Can you prove or disprove that $b_n \rightarrow b$ in L^2 ?

Pf: $b_n \leftrightarrow b$ in L^2 .

Assume $b_n \rightarrow b$ in L^2 , which means that $\lim_{n \to \infty} E[(b_n - b)^2] = 0$.

Then, $\lim_{n \to \infty} E[(b_n - E(b_n))^2] + \lim_{n \to \infty} (E(b_n) - b)^2 = 0$ $\lim_{n \to \infty} E(b_n) = b$, so $\lim_{n \to \infty} E[(b_n - E(b_n))^2] = \lim_{n \to \infty} Var(b_n) = 0$ (K) $\lim_{n \to \infty} E(b_n) = \lim_{n \to \infty} (1-a)b_n + a \times n$ $\lim_{n \to \infty} \int_{\mathbb{R}^n} (1-a)b_n + a \times n$ $\lim_{n \to \infty} \int_{\mathbb{R}^n} (1-a)^{n-k-1} \cdot a \times k$ with $\lim_{n \to \infty} \int_{\mathbb{R}^n} V(b_n) = 0$ That is $\lim_{n \to \infty} V(b_n) = \frac{\sigma^2 a}{2-a}$, which contradicts with $\lim_{n \to \infty} \int_{\mathbb{R}^n} V(b_n) = \frac{\sigma^2 a}{2-a}$, which contradicts with $\lim_{n \to \infty} \int_{\mathbb{R}^n} V(b_n) = \frac{\sigma^2 a}{2-a}$, which contradicts with $\lim_{n \to \infty} V(b_n) = \frac{\sigma^2 a}{2-a}$, which contradicts with $\lim_{n \to \infty} V(b_n) = \frac{\sigma^2 a}{2-a}$, which contradicts with $\lim_{n \to \infty} V(b_n) = \frac{\sigma^2 a}{2-a}$, which contradicts with $\lim_{n \to \infty} V(b_n) = \frac{\sigma^2 a}{2-a}$, which contradicts with $\lim_{n \to \infty} V(b_n) = \frac{\sigma^2 a}{2-a}$.