MultiFractals In Finance

by Olivier Croissant

Plan

- Models for univariate factors
- Calibration of the multifractal brownian motion
- Multivariate multifractal brownian motion
- Expansion of the multifractal brownian motion around the brownian motion
- Optimization of a portfolio of multifractal assets

The Multifractal formalism

Legendre Transform Partition Function Entropy

Measure Theory

Large Deviation Theory

Multifractal formalism

Singularities Geometry

> Generalized Distribution

Stochastic Processes Anticipative Calculus

The Singularity Spectrum: Holder dimension

• For any singularity:

• Taylor series for singularities : It exists an exponent α and a polynomial P such that $F(x) - P(x) - (x - x_i)^{\alpha}$ is order strictly more than α :

$$F(x) = P(x) + (x - x_i)^{\alpha} + o\left(\frac{1}{x^{-\alpha}}\right)$$

• α is the Holder dimension (exponent) of the singularity

Singularity Spectrum: Fractal Dimension

• Box Counting:

- if $n(\delta)$ is the number of hypercubes to cover the set S (in a multidimensional vectorial space).
- If S is a segment of line: the number of hypercube is equal to $n(\delta) = \frac{L}{\delta}$
- If S is a Cube of dimension K: the number of hypercube is : $n(\delta) = \left(\frac{L}{\delta}\right)^K$
- So in general we have

$$K = Lim_{\delta} \to 0 \frac{Log[n(\delta)]}{Log[\delta]}$$

- This the definition of the fractal dimension of a Set
- The convergence does not have to be regular.

Singularity spectrum: Exemple of Fractals

• Cantor Set: Dimension = $\frac{Log[2]}{Log[3]} \approx 0.63093$

• Sierpinsky Gasket (wining game of Sir Pinsky): Dimension = $\frac{Log[3]}{Log[2]} \approx 1.584963$

Singularity Spectrum: Monofractal and Multifractal measures

- Instead of function we will look at distributions and measures.
- Equivalent going from a density to the measure associated with the density
- The Set of Singularities S of F(x) (as a density of the measure μ) can be partitioned with the holder dimension.
- one holder dimension -> monofractal. D(h) is the fractal dimension of S
- more than one dimension -> multifractal.

Singularity spectrum

Multifractality of the financial time series

- Finite shift operator $\delta_l X(t) \equiv X(t+l) X(t)$
- A process is scale invariant if for a stationary process $M(q, l) = E[|\delta_l X(t)|^q] = C_q l^{\zeta_q}$
- A scale invariant process is:
- -monofractal if ζ_q is linear in q, ex : a self similar process is such $\alpha^{-H}X(\alpha t)$ has the same distribution than X(t). ==> Then we have $M(q, l) = M(q, L) \left(\frac{l}{L}\right)^{qH}$
- multifractal if ζ_q is non linear in q. ex : Castaing processes are given by mixture of self similar transformation : $P_l(\delta X) = \int G_{l,L}(u)e^{-u}P_L(e^{-u}\delta X)du$. The self similar processes are associated with kernel $G_{l,L}(u) = \delta \left(u - H Log \left[\frac{l}{L} \right] \right)$.
- $F[k] = \frac{Log[G_l, L[k]]}{\bullet}$ $||\int_{0}^{\infty} ||g||^{2}$ For a Castaing process $==> M(q, l) = M(q, L) \left(\frac{l}{L}\right)^{F[-iq]}$

Multiplicative Cascades

• Definition: this a Castaing Process such that: W_i are independent identically distributed

$$\delta_{l_n}X(t) = \left(\prod_{i=1}^n W_i\right) \delta_L X(t) \qquad l_n = 2^{-n}L$$

- The magnitude is defined as the process $\omega(t, l) = \frac{1}{2} \log[|\delta_l X(t)|^2]$
- The cascade equation becomes $\omega(t, l_{n+1}) = \omega(t, l_n) + Log[W_{n+1}]$
- If $\log[W_i]$ is normal $N[\mu, \lambda^2]$, $\omega(t, l_n) \sim N[\mu, \lambda^2]^{*n} \omega(t, L)$, if also $\omega(t, L) \sim N[\mu, \lambda^2]$, then $\omega(t, l_n) \sim N[n\mu, n\lambda^2]$
- $E[\omega_{\Delta t, k}] = -Var[\omega_{\Delta t, k}]$ because $E[e^Y] = e^{E[Y] + Var[Y]}$ for Y normal, this give the relation-• For the process *X(t)* to converge with a finite variance, we must choose ship $\mu(k) = -\lambda^2(k) = -\lambda^2 Log\left[\frac{T}{\Delta t}\right]$ for the multifractal brownian motion

The (standard) multifractal brownian motion

- three parameters : σ^2 : variance, λ : intermittency and T: integral scale
- Constructive definition:

$$X(t) = X(0) + \sum_{i=1}^{n} \varepsilon_{\Delta t, k} e^{\omega_{\Delta t, k}}$$

- $\epsilon_{\Delta t,\ k}$ is normal with standard deviation equal to $\sigma_{\Delta t}$
- all the $\omega_{\Delta t, k}$ are jointly normal with

$$Cov[\boldsymbol{\omega}_{\Delta t}, k, \boldsymbol{\omega}_{\Delta t, l}] = \lambda^2 Log\left[\frac{T}{(|k-l|+1)\Delta t}\right]$$

• Analytic definition

$$X(t) - X(s) = \sigma \int_{-\infty}^{\infty} \frac{e^{-\frac{H^2}{2\lambda^2}}}{\sqrt{2\pi\lambda}} \theta \left[[u] dW_u dH + \theta_r [u] \right] = \begin{cases} 0 & -(\infty < u \le 0) \\ H - \frac{1}{2} & 0 < u \le T \\ u & -\frac{1}{2} & T < u < \infty \end{cases}$$

_

Statistics of the multifractal brownian motion

• Moments:

$$M(2p, l) = K_{2p} \left(\frac{l}{T}\right) p - 2p(p-1)\lambda^2$$

- when $l \gg T$, $M(2p, l) \approx C_p l^p$ which the brownian signature
- Scale correlations:

$$C_p(l,\tau) \equiv E[(X_{\Delta t}(l+\tau) - X_{\Delta t}(l))^p (X_{\Delta t}(\tau))^p] = Q_p \left(\frac{\tau}{T}\right)^2 \zeta_p \left(\frac{l}{T}\right)^{-\lambda^2 p^2}$$

Magnitude correlation function

$$C_{\omega}(l,\tau) = Lim_p \rightarrow 0 \left(\frac{C_p(l,\tau) - M(p,\tau)}{p^2} \right) = Cov[Log[\delta_l X(t+\tau)], Log[\delta_l X(t)]] \approx -\lambda^2 Log[\frac{l}{T}]$$

S&P 500

0.8

9.0

0.4

C_w(1,7)

(a)

0.2

$$C_{\omega}(l,\tau) = \lim_{p \to 0} \left(\frac{E[(X_{\Delta t}^{(l+\tau)-X_{\Delta t}^{(l)})^p(X_{\Delta t}^{(\tau)})^p]-M(p,\tau)}}{p^2} \right) \sim -\lambda^2 Log \left[\frac{l}{T} \right]$$

scales={10mn,40mn,160mn,1day,1week,1month}

Estimations for different Markets

Series	Size	λ^2	T
Future S&P500	7.10^{4}	0.025	3 years
Future JY/USD	4.01.7	0.02	6 months
Future Nikkei	7.10^{4}	0.02	6 months
Future FTSE100	$_{101.2}$	0.02	1 year
S&P500 index	6.10^{3}	0.024	3 years
French index	6.10^{3}	0.029	2 years
Italian index	e01.9	0.029	2 years
Canadian index	e01.9	0.024	3 years
German index	6.10^{3}	0.027	3 years
UK index	6.10^{3}	0.026	6 years
hong-kong index	6.10^{3}	0.05	$_{3}$ years

Multivariate Multifractal Formalism

- $X = \{X_1, X_1, ..., X_N\}$ is a multivariate process that exhibits a cascade equation:
- $\{\delta_l X_i(t)\}_{1 \le i \le N} \sim W_{i, \ l/L} \delta_L X_i(t)$ where W is a Log infinitly divisible stochastic vector.
- Then the pdf satisfies $P_l(\delta X) = \int du^N G_{l/L}(u) e^{-\sum_{i} u_i} P_T(e^{-u} \cdot \delta X)$
- Then the moments verify $M(q_1, q_2, ..., q_N, l) = E[|\delta_l X_1|^{q_1} ... |\delta_l X_N|^{q_N}] = K_{q_1, ..., q_N} l^{s_{q_1, ..., q_N}}$ where

$$\zeta_{q_1, ..., q_N} = \hat{G}(-iq_1, ..., -iq_N)$$
 .

Multivariate Multifractal Brownian Motion

• $X(t) = Lim_{\Delta t} \to 0 \sum_{k=1}^{t/\Delta t} \varepsilon_{\Delta t, k} \cdot e^{\omega_{\Delta t, k}}$

first calibrating equation

• $Cov[\epsilon_{\Delta t,\ k,\ i}(t),\epsilon_{\Delta t,\ k,\ j}(t+ au)] = \delta(au)\Sigma_{i,\ j}\Delta t \text{ and } Cov[\omega_{\Delta t,\ k,\ i},\omega_{\Delta t,\ l,\ j}] = \Lambda_{i,\ j}Log\bigg[\frac{T_{i,j}}{(|k-l|+1)\Delta t}\bigg]$ To have

a convergence we also state $E[\omega_{\Delta t,\;k,\;i}] = -Var[\omega_{\Delta t,\;k,\;i}]$

• In the case where Σ is diagonal or $\omega_i = \omega_j$, we have $:\zeta_{q_1,\,q_2,\,...,\,q_N} = \sum_i \zeta_{q_i} - \sum_{i,\,j} A_{i,\,j} q_i q_j$. In general we have

 $Cov[Log[\delta_l X_i(\tau)], Log[\delta_l X_i(\tau+\tau)]] = K(-\Lambda_{i,j} Log[\tau] + C)$

 $Cov[X_i(l),X_j(l)] = \sum_{i,j} e^{rac{1}{2}(\Lambda_{i,j}+\Lambda_{j,j}+2\Lambda_{i,j})} l$ (Second calibrating equation $E[\left|X_i(l)\right|^q \left|X_j(l)\right|^q]$ $E[|X_i(l)|^q|X_j(l)|^q]$ Calibration consistency

Multivariate Multifractal Calibration

Cumulants of the MBM

$$c_1 = l\mu$$

$$c_2 = \sigma^2(\frac{l}{T})$$

$$c_3 = 0$$

$$c_4 = 3\sigma^4(\frac{l}{T})^2 - 4\lambda^2(1 - (\frac{l}{T})^4\lambda^2)$$

$$c_5 = 0$$
.....

$$Y = e^x - 1$$

$$C_{1} = l\left(\mu + \frac{1}{2}\sigma^{2}\right)$$

$$C_{2} = \sigma^{2}\left(\frac{l}{L}\right)$$

$$C_{3} = l^{2}\left(3\sigma^{4} - 18\sigma^{4}\lambda^{2}Log\left[\frac{l}{T}\right]\right)$$

$$C_{4} = 16\sigma^{6}l^{3} - 12\sigma^{4}\lambda^{2}l^{2}Log\left[\frac{l}{T}\right]$$
...

=> Long Range Correlations (S&P500 over 30 years)

_

Portfolio Optimization: Market Portfolio

- we want to maximize $\int u(\delta S) P_I(\delta S) d\delta S$
- If we take $u(W) = -e^{-aW}$, we have to minimize $\int e^{-a\delta S} P_I(\delta S) d\delta S = \hat{P}(ia) = Exp \left[-aC_1 + \sum_{i=-2}^{\infty} \frac{(-a)^i}{i!} C_i \right]$
- In the absence of correlations, using cumulants, for the first orders:

$$-\alpha \sum w_{i} - a \sum w_{i} l \mu_{i} + \frac{a^{2}}{2} \sum w_{i}^{2} l \sigma_{i}^{2} - \frac{a^{4}}{24} \sum w_{i}^{4} 12 \sigma_{i}^{4} \lambda_{i}^{2} l^{2} Log \left[\frac{l}{T_{i}} \right]$$

- If no fractality, we find the markowitz solution : if $\sigma_i = \sigma$, $w_j^0 = \frac{1}{N} + \frac{1}{a\sigma^2}(\mu_j \langle \mu \rangle)$,
- If fractality, $w_i \approx w_i^0 \left(1 + 2a^2 \sigma_i^2 w_i^0 \lambda_i^2 I Log \left[\frac{l}{T_i}\right]\right)$, Asset ,with $T_i \approx el$ will be the most depleted

Portfolio Optimization: Efficient frontiers

- We are looking at multiperiod problems with rebalancing assumption (we maintain the composition of the portfolio).
- For the C1-C2 efficient frontier, there is no dependence on the Δt of rebalancing (Tobin result)
- For the C1-C4 efficient frontier, we have a dependence on Δt .
- For a given risk, there is better return for small Δt than for large ones
- There is a worst horizon, for which the return is minimum

CAC40 Stocks

Conclusion

- tion between short horizon (1 minute) and long horizon (20 years) with all the interme-Multi fractal processes adress the problem of parametrizing the change of the distribudiate stages.
- The model coming from turbulence physics is tractable, seems robust and corrobored by the financial data.
- It allows to address the problem of optimizing rebalancing horizons in asset management.
- Extension of the model to multivariate cases and with skewness (levy processes at integral time) is tractable