SVKM's NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme:B. Tech (COMPUTER)

Year: II

Semester: IV

Academic Year: 2017-2018

Subject: Theoretical Computer Science

1) Question No. 1 is compulsory.

Date:12 May 2018

Marks:70

Time: 2.00 pm to 5.00

Durations: 3 (hrs

No. of Pages:

Final Examination

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

 2) Out of remaining questions, attempt any 4 questions. 3) In all 5 questions to be attempted. 4) All questions carry equal marks. 5) Answer to each new question to be started on a fresh page. 6) Figures in brackets on the right hand side indicate full marks. 7) Assume suitable data if necessary. 						
Q.1.	a.		Differentiate between Push Down Automata and Post Machine.	[05]		
	b.		Application of Automata in Compiler Construction.	[04]		
	c.		Explain the Halting Problem of Turing Machine.	[05]		
Q.2.	a.		Give Context Free grammar for the following Languages			
		i.	L((baa+abb)*)	[02]		
		ii.	L(a*baab*)	[02]		
		iii.	L(b*ab*ab*)	[02]		
	b.		Construct NFA with ∈-moves equivalent to the regular expression	[80]		
			" $a.(a+b)*.a+a.(b.b+a)$ "			
Q.3.	a.		Convert the following CFG in to equivalent Chomsky Normal Form	[08]		
			$<$ {S, X, Y}, { a, b}, { S \rightarrow XYX, X \rightarrow aX bX \in , Y \rightarrow bbb }, S >			
	b.		Describe the following regular expressions in English.			
		i.	(a+b)*a(a+b)*b(a+b)*.	[02]		
		ii.	(00)*(11)*1.	[02]		
	c.		Give Regular Expression for representing the set of strings over an alphabet	[02]		
			{a, b} such that it contains at most three a's. Justify your answer.			

Page 1 of 2

Q.4.	a	Design a Mealy machine to convert every sequence of "1000" in to "1001"	[05]
		from the given input string over an alphabet {0, 1}.	
	b.	Design a Turing Machine for calculating multiplication of two unary numbers	[09]
9		n and m , also give proliferation for $n=2$ and $m=3$.	
Q.5.	a.	Design Turing Machine for accepting the strings from language $L(a^nb^n n>=1)$.	[05]
Q.J.	b.	Design Push Down Automata for accepting the strings from the language	[09]
		$L(ab^ncd^ne n>0).$	
Q.6.	a.	State and explain Pumping lemma for CFL.	[05]
	b.	Design Post Machine to accept string for the language $L(0^n b^m 1^n d^m m, n > 0)$.	[09]
Q.7.		Explain the following.	
	a. ·	Explain Turing Machine Codes with the help of suitable example.	[05]
	b.	Mealy and Moore Machine.	[05]
	c.	Explain Post Correspondence Problem with the help of suitable example.	[04]