12 Formes diferencials

Exercici 12.1. Recordeu les següents propietats elementals del producte exterior i la diferencial exterior:

$$\alpha \wedge \beta = (-1)^{pq} \beta \wedge \alpha,$$

$$d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^p \alpha \wedge (d\beta),$$

$$d(d\alpha) = 0,$$

on p és el grau de α i q és el grau de β .

- a) Comproveu que si ω és una 2n+1-forma diferencial, aleshores $\omega \wedge \omega = 0$. Doneu un exemple de 2-forma diferencial ω tal que $\omega \wedge \omega \neq 0$.
- b) Proveu que si α i β són formes tancades aleshores $\alpha \wedge \beta$ també ho és (recordeu que ω és tancada si $d\omega = 0$).
- c) Proveu que si α és tancada i β exacta llavors $\alpha \wedge \beta$ és exacta (recordeu que ω és exacta si existeix η tal que $d\eta = \omega$).
- d) Si f és una funció tal que df = 0, què podem dir de f?

Exercici 12.2. Si $\omega = x dy - dz$, $\eta = 2z^2 dx$, $\mu = dx - yz dy$,

- a) Calculeu $x \omega + \eta$, $z \eta z \mu$, $\omega \wedge \mu$, $(2\omega y \mu) \wedge \eta$, $\omega \wedge \eta \wedge \mu$.
- b) Donats els camps $X = z^2 \frac{\partial}{\partial x} \frac{\partial}{\partial y}$ i $Y = y \frac{\partial}{\partial x} + e^x \frac{\partial}{\partial z}$ calculeu $\omega(X)$ i $\omega \wedge \mu(X, X Y)$.

Exercici 12.3. Calculeu la imatge recíproca (o pull-back) de la forma diferencial ω per l'aplicació T en els següents casos:

a)
$$T: \mathbb{R} \to \mathbb{R}^3, T(s) = (s, s^2, e^s), \omega = dx + xdz$$

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T(s,t) = (t, s, st)$, $\omega = zdx \wedge dz$

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^4$$
, $T(s, t, u) = (st, tu, us, s + t + u)$, $\omega = x_4^2 dx_1 \wedge dx_2 \wedge dx_3$

Exercici 12.4. Calculeu $d\omega$ en els casos següents:

a)
$$\omega = xdy + ydx$$
.

d)
$$\omega = f(x)dy$$
.

b)
$$\omega = (dy - xdz) \wedge (xydx + 3dy + zdz)$$
.

e)
$$\omega = \cos(xy^2)dx \wedge dz$$
.

c)
$$\omega = f(x, y)dx \wedge dy$$
.

f)
$$\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$$
.

Exercici 12.5. A $\mathbb{C}^n \simeq \mathbb{R}^{2n}$ considerem ω tal que $\omega(X,Y) = \langle iX,Y \rangle$ per $X,Y \in \mathcal{X}(\mathbb{R}^{2n})$.

- a) Proveu que ω és una 2-forma diferencial.
- b) Donar l'expressió de ω en coordenades cartesianes.
- c) Provar que ω és tancada.
- d) Calculeu $\omega \wedge \omega \wedge \stackrel{n}{\cdots} \wedge \omega$.
- e) Provar que $|\omega_p(X,Y)| \leq a(X,Y)$ on a(X,Y) és l'àrea del paral·lelogram generat pels vectors X,Y tangents a \mathbb{R}^{2n} en el punt p. La igualtat es dona si i només si X,Y generen una recta complexa.

Exercici 12.6. Sigui α la 1-forma sobre \mathbb{R}^3 donada per $\alpha = ydx + xdy + zdz$ i $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'aplicació $f(u,v) = (\cos u, \sin u, v)$. Trobeu una expressió per $f^*\alpha$ i per $d(f^*\alpha)$.

Exercici 12.7. Per una funció f es defineix el gradient de f com el camp

$$\operatorname{grad} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$$

Per un camp vectorial $X=(X_1,X_2,X_3)$ de \mathbb{R}^3 es defineixen la funció divergencia i el camp rotacional com

$$\operatorname{div} X = \frac{\partial X_1}{\partial x} + \frac{\partial X_2}{\partial y} + \frac{\partial X_3}{\partial z}, \quad \operatorname{rot} X = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ X_1 & X_2 & X_3 \end{vmatrix} = \left(\frac{\partial X_3}{\partial y} - \frac{\partial X_2}{\partial z}, \frac{\partial X_1}{\partial z} - \frac{\partial X_3}{\partial x}, \frac{\partial X_2}{\partial x} - \frac{\partial X_1}{\partial y} \right).$$

Es defineixen també les formes diferencials

$$\begin{array}{lcl} \omega_X^1 & = & X^1\,dx + X^2\,dy + X^3\,dz \\ \\ \omega_X^2 & = & X^1\,dy \wedge dz + X^2\,dz \wedge dx + X^3\,dx \wedge dy \\ \\ \omega_f^3 & = & f\,dx \wedge dy \wedge dz \end{array}$$

a) Comproveu que es compleix

$$\begin{array}{rcl} df & = & \omega_{\operatorname{grad} f}^1 \\ d(\omega_X^1) & = & \omega_{\operatorname{rot} X}^2 \\ d(\omega_X^2) & = & \omega_{\operatorname{div} X}^3 \end{array}$$

b) Deduïu de l'apartat anterior que es compleixen les igualtats: rot grad $f=0=\operatorname{div}\operatorname{rot} X$

Exercici 12.8. Si $f:\mathbb{R}^n \to \mathbb{R}^n$ i h és una funció, proveu que

$$f^*(h dx^1 \wedge \cdots \wedge dx^n) = (h \circ f)(\det f') dx^1 \wedge \cdots \wedge dx^n,$$

on f' denota la matriu jacobiana de f.

Figura 12.7: Uns quants llibres