California High-Speed Train Project

Request for Proposal for Design-Build Services

RFP No.: HSR 11-16
Structures Report
Veterans Blvd to Clinton Ave

CALIFORNIA HIGH-SPEED TRAIN

Engineering Report

Merced to Fresno HST Herndon Canal Bridge

San Francisco
Transbay Terminal
Millbrae-SFO
San Jose
Stockton
February 2012

Kings/Tulare Regional Station (Potential Station)

Bakersfield

Los Angeles

Palmdale

Industry

Ontario Airport

Riverside

Murrieta

Escondido
University City
San Diego

Downtown Merced

CALIFORNIA
High-Speed Rail Authority

Redwood City

Diridon

Gilroy

HST Herndon Canal Bridge

Prepared by:

AECOM

[February] [2012]

1. Existing Conditions

The Herndon Canal is owned and operated by the Fresno Irrigation District (FID) and is part of a network of canals that not only convey irrigation water for agricultural uses eight months of the year, but also provide storm water drainage and groundwater recharge in the Winter months. In the vicinity of the proposed HST track alignment, the Herndon Canal crosses under the City of Fresno's Golden State Boulevard (GSB) in a multi-cell, reinforced concrete (RC) cast-in-place (CIP) box culvert. The existing box culvert consists of a five-bay RC/CIP concrete box and each bay is about 7 feet in width and 5 feet,6 inches in height – see photo below. Upstream of this Golden State Boulevard box culvert is a UPRR bridge over the Herndon Canal which consists of a three-span short bridge – see photo below. Downstream of this Golden State Boulevard box culvert is open channel. The Herndon Canal channel is currently unlined throughout this area.

Herndon Canal Box Culvert at GSB

UPPR Railroad Bridge Upstream (East) of GSB

2. Proposed Structure

The existing RC/CIP box culvert that supports Golden State Boulevard will be removed and replaced with the recommended structure type of Precast/Prestressed concrete box girders to accommodate the proposed HST alignment. Precast/Prestressed concrete box girder bridges have been used successfully since the mid-1950's and are the preferred bridge type for short-span railroad bridges.

Superstructure:

For the preliminary design, a two-span structure is proposed to minimize the depth of the bridge superstructure and ease the track profile due to vertical clearance constraints (i.e., maximize the structure's clearance height over the canal and minimize the HST's track height). An intermediate support is proposed in the center of the canal channel that results in two structure spans of 32 feet each. The girders will be designed as simply supported, allowing prefabricated structural elements to be brought in and lifted into place at the site in a short period of time. This solution alleviates the need to cure concrete in the field and allows a shorter construction window than a cast-in-place structure. The bridge structure will be required to support double

tracks with a structure width of 43 feet. A standard 42-inch deep PC/PS double-cell concrete box girder is proposed.

Substructure:

The recommended support elements for the Herndon Canal bridge will consist of reinforced concrete abutments at each end, with an intermediate cast-in-place concrete pier wall with an enlarged bent cap capable of supporting the bridge girders. All of the substructure elements will be founded on Cast-in-Drilled-Hole (CIDH) piles and pile caps. CIDH piles are recommended to support the proposed bridge Bent 2 and Abutments, with diameters of 30 inches and 24 inches, respectively.

Freeboard:

FID requires a minimum freeboard of 2.0 feet for any new canal crossing. The existing GSB box culvert provides a very limited freeboard from the high-water elevation to the soffit of the box culvert. This 2.0 feet of freeboard is needed to allow floating debris and channel flow to pass through the waterway opening provided by the bridge minimizing the potential for the accumulation of debris that may obstruct flow. The proposed HST Herndon Canal bridge will have a minimum of 2.0 feet of available freeboard from the canal's high-water elevation to the soffit of the bridge.

Pier/Trash Riders:

Per FID standard details, pier/trash riders are required on the upstream sides of the center pier wall of the bridge. The minimum wall thickness shall be 6"x 12" as shown in the attached drawings with an appropriate slope.

Channel Lining:

FID requires the channel to be concrete lined through the structure within the proposed HST Authority ROW, with rip rap required to be placed in the transitions to this concrete lining as shown in the attached drawings and as specified in the FID standards.

Construction Limitations:

According to FID, the irrigation season typically runs from mid-February to October, but dates may vary. The contractor will need to contact FID with regard to the end of FID's irrigation season and secure construction encroachment permits from them. Construction work in the canal channel is generally carried out between the irrigation and the flood seasons in November and December. The Herndon Canal will remain operational and be used to route water outside the normal irrigation season.

Removal of the existing structure and construction of the new HST bridge is expected to occur during the winter months, when only minimal flows are anticipated. The site will need to be dewatered during construction of the foundations and the lining of the channel. While typical

maintenance flows range from 50-75 cfs, the canal is used to convey storm water when required. FID has agreed that a bypass facility with a capacity of 200 cfs would be reasonable during the construction period.

Utilities:

A 4"gas line and a 14" water pipe line are observed to be running parallel to the upstream (east) side of the edge of the existing GSB box culvert. These utilities must be relocated before the demolition of the existing GSB box culvert and the construction of the new HST canal crossing structure.

Traffic Handling:

Traffic on Golden State Boulevard cannot be maintained while constructing the new HST Bridge over the Herndon Canal. Therefore a new Golden State Boulevard bridge over the Herndon Canal will be constructed on a new roadway alignment west of the existing box culvert prior to the removal of the existing Golden State Boulevard box culvert over the canal, and the Golden State Boulevard traffic shifted to the completed new roadway bridge.

APPENDIX A- Preliminary Design Plans

- 1. ROW SHOWN REPRESENTS THE MINIMUM ANTICIPATED ROW REQUIREMENTS. ACCURATE ROW AND ACCESS DATA WILL BE MADE AVAILABLE PRIOR TO NOTE TO PROCEED.
- 2. OCS POSTS SHOWN ARE INDICATIVE ONLY AND MAY LOCATE OUTSIDE BRIDGE STRUCTURE.
- 3. CUTTOFF WALLS SHALL EXTEND ALONG CHANNEL BOTTOM & SIDES TO TOP OF SLOPE.

SECTION AT ABUTMENT 3

REV	DATE	BY	СНК	APP	DESCRIPTION	E. CISNEROS CHECKED BY T. DUDLEY IN CHARGE D. MINISTER DATE 12/08/11	
						DESIGNED BY H. LEE DRAWN BY	

PROPOSED
PRELIMINARY
DESIGN
NOT FOR
CONSTRUCTION

AECOM Technical Services, Inc. 2020 L Street, Suite 300 Sacromento, CA 95811 CH2MHILL

CALIFORNIA HIGH-SPEED TRAIN PROJECT SIERRA SUBDIVISION

PACKAGE 1A TRACK STRUCTURES HST BRIDGE AT HERNDON CANAL TYPICAL SECTIONS

CONTR	ACT N	0.			
DRAWIN	DRAWING NO.				
	ST-	-K1002			
SCALE					
	AS	SHOWN			
SHEET	NO.				

NOTES:

- 1. ROW SHOWN REPRESENTS THE MINIMUM ANTICIPATED ROW REQUIREMENTS. ACCURATE ROW AND ACCESS DATA WILL BE MADE AVAILABLE PRIOR TO NOTICE TO PROCEED.
- 2. EXISTING BRIDGE AND UTILITY ARE APPROXIMATE.
- 3. EXISTING UNDERGROUND AND OVERHEAD UTILITIES TO BE DETERMINED.

PLANSCALE: 1" = 30'

						DESIGNED BY H. LEE DRAWN BY E. CISNEROS CHECKED BY T. DUDLEY IN CHARGE D. MINISTER DATE
REV	DATE	ВҮ	СНК	APP	DESCRIPTION	12/08/11

PROPOSED
PRELIMINARY
DESIGN
NOT FOR

CONSTRUCTION

AECOM
Technical Services, Inc.
2020 L Street, Suite 300
Sacromento, CA 9581
CH2MHILL

CALIFORNIA HIGH-SPEED TRAIN PROJECT SIERRA SUBDIVISION

PACKAGE 1A TRACK STRUCTURES HST BRIDGE AT HERNDON CANAL FOUNDATION PLAN

CONTRA	ACT NO).	
DRAWIN	G NO.		
	ST-	-K1003	
SCALE			
	AS	SHOWN	
SHEET	NO.		

APPENDIX B- Preliminary Design Calculations

CALIFORNIA HIGH-SPEED TRAIN

Structural Calculations

Preliminary Design Draft
Merced to Fresno Section

HST Herndon Canal Structural Design Calculations

November 2011

San Francisco

Millbrae-SFO

Redwood City

Transbay Terminal

Stockton

San Jose

Diridon

Gilroy

Downtown Modesto

Downtown Merced

Kings/Tulare Regional Station (Potential Station)

Bakersfield

Los Angeles Norwalk **Palmdale**

Industry

Ontario Airport

Murrieta

Escondido
University City
San Diego

CALIFORNIA HIGH SPEED TRAIN PROJECT

INDEX

HIGH SPEED RAIL BRIDGE AT HERNDON CANAL	
Section and Deflection Analysis	5
ConSpan Analysis	12
VBent Analysis	29
BRGARUT Analysis	40

Technical Task Protocol

Technical '	Task Protocol No.: S		Revision No.: 1
Project:	California High-Speed	Frain Project - Merced to Fresno	
Job No.:	60162046.240105	D : C UOT - I D - I	
Decises Too		ry Design for HST and Roadway	
Design Tas	sk Element: Structure	S	. 1 1
1	dia bo	Much	H
Honsing Le	e 07/15/2011	Mark Stiller 10/3	1/2011
Originator /	Date	Reviewer / Date	

Objective

This Technical Task Protocol addresses the production of preliminary design, calculations, and drawings of HST Herndon Canal Structure, GSB structure over the Herndon Canal, and Grade Separation of Shaw Avenue structure.

Prerequisites (Input)

- Required formats
 - o All drawings will be done using Microstation V8 in English units.
 - o Drawings will conform to Caltrans Memo to Designers (CMTD) 1-8 Advance Planning Studies and the CADD requirements set by the California High-Speed Rail-Authority (CSHRA).
 - o All drawings and calculations will be done in English units.
- Design Input from other HSR Design Teams
 - o Topographic maps, scale and contour interval of maps and mapping files
 - o Proposed horizontal profile each structure location
 - o Supplementary field survey data
 - As-built drawings for existing overhead, overcrossing, aerial, and underpass structures and structure maintenance reports as available
 - o DVD of Corridor for all subsections, major utility matrix, ROW, and easement line work
 - o Preliminary geotechnical report
 - Field views of structure sites to be scheduled with the PM as required
 - Obtaining Utility base maps

Design

- Design criteria
 - Clearances at structures
 Horizontal Clearances:
 - No placing columns over the UPPR ROW

 25'-0 horizontal clearances from CL nearest track to the face of column

Vertical Clearances:

- The HST Herndon Canal structure and GSB structure over Herndon Canal structure will provide a minimum of 2-ft free board measuring from mean high level water in the canal to the soffit of the structure.
- Shaw Avenue structure will provide the following minimum vertical clearance:
 - 27' above top of rail over High-Speed Train railroad;
 - 24'-6" above top of rail over UPPR railroad;
 - 16'-6" over City Street and highways

Design Loads

- Permanent loads shall be according to Section 6.4 TM 2.3.2 Rev.2.
- For preliminary design, PMT directed us to assume 2-ft thick ballast for the calculations of loads regardless of ballasted or non-ballasted tracks. Maximum of ballast load or slab track is used.
- Transient Loads and vertical impact effect shall be according to Section 6.5 TM 2.3.2 Rev.2 and Section 6.5.2 TM 2.10.10 Rev.0.

Design Approach

The following approach is to follow for developing the subject design task.

- Obtain input from others as required (see Section Prerequisites)
- Determine and document the bridge design criteria
- o Configure/verify the bridge geometry, structure type and foundation type
- o Develop structure typical sections, sizes of column and foundation
- Prepare the design loads per the design criteria
- Determine maximum seismic acceleration response for OBE at HST structure
- Verify the frequency requirements of HST structure
- Verify the vertical live load deflection of the HST structure
- Check the critical cases of relative longitudinal displacement at expansion joints for the HST structure
- Prepare preliminary VBridge or ConSpan design analysis to determine PT/PS and girder reactions.
- o Perform VBent analysis for the design of bents and pier wall.
- o Perform BRGABUT program for the design of HST abutments.
- Furnish initial pile reactions to Parikh for determination of the pile requirements

Validated Software

The following validated technical software is available to produce the subject design task.

No	Software	Description		
1	ABUD*	Bridge abutment design		
2	BRGABUT	GABUT Bridge abutment design		
3	CONSPAN PC/PS concrete longitudinal analysis			
4	SAP2000* Finite element analysis			
5	SEISAB* Seismic analysis of bridges			
6	VBENT*	non-integral or integral piers or bents design		
7	VBRIDGE*	Cast-in-place post-tensioned concrete bridge design		
8	wFRAME*	Nonlinear static (pushover) analysis		

Interdiscipline Coordination

- Obtain and review existing alignment and mapping data from civil group. Use as background data for plan and elevation views and right-of-way maps. Coordinate any additional required survey data through the PM.
- Coordinate with civil group on the proposed horizontal alignment of the new structure for each alternative.
- Provide information on preliminary superstructure depth and necessary falsework depths for all alternates being studied.
- Provide information on proposed locations and approximate sizes of substructure units.
- Coordinate with the civil group on the proposed profile of the baseline and the structure.
- Coordinate with the civil group on the proposed cross section of the bridge, including walkways and barriers.
- Coordinate with other teams to determine staging considerations.

References

- TM 1.1.21 Typical Cross Section For 15% Design
- TM 2.3.2 Structure Design Loads Rev.2
- TM 2.3.3 Design Guideline for High-Speed Train Aerial Structure
- TM 2.10.4 Seismic Design Criteria Rev.1
- TM 2.10.10 Track-Structure Interaction Rev.0
- Merced-Fresno Segment Design Spectra Response Curves from PMT
- Caltrans Memo to Designers
- Caltrans Bridge Design Specifications
- Caltrans Bridge Design Aid
- Caltrans Seismic Design Criteria (SDC), Version 1.6
- AREMA Section 17.3.3

JOB TITLE CALIFORNIA HIGH-SPEED TRAIN PROJECT JOB NO. 60022962 CALCULATION NO. DIRECTED BY HOHSING LEE 7 SHEET NO. OF ORIGINATOR MARK STILLER DATE 10/31/2011 REVIEWER **TODD DUDLEY** DATE 11/3/2011

SUBJECT: SHORT SPAN PRECAST ADJACENT BOX GIRDERS - HSR OVER HERNDON CANAL

Materials and Load Combinations are per "GENERAL MATERIAL AND LOADING DATA" calculations sheet

Reference Technical Design Memos

Coordinates of section

Х

0.0

39.0

39.0

42.0

42.0

-42.0

-42.0

-39.0

-39.0

0.0

7.0

30.0

33.0

33.0

7.0

4.0

4.0

7.0

-7.0

-30.0

-33.0

-33.0

-30.0

-7.0

-4.0

-4.0

-7.0

У

0.0

0.0

36.0

36.0

42.0

42.0

36.0

36.0

0.0

0.0

5.5

5.5

8.5 33.0

36.0

36.0

33.0

8.5

5.5

5.5

5.5

8.5

33.0

36.0

36.0

33.0

8.5

5.5

Node

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Section Properties of Box Girders

Code	Value (in)	Description		
а	84.0	Total width of top flange		
b	42.0	Total section depth		
С	3.0	Right overhang		
d	3.0	Left overhang		
е	6.0	Thickness of exterior girders		
f	8.0	Thickness of interior girder		
g	6.0	Thickness of top slab		
h	5.5	Thickness of bottom slab		
i	3.0	Bottom fillet width		
j	3.0	Bottom fillet height		
k	3.0	Top fillet width		
I	3.0	Top fillet height		

Total	=	475.94	in
1000	_	7/3.37	

_	•			
ςı.	ırta	CP	area	=

39.00	23.00	23.00
36.00	4.24	4.24
3.00	24.50	24.50
6.00	4.24	4.24
84.00	23.00	23.00
6.00	4.24	4.24
3.00	24.50	24.50
36.00	4.24	4.24
39.00		•

Volume/Area = 3.3176 in

JOB TITLE CALIFORNIA HIGH-SPEED TRAIN PROJECT JOB NO. 60022962 CALCULATION NO. HOHSING LEE **DIRECTED BY** SHEET NO. OF ORIGINATOR MARK STILLER DATE 10/31/2011 REVIEWER **TODD DUDLEY** DATE 11/3/2011

SUBJECT: SHORT SPAN PRECAST ADJACENT BOX GIRDERS - HSR OVER HERNDON CANAL

Superstructure Section Properties:

Section	b	h	Area	Mom of I	y_b	A * y _b ²	A * y _b
No.	(in)	(in)	(in²)	(in ⁴)	(in)	(in ⁴)	(in ³)
1	84.0	42.0	3528	518616.0	21.0	2E+06	74088
2	3.0	36.0	-108	-11664.0	18.0	-34992	-1944
3	3.0	36.0	-108	-11664.0	18.0	-34992	-1944
4	29.0	30.5	-884.5	-68567.2	20.8	-4E+05	-18353
5	29.0	30.5	-884.5	-68567.2	20.8	-4E+05	-18353
6	3.0	3.0	4.5	2.3	6.5	190.13	29.25
7	3.0	3.0	4.5	2.3	6.5	190.13	29.25
8	3.0	3.0	4.5	2.3	6.5	190.13	29.25
9	3.0	3.0	4.5	2.3	6.5	190.13	29.25
10	3.0	3.0	4.5	2.3	35.0	5512.5	157.5
11	3.0	3.0	4.5	2.3	35.0	5512.5	157.5
12	3.0	3.0	4.5	2.3	35.0	5512.5	157.5
13	3.0	3.0	4.5	2.3	35.0	5512.5	157.5
1	42.0	84.0	3528	2074464.0	42.0	6E+06	148176
2	36.0	3.0	-108	-81.0	1.5	-243	-162
3	36.0	3.0	-108	-81.0	82.5	-7E+05	-8910
4	30.5	29.0	-884.5	-61988.7	23.5	-5E+05	-20786
5	30.5	29.0	-884.5	-61988.7	60.5	-3E+06	-53512
6	3.0	3.0	4.5	2.3	10.0	450	45
7	3.0	3.0	4.5	2.3	37.0	6160.5	166.5
8	3.0	3.0	4.5	2.3	47.0	9940.5	211.5
9	3.0	3.0	4.5	2.3	74.0	24642	333
10	3.0	3.0	4.5	2.3	10.0	450	45
11	3.0	3.0	4.5	2.3	37.0	6160.5	166.5
12	3.0	3.0	4.5	2.3	47.0	9940.5	211.5
13	3.0	3.0	4.5	2.3	74.0	24642	333

Total area of section = $1579 in^2$ $10.965 ft^2$

Properties about the Transverse Axis

Composite Moment of Inertia = 362689 in 4 17.5 ft 4 Composite Neutral Axis from bottom = 21.68 in 1.807 ft Composite Section Modulus = 16726 in 3 9.6791 ft 3

Properties about the Vertical Axis

Composite Moment of Inertia = 1009490 in 4 48.683 ft 4 Composite Neutral Axis from right side = 42.00 in 3.50 ft Composite Section Modulus = 24035 in 3 13.909 ft 3

Polar Moment of inertia = 1372180 in⁴ 66.174 ft⁴ *Not factored for warping*

JOB TITLE CALIFORNIA HIGH-SPEED TRAIN PROJECT CALCULATION NO. JOB NO. 60022962 3 DIRECTED BY HOHSING LEE SHEET NO. OF ORIGINATOR MARK STILLER DATE 10/31/2011 REVIEWER **TODD DUDLEY** 11/3/2011 DATE

SUBJECT: SHORT SPAN PRECAST ADJACENT BOX GIRDERS - HSR OVER HERNDON CANAL

Torsional constant

$$K = \frac{2t t_1(a-t)^2(b-t_1)^2}{at + bt_1 - t^2 - t_1^2}$$
 for outer shell

$$t = 6.0$$
 in $t_1 = 5.8$ in

$$t_1 = 5.8$$
 in $a = 78.0$ in

$$K = ab^{3}(16/3 - 3.36b/a (1 - b^{4}/12a^{4}))$$
 for interior girder

$$K = 38.747 \text{ ft}^4$$

For total section (neglecting overhangs)

Loading

Miscellaneous Dead Loads (DC/DW)

Dead Loads per TM 2.3.2

Total number of boxes for equivalent structure = 6 ea

	Full Section	on	Per Gird	ler	
Cable tray, cables, and walkway:	3.20	kips/ft	0.53	kips/ft	
Soundwalls and parapet:	1.60	kips/ft	0.27	kips/ft	
OCS Poles and foundation:	0.63	kips/ft	0.11	kips/ft	
Rails and Fasteners:	0.40	kips/ft	0.07	kips/ft	
Max of Ballast or Slab Track:	7.98	kips/ft	1.33	kips/ft	(Per PMT, ballast load included on all HSR structures whether or not
Utilities/Miscellaneous:	0.10	kips/ft	0.02	kips/ft	placement of ballast is planned)

Total Additional Miscellaneous Dead Load = 2.319 kips/ft/girder

Live Load Definition (LLV)

The Cooper E50 load as defined in the "GENERAL MATERIAL AND LOADING DATA" calculations applies

Application of the rail load assumes a distribution through the ballast per AREMA specifications.

Width of box = 7 ft

Tie width = 9.0 ft

Ballast depth below tie = 1.3333 ft

JOB TITLE CALIFORNIA HIGH-SPEED TRAIN PROJECT

CALCULATION NO. JOB NO. 60022962 DIRECTED BY 4 **HOHSING LEE** SHEET NO. OF ORIGINATOR MARK STILLER DATE 10/31/2011 REVIEWER **TODD DUDLEY** DATE 11/3/2011

SUBJECT: SHORT SPAN PRECAST ADJACENT BOX GIRDERS - HSR OVER HERNDON CANAL

Effective transverse distribution width of live load = 10.33 ft
Distance from CL track to CL box = 2.25 ft

Maximum width of distribution to a single box = 6.4167

Ratio of total rail width to single box distribution = 0.621 (number of track loads per girder)

Impact Factor (I)

80' span or less

 $I = 40 - 3L^2/1600$

L = 29.0 ft

I = 38.423 %

Column capacity for the smaller spans will not be a controlling design issue for preliminary investigations therefore all other external loads are not considered in the adjacent box design

Deflection Calculation

Axle loads have been modified by the applicable live load distribution factor for Cooper E50 Loading

E50 Mod Axle	1	2	3	4	5	6	7	8	9
Load (kips)	15.524	31.048	31.048	31.048	31.048	20.181	20.181	20.181	20.181
Dist to BB (ft)	29	37	42	47	52	61	66	72	77

E50 Mod Axle	10	11	12	13	14	15	16	17	18	Trailing
Load (kips)	15.524	31.048	31.048	31.048	31.048	20.181	20.181	20.181	20.181	3.1048
Dist to BB (ft)	85	93	98	103	108	117	122	128	133	138

POI

Deflection at $0.5 \times \text{Span} = 14.5 \text{ ft}$

Step Size 0.5 ft

Δ1	Δ2	Δ3	Δ4	Δ5	Δ6	Δ7	Δ8	Δ9
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Δ 10	Δ11	Δ12	Δ13	Δ14	Δ 15	Δ 16	Δ 17	Δ 18	Trailing
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Total Deflection at POI 0.00 in

Maximum deflection of any step location = 0.0548 in

With impact included 0.0759 in

Deflection ratio = 4588

JOB TITLE CALIFORNIA HIGH-SPEED TRAIN PROJECT

TODD DUDLEY

JOB NO. DIRECTED BY ORIGINATOR

REVIEWER

60022962 CALCULATION NO. 5 HOHSING LEE SHEET NO. MARK STILLER DATE 10/31/2011

DATE

11/3/2011

OF

SUBJECT: SHORT SPAN PRECAST ADJACENT BOX GIRDERS - HSR OVER HERNDON CANAL

Axle loads have been modified by the applicable live load distribution factor for Cooper E50 Mod Loading

E50 Mod Axle	Leading	1	2	3	4	Trailing
Load (kips)	3.1048	31.048	31.048	31.048	31.048	3.1048
Dist to BB (ft)	29	31.5	36.5	41.5	46.5	49

POI

Deflection at 0.5 x Span = 14.5 ft

Step Size 0.5

Leading	Δ1	Δ2	Δ3	Δ4	Trailing
0.031	0.000	0.000	0.000	0.000	0.000

Total Deflection at POI 0.0305 in

Maximum deflection of any step location = 0.0583 in

With impact included 0.0807 in

Deflection ratio = 4314 ОК Min = 2200

6.5.3

Deflection magnitude at 0.10 span: 0.0026 in Deflection magnitude at 0.11 span: 0.0051 in

Difference = 0.0026 in

Distance of 0.01 span = 3.48 in

Angle of deflection at begin/end span = 0.7379 radians/1000 0.0423 degrees 2.10.10 6.5.6

Doubled at pier = 1.4758 radians Max = 1.7

Frequencies of the structure:

$$\omega_n = (n\pi)^2 \sqrt{(EI/\rho AL^4)}$$

For the first natural frequency of vertical deflection:

E = 4460 ksi

in⁴ 362689 1 =

1579 in² A =

348.0 in

5.49E-07 x 1000 slugs/in³ Additional unit wt for additional dead load

2.32 kips/ft n = 1

3.17E-07 kips/in³

 $\omega_1 = 111.34 \text{ rad/sec}$

 $f_1 = 17.72 \text{ Hz}$ 262.5/L limit = 9.0517 Hz ОК

> $230.46L^{-0.748} =$ 18.566 Hz ОК

For the first natural frequency of transverse deflection:

6.4.2

JOB TITLE CALIFORNIA HIGH-SPEED TRAIN PROJECT 60022962 CALCULATION NO. JOB NO. 6 7 DIRECTED BY HOHSING LEE SHEET NO. OF ORIGINATOR MARK STILLER DATE 10/31/2011 REVIEWER TODD DUDLEY DATE 11/3/2011

SUBJECT: SHORT SPAN PRECAST ADJACENT BOX GIRDERS - HSR OVER HERNDON CANAL

E = 4460 ksi $I = 1009490 \text{ in}^4$ $A = 1579 \text{ in}^2$ L = 348 in

 $\rho = 5.49E-07 \times 1000 \text{ slugs/in}^3$

n = 1

 $\omega_1 = 185.75 \text{ rad/sec}$

 $f_1 = 29.564 \text{ Hz}$ Minimum = 1.2 **OK**

For the first natural frequency of torsional deflection:

 $f_1 = n\pi \sqrt{(G/\rho)/L}$

v = 0.2

G = 1858.3 ksi

L = 348 in

 $\rho = 5.49E-07 \times 1000 \text{ slugs/in}^3$

n = 1

 $\omega_1 = 525.29 \text{ Hz}$

 $f_1 = 83.603 \text{ Hz}$ Minimum = 21.264 Hz **OK**

Longitudinal Displacements

Rotation at end of span = 0.0015 rad

Opening of structure at deck = 0.062 in Limit = 0.3 in **OK**

Acceleration and braking absorbed by bearing pad, limited by restrainer as needed Assume at maximum allowable of 0.2 in

Max horiz acceleration at OBE = 0.185 g (MAX M-F Zone 1 OBE Horiz)

Abutment DL reaction = 740 kips Mass of single span = 1480 kips

Longitudinal force = 273.8 kips Transverse force = 82.14 kips

Total force = 355.94 kips

Width of abutment = 42 ft

Depth of abutment = 3.5 ft (effective)

Abutment spring (CSDC 7.8.1) = 1336.4 kips/in

Anticipated deflection = 0.2663 in Maximum = 0.5 in **OK** 6.6.3

Group 4: (LLRM+1) + LF = 0.32 in Maximum = 0.5 **OK** Group 5: (LLRM+1) + LF + LDBE = 0.53 in Maximum = 1.0 **OK**

10

6.4.3

6.4.4

6.6.3

6.5.4.5.2(2)

6.5.4.5.2(1)

JOB TITLE	CALIFORNIA HIGH-SPEED TRAIN PROJECT					
JOB NO.	60022962	CALCULATION NO.		1		
DIRECTED BY	HOHSING LEE	SHEET NO.		7	OF	7
ORIGINATOR	MARK STILLER	DATE	10/31/2011			
RFVIFW/FR	TODD DUDLEY	DATE	11/3/2	011		

SUBJECT: SHORT SPAN PRECAST ADJACENT BOX GIRDERS - HSR OVER HERNDON CANAL

Rotational limitation

Cross Section Analysis.xlsm

	Dontlou			Sheet #	DS-1
Bentley		^=	COM-US	Job #	
			COIVI-03		
Program:	LEAP® CONSPAN® V8i (SELECTseries 1)			Ву	
Version:	Version: 09.00.00.08	Copyright © Bentley	Systems, Inc. 1984 - 2009	Date	Aug/15/2011
		www.bentley.com	Phone: 1-800-778-4277	Checked	
File Name:	Herndon Canal.csl			Date	

GEOMETRY DATA

BRIDGE LAYOUT

Overall Width (ft)	42.000
Left curb (ft)	0.000
Right curb (ft)	0.000
curb-to-curb width (ft)	42.000
Number of spans	1
Number of lanes	4
Lane width (ft)	12.000
Eff Deck thick (in)	0.000
Sacrificial thick (in)	0.000
Haunch thickness (in)	0.000
Haunch width (in)	0.000
Bridge c/s,MI(Ixx) (in4)	2224146.00

SPAN DATA

Precast length,		32.000
Bearing-to-bearing,	ft =	29.500
Release span,	ft =	31.000

BEAM DATA

No	ID	Loc-prev ft	Area in2	MI(lxx) in4	Height in	Yb in	B-topg in	B-trib ft
1	42" Deep DBL Box	4.000	1594.0	370691.0	42.00	21.30	84.00	7.500
2	42" Deep DBL Box	7.000	1594.0	370691.0	42.00	21.30	84.00	7.000
3	42" Deep DBL Box	7.000	1594.0	370691.0	42.00	21.30	84.00	7.000
4	42" Deep DBL Box	7.000	1594.0	370691.0	42.00	21.30	84.00	7.000
5	42" Deep DBL Box	7.000	1594.0	370691.0	42.00	21.30	84.00	7.000
6	42" Deep DBL Box	7.000	1594.0	370691.0	42.00	21.30	84.00	6.500

MATERIAL DATA - Project Level

As defined in Material Tab. For beam level properties look at Beam Specific output.

CONCRETE PROPERTIES

	Precast	C.I.P
f'c (ksi)	6.000	4.000
Wc (pcf)	150.000	150.000
Ec (ksi)	4695.980	3834.250
K1	1.000	1.000

	Precast	C.I.P
f'ci (ksi)	4.500	
Eci (ksi)	4066.840	
K1	1.000	

STRAND AND REBAR PROPERTIES

PRESTRESSED STEEL:

6/10-270K-LL, Low relaxation strands
Depressed at 0.40L
Strand Diameter = 0.600 in
Tensile Strength(fpu) = 270.0 ksi

Use transformed strand and rebar: No

REINFORCING STEEL:

Tension/Shear steel: fy = 60.0 ksi Es = 29000 ksi fs = 24.0 ksi

Bentley				Sheet #	DS-3
		AECOM-US		Job #	
		AL	CON-03		
Program:	LEAP® CONSPAN® V8i (SELECTseries 1)]		Ву	
Version:	Version: 09.00.00.08	Copyright © Bentley Systems, Inc. 1984 - 2009		Date	Aug/15/2011
		www.bentley.com Phone: 1-800-778-4277		Checked	
File Name:	Herndon Canal.csl			Date	

LOADS DATA

Loads generated using Permanent Load Wizard: NO

LOADS ON PRECAST - NONE

DIAPHRAGM LOADS - NONE

LOADS ON COMPOSITE

UNITS: (Point: kips, Location: ft, Line: klf, Trapez: klf, Area: ksf, Width: ft)

Span	DC/DW	Type	Mag.1	Loc.1	Mag.2	Loc.2	Description
1	DC	Line	16.000	0.000	16.000	29.500	Misc DL

LIVE LOADS

Live load deflection: included.

ID	Type
Design Lane - not incl.	Design Lane
Design Tandem - not incl.	Design Tandem
CHSR E-50	Design Truck

Units: U.S. Units Design Code: AASHTO LRFD Printed on: October 31, 2011 @ 12:31 P.M.

Bentley				Sheet #	DS-4
				Job #	
Program:	LEAP® CONSPAN® V8i (SELECTseries 1)]		Ву	
Version:	Version: 09.00.00.08	Copyright © Bentley Systems, Inc. 1984 - 2009		Date	Aug/15/2011
		www.bentley.com	Phone: 1-800-778-4277	Checked	
File Name	Herndon Canal csl			Date	

LIVE LOADS USED

LIVE LOAD LIBRARY: default.cs3

1 ID: CHSR E-50
Description: High speed rail load
Type: Design Truck

First Axle Magnitude = 25.00 k, Wheel Spacing = 4.75 ft, Truck Width = 10.00 ft

#	Magnitude, k	Max Spacing, ft	Min Spacing, ft	Increment,
			-	-
1	50.00	8.00	8.00	0.00
2	50.00	5.00	5.00	0.00
3	50.00	5.00	5.00	0.00
4	50.00	5.00	5.00	0.00
5	32.50	9.00	9.00	0.00
6	32.50	5.00	5.00	0.00
7	32.50	6.00	6.00	0.00
8	32.50	5.00	5.00	0.00
9	25.00	8.00	8.00	0.00
10	50.00	8.00	8.00	0.00
11	50.00	5.00	5.00	0.00
12	50.00	5.00	5.00	0.00
13	50.00	5.00	5.00	0.00
14	32.50	9.00	9.00	0.00
15	32.50	5.00	5.00	0.00
16	32.50	6.00	6.00	0.00
17	32.50	5.00	5.00	0.00

2 ID: Fatigue Truck

Description: Fatigue Truck as in AASHTO-LRFD

Type: Fatigue Truck

First Axle Magnitude = 8.00 k, Wheel Spacing = 6.00 ft, Truck Width = 10.00 ft

#	Magnitude,	Max Spacing,	Min Spacing,	Increment,
"	k	ft	ft	ft
1	32.00	14.00	14.00	0.00
2	32.00	30.00	30.00	0.00

Units: U.S. Units Design Code: AASHTO LRFD Printed on: October 31, 2011 @ 12:31 P.M.

PROPERTIES

Span: 1, Beam: 1

PRECAST DATA:

Section Id	42" Deep DBL Box					
Туре	Adjacent Box Beam					
FIng width	Тор	84.000	in	Bot	84.000	in
thick	Тор	6.000	in	Bot	5.500	in
Stems	No	2				
	Тор	10.000	in			
	Bot	10.000	in			
Shear width		20.000	in	,		

GENERAL BRIDGE DATA:

Bridge Width	42.00	ft
Curb-to-curb	42.00	ft
Beam Spac. Lt./Rt	4.00/ 7.00	ft
Lane width	12.00	ft
Number of lanes	4	
Interior/Exterior	Exterior	
Start Skew Angle	0.00	degrees
End Skew Angle	0.00	degrees

TOPPING DATA:

Deck	Thickness	0.000	in	
Haunch:				
	Thickness	0.000	in	
	Width	0.000	in	
Effective	width	90.000	in	(Art. 4.6.2.6.1)

GENERAL LOAD DATA:

Dead loads on composite: See Project info for composite loads

GENERAL SPAN DATA:

Overall length	32.000 ft
Release length	31.000 ft
Design length	29.500 ft

KERN POINTS:

Upper 32.22 in Lower 10.07 in

DISTRIBUTION FACTORS (Art. 4.6.2.2):

Live Moment	(2+ lanes loaded)	0.621	(Manual input)
Live Moment	(1 lane loaded)	0.621	(Manual input)
Live Shear	(2+ lanes loaded)	0.621	(Manual input)
Live Shear	(1 lane loaded)	0.621	(Manual input)

Pedestrian	0.179	(Manual input)
Dead Loads	distributed	based on Tributary Fraction
Comp. DC	0.179	(Calculated)
Comp. DW	0.179	(Calculated)

RESISTANCE FACTORS (Art. 5.5.4.2):

Flexure Reinforced	
Compression controlled sections	0.75
Tension controlled sections	0.90
Flexure Prestressed	
Compression controlled sections	0.75
Tension controlled sections	1.00
Shear	0.90

Design Code: AASHTO LRFD

Printed on: October 31, 2011 @ 12:31 P.M.

Bentley				Sheet #	DS-7
				Job #	
Program:	LEAP® CONSPAN® V8i (SELECTseries 1)]		Ву	
Version:	Version: 09.00.00.08	Copyright © Bentley Systems, Inc. 1984 - 2009		Date	Aug/15/2011
		www.bentley.com	Phone: 1-800-778-4277	Checked	
File Name:	Herndon Canal.csl			Date	

Span: 1, Beam: 1

SECTION PROPERTIES:

	PRECAST		COMPOSITE		
Area	1594.0	in2	1594.0	in2	#
Total Height	42.00	in	42.00	in	
Mom. of Inertia (Ixx)	370691	in4	370691	in4	#
Ht. of c.g.	21.30	in	21.30	in	#
Density	150.00	pcf	150.00	pcf	
Self-weight	1660.4	plf	1660.4	plf	
Mom. of Inertia (lyy)	1425490.1	in4			
Poisson's Ratio	0.2				

(#) Of Total Section using Ect/Ec = 0.8165

Use transformed strand and rebar: No

Span: 1, Beam: 1

STRESS LIMITS (Art. 5.9.4):

STRESS LIMITS AT RELEASE BEFORE LOSSES:

	PRECAST	
Strength	4.50	ksi
Elasticity	4066.8	ksi
Max comp	2.70	ksi
Max tens	-0.20	ksi
Max tens,	w/reinf -0.51	ksi

STRESS LIMITS AT FINAL AFTER LOSSES:

	PRECAST		DECK	
Strength	6.00	ksi	4.00	ksi
Elasticity	4695.98	ksi	3834.25	ksi

STRESS LIMITS AT FINAL 1 (P/S + DL + LL):

	PRECAST	DECK
Max comp	3.60 ksi	2.40 ksi

Bentley				Sheet #	DS-8
				Job #	
Program:	LEAP® CONSPAN® V8i (SELECTseries 1)	1		Ву	
Version:	Version: 09.00.00.08	Copyright © Bentley Systems, Inc. 1984 - 2009		Date	Aug/15/2011
		www.bentley.com	Phone: 1-800-778-4277	Checked	
File Name:	Herndon Canal.csl			Date	

STRESS LIMITS AT FINAL 2 (P/S + DL):

	PRECAST	DECK
Max comp	2.70 ksi	1.80 ksi

FATIGUE I STRESS LIMITS AT FINAL 3 (50% P/S + 50% DL + F_LL):

	PRECAST	DECK
Max comp	2.40 ksi	- ksi

SERVICE III (Tension):

DL+PS+LL					
	PRECAST		DECK		
Max tens	-0.47	ksi	-0.38	ksi	

DL+PS	
	PRECAST
Max tens	-0.00 ksi

Span: 1, Beam: 1

PRESTRESSED STEEL:

23 strands, 6/10-270K-LL, Low relaxation strands Depressed at 0.40L (12.80 ft from member end)

END PATTERN (Ycg = 12.02 in):

17 @ 2.500 in 6 @ 39.000 in

Strand Diameter	0.600 in
Strand Area	0.217 in2
Total Strand Area	4.991 in2
Trans. Len,bonded	3.000 ft
Trans. Len, debonded	3.000 ft
Dev. Len, bonded	6.998 ft

Dev. Len, debonded	13.997	ft
Holddown Force	0.000	kips
Tensile Strength(fpu)	270.0	ksi
Initial Prestress = 0.75fpu	202.5	ksi
Initial Pull	1010.7	kips
Beam Shrtng (PL/AE)	0.058	in

REINFORCING STEEL:

Tensi	on /Shear	steel:
fy	60.0	ksi
Es	29000	ksi
fs	24.0	ksi

LOSSES

Note: Values are calculated at Midspan

Str. area	4.9910	in2
Ycg	12.02	in
P_init	1010.7	kips
Ecc	9.28	in
Days to release	0.75	
Rel. Humid.(RH)	75.0	%
Es	28500.0	ksi
Eci	4067	ksi

AASHTO LOSSES

Elastic Shortening 5.54 ksi (Eq 5.9.5.2.3a-1), (fcgp= 0.791 ksi)

Elastic Gains	Gains	Adjustment
due to Precast Loads	-0.00 ksi	0.00 ksi
due to Composite Loads	-0.57 ksi	0.01 ksi
due to Live Loads	-1.25 ksi	0.04 ksi

Time Dependent Losses (Approximate Method (Art.5.9.5.3))

			Initial		Final	
	Steel relaxation	0.00	ksi		2.40 ksi	(Eq 5.9.5.3-1)
Con	crete shrinkage	0.00	ksi		10.36 ksi	(Eq 5.9.5.3-1)
	Concrete creep	0.00	ksi		5.48 ksi	(Eq 5.9.5.3-1)
	Sub-total	5.54	ksi	(2.74%)	16.48 ksi	(8.14 %)
Total P	restress Losses				22.02 ksi	(10.87 %)

Prestressing Stress Limit Check (Table 5.9.3.1) initial fpi = 202.5 ksi < 0.75 fpu, OK initial fpe = 180.5 ksi < 0.80 fpy, OK

POSITIVE ENVELOPE STRESSES

Span: 1, Beam: 1, SERVICE I

RELEASE STRESSES, (ksi) (LOSS = 2.74 %)

	Trans	0.10L /0.90L	0.20L /0.80L	0.30L /0.70L	0.40L /0.60L	Midspan
Location, ft	2.50	2.70	5.90	9.10	12.30	15.50
Beam-Self						
Precast-top	0.040	0.043	0.082	0.111	0.128	0.134
Bottom	-0.041	-0.044	-0.085	-0.114	-0.132	-0.138
Prestress						
Precast-top	0.107	0.107	0.107	0.107	0.107	0.107
Bottom	1.141	1.141	1.141	1.141	1.141	1.141
Total						
Precast-top	0.147	0.150	0.190	0.218	0.235	0.241
Bottom	1.100	1.097	1.056	1.027	1.009	1.003

SERVICE I

POSITIVE ENVELOPE STRESSES, (ksi) (LOSS = 10.87 %)

	Bearing	Trans	H/2	0.10L /0.90L	0.20L /0.80L	0.30L /0.70L		Midspan
Location, ft	0.00	1.75	1.75	1.95	5.15	8.35	11.55	14.75
Prestress								
Precast-top	0.041	0.098	0.098	0.098	0.098	0.098	0.098	0.098
Bottom	0.436	1.045	1.045	1.045	1.045	1.045	1.045	1.045
Self wt.								
Precast-top	0.000	0.027	0.027	0.030	0.070	0.098	0.115	0.121
Bottom	-0.000	-0.028	-0.028	-0.031	-0.072	-0.101	-0.119	-0.125
DL-Prec (DC)								
Precast-top	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Bottom	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
DL-Prec (DW)								

	Bearing	Trans	H/2		0.20L /0.80L			Midspan
Precast-top	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Bottom	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Diaphragm								
Precast-top					-0.000			-0.000
Bottom	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Deck + Haunch								
Precast-top					-0.000			-0.000
Bottom	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
7. (7.0)								
DL-Comp (DC)								
Precast-top	0.000	0.046		0.051		0.169		0.208
Bottom	-0.000	-0.048	-0.048	-0.053	-0.124	-0.1/4	-0.204	-0.214
DI C (DIA)								
DL-Comp (DW)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Precast-top					-0.000			-0.000
Bottom	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
11 1/ \								
LL+I(+)	0.000	0.140	0 1 40	0.154	0.040	0.475	0.550	0.574
Precast-top	-0.000				-0.350			0.574
Bottom	-0.000	-0.144	-0.144	-0.159	-0.350	-0.489	-0.568	-0.591
Final 1 /D/C . DL . LL\								
Final 1 (P/S + DL + LL)	0.041	Λ 212	Λ 212	0 224	0.628	0.041	0.044	1 002
Precast-top Bottom	0.041	0.826	0.826	0.803	0.500	0.041	0.964	1.002 0.116
DULUIII	0.430	0.0∠0	0.020	0.003	0.300	U.20 I	0.134	0.110
Final 2 (P/S + DL)								
Precast-top	0.041	0.172	0.172	0.180	0.288	0.366	0.412	0.428
	0.041	0.172	0.172	0.160	0.266	0.300	0.412	
Bottom	0.430	0.970	0.970	U.90Z	ს.წეს	U.//U	U./22	0.706

Span: 1, Beam: 1, SERVICE III

RELEASE STRESSES, (ksi) (LOSS = 2.74 %)

	Trans	0.10L /0.90L	0.20L /0.80L	0.30L /0.70L	0.40L /0.60L	Midspan
Location, ft	2.50	2.70	5.90	9.10	12.30	15.50
Beam-Self						
Precast-top	0.040	0.043	0.082	0.111	0.128	0.134
Bottom	-0.041	-0.044	-0.085	-0.114	-0.132	-0.138

23

Units: U.S. Units

Design Code: AASHTO LRFD

	Trans	0.10L /0.90L	0.20L /0.80L	0.30L /0.70L	0.40L /0.60L	Midspan
Prestress						
Precast-top	0.107	0.107	0.107	0.107	0.107	0.107
Bottom	1.141	1.141	1.141	1.141	1.141	1.141
Total						
Precast-top	0.147	0.150	0.190	0.218	0.235	0.241
Bottom	1.100	1.097	1.056	1.027	1.009	1.003
As_top (in2)	0.000	0.000	0.000	0.000	0.000	0.000

SERVICE III

POSITIVE ENVELOPE STRESSES, (ksi) (LOSS = 10.87 %)

	Bearing	Trans	H/2	0.10L /0.90L	0.20L /0.80L	0.30L /0.70L	0.40L /0.60L	Midspan
Location, ft	0.00	1.75	1.75	1.95	5.15	8.35	11.55	14.75
Prestress								
Precast-top	0.041	0.098	0.098	0.098	0.098	0.098	0.098	0.098
Bottom	0.436	1.045	1.045	1.045	1.045	1.045	1.045	1.045
Self wt.								
Precast-top	0.000	0.027	0.027	0.030	0.070	0.098	0.115	0.121
Bottom	-0.000	-0.028	-0.028	-0.031	-0.072	-0.101	-0.119	-0.125
DL-Prec (DC)								
Precast-top	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Bottom	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
DL-Prec (DW)								
Precast-top	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Bottom	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Diaphragm								
Precast-top	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Bottom	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Deck + Haunch	·							
Precast-top	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Bottom	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000

I	Bearing	Trans	H/2	0.10L /0.90L	0.20L /0.80L	0.30L /0.70L	0.40L /0.60L	Midspan
DL-Comp (DC)								
Precast-top	0.000	0.046	0.046	0.051	0.120	0.169	0.198	0.208
Bottom	-0.000	-0.048	-0.048	-0.053	-0.124	-0.174	-0.204	-0.214
DL-Comp (DW)								
Precast-top	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Bottom	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
LL+I(+)								
Precast-top	-0.000	0.140	0.140	0.154	0.340	0.475	0.552	0.574
Bottom	-0.000	-0.144	-0.144	-0.159	-0.350	-0.489	-0.568	-0.591
Final 1 (P/S + DL + LL)								
Precast-top	0.041	0.312	0.312	0.334	0.628	0.841	0.964	1.002
Bottom	0.436	0.826	0.826	0.803	0.500	0.281	0.154	0.116
Final 2 (P/S + DL)								
Precast-top	0.041	0.172	0.172	0.180	0.288	0.366	0.412	0.428
Bottom	0.436	0.970	0.970	0.962	0.850	0.770	0.722	0.706

Span: 1, Beam: 1, FATIGUE I

POSITIVE ENVELOPE STRESSES, (ksi)

	Bearing	Trans	H/2	0.10L /0.90L	0.20L /0.80L	0.30L /0.70L	0.40L /0.60L	Midspan
Location, ft	0.00	1.75	1.75	1.95	5.15	8.35	11.55	14.75
F_LL+I(+)								
Precast-top	-0.000	0.048	0.048	0.053	0.122	0.169	0.195	0.200
Bottom	-0.000	-0.049	-0.049	-0.054	-0.125	-0.174	-0.201	-0.206
Final 3 (50% P/S + 50% D	L + F_LL)							
Precast-top	0.021	0.134	0.134	0.142	0.266	0.352	0.402	0.414
Bottom	0.218	0.436	0.436	0.427	0.300	0.211	0.160	0.147

				Sheet #	DS-15
Bentley		٨Ε	COM-US	Job #	
			.COW-03		
Program:	LEAP® CONSPAN® V8i (SELECTseries 1)			Ву	
Version:	Version: 09.00.00.08	Copyright © Bentley	Systems, Inc. 1984 - 2009	Date	Aug/15/2011
		www.bentley.com	Phone: 1-800-778-4277	Checked	
File Name:	Herndon Canal.csl		_	Date	

ULTIMATE MOMENT

ULTIMATE - Span : 1, Beam : 1, STRENGTH I (Mr-prvd computed by AASHTO equations, Art. 5.7.3.2/5.7.3.3)

Location	dp	Aps	fps	С	a	Mr-prvd	- / - l k	DL:	1.2 Mcr	min Mr	Crkg	Mu-p/r
(ft) Mu k.ft	in	in2	ksi	in	in	k.ft	c/dt	Phi	k.ft	k.ft	Ratio	Ratio
Transfer	1.75					- Kill				1014	Hatto	rtutio
527.0	30.0	3.466	262.9	2.8	2.1	2195.6	0.067T	1.00	-	-	-	-
H/2	1.75											
527.0	30.0	3.466	262.9	2.8	2.1	2195.6	0.067T	1.00	-	-	-	-
0.1L	1.95											
581.7		3.542	262.7	2.9	2.2	2240.9	0.069T	1.00	-	-	-	-
0.2L	5.15											
1303.4		4.763	260.3	3.8	2.9	2947.9	0.091T	1.00	-	-	-	-
0.3L	8.35											
1827.0		4.991	259.9	4.0	3.0	3076.7	0.096T	1.00	3396.5	2429.9	1.1	1.68
0.4L	11.55	1.001	050.0	1.0	0.0	007/7	0.00/T	4.00	000/ 5	0004.0	- 1 1	4.45
2128.7		4.991	259.9	4.0	3.0	3076.7	0.096T	1.00	3396.5	2831.2	1.1	1.45
0.5L 2219.3	14.75	1 001	250.0	10	2.0	2077.7	0.00/T	1 00	220/ E	20E1 7	1.1	1 20
0.6L	17.95	4.991	259.9	4.0	3.0	3070.7	0.096T	1.00	3396.5	2951.7	1.1	1.39
2128.7		1 001	259.9	10	2 N	2076.7	0.096T	1 00	3396.5	2021 2	1.1	1.45
0.7L	21.15	4.771	237.7	4.0	3.0	3070.7	0.0901	1.00	3370.3	2031.2	1.1	1.45
1827.0		4 991	259.9	4 0	3.0	3076.7	0.096T	1 00	3396.5	2429 9	1.1	1.68
0.8L	24.35	1.771	207.7	1.0	0.0	0010.1	0.0701	1.00	0070.0	2127.7		1.00
1303.4		4.763	260.3	3.8	2.9	2947.9	0.091T	1.00	3396.5	1733.6	1.0	2.26
0.9L	27.55											
581.7	30.0	3.542	262.7	2.9	2.2	2240.9	0.069T	1.00	-	-	-	-
H/2	27.75											
527.0	30.0	3.466	262.9	2.8	2.1	2195.6	0.067T	1.00	-	-	-	-
Transfer	27.75											
527.0	30.0	3.466	262.9	2.8	2.1	2195.6	0.067T	1.00	-	-	-	-

Legend: C = Compression-Controlled (c/dt > 0.600)

I = In-Transition (0.60 >= c/dt > 0.375)

T = Tension-Controlled (c/dt <= 0.375)

Note: fr used for calculating Mcr is computed using AASHTO method (Art.5.4.2.6.)

ULTIMATE - Span : 1, Beam : 1, STRENGTH II

(Mr-prvd computed by AASHTO equations, Art. 5.7.3.2/5.7.3.3)

Location	dp	Aps	fps	С		Mr-prvd			1.2 Mcr	min Mr	Crkg	Mu-p/r
(ft) Mu k.ft	in	in2		in		k.ft	c/dt	PNI	k.ft	k.ft	Ratio	Ratio
Transfer	1.75											
527.0	30.0	3.466	262.9	2.8	2.1	2195.6	0.067T	1.00	-	-	-	-
H/2	1.75											
527.0	30.0	3.466	262.9	2.8	2.1	2195.6	0.067T	1.00	-	-	-	-
0.1L	1.95											
581.7	30.0	3.542	262.7	2.9	2.2	2240.9	0.069T	1.00	-	-	-	-
0.2L	5.15											
1303.4		4.763	260.3	3.8	2.9	2947.9	0.091T	1.00	-	-	-	-
0.3L	8.35											
1827.0		4.991	259.9	4.0	3.0	3076.7	0.096T	1.00	3396.5	2429.9	1.1	1.68
0.4L	11.55											
2128.7		4.991	259.9	4.0	3.0	3076.7	0.096T	1.00	3396.5	2831.2	1.1	1.45
0.5L	14.75											
2219.3		4.991	259.9	4.0	3.0	3076.7	0.096T	1.00	3396.5	2951.7	1.1	1.39
0.6L	17.95											
2128.7		4.991	259.9	4.0	3.0	3076.7	0.0961	1.00	3396.5	2831.2	1.1	1.45
0.7L	21.15	1.001	050.0	4.0	0.0	007/7	0.00/T	1.00	000/ 5	0.400.0	11	1.10
1827.0		4.991	259.9	4.0	3.0	3076.7	0.0961	1.00	3396.5	2429.9	1.1	1.68
0.8L	24.35	17/2	2/02	2.0	2.0	20.47.0	0 001T	1.00	220/ 5	1700 /	1.0	2.27
1303.4		4.703	200.3	3.8	2.9	2947.9	0.0911	1.00	3396.5	1/33.0	1.0	2.26
0.9L	27.55	2 5 42	2/27	2.0	2.2	2240.0	0.0/07	1.00				
H/2	30.0	3.342	202.7	2.9	2.2	2240.9	0.0091	1.00	-	-	-	-
		2 164	262 D	20) 1	2195.6	0 047T	1 00				
		3.400	202.9	۷.۵	۷.۱	2190.0	U.U071	1.00	-	-	-	-
Transfer 527.0		2 164	262 N	20	71	2195.6	0 067T	1.00				
527.0	30.0	3.400	202.9	Z.ŏ	۷.۱	2190.0	U.U0/1	1.00	-	-	-	-

Legend: C = Compression-Controlled (c/dt > 0.600)

I = In-Transition (0.60 >= c/dt > 0.375)

T = Tension-Controlled (c/dt <= 0.375)

Note: fr used for calculating Mcr is computed using AASHTO method (Art.5.4.2.6.)

	Bearing	Trans.	H/2	0.10L	0.20L	0.30L	0.40L	MidSpan
Location, ft	0		1.75	1.95	5.15	8.35	11.55	14.75
Self wt. : M	0	40.3	40.3	44.6	104.1	146.6	172.1	180.6
V	24.5	21.6	21.6	21.3	15.9	10.6	5.3	0
DL-Prec. : M	0	0	0	0	0	0	0	0
(DC) V	0	0	0	0	0	0	0	0
DL-Prec. : M	0	0	0	0	0	0	0	0
(DW) V	0	0	0	0	0	0	0	0
Deck : M	0	_	0	0	0	_	0	0
+ Haunch V	0	_	0	0	0	0	0	0
Diaphragm : M	0		0	0	0	0	0	0
V	0	_	0	0	0	0	0	0
DL-Comp. : M	0		69.4	76.7	179.1	252.3	296.2	310.8
(DC) V	42.1		37.1	36.6	27.4	18.3	9.1	0
DL-Comp. : M (DW) V	0		0	0	0	0	0	0 0
(DW) V LL + I : M+	0		208.5	229.9	507	709.3	824	856.8
V	133.9	83.9	83.9	78.2	58.8	66.7	4.4	27.1
LL + I : M-	155.9		03.9	78.2	0	00.7	0	0
V	0		0	0	0	0	0	0
LL + I : Vmx	133.9	_	117.9	116.1	96.1	78.1	60.9	42.6
M	0	_	205.4	226.4	495.1	652	703.3	628.5
Pedestrian: M+	0		0	0	0		0	0
V	0	0	0	0	0	0	0	0
Pedestrian: M-	0	0	0	0	0	0	0	0
V	0	0	0	0	0	0	0	0
Pedestrian: Vmx	0	0	0	0	0	0	0	0
M	0	0	0	0	0	0	0	0
	0.601	0.701	0.001	0.001	11/2	T	D	
Location, ft	0.60L 17.95				H/2 27.75	Trans. 27.75	Bearing 29.5	
Location, ft Self wt. : M	0.60L 17.95 172.1	21.15	0.80L 24.35 104.1	0.90L 27.55 44.6	27.75	Trans. 27.75 40.3	Bearing 29.5 0	
•	17.95	21.15 146.6	24.35	27.55		27.75 40.3	29.5	
Self wt. : M	17.95 172.1	21.15 146.6 10.6	24.35 104.1	27.55 44.6	27.75 40.3	27.75 40.3 21.6	29.5 0	
Self wt. : M V	17.95 172.1 5.3	21.15 146.6 10.6 0	24.35 104.1 15.9	27.55 44.6 21.3	27.75 40.3 21.6	27.75 40.3 21.6 0	29.5 0 24.5	
Self wt. : M V DL-Prec. : M	17.95 172.1 5.3 0	21.15 146.6 10.6 0	24.35 104.1 15.9 0	27.55 44.6 21.3 0	27.75 40.3 21.6 0	27.75 40.3 21.6 0	29.5 0 24.5 0	
Self wt.: M V DL-Prec.: M (DC) V	17.95 172.1 5.3 0	21.15 146.6 10.6 0 0	24.35 104.1 15.9 0	27.55 44.6 21.3 0 0	27.75 40.3 21.6 0	27.75 40.3 21.6 0	29.5 0 24.5 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M	17.95 172.1 5.3 0 0	21.15 146.6 10.6 0 0 0	24.35 104.1 15.9 0 0	27.55 44.6 21.3 0 0	27.75 40.3 21.6 0 0	27.75 40.3 21.6 0 0 0	29.5 0 24.5 0 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V	17.95 172.1 5.3 0 0 0	21.15 146.6 10.6 0 0 0	24.35 104.1 15.9 0 0 0	27.55 44.6 21.3 0 0 0	27.75 40.3 21.6 0 0	27.75 40.3 21.6 0 0 0 0	29.5 0 24.5 0 0 0	
Self wt. : M V DL-Prec. : M (DC) V DL-Prec. : M (DW) V Deck : M + Haunch V Diaphragm : M	17.95 172.1 5.3 0 0 0 0 0	21.15 146.6 10.6 0 0 0 0 0	24.35 104.1 15.9 0 0 0	27.55 44.6 21.3 0 0 0 0	27.75 40.3 21.6 0 0 0	27.75 40.3 21.6 0 0 0 0 0	29.5 0 24.5 0 0 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V	17.95 172.1 5.3 0 0 0 0 0 0	21.15 146.6 10.6 0 0 0 0 0 0	24.35 104.1 15.9 0 0 0 0 0 0	27.55 44.6 21.3 0 0 0 0 0 0 0	27.75 40.3 21.6 0 0 0 0 0 0 0	27.75 40.3 21.6 0 0 0 0 0 0	29.5 0 24.5 0 0 0 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M	17.95 172.1 5.3 0 0 0 0 0 0 0 0	21.15 146.6 10.6 0 0 0 0 0 0 0 0 252.3	24.35 104.1 15.9 0 0 0 0 0 0 0	27.55 44.6 21.3 0 0 0 0 0 0 0 0	27.75 40.3 21.6 0 0 0 0 0 0 0 0 0	27.75 40.3 21.6 0 0 0 0 0 0 0	29.5 0 24.5 0 0 0 0 0 0 0 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V	17.95 172.1 5.3 0 0 0 0 0 0 0 296.2 9.1	21.15 146.6 10.6 0 0 0 0 0 0 0 252.3 18.3	24.35 104.1 15.9 0 0 0 0 0 0 0 179.1 27.4	27.55 44.6 21.3 0 0 0 0 0 0 0 76.7 36.6	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1	27.75 40.3 21.6 0 0 0 0 0 0 0 69.4 37.1	29.5 0 24.5 0 0 0 0 0 0 0 0 0 42.1	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M	17.95 172.1 5.3 0 0 0 0 0 0 0 296.2 9.1	21.15 146.6 10.6 0 0 0 0 0 0 0 252.3 18.3	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4	27.55 44.6 21.3 0 0 0 0 0 0 0 76.7 36.6	27.75 40.3 21.6 0 0 0 0 0 0 0 69.4 37.1	27.75 40.3 21.6 0 0 0 0 0 0 0 69.4 37.1	29.5 0 24.5 0 0 0 0 0 0 0 0 42.1 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DW) V	17.95 172.1 5.3 0 0 0 0 0 0 296.2 9.1 0	21.15 146.6 10.6 0 0 0 0 0 0 0 252.3 18.3 0	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0	27.55 44.6 21.3 0 0 0 0 0 0 0 76.7 36.6 0	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1 0	27.75 40.3 21.6 0 0 0 0 0 0 0 69.4 37.1 0	29.5 0 24.5 0 0 0 0 0 0 0 42.1 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DW) V LL-LI: M+	17.95 172.1 5.3 0 0 0 0 0 0 296.2 9.1 0 824	21.15 146.6 10.6 0 0 0 0 0 0 252.3 18.3 0 0 709.3	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0 0	27.55 44.6 21.3 0 0 0 0 0 0 76.7 36.6 0 0 229.9	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1 0 0 208.5	27.75 40.3 21.6 0 0 0 0 0 0 0 69.4 37.1 0 0 208.5	29.5 0 24.5 0 0 0 0 0 0 0 42.1 0 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DC) V DL-Comp.: M (DW) V LL+I: M+	17.95 172.1 5.3 0 0 0 0 0 0 296.2 9.1 0 824 4.4	21.15 146.6 10.6 0 0 0 0 0 0 0 252.3 18.3 0 0 709.3 66.7	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0 507 58.8	27.55 44.6 21.3 0 0 0 0 0 0 76.7 36.6 0 0 229.9 78.2	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9	27.75 40.3 21.6 0 0 0 0 0 0 0 69.4 37.1 0 0 208.5 83.9	29.5 0 24.5 0 0 0 0 0 0 42.1 0 0 133.9	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DW) V LL+I: M+ V LL+I: M-	17.95 172.1 5.3 0 0 0 0 0 0 296.2 9.1 0 824 4.4	21.15 146.6 10.6 0 0 0 0 0 0 0 252.3 18.3 0 0 709.3 66.7	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0 507 58.8	27.55 44.6 21.3 0 0 0 0 0 0 76.7 36.6 0 229.9 78.2	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9	27.75 40.3 21.6 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9	29.5 0 24.5 0 0 0 0 0 0 42.1 0 0 133.9	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DW) V LL+I: M+ V LL+I: M- V	17.95 172.1 5.3 0 0 0 0 0 0 296.2 9.1 0 824 4.4	21.15 146.6 10.6 0 0 0 0 0 0 252.3 18.3 0 0 709.3 66.7 0	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0 507 58.8 0	27.55 44.6 21.3 0 0 0 0 0 0 76.7 36.6 0 229.9 78.2 0	27.75 40.3 21.6 0 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0	27.75 40.3 21.6 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0	29.5 0 24.5 0 0 0 0 0 0 0 42.1 0 0 133.9 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DW) V LL+I: M+ V LL+I: M- V LL+I: Vmx	17.95 172.1 5.3 0 0 0 0 0 0 296.2 9.1 0 824 4.4 0 0	21.15 146.6 10.6 0 0 0 0 0 0 252.3 18.3 0 0 709.3 66.7 0	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0 507 58.8 0 0	27.55 44.6 21.3 0 0 0 0 0 0 76.7 36.6 0 229.9 78.2 0 0	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0	27.75 40.3 21.6 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 0 117.9	29.5 0 24.5 0 0 0 0 0 0 0 42.1 0 0 133.9 0 133.9	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DW) V LL+I: M+ V LL+I: M- V LL+I: Vmx M	17.95 172.1 5.3 0 0 0 0 0 0 296.2 9.1 0 824 4.4 0 60.9 703.3	21.15 146.6 10.6 0 0 0 0 0 0 252.3 18.3 0 0 709.3 66.7 0 78.1	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0 0 507 58.8 0 96.1 495.1	27.55 44.6 21.3 0 0 0 0 0 0 76.7 36.6 0 229.9 78.2 0 116.1 226.4	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 117.9 205.4	27.75 40.3 21.6 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 117.9 205.4	29.5 0 24.5 0 0 0 0 0 0 42.1 0 0 133.9 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DW) V LL+I: M+ V LL+I: M- V LL+I: Vmx	17.95 172.1 5.3 0 0 0 0 0 0 296.2 9.1 0 824 4.4 0 0	21.15 146.6 10.6 0 0 0 0 0 0 252.3 18.3 0 0 709.3 66.7 0 78.1 652	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0 0 507 58.8 0 96.1 495.1	27.55 44.6 21.3 0 0 0 0 0 0 76.7 36.6 0 229.9 78.2 0 0	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0	27.75 40.3 21.6 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 117.9 205.4	29.5 0 24.5 0 0 0 0 0 0 0 42.1 0 0 133.9 0 133.9	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DW) V LL+I: M+ V LL+I: M- V LL+I: Vmx M Pedestrian: M+	17.95 172.1 5.3 0 0 0 0 0 296.2 9.1 0 824 4.4 0 60.9 703.3	21.15 146.6 10.6 0 0 0 0 0 0 252.3 18.3 0 0 709.3 66.7 0 78.1 652 0	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0 0 507 58.8 0 96.1 495.1	27.55 44.6 21.3 0 0 0 0 0 0 76.7 36.6 0 0 229.9 78.2 0 116.1 226.4	27.75 40.3 21.6 0 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 117.9 205.4 0	27.75 40.3 21.6 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 117.9 205.4 0 0	29.5 0 24.5 0 0 0 0 0 0 42.1 0 0 133.9 0 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DW) V LL+I: M+ V LL+I: M- V LL+I: Vmx M Pedestrian: M+	17.95 172.1 5.3 0 0 0 0 0 0 296.2 9.1 0 0 824 4.4 0 60.9 703.3	21.15 146.6 10.6 0 0 0 0 0 0 252.3 18.3 0 0 709.3 66.7 0 78.1 652 0	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0 0 507 58.8 0 96.1 495.1 0	27.55 44.6 21.3 0 0 0 0 0 0 76.7 36.6 0 229.9 78.2 0 116.1 226.4 0 0	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 117.9 205.4 0	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 117.9 205.4 0 0	29.5 0 24.5 0 0 0 0 0 0 42.1 0 0 133.9 0 0 0 0 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DW) V LL+I: M+ V LL+I: M- V LL+I: Vmx M Pedestrian: M+ V Pedestrian: M-	17.95 172.1 5.3 0 0 0 0 0 0 0 296.2 9.1 0 824 4.4 0 60.9 703.3 0 0	21.15 146.6 10.6 0 0 0 0 0 0 0 252.3 18.3 0 0 709.3 66.7 0 78.1 652 0 0	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0 0 507 58.8 0 96.1 495.1 0	27.55 44.6 21.3 0 0 0 0 0 0 0 76.7 36.6 0 229.9 78.2 0 116.1 226.4 0 0	27.75 40.3 21.6 0 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 117.9 205.4 0 0	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 117.9 205.4 0 0 0	29.5 0 24.5 0 0 0 0 0 0 42.1 0 0 133.9 0 0 133.9 0 0	
Self wt.: M V DL-Prec.: M (DC) V DL-Prec.: M (DW) V Deck: M + Haunch V Diaphragm: M V DL-Comp.: M (DC) V DL-Comp.: M (DW) V LL+I: M+ V LL+I: M- V LL+I: Vmx M Pedestrian: M+ V Pedestrian: M-	17.95 172.1 5.3 0 0 0 0 0 0 0 296.2 9.1 0 824 4.4 0 60.9 703.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21.15 146.6 10.6 0 0 0 0 0 0 252.3 18.3 0 0 709.3 66.7 0 0 78.1 652 0 0	24.35 104.1 15.9 0 0 0 0 0 0 179.1 27.4 0 0 507 58.8 0 96.1 495.1 0	27.55 44.6 21.3 0 0 0 0 0 0 0 76.7 36.6 0 229.9 78.2 0 116.1 226.4 0 0 0	27.75 40.3 21.6 0 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 117.9 205.4 0 0 0	27.75 40.3 21.6 0 0 0 0 0 0 0 0 69.4 37.1 0 208.5 83.9 0 117.9 205.4 0 0 0 0 0	29.5 0 24.5 0 0 0 0 0 0 42.1 0 0 133.9 0 0 133.9 0 0 0	

VBent

Bent Analysis

Version 3.3.2 8-4-2011

Viathor, Inc.

www.viathor.com

Copyright © 2005-2011 All Rights Reserved

Licensed To

AECOM

Duplication, alteration, or other unauthorized use of these materials is strictly prohibited.

Viathor, Inc. excludes any and all implied warranties, including warranties of merchantability and fitness for a particular purpose, and limits the user's remedy to return of the software and documentation to Viathor, Inc. for replacement.

Viathor, Inc. makes no warranty or representation, either express or implied, with respect to this software or accompanying documentation, including their quality, performance, merchantability, or fitness for a particular purpose. This software and documentation are provided 'as is' and the user assumes the entire risk as to their quality, performance, and use.

Viathor, Inc. will not be liable for any direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the software or any accompanying documentation. Viathor, Inc. will not be liable for any direct, indirect, special, incidental, or consequential damages arising out of any defect in the software or any accompanying documentation.

AASHTO LRFD Bridge Design Specifications Fourth Edition, 2007 with 2008 Interim Revisions

and Caltrans Amendments, v3.06.01

Input Summary - Model Data

	Bent Information									
	Title of the Pier									
Spec	Units	Locality	Design Mode	Seismic Zone	Support Type	Skew Angle				
LRFD	US	CA	Check	4	Simple	0.0 deg				

Concrete Materials									
Name	f'c / f'ci ksi	Density lb/ft^3	Exposure	Strain	Ec / Eci ksi	Dens Ec lb/ft^3			
Concrete 1	4.00 3.50	150.00	0.7500	0.0030	3644.15 3408.79	145.00	init		

Reinforcing Steel Materials								
Name	Name fy Es ksi ksi							
Rebar 1	60.00		29000.00					

Oblong Shapes							
Name	Width ft	Depth ft	# Points				
Oblong 1	45.000	1.500	26				

Shape Properties								
Name	Area ft^2	lxx ft^4	lyy ft^4	Torsion ft^4				
Oblong 1	67.017146	12.482880	11149.797072	45.178396				

Name	CG to Left	CG to Right	CG to Top	CG to Bottom
	ft	ft	ft	ft
Oblong 1	22.500000	22.500000	0.750000	0.750000

Deck Data						
Bridge Width ft	Span Length (back) ft	Span Length (ahead) ft		Super Depth (ahead) ft	Overhang ft	
42.000	35.000	35.000	6.500	6.500	3.500	

Road Edge	Sidewalk	Barrier	Road Edge	Sidewalk	Barrier
(left) ft	(left) ft	(left) ft	(right) ft	(right) ft	(right) ft
8.000	0.000	0.000 outside	8.000	0.000	

Exposed FaceEx	cposed FaceFrame	Length Frame	e Lenath	# Fix Supp

(back) ft	(ahead) ft	(back) ft	(ahead) ft	
20.000	20.000	35.000	35.000	3

Line Type	Fixity	Offset in	Overhang ft	Grd #	Distance ft	To Deck Edge ft	Brg Height in
Back	Expan	-12.0	3.500	1	5.000	3.500	3.0
				2	12.000	10.500	3.0
				3	19.000	17.500	3.0
				4	26.000	24.500	3.0
				5	33.000	31.500	3.0
				6	40.000	38.500	3.0
Ahead	Expan	12.0	3.500	1	5.000	3.500	3.0
				2	12.000	10.500	3.0
				3	19.000	17.500	3.0
				4	26.000	24.500	3.0
				5	33.000	31.500	3.0
				6	40.000	38.500	3.0

Distance is measured from the left end of cap, along the cap Deck Edge is measured from the left edge of deck, normal to the deck

Cap Data						
Cap Length ft	Left Height ft		Concrete Material	Reinforcement Material		
45.000	3.500		Concrete 1	Rebar 1		

Shape Type	Width ft		
Rectangle	5.000		

Interior POI (even)	Exterior POI (even)	User POIs ft	Box End POIs
10	4	none	n/a

Location	Horz Dist ft	Vert Change ft	Location	Horz Dist ft	Vert Change ft
Тор	45.000	0.000	Bot	45.000	0.000

	Column Data							
Col Num	Dist in Bent ft	Length ft	Rotation deg	Concrete Material	Reinforcement Material			
1	22.500	12.500	0.00	Concrete 1	Rebar 1			

Col	Shape Dst	Shape Name	Crack	Top Face	Key Len	Key Wid
Num	ft		Factor	ft	ft	ft
1	Bottom Top	Oblong 1 Oblong 1	1.0000	computed	0.000	0.000

Col	Connect	Connect	Eff Length	Eff Length	Adjust	Adjustment
Num	Top	Bottom	K (long)	K (tran)	Axial Load?	Factor
1	Fix	Fix	2.0000	0.6500	No	

Col Num	Offset Dist ft	Offset Long ft	Offset Tran ft		Foundation
1		none			Footing 1

Col Num	Equal POIs	User POIs ft	Equal Nodes	User Nodes ft
1	1	none	1	none

Footing Data

Ftg	Footing	Under	Concrete	Reinforcement
Num	Type	Column	Material	Material
1	pile	1	Concrete 1	Rebar 1

Ftg Num	Length ft	Width ft	Thickness ft	Offset (long) ft	Offset (tran) ft	Rotation deg
1	54.000	4.500	2.500	0.000	0.000	0.00

	Pile Footing Data											
Ftg Num	Capacity Type	Service kip	Strength kip	Strength Phi	Extreme kip	Extreme Phi						
1	Compression Tension Lateral	375.000 110.000 50.000	500.000 150.000 80.000	0.7500 0.7500 1.0000	500.000 250.000	1.0000 1.0000						

	Num	Sect Dim	First	First	Last	Last	Batter	Batter
	Piles	in	tran ft	long ft	tran ft	long ft	tran in	long in
1	8	12.0	-23.000	0.000	23.000	0.000	0.0	0.0

Vertical batter dimension is 12.0 in

Input Summary - Load Data

Dead Load								
Girder Number	Ahead Line Reaction kip							
Grd 1	152.000	0.000						

Grd 2	152.000	0.000
Grd 3	152.000	0.000
Grd 4	152.000	0.000
Grd 5	152.000	0.000
Grd 6	152.000	0.000

Live Load Truck Data							
Truck Name	Spec?	Axle #	Weight kip	Spacing ft			
User Truck 1	User	1	156.000				

	Design Vehicle User Design Vehicle									
Env #										
1	User Truck 1	Yes	Yes							

	Live Load Misc Data										
Reaction Truck Truck Dist Pedestrian # Lan Load Lim											
computed	wheel line	uses truck distrib		0.075	2						

	Curve Radius ft		Speed Type	Speed Design mi/hr	Speed Permit mi/hr	Speed Fatigue mi/hr
--	-----------------------	--	---------------	--------------------------	--------------------------	---------------------------

Viathor, Inc.

		•				
1 1+1	\sim	\sim t	tr	\sim	ப	ıor
Titl	н:	()I	11	1€	\mathbf{r}	

0.0	 ·	spec	55.000	25.000	55.000

	Live Load Factors											
Impact Type												
user 1.3800 1.2500 1.1500 1.0000 1.0000 1.0000												

	Truck and Lane Width Overrides									
Status	Status Lane Width Truck Width Truck Gage 2 Lanes Limit									
User Override 15.000 ft 12.000 ft 4.750 ft 19.500 ft										

Braking Force Overrides						
Truck Name Lane Name Override kip						
User Truck 1 3.300						

	Water Flow and Levels										
Flow Direction											
L> R	L> R 0.00 triangular none none none										

Water Pressure and Drag Overrides

Long Pressure	Tran Pressure	Drag Coef	Drag Coef	Drag Constant
ksf	ksf		Lateral	K
computed	computed	computed	computed	computed

	Ice Load Data - Program Determined									
Ice Level Thickness Crush Stren Nose Angle Frict Angle deg										
0.000	6.00 (override)	58.000 (override)	0.00	0.00	1.0000 (computed)					

Wind Pressure / Reaction Factors											
Description	Factor	Description	Factor								
Wind On Super - Pressure	1.000	Wind On Sub - Cap Pressure	1.000								
Wind On Super - Long Reaction	1.000	Wind On Sub - Column Pressure	1.000								
Wind On Super - Tran Reaction	1.000	Wind On Sub - Shaft Pressure	1.000								
·		Wind On Sub - Strut Pressure	1.000								
Wind On Live - Pressure	1.000										
Wind On Live - Long Reaction	1.000	Wind Overturning - Pressure	1.000								
Wind On Live - Tran Reaction	1.000	Wind Overturning - Reaction	1.000								

Wind Velocity and Angles							
Velocity Related Information	Wind Angles (default) deg	Wind Angles (user) deg					
Adjust for Structure Height?	No	60.00 45.00	n/a				
Design Wind Velocity	100.00 mi/hr	30.00					
Default Angle?	Yes	15.00 0.00					
		-15.00					
		-30.00					

-45.00 -60.00

Footing - Pile Analysis

	Pile Footing - Maximum Pile Forces - Strength											
Ftg Num	Ftg NumLimit Load State CaseAxial kipTran 											
1	STR-I STR-I STR-I STR-I STR-I	1 6 2	2104.6 2104.6 2104.6 2104.6 2104.6	4641.0 4641.0 4641.0 -4641.0 -4641.0	2101.9 740.5 740.5 740.5 740.5	23.00 23.00 23.00 -23.00 -23.00	0.00 0.00 0.00 0.00 0.00	321.9 321.9 321.9 321.9 321.9	1.16 OK 1.16 OK 1.16 OK 1.16 OK 1.16 OK			

	Pile Footing - Minimum Pile Forces - Strength												
FtgLimit Load NumLong Axial kipTran Moment kip-ftLong Moment kip-ftPile Coord T ftPile Coord T ft						Pile Load kip	Ratio Pr/Pu						
1	STR-III 20 STR-III 22 STR-III 24 STR-III 15 STR-III 17	1081.1 1081.1 1081.1 1081.1 1081.1	1866.5 1866.5 1866.5 -1866.5	901.9 901.9 901.9 901.9 901.9	-23.00 -23.00 -23.00 23.00 23.00	0.00 0.00 0.00 0.00 0.00	111.5 111.5 111.5 111.5 111.5	3.36 OK 3.36 OK 3.36 OK 3.36 OK 3.36 OK					

	Pile Footing - Maximum Pile Forces - Service								
_	Ftg Limit Load Num State Case Axial kip Moment kip-ft Kip-ft Pile Coord T Coord L Load kip Ratio								
1	SER-I	1	1558.9	572.7	663.5	23.00	0.00	202.1	1.86 OK

SER-I	2	1558.9	-572.7	663.5	-23.00	0.00	202.1	1.86 OK
SER-I	20	1434.1	1727.1	1201.7	23.00	0.00	201.2	1.86 OK
SER-I	21	1434.1	1727.1	1201.7	23.00	0.00	201.2	1.86 OK
SER-I	22	1434.1	1727.1	1201.7	23.00	0.00	201.2	1.86 OK

	Pile Footing - Minimum Pile Forces - Service								
Ftg Num	Limit State	Load Case	Axial kip	Tran Moment kip-ft	Long Moment kip-ft	Pile Coord T ft	Pile Coord L ft	Pile Load kip	Ratio Pr/Pu
1	SER-I SER-I SER-I SER-I	21 22 23	1434.1 1434.1 1434.1 1434.1 1434.1	1727.1 1727.1 1727.1 1727.1 1727.1	1201.7 1201.7 1201.7 1201.7 1201.7	-23.00 -23.00 -23.00 -23.00 -23.00	0.00 0.00 0.00 0.00 0.00	157.4 157.4 157.4 157.4 157.4	2.38 OK 2.38 OK 2.38 OK 2.38 OK 2.38 OK

	Pile Footing - Lateral Force Check									
Ftg Num	Limit Lo State Ca		Pri Col	Water Level	Load Dir	Group or Pile	Lateral Load kip	Lateral Resist kip	Ratio Res/Load	
1	STR-III STR-III	1 21 23 20 22	1 1 1 1	n/a n/a n/a n/a n/a	comb comb comb comb	pile: pile: pile: pile: pile:	6.38 6.38 6.38 6.38 6.38	80.00 80.00 80.00 80.00 80.00	12.54 OK 12.54 OK 12.54 OK 12.54 OK 12.54 OK	

* * * * * * * * * * * *	Herno * * * *	don Canal.c	out * * * * * *	* * * * *
	GRAM	BRGAB	UT	*
*	I NPUT DA	TA ECHO		*
* * * * * * * * * * * * * (Version 1.21)	* * * * *	* * * * *	* * * * * * 10/31/11,	* * * * * 12: 29 pm
Input file = Herndon C Output file = Herndon C	anal . i n anal . out			
0 P T I 0 N S	=======	=======	=======	======
Units = Engli Design Criteria = AASHT Concrete Design = Servi Wall Type = No Ha Footing Type = Pile	0 (2002) ce Load De	sign (SLD)		
PROPERTIES	=======	=======	=======	=======
REINFORCED CONCRETE:				
MATERIAL PROPERTIE	S:			
Concrete compressi Concrete modulus o Concrete modulus o Concrete modular r Concrete unit weig Reinforcing yield Allowable stress f	f elastici f rupture atio ht strength	ty = 36049 = 474.3 = 8 = 150.0	97.0 psi 4 psi 0 pcf	
PILE RESISTANCE:				
LOAD	RESI STANC SLS		EQ	
Compression: Tension: Shear:	320. 0 100. 0 50. 0	100. 0	400. 0 50. 0 100. 0	
PILE LATERAL LOAD - MOM	ENT DATA:			
POINT LATERAL L (ki p)	 OAD	(k-ft)		
1 20.00 2 30.00 3 50.00		96. 00 145. 00 244. 00		
FOOTING RESISTANCE:				
PARAMETER	SLS	ULS	EQ	
		Page 1		

Herndon Canal.out Passi ve coefficient: 0.300 0.300 0.300 CONFIGURATION ______ WALL: Stem wall height = 12.000 ft
Stem wall length = 50.000 ft
Stem wall thickness = 3.500 ft
Stem wall batter = 0.000 deg
Back wall height = 4.250 ft
Back wall thickness = 1.000 ft
Seat width = 2.500 ft Distance to CL bearing = 1.500 ft FOOTI NG: Width of toe = 3.500 ftSoil cover over toe = 3.500 ftFooting width = 10.000 ftFooting length = 52.000 ftFooting thickness = 3.000 ftPI LES: Pile width = 2.0 in
 ROW
 TOE DIST NO OF (ft)
 NO OF BATTER (deg)
 SPACING (ft)

 1
 2.000
 7
 0
 0
 8.000

 2
 8.000
 4
 0
 0
 8.000
 I O A D S______ BRI DGE LOADS: Dead Load constant = 700.0 kip
Dead Load varying = 40.0 kip
Live Load standard = 320.0 kip
Live Load special = 0.0 kip
Live Load Long force = 87.0 kip at height = 0.500 ft
Friction Long force = 10.0 kip at height = 0.500 ft EARTH LOADS: Lateral pressure coeff = 0.290
Earthquake pressure coeff = 0.000
Compaction pressure = 0.00 psf
Soil unit weight = 120.00 pcf
Surcharge pressure = 850.00 psf at height = 0.333 Hat height = 0.000 H at height = 0.000 ft

LOAD COMBINATIONS:

NO LOAD CONDITION MAXIMUM MINIMUM SERVICE

Page 2

1	Herndon Construction 1 - place supe	Canal.out erstructure	e before ba	ckfill
	Dead Load abutment Dead Load constant Dead Load varying	0 0 0	0 0 0	1 1 1
	Service stre	ess increas	se factor =	1. 5
2	Construction 2 - place back	xfill befor	e superstr	ucture
	Dead Load abutment Dead Load earth Lateral earth pressure	0 0 0	0 0 0	1 1 1
	Service stre	ess increas	se factor =	1.5
3	Group II - no live load on	bri dge		
	Dead Load abutment Dead Load constant Dead Load varying Dead Load earth Lateral earth pressure Live Load surcharge	1 3	0. 975 0. 975 0. 975 0. 975 1. 69	1 1 1 1 1
	Service stre	ess increas	se factor =	1. 25
4	Group I - live load on brid	dge		
	Dead Load abutment Dead Load constant Dead Load varying Dead Load earth Live Load standard Live Load Longitudinal ford Lateral earth pressure Live Load surcharge	1. 3 2. 171 ce 2. 171	0. 975 0. 975 2. 171 2. 171	1 1 1
	Service stre	ess increas	se factor =	1
5	Group V - no live load with	n bearing f	riction	
	Dead load abutment Dead load constant Dead load varying Dead load earth Friction longitudinal force Lateral earth pressure Live load surcharge	1. 25 1. 25 1. 25 1. 25 1. 25	0. 937 0. 937 0. 937 0. 937 1. 25 1. 25	1
	Service stre	ess increas	se factor =	1. 4
6	Group IV - live load with b	pearing fri	ction	
	Dead Load abutment Dead Load constant Dead Load varying Dead Load earth	1.3 1.3 1.3 1.3 age 3	0. 975 0. 975 0. 975 0. 975	1 1 1 1

Live load stand Live load long Friction longi Lateral earth Live load surc	dard i tudi nal fo tudi nal fo pressure harge		1 3	1 1 1 1 1 1. 25
REINFORCING	=======	=======	========	======
LOCATI ON	AREA (i n^2)	SPACING (in)	COVER (i n)	
Wall stem Backwall Footing top Footing bottom at toe Footing bottom at heel Footing long w/piles T&S in wall stem T&S in backwall T&S in footing	1. 00 1. 00	6. 00 6. 00 6. 00	2. 00 3. 00 6. 00	
* * * * * * * * * * * * * * * * * * * *	* * * * *	* * * * *	* * * * * * *	: * * * * *
* * *	G R A M OUTPUT	B R G A B DATA	UI	*
* * * * * * * * * * * * * * * * * * *	* * * * *	* * * * *	* * * * * * *	* * * * *
UNFACTORED LOADS:	======	======:	========	======
LOAD CONDITION		SHEAR (ki p/ft)	MOMENT (k-ft/ft	:)
Lateral earth pressi Surcharge pressure	 ure 	0. 209 0. 854	0. 445 2. 226	

SERVICEABILITY LIMIT STATE CALCULATIONS:

SHEAR (Comb 4):

Effective depth = 9.44 in Service shear = 1.063 kip/ft d required = 1.47 < d provided = 9.44 OKAY

MOMENT (Comb 4):

Service moment = 2.671 k-ft/ftSteel stress = 1966.35 < Allowable stress = 24000.00 OKAYConcrete stress = 169.94 psi

TEMPERATURE AND SHRINKAGE:

Herndon Canal.out

T&S reinforcement = 1.00 > Area required = 0.06 OKAY

STEM WALL

UNFACTORED LOADS:

LOAD CONDITION	SHEAR (ki p/ft)	MOMENT (k-ft/ft)	
Dead I oad constant Dead I oad varying Live I oad standard LL I ongi tudi nal force FR I ongi tudi nal force Lateral earth pressure Surcharge pressure	1. 740 0. 200 1. 321 2. 148	3.500 0.200 1.600 14.355 1.650 10.022 17.748	

SERVICEABILITY LIMIT STATE CALCULATIONS:

SHEAR (Comb 4):

Effective depth = 39.44 in

Service shear = 5.209 kip/ft d required = 7.22 < d provided = 39.44 OKAY

MOMENT (Comb 4):

Service moment = 47.425 k-ft/ftSteel stress = 7810.24 < Allowable stress = 24000.00 OKAY

Concrete stress = 289.02 psi

TEMPERATURE AND SHRINKAGE:

T&S reinforcement = 1.00 > Area required = 0.06 OKAY

REQUIRED REINFORCEMENT AREA IN STEM WALL SECTIONS: (Service Load Design)

HEIGHT	THI CK	deff	MOMENT	AREA	LOAD
(ft)	(i n)	(in)	(k-ft/ft)	(i n^2)	COMB
11. 23 10. 45 9. 68 8. 90 8. 13 7. 35 6. 58 5. 80 5. 03 4. 25	42. 00 42. 00	39. 44 39. 44 39. 44 39. 44 39. 44 39. 44 39. 44 39. 44 39. 44	42. 04 37. 04 32. 40 28. 11 24. 16 20. 53 17. 19 14. 14 11. 37 8. 84	0. 30 0. 27 0. 23 0. 20 0. 17 0. 15 0. 12 0. 10 0. 08 0. 06	4 4 4 4 4 4 4 4 4 4

STABILITY

UNFACTORED WEIGHT AND RIGHTING MOMENT:

Herndon Canal.out

LOAD CONDITION	WEIGHT (kip)	MOMENT AT TOE (k-ft)	
Dead Load abutment Dead Load constant Dead Load varying Dead Load earth Live Load standard Live Load surcharge	469. 3 700. 0 40. 0 292. 4 320. 0 127. 5	2445. 2 3500. 0 200. 0 1969. 8 1600. 0 1083. 8	_

UNFACTORED LATERAL FORCE AND OVERTURNING MOMENT:

LOAD CONDITION	FORCE (ki p)	MOMENT AT TOE (k-ft)
LL longitudinal force	87. 0	978. 8
FR longitudinal force	10. 0	112. 5
Lateral earth pressure	195. 7	977. 8
Surcharge pressure	184. 9	1386. 6

RESULTANT LOAD COMBINATIONS:

COMB NO	LIMIT STATE	VERTI CAL LOAD (ki p)	RIGHTING MOMENT (k-ft)	LATERAL LOAD (ki p)	OVERTURNING MOMENT (k-ft)
1	SLS	1209. 3	6145. 2	0.0	0.0
2	SLS	761. 7	4415.0	195. 7	977.8
3	SLS	1629. 2	9198. 7	380. 6	2364. 3
4	SLS	1949. 2	10798. 7	467. 6	3343. 1
5	SLS	1629. 2	9198. 7	390. 6	2476. 8
6	SLS	1949. 2	10798. 7	477. 6	3455. 6

VERTICAL RESULTANT:

COMB LIMIT CASE VERTICAL TOE RESULTANT	
NO STATE NO LOAD DISTANCE LOCATION (kip) (ft)	
1 SLS - 1209. 3 5. 082 -0. 016	
2 SLS - 761. 7 4. 512 0. 098	
3 SLS - 1629. 2 4. 195 0. 161	
4 SLS - 1949. 2 3. 825 0. 235	
5 SLS - 1629. 2 4. 126 0. 175	
_ ,	

Herndon Canal.out 0.2 3.767 0. SLS 1949. 2 0. 247

PILE FOOTING

PILE GROUP PROPERTIES:

Number of piles = 11 Pile CG distance = 4.182 ft

Pile group inertia = 9.164E+01 ft²

PILE LOADS:

COMB NO	LIMIT STATE	PILE ROW	VERTI CAL LOAD (ki p)	SHEAR LOAD (ki p)	BENDING MOMENT (k-ft)
1	SLS	1 2	84. 0 155. 3	0. 0 0. 0	0. 0 0. 0
2	SLS	1 2	79. 1 52. 0	12. 6 12. 6	60. 5 60. 5
3	SLS	1 2	185. 9 81. 9	30. 3 30. 3	146. 4 146. 4
4	SLS	1 2	243.5 61.2	39. 1 39. 1	189. 8 189. 8
5	SLS	1 2	189. 1 76. 3	30. 7 30. 7	148. 3 148. 3
6	SLS	1 2	246. 2 56. 4	39. 1 39. 1	190. 0 190. 0

MAXIMUM PILE LOADS:

SLS Compression (Comb 4) = 243.5 < 320.0 OKAYSLS Shear (Comb 4) = 39.1 < 50.0 OKAYSLS Moment (Comb 4) = 189.8

LATERAL STABILITY:

COMB NO	LIMIT STATE	FORCE (ki p)	RESISTAN (kip)	CE	
1	SLS	0. 0	882. 0	OKAY	
2	SLS	195. 7	882.0	OKAY	
3	SLS	380. 6	735. 0	OKAY	
4	SLS	467. 6	588. 0	OKAY	
5	SLS	390. 6	823. 2	OKAY	

Herndon Canal.out SLS 6 477.6 735. 0 OKAY

FOOTING LOADS:

COMB NO	LIMIT STATE	CASE NO	TOE SHEAR (kip/ft)	TOE MOMENT (k-ft/ft)	HEEL SHEAR (ki p/ft)	HEEL MOMENT (k-ft/ft)
1	SLS	-	-0. 471	14. 211	-0. 246	9. 919
2	SLS	-	-0. 911	2. 497	-1.034	0. 151
3	SLS	-	-0. 911	12. 512	-1. 499	5. 231
4	SLS	-	-0. 911	18. 284	-1. 499	6. 980
5	SLS	-	-0. 911	12. 895	-1. 499	4. 951
6	SLS	-	-0. 911	18. 806	-1. 499	6. 629

SIGN CONVENTION:

Positive moment => tension on bottom of footing Positive shear => upward direction

FOOTING TOE

SERVICEABILITY LIMIT STATE CALCULATIONS:

SHEAR (Comb 4):

Effective depth = 32.44 in Service shear = 0.911 kip/ft d required = 1.26 < d provided = 32.44 OKAY

TENSION AT FOOTING BOTTOM:

MOMENT (Comb 4):

Service moment = 18.284 k-ft/ftSteel stress = 4079.12 < Allowable stress = 24000.00 OKAYConcrete stress = 178.29 psi

NO TENSION AT FOOTING TOP:

FOOTING HEEL

SERVICEABILITY LIMIT STATE CALCULATIONS:

SHEAR (Comb 4):

Effective depth = 32.44 in

Herndon Canal.out

Service shear = 1.499 kip/ft d required = 2.08 < d provided = 32.44 OKAY

TENSION AT FOOTING BOTTOM:

MOMENT (Comb 4):

Service moment = 6.980 k-ft/ftSteel stress = 1557.31 < Allowable stress = 24000.00 OKAY

Concrete stress = 68.07 psi

NO TENSION AT FOOTING TOP:

TEMPERATURE AND SHRINKAGE:

T&S reinforcement = 1.00 > Area required = 0.06 OKAY

LONGITUDINAL REINFORCEMENT

SLS CALCULATIONS FOR FOOTING TOE:

Pressure = 6555.4 psf Spacing = 8.000 ft

MOMENT (Comb 4):

Service moment = 41.954 k-ft/ftSteel stress = 9748.54 < Allowable stress = 24000.00 OKAYConcrete stress = 435.79 psi

SLS CALCULATIONS FOR FOOTING HEEL:

Pressure = 2740.0 psf Spacing = 8.000 ft

MOMENT (Comb 4):

Service moment = 17.536 k-ft/ftSteel stress = 4074.67 < Allowable stress = 24000.00 OKAY

Concrete stress = 182.15 psi