#### SS 2011

# Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Mayr)

Dr. Werner Meixner

Fakultät für Informatik TU München

http://www14.in.tum.de/lehre/2011SS/dwt/uebung/

30. Juni 2011





# ZÜ V

### Übersicht:

- 1. Termine
- 2. Thema: Ausgewählte Aufgaben der Midterm
- 3. Vorbereitung auf Tutoraufgaben: VA 2 von Blatt 8

#### 1. Termine

Die nächste und letzte Zentralübung findet statt am

Donnerstag, den 14. Juli 2011



# 2. Thema: Ausgewählte Aufgaben der Midterm

#### 2.1 Vorbemerkungen

Die Midtermklausur hatte mittleren Schwierigkeitsgrad:

Aufgaben 1 und 2 waren meist sehr leicht bis leicht,

Aufgabe 1.6 war mittelschwer.

Aufgaben 4 und 5 waren leicht bis mittelschwer.

Aufgabe 3.3 war eher schwierig.

Ergebnisse: Insgesamt erfreulich!

# 2.2 Aufgabe 3

Wir werfen gleichzeitig und unabhängig mit einem blauen und einem roten fairen Würfel und definieren eine diskrete Zufallsvariable X wie folgt:

Falls der rote Würfel eine höhere Augenzahl zeigt als der blaue Würfel, dann sei der Wert von X gleich 0.

Andernfalls sei X durch die Augenzahl des blauen Würfels gegeben.

Wenn beispielsweise der blaue Würfel die Augenzahl 6 zeigt, dann hat X stets den Wert 6.

Es gilt  $W_X = \{0, 1, 2, \dots, 6\}.$ 



lacktriangle Geben Sie die Dichtefunktion  $f_X$  für X an.

### Lösung:

$$f_X(0) = \frac{15}{36}$$
,  
 $f_X(1), \dots, f_X(6) = \frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \frac{4}{36}, \frac{5}{36}, \frac{6}{36}$ .

(3 P.)



**2** Berechnen Sie den Erwartungswert  $\mathbb{E}[X|X \neq 0]$  der bedingten Variablen  $X|X \neq 0$  .

#### Lösung:

Sei X' die bedingte Variable  $X|X \neq 0$ . Dann gilt für ihre Dichte

$$f_{X'}(0) = 0$$
 und  $f_{X'}(i) = \frac{f_X(i)}{\Pr[X \neq 0]} = \frac{36}{21} f_X(i)$  für  $i \neq 0$ . (2 P.)

Es folgt

$$\mathbb{E}[X|X \neq 0] = \frac{1}{21}(1+2^2+3^2+4^2+5^2+6^2) = \frac{91}{21}.$$
 (1 P.)



Wir wiederholen das Werfen der Würfel so lange, bis im n-ten Wurf zum ersten Mal der rote Würfel eine höhere Augenzahl zeigt als der blaue Würfel.

Sei  $X_i$  für  $i \in \mathbb{N}$  die Zufallsvariable für den i-ten Wurf. Die Verteilung der  $X_i$  ist also identisch mit der Verteilung von X.

Seien N und Y Zufallsvariable, wobei N den Wert n liefere und  $Y = \sum_{i=1}^N X_i$  gelte.

Berechnen Sie den Erwartungswert  $\mathbb{E}[N]$  von N.

Berechnen Sie nun den Erwartungswert  $\mathbb{E}[Y]$  von Y.



# Lösung:

N ist geometrisch verteilt mit Erfolgswahrscheinlichkeit  $p = \frac{15}{36}$ .

Es folgt 
$$\mathbb{E}[N] = \frac{36}{15}$$
.

(2 P.)

# Berechnung von $\mathbb{E}[Y]$ :

$$\mathbb{E}[Y] = \sum_{n=1}^{\infty} \mathbb{E}[Y|N=n] \cdot p(1-p)^{n-1}$$

$$= \sum_{n=1}^{\infty} \mathbb{E}[X|X \neq 0] \cdot (n-1) \cdot p(1-p)^{n-1}$$

$$= \mathbb{E}[X|X \neq 0] \cdot \mathbb{E}[N-1]$$

$$= \frac{91}{21} \cdot \frac{21}{15} = \frac{91}{15}.$$

(2 P.)

$$\mathbb{E}[Y] = \mathbb{E}[N] \cdot \mathbb{E}[X] .$$

Die Berechnungsformel von Tutoraufgabe 3 von Blatt 6 ist anwendbar, obwohl die Begründung der Formel hier anders lautet.

Da die Begründung der Formel in der Prüfung nicht verlangt war, gibt es auch bei dieser Anwendung volle Punktzahl.



# 3. Vorbereitung auf Tutoraufgaben: VA 2 von Blatt 8

In einem Unfallkrankenhaus treffen im Schnitt alle 20 Minuten Patienten zur Behandlung ein.

Die Zeit zwischen zwei Behandlungsfällen sei exponentialverteilt mit Parameter  $\frac{1}{20}$ .

Wenn 1 Stunde lang kein Patient eingetroffen ist, macht das Personal Ruhepause.

Wir wollen wissen, welcher Zeitabstand zwischen zwei Ruhepausen zu erwarten ist.



Seien  $T_1, T_2, \ldots$  die Zeitspannen zwischen dem Eintreffen zweier Behandlungsfälle und W die Wartezeit bis zur nächsten Ruhepause.

- Geben Sie  $\mathbb{E}[T_1 \mid T_1 \geq 60]$  an.
- ② Geben Sie  $\mathbb{E}[W \mid T_1 \geq 60]$  an.
- **3** Berechnen Sie  $\mathbb{E}[W]$ .



Vorsicht bei Aufgaben, die als Anwendungen verkleidet sind!

Der schwierige erste Schritt besteht bei diesen Aufgaben zunächst darin, eine adäquate mathematische Abstraktion anzugeben.

#### Vorüberlegungen:

- 1. Es wird offenbar eine Folge von Zeitpunkten  $z_i$  betrachtet, zu denen Patienten im Krankenhaus eintreffen.
- 2. Die Zeitdifferenzen  $T_i = z_i z_{i-1}$  werden als exponentialverteilt angenommen. Dies bedeutet, dass diese  $T_i$  nicht davon abhängen, wie lange noch kein Patient eingetroffen ist (Gedächtnislosigkeit).

Der Parameter  $\lambda$  bedeutet "Anzahl der Patienten pro Zeiteinheit" im Durchschnitt, hier also  $\frac{1}{20}$  Patient pro Zeiteinheit als Erwartungswert.

Alle  $T_i$  sind unabhängig, d. h. die Menge der  $T_i$  ist unabhängig.

- 3. Falls  $T_i > 60$ , dann gibt es eine Ruhepause.
- 4. Die Frage ist, wie lange man warten muss, bis erstmalig  $T_N > 60$  festgestellt wird?

Die Wartezeit ist dann

$$W = 60 + \sum_{j=1}^{N-1} T_j$$

oder

$$W = 60 + W'$$

mit

$$W' = \sum_{j=1}^{N-1} T_j.$$



• Geben Sie  $\mathbb{E}[T_1 \mid T_1 \geq 60]$  an.

#### Lösung:

Sei 
$$\lambda = \frac{1}{20}$$
.

Dann gilt 
$$\mathbb{E}[T_1] = \frac{1}{\lambda} = 20$$
.

Da die Exponentialverteilung gedächtnislos ist, gilt

$$\mathbb{E}[T_1 \mid T_1 \ge 60] = 60 + \mathbb{E}[T_1] = 80.$$

Wir zeigen die Gleichung direkt durch Berechnung wie folgt:

#### $T_1$ ist exponentialverteilt:

$$F_{T_1}(t) = \begin{cases} 1 - e^{-\lambda t} & : t \ge 0\\ 0 & : \text{sonst.} \end{cases}$$

Verteilung der bedingten Variablen  $T_1 \mid T_1 \geq 0$ :

$$F_{(T_1|T_1 \ge 60)}(t) = \Pr[(T_1 \mid T_1 \ge 0) \le t]$$
  
=  $\frac{\Pr[T_1 \le t, T_1 \ge 60]}{\Pr[T_1 \ge 60]}$ 



Für  $t \ge 60$  folgt

$$F_{(T_1|T_1 \ge 60)}(t) = \frac{(1 - e^{-\lambda \cdot t}) - (1 - e^{-\lambda \cdot 60})}{e^{-\lambda \cdot 60}}$$
$$= 1 - e^{-\lambda \cdot (t - 60)}.$$

Damit ist die Variable  $T'=(T_1\mid T_1\geq 60)-60$  gleichverteilt wie  $T_1$ , d. h. entsprechend exponentialverteilt.

Es folgt

$$\mathbb{E}[(T_1 \mid T_1 \ge 60)] = \mathbb{E}[T' + 60]$$

$$= \mathbb{E}[T_1] + 60$$

$$= 80.$$



② Geben Sie  $\mathbb{E}[W \mid T_1 \geq 60]$  an.

# Lösung:

Offenbar gilt  $\mathbb{E}[W \mid T_1 \geq 60] = 60$ .

 $oldsymbol{3}$  Berechnen Sie  $\mathbb{E}[W]$ .

### Lösung:

Es gilt 
$$W = 60 + \sum_{j=1}^{N-1} T_j$$
 oder 
$$W = 60 + W'$$
 mit 
$$W' = \sum_{j=1}^{N-1} T_j \, .$$

N ist eine geometrisch verteilte Zufallsvariable mit Erfolgswahrscheinlichkeit  $p=\Pr[T\geq 60]$ . Es gilt

$$p = \Pr[T \ge 60] = e^{-3}$$
.

Berechnung von  $\mathbb{E}[W']$ .

Wir setzen  $T = T_1$ .

$$\mathbb{E}[W'] = \sum_{n=1}^{\infty} \mathbb{E}[W'|N=n] \cdot p(1-p)^{n-1}$$

$$= \sum_{n=1}^{\infty} \mathbb{E}[T|T \le 60] \cdot (n-1) \cdot p(1-p)^{n-1}$$

$$= \mathbb{E}[T|T \le 60] \cdot \mathbb{E}[N-1].$$

#### Es gilt

$$\mathbb{E}[N-1] = e^3 - 1.$$

 $\mathbb{E}[T|T\leq 60]$  erhalten wir aus den Gleichungen

$$\begin{split} \mathbb{E}[T] &= \mathbb{E}[T|T \leq 60] \cdot \Pr[T \leq 60] \ + \ \mathbb{E}[T|T \geq 60] \cdot \Pr[T \geq 60] \\ &= \mathbb{E}[T|T \leq 60] \cdot (1 - e^{-3}) + 80 \cdot e^{-3} \\ &= 20 \, . \end{split}$$

Es folgt

$$\mathbb{E}[T|T \le 60] = \frac{20 - 80 \cdot e^{-3}}{1 - e^{-3}} = \frac{20 \cdot e^3 - 80}{e^3 - 1}.$$



# Ergebnis:

$$\mathbb{E}[W'] = 20 \cdot e^3 - 80,$$
  
 $\mathbb{E}[W] = 20 \cdot e^3 - 80 + 60$   
 $\approx 382 \text{ (Minuten)}.$