assignment_24.1

January 12, 2019

0.1 Predicting Survival using Titanic Dataset

In this assignment, I have used decision tree to predict survival of passengers using Titanic Dataset

0.2 Import libraries

```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sb
    import matplotlib.pyplot as plt
    import sklearn
    from pandas import Series, DataFrame
    from pylab import rcParams
    from sklearn import preprocessing
    from sklearn.linear_model import LogisticRegression
    from sklearn.cross_validation import train_test_split
    from sklearn import metrics
    from sklearn.metrics import classification_report
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy_score,recall_score,precision_score
```

E:\anaconda\lib\site-packages\sklearn\cross_validation.py:41: DeprecationWarning: This module "This module will be removed in 0.20.", DeprecationWarning)

0.3 Load titanic dataset

```
Name
                                                           Sex
                                                                 Age
                                                                      SibSp \
0
                              Braund, Mr. Owen Harris
                                                          male
                                                                22.0
                                                                           1
1
  Cumings, Mrs. John Bradley (Florence Briggs Th...
                                                        female
                                                                38.0
                                                                           1
2
                               Heikkinen, Miss. Laina
                                                                           0
                                                        female
                                                                26.0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                                           1
                                                        female
                                                                35.0
4
                             Allen, Mr. William Henry
                                                          male
                                                                35.0
                                                                           0
   Parch
                    Ticket
                                Fare Cabin Embarked
0
                              7.2500
                                       NaN
       0
                 A/5 21171
1
       0
                  PC 17599
                            71.2833
                                       C85
                                                   С
2
       0 STON/02. 3101282
                             7.9250
                                                   S
                                       NaN
                                                   S
3
       0
                    113803
                            53.1000 C123
                                                   S
4
       0
                    373450
                              8.0500
                                       NaN
```

0.4 Perform analysis of dataset (describe, event rate)

In [4]: titanic.describe()

Out[4]:		PassengerId	Survived	Pclass	Age	SibSp	\
	count	891.000000	891.000000	891.000000	714.000000	891.000000	
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	
	std	257.353842	0.486592	0.836071	14.526497	1.102743	
	min	1.000000	0.000000	1.000000	0.420000	0.000000	
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	
	max	891.000000	1.000000	3.000000	80.000000	8.000000	
		Parch	Fare				
	count	891.000000	891.000000				
	mean	0.381594	32.204208				
	std	0.806057	49.693429				
	min	0.000000	0.000000				
	25%	0.000000	7.910400				
	50%	0.000000	14.454200				
	75%	0.000000	31.000000				
	max	6.000000	512.329200				

Event_Rate: 38.38383838383838%

0.5 Find missing values in columns and fill the missing values

In [6]: titanic.isnull().sum()

```
Out[6]: PassengerId
                         0
        Survived
                         0
        Pclass
                         0
        Name
                         0
        Sex
                         0
        Age
                       177
        SibSp
                         0
        Parch
                         0
        Ticket
                         0
        Fare
                         0
                       687
        Cabin
        Embarked
                         2
        dtype: int64
In [7]: ## Fill mssing value in Age column with average Age
        mean_age = titanic['Age'].mean()
        titanic['Age'].fillna(mean_age, inplace=True)
In [8]: ## Fill mssing value in Cabin column with NaN
        titanic['Cabin'].fillna('NaN', inplace=True)
In [9]: ## Fill mssing value in Embarked column with NaN
        titanic['Embarked'].fillna('NA', inplace=True)
0.6 Perform one hot encoding of columns Sex, Embarked, Cabin
In [10]: titanic = pd.get_dummies(titanic, columns=['Sex'])
In [11]: titanic = pd.get_dummies(titanic, columns=['Embarked'])
0.7 Add a new column has_Cabin and populate with 0 if Cabin value is NaN, 1 oth-
    erwise
In [12]: titanic['has_Cabin'] = titanic['Cabin'].apply(lambda x: 0 if x == 'NaN' else 1)
In [13]: titanic.head()
Out[13]:
            PassengerId
                         Survived Pclass
                      1
                      2
         1
                                1
                                         1
         2
                      3
                                1
                                        3
         3
                      4
                                1
                                        1
                      5
                                        3
                                                                 Age SibSp Parch \
                                                          Name
         0
                                      Braund, Mr. Owen Harris 22.0
                                                                          1
            Cumings, Mrs. John Bradley (Florence Briggs Th...
                                                                                 0
         1
                                                                38.0
                                                                          1
                                       Heikkinen, Miss. Laina
         2
                                                                26.0
                                                                                 0
```

35.0

1

0

Futrelle, Mrs. Jacques Heath (Lily May Peel)

3

	Ticket	Fare	Cabin	Sex_female	Sex_male	${\tt Embarked_C}$	\
0	A/5 21171	7.2500	${\tt NaN}$	0	1	0	
1	PC 17599	71.2833	C85	1	0	1	
2	STON/02. 3101282	7.9250	${\tt NaN}$	1	0	0	
3	113803	53.1000	C123	1	0	0	
4	373450	8.0500	${\tt NaN}$	0	1	0	

	${\tt Embarked_NA}$	${\tt Embarked_Q}$	${\tt Embarked_S}$	has_Cabin
0	0	0	1	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	0	1	0

0.8 Praprare data for Decision Tree analysis

- 1. Create a dataframe titanic_features From titanic dataframe by dropping columns 'PassengerId','Name','Ticket','Survived','Cabin'
- 2. Create a dataframe titanic_target by taking colmn 'Survived' from titanic dataframe
- 3. Split the dataframes titanic_features and titanic_target into train and tests data

0.9 Train data using Devision Tree and find accuracy scores

Training set has 623 samples. Testing set has 268 samples.