Lecture16: CMOS amplifiers (3)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Read your textbook.

- Reading your textbook is important.
- Today, we will try to cover up to p. 764.
 - Just before 17. 4. 1.

Transistor turned off

- The example 17.5 shows an amplifier circuit.
 - But, the transistor is not turned on.
 - The circuit generates no output signal.

This is a solution.

- The example 17.7 shows a revised circuit.
 - Then, how can we generate 0.75 V, for example?
 - Use of a separate battery can be a way.

Simple biasing (1/2)

- A better way
 - The gate bias voltage is

$$V_{GS} = \frac{R_2}{R_1 + R_2} V_{DD} \tag{17.10}$$

The drain current is

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_2}{R_1 + R_2} V_{DD} - V_{TH} \right)^2 \quad (17.12)$$

Simple biasing (2/2)

- How to apply the small-signal input
 - Use a capacitor!

Source degeneration (1/2)

A resistor placed in series with the source terminal

Source degeneration (2/2)

- Now we have to find the source voltage.
 - (Saturation current of the MOSFET) = (Current flowing through R_S)
 - After a simple manipulation, we can find

$$V_S = V_G + V_1 - V_{TH} - \sqrt{V_1^2 + 2(V_G - V_{TH})V_1}$$

Here,

$$V_1 = \frac{1}{\mu_n C_{ox} \frac{W}{L} R_s}$$

Self-biasing

- Already covered in Example 6.13.
 - Always in the saturation region.

Gate and drain are tied.

Biasing of PMOS devices

- Let's recall the problem18 of our mid-term exam.
 - The amount of "gate overdrive" is 1.2 V.
 - It is not 0.6 V.

CMOS amplifiers (1/2)

- Select one input. Then, select one output.
 - What are possible topologies?

CMOS amplifiers (2/2)

- Only three are possible.
 - Each of them has own name.

Common-source

Source terminal is grounded.

Small-signal model

Let's draw the small-signal model together!

Gain

- Now, calculate the v_{out} .
 - KCL for the v_{out} node gives

$$v_{out} = -g_m(R_D||r_0)v_{in}$$

Input/output impedances

Input impedance

$$R_{in} = \infty$$

Output impedance

Current-source load

- When $R_D \to \infty$,
 - The gain can be maximized.

