Kinematics Fundamentals

- Vector Overview
- Velocity Analysis
- □ Four Bar Linkage
- □ Slider Crank
- Inverted Slider Crank

Representing Vectors

Vector

$$\hat{A} = A \cdot \cos \theta \cdot \hat{i} + A \cdot \sin \theta \cdot \hat{j}$$

$$= A \cdot \left(\cos \theta \cdot \hat{i} + A \cdot \sin \theta \cdot \hat{j}\right)$$

$$= A \cdot \hat{e}_A$$

Complex

$$\vec{A} = A \cdot \cos \theta + j \cdot A \cdot \sin \theta$$
$$= A \cdot e^{j \cdot \theta}$$

Differentiating Vectors

□ Chain Rule

$$\frac{d}{dt}(A(t)\cdot B(t)) = \frac{dA(t)}{dt}\cdot B(t) + A(t)\cdot \frac{dB(t)}{dt}$$

Omega Theorem

$$\frac{d\hat{e}}{dt} = \dot{\hat{\theta}} \otimes \hat{e}$$

Velocity Fundamentals

TYPE I: (RRRR) Four Bar Linkage

4-Bar Algorithm Inputs

a=	5 Link 2
b=	12 Link 3
C=	10 Link 4
d=	15 Link 1
$\theta_2 =$	60 1.047197551
$\theta_2 =$	-25 1/ _S
	K1= 9.7600E+00

		17.1-	3.7000L+00
_	_	K2=	3.4641E-01
p=	5	K3=	3.2414E+00
δ=	331	K4=	-6.4770E+01

By=	9.83	-6.59
Bx=	13.17	7.48
$\theta_3 =$	27.3	-65.5
$\theta_{4} =$	100.6	-138.8
$\dot{\theta}_3 =$	7.0737E+00	-3.5022E+00
$\ddot{\theta}_{4} =$	-7.0545E+00	1.0626E+01

4-Bar Algorithm Velocity Results

						€	P _r	е	θ
		x comp	y comp	mag	angle	i	j	i	j
r04=		15.00	0.00	15.000	0.0	1.000	0.000	0.000	1.000
rA=		2.50	4.33	5.000	60.0	0.500	0.866	-0.866	0.500
rBA=		10.67	5.50	12.000	27.3	0.889	0.458	-0.458	0.889
rBO4	=	-1.83	9.83	10.000	100.6	-0.183	0.983	-0.983	-0.183
rB=		13.17	9.83	16.430	36.7	0.801	0.598	-0.598	0.801
rPA=		5.00	-0.15	5.000	-1.7	1.000	-0.030	0.030	1.000
rP=		7.50	4.18	8.584	29.1	0.873	0.487	-0.487	0.873
vA=		108.25	-62.50	125.000	-30.0	0.866	-0.500	0.500	0.866
vBA=		-38.91	75.44	84.884	117.3	-0.458	0.889	-0.889	-0.458
vB=		69.35	12.94	70.545	10.6	0.983	0.183	-0.183	0.983
vPA=		1.06	35.35	35.368	88.3	0.030	1.000	-1.000	0.030
vP=		109.31	-27.15	112.635	-13.9	0.971	-0.241	0.241	0.971
ALT		x comp	y comp	mag	angle	j	j	i	j
rO4=		15.00	0.00	15.000	0.0	1.000	0.000	0.000	1.000
rA=		2.50	4.33	5.000	60.0	0.500	0.866	-0.866	0.500
rBA=		4.98	-10.92	12.000	-65.5	0.415	-0.910	0.910	0.415
rBO4	=	-7.52	-6.59	10.000	-138.8	-0.752	-0.659	0.659	-0.752
rB=		7.48	-6.59	9.966	-41.4	0.750	-0.661	0.661	0.750
rPA=		-0.39	-4.98	5.000	-94.5	-0.078	-0.997	0.997	-0.078
rP=		2.11	-0.65	2.208	-17.2	0.955	-0.296	0.296	0.955
vA=		108.25	-62.50	125.000	-30.0	0.866	-0.500	0.500	0.866
vBA=	:	-38.24	-17.43	42.027	-155.5	-0.910	-0.415	0.415	-0.910
vB=		70.01	-79.93	106.259	-48.8	0.659	-0.752	0.752	0.659
vPA=	:	-17.46	1.37	17.511	175.5	-0.997	0.078	-0.078	-0.997
vP=		90.80	-61.13	109.456	-34.0	0.830	-0.558	0.558	0.830

TYPE II: (RRRP) Slider Crank Linkage

Slider Crank Algorithm Inputs

a= b=	5.5 Link 2 21 Link 3
C=	2 Offset
$\theta_2 = \dot{\theta} = 0$	55 0.959931089
$\theta_2 =$	-20 /s

By=	2.00	2.00
By= Bx=	24.00	-17.70
$\theta_3 =$	-6.9	-173.1
$\dot{\theta}_3 = $	3.03	-3.03

Slider Crank Algorithm Velocity Results

					ϵ) r	ϵ	θ
	x comp	y comp	mag	angle	i	j	i	j
rB=	24.00	2.00	24.09	4.8	0.997	0.083	-0.083	0.997
rA=	3.15	4.51	5.50	55.0	0.574	0.819	-0.819	0.574
rBA=	20.85	-2.51	21.00	-6.9	0.993	-0.119	0.119	0.993
vB	97.69	0.00	97.69	0.0	1.000	0.000	0.000	1.000
vA	90.11	-63.09	110.00	-35.0	0.819	-0.574	0.574	0.819
√BA	7.58	63.09	63.55	83.1	0.119	0.993	-0.993	0.119
alt	x comp	y comp	mag	angle	i	j	i	j
rB=	-17.70	2.00	17.81	173.6	-0.994	0.112	-0.112	-0.994
rA=	3.15	4.51	5.50	55.0	0.574	0.819	-0.819	0.574
rBA=	-20.85	-2.51	21.00	-173.1	-0.993	-0.119	0.119	-0.993
vB	82.53	0.00	82.53	0.0	1.000	0.000	0.000	1.000
vA	90.11	-63.09	110.00	-35.0	0.819	-0.574	0.574	0.819
vBA	-7.58	63.09	63.55	96.9	-0.119	0.993	-0.993	-0.119

TYPE II: (RRRP) Inverted Slider Crank Linkage

RBB

Mechanical Engineering

Slider Crank Algorithm Inputs and Initial Results

Link 2
Link 4
Link 1
1/s
$\frac{1}{s^2}$
3 -11.21
0 163.74
0 28.74
5 137.74
5 137.74
7 -304.37

Slider Crank Algorithm Velocity Vector Analysis

								-
					€	r	е	θ
	x comp	y comp	mag	angle	i	j	i	j
rO4=	3.00	0.00	3.00	0.0	1.000	0.000	0.000	1.000
rA=	7.07	7.07	10.00	45.0	0.707	0.707	-0.707	0.707
rBA=	0.07	-2.73	2.73	-88.6	0.024	-1.000	1.000	0.024
rBO4=	4.14	4.35	6.00	46.4	0.690	0.724	-0.724	0.690
rB=	7.14	4.35	8.36	31.3	0.854	0.520	-0.520	0.854
vA=	-707.11	707.11	1000.00	135.0	-0.707	0.707	-0.707	-0.707
vBA=	277.17	-297.69	406.75	-47.0	0.681	-0.732	0.732	0.681
vB=	-429.93	409.42	593.69	136.4	-0.724	0.690	-0.690	-0.724
•	720.00	700172	030.03	130.7	0.72	0.000	0.000	0.721
alt	x comp	y comp	mag	angle	i	j	i	j
						j 0.000		j 1.000
alt	x comp	y comp	mag	angle	i	j	i	j
alt rO4=	x comp 3.00	y comp 0.00	mag 3.00	angle 0.0	i 1.000	j 0.000	i 0.000	j 1.000
alt rO4= rA=	x comp 3.00 7.07	y comp 0.00 7.07	mag 3.00 10.00	0.0 45.0	i 1.000 0.707	j 0.000 0.707	i 0.000 -0.707	j 1.000 0.707
alt rO4= rA= rBA=	3.00 7.07 -9.83	y comp 0.00 7.07 -5.39	mag 3.00 10.00 11.21	angle 0.0 45.0 -151.3	i 1.000 0.707 -0.877	j 0.000 0.707 -0.481	i 0.000 -0.707 0.481	j 1.000 0.707 -0.877
alt rO4= rA= rBA= rB04=	3.00 7.07 -9.83 -5.76	y comp 0.00 7.07 -5.39 1.68	3.00 10.00 11.21 6.00	angle 0.0 45.0 -151.3 163.7	i 1.000 0.707 -0.877 -0.960	j 0.000 0.707 -0.481 0.280	i 0.000 -0.707 0.481 -0.280	j 1.000 0.707 -0.877 -0.960
alt rO4= rA= rBA= rB04= rB=	x comp 3.00 7.07 -9.83 -5.76 -2.76	y comp 0.00 7.07 -5.39 1.68 1.68	mag 3.00 10.00 11.21 6.00 3.23	angle 0.0 45.0 -151.3 163.7 148.7	i 1.000 0.707 -0.877 -0.960 -0.854	j 0.000 0.707 -0.481 0.280 0.520	i 0.000 -0.707 0.481 -0.280 -0.520	j 1.000 0.707 -0.877 -0.960 -0.854

Type III: RRPP Elliptic Trammel

Type III: RRPP Elliptic Trammel

Type III: RRPP Elliptic Trammel: Scotch Yoke

Type IV: RPRP Rapson Slide Linkage

Example 1

Rods "R" and "L" are pinned at "O" and "O" to a frame.
Rod "L" is also pinned to the slotted body "B" at "B". ?The upper end of "R" is pinned at P to a roller that moves freely in the slot of "B". The angular velocities of the rod "R" and link "L" are constants:

 ω_R =-0.2 rad/s

 ω_L =-0.4 rad/s

Determine the velocity of "P" and the angular velocity of "B" at the given instant.

Diagram of Problem

Problem Geometry

