Existence, uniqueness, and numerical analysis of a time-dependent problem for linearly elastic flexural shells

Joint work with Luisa Piersanti and Xiaoqin Shen

Paolo Piersanti

Institute of Mathematics and Scientific Computing University of Graz, Austria

Paris, 16–19 December 2019

Table of Contents I

- Background and notation
- 2 Statement of the problem
- 3 Numerical experiments

Paolo Piersanti 2 / 27

Let ω be a domain in \mathbb{R}^2 with boundary γ . Let $\gamma_0 \subset \gamma$.

• The map $m{ heta}:\overline{\omega} o\mathbb{E}^3$ models a surface $m{ heta}(\overline{\omega})$ in the Euclidean space \mathbb{E}^3

•
$$\boldsymbol{a}_{\alpha}(y) := \partial_{\alpha} \boldsymbol{\theta}(y)$$
 $\boldsymbol{a}^{3}(y) = \boldsymbol{a}_{3}(y) := \frac{\boldsymbol{a}_{1}(y) \wedge \boldsymbol{a}_{2}(y)}{|\boldsymbol{a}_{1}(y) \wedge \boldsymbol{a}_{2}(y)|}$

- $ullet \ oldsymbol{a}^{lpha} \cdot oldsymbol{a}_{eta} = \delta^{lpha}_{eta}, \qquad a := \det(a_{lphaeta})$
- First Fundamental Form: $a_{\alpha\beta}:={m a}_{\alpha}\cdot{m a}_{\beta}$ $a^{\alpha\beta}:={m a}^{\alpha}\cdot{m a}^{\beta}$
- Second Fundamental Form: $b_{\alpha\beta} := a^3 \cdot \partial_{\beta} a_{\alpha}, \quad b_{\alpha}^{\beta} := a^{\beta\sigma} \cdot b_{\sigma\alpha}$
- $a^{\alpha\beta\sigma\tau,\varepsilon} := \frac{2\lambda^{\varepsilon}\mu^{\varepsilon}}{\lambda^{\varepsilon} + 2\mu^{\varepsilon}} a^{\alpha\beta}a^{\sigma\tau} + 2\mu^{\varepsilon}(a^{\alpha\sigma}a^{\beta\tau} + a^{\alpha\tau}a^{\beta\sigma})$
- $\Gamma^{\sigma}_{\alpha\beta} := \partial_{\alpha} \boldsymbol{a}_{\beta} \cdot \boldsymbol{a}^{\sigma}$
- $\gamma_{\alpha\beta}(\boldsymbol{\eta}) := \frac{1}{2}(\partial_{\alpha}\eta_{\beta} + \partial_{\beta}\eta_{\alpha}) \Gamma^{\sigma}_{\alpha\beta}\eta_{\sigma} b_{\alpha\beta}\eta_{3}$

0

$$\rho_{\alpha\beta}(\boldsymbol{\eta}) := \partial_{\alpha\beta}\eta_3 - \Gamma^{\sigma}_{\alpha\beta}\partial_{\sigma}\eta_3 - b^{\sigma}_{\alpha}b_{\sigma\beta}\eta_3 + b^{\sigma}_{\alpha}(\partial_{\beta}\eta_{\sigma} - \Gamma^{\tau}_{\beta\sigma}\eta_{\tau})$$
$$+ b^{\tau}_{\beta}(\partial_{\alpha}\eta_{\tau} - \Gamma^{\sigma}_{\alpha\tau}\eta_{\sigma}) + (\partial_{\alpha}b^{\tau}_{\beta} + \Gamma^{\tau}_{\alpha\sigma}b^{\sigma}_{\beta} - \Gamma^{\sigma}_{\alpha\beta}b^{\tau}_{\sigma})\eta_{\tau}$$

Time-dependent version of linearised change of metric tensor

Recall that

$$\gamma_{\alpha\beta}(\boldsymbol{\eta}) := \frac{1}{2} (\partial_{\alpha}\eta_{\beta} + \partial_{\beta}\eta_{\alpha}) - \Gamma^{\sigma}_{\alpha\beta}\eta_{\sigma} - b_{\alpha\beta}\eta_{3}.$$

Define functions

$$\tilde{\gamma}_{\alpha\beta}: L^2(0,T;H^1(\omega)\times H^1(\omega)\times L^2(\omega))\to L^2(0,T;L^2(\omega)),$$

by

$$\tilde{\gamma}_{\alpha\beta}(\boldsymbol{\eta})(t) := \gamma_{\alpha\beta}(\boldsymbol{\eta}(t)) \text{ for all } \boldsymbol{\eta} \in L^2(0,T;H^1(\omega) \times H^1(\omega) \times L^2(\omega)),$$

for a.a. $t \in (0,T)$.

These functions are linear and continuous.

Time-dependent version of linearised change of curvature tensor

Recall that

$$\rho_{\alpha\beta}(\boldsymbol{\eta}) := \partial_{\alpha\beta}\eta_3 - \Gamma^{\sigma}_{\alpha\beta}\partial_{\sigma}\eta_3 - b^{\sigma}_{\alpha}b_{\sigma\beta}\eta_3 + b^{\sigma}_{\alpha}(\partial_{\beta}\eta_{\sigma} - \Gamma^{\tau}_{\beta\sigma}\eta_{\tau})$$

$$+ b^{\tau}_{\beta}(\partial_{\alpha}\eta_{\tau} - \Gamma^{\sigma}_{\alpha\tau}\eta_{\sigma}) + (\partial_{\alpha}b^{\tau}_{\beta} + \Gamma^{\tau}_{\alpha\sigma}b^{\sigma}_{\beta} - \Gamma^{\sigma}_{\alpha\beta}b^{\tau}_{\sigma})\eta_{\tau}$$

Define functions

$$\tilde{\rho}_{\alpha\beta}: L^2(0,T;H^1(\omega)\times H^1(\omega)\times H^2(\omega))\to L^2(0,T;L^2(\omega)),$$

by

$$\tilde{\rho}_{\alpha\beta}(\boldsymbol{\eta})(t) := \rho_{\alpha\beta}(\boldsymbol{\eta}(t))$$
 for all $\boldsymbol{\eta} \in L^2(0,T;H^1(\omega) \times H^1(\omega) \times H^2(\omega)),$

for a.a. $t \in (0,T)$.

These functions are linear and continuous.

$$\Omega^{\varepsilon} := \omega \times] - \varepsilon, \varepsilon[$$

•
$$\Gamma_0^{\varepsilon} := \gamma_0 \times [-\varepsilon, \varepsilon]$$

- $\Gamma^{\varepsilon}_{+} := \omega \times \{\pm \varepsilon\}$
- $\bullet \ \Theta(\boldsymbol{x}^{\varepsilon}) := \boldsymbol{\theta}(y) + x_3^{\varepsilon} \boldsymbol{a}^3(y), \quad \text{ for all } x^{\varepsilon} = (y_1, y_2, x_3^{\varepsilon}) \in \overline{\Omega^{\varepsilon}}$
- $oldsymbol{\circ} \ oldsymbol{g}_i^arepsilon(x^arepsilon) := \partial_i^arepsilon oldsymbol{\Theta}(x^arepsilon), \qquad oldsymbol{g}^{j,arepsilon}(x^arepsilon) \cdot oldsymbol{g}_i^arepsilon(x^arepsilon) = \delta_i^j$

The shell is subjected to applied body forces whose density per unit volume is defined by means of its contravariant components

$$f^{i,\varepsilon} \in L^{\infty}(0,T;L^2(\Omega^{\varepsilon})),$$

and to applied surface forces whose density per unit area is defined by means of its contravariant components

$$h^{i,\varepsilon} \in L^{\infty}(0,T; L^2(\Gamma_+^{\varepsilon} \cup \Gamma_-^{\varepsilon})).$$

For a.a. $t \in (0,T)$, we define the *dynamic load* acting on the shell via its contravariant components

$$p^{i,\varepsilon}(t) := \left\{ \int_{-\varepsilon}^{\varepsilon} f^{i,\varepsilon}(t) \,\mathrm{d}x_3^{\varepsilon} + h_+^{i,\varepsilon}(t) + h_-^{i,\varepsilon}(t) \right\} \in L^2(\omega) \text{ for a.a. } t \in (0,T),$$

where $h^{i,\varepsilon}_+(t):=h^{i,\varepsilon}(t)(\,\cdot\,,\pm\varepsilon)\in L^2(\omega)$, for a.a. $t\in(0,T)$.

Definition of linearly elastic flexural shell

A linearly elastic shell is said to be a *linearly elastic flexural shell* (from now on *flexural shell*) if the following *two additional assumptions* are satisfied

- (1) length $\gamma_0 > 0$, i.e., the homogeneous boundary condition of place is imposed over a portion of the lateral face $\gamma \times [-\varepsilon, \varepsilon]$ of the shell,
- (2) the space of admissible linearized inextensional displacements

$$V_F(\omega) := \{ \boldsymbol{\eta} = (\eta_i) \in H^1(\omega) \times H^1(\omega) \times H^2(\omega);$$

$$\eta_i = \partial_{\nu} \eta_3 = 0 \text{ on } \gamma_0 \text{ and } \gamma_{\alpha\beta}(\boldsymbol{\eta}) = 0 \text{ in } \omega \}$$

contains nonzero functions; equivalently,

$$V_F(\omega) \neq \{\mathbf{0}\}.$$

Two examples of flexural shells

Figure: Figure 6.1-1 of P. G. Ciarlet, Mathematical Elasticity. Volume III: Theory of Shells. Two linearly elastic flexural shells. A shell whose middle surface $S = \theta(\overline{\omega})$ is a portion of a cylinder and which is subjected to a boundary condition of place (i.e., of vanishing displacement field) along a portion (darkened on the figure) of its lateral face whose middle curve $\theta(\gamma_0)$ is contained in one or two generatrices of S, provides an instance of a linearly elastic flexural shell, i.e., one for which the space $V_F(\omega)$ contains nonzero functions η .

Paolo Piersanti 9 / 27

Two examples of flexural shells (Continued)

Figure: Figure 6.1-2 of P. G. Ciarlet, Mathematical Elasticity. Volume III: Theory of Shells. Two linearly elastic flexural shells. A shell whose middle surface $S = \theta(\overline{\omega})$ is a portion of a cone excluding its vertex and which is subjected to a boundary condition of place along a portion (darkened on the figure) of its lateral face whose middle curve $\theta(\gamma_0)$ is contained in one generatrix of S, provides another instance of a linearly elastic flexural shell.

Paolo Piersanti 10 / 27

Korn's inequality for general surfaces

Let ω be a domain in \mathbb{R}^2 and let $\theta \in \mathcal{C}^3(\overline{\omega}; \mathbb{E}^3)$ be an immersion. Let γ_0 be a $d\gamma$ -measurable relatively open subset of $\gamma = \partial \omega$ that satisfies

length
$$\gamma_0 > 0$$

and let the space $V_K(\omega)$ be defined as $(\partial_{\nu}$ denotes the outer normal derivative operator along γ)

$$V_K(\omega) := \{ \boldsymbol{\eta} = (\eta_i) \in H^1(\omega) \times H^1(\omega) \times H^2(\omega); \eta_i = \partial_{\nu} \eta_3 = 0 \text{ on } \gamma_0 \}.$$

Then there exists a constant $c_F = c_F(\omega, \gamma_0, \boldsymbol{\theta}) > 0$ such that

$$\left\{ \sum_{\alpha} \|\eta_{\alpha}\|_{1,\omega}^{2} + \|\eta_{3}\|_{2,\omega}^{2} \right\}^{1/2} \leq c_{F} \left\{ \sum_{\alpha,\beta} |\gamma_{\alpha\beta}(\boldsymbol{\eta})|_{0,\omega}^{2} + \sum_{\alpha,\beta} |\rho_{\alpha\beta}(\boldsymbol{\eta})|_{0,\omega}^{2} \right\}^{1/2}$$

for all
$$\boldsymbol{\eta}=(\eta_i)\in \boldsymbol{V}_K(\omega)$$
.

Table of Contents I

- Background and notation
- 2 Statement of the problem
- 3 Numerical experiments

Paolo Piersanti 12 / 27

Problem $\mathcal{P}_F^{\varepsilon}(\omega)$ (Xiao, 2001)

Find a vector field $\boldsymbol{\zeta}^{\varepsilon} = (\zeta_i^{\varepsilon}) : (0,T) \to \boldsymbol{V}_F(\omega)$ such that

$$\boldsymbol{\zeta}^{\varepsilon} \in L^{\infty}(0, T; \boldsymbol{V}_{F}(\omega)),$$

$$\dot{\boldsymbol{\zeta}}^{\varepsilon} \in L^{\infty}(0, T; \boldsymbol{L}^{2}(\omega)),$$

$$\ddot{\boldsymbol{\zeta}}^{\varepsilon} \in L^{\infty}(0, T; \boldsymbol{V}_{F}^{*}(\omega)),$$

that satisfies the following variational equations

$$2\varepsilon^{3}\rho \frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} \int_{\omega} \zeta_{i}^{\varepsilon}(t) \eta_{i} \sqrt{a} \,\mathrm{d}y + \frac{\varepsilon^{3}}{3} \int_{\omega} a^{\alpha\beta\sigma\tau} \rho_{\sigma\tau}(\boldsymbol{\zeta}^{\varepsilon}(t)) \rho_{\alpha\beta}(\boldsymbol{\eta}) \sqrt{a} \,\mathrm{d}y = \int_{\omega} p^{i,\varepsilon}(t) \eta_{i} \sqrt{a} \,\mathrm{d}y,$$

for all $\eta = (\eta_i) \in V_F(\omega)$, in the sense of distributions in (0,T), and that satisfies the following initial conditions

$$\begin{cases} \boldsymbol{\zeta}^{\varepsilon}(0) = \boldsymbol{\zeta}_{0}, \\ \dot{\boldsymbol{\zeta}}^{\varepsilon}(0) = \boldsymbol{\zeta}_{1}, \end{cases}$$
 (IC)

where $\zeta_0 \in V_F(\omega)$ and $\zeta_1 \in L^2(\omega)$ are prescribed.

Rigorous definition of the concept of solution

We say that ζ^{ε} is a *weak solution* of Problem $\mathcal{P}_F^{\varepsilon}(\omega)$ if

$$\boldsymbol{\zeta}^{\varepsilon} \in L^{\infty}(0, T; \boldsymbol{V}_{F}(\omega)),$$

$$\dot{\boldsymbol{\zeta}}^{\varepsilon} \in L^{\infty}(0, T; \boldsymbol{L}^{2}(\omega)),$$

$$\ddot{\boldsymbol{\zeta}}^{\varepsilon} \in L^{\infty}(0, T; \boldsymbol{V}_{F}^{*}(\omega)),$$

if ζ^{ε} satisfies the variational equations of Problem $\mathcal{P}_F^{\varepsilon}(\omega)$ in the sense of distributions in (0,T), and also satisfies the initial conditions (IC).

We say that ζ^{ε} is a *strong solution* of Problem $\mathcal{P}_F^{\varepsilon}(\omega)$ if

$$\boldsymbol{\zeta}^{\varepsilon} \in \mathcal{C}^0([0,T]; \boldsymbol{V}_F(\omega)) \cap \mathcal{C}^1([0,T]; \boldsymbol{L}^2(\omega)),$$

if ζ^{ε} satisfies the variational equations of Problem $\mathcal{P}_F^{\varepsilon}(\omega)$ in the sense of distributions in (0,T), and also satisfies the initial conditions (IC).

Existence and uniqueness of strong solutions of Problem $\mathcal{P}_F^{\varepsilon}(\omega)$. Classical approach (Lions, 1969)

Define the space

$$\boldsymbol{H}_F(\omega) := \overline{\boldsymbol{V}_F(\omega)}^{\|\cdot\|_{\boldsymbol{L}^2(\omega)}},$$

and observe that it is a closed subspace of $L^2(\omega)$.

Identify the space $H_F(\omega)$ with its dual, and equip it with the same standard inner product $(\cdot, \cdot)_{L^2(\omega)}$ of $L^2(\omega)$.

Observe that the following chain of compact embeddings holds

$$V_F(\omega) \hookrightarrow \hookrightarrow H_F(\omega) \hookrightarrow \hookrightarrow V_F^*(\omega).$$

Derive the existence and uniqueness.

Existence and uniqueness of strong solutions of Problem $\mathcal{P}_F^{\varepsilon}(\omega)$ by penalty method

From now onward, we identify $L^2(\omega)$ and $\boldsymbol{L}^2(\omega)$ with their respective dual spaces, and we equip them with the following inner products

$$(\eta, \boldsymbol{\xi}) \in L^2(\omega) \times L^2(\omega) \to \int_{\omega} \eta \boldsymbol{\xi} \sqrt{a} \, dy,$$

 $(\boldsymbol{\eta}, \boldsymbol{\xi}) \in \boldsymbol{L}^2(\omega) \times \boldsymbol{L}^2(\omega) \to \int_{\omega} \eta_i \boldsymbol{\xi}_i \sqrt{a} \, dy.$

Let $\kappa > 0$ denote the *penalty parameter*.

We consider the following chain of compact embeddings

$$V_K(\omega) \hookrightarrow \hookrightarrow L^2(\omega) \hookrightarrow \hookrightarrow V_K^*(\omega).$$

The penalised problem: Problem $\mathcal{P}_{F,\kappa}^{\varepsilon}(\omega)$

Find a vector field $\boldsymbol{\zeta}_{\kappa}^{\varepsilon}=(\zeta_{i,\kappa}^{\varepsilon}):[0,T]\to \boldsymbol{V}_{K}(\omega)$ such that

$$\boldsymbol{\zeta}_{\kappa}^{\varepsilon} \in \mathcal{C}^{0}([0,T]; \boldsymbol{V}_{K}(\omega)) \cap \mathcal{C}^{1}([0,T]; \boldsymbol{L}^{2}(\omega)),$$

that satisfies the following variational equations

$$2\varepsilon^{3}\rho \frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} \int_{\omega} \zeta_{i,\kappa}^{\varepsilon}(t) \eta_{i} \sqrt{a} \,\mathrm{d}y + \frac{\varepsilon^{3}}{3} \int_{\omega} a^{\alpha\beta\sigma\tau} \rho_{\sigma\tau} (\boldsymbol{\zeta}_{\kappa}^{\varepsilon}(t)) \rho_{\alpha\beta}(\boldsymbol{\eta}) \sqrt{a} \,\mathrm{d}y + \frac{1}{\kappa} \int_{\omega} a^{\alpha\beta\sigma\tau} \gamma_{\sigma\tau} (\boldsymbol{\zeta}_{\kappa}^{\varepsilon}(t)) \gamma_{\alpha\beta}(\boldsymbol{\eta}) \sqrt{a} \,\mathrm{d}y = \int_{\omega} p^{i,\varepsilon}(t) \eta_{i} \sqrt{a} \,\mathrm{d}y,$$

for all $\eta \in V_K(\omega)$, in the sense of distributions in (0,T), and which satisfies the initial conditions

$$\begin{cases} \boldsymbol{\zeta}^{\varepsilon}(0) = \boldsymbol{\zeta}_{0}, \\ \dot{\boldsymbol{\zeta}}^{\varepsilon}(0) = \boldsymbol{\zeta}_{1}, \end{cases}$$

where $\zeta_0 \in V_F(\omega)$ and $\zeta_1 \in L^2(\omega)$ are prescribed.

Theorem

Problem $\mathcal{P}^{\varepsilon}_{F,\kappa}(\omega)$ admits a unique strong solution

$$\boldsymbol{\zeta}_{\kappa}^{\varepsilon} \in \mathcal{C}^{0}([0,T]; \boldsymbol{V}_{K}(\omega)) \cap \mathcal{C}^{1}([0,T]; \boldsymbol{L}^{2}(\omega)).$$

Besides, up to passing to a suitable subsequence, the sequence $(\zeta_{\kappa}^{\varepsilon})_{\kappa>0}$ satisfies the following convergences

$$\begin{split} \boldsymbol{\zeta}_{\kappa}^{\varepsilon} &\overset{*}{\rightharpoonup} \boldsymbol{\zeta}^{\varepsilon}, & \text{in } L^{\infty}(0,T;\boldsymbol{V}_{K}(\omega)), \\ \dot{\boldsymbol{\zeta}}_{\kappa}^{\varepsilon} &\overset{*}{\rightharpoonup} \dot{\boldsymbol{\zeta}}^{\varepsilon}, & \text{in } L^{\infty}(0,T;\boldsymbol{L}^{2}(\omega)), \\ \ddot{\boldsymbol{\zeta}}_{\kappa}^{\varepsilon} &\overset{*}{\rightharpoonup} \ddot{\boldsymbol{\zeta}}^{\varepsilon}, & \text{in } L^{\infty}(0,T;\boldsymbol{V}_{F}^{*}(\omega)), \\ \boldsymbol{\zeta}_{\kappa}^{\varepsilon} &\to \boldsymbol{\zeta}^{\varepsilon}, & \text{in } \mathcal{C}^{0}([0,T];\boldsymbol{L}^{2}(\omega)), \\ \dot{\boldsymbol{\zeta}}_{\kappa}^{\varepsilon} &\rightharpoonup \dot{\boldsymbol{\zeta}}^{\varepsilon}, & \text{in } \mathcal{C}^{0}([0,T];\boldsymbol{V}_{F}^{*}(\omega)), \\ \ddot{\gamma}_{\alpha\beta}(\boldsymbol{\zeta}_{\kappa}^{\varepsilon}) &\rightharpoonup \tilde{\gamma}_{\alpha\beta}(\boldsymbol{\zeta}^{\varepsilon}), & \text{in } L^{2}(0,T;L^{2}(\omega)), \end{split}$$

where ζ^{ε} is the unique strong solution of Problem $\mathcal{P}_{F}^{\varepsilon}(\omega)$.

Table of Contents I

- Background and notation
- 2 Statement of the problem
- 3 Numerical experiments

Paolo Piersanti 19 / 27

Conical shells

Define the domain

$$\omega := \{(y_1, y_2) \in \mathbb{R}^2; \ 0 < y_1 < \pi \text{ and } 0 < y_2 < 1\},$$

and assume that the shell is clamped along

$$\gamma_0 := \{(y_1, y_2) \in \mathbb{R}^2; \ y_1 = \pi, y_2 \in [0, 1]\}.$$

Define the middle surface parametrisation in curvilinear coordinates

$$\boldsymbol{\theta}(y_1, y_2) := (r \cos y_1, r \sin y_1, h y_2), \quad \text{ for all } (y_1, y_2) \in \overline{\omega},$$

where r > 0 and h > 0.

Figure: A cylindrical shell.

Paolo Piersanti 21/27

Choice of parameters

$$r = 0.20 \text{m},$$
 $h = 0.40 \text{m},$
 $\varepsilon = 0.002 \text{m},$
 $E = 2.1 \times 10^{11} \text{Pa},$
 $\nu = 0.3,$
 $\rho = 7.85 \times 10^3 \text{kg/m}^3,$
 $\kappa = 10^{-6},$
 $\gamma = 0.6,$
 $\beta = \frac{(1/2 + \gamma)^2}{4}.$

We consider the following dynamic loads

$$p^{1,\varepsilon}(t,y_1,y_2) = p^{2,\varepsilon}(t,y_1,y_2) = 0, \quad p^{3,\varepsilon}(t,y_1,y_2) = 20ty_1.$$

Newmark's scheme

For each $n=0,\ldots,N-2$, find $\boldsymbol{\zeta}_h^n\in \boldsymbol{V}_h$ such that

$$\begin{split} &\frac{2\varepsilon^3\rho}{(\Delta t)^2}(\boldsymbol{\zeta}_h^{n+2,\kappa}-2\boldsymbol{\zeta}_h^{n+1,\kappa}+\boldsymbol{\zeta}_h^{n,\kappa},\boldsymbol{e}_h)_{\boldsymbol{L}^2(\omega)} \\ &+a_\kappa\left(\beta\boldsymbol{\zeta}_h^{n+2,\kappa}+\left(\frac{1}{2}-2\beta+\gamma\right)\boldsymbol{\zeta}_h^{n+1,\kappa}+\left(\frac{1}{2}+\beta-\gamma\right)\boldsymbol{\zeta}_h^{n,\kappa},\boldsymbol{e}_h\right) \\ &=\left(\beta\boldsymbol{p}^{n+2}+\left(\frac{1}{2}-2\beta+\gamma\right)\boldsymbol{p}^{n+1}+\left(\frac{1}{2}+\beta-\gamma\right)\boldsymbol{p}^n,\boldsymbol{e}_h\right)_{\boldsymbol{L}^2(\omega)}, \\ &\text{for all } \boldsymbol{e}_h\in\boldsymbol{V}_h, \end{split}$$

where β and γ are given nonnegative real constants.

The vector field $\boldsymbol{\zeta}_h^{1,\kappa}$ is obtained as the unique solution of the following variational equations

$$\frac{2\varepsilon^{3}\rho}{(\Delta t)^{2}}(\boldsymbol{\zeta}_{h}^{1,\kappa} - \boldsymbol{\zeta}_{0,h} - \Delta t \boldsymbol{\zeta}_{1,h}, \boldsymbol{e}_{h})_{\boldsymbol{L}^{2}(\omega)}
+ a_{\kappa} \left(\beta \boldsymbol{\zeta}_{h}^{1,\kappa} + \left(\frac{1}{2} - \beta\right) \boldsymbol{\zeta}_{0,h}, \boldsymbol{e}_{h}\right)
= \left(\beta \boldsymbol{p}^{1} + \left(\frac{1}{2} - \beta\right) \boldsymbol{p}^{0}, \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}(\omega)}, \quad \text{for all } \boldsymbol{e}_{h} \in \boldsymbol{V}_{h}.$$

Numerical Experiments for a Cylindrical Shell

(a)
$$t = 0.00s$$

(b)
$$t = 0.10s$$

(c)
$$t = 0.20s$$

(d)
$$t = 0.30s$$

(e)
$$t = 0.40s$$

(f)
$$t = 0.50s$$

Numerical Experiments for a Cylindrical Shell (Continued)

(g)
$$t = 0.60s$$

(h)
$$t = 0.70s$$

(i)
$$t = 0.80s$$

(j)
$$t = 0.90s$$

(k)
$$t = 1.00s$$

(I)
$$t = 1.10s$$

Verification of the convergence $\boldsymbol{\zeta}_{\kappa}^{\varepsilon} \to \boldsymbol{\zeta}^{\varepsilon}$, in $\mathcal{C}^{0}([0,T];\boldsymbol{L}^{2}(\omega))$

Time	$\kappa=10^{-6}$ and $\kappa'=10^{-8}$
0.10s	8.923964821442561e-09
0.20s	2.9976395853899877e-08
0.30s	6.320529449051073e-08
0.40s	1.0911183801720238e-07
0.50s	1.6750799347387358e-07
0.60s	2.3799061869290796e-07
0.70s	3.2029549991047165e-07
0.80s	4.150932011593057e-07
0.90s	5.233865140892298e-07
1.00s	6.43545490928386e-07
1.10s	7.780641080033482e-07
1.20s	9.20683782879014e-07
1.30s	1.0773057672601421e-06
1.40s	1.248193238692263e-06

Time	$\kappa=10^{-8}$ and $\kappa'=10^{-12}$
0.10s	9.092922670431935e-13
0.20s	3.0551785666233502e-12
0.30s	6.469394300280324e-12
0.40s	1.1151143158076022e-11
0.50s	1.7097534957261284e-11
0.60s	2.4308028522236183e-11
0.70s	3.2755013818368175e-11
0.80s	4.2462762579475536e-11
0.90s	5.351133923228302e-11
1.00s	6.576490708244588e-11
0.10s	7.913665593178143e-11
1.20s	9.40539128322055e-11
1.30s	1.101622383552461e-10
1.40s	1.2757241762698354e-10

Paolo Piersanti 26 / 27

END OF THE PRESENTATION

paolo.piersanti@uni-graz.at

Paolo Piersanti 27 / 27