

AGCATCCTGA	GTAATGAGTG	GCCTGGGCCG	GAGCAGGCGA	GGTGGCCGGA	GCCGTGTGGA	60
CCAGGAGGAG	COCTTTCCAC	AGGGCCTGTG	GACGGGGGTG	GCTATGAGAT	CCTGCCCCGA	120
AGAGCAGTAC	TGGGATCCTC	TGCTGGGTAC	CTGCATGTCC	TGCAAAACCA	TTTGCAACCA	180
TCAGAGCCAG	CGCACCTGTG	CAGCCTTCTG	CAGGTCACTC	AGCTGCCGCA	AGGAGCAAGG	240
CAAGTTCTAT	GACCATCTCC	TGAGGGACTG	CATCAGCTGT	GCCTCCATCT	GTGGACAGCA	300
CCCTAAGCAA	TGTGCATACT	TCTGTGAGAA	CAAGCTCAGG	AGCCCAGTGA	ACCTTCCACC	360
AGAGCTCAGG	AGACAGCGGA	GTGGAGAAGT	TGAAAACAAT	TCAGACAACT	CGGGAAGGTA	420
CCAAGGATTG	GAGCACAGAG	GCTCAGAAGC	AAGTCCAGCT	CTCCCGGGGC	TGAAGCTGAG	480
TGCAGATCAG	GTGGCCCTGG	TCTACAGCAC	GCTGGGGCTC	TGCCTGTGTG	CCGTCCTCTG	540
CTGCTTCCTG	GTGGCGGTGG	CCTGCTTCCT	CAAGAAGAGG	GGGGATCCCT	GCTCCTGCCA	600
GCCCCGCTCA	AGGCCCCGTC	AAAGTCCGGC	CAAGTCTTCC	CAGGATCAČG	CGATGGAAGC	660
CGGCAGCCCT	GTGAGCACAT	CCCCGAGCC	AGTGGAGACC	TGCAGCTTCT	GCTTCCCTGA	. 720
GTGCAGGGCG	CCCACGCAGG	AGAGCGCAGT	CACGCCTGGG	ACCCCGACC	CCACTTGTGC	780
TGGAAGGTGG	GGGTGCCACA	CCAGGACCAC	AGTCCTGCAG	CCTTGCCCAC	ACATCCCAGA	840
CAGTGGCCTT	GGCATTGTGT	GTGTGCCTGC	CCAGGAGGGG	GGCCCAGGTG	CATAAATGGG	900
GGTCAGGGAG	g GGAAAGGAGG	AGGGAGAGAG	ATGGAGAGGA	GGGGAGAGAG	AAAGAGAGGT	960
GGGGAGAGGG	GAGAGAGATA	TGAGGAGAGA	GAGACAGAGG	AGGCAGAAAG	GGAGAGAAAC	1020
AGAGGAGACA	GAGAGGGAGA	GAGAGACAGA	GGGAGAGAGA	GACAGAGGGG	AAGAGAGGCA	1080
GAGAGGGAAA	GAGGCAGAGA	AGGAAAGAGA	CAGGCAGAGA	AGGAGAGAGG	CAGAGAGGGA	1140
GAGAGGCAGA	GAGGGAGAGA	GGCAGAGAGA	CAGAGAGGGA	GAGAGGGACA	GAGAGAGATA	1200
GAGCAGGAGG	TCGGGGCACT	CTGAGTCCCA	GTTCCCAGTG	CAGCTGTAGG	TCGTCATCAC	1260
CTAACCACAC	GTGCAATAAA	GTCCTCGTGC	CTGCTGCTCA	CAGCCCCCGA	GAGCCCCTCC	1320
TĊCTGGAGAA	TAAAACCTTT	GGCAGCTGCC	CTTCCTCAAA	AAAAAAAAA	АААААА	1377

FIGURE 1A

Met Ser Gly Leu Gly Arg Ser Arg Arg Gly Gly Arg Ser Arg Val Asp 1 5 10 15 Gln Glu Glu Arg Phe Pro Gln Gly Leu Trp Thr Gly Val Ala Met Arg Ser Cys Pro Glu Glu Gln Tyr Trp Asp Pro Leu Leu Gly Thr Cys Met Ser Cys Lys Thr Ile Cys Asn His Gln Ser Gln Arg Thr Cys Ala Ala 50 55 60 Phe Cys Arg Ser Leu Ser Cys Arg Lys Glu Gln Gly Lys Phe Tyr Asp
65 70 75 80 His Leu Leu Arg Asp Cys Ile Ser Cys Ala Ser Ile Cys Gly Gln His Pro Lys Gln Cys Ala Tyr Phe Cys Glu Asn Lys Leu Arg Ser Pro Val Asn Leu Pro Pro Glu Leu Arg Arg Gln Arg Ser Gly Glu Val Glu Asn 115 120 125 Asn Ser Asp Asn Ser Gly Arg Tyr Gln Gly Leu Glu His Arg Gly Ser 130 135 140 Glu Ala Ser Pro Ala Leu Pro Gly Leu Lys Leu Ser Ala Asp Gln Val 145 150 . 155 160 Ala Leu Val Tyr Ser Thr Leu Gly Leu Cys Leu Cys Ala Val Leu Cys 165 170 175 Cys Phe Leu Val Ala Val Ala Cys Phe Leu Lys Lys Arg Gly Asp Pro 180 185 190 Cys Ser Cys Gln Pro Arg Ser Arg Pro Arg Gln Ser Pro Ala Lys Ser 195 200 205 Ser Gln Asp His Ala Met Glu Ala Gly Ser Pro Val Ser Thr Ser ?ro 210 215 220 Glu Pro Val Glu Thr Cys Ser Phe Cys Phe Pro Glu Cys Arg Ala Pro 225 230 235 240 Thr Gln Glu Ser Ala Val Thr Pro Gly Thr Pro Asp Pro Thr Cys Ala 245 250 255 Gly Arg Trp Gly Cys His Thr Arg Thr Thr Val Leu Gln Pro Cys Pro 260 265 270 His Ile Pro Asp Ser Gly Leu Gly Ile Val Cys Val Pro Ala Gln Glu 275 280 285 Gly Gly Pro Gly Ala 290

FIGURE 1B

(start and stop codons are in bold type)

AGCAAGTTCA GO	CCTGGTTAA	GTCCAAGCTG	AATTCCGGTC	AAAGTTCAAG
TAGTGATATG GA	ATGACTCCA	CAGAAAGGGA	GCAGTCACGC	CTTACTTCTT
GCCTTAAGAA AA	AGAGAAGAA	ATGAAACTGA	AGGAGTGTGT	TTCCATCCTC
CCACGGAAGG AX	AAGCCCCTC	TGTCCGATCC	TCCAAAGACG	GAAAGCTGCT
GGCTGCAACC T	TGCTGCTGG	CACTGCTGTC	TTGCTGCCTC	ACGGTGGTGT
CTTTCTACCA GO	GTGGCCGCC	CTGCAAGGGG	ACCTGGCCAG	CCTCCGGGCA
GAGCTGCAGG GO	CCACCACGC	GGAGAAGCTG	CCAGCAGGAG	CAGGAGCCCC
CAAGGCCGGC CT	TGGAGGAAG	CTCCAGCTGT	CACCGCGGGA	CTGAAAATCT
TTGAACCACC AC	GCTCCAGGA	GAAGGCAACT	CCAGTCAGAA	CAGCAGAAAT
AAGCGTGCCG TT	TCAGGGTCC	AGAAGAAACA	GTCACTCAAG	ACTGCTTGCA
ACTGATTGCA GA	ACAGTGAAA	CACCAACTAT	ACAAAAAGGA	TCTTACACAT
TTGTTCCATG GO	CTTCTCAGC	TTTAAAAGGG	GAAGTGCCCT	AGAAGAAAAA
GAGAATAAAA TA	ATTGGTCAA	AGAAACTGGT	TACTTTTTTA	TATATGGTCA
		CCTACGCCAT	GGGACATCTA	ATTCAGAGGA
AGAAGGTCCA TO	GTCTTTGGG	GATGAATTGA	GTCTGGTGAC	TTTGTTTCGA
TGTATTCAAA AT	FATGCCTGA	AACACTACCC	AATAATTCCT	GCTATTCAGC
TGGCATTGCA AF	AACTGGAAG	AAGGAGATGA	ACTCCAACTT	GCAATACCAA
GAGAAAATGC AC	CAAATATCA	CTGGATGGAG	ATGTCACATT	TTTTGGTGCA
TTGAAACTGC TG	G TGA CCTAC	TTACACCATG	TCTGTAGCTA	TTTTCCTCCC
TTTCTCTGTA CC	CTCTAAGAA	GAAAGAATCT	AACTGAAAAT	ACCAAAAAAA
AAAAAAAAA AA	AAAAGATCT	TTAATTAAGC	GGCCGCAAGC	TTATTCCCTT
TAGTGAG				

FIGURE 2A

Translation in relevant reading frame (3' 5'):

MDDSTEREQS RLTSCLKKRE EMKLKECVSI LPRKESPSVR SSKDGKLLAA TLLLALLSCC LTVVSFYQVA ALQGDLASLR AELQGHHAEK LPAGAGAPKA GLEEAPAVTA GLKIFEPPAP GEGNSSQNSR NKRAVQGPEE TVTQDCLQLI ADSETPTIQK GSYTFVPWLL SFKRGSALEE KENKILVKET GYFFIYGQVL YTDKTYAMGH LIQRKKVHVF GDELSLVTLF RCIQNMPETL PNNSCYSAGI AKLEEGDELQ LAIPRENAQI SLDGDVTFFG ALKLL

FIGURE 2B

Translation in relevant reading frame (3' 5'):

MARRLWILSL LAVTLTVALA APSQKSKRRT SSDRMKQIED KIEEILSKIY HIENEIARIK KLIGERTRSG NSSQNSRNKR AVQGPEETVT QDCLQLIADS ETPTIQKGSY TFVPWLLSFK RGSALEEKEN KILVKETGYF FIYGQVLYTD KTYAMGHLIQ RKKVHVFGDE LSLVTLFRCI QNMPETLPNN SCYSAGIAKL EEGDELQLAI PRENAQISLD GDVTFFGALK LL (SEQ ID NO:3)

FIGURE 3

FEB2499C

1:2 dih.

አ ፓ

H

2 1K99976±09

Data points (2.1e+03*5.7e+08*X) / (4+1.0e+10*X) / (1+1.0e+10*X) FIGURE 6A

0

