Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-225. Вариант 27

- 1. Пусть $z=2\sqrt{3}+2i$. Вычислить значение $\sqrt[7]{z^2}$, для которого число $\frac{\sqrt[7]{z^2}}{2\sqrt{3}-2i}$ имеет аргумент $\frac{19\pi}{14}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(2+5i) + y(11-8i) = 25+53i \\ x(-4+13i) + y(-2-7i) = 244-58i \end{cases}$$

- 3. Найти корни многочлена $-x^6+x^5-10x^4+30x^3-284x^2-456x+720$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-2-4i, x_2=3-3i, x_3=1.$
- 4. Даны 3 комплексных числа: -11+4i, 11+12i, 2-10i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = \frac{1}{2} \frac{\sqrt{3}i}{2}, z_2 = \frac{\sqrt{3}}{2} \frac{i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+3-3i| < 3\\ |arg(z+4i)| < \frac{\pi}{2} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-1, 1, -11), b = (-8, -4, -5), c = (0, 1, -7). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(4,-9,14) и плоскость P:22x+2y+58z+1044=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(6, -11, 4), $M_1(0, 32, -14)$, $M_2(-14, -3, -14)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -23x + 9y + 7z + 305 = 0 \\ -4x - 5y - 6z - 6 = 0 \end{cases} \qquad L_2: \begin{cases} -19x + 14y + 13z + 3215 = 0 \\ -13x - 11y - 7z + 103 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.