Question	Answer	Marks	Guidance
(a)	Express as $(x+3)^2 + (y-1)^2 = 26+9+1[=36]$	M1	Completing the square on x and y or using the form $x^2+y^2+2gx+2fy+c=0$, centre $(-g,-f)$ and radius $\sqrt{g^2+f^2-c}$. SOI by correct answer.
	Centre (-3, 1)	B1	
	Radius 6	B1	
	So lowest point is $(-3, -5)$	A1 FT	FT on their centre and their radius.
		4	
(b)	Intersects when $x^2 + (kx-5)^2 + 6x - 2(kx-5) - 26 = 0$ or $(x+3)^2 + (kx-5-1)^2 = 36$	*M1	Substituting $y = kx - 5$ into <i>their</i> circle equation or rearranging and equating y.
	$x^{2} + k^{2}x^{2} - 10kx + 25 + 6x - 2kx + 10 - 26 = 0$ or $x^{2} + 6x + 9 + k^{2}x^{2} - 12kx + 36 = 36$ leading to $k^{2}x^{2} + x^{2} + 6x - 12kx + 9[=0]$ or $(k^{2} + 1)x^{2} + (6 - 12k)x + 9[=0]$	DM1	Rearranging to 3-term quadratic (terms grouped, all on one side). Allow 1 error. Correct quadratic (need to see 9 as constant term).
	$(6-12k)^{2} - 4(k^{2}+1) \times 9 > 0$ [leading to $144k^{2} - 144k + 36 - 36k^{2} - 36 > 0$]	DM1	Using discriminant $b^2 - 4ac [> 0]$ with their values. Allow if in square root.
	$[108k^2 - 144k = 0 \text{ leading to}]$ $k = 0 \text{ or } k = \frac{4}{3}$	A1	Need not see method for solving.
	$k < 0, k > \frac{4}{3}$	A1	Do not accept $\frac{4}{3} < k < 0$.
		6	