Álgebra Lineal Licenciatura en Actuaría

Primer Examen Parcial

Alumno:		_
	8 de noviembre de 2022	

Instrucciones: Resuelve cada uno de los siguientes ejercicios.

1. (2 puntos) Sea $V := \{(a,b) : a,b \in \mathbb{R}\}$, el conjunto de parejas ordenadas de números reales. Para $(a,b),(x,y) \in V$ y $\alpha \in \mathbb{R}$. Para $(x,y),(a,b) \in V$ y $\alpha \in \mathbb{R}$ definamos la suma y la multiplicación por escalar de la siguiente manera:

$$(a,b) + (x,y) := (a+2x,b+3y)$$

$$\alpha(x,y) := (\alpha \cdot x, \alpha \cdot y)$$

¿Es V con estas operaciones, un espacio vectorial sobre \mathbb{R} ? Justifica tu respuesta

2. (3 puntos) Sean \mathbb{F} un campo y $(V, \mathbb{F}, \boxplus, \boxdot), (W, \mathbb{F}, \oplus, \odot)$ espacios vectoriales sobre \mathbb{F} . Consideremos el siguiente conjunto:

$$Z := \{(v, w) \mid v \in V, w \in W\}$$

Demuestra que Z es un espacio vectorial sobre $\mathbb F$ con las siguientes operaciones:

$$(v_1, w_1) + (v_2, w_2) := (v_1 \boxplus v_2, w_1 \oplus w_2)$$

$$\alpha(v,w) := (\alpha \boxdot v, \alpha \odot w)$$

donde $(v_1, w_1), (v_2, w_2), (v, w) \in Z$.

Observación: En este ejercicio la operación \oplus no tiene relación con la suma directa, es sólo utilizado para denotar la suma de vectores en el espacio vectorial W.

3. (1 punto) Sea V un espacio vectorial sobre un campo \mathbb{F} . Si H es un subespacio vectorial de V sobre \mathbb{F} ¿Quién es H+ H? Justifica tu respuesta

4. (2 puntos) Considera el espacio vectorial \mathbb{R}^2 sobre \mathbb{R} con la suma de vectores y multiplicación por escalar usual. Determine si los siguientes subconjuntos son subespacios vectoriales de \mathbb{R}^2 sobre \mathbb{R} . En cada caso justifica tu respuesta.

a)
$$H_1 := \{(x, y) \in \mathbb{R}^2 : xy = 0\}$$

b)
$$H_2 := \{(x,0) : x \in \mathbb{R}\}$$

c)
$$H_3 := \{(0, y) : y \in \mathbb{R}\}$$

d)
$$H_4 := \{(x, x) : x \in \mathbb{R}\}$$

5. (2 puntos) Da un contrajemplo para demostrar que la siguiente proposición es falsa. Sea V es un espacio vectorial sobre un campo \mathbb{F} . Si H_1, H_2 y W son subespacios vectoriales de V sobre \mathbb{F} , tales que $V = H_1 \oplus W$ y $V = H_2 \oplus W$, entonces $H_1 = H_2$