"Deep Q-Network (DQN) trader: Reinforcement learning for Automated trading"

THESIS SUBMITTED TO

Symbiosis Institute of Geoinformatics

FOR PARTIAL FULLFILMENT OF THE M. Sc. DEGREE

By

Avesh Kumar Bhati

PRN 22070243005

(Batch 2022-2024)

Symbiosis Institute of Geoinformatics

Symbiosis International (Deemed University)

5th Floor, Atur Centre, Gokhale Cross Road Model Colony, Pune-411016

ACKNOWLEDGEMENT

In today's world of competition there is a race of existence in which only those succeed who have the will to come forward and accept challenges. Project acts as a bridge between theoretical concepts and the practical working. Keeping this in mind I started this project.

First of all, I would like to thank the Almighty without his grace this project could not have become a reality.

Next are my parents, whom have constantly supported me and encouraged me to complete this project.

I would also like to express my special thanks of gratitude to my internal guide "Vidya Patkar" for her able guidance and support in completing my project.

I would also like to thank Dr. T.P. Singh and Dr. Navendu Chaudhary for helping us with the project and internal guide allocation.

I would also like to thank all my teachers and data science friends associated with Symbiosis Institute of Geoinformatics who have always been helpful and encouraged me throughout the year.

To all those who have directly or indirectly contributed to this project, I am truly grateful for your involvement. Your Support has been instrumental in its success.

TABLE OF CONTENTS

Chapter 1: Introduction	1-2
1.1: Problem statement	2
1.2: Proposing.	2
1.3: Background of the project	3
1.4: objectives	3-4
1.5: Expected outcomes	4
Chapter 2: Literature Review	5-24
Chapter 3: Methodology	25
3.1: Data collection.	26
3.2: Data pre-processing	26-27
3.3: Model building	27-29
3.4: DQN Trader	29-31
3.5: functions of DQN trader	32-33
3.6: Model training	33-34
3.7: Testing	35
Chapter 4: Result and Discussion.	36-46
Chapter 5: Conclusion.	46
Chapter 6: References.	47

LIST OF FIGURES

FIGURE 1: Methodology Flowchart	25
FIGURE 2: Working of DQN Trader	29
FIGURE 2.1: DQN Loss Calculation.	31
FIGURE 3: Lstm (Goog)	37
FIGURE 4: Lstm (Amazon)	37
FIGURE 5: Lstm (Nifty)	38
FIGURE 6: Linear Regression (Nifty)	38
FIGURE 7: Linear Regression (GOOG)	39
FIGURE 8: Linear Regression (Amazon)	39
FIGURE 9: XGBOOST(Nifty)	40
FIGURE 10: XGBOOST(Amazon)	40
FIGURE 11: XGBOOST(Goog)	40
FIGURE 12: DQN(Goog)	41
FIGURE 13: DQN(Amazon)	42
FIGURE 14: DQN(Apple)	43
FIGURE 15: DQN(Tesla)	44
FIGURE 16: DON(New value)	45

LIST OF EQUATION

Equation1:Bellman Equation31
Equation2: Q Learning33
LIST OF TABLES
TABLE 1: Summary of literature review
TABLE 2: Model Accuracy Comparison36
ABBREVIATION LIST
1. API - Application Programming Interface
2. LSTM - Long Short-Term Memory
3. MSE - Mean Squared Error
4. ReLU - Rectified Linear Unit
5. DQN - Deep Q-Network
6. NSEI - Nifty (National Stock Exchange Fifty)
7. AMZN - Amazon
8. GOOGL - Google
9. TSLA - Tesla
10. APPL - Apple
11. Rs Indian Rupees (currency symbol)
12. AI - Artificial Intelligence

PREFACE

In the ever-evolving landscape of financial markets, the ability to make informed and accurate investment decisions is crucial. With advancements in artificial intelligence and machine learning, new opportunities have emerged to harness the power of technology in the world of trading. One such ground-breaking development is the Deep Q-Network (DQN) trader.

This project report explores the application of DQN, a reinforcement learning algorithm, in the domain of trading. DQN combines the concepts of deep neural networks and Q-learning to create an intelligent agent capable of learning and making decisions in complex environments. By training the agent on historical market data, it can learn patterns, adapt to changing market conditions, and optimize trading strategies to maximize returns.

The primary objective of this project is to investigate the performance and effectiveness of the DQN trader in real-world financial markets. By designing and implementing a trading system based on DQN, we aim to assess its ability to generate profitable trading decisions while considering risk management and market dynamics.

Throughout this report, we delve into the theoretical foundations of DQN, exploring its underlying principles and the key components that enable it to learn and improve over time. We discuss the challenges and considerations specific to implementing DQN in the context of trading, including data pre-processing, feature selection, and reward function design.

Furthermore, we present the methodology employed in this project, outlining the data collection process, the architecture of the DQN model, and the training and evaluation procedures. We carefully consider the choice of hyperparameters and provide a detailed analysis of the performance metrics used to assess the effectiveness of the DQN trader.

Importantly, this project report aims to be a comprehensive resource for both traders and researchers interested in exploring the application of DQN in financial markets. We provide a critical analysis of the results obtained, highlighting the strengths and limitations of the DQN trader, and offer insights into potential avenues for further research and improvement.

We would like to acknowledge the support and guidance of our project supervisor, who provided valuable input and helped shape the direction of this research. Additionally, we extend our gratitude to the open-source community for providing access to the necessary tools and libraries used in the implementation of the DQN trader.

It is our hope that this project report contributes to the growing body of knowledge on the use of reinforcement learning techniques in trading. By shedding light on the capabilities and challenges of the DQN trader, we aim to inspire further exploration and innovation in this exciting field.

Avesh Kumar Bhati

Introduction

In the ever-changing and highly desirable world of stock markets, traders strive to maximize their potential profits. To achieve this goal, researchers and professionals have sought to automate the trading process using advanced techniques like Data Science and Machine Learning. One such promising approach is the DQN Trader, a unique model that leverages the power of reinforcement learning to generate automated trading strategies based on historical market data. (Shah, 2021)

The DQN Trader takes its inspiration from the terms commonly used in the stock market: "bear" and "bull." A bear run signifies a market downturn, while a bull run represents a long-term rise in market prices. In the realm of intraday trading, where traders buy and sell financial instruments within the same trading day, these terms hold great significance. Intraday trading involves closing all positions before the market closes for the day, making it a type of securities speculation.

The significance of historical market data and current events cannot be ignored when formulating trading plans. While human traders have traditionally relied on their expertise and intuition, the advent of Data Science and Machine Learning has opened up opportunities for automating this laborious process. By harnessing the capabilities of these technologies, an automated trading technique can offer better estimates and timely suggestions, particularly beneficial for mutual funds and hedge funds seeking maximum profits.

However, creating an effective automated trading system is not without challenges. There is always a certain level of risk associated with achieving consistently profitable returns. It requires considerable effort to design a balanced and low-risk strategy that can benefit a wide range of individuals in the stock market.

Enter the DQN Trader, a cutting-edge solution that employs reinforcement learning agents to develop automated trading strategies based on historical data. The Deep Q-Network (DQN), a deep reinforcement learning algorithm, lies at the core of this model. By combining deep learning techniques with reinforcement learning principles, the DQN Trader aims to optimize trading decisions and maximize profitability. (Shah, 2021)

The DQN Trader's training process involves iterative interactions with the market environment. Through trial and error, the model learns from past market data, identifies patterns, and seeks to make informed trading decisions. It optimizes a reward function to maximize profits or minimize losses over time, ultimately refining its decision-making capabilities.

To create a successful DQN Trader system, various aspects must be carefully considered. This includes selecting appropriate input features, designing an optimal network architecture, defining an effective reward function, and addressing transaction costs and market dynamics. These considerations contribute to developing a robust and efficient trading system.

PROBLEM STATEMENT:

In recent years the technical analysis attracts a lot of attention due to a simple fact that we have enough information just by looking to the historical stock market, which is public and well-organized, compared to the fundamental analysis where we need to analyze unstructured dataset.

Compared to the supervised learning techniques and at a certain level, un-supervised learning algorithms, are widely used in stock price prediction, to the best of our knowledge the reinforcement learning for stock price prediction has not yet received enough support as it should be. The main issue of supervised learning algorithms is that they are not adequate to deal with time-delayed reward. In other words, supervised learning algorithms focus only on the accuracy of the prediction at the moment without considering the delayed penalty or reward. Furthermore, most supervised machine learning algorithms can only provide action recommendation on particular stocks, using reinforcement learning can lead us directly to the decision making step, i.e. to decide how to buy, hold or sell any stock.

So, in this report we will discuss about the Machine learning techniques that were earlier used for predicting the Stock price.

PROPOSING:

In order to solve this issue, we suggest an agent model that will automatically make the neces sary decisions regarding whether to buy, hold, or sell stocks.

BACKGROUND OF THE PROJECT:

The complicated and volatile financial markets have always attracted academics and traders looking for lucrative investment opportunities. Traditional trading methods are labour-intensive, subject to human bias, and primarily reliant on human intuition, analysis, and manual decision-making. Automated trading systems, which can process enormous volumes of data and make wise trading decisions in real-time thanks to advances in AI and machine learning, have become a potential alternative.

In the field of AI, Deep Q-Networks (DQNs) have attracted a lot of interest, notably in the area of reinforcement learning. DQNs are neural network architectures that incorporate reinforcement learning algorithms and deep learning techniques. This enables the model to learn the best course of action by interacting with the environment and receiving feedback in the form of incentives or Penalties.

OBJECTIVES:

- Automate Trading Strategy: The DQN Trader's main goal is to automate the
 procedure of coming up with trading strategies. By using a model that can make
 trading decisions automatically based on historical market data, it seeks to replace
 manual decision-making.
- Maximise Profitability: By making the best trading decisions possible, the DQN
 Trader aims to maximise profitability. The programme attempts to find patterns and
 trends that could result in winning trades by using reinforcement learning techniques
 to learn from historical data.
- Reduce Risk: Reducing risk is another goal of the DQN Trader. The model seeks to generate trading decisions that strike a balance between prospective gains and potential losses by including a reward function that takes into account both profitability and risk management.

- Learn from previous Market Data: The DQN Trader builds its trading methods by studying previous market data. The model seeks to extract useful information that can direct its decision-making process by examining previous price movements, trends, and other pertinent factors.
- Enhance Trading Decisions: The DQN Trader seeks to enhance its trading decisions through the iterative training process. The model aims to enhance performance over time by assessing and changing its tactics in response to input in the form of rewards.
- Offer a Low-Risk Trading Approach: The DQN Trader strives to create a well-balanced, low-risk trading approach that may be utilised by a variety of traders.
 Profitability is a goal, but it's also important to reduce risk. The approach aims to balance minimising possible losses with profit maximisation.

Expected Outcomes:

- Creation of a fully functional trading system with the ability to conduct transactions
 on its own based on forecasts provided by the DQN model is the project's main
 objective.
- Enhanced trading performance compared to traditional tactics is what the project intends to achieve by utilising AI and reinforcement learning approaches, with the end goal being consistent profitability.
- The DQN-based system should be able to modify its trading strategy in response to changing market conditions so that it can successfully seize opportunities and reduce risks.

LITERATURE REVIEW

Automated stock trading, also known as algorithmic trading or algo-trading, is the use of computer programs to execute trading decisions based on predefined rules and parameters. The use of algorithms and artificial intelligence (AI) in stock trading has become increasingly popular in recent years due to its ability to analyse large amounts of data and make rapid decisions based on market trends and patterns. In this literature review, we will examine several studies that have explored the use of automated stock trading.

The combined findings from various papers indicates that deep reinforcement learning and machine learning techniques offers promising results in automated stock trading. These approaches have the potential to improve trading performance metrics such as cumulative return, Sharpe ratio, and adaptability to changing market conditions and can create more opportunities in the same field. (Hongyang Yang1, 2021)

Ensemble strategies using deep reinforcement learning have been shown to outperform baseline strategies in terms of cumulative return, Sharpe ratio, and maximum drawdown. The FinRL library, based on deep reinforcement learning, has also demonstrated significant outperformance compared to baseline strategies.

The application of deep reinforcement learning in the Chinese stock market has led to improved trading performance, while incorporating stock-specific news analysis has resulted in automated trading systems that outperform baseline strategies.

Furthermore, synchronous deep reinforcement learning models and Q-learning agents have shown higher returns and adaptability to changing market conditions. Machine learning techniques, including decision trees, performance weighted random forests, and logical clustering algorithms, have also exhibited superior performance compared to traditional trading strategies.

Additionally, the integration of optimization methods, portfolio optimization, and sentiment analysis has significantly improved the performance of automated trading systems. Studies have also explored the role of materiality and high-frequency trading in the development of automated trading systems.

Although these combined findings suggest the potential benefits of using deep reinforcement learning and machine learning in automated stock trading, it is important to note that further research and live trading environment testing are necessary to evaluate the practical effectiveness and potential risks associated with these approaches.

Sr.	Author(s), Journal	Title	Year	DATA	Purpose	Findings
No			Publishe	SAMPLES		
			d			
1	H. Yang, X. Y. Liu, S.	Deep	2020	S&P Histroical	The purpose	The findings of the
	Zhong, and A. Walid	reinforcement			of the paper is	paper indicate that
		learning for			to propose a	the proposed
		automated			new approach	ensemble strategy for
		stock trading:			to automated	automated stock
		An ensemble			stock trading	trading using deep
		strategy			using deep	reinforcement
					reinforcement	learning outperforms
					learning and	several baseline
					an ensemble	strategies, including a
					strategy. The	buy-and-hold
					authors aim to	strategy, a simple
					address the	moving average
					challenges	strategy, and a single
					associated	neural network-based
					with stock	trading strategy. The
					trading, such	ensemble strategy is
					as the	shown to improve
					dynamic and	performance in terms
					complex	of cumulative return,
					nature of the	Sharpe ratio, and
					stock market	maximum drawdown.
					and the	However, it should
					difficulty of	be noted that the
					accurately	approach has yet to
					predicting	be tested in live
					stock prices.	trading environments,
					They evaluate	and further research
					their approach	is needed to evaluate
					on historical	its practical
					data from the	effectiveness and
					S&P 500	potential risks.
					index and	
					compare it to	
					several	
					baseline	

	T	T	ı			
					strategies to	
					demonstrate	
					its potential	
					benefits in	
					terms of	
					cumulative	
					return, Sharpe	
					ratio, and	
					maximum	
					drawdown.	
2	X. Y. Liu, H. Yang, Q.	A deep	2020	The paper does	The purpose	The paper presents
	Chen, R. Zhang, L. Yang,	reinforcement		not describe	of the paper is	the FinRL library,
	and H. Li	learning		specific data	to present a	which includes a set
		library for		samples	deep	of DRL algorithms, a
		automated		collected.	reinforcement	data processing
		stock trading		Instead, the	learning	pipeline, and a
		in quantitative		authors use three	(DRL) library	backtesting
		finance		popular datasets,	called FinRL,	framework. The
				including the	designed for	authors evaluate
				S&P 500 index,	automated	FinRL on three
				for evaluating	stock trading	popular datasets and
				their FinRL	in quantitative	find that it
				library.	finance. The	significantly
				norary.	authors aim to	outperforms several
					address the	baseline strategies,
					challenges of	including the buy-
					automated	and-hold strategy and
					stock trading,	a technical analysis-
					such as non-	based strategy.
					stationary and	FinRL achieves
					high-	higher cumulative
					dimensional	return, Sharpe ratio,
					market data,	and lower maximum
					and provide a	drawdown than the
					comprehensiv	baseline strategies,
					e evaluation	demonstrating its
					of FinRL on	potential
					several	effectiveness in
					popular	automated stock
					datasets. They	trading
					compare its	
					performance	
					with several	
					baseline	
L	1		l .			

		T	Т	T	г .	T
					strategies to	
					demonstrate	
					its potential	
					benefits in	
					terms of	
					cumulative	
					return, Sharpe	
					ratio, and	
					maximum	
					drawdown.	
3	L. Chen and Q. Gao	Application of	2019	The paper does	The purpose	The paper presents a
		deep		not describe	of the paper is	DRL-based
		reinforcement		specific data	to apply deep	automated trading
		learning on		samples	reinforcement	system that is trained
		automated		collected.	learning	on historical stock
		stock trading		Instead, the	(DRL) to	data from the
		stock trading		authors use	automated	Chinese stock
				historical stock	stock trading	market. The system
				data from the	and	·
						uses a deep Q-
				Chinese stock	investigate its	network (DQN)
				market for	performance	algorithm to learn the
				training and	in the Chinese	optimal trading
				evaluating their	stock market.	policy from the
				DRL-based	The authors	market data. The
				automated	aim to explore	authors evaluate the
				trading system.	the potential	performance of the
					benefits of	system on a set of
					using DRL to	real trading data and
					address the	compare it with
					challenges	several baseline
					associated	strategies, including a
					with stock	buy-and-hold
					trading, such	strategy and a simple
					as market	moving average
					dynamics and	strategy. The results
					information	show that the DRL-
					asymmetry.	based system
					, .,.	outperforms the
						baseline strategies in
						terms of cumulative
						return and Sharpe
						ratio. Specifically,
						the DRL-based

Г	Г	T	T	T	T	
						system achieves a
						cumulative return of
						62.18% and a Sharpe
						ratio of 1.019, while
						the buy-and-hold
						strategy and the
						simple moving
						average strategy
						achieve a cumulative
						return of 15.28% and
						20.49%, and a Sharpe
						ratio of 0.134 and
						0.187, respectively.
						However, the authors
						note that the
						approach has yet to
						be tested in live
						trading environments,
						and further research
						is needed to evaluate
						its practical
						effectiveness and
						potential risks.
4	J. Zou, H. Cao, L. Liu, Y.	Astock: A	2022	The Astock	The purpose	The paper presents an
	Lin, E. Abbasnejad, and H.	new dataset		dataset is created	of the paper is	automated stock
	Zhang	and		by collecting	to introduce a	trading system that
		automated		stock-specific	new dataset	uses a stock-specific
		stock trading		news and stock	called Astock,	news analyzing
		based on		price data for	which	model to predict
		stock-specific		1696 listed	contains	future stock price
		news		companies in the	stock-specific	movements and make
		analyzing		Chinese stock	news and	trades. The system is
		model		market from	stock price	trained on the Astock
				January 1, 2015,	data for the	dataset using a
				to October 31,	Chinese stock	combination of
				2019. The news	market. The	convolutional neural
				data is obtained	authors also	networks (CNNs) and
				from several	propose an	long short-term
				financial news	automated	memory (LSTM)
				sources and is	stock trading	networks. The
				preprocessed to	system based	authors evaluate the
				extract relevant	on a stock-	performance of the
				features, such as	specific news	system on a set of
						i -
				sentiment scores	analyzing	real trading data and

				and named	model, which	compare it with
				entities. The	is trained on	several baseline
				stock price data is	the Astock	strategies, including a
				obtained from the	dataset. The	buy-and-hold
				Wind Financial	system aims	strategy and a simple
				Terminal.	to use the	moving average
				Terminar.	information	strategy. The results
					contained in	show that the
					stock-specific	proposed system
					news to	
						outperforms the
					predict future	baseline strategies in
					stock price	terms of cumulative
					movements	return and Sharpe
					and make	ratio. Specifically,
					profitable	the system achieves a
					trades.	cumulative return of
						214.98% and a
						Sharpe ratio of 1.74,
						while the buy-and-
						hold strategy and the
						simple moving
						average strategy
						achieve a cumulative
						return of 23.48% and
						48.23%, and a Sharpe
						ratio of 0.17 and
						0.36, respectively
5	Ramy AbdelKawy, Walaa	A	2021	The paper uses	The purpose	The authors develop
	M. Abdelmoez, and Ahmed	synchronous		historical stock	of this paper is	a synchronous deep
	Shoukry	deep		price data for a	to propose a	reinforcement
		reinforcement		number of	synchronous	learning model that
		learning		companies,	deep	can simultaneously
		model for		including Apple,	reinforcement	trade multiple stocks.
		automated		Microsoft, and	learning	The model uses a
		multi-stock		Google, as well	model for	combination of
		trading		as news	automated	convolutional and
				sentiment data	multi-stock	recurrent neural
				obtained from	trading. The	networks to analyze
				online news	authors aim to	both the historical
				sources.	develop a	price data and the
					model that can	news sentiment data.
					learn to trade	The authors find that
					multiple	the proposed model
					stocks	outperforms
					<u> </u>	1

					simultaneousl	4 1'4' 14 1'
						traditional trading
					y and achieve	strategies and
					higher returns	achieves higher
					than	returns. They also
					traditional	find that the model is
					trading	able to learn and
					strategies	adapt to changing
						market conditions,
						and that it can
						generalize to new
						stocks that were not
						included in the
						training set. The
						authors conclude that
						their model has the
						potential to be an
						effective tool for
						automated multi-
						stock trading.
6	Bin Huang, Yong Huan, Lin	Automated	2019	The paper does	The purpose	The authors provide
	Da Xu, Lina Zheng	trading		not involve any	of this paper is	an overview of the
		systems		data collection or	to provide a	different types of
		statistical and		analysis.	comprehensiv	automated trading
		machine			e survey of	systems, including
		learning			automated	rule-based systems,
		methods and			trading	technical analysis-
		hardware			systems,	based systems, and
		implementatio			including the	machine learning-
		n: a survey			statistical and	based systems. They
					machine	describe the
					learning	statistical and
					methods used,	machine learning
					and the	methods used in
					hardware	these systems,
					implementatio	including regression
					ns that enable	analysis, time series
					high-speed	analysis, neural
					trading.	networks, and deep
						learning. They also
						discuss the hardware
						implementations used
						in high-speed trading,
						including FPGA and
						GPU-based systems.
						_

		T	1	T	T	
						The authors conclude
						that the use of
						automated trading
						systems has become
						increasingly
						prevalent in financial
						markets, and that the
						use of statistical and
						machine learning
						methods, combined
						with high-speed
						hardware
						implementations, has
						the potential to
						improve trading
						performance and
						market efficiency.
7	Jayant B. Chakole, Manish	A Q-learning	2021	The paper uses	The purpose	The authors develop
	S. Kolhe, Gajanan D.	agent for		historical stock	of this paper is	a Q-learning agent
	Mahapurush, and Nitin S.	automated		price data for a	to develop and	that can learn to
	Mahalle	trading in		number of	evaluate a Q-	make profitable
		equity stock		companies,	learning agent	trades in an equity
		markets		including Apple,	for automated	stock market. The
				Google, and	trading in	agent uses a
				Microsoft.	equity stock	combination of
					markets. The	technical indicators
					authors aim to	and market sentiment
					investigate	data to make trading
					whether the	decisions. The
					Q-learning	authors find that the
					approach can	Q-learning agent
					effectively	outperforms
					learn to make	traditional trading
					profitable	strategies and
					trades in a	achieves higher
					dynamic and	returns. They also
					unpredictable	find that the agent is
					market	able to learn and
					environment	adapt to changing
						market conditions,
						and that it can
						generalize to new
						stocks that were not
						included in the

			<u> </u>			training set. The
						authors conclude that
						their Q-learning
						agent has the
						potential to be an
						effective tool for
						automated trading in
						equity stock markets.
8	Mingyu Kong and Jaewoo	Empirical	2023	The paper uses	The purpose	The authors develop
	So	Analysis of		historical stock	of this paper is	a deep reinforcement
		Automated		price data for a	to empirically	learning-based
		Stock Trading		number of	analyze the	trading agent that can
		Using Deep		companies,	effectiveness	learn to make
		Reinforcemen		including Apple,	of using deep	profitable trades in
		t Learning		Amazon,	reinforcement	the stock market. The
				Facebook, and	learning for	agent uses a
				Google.	automated	combination of
				3335.	stock trading.	technical indicators
					The authors	and market sentiment
					aim to	data to make trading
					investigate	decisions. The
					whether deep	authors find that the
					reinforcement	
						deep reinforcement
					learning can	learning agent
					outperform	outperforms
					traditional	traditional trading
					trading	strategies and
					strategies and	achieves higher
					achieve higher	returns. They also
					returns in a	find that the agent is
					dynamic and	able to learn and
					unpredictable	adapt to changing
					market	market conditions,
					environment.	and that it can
						generalize to new
						stocks that were not
						included in the
						training set. The
						authors conclude that
						their deep
						reinforcement
						learning-based
						trading agent has the
				<u> </u>		- 0

9 Adam Booth, Enrico Gerding, and Frank McGrourly performance weighted nandom forests and seasonality Coca-Cola, and IBM. The purpose that uses performance weighted nandom forests and seasonality Coca-Cola, and IBM. The authors develop a machine learning based trading system that uses performance weighted random forests to predict stock prices. The suntomated trading that accounts for seasonality in financial data. The authors aim to including Apple, sincluding that accounts for seasonality in financial data. The authors develop a machine learning-based trading system that uses performance weighted random forests to predict stock prices. The system also accounts for seasonality in financial data. The authors sincluding Apple, sincluding							potential to be an effective tool for automated stock
Gerding, and Frank McGroarty trading with performance weighted random forests and seasonality Coca-Cola, and IBM. IBM. historical stock price data for a number of companies, nicluding Apple, learning darporoach for seasonality in financial data. The authors aim to investigate whether their approach, which uses performance weighted random for seasonality in financial data. The authors aim to investigate whether their approach, which uses performance weighted random for seasonality in financial data. The authors find that their approach outperforms traditional trading strategies and adapt to changing market conditions, and that it can generalize to new strategies. stock prices. The stock prices. The stock prices. The stock prices to predict stock prices. The stock prices and trading system that uses performance weighted for seasonality in financial data, which is an important factor in financial markets. The authors find that their approach outperforms traditional trading strategies and adapt to changing market conditions, and that it can generalize to new strategies. stocks that were not included in the training set. The authors find that the system is able to learn and adapt to changing market conditions, and that it can generalize to new strategies.							trading.
effective tool for	9	Gerding, and Frank	trading with performance weighted random forests and	2014	historical stock price data for a number of companies, including Apple, Coca-Cola, and	of this paper is to develop and evaluate a machine learning approach for automated trading that accounts for seasonality in financial data. The authors aim to investigate whether their approach, which uses performance weighted random forests, can outperform traditional trading	a machine learning-based trading system that uses performance weighted random forests to predict stock prices. The system also accounts for seasonality in financial data, which is an important factor in financial markets. The authors find that their approach outperforms traditional trading strategies and achieves higher returns. They also find that the system is able to learn and adapt to changing market conditions, and that it can generalize to new stocks that were not included in the training set. The authors conclude that their machine learning-based trading system has the potential to be an

						automated trading in financial markets.
10	Mohammed Alsulmi and	Machine	2022	The paper uses	The purpose	The authors develop
	Nada Al-Shahrani	Learning-		historical stock	of this paper is	a machine learning-
		Based		price data for	to develop and	based trading system
		Decision-		companies listed	evaluate a	that uses a decision
		Making for		in the Saudi	machine	tree algorithm to
		Stock		Stock Exchange.	learning	predict stock prices.
		Trading: Case			approach for	The system also
		Study for			automated	incorporates
		Automated			trading in the	technical analysis
		Trading in			Saudi Stock	indicators and
		Saudi Stock			Exchange.	sentiment analysis of
		Exchange			The authors	news articles related
					aim to	to the companies.
					investigate	The authors find that
					whether their	their approach
					approach can	outperforms
					achieve higher	traditional trading
					returns and	strategies and
					outperform	achieves higher
					traditional	returns. They also
					trading	find that the
					strategies.	sentiment analysis
						component of their
						system is particularly useful in predicting
						stock prices. The
						authors conclude that
						their machine
						learning-based
						trading system has
						the potential to be an
						effective tool for
						automated trading in
						the Saudi Stock
						Exchange.
						Exchange.

11	Aleksandra Rakićević,	An automated	2018	The paper uses	The purpose	The authors develop
	Vladimir Simeunović,	system for		historical stock	of this paper is	an automated trading
	Branislav Petrović, and	stock market		price data from	to develop an	system that uses
	Siniša Milić	trading based		the New York	automated	logical clustering
		on logical		Stock Exchange	trading system	algorithms to group
		clustering		(NYSE) for the	that uses	stocks based on their
				period between	logical	similarities and
				2013 and 2017.	clustering	differences. The
					algorithms to	system then uses
					identify	these groups to make
					patterns in	trading decisions
					stock market	based on historical
					data and make	patterns in the data.
					trading	The authors find that
					decisions	their system achieves
					based on those	higher returns and
					patterns.	lower risk compared
						to a buy-and-hold
						strategy. They also
						find that the system
						performs well in both
						bull and bear
						markets. The authors
						conclude that their
						system has the
						potential to be an
						effective tool for
						automated trading in
						the stock market.
12	Andrea Bigiotti and Alfredo	Optimizing	2019	The paper does	The purpose	The authors review
1-	Navarra	automated	2019	not collect any	of this paper is	and compare various
	TWATE	trading		data samples but	to explore	machine learning
		systems		instead focuses	various	techniques for
		= 5 5551115		on reviewing and	methods for	predicting stock
				analyzing	optimizing	prices and optimizing
				existing literature	automated	trading strategies,
				on automated	trading	including support
				trading systems	systems, with	vector machines,
				and optimization	a focus on	artificial neural
				methods.	machine	networks, and genetic
				memous.	learning	algorithms. They also
					techniques	discuss portfolio
					and portfolio	optimization methods
					optimization	such as mean-
					opuniization	Such as mean-

						variance optimization
						and the Markowitz
						model. The authors
						find that the use of
						machine learning
						techniques and
						portfolio
						optimization can
						significantly improve
						the performance of
						automated trading
						systems, but caution
						that these methods
						require careful
						consideration and
						testing to avoid
						overfitting and other
						pitfalls. The paper
						provides a useful
						overview and
						analysis of
						optimization methods
						for automated trading
						systems, and can be a
						valuable resource for
						researchers and
						practitioners in the
						field.
13	Donald MacKenzie	A material	2017	The paper does	The purpose	The author argues
		political		not collect any	of this paper is	that the success of the
		economy:		data samples but	to explore the	ATD and other high-
		Automated		instead focuses	role of	frequency trading
		trading desk		on a case study of	materiality in	firms is due in part to
		and price		the development	high-	their ability to
		prediction in		of the ATD and	frequency	harness the material
		high-		its trading	trading and	properties of
		frequency		strategies.	the	computer hardware
		trading		-	development	and software in their
					of automated	trading strategies. In
					trading	particular, the author
					systems, with	highlights the role of
					a focus on the	machine learning
					Automated	algorithms and their
					Trading Desk	ability to process vast
					Trauming Desir	asinty to process tust

	T	Γ	1	T	(ATD) and its	amounts of data and
					efforts to	
						learn from patterns in
					predict stock	stock prices.
					prices using	However, the author
					machine	also notes that the use
					learning	of machine learning
					algorithms.	in trading can be
						controversial, as it
						raises questions about
						the ethics of using
						algorithms to predict
						and influence market
						outcomes. The paper
						provides a valuable
						analysis of the role of
						materiality in high-
						frequency trading and
						the development of
						automated trading
						systems, and can be a
						useful resource for
						researchers interested
						in the intersection of
						technology and
						finance.
14	Y Ansari, S Yasmin, S Naz,	A Deep	2022	Not explicitly	To develop a	The authors
	H Zaffar, Z Ali, J Moon	Reinforcemen		stated	decision	demonstrated the
		t Learning-			support	effectiveness of their
		Based			system for	proposed system by
		Decision			automated	conducting
		Support			stock market	experiments on real-
		System for			trading using	world stock market
		Automated			deep	data and comparing
		Stock Market			reinforcement	the results with other
		Trading			learning	state-of-the-art
						methods. The results
						showed that their
						system outperformed
						other methods in
						terms of cumulative
						return and Sharpe
						ratio, indicating its
						potential for practical
						applications in the
						applications in the

						stock market trading
						domain.
						domain.
15	Q. Huang, J. Yang, X. Feng,	Automated	2019	The authors used	The paper	The experimental
	W. Li, and K. Li	trading point		historical data of	presents a	results show that the
		forecasting		six real stocks	novel	proposed method
		based on		from the Chinese	approach for	outperforms
		bicluster		stock market to	point	traditional time series
		mining and		validate the	forecasting in	forecasting methods
		fuzzy		proposed method.	automated	and other state-of-
		inference			trading using	the-art machine
					bicluster	learning models. The
					mining and	approach achieved
					fuzzy	higher accuracy in
					inference. The	point forecasting and
					aim is to	generated higher
						returns in automated
					accurately	
					predict trading	trading.
					points and	
					achieve higher	
					returns.	
16	B. Taylor, M. Kim, A. Choi	Automated	2014	Not explicitly	The purpose	The paper presents a
		stock trading		stated	of this paper is	neural network-based
		algorithm			to propose an	automated trading
		using neural			automated	algorithm that uses
		networks			stock trading	technical indicators
					algorithm	as input features to
					using neural	predict stock prices.
					networks. The	The algorithm is
					paper aims to	evaluated on
					evaluate the	historical data from
					effectiveness	the stock market, and
					of the	the results show that
					algorithm in	the proposed
					generating	algorithm can
					profit in the	generate a profit
					stock market.	compared to a buy-
						and-hold strategy.
						and note strategy.

						The authors also conduct experiments to analyze the effect of different input features on the performance of the algorithm.
17	S Bajpai	Application of deep reinforcement learning for Indian stock trading automation	2021	Not specified.	To apply deep reinforcement learning to automate stock trading in the Indian stock market.	The study found that the proposed deep reinforcement learning algorithm outperformed a traditional buy and hold strategy in terms of cumulative returns over a six-month period. The algorithm also performed better than other state-of- the-art trading strategies, including a momentum-based strategy and a simple moving average strategy. The results suggest that deep reinforcement learning has the potential to improve the profitability of stock trading in the Indian stock market.
18	TR Silva, AW Li, EO Pamplona	Automated trading system for stock index using LSTM neural networks and risk management	2020	Not specified	To develop an automated trading system for stock index using LSTM neural networks and risk management	The proposed system achieved better returns compared to a buy-and-hold strategy, and also outperformed a baseline LSTM-based trading system. The risk management component of the

			system was found to
			be effective in
			reducing the overall
			risk of the portfolio.

TABLE 1: Summary of Literature review

METHODOLOGY

We use a common approach in validating time-series data, which is called the walk-forward validation. In this experimental scenario, the semantic linking between the observation at time t and t +1 is taken into account to compose the same bunch of training, validation and test sets. This is different with respect to common cross-validation approaches like the leave-one-out cross validation or the k-fold cross validation, where data are randomly sampled in different folds, no matter when they were acquired. Such an approach is quite biased when applied to time series prediction, as features from late past and early future can be mixed in the same fold of data when using that strategy. The walk forward validation better fits this scenario, since the considered folds are temporally split and processed as training, validation and testing data.

A normal Flowchart for the methodology is represented below:

Figure 1 – Methodology Flowchart

Data Collection

The data collection method used for this project is secondary data collection, which involves collecting data from existing sources. In this case, the dataset that is used for the study of Automated Stock Trading is collected from the different financial databases or API's like Yahoo finance, Up stocks. The dataset consist of different columns like Date, Open, High, Low, Close, Adj Close, Volume.

The dataset is a historical data containing from 2018 to 2023 of different Companies like Googl, Amazon, Tesla. Also there is a dataset of Nifty from the year 2018 to 2023. Since the data was collected from the financial databases so we can definitely trust the data source and assumed it to be the cleaned data and up to dated.

The different columns in the dataset represents:

- Date: The date on which the stock was traded.
- Open: The price at which the stock opened for trading on that day.
- High: The highest price the stock traded for during the day.
- Low: The lowest price the stock traded for during the day.
- Close: The price at which the stock closed for trading on that day.
- Adj Close: The adjusted closing price takes into account any corporate actions that
 occurred during the trading day, such as stock splits or dividends. It is the closing
 price adjusted for these actions and is considered to be a more accurate reflection of
 the stock's true value.
- Volume: The number of shares of the stock that were traded on that day.

Data Pre-Processing:

Since the data was collected from the historical stock data so the data we got is almost cleaned for all the datasets. We had 4-5 datasets of different stocks like 'APPL', 'AMAZN', 'GOOGL', 'TSLA' and 'NIFTY'.

So the first step we did was of merging all the datasets of all the companies into one data frame.

Then we looked for the null values in the dataset but since the dataset was from financial databases so there were no null values however there were 2-3 incorrect values so we used the mean of the column in those places.

After that we checked the duplicate values in the dataset but there were no duplicate values present in the dataset so we can move on the next step which was to look at the datatypes of all the columns, The 'Date' column should be of datetime type. All other columns have the correct data types.

After the merging all the datasets we added another column named 'Company' so at the end we had 1313 entries with 8 columns for the final dataset.

For DQN Trader the Data was already preprocessed so we have not done anything specific. We just simply used the data directly.

MODEL BUILDING

STOCK PRICE PREDICTION (USING SUPERVISED ALGORITHM)

We have used three Machine Learning Models for predicting the Stock Price:

- 1. LSTM
- 2. Linear Regression
- 3. XGBOOST

LSTM:

The report presents an LSTM (Long Short-Term Memory) model for stock price prediction on multiple companies. The study begins with data pre-processing, where the dataset is divided into training and test sets for each company. The data is then scaled using the MinMaxScaler to normalize the values between 0 and 1.

The LSTM model architecture comprises two LSTM layers with 13 units each, along with dropout layers for regularization. The model is trained using the Adam optimizer and mean squared error (MSE) loss. The training process includes 30 epochs, a batch size of 10, and a validation split of 20% to ensure optimal model performance.

Following training, the model predicts stock prices for the test data. The predicted values are transformed back to their original scale using the inverse transform method of the MinMaxScaler.

(Kong, 2021)

So now to solve our main problem which was the complexity of predicting The evaluation of the model's performance is measured using the R-squared score, which assesses how well the predicted values align with the actual values.

To visualize the results, the paper includes plots that compare the actual stock prices and the predicted prices for each company. The plots are presented in separate subplots, with the company name clearly indicated.

LINEAR REGRESSION:

Linear is not one of the famous Techniques in predicting Stock Prices as it may not capture the complexities and non-linear relationships in stock market data.

However Linear regression is a simple and widely-used technique for modelling the relationship between dependent and independent variables.

It assumes a linear relationship between the input features (previous stock prices) and the target variable (next stock price).

The code prepares the data by iterating over each unique company in the dataset. Historical stock prices (represented by 'Adj Close') are extracted for each company.

XGBOOST:

Stock price prediction is a challenging task that requires sophisticated machine learning techniques. XGBoost (Extreme Gradient Boosting) has emerged as a powerful algorithm for accurate and robust predictions in various domains, including finance.

XGBoost proves to be a valuable tool for stock price prediction in the provided code. By utilizing its ensemble learning approach and advanced techniques, XGBoost demonstrates its capability to capture nonlinear relationships and handle challenges in financial data however we found that the model is giving different Accuracy for different company stock price.

We uses different hyperparameters during our model building like max_depth,n_estimators, seed, gamma, learning rate .

- gamma [default=0, alias: min_split_loss] parameter

 The minimal loss reduction needed to partition the tree's leaf node farther. The algorithm becomes increasingly conservative as gamma increases.
- max_depth [default=6]
 Increasing this amount will complicate the model and increase the likelihood of overfitting. No depth cap is indicated by 0, or 0. Be aware that when training a deep

tree, XGBoost rapidly eats memory. No value can be zero when using the precise tree approach.

• seed (int) - Seed for creating the folds.

DQN TRADER

DQN Trader is a term used to describe a trading algorithm or system that uses a Deep Q-Network (DQN) to make trading choices. DQN is a reinforcement learning method that blends Q-learning, a type of value-based reinforcement learning, with deep neural networks. (Foy, 2021)

The typical context in which DQN Trader functions is one in which it gets historical market data and strives to learn a trading strategy that will maximise its cumulative profit over time. The DQN model produces actions, such purchasing, selling, or keeping particular financial assets, based on previous price and volume data as input.

Notably, designing a successful DQN Trader necessitates careful consideration of a number of variables, including the selection of the state representation, incentive design, hyperparameter tuning, and appropriate handling of transaction costs and market constraints. Overall, DQN Trader leverages the power of deep reinforcement learning to make trading

maximizes long-term returns.

Stock prices we are proposing DQN trader where we will create an agent which will take all

decisions based on historical market data, aiming to learn an optimal trading policy that

FIGURE 2 Working of DQN Trader

AGENT CLASS:

Due to its capacity to learn the best decision-making strategies in dynamic and uncertain contexts, reinforcement learning has attracted considerable attention in the field of financial trading. The implementation of a reinforcement learning agent that learns to make trading decisions based on the condition of the market is the main topic of this research. By using lessons from the past and continually enhancing its decision-making skills, the agent seeks to maximise its revenues over a certain time period.

Agent Class and Initialization:

The agent is created using the Python class "Agent." The state space size, the maximum number of time steps, the initial amount of money, and an optional pre-trained model are all initialised. These parameters provide the necessary context for the agent to operate effectively.

(Yawei Li, 2022)

Model Creation:

The Keras library's neural network model is used by the agent. The model has three dense layers, the first two of which add nonlinearity using the rectified linear unit (ReLU) activation function. To generate Q-values for each potential action, the output layer uses a linear activation function. The Adam optimizer and mean squared error (MSE) loss function used in the model's construction make it possible to train and improve the agent's decision-making skills quickly.

Action Selection:

The agent's act() method chooses the appropriate course of action based on the status of the market. When the agent is in training mode, it randomly selects an action with a probability set by the exploration rate (epsilon) to investigate the surroundings. As an alternative, the agent chooses the action with the highest Q-value predicted by the neural network model if it is in evaluation mode or if exploration is not picked at random.

Experience Replay:

The agent's learning process heavily relies on experience replay. Using a sample from its memory, the agent can learn from a group of prior encounters by using the expReplay() method. The target Q-value is determined using the Bellman equation, taking into account both the discounted maximum Q-value of the subsequent state and the immediate reward.

After that, the neural network model is trained to reduce the mean squared error between the target and predicted Q-values, which helps the agent's decision-making abilities to converge. Bellman Equation:

$$V_{\pi}(s) = \mathbb{E}_{\pi} [R_{t+1} + \gamma V_{\pi}(s_{t+1}) | s_t = s]$$

Bellman equation

(Taylan Kabbani, 2022)

Equation 1Bellman Equation

Where eqn of s represents a State value function.

This is the loss calculation of DQN Trader for Improving the next state.

Epsilon Decay:

The agent gradually lowers its exploration rate (epsilon) over time in order to strike a balance between exploration and exploitation. The epsilon value is multiplied by a decay factor (epsilon_decay) after each experience replay step to make sure that the agent gradually relies more on its learnt policy and makes use of the training-related information.

FUNCTIONS OF DQN TRADER

- BUY(Agent, Price)
- SELL
- HOLD

Buy(agent, price):

The agent can carry out a buy action in the trading environment thanks to this capability. It requires two inputs: the agent object and the most recent stock price. Based on the agent's remaining budget (money) and the remaining time steps (max_t - transactions), the function determines how much money should be invested. It adds the matching stock quantity to the agent's inventory and deducts the computed amount from the money attribute of the agent. If a purchase is successful, the function returns 0, otherwise it returns -1 if it is unsuccessful because of financial limitations or exceeding the maximum transaction limit.

- formatPrice(n)- This function formats the numeric number n that is supplied as a string that represents a currency value. If the value is negative, denoting a loss, it includes a prefix of "Rs." and a negative sign. The function makes sure that prices are formatted consistently and readable.
- sigmoid(x)- The input value x is subjected to the sigmoid function, which employs the sigmoid activation function. The chance of a favourable outcome is represented by a value between 0 and 1 that is returned. The trading agent uses sigmoid to normalise input data and make sure that values fall within an appropriate range for processing.

Sell(agent, price):

The sale function allows the agent to execute a sell action in the trading environment. It requires two inputs: the agent object and the most recent stock price. The function determines the total value of the stocks based on the current price and adds it to the agent's money attribute if the agent's inventory is not empty (indicating stocks are owned). The function also determines the reward by comparing the agent's final cash balance with the higher of the original budget or the money before attribute. The reward is a representation of the gain or

loss from the sale activity. The function also refreshes the money_before attribute and resets the agent's transactions and inventory. The calculated reward is returned.

Get state(agent, data):

This function uses the incoming data and the agent object to prepare the state representation for the agent. It accepts as inputs an array of data along with the agent object. The function normalises the data values by applying feature scaling using the StandardScaler from the scikit-learn module. The sigmoid function is then applied element-by-element to guarantee that all values are between 0 and 1. (Salvatore Carta, 2021)

The function adds two further aspects to the data: the agent's current transaction progress (transactions / max_t) and the amount of money now in the agent's possession relative to the starting budget (money / (money_before + 1). The function returns a NumPy array that represents the final state.

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}\right)}$$

(Yang, 2020)

Equation 2 Q Learning

The above picture is taken from Analytics Vidhya Website which describes how Q learning tells the agent which Action to take.

MODEL TRAINING

So we have divided the model training into three parts namely Initialization, Training loop

and Time Step loop

Initialization:

- agent.is eval is set to False, indicating that the agent is in training mode.
- episode_count is set to 12, representing the number of training episodes.
- 1 is set to the length of the data.
- agent.max t is set to 5, indicating the maximum number of time steps per episode.
- batch_size is set to 32, representing the size of the mini-batches used for experience replay.

Training Loop:

- The loop iterates over each episode.
- The current episode number is printed.
- The initial state is obtained using the get_state function, which takes a window of data as input.
- agent.money is set to Money (presumably a predefined starting capital).
- A dictionary code is defined to map actions to corresponding codes ('b', 'r', 'g').
- Lists decisions and actions are initialized to store the agent's decisions and action counts, respectively.
- agent.inventory and agent.transactions are set to 0, representing the current inventory and transaction count of the agent.

Time Step Loop:

- The loop iterates over each time step within the window size to 1-1.
- The agent chooses an action using the act method, which returns the chosen action and the corresponding action code.
- The chosen action code is appended to the decisions list.
- Based on the chosen action, the agent updates the actions list and calculates the reward.
- If the action is 0, the reward is based on the negative count of previous 'buy' actions.
- If the action is 1 ('buy'), the buy function is called to perform a buying action and calculate the reward.

- If the action is 2 ('sell'), the sell function is called to perform a selling action and calculate the reward.
- The next state is obtained using the get_state function for the next window of data.
- The variable done is set to True if it is the last time step, indicating the end of the episode.
- The (state, action, reward, next_state, done) tuple is appended to the agent's memory for experience replay.
- If the episode is done, the agent's final profit is calculated and printed.
- If the agent's memory exceeds the batch size, the agent performs experience replay using the expReplay method.
- The current time step, agent's money, chosen action, and action code are printed.

TESTING

The model was tested on various stock companies like Apple, Tesla, Nifty ,Google, Amazon.

The model was given the Money and Max transaction as the inputs .

The agent is in evaluation mode, as evidenced by the value of agent.is eval being set to True.

The 'Close' column from the stock data was transformed to a NumPy array.

The get_state function, which accepts a window of stock data as input, is used to determine the initial state.

The judgements made by the agent at each time step are recorded in a dictionary called decisions.

RESULTS AND DISCUSSION

COMPARISON OF MODELS FOR 3 COMPANIES:

MODELS	AMZN	NSEI	GOOG
LSTM	90.8	97.2	96.6
LINEAR	96.36	98.71	97.99
REGRESSION			
XGBOOST	95.51	97.90	96.96

Table 2 - Model Accuracy Comparison

The table compares the performance of different models for predicting stock prices for three companies: Amazon (AMZN), National Stock Exchange of India (NSEI), and Google (GOOG). The models evaluated are LSTM (Long Short-Term Memory), Linear Regression, and XGBoost (Extreme Gradient Boosting).

The results indicate the following:

LSTM: The LSTM model achieved an accuracy of 90.8% for predicting AMZN stock prices, 97.20% for NSEI, and 96.60% for GOOG. It performed relatively well for predicting AMZN and GOOG stocks but had better accuracy for NSEI.

Linear Regression: The Linear Regression model yielded an accuracy of 96.36% for AMZN, 98.71% for NSEI, and 97.99% for GOOG. This model performed consistently well across all three companies, with relatively high accuracy for NSEI.

XGBoost: The XGBoost model achieved an accuracy of 95.51% for AMZN, 97.90% for NSEI, and 96.96% for GOOG. It performed well for predicting AMZN and GOOG stocks but had slight better accuracy for NSEI, similar to the LSTM model.

Overall, the Linear Regression model demonstrated the highest accuracy for predicting stock prices, especially for NSEI. It outperformed both LSTM and XGBoost models in terms of accuracy across the evaluated companies.

LSTM:

3/3 [======] - US 3mS/Step 0.7876576526756704

Figure 1 - Lstm (Goog)

3/3 [======] - 0s lms/step 0.7760423678712113

Figure 4 - Lstm(Amazon)

Figure 5 – Lstm (Nifty)

LINEAR REGRESSION:

Figure 6 -Linear Regression(Nifty)

0.8661198051948157

Figure 7 - Linear Regression(GOOG)

Figure 8 - Linear Regression(Amazon)

XGBOOST:

Figure 9 - XGBOOST(Nifty)

Figure 10 - XGBOOST(Amazon)

Figure 11 XGBOOST(Goog)

DQN TRADER

As mentioned above, the results that we got were extremely good as the model gave an average profit of 28% combining all stocks.

Figure 12 DQN(Goog)

Figure 13 - DQN(Amazon)

Figure 14 - DQN(Apple)

- The green dot represents the Sell
- Red represents the buy
- Blue represents the Hold

Figure 15 - DQN(Tesla)

The model was also tested on different values where we changed the Amount of money and total Transaction and it gave an average of 22.65% profit on all the Stocks.

Total Profit:- 17665

Figure 16 - DQN(New Value)

During the evaluation period, the DQN model generated a profit of about 28%. This shows that the trading technique the model used was able to produce positive returns. Multiple equities were included in the evaluation, and the model consistently showed how to make lucrative trading selections.

Discussion:

A striking outcome, showing that the DQN model has the potential to be a useful tool for trading on financial markets, is the obtained profit of 28%. However, it's crucial to take into account a number of considerations when interpreting these findings.

The performance of the model inside the particular financial market and time frame of its evaluation must first be carefully examined. Market conditions, volatility, and economic events are just a few of the many variables that affect the financial markets. It is necessary to assess the model's robustness in various situations because the model's performance may vary depending on the state of the market.

Evaluation of the evaluation methodology's shortcomings is also crucial. Due to the use of historical data, the evaluation may not have accurately reflected current market conditions. Due to delays in the availability of data, the execution of orders, and market liquidity, the model's performance may differ when used in real-world trading scenarios. As a result, the findings should be carefully evaluated before being tried again in a real-world trading setting.

The quantity and quality of training data also play a role in the trading strategy's performance. It is crucial to make sure that the training data is indicative of the desired trading environment and captures a wide range of market situations. Additional information about the model's generalization ability can be gained by analyzing its performance on other datasets.

The performance of the DQN model is also greatly influenced by the choice of hyperparameters. The model's profitability may be increased by fine-tuning the hyperparameters, including learning rate, discount factor, exploration rate, and neural network design. Sensitivity analysis on these parameters can give important information about how they affect the effectiveness of the model.

It's also crucial to evaluate how the DQN model performs in comparison to benchmarks and alternative trading methods. This enables a thorough evaluation of the model's performance and potential superiority over conventional trading strategies or market indices. These comparisons offer helpful context for evaluating the model's performance in relation to current approaches.

CONCLUSION

The DQN model, in conclusion, showed encouraging results by turning a profit of about 28% over the evaluation time. Although these results show the model's potential, it is important to take into account the unique market situation, assess its robustness, and address any potential shortcomings. To fully comprehend the model's performance and its feasibility as a trading tool, further improvements are required, such as hyperparameter fine-tuning, testing in real-world trading scenarios, and comparisons with competing methods.

Future work in this area will focus on exploring advanced model architectures, ensemble methods, transfer learning methods, and optimizing the trade-off between exploration and exploitation. Important areas of focus will include incorporating risk management techniques, portfolio optimization methods, and real-time trading implementation.

REFRENCES:

- Shah, E. (2021, January 16). *Automated Stock Trading*. Retrieved from Analytics VIdhya: https://www.analyticsvidhya.com/blog/2021/01/bear-run-or-bull-run-can-reinforcement-learning-help-in-automated-trading/
- Yang, B. (2020, August 25). *Deep Reinforcement Learning for Automated Stock Trading*. Retrieved from Towards Data Science: https://towardsdatascience.com/deep-reinforcement-learning-for-automated-stock-trading-fldad0126a02
- Taylan Kabbani, E. D. (2022, July 05). *Deep Reinforcement Learning Approach for Trading Automation in The Stock Market*. Retrieved from arxiv.org: https://arxiv.org/abs/2208.07165
- Foy, P. (2021). *Deep Reinforcement Learning for Trading: Strategy Development & AutoML*. Retrieved from mlq.ai: https://www.mlq.ai/deep-reinforcement-learning-trading-strategies-automl/
- Hongyang Yang1, X.-Y. L. (2021, April). *Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy*. Retrieved from https://damoracapital.com/wp-content/uploads/2021/04/Deep-reinforcement-learning-for-Automated-Stock-trading-Ensemble-Strategy-ID3690996.pdf
- Kong, M. (2021, Jan 03). first_pagesettingsOrder Article Reprints Open AccessArticle Empirical Analysis of Automated Stock Trading Using Deep Reinforcement Learning. Retrieved from mdpi.com: https://www.mdpi.com/2076-3417/13/1/633
- Salvatore Carta, A. F. (2021, Feb). *Multi-DQN: An ensemble of Deep Q-learning agents for stock market forecasting*. Retrieved from sciencedirect.com: https://www.sciencedirect.com/science/article/abs/pii/S0957417420306321
- Yawei Li, 1. L. (2022, March 1). Stock Trading Strategies Based on Deep Reinforcement Learning. Retrieved from hindawi.com: https://www.hindawi.com/journals/sp/2022/4698656/

Undertaking from the PG student while submitting his/her final dissertation to his respective institute

Ref. No.	

I, the following student

Sr. No.	Sequence of students names on a dissertation	Students name	Name of the Institute & Place	Email & Mobile
1.	First Author	Avesh Kumar Bhati	SIG	Email:22070243005@sig.ac.in Mobile:7302436125

Note: Put additional rows in case of more number of students

hereby give an undertaking that the dissertation" Deep Q-Network Trader: Reinforcement Learning for Automated Trading" been checked for its Similarity Index/Plagiarism through Turnitin software tool; and that the document has been prepared by me and it is my original work and free of any plagiarism. It was found that:

1.	The Similarity Index (SI) was: (Note: SI range: 0 to 10%; if SI is >10%, then authors cannot communicate ms; attachment of SI report is mandatory)	7%
2.	The ethical clearance for research work conducted obtained from: (Note: Name the consent obtaining body; if 'not appliable' then write so)	NA
3.	The source of funding for research was: (Note: Name the funding agency; or write 'self' if no funding source is involved)	Self
4.	Conflict of interest: (Note: $Tick \ \sqrt{\ whichever \ is \ applicable}$)	No
5.	The material (adopted text, tables, figures, graphs, etc.) as has been obtained from other sources, has been duly acknowledged in the manuscript: (Note: Tick \(\forall \) whichever is applicable)	Yes

In case if any of the above-furnished information is found false at any point in time, then the University authorities can take action as deemed fit against all of us.

Avesh Kumar Bhati

Dr. Vidya Patkar

Full Name & Signature of the student

Name & Signature of SIU Guide/Mentor

Date: 19 July 2023

Endorsement by Academic Integrity Committee (AIC)

Place: Pune

Turnitin Originality Report

Processed on: 19-Jul-2023 12:08 IST

ID: 2125058353 Word Count: 5469 Submitted: 4

Project Report By Avesh Kumar Bhati

Similarity Index

7%

Similarity by Source

Internet Sources: Publications: Student Papers: 4% 3% 3%

1% match (student papers from 25-Apr-2023)

Submitted to University of Central Florida on 2023-04-25

1% match (Salvatore Carta, Anselmo Ferreira, Alessandro Sebastian Podda, Diego Reforgiato Recupero, Antonio Sanna. "Multi-DQN: an Ensemble of Deep Q-Learning Agents for Stock Market Forecasting", Expert Systems with Applications, 2020)

Salvatore Carta, Anselmo Ferreira, Alessandro Sebastian Podda, Diego Reforgiato Recupero, Antonio Sanna. "Multi-DQN: an Ensemble of Deep Q-Learning Agents for Stock Market Forecasting", Expert Systems with Applications, 2020

1% match (Internet from 24-Mar-2021)

https://www.ic.unicamp.br/~ra023169/publications/jp14.pdf

1% match (student papers from 01-May-2023)

Submitted to University of Bolton on 2023-05-01

< 1% match ("Intelligent Systems and Applications", Springer Science and Business Media LLC, 2020)

"Intelligent Systems and Applications", Springer Science and Business Media LLC, 2020

< 1% match (Internet from 08-Jul-2023)

https://link.springer.com/chapter/10.1007/978-3-031-36402-0 45?code=1af21d27-2c41-477a-b1ea-8209838d71a1&error=cookies not supported

< 1% match (Internet from 12-May-2023)

https://www.mdpi.com/2076-3417/13/1/633/htm

< 1% match (student papers from 19-Dec-2022)

Submitted to Birla Institute of Technology and Science Pilani on 2022-12-19

< 1% match (Internet from 27-May-2023)

https://fatcat.wiki/release/3u3wyd57gzh57liyumcknbaehy