Absztrakt vektorterek megoldások

1. Az alábbi $H \subset P_{\mathbb{R}}^2$ vektorhalmaz lineárisan független, vagy lineárisan összefüggő?

$$p_1: R \to R, x \mapsto 3x^2 - 2x + 5$$

$$p_2: R \to R, x \mapsto -x^2 + x - 2$$

$$p_3: R \to R, x \mapsto 3x^2 - x + 4$$

$$H := \{p_1, p_2, p_3\}$$

<u>Megoldás</u>: Bázistranszformációval ellenőrizhető, hogy a fenti polinomok közül csak kettő vonható be a bázisba, a harmadik polinom előállítható a másik kettő lineáris kombinációjaként. Pl. $p_3=2p_1+3p_2$, így a fenti polinomok lineárisan összefüggőek.

2. Az alábbi $H \subset P_R^5$ vektorhalmaz lineárisan független, vagy lineárisan összefüggő?

$$p_1: R \to R, x \mapsto x^5 - 2x$$

$$p_2: R \to R, x \mapsto x^4 + 3$$

$$p_3: R \to R, \ x \mapsto x^3 + 2x^2$$

$$H := \{p_1, p_2, p_3\}$$

<u>Megoldás</u>: Bázistranszformációval ellenőrizhető, hogy a fenti polinomok mindegyike bevonható a bázisba, így azok lineárisan függetlenek.

3. Igazolja, hogy a

$$p_1: R \to R, \ x \mapsto x^3 - 2x, \ a \ p_2: R \to R, \ x \mapsto x + 5, \ \text{és a} \ p_3: R \to R, \ x \mapsto 2 \ \text{polinomok}$$

lineárisan függetlenek a P_{R}^{3} vektortérben! Bázist alkotnak-e a fenti polinomok P_{R}^{3} -ban?

<u>Megoldás</u>: Bázistranszformációval ellenőrizhető, hogy a fenti polinomok mindegyike bevonható a bázisba, így azok lineárisan függetlenek. Mivel a legfeljebb harmadfokú polinomok vektortere négy dimenziós, így három lineárisan független polinom nem alkot abban bázist.

4. Tekintsük az R^N vektortér következő elemeit!

$$a_1 := 1, 0, 0, \dots$$

$$a_2 := 1, 1, 0, 0, \dots$$

$$a_3 := 1, 1, 1, 0, 0, \dots$$

$$a_4 := 1, 1, 1, 1, 0, 0, \dots$$

Igazolja, hogy a $H := \{a_1, a_2, a_3, a_4\}$ vektorhalmaz lineárisan független!

<u>Megoldás</u>: Bázistranszformáció itt nem alkalmazható, mivel a valós számsorozatok vektortere végtelen dimenziós. A lineáris függetlenség definíciója alapján ellenőrizhető, hogy a fenti sorozatokból csak a triviális lineáris kombinációval lehet az azonosan nulla sorozatot (nullelem) előállítani.

5. Legyenek $p_1: R \to R$, $x \mapsto 1$; $p_2: R \to R$, $x \mapsto x+1$; $p_3: R \to R$, $x \mapsto x^2+x+1$; polinomok.

Bázist alkotnak-e a p_1 , p_2 és p_3 polinomok a P_R^2 vektortérben? Ha igen, akkor adjuk meg a $p: R \to R$, $x \mapsto 3x^2 + 2x - 4$ polinom ezen bázisra vonatkozó koordinátáit!

1

<u>Megoldás</u>: Bázistranszformációval ellenőrizhető, hogy a fenti polinomok mindegyike bevonható a bázisba, így azok bázist alkotnak a P_R^2 vektortérben. A p polinom koordinátái: -6, -1, 3.

6. Legyenek $p_1: R \to R$, $x \mapsto x^2 + x + 1$; $p_2: R \to R$, $x \mapsto x + 1$; $p_3: R \to R$, $x \mapsto x$; polinomok. Bázist alkotnak-e a p_1, p_2 és p_3 polinomok a P_R^2 vektortérben? Ha igen, akkor adjuk meg a $p: R \to R$, $x \mapsto 2x^2 + 1$ polinom ezen bázisra vonatkozó koordinátáit!

<u>Megoldás</u>: Bázistranszformációval ellenőrizhető, hogy a fenti polinomok mindegyike bevonható a bázisba, így azok bázist alkotnak a P_R^2 vektortérben. A p polinom koordinátái: 2, -1, -1.

7. Legyenek $p_1: R \to R$, $x \mapsto x^2 + 1$; $p_2: R \to R$, $x \mapsto x + 1$; $p_3: R \to R$, $x \mapsto x^2 + x$; polinomok.

Bázist alkotnak-e a p_1 , p_2 és p_3 polinomok a P_R^2 vektortérben? Ha igen, akkor adjuk meg a $p: R \to R$, $x \mapsto 6x^2 + 7x + 5$ polinom ezen bázisra vonatkozó koordinátáit!

<u>Megoldás</u>: Bázistranszformációval ellenőrizhető, hogy a fenti polinomok mindegyike bevonható a bázisba, így azok bázist alkotnak a P_R^2 vektortérben. A p polinom koordinátái: 2, 3, 4.

8. Bázist alkotnak-e az $R^{2\times 2}$ vektortérben az A, B, C és D mátrixok? Ha igen, akkor határozza meg az X mátrix ezen bázisra vonatkozó koordinátáit!

$$A = \begin{pmatrix} -1 & 3 \\ 0 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}, \quad X = \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}$$

<u>Megoldás</u>: Bázistranszformációval ellenőrizhető, hogy az A, B, C és D mátrixok közül csak három vonható be a bázisba, D=2C+B, így azok lineárisan összefüggőek, nem alkotnak bázist.

9. Bázist alkotnak-e az $R^{2\times 2}$ vektortérben az A, B, C és D mátrixok? Ha igen, akkor határozza meg az X mátrix ezen bázisra vonatkozó koordinátáit!

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix}$$

<u>Megoldás</u>: Bázistranszformációval ellenőrizhető, hogy az *A, B, C* és *D* mátrixok mindegyike bevonható a bázisba, így azok bázist alkotnak. Az *X* mátrix koordinátái: 2, 0, -1, -1.

10. Tekintsük a P_R vektorteret!

$$V_1 := \{ p \in P_R , p \text{ másodfokú} \},$$

$$V_2 := \{ p \in P_p, p \text{ legfeljebb negyedfokú} \},$$

$$V_3 := \{ p \in P_R , \forall x \in R : p(x) \ge 0 \},$$

$$V_4 := \{ p \in P_R , p \text{ páros fokszámú} \},$$

$$V_5 := \{ p \in P_R , \forall x \in R : p(x) = p(-x) \}.$$

Döntse el, hogy V_1, \ldots, V_5 a leszűkített műveletekkel altér-e a P_R vektortérben!

Megoldás: Altér: V2, V5

11. Tekintsük az R^N vektorteret!

$$V_1 := \{(a_n) \in \mathbb{R}^N, \operatorname{az}(a_n) \text{ sorozat első eleme } 0\},$$

$$V_2 := \{(a_n) \in \mathbb{R}^N, \operatorname{az}(a_n) \text{ sorozat konvergens}\},$$

$$V_3 := \{(a_n) \in \mathbb{R}^N, \lim(a_n) = a\}, \text{ ahol } a \in \mathbb{R} \text{ r\"ogz\'itett},$$

 $V_4 := \{(a_n) \in \mathbb{R}^N, \operatorname{az}(a_n) \text{ sorozatnak csak véges sok } 0 - tól különböző eleme van \},$

 $V_5 := \{(a_n) \in \mathbb{R}^N, \operatorname{az}(a_n) \text{ sorozat elemei pozitívak} \},$

 $V_6 := \{(a_n) \in \mathbb{R}^N, \lim(a_n) = \infty\}.$

Döntse el, hogy V_1, \ldots, V_6 a leszűkített műveletekkel altér-e az \mathbb{R}^N vektortérben! **Megoldás:** Altér: V_1 , V_2 , V_3 akkor, ha a=0, V_4

12. Legyen $I \subset R$ az origóra szimmetrikus intervallum. Tekintsük az R^I vektorteret!

 $V_1 := \{ f \in R^I, f \text{ folytonos} \},$

 $V_2 := \{ f \in \mathbb{R}^I, f(0) \ge 0 \},$

 $V_3 := \{ f \in R^I, \forall x \in I : f(x) = f(-x) \},$

 $V_A := \{ f \in \mathbb{R}^I, f(x) = 0, \text{ véges sok } x \text{ kivételével} \},$

 $V_5 := \{ f \in \mathbb{R}^I, f \text{ monoton n\"ovekv\'o} \},$

 $V_6 := \{ f \in \mathbb{R}^I, f \text{ korlátos} \}.$

Döntse el, hogy V_1, \ldots, V_6 a leszűkített műveletekkel altér-e az R^I vektortérben!

Megoldás: Altér: V_1 , V_3 , V_4 és V_6

13. Tekintsük az $R^{n \times n}$ vektorteret!

 $V_1 := \{ A \in \mathbb{R}^{n \times n}, A \text{ diagonális} \},$

 $V_2 := \{ A \in \mathbb{R}^{n \times n}, A \text{ als\'oh\'aromsz\"og m\'atrix} \},$

 $V_3 := \{ A \in \mathbb{R}^{n \times n}, A \text{ utols\'o oszlop\'aban } 0 - k \'allnak \},$

 $V_4 := \{ A \in \mathbb{R}^{n \times n}, A \text{ invertal hat } ó \},$

 $V_5 := \{ A \in \mathbb{R}^{n \times n}, \det(A) = 0 \},$

 $V_6 := \{ A \in \mathbb{R}^{n \times n}, A = A^T \},$

 $V_7 := \{ A \in \mathbb{R}^{n \times n}, A \text{ minden eleme egyenlő} \}.$

Döntse el, hogy V_1, \ldots, V_7 a leszűkített műveletekkel altér-e az $R^{n \times n}$ vektortérben! Ha alterek, mennyi a dimenziójuk?

Megoldás: $V_1 n$ dimenziós altér, $V_2 n^2$ - $(n^2-n)/2$ dimenziós altér, $V_3 n(n-1)$ dimenziós altér, $\overline{V_6 n^2 - (n^2 - n)/2}$ dimenziós altér, V_7 1 dimenziós altér.

14. Adjon meg a P_R^3 vektortérben egy 2-dimenziós és két 1-dimenziós alteret úgy, hogy azok direkt összege legyen P_R^3 !

<u>Útmutatás</u>: Célszerű kiindulni a P_R^3 vektortér egy nevezetes bázisából.

15. Adjon meg az $R^{2\times3}$ vektortérben egy 3-dimenziós, egy 2-dimenziós és egy 1-dimenziós alteret úgy, hogy azok direkt összege legyen $R^{2\times 3}$!

3

Útmutatás: Célszerű kiindulni az $R^{2\times 3}$ vektortér egy nevezetes bázisából.

16. Az alábbi leképezések közül melyek lineárisak?

a, $A: C \to C$, $z \mapsto \text{Re}(z)$

b, $A: C \to C$, $z \mapsto \overline{z}$

c, $A: C \to C$, $z \mapsto |z|$

Megoldás: Az additivitást és a homogenitást kell ellenőrizni. Lineáris a, és b,.

- 17. Igazolja, hogy az alábbi leképezések lineárisak! Adja meg magterüket és képterüket!
 - a, $A: P_R \to P_R$, $p \mapsto p'$ (deriválás)
 - b, $A: P_R \to P_R$, $p \mapsto p \cdot g$ $(g \in P_R \text{ r\"og}\text{z\'itett})$
 - c, $A: P_R \to R$, $p \mapsto p(\alpha)$ ($\alpha \in R$ rögzített)
 - d, $A: P_R \to P_R^n$, minden polinomhoz hozzárendeljük a legfeljebb n-edfokú tagjaiból képzett polinomot ($n \in N$ rögzített)
 - e, Jelölje Va valós számokból álló konvergens sorozatok halmazát.

$$A: V \to R$$
, $(a_n) \mapsto \lim(a_n)$

- f, $A: D(I) \rightarrow R^I$ $f \mapsto f'$ (deriválás)
- g, $A: R^I \to R$, $f \mapsto f(x_0)$ $(x_0 \in I \text{ r\"{o}gz\'{i}tett})$

Megoldás: A linearitáshoz az additivitás és a homogenitás tulajdonságokat kell ellenőrizni.

- a, $ker(A) = P_R^0$, $im(A) = P_R$
- b, $ker(A) = \{o : R \to R, x \mapsto 0\}$, im(A): olyan polinomok, amelyek oszthatóak g-vel
- c, $ker(A) = \{ p \in P_R, p(\alpha) = 0 \}, im(A) = R$
- d, $ker(A) = \{o : R \to R, x \mapsto 0\}$, $im(A) = P_R^n$
- e, ker(A): a 0-hoz konvergáló sorozatok, im(A) = R
- f, ker(A): az I intervallumon értelmezett konstans függvények, im(A): olyan függvények, melyek egy D(I)-beli függvény deriváltjaként előállnak
- g, ker(A): olyan R^I -beli függvények, amelyeknek x_0 -nál a helyettesítési értéke 0, im(A) = R
- 18. Tekintsük az alábbi polinomokat!

$$g: R \to R, x \mapsto x^2 + 1,$$

$$p_n: R \to R, \ x \mapsto x^n, \quad n = 0, 1, 2, 3, 4.$$

Legyen $B_1 = \{p_0, p_1, p_2\}$ bázis a P_R^2 vektortérben, $B_2 = \{p_0, p_1, p_2, p_3, p_4\}$ bázis a P_R^4 vektortérben. Adja meg az $A: P_R^2 \to P_R^4$, $p \mapsto p \cdot g$ lineáris leképezés $B_1 - B_2$ bázisokra vonatkozó mátrixát!

 $\underline{\mathbf{Megold\acute{as}}} : A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

19. Tekintsük az alábbi polinomokat! $p_n : R \to R, x \mapsto x^n, n = 0, 1, 2, 3, 4$.

Legyen $B_1 = \{p_0, p_1, p_2, p_3, p_4\}$ bázis a P_R^4 vektortérben, $B_2 = \{p_0, p_1, p_2, p_3\}$ bázis a P_R^3 vektortérben.

Adja meg az $A: P_R^4 \to P_R^3$, $p \mapsto p'$ (deriválás) lineáris leképezés $B_1 - B_2$ bázisokra vonatkozó mátrixát!

4

Megoldás: $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$