CHUYÊN ĐỀ

BẤT ĐẮNG THỰC TÍCH PHÂN VÀ MỘT SỐ BÀI TOÁN LIÊN QUAN

A. KIÉN THỨC CƠ BẢN

Cho các hàm số y = f(x) và y = g(x) có đạo hàm liên tục trên [a;b]. Khi đó:

- Nếu $f(x) \ge g(x)$ với mọi $x \in [a;b]$ thì $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.
- Nếu $f(x) \ge 0$ với mọi $x \in [a;b]$ thì $\int_a^b f(x) dx \ge 0$. Hệ quả: $\int_a^b f^2(x) dx = 0 \Leftrightarrow f(x) = 0$.
- Bất đẳng thức Holder (Cauchy Schwarz): $\left(\int_{a}^{b} f(x)g(x)dx \right)^{2} \leq \int_{a}^{b} f^{2}(x)dx \int_{a}^{b} g^{2}(x)dx .$ Đẳng thức xảy ra khi và chỉ khi f(x) = kg(x) với $k \in \mathbb{R}$.

B. BÀI TẬP

Câu 1: Cho hàm số y = f(x) có đạo hàm liên tục trên [0;2] đồng thời thỏa mãn điều kiện f(2) = 2, $\int_{0}^{2} xf(x) dx = 0$, và $\int_{0}^{2} \left[f'(x) \right]^{2} dx = 10$. Hãy tính tích phân $I = \int_{0}^{2} x^{2} f(x) dx$?

Lời giải

Ta có:
$$0 = \frac{1}{2} \int_{0}^{2} f(x) dx^{2} = \frac{1}{2} x^{2} f(x) \Big|_{0}^{2} - \frac{1}{2} \int_{0}^{2} x^{2} f'(x) dx \Rightarrow \boxed{\int_{0}^{2} x^{2} f'(x) dx = 8}$$
.

Cách 1: Kết hợp $\int_{0}^{2} [f'(x)]^{2} dx = 10$, $\int_{0}^{2} x^{2} f'(x) dx = 8$ và $\int_{0}^{2} x^{4} dx = \frac{32}{5}$ ta được:

$$\int_{0}^{1} \left\{ \left[f'(x) \right]^{2} - \frac{5}{2} x^{2} f'(x) + \frac{25}{16} x^{4} \right\} dx = 10 - \frac{5.8}{2} + \frac{25}{16} \cdot \frac{32}{5} = 0 \Leftrightarrow \int_{0}^{1} \left[f'(x) - \frac{5}{4} x^{2} \right]^{2} dx = 0 \Leftrightarrow \boxed{f'(x) = \frac{5}{4} x^{2}}.$$

Cách 2: $64 = \left(\int_{0}^{2} x^{2} f'(x) dx\right)^{2} \le \int_{0}^{2} x^{4} dx \int_{0}^{2} \left[f'(x)\right]^{2} dx = \frac{32}{5} 10 = 64$. Đẳng thức xảy ra khi: $f'(x) = kx^{2}$.

Vì
$$8 = \int_{0}^{2} x^{2} f'(x) dx = k \int_{0}^{2} x^{4} dx = \frac{32}{5} k \iff k = \frac{5}{4} \implies \boxed{f'(x) = \frac{5}{4} x^{2}}.$$

Khi đó: $f(x) = \frac{5x^3}{12} - \frac{4}{3}$ vì f(1) = 2. Khi đó thay vào tích phân $I = \int_0^2 x^2 f(x) dx = \frac{8}{9}$.

Câu 2: Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] đồng thời thỏa mãn điều kiện f(1) = 2, $\int_{0}^{1} f(x) dx = \frac{1}{3}, \int_{0}^{1} [f'(x)]^{2} dx = \frac{25}{3}.$ Hãy tính tích phân $I = \int_{0}^{1} x f(x) dx$?

Lời giải

Ta có:
$$\frac{1}{3} = \int_{0}^{1} f(x) dx = xf(x) \Big|_{0}^{1} - \int_{0}^{1} xf'(x) dx = 2 - \int_{0}^{1} xf'(x) dx \Leftrightarrow \boxed{\int_{0}^{1} xf'(x) dx = \frac{5}{3}}.$$

Cách 1: Kết hợp
$$\int_{0}^{1} [f'(x)]^{2} dx = \frac{25}{3}$$
, $\int_{0}^{1} x f'(x) dx = \frac{5}{3}$ và $\int_{0}^{1} x^{2} dx = \frac{1}{3}$ ta được:

$$\int_{0}^{1} \left\{ \left[f'(x) \right]^{2} - 10xf'(x) + 25x^{2} \right\} dx = \frac{25}{3} - \frac{50}{3} + \frac{25}{3} = 0 \Leftrightarrow \int_{0}^{1} \left[f'(x) - 5x \right]^{2} dx = 0 \Leftrightarrow \boxed{f'(x) = 5x}.$$

Cách 2:
$$\frac{25}{9} = \left(\int_{0}^{1} x f'(x) dx\right)^{2} \le \int_{0}^{1} x^{2} dx \int_{0}^{1} \left[f'(x)\right]^{2} dx = \frac{1}{3} \frac{25}{3} = \frac{25}{9}$$
. Đẳng thức xảy ra khi: $f'(x) = kx$.

Vì
$$\frac{5}{3} = \int_{0}^{1} x f'(x) dx = k \int_{0}^{1} x^{2} dx = \frac{1}{3} k \Leftrightarrow k = 5 \Rightarrow \boxed{f'(x) = 5x}$$

Khi đó
$$f(x) = \frac{5x^2}{2} - \frac{1}{2}$$
 $\Rightarrow I = \int_0^1 x f(x) dx = \int_0^1 \frac{5x^3}{2} - \frac{x}{2} dx = \frac{3}{8}$

Câu 3: Cho hàm số y = f(x) có đạo hàm liên tục trên $\left[0; \frac{\pi}{2}\right]$ đồng thời thỏa mãn $\int_{0}^{\frac{\pi}{2}} f^{2}(x) dx = 3\pi$,

$$\int_{0}^{\pi} (\sin x - x) f'\left(\frac{x}{2}\right) dx = 6\pi, \text{ và } f\left(\frac{\pi}{2}\right) = 0. \text{ Hãy tính tích phân } I = \int_{0}^{\frac{\pi}{2}} \left[f''(x)\right]^{3} dx?$$

Ta có
$$3\pi = \int_{0}^{\pi} (\sin x - x) f'\left(\frac{x}{2}\right) d\left(\frac{x}{2}\right) = \int_{0}^{\frac{\pi}{2}} (\sin 2x - 2x) f'(x) dx = \int_{0}^{\frac{\pi}{2}} (\sin 2x - 2x) df(x)$$

$$\Leftrightarrow 3\pi = \left(\sin 2x - 2x\right) f\left(x\right) \begin{vmatrix} \frac{\pi}{2} + 2\int_{0}^{\frac{\pi}{2}} (1 - \cos 2x) f\left(x\right) dx = 4\int_{0}^{\frac{\pi}{2}} \sin^{2} x f\left(x\right) dx \Leftrightarrow \int_{0}^{\frac{\pi}{2}} \sin^{2} x f\left(x\right) dx = \frac{3\pi}{4} \end{vmatrix}.$$

Cách 1: Kết hợp
$$\int_{0}^{\frac{\pi}{2}} f^{2}(x) dx = 3\pi$$
, $\int_{0}^{\frac{\pi}{2}} \sin^{2} x f(x) dx = \frac{3\pi}{4}$ và $\int_{0}^{\frac{\pi}{2}} \sin^{4} x dx = \frac{3\pi}{16}$ ta được:

$$\int_{0}^{1} \left\{ f^{2}(x) - 8\sin^{2}x f(x) + 16\sin^{4}x \right\} dx = 0 \Leftrightarrow \int_{0}^{1} \left[f(x) - 4\sin^{2}x \right]^{2} dx = 0 \Leftrightarrow \boxed{f(x) = 4\sin^{2}x}$$

Cách 2:
$$\frac{9\pi^2}{16} = \left(\int_0^{\frac{\pi}{2}} \sin^2 x f(x) dx\right)^2 \le \int_0^{\frac{\pi}{2}} \sin^4 x dx \int_0^{\frac{\pi}{2}} f^2(x) dx = \frac{3\pi}{16} 3\pi = \frac{9\pi^2}{16}$$
.

Đẳng thức xảy ra
$$\Leftrightarrow f(x) = k \sin^2 x$$
. Vậy $\frac{3\pi}{4} = \int_{0}^{\frac{\pi}{2}} \sin^2 x f(x) dx = k \int_{0}^{\frac{\pi}{2}} \sin^4 x dx = \frac{3\pi}{16} k \Leftrightarrow \boxed{f(x) = 4 \sin^2 x}$

Khi đó:
$$f(x) = 4\sin^2 x = 2(1-\cos 2x) \Rightarrow f'(x) = 4\sin 2x \Rightarrow f''(x) = 8\cos 2x$$
.

Thay vào ta được:
$$I = \int_{0}^{\frac{\pi}{2}} \left[f''(x) \right]^{3} dx = 512 \int_{0}^{\frac{\pi}{2}} \cos^{3} 2x dx = 0$$
.

Câu 4: Cho hàm số y = f(x) có đạo hàm liên tục trên [0;2] đồng thời thỏa mãn điều kiện f(2) = 1, $\int_{0}^{2} x^{2} f(x) dx = \frac{8}{15}, \int_{0}^{2} [f'(x)]^{4} dx = \frac{32}{5}.$ Hãy tính tích phân $I = \int_{0}^{2} f(x) dx$?

Lời giải

Ta có
$$\frac{8}{15} = \int_{0}^{2} f(x) d\frac{x^{3}}{3} = \frac{x^{3}}{3} f(x) \Big|_{0}^{2} - \frac{1}{3} \int_{0}^{2} x^{3} f'(x) dx \Leftrightarrow \boxed{\int_{0}^{2} x^{3} f'(x) dx = \frac{32}{5}}.$$

Cách 1: Như vậy:
$$\int_{0}^{2} \left[f'(x) \right]^{4} dx = \frac{32}{5}, \int_{0}^{2} x^{3} f'(x) dx = \frac{32}{5} \text{ và } \int_{0}^{2} x^{4} dx = \frac{32}{5}.$$

Mặt khác áp dụng bất đẳng thức AM – GM ta có: $[f'(x)]^4 + x^4 + x^4 + x^4 \ge 4x^3 f'(x)$.

Do vậy: $\int_{0}^{2} \left[f'(x) \right]^{4} dx + 3 \int_{0}^{2} x^{4} dx \ge 4 \int_{0}^{2} x^{3} f'(x) dx$. Mà giá trị của hai vế bằng nhau.

Như vậy tồn tại dấu bằng xảy ra tức là: $f'(x) = x \Rightarrow f(x) = \frac{x^2}{2} + \frac{1}{2}$ do đó $I = \int_0^2 f(x) dx = \frac{7}{3}$.

Cách 2: Ta áp dụng hai lần liên tiếp bất đẳng thức Holder:

$$\frac{1048576}{625} = \left(\int_{0}^{2} x^{3} f'(x) dx\right)^{4} \le \left(\int_{0}^{2} x^{4} dx\right)^{2} \left(\int_{0}^{2} x^{2} \left[f'(x)\right]^{2} dx\right)^{2} \le \left(\int_{0}^{2} x^{4} dx\right)^{3} \int_{0}^{2} \left[f'(x)\right]^{4} dx = \frac{1048576}{625}$$

Dấu bằng xảy ra khi và chỉ khi: f'(x) = kx.

Câu 5: Cho hàm số y = f(x) có đạo hàm liên tục trên [1;2] đồng thời thỏa mãn $\int_{1}^{2} x^{3} f(x) dx = 31$.

Tìm giá trị nhỏ nhất của tích phân $I = \int_{1}^{2} f^{4}(x) dx$?

Lời giải

Ta có áp dụng hai lần liên tiếp bất đẳng thức Holder ta được:

$$31^{4} = \left(\int_{1}^{2} x^{3} f(x) dx\right)^{4} \leq \left(\int_{1}^{2} x^{4} dx\right)^{2} \left(\int_{1}^{2} x^{2} f^{2}(x) dx\right)^{2} \leq \left(\int_{1}^{2} x^{4} dx\right)^{3} \int_{1}^{2} f^{4}(x) dx \Rightarrow \left[\int_{1}^{2} f^{4}(x) dx \geq 3875\right].$$

Đẳng thức xảy ra khi f(x) = kx nên $k \int_{1}^{2} x^{4} dx = 31 \Leftrightarrow k = 5 \Leftrightarrow \boxed{f(x) = 5x^{2}}$.

Cho hàm số y = f(x) có đạo hàm liên tục trên [0,1] đồng thời thỏa mãn các điều kiện sau: Câu 6:

$$\int_{0}^{1} \left[f(x) f'(x) \right]^{2} dx \le 1; \ f(0) = 1; \ f(1) = \sqrt{3}. \text{ Tính giá trị của } f\left(\frac{1}{2}\right) = ?$$

Lời giải

Ta áp dụng bất đẳng thức AM – GM ta được:

$$2 \ge \int_{0}^{1} \left\{ \left[f(x) f'(x) \right]^{2} + 1 \right\} dx \ge 2 \int_{0}^{1} f(x) f'(x) dx = f^{2}(x) \Big|_{0}^{1} = f^{2}(1) - f^{2}(0) = 2$$

Như vậy đẳng thức phải xảy ra tức là: $f(x) f'(x) = 1 \Rightarrow \int f(x) f'(x) dx = \int 1 dx \Rightarrow f(x) = \sqrt{2x + 2C}$.

Mà
$$f(0) = 1$$
; $f(1) = \sqrt{3}$ nên ta suy ra $f(x) = \sqrt{2x+1}$. Vậy $f(\frac{1}{2}) = \sqrt{2}$.

Cho hàm số y = f(x) có đạo hàm liên tục trên [1,2] đồng thời thỏa mãn các điều kiện sau:

$$\int_{1}^{2} \frac{\left[f'(x)\right]^{2}}{x^{2} f^{4}(x)} dx \le 21; \ f(1) = \frac{1}{8}; \ f(2) = 1. \text{ Tính giá trị của } f\left(\frac{3}{2}\right) = ?$$

Lời giải

Ta áp dụng bất đẳng thức AM – GM ta được:

$$42 \ge \int_{1}^{2} \left\{ \frac{\left[f'(x) \right]^{2}}{x^{2} f^{4}(x)} + 9x^{2} \right\} dx \ge 6 \int_{1}^{2} \frac{f'(x)}{f^{2}(x)} dx = -\frac{6}{f(x)} \left| \frac{1}{1} = 6 \left(\frac{1}{f(1)} - \frac{1}{f(2)} \right) \right| = 42$$

Như vậy đẳng thức phải xảy ra tức là: $\frac{f'(x)}{f^2(x)} = 3x^2 \Rightarrow \int \frac{f'(x)}{f^2(x)} dx = \int 3x^2 dx \Rightarrow f(x) = \frac{1}{C - x^3}$.

Mà
$$f(1) = \frac{1}{8}$$
; $f(2) = 1$ nên ta suy ra $f(x) = \frac{1}{9 - x^3}$. Vậy $f(\frac{3}{2}) = \frac{8}{45}$.

Cho hàm số y = f(x). Đồ thị của hàm số y = f'(x) như hình Câu 8: vẽ bên. Đặt $g(x) = 2f(x) + (x+1)^2$. Mệnh đề nào dưới đây **đúng** sao cho sao cho tồn tại số thực m thỏa mãn $\int \left| \frac{m}{3} - g(x) \right| dx = 0.$

C.
$$3g(1) < m < 3g(-3)$$
 D. $-3g(1) < m < 3g(-3)$
Lời giải

$$g'(x) = 2f'(x) + 2x + 2 \Rightarrow g'(x) = 0 \Leftrightarrow f'(x) = -x - 1 \Leftrightarrow \begin{bmatrix} x = -3 \\ x = 1 \\ x = 3 \end{bmatrix}$$

Lập BBT của hàm số y = g(x) như hình vẽ bên.

Dựa vào bảng biến thiên \Rightarrow g(1) nhỏ nhất trong các giá trị g(-3), g(1), g(3). Ta có:

$$S_1 > S_2 \Leftrightarrow 2\int_{-3}^{1} \left[-x - 1 - f'(x) \right] dx > 2\int_{1}^{3} \left[f'(x) + x + 1 \right] dx \Leftrightarrow -\int_{-3}^{1} g'(x) dx > \int_{1}^{3} g'(x) dx$$

 $\Leftrightarrow g(-3) - g(1) > g(3) - g(1) \Leftrightarrow g(-3) > g(3) \Rightarrow \min, \max \text{ của } g(x) \text{ trên } [-3;3] \text{ lần lượt là } g(1),$

$$g\left(-3\right) \Rightarrow \boxed{6g\left(1\right) \leq \int_{-3}^{3} g\left(x\right) dx \leq 6g\left(-3\right)} . \text{ Mà } \int_{-3}^{3} \left[\frac{m}{3} - g\left(x\right)\right] dx = 0 \Leftrightarrow 2m = \int_{-3}^{3} g\left(x\right) dx .$$

 \Rightarrow Để phương trình đã cho có nghiệm $\Leftrightarrow 3g(1) \le m \le 3g(-3)$

Câu 9: Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] đồng thời thỏa mãn các điều kiện sau:

$$\int_{0}^{1} \sqrt{\frac{xf'(x)}{f(x)}} dx \ge 1; \ f(0) = 1; \ f(1) = e^{2}.$$
 Tính giá trị của $f\left(\frac{1}{2}\right) = ?$

Lời giải

Cách 1: Áp dụng Holder:
$$1 \le \left(\int_{0}^{1} \sqrt{\frac{xf'(x)}{f(x)}} dx\right)^{2} \le \int_{0}^{1} x dx \int_{0}^{1} \frac{f'(x)}{f(x)} dx = \frac{1}{2} \ln \frac{f(1)}{f(0)} = 1$$

Vậy đẳng thức xảy ra khi và chỉ khi: $\frac{f'(x)}{f(x)} = kx$. Thay vào $\int_{0}^{1} \sqrt{\frac{xf'(x)}{f(x)}} dx = 1$ ta được k = 4.

Vì
$$\frac{f'(x)}{f(x)} = 4x \Rightarrow \boxed{\ln f(x) = 2x^2 + C}$$
 mà $f(0) = 1$; $f(1) = e^2$ nên $C = 0$ vậy $f(x) = e^{2x^2} \Rightarrow f\left(\frac{1}{2}\right) = \sqrt{e}$

Cách 2: Áp dụng AM – GM:
$$2 \le \int_{0}^{1} \sqrt{4x} \sqrt{\frac{f'(x)}{f(x)}} dx \le \frac{1}{2} \left(\int_{0}^{1} 4x dx + \int_{0}^{1} \frac{f'(x)}{f(x)} dx \right) = 1 + \frac{1}{2} \ln \frac{f(1)}{f(0)} = 2$$
.

Đẳng thức xảy ra khi và chỉ khi $\frac{f'(x)}{f(x)} = 4x \Rightarrow \boxed{\ln f(x) = 2x^2 + C}$ mà f(0) = 1; $f(1) = e^2$ nên C = 0 vậy

$$f(x) = e^{2x^2} \Rightarrow f\left(\frac{1}{2}\right) = \sqrt{e}$$
.

Câu 10: Cho hàm số y = f(x) có đạo hàm liên tục trên [0,2] đồng thời thỏa mãn điều kiện f(2) = 16,

$$\int_{0}^{2} x f(x) dx = \frac{64}{5} \text{ và } \int_{0}^{2} \left[f'(x) \right]^{2} dx = \frac{1152}{5}. \text{ Hãy tính tích phân } I = \int_{0}^{2} f(x) dx$$

Cách 1:
$$\frac{64}{5} = \int_{0}^{2} f(x) d\left(\frac{x^{2}}{2}\right) = \frac{x^{2}}{2} f(x) \Big|_{0}^{2} - \int_{0}^{2} \frac{x^{2}}{2} f'(x) dx = 32 - \frac{1}{2} \int_{0}^{2} x^{2} f'(x) dx \Rightarrow \boxed{\int_{0}^{2} x^{2} f'(x) dx = \frac{192}{5}}$$

Kết hợp
$$\int_{0}^{2} [f'(x)]^{2} dx = \frac{1152}{5}$$
; $\int_{0}^{2} x^{2} f'(x) dx = \frac{192}{5}$ và $\int_{0}^{2} x^{4} dx = \frac{32}{5}$ ta được

$$\int_{0}^{2} \left[\left[f'(x) \right]^{2} - 12 \cdot x^{2} f'(x) + 36x^{4} \right] dx = \frac{1152}{5} - 12 \cdot \frac{192}{5} + 36 \cdot \frac{32}{5} = 0 \Leftrightarrow \int_{0}^{2} \left[f'(x) - 6x^{2} \right]^{2} = 0 \Leftrightarrow \left[f'(x) = 6x^{2} \right]$$

Cách 2:
$$\frac{36864}{25} = \left(\int_{0}^{2} x^{2} f'(x) dx\right)^{2} \le \int_{0}^{2} x^{4} dx \cdot \int_{0}^{2} \left[f'(x)\right]^{2} dx = \frac{32}{5} \cdot \frac{1152}{5} = \frac{36864}{25}$$
.

Dấu "=" xảy ra
$$\Leftrightarrow f'(x) = kx^2$$
. Mà $\frac{192}{5} = \int_0^2 x^2 f'(x) dx = k \int_0^2 x^4 dx = \frac{32}{5}k \Rightarrow k = 6 \Rightarrow \boxed{f'(x) = 6x^2}$

Câu 11: Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] đồng thời thỏa mãn điều kiện f(1) = 1, $\int_{-1}^{1} x^5 f(x) dx = \frac{11}{78} \text{ và } \int_{-1}^{1} f'(x) d(f(x)) = \frac{4}{13}. \text{ Hãy tính } f(2)?$

Lời giải

Cách 1:
$$\frac{11}{78} = \int_{0}^{1} x^{5} f(x) dx = \int_{0}^{1} f(x) d\left(\frac{x^{6}}{6}\right) = \frac{x^{6}}{6} f(x) \Big|_{0}^{1} - \int_{0}^{1} \frac{x^{6}}{6} f'(x) dx \Rightarrow \boxed{\int_{0}^{1} x^{6} f'(x) dx = \frac{2}{13}}$$

Lại có:
$$\int_{0}^{1} f'(x) d(f(x)) = \frac{4}{13} \Leftrightarrow \int_{0}^{1} \left[f'(x) \right]^{2} dx = \frac{4}{13}$$
. Kết hợp với $\int_{0}^{1} x^{12} dx = \frac{1}{13}$ ta được

$$\int_{0}^{1} \left[\left[f'(x) \right]^{2} - 4x^{6} f'(x) + 4x^{12} \right] dx = \frac{4}{13} - 4 \cdot \frac{2}{13} + 4 \cdot \frac{1}{13} = 0 \Leftrightarrow \int_{0}^{1} \left[f'(x) - 2x^{6} \right]^{2} dx = 0 \Leftrightarrow \boxed{f'(x) = 2x^{6}}$$

Cách 2:
$$\frac{4}{169} = \left(\int_{0}^{1} x^{6} f'(x) dx\right)^{2} \le \int_{0}^{1} x^{12} dx \cdot \int_{0}^{1} \left[f'(x)\right]^{2} dx = \frac{1}{13} \cdot \frac{4}{13} = \frac{4}{169}$$

Dấu "=" xảy ra
$$\Leftrightarrow f'(x) = kx^6$$
. Mà $\frac{2}{13} = \int_0^1 x^6 f'(x) dx \Leftrightarrow k \int_0^1 x^{12} dx = \frac{2}{13} \Leftrightarrow k = 2 \Rightarrow \boxed{f'(x) = 2x^6}$

Câu 12: Cho hàm số y = f(x) xác định và liên tục trên [0;2] và có bảng biến thiên như hình bên. Hỏi có bao nhiều giá trị nguyên của m để thỏa mãn điều kiện $\int_{-\infty}^{2} [f(x) - m] dx = 0$.

x	0		1		2
f'(x)		+	0	_	
f(x)	-5		7		-3

Lời giải

Dựa vào bảng biến thiên ta có:

$$\begin{cases}
\max_{x \in [0;2]} f(x) = 7 \\
\min_{x \in [0;2]} f(x) = -5
\end{cases} \Rightarrow \int_{0}^{2} (-5) dx \le \int_{0}^{2} f(x) dx \le \int_{0}^{2} 7 dx.$$

Hay:
$$-10 \le \int_{0}^{2} f(x) dx \le 14$$
. Mặt khác $\int_{0}^{2} \left[f(x) - m \right] dx = 0 \Leftrightarrow 2m = \int_{0}^{2} f(x) dx$.

Như vậy để phương trình có nghiệm $\Leftrightarrow -10 \le 2m \le 14 \Leftrightarrow -5 \le m \le 7$. Vậy có 13 giá trị m nguyên thỏa mãn yêu cầu đề bài.

Câu 13: Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] đồng thời thỏa mãn điều kiện f(1) = 2,

$$\int_{0}^{1} x^{4} f(x) dx = \frac{3}{11}, \int_{0}^{1} \left[f'(x) \right]^{2} dx = \frac{49}{11}. \text{ Hãy tính tích phân } I = \int_{0}^{1} f(x) dx?$$

Lời giải

$$\frac{3}{11} = \frac{1}{5} \int_{0}^{1} f(x) dx^{5} = \frac{1}{5} x^{5} f(x) \Big|_{0}^{1} - \frac{1}{5} \int_{0}^{1} x^{5} f'(x) dx \Leftrightarrow \frac{1}{5} \int_{0}^{1} x^{5} f'(x) dx = \frac{7}{55} \Leftrightarrow \boxed{\int_{0}^{1} x^{5} f'(x) dx = \frac{7}{11}}.$$

Cách 1: Kết hợp $\int_{0}^{1} [f'(x)]^{2} dx = \frac{49}{11}$, $\int_{0}^{1} x^{5} f'(x) dx = \frac{7}{11}$ và $\int_{0}^{1} x^{10} dx = \frac{1}{11}$ ta được:

$$\int_{0}^{1} \left\{ \left[f'(x) \right]^{2} - 14x^{5} f'(x) + 49x^{10} \right\} dx = \frac{49}{11} - \frac{98}{11} + \frac{49}{11} = 0 \Leftrightarrow \int_{0}^{1} \left[f'(x) - 7x^{5} \right]^{2} dx = 0 \Leftrightarrow \boxed{f'(x) = 7x^{5}}.$$

Cách 2: Ta có:
$$\frac{49}{121} = \left(\int_{0}^{1} x^{5} f'(x) dx\right)^{2} \le \int_{0}^{1} x^{10} dx \int_{0}^{1} \left[f'(x)\right]^{2} dx = \frac{1}{11} \frac{49}{11} = \frac{49}{121}.$$

Đẳng thức xảy ra khi:
$$f'(x) = kx^5$$
. Vì $\frac{7}{11} = \int_0^1 x^5 f'(x) dx = k \int_0^1 x^{10} dx = \frac{1}{11} k \Leftrightarrow k = 7 \Rightarrow \boxed{f'(x) = 7x^5}$.

Khi đó: $f(x) = \frac{7x^6}{6} + \frac{5}{6}$ vì f(1) = 2. Khi đó thay vào tích phân $I = \int_0^1 f(x) dx = \int_0^1 \frac{7x^6}{6} + \frac{5}{6} dx = 1$.

Câu 14: Tính giới hạn: $\lim_{0}^{1} \frac{ne^{x(1-n)}}{1+e^{x}} dx = ?$

Lời giải

Ta có với
$$x \in [0;1]$$
 thì $\frac{1}{2} \le \frac{e^x}{1+e^x} \le \frac{e^x}{2} \Leftrightarrow \frac{ne^{-nx}}{2} \le \frac{ne^{x(1-n)}}{1+e^x} \le \frac{ne^{x(1-n)}}{2}$.

Do đó:
$$\lim_{x \to 0} \int_{0}^{1} \frac{ne^{-nx}}{2} dx \le \lim_{x \to 0} \int_{0}^{1} \frac{ne^{x(1-n)}}{1+e^{x}} dx \le \lim_{x \to 0} \int_{0}^{1} \frac{ne^{x(1-n)}}{2} dx \Rightarrow \lim_{x \to 0} \frac{1-e^{-n}}{2} \le \lim_{x \to 0} \int_{0}^{1} \frac{ne^{x(1-n)}}{1+e^{x}} dx \le \frac{n(1-e^{1-n})}{2(n-1)}.$$

Vậy
$$\frac{1}{2} \le \lim_{x \to 0} \int_{0}^{1} \frac{ne^{x(1-n)}}{1+e^{x}} dx \le \frac{1}{2}$$
 cho nên ta suy ra $\lim_{x \to 0} \int_{0}^{1} \frac{ne^{x(1-n)}}{1+e^{x}} dx = \frac{1}{2}$.

Câu 15: Tính giới hạn: $\lim_{a} \int_{a}^{b} (1 + x + x^2 + ... + x^n) dx$ với 0 < a < b < 1.

Ta có
$$\int_{a}^{b} (1+x+x^2+...+x^n) dx = \int_{a}^{b} \frac{1}{1-x} dx - \int_{a}^{b} \frac{x^{n+1}}{1-x} dx = \ln \frac{1-a}{1-b} - \int_{a}^{b} \frac{x^{n+1}}{1-x} dx$$
.

$$\text{M\`a } 0 \le \int_{a}^{b} \frac{x^{n+1}}{1-x} dx \le \frac{1}{1-b} \int_{0}^{1} x^{n+1} dx = \frac{1}{(1-b)(n+2)} \to 0 \text{ . V\^ay } \boxed{\lim_{a}^{b} \left(1+x+x^{2}+...+x^{n}\right) dx = \ln \frac{1-a}{1-b}}.$$

Câu 16: Cho hàm số y = f(x) có đạo hàm liên tục trên [1;2] đồng thời thỏa mãn các điều kiện sau:

$$\int_{1}^{2} \frac{\left[f'(x)\right]^{2}}{xf(x)} dx \le 24; \ f(1) = 1; \ f(2) = 16. \text{ Tính giá trị của } f(\sqrt{2}) = ?$$

Lời giải

Ta áp dụng bất đẳng thức AM – GM ta được:

$$48 \ge \int_{1}^{2} \left\{ \frac{\left[f'(x) \right]^{2}}{xf(x)} + 16x \right\} dx \ge 8 \int_{1}^{2} \frac{f'(x)}{\sqrt{f(x)}} dx = 16\sqrt{f(x)} \Big|_{1}^{2} = 16\left(\sqrt{f(2)} - \sqrt{f(1)}\right) = 48$$

Như vậy đẳng thức phải xảy ra tức là:

$$\frac{f'(x)}{\sqrt{f(x)}} = 4x \Rightarrow \int \frac{f'(x)}{2\sqrt{f(x)}} dx = \int 2x dx \Rightarrow \sqrt{f(x)} = x^2 + C \Rightarrow f(x) = (x^2 + C)^2.$$

Mà f(1) = 1; f(2) = 16 nên ta suy ra $f(x) = x^4$. Vậy $f(\sqrt{2}) = 4$.

Câu 17: Cho hàm số y = f(x) có đạo hàm liên tục trên [-1;1] đồng thời thỏa mãn điều kiện $f^2(x) \le 1$ với mọi $x \in [-1;1]$ và $\int_{-1}^{1} f(x) dx = 0$. Tìm giá trị nhỏ nhất của $\int_{-1}^{1} x^2 f(x) dx$?

A.
$$-\frac{1}{2}$$

B.
$$-\frac{1}{4}$$

C.
$$-\frac{2}{3}$$

Lời giải

Ta đặt
$$I = \int_{-1}^{1} x^2 f(x) dx \Rightarrow |I| = \left| \int_{-1}^{1} (x^2 - a) f(x) dx \right| \leq \int_{-1}^{1} |x^2 - a| |f(x)| dx \leq \int_{-1}^{1} |x^2 - a| dx \quad \forall a \in \mathbb{R}.$$

Do đó ta suy ra $|I| \le \min_{a \in \mathbb{R}} \int_{-1}^{1} |x^2 - a| dx$. Đến đây ta chia bài toán thành 3 trường hợp như sau:

Trường hợp 1: Nếu
$$a \le 0$$
 thì $\min_{a \in \mathbb{R}} \int_{-1}^{1} |x^2 - a| dx = \min_{a \le 0} \int_{-1}^{1} (x^2 - a) dx = \min_{a \le 0} \left(\frac{2}{3} - 2a \right) = \frac{2}{3}$.

Trường hợp 2: Nếu
$$a \ge 1$$
 thì $\min_{a \in \mathbb{R}} \int_{-1}^{1} |x^2 - a| dx = \min_{a \ge 1} \int_{-1}^{1} (a - x^2) dx = \min_{a \ge 1} \left(2a - \frac{2}{3} \right) = \frac{4}{3}$.

Trường hợp 3: Nếu $a \in [0;1]$ thì $\min_{a \in \mathbb{R}} \int_{-1}^{1} \left| x^2 - a \right| dx = \min_{a \in [0;1]} \left(\int_{-1}^{-\sqrt{a}} \left(x^2 - a \right) dx + \int_{-\sqrt{a}}^{\sqrt{a}} \left(a - x^2 \right) dx + \int_{\sqrt{a}}^{1} \left(x^2 - a \right) dx \right)$

$$\Leftrightarrow \min_{a \in \mathbb{R}} \int_{-1}^{1} \left| x^2 - a \right| dx = \min_{a \in [0;1]} \left[\left(\frac{x^3}{3} - ax \right) \right|_{-1}^{-\sqrt{a}} + \left(ax - \frac{x^3}{3} \right) \left| \frac{\sqrt{a}}{3} + \left(\frac{x^3}{3} - ax \right) \right|_{\sqrt{a}}^{1}$$

$$\Leftrightarrow \min_{a \in \mathbb{R}} \int_{-1}^{1} |x^2 - a| dx = \min_{a \in [0;1]} \left(\frac{8a\sqrt{a}}{3} - 2a + \frac{2}{3} \right) = \frac{1}{2} \text{ khi và chỉ khi } a = \frac{1}{4}.$$

Kết luận: Như vậy $\min_{a \in \mathbb{R}} \int_{-1}^{1} |x^2 - a| dx = \frac{1}{2} \text{ do đó } |I| \le \frac{1}{2} \Rightarrow \boxed{\min I = -\frac{1}{2}}.$

Câu 18: Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] đồng thời thỏa mãn $f(x) \in [-8;8]$ với mọi $x \in [0;1]$ và $\int_{0}^{1} xf(x)dx = 3$. Tìm giá trị lớn nhất của $\int_{0}^{1} x^3 f(x)dx$?

A. 2

D. $\frac{17}{8}$

Ta đặt
$$I = \int_{0}^{1} x^{3} f(x) dx$$
 khi đó: $|I - 3a| = \left| \int_{0}^{1} (x^{3} - ax) f(x) dx \right| \le \int_{0}^{1} |x^{3} - ax| |f(x)| dx$

$$\Rightarrow |I - 3a| \le 8 \int_{0}^{1} |x^{3} - ax| dx \quad \forall a \in \mathbb{R} \Rightarrow I \le 3a + 8 \int_{0}^{1} |x^{3} - ax| dx \quad \forall a \in \mathbb{R} \Rightarrow I \le \min_{a \in \mathbb{R}} \left(3a + 8 \int_{0}^{1} |x^{3} - ax| dx \right).$$

Trường hợp 1: Nếu
$$a \le 0$$
 khi đó $\min_{a \in \mathbb{R}} \left(3a + 8 \int_{0}^{1} \left| x^{3} - ax \right| dx \right) = \min_{a \le 0} \left(3a + 8 \int_{0}^{1} \left(x^{3} - ax \right) dx \right) = \min_{a \le 0} \left(2 - a \right) = 2$

Trường hợp 2: Nếu
$$a \ge 1$$
 khi đó $\min_{a \in \mathbb{R}} \left(3a + 8 \int_{0}^{1} \left| x^{3} - ax \right| dx \right) = \min_{a \ge 1} \left(3a + 8 \int_{0}^{1} \left(ax - x^{3} \right) dx \right) = \min_{a \ge 1} \left(7a - 2 \right) = 5$

Trường hợp 3: Nếu $a \in [0,1]$ khi đó ta có đánh giá sau:

$$\min_{a \in \mathbb{R}} \left(3a + 8 \int_{0}^{1} \left| x^{3} - ax \right| dx \right) = \min_{a \in [0;1]} \left(3a + 8 \int_{0}^{\sqrt{a}} \left(ax - x^{3} \right) dx + 8 \int_{\sqrt{a}}^{1} \left(x^{3} - ax \right) dx \right) = \min_{a \in [0;1]} \left(4a^{2} - a + 2 \right) = \frac{31}{16}$$

Kết luận: Vậy
$$\min_{a \in \mathbb{R}} \left(3a + 8 \int_{0}^{1} \left| x^{3} - ax \right| dx \right) = \frac{31}{16} \Rightarrow I \leq \frac{31}{16}$$
. Đẳng thức xảy ra khi $a = \frac{1}{8}$; $I = \frac{31}{12} > 3a = \frac{3}{8}$.

Câu 19: Cho hàm số y = f(x) liên tục trên [0;1] đồng thời thỏa mãn các điều kiện sau: $\max_{[0:1]} |f(x)| = 6$

và $\int_{0}^{1} x^{2} f(x) dx = 0$. Giá trị lớn nhất của tích phân $\int_{0}^{1} x^{3} f(x) dx$ bằng bao nhiều?

B.
$$\frac{3(2-\sqrt[3]{4})}{4}$$
 C. $\frac{2-\sqrt[3]{4}}{16}$

C.
$$\frac{2-\sqrt[3]{4}}{16}$$

D.
$$\frac{1}{24}$$

Ta có với mọi số thực $a \in \mathbb{R}$ thì $\int_{\Omega} ax^2 f(x) dx = 0$ do đó:

$$\left| \int_{0}^{1} x^{3} f(x) dx \right| = \left| \int_{0}^{1} \left(x^{3} - ax^{2} \right) f(x) dx \right| \le \int_{0}^{1} \left| x^{3} - ax^{2} \right| \left| f(x) \right| dx \le 6 \int_{0}^{1} \left| x^{3} - ax^{2} \right| dx \quad \forall a \in \mathbb{R}$$

Do đó: $\left| \int_{a}^{1} x^3 f(x) dx \right| \le \min_{a \in \mathbb{R}} 6 \int_{a}^{1} \left| x^3 - ax^2 \right| dx = \min_{a \in \mathbb{R}} g(a)$. Tới đây ta chia các trường hợp sau:

Trường hợp 1: Nếu $a \le 0$ thì $x^3 - ax^2 = x^2(x-a) \ge 0 \quad \forall x \in [0,1]$. Khi đó:

$$g(a) = 6 \int_{0}^{1} |x^{3} - ax^{2}| dx = 6 \int_{0}^{1} x^{3} - ax^{2} dx = 6 \left(\frac{1}{4} - \frac{a}{3}\right) \Rightarrow \min_{a \le 0} g(a) = \frac{3}{2}$$

Trường hợp 2: Nếu $a \ge 1$ thì $x^3 - ax^2 = x^2(x - a) \le 0 \ \forall x \in [0, 1]$. Khi đó:

$$g(a) = 6 \int_{0}^{1} |x^{3} - ax^{2}| dx = 6 \int_{0}^{1} ax^{2} - x^{3} dx = 6 \left(\frac{a}{3} - \frac{1}{4}\right) \Rightarrow \min_{a \ge 1} g(a) = \frac{1}{2}$$

Trường hợp 3: Nếu $a \in [0;1]$ thì $f(a) = 6\int_{a}^{1} |x^3 - ax^2| dx = 6\int_{a}^{a} ax^2 - x^3 dx + \int_{a}^{1} x^3 - ax^2 dx = \frac{2a^4 - 4a + 3}{2}$.

Ta tìm được
$$\min_{a \in [0;1]} g(a) = \min_{a \in [0;1]} \left(\frac{2a^4 - 4a + 3}{2} \right) = \frac{3(2 - \sqrt[3]{4})}{4} < \frac{1}{2} < \frac{3}{2} \text{ vậy } \left[\min_{a \in \mathbb{R}} g(a) = \frac{3(2 - \sqrt[3]{4})}{4} \right].$$

Do vậy:
$$\left| \int_{0}^{1} x^{3} f(x) dx \right| \leq \min_{a \in \mathbb{R}} g(a) \Rightarrow \left| \int_{0}^{1} x^{3} f(x) dx \right| \leq \frac{3\left(2 - \sqrt[3]{4}\right)}{4} \Rightarrow \left| \max_{[0;1]} \int_{0}^{1} x^{3} f(x) dx \right| \leq \frac{3\left(2 - \sqrt[3]{4}\right)}{4}.$$

Câu 20: Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn $3f(x) + xf'(x) \ge x^{2018}$ với mọi $x \in [0;1]$. Giá trị nhỏ nhất của tích phân $\int f(x) dx$ bằng:

A.
$$\frac{1}{2021 \times 2022}$$

B.
$$\frac{1}{2018 \times 2021}$$

A.
$$\frac{1}{2021 \times 2022}$$
 B. $\frac{1}{2018 \times 2021}$ **C.** $\frac{1}{2018 \times 2019}$

D.
$$\frac{1}{2019 \times 2021}$$

Lòi giải

Ta có:
$$3f(x) + x \cdot f'(x) \ge x^{2018} \Rightarrow 3x^2 f(x) + x^3 f'(x) \ge x^{2020}$$

$$\Rightarrow \left[x^3 f(x) \right]' \ge x^{2020} \Rightarrow \int_0^t \left[x^3 f(x) \right]' dx \ge \int_0^t x^{2020} dx \quad \forall t \in [0;1] \Rightarrow f(t) \ge \frac{t^{2018}}{2021}$$

Khi đó
$$\Rightarrow \int_{0}^{1} f(x) dx \ge \int_{0}^{1} \frac{x^{2018}}{2021} dx = \frac{1}{2019.2021}$$
. Giá trị nhỏ nhất của tích phân $\int_{0}^{1} f(x) dx$ là $\frac{1}{2019.2021}$.

Câu 21: Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn f(1) = 0, $\int_{0}^{1} [f'(x)]^2 dx = \frac{1}{11}$ và

$$\int_{0}^{1} x^{4} f(x) dx = -\frac{1}{55}$$
. Tích phân $\int_{0}^{1} f(x) dx$ bằng

A.
$$\frac{-1}{7}$$

B.
$$\frac{1}{7}$$

C.
$$\frac{-1}{55}$$

D.
$$\frac{1}{11}$$

Lời giải

$$\int_{0}^{1} x^{4} f(x) dx = \left[\frac{x^{5}}{5} f(x) \right]_{0}^{1} - \int_{0}^{1} \frac{x^{5}}{5} f'(x) dx$$
. Suy ra $\int_{0}^{1} x^{5} f'(x) dx = \frac{1}{11}$. Hon nữa ta dễ dàng tính được

$$\int_{0}^{1} (x^{5})^{2} dx = \frac{1}{11}. \text{ Do do } \int_{0}^{1} \left[f'(x) \right]^{2} dx - 2 \int_{0}^{1} x^{5} f'(x) dx + \int_{0}^{1} (x^{5})^{2} dx = 0 \Leftrightarrow \int_{0}^{1} \left[f'(x) - x^{5} \right]^{2} dx = 0.$$

Suy ra
$$f'(x) = x^5$$
, do đó $f(x) = \frac{1}{6}x^6 + C$. Vì $f(1) = 0$ nên $C = -\frac{1}{6}$. Vậy $\int_0^1 f(x) dx = \int_0^1 \frac{x^6 - 1}{6} dx = \frac{-1}{7}$.

Câu 22: Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn f(1) = 0, $\int_{1}^{1} \left[f'(x) \right]^{2} dx = \frac{3}{2} - 2 \ln 2$

và
$$\int_{0}^{1} \frac{f(x)}{(x+1)^2} dx = 2 \ln 2 - \frac{3}{2}$$
. Tích phân $\int_{0}^{1} f(x) dx$ bằng

A.
$$\frac{1-2\ln 2}{2}$$

B.
$$\frac{3-2\ln 2}{2}$$

B.
$$\frac{3-2\ln 2}{2}$$
 C. $\frac{3-4\ln 2}{2}$

D.
$$\frac{1-\ln 2}{2}$$

Ta có:
$$\int_{0}^{1} \frac{f(x)}{(x+1)^{2}} dx = \int_{0}^{1} f(x) d\left(1 - \frac{1}{x+1}\right) = \left[\left(1 - \frac{1}{x+1}\right) f(x)\right]_{0}^{1} - \int_{0}^{1} \left(1 - \frac{1}{x+1}\right) f'(x) dx.$$

Suy ra
$$\int_{0}^{1} \left(1 - \frac{1}{x+1}\right) f'(x) dx = \frac{3}{2} - 2 \ln 2$$
. Hon nữa ta tính được:

$$\int_{0}^{1} \left(1 - \frac{1}{x+1}\right)^{2} dx = \int_{0}^{1} \left(1 - 2\frac{1}{x+1} + \frac{1}{\left(x+1\right)^{2}}\right) dx = \left[x - 2\ln|x+1| - \frac{1}{\left(x+1\right)}\right]_{0}^{1} = \frac{3}{2} - 2\ln 2.$$

Do đó
$$\int_{0}^{1} \left[f'(x) \right]^{2} dx - 2 \int_{0}^{1} \left(1 - \frac{1}{x+1} \right) f'(x) dx + \int_{0}^{1} \left(1 - \frac{1}{x+1} \right)^{2} dx = 0 \Leftrightarrow \int_{0}^{3} \left[f'(x) + \frac{1}{x+1} - 1 \right]^{2} dx = 0$$
.

Suy ra $f'(x) = 1 - \frac{1}{x+1}$, do đó $f(x) = x - \ln(x+1) + C$. Vì f(1) = 0 nên $C = \ln 2 - 1$.

Ta được
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left[x - \ln(x+1) + \ln 2 - 1 \right] dx = \frac{1}{2} - \ln 2$$
.

Câu 23: Cho hàm số y = f(x) nhận giá trị không âm và liên tục trên đoạn [0;1] đồng thời ta đặt $g(x) = 1 + \int_0^x f(t) dt$. Biết $g(x) \le \sqrt{f(x)}$ với mọi $x \in [0;1]$. Tích phân $\int_0^1 \frac{1}{g(x)} dx$ có giá trị lớn nhất bằng:

A.
$$\frac{1}{3}$$

B. 1

C.
$$\frac{\sqrt{2}}{2}$$

D. $\frac{1}{2}$

Lời giải

$$\text{Dặt } F(x) = \int_{0}^{x} f(t) dt \Rightarrow g(x) = 1 + F(x) \le \sqrt{f(x)} \quad \forall x \in [0;1] \Rightarrow \frac{F'(x)}{\left(F(x) + 1\right)^{2}} - 1 \ge 0 \quad \forall x \in [0;1]$$

$$\Rightarrow h(t) = \int_0^t \left(\frac{F'(x)}{\left(F(x) + 1\right)^2} - 1 \right) dx = 1 - t - \frac{1}{F(t) + 1}$$
 là hàm số đồng biến trên [0;1] do vậy ta có đánh giá:

$$h(x) \ge h(0) \ \forall x \in [0;1] \Rightarrow 1 - x - \frac{1}{F(x) + 1} \ge 0 \Rightarrow \frac{1}{F(x) + 1} \le 1 - x \ \forall x \in [0;1] \Rightarrow \boxed{\int_{0}^{1} \frac{1}{g(x)} dx \le \frac{1}{2}}.$$

Câu 24: Cho hàm số y = f(x) nhận giá trị không âm và liên tục trên đoạn [0;1] đồng thời ta đặt $g(x) = 1 + 3 \int_0^x f(t) dt$. Biết $g(x) \ge f^2(x)$ với mọi $x \in [0;1]$. Tích phân $\int_0^1 \sqrt{g(x)} dx$ có giá trị lớn nhất bằng:

A.
$$\frac{5}{2}$$

B. $\frac{4}{3}$

D. $\frac{9}{5}$

Lời giái

$$\text{D} \check{a}t \ F\left(x\right) = \int_{0}^{x} f\left(t\right) dt \Rightarrow g\left(x\right) = 1 + 3F\left(x\right) \geq f^{2}\left(x\right) \ \forall x \in \left[0;1\right] \Rightarrow \frac{F'\left(x\right)}{\sqrt{3F\left(x\right) + 1}} - 1 \leq 0 \ \forall x \in \left[0;1\right]$$

$$\Rightarrow h(t) = \int_{0}^{t} \left(\frac{F'(x)}{\sqrt{3F(x)+1}} - 1 \right) dx = \frac{2}{3} \sqrt{3F(t)+1} - t - \frac{2}{3}$$
 là hàm số nghịch biến trên [0;1] do vậy ta có:

$$h(x) \le h(0) \ \forall x \in [0;1] \Rightarrow \frac{2}{3} \sqrt{3F(x)+1} - t - \frac{2}{3} \le 0 \Rightarrow \sqrt{3F(x)+1} \le \frac{3}{2}x + 1 \ \forall x \in [0;1] \Rightarrow \boxed{\int_{0}^{1} \sqrt{g(x)} dx \le \frac{7}{4}}.$$

Câu 25: Cho hàm số y = f(x) nhận giá trị không âm và liên tục trên đoạn [0;1] đồng thời ta đặt $g(x) = 1 + \int_0^{x^2} f(t) dt$. Biết $g(x) \ge 2xf(x^2)$ với mọi $x \in [0;1]$. Tích phân $\int_0^1 g(x) dx$ có giá trị lớn nhất bằng:

A. 2

B. 3

C. 4

D. 1

Lời giả

$$\text{ Dặt } F\left(x^2\right) = \int\limits_0^{x^2} f\left(t\right) dt \Rightarrow g\left(x\right) = 1 + F\left(x^2\right) \geq 2x f\left(x^2\right) \ \forall x \in \left[0;1\right] \Rightarrow \frac{2x f\left(x^2\right)}{1 + F\left(x^2\right)} - 1 \leq 0 \ \forall x \in \left[0;1\right]$$

 $\Rightarrow h(t) = \int_{0}^{\sqrt{t}} \left(\frac{2xf(x^2)}{1 + F(x^2)} - 1 \right) dx = \ln(1 + F(t)) - \sqrt{t}$ là hàm số nghịch biến trên [0;1] do vậy ta có:

$$h(x) \le h(0) \quad \forall x \in [0;1] \Rightarrow \ln(1+F(x)) - \sqrt{x} \le 0 \Rightarrow 1+F(x) \le e^{\sqrt{x}} \quad \forall x \in [0;1] \Rightarrow \int_{0}^{1} g(x)dx \le 2$$

Câu 26: Cho hàm số y = f(x) nhận giá trị không âm và liên tục trên đoạn [0;1] đồng thời ta đặt $g(x) = 1 + 2 \int_0^x f(t) dt$. Biết $g(x) \ge [f(x)]^3$ với mọi $x \in [0;1]$. Tích phân $\int_0^1 \sqrt[3]{[g(x)]^2} dx$ có giá trị lớn nhất bằng:

A. $\frac{5}{3}$

B. 4

C. $\frac{4}{2}$

D. 5

Lời giả

Ta đặt $F(x) = \int_{0}^{x} f(t) dt$ khi đó $g(x) = 1 + 2F(x) \ge [f(x)]^{3} \quad \forall x \in [0,1].$

Do vậy
$$\frac{f(x)}{\sqrt[3]{1+2F(x)}} - 1 \le 0 \quad \forall x \in [0;1] \Leftrightarrow \frac{F'(x)}{\sqrt[3]{1+2F(x)}} - 1 \le 0 \quad \forall x \in [0;1].$$

Xét hàm số: $h(t) = \int_{0}^{t} \left(\frac{F'(x)}{\sqrt[3]{1 + 2F(x)}} - 1 \right) dx = \frac{3}{4} \left(\sqrt[3]{1 + 2F(t)} \right)^{2} - t - \frac{3}{4} \quad \forall t \in [0;1] \text{ là hàm nghịch biến trên}$

[0;1] cho nên $h(t) \le h(0) \ \forall t \in [0;1] \Rightarrow \frac{3}{4} \left(\sqrt[3]{1+2F(t)}\right)^2 - t - \frac{3}{4} \le 0 \Leftrightarrow \left(\sqrt[3]{1+2F(t)}\right)^2 \le \frac{4}{3}t + 1 \ \forall t \in [0;1].$

Do đó:
$$\left(\sqrt[3]{g(x)}\right)^2 \le \frac{4}{3}x + 1 \quad \forall x \in [0;1] \Rightarrow \int_0^1 \sqrt[3]{\left[g(x)\right]^2} dx \le \int_0^1 \left(\frac{4}{3}x + 1\right) dx \Rightarrow \left[\int_0^1 \sqrt[3]{\left[g(x)\right]^2} dx \le \frac{5}{3}\right]$$
. Chọn A.

Câu 27: Cho hàm số f có đạo hàm liên tục trên [1;8] đồng thời thỏa mãn điều kiện:

$$\int_{1}^{2} \left[f(x^{3}) \right]^{2} dx + 2 \int_{1}^{2} f(x^{3}) dx = \frac{2}{3} \int_{1}^{8} f(x) dx - \int_{1}^{2} (x^{2} - 1)^{2} dx$$

Tính tích phân $\int_{1}^{2} [f'(x)]^{3} dx$ bằng:

A. $\frac{8 \ln 2}{27}$

B. $\frac{\ln 2}{27}$

C. $\frac{4}{3}$

D. $\frac{5}{4}$

Lời giải

$$\Rightarrow \int_{1}^{8} \left[\frac{f(t) + 1 - \sqrt[3]{t^2}}{\sqrt[3]{t}} \right]^2 dt = 0 \Rightarrow \boxed{f(t) = \sqrt[3]{t^2} - 1} \Rightarrow \boxed{\int_{1}^{2} \left[f'(x) \right]^3 dx = \frac{8 \ln 2}{27}}.$$
 Chọn A.

Câu 28: Cho hàm số f(x) có đạo hàm dương, liên tục trên [0;1] đồng thời thỏa mãn các điều kiện $f(0) = 1 \text{ và } 3\int_{0}^{1} \left| f'(x) f^{2}(x) + \frac{1}{9} \right| dx \le 2\int_{0}^{1} \sqrt{f'(x)} f(x) dx$. Tính tích phân $\int_{0}^{1} f^{3}(x) dx$?

B. $\frac{5}{4}$

Theo bất đẳng thức Holder ta có: $\left(\int_{1}^{1} \sqrt{f'(x)} f(x) dx\right)^{2} \le \int_{1}^{1} f'(x) f^{2}(x) dx \int_{1}^{1} 1 dx$.

Như vậy: $9\left(\int_{0}^{1} f'(x) f^{2}(x) + \frac{1}{9} dx\right)^{2} \le 4\int_{0}^{1} f'(x) f^{2}(x) dx \Leftrightarrow 9\left(\int_{0}^{1} f'(x) f^{2}(x) - \frac{1}{9} dx\right)^{2} \le 0$.

Do đó: $f'(x) f^2(x) = \frac{1}{9} \Rightarrow f^3(x) = \frac{1}{3}x + 1 \Rightarrow \left| \int_{x}^{1} f^3(x) dx = \frac{7}{6} \right|$

Câu 29: Cho hàm số f(x) có đạo hàm liên tục trên [0;1] đồng thời thỏa mãn các điều kiện $f(1) = \frac{3}{2}$;

$$\int_{0}^{1} f(x) dx = \frac{5}{6} \text{ và } \int_{0}^{1} (x-1) \sqrt{1 + \frac{x}{x-2} (f'(x))^{2}} dx = -\frac{1}{3}. \text{ Tính tích phân } \int_{0}^{1} f^{2}(x) dx = ?$$

B. $\frac{8}{15}$ **C.** $\frac{53}{60}$ **Lời giải**

Sử dụng tích phân từng phần ta có: $\int_{0}^{1} f(x) dx = \frac{5}{6} = f(1) - \int_{0}^{1} x f'(x) dx \Rightarrow \int_{0}^{1} x f'(x) dx = \frac{2}{3}.$

Mặt khác: $2(1-x)\sqrt{1+\frac{x}{x-2}(f'(x))^2} \le (1-x)^2+1+\frac{x}{x-2}(f'(x))^2$.

Tích phân hai vế ta $\Rightarrow \frac{2}{3} \le \frac{4}{3} + \int \frac{x}{x-2} (f'(x))^2 dx \Rightarrow \int \frac{x}{2-x} (f'(x))^2 dx \le \frac{2}{3}$.

Ap dung Holder: $\left(\int_{0}^{1} xf'(x)dx\right)^{2} = \frac{4}{9} = \left(\int_{0}^{1} \sqrt{x(2-x)}\sqrt{\frac{x}{2-x}}f'(x)dx\right)^{2} \le \int_{0}^{1} x(2-x)dx\int_{0}^{1} \frac{x}{2-x}(f'(x))^{2}dx$.

Do vậy $\Rightarrow \int_{0}^{1} \frac{x}{2-x} (f'(x))^2 dx \ge \frac{2}{3}$ nên dấu bằng $\Leftrightarrow f'(x) = 2-x \Rightarrow f(x) = 2x - \frac{x^2}{2} \Rightarrow \int_{0}^{1} f^2(x) dx = \frac{53}{60}$.

Câu 30: Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] đồng thời thỏa mãn điều kiện f(0) = 2

và
$$21(x^2-1)^2-12(x-1)^2-12xf(x)=[f'(x)]^2 \forall x \in [0;1]$$
. Tính $\int_0^1 f(x)dx=?$

D. $-\frac{5}{4}$

Ta có $21(x^2-1)^2-12(x-1)^2-12xf(x)=[f'(x)]^2$

$$\Rightarrow \frac{36}{5} - 6 \int_0^1 f(x) d(x^2 - 1) = \int_0^1 \left[f'(x) \right]^2 dx \Rightarrow -\frac{24}{5} + 6 \int_0^1 \left(x^2 - 1 \right) f'(x) dx = \int_0^1 \left[f'(x) \right]^2 dx$$
$$\Rightarrow \int_0^1 \left[f'(x) - 3x^2 + 3 \right]^2 dx = 0 \Rightarrow f(x) = x^3 - 3x + 2 \text{ . Chon dáp án A.}$$

Câu 31: Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn $\int_{0}^{1} (f'(x))^{2} dx = \int_{0}^{1} (x+1) e^{x} \cdot f(x) dx = \frac{e^{2} - 1}{4} \text{ và } f(1) = 0 \cdot \text{Tính } \int_{0}^{1} f(x) dx = ?$ **A.** 2 + e **B.** 2 - e **C.** e **D.** 1 - e

Lời giải

Ta có:
$$\frac{e^2 - 1}{4} = \int_0^1 (x+1) \cdot e^x \cdot f(x) dx = \int_0^1 f(x) d(x \cdot e^x) = -\int_0^1 x \cdot e^x \cdot f'(x) dx$$

$$\Rightarrow \int_0^1 (f'(x))^2 dx = -\int_0^1 x \cdot e^x \cdot f'(x) dx = \frac{e^2 - 1}{4} = \int_0^1 x^2 \cdot e^{2x} dx$$

$$\Rightarrow \int_0^1 (f'(x))^2 dx + \int_0^1 x^2 \cdot e^{2x} dx + 2 \int_0^1 x \cdot e^x \cdot f'(x) dx = 0 \Rightarrow \int_0^1 (f'(x) + x \cdot e^x)^2 dx = 0$$

$$\Rightarrow f'(x) = -x \cdot e^x \Rightarrow f(x) = e^x (x-1) \Rightarrow \int_0^1 f(x) dx = 2 - e \cdot \text{Chon dáp án B.}$$

Câu 32: Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] đồng thời thỏa mãn điều kiện

$$f(0) = 0, f(1) = 1 \text{ và } \int_{0}^{1} \frac{\left[f'(x)\right]^{2}}{e^{x}} dx = \frac{1}{e-1}. \text{ Tính tích phân } I = \int_{0}^{1} f(x) dx = ?$$

$$A. \frac{e-2}{e-1}$$

$$B. \frac{e-1}{e-2}$$

$$C. 1$$

$$D. \frac{1}{(e-1)(e-2)}$$

Lài giải

Theo bất đẳng thức Holder ta có: $\int_{0}^{1} \frac{\left[f'(x)\right]^{2}}{e^{x}} dx \cdot \int_{0}^{1} e^{x} dx \ge \left[\int_{0}^{1} f'(x) dx\right]^{2} \Leftrightarrow \frac{1}{e-1} \cdot (e-1) \ge 1$ Đẳng thức xảy ra khi và chỉ khi: $\frac{f'(x)}{\sqrt{e^{x}}} = k \cdot \sqrt{e^{x}} \Leftrightarrow f'(x) = k \cdot e^{x} \cdot \text{Vì} \int_{0}^{1} f'(x) dx = 1 \Rightarrow k = \frac{1}{e-1}$ Vậy $f(x) = \frac{e^{x} + C}{e-1} \cdot \text{Mà} \ f(0) = 0, \ f(1) = 1 \ \text{và} \ f(x) = \frac{e^{x} - 1}{e-1} \cdot \text{Vậy} \ I = \frac{e-2}{e-1} \cdot \text{Chọn đáp án A.}$

Câu 33: Cho hàm số y = f(x) dương và liên tục trên [1;3] thỏa mãn $\max_{[1;3]} f(x) = 2; \min_{[1;3]} f(x) = \frac{1}{2}$ và biểu thức $S = \int_{1}^{3} f(x) dx \int_{1}^{3} \frac{1}{f(x)} dx$ đạt giá trị lớn nhất. Khi đó tính $\int_{1}^{3} f(x) dx$?

A.
$$\frac{7}{2}$$

B.
$$\frac{5}{2}$$

C.
$$\frac{7}{5}$$

D.
$$\frac{3}{5}$$

Ta có:
$$\frac{1}{2} \le f(x) \le 2 \Rightarrow (2f(x)-1)(f(x)-2) \le 0 \Rightarrow f(x) + \frac{1}{f(x)} \le \frac{5}{2}$$

$$\Rightarrow \frac{1}{f(x)} \le \frac{5}{2} - f(x) \Rightarrow S \le \int_{1}^{3} f(x) dx \left(\int_{1}^{3} \frac{5}{2} - f(x) dx \right). \text{ Ta tìm được } \max S = \frac{25}{4} \text{ khi } \int_{1}^{3} f(x) dx = \frac{5}{2}.$$

Câu 34: Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] đồng thời f(0) = 0, f(1) = 1 và $\int_{0}^{1} \left[f'(x) \right]^{2} \sqrt{1 + x^{2}} dx = \frac{1}{\ln\left(1 + \sqrt{2}\right)}.$ Tính tích phân $\int_{0}^{1} \frac{f(x)}{\sqrt{1 + x^{2}}} dx$ bằng?

$$\mathbf{A.} \ \frac{1}{2} \ln^2 \left(1 + \sqrt{2} \right)$$

B.
$$\frac{\sqrt{2}-1}{2} \ln^2 \left(1+\sqrt{2}\right)$$

$$\mathbf{C.} \ \frac{1}{2} \ln \left(1 + \sqrt{2} \right)$$

D.
$$(\sqrt{2}-1)\ln(1+\sqrt{2})$$

Theo bất đẳng thức Holder ta có: $\int_{0}^{1} \left[f'(x) \right]^{2} \sqrt{1 + x^{2}} dx \cdot \int_{0}^{1} \frac{1}{\sqrt{1 + x^{2}}} dx \ge \left| \int_{0}^{1} f'(x) dx \right|^{2} = 1$

Mặt khác
$$\int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}} dx = \ln\left(x + \sqrt{1+x^{2}}\right) \Big|_{0}^{1} = \ln\left(1 + \sqrt{2}\right)$$

Vậy đẳng thức xảy ra khi f'(x). $\sqrt[4]{1+x^2} = \frac{k}{\sqrt[4]{1+x^2}} \Leftrightarrow f'(x) = \frac{k}{\sqrt{1+x^2}}$

Vì
$$\int_{0}^{1} f'(x) dx = 1$$
 nên $k = \frac{1}{\ln(1+\sqrt{2})}$. Vậy $f(x) = \frac{1}{\ln(1+\sqrt{2})} . \ln(x+\sqrt{1+x^2}) + C$

Vì
$$\begin{cases} f(0) = 0 \\ f(1) = 1 \end{cases}$$
 nên $C = 0$. Do đó $\int_{0}^{1} \frac{f(x)}{\sqrt{1+x^{2}}} dx = \frac{1}{2} \ln(1+\sqrt{2})$. Chọn đáp án C.

Câu 35: Tìm giá trị nhỏ nhất của $S = \int_{0}^{1} |x^2 - ax| dx$ với $a \in [0,1]$

A.
$$\frac{2-\sqrt{2}}{6}$$
.

B.
$$\frac{\sqrt{2}-1}{3}$$

B.
$$\frac{\sqrt{2}-1}{3}$$
. **C.** $\frac{2-\sqrt{2}}{3}$.

D.
$$\frac{\sqrt{2}-1}{6}$$

Phá dấu trị tuyệt đối ta có

$$S = \int_{0}^{1} \left| x^{2} - ax \right| dx = -\int_{0}^{a} \left(x^{2} - ax \right) dx + \int_{a}^{1} \left(x^{2} - ax \right) dx = \left(\frac{-x^{3}}{3} + \frac{ax^{2}}{3} \right) \Big|_{0}^{a} + \left(\frac{x^{3}}{3} - \frac{ax^{2}}{3} \right) \Big|_{a}^{1} = \frac{2a^{3} - 3a + 2}{6}$$

$$S_{min} = f\left(\frac{1}{\sqrt{2}} \right) = \frac{2 - \sqrt{2}}{6}.$$

Câu 36: Cho hàm số y = f(x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0,1] và thỏa mãn

$$f(1) = e.f(0) = e.\int_{0}^{1} \left(\frac{f'(x)}{f(x)}\right)^{2} dx \le 1$$
. Tìm mệnh đề đung

A.
$$f\left(\frac{1}{2}\right) = e^2$$
.

B.
$$f\left(\frac{1}{2}\right) = \sqrt{e}$$

B.
$$f\left(\frac{1}{2}\right) = \sqrt{e}$$
. **C.** $f\left(\frac{1}{2}\right) = \sqrt{e}$. **D.** $f\left(\frac{1}{2}\right) = \frac{1}{2e}$

D.
$$f(\frac{1}{2}) = \frac{1}{2e}$$

Ta có
$$\int_{0}^{1} \frac{f'(x)}{f(x)} dx = \ln |f(x)||_{0}^{1} = \ln f(1) - \ln f(0) = \ln \frac{f(1)}{f(0)} = \ln e = 1$$

Nên
$$\int_{0}^{1} \left(\frac{f'(x)}{f(x)} \right)^{2} dx \le 1 \Leftrightarrow \int_{0}^{1} \left[\left(\frac{f'(x)}{f(x)} \right)^{2} - 1 \right] dx \le 0$$

$$\int_{0}^{1} \left[\left(\frac{f'(x)}{f(x)} \right)^{2} - 2 \cdot \frac{f'(x)}{f(x)} + 1 \right] dx \le 0 \Leftrightarrow \int_{0}^{1} \left[\frac{f'(x)}{f(x)} - 1 \right]^{2} dx \le 0 \Leftrightarrow \frac{f'(x)}{f(x)} - 1 = 0$$

Vậy:
$$f(x) = A.e^x$$
. Mà $f(1) = e.f(0) = e$ Nên $f(x) = e^x \Leftrightarrow f\left(\frac{1}{2}\right) = \sqrt{e}$.

Câu 37: Cho a+b=ab+4 và a < b. Tìm giá trị nhỏ nhất của biểu thức $I = \int_a^b \left| x^2 - (a+b)x + ab \right| dx$

A. $4\sqrt{3}$.

B. 12.

C. $2\sqrt{3}$.

D. 48

Lời giải

Ta có

$$I^{2} = \frac{\Delta^{3}}{36.a^{4}} = \frac{\left(\left(a+b\right)^{2} - 4ab\right)^{3}}{36} = \frac{\left(\left(ab+4\right)^{2} - 4ab\right)^{3}}{36} = \frac{\left(\left(ab+2\right)^{2} + 12\right)^{3}}{36} \ge \frac{12^{3}}{36} = 48$$
$$\Rightarrow I \ge 4\sqrt{3}$$

Câu 38: Tìm giá trị nhỏ nhất của $I = \int_a^b \left| x^2 + (2-m)x - 2 \right| dx$ trong đó a < b là hai nghiệm cảu phương trình $x^2 + (2-m)x - 2 = 0$

A. $\frac{128}{9}$.

B. $\frac{8\sqrt{2}}{3}$.

C. 8.

D. $2\sqrt{2}$

Lời giải

$$I = \frac{\Delta^3}{36a^4} = \frac{\left(\left(2 - m\right)^2 + 8\right)^3}{36} \ge \frac{128}{9} \Rightarrow I \ge \frac{8\sqrt{2}}{3}.$$

Câu 39: Tìm giá trị nhỏ nhất của $S = \int_0^1 |x^3 - ax| dx$ với $a \in [0,1]$

A. $\frac{2-\sqrt{2}}{6}$

B. $\frac{1}{8}$.

C. $\frac{1}{4}$.

D. $\frac{2-\sqrt{2}}{8}$

Lời giái

$$S = \int_{0}^{\sqrt{a}} \left(a.x - x^{3} \right) dx + \int_{\sqrt{a}}^{1} \left(x^{3} - a.x \right) dx = \left(\frac{a.x^{2}}{2} - \frac{x^{4}}{4} \right) \Big|_{0}^{\sqrt{a}} + \left(\frac{x^{4}}{4} - \frac{a.x^{2}}{2} \right) \Big|_{\sqrt{a}}^{1}$$

$$S = \left(\frac{a^{2}}{2} - \frac{a^{2}}{4} \right) + \left(\frac{1}{4} - \frac{a}{2} - \frac{a^{2}}{4} + \frac{a^{2}}{2} \right) = \frac{1}{2} \left(a - \frac{1}{2} \right)^{2} + \frac{1}{8} \ge \frac{1}{8}$$

Gọi a,b lần lượt là giá trị lớn nhất và nhỏ nhất của $S = \int_{-\infty}^{2m} \left| x^3 - 4mx^2 + 5m^2x - 2m^3 \right| dx$ với $m \in [1,3]$. Mệnh đề nào dưới đây đúng

A.
$$a+b=\frac{41}{6}$$
.

B.
$$a + b = 1$$

B.
$$a+b=1$$
. **C.** $a+b=\frac{21}{4}$. **D.** $a+b=2$

D.
$$a+b=2$$

Lời giải

$$S = \int_{m}^{2m} \left| (x-m)^2 (x-2m) \right| dx = -\int_{m}^{2m} (x-m)^2 (x-2m) dx = -\int_{m}^{2m} (x-m)^2 ((x-m)-m) dx$$

$$S = -\int_{m}^{2m} (x - m)^{3} dx + m \int_{m}^{2m} (x - m)^{2} dx = \left(\frac{-(x - m)^{4}}{4} + \frac{m(x - m)^{3}}{3} \right) \Big|_{m}^{2m} = \frac{m^{4}}{12}$$

Thay $m \in [1,3]$ vào ta có $a+b = \frac{41}{6}$.

Câu 41: Cho A là tập các hàm số f lien tục trên đoạn [0;1] và nhận giá trị không âm trên đoạn [0;1]. Tìm m nhỏ nhất sao cho $\int_{0}^{1} f\left(\frac{2018}{\sqrt{x}}\right) dx \le m. \int_{0}^{1} f(x) dx \quad \forall f \in A$

A. 2018.

C. $\frac{1}{2018}$.

D. $\sqrt{2018}$

Lời giải

Đặt
$$t^{2018} = x \Rightarrow dx = 2018.t^{2017}dt$$
 nên $\int_{0}^{1} f\left(\frac{2018}{\sqrt{x}}\right) dx = 2018.\int_{0}^{1} t^{2017}.f(t).dt \le 2018\int_{0}^{1} f(t).dt$

Tìm m nhỏ nhất nên $m \le 2018$. Ta sẽ Cm m = 2018 là số cần tìm. Xét $f(x) = x^n$ ta có

$$\int_{0}^{1} x^{n/2018} dx \le m \int_{0}^{1} x^{n} dx \to \frac{2018}{n+2018} \le \frac{m}{n+1} \to m \ge \frac{2018(n+1)}{n+2018}$$

Cho $n \to +\infty$ ta có $m \ge 2018$. Vậy m = 2018 là hằng số nhỏ nhất cần tìm.

Câu 42: Cho hàm số y = f(x) nhận giá trị dương và có đạo hàm f'(x) liên tục trên đoạn [0;1] thỏa mãn f(1) = 2018. f(0). Tìm giá trị nhỏ nhất biểu thức $M = \int_{0}^{1} \frac{1}{\left\lceil f(x) \right\rceil^{2}} dx + \int_{0}^{1} \left[f'(x) \right]^{2} dx$

A. *ln* 2018.

C. 2*e*.

D. 2018*e*

Lời giải

$$M = \int_{0}^{1} \left[\frac{1}{f(x)} - f'(x) \right]^{2} dx + 2 \int_{0}^{1} \frac{f(x)}{f'(x)} dx \ge 2 \int_{0}^{1} \frac{f(x)}{f'(x)} dx = 2 \ln |f(x)||_{0}^{1} = 2 \ln 2018.$$

Câu 43: Cho a+b=ab+4 và a < b. Tìm giá trị nhỏ nhất của biểu thức $I = \int_{a}^{b} \left| (x-a)^2 (x-b) \right| dx$

A. 12.

B. 0.

C. $\frac{64}{2}$.

D. $\frac{49}{3}$

$$S = -\int_{a}^{b} (x-a)^{2} \left[(x-a) + (a-b) \right] dx = -\int_{a}^{b} (x-a)^{2} (x-a) dx - (a-b) \int_{a}^{b} (x-a)^{2} dx$$

$$S = \frac{1}{12} (a-b)^4 = \frac{1}{12} ((a+b)^2 - 4ab)^2 = \frac{1}{12} ((ab+4)^2 - 4ab)^2 = \frac{1}{12} ((ab+2)^2 + 12)^2 \ge 12.$$

Câu 44: Cho $(a-b)^2 + (a^2 - b^2)^2 = 4$ và a < b. Tìm giá trị lớn nhất của biểu $I = \int_{0}^{b} \left| x^{2} - (a+b)x + ab \right| dx$

A.
$$\frac{16}{9}$$
.

B.
$$\frac{9}{16}$$
.

C.
$$\frac{4}{3}$$
.

D.
$$\frac{3}{4}$$

$$4 = (a-b)^{2} + (a^{2}-b^{2})^{2} = (a-b)^{2}(1+(a+b)^{2}) \ge (a-b)^{2}$$

$$I^{2} = \frac{\Delta^{3}}{36a^{4}} = \frac{\left(\left(a+b\right)^{2} - 4ab\right)^{3}}{36} = \frac{\left(\left(a-b\right)^{2}\right)^{3}}{36} \le \frac{4^{3}}{36} = \frac{4}{3}$$

Khi đó
$$\begin{cases} a+b=0\\ \left(a-b\right)^2+\left(a^2-b^2\right)^2=4 \end{cases} \Leftrightarrow \begin{cases} a=-1\\ b=1 \end{cases}.$$

Câu 45: Cho hàm số y = f(x) nhận giá trị dương và có đạo hàm f'(x) liên tục trên đoạn [0,1] thỏa mãn f(1) = e.f(0). Biểu thức $\int_{0}^{1} \frac{1}{[f(x)]^{2}} dx + \int_{0}^{1} [f'(x)]^{2} dx \le 2$. Mệnh đề nào đúng

A.
$$f(1) = \sqrt{\frac{2e}{e-1}}$$
.

B.
$$f(1) = \sqrt{\frac{2e^2}{e^2 - 1}}$$
.

B.
$$f(1) = \sqrt{\frac{2e^2}{e^2 - 1}}$$
. **C.** $f(1) = \sqrt{\frac{2(e - 2)}{e - 1}}$. **D.** $f(1) = \frac{2(e - 2)}{e^2 - 1}$

D.
$$f(1) = \frac{2(e-2)}{e^2-1}$$

Viết lại biểu thức cho dưới dạng $\int_{a}^{1} \left| \frac{1}{f(x)} - f'(x) \right|^{2} dx \le 0$. Dấu bằng xảy ra khi

$$\frac{1}{f(x)} - f'(x) = 0 \Leftrightarrow \frac{1}{f(x)} = f'(x) \Leftrightarrow \int 1 dx = \int f(x) . d(f(x))$$

$$\Leftrightarrow x + c = \frac{f^2(x)}{2} \Leftrightarrow f(x) = \sqrt{2(x+c)}$$

Thay
$$x = 0$$
 vào ta có
$$\begin{cases} f(0) = \sqrt{2c} \\ f(1) = \sqrt{2 + 2c} \end{cases} \Leftrightarrow \frac{f(1)}{f(0)} = e = \frac{\sqrt{2 + 2c}}{\sqrt{2c}} \Leftrightarrow c = \frac{1}{e^2 - 1}$$

$$\rightarrow f(x) = \sqrt{2x + \frac{1}{e^2 - 1}} \rightarrow f(1) = \sqrt{\frac{2e^2}{e^2 - 1}}$$

Câu 46: Cho A là tập các hàm số f lien tục trên đoạn [0;1].

Tim
$$m = \min_{f \in A} \left\{ \int_{0}^{1} x \cdot f^{2}(x) dx - \int_{0}^{1} x^{2018} \cdot f(x) dx \right\}$$

A.
$$\frac{-1}{2019}$$
.

B.
$$\frac{-1}{16144}$$

B.
$$\frac{-1}{16144}$$
. **C.** $\frac{-2017}{2018}$.

D.
$$\frac{-1}{16140}$$

Biểu thức đã cho là tam thức bậc 2 ẩn là f(x) có hệ số a = x; $b = -x^{2018}$; c = 0

Nên biểu thức Min tại
$$\begin{cases} f(x) = \frac{-b}{2a} = \frac{x^{2017}}{2} \\ m_{min} = \int_{0}^{1} \frac{-\Delta}{4a} dx = \int_{0}^{1} \frac{-x^{4036}}{4.x} dx = \frac{-x^{4035}}{4x4036} \bigg|_{0}^{1} = \frac{-1}{16144} \end{cases}.$$

Câu 47: Cho m là tham số thuộc đoạn [1,3]. Gọi a,b lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của

$$P = \int_{m}^{2m} (x - m)^{2} (x - 2m)^{2} dx$$
. Tính $a + b =$

A. 31.

B. 36.

C. $\frac{122}{15}$.

D. $\frac{121}{4}$

Lời giải

$$P = \frac{m^5}{30} \in \left[\frac{1}{30}; \frac{3^5}{30} \right] \to T = \frac{3^5 + 1}{30} = \frac{122}{15}.$$

Câu 48: Giá trị nhỏ nhất của $P = \int_{m}^{2m^2+2} \left| x^2 - 2(m^2 + m + 1)x + 4(m^3 + m) \right| dx$ là $S = \frac{a}{b}$; a, b nguyên dương

và
$$\frac{a}{b}$$
 tối giản. Tính $T = a + b$

A. 7.

B. 337

C. 25

D. 91

Lời giải

Ta có:
$$P = \frac{4(m^2 - m + 1)^3}{3} \ge \frac{4}{3} \cdot \left(\frac{3}{4}\right)^3 = \frac{9}{16} \Rightarrow T = 9 + 16 = 25$$

TOANMATH.com