1.

$\mathbf{ISyE} \ \mathbf{3044} - \mathbf{Fall} \ \mathbf{2012} - \mathbf{Test} \ \# \mathbf{2} \ \mathbf{Solutions}$ (Revised 12/11/12)

Short-answer Arena questions.	
(a)	TRUE or FALSE? In Arena, it is possible to schedule 10 customers to show up at the same time.
	Solution: True.
(b)	Which Arena template contains a RELEASE block (i.e., not part of a PROCESS block)?
	Solution: Advanced Process. (The Blocks template would also have been acceptable.) $ \Box$
(c)	TRUE or FALSE? You can use a single Arena DECIDE block to probabilistically route customers to one of five possible destinations.
	Solution: True.
(d)	TRUE or FALSE? In Arena, you can define a nonhomogeneous Poisson customer arrival process.
	Solution: True. \square
(e)	TRUE or FALSE? The Arena manufacturing cell example that we studied in class used a set of sequences to move jobs around the cell.
	Solution: True.
(f)	If the interarrival distribution for your Arena program is NORM(2,2), what is the variance of an interarrival time?
	Solution: 4. \square

- 2. Short-answer PRN questions.
 - (a) YES or NO? Is the linear congruential generator $X_{i+1} = (7X_i 1) \text{mod}(8)$ full period?

Solution: No. For example, $X_0 = 1 \rightarrow X_1 = 6 \rightarrow X_2 = 1$, which shows that there's degeneration. \square

(b) Again consider the generator $X_{i+1} = (7X_i - 1) \mod(8)$. Using $X_0 = 1$, calculate the PRN U_{401} .

Solution: By the above problem, we see that $X_i = 6$ for all odd i. Thus, $U_{401} = X_{401}/m = 0.75$. \square

(c) Consider the generator $X_{i+1} = 16807 X_i \mod(2^{31} - 1)$. If $X_0 = 543210$, find X_2 .

Solution: Using a very precise calculator (that keeps enough integer digits in storage), or using the algorithm from class, we find that $X_1 = 539795882$ and then $X_2 = 1378463846$. \square

(d) Consider three pseudo-random numbers R_1, R_2, R_3 . Under the assumption of i.i.d. uniformity, what's the probability that $R_3 > R_1 > R_2 > 0.1$?

Solution: This is just a random permutation of the R_i 's, each of which has been constrained to be > 0.1. Therefore, the desired probability is $(0.9)^3/3! = 0.1215$. \square

(e) Consider the following 24 PRN's.

How many runs up and down do you get from this sequence?

Solution: Letting +/- denote an up / down move, respectively, we have

This translates to A = 9 runs. \Box

(f) Referring to Question 2e, do a runs up and down test on this sequence of PRN's to decide whether or not they're independent. Use $\alpha = 0.05$.

Solution: By class notes, we have

$$\mathsf{E}[A] = \frac{2n-1}{3} = 15.7$$
 and $\mathsf{Var}(A) = \frac{16n-29}{90} = 3.94.$

Then by the previous answer, we have

$$Z_0 = \frac{A - \mathsf{E}[A]}{\sqrt{\mathsf{Var}(A)}} = \frac{9 - 15.7}{\sqrt{3.94}} = 3.38.$$

Since $|Z_0| > z_{0.025} = 1.96$, we reject the null hypothesis of independence; and we conclude that the PRN's are dependent. \Box

(g) Referring to the data set from Question 2e, let's conduct a χ^2 goodness-of-fit test to test the hypothesis that the numbers are Unif(0,1). We'll use 3 equal-probability subintervals and level $\alpha = 0.10$. What's the value of the g-o-f statistic, χ_0^2 ?

Solution: The k=3 intervals are [0,1/3], (1/3,2/3], and (2/3,1], for which $E_1=E_2=E_3=24/3=8$. We easily find $O_1=10$, $O_2=5$, and $O_3=9$. Thus, $\chi_0^2=\sum_{i=1}^k(O_i-E_i)^2/E_i=1.75$. \square

(h) Referring to the instructions from Question 2g, what's the appropriate χ^2 quantile value?

Solution: $\chi^2_{0,k-1} = \chi^2_{0,10,2} = 4.61$.

(i) Again referring to the instructions from Question 2g, do we accept or reject the null hypothesis of uniformity?

Solution: Accept (er, well, fail to reject). \Box

(j) What is 0 XOR 0?

Solution: 0.

(k) Consider a Tausworthe generator with $r=2, q=3, B_1=1, B_2=0,$ and $B_3=1.$ Find $B_{100}.$

Solution: Using $B_i = (B_{i-r} + B_{i-q}) \operatorname{mod}(2) = (B_{i-2} + B_{i-3}) \operatorname{mod}(2)$, we quickly obtain

$$B_1 = 1$$
, $B_2 = 0$, $B_3 = 1$, $B_4 = 1$, $B_5 = 1$, $B_6 = 0$, $B_7 = 0$,

and then things start to repeat. (In fact, this makes sense since the bits are indeed supposed to repeat every $2^q - 1 = 7$ iterations.) Thus, $B_{100} = B_{93} = \cdots = B_2 = 0$.

- 3. Short-answer RV generation questions.
 - (a) Suppose the random variable X has p.d.f. f(x) = x/8 for $0 \le x \le 4$. Find the inverse of its c.d.f., i.e., $F^{-1}(U)$.

Solution: The c.d.f. is $F(x) = x^2/16$, for 0 < x < 4. Set $F(X) = X^2/16 = U$ and solve for $F^{-1}(U) = X = 4\sqrt{U}$.

(b) If X is standard normal, use the inverse transform method with U=0.10 to generate a realization of X.

Solution: The c.d.f. is $X = \Phi^{-1}(U) = \Phi^{-1}(0.10) = -1.28$.

(c) Suppose that X has the Weibull distribution with c.d.f. $F(x) = 1 - e^{-(\lambda x)^{\alpha}}$, for x > 0, where λ and α are positive constants. What is the distribution of the random variable 2F(X) - 1?

Solution: By the Inverse Transform Theorem, $F(X) \sim \text{Unif}(0,1)$. Thus, $2F(X) - 1 \sim \text{Unif}(-1,1)$. \square

(d) Use the PRN U=0.95 to generate a $\operatorname{Geom}(0.2)$ random variate.

Solution: By the Inverse Transform Theorem method from class,

$$X = \left\lceil \frac{\ell \ln(1 - U)}{\ell \ln(1 - p)} \right\rceil = \left\lceil \frac{\ell \ln(0.05)}{\ell \ln(0.8)} \right\rceil = 14. \quad \Box$$

I would also have accepted $X = \lceil \ln(U) / \ln(1-p) \rceil = 1$.

(e) Suppose that $U_1 = 0.1$ and $U_2 = 0.9$ are realizations of two i.i.d. Unif(0,1)'s. Use the Box–Muller method to generate two i.i.d. standard normals.

Solution: We have

$$Z_1 = \sqrt{-2\ell n(U_1)} \cos(2\pi U_2) = 1.736$$

 $Z_2 = \sqrt{-2\ell n(U_1)} \sin(2\pi U_2) = -1.262$

(f) Use your answer from Question 3e to generate a $\chi^2(2)$ random variable.

Solution: $Z_1^2 + Z_2^2 = 4.606$.

(g) If U is Unif(0,1), name the distribution of $\tan(2\pi U)$.

Solution: Cauchy.

(h) If U_1, U_2, U_3 are i.i.d. Unif(0,1), name the distribution (with parameters) of $-4\{\ell n[U_1(1-U_2)U_3]\}$.

Solution: We have

$$-4\{\ln[U_1(1-U_2)U_3]\} = -4\ln(U_1) - 4\ln(1-U_2) - 4\ln(U_3)$$

$$\sim -4\ln(U_1) - 4\ln(U_2) - 4\ln(U_3)$$

$$\sim \operatorname{Exp}(1/4) + \operatorname{Exp}(1/4) + \operatorname{Exp}(1/4)$$

$$\sim \operatorname{Erlang}_3(1/4). \quad \Box$$

(i) If U_1 and U_2 are i.i.d. Unif(0,1), name the distribution of $U_1 + U_2$.

Solution: Triangular (0,1,2).

(j) Suppose that U_1, U_2, \ldots, U_{40} are i.i.d. Unif(0,1). Name the approximate distribution (with parameters) of $\sum_{i=1}^{40} U_i$.

Solution: By the usual properties of the Unif(0,1) distribution,

$$\mathsf{E}\Big[\sum_{i=1}^{40} U_i\Big] = \sum_{i=1}^{40} \mathsf{E}[U_i] = \frac{n}{2} = 20 \quad \text{and} \quad \mathsf{Var}\Big(\sum_{i=1}^{40} U_i\Big) = \sum_{i=1}^{40} \mathsf{Var}(U_i) = \frac{n}{12} = \frac{40}{12}.$$

Then by the CLT, $\sum_{i=1}^{40} U_i \approx \text{Nor}(20, 3.33)$.

(k) Suppose that $U_1 = 0.45$, $U_2 = 0.15$, $U_3 = 0.92$, $U_4 = 0.09$, and $U_5 = 0.26$. Use our acceptance-rejection technique from class to generate a Pois($\lambda = 1.5$) random variate. (You may not need to use all of the uniforms.)

Solution: The procedure is to generate uniforms until $\prod_{i=1}^{n+1} U_i < e^{-\lambda} = 0.223$. Since $U_1U_2 = 0.068 < 0.223$, we stop with n+1=2, i.e., n=1.

(l) Suppose that X_1, X_2, X_3, X_4 are i.i.d. Exp(1/3). Give an equation involving a *single* PRN U that you can use to generate a realization of $\min\{X_1, X_2, X_3, X_4\}$.

Solution: By class notes, we know that $\min\{X_1, X_2, X_3, X_4\} \sim \operatorname{Exp}(n\lambda) \sim \operatorname{Exp}(12) = -\frac{3}{4} \ell \operatorname{n}(U)$. \square

(m) Suppose Σ is the covariance matrix arising from a vector of random variables (X_1, X_2, \ldots, X_n) . It is known that you can find a matrix C such that $\Sigma = CC'$. Who is the C named after?

Solution: Prof. Cholesky. \Box

(n) Name 4 ways that you can generate a standard normal RV.

Solution: Inverse transform, rational approximation, convolution approximation, Box–Muller, etc., etc. \Box

4. Short-answer queueing questions.

(a) Suppose I run a small hospital experiencing Poisson arrivals at the rate of 10/day. Customers are served in FIFO style and the average time in the system is 1/4 day. (I didn't say the hospital was efficient.) What is the steady-state average number of people in the system?

Solution: By Little's Law, $L = \lambda w = 10(1/4) = 2.5$.

(b) YES or NO? Is the expected steady-state time in system for an M/M/1 queue with arrival rate $\lambda=1$ and service rate $\mu=2$ shorter than the expected time in system for an M/M/2 with arrival rate $\lambda=1$ and service rate $\mu=1$ (more servers, but slower servers)?

Solution: Yes. Here's why. For the M/M/1, the traffic intensity is $\rho = \lambda/\mu = 0.5$. The expected time in system is

$$w = \frac{1}{\mu(1-\rho)} = \frac{1}{2(1-0.5)} = 1.$$

For the M/M/2, we need to do some preliminary calculations, where we use c=2 servers, arrival rate $\lambda=1$ and service rate $\mu=1$.

$$\rho = \lambda/(c\mu) = 0.5$$

$$P_0 = \left\{ \left[\sum_{n=0}^{c-1} \frac{(c\rho)^n}{n!} \right] + \left[\frac{(c\rho)^c}{(c!)(1-\rho)} \right] \right\}^{-1} = 1/3$$

$$L = c\rho + \frac{(c\rho)^{c+1}P_0}{c(c!)(1-\rho)^2} = 4/3$$

$$w = L/\lambda = 4/3.$$

So the M/M/1's time in system is < the M/M/2's. \square

(c) YES or NO? Is the expected waiting time in an M/M/1/N less than that of an M/M/1 with the same λ and μ ?

Solution: Yes (since there won't be as many customers entering the M/M/1/N). \square