

MISR UNIVERSITY FOR SCIENCE AND TECHNOLOGY COLLEGE OF ENGINEERING MECHATRONICS ENGINEERING DEPARTMENT MTE 408 ROBOTICS

SESSION 5 INTRODUCTION TO ROBOTICS LAB

WALEED ELBADRY MARCH 2022

SUMMARY

Fot joint i

The **joint variable**
$$q_i = \begin{cases} \theta_i \text{ joint i revolute} \\ d_i \text{ joint i prismatic} \end{cases}$$

$$_{j}^{i}T = {}_{i+1}^{i}T {}_{i+2}^{i+1}T {}_{i+3}^{i+2}T \dots {}_{j}^{j-1}T , i < j$$

$$_{j}^{i}T = I$$
, $i = j$ (Identical Frames)

$$_{j}^{i}T = {j \choose i}^{-1}$$
, $i < j$ (Matrix Inverse exists)

$$A_n = {n-1 \over n} T \ (textbooks)$$

SUMMARY

$$_{j}^{i}T = \begin{bmatrix} R^{3X3} & d^{3X1} \\ 0 & 1 \end{bmatrix}$$

In the homogeneous transformation method We can pick arbitrary frame attached to each link

Here we **picked** \rightarrow

We should follow a standard frame assignment

 $_{i}^{l}T$ is represented by a product of four transformations

$$A_n = R_{z,\theta_{n-1}} t_{z,d_{n-1}} t_{x,a_n} R_{x,\alpha_n}$$

$$A_n = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & 0 \\ s\theta_i & c\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\theta_i & -s\theta_i & 0 \\ 0 & s\theta_i & c\theta_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $R_{z,\theta_{n-1}}$ $t_{z,d_{n-1}}$ t_{x,a_n} R_{x,α_n} Joint Angle Link Offset Link Length Link Twist

We should follow a standard frame assignment

 $_{i}^{i}T$ is represented by a product of four transformations

$$_{j}^{i}T = R_{z,\theta_{i}}t_{z,d_{i}}t_{x,aj}R_{x,\alpha_{j}}$$

$$_{j}^{i}T = \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{j} & s\theta_{i}s\alpha_{j} & a_{j}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{j} & -c\theta_{i}s\alpha_{j} & a_{j}s\theta_{i} \\ 0 & s\alpha_{j} & c\alpha_{j} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ANATOMY OF D - H ROTATIONS

 θ ... Joint variable around z_{n-1}

 α ... Rotate z_{n-1} around x_n to become z_n

\boldsymbol{n}	$oldsymbol{ heta}$	α
1	θ{n-1}	90°
11	17	1
4		1
7		

 $Ex: \theta_1$ is a variable (motor angle)

 z_{n-1} rotates to become z_n around x_n

ANATOMY OF D - H DISPLACEMENTS

d ... Displacement between two frames along z_{n-1}

a ... Displacement between two frames along x_n

 $d \rightarrow \begin{cases} d_n \text{ variable if joint is prismatic (like piston)} \\ Link length if it is just a link between joints \end{cases}$

(1) The **z** – **axis** is the direction of translation or rotation

Don't ever break the Right Hand Rule

The x_n – axis is prependicular \perp to both z_n and z_{n-1} axes For **Parallel** z_{n-1} and z_n , pick x – axis direction from $z_{n-1} \rightarrow z_n$ –

(3) The y_n – axis must follow the RHR (better to always use ZXY)

(4) The x_n – axis must intersect with z_{n-1}

Pay Attentionif there is **an offset** in the x – direction

Find the homogeneous transformation ${}_{3}^{0}T$ using **DH representation**

Solution

1. Setting **z** – **axis** as the axis of rotation or translation in all frames

Solution

- 2. Setting x_n to be \perp on z_{n-1} and z_n axes
- 3. Setting x_n to \cap with with z_{n-1}

⊥ prependicular \(\begin{array}{c} intersections \\ \elline{array} \\ \elline{array

Solution

4. Assign Y - axis with respect to the RHR

Solution

 θ ... Joint variable around $z_0 = \theta_1(revolute\ joint)$

 α ... Rotate z_0 around x_1 to become $z_1 = 0$ (same direction)

d ... Displacement between two frames along $z_0 = a_1$

a ... Displacement between two frames along $x_1 = 0$

n	θ	d	α	а
1	$ heta_1$	a_1	00	0

Solution

 θ ... Joint variable around $z_1 = 0$ (prismatic joint)

 α ... Rotate z_1 around x_2 to become $z_2 = -90^\circ$

 $d \dots Displacement\ between\ two\ frames\ along\ z_1 = a_2 + d_2$

a ... Displacement between two frames along $x_2 = 0$

n	θ	d	α	а
1	$ heta_1$	a_1	0^o	0
2	00	$a_2 + d_2$	-90^{o}	0

Solution

 θ ... Joint variable around $z_2 = 0$ (prismatic joint)

 α ... Rotate z_2 around x_3 to become $z_3 = 0^\circ$

 $d \dots Displacement\ between\ two\ frames\ along\ z_2 = a_3 + d_3$

a ... Displacement between two frames along $x_2 = 0$

n	θ	d	α	а
1	$ heta_1$	a_1	0^o	0
2	00	$a_2 + d_2$	-90^{o}	0
3	00	$a_3 + d_3$	00	0

Solution

n	θ	d	α	а
1	$ heta_1$	a_1	00	0
2	0^o	$a_2 + d_2$	-90^{o}	0
3	00	$a_3 + d_3$	00	0

Next step is filling the three homogenous transformation matrices

n	θ	d	α	а
1	$oldsymbol{ heta_1}$	a_1	00	0
2	00	$a_2 + d_2$	-90°	0
3	00	$a_3 + d_3$	00	0

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1}c0^{o} & s\theta_{1}s0^{o} & 0c\theta_{1} \\ s\theta_{1} & c\theta_{1}c0^{o} & -c\theta_{1}s0^{o} & 0s\theta_{1} \\ 0 & s0^{o} & c0^{o} & a_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$_{1}^{0}T = egin{bmatrix} c heta_{1} & -s heta_{1} & 0 & 0 \ s heta_{1} & c heta_{1} & 0 & 0 \ 0 & 0 & 1 & a_{1} \ 0 & 0 & 0 & 1 \end{bmatrix}$$

n	θ	d	α	а
1	$ heta_1$	a_1	00	0
2	00	$a_2 + d_2$	-90^{o}	0
3	0^o	$a_3 + d_3$	00	0

$${}_{2}^{1}T = \begin{bmatrix} c0 & -s0c(-90) & s0s(-90) & 0c0 \\ s0 & c0c(-90) & -c0s(-90) & 0s0 \\ 0 & s(-90) & c(-90) & a_{2} + d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & a_{2} + d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

n	θ	d	α	а
1	$ heta_1$	a_1	00	0
2	00	$a_2 + d_2$	-90°	0
3	00	$a_3 + d_3$	00	0

$${}_{3}^{2}T = \begin{bmatrix} c0 & -s0c0 & s0s0 & 0c0 \\ s0 & c0c0 & -c0s0 & 0s0 \\ 0 & s0 & c0 & a_{3} + d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a_{3} + d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

n	θ	d	α	а
1	$ heta_1$	a_1	0^o	0
2	0^o	$a_2 + d_2$	-90^{o}	0
3	0^o	$a_3 + d_3$	0^o	0

$${}_{3}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T$$

$${}_{3}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & a_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & a_{2} + d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a_{3} + d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c\theta_{1} & \mathbf{0} & -s\theta_{1} & -s\theta_{1}(a_{3} + d_{3}) \\ s\theta_{1} & \mathbf{0} & c\theta_{1} & c\theta_{1}(a_{3} + d_{3}) \\ \mathbf{0} & -\mathbf{1} & \mathbf{0} & a_{1} + a_{2} + d_{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

DH SIMULATION USING PETER CORKE

Verify the solution and simulate it

n	θ	d	α	а
1	$ heta_1$	a_1	00	0
2	00	$a_2 + d_2$	-90^{o}	0
3	00	$a_3 + d_3$	00	0
4	$ heta_4$	0	-90^{o}	0
5	$ heta_5$	0	90°	0
6	$ heta_6$	$a_6 + d_6$	0^o	0

NEXT SECTION: Inverse Kinematics

