Quaternion Practice

1) Given 2 quaternions, q_1 and q_2 , calculate:

1)
$$\tilde{q}_1, \tilde{q}_2$$

2)
$$N(q_1), N(q_2)$$

3)
$$q_1^{-1}, q_2^{-1}$$

4)
$$q_1 + q_2$$

5)
$$q_1 \bullet q_2$$

6)
$$q_1q_2$$

In each case:

A:
$$q_1 = [2,1,3,1]$$
 $q_2 = [1,1,0,2]$

B:
$$q_1 = [3, 2, 1, 1]$$
 $q_2 = [2, 2, 1, 0]$

C:
$$q_1 = [-2, -1, 1, 3]$$
 $q_2 = [5, 0, 0, 1]$

D:
$$q_1 = [2, -1, 1, 0]$$
 $q_2 = [-1, 3, -4, 1]$

2)

Answer the following ten questions letting q_0 be the quaternion representing a rotation of 180° about the Z-axis and q_1 the quaternion representing a rotation of 120° about an axis parallel to the vector <1, 1, -1>.

- (a) Construct the quaternions q_0 and q_1 .
- (b) Determine the sum of q₀ and q₁.
- (c) Determine the conjugate of q₀.
- (d) Determine $q_2 = s q_0$ if s = 2.
- (e) Determine the norm of q₂ from the previous question.
- (f) Determine $q_0 \bullet q_1$.
- (g) Determine $q_0 q_1$.
- (h) Convert q₀ to a rotation matrix.
- (i) Rotate the vector s = <1, 0, 0> with the quaternion q_0 .
- 3) Given the following quaternions $q_0 = [2, 3, 2, 1]$ and $q_1 = [3, 2, -2, 0]$
 - (a) Determine $q_0 + q_1$
 - (b) Determine $q_0 q_1$
 - (c) Determine $q_0 \bullet q_1$
 - (d) Determine the inverse $\boldsymbol{q}_{\scriptscriptstyle 0}$. The inverse of a quaternion \boldsymbol{q} is defined as

$$q^{-1} = \frac{\widetilde{q}}{N(q)}$$

Where \tilde{q} is the conjugate of q and N(q) its norm.

(e) Determine the angle between the 2 quaternions . $\cos\theta = \frac{q_0 \bullet q_1}{\sqrt{N(q_0)} \bullet \sqrt{N(q_1)}}$

$$q_0q_1 = [a, \overrightarrow{v_0}][b, \overrightarrow{v_1}] = [a.b - \overrightarrow{v_0} \bullet \overrightarrow{v_1}, a\overrightarrow{v_1} + b\overrightarrow{v_0} + \overrightarrow{v_0} \times \overrightarrow{v_1}]$$

- 4) Given the following quaternions $q_0 = [2, 0, -1, 2]$ and $q_1 = [3, 2, 0, 3]$
 - (a) Determine q₀ + q₁
 - (b) Determine q₀ q₁
 - (c) Determine q₀•q
 - (d) Determine the inverse q_0 . The inverse of a quaternion q is defined as

$$q^{-1} = \frac{\widetilde{q}}{N(q)}$$

Where \tilde{q} is the conjugate of q and N(q) its norm.

(e) Determine the angle between the 2 quaternions.

$$\cos\theta = \frac{q_0 \bullet q_1}{\sqrt{N(q_0)} \bullet \sqrt{N(q_1)}}$$

$$q_{0}q_{1} = [a, \overrightarrow{v_{0}}][b, \overrightarrow{v_{1}}] = [a.b - \overrightarrow{v_{0}} \bullet \overrightarrow{v_{1}}, a\overrightarrow{v_{1}} + b\overrightarrow{v_{0}} + \overrightarrow{v_{0}} \times \overrightarrow{v_{1}}]$$

5) The quaternion representation of a rotation of angle θ about an arbitrary axis spanned by the vector \vec{v} is $q = [\cos(\frac{\theta}{2}), \hat{v} \bullet \sin(\frac{\theta}{2})]$ where \hat{v} =normalized vector of \vec{v} .

Let q_0 be the quaternion representing a rotation of 90° about the Y-axis and q_1 the quaternion representing a rotation of 180° about an axis parallel to the vector < 1, 1, 0>.

- (a) Construct the quaternion q₀.
- (b) Construct the quaternion q₁.
- (c) Determine the conjugate of q₁.
- (d) Determine the angle θ between the two quaternion . $\theta = \cos^{-1}(q_0 \bullet q_1)$
- 6) The quaternion representation of a rotation of angle θ about an arbitrary axis spanned by the vector \vec{v} is $q = [\cos(\frac{\theta}{2}), \hat{v} \bullet \sin(\frac{\theta}{2})]$ where \hat{v} =normalized vector of \vec{v} .

Let q_0 be the quaternion representing a rotation of 90° about the Z-axis and q_1 the quaternion representing a rotation of 180° about an axis parallel to the vector < -1, 0, 1>.

- (a) Construct the quaternions q₀.
- (b) Construct the quaternions q_1 .
- (c) Determine the conjugate of q_1 .
- (d) Determine the angle θ between the two quaternions . $\theta = \cos^{-1}(q_0 \bullet q_1)$