

Block Diagram Algebra

5.1 INTRODUCTION

- Many systems are composed of multiple subsytems, as in the figure.
- A graphical tool can help us to visualize the model of a system and evaluate the mathematical relationships between their subsytems, using their transfer functions.

We will now

- examine some common topologies for interconnecting subsytems and
- derive the single transfer function representation.

5.2 BLOCK DIAGRAMS

It represents the mathematical relationships between the elements of the system.

The transfer function of each component is placed in box, and the input-output relationships between components are indicated by lines and arrows.

CASCADE FORM

(b)

PARALLEL FORM

Paralle subsytems:

Equivalent transfer function:

$$\begin{array}{c|c}
\hline
R(s) \\
\pm G_1(s) \pm G_2(s) \pm G_3(s)
\end{array}$$

$$\begin{array}{c|c}
C(s) \\
\hline
\end{array}$$

$$\begin{array}{c|c}
(b) \\
\end{array}$$

FEEDBACK FORM

Feedback control system:

Simplified model:

$$C(s) = E(s) G(s)$$

$$E(s) = R(s) \mp C(s)H(s)$$

$$C(s) = (R(s) \mp C(s)H(s)) G(s)$$

$$(1 \pm H(s)G(s)) C(s) = G(s) R(s)$$

$$\frac{R(s)}{\text{Input}} \underbrace{ \frac{G(s)}{1 \pm G(s)H(s)} } \underbrace{ \frac{C(s)}{\text{Output}}}_{\text{Output}}$$

$$C(s) = \frac{G(s)}{\left(1 \pm H(s)G(s)\right)} R(s)$$

MOVING BLOCKS TO CREATE FAMILIAR FORMS

Moving a block to the left past a summing junction

Moving a block to the right past a summing junction

Moving a block to the left past a pickoff point

Moving a block to the right past a pickoff point

Problem: Reduce the block diagram to a single transfer function

$$\begin{array}{c|c}
R(s) & G_3(s)G_2(s)G_1(s) \\
\hline
1 + G_3(s)G_2(s)[H_1(s) - H_2(s) + H_3(s)]
\end{array}$$
(c)

Problem: Reduce the block diagram to a single transfer function

$$T(s) = \frac{Y(s)}{R(s)}$$

$$T(s) = \frac{\frac{2s + 4}{s^2}}{1 + \frac{2s + 4}{s^2}}$$

$$T(s) = \frac{2s+4}{s^2+2s+4}$$

Problem: Reduce the block diagram to a single transfer function

$$\begin{array}{c|c}
R(s) & \hline & G_1(s)G_2(s) \\
\hline
1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s) \\
\hline
 & (d)
\end{array}$$

$$\begin{array}{c|c}
V_4(s) \\
\hline
 & \left(\frac{1}{G_2(s)} + 1\right) \left(\frac{G_3(s)}{1 + G_3(s)H_3(s)}\right) \\
\hline
 & C(s) \\
\hline
 & (d)
\end{array}$$

$$\begin{array}{c|c}
R(s) & G_1(s)G_3(s)[1+G_2(s)] & C(s) \\
\hline
[1+G_2(s)H_2(s)+G_1(s)G_2(s)H_1(s)][1+G_3(s)H_3(s)] & \\
\hline
(e) & \\
\end{array}$$

Problem:
Reduce the
block diagram
to a single
transfer
function

