Ćwiczenie 11

Moduł Younga

Cel ćwiczenia

Wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego metalu obciążonego stałą siłą.

Wprowadzenie

Pojęcie bryły sztywnej jest tylko użytecznym przybliżeniem, rzeczywiste ciała zmieniają swój kształt pod wpływem przyłożonych sił. Jeżeli po usunięciu siły ciało wraca do kształtu pierwotnego mówimy o odkształceniu sprężystym. Sformułowane jeszcze w XVII stuleciu prawo Hooke'a* mówi, że odkształcenie sprężyste ciała jest proporcjonalne do przyłożonej siły.

Prawo Hooke'a dotyczy dowolnego kształtu ciała i konfiguracji przyłożonych sił. Rozpatrzmy najprostszy przypadek rozciągania jednorodnego pręta (rys. 1). Przyrost długości pręta Δl jest proporcjonalny do jego długości l i siły F, a odwrotnie proporcjonalny do przekroju poprzecznego S

$$\Delta l = \frac{F \, l}{E \, S} \,. \tag{1}$$

Stała materiałowa E nosi nazwę modułu Younga**.

Prawo Hooke'a dla rozciągania (lub ściskania) może być też zapisane w postaci wzoru

$$\sigma = E \varepsilon, \tag{2}$$

który charakteryzuje stan naprężeń i odkształceń w rozciąganej próbce w sposób niezależny od jej kształtu. Symbol σ oznacza *naprężenie normalne* zdefiniowane jako stosunek przyłożonej siły do pola przekroju pręta, $\sigma = F/S$, natomiast ε oznacza *normalne odkształcenie względne*, równe stosunkowi przyrostu długości do długości początkowej, $\varepsilon = \Delta l/l$. Przymiotnik *normalne* oznacza, że dla przypadku rozciągania pręta tak siła jak i wektor przyrostu długości są prostopadłe do przekroju poprzecznego. Przypadek naprężeń i odkształceń *stycznych* omawiany jest w ćwiczeniu 12 "Moduł sztywności".

^{*} Robert Hooke (1635 - 1703), wszechstronny przyrodnik angielski, pierwszy prezes Towarzystwa Królewskiego w Londynie.

^{**} Thomas Young (1773 - 1829), uczony angielski, zajmował się m.in. badaniem własności sprężystych ciał stałych. Jego największym dokonaniem w fizyce było zbadanie zjawiska interferecji światła na dwu szczelinach, na podstawie którego jako pierwszy określił długość fali świetlnej.

Rys. 1. Charakterystyka rozciągania typowa dla większości metali. Znaczenie punktów A-D i symboli σ_m i σ_s objaśniono w tekście. Wstawka pokazuje wygląd próbki wykorzystywanej w profesjonalnej aparaturze do badania pełnej zależności $\sigma(\varepsilon)$

Wartość modułu Younga można by określić jako naprężenie, przy którym długość rozciąganego ciała ulega podwojeniu. W rzeczywistości prawo Hooke'a przestaje obowiązywać (może za wyjątkiem gumy) przy znacznie mniejszych odkształceniach. Rysunek 1 pokazuje doświadczalną zależność naprężenie – odkształcenie typową dla większości metali. (Uwaga: zgodnie ze zwyczajem przyjętym w inżynierii materiałowej naprężenie σ jest odkładane na osi pionowej, a odkształcenie – na poziomej).

Na krzywej $\sigma(\varepsilon)$ odcinek liniowy kończy się na tzw. granicy proporcjonalności (punkt A na rys. 1). Po przekroczeniu granicy sprężystości (punkt B) rozpoczyna się nieodwracalne odkształcenie materiału. Wreszcie po przekroczeniu maksymalnego naprężenia (punkt C) materiał ulega zerwaniu (punkt D).

W przypadku materiałów określonych jako kruche przebieg rozciągania jest prostszy – prawo Hooke'a obowiązuje do określonego naprężenia, po przekroczeniu którego materiał pęka. Wartości modułu Younga i przybliżone wartości naprężenia σ_s odpowiadającego granicy sprężystości podano w tabeli 1. W ćwiczeniu badamy tylko początkową część zależności liniowej $\sigma(\epsilon)$, nie przekraczając naprężenia maksymalnego σ_m (rys. 1), znacznie mniejszego od σ_s .

Wyznaczenie modułu Younga metoda statyczna

Zastosowana metoda polega na bezpośrednim pomiarze wielkości wchodzących do wzoru definicyjnego (1). Do pomiarów skonstruowano statyw (rys. 2), do którego przymocowuje się badany drut w górnym uchwycie A. Drugi koniec drutu uchwytem B połączono sztywno z szalką znajdującą się poniżej poprzeczki statywu. Średnicę drutu mierzymy mikrometrem.

Rys. 2. Urządzenie do pomiaru modułu Younga metodą statyczną

Do pomiaru wydłużenia drutu wykorzystano czujnik mikrometryczny D (niepewność pomiaru 0,01 mm), sprzężony z badanym prętem przy użyciu dźwigni C. Dźwignia podpiera się na wsporniku związanym sztywno ze statywem. Pręt i szalka zamocowane są w połowie odległości między osią obrotu a punktem styku z czujnikiem. Wydłużenie drutu Δl jest zatem dwukrotnie mniejsze od wartości wskazywanej przez czujnik. Badany drut powinien być prosty.

Siła F rozciągająca drut jest siłą ciężkości odważników o masie m. Zatem F = m g, gdzie $g = 9.81 \ m/s^2$ jest przyspieszeniem ziemskim. Zgodnie z prawem Hooke'a zależność $\Delta l(F)$ winna być linią prostą $\Delta l = aF + b$.

Porównanie równania prostej $\Delta l = aF + b$ z wzorem (1) pokazuje, że współczynnik nachylenia a jest tożsamy z czynnikiem $\frac{l}{ES}$, zatem $E = \frac{l}{aS}$. Uwzględniając ponadto fakt, że

pole przekroju drutu Sobliczamy ze średnicy djako $S=\pi d^2/4\,,$ roboczy wzór na moduł Younga przyjmuje postać

$$E = \frac{4l}{\pi d^2 a} \,. \tag{3}$$

Niepewność złożoną $u_c(E)$ obliczamy przy pomocy prawa propagacji niepewności względnej na podstawie niepewności l, d oraz a. (Niepewność współczynnika nachylenia u(a) pochodzi od błędu przypadkowego pomiaru Δl , gdyż niepewność masy m jest pomijalna). Zgodnie z wzorem (1.15) "Opracowania danych pomiarowych" otrzymujemy:

$$\frac{u_c(E)}{E} = \sqrt{\left(\frac{u(l)}{l}\right)^2 + \left(-2\frac{u(d)}{d}\right)^2 + \left(-\frac{u(a)}{a}\right)^2} \tag{4}$$

Tabela 1. Wartości modułu Younga E, modułu sztywności G (do ćwiczeń 12 i 7) i granicy sprężystości σ_s na rozciąganie dla wybranych materiałów. Podawane w literaturze wartości E i G wykazują rozrzut rzędu 10%, wartości σ_s mają charakter orientacyjny, gdyż silnie zależą od składu i sposobu obróbki materiałów

MATERIAŁ	E [GPa]	G [GPa]	σ_s [GPa]
guma	0,001	0,00002	0,001
ołów	17	5,9 - 6,4	
aluminium	70	26	0,24 (dural)
miedź	110-130	38	0,07
mosiądz	100	42	0,3
stal węglowa pospolita	210-220	78 - 82	0,4
stal węglowa sprężynowa	jw.	jw.	1,65
diament	1200	480	