Zillow Prize Modeling

Jesse Piburn 2018-07-20

Contents

W	elcome	5
1	Introduction	7
	1.1 Problem	7
	1.2 Evaluation	
		8
	1.4 Note on Using External Features	8
	1.4 Note on Using External reatures	0
2	PreProcessing	9
	2.1 The Raw Data	9
	2.2 Renaming Variables	10
	2.3 Extracting Geographic Information	
	2.0 Exercises Goographic information	
3	Exploratory Analysis	17
	3.1 Response Variable	17
	3.2 Predictor Variables	27
	3.3 Exploring log_error A little More	45
4	Feature Engineering	53
_	4.1 Creating New Features	53
	4.2 Handling Missing Data	
		63
	4.3 Feature Transformation	05
5	Feature Selection	65
6	Modeling	69
U	<u>e</u>	72
	6.1 Make Predictions with Tuned Parameters	72
7	Summary	77
	7.1 Key Findings	77
	7.2 Weak Points of Analysis	77

4 CONTENTS

Welcome

This is a *sample* book written in **Markdown**. You can use anything that Pandoc's Markdown supports, e.g., a math equation $a^2 + b^2 = c^2$.

The $\bf bookdown$ package can be installed from CRAN or Github:

```
install.packages("bookdown")
# or the development version
# devtools::install_github("rstudio/bookdown")
```

Remember each Rmd file contains one and only one chapter, and a chapter is defined by the first-level heading #.

To compile this example to PDF, you need XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): https://yihui.name/tinytex/.

6 CONTENTS

Chapter 1

Introduction

This project is meant to serve as an example workflow for making predictive models. The sections of the book are roughly broken into the major steps that are a part of the modeling process.

As with many things in life, their is rarely a one-size-fits-all, always correct, way of doing something and making a predictive model is no different. In light of that, I want to stress that the workflow and methods used in this book are meant to be illustrative not authoritative.

The only always correct answer in predictive modeling is, "It depends."

1.1 Problem

The problem we will workthrough in this book is the Zillow Prize competition on that took place on Kaggle. Although it is now closed, it provides a good problemset for us to work through.

From the site >>>In this million-dollar competition, participants will develop an algorithm that makes predictions about the future sale prices of homes. The contest is structured into two rounds, the qualifying round which opens May 24, 2017 and the private round for the 100 top qualifying teams that opens on Feb 1st, 2018. In the qualifying round, you'll be building a model to improve the Zestimate residual error. In the final round, you'll build a home valuation algorithm from the ground up, using external data sources to help engineer new features that give your model an edge over the competition.

1.2 Evaluation

The submission were evaluated based on the Mean Absolute Error between the predicted logerror and the actual logerror

The logerror is defined as

$$logerror = log(Zestimate) - log(SalePrice)$$

while Mean Absolute Error is defined as

$$MAE = \frac{\sum_{i=1}^{n} |y_i - x_i|}{n} = \frac{\sum_{i=1}^{n} |e_i|}{n}$$

1.3 Initital Thoughts

"Location, Location, Location."

— Some Real Estate Guy

The above quote is of course the number one rule of real estate. Though out this modeling process, let's try to keep this idea in mind when we are exploring, creating new features, and modeling the data.

An additional interesting thing about this problem is that it can be thought about as creating a model to predict where Zillow's model is bad. We aren't trying to predict home prices, we are predicting where Zillow had a bad estimate of home prices, so the residuals of their Zestimate model. Based on this idea, let's create some new features

1.4 Note on Using External Features

In the original competition, you were only allowed to use the features transformations of those included in the data they provided. Since our goal is to provide an illustrative workflow for making a predictive model in general and not actually competing in the competition, we are not going to adhere to that rule and use a few external sources of information.

Chapter 2

PreProcessing

The first step for any data driven project is getting to know the data. In this section we will look at the raw data that was provided by the competition and then do a little pre processing that will make the data easier to work with for the rest of the project

2.1 The Raw Data

The raw data from zillow contains the following data (descriptions from the the data page)

- properties_2016.csv all the properties with their home features for 2016. Note: Some 2017 new properties don't have any data yet except for their parcelid's. Those data points should be populated when properties_2017.csv is available.
- properties_2017.csv all the properties with their home features for 2017 (released on 10/2/2017)
- train_2016.csv the training set with transactions from 1/1/2016 to 12/31/2016
- train_2017.csv the training set with transactions from 1/1/2017 to 9/15/2017 (released on 10/2/2017)
- sample_submission.csv a sample submission file in the correct format
- zillow data dictionary.xlsx Field Definitions and coded value meanings

2.1.1 Saving Raw Data Using feather

The R binding for the feather data store provides the ability for very fast read and write of data. For speed purposes we will save all raw data into a .feather file format to make all other read faster

```
library(feather)
library(readr)

dir.create("data-raw/feather")

prop_16 <- read_csv("data-raw/properties_2016.csv")
prop_17 <- read_csv("data-raw/properties_2017.csv")
train_16 <- read_csv("data-raw/train_2016_v2.csv")
train_17 <- read_csv("data-raw/train_2017.csv")

write_feather(prop_16, "data-raw/feather/properties_2016.feather")</pre>
```

```
write_feather(prop_17, "data-raw/feather/properties_2017.feather")
write_feather(train_16, "data-raw/feather/train_2016_v2.feather")
write_feather(train_17, "data-raw/feather/train_2017.feather")
```

2.2 Renaming Variables

Many of the feature names are not very consistant. To take advatange of helpful functions from the tidyverse set of packages, such as starts_with() and one_of() Let's rename them to something more consistant and easier to work with.

2.2.1 Renaming properties Features

```
library(tidyverse)
prop_16 <- read_feather("data-raw/feather/properties_2016.feather")</pre>
prop_17 <- read_feather("data-raw/feather/properties_2017.feather")</pre>
prop_16 <- prop_16 %>%
 rename(
    id_parcel = parcelid,
   build_year = yearbuilt,
   area_basement = basementsqft,
   area_patio = yardbuildingsqft17,
   area_shed = yardbuildingsqft26,
   area_pool = poolsizesum,
   area_lot = lotsizesquarefeet,
   area_garage = garagetotalsqft,
   area_firstfloor_finished_1 = finishedfloor1squarefeet,
   area_firstfloor_finished_2 = finishedsquarefeet50,
   area_living_finished_calc = calculatedfinishedsquarefeet,
   area base = finishedsquarefeet6,
   area_living_finished = finishedsquarefeet12,
   area_living_perimeter = finishedsquarefeet13,
   area_total = finishedsquarefeet15,
   num_unit = unitcnt,
   num_story = numberofstories,
   num_room = roomcnt,
   num_bathroom = bathroomcnt,
   num_bedroom = bedroomcnt,
   num_bathroom_calc = calculatedbathnbr,
   num_bath = fullbathcnt,
   num_75_bath = threequarterbathnbr,
   num_fireplace = fireplacecnt,
   num_pool = poolcnt,
   num_garage = garagecarcnt,
   region_county = regionidcounty,
   region_city = regionidcity,
   region zip = regionidzip,
   region_neighbor = regionidneighborhood,
   tax_total = taxvaluedollarcnt,
```

```
tax_building = structuretaxvaluedollarcnt,
   tax_land = landtaxvaluedollarcnt,
   tax_property = taxamount,
   tax_year = assessmentyear,
   tax_delinquency = taxdelinquencyflag,
   tax_delinquency_year = taxdelinquencyyear,
   zoning_property = propertyzoningdesc,
   zoning_landuse = propertylandusetypeid,
   zoning_landuse_county = propertycountylandusecode,
   str flag fireplace = fireplaceflag,
   str_flag_tub = hashottuborspa,
   str_quality = buildingqualitytypeid,
   str_framing = buildingclasstypeid,
   str_material = typeconstructiontypeid,
   str_deck = decktypeid,
   str_story = storytypeid,
   str_heating = heatingorsystemtypeid,
   str_aircon = airconditioningtypeid,
   str_arch_style = architecturalstyletypeid
# use 2016 names to rename 17
names(prop_17) <- names(prop_16)</pre>
```

2.2.2 renaming train features

```
trans_16 <- read_feather("data-raw/feather/train_2016_v2.feather")
trans_17 <- read_feather("data-raw/feather/train_2017.feather")

trans_16 <- trans_16 %>%
    rename(
    id_parcel = parcelid,
    date = transactiondate,
    log_error = logerror
)

# use 2016 names to rename 17
names(trans_17) <- names(trans_16)</pre>
```

2.2.3 Basic Transformations

Based on the definitions in the zillow_data_dictionary.xlsx we can recode some of the features to have be more interpretable while we are exploring.

2.2.3.1 Properties

```
library(forcats)
prop_16 <- prop_16 %>%
  mutate(
```

```
tax_delinquency = ifelse(tax_delinquency == "Y", "Yes", "No") %>%
      as_factor(),
    str_flag_fireplace = ifelse(str_flag_fireplace == "Y", "Yes", "No") %>%
      as factor(),
    str_flag_tub = ifelse(str_flag_tub == "Y", "Yes", "No") %>%
      as factor(),
    zoning_landuse = factor(zoning_landuse, levels = sort(unique(zoning_landuse))),
    zoning landuse = fct recode(zoning landuse,
      "Commercial/Office/Residential Mixed Used" = "31",
      "Multi-Story Store"
                                                   = "46".
      "Store/Office (Mixed Use)"
                                                   = "47",
      "Duplex (2 Units Any Combination)" = "246",
"Triplex (3 Units Any Combination)" = "247",
"Quadruplex (4 Units Any Combination)" = "248",
      "Residential General"
                                                   = "260",
                                                   = "261",
      "Single Family Residential"
      "Rural Residence"
                                                   = "262",
      "Mobile Home"
                                                    = "263",
      "Townhouse"
                                                    = "264",
      "Cluster Home"
                                                    = "265",
      "Condominium"
                                                    = "266".
      "Cooperative"
                                                   = "267",
      "Row House"
                                                   = "268",
                                                   = "269",
      "Planned Unit Development"
      "Residential Common Area"
                                                    = "270",
      "Timeshare"
                                                    = "271",
                                                   = "273",
      "Bungalow"
      "Zero Lot Line"
                                                   = "274",
      "Manufactured Modular Prefabricated Homes" = "275".
      "Patio Home"
                                                   = "276",
      "Inferred Single Family Residential" = "279",
      "Vacant Land - General"
                                                   = "290",
      "Residential Vacant Land"
                                                    = "291"
    )
prop_17 <- prop_17 %>%
    tax_delinquency = ifelse(tax_delinquency == "Y", "Yes", "No") %>%
      as factor(),
    str_flag_fireplace = ifelse(str_flag_fireplace == "Y", "Yes", "No") %>%
      as factor(),
    str_flag_tub = ifelse(str_flag_tub == "Y", "Yes", "No") %>%
      as_factor(),
    zoning_landuse = factor(zoning_landuse, levels = sort(unique(zoning_landuse))),
    zoning_landuse = fct_recode(zoning_landuse,
      "Commercial/Office/Residential Mixed Used" = "31",
                                                 = "46",
      "Multi-Story Store"
      "Store/Office (Mixed Use)"
                                                   = "47",
      "Duplex (2 Units Any Combination)" = "246",
"Triplex (3 Units Any Combination)" = "247",
"Quadruplex (4 Units Any Combination)" = "248",
      "Residential General"
                                                    = "260",
```

```
"Single Family Residential"
                                           = "261",
"Rural Residence"
                                           = "262",
"Mobile Home"
                                           = "263",
"Townhouse"
                                           = "264",
                                           = "265",
"Cluster Home"
"Condominium"
                                           = "266"
"Cooperative"
                                           = "267",
"Row House"
                                           = "268",
"Planned Unit Development"
                                           = "269".
                                           = "270".
"Residential Common Area"
                                           = "271",
"Timeshare"
"Bungalow"
                                           = "273",
"Zero Lot Line"
                                           = "274",
"Manufactured Modular Prefabricated Homes" = "275"
                                          = "276",
"Patio Home"
"Inferred Single Family Residential"
                                        = "279",
"Vacant Land - General"
                                         = "290",
"Residential Vacant Land"
                                           = "291"
)
```

2.2.3.2 Transactions

The transactions tables are where our response variable log_error (name changed from original logerror) and the dates of the transactions are recorded.

To make them easier to work with, let's combine all the transactions into one table and create a few basic transformations of the date (name changed from original transactiondate)

```
library(lubridate)

# combine transactions into one data frame

trans <- trans_16 %>%
    bind_rows(trans_17) %>%
    mutate(
    abs_log_error = abs(log_error),
    year = year(date),
    month_year = make_date(year(date), month(date)),
    month = month(date, label = TRUE),
    week = floor_date(date, unit = "week"),
    week_of_year = week(date),
    week_since_start = (min(date) %--% date %/% dweeks()) + 1,
    wday = wday(date, label = TRUE),
    day_of_month = day(date)
)
```

Save our output

```
write_feather(prop_16, "data/properties_16.feather")
write_feather(prop_17, "data/properties_17.feather")
write_feather(trans, "data/transactions.feather")
```

2.3 Extracting Geographic Information

As noted in the 1 we are going to break from the rules of the competition and use external information to (hopefully) help improve our predictions. Since the data we are using relate to locations of individual properties and we have each of their geographic coordinates, latitude and longitude let's use those to get the U.S. Census Geographies they are apart of that we can make use of when adding external information.

The original data contain the fields rawcensustractandblock and censustractandblock but after trying to parse those into a usable format and failing, I figured it was just easier to use the latitude and longitude fields and then join that to the Census information.

```
library(sf)
library(tidycensus)
# NAD83 / California zone 5 (ftUS)
# https://epsq.io/2229
crs_id <- 2229
api key <- Sys.getenv("CENSUS API KEY")
census_api_key(api_key)
# some obs have no data at all included lat/long
# the original lat / lon are mulitpled by 10e5 so divide to
# get lat lon back when converting to sf
properties <- read_feather("data-raw/properties_2017") %>%
  filter(!is.na(latitude)) %>%
  mutate(
   lat = latitude / 10e5,
   lon = longitude / 10e5
   ) %>%
  st_as_sf(
    coords = c("lon", "lat"),
   crs = 4326, # WGS 84
   remove = FALSE # keep lat/long fields
    ) %>%
  st transform(crs id)
census_bgs <- get_acs(</pre>
  geography = "block group",
  variables = "B19013_001",
  state = "CA",
  county = c("Los Angeles", "Orange", "Ventura"),
  geometry = TRUE,
  keep_geo_vars = TRUE
  ) %>%
  st_transform(crs_id)
# inner join
# due to lat / lon error some points didn't intersect
# with block groups left = FALSE is inner join
properties_geo <- properties %>%
  st_join(census_bgs, left = FALSE)
# find all of the points that didn't intersect
```

```
# buffer them and then join to closest block
# then add back the already joined points
# the buffer distance I just played around with until
# all points joined with a block group
properties_geo <- properties %>%
 filter(!parcelid %in% properties_geo$parcelid) %>%
  st_buffer(dist = 1500) %>% # units are in us-ft based on crs_id
  st_join(census_bgs, left = FALSE, largest = TRUE) %>%
 rbind(properties_geo)
# remove geometry b/c feather can't store lists
properties_geo <- properties_geo %>%
  select(
   id_parcel = parcelid,
   id_geo_state = STATEFP,
   id_geo_county = COUNTYFP,
   id_geo_tract = TRACTCE,
   id_geo_bg = BLKGRPCE,
   id_geo_bg_fips = GEOID,
   id_geo_bg_name = NAME.y,
   geo_bg_arealand = ALAND,
   geo_bg_areawater = AWATER,
   lat,
   lon
   ) %>%
  mutate(
   id_geo_county_fips = pasteO(id_geo_state, id_geo_county),
   id_geo_tract_fips = pasteO(id_geo_county_fips, id_geo_tract),
   id_geo_county_name = factor(id_geo_county) %>%
      fct_recode(
        "Los Angeles" = "037",
       "Orange" = "059",
        "Ventura"
                    = "111"
     )
 )
```

Now save our geographic features

```
# remove geometry b/c feather can't store lists
# add back in when needed from lat lon
properties_geo$geometry <- NULL
write_feather(properties_geo, "data/properties_geo_only.feather")</pre>
```

Chapter 3

Exploratory Analysis

After ?? the next step is doing exploratory data analysis (EDA). I can't stess enough how critical this step is. It is tempting to want to jump right into making models and then start improving and tweaking them from there, but this can quickly take you down a rabbit hole, waste your time, and generally make you sad.

The time you spend doing EDA will pay dividends later.

Below we are first going to look at only our response variable log_error after that we will look at the predictor features in properties. Once we get a good handle on both of those, we'll look at how our response variable log_error varies across the predictors in properties

Throughout this section we will progressively pare down features in our properties data due to common things such as, missingness and redundancy, to only the features that we are going to continue with into the next stages.

```
library(skimr)
library(tidyverse)
library(feather)
library(DataExplorer)

trans <- read_feather("data/transactions.feather")</pre>
```

3.1 Response Variable

log_error something something text come back to when the processing is finished

```
skim(trans) %>%
skimr::pander()
```

Skim summary statistics

n obs: 167888 n variables: 12

Table 3.1: Table continues below

variable	missing	complete	n	min	max
date	0	167888	167888	2016-01-01	2017-09-25
$month_year$	0	167888	167888	2016-01-01	2017-09-01
week	0	167888	167888	2015-12-27	2017-09-24

median	n_unique
2016-10-11	616
2016-10-01	21
2016-10-09	92

Table 3.3: Table continues below

variable	missing	complete	n	n_unique
month	0	167888	167888	12
wday	0	167888	167888	7

top_counts	ordered
Jun: 22378, May: 20448, Aug: 20412, Jul:	FALSE
19437 Fri: 44914, Thu: 34143, Wed: 32692, Tue:	FALSE
31404	THESE

Table 3.5: Table continues below

variable	missing	complete	n	mean	sd	p0
day_of_month	0	167888	167888	16.43	8.99	1
id_parcel	0	167888	167888	1.3e + 07	3e + 06	1.1e + 07

p25	p50	p75	p100
9	16	24	31
1.2e+07	1.3e + 07	1.4e + 07	1.7e + 08

Table 3.7: Table continues below

variable	missing	complete	n	mean	sd	p0
abs_log_error	0	167888	167888	0.069	0.15	0
\log_{error}	0	167888	167888	0.014	0.17	-4.66
$week_of_year$	0	167888	167888	22.15	11.5	1
$week_since_start$	0	167888	167888	46.31	26.84	1
year	0	167888	167888	2016.46	0.5	2016

p25	p50	p75	p100
0.014	0.032	0.069	5.26
-0.025	0.006	0.039	5.26
13	22	31	53
23	41	72	91
2016	2016	2017	2017

Figure 3.1: Distribution of Log Error

```
trans %>%
  ggplot(aes(x = log_error)) +
  geom_histogram(bins=400, fill = "red", alpha = 0.5) +
  theme_bw()
trans %>%
  filter(
    log_error > quantile(log_error, probs = c(.05)),
    log_error < quantile(log_error, probs = c(.95))</pre>
  ) %>%
  ggplot(aes(x = log_error)) +
  geom_histogram(fill = "red", alpha = 0.5) +
 theme_bw()
trans %>%
  filter(
    log_error > quantile(abs_log_error, probs = c(.05)),
    log_error < quantile(abs_log_error, probs = c(.95))</pre>
  ) %>%
  ggplot(aes(x = abs_log_error)) +
  geom_histogram(fill = "red", alpha = 0.5) +
 theme_bw()
```


Figure 3.2: Distribution of Log Error Between 5 and 95 Percentile

Figure 3.3: Distribution of Absolute value of Log Error Between 5 and 95 Percentile

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
trans %>%
  group_by(month_year) %>%
  summarise(mean_log_error = mean(log_error)) %>%
  ggplot(aes(x = month_year, y = mean_log_error)) +
  geom_line(size = 1, colour = "red") +
  geom_point(size = 3, colour = "red") +
  theme_bw()
trans %>%
  group_by(month_year, year, month) %>%
  summarise(mean_log_error = mean(log_error)) %>%
  ungroup() %>%
  ggplot(aes(x = as.numeric(month), y = mean_log_error)) +
  geom_path(aes(colour = as.factor(year)), size = 1) +
  theme_bw() +
  ylim(c(0, .03)) +
  scale_x_continuous(breaks = 1:12, labels = levels(trans$month)) +
    colour = NULL,
    x = "month"
  )
```


Figure 3.4: Average Log Error by Month

Figure 3.5: Average Log Error by Month. 2017 Looks to have a higher baseline

Figure 3.6: Average Log Error by Week

```
trans %>%
  group_by(week_since_start) %>%
  summarise(mean_log_error = mean(log_error)) %>%
  ggplot(aes(x = week_since_start, y = mean_log_error)) +
  geom_line(colour = "red", size = 1) +
  geom_smooth() +
  theme_bw()
```

3.1.1 Transactions Over Time

```
trans %>%
  group_by(week_since_start) %>%
  summarise(n = n()) %>%
  ggplot(aes(x = week_since_start, y = n)) +
  geom_line(colour = "red", size = 1) +
  theme_bw() +
  labs(
    y = "Numeber of Transactions"
)
```


Figure 3.7: Number of Transactions per Week. The dip in the middle coorisponds to the hold out testing data

Figure 3.8: Number of Transactions by Day of the Week.

```
trans %>%
  group_by(wday) %>%
  count() %>%
  ggplot(aes(x = wday, y = n)) +
  geom_bar(stat = "identity", fill = "red", alpha = 0.5) +
  theme_bw()
```

3.1.2 Spatial Distribution of log_error

Figure 3.9: Distribution of Log Errors

3.2 Predictor Variables

Now lets take a look at the properties dataset. Based on the descriptions from Kaggle, it seem's like the properties_17.csv has updated information and is a replacement from that of properties_16.csv. For our purposes we are only going to use properties_17.csv, however given more space, it would be interesting to look into the differences in these files to see if there were any patterns that could be useful.

```
properties <- read_feather("data/properties_17.feather")

skim(properties) %>%
    skimr::pander()
```

Warning: Skimr's histograms incorrectly render with pander on Windows.
Removing them. Use kable() if you'd like them rendered.

Skim summary statistics

n obs: 2985217 n variables: 58

variable	missing	complete	n	\min	max	empty	n_unique
fips	2932	2982285	2985217	5	5	0	3
pooltypeid10	2968211	17006	2985217	1	1	0	1
pooltypeid2	2952161	33056	2985217	1	1	0	1
raw census tract and block	2932	2982285	2985217	12	16	0	100529
str_arch_style	2979156	6061	2985217	1	2	0	8
$str_material$	2978471	6746	2985217	1	2	0	5

variable	missing	complete	n	min	max	empty	n_unique
zoning_landuse_county	2999	2982218	2985217	1	4	0	234
zoning_property	1002746	1982471	2985217	1	10	0	5651

Table 3.10: Table continues below

variable	missing	complete	n	n_unique
str_flag_fireplace	2980054	5163	2985217	1
str_flag_tub	2935155	50062	2985217	1
$tax_delinquency$	2928702	56515	2985217	1
$zoning_landuse$	2932	2982285	2985217	16

top_counts	ordered
NA: 2980054, No: 5163 NA: 2935155, No: 50062 NA: 2928702, Yes: 56515 Sin: 2152863, Con: 483789, Dup:	FALSE FALSE FALSE FALSE
114415, Pla: 61559	FALSE

Table 3.12: Table continues below

variable	missing	complete	n	mean
area_base	2963735	21482	2985217	2427.56
area_basement	2983590	1627	2985217	647.22
$area_firstfloor_finished_1$	2781459	203758	2985217	1379.78
$area_firstfloor_finished_2$	2781459	203758	2985217	1392.03
$area_garage$	2094209	891008	2985217	383.16
area_living_finished	264431	2720786	2985217	1764.04
area_living_perimeter	2977546	7671	2985217	1178.92
area_patio	2903629	81588	2985217	321.54
$area_pool$	2957259	27958	2985217	519.72
$area_shed$	2982571	2646	2985217	278.37
$area_total$	2795032	190185	2985217	2754.87
id_parcel	0	2985217	2985217	1.3e + 07
latitude	2932	2982285	2985217	3.4e + 07
longitude	2932	2982285	2985217	-1.2e + 08
num_75_bath	2668860	316357	2985217	1.01
$\operatorname{num_bath}$	117156	2868061	2985217	2.25
$\operatorname{num_fireplace}$	2672093	313124	2985217	1.17
num_garage	2094209	891008	2985217	1.83
$\operatorname{num} _\operatorname{pool}$	2445585	539632	2985217	1
num_story	2299541	685676	2985217	1.4
$\operatorname{num_unit}$	1004175	1981042	2985217	1.18
${\it pooltypeid7}$	2479322	505895	2985217	1
$\operatorname{region_city}$	62128	2923089	2985217	34987.66
$region_county$	2932	2982285	2985217	2569.09
$region_neighbor$	1828476	1156741	2985217	193538.7
$\operatorname{region} _\operatorname{zip}$	12714	2972503	2985217	96553.29
str _aircon	2169855	815362	2985217	1.95

variable	missing	complete	n	mean
str_deck	2967838	17379	2985217	66
str _framing	2972486	12731	2985217	3.73
$str_heating$	1116053	1869164	2985217	4.08
$str_quality$	1043822	1941395	2985217	6.28
str_story	2983594	1623	2985217	7
$tax_delinquency_year$	2928700	56517	2985217	13.89
tax_year	2933	2982284	2985217	2016

sd	p0	p25	p50	p75	p100
7786.19	117	1072	2008	3411	952576
538.79	20	272	535	847.5	8516
634.42	1	1010	1281	1615	31303
682.32	3	1012	1284	1619	41906
246.22	0	312	441	494	7749
1031.38	1	1198	1542	2075	427079
357.09	120	960	1296	1440	2688
236.88	10	190	270	390	7983
191.33	19	430	495	594	17410
369.78	10	96	168	320	6141
5999.38	112	1696	2173	2975	820242
7909966.39	1.1e + 07	1.2e + 07	1.3e + 07	1.4e + 07	1.7e + 08
243515.71	3.3e + 07	3.4e + 07	3.4e + 07	3.4e + 07	3.5e + 07
345591.77	-1.2e + 08				
0.12	1	1	1	1	7
0.99	1	2	2	3	32
0.46	1	1	1	1	9
0.61	0	2	2	2	25
0	1	1	1	1	1
0.54	1	1	1	2	41
2.49	1	1	1	1	997
0	1	1	1	1	1
50709.68	3491	12447	25218	45457	4e + 05
788.68	1286	1286	3101	3101	3101
165725.27	6952	46736	118920	274800	764167
3680.82	95982	96180	96377	96974	4e + 05
3.16	1	1	1	1	13
0	66	66	66	66	66
0.5	1	3	4	4	5
3.29	1	2	2	7	24
1.73	1	5	6	8	12
0	7	7	7	7	7
2.56	0	14	14	15	99
0.06	2000	2016	2016	2016	2016

Table 3.14: Table continues below

variable	missing	complete	n	mean
area_living_finished_calc	45097	2940120	2985217	1831.46
area lot	272706	2712511	2985217	22603.76

variable	missing	complete	n	mean
build_year	47833	2937384	2985217	1964.44
censustractandblock	74985	2910232	2985217	6e + 13
$num_bathroom$	2957	2982260	2985217	2.22
$num_bathroom_calc$	117156	2868061	2985217	2.3
${\rm num_bedroom}$	2945	2982272	2985217	3.09
num_room	2969	2982248	2985217	1.47
$tax_building$	46464	2938753	2985217	178142.89
$ ax_{land}$	59926	2925291	2985217	268455.77
$tax_property$	22752	2962465	2985217	5408.95
$ ax_{total}$	34266	2950951	2985217	443527.93

sd	p0	p25	p50	p75	p100
1954.2	1	1215	1574	2140	952576
249983.63	100	5683	7000	9893	3.7e + 08
23.64	1801	1950	1963	1981	2016
$3.2e{+11}$	-1	6e + 13	6e + 13	$6.1e{+13}$	4.8e + 14
1.08	0	2	2	3	32
1	1	2	2	3	32
1.27	0	2	3	4	25
2.84	0	0	0	0	96
460050.31	1	77666	127066	2e + 05	2.6e + 08
486509.71	1	79700	176619	326100	9.4e + 07
9675.57	0.24	2468.62	4007.62	6230.5	3823175.65
816336.63	1	188220	321161	514072	3.2e + 08

3.2.1 Missingness

Missing values in data is a cold cruel reality. It is one of the most contraining factors there is when it comes to predictive power. Having a good understanding of the prevalence of missing values and any patterns to them is needed to make the most out of what data you do have.

```
missing_data <- plot_missing(properties, theme = theme_bw())
missing_data</pre>
```

```
## # A tibble: 58 x 4
##
      feature
                         num_missing pct_missing group
##
      <fct>
                               <int>
                                            <dbl> <chr>
    1 id_parcel
                                         0
                                                   Good
##
                                   0
##
    2 str_aircon
                             2169855
                                         0.727
                                                   Bad
##
    3 str_arch_style
                             2979156
                                         0.998
                                                   Remove
    4 area_basement
                             2983590
                                         0.999
                                                   Remove
##
##
    5 num_bathroom
                                 2957
                                         0.000991 Good
    6 num_bedroom
                                         0.000987 Good
##
                                 2945
##
    7 str_framing
                             2972486
                                         0.996
                                                   Remove
    8 str_quality
                             1043822
                                         0.350
                                                   OK
    9 num_bathroom_calc
                                         0.0392
                                                   Good
                              117156
## 10 str_deck
                                         0.994
                             2967838
                                                   Remove
## # ... with 48 more rows
```

There seem to be quite a lot of missing features. For now lets remove the ones that are over 50% and continue

Figure 3.10: Completeness by Feature. Many are extremely sparse

on with those. We could come back to the ones we dropped and try to recover some of those missing values with more sophisticated methods, for example we could impute the missing values based on their spatial neighbors but for now we will continue with the ones that have over 50% of their values.

A few of the features, rawcensustractandblock, fips, and censustractandblock, and region_county are ID fields for their census geography units. Since we have already extracted that information earlier in properties_geo we will drop them here as well since we can add the information contained in those features in a cleaner format later.

Additionally, based on the descriptions, zoning_landuse, zoning_landuse_county, and zoning_property all seem to contain pretty similar information. Since the number of unique categories are fairly large for each one, if they are redundant they could add needless complexity and computation time to our model. Let's use a chi-squared test to see what it looks like

```
chisq.test(properties$zoning_landuse, properties$zoning_property)

##

## Pearson's Chi-squared test

##

## data: properties$zoning_landuse and properties$zoning_property

## X-squared = 4377000, df = 73450, p-value < 2.2e-16

chisq.test(properties$zoning_landuse, properties$zoning_landuse_county)

##

## Pearson's Chi-squared test

##

## data: properties$zoning_landuse and properties$zoning_landuse_county

##

## Asquared = 37455000, df = 3262, p-value < 2.2e-16

Based on that, let's remove zoning_property and zoning_landuse_county</pre>
```

3.2.2 Numeric Features

Lets look at the histograms of all the numeric features

```
properties %>%
  select(
    -id_parcel
) %>%
plot_histogram(ggtheme = theme_bw(), fill = "red", alpha = 0.5)
```


Page 1

Page 2

Looking at the histograms a few things become obvious. There are huge outliers in many of the features and there are some features that are currently encoded as numeric but should not be treated as such. For example, str_quality is an ordinal scale 1 (best qaulity) to 12 (worst) but if we leave them as numeric they will be treated as ratio. str_heating is nominal so the order doesn't have meaning. Other that need to be changed are region_city, region_zip

Once we do this, we'll look again at the relationships between our numeric features.

Figure 3.11: Distribbtions of 'num_*' Features

3.2.3 Numeric Outliers

Based on the histograms there looks to be lots of outliers in many of our numeric features. Two groups of features pop out, the num_* features and the tax_*features. Let's take a closer look.

```
properties %>%
  select(starts_with("num_")) %>%
plot_histogram(ggtheme = theme_bw(), fill = "red", alpha = 0.5)
```

Looking at the num_bathroom, num_bathroom_calc, num_bath is pretty interesting. num_bathroom was one of the most complete features we had however, looking at the distributions, it seems strange that there would be so many houses with 0 bathrooms.

```
sum(properties$num_bathroom == 0, na.rm = TRUE)

## [1] 113470

sum(properties$num_bathroom_calc == 0, na.rm = TRUE)

## [1] 0

Now for comparing all 3

properties %>%
    group_by(
    num_bathroom_calc,
```

```
num_bath,
num_bathroom
) %>%
count() %>%
DT::datatable()
```

	num_bathroom_calc	num_bath	num_bathroom	n
1	1	1	1	499324
2	1.5	1	1.5	45427
3	2	1	2	40
4	2	2	2	1219759
5	2.5	1	2.5	1
6	2.5	2	2.5	208577
7	3	2	3	559
8	3	3	3	632529
9	3.5	1	3.5	2
10	3.5	2	3.5	21

If you sort by descending by n you'll see that one of the most frequent combinations is blank values of num_bathroom_calc and num_bath which are NA values and 0 for num_bathroom. Based on this I am interpreting that as either 0 being a coded value for NA or it just being wrong. Either way it looks like num_bathroom_calc is the one to keep out of all 3, since it has calculations of half-baths as well.

Applying the same logic to num_room and num_bedroom we can set all values equal to 0 to NA. One side effect of this is that the num_room feature is now almost 100% missing and not very useful anymore. So we will just remove it.

Quickly looking at area_living_finished_calc and area_living_finished reveals a similar *_calc being a corrected version of the feature. Becasue of this we will go ahead and remove area_living_finished as well

```
properties <- properties %>%
    select(
        -num_bath,
        -num_bathroom,
        -num_room,
        -area_living_finished
    ) %>%
    mutate(
        num_bedroom = ifelse(num_bedroom == 0, NA, num_bedroom)
    )
```

Now let's look at the tax related features

Figure 3.12: Distriubtions of 'tax_*' Features

```
properties %>%
  select(starts_with("tax_")) %>%
plot_histogram(ggtheme = theme_bw(), fill = "red", alpha = 0.5)
```

Lets look at the highest values for ${\tt tax_total}$ and see if something jumps out

```
properties %>%
  mutate(tax_rank = rank(desc(tax_total))) %>%
  filter(tax_rank <= 20) %>%
  select(
    zoning_landuse,
    starts_with("area_"),
    starts_with("tax_")
    ) %>%
  arrange(tax_rank) %>%
  DT::datatable(
    extensions = 'FixedColumns',
    options = list(
    dom = 't',
    scrollX = TRUE,
    scrollCollapse = TRUE
    )
    )
}
```


While the values are extremely large, they appear to look legitimate. We won't remove these, but it does indicate that we should perhaps apply some transformations to our tax features before we start applying our model.

Now a look at the relationships between our remaining numeric features

```
library(heatmaply)

properties %>%
  select(-id_parcel) %>%
  select_if(is.numeric) %>%
  cor(use = "pairwise.complete.obs") %>%
  heatmaply_cor()
```

3.2.4 Categorical Features

```
plot_bar(properties, ggtheme = theme_bw())

## 2 columns ignored with more than 50 categories.
## region_city: 187 categories
## region_zip: 404 categories
```

The distribution across categories are extremely non-uniform, especially str_heating and zoning_landuse. This imbalance could cause use some pain later one when trying to fit our model. One way we can avoid some of this pain is by collapsing some of the rare categories into an other category. The number of categories we collapse to is not a hard and fast decision, it can be based on number of observations, subject matter expertise, heterogeneity of the response variable within categories, or some mix of all of these).

Let's look at what the distribution of log_error looks like across these categories.

Figure 3.13: Correlation of Numeric Features

Figure 3.14: Distribbtions of All Categorical Features

```
library(ggridges)
properties %>%
  select(
    id_parcel,
    str_quality
  ) %>%
  right_join(trans, by = "id_parcel") %>%
  ggplot(aes(x = log_error, y = fct_reorder(str_quality, log_error), fill = factor(..quantile..))) +
  stat_density_ridges(
    geom = "density_ridges_gradient",
   calc_ecdf = TRUE,
    quantiles = c(0.05, 0.95)
    ) +
  scale_fill_manual(
    name = "Probability",
    values = c("#FF0000A0", "#A0A0A0A0", "#0000FFA0"),
    labels = c("(0, 0.05]", "(0.05, 0.95]", "(0.95, 1]")
    ) +
  xlim(c(-0.5, 0.5)) +
  theme_bw() +
  labs(
    y = "str_quality"
library(ggridges)
properties %>%
  select(
    id_parcel,
    str_heating
  ) %>%
  right_join(trans, by = "id_parcel") %>%
  ggplot(aes(x = log_error, y = fct_reorder(str_heating, log_error), fill = factor(..quantile..))) +
  stat density ridges(
    geom = "density_ridges_gradient",
    calc_ecdf = TRUE,
    quantiles = c(0.05, 0.95)
    ) +
  scale_fill_manual(
   name = "Probability",
    values = c("#FF0000A0", "#A0A0A0A0", "#0000FFA0"),
    labels = c("(0, 0.05]", "(0.05, 0.95]", "(0.95, 1]")
    ) +
  xlim(c(-0.5, 0.5)) +
  theme_bw() +
  labs(
    y = "str_heating"
library(ggridges)
properties %>%
select(
```


Figure 3.15: Distribution of Log Error Across Structure Quality Feature

Figure 3.16: Distribution of Log Error Across Heating Type Feature

Figure 3.17: Distribution of Log Error Across Zoning Feature

```
id_parcel,
 zoning_landuse
) %>%
right_join(trans, by = "id_parcel") %>%
ggplot(aes(x = log_error, y = fct_reorder(zoning_landuse, log_error), fill = factor(..quantile..))) +
stat_density_ridges(
 geom = "density_ridges_gradient",
  calc_ecdf = TRUE,
 quantiles = c(0.05, 0.95)
 ) +
scale_fill_manual(
 name = "Probability",
 values = c("#FF0000A0", "#A0A0A0A0", "#0000FFA0"),
 labels = c("(0, 0.05]", "(0.05, 0.95]", "(0.95, 1]")
 ) +
xlim(c(-0.5, 0.5)) +
theme_bw() +
labs(
 y = "zoning_landuse"
```

Since the distributions of log_error within each category seems well behaved, we will recode them based on number of observations

```
properties <- properties %>%
  mutate(
    str_heating = fct_lump(str_heating, n = 6),
    zoning_landuse = fct_lump(zoning_landuse, n = 8),
    str_heating = fct_recode(str_heating,
        "Central" = "2",
        "Floor/Wall" = "7",
        "Solar" = "20",
        "Forced Air" = "6",
        "Yes - Type Unknown" = "24",
        "None" = "13"
    )
)
```

3.3 Exploring log_error A little More

Now let's join the properties and properties_geo tables to our trans table of tranactions and their log_error's and explore those

```
trans_prop <- read_feather("data/properties_geo_only.feather") %>%
  right_join(trans, by = "id_parcel") %>%
 left_join(properties, by = "id_parcel")
trans_prop %>%
  group_by(id_geo_bg_fips, id_geo_county_name) %>%
  summarise(
   n = n(),
   mean_abs_error = mean(abs_log_error)
   ) %>%
  ungroup() %>%
  mutate(
   trans_pert = cut(n, breaks = c(seq(0, 100, 10), 350))
   ) %>%
  ggplot(aes(x = trans_pert, y = mean_abs_error, colour = id_geo_county_name)) +
  geom_boxplot(outlier.size = 1.5, outlier.alpha = 1/3) +
  theme_bw() +
  labs(
   subtitle = "Block Group Average Mean Absolute Error",
   colour = NULL,
   x = "Number of Total Transactions per Block Group",
   y = "Mean Absolute Log Error"
  )
```

It looks like Los Angeles is largerly the only county that has information populated for str_qaulity

```
trans_prop %>%
  ggplot(aes(x = str_quality, y = log_error, colour = id_geo_county_name)) +
  geom_boxplot(outlier.size = 1.5, outlier.alpha = 1/3) +
  theme_bw() +
  labs(
    colour = NULL
  )
```


Figure 3.18: Outliers and Variability of Mean Absolute Error Dreceases When Neighborhood Sales Increase

Figure 3.19: Log Error by Structure Quality

```
library(ggmap)
trans_prop_tmp <- trans_prop %>%
  filter(!is.na(id_geo_county_name)) %>%
  group_by(
   id_parcel,
    id_geo_county_name
    ) %>%
 mutate(
    log_error_parcel_avg = mean(log_error)
    ) %>%
 ungroup() %>%
  mutate(
    outlier = ifelse(log_error < quantile(log_error, probs = .1) |</pre>
                     log_error > quantile(log_error, probs = .9),
                     "Outlier", "Normal")
    )
error_map <- get_map(location = "Los Angeles, CA",
                     color="bw",
                     crop = FALSE,
                     zoom = 9)
ggmap(error_map) +
  stat_density2d(
    data = trans_prop_tmp,
    aes(x = lon, y = lat,
        fill = ..level..,
        alpha = ..level..),
    geom = "polygon",
    size = 0.001,
    bins = 100
    ) +
  scale_fill_viridis_c() +
  scale_alpha(range = c(0.05, 0.95), guide = FALSE) +
  facet_wrap(~outlier)
```

Now lets look at the spatiotemporal distribution of log_error outliers

```
trans_prop %>%
filter(
  !is.na(lat),
  (
    log_error <= quantile(log_error, probs = .1) |
    log_error >= quantile(log_error, probs = .9)
    )
    ) %>%
mutate(
  lon = round(lon/0.5, digits = 1) * 0.5,
  lat = round(lat/0.5, digits = 1) * 0.5
) %>%
group_by(lon, lat, month_year) %>%
summarise(
  n = n()
```


Figure 3.20: Spatial Distribution of Log Error Outliers

```
ggplot(aes(lon, lat)) +
    geom_raster(aes(fill = n)) +
    scale_fill_viridis_c() +
    facet_wrap(~month_year, ncol = 3) +
    coord_quickmap() +
    theme_dark() +
    labs(
        subtitle = "Downtown Los Angeles looks to be consistently bad",
        fill = "Count"
    ) +
    theme(
        axis.text = element_text(size = 5)
    )
}
```

At first glance there looks to be a strong spatial and temporal correlation to log_error. Let's look more into the spatial correlation.

Moran's I and its variant Local Moran's I, provide a useful measure of the amount of spatial autocorrelation in a variable.

```
library(spatstat)
library(spdep)
d <- trans_prop %>%
  filter(
    !is.na(lat),
      log_error <= quantile(log_error, probs = .1) |</pre>
      log_error >= quantile(log_error, probs = .9)
      )
    ) %>%
  mutate(
    lon = round(lon/0.1, digits = 1) * 0.1,
    lat = round(lat/0.1, digits = 1) * 0.1
  ) %>%
  group_by(lon, lat) %>%
  summarise(
    n = n()
  )
coordinates(d) <- ~lon + lat</pre>
w <- knn2nb(knearneigh(d, k = 10, longlat = TRUE))
moran.test(d$n, nb2listw(w))
##
   Moran I test under randomisation
##
##
## data: d$n
## weights: nb2listw(w)
```

Variance

Moran I statistic standard deviate = 71.112, p-value < 2.2e-16

Expectation

alternative hypothesis: greater

sample estimates:
Moran I statistic

Figure 3.21: Spatio Temporal Distribution of Log Error Outliers

Figure 3.22: Spatial Autocorrelation of Log Error Outliers

```
## 4.308120e-01 -1.952362e-04 3.673489e-05
local_moran <- as.data.frame(localmoran(d$n, nb2listw(w)))

d %>%
   as.data.frame() %>%
   cbind(local_moran) %>%
   ggplot(aes(lon, lat)) +
   geom_raster(aes(fill = Ii)) +
   scale_fill_viridis_c() +
   coord_quickmap() +
   theme_dark() +
   labs(
     title = "Local Moran's I on Outliers Density",
     fill = "Local Moran's I"
)
```

Let's save our pared down properties table and then get into feature engineering write_feather(properties, "data/properties_17_filtered.feather")

Chapter 4

Feature Engineering

After we have done an intital EDA of our data we can start doing some feature engineering, this is where we can create new features such as interaction variables, apply transformations such as centering and scaling, choice how we want to encode our categorical features, and also bring in new external information.

Just as in 3, throughout this section we will progressively updating our properties data to include new and transformed features that we are going to continue with into the next stages.

4.1 Creating New Features

"Everything is related to everything else, but near things are more related than distant things."

• Waldo Tobler

This "First Law of Geography" is something we can take advantage of for creating new features based on our existing ones. In this section we will create based on both data from the Kaggle competition and also examples of external sources as well

4.1.1 Internal Features

Since we have the neighborhood, as defined by id_geo_bg_fips, that each parcel is apart of, we can use this to create neighborhood average features.

There are many ways one could define neighborhood for the purposes of using near by parcels, knn for example. Perhaps a more rigourous and certainly more computationly intensive approach would be to estimate the radius at which the spatial autocorrelation of log_error is no longer statistically significant using something such as a bootstrapped spline correlogram such as the function spline.correlog() provided by the ncf package

```
ncf::spline.correlog(x = lon, y = lat, z = log_error)
```

For now we will stick with defining our neighborhood by the census block group (id_geo_bg_fips) that each parcel is apart of

4.1.1.1 Neigborhood Average properties Features

```
bg_avg_features <- properties %>%
  group_by(id_geo_bg_fips) %>%
  select(-id_parcel) %>%
  select_if(is.numeric) %>%
  summarise_all(mean, na.rm = TRUE) %>%
  filter(
    !is.na(id_geo_bg_fips)
  )

names(bg_avg_features) <- pasteO("bg_avg_", names(bg_avg_features))
names(bg_avg_features)[1] <- "id_geo_bg_fips"

# update the properties table
properties <- properties %>%
  left_join(bg_avg_features, by = "id_geo_bg_fips")
```

4.1.1.2 Rolling Local Average log_error

There is a strong spatial and temporal autocorrelation to our response variable log_error. To take advantage of this, let's create a few new features based on the rolling average of the local log_error values.

Because these features will have values for every day from min(trans\$date) to max(trans\$date) we won't join them to our data yet.

```
library(tibbletime)
trans_prop <- properties_geo %>%
 right_join(trans, by = "id_parcel") %>%
 select(
   id_parcel,
   id_geo_bg_fips,
   id_geo_tract_fips,
   date,
   log_error
# create rolling functions -----
rolling_sum_7 <- rollify(~sum(.x, na.rm = TRUE), window = 7)</pre>
rolling_sum_28 <- rollify(~sum(.x, na.rm = TRUE), window = 28)
# by block group ------
roll_bg <- create_series(min(trans_prop$date) ~ max(trans_prop$date),</pre>
                  'daily', class = "Date") %>%
 tidyr::expand(
   date,
   id_geo_bg_fips = unique(trans_prop$id_geo_bg_fips)
 full_join(trans_prop) %>%
 group_by(id_geo_bg_fips, date) %>%
 summarise(
   sum_log_error = sum(log_error, na.rm = TRUE),
```

```
sales_total = sum(!is.na(log_error))
    ) %>%
  ungroup() %>%
  group_by(id_geo_bg_fips) %>%
  mutate(
    sum_log_error_7days = rolling_sum_7(sum_log_error),
   sum_log_error_28days = rolling_sum_28(sum_log_error),
   roll bg trans total 7days = rolling sum 7(sales total),
   roll_bg_trans_total_28days = rolling_sum_28(sales_total),
   roll_bg_avg_log_error_7days = sum_log_error_7days / roll_bg_trans_total_7days,
   roll_bg_avg_log_error_28days = sum_log_error_28days / roll_bg_trans_total_28days,
   date = date + lubridate::days(1) # to not include the current day in avg
 ) %>%
  select(
   id_geo_bg_fips,
   date,
   roll_bg_trans_total_7days,
   roll_bg_trans_total_28days,
   roll_bg_avg_log_error_7days,
   roll_bg_avg_log_error_28days
  ) %>%
  mutate(
   roll_bg_trans_total_7days = ifelse(is.na(roll_bg_trans_total_7days),
                                       0, roll_bg_trans_total_7days),
   roll bg trans total 28days = ifelse(is.na(roll bg trans total 28days),
                                        0, roll_bg_trans_total_28days),
   roll_bg_avg_log_error_7days = ifelse(is.nan(roll_bg_avg_log_error_7days),
                                         0, roll_bg_avg_log_error_7days),
   roll_bg_avg_log_error_28days = ifelse(is.nan(roll_bg_avg_log_error_28days),
                                          0, roll_bg_avg_log_error_28days),
   roll_bg_avg_log_error_7days = as.numeric(forecast::na.interp(roll_bg_avg_log_error_7days)),
   roll_bg_avg_log_error_28days = as.numeric(forecast::na.interp(roll_bg_avg_log_error_28days))
# by tract ----
roll_tract <- create_series(min(trans_prop$date) ~ max(trans_prop$date),</pre>
                         'daily', class = "Date") %>%
 tidyr::expand(
   date,
   id_geo_tract_fips = unique(trans_prop$id_geo_tract_fips)
  ) %>%
  full join(trans prop) %>%
  group_by(id_geo_tract_fips, date) %>%
  summarise(
   sum_log_error = sum(log_error, na.rm = TRUE),
    sales_total = sum(!is.na(log_error))
  ungroup() %>%
  group_by(id_geo_tract_fips) %>%
  mutate(
    sum_log_error_7days = rolling_sum_7(sum_log_error),
    sum_log_error_28days = rolling_sum_28(sum_log_error),
```

```
roll_tract_trans_total_7days = rolling_sum_7(sales_total),
   roll_tract_trans_total_28days = rolling_sum_28(sales_total),
   roll_tract_avg_log_error_7days = sum_log_error_7days / roll_tract_trans_total_7days,
   roll_tract_avg_log_error_28days = sum_log_error_28days / roll_tract_trans_total_28days,
   date = date + lubridate::days(1) # to not include the current day in avg
  ) %>%
  select(
   id_geo_tract_fips,
   date,
   roll_tract_trans_total_7days,
   roll_tract_trans_total_28days,
   roll_tract_avg_log_error_7days,
   roll_tract_avg_log_error_28days
  ) %>%
  mutate(
   roll_tract_trans_total_7days = ifelse(is.na(roll_tract_trans_total_7days),
                                          0, roll_tract_trans_total_7days),
   roll_tract_trans_total_28days = ifelse(is.na(roll_tract_trans_total_28days),
                                           0, roll_tract_trans_total_28days),
   roll_tract_avg_log_error_7days = ifelse(is.nan(roll_tract_avg_log_error_7days),
                                            0, roll_tract_avg_log_error_7days),
   roll_tract_avg_log_error_28days = ifelse(is.nan(roll_tract_avg_log_error_28days),
                                             0, roll_tract_avg_log_error_28days),
   roll_tract_avg_log_error_7days = as.numeric(forecast::na.interp(roll_tract_avg_log_error_7days)),
   roll tract avg log error 28days = as.numeric(forecast::na.interp(roll tract avg log error 28days))
  )
prop_geo_ids <- properties_geo %>%
  select(
   id_parcel,
   id_geo_bg_fips,
    id_geo_tract_fips
write_feather(roll_bg, "data/external-features/roll_features_blockgroup.feather")
write_feather(roll_tract, "data/external-features/roll_features_tract.feather")
```

4.1.2 External Features

Breaking from the rules of the actual Kaggle competition, we're going to add in some external features as an example of bringing in other information

4.1.2.1 American Community Survey

The American Community Survey is a great source of demographic and household data. As an example of using this data let's bring in a few features related to our area of interest.

In our example here, we are completely ignoring the margin or error for each feature, given more time investigating the information contained in these fields is most likely worth your while.

There are literally thousands you can explore in the ACS. For our example, we are going to stop a little short of that and only add the following

```
Fill this in
sub group 1
sub group 2
fill this in
```

```
library(tidycensus)
api_key <- Sys.getenv("CENSUS_API_KEY")</pre>
census_api_key(api_key)
acs_var_list <- load_variables(2016, "acs5", cache = TRUE)</pre>
acs_bg_vars <- c("B25034_001E", "B25034_002E", "B25034_003E",
                 "B25034_004E", "B25034_005E", "B25034_006E",
                 "B25034_007E", "B25034_008E", "B25034_009E",
                 "B25034_010E", "B25034_011E", "B25076_001E",
                 "B25077_001E", "B25078_001E", "B25056_001E",
                 "B25002_001E", "B25002_003E", "B25001_001E")
acs_bg_home_value <- acs_var_list %>%
  filter(grepl("B25075_", x = name))
acs_bg_home_value_vars <- acs_bg_home_value$name</pre>
acs_bg_vars <- c(acs_bg_vars, acs_bg_home_value_vars)</pre>
acs_bg_data <- get_acs(</pre>
 geography = "block group",
 variables = acs_bg_vars,
 state = "CA",
 county = c("Los Angeles", "Orange", "Ventura"),
 output = "wide",
  geometry = FALSE,
  keep_geo_vars = TRUE
acs_bg_data1 <- acs_bg_data %>%
  select(
    id_geo_bg_fips = GEOID,
    acs_str_yr_total = B25034_001E,
    acs_str_yr_2014_later = B25034_002E,
    acs_str_yr_2010_2013 = B25034_003E,
    acs_str_yr_2000_2009 = B25034_004E,
    acs_str_yr_1990_1999 = B25034_005E,
    acs_str_yr_1980_1989 = B25034_006E,
    acs_str_yr_1970_1979 = B25034_007E,
    acs_str_yr_1960_1969 = B25034_008E,
    acs_str_yr_1950_1959 = B25034_009E,
    acs_str_yr_1940_1949 = B25034_010E,
    acs_{str_yr_1939_earlier} = B25034_011E,
    acs_home_value_lwr = B25076_001E,
    acs_home_value_med = B25077_001E,
    acs_home_value_upr = B25078_001E,
    acs_num_of_renters_total = B25056_001E,
```

```
acs_num_of_house_units = B25001_001E,
    acs_occ_status_total = B25002_001E,
   acs_occ_status_vacant = B25002_003E,
   acs_home_value_cnt_total = B25075_001E,
   acs_home_value_cnt_less_10k = B25075_002E,
   acs_home_value_cnt_10k_15k = B25075_003E,
   acs_home_value_cnt_15k_20k = B25075_004E,
   acs_home_value_cnt_20k_25k = B25075_005E,
   acs_home_value_cnt_25k_30k = B25075_006E,
   acs_home_value_cnt_30k_35k = B25075_007E,
   acs_home_value_cnt_35k_40k = B25075_008E,
   acs_home_value_cnt_40k_50k = B25075_009E,
   acs_home_value_cnt_50k_60k = B25075_010E,
   acs_home_value_cnt_60k_70k = B25075_011E,
   acs_home_value_cnt_70k_80k = B25075_012E,
   acs_home_value_cnt_80k_90k = B25075_013E,
    acs_home_value_cnt_90k_100k = B25075_014E,
   acs_home_value_cnt_100k_125k = B25075_015E,
   acs_home_value_cnt_125k_150k = B25075_016E,
   acs_home_value_cnt_150k_175k = B25075_017E,
    acs_home_value_cnt_175k_200k = B25075_018E,
   acs_home_value_cnt_200k_250k = B25075_019E,
   acs_home_value_cnt_250k_300k = B25075_020E,
   acs_home_value_cnt_300k_400k = B25075_021E,
   acs_home_value_cnt_400k_500k = B25075_022E,
   acs_home_value_cnt_500k_750k = B25075_023E,
   acs home value cnt 750k 1000k = B25075 024E,
   acs_home_value_cnt_1000k_1500k = B25075_025E,
   acs_home_value_cnt_1500k_2000k = B25075_026E,
   acs_home_value_cnt_2000k_more = B25075_027E
  ) %>%
  mutate_at(
   vars(starts_with("acs_home_value_cnt")), function(x) round(x / .$acs_home_value_cnt_total, digits =
   ) %>%
  mutate_at(
    vars(starts_with("acs_str_yr")), function(x) round(x / .$acs_str_yr_total, digits = 5)
  ) %>%
   acs_per_renters = round(acs_num_of_renters_total / acs_num_of_house_units, digits = 5),
    acs_per_vacant = round(acs_occ_status_vacant / acs_occ_status_total, digits = 5)
  ) %>%
  select(
   -acs_occ_status_total,
    -acs home value cnt total,
   -acs_str_yr_total
   )
acs_features <- properties_geo %>%
  select(
   id_parcel,
   id_geo_bg_fips
    ) %>%
  left_join(acs_bg_data1, by = "id_geo_bg_fips") %>%
```

```
select(-id_geo_bg_fips)

properties <- properties %>%
  left_join(acs_features, by = "id_parcel")
```

4.1.2.2 Economic Indicators

The value of a home is not only influenced by itself and its neighbors, but also larger economic trends. To help account for this in our model we are going to add in the following economic indicators

- 30-Year Fixed Rate Mortgage Average in the United States
- S&P/Case-Shiller CA-Los Angeles Home Price Index
- Unemployment Rate in Los Angeles County, CA

```
library(alfred)
# 30-Year Fixed Rate Mortgage Average in the United States (weekly)
mort30 <- get_fred_series("MORTGAGE30US") %>%
 mutate(
    date_month = floor_date(date, unit = "month"),
    date_week = floor_date(date, unit = "week")
# S&P/Case-Shiller CA-Los Angeles Home Price Index (monthly)
spcs <- get_fred_series("LXXRNSA")</pre>
# Unemployment Rate in Los Angeles County, CA (monthly)
unemployment <- get_fred_series("CALOSA7URN")</pre>
econ_features <- create_series(min(mort30$date) ~ max(mort30$date),
                                'daily', class = "Date") %>%
  mutate(date_week = floor_date(date, unit = "week")) %>%
  left_join(mort30, by = c("date_week" = "date_week")) %>%
  left_join(spcs, by = c("date_month" = "date")) %>%
  left_join(unemployment, by = c("date_month" = "date")) %>%
  select(
    date = date.x,
    econ_mort_30 = MORTGAGE30US,
    econ_case_shiller = LXXRNSA,
    econ_unemployment = CALOSA7URN
  ) %>%
  filter(
    date \geq= date("2015-12-01"),
    date <= date("2018-01-01")
    )
write_feather(econ_features, "data/external-features/econ_features.feather")
```

Ok, so a check in on where we are. We currently have 5 data frames of interest, our old friends properties which now contains new features from our bg_avg_features neighborhood data and the acs_features which contain a few indicators from the American Community Survey and trans which contains our response variable log_error as well as the transaction date and a few date based features.

The other 3 data frames we have are separated from the properties and trans data currently because they

contain features that have different values for each day and depending on what our transaction dates are for the particular set of observations we will use filter those values down and join them at the time of training.

4.2 Handling Missing Data

There are many ways to handle missing data from simple mean or median imputation to more complex methods such as knn or multiple imputation or even constructing other predictive models for predicting missing features. We will not explore that topic in depth here and use a somewhat simple approach that takes advantage of the spatial relationships of our data.

We will use median (or modal for nominal features) imputation but instead of doing global median values for all observations, we are going to break our observations into subspaces based on <code>zoning_landuse</code>, <code>area_lot</code>, and increasingly larger neigborhood windows. The reasoning behind this choice is that the values for many of the other features can vary widely across these categories. For example it wouldn't make sense to include the <code>tax_building</code> values for mobile homes if we are imputing the <code>tax_building</code> value of a commercial office building. The is true for <code>area_lot</code> the tax burden on a large commercial office will be larger then the one of a smaller office.

So we will look at increaingly larger neighborhoods of zoning_landuse and (a discretized version of) area_lot combinations, if there are any none NA observations of that combination in the missing observations block group, fill its values with the block group median (mode), if there are no non-missing observations with that combination in that block group, then look at the tract level, if there are none at the tract look at the county level, and finally if there are no non-missing observations in the County that the parcel belongs to, an unlikely event, then use the "global" values to impute.

To do this we first need to impute the values for zoning_landuse and area_lot. For this we will just use the increasing neighborhood search for zoning_landuse and then use the increasing neighborhood search broken down by zoning_landuse to fill in area_lot

For some reason their are no built in functions for calculating the mode. Make a simple helper function to do so

```
# simple helper function to find the mode
fct_mode <- function(f) {

f_no_na <- na.omit(f)
fct_tab <- table(f_no_na)

# if everything NA return NA
if (length(fct_tab) == 0) return(NA)

modal_fct <- names(fct_tab)[which(fct_tab == max(fct_tab))]
modal_fct <- modal_fct[1] # in case of ties, go with first one

modal_fct
}</pre>
```

Some parcels have no information at all including geographic ids. Randomly assign them a id_geo_bg_fips value based block group frequency

```
parcels_no_info <- properties %>%
filter(
   is.na(id_geo_bg_fips)
   ) %>%
select(id_parcel)
```

```
bg_probs <- table(properties$id_geo_bg_fips) %>%
 as.data.frame()
bg_assignments <- sample(bg_probs$Var1,</pre>
                         size = nrow(parcels_no_info),
                         replace = TRUE,
                         prob = bg_probs$Freq)
bg_assignments <- as.character(bg_assignments)</pre>
parcels_no_info_row_id <- properties$id_parcel %in% parcels_no_info$id_parcel
properties[parcels_no_info_row_id , "id_geo_bg_fips"] <- bg_assignments
# fill in the missing tract and county based on bg
properties <- properties %>%
  group_by(id_geo_bg_fips) %>%
  mutate(
    id_geo_tract_fips = fct_mode(id_geo_tract_fips)
    ) %>%
  ungroup() %>%
  group_by(id_geo_tract_fips) %>%
  mutate(
    id_geo_county_fips = fct_mode(id_geo_county_fips)
  ungroup()
```

Now that all observations have at least geo id values we can impute zoning_landuse using the increasing neighborhood search

```
properties <- properties %>%
  group_by(id_geo_bg_fips) %>%
  mutate(
   zoning_landuse = replace_na(zoning_landuse, fct_mode(zoning_landuse))
  ) %>%
  ungroup() %>%
  group_by(id_geo_tract_fips) %>%
  mutate(
   zoning_landuse = replace_na(zoning_landuse, fct_mode(zoning_landuse))
  ) %>%
  ungroup() %>%
  group_by(id_geo_county_fips) %>%
  mutate(
   zoning_landuse = replace_na(zoning_landuse, fct_mode(zoning_landuse))
  ) %>%
  ungroup()
```

```
Now for area_lot
```

```
properties <- properties %>%
  group_by(
   id_geo_bg_fips,
  zoning_landuse
  ) %>%
  mutate(
```

```
area_lot = replace_na(area_lot, median(area_lot, na.rm = TRUE))
ungroup() %>%
group_by(
  id_geo_tract_fips,
  zoning_landuse
  ) %>%
mutate(
  area_lot = replace_na(area_lot, median(area_lot, na.rm = TRUE))
) %>%
ungroup() %>%
group_by(
  id_geo_county_fips,
  zoning_landuse
  ) %>%
mutate(
  area_lot = replace_na(area_lot, median(area_lot, na.rm = TRUE))
) %>%
ungroup()
```

OK, now for the rest of them. Becasue we used median() to fill in area_lot the quantile() are not unique, so add a little bit of noise area_lot_jitter and base the breaks on those.

```
# impute all other features based on neighborhood, zoning_landuse, and area_lot
properties <- properties %>%
  mutate(
    area_lot_jitter = area_lot + runif(n = n(), min = -1, max = 1),
    area_lot_quantile = cut(area_lot_jitter,
                            breaks = quantile(area_lot_jitter, probs = seq(0, 1, 0.1), na.rm = TRUE))
   ) %>%
  group_by(
   id_geo_bg_fips,
   zoning_landuse,
   area_lot_quantile
  ) %>%
 mutate if(
   is.numeric, .funs = function(x) replace_na(x, median(x, na.rm = TRUE))
   ) %>%
  mutate_if(
    is.factor, .funs = function(x) replace_na(x, fct_mode(x))
  ) %>%
  ungroup() %>%
  group_by(
   id_geo_tract_fips,
   zoning_landuse,
   area_lot_quantile
  ) %>%
  mutate_if(
   is.numeric, .funs = function(x) replace_na(x, median(x, na.rm = TRUE))
  mutate_if(
   is.factor, .funs = function(x) replace_na(x, fct_mode(x))
  ) %>%
  ungroup() %>%
```

```
group_by(
  id_geo_county_fips,
 zoning_landuse,
 area_lot_quantile
) %>%
mutate_if(
  is.numeric, .funs = function(x) replace_na(x, median(x, na.rm = TRUE))
) %>%
mutate if(
  is.factor, .funs = function(x) replace_na(x, fct_mode(x))
ungroup() %>%
group_by(
 zoning_landuse,
 area_lot_quantile
) %>%
mutate_if(
 is.numeric, .funs = function(x) replace_na(x, median(x, na.rm = TRUE))
) %>%
mutate_if(
  is.factor, .funs = function(x) replace_na(x, fct_mode(x))
) %>%
ungroup()
```

At this point we now have all the original features we are going to use and have filled in all missing values. The next step is to transform our features, create interaction features, and then move unto feature selection.

4.3 Feature Transformation

Combine all of our data and remove a handful of features that we aren't going to use

```
# have to remove id_geo after joins because of time features
d <- trans %>%
 left_join(properties, by = "id_parcel") %>%
  left_join(econ_features, by = "date") %>%
  left_join(roll_bg, by = c("id_geo_bg_fips", "date")) %>%
  left_join(roll_tract, by = c("id_geo_tract_fips", "date")) %>%
  select(
   -id parcel,
   -abs_log_error,
    -week,
   -region_city,
   -region_zip,
   -area_lot_jitter,
    -area_lot_quantile,
   -lat, # we have other lat/lon features
   -lon,
    -starts_with("id_geo")
  ) %>%
  mutate(
   date = as.numeric(date),
   year = factor(year, levels = sort(unique(year)), ordered = TRUE),
   month_year = factor(
```

```
as.character(month_year),
  levels = as.character(unique(sort(month_year))),
  ordered = TRUE),
  str_quality = factor(str_quality, levels = 12:1, ordered = TRUE)
)
```

Here we are going to use the fantastic package recipes to handle all of our feature transformations

```
library(recipes)
rec <- recipe(d) %>%
  add_role(log_error, new_role = 'outcome') %>%
  add_role(-log_error, new_role = 'predictor') %>%
  step_meanimpute(starts_with("roll_")) %>%
  step_zv(all_numeric()) %>%
  step_BoxCox(
    starts_with("num_"),
    starts_with("area_"),
    starts_with("tax_"),
    starts_with("bg_avg_num_"),
    starts_with("bg_avg_area_"),
    starts_with("bg_avg_tax_")
  step_dummy(all_nominal(), one_hot = TRUE) %>%
  step_interact(~starts_with("tax_"):starts_with("area_")) %>%
  step_center(all_numeric(), -all_outcomes()) %>%
  step_scale(all_numeric(), -all_outcomes()) %>%
  step_pca(starts_with("acs_home_value_cnt"), prefix = "acs_home_value_cnt_PC") %>%
  step_zv(all_numeric())
rec_prepped <- prep(rec, training = d)</pre>
```

Chapter 5

Feature Selection

Now that we have our data in something Based on the data frame we created in d and the transformation recipe we made we are going to do some initial analysis on which features we want to keep or drop. the xgboost package provides a function, xgb.importance() that gives a summary of how important each feature was in a model estimated by xgb.train()

To have a little more robustness in our selection, we will use v fold cross validation to get mutliple samples from d and investigate the importance of the features across all samples.

```
library(broom)
library(purr)
library(xgboost)

importance_results <- function(splits) {

    x <- bake(rec_prepped, newdata = analysis(splits))
    y <- x$log_error

    d <- model.matrix(log_error ~., data = x)
    d <- xgb.DMatrix(d, label = y)

mdl <- xgb.train(data = d, label = y, nrounds = 1000, nthread = 4)
    print(summary(mdl))

mdl_importance <- as.data.frame(xgb.importance(model = mdl))

mdl_importance
}
library(rsample)</pre>
```

```
group_by(Feature) %>%
  summarise(
    mean = mean(Gain),
    sd = sd(Gain),
    n = n()
    )
feature_avg %>%
  ggplot(aes(x = forcats::fct_reorder(Feature, mean), y = mean)) +
  geom_hline(aes(yintercept = 0.001), colour = "red", size = 1, alpha = 0.5) +
  geom_point(size = 1) +
  geom_errorbar(aes(ymin = mean - sd * 2, ymax = mean + sd * 2)) +
  coord flip() +
  theme_bw() +
  theme(
    axis.text=element_text(size = 6)
    ) +
  labs(
   x = "Feature",
   y = "Mean Gain"
```

To reduce the complexity and computation time our of modeling, we are going to remove the feature that consistantly did not provide much value by cutting off the number of features we'll use at a mean gain at 0.001 (red line).

```
features_to_use <- feature_avg %>%
  filter(mean >= 0.001) %>%
   .$Feature
```


Figure 5.1: Mean Feature Importance Based on Cross Validation Using Basic XGBoost Model

Chapter 6

Modeling

For our first pass a submission, we are going to use the XGBoost model. This model has seen much success in Kaggle competition due to its flexibility and range of modeling tasks it can be applied to.

6.0.1 XGBoost

In gerenal XGBoost works like this...

As a reminder our recipe for our transformations are stored in ${\tt rec}$

```
## Data Recipe
##
## Inputs:
##
##
         role #variables
##
      outcome
##
   predictor
## Operations:
## Mean Imputation for starts_with("roll_")
## Zero variance filter on all_numeric()
## Box-Cox transformation on 6 items
## Dummy variables from all_nominal()
## Interactions with starts_with("tax_"):starts_with("area_")
## Centering for all_numeric(), -all_outcomes()
## Scaling for all_numeric(), -all_outcomes()
## PCA extraction with starts_with("acs_home_value_cnt")
## Zero variance filter on all_numeric()
```

and the data we have is in d
some kind of d summary

6.0.2 creating our scoring function

```
# create scoring function -----
xgboost_regress_score <- function(train_df, target_var, params, eval_df, ...) {</pre>
   X_train <- train_df %>%
      select(features_to_use) %>%
      as.matrix()
   y_train <- train_df[[target_var]]</pre>
   xgb_train_data <- xgb.DMatrix(X_train, label = y_train)</pre>
   X_eval <- eval_df %>%
      select(features_to_use) %>%
      as.matrix()
   y_eval <- eval_df[[target_var]]</pre>
   xgb_eval_data <- xgb.DMatrix(X_eval, label = y_eval)</pre>
   model <- xgb.train(params = params,</pre>
                       data = xgb_train_data,
                       watchlist = list(train = xgb_train_data, eval = xgb_eval_data),
                       objective = 'reg:linear',
                       verbose = FALSE,
                       nthread = 20,
                       ...)
   preds <- predict(model, xgb_eval_data)</pre>
   list(mae = MAE(preds, y_eval))
```

Make the parameter set that we are going to search over

```
# make parameter set -----

xgboost_random_params <-
makeParamSet(
   makeIntegerParam('max_depth', lower = 1, upper = 15),
   makeNumericParam('eta', lower = 0.01, upper = 0.1),
   makeNumericParam('gamma', lower = 0, upper = 5),
   makeIntegerParam('min_child_weight', lower = 1, upper = 100),
   makeNumericParam('subsample', lower = 0.25, upper = 0.9),
   makeNumericParam('colsample_bytree', lower = 0.25, upper = 0.9)
)</pre>
```

```
set up our cv
# create cv resampling -----
resamples <- vfold_cv(d, v = 5)</pre>
```

Use Ranger model for a progressive zoom into parameter space for tuning

```
library(MLmetrics)
library(xgboost)
library(tidytune)
# perform surrogate search over parameters ----
n \leftarrow c(10, 5, 3, 2)
n_{candidates} \leftarrow c(0, 10, 100, 1000)
search_results <-
  surrogate_search(
   resamples = resamples,
    recipe = rec,
    param_set = xgboost_random_params,
    scoring_func = xgboost_regress_score,
    nrounds = 1000,
    early_stopping_rounds = 20,
    eval_metric = 'mae',
    input = NULL,
    surrogate_target = 'mae',
    n_candidates = n_candidates,
    top_n = 5
  )
search_summary <-</pre>
  search_results %>%
  group_by_at(getParamIds(xgboost_random_params)) %>%
  summarise(mae = mean(mae)) %>%
  arrange(mae)
```

	max_depth	eta 🌵	gamma 🏺	min_child_weight	subsample	colsample_bytree	
1	5	0.0753141567087732	2.00997113599442	100	0.882115679827984	0.528489873954095	0.0685
2	5	0.0254947707173415	2.04678243258968	38	0.842303937417455	0.55284611225361	0.0685
3	5	0.0119649214693345	2.05316238454543	26	0.866748715774156	0.553988792502787	0.06858
4	5	0.0227248513093218	1.79130512056872	87	0.890362443809863	0.436710486758966	0.068:
5	8	0.0179595448542386	2.05562060466036	93	0.891160581179429	0.521792834519874	0.068:
6	6	0.0184877650788985	2.47866926947609	64	0.83313264483586	0.812140957009979	0.06860
7	6	0.0597224851348437	2.54486419609748	85	0.858863256021868	0.88247439750703	0.06860
8	5	0.0427106887870468	2.11250258260407	94	0.745799078559503	0.638513505784795	0.06860
9	5	0.0147431414970197	2.22801433177665	19	0.798432543617673	0.84205840973882	0.06860
10	3	0.0400677399151027	1.93769115372561	65	0.837546187068801	0.774923810071778	0.0686
<							>

```
search_results %>%
  group_by_at(
   c("surrogate_run",
      "surrogate_iteration",
      "param_id",
       getParamIds(xgboost_random_params)
      )
   ) %>%
  summarise(mae = mean(mae)) %>%
  ungroup() %>%
  mutate(surrogate_run = factor(surrogate_run)) %>%
  arrange(
   surrogate_run,
   surrogate_iteration
 ) %>%
 mutate(
   iteration = row_number()
ggplot(aes(x = iteration, y = mae)) +
    geom_smooth(alpha = 0.2, size = 0.8, colour = "grey") +
  geom_point(aes(col = surrogate_run)) +
 theme_bw() +
 labs(
   y = "MAE",
   x = "iteration",
   col = "Surrogate Run"
```

6.1 Make Predictions with Tuned Parameters

```
tuned_params <- search_summary %>%
  ungroup() %>%
  filter(mae == min(mae)) %>%
  select(getParamIds(xgboost_random_params)) %>%
  as.list()

tuned_params

## $max_depth
## [1] 5
```

```
## [1] 5
##
## $eta
## [1] 0.07531416
##
## $gamma
## [1] 2.009971
##
## $min_child_weight
## [1] 100
##
## $subsample
```


Figure 6.1: Mean Absolute Error Progressively Decreasing with Each Surrogate Run

```
## [1] 0.8821157
##
## $colsample_bytree
## [1] 0.5284899
Train the model using the tuned parameters
d_prepped <- prep(rec)</pre>
train_df <- bake(d_prepped, newdata = d)</pre>
x_train <- train_df %>%
  select(features_to_use) %>%
  as.matrix()
y_train <- train_df$log_error</pre>
xgb_train_data <- xgb.DMatrix(x_train, label = y_train)</pre>
model <- xgb.train(params = tuned_params,</pre>
                     data = xgb_train_data,
                     objective = 'reg:linear',
                     verbose = FALSE,
                    nthread = 4,
                    nrounds = 1000)
```

Now we need to make our predictions. We'll make a helper function predict_date() to do this.

```
predict_date <- function(parcel_id, predict_date, mdl) {</pre>
d_predict_ids <- properties %>%
 filter(id_parcel %in% parcel_id) %>%
  crossing(date = predict_date)
d_predict <- d_predict_ids %>%
 mutate(
   year = year(date),
   month_year = make_date(year(date), month(date)),
   month = month(date, label = TRUE),
   week = floor_date(date, unit = "week"),
   week_of_year = week(date),
   week_since_start = (min(date) %--% date %/% dweeks()) + 1,
   wday = wday(date, label = TRUE),
   day_of_month = day(date)
  left_join(econ_features, by = "date") %>%
  left_join(roll_bg, by = c("id_geo_bg_fips", "date")) %>%
  left_join(roll_tract, by = c("id_geo_tract_fips", "date")) %>%
  select(
   -id_parcel,
   -week,
   -region_city,
   -region_zip,
   -area_lot_jitter,
   -area_lot_quantile,
   -lat, # we have other lat/lon features
```

```
-lon,
    -starts_with("id_geo")
  ) %>%
 mutate(
    date = as.numeric(date),
    year = factor(year, levels = sort(unique(year)), ordered = TRUE),
    month_year = factor(
      as.character(month_year),
      levels = as.character(unique(sort(month_year))),
      ordered = TRUE),
    str_quality = factor(str_quality, levels = 12:1, ordered = TRUE)
  )
eval_df <- bake(d_prepped, newdata = d_predict)</pre>
x_eval <- eval_df %>%
  select(features_to_use) %>%
  as.matrix()
preds <- predict(mdl, x_eval)</pre>
properties_predict <- d_predict_ids %>%
  select(
    id_parcel,
    date
  ) %>%
 mutate(
    pred = preds
    ) %>%
  spread(date, pred)
names(properties_predict) <- c("ParcelId", "201610","201611","201612", "201710","201711","201712")</pre>
properties_predict
```

The submission requires a prediction for Oct-Dec 2016 and Oct-Dec 2017. This means that the prediction is for any day in that month. For our example first submission, we are going to just set the date to the first wednesday in each month. This is completely arbitrary. Another approach would be to make predictions for every day in each month and submit the mean prediction for each month. We'll save this for later work.

```
# first wednesday in each month
predict_dates <- date(c("2016-10-06","2016-11-02","2016-12-07", "2017-10-04","2017-11-01","2017-12-06")
# split parcels to chunck our predictions
id_parcels <- properties$id_parcel
id_parcel_splits <- split(id_parcels, ceiling(seq_along(id_parcels) / 5000))

predict_list <- lapply(id_parcel_splits, function(i) {
    pred_df <- predict_date(
    parcel_id = i,</pre>
```

```
predict_date = predict_dates,
    mdl = model
)
})

# they only evaluate to 4 decimcals so round to save space
# Convert ParcelId to integer to prevent Sci Notation that causes
# issues with submission
predict_df <- bind_rows(predict_list) %>%
    mutate_at(vars(`201610`:`201712`), round, digits = 4) %>%
    mutate(ParcelId = as.integer(ParcelId)) %>%
    as.data.frame()

write_csv(predict_df, "data/submit01.csv")
```

This model produced a MAE of 0.0651839 on the public leaderboard, which is honestly not that great, but it is a starting point that we can now start iterarting from. My first thought is perhaps we are overfitting on our training data, we could start exploring how differnt tuning affect actual submissions and not just cross validation based on resampling. Based on this we can tract how our performance changes and start narrow down what tuning are most performant for this task.

Another approach would be to only use

Chapter 7

Summary

7.1 Key Findings

7.2 Weak Points of Analysis

imputation method need to test more models could include more geo related features like interstate density should do a base line comparision