

Kubernetes 101

Pranshu Saxena Ruchi Singh

Agenda

- Where Paytm is heading
- Docker
- Kubernetes
 - Architecture
 - Concepts
 - Security
 - Monitoring
 - Logging

Aim

Everything at Paytm runs in containers.

Docker

Source: Google Trends

What is Docker?

- An implementation of the container idea.
- A package format.
- Resource isolation.
- An Ecosystem.

"build once, run anywhere"

We need more

- Scheduling: Where should my containers run?
- Monitoring: What's happening with my containers?
- Authorization: Control who can do things to my containers.
- Aggregates: Compose sets of containers into jobs.
- Scaling: Making jobs bigger or smaller.
- Seamless rolling update: Handle multiple versions of containers without affecting applications.

Kubernetes

Source: Google Trends

Kubernetes

- Container orchestrator.
- Builds on Docker containers.
 - Also supporting other container technologies.
- Multiple cloud and bare-metal environments.
- 100% Open source, written in Go.

Let users manage applications, not machines.

Kubernetes Architecture

Primary Concepts

- Container: A sealed application package (Docker).
- Pod: A small group of tightly coupled Containers.
- Labels: Identifying metadata attached to objects.
- Selector: A query against labels, producing a set result.
- Controller: A reconciliation loop that drives current state towards desired state.
- Service: A set of pods that work together.

Labels

- Arbitrary metadata, represent Identity of Pods.
- Attached to any API object.
- Query-able by Selectors:
 - Think SQL 'select... where...'
- Few usages:
 - Select pods under a ReplicationController.
 - Select pods in a Service.

Selectors

Replication Controller

- A Replication Controller ensures that a specified number of pod 'replicas' are running at any one time.
- Replication Controller uses Pod Templates to create Pods.
- Replication controller uses Pod Labels to monitor and maintain the number of Pods to the desired level.

Container Networking with Policy

- Weave Net: Creates a virtual network that connects containers/Pods across multiple hosts and enables their automatic discovery.
- No external cluster store required.
- Automatically chooses the fastest path between two hosts.
- Supports Kubernetes NetworkPolicy API.

K8s NetworkPolicy API is a game changer

• Traditional defense

Kubernetes NetworkPolicy API

Problem

Kubernetes NetworkPolicy API

Solution

Monitoring

- Run Datadog Agent as a DaemonSets
 - Collect performance metrics for containers, pods, container namespaces.
 - Create monitors on the status of Kubelets.
 - Visualize Kubernetes cluster performance.
 - Ingest Kubernetes labels as tags in Datadog.

Logging

- Run fluentd as a pod on each node.
- Gather logs from all containers.
- Export to kafka.
- Kafka to Elasticsearch using logstash.
- Kibana dashboard on top of Elasticsearch

Spaces: 2

Deployment file cont...

What and Why Service definition file?

A yaml file contains all the information related to any microservice. Information such as -

- Component & Subcomponent name
- Organization, team email, lead email, team slack or pagerduty
- Kubernetes pod/container, service and environment vars definition
- Other services on which this microservice depends
- Info related to number of containers, CPU & Memory info
- Build & Deploy related info i.e. repo_url, language, version, jenkins deploy users list
- Database and any storage info that microservice uses and their infra info.

Sample Service definition file


```
init.yml
    organization: paytm
    component: urlshortener
    lead email: lead urlshortener@paytm.com
    team email: team urlshortener@paytm.com
    team slack: urlshortener
    team pagerduty: urlshortener
    business unit: urlshortener
    subcomponents: api
    containerspec:
      - name: urlshortener-api
11
12
        build:
13
         language: java|node
14
          language version: 1.8|8.5.0
                                                                            Infrastructure
15
        dockerregistry url: dockerregistry.paytmmall.io/paytmmall
                                                                                  as
16
        port:
          - 8080
                                                                                code
18
        ping api:
19
          url: /ping
20
          port: 80
          initial delay seconds: 30
        health api:
          url: /health
24
          port: 80
          initial delay seconds: 15
26
        logs:
27
        - /log/urlshortener-api
        volumes: #custom volume mount
29
          - name: urlshortener-api-files-storage
            host path: /data/files/urlshortener-api
            container path: /apps/urlshortener-api/files/
32
    dependencies:
33
    - component: catalogplus
     subcomponent: adapter
```

Environment specific service definition file


```
staging-v1.yml
    k8s:
       service:
       - name: urlshortener-api-2.paytmmall.com
         loadbalancerprotocol: https
         type: internetloadbalancer
         ports:
         - name: https
           port: 443
          targetPort: 80
           protocol: "TCP"
10
11
         cert path: /arn/
12
       scale:
13
         min instance count: 1
14
         max instance count: 10
15
        min memory: 0.5
                                 #request memory for container
        max memory: 1
16
                                #limit memory
17
         min cpu: 0.5
                                #request cpu for container
18
         max cpu: 2
                               #limit cpu
19
       envvars:
20
        v1:
           non secrets:
22
             URLSHORTENER API REDIS HOST: "172.26.131.124"
23
             URLSHORTENER API REDIS PORT: "6379"
24
           - URLSHORTENER API MONGO USER
26
           - URLSHORTENER API MONGO PASSWORD
27
    users:
28
       approvers:
29
       - animesh.ray
30
       - ruchi2.singh
       - abhishekll.singh
31
32
       deploy users:
33
       - aditya.raj
34
    infra:
       databases:
       - name: redisapiurlshortener
36
37
         type: redis
38
         port: 6379
         version:
          v1:
             scale:
42
               min instance count: 1
43
               max instance count: 2
44
               min memory: 4
45
               min cpu: 2
               instancetype: t2.medium
```


Current usage of service definition file

Right now, It is used to generate kubernetes deployment file for each microservice to deploy it on any environment in paytmmall new infrastructure.

Where SDF files has been placed?

Scope of service definition file

Thank you!

Pranshu Saxena Ruchi Singh

pranshu.saxena@paytm.com

