1. Technical Overview of QUIC

QUIC (**Quick UDP Internet Connections**) is a **modern transport protocol** that operates over **UDP** instead of TCP, offering a combination of **low-latency, security, and resilience**.

Key Features and Technical Benefits

1. Fast Connection Establishment

- o QUIC eliminates the multiple round-trips required by TCP+TLS handshakes.
- It establishes connections in one RTT (Round Trip Time) or zero RTT for resumed connections.
- Stat: Compared to TCP, QUIC reduces connection latency by ~30-40% in typical scenarios.

2. Multiplexing Without Head-of-Line Blocking

- o TCP streams block other streams if packet loss occurs (Head-of-Line Blocking).
- QUIC allows independent streams to flow simultaneously, reducing latency during retransmissions.
- Stat: Tests show QUIC achieves 25-30% better throughput under packet loss (e.g., 2-5% loss).

3. Built-In Encryption and Security

- QUIC integrates TLS 1.3 for encryption, ensuring low overhead and security without additional configuration.
- This also reduces the risk of MITM (man-in-the-middle) attacks common with TCP.

4. Optimized for Variable Networks

- QUIC handles packet loss and jitter better than TCP.
- Forward Error Correction (FEC): QUIC predicts lost packets and proactively minimizes retransmission delays.

5. Connection Migration

- QUIC connections remain stable even if the network changes (e.g., switching from Wi-Fi to 5G).
- Stat: Connection migration latency is ~50% lower with QUIC compared to renegotiating TCP connections.

2. How QUIC Differs from Solace and Aeron

Feature/Capability	Solace	Aeron	QUIC	
Core Focus	Event-driven	Ultra-low-latency	Internet-scale	
	messaging	transport	low-latency transport	

Protocol	TCP/UDP	UDP	UDP-based (with congestion control)
Latency	~2-5 ms in typical setups	Sub-millisecond	30-50% lower than TCP on WANs
Reliability	Built-in retries and QoS	Reliable via UDP streams	Reliable with FEC and stream recovery
Multiplexing	Partial (through channels)	Limited (one stream per UDP session)	Full, independent streams
Encryption	Optional TLS or custom	Optional TLS or custom	Built-in TLS 1.3
Use Case Fit	Distributed systems in enterprises	On-prem or private networks	Internet-wide or hybrid systems

3. How QUIC Adds Value Beyond Solace and Aeron

3.1 QUIC vs. Solace

1. Transport Flexibility

- Solace relies on existing transport protocols like TCP or UDP.
- QUIC improves over TCP/UDP by offering native congestion control and better handling of unreliable networks.

2. Hybrid and WAN Use Cases

- Solace is optimized for enterprise environments like on-prem data centers or hybrid cloud setups.
- QUIC excels for global WAN scenarios with variable latency, packet loss, or geographic distribution.

Example:

- Solace might struggle with WAN conditions (e.g., 2-5% packet loss across continents).
- With QUIC, data delivery remains robust, reducing message delivery times by 20-50% compared to Solace over TCP.

3. Security Simplicity

- Solace can use TLS, but encryption is **not inherent** in the protocol stack.
- QUIC has built-in TLS 1.3, ensuring that all communication is encrypted by default, with no additional setup.

1. Use Cases

- Aeron is ideal for controlled environments like Pico boxes, where every aspect
 of the network can be optimized.
- QUIC is designed for distributed, public networks, providing Aeron-like reliability even in less predictable conditions.

2. Latency and Packet Recovery

- Aeron achieves sub-millisecond latency in LAN environments or colocated setups.
- QUIC performs better than Aeron in WAN or lossy networks, with 25-30% better throughput in high-packet-loss conditions.

3. Stream Multiplexing

- Aeron supports a single stream per UDP session, which can block operations if packet loss occurs.
- QUIC supports multiple independent streams over a single connection, preventing bottlenecks.

Example:

- Aeron excels in scenarios like direct trade execution (Pico environment).
- For global market data feeds or inter-hub communication, QUIC's multiplexing and WAN resilience outperform Aeron.

4. QUIC in Action: Potential Benefits for Fixed-Income Trading

4.1 Market Data Feeds

- Market data dissemination is sensitive to latency and packet loss, especially when distributed globally.
- QUIC can improve feed reliability and throughput over WANs by:
 - Reducing connection setup times (e.g., from 100 ms to ~20-30 ms).
 - Handling **2-5% packet loss** with minimal latency impact.

4.2 Trade Execution Across Regions

- For trades executed across trading hubs (e.g., New York ↔ London):
 - QUIC reduces cross-border latency by **30-50%** compared to TCP.
 - Ensures encrypted communication with no additional setup.

4.3 Hybrid Cloud and Edge Computing

- As fixed-income workflows expand to hybrid cloud setups:
 - QUIC ensures seamless communication between on-prem (Pico) and cloud-based systems.

 Connection migration allows systems to dynamically switch between networks (e.g., failover to 5G).

5. Technical Stats and Benchmarks

Metric	TCP	Solace	Aeron	QUIC
Connection Setup Time	~3 RTTs	~2 RTTs	~1 RTT	0-1 RTT
Latency (WAN with 5% Packet Loss)	High (10-15 ms)	Moderate (8-10 ms)	High (8-12 ms)	Low (5-7 ms)
Encryption Overhead	Optional	Optional	Optional	Built-in TLS
Packet Loss Tolerance	Limited	High	Moderate	Very High
Multiplexing Streams	No	Partial (channels)	No	Yes

6. Closing Thoughts: Where QUIC Fits

- QUIC doesn't replace Solace or Aeron but extends their value to:
 - o Global WAN communication (resilient, low-latency).
 - Hybrid-cloud workflows (secure, flexible).
 - **Dynamic trading architectures** (adaptive to public or edge networks).

[&]quot;By introducing QUIC into our fixed-income trading stack, we can complement the ultra-low-latency capabilities of Solace and Aeron while preparing for a more distributed, global trading future."