Supplemental Materials for Soil moisture interacts with temperature to affect plant phenology

A.K. Ettinger $^{1,2,a},$ J.S. Dukes $^{3,b},$ M.R. Johnston $^{4,c},$ C.R. Rollinson $^{5,d},$ and E.M. Wolkovich 1,4,6,e

¹Arnold Arboretum of Harvard University, Boston, Massachusetts 02131, USA
 ²Northwest Fisheries Science Center, NOAA, Seattle, Washington
 ³Department of Forestry & Natural Resources and Department of Biological Sciences,
 Purdue University, West Lafayette, Indiana 47907, USA
 ⁴Department of Organismic & Evolutionary Biology, Harvard University, Cambridge,
 Massachusetts 02138, USA

 $^5{\rm The}$ Morton Arboretum, Lisle, Illinois 60532, USA

⁶Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada

^aCorresponding author; email: aettinger@fas.harvard.edu; phone: 781-296-4821; mailing address: 1300 Centre Street, Boston, Massachusetts 02140, USA

March 31, 2021

Supplemental Tables

Table 1: Dataset names and references for papers in the OSPREE database.

Dataset	Reference
ashby62	(1)
basler12	(2)
basler14	(3)
biasi12	(4)
boyer	(5)
caffarra11a	(6)
caffarra11b	(7)
calme94	(8)
campbell75	(9)
cannell83	(10)
charrier11	(11)
chavarria09	(12)
cook00b	(13)
cook05	(14)
cronje03	(15)
dantec14	(16)
devries82	(17)
falusi03	(18)
falusi90	(19)
falusi96	(20)
falusi97	(21)
fu13	(22)
gansert02	(23)
ghelardini10	(24)
gianfagna85	(25)
gomory15	(26)
granhus09	(27)
guak98	(28)
guerriero90	(29)
gunderson12	(30)
hawerroth13	(31)
hawkins12	(32)
Heide03	(33)
heide05	(34)
heide08	(35)
heide11	(36)
heide12	(37)

 ${\it Table 1: } \textbf{Dataset names and references for papers in the OSPREE database.}$

set hames and rei	erences for papers in the OSI it
Dataset	Reference
heide15	(38)
heide93	(39)
heide93a	(40)
howe95	(41)
jones12	(42)
junttila12	(43)
karlsson03	(44)
lamb37	(45)
laube14a	(46)
laube14b	(47)
li05	(48)
linkosalo06	(49)
man10	(50)
manson91	(51)
morin10	(52)
myking95	(53)
myking97	(54)
myking98	(55)
nienstaedt66	(56)
nishimoto95	(57)
okie11	(58)
pagter15	(59)
partanen01	(60)
partanen05	(61)
partanen98	(62)
pettersen71	(63)
pop2000	(64)
ramos99	(65)
rinne94	(66)
rinne97	(67)
ruesink98	(68)
Sanz-Perez09	(69)
sanzperez10	(70)
schnabel87	(71)
skre08	(72)
skuterud94	(73)
sogaard08	(74)
sonsteby13	(75)

Dataset Reference sonsteby14 (76)spiers74 (77)swartz81 (78)thielges75 (79)viheraaarnio06 (80)webb78 (81)worrall67 (82)yazdaniha64 (83)zohner16 (84)

Table 1: Dataset names and references for papers in the OSPREE database.

References

- [1] Ashby, W. Germination capacity in American Basswood Tilia americana. Transactions of the Illinois State Academy of Science 55, 120–3 (1962).
- [2] Basler, D. & Körner, C. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology 165, 73–81 (2012).
- [3] Basler, D. & Körner, C. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. *Tree Physiology* **34**, 377–388 (2014).
- [4] Biasi, L., Zanette, F. & Carvalho, R. Dormancy dynamics of grape and kiwifruit buds in a region of low chill occurrence. In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Plant 932, 507–512 (2012).
- [5] Boyer, J. & South, D. Dormancy, chilling requirements, and storability of container-grown loblolly pine seedlings (1986).
- [6] Caffarra, A. & Donnelly, A. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. *International Journal of Biometeorology* **55**, 711–721 (2011).
- [7] Caffarra, A., Donnelly, A., Chuine, I. & Jones, M. B. Modelling the timing of Betula pubescens bud-burst.
 I. Temperature and photoperiod: A conceptual model. Climate Research 46, 147 (2011).
- [8] Calmé, S., Bigras, F. J., Margolis, H. A. & Hébert, C. Frost tolerance and bud dormancy of containergrown yellow birch, red oak and sugar maple seedlings. Tree Physiology 14, 1313–1325 (1994).

- [9] Campbell, R. K. & Sugano, A. I. Phenology of bud burst in Douglas-fir related to provenance, photoperiod, chilling, and flushing temperature. *Botanical Gazette* 290–298 (1975).
- [10] Cannell, M. & Smith, R. Thermal time, chill days and prediction of budburst in *Picea sitchensis*. Journal of applied Ecology 951–963 (1983).
- [11] Charrier, G., Bonhomme, M., Lacointe, A. & Améglio, T. Are budburst dates, dormancy and cold acclimation in walnut trees (juglans regial.) under mainly genotypic or environmental control? *International journal of biometeorology* 55, 763–774 (2011).
- [12] Chavarria, G. et al. Mild temperatures on bud breaking dormancy in peaches. Ciência Rural 39, 2016–2021 (2009).
- [13] Cook, C. & Jacobs, G. Progression of apple (malus × domestica borkh.) bud dormancy in two mild winter climates. The Journal of Horticultural Science and Biotechnology 75, 233–236 (2000).
- [14] Cook, N. C. et al. Freezing temperature treatment induces bud dormancy in 'granny smith'apple shoots. Scientia horticulturae 106, 170–176 (2005).
- [15] Cronjé, P., Jacobs, G., Sadie, A. & Cook, N. Quantification of the dormancy progression in terminal apple buds. changes in growth rate and water status. *Advances in horticultural science* 105–110 (2003).
- [16] Dantec, C. F. et al. Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range. *International journal of biometeorology* 58, 1853–1864 (2014).
- [17] De Vries, D., Smeets, L. & Dubois, L. A. Interaction of temperature and light on growth and development of hybrid tea-rose seedlings, with reference to breeding for low-energy requirements. *Scientia Horticulturae* 17, 377–382 (1982).
- [18] Falusi, M. & Calamassi, R. Dormancy of Fagus sylvatica L. buds III. Temperature and hormones in the evolution of dormancy in one-node cuttings. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 137, 185–191 (2003).
- [19] Falusi, M. & Calamassi, R. Bud dormancy in beech (Fagus sylvatica L.). Effect of chilling and photoperiod on dormancy release of beech seedlings. Tree Physiology 6, 429–438 (1990).
- [20] Falusi, M. & Calamassi, R. Geographic variation and bud dormancy in beech seedlings (Fagus sylvatica
 L). In Annales des Sciences forestières, vol. 53, 967–979 (EDP Sciences, 1996).

- [21] Falusi, M. & Calamassi, R. Bud dormancy in Fagus sylvatica L. II. The evolution of dormancy in seedlings and one-node cuttings. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 131, 143–148 (1997).
- [22] Fu, Y. H., Campioli, M., Deckmyn, G. & Janssens, I. A. Sensitivity of leaf unfolding to experimental warming in three temperate tree species. *Agricultural and Forest Meteorology* **181**, 125–132 (2013).
- [23] Gansert, D. Betula ermanii, a dominant subalpine and subarctic treeline tree species in japan: ecological traits of deciduous tree life in winter. *Arctic, Antarctic, and Alpine Research* 57–64 (2002).
- [24] Ghelardini, L., Santini, A., Black-Samuelsson, S., Myking, T. & Falusi, M. Bud dormancy release in elm (ulmus spp.) clones—a case study of photoperiod and temperature responses. Tree physiology 30, 264–274 (2010).
- [25] Gianfagna, T. & Mehlenbacher, S. Importance of heat requirement for bud break and time of flowering in apple. HortScience 20, 909–911 (1985).
- [26] Gömöry, D., Foffová, E., Longauer, R. & Krajmerová, D. Memory effects associated with early-growth environment in Norway spruce and European larch. European Journal of Forest Research 134, 89–97 (2015).
- [27] Granhus, A., FlØistad, I. S. & SØgaard, G. Bud burst timing in *Picea abies* seedlings as affected by temperature during dormancy induction and mild spells during chilling. *Tree physiology* 29, 497–503 (2009).
- [28] Guak, S., Olsyzk, D. M., Fuchigami, L. H. & Tingey, D. T. Effects of elevated CO2 and temperature on cold hardiness and spring bud burst and growth in douglas-fir (*Pseudotsuga menziesii*). Tree Physiology 18, 671–679 (1998).
- [29] Guerriero, P., Scalabrelli, G. & Grazzini, G. Chilling effect on inhibition removal in kiwifruit dormant lateral buds. In *I International Symposium on Kiwifruit 282*, 79–86 (1990).
- [30] Gunderson, C. A. *et al.* Forest phenology and a warmer climate–growing season extension in relation to climatic provenance. *Global Change Biology* **18**, 2008–2025 (2012).
- [31] Hawerroth, F. J., Herter, F. G., Petri, J. L., Marafon, A. C. & Leonetti, J. F. Evaluation of winter temperatures on apple budbreak using grafted twigs. Revista Brasileira de Fruticultura 35, 713–721 (2013).

- [32] Hawkins, C. D. & Dhar, A. Spring bud phenology of 18 Betula papyrifera populations in British Columbia. Scandinavian Journal of Forest Research 27, 507–519 (2012).
- [33] Heide, O. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. *Tree Physiology* **23**, 931–936 (2003).
- [34] Heide, O. & Prestrud, A. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. *Tree Physiology* **25**, 109–114 (2005).
- [35] Heide, O. M. Interaction of photoperiod and temperature in the control of growth and dormancy of *Prunus* species. *Scientia Horticulturae* **115**, 309–314 (2008).
- [36] Heide, O. M. Temperature rather than photoperiod controls growth cessation and dormancy in *Sorbus* species. *Journal of Experimental Botany* **62**, 5397–5404 (2011).
- [37] Heide, O. M. & Sønsteby, A. Floral initiation in black current cultivars (*Ribes nigrum L.*): Effects of plant size, photoperiod, temperature, and duration of short day exposure. *Scientia Horticulturae* 138, 64–72 (2012).
- [38] Heide, O. M. & Sonsteby, A. Simultaneous dormancy induction interferes with short day floral induction in black current (*Ribes nigrum L.*). Scientia Horticulturae 185, 228–232 (2015).
- [39] Heide, O. Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. *Physiologia Plantarum* 88, 531–540 (1993).
- [40] Heide, O. Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiologia Plantarum 89, 187–191 (1993).
- [41] Howe, G. T., Hackett, W. P., Furnier, G. R. & Klevorn, R. E. Photoperiodic responses of a northern and southern ecotype of black cottonwood. *Physiologia Plantarum* **93**, 695–708 (1995).
- [42] Jones, H., Hillis, R., Gordon, S. & Brennan, R. An approach to the determination of winter chill requirements for different *Ribes* cultivars. *Plant Biology* **15**, 18–27 (2012).
- [43] Junttila, O. & Hänninen, H. The minimum temperature for budburst in Betula depends on the state of dormancy. *Tree physiology* **32**, 337–345 (2012).
- [44] Karlsson, P., Bylund, H., Neuvonen, S., Heino, S. & Tjus, M. Climatic response of budburst in the mountain birch at two areas in northern fennoscandia and possible responses to global change. *Ecography* 26, 617–625 (2003).

- [45] Lamb, R. C. Effect of temperatures above and below freezing on the breaking of rest in the latham raspberry. In *Proceedings of the American Society for Horticultural Science*, vol. 51, 313–315 (AMER SOC HORTICULTURAL SCIENCE 701 NORTH SAINT ASAPH STREET, ALEXANDRIA, VA 22314-1998, 1948).
- [46] Laube, J. et al. Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology 20, 170–182 (2014).
- [47] Laube, J., Sparks, T. H., Estrella, N. & Menzel, A. Does humidity trigger tree phenology? Proposal for an air humidity based framework for bud development in spring. *New Phytologist* **202**, 350–355 (2014).
- [48] Li, C. et al. Differential responses of silver birch (*Betula pendula*) ecotypes to short-day photoperiod and low temperature. Tree physiology 25, 1563–1569 (2005).
- [49] Linkosalo, T. & Lechowicz, M. J. Twilight far-red treatment advances leaf bud burst of silver birch (Betula pendula). Tree Physiology 26, 1249–1256 (2006).
- [50] Man, R. & Lu, P. Effects of thermal model and base temperature on estimates of thermal time to bud break in white spruce seedlings. Canadian Journal of Forest Research 40, 1815–1820 (2010).
- [51] Manson, P. & Snelgar, W. Effect of time of budburst and apical shoot growth on flower production in kiwifruit. New Zealand Journal of Crop and Horticultural Science 19, 441–445 (1991).
- [52] Morin, X., Roy, J., Sonié, L. & Chuine, I. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist 186, 900-910 (2010).
- [53] Myking, T. & Heide, O. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiology 15, 697–704 (1995).
- [54] Myking, T. Effects of constant and fluctuating temperature on time to budburst in *Betula pubescens* and its relation to bud respiration. *Trees* 12, 107–112 (1997).
- [55] Myking, T. Interrelations between respiration and dormancy in buds of three hardwood species with different chilling requirements for dormancy release. Trees 12, 224–229 (1998).
- [56] Nienstaedt, H. Dormancy and dormancy release in white spruce. Forest Science 12, 374–384 (1966).
- [57] Nishimoto, N. & Fujisaki, M. Chilling requirement of buds of some deciduous fruits grown in southern japan and the means to break dormancy. *Dormancy and the related Problems of Deciduous Fruit Trees* 395 153–160 (1994).

- [58] Okie, W. R. & Blackburn, B. Interactive effects of light and chilling on peach flower and leaf budbreak. HortScience 46, 1056–1062 (2011).
- [59] Pagter, M., Andersen, U. B. & Andersen, L. Winter warming delays dormancy release, advances budburst, alters carbohydrate metabolism and reduces yield in a temperate shrub. AoB plants 7, plv024 (2015).
- [60] Partanen, J., Leinonen, I. & Repo, T. Effect of accumulated duration of the light period on bud burst in Norway spruce (*Picea abies*) of varying ages. *Silva Fennica* **35**, 111–117 (2001).
- [61] Partanen, J., Hänninen, H. & Häkkinen, R. Bud burst in Norway spruce (*Picea abies*): preliminary evidence for age-specific rest patterns. *Trees* 19, 66–72 (2005).
- [62] Partanen, J., Koski, V. & Hänninen, H. Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (*Picea abies*). Tree Physiology 18, 811–816 (1998).
- [63] Pettersen, H. Effect of temperature and daylength on shoot growth and bud formation in azaleas. Journal of the American Society for Horticultural Science 97, 17 (1972).
- [64] Pop, E. W., Oberbauer, S. F. & Starr, G. Predicting vegetative bud break in two arctic deciduous shrub species, salix pulchra and betula nana. *Oecologia* 124, 176–184 (2000).
- [65] Ramos, A. & Rallo, L. Effect of the bearing condition of the tree, chilling and defoliation on the forced budburst of olive cuttings at different tempeartures. In Metzidakis, I. T. & Voyiatzis, D. G. (eds.) III International Symposium on Olive Growing 474, 251–254 (1999).
- [66] Rinne, P., Saarelainen, A. & Junttila, O. Growth cessation and bud dormancy in relation to ABA level in seedlings and coppice shoots of *Betula pubescens* as affected by a short photoperiod, water stress and chilling. *Physiologia Plantarum* **90**, 451–458 (1994).
- [67] Rinne, P., Hänninen, H., Kaikuranta, P., Jalonen, J. & Repo, T. Freezing exposure releases bud dormancy in *Betula pubescens* and *B. pendula. Plant, Cell & Environment* **20**, 1199–1204 (1997).
- [68] Ruesink, J. Long day treatment prevents flower bud formation in pieris. Gartenbauwissenschaft (Germany) (1998).
- [69] Sanz-Perez, V., Castro-Diez, P. & Valladares, F. Differential and interactive effects of temperature and photoperiod on budburst and carbon reserves in two co-occurring Mediterranean oaks. *Plant Biology* 11, 142–51 (2009).

- [70] Sanz-Pérez, V. & Castro-Díez, P. Summer water stress and shade alter bud size and budburst date in three Mediterranean *Quercus* species. *Trees* **24**, 89–97 (2010).
- [71] Schnabel, B. J. & Wample, R. L. Dormancy and cold hardiness in Vitis vinifera L. cv. White Riesling as influenced by photoperiod and temperature. American Journal of Enology and Viticulture 38, 265–272 (1987).
- [72] Skre, O. et al. The importance of hardening and winter temperature for growth in mountain birch populations. Environmental and experimental botany 62, 254–266 (2008).
- [73] Skuterud, R. & Dietrichson, J. Budburst in detached birch shoots (Betula pendula) of different varieties winter-stored in darkness at three different temperatures. Silva Fennica 28, 223–224 (1994).
- [74] Søgaard, G., Johnsen, Ø., Nilsen, J. & Junttila, O. Climatic control of bud burst in young seedlings of nine provenances of norway spruce. Tree Physiology 28, 311–320 (2008).
- [75] Sønsteby, A. & Heide, O. Variation in seasonal timing of flower bud initiation in black currant (ribes nigrum l.) cultivars of contrasting geographic origin. The Journal of Horticultural Science and Biotechnology 88, 403–408 (2013).
- [76] Sønsteby, A. & Heide, O. M. Chilling requirements of contrasting black current (*Ribes nigrum* L.) cultivars and the induction of secondary bud dormancy. *Scientia Horticulturae* 179, 256–265 (2014).
- [77] Spiers, J. & Draper, A. Effect of chilling on bud break in rabbiteye blueberry cultivars. *Journal American Society for Horticultural Science* (1974).
- [78] Swartz, H. & Powell Jr, L. The effect of long chilling requirement on time of bud break in apple. In Symposium on Growth Regulators in Fruit Production 120, 173–178 (1981).
- [79] Thielges, B. & Beck, R. Control of bud break and its inheritance in *Populus deltoides*. Tree Physiology and Yield Improvement 14, 253–259 (1976).
- [80] Viherä-Aarnio, A., Häkkinen, R. & Junttila, O. Critical night length for bud set and its variation in two photoperiodic ecotypes of *Betula pendula*. *Tree Physiology* **26**, 1013–1018 (2006).
- [81] Webb, D. P. Root regeneration and bud dormancy of sugar maple, silver maple, and white ash seedlings: effects of chilling. *Forest Science* **23**, 474–483 (1977).
- [82] Worrall, J. & Mergen, F. Environmental and genetic control of dormancy in *Picea abies. Physiologia Plantarum* **20**, 733–745 (1967).

- [83] Yazdaniha, A. Effects of Chilling, Chemicals and Pruning on the Rest Period of Peach Trees. Master's thesis, Utah State University, http://digitalcommons.usu.edu/etd/3596 (1967).
- [84] Zohner, C. M., Benito, B. M., Svenning, J. C. & Renner, S. S. Day length unlikely to constrain climatedriven shifts in leaf-out times of northern woody plants. *Nature Climate Change* **6**, 1120–1123 (2016).