Computer Vision
Unit — 01
Low-Level Vision (Digital Image Formation And Low Level Processing)

VISION: HUMANS ARE VISUAL CREATURES

- Half of the human brain is directly or indirectly devoted to processing visual information.
 - The eye's retina, which contains 150 million light-sensitive rod and cone cells
- The brain can identify images seen for as little as 13 milliseconds.
 - Helps the brain as it decides where to focus the eyes
 - Deciding where to move the eyes can take 100 to 140 ms, so very high-speed understanding must occur before that.
- At least 65 % of people are "visual learners"
- Humans have a remarkable ability to remember pictures.
 - More than 2000 pictures with at least 90 % accuracy.
- What our eyes see can influence what we hear, which is called the "McGurk Effect".

Why we want Machines to Emulate Human Vision?

- ✓ To engage machines to perform our mundane works.
- ✓ Human visions are more qualitative rather quantitative.
- ✓ Human vision is limited.

Human Perception VS Machine Vision

Limited vs Entire EM spectrum

HUMAN VS COMPUTER VISION

Interpreting Device or Vision Software: To come up with some symbolic description of the scene. [Bowl, Orange, Lemon, Banana and Peach].

More sophisticated algorithms may also illustrate "How fresh the fruits are what color/shape/size the bowl is"

Computer Vision*: where humans teach computers to see and interpret the world around them.

*a subfield of Deep Learning and Artificial Intelligence

But, what really is Computer Vision?

VISION is....

... Automating human visual processes.

-- David Mahar

Computer vision that emulates human vision.

.... An information processing task.

..... Inverting image formation.

--- Berthold Horn

.... Inverse of computer graphics.

..... REALY USEFUL.

Computer Vision & Other Related Fields...

Why Computer Vision Difficult?

• Inverse Problem

Perceives the "Story" behind the picture/video

Loss of dimensionality; while capturing image using sensing devices.

Challenges:

Seeks to recover some unknowns given insufficient information to fully specify the problem

1. Viewpoint Variation: Input image may align in different directions that leads the computer vision system to predict inaccurate results.

2. Scale Variation: Images captured closer to camera looks bigger and vice versa. Variation in size or scale affects the decision taking capabilities of the system.

3. Deformation: System may learn from perfect image and depicts a particular perception about the shape, size and other features. In real-world shape may change that leads to inaccuracy when shape of the object is deformed.

4. Inter-class variation: Objects of same class may come in different shape, size, colour and texture; but the algorithm need to identify them as single class.

5. Scale Variation: Incomplete information due to occlusion results in inaccurate interpretation.

6. Illumination Variation: Same image captured under different illumination levels.

Computer Vision System: How Does CV Works?

Computer Vision System:

- 1) Image Formation: Cameras to obtain visual data,
- 2) Low-level image processing:
- 3) Low level vision
- 4) Middle-level Vision
- 5) High-level vision: Image Understanding
- 6) Decision making

Vision deals with Images...!

A picture worth more than thousand words.

Scope and Challenges in CV

- ✓ Vision is a hard problem.
- ✓ Vision is multi-disciplinary.
- ✓ Considerable progress has been made.
- ✓ Many successful real-world applications.
- ✓ Computer vision as part of Al

IMAGE ACQUISITION: IMAGING SYSTEM

Camera + Scanner → Digital Camera: Get images into computer

IMAGE ACQUISITION: IMAGING SYSTEM

An example of digital image acquisition process. (a) Energy (illumination) Source. (b) An element of a scene. (c) Imaging System. (d) Projection of the scene on to the imaging plane. (e) Digitized Image

Formulation:

$$f(x,y) = i(x,y) \times r(x,y)$$

Where:

i(x, y) = Illumination (Energy) source.

$$0 < i(x, y) < \infty$$

r(x, y) = Reflectance component of the scene.

$$0 \le r(x, y) \le 1$$

DIGITAL IMAGE

- Reflectance of some scenes
 - 0.01 for black velvet
 - 0.65 for stainless steel
 - 0.80 for flat-white wall paint
 - 0.90 for silver-plated metal
 - 0.93 for snow

Formulation:

$$f(x,y) = i(x,y) \times r(x,y)$$

Where:

i(x, y) = Illumination (Energy) source.

$$0 < i(x, y) < \infty$$

r(x, y) = Reflectance component of the scene.

$$0 \le r(x, y) \le 1$$

DIGITAL IMAGE

• Image: Two dimensional function f(x, y)

Where x and y spatial(plane) coordinates

- Intensity or gray level: The amplitude of f at any pair of coordinates (x, y)
- Image as function

IMAGE SAMPLING & QUANTIZATION

Generating a digital image. (a) Continuous image. (b) A scan line from A to B in continuous image, used to illustrate the concept of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

IMAGE SAMPLING & QUANTIZATION

DIGITAL IMAGE REPRESENTATION

A monochrome image and the convention used to represent rows (x) and columns (y).

$$f(x, y) = \begin{bmatrix} f(0, 0) & f(0, 1) & \cdots & f(0, N-1) \\ f(1, 0) & f(1, 1) & \cdots & f(1, N-1) \\ \vdots & \vdots & & \vdots \\ f(M-1, 0) & f(M-1, 1) & \cdots & f(M-1, N-1) \end{bmatrix}$$

2D Sampling:

- Represented in a matrix with *M* rows and *N* columns.
- Equally spaced samples in two dimension.

[Digitizing the coordinate values are called *sampling*]

Quantization:

- Digitizing the amplitude values are called Quantization.
- The amplitude values depend on the "data type" 0r "class" by which it is represented.
- The following are few popular representations:
 - ✓ uint8
 - ✓ uint16
 - ✓ unit32
 - ✓ double
 - √ single

DIGITAL IMAGE REPRESENTATION

- Discrete intensity interval $[0, L-1], L=2^k$; L = Dynamic Range
- The number b of bits required to store a $M \times N$ digitized image

$$b = M \times N \times k$$

Number of storage bits for various values of N and k.

N/k	1(L=2)	2(L=4)	3 (L=8)	4(L=16)	5 (L=32)	6 (L = 64)	7 (L = 128)	8(L = 256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

TYPES DIGITAL IMAGE

- Common image formats include:
 - 1 sample per point (B&W or Grayscale)
 - 3 samples per point (Red, Green, and Blue)
 - 4 samples per point (Red, Green, Blue, and "Alpha", a.k.a. Opacity)

For most of this course we will focus on grey-scale and colour images

TYPES OF DIGITAL IMAGES

255	255	255	255	255	195
255	255	255	242	129	50
255	255	185	61	68	110
255	133	42	86	109	110
112	56	99	107	98	109
66	98	98	97	109	104

A binary image and the pixel values in a 6×6 neighborhood.

A grayscale (monochrome) image and the pixel values in a 6×6 neighborhood.

MAX-MIN Pixel Intensity:

Gray-scale Image:

$$min = 0$$

$$max = 2^b - 1$$

b = Number of bits required to represent the pixel intensity values.

MAX-MIN Pixel Intensity:

Binary Image:

$$min = 0$$

$$max = 1$$

[Only two intensity values can be represented]

COLOR IMAGE

A color/RGB image and the pixel values in a 3 × 3 neighborhood.

- ✓ Color images can be represented using three 2D arrays of same size, one for each color channel: red (R), green (G), and blue (B).
- ✓ Each array element contains an 8-bit value, indicating the amount of red, green, or blue at that point in a [0, 255] scale.
- ✓ The combination of the three 8-bit values into a 24-bit number allows 2²⁴ (16,777,216, usually referred to as 16 million or 16 M) color combinations.

Image Transformation

 An image processing operation typically defines a new image g in terms of an existing image f.

• We can transform either the range of f.

$$g(x,y)=t(f(x,y))$$

• Or the domain of *f*:

$$g(x,y) = f(t_x(x,y), t_y(x,y))$$

What kinds of operations can each perform?