JOURNAL OF NANJING INSTITUTE OF TECHNOLOGY

Jan. 1988

路段交通量与0-D出行量互算关系的研究

王 炜

(土木工程系)

摘要 本文通过模拟出行者的行为特性,提出了交通分配选择模型,并确定了分配参数的取值范围。此外,采用非线性规划的序列无约束极小化技术,提出了用路段交通量推算O—D出行量的计算方法。最后,本文以一中等城市的交通网络为例,分析了该互算方法的精度。从理论和实践上证实了该方法的可行性。

关键词 交通分配,选择模型,序列无约束优化技术,路段交通量,O-D 出行量。

一、引言

收集现状的 O—D 出行量资料以及将 O—D 出行量分配到具体的交通网络上(即交通分配),是城市交通规划的两个主要环节。目前,一些城市在进行交通规划时,均通过 O—D 出行调查来获得现状的 O—D 资料,但这种调查工作量大、费时多、耗资巨,且精度不易保证,而一个城市交通网络的路段交通量观测比较简便。因此,如能用路段交通量推算 O—D 出行量,必将使城市交通规划工作大大简化,其经济效益是相当可观的。

二、交通分配选择模型

1. 分配模型的建立

所谓交通分配,就是把各交通区之间的出行交通量分配到 具体的道路上去,也就是用 O—D 出行量计算路段交通量。

人们在出行时,有选择最短路线的趋势,但也有随机选择出行路线的现象。一般来说, 当各出行路线的"长度"(行驶时间或行驶费用)相差很大时,出行者很容易判别,从而选

本文于1987年4月6日收到。

(2)

择最短路线出行。此时,出行量分配率在最短路上为1,其它道路上为零。但当各出行路线的"长度"趋于相等或出行者对交通网络不熟悉时,出行者就不能准确地判别最短路而随机地选择路线出行。此时,各出行路线的出行量分配率相等,均为 1/m(m为出行路线条数)。对于中间情况,出行者在选择出行路线时既含有最短路因素,也含有随机因素。所以,出行交通量可采用以下选择模型进行分配

$$P_{K} = \exp\left(-QT_{K}/\overline{T}\right) / \sum_{i=1}^{m} \exp\left(-QT_{i}/\overline{T}\right) \quad (K=1, 2, \dots, m) \quad (1)$$

式中 P_K ——第K条出行路线分配到的出行量分配率,

 T_K ——第K条出行路线的行驶时间,

 \overline{T} ——各出行路线的平均行驶时间,

Q----交通分配的分配参数,

m---可供选择的出行路线条数。

在确定供选择的出行路线时,以出行者不走"回头路"为原则。

 $P_1 = [1 + \exp(-QT_0)]^{-1}$

2. 分配参数Q的确定

分配参数Q取决于出行者的行为特性,出行者对交通网络的熟悉程度、出行道路条数等对分配参数有一定的影响。该参数可用下列方法进行经验估计。

1) 两路分配的情况

山式(1)可知:

其中

令

加

$$P_{2} = 1 - P_{1}$$

$$T_{0} = (T_{2} - T_{1}) / \overline{T} = 2(T_{2} - T_{1}) / (T_{2} + T_{1})$$

$$T_{2} = KT_{1}$$

$$K = (2 + T_{0}) / (2 - T_{0})$$
(4)

当两出行路线的"长度"相同时(即 $T_0=0$,K=1),出行者随机选择路线出行,两路被选择的概率相同,即两路将分配到相同的出行量($P_1=P_2=0.5$),这时,随机因素占100%,最短路因素为0%。当两路中较长一路的"长度"为另一路的 2 倍时(即 $T_0=2/3$,K=2),出行者能准确地判别 最短路并选作为 出行路线 ($P_1=1$, $P_2=0$),这时,随机因素为0%,最短路因素为 100%。对于中间情况(即 $T_0=1/3$,K=1.4),可认为随机因素、最短路因素各占50%,即 $P_1=50\%\times0.5+50\%\times1=0.75$, $P_2=50\%\times0.5+50\%\times0=0.25$ 。对于其他情况,可假设 T_0 与 P_1 (或 P_2)之间呈抛物线关系

$$T_0 = a + bP_1 + cP_1^2$$

上述三点代入得

即

$$a=-2/3$$
, $b=4/3$, $c=0$

$$T_0=-\frac{2}{3}+\frac{4}{3}P_1$$

$$P_1 = (3T_0 + 2)/4$$

代入式(2)即可得

$$Q = [\ln (3T_0 + 2) - \ln (2 - 3T_0)]/T_0$$

$$\lim_{T_0 \to 0} Q = 3$$
(5)

表1为由式(5)计算的分配参数值。

表 1

T_{0}	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.667
K	1.00	1.05	1.12	1.16	1.22	1.29	1.35	1.42	1.50	1.58	1.67	1.86	2.00
P_{1}	0.50	0.54	0.58	0.61	0.65	0.69	0.73	0.76	0.80	0.84	0.88	0.95	1.00
Q	3.00	3.01	3.02	3.05	3.10	3.15	3.23	3.33	3.47	3.64	3.89	4.91	

2) 三路及三路以上分配的情况

对于三路分配,可用同样的方法分析,分配参数计算公式如下

$$Q = \frac{2}{T_0} \{ \ln \left[\sqrt{1 + 4(4 + 3T_0)/(2 - 3T_0)} - 1 \right] - \ln 2 \}$$

$$\lim_{T_0 \to 0} Q = 3$$
(6)

表 2 为由式(6)计算的分配参数值。

表 2

T_{0}	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.667
K	1.00	1.05	1.12	1.16	1.22	1.29	1.35	1.42	1.50	1.58	1.67	1.86	2.00
P_3	0.33	0.31	0.28	0.26	0.23	0.21	0.18	0.16	0.13	0.11	0.08	0.03	0.00
Q	3.00	3.04	3.09	3.15	3.22	3.31	3.42	3.54	3.71	3.91	4.20	5.30	

对于三路以上的分配,其结果与两、三路分配类同。在一般的城市交通网络中,通常为两路选择(见分配示例),三路以上选择的情况很少,由表 1、表 2 可见,分配参数 Q 与 K (或 T_0)有关,但其变化范围不大,在通常的出行路线选择范围内($K=1.0\sim1.5$),其 Q 的

变化范围为 $3.00\sim3.70$ 。因此,分配参数可采用一固定值 Q=3.3。当然,根据不同的行驶 时间比K用式(5)或式(6)计算,其分配结果更接近于实际。

3. 交通分配示例

图 1 所示两交通区由七个路段连接, 路旁数据为行驶时间(min),区①至区②、区②至区①的出行量

 N_{12} , N_{21} 均为3000辆/目。

先分配出行量 N_{12} 。出行者从区①到区②有三种走法: abef、adef、abcf,其行驶时间分别为10、11、12min 。出行者离开区①时,先在出行路线 adef、 $ab \rightarrow f$ (该路的行驶时间为 $\frac{1}{2}(10+11)=10.5min$) 两出行路线上选择。

$$\overline{T} = \frac{1}{2} (11 + 10.5) = 10.75 \text{min}$$

$$P_{adef} = e^{-3 \cdot 3 \times 11 / 10 \cdot 75} / (e^{-3 \cdot 3 \times 11 / 10 \cdot 75} + e^{-3 \cdot 3 \times 10 \cdot 5 / 10 \cdot 75})$$

$$= 0.4617$$

即路段 ad、de 的分配交通量为

 $P_{ab\to f} = 1 - P_{adef} = 0.5383$

路段 ab 的分配交通量为

$$3000 \times 0.5384 = 1615$$
辆/日

对分配在出行路线 $ab \rightarrow f$ 上的出行交通量(1615辆/日)还要作第二次分配(即在 $b \rightarrow f$ 之间分配),从 b 到 f 有两条出行路线供选择: bcf、bef,行驶时间分别为7min、6min。

$$P_{bcf} = 0.3757, P_{bcf} = 0.6243$$

所以,路段 bc、cf 的分配交通量为

$$1615 \times 0.3757 = 607$$
辆/目

路段 be 的分配交通量为

路段 ef 的分配交通量为

$$1008+1385=2393$$
辆/日

用同样的方法可将区②至区①的出行量 N_{21} 分配到具体的路段上去。将各路段上 N_{12} 、 N_{21} 两次分配的交通量相加,即可得整个网络的最终 1615 b 607 分配交通量,如图 2 所示。

4. 选择模型的容量限制修正

对于路段容量有限制的情况,对选择模型应予修正。若两交通区之间有m条出行路线,用选择模型分配后,若有K条道路的分配交通量超过其路段通行能力,则这K条道路的分配交通量取其路段通行能力,对其余交通量未达到通行能力的m-K条出行道路,

图 2 出行量分配图

重新用选择模型分配出行交通量。这时参加分配的区间出行量为

$$N' = N_0 - \sum_{i=1}^{r} [N_i] \tag{7}$$

式中 N_0 ——原交通区之间的出行量,

 $[N_i]$ 一第 i 条受限制路段的通行能力,

N'——重新分配的交通区之间的出行量。

三、用路段交通量推算 0-D 出行量

1. 推算模型的建立

对于某一具体 的交通网络来说,网络中每一路段 分配到的总交通量 y_i 是各交通区之间的出行量 x_i 的线性组合

$$\begin{cases} y_{1} = P_{11}x_{1} + P_{12}x_{2} + \dots + P_{1n}x_{n} \\ y_{2} = P_{21}x_{1} + P_{22}x_{2} + \dots + P_{2n}x_{n} \\ \dots \\ y_{m} = P_{m1}x_{1} + P_{m2}x_{2} + \dots + P_{mn}x_{n} \end{cases}$$
(8)

m---网络中路段个数,

x;——出行变量(即出行交通量),

y:---i 路段上分配到的总交通量,

 P_{ij} —出行量 x_j 分配在i 路段上的分配率,由式(1)计算。

式(8)为一方程组,用矩阵表示,则为

式中

$$PX = Y$$

$$P = \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ P_{m_1} & P_{m_2} & \cdots & P_{m_n} \end{pmatrix}$$

$$X = (x_1, x_2, \cdots, x_n)^T$$

$$Y = (y_1, y_2, \cdots, y_m)^T$$

我们称P为出行量分配率矩阵。

在用路段交通量推算OD出行量时, y_i 是观测得到的,而 x_j 是未知的。在方程组(8)或式(9)中,如果P矩阵为非奇异方阵 (即 m=n=K, K为秩),则由式(9)可很方便地求出OD出行量

$$X = P^{-1}Y \tag{10}$$

但是,一般情况下, P不是非奇异方阵,式(9)一般无解或有无穷多组解,即不能直接用式(10)来确定出行量。这里我们采用非线性规划的序列无约束极小化技术(SUMT)求解。

首先假设出行量 x_i (j=1, 2,…,n) 为某一确定值,把这n个出行量分配到具体的路段上后,各路段分配到的总交通量 y_i (i=1, 2,…,m) 可由方程组(8)计算。假设实际观测得到的路段交通量为 y_i' (i=1, 2,…,m),因为交通量的随机波动及观测误差,实际观测的路段交通量 y_i' 与理论分配的路段交通量 y_i 不完全符合,令 y_i 与 y_i' 之间的偏差为 S_i ,则

$$S_{i} = P_{i_{1}}x_{1} + P_{i_{2}}x_{2} + \dots + P_{i_{n}}x_{n} - y'_{i}$$

$$= \sum_{i=1}^{n} P_{iK}x_{K} - y'_{i} \qquad (i=1, 2, \dots m,)$$
(11)

为使理论分配的路段交通量与实际观测的交通量符合程度最佳,在方程组(11)中求一组出行量 x_j (j=1, 2, …, m),使得总方差 $S^2 = \sum_{i=1}^m S_i^2$ 最小,原问题就 转化为如下带 约束的非线性规划问题

其目标函数
$$\min S^2 = \sum_{i=1}^m S_i^2, \tag{12}$$

约束条件

$$x_j \ge 0$$
 $(j=1, 2, \dots, n)$.

该数学规划问题可用制约函数法将其转化为无约束非线性规划问题求解。

2. 推算模型的求解

设一惩罚函数

$$F(X, M_i) = \sum_{i=1}^{m} S_i^2 + M_i \sum_{j=1}^{n} [\min(0, x_j)]^2.$$
 (13)

式中,第二项为惩罚项,M.为惩罚因子。

引进惩罚项的目的,是为了通过对惩罚因子 M_i 的迭代,使 x_i 能满足非负约束条件 $x_i \ge 0$ 。

这样原问题就转化为无约束非线性规划问题

$$\min F(X, M_i) = \sum_{i=1}^{m} S_i^2 + M_i \sum_{j=1}^{n} [\min(0, x_j)]^2.$$
 (14)

用 SUMT 方法求解时,需进行迭代计算。其步骤如下:

- (1) 取惩罚因子 $M_1>0$ (例如取 $M_1=10$), 并令 $\boldsymbol{l}:=1$ 。确定出行变量 x_i 的计算精度 ϵ ($\epsilon>0$)。
 - (2) 求无约束极值问题式(14)的最优解

$$\min F(X, M_1) = F(X^{(1)}, M_1)$$
.

(3) 若对某一出行量x;(1),有

$$-x_{j}^{(1)} > \varepsilon$$

则取 $M_{i+1} > M_i$ (例如取 $M_{i+1} = 10M_i$),令 l := l+1,并返回第(2)步。否则,停止迭代,得最优解

$$X^* = X^{(1)}$$

下面详细讨论第(2)个步骤,即无约束极值问题式(14)的求解方法。 对式(14)作如下变换

$$\min F(X, M_i) = \sum_{i=1}^{m} S_i^2 + M_i \sum_{K=1}^{n} G(K) x_K^2.$$
 (15)

式中,G(K)为与出行变量 x_K 在迭代过程中正负号有关的符号函数,取值为

$$G(K) = \begin{cases} 0 & \exists x_{\kappa} > 0 \text{ 时} \\ 1 & \exists x_{\kappa} \leq 0 \text{ H} \end{cases}$$
 (16)

根据多元函数的极值条件,令 $\nabla F = 0$,即

$$\partial F/\partial x_j = 0 \quad (j=1, 2, \dots, n)$$
 (17)

将式(15)代入式(17)得

$$\frac{\partial F}{\partial x_j} = 2 \sum_{i=1}^m S_i \frac{\partial S_i}{\partial x_j} + 2M_i \cdot G(j) x_j = 0.$$

将式(11)代入,化简后得

$$\sum_{K=1}^{n} A_{jK} x_{K} + M_{1} \cdot G(j) x_{j} = B_{j} \quad (j=1, 2, \dots, n)$$
 (18)

其中

$$\begin{cases} A_{jK} = \sum_{i=1}^{m} P_{ij} \cdot P_{iK} \\ B_{j} = \sum_{i=1}^{m} P_{ij} \cdot y'_{i} \end{cases}$$
 (19)

式 (18) 为一关于出行变量 x 的线性方程组,该方程组有唯一解。式 (18) 是由极值条件 $\nabla F = 0$ 推导而得的,所以,由式 (18) 解得的出行变量 x 即为无约束规划问题 (14) 的最优解。

3. 推算模型的进一步讨论

上面讨论的推算方法,是对用全部路段交通量推算 OD 出行量而言的,但它同样适用于由部分路段交通量(或部分 OD 出行量与部分路段交通量)推算完整 OD 出行量的情况。

对于用部分路段交通量推算OD出行量的情况,只要在用式(19)求 A_{jK} 、 B_{j} 时,令m等于所采用的路段交通量样本数m'即可,这时,P矩阵为 $m' \times n$ 阶。在选取路段交通量样本时,应保证P矩阵中不出现元素全为零的列。

对于用部分 OD 出行量与部分路段交通量推算完整 OD 出行量的情况,式 (19) 也要作同样的处理。 假设出 行量序列 中的后 n-n' 个出行量 x_K $(K=n'+1, \dots, n)$ 为已知,则式 (18) 应修正为

$$\sum_{K=1}^{n'} A_{jK} x_K + M_i \cdot G(j) x_j = B_j - \sum_{K=n'+1}^{n} A_{jK} x_K.$$

$$(j=1, 2, \dots, n')$$
(20)

用式(20)即可计算出全部未知的 OD 出行量。

四、互算方法的精度分析

下面以某一中等城市的交通网络为例说明上述方法的使用及其精度。图 3 为某市的 6 个

交通分区图,有21个路段,15个出行变量。用选择模型建立的P矩阵如表3所示(暂不考虑外部交通区)。这里采用假设论证法分析其精度。

根据交通区的性质,假设各交通区之间的"实际"出行量 x^0 如表3最后一行所示,根据方程组(8)可计算出各路段的"实际"交通量 y^0 (如表3最后一列所示)。把该交通量 y^0 当作为实测路段 OD 出行量,其计算结果如表4第2行所示,与原假设完全一致。由于交通量均"实际"交通量是不一致的,假设由此产生的随机误差为E,模拟此误差特性,即在 y^0 中加上该随机误差E,根据 y^0 ±E 推算的

图 3 某城市交通网络示意图

OD 出行量如表 4 所示。由表可见,如果实测的路段 交通量无误差,则根据全部路段交通量推算的 OD 出行量也无误差,如果交通量有误差,则推算的 OD 出行量也有误差,但出行量的误差 ΔX 不会超过路段交通量的误差。

表 4 中的出行量是根据全部路段交通量进行推算的,当采用部份路段交通量推算时,其推算的 OD 出行量如表 5 所示。由表可见,当路段交通量样本数 m' 大于14 时,用部分路段交通量推算的 OD 出行量与用全部路段交通量推算的 OD 出行量完全相同,但当样本数 m' 小于 14 时,所推算的 OD 出行量的误差 迅速增大。这可以从表 3 的 P 矩阵中得 到解释:当 $m' \ge 14$ 时,P 矩阵中每列都至少有两个以上的非零元素,出行变量所受的约束性大,取值稳定。当 m' < 14 时,有几列只有一个非零元素(当 m' = 12.10 时,为了使得第 14 列不为零列,故调整了部分行的次序),出行变量所受的约束性小,取值不稳定。

由以上分析可知,当采用的路段 交通量样本数 m' 大于出行量个数 n 时,该推算模型本身不产生任何系统误差。原则上说,只要保证P矩阵中不出现零列,不管采用的交通量样本数为多少,都能推算出完整的 OD 出行量。为了使推算的出行量具有足够的精度,应采用尽可能多的路段交通量样本,最好能满足 $m' \ge n$ 。

王允	川行量																1. Art 115 ER
1	A						P矩阵(出行量分配率	出行量?	4. 图像	$P_{i,j}$				-			医叶
		$\kappa_{_1}$	χ_2	x ₃	\mathcal{X}_4	Xs	×	x,	8	×	x_{10}	x_{11}	x_{12}	x_{13}	\mathcal{X}_{1} 4	x_{15}	公面面
路路		0-0	(1)—(3)	1)—(4)	(1)—(E)	0-0	<u>s</u> —3	3-4	2-5	0	ம	3-4	9	<u> </u>	4-6	D	300
<u>a-i</u>	\mathcal{Y}_1	.537	0	0	.822		0	. 235	0	0	0	0	.38	.518	0	.488	11783
ae	ر 2	0	.578	.658	0	0	0	.277	0	0	0	0	.262	.307	0	.321	5139.5
b-i	<i>ي</i>	.537	0	0	0	0	0	905.		.622	0	0	.384	.115	0	0	8384.5
p-c	8	. 463	0	0	0	0	₩	. 494	1	0	0	0	.384	.184	0	0	5704
q-e	y,	0	.579	0	0	0	0	308	0	0	0	1	.415	.307	0	0	5399
q— c	36	0	.421	0	0	0	 1	.308	0	0	0	0	.585	. 244	0	0	5927.5
f-e	3,	0	0	.658	0	0	0	.585	0	0	0	₩	.153	0	0	.321	4203.5
f— i	ۍ 8	0	0	.842	0	0	0	.663	0	0	0	Η.	690.	0	0	.411	4629.5
h-i	ş	0	0	0	.322	0	0	.271	—	0	\leftarrow	0	.764	0	0	.512	8934
n-i		0	0		0	₩	0	0	0	.622	₩	0	0	.633	0	0	9937.5
a—g		0	0	.342	.178	0	0	.144	0	0	0	0	.083	0	0	.167	1862.5
a-c		. 463	. 421	0	0	0	0	.186	0	0	0	0	. 201	.211	0	0	4154
h-m		0	0	0	.178	0	0	.271	0	0	0	0	.236	0	₩	.512	2066
<i>1</i> — <i>m</i>		0	0	.158	0	0	0	.337	0	0	0	0	690.	0	.589	.589	1577.5
n-j	\mathcal{Y}_1 5	0	0	0	0	0	0	0	0	.378	0	0	0	.367	0	0	2062.5
b-j		0	0	0	0	0	0	0	0	.378	0	0	0	690.	0	0	1615.5
m-g		0	0	.185	.178	0	. 0	990.	0	0	0	0	.167	0	0	.077	1436.5
d-k		0	0	0	0	0	0	0	0	0	0	0	0	. 449	0	0	673.5
f— g	\mathcal{Y}_{19}	0	0	.184	0	0	0	.078	0	0	0	0	.084	0	0	60.	878
k-c	320	0	0	0	0	0	0	0	0	0	0	0	0	.151	0	0	226.5
ķ—j	$\mathcal{Y}_{2.1}$	0	0		0	0	0	0	0	0	0	0	0	.298	0	0	447
假设出行量	行星	4000	4000	3000	4000	5000	3000	0	3000	4000	1500	2000	1500	1500	1000	0	$\leftarrow x_0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Control of the last									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 X 4	9			6	x_{10}	× 1 1	ء - بح	x_{13}	x_{14}	Х, 5	平均误差
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4000	3000		<u>-</u>	1000	1500	2000	1500	1500	1000	0	 %
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	1	Ť					↑	> >
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4040	3030	-		1040	1515	2020	1515	1515	1010	0	1 0,2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u> </u> 								↑	D.'.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3960	2970				1485	1980	1485	1485	066	0	1 0/
$+2\% \frac{x}{4080} \frac{x}{4080} \frac{4080}{4080} \frac{3060}{3060} \frac{4080}{4080} \frac{5100}{5100} \frac{3060}{3060} 0 \frac{3060}{4080} \frac{4080}{3920}$ $-2\% \frac{x}{400} \frac{3920}{400} \frac{3920}{2887} \frac{2887}{3920} \frac{3920}{4847} \frac{4847}{2940} \frac{2940}{0} \frac{0}{2940} \frac{3920}{3920}$ $+5\% \frac{x}{400} \frac{4198}{4200} \frac{4200}{3148} \frac{3148}{4200} \frac{4200}{5250} \frac{5250}{3148} \frac{3148}{0} \frac{4200}{2940} \frac{3920}{2960}$ $-5\% \frac{x}{400} \frac{3797}{400} \frac{3800}{2847} \frac{2847}{3800} \frac{3800}{4750} \frac{4750}{2560} \frac{2848}{3300} \frac{3800}{0} \frac{4400}{3300}$ $+10\% \frac{x}{400} \frac{4400}{4400} \frac{3300}{3300} \frac{4400}{4400} \frac{5500}{5500} \frac{3300}{3300} \frac{4400}{0} \frac{5500}{2700} \frac{3300}{3600}$ $-10\% \frac{x}{400} \frac{4800}{4800} \frac{3523}{3523} \frac{4800}{4800} \frac{5923}{5920} \frac{3600}{3600} \frac{4900}{2007} \frac{4900}{2007}$			<u> </u> -	1		- -					↑	0/ T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4080	3060			1080	1530	2040	1530	1530	1020	0	/00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1	0.77
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3920	2940			3920	1414	1960	1470	1,470	924	109	200
$+5\% \frac{x}{4198} \frac{4200}{5\%} \frac{3148}{4.9\%} \frac{4200}{5\%} \frac{5250}{5\%} \frac{3148}{6.9\%} 0 \frac{3148}{6.9\%} \frac{4200}{5\%}$ $-5\% \frac{x}{4.9\%} \frac{3797}{2x} \frac{3800}{4400} \frac{2847}{2.5\%} \frac{3800}{4750} \frac{4750}{2.5\%} \frac{2848}{7} \frac{7}{2848} \frac{3800}{3800}$ $+10\% \frac{x}{4400} \frac{4400}{4400} \frac{3300}{3300} \frac{4400}{4400} \frac{5500}{5500} \frac{3300}{3300} 0 \frac{4400}{3300} \frac{4400}{4400}$ $-10\% \frac{x}{4800} \frac{3600}{3600} \frac{2700}{2700} \frac{3600}{3600} \frac{4800}{4800} \frac{3523}{3523} \frac{4800}{4800} \frac{5923}{3600} 0 \frac{3600}{3600} \frac{4800}{3600} \frac{3600}{4800} \frac{4800}{3600} \frac{3600}{3600} \frac{4800}{3600} \frac{3600}{3600} \frac{4800}{3600} \frac{3600}{3600} \frac{4800}{3600} \frac{3600}{3600} \frac{4800}{3600} \frac{3600}{3600} $	-2% -	-2%		2 % -	\ <u></u>	-5.7%	-2%	-2%	-2%	-7.6%	\	% 6.7 —
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4200	3148				1575	2098	1575	1575	1049	0	\ o
$-5\% \frac{x}{4x} \frac{3797}{-5\%} \frac{3800}{4x} \frac{2847}{-5\%} \frac{3800}{-5\%} \frac{4750}{-5\%} \frac{2848}{-5\%} \frac{7}{2848} \frac{3800}{3800}$ $+10\% \frac{x}{4400} \frac{4400}{4400} \frac{3300}{3300} \frac{4400}{4400} \frac{5500}{5500} \frac{3300}{3300} \frac{0}{3300} \frac{4400}{4400}$ $-10\% \frac{x}{4x} \frac{3600}{4x} \frac{3600}{-10\%} \frac{2700}{-10\%} \frac{3600}{4500} \frac{4500}{2700} \frac{2700}{3600} \frac{3600}{4800} \frac{4800}{3523} \frac{5923}{4800} \frac{3600}{5923} \frac{9800}{3600} \frac{9800}{200\%}$	5%	4.9%	- 1	%6	2%	2 % 2	4.9%	5%	2%	4.9%	0	0 ()
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3800	2848			3800	1425	1898	1425	1425	948	0	7 7
$+10\%$ $\frac{x}{4400}$ $\frac{4400}{4400}$ 3300 4400 5500 330 0 3300 4400 100%	- 5% -	-5.1%	/ -5		5 %	- 5%	5.1%	-5%	-5%	-5.2%	0	%\T•C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4400	3300	_		1400	1650	2200	1650	1650	1100	0	1001
-10% $\frac{x}{4x}$ $\frac{3600}{10\%}$ $\frac{3600}{2700}$ $\frac{3600}{3600}$ $\frac{4500}{4500}$ $\frac{2700}{0}$ $\frac{3600}{0}$ $\frac{3600}{4800}$ $\frac{3600}{1740}$ $\frac{3600}{100\%}$ $\frac{3600}{100\%}$ $\frac{4800}{100\%}$ $\frac{3600}{100\%}$ $\frac{3600}{100\%}$ $\frac{3600}{100\%}$			_	-							1	0/OT
$+20\%$ $\frac{x}{400}$ $\frac{4800}{4800}$ $\frac{3523}{17.4\%}$ $\frac{4800}{200\%}$ $\frac{5923}{10.6\%}$ $\frac{3600}{200\%}$ $\frac{4800}{200\%}$	3600	2700		ļ	0098	1350	1800	1350	1350	006	0	7001
x 4800 4800 3523 4800 5923 3600 0 3600 4800 4x 2007 17 10 2007 10 2007	And the second s										1	0/OT
12 200/ 200/ 17 40/ 200/ 10 FB/ 200/ 00 200/	4800	3600			1800	1720	2400	1800	1800	1120	157	10 70/
20/0 20/0 11.4/0 20/0 10.3/0 20/0 0 20/0 20/0	17.4% 20% 18.5%	20%	0 2	20% 2	20% 1	14.6%	20%	20%	20%	20%	\	10.1.0
3200 2391 3200 3991 2400 0 2400 3200	2391 3200			<u> </u>	-	1190	1600	1200	1200	200	19	70 00-
$ \Delta x - 20\% -20\% - 20.3\% -20\% - 20.1\% -20\% 0 - 20\% -20\% $	-20.3% -20% -		╣	70%		-20%	-20%	-20%	-20%	-21%		0/4.04

?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne

												ĺ				
x /m		κ	x 2	κ_3	*	×	8	х,	88	×	κ_{10}	χ_{11}	×12	x_{13}	χ_{14}	x_{15}
m' = m = 21	x^{0}	4000	4000	3000	4000	2000	3000	0	3000	4000	1500	2000	1500	1500	1000	0
,,,, 10	x	4000	4000	3000	4000	2000	3000	0	3000	4000	1500	2000	1500	1500	1000	0
41	Δx	0														1
m' = 17	×	4000	4000	3000	4000	2000	3000	0	3000	4000	1500	2000	1500	1500	1000	0
	Δx	0									Ī		j			<u></u>
, 1. — 1.0	×	4000	4000	3000	4000	2000	3000	0	3000	4000	1500	2000	1500	1500	1000	0
Ct	Δx	— 0														1
	*	4000	4000	3000	4000	2000	3000	0	3000	4000	1500	2000	1500	1500	1000	0
# T	Δx	I 0														1
m'=13	×	3989	4000	2989	4000	9029	2992	26	4493	4000	0	1992	1500	1500	993	0
01	Δx	0.3%	0	0.4%	0	30%	0.3%	\	20%	0	100%	0.4%	0	0	0.7%	0
m'=17	×	2194	1499	2460	1862	6392	692	2867	3670	0	0	343	3869	5602	0	0
	Δx	45%	63%	18%	53%	28%	74%	\	22%	100%	100%	83%	158%	273%	100%	0
$n_{1}'=10$	ধ	3510	3387	3079	854	1913	1972	0	0	5456	3411	1161	5486	0	0	1210
27	Δ_x	12,0	15%	3%	%6L	62%	34%	0	100%	36%	128%	42%	265%	100%	100%	\

m' ——路段交通量样本个数,m ——路段个数, $\Delta x = (x^0 - x)/x$

五、结 東 语

本文提出的出行 交通分配选择模 型能较好地模拟 出行者的行为特性, 比较符合实际情况。文中所阐述的用路段交通量推算 OD 出行量的方法,最终归结为求解线性方程组,使计算过程非常简单,上机时间短,所需计算机存贮单元较少,是一种比较有效的推算方法。

在本研究工作中,得到了徐吉谦教授的指导,在此表示感谢。

参考文献

- [1] Blunden, W. R.: The Land-Use and Transport System, Pergamen Press, 1984: 44-99.
- [2] 李德等:《运筹学》,清华大学出版社,1982年,第137-220页。

The Research on Mutual Calculation Relation between the Link Volumes and the O-D Trip Volumes

Wang Wei

(Department of Civil Engineering)

ABSTRACT

In this paper, the selection model of traffic assignment is presented by simulating the behaviour of trip drivers, the value of assignment parameter is determined. Besides, the method of calculating the O-D trip volumes by means of the link volumes is studied by adopting SUMT of the non-linear programming. Finally, the precision of this mutual calculation method is analyzed by taking the traffic network of a medium city for example, the feasibility of this method is confirmed by theoretical analysis and practice.

Key words: traffic assignment, selection model, SUMT, link volumes, O-D trip volumes.