STOR 455 STATISTICAL METHODS I

Jan Hannig

Multivariate Regression

- $Y=X \beta + \epsilon$
 - \mathbf{X} is a regression matrix, β is a vector of parameters and ϵ are independent $N(0,\sigma)$
- Estimated parameters b=(X'X)⁻¹X'Y
- Predicted responses Ŷ=H Y, H=X (X'X)-1X'
- Residuals e=(I-H)Y
- Estimated regression variance s²=e'e/(n-p)

Board Example

• Simple linear regression

Residual Analysis (Section 4.5)

- Recall H=X(X'X)⁻¹X' matrix H=(h_{ij})
- Standardized residuals

$$r_i = \frac{e_i}{s\sqrt{1-h_{ii}}}$$

- Similarly as with SLR we should look at
 - Plot of r vs predictors X_i (p –plots)
 - Plot of r vs predicted values Ŷ
 - Gaussian QQ- Plot of r

```
*Data shown on page 237 of the OPTIONAL textbook - file CH06FI05.txt;
data studios;
  input x1 x2 y;
  x1x2=x1*x2;
  label x1='targtpop'
         x2='dispoinc';
cards;
  68.5 16.7 174.4
  45.2 16.8 164.4
  91.3 18.2 244.2
  52.3 16.0 166.5
run;
```

```
* plot residuals, QQ plot;
                               proc gplot data = output;
proc req data = studios
                                  plot residual*fitted;
  noprint;
                                  plot residual*x1;
  model y = x1 x2;
                                  plot residual*x2;
  plot student. * (x1 x2
                                 plot residual*x1x2;
  p.);
  plot student. * nqq.;
                               run;
run;
                               proc univariate data =
                                  output noprint;
*Alternative way of
                                  qqplot residual / normal;
  plotting;
                                run;
proc reg data = studios;
                                *End of an alternative way
  model y = x1 x2;
                                  of plotting;
  output out=output p =
  fitted student =
  residual;
run;
```


10/14/10

Inference for b (Section 4.6+4.7)

- b ~ N(β , $\sigma^2(X'X)^{-1}$)
- Estimate $Var(b_i)$ by $s^2(b_i) = MSE^*(X'X)^{-1}_{i,i}$
- CI: b_i ± t*s(b_i)
- Significance test for H_{0i} : β_i , = 0 uses the test statistic $t = b_i/s(b_i)$, df = dfE = n-p, and the P-value computed from the t(n-p) distribution
- Studios example (proc reg, option /clb)

```
proc reg data=studios;
 model y=x1 \times 2/clb \ clm \ cli \ alpha=0.01;
/*clb CI for b;
clm CI for mean;
cli CI for prediction; */
    model y=x1 x2/xpx i covb corrb;
/* xpx gives the X'X matrix
  i gives the inverse of the X'X matrix
  covb gives the variance covariance matrix
  of b
  corrb gives the correlation matrix of b*/
run;
```

The REG Procedure

Model: MODEL1
Dependent Variable: y

Output Statistics

	Dependent	Predicted	Std Error					
Obs	Variable	Value	Mean Predict	99% CL	Mean	99% CL	Predict	Residual
1	174.4000	187.1841	3.8409	176.1283	198.2400	153.6265	220.7418	-12.7841
2	164.4000	154.2294	3.5558	143.9944	164.4645	120.9332	187.5257	10.1706
3	244.2000	234.3963	4.5882	221.1895	247.6032	200.0699	268.7228	9.8037
4	154.6000	153.3285	3.2331	144.0223	162.6347	120.3060	186.3511	1.2715
5	181.6000	161.3849	4.4300	148.6334	174.1365	127.2311	195.5388	20.2151
20	224.1000	230.3161	5.8120	213.5865	247.0457	194.4864	266.1457	-6.2161
21	166.5000	157.0644	4.0792	145.3228	168.8060	123.2746	190.8542	9.4356
	Sum of Residuals			0				

Sum of Squared Residuals 2180.92741 Predicted Residual SS (PRESS) 3002.92331

Model Crossproducts X'X X'Y Y'Y

Variable	Label	Intercept	x1	x2	у	
Intercept x1 x2 y	Intercept targtpop dispoinc		1302.4 87707.94 22609.19 643.35 er Estimates	360 22609.19 6190.26 66072.75 s, and SSE	3820 24964 66072.7 721072.4	75
Variable	Label	Intercept	x1	x2	у	
Intercept x1 x2 y	Intercept targtpop dispoinc -68	29.728923483 0.0721834719 -1.992553186 .85707315 1.	0.07218 0.000370 -0.005549 4545595828	1761 -0.005 917 0.13631	06368	-68.85707315 1.4545595828 9.3655003765 0.9274114

Analysis of Variance

	Sur	m of I	Mean		
Source	DF	Squares	Square	F Valu	ue Pr > F
Model	2	24015	12008	99.10	<.0001
Error	18 21	80.92741	121.16263	3	
Corrected Total	20	26196			

Root MSE 11.00739 R-Square 0.9167 Dependent Mean 181.90476 Adj R-Sq 0.9075 Coeff Var 6.05118

Parameter Estimates

		Para	meter Sta	ndard		
Variable	Label	DF	Estimate	Error t	Value	Pr > t
Intercept	Intercept	1	-68.85707	60.01695	-1.1	5 0.2663
x1 .	targtpop	1	1.45456	0.21178	6.87	<.0001
x2	dispoinc	1	9.36550	4.06396	2.30	0.0333

Covariance of Estimates

Variable	Label	Intercept	x1 >	(2
Intercept	Intercept	3602.0346743	8.7459395806	-241.4229923
x1	targtpop	8.7459395806	0.0448515096	-0.672442604
x2	dispoinc	-241.4229923	-0.672442604	16.515755794

The SAS System 22:26 Monday, October 24, 2005 7

The REG Procedure Model: MODEL2 Dependent Variable: y

Correlation of Estimates

Variable	Label	Intercept	x1	x2
Intercept	Intercept	1.0000	0.6881	-0.9898
x1	targtpop	0.6881	1.0000	-0.7813
x2	dispoinc	-0.9898	-0.7813	1.0000

ANOVA (Section 4.8)

- Sources of variation are
 - Model or Regression (SSM or SSR)
 - Error or Residual (SSE)
 - Total (SSTO)
- SS and df add
 - SSM + SSE =SSTO
 - -dfM + dfE = dfT

Sum of Squares

$$egin{aligned} ext{SSM} &= \Sigma_{i=1}^n (\hat{Y}_i - ar{Y})^2 \ ext{SSE} &= \Sigma_{i=1}^n (Y_i - \hat{Y}_i)^2 \ ext{SST} &= \Sigma_{i=1}^n (Y_i - ar{Y})^2 \end{aligned}$$

Degree of Freedom and Mean Squares

$$df_{M}=p-1$$
 $df_{E}=n-p$
 $df_{T}=n-1$
 $MSM=SSM/df_{M}$
 $MSE=SSE/df_{E}$
 $MST=SST/df_{T}$

ANOVA Table

```
Source SS df MS F

Model SSM dfM MSM MSM/MSE

Error SSE dfE MSE

Total SST dfT (MST)
```

The REG Procedure

Model: MODEL1

Dependent Variable: y

Number of Observations Read 21 Number of Observations Used 21

Analysis of Variance

	,	Sum of	Mean		
Source	DF	Squares	Square	F Val	ue Pr > F
Model	2	24015	12008	99.10	<.0001
Error	18	2180.92741	121.16263	3	
Corrected Total	2	0 26196	6		

Root MSE 11.00739 R-Square 0.9167 Dependent Mean 181.90476 Adj R-Sq 0.9075 Coeff Var 6.05118

ANOVA F test

- H_0 : $\beta_1 = \beta_2 = ... \beta_{p-1} = 0$
- H_a : β_k neq 0, for at least one k=1, ..., p-1
- Under H₀, F ~ F(p-1,n-p)
- Reject H₀ if F is large, use P value
- Studios example: see SAS output

Interpret F-test

- The p-value for the F significance test tells us one of the following:
 - p-value large: there is no evidence to conclude that any of our explanatory variables can help us to model the response variable using this kind of model
 - P-value small: one or more of the explanatory variables in our model is potentially useful for predicting the response variable in a linear model