数字逻辑 Digital Logic Circuit

丁贤庆

ahhfdxq@163.com

Home work (P350)

- ✓ 1、本周三晚上7:00-8:00在新安学堂105房间,答疑。 回答作业或者课本中疑难问题。
- ▼ 2、本周有实验。地点: 1号综合实验楼306房间
- ▼ 3、期末考试,第六章有30分左右的考题。
- ▼ 4、期末考试时间: 11月1日晚6:30-8:30 , 地点待定。
- ₹ 5、本次的作业
 - **6.5.8**
 - **6.5.9**
 - **6.5.13**

第6章 时序逻辑电路

Sequential Logic Circuit

记忆: 常用的触发器

1. 维持阻塞触发器

在CP脉冲的上升沿到来瞬间 使触发器的状态(Q的值)才发生变化:

$$Q^{n+1} = D$$

2.下降沿触发的 JK 触发器

在CP脉冲的下降沿到来瞬间使触发器的状态(Q的值)才发生变化:

$$Q^{n+1} = J\overline{Q^{n}} + \overline{K}Q^{n}$$

6.2.2 同步时序逻辑电路分析举例

例1 试分析如图所示时序电路的逻辑功能。

观察状态图和时序图可知,电路是一个由信号A控制的可控二进制计数器。当A=0时停止计数,电路状态保持不变;当A=1时,在CP上升沿到来后电路状态值加1,一旦计数到11状态,Y输出1,且电路状态将在下一个CP上升沿回到00。输出信号Y的下降沿可用于触发进位操作,模4加一计数器。

例2 试分析如图所示时序电路的逻辑功能。

状态转换图

•X=1时

Y可理解为进位或借位端。

电路进行减1计数

电路进行加1计数

电路功能: 模4可逆计数器

例3 分析下图所示的同步时序电路。

例3 分析下图所示的同步时序电路。

1. 根据电路列出逻辑方程组:

输出方程组 激励方程组 $D_0 = \overline{Q}_1^n \overline{Q}_0^n$ $Z_0 = Q_0$ $Z_1 = Q_1$ $D_1 = Q_0^n$ $Z_2 = Q_2$ $D_2 = Q_1^n$

由于Q0是输出, 所以Z0只能是输出!

目标是状态转换表

将激励方程代入D触发器的特性方程得状态方程

$$Q^{n+1} = D$$

状态表

得状态方程

$$Q_0^{n+1} = D_0 = \overline{Q}_1^n \overline{Q}_0^n$$
 $Q_1^{n+1} = D_1 = Q_0^n$
 $Q_2^{n+1} = D_2 = Q_1^n$

2.列出其状态表

$Q_2^n Q_1^{n1} Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
000	001
001	010
010	100
011	110
100	001
101	010
110	100
111	110

3. 画出状态图

状态表

$Q_2^n Q_1^{n1} Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
000	001
001	010
010	100
011	110
100	001
101	010
110	100
111	110

5、逻辑功能分析(找闭合回路)

由状态图可见,电路的有效状态是三位循环码。 从时序图可看出,电路正常工作时,各触发器的Q端轮流出现一个宽度为一个CP周期脉冲信号,循环周期为 $3T_{CP}$ 。电路的功能为脉冲分配器或节拍脉冲产生器。

6.1.2 时序逻辑电路功能的表达

1. 分析下面电路的逻辑功能

目标是状态转换表

状态转换真值表

6.1.2 时序逻辑电路功能的表达

1. 分析下面电路的逻辑功能

输出方程

$$X = \overline{Q}_1 Q_0$$

$$Y = (Q_0 + Q_1)\overline{A}$$

激励方程组

$$D_0 = (Q_0 + Q_1)A$$

$$D_1 = \overline{Q_0}A$$

状态方程组

$$Q^{n+1} = D$$

$$Q_0^{n+1} = (Q_0^n + Q_1^n)A$$

$$Q_1^{n+1} = \overline{Q_0^n}A$$

2. 根据方程组列出状态转换真值表

输出方程

$$X = \overline{Q}_1 Q_0$$

$$Y = (Q_0 + Q_1)\overline{A}$$

状态方程组

$$Q_1^{n+1} = \overline{Q_0^n} A$$

$$Q_0^{n+1} = (Q_0^n + Q_1^n) A$$

状态转换真值表

Q_1^n	Q_0^n	A	Q_1^{n+1}	Q_0^{n+1}	X	Y
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	0	0	1
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	1	0	1	0	0

3. 将状态转换真值表转换为状态表

状态转换真值表

Q_0^n	A	Q_1^{n+1}	Q_0^{n+1}	X	Y
0	0	0	0	0	0
0	1	1	0	0	0
1	0	0	0	1	1
1	1	0	1	1	0
0	0	0	0	0	1
0	1	1	1	0	0
1	0	0	0	0	1
1	1	0	1	0	0
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0	0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0	0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0	0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0

转换表

$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}$	X	
21 20	A= 0	A=1	21
00	00 / 0	10/0	0
01	00 / 1	01/0	1
10	00 / 1	11 / 0	0
11	00 / 1	01/0	0

4.根据转换表得状态表

令4个状态为00=a, 01=b, 10=c, 11=d, 得:

转换表

$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}$	X	
21 20	A= 0	A=1	
00	00 / 0	10/0	0
01	00 / 1	01/0	1
10	00 / 1	11 / 0	0
11	00 / 1	01/0	0

状态表

Cn	S^{n+1}	V	
S^n	A= 0	A=1	X
a	a / 0	c / 0	0
b	a / 1	b / 0	1
C	a / 1	d/0	0
d	a / 1	b / 0	0

 S^n

 \boldsymbol{a}

b

 $\boldsymbol{\mathcal{C}}$

d

5. 状态图---有两种

米利型输出标在方向线旁。穆尔型标在圆圈状态名旁。

状态表

 S^{n+1}/Y

A=0

a / 0

a / 1

a / 1

a / 1

	X
A=1	Λ
c / 0	0
<i>b</i> / 0	1
d / 0	0

b / 0

0

$\left(\begin{array}{c} \\ C/Y \end{array} \right)$	A/Y
S/X	

5. 状态图---有两种

米利型输出标在方向线旁。穆尔型标在圆圈状态名旁。

$\bigcap^n \bigcap^n$	$Q_1^{n+1}Q_0^{n+1}$	X	
$Q_1^n Q_0^n$	A= 0	A=1	71
00	00 / 0	10 / 0	0
01	00 / 1	01/0	1
10	00 / 1	11 / 0	0
11	00 / 1	01/0	0

输入/输出

转换表

$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}$	X	
21 20	A= 0	A=1	Λ
00	00 / 0	10/0	0
01	00 / 1	01/0	1
10	00 / 1	11 / 0	0
11	00 / 1	01/0	0

时序逻辑电路的多种描述方式是可以相互转换的

6.5 若干典型的时序逻辑集成电路

6.5.1 寄存器和移位寄存器

6.5.2 计数器

6.5 若干典型的时序逻辑集成电路

6.5.1 寄存器和移位寄存器

1、寄存器

寄存器:是数字系统中用来存储代码或数据的逻辑部件。它的主要组成部分是触发器。

一个触发器能存储1位二进制代码,存储n位二进制代码的寄存器需要用n个触发器组成。寄存器实际上是若干触发器的集合。

8位CMOS寄存器74HC374

脉冲边沿敏感的寄存器

8位CMOS寄存器74HC/HCT374

8位CMOS寄存器74LV374

	输 入			输出	
工作模式	\overline{OE}	СР	D_N	内部触发器 Q_N^{n+1}	Q_0 ~ Q_7
	L	1	L	L	对应内部触发
一 	L	↑	H	H	器的状态
方)粉促 林正岭山	H	↑	L	L	高阻
存入数据,禁止输出 	H	↑	H	H	高阻

2、 移位寄存器

•移位寄存器的逻辑功能

移位寄存器是既能寄存数码,又能在时钟脉冲的作用下使数码向高位或向低位移动的逻辑功能部件。

•移位寄存器的逻辑功能分类

(1) 基本移位寄存器

(a) 电路

(b). 工作原理

写出激励方程:

$$D_0 = D_{SI}$$
 $D_1 = Q_0^n$ $D_2 = Q_1^n$ $D_3 = Q_2^n$

写出状态方程:

$$Q_0^{n+1} = D_{SI}$$
 $Q_1^{n+1} = D_1 = Q_0^n$ $Q_2^{n+1} = D_2 = Q_1^n$ $Q_3^{n+1} = D_3 = Q_2^n$ $Q_3^{n+1} = D_3 = Q_2^n$ $Q_3^{n+1} = Q_3^n$ $Q_3^{n+1} = Q_3^n$

y₃

 $\mathbf{y}_0 \mathbf{y}_1 \mathbf{y}_2 \mathbf{y}_3$

$$Q_0^{n+1} = D_{SI}$$

$$Q_1^{\mathbf{n}+1} = Q_0^{\mathbf{n}}$$

$$Q_2^{n+1} = Q_1^n$$

$$Q_3^{n+1} = Q_2^n$$

D_{SI} =11010000,从高位开始输入

经过7个CP脉冲作用后,从 D_{SI} 端串行输入的数码就可以从 D_{SO} 端串行输出。 串入 \rightarrow 串出

(2) 多功能双向移位寄存器

(a) 工作原理

高位移向低位----左移

低位移向高位----右移

多功能移位寄存器工作模式简图

(2) 多功能双向移位寄存器

实现多种功能双向移位寄存器的一种方案(仅以FF_m为例)

$$S_1S_0=00$$
 $Q_m^{n+1}=Q_m^n$ 保持不变 $S_1S_0=10$ $Q_m^{n+1}=Q_{m+1}^n$ 向低位

$$S_1S_0=01$$
 $Q_m^{n+1}=Q_{m-1}^n$ 低位移 $G_1S_0=11$ $Q_m^{n+1}=D_m^{+\lambda}$

(b) 典型集成电路

CMOS 4位双向移位寄存器74HC/HCT194

74HCT194 的功能表

				输	入						输	出		
清零	4	制信 号	串行	庁输	时		并行输入							
CR	S_1	S_0	右 移 D _{SR}	左移 D _{SL}	钟 CP	DI_0	DI_1	DI_2	DI_3	Q_0^{n+1}	Q_1^{n+1}	Q_2^{n+1}	Q_3^{n+1}	行
L	×	×	×	×	×	×	×	×	×	L	${f L}$	${f L}$	${f L}$	1
H	L	L	×	×	×	×	×	×	×	Q_0^n	Q_1^n	Q_2^n	Q_3^n	2
H	L	H	L	×	↑	×	×	×	X	L	Q_0^n	Q_1^n	Q_2^n	3
H	\mathbf{L}	H	H	×	↑	×	×	×	X	Н	Q_0^n	Q_1^n	Q_2^n	4
H	Н	L	×	${f L}$	↑	×	×	×	×	Q_1^n	Q_2^n	Q_3^n	${f L}$	5
Н	Н	L	×	H	↑	×	×	×	X	Q_1^n	Q_2^n	Q_3^n	H	6
H	H	Н	×	×	↑	DI_0	DI_1	DI_2	DI_3	D_0	\widetilde{D}_1	D_2	D_3	7

6.5.2 计 数 器

概述

- (1) 计数器的逻辑功能
- 计数器的基本功能是对输入时钟脉冲进行计数。它也可用于分频、定时、产生节拍脉冲和脉冲序列及进行数字运算等等。
 - (2) 计数器的分类
- •按脉冲输入方式,分为同步和异步计数器
- •按进位体制,分为二进制、十进制和任意进制计数器
- •按逻辑功能,分为加法、减法和可逆计数器

6.5.2 计 数 器

对输入时钟脉冲个数进行计数的器件称为计数器。它也可用于分频、定时、产生节拍脉冲和脉冲序列及进行数字运算等等。

下降沿触发的 JK 触发器

在*CP*脉冲的下降沿到来瞬间使触 发器的状态(Q的值)才发生变化:

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

$$J=K=1 Q^{n+1}=\overline{Q}^n$$

(1) 异步二进制计数器---由JK触发器构成4位异步二进制加法计数器

此图中JK引脚没有连接,等效于J=K=1。

$$Q^{n+1} = \overline{Q^n}$$

在时钟下降沿处发生状态翻转。按照

$$Q^{n+1} = \overline{Q^n}$$
 进行状态翻转

1、二进制计数器

(1) 异步二进制计数器---4位异步二进制加法计数器工作原理

L

١.	ш.
丌	
算	
扩	
¥,	
J	

T触发器特性方程:

$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n$$

Т	Qn+1
0	Q ⁿ
1	Q"

T=0时:

$$Q^{n+1} = Q^n$$

T=1时:

$$Q^{n+1} = \overline{Q^n}$$

反之,就是说:如果要保持Q值不变,只要使T=0即可。要保持Q值状态翻转,只要使T=1即可。

计数顺序		电路	 ・进位输出			
11 多 人则从/ 1′	Q_3	Q_3 Q_2		Q_0	处应加山	
0	0	0	0	0	0	
1	0	0	0	1	0	
2	0	0	1	0	0	
3	0	0	1	1	0	
4	0	1	0	0	0	
5	0	1	0	1	0	
6	0	1	1	0	0	
7	0	1	1	1	0	
8	1	0	0	0	0	
9	1	0	0	1	0	
10	1	0	1	0	0	
11	1	0	1	1	0	
12	1	1	0	0	0	
13	1	1	0	1	0	
14	1	1	1	0	0	
15	1	1	1	1	1	
16	0	0	0	0	0	

→ 计数顺序		电路	进位输出			
VI 致入师以/ J'	Q_3 Q_2		Q_1	Q_0		
0	0	0	0	0	0	
1	0	0	0	1	0	
2	0	0	1	0	0	
3	0	0	1	1	0	
4	0	1	0	0	0	
5	0	1	0	1	0	
6	0	1	1	0	0	
7	0	1	1	1	0	
8	1	0	0	0	0	
9	1	0	0	1	0	
10	1	0	1	0	0	
11	1	0	1	1	0	
12	1	1	0	0	0	
13	1	1	0	1	0	
14	1	1	1	0	0	
15	1	1	1	1	1	
16	0	0	0	0	0	

(2)设计二进制同步加1计数器

 Q_0 在每个CP都翻转一次

 FF_0 可采用T=1的T触发器

 Q_1 仅在 Q_0 =1后的下一个CP 到来时翻转

 FF_1 可采用 $T = Q_0$ 的T触发器

 Q_2 仅在 $Q_0=Q_1=1$ 后的下一个 CP到来时翻转

 FF_2 可采用 $T = Q_0Q_1$ 的T触发器

 Q_3 仅在 $Q_0=Q_1=Q_2=1$ 后的下一个CP到来时翻转

FF₃可采用T= Q₀Q₁Q₂的T触 发器 直接分析状态表,采用T触发器实现

计数顺序		进位输出				
1	Q_3	Q_2	Q_1	Q_0		
0	0	0	0	0	0	
1	0	0	0	1	0	
2	0	0	ı	0	0	
3	0	0	1	1	0	
4	0	1	0	0	0	
5	0	1	0	1	0	
6	0	1	Ţ	0	0	
7	0	1	1	1	0	
8	1	0		0	0	
9	1	0	0	1	0	
10	1	0	4	0	0	
11	1	0	1	1	0	
12	1	1		0	0	
13	1	1	0	1	0	
14	1	1	1	0	0	
15	1	1	1	1	1	
16	0	0	0	0	0	

(a) 4位二进制同步加计数器逻辑图---由T触发器构成

4位二进制同步加计数器时序图

$$f_{Q_0} = \frac{1}{2} f_{CP}$$
 $f_{Q_1} = \frac{1}{4} f_{CP}$ $f_{Q_2} = \frac{1}{8} f_{CP}$ $f_{Q_3} = \frac{1}{16} f_{CP}$

结论: ▶ 计数器的功能: 不仅可以计数也可作为分频器。

(b) 4位二进制同步加计数器逻辑图---由D触发器构成

(c) 在上页电路基础上添加计数使能和并行进位引脚,如下图: 计数使能引脚:控制停止计数(保持不变,Qⁿ⁺¹=Qⁿ)和允许计数

引脚CET、CEP为计数使能,并行进位: TC = Q₃Q₂Q₁Q₀·CET

计数器芯片74LVC161 逻辑功能表

计		输入											输出				
:算机学院	清零	预置	使	能	时钟	时钟 预置数据输入					计 数						
院	CR	PE	CEP	CET	CP	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0	TC			
	L	×	×	×	×	×	×	X	×	L	L	L	L	L			
	Н	L	×	×	1	D_3	D_2	D_1	D_0	D_3	D_2	D_1	D_0	*			
	Н	Н	L	×	×	×	×	×	×		保	持		*			
	H	H	×	L	×	×	×	×	×		保	持		*			
数字逻辑	Н	Н	Н	Н	1	×	×	×	×		计	数		*			
电改				ميدر ماليان									STAP VALL				

CR的作用?

清零端

PE的作用?

并行置数端