1. Перевести из 10 в 16 систему 12345678, 1000000 Решение:

 $1234567_{10} = BC614E_{16}$.

2. Перевести из 16 в 10 систему 12345678, 1000000

Решение:

$$112345678_{16} = (1 \times 16^7) + (2 \times 16^6) + (3 \times 16^5) + (4 \times 16^4) + (5 \times 16^3) + (6 \times 16^2) + (7 \times 16^1) + (8 \times 16^0) = 268435456 + 33554432 + 3145728 + 262144 + 20480 + 1536 + 112 + 8 = 305419896_{10}$$

 $12345678_{16} = 305419896_{10}$.

3. Записать в виде логического выражение ответ Винни Пуха: "Сгущенного молока и меда и можно без хлеба".

Решение:

Обозначим за М Н и В продукты питания

М – сгущеное молоко;

H – мёд;

В – хлеб.

Тогда выражение примет вид

M && H && !B.

- 4. Доказать тождества A \rightarrow B =!A||B, A \leftrightarrow B = (A && B) || (!A && !B) Решение:
 - 1) $A \rightarrow B = |A| |B|$

Запишем таблицы истинности для выражений:

Α	В	$A \rightarrow B$		Α	!A	В	!A B
0	0	1		0	1	0	1
0	1	1	=	0	1	1	1
1	0	0		1	0	0	0
1	1	1		1	0	1	1

Из сравнения таблиц истинности видно, что выражения тождественны.

2) $A \leftrightarrow B = (A \&\& B) \mid | (!A \&\& !B)$

Запишем таблицы истинности для выражений:

Α	В	$A \longleftrightarrow B$		Α	В	!A	!B	A && B	!A && !B	(A && B) (!A && !B)
0	0	1		0	0	1	1	0	1	1
0	1	0	=	0	1	1	0	0	0	0
1	0	0		1	0	0	1	0	0	0
1	1	1		1	1	0	0	1	0	1

Из сравнения таблиц истинности видно, что выражения тождественны.

5. Найти эквивалент для ⊕?

Запишем таблицу истинности для операции исключающее или \oplus :

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Запишем таблицы истинности для простых логических выражений:

Α	В	!A	!B	A && B	!A && !B	A && !B	!A && B	A B	!A !B
0	0	1	1	0	1	0	0	0	1
0	1	1	0	0	0	0	1	1	1
1	0	0	1	0	0	1	0	1	1
1	1	0	0	1	0	0	0	1	0

Определим эквивалентные логические выражения для \oplus :

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

=	(A&&!B) (!A&&B)	(A B)&&(!A !B)	(A B)&&!(AB)		
	0	0	0		
	1	1	1		
	1	1	1		
	0	0	0		

6. * Упростить выражение $X = (B \to A) \cdot \overline{(A+B)} \cdot (A \to C)$

Формула импликации:

$$(B \rightarrow A) = (\bar{B} + A);$$

$$(A \rightarrow C) = (\bar{A} + C);$$

Правило де Моргана:

$$\overline{(A+B)} = \bar{A} \cdot \bar{B};$$

Получаем:

$$X = (B \to A) \cdot \overline{(A+B)} \cdot (A \to C) = (\bar{B} + A) \cdot \bar{A} \cdot \bar{B} \cdot (\bar{A} + C)$$

Применим правило поглощения:

$$\begin{split} (\bar{B}+A)\cdot\bar{B}&=\bar{B}\\ (\bar{A}+C)\cdot\bar{A}&=\bar{A} \end{split}$$

Получим

$$X = (B \to A) \cdot \overline{(A+B)} \cdot (A \to C) = (\overline{B} + A) \cdot \overline{A} \cdot \overline{B} \cdot (\overline{A} + C) = \overline{B} \cdot \overline{A} = \overline{(B+A)}$$