

Domain Adaptation with Application for Brain Decoding in Task fMRI

Shuo Zhou

PhD candidate @ Department of Computer Science The University of Sheffield Regent Court, 211 Portobello, Sheffield, UK

szhou20@sheffield.ac.uk

December 23, 2020 @BNU

Brief Intro to Machine Learning

Making predictions for unlabelled (unseen) new data

Example: Spam email, credit card application ...

$$y = f(x) = ax + b$$

Theoretical Support

VC Generalisation Bound [1] for a statistical model f:

$$\epsilon_{ ext{test}}(f) \leq \epsilon_{ ext{train}}(f) + \sqrt{rac{\mathsf{Complexity}}{\mathcal{N}}}, (\mathsf{Eq.}\ 1/3)$$

- ullet ϵ_{test} : Probability of making mistakes on unseen test data.
- ullet $\epsilon_{\mathrm{train}}$: Probability of making mistakes on training data.

Example: Ridge regression

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i) + \|\mathbf{w}\|_2^2$$

Assumption:

Training and testing samples are drawn from the same distribution \mathcal{D} .

[1] Vapnik, V. N.; Chervonenkis, A. Ya. 1971. On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory of Probability & Its Applications. 16 (2).

3/13

Learning from Another Distribution?

Images from PACS dataset [1].

[1] Li, D.; Yang, Y.; Song, Y. Z.; & Hospedales, T. M. 2017. Deeper, broader and artier domain generalization. In ICCV, 5542-5550.

Domain Adaptation

Definitions:

- Source: Labelled domain (dataset) for training
- Target: Unlabelled domain (dataset) to make prediction

Domain adaptation is a **homogeneous** transfer learning problem:

- Same feature space
- Same learning task
- Different distributions across domains

Reference:

^[1] Pan, S. J.; & Yang, Q. 2009. A Survey on Transfer Learning. TKDE, 22(10): 1345-1359.

^[2] Redko, I. et al., 2020. A Survey on Domain Adaptation Theory: Learning Bounds and Theoretical Guarantees. arXiv preprint arXiv:2004.11829.

Theoretical Support for Domain Adaptation

Generalisation bound [1]:

$$\epsilon_t(f) \le \epsilon_s(f) + \underbrace{\mathsf{Dist}(\mathcal{D}_t, \mathcal{D}_s)}_{\mathsf{Distribution Divergence}} + \sqrt{\frac{\mathsf{Complexity}}{N}} + \underbrace{\Omega}_{\mathsf{Constant}}, (\mathsf{Eq. } 2/3)$$

[1] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. 2010. A theory of learning from different domains. Machine Learning, 79(1-2), 151-175.

Brain Decoding and Inverse Inference in fMRI

Decoding the brain functions by using statistical learning methods [A brief introduction by Inria]

Visualisation and Interpretation

Domain Adaptation for Brain Decoding

Challenges for Machine Learning in Brain Decoding

- Small sample size
- High dimensional features
- Noisy

Our solution: public shared fMRI data + domain adaptation

- Neuroimaging data sharing (OpenfMRI/OpenNeuro, HCP...)
- Domain adaptation techniques

Data

OpenfMRI [1]: an open neuroimaging data sharing project [Dataset link].

Exp ID	Acc No.	Experiment Description	# Subjects
Α	ds007	Stop signal with spoken pseudo word naming [2]	20
В	ds007	Stop signal with spoken letter naming [2]	20
C	ds007	Stop signal with manual response [2]	20
D	ds008	Conditional stop signal [3]	13
Ε	ds101	Simon task [Unpublished]	21
F	ds102	Flanker task [4]	26

Binary brain condition classification problem:

- "Successful stop" vs "Unsuccessful stop": A, B, C, and D
- "Congruent correct" vs "Incongruent correct": E and F
- Feature: brain voxels (feat level1 z-score maps)
- [1] Poldrack, R. A.; Barch, D. M.; Mitchell, J.; Wager, T.; Wagner, A. D.; Devlin, J. T.; Cumba, C.; Koyejo, O.; and Milham, M. 2013. Toward open sharing of task-based flMRI data: the OpenflMRI project. Frontiers in Neuroinformatics 7:12. [2] Xue, G.; Aron, A. R.; and Poldrack, R. A. 2008. Common neural substrates for inhibition of spoken and manual responses.
- [2] Xue, G.; Aron, A. R.; and Poldrack, R. A. 2008. Common neural substrates for inhibition of spoken and manual responses. Cerebral Cortex 18(8):1923–1932.
 [3] Aron, A. R.; Behrens, T. E.; Smith, S.; Frank, M. J.; and Poldrack, R. A. 2007. Triangulating a cognitive control net-work
- using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. *Journal of Neuroscience* 27(14):3743–3752. [4] Kelly, A. C.; Uddin, L. Q.; Biswal, B. B.; Castellanos, F. X.; and Milham, M. P. 2008. Competition between functional brain networks mediates behavioural variability. *NeuroImage* 39(1):527–537.

Methodology

Assumption:

Predictions/decisions should be independent of experiments and subjects.

Theorem:

$$\epsilon_t(f) \le \epsilon_s(f) + \underbrace{\hat{\rho}(f(\mathbf{X}), \mathbf{D})}_{\text{Independence Test}} + \sqrt{\frac{\text{Complexity}}{N}} + \underbrace{\Omega}_{\text{Constant}}, \text{(Eq. 3/3)}$$

Practically, one-hot encoding for domain covariates **D**

	Exp 1		Ехр р	Sub 1		Sub q
Sample 1	1	0	0	1	0	0
Sample 2	1	0	0	1	0	0
Sample 3	0	1	0	0	1	0
Sample n	0	0	1	0	0	1

Results

	SVM	[1]	[2]	[3]	Ours
$A{ ightarrow}B$	63.4 ± 2.6	55.0±4.3	64.5 ± 5.0	65.7±2.2	$\textbf{78.6} {\pm} \textbf{2.9}$
$B \rightarrow A$	59.2 ± 4.0	58.9 ± 3.2	71.2 ± 3.5	64.0±2.8	79.6 ± 2.7
$A \rightarrow C$	68.4 ± 2.6	70.6 ± 6.3	78.4 ± 2.9	70.9 ± 2.7	87.4 \pm 2.1
$C \rightarrow A$	59.2 ± 4.0	63.6 ± 4.0	70.6 ± 4.0	59.5 ± 3.4	68.8 ± 3.8
$B\rightarrow C$	68.4 ± 2.6	86.4±5.3	80.1 ± 4.4	73.5 ± 2.1	$90.5 {\pm} 1.5$
$C \rightarrow B$	63.4 ± 2.6	75.3±4.0	73.2 ± 3.3	$62.5{\pm}2.1$	77.4 \pm 2.8
$C \rightarrow D$	74.6 ± 3.2	74.4 ± 5.3	74.2 ± 6.6	81.3 ± 4.0	87.1 ± 2.3
$D \rightarrow C$	68.4 ± 2.6	71.9 ± 4.6	74.4 ± 4.2	70.9 ± 2.6	87.4 ± 2.6
$A \rightarrow D$	74.6 ± 3.2	53.7 ± 3.2	63.3 ± 6.0	78.5 ± 1.9	86.2 ± 1.9
$D \rightarrow A$	59.2 ± 4.0	58.0 ± 4.8	50.6 ± 2.4	59.2 ± 3.4	67.1 ± 3.8
$B \rightarrow D$	74.6 ± 3.2	67.9 ± 2.6	66.9 ± 4.2	85.6 ± 2.3	94.2 ± 1.9
$D\rightarrow B$	63.4 ± 2.6	50.1 ± 5.4	64.7 ± 3.6	61.4 ± 2.4	73.7 ± 3.1
E→F	66.9 ± 1.7	52.3 ± 3.2	66.4 ± 3.0	62.5 ± 2.0	$74.0 {\pm} 4.0$
F→E	53.3±2.8	49.3 ± 1.9	53.7 ± 4.5	49.9 ± 2.2	51.0 ± 4.4
Avg	65.5±3.0	63.4 ± 4.1	68.0 ± 4.2	67.5 ± 2.6	$\textbf{78.8} {\pm} \textbf{2.8}$
B&C→A	59.2±4.0	52.1±1.1	51.4±1.8	63.2±2.5	80.3±3.1
$A\&C \rightarrow B$	63.4±2.6	54.5 ± 3.1	61.7 ± 2.2	67.6±1.6	$\textbf{79.5} {\pm} \textbf{2.0}$
$A\&B\rightarrow C$	68.4±2.6	52.1 ± 1.1	65.4 ± 2.2	71.9±2.6	$89.9 {\pm} 1.7$
Avg	63.7 ± 3.1	$52.9{\pm}1.8$	$59.5{\pm}2.0$	67.6±2.2	$\textbf{83.2}{\pm}\textbf{2.3}$

December 23, 2020 @BNU

^[1] Pan, S. J.; Tsang, I. W.; Kwok, J. T.; and Yang, Q. 2011. Domain adaptation via transfer component analysis. *IEEE Transactions on Neural Networks* 22(2):199–210.

^[2] Yan, K.; Kou, L.; and Zhang, D. 2018. Learning domain invariant subspace using domain features and independence maximization. *IEEE Transactions on Cybernetics* 48(1):288–299.

^[3] Long, M.; Wang, J.; Ding, G.; Pan, S. J.; and Philip, S. Y. 2013a. Adaptation regularization: A general framework for transfer learning. TKDE 26(5):1076–1089.

Model Coefficients Visualisation

Figure: The top 1% learnt voxel weights in magnitude on A&B \rightarrow C.

Consistent with the literature on response monitoring [2].

^[1] Long, M.; Wang, J.; Ding, G.; Pan, S. J.; and Philip, S. Y. 2013a. Adaptation regularization: A general framework for transfer learning. TKDE 26(5):1076–1089.

^[2] Braver, T. S.; Barch, D. M.; Gray, J. R.; Molfese, D. L.; and Snyder, A. 2001. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. *Cerebral cortex*, 11(9): 825-836.

Summary

- Approach of leveraging public neuroimaging data
- Domain adaptation theorem and algorithm
- Experimental studies

Presented at the 34th AAAI Conference [Paper][Code].

One group (from Uni of Alberta and NUAA) followed our experimental setting and published a NeurlPS paper.

Thank you for your time All questions are welcome

Reference:

^[1] Zhou, S., Li, W., Cox, C., and Lu, H. 2020. Side information dependence as a regularizer for analyzing human brain conditions across cognitive experiments. In AAAI 34(04):6957-6964.

^[2] Yousefnezhad, M., Selvitella, A., Zhang, D., Greenshaw, A., and Greiner, R. 2020. Shared Space Transfer Learning for analyzing multi-site fMRI data. In NeurIPS.