Fundamentos de la Electricidad y la Electrónica

Pablo Pardo Cotos

1 Campo eléctrico. Corriente eléctrica.

1.1 Ley de Coulomb. Campo eléctrico.

1.1.1 Carga eléctrica

La carga eléctrica es una propiedad de la materia que le permite interactuar con campos eléctricos. Puede ser positiva o negativa y determina como los objetos interactúan entre sí mediante fuerzas eléctricas.

Principio de atracción y repulsión

Las cargas de igual signo se repelen y las cargas de signo contrario se atraen.

Por ejemplo, un electrón tiene una carga de $-1.6 \times 10^{-19}~\mathrm{C}$ y un protón tiene una carga de $1.6 \times 10^{-19}~\mathrm{C}$.

Tiene su origen en la estructura atómica, pues éstos están formados primordialmente por electrones, neutrones y protones.

Véase el siguiente ejemplo: Se trata de la estructura atómica básica (Modelo de Bohr) de un átomo de cobre:

Conservación/Propagación de la carga

La carga eléctrica no se crea ni se destruye, solo se transforma.

Una definición alternativa de la **carga eléctrica** es que es el exceso o defecto de electrones con respecto a los protones.

Por ello, podemos realizar una clasificación de la materia según la lugadura de los e^- en las últimas capas

- Aislantes: Los electrones están fuertemente ligados y están fijos en sus últimas capas.
- Conductores: Los electrones están débilmente ligados y son casi libres.
- **Semiconductores**: Los electrones están fijos pero bajo determinadas coniciones pueden ser casi-libres.

Otro tipo un poco menos común es el **piezoeléctricos**, que son materiales que generan una carga eléctrica al ser sometidos a presión.

1.1.2 Ley de Coulomb

La **Ley de Coulomb** establece que la fuerza entre dos cargas puntuales es directamente proporcional al producto del valor absoluto de las cargas e inversamente proporcional al cuadrado de la distancia que las separa.

Viene dada por la fórmula:

$$\vec{F} = k \frac{|q_1 q_2|}{r^2} \hat{r} = k \frac{q_1 q_2}{r^3} (\vec{r_2} - \vec{r_1}) [N]$$
(1)

Donde:

- q_1, q_2 son las cargas puntuales. Medidas en Coulombs[C].
- r es la distancia entre las cargas. Medida en metros[m].
- \hat{r} es el vector unitario que apunta de q_1 a q_2 .
- k es la constante de Coulomb. $k = 8.99 \times 10^9 \frac{Nm^2}{C^2}$

La constante de Coulomb se puede expresar en función de la permitividad del vacío ε_0 y la velocidad de la luz en el vacío c:

$$k = \frac{1}{4\pi\varepsilon_0} \tag{2}$$

Donde ε_0 es la permitividad en el vacío $\varepsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{Nm^2}$. En el caso de que quisieramos medir la permitividad en otro medio, se puede expresar como $\varepsilon = \varepsilon_0 \varepsilon_r$, donde ε_r es la permitividad relativa del medio.

Principio de superposición

La fuerza total sobre una carga es la suma vectorial de las fuerzas ejercidas por las demás cargas.

$$\sum_{i=1}^{n} \vec{F_i} = \vec{F_{total}}$$

1.1.3 Campo eléctrico

El **campo eléctrico** es una magnitud vectorial que se define como la fuerza que experimentaría una carga de prueba positiva situada en un punto del espacio.

Al igual que la fuerza, el <u>campo eléctrico es directamente proporcional a la carga fija en el espacio e inversamente proporcional a la distancia entre ambas cargas.</u> Viene dada por:

$$\vec{E} = \frac{\vec{F}}{q_0} = k \frac{q}{r^2} \hat{r} = k \frac{q}{r^3} \vec{r}$$
 (3)

Donde las variables son las mismas que en la Ley de Coulomb.

La relación que existe con la fuerza es:

$$\vec{F} = q_0 \cdot \vec{E} \Rightarrow \vec{E} = \frac{\vec{F}}{q_0} \tag{4}$$

Además, al igual que la fuerza el campo eléctrico cumple el principio de superposición:

$$\vec{E_{total}} = \sum_{i=1}^{n} \vec{E_i}$$

1.1.4 Líneas de campo eléctrico

Las **líneas de campo eléctrico** son líneas imaginarias que representan la dirección y sentido del campo eléctrico en un punto del espacio.

Las líneas de campo se dibujan hacia fuera si la carga es positiva y se dibujan hacia dentro dsi la carga es negativa, es decir, las líneas de fuerza nacen en las cargas positivas y mueren en las cargas negativas. La densidad de líneas de campo es proporcional a las cargas. Se dibujan de forma simétrica y radial.

1.1.5 Dipolo eléctrico

Un **dipolo eléctrio** es un sistema de dos cargas de igual magnitu en valor absoluto pero en signo contrario se parados por una pequeña distancia

1.2 Potencial Eléctrico y Energía Potencial Eléctrica

Dado que el campo eléctrico es una magnitud vectorial,

1.3 Corriente eléctrica

La **corriente eléctrica** aparece cuando estamos ante un sistema <u>no</u> electroestático. Esto se debe primordialmente a que las cargas (los electrones) se encuentran en continuo movimiento en la superficie. De forma general definimos el **flujo** como un efecto que pasa o atraviesa a una superficie, matemáticamente se suele representar como $\int \int_{\text{superficie}} \vec{F} \cdot d\vec{S}$. En nuestro caso particular hablamos del **flujo eléctrico** que es la cantidad de carga que atraviesa una superficie en un determinado tiempo. Es decir, viene dado por la fórmula:

$$I = \frac{\text{Carga en superficie}}{\text{Tiempo}}$$

y la unidad de la corriente es $I = \frac{1C}{1S} = 1A[\text{Amperio}]$. Se trata de una <u>magnitud vectorial</u>, por lo que cuenta con magnitud, dirección y sentido.

Convenio: La corriente eléctrica se define en el sentido de las cargas positivas, al igual que \vec{E} Esto nos permite deducir, por ejemplo, que en los cables habrá mayor corriente eléctrica donde haya más electrones libres. Debido a que las cargas se encuentran en movimiento se suele hablar de la corriente eléctrica como diferencias, por ejemplo, en un cable como: $\frac{\Delta Q}{\Delta t} = I$ En el caso de corrientes totalmente continuas tenemos $I = \frac{dQ}{dt}$.

Modelo microscópico de conducción eléctrica (Modelo de Drude)

En los metales, los e^- se comportan de forma similar a las moléculas de un gas, es decir, se mueven de forma caótica a grandes velocidades y chocan con los iones del metal, sumado a que se encuentran en equilibrio térmico tenemos que velocidad media de los electrones es nula $(v_{media} = 0)$.

Cuando aplicamos un campo eléctrico externo \vec{E} , los electrones sufren una fuerza de $\vec{F} = -e\vec{E}$, por lo que por la 2^{0} Ley de Newton experimentan una velocidad de desplazamiento, a la que se suele denominar **velocidad de deriva** $\vec{v_d}$.

Este movimiento de electrones genera una corriente eléctrica, pero sigue siendo insicnificante con respecto a la velocidad térmica inicial de los electrones.