Motion Controller (1)

Making a wireless motion controller - motion

Demo

https://www.youtube.com/watch?v=gLKGu0S5caA

Implementation

3 weeks to implement

- Sensing motion (10/19)
- Unity (10/26)
- Build a case (11/02 after midterm) ※ TBD

Report due on 11/16 * TBD

Materials

- (1) Breadboard x1
- (2) NodeMCU ESP8266 x1
- (3) $1k\Omega$ Resistor x1
- (4) Button x1
- (5) IMU sensor (GY-521) x1

NodeMCU: Wifi-Capable Microcontroller

NodeMCU: Wifi-Capable Microcontroller

Arduino vs. NodeMCU Pinout

NodeMCU Pinout Diagram

Time to implement!


```
Board: "NodeMCU 1.0 (ESP-12E Module)"
Upload Speed: "115200"
CPU Frequency: "80 MHz"
Flash Size: "4M (no SPIFFS)"
Debug port: "Disabled"
Debug Level: "None"
IwIP Variant: "v2 Lower Memory"
VTables: "Flash"
Exceptions: "Disabled"
Erase Flash: "Only Sketch"
SSL Support: "All SSL ciphers (most compatible)"
Port
Get Board Info
```

Print Hello World using this board!

The Baud in the following three places should be the same

- In your code Serial.begin(115200);
- In Serial Monitor

115200 baud 🗘

• In "Tools"

Board: "NodeMCU 1.0 (ESP-Upload Speed: "115200" CPU Frequency: "80 MHz"

If you can not compile an empty sketch, restart the Arduino IDE.

If the CP2102 driver doesn't work:

If the CP2102 driver doesn't work:

Download and install CH340 Drivers: https://sparks.gogo.co.nz/ch340.html

Restart Arduino IDE if the port doesn't appear

To build a wireless motion controller, we need to...

- Detect whether the button is pressed.
- 2. Get the pose data from the IMU sensor.
- 3. System receives the data from the motion controller as user's input.

Step (1/3)

To build a wireless motion controller, we need to...

- 1. Detect whether the button is pressed.
- 2. Get the pose data from the IMU sensor.
- 3. System receives the data from the motion controller as user's input.

How to detect the button status?

If we connect it to a resistor with a constant resistance...

Time to implement!

Based on the previous slide,

Implement a circuit and arduino code that prints 1 when the button is pressed, 0 when it isn't.

• Use pin D6 as INPUT pin.

HINT:

You can use the variable D6 directly.


```
1
     void setup() {
       // put your setup code here, to run once:
 3
       Serial.begin(115200);
4
       pinMode(D6, INPUT);
 5
6
7
     void loop() {
8
       // put your main code here, to run repeatedly:
       bool b = digitalRead(D6);
       Serial.println(b);
10
11
```

Step (2/3)

To build a wireless motion controller, we need to...

- Detect whether the button is pressed.
- 2. Get the pose data from the IMU sensor.
- 3. System receives the data from the motion controller as user's input.

IMU sensor - GY-521 (MPU-6050)

To get data from the IMU sensor, we need to add the following two libraries to Arduino.

- I²C protocol: **I2Cdev**

- IMU sensor: MPU6050

Download: NTUCOOL > 文件 > Lab > Lab03 >

I2Cdev.zip and MPU6050.zip

MPU-6050

Reference [1]: http://ming-shian.blogspot.com/2014/05/arduino21mpu6050row-data.html

Install the Libraries

Reference: <u>Installing Additional Libraries</u>

What is I²C?

I²C (I2C) is a serial communication protocol.

For Arduino and NodeMCU, the default SDA=GPIO4 and SCL=GPIO5.

GY-521 Pinouts

Time to implement!

Output (raw)

- a_{x} , a_{y} , a_{z} (acceleration) and $\omega_{\rm X^{\prime}}^{}$ $\omega_{\rm V^{\prime}}^{}$ $\omega_{\rm Z}^{}$ (angular velocity)

Check **baud** setting if the output is weird or empty

Show timestamp

Question: How to process the raw data?

DMP: Digital Motion Processor.

It is embedded in MPU6050 and can help to **process the raw data to readable data**.

The calculated data will be push into a queue and an interrupt signal will be sent. (Need to assign a pin for reading the interrupt signal from INT)

Reference [1]: https://hackmd.io/@csielee/HkSQOMX1b?type=view

GY-521 Pinouts

Note: Start DMP demo by sending any character in the serial monitor

Qutput Serial Monitor X

Message (Ctrl + Enter to send message to 'NodeMCU 1.0 (ESP-12E Module)' on 'COM4')

Testing device connections...

MPU6050 connection successful

Send any character to begin DMP programming and demo:

(Arduino 2.0.0)

Hardware wiring

Step (3/3)

To build a wireless motion controller, we need to...

- 1. Detect whether the button is pressed.
- 2. Get the pose data from the IMU sensor.
- 3. System receives the data from the motion controller as user's input.

Build a local network with your NodeMCU

```
ESP8266WebServer-impl.h
                                      ESP8266WebServer.h
                                                         ESP8266WebServerSecure.h
  wifi template
#include "ESP8266WiFi.h"
#include "WiFiClient.h"
                                     Replace with your own settings.
#include "ESP8266WebServer.h"
  WiFi config
const char* apName = "your_ap_name";
const char* apPassword = "your_ap_password"; At least 8 characters
IPAddress staticIP(192,168,128,1);
IPAddress gateway(192,168,128,1);
IPAddress subnet(255,255,255,0);
// Server
ESP8266WebServer server(80);
```

Build a local network with your NodeMCU

Use another device connected to the same LAN, then you can access the web server on NodeMCU with its IP

Hello World!

Socket

System Architecture

Time to implement!

```
Received b'Hi! I am server~'
                               © COM8
Received b'Hi! I am server~'
Received b'Hi! I am server~'
                              Hello, world
Received b'Hi! I am server~'
                              Hello, world
Received b'Hi! I am server~'
                              Hello, world
Received b'Hi! I am server~'
                             Hello, world
Received b'Hi! I am server~'
Received b'Hi! I am server~' Hello, world
                             Hello, world
Received b'Hi! I am server~'
                              Hello, world
Received b'Hi! I am server~'
                             Hello, world
Received b'Hi! I am server~'
                             Hello, world
Received b'Hi! I am server~'
Received b'Hi! I am server~' Hello, world
                             Hello, world
Received b'Hi! I am server~'
                              Hello, world
Received b'Hi! I am server~'
Received b'Hi! I am server~' Hello, world
                              Hello, world
Received b'Hi! I am server~'
                              Hello, world
Received b'Hi! I am server~'
```

Here are the sample codes for the system.

Test your code by running "socket_client_example.py"

NTU COOL > 文件 > Lab > Lab03 > ArduinoCode > socket_server_example > socket_server_example.ino

NTUCOOL > 文件 > Lab > Lab03 > socket_client_example.py

Task to complete this week

Receive the state of button (0/1) and IMU data (quaternion: x, y, z, w) from NodeMCU then print them out in Python.

Hint: TCP sends data as a stream. You might need to put delimiter between messages / send the message length

```
-0.246 -0.729 -0.619 0.160
Received '0 -0.029 -0.110 -0.758 0.643'
```

Next...

With the data from sensors, what can we do?

Let's make a kart game!

<u>feedback</u>