Context-Free Grammars

Formalism

Derivations

Backus-Naur Form

Left- and Rightmost Derivations

Informal Comments

- A context-free grammar is a notation for describing languages.
- It is more powerful than finite automata or RE's, but still cannot define all possible languages.
- Useful for nested structures, e.g., parentheses in programming languages.

Informal Comments – (2)

- Basic idea is to use "variables" to stand for sets of strings (i.e., languages).
- These variables are defined recursively, in terms of one another.
- Recursive rules ("productions") involve only concatenation.
- Alternative rules for a variable allow union.

Example: CFG for $\{0^n1^n \mid n \geq 1\}$

• Productions:

```
S -> 01
```

$$S -> OS1$$

- Basis: 01 is in the language.
- Induction: if w is in the language, then so is 0w1.

CFG Formalism

- Terminals = symbols of the alphabet of the language being defined.
- Variables = nonterminals = a finite set of other symbols, each of which represents a language.
- Start symbol = the variable whose language is the one being defined.

Productions

- A production has the form variable -> string of variables and terminals.
- o Convention:
 - A, B, C,... are variables.
 - o a, b, c,... are terminals.
 - o ..., X, Y, Z are either terminals or variables.
 - o ..., w, x, y, z are strings of terminals only.
 - \circ α , β , γ ,... are strings of terminals and/or variables.

Example: Formal CFG

- Here is a formal CFG for $\{0^n1^n \mid n \ge 1\}$.
- Terminals = $\{0, 1\}$.
- Variables = {S}.
- Start symbol = S.
- Productions =

$$S -> 01$$

$$S -> 0S1$$

Derivations – Intuition

- We derive strings in the language of a CFG by starting with the start symbol, and repeatedly replacing some variable A by the right side of one of its productions.
 - That is, the "productions for A" are those that have A on the left side of the ->.

Derivations – Formalism

- We say $\alpha A\beta => \alpha \gamma \beta$ if A -> γ is a production.
- Example: S -> 01; S -> 0\$1.
- \circ S => OS1 => OOS11 => OOO111.

Iterated Derivation

- =>* means "zero or more derivation steps."
- Basis: $\alpha = >^* \alpha$ for any string α .
- Induction: if $\alpha =>^* \beta$ and $\beta => \gamma$, then $\alpha =>^* \gamma$.

Example: Iterated Derivation

- \circ S -> 01; S -> 0S1.
- \circ S => OS1 => OOS11 => OOO111.

Sentential Forms

- Any string of variables and/or terminals derived from the start symbol is called a sentential form.
- \bullet Formally, α is a sentential form iff

$$S = > * \alpha$$
.

Language of a Grammar

- If G is a CFG, then L(G), the language of G, is {w | S =>* w}.
 - Note: w must be a terminal string, S is the start symbol.
- Example: G has productions S -> ϵ and S -> 0S1.
- \circ L(G) = $\{0^n1^n \mid n \ge 0\}$.

Note: ϵ is a legitimate right side.

Context-Free Languages

- A language that is defined by some CFG is called a context-free language.
- There are CFL's that are not regular languages, such as the example just given.
- But not all languages are CFL's.
- Intuitively: CFL's can count two things, not three.

Leftmost and Rightmost Derivations

- Derivations allow us to replace any of the variables in a string.
- Leads to many different derivations of the same string.
- By forcing the leftmost variable (or alternatively, the rightmost variable) to be replaced, we avoid these "distinctions without a difference."

Leftmost Derivations

- Say $wA\alpha =>_{lm} w\beta\alpha$ if w is a string of terminals only and A -> β is a production.
- Also, $\alpha = >^*_{lm} \beta$ if α becomes β by a sequence of 0 or more $= >_{lm}$ steps.

Example: Leftmost Derivations

• Balance'd-parentheses grammar:

$$S -> SS | (S) | ()$$

- \circ S =>_{Im} SS =>_{Im} (S)S =>_{Im} (())S =>_{Im} (())()
- Thus, $S = >^*_{lm} (())()$
- \circ S => SS => S() => (S)() => (())() is a derivation, but not a leftmost derivation.

Rightmost Derivations

- Say $\alpha Aw =>_{rm} \alpha \beta w$ if w is a string of terminals only and $A -> \beta$ is a production.
- Also, $\alpha = >^*_{rm} \beta$ if α becomes β by a sequence of 0 or more $= >_{rm}$ steps.

Example: Rightmost Derivations

• Balanced-parentheses grammar:

$$S -> SS | (S) | ()$$

- \circ S =>_{rm} SS =>_{rm} S() =>_{rm} (S)() =>_{rm} (())()
- Thus, $S = >_{rm}^* (())()$
- S => SS => S()S => ()()S => ()()() is neither a rightmost nor a leftmost derivation.

Parse Trees

Definitions
Relationship to Left- and Rightmost Derivations
Ambiguity in Grammars

Parse Trees

- Parse trees are trees labeled by symbols of a particular CFG.
- \circ Leaves: labeled by a terminal or ϵ .
- Interior nodes: labeled by a variable.
 - Children are labeled by the right side of a production for the parent.
- Root: must be labeled by the start symbol.

Example: Parse Tree

S -> SS | (S) | ()

Yield of a Parse Tree

- The concatenation of the labels of the leaves in left-to-right order
 - That is, in the order of a preorder traversal. is called the *yield* of the parse tree.
- Example: yield of is (())()

Ambiguous Grammars

- A CFG is ambiguous if there is a string in the language that is the yield of two or more parse trees.
- Example: S -> SS | (S) | ()
- Two parse trees for ()()() on next slide.

Ambiguity, Left- and Rightmost Derivations

- If there are two different parse trees, they must produce two different leftmost derivations by the construction given in the proof.
- Conversely, two different leftmost derivations produce different parse trees by the other part of the proof.
- Likewise for rightmost derivations.

Ambiguity, etc. – (2)

- Thus, equivalent definitions of "ambiguous grammar" are:
 - There is a string in the language that has two different leftmost derivations.
 - There is a string in the language that has two different rightmost derivations.

Ambiguity is a Property of Grammars, not Languages

 For the balanced-parentheses language, here is another CFG, which is unambiguous.

Example: Unambiguous Grammar

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR$$

- Construct a unique leftmost derivation for a given balanced string of parentheses by scanning the string from left to right.
 - If we need to expand B, then use B -> (RB if the next symbol is "(" and ϵ if at the end.
 - If we need to expand R, use R ->) if the next symbol is
 ")" and (RR if it is "(".

Remaining Input: (())()

В

Next symbol

B -> (RB | €

R ->) | (RR

derivation:

```
Remaining Input:
())()
```

Next symbol

Steps of leftmost derivation:

B (RB

```
The Parsing Process
Remaining Input: Steps of leftmost
                               derivation:
 ))()
                             (RB
Next
                             ((RRB
symbol
```

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$$

```
Remaining Input:
)()
Next
symbol
```

Steps of leftmost derivation:

B (RB ((RRB (()RB

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR$$

```
The Parsing Process
Remaining Input: Steps of leftmost
```

()

Next symbol

Steps of leftmost derivation:

B

(RB

((RRB

(()RB

(())B

B -> (RB |
$$\epsilon$$

```
The Parsing Process
Remaining Input: Steps of leftmost
                              derivation:
                                        (())(RB
                            (RB
Next
                            ((RRB
symbol
                            (()RB
                            (())B
                           R -> )
```

derivation:

Next symbol (())(RB

(())()B (RB

((RRB

(()RB

(())B

B -> (RB |
$$\epsilon$$

derivation:

Next symbol

(())(RB (RB (())()B ((RRB (())()(()RB

(())B

- LL(1) Grammars

 As an aside, a grammar such $B \rightarrow (RB \mid \epsilon \quad R \rightarrow)$ (RR, where you can always figure out the production to use in a leftmost derivation by scanning the given string left-to-right and looking only at the next one symbol is called LL(1).
 - "Leftmost derivation, left-to-right scan, one symbol of lookahead."

LL(1) Grammars – (2)
• Most programming languages have LL(1)

- Most programming languages have LL(1) grammars.
- LL(1) grammars are never ambiguous.