EXERCISES

1. Let σ be the permutation

$$1 \mapsto 3$$
 $2 \mapsto 4$ $3 \mapsto 5$ $4 \mapsto 2$ $5 \mapsto 1$

and let τ be the permutation

$$1 \mapsto 5$$
 $2 \mapsto 3$ $3 \mapsto 2$ $4 \mapsto 4$ $5 \mapsto 1$.

Find the cycle decompositions of each of the following permutations: σ , τ , σ^2 , $\sigma\tau$, $\tau\sigma$, and $\tau^2\sigma$.

2. Let σ be the permutation

and let τ be the permutation

Find the cycle decompositions of the following permutations: σ , τ , σ^2 , $\sigma\tau$, $\tau\sigma$, and $\tau^2\sigma$.

- 3. For each of the permutations whose cycle decompositions were computed in the preceding two exercises compute its order.
- **4.** Compute the order of each of the elements in the following groups: (a) S_3 (b) S_4 .
- 5. Find the order of (1 12 8 10 4)(2 13)(5 11 7)(6 9).
- 6. Write out the cycle decomposition of each element of order 4 in S_4 .
- 7. Write out the cycle decomposition of each element of order 2 in S_4 .
- **8.** Prove that if $\Omega = \{1, 2, 3, \ldots\}$ then S_{Ω} is an infinite group (do not say $\infty! = \infty$).
- 9. (a) Let σ be the 12-cycle (1 2 3 4 5 6 7 8 9 10 11 12). For which positive integers i is σ^i also a 12-cycle?
 - (b) Let τ be the 8-cycle (1 2 3 4 5 6 7 8). For which positive integers i is τ^i also an 8-cycle?
 - (c) Let ω be the 14-cycle (1 2 3 4 5 6 7 8 9 10 11 12 13 14). For which positive integers i is ω^i also a 14-cycle?
- 10. Prove that if σ is the *m*-cycle $(a_1 \ a_2 \ \dots \ a_m)$, then for all $i \in \{1, 2, \dots, m\}$, $\sigma^i(a_k) = a_{k+i}$, where k+i is replaced by its least residue mod m when k+i > m. Deduce that $|\sigma| = m$.
- 11. Let σ be the *m*-cycle (1 2 ... *m*). Show that σ^i is also an *m*-cycle if and only if *i* is relatively prime to *m*.
- 12. (a) If $\tau = (1\ 2)(3\ 4)(5\ 6)(7\ 8)(9\ 10)$ determine whether there is a *n*-cycle σ $(n \ge 10)$ with $\tau = \sigma^k$ for some integer k.
 - (b) If $\tau = (1\ 2)(3\ 4\ 5)$ determine whether there is an *n*-cycle σ $(n \ge 5)$ with $\tau = \sigma^k$ for some integer k.
- 13. Show that an element has order 2 in S_n if and only if its cycle decomposition is a product of commuting 2-cycles.
- 14. Let p be a prime. Show that an element has order p in S_n if and only if its cycle decomposition is a product of commuting p-cycles. Show by an explicit example that this need not be the case if p is not prime.
- 15. Prove that the order of an element in S_n equals the least common multiple of the lengths of the cycles in its cycle decomposition. [Use Exercise 10 and Exercise 24 of Section 1.]
- 16. Show that if $n \ge m$ then the number of m-cycles in S_n is given by

$$\frac{n(n-1)(n-2)\dots(n-m+1)}{m}.$$

[Count the number of ways of forming an m-cycle and divide by the number of representations of a particular m-cycle.]

- 17. Show that if $n \ge 4$ then the number of permutations in S_n which are the product of two disjoint 2-cycles is n(n-1)(n-2)(n-3)/8.
- 18. Find all numbers n such that S_5 contains an element of order n. [Use Exercise 15.]
- 19. Find all numbers n such that S_7 contains an element of order n. [Use Exercise 15.]
- 20. Find a set of generators and relations for S_3 .

Cycles 5

Multiplication is easy when one uses the cycle notation. For example, let us compute $\gamma = \alpha \beta$, where $\alpha = (1 \ 2)$ and $\beta = (1 \ 3 \ 4 \ 2 \ 5)$. Since multiplication is composition of functions, $\gamma(1) = \alpha \circ \beta(1) = \alpha(\beta(1)) = \alpha(3) = 3$; Next, $\gamma(3) = \alpha(\beta(3)) = \alpha(4) = 4$, and $\gamma(4) = \alpha(\beta(4)) = \alpha(2) = 1$. Having returned to 1, we now seek $\gamma(2)$, because 2 is the smallest integer for which γ has not yet been evaluated. We end up with

$$(1 \ 2)(1 \ 3 \ 4 \ 2 \ 5) = (1 \ 3 \ 4)(2 \ 5).$$

The cycles on the right are disjoint as defined below.

Definition. Two permutations α , $\beta \in S_X$ are *disjoint* if every x moved by one is fixed by the other. In symbols, if $\alpha(x) \neq x$, then $\beta(x) = x$ and if $\beta(y) \neq y$, then $\alpha(y) = y$ (of course, it is possible that there is $z \in X$ with $\alpha(z) = z = \beta(z)$). A family of permutations $\alpha_1, \alpha_2, \ldots, \alpha_m$ is *disjoint* if each pair of them is disjoint.

EXERCISES

- 1.4. Prove that $(1\ 2\ \cdots\ r-1\ r)=(2\ 3\ \cdots\ r\ 1)=(3\ 4\ \cdots\ 1\ 2)=\cdots=(r\ 1\cdots r-1)$. Conclude that there are exactly r such notations for this r-cycle.
- 1.5. If $1 \le r \le n$, then there are (1/r)[n(n-1)...(n-r+1)] r-cycles in S_n .
- 1.6. Prove the *cancellation law* for permutations: if either $\alpha\beta = \alpha\gamma$ or $\beta\alpha = \gamma\alpha$, then $\beta = \gamma$.
- 1.7. Let $\alpha = (i_1 \ i_2 \cdots i_r)$ and $\beta = (j_1 \ j_2 \cdots j_s)$. Prove that α and β are disjoint if and only if $\{i_1, i_2, \dots, i_r\} \cap \{j_1, j_2, \dots, j_s\} = \emptyset$.
- 1.8. If α and β are disjoint permutations, then $\alpha\beta = \beta\alpha$; that is, α and β commute.
- 1.9. If α , $\beta \in S_n$ are disjoint and $\alpha\beta = 1$, then $\alpha = 1 = \beta$.
- 1.10. If $\alpha, \beta \in S_n$ are disjoint, prove that $(\alpha \beta)^k = \alpha^k \beta^k$ for all $k \ge 0$. Is this true if α and β are not disjoint? (Define $\alpha^0 = 1$, $\alpha^1 = \alpha$, and, if $k \ge 2$, define α^k to be the composite of α with itself k times.)
- 1.11. Show that a power of a cycle need not be a cycle.
- 1.12. (i) Let $\alpha = (i_0 \ i_1 \ \dots \ i_{r-1})$ be an r-cycle. For every $j, k \ge 0$, prove that $\alpha^k(i_j) = i_{k+j}$ if subscripts are read modulo r.
 - (ii) Prove that if α is an r-cycle, then $\alpha^r = 1$, but that $\alpha^k \neq 1$ for every positive integer k < r.
 - (iii) If $\alpha = \beta_1 \beta_2 \dots \beta_m$ is a product of disjoint r_i -cycles β_i , then the smallest positive integer l with $\alpha^l = 1$ is the least common multiple of $\{r_1, r_2, \dots, r_m\}$.
- 1.13. (i) A permutation $\alpha \in S_n$ is **regular** if either α has no fixed points and it is the product of disjoint cycles of the same length or $\alpha = 1$. Prove that α is regular if and only if α is a power of an *n*-cycle β ; that is, $\alpha = \beta^m$ for some *m*. (Hint: if $\alpha = (a_1 a_2 \dots a_k)(b_1 b_2 \dots b_k) \dots (z_1 z_2 \dots z_k)$, where there are *m* letters a, b, \dots, z , then let $\beta = (a_1 b_1 \dots z_1 a_2 b_2 \dots z_2 \dots a_k b_k \dots z_k)$.)
 - (ii) If α is an *n*-cycle, then α^k is a product of (n, k) disjoint cycles, each of length n/(n, k). (Recall that (n, k) denotes the gcd of n and k.)
 - (iii) If p is a prime, then every power of a p-cycle is either a p-cycle or 1.

1. Groups and Homomorphisms

1.14. (i) Let $\alpha = \beta \gamma$ in S_n , where β and γ are disjoint. If β moves i, then $\alpha^k(i) = \beta^k(i)$ for all $k \ge 0$.

6

(ii) Let α and β be cycles in S_n (we do not assume that they have the same length). If there is i_1 moved by both α and β and if $\alpha^k(i_1) = \beta^k(i_1)$ for all positive integers k, then $\alpha = \beta$.