

Статистика DS-поток

Лекция 14

8. Теория наилучших оценок

8.5 Оптимальные оценки

Оптимальные оценки

$$X=(X_1,...,X_n)$$
 — выборка из распр. $\mathsf{P}\in\mathscr{P}\in\{\mathsf{P}_\theta\mid\theta\in\Theta\};$ $\mathcal{K}=\{\mathsf{все}$ несмещенные оценки параметра $\theta\}$

Задача: найти наилучшую в $\mathcal K$ в с/к-подходе.

T.е. найти $\widehat{ heta} \in \mathcal{K}$, которая *для всех* $heta \in \Theta$ дает минимум величины

$$\mathit{MSE}_{\widehat{\theta}}(\theta) = \mathsf{E}_{\theta} \left(\widehat{\theta} - \theta\right)^2$$
 для оценок из \mathcal{K}

Такие оценки называются оптимальными.

Сравнение с эффективными оценками

Неравенство Рао-Крамера [Е1-Е4]

Пусть $\widehat{\theta}$ — несмещенная оценка au(heta). Тогда

$$\mathsf{D}_{\theta}\widehat{\theta}\geqslant \frac{(\tau'(\theta))^2}{I_X(\theta)}.$$

- Неравенство дает нижнюю границу дисперсию оптимальной оценки;
- lacktriangle Если на $\widehat{ heta}$ достигается равенство, то $\widehat{ heta}$ называется эффективной;
- Эффективные оценки являются оптимальными;
- Равенство может не достигаться, тогда эффективных оценок нет, а оптимальные могут существовать.

Достаточные статистики

Определение

Статистика S(X) называется достаточной для семейства распределений $\{P_{\theta} \mid \theta \in \Theta\}$, если условное распределение $P_{\theta}(X \in B \mid S(X))$ не зависит от θ .

Смысл: вся информации о параметре θ , которая есть в выборке, содержится в достаточной статистике.

Следствие: в случае данных, поступающих последовательно, достаточно хранить только значения достаточных статистик.

Тривиальный пример достаточной статистики — вся выборка X.

Пример

Дана выборка $X_1,...,X_n \sim Bern(\theta)$.

Какая информация есть в этой выборке?

- 1. $S(X) = \sum_{i=1}^{n} X_i$ количество успехов;
- 2. Порядок нулей и единиц. бесполезная информация, т.к. наблюдения независимы

Оценка $\widehat{\theta}_n = \overline{X}$ — функция от S(X).

При поступлении нового объекта X_n оценка обновляется по правилу

$$\widehat{\theta}_n = \frac{(n-1)\widehat{\theta}_{n-1} + X_n}{n}.$$

Улучшение несмещенных оценок

Теорема (Колмогорова, Блекуэлла, Рао)

$$\widehat{ heta}$$
 — несмещенная оценка $au(heta)$, причем $\mathsf{E}_{ heta}\widehat{ heta}^2<+\infty;$ $S(X)$ — достаточная статистика.

Тогда

- 1. $\theta^* = \mathsf{E}_{\theta}\left(\widehat{\theta} \mid S(X)\right)$ тоже является несмещенной оценкой $au(\theta)$.
- 2. $D_{\theta}\theta^*\leqslant D_{\theta}\widehat{\theta}\quad \forall \theta\in\Theta.$ Равенство возможно $\Longleftrightarrow \theta^*=\widehat{\theta}\,\, P_{\theta}$ -п.н. $\forall \theta\in\Theta,$ то есть $\widehat{\theta}$ изначально является S(X)-измеримой.

Если $\tau(\theta) \in \mathbb{R}^d, d > 1$, то $\mathsf{D}_{\theta}\theta^* \leqslant \mathsf{D}_{\theta}\widehat{\theta} \Leftrightarrow$ матрица $\mathsf{D}_{\theta}\widehat{\theta} - \mathsf{D}_{\theta}\theta^*$ неотр. опр..

ê

Следствия:

- 1. $\theta^* = \mathsf{E}_{\theta}\left(\widehat{\theta} \ \middle| \ S(X)\right)$ не хуже исходной оценки $\widehat{\theta}$ в с/к подходе.
- 2. Если $\widehat{\theta}$ не является S(X)-измеримой, то θ^* лучше $\widehat{\theta}$ в с/к подходе.
- 3. Если θ^* единственная несмещ. S(X)-измеримая оценка $\tau(\theta)$, то она и является оптимальной.

▶

Пусть $\xi(X)$ — несмещенная не S(X)-измеримая оценка $\tau(\theta)$. Тогда $\xi^*(X) = \mathsf{E}_{\theta} \ (\xi(X) \mid S(X))$:

- не хуже чем $\xi(X)$ в с/к подходе;
- несмещенная S(X)-измеримая оценка $\tau(\theta)$

 \Rightarrow $\theta^* = \xi^*(X)$ в силу единственности.

Значит θ^* — оптимальная оценка $\tau(\theta)$.

Единственность гарантирует свойство полноты.

Определение

Статистика S(X) называется *полной* для семейства распределений $\{\mathsf{P}_{\theta} \mid \theta \in \Theta\}$, если выполнение свойство $\forall \theta \in \Theta : \mathsf{E}_{\theta} f(S(X)) = 0$ возможно только в случае $\forall \theta \in \Theta : f(S(X)) \overset{\mathsf{P}_{\theta} = \mathsf{n.h.}}{=} 0$.

Смысл: несмещенной S(X)-измеримой оценкой нуля может быть только ноль.

Оптимальные оценки

Теорема (Об оптимальной оценке)

S(X) — полная и достаточная статистика для $\{\mathsf{P}_{\theta} \mid \theta \in \Theta\};$ Оценка $\theta^* = \varphi(S(X))$ — несмещенная S(X)-измеримая оценка $\tau(\theta)$.

Тогда θ^* — оптимальная оценка $\tau(\theta)$.

Согласно пред. следствию достаточно проверить, что

$$heta^*=arphi(S(X))$$
 — единственная несмещенная $S(X)$ -измеримая оценка $au(heta)$.

Пусть $\psi(S(X))$ — тоже несмещенная оценка $\tau(\theta)$. Обозначим $f(x) = \varphi(x) - \psi(x)$. Тогда $\mathsf{E}_{\theta} f(S(X)) = \varphi(S(X)) - \psi(S(X)) = 0 \ \forall \theta \in \Theta.$

Ho
$$S(X)$$
 полная \Longrightarrow $\mathsf{P}_{ heta}$ -п.н. $orall heta \in \Theta: \ f(S(X)) = 0 = arphi(S(X)) - \psi(S(X)).$

Следствия:

S(X) — полная и достаточная статистика для $\{\mathsf{P}_{\theta} \mid \theta \in \Theta\}.$

Тогда

- 1. если θ^* несмещенная оценка au(heta), то $\mathsf{E}_{ heta}\left(\theta^*|S(X)
 ight)$ оптимальная оценка au(heta);
- 2. если θ_1^*, θ_2^* оптимальные оценки $\tau_1(\theta), \tau_2(\theta),$ то $a\theta_1^* + b\theta_2^*$ оптимальная оценка $a\tau_1(\theta) + b\tau_2(\theta);$
- 3. если $\tau(\theta) = (\tau_1(\theta), ..., \tau_k(\theta)) \in \mathbb{R}^k$ и θ_j^* оптим. оценка $\tau_j(\theta)$, то $(\theta_1^*, ..., \theta_k^*)$ оптимальная оценка вектора $\tau(\theta)$.

Алгоритм поиска оптимальных оценок

- 1. Найти S(X) полную и достаточную статистику в данной модели;
- 2. Решить уравнение несмещенности $E_{\theta} \varphi(S(X)) = \tau(\theta)$ относительно φ . Оценка $\theta^* = \varphi(S(X))$ будет оптимальной оценкой $\tau(\theta)$ согласно теореме об оптимальной оценке.

Экспоненциальное семейство

Пусть
$$\mathscr{P} = \{\mathsf{P}_{\theta} \mid \theta \in \Theta\}$$
, причем плотность $p_{\theta}(x) = \frac{g(x)}{h(\theta)} e^{a(\theta)^T u(x)}$.

Теорема

Если множество Θ телесно (т.е. содержит внутренние точки), а функция $a(\theta)$ непрерывна и содержит линейно независимые компоненты, то статистика $S(X) = \sum_{i=1}^n u(X_i)$ является полной и достаточной для семейства \mathscr{P} .

Доказательства теорем

Теорема (Колмогорова, Блекуэлла, Рао)

 $\widehat{ heta}$ — несмещенная оценка au(heta); S(X) — достаточная статистика, причем $\mathsf{E}_{ heta}\widehat{ heta}^2 < +\infty.$

Тогда

- 1. $\theta^* = \mathsf{E}_{\theta}\left(\widehat{\theta} \mid S(X)\right)$ тоже является несмещенной оценкой $\tau(\theta)$.
- 2. $D_{\theta}\theta^* \leqslant D_{\theta}\widehat{\theta} \quad \forall \theta \in \Theta$.

Равенство возможно $\Longleftrightarrow \theta^* = \widehat{\theta} \; \mathsf{P}_{\theta}$ -п.н. $\forall \theta \in \Theta$, то есть $\widehat{\theta}$ изначально является S(X)-измеримой.

Доказываемое утверждение:

$$\widehat{ heta}$$
 — несмещенная оценка $au(heta)$;

$$S(X)$$
 — достаточная статистика, причем $\mathsf{E}_{ heta}\widehat{ heta}^2 < +\infty.$

Тогда
$$\theta^* = \mathsf{E}_{\theta}\left(\widehat{\theta} \mid S(X)\right)$$
 тоже является несмещенной оценкой $au(\theta)$.

Þ

$$S(X)$$
 — достаточная \Rightarrow $\mathsf{P}_{\theta}(X \in B \mid S(X))$ не зависит от θ . \Rightarrow $\mathsf{E}_{\theta}\left(\widehat{\theta} \mid S(X)\right)$ тоже не зависит от θ (м.о. по условному распр.) \Rightarrow θ^* — действительно оценка.

$$\mathsf{E}_{ heta} heta^* = \mathsf{E}_{ heta} \left[\mathsf{E}_{ heta} \left(\widehat{ heta} \, \middle| \, S(X) \right) \right] = \mathsf{E}_{ heta} \widehat{ heta} = au(heta)$$
 $\Rightarrow \theta^* - \mathsf{несмещенная}$ оценка $au(heta)$.

Доказываемое утверждение:

$$\widehat{ heta}$$
 — несмещенная оценка $au(heta)$;

$$S(X)$$
 — достаточная статистика, причем $\mathsf{E}_{ heta}\widehat{ heta}^2 < +\infty.$

Тогда $\mathsf{D}_{ heta}\theta^*\leqslant \mathsf{D}_{ heta}\widehat{ heta}\quad orall heta\in\Theta.$

▶ $(для \ \tau(\theta) \in \mathbb{R})$

$$D_{\theta}\widehat{\theta} = E_{\theta} \left(\widehat{\theta} - \tau(\theta)\right)^{2} = E_{\theta} \left(\widehat{\theta} - \theta^{*} + \theta^{*} - \tau(\theta)\right)^{2} = \underbrace{E_{\theta} \left(\widehat{\theta} - \theta^{*}\right)^{2} + D_{\theta}\theta^{*} + \underbrace{2E_{\theta} \left(\widehat{\theta} - \theta^{*}\right) (\theta^{*} - \tau(\theta))}_{=0}} \geqslant D_{\theta}\theta^{*}.$$

$$E_{\theta}\left(\widehat{\theta} - \theta^{*}\right) \left\{\theta^{*} - \tau(\theta)\right\} = E_{\theta}\left(E_{\theta}\left[\left(\widehat{\theta} - \theta^{*}\right) \left\{\theta^{*} - \tau(\theta)\right\} \middle| S(X)\right]\right) =$$

$$= E_{\theta}\left(\left\{\theta^{*} - \tau(\theta)\right\} E_{\theta}\left[\widehat{\theta} - \theta^{*}\middle| S(X)\right]\right) = E_{\theta}\left(\left(\theta^{*} - \tau(\theta)\right) \cdot 0\right) = 0$$

Воспользовались S(X)-измеримостью θ^* и свойствами УМО.

Ô

Доказываемое утверждение:

$$\widehat{ heta}$$
 — несмещенная оценка $au(heta)$; $S(X)$ — достаточная статистика, причем $\mathsf{E}_{ heta}\widehat{ heta}^2<+\infty$. Тогда $\mathsf{D}_{ heta}\theta^*=\mathsf{D}_{ heta}\widehat{ heta}$ $\ \, orall \theta\in\Theta$ $\ \, \Leftrightarrow \ \, \theta^*=\widehat{ heta}$ $\mathsf{P}_{ heta}$ -п.н. $\forall \theta\in\Theta$, то есть $\widehat{ heta}$ изначально является $S(X)$ -измеримой.

▶
$$(для \ \tau(\theta) \in \mathbb{R})$$

Из док-ва предыдущего утверждения равенство возможно \Leftrightarrow $\mathsf{E}_{\theta} \left(\widehat{\theta} - \theta^* \right)^2 = 0 \quad \forall \theta \in \Theta \quad \Leftrightarrow$ $\widehat{\theta} = \theta^* \quad \mathsf{P}_{\theta}$ -п.н. $\quad \forall \theta \in \Theta \quad \Leftrightarrow$ $\widehat{\theta} = \mathsf{E}_{\theta} \left(\left. \widehat{\theta} \, \middle| \, S(X) \right) \quad \mathsf{P}_{\theta}$ -п.н. $\quad \forall \theta \in \Theta \quad \Leftrightarrow$ $\widehat{\theta}$ является S(X)-измеримой.

Оптимальные оценки в гауссовской линейной модели

Гауссовская линейная модель

$$Y = X\theta + \varepsilon$$
,

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \theta = \begin{pmatrix} \theta_1 \\ \dots \\ \theta_d \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Предполагаем, что $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$.

$$\widehat{ heta} = \left(X^T X
ight)^{-1} X^T Y$$
 — несмещенная оценка $heta$ $\widehat{\sigma}^2 = rac{1}{n-d} \left\| Y - X \widehat{ heta}
ight\|^2$ — несмещенная оценка σ^2

Достаточная статистика

$$L(X) = \{X\theta \mid \theta \in \mathbb{R}^d\}$$
 — подпространство в \mathbb{R}^n , порождаемое X .

Утверждение

$$S(Y) = \left(\operatorname{proj}_{L(X)}Y, \left\|\operatorname{proj}_{L^{\perp}(X)}Y\right\|^2\right) -$$
 достаточная статистика.

По критерию факторизации S(Y) — достаточная.

Оптимальные оценки

Утверждение

- 1. S(Y) полная статистика (6/д);
- 2. $\hat{\theta} = (X^T X)^{-1} X^T Y$ оптимальная оценка θ ;
- 3. $\widehat{\sigma}^2 = \frac{1}{n-d} \left\| Y X \widehat{\theta} \right\|^2 -$ оптимальная оценка σ^2 .
- ▶ Док-во: Обе несмещенные и явл. функциями от S(Y).

Утверждение

Если не предполагать нормальность ошибки, $\ \, \text{то} \,\,\widehat{\theta} \, - \text{наилучшая оценка в c/к-подходе в классе всех несмещенных оценок, которые являются линейными по } Y.$

8. Теория наилучших оценок

8.6 Оценки параметров масштаба и сдвига

Сдвиг и масштаб

$$\mathscr{P} = \{\mathsf{P}_{\theta} \mid \theta \in \Theta\}$$
 — семейство непрер. распр. с плотностью $p_{\theta}(x)$

$$heta$$
 — параметр сдвига, если $p_{ heta}(x) = p_0(x- heta)$.

$$heta$$
 — параметр масштаба, если $p_{ heta}(x)=rac{1}{ heta}p_{1}(x/ heta)$ и $\Theta\subset(0,+\infty)$

Примеры:

$$\mathscr{P} = \{ \mathcal{N}(a, \sigma^2) \mid a \in \mathbb{R}, \sigma > 0 \}$$
: a — параметр сдвига σ — параметр масштаба.

$$\mathscr{P} = \{ \mathit{U}[0,\theta] \mid \theta > 0 \}$$
: θ — параметр масштаба.

Ô

Параметр сдвига

Естественно предполагать $\Theta=\mathscr{X}=\mathbb{R}^d$ и распр. P_0 известно.

$$X=(X_1,...,X_n)$$
 — выборка из распределения $\mathsf{P}_{ heta}.$

$$\Rightarrow$$
 $X+c=(X_1+c,...,X_n+c)$ имеют распределение $\mathsf{P}_{\theta-c}.$

⇒ рассматриваем эквивариантные оценки относительно сдвига:

$$\mathcal{K} = \left\{ \widehat{\theta} \mid \forall c \in \mathscr{X} : \widehat{\theta}(X + c) = \widehat{\theta}(X) + c \right\}$$

Теорема

Пусть P_0 непрерывна и имеет плотность $p_0(x)$. Тогда оценка Питмена

$$\widehat{\theta} = \frac{\int\limits_{\mathbb{R}^d} t \ L_X(t) \ dt}{\int\limits_{\mathbb{R}^d} L_X(t) \ dt} = \frac{\int\limits_{\mathbb{R}^d} t \ p_0(X - t) \ dt}{\int\limits_{\mathbb{R}^d} p_0(X - t) \ dt}$$

является несмещенной оценкой θ и единственной наилучшей оценкой в среднеквадратичном подходе в классе всех эквивариантных относительно сдвига оценок θ .

Параметр сдвига (пример)

Найдем оценку Питмена в модели U[heta, heta+1].

$$L_{X}(\theta) = \prod_{i=1}^{n} I\{\theta \leqslant X_{i} \leqslant \theta + 1\} = I\{X_{(1)} \geqslant \theta, X_{(n)} \leqslant \theta + 1\} =$$

$$= I\{X_{(n)} - 1 \leqslant \theta \leqslant X_{(1)}\}$$

$$\widehat{\theta} = \frac{\int_{\mathbb{R}} t L_{X}(t) dt}{\int_{\mathbb{R}} L_{X}(t) dt} = \frac{\int_{\mathbb{R}} t I\{X_{(n)} - 1 \leqslant t \leqslant X_{(1)}\} dt}{\int_{\mathbb{R}} I\{X_{(n)} - 1 \leqslant t \leqslant X_{(1)}\} dt} = \frac{\int_{X_{(n)} - 1}^{X_{(n)}} t dt}{\int_{X_{(n)} - 1}^{X_{(n)}} dt} = \frac{t}{2} \Big|_{X_{(n)} - 1}^{X_{(n)}} = \frac{X_{(n)} + X_{(n)} - 1}{2}.$$

Замечание. ОМП — любая статистика из отрезка $[X_{(n)}-1,X_{(1)}]$. Оценка Питмена есть середина этого отрезка.

Ô

Параметр масштаба

Естественно предполагать $\sigma \in \Sigma = (0, +\infty)$ и распр. P_1 известно.

$$X=(X_1,...,X_n)$$
 — выборка из распределения $\mathsf{P}_\sigma.$

$$\Rightarrow$$
 $cX = (cX_1, ..., cX_n)$ имеют распределение $\mathsf{P}_{\sigma/c}$.

 \Rightarrow рассматриваем *эквивариантные* оценки относительно масштаба:

$$\mathcal{K} = \{\widehat{\sigma} \mid \forall c \in \mathscr{X} : \widehat{\sigma}(cX) = c\widehat{\sigma}(X)\}\$$

Теорема

Пусть P_1 непрерывна и имеет плотность $p_1(x)$. Тогда оценка

$$\widehat{\sigma} = \frac{\int\limits_{0}^{+\infty} s^{-n-k-1} p_1(X/s) ds}{\int\limits_{0}^{+\infty} s^{-n-2k-1} p_1(X/s) ds} = \frac{\int\limits_{0}^{+\infty} u^{n+k-1} p_1(uX) du}{\int\limits_{0}^{+\infty} u^{n+2k-1} p_1(uX) du}$$

является единственной наилучшей оценкой σ^k в классе всех эквивариантных относительно масштаба оценок σ^k в равномерном подходе с функцией риска $\mathbb{E}_{\sigma}\left(\frac{\widehat{\sigma}}{\sigma}-1\right)^2$.

