THỪA SỐ NGUYÊN TỐ

- 1. **Prime Facstor**s. Cho số nguyên dương N. Hãy đưa ra tất cả các ước số nguyên tố của N. Input:
 - Dòng đầu tiên đưa vào số lượng bộ test T.
 - Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test là một số nguyên dương N được ghi trên một dòng.
 - T, N thỏa mãn ràng buộc: $1 \le T \le 100$; $2 \le N \le 10^{10}$.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	3 3 5 7
315	31
31	

- 2. **Max Prime Facstor**s. Cho số nguyên dương N. Hãy đưa ra ước số nguyên tố lớn nhất của N. Input:
 - Dòng đầu tiên đưa vào số lượng bộ test T.
 - Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test là một số nguyên dương N được ghi trên một dòng.
 - T, N thỏa mãn ràng buộc: $1 \le T \le 100$; $2 \le N \le 10^{10}$.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	7
315	31
31	

3. **Prime Eratosthenes**. Cho số nguyên dương N. Hãy đưa ra tất cả các số nguyên tố nhỏ hơn hoặc bằng N.

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test là một số nguyên dương N được ghi trên một dòng.
- T, N thỏa mãn ràng buộc: $1 \le T \le 100$; $2 \le N \le 10^4$.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	2 3 5 7
10	2 3 5 7 11 13 17 19 23 29 31
35	

- 4. Leat Prime Factor. Cho số tự nhiên N. Nhiệm vụ của bạn là in ra ước số nguyên tố nhỏ nhất của các số từ 1 đến N. Ước số nguyên tố nhỏ nhất của 1 là 1. Ước số nguyên tố nhỏ nhất của các số chẵn là 2. Ước số nguyên tố nhỏ nhất của các số nguyên tố là chính nó. Input:
 - Dòng đầu tiên đưa vào số lương test T.
 - Những dòng kế tiếp đưa vào các bộ test. Mỗi bộ test là một số N được ghi trên một dòng.

• T, N thỏa mãn ràng buộc: 1≤T≤100; 1≤N≤10000.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	1 2 3 2 5 2
6	1 2 3 2 5 2 7 2 3 2
10	

5. **Prime in Range**. Hãy sinh ra tất cả các số nguyên tố trong khoảng [M, N]. Ví dụ M=1, N=10 ta có kết quả 2 3 5 7.

Input:

- Dòng đầu tiên đưa vào số lượng test T.
- Những dòng kế tiếp mỗi dòng đưa vào một bộ test. Mỗi bộ test là bộ đôi M, N được viết cách nhau một vài khoảng trống.
- T, M, N thỏa mãn ràng buộc: 1≤T≤100; 1≤M≤N≤10000; N-M≤10000.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	2 3 5 7
1 10	3 5
3 5	

6. **Pair Primes**. Cho số nguyên dương chẵn N>2. Hãy đưa ra cặp số nguyên tố p, q đầu tiên có tổng đúng bằng N. Ví dụ N = 6 ta có cặp số nguyên tố đầu tiên là 3 + 3 =6. Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào các bô test. Mỗi bô test là một số chẵn N.
- T, N thỏa mãn ràng buộc : 1≤T≤100; 4≤N≤10000.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	2 71
74	3 1021
1024	

7. **Sphenic Number**. Số nguyên dương N được gọi là số Sphenic nếu N được phân tích duy nhất dưới dạng tích của ba số khác nhau. Ví dụ N=30 là số Sphenic vì 30 = 2×3×5; N = 60 không phải số Sphenic vì 60 = 2×2×3×5. Cho số tự nhiên N, nhiệm vụ của bạn là kiểm tra xem N có phải số Spheic hay không?

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào các bô test. Mỗi bô test là một số nguyên dương N.
- T, N thỏa mãn ràng buộc : 1≤T≤100; 1≤N≤10000.

Output:

• Đưa ra 1 hoặc 0 tương ứng với N là số Sphenic hoặc không của mỗi test theo từng dòng.

l In	put:	Out	put:
111	put.	Out	put.

2	1
30	0
60	

- 8. Cho số tự nhiên N và số nguyên tố P. Nhiệm vụ của bạn là tìm số x lớn nhất để N! chia hết cho p^x. Ví dụ với N=7, p=3 thì x=2 là số lớn nhất để 7! Chia hết cho 3². Input:
 - Dòng đầu tiên đưa vào số lượng bộ test T.
 - Những dòng kế tiếp đưa vào các bộ test. Mỗi bộ test là cặp số N, p được viết cách nhau một vài khoảng trống.
 - T, N, p thỏa mãn rang buộc : 1≤T≤100; 1≤N≤10⁵; 2≤p≤5000;

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:	
3	9	
62 7 76 2	73	
76 2	0	
3 5		

- 9. Cho số tự nhiên N. Nhiệm vụ của bạn là hãy đưa ra tất cả các ước số nguyên tố của N cùng lũy thừa của nó. Ví dụ $N=100=2^2\times 5^2$. $N=35=5^1\times 7^1$.
 - Input:
 - Dòng đầu tiên đưa vào số lượng test T.
 - Những dòng kế tiếp đưa vào các bô test. Mỗi bô test là một số nguyên N.
 - T, N thỏa mãn rang buộc 1≤T≤100; 1≤N≤10000.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:	
2	2 2 5 2	
100	5 1 7 1	
35		

10. Smith Number. Cho số tự nhiên N. Nhiệm vụ của bạn là hãy kiểm tra N có phải là số Smith hay không. Một số được gọi là số Smith nếu N không phải là số nguyên tố và có tổng các chữ số của N bằng tổng các chữ số của các ước số nguyên tố của N. Ví dụ N = 666 có các ước số nguyên tố là 2, 3, 3, 37 có tổng các chữ số là 18.

Input:

- Dòng đầu tiên đưa vào số lương test T.
- Những dòng kế tiếp đưa vào các bộ test. Mỗi bộ test là một số nguyên N.
- T, N thỏa mãn rang buôc 1≤T≤100; 1≤N≤100000.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	Yes
4	No
666	