Grado en Ingeniería Informática

Computabilidad y Algoritmia Curso 2014-2015

PRÁCTICA 7

Gramáticas regulares y gramáticas independientes del contexto Semana del 27 al 31 de octubre

1. Objetivo

El objetivo de esta práctica consiste en aplicar algunos de los procedimientos vistos en clase para convertir autómatas finitos en gramáticas regulares y viceversa, así como repasar algunos conceptos básicos vinculados a las gramáticas en general. Además de aplicar manualmente los procedimientos vistos en clase, podremos utilizar la herramienta JFLAP (disponible en http://jflap.org y en el aula virtual de la asignatura) para verificar que algunos de los resultados obtenidos son correctos.

Para esta práctica será necesario realizar los ejercicios propuestos en este enunciado y llevarlos resueltos a la clase práctica de laboratorio. Durante la sesión presencial se les podrá proponer la resolución de nuevos ejercicios.

2. Ejercicios

- 1. Diseñar un DFA M_1 que acepte el lenguaje $L_1 = \{cadenas formadas por símbolos "a" o "b", tal que el número de "aes" es par o la longitud de la cadena es impar<math>\}$. Partiendo del DFA diseñado, explicar qué pasos seguiría para obtener una gramática que genere el lenguaje L_1 .
 - a) ¿De qué tipo es la gramática obtenida? ¿Por qué?
 - b) Compruebe que las cadenas $bababb,\,ababa,\,y\,bbaab$ son generadas por la gramática.
 - c) ¿Proporciona la herramienta JFLAP alguna opción para realizar una conversión de DFA a gramática? Si la respuesta es afirmativa, indique qué opción es y cómo la utilizaría en este caso de ejemplo.

Grado en Ingeniería Informática

Computabilidad y Algoritmia Curso 2014-2015

- 2. Dada la gramática siguiente:
 - $S \to A|D$
 - $A \rightarrow aA|bA|B$
 - $B \to aaC$
 - $C \to aC|bC|\varepsilon$
 - $D \rightarrow aaD|abD|baD|bbD|\varepsilon$
 - a) ¿Qué lenguaje genera?
 - b) Obtenga una expresión regular que represente al lenguaje generado por la gramática.
 - c) Diseñe un NFA que reconozca el mismo lenguaje. Explique los pasos que ha seguido para obtener dicho NFA.
 - d) ¿Cómo podría utilizar JFLAP para comprobar que el lenguaje reconocido por el NFA obtenido y el lenguaje generado por la gramática dada son equivalentes?
- 3. Sea G una gramática con las siguientes producciones:
 - $S \to ASB|\varepsilon$
 - $A \to aA|\varepsilon$
 - $B \to bB|\varepsilon$
 - a) Obtenga una derivación a la izquierda y una derivación a la derecha de la palabra **aaabb**.
 - b) Construya el árbol de análisis sintáctico de las derivaciones anteriores.
 - c) Demuestre que G es una gramática ambigua.
 - d) Construya una gramática no ambigua equivalente a G.
 - e) Describa L(G). Es L(G) un lenguaje regular? Justifique su respuesta.