

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

AULA 3

REAÇÕES DE APOIO NO EQUILÍBRIO

Professor: Dr. Paulo Sergio Olivio Filho

CONTEÚDO DA AULA

- Força resultante em sistemas de força bidimensional
- Momento de forças bidimensionais
- Reações nos apoio a partir de forças pontuais
- Reações nos apoios com cargas distribuídas

- ✓ Mostrar todas as forças e momentos que os elementos vizinhos exercem sobre o corpo, de modo que os efeitos desses possam ser considerados na aplicação das equações de equilíbrio.
- ✓ Desenho esquemático da forma do corpo representado isoladamente ou "livre" (DCL);
- ✓ É de fundamental importância uma boa representação do DCL para solução dos problemas.

Tipo de acoplamento	Reação	Tipo de acoplamento	Reação
	F		\mathbf{F}_{x}
Cabo	Uma incógnita: F	Pino externo	Duas incógnitas: F_x , F_y
	F	3	\mathbf{F}_{x}
Rolete	Uma incógnita: F	Pino interno	Duas incógnitas: F_x , F_y
	F		\mathbf{F}_{x}
Apoio	Uma incógnita: F	Engaste	Três incógnitas: F_x , F_y , M

Tipos de conexão	Reação	Número de incógnitas
cabo	θ	Uma incógnita. A reação é uma força de tração que atua para fora do membro na direção do cabo.
ligação sem peso	ou F	Uma incógnita. A reação é uma força que atua ao longo do eixo e ligação.
rolete	F	Uma incógnita. A reação é uma força que atua perpendicularmente à superfície no ponto de contato.

OBJETIVO DE AULA

- ✓ Elementos com duas forças possui forças aplicadas em apenas dois de seus pontos. Para o equilíbrio, exige-se:
 - 1. Que as forças sejam iguais em intensidade e opostas;
 - 2. Para os momentos, que as forças tenham as mesmas linhas de ação.

Um corpo sujeito a um sistema de força no plano pode apresentar essas forças em forma de componentes, tais como:

$$\sum F_{x} = 0 \qquad \sum F_{y} = 0 \qquad \sum M_{O} = 0$$

Para resolver os problemas de equilíbrio deve-se:

- ✓ Desenhar o DCL;
- ✓ Equações de equilíbrio;
- ✓ Restrições e determinação da estática.

EXEMPLO

Determine a intensidade das reação na viga em A e B. Despreze a espessura dela

EXEMPLO

D.C.L.

OBJETIVO DE AULA

$$+\uparrow \Sigma F_y = 0;$$
 319 N - 600 sen 45° N - 100 N - 200 N + $B_y = 0$
 $B_y = 405$ N

EXERCÍCIOS E ATIVIDADES

Orientação para realização das Atividades:

- ➤ Realizar as atividade a mão livre;
- ➤ Realizar diagramas e desenhos para compreensão;
- > Realizar todas as contas de forma detalhada;
- ➤ Colocar as repostas principais a caneta;
- ➤Entregar as atividades e resolução dos exercícios em forma digital no sala virtual da disciplina.

EXERCÍCIO 1

Determine a intensidade das reação na viga em A e B. Despreze a espessura dela

EXERCÍCIO 2

Determine a reação normal no rolete A e os componentes horizontal e vertical no pino B para o equilíbrio do elemento

Respostas:

RAy = 8 kN

RBx = 5,2 kN

RBy = 5 kN

EXERCÍCIO 3

Calcule a reação de apoio no ponto O a partir da forças externas. Despreze o peso das forças de corpo.

