S1. The influenza datasets used in this study can be found at the following link:

https://github.com/Rayin-saber/ViPal/tree/main/data

S2. Table: The division of amino acid groups based on physicochemical properties and amino acid indices.

Attributes	Group 1	Group 2	Group 3	
Hydrophobicity	Polar	Neutral	Hydrophobic	
	Q, E, R, K, D, N	G,P, H, A, S, T, Y	C, V, F, L, I, M, W	
Polarizability	0-1.08	0.128-0.186	0.219- 0.409	
	S, D, G, A, T	C, Q, I, P, N, V, E, L	Y, M, K, R, H, F, W	
Normalized	0-2.78	2.95-4.0	4.0-8.1	
Van der Waals	S, C, G, A, T, P, D	E, Q, N, V, I, L	K, F, M, H, R, Y, W	
Polarity	4.9-6.2	8.0-9.2	10.4-13.0	
	W, C, L, I, F,			
	M, V, Y	T, G, P, A, S	K, N, H, Q, R, E, D	
Solvent Accessibility	Buried	Exposed	Intermediate	
	A, I, F, C, G,			
	L, V, W	R, K, Q, E, N, D	M, S, P, T, H, Y	
Secondary Structure	Helix	Stuand	Coil	
	E, A, L, M, Q,	Strand	Coil	
	K, R, H	V, I, Y, C, W, F, T	G, N, P, S, D	
Charge		Neutral		
	Positive	A, N, C, Q, G, H,	Negative	
	K, R	I, L, M, F, P, S, T,	D, E	
		W, Y, V		

S3. Table: Performance on different values of hyperparameters α and β on testing data for virulence prediction with ResNet-50*.

β (α=1)	Testing data						
	Accuracy	Precision	Recall	F-score	AUC		
0	0.745	0.824	0.836	0.83	0.512		
0.1	0.745	0.824	0.836	0.83	0.515		
0.2	0.745	0.824	0.836	0.83	0.524		
0.3	0.745	0.824	0.836	0.83	0.528		
0.4	0.745	0.824	0.836	0.83	0.528		
0.5	0.745	0.824	0.836	0.83	0.527		
0.6	0.745	0.824	0.836	0.83	0.529		
0.7	0.745	0.824	0.836	0.83	0.529		
0.8	0.735	0.822	0.822	0.822	0.53		
0.9	0.745	0.824	0.836	0.83	0.528		
1	0.693	0.693	0.693	0.693	0.693		
2	0.735	0.822	0.822	0.822	0.544		
3	0.735	0.822	0.822	0.822	0.55		

β (α=1)	Testing data						
	Accuracy	Precision	Recall	F-score	AUC		
0	0.755	0.818	0.863	0.84	0.608		
0.1	0.765	0.838	0.849	0.844	0.464		
0.2	0.786	0.842	0.877	0.859	0.561		
0.3	0.745	0.808	0.863	0.834	0.531		
0.4	0.653	0.831	0.671	0.742	0.506		
0.5	0.755	0.836	0.836	0.836	0.61		
0.6	0.724	0.838	0.781	0.809	0.582		
0.7	0.745	0.824	0.836	0.83	0.615		
0.8	0.704	0.789	0.822	0.805	0.597		
0.9	0.765	0.821	0.877	0.848	0.649		
1	0.745	0.824	0.836	0.83	0.693		
2	0.714	0.8	0.822	0.811	0.58		
3	0.724	0.838	0.781	0.809	0.664		
4	0.745	0.808	0.863	0.834	0.658		
5	0.724	0.819	0.808	0.814	0.55		