

Этикетка

КСНЛ.431279.004 ЭТ

Микросхема 1564ЛП11Т1ЭП

Микросхема интегральная 1564ЛП11Т1ЭП

Функциональное назначение:

Шесть повторителей с раздельными элементами управления входами по 2- м и 4- м повторителям и 3- мя состояниями на выходе.

Таблица назначения выводов

№	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
		Вход		404	_
1	1EZ	управления	9	1Q3	Выход
2	1D0	Вход	10	1D3	Вход
3	1Q0	Выход	11	2Q0	Выход
4	1D1	Вход	12	2D0	Вход
5	1Q1	Выход	13	2Q1	Выход
6	1D2	Вход	14	2D1	Вход
					Вход
7	1Q2	Выход	15	2EZ	управления
8	0V	Общий	16	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = 25+10 °C)

1.1 Основные электрические парам	1 \1 -	/	
Наименование параметра, единица измерения, режим измерения	,	Буквенное Но	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, I_{O}=20 \text{ MKA}$	$U_{ m OLmax}$	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, I_{O} = 20 mkA		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, I_{O} = 20 мкА		-	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, I_{O} =6,0 mA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, I_{O} = 7,8 mA		=	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, U_{IH}=1,5 \text{ B}, I_{O}=20 \text{ MKA}$	U_{OHmin}	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} = 20 MKA		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =6,0 mA		3,98	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 7,8 mA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}$	$I_{\rm IL}$	=	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	=	0,1
5.Выходной ток в состоянии «Выключено», мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{OZ}	=	0,5
6. Ток потребления, мкА, при			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	=	8,0
7. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, f = 1.0 \text{ M} \Gamma \text{ц}$	I _{OCC}	-	1,0

8. Время задержки распространения сигнала, нс, при:			
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{\mathrm{PHL},}$	-	105
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{\rm PLH}$	-	34
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	27
$U_{CC} = 2.0 \text{ B}, C_L = 150 \text{ m}\Phi$		-	135
$U_{CC} = 4.5 \text{ B}, C_L = 150 \text{ m}\Phi$		-	41
$U_{CC} = 6.0 \text{ B}, C_L = 150 \text{ m}\Phi$		-	34
$U_{CC} = 2,0 \text{ B, } C_L = 50 \pi\Phi, \text{ R} = 1 \kappa\text{Om}$ $U_{CC} = 4,5 \text{ B, } C_L = 50 \pi\Phi, \text{ R} = 1 \kappa\text{Om}$ $U_{CC} = 6,0 \text{ B, } C_L = 50 \pi\Phi, \text{ R} = 1 \kappa\text{Om}$	t _{PZH,} t _{PZL}	- - -	172 54 49
$U_{CC} = 2.0 \text{ B}, C_1 = 150 \text{ пФ}, R = 1 \text{ кОм}$	$t_{PZH,}$	-	187
$U_{CC} = 4.5 \text{ B}, C_L = 150 \text{ n}\Phi, R = 1 \text{ kOm}$	t_{PZL}	-	65
$U_{CC} = 6,0 \text{ B}, C_L = 150 \text{ пФ}, R = 1 \text{ кОм}$		-	59
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ п}\Phi, R = 1 \text{ кOm}$	t _{PHZ,}	-	117
U_{CC} = 4,5 B, C_L = 50 пФ, R = 1 кОм	t_{PLZ}	-	49
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ п}\Phi, R = 1 \text{ кOm}$		ı	44
9. Входная емкость, п Φ , при: $U_{CC} = 0$ В	C_{I}	-	10

 t_{PHL}, t_{PLH} - время задержки распространения сигнала при включении и выключении, нс;

t_{РZH,} t_{РZL}, - время задержки распространения сигнала при переходе из третьего состояния в состояние высокого и низкого уровня;

t_{PHZ}, t_{PLZ} - время задержки распространения сигнала при переходе из состояния высокого и низкого уровня в третье состояние.

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

 золото
 г.

 серебро
 г.

 в том числе:
 г/мм

2 НАДЕЖНОСТЬ

на 16 выводах длиной

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

MM.

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-18ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛП11Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-18ТУ и признаны годными для эксплуатации.

Приняты по	OT			
(извещение	, акт и др.)	(дата)		
Место для штампа ОТН			Место для шта	мпа ПЗ
Место для штампа « По	ерепроверка про	изведена	(дата)	»
Приняты по(извещен	ие, акт и др.)	т(дата)		
Место для штампа ОТН	ζ		Место для ш	тампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ