Exercice 3 (4 points)

Cet exercice porte sur la gestion des processus par un système d'exploitation et les protocoles de routage.

Les parties A et B sont indépendantes.

Partie A: Processus

La commande UNIX ps présente un cliché instantané des processus en cours d'exécution.

Avec l'option -eo pid, ppid, stat, command, cette commande affiche dans l'ordre l'identifiant du processus PID (process identifier), le PPID (parent process identifier), l'état STAT et le nom de la commande à l'origine du processus.

Les valeurs du champ STAT indique l'état des processus :

R: processus en cours d'exécution

S: processus endormi

Sur un ordinateur, on exécute la commande ps -eo pid, ppid, stat, command et on obtient un affichage dont on donne ci-dessous un extrait.

```
$ ps -eo pid,ppid,stat,command
```

```
PID PPID STAT COMMAND

1 0 Ss /sbin/init

.... ... ... ...

1912 1908 Ss Bash

2014 1912 Ss Bash

1920 1747 Sl Gedit

2013 1912 Ss Bash

2091 1593 Sl /usr/lib/firefox/firefox

5437 1912 Sl python programme1.py

5440 2013 R python programme2.py

5450 1912 R+ ps -eo pid,ppid,stat,command
```

À l'aide de cet affichage, répondre aux questions ci-dessous.

- Quel est le nom de la première commande exécutée par le système d'exploitation lors du démarrage ?
- 2. Quels sont les identifiants des processus actifs sur cet ordinateur au moment de l'appel de la commande ps ? Justifier la réponse.
- 3. Depuis quelle application a-t-on exécuté la commande ps ?

 Donner les autres commandes qui ont été exécutées à partir de cette application.
- **4.** Expliquer l'ordre dans lequel les deux commandes python programme1.py et python programme2.py ont été exécutées.
- **5.** Peut-on prédire que l'une des deux commandes python programme1.py et python programme2.py finira avant l'autre?

21–NSIJ1ME2 Page 6 / 13

Partie B: Routage

On considère le réseau modélisé par le schéma ci-dessous.

Les routeurs sont identifiés par les lettres de A à F ; les débits des liaisons entre les routeurs sont indiqués sur le schéma.

1. Dans cette question, tous les routeurs utilisent le protocole RIP (distance en nombre de sauts).

On s'intéresse aux routes utilisées pour rejoindre F une fois les tables stabilisées. Recopier et compléter sur la copie la table suivante :

Machine	Prochain saut	Distance
A		
В		
С		
D		
E		

2. Dans cette question tous les routeurs utilisent le protocole OSPF (distance en coût des routes). Le coût d'une liaison est modélisé par la formule

$$\frac{10^8}{d}$$

où *d* est le débit de cette liaison exprimé en bit par seconde.

On s'intéresse aux routes utilisées pour rejoindre F une fois les tables stabilisées. Recopier et compléter sur la copie la table suivante :

Machine	Prochain saut	Distance
A		
В		
C		
D		
Е		

3. Des protocoles RIP et OSPF, lequel fournit le routage entre A et F le plus performant en terme de débit ? Justifier la réponse.

21–NSIJ1ME2 Page 7 / 13