Probabilidad - II 2024 Universidad Nacional de Colombia - Nov 06

Tutor: Carlos E. Alonso-Malaver.

ö. Para masticar-rumiar:

La Esperanza es pasiva El Deseo es constructivo. Gabriel Rolón - Argentina

Probabilidad

1. Independencia

Ejemplo 1:

- E: Lanzamiento de un dado, dos veces
- $\bullet \ \Omega = \{\omega_{\scriptscriptstyle 1}, \ldots, \omega_{\scriptscriptstyle 36}\}, \, \mathfrak{F} = 2^{\Omega}$
- A: sale 3 en el primer lanzamiento.
- B: sale 5 en el segundo lanzamiento.
- Halla P(A), P(B) y compara $P(A \cap B)$ con P(A) * P(B).

Ejemplo 2:

- E: Selección de una carta. Mazo de cartas de poker.
- $\quad \blacksquare \ \Omega = \{\omega_{\scriptscriptstyle 1}, \dots, \omega_{\scriptscriptstyle 52}\}, \, \mathfrak{F} = 2^{\Omega}$
- C: sale una carta de pinta negra.
- D: sale una letra $\{J, K, Q\}$.
- Halla P(C), P(D) y compara $P(C \cap D)$ con P(C) * P(D).

2. Independencia: Definición

- Soporte $(\Omega, \mathfrak{F}, P)$
- Dados $A, B \in \mathfrak{F}$
- \blacksquare Se dice que $\{A,B\}$ son independientes sii

$$P(A \cap B) = P(A)P(B)$$

■ Más adelante volveremos sobre éste ítem.

3. Independencia \neq Disyunción

- Asume $(\Omega, \mathfrak{F}, P)$ con $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, $\mathfrak{F} = 2^{\Omega}$ y P caracterizada por $\frac{1}{4} = P(\{\omega_i\})$, i = 1, 2, 3, 4.
- \bullet Si definimos $A:=\{\omega_{\scriptscriptstyle 1},\omega_{\scriptscriptstyle 2}\},\,B:=\{\omega_{\scriptscriptstyle 1},\omega_{\scriptscriptstyle 3}\}$ y $C:=\{\omega_{\scriptscriptstyle 4}\}$
- Entonces:
 - $\{A,B\}$ comparten elementos y son independientes, verifica $P(A\cap B)=P(A)P(B)$
 - $\{A, C\}$ **NO** comparten elementos y son Dependientes. Verifica $P(A \cap C) \neq P(A)P(C)$, análogo ocurre con $\{B, C\}$.

Ejercicios 3 y 5, Pág. 50, Degroot.

4. **Proposición**: Trabajando sobre $(\Omega, \mathfrak{F}, P)$, si $\{A, B\} \subset \mathfrak{F}$ son independientes, entonces $\{A, B^c\}$ son independientes.

Observa: $P(A) = P(AB) + P(AB^c)$, de donde:

$$P(AB^{c}) = P(A) - P(AB) = P(A) - P(A)P(B)$$

= $P(A) [1 - P(B)] = P(A)P(B^{c})$

De lo anterior se tiene que si A,B son eventos independientes entonces:

- \bullet A y B^c son eventos independientes.
- A^c y B son eventos independientes.
- $A^c y B^c$ son eventos independientes.

5. Independencia dos o más Eventos

- Soporte $(\Omega, \mathfrak{F}, P)$
- \bullet Dada la secuencia $\{A_{\scriptscriptstyle 1},A_{\scriptscriptstyle 2},\ldots,A_{\scriptscriptstyle K}\}\subset \mathfrak{F}$
- Se dice que $\{A_1, A_2, \ldots, A_K\}$ son eventos independientes si dados $\{A_{j_1}, A_{j_2}, \ldots, A_{j_s}\}$ con $\{j_1, j_2, \ldots, j_s\} \subset \{1, 2, \ldots, K\}$ se tiene:

$$P(A_{j_1} \cap A_{j_2} \cap \ldots \cap A_{j_s}) = \prod_{i=1}^{s} P(A_{j_i})$$

Indepencia dos a dos vs Independencia

- De nuevo, trabajando con $(\Omega, \mathfrak{F}, P)$ con $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}, \mathfrak{F} = 2^{\Omega}$ y P caracterizada por $\frac{1}{4} = P(\{\omega_i\}), i = 1, 2, 3, 4.$
- \bullet Si definimos $A:=\{\omega_{\scriptscriptstyle 1},\omega_{\scriptscriptstyle 2}\},\,B:=\{\omega_{\scriptscriptstyle 1},\omega_{\scriptscriptstyle 3}\}$ y $C:=\{\omega_{\scriptscriptstyle 1},\omega_{\scriptscriptstyle 4}\}$
- Entonces:
 - $\{A, B\}$, $\{A, C\}$ y $\{B, C\}$ son independientes dos a dos, verifica (Son Independientes dos a dos).
 - pero $\{A, B, C\}$ **NO** son independientes, Por qué?.
- Ejemplo 3, Pág. 47, Degroot Un máquina produce ítems defectuosos (D) con una tasa $p \in (0,1)$, si se seleccionarán seis ítems de forma independiente, halla la probabilidad de:
 - Observar el arreglo (D, ND, D, ND, ND, ND).
 - Observar dos artículos defectuosos.
- Ejemplo 4, Pág. 48, Degroot. Se lanza de una moneda, con $P(C) = p \in (0, 1)$, hasta obtener la primera cara=C. Halla la probabilidad de necesitar exactamente cuatro lanzamientos para obtener la primera cara.
- Ejercicio 5, Pág. 55, Degroot Asume se tiene un juego en el que la probabilidad de ganar es ¹/₅₀. Si una persona juega 50 veces éste juego cuál es la probabilidad de que gane al menos una vez.

Probabilidad Condicional

1. Ejemplo 6: Asume se tiene un experimento en el cual se observó la aparición de Infarto al Miocardio a 22071 personas¹, quienes fueron asignados al azar a tratamiento, ó, a control (Uso de Aspirina vs Placebo).

	Infarto de Miocardio			
	At. Fatal	At. No Fatal	No Ataque	Total
Placebo	18	171	10845	11034
Aspirina	5	99	10933	11037

A partir de los datos anteriores, dos preguntas relevantes son:

- Probabilidad de Ataque al Miocardio dentro de las personas que tomaron placebo.
- Probabilidad de Ataque al Miocardio dentro de las personas que tomaron Aspirina.
- Posteriormente lo lógico es comparar. Lo anterior, a partir de probabilidad, así²:
 - Asume que de las 22071 personas en la tabla anterior se escoge una al azar, y define:
 - o A: La persona elegida padeció un Ataque al Miocardio.
 - \circ B: La persona elegida tomó Placebo.
 - $\circ~C\colon {\rm La}$ persona elegida tomó Aspirina.
 - P(A|B): Se debe leer-entender, como la probabilidad del evento A, asumiendo que el evento B ya sucedió (pasado).
 - De lo anterior, en el problema:
 - o P(A|B): Probabilidad de Ataque al Miocardio, dado que se conoce que la persona elegida tomó Placebo.
 - o P(A|C): Probabilidad de Ataque al Miocardio, dado que se conoce que la persona elegida tomó Aspirina.
 - $P(A|B) = \frac{18+171}{11034} = \frac{P(A \cap C)}{P(C)} \approx 0.0171$
 - $P(A|C) = \frac{5+99}{11037} = \frac{P(A \cap C)}{P(C)} \approx 0.0094$
 - Piensa en qué dice la cantidad³: $\lambda = \frac{P(A|B)}{P(A|C)} \approx 1.82$

¹Agresti (2012)

²Luego podemos hablar del OR.

³Riesgo Relativo Directo.

- 2. Ejemplo 7: para rumiar: Pensemos en la siguiente situación:
 - Se va a seleccionar una carta de una baraja de poker (13 simbolos 1-10 y J,K,Q, en cuatro palos).
 - Inicialmente tú apuestas \$10 a que sale el 7 de picas, ¿Cuál es tu probabilidad de ganar?
 - El Tallador saca la carta la mira y dice salió (tiempo pasado), un número par
 - Luego del anuncio del tallador, ¿cuál es la probabilidad de ganar dada tu apuesta inicial?

3. Ejemplo 8:

- Piensa que tú entras en un juego den el que se lanzarán dos dados.
- Inicialmente tú apuestas \$10 a que la suma es un número menor a 7, ¿Cuál es tu probabilidad de ganar?
- Se lanza el primer dado y sale 4, ¿cuál es la probabilidad de que ganes?
- 4. **Definición-**Probabilidad Condicional: Dados dos eventos, i.e. trabajando sobre $(\Omega, \mathfrak{F}, P)$ se tiene $A, B \in \mathfrak{F}$, con P(B) > 0, se define la probabilidad de que ocurra A dado que (en el pasado) se observó B como:

$$P(A|B) := \frac{P(A \cap B)}{P(B)} \tag{1}$$

Nota: Si P(B) = 0 la probabilidad condicional no está definida.

- 5. Trabajo en clase: Ejemplo 2, Pág. 58-59, Degroot.
- 6. Ejercicio 9:
 - Asume se tiene una urna con 6 balotas azules y 8 rojas, y se seleccionarán al azar 4 balotas al azar sin reemplazo.
 - Cuál es la probabilidad de: A:= La primera y la tercer balotas sean azules.
 - Cuál es la probabilidad de A, dado B:= Se han observado exactamente tres balotas azules en las cuatro elegidas.

Fin - Clase del día Miércoles Nov. 13

Regla para Probabilidades Condicionales

1. Probabilidad Condicional - Teorema: Sea $(\Omega, \mathfrak{F}, P)$ y sea $\{A_j\}_{j=1}^n \subset \mathfrak{F}$ talque $P(A_1 A_2 \dots A_{n-1}) > 0$, entonces

$$P(A_1 A_2 \dots A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_2 A_1) \dots P(A_n | A_{n-1} \dots A_1)$$

La demostración del teorema anterior no es compleja, aparece en el libro de Degroot, es parte de tu lectura.

Nota: Observa que dados $A, B \in \mathfrak{F}$, si P(AB) > 0 entonces P(A) > 0 y P(B) > 0.

2. Probabilidad Condicional - Bajo Independencia: abre el ojo Asume se tienen dos eventos independientes, $A, B \in \mathfrak{F}$, con P(B) > 0, de la definición de probabilidad condicional se tiene

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).$$

De donde tenemos un segundo camino, un poco más apropiado, para entender que dos eventos son independientes. Es decir,

Dos eventos A, B (con P(B) > 0) son independientes sii la probabilidad de A no cambia al observar la ocurrencia de B, i.e.

$$P(A) = P(A|B).$$

Ejercicio 4, Pág. 63, Degroot.

Teorema de Bayes

- 1. Teorema de la Probabilidad Total
 - Partición de un Espacio Muestral: Dado $(\Omega, \mathfrak{F}, P)$ espacio de probabilidad, una secuencia $\{A_j\}_{j=1}^n \subset \mathfrak{F}$ se dice es una partición de Ω si:
 - $A_j \cap A_i = \emptyset$ para todo $i \neq j, i, j = 1, 2, \dots, n$
 - $\bullet \bigcup_{j=1}^{n} A_j = \Omega.$

■ Teorema de la Probabilidad Total: Dados $(\Omega, \mathfrak{F}, P)$ espacio de probabilidad, $\{A_j\}_{j=1}^n$ una partición de Ω y $B \in \mathfrak{F}$, se tiene

$$P(B) = P(B \cap \Omega) = P\left(B\left(\bigcup_{j=1}^{n} A_j\right)\right) = P\left(\bigcup_{j=1}^{n} A_j B\right)$$
$$= \sum_{j=1}^{n} P(A_j \cap B) = \sum_{j=1}^{n} P(A_j) P(B|A_j). \tag{2}$$

La igualdad en la Ecuación (2) se da si $P(A_j) > 0$ para todo j = 1, ..., n. De nuevo, la Ec. (2) es mejor entendida si observas la siguiente gráfica.

2. Teorema de Bayes: Dados $(\Omega, \mathfrak{F}, P)$ espacio de probabilidad, $\{A_j\}_{j=1}^n$ una partición de Ω talque $P(A_j) > 0$ y $B \in \mathfrak{F}$ con P(B) > 0, se tiene:

$$P(A_k|B) = \frac{P(A_k \cap B)}{P(B)}$$

$$= \frac{P(A_k)P(B|A_k)}{\sum_{j=1}^{n} P(A_j)P(B|A_j)}.$$
(3)

3. Ejemplo 10: Imagina lo que sigue. En un País llamado Locombia, en el año 2018 se tienen $7.2\,\%$ de hogares indigentes, $19.8\,\%$ de hogares pobres no indigentes y la población restante $73.0\,\%$ se ubica arriba de la línea de pobreza

(aquí hablamos de pobreza por ingresos). Unido a lo anterior se sabe que el 55.3% de los hogares no pobres residen en una vivienda propia (pagada o que están pagando), el mismo porcentaje para hogares pobres (no indigentes) e indigentes son 22% y 7%, respectivamente.

Si se selecciona una o un jefe de hogar al azar de éste País y dice residir en una vivienda propia, cuál es la probabilidad de que viva en un hogar indigente?.

- 4. **Ejemplo** 3, Pág. 67, Degroot. Identificando la fuente de un defecto. Tres máquinas (M_1, M_2, M_3) . Los porcentajes de producción 20, 30 y 50 %, porcentajes de defectuosos 1, 2, 3 % (respectivamente). Se selecciona de forma aleatoria un ítem y resulta defectuoso, Cuál es la probabilidad de que halla sido producido por la máquina M_2 ?.
- 5. **Ejercicio** 1, Pág. 70, Degroot. Se tiene una caja con: tres monedas marcadas con cara en cada lado, cuatro monedas marcadas con sello en cada lado, y dos monedas legales. Se toma una moneda al azar y se lanza al aire, Cuál es la probabilidad de obtener cara?.
- 6. **Ejercicio** 7, Pág. 71, Degroot. Un nuevo test se ha desarrollado para detectar un tipo de Cáncer.
- 7. Bayes en dos etapas: Actualización de las creencias. Piensa en lo que sigue:
 - i.) En el momento $t_{\scriptscriptstyle 0}$, se tiene la secuencia de probabilidades $\{p_j^{(0)}:=P(A_{\scriptscriptstyle j})\}_{j=1}^n$.
 - ii.) En $t_{\scriptscriptstyle 1}>t_{\scriptscriptstyle 0}$ se observa B,con P(B)>0,la secuencia de probabilidades actualizada $\{p_k^{(1)}:=P(A_k|B)=\}_{k=1}^n,$ está dada por

$$p_k^{(1)} = P(A_k|B) = \frac{p_k^{(0)}P(B|A_k)}{\sum\limits_{j=1}^n p_j^{(0)}P(B|A_j)}.$$

iii.) En un tercer momento en $t_2>t_1$ se observa C, con P(C|B)>0. La secuencia de probabilidades actualizada $\{p_k^{(2)}:=P(A_k|C\cap B)\}_{k=1}^n$, puede ser obtenida mediante la ecuación

$$p_k^{(2)} = P(A_k|C \cap B) = \frac{p_k^{(1)}P(B|A_k)}{\sum_{j=1}^n p_j^{(1)}P(B|A_j)}$$

8. **Aplicación**⁴: Volviendo al Ejercicio 1 (Pág. 70 Degroot). Se tiene una caja con tres monedas marcadas con cara en cada lado, cuatro monedas marcadas con sello en cada lado, y dos monedas legales. Se toma una moneda al azar, se lanza al aire dos veces y se obtienen dos sellos, Cómo cambian las probabilidades de M_1, M_2, M_3 .

El problema anterior se puede ver o trabajar en dos etapas, veámoslo

- Sean B_1 := Sale sello en el primer lanzamiento y B_2 := Sale sello en el segundo lanzamiento.
- Probabilidades iniciales, antes de sacar cualquier moneda, son $p_1^{(0)} = \frac{3}{9} \quad p_2^{(0)} = \frac{4}{9} \quad p_3^{(0)} = \frac{2}{9}$. Ahora en t=1 salió sello (primer lanzamiento):

$$p_1^{(1)} = P(M_1|B_1)$$

$$= \frac{P(M_1)P(B_1|M_1)}{P(M_1)P(B_1|M_1) + P(M_2)P(B_1|M_2) + P(M_3)P(B_1|M_3)}$$

$$= \frac{\frac{3}{9} \times 0}{P(M_1)P(B_1|M_1) + P(M_2)P(B_1|M_2) + P(M_3)P(B_1|M_3)} = 0$$

$$\begin{aligned} p_2^{(1)} &= P(M_2|B_1) \\ &= \frac{P(M_2)P(B_1|M_2)}{P(M_1)P(B_1|M_1) + P(M_2)P(B_1|M_2) + P(M_3)P(B_1|M_3)} \\ &= \frac{\frac{4}{9} \times 1}{0 + \frac{4}{9} \times 1 + \frac{2}{9} \times \frac{1}{2}} = \frac{4}{5}. \end{aligned}$$

Por complemento $p_3^{(1)} = \frac{1}{5}$.

En t=2, salió sello (segundo lanzamiento), las probabilidades de inicio son $p_1^{(1)}=0$ $p_2^{(1)}=\frac{4}{5}$ $p_3^{(1)}=\frac{1}{5}$.

$$p_1^{(2)} = P(M_1|B_1B_2)$$

$$= \frac{p_1^{(1)}P(B_2|M_1)}{p_1^{(1)}P(B_2|M_1) + p_2^{(1)}P(B_2|M_2) + p_3^{(1)}P(B_2|M_3)}$$

$$= \frac{0 \times 0}{p_1^{(1)}P(B_2|M_1) + p_2^{(1)}P(B_2|M_2) + p_3^{(1)}P(B_2|M_3)} = 0$$

⁴Volveremos sobre Teorema de Bayes en Distribuciones Conjuntas.

$$p_2^{(2)} = P(M_2|B_1B_2)$$

$$= \frac{p_2^{(1)}P(B_2|M_2)}{p_1^{(1)}P(B_2|M_1) + p_2^{(1)}P(B_2|M_2) + p_3^{(1)}P(B_2|M_3)}$$

$$= \frac{\frac{4}{5} \times 1}{0 + \frac{4}{5} \times 1 + \frac{1}{5} \times \frac{1}{2}} = \frac{8}{9}.$$

Por ende $p_3^{(1)} = \frac{1}{9}$

Fin - Clase del día Viernes Nov. 15