

Escuela Tecnica Superior de Ingenieros Navales

PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS

ANX-PR/CL/001-01: GUÍA DE APRENDIZAJE

ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE

ASIGNATURA

Simulación de fluidos con código abierto

CURSO ACADÉMICO - SEMESTRE

2017-18 - Primer semestre

Escuela Tecnica Superior de Ingenieros Navales

PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS

ANX-PR/CL/001-01: GUÍA DE APRENDIZAJE

Datos Descriptivos

Nombre de la Asignatura	Simulación de fluidos con código abierto			
Titulación	08NO – Grado en Arquitectura Naval / Grado en Ingeniería Marítima			
Centro responsable de la titulación	Escuela Técnica Superior de Ingenieros Navales			
Semestre/s de impartición	Séptimo semestre			
Módulos	Módulo 4.4 asignaturas optativas o prácticas en empresas			
Carácter	Optativa			
Código UPM				
Nombre en inglés	Open Source CFD			

Datos Generales

Créditos	4.5	Curso	4
Curso Académico	2016-17	Período de impartición	Septiembre - Febrero
Idioma de impartición	Castellano	Otros idiomas de impartición	Inglés

Requisitos Previos Obligatorios

Asignaturas Previas Requeridas

El plan de estudios Grado en Arquitectura Naval / Grado en Ingeniería Marítima no tiene definidas asignaturas previas superadas para esta asignatura.

Otros Requisitos

El plan de estudios Grado en Arquitectura Naval / Grado en Ingeniería Marítima no tiene definidos otros requisitos para esta asignatura.

Conocimientos Previos

Asignaturas Previas Recomendadas

Mecánica de fluidos

Otros Conocimientos Previos Recomendados

Hidrodinámica

Ecuaciones en derivadas parciales

Escuela Tecnica Superior de Ingenieros Navales

PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS

ANX-PR/CL/001-01: GUÍA DE APRENDIZAJE

Competencias

- CE2 Conocimiento avanzado de la hidrodinámica naval para su aplicación a la optimización de carenas, propulsores y apéndices.
- CG1 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

Resultados de Aprendizaje

- RA161 Conocer las distintas técnicas numéricas aplicadas a la mecánica de fluidos.
- RA162 Aplicar el método de volumen de fluido (VOF) en mecánica de fluidos.
- RA163 Manejar el paquete OpenFoam de simulación de fluidos.

Escuela Tecnica Superior de Ingenieros Navales

PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS

ANX-PR/CL/001-01: GUÍA DE APRENDIZAJE

Profesorado

Profesorado

Nombre	Despacho	e-mail	Tutorías
Duque Campayo, Daniel (Coordinador/a)	P2.06	daniel.duque@upm.es	
Gomez Goñi, Jesus Maria	P2.05	jesus.gomez.goni@upm.es	

Nota.- Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

Personal Investigador en Formación o Similar

Nombre	e-mail	Profesor Responsable
Calderon Sanchez, Javier	javier.calderon@upm.es	Duque Campayo, Daniel

Descripción de la Asignatura

Se pretende que los alumnos conozcan y apliquen distintas técnicas numéricas con el objetivo de realizar simulación de fluidos, y que tiene aplicación al cálculo y optimización de carenas, hélices y otros objetos flotantes en el campo naval. Se hará especial énfasis en aplicaciones con flujo multifásico utilizando el método de volumen de fluido (VOF). Los conocimientos teóricos se aplicarán de forma práctica mediante distintos códigos, que tendrán en común ser de carácter abierto (OpenFOAM, Python, etc.), a través de casos estándar en la mecánica de fluidos computacional.

Temario

- 1. Introducción a la mecánica de fluidos computacional.
- 2. Códigos libres y códigos abiertos. El entorno Linux.
- 3. Ecuaciones de movimiento: continuidad, momento y energía.
- 4. Métodos numéricos: el método de los volúmenes finitos (FVM)
- 5. Preprocesado: mallado y condiciones de contorno
- 6. Procesado: discretización de las ecuaciones de movimiento. Solución de las ecuaciones.
- 7. Postprocesado: generación de resultados
- 8. Flujo multifásico

CAMPUS DE EXCELENCIA INTERNACIONAL

UNIVERSIDAD POLITÉCNICA DE MADRID

Escuela Tecnica Superior de Ingenieros Navales

PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS

ANX-PR/CL/001-01: GUÍA DE APRENDIZAJE

Cronograma

Horas totales: 46 horas Horas presenciales: 46 horas

Peso total de actividades de evaluación continua: 100% Peso total de actividades de evaluación sólo prueba

final: 100%

Semana	Actividad presencial en Aula	Actividad Presencial en Laboratorio	Otra Actividad Pesencial	Actividades Evaluación
Semana 1	Lección 1 Duración: 01:00 LM: Actividad del tipo Lección Magistral Introducción a la mecánica de fluidos computacional			
	Lección 2: Parte 1 Duración: 02:00 LM: Actividad del tipo Lección Magistral Introducción a Linux (1)			
Semana2	Lección 2: Parte 2 Duración: 03:00 AC: Actividad del tipo Acciones Cooperativas Introducción a Linux (2)			
Semana 3	Lección 3: Parte 1 Duración: 01:00 LM: Actividad del tipo Lección Magistral Código libre y código abierto. Python (1) Duración: 02:00 AC: Actividad del tipo Acciones Cooperativas Código libre y código			
Semana 4	abierto. Python (1) Lección 3: Parte 2 Duración: 01:00 LM: Actividad del tipo Lección Magistral Código libre y código abierto. Python (2) Duración: 02:00 AC: Actividad del tipo Acciones Cooperativas Código libre y código abierto. Python (2)			
Semana 5	Lección 4: Parte 1 Duración: 01:00 LM: Actividad del tipo Lección Magistral Código libre y código abierto. Introducción a OpenFOAM (1) Duración: 02:00 AC: Actividad del tipo Acciones Cooperativas Código libre y código abierto. Introducción a OpenFOAM (1)			
Semana 6	Lección 4: Parte 2 Duración: 02:00 AC: Actividad del tipo Acciones Cooperativas Código libre y código abierto. Introducción a OpenFOAM (2)			Cuestionario 1 Duración: 1:00 Evaluación continua Actividad presencial
Semana 7	Lección 5 Duración: 03:00 LM: Actividad del tipo Lección Magistral El método de los volúmenes finitos.			
Semana 8	Lección 6: Parte 1 Duración: 01:00 LM: Actividad del tipo Lección Magistral Tutorial de la cavidad (1) Duración: 02:00 AC: Actividad del tipo Acciones Cooperativas Tutorial de la cavidad(2)			
Semana 9	Lección 6: Parte 2 Duración: 02:00 AC: Actividad del tipo Acciones Cooperativas Tutorial de la cavidad (2)			Cuestionario 2 Duración: 1:00 Evaluación continua Actividad presencial

Escuela Tecnica Superior de Ingenieros Navales

ANX-PR/CL/001-01: GUÍA DE APRENDIZAJE

Código PR/CL/001

C	1 1 15 7	
Semana 10	Lección 7	
	Duración: 01:00	
	LM: Actividad del tipo Lección Magistral	
	Flujo de Poiseouille	
	Duración: 02:00	
	AC: Actividad del tipo	
	Acciones Cooperativas	
	Flujo de Poiseouille	
Semana 11	Lección 8: Parte 1	
	Duración: 01:00	
	LM: Actividad del tipo Lección	
	Magistral	
	Flujo alrededor de un	
	cilindro (1) Duración: 02:00	
	AC: Actividad del tipo	
	Acciones Cooperativas	
	Flujo alrededor de un	
	cilindro (1)	
Semana 12	Lección 8: Parte 2	
	Duración: 02:00	
	AC: Actividad del tipo	
	Acciones Cooperativas	
	Flujo alrededor de un	
	cilindro (2)	
Semana 13	Lección 9: Parte 1	
	Duración: 01:00	
	LM: Actividad del tipo Lección	
	Magistral Rotura de la presa (1)	
	Duración: 02:00	
	AC: Actividad del tipo	
	Acciones Cooperativas	
	Rotura de la presa (1)	
Semana 14	Lección 9: Parte 2	
	Duración: 03:00	
	AC: Actividad del tipo	
	Acciones Cooperativas	
- 15	Rotura de la presa (2)	
Semana 15	Aplicaciones en el campo	Cuestionario 3
	naval: simulación de carenas, hélices y otros	Duración: 1:00
	objetos flotantes	Evaluación continua
	Duración: 02:00	
	LM: Actividad del tipo Lección	Actividad presencial
	Magistral	
Semana 16		Evaluación final
		Duración 2:00
		Evaluación final (modalidad
		sólo examen final)
		Actividad presencial

Nota.- El cronograma sigue una planificación teórica de la asignatura que puede sufrir modificaciones durante el curso. **Nota 2.-** Para poder calcular correctamente la dedicación de un alumno, la duración de las actividades que se repiten en el tiempo (por ejemplo, subgrupos de prácticas") únicamente se indican la primera vez que se definen.

Actividades de Evaluación

Semana	Descripción	Duración	Tipo Evaluación	Técnica evaluativa	Presencial	Peso	Nota mínima	Competencias evaluadas
6	Cuestionario 1	01:00	Evaluación continua	EP: Técnica del tipo Examen de Prácticas		30%		CG1, RA161
9	Cuestionario 2	01:00		EP: Técnica del tipo Examen de Prácticas	Si	30%		CG1, RA161, RA163
15	Cuestionario 3	01:00	Evaluación continua	EP: Técnica del tipo Examen de Prácticas		40%		CG1, CE2, RA161, RA162, RA163
16	Prueba final	02:00		EP: Técnica del tipo Examen de Prácticas		100%	5/10	CG1, CE2, RA161, RA162, RA163

Criterios de Evaluación

Los conocimientos impartidos en esta asignatura se evaluarán mediante una tres (3) cuestionarios donde se pondrá en práctica lo visto en clase. El peso de estas pruebas es del 30% para los cuestionarios 1 y 2, y del 40% para el cuestionario 3.

En caso de no superar la evaluación continua, se realizará una prueba final que supondrá el 100% de la evaluación de la asignatura.

Escuela Tecnica Superior de Ingenieros Navales

PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS

ANX-PR/CL/001-01: GUÍA DE APRENDIZAJE

Recursos Didácticos

Descripción	Tipo	Observaciones
Guía de OpenFoam	Bibliografía	La Guía de OpenFoam es un documento que servirá de base para progresar en el manejo del programa.
An introduction to Computational Fluid Dynamics: The Finite Volume Method	Bibliografía	Autores: Versteeg and Malalasekera Editorial: Longman Scientific & Technical