

Context

We want to learn how to act optimally in a very general environment—performing state-changing actions on the environment which carry a reward signal

• Dyna

** ** **

• Goog • pl • Si • D • W

Agent and Environment

- At each step t the agent :
 - Executes action a(t)
 - Receives observation o(t)
 - Receives scalar reward r(t)

- The environment :
 - Receives action a(t)
 - Emits observation o(t+1)
 - Emits scalar reward r(t+1)

States and Action

- Experience is a sequence of observations, actions, rewards
- The state is a summary of experience

policy

- A policy is the agent's behavior
- It is a map from state to action
 - a = π(s)

Value Function

- · A value function is a prediction of future reward
 - "How much reward will I get from action a in state s?"
 - Q-value function gives expected total reward
 - from state s and action a
 - under policy π
 - with discount factor y

$$Q(s,a) = r + \gamma * max_{a'}Q(s',a')$$

Different Approach for Computing Ω

Dynamic Programming

t.	0.00	0.00	0.00 **	0.00	0.00	0.00	U.DU	0.00	1
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4
0.00					0.00				u.eg
n ao	0.00	D 00 +	0 00 + 8 13		0.00	0.00	0.00	o no	4
ivas.	0.00	0.00	u.uo +		0.00 + R-10	0.00	0.00	0.00	u.co
0.00	0.00	0 00	0.00		0 00 + K10	0.00 4 8.14	0.00	0 ng 4	4
¥ 000	0.00	0.00	u.uu +		0.00	0.00	0.00	0.00	u.co
P 000	0.00	0 00	0.00 + K-12		0.00 + K-12	0.00 4 8.14	0.00	0.00	n co
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
not.	۰.	0.00	100	0.00	0.00	· 03	0.00	ong.	0.09

Neural Network

Some Real World Examples

- Google DeepMind DQN
 - playing Atari
 - Self Driving Car
 - DeepMind Al Reduces Google Data Center Cooling Bill by 40%
 - WaveNet: A Generative Model for Raw Audio

