CS 57300 Purdue University Instructor: Bruno Ribeiro

- 1. Matrix multiplication is $not\ commu-tative$
- $2. (AB)^{\mathsf{T}} = B^{\mathsf{T}} A^{\mathsf{T}}$
 - (a) symmetric matrix: $A = A^{\mathsf{T}}$
 - (b) $(B^{\mathsf{T}})^{\mathsf{T}} = B$
 - (c) $(BB^{\mathsf{T}})^{\mathsf{T}} = BB^{\mathsf{T}}$
- 3. inner product $\langle x, y \rangle = x^{\mathsf{T}}y = \sum_{\forall i} x_i y_i$
 - (a) $\langle x, x \rangle \ge 0$
 - (b) $||x||^2 \equiv \langle x, x \rangle$
 - (c) $\langle x, y \rangle = 0$ iff $x \perp y$
 - (d) θ angle btw x and y $\cos \theta = \frac{\langle x, y \rangle}{\|x\| \|y\|}$
 - (e) Cauchy–Schwarz inequality $|\langle x, y \rangle| \le ||x|| \cdot ||y||$
 - (f) triangle inequality $||x + y|| \le ||x|| + ||y||$
 - (g) if v_1, \ldots, v_n form an orthogormal basis of \mathbb{R}^m , $m \leq n$, then $x = \sum_{i=1}^n \langle x, v_i \rangle v_i, \quad \forall x \in \mathbb{R}^m$.
- 4. Trace
 - (a) Tr(AB) = Tr(BA)
- 5. Matrix inverse

(a)
$$(AB)^{-1} = B^{-1}A^{-1}$$

- 6. Eigenvalues, $A_{n \times n} \ge 0$
 - (a) $Ax = \lambda x$
 - i. if $Ax = \lambda x$ then $A\alpha x = \lambda \alpha x$
 - ii. convention: ||x|| = 1

(b)
$$AV = V\Lambda$$
, $\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$, $V = \begin{bmatrix} x_1, & \cdots, & x_n \end{bmatrix}$

- (c) $\rho(A) \equiv \max_{i}(|\lambda_{i}|)$ is the spectral radius of A
- (d) Perron-Frobenius Theorem
 - i. $\Lambda \in \mathbb{R}^n$
 - ii. $Ax = \rho(A)x, \ x \ge 0$
 - iii. If A is irreducible
 - A. unique eigenvector x > 0
 - B. x is associated with $\rho(A) > 0$
- (e) If A full rank then

i.
$$A = V \Lambda V^{-1}$$

ii.
$$A^k = V \Lambda^k V^{-1}$$

iii. symmetric matrices

$$A. \Lambda \in \mathbb{R}^n$$

B. V is an orthonormal basis of \mathbb{R}^n : $VV^{\mathsf{T}} = I$

- (f) positive definite
 - i. $x^{\mathsf{T}}Ax > 0$, unless x = 0
 - ii. implies $\Lambda > 0$
- (g) positive semi-definite

i.
$$x^{\mathsf{T}}Ax \geq 0$$

ii.
$$\Lambda \geq 0$$