Lab 3.1 Report

Name: Joshua Dong

UT eID: jid295

Section: MW 11-12 AM

Problem No: 12.10.D

Submission CheckList

- Answer the <u>preparatory questions</u>.
- Submit the cover sheet
- Karnaugh maps and simplification for each input of the D FlipFlop. [20] points
- Attach a screenshot of your SimUAid circuit
- The SimuAid circuit file

Problem Statement

Design a counter which counts in the sequence that has been assigned to you. Use D flip-flops and NAND gates. Simulate your design using SimUaid. Given sequence: 000, 100, 001, 110, 101, 111, (repeat) 000, ...

Preparatory Questions

- 1. Explain the term Asynchronous input?
- Asynchronous input refers to input that is not constrained by the clock signal. In this context, an asynchronous input could set or reset the flip-flop regardless of the status of the clock signal.
- 2. How can you set the output of a D Flip-Flop to logic 0 without using its clock input? The flip-flop would need to be reset using its asynchronous reset function (R) pin. Simply send the a logical 0 to the R pin. Take care that the S pin does not have logical high.
- 3. How can you set the output of a D Flip-Flop to logic 1 without using its clock input? Similar to setting a D flip-flop to logic 0, simply send a logical 0 to pin S.

State Graph

We can represent the solution to implement using the state graph below:

State Table

We shall start by writing the state table for the sequence above. We shall be using D-Flip Flops for this exercise. Since its a 3 bit counter, we need 3 D FlipFlops to implement the sequence. Next, we create a truth table for the D-Input of the flip-flops:

	Present state			Next State	
A	В	С	A+	B+	C+
0	0	0	1	0	0
0	0	1	1	1	0
0	1	0	X	X	X
0	1	1	X	X	X
1	0	0	0	0	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	0	0	0

We now have the truth table for next states. This table can get Boolean expressions for logic.

Karnaugh Map

For a three-bit counter, the Karnaugh maps for the next state are as follows: $\mathbf{A}+$

After minimization, we get the following equations:

$$A+=A'+B'C+BC'$$

$$B+=B'C$$

$$C+ = AB' + BC'$$

Circuit

It's time to draw the circuit in SimUAid using only D-Flip-Flops, NAND gates, and inverters. Here is a logic circuit for the above truth tables. Note that the S and R inputs are active low.

Note that if needed, the single inverter used could be substituted with a single NAND gate.