

DLI Accelerated Data Science Teaching Kit

Lecture 20.3 - SVD: Dimensionality Reduction, and Other Uses

The Accelerated Data Science Teaching Kit is licensed by NVIDIA, Georgia Institute of Technology, and Prairie View A&M University under the Creative Commons Attribution-NonCommercial 4.0 International License.

'documents', 'terms' and 'concepts':

U: document-concept similarity matrix

V: term-concept similarity matrix

Λ: diagonal elements: concept "strengths"

'documents', 'terms' and 'concepts':

Q: if A is the document-to-term matrix, what is the similarity matrix A^T A?

A: term-to-term ([m x m]) similarity matrix

 $Q: A A^T$?

A: document-to-document ([n x n]) similarity matrix

SVD properties

V are the eigenvectors of the *covariance matrix* A^TA

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}) = \mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$$

U are the eigenvectors of the *Gram* (inner-product) matrix **AA**^T

$$\mathbf{A}\mathbf{A}^{\mathsf{T}} = (\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}})(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{U}\mathbf{\Sigma}^{2}\mathbf{U}^{\mathsf{T}}$$

SVD is closely related to PCA, and can be numerically more stable. For more info, see:

http://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca Ian T. Jolliffe, Principal Component Analysis (2nd ed), Springer, 2002. Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005.

Find the best axis to project on.

('best' = min sum of squares of projection errors)

min RMS error

Beautiful visualization explaining PCA: http://setosa.io/ev/principal-component-analysis/

 $A = U \Lambda V^{T}$

U Λ gives the coordinates of the points in the projection axis

More details

Q: how exactly is dim. reduction done?

1	1	1	0	0
2	2	2	0	0
1	1	1	0	0
5	5	5	0	0
0	0	0	2	2
0	0	0	3	3
0	0	0	1	1

More details

Q: how exactly is dim. reduction done?

More details

Q: how exactly is dim. reduction done?

More details

Q: how exactly is dim. reduction done?

More details

Q: how exactly is dim. reduction done?

1	1	1	0	0		1
2	2	2	0	0		2
1	1	1	0	0		1
5	5	5	0	0	~	5
0	0	0	2	2		0
0	0	0	3	3		0
0	0	0	1	1		0

SVD - Complexity

O(n*m*m) or O(n*n*m) (whichever is less)

Faster version, if just want singular values or if we want first *k* singular vectors or if the matrix is sparse [Berry]

No need to write your own!

Available in most linear algebra packages (LINPACK, matlab, Splus/R, mathematica ...)

Case Study How to do queries with LSI?

Case Study How to do queries with LSI?

For example, how to find documents with 'data'?

Case Study

How to do queries with LSI?

For example, how to find documents with 'data'? A: map query vectors into 'concept space' – how?

Case Study

How to do queries with LSI?

For example, how to find documents with 'data'? A: map query vectors into 'concept space', using inner product (cosine similarity) with each 'concept' vector v_i

Case Study How to do queries with LSI?

Compactly, we have:

$$q V = q_{concept}$$

term-concept similarity matrix

Case Study How would the document ('information', 'retrieval') be handled?

Case Study

How would the document ('information', 'retrieval') be handled?

SAME!

$$dV = d_{concept}$$

term-concept similarity matrix

Case Study Observation

Document ('information', 'retrieval') will be retrieved by **query** ('data'), even though it does not contain 'data'!!

DLI Accelerated Data Science Teaching Kit

Thank You