MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

6^a Lista de Exercícios - Resolução dos Exercícios

- 2-) Seja $f:[a,b]\to\mathbb{R}$ uma função integrável. As seguintes afirmações são equivalentes:
 - (i) $\int_{a}^{b} |f| = 0;$
 - (ii) Se f é contínua em $c \in [a, b]$, então f(c) = 0;
 - (iii) $X \doteq \{x \in [a, b] \mid f(x) \neq 0\}$ tem interior vazio.

Demonstração:

- (i) \Rightarrow (ii) Suponha que f seja contínua em $c \in [a, b]$. Então $|f| : x \mapsto |f(x)|$ é contínua em c; se $|f(c)| \neq 0$, por continuidade existem $\delta > 0$ e $\epsilon > 0$ tal que |f| é maior ou igual a ϵ no intervalo não-degenerado $[\alpha, \beta] \doteq [a, b] \cap [c \delta, c + \delta]$, donde $\int_a^b |f| \geqslant \int_\alpha^\beta |f| \geqslant (\beta \alpha)\epsilon > 0$.
- (ii) \Rightarrow (iii) Seja $D \subset [a, b]$ o conjunto dos pontos de descontinuidade de f. Por (ii), tem-se $X \subset D$; como f é integrável, segue-se do teorema de Lebesgue que D tem medida nula, logo X tem medida nula, portanto tem interior vazio.
- (iii) \Rightarrow (i) Seja $P = \{t_0, \dots, t_n\}$ uma partição de [a, b]. Segue-se de (iii) que, para todo $i \in \{1, \dots, n\}$, existe $c \in [t_{i-1}, t_i]$ tal que f(c) = 0 (caso contrário o interior de X seria não-vazio, pois conteria o intervalo aberto $]t_{i-1}, t_i[)$, o que implica que $m_i \doteq \inf |f|([t_{i-1}, t_i]) = 0$, donde s(f, P) = 0. Como P foi tomada arbitrariamente, segue-se que $\int_a^b |f| = \int_a^b |f| = \sup \{s(f, P) \mid P \subset [a, b] \text{ partição}\} = 0$.

7-) Dadas $f,g:[a,b]\to\mathbb{R}$ Riemann-integráveis, seja $X\doteq\{x\in[a,b]\mid f(x)\neq g(x)\}$. Se X tem medida nula, então $\int_a^b f=\int_a^b g$.

DEMONSTRAÇÃO: A hipótese implica que f-g é integrável e o conjunto dos pontos nos quais f-g não se anula tem medida nula, portanto tem interior vazio. Então segue-se da questão 2 que $\int_a^b |f-g| = 0$, donde $\int_a^b f - \int_a^b g = \int_a^b (f-g) = 0$.

8-) Se $f:[a,b]\to\mathbb{R}$ é lipschitziana (em particular, se f é de classe C^1) e $X\subset[a,b]$ tem medida nula, então f(X) tem medida nula.

DEMONSTRAÇÃO:

Por um lema já demonstrado em aula (e que também é um exercício desta lista), $X \subset \mathbb{R}$ tem medida nula se, e somente se, para todo $\epsilon > 0$, existe uma família enumerável $(I_n)_{n \in \mathbb{N}}$ de intervalos limitados (não necessariamente abertos) tal que $X \subset \bigcup_{n \in \mathbb{N}} I_n$ e $\sum_{n=1}^{\infty} |I_n| < \epsilon$.

Seja c > 0 uma constante de Lipschitz para f, e suponha que $X \subset [a,b]$ tem medida nula. Provemos que f(X) tem medida nula. Com efeito, seja $\epsilon > 0$. Existe uma família enumerável $(I_n)_{n \in \mathbb{N}}$ de intervalos

limitados tais que $X \subset \bigcup_{n \in \mathbb{N}} I_n$ e $\sum_{n=1}^{\infty} |I_n| < \epsilon/c$. Como c é uma constante de Lipschitz para f, para cada $n \in \mathbb{N}$ a imagem do intervalo I_n por f é um intervalo com comprimento menor ou igual a $c|I_n|$; então $\{f(I_n)\}_{n \in \mathbb{N}}$ é uma cobertura de f(X) por intervalos limitados tal que (pelo critério de comparação) $\sum_{i=1}^{\infty} |f(I_n)| \le c \sum_{n=1}^{\infty} |I_n| < \epsilon$.

9-) Seja $g:[a,b]\to\mathbb{R}$ integrável e não-negativa. Se $\int_a^b g=0$, então, para toda $f:[a,b]\to\mathbb{R}$ integrável, tem-se $\int_a^b (f\cdot g)=0$.

Demonstração: Pela questão 2, o conjunto dos pontos de [a,b] onde g não se anula tem interior vazio; então o conjunto dos pontos de [a,b] nos quais fg não se anula também tem interior vazio, donde (novamente pela questão 2) $\int_a^b |fg| = 0$, portanto $\int_a^b (fg) = 0$.

11-) Se $f:[a,b] \to [c,d]$ é de classe C^1 com $(\forall x \in [a,b])$ $f'(x) \neq 0$, e $g:[c,d] \to \mathbb{R}$ é integrável, então $g \circ f$ é integrável.

DEMONSTRAÇÃO:

A hipótese sobre f implica que Im $f \subset [c,d]$ é um intervalo compacto, $f:[a,b] \to \operatorname{Im} f$ é inversível e $f^{-1}:\operatorname{Im} f \to [a,b]$ é de classe C^1 . Denote por $D_{g\circ f}$ e D_g , respectivamente, os conjuntos dos pontos de descontinuidade de $g\circ f$ e g. Afirmo que $f(D_{g\circ f})\subset D_g$. Com efeito, se $x\in [a,b]$ e g é contínua em f(x), então $g\circ f$ é contínua em x; portanto, se $g\circ f$ é descontínua em x, segue-se que g é descontínua em f(x). Como g é integrável, segue-se do teorema de Lebesgue que $D_g\subset [c,d]$ tem medida nula; então $f(D_{g\circ f})\subset D_g$ também tem medida nula. Como f^{-1} é de classe C^1 no intervalo compacto Im f, é lipschitziana no referido intervalo, portanto segue-se da questão 8 que $f^{-1}(f(D_{g\circ f}))=D_{g\circ f}$ tem medida nula. Aplicando-se novamente o teorema de Lebesgue, conclui-se que $g\circ f$ é Riemann-integrável.

2