Surrounded Regions

Got it! Let's go step by step but also write coordinates (row,col) so you can clearly see which cells we are talking about.

We are solving the Surrounded Regions problem.

Input Grid with Coordinates

Let's label the grid with indices:

```
SCSS

(0,0) X (0,1) X (0,2) X (0,3) X

(1,0) X (1,1) O (1,2) O (1,3) X

(2,0) X (2,1) X (2,2) O (2,3) X

(3,0) X (3,1) O (3,2) X (3,3) X
```

So the grid is:

```
arduino

[
['X','X','X','X'],
['X','O','X'],
['X','O','X'],
['X','O','X'],
['X','O','X','X']
]
```

Step 1: Find Border 'O's

We scan border cells:

- Top row \rightarrow (0,0),(0,1),(0,2),(0,3) \rightarrow all are \times \rightarrow nothing
- Bottom row \rightarrow (3,0),(3,1),(3,2),(3,3) \rightarrow we find (3,1) = O \rightarrow SAFE
- Left column \rightarrow (0,0),(1,0),(2,0),(3,0) \rightarrow all \times \rightarrow nothing
- Right column \rightarrow (0,3),(1,3),(2,3),(3,3) \rightarrow all \times \rightarrow nothing

So only (3,1) is a border-connected O

We mark it as 'S' (SAFE)

Now the board looks like:

```
(0,0) X (0,1) X (0,2) X (0,3) X
(1,0) X (1,1) O (1,2) O (1,3) X
(2,0) X (2,1) X (2,2) O (2,3) X
(3,0) X (3,1) S (3,2) X (3,3) X
```

Step 2: DFS/BFS from Border 'O's

Now we run DFS from (3,1):

- DFS(3,1) → mark as s (already marked)
- Check neighbors:
 - $(2,1) \rightarrow X \rightarrow \text{stop}$
 - $(4,1) \rightarrow \text{out of bounds} \rightarrow \text{stop}$
 - $(3,0) \rightarrow \chi \rightarrow \text{stop}$
 - $(3,2) \rightarrow x \rightarrow \text{stop}$

So no more cells connected to border.

Only (3,1) remains SAFE.

☑ Step 3: Flip Surrounded Regions

Now scan the whole grid again:

- If you see 'O' → it is surrounded → change to 'X'
- If you see 'S' \rightarrow it is safe \rightarrow change back to 'O'

So:

- $(1,1) = O \rightarrow \text{change to } X$
- $(1,2) = O \rightarrow \text{change to } X$
- $(2,2) = O \rightarrow \text{change to } X$
- $(3,1) = S \rightarrow \text{change back to } O$

Final Board

```
(2,0) X (2,1) X (2,2) X (2,3) X
(3,0) X (3,1) O (3,2) X (3,3) X
```

Which looks like:

```
arduino

[
['X','X','X','X'],
['X','X','X'],
['X','X','X'],
['X','O','X',X']
]
```

Why does this work?

- Any 'O' touching the border is SAFE → we mark it as S.
- Any 'O' NOT connected to border is surrounded \rightarrow change to \times .

Quick Visualization

```
mathematica
                                                                                    Before:
X X X X
X O O X
X X O X
X O X X
After marking border-safe:
X X X X
X O O X
X X O X
XSXX
After flipping:
X X X X
X X X X
X X X X
X O X X
```

Would you like me to also show a DFS path step-by-step like $(3,1) \rightarrow (2,1) \rightarrow ...$ with arrows? Or should I make a smaller 3×3 example for even easier understanding?