- (2 pontos) Seja f uma imagem contínua que deseja-se converter para o formato digital. Este processo compreende a digitalização dos valores de coordenada e de amplitude, conhecidos respectivamente como amostragem e quantização. Sobre este processo de digitalização, responda as questões a seguir:
 - a. Qual a relação entre a amostragem e a quantidade de pixels da imagem digitalizada?
 - A amostragem é o que determina a quantidade de pixels que a imagem digital terá, estabelecendo um intervalo em que partes da imagem contínua serão colocadas nos pixels.
 - b. A cena capturada na imagem contínua f possui alguma influência na amostragem? Uma imagem com menos ou mais detalhes faz diferença na amostragem?
 Não, pois a amostragem não considera o conteúdo ou as intensidades da imagem no seu processo, também não fazendo diferença se a imagem tem mais detalhes ou menos. Apesar disso, uma amostragem com intervalo expandido demais ocasiona perda de detalhe se a imagem original tiver muitos detalhes.
 - c. Qual a relação entre quantização e quantidade de bits por pixel? A quantização é realizada na intensidade da imagem original mapeando a aproximação do valor capturado com o intervalo das intensidades definidas pela quantidade de bits por pixel.
 - d. Ao utilizar menos bits por nível do que é adequado para a quantização de um caso específico, o que pode ser observado na imagem digitalizada? Ocorre uma perda de detalhes já que as cores vão estar muito próximas, não havendo tanto contraste.
- (2 pontos) Sejam três imagens digitais hipotéticas, f, g e h, cada uma com tipos definidos na tabela a seguir e tamanho igual a 50x50 pixels. Para cada uma das imagens citadas, preencha as lacunas com as informações corretas.

Tipo de imagem	Quantidade de níveis de intensidade por pixel?	Quantidade de bits por nível?	Quantidade de bits necessários para armazenamento da imagem hipotética?
<i>i</i> = Monocromática	2	1	1 * 50 * 50 = 2500 b
g = Nível de cinza	256	8	8 * 50 * 50 = 20000 b
h = Cor RGB	16777216	24	24 * 50 * 50 = 60000 b

3. (2 pontos) Considere o segmento de imagem a seguir e faça o que se pede:

3 1 2 **1** (pixel q) 2 2 0 2 1 2 1 1 (pixel p) **1** 0 1 2

- a. Sendo $V = \{0, 1\}$, calcule os comprimentos dos caminhos -4, -8 e -m mais curtos entre os pixels p e q. Se um caminho específico não existir entre dois pontos, explique por quê.
 - caminho –4: não existe pois não há nenhum pixel com valor de V na vizinhança –4 de q.
 - caminho -8: Tamanho 4

• caminho -m: Tamanho 5

3	1	2	_1
2	2	0	2
1	2	1	1
1 —	_ 0 _	$-\dot{1}$	2

- b. Faça o mesmo para $V = \{1, 2\}$.
 - caminho -4: Tamanho 6

• caminho -8: Tamanho 4

• caminho -m: Tamanho 6

4. (1 ponto) As imagens mostradas a seguir são diferentes entre si, mas possuem histogramas idênticos. Qual a sua hipótese para explicar este fato?

O histograma mostra apenas a frequência que os bits de dadas intensidades aparecem na imagem, não tendo relação com seu conteúdo.

5. (1 ponto) Observe os histogramas apresentados a seguir.

Para cada histograma, indique se foi criado a partir de uma imagem:

- a. Baixo contraste
- b. Alto contraste
- c. Clara
- d. Escura
- 6. (2 pontos) Os filtros espaciais de suavização são muito utilizados em operações de borramento e redução de ruído, podendo ser lineares ou não lineares. Os filtros lineares são conhecidos como filtros de média, enquanto o filtro não linear mais popular é o da mediana. Sobre esses filtros, faça o que se pede:
 - a. Filtro da média:
 - i. Explique o seu funcionamento
 - O filtro é composto por coeficientes. Cada um é multiplicado pelo pixel correspondente da região filtrada e dividido pela soma destes coeficientes. Esses resultados são então somados e inseridos no pixel da imagem resultante.
 - ii. Cite dois exemplos de mascaras (com seus coeficientes) de tamanho 3x3 que podem ser utilizados para implementar este filtro

11110					
1	1	1			
9	9	9			
1	1	1			
9	9	9			
1	1	1			
9	9	9			

е

1	2	1
15	15	15
2	3	2
15	15	15
1	1	1
15	15	15

- b. Filtro da mediana
 - i. Explique seu funcionamento
 - O filtro ordena os valores de intensidade dos pixels captados e seleciona o valor central da ordenação para inserir no pixel correspondente da imagem resultante.
 - ii. Em que tipo de ruído este filtro é particularmente eficaz? Ele corrige bem o ruído sal-e-pimenta, ou ruído impulsivo, que são pontos muito claros ou muito escuros espalhados na imagem.