Yingzhen Li

Department of Computing Imperial College London

y@liyzhen2
yingzhen.li@imperial.ac.uk

Nov 25, 2022

PCA: Recap

Motivation: real-world data $\mathcal{D} = \{x_n\}_{n=1}^N, x_n \in \mathbb{R}^{D \times 1}$ often lies in a lower-dimensional space

PCA's idea to "save memory":

• Project x_n onto a lower-dim space $span(\{\mathbf{b}_1,...,\mathbf{b}_M\})$ to get

$$z_n := (z_{n1}, ..., z_{nM}), \quad z_{nm} = \mathbf{b}_m, \quad M < D,$$

then store z_n instead of x_n ;

- When needed, get reconstruction $\tilde{x}_n = \sum_{m=1}^{M} z_{nm} \mathbf{b}_m$
- ► To get orthonormal basis $\{b_1, ..., b_M\}$: PCA
 - maximum variance view
 - minimum reconstruction error view

PCA: Recap

(ellipse).

Fig from the MML book.

3

from (a).

PCA: Recap

An issue with PCA in test time:

- Given an *x*, we can find the low-dim projection *z* of it using trained PCA
- ► However, PCA alone cannot generate new *x* (unless we do something further)

Generative models

To name a few dimensionality reduction methods:

Generative models

bike. It is wearing sunglasses and a beach hat.

dressed as a chef in a high end kitchen making dough. There is a painting of flowers on the wall behind him.

fly event.

A cute sloth holding a small treasure chest. A bright golden glow is coming from the chest.

Latent Variable Models

Data distribution: $\mathcal{D} = \{x_n\}_{n=1}^N, x_n \sim \pi(x)$ Make a generative model that generates x as follows:

$$z \sim p_{\theta}(z), \quad x \sim p_{\theta}(x|z)$$

- ► z: latent variable
- x: data
- θ : model parameter to be fitted
- if $p_{\theta}(x) \approx \pi(x)$, then the model can generate realistic data

Data distribution: $\mathcal{D} = \{x_n\}_{n=1}^N, x_n \sim \pi(x)$

Probabilistic PCA: make a latent variable model as follows:

$$p(z) = \mathcal{N}(z; \mathbf{0}, \mathbf{I})$$

$$p_{\theta}(x|z) = \mathcal{N}(x; \mathbf{W}z + \mu, \sigma^2 \mathbf{I})$$

Sampling from this generative model:

$$z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad x = \mathbf{W}z + \mu + \sigma \epsilon, \ \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

• model parameter: $\theta = \{\mathbf{W}, \mu\}$

Data distribution: $\mathcal{D} = \{x_n\}_{n=1}^N, x_n \sim \pi(x)$

Probabilistic PCA: make a latent variable model as follows:

$$p(z) = \mathcal{N}(z; \mathbf{0}, \mathbf{I})$$

$$p_{\theta}(x|z) = \mathcal{N}(x; \mathbf{W}z + \mu, \sigma^2 \mathbf{I})$$

Marginal distribution:

$$p_{\theta}(x) = \int p_{\theta}(x|z)p(z)dz$$

Data distribution: $\mathcal{D} = \{x_n\}_{n=1}^N, x_n \sim \pi(x)$

Probabilistic PCA: make a latent variable model as follows:

$$p(z) = \mathcal{N}(z; \mathbf{0}, \mathbf{I})$$

$$p_{\theta}(x|z) = \mathcal{N}(x; \mathbf{W}z + \mu, \sigma^2 \mathbf{I})$$

Marginal distribution:

$$p_{\theta}(x) = \int p_{\theta}(x|z)p(z)dz$$
$$= \mathcal{N}(x; \mu, \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}).$$

Data distribution: $\mathcal{D} = \{x_n\}_{n=1}^N, x_n \sim \pi(x)$

Probabilistic PCA: make a latent variable model as follows:

$$p(z) = \mathcal{N}(z; \mathbf{0}, \mathbf{I})$$

$$p_{\theta}(x|z) = \mathcal{N}(x; \mathbf{W}z + \mu, \sigma^2 \mathbf{I})$$

Fitting θ with Maximum Likelihood Estimation (MLE):

$$\max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}), \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}_n)$$
$$= \frac{1}{N} \sum_{n=1}^{N} \log \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top} + \sigma^2 \mathbf{I})$$

$$\max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}), \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{1}^{N} \log \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top} + \sigma^2 \mathbf{I}), \quad \boldsymbol{\theta} = \{\mathbf{W}, \boldsymbol{\mu}\}$$

Derivative of \mathcal{L} w.r.t. μ : denoting $\mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}$

$$\frac{\partial}{\partial \boldsymbol{\mu}} \log \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^\top + \sigma^2 \mathbf{I}) = \frac{\partial}{\partial \boldsymbol{\mu}} \left(-\frac{1}{2} (\boldsymbol{x}_n - \boldsymbol{\mu})^\top \mathbf{C}^{-1} (\boldsymbol{x}_n - \boldsymbol{\mu}) \right)$$

$$\max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}), \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \log \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top} + \sigma^2 \mathbf{I}), \quad \boldsymbol{\theta} = \{\mathbf{W}, \boldsymbol{\mu}\}$$

Derivative of \mathcal{L} w.r.t. μ : denoting $\mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}$

$$\frac{\partial}{\partial \mu} \log \mathcal{N}(\mathbf{x}_n; \mu, \mathbf{W} \mathbf{W}^\top + \sigma^2 \mathbf{I}) = \frac{\partial}{\partial \mu} \left(-\frac{1}{2} (\mathbf{x}_n - \mu)^\top \mathbf{C}^{-1} (\mathbf{x}_n - \mu) \right)$$
$$= (\mathbf{x}_n - \mu)^\top \mathbf{C}^{-1}$$

$$\Rightarrow \frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}} = \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{x}_n - \boldsymbol{\mu})^{\top} \mathbf{C}^{-1}$$

Setting
$$\frac{\partial \mathcal{L}}{\partial \mu} = \mathbf{0}$$
 \Rightarrow $\mu^* = \frac{1}{N} \sum_{n=1}^{N} x_n$

$$\max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}), \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \log \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top} + \sigma^2 \mathbf{I}), \quad \boldsymbol{\theta} = \{\mathbf{W}, \boldsymbol{\mu}, \sigma\}$$

Derivative of \mathcal{L} w.r.t. **W**: denoting $\mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}$

$$\frac{\partial}{\partial \mathbf{W}} \log \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top} + \sigma^2 \mathbf{I})$$

$$= \frac{\partial}{\partial \mathbf{W}} \left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu})^{\top} \mathbf{C}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) - \frac{1}{2} \log |\mathbf{C}| \right)$$

- C depends on W, so "chain rule" applies
- However, so far we've only learned about chain rule applied to scalars and vectors.

Applying chain rule: let $\mathcal{L}_n := \log \mathcal{N}(x_n; \mu, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I})$

• Chain rule for individual elements W_{kl} of **W**:

$$\frac{\partial \mathcal{L}_n}{\partial W_{kl}} = \sum_{i,j} \frac{\partial \mathcal{L}_n}{\partial C_{ij}} \frac{\partial C_{ij}}{\partial W_{kl}}, \quad \mathbf{C} = \mathbf{W} \mathbf{W}^\top + \sigma^2 \mathbf{I}$$

• Calculate $\frac{\partial C_{ij}}{\partial W_{kl}}$:

Applying chain rule: let $\mathcal{L}_n := \log \mathcal{N}(x_n; \mu, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I})$

• Chain rule for individual elements W_{kl} of **W**:

$$\frac{\partial \mathcal{L}_n}{\partial W_{kl}} = \sum_{i,j} \frac{\partial \mathcal{L}_n}{\partial C_{ij}} \frac{\partial C_{ij}}{\partial W_{kl}}, \quad \mathbf{C} = \mathbf{W} \mathbf{W}^\top + \sigma^2 \mathbf{I}$$

• Calculate $\frac{\partial C_{ij}}{\partial W_{kl}}$: notice $C_{ij} = \sum_l W_{il} W_{jl} + \sigma^2 \delta(i = j)$

$$\frac{\partial C_{ij}}{\partial W_{kl}} = \begin{cases} 0, & k \notin \{i, j\} \\ W_{jl}, & k = i \neq j \\ W_{il}, & k = j \neq i \\ 2W_{il}, & k = i = j \end{cases}$$

Applying chain rule: let $\mathcal{L}_n := \log \mathcal{N}(x_n; \mu, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I})$

• Chain rule for individual elements W_{kl} of **W**:

$$\frac{\partial \mathcal{L}_n}{\partial W_{kl}} = \sum_{i,j} \frac{\partial \mathcal{L}_n}{\partial C_{ij}} \frac{\partial C_{ij}}{\partial W_{kl}}, \quad \mathbf{C} = \mathbf{W} \mathbf{W}^\top + \sigma^2 \mathbf{I}$$

• Calculate $\frac{\partial C_{ij}}{\partial W_{kl}}$: notice $C_{ij} = \sum_l W_{il} W_{jl} + \sigma^2 \delta(i=j)$

$$\frac{\partial C_{ij}}{\partial W_{kl}} = \begin{cases} 0, & k \notin \{i, j\} \\ W_{jl}, & k = i \neq j \\ W_{il}, & k = j \neq i \\ 2W_{il}, & k = i = j \end{cases}$$

• This means for fixed k, l:

$$\frac{\partial \mathcal{L}_n}{\partial W_{kl}} = \sum_{i} \frac{\partial \mathcal{L}_n}{\partial C_{kj}} W_{jl} + \sum_{i} \frac{\partial \mathcal{L}_n}{\partial C_{ik}} W_{il}$$

Applying chain rule: let $\mathcal{L}_n := \log \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I})$

• Chain rule for individual elements W_{kl} of **W**:

$$\frac{\partial \mathcal{L}_n}{\partial W_{kl}} = \sum_j \frac{\partial \mathcal{L}_n}{\partial C_{kj}} W_{jl} + \sum_i \frac{\partial \mathcal{L}_n}{\partial C_{ik}} W_{il}$$

• Writing the derivatives of \mathcal{L}_n in matrix forms:

$$\frac{\partial \mathcal{L}_n}{\partial \mathbf{C}} = \begin{bmatrix} \frac{\partial \mathcal{L}_n}{\partial C_{11}} & \frac{\partial \mathcal{L}_n}{\partial C_{21}} & \dots \\ \vdots & \ddots & \\ \frac{\partial \mathcal{L}_n}{\partial C_{1D}} & & \frac{\partial \mathcal{L}_n}{\partial C_{DD}} \end{bmatrix}, \quad \frac{\partial \mathcal{L}_n}{\partial \mathbf{W}} = \begin{bmatrix} \frac{\partial \mathcal{L}_n}{\partial W_{11}} & \frac{\partial \mathcal{L}_n}{\partial W_{21}} & \dots \\ \vdots & \ddots & \\ \frac{\partial \mathcal{L}_n}{\partial W_{1M}} & & \frac{\partial \mathcal{L}_n}{\partial W_{DM}} \end{bmatrix}$$

$$\Rightarrow \sum_{i} \frac{\partial \mathcal{L}_{n}}{\partial C_{kj}} W_{jl} = (\mathbf{W}^{\top})_{l} \cdot \left(\frac{\partial \mathcal{L}_{n}}{\partial \mathbf{C}}\right)_{.k}, \quad \sum_{i} \frac{\partial \mathcal{L}_{n}}{\partial C_{ik}} W_{il} = \left(\frac{\partial \mathcal{L}_{n}}{\partial \mathbf{C}}\right)_{k} \cdot \mathbf{W}_{.l}$$

Applying chain rule: let $\mathcal{L}_n := \log \mathcal{N}(x_n; \mu, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I})$

• Chain rule for individual elements W_{kl} of **W**:

$$\frac{\partial \mathcal{L}_n}{\partial W_{kl}} = \sum_j \frac{\partial \mathcal{L}_n}{\partial C_{kj}} W_{jl} + \sum_i \frac{\partial \mathcal{L}_n}{\partial C_{ik}} W_{il}$$

• Writing the derivatives of \mathcal{L}_n in matrix forms:

$$\frac{\partial \mathcal{L}_n}{\partial \mathbf{C}} = \begin{bmatrix} \frac{\partial \mathcal{L}_n}{\partial C_{11}} & \frac{\partial \mathcal{L}_n}{\partial C_{21}} & \dots \\ \vdots & \ddots & \\ \frac{\partial \mathcal{L}_n}{\partial C_{1D}} & & \frac{\partial \mathcal{L}_n}{\partial C_{DD}} \end{bmatrix}, \quad \frac{\partial \mathcal{L}_n}{\partial \mathbf{W}} = \begin{bmatrix} \frac{\partial \mathcal{L}_n}{\partial W_{11}} & \frac{\partial \mathcal{L}_n}{\partial W_{21}} & \dots \\ \vdots & \ddots & \\ \frac{\partial \mathcal{L}_n}{\partial W_{1M}} & & \frac{\partial \mathcal{L}_n}{\partial W_{DM}} \end{bmatrix}$$

$$\Rightarrow \frac{\partial \mathcal{L}_n}{\partial \mathbf{W}} = \mathbf{W}^\top \left(\frac{\partial \mathcal{L}_n}{\partial \mathbf{C}} + \frac{\partial \mathcal{L}_n}{\partial \mathbf{C}}^\top \right)$$

 $\mathbf{C} = \mathbf{W}\mathbf{W}^{\mathsf{T}} + \sigma^2\mathbf{I}$ is symmetric, the matrix form of the derivatives are:

$$\frac{\partial}{\partial \mathbf{C}} (\mathbf{x}_n - \boldsymbol{\mu})^{\top} \mathbf{C}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) = -\mathbf{C}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^{\top} \mathbf{C}^{-1}$$
$$\frac{\partial}{\partial \mathbf{C}} \log |\mathbf{C}| = \mathbf{C}^{-1}$$

Notice that both derivatives are symmetric matrices:

$$\frac{\partial \mathcal{L}_n}{\partial \mathbf{W}} = \mathbf{W}^\top \left(\frac{\partial \mathcal{L}_n}{\partial \mathbf{C}} + \frac{\partial \mathcal{L}_n}{\partial \mathbf{C}}^\top \right) = 2\mathbf{W}^\top \frac{\partial \mathcal{L}_n}{\partial \mathbf{C}}$$

Derivative of \mathcal{L} w.r.t. **W**:

$$\frac{\partial}{\partial \mathbf{W}} \log \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top} + \sigma^2 \mathbf{I})$$

$$= 2\mathbf{W}^{\top} \frac{\partial}{\partial \mathbf{C}} \left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu})^{\top} \mathbf{C}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) - \frac{1}{2} \log |\mathbf{C}| \right)$$

$$= \mathbf{W}^{\top} \left(\mathbf{C}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^{\top} \mathbf{C}^{-1} - \mathbf{C}^{-1} \right).$$

Derivative of \mathcal{L} w.r.t. **W** with $\mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}$:

$$\frac{\partial}{\partial \mathbf{W}} \log \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top} + \sigma^2 \mathbf{I})$$

$$= 2\mathbf{W}^{\top} \frac{\partial}{\partial \mathbf{C}} \left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu})^{\top} \mathbf{C}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) - \frac{1}{2} \log |\mathbf{C}| \right)$$

$$= \mathbf{W}^{\top} \left(\mathbf{C}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^{\top} \mathbf{C}^{-1} - \mathbf{C}^{-1} \right).$$

$$\Rightarrow \left(\frac{\partial \mathcal{L}}{\partial \mathbf{W}} \right)^{\top} = \mathbf{C}^{-1} \left(\frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^{\top} \mathbf{C}^{-1} - \mathbf{I} \right) \mathbf{W}$$

$$:= \mathbf{S}_{i} \text{ covariance when } \boldsymbol{\mu} = \boldsymbol{\mu}^{*}$$

Setting $\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \mathbf{0}$ \Rightarrow \mathbf{W}^* satisfies $\mathbf{S}(\mathbf{W}^*(\mathbf{W}^*)^\top + \sigma^2 \mathbf{I})^{-1} \mathbf{W}^* = \mathbf{W}^*$

Setting $\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \mathbf{0}$ \Rightarrow \mathbf{W}^* satisfies $\mathbf{S}(\mathbf{W}^*(\mathbf{W}^*)^\top + \sigma^2 \mathbf{I})^{-1} \mathbf{W}^* = \mathbf{W}^*$ Possible solutions for the fixed points:

- 1. $\mathbf{W}^* = \mathbf{0}$ (then $p_{\theta^*}(x|z) = \mathcal{N}(x; \mu^*, \sigma^2 \mathbf{I})$, not interesting)
- 2. Lets write down the SVD of \mathbf{W}^* and assume $\mathbf{W}^* = \mathbf{U} \Sigma \mathbf{V}^{\top}$, $\mathbf{U} \in \mathbb{R}^{D \times D}$, $\mathbf{\Sigma} \in \mathbb{R}^{D \times M}$, $\mathbf{V} \in \mathbb{R}^{M \times M}$

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots \\ 0 & \ddots \\ \vdots & & \sigma_M \\ & 0 \\ & & \vdots \\ & & 0 \end{bmatrix} \Rightarrow \Sigma \Sigma^\top + \sigma^2 \mathbf{I} = \begin{bmatrix} \sigma_1^2 + \sigma^2 & 0 & \dots \\ 0 & \ddots \\ \vdots & & \sigma_M^2 + \sigma^2 \\ & & & \sigma^2 \\ & & & & \ddots \\ & & & & & \sigma^2 \end{bmatrix}$$

Setting $\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \mathbf{0} \implies \mathbf{W}^*$ satisfies $\mathbf{S}(\mathbf{W}^*(\mathbf{W}^*)^\top + \sigma^2 \mathbf{I})^{-1} \mathbf{W}^* = \mathbf{W}^*$ Possible solutions for the fixed points:

- 1. $\mathbf{W}^* = \mathbf{0}$ (then $p_{\theta^*}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}^*, \sigma^2 \mathbf{I})$, not interesting)
- 2. Lets write down the SVD of \mathbf{W}^* and assume $\mathbf{W}^* = \mathbf{U} \Sigma \mathbf{V}^{\top}$, $\mathbf{U} \in \mathbb{R}^{D \times D}$, $\Sigma \in \mathbb{R}^{D \times M}$, $\mathbf{V} \in \mathbb{R}^{M \times M}$

$$\mathbf{S}(\mathbf{U}\Sigma\Sigma^{\top}\mathbf{U}^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{U}\Sigma\mathbf{V}^{\top} = \mathbf{U}\Sigma\mathbf{V}^{\top}$$

$$\Rightarrow \mathbf{S}(\mathbf{U}(\Sigma\Sigma^{\top} + \sigma^{2}\mathbf{I})\mathbf{U}^{\top})^{-1}\mathbf{U}\Sigma\mathbf{V}^{\top} = \mathbf{U}\Sigma\mathbf{V}^{\top}$$

$$\Rightarrow \mathbf{S}\mathbf{U}(\Sigma\Sigma^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{U}^{\top}\mathbf{U}\Sigma\mathbf{V}^{\top} = \mathbf{U}\Sigma\mathbf{V}^{\top}$$

$$\Rightarrow \mathbf{S}\mathbf{U}(\Sigma\Sigma^{\top} + \sigma^{2}\mathbf{I})^{-1}\Sigma\mathbf{V}^{\top} = \mathbf{U}\Sigma\mathbf{V}^{\top}$$

$$\Rightarrow \mathbf{S}\mathbf{U}(\Sigma\Sigma^{\top} + \sigma^{2}\mathbf{I})^{-1}\Sigma = \mathbf{U}\Sigma$$

Setting $\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \mathbf{0}$ \Rightarrow \mathbf{W}^* satisfies $\mathbf{S}(\mathbf{W}^*(\mathbf{W}^*)^\top + \sigma^2 \mathbf{I})^{-1} \mathbf{W}^* = \mathbf{W}^*$ Possible solutions for the fixed points:

- 1. **W*** = **0** (then $p_{\theta^*}(x|z) = \mathcal{N}(x; \mu^*, \sigma^2 \mathbf{I})$, not interesting)
- 2. Lets write down the SVD of \mathbf{W}^* and assume $\mathbf{W}^* = \mathbf{U} \Sigma \mathbf{V}^{\top}$, $\mathbf{U} \in \mathbb{R}^{D \times D}$, $\Sigma \in \mathbb{R}^{D \times M}$, $\mathbf{V} \in \mathbb{R}^{M \times M}$

$$\mathbf{SU}\begin{bmatrix} (\sigma_1^2+\sigma^2)^{-1}\sigma_1 & 0 & \dots \\ 0 & \ddots & \\ \vdots & & (\sigma_M^2+\sigma^2)^{-1}\sigma_M \\ 0 & \vdots & & \vdots \\ 0 & 0 \end{bmatrix} = \mathbf{U}\begin{bmatrix} \sigma_1 & 0 & \dots \\ 0 & \ddots & \\ \vdots & & \sigma_M \\ 0 & \vdots \\ & & 0 \end{bmatrix}$$

Setting $\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \mathbf{0}$ \Rightarrow \mathbf{W}^* satisfies $\mathbf{S}(\mathbf{W}^*(\mathbf{W}^*)^\top + \sigma^2 \mathbf{I})^{-1}\mathbf{W}^* = \mathbf{W}^*$ Possible solutions for the fixed points:

- 1. **W*** = **0** (then $p_{\theta^*}(x|z) = \mathcal{N}(x; \mu^*, \sigma^2 \mathbf{I})$, not interesting)
- 2. Lets write down the SVD of \mathbf{W}^* and assume $\mathbf{W}^* = \mathbf{U} \Sigma \mathbf{V}^{\top}$, $\mathbf{U} \in \mathbb{R}^{D \times D}$, $\Sigma \in \mathbb{R}^{D \times M}$, $\mathbf{V} \in \mathbb{R}^{M \times M}$

$$\mathbf{SU}\begin{bmatrix} 1 & 0 & \dots \\ 0 & \ddots & \\ \vdots & & 1 \\ 0 & & \vdots \\ & & 0 \end{bmatrix} = \mathbf{U}\begin{bmatrix} \sigma_1^2 + \sigma^2 & 0 & \dots \\ 0 & \ddots & \\ \vdots & & \sigma_M^2 + \sigma^2 \\ 0 & & \vdots \\ 0 & & 0 \end{bmatrix}$$

Write **U** := $(u_1, ..., u_D)$:

$$(\mathbf{S}u_1, ..., \mathbf{S}u_M) = ((\sigma_1^2 + \sigma^2)u_1, ..., (\sigma_M^2 + \sigma^2)u_M)$$

 \Rightarrow the first M columns of **U** contain eigenvectors of **S**!

Setting $\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \mathbf{0}$ \Rightarrow \mathbf{W}^* satisfies $\mathbf{S}(\mathbf{W}^*(\mathbf{W}^*)^\top + \sigma^2 \mathbf{I})^{-1}\mathbf{W}^* = \mathbf{W}^*$ Possible solutions for the fixed points:

- 1. $\mathbf{W}^* = \mathbf{0}$ (then $p_{\theta^*}(x|z) = \mathcal{N}(x; \mu^*, \sigma^2 \mathbf{I})$, not interesting)
- 2. Lets write down the SVD of \mathbf{W}^* and assume $\mathbf{W}^* = \mathbf{U} \Sigma \mathbf{V}^{\top}$, $\mathbf{U} \in \mathbb{R}^{D \times D}$, $\mathbf{\Sigma} \in \mathbb{R}^{D \times M}$, $\mathbf{V} \in \mathbb{R}^{M \times M}$

$$\Rightarrow \quad \mathbf{S}\mathbf{U}(\mathbf{\Sigma}\mathbf{\Sigma}^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{\Sigma} = \mathbf{U}\mathbf{\Sigma}$$

Then given $\mathbf{S} = \mathbf{Q}\Lambda\mathbf{Q}^{\mathsf{T}}$, $\mathbf{Q} = (q_1, ..., q_D)$, $\lambda_1 \geqslant ... \geqslant \lambda_D \geqslant 0$,

$$\mathbf{U} := (\mathbf{u}_1, ..., \mathbf{u}_D), \mathbf{u}_m = \mathbf{q}_{i_m}, 1 \leq i_m \leq D, m = 1, ..., M$$

(**U** can contain any other columns for u_{M+1} to u_D)

Setting $\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \mathbf{0}$ \Rightarrow \mathbf{W}^* satisfies $\mathbf{S}(\mathbf{W}^*(\mathbf{W}^*)^\top + \sigma^2 \mathbf{I})^{-1} \mathbf{W}^* = \mathbf{W}^*$ Possible solutions for the fixed points:

- 1. $\mathbf{W}^* = \mathbf{0}$ (then $p_{\theta^*}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}^*, \sigma^2 \mathbf{I})$, not interesting)
- 2. Lets write down the SVD of \mathbf{W}^* and assume $\mathbf{W}^* = \mathbf{U} \Sigma \mathbf{V}^{\top}$, $\mathbf{U} \in \mathbb{R}^{D \times D}$, $\Sigma \in \mathbb{R}^{D \times M}$, $\mathbf{V} \in \mathbb{R}^{M \times M}$ Then given $\mathbf{S} = \mathbf{Q} \Lambda \mathbf{Q}^{\top}$, $\lambda_1 \geqslant ... \geqslant \lambda_D \geqslant 0$
 - Exercise: For m = 1, ..., M, $\Sigma_{mm} = \sqrt{\lambda_{i_m} \sigma^2}$ if $u_m = q_{i_m}$
 - Exercise: Global maximum: $u_m = q_m$ for mi = 1, ..., M
 - \Rightarrow picking the *M* principal components (like PCA)

Dataset

Generate data with Prob. PCA

Extensions of Probabilistic PCA

Probabilistic PCA: make a latent variable model as follows:

$$p(z) = \mathcal{N}(z; \mathbf{0}, \mathbf{I})$$
$$p_{\theta}(x|z) = \mathcal{N}(x; \mathbf{W}z + \mu, \sigma^2 \mathbf{I})$$

From Probabilistic PCA to other interesting generative models:

- Factor analysis: change conditional output covariance from $\sigma^2 \mathbf{I}$ to Ψ (a learnable diagonal matrix)
- Generator for a VAE: change conditional output mean from $Wz + \mu$ to $\mu_{\theta}(z)$ (See Deep Learning course next term)
- Training: (variational) expectation maximisation (See Probabilistic Inference course next term)

Summary

Probabilistic PCA

- One of the simplest generative model (linear generator)
- Optimal solution closely related to PCA

One more exercise for you if you have time:

Derive the posterior $p_{\theta^*}(z|x)$ using the optimal $\theta^* = \{\mu^*, \mathbf{W}^*\}$