MÓDULO - 4

SISTEMA DE ARMAZENAMENTO INTELIGENTE

PROFESSIONAL Módulo 4: Sistema de armazenamento inteligente

Ao completar este módulo, você estará apto a:

- Descrever os principais componentes do sistema de armazenamento inteligente
- Descrever o gerenciamento do cache e técnicas de proteção
- Descrever dois métodos de provisionamento de armazenamento
- Descrever dois tipos de sistemas de armazenamento inteligentes

Módulo 4: Sistema de armazenamento inteligente

Aula 1: Principais componentes do sistema de armazenamento inteligente

Os seguintes tópicos serão apresentados:

- Visão geral do sistema de armazenamento inteligente
- Os principais componentes do sistema de armazenamento inteligente
- Gerenciamento do cache

O que é um sistema de armazenamento inteligente?

Sistema de armazenamento inteligente

É um array rico em recursos de RAID que oferece alta capacidade otimizada de processamento de I/O.

- Oferece um grande volume de cache e múltiplos caminhos que aumentam o desempenho
- Possui um ambiente operacional que fornece:
 - Recurso de gerenciamento do array
 - Conectividade para hosts heterogêneos
- Suporta flash drive, provisionamento virtual e armazenamento com classificação automatizada por nível

Principais componentes do sistema de armazenamento inteligente

Principais componentes do sistema de armazenamento inteligente: front-end

Principais componentes do sistema de armazenamento inteligente: cache

Operação de leitura com cache

Operação de gravação no cache

Gerenciamento do cache: algorítmos

- LRU (Least recently used menos utilizado recentemente)
 - Descarta dados que não foram acessados por um longo período
- MRU (Most recently used mais utilizado recentemente)
 - Descarta dados que tenham sido muito acessados recentemente

Gerenciamento do cache: limite

- Gerencia pico de I/O através do processo de flushing
 - Flushing é o processo de confirmação de dados do cache para o disco
- Três modos de flushing para gerenciar a utilização do cache são:
 - Flushing ocioso
 - Flushing de limite máximo
 - Flushing forçado

Proteção de dados do cache

- Protege dados no cache contra falhas de energia ou do cache :
 - Espelhamento do cache
 - Oferece proteção aos dados contra falhas no cache
 - Cada gravação para o cache é mantida em dois locais de memória diferentes em dois cartões de memória independente
 - Compartimentação do cache
 - Oferece proteção aos dados contra queda de energia
 - No caso de queda de energia, os dados não confirmados são colocados em um conjunto de drives chamados "drives de compartimento"

Tecnologia de cache em server flash

- Utiliza software de cache inteligente e cartão PCIe flash no host
- Melhora consideravelmente o desempenho do aplicativo
 - Oferece rapidez no desempenho para cargas de leituras intensivas
 - Evita a latência da rede relacionada ao acesso de I/O ao array de armazenamento
- Determina, de modo inteligente, os dados que se beneficiariam em ficar no servidor em PCle flash
- Utiliza o mínimo dos recursos da CPU e de memória
 - Gerenciamento de Flash é descarregado no cartão PCle

Storage array

Principais componentes do sistema de armazenamento inteligente: back-end

Principais componentes do sistema de armazenamento inteligente: discos físicos

Módulo 4: Sistema de armazenamento inteligente

Aula 2: Provisionamento de armazenamento e implementação do sistema de armazenamento inteligente

Os seguintes tópicos serão abordados nesta aula:

- Provisionamento de armazenamento tradicional
- Provisionamento de armazenamento virtual
- Implementação do sistema de armazenamento inteligente

Atribuindo armazenamento ao Host

Provisionamento de armazenamento

É o processo de atribuir os recursos de armazenamento ao host com base nos requisitos de capacidade, disponibilidade e desempenho dos aplicativos executados nos hosts.

- Pode ser executado de duas maneiras:
 - Provisionamento de armazenamento tradicional
 - Provisionamento de armazenamento virtual

Provisionamento de armazenamento tradicional

Expansão LUN

MetaLUN

É o método de expandir as LUNs que precisam de capacidade ou desempenho adicionais.

- Criado através da combinação de duas ou mais IUNs
- MetaLUNs podem ser concatenadas ou fracionadas
- MetaLUN concatenada
 - Fornece somente capacidade adicional, mas não oferece desempenho
 - Rápida expansão enquanto os dados não são redistribuídos
- MetaLUN fracionada
 - Fornece capacidade e desempenho
 - Expansão é lenta enquanto os dados são redistribuídos

Provisionamento de armazenamento virtual

Provisionamento tradicional vs. Provisionamento virtual

Máscara de LUN

Máscara de LUN

Processo que oferece controle de acesso de dados definindo quais LUNs um host pode acessar.

- Implementado no array de armazenamento
- Impede o uso não autorizado ou acidental das LUNs em ambientes compartilhados

Tipos de sistema de armazenamento inteligente: sistemas de armazenamento high-end

- Conhecido como arrays ativo-ativo e geralmente indicados para aplicativos empresariais grandes
 - Executa I/Os para LUNs por todos caminhos disponíveis
- Estes arrays oferecem os seguintes recursos:
 - Grande capacidade de armazenamento e cache
 - Arquitetura tolerante à falhas
 - Conectividade com mainframe e sistemas abertos
 - Múltiplas portas front-end e protocolos de interface
 - Habilidade em lidar com grande volume de I/Os concorrentes
 - Suporta réplicas de dados locais e remotas

Tipos de sistema de armazenamento inteligente: sistema de armazenamento midrange

- Conhecido como arrays ativo-passivo, normalmente indicado para aplicativos de médias ou pequenas empresas
 - Executa I/Os para LUNs somente através de caminhos ativos
- Estes arrays, normalmente possuem duas controladoras, cada uma com cache, controladoras RAID e interfaces de drive de discos
- Menos portas front-end, capacidade de armazenamento e cache comparado à arrays high-end
- Suporta replicações de dados locais e remota

Módulo 4: Sistema de armazenamento inteligente

Conceito na Prática

- EMC VNX
- EMC Symmetrix VMAX

EMC VNX

- Proposta da EMC para armazenamento midrange
- Proposta de armazenamento unificado que proporciona armazenamento de dados em block, file ou object.
- Ideal para aplicativos com carga de trabalho previsível.

EMC VNX

EMC Symmetrix VMAX

- Proposta da EMC para armazenamento high-end
- Principais características do Symmetrix VMAX:
 - Aumento dimensionável para 2.400 discos
 - Suporta até 8 máquinas VMAX
 - Suporta flash drives, níveis de armazenamento totalmente automatizado (FAST), provisionamento virtual e computação em nuvem
 - Suporta até 1 TB de memória global de cache
 - Suporta FC, iSCSI, GigE e FICON para conectividade com o host
 - Suporta níveis de RAID 1, 1+0, 5 e 6
 - Suporta replicação com base em armazenamento através do FMC TimeFinder e SRDF

EMC Symmetrix VMAX

Módulo 4: Resumo

Principais pontos tratados neste módulo:

- Principais componentes do sistema de armazenamento inteligente
- Técnicas de gerenciamento e proteção do Cache
- Métodos de provisionamento de armazenamento
- Tipos de sistemas de armazenamento inteligentes