

Photogrammetric Computer Vision

Final Exercise
Winter semester 21/22

(Course materials for internal use only!)

Computer Vision in Engineering – Prof. Dr. Rodehorst M.Sc. Christian Benz christian.benz@uni-weimar.de

Agenda

Topics:

Assignment 1.	Points and lines in	he plane, first steps	in MATLAB / Octave
---------------	---------------------	-----------------------	--------------------

Assignment 2. Projective transformation (Homography)

Final Project. * Least Squares Correlation

If you are not sure about the exact requirements for your study program, please consult with a representative of the Academic Affairs Office in charge!

Assignment 3. Camera calibration using direct linear transformation (DLT)

Assignment 4. Orientation of an image pair

Assignment 5. Projective and direct Euclidean reconstruction

Assignment 6. Stereo image matching

^{*}Depending on the regulations of your study program, this project might be optional for you!

Agenda

	Beginning:	Submission deadlin
Assignment 1.	18.10.21	31.10.21
Assignment 2.	01.11.21	14.11.21
Assignment 3.	15.11.21	28.11.21
Assignment 4.	29.11.21	12.12.21
Assignment 5.	13.12.21	09.01.22
Assignment 6.	10.01.22	23.01.22
Final Project. *	24.01.22	13.03.22

If you are not sure about the exact requirements for your study program, please consult with a representative of the Academic Affairs Office in charge!

^{*}Depending on the regulations of your study program, this project might be optional for you!

Assignment 6 – sample solution

Assignment 6: Stereo image matching using normalized cross-correlation

$$\rho_{NCC}(a,b) = \frac{\sigma_{ab}}{\sqrt{\sigma_a^2 \cdot \sigma_b^2}} \\
= \frac{\frac{1}{n^2} \left(\sum_{i,j=1}^n a(i,j) \cdot b(i,j) \right) - \bar{a} \cdot \bar{b}}{\sqrt{\left(\frac{1}{n^2} \left(\sum_{i,j=1}^n a(i,j)^2 \right) - \bar{a}^2 \right) \cdot \left(\frac{1}{n^2} \left(\sum_{i,j=1}^n b(i,j)^2 \right) - \bar{b}^2 \right)}}$$

Assignment 6: Stereo image matching using normalized cross-correlation

horizontal scanlines = epipolar lines

Reference image

 \rightarrow left

Search image

→ right

$$\rho_{NCC}(a,b) = \frac{\sigma_{ab}}{\sqrt{\sigma_a^2 \cdot \sigma_b^2}}$$

$$= \frac{\frac{1}{n^2} \left(\sum_{i,j=1}^n a(i,j) \cdot b(i,j)\right) - \overline{a} \cdot \overline{b}}{\sqrt{\left(\frac{1}{n^2} \left(\sum_{i,j=1}^n a(i,j)^2\right) - \overline{a}^2\right) \cdot \left(\frac{1}{n^2} \left(\sum_{i,j=1}^n b(i,j)^2\right) - \overline{b}^2\right)}}$$

Assignment 6: Sample results

Sample code: Part 1

```
function exercise6
r = 2;
                                                  % Image window radius (1...)
thres = 0.5;
                                           % Threshold for correlation (-1..1)
dmin = 10; dmax = 50;
                                               % Minimum and maximum disparity
left = double(imread('left.png'));
                                                  % Read stereo normal images
right = double(imread('right.png'));
[h, w] = size(left);
                                                 % Left image is the reference
D = zeros(h, w);
                                                    % Initialize disparity map
                                                  % Pre-calculate the mean and
[lm, lms] = precalc(left, r);
[rm, rms] = precalc(right, r);
                                                        % the mean of squares
function [m, ms] = precalc(imq, r)
                                             % Acceleration by pre-calculation
         ______
                                                                  % Image size
[h, w] = size(img);
                                                  % Initialize result matrices
m = zeros(h, w);
ms = zeros(h, w);
for i = 1+r : h-r
                                                % For each row i and column j
    for j = 1+r : w-r
                                             % with a distance r to the border
        A = img(i-r : i+r, j-r : j+r);
                                                   % Define an image window A
       m(i, j) = mean2(A);
                                                                  % Mean of A
       ms(i, j) = mean2(A.*A);
                                                            % Mean of squares
    end
end
```


Assignment 6: Stereo image matching using normalized cross-correlation

Sample code: Part 2

```
function exercise6
        ========
                           % For each row i and column j of the reference
for i = 1 + r : h - r
   for j = 1+r : w-r
                                   % image in a distance r from the border
       cmax = thres;
       start = max(j-dmax, r+1);
                                                  % Crop the search space
       stop = max(j-dmin, r+1);
       A = left(i-r : i+r, j-r : j+r);
                                           % Define reference window A
       vl = lms(i, j) - lm(i, j)^2;
                                                          % Variance of A
       if v1 > 0
                                                   % If A contains texture
           for k = start : stop
                                                   % Search window B
              B = right(i-r : i+r, k-r : k+r);
                                                        % Variance of B
              vr = rms(i, k) - rm(i, k)^2;
              if vr > 0
                        % If B contains texture calculate NCC
                  cc = (mean2(A.*B) - lm(i, j) * rm(i, k)) / sqrt(vl * vr);
                  if cc > cmax
                                   % Maximize correlation coefficient
                                                       % Winner takes all
                      cmax = cc;
                      D(i, j) = j - k; % Store column difference
                  end
              end
           end
       end
   end
end
                         % Show disparities as gray value image
figure(2); imshow(D, []);
```


Assignment 6: Window size influence

$$d_{min} = 12,$$

$$d_{max} = 50$$

r = 5

Bauhaus-Universität Weimar

Assignment 6: Result for swapped images

Final Project

- Work in small groups up to 3 people
- Submit solution via Moodle
- Each member of the group needs to submit the exact(!) same, final group solution
 - enter full information about group members in your documentation
- Topic: Least Squares Correlation
- Submission deadline: 13.03.2022, 13:30

target image

differently distorted source images

rotation

