Calcul distribué avec Spark TP2 : Frequent Item Set

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>

2021-2022

Exercice 1 Introduction

Étant donné un ensemble de transactions (par exemple la liste des achats d'un client), le problème Frequent Item Set cherche les sous-ensembles qui apparaissent fréquemment (selon un seuil fixé). L'objectif est de pouvoir recommander à de futurs clients des articles fréquemment achetés avec ceux déjà choisis.

Par exemple, pour un seuil fixé à 3 et l'ensemble de transactions suivant :

- $\begin{array}{l} \ \{1,\,2,\,3,\,4\} \\ \ \{1,\,2,\,4\} \end{array}$
- $--\{1,2\}$
- $\{2, 3, 4\}$
- $--\{2,3\}$
- $\{3, 4\}$
- $-\{2,4\}$

En comptant les sous-ensembles de taille 1, on obtient :

Sous-ensemble	Taille	
{1}	3	≥ 3
{2}	6	≥ 3
$\{3\}$	4	≥ 3
{4}	5	≥ 3

Tous ces sous-ensembles sont donc fréquents.

Pour les ensembles de taille 2, on obtient :

Sous-ensemble	Taille	
${\{1,2\}}$	3	≥ 3
$\{1,3\}$	1	
$\{1,4\}$	2	
$\{2,3\}$	3	≥ 3
$\{2,4\}$	4	≥ 3
${3,4}$	3	≥ 3

Les sous-ensembles $\{1,2\}$, $\{2,3\}$, $\{2,4\}$, $\{3,4\}$ sont donc fréquents.

Question 1

Combien d'opération de comptage doit-on effectuer avec cette méthode naïve?

Exercice 2 Algorithme A Priori

L'algorithme A Priori repose sur la remarque suivante : tous les sous-ensembles d'un sous-ensemble fréquent sont fréquents. On a donc une condition nécessaire pour qu'un sous-ensemble soit fréquent, ce qui permet d'élaguer l'ensemble des sous-ensembles à compter. L'algorithme est le suivant :

- **Initialisation**: les candidats sont tous les sous-ensembles de taille k = 1;
- **Étape 1** : élaguer les candidats qui ne sont pas fréquents ;
- Étape 2 : construire les sous-ensembles de taille k+1 à partir des candidats restants;
- **Répéter** les deux étapes tant que tous les sous-ensembles n'ont pas été étudiés.

Question 1

Expliquer pour cette méthode n'est pas sujet au même problème que la méthode naïve? Sous quelle hypothèse raisonnable est-ce le cas?

Question 2

Expliquer pourquoi cette méthode n'est pas adaptée au cadre MapReduce.

Exercice 3 Spark

On travaillera sur les données du fichier http://www-connex.lip6.fr/~schwander/enseignement/m2stat_g d/T10I4D100K.dat.

Question 1

Écrire une transformation pour charger et interpréter les données d'entrée.

Question 2

L'idée clé de la version Map-Reduce est de construire la liste des sous-ensembles indépendemment pour chaque transaction.

Expliquer pour cette liste de sous-ensembles d'une transaction est faisable en pratique.

Question 3

Écrire une transformation pour réaliser cette liste de sous-ensembles.

Question 4

Écrire une transformation qui réalise la réduction finale.