MULTI-PERIOD OPTIMAL POWER FLOW

Ву

ARYAN RITWAJEET JHA

A dissertation submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY School of Electrical Engineering and Computer Science

 $MAY\ 2023$

© Copyright by ARYAN RITWAJEET JHA, 2023 All Rights Reserved

То	the	Faculty	of	Washington	State	University	:

The members of the Committee appointed to examine the dissertation of ARYAN RIT-WAJEET JHA find it satisfactory and recommend that it be accepted.

Anamika Dubey, Ph.D., Chair
Committee Member A, Ph.D.
Committee Member C, Ph.D.

ACKNOWLEDGMENT

TBA

MULTI-PERIOD OPTIMAL POWER FLOW

Abstract

by Aryan Ritwajeet Jha, Ph.D. Washington State University May 2023

: Anamika Dubey

TBA

TABLE OF CONTENTS

		Page
ACKNOWLEDGMENT		. iii
ABSTRACT		. iv
LIST OF TABLES		. vi
LIST OF FIGURES		. vii
CHAPTER		
1 SOME FORMATTING EXAMPLES		
2 FIGURES AND TABLES		
REFERENCES		3
APPENDIX		
A Branch Flow Model: Relaxations and Convexificati	ion	. 5
B Abstracts: Optimization-based Methods for solving	g MP-OPF	7
C Abstracts: Dynamic Programming Methods for sol	lving MP-OPF .	. 8
D Abstracts: Differential Dynamic Programming		. 9
E Models: Battery Model for Mutli-Period OPF		. 10

LIST OF TABLES

A.1	Table describing the variables involved in the Branch Flow Model equations.	5
A.2	Table describing the Branch Flow Model equations	6
E.1	Description of Grid Parameters	11
E.2	Description of Battery Variables	12

LIST OF FIGURES

Dedication

TBA

Chapter One

SOME FORMATTING EXAMPLES

1.1 Chapter one tittle section

Chapter Two

FIGURES AND TABLES

2.1 Examples of a figure

REFERENCES

- [1] Aayushya Agarwal and Larry Pileggi. "Large Scale Multi-Period Optimal Power Flow With Energy Storage Systems Using Differential Dynamic Programming". In: *IEEE Trans. Power Syst.* 37.3 (Sept. 2021), pp. 1750–1759. ISSN: 1558-0679. DOI: 10.1109/TPWRS.2021.3115636.
- [2] Masoud Farivar and Steven H. Low. "Branch flow model: Relaxations and convexification". In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (Dec. 2012), pp. 3672–3679. ISSN: 0743-1546. DOI: 10.1109/CDC.2012.6425870.
- [3] Nawaf Nazir and Mads Almassalkhi. "Receding-Horizon Optimization of Unbalanced Distribution Systems with Time-Scale Separation for Discrete and Continuous Control Devices". In: 2018 Power Systems Computation Conference (PSCC) (June 2018), pp. 1–7. DOI: 10.23919/PSCC.2018.8442555.
- [4] Nawaf Nazir, Pavan Racherla, and Mads Almassalkhi. "Optimal multi-period dispatch of distributed energy resources in unbalanced distribution feeders". In: arXiv (June 2019). DOI: 10.48550/arXiv.1906.04108. eprint: 1906.04108.
- [5] Xiaodong Qian and Yuanguo Zhu. "Differential Dynamic Programming for Multistage Uncertain Optimal Control". In: 2014 Seventh International Joint Conference on Computational Sciences and Optimization. IEEE, July 2014, pp. 88–92. DOI: 10.1109/CSO. 2014.25.

Appendix A

Branch Flow Model: Relaxations and

Convexification

In [2] the authors came up the Relaxed Branch Flow Model, and showed that in the case of Tree/Radial networks, the Relaxed Model can solve for the unique optimal solution, including the bus angles, and in the case of weakly meshed networks, there is a mechanism for extracting the bus angles from the relaxed solution, to find out its unique solution, if it exists.

Legend for Table A.2:

Table A.1 Table describing the variables involved in the Branch Flow Model equations.

Symbol	Meaning
p_j, q_j	Real, Reactive Power flowing from bus j into the network.
P_{ij}, Q_{ij}	Real, Reactive Power flowing in branch $i \to j$ (sending-end).
I_{ij}, l_{ij}	Complex Current flowing in branch

Table A.2 Table describing the Branch Flow Model equations.

Equation $\#$	Equation	Unknowns	Knowns	No. of Equations	
		$1 \times p_0$	$n \times p_j$		
13	$p_{i} = \sum P_{ij} + \sum (P_{ij} - r_{ij}l_{ij}) + q_{ij}q_{ij}$	$m \times P_{ij}$	$m \times r_{ij}$	(n+1)	
10	$p_j = \sum P_{jk} + \sum (P_{ij} - r_{ij}l_{ij}) + g_j v_j$	$m \times l_{ij}$	$(n+1) \times g_j$		
		$n \times v_j$	$1 \times v_0$		
		$1 \times q_0$	$n \times q_j$		
14	$a_i = \sum_i O_{i,i} + \sum_i O_{i,i} a_{i,i} I_{i,i} + b_{i,i} I_{i,i}$	$m \times Q_{ij}$	$m \times x_{ij}$	(n+1)	
14	$q_j = \sum Q_{jk} + \sum (Q_{ij} - x_{ij}l_{ij}) + b_j v_j$	$m \times l_{ij}$	$(n+1) \times b_j$	(n+1)	
		$n \times v_j$	$1 \times v_0$		
		$m \times P_{ij}$,		
1.5	. (2 . 2)1 o(D . O)	$m \times Q_{ij}$	$b \times r_{ij}$		
15	$v_j = v_i + (r_{ij}^2 + x_{ij}^2)l_{ij} - 2(r_{ij}P_{ij} + x_{ij}Q_{ij})$	$m \times l_{ij}$	$m \times x_{ij}$ $1 \times v_0$	m	
		$n \times v_j$			
	$l_{ij} = \frac{P_{ij}^2 + Q_{ij}^2}{v_j}$	$m \times P_{ij}$	$1 \times v_0$	m	
16		$m \times Q_{ij}$			
10		$m \times l_{ij}$			
		$n \times v_j$			
		1	$n imes p_j$		
		$1 \times p_0$	$n \times q_j$		
		$1 \times q_0$	$m \times r_{ij}$		
13 to 16		$m \times P_{ij}$	$m \times x_{ij}$	2(n+1+m)	
		$m imes Q_{ij}$	$(n+1) \times g_j$		
		$m \times l_{ij}$	$(n+1) \times b_j$		
		$n \times v_j$	$1 \times v_0$		
		2(n+1+m)	4n + 2m + 3	2(n+1+m)	

Appendix B

Abstracts: Optimization-based Methods

for solving MP-OPF

In [4], the authors use a two-step paradigm for solving the MP-OPF problem, by first solving for a more relaxed SOCP problem for the all of the time-steps in a horizon, and using the SOC values from its solution, solve for the NLP OPF problem for every time-step in parallel.

In [3], they prove that for 'realistic' systems, appending an additional 'complementarity' cost function to the original objective function, Simultaneous Charging and Discharging (SCD) in the optimal solution is avoided, and that the Mixed-Integer SOCP problem of AC-OPF with energy storage can be relaxed into a regular SOCP problem without violating the battery physics in the optimal solution.

Appendix C

Abstracts: Dynamic Programming

Methods for solving MP-OPF

In [1], the authors use a Differential Dynamic Programming approach, which involved usage of Forward and Backward passes made over a sequence of time-steps, doing a back-and-forth between computation for one time-step, say t, by making some assumptions on any variables required from the next time-step t+1, and then updating the assumed values at t, once new values for the t+1 time-step have been made.

Appendix D

Abstracts: Differential Dynamic

Programming

In [5], the authors lay out the framework on how Differential Dynamic Programming can be utilized to solve a Mutli-Stage Uncertain Optimal Control problem programmatically.

Appendix E

Models: Battery Model for Mutli-Period OPF

In [3, 4], the batteries are modelled using four state/control variables, which are:

Table E.1 Description of Grid Parameters

Variable	Description
\mathcal{N}	Set of all nodes. $\mathcal{N} = \{1, 2, \dots n\}$
$\mathcal L$	Set of all branches.
	$\mathcal{L} = \{1, 2, \dots l\} = \{(i, k)\} \subset (\mathcal{N} \times \mathcal{N}).$
\mathcal{D}	Set of all nodes containing DERs.
	$\mathcal{D}\subset\mathcal{N}$
\mathcal{B}	Set of all nodes containing storage.
	$\mathcal{B}\subset\mathcal{N}$
Δt	Duration of a single time period. Here
	$\Delta t = 15 \text{ min.} = 0.25 \text{ h.}$
T	Prediction Horizon Duration. Total time
	duration solved for as part of one
	instance of MP-OPF.
K	Prediction Horizon Number. Total
	number of discrete-time steps solved for
	in one instance of MP-OPF. $T=K\Delta t$

Table E.2 Description of Battery Variables

Variable	Description	Dimension	Dimension pu
$B_{n,k}$	State of Charge (SOC) of	[kWh]	[puh]
	Battery		
$P_{n,k}^c$	Average Charging Power of	[kW]	[pu]
	the Battery during the k -th		
	time interval.		
$P_{n,k}^d$	Average Discharging Power	[kW]	[pu]
	of the Battery during the		
	k-th time interval.		
$q_{B_{n,k}}$	Average Reactive Power	[kVAr]	[pu]
	Output from the Battery		
	Inverter during the k -th		
	time interval.		

 $k \in \{0, 1, 2, \dots, T/\Delta t\}$ The index of the discretized time intervals, where k represents the k-th time interval of duration Δt within the continuous time range [0, T]. The corresponding continuous time interval is $[(k-1)\Delta t, k\Delta t]$.

 $n \in \mathcal{N}$ The node n is an element of the set of all nodes in the power grid \mathcal{N} .