1. 设随机	变量 X~	B (n , p),且	EX=2	.4, <i>DX</i> =	1.44,	则 n , p	の的値
为().								
(A) $n =$	4, p =	0.6		(B)	n=6,	p = 0).4	
(C) n=	8, p=0	.3		(D)	n=24,	p = 0	0.1	
2.设随机多	を量 X 的分	分 布列为	$ \int_{0}^{1} \left(\frac{1}{p_1} \right)^{-1} $	$ \begin{array}{ccc} 0 & 1 \\ p_2 & p_3 \end{array} $), 且#	EX = 0.1	1, <i>DX</i> :	= 0.89
则(p ₁ ,p ₂	$(p_3) = ($).						
(A)	(0.4,	0.1, 0	.5)		(B)	(0.1,	0.4,	0.5)
(<i>C</i>)	(0.5,	0.1,	0.4)		(D)	(0.4,	0.5,	0.1)
3. 设两个	相互独立	的随机。	变量 X	和Y的	方差分	·别为 4	和 2,	
则随机	变量 3X-	2Y 的方	差是().				
(A) 8	(B)	16	(C)	28	(D)	44		
4. 设随机	变量 X ~ l	V (-4,.	3), Y~	N(2,	2), 且	X = Y	相互	独立,
Z = 3X	T-2Y+1,	则 DZ	为().				
(A)	45	(B)	13	(C) 35		(D)) 19
5. 设随机	变量 X 和	Y的方	差存在	且不等	于 0,			
则 D (X	+Y) = D	X + DX	是X	和 Y ().			
(A) 不	相关的充分	分条件,	但不是	是必要多	条件			
(B) 独立	立的必要急	条件,但	1不是3	充分条件	牛			
(C) 不	相关的充分	分必要多	条件					
(D) 独立	立的充分。	必要条件	‡					

6. 设随机变量 X 和 Y 独立同分布,记 U = X - Y, V = X + Y,则随机变量 U 与 V 必然 ().

(A) 不独立

- 独立 (B)
- (C) 相关系数不为 0
- (D) 相关系数为 0

7. 设X是一随机变量, $EX = \mu$,则对任意常数c,必有(

$$(A) E (X-c)^2 = EX^2-c^2$$

(A)
$$E(X-c)^2 = EX^2-c^2$$
 (B) $E(X-c)^2 = E(X-\mu)^2$

$$(C) E (X-c)^2 < E (X-u)^2$$

$$(C) E (X-c)^2 < E (X-\mu)^2$$
 $(D) E (X-c)^2 \ge E (X-\mu)^2$

8. 设随机变量 X,Y 不相关,且 EX = 2, EY = 1, DX = 3,则

$$E[X(X+Y-2)] = ($$
).

- (A) -3 (B) 3 (C) -5
- (D) 5

9. 若 X_1, \dots, X_n 为总体 $N(\mu, \sigma^2)$ 的样本,而 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$,

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$, 则下列结果中不正确的是().

$$(A)\overline{X}$$
与 S^2 相互独立

(B)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

(C)
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

(D)
$$\frac{\overline{X} - \mu}{\sigma} \sim N(0,1)$$

10. 设 (X_1, X_2, \dots, X_n) 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, μ 和 σ^2 为未知参数,且

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $Q^2 = \sum_{i=1}^{n} (X_i - \overline{X})^2$,

则检验假设 $H_0: \mu = 0$ 时,应选取的统计量为().

(A)
$$\sqrt{n(n-1)}\frac{\overline{X}}{Q}$$

(B)
$$\sqrt{n} \frac{\overline{X}}{Q}$$

(C)
$$\sqrt{n-1}\frac{\overline{X}}{Q}$$

(D)
$$\sqrt{n} \frac{\overline{X}}{O^2}$$

11. 设总体 X 服从参数 $\lambda = 10$ 的泊松(Poisson)分布,现从该总 体中随机选出容量为20一个样本,则该样本的样本均值的方差为

- (A). 1; (B). 0.5; (C). 5; (D). 50.

12. 设 $X \sim N(\mu, \sigma^2)$, Y = aX - b, 其中a、b为常数, 且 $a \neq 0$, 则 Y ~

- (A) $N(a\mu-b, a^2\sigma^2+b^2);$ (B) $N(a\mu+b, a^2\sigma^2-b^2);$

 - (C). $N(a\mu+b, a^2\sigma^2);$ (D). $N(a\mu-b, a^2\sigma^2)$

13. 设随机变量 X,Y 相互独立, 其分布函数分别为 $F_X(x),F_Y(y)$,

则 $Z = \min\{X,Y\}$ 的分布函数为 ()

- $\begin{array}{ll} (A) \ \ F_Z(z) = F_X(x) & (B) \ \ F_Z(z) = F_Y(y) \\ (C) \ \ F_Z(z) = \min\{F_X(x), F_Y(y)\} & (D) \ \ \hline F_Z(z) = 1 [1 F_X(z)][1 F_Y(z)] \end{array}$

14. 设随机变量 X,Y 独立同分布, 且 X 的分布函数分别为 F(x),

则 $Z = \max\{X,Y\}$ 的分布函数为()

- $(A) F^2(z)$

- (B) F(x)F(y) (C) $1-[1-F(z)]^2$ (D) [1-F(x)][1-F(y)]

15. 已知离散型随机变量X的分布函数为

$$F(x) = \begin{cases} 0, & x < 0 \\ 0.2, 0 \le x < 1 \\ 0.8, 1 \le x < 2 \\ 1, x \ge 2 \end{cases} \quad \text{M} \quad EX = \underline{\qquad}, \quad DX = \underline{\qquad}$$

16. 设随机变量 X 在区间 [-1 , 2] 上服从均匀分布,随机变
--

$$Y = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$
 , 则方差 $DY =$ ______.

- 17. 设 X 表示 10 次独立重复射击命中目标的次数,已知每次射中目标的概率为 0.4,则 X^2 的数学期望 EX^2 = .
- 18. 设随机变量 X 服从参数为 λ 的泊松分布, 且已知 E[(X-I)(X-2)]=1,则 $\lambda=$ ______.
- 19.设随机变量 X 与 Y 相互独立, X 在区间 [2, 4] 上服从均匀分布, Y 服从参数为 2 的指数分布,则 $E(XY) = ___$, D $(X+Y) = ___$.
- 20. 若随机变量 X 服从均值为 2,方差为 σ^2 的正态分布,且 P(2 < x < 4) = 0.3,则 P(x < 0) =
- 22. 设 X, Y 是两个相互独立的且服从正态分布 N (0, $\frac{1}{2}$)的随机变量,则 E |X-Y| = _____.
- 23. 设随机变量 X 和 Y 的相关系数为 0.9, 若 Z = X 0.4,则 Y 与 Z 的相关系数为_____.
- 24. 设总体 X 服从 (0-1) 分布, $P\{X=1\}=p$, X_1, \dots, X_n 是来自 X 的样本,则 $E\overline{X}=($), $D\overline{X}=($), $ES^2=($)
- 25. 设 $X \sim t(n)$, 则 $\frac{1}{X^2} \sim$ ______.
- 26. 已知随机变量 X 服从参数为 2 的泊松(Poisson)分布,且随

机变量Z=2X-2,则E(Z)= _____.

27. 设总体 $X \sim N(\mu, 0.4^2)$, $(x_1, x_2, \dots, x_{16})$ 是从中抽取的一个样本的样本观测值,算得 $\bar{x} = 10.12$,则 μ 的置信度为 0.95 的置信区间为______.

(己知: $\Phi(1.96) = 0.975, \Phi(1.645) = 0.95,$)

28 设随机变量 X 和 Y 的联合概率密度为:

$$f(x,y) = \begin{cases} 1, & 0 < x < 1; 0 < y < 2(1-x) \\ 0, & 其他 \end{cases}$$

求: 随机变量 Z=X+Y 的概率密度;

29. 设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1; \\ 0, & 其他 \end{cases}$$

求 EX, EY, DX, EXY 。

- 30. 一个袋子中有n个小球,编号分别为1, 2, …, n, 从中有放回地抽取k个球,以X表示所得号码之和,求EX
- 31. 设来自总体 $N(\mu_1,16)$ 一容量为 15 的样本,其样本均值 $\overline{x_1} = 14.6$; 来自总体 $N(\mu_2,9)$ 的一个容量为 20 的样本,其样本均值 $\overline{x_2} = 13.2$,并且两样本是相互独立的,试求 $\mu_1 \mu_2$ 的置信度为 0.90 的置信区间.
- 32. 设总体 $X \sim N(0, \sigma^2)$, (X_1, X_2, \dots, X_n) 是取自该总体中的一个样本. 求 σ^2 的极大似然估计量;