Principles of Distributed Database Systems

M. Tamer Özsu • Patrick Valduriez

Principles of Distributed Database Systems

Fourth Edition

M. Tamer Özsu Cheriton School of Computer Science University of Waterloo Waterloo, ON, Canada

Patrick Valduriez Inria and LIRMM University of Montpellier Montpellier, France

The first two editions of this book were published by: Pearson Education, Inc.

ISBN 978-3-030-26252-5 ISBN 978-3-030-26253-2 (eBook) https://doi.org/10.1007/978-3-030-26253-2

3rd edition: © Springer Science+Business Media, LLC 2011

© Springer Nature Switzerland AG 2020, corrected publication 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To our families and our parents M.T.Ö. and P.V.

Preface

The first edition of this book appeared in 1991 when the technology was new and there were not too many products. In the Preface to the first edition, we had quoted Michael Stonebraker who claimed in 1988 that in the following 10 years, centralized DBMSs would be an "antique curiosity" and most organizations would move towards distributed DBMSs. That prediction has certainly proved to be correct, and a large proportion of the systems in use today are either distributed or parallel commonly referred to as scale-out systems. When we were putting together the first edition, undergraduate and graduate database courses were not as prevalent as they are now; so the initial version of the book contained lengthy discussions of centralized solutions before introducing their distributed/parallel counterparts. Times have certainly changed on that front as well, and now, it is hard to find a graduate student who does not have at least some rudimentary knowledge of database technology. Therefore, a graduate-level textbook on distributed/parallel database technology needs to be positioned differently today. That was our objective in this edition while maintaining the many new topics we introduced in the third edition. The main revisions introduced in this fourth edition are the following:

- 1. Over the years, the motivations and the environment for this technology have somewhat shifted (Web, cloud, etc.). In light of this, the introductory chapter needed a serious refresh. We revised the introduction with the aim of a more contemporary look at the technology.
- 2. We have added a new chapter on big data processing to cover distributed storage systems, data stream processing, MapReduce and Spark platforms, graph analytics, and data lakes. With the proliferation of these systems, systematic treatment of these topics is essential.
- **3.** Similarly, we addressed the growing influence of NoSQL systems by devoting a new chapter to it. This chapter covers the four types of NoSQL (key-value stores, document stores, wide column systems, and graph DBMSs), as well as NewSQL systems and polystores.
- **4.** We have combined the database integration and multidatabase query processing chapters from the third edition into a uniform chapter on database integration.

viii Preface

5. We undertook a major revision of the web data management discussion that previously focused mostly on XML to refocus on RDF technology, which is more prevalent at this time. We now discuss, in this chapter, web data integration approaches, including the important issue of data quality.

- **6.** We have revised and updated the peer-to-peer data management chapter and included a lengthy discussion of blockchain.
- 7. As part of our cleaning the previous chapters, we condensed the query processing and transaction management chapters by removing the fundamental centralized techniques and focused these chapters on distributed/parallel techniques. In the process, we included some topics that have since gained importance, such as dynamic query processing (eddies) and Paxos consensus algorithm and its use in commit protocols.
- 8. We updated the parallel DBMS chapter by clarifying the objectives, in particular, scale-up versus scale-out, and discussing parallel architectures that include UMA or NUMA. We also added a new section of parallel sorting algorithms and variants of parallel join algorithms to exploit large main memories and multicore processors that are prevalent today.
- **9.** We updated the distribution design chapter by including a lengthy discussion of modern approaches that combine fragmentation and allocation. By rearranging material, this chapter is now central to data partitioning for both the distributed and parallel data management discussions in the remainder of the book.
- 10 Although object technology continues to play a role in information systems, its importance in distributed/parallel data management has declined. Therefore, we removed the chapter on object databases from this edition.

As is evident, the entire book and every chapter have seen revisions and updates for a more contemporary treatment. The material we removed in the process is not lost—they are included as online appendices and appear on the book's web page: https://cs.uwaterloo.ca/ddbs. We elected to make these available online rather than in the print version to keep the size of the book reasonable (which also keeps the price reasonable). The web site also includes presentation slides that can be used to teach from the book as well as solutions to most of the exercises (available only to instructors who have adopted the book for teaching).

As in previous editions, many colleagues helped with this edition of the book whom we would like to thank (in no specific order). Dan Olteanu provided a nice discussion of two optimizations that can significantly reduce the maintenance time of materialized views in Chap. 3. Phil Bernstein provided leads for new papers on the multiversion transaction management that resulted in updates to that discussion in Chap. 5. Khuzaima Daudjee was also helpful in providing a list of more contemporary publications on distributed transaction processing that we include in the bibliographic notes section of that chapter. Ricardo Jimenez-Peris contributed text on high-performance transaction systems that is included in the same chapter. He also contributed a section on LeanXcale in the NoSQL, NewSQL, and polystores chapter. Dennis Shasha reviewed the new blockchain section in the P2P chapter. Michael Carey read the big data, NoSQL, NewSQL and

Preface

polystores, and parallel DBMS chapters and provided extremely detailed comments that improved those chapters considerably. Tamer's students Anil Pacaci, Khaled Ammar and postdoc Xiaofei Zhang provided extensive reviews of the big data chapter, and texts from their publications are included in this chapter. The NoSQL, NewSQL, and polystores chapter includes text from publications of Boyan Kolev and Patrick's student Carlyna Bondiombouy. Jim Webber reviewed the section on Neo4j in that chapter. The characterization of graph analytics systems in that chapter is partially based on Minyang Han's master's thesis where he also proposes GiraphUC approach that is discussed in that chapter. Semih Salihoglu and Lukasz Golab also reviewed and provided very helpful comments on parts of this chapter. Alon Halevy provided comments on the WebTables discussion in Chap. 12. The data quality discussion in web data integration is contributed by Ihab Ilyas and Xu Chu. Stratos Idreos was very helpful in clarifying how database cracking can be used as a partitioning approach and provided text that is included in Chap. 2. Renan Souza and Fabian Stöter reviewed the entire book.

The third edition of the book introduced a number of new topics that carried over to this edition, and a number of colleagues were very influential in writing those chapters. We would like to, once again, acknowledge their assistance since their impact is reflected in the current edition as well. Renée Miller, Erhard Rahm, and Alon Halevy were critical in putting together the discussion on database integration, which was reviewed thoroughly by Avigdor Gal. Matthias Jarke, Xiang Li, Gottfried Vossen, Erhard Rahm, and Andreas Thor contributed exercises to this chapter. Hubert Naacke contributed to the section on heterogeneous cost modeling and Fabio Porto to the section on adaptive query processing. Data replication (Chap. 6) could not have been written without the assistance of Gustavo Alonso and Bettina Kemme. Esther Pacitti also contributed to the data replication chapter, both by reviewing it and by providing background material; she also contributed to the section on replication in database clusters in the parallel DBMS chapter. Peer-to-peer data management owes a lot to the discussions with Beng Chin Ooi. The section of this chapter on query processing in P2P systems uses material from the PhD work of Reza Akbarinia and Wenceslao Palma, while the section on replication uses material from the PhD work of Vidal Martins.

We thank our editor at Springer Susan Lagerstrom-Fife for pushing this project within Springer and also pushing us to finish it in a timely manner. We missed almost all of her deadlines, but we hope the end result is satisfactory.

Finally, we would be very interested to hear your comments and suggestions regarding the material. We welcome any feedback, but we would particularly like to receive feedback on the following aspects:

1. Any errors that may have remained despite our best efforts (although we hope there are not many);

x Preface

2. Any topics that should no longer be included and any topics that should be added or expanded;

3. Any exercises that you may have designed that you would like to be included in the book.

Waterloo, Canada Montpellier, France June 2019 M. Tamer Özsu (tamer.ozsu@uwaterloo.ca) Patrick Valduriez (patrick.valduriez@inria.fr)

Contents

l Intr	oduction .	
1.1		s a Distributed Database System?
1.2		of Distributed DBMS
1.3		elivery Alternatives
1.4		es of Distributed DBMSs
	1.4.1	Transparent Management of Distributed and
		Replicated Data
	1.4.2	Reliability Through Distributed Transactions
	1.4.3	Improved Performance
	1.4.4	Scalability
1.5	Design	Issues
	1.5.1	Distributed Database Design
	1.5.2	Distributed Data Control
	1.5.3	Distributed Query Processing
	1.5.4	Distributed Concurrency Control
	1.5.5	Reliability of Distributed DBMS
	1.5.6	Replication
	1.5.7	Parallel DBMSs
	1.5.8	Database Integration
	1.5.9	Alternative Distribution Approaches
	1.5.10	Big Data Processing and NoSQL
1.6	Distribu	uted DBMS Architectures
	1.6.1	Architectural Models for Distributed DBMSs
	1.6.2	Client/Server Systems
	1.6.3	Peer-to-Peer Systems
	1.6.4	Multidatabase Systems
	1.6.5	Cloud Computing
17	Ribliog	raphic Notes

xii Contents

2	Dist	ributed a	nd Parallel Database Design	33
	2.1	Data Fı	ragmentation	35
		2.1.1	Horizontal Fragmentation	37
		2.1.2	Vertical Fragmentation	52
		2.1.3	Hybrid Fragmentation	65
	2.2	Allocat	tion	66
		2.2.1	Auxiliary Information	68
		2.2.2	Allocation Model	69
		2.2.3	Solution Methods	72
	2.3	Combin	ned Approaches	72
		2.3.1	Workload-Agnostic Partitioning Techniques	73
		2.3.2	Workload-Aware Partitioning Techniques	74
	2.4	Adaptiv	ve Approaches	78
		2.4.1	Detecting Workload Changes	79
		2.4.2	Detecting Affected Items	79
		2.4.3	Incremental Reconfiguration	80
	2.5	Data D	irectory	82
	2.6	Conclu	sion	83
	2.7	Bibliog	graphic Notes	84
3	Dict	ributed D	Oata Control	91
J	3.1		Management	92
	5.1	3.1.1	Views in Centralized DBMSs	92
		3.1.2	Views in Distributed DBMSs	95
		3.1.3	Maintenance of Materialized Views	96
	3.2		Control	102
	3.2	3.2.1	Discretionary Access Control.	103
		3.2.2	Mandatory Access Control	106
		3.2.3	Distributed Access Control	108
	3.3		tic Integrity Control	
	5.5	3.3.1	Centralized Semantic Integrity Control	
		3.3.2	Distributed Semantic Integrity Control	
	3.4		sion	123
	3.5		graphic Notes	123
		_	•	
4			Query Processing	
	4.1		ew	
		4.1.1	Query Processing Problem	
			Query Optimization	133
	4.5	4.1.3	Layers Of Query Processing	136
	4.2		ocalization	140
		4.2.1	Reduction for Primary Horizontal Fragmentation	141
		4.2.2	Reduction with Join	142
		4.2.3	Reduction for Vertical Fragmentation	143
		4.2.4	Reduction for Derived Fragmentation	145
		4.2.5	Reduction for Hybrid Fragmentation	148

Contents xiii

	4.3	Join Ordering in Distributed Queries		149
		4.3.1	Join Trees	149
		4.3.2	Join Ordering	151
		4.3.3	Semijoin-Based Algorithms	153
		4.3.4	Join Versus Semijoin	156
	4.4	Distrib	uted Cost Model	157
		4.4.1	Cost Functions	157
		4.4.2	Database Statistics	159
	4.5	Distrib	uted Query Optimization	161
		4.5.1	Dynamic Approach	161
		4.5.2	Static Approach	165
		4.5.3	Hybrid Approach	169
	4.6	Adapti	ve Query Processing	
		4.6.1	Adaptive Query Processing Process	
		4.6.2	Eddy Approach	176
	4.7	Conclu	ision	177
	4.8		graphic Notes	178
_		_	•	
5			Transaction Processing	
	5.1	_	round and Terminology	184
	5.2		uted Concurrency Control	188
		5.2.1	Locking-Based Algorithms	
		5.2.2	Timestamp-Based Algorithms	
		5.2.3	Multiversion Concurrency Control	
		5.2.4	Optimistic Algorithms	
	5.3		uted Concurrency Control Using Snapshot Isolation	206
	5.4		uted DBMS Reliability	209
		5.4.1	Two-Phase Commit Protocol	211
		5.4.2	Variations of 2PC	217
		5.4.3	Dealing with Site Failures	
		5.4.4	Network Partitioning	
		5.4.5	Paxos Consensus Protocol	
		5.4.6	Architectural Considerations	
	5.5		n Approaches to Scaling Out Transaction Management	236
		5.5.1	Spanner	237
		5.5.2	LeanXcale	237
	5.6		sion	239
	5.7	Bibliog	graphic Notes	241
6	Doto	Danlica	tion	247
U	6.1		tency of Replicated Databases	249
	0.1	6.1.1	Mutual Consistency	249
		6.1.2	Mutual Consistency Versus Transaction Consistency	251
	6.2		Management Strategies	251
	0.2	6.2.1	Eager Update Propagation	
		6.2.1		
		0.2.2	Lazy Update Propagation	254

xiv Contents

		6.2.3	Centralized Techniques		254
		6.2.4	Distributed Techniques		255
	6.3	Replica	ation Protocols		255
		6.3.1	Eager Centralized Protocols		256
		6.3.2	Eager Distributed Protocols		262
		6.3.3	Lazy Centralized Protocols		262
		6.3.4	Lazy Distributed Protocols		268
	6.4	Group	Communication		269
	6.5	Replica	ation and Failures		272
		6.5.1	Failures and Lazy Replication		273
		6.5.2	Failures and Eager Replication		273
	6.6	Conclu	sion		276
	6.7	Bibliographic Notes			
7	Data	base Inte	egration—Multidatabase Systems		281
	7.1		se Integration		282
		7.1.1	Bottom-Up Design Methodology		283
		7.1.2	Schema Matching		287
		7.1.3	Schema Integration		296
		7.1.4	Schema Mapping		298
		7.1.5	Data Cleaning		306
	7.2	Multida	atabase Query Processing		307
		7.2.1	Issues in Multidatabase Query Processing		308
		7.2.2	Multidatabase Query Processing Architecture		309
		7.2.3	Query Rewriting Using Views		311
		7.2.4	Query Optimization and Execution		317
		7.2.5	Query Translation and Execution		329
	7.3	Conclu	sion		332
	7.4	Bibliog	graphic Notes		334
8	Para	llel Data	base Systems		349
	8.1		ives		350
	8.2		l Architectures		352
		8.2.1	General Architecture		353
		8.2.2	Shared-Memory		355
		8.2.3	Shared-Disk		357
		8.2.4	Shared-Nothing		358
	8.3	Data Pl	lacement		359
	8.4				362
		8.4.1	Parallel Algorithms for Data Processing		362
		8.4.2	Parallel Query Optimization		369
	8.5		salancing		374
	- · -	8.5.1	Parallel Execution Problems		374
		8.5.2	Intraoperator Load Balancing		376
		8.5.3	Interoperator Load Balancing		378
		8.5.4	Intraquery Load Balancing		378

Contents xv

	8.6			383		
	8.7	Databas	se Clusters	384		
		8.7.1	Database Cluster Architecture	385		
		8.7.2	Replication	386		
		8.7.3	Load Balancing	386		
		8.7.4	Query Processing	387		
	8.8	Conclus	sion	390		
	8.9	Bibliog	raphic Notes	390		
9	Peer-	to-Peer I	Data Management	395		
	9.1	Infrastru	ucture	398		
		9.1.1	Unstructured P2P Networks	399		
		9.1.2	Structured P2P Networks	402		
		9.1.3	Superpeer P2P Networks	406		
		9.1.4	Comparison of P2P Networks	408		
	9.2	Schema	Mapping in P2P Systems	408		
		9.2.1	Pairwise Schema Mapping	408		
		9.2.2	Mapping Based on Machine Learning Techniques	409		
		9.2.3	Common Agreement Mapping	410		
		9.2.4	Schema Mapping Using IR Techniques	411		
	9.3	Ouervin	ng Over P2P Systems	411		
		9.3.1	Top-k Queries	412		
		9.3.2	Join Queries	424		
		9.3.3	Range Queries	425		
	9.4	Replica	Consistency	428		
		9.4.1	Basic Support in DHTs	429		
		9.4.2	Data Currency in DHTs	431		
		9.4.3	Replica Reconciliation	432		
	9.5 Blockchain		•	436		
	<i>,</i>	9.5.1	Blockchain Definition	437		
		9.5.2	Blockchain Infrastructure	438		
		9.5.3	Blockchain 2.0.	442		
		9.5.4	Issues.	443		
	9.6		sion	444		
	9.7		raphic Notes	445		
10						
10	_	Data Processing				
	10.1		ited Storage Systems	451		
		10.1.1	Google File System	453		
		10.1.2	Combining Object Storage and File Storage	454		
	10.2		a Processing Frameworks	455		
		10.2.1	MapReduce Data Processing	456		
		10.2.2	Data Processing Using Spark	466		
	10.3		Data Management	470		
		10.3.1	Stream Models, Languages, and Operators	472		
		10.3.2	Query Processing over Data Streams	476		
		10.3.3	DSS Fault-Tolerance	483		

xvi Contents

	10.4	Graph A	nalytics Platforms	486
		10.4.1	Graph Partitioning	489
		10.4.2	MapReduce and Graph Analytics	494
		10.4.3	Special-Purpose Graph Analytics Systems	495
		10.4.4	Vertex-Centric Block Synchronous	498
		10.4.5	Vertex-Centric Asynchronous	501
		10.4.6	Vertex-Centric Gather-Apply-Scatter	503
		10.4.7	Partition-Centric Block Synchronous Processing	504
		10.4.8	Partition-Centric Asynchronous	506
		10.4.9	Partition-Centric Gather-Apply-Scatter	506
		10.4.10	Edge-Centric Block Synchronous Processing	507
		10.4.11	Edge-Centric Asynchronous	507
		10.4.12	Edge-Centric Gather-Apply-Scatter	507
	10.5	Data Lal	kes	508
		10.5.1	Data Lake Versus Data Warehouse	508
		10.5.2	Architecture	510
		10.5.3	Challenges	511
	10.6	Conclusi	ion	512
	10.7	Bibliogr	aphic Notes	512
11	NoSC)L. NewS	QL, and Polystores	519
	11.1		ons for NoSQL	520
	11.2		ue Stores	521
		11.2.1	DynamoDB	522
		11.2.2	Other Key-Value Stores	524
	11.3		nt Stores	525
		11.3.1	MongoDB	525
		11.3.2	Other Document Stores	528
	11.4	Wide Co	olumn Stores	529
		11.4.1	Bigtable	529
		11.4.2	Other Wide Column Stores	531
	11.5	Graph D	BMSs	531
		11.5.1	Neo4j	532
		11.5.2	Other Graph Databases	535
	11.6	Hybrid I	Data Stores	536
		11.6.1	Multimodel NoSQL Stores	536
		11.6.2	NewSQL DBMSs	537
	11.7	Polystor	es	540
		11.7.1	Loosely Coupled Polystores	540
		11.7.2	Tightly Coupled Polystores	545
		11.7.3	Hybrid Systems	549
		11.7.4	Concluding Remarks	554
	11.8	Conclus	ion	554
	11.9		aphic Notes	555

Contents xvii

12	Web	Data Ma	nagement	559
	12.1	Web Gr	raph Management	560
	12.2	arch	562	
		12.2.1	Web Crawling	563
		12.2.2	Indexing	566
		12.2.3	Ranking and Link Analysis	567
		12.2.4	Evaluation of Keyword Search	568
	12.3	Web Qu	nerying	569
		12.3.1	Semistructured Data Approach	570
		12.3.2	Web Query Language Approach	574
	12.4		n Answering Systems	580
	12.5	Searchi	ng and Querying the Hidden Web	584
		12.5.1	Crawling the Hidden Web	585
		12.5.2	Metasearching	586
	12.6	Web Da	ta Integration	588
		12.6.1	Web Tables/Fusion Tables	589
		12.6.2	Semantic Web and Linked Open Data	590
		12.6.3	Data Quality Issues in Web Data Integration	608
	12.7	Bibliog	raphic Notes	615
Co	rrectio	n to: Pri	nciples of Distributed Database Systems	C1
A	Over	view of F	Relational DBMS	619
В	Cent	ralized Q	Query Processing	621
C	Transaction Processing Fundamentals			
D	Revie	ew of Co	mputer Networks	625
Ref	ference	s		627
T1	1			((2

The original version of this book was revised. The correction to this book is available at https://doi.org/10.1007/978-3-030-26253-2_13