CSCI 2824 - CU Boulder, 2019 Summer

Lecture 6: Rational Number Proofs, Divisibility, and Induction

11 June 2019

Lecturer: J. Marcus Hughes

Content is borrowed from Susanna Epp's <u>Discrete Mathematics with Applications</u> and Andrew Altomare's notes.

1 Review

We learned about writing proofs. Let's practice with some ideas on rational numbers and divisibility.

2 Rational Number Proofs

What is a rational number? You may have heard it defined as a decimal that terminates or repeats in your early math days, but we are going to use a more formal definition.

Definition: Rational Number

A (real) number r is **rational** if, and only if, it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is is **irrational**. More formally, if r is a real number, then

$$r$$
 is rational $\leftrightarrow \exists a,b \in \mathbb{Z}$ such that $r = \frac{a}{b}, b \neq 0$

What are some examples of rational numbers? Well integers are! Let's prove it.

Theorem 2.1. Every integer is a rational number

Proof. Let n be an arbitrary integer. Then $n = \frac{n}{1}$ so n is a rational number.

It's quite straight forward, but we are utilizing the idea of the generic particular. We do not specify what n is but show that for any arbitrary n we can make this argument. Seems pretty straight forward.

Now, try applying the same idea to show that any sum of rational numbers is rational.

Theorem 2.2. The sum of two rational numbers is rational.

Proof. Suppose r and s are rational numbers. Then, by the definition of rational, r=a/b and s=c/d for some $a,b,c,d\in\mathbb{Z}$ where $b\neq 0$ and $d\neq 0$. Thus,

$$r + s = \frac{a}{b} + \frac{c}{d}$$
$$= \frac{ad + bc}{bd}$$

Let p=ad+bc and q=bd. Then, p and q are integers because products and sums of integers are integers and because $a,b,c,d\in\mathbb{Z}$. Also $q\neq 0$ by the zero product property. Thus, $r+s=\frac{p}{q}$ where p and q are integers and $q\neq 0$. Therefore, r+s is rational by the definition of a rational number.

We can thus say that the rational numbers are closed under addition. Closed (in computer science lingo) means that performing that operation with a given input type always yields the same output type.

Can you show that any integer multiple of a rational number is rational? Is the product/quotient/difference of any two rational numbers also rational? What about the average?

3 Divisibility

Do you remember in elementary school when you talked about division? You knew that 12 wasn't divisible by 5 since it didn't go into it evenly. It may seem simplistic, but divisibility is a central idea in number theory; something so elementary is in advanced math! We can practice our proof writing skills in this domain too.

Definition: Divisible

If n and d are integers and $d \neq 0$ then, n is **dibisible by** d if, and only if, n equals d times some integer. The notation d|n is read "d divides n". Symbolically for $n, d \in \mathbb{Z}$ and $d \neq 0$:

$$d|n \leftrightarrow \exists k \in \mathbb{Z} \text{ such that } n = dk$$

We call a number the divides another number a divisor of it. What do we know about divisors.

Exercise

For all integers a and b, if a and b are positive and a|b, then $a \le b$.

The above is a nice universal proof to know.

Exercise

Prove: The only divisors of 1 are 1 and -1.

Exercise

Problem: For all integers a, b, and c if a divides b and b divides c, then a divides c.

Exercise

Prove: Any integer n > 1 is divisible by a prime number.

Is the following statement true? For all integers a and b if a|b and b|a then a=b. No. find a counterexample with a=2 and b=-2.

A very powerful theorem is:

Theorem 3.1. Given any integer n > 1, there exists a positive integer k, distinct prime numbers p_1, p_2, \ldots, p_k and positive integers e_1, e_2, \ldots, e_k such that $n = p_1^{e_1} p_2^{e_2} \ldots p_k^{e_k}$ and any other expression for n as a product of prime numbers is identical to this, except, perhaps, for the order in which the factors are written. We call this the standard factored form of n when $p_1 < p_2 < \ldots < p_k$.

We will come back to proving this later.

4 Mathematical Induction

We introduced the idea of mathematical induction yesterday. We will define two forms of

Definition: Weak Induction

Let S_n denote a statement regarding an integer n and let $k \in \mathbb{Z}$ be fixed. If

- 1. S_k holds and
- 2. for every $m \geq k$, $S_m \rightarrow S_{m+1}$

then for every $n \ge k$, the statement S_n holds.

Definition: Strong Induction

Let S_n denote a statement regarding an integer n. If

- 1. S_k holds and
- 2. For every $m \geq k$, $[S_k \wedge S_{k+1} \wedge \ldots \wedge S_m] \rightarrow S_{m+1}$

then for every $n \geq k$, the statement S_n is true.

Exercise

Show that strong and weak induction are equivalent.

Exercise

Prove that $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$.

Exercise

Conjecture a formula for the sum of the first n positive odd integers. Then prove your conjecture using mathematical induction.

Exercise

Use mathematical induction to show that $1 + 2 + 2^2 + \ldots + 2^n = 2^{n+1} - 1$.

Exercise

Prove that for all $n \in \mathbb{Z}^+$ that $3|n^3 - 3$.

References