Automatique non linéaire

25 novembre 2014

Table des matières

	2
1.1 Difféomorphismes	2
	Ę
2.1 Les systèmes linéaires	Ę
2.2 Systèmes non linéaires	(
2.2.1 Algèbre de Lie et variété	(
Linéarisation	1:
3.1 Linéarisation dans l'espace d'état	1:
	15
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Introduction

On s'intéresse aux équations de la forme :

$$\Pi : \left\{ \begin{array}{lcl} \dot{x}(t) & = & F(x(t), u(t)) \\ x(0) & = & x_0 \end{array} \right.$$

 $u \in \mathbb{R}^m$ le contrôle

 $y \in \mathbb{R}^p$ les observations

 $x \in \mathbb{R}^n$ l'état.

La solution à cette équation est en générale lisse, de dimension finie mais elle n'est pas uniquement déterminée par la condition initiale x_0 .

Comment choisir u?

- -u=u(t): Π est une équation différentielle non autonome. On peut avoir unicité des solutions. Contrôle en boucle ouverte.
- u = u(x): Π est une équation différentielle autonome, uncité des solutions. Contrôle en boucle fermée / par bouclage / par feedback.

1 Outils mathématiques

1.1 Difféomorphismes

♦ Définition:

 $h: X \to \mathbb{R}, \ X \subset \mathbb{R}^n$ ouvert est \mathcal{C}^{∞} si $\frac{\partial^i h}{\partial x_1^{i_1} ... \partial x_n^{i_n}}, \ i = \sum_{j=1}^n i_j$ existent et sont continues pour tout n-uplet $(i_j)_j$.

Si maintenant, $h: X \to Y$, $Y \subset \mathbb{R}^m$ ouvert, h est \mathcal{C}^{∞} si $h_1, ..., h_m$ est \mathcal{C}^{∞} .

🔩 Définition: Difféomorphisme

 \boldsymbol{h} est un difféomorphisme si :

- h est injective : $x \neq \tilde{x} \Rightarrow h(x) \neq h(\tilde{x})$
- h est surjective : $\forall y \in Y, \exists x \in X; \ y = h(x)$
- $h ext{ et } h^{-1} ext{ sont } \mathcal{C}^{\infty}$.

♣ Définition: Difféormorphisme local

 $h: X \to Y$ est un difféormorphisme local autour de x_0 et y_0 s'il existe X_{x_0} et Y_{y_0} , deux voisinages ouverts, tels que :

- $-h(X_0) = Y_0$
- $h_{|X_0}$ est un difféomorphisme.

⇔ Théorème:

Supposons $h: X \to Y$ tel que $h(x_0) = y_0$ et :

1. $h \in \mathcal{C}^{\infty}$

2. $\frac{\partial h}{\partial x}(x_0)$ inversible

alors h est un difféomorphisme local en x_0 et y_0 .

1.2 Application tangente

❖ Définition: Vecteur tangent

Soit $\gamma:]-\varepsilon; \varepsilon[\to X.$ Le vecteur tangent à $\gamma(t)$ en $p=\gamma(0)$ est $\dot{\gamma}(0)$.

Soit $X \subset \mathbb{R}^n$ un ouvert. On appelle espace tangent en p :

 $T_pX = {\dot{\gamma}(0), \gamma \text{ une courbe passant par } p}$

Un champ de vecteur f sur X est :

$$p \in X \mapsto f(p) \in T_p X$$

On note:

$$f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{pmatrix} = \sum_{i=1}^n f_i(x) \frac{\partial}{\partial x_i}$$

A chaque f, un champ de vecteurs, on associe l'équation différentielle $\dot{x} = f(x)$. f est \mathcal{C}^{∞} . On va noter $V^{\infty}(X)$ l'ensemble des champs de vecteurs \mathcal{C}^{∞} .

Soit $\gamma_t(x_0) = x(t, x_0) = x_t(x_0)$ la solution passant par x_0 .

1 Proposition:

$$1 \quad \gamma_0 = id$$

1.
$$\gamma_0 = id$$

2. $\gamma_s \circ \gamma_t(x_0) = \gamma_{s+t}(x_0) = \gamma_{t+s}(x_0)$
3. $\gamma_t^{-1} = \gamma_{-t}$

3.
$$\gamma_t^{-1} = \gamma_-$$

On prend à présent h, un difféormorphisme :

$$h: X \to Y$$
, $\dim X = \dim Y = n$

 $h \circ \gamma$ est une courbe dans Y.

$$\frac{d}{dt}(h \circ \gamma)(0) = Dh(\gamma(0))\frac{d}{dt}\gamma(0)$$
$$= Dh(p)v$$

Si on note w le vecteur tangent dans Y, on a :

$$w = \frac{\partial h}{\partial x} v \in T_{h(p)} Y$$

$$w_i = \sum_{j=1}^n \frac{\partial h_i}{\partial x_j} v_j$$

En partant de h, non linéaire, on arrive à $Dh = \frac{\partial h}{\partial x} = h_*$ une application linéaire qui tranforme T_pX en $T_{h(p)}Y$. Cette application linéaire est appelée application tangente.

⇔ Lemme:

On a:

$$(\phi_* f)(p) = D\phi(\phi^{-1}(p))f(\phi^{-1}(p))$$

1 Proposition:

Le diagramme suivant commute :

1 Proposition:

Soit γ_t le flot de $\dot{x} = f(x)$. Alors σ_t , le flot de $\dot{y} = (\phi_* f)(y)$ est :

$$\sigma_t = \phi \circ \gamma_t \circ \phi^{-1}$$

Idée de la démonstration : On vérifie simplement que le flot σ_t vérifie bien l'équation $\frac{d}{dt}\sigma_t = (\phi_* f)(\sigma_t)$.

1.3 Crochet de Lie

🔩 Définition:

On note $V^{\infty}(X)$ l'ensemble de tous les champs de vecteurs sur X de classe \mathcal{C}^{∞} .

♦ Définition: Crochet de Lie

Soit $f,g \in V^{\infty}(X)$. On définit :

$$[f,g](p) = \frac{\partial}{\partial t} (\gamma_{-t}^f)_* g(p) \Big|_{t=0}$$

⇔ Lemme:

On a également, en coordonnées $x = (x_1, ..., x_n)$:

$$[f,g](p) = \frac{\partial g}{\partial x}(p)f(p) - \frac{\partial f}{\partial x}(p)g(p)$$

2 Controlabilité des systèmes

 $\dot{x} = u_1 f(x) + u_2 g(x)$, où $x \in X \subset \mathbb{R}^n$, ouvert. $u_1, u_2 \in \mathbb{R}$.

1 Proposition:

$$\forall p \in X, \ \forall t, s \in \mathbb{R}, \ \gamma_s^{-g} \circ \gamma_t^{-f} \circ \gamma_s^g \circ \gamma_t^f(p) = p \Leftrightarrow [f, g] \equiv 0$$

⇔ Lemme:

Soient $f,g\in V^\infty(X)$ et ϕ un difféomorphisme. Alors :

$$\phi_*[f,g] = [\phi_*f,\phi_*g]$$

2.1 Les systèmes linéaires

 $\dot{x} = Ax + Bu, \ x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ A \in \mathcal{M}_{n \times n}(\mathbb{R}), \ B \in \mathcal{M}_{n \times m}(\mathbb{R}).$

On note $R_T(x_0)$ l'ensemble des points accessibles depuis x_0 au temps T.

 $R(x_0) = \bigcup_{t>0} R_t(x_0)$: ensemble d'accessibilité depuis x_0 .

⇔ Théorème:

Les conditions suivantes sont équivalentes :

- 1. $R(0) = \mathbb{R}^n$
- 2. $\exists T > 0; \ R_T(0) = \mathbb{R}^n$

3. $\forall T > 0, \ R_T(0) = \mathbb{R}^n$

4. $\forall x_0 \in \mathbb{R}^n$, $R(x_0) = \mathbb{R}^n$ 5. $\exists T > 0; \forall x_0 \in \mathbb{R}^n, R_T(x_0) = \mathbb{R}^n$ 6. $\forall T > 0; \forall x_0 \in \mathbb{R}^n, R_T(x_0) = \mathbb{R}^n$

7. $Rg(B, ..., A^{n-1}B) = n$

2.2Systèmes non linéaires

On note ∏ le problème :

$$\dot{x} = F(x, u), \ x \in X, \text{ ouvert de } \mathbb{R}^n, \ u \in U \subset \mathbb{R}^m$$
 (II)

U est la classe des contrôles admissibles.

$$PC_U \subset U \subset \mathcal{M}_U$$

Où PC_U est l'ensemble des contrôles constants par morceaux à valeur dans U et \mathcal{M}_U est l'ensemble des contrôles mesurables à valeur dans U.

$$R_T(x_0) = \{x(T, u, x_0), u \in U([0, T])\}\$$

où $x(T, u, x_0)$ est la trajectoire de $\dot{x} = F(x, u)$ passant par x_0 en t = 0.

II est accessible en x_0 si $\widehat{R(x_0)} \neq \emptyset$ II est fortement accessible en x_0 si $\forall T > 0, \ \widehat{R_T(x_0)} \neq \emptyset$

Supposons que (x_e, u_e) soit un point d'équilibre, et on linéarise Π autour de ce point d'équilibre :

$$z = x - x_{\epsilon}$$

$$v = u - u_{\epsilon}$$

On aura donc:

$$\dot{z} = \underbrace{\frac{\partial F}{\partial x}(x_e, u_e)}_{=A}(x - x_e) + \underbrace{\frac{\partial F}{\partial u}(x_e, u_e)}_{=B}(u - u_e) + \dots$$

IProposition:

Si (A,B) est contrôlable en (x_0, u_0) , alors

$$x_0 \in \widehat{R_T(x_0)}, \forall T > 0$$

Cela implique que si Π est fortement accessible en x_0 , donc il est accessible en x_0 .

On pose $\mathcal{F} = \{F_u = F(\bullet, u), u \in \mathcal{U}\}$, appelée collection de champ de vecteurs.

Algèbre de Lie et variété

🔩 Définition: Algèbre de Lie

L'algèbre de Lie $\mathcal L$ de Π est le plus petit espace vectoriel (sur $\mathbb R)$ tel que :

- 1. $\mathcal{F} \subset \mathcal{L}$
- 2. \mathcal{L} est fermée par rapport au $[\bullet, \bullet]$, ie :

$$f,g \in \mathcal{L} \Rightarrow [f,g] \in \mathcal{L}$$

1 Proposition:

Pour Π , on a :

$$\mathcal{L} = vect \{ [F_{u_1}, ... [F_{u_{k-1}}, F_{u_k}]], k \ge 1, u_j \in \mathcal{U} \}$$

♦ Définition: Algèbre de Lie

Une algèbre de Lie A est un espace vectoriel A munie d'une opération $[\bullet, \bullet]: A \times A \to A$ tel que :

- 1. $[\bullet, \bullet]$ est bilinéaire
- 2. $[\bullet, \bullet]$ est antisymétrique
- 3. $[\bullet, \bullet]$ satisfait l'identité de Jacobi :

$$\forall a, b, c \in A, [a, [b, c]] = [[a, b], c] + [b, [a, c]]$$

🐴 Définition: Sous-variété plongée

Une sous-variété dans \mathbb{R}^d de dimension n est :

$$X = \left\{ x \in \mathbb{R}^d; \phi(x) = 0 \right\}$$

où $\phi: \mathbb{R}^d \to \mathbb{R}^k$ tel que $\operatorname{rg} \frac{d\phi}{dx}(x) = k, \, \forall x \in X$ et n = d-k. (Par force, $d \geq k$)

⇔ Lemme:

Soit S une sous-variété de \mathbb{R}^n . Si f et g sont deux champs de vecteurs tangents à S, ie $f(q), g(q) \in T_qS$, $\forall q \in S$, alors

$$[f,g](q) \in T_qS$$

⇒ Théorème: de Sussman-Jevdjevic

Considérons Π où $X \subset \mathbb{R}^n$, ouvert, et $x_0 \in X$.

- 1. Si dim $\mathcal{L}(x_0) = n \Rightarrow \Pi$ est accessible en x_0
- 2. Si Π est analytique, alors dim $\mathcal{L}(x_0) = n \Leftrightarrow \Pi$ accessible en x_0 .

2.2.2 Distribution

❖ Définition: Distribution

Une distribution sur X, une variété de dimension n, est une application $p \in X \mapsto \mathcal{D}(p) \subset T_pX$. $\mathcal{D}(p)$ étant un sous-espace linéaire, une distribution est donc un champ de sous-espaces.

🔩 Définition: Rang constant

Soient \mathcal{D} une distribution et $f_1, ..., f_k \in V^{\infty}(X)$. On pose

$$\mathcal{D}(p) = vect\{f_1(p), ..., f_k(p)\}\$$

On dit alors que \mathcal{D} est de rang constant (=k).

🐴 Définition:

On dit que \mathcal{D} , une distribution, est \mathcal{C}^{∞} si

$$\exists f_1, ..., f_k \in V^{\infty}(X); \mathcal{D} = vect\{f_1, ..., f_k\}$$

♦ Définition:

 $\mathcal D$ est dite intégrale si $\forall p \in X, \, \exists S$ une variété, $p \in S$ tel que

$$T_q S = \mathcal{D}(q), \ \forall q \in S$$

🔩 Définition: Involutive

 $f \in V^{\infty}(X)$. On dit $f \in \mathcal{D}$ si $\forall p \in X$, $f(p) \in \mathcal{D}(p)$. \mathcal{D} est dite involutive si $f, g \in \mathcal{D} \Rightarrow [f, g] \in \mathcal{D}$.

🔸 Définition: Opérateur associé à un champ de vecteur

À chaque $f \in V^{\infty}(X)$, il correspond un opérateur différentiel d'ordre 1 L_f :

$$L_f: \quad \mathcal{C}^{\infty} \quad \to \quad \mathcal{C}^{\infty}$$

$$a \quad \mapsto \quad \nabla a.f$$

⇔ Théorème: Frobenius

Soit \mathcal{D} une distribution de rang constant k. Alors les conditions suivants sont équivalentes :

- 1. \mathcal{D} intégrable
- 2. \mathcal{D} involutive
- 3. localement, autour de chaque point $p \in X$,

$$\exists (x_1, ..., x_k, ..., x_n); \mathcal{D} = span\{\frac{\partial}{\partial x_1}, ..., \frac{\partial}{\partial x_k}\}$$

2.2.3 Orbites

♣ Définition: Orbite

On définit l'orbite de x_0 comme :

$$Orb(x_0) = \{x; x = \gamma_{t_k}^{F_{u_k}} \circ \dots \circ \gamma_{t_1}^{F_{u_1}}(x_0), u_j \in U, t_j \in \mathbb{R}, 0 < j \le k \}$$

On a $\acute{\rm e}{\rm videmment}$:

$$\mathcal{R}_T(x_0) \subset \mathcal{R}(x_0) \subset Orb(x_0)$$

⇔ Lemme:

 $q \sim p$ si et seulement si $q \in Orb(p)$ est une relation d'équivalence :

1. symétrique : $q \sim p \Leftrightarrow p \sim q$

2. reflexive : $p \sim p$

3. transitive : $q \sim p$ et $p \sim r \Rightarrow q \sim r$

I Propriété:

 $\forall p, q \in X; p \sim q$, on a :

$$\begin{cases}
Orb(p) &= Orb(q) \\
Ou & \text{ou} \\
Orb(p) \cap Orb(q) &= \emptyset
\end{cases}$$

♣ Définition: Sous variété immersée

V est une sous-variété immersée si

$$V = \bigcup_{i=1}^{+\infty} V_i, \ V_i \subset V_{i+1}, \ V_i$$
 variété plongée

⇔ Théorème:

Pour $\dot{x} = F(x, u)$ on a:

- 1. $\forall x_0 \in X$, $Orb(x_0)$ est une sous-variété immersée de X
- 2. $T_pOrb(x_0) = \Gamma(p)$ où Γ est la plus petite distribution tel que :
 - (a) $F_u \in \Gamma, \forall u \in U$
- (b) Si $g \in \Gamma$, alors $\left(\gamma_t^{F_u}\right)_* g \in \Gamma$
- 3. $\mathcal{L}(p) \subset T_pOrb(p)$, où \mathcal{L} est l'algèbre de Lie de Π
- 4. Si Π analytique, alors $T_pOrb(p) = \mathcal{L}(p)$
- 5. $\forall p \in X$, si dim $\mathcal{L}(p)$ constant $\Rightarrow T_pOrb(p) = \mathcal{L}(p)$

i Propriété: Forme normale d'accessibilité

Supposons dim $\mathcal{L}(X)$ constant (=k).

Localement, autour de chaque point p, il existe des coordonnées $z_a^1 = (z_1^1, ..., z_k^1)$ et $z_a^2 = (z_1^2, ..., z_{n-k}^2)$ tel que

$$\begin{array}{rcl} (FN_a) & \dot{z}_a^1 & = & F^1(z_a^1, z_a^2, \ldots) \\ \dot{z}_a^2 & = & 0 \end{array}$$

2.3 $R_T(x_0)$

L'idéal de Lie \mathcal{L}_0 de Π est le plus petit espace vectoriel tel que :

- 1. $\forall u, \tilde{u} \in U, F_u F_{\tilde{u}} \in \mathcal{L}_0$

2. $g \in \mathcal{L}_0 \Rightarrow [F_u, g] \in \mathcal{L}_0$ Par l'identité de Jacobi, cela correspond également à :

$$g \in \mathcal{L}_0, f \in \mathcal{L} \Rightarrow [f, g] \in \mathcal{L}_0$$

⇒ Théorème:

1. Si dim $\mathcal{L}_0(p) = n$, alors $\widehat{R_T(x_0)} \neq \emptyset \ \forall T > 0$ (accessibilité forte)

2. Si Π analytique, alors dim $\mathcal{L}_0 = n \Leftrightarrow \widehat{R_T(x_0)} \neq \emptyset$

I Propriété:

Fixons $u^* \in U$ arbitraire. On a

$$\mathcal{L} = vect\{\mathcal{L}_0, F_{u^*}\}$$

⇔ Corollaire:

Pour $\dot{x} = f(x) + \sum_{i=1}^{n} u_i g_i(x)$, on a :

$$\mathcal{L} = vect\{\mathcal{L}_0, f\}$$

(en prenant $u^* = 0$)

⇒ Théorème:

Supposons dim $\mathcal{L}_0(X) = k - 1$

Localement, autour de chaque point p, il existe des coordonnées $z_a^1=(z_1^1,...,z_{k-1}^1)$ et $z_a^2=(z_1^2,...,z_{n-k+1}^2)$ tel que

$$\begin{array}{rcl} (FN_a) & \dot{z}_a^1 & = & F_a^1(z_a^1, z_a^2, u) \\ \dot{z}_a^2 & = & F_a^2(z_a^2) \end{array}$$

⇒ Théorème:

Supposons dim $\mathcal{L}(X) = k$, dim $\mathcal{L}_0(x) = k - 1$, $\forall x \in X$

Localement, autour de chaque point p, il existe des coordonnées $z_a^1 = (z_1^1, ..., z_{k-1}^1), z_k^1$, et $z_a^2 = (z_1^2, ..., z_{n-k+1}^2)$ tel que

$$\begin{array}{rcl} \dot{z}_a^1 & = & F_a^1(z_a^1, z_k^1, z_a^2, u) \\ (FN_a) & \dot{z}_k^1 & = & 1 \\ \dot{z}_a^2 & = & 0 \end{array}$$

2.4 Controlabilité totale

🔸 Définition: Complètement controlable

 Π est dit complètempent controlable si $\forall x \in X, R(x) = X$.

🛂 Définition: Reversible

 Π est reversible si $\forall u \in U, \exists \tilde{u} \in U$ tel que $\forall x \in X$,

$$-F(x, u) = F(x, \tilde{u})$$

1 Propriété:

Si Π reversible, alors $R(p) = Orb(p), \forall p \in X$.

♦ Définition: Connexe

X connexe si:

$$X = X_1 \cup X_2, \ X_1 \cap X_2 = \emptyset, \ X_1, X_2 \text{ ouverts} \Rightarrow \text{ Soit } X_1 = \emptyset \text{ soit } X_2 = \emptyset$$

⇔ Théorème:

Supposons II reversible et X connexe. Si dim $\mathcal{L}(x) = n, \forall x \in X$, alors II est complètement controlable.

2.4.1 Problèmes de contraintes

2.4.2 Stabilité à la Poisson

Néfinition: Stable à la Poisson

 $p \in X$ est dit stable à la Poisson avec $\dot{x} = f(x), \ x \in X$ si $\forall V$, voisinage de $p, \ \forall T > 0, \ \exists t > T \ ; \ \gamma_t(p) \in V.$

⇔ Théorème: Bonnard-Crouch

Supposons que pour $\Sigma : \dot{x} = f(x) + \sum_{i=1}^{m} u_i g_i(x)$, on a :

- 1. L'ensemble X' de points Poisson stable pour $\dot{x}=f(x)$ est dense dans X
- 2. dim $\mathcal{L}(X) = n, \forall x \in X$ (accessible en chaque point)

Alors Σ est complètement contrôlable.

3 Linéarisation

3.1 Linéarisation dans l'espace d'état

On s'intéresse aux systèmes affines :

$$\Sigma : \dot{x} = f(x) + \sum_{i=1}^{m} u_i g_i(x), \ x \in X$$
 (\Sigma)

On prend $\phi: X \to \tilde{X}$ un difféomorphisme et on transforme Σ .

$$\dot{\tilde{x}}(t) = \tilde{f}(\tilde{x}) + \sum_{i=1}^{m} u_i \tilde{g}_i(\tilde{x})$$

avec

$$\begin{cases}
\tilde{f}(\tilde{x}) &= \frac{\partial \phi}{\partial x} (\phi^{-1}(\tilde{x})) f(\phi^{-1}(\tilde{x})) \\
\tilde{g}_i(\tilde{x}) &= \frac{\partial \phi}{\partial x} (\phi^{-1}(\tilde{x})) g_i(\phi^{-1}(\tilde{x}))
\end{cases}$$
(1)

🔩 Définition: S-équivalent

 Σ et

$$\tilde{\Sigma} : \dot{\tilde{x}}(t) = \tilde{f}(\tilde{x}) + \sum_{i=1}^{m} u_i \tilde{g}_i(\tilde{x})$$
 (\tilde{\Sigma})

sont dits équivalents dans l'espace d'état (state space equivalent, ou S-equivalent) si (1).

🔥 Définition: localement S-équivalent

 Σ et $\tilde{\Sigma}$ sont localement, en x_0 et \tilde{x}_0 , S-équivalent, si $\exists V_{x_0}$ et $V_{\tilde{x}_0}$ et $\phi: V_{x_0} \to V_{\tilde{x}_0}$ un difféomorphisme tel que ϕ transforme $\Sigma|_{V_{x_0}}$ en $\tilde{\Sigma}|_{V_{\tilde{x}_0}}$

♣ Définition: S-linéarisable

 Σ est S-linéarisable si $\exists \phi: X \to \mathbb{R}^n$ un difféormorphisme tel que Σ et

$$\Lambda : \dot{\tilde{x}} = A\tilde{x} + \sum_{i=1}^{m} a_i b_i$$

 $A \in \mathcal{M}_{n \times n}(\mathbb{R}), b_i \in \mathbb{R}^n$, sont S-équivalent.

🔩 Définition:

$$ad_f^0g = g, \ ad_fg = [f,g], \ ad_f^ng = [f,ad_f^{n-1}g]$$

⇔ Théorème:

Supposons $f(x_0) = 0$, ie x_0 un point d'équilibre.

 Σ est localement autour de x_0 et $0_{\mathbb{R}^n}$ S-linéarisable si et seulement si :

(SL1): dim vect $\{ad_f^q g_i(x_0), 1 \le i \le m, 0 \le q \le n-1\} = n$

(SL2): $[ad_f^q g_i, ad_f^r g_j] = 0, \forall 1 \le i, j \le m, \forall 0 \le q \le n-1, \forall 0 \le r \le n$

⇔ Théorème:

 Σ est S-linéarisable si et seulement si :

(SL1): dim vect $\{ad_f^q g_i(x), 1 \le i \le m, 0 \le q \le n-1\} = n$

(SL2): $[ad_f^q g_i, ad_f^r g_j] = 0, \forall 1 \le i, j \le m, \forall 0 \le q \le n-1, \forall 0 \le r \le n$

(SL3): les champs de vecteurs $f, g_1, ..., g_m$ sont complets, ie les flots $\gamma_t^f(p), \gamma_t^{g_i}(p)$ existent $\forall p \in \mathbb{R}^n, \forall t \in \mathbb{R} \Leftrightarrow ad_f^q g_i$ complets, $0 \le q \le n-1, \ 0 \le i \le m$

3.2 Linéarisation par bouclage

♣ Définition: F-équivalence

$$\Sigma : \dot{x} = f(x) + g(x)u \text{ et } \tilde{\Sigma} : \dot{\tilde{x}} = \tilde{f}(\tilde{x}) + \tilde{g}(\tilde{x})\tilde{u}$$

sont dits équivalents par bouclage (F-equivalent) si $\exists \psi: X \to \tilde{X}$ un difféomorphisme et $\alpha = (\alpha_1, ..., \alpha_m)^T$ et $\beta = (\beta_{ij})_{1 \le i,j \le m}$ tel que $:\alpha_i, \beta_{ij} \in \mathcal{C}^{\infty}(X), \beta(x)$ inversible, et :

$$\phi_*(f + g\alpha) = \hat{f}$$
$$\phi_*(g\beta) = \tilde{g}$$

♦ Définition:

On note:

$$\mathcal{D}^{j} = span\{ad_{f}^{q}g_{i}, \ 1 \leq i \leq m, \ 1 \leq q \leq j-1\}$$

→ Théorème: Jakuleczyk-Respondek

Supposons $f(x_0) = 0$, ie x_0 un point d'équilibre. Σ est localement autour de x_0 F-équivalent à

$$\Lambda : \dot{\tilde{x}} = A\tilde{x} + \sum_{i=1}^{m} \tilde{u}_i b_i$$

 ${\it contrôlable},$ si et seulement si :

(FL1): rg $\mathcal{D}^n(x_0) = n \Leftrightarrow (\text{SL1})$ (FL2): rg $\mathcal{D}^j(x) = cste, \forall j = 1, ..., n$ (FL3): \mathcal{D}^j involutive, $\forall j = 1, ..., n$

Remarque : Pour m = 1, on a équivalence avec :

(FL1') : $g, ad_fg,...,ad_f^{n-1}g$ indépendants en x_0

(FL2'): \mathcal{D}^{n-1} involutive.

♦ Définition: Forme de Brunovsky

On appelle forme de Brunovsky le système linéarisant par bouclage le système Σ :

$$\begin{array}{rcl} \tilde{x}_1 & = & h \\ & \vdots & \\ \tilde{x}_n & = & L_f^{n-1}h \end{array}$$

où h est la paramétrisation de la variété involutive de dimension n-1. Ce système vérifie :

$$\begin{array}{rcl} \dot{\tilde{x}}_1 & = & \tilde{x}_2 \\ & \vdots & \\ \dot{\tilde{x}}_{n-1} & = & \tilde{x}_n \\ \dot{\tilde{x}}_n & = & \tilde{u} \end{array}$$

3.3 Contrôlabilité

On veut une trajectoire sur [0,T] telle que \tilde{x}_0 soit relié par celle-ci à \tilde{x}_T . Choisissons $\phi(t)$ tel que :

Alors $\tilde{u}(t) = \phi^{(n)}(t)$ résoud le problème.

Observabilité

$$\begin{cases} \dot{x} &= F(x, u) \\ y &= h(x) \end{cases} \tag{II}$$

 $y \in Y \subset \mathbb{R}^p, hX \to Y, \dim Y = p < \dim X = n$ $\forall 1 \le i \le p, h_i \in \mathcal{C}^{\infty}(X).$

🔩 Définition: Indistingables

 $x_0 \in X$ et $\tilde{x}_0 \in X$ sont dits indistingables si $\forall u(t) \in \mathcal{U}$,

$$y(t, x_0, u) \equiv y(t, \tilde{x}_0, u)$$

🔩 Définition: Observable

 Π est observable si :

$$x_0$$
 et \tilde{x}_0 indistingables $\Rightarrow x_0 = \tilde{x}_0$

♣ Définition: Localement observable

 Π est localement observable autour de $p \in X$ si $\exists V_p \subset X$; $\Pi_{|V_p|}$ est observable.

♣ Définition: Espace d'observation

On définit \mathcal{O} , l'espace d'observation, comme étant le plus petit espace vectoriel sur \mathbb{R} tel que :

- 1. $h_i \in \mathcal{O}, 1 \leq i \leq p$
- 2. Si $\phi \in \mathcal{O}$, alors $L_{F_u} \phi \in \mathcal{O}$, $\forall u \in \mathcal{U}$

On a

$$\mathcal{O} = vect\{L_{F_{u_1}}...L_{F_{u_k}}h_i, 1 \le i \le p, u_j \in \mathcal{U}, 1 \le j \le k, k \ge 0\}$$

♣ Définition: Codistribution

On appelle codistibution:

$$\mathcal{H} = span\{d\phi, \phi \in \mathcal{O}\}$$

(Notons que $d\phi \in \mathcal{M}_{1\times n}$).

En notant $T_p^*X=(T_pX)^*$ l'espace dual à l'espace tangent, appelé espace cotangent :

$$\mathcal{H}: p \in X \mapsto \mathcal{H}(p) \subset T_p^*X$$

⇔ Théorème: Hermann-Kremer

Soit $p \in X$

Si dim $\mathcal{H}(p) = n$, alors Π est localement observable en p.

⇔ Théorème:

Supposons que $\dim \mathcal{H}(p) = cste = k \ \forall p \in X$.

- 1. Π est localement observable si et seulement si k=n
- 2. La distribution

$$\mathcal{D} = span\{f \in V^{\infty}(X); \langle d\phi, f \rangle = 0, \forall \phi \in \mathcal{O}\}$$
$$= span\{f \in V^{\infty}(X); \langle \mathcal{H}, f \rangle = 0\}$$

3. Autour de chaque $p\in X,\,\exists z^1=(z^1_1,...,z^1_k)$ et $z^2=(z^2_{k+1},...,z^2_n)$ tel que

$$\mathcal{D} = span\{\frac{\partial}{\partial z_{k+1}^2}, ..., \frac{\partial}{\partial z_n^2}\}$$

De plus, en coordonnées (z^1, z^2) :

$$\begin{array}{rcl} \dot{z}^1 & = & f^1(z^1, u) \\ \dot{z}^2 & = & f^2(z^1, z^2, u) \\ y & = & h^1(z^1) \end{array}$$

4. Dans V_p (où les coordonnées (z^1,z^2) sont définies), z_0 et \tilde{z}_0 sont indistingables si $z_0^1=\tilde{z}_0^1$

On considère un système affine avec la même sortie (mais tout se généralise avec les systèmes non affines). On prend juste le même nombre de sortie que de contrôle. $(y_i, 1 \le i \le m)$

♣ Définition: Découplable

 Σ est découplable entrée-sortie (I-O-decouplable) si $\exists z = \phi(x), \ u = \alpha(x) + \beta(x)v$ tel que :

$$\dot{z} = \tilde{f}(z) + \sum_{i=1}^{m} v_i \tilde{g}_i(z)$$

 $Z = Z_0 \times ... \times Z_m$, avec $z = (z^0, z^1, ..., z^m)$

$$\dot{z}^{0} = \tilde{f}^{0}(z) + \sum_{i=1}^{m} v^{i} \tilde{g}_{i}^{0}(z)
\dot{z}^{1} = \tilde{f}^{1}(z^{1}) + \tilde{g}_{1}(z^{1})v^{1}
\vdots
\dot{z}^{m} = \tilde{f}^{m}(z^{m}) + \tilde{g}_{m}(z^{m})v^{m}$$

οù

$$\tilde{f} = \phi_*(f + g\alpha) = \phi_* \left(g + \sum_{i=1}^m g_i \alpha_i \right)$$
$$\tilde{g} = \phi_*(g\beta) \ \tilde{g}_i = \phi_* \left(\sum_{i=1}^m g_j \beta_{ji} \right)$$

Pour chaque $1 \leq i \leq m,$ soit ρ_i le plus petit nombre tel que

$$\frac{d^{\rho_i} y_i}{dt^{\rho_i}}$$

dépend exclusivement de u, ie

$$\exists j; L_{g_j} L_f^{\rho_i - 1} y_i \neq 0$$

⇔ Théorème:

Supposons rgD(x) = cst, où

$$D_{ij} = L_{g_j} L_f^{\rho_i - 1} h_i$$

appelée matice de découplage. Le système Σ est découplable en x_0 si et seulement si :

$$rgD(x_0) = m$$

rgD De plus, on pose $z_{ij} = L_f^{j-1}h_i, 1 \leq i \leq m, \ 1 \leq j \leq \rho_i$