Rede de Referência

Topologia física da rede

Tabela de Valores

Equipment	Cost
OLT without transponders	15000 €
Transponder	5000 € /Gb
Optical Amplifier	4000 €
EXC	10000 €
OXC	20000€
EXC Port	1000 €/Gb/s
OXC Port	2500 €/porto

Número de Nós:	6
Numero de Ligações:	8
Média de grau nodal:	2.667
Comp. Médio Do Link:	500
Número medio de h:	1.533
Número medio de h':	2.467
Trafego Total:	5 Tbits/s

CAPEX

Nesta fase do projeto vamos calcular o CAPEX mas desta vez usando ILP e MatLab.

Utilizando a fórmula seguinte:

$$C_C = C_L + C_N$$
 $C_C = L\langle c_l \rangle + N\langle c_n \rangle$

Custo dos Links

$$\langle c_l \rangle = 2 \langle \gamma_0^{OLT} \rangle + 2 \langle \gamma_1^{OLT} \rangle \tau \langle w \rangle + \langle n^R \rangle \langle c^R \rangle$$

Já sabemos os valores de algumas variáveis, tais como, $<\gamma_0^{oLT}>$, $<\gamma_1^{oLT}>$, $< c^R>$ e T .

Vamos calcular o valor de $\langle n^R \rangle$ utilizando a formula do (len/span) -1 sendo ele 3.

Faltando assim apenas o cálculo de **<w>**, sendo que este valor varia no caso de ser **Opaco** ou **Transparente** para isso usamos os valores obtidos no MatLab.

Opaco Muito Trafego:

$$< w > = \frac{191}{8} = 23,875$$

Transparente Muito Trafego:

$$<$$
 w $>$ $=$ $\frac{391}{8}$ $=$ 48,875

Valor do custos dos Links

Como obtivemos dois valores diferentes vamos obter dois valores de custo diferentes.

Para o caso Opaco o valor é:

$$<\gamma_0^{OLT}>= 15000 \in <\gamma_1^{OLT}>= 5000 \in /\text{Gb}$$
 $\tau_{=100\text{Gbits/s}}$ $<\boldsymbol{c^R}>= 4000 \in <\boldsymbol{n^R}>= 3$ $<\mathbf{w}>= 23.875$

$$<$$
Cl> = 2x15000 + 2x5000x100x23.875 + 3x4000 = $\underline{23\ 917\ 000\ €}$

Para o caso **Transparente** o valor é:

$$<\gamma_0^{OLT}>= 15000 \, €$$
 $<\gamma_1^{OLT}>= 5000 \, €/\,\text{Gb}$ $\tau=100\,\text{Gbits/s}$ $<\boldsymbol{c^R}>= 4000 \, €$ $<\boldsymbol{n^R}>=3$ $<\mathbf{w}>=48.875$ $<\text{Cl}>= 2x15000 + 2x5000x100x48.875 + 3x4000 = 48 917 000 $€$$

Custo dos Nós

$$C_n = C_{EXC} + C_{OXC}$$

Assim sendo apenas temos de calcular este dois valores.

Sendo que no caso **Opaco** apenas necessitamos do primeiro valor, pois neste caso o custo dos nós é proporcional ao trafego total que entra nos nós.

Opaco Muito Trafego:

Neste caso vou utilizar os valores totais por isso efetuo já a multiplicação pelo número de nós aqui.

$$C_{EXC} = N \times \gamma_{e0} + \gamma_{e1} \times (T_1 + 2 \times w^0 \times \tau)$$

Os valores de γ_{e0} γ_{e1} já nos são fornecidos na tabela da pagina (1) assim como o valor de τ . O valor de w^0 é o numero de canais ópticos e também já foi calculado anteriormente sendo ele 191. Por fim temos o valor de T_1 que é o trafego total que entra na rede sendo ele 2xT=10 Tbits/s = 10000 Gbtis/s

$$\gamma_{e0} = 10.00000$$
 $\gamma_{e1} = 1.000 \text{ } \text{€/Gb/s}$

$$C_{EXC} = 6 \text{ x } 10000 + 1000 \text{ x } (10000 + 2 \text{x} 191 \text{x} 100) = 48 \text{ 260 000 } \text{€}$$

Transparente Muito Trafego:

Neste caso já é necessário calcular os dois valores pois é necessário o custo da parte elétrica e o custo da parte ótica e mais uma vez, vou utilizar os valores totais por isso efetuo já a multiplicação pelo número de nós aqui.

$$\begin{aligned} &C_{EXC} = \text{N x } \gamma_{e0} + \gamma_{e1} \text{ x } (2 \text{ x } T_1) \\ &C_{OXC} = \text{N x } \gamma_{o0} + \gamma_{o1} \text{ x } (\text{P_ADD} + \text{P_LINE}) \\ &\gamma_{e0} = 10.000 \varepsilon \qquad \qquad \gamma_{e1} = 1.000 \, \varepsilon / \text{Gb/s} \qquad \gamma_{o0} = 20.000 \varepsilon \qquad \qquad \gamma_{o1} = 2.500 \, \varepsilon / \text{Gb/s} \end{aligned}$$

Mais uma vez já possuímos todos os valores a exceção de P_ADD e P_LINE mas podemos obter esses valores através do MatLab.

$$ADD_Ports = 203$$

$$LINE_Ports = 303$$

$$C_{EXC} = 6 \times 10000 + 1000 \times (2 \times 10000) = 20 \, 060 \, 000 \, \text{€}$$

$$C_{OXC} = 6 \times 20000 + 2500 \times (203 + 303) = 1$$
 385 000 €

Valor do custo dos Nós

Como obtivemos dois valores diferentes vamos obter dois valores de custo diferentes.

Para o caso **Opaco** o valor é:

$$Cn = C_{EXC} = 48\ 260\ 000\$$
€

Para o caso **Transparente** o valor é:

$$Cn = C_{EXC} + C_{OXC} = 20060000 + 1385000 = 21 445 000$$

Valor do CAPEX

$$C_C = L\langle c_l \rangle + N\langle c_n \rangle$$

Custo do CAPEX Muito Trafego

Opaco	239 596 000 €
Transparente	412 781 000 €