Matrix Modulo

Time limit: 1 sec

Given a 2x2 non negative integer matrix **A**, we would like to calculate of **A**ⁿ mod **k**, where n and k are given positive integers.

In a modular arithmetic, a mod k is the remainder of a / k. For example 14 mod 5 equals to 4. In c++, we can calculate a mod k by this expression **a** % k. A matrix M mod

k where M =
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is defined as M = $\begin{bmatrix} a \mod k & b \mod k \\ c \mod k & d \mod k \end{bmatrix}$ and we also know that, for a

positive integers **p** and **q**

- $(\mathbf{p} + \mathbf{q}) \mod \mathbf{k} = ((\mathbf{p} \mod \mathbf{k}) + (\mathbf{q} \mod \mathbf{k})) \mod \mathbf{k}$
- (p * q) mod k = ((p mod k) * (q mod k)) mod k
 This property is also valid for matrices M and N
- (MN) mod k = ((M mod k)(N mod k)) mod k

Input

- The first line of input contains two integer n and k where $1 \le N \le 2^30$ and $1 \le K \le 10,000$.
- The second line contains four integers a, b, c, d which describe the matrix $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where $1 \le a$, b, c, $d \le 9,999$

Output

There must be exactly 1 line that contains four integers that describe the matrix \mathbf{A}^n mod \mathbf{k}

Suggestion

- For 50% of the testcases, the value of n and k is very small such that a direct approach in O(N) would pass
- It will help to write a function that calculate (MN) mod k. Be sure that that function must return a matrix. For example, the function could be written as vector<int> matrix multiply(const vector<int> &M,const vector<int> &N,int k);

Example

Input	Output
2 1000	7 10 15 22
1 2 3 4	
2 10	7 0 5 2
1 2 3 4	

5 10000	1069 1558 2337 3406
1 2 3 4	
5 10	9 8 7 6
1 2 3 4	
999888777 4726	337 2916 3733 1154
3 8 7 2	