This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PLASMA TREATMENT EQUIPMENT

Patent number: JP63200533
Publication date: 1988-08-18

Publication date: 1988-08-18
Inventor: NOGAMI YUTAKA; others: 03

Applicant: ANELVA CORP

Classification:

- international: H01L21/302

- european:

Application number: JP19870033769 19870216

Priority number(s):

Abstract of JP63200533

PURPOSE:To control a plasma treatment equipment by a method wherein output informations of a monitor are approximated by a method of least square of the first degree over predetermined numbers of informations (treatment section length) which is determined by taking sampling times and periods of contained noises into account and the treatment section length is shifted in accordance with the addition of the information and informations which are obtained by the approximation are newly employed as basis. CONSTITUTION:Initial monitored informations p1-pm are picked up and used as a treatment section and an approximated line p=a1t+b1 in the section is obtained by a method of least square of the first degree. Then, by inputting an information pm+1, the treatment section is shifted by one to the informations p2-pm+1 and a line p=a2+b2 is obtained for that section. If the central points q1, q2... of the respective lines are newly employed as basic informations, these informations are less influenced by noises. If a harmful periodical noise exists, the treatment section longer than the period of the noise is selected. If the variation of the noise can be neglected, an etching end point E2 can be judged by observing an obtained basic information curve E. If the variation can not be neglected, by utilizing the fact that the coefficients a1, a2... show the tendency of variation, the values of the coefficients are plotted and the etching end point can be judged by the time when an obtained curve B crosses the time axis from the negative side.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

(54) PLASMA TREATMENT EQUIPMENT

(11) 63-200533 (A) (43)

(43) 18.8.1988 (19) JP

(21) Appl. No. 62-33769 (22) 16.2.1987

(71) ANELVA CORP (72) YUTAKA NOGAMI(3)

(51) Int. Cl. H01L21/302

PURPOSE: To control a plasma treatment equipment by a method wherein output informations of a monitor are approximated by a method of least square of the first degree over predetermined numbers of informations (treatment section length) which is determined by taking sampling times and periods of contained noises into account and the treatment section length is shifted in accordance with the addition of the information and informations which are obtained by the approximation are newly employed as basis.

CONSTITUTION: Initial monitored informations $p_1 - p_m$ are picked up and used as a treatment section and an approximated line $p = a_1 t + b_1$ in the section is obtained by a method of least square of the first degree. Then, by inputting an information p_{m+1} , the treatment section is shifted by one to the informations $p_1 - p_{m+1}$ and a line $p = a_1 + b_1$ is obtained for that section. If the central points q_1 , $q_1 \cdots q_1 \cdots q_1$ of the respective lines are newly employed as basic informations, these informations are less influenced by noises. If a harmful periodical noise exists, the treatment section longer than the period of the noise is selected. If the variation of the noise can be neglected, an etching end point E_1 can be judged by observing an obtained basic information curve E. If the variation can not be neglected, by utilizing the fact that the coefficients a_1 whow the tendency of variation, the values of the coefficients are plotted and the etching end point can be judged by the time when an obtained curve E crosses the time axis from the negative side.

0000

(

(1); data values, (2); monitored data, (3); basic data, (4); first degree and second degree differentiated value of light emission intensity (arbitrary unit), (5); light emission intensity (arbitrary unit), (6); time

THIS PAGE BLANK (USPTO)

®日本国特許庁(JP)

⑩特許出願公開-

⑫ 公 開 特 許 公 報 (A)

昭63-200533

Mint Cl.

識別記号

庁内整理番号

昭和63年(1988)8月18日 43公開

H 01 L 21/302

E-8223-5F

発明の数 1 (全6頁) 審査請求 未請求

図発明の名称 プラズマ処理装置

> 昭62-33769 创特 頣

29HH 98 昭62(1987)2月16日

裕 @発 明 者 野 上 79発 明者 浅 石

東京都府中市四谷5-8-1 日電アネルバ株式会社内

東京都府中市四谷5-8-1 敕 征仁

日軍アネルバ株式会社内 東京都府中市四谷5-8-1 日電アネルバ株式会社内

明 者 代 70発 田 砂発 明─者 塚 B

勉

東京都府中市四谷5-8-1 日電アネルバ株式会社内

願 人 日軍アネルバ株式会社 创出

東京都府中市四谷5-8-1

弁理士 村上 の代 理 人 健次

1. 発明の名称

ブラズマ処理装置

2. 特許請求の範囲

(1) 装置内に作り出されている「プラズマの状 態」、または、装置内の圧力,装置への投入電力, あるいは反射電力等の「装置の状態」をサンプリ ング的にモニターし、モニターした結果に基づい て必要な制御を行なうようにしたプラズマ処理装 ・産において、

該モニターからの出力データを、 そのサンプリ ング時間間隔と該出力データが含むノイズの周期 との両者を勘案した所定個数(従って、 所定処理 区間長)に亙って、1次の最小2乗近似処理を行 ない、かつその処理区間は、該出力データが新た に追加されるに従って移動させるようにし、 かか る処理で得られるデータを改めて基礎データとし て用いることによって、 該必要な制御を行なうよ うに構成したことを特徴とするブラズマ処理装置 3. 発明の詳細な説明

-1-

(産業上の利用分野)

本発明は、 装置内に作り出されている「プラズ マの状態」又は「装置の状態」に応じて必要な制 御が行なわれるブラズマ処理装置に関するもので ある.

(従来の技術とその問題点)

近来の半導体製造用プラスマ処理装置に対する 高精度加工の要求は、「プラズマ及び装置の状態」 をより厳密に監視、 コントロールすることを求め ている。即ちそれは、 装置内に作り出されている 「プラズマの状態」又は「装置の状態」に応じて 制御される諸装置が、より正確により迅速に動作 することを要求している。 プラズマ処理装置と してドライエッチング装置を例にとれば、 当該制 御装置としては、終点検出装置、自動マッチング 装置、自動調圧装置等がある。

例えば、ドライエッチングの終点を自動的に検出 する方法としては、 従来、 被エッチング膜種やエ ッチングガス種に応じて、特定の波長の発光強度 を測定して行なう発光分光法が広く用いられてい

発光現象に注目し発光強度を測定してエッチングの終点を判定する方法としては、例えば、特別昭58-215030号公報に記載のように、エッチング前の発光地較して、この値が記憶して約25分別値に戻ったときを終点とする方法や、例は、特別昭58-23号公報に記載のように、発光強度の差分、即ち勾配が所定移動平均値以下となる点を終点とする方式がある。

しかし実際に得られる発光強度の測定データに は次の2つの問題点がある。

問題の1つは、周期のない浮動即ちレベル変動が測定値に合有されている場合のあることであって、「プラズマの状態」をモニターする場合には、このレベル変動が容易にエッチング終了時の信号変動量を超過するため、検出の基準即ち関値を無意味にしてしまうことである。

例えば、この頃のSiO。のコンタクトホール をエッチングする場合がそれに当たる。この場合

-3-

るを得ない。

これらの問題は、自動マッチング装置の制御で反射パワーを測定する場合や、自動調圧装置の制御に当たって圧力計で圧力を測定する場合等、他の現象を検出する際も同じであって、高精度の制御を実現するためには、ノイズレスの信号を制御装置にフィードバックさせてやる必要があり、上記問題の解決が強く忽まれている。

のパターンの間口比は 5 %以下しかないものもある。 そうしたエッチングでは、 検出される信号を 2 万倍程にも増幅しないと、 判定に足る変化が生じないが、 そこで生じた検出信号の変化は、 微少の投入パワーの誤差、 圧力の誤差、 ガス流量の誤 差等で簡単に引き起こされる程度のものである。

また、バッチ式の装置においては、必ずしもフルロードの状態で稼働させるわけでなく、 ダミーウェハーを数枚入れて稼働させることがしばしばあるが、その時にはダミーウェハーの枚数が変化すると発光強度のレベル変動が起こる。

問題点の他の1つは、比較的長周期の雑音成分が測定データに含まれている場合があることであり、モニターの出力データには、数Hz~0.05Hzの周期の大きい雑音成分が含まれていることが多く、これを除去するためには、サンプリング間隔を10~20秒位に比較的長くとったりして、雑音の影響を極力少なくする方法を採用せざ

-4-

(発明の目的)

本発明は、上記従来技術における欠点を解決し、 ノイズの影響を受けることなく、 装置内の「プラ ズマの状態」または「装置の状態」に基づいて正 確に制御を行なうことの出来るブラズマ処理装置 を提供することを目的とする。

(問題点を解決するための手段)

g. €

観測データが新たに追加されるに従ってその方向 に移動させるようにし、かかる処理で得られるデ ータを改めて基礎データとして用いることによっ て、前記必要な制御を行なうように構成したもの である。

(作用)

問題解決の為に採用した上記の手段を詳細に説明しつゝその作用を以下に述べる。

本発明を使う第1の方法を具体的に、第1図の観測データのグラフを使って説明する。

先ず、一定のサンブリング問隔で(一般には一定でなくともよい)連続的にモニターして得られた最初のm個の観測データp: ~p。(白小丸)を取り上げ、それを処理区間として、これらを通る1次の最小2乗近似直線、

p = a i・t + b i① を求める。

次に観測データp a.v. が入力されると、 処理区間をその観測データの方向、即ち一つ右に、 移動

-7-

きさでしかない場合は、上記の方法で得た基礎データに注目するだけで、エッチング終点の判定は十分に可能であるが、そうでない場合は、 考えを変えて更に次のような、 本発明を使う第2の方法で指標となるデータを求めなければならない。

即ち、この第2の方法では、上記のようにして 求めた各最小2乗近似直線の式の変数 t の係数で ある a 1 . a 2 , a 3 · · · · が、各最終観測データ 点の「役方の1次景分値」に相当しており、これ もまた変化の傾向を現していることに注目して、 その値の変動によって判定を行なうのである。

また必要な場合は、更にこの 1 次数分値の差分を逐次算出して 2 次数分値を求め、その値をプロットして連ね、その変化を見ることで判定を行なうものである。

これらの2次の微分値を求める際に、 直前の値 との差分を逐次とるよりは、 むしろ、 幾つか問を 置いて一定個数だけ前のブロット値との差分をと ることによってノイズの影響を更に小さくした判 定用データが得られる。 させてpg ~ pa.」に対して同様の最小2乗近似直線、

p = a 2・t + b 2②
を求める。 この操作を繰り返して最小2乗近似直線 ③. ④・・・を求める。

そして、これら各直線をそれぞれの処理区間で切り取って得た各線分の中心点の値、 q 1. q 2. q 2・・・(黒小丸)を、その各連続した観測データ(白小丸)に対応する各基礎データ値として改めて採用する。 そのようにして得られる基礎データ(黒小丸)の連なりは、明らかに観測データ(白小丸)の連なりに比べてノイズの影響の少ないデータとなっている。

明らかに有客とみられる大きい振幅を持つ周期的ノイズがあるとき、そののうち最長周期を有するノイズよりも更に長い時間区間を処理区間として、上記の操作を施すときは、耐ノイズ性の極めて大きい基礎データが得られる。

観測データが周期性の無いレベル変動を含まないか、含んでいても変動量が無視できる程度の大

-8-

(実施例)

以下本発明を、実施例によって詳細に説明する。 ただし、実施例においては、ドライエッチング装 置の終点検出装置に限定して説明を進める。

第2図は、本発明を平行平板型ドライエッチング装置に適用した実施例の装置の要部の原理的説明図である。 1 はエッチングチャンバー、 2 はカソード、 3 はウェハー、 4 はガス導入管、 5 は高間波電源、 6 はガラス窓、 7 は干渉フィルター、 8 は光電変換器、 9 はアナログアンプ、 1 0 は A / D変換器、 1 0 0 はモニター、 1 1 はマイクロコンピューターである。

これを動作するには、カソード2上にウェハー3を載匿し、図示しない排気系により所定の真空度まで排気し、ガス導入管4によりエッチングガス導入を開始した後、高周波電源5によりカソード4に高周波パワーを印加することにより放電を発生させる。

プラズマからの発光は、ガラス窓6からモニタ

ー100に入る。即ち、干渉フィルターアを通り、 光電変換器8に取り込まれ、ここで電気信号に変 換された信号は、A/Dコンパータ10でディジ タルデータに変換されて出力データ(観測データ) となり、等時間間隔でマイクロコンピューター1 1に取り込まれて演算処理が行なわれる。

先ずレベル変動が全く無いか、または非常に小さい第4図の場合をとりあげてエッチングの終点 検出方法について述べる。この場合は曲線Dが観測されるデータであるが図に見るように 1 秒程度 の周期の雑音を含む。

この図の区画ドの部分を拡大図示したのが第1 図であると考え、第1図に戻って説明すると、す でに述べたように、まず、データに含まれる雑音 の周期が1秒であることを考慮して処理区間を6 秒とし、観測データのサンブリングの時間間隔を 1.5秒と定める。従って、1組の観測データの 個数は5である。

そして5個の観測データロ1~ psを通る1次の

-11-

&点がエッチング将点として判定される。

以上のようにするときは、エッチング終了に伴う信号変化量とノイズの大きさとがほぼ同程度であるにもかかわらず、エッチング終点の十分に判定可能な曲線 B が得られている。

次に、 観測データが周期性の無い大きいレベル変動を含む場合は、上述の方法は無力であるため、次記のような演算処理によって指標となるデータを求めることになる。

このときの観測データ即ち測定された発光強度 をそのま、グラフに描いてみると第3図の曲線 I のようになる。点 I 2 がエッチングの終点で、そ の後のエッチングでは点線のように進行する。

この場合は無周期のレベル変動があるため、曲 は「が I', 「"のように昇降するので、エッチ ング終点 I 2 の把握が困難である。

この場合、実施例の装置はつぎのように動作する。即ち、

先ず、 サンプリング間隔を一定にして連続して

最小2乗近似直線①(p=a,・t+b,)を求める。(この演算処理によって求められるもの I 次項の係数 a,は、その処理区間の最終観測データなps に対する近似後方 1 次数分値となっている。)

次いで1. 5秒後に新たな観測データ p_e が一つ追加されると、マイクロコンピューターは近似処理区間全体を1. 5秒だけ右方向に移動させる。そして新たな処理区間で、観測データ $p_2\sim p_e$ に対して上述と同様な演算処理を行ない、1次の最小2乗近似直線②($p=a_2\cdot t+b_2$)を求める。以下、このような演算処理を繰り返して③、④・・を求めてゆく。

そして、これらの近似直線をそれぞれの6秒の 処理区間で切り取って得た各線分の中心点の値、 q1, q2, q3・・・を求め、これを連続した観想 データp1, p2, p3・・・に対応する基礎データ 値として改めて採用する。

そのようにして得られた点の連なりを描いたの が第4図の曲線 Bである。

この場合は曲線ドが大きく低下する点、即ちBa

-12-

人力された最初のm個(さきは5個であったが、一般化している)のデータp, ~p。 について、これらを通る1次の最小2築近似直線

p = a1・t + b1 により a1を求め、次にデータ p • • • 1 が入力されると、 p 2 ~ p • • • 1 に対して同様の最小2乗近似直線 p = a2・t + b2を求めてa2を得る。この操作を繰り返るまで、で次いが n・a+l (n:データの総数) になるを決して、で次々と a,を求める。 求めた a,を第3図に出いたのがはない。 そのなはまだによりない。 そのないない。 そのははいずいて、サンプリング間隔としての問題とを逐びいたが、サンプリング間隔としての問題とを逐びいいで定めた所定個数だけ前のa,との差分を必びいてこれを第3図に併記すると、曲線Bが得られる。

発明者等の実験によれば、曲線Bはエッチングの終点検出に極めて有用であり、曲線Bが負側に大きく振られた後、上昇に転じて最初にX軸を検切る点B2が、エッチングの終点とよく一致する

ことが明らかになった。

曲線Bに続く点線の曲線は、 終点に違した後も、 高周波電力の印加を止めないでエッチングを統行 した場合の推移を示す。

ところで、第3図に併記した曲線4は、誤差が比較的小さいとされている中心差分を逐次算出してプロットした1次微分曲線であるが、雑音の影響が非常に大きく現れており、これでは更に差分をとって2次微分曲線を作ってみても判断曲線として役に立たないことが容易に組像できる。

以上、本発明をドライエッチング装置の終点検出装置に限定して説明をしてきたが、この、観測データに最小2乗法を適用して基礎データを作出し、フィードバック用データ等を製作する方法が、装置内に作り出されている「プラズマの状態」又は「装置の状態」に応じて制御される諸装儀、自動マッチング装置、自動調圧装置等に極めて大きい利用価値を持つことは、説明を駆せず明らかで

-15-

検出装置に適用した場合の発光強度及びその近似 データの出力例。

1; エッチングチャンパー、 2; カソード、

3; ウェハー、 4; ガス導入管、

5; 高周波電源、 6; ガラス窓、

7; 干渉フィルター、 8; 光電変換器、

9; アナログアンプ、10; A/D変換器

11: マイクロコンピューター、

100; モニター。

特許出願人 日電アネルバ株式会社 代理人 弁理士 村上 健次 ある.

更にまた上記実施例同様に、プラズマCVD・スパッタリング装置等のプラズマ処理装置の各制 御装置に対しても本発明は明らかに適用可能である。

(発明の効果)

本発明によって、 ノイズの影響を受けることなく、 装置内に作り出されている「ブラズマの状態」 又は「装置の状態」に応じてブラズマ処理装置を 制御することが可能となる。

4. 図面の簡単な説明

第1図:本発明の観測データ近似法の説明図。 第2図:本発明を平板平行型ドライエッチング 装置に適用した場合の、要部構成の原理的説明図。

第3図: 本発明をドライエッチング装置の終点 検出装置に適用した場合の発光強度及びその処理 データの出力例。

第4回; 本発明をドライエッチング装置の終点

-16-

-17-

