

Content of Part 2

Chapter 1. Fundamental concepts

Chapter 2. Graph representation

Chapter 3. Graph Traversal

Chapter 4. Tree and Spanning tree

Chapter 5. Shortest path problem

Chapter 6. Maximum flow problem

PART 1 COMBINATORIAL THEORY

(Lý thuyết tổ hợp)

PART 2
GRAPH THEORY

(Lý thuyết đồ thị)

Contents

- 1. Problem description and applications
- 2. Cut
- 3. Residual graph and Augmenting path
- 4. Ford-Fulkerson algorithm
- 5. Edmond-Karp algorithm
- 6. Some applications

Network

Network is a directed graph G = (V, E):

- There is only one vertex s without any incoming arcs, called source vertex and only vertex t without any outgoing arcs called target vertex.
- Each edge e of G is assigned a nonnegative value c(e) which is called capacity of e.

Example:

Flow in network

Definition. Flow f in network G=(V,E) is to assign value f(e) on each edge e(f(e)) is flow on edge e) so that following conditions are satisfied:

1) Capacity rule:

For each edge e, $0 \le f(e) \le c(e)$

2) Conservation Rule (Điều kiện cân bằng luồng): Each $v \neq s$, t

$$\sum_{e \in E^{-}(v)} f(e) = \sum_{e \in E^{+}(v)} f(e)$$

Definition. Value of flow f is

Edges going out of s

(Equation (*) is obtained by summing up all the conservation rules.) SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG —

Flow in network

Definition. Flow f in network G=(V,E) is to assign value f(e) on each edge e(f(e)) is flow on edge e) so that following conditions are satisfied:

1) Capacity rule:

For each edge e, $0 \le f(e) \le c(e)$

2) Conservation Rule (Điều kiện cân bằng luồng): Each $v \neq s$, t $\sum_{e \in E^-(v)} f(e) = \sum_{e \in E^-(v)} f(e)$

 $E^{-}(v)$ and $E^{+}(v)$ are sets of arcs entering and leaving vertex v, respectively.

Flow in network: Example

Example:

- 2 values on each edge: value of flow on edge is in red, the other is capacity of edge.
- Conditions 1) and 2) are satisfied \Rightarrow f is flow on the network.
- Value of flow:

$$8 = f(s,v) + f(s,u) + f(s,w) = f(v,t) + f(w,t) + f(z,t)$$

$$val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e)$$
25. VIÊN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Contents

1. Problem description and applications

2. Cut

- 3. Residual graph and Augmenting path
- 4. Ford-Fulkerson algorithm
- 5. Edmond-Karp algorithm
- 6. Some applications

۹ د ا	plications		
Network	Vertex	Arc	Flow
Network	transaction stations, computers, satellites	cables	voice, video, packets
Electrical network	gates, registers, processors	conductors	Power circuit
Mechanical	joints	rods, beams, springs	heat, energy
Irrigation	pumping stations, water source	pipelines	Liquid, water
Finance	bank	transitions	money
Traffic	airport, station	highways, flights	Goods, customers
Chemistry	sites	bonds	energy

Flow and cut

Lemma 1. Assume f is flow, and (S, T) is a cut. Then Flow through this cut is equal to the value of flow f:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e) = val(f)$$

Corollary. Assume f is a flow, (S, T) is a cut. If val(f) = cap(S, T), then f is maximum flow and (S, T) is minimum cut.

Max Flow and Min Cut

Flow and cut

Lemma 2. Assume f is a flow, (S, T) is a cut. Then $val(f) \le cap(S, T)$.

Proof

$$val(f) = \sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$

$$\leq \sum_{e \in S \to T} f(e)$$

$$\leq \sum_{e \in S \to T} c(e)$$

 $= \operatorname{cap}(S,T)$

Theorem about maximum flow and minimum cut

Augmenting path Theorem (Ford-Fulkerson, 1956): Flow is maximum if and only if there does not exist augmenting path on network.

Max flow and min cut Theorem (Ford-Fulkerson, 1956): the maximum possible flow in a network (from source to sink) is exactly equal to the minimum capacity of all possible cuts.

We will prove the following Theorem:

Theorem. Assume f is a flow in network. The following three statements are equivalent

- (i) Can find the cut (S, T) such that val(f) = cap(S, T).
- (ii) f is maximum flow.
- (iii) Could not find augmenting path to augment value flow f.

Contents

- 1. Problem description and applications
- 2. Cut
- 3. Residual graph and Augmenting path
- 4. Ford-Fulkerson algorithm
- 5. Edmond-Karp algorithm
- 6. Some applications

Computation time

Question: Is the Ford-Fulkerson algorithm a polynomial algorithm? (algorithm with computation time is bounded by a fixed degree polynomial of the input length)

 Answer: Not at all. If the maximum capacity is C then the algorithm may have to do C iterations.

The following example shows how the algorithm can take a lot of iteration

Contents

- 1. Problem description and applications
- 2. Cut
- 3. Residual graph and Augmenting path
- 4. Ford-Fulkerson algorithm
- 5. Edmond-Karp algorithm
- 6. Some applications

Computation time

Question: Is the Ford-Fulkerson algorithm a polynomial algorithm? (algorithm with computation time is bounded by a fixed degree polynomial of the input length)

 Answer: Not at all. If the maximum capacity is C then the algorithm may have to do C iterations.

If the capacities of arcs on network is real, there is an example that the Ford-Fulkerson algorithm does not stop.

Zwick constructs examples showing that the algorithm may not stop, if the capacity of arcs is irrational

How to select the augmenting path?

Be careful when select augmenting path, because

- · Several options may lead to an exponential algorithm.
- Smart choice leads to polynomial algorithm.
- If capacity is irrational number, the algorithm may not stop

The goal: select augmenting path such that:

- Can find the augmenting path effectively.
- The algorithm requires as few iterations as possible..

Select augmenting path with

• Maximum capacity. (fat path)

• Capacity is large enough. (capacity scaling)

• The number of edges along the way is the least. (shortest path)

Edmond-Karp algorithm

SOICT VIỆN CÔNG NGHỆ THỐNG TIN VÀ TRUYỀN THỐN

Applying BFS

