

UMUR KOSE,

DANNY SMYTH,

VANESSA EICHENSEHR,

KIMIYA MOHAMMADI-JOZAI

CS 5805DECEMBER 11, 2024

BREAST CANCER
DIAGNOSIS:
A FEATURE EXTRACTION
AND CLASSIFICATION
APPROACH

INTRODUCTION

2.3m
new cases/year

670k

deaths/year[2]

- Breast Cancer is the most common cancer in women worldwide
- Traditional detection methods (mammograms, biopsy) are subject to error and result in later detection
- Goal: improve cancer detection in images of cells using machine learning

RELATED WORKS

- There are several published studies that implement ML techniques on breast cancer data
- Wisconsin Breast Cancer Dataset
 (WBCD) is benchmark dataset
 - Images are pre-processed and segmented, and feature selection already performed
 - Includes 10 features for each cell nucleus such as radius, perimeter, texture, symmetry

ML Technique	Accuracy	Publish Year	Source
Decision Tree Forest	95.51%	2013	[3]
Single Decision Tree	95.75%	2013	[3]
Lagrangian Support Vector Machines	95.42%	2014	[4]
Tree Augmented Naïve Bayes	94.11%	2018	[5]
J48	93.41%	2018	[6]
Logistic Regression	94.16%	2023	[7]
Random Forest	95.62%	2023	[7]
K-Nearest Neighbor	94.16%	2023	[7]
Artificial Neural Network	96.35%	2023	[7]

METHODOLOGY

DATA COLLECTION

- Original Wisconsin dataset released in 1995
- BreakHis Dataset 2016:
 - 9,109 images of tissue from 82 patients
 - o 40x, 100x, 200x, 400x resolutions
 - Used for both binary and multiclass classification
- Goal: replicate results from the Wisconsin dataset on Breakhis using feature extraction

INITIAL ALGORITHM ANALYSIS

Neural Network

- Works for complex, non-linear data
- Higher computation costs
- Requires more input data
- Hich accuracy, low interpretability
- Better for image data
- 96.35% accuracy on Wisconsin Dataset

Decision Tree

- Better for structured data
- Works well on small datasets
- Bagging to reduce dataset variance (Random Forest)
- 95.75% accuracy on Wisconsin Dataset

EXPLORATORY DATA ANALYSIS

- Feature Extraction
 - We aim to extract features of Wisconsin Dataset from BreakHis Dataset
- Otsu Thresholding [11]
 - A widely used non-parametric and unsupervised technique in image processing for automatic thresholding
 - separate an image into foreground and background by finding a threshold that minimizes intra-class variance
- Define Different Features as Pixels
- Extract the Diagnosis from the Name of Files

resolution	patient_Diag	tumor_type	patient_ID	radius_mean	te
100			14-22549AB	26.196872	
100	В		14-22549AB	54.373359	
100	В		14-22549AB	15.594510	
100	В		14-22549AB	11.084567	
100	В		14-22549AB	48.082062	
100	В	А	14-22549AB	33.728912	
100	В	А	14-22549AB	2.459245	
100	В		14-22549AB	1.492705	
100	В		14-22549AB	33.530143	
100	В		14-22549AB	53.988551	
100	В	А	14-22549AB	0.797885	

RESULTS OF DECISION TREE

- Dataset Resolution (200)
- Test-Train Split (20)
- CV Folds (10)
- Max Depth of Tree (20)
- Number of Trees (500)
- Binary vs. Multiclass
- Feature Removal

	TP	<u>TP</u>	TP	T
	TP + FP	TP + FN	TP + FN	$\overline{T+F}$
Class	Precision	Recall	F-1Score	Accuracy
В	0.81	0.78	0.79	0.00
M	0.78	0.82	0.80	0.80

RESULTS OF DECISION TREE

- Dataset Resolution (200)
- Test-Train Split (20)
- CV Folds (10)
- Max Depth of Tree (20)
- Number of Trees (500)
- Binary vs. Multiclass
- Feature Removal

	$\frac{TP}{TP + FP}$	$\frac{TP}{TP + FN}$	$\frac{TP}{TP + FN}$	$\frac{T}{T+F}$
Class	Precision	Recall	F-1Score	Accuracy
Α	0.83	0.94	0.88	
F	0.73	0.39	0.47	
PT	0.84	0.84	0.84	
TA	18.0	0.90	0.85	0.79
DC	0.61	0.39	0.47	0.79
LC	0.81	0.83	0.82	
MC	0.82	0.79	0.81	
PC	0.79	0.82	0.80	

COMPARISON TO CNN USING IMAGE PROCESSING

- CNN with 20/80 Test-Train Split
- Activation: Relu for Binary, Softmax for Multiclass
- Batch Size 32 and IO Epochs (one full cycle through all the batches in the entire training dataset)
- Binary Classification: 0.87 Accuracy
- Multiclass Classification: 0.99 Accuracy

CONCLUSION

Model Performance

- CNN performs better in all metrics
- Random Forest accuracy is still promising

Computational Efficiency

- CNN is computationally expensive
- Feature extraction step is necessary for Random Forest

FUTURE WORK

Improving the Feature Extraction

Deep learning with limited labeled data points + Data Augmentation (GNN)

REFERENCES

- [1] World Health Organization. Breast cancer-WHO Fact Sheet. https://www.who.int/ news-room/fact-sheets/detail/breast-cancer. 2024.
- [2] National Breast Cancer Foundation (NBCF). Breast Cancer Facts & Stats. https://www.nationalbreastcancer.org/breastcancer.facts/. 2024.
- [3] Azar, A.T., & El-Metwally, S.M. (2013). Decision tree classifiers for automated medical diagnosis. Neural Computing and Applications, 23, 2387-2403.
- [4] Azar, A.T., El-Said, S.A. (2014) Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput Applic 24, 1163–1177. [14] Banu A, B., & Thirumalaikolundu
- [5] Banu A, B., & Thirumalaikolundusubramanian, P. (2018). Comparison of Bayes Classifiers for Breast Cancer Classification. Asian Pacific journal of cancer prevention: APJCP, 19(10), 2917–2920. https://doi.org/10.22034/APJCP.2018.19.10.2917
- [6] Chaurasia, V., Pal, S., Tiwari, B.B. (2018). Prediction of benign and malignant breast cancer using data mining techniques. Journal of Algorithms and Computational Technology, 12, 119 126.
- [7] Srivastava, U. P., Vaidehi, V., Koirala, T. K., & Ghosal, P. (2023, February). Performance Analysis of an ANN-based model for Breast Cancer Classification using Wisconsin Dataset. In 2023 International Conference on Intelligent Systems, Advanced Computing and Communication (ISACC) (pp. 1-5). IEEE.

REFERENCES

- [8] Wolberg, W., Mangasarian, O., Street, N., & Street, W. (1993). Breast Cancer Wisconsin (Diagnostic) [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C5DW2B.
- [9] Kaggle. (2019). BreakHis dataset. Retrieved from https://www.kaggle.com/datasets/ambarish/breakhis
- [10] Spanhol, F., Oliveira, L. S., Petitjean, C., Heutte, L., A Dataset for Breast Cancer Histopathological Image Classification, IEEE Transactions on Biomedical Engineering (TBME), 63(7):1455-1462, 2016.
- [11] Xu, X., Xu, S., Jin, L., & Song, E. (2011). Characteristic analysis of Otsu threshold and its applications. Pattern recognition letters, 32(7), 956-961.