Question 2 Harikrishnan R N, 18CHE147

Here I have shown how to code for the Stead-State Material Balance on a Separation Train.

Contents

- Defining the Constants :
- Solving for the Feed Column :
- Solving for Second Column :
- Solving for Third Column :
- Displaying Results :

Defining the Constants:

Here I have defined the constant compositions that are used to solve the equations of Mass Balance :

```
%The row vectors are in the order: D1,B1,D2,B2 are the respective %compositions according to the question

xf1 = [ 15 ; 25 ; 40 ; 20 ]/100 ;

xd1 = [ 7 ; 4 ; 54 ; 35 ]/100 ;

xb1 = [ 18 ; 24 ; 42 ; 16 ]/100 ;

xd2 = [ 15 ; 10 ; 54 ; 21 ]/100 ;

xb2 = [ 24 ; 65 ; 10 ; 1 ]/100 ;

F = 70 ; % mol/min, Feed Flowrate
```

Solving for the Feed Column:

Here I will find the molar flowrates of each species :

```
%Solving the System of Linear Equations defined below :
lin_sys = [ xd1 xb1 xd2 xb2 ] ;
flow_sol = F*inv(lin_sys)*xf1 ;
d1 = flow_sol(1) ; b1 = flow_sol(2);
d2 = flow_sol(3) ; b2 = flow_sol(4);
mol_flow_rates = [d1;b1;d2;b2];
d = d1+d2 ; b = b1+b2 ;
```

Solving for Second Column:

Here I will find the compositions of each species in #2 column :

Solving for Third Column:

Here I will find the compositions of each species in #3 column :

Displaying Results:

```
streams = ['D1';'B1';'D2';'B2' ];
tab1 = table(streams,[mol_flow_rates],'VariableNames',{'Stream','Molar Flowrate, mol/min'});
species = ["Xylene";"Styrene";"Toluene";"Benzene"];
tab2 = table(species,xd,xb,'VariableNames',{'Compound','Stream D','Stream B'});
disp(" Below is the Flowrates of each stream : ");
disp(tab1);
disp(" Below is the Composition of each stream : ");
disp(tab2);
```

```
Below is the Flowrates of each stream :

Stream Molar Flowrate, mol/min

D1 26.25
B1 17.5
D2 8.75
B2 17.5

Below is the Composition of each stream :
```

Compound	Stream D	Stream B
"Xylene"	0.114	0.21
"Styrene"	0.12	0.46667
"Toluene"	0.492	0.24667
"Benzene"	0.274	0.076667

Published with MATLAB® R2020a