In this homework assignment, we let $\mathrm{Vec}_{\mathbb{F}}^{f.d.}$ denote the category of linear maps between finite dimensional linear spaces over \mathbb{F} and V_i (i=1,2,3) and V be objects in $\mathrm{Vec}_{\mathbb{F}}^{f.d.}$. Let $m=\dim V_1$ and $n=\dim V_2$.

1. Show that there is a functor \otimes from the product category $\operatorname{Vec}_{\mathbb{F}}^{f.d.} \times \operatorname{Vec}_{\mathbb{F}}^{f.d.}$ to the category $\operatorname{Vec}_{\mathbb{F}}^{f.d.}$ that sends an object (V_1,V_2) to $V_1 \otimes V_2$ and a morphism (f,g) to $f \otimes g$. Hint: please use the universal property of the tensor product.

Show that $f \otimes g$ is bilinear, meaning it is linear in both f and g.

Finally, show that the functors $-\otimes V$, $\operatorname{Hom}(V,-)$, and $\operatorname{Hom}(-,V)$ preserve exactness: If $A \to B \to C$ is exact, then the sequences $A \otimes V \to B \otimes V \to C \otimes V$, $\operatorname{Hom}(A,V) \leftarrow \operatorname{Hom}(B,V) \leftarrow \operatorname{Hom}(C,V)$, and $\operatorname{Hom}(V,A) \to \operatorname{Hom}(V,B) \to \operatorname{Hom}(V,C)$ are also exact.

2. (a) Show that functors $**, -\otimes \mathbb{F}$, $\mathbb{F} \otimes -$, $\operatorname{Hom}(\mathbb{F}, -)$, and the identity functor 1 are all naturally equivalent endofunctors on the category $\operatorname{Vec}_{\mathbb{F}}^{f.d.}$. A simpler way to record these facts is to write

$$V^{**} \equiv V \otimes \mathbb{F} \equiv \mathbb{F} \otimes V \equiv \operatorname{Hom}(\mathbb{F}, V) \equiv V$$

(b) Show that

$$\operatorname{Hom}(V_1, V_2 \otimes V_3) \equiv \operatorname{Hom}(V_1, V_2) \otimes V_3.$$

Consequently $\operatorname{Hom}(V_1, V_2) \equiv V_1^* \otimes V_2$ and $(V_1 \otimes V_2)^* \equiv V_1^* \otimes V_2^*$

- (c) $\dim(V_1 \otimes V_2) = \dim V_1 \cdot \dim V_2$, moreover, if e_i is a minimal spanning set of V_1 and f_j is a minimal spanning set of V_2 , then $e_i \otimes f_j$ is a minimal spanning set of $V_1 \otimes V_2$.
- (d) Show that

$$V_1 \otimes V_2 \equiv V_2 \otimes V_1$$
, $\operatorname{End}(V) \equiv (\operatorname{End}(V))^*$

- (e) Under the natural identification $\operatorname{End}(V) \equiv (\operatorname{End}(V))^*$, 1_V is identified with a linear map tr: $\operatorname{End}(V) \to \mathbb{F}$. Show that tr is an algebra homomorphism that sends unit 1_V to $\dim V$. (So it is not a unital algebra homomorphism unless $\dim V = 1$). This map is called the trace map.
- 3. Let the category $\operatorname{Vec}_{\mathbb{F}}^{f.d.}$ be denoted by \mathcal{V} . Denote by \mathcal{V}^{op} be the opposite category of \mathcal{V} . Show that
 - (a) $V_1 \otimes (V_2 \oplus V_3) \equiv (V_1 \otimes V_2) \oplus (V_1 \otimes V_3)$. This is a natural equivalence of two functors from $\mathcal{V} \times \mathcal{V} \times \mathcal{V}$ to \mathcal{V} .
 - (b) $\operatorname{Hom}(V_1,V_2\oplus V_3) \equiv \operatorname{Hom}(V_1,V_2) \oplus \operatorname{Hom}(V_1,V_3)$. This is a natural equivalence of two functors from $\mathcal{V}^{op} \times \mathcal{V} \times \mathcal{V}$ to \mathcal{V} .
 - (c) $\operatorname{Hom}(V_1 \oplus V_2, V_3) \equiv \operatorname{Hom}(V_1, V_2) \times \operatorname{Hom}(V_2, V_3)$. This is a natural equivalence of two functors from $\mathcal{V}^{op} \times \mathcal{V}^{op} \times \mathcal{V}$ to \mathcal{V} .