Урок №8

Текстовое ранжирование

(основано на слайдах Андрея Калинина, Hinrich Schütze, Christina Lioma)

Содержание занятия

- 1. Ранжированный поиск
- 2. Взвешивание документов относительно запроса
- 3. Частоту терминов
- 4. Статистику корпуса
- 5. Варианты взвешивания
- 6. Векторное пространство

Ранжированный поиск

Ранжированный поиск

- До сих пор все запросы были булевскими
 - Документ подходит или нет.
- Ориентировано на экспертов, знающих что они хотят и понимающих, как это найти в корпусе.
 - Хорошо для автоматического использования. Программа может обработать хоть тысячу результатов!
- Но плохо для обычных пользователей.
 - Простые люди не могут или не хотят писать булевские запросы.
 - Большинство не хочет исследовать тысячи результатов.
 - Особенно в веб-поиске!

Булев поиск: то пусто, то густо

- Булевские запросы часто возвращают или очень мало (=0) или очень много (1000) результатов.
- Запрос 1: [standard user dlink 650] → 200,000 результатов
- 3anpoc 2: [standard user dlink 650 no card found] \rightarrow 0 результатов
- Требуется опыт, чтобы придумать запрос, по которому будет возвращено разумное количество результатов.
 - AND мало; OR много

Модели ранжированного поиска

- Вместо того, чтобы вернуть набор документов, удовлетворяющих запросу, в моделях ранжированного поиска возвращается перестановка документов в соответствии со степенью их соответствию запросу.
- Запросы на естественном языке: вместо использования в запросе формального языка из операторов и выражений, запрос состоит из слов естественного языка.
- Вообще, это два разных подхода к поиску, но на практике они часто используются вместе.

Пусто или густо: не проблема для ранжированного поиска!

- Когда поиск возвращает отсортированный набор результатов,
 - большое количество результатов не вызывает затруднений
 - Размер не имеет значения!
 - Просто покажем верхние k (≈ 10) результатов
 - Не будем ошеломлять пользователя количеством
 - Но: алгоритм ранжирования должен работать

Взвешивание как основа ранжированного поиска

- Мы хотим вернуть документы в порядке, соответствующем наибольшей полезности для пользователя.
- Как можно отранжировать документы по их соответствию запросу?
- Назначить вес например из [0, 1] каждому документу
- Вес определяет насколько хорошо документ соответствует запросу.

Вычисление веса

- Нужен способ назначения веса паре запрос-документ;
- Начнём с запроса из одного термина;
- Если термина нет в документе, то вес равен 0;
- Чем чаще встречается термин в документе, тем выше вес;
- Мы изучим в дальнейшем альтернативные подходы к этой схеме.

Первый подход: Коэффициент Жаккара

- Вспомним: Мера пересечения двух множеств, А и В
- jaccard(A,B) = |A ∩ B| / |A ∪ B|
- jaccard(A,A) = 1
- jaccard(A,B) = 0 if $A \cap B = 0$
- А и В могут быть разного размера.
- Возвращает число между 0 и 1.

Коэффициент Жаккара: пример использования

- Чему будет равен коэффициент Жаккара для следующих двух документов?
- 3anpoc: [ides of march]
- Документ 1: caesar died in march
- Документ 2: the long march

Недостатки ранжирования коэффициентом Жаккара

- Не учитывается частота термина (term frequence, сколько раз термин был использован в документе)
- Редкие термины (относительно корпуса) более информативны, чем частотные. Коэффициент Жаккара не использует эту информацию.
- Нужен более качественный способ нормирования по длине документов
- В дальнейшем будем использовать
- ...вместо | A \cap B| / | A \cup B| для целей нормирования.

Матрица терминов-документов

Каждый документ представляется вектором ∈ {0,1}|V|

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Частотная матрица

- Рассмотрим количество вхождений термина в документ
 - Каждый документ вектор счётчиков \mathbb{N}^{v} : столбец ниже

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Модель мешка слов

- Такое представление не учитывает относительный порядок слов в документе
- [John is quicker than Mary] и [Mary is quicker than John] получат одинаковые вектора
 - Это не так для русского языка с сохранением форм: [Вася быстрее Маши] и [Маша быстрее Васи]
 - Но: [Мать любит дочь] и [Дочь любит мать]. Кто кого тут любит?
- Это модель мешка слов.
- Вообще-то, это шаг назад: координатный индекс может различить такие документы.
- Вернёмся к использованию координатной информации позже.
- Дальше работаем с моделью мешка слов.

Частота термина, tf

- Частота термина tf_{t,d} термина t в документе d определяется как количество раз, сколько t встречается в d.
- Хотим использовать tf при расчёте весов. Но как?
- Просто частота не то, что мы хотим:
 - Документ с 10 вхождениями релевантнее документа с 1 вхождением.
 - Но не в 10 раз же?
- Релевантность не увеличивается пропорционально частоте.

Логарифмическое взвешивание

• Логарифмическая частота термина t в d:

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0$, $1 \to 1$, $2 \to 1.3$, $10 \to 2$, $1000 \to 4$, и т.д.
- Вес для пары запрос-документ: сумма по терминам t, входящих в q и d:
- $= \sum_{t \in a \cap d} (1 + \log t f_{t,d})$
- Вес равен 0 если в документе нет ни одного термина из запроса.

Документная частота

- Редкие термины информативнее частотных
 - Стоп-слова!
- Рассмотрим термин запроса, который редко встречается в корпусе (например, [arachnocentric] или [параскаведекатриафобия])
- Любой документ, содержащий в себе этот термин, скорее всего будет релевантен запросу [arachnocentric]
- \rightarrow To есть, мы хотим давать больший вес терминам вроде [arachnocentric].

Документная частота

- И наоборот: частотные термины менее информативны чем редкие
- Рассмотрим термин запроса, который часто встречается в корпусе (например, high, increase, line)
- Документ, в который входит такой термин, скорее всего более релевантен запросу, чем документ, в который этот термин не входит
- Но это не характеристический признак релевантного документа.
- ullet ightarrow Нам нужны большие веса для слов типа high, increase, and line
- Но эти веса должны быть меньше, чем у редких терминов.
- Будем использовать документную частоту (df) чтобы поймать этот признак.

idf

- df_t <u>документная</u> частота термина t: количество документов, содержащих t
 - df $_{\scriptscriptstyle +}$ обратная мера информативности t
 - $df_{+} \leq N$
- Определим idf (inverse document frequency) термина t как

$$idf_t = \log_{10} (N/df_t)$$

– Мы используем $log(N/df_t)$ вместо N/df_t чтобы смягчить эффект от использования idf.

Пример idf, N = 1 миллион

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = \log_{10} (N/df_t)$$

IDF в ранжировании

- Значим ли IDF для запросов из одного термина:
 - iPhone
- IDF не влияет на однословные запросы:
 - IDF влияет на ранжирование запросов из двух и более слово
 - Для запроса [capricious person], взвешивание по IDF приводит к тому, что термин [capricious] вкладывает больше в окончательное ранжирование, чем термин [person].

Корпусная и документная частоты

- Корпусная частота термина t это количество вхождений термина t в корпусе.
- Например:

Слово	Корпусная частота	Документная частота
insurance	10440	3997
try	10422	8760

• Какое слово лучше использовать в поиске (придав ему больший вес)?

Взвешивание tf-idf

• Вес термина tf-idf это произведение его весов tf и idf:

$$\mathbf{w}_{t,d} = (1 + \log t \mathbf{f}_{t,d}) \times \log_{10}(N/d\mathbf{f}_t)$$

- Самая известная модель взвешивания в информационном поиске
 - Учтите: "-" в tf-idf это дефис, а не математический знак!
 - Ещё называют: tf.idf, tf x idf
- Возрастает с ростом количества вхождений в документ
- Возрастает со степенью редкости термина

Окончательная формула ранжирования

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

Булевская \rightarrow частотная \rightarrow весовая матрица

Каждый документ представляется вектором вещественных весов $\mathsf{tf}\text{-}\mathsf{idf} \subseteq \mathsf{R}^{|\mathsf{V}|}$

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Документы как вектора

- Итак, у нас есть |V|-размерное векторное пространство
- Термины оси этого пространства
- Документы точки или вектора
- Размерность пространства очень высока: десятки миллионов измерений для веб-поиска
- Вектора разрежены, большая часть координат нулевая

Запросы как вектора

- Идея 1: Теперь проделаем то же самое для запроса.
- Идея 2: Будем ранжировать документы в соответствии с их близостью к запросу в векторном пространстве
- близость = похожесть векторов
- близость ≈ обратно к расстоянию

Определим близость в векторном пространстве

- Например: расстояние между двумя точками
 - (= расстояние между конечными точками векторов)
- Евклидово расстояние?
- Не очень хорошая идея...
- ... потому что оно велико для векторов разной длины.

Почему не стоит использовать евклидово расстояние

MAU

- Евклидово расстояние между
- и d2 велико, хотя распределение терминов запроса фи распределение терминов в документе d2 очень похожи.

Угол вместо расстояния

- Проведём мысленный эксперимент: возьмём документ d и добавим его к самому себе. Получим документ d';
- Оба документа d и d' с точки зрения смысла или информации абсолютно одинаковы;
- Евклидово же расстояние будет очень велико;
- А вот угол между двумя векторами будет равен 0, т.е. оба документа будут максимально совпадающими;
- Идея: Ранжировать документы по их углу от запроса.

От углов к косинусам

- Эти два утверждения эквивалентны.
 - Расположить документы в <u>убывающем</u> порядке угла между запросом и документов
 - Расположить документы в возрастающем порядке соѕ(запрос, документ)
- Косинус монотонно убывает в интервале [0°, 180°]

От углов к косинусам

• Но как– и почему – мы должны рассчитывать косинусы?

Нормирование по длине

 Вектор может быть нормирован делением каждой его компоненты на его длину в L2:

$$\left\|\vec{x}\right\|_2 = \sqrt{\sum_i x_i^2}$$

- В результате получаем единичный вектор (расположен на единичной гиперсфере)
- Для рассмотренных ранее документов d и d' (d добавленный к себе) их нормированные варианты будут одинаковыми.
 - Теперь длинные и короткие документы имеют сравнимые веса.

cos(запрос,документ)

- q_i tf-idf i-го термина в запросе
- d_i tf-idf i-го термина в документе

Косинус для нормированных векторов

• Для нормализованных векторов это просто скалярное произведение:

$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

если q и d нормированы.

Пример

RICH

Схожесть трёх документов

 Насколько похожи друг на друга три повести:

SaS: Sense and Sensibility

PaP: Pride and Prejudice, and

WH: Wuthering Heights?

термин	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Частоты терминов

Нормирование по длине

Логарифмирование

термин	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

Нормировка

термин	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

$$\cos(\text{SaS,PaP}) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94$$

$$cos(SaS,WH) \approx 0.79$$

$$cos(PaP,WH) \approx 0.69$$

Вычисление весов-косинусов

10


```
CosineScore(q)
 float Scores[N] = 0
float Length[N]
for each query term t
 do calculate w_{t,q} and fetch postings list for t
     for each pair(d, tf_{t,d}) in postings list
     do Scores[d] + = w_{t,d} \times w_{t,a}
Read the array Length
for each d
 do Scores[d] = Scores[d]/Length[d]
```

return Top *K* components of *Scores*[]

Разные варианты взвешивания tf-idf

• Почему основа логарифма в IDF не существенна?

Term frequency		Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2+w_2^2++w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\text{max}\{0, \text{log} \frac{\textit{N} - \mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$					

Веса могут отличаться для запросов и документов

- Много поисковых систем используют разные веса для запросов и документов
- Нотация ddd.qqq показывает выбранную схему с использованием сокращений из предыдущей таблицы
- Традиционная схема: Inc.ltc
- Документ: логарифмированный tf (I первый символ), без IDF и нормирования
- Запрос: логарифмированный tf, idf (t во второй позиции), без нормирования ...

Пример tf-idf: Inc.ltc

- Документ: car insurance auto insurance
- 3anpoc: best car insurance

Термин	Запрос						Доку	иент		Prod	
	tf-ra w	tf- wt	df	idf	wt	n'lize	tf-ra w	tf-w t	wt	n'lize	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Длина документа =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Bec =
$$0+0+0.27+0.53 = 0.8$$

Итого: ранжирование в векторном пространстве

- Представим запрос в виде вектора tf-idf
- Представим каждый документ в виде вектора tf-idf
- Вычислим косинус между каждым документом и запросом
- Отсортируем документы по полученным весам
- Вернём верхние К документов (например, К = 10) пользователю

Введение в информационный поиск | Маннинг Кристофер Д., Шютце Хайнрих

Рекомендуемая литература

Для саморазвития (опционально) <u>Чтобы не набирать двумя</u> <u>пальчиками</u>

Спасибо за внимание!

Антон Кухтичев

