

GAMES 301: 第2讲

面向离散网格的参数化概述与传统方法介绍

傅孝明 中国科学技术大学

Introduction Mesh-based mappings

Discrete meshes

- Geometry
 - Vertex position
- Topology
 - Vertex
 - Edge
 - Facet
 - Element

Discrete meshes

Mappings

Variables

- Geometry
 - Vertex positions

Piecewise mappings

Jacobian matrix

• Build a local coordinate system on input triangle *t*.

• The mapping is piecewise linear.

• J_t is 2×2 .

$$\begin{pmatrix} u_{j} - u_{i} & u_{k} - u_{i} \\ v_{j} - v_{i} & v_{k} - v_{i} \end{pmatrix} \begin{pmatrix} x_{j} - x_{i} & x_{k} - x_{i} \\ y_{j} - y_{i} & y_{k} - y_{i} \end{pmatrix}^{-1}$$

Jacobian matrix

- Input tet: $(x_i, y_i, z_i), (x_j, y_j, z_j), (x_k, y_k, z_k), (x_l, y_l, z_l)$
- Output tet: (u_i, v_i, w_i) , (u_j, v_j, w_j) , (u_k, v_k, w_k) , (u_l, v_l, w_l)

$$\begin{pmatrix} u_{j} - u_{i} & u_{k} - u_{i} & u_{l} - u_{i} \\ v_{j} - v_{i} & v_{k} - v_{i} & v_{l} - v_{i} \\ w_{j} - w_{i} & w_{k} - w_{i} & w_{l} - w_{i} \end{pmatrix} \begin{pmatrix} x_{j} - x_{i} & x_{k} - x_{i} & x_{l} - x_{i} \\ y_{j} - y_{i} & y_{k} - y_{i} & y_{l} - y_{i} \\ z_{j} - z_{i} & z_{k} - z_{i} & z_{l} - z_{i} \end{pmatrix}^{-1}$$

Distortion types

- Isometric mapping: rotation + translation
- Conformal mapping: similarity + translation
- Area-preserving mapping: area-preserving + translation
- Conformal + Area-preserving ⇔ Isometric

Signed singular value decomposition

• Signed singular value decomposition (SSVD):

$$J_t = U_t S_t V_t^T$$

If $\det J_t > 0$, SSVD is SVD.

If $\det J_t \leq 0$, modifying U_t and V_t to be rotations matrices and the smallest

singular value becomes negative.

Singular values

- Isometric mapping
 - $J_t \Longrightarrow$ rotation matrix
 - $\sigma_1 = \sigma_2 = 1$
- Conformal mapping
 - $J_t \implies$ similar matrix
 - $\sigma_1 = \sigma_2$
- Area-preserving mapping
 - $\det J_t = 1$
 - $\sigma_1 \sigma_2 = 1$

 σ_1 , σ_2 are the two singular values of J_t .

Common distortion metrics

- Conformal distortion
 - LSCM: $\sum_t \text{Area}(t)(\sigma_1 \sigma_2)^2$
 - MIPS: $\sum_{t} \frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1}$
- Isometric distortion
 - ARAP: $\sum_{t} \text{Area}(t) ((\sigma_1 1)^2 + (\sigma_2 1)^2)$
 - AMIPS: $\sum_{t} \left(\left(\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1} \right) + \left(\frac{1}{\sigma_2 \sigma_1} + \sigma_2 \sigma_1 \right) \right)$
 - Symmetric Dirichlet: $\sum_t \text{Area}(t)(\sigma_1^2 + \sigma_1^{-2} + \sigma_2^2 + \sigma_2^{-2})$
- Area-preserving distortion:

•
$$\sum_{t} \left(\frac{1}{\sigma_2 \sigma_1} + \sigma_2 \sigma_1 \right)$$

Constraints – Flip-free

- Motivations
 - No realistic material can be compressed to zero or even negative volume.
 - Flipped elements correspond to physically impossible deformation.
 - Inverted elements lead to invalidity for following applications, for example, remeshing.
- Formulation
 - Requirement:
 - Area(T) and Area(t) have the same signs.
 - $\det J_t > 0$
 - $\det J_t = \operatorname{Area}(T)/\operatorname{Area}(t)$

$$f_t(\mathbf{x}) = J_t \mathbf{x} + \mathbf{b}_{t \, 14}$$

Constraints – Flip-free

Constraints – Locally injective

- Flip-free condition.
- For boundary vertex, the mapping is locally bijective $\rightarrow \theta(\mathbf{v}) < 2\pi$.

Constraints - globally injective

- The mapped mesh does not self-intersect.
- Flip-free condition.

Intersected Intersection-free 17

Formulation

- Constrained optimization problem
- Objectives: distortion + specific metrics
 - Close to a reference mesh
 - Close to the ideal geometric measurements
 -
- Constraints: basic requirements + specific constraints
 - Positional constraints
 - Boundary-aligned constraints
 - Seamless conditions
 -

Challenges

- Non-convex and nonlinear
- Constraints
 - Flip-free, $\det J_t > 0$
 - Assume $J_t = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where a, b, c, d are linear functions of positions.
 - $\det J_t > 0 \rightarrow ad bc > 0$, non-convex
- Objectives
 - MIPS: $\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1} = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1 \sigma_2} = \frac{\|J_t\|_F^2}{\det J_t}$
 - $||J_t||_F^2$ and $\det J_t$: quadratic polynomials.
 - MIPS: rational polynomial.

Introduction Mesh parameterizations

Definition

 A function that puts input surface in one-toone correspondence with a 2D domain.

- Parameterization of a triangulated surface
 - all (u_i, v_i) coordinates associated with each vertex $\mathbf{v}_i = (x_i, y_i, z_i)^T$

Applications

- Texture mapping
- Surface correspondence
- Remshing
- Attribute transfer
- Material design
- Computational art design
- •

Formulation

- Objective: low distortion
- Constraints: globally injective

Heptoroid surface

0.25×playback #V:15k, #F:26k

Tutte's embedding

2D mappings on disk-topology meshes

Given a triangulated surface homeomorphic to a disk, if the (u, v) coordinates at the boundary vertices lie on a convex polygon in order, and if the coordinates of the internal vertices are a convex combination of their neighbors, then the (u, v) coordinates form a valid parameterization (without self-intersections, globally injective).

Tutte's embedding

- Homeomorphic to a disk.
- A convex polygon
 - circle, square,.....
- A convex combination

•
$$\sum_{i=1}^k \lambda_i v_i = v_0$$
, $\sum_{i=1}^k \lambda_i = 1$

- Uniform Laplacian, mean value coordinate
- Solver: linear equation.

Representative methods

Only considering low distortion

Angle-based flattening (ABF)

Sheffer A, de Sturler E. Parameterization of faceted surfaces for meshing using angle-based flattening[J]. Engineering with computers, 2001, 17(3): 326-337.

Sheffer A, Lévy B, Mogilnitsky M, et al. ABF++: fast and robust angle based flattening[J]. ACM Transactions on Graphics (TOG), 2005, 24(2): 311-330.

Zayer R, Lévy B, Seidel H P. Linear angle based parameterization[C]//Fifth Eurographics Symposium on Geometry Processing-SGP 2007. Eurographics Association, 2007: 135-141.

Angle-Based Flattening (ABF)

- Key observation: the parameterized triangles are uniquely defined by all the angles at the corners of the triangles.
 - Find angles instead of (u_i, v_i) coordinates.

• Use angles to reconstruct (u_i, v_i) coordinates.

Objective

• Optimization goal:

$$E_{ABF} = \sum_{t} \sum_{i=1}^{3} \omega_{i}^{t} (\alpha_{i}^{t} - \beta_{i}^{t})^{2}$$

$$\beta_{i}^{t} : \text{Optimal angles for } \alpha_{i}^{t}.$$

$$\beta_{i}^{t} = \begin{cases} \frac{\tilde{\beta}_{i}^{t} \cdot 2\pi}{\sum_{i} \tilde{\beta}_{i}^{t}}, \text{Interior vertex} \\ \tilde{\beta}_{i}^{t}, \text{Boundary verterx} \end{cases}$$

$$\omega_{i}^{t} = (\beta_{i}^{t})^{-2}.$$

Constraints

• Positive resulting angles:

$$\alpha_i^t > 0$$

• The three triangle angles have to sum to π : $\alpha_i^t + \alpha_2^t + \alpha_3^t = \pi$

$$\alpha_i^t + \alpha_2^t + \alpha_3^t = \pi$$

• For each internal vertex, the incident angles have to sum to 2π :

$$\sum_{t \in \Omega(v)} \alpha_k^t = 2\pi$$

• Reconstruction constraints:

$$\prod_{t \in \Omega(v)} \sin \alpha_{k \oplus 1}^t = \prod_{t \in \Omega(v)} \sin \alpha_{k \ominus 1}^t$$

Linear ABF

- Reconstruction constraints are nonlinear and hard to solve.
- Initial estimation + estimation error

$$\bullet \alpha_i^t = \gamma_i^t + e_i^t$$

$$\log \left(\prod_{t \in \Omega(v)} \sin \alpha_{k \oplus 1}^t \right) = \log \left(\prod_{t \in \Omega(v)} \sin \alpha_{k \ominus 1}^t \right)$$

$$\sum_{t \in \Omega(v)} \log \left(\sin \alpha_{k \oplus 1}^t \right) = \sum_{t \in \Omega(v)} \log \left(\sin \alpha_{k \ominus 1}^t \right)$$

• Taylor expansion:

$$\log(\sin \alpha_{k\oplus 1}^t) = \log(\sin \gamma_{k\oplus 1}^t + e_{k\oplus 1}^t)$$
$$= \log(\sin \gamma_{k\oplus 1}^t) + e_{k\oplus 1}^t \cot \gamma_{k\oplus 1}^t + \cdots$$

It is linear with estimation error.

Solver

- Set $\gamma_i^t = \beta_i^t$
- Problem:

$$\min_{e} E_{ABF} = \sum_{t} \sum_{i=1}^{3} \omega_{i}^{t} (e_{i}^{t})^{2}$$
subject to
$$Ae = b$$

$$\Rightarrow \begin{pmatrix} D & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} e \\ \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$\Rightarrow e = D^{-1}A^T(AD^{-1}A^T)^{-1}b$$

Reconstruct parameterization

- Greedy method.
 - Construct the triangles one by one using a depth-first traversal.
 - Key: for each triangle, given the position of two vertices and the angles, the position of the third vertex can be uniquely derived.
- Least squares method.
 - An angle-based least squares formulation
 - Solving a set of linear equations relating angles to coordinates.

Greedy method

- Choose a mesh edge $e^1 = (v_a^1, v_b^1)$.
- Project v_a^1 to (0,0,0) and v_b^1 to ($||e^1||$, 0,0).
- Push e^1 on the stack S.
- While *S* not empty, pop an edge $e = (v_a, v_b)$. For each face $f_i = (v_a, v_b, v_c)$ containing e:
 - If f_i is marked as set, continue.
 - If v_c is not projected, compute its position based on v_a , v_b and the face angles of f_i .
 - Mark f_i as set, push edge (v_b, v_c) and (v_a, v_c) on the stack.
- Accumulate numerical error.

Least squares method

• The ratio of triangle edge lengths $\|\overline{P_1P_3}\|$ and $\|\overline{P_1P_2}\|$ is

$$\frac{\|\overrightarrow{P_1P_3}\|}{\|\overrightarrow{P_1P_2}\|} = \frac{\sin\alpha_2}{\sin\alpha_3}$$

$$\Longrightarrow \overrightarrow{P_1P_3} = \frac{\sin\alpha_2}{\sin\alpha_3} \begin{pmatrix} \cos\alpha_1 & -\sin\alpha_1 \\ \sin\alpha_1 & \cos\alpha_1 \end{pmatrix} \overrightarrow{P_1P_2}$$

Least squares method

$$\forall t = (j, k, j), \qquad M^{t}(P_{k} - P_{j}) + P_{j} - P_{l} = 0$$

$$M^{t} = \frac{\sin \alpha_{k}}{\sin \alpha_{l}} \begin{pmatrix} \cos \alpha_{j} & -\sin \alpha_{j} \\ \sin \alpha_{j} & \cos \alpha_{j} \end{pmatrix}$$

- 1. Two equations per triangle for the *u* and *v* coordinates of the vertices.
- 2. The angles of a planar triangulation define it uniquely up to rigid transformation and global scaling.
 - Introduce four constraints which eliminate these degrees of freedom.
 - Fix two vertices sharing a common edge.

Least squares method

• Choose one edge $e^1 = (v_a^1, v_b^1)$.

• Project v_a^1 to (0,0,0) and v_b^1 to ($||e^1||$, 0,0).

 Solve following energy to compute positions of other vertices:

$$E = \sum_{t} \|M^{t}(P_{k} - P_{j}) + P_{j} - P_{l}\|^{2}$$

Least-Square conformal mapping (LSCM)

Lévy B, Petitjean S, Ray N, et al. Least squares conformal maps for automatic texture atlas generation[J]. ACM transactions on graphics (TOG), 2002, 21(3): 362-371.

Similar transforms

• 2D case: for one triangle *t*

$$\bullet J_t = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = s \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \\
\bullet \Longrightarrow \begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

$$J_t = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$

• Cauchy-Riemann Equations.

$$J_{t} = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$

LSCM (As-similar-as-possible)

Energy

•
$$E_{LSCM} = \sum_{t} A_{t} \left(\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)^{2} + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^{2} \right)$$

- Measuring non-conformality
- It is invariant with respect to arbitrary translations and rotations.
- E_{LSCM} does not have a unique minimizer.
- Fixing at least two vertices. Significantly affect the results.

As-rigid-as-possible (ARAP)

Liu L, Zhang L, Xu Y, et al. A local/global approach to mesh parameterization[C]//Computer Graphics Forum.

Oxford, UK: Blackwell Publishing Ltd, 2008, 27(5): 1495-1504.

Formulation

$$E(u, L) = \sum_{t} A_{t} ||J_{t} - L_{t}||_{F}^{2}$$

 L_t : target transformation

- Isometric mapping: rotation matrix
- Conformal mapping: similar matrix
- Variables:
 - 2D parameterization coordinate
 - Target transformations

Local-global solver

- Alternatively optimization
 - Local step:
 - Fix 2D parameterization coordinates, optimize target transformations.
 - Global step:
 - Fix target transformations, optimize 2D parameterization coordinates.

Global step:

- $E(u, L) = \sum_t A_t ||J_t L_t||_F^2$, quadratic energy
- Linear system

Local step: Procrustes analysis

- Approximating one 2×2 matrix J_t as best we can by another 2×2 matrix L_t .
- $d(J_t, L_t) = ||J_t L_t||_F^2 = \text{trace}((J_t L_t)^T (J_t L_t))$
- Minimizing $d(J_t, L_t)$ through Singular Value Decomposition (SVD)

•
$$J_t = U\Sigma V^T$$
, $\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix}$

- Signed SVD: U and V are rotation matrices, σ_2 may be negative
- Best rotation: UV^T
- Best similar matrix: $U\begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} V^T$, $s = \frac{\sigma_1 + \sigma_2}{2}$

Local/Global Approach summary

Figure 2: Parameterizing a mesh by aligning locally flattened triangles. (Left) Original 3D mesh; (middle) flattened triangles; (right) 2D parameterization.

Connection to singular values

- $E(u, L) = \sum_t A_t ||J_t L_t||_F^2$ and σ_t^1, σ_t^2 are the two singular values of J_t .
- Conformal

$$E(u) = \sum_{t} A_t (\sigma_t^1 - \sigma_t^2)^2$$

Isometric

$$E(u) = \sum_{t} A_{t} \left((\sigma_{t}^{1} - 1)^{2} + (\sigma_{t}^{2} - 1)^{2} \right)$$

谢谢!

