

关注效率

- □ 效率
 - △ 单位时间完成的工作量
 - □ 指最有效地使用社会资源以满足人类的愿望和需要
- □ 算法的效率: <u>有效地使用计算资源满足需求</u>
 - 应 时:用时短(CPU的计算资源)
 - △ 空:耗费的内存少(存储资源)
- □ 何为"用时短"的算法?

不能用程序执行时间比较效率

- □ 执行的环境不同
- □ 实现的语言不同
- □其他因素

用基本运算的次数度量算法的时间复杂度!

- □ 算法的构成
 - □ 一个算法是由控制结构(顺序、分支和循环)和原操作(固有数据类型的操作,如比较、加减乘除等)构成的
 - ☆ 算法时间取决于两者的综合效果

```
      控制语句1
      {

      原操作
      int i;

      for (i=0; i<n; i++)</td>
      a[i]=2*i;

      for (i=0; i<n; i++)</td>
      printf("%d ",a[i]);

      原操作
      printf("\n");
```

为比较同一问题的不同算法:

- □ 从算法中选取一种对于所研究的问题来 说是基本运算的原操作(简称为基本运 算)。
- □ 算法执行时间大致为基本运算所需的时间与其运算次数的乘积。
- □基本运算的一般是最深层循环内的语句。

算法的时间复杂度

□ 原理

□ 在一个算法中,进行基本运算的次数越少,其运行时间也就相对地越少;基本运算次数越多,其运行时间也就相对地越多。

□ 定义

□ 把算法中包含基本运算次数的多少称为算法的时间复杂度,也就是说,一个算法的时间复杂度是指该算法的基本运算次数。

□ 度量

```
void fun(int a[],int n)
  int i;
  for (i=0; i<n; i++)
     a[i]=2*i;
  for (i=0; i<n; i++)
     printf("%d ",a[i]);
  printf("\n");
```


乘法的次数:

```
T(n)=n
T(n)=O(n)
```

算法的时间复杂度的表示法

算法中基本运算次数T(n)是问题规模n的某个函数f(n),记作:T(n)=0(f(n))

- □ "大0"
 - 应 表示时间复杂度的"量级"
 - 应 随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同。
 - 应 例如, T(n)=3n²-5n+10000=0(n²)

□ "0"的形式定义:

- 应 若f(n)是正整数n的一个函数,
- 应 存在一个正常数C和n。
- 应 使得当n≥n₀时
- □ 则记T(n)=0(f(n))

$$T(n)$$
= $O(f(n))$ 的实质

$$\lim_{n\to\infty}\frac{T(n)}{f(n)}=C$$

指定正常数C=3,

当n>2000时,有3n²-5n+10000 < 3n²

指导意义:

- □ 只求出T(n)的最高阶,忽略其低阶项和常系数,这样既可简化T(n)的计算,又能比较客观地反映出当n很大时算法的时间性能。
- □算法分析只关心n很大时的表现。

复杂度的量级

- □ 0(1),常数阶
 - 应 复杂度与问题规模n无关
 - 应 例:没有循环的算法
- □ 0(log₂n), 对数阶
 - □ 同 O(lgn), O(lbn)
- □ 0(n),线性阶
 - 应 与问题规模n的增长呈线性增大关系
 - 应 例:有执行n次的一重循环的算法
- □ 0(nlog₂n),线性对数阶
- □ 0(n²), 平方阶
- □ 0(n³),立方阶
- □ 0(2ⁿ),指数阶

 $O(1) < O(\log_2 n) < O(n) < O(n\log_2 n) < O(n^2) < O(n^3) < O(2^n) < O(n!)$

运行时间随问题规模N的变化.....

n	1gn	n	n1gn	n ²	n^3	2 ⁿ
8	3nsec	0.01μ	0.02μ	0.06μ	0.51μ	0.26μ
16	4nsec	0.02μ	0.06μ	0.26μ	<mark>4</mark> .10μ	65.5µ
32	5nsec	0.03μ	0.16μ	1.02μ	32.7μ	4.29sec
64	6nsec	0.06μ	0.38μ	4.01µ	262µ	5.85cent
128	7nsec	0.13μ	0.90μ	16.38μ	0.002sec	10 ²⁰ cent
256	8nsec	0.26μ	2.05μ	65.54μ	0.02sec	10 ⁵⁸ cent
512	9nsec	0.51μ	4.61μ	262.14μ	0.13sec	10 ¹³⁵ cent
2048	0.01μ	2.05μ	22.53μ	0.01sec	1.07sec	10 ⁵⁹⁸ cent
8192	0.01μ	8.19μ	106.50μ	0.07sec	1.15min	10 ²⁴⁴⁷ cent
32768	0.01μ	32.77μ	491.52μ	1.07sec	1.22hrs	10 ⁹⁸⁴⁵ cent
131072	0.02μ	131.07μ	2228.2µ	0.29min	3.3days	10 ³⁹⁴³⁸ cent
524288	0.02μ	524.29μ	9961.5μ	4.58min	4.6years	10 ¹⁵⁷⁸⁰⁸ cent

注 1. nsec 为纳秒,μ为微秒,sec 为秒,min 为分钟,hrs 为小时,days 为天,years 为年,cent 为世纪

注 2: 假定每次执行一个操作所需时间的 1ns

三种复杂度

- □最佳情况复杂度
 - △ 可望但不要指望……

- □平均情况复杂度
 - □ 这个指标有价值

- □最坏情况复杂度
 - □ 如果不能承受极端情况的损失,这个要在意

思考题

□ 为什么要进行算法的时间复杂度分析?