Batch Exploration with Examples for Scalable Robotic Reinforcement Learning

Annie S. Chen*, Hyunji Nam*, Suraj Nair*, Chelsea Finn

Introduction

Motivation: Leverage diverse offline datasets to learn general purpose robotic agents → requires large & meaningful robotic datasets

What makes robotic data collection challenging?

- <u>Lack of scalability</u>: Difficult to collect data at scale with a human in the loop
- <u>Irrelevance of collected data</u>: Prior novelty-seeking exploration methods are generally *task-agnostic*, so the agent tries to explore the entire state space when **only some subset of interactions are actually useful.**

Batch Exploration with Examples (BEE)

amounts of *meaningful* data for robotic manipulation without depending on a human in the loop

Objective: Collect large

Key Insight: Use some *weak human supervision before data collection* to guide

exploration

Batch Exploration + Batch RL Framework

Experimental Domains

Experimental Comparisons:

- State Marginal Matching [1]: match a given target state distribution
- Model Disagreement [2], [3]: explore where an ensemble of dynamics models disagree the most

Exploration with BEE

Goal: Explore around states that the weak human supervision indicates are relevant

1. Identify what states are relevant:

- Learn an ensemble of relevance discriminators
- Differentiate between the human provided states (+ label) and the agents own experience (- label)

2. Plan actions to explore states identified as relevant or uncertain:

- Learn a latent dynamics model
- Perform sampling-based planning using this model, where the reward function is the max score over the ensemble of discriminators

Results in Simulated Environments

Q1: Does BEE interact more with relevant objects?

Across all settings, BEE interacts with the relevant object *more* than twice as often as the comparisons.

	Open Drawer	Push Door (3)	Push Door (5)	Push Green	Push Blue
BEE (Ours)	0.42	0.63	0.65	0.47	0.50
Disagreement	0.36	0.59	0.69	0.45	0.44
SMM	0.29	0.58	0.70	0.43	0.46
Random	0.31	0.60	0.65	0.45	0.45

Q2: Does data from BEE enable better downstream performance? Using data from BEE w/ visual foresight [4] for downstream tasks improves performance on 4 out of 5 tasks.

Results on a Franka Robot

Qualitative Example

- During data collection, BEE rankings effectively discriminate target (top drawer) & non-target interaction
- High-ranked states under Disagreement do not involve the target

Top-ranked Predicted Trajectory

Q3: Is BEE effective on a real robot?

- BEE interacts w/ the target drawer *an order of magnitude more* than Disagreement
- Using data collected from BEE improves performance on the downstream task of closing an open drawer.

Key Takeaways

- Batch Exploration + Batch RL framework allows for a *scalable, data-driven approach* to robotic learning
- BEE
 - (1) yields improved interaction with relevant objects
 - (2) enables better offline RL on downstream tasks than using data collected via existing state-of-the-art exploration techniques
 - (3) performs well on a real robotic system.

References

[1] L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov. "Efficient exploration via state marginal matching." arXiv preprint arXiv:1906.05274, 2019. [2] D. Pathak, D. Gandhi, and A. Gupta. "Self-supervised exploration via disagreement." arXiv preprint arXiv:1906.04161, 2019.

[3] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak.. "Planning to Explore via Self-Supervised World Models." arXiv preprint arXiv:2005.05960, 2020.
[4] C. Finn and S. Levine. "Deep visual foresight for planning robot motion." IEEE International Conference on Robotics and Automation (ICRA), 2017.

