이공계전문가 기술개발서포터즈사업 해결과제 최종결과보고서

과 제 명		FEM(유한요소해석)을 통한 UV Imprinting 냉각System 개발								
주 관 기 관 명	충분	남대학교	산학협	력단	총괄책임자 명			전 항 배		
과제책임자 명	주 진 원				과제책임자 연락처			043-261-2456		
참여기업명	㈜쎄넘				대표자 명		나기수			
참여기업 주소	충북 청주시 청원구 오창읍 중심상업2로 48 1동 202호			200	참여기업 연락처			043-264-1359		
사 업 기 간			201	6. 09. 1	5. ~ 2	017. 01.	14. (47	개월)		
사업비 (천 원)	정 부 출연금	18311)		합계	24	,420				
목표 달성도(%)	10	20	30	40	50	60	70	80	90	100
보고서 공개유무	-	공개(), 비공	공개(_) 년)	*비공가	는 최장	5년임.		

「이공계전문가 기술개발서포터즈사업 관리지침」에 따라 최종보고서를 제출합니다.

<별첨> 1. 해결과제 사업비 사용실적 보고서 1부.

2. 현문출자확인서 1부.

2017년 03월 14일

주관기관 : 충북대학교산학협력단

총괄책임자 : 전 항 배

과제책임자 : 주 진 원

대 표 자:나기수

(인)

참여기업:㈜쎄넘

중소기업청장 귀하

요 약 서 (초 록)								
과 제 명 FEM(유한요소해석)을 통한 UV Imprinting 냉각System 개발								
키워드	UV imprint	ing, 열전달	해석, TOP용 VCM 필름, 냉각롤	.,				
	;	개발목표 및	! 내용					
항 목	계	획	실 적	달성도(%)				
기술애로 해결목표	• 유한요소 해석을 통 UV Imprinting 냉 ^고 개발	_	 냉각롤 system의 열전달 유한요소 해석 수행 냉각 시스템이 부착된 UV imprinting 시스템의 개발, 시운전 및 평가 					
	1. 생산속도	15m 이상	15.2m/분	100				
정량적	2. 금형온도	50℃ 이하	50℃ 이하	100				
목표항목 및	3. 표면경도	H이상	H이상	100				
달성도	4.							
	5.							
기타성과	 제품개발: 제품 3종 1) 가전 TOP용 H, 2) 현관문용 TOP용 3) 중국용 TOP용 기 타: 고용창출 	/L 용 패턴제품 수출 제품						
 단위 생산성 증가 : 기존 대비 1.5배 생산설비 투자 절감 : 약 5억원 17년 예상매출 : 3억원 (내수 1억원, 수출 2억원) 고용창출(17년) : 3명 								
적용분야	• 가전용 VCM 필름							
변경사항								

목 차

제 1 장 기술의 개요

※ 기술애로해결계획서를 참고하여, 기술애로 현황 및 해결의 필요성을 간략히 기술

제 2 장 해결목표 및 추진방법

제 1 절 해결목표

- ※ 해결목표를 기술애로해결계획서 대비 구체적(정량적)으로 기술
- ※ 기술애로해결계획서 대비 변경사항이 있을시, 변경 내용 및 사유를 필히 기재
- 제 2 절 기술애로해결내용 및 추진방법
- ※ 구체적인 해결방법,수행내용 및 계획대비 실적 등 기술
- ※ 현장적용 사례, 제품, 공인시험인증서, 실험데이타, 도면, 실물사진 등 포함
- 제 3 절 기술전문가그룹 수행내역
- ※ 기술애로 해결을 위해 기술전문가 그룹이 수행한 내역을 각각 구분하여 기술 (과제책임자, 외부 이공계전문가, 참여기업 연구원)
- 제 3 장 성과요약 및 기대효과
 - 제 1 절 기술애로 해결 성과 및 기대효과
 - ※ 핵심성과 및 기대효과(기술적, 경제적·산업적)를 요약하고, 결과물에 대한 활용분 야 및 활용방안(제품화, 양산·마케팅 전략 및 계획 등)을 구체적으로 기술
 - 제 2 절 참여기업 만족도
 - ※ 기술애로 해결과제 수행 후 참여기업의 만족도를 기재
 - ※ 만족도는 기술, 기술전문가 연계 등 구체적으로 기술
 - ※ 사업화 추진현황에 대한 구체적 기술(고용창출 및 수출효과 등)

[첨부자료 1] 생산속도 측정 방법 및 결과

[첨부서류 2] 금형온도 측정 방법 및 결과

[첨부서류 3] 표면경도 결과 (공인인증서)

제 1 장 기술의 개요

1. UV Imprinting 공법

(1) VCM 필름

- 냉장고를 비롯한 가전제품이 최근 더 고급스럽고 세련된 느낌을 주는 메탈 소재를 사용하면서 VCM (vinyl coated metal) 강판의 개발이 증가하고 있다. (그림 1)
- VCM은 기존의 stainless 보다 훨씬 가볍고 가격 경쟁력 (SUS: 3,600~4,500원/kg, VCM: 900~1,000원/kg)이 우수할 뿐만 아니라, 그림 2와 같이 다양하고 섬세한 패턴을 표현할 수 있다.
- 참여기업에서는 다양한 용도의 금속 패턴용 시트 제품을 확보하여 국내 뿐 아니라 동남 아 시장을 대상으로 한 flower pattern design 개발을 진행 중이며 이를 위해서 대량생산을 위한 장치가 필요한 상황이다.

그림 2 VCM 금형 구현 패턴 예

이러한 VCM은 그림 3과 같은 구조를 가지고 있으며,

- 빛의 반사와 굴절의 원리로 표면 입체감 표현
- 패턴이 각인된 금형에 UV수지를 이용 필름에 패턴 성형
- AL증착을 통한 빛의 난반사 및 금속감 부여
- 의 특징을 가지고 있고, 다음과 같은 조건이 부합되어야 한다.
- UV Imprinting을 통한 다양한 패턴 구현
- UV Imprinting 표면 물성 중요 표면 경도 및 내화학성 중요
- 가격 경쟁력 및 생산성 중요
- 가시적 표면 품질 중요

그림 3 CVM 필름의 구조 및 특징

(2) UV Imprinting 공법

UV imprinting 공법은 UV (ultra violet) light을 조사하여 필름을 경화시키는 방법으로 기존의 thermal imprinting 방식에 비해 제품은 우수하지만 그림 4와 같이 더 복잡한 공정과 높은 기술이 요구된다.

그림 4 기존의 thermal imprinting과 UV imprinting의 공정 비교

UV imprinting 방법은 다음과 같은 공정을 거친다. (그림 5)

- 금형에 미리 디자인된 패턴을 각인하고 roll 형태의 금형을 제작한다.
- 투명한 필름(PET나 PVC 등)에 UV 수지를 도포한 후에 금형과 필름 사이에 UV 수지를 삽입하고 UV light를 조사하여 경화시킨 후,
- 금형에서 탈형하여 필름에 형성된 VU 패턴이 넘어가도록 성형하는 방식이다.

그림 5 UV printing 공정

2. 기술애로의 현황

- UV imprinting 방법에서는 그림 6과 같이 UV 램프를 이용하여 열을 가하고 필름을 경화시키는 과정을 거침.
- UV Imprinting 공정 중 UV램프에서 발생하는 복사 및 대류열에 의한 금형온도 상승.
- 금형 온도 상승은 수지 온도상승을 발생시키고 이로 인하여 필름 부착력 저하에 의한

제품 불량의 원인이 됨.

- 개발 전 시점에서는 불량이 발생하지 않는 금형온도를 체크하여 한계 이하의 생산 속도 로 적용함. 생산 속도 (10 m/분)에 한계가 있어 생산 시스템 1대당 일일 생산량이 6000 m/10 hr로 대량 생산에 문제가 있는 상황임.
- 금형온도 상승에 의한 제한된 생산속도로 인해 생산단가가 높아지고, 높은 생산 가격으로 UV Imprinting제품의 확대 적용에 한계봉착.

그림 6 UV 램프에 의한 UV Imprinting 및 금형 온도 상승

3. 기술애로 해결의 필요성

■ 열전달 기술을 이용한 금형 냉각시스템 개발을 통한 생산성 향상 필요

구분	개발 전 생산 조건	개발 목표 생산 조건		
장단점	• 자연냉각 방식으로 금형온도가 높음	• 고정형 수냉 및 Air방식으로 안정적		
700名	• 금형생산 수량이 짧고 비용이 비쌈	• 금형당 생산수량증가 및 비용 절감		
선속	8 m/분	15 m/분 이상		
금형수명	5만 m/roll	10만 m/roll		
금형금액	5~7백만원/roll	3~5백만원/roll		

- 냉각 롤을 추가로 설치하여 금형 롤과 접촉하여 금형의 온도를 낮추는 방안을 제시.
- 냉각 롤의 사이즈와 재질 및 설치 위치 등에 대한 냉각효과의 영향을 파악하기 위해 제 작 이전에 유한요소법을 이용한 시뮬레이션을 수행하기로 계획하였음.
- 금형 냉각 System 개발에 이공계전문가 지원 필요성
- 냉각롤 system의 열전달 해석을 통한 최적의 system 구현
- FEM해석을 통한 냉각온도 해석 및 system 설치조건 필요
- FEM해석과 온도 측정에 의한 냉각 시스템의 효과 분석

제 2 장 해결목표 및 추진방법

제 1 절 해결 목표

■ 목표달성도 평가지표

주요지표 ¹⁾	단 위	현재기술수준	최종 개발목표 ²⁾	가중치 ³⁾ (%)	측정방법
1. 생산속도	m/분	8 m/분 이하	15 m/분 이하	30	자체성능평가
2. 금형온도	${\mathbb C}$	70℃ 이상	50℃ 이하	50	자체성능평가
3. 표면경도	연필경도	B이하	H이상	20	공인시험인증 (화학시험연구원)

□ 측정방법 선택사유⁴⁾

- 1), 2) 자체성능평가: 생산 설비 측정을 통한 상대 비교로 공인시험 불가

제 2 절 기술 애로 해결 내용 및 추진방법

1. 금형온도의 측정 및 문제점 토의

- (1) 그림 7과 같이 UV light를 조사하고 금형의 온도를 측정하였다.
- (2) 표 1과 같이 Film을 투입하기 전 금형의 온도는 중앙부근 110℃까지, 양 옆은 85℃까지 올라가서 심각한 조건인 것으로 측정되었다.
- (3) 표 2와 같이 Film 투입 후 금형 작업 중에는 중앙 80℃ 부근, 좌우 75℃ 부근까지 상승하여 투여된 Film으로 온도가 조금 낮아졌으나 대량생산에 의한 연속 작업에 어려움이 많을 것으로 판단되었다.

그림 7 UV light의 조사 및 온도 측정 위치

표 1 Film 투입 전의 온도 변화 표 2 Film 투입 중의 온도 변화

1171	온도(♡)						
시간	1	2	3	4	5		
11:15	26.4		26.2		26		
11:25	38.4		52.4		38.2		
11:35	49.0	66.7	71.4	67.1	48.5		
11:45	61.4	82.8	85.6	80.6	59.5		
11:55	65.5	86	89.5	83	64.7		
12:05	70.8	93.4	96.9	89.7	68.0		
12:15	78.4	97.1	104	97.2	77.1		
12:25	82.1	103.8	108.7	99.7	79.6		
12:35	85.0	106.0	110.5	102.0	82.0		

1176	온도(℃)					
시간	1	3	5			
2:55	38.3	40.1	37.2			
3:20	65.1	68.8	64.9			
3:40	72.1	74.4	72.3			
3:50	74.4	78.6	73.8			
4:00	74.1	79.2	74.5			
4:10	75.3	80.6	75.9			

2. 열화상 카메라에 의한 금형온도의 측정

- (1) 열화상 카메라를 대여하여 UV light를 조사하고 50분 후 작업 중 금형의 온도를 측정하 였다.
- (2) 그림 8과 같이 지난 번 온도 측정 결과와 비슷하게 중앙 83.8℃, 좌우는 64.7℃, 66.5℃ 로 측정되어서 높은 온도로 인하여 대량생산에 의한 연속 작업에 어려움이 많을 것으로 판단되었다.

그림 8 열화상 카메라에 의한 금형 온도의 측정

3. 온도 냉각 시스템 제안 및 개발을 통한 생산성 향상 계획

- (1) 금형의 온도를 낮추기 위하여 다음 그림 9와 같은 냉각 시스템을 개발하여 설치하고 다 시 온도를 측정하기로 함.
- (2) 금형표면 온도 저하로 냉각롤과 Air냉각의 이중 냉각을 통한 금형 표면 온도 일정 유 지. 일정한 수지 온도로 필름 부착력 저하로 인한 제품 불량감소와 생산 속도 증가예상.

- (3) 금형온도 제어를 통한 생산속도로 향상으로 인해 생산성 향상으로 제품 원가 경쟁력 확보로 매출 확대 예상
- (4) 이를 선행하여 유한요소 열/온도 해석을 수행하여 가능성과 신뢰성을 확인하기로 함.

그림 9 냉각롤 설치로 인한 UV imprinting 기술의 생산성 향상

4. 열전달 유한요소 해석 예를 통한 강의 및 교육

열전도(열전도, thermal conduction)의 문제를 실제적으로 풀어가면서 ANSYS 사용시의 각 입력방법 및 해석방법을 지도하였음. Steady state conduction 문제와 transient thermal conduction 문제의 온도해석을 수행하였음.

(1) Steady state conduction example (ANSYS 입력자료 별첨 1)

(2) Transient conduction example (ANSYS 입력자료 별첨 2)

Element	PLANE55
Thermal conductivity (k)	5 W/m.C
Density	920 kg/m³
Specific heat capacity (c)	2.040 kJ/kg.K

5. 열전달 유한요소 해석 수행

가. 유한요소 모델

(a) 냉각롤 시스템이 작동하지 않는 경우

(b) 냉각롤 시스템이 작동하는 경우

Element type	SOLID70 (3D Thermal solid)		
Analysis	Transient thermal		
time (sec)	60 / 3600		
Material	Steel	Rubber	
Thermal conductivity (K)	72.7 W/mK	0.13 W/mK	
Density	7900 kg/ m³	920 kg/ m³	
Specific heat capacity (c)	0.45 KJ/kgK 1.26 KJ/k		

나. 유한요소 열전달 해석 결과 (Steady State Analysis)

(a) 냉각롤 시스템이 없는 경우

(b) 냉각롤 시스템이 있는 경우

- (1) 냉각롤 시스템이 없는 경우에 정상 상태의 해석을 했을 때 금형의 온도는 모든 지점에 서 100도로 온도가 같음을 확인 할 수 있었다.
- (2) 냉각롤 시스템을 작동하였을 경우에 정상 상태의 해석을 했을 때 금형의 온도는 고무롤 과 맞닿는 지점에서 최소 온도 31.44도로 냉각됨을 확인 할 수 있었다.

다. 유한요소 열전달 해석 결과 (Steady State Analysis)

- (1) 각 시간마다 각 지점에서의 온도를 비교했을 때 60초의 경우 냉각롤 설치 효과를 볼 수 없었으나 3600초 동안의 경과를 지켜보았을 때 냉각롤을 설치하였을 경우 각 지점에서 의 금형의 온도의 차이가 늘어남을 확인 할 수 있었다.
- (2) UV램프가 입사되는 면적을 고려하여 해석한 결과 금형의 가장자리보다 중앙 부근의 온 도가 높음을 확인 할 수 있었다.

		온도(℃)					
		(a)		(b)		(c)	
측정 위치	시간 (sec)	냉각롤	없음	냉각롤	없음	냉각롤	없음
1	60	80.061	80.065	80.102	80.11	80.061	80.065
1	3600	77.677	83.151	82.362	87.017	77.677	83.151
2	60	79.996	79.832	79.996	79.994	79.996	79.832
2	3600	61.432	72.233	64.474	74.997	61.432	72.233
3	60	76.91	76.74	76.91	76.74	76.91	76.74
5	3600	43.292	61.828	45.213	64.02	43.292	61.828

(3) UV램프가 입사되는 지점(0°)에서 80℃였던 금형롤의 온도가 냉각 system의 영향으로 1 시간 동안 반대편 지점에서는 약 64℃까지 떨어졌다. 정상 상태 해석과 같이 시간을 고 려한 Transient 해석의 경우에서도 냉각롤의 효과를 확인 할 수 있었다.

(b) 3600 sec

■ 냉각롤 시스템이 없는 경우 Contour plot

■ 냉각롤 시스템이 있는 경우 Contour plot

6. 냉각롤 설치 및 운전

그림과 같이 금형에 냉각롤 및 냉각고무롤을 설치하여 UV light에 의한 열 발생을 완화 시키도록 하였다.

7. 운전 전.후의 온도 측정 및 토의

- (1) UV 라이트를 점등 후, 필름 투입 전.후에 여러 상황에서 냉각롤, 냉각고무롤, 금형의 온 도를 측정하였다. 온도측정은 접촉식 온도측정기를 이용하였다.
- (2) 냉각롤을 설치하고 uv설비 가동, 1,2,3,는 금형 좌측부터 우측까지 온도측정 순서
- (3) 필름및 UV수지 투입하여 필픔양산30분간격 냉각롤, 냉각고무롤 온도를 측정하였고, 금 형온도는 필름간섭으로 인하여 양산시작전 및 시작후의 온도를 측정하였다.
- (4) 여러 상태 조건에서 온도 측정을 한 결과,

냉각롤 system 설치 전 : 금형롤은 80℃~100℃

냉각롤 system 설치 후 : 금형롤은 50~68℃

(5) 냉각 system을 설치 효과로 금형롤의 온도를 약 30℃ 정도 낮출 수 있어, UV printing 기법의 대량생산이 가능하게 되었다.

1]7]		냉각롤			냉각고무 :	 롤		금형롤	
시간	1	2	3	1	2	3	1	2	3
9:28 PM	24.9	25	24.8				35.9	39	36
11:42 PM	44	45	43	49	50.1	48			
12:32 AM	44	45.2	42.7	52.3	54	52			
12:54 AM	47.2	49	48	53	54.5	52.6			
1:30 AM	47. 3	48	47.4	48.7	51.7	49.4	53.2	56	54
				T			ı		
시간		냉각롤			냉각고무	롤		금형롤	
16	1	2	3	1	2	3	1	2	3
5:24 PM	27.4	27.6	27.5	27.2	27.3	27.3	27.3	27.3	27.2
7:12 PM	33.3	33.3	33.3	36	39.9	37.3	43.9	50.3	44.7
 시간		냉각롤		냉각고무롤				금형롤	
772	1	2	3	1	2	3	1	2	3
10:22 PM				58.2	59.3	56.9	54.7		53.5
11:33 PM				64.1	64.5	65.1	68		68.5
시간 .		냉각롤			냉각고무	롤		금형롤	
1 110	1	2	3	1	2	3	1	2	3
2:19 AM				66.9	67.4	68	62.5		63.4
3:43 AM				49.2	50	51	62.6	68.6	65
시간 .		냉각롤			냉각고무	롤		금형롤	
, ட	1	2	3	1	2	3	1	2	3
11:17 AM				27.5	27.8	27.7	25.5		25.6
4:40 PM				54.7	57.8	54.5	58	59.4	57.8

제 3 절 기술 전문가그룹 수행 내역

1. 과제책임자 (이공계전문가)

- UV Imprinting에 대한 기술지도
- UV Imprinting 방식에 대한 애로사항 파악 및 냉각 롤 설치 기술 지도
- 유한요소법에 대한 강의 및 교육
- 온도 냉각 시스템 제안 및 개발을 통한 생산성 향상 계획
- 유한요소법을 이용한 열전달 해석방법 강의 및 교육
- 열전달 유한요소 해석 예를 통한 강의 및 교육
- 냉각롤 system의 열전달 유한요소 해석 수행
- 냉각롤 시스템의 제작 조건 제시

2. 참여기업 연구원

- 열화상 카메라에 의한 금형온도의 측정
- 냉각롤 설계 및 제작
- 냉각롤 설치 및 운전
- 운전 전.후의 온도 측정 및 토의
- 가로 H/L금형을 이용한 TOP용 수지 생산속도 측정 및 평가
- 가로 H/L금형을 이용한 TOP용 수지 표면 경도 측정 및 평가 (한국융합시험연구원 공 인인증)

3. 공동 (협동 수행)

- 금형온도의 측정 및 문제점 토의
- 온도 냉각 시스템 제안 및 계획
- 금형, 수지, 생산설비 및 공정 개발에 대해 토의 및 지도
- 냉각 시스템이 부착된 UV inprinting 시스템의 개발, 시운전 및 평가

제 3 장 성과요약 및 기대효과

제 1절 기술애로 해결 성과 및 기대효과

1. 기술애로 해결 성과 결과(상세 내역 첨부자료 참조)

주요지표	단 위	이전수준	최종 결과	가중치(%)	달성도	비고
1. 생산속도	m/분	8m/분	15.3m	30	100%	첨부자료 1
2. 금형온도	\mathbb{C}	70℃ 이상	50℃ 이하	50	100%	첨부자료 2
3. 표면경도	연필경도	В	H이상	20	100%	첨부자료 3

2. 기술애로 해결 기대효과

가. 생산속도 향상을 통한 단위 생산성 증가

구분	기존	개선	비고
일	6,000 m/일 이하	9,000 ~ 12,000 m/일	일 10 시간 기준
월	12만 lm	- 18 ~ 24만 m	- 월 20 일 기준

나. 생산설비 투자 절감 : 설비 투자비 5억원 추가 절감

3. 사업화 및 상품화 추진방안

- 가. 적용대상 제품: TOP용 제품
 - (1) 가전용 H/L 및 패턴 제품
 - (2) 현관문용 제품
 - (3) 중국용 수출 제품

나. 사업화 추진계획

17년: 사업기반 구축

- 매출액: 10억 (영업이익: 1.5억)
- ■고용인원: 8명
- 경영기반 구축
- 매출확대를 위한 제품 개발
- 제조 기반 안정화
- 인력 채용을 통한 기반 구축
- → 품질 및 디자인 역량강화
- → 연구실
- 신규시장 제품 개발
- → 현관문, 방화문용 제품 개발
- → 가구용 제품 개발
- Global시장 제품 개발
- → 중국 거점시장 확보
- → 수요처를 통한 신시장개척 (아주스틸, 나노씨에프)

18년: 사업역량 강화

- 매출액: 20억 (영업이익: 5억)
- ■고용인원: 10명
- 경영 System 확립
- Global 제품 개발 및 시장진입
- 제조 기반 안정화
- 품질경영기반 구축
- → ISO, QA품질 관리체계구축
- 자체 디자인 R&D 센터,
- → 패턴디자인, 제품 디자인 개발
- Global시장 제품 개발
- → 중국/동남아향 제품 개발
- → 유럽 시장 확대
- 제조기반 확대
- → Outsourcing 능력 강화

19년: 사업확대 및 안정화

- 매출액: 50억 (영업이익: 15억)
- ■고용인원: 20명
- 고객 중심의 경영
- Global 시장 및 매출 확대
- 차세대 제품개발을 통한 경쟁력강화
- 고객중심 경영기반 구축
- → B2C 사업전략 수립
- Global시장 제품 개발
- → 미주 제품개발
- → 해외 거점 및 생산기반 구축
- 신시장용 제품개발
- → DIY, 및 E-BIZ용 제품 개발
- 양산용 제2공장 준공
- → UVImprinting 2,3호기
- → 생산속도향상, 불량률 개선

제 2절 참여기업 만족도

1. 기술 애로 해결 만족도

가. 열전달 이론 교육을 통한 냉각방식 및 효율성 공유

- (1) 열전달의 종류 (열전도, 열대류, 열복사)
- (2) 열전달에 관련된 단위와 치환관계
- (3) 열전도에 관련된 문자 및 식의 정의
- (4) 열전도 (heat conduction)의 관련된 이론 및 관련식
- (5) 여러 물질의 열전도도 data
- (6) 열대류에 관련된 문자 및 식의 정의
- (7) 여러 물질의 열대류도 data

나. 유한요소해석(FEM) 모델링 및 해석을 통한 문제해결 방안 개발

- (1) ANSYS 프로그램을 이용한 열전달 해석 방법
- (2) ANSYS 프로그램을 이용한 열전달 경계조건 정의 및 적용
- (3) Solution Options 해석조건의 정의, 문제의 정의
- (4) Example 온도구배의 열전달 해석 예
- 다. 실험 Data 측정 및 해석을 통한 문제해결 및 Know-how축적
- (1) 실험 계획 및 측정방법
- (2) 실험 data 분석 및 유한 요소 해석과의 결과 분석
- (3) data관리 및 독자적 냉각 기술 구현

2. 매출 및 고용 창출 계획

(금액:백만원)

구 분		사업화 년도				
		(2017)년 (개발종료 해당년)	(2018)년 (개발종료 후 1 년)	(2019)년 (개발종료 후 2 년)		
사업화 제품		가전용 제품	가구용	건축자재용		
판매 계획 (백만원)	내 수	100	200	300		
	수 출	200	300	400		
	계	300	500	700		
고용 창출(명)		3	2	1		

[첨부자료 1] 생산속도 측정 방법 및 결과

- 1. 생산속도 측정 결과
 - (1) 시험 조건: 패턴명 TOP용 반광가로H/L (폭 1,100mm기준)
 - (2) 시험 방법:
 - TOP용 수지를 이용하여 가로 H/L금형에 양산 기준으로 생산함.
 - 설비에 부착된 생산 속도로 UV Imprinting제품을 속도를 증가시켜 생산
 - 속도 별로 생산된 제품을 cross cutting 2회시 박리가 없을 경우 합격임
 - 이때 측정된 속도를 최대생산속도로 결정함.
 - (3) 시험 결과
 - 최종 생산속도: 15.2m/분

[첨부서류 2] 금형온도 측정 방법 및 결과

- 1. 생산속도 측정 결과
 - (1) 시험 조건: 패턴명 TOP용 사하라 (폭 1,100mm기준)
 - (2) 시험 방법:
 - TOP용 수지를 이용하여 사하라 금형에 양산 기준으로 생산함.
 - cross cutting 2회시 박리가 없을 조건으로 설비에 부착된 생산 속도로 UV Imprinting제품을 생산함.
 - 총 제품 2,000m생산후 금형온도를 아래 그림과 같이 냉각롤, 냉각 고무롤, 금형에 각각 5군데 측정함.

(3) 시험 결과

- 금형 표면 온도는 최종 목표 50℃이하로 측정됨.

구분	1	2	3	4	5
생산전	21.8℃	22 ℃	23℃	22℃	22 ℃
생산후	42℃	48℃	48℃	47℃	41.5℃

[첨부서류 3] 표면경도 결과 (공인인증서)

- 1. 표면 결과
 - (1) 시험체: 패턴명 TOP용 반광가로H/L (폭 1,100mm기준)
 - (2) 시험 방법:
 - 생산 속도 제품으로 생산된 TOP용 반광 가로 H/L 제품을 표면경도시험을 한국화학 융합시험 연구원에 공인 인증시험 의뢰함.
 - 연필경도 시험으로 KSM-2013로 시험 항목에 의거 의뢰함
 - (3) 시험 결과
 - 연필경도: 2H

