Prof. Erickson R. Nascimento
erickson@dcc.ufmg.br

MODELING REFLECTANCE

DCC
DEPARTAMENTO DE
CIÊNCIA DA COMPUTAÇÃO

U F COMPUTAÇÃO

Interaction of Light with Surfaces

- Light energy emitted into a scene interacts with the different objects in the scene by
- Getting reflected
- ☐ Transmitted at surface boundaries
- Absorbed
- Dissipated

2

UFmG

1

3

3

Interaction of Light with Surfaces

 When light interacts with matter, a complicated light-matter dynamic occurs.

U F *m* G

Interaction of Light with Surfaces

- This interaction depends on the physical characteristics of the light as well as the physical composition and characteristics of the matter
- e.g., a rough opaque surface such as sandpaper will reflect light differently than a smooth reflective surface such as a mirror.
- The reflectance properties of a surface affect the appearance of the object

4

UFmG

•

Interaction of Light with Surfaces

- Because light is a form of energy, conservation of energy tells us that
- □ Light incident at surface = light reflected + light absorbed + light transmitted
- Opaque materials:
- the majority of incident light is transformed into reflected light and absorbed light.

5

U F <u>m</u> G

5

Reflectance

• Irradiance at p is:

$$dE(p,\omega_i) = L_i(p,\omega_i)\cos\theta_i d\omega_i$$

7

U F <u>m</u> G

6

Reflectance

• Reflected differential radiance is proportional to the irradiance:

8

UF <mark>m</mark> G

7

BRDF

VERab
Computer Vision and Robotics

• Bidirectional Reflectance Distribution Function (BRDF) describes how much light is reflected when light makes contact with a certain material at a point p

$$\Box f_r = \frac{dL_o(p,\omega_o)}{dE(p,\omega_i)}$$

- lacksquare ω_i is the incoming light direction $\ensuremath{ o}$
- $\square \omega_o$ is the outgoing view diretion

9

9

BRDF in spherical coordinates

• A general BRDF in functional notation can be written as (position-invariant or shift-invariant)

$$f_r(\theta_i, \phi_i, \theta_o, \phi_o, \lambda)$$

11

 $UF\underline{m}G$

BRDF vs BSDF

• The term *Bidirectional Scattering Distribution Function (BSDF)* is used to denote the reflection and transparent parts together

$$\Box f_S = \frac{dL_o(p_o, \omega_o)}{dE(p_i, \omega_i)}$$

10

10

Position-invariant BRDF

- We will not include the spatial position as a parameter to the function.
- We assume that the reflectance properties of a material do not vary with spatial position.
- □ Only valid for homogenous materials
- We can include the positional variance using a detail texture

12

12

UF m G

BRDF and color

- BRDF do depend on the wavelength or color channel under consideration
- □ The value of the BRDF function must be determined separately for each color channel (i.e., R, G, and B separately)

13

U F <u>m</u> G

13

BRDF characteristics

- In pratice, reciprocity is violated in rendering
- But it is useful tool for determining if a BRDF is physically plausible

15

 $UF\underline{m}G$

Properties of the BRDF

- Helmholtz reciprocity: input and output angles can be switched and the function will not change:
- □ It means that reversing the direction of light does not change the amount of light that gets reflected

$$f_r(\theta_i, \phi_i, \theta_o, \phi_o) = f_r(\theta_o, \phi_o, \theta_i, \phi_i)$$

14

UFmG

14

Isotropic BRDFs

- Invariant with respect to rotation of the surface around the surface normal vector
- □ smooth plastics have isotropic BRDFs

16

UFmG

15

Anisotropy BRDFs

- Anisotropy refers to BRDFs that describe reflectance properties that do exhibit change with respect to rotation of the surface around the surface normal vector
- brushed metal and hair.
- Most real-world BRDFs are anisotropic to some degree
- □ But most real-world BRDFs are probably more isotropic than anisotropic

17

UFmG

17

18

BRDF characteristics

VERab

• Conservation of energy: a surface cannot reflect more than 100% of incoming light energy.

21

 $UF \underline{m} G$

21

BRDF characteristics

Conservation of energy

$$\frac{d\Phi_o}{d\Phi_i} = \frac{\int_{\Omega_o} L_o(\omega_o) \cos \theta_o d\omega_o}{\int_{\Omega_i} L_i(\omega_i) \cos \theta_i d\omega_i} \le 1$$

23

UFmG

Computing total flux

VERab

• Total flux is equal to

 $\Phi = \int_{H^2} L_i(dA\cos\theta) \, dw$

 \square where H^2 is the entire upper hemisphere

 \Box dA for all directions

22

22

UFmG

Reflection Equation $\int_{f} (\omega_{0} | \psi_{\nu}) = \underbrace{\int_{f} (\omega_{0} | \omega_{0})}_{L_{0}(\omega_{0})}$ $\bullet f_{r}(\omega_{0}, \omega_{i}) = \frac{dL_{o(\omega_{0})}}{dE(\omega_{i})}, dE(\omega_{i}) = \frac{d\Phi}{dA} = L_{i} \cos\theta d\omega_{i}$

• Lets considere one ray with direction ω_i

24

UFmG

23

Reflection Equation

• $L_o(\omega_0) = \sum_i f_r(\omega_0, \omega_i) L_i(\omega_i)(\omega_i \cdot \mathbf{n})$

25

25

Conservation of Energy

UFmG

• For each one unit of light energy that arrives at a point, no more than one unit of light energy can be reflected in total to all possible outgoing directions

$$\int_{\Omega} f_r(\omega_o, \omega_i) (\omega_i \cdot \boldsymbol{n}) d\omega_i \leq 1$$

 \square Ω indicates integral over a hemisphere of all directions.

27

27

UFmG

Reflection Equation

26

26

UFmG

BRDF examples

- Depending on the nature of the BRDF, the material will appear
- Mirror
- Diffuse
- Glossy

28

28

UFmG

Ideal Diffuse BRDF

• Let $f_r(\omega_o, \omega_i) = k_d$ and assume BRDF reflects a fraction ρ of the incoming light

$$\square L_o(\omega_o) = \int_{\Omega} f_r(\omega_o, \omega_i) L_i(\omega_i)(\omega_i \cdot \mathbf{n}) d\omega_i = \rho L_i$$

ullet The quantity ho is known as the albedo of the surface

29

UFmG

29

Ideal Diffuse BRDF

Since

$$\Box E = \frac{d\Phi}{dA} = \frac{\pi L_i dA}{dA} = \pi L_i$$

Then

$$\square k_d E = \rho L_i$$

$$\square k_d(\pi L_i) = \rho L$$

31

UFmG

Ideal Diffuse BRDF

 $\Box \int_{\Omega} f_r(\omega_o, \omega_i) L_i(\omega_i)(\omega_i \cdot \mathbf{n}) d\omega_i = \rho L_i$

 $\Box \int_{\Omega} k_d L_i(\omega_i)(\omega_i \cdot \boldsymbol{n}) d\omega_i = \rho L_i$

 $\mathbf{L}_{i} k_{d} \int_{\Omega} L_{i}(\omega_{i})(\omega_{i} \cdot \boldsymbol{n}) d\omega_{i} = \rho L_{i}$

 $\square k_d E = \rho L_i$

30

UFmG

UFmG

30

Ideal Diffuse BRDF

• Lambert's cosine law:

 $\Box L_o(w_o) = \int_{\Omega} f_r(\omega_o, \omega_i) L_i(\omega_i)(\omega_i \cdot \boldsymbol{n}) d\omega_i = \rho L_i$

 $\square \rho L_i = k_d E = \frac{\rho}{\pi} E$

32

UFmG

UFmG

Tom Thorne and Taku Komura

Phong Lighting Model

• $L_o = g(\omega_i, \omega_o)L_i$

•
$$L_o = \frac{\cos \theta_i d\omega_i}{\cos \theta_i d\omega_i} g(\omega_i, \omega_o) L_i$$

- $L_o = \frac{g(\omega_i, \omega_o)}{\cos \theta_i d\omega_i} \cos \theta_i d\omega_i L_i$
- $L_o = \frac{g(\omega_i, \omega_o)}{\cos \theta_i d\omega_i} L_i \cos \theta_i d\omega_i$
- This feels like a general BRDF lighting:

$$f_r(\omega_i, \omega_o) = \frac{g(\omega_i, \omega_o)}{\cos \theta_i d\omega_i} = \frac{k_d (l.n) + k_s (r.v)^n}{\cos \theta_i d\omega_i}$$

45

 $UF_{m}G$

45

Flat shading

- Color is computed once for each polygon
- All pixels in a polygon are set to the same color

47

Tom Thorne and Taku Komura

UFmG

Phong Lighting Model

- Phong model is a computational convenient method to analytically approximate the reflectance properties of a small set of materials
- It is not actually physically plausible because:
- □ It is not necessarily energy conserving
- nor reciprocal.
- □ Why?

46

UFmG

46

Gouraud shading

- Color is computed once per vertex using the local illumination model
- Polygons interpolate colors over their surface

Tom Thorne and Taku Komura

48

UF m G

Vertex normals

VER.ab
Computer Vision and Robotics

• Vertex normals are found by averaging the face normals:

49 Tom Thorne and Taku Komura

49

Problems with Gouraud shading

UFmG

- \bullet In specular reflection the highlight can be sharp, depending on the shape of $\cos^n \alpha$
- Gouraud shading interpolates linearly and so can make the highlight much bigger
- Gouraud shading can miss highlights that occur in the middle of a polygon

51 Tom Thorne and Taku Komura

UFmG

Transforming vertex normals

- Recall
- When applying a transformation M to your set of vertex, the normals are transformed as
- $\bullet \ n' = (M^{-1})^T n$

50

50

Phong shading

UFmG

- Lighting computation is performed at each pixel
- Normal vectors are interpolated over the polygon

52 Tom Thorne and Taku Komura

UFmG

51

Fresnel Reflectance

- An object's surface is an interface between two different substances:
- Air
- Object's substance
- The interaction of light with a planar interface between two substances follows the Fresnel Equations

57

59

UFmG

57

Fresnel Reflectance • Copper and aluminum have significant variation in their reflectance over visible spectrum (It is show Red, Green, Blue) = copper **aluminum** — iron — diamond — glass — water Fresnel reflectance UFmG

Fresnel Reflectance

- Each ray of incoming light has two directions:
- \square Ideal reflection direction: r_i
- □ Ideal refraction direction: t
- Fresnel reflectance $F_r(\theta_i)$ is the amount of light reflected, which depends on incoming direction r_i

58

58

Fresnel Reflectance

- The function $F_r(\theta_i)$ has the following characteristics:
- $\theta_i = 0$: light perpendicular to the surface, the value $F_r(\theta_i)$ is a property of the substance, i.e. specular color
- □ When θ_i increases $F_r(\theta_i)$ increases and reaches 1 at $\theta_i = \frac{\pi}{2}$

60

60

UFmG

Specular Reflection

VERab
Computer Vision and Robotics

• Since the Fresnel equation gives the fraction of light reflected $F_r(\omega_i)$:

$$L_o(\omega_o) = f_r(\omega_o, \omega_i) L_i(\omega_i) = F_r(\omega_i) L_i(\omega_i)$$

 $UF_{\underline{m}}G$

Fresnel Reflectance

VER.ab

• Schlick's approximation fo Fresnel reflectance:

$$F_r(\theta_i) \approx F_r(0) + (1 - F_r(0))(1 - \cos \theta_i)^5$$

62

62

Where do BRDFs come from?

VER.ab
Computer Vision and Robotics

- By resampling BRDF data acquired by empirical measurements of real-world surfaces.
- □ Gonioreflectometer: measures the BRDF of a material.

64

 $UF_{m}G$

63

Where do BRDFs come from?

- Evaluation of mathematical functions derived from analytical models.
- □ Cook-Torrance model
- Modified Phong model
- Ward's model
- etc.

65

UFmG

65

Microfacet Models

- Main components:
- Distribution of the facets
- BRDF that describes how light scatters from individual microfacets
- Goal: Derive a closed-form expression giving BRDF

67

 $UF_{m}G$

Microfacet Models

- Model the surface reflection as a collection of small microfacets
- lacksquare n_f microfacet normals
- \square n surface normal

66

UF<u>m</u>G

66

Torrance-Sparrow Model

UFmG

68

Torrance-Sparrow Model

- Model surfaces as collections of perfectly smooth mirrored microfacets
- ullet The surface is statistically described by a distribution function $D(\omega_h)$
- $\ {\color{gray}\square}\ D(\omega_h)$ gives the probability that a microfacet has orientation ω_h
- $lue{}$ ω_h is called half-angle vector

69

