Probability and Measure - Tutorial 13

1. (Independence for random variables.)

Definition. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and let X_1, X_2, \ldots be a (finite or infinite) sequence of random variables defined on this space. We say these random variables are independent if the σ -algebras $\sigma(X_1), \sigma(X_2), \ldots$ are independent (recall that $\sigma(X_i)$ is the intersection of all σ -algebras \mathcal{F} on Ω such that X_i is $(\mathcal{F}, \overline{\mathcal{B}})$ -measurable).

For the following items, let (X, Y) be a two-dimensional random vector (so that X and Y are two random variables taking values in \mathbb{R}).

- (a) Let $\mathbb{P}_{(X,Y)}$ denote the distribution of (X,Y), and \mathbb{P}_X and \mathbb{P}_Y denote the distributions of X and Y, respectively. Prove that X and Y are independent if and only if $\mathbb{P}_{(X,Y)} = \mathbb{P}_X \otimes \mathbb{P}_Y$.
- (b) Prove that X and Y are independent if and only if

$$\mathbb{P}(X \in I_1, Y \in I_2) = \mathbb{P}(X \in I_1) \cdot \mathbb{P}(Y \in I_2)$$
 for any intervals I_1, I_2 .

(c) Prove that X and Y are independent if and only if, for any two measurable and bounded functions $g, h : \mathbb{R} \to \mathbb{R}$, we have

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)] \cdot \mathbb{E}[h(Y)].$$

(d) Prove that if X and Y are independent and integrable, then XY is integrable and

$$\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y].$$

- 2. Let X_1, X_2, \ldots be a sequence of independent random variables defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $g : \mathbb{R}^m \to \overline{\mathbb{R}}$ and $h : \mathbb{R}^n \to \overline{\mathbb{R}}$ be measurable functions. Prove that, if $\{i_1, \ldots, i_m\}$ and $\{j_1, \ldots, j_n\}$ are disjoint sets of integers, then the random variables $g(X_{i_1}, \ldots, X_{i_m})$ and $h(X_{j_1}, \ldots, X_{j_n})$ are independent.
- 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $X : \Omega \to \mathbb{R}$ be a non-negative random variable. Prove that

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(\{\omega \in \Omega : X(\omega) \ge x\}) m(\mathrm{d}x),$$

where m denotes the Lebesgue measure \mathbb{R} . (Recall that $\mathbb{E}[X] = \int_{\Omega} X d\mathbb{P}$).

Hint. First prove that

$$\mathbb{E}[X] = \int_0^\infty x \, \mathrm{d}\mathbb{P}_X = \int_0^\infty \left(\int_0^\infty \mathbb{1}_{[0,x]}(t) m(\mathrm{d}t) \right) \mathbb{P}_X(\mathrm{d}x),$$

where \mathbb{P}_X is the measure on the Borel σ -algebra defined by $\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B))$.