武汉三中 2020-2021 学年高一十月月考

数学试卷

第 I 卷(选择题, 共 60 分)

一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中, 只有一项是符合题目要求的)

- 1. 若集合 $A = \{0,1,2\}$ 则集合 $B = \{x y \mid x \in A, y \in A\}$ 中元素的个数是(
 - A. 9

B. 5

C. 3

- D. 1
- 2. 若命题 $p: " \forall x \in R, x^2 2mx + m^2 4 = 0$ ",则命题 p 的否定为 (
 - **A.** $\forall x \in R, x^2 2mx + m^2 4 = 0$

B. 不存在 $x \in R$, $x^2 - 2mx + m^2 - 4 = 0$

C. $\exists x \in R, x^2 - 2mx + m^2 - 4 \neq 0$

- **D.** $\forall x \in R, x^2 2mx + m^2 4 \neq 0$
- 3. 当b < a 时,不等式 $\frac{x-a}{x-b} > 1$ 的解是(
 - A, $\{x \mid x < b\}$ B, $\{x \mid x > b\}$ C, R

D、以上均不对

- 4. 下列四个函数中,在(0,+∞)上为增函数的是(
 - **A.** f(x) = 3 x

B. $f(x) = x^2 - 3x$

c. f(x) = -|x|

D. $f(x) = -\frac{1}{x+1}$

5. 如图,液体从一圆锥漏斗漏入一圆柱桶中,开始漏斗盛满液体,经过 3 分钟漏完,若圆柱中液面上升速度是一常量,H是圆锥漏斗中液面下落的距离.则 H与下落时间t分钟的函数关系表示的图象可能是()

- 6. 设 $a,b \in R$, 则"a > b"是" $a \mid a \mid > b \mid b \mid$ "的()
 - A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

- D. 既不充分又不必要条件
- 7. 已知函数 $y = x^2 4x + 1$ 的定义域为 $\begin{bmatrix} 1,t \end{bmatrix}$,且在该定义域内函数的最大值与最小值之和为-5,则实数 t 的取值范围是()
 - A. (1,3)

B. [2,3]

c. (1,2]

D. (2,3)

- A. $\sqrt{2}$ $\vec{\mathbf{g}} \sqrt{2}$
- B. 1 或 2

- C. 1 或 $-\sqrt{2}$ D. 0 或 $\sqrt{2}$
- 二、多选题: 本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项符 合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。
- 9. 对于实数a,b,c,下列说法正确的是(
 - A. 若 a > b > 0,则 $\frac{1}{a} < \frac{1}{b}$

- D. 若c > a > b,则 $\frac{a}{c-a} > \frac{b}{c-b}$
- 10. 下列四个函数值域为 R 的函数为 (

A.
$$y = \frac{1}{x^2 + 1}$$

B.
$$y = 3 - x$$

C.
$$y = x^2 + 2x - 10$$

A.
$$y = \frac{1}{x^2 + 1}$$
 B. $y = 3 - x$ C. $y = x^2 + 2x - 10$ D. $y = \begin{cases} -x & (x \le 0) \\ -\frac{1}{x} & (x > 0) \end{cases}$.

11. 设 P 是一个数集, 且至少含有两个数, 若对任意 $a,b \in P$, 都有 $a+b,a-b,ab,\frac{a}{b} \in P$

 $(b \neq 0)$ 则称 P 是一个数域,例如有理数集 Q 是数域,下列命题中正确的是(

A. 数域必含有 0.1 两个数

B. 整数集是数域

C. 若有理数集 $Q \subseteq M$,则数集M一定是数域

D. 数域中有无限多个元素

12. 已知a>0,b>0,给出下列四个不等式,其中一定成立的不等式为(

A.
$$a+b+\frac{1}{\sqrt{ab}} \ge 2\sqrt{2}$$
;

$$\mathbf{B.} \quad (a+b) \left(\frac{1}{a} + \frac{1}{b}\right) \ge 4;$$

c.
$$\frac{2ab}{a+b} \ge \sqrt{ab}$$

$$\mathbf{D.} \quad \frac{a^2 + b^2}{\sqrt{ab}} \ge a + b$$

第Ⅱ卷(非选择题,共90分)

- 三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
- 13. 已知集合 $A = \{2, (a+1)^2, a^2 + 3a + 3\}$,且 $1 \in A$,则实数a 的值为_____.
- 14. 已知集合 $A = \{x \mid 1 < x < 3\}, B = \{x \mid -1 < x < m + 2\}, 若 <math>x \in B$ 成立的一个充分不必要条件是 $x \in A$,则实数 m 的取值范围是_____
- 15. 已知函数 f(x) 是定义在区间 $[0, +\infty)$ 上的函数,且在该区间上单调递增,则满足 $f(2x-1) < f(\frac{1}{3})$ 的 x 的取值范围是_______.

16. 已知
$$a \in R$$
 ,函数 $f(x) = \begin{cases} x^2 + 2x + a - 2, x \le 0 \\ -x^2 + 2x - 2a, x > 0 \end{cases}$ 若对任意 $x \in [-3, +\infty)$, $f(x) \le |x|$ 恒 成立,则 a 的取值范围是

四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)

- 17. (本小题满分10分)已知集合 $A = \{x \mid 0 \le x \le 2\}, B = \{x \mid 2 + a \le x \le 1 a, a \in R\}$
 - (1) 当a = -1时,求 $C_R(A \cup B)$;
 - (2) 若 $A \cap B = \emptyset$, 求a 的取值范围.

- 18. (本小题满分12分)若不等式 $(1-a)x^2-4x+6>0$ 的解集是 $\{x \mid -3 < x < 1\}$.
 - (1) 解不等式 $2x^2 + (2-a)x a > 0$;
 - (2) 当 $ax^2 + bx + 3 \ge 0$ 的解集为 R 时,求 b 的取值范围.

19. (本小题满分12分)已知函数 $f(x+1) = \frac{x^2 + 2x + 2}{x+1}$.

(1) 求函数 f(x) 的解析式;

(2) 根据函数单调性的定义证明 f(x) 在 (0,1) 上单调递减.

20. (本小题满分12分)已知函数 $f(x) = \sqrt{(1-a^2)x^2 + 3(1-a)x + 6}$.

(1) 若 f(x) 的定义域为 R ,求实数 a 的取值范围;

(2) 若 f(x) 的值域为 $[0,+\infty)$,求实数 a 的取值范围.

- 21. (本小题满分 12 分)某厂家拟在 2019 年举行促销活动,经调查测算,某产品的年销售量(也即该产品的年产量)x万件与年促销费用 $m(m \ge 0)$ 万元满足 $x = 3 \frac{k}{m+1}$ (k 为常数),如果不搞促销活动,则该产品的年销售量只能是 1 万件. 已知 2019 年生产该产品的固定投入为 8 万元,每生产 1 万件该产品需要再投入 16 万元,厂家将每件产品的销售价格定为每件产品年平均成本的 1. 5 倍(产品成本包括固定投入和再投入两部分资金).
 - (1) 将 2019 年该产品的利润 y 万元表示为年促销费用 m 万元的函数.
 - (2) 该厂家 2019 年的促销费用投入多少万元时,厂家的利润最大?

- 22. (本小题满分12分) 设 a 为实数,函数 $f(x) = x^2 |x-a| + 1, x \in R$.
 - (1) 当a = 0 时,求 f(x) 在区间[0, 2]上的最大值和最小值;
 - (2) 求函数 f(x) 的最小值.

武汉三中 2020-2021 学年高一十月月考

数学试卷

第 I 卷(选择题, 共 60 分)

- 一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的)
- 1. 若集合 $A = \{0,1,2\}$ 则集合 $B = \{x y \mid x \in A, y \in A\}$ 中元素的个数是 ()
 - A. 9

B. 5

C. 3

- D. 1
- 2. 若命题 $p: " \forall x \in R, x^2 2mx + m^2 4 = 0$ ",则命题 p 的否定为 (C)
 - A. $\forall x \in R, x^2 2mx + m^2 4 = 0$

B. 不存在 $x \in R$, $x^2 - 2mx + m^2 - 4 = 0$

C. $\exists x \in R, x^2 - 2mx + m^2 - 4 \neq 0$

- **D.** $\forall x \in R, x^2 2mx + m^2 4 \neq 0$
- 3. 当b < a 时,不等式 $\frac{x-a}{x-b} > 1$ 的解是(\bigwedge)
 - A, $\{x \mid x < b\}$ B, $\{x \mid x > b\}$ C, R

D、以上均不对

- 4. 下列四个函数中,在 $(0,+\infty)$ 上为增函数的是 (∇).
 - A. f(x) = 3 x

B.
$$f(x) = x^2 - 3x$$

$$\mathbf{c.} \ f(x) = -|x|$$

$$D. \quad f(x) = -\frac{1}{x+1}$$

5. 如图,液体从一圆锥漏斗漏入一圆柱桶中,开始漏斗盛满液体,经过 3 分钟漏完,若圆柱中液面上升速度是一常量,H是圆锥漏斗中液面下落的距离.则 H与下落时间t分钟的函数关系表示的图象可能是(P)

- 6. 设 $a,b \in R$, 则"a > b"是" $a \mid a \mid > b \mid b \mid$ "的(C)
 - A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

- D. 既不充分又不必要条件
- 7. 已知函数 $y = x^2 4x + 1$ 的定义域为 [1,t],且在该定义域内函数的最大值与最小值之和为-5,则实数 t 的取值范围是(\mathcal{O})
 - A. (1,3)

B. [2,3]

c. (1,2]

D. (2,3)

8. 定义[x]表示不超过x的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3,函数 y = [x]的图象如图所示,则方程 $[x] = \frac{1}{2}x^2$ 的解为(\mathbb{V})

- A. $\sqrt{2}$ $\mathbf{g} \sqrt{2}$
- B. 1 或 2

- C. 1 或 $-\sqrt{2}$ D. 0 或 $\sqrt{2}$
- 二、多选题: 本题共 4 小题, 每小题 5 分, 共 20 分。在每小题给出的选项中, 有多项符 合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。
- 9. 对于实数a,b,c,下列说法正确的是(ABG)
 - A. 若a > b > 0,则 $\frac{1}{a} < \frac{1}{b}$

- D. 若c > a > b,则 $\frac{a}{c-a} > \frac{b}{c-b}$
- (BB 10. 下列四个函数值域为 R 的函数为

A.
$$y = \frac{1}{x^2 + 1}$$

B.
$$y = 3 - x$$

$$\mathbf{C.} \ \ y = x^2 + 2x - 10$$

A.
$$y = \frac{1}{x^2 + 1}$$
 B. $y = 3 - x$ C. $y = x^2 + 2x - 10$ D. $y = \begin{cases} -x & (x \le 0) \\ -\frac{1}{x} & (x > 0) \end{cases}$.

11. 设 P 是一个数集, 且至少含有两个数, 若对任意 $a,b \in P$, 都有 $a+b,a-b,ab,\frac{a}{b} \in P$

 $(b \neq 0)$ 则称 P 是一个数域, 例如有理数集 Q 是数域, 下列命题中正确的是 (AP)

A. 数域必含有 0,1 两个数

B. 整数集是数域

C. 若有理数集 $Q \subseteq M$,则数集M 一定是数域

D. 数域中有无限多个元素

12. 已知a>0,b>0,给出下列四个不等式,其中一定成立的不等式为 ABD

A.
$$a+b+\frac{1}{\sqrt{ab}} \ge 2\sqrt{2}$$
;

B.
$$(a+b)\left(\frac{1}{a}+\frac{1}{b}\right)\geq 4$$
;

$$\mathbf{C.} \quad \frac{2ab}{a+b} \ge \sqrt{ab}$$

$$\mathbf{D.} \quad \frac{a^2 + b^2}{\sqrt{ab}} \ge a + b$$

第Ⅱ卷(非选择题,共90分)

- 三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
- 13. 已知集合 $A = \{2, (a+1)^2, a^2 + 3a + 3\}$,且 $1 \in A$,则实数a 的值为 v 刻1.
- 14. 已知集合 $A = \{x \mid 1 < x < 3\}, B = \{x \mid -1 < x < m + 2\}, 若 <math>x \in B$ 成立的一个充分不必要条件是 $x \in A$,则实数 m 的取值范围是 $(-1, +\infty)$
- 15. 已知函数 f(x) 是定义在区间 $[0, +\infty)$ 上的函数,且在该区间上单调递增,则满足 $f(2x-1) < f(\frac{1}{3})$ 的x 的取值范围是 $\left(\frac{1}{2}, \frac{1}{3}\right)$.
- 16. 已知 $a \in R$,函数 $f(x) = \begin{cases} x^2 + 2x + a 2, x \le 0 \\ -x^2 + 2x 2a, x > 0 \end{cases}$ 若对任意 $x \in [-3, +\infty)$, $f(x) \le |x|$ 恒成立,则 a 的取值范围是 $\begin{bmatrix} \frac{1}{2} & 2 \end{bmatrix}$.
- 四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)
- 17. (本小题满分10分)已知集合 $A = \{x \mid 0 \le x \le 2\}, B = \{x \mid 2 + a \le x \le 1 a, a \in R\}$
 - (1) 当a = -1时,求 $C_R(A \cup B)$; $(-\infty, 0) \cup (2, +\infty)$
 - (2) 若 $A \cap B = \emptyset$, 求a 的取值范围. $(-\frac{1}{2}, +\infty)$

18. (本小题满分12分)若不等式
$$(1-a)x^2-4x+6>0$$
 的解集是 $\{x|-3< x<1\}$. $\alpha>3$

(1) 解不等式
$$2x^2 + (2-a)x - a > 0$$
;

(2) 当
$$ax^2 + bx + 3 \ge 0$$
 的解集为 R 时,求 b 的取值范围. [-6, 6]

19. (本小题满分12分)已知函数
$$f(x+1) = \frac{x^2 + 2x + 2}{x+1}$$
.

(1) 求函数
$$f(x)$$
 的解析式; $f(x): \chi + \frac{1}{\chi}$, $(\chi \neq 0)$

(2) 根据函数单调性的定义证明 f(x) 在 (0,1) 上单调递减.

20. (本小题满分12分)已知函数
$$f(x) = \sqrt{(1-a^2)x^2 + 3(1-a)x + 6}$$
.

$$(x + 3) = \sqrt{(1-a)x + 3(1-a)x + 6}$$

(1) 若
$$f(x)$$
 的定义域为 R ,求实数 a 的取值范围; $\begin{bmatrix} -\frac{5}{17} \end{bmatrix}$

(1) 若 f(x) 的定义域为 R , 求实数 a 的取值范围;

1) 若
$$f(x)$$
 的定义域为 R ,求实数 a 的取值范围;

(2) 若
$$f(x)$$
 的值域为 $[0,+\infty)$,求实数 a 的取值范围. $(-\infty,-1)U(1,+\infty)$

- 21. (本小题满分 12 分)某厂家拟在 2019 年举行促销活动,经调查测算,某产品的年销售量(也即该产品的年产量)x万件与年促销费用 $m(m \ge 0)$ 万元满足 $x = 3 \frac{k}{m+1}$ (k 为常数),如果不搞促销活动,则该产品的年销售量只能是 1 万件. 已知 2019 年生产该产品的固定投入为 8 万元,每生产 1 万件该产品需要再投入 16 万元,厂家将每件产品的销售价格定为每件产品年平均成本的 1. 5 倍 (产品成本包括固定投入和再投入两部分资金).
 - (1) 将 2019 年该产品的利润 y 万元表示为年促销费用 m 万元的函数。 K=2 $X=3-\frac{2}{m+1}$
 - (2) 该厂家 2019 年的促销费用投入多少万元时,厂家的利润最大?

(1)
$$y = (8+16x)x/.5 - (8+16x) - m = (4+8x) - m = 28 - \frac{16}{m+1} - m \ (m \ge 0)$$

- 22. (本小題满分12分) 设 a 为实数,函数 $f(x) = x^2 |x a| + 1, x \in R$.
 - (1) 当a=0时,求 f(x)在区间[0,2]上的最大值和最小值; max=3, min=4
 - (2) 求函数 f(x) 的最小值.

$$f_{min}(x) = \begin{cases} \frac{3}{4} + \alpha, & \alpha < 0 \\ \frac{3}{4} - \alpha, & \alpha > 0 \end{cases}$$