LUNDS TEKNISKA HÖGSKOLA MATEMATISKA INSTITUTIONEN

LÖSNINGAR OPTIMERING 2013–04–02 kl 08–13

-1 -1 0 0

0 -3 0 1

Answers and Comments¹

- 1. **a)** $H = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$, pos.-semidef. by definition.
 - b) Yes as a superposition of convex and increasing $\ln(1+\exp(t))$ and convex f(x).
 - c) No, for example $(1,0,0)^T$ and $(-1,0,0)^T$ belong to the set, but not the middle of the interval (the origin).
- **2. a)** For example, $d_3 = (0, 1, -1)^T$ (there are many possibilities).

- **3. a)** Min = 11 at x = (3, 1).
 - **b)** The dual problem is

$$\max (4y_1 + 5y_2 + 6y_3) \quad \text{subject to} \begin{cases} 2y_1 + y_2 + y_3 & \leq 2, \\ y_1 + 2y_2 + 3y_3 & = 5, \\ \text{all } y_k & \geq 0. \end{cases}$$

Max = 11 at y = (0, 1, 1) (CSP: $y_1 = 0$, equality in the first).

c) Introduce $x_1 = z_1$, $x_2 = z_2 - z_3$, all $z_k \ge 0$, and pick the extreme point (0,4)

	*			*	*]		
-2	5	5		0	0	n	\Rightarrow	8	0
					-	4		2	1
2	Ţ	-1	- I	U	0	4		3	0
1	2		0	-1	0	5		5	0
1	3	-3	0	0	-1	6)	

- 4. a) See the book.
 - b) Not convex (draw $y = \ln(1+r^2)$ in (r, y)-plane to see, alt. calculate the Hessian).
 - c) Convex as equivalent to $\{x; ||x|| \leq \sqrt{\exp(\alpha) 1}\}$ and the norm is convex.
- **5.** A KKT point is (0, 1, 5). The problem is convex, thus KKT is the global minimum. Min = 27.
- **6. a)** The dual function is $\Theta(u,v) = 1 u 6v \frac{v^2(u+2)}{4(u+1)}$. $\max_{u \geq 0,v} \Theta(u,v) = 27$ at u = 4, v = -10. Since $\Theta(4,-10) = f(0,1,5)$ there is no duality gap.
 - **b**) See the book.

¹For re-exams only answers are provided.