Mayank Agrawal

Postdoctoral Research Associate, School of Engineering, Brown University, Providence RI

www.mayankagr.com

Education

Jan 2015- Dec Ph.D., Chemical Engineering (Minor in Quantum Mechanics), Georgia Institute of Technology (Georgia Tech), Atlanta. GPA: 3.9/4.0.

> Thesis title: Computational Modeling of Adsorption of Complex Molecules in Metal-Organic Frameworks.

Advisor: Prof. David S Sholl

Jul 2009 – Jun B.Tech and M.Tech, Chemical Engineering, Indian Institute of Technology (IIT), Delhi.

2014 M.Tech GPA: 9.5/10.0, B.Tech GPA: 8.5/10.0.

Thesis title: Catalytic steam reforming of model bio-oil over lanthanum doped Ni/CeO₂-ZrO₂

Research Experience

Ph.D. Projects Effect of Metal-Organic Frameworks Flexibility on the Adsorption of Gases.

- o Developed an efficient and accurate methodology that combines ab-initio, Monte Carlo and Molecular Dynamics simulations to study the flexibility effects in MOFs on separation of industrial mixtures.
- Implemented the above methodology to study adsorptive separation of C₈ aromatics in flexible MIL-53.
- Extended the study to CoRE MOF database to explain the MOF flexibility effects on adsorption properties for 13 industrial gases.

Adsorption & Diffusion of Chemical Warfare Agents (CWAs) in MOFs.

- Derived non-bonded classical force-fields for CWAs and their simulants to predict their adsorption properties in MOFs.
- Performed high-throughput screening of MOFs using derived force-fields to find best performing MOFs for CWAs capture.
- Compared the adsorption and diffusion properties of CWAs with their simulants to address the question how accurately simulants are able to mimic CWAs' behavior in MOFs

Masters Project Catalytic Steam Reforming of Model Bio-oil over La Doped Ni/CeO₂-ZrO₂.

- Synthesized Ni/CeO₂-ZrO₂ catalyst with different La metal percentage; carried out catalytic steam reforming using a fixed bed reactor to produce syn gas from model bio-oil.
- Modeled the kinetics of the steam reforming reaction to verify Langmuir-Hinselwood mechanism.

Data Science Course: Data Analytics for Chemical Engineers.

Projects o Developed machine learning models to predict bandgap formation energy of transparent semiconductors using a DFT generated database.

Course: Computational Problem Solving.

• Created a Bitcoin software protocol in C to gain a deeper understanding of Bitcoin networks.

Computational Skills

Atomistic Density Functional Theory (DFT), Monte Carlo (MC), Molecular Dynamics (MD)

Process ASPEN, HYSYS, ANSYS FLUENT

Coding Python, C, Bash scripting, MATLAB, FORTRAN

Peer Reviewing Activities

2018-present Reviewer, Royal Society of Chemistry, Have reviewed 5 journal papers.

2017-present Reviewer, American Chemical Society, Have reviewed 4 journal papers.

Teaching Experience

- 2018–2019 **Teach2Teaching Certificate Recipient**, *Center for Teaching and Learning*, Georgia Tech. The program is designed to prepare Georgia Tech graduate students and postdocs for college teaching positions.
 - Learnt theories of pedagogy that support effective teaching and learning in higher education
 - Applied effective teaching methods by co-teaching "statistical thermodynamics" grad level course with Dr. Carson Meredith as a faculty mentor
- 2015–2016 **Graduate Teaching Assistant**, *Chemical Engineering*, Georgia Tech. Courses: Chemical Engineering Thermodynamics, Unit Operations Lab
 - 2014 **Teaching Faculty**, *Physical Chemistry*, JKs Academy, Mathura, India.
- 2012-2014 **Teaching Assistant**, *Chemical Engineering*, IIT Delhi.

 Courses: Chemical Reaction Engineering, Heterogeneous Catalysis and Catalytic Reactors

Work Experience

2017 **Graduate Summer Intern**, *HyCO R&D*, Praxair Inc, Tonawanda, NY.

Developed a gPROMS based PSA process for syn-gas purifier to replace conventional technology. Analyzed the feasibility of the new process and proposed a cost effective model for two-layer packed bed reactor to achieve desired product purity and high recovery.

Awards

- 2013 **Director's Merit Award**, for being in top 7% students, IIT Delhi.
- 2013 MHRD Scholarship, for securing All India Rank 104 amongst 15000+ in GATE.

Publications & Talks

First-author Journal Articles.

- 1. **Agrawal, M.**, Han, R., Herath, D. & Sholl, D. S. "Does Repeat Synthesis in Materials Chemistry Obey a Power Law?" *Proceedings of National Academy of Sciences* (Accepted). doi:10.1073/pnas.1918484117
- Agrawal, M., Boulfelfel, S. E., Sava-Gallis, D. F., Greathouse, J. A. & Sholl, D. S. "Determining Diffusion Coefficients of Chemical Warfare Agents in Metal-Organic Frameworks." *The Journal* of Physical Chemistry Letters 10 (24), 7823-7830 (2019). doi:10.1021/acs.jpclett.9b03119
- 3. **Agrawal, M.** & Sholl, D. S. "Effect of Flexibility on Adsorption in Nanoporous Materials at Dilute and Non-dilute Loadings." *ACS Applied Materials and Interfaces* 11 (34), 31060-31068 (2019). doi:10.1021/acsami.9b10622
- 4. **Agrawal, M.**, Sava-Gallis, D. F., Greathouse, J. A. & Sholl, D. S. "How Useful are Common Simulants of Chemical Warfare Agents at Predicting Adsorption Behavior?" *The Journal of Physical Chemistry C* 122 (45), 26061-26069 **(2018)**. doi:10.1021/acs.jpcc.8b08856
- Agrawal, M., Bhattacharyya, S., Huang, Y., Jayachandrababu, K. C., Murdock, C. R., Bentley, J. A., Rivas-Cardona, A., Mertens, M., Walton, K. S., Sholl, D. S. & Nair, S. "Liquid Phase Multicomponent Adsorption and Separation of Xylene Mixtures by Flexible MIL-53 Adsorbents." The Journal of Physical Chemistry C 122 (1), 386-397 (2018). doi:10.1021/acs.jpec.7b09105

Co-author Journal Articles.

- 1. Park, J., **Agrawal, M.** Sava-Gallis, D. F., Greathouse J. A. & Sholl, D. S. "Impact of Intrinsic Framework Flexibility for Selective Adsorption of Sarin in Non-Aqueous Solvents using Metal-Organic Frameworks." (Submitted)
- 2. Agrawal, A., **Agrawal, M.**, Donguk, S., Yunsheng, M., Matsuda, R., Endo, A., Hsu, W. & Daiguji, H. "Molecular Simulation Study on the Flexibility in the Interpenetrated Metal-Organic Framework LMOF-201 Using Reactive Force Field." (Submitted)

Conference Talks.

- Agrawal, M. & Sholl, D. S. "Effect of Intrinsic Framework Flexibility on Adsorption Properties in Metal-Organic Frameworks: A Computational Exploration" Gordon Research Seminar on Nanoporous Materials and Their Applications. Andover, NH (2019)
 [One of 10 abstracts selected out of 65 for oral presentations at GRS]
- Agrawal, M., Sava-Gallis, D.F., Greathouse, J.A. & Sholl, D. S. "Computational Screening of Metal-Organic Frameworks for Adsorption of Organophosphate Chemical Warfare Agents." AIChE Annual Meeting. Pittsburgh, PA (2018)
- 3. **Agrawal, M.**, Sava-Gallis, D.F., Greathouse, J.A. & Sholl, D. S. "Transferability of Adsorption Properties between Chemical Warfare Agents and Their Simulants." *Annual ChBE Graduate Colloquium*, Georgia Institute of Technology, Atlanta GA (2018)
- Agrawal, M., Bhattacharyya, S., Rivas-Cardona, A., Mertens, M., Walton, K. S., Nair, S. & Sholl, D. S. "Framework Flexibility Driven Adsorptive Separation of C₈ Aromatic Isomers in Metal-Organic Frameworks: A Computational Exploration." AIChE Annual Meeting. Minneapolis, MN (2017)
- 5. **Agrawal, M.**, Bhattacharyya, S., Rivas-Cardona, A., Mertens, M., Walton, K. S., Nair, S. & Sholl, D. S. "Effect of Breathing in MIL-53 on Adsorption of C₈ Aromatic Isomers." *ChBE Graduate Research Symposium*, Georgia Institute of Technology, Atlanta GA (2017)

Poster Presentations.

 Agrawal, M. & Sholl, D. S. "Effect of Intrinsic Framework Flexibility on Adsorption Properties in Metal-Organic Frameworks: A Computational Exploration" Gordon Research Conference on Nanoporous Materials and Their Applications. Andover, NH (2019)

Invited Talks.

- Agrawal, M. & Sholl, D.S. "Effect of Intrinsic Framework Flexibility on Adsorption Properties of MOFs at Low and High Loadings."
 - Indian Institute of Technology (IIT) Bombay, Mumbai, India (January, 2019)
 - Indian Institute of Technology (IIT) Madras, Chennai, India (January, 2019)
 - Indian Institute of Technology (IIT) Kanpur, Kanpur, India (January, 2019)