spotify popularity

kite-luva

2025-05-22

market counts for each song

 $spotify_charts_2024 <- spotify_charts_2024 \%>\% \ group_by(spotify_id) \%>\% \ mutate(\ market_count = n_distinct(country, \ na.rm = TRUE)) \%>\% \ ungroup()$

remove all duplicates, pick the most popular song(country)

spotify_charts_2024 <- spotify_charts_2024 %>% group_by(spotify_id) %>% mutate(other_charted_countries = paste(country[!duplicated(country)], collapse = ",")) %>% slice_max(order_by = popularity, n = 1, with_ties = FALSE) %>% ungroup()

Function to count the number of artists in each row

spotify_charts_2024 $artist_count < -sapply(strsplit(spotify_charts_2024artists, ","), length)$

Convert character date columns to Date objects using mdy()

```
spotify\_charts\_2024 <- spotify\_charts\_2024 \%>\% mutate( snapshot\_date = ymd(snapshot\_date), album\_release\_date = ymd(album\_release\_date), days\_out = as.numeric(snapshot\_date - album release_date))
```

change boolean into integers

 ${\tt spotify_charts_2024} is_explicit < -as.integer(spotify_charts_2024 is_explicit)$

Standardize duration_ms (convert to minutes)

 $spotify_charts_2024 duration_ms < -spotify_charts_2024 duration_ms / 60000 colnames (spotify_charts_2024) [colnames (spotify$

Remove unneeded columns

spotify_modelling <- spotify_charts_2024 %>% select(-country, -other_charted_countries, -snapshot_date, -name, -artists, -album_name, -album_release_date, -spotify_id)

check for missing values

 $colSums(is.na(spotify_modelling))$

#Handle missing values spotify_modelling <- spotify_modelling %>% mutate_all(~ifelse(is.na(.), mean(., na.rm = TRUE), .))

arrange the columns

spotify_modelling <- spotify_modelling %>% select(popularity, days_out, artist_count, market_count, daily_rank, daily_movement, weekly_movement, duration_min, is_explicit, mode, danceability, energy, loudness, speechiness, acousticness, instrumentalness, liveness, valence, tempo, key, time_signature)

#remove popularity 0 spotify_modelling <- spotify_modelling %>% filter(popularity != 0) %>% arrange(desc(popularity))

DESCRIPTIVE STATISTICS #-----

Function to compute basic statistics

 $spotify_stats <- function(column) \ \{ \ stats <- c(\ Mean = mean(column, \ na.rm = TRUE), \ Median = median(column, \ na.rm = TRUE), \ SD = sd(column, \ na.rm = TRUE), \ Variance = var(column, \ na.rm = TRUE), \ IQR = IQR(column, \ na.rm = TRUE) \) \ return(stats) \ \}$

Loop through columns and compute statistics

stats results <- lapply(spotify modelling, spotify stats) names(stats results) <- colnames(spotify modelling)

Convert the list of statistics to a data frame for better printing

stats_table <- as.data.frame(stats_results) print(stats_table)

Generate the four scatter plot matrices

```
plot1 <- ggpairs(spotify\_modelling, columns = 1:5) \ plot2 <- ggpairs(spotify\_modelling, columns = 6:10) \\ plot3 <- ggpairs(spotify\_modelling, columns = 11:15) \ plot4 <- ggpairs(spotify\_modelling, columns = 16:20) \\
```

Create a layout matrix

layout matrix <- matrix(c(1,2,3,4), nrow = 2, byrow = TRUE)

Open a graphics device and use grid.newpage() to manually arrange plots

grid.newpage() pushViewport(viewport(layout = grid.layout(nrow = 2, ncol = 2)))

Print each ggmatrix object in its respective location

 $print(plot1, vp = viewport(layout.pos.row = 1, layout.pos.col = 1)) \ print(plot2, vp = viewport(layout.pos.row = 1, layout.pos.col = 2)) \ print(plot3, vp = viewport(layout.pos.row = 2, layout.pos.col = 1)) \ print(plot4, vp = viewport(layout.pos.row = 2, layout.pos.col = 2))$

check popularity distribution

Define feature columns and target variable

CARET DATA PARTITION #-

```
\label{eq:column} $$\text{X} < \text{-"popularity"}$$ X < -\text{spotify\_modelling \%>\% select(-popularity) y < -\text{spotify\_modelling\$popularity}$$}
```

Split the data into training and testing sets

 $set.seed(50) \; trainIndex <- \; createDataPartition(y, p = 0.8, list = FALSE) \; X_train <- \; X[trainIndex,] \; X_test <- \; X[-trainIndex,] \; y_train <- \; y[trainIndex] \; y_test <- \; y[-trainIndex]$

 $\label{train.dframe_features} train.dframe_features <- as.data.frame(X_train) test.dframe_features <- as.data.frame(X_test) train.dframe_target <- as.data.frame(y_train) test.dframe_target <- as.data.frame(y_test) train.dframe <- cbind(train.dframe_features, y_train) test.dframe <- cbind(test.dframe_features, y_test)$

testing popularity distribution for training data

ggplot(data=train.dframe)+ geom_bar(mapping=aes(x=y_train),fill = "skyblue")+ ggtitle('popularity dist. for training data'))

testing popularity distribution for testing data

 $ggplot(data=test.dframe) + geom_bar(mapping=aes(x=y_test) \;, fill = "skyblue") + ggtitle('popularity \; dist. \; for \; testing \; data'))$

DATA PREPARATION FOR MODELING

Create a preprocessing recipe

preprocess_recipe <- recipe(x = train.dframe_features, y = y_train) %>% # Center and scale numeric predictors step_center(all_numeric(), -all_outcomes()) %>% step_scale(all_numeric(), -all_outcomes()) %>% # Handle categorical variables step_dummy(all_nominal(), -all_outcomes())

Apply preprocessing

 $\label{lem:precise} $$\operatorname{prep}_{\operatorname{recipe}}$, recipe, training = train.dframe_features, y = y_train)$ train_processed <-bake(prep_recipe, new_data = train.dframe_features)$ test_processed <- bake(prep_recipe, new_data = test.dframe_features)$$

print("Processed Training Data (First few rows):") print(head(train_processed)) print("Processed Testing Data (First few rows):") print(head(test_processed))

Combine processed features with the target variable

 $\label{train_processed} $$\operatorname{cbind}(\operatorname{train_processed},\,\,y_\operatorname{train})$ $\operatorname{test_processed} <-\operatorname{cbind}(\operatorname{test_processed},\,\,y_\operatorname{test})$ $\operatorname{colnames}(\operatorname{train_processed})[\operatorname{ncol}(\operatorname{train_processed})] <-\text{``y_train''}$ $\operatorname{colnames}(\operatorname{test_processed})[\operatorname{ncol}(\operatorname{test_processed})] <-\text{``y_test''}$$

Hyperparameter tuning using caret

save RF model

saveRDS(rf model, "rf model.rds")

Predictions on test set

rf pred <- predict(rf model, newdata= test processed)

Evaluate model performance

```
\label{eq:marginal_mass} \begin{split} \text{MAE\_rf} <&- \operatorname{mean}(\operatorname{abs}(\operatorname{rf\_pred} - \operatorname{test\_processed} y_t est)) \\ R &\_\operatorname{squared\_rf} <&- \operatorname{cor}(\operatorname{rf\_pred}, \operatorname{test\_processed} y_t est)^2 \end{split}
```

 $print("Random \ Forest - Mean \ Absolute \ Error \ (MAE):", \ MAE_rf) \ print("Random \ Forest - Root \ Mean \ Squared \ Error \ (RMSE):", \ RMSE_rf) \ print("Random \ Forest - R-squared \ (R^2):", \ R_squared_rf)$

Convert the importance matrix to a data frame for easier handling

importance_df_rf <- data.frame(Feature = rownames(importance_matrix_rfimportance), $Importance = importance_matrix_rfimportance$ [, 1] # Access the first column of importance) # sort by importance: sorted_importance_df_rf <- importance_df_rf[order(importance_df_rf\$Importance, decreasing = TRUE),] print(sorted_importance_df_rf)

Prepare data for XGBoost

dtrain <- xgb.DMatrix(data = as.matrix(train_processed %>% select(-y_train)), label = train_processed y_train) $dtest < -xgb.DMatrix(data = as.matrix(test_processedy_test))$

Hyperparameter tuning using caret

 $xgb_model \leftarrow train(y_train \leftarrow ., data = train_processed, method = "xgbTree", trControl = control_xgb, tuneGrid = grid_xgb, verbose = FALSE)$

Model results

 $print(xgb model results) print(xqb_model bestTune) importance matrix xgb <- varImp(xgb model)$

save XGBoost model

saveRDS(xgb_model, "xgb_model.rds")

Predictions on test set

xgb pred <- predict(xgb model, newdata = test processed %>% select(-y test))

Evaluate model performance

MAE_xgb <- mean(abs(xgb_pred - test_processed y_test)) $RMSE_xgb < -sqrt(mean((xgb_pred - test_processedy_test)^2))$ R_squared_xgb <- cor(xgb_pred, test_processed\$y_test)^2

print("XGBoost - Mean Absolute Error (MAE):", MAE_xgb) print("XGBoost - Root Mean Squared Error (RMSE):", RMSE xgb) print("XGBoost - R-squared (R²):", R squared xgb)

Convert the importance matrix to a data frame for easier handling

 $importance_df_xgb <- \ data.frame(\ Feature = rownames(importance_matrix_xgbimportance), Importance = importance_matrix_xgbimportance[,\ 1] \ \# \ Access the first column of importance) \ \# \ sort by importance: sorted_importance_df_xgb <- importance_df_xgb[order(importance_df_xgb$Importance, decreasing = TRUE),] print(sorted_importance_df_xgb)$

Hyperparameter tuning using caret

 $control_gbm <- trainControl(method = "cv", number = 5) \ grid_gbm <- \ expand.grid(n.trees = c(100, 200), interaction.depth = c(3, 5), shrinkage = c(0.01, 0.05), n.minobsinnode = c(10, 20))$

 $gbm_model < -train(y_train \sim ., data = train_processed, method = "gbm", trControl = control_gbm, tuneGrid = grid | gbm, verbose = FALSE)$

Model results

print(gbm modelresults) $print(gbm_model)$ bestTune) importance matrix gbm <- varImp(gbm model)

save GBM model

saveRDS(gbm model, "gbm model.rds")

Predictions on test set

gbm_pred <- predict(gbm_model, newdata = test_processed %>% select(-y_test))

Evaluate model performance

```
\label{eq:mapping} \begin{split} \text{MAE\_gbm} &<-\text{ mean}(\text{abs}(\text{gbm\_pred} - \text{test\_processed}y_test))RMSE_gbm &<-\text{sqrt}(mean((gbm_pred - \text{test_processed}y_\text{test})^2)) \text{ R\_squared\_gbm} &<-\text{cor}(\text{gbm\_pred}, \text{test\_processed}\$\text{y\_test})^2 \end{split}
```

print ("Gradient Boosting Machine - Mean Absolute Error (MAE):", MAE_gbm) print ("Gradient Boosting Machine - Root Mean Squared Error (RMSE):", RMSE_gbm) print ("Gradient Boosting Machine - R-squared (R^2):", R_squared_gbm)

Convert the importance matrix to a data frame for easier handling

Create a data frame to compare model performance

```
\label{eq:model_comparison} $$\operatorname{data.frame}(\ Model = c(\ Random\ Forest",\ "XGBoost",\ "GBM"),\ MAE = c(MAE\_rf,\ MAE\_xgb,\ MAE\_gbm),\ RMSE = c(RMSE\_rf,\ RMSE\_xgb,\ RMSE\_gbm),\ R\_squared = c(R\_squared\_rf,\ R\_squared\_xgb,\ R\_squared\_gbm) )
```

print("Model Performance Comparison:") print(model_comparison)

Create a bar plot for R-squared comparison

```
\begin{split} & ggplot(model\_comparison, aes(x = Model, y = R\_squared, fill = Model)) + geom\_bar(stat = "identity") \\ & + geom\_text(aes(label = round(R\_squared, 3)), \ vjust = -0.3) + labs(title = "R-squared Comparison of Models", y = "R-squared") + theme\_minimal() \end{split}
```

Create a bar plot for RMSE comparison

```
\begin{split} & ggplot(model\_comparison, \ aes(x = Model), \ y = RMSE, \ fill = Model)) \ + \ geom\_bar(stat = "identity") \ + \ geom\_text(aes(label = round(RMSE, 3)), \ vjust = -0.3) \ + \ labs(title = "RMSE \ Comparison \ of Models", \ y = "RMSE") \ + \ theme\_minimal() \end{split}
```

Create a bar plot for MAE comparison

```
ggplot(model\_comparison, aes(x = Model, y = MAE, fill = Model)) + geom\_bar(stat = "identity") + geom\_text(aes(label = round(MAE, 3)), vjust = -0.3) + labs(title = "MAE Comparison of Models", y = "MAE") + theme minimal()
```

Random Forest

plot_data_rf <- data.frame(Actual = test_processed\$y_test, Predicted = rf_pred) ggplot(plot_data_rf, aes(x = Actual, y = Predicted)) + geom_point(color = "blue", alpha = 0.6) + geom_smooth(method = 'lm', col='red') + labs(title = "Actual vs Predicted Popularity (Random Forest)", x = "Actual Popularity", y = "Predicted Popularity") + theme_minimal()

XGBoost

 $\begin{array}{l} plot_data_xgb <- \ data.frame(Actual = test_processed\$y_test, Predicted = xgb_pred) \ ggplot(plot_data_xgb, aes(x = Actual, y = Predicted)) + geom_point(color = "green", alpha = 0.6) + geom_smooth(method = 'lm', col='red') + labs(title = "Actual vs Predicted Popularity (XGBoost)", x = "Actual Popularity", y = "Predicted Popularity") + theme_minimal() \\ \end{array}$

GBM

plot_data_gbm <- data.frame(Actual = test_processed\$y_test, Predicted = gbm_pred) ggplot(plot_data_gbm, aes(x = Actual, y = Predicted)) + geom_point(color = "purple", alpha = 0.6) + geom_smooth(method = 'lm', col='red') + labs(title = "Actual vs Predicted Popularity (GBM)", x = "Actual Popularity", y = "Predicted Popularity") + theme minimal()