

CLAIMS

1. A compound of formula (I):

5

wherein:

E is CH or N;

Q is hydrogen or hydroxy;

W is CH₂, O or NR²;

X is a bond, CH₂ or CH₂O;

10 Y is OH, CO₂R³, SO₃H, CH₂CO₂R³, CH₂SO₃H, OCH₂CO₂R³ or OCH₂SO₃H;

Z¹, Z², Z³ are, independently, hydrogen, halogen, cyano, nitro, hydroxy, NR⁴R⁵, C₁₋₆ alkyl (optionally substituted with halogen), C₁₋₆ alkoxy (optionally substituted with halogen), S(O)_p(C₁₋₆ alkyl), S(O)_qCF₃ or S(O)₂NR⁶R⁷;

15 R¹ is phenyl optionally substituted by halogen, cyano, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy or C₁₋₄ haloalkoxy;

R² is hydrogen or C₁₋₄ alkyl;

R³ is hydrogen, C₁₋₆ alkyl or benzyl;

p and q are, independently, 0, 1 or 2;

20 R⁴, R⁵, R⁶ and R⁷ are, independently, hydrogen, C₁₋₆ alkyl (optionally substituted by halogen, hydroxy or C₃₋₁₀ cycloalkyl), CH₂(C₂₋₅ alkenyl), phenyl (itself optionally substituted by halogen, hydroxy, nitro, NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁴ and R⁵ below),

S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁴ and R⁵ below), cyano, C₁₋₄

25 alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁴ and R⁵ below), CO₂H,

CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), CF₃ or OCF₃) or heterocyclyl (itself optionally substituted by halogen, hydroxy, nitro,

NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring

as described for R⁴ and R⁵ below), S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁴ and R⁵ below), cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁴ and R⁵ below), CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), CF₃ or OCF₃);
5 alternatively NR⁴R⁵ or NR⁶R⁷ may, independently, form a 4-7 membered heterocyclic ring, azetidine, pyrrolidine, piperidine, azepine, morpholine or piperazine, the latter optionally substituted by C₁₋₄ alkyl on the distal nitrogen;
10 or an N-oxide thereof; or a pharmaceutically acceptable salt thereof; or a solvate thereof.

2. A compound of formula (I) as claimed in claim 1 wherein W is O.
- 15 3. A compound of formula (I) as claimed in claim 1 or 2 wherein E is CH.
4. A compound of formula (I) as claimed in claim 1, 2 or 3 wherein R¹ is phenyl optionally substituted with halogen, C₁₋₄ alkyl or C₁₋₄ alkoxy.
- 20 5. A compound of formula (I) as claimed in claim 1, 2, 3 or 4 wherein Y is CO₂H, CO₂(C₁₋₄ alkyl), CH₂CO₂H or OH.
6. A compound of formula (I) as claimed in claim 1, 2, 3, 4 or 5 wherein Z¹, Z² and Z³ are, independently, hydrogen, halogen, cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, CF₃, OCF₃,
25 S(O)₂(C₁₋₄ alkyl) or S(O)₂NH₂.
7. A process for preparing a compound of formula (I) as claimed in claim 1, the process comprising:
 - a. when Y is CO₂H, CH₂CO₂H or OCH₂CO₂H, said Y group being ortho to the group X, acylating a compound of formula (II):

via the ring opening of an anhydride of formula (III):

wherein one of A¹, A², A³ and A⁴ is CH or N; the other three of A¹, A², A³ and A⁴ are carbon and each of the three carries Z¹, Z² or Z³, there being only one of each of Z¹, Z² and Z³; X is as defined in claim 1; and Y¹ is a bond, CH₂ or OCH₂; in the presence of a suitable tertiary amine, in a suitable solvent at an elevated temperature;

- 5
- b. when Y is CO₂R³, CH₂CO₂R³ or OCH₂CO₂R³ and R³ is not hydrogen, coupling a compound of formula (II) with a compound of formula (IV):

either going via the acid chloride of the compound of formula (IV) or by using a coupling reagent;

- 10
- c. when X is a bond and Y is CO₂R³, carbonylating a compound of formula (V):

15

wherein L is chloro, bromo, iodo or O-triflate, and then quenching the product so formed with a compound of formula (II);

- d. when X is a bond, Y is CO₂R³, R³ is not hydrogen, and R¹ does not have a chloro, bromo or iodo substituent,

- 20
- i. coupling a compound of formula (II) with an acid of formula (VI):

wherein Hal is chloro, bromo or iodo;

- ii. carbonylating the compound so formed; and then,
- iii. quenching the product so formed with a C₁₋₆ aliphatic alcohol or benzylalcohol;

5

OR

- e. when Y is or includes a CO₂R³ group:

- i. when R³ is hydrogen said compound can be converted to a compound of the invention where R³ is not hydrogen by a standard esterification method; or
- ii. when R³ is not hydrogen said compound can be converted to a compound of the invention where R³ is hydrogen by a standard ester hydrolysis method.

10

15 8. A pharmaceutical composition which comprises a compound of the formula (I), or a pharmaceutically acceptable salt thereof or solvate thereof as claimed in claim 1, and a pharmaceutically acceptable adjuvant, diluent or carrier.

9. A compound of the formula (I), or a pharmaceutically acceptable salt thereof or solvate thereof as claimed in claim 1, for use in therapy.

20 10. A compound of formula (I), or a pharmaceutically acceptable salt thereof or solvate thereof as claimed in claim 1, in the manufacture of a medicament for use in therapy.

25

11. A method of treating a chemokine mediated disease state in a mammal suffering from, or at risk of, said disease, which comprises administering to a mammal in need of such treatment a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt thereof or solvate thereof as claimed in claim 1.

30