

Forecasting: principles and practice

Rob J Hyndman

1.2 Time series graphics

Outline

- 1 Time series in R
- 2 Lab session 1
- 3 Seasonal plots
- 4 Lab session 2
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
 - **7** White noise
- 8 Lab session 3

A time series is stored in a ts object in R:

- a list of numbers
- information about times those numbers were recorded.

Example

Observation
123
39
78
52
110

 $y \leftarrow ts(c(123,39,78,52,110), start=2012)$

For observations that are more frequent than once per year, add a frequency argument.

E.g., monthly data stored as a numerical vector z:

```
y <- ts(z, frequency=12, start=c(2003, 1))
```

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual		
Quarterly		
Monthly		
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	
Quarterly		
Monthly		
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly		
Monthly		
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	
Monthly		
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly		
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly	52.18	
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly	52.18	c(1995,23)
Hourly		
Half-hourly		

ts(data, fre	quency, start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly	52.18	c(1995,23)
Hourly	24 or 168 or 8,766	
Half-hourly		

ts(data, free	quency, start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly	52.18	c(1995,23)
Hourly	24 or 168 or 8,766	1
Half-hourly		

ts(data, fr	equency, start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly	52.18	c(1995,23)
Hourly	24 or 168 or 8,766	1
Half-hourly	48 or 336 or 17,532	

ts(data, fr	equency, start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly	52.18	c(1995,23)
Hourly	24 or 168 or 8,766	1
Half-hourly	48 or 336 or 17,532	1

Australian GDP

```
ausgdp <- ts(x, frequency=4, start=c(1971,3))
```

- Class: "ts"
- Print and plotting methods available.

ausgdp

Australian GDP

autoplot(ausgdp)

Residential electricity sales

elecsales

Time Series: ## Start = 1989 ## End = 2008 ## Frequency = 1 ## [1] 2354 2380 2319 2469 2386 2569 2576 276

[11] 3108 3358 3076 3181 3222 3176 3431 352

Time plots

Time plots

Outline

- 1 Time series in R
- 2 Lab session 1
- 3 Seasonal plots
- 4 Lab session 2
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
 - **7** White noise
- 8 Lab session 3

Lab Session 1

Outline

- 1 Time series in R
- 2 Lab session 1
- 3 Seasonal plots
- 4 Lab session 2
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
 - **7** White noise
- 8 Lab session 3

Seasonal plots

```
ggseasonplot(a10, ylab="$ million",
  year.labels=TRUE, year.labels.left=TRUE) +
  ggtitle("Seasonal plot: antidiabetic drug sales")
```


Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: ggseasonplot

Seasonal polar plots

ggseasonplot(a10, polar=TRUE) + ylab("\$ million")

Seasonal subseries plots

```
ggsubseriesplot(a10) + ylab("$ million") +
  ggtitle("Seasonal subseries plot: antidiabetic drug sales")
    Seasonal subseries plot: antidiabetic drug sales
  30 -
  20 -
$ million
  10 -
```

Jul

Month

Aua

Apr

Mav

.lan

Feb

Mar

Oct

Nov

Dec

Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: ggsubseriesplot

Quarterly Australian Beer Production

beer <- window(ausbeer, start=1992)
autoplot(beer)</pre>

Quarterly Australian Beer Production

Quarterly Australian Beer Production

Outline

- 1 Time series in R
- 2 Lab session 1
- 3 Seasonal plots
- 4 Lab session 2
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
- **7** White noise
- 8 Lab session 3

Lab Session 2

Outline

- 1 Time series in R
- 2 Lab session 1
- 3 Seasonal plots
- 4 Lab session 2
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
 - **7** White noise
- 8 Lab session 3

- **Trend** pattern exists when there is a long-term increase or decrease in the data.
- Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).
 - **Cyclic** pattern exists when data exhibit rises and falls that are *not of fixed period* (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

```
autoplot(window(elec, start=1980)) +
  ggtitle("Australian electricity production") +
  xlab("Year") + ylab("GWh")
```



```
autoplot(bricksq) +
  ggtitle("Australian clay brick production") +
  xlab("Year") + ylab("million units")
```



```
autoplot(hsales) +
  ggtitle("Sales of new one-family houses, USA") +
  xlab("Year") + ylab("Total sales")
```



```
autoplot(ustreas) +
  ggtitle("US Treasury Bill Contracts") +
  xlab("Day") + ylab("price")
```



```
autoplot(lynx) +
  ggtitle("Annual Canadian Lynx Trappings") +
  xlab("Year") + ylab("Number trapped")
```


Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Time series in R
- 2 Lab session 1
- 3 Seasonal plots
- 4 Lab session 2
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
- 7 White noise
- 8 Lab session 3

Example: Beer production

```
beer <- window(ausbeer, start=1992)
gglagplot(beer, lags=9, do.lines=FALSE,
    continuous=FALSE)</pre>
```

Example: Beer production

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.
- ACF (autocorrelation function):
 - $r_1 = Correlation(y_t, y_{t-1})$
 - r_2 = Correlation(y_t, y_{t-2})
 - r_3 = Correlation(y_t, y_{t-3})
 - etc.
- If there is **seasonality**, the ACF at the seasonal lag (e.g., 12 for monthly data) will be **large and positive**.

Autocorrelation

Results for first 9 lags for beer data:

r ₁	r ₂	r ₃	r ₄	<i>r</i> ₅	r ₆	r ₇	r ₈	r ₉
-0.102	-0.657	-0.060	0.869	-0.089	-0.635	-0.054	0.832	-0.108

Aus monthly electricity production

```
elec2 <- window(elec, start=1980)
autoplot(elec2)</pre>
```


Aus monthly electricity production

Google stock price

Google stock price

Which is which?

Outline

- 1 Time series in R
- 2 Lab session 1
- 3 Seasonal plots
- 4 Lab session 2
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
 - **7** White noise
- 8 Lab session 3

Example: White noise

```
wn <- ts(rnorm(36))
autoplot(wn)</pre>
```


Example: White noise

```
wn <- ts(rnorm(36))
autoplot(wn)</pre>
```


Example: White noise

- Sample autocorrelations for white noise series.
- Expect each autocorrelation to be close to zero.
- Blue lines show 95% critical values.

Example: Pigs slaughtered

```
pigs2 <- window(pigs, start=1990)
autoplot(pigs2) +
    xlab("Year") + ylab("thousands") +
    ggtitle("Number of pigs slaughtered in Victoria")</pre>
```


Example: Pigs slaughtered

Outline

- 1 Time series in R
- 2 Lab session 1
- 3 Seasonal plots
- 4 Lab session 2
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
 - 7 White noise
- 8 Lab session 3

Lab Session 3