Problem Set 2

Submit your solution via NTULearn, with one Python source file per problem. Problems labeled like this—(5* marks)—are optional for undergraduates, and can be attempted for a bonus of 1/5 the indicated marks; for graduate students, the problems are compulsory and receive full marks. Follow good programming style, and label output plots clearly.

0. THE PARTICLE-IN-A-WELL PROBLEM

The particle-in-a-box problem is a well-known quantum mechanics problem featuring a particle trapped in a box whose walls are *infinite* potential barriers. Here, we study a particle-in-a-well problem, where one of the walls is a *finite* potential barrier.

The 1D time-independent Schrödinger wave equation is

$$\left[-\frac{1}{2} \frac{d^2}{dx^2} + V(x) \right] \psi(x) = E \, \psi(x), \tag{0}$$

where x is the position coordinate, V(x) the potential, and $\psi(x)$ the wavefunction for an energy eigenstate with energy E. We set $\hbar = m = 1$. The potential function is:

Due: 15 Mar 2016

$$V(x) = \begin{cases} \infty & \text{for } x < 0, \\ V_0 & \text{for } 0 < x < L, \\ 0 & \text{for } x > L, \end{cases}$$
 (1)

where L is the well width and $V_0 < 0$ is the potential in the well, as sketched above.

"Bound state solutions" are solutions to Eqs. (0)–(1) with E < 0. They have the form

$$\psi(x) = \begin{cases} 0 & \text{for } x < 0, \\ A \sin\left[\sqrt{2(E - V_0)} x\right] & \text{for } 0 < x < L, \\ B \exp(-\sqrt{-2E} x) & \text{for } x > L, \end{cases}$$
 (2)

where A and B are unknown constants. Using Eq. (2), we can match the wavefunction and its derivative at x = L, to obtain the following transcendental equation for E:

$$\tan\left[\sqrt{2(E - V_0)}L\right] = -\sqrt{\frac{V_0}{E} - 1}, \text{ where } V_0 < E < 0.$$
 (3)

Within this range of E, there is a variable number of solutions to Eq. (3). These are the various possible bound state energies for the potential well.

Knowing E, we can determine A and B by using Eq. (2) with the normalization condition

$$\int_{-\infty}^{\infty} |\psi(x)|^2 = 1. \tag{4}$$

(a) (3 marks) Write the following function:

def quantum_well_energy_width_plot(Lspan, V0):		
Inputs		
Lspan	A tuple of three numbers (Lmin, Lmax, N); this specifies values of L ,	
	consisting of N positive real numbers between Lmin and Lmax, inclusive.	
VO	The depth of the potential well (assumed to be a negative real number).	

This function has no return value. It plots the energy-level diagram of E versus L, for the range of well widths specified by Lspan. It should solve Eq. (3) numerically for E by using scipy.optimize.fsolve. For each L, be sure to plot all existing bound state energies; there may be different numbers of bound states for different L's.

(b) (3 marks) Write the following function:

<pre>def quantum_well_energy_depth_plot(L, Vspan):</pre>		
Inputs		
L	The width of the potential well (assumed to be a positive real number).	
Vspan	A tuple of three numbers (Vmin, Vmax, M); this specifies values of V_0 ,	
	consisting of M negative real numbers between Vmin and Vmax, inclusive.	

This function has no return value. It plots the energy-level diagram of E versus V_0 , using the span of well widths specified by Vspan. All existing bound state energies should be plotted. Where possible, try to re-use code written for part (a).

- (c) (2 marks) Write a function quantum_well_wavefunctions_demo(), which takes no inputs and plots the wavefunctions for all the bound states of a quantum well. Choose appropriate values of V_0 and L, so that there are at least 3–4 bound states. Label all plots appropriately. Ensure that the plotted wavefunctions are appropriately normalized, according to Eq. (4).
- (d) (*5 marks) Let $n_b \in \mathbb{Z}_0^+$ be the number of bound states of the quantum well. You can show that n_b depends on V_0 and L only through the combination $f = V_0 L^2$. Write a

function quantum_well_nbound_states() that plots $n_b(f)$ versus f. In the same plot, add a line showing an analytic approximation of $n_b(f)$ for large f.

1. SCHRÖDINGER EQUATION IN 2D WITH CARTESIAN COORDINATES

In this problem, we will study the 2D time-independent Schrödinger equation.

$$\left[-\frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + V(x, y) \right] \psi(x, y) = E \psi(x, y)$$
 (5)

where (x, y) are 2D Cartesian coordinates, V(x, y) is the potential, and $\psi(x, y)$ is the wavefunction for an energy eigenstate with energy E. We have again taken $\hbar = m = 1$.

(a) (6 marks) Implement a finite-difference solver for the 2D Schrödinger equation in a rectangular domain with Cartesian coordinates:

	def schrodinger_2D(xspan, yspan, Vfun, neigs, E0):	
Inputs		
xspan	A tuple of the form (xmin, xmax, Nx), specifying Nx x coordinates	
	between xmin and xmax (inclusive).	
yspan	A tuple of the form (ymin, ymax, Ny), specifying Ny y coordinates	
	between ymin and ymax (inclusive).	
Vfun	A function that takes two inputs x and y (arrays of the same shape),	
	and returns an identically-shaped array giving the potential $V(x,y)$.	
neigs	The number of energy eigenstates to find.	
EO	A target energy around which to find energy eigenvalues. The function	
	should solve for the neigs states with energies closest to EO.	

Return values		
E	A 1D array of energy eigenvalues.	
psi	A 3D array such that psi[i,j,n] contains the value of $\psi_n(x_i,y_j)$,	
	i.e. the value of the n-th eigenstate's wavefunction at (x_i, y_i) , where	
	the coordinate points are given by the ${\bf x}$ and ${\bf y}$ outputs.	
Х	1D array of x coordinates.	
у	1D array of y coordinates.	

Assume Dirichlet boundary conditions at the edges of the computational domain. Use the three-point rule for the second derivative operator in each direction, but note that Δx and

 Δy might differ. All wavefunctions should be normalized. *Note*: You can use the reshape function to rearrange 2D arrays into 1D, or vice versa.

(b) (3 marks) We now investigate potential wells in 2D. Assume a square computational domain, with Dirichlet boundary conditions at $|x| = \pm L/2$ and $|y| = \pm L/2$. Within the domain is an elliptical potential well, described by

$$V(x,y) = V_0 \exp\left[-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right].$$
 (6)

Write the following function:

def elliptical_well_wavefunctions_demo(L=5.0, V0=-20.0, sigx=1.0, sigy=0.5):				
Inputs				
L	The width of the computational domain (a positive real number).			
VO	The value of V_0 in Eq. (6), assumed to be a negative real number.			
sigx, sigy	The values of σ_x and σ_y in Eq. (6), assumed to be positive real numbers.			

This function has no return value. It plots pseudocolor maps of $|\psi(x,y)|^2$, for the nine lowest-energy eigenstates. In each plot, include a label showing the energy E of the eigenstate.

(c) (3 marks) Write the following function:

<pre>def elliptical_well_energy_depth_plot(L, Vspan, sigx=1.0, sigy=0.5, neigs=20):</pre>				
Inputs				
L	The width of the computational domain (a positive real number).			
Vspan	A tuple of three numbers (Vmin, Vmax, M); this specifies values of V_0 ,			
	consisting of M negative real numbers between Vmin and Vmax, inclusive.			
sigx, sigy	The values of σ_x and σ_y in Eq. (6), assumed to be positive real numbers.			
neigs	The number of energy eigenvalues to show (a positive integer).			

This function has no return values. It plots the energy-level diagram of E versus V_0 for the elliptical well, using the neigs lowest energy eigenvalues.

Discuss in code comments: Qualitatively, how does the energy-level diagram of the 2D system compare with the energy-level diagrams from problem 0(b)?

(d) (5* marks) Consider V(x,y)=0, which is the "particle in a box" problem for a box of size $L_x \times L_y$. Write a function schrodinger_2D_error_demo(Lx=1.0, Ly=1.0). In this function, for varying discretizations $N=N_x=N_y\in[20,200]$, compute the 3 lowest energies; then compute the error

$$\mathcal{E} = \left| E^{\text{(numerical)}} - E^{\text{(exact)}} \right|, \tag{7}$$

and generate a log-log plot of \mathcal{E} versus N. On the same plot, show the trend-lines obtained from least-squares fits of $\log(\mathcal{E}) \approx A \log(N) + B$, for each of the energy levels.

Discuss in code comments: How does the error scale with N, and why?