

## Outline

- In this module, the students will learn the following
  - Interface a specific I2C sensors to ATMega328p



## MPU-6050

- GY-521 MPU6050 3-Axis Acceleration Gyroscope 6DOF Module
- MPU6050 contains both a 3-Axis Gyroscope and a 3-Axis accelerometer allowing measurements of both independently, but all based around the same axes.
- Accelerometer ranges: ±2, ±4, ±8, ±16g
- Gyroscope ranges: ± 250, 500, 1000, 2000 °/s
- Voltage range: 3.3V 5V (voltage regulator)









## MPU-6050





## MPU-6050 Register Map

### 4.28 Register 107 – Power Management 1 PWR MGMT 1

Type: Read/Write

| Register<br>(Hex) | Register<br>(Decimal) | Bit7            | Bit6  | Bit5  | Bit4 | Bit3     | Bit2        | Bit2 Bit1 |  |
|-------------------|-----------------------|-----------------|-------|-------|------|----------|-------------|-----------|--|
| 6B                | 107                   | DEVICE<br>RESET | SLEEP | CYCLE | -    | TEMP_DIS | CLKSEL[2:0] |           |  |

#### **Description:**

This register allows the user to configure the power mode and clock source. It also provides a bit for resetting the entire device, and a bit for disabling the temperature sensor.

## 4.5 Register 28 – Accelerometer Configuration ACCEL\_CONFIG

Type: Read/Write

| Register<br>(Hex) | Register (Decimal) | Bit7  | Bit6  | Bit5  | Bit4  | Bit3     | Bit2 | Bit1 | Bit0 |
|-------------------|--------------------|-------|-------|-------|-------|----------|------|------|------|
| 1C                | 28                 | XA_ST | YA_ST | ZA_ST | AFS_S | SEL[1:0] |      | -    |      |

#### 6.2 Accelerometer Specifications

VDD = 2.375V-3.46V, VLOGIC (MPU-6050 only) =  $1.8V\pm5\%$  or VDD,  $T_A = 25$  °C

| AFS_SEL=0 | 16,384 |
|-----------|--------|
| AFS_SEL=1 | 8,192  |
| AFS_SEL=2 | 4,096  |
| AFS_SEL=3 | 2,048  |

| PARAMETER                          | CONDITIONS                        | MIN | TYP    | MAX | UNITS | NOTES |
|------------------------------------|-----------------------------------|-----|--------|-----|-------|-------|
| ACCELEROMETER SENSITIVITY          |                                   |     |        |     |       |       |
| Full-Scale Range                   | AFS_SEL=0                         |     | ±2     |     | g     |       |
|                                    | AFS_SEL=1                         |     | ±4     |     | g     |       |
|                                    | AFS_SEL=2                         |     | ±8     |     | g     |       |
|                                    | AFS_SEL=3                         |     | ±16    |     | g     |       |
| ADC Word Length                    | Output in two's complement format |     | 16     |     | bits  |       |
| Sensitivity Scale Factor           | AFS_SEL=0                         |     | 16,384 |     | LSB/g |       |
|                                    | AFS_SEL=1                         |     | 8,192  |     | LSB/g |       |
|                                    | AFS_SEL=2                         |     | 4,096  |     | LSB/g |       |
|                                    | AFS_SEL=3                         |     | 2,048  |     | LSB/g |       |
| Initial Calibration Tolerance      |                                   |     | ±3     |     | %     |       |
| Sensitivity Change vs. Temperature | AFS_SEL=0, -40 °C to +85 °C       |     | ±0.02  |     | %/℃   |       |
| Nonlinearity                       | Best Fit Straight Line            |     | 0.5    |     | %     |       |
| Cross-Axis Sensitivity             |                                   |     | +2     |     | %     |       |



# MPU-6050 Register Map

## 4.4 Register 27 – Gyroscope Configuration GYRO CONFIG

Type: Read/Write

| Register<br>(Hex) | Register<br>(Decimal) | Bit7  | Bit6  | Bit5  | Bit4        | Bit3 | Bit2 | Bit1 | Bit0 |
|-------------------|-----------------------|-------|-------|-------|-------------|------|------|------|------|
| 1B                | 27                    | XG_ST | YG_ST | ZG_ST | FS_SEL[1:0] |      | -    | -    | -    |

FS\_SEL selects the full scale range of the gyroscope outputs according to the following table.

| FS_SEL | Full Scale Range |
|--------|------------------|
| 0      | ± 250 %s         |
| 1      | ± 500 %s         |
| 2      | ± 1000 %s        |
| 3      | ± 2000 %s        |

#### 6.1 Gyroscope Specifications

VDD = 2.375V - 3.46V, VLOGIC (MPU-6050 only) = 1.8V±5% or VDD,  $T_A = 25$  °C

| PARAMETER                                              | CONDITIONS                  | MIN | TYP   | MAX | UNITS     | NOTES |
|--------------------------------------------------------|-----------------------------|-----|-------|-----|-----------|-------|
| GYROSCOPE SENSITIVITY                                  |                             |     |       |     |           |       |
| Full-Scale Range                                       | FS_SEL=0                    |     | ±250  |     | º/s       |       |
|                                                        | FS_SEL=1                    |     | ±500  |     | º/s       |       |
|                                                        | FS_SEL=2                    |     | ±1000 |     | º/s       |       |
|                                                        | FS_SEL=3                    |     | ±2000 |     | º/s       |       |
| Gyroscope ADC Word Length                              |                             |     | 16    |     | bits      |       |
| Sensitivity Scale Factor                               | FS_SEL=0                    |     | 131   |     | LSB/(º/s) |       |
|                                                        | FS_SEL=1                    |     | 65.5  |     | LSB/(º/s) |       |
|                                                        | FS_SEL=2                    |     | 32.8  |     | LSB/(º/s) |       |
|                                                        | FS_SEL=3                    |     | 16.4  |     | LSB/(º/s) |       |
| Sensitivity Scale Factor Tolerance                     | 25℃                         | -3  |       | +3  | %         |       |
| Sensitivity Scale Factor Variation Over<br>Temperature |                             |     | ±2    |     | %         |       |
| Nonlinearity                                           | Best fit straight line; 25℃ |     | 0.2   |     | %         |       |
| Cross-Axis Sensitivity                                 |                             |     | ±2    |     | %         |       |

## MPU-6050 Initialization

```
void MPU6050 Init()/* Gyro initialization function */
  _delay_ms(150);/* Power up time >100ms */
  I2C Start Wait(0xD0);/* Start with device write address */
  I2C_Write(SMPLRT_DIV);/* Write to sample rate register */
  I2C Write(0x07);/* 1KHz sample rate */
  I2C Stop();
  I2C Start Wait(0xD0);
  I2C Write(PWR MGMT 1);/* Write to power management register */
  I2C Write(0x01);/* X axis gyroscope reference frequency */
  I2C_Stop();
  I2C Start Wait(0xD0);
  I2C Write(CONFIG);/* Write to Configuration register */
  I2C Write(0x00);/* Fs = 8KHz */
  I2C Stop();
  I2C Start Wait(0xD0);
  I2C Write(GYRO CONFIG);/* Write to Gyro configuration register */
  I2C Write(0x18);/* Full scale range +/- 2000 degree/C */
  I2C Stop();
  I2C Start Wait(0xD0);
  I2C Write(INT ENABLE);/* Write to interrupt enable register */
  I2C_Write(0x01);
  I2C Stop();
```



## MPU-6050 Individual Read & Write Function

```
void MPU6050 writereg(uint8 t reg, uint8 t val)
i2c start(MPU6050+I2C WRITE);
i2c write(reg); // go to register e.g. 106 user control
i2c write(val); // set value e.g. to 0100 0000 FIFO enable
i2c stop();  // set stop condition = release bus
uint16 t MPU6050 readreg(uint8 t reg)
i2c start wait(MPU6050+I2C WRITE); // set device address and write mode
i2c write(reg);
                                  // ACCEL XOUT
i2c_rep_start(MPU6050+I2C_READ); // set device address and read mode
                      // read one intermediate byte
raw = i2c readAck();
raw = (raw<<8) | i2c readNak(); // read last byte</pre>
i2c stop();
return raw;
                        // go to register 107 set value to 0000 0000 and wake up sensor
                        MPU6050 writereg(0x6B, 0x00);
                         // read raw X acceleration from fifo
                         Acc x = MPU6050 \text{ readreg}(0x3B);
```



# MPU-6050: Accelerometer Register Map

| Addr<br>(Hex) | Addr<br>(Dec.) | Register Name | Serial<br>I/F | Bit7 | Bit6             | Bit5 | Bit4    | Bit3      | Bit2 | Bit1 | BitO |  |  |
|---------------|----------------|---------------|---------------|------|------------------|------|---------|-----------|------|------|------|--|--|
| 3B            | 59             | ACCEL_XOUT_H  | R             |      | ACCEL_XOUT[15:8] |      |         |           |      |      |      |  |  |
| 3C            | 60             | ACCEL_XOUT_L  | R             |      |                  |      | ACCEL_> | (ОՄ[7:0]  |      |      |      |  |  |
| 3D            | 61             | ACCEL_YOUT_H  | R             |      |                  |      | ACCEL_Y | OUT[15:8] |      |      |      |  |  |
| 3E            | 62             | ACCEL_YOUT_L  | R             |      |                  |      | ACCEL_  | ⁄о౮[7:0]  |      |      |      |  |  |
| 3F            | 63             | ACCEL_ZOUT_H  | R             |      |                  |      | ACCEL_Z | OUT[15:8] |      |      |      |  |  |
| 40            | 64             | ACCEL_ZOUT_L  | R             |      |                  |      | ACCEL_  | OUT[7:0]  |      |      |      |  |  |
| 41            | 65             | TEMP_OUT_H    | R             |      | TEMP_OUT[15:8]   |      |         |           |      |      |      |  |  |
| 42            | 66             | TEMP_OUT_L    | R             |      | TEMP_OUT[7:0]    |      |         |           |      |      |      |  |  |



# MPU6050 – Gyroscope Register Map

| Addr<br>(Hex) | Addr<br>(Dec.) | Register Name | Serial<br>I/F | Bit7 | Bit6            | Bit5 | Bit4   | Bit3      | Bit2 | Bit1 | Bit0 |  |  |
|---------------|----------------|---------------|---------------|------|-----------------|------|--------|-----------|------|------|------|--|--|
| 43            | 67             | GYRO_XOUT_H   | R             |      | GYRO_XOUT[15:8] |      |        |           |      |      |      |  |  |
| 44            | 68             | GYRO_XOUT_L   | R             |      |                 |      | GYRO_X | OUT[7:0]  |      |      |      |  |  |
| 45            | 69             | GYRO_YOUT_H   | R             |      |                 |      | GYRO_Y | OUT[15:8] |      |      |      |  |  |
| 46            | 70             | GYRO_YOUT_L   | R             |      |                 |      | GYRO_Y | OUT[7:0]  |      |      |      |  |  |
| 47            | 71             | GYRO_ZOUT_H   | R             |      | GYRO_ZOUΤ[15:8] |      |        |           |      |      |      |  |  |
| 48            | 72             | GYRO_ZOUT_L   | R             |      | GYRO_ZOUT[7:0]  |      |        |           |      |      |      |  |  |
|               |                |               | · ·           |      |                 |      |        |           |      |      |      |  |  |



### MPU-6050 Continuous Read & Write Function

```
void MPU_Start_Loc()
{
    I2C_Start_Wait(0xD0);/* I2C start with device write address */
    I2C_Write(ACCEL_XOUT_H);/* Write start location address from where to read */
    I2C_Repeated_Start(0xD1);/* I2C start with device read address */
}

void Read_RawValue()
{
    MPU_Start_Loc();/* Read Gyro values */
    Acc_x = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());
    //.. Read other registers
    I2C_Stop();
}</pre>
```



## MPU-6050 Main Function

```
#include "MPU6050 def.h"/* Include MPU6050 register define file */
                  #include "i2c master.h"/* Include I2C Master header file */
                  #include "uart.h"/* Include USART header file */
int main()
 char buffer[20], float_[10];
 float Xa;
 I2C Init();/* Initialize I2C */
 MPU6050 Init();/* Initialize MPU6050 */
 USART Init(9600);/* Initialize USART with 9600 baud rate */
 while(1)
   Read RawValue();
   /* Divide raw value by sensitivity scale factor to get real values */
   Xa = Acc x/16384.0;
   /* Take values in buffer to send all parameters over USART */
   dtostrf( Xa, 3, 2, float );
   sprintf(buffer, " Ax = %s g\t", float );
   USART SendString(buffer);
```



## MPU-6050 Demo





# Summary

- On completion of this module student should be able to
  - Understand I<sup>2</sup>C module in AVRs
  - Program using assembly and C program to store and retrieve data in/from an I<sup>2</sup>C device

