Ngoc Ha

STAT 453

Lab 4 ¶

```
In [2]: library(readx1)
library(fitdistrplus)
library(boot)
```

1. pgatour2006.xlsx analysis

(1a) Summarize

```
In [48]: pga <- read_excel('pgatour2006.xlsx')</pre>
 In [4]: str(pga)
          Classes 'tbl_df', 'tbl' and 'data.frame': 196 obs. of 11 variables:
                                         "Aaron Baddeley" "Adam Scott" "Alex Aragon" "Alex
           $ Name
                                 : chr
          Cejka" ...
           $ PrizeMoney
                                  : num 60661 262045 3635 17516 16683 ...
           $ AveDrivingDistance: num
                                         288 301 303 289 288 ...
           $ DrivingAccuracy : num
                                         60.7 62 51.1 66.4 63.2 ...
           $ GIR
                                  : num
                                         58.3 69.1 59.1 67.7 64 ...
           $ PuttingAverage : num
                                         1.75 1.77 1.79 1.78 1.76 ...
           $ BirdieConversion : num 31.4 30.4 29.9 29.3 29.3 ...
           $ SandSaves : num 54.8 53.6 37.9 45.1 52.4 ...
           $ Scrambling : num 59.4 57.9 50.8 54.8 57.1 ...
$ BounceBack : num 19.3 19.4 16.8 17.1 18.2 ...
$ PuttsPerRound : num 28 29.3 29.2 29.5 28.9 ...
```

10% trimmed mean

In [5]: sapply(pga[,2:11], mean, trim = 0.1)

PrizeMoney40027.2151898734AveDrivingDistance289.308860759494DrivingAccuracy63.3127848101266GIR65.2693670886076

 PuttingAverage
 1.77932911392405

 BirdieConversion
 29.0146202531646

 SandSaves
 48.9799367088608

 Scrambling
 57.5008860759494

 BounceBack
 19.5676582278481

PuttsPerRound 29.190253164557

Standard deviation

In [6]: sapply(pga[,2:11], sd)

PrizeMoney63902.9534175403AveDrivingDistance8.7305092931058DrivingAccuracy5.41302275758653GIR2.7223638625283

PuttingAverage 0.024728132964627
BirdieConversion 2.20655581118645
SandSaves 5.82831251040945
Scrambling 3.16225742012002
BounceBack 2.80611274288793

PuttsPerRound 0.441702272391593

Summary

```
PrizeMoney
                 AveDrivingDistance DrivingAccuracy
                                                          GIR
Min. : 2240
                 Min.
                        :265.9
                                    Min.
                                           :49.75
                                                     Min.
                                                            :56.87
1st Qu.: 17369
                 1st Qu.:283.6
                                    1st Qu.:59.76
                                                     1st Qu.:63.52
Median : 36645
                 Median :288.2
                                    Median :63.24
                                                     Median :65.36
     : 50891
                 Mean
                        :289.5
                                    Mean
                                           :63.38
                                                     Mean
                                                          :65.19
3rd Qu.: 57915
                 3rd Qu.:295.5
                                    3rd Qu.:66.97
                                                     3rd Qu.:66.77
Max.
      :662771
                 Max.
                       :319.6
                                    Max.
                                          :78.43
                                                    Max.
                                                           :74.15
                BirdieConversion
                                   SandSaves
PuttingAverage
                                                    Scrambling
                                        :33.91
Min.
       :1.712
                Min.
                       :23.17
                                 Min.
                                                 Min.
                                                         :49.02
1st Qu.:1.763
                1st Qu.:27.51
                                 1st Qu.:45.13
                                                  1st Qu.:55.26
Median :1.778
                Median :29.01
                                 Median :48.66
                                                 Median :57.65
Mean
       :1.780
                Mean
                      :28.98
                                 Mean
                                        :48.97
                                                 Mean
                                                        :57.49
3rd Qu.:1.796
                3rd Qu.:30.55
                                 3rd Qu.:52.87
                                                  3rd Qu.:59.46
Max.
       :1.851
                Max.
                       :35.66
                                 Max.
                                        :63.64
                                                 Max.
                                                         :66.45
  BounceBack
                PuttsPerRound
Min.
       :12.29
                Min.
                       :27.96
1st Qu.:17.56
                1st Qu.:28.91
Median :19.62
                Median :29.19
Mean
       :19.60
                Mean
                       :29.20
                3rd Qu.:29.48
3rd Qu.:21.31
Max.
       :25.93
                Max.
                       :30.19
```

(1b)

(1c) Density histogram of AveDrivingDistance

Average Driving Distance

(1d) Normal plot of AveDrivingDistance

In [110]: qqnorm(pga\$AveDrivingDistance)
 options(repr.plot.width=5, repr.plot.height=6)

Normal Q-Q Plot

(1e) Fit a model

Normal plot

```
In [11]: fitPgaNorm <- fitdist(pga$AveDrivingDistance, "norm")</pre>
```


(1f) 75th percentile of AveDrivingDistance from quantile command

In [14]: quantile(pga\$AveDrivingDistance, 0.75)

75%: 295.525

(1g) 75th percentile of AveDrivingDistance from fitted model

```
In [15]: qnorm(0.75, 289.498, 8.708)
295.371456744707
```

(1h) Bootstrap the 75th percentile

Bootstrap

```
In [49]: thirdQuartile <- function(d, i){
    return(quantile(d[i], 0.75))
}
thirdQuartileBoot <- boot(data = pga$AveDrivingDistance, statistic = thirdQuartile, R = 500)
thirdQuartileBoot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = pga$AveDrivingDistance, statistic = thirdQuartile,
    R = 500)

Bootstrap Statistics :
    original bias std. error
t1* 295.525 0.0622 0.6294172</pre>
```

```
In [50]: par(mfrow = c(2,2))
    hist(thirdQuartileBoot$t, freq = F, main = "Bootstrap 75th percentile", xlab =
        "75th percentile", xlim = c(292,298))
    boxplot(thirdQuartileBoot$t, horizontal = T, main = "Bootstrap 75th percentile")
    qqnorm(thirdQuartileBoot$t, main = "Bootstrap 75th percentile")
    options(repr.plot.width=7, repr.plot.height=7)
```

Bootstrap 75th percentile

Bootstrap 75th percentile

Bootstrap 75th percentile

(1i) Shape of sampling distribution of sample 75th percentile

The sampling distribution of the sample 75th percentile resembles a normal distribution. There are a few outliers and 2 extreme outliers out of 500 data points.

(1j) 5th and 95th percentiles of sampling distribution of sample 75th percentile

In [56]: quantile(thirdQuartileBoot\$t, 0.05)
quantile(thirdQuartileBoot\$t, 0.95)

5%: 294.6

95%: 296.725

2. pgatour200.xlsx analysis

(2a) Pairwise correlations

In [61]: cor(pga[, 2:11])

	PrizeMoney	AveDrivingDistance	DrivingAccuracy	GIR	PuttingAverag
PrizeMoney	1.00000000	0.15900129	0.024677039	0.41021935	-0.3130515
AveDrivingDistance	0.15900129	1.00000000	-0.590599303	0.16460354	0.0859594
DrivingAccuracy	0.02467704	-0.59059930	1.000000000	0.41635604	-0.0255826
GIR	0.41021935	0.16460354	0.416356043	1.00000000	0.0588073
PuttingAverage	-0.31305150	0.08595947	-0.025582688	0.05880737	1.0000000
BirdieConversion	0.41342953	0.37568272	-0.252125225	0.02685014	-0.7679593
SandSaves	0.22187452	-0.23669494	0.035407734	-0.08107691	-0.2650921
Scrambling	0.28472059	-0.38033753	0.396059676	0.19435094	-0.1989427
BounceBack	0.33620030	0.23750860	0.001746659	0.29275929	-0.3185672
PuttsPerRound	-0.11249143	0.25656855	0.060313852	0.48083985	0.7916828
4					•

(2b) Create and add natural logarithm of PrizeMoney to dataframe

```
In [52]: InPrize <- log(pga$PrizeMoney)
pga$InPrize <- InPrize</pre>
```

(2c) Correlation of InPrize with all variables except for PrizeMoney

In [65]:	<pre>cor(lnPrize, pga[, 3:11])</pre>								
	AveDrivingDistance	DrivingAccuracy	GIR	PuttingAverage	BirdieConversion	SandSaves	ક		
	0.07587079	0.1816729	0.5048932	-0.4301117	0.4673991	0.2414879			
	4						•		

(2d) Scatterplot of InPrize versus GIR with LOESS line. Identify outliers + summarize.

InPrize vs GIR

The scatterplot demonstrates a moderate positive linear relationship between Natural log of Prize Money and Greens in Regulation (r = 0.505). There are no obvious outliers.

(2e) Bootstrap sampling distribution of correlation between InPrize and GIR

Bootstrap

```
In [54]: par(mfrow = c(1,2))
    options(repr.plot.width=7, repr.plot.height=4)
    hist(correBoot$t, freq = F, main = "Bootstrap correlation", xlab = "Correlatio
    n between lnPrize and GIR")
    qqnorm(correBoot$t, main = "Bootstrap correlation")
```

Bootstrap correlation

Correlation between InPrize and GIR

Bootstrap correlation

Theoretical Quantiles

(2f) Fit the model InPrize~GIR

```
lnPrizeGIR <- lm(lnPrize~GIR)</pre>
In [154]:
          summary(lnPrizeGIR)
In [155]:
          Call:
          lm(formula = lnPrize ~ GIR)
          Residuals:
               Min
                         1Q
                              Median
                                            3Q
                                                    Max
          -2.13396 -0.55742 0.06891 0.52960 2.32133
          Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
          (Intercept) -1.47207
                                   1.45580 -1.011
                                                      0.313
          GIR
                                             8.147 4.49e-14 ***
                       0.18179
                                  0.02231
          Signif. codes:
                          0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
          Residual standard error: 0.8483 on 194 degrees of freedom
          Multiple R-squared: 0.2549, Adjusted R-squared: 0.2511
          F-statistic: 66.37 on 1 and 194 DF, p-value: 4.486e-14
```

Fitted equation: InPrize = 0.18179 * GIR - 1.47207

```
In [156]: par(mfrow = c(2,2))
    options(repr.plot.width=7, repr.plot.height=7)
    plot(lnPrizeGIR)
```


(2g) Estimate InPrize when GIR = 65

```
In [161]: predict.lm(lnPrizeGIR, data.frame(GIR=65), se.fit = T)

$fit
    1: 10.3442535019428
    $se.fit
    0.0607328205851393
$df
    194
$residual.scale
    0.848270263557247
```

(2h) Transform the fitted value in part 2g back to \$ units

```
In [171]: '$ unit'
exp(10.34425)

'$ unit'
31077.8305524319
```

3. Titanic-Survival-Data.xlsx analysis

(3a) Summarize Age

```
In [3]: titanic <- read_excel('Titanic-Survival-Data.xlsx')

In [4]: str(titanic)

Classes 'tbl_df', 'tbl' and 'data.frame': 2201 obs. of 5 variables:
    $ Class : chr "Coach" "Coach" "Coach" "Coach" ...
    $ Gender : chr "Female" "Female" "Female" "Female" ...
    $ Age : num 20 21 26 26 36 41 41 45 45 48 ...
    $ Status : chr "Survived" "Survived" "Died" ...
    $ ChildorAdult: chr "Adult" "Adult" "Adult" ...</pre>
```

10% trimmed mean

```
In [5]: mean(titanic$Age, trim = 0.1)
47.4599659284497
```

(3b) Tabulate survivors vs non-survivors

```
In [8]: table(titanic$Status)

Died Survived
1490 711
```

(3c) Tabulate males vs females

```
In [9]: table(titanic$Gender)
Female Male
470 1731
```

(3d) Tabulate the number in each pasenger class

```
In [10]: table(titanic$Class)

Coach First
    1876   325
```

(3e) Cross-tabulate survivors vs non-survivors by gender

(3f) Cross-tabulate survivors vs non-survivors by passenger class

```
In [12]: table(titanic$Status, titanic$Class)

Coach First
Died 1368 122
```

(3g) Cross-tabulate survivors vs non-survivors by ChildorAdult

203

Survived

508

```
In [13]: table(titanic$Status, titanic$ChildorAdult)

Adult Child
Died 1438 52
Survived 654 57
```

(3h) Estimate proportion of males that survived and its standard error

Sample proportion

Estimated standard error

(3i) Estimate proportion of females that survived and its standard error

Sample proportion

```
In [16]: pFemale <- 344/(344 + 126) pFemale 0.731914893617021
```

Estimated standard error

```
In [17]: SEpFemale <- sqrt(pFemale*(1-pFemale)/(344 + 126))
SEpFemale</pre>
```

0.0204323211894421

(3j) Estimate probability of survival for children and its standard error

Sample proportion

```
In [18]: pCoach <- 508/(508 + 1368) pCoach
```

0.270788912579957

Estimated standard error

(3k) Estimate probability of survival for children and its standard error

Sample proportion

```
In [20]: pChild <- 57/(52+57) pChild 0.522935779816514
```

Estimated standard error

```
In [21]: SEpChild <- sqrt(pChild*(1-pChild)/(52 + 57))
SEpChild</pre>
```

0.0478409012760106

4. Titanic-Survival-Data.xlsx analysis

(4a) Estimate median age of males that survive

Subset male survivors

```
In [32]: maleSurvivors = subset(titanic, Gender == 'Male', Status = 'Survived')
```

Median age of male survivors

```
In [33]: median(maleSurvivors$Age)
48
```

(4b) Estimate median age of females that survive

Subset female survivors

```
In [34]: femaleSurvivors = subset(titanic, Gender == 'Female', Status = 'Survived')
```

Median age of female survivors

```
In [35]: median(femaleSurvivors$Age)
47
```

(4c) Bootstrap sampling distribution of median age of males that survived

Bootstrap

```
In [55]: medianFc <- function(x, i){
    return(median(x[i]))
}
medianMaleBoot <- boot(data = maleSurvivors$Age, statistic = medianFc, 500)
medianMaleBoot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = maleSurvivors$Age, statistic = medianFc, R = 500)

Bootstrap Statistics :
    original bias std. error
t1* 48 0.388 0.8572782</pre>
```

```
In [56]: par(mfrow = c(2,2))
  options(repr.plot.width=7, repr.plot.height=7)
    hist(medianMaleBoot$t, freq = F, main = "Bootstrap median age of male survivor
    s", xlab = "Median age of male survivors")
    boxplot(medianMaleBoot$t, horizontal = T, main = "Bootstrap median age of male
        survivors")
    qqnorm(medianMaleBoot$t, main = "Bootstrap median age of male survivors")
```

Bootstrap median age of male survivors

Bootstrap median age of male survivors

Bootstrap median age of male survivors

(4d) Bootstrap sampling distribution of median age of females that survived

Bootstrap

```
In [57]: medianFemaleBoot <- boot(data = femaleSurvivors$Age, statistic = medianFc, 500
)
medianFemaleBoot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = femaleSurvivors$Age, statistic = medianFc, R = 500)

Bootstrap Statistics :
    original bias std. error
t1* 47 -0.058 1.457355</pre>
```

```
In [58]: par(mfrow = c(2,2))
    options(repr.plot.width=7, repr.plot.height=7)
    hist(medianFemaleBoot$t, freq = F, main = "Bootstrap median age of female surv
    ivors", xlab = "Median age of male survivors")
    boxplot(medianFemaleBoot$t, horizontal = T, main = "Bootstrap median age of fe
    male survivors")
    qqnorm(medianFemaleBoot$t, main = "Bootstrapped median age of female survivor
    s")
```

Bootstrap median age of female survivor: Bootstrap median age of female survivor:

Bootstrapped median age of female survivo

(4e) Estimate median age of first class passengers that survived

Subset first class survivors

```
In [59]: firstClassSurvivors = subset(titanic, Class == 'First', Status = 'Survived')
```

Median age of first class survivors

```
In [60]: median(firstClassSurvivors$Age)
50
```

(4f) Estimate median age of coach class passengers that survived

Subset coach class survivors

```
In [61]: coachClassSurvivors = subset(titanic, Class == 'Coach', Status = 'Survived')
```

Median age of coach class survivors

```
In [62]: median(coachClassSurvivors$Age)
48
```

(4g) Bootstrap sampling distribution of median age of first class passengers that survived

Bootstrap

Deciles of sampling distribution

```
In [72]: quantile(medianFirstClassBoot$t, probs = seq(0.1,0.9,0.1))
                         10%
                               47
                         20%
                               48
                         30%
                               49
                         40%
                               49
                         50%
                               50
                         60%
                               50
                         70%
                               50
                         80%
                               51
                         90%
                               51
```

```
In [64]: par(mfrow = c(2,2))
    options(repr.plot.width=7, repr.plot.height=7)
    hist(medianFirstClassBoot$t, freq = F, main = "Bootstrap median age of first c
    lass survivors", xlab = "Median age of first class survivors")
    boxplot(medianFirstClassBoot$t, horizontal = T, main = "Bootstrap median age of first class survivors")
    qqnorm(medianFirstClassBoot$t, main = "Bootstrap median age of first class survivors")
```

Bootstrap median age of first class survivo Bootstrap median age of first class survivo

Median age of first class survivors

Bootstrap median age of first class survivo

(4h) Bootstrap sampling distribution of median age of coach class passengers that survived

Quartiles of sampling distribution

```
In [78]: quantile(medianFirstClassBoot$t, c(.25,.5,.75))

25%     48
50%     50
75%     51
```

In [66]: par(mfrow = c(2,2))
 options(repr.plot.width=7, repr.plot.height=7)
 hist(medianCoachClassBoot\$t, freq = F, main = "Bootstrap median age of coach c
 lass survivors", xlab = "Median age of coach class survivors")
 boxplot(medianCoachClassBoot\$t, horizontal = T, main = "Bootstrap median age of coach class survivors")
 qqnorm(medianCoachClassBoot\$t, main = "Bootstrap median age of coach class survivors")

Bootstrap median age of coach class surviv Bootstrap median age of coach class surviv

Median age of coach class survivors

Bootstrap median age of coach class surviv

End