

+354/1/14+

Examen de THEG

Mars 2018, S6, ING1.

Durée: 1 heure

- Aucun document ni appareil électronique autorisé.
- Noircir les cases au stylo (pas de crayon à papier) et sans déborder sur les voisines car la correction est automatisée.
- Certaines réponses incorrectes apportent des points négatifs. Dans le doute, s'abstenir.
- Marquez toutes les réponses correctes dans les questions marquées avec .
- Lorsqu'une réponse numérique demande plusieurs chiffres, les chiffres sont lus de haut en bas.

Prénom, NOM	UID: 0 1 2 3 4 5 6 7 8
Alexandre BUHL	1 2 3 4 5 6 7 8
Meritaria V. C. V. VII.	

1 Rayon et diamètre

Soit G=(V,E,w) un graphe connexe où chaque arête $e\in E$ est pondérée par une longueur $w(e)\geq 0$. Pour deux sommets v_1 et $v_2\in V$, on note $d(v_1,v_2)$ la longueur du plus court chemin les reliant. L'excentricité du sommet $v\in V$, notée exc(v), est sa distance au sommet le plus éloigné :

$$exc(v) = \max\{d(v, u) \mid u \in V\}.$$

Le rayon de G, noté r(G), est la valeur de la plus petite excentricité, tandis que le diamètre D(G) est la plus grande :

$$r(G) = \min\{exc(v) \mid v \in V\}$$
$$D(G) = \max\{exc(v) \mid v \in V\}$$

Question 1 Soit *M* la matrice des distances calculée en appliquant l'algorithme de Floyd-Warshall sur *G*.

- D(G) est la plus grande valeur de M.
- r(G) est la plus petite valeur de M.
- D(G) s'obtient en calculant d'abord le minimum m_i pour chaque ligne i de M, puis en retournant le maximum de ces m_i .
- r(G) s'obtient en calculant d'abord le maximum m_i pour chaque ligne i de M, puis en retournant le minimum de ces m_i .
- On a toujours $D(G) = 2 \times r(G)$.

1.5/3

- On a toujours $r(G) \leq D(G) \leq 2 \times r(G)$.
- On a toujours $r(G) < D(G) < 2 \times r(G)$.
- D(G) = r(G) si et seulement si G est complet.
- $D(G) = 2 \times r(G)$ si et seulement si G est complet.

Question 2 • On considère le graphe $G_1 = (V_1, E_1, w_1)$ où, V_1 représente les stations du métro parisien, E_1 relie les stations voisines sur une ligne de métro, et w_1 donne le temps (supposé constant) de parcours entre deux stations voisines. On néglige les coûts de correspondance.

- $D(G_1)$ est un temps suffisant pour aller de l'importe quel endroit à n'importe quel autre.
- $D(G_1)$ est la durée de la plus longue balade que l'on puisse faire dans le métro sans passer deux fois au même endroit.
- Il existe une ou plusieurs stations dont l'excentricité est égale à $D(G_1)$.
- Il existe une ou plusieurs stations dont l'excentricité est égale à $r(G_1)$.
- L'excentricité d'une station donne le temps maximum pour rejoindre n'importe quelle autre station.
- L'excentricité d'une station donne le temps minimum pour rejoindre n'importe quelle autre station.

On considère le graphe G_2 ci-contre, où toutes les arêtes ont pour poids 1.

Question 3 Le rayon de G₂ est

Question 4 Le diamètre de G₂ est

1/1

1/1

4.5/4

2 Coloration Gloutone

1/1

Le nombre chromatique d'un graphe G=(V,E) est le nombre de couleurs minimum nécessaire pour colorier les sommets du graphe de façon à ce que deux sommets voisins ne partagent pas la même couleur.

Question 5 Quel est le nombre chromatique du graphe G_2 de la question 3?

$\square_0 \square_1 \square$]2 []3 🏩4 [П5 П6 Г	7 8 9
			7, [, [,]

L'algorithme suivant calcule un coloriage des sommets du graphe. Les sommets sont parcourus dans un ordre donné en argument, et coloriés par la première couleur disponible et non-utilisée par les voisins déjà coloriés. Pour un sommet $x \in V$, on note adj(x) l'ensemble des sommets voisins : $adj(x) = \{y \mid (x,y) \in E\}$, qu'on suppose stockés sous la forme d'une liste d'adjacence.

```
GREEDYCOLOR(G = (V, E), \sigma)
Entrée : un graphe G, un ordre sur les sommets \sigma
         (\sigma est une permutation de V)
Sortie : un tableau de couleurs C indicé par les sommets
     // marquer toutes les couleurs comme disponibles
     for each c \in \{1, ..., |V|\}
          Avail[c] \leftarrow 1
 2
     // initialement les sommets ne sont pas coloriés
     for each x \in V
 3
          C[x] \leftarrow 0
 4
 5
     for each x in \sigma:
         // repérage des couleurs voisines
 6
         for each y \in adj(x):
 7
             Avail[C[y]] \leftarrow 0
         // recherche de la première couleur libre
 8
 9
         while Avail[i] = 0
10
             i \leftarrow i + 1
         // affectation de la couleur trouvée
11
         C[x] \leftarrow i
         // remise à disposition des couleurs voisines
12
         for each y \in adj(x):
             Avail[C[y]] \leftarrow 1
13
14
     return C
```

Dans cet algorithme, les couleurs sont désignées par des numéros de 1 à |V|. La valeur C[x] donne la couleur du sommet x, ou 0 s'il n'est pas colorié. Le tableau Avail est utilisé pour repérer les couleurs utilisées par les sommets voisins, afin de pouvoir trouver la première couleur inutilisée (notez que Avail[0] peut changer de valeur aux lignes 7 et 13, mais ne sera jamais lu, la boucle de la ligne 9 commençant à l'indice 1).

Question 6 Combien de fois la ligne 7 est-elle e précisément?	xécutée		
$ \begin{array}{c cccc} & V & V ^2 & E - 1 & E \\ & V - 1 & 2 \times V & E & E \\ \end{array} $	$ E ^2$ $2 \times E $ $ V \cdot E $ $ V + E $		
Question 7 Sachant que le nombre total d'exécution de la ligne 10 ne peut dépasser $ E $, donnez la complexité de l'algorithme GREEDYCOLOR? (Attention, le graphe peut ne pas être connexe.)			
$\begin{array}{c ccc} & \bigcirc O(V ^2) & & \bigcirc O(V + E) & \bigcirc \Theta(I) \\ & \bigcirc \Theta(E) & & \bigcirc \Theta(V) & & & \\ & \bigcirc O(E) & & \bigcirc \Theta(V ^2) & & \bigcirc O(I) \\ & \bigcirc \Theta(V \cdot E) & & \bigcirc O(V) & & \bigcirc O(I) \end{array}$	$V + E $) $V \cdot E $) $0/2$		
3 Divers Question 8			
On considère le graphe non-orienté dont voici la matrice d'adjacence. Combien possède-t-il d'arbres couvrants différents? $\begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}$			
□0 □1 ■2 □3 □4 □5 □6 □7 □8 □0 □1 □2 □3 ■4 □5 □6 □7 □8	9 9 0/2		
Question 9 L'algorithme de Bellman-Ford por cherche de plus court chemin	ur la re-		
 fonctionne uniquement sur des graphes n dérés. 			
 fonctionne dans des graphes pondérés ment s'il n'y a pas de cycle de somme négat fonctionne dans des graphes pondérés ment si les poids sont tous positifs. 	tive.		
Question 10 & L'algorithme d'Edmonds vu e	n cours		

De calculer un couplage parfait.

De calculer un couplage maximum.

De calculer un couplage maximal.

0.5/2