Einführung in die Technische Informatik

Prof. Dr.-Ing. Stefan Kowalewski

WS 22/23

Kapitel 0: Einführung

Teil 1: Organisatorisches

Dozent

- Prof. Dr.-Ing. Stefan Kowalewski
 - 1990 Diplom Elektrotechnik,
 Universität Karlsruhe
 - 1995 Promotion, Fachbereich Chemietechnik, Universität Dortmund
 - 2000 2003 Robert Bosch GmbH,
 - Forschung und Vorausentwicklung,
 - Software-Technologie, Frankfurt am Main
 - 2003 Habilitation in Automatisierungs- und Sicherheitstechnik,
 Universität Dortmund
 - Seit 11/2003 Lehrstuhl Informatik 11, RWTH Aachen

Betreuer

Alexander Kruschewsky, M.Sc. (Raum 2320) Sprechstunde nach Vereinbarung

Robin Mroß, M.Sc. (Raum 2307) Sprechstunde nach Vereinbarung

- erreichbar per Mail an <u>Tl@embedded.rwth-aachen.de</u>
- Fragen bitte zunächst im Forum stellen (Moodle)
- Während der Vorlesung: F&A-Sektion (Zoom)

Sind Sie in der richtigen Vorlesung?

Studiengänge:

- Bachelor (B.Sc.) Informatik
- Bachelor (B.Sc.) Mathematik, Anwendungsfach Informatik
- Lehramtsstudiengang Informatik
- Bachelor (B.Sc.) / Magister (M.A.) Technik-Kommunikation
- Master (M.Sc.) Automatisierungstechnik
- Master (M.Sc.) Verfahrenstechnik
- Master (M.Sc.) Computational Engineering Science

Sprache: Deutsch

Wie und wo kann ich an Vorlesung & Übung teilnehmen?

- Bei RWTH Online zur Vorlesung anmelden!
 - Nur so Zugang zu Moodle
- Moodle-Lernraum: https://moodle.rwth-aachen.de/
 - Zoom-Link
 - Ankündigungen
 - Folien
 - Videos der Vorlesungen
 - Übungsblätter, Lösungsvideos
 - eTests
 - Termine / Links
 - Forum
- Webseite der Veranstaltung:

https://embedded.rwth-aachen.de/doku.php?id=lehre:wise2223:technische informatik

Termine Vorlesung/Übung

- Vorlesung / Übung (vorläufig):
 - Dienstags, 10:30 12:00 Uhr: H02 (C.A.R.L.) / Zoom (hybrid)
 - üblicherweise Vorlesung
 - Dienstags, 14:30 16:00 Uhr: H02 (C.A.R.L.) / Zoom (hybrid)
 - üblicherweise Globalübung
 - Mittwochs, 10:30 12:00 Uhr: Großer Hörsaal (AM)/ Zoom (hybrid)
 - üblicherweise Vorlesung
- Verteilung für die nächsten zwei Wochen im Moodle

Übungen

- In den Übungen können Sie den Stoff aus der Vorlesung in Aufgaben anwenden.
- Eine Woche vor einem Übungstermin wird ein Übungsblatt im Moodle zur Verfügung gestellt.
- Am Übungstermin werden Lösungen vorgestellt.
- Bearbeitung freiwillig aber stark empfohlen
 - Übungsaufgaben bereiten auf Klausur vor.
- Keine Kleingruppenübungen
- Keine Klausurzulassung

eTests

- freiwillige Teilnahme
- im Moodle eine Woche vor der Übung veröffentlicht
- Rechenaufgaben und Multiple-Choice
- automatisch generierte Aufgaben
- automatische Korrektur
- Bonuspunkte für die Klausur (bis zu 10 %)
- Anleitung im Moodle

Warum sollten Sie die eTests machen? (1)

Anzahl

Warum sollten Sie die eTests machen? (2) Klausurergebnisse WS 21/22

Klausur

Klausurtermine

- 1. Termin, 16.02.2023, 12:30 17:30 Uhr
- 2. Termin, 21.03.2023, 09:00 11:00 Uhr (Wdhl.)

Anmeldung B.Sc. Informatik

- Über RWTH Online
- Zeitraum: 15.11.2022 15.01.2023
- Weitere Details im Moodle

Anmeldung andere Studiengänge:

- Anmeldeverfahren und –Zeiten sind studiengangabhängig
- Bitte rechtzeitig in der Studienordnung nachlesen
- ZPA/Studienberater fragen

Warum gibt es zwei Klausurtermine?

- Der zweite Termin ist eigentlich für eine eventuell notwendige Wiederholung vorgesehen.
 - Im Sommersemester gibt es keine TI-Klausur!
- ► Falls Sie die Klausur am ersten Termin nicht bestehen, wegen Krankheit nicht mitschreiben oder fristgerecht abmelden, können/sollten Sie sich zum zweiten Termin anmelden.
 - Das geschieht nicht automatisch!
- Es ist grundsätzlich auch möglich, sich nur zum zweiten Termin anzumelden.
 - Sollte man nur mit gutem Grund machen.
 - Wiederholung dann erst wieder 2023 möglich!
- Nach bestandener Klausur ist keine Wiederholung (z.B. zur Notenverbesserung) möglich.

Haben Sie Fragen zur Organisation?

Teil 2: Was ist Technische Informatik?

Was ist Informatik?

Definition der Gesellschaft für Informatik (GI):

Informatik ist die Wissenschaft von der systematischen und automatischen Verarbeitung von Informationen

Technische Informatik

Technische Informatik ist ein Hauptgebiet der Informatik, das sich mit Architektur, Entwurf, Realisierung, Bewertung und Betrieb von Rechner-, Kommunikations- und eingebetteten Systemen auf der Ebene der Hardware als auch der systemnahen Software beschäftigt. (Wikipedia)

Teilgebiete:

- Elektrotechnische und schaltungstechnische Grundlagen
- Mathematische Grundlagen der Datenverarbeitung und Schaltungstechnik
- Rechnerstrukturen und -architekturen
- Dienstprogramme (Betriebssysteme, Linker, Lader, etc.)
- Netzwerke, Verteilte Systeme

Elektronische Grundlagen der Informatik

In der Vorlesung TI:
 Elementare Kenntnisse über physikalische Prinzipien,
 die der Funktionsweise von elektronischen Rechnern
 zugrunde liegen.

Teilgebiete:

- Physik-Grundwissen
- Halbleiter-Bauelemente
- Speichertechnologien
- Programmierbare Logik
- Hardwareentwurf
- Analoge Schaltungen
- Mikrocontroller

Literatur

- Empfehlungen allgemein:
 - Oberschelp und Vossen: Rechneraufbau und Rechnerstrukturen.
 de Gruyter-Oldenbourg, 10. Auflage, 2006
 - Becker, Molitor: Technische Informatik.
 de Gruyter-Oldenbourg, 1. Auflage, 2008
- Elektrotechnische Grundlagen:
 - R. Paul: Elektrotechnik und Elektronik für Informatiker. Bd. I. Teubner, 2. Auflage, Stuttgart 1999
 - Schiffmann Schmitz: Technische Informatik, Band I: Grundlagen der digitalen Elektronik. Springer, 5. Auflage, 2004
 - Schiffmann Schmitz: Technische Informatik, Band II: Grundlagen der Computertechnik. Springer, 5. Auflage, 2005
- Für die Klausur ist nur der Stoff aus Vorlesung und Übung relevant.

Teil 3: Eine kurze Geschichte der Computertechnik

Die Geschichte der Computer

Year	Name	Made By	Comments		Year	Name	Made By	Comments
1834	Analytical Engine	Babbage	First attempt to build a digital computer		1964	360	IBM	First product line designed as a family
1936	Z1	Zuse	First working relay calculating machine		1964	6600	CDC	First scientific supercomputer
1943	COLOSSUS	British gov't	First electronic computer		1965	PDP-8	DEC	First mass-market minicomputer (50,000 sold)
1944	Mark I	Aiken	First American general-purpose computer		1970	PDP-11	DEC	Dominated minicomputers in the 1970s
1946	ENIAC I	Eckert/ Mauchley	Modern computer history starts here		1974	8080	Intel	First general-purpose 8-bit computer on a chip
1949	EDSAC	Wilkes	First stored-program computer		1974	CRAY-1	Cray	First vector supercomputer
1951	Whirlwind I	M.I.T	First real-time computer		1978	VAX	DEC	First 32-bit superminicomputer
1952	IAS	Von Neumann	Most current machines use this design		1981	IBM PC	IBM	Started the modern personal computer era
1960	PDP-1	DEC	First minicomputer (50 sold)		1985	MIPS	MIPS	First commercial RISC machine
1961	1401	IBM	Enormously popular small business machine		1987	SPARC	Sun	First SPARC-based RISC workstation
1962	7094	IBM	Dominated scientific computing in the early 1960s		1990	RS6000	IBM	First superscalar machine
1963	B5000	Burroughs	First machine designed for a high-level language					© G. Lakomovor, W. Oborscholn, G. V.

Analytical Engine (19. Jh.)

© Von Science Museum London / Science and Society Picture Library – Babbage's Analytical Engine, 1834-1871. Uploaded by Mrjohncummings, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=28024313

Lochkarten

© Stefan Kowalewski

Charles Babbage

© Stefan Kowalewski

Konrad Zuse mit Z1 (Orig. 1936)

Eniac

Der erste Transistor (1947)

John von Neumann

von Neumann Architektur

IBM 701 und T. J. Watson

"I think there is a world market for maybe five computers." (1943)

IBM 701

IBM 360

IBM 360 – Leistungsdaten

Property	Model 30	Model 40	Model 50	Model 65
Relative Performance	1	3.5	10	21
Cycle time (nsec)	1000	625	500	250
Maximum memory (KB)	64	256	256	512
Bytes fetched per cycle	1	2	4	16
Maximum number of data channels	3	3	4	6

DEC PDP-8 (1965)

Mini-Computer

DEC PDP-8: Datenbuskonzept

CDC-6600 (1965)

Cray XMP (1985)

© Stefan Kowalewski

Intel Prozessoren

Chip	Date	MHz	Transistors	Memory	Notes
4004	4/1971	0.108	2,300	640 B	First microprocessor on a chip
8008	4/1972	0.108	3,500	16 KB	First 8-bit microprocessor
8080	4/1974	2	6,000	64 KB	First general-purpose CPU on a chip
8086	6/1978	5-10	29,000	1 MB	First 16-bit CPU on a chip
8088	6/1979	5-8	29,000	1 MB	Used in IBM PC
80286	2/1982	8-12	134,000	16 MB	Memory protection present
80386	10/1985	16-33	275,000	4 GB	First 32-bit CPU
80486	4/1989	25-100	1.2M	4 GB	Built-in 8K cache memory
Pentium	3/1993	60-233	3.1M	4 GB	Two pipelines; later models had MMX
Pentium	3/1995	150-200	5.5M	4 GB	Two levels of cache built in
Pentium II	5/1997	233-400	7.5M	4 GB	Pentium Pro plus MMX

Intel Prozessoren

Chip	Date	GHz	Transistors	Notes
Pentium III	1999	0.5-1.1	28M	
Pentium 4	2000	1.3-2.0	42M	Willamette
Pentium 4	2004	2.6-3.8	125M	Prescott
Pentium D	2005	2.6-3.2	230M	Dual Core, 64bit
Core 2	2006	1.1-3.5	410M	Quad Core
Core i	2008	1.1-3.6	1170M	Hexa Core
Core i7	2010	3.2-3.9	2270M	Hexa Core (Sandy Bridge-EP-8)
Core i9	2020	3.7-5.3	unbekannt	Deca Core (Comet Lake-S)

Intel 4004

Intel 8088

Intel Pentium

Intel Core i7

Quelle: Intel Corporation

Intel Core i9

Quelle: Intel Corporation

Moore's Law

Autor: Max Roser

Moore's Law

 Aber: Moore's Law bedeutet nicht, dass die kleinen Prozessoren aussterben

Marktanteil bei Prozessoren (Statistik 2008):
OSS Aller Prozessoren für einzehettete Systema

98% aller Prozessoren für eingebettete Systeme, 2% für Desktop, Laptop, Server etc. (von ≈ 10¹⁰ hergestellten Prozessoren)

Wikipedia.de

