Braeden Hall

101143403

1.

Let *F* be it is the fall semester.

Let *P* be my professor is teaching COMP1805.

Let Y be the year is 2019.

Let D be today's date is before December 7^{th} .

1)
$$F \rightarrow P$$
 Goal: D
2) P
3) $(F \land Y) \rightarrow D$
4) Y

To show he conclusion 'today's date is before December 7th (D)' is invalid, show that the conclusion does not follow directly from the premises.

Assume it is not the fall semester $(\neg F)$ then statement $F \land Y$ is now false meaning D can be any value (true or false) and therefore it is not possible to determine if today's date is before December 7th or not.

2.

1)
$$\forall x \neg A(x) \land \neg B(x)$$
 Goal: $\exists x \ E(x)$
2) $\exists x \ C(x) \rightarrow B(x)$
3) $\forall x \ D(x) \rightarrow C(x)$
4) $\exists x \ A(x) \rightarrow E(x)$
5) $\forall x \ D(x) \lor E(x)$
6) $\neg A(c) \land \neg B(c)$ by Universal Instantiation (1)

- 7) $\neg B(c)$ by Simplification (6)
- 8) $C(c) \rightarrow B(c)$ by Existential Instantiation (2)
- 9) $\neg C(c)$ by Modus Tollens (7,8)
- 10) $D(c) \rightarrow C(c)$ by Universal Instantiation (3)
- 11) $\neg D(c)$ by Modus Tollens (9,10)
- 12) $D(c) \vee E(c)$ by Universal Instantiation (5)
- 13) E(c) by Disjunctive Syllogism (11,12)
- 14) $\exists x \ E(x)$ by Existential Generalization (13)

3.

$$(n \in \mathbb{Z} \land 5n + 2 \text{ is odd}) \rightarrow n \text{ is odd}$$

 $\neg (n \text{ is odd}) \rightarrow \neg (n \in \mathbb{Z} \land 5n + 2 \text{ is odd})$ by Contrapositive
 $Prove: n \text{ is } even \rightarrow \neg (n \in \mathbb{Z}) \lor 5n + 2 \text{ is } even$ by De Morgan's Law

- 1) n is even by Assumption
- 2) n = 2a by Definition
- 3) 5n + 2 = 5(2a) + 2
- 4) 5n + 2 = 10a + 2
- 5) 5n + 2 = 2(5a + 1)

Let *b* be
$$5a + 1$$

- 6) 5n + 2 = 2b
- 7) 5n + 2 is even by Definition

$$\therefore (n \in \mathbb{Z} \land 5n + 2 \text{ is odd}) \rightarrow n \text{ is odd}$$

4.

$$(n \in \mathbb{Z} \land n^3 + 33 \text{ is odd}) \rightarrow n \text{ is even}$$

 $\neg (n \in \mathbb{Z} \land n^3 + 33 \text{ is odd}) \lor n \text{ is even}) \text{ by Implication Equivalence}$
 $\neg (\neg (n \in \mathbb{Z} \land n^3 + 33 \text{ is odd}) \lor n \text{ is even}) \text{ by Contadiction}$
 $Prove: (n \in \mathbb{Z} \land n^3 + 33 \text{ is odd}) \land n \text{ is odd by De Morgan's Law}$

- 1) $n^3 + 33$ is odd by Assumption
- 2) $n^3 + 33 = 2a + 1$ by Definition
- 3) *n is odd* by Assumption
- 4) n = 2b + 1 by Definition
- 5) $n^3 + 33 = (2b + 1)^3 + 33$
- 6) $n^3 + 33 = 8b^3 + 1 + 33$
- 7) $n^3 + 33 = 8b^3 + 34$
- 8) $n^3 + 33 = 2(4b^3 + 17)$

Let c be
$$4b^3 + 17$$

- 9) $n^3 + 33 = 2c$
- 10) $n^3 + 33$ is even by Definition
- 11) $n^3 + 33$ is even $\wedge n^3 + 33$ is odd by Conjunction
- 12) False by Negation

$$: (n \in \mathbb{Z} \land n^3 + 33 \text{ is odd}) \rightarrow n \text{ is even}$$

5. Unfinished

Prove:
$$\sqrt{4} + \sqrt{5}$$
 is irrational $\sqrt{4} + \sqrt{5}$ is rational by Contradiction

- 1) $\sqrt{4} + \sqrt{5}$ is rational by Assumption
- 2) $\left(\sqrt{4} + \sqrt{5} = \frac{a}{b}\right) \wedge \left(\frac{a}{b} \text{ is in lowest form}\right)$ by Definition
- 3) $\sqrt{4} + \sqrt{5} = \frac{a}{b}$ by Simplification 4) $2 + \sqrt{5} = \frac{a}{b}$ 5) $4 + 5 = \frac{a^2}{b^2}$

- 6) $(4+5)b^2 = a^2$ 7) $4b^2 + 5b^2 = a^2$ 8) $9b^2 = a^2$

- 9) 3b = a

Lemma~1

Prove: a^2 is divisible by $5 \rightarrow a$ is divisible by 5 a is not divisible by $5 \rightarrow a^2$ is not divisible by 5 by Contrapositive 1) $a\%5 \neq 0 \rightarrow a^2\%5 \neq 0$

10)