DLMtool CHEAT SHEET 1

Getting Started

Install package: install.packages('DLMtool')

User Guide: userguide()

Cheat Sheets: cheatsheets()

Website: http://datalimitedtoolkit.org

Report Issues: https://github.com/DLMtool/issues

Acronyms

DLMtool Data-Limited Methods Toolkit

MP Management Procedure

MSE Management Strategy Evaluation

OM Operating Model

PM Performance Metrics

Main Object Classes

Class	Contents	
Stock	Biological Properties	
Fleet	Exploitation Properties OM = Stock + Fleet	_
Obs	Observation Error + Obs + Imp	_
Imp	Implementation Error	
OM	Operating Model	

MSE Management Strategy Evaluation Results

MP Management Procedure

Find Available Objects: avail('Object Class')

Slot Names: slotNames('Object Class')

e.g. slotNames('Stock')

Create New OM

Blank OM: OM <- new('OM')

New OM from available objects: OM <- new('OM', 'Stock', 'Fleet', 'Obs', 'Imp')

e.g. OM <- new('OM', Albacore, Generic_Fleet, Generic_Obs, Perfect_Imp)

Initialize Excel OM and OM Report: OMinit('myOM')

Import OM from Excel: OM <- XL2OM('myOM')

Generate OM Report: OMdoc()

Customize OM

Sketch Historical Fishing: Fleet/OM <- ChooseEffort(Fleet/OM)

Sketch Selectivity: Fleet <- ChooseSelect(Fleet, FstYr = ...)

Sketch Age Specific *M***:** OM <- ChooseM(OM)

Sketch Length Specific M: OM <- ChooseM(OM, 'Length')

Predicting Life-History Parameters:

e.g. OM <- new('OM')

OM@Species <- 'Scomber japonicus'

OM <- LH2OM(OM)

Custom Parameters:

e.g. OM <- new('OM', Albacore, Generic_Fleet, Generic_Obs, Perfect_Imp)

OM@cpars\$M <- rInorm(OM@nsim, log(0.2), 0.05)

Remove Process and Observation Error: OM <- tinyErr(OM)

Replace OM Component: OM <- Replace(OM, Blue_shark)

Examine OM

Plot OM Components:

e.g. plot(Albacore)
plot(Generic_Fleet)

Plot OM: plot(OM)

Plot Existing MPA: plotMPA(OM)

Plot M: plotM(OM)

Plot Selectivity: plotSelect(OM)

OM Excel: myOM.xlsx OM Report: myOM.rmd

| 🤟 🔍 | 💉 Knit + ⊙ +

Management Procedures

MP Type Returns

Output TAC (total allowable catch)

Input TAE, SL, Spatial (total allowable

effort, size limit, spatial closure)

Combination of Output and Input

TAC (assuming perfect data)

Find MP type: MPtype()

e.g. MPtype(c('AvC', 'curE', 'matlenlim', 'FMSYref'))

Run MSE

Mixed

Reference

Run MSE: runMSE()

e.g. MSE <- runMSE(OM,

MPs=c('AvC', 'curE', 'matlenlim', 'FMSYref'))

Run MSE in parallel: runMSE(parallel=TRUE)

e.g. MSE <- runMSE(OM,

MPs=c('AvC', 'curE', 'matlenlim', 'FMSYref'),

parallel=TRUE)

Check Convergence: Converge(MSE)

Run Historical Simulations:

Hist <- runMSE(OM, Hist=TRUE)

DLMtool CHEAT SHEET 2

Performance Metrics

Available PM Functions: avail('PM')

Calculate PM:

MSE <- runMSE() e.a. P50(MSE)

Example Custom PM:

Calculate Probability F < 2 x FMSY in first 5 years: myPM <- function(MSEobj=NULL, Ref=2, Yrs=5) { Yrs <- ChkYrs(Yrs, MSEobj) # validate years PMobj <- new('PMobj') # create empty PM object PMobj@Name <- paste0('Probability F/FMSY < ', Ref) # name of PM PMobj@Caption <- paste0('Probability F/FMSY < ', Ref) # caption PMobj@Stat <- MSEobj@F FMSY[, , Yrs[1]:Yrs[2]] # statistic PMobi@Ref <- Ref # save Reference PMobj@Prob <- calcProb(PMobj@Stat < PMobj@Ref, MSEobj) # prob. PMobj@Mean <- calcMean(PMobj@Prob) # average prob. PMobj@MPs <- MSEobj@MPs # record MPs PMobj # return PM object class(myPM) <- 'PM' # assign to class 'PM' summary(MSE, 'myPM') # calculate performance

Examine MSE Results

Summary Results: summary(MSE) **Value of Information:**

VOI(MSE)

VOI2(MSE)

Other Plots:

VOlplot(MSE)

VOlplot2(MSE)

Cplot(MSE)

DFO_plot(MSE)

DFO_plot2(MSE)

DFO_proj(MSE)

IOTC_plot(MSE)

PWhisker(MSE)

wormplot(MSE)

COSEWIC_Hplot(MSE)

TradePlot(MSE, 'myPM', 'P50') # trade-off plot with new PM

Trade-Off Plots: TradePlot(MSE, PMs) e.g.

TradePlot(MSE, 'P50', 'AAVY')

Tplot(MSE) Tplot2(MSE)

NOAA_plot(MSE)

Projection Plots:

Pplot(MSE)

Pplot2(MSE)

Kobe Plot: Kplot(MSE)

Subset MSE

Subset by MP: MSE2 <- Sub(MSE, MPs= ...)

MSE <- runMSE() e.a.

stats <- summary(MSE)

accept <- which(stats\$P50 > 0.7)

acceptMPs <- stats[accept, 'MP')

subMSE <- Sub(MSE, MPs=acceptMPs)</pre>

Subset by Simulation: MSE2 <- Sub(MSE, sims= ...)

below <- MSE@OM\$M < median(MSE@OM\$M) e.g.

subMSE <- Sub(MSE, sims=below)</pre>

Fishery Data Object

Example Data: avail('Data')

Blank Data: Data <- new('Data')

Initialize Data Excel: DataInit()

Import Data from Excel: Data <- XL2Data()</pre>

Plot Data: summary(Data)

Evaluating OM

Compare Simulated and Actual Data:

Turing(OM, Data)

Management Procedures

Available MPs: Can(Data)

Unavailable MPs: Cant(Data)

Feasible MPs: ?Fease

e.g. All Management Options: Fease(Data) = Can(Data)

TAC Only: Fease(Data, TAE=FALSE,

SL=FALSE, Spatial=FALSE)

Size Reg. Only: Fease(Data, TAC=FALSE,

TAE=FALSE, Spatial=FALSE)

Custom MPs

Averaging MPs: myMP <- makeMeanMP(MP Names)

avgMP <- makeMeanMP(c('BK', 'DBSRA', 'Fadapt', 'Rcontrol') MSE <- runMSE(DLMtool::testOM, MPs=c ('BK', 'DBSRA', 'Fadapt', 'Rcontrol', 'avgMP') Tplot(MSE)

Pseudo-Code to create new MP:

AvCatchMP <- function(x, Data, reps=100, plot=FALSE) { AvC <- Data@AvC[x] # access element x from Data object slot Rec <- new('Rec') # create object of class Rec # slotNames("Rec") Rec@TAC <- AvC # populate one or more Rec slots Rec # return Rec object class('AvCatchMP') <- 'MP'

Apply MPs

Apply MP: runMP(Data, 'MP Name')

All Available MPs: runMP(Atlantic_mackerel) TAC <- runMP(Atlantic_mackerel, 'AvC')@TAC

Plot TACs:

Atlantic mackerel <- runMP(Atlantic mackerel) e.g. boxplot(Atlantic mackerel)

Posterior Predicted Data

Generate Predicted Data from MP application:

```
MSE <- runMSE(MPs="DCAC", PPD=TRUE)
Predicted_Ind <- MSE@Misc[[1]]@Ind
matplot(t(Predicted_Ind), type='I',
        xlab='Projected Year', ylab='Index value')
```