CONSTANT-ROUND CZK PROOFS for NP

ALON ROSEN

IDC HERZLIYA

The Goal

<u>Goal</u>: construct proof for every $L \in NP$

- in computational ZK
- with negligible soundness
- and a constant number of rounds

Need to address:

- malleability
- aborts in simulation

Recall: CZK proof for HAM

- $G_0 = \pi(w)$
- $G_1 = \pi, \pi(G)$
- Prover: commit to G_0 , G_1
- Verifier: send $b \in_R \{0,1\}$
- Prover: decommit to G_h

P V

$$c = Com(G_0, G_1)$$

$$b = 0: \pi(w)$$

$$b = 1: (\pi, H)$$

- Completeness: can always make sure that G_0 , G_1 are valid
- Soundness: either G_0 or G_1 is invalid
- Zero-Knowledge: given b can always ensure that G_b is valid

Zero-Knowledge

- $G_0 = \pi(w)$
- $G_1 = \pi, \pi(G)$

• Simulator: sample $b \in_R \{0,1\}$

- $c = Com(G_b)$ $b' = V^*(c)$ $b = 0: \pi(w)$ $b = 1: (\pi H)$
- Simulator: commit to G_0 , G_1 so that G_b is valid
- Verifier*: send $b' = V^*(c)$
- Simulator: if b' = b decommit to G_b , otherwise repeat

Parallel repetition

- To reduce soundness error repeat k times in parallel
- Problem: V^* 's challenge is now a string $b \in_R \{0,1\}^k$
- Simulator's expected number of guessing attempts is 2^k
- Solution: Let verifier commit to b in advance

Parallel HAM

- $G_0 = \pi_1(w), ..., \pi_k(w)$
- $G_1 = \pi_1, \pi_1(G), ..., \pi_k, \pi_k(G)$
- Verifier: commit to $b \in_R \{0,1\}^k$
- Prover: commit to G_0 , G_1
- Verifier: decommit to b
- Prover: decommit to G_{b_1} , ..., G_{b_k}
- Soundness:
 - Relies on hiding of Com
 - Probability that G_{b_1} , ..., G_{b_k} are <u>all valid</u> is at most 2^{-k}
- Zero-Knowledge: given b_i can ensure that G_{b_i} is valid

C = Com(b) $c = Com(G_0, G_1)$ b = Dec(d) $Dec(G_{b_1}, ..., G_{b_k})$

Malleability of Prover Commitment

- Com must be statistically hiding
- Otherwise P can generate $c = Com(G_0, G_1)$ that depends on d = Com(b) so that upon seeing b = Dec(d) he can generate valid $Dec(G_{b_1}, ..., G_{b_k})$

- Succeeding in doing so would not necessitate P to violate the (computational) hiding property of Com
- "Man-in-the-middle" attacks are feasible and devastating
- This "malleability" issue is averted by using $oldsymbol{Com}$ that is statistically hiding

Statistically-hiding Commitments

<u>Definition</u>: A <u>statistically-hiding</u> (Com, Dec) satisfies:

```
Statistical hiding: \forall R^* \ \forall m_1, m_2
Com(m_1) \cong_s Com(m_2)
```

Computational binding: $\forall PPT \ C^* \ \forall m_1 \neq m_2$ $Pr[C^* \text{ wins the binding game}] \leq neg(n)$

- Can also consider commitments that are simultaneously computationally hiding and binding
- <u>Exercise</u>: There do not exist commitments that are simultaneously statistically hiding and binding
- Instance-dependent: hiding for $x \in L$, binding for $x \notin L$

Examples (statistically-hiding)

Pedersen (assuming DL):

$$Com_{g,h}(m,r) = h^r \cdot g^m$$

• Any CRH $H: \{0,1\}^* \to \{0,1\}^n$:

$$Com_H(m,r) = (H(r), h(r) \oplus m)$$

• "Random oracle" $H: \{0,1\}^* \to \{0,1\}^n$:

$$Com(m) = H(m)$$

• Any OWF: poly(n) rounds of interaction

Zero-Knowledge (attempt)

(garbage: all 0's string)

- Verifier: commit to $b \in_R \{0,1\}^k$
- Simulator: commit to garbage
- Verifier*: decommit to b
- Simulator: rewind and adjust garbage to be valid
- Com is comp. binding so V^* cannot decommit to $b' \neq b$
- But what if V^* refuses to decommit altogether?
 - V^* might ABORT w/ unknown probability $0 \le p \le 1$
 - Simulator needs to generate the correct distribution

A Naïve Simulator

(garbage: all 0's string)

Naïve simulator:

- commit to garbage
- If $V^*(c) = \mathsf{ABORT}$, halt
- If $V^*(c) \neq \mathsf{ABORT}$,
 - a) rewind and adjust garbage to be valid
 - b) obtain decommitment to b from V^*
 - c) Repeat (a),(b) until $V^*(c) \neq ABORT$ again

The problem: $Pr[V^* \neq ABORT]$ may change depending on whether simulator committed to garbage or to valid

The Issue

Let

$$s(n) = Pr[V^* \neq ABORT | garbage]$$

 $t(n) = Pr[V^* \neq ABORT | valid]$

then

$$\mathbb{E}[\text{\#repetitions } of(a), (b)] = s(n)/t(n)$$

Suppose that for infinitely many n's

$$s(n) = 2^{-n}$$
$$t(n) = 2^{-2n}$$

Then for these n's, s(n)/t(n) is too large!

Fixing the Naïve Simulator

<u>Theorem [GK'91]</u>: If <u>statistically-hiding</u> commitments exist then every $L \in NP$ has a ZK proof with soundness error 2^{-k}

Round-optimal[K'12]: if a language L has a four-round zero-knowledge proof then $L \in coMA$

The GK solution:

- have the simulator first obtain an estimate $\tilde{t}(n)$ on t(n)
- achieved by rewinding with <u>valid</u> commitment until m(n) successful decommits occur for some m(n) = poly(n)
- In step (c), the simulator then repeats (a),(b) up to some $poly(n)/\tilde{t}(n)$ repetitions, unless $V^*(c) \neq ABORT$ again

A Simpler Solution

The idea [R'04]: V^* commits to challenge b in a way that allows extraction of b before c is even sent

Stage I:

• Verifier: commit to $b \in_R \{0,1\}^k$ and to

$$\begin{pmatrix} \boldsymbol{b}_1^0, \boldsymbol{b}_2^0 & , \boldsymbol{b}_n^0 \\ \boldsymbol{b}_1^1, \boldsymbol{b}_2^1 & , \boldsymbol{b}_n^1 \end{pmatrix} \text{ so that } \forall i \in [n], \ \boldsymbol{b}_i^0 \oplus \boldsymbol{b}_i^1 = \boldsymbol{b}$$

- Prover: send n random bits $r_1, \dots, r_n \in_R \{0,1\}^n$
- Verifier: decommit to $b_1^{r_1}$, $b_2^{r_2}$, ..., $b_n^{r_n}$

Stage II:

• Run 3-round protocol for HAM (parallel version) with \boldsymbol{b} as challenge (V decommits to \boldsymbol{b} and $\boldsymbol{b}_1^{1-r_1}, \dots, \boldsymbol{b}_n^{1-r_n}$)

Simulating the protocol

Simulator:

• Learn \boldsymbol{b} using naïve rewinding by learning \boldsymbol{b}_i^0 , \boldsymbol{b}_i^1 for some $i \in [n]$

$$\begin{pmatrix} \boldsymbol{b}_1^0, \boldsymbol{b}_2^0 \\ \boldsymbol{b}_1^1, \boldsymbol{b}_2^1 \end{pmatrix}$$
, $\begin{pmatrix} \boldsymbol{b}_2^0 \\ \boldsymbol{b}_1^1 \end{pmatrix}$ $\rightarrow \boldsymbol{b}_2^0 \oplus \boldsymbol{b}_2^1 = \boldsymbol{b}$

Given b can simulate 3-round protocol

$Com(b, b_i^0, b_i^1)$ $r_1, ..., r_k$ $b_1^{r_1}, ..., b_k^{r_k}$ $c = Com(G_b)$ $b_1, b_1^{1-r_1}, ..., b_k^{1-r_k}$

 $Dec(G_{b_1}, \dots, G_{b_k})$

The point:

- rewindings are non adaptive $(r_1, ..., r_k \text{ are random})$
- s(n) = t(n) by definition

What about Proof of Knowledge?

The 5-round protocol seems to not be a POK:

- in order to extract, one must obtain different responses from the prover relative to the same first message \boldsymbol{c}
- However, V (and thus extractor) is bound to \boldsymbol{b} before P commits to \boldsymbol{c} , and the value of \boldsymbol{c} may depend on V's commitment to \boldsymbol{b}
- Thus the extractor cannot change the query $m{b}$ without P changing $m{c}$

The Solution

• G_0 , G_1 as before

- Prover: commit to G_0 , G_1
- <u>Verifier</u>: commit to $b_1 \in_R \{0,1\}^k$
- Prover: commit to $\boldsymbol{b}_2 \in_R \{0,1\}^k$
- Verifier: decommit to b_1
- Prover: decommit to $m{b}_2$ and G_{c_1} , ..., G_{c_k} where $m{c} = m{b}_1 \oplus m{b}_2$

 $Com(G_0, G_1)$ $d = Com(b_1)$ $e = Com(b_2)$ $b_1 = Dec(d)$ $Dec(b_2, G_{c_1}, ..., G_{c_k})$

<u>Theorem [L'12]</u>: If <u>statistically-hiding</u> commitments exist then every $L \in NP$ has a ZKPOK with soundness error 2^{-k}

ZK and POK

Zero-knowledge:

- Simulator guesses ahead of time a string c
- It then obtains $m{b}_1$, and rewinds V in order to set $m{b}_2$ such that $m{b}_1 \oplus m{b}_2 = m{c}$

Proof of knowledge:

- Extractor rewinds P multiple times relative to the same first message
- it obtains multiple openings with different strings $c = b_1 \oplus b_2$
- This enables extraction from the HAM protocol, albeit with some complications

Summary

Saw:

- CZK proof of knowledge $\forall L \in NP$
- with negligible soundness
- and a constant number of rounds

Issues addressed:

- malleability
- aborts in simulation

Issues still to be addressed:

- public-coin
- Strict polynomial-time simulation

History

Ariel Kahan

Jonathan Katz

Yehuda Lindell

Alon Rosen

Ivan Damgård

Torben Pryds Pedersen

Birgit Pfitzmann

Ramarathnam Venkatesan

Moti Yung

Iftach Haitner

Omer Reingold

Questions?