4.2 The data in Table 4.6 are times to death, y_i , in weeks from diagnosis and $\log_{10}(\text{initial white blood cell count})$, x_i , for seventeen patients suffering from leukemia. (This is Example U from Cox and Snell 1981.)

Table 4.6 Survival time, y_i , in weeks and log_{10} (initial white blood cell count), x_i , for seventeen leukemia patients.

0.0	156 2.88				
0 -	56 3.97				

- (a) Plot y_i against x_i . Do the data show any trend?
- (b) A possible specification for E(Y) is

$$E(Y_i) = \exp(\beta_1 + \beta_2 x_i),$$

which will ensure that E(Y) is non-negative for all values of the parameters and all values of x. Which link function is appropriate in this case?

- (c) The Exponential distribution is often used to describe survival times.
 - The probability distribution is $f(y;\theta) = \theta e^{-y\theta}$. This is a special case of the Gamma distribution with shape parameter $\phi = 1$ (see Exercise 3.12(a)). Show that $E(Y) = 1/\theta$ and $var(Y) = 1/\theta^2$.
- (d) Fit a model with the equation for $E(Y_i)$ given in (b) and the Exponential distribution using appropriate statistical software.
- (e) For the model fitted in (d), compare the observed values y_i and fitted values $\widehat{y}_i = \exp(\widehat{\beta}_1 + \widehat{\beta}_2 x_i)$, and use the standardized residuals $r_i = (y_i \widehat{y}_i)/\widehat{y}_i$ to investigate the adequacy of the model. (Note: \widehat{y}_i is used as the denominator of r_i because it is an estimate of the standard deviation of Y_i —see (c) above.)