PROBLÈME DE RÉVISION

Lois exponentielle et géométrique-Convergence Énoncé

Toutes les variables aléatoires qui interviennent dans ce problème sont supposées définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathcal{P})$. Sous réserve d'existence, on note E(X) et V(X) respectivement l'espérance et la variance d'une variable aléatoire X, et $\operatorname{cov}(X,Y)$ la covariance de deux variables aléatoires X et Y.

la fonction de répartition et une densité d'une variable aléatoire X à densité sont notées respectivement F_X et f_X .

Partie I: Loi géométrique

Soit p un réel de]0,1[et q=1-p. Soit X_1 et X_2 deux variables indépendantes de même loi géométrique de paramètre p (d'espérance 1/p). On pose : $Y=X_1-X_2$, $T=\max{(X_1,X_2)}$ et $Z=\min{(X_1,X_2)}$. On rappelle que $T+Z=X_1+X_2$ et $T-Z=|X_1-X_2|=|Y|$.

- 1. (a) Rappeler sans démonstration les valeurs respectives de $V(X_1)$ et de $P([X_1 \le k])$, pour tout k de $X_1(\Omega)$.
 - (b) Calculer $E(X_1 + X_2)$, $V(X_1 + X_2)$, $E(X_1 X_2)$, $V(X_1 X_2)$.
 - (c) Etablir la relation : $P([X_1 = X_2]) = \frac{p}{1+a}$
- 2. (a) Montrer que Z suit la loi géométrique de paramètre $1-q^2$. En déduire E(Z), V(Z) et E(T).
 - (b) Soit k un entier de \mathbb{N}^* . Justifier l'égalité : $[Z=k] \cup [T=k] = [X_1=k] \cup [X_2=k]$. En déduire la relation suivante : $P(T=k) = 2P(X_1=k) P(Z=k)$.
 - (c) Etablir la formule : $V(T) = \frac{q(2q^2 + q + 2)}{(1 q^2)^2}$.
- 3. (a) Exprimer pour tout j de \mathbb{N}^* , l'évènement $[Z=j] \cap [Z=T]$ en fonction des évènements $[X_1=j]$ et $[X_2=j]$. En déduire pour tout j de \mathbb{N}^* , l'expression de $P([Z=j] \cap [Z=T])$
 - (b) Montrer que pour tout couple (j,ℓ) de $(\mathbb{N}^*)^2$, on a : $P([Z=j] \cap [T-Z=\ell]) = 2p^2q^{2j+\ell-2}$
 - (c) Montrer que pour tout k de \mathbb{Z} , $P([X_1 X_2 = k]) = \frac{pq^{|k|}}{1+q}$ (on distinguera trois cas : k = 0, k > 0 et k < 0).
 - (d) En déduire la loi de la variable aléatoire $|X_1 X_2|$.
 - (e) Etablir à l'aide des questions précédentes que les variables Z et T-Z sont indépendantes.
- 4. (a) A l'aide du résultat de la question 3e, calculer cov(Z,T). Les variables Z et T sont-elles indépendantes?
 - (b) Calculer en fonction de q, le coefficient de corrélation linéaire ρ de Z et T.
 - (c) Déterminer la loi de probabilité du couple (Z, T).
 - (d) Déterminer pour tout j de \mathbb{N}^* , la loi de probabilité conditionnelle de T sachant l'évènement [Z=j].
 - (e) Soit j un élément de \mathbb{N}^* . On suppose qu'il existe une variable aléatoire D_j à valeur dans \mathbb{N}^* , dont la loi de probabilité est la loi conditionnelle de T sachant l'évènement [Z=j]. Calculer $E(D_j)$.

Partie II: Loi exponentielle

Soit λ un réel strictement positif. Soit X_1 et X_2 deux variables indépendantes de même loi exponentielle de paramètre λ (d'espérance $1/\lambda$). On pose : $Y = X_1 - X_2$, $T = \max(X_1, X_2)$ et $Z = \min(X_1, X_2)$.

- 5. (a) Rappeler sans démonstration les valeurs respectives de $V(X_1)$ et de $P([X_1 \le x])$, pour tout réel x.
 - (b) Calculer $E(X_1 + X_2)$, $V(X_1 + X_2)$, E(Y), V(Y).
- 6. Déterminer pour tout réel z, $F_{Z}(z)$ et $f_{Z}(z)$. Reconnaître la loi de Z et en déduire E(Z) et V(Z).
- 7. (a) Montrer que pour tout réel t, on a : $F_T(t) = \begin{cases} (1 e^{-\lambda t})^2 & \text{si } t \geq 0 \\ 0 & \text{si } t < 0 \end{cases}$. Exprimer pour tout réel t, $f_T(t)$.
 - (b) Justifier l'existence de E(T) et V(T). Montrer que $E(T) = \frac{3}{2\lambda}$ et $V(T) = \frac{5}{4\lambda^2}$. (on pourra utiliser des changements de variables affine).
- 8. On note r le coefficient de corrélation linéaire de Z et T. Montrer que $r = 1/\sqrt{5}$.

Lois exponentielle et géométrique-Convergence Énoncé

- 9. (a) Déterminer une densité de la variable aléatoire $-X_2$.
 - (b) Etablir que la fonction $y \mapsto \frac{\lambda}{2} e^{-\lambda|y|}$ est la densité de probabilité sur \mathbb{R} de la variable aléatoire Y.
 - (c) Déterminer pour tout y réel, $f_{|Y|}(y)$. Reconnaître la loi de |Y| = T Z.

Partie III: Convergences

 $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires à valeurs strictement positives, indépendantes, de même loi exponentielle de paramètre λ . On pose pour tout n de \mathbb{N}^* : $S_n = \sum_{k=1}^n X_k$ et $J_n = \lambda S_n$.

- 10. Calculer pour tout n de \mathbb{N}^* , $E(S_n)$, $V(S_n)$, $E(J_n)$ et $V(J_n)$.
- 11. (a) Montrer, par récurrence que, la densité f_{J_n} de J_n est donnée par $f_{J_n}(x) = \begin{cases} \frac{e^{-x}x^{n-1}}{(n-1)!} & \text{si } x > 0 \\ 0 & \text{si } x \leqslant 0 \end{cases}$
 - (b) A l'aide du théorème de transfert, établir pour tout n supérieur ou égal à 3, l'existence de $E\left(\frac{1}{J_n}\right)$ et de $E\left(\frac{1}{J_n^2}\right)$, et donner leur valeurs respectives.
- 12. On note Φ la fonction de répartition de la loi normale centrée réduite, et u_{α} le réel strictement positif tel que $\Phi(u_{\alpha}) = 1 \frac{\alpha}{2}$.
 - (a) Enoncer le théorème de la limite centrée. En déduire que la variable aléatoire N_n définie par $N_n = \lambda \frac{S_n}{\sqrt{n}} \sqrt{n}$ converge en loi vers la loi normale centrée réduite.
 - (b) En déduire que $P([-u_{\alpha} \leq N_n \leq u_{\alpha}]) \sim 1 \alpha$.

Dans les questions suivantes, on suppose que $\lambda = 1$

- 13. On pose pour tou n de \mathbb{N}^* : $T_n = \max(X_1, X_2, ..., X_n)$. Pour tout n de \mathbb{N}^* , pour tout réel x positif ou nul, on pose : $g_n(x) = \int_0^x F_{T_n}(t) dt$ et $h_n(x) = \int_0^x t f_{T_n}(t) dt$
 - (a) Exprimer $h_n(x)$ en fonction de $F_n(x)$ et $g_n(x)$.
 - (b) Déterminer pour tout réel t, l'expression de $F_{T_n}(t)$ en fonction de t. Etablir pour tout n supérieur ou égal à 2, la relation : $g_{n-1}(x) - g_n(x) = \frac{1}{n} F_{T_n}(x)$
 - (c) En déduire que pour tout n de \mathbb{N}^* , pour tout réel x positif ou nul, l'expression de $g_n(x)$ en fonction de $x, F_{T_1}(X), F_{T_2}(x), ..., F_{T_n}(x)$.
 - (d) Montrer que $F_{T_n}\left(x\right)-1$ est équivalent à $-ne^{-x}$, lorsque x tend vers $+\infty$.
 - (e) Déduire des questions c) et d) l'existence de $E(T_n)$ et montrer que $E(T_n) = \sum_{k=1}^{n} \frac{1}{k}$.
- 14. On veut étudier dans cette question la convergence en loi de la suite de variables aléatoires $(G_n)_{n\geqslant 1}$ définie par : pour tout n de \mathbb{N}^* , $G_n=T_n-E\left(T_n\right)$. On pose pour tout n de \mathbb{N}^* : $\gamma_n=-\ln n+E\left(T_n\right)$ et on admet sans démonstration que la suite $(\gamma_n)_{n\geqslant 1}$ est convergente ; on note γ sa limite.
 - (a) Montrer que pour tout x réel et n assez grand, on a : $F_{G_n}(x) = \left(1 \frac{1}{n}e^{-(x+\gamma_n)}\right)^n$.
 - (b) En déduire que pour tout x réel, on a : $\lim_{n\to+\infty}F_{G_n}\left(x\right)=e^{-e^{-(x+\gamma)}}$
 - (c) Montrer que la fonction $F_G: \mathbb{R} \to \mathbb{R}$ définie par $F_G(x) = e^{-e^{-(x+\gamma)}}$ est la fonction de répartition d'une variable aléatoire G à densité. Conclure.
- 15. Soit X une variable aléatoire à densité de fonction de répartition F_X strictement croissante. Déterminer la loi de la variable alétoire Y définie par $Y = F_X(X)$.

elamdaoui@gmail.com 2 www.elamdaoui.com