Inhaltsverzeichnis

1	Cube-Balance (CuBa) - Der selbstbalancierende Würfel	2	
2	Aktorik und Sensorik	3	
3	Modellierung der Systemdynamik		
4	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	6 6 7 7 8 8	
5		9 9 10 11 12 12 12	
6	Reglerentwurf	14	
7	Aufspringen	15	

1 Cube-Balance (CuBa) - Der selbstbalancierende Würfel

In der folgenden Dokumentation wird das CuBa-Projekt vorgestellt. Die Idee für dieses Projekt stammt von dem s.g. Cubli der ETH Zürich. Hierbei handelt es sich um einen Würfel, welcher in der Lage ist selbständig auf seine Ecken und Kanten zu springen und dort zu balancieren. Hierfür werden Motoren in dem Würfel fixiert, an welchen Schwungräder befestigt sind. Die Motormomente dienen einerseits als Stellgröße um den Würfel zu balancieren. Andererseits können die Schwungmassen über Bremsen abrupt zum Stillstand gebracht werden. Dadurch wird der Drehimpuls der Räder auf den Würfel übertragen. Somit ist es möglich den Würfel aus einer beliebigen Ruhelage aufzurichten.

Das Projekt ist in zwei Abschnitte unterteilt. Zuerst wird eine einzelne Würfelseite konzipiert, an welcher ein Motor mit einer Schwungmasse angebracht ist. Über eine Achse wird die Würfelseite gelagert und ist somit auf einen einzelnen rotatorischen Freiheitsgrad beschränkt. Dieser Prototyp dient als erstes Versuchsobjekt (1D-Modell) um die Systemeigenschaften zu untersuchen und Rückschlüsse auf den Entwurf des kompletten Würfel (3D-Modell) zu ziehen. Im zweiten Teil wird der letztendliche Würfel entwickelt, welcher über drei Motoren und Schwungmassen verfügt.

Der Aufbau der Dokumentation ist an den Projektverlauf angelehnt, so wird zu Beginn der Aufbau des 1D-Modell näher erläutert. Hierbei werden zuerst der mechanische Aufbau und die elektrischen Komponenten diskutiert. Im Anschluss werden mit Hilfe des Lagrange-Formalismus die Bewegungsgleichungen hergeleitet. Damit kann eine Zustandsraumdarstellung des Systems gewonnen werden, welche wiederum zu dem Entwurf eines zeitdiskreten Zustandsreglers verwendet wird. Außerdem wird auf die Auswertung der Sensoren eingegangen um mit Hilfe von Filtern und Datenfusionen möglichst genaue Schätzwerte des aktuellen Zustandsvektors zu erhalten. Zuletzt wird das Aufspringen der Würfelseite näher untersucht. Hierbei wird ein Lernalgorithmus vorgestellt, welcher die optimale Radgeschwindigkeit zum Aufspringen unter realen Bedingungen findet.

und von dem ganzen Würfel gibts noch nich so viel

2 Aktorik und Sensorik

Der folgenden Abschnitt beschreibt die verwendeten elektrischen Bauteile, um einerseits die benötigten physikalischen Größen zu messen, und andererseits die verwendete Aktorik, um das Aufspringen und Balancieren der Würfelseite zu ermöglichen.

Die Aufgabe der Sensorik besteht darin die Zustandsgrößen des Systemes zu bestimmen. Hierfür werden zwei GYR-521-Platinen verwendet, die mit einem MPU6050-IC der Firma InvenSense bestückt sind. Diese bieten jeweils einen dreiachsigen Beschleunigungssensor und Gyroskop. Mit Hilfe dieser Messwerte können die Zustandsgrößen φ und $\dot{\varphi}$ berechnet werden. Die Sensoren bieten die zusätzliche Möglichkeit einen variablen Tiefpassfilter zu verwenden um eine erste Glättung der Messwerte durchzuführen. Dieser Tiefpassfilter wird auf eine Grenzfrequenz von 44Hz eingestellt. Dieser Wert hat sich empirisch als optimaler Kompromiss zwischen Filterung der Rauschsignale und Verzögerung des eigentlichen Signals. Die Konfiguration und Auswertung der Sensoren erfolgt über eine I^2C -Schnittstelle. Die Justierung und Auswertung der Sensoren wird näher in ?? beschrieben.

Abschnitt 3 zeigt den Einfluss eines Motormomentes auf die Position und Gewschwindigkeit der Würfelseite. Um diese Moment zu erzeugen wird ein bürstenloser DC-Motor der Firma MaxonMotor verwendet (EC 45 flat, 50 Watt). Die Kriterien zur Auswahl des Motors sind einerseits die maximale Drehzahl und Drehmoment, andererseits die mechanische Zeitkonstante. Für das Aufspringen des Würfels ist die maximale Drehzahl des Motors von Bedeutung, die 10000 Umdrehung pro Minute des gewählten Motor reichen hierbei aus um eine ausreichend hohe kinetische Energie der Schwungmasse zu ermöglichen. Die Robustheit der Regelung wird durch das maximale Drehmoment limitiert, welches in diesem Fall bei 83.4 mNm liegt. Von besondere Bedeutung für die Regelung ist die mechanische Zeitkonstante des Motors, da diese eine Verzögerung der Stellgröße bewirkt und somit den geschlossenen Regelkreis negativ beeinflussen kann. Die mechanische Zeitkonstante des gewählten Motors ist mit 13.3ms im Vergleich zu anderen Kandidaten sehr niedrig. Die Ansteuerung des Motors erfolgt über den Treiberbaustein ESCON 36/3 EC, welcher ebenfalls von der Firma Maxon Motor vertrieben wird. Dieser ermöglicht die Steuerung des Drehmoments über ein PWM-Signal und die Auswertung der Winkelgeschwindigkeit $\dot{\psi}$ über ein analoges Signal.

Mit Hilfe einer mechanischen Bremse kann die Schwungmasse stoßartig zum Stillstand gebracht werden. Dadurch wird die kinetische Energie der Schwungmasse teilweise auf das Gesamtsystem übertragen und ermöglicht somit das Aufspringen. Die Bremsbacken werden über einen Servomotor betätigt, welcher mit Hilfe eines PWM-Signales kontrolliert wird.

Zur Ansteuerung der Aktorik und Sensorik wird ein STM32F4Discovery-Board der Firma STMicroelectronics verwendet. Die Programmierung erfolgt über eine, auf Eclipse basierende, Toolkette. Um die Auswertung der Sensordaten und den Entwurf der Regelung zu erleichtern, wird der Quellcode anschließend in Simulink-Blöcke implementiert.

3 Modellierung der Systemdynamik

In dem folgenden Abschnitt werden die Bewegungsgleichungen mit Hilfe des Lagrange Formalismus hergeleitet. Aus diesen Gleichung kann im Anschluss eine Zustandsraumdarstellung aufgestellt werden, welche als Grundlage für den Reglerentwurf dient.

Abbildung 1: Mechanischer Aufbau, Quelle: eigene Darstellung

Der Prototyp besteht aus einem starren Körper der in A auf einer Achse gelagert ist. In B ist eine Schwungmasse über einen Motor mit dem Körper verbunden. Somit verfügt das Gesamtsystem über zwei Freiheitsgrade, welche durch die generalisierten Koordinaten

$$q_1 = \varphi \qquad q_2 = \psi \tag{1}$$

beschrieben werden. Der Winkel φ wird von den Achsen y und y_K eingeschlossen. Der Winkel beschreibt die rotatorische Verschiebung der Schwungmasse zu dem Körper. Die folgenden Größen beschreiben die weiteren physikalischen Gegebenheiten des Systems.

$q_1 = \varphi$	Ausfallwinkel des Körpers
$q_2 = \psi$	Winkel zwischen Schwungmasse und Körper
A	Drehpunkt des Körpers
B	Drehpunkt des Schwungrades
l_{AB}	Abstand zwischen A und B
l_{AC}	Abstand zwischen A und dem Schwerpunkt des Körpers
m_K	Masse des Körpers
m_R	Masse des Schwungrades
$egin{array}{l} heta_K^A \ heta_R^B \end{array}$	Massenträgheitsmoment des Körper um A
$\theta_{R}^{\widehat{B}}$	Massenträgheitsmoment der Schwungmasse um B
C_{φ}	Dynamischer Reibkoeffizient des Körpers in A
C_{ψ}	Dynamischer Reibkoeffizient des Schwungrades in B
T_M	Drehmoment des Motor

Um die Bewegungsgleichungen des Systems zu ermitteln wird der Lagrange Formalismus verwendet. Dieser basiert auf der Lagrange-Funktion L, welche die Differenz der kinetischen Energie T und der potenziellen Energie V des Systems beschreibt.

$$T = \frac{1}{2} [(\theta_K^A + m_R \cdot l_{AB}^2) \dot{\varphi}^2 + \theta_B^R (\dot{\varphi} + \dot{\psi})^2]$$
 (2)

$$V = g(m_R \cdot l_{AB} + m_K \cdot l_{AC})cos(\varphi)$$
(3)

$$L = T - V = \frac{1}{2} [(\theta_K^A + m_R \cdot l_{AB}^2) \dot{\varphi}^2 + \theta_B^R (\dot{\varphi} + \dot{\psi})^2] - g(m_R \cdot l_{AB} + m_K \cdot l_{AC}) cos(\varphi)$$
(4)

In dem System wirken unterschiedliche Kräfte. Einerseits erzeugt der Motor ein Drehmoment, welches die virtuelle Arbeite δW_M verursacht. Andererseits verrichtet die Gravitation die virtuelle Arbeite δW_G . Zusätzlich muss die, durch die Reibung entstandene, Verlustleistung berücksichtigt werden. In diesem Fall wird die Reibleistung mit den Rayleigh'schen Dissipationsfunktionen D_{φ} und D_{ψ} beschrieben und verrichten die virtuelle Arbeit δW_D .

$$-\delta W_M = T_M \cdot \delta \psi \tag{5}$$

$$-\delta W_G = g(m_K \cdot l_{AC} + m_R \cdot l_{AB}) \sin(\varphi) \cdot \delta \varphi \tag{6}$$

$$D_{\varphi} = \frac{1}{2} C_{\varphi} \cdot \dot{\varphi}^2 \tag{7}$$

$$D_{\psi} = \frac{1}{2} C_{\psi} \cdot \dot{\psi}^2 \tag{8}$$

$$D = D_{\varphi} + D_{\psi} = \frac{1}{2} C_{\varphi} \cdot \dot{\varphi}^2 + \frac{1}{2} C_{\psi} \cdot \dot{\psi}^2$$
 (9)

$$-\delta W_D = -C_{\varphi} \cdot \dot{\varphi} \cdot \delta \varphi - C_{\psi} \cdot \dot{\psi} \cdot \delta \psi \tag{10}$$

Die Summe der virtuellen Arbeiten, welche von den verschiedenen Kräften verrichtet wird, ergibt die virtuelle Arbeit des Gesamtsystems δW . In dem die verrichtete Arbeit partiell nach den beiden generalisierten Koordinaten φ und ψ differenziert wird, können die beiden generalisierten Kraftkomponenten Q_{φ} und Q_{ψ} berechnet werden.

$$Q_{\omega} = g(m_K \cdot l_{AC} + m_R \cdot l_{AB}) \sin(\varphi) - C_{\omega} \cdot \dot{\varphi} \tag{11}$$

$$Q_{\psi} = T_M - C_{\psi} \cdot \dot{\psi} \tag{12}$$

Bei dem Prototyp handelt es sich um ein nicht konservatives System, da durch die Reibung mechanische Energie verloren geht und der Motor dem System mechanische Energie zuführt. Da die beiden generalisierten Koordinaten φ und ψ voneinander unabhängig sind können aus dem d'Alembert'schen Prinzip zwei Bewegungsgleichungen abgeleitet werden.

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} = Q_i \tag{13}$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\varphi}} - \frac{\partial T}{\partial \varphi} = Q_{\varphi} \tag{14}$$

$$(\theta_K^A + \theta_R^B + m_R \cdot l_{AB}^2)\ddot{\varphi} + \theta_R^B \cdot \ddot{\psi} - g(m_R \cdot l_{AB} + m_K \cdot l_{AC})\sin(\varphi) + C_{\psi} \cdot \dot{\psi} = 0$$
 (15)

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\psi}} - \frac{\partial T}{\partial \psi} + \frac{\partial T}{\partial \dot{\psi}} = Q_{\psi}$$
(16)

$$\theta_B^R \cdot \ddot{\psi} = T_M - C_\psi \cdot \dot{\psi} - \theta_R^B \cdot \ddot{\varphi} \tag{17}$$

Durch Einsetzen von (17) in (15) ergibt sich die folgende Bewegungsgleichung für die Würfelseite.

$$\ddot{\varphi} = \frac{g(m_R \cdot l_{AB}^2 + m_K \cdot l_{AC})sin(\varphi) - C_{\varphi} \cdot \dot{\varphi} + C_{\psi} \cdot \dot{\psi} - T_M}{\theta_K^A + m_R \cdot l_{AB}^2}$$
(18)

Die Bewegungsgleichung für die Schwungmasse ergibt sich durch Einsetzen von (18) in (17).

$$\ddot{\psi} = \frac{(\theta_K^A + m_R \cdot l_{AB}^2 + \theta_R^B)(T_M - C_\psi \cdot \dot{\psi})}{(\theta_K^A + m_R \cdot l_{AB}^2)\theta_R^B} + \frac{C_\varphi \cdot \dot{\varphi} - g(m_R \cdot l_{AB} + m_K \cdot l_{AC})sin(\varphi)}{\theta_K^A + m_R \cdot l_{AB}^2}$$
(19)

4 Sensorik

Die Aufgabe der verwendeten Sensorik liegt darin die Werte für φ , und $\dot{\varphi}$ zu bestimmen. Hierfür wurden zwei MPU6050 IC's verwendet. Diese verfügen jeweils über einen Beschleunigungssensor und Gyroskop, welche Werte für drei Achsen ausgeben. Der Tiefpass der Sensoren wird auf eine Grenzfrequenz von 44Hz eingestellt, da hier einerseits eine erste Glättung der Daten erfolgt, andererseits aber keine zu große Verzögerung ergibt, welche sich wiederum negativ auf die Regelung auswirken könnte. Die Position und Ausrichtung der Sensoren ist in 2 dargestellt.

Abbildung 2: Position der Sensoren, Quelle: eigene Darstellung

4.1 Winkelschätzung

Die Sensoren keine Wege bzw. Winkel. Somit muss der Winkel φ berechnet werden. Die gemessenen Sensorwerte hängen von r_{S1} bzw. r_{S2} ab, welche den Abstand zwischen den Sensoren und dem Drehpunkt A beschreiben. Zusätzlich beeinflussen neben dem Winkel φ auch dessen beiden Ableitungen $\dot{\varphi}$ und $\ddot{\varphi}$ die Sensorausgabe. Allerdings lassen sich aus den Beschleunigungswerten der beiden Sensoren nach [1] wie folgt der aktuelle Wert von φ berechnen.

$$\ddot{S}_{i} = \begin{pmatrix} \ddot{x}_{i} \\ \ddot{y}_{i} \\ \ddot{z}_{i} \end{pmatrix} = \begin{pmatrix} r_{Si} \cdot \ddot{\varphi} + \sin(\varphi) \cdot g \\ -r_{Si} \cdot \dot{\varphi}^{2} - \cos(\varphi) \cdot g \\ 0 \end{pmatrix} \qquad i \in [1; 2]$$
 (20)

$$\alpha = \frac{r_{S1}}{r_{S2}} \tag{21}$$

$$\ddot{x}_1 - \alpha \cdot \ddot{x}_2 = g(1 - \alpha)\sin(\varphi) \tag{22}$$

$$\ddot{y}_1 - \alpha \cdot \ddot{y}_2 = -g(1 - \alpha)\cos(\varphi) \tag{23}$$

$$\frac{\ddot{x}_1 - \alpha \cdot \ddot{x}_2}{\ddot{y}_1 - \alpha \cdot \ddot{y}_2} = -tan(\varphi) \tag{24}$$

4.2 Kalibrierung und Justierung

Die Sensoren geben die Beschleunigungs- und Geschwindigkeitswerte als 16 Bit Werte im Zweierkomplement aus. Diese Rohwerte müssen in die mit Hilfe eines Ausgleichspolynoms in die jeweilige SI-Einheit umgerechnet werden.

4.2.1 Umrechnung der Beschleunigungswerte

Um das Polynom zur Umrechnung der Beschleunigungswerte zu ermitteln werden sieben Messungen in den fixen Ausfallpositionen $\phi \in [-45, -30, -15, 0, 15, 30, 45]$ durchgeführt. Pro Position werden m=10000 Messwerte aufgenommen. Da in der Ruhelage die Beschleunigung lediglich von dem aktuellen Ausfallwinkel abhängt ist der Sollwert für jede Position bekannt. Somit kann ein Polynom erster Ordnung approximiert werden um Mittelwerte der sieben Positionen in die entsprechenden Beschleunigungswerte umzurechnen.

$$\ddot{x}_n \equiv \text{X-Beschleunigung Sensor n} \quad \ddot{x}_n^R \equiv \text{X-Rohwert Sensor n} \quad \ddot{y}_n \equiv \text{Y-Beschleunigung Sensor n} \quad \ddot{y}_n^R \equiv \text{Y-Rohwert Sensor n}$$

$$\ddot{x}_n = p_{x_n}^1 \cdot \ddot{x}_n^R + p_{x_n}^2 \qquad | n \in \{1, 2\}$$
 (25)

$$\ddot{x}_n = p_{x_n}^1 \cdot \ddot{x}_n^R + p_{x_n}^2 \qquad | n \in \{1, 2\}$$

$$\ddot{y}_n = p_{y_n}^1 \cdot \ddot{y}_n^R + p_{y_n}^2 \qquad | n \in \{1, 2\}$$
(25)

Umrechnung der Winkelgeschwindigkeiten 4.2.2

Um die Rohwerte der Gyroskope in Winkelgeschwindigkeiten umzurechnen wird die Würfelseite fixiert und die Winkelgeschwindigkeitswerte der beiden Sensoren aufgenommen. Hierbei werden jeweils

m=1000 Werte aufgenommen. Da der Sollwert $\dot{\varphi}=0\frac{m}{s}$ bekannt ist kann die systematische Messabweichung der Sensoren über den Mittelwert bestimmt werden. Der proportionale Umrechnungsfaktor von Rohdaten zu Winkelgeschwindigkeiten wird dem Datenblatt des Herstellers entnommen.

$$\dot{\varphi}_n = p_{\dot{\varphi}_n^R}^1 \cdot (\dot{\varphi}_n + p_{\dot{\varphi}_n}^2)$$

$$p_{\varphi_1}^1 = -0.0076 \quad p_{\varphi_1}^2 = -72$$

$$p_{\varphi_2}^1 = -0.0076 \quad p_{\varphi_2}^2 = -231$$

$$(27)$$

4.3 Auswertung der Radgeschwindigkeit $\dot{\psi}$

Der Motortreiber liefert ein analoges Spannungssignal, welches die aktuelle Motorgeschwindigkeit wiedergibt. Um die ADC-Werte in SI-Einheiten umzurechnen wird ein Polynom erster Ordnung benötigt. Hierfür werden mit Hilfe der ESCON-Studio konstante Motorgeschwindigkeiten ($\dot{\psi} \in \{-3000, -2000, -1000, 0, 1000, 2000, 3000\}[rpm]$) gefahren und pro Durchlauf m=500 ADC-Werte aufgenommen. Über die Mittelwerte der Messungen und die vorgegebenen Radgeschwindigkeiten wird anschließend ein Polynom erster Ordnung approximiert.

 $\dot{\psi} \equiv \text{Geschwindigkeit der Schwungmasse} \quad \dot{\psi}_{ADC} \equiv \text{ADC-Wert}$

$$\dot{\psi} = 0.5176 \cdot \dot{\psi}_{ADC} + -1017 \tag{28}$$

4.4 Filterung der Sensordaten

In der Regel werden Sensoren von Störungen unterschiedlichster Art beeinflusst. Um diese Störungen zu minimieren werden in dem folgenden Abschnitt

5 Modellbildung und Bestimmung der Systemgrößen

Mit Hilfe der Bewegungsgleichungen aus Abschnitt 3 kann nun eine Zustandsraumdarstellung aufgestellt werden. Hierfür werden die nichtlinearen Terme entsprechend linearisiert. Mit Hilfe der Bewegungsgleichungen bzw. Zustandsraumdarstellung kann ein Simulink-Modell implementiert werden um das Systemverhalten zu simulieren. Mit Hilfe der Zustandsraumdarstellung wird ein Zustandsregler entworfen, welcher an dem Modell erprobt werden kann. Zusätzlich über die Simulation der Einfluss der einzelnen Parameter, Sensorrauschen und Störungen untersucht werden.

$$\mathbf{x} = \begin{pmatrix} \varphi \\ \dot{\varphi} \\ \dot{\psi} \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} \varphi \\ \dot{\varphi} \\ \dot{\psi} \end{pmatrix} \qquad u = T_M \tag{29}$$

$$\dot{\mathbf{x}} = \mathbf{A} \cdot \mathbf{x} + \mathbf{B} \cdot u \tag{30}$$

$$\mathbf{y} = \mathbf{C} \cdot \mathbf{x} + \mathbf{D} \cdot u \tag{31}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ \frac{g(m_{K} \cdot l_{AC} + m_{R} \cdot l_{AB})}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} & \frac{-C_{\varphi}}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} & \frac{C_{\psi}}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} \\ \frac{-g(m_{K} \cdot l_{AC} + m_{R} \cdot l_{AB})}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} & \frac{C_{\varphi}}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} & \frac{-C_{\psi}(\theta_{K}^{A} + \theta_{R}^{B} + m_{R} \cdot l_{AB}^{2})}{\theta_{R}^{B}(\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2})} \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ \frac{-1}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} \\ \frac{\theta_{K}^{A} + \theta_{R}^{B} + m_{R} \cdot l_{AB}^{2}}{\theta_{K}^{B}(\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2})} \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \qquad \mathbf{D} = \begin{pmatrix} 0 \end{pmatrix}$$

5.1 Identifikation der Parameter

Der Reglerentwurf und die Simulation erfordern eine möglichst präzise Bestimmung der Systemparameter, wie z.B. Längen, Massen, Massenträgheitsmomente und Reibwerte. Die Bestimmung der Längen l_{AB} und l_{AC} , der Massen m_K , m_R und m_G , der Massenträgheitsmomente θ_K^A und θ_R^B erfolgt über das CAD-Modell. Hierfür werden Bauteile mit einer nicht homogenen Massenverteilung, wie z.B. die Motoren, in separate Baugruppen mit homogener Massenverteilung unterteilt.

5.1.1 Ermittlung des Reibwertes C_{φ}

In dem die Schwungmasse fest mit der Würfelseite verbunden wird ergibt sich die folgende Bewegungsgleichung für das Gesamtsystem.

$$(\theta_K^A + \theta_R^B + m_R \cdot l_{AB}^2)\ddot{\varphi} = g(m_K \cdot l_{AC} + m_R \cdot l_{AB})\sin(\varphi) - C_{\varphi} \cdot \dot{\varphi}$$
(33)

In dem Versuchsaufbau wird das Gesamtsystem nun von einem Startwinkel φ_0 losgelassen, woraufhin eine gedämpfte Schwingung entsteht. Mit Hilfe der Sensoren können die Größen φ , $\dot{\varphi}$ und $\ddot{\varphi}$ gemessen werden.

Über die n Messpunkte ergeben sich die folgenden Vektoren.

$$\varphi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \vdots \\ \varphi_n \end{pmatrix} \qquad \dot{\varphi} = \begin{pmatrix} \dot{\varphi}_1 \\ \dot{\varphi}_2 \\ \vdots \\ \dot{\varphi}_n \end{pmatrix} \qquad \ddot{\varphi} = \begin{pmatrix} \ddot{\varphi}_1 \\ \ddot{\varphi}_2 \\ \vdots \\ \ddot{\varphi}_n \end{pmatrix}$$
(34)

Damit ergibt sich durch Umstellen von 32 die folgende Gleichung.

$$C_{\omega} \cdot \dot{\boldsymbol{\varphi}} = q(m_K \cdot l_{AC} + m_R \cdot l_{AB}) \sin(\boldsymbol{\varphi}) - (\theta_K^A + \theta_R^B + m_R \cdot l_{AB}^2) \ddot{\boldsymbol{\varphi}}$$
(35)

Mit Hilfe der Methode der kleinsten Fehlerquadrate kann nun der Reibwert C_{φ} bestimmt werden.

$$C_{\varphi} = 6.2 \cdot 10^{-3} \cdot kg \cdot m^2 \cdot s^{-1} \tag{36}$$

Abbildung 3: Ausfallwinkel der Würfelseite bei Versuch 4, Quelle: eigene Darstellung

5.1.2 Ermittlung des Reibwertes C_{ψ}

Im nächsten Versuchsaufbau wird die Würfelseite fixiert ($\dot{\varphi}=0$). Hierbei beschleunigt der Motor die Schwungmasse mit einem konstanten Drehmoment $T_M=10mNm$. T_M ist so zu wählen, dass sich die Radgeschwindigkeit $\dot{\psi}$ in einem Bereich bewegt, welcher dem Arbeitsbereich des geschlossenen Regelkreises entspricht.

Abbildung 4: Versuch 5: Verlauf der Radgeschwindigkeit, Quelle: eigene Darstellung

Da die Bewegung auf einen Freiheitsgrad beschränkt wurde vereinfacht sich das Modell des Systems auf die folgende Bewegungsgleichung.

$$\theta_R^B \cdot \ddot{\psi} = T_M - C_\psi \cdot \dot{\psi} \tag{37}$$

Im Versuchsverlauf werden bei n Stützstellen die Werte von ψ , $\dot{\psi}$ und $\ddot{\psi}$ gemessen. Daraus ergeben sich die folgenden Vektoren.

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_n \end{pmatrix} \qquad \dot{\psi} = \begin{pmatrix} \dot{\psi}_1 \\ \dot{\psi}_2 \\ \vdots \\ \dot{\psi}_n \end{pmatrix} \qquad \ddot{\psi} = \begin{pmatrix} \dot{\psi}_1 \\ \ddot{\psi}_2 \\ \vdots \\ \ddot{\psi}_n \end{pmatrix} \tag{38}$$

Durch Einsetzen von 37 in 36 kann über die Methode der kleinsten Fehlerquadrate wiederum der Reibwert C_{ψ} bestimmt werden.

$$C_{\psi} = 3.1176 \cdot 10^{-5} \cdot kg \cdot m^2 \cdot s^{-1} \tag{39}$$

5.1.3 Resultate der Systemidentifikation

An Hand der beschriebenen Versuche und Methoden wurden die folgenden Werte für die Parameter des Gesamtsystems ermittelt.

```
\begin{array}{ll} l_{AB} &= 0.084m \\ l_{AC} &= 0.087m \\ m_K &= 0.221kg \\ m_R &= 0.09kg \\ \theta^A_K &= 2.8 \cdot 10^{-3}kg \cdot m^2 \\ \theta^B_R &= 1.1683 \cdot 10^{e-4} \cdot kg \cdot m^2 \\ C_{\varphi} &= 6.2 \cdot 10^{-3} \cdot kg \cdot m^2 \cdot s^{-1} \\ C_{\psi} &= 3.1176 \cdot 10^{-5} \cdot kg \cdot m^2 \cdot s^{-1} \\ r_{S1} &= 0.14m \\ r_{S2} &= 0.061m \end{array}
```

5.2 Entwurf des Simulink-Modelles

Dieser Abschnitt erklärt den Aufbau des Simulink-Modelles zur Simulation des Systems. Die oberste Modellschicht besteht aus drei Subsystemen zur Simulation des Motor, der Würfelseite und der Schwungmasse.

Abbildung 5: Simulink-Modell Übersicht, Quelle: eigene Darstellung

5.2.1 Simulation des Motors

Der Motor wird als zwei in Reihe geschaltete PT1-Glieder simuliert. Da der Regler als Stellgröße ein Motormoment berechnet, beträgt die Verstärkung des Motor K_M in der Simulation den Wert eins. Die Zeitkonstanten der PT1-Glieder sind einerseits die elektrische Zeitkonstante T_e und die mechanische Zeitkonstante T_m , wessen Werte dem Datenblatt des Herstellers entnommen werden.

$$K_M = 1$$
 $T_e = 0.55ms$ $T_m = 12.4ms$ (40)

5.2.2 Simulation der Würfelseite

Die Dynamik der Würfelseite wird von 18 beschrieben.

$$\ddot{\varphi} = \frac{g(m_R \cdot l_{AB}^2 + m_K \cdot l_{AC})sin(\varphi) - C_{\varphi} \cdot \dot{\varphi} + C_{\psi} \cdot \dot{\psi} - T_M}{\theta_K^A + m_R \cdot l_{AB}^2}$$
(18)

Somit ist die Winkelbeschleunigung gleich der Summe der Drehmomente geteilt durch die betroffenen Massenträgheitsmomente. Durch Integration und Rückführung können die einzelnen Drehmomente berechnet werden. Das folgende Modell zeigt die Umsetzung dieser Berechnungsvorschrift in Simulink.

Abbildung 6: Subsystem Würfelseite, Quelle: eigene Darstellung

5.2.3 Simulation der Schwungmasse

Die Dynamik der Schwungmasse wird von 19 beschrieben, allerdings wird das Modell vereinfacht indem $p\ddot{h}i$ nicht substituiert wird.

$$\theta_B^R \cdot \ddot{\psi} = T_M - C_\psi \cdot \dot{\psi} - \theta_R^B \cdot \ddot{\varphi} \tag{19}$$

Das Simulink-Modell folgt dem selben Schema wie das Subsystem zur Simulation der Bewegung des Würfelkörpers.

Abbildung 7: Subsystem Schwungmasse, Quelle: eigene Darstellung

6 Reglerentwurf

Mit Hilfe der Zustandsraumdarstellung kann über die Rückführung des Zustandvektors eine Regelung entworfen werden. Das folgende Blockschaltbild zeigt den Zusammenhang der Systemmatrizen und der Reglermatrix \mathbf{F} , welche zur Berechnung der Stellgröße $u=T_M$ dient.

Abbildung 8: Blockschaltbild Regelkreis, Quelle: eigene Darstellung, Inhalt aus [13]

Die Stellgröße u wird von einem Mikrokontroller mit einer Abtatsperiod $T_a = 20ms$ berechnet. Folglich handelt es sich um eine digitale Regelung. Um das Verhalten des diskreten Systems zu beschreiben müssen die diskreten Systemmatrizen \mathbf{A}_d , \mathbf{B}_d , \mathbf{C}_d und \mathbf{D}_d berechnet werden. Hierfür gilt nach [13]:

$$\mathbf{S} = T_a \sum_{v=0}^{\infty} \mathbf{A}^v \frac{T^v}{(v+1)!} \tag{41}$$

$$\mathbf{A}_d = \mathbf{I} + \mathbf{S} \cdot \mathbf{A} \tag{42}$$

$$\mathbf{B}_d = \mathbf{S} \cdot \mathbf{B} \tag{43}$$

$$\mathbf{C}_d = \mathbf{C} \tag{44}$$

$$\mathbf{D}_d = \mathbf{D} \tag{45}$$

Die Reglermatrix \mathbf{F} wird als optimaler Zustandsregler nach dem quadratischen Gütekriterium entworfen. Die diskrete Gütefunktion für dieses System lautet:

$$I = \sum_{k=1}^{\infty} \mathbf{x}^{T}(k) \cdot \mathbf{Q} \cdot \mathbf{x}(k) + R \cdot u(k)^{2}$$
(46)

Die Matrizen \mathbf{Q} und \mathbf{R} stellen Gewichtungen der Zustands- und Stellgrößen dar. Die Ausgangswerte dieser Matrizen werden mit der Faustformel nach ([14]) berechnet. Ggf. können die Werte anschließend angepasst werden um die Reglergüte weiter zu verbessern.

$$\mathbf{Q} = \begin{pmatrix} \frac{1}{(\varphi_{max})^2} & 0 & 0\\ 0 & \frac{1}{(\dot{\varphi}_{max})^2} & 0\\ 0 & 0 & \frac{1}{(\dot{\psi}_{max})^2} \end{pmatrix}$$
(47)

$$R = \left(\frac{1}{(T_{M,max})^2}\right) \tag{48}$$

Die Reglermatrix \mathbf{F} muss die Eigenschaft besitzen die Gütefunktion (45) zu minimieren. Dieses Problem wird mit Hilfe von der Matlab-Funktion lqrd numerisch gelöst.

7 Aufspringen

Das Aufspringen der Würfelseite wird durch das abrupte bremsen der Schwungmasse ermöglicht. Hierbei wird der Drehimpuls der Schwungmasse auf das Gesamtsystem übertragen. Dieser Vorgang kann als nicht elastischer Stoß modelliert werden. Somit ergibt sich aus dem Drehimpulserhaltungssatz folgende Gleichung, wobei $\dot{\varphi}_B$ die Winkelgeschwindigkeit der Würfelseite nach dem Bremsen und $\dot{\psi}_B$ die Winkelgeschwindigkeit der Schwungmasse vor dem Bremsen darstellt.

$$(\theta_K^A + \theta_R^B + m_R \cdot l_{AB}) \cdot \dot{\varphi}_B = \theta_R^B \cdot \dot{\psi}_B \tag{49}$$

Um die Würfelseite von der Ruhelage ($\varphi_R = \pm \frac{\pi}{4}$) zu dem Gleichgewichtspunkt ($\varphi_G = 0$) zu bewegen muss Arbeite verrichtet werden. Diese Arbeit W ist gleich der Änderung der potentiellen Energie von der Ruhelage hin zu dem Gleichgewichtspunkt.

$$W = V(\varphi_G) - V(\varphi_R) = q(m_K + m_R)l_{AC} \cdot (\cos(\varphi_G) - \cos(\varphi_R))$$
(50)

Auf Grund des Energieerhaltungssatzes muss die kinetische Energie des Gesamtsystemes nach dem Bremsvorgang gleich der zu leistenden Arbeit sein um die Würfelseite aufzurichten. Somit kann der Zusammenhang von $\dot{\varphi}_B$ und der Arbeit W wie folgt beschrieben werden.

$$\frac{1}{2}(\theta_K^A + \theta_R^B + m_R \cdot l_{AB})\dot{\varphi}_B^2 = g(m_K + m_R)l_{AC} \cdot (1 - \frac{1}{\sqrt{2}})$$
(51)

Mit Hilfe der Gleichungen (50) und (48) kann nun die notwendige Bremsgeschwindigkeit $\dot{\psi}_B$ berechnet werden.

$$\dot{\psi}_B = \sqrt{(2 - \sqrt{2}(m_R + m_K) \cdot l_{AC} \cdot g \cdot \frac{\theta_K^A + \theta_R^B + m_R \cdot l_{AB}}{\theta_R^{B^2}}}$$
(52)

Das obige Modell geht von der Annahme aus, dass es sich um einen perfekt nicht elastischen Stoß handelt und bei der Bewegung der Würfelseite keine Energie verloren geht. Somit besteht eine Abweichung des Modells von den realen Bedingungen. Um diese Abweichungen zu minimieren wird ein, an den Gradientenabstieg angelehnter, Lernalgorithmus implementiert. Nach dem Abbremsen der Schwungmasse werden die Größen φ und $\dot{\varphi}$ beobachtet. Tritt ein Nulldurchgang von φ auf bedeutet dies, dass die Anfangsgeschwindigkeit $\dot{\varphi}_B$ und somit die Radgeschwindigkeit $\dot{\psi}_B$ zu hoch waren. Tritt jedoch ein Nulldurchgang von $\dot{\varphi}$ auf, folgt, dass $\dot{\varphi}_B$ und $\dot{\psi}_B$ zu niedrig waren. In beiden Fällen kann die Änderung der Energie ΔE , welche nötig ist um den Zielpunkt zu erreichen, berechnet werden.

$$\Delta E = \begin{cases} (1 - \cos(\varphi_0))(m_K + m_r)l_{AC} \cdot g & | \dot{\varphi} = 0 \\ -\frac{1}{2}(\theta_K^A + \theta_R^B + m_R \cdot l_{AB}) \cdot \dot{\varphi}_0^2 & | \varphi = 0 \end{cases}$$
 (53)

Mit Hilfe der Drehimpuls- (48) und Energie
erhaltung (50 wird nun aus der Energieänderung ΔE die nötige Änderung der Radgeschwindigkeit $\Delta \dot{\psi}_B$ berechnet.

$$\pm \Delta \dot{\psi}_B = \sqrt{2 \cdot \frac{\theta_K^A + \theta_R^B + m_R \cdot l_{AB}}{\theta_R^{B^2}} \cdot \Delta E}$$
 (54)

Die Konvergenz des Lernalgorithmus gegen den Zielwert wird empirisch bewiesen, hierfür ist allerdings das hinzufügen einer Lernrate μ erforderlich. Daraus ergibt sich letztendlich folgende Vorschrift um den aktuellen Wert der Bremsgeschwindigkeit $\dot{\psi}_B$ zu bestimmen.

$$\dot{\psi}_B := \dot{\psi}_B + \mu \cdot \Delta \dot{\psi}_B \qquad | \quad 0 < \mu \le 1 \tag{55}$$

Literatur

- [1] Mohanarjah Gajamohan, Michael merz, Igor Thommen, Raffaello D'Andrea: The Cubli: A Cube that can Jump Up and Balance
- [2] Mohanarajah Gajamohan, Michael Muehlbach, Tobias Widmer, Raffaello D'Andrea: The Cubli: A Reaction Wheel Based 3D Inverted Pendulum
- [3] Michael Muehlbach, Gajamohan Mohanarajah, Raffaello D'Andrea: Nonlinear Analysis and Control of a Reaction Wheel-based 3D Inverted Pendulum
- [4] Wolfgang Nolting: Grundkurs Theoretische Physik 1 Klassische Mechanik
- [5] Wolfgang Nolting: Grundkurs Theoretische Physik 2 Analytische Mechanik
- [6] Thomas R. Kane: Dynamics Theory and Applications
- [7] Fernando Puente León, Sebastian Bauer: Praxis der digitalen Signalverarbeitung
- [8] Josef Hoffmann, Franz Quint: Simulation technischer linearer und nichtlinearer Systeme mit MATLAB/Simulink
- [9] Herbert Schlitt: Systemtheorie für stochastische Prozesse
- [10] Marin Meyer: Signalverarbeitung Analoge und digitale Signale, Systeme und Filter
- [11] Ottmar Beucher: Signale und Systeme Theorie, Simulation und Anwendung
- [12] Heinz Unbehauen: Regelungstechnik 1 Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme
- [13] Heinz Unbehauen: Regelungstechnik 2 Zustandsregelungen, digitale und nichtlineare Regelsysteme
- [14] Joao P. Hespanha: Lecture notes on LQR/LQG controller design
- [15] Tom M. Mitchell: Machine Learning
- [16] Christopher Bishop: Pattern Recognition and Machine Learning