Consider $\overrightarrow{A}\overrightarrow{z} = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{2}}) + \cdots + \chi_{n}(\overrightarrow{A_{n}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{1}}) = \overrightarrow{b}$ $= \chi_{1}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{1}}) + \chi_{2}(\overrightarrow{A_{1}})$

2 Cases arise:

(1) We can find Scalars

21, 22 ... 2n S.t

 $\vec{b} = \chi_1 \vec{\lambda}_1 + \chi_2 \vec{\lambda}_2 + \dots + \chi_n \vec{An}$

(2) There exists no scalars $x_1, x_2 \cdots x_n$ 8.t

 $\vec{k} = \chi_1 \vec{A_1} + \cdots + \chi_n \vec{A_n}$

Case 1:

There exists scalars x_1, x_1 Set of all possible \vec{b} vectors that

Can be expressed as $\vec{b} = x_1 \vec{A}_1 + \cdots + x_n \vec{A}_n$ $\vec{b} = \sum_{i=1}^n x_i \vec{A}_i$ $\vec{i} = i$ Let this Set be \vec{R}_n $\vec{b} \in \vec{R}_m$

Is Ra non empty? YES.

OER^m (Zero vector) is an

element of Ra.

Let $\vec{u}, \vec{v} \in \mathbb{R}^m$ be elements of R_A .

 $\alpha_1, \dots \alpha_n$

 $\overrightarrow{U} = \beta_1 \overrightarrow{A_1} + \beta_2 \overrightarrow{A_2} + \cdots + \beta_n \overrightarrow{A_n} \rightarrow 2$

for some real scalars $\beta_1, \beta_2 \cdots \beta_n$.

1+2

$$\overrightarrow{\mathcal{U}} + \overrightarrow{V} = \begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_m \end{pmatrix} + \begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_m \end{pmatrix} = \begin{pmatrix} U_1 + V_1 \\ U_2 + V_2 \\ \vdots \\ U_m + V_m \end{pmatrix}$$

 $\overrightarrow{\mathcal{U}} + \overrightarrow{\mathcal{V}} = \alpha_1 \overrightarrow{A_1} + \alpha_2 \overrightarrow{A_2} + \cdots + \alpha_n \overrightarrow{A_n}$ $+ \beta_1 \overrightarrow{A_1} + \beta_2 \overrightarrow{A_2} + \cdots + \beta_n \overrightarrow{A_n}$ $\vec{\mathcal{U}} = \alpha_1 \vec{A_1} + \alpha_2 \vec{A_2} + \cdots + \alpha_n \vec{A_n}$ Let c be a real scalar $C\vec{u} = \left[C_1 u_1\right] = C\left[\alpha_1 \vec{A}_1 + \alpha_2 \vec{A}_2 + \dots + \alpha_n \vec{A}_n\right]$ $\vec{R} = \vec{V} + \vec{V} = (u_1 + v_1) = (\alpha_1 + \beta_1) \vec{A}_1 + (\alpha_2 + \beta_2) \vec{A}_2 + \dots + (\alpha_n + \beta_n) \vec{A}_n$ Conum $= (C\alpha_1)\overrightarrow{A}_1 + (C\alpha_2)\overrightarrow{A}_2 + \cdots + (C\alpha_n)\overrightarrow{A}_n$ $= k_1\overrightarrow{A}_1 + k_2\overrightarrow{A}_2 + \cdots + k_n\overrightarrow{A}_n$ $\vec{W} = \vec{T_1} \vec{A_1} + \vec{T_2} \vec{A_2} + \cdots + \vec{T_n} \vec{A_n} \vec{a_n}$ ⇒ v = v+v ∈ RA Re is closed under Vector addition. Cil = LC. of cols. of A.

Ra is non-empty, closed under \mathbb{R}^n \mathbb{R}^m .

Vector addition \times Scalar multiplier

(1) $\mathbb{N}_A \to \mathbb{S}ub$ space \mathbb{R}_A or $\mathbb{C}olSp(A)$ of \mathbb{R}^n Hence \mathbb{R}_A is a Subspace of \mathbb{R}^n : \mathbb{R}^m \mathbb{R}^m \mathbb{R}^m : \mathbb{R}^m :