Pulse Width Modulation

Pulse Width Modulation

- * Pulse Width Modulation (PWM) is controlling the pulse width of a digital signal for a given period
- * Typically the width of the pulse is HIGH half of the period and LOW the other half, but can be changed
 - HIGH 40% of the period, and LOW 60%
 - HIGH 75% of period, and LOW 25%

Duty Cycle

- * Duty Cycle is the percent of the pulse HIGH compared to the period
- * PWM is expressed as a duty cycle

* Given the following waveform, what is the duty cycle?

* For a 2 kHz signal, how long would the signal need to be HIGH to give a duty cycle of 35%?

Average Voltage Value

- * A smaller duty cycle delivers an effective lower voltage value
- Motor turn slower or light appear dimmer

$$V_{average} = DutyCycle * V_{HIGH}$$

What Uses PWM?

- * Motors
- ° DC motors use PWM for speed
- ° Servos use for positioning
- ° Stepper for moving and maintaining an angle
- * Lighting for dimmer or brighter light
- * Audio signals

Creating PWM

- * PWM is created by comparing a control value to a count value
- ° The frequency of the PWM is determined by the master clock and size of the counter
- ° The resolution of the PWM is determined by the size of the counter and comparator
- ° The duty cycle is determined by how the outputs of the comparator are used
- * This technique is not exclusive to this course, microcontrollers generate PWM using this method of a counter with a comparator

Frequency and Resolution of PWM

- * The resolution of the duty cycle is a function of the size of the counter
- ° Every change in one bit of the control value will adjust the duty cycle by the resolution

$$DC \, Resolution(\%) = \frac{1}{2^n} * 100$$
, where n is number of bits in counter

* Frequency of the PWM is a function of the master clock and size of the counter

$$f_{PWM} = \frac{f_{CLK}}{2^n}$$
, where n is number of bits in counter

* A 4-bit counter running at 160 kHz is to be used to generate a PWM. What is the PWM resolution and frequency?

PWM Control Value

- * The control value is used to specify a duty cycle
- ° It is compared to the current count of the counter
- * The output of the comparator will create different duty cycle
- ° Equal –
- ° Less Than -
- Greater Than -

Achieve 100% Duty Cycle

* OR equal and Less Than together

* * 100

* Using a 4-bit PWM, what is the control value to achieve the following duty cycles if the output from the comparator is equal OR less than?

- ° 50%
- ° 25%
- ° 80%

Steps To Create PWM

- 1. Determine size of PWM. Determines how many counters and comparators are used.
- 2. Set control value to give desired duty cycle.
- 3. Use appropriate output of comparator for duty cycle.

- * Design the complete PWM circuit that has the following
- ° 4-bit PWM
- ° Creates ~60% duty cycle
- ° Use 4-bit synchronous counter and 4-bit comparator
- * For the created PWM circuit
- What is the resolution of the PWM?
- ° If a 100 kHz master clock is used, what is the PWM frequency?

4-Bit PWM

* Create a 7-bit PWM circuit that has ~40% duty cycle

7 - Bit PWM

