IEQB TP - Ficha 4 Resolução

Felipe Pinto - 6138723/04 - 2021.1

Conteúdo

Questão 8

Questão 8 Refazer

$$CO_2 + 3H_2 \longrightarrow CH_3OH + H_2O$$

•
$$1 = 1i.1$$

•
$$3 = 2i$$

•
$$6 = 202.1$$

•
$$2 = 1i$$

•
$$4 = 201$$

•
$$7 = 202.2$$

•
$$3 = 10$$

•
$$5 = 202$$

•
$$7 = 1i.2$$

$\rm Kmol/h$	1i	1i.1	10 2i	201	202	202.1	2o2.2 1i.2
CO_2	28		14	-	14	2.9	32 %
H_2	70		28	-	28	5.8	22
Inertes	2	0.40%	2	-	2	0.41	3.6
$\mathrm{CH_{3}OH}$	-		14	14	-	-	
$\mathrm{H_{2}O}$	-		14	14	-	-	
Total	100	65	72	28	44	9.0	35

$$\frac{40\,\mathrm{mol_{H_2\,1o}}}{100\,\mathrm{mol_{H_2\,1i}}}\,70\%\,\mathrm{mol_{H_2\,1i}} \cong 28\%\,\mathrm{mol_{H_2\,1o}}$$

$$28\% \, \mathrm{mol_{CO_2\,1i}} - \frac{1 \, \mathrm{mol_{CO_2\,1i}}}{3 \, \mathrm{mol_{H_2\,1i}}} \, \frac{60 \, \mathrm{mol_{H_2\,1i}}}{100 \, \mathrm{mol_{H_2\,1i}}} \, 70\% \, \mathrm{mol_{H_2\,1i}} \cong 14\% \, \mathrm{mol_{CO_2\,1o}}$$

$$\frac{60\,\mathrm{mol_{CH_3OH\,1o}}}{100\,\mathrm{mol_{CH_3OH\,1o}}}\,\frac{1\,\mathrm{mol_{CH_3OH\,1o}}}{3\,\mathrm{mol_{H_2\,1i}}}\,70\,\mathrm{mol_{H_2\,1i}}\cong14\%\,\mathrm{mol_{CH_3OH\,1o}}$$

$$\frac{1\, \rm mol_{\rm H_2O\, 1o}}{1\, \rm mol_{\rm CH_3OH\, 1o}}\, 14\, \rm mol_{\rm CH_3OH\, 1o} \cong 14\, \rm mol_{\rm H_2O\, 1o}$$

$$M_{\text{Total 1i.2}} + M_{\text{Total 1i.1}} = 100 \,\text{mol}_{\text{Total 1i}};$$

$$\begin{split} M_{\text{Total 1i.2}} & \frac{5 \, \text{mol}_{\,\text{Iner 1i.2}}}{100 \, \text{mol}_{\,\text{Total 1i.2}}} + M_{\text{Total 1i.1}} \frac{0.40 \, \text{mol}_{\,\text{Iner 1i.1}}}{100 \, \text{mol}_{\,\text{Total 1i.1}}} = 100 \, \frac{2 \, \text{mol}_{\,\text{Iner 1i}}}{100 \, \text{mol}_{\,\text{Total 1i.}}} \implies \\ & \Longrightarrow M_{\text{Total 1i.2}} = \frac{200 - 100 * 0.40}{4.6} \cong 35 \, \text{mol}_{\,\text{Total 1i.2}}; \end{split}$$

$$M_{\text{Total 1i.1}} \cong 100 - 35 = 65 \,\text{mol}_{\,\text{Total 1i.1}}$$

$$M_{\text{Total 2o2.1}} = M_{\text{Total 2o2}} - M_{\text{Total 2o2.2}} \cong 44 - 35 = 9 \,\text{mol}_{\text{Total 2o2.1}}$$