Bioinformatyka I rok

Julia Frąszczak nr.albumu 452985 Alicja Lisowska nr.albumu 452978

Sprawozdanie Algorytmy sortowania

Selection sort

Typ sortowania Liczba sortowanych elementów	Random	Increasing	Decreasing	V-shape
1000	0	0,001	0,001	0,001
2000	0,007	0,005	0,004	0,005
3000	0,021	0,011	0,009	0,011
4000	0,025	0,023	0,005	0,01
5000	0,066	0,031	0,019	0,035
6000	0,103	0,076	0,037	0,05
8000	0,158	0,133	0,102	0,11
10000	0,239	0,18	0,176	0,188
15000	0,393	0,335	0,309	0,454
20000	0,719	0,504	0,584	0,565
25000	0,969	1,096	1,051	0,96
30000	1,288	1,394	1,393	1,381
35000	1,79	2,038	1,977	1,959
40000	2,545	2,411	2,53	2,328

- Zależność czasu wykonywania algorytmu jest podobna dla każdego typu danych wejściowych.
- Złożoność obliczeniowa Selection Sorta'a zarówno w optymistycznym jak i pesymistycznym przypadku wynosi O(n²).
- Selection sort jest niewrażliwy na dane wejściowe.
- Jest niestabilny.
- Zachowuje się naturalnie.

Insertion sort

Typ sortowania Liczba Random sortowanych elementów	Increasing	Decreasing	V-shape
--	------------	------------	---------

1000	0,005	0	0,002	0,002
2000	0,005	0	0,013	0,009
3000	0,012	0	0,024	0,032
4000	0,026	0	0,043	0,034
5000	0,039	0	0,076	0,067
6000	0,056	0	0,109	0,088
8000	0,101	0	0,183	0,053
10000	0,156	0	0,305	0,161
15000	0,371	0	0,68	0,546
20000	0,633	0	1,215	0,783
25000	1,106	0	1,87	1,041
30000	1,381	0	2,701	1,82
35000	1,871	0	3,692	2,314
40000	2,593	0	4,813	2,978

- Jest stabilny.
- W najbardziej optymistycznym wypadku złożoność obliczeniowa wynosi O(n), natomiast w najbardziej pesymistycznym O(n²).
- Wykazuje naturalne zachowanie.
- Wrażliwy na dane wejściowe.

 Najlepszy przypadek przedstawia krzywa Increasing, a najgorszy Decreasing.

Quick sort

Typ sortowania Liczba sortowanych elementów	Random	Increasing	Decreasing	V-shape
1000	0,001	0,01	0	0
2000	0	0,023	0,006	0,005
3000	0,001	0,062	0,024	0,015
4000	0,002	0,103	0,035	0,025
5000	0	0,162	0,05	0,041
6000	0	0,23	0,08	0,05
8000	0,007	0,409	0,13	0,092
10000	0	0,638	0,214	0,147
15000	0,007	1,435	0,546	0,32
20000	0	2,585	0,825	0,58
25000	0,008	3,999	1,425	0,89
30000	0,008	5,981	1,845	1,287
35000	0,012	7,83	2,515	1,748
40000	0,012	10,188	3,285	2,295

- Najgorszym przypadkiem dla metody z podziałem wg skrajnego elementu jest ciąg posortowany rosnąco lub malejąco, wpływ ma na to ilość wykonywanych iteracji.
- Jest stabilny.
- Wrażliwy na rozkład danych wejściowych.
- Pesymistyczna złożoność obliczeniowa wynosi $O(n^2)$.
- Optymistyczna złożoność obliczeniowa wynosi O(n logn).
- Najlepszy przypadek przedstawia krzywa Random, a najgorszy Increasing.

Heap sort

Typ sortowania Liczba sortowanych elementów	Random	Increasing	Decreasing	V-shape
1000	0	0	0,001	0
2000	0	0	0	0,001
3000	0	0	0,001	0,001
4000	0	0,001	0,001	0
5000	0	0	0,001	0,001
6000	0	0,001	0,002	0,001
8000	0	0,001	0,001	0,002
10000	0,01	0,002	0,002	0,003
15000	0	0,003	0,004	0,004
20000	0,01	0,005	0,005	0,005
25000	0	0,005	0,006	0,006
30000	0	0,006	0,007	0,008
35000	0,005	0,008	0,008	0,008
40000	0,01	0,009	0,01	0,01

- Jest mało wrażliwy na układ danych wejściowych
- Złożoność obliczeniowa w przypadku pesymistycznym wynosi O(n logn), a optymistycznym O(n).
- Jest niestabilny.
- Jest szybki i nie pochłania wiele pamięci.
- Na podstawie wykresu nie jest możliwe jednoznaczne określenie, który z wejściowych typów danych jest najlepszy, a który najgorszy. Przypuszczamy że najlepszą opcję stanowi Random, a najgorszą V-Shape.