

Consistency and minimax rates for online Mondrian Forests

Jaouad Mourtada Stéphane Gaïffas Erwan Scornet

Motivation

Random Forests (RF) classifiers, starting in early 2000s with [2]:

- Are widely used in practice;
- Often achieve state-of-the-art results;
- But the theory is **underdeveloped**: some **consistency** results (often under some restrictions on the joint distribution), rarely **rates of convergence** [1].

Mondrian Forests is an **online** RF algorithm [3] based on the **Mondrian Process** [4], a distribution on **tree partitions** of $[0,1]^d$.

- Computationally attractive (can be updated easily);
- Good accuracy/complexity tradeoff;
- Lack theoretical guarantees/analysis;
- Depends on complexity parameter $\lambda \in \mathbb{R}^+$: how to tune it?

Our contributions

- Amending the procedure to increase $\lambda = \lambda_n$ in a streaming setting: otherwise **inconsistent**;
- Analysis of the **statistical properties** of Mondrian Forests:
- Universal consistency of the amended procedure;
- Much better: in fact, proper tuning of λ_n leads to minimax nonparametric rates, in arbitrary dimension d.

 First minimax optimal rates for a RF method when $d \ge 2$ (case d = 1 was done by [1]).

Setting

Classification (same for regression):

- Samples $\mathcal{D}_n: (X_1,Y_1),\ldots,(X_n,Y_n)\in [0,1]^d\times\{0,1\}$, i.i.d., same distribution as (X,Y). μ distribution of X, $\eta(x)=\mathbb{P}(Y=1|X=x)$ conditional class probability.
- Goal: using the samples \mathcal{D}_n , output a (possibly randomized) classification rule $g_n: [0,1]^d \to \{0,1\}$ such that as $n \to \infty$

$$L(g_n) := \mathbb{P}(g_n(X) = Y) \to L^* := \inf_{g:[0,1]^d \to \{0,1\}} \mathbb{P}(g(X) \neq Y)$$

• Online algorithm: new points (X_t, Y_t) arrive sequentially, classifiers are updated on the fly.

Contact information

Mail: jaouad.mourtada@polytechnique.edu

The Mondrian process

A distribution $MP(\lambda, C)$ on **tree partitions** (kd-trees) of the rectangular box $C \subseteq \mathbf{R}^d$ [4]. $\lambda \in \mathbf{R}^+$ is the **lifetime parameter** which guides the **complexity** of the partitions.

Mondrian (λ, C) : Samples $M_{\lambda} \sim \mathsf{MP}(\lambda, C)$

- 1: **Start** with the root cell C, formed at time $\tau_C = 0$.
- 2: **for** $A = \prod_{j=1}^{d} [a_j, b_j]$ a leaf of current partition formed at τ_A **do**
- 3: **Sample** $E_A \sim \text{Exp}(|A|)$, where $|A| := \sum_{j=1}^{d} (b_j a_j)$.
- 4: if $\tau_A + E_A \leqslant \lambda$ then
- 5: Draw a split dimension $J \in \{1, ..., d\}$, with $\mathbb{P}(J = j) = (b_j a_j)/|A|$, and a split threshold $s_J \sim \mathcal{U}([a_J, b_J])$
- 6: **Split** A at (J, s_J) with children A_L, A_R formed at $\tau_A + E_A$.
- 7: Add A_L , A_R to the leaves of the partition.
- 8: end if
- : **Remove** *A* from the remaining leaves.
- 10: **end for**

Mondrian Forests

At step $t \ge 1$, given \mathcal{D}_t , we have K independent randomized decision trees $g_t^k(\cdot)$, $1 \le k \le K$, $1 \le t \le n$. As new sample point (X_{t+1}, Y_{t+1}) arrives:

• Efficiently update the **structure** of the trees, using the **properties of the Mondrian process**. Update in space domain (original MF) *vs* time domain (ours). Can be **combined**.

Original MF [3]	Our modified MF
upd. data range: $C_{t+1} \supset C_t$	upd. lifetime: $\lambda_{t+1} > \lambda_t$
$MP(\lambda, C_t) \to MP(\lambda, C_{t+1})$	$MP(\lambda_t, C) \to MP(\lambda_{t+1}, C)$

• Update leaf labels given (X_t, Y_t) .

Universal consistency

Theorem 1 (Consistency). Assume that $\lambda_n \to \infty$ and $\lambda_n^d/n \to 0$. Then, under **no restriction** on the distribution of (X,Y), Mondrian Forests with lifetimes sequence (λ_n) are **consistent**: $L(g_n) \to L^*$.

Minimax nonparametric rates

Theorem 2 (Minimax rates). Assume that $\eta : [0,1]^d \to [0,1]$ is **Lip-schitz**. Then, Mondrian Forests with lifetime sequence $\lambda_n \asymp n^{1/(d+2)}$ satisfy

$$L(g_n) - L^* = o(n^{-1/(d+2)})$$

which is the optimal convergence rate under this hypothesis [5].

Proof ideas

Bias-variance decomposition for forests [1]. Difficulty: in dimension $d \ge 2$, tree partitions have a **recursive structure**, not straightforward to control precisely (dependence on previous splits...).

- Controlling first the combinatorial tree structure, then the geometry of the partition is **suboptimal** (\Rightarrow suboptimal rates).
- Mondrian processes have appealing restriction properties that enable to directly control the induced partition.

Key Lemmas

Tight control of local and global properties of tree partitions.

Lemma 1. Let $D_{\lambda}(x)$ be the diameter of the cell containing $x \in [0,1]^d$ in a Mondrian $M_{\lambda} \sim \mathsf{MP}(\lambda, [0,1]^d)$. For every $\delta > 0$, we have

$$\mathbb{P}(D_{\lambda}(x) \geqslant \delta) \leqslant d\left(1 + \frac{\lambda \delta}{\sqrt{d}}\right) \exp\left(-\frac{\lambda \delta}{\sqrt{d}}\right).$$

Lemma 2. If $M_{\lambda} \sim \mathsf{MP}(\lambda, [0, 1]^d)$, the number of splits K_{λ} in M_{λ} satisfies: $\mathbb{E}[K_{\lambda}] \leq (e(1 + \lambda))^d$.

Subsequent work

- "Forest effect" [1]: in practice, Forests outperform single trees. Can be explained theoretically: if η is smooth, Forests exhibit improved rates (by smoothing predictions).
- Parameter-free algorithm competitive with the best choice of λ_n through efficient aggregation (\Rightarrow adaptive rates).

References

- [1] S. Arlot and R. Genuer. Analysis of purely random forests bias. *arXiv preprint arXiv:1407.3939*, 2014.
- [2] L. Breiman. Random forests. *Machine Learning*, 45(1):5–32, 2001.
- [3] B. Lakshminarayanan, D. M. Roy, and Y. W. Teh. Mondrian forests: Efficient online random forests. In *NIPS*, pages 3140–3148, 2014.
- [4] D. M. Roy and Y. W. Teh. The Mondrian process. In NIPS, pages 1377–1384, 2009.
- [5] Y. Yang. Minimax nonparametric classification. I. Rates of convergence. *IEEE Transactions on Information Theory*, 45(7):2271–2284, 1999.