

Personal Loan Campaign Project 4

Objectives

- Explore the dataset and extract actionable insights that will enable growth in the market.
- Explore and visualize the dataset.
- To predict whether a liability customer will buy a personal loan or not.
- Identify which variables are most significant.
- Identify which segment of customers should be targeted more.

Data Information

The data contains the following information:

Variable	Description
ID	Customer ID
Age	Customer's age in completed years
Experience	#years of professional experience
Income	Annual income of the customer (in thousand dollars)
ZIP Code	Home Address ZIP code
Family	the Family size of the customer
CCAvg	Average spending on credit cards per month (in thousand dollars)
Education	Education Level. 1: Undergrad; 2: Graduate;3: Advanced/Professional
Mortgage	Value of house mortgage if any. (in thousand dollars)
Personal_Loan	Did this customer accept the personal loan offered in the last campaign?
Securities_Account	Does the customer have securities account with the bank?
CD_Account	Does the customer have a certificate of deposit (CD) account with the bank?
Online	Do customers use internet banking facilities?
CreditCard	Does the customer use a credit card issued by any other Bank (excluding All life Bank)?

Observations	Variables
5000	14

Note:

- There are no missing values in the dataset
- All variables are numeric values
- Zip code is a float that will later be converted to City object type
- We also consolidate cities with counts less than or equal to 30 counts into a different category.
- Since all the values in ID column are unique we decide to drop the column

Exploratory Data Analysis – Age, Experience, Zip Code

- The distribution of the age doesn't appear to be skewed
- The boxplot does not show any outliers
- The mean and the median are both very close in the distribution

- The distribution of the experience doesn't appear to be skewed
- The boxplot does not show any outliers
- The mean and the median are both very close in the distribution

- Zip code does not appear to have a trend.
- There is not much that can be determined based on this trend.
- We will be converting the zip code to cities later on.

Exploratory Data Analysis – CCAvg and Mortgage

- The distribution of the credit card average is very skewed to the left
- The boxplot shows outliers on the upper end

- The distribution of the mortgage is heavily skewed to the left
- The boxplot shows outliers on the upper end

Exploratory Data Analysis – Family and Education

- A majority of the customers are single (in a 1 person family)
- The next highest counts are 2 and 4 people families

- Most customers have an undergraduate degree at 41.9%
- 28.1% of customers have a graduate degree while 30.0% have advanced/professional education

Exploratory Data Analysis – Personal Loan, Securities Account, CD Account, Online, Credit Card

Personal Loan

 90.4% of customers did not the personal loan offered to them during the last campaign

Securities Account

 10.4% have securities accounts with the bank

CD Account

 6% of customers have a certificate of deposit account with the bank

Online

 59% of customers use internet banking facilities

Credit Card

29.4% of customers use a credit card issued by another bank

Exploratory Data Analysis – Family, Education, and Securities Account vs Personal Loan

Family vs Personal Loan

Personal_Loan Family	0	1	A11
A11	4520	480	5000
4	1088	134	1222
3	877	133	1010
1	1365	107	1472
2	1190	106	1296

 The distribution of personal loans by the number of family members is almost evenly distributed

Education vs Personal Loan

Personal_Loan Education	0	1	Al
A11	4520	480	500
3	1296	205	150
2	1221	182	140
1	2003	93	200

- The distribution of the personal loans is mostly evenly distributed between graduate and advanced/ professional
- There are fewer personal loans bought by customers with only undergraduate education

Securities Account vs Personal Loan

Personal_Loan	0	1	Al
Securities_Account All	4520	480	500
0	4058	420	447
1	462	60	52

 There are more customers who do not have securities accounts that bought personal loans than customers without securities accounts who bought personal loans

Exploratory Data Analysis – Family, Education, and Securities Account vs Personal Loan

CD Account vs Personal Loan

Personal_Loan	0	1	All
CD_Account			
All	4520	480	5000
0	4358	340	4698
1	162	1/10	202

 There were more customers who had CD account with the bank that bought a personal loan

Online vs Personal Loan

Personal_Loan Online	0	1	All
All	4520	480	5000
1	2693	291	2984
0	1827	189	2016

 There were slightly more customers who bought personal loans that used the online services

Credit Card vs Personal Loan

Personal_Loan	0	1	Al
CreditCard			
All	4520	480	500
0	3193	337	353
1	1327	143	147

 More customers who bought personal loans did not have credit cards at other banks

Exploratory Data Analysis – Correlation

Heat Map Correlation

-0.06 -0.05 -0.05 1.00 0.99 1.00 -0.05 -0.05 -0.05 0.99 Experience -0.06-0.051.00 -0.16 0.65 -0.19 0.50 Income 1.00 ZIPCode -0.05 -0.05 -0.16 1.00 -0.11 Family CCAva -0.05-0.05 0.65 -0.11 1.00 -0.14 -0.19 -0.141.00 Education 1.00 Mortgage 0.50 1.00 Personal Loan Age

Pair Plot Correlation

- CD account seems to have some influence if the customer is likely to purchase the personal loan.
- Most other comparisons seem equally distributed.
- There is a very strong correlation between experience and age based on the pair plot.
- There are also some correlation between CCAvg and Income.

Exploratory Data Analysis – Family and Education

- Three of our variables appear to have outliers: Income, CCAvg, and Mortgage
- · We will treat only these three variable for outliers.
- We will exclude the other variables as they either do not have outliers or they have values of 1 or 0.

- All numerical variables that had outliers have been treated.
- Only the target variables have been treated for outliers.

Model and Regression Outputs

Odds from coefficients

	const	Income	Family	CCAvg	Education	Securities_Account	CD_Account	Online	CreditCard
odds	4.836004e-07	1.057445	2.152445	1.474822	6.059412	0.312396	48.021466	0.516076	0.310117
Percentage change in odds									
	c	onst Inco	ome Fa	amily Co	CAvg Educat	tion Securities_Accour	t CD_Account	Online	CreditCard

nts

- Income: Holding all other features constant a unit change in Income will increase the odds of a customer buying a personal loan by 1.05 times or a 5.74% increase in odds.
- *Family*: Holding all other features constant a unit change in Family will increase the odds of a customer buying a personal loan by 2.15 times or a 115.24% increase in the odds.
- Interpretation for other attributes can be done similarly

ROC-AUC on training set

change odds% -99.999952 5.744541 115.244464 47.482201 505.94125

ROC-AUC on test set

-68.760433 4702.146644 -48.392401 -68.988328

Coefficient interpretations:

Coefficient interpretations:

- Coefficients of Income, Family, CCAvg, Education, and CD_Account are positive; an increase in these will lead to an increase in chances of a customer buying a personal loan.
- Coefficients of Securities_Account, Online, and Credit Card are all negative; an increase in these will lead to a decrease in chances of a customer buying a personal loan.

Model and Regression Outputs

Model performance summary

	Model	Train_Accuracy	Test_Accuracy	Train Recall	Test Recall	Train Precision	Test Precision	Train F1	Test F1
0	Logistic Regression Model - Statsmodels	0.956857	0.948667	0.667674	0.610738	0.843511	0.827273	0.745363	0.702703
1	Logistic Regression - Optimal threshold = 0 .09	0.904571	0.909333	0.900302	0.865772	0.497496	0.526531	0.640860	0.654822
2	Logistic Regression - Optimal threshold = 0 .39	0.954571	0.943333	0.731118	0.637584	0.775641	0.753968	0.752722	0.690909

Precision-Recall Curve

Final model performance

Observations:

- After initial interpretations of coefficients we decided to check if the F1 score can be improved further.
- To do so we changed the model threshold by using AUC-ROC Curve.
- We calculated the optimal cutoff which yielded us a threshold of 0.0997 which increased the recall significantly on both the test and training set.
- The best test recall is 86% but the test precision is low i.e ~52% at the same time. This
 means that the model is not good at identifying prospective customers, therefore the bank
 can lose many opportunities of campaigning personal loans to prospective customers.

Decision Tree Outputs

Initial Model output

Recall on training set : 1.0
Recall on test set : 0.87248322147651

Feature Importance

Observations:

 According to the decision tree model, Education is the most important variable for predicting the customer default.

Model output with depth restricted to 3

Recall on training set : 0.8126888217522659 Recall on test set : 0.7516778523489933

Feature Importance

Observations:

- Recall on training set has reduced from 1 to 0.81 but this is an improvement because now the model is not overfitting and we have a generalized model.
- In important features of previous model, Education was on top.
- Here Education is still on top as the top important feature.

Decision Tree Outputs – Tuned Hyperparameters

Model output with tuned hyperparameters

Recall on training set : 0.9274924471299094 Recall on test set : 0.8791946308724832

Feature Importance

Observations:

- After tuning hyperparameters, the performance of the model has become more generalized.
- · Recall has increased from 0.81 to 0.92
- Feature importance is still Education for this model

Cost Complexity Pruning

Accuracy vs Alpha

Recall vs Alpha

Observations:

- With post-pruning we get the high recall on both training and test set
- The initial decision tree model gives the highest test recall
- We did not see much improvement in test recall as a result of our pruning methods

Post pruned model

Recall on training set: 0.9667673716012085 Recall on test set: 0.8993288590604027

Feature Importance

	Model	Train_Recall	Test_Recall
0	Initial decision tree model	1.00	0.98
1	Decision tree with restricted maximum depth	1.00	0.87
2	Decision treee with hyperparameter tuning	0.81	0.75
3	Decision tree with post-pruning	0.96	0.89

Conclusion

After all the analysis, we have been able to conclude:

- Having CD accounts had some influence on if the customer bought a personal loan.
- Zip code was not going to be very useful for our analysis as is so we converted to cities and limited the cities with counts greater than 30
- Income, CC Average, and Mortgage had outliers that were treated.
- The model evaluation criterion was based on the following:
 - · Predicting a liability customer is not going to buy a personal loan but they do Loss of opportunity
 - Predicting a liability customer is going to buy a personal loan but they don't Loss of resources
- Loss of opportunity would be the greater loss
- The bank would want to reduce false negatives, this can be done by maximizing the Recall.
 - The greater the recall lesser the chances of false negatives.
- Age and Experience have high VIF but the rest of the variables in the summary appear to be reliable.
- All the categorical levels of Age, Experience, Mortgage, and City have a high p-value. Hence, the variable can be dropped.
- Holding all other features constant a unit change in Income will increase the odds of a customer buying a personal loan by 1.05 times or a 5.74% increase in odds.
- Holding all other features constant a unit change in Family will increase the odds of a customer buying a personal loan by 2.15 times or a 115.24% increase in the odds.
- Based on our coefficient interpretation, having securities accounts, using online feature, and having credit cards at other banks decrease the odds of customers buying a personal loan.
- The best test recall is 86% but the test precision is low i.e ~52% at the same time. This means that the model is not good at identifying prospective customers, therefore the bank can lose many opportunities of campaigning personal loans to prospective customers.
- According to the decision tree model, Education is the most important variable for predicting the customer default.

Recommendations

After all the analysis, we suggest the following recommendations:

- We saw our analysis that customers who use the online banking feature are less likely to purchase a personal loan. The bank
 can improve its online presence or perhaps campaign via other means.
- We saw that customers who have more credit cards less likely to purchase a personal loan while customers with more monthly credit card payments are more likely to purchase a personal loan. The bank should focus more on customers with fewer credit cards and that have higher monthly payments.
- Our analysis showed that families with more members are more likely to purchase a personal loan. The bank can focus more
 on customers with larger families.
- Our analysis showed that customers with security accounts are less likely to purchase a personal loan. This implies that the bank has good security for its customers. The bank should focus its campaigns to customers who are not their customers.

greatlearning Power Ahead

Happy Learning!