# Text Classification and Sentence Representation

Kyunghyun Cho

New York University

Courant Institute (Computer Science) and Center for Data Science Facebook AI Research

#### Text Classification

- Input: a natural language sentence/paragraph
- Output: a category to which the input text belongs
  - There are a fixed number C of categories
- Examples
  - Sentiment analysis: is this review positive or negative?
  - Text categorization: which category does this blog post belong to?
  - Intent classification: is this a question about a Chinese restaurant?

#### How to represent a sentence

- A sentence is a variable-length sequence of tokens:  $X = (x_1, x_2, \dots, x_T)$
- Each token could be any one from a vocabulary:  $x_t \in V$
- Examples
  - (커넥트, 재단에서, 강의, 중, 입니다, .)
    - Vocabulary: All unique, space-separated tokens in Korean
  - (커넥트, 재단, 에서, 강의, 중, 입니다, .)
    - Vocabulary: All uniqued, segmented tokens in Korean
  - (커, 넥, 트, [], 재, 단, 에, 서, [], 강, 의, [], 중, [], 입, 니, 다, .)
    - Vocabulary: All Korean syllables
  - And many more possibilities...

#### How to represent a sentence

- A sentence is a variable-length sequence of tokens:  $X = (x_1, x_2, \dots, x_T)$
- Each token could be any one from a vocabulary:  $x_t \in V$
- Once the vocabulary is fixed and encoding is done, a sentence or text is just a sequence of "integer indices".
- Examples:
  - (커넥트, 재단, 에서, 강의, 중, 입니다, .)
  - (5241, 827, 20, 288, 12, 19, 5)

|   | Index | Token |
|---|-------|-------|
| _ | 5     | •     |
|   | 12    | 중     |
|   | 19    | 입니다   |
|   | 20    | 에서    |
|   | •••   |       |
|   | 288   | 강의    |
|   | 827   | 재단    |
|   | •••   |       |
|   |       |       |

# How to represent a token

- A token is an integer "index".
- How do should we represent a token so that it reflects its "meaning"?
- First, we assume nothing is known: use an one-hot encoding.

$$x = [0, 0, 0, \dots, 0, 1, 0, \dots, 0] \in \{0, 1\}^{|V|}$$

- |V|: the size of vocabulary
  Only one of the elements is 1:  $\sum_{i=1}^{|V|} x_i = 1$
- Every token is equally distant away from all the others.

$$||x - y|| = c > 0$$
, if  $x \neq y$ 

#### How to represent a token

- How do should we represent a token so that it reflects its "meaning"?
- First, we assume nothing is known: use an one-hot encoding.
- Second, the neural network capture the token's meaning as a vector.
- This is done by a simple matrix multiplication:  $Wx = W[\hat{x}]$ , if x is one-hot, where  $\hat{x} = \arg\max x_j$  is the token's index in the vocabulary.



## How to represent a sentence – CBoW

• After the table-lookup operation,\* the input sentence is a sequence of continuous, high-dimensional vectors:

$$X = (e_1, e_2, \dots, e_T), \text{ where } e_t \in \mathbb{R}^d$$

- The sentence length T differs from one sentence to another.
- The classifier needs to eventually compress it into a single vector.



7

#### How to represent a sentence – CBoW

- Continuous bag-of-words
  - Ignore the order of the tokens:  $(x_1, x_2, \dots, x_T) \to \{x_1, x_2, \dots, x_T\}$
  - Simply average the token vectors:

    Averaging is a differentiable operator.  $\frac{1}{T}\sum_{t=1}^{T}e_{t}$  Just one operator node in the DAG.
  - Generalizable to bag-of-n-grams
    - N-gram: a phrase of N tokens
    - Think of how you would do!
- Extremely effective in text classification [Iyyer et al., 2016; Cho, 2017; and many more]
  - For instance, if there are many positive words, the review is likely positive.
- In practice, use FastText [Bojanowski et al., 2017]

#### How to represent a sentence – CBoW

• Continuous bag-of-words based multi-class text classifier



• With this DAG, you use automatic backpropagation and stochastic gradient descent to train the classifier.

#### How to represent a sentence – RN

- Relation Network [Santoro et al., 2017]: Skip Bigrams
  - Consider all possible pairs of tokens:  $(x_i, x_j), \forall i \neq j$
  - Combine two token vectors with a neural network for each pair

$$f(x_i, x_j) = W\phi(U_{\text{left}}e_i + U_{\text{right}}e_j)$$

- $\phi$  is a element-wise nonlinear function, such as anh or ReLU  $(\max(0,a))$
- One subgraph in the DAG.



# How to represent a sentence – RN

- Relation Network: Skip Bigrams
  - Considers all possible pairs of tokens: $(x_i, x_j), \forall i \neq j$  $f(x_i, x_j) = W\phi(U_{\text{left}}e_i + U_{\text{right}}e_j)$
  - Considers the "relation" ship between each pair of words
  - Averages all these relationship vectors

$$RN(X) = \frac{1}{2N(N-1)} \sum_{i=1}^{T-1} \sum_{j=i+1}^{T} f(x_i, x_j)$$

• Could be generalized to triplets and so on at the expense of computational efficient.



#### How to represent a sentence – RN

- Relation Network: Skip Bigrams
  - Considers all possible pairs of tokens:  $(x_i, x_j), \forall i \neq j$
  - Considers an possible pair  $f(x_i,x_j) = W\phi(U_{\mathrm{left}}e_i + U_{\mathrm{right}}e_j)$  Considers the pair-wise "relation"ship  $\mathrm{RN}(X) = \frac{1}{2N(N-1)}\sum_{i=1}^{T-1}\sum_{j=i+1}^{T}f(x_i,x_j)$



# How to represent a sentence – CNN

- Convolutional Networks [Kim, 2014; Kalchbrenner et al., 2015]
  - Captures *k*-grams hierarchically
  - One 1-D convolutional layer: considers all k-grams

$$h_t = \phi\left(\sum_{\tau=-k/2}^{k/2} W_{\tau} e_{t+\tau}\right)$$
, resulting in  $H = (h_1, h_2, \dots, h_T)$ .

- Stack more than one convolutional layers: progressively-growing window
- Fits our intuition of how sentence is understood: tokens→multi-word expressions→phrases→sentence



#### How to represent a sentence – CNN

- Convolutional Networks [Kim, 2014; Kalchbrenner et al., 2015]
  - Captures *k*-grams hierarchically
  - Stack more than one convolutional layers: progressively-growing window
  - tokens—multi-word expressions—phrases—sentence
- In practice, just another operation node in a DAG:
  - Extremely efficient implementations are available in all of the major frameworks.
- Recent advances
  - Multi-width convolutional layers [Kim, 2014; Lee et al., 2017]
  - Dilated convolutional layers [Kalchbrenner et al., 2016]
  - Gated convolutional layers [Gehring et al., 2017]

- Can we combine and generalize the relation network and the CNN?
- Relation Network:
  - Each token's representation is computed against all the other tokens  $h_t = f(x_t, x_1) + \dots + f(x_t, x_{t-1}) + f(x_t, x_{t+1}) + \dots + f(x_t, x_T)$
- CNN:
  - Each token's representation is computed against neighbouring tokens  $h_t = f(x_t, x_{t-k}) + \cdots + f(x_t, x_t) + \cdots + f(x_t, x_{t+k})$
- RN considers the entire sentence vs. CNN focuses on the local context.

- Can we combine and generalize the relation network and the CNN?
- CNN as a weighted relation network:
  - Original:  $h_t = f(x_t, x_{t-k}) + \dots + f(x_t, x_t) + \dots + f(x_t, x_{t+k})$
  - Weighted:

$$h_t = \sum_{t'=1}^{T} \mathbb{I}(|t'-t| \le k) f(x_t, x_{t'})$$

where  $\mathbb{I}(S) = 1$ , if S is true, and 0, otherwise.

• Can we compute those weights instead of fixing them to 0 or 1?

- Can we compute those weights instead of fixing them to 0 or 1?
- That is, compute the weight of each pair  $(x_t, x_{t'})$

$$h_t = \sum_{t'=1}^{T} \alpha(x_t, x_{t'}) f(x_t, x_{t'})$$

- The weighting function could be yet another neural network
  - Just another subgraph in a DAG: easy to use!  $\alpha(x_t, x_{t'}) = \sigma(\text{RN}(x_t, x_{t'})) \in [0, 1]$
  - Perhaps we want to normalize them so that the weights sum to one

$$\alpha(x_t, x_{t'}) = \frac{\exp(\beta(x_t, x_{t'}))}{\sum_{t''=1}^{T} \exp(\beta(x_t, x_{t''}))}, \text{ where } \beta(x_t, x_{t'}) = \text{RN}(x_t, x_{t'}))$$

- Self-Attention: a generalization of CNN and RN.
- Able to capture long-range dependencies within a single layer.
- Able to ignore irrelevant long-range dependencies.



- Self-Attention: a generalization of CNN and RN.
- Able to capture long-range dependencies within a single layer.
- Able to ignore irrelevant long-range dependencies.
- Further generalization via multi-head and multi-hop attention



# How to represent a sentence – RNN

- Weaknesses of self-attention
  - 1. Quadratic computational complexity  $O(T^2)$
  - 2. Some operations cannot be done easily: e.g., counting, ...
- Online compression of a sequence O(T) $h_t = \text{RNN}(h_{t-1}, x_t)$ , where  $h_0 = 0$ .
- Memory  $h_t$  allows it to be Turing complete.\*

#### How to represent a sentence – RNN

- Recurrent neural network: online compression of a sequence O(T) $h_t = \text{RNN}(h_{t-1}, x_t)$ , where  $h_0 = 0$ .
- Bidirectional RNN to account for both sides.
- Inherently sequential processing
  - Less desirable for modern, parallelized, distributed computing infrastructure.
- LSTM [Hochreiter&Schmidhuber, 1999] and GRU [Cho et al., 2014] have become de facto standard
  - All standard frameworks implement them.
  - Efficient GPU kernels are available.



#### How to represent a sentence

- We have learned five ways to extract a sentence representation:
  - In all but CBoW, we end up with a set of vector representations.

$$H = \{h_1, \dots, h_T\}$$

- These approaches could be "stacked" in an arbitrary way to improve performance.
  - Chen, Firat, Bapna et al. [2018] combine self-attention and RNN to build the state-of-the-art machine translation system.
  - Lee et al. [2017] stack RNN on top of CNN to build an efficient fully character-level neural translation system.
  - Because all of these are differentiable, the same mechanism (backprop+SGD) works as it is for any other machine learning model.
- These vectors are often averaged for classification.

#### We learned in this lecture...

- Token representation
  - How do we represent a discrete token in a neural network?
  - Training this neural network leads to so-called **continuous word embedding**.
- Sentence representation
  - How do we extract useful representation from a sentence?
  - We learned five different ways to do so: CBoW, RN, CNN, Self-Attention, RNN

#### In the next lecture,

- What else can we do with this sentence representation?
  - Language generation: language modelling, machine translation, ...
  - Question answering: machine reading, query reformulation, ...
- We will focus on language generation.