

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

DEPARTAMENTO DE INFORMÁTICA

Computación Gráfica – Algoritmos de Raster

Sistema gráfico de barrido (raster) ARQUITECTURA

- CPU y memoria principal usadas por todos los programas
- Se necesita un procesador especializado en gráfico:
 - Tiene su propia memoria
 - Mayor eficiencia

Sistema gráfico de barrido (raster) FUNCIONMIENTO

- La imagen a desplegar en pantalla se almacena en el frame buffer
- El controlador de video lee el frame buffer y despliega el contenido
- Frame rate: frecuencia que es posible hacer esta operación

Sistema gráfico de barrido (raster)

- ¿Cómo se logra realizar las animaciones?
- ¿Qué pasa si el almacenamiento es más lento que el despliegue de contenido?

Sistema gráfico de barrido (raster) DOBLE BUFFER

- Un controlador de video muy rápido puede desplegar una imagen inconclusa
- Solución: usar dos buffer
 - Uno para mostrar la imagen
 - Otro para crear la imagen
- Creada la imagen, los roles se invierten
- Propuesto: Investigar cómo se implementa por hardware Z-buffer

Sistema gráfico de barrido (raster)

Monitores con tubo de rayos catódicos:

- Pantalla de vidrio con una cubierta de diferentes compuestos de fósforo rojo, verde, azul
- El color aparece por la excitación producida por el haz de electrones
- La excitación no es continua
- El haz debe recorrer la pantalla para mantener la imagen
- Frecuencia de refresco

Sistema gráfico de barrido (raster) FRAME BUFFER

- Pixel \neq Grupo de fósforos.
- Pixel: Número de puntos distinguibles depende de la resolución.

Sistema gráfico de barrido (raster)

- Memoria que almacena el color de cada pixel de la pantalla Ejemplo: 8 bits por color → 3 bytes por pixel → en resolución 640 x 480 → 900 Kbytes
- Más colores → más bits

Sistema gráfico de barrido (raster) COMPONENTE ALFA

- La componente alfa permite definir la transparencia del objeto.
- Es descrita mediante un byte
- Un color requerirá 4 bytes: 3 para el color y 1 para la transparencia

- Arreglo 2D de pixeles
- Pixeles centrados en coordenadas enteras
- \blacksquare *setPixel*(x,y): función para iluminar un pixel

Dado los puntos extremos de un segmento: ¿Cómo identificar los pixeles que lo representan?

Algoritmo "Ingenuo"

- Extremos: $(x_i, y_i) \rightarrow (x_f, y_f)$.
- Sea f la función que describe y = f(x).
- $\forall x \in [x_i, x_f]$, setPixel(x, round(y)).

Algoritmo "Ingenuo"

- Extremos: $(x_i, y_i) \rightarrow (x_f, y_f)$.
- Sea f la función que describe y = f(x).
- $\forall x \in [x_i, x_f], setPixel(x, round(y)).$

¿Problemas con este algoritmo?

Algoritmo "Ingenuo"

- **Extremos**: $(x_i, y_i) \rightarrow (x_f, y_f)$.
- Sea f la función que describe y = f(x).
- $\forall x \in [x_i, x_f]$, setPixel(x, round(y)).

Algoritmo "Ingenuo"

- **Extremos**: $(x_i, y_i) \rightarrow (x_f, y_f)$.
- Sea f la función que describe y = f(x).
- $\forall x \in [x_i, x_f]$, setPixel(x, round(y)).

Si la pendiente m > 1 la línea se puede cortar.

$$f(x) = \frac{3}{2}x = y$$

٠	' '	/							
			х	1	2	3	4	5	6
			у	1.5	3	4.5	6	7.5	9
	r	oun	$\overline{d(y)}$	2	3	5	6	8	9

Algoritmo Incremental

1:
$$x \leftarrow x_i$$

2:
$$y \leftarrow y_i$$

3: setPixel(x, round(y))

4: while $x < x_f$ do

5:
$$x \leftarrow x + 1$$

6:
$$y \leftarrow y + m$$

7: setPixel(x, round(y))

8: end while

Algoritmo Incremental

1:
$$x \leftarrow x_i$$

2:
$$y \leftarrow y_i$$

3: setPixel(x, round(y))

4: while
$$x < x_f$$
 do

5:
$$x \leftarrow x + 1$$

6:
$$y \leftarrow y + m$$

7: setPixel(x, round(y))

8: end while

Si la pendiente m > 1 la línea se puede cortar.

$$f(x) = \frac{3}{2}x = y, x_i = 1, y_i = 1$$

ſ	X	1	2	3	4	5	6
Ì	У	1	2.5	4	5.5	7	8.5
Ì	round(y)	1	3	4	6	7	9

Algoritmo de Bresenham

Bresenham

Definición: es un algoritmo eficiente para dibujar una línea en una pantalla raster (compuesta de pixeles).

Bresenham, J.E. "Algorithm for Computer Control of a Digital Plotter". IBM Systems Journal, 4(1), pp. 25-30, 1965.

Características:

- Usa aritmética entera
- Supone la pendiente m en el rango [0,1].
- Parte del punto inferior-izquierdo al punto superior-derecho.

Ecuación de la recta:

$$y = f(x) = mx + c$$

Punto de la recta (valor exacto):

$$(x,f(x)) = (x,mx+c)$$

Punto de la recta (valor en pantalla):

$$(x, round(f(x))) = (x, round(mx + c))$$

Dado que:

$$x_2 = x_1 + \Delta x$$
$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

Luego:

$$y_2 = mx_2 + c$$

$$= m(x_1 + \Delta x) + c$$

$$= mx_1 + m\Delta x + c$$

$$= (mx_1 + c) + m\Delta x$$

$$= y_1 + m\Delta x$$

Dado que:

$$x_2 = x_1 + \Delta x$$

$$y_1 = mx_1 + c$$

$$y_2 = mx_2 + c$$

Luego:

$$y_2 = mx_2 + c$$

$$= m(x_1 + \Delta x) + c$$

$$= mx_1 + m\Delta x + c$$

$$= (mx_1 + c) + m\Delta x$$

$$= y_1 + m\Delta x$$

Pero sabiendo que $\Delta x = 1$ en nuestro caso, obtenemos finalmente que:

$$y_2 = y_1 + m$$
$$x_2 = x_1 + 1$$

- Segmento de recta desde (x_i, y_i) a (x_f, y_f) .
- La gran pregunta para la siguiente iteración (x+1) es: ¿Qué pixel pintamos? (x+1,y) o (x+1,y+1)
- \blacksquare (x,y): centro de un pixel
- ε: error (distancia) a la ordenada (y) del pixel.
- $\epsilon \in [-0.5, 0.5]$
- $y + \varepsilon$: valor exacto de la ordenada de la recta
- *m*: pendiente de la recta

- Segmento de recta desde (x_i, y_i) a (x_f, y_f) .
- (x,y): centro de un pixel
- ε: error (distancia) a la ordenada (y) del pixel.
- **■** $\varepsilon \in [-0.5, 0.5]$
- $y + \varepsilon$: valor exacto de la ordenada de la recta
- *m*: pendiente de la recta

La gran pregunta para la siguiente iteración (x+1) es: ¿Qué pixel pintamos? (x+1,y) o (x+1,y+1)

Respuesta: dependerá del error y notar que éste es inicialmente 0. En la segunda iteración será m. Cuando el error llegue a ser superior a 0.5 entonces debemos "dar el salto" y al actulizarlo éste se debe volver negativo.

Pseudo algoritmo 1

```
1: \varepsilon \leftarrow 0
 2: y \leftarrow y_i
 3: for x = x_i; x < x_f; x + + do
      setPixel(x,y)
 5: if \varepsilon + m < 0.5 then
 6:
      \varepsilon \leftarrow \varepsilon + m
 7:
       else
     y \leftarrow y + 1
      \varepsilon \leftarrow \varepsilon + m - 1
      end if
10:
```

11: end for

Pseudo algoritmo 1

¿Mejoras?

1:
$$\varepsilon \leftarrow 0$$

2:
$$y \leftarrow y_i$$

3: **for**
$$x = x_i; x < x_f; x + +$$
 do

4:
$$setPixel(x, y)$$

5: if
$$\varepsilon + m < 0.5$$
 then

6:
$$\varepsilon \leftarrow \varepsilon + m$$

7: **else**

8:
$$y \leftarrow y + 1$$

9:
$$\varepsilon \leftarrow \varepsilon + m - 1$$

10: end if

11: end for

Pseudo algoritmo 1

1:
$$\varepsilon \leftarrow 0$$

2:
$$y \leftarrow y_i$$

3: **for**
$$x = x_i; x < x_f; x + +$$
 do

4:
$$setPixel(x, y)$$

5: if
$$\varepsilon + m < 0.5$$
 then

6:
$$\varepsilon \leftarrow \varepsilon + m$$

7: **else**

8:
$$y \leftarrow y + 1$$

9:
$$\varepsilon \leftarrow \varepsilon + m - 1$$

10: **end if**

11: end for

¿Mejoras?

Notar que m es float.

¿Se podrá hacer solo con álgebra entera?

Dado que
$$m = \frac{\Delta y}{\Delta x} = \frac{y_f - y_i}{x_f - x_i}$$

$$arepsilon + m < 0.5$$
: $arepsilon + m < 0.5$

$$\varepsilon + \frac{\Delta y}{\Delta x} < 0.5$$

$$2\varepsilon \Delta x + 2\Delta y < \Delta x$$

$$2(\varepsilon' + \Delta y) < \Delta x$$

$$\varepsilon \leftarrow \varepsilon + m$$
$$\varepsilon \Delta x \leftarrow \varepsilon \Delta x + \Delta y$$
$$\varepsilon' \leftarrow \varepsilon' + \Delta y$$

Para actualizar el error tenínamos que si

Y en el caso contrario:

Para el útlimo paso se utilizó $\varepsilon' = \varepsilon \Delta x$.

$$\varepsilon \leftarrow \varepsilon + m - 1$$

$$\varepsilon \Delta x \leftarrow \varepsilon \Delta x + \Delta y - \Delta x$$

$$\varepsilon' \leftarrow \varepsilon' + \Delta y - \Delta x$$

Pseudo algoritmo 2

1:
$$\varepsilon' \leftarrow 0$$

2: $y \leftarrow y_i$
3: $\mathbf{for} \ x = x_i; x < x_f; x + + \mathbf{do}$
4: $setPixel(x,y)$
5: $\mathbf{if} \ 2(\varepsilon' + \Delta y) < \Delta x \ \mathbf{then}$
6: $\varepsilon' \leftarrow \varepsilon' + \Delta y$
7: \mathbf{else}
8: $y \leftarrow y + 1$
9: $\varepsilon' \leftarrow \varepsilon' + \Delta y - \Delta x$
10: $\mathbf{end} \ \mathbf{if}$
11: $\mathbf{end} \ \mathbf{for}$

Pseudo algoritmo 2

1:
$$\varepsilon' \leftarrow 0$$

2: $y \leftarrow y_i$
3: $\mathbf{for} \ x = x_i; x < x_f; x + + \mathbf{do}$
4: $setPixel(x,y)$
5: $\mathbf{if} \ 2(\varepsilon' + \Delta y) < \Delta x \ \mathbf{then}$
6: $\varepsilon' \leftarrow \varepsilon' + \Delta y$
7: \mathbf{else}
8: $y \leftarrow y + 1$
9: $\varepsilon' \leftarrow \varepsilon' + \Delta y - \Delta x$
10: $\mathbf{end} \ \mathbf{if}$
11: $\mathbf{end} \ \mathbf{for}$

¡¡¡Solo valores enteros!!!

Para Bresenham en pendientes distintas al rango [0, 1] se usa simetría:

Valor de la pendiente en cada tramo

