Лабораторная работа № 3_2

Программирование арифметических операций

Цель работы:

Практическое овладение навыками разработки программного кода на языке Ассемблер. Программирование арифметических операций. Практическое освоение основных функций отладчика TD.

Порядок выполнения работы:

- 1. Создать рабочую папку для текстов программ на ассемблере и записать в нее файлы tasm.exe, tlink.exe, rtm.exe и td.exe из пакета tasm, а также файл с исходным текстом программы на ассемблере, который сохранить с именем prog№.asm.
- 2. Создать загрузочный модуль, загрузить его в отладчик и выполнить программу в пошаговом режиме.

Содержание отчета:

- 1. Цель работы.
- 2. Постановка задачи.
- 3. Детализация формулу по отдельным операциям.
- 4. Листинги программ (для каждого значения диапазона значений).
- 5. Таблицы (для каждого диапазона значений) состояния регистров в ходе выполнения программ для задания 3.
- 6. Ответы на контрольные вопросы.
- 7. Вывод.

Постановка задачи:

- 1. Используя текстовый редактор, создать и отредактировать исходный модуль программы Prog_3_1.asm, которая вычисляет значение Y в соответствии с вариантом задания (Приложение 1).
- 2. Распишем формулу по отдельным операциям, аналогично образцу в Приложении 2.:
- 3. Написать три варианта программы, позволяющие работать с исходных данных:
 - диапазон от 0 до 10
 - диапазон от -100 до 100
 - диапазон от -1000 до 1000
- **4.** Скомпилируйте и выполните отладку полученной программы, убедившись в правильности проведения вычислений, заполнив таблицу пошаговой отладки с указанием на отслеживаемые данных.

• Таблица 1

Оператор	Операнд-приемник		Арифметическое	Результат
			вычисление	
	до выполнения	После		
		выполнения		
1	2	3		

Контрольные вопросы

- Алгоритм работы команды ADC;
 Алгоритм работы команды SBB;

приложение _1

1	$y = \frac{x + 2x^2}{3a} - ax^2$	13	$y = \frac{b^2}{5+a} - \frac{(b+a)^2}{3b}$
2	$y = \frac{a^2x^2}{b-2} - 3a^3x^3$	14	$y = \frac{x+c}{5+bc} + 2x^2$
3	$y = \frac{ab - 1}{2 + b} - 2ab^2$	15	$y = \frac{a^2 x^2}{b - 2} - \frac{x + a^2}{5}$
4	$y = \frac{3a^2 - b}{a + b} - 3(a^2 - 1)$	16	$y = \frac{x^2 + a^2}{8b + 1} - \frac{ax^2}{3}$
5	$y = \frac{x + a^2}{3b} - \frac{x^2}{2}$	17	$y = \frac{a}{a+b} - \frac{1}{2}(a^3 + 3)$
6	$y = \frac{x^2 + ax}{3b - c} - ab$	18	$y = \frac{x^2 - ax}{b + 2} - \frac{x^3}{3}$
7	$y = (a+b^3)a + \frac{ab}{5}$	19	$y = a^2b^2c^2 + \frac{x^2 + c^2}{3 + bc}$
8	$y = 2xa^3 - \frac{a+4}{2b+1}$	20	$y = \frac{x^2 + ax}{3b - c} + 4ab^2$
9	$y = \frac{3a^2 - b}{cx} + \frac{4ab}{x^2 + 1}$	21	$y = bx^3 - \frac{4x^2a^2}{3(a-b)}$
10	$y = \frac{x^2 - ax}{b+2} - a^3$	22	$y = \frac{4a^2 - b}{2ab} - a^3x$
11	$y = \frac{(b-a)^2}{4+b} + 5ab$	23	$y = \frac{3a^2 - b}{a + cx} - 5ab$
12	$y = \frac{a^3 + 5}{8a} - \frac{x^3}{2}$	24	$y = \frac{a^2}{a+b} + \frac{4ab}{x^2+1}$

ПРИЛОЖЕНИЕ 2

Вычислить
$$y = 3a + \frac{(b+5)}{2} - c - 1$$

 $y \leftarrow (AX)$

Распишем формулу по отдельным операциям:

 $AX \leftarrow a$; значение A в регистре AX $AX \leftarrow 2 * (AX)$; 2а в АХ $AX \leftarrow (\overrightarrow{AX}) + \overrightarrow{A}$; 3а в АХ $BX \leftarrow b$; b в ВХ $BX \leftarrow 5 + (BX)$; b+5 в ВХ $BX \leftarrow (BX)/2$; (b+5)/2 B BX $AX \leftarrow (BX) + (AX)$; 3A+(b+5)/2 B AX $AX \leftarrow (AX) - c$; 3a+(b+5)/2-c B AX; 3a+(b+5)/2 - c - 1 в AX $AX \leftarrow (AX) - 1$; 3a+(b+5)/2 - c - 1 B X