Departamento Académico de Economía Matemáticas III (130651) Segundo Semestre 2016

Profesores D. Winkelried, O. Bueno, J. Zúñiga, D. Bohorquez, C. Aparicio e Y. García

Práctica Calificada 2

1. Matrices antisimétricas (6 ptos)

Una matriz M de dimensión $n \times n$ es antisimétrica si M = -M'. Suponga que A es antisimétrica:

- a) (1 pto) Muestre que para cualquier vector $x \in \mathbb{R}^n$ se cumple que x'Ax = 0.
- b) (2 ptos) Muestre que si λ es un valor propio de A, entonces $-\lambda$ también lo es.
- c) (1 pto) Muestre que si n es impar, entonces A es singular.
- d) (2 ptos) Muestre que los valores propios no nulos de A son números imaginarios puros $(\pm qi)$.

2. Raíz cuadrada de una matriz (4 ptos)

Se sabe que $\lambda_1 = 4$ y $\lambda_2 = 9$ son dos valores propios de la matriz:

$$\mathbf{A} = \left[\begin{array}{ccc} 10 & -7 & 1 \\ -7 & 18 & -7 \\ 1 & -7 & 10 \end{array} \right] .$$

- a) (2 ptos) Encuentre las matrices P y D tales que A = PDP'.
- b) (2 ptos) Encuentre una matriz B cuadrada tal que A = BB'.

3. Diagonalización de formas cuadráticas (4 ptos)

Considere la matriz

$$\mathbf{A} = \left[\begin{array}{rrr} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5 \end{array} \right] .$$

- a) (2 ptos) Si se sabe que $\lambda_1 = 2$ es un valor propio de A, encuentre las matrices P y D tales que A = PDP'.
- b) (2 ptos) Sea Q(x) = x'Ax la forma cuadrática asociada. Exprese Q(x) exclusivamente como una suma de cuadrados y determine el signo (tipo) de Q(x).

4. Misceláneos (6 ptos)

Discuta la veracidad de las siguientes afirmaciones:

- a) (2 ptos) Si A es una matriz no nula de dimensión $n \times n$ y x es un vector de \mathbb{R}^n , entonces $Q(x) = ||Ax||^2$ es tal que Q(x) > 0 para todo $x \neq 0$.
- b) (2 ptos) Sea s el vector suma (un vector lleno de unos) en \mathbb{R}^n . Si

$$oldsymbol{A} = oldsymbol{I}_n - rac{oldsymbol{ss'}}{n}$$
 ,

entonces Q(x) = x'Ax nunca podrá ser un número negativo.

c) (2 ptos) Si A es una matriz de dimensión $n \times n$ simétrica e idempotente de rango r < n, entonces la forma cuadrática Q(x) = x'Ax puede ser expresada como la suma de r cuadrados.