2. Mai 2018

M.Sc. Matthias Thiel

Stochastik I

4. Übung

- **Aufgabe 1** (3 Punkte) Sei (Ω, \mathcal{A}) ein Messraum und $f : \Omega \to \mathbb{R} \cup \{-\infty, \infty\}$. Zeigen Sie, dass f genau dann $\mathcal{A}/\overline{\mathcal{B}}$ -messbar ist, wenn für alle $a \in \mathbb{R}$ die Menge $\{f \geq a\}$ in \mathcal{A} liegt.
- **Aufgabe 2** (5 Punkte) Sei (Ω, \mathcal{A}) ein Messraum und $f, g : \Omega \to \mathbb{R} \cup \{-\infty, \infty\}$ zwei $\mathcal{A}/\overline{\mathcal{B}}$ -messbare, numerische Funktionen. Beweisen Sie:
 - (i) Die Mengen $\{f < g\}, \{f \le g\}, \{f = g\} \text{ und } \{f \ne g\} \text{ liegen in } \mathcal{A}.$
 - (ii) Die Funktionen f+g und f-g sind $\mathcal{A}/\overline{\mathcal{B}}$ -messbar, falls sie überall auf Ω definiert sind.
 - (iii) Die Funktion $f \cdot g$ ist $\mathcal{A}/\overline{\mathcal{B}}$ -messbar.
- Aufgabe 3 (3 Punkte) Sei Ω eine nicht-leere Menge, $\emptyset \neq \Omega' \subset \Omega$ und \mathcal{A} eine σ -Algebra auf Ω . Zeigen Sie, dass das Mengensystem

$$\mathcal{A}|_{\Omega'} := \{ A \cap \Omega' : A \in \mathcal{A} \}$$

eine σ -Algebra auf Ω' ist.

Aufgabe 4 (5 Punkte) Wir betrachten den Maßraum (Ω, \mathcal{A}, P) , wobei $\Omega = [0, 1)$, $\mathcal{A} = \mathcal{B}|_{[0,1)}$ und P die Gleichverteilung auf [0, 1) ist. Gegeben sei das System von Mengen

$$A_n := \left[0, \frac{1}{2^n}\right) \cup \left[\frac{2}{2^n}, \frac{3}{2^n}\right) \cup \ldots \cup \left[\frac{2^n - 2}{2^n}, \frac{2^n - 1}{2^n}\right) \quad (n \in \mathbb{N}).$$

Zeigen Sie die Unabhängigkeit der Folge $(A_n)_{n\in\mathbb{N}}$.