

PREDICTIVE ANALYTICS AND TIME SERIES DATA

Future Price Prediction Beyond Test Data Using Vector Auto Regression

Simple steps to multi-step future prediction

Sarit Maitra · Follow

Published in Towards Data Science · 7 min read · Sep 8, 2020

 \subset

Image by author

We could estimate this model using the ordinary least squares (OLS) estimator computed separately from each equations. Since the OLS estimator has standard asymptotic properties, it is possible to test any linear restriction, either in one equation or across equations, with the standard t and F statistics. The VAR models have the advantage over traditional machine learning models in that the results are not hidden by a large and complicated structure ("black box"), but are easily interpreted and available.

Testing of Granger causality helps to know whether one or more variables have predictive content to forecast and Impulse-response function and variance decomposition are normally used to quantify the effects over time. I already have written in the past about VAR and how multivariate time series can be fitted to generate prediction covering both.

Here, I will discuss simple steps to predict unknown future using VAR.

```
stock = ['^RUT', '^GSPC', '^DJI', '^IXIC']
start = pd.to_datetime('1990-01-03')
df = web.DataReader(stock, data_source = 'yahoo', start = start);
print(df.tail());
```

Attributes	Adj Clo	se						Close				High		V
Symbols	^R	UT	٨G	SPC		^DJI	^IXIC	^RUT	^GSPC	^DJI	^IXIC	^RUT	^GSPC	
Date														
2020-08-31	1561.8800	05	3500.310	059	28430.	050781	11775.459961	1561.880005	3500.310059	28430.050781	11775.459961	1577.550049	3514.770020	
2020-09-01	1578.5799	56	3526.649	902	28645.	660156	11939.669922	1578.579956	3526.649902	28645.660156	11939.669922	1578.579956	3528.030029	
2020-09-02	1592.2900	39	3580.840	889	29100.	500000	12056.440430	1592.290039	3580.840088	29100.500000	12056.440430	1595.040039	3588.110107	
2020-09-03	1544.6800	54	3455.060	859	28292.	730469	11458.099609	1544.680054	3455.060059	28292.730469	11458.099609	1592.469971	3564.850098	
2020-09-04	1535.3000	49	3426.959	961	28133.	310547	11313.129883	1535.300049	3426.959961	28133.310547	11313.129883	1563.380005	3479.149902	
Attributes						Low				Open				X
Symbols	^	ICO		^IXIC		^RUT	^GSPC	^D3I	^IXIO			^DJI	^IXIC	E 370
Date														
2020-08-31	28643.660	156	11829.8	39844	1561	.889995	3493.250000	28363.550781	11697.41992	2 1577.550049	3509.729980	28643.660156	11718.809570	į.
2020-09-01	28659.259	766	11945.7	19727	1554	.189941	3494.600098	28290.720703	11794.78027	3 1561.099976	3507.439941	28439.609375	11850.959961	į.
2020-09-02	29162.880	859	12074.0	59570	1567	.430054	3535.229980	28713.529297	11836.179688	8 1578.780029	3543,760010	28736.789062	12047.259766	ř.
2020-09-03	29199.349	609	11894.4	00391	1538	.530029	3427,409912	28074.759766	11361,36035	2 1592.469971	3564.739990	29090,699219	11861.900391	
2020-09-04	28539.750	999	11531.1	79688	1501	.520020	3349.629883	27664.679688	10875.87011	7 1546.640015	3453.600098	28341.050781	11396.240234	
Attributes	Volume													
Symbols	^RUT		^GSPC		^DJI	(A)	IXIC							
Date														
2020-08-31	43422900	434	12290000	5173	20000	3596986	9999							
2020-09-01	40831100	401	3110000	4234	10000	3480786	9999							
2020-09-02	42851900	421	35190000	5395	10000	3966146	9999							
2020-09-03	48986800	489	98689999	6500	80000	4437500	9999							
2020-09-04	44314400	44	31440000	6946	40000	4269196	9999							

Here, we have data from Russell 2000 (^RUT), S&P 500 (^GSPC), NASDAQ Composite (^IXIC) and Dow Jones Industrial Average (^DJI). Let us separate Adj Close columns for all variables.

```
data = df['Adj Close']
data.tail()
```

Symbols	^RUT	^GSPC	^DJI	^IXIC
Date				
2020-08-31	1561.880005	3500.310059	28430.050781	11775.459961
2020-09-01	1578.579956	3526.649902	28645.660156	11939.669922
2020-09-02	1592.290039	3580.840088	29100.500000	12056.440430
2020-09-03	1544.680054	3455.060059	28292.730469	11458.099609
2020-09-04	1535.300049	3426.959961	28133.310547	11313.129883

Let us visually compare these series in one chart after applying normalization. We can see high correlation among all the variables selected here. This makes a good candidate for multivariate VAR.

```
scaler = MinMaxScaler(feature_range=(0, 1))
sdf_np = scaler.fit_transform(data)
sdf = DataFrame(sdf_np, columns=data.columns, index=data.index)
plt.figure(figsize=(12,6))
plt.grid()
plt.plot(sdf)
plt.legend(sdf.columns)
plt.show()
```


Our goal here is to predict expected future prices of ^RUT and a motivation for the selection of DJI, GSPC and IXIC is their high correlation with RUT.

We can also diagnose the correlation by measuring the average linear correlation over the rolling window in a function of rolling window size; here I have taken window size of 5 and 20 days for visual display.

```
blue, orange, red = '#1f77b4', '#ff7f0e', '#d62728' # color codes
plt.figure(figsize=(12,4))
plt.grid()
cor1, cor2, cor3 = list(), list(), list()
# average correlation for increasing rolling window size
for win in range(5, 20): # Days
cor1.append(data['^GSPC'].rolling(win).corr(data['^RUT']) \
.replace([np.inf, -np.inf], np.nan).dropna().mean())
cor2.append(data['^DJI'].rolling(win).corr(data['^RUT']) \
.replace([np.inf, -np.inf], np.nan).dropna().mean())
cor3.append(data['^IXIC'].rolling(win).corr(data['^RUT']) \
.replace([np.inf, -np.inf], np.nan).dropna().mean())
plt.plot(range(5, 20), cor1, '.-', color=blue, label='RUT vs GSPC')
plt.plot(range(5, 20), cor2, '.-', color=orange, label='DJI vs RUT')
plt.plot(range(5, 20), cor3, '.-', color=red, label='IXIC vs RUT')
plt.legend()
plt.xlabel('Rolling Window Length [Days]', fontsize=12)
plt.ylabel('Average Correlation', fontsize=12)
plt.show()
```


In the context of variables or features selection, we need to decide which variables to include into the model. Since we can not and should not include all variables of potential interest, we have to have a priori ideas when choosing variables.

ADFuller to test for Stationarity

We need to get rid of trend in the data to let the model work on prediction. Let us check the stationarity of our data set.

```
def adfuller_test(series, signif=0.05, name='', verbose=False):
r = adfuller(series, autolag='AIC')
output = {'test_statistic':round(r[0], 4), 'pvalue':round(r[1], 4),
'n_lags':round(r[2], 4), 'n_obs':r[3]}
```

```
p_value = output['pvalue']
def adjust(val, length= 6): return str(val).ljust(length)
print(f'Augmented Dickey-Fuller Test on "{name}"', "\n ", '-'*47)
print(f'Null Hypothesis: Data has unit root. Non-Stationary.')
print(f'Significance Level = {signif}')
print(f'Test Statistic = {output["test_statistic"]}')
print(f'No. Lags Chosen = {output["n_lags"]}')
for key, val in r[4].items():
  print(f' Critical value {adjust(key)} = {round(val, 3)}')
  if p_value <= signif:</pre>
     print(f" => P-Value = {p_value}. Rejecting Null Hypothesis.")
     print(f" => Series is Stationarv.")
  else:
     print(f" => P-Value = {p_value}. Weak evidence to reject the
Null Hypothesis.")
     print(f" => Series is Non-Stationary.")
# ADF test on each column
for name, column in data.iteritems():
  adfuller_test(column, name = column.name)
```

```
Augmented Dickey-Fuller Test on "^RUT"
```

Null Hypothesis: Data has unit root. Non-Stationary.

Significance Level = 0.05

Test Statistic = -0.3981

No. Lags Chosen = 35

Critical value 1% = -3.431

Critical value 5% = -2.862

Critical value 10% = -2.567

=> P-Value = 0.9104. Weak evidence to reject the Null Hypothesis.

=> Series is Non-Stationary.

Augmented Dickey-Fuller Test on "^GSPC"

Null Hypothesis: Data has unit root. Non-Stationary.

Significance Level = 0.05

Test Statistic = 1,1281

No. Lags Chosen = 36

Critical value 1% = -3.433

Critical value 5% = -2.862

Critical value 10% = -2.567

=> P-Value = 0.9954. Weak evidence to reject the Null Hypothesis.

=> Series is Non-Stationary. Augmented Dickey-Fuller Test on "^DJI"

```
Augmented Dickey-Fuller Test on "^DJI"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic = 0.5528
No. Lags Chosen = 36
Critical value 1% = -3.431
 Critical value 5% = -2.862
 Critical value 10% = -2.567
 => P-Value = 0.9864. Weak evidence to reject the Null Hypothesis.
 => Series is Non-Stationary.
Augmented Dickey-Fuller Test on "^IXIC"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic = 2.5676
No. Lags Chosen = 36
Critical value 1% = -3.431
Critical value 5% = -2.862
 Critical value 10% = -2.567
 => P-Value = 0.9991. Weak evidence to reject the Null Hypothesis.
 => Series is Non-Stationary.
```

It is clear that our existing data set is non-stationary. Let us take 1st order difference and check the stationarity again.

```
nobs = int(10) # number of future steps to predict
# differenced train data
data_diff = data.diff()
```

```
data_diff.dropna(inplace=True)
print('Glimpse of differenced data:')
print(data_diff.head())

# plotting differenced data
data_diff.plot(figsize=(10,6), linewidth=5, fontsize=20)
plt.title('Differenced data')
plt.show()
```


From the plot, we can assess that 1st order differenced has made the data stationary. However, let us run ADF test gain to validate.

```
# ADF Test on each column
for name, column in data_diff.iteritems():
```

adfuller_test(column, name=column.name)

.

```
Augmented Dickey-Fuller Test on "^DJI"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic = -15.8337
No. Lags Chosen = 35
Critical value 1% = -3.431
Critical value 5% = -2.862
Critical value 10% = -2.567
=> P-Value = 0.0. Rejecting Null Hypothesis.
=> Series is Stationary.
Augmented Dickey-Fuller Test on "^IXIC"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic = -14.6937
No. Lags Chosen = 36
Critical value 1% = -3.431
Critical value 5% = -2.862
Critical value 10% = -2.567
=> P-Value = 0.0. Rejecting Null Hypothesis.
=> Series is Stationary.
```

Our data is stationarized to fit into regression model.

Vector Auto Regression

One model is specified, the appropriate lag length of the VAR model has to be decided. In deciding the number of lags, it has been common to use a statistical method, like the Akaike information criteria.

```
var_model = smt.VAR(data_diff)
res = var_model.select_order(maxlags=15)
print(res.summary())
results = var_model.fit(maxlags=15, ic='aic')
print(results.summary())
```

VAR Order Selection (* highlights the minimums)

	AIC	BIC	FPE	HQIC
0	22.27	22.27	4.692e+09	22.27
1	22.24	22.25*	4.543e+09	22.24
2	22.22	22.26	4.482e+09	22.23
3	22.22	22.26	4.459e+09	22.23
4	22.21	22.27	4.435e+09	22.23
5	22.21	22.29	4.432e+09	22.24
6	22.20	22.29	4.385e+09	22.23
7	22.18	22.29	4.310e+09	22.22
8	22.17	22.29	4.257e+09	22.21
9	22.16	22.30	4.221e+09	22.21*
10	22.16	22.31	4.205e+09	22.21
11	22.16	22.32	4.212e+09	22.22
12	22.15	22.33	4.183e+09	22.21
13	22.15	22.34	4.172e+09	22.22
14	22.15	22.36	4.165e+09	22.22
15	22.15*	22.37	4.156e+09*	22.22

Correlation matrix of residuals

	^RUT	^GSPC	^DJI	^IXIC
^RUT	1.000000	0.868357	0.834560	0.813366
^GSPC	0.868357	1.000000	0.966471	0.895372
^DJI	0.834560	0.966471	1.000000	0.813201
^IXIC	0.813366	0.895372	0.813201	1.000000

Future predictions

Now that the model is fitted, let us call for the prediction.

```
# make predictions
pred = results.forecast(results.y, steps=nobs)
pred = DataFrame(pred, columns = data.columns+ '_pred')
print(pred)
```

Symbols	^RUT_pred	^GSPC_pred	^DJI_pred	^IXIC_pred
0	-1.111631	-3.210144	-54.811203	-18.877887
1	2.102828	8.201075	40.130150	25.051525
2	-2.482367	1.747004	-3.403546	-2.523552
3	-1.419123	3.711129	1.150103	14.349551
4	14.423217	18.877488	134.556490	65.639334
5	-10.781957	-22.649263	-201.510033	-72.717388
6	14.871588	26.855996	237.667891	78.530426
7	-3.151807	-5.778967	-53.187367	-15.475223
8	0.008099	1.054497	22.572021	10.507356
9	-1.555348	-4.087194	-11.226234	-19.971864

Similar observations can be obtained with the below lines of codes. In both cases we get the output but on differenced scale because our input data was differenced in order to stationarize.

```
# forecasting
1
    lag order = results.k ar
    DataFrame(results.forecast(data diff.values[-lag_order:], nobs))
                       1
                                   2
           0
                                               3
    -1.111631
               -3.210144
                           -54.811203 -18.877887
0
1
    2.102828
                8.201075
                           40.130150
                                      25.051525
2
    -2.482367
                1.747004
                            -3.403546
                                       -2.523552
3
    -1.419123
                3.711129
                            1.150103
                                       14.349551
   14.423217 18.877488
                         134.556490
                                      65.639334
  -10.781957
              -22.649263
                         -201.510033
                                      -72.717388
   14.871588
              26.855996
                          237.667891
                                       78.530426
    -3.151807
               -5.778967
                           -53.187367
                                      -15.475223
    0.008099
                1.054497
                           22.572021
                                       10.507356
8
9
    -1.555348
               -4.087194
                           -11.226234 -19.971864
```

Invert transform data to original shape

```
pred = DataFrame(pred, columns=data.columns+ '_pred')

def invert_transformation(data_diff, pred):
    forecast = pred.copy()
    columns = data.columns
    for col in columns:
        forecast[str(col)+'_pred'] = data[col].iloc[-1] +
forecast[str(col) +'_pred'].cumsum()
    return forecast

output = invert_transformation(data_diff, pred)
print(output.loc[:, ['^RUT_pred']])
output = DataFrame(output['^RUT_pred'])
print(output)
```

^RUT_pred

- 0 1551.368349
- 1 1553.471177
- 2 1550.988810
- 3 1549.569688
- 4 1563.992905
- 5 1553.210948
- 6 1568.082536
- 7 1564.930729
- 8 1564.938828
- 9 1563.383480

Above are the future 10 days prediction; let us assign future dates to these values.

Assigning future dates

```
d = data.tail(nobs)
d.reset_index(inplace = True)
d = d.append(DataFrame({'Date': pd.date_range(start =
d.Date.iloc[-1], periods = (len(d)+1), freq = 'd', closed =
```

```
'right')}))
d.set_index('Date', inplace = True)
d = d.tail(nobs)
output.index = d.index
print(output)
```

```
^RUT_pred
Date
2020-09-05 1551.368349
2020-09-06 1553.471177
2020-09-07 1550.988810
2020-09-08 1549.569688
2020-09-09 1563.992905
2020-09-10 1553.210948
2020-09-11 1568.082536
2020-09-12 1564.930729
2020-09-13 1564.938828
2020-09-14 1563.383480
```

So, here we can see future prediction. Let us draw a plot to visualize with the historical data.

```
fig = go.Figure()
n = output.index[0]
fig.add_trace(go.Scatter(x = data.index[-200:], y = data['^RUT']
[-200:], marker = dict(color = "red"), name = "Actual close price"))
fig.add_trace(go.Scatter(x = output.index, y = output['^RUT_pred'],
marker=dict(color = "green"), name = "Future prediction"))
```

```
fig.update_xaxes(showline = True, linewidth = 2, linecolor='black',
mirror = True, showspikes = True,)
fig.update_yaxes(showline = True, linewidth = 2, linecolor='black',
mirror = True, showspikes = True,)
fig.update_layout(title= "10 days days RUT Forecast", yaxis_title =
'RUTC (US$)', hovermode = "x", hoverdistance = 100, # Distance to
show hover label of data point spikedistance = 1000, shapes = [dict(
x0 = n, x1 = n, y0 = 0, y1 = 1, xref = 'x', yref = 'paper',
line_width = 2)], annotations = [dict(x = n, y = 0.05, xref = 'x',
yref = 'paper', showarrow = False, xanchor = 'left', text =
'Prediction')])
fig.update_layout(autosize = False, width = 1000, height = 400,)
fig.show()
```

10 days days RUT Forecast

Here, we see how close VAR can predict future prices.

Key takeaways

VAR is easy to estimate. It has good forecasting capabilities; VAR model has the ability to capture dynamic structure of the time series variables and typically treat all variables as a priori endogenous. However, fitting standard VAR models to large dimensional time series could be challenging primarily due to the large number of parameters involved.

We have covered here as how to find the maximum lags and fitting a VAR model with transformed data. Once the model is fitted, next step is to predict multi-step future prices and invert the transformed data back to original shape to see the actual predicted price.

In the final stage, plotting the historical and predicted price gives a clear visual representation of our prediction.

I can be reached *here*.

Note: The programs described here are experimental and should be used with caution for any commercial purpose. All such use at your own risk.

Vector Auto Regression

Predictive Modeling

Ordinary Least Square

Linear Regression Python

Written by Sarit Maitra

3.1K Followers · Writer for Towards Data Science

Analytics & Data Science Practice Lead

More from Sarit Maitra and Towards Data Science

State Space Model and Kalman Filter for Time-Series Prediction

Time-series forecasting using financial data

Meet the NiceGUI: Your Soon-to-be Favorite Python UI Library

A New Coefficient of Correlation

What if you were told there exists a new way to measure the relationship between two...

10 min read · Mar 31, 2024

O.	3.4K	\bigcirc	4
----	------	------------	---

\square	•	•	•

VAR (Vector auto	VECM (Vector error	ARDL (Autoregressive		
regression)	correction model)	Distributed Lag):		
VAR models are used to	VECM models to account for	ARDL models are used for		
model the dynamic	long-term equilibrium	analyzing the relationship		
interrelationships among	relationships among	between two or more		
multiple time series variables.	variables. It is suitable when	variables in a single equation		
Here, each variable is	the variables in the system are	framework. These models can		
regressed on its own lagged	cointegrated, meaning they	handle both stationary and		
values as well as lagged	share a long-term relationship	non-stationary time series		
values of other variables in	despite short-term	variables. They incorporate		
the system. VAR models do	fluctuations. VECM includes	lagged values of the variables		
not consider long-term	an error correction term that	as well as their differences to		
equilibrium relationships	captures the adjustment	capture short- and long-term		
among variables.	process of the variables back	dynamics. ARDL models are		
	to their long-run equilibrium	particularly useful when the		
	after a shock or deviation.	variables are integrated of		

The importance and application of Vector Error Correction Model...

Build custom web apps easily and quickly

8 min read · Apr 17, 2024

The auto regressive category has three distinct models; let is clear our understandin...

→ · 10 min read · Feb 13, 2024

See all from Sarit Maitra

See all from Towards Data Science

Recommended from Medium

Time GPT for Forecasting: Kicking the Tires

In October of 2023, Nixtla published the results of their work to produce the first...

13 min read · Apr 26, 2024

5 (

•••

End-to-End Machine Learning Project: Churn Prediction

The main objective of this article is to develop an end-to-end machine learning project. For...

18 min read · Feb 22, 2024

) 407

•••

Lists

Practical Guides to Machine Learning

10 stories · 1391 saves

major reasons why machine learning fails in stock prediction:...

in this series of blogs i am going to discuss about the reasons why machine learning fail...

6 min read · Jan 10, 2024

A New Coefficient of Correlation

What if you were told there exists a new way to measure the relationship between two...

10 min read · Mar 31, 2024

•••

M Gen. David L.

Neuralprophet—A Pr Python **Library for Time Series Forcasting**

In this post, we will share a powerful Python library called NeuralProphet for time series...

3 min read · Dec 5, 2023

The Python Lab

Time-Varying Volatility and Its Impact on Trading Strategies: An...

→ · 7 min read · Apr 7, 2024

See more recommendations

Help Status About Careers Blog Privacy Terms Text to speech Teams