МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА

Институт радиоэлектроники и информационных технологий Кафедра информатики и систем управления

ОТЧЕТ

по лабораторной работе №7 по дисциплине

Сети и телекоммуникации

	Гай В. Е.
(подпись)	(фамилия, и.,о.)
СТУДЕНТ:	
	<u> Пигасин Д. А.</u>
(подпись)	(фамилия, и.,о.)
	<u>18-AC</u>
	(шифр группы)

Расчет контрольной суммы заголовка протоколов транспортного уровня **TCP** и **UDP**

Цель:

Изучить формат заголовка протоколов TCP и UDP и на примере разобрать механизм вычисления 16-битной контрольной суммы, используется для обнаружения ошибок в протоколах транспортного уровня.

Контрольная сумма в протоколе ТСР:

0 1 2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	Порт отправителя																	По	рт	по.	луч	ат	еля	I				
	Номер пакета																											
	Номер подтверждения																											
Длина заг.																												
	Контрольная сумма																У	каз	ате	ЭЛЬ	ср	очь	юс	ти				
	Опции																						3aı	ЮЛ	не	ние	;	
											Ţ	Įан	ны	e														

Рис. 8.1. Структура пакета ТСР

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
											I	Pv	4-a	дро	ec c	ТΠ	ран	вит	еля	Я											
												ΙΡν	/4-a	адр	ec	пол	туч	ате	еля	[
			Ну	ли					T	ип і	про	ото	ко.	ла					,	Для	ина	па	ке	га ′	ГСI	P/U	DI)			

Рис. 8.2. Структура псевдозаголовка ТСР/UDP

Перехваченный ТСР пакет

L		21 8	85.6	6510	906	85	10	0.0.	0.2	1				10.	0.0	. 20		TCP	
→ I	Frar	ne 2	21:	66	byt	es	on	wir	e (528	bit	s),	66	by	tes	ca	otur	ed (528 bits) on	int
→ E	Ethe	erne	et I	I,	Src	: 0	0:0	0:0	0_a	a:00	:01	(0	0:0	0:00	9:aa	a:00	9:01	L), Dst: 00:00:00_	aa:
																		0.0.20	
•	Trai	nsmi	İssi	on	Con	itro	1 P	rot	oco.	l, s	rc	Por	t: ·	493	60,	Ds	t Po	ort: 9000, Seq: 1,	Ac
000	00	00	00	00	aa	00	00	00	00	00	aa	00	01	08	00	45	00		E٠
001	10	00	34	39	6e	40	00	40	06	ed	2d	0a	00	00	15	0a	00	· 49n@ · @ · · - · · · ·	
002	20	00	14	C0	d0	23	28	f4	15	3f	3d	С9	22	a2	74	80	10	··· + (· · ?= · " · t	
003	30	01	f6	2e	5f	00	00	01	01	08	0a	ae	С9	1e	36	74	fa	··· · · · · · · · 6	ŝt٠
004	40	6d	62															mb	

1. Формируем псевдозаголовок.

	0a 00 00 15	
	0a 00 00 14	
00	06	00 20

2. Разбиваем заголовок ТСР, блок данных и псевдозаголовок на слова 16 бит, принимаем значение поля контрольной суммы равным нулю и суммируем полученные 16-битные слова между собой.

W1 - W16 - заголовок ТСР.

W9 - поле контрольной суммы.

W17 - W22 - псевдозаголовок.

$$W1 = (c0 d0)_{16}$$
 $W6 = (a2 74)_{16}$ $W11 = (01 01)_{16}$ $W16 = (6d 62)_{16}$
 $W2 = (23 28)_{16}$ $W7 = (80 10)_{16}$ $W12 = (08 0a)_{16}$
 $W3 = (f4 15)_{16}$ $W8 = (01 f6)_{16}$ $W13 = (ae c9)_{16}$
 $W4 = (3f 3d)_{16}$ $W9 = (2e 5f)_{16}$ $W14 = (1e 36)_{16}$
 $W5 = (c9 22)_{16}$ $W10 = (00 00)_{16}$ $W15 = (74 fa)_{16}$
 $W17 = (0a 00)_{16}$ $W20 = (00 14)_{16}$
 $W18 = (00 15)_{16}$ $W21 = (00 06)_{16}$
 $W19 = (0a 00)_{16}$ $W22 = (00 20)_{16}$

$$\sum$$
Wi = (5 d1 9b)₁₆

3. Поскольку двоичная запись результата сложения превышает 16 бит,разбиваем его на два слова по 16 бит каждое и снова их суммируем.

$$W_S = (00\ 05)_{16} + (d1\ 9b)_{16} = (d1\ a0)_{16}$$

4. Находим контрольную сумму, как двоичное поразрядное дополнение результата сложения.

$$CS_{TCP} = (ff ff)_{16} - W_S = (2e 5f)_{16}$$

Контрольная сумма в протоколе UDP:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
]	Пој	от (отп	pai	вит	еля	ł.										По	рт	по.	пуч	ат	еля	I				
				J	Ц ли	на	дат	гаг	par	MMI	Ы									К	ЮН	тро)ЛЬ	ная	і су	MN	ıa				
														Į	Ц ан	ны	e														

Рис. 8.3. Структура пакета UDP

Перехваченный UDP пакет

1. Формируем псевдозаголовок.

	0a 00 00 15	
	0a 00 00 14	
00	11	00 0e

2. Разбиваем заголовок UDP, блок данных и псевдозаголовок на слова 16 бит, принимаем значение поля контрольной суммы равным нулю и суммируем полученные 16-битные слова между собой.

W1 - W16 - заголовок UDP.

W4 - поле контрольной суммы.

W5 - W7 - данные.

W18 - W13 - псевдозаголовок.

$$W1 = (91 \text{ f2})_{16}$$
 $W5 = (68 65)_{16}$ $W9 = (00 15)_{16}$ $W13 = (00 0e)_{16}$
 $W2 = (23 28)_{16}$ $W6 = (6c 6c)_{16}$ $W10 = (0a 00)_{16}$
 $W3 = (00 0e)_{16}$ $W7 = (6f 0a)_{16}$ $W11 = (00 14)_{16}$
 $W4 = (f2 b2)_{16}$ $W8 = (0a 00)_{16}$ $W12 = (00 11)_{16}$

$$\sum$$
Wi = (2 0d 4b)₁₆

3. Поскольку двоичная запись результата сложения превышает 16 бит,разбиваем его на два слова по 16 бит каждое и снова их суммируем.

$$W_S = (00\ 02)_{16} + (0d\ 4b)_{16} = (0d\ 4d)_{16}$$

4. Находим контрольную сумму, как двоичное поразрядное дополнение результата сложения.

$$CS_{UDP} = (ff ff)_{16} - W_S = (f2 b2)_{16}$$

Формат пакета и контрольная сумма протокола ІСМР

Цель:

Изучить формат пакета ICMP и на примере разобрать механизм вычисления 16-битной контрольной суммы, используется для обнаружения ошибок в пакете протокола ICMP.

Контрольная сумма в протоколе ІСМР:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
,	Ги	п	coc	бш	цен	ия			К	од (coc	бш	цен	ия						К	Юн	тро	лы	ная	і су	MN	ıa				
							Д	анн	ње	В 3	ваві	иси	IМС	сті	1 O	ГΤІ	ипа	и	ко,	ца (coo	бш	ені	Я							

Рис. 6.1. Структура пакета ІСМР

Перехваченный ІСМР пакет

1. Разбиваем заголовок ICMP, блок данных и псевдозаголовок на слова 16 бит, принимаем значение поля контрольной суммы равным нулю и суммируем полученные 16-битные слова между собой.

$$W1 = (08\ 00)_{16}$$
 $W6 = (99\ 60)_{16}$ $W11 = (00\ 00)_{16}$ $W16 = (16\ 17)_{16}$
 $W2 = (8c\ 0f)_{16}$ $W7 = (00\ 00)_{16}$ $W12 = (00\ 00)_{16}$ $W17 = (18\ 19)_{16}$
 $W3 = (00\ 1a)_{16}$ $W8 = (00\ 00)_{16}$ $W13 = (10\ 11)_{16}$ $W18 = (1a\ 1b)_{16}$
 $W4 = (00\ 01)_{16}$ $W9 = (d2\ f7)_{16}$ $W14 = (12\ 13)_{16}$ $W19 = (1c\ 1d)_{16}$
 $W5 = (3f\ aa)_{16}$ $W10 = (01\ 00)_{16}$ $W15 = (14\ 15)_{16}$ $W20 = (1e\ 1f)_{16}$
 $W21 = (20\ 21)_{16}$ $W24 = (26\ 27)_{16}$ $W27 = (2c\ 2d)_{16}$ $W30 = (32\ 33)_{16}$
 $W22 = (22\ 23)_{16}$ $W25 = (28\ 29)_{16}$ $W28 = (2e\ 2f)_{16}$ $W31 = (34\ 35)_{16}$
 $W23 = (24\ 25)_{16}$ $W26 = (2a\ 2b)_{16}$ $W29 = (30\ 31)_{16}$ $W32 = (36\ 37)_{16}$

$$\sum$$
Wi = (4 73 ec)₁₆

3. Поскольку двоичная запись результата сложения превышает 16 бит,разбиваем его на два слова по 16 бит каждое и снова их суммируем.

$$W_S = (00\ 04)_{16} + (73\ ec)_{16} = (73\ f0)_{16}$$

4. Находим контрольную сумму, как двоичное поразрядное дополнение результата сложения.

$$CS_{ICMP} = (ff ff)_{16} - W_S = (8c 0f)_{16}$$