrow aA$

A Substitution Rule

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

Substitute

$$B \rightarrow aA$$

$$S \rightarrow aB \mid ab \mid aaA$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc \mid abaAc$$

Equivalent grammar

In general:

$$A \rightarrow xBz$$

$$B \rightarrow y_1$$

Substitute
$$B \rightarrow y_1$$

$$A \rightarrow xBz \mid xy_1z$$

equivalent grammar

Language?

Nullable Variables

$$\lambda$$
 – production:

$$A \rightarrow \lambda$$

Nullable Variable:

$$A \Rightarrow \ldots \Rightarrow \lambda$$

Removing Nullable Variables

Example Grammar:

$$S \to aMb$$

$$M \to aMb$$

$$M \to \lambda$$

Nullable variable

Final Grammar

$$S \to aMb$$

$$M \to aMb$$

$$M \to \lambda$$

Substitute
$$M \rightarrow \lambda$$

$$S \rightarrow aMb$$
 $S \rightarrow ab$
 $M \rightarrow aMb$
 $M \rightarrow ab$

Unit-Productions

Unit Production:
$$A \rightarrow B$$

(single variables on both sides)

Removing Unit Productions

Observation:

$$A \rightarrow A$$

Is removed immediately

Example Grammar:

$$S \rightarrow aA$$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A$
 $B \rightarrow bb$

$$S \to aA$$

$$A \to a$$

$$A \to B$$

$$B \to A$$

$$B \to bb$$

$$S \to aA \mid aB$$

$$A \to a$$

$$B \to A \mid B$$

$$B \to bb$$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A$
 $B \rightarrow bb$
 $S \rightarrow aA \mid aB \mid aA$
 $Substitute$
 $S \rightarrow aA \mid aB \mid aA$
 $A \rightarrow a$
 $B \rightarrow bb$

Remove repeated productions

$$S \to aA \mid aB \mid aA$$

$$A \to a$$

$$B \to bb$$

$$S \to aA \to a$$

$$A \to a \to a$$

Final grammar

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow bb$$

Language?

Useless Productions

$$S oup aSb$$

$$S oup \lambda$$

$$S oup A$$

$$A oup aA$$
 Useless Production

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa...aA \Rightarrow ...$$

Another grammar:

$$S o A$$
 $A o aA$
 $A o \lambda$
 $B o bA$ Useless Production

Not reachable from 5

In general:

contains only terminals

if
$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w$$

$$w \in L(G)$$

then variable A is useful

otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless

$$S \to aSb$$

$$S \to \lambda \qquad \text{Productions}$$

$$Variables \qquad S \to A \qquad \text{useless}$$

$$useless \qquad A \to aA \qquad \text{useless}$$

$$useless \qquad B \to C \qquad \text{useless}$$

$$useless \qquad C \to D \qquad \text{useless}$$

Removing Useless Productions

Example Grammar:

$$S \rightarrow aS \mid A \mid C$$
 $A \rightarrow a$
 $B \rightarrow aa$
 $C \rightarrow aCb$

Remove useless productions

First: find all variables that can produce strings with only terminals

$$S
ightharpoonup aS \mid A \mid C$$
 Round 1: $\{A, B\}$

$$S
ightharpoonup A
ightharpoonup a$$

$$S
ig$$

Keep only the variables that produce terminal symbols: $\{A,B,S\}$

(other variables are useless)

$$S \to aS \mid A \mid \mathcal{C}$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Remove useless productions

Second: Find all variables reachable from S

Use a Dependency Graph

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

(B)

not reachable

Keep only the variables reachable from S

(the other variables are useless)

Final Grammar

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

$$S \to aS \mid A$$

$$A \to a$$

Remove useless productions

Removing All

Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

Normal Forms for Context-free Grammars

Chomsky Normal Form

Each production has form:

Examples:

$$S \to AS$$
$$S \to a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky
Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Conversion to Chomsky Normal Form

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

Not Chomsky Normal Form

Introduce variables for terminals: T_a, T_b, T_c

Introduce intermediate variable: V_1

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable:

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}V_{2}$$

$$V_{2} \to T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Final grammar in Chomsky Normal Form:

$$S \to AV_1$$

$$V_1 \to BT_a$$

$$A \to T_aV_2$$

$$V_2 \to T_aT_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

$$T_c \to c$$

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain:

An equivalent grammar in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

Then, for every symbol a:

Add production
$$T_a \rightarrow a$$

In productions: replace $\,a\,\,$ with $\,T_a\,\,$

New variable: T_a

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A \rightarrow C_1 V_1$$
 $V_1 \rightarrow C_2 V_2$ $V_{n-2} \rightarrow C_{n-1} C_n$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Chomsky Normal Form

Observations

 Chomsky normal forms are good for parsing and proving theorems

• It is very easy to find the Chomsky normal form for any context-free grammar

exercise

Find CNF for this grammar:

 $S -> 0A0 \mid 1B1 \mid BB$

 $A \rightarrow C$

 $B \rightarrow S \mid A$

 $C \rightarrow S$ | epsilon

(exercise 7.1.3, Hopcroft, Motwani, Ullman)

Greibach Normal Form

All productions have form:

Examples:

$$S \rightarrow cAB$$

 $A \rightarrow aA \mid bB \mid b$
 $B \rightarrow b$

$$S \to abSb$$
$$S \to aa$$

Not Greibach Normal Form

Conversion to Greibach Normal Form:

$$S o abSb$$
 $S o aa$ T_bST_b $S o aT_a$ $T_a o a$ $T_b o b$ S Greibach Normal Form

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Greibach Normal Form

Observations

 Greibach normal forms are very good for parsing

• It is hard to find the Greibach normal form of any context-free grammar

Try to compute Greibach Normal Form for grammar in CNF example

Compilers

Machine Code

Program

```
v = 5;
if (v>5)
  x = 12 + v
while (x !=3) {
 x = x - 3:
 v = 10;
```

Compiler

Add v,v,0 cmp v,5 jmplt ELSE THEN: add x, 12, v ELSE: WHILE: cmp x,3

Compiler Lexical parser analyzer input output machine program

A parser knows the grammar of the programming language

Parser

```
PROGRAM → STMT_LIST

STMT_LIST → STMT; STMT_LIST | STMT;

STMT → EXPR | IF_STMT | WHILE_STMT

| { STMT_LIST }
```

EXPR → EXPR + EXPR | EXPR - EXPR | INT

IF_STMT → if (EXPR) then STMT

| if (EXPR) then STMT else STMT

WHILE_STMT → while (EXPR) do STMT

The parser finds the derivation of a particular input

derivation tree

derivation

derivation tree

Parsing

Example:

Parsing algorithm?

Exhaustive Search

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Longrightarrow SS$$

Find derivation of aabb

$$S \Rightarrow aSb$$

$$S \Longrightarrow bSa$$

$$S \Longrightarrow \lambda$$

All possible derivations of length 1

$$S \Rightarrow SS$$

$$S \Rightarrow aSb$$

$$S \Rightarrow bSa$$

$$S \Rightarrow \lambda$$

aabb

Phase 2
$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

aabb

Phase 1

$$S \Rightarrow SS \Rightarrow bSaS$$

+2 more

$$S \Longrightarrow SS$$

$$S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

$$S \Rightarrow aSb \Rightarrow abSab$$

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Longrightarrow SS \Longrightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

$$S \Longrightarrow SS \Longrightarrow S$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

Phase 3

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

Final result of exhaustive search (top-down parsing)

Is exhaustive search a good parsing algorithm?

Time complexity of exhaustive search

Suppose there are no productions of the form

$$A \rightarrow \lambda$$

$$A \rightarrow B$$

Number of phases for string w: 2|w|

For grammar with k rules

Time for phase 1: k

k possible derivations

Time for phase 2: k^2

 k^2 possible derivations

Time for phase
$$2|w|$$
: $k^{2|w|}$

 $k^{2|w|}$ possible derivations

Total time needed for string w:

Extremely bad!!!

There exist faster algorithms for specialized grammars

Pair (A,a) appears once

S-grammar example:

$$S \to aS$$

$$S \to bSS$$

$$S \to c$$

Each string has a unique derivation

$$S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcc$$

For S-grammars:

In the exhaustive search parsing there is only one choice in each phase

Time for a phase: 1

Total time for parsing string w: |w|

For general context-free grammars:

There exists a parsing algorithm that parses a string |w| in time $|w|^3$

(we will show this in the next class)

The CYK Parser

The CYK Membership Algorithm

Input:

 \cdot Grammar G in Chomsky Normal Form

String W

Output:

find if
$$w \in L(G)$$

The Algorithm

Input example:

• Grammar
$$G\colon S\to AB$$

$$A\to BB$$

$$A\to a$$

$$B\to AB$$

• String w: aabbb

aabbb

a

a

b

bb

79

aa

aab

aabb

aabbb

ab

abb

abbb

bbb

bb

$S \rightarrow AB$

$$A \rightarrow BB$$

$$A \rightarrow a$$

 $B \rightarrow AB$

 $B \rightarrow b$

a A

ab

B

B

bb

B

aabb

aa

aab

abb

bbb

bb

abbb

aabbb

80

$S \rightarrow AB$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \to AB$$

$$B \rightarrow b$$

a	α	b	b	b
A	A	В	В	В
aa	ab	bb	bb	
	S,B	A	A	

bbb

abbb aabb

abb

aabbb

aab

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

$$A \rightarrow a$$

$$A \rightarrow b \rightarrow b$$

$$A \rightarrow A \rightarrow A$$

$$A \rightarrow A$$

Therefore: $aabbb \in L(G)$

Time Complexity:
$$|w|^3$$

Observation: The CYK algorithm can be easily converted to a parser (bottom up parser)

The following slides are courtesy of Professor Papp, University of Debrecen.

exercise

Parse "baaba" for this grammar

(Hopcroft, Motwani, Ullman, p301)