

Doing really well with linear decision surfaces

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution. Please send comments and corrections to Eric.

Outline

- Prediction
 - Why might predictions be wrong?
- Support vector machines
 - Doing really well with linear models
- Kernels
 - Making the non-linear linear

Why Might Predictions be Wrong?

- True non-determinism
 - Flip a biased coin
 - p(heads) = θ
 - Estimate θ
 - If θ > 0.5 predict 'heads', else 'tails'

Lots of ML research on problems like this:

- Learn a model
- Do the best you can in expectation

Why Might Predictions be Wrong?

- Partial observability
 - Something needed to predict y is missing from observation x

- Noise in the observation x
 - Measurement error
 - Instrument limitations

Why Might Predictions be Wrong?

- True non-determinism
- Partial observability
 - hard, soft
- Representational bias
- Algorithmic bias
- Bounded resources

Representational Bias

Having the right features (x) is crucial

Support Vector Machines

Doing *Really* Well with Linear Decision Surfaces

Strengths of SVMs

- Good generalization
 - in theory
 - in practice
- Works well with few training instances
- Find globally best model
- Efficient algorithms
- Amenable to the kernel trick

Minor Notation Change

To better match notation used in SVMs ...and to make matrix formulas simpler

We will drop using superscripts for the i th instance

Linear Separators

Training instances

$$\mathbf{x} \in \mathbb{R}^{d+1}, x_0 = 1$$

 $y \in \{-1, 1\}$

Model parameters

$$\boldsymbol{\theta} \in \mathbb{R}^{d+1}$$

Hyperplane

$$\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x} = \langle \boldsymbol{\theta}, \mathbf{x} \rangle = 0$$

Decision function

$$h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x}) = \operatorname{sign}(\langle \boldsymbol{\theta}, \mathbf{x} \rangle)$$

Recall:

Inner (dot) product:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^{\mathsf{T}} \mathbf{v}$$

$$= \sum_{i} u_{i} v_{i}$$

A "Good" Separator

Noise in the Observations

Ruling Out Some Separators

Lots of Noise

Only One Separator Remains

Maximizing the Margin

"Fat" Separators

"Fat" Separators

Why Maximize Margin

Increasing margin reduces capacity

• i.e., fewer possible models

Remember Lesson from Learning Theory:

- If the following holds:
 - H is sufficiently constrained in size
 - and/or the size of the training data set n is large,
 then low training error is likely to be evidence of low generalization error