# The two-K method predicts 1

This is a new technique that requires only two constants, plus the Reynolds number and fitting diameter, to predict the head loss in an elbow, valve or tee. It is accurate even for large-diameter and alloy fittings, and at low Reynolds numbers.

William B. Hooper, Monsanto Co.

Forcing a fluid through a pipe fitting consumes energy, which is provided by a drop in pressure across the fitting. This pressure drop—or head loss—is caused by friction between the fluid and the fitting wall and by creation of turbulence in the body of the fluid.

The loss due to wall friction is best handled by treating the fitting as a piece of straight pipe, of the same physical length as the fitting. All common prediction methods, and the two-K method, do this. But each method predicts the remaining "excess" head loss a different way.

# Equivalent length

The equivalent-length method adds some hypothetical length of pipe to the actual length of the fitting, yielding an "equivalent length" of pipe  $(L_e)$  that has the same total loss as the fitting. The unfortunate drawback to this simple approach is that the equivalent length for a given fitting is not constant, but depends on Reynolds number and roughness, as well as size and geometry. Therefore, use of the equivalent-length method requires consideration of all these factors.

The excess head loss in a fitting is due mostly to turbulence caused by abrupt changes in the direction and speed of flow. Thus it is best to predict this loss by using a velocity-head approach.

# Velocity head

The amount of kinetic energy contained in a stream is the velocity head. An equivalent statement is that the velocity head is the amount of potential energy (head) necessary to accelerate a fluid to its flowing velocity.

For example: Pressure gages on both sides of a gradual, friction-free pipe entrance would show that the pressure in the flowing fluid is lower than the pressure in the feed tank by one velocity head. (This is why an eductor works.) The potential (pressure) energy of the fluid in the tank is not lost; it has been converted to kinetic energy. The number of velocity heads  $(H_d)$  in a flowing stream is calculated directly from the velocity of the stream (v):

$$H_d = v^2/2g$$

With this background, consider a square elbow. The entering fluid experiences a pipelike frictional head loss as it moves down the inlet leg. At the turn, the flow stops abruptly and starts in a new direction. Since the inlet velocity vector has no component in the outlet direction, all of the inlet kinetic energy is lost. Thus, this part of the loss in a square elbow is close to one velocity head. The remaining losses are the frictional losses in the turn and the outlet leg.

The total head loss in the elbow is the sum of the frictional and directional losses. The excess head loss  $(\Delta H)$  is less than the total by the amount of frictional loss that would be experienced by straight pipe of the same physical length. (Of course, the *actual* frictional loss in the fitting will be different than the loss in a pipe.) The excess loss in a fitting is normally expressed by a dimensionless "K factor":

$$\Delta H = K H_d$$

### The two-K method

K is a dimensionless factor defined as the excess head loss in a pipe fitting, expressed in velocity heads. In general, it does not depend on the roughness of the fitting (or the attached pipe) or the size of the system, but it is a function of Reynolds number and of the exact geometry of the fitting. The two-K method takes these dependencies into account in the following equation:

$$K = K_1/N_{Re} + K_{\infty}(1 + 1/ID)$$

where

 $K_1 = K$  for the fitting at  $N_{Re} = 1$ 

 $K_{\infty} = K$  for a large fitting at  $N_{Re} = \infty$  ID = Internal dia. of attached pipe, in.

# How $N_{Re}$ and fitting size affect K

Why two Ks, when the literature usually reports a single K value? Most published K values apply to fully-developed turbulent flow. This is convenient-because K is independent of  $N_{Re}$  when  $N_{Re}$  is sufficiently high. However, K starts to rise as  $N_{Re}$  decreases toward 1,000, and becomes inversely proportional to  $N_{Re}$  when  $N_{Re}$  is below 100.

# head losses in pipe fittings



Fig. 1



The two-K method fits head-loss data for laminar, transitional and turbulent flow

#### velocity heads From [3, 4] A From [7] Two-K method (K... = 0.20) New Crane method [6] Kefactor method [5] 1.0 8.0 3, 0.6 loss 0.4 Excess head 0.2 0.4 0.6 40 60 80 0.2 1.0 2 6 8 10 20 Internal dia. of elbow (ID), in. Size of elbow affects K Fig. 2

### Constants for two-K method

|        |                        | Fitting type                                                                                                                                         |                                   | K∞                                   |
|--------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|
| Elbows |                        | Standard $(R/D = 1)$ , screwed<br>Standard $(R/D = 1)$ , flanged/welded<br>Long-radius $(R/D = 1.5)$ , all types                                     | 800<br>800<br>800                 | 0.40<br>0.25<br>0.20                 |
|        | 90°                    | 1 Weld (90° angle) Mitered 2 Weld (45° angles) elbows 3 Weld (30° angles) (R/D=1.5) 4 Weld (22½° angles) 5 Weld (18° angles)                         | 1,000<br>800<br>800<br>800<br>800 | 1.15<br>0.35<br>0.30<br>0.27<br>0.25 |
|        | 45°                    | Standard $(R/D = 1)$ , all types<br>Long-radius $(R/D = 1.5)$ , all types<br>Mitered, 1 weld, 45° angle<br>Mitered, 2 weld, $22\frac{1}{2}$ ° angles | 500<br>500<br>500<br>500          | 0.20<br>0.15<br>0.25<br>0.15         |
|        | 180°                   | Standard $(R/D = 1)$ , screwed<br>Standard $(R/D = 1)$ , flanged/welded<br>Long radius $(R/D = 1.5)$ , all types                                     | 1,000<br>1,000<br>1,000           | 0.60<br>0.35<br>0.30                 |
| Tees   | Used<br>as<br>elbow    | Standard, screwed<br>Long-radius, screwed<br>Standard, flanged or welded<br>Stub-in-type branch                                                      | 500<br>800<br>800<br>1,000        | 0.70<br>0.40<br>0.80<br>1.00         |
|        | Run-<br>through<br>tee | Screwed<br>Flanged or welded<br>Stub-in-type branch                                                                                                  | 200<br>150<br>100                 | 0.10<br>0.50<br>0.00                 |
| Valves | Gate,<br>ball,<br>plug | Full line size, $\beta = 1.0$<br>Reduced trim, $\beta = 0.9$<br>Reduced trim, $\beta = 0.8$                                                          | 300<br>500<br>1,000               | 0.10<br>0.15<br>0.25                 |
|        |                        | ngle or Y-type<br>ım, dam type                                                                                                                       | 1,500<br>1,000<br>1,000<br>800    | 4.00<br>2.00<br>2.00<br>0.25         |
|        | Check                  | Lift<br>Swing<br>Tilting-disk                                                                                                                        | 2,000<br>1,500<br>1,000           | 10.00<br>1.50<br>0.50                |

Note: Use R/D = 1.5 values for R/D = 5 pipe bends,  $45^{\circ}$  to  $180^{\circ}$ . Use appropriate tee values for flow through crosses.

Fig. 1 is a plot of K vs.  $N_{Re}$  for short-radius elbows [2]. Note that the two-K expression, with 800 for  $K_1$  and 0.40 for  $K_{\infty}$ , fits the points accurately in all flow regimes. In this case,  $K_1$  has no effect on the predicted K at  $N_{Re}$ above 10,000;  $K_{\infty}$  is negligible below an  $N_{Re}$  of 50.

Theoretically, K should be the same for all fittings that are geometrically similar. In fact, smaller fittings are more sensitive to surface roughness and have more abrupt changes in cross-section. Thus K is greater for smaller fittings of a given type.

The 1/ID correction in the two-K expression accounts for the size differences: K is higher for small sizes, but nearly constant for large sizes. Fig. 2 is a plot of K vs. pipe size data for long-radius (R/D = 1.5) elbows [1,3,4]. The solid line shows how the two-K correlation fits these points; the other lines are correlations that will be discussed later.

### Recommended values

The table lists values of  $K_1$  and  $K_{\infty}$  derived from plots of K vs.  $N_{Re}$  and size (similar to Fig. 1, 2). The reader is encouraged to keep this and use it, because it is the heart of the two-K method.

Three special cases are not listed in the table because the size correction of the two-K equation does not apply to them. The following equation applies to pipe entrances, exits and orifices:

$$K = K_1/N_{Re} + K_{\infty}$$

The constants are  $(K_{\infty}$  is the "classic" K):

- 1. Pipe entrances (Fig. 3):  $K_1 = 160$ ;  $K_{\infty} = 0.50$  for "normal" entrance, and 1.0 for "Borda" entrance.
- 2. Pipe exit:  $K_1 = 0$ ;  $K_{\infty} = 1.0$ . 3. Orifice:  $K_1$  is variable;  $K_{\infty} = 2.91$   $(1 \beta^2)$  $((1/\beta^4) - 1)$ , where  $\beta$  is the ratio of orifice dia. to pipe inside dia.

# Two-K vs. equivalent length

Why use the two-K method when the equivalentlength method is more familiar? and easier to use? This

# 30 80

#### Nome dature

| D | Inside pipe dia., ft                 |
|---|--------------------------------------|
| f | Moody friction factor ( $f = 64/N_1$ |

Moody friction factor ( $f = 64/N_{Re}$  for laminar flow)

 $f_T$  "Standard" friction factor for head loss in fitting

g Acceleration due to gravity, 32.17 ft/s<sup>2</sup>

 $H_d$  Velocity head, ft of fluid  $\Delta H$  Head loss, ft of fluid

 $\Delta H$  Head loss, ft of fluid ID Inside pipe dia., in.

K Excess head loss for a fitting, velocity heads

 $K_1$  K for fitting at  $N_{Re} = 1$ , velocity heads

 $K_{\infty}$  K for very large fitting at  $N_{Re} = \infty$ , velocity

Length of pipe, including physical length of fittings, ft  $L_e$  Equivalent length of a fitting  $(L_e = KD/f)$ , ft

 $N_{Re}$  Reynolds number for flow  $(N_{Re} = \rho D v/\mu)$ 

n Number of fittings of a given type  $\Delta P$  Pressure drop ( $\Delta P = \rho \Delta H/144$ ), psi

R/D Bend radius of an elbow divided by inside dia. of pipe

v Fluid velocity, ft/s

 $\beta$  Ratio of orifice dia. to pipe inside dia.

ε Roughness of pipe wall, ft

μ Viscosity of fluid, lb/ft-s

ρ Density of fluid, lb/ft<sup>3</sup>

#### Two-K method

Form:  $\Delta H = K H_d$ ;  $K = K_1/N_{Re} + K_{\infty}(1 + 1/ID)$ 

Find K for fittings:

| Fittings           | <i>n</i> | $K_1$ | $nK_1$ | $K_{\infty}$ | $nK_{\infty}$ |
|--------------------|----------|-------|--------|--------------|---------------|
| 90° elbows         | 6        | 800   | 4,800  | 0.20         | 1.20          |
| Tees (side outlet) | 2        | 800   | 1,600  | 0.80         | 1.60          |
| Gate valves        | 2        | 500   | 1,000  | 0.15         | 0.30          |
| Totals             |          |       | 7,400  |              | 3.10          |

K = 7,400/1,210,000 + 3.10(1 + 1/15.624) = 3.305

Find K for exit and straight pipe:

K = 1.0 for normal exit; K = fL/D = 0.937 for pipe

Find head loss:

$$\Delta H = K H_d$$
  
= (3.305 + 1.0 + 0.937)(1.554)  
= 8.15 ft

# K-factor method [5]

Form:  $\Delta H = ((fL/D) + K) H_d$ 

Find K for fittings and exit:

| Fittings           | <u>n</u> | K    | nK   |
|--------------------|----------|------|------|
| 90° elbows         | 6        | 0.22 | 1.32 |
| Tees (side outlet) | 2        | 0.44 | 0.88 |
| Gate valves        | 2        | 0.03 | 0.06 |
| Exit               | 1        | 1.0  | 1.00 |
| Total              |          |      | 3.26 |

Find K for straight pipe:

$$K = f L/D = 0.937$$
 (given)

Find head loss:

$$\Delta H = K H_d$$
  
=  $(3.26 + 0.937)(1.554)$   
=  $6.52$  ft

# Old equivalent-length method [1]

Form:  $\Delta H = (fL_e/D) H_d$ 

Find equivalent lengths:

| Fittings           | <u>n</u> | $\frac{L_e}{}$ | $nL_e$ |
|--------------------|----------|----------------|--------|
| 90° elbows         | 6        | 42             | 252    |
| Tees (side outlet) | 2        | 89             | 178    |
| Gate valves        | 2        | 9              | 18     |
| Exit               | 1        | 89             | 89     |
| Straight pipe      |          |                | 100    |
| Total $L_a$        |          |                | 637 ft |

Find head loss:

$$\begin{split} \Delta H &= (f L_e/D) H_d \\ &= (0.0122 \times (637/1.302))(1.554) \\ &= 9.28 \text{ ft} \end{split}$$

# New Crane method [6]

Form:  $\Delta H = ((fL/D) + K) H_d$ 

 $f_T$  for this system is 0.013 (p. A-26)

Find K for fittings and exit:

| Fittings           |              | K     | n | nK    |
|--------------------|--------------|-------|---|-------|
| 90° elbows         | $K = 20 f_T$ | 0.260 | 6 | 1.560 |
| Tees (side outlet) | $K = 60 f_T$ | 0.780 | 2 | 1.560 |
| Gate valves        | $K = 8 f_T$  | 0.104 | 2 | 0.208 |
| Exit               | •            | 1.00  | 1 | 1.00  |
| Total              |              |       |   | 4.328 |

Find K for straight pipe:

$$K = fL/D = 0.937$$
 (given)

Find head loss:

$$\begin{split} \Delta H &= ((fL/D) + K) \, H_d \\ &= (0.937 \, + \, 4.328)(1.554) \\ &= 8.18 \; \text{ft} \end{split}$$



classic method, in which each type of fitting has one "equivalent length," is reliable for 1-6 in. carbon-steel piping in normal runs (see the dashed line in Fig. 2). In large, complex alloy systems, the method could predict head losses 1.5-3 times too high. That means oversized pumps and a large waste of energy and capital. In laminar flow, on the other hand, it could predict head losses a whole order of magnitude too low.

The equivalent-length concept also contains a booby trap for the unwary. Every equivalent length has a specific friction factor (f) associated with it, because the equivalent lengths were originally developed from K factors by the formula  $L_e = KD/f$ . This is why the latest version of the equivalent-length method (the 1976 edition of Crane Technical Paper 410 [6]) properly requires the use of two friction factors. The first is the actual friction factor for flow in the straight pipe (f), and the second is a "standard" friction factor for the particular fitting (f). Thus the two-K method is as easy to use as the updated equivalent-length method. And the results are as accurate.

What about the widely-used K-factor graphs published by the Hydraulic Institute? (See [5] for a good presentation of these graphs.) The graphs are good for 1-8 in. pipe in fully turbulent flow (see dotted line in Fig. 2), but extrapolation to larger sizes can cause errors. For example, the K-factor line in Fig. 2 shows a K of 0.075 for a 36-in. elbow, but the actual K is about 0.200. Of course, these charts greatly underestimate laminar head losses, and should not be used for  $N_{Re}$  below 10,000.

## Example

Consider a 16-in. Sch 10S stainless-steel system as shown in Fig. 4. The system contains 100 actual ft of pipe; 6 long-radius (normal for most systems) elbows; 2 side-outlet tees; 2 gate valves and an exit into a tank. The fluid has a viscosity of 1 cP, a specific gravity of 1, and is flowing at 10 ft/s. What is the head loss through this system?

Let us first calculate and convert the given data to get the needed information:

$$\rho = 1 \times 62.43 = 62.43 \text{ lb/ft}^3$$
  
 $\mu = 1 \times 6.72 \times 10^{-4} = 6.72 \times 10^{-4} \text{ lb/ft-s}$ 



ID = 15.624 in. for Sch 10S pipe

D = 15.624/12 = 1.302 ft

 $N_{Re} = (10)(1.302)(62.43)/(6.72 \times 10^{-4}) = 1,210,000$ 

 $H_d = v^2/2g = 10^2/64.34 = 1.554$  ft of fluid

Given  $\epsilon = 0.00005$  ft for stainless pipe, we can find f from the Colebrook equation: f = 0.0122. Thus, fL/D = (0.0122)(100)/(1.302) = 0.937 (this is the K value for the pipe itself).

The four boxes (on p. 99) show how to calculate the total head loss by the two-K method and three other methods. The results:

- 1. Two-K method:  $\Delta H = 8.15$  ft.
- 2. Old equivalent-length method:  $\Delta H = 9.28$  ft (14% high).
  - 3. K-factor method:  $\Delta H = 6.52$  ft (20% low).
- 4. Revised Crane method:  $\Delta H = 8.18$  ft.

Note that flow was fully turbulent in this example. For laminar flow, the equivalent-length and K-factor methods would have been off considerably more.

Mark Lipowicz, Editor

#### References

- Freeman, J. R., "Experiments Upon the Flow of Water in Pipe and Pipe Fittings," American Soc. of Mechanical Engineers, New York, 1941.
- Kittridge, C. P., and Rowley, D. S., Resistance Coefficients for Laminar and Turbulent Flow through ½ Inch Valves and Fittings, Trans. ASME, 79 (Nov. 1957), p. 1759.
- Pigott, R. J. S., Pressure Losses in Tubing, Pipe and Fittings, Trans. ASME, 72 (July 1950), p. 679.
- 4. Pigott, R. J. S., Losses in Pipe and Fittings, Trans. ASME, 79 (Nov. 1957), p. 1767.
- Simpson, L. L., Sizing piping for process plants, Chem. Eng., June 17, 1968, p. 192.
- "Flow of Fluid through Valves," Crane Technical Paper 410, 15th printing, Crane Co., Chicago, 1976.



#### The author

William B. Hooper is a Monsanto Fellow in the Corporate Engineering Dept. of Monsanto Co., 800 N. Lindbergh Blvd., St. Louis, MO 63166. He functions primarily as a process-design consultant in the Monsanto Chemical Intermediates Co., where he is currently involved in designing a maleic anhydride plant. Past assignments have included acrylonitrile, styrene, methanol and ethylene plants. Mr. Hooper holds a B.S. degree in chemical engineering from the University of Oklahoma. He is a member of A.I.Ch.E. and is a registered professional engineer in Missouri.