Inverse Kinematics

When position & orientation of end and we want to calculate the joint po	
2 ways to solve Approx.	
# Tacobian method - approx. What is jacobian?? matrix that gives relation b/w join x = Jq	t velocities (q) & E.E velocities (x)
→ Jacobian matrix: J=[Jv] → first 3 m	
→ No. of col. in jacobian matrix = no. of D.O.F of bot.	
2. Multiply them all to find The -	s from Forward Kinematics Tbs, Ts2, Ts3, Ts4, T45, T56, T6E - pose & orientation of end effector
Jacobian matrix will be of the form: $ \begin{array}{cccccccccccccccccccccccccccccccccc$	oute the partial derivatives ordingly where 9,,9, are joint positions has 6 columns due to 6 DOF
Xg = goal position Xc = current transformation e [q1, q2 qn] = current joint positions (D) For Mobols with velocity controlled joints: a. $\Delta x = x_g - x_c$ b. $\dot{x} = \rho \cdot \Delta x$ p = const. that decides speed of EE c. Find Jacobian and then its inverse (T-1) or pseudo inv	

Created by Notein

d. q=(J1). x so find q using this till ΔX=0

@ For explosts with position controlled joints:
a. $\Delta x = xg - xc$
b. δx = f. Δx where f = fractional value to make disp. small
c. Find Jacobian J using [q1, q2qn] & Jacobian inverse J1/J+
d. Find Sq = J-1. 8x
e. New joint positions que = q+ Sq
Now this can be used to find new tolansformation
4 Limitations of Tacobian method:
·
Doesn't work when Jacobian is not square matrix L) for robots with no. of joints < 6 or > 6 or redundant * When Jacobian is singular & coo't be inverted
TOTAL TIMESTORS OF CHIPMAN & CATE OF THOCAST
Fix: Use pseudo Jacoban no need of
Fix: Use pseudo Jacobian no need of manually calculating
in pythen