

Expansion of a Stochastic Model for Anelosimus Studiosus Movement During Prey Capture

Alex John Quijano¹ | Dr. Michele L. Joyner^{1,3} | Dr. Thomas Jones² | Nathaniel Hancock² | Michael Largent² | Chelsea Ross¹

Department of Mathematics and Statistics¹ | Department of Biological Sciences² | Institute for Quantitative Biology³

East Tennessee State University

Johnson City, TN 37614

Introduction

A. Studiosus is a subsocial spider phenotype. The juveniles of the spider species stays with there mother until maturity to help on web maintenance and prey capture. Juveniles dis-

perse throughout the web to cooperate during prey capture. The spiders use vibrational cues to detect they prey.

Goal

To expand the stochastic model in order for us to simulate a realistic movement during prey capture of A. Studiosus.

Data Collection

The spiders were placed in shallow plastic boxes and housed in a laboratory setting. During feeding sessions, the movement during prey capture is recorded us-

ing a high resolution camera. The movements were then digitized using a tracking software [1]. The data collected was analyzed to determine the factors involved for expanding the stochastic model.

Modified Factors

- The error in the direction the spider travels towards the prey is taken from a normal distribution with mean
- $e(d) = 0.0040d^3 0.0688d^2 + 0.3429d 0.0738$ (1) where d is the distance from the spider to the prey.
- The duration of pauses, velocity of runs, and duration of runs are all taken from an exponential distribution using the mean found from an optimization algorithm.

The Stochastic Model

Eq. (2) was derived by Joyner and Ross et. al. [3] from the work by Brillinger and Preisler et. al. [2].

$$d\mathbf{r}(t) = \mu\{\mathbf{r}(t), t\}dt + \Sigma\{\mathbf{r}(t), t\}d\mathbf{W}(t)$$
 (2)

- $\mathbf{r}(t) = [X_s(t), Y_s(t)]' \to \text{Location at time } t.$
- $\mathbf{W}(t) \to \text{Brownian motion}.$
- $dt \rightarrow$ Change in time.
- $\Sigma\{\mathbf{r}(t),t\}dt \to \text{Diffusion component.}$

$$\Sigma\{\mathbf{r}(t),t\} = \begin{bmatrix} \sigma_x & 0 \\ 0 & \sigma_y \end{bmatrix}, \quad \sigma_x = \sigma_y = \sigma$$

• $\mu\{\mathbf{r}(t),t\}$ \to Directional component.

$$\mu\{\mathbf{r}(t), t\} = v_s \begin{bmatrix} \cos(\theta_o(t_i) + \epsilon(t, d_i)) \\ \sin(\theta_o(t_i) + \epsilon(t, d_i)) \end{bmatrix}$$

 $\theta_o(t_i) \to \text{Optimal direction}.$

 $\epsilon(t, d_i) \to \text{Error in direction using mean from Eq. (1)}.$

 $t_{u_i} \to \text{Update times } i = \{1, 2, \cdots, n\}.$

 $v_s \to \text{Velocity}$

Expansion

Pauses and runs are included into the model using the algorithm in Figure 1. Let D_p be the duration of pause, D_r be the duration of run, T_p be the timer for pauses, and T_r be the timer for runs.

Figure 1: The Stochastic Model Algorithm.

Selected Figures

Top: Actual spider (Green), 5 Sim. spiders (Red), Actual prey (Blue) | Bottom: Distribution of 1000 sim. spiders, Actual time elapsed and Actual distance traveled (Red vertial line)

Parameter Estimation

Six parameters are estimated using a least squares optimization—algorithm such that the time elapsed and distance traveled of the actual spider match the simulated spider. The figure on the left gives a visual comparison of the parameters of each spider

indicating each spider is unique.

Conclusions and Outlook

- We have expanded the model to simulate a realistic spider movement during prey capture.
- The current stochastic model now has pauses with varying duration, and the spider moves with varying velocities.
- We can further analyze the parameters to isolate a single parameter which works for each spider. If not, then we can have a distribution of parameters and isolate which parameters we can use for specific spiders.
- We can use the expanded model to determine if A.

 Studiosus disperse optimally by comparing dispersal configurations which are determined optimal for prey capture.

References

- [1] B. Douglas, Tracker: Video Analysis and Modeling Tool, Tracker version 4.80, Copyright(c) (2013) Douglas Brown, http://www.cabrillo.edu/dbrown/tracker, Free software
- [2] D.R. Brillinger, H.K. Preisler, A.A. Ager, J.G. Kie and B.S. Stewart, *Modelling Movements of Free-Ranging Animals*, Tech. Rep. 610, Department of Statistics, University of California, Berkeley (2001)
- [3] M.L. Joyner, C.R. Ross, C. Watts and T.C. Jones, A
 Stochastic Simulation Model for Anelosimus studiosus
 during Prey Capture: a Case Study for Determination
 of Optimal Spacing, Mathematical Biosciences and
 Engineering (Submitted for review), (2013)

Acknowledgements

This research project was supported by the National Science Foundation Grant #1128954. This research project was also partially supported by the Access and Diversity Initiative from the Tennessee Board of Regents, grant #210024. We would like to also acknowledge Colton Watts for all his work on this project.

Contact Information: Alex John Quijano → quijano@goldmail.etsu.edu