Package 'multIntTestFunc'

September 7, 2024

Type Package

Title Provides Test Functions for Multivariate Integration

Version 0.3.0

Maintainer Klaus Herrmann < klaus.herrmann@usherbrooke.ca>

Description Provides implementations of functions that can be used to test multivariate integration routines. The package covers six different integration domains (unit hypercube, unit ball, unit sphere, standard simplex, non-negative real numbers and R^n). For each domain several functions with different properties (smooth, non-differentiable, ...) are available. The functions are available in all dimensions n >= 1. For each function the exact value of the integral is known and implemented to allow testing the accuracy of multivariate integration routines. Details on the available test functions can be found at on the development website.

License MIT + file LICENSE

 ${\bf URL}\ {\it https://github.com/KlausHerrmann/multIntTestFunc}$

Imports methods, mytnorm, pracma, stats **Suggests** knitr, rmarkdown, statmod, testthat

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.1.9000

Collate 'AllGeneric.R' 'Pn_lognormalDensity.R' 'Pn_logtDensity.R' 'Rn_Gauss.R' 'Rn_floorNorm.R' 'Rn_normalDensity.R' 'Rn_tDensity.R' 'domainChecks.R' 'misc.R' 'multIntTestFunc.R' 'standardSimplex_Dirichlet.R' 'standardSimplex_exp_sum.R' 'unitBall_normGauss.R' 'unitBall_polynomial.R' 'unitCube_BFN1.R' 'unitCube_BFN2.R' 'unitCube_BFN3.R' 'unitCube_BFN4.R' 'unitCube_Genz1.R' 'unitCube_cos2.R' 'unitCube_floor.R' 'unitCube_max.R' 'unitSphere_innerProduct1.R' 'unitSphere_polynomial.R'

NeedsCompilation no

Author Klaus Herrmann [aut, cre] (https://orcid.org/0000-0002-8044-5717)

2 Contents

Repository CRAN

Date/Publication 2024-09-07 13:40:02 UTC

Contents

Index

checkClosedUnitBall
checkClosedUnitCube
checkPos
checkRn
checkStandardSimplex
checkUnitSphere
domainCheck
domainCheckP
evaluate
exactIntegral
getIntegrationDomain
getReferences
getTags
multIntTestFunc
pIntRule
Pn_lognormalDensity-class
Pn_logtDensity-class
$Rn_floorNorm\text{-}class \dots $
Rn_Gauss-class
Rn_normalDensity-class
Rn_tDensity-class
standardSimplex_Dirichlet-class
standardSimplex_exp_sum-class
unitBall_normGauss-class
unitBall_polynomial-class
unitCube_BFN1-class
unitCube_BFN2-class
unitCube_BFN3-class
unitCube_BFN4-class
unitCube_cos2-class
unitCube_floor-class
unitCube_Genz1-class
unitCube_max-class
unitSphere_innerProduct1-class
unitSphere_polynomial-class

35

checkClosedUnitBall 3

checkClosedUnitBall

Domain check for closed unit ball $\{\vec{x} \in R \hat{\ } n : \|\vec{x}\|_2 \leq 1\}$

Description

The function checks if a point (one row in the input argument) is inside the closed unit ball $\{\vec{x} \in R^n : \|\vec{x}\|_2 \le 1\}$ or not. If the input matrix contains entries that are not numeric, i.e., not representing real numbers, the function throws an error. The dimension n is automatically inferred from the input matrix and is equal to the number of columns.

Usage

```
checkClosedUnitBall(x)
```

Arguments

Х

Matrix with numeric entries. Each row represents one point

Value

Vector where each element (TRUE or FALSE) indicates if a point is in the closed unit ball

Author(s)

Klaus Herrmann

Examples

```
x <- matrix(rnorm(30),10,3)
checkClosedUnitBall(x)</pre>
```

checkClosedUnitCube

Domain check for closed unit hypercube $[0,1]^n$

Description

The function checks if a point (one row in the input argument) is inside the closed unit hypercube $[0,1]^n$ or not. If the input matrix contains entries that are not numeric, i.e., not representing real numbers, the function throws an error. The dimension n is automatically inferred from the input matrix and is equal to the number of columns.

```
checkClosedUnitCube(x)
```

4 checkPos

Arguments

Х

Matrix with numeric entries. Each row represents one point

Value

Vector where each element (TRUE or FALSE) indicates if a point is in the unit hypercube

Author(s)

Klaus Herrmann

Examples

```
x <- matrix(rnorm(30),10,3)
checkClosedUnitCube(x)</pre>
```

checkPos

Domain check for $[0, \infty)$ \hat{n}

Description

The function checks if a point (one row in the input argument) is inside $[0,\infty)^n = \times_{i=1}^n [0,\infty)$ or not. In this case the return values are all TRUE. If the input matrix contains entries that are not numeric, i.e., not representing real numbers, the function throws an error. The dimension n is automatically inferred from the input matrix and is equal to the number of columns.

Usage

```
checkPos(x)
```

Arguments

Х

Matrix with numeric entries. Each row represents one point

Value

Vector where each element (TRUE or FALSE) indicates if a point is in $[0, \infty)^n$

Author(s)

Klaus Herrmann

```
x <- matrix(rexp(30,rate=1),10,3)
checkPos(x)</pre>
```

checkRn 5

checkRn

Domain check for R^n

Description

The function checks if a point (one row in the input argument) is inside the n-dimensional Euclidean space $R^n = \times_{i=1}^n R$ or not. In this case the return values are all TRUE. If the input matrix contains entries that are not numeric, i.e., not representing real numbers, the function throws an error. The dimension n is automatically inferred from the input matrix and is equal to the number of columns.

Usage

checkRn(x)

Arguments

Х

Matrix with numeric entries. Each row represents one point

Value

Vector where each element (TRUE or FALSE) indicates if a point is in R^n

Author(s)

Klaus Herrmann

Examples

```
x <- matrix(rnorm(30),10,3)
checkRn(x)</pre>
```

checkStandardSimplex

Domain check for standard simplex $\{\vec{x} \in R \hat{\ } n : x_i \geq 0, \|\vec{x}\|_1 \leq 1\}$

Description

The function checks if a point (one row in the input argument) is inside the standard simplex $\{\vec{x} \in \mathbb{R}^n : x_i \geq, \|\vec{x}\|_1 \leq 1\}$ or not. If the input matrix contains entries that are not numeric, i.e., not representing real numbers, the function throws an error. The dimension n is automatically inferred from the input matrix and is equal to the number of columns.

```
checkStandardSimplex(x)
```

6 checkUnitSphere

Arguments

x Matrix with numeric entries. Each row represents one point

Value

Vector where each element (TRUE or FALSE) indicates if a point is in the standard simplex

Author(s)

Klaus Herrmann

Examples

```
x <- matrix(rnorm(30),10,3)
checkStandardSimplex(x)</pre>
```

checkUnitSphere

Domain check for unit sphere $\{\vec{x} \in R \hat{\ } n : ||\vec{x}||_2 = 1\}$

Description

The function checks if a point (one row in the input argument) is inside the unit sphere $\{\vec{x} \in R^n : \|\vec{x}\|_2 = 1\}$ or not. If the input matrix contains entries that are not numeric, i.e., not representing real numbers, the function throws an error. The dimension n is automatically inferred from the input matrix and is equal to the number of columns. The function allows for an additional parameter $\varepsilon \geq 0$ to test $\{\vec{x} \in R^n : 1 - \varepsilon \leq \|\vec{x}\|_2 \leq 1 + \varepsilon\}$. WARNING: Due to floating point arithmetic the default value of $\varepsilon = 0$ will not work properly in most cases.

Usage

```
checkUnitSphere(x, eps = 0)
```

Arguments

Matrix with numeric entries. Each row represents one point
 Non-negative numeric that allows to test points with an additional tolerance

Value

Vector where each element (TRUE or FALSE) indicates if a point is in the unit sphere

Author(s)

Klaus Herrmann

```
x <- matrix(rnorm(30),10,3)
checkUnitSphere(x,eps=0.001)</pre>
```

domainCheck 7

domainCheck

Check if node points are in the domain of a test function instance

Description

domainCheck is a generic function that allows to test if a collection of evaluation points are inside the integration domain associated to the test function instance or not.

```
domainCheck(object, x)
## S4 method for signature 'Pn_lognormalDensity, matrix'
domainCheck(object, x)
## S4 method for signature 'Pn_logtDensity, matrix'
domainCheck(object, x)
## S4 method for signature 'Rn_Gauss, matrix'
domainCheck(object, x)
## S4 method for signature 'Rn_floorNorm, matrix'
domainCheck(object, x)
## S4 method for signature 'Rn_normalDensity, matrix'
domainCheck(object, x)
## S4 method for signature 'Rn_tDensity,matrix'
domainCheck(object, x)
## S4 method for signature 'standardSimplex_Dirichlet,matrix'
domainCheck(object, x)
## S4 method for signature 'standardSimplex_exp_sum,matrix'
domainCheck(object, x)
## S4 method for signature 'unitBall_normGauss,matrix'
domainCheck(object, x)
## S4 method for signature 'unitBall_polynomial,matrix'
domainCheck(object, x)
## S4 method for signature 'unitCube_BFN1,matrix'
domainCheck(object, x)
## S4 method for signature 'unitCube_BFN2,matrix'
domainCheck(object, x)
```

8 domainCheckP

```
## S4 method for signature 'unitCube_BFN3,matrix'
domainCheck(object, x)
## S4 method for signature 'unitCube_BFN4,matrix'
domainCheck(object, x)
## S4 method for signature 'unitCube_Genz1,matrix'
domainCheck(object, x)
## S4 method for signature 'unitCube_cos2, matrix'
domainCheck(object, x)
## S4 method for signature 'unitCube_floor,matrix'
domainCheck(object, x)
## S4 method for signature 'unitCube_max,matrix'
domainCheck(object, x)
## S4 method for signature 'unitSphere_innerProduct1,matrix'
domainCheck(object, x)
## S4 method for signature 'unitSphere_polynomial,matrix'
domainCheck(object, x)
```

Arguments

object Test function that gets evaluated

x Matrix where each row represents one evaluation point

Value

Vector where each element (TRUE or FALSE) indicates if a point (row in the input matrix) is in the integration domain

Author(s)

Klaus Herrmann

domainCheckP	Check if node points are in the domain of a test function instance ("overload" of domainCheck with additional parameter)
	(overround of domain energy with additional parameter)

Description

domainCheckP is a generic function that allows to test if a collection of evaluation points are inside the integration domain associated to the test function instance or not. This "overload" of domainCheck allows to pass a list of additional parameters.

evaluate 9

Usage

```
domainCheckP(object, x, param)
## S4 method for signature 'unitSphere_innerProduct1,matrix,list'
domainCheckP(object, x, param)
## S4 method for signature 'unitSphere_polynomial,matrix,list'
domainCheckP(object, x, param)
```

Arguments

object Test function that gets evaluated

x Matrix where each row represents one evaluation point

param List of additional parameters

Value

Vector where each element (TRUE or FALSE) indicates if a point (row in the input matrix) is in the integration domain

Author(s)

Klaus Herrmann

evaluate

Evaluate test function instance for a set of node points

Description

evaluate is a generic function that evaluates the test function instance for a collection of evaluation points represented by a matrix. Each row is one evaluation point.

```
evaluate(object, x)

## S4 method for signature 'Pn_lognormalDensity,matrix'
evaluate(object, x)

## S4 method for signature 'Pn_logtDensity,ANY'
evaluate(object, x)

## S4 method for signature 'Rn_Gauss,matrix'
evaluate(object, x)

## S4 method for signature 'Rn_floorNorm,matrix'
```

10 evaluate

```
evaluate(object, x)
## S4 method for signature 'Rn_normalDensity, matrix'
evaluate(object, x)
## S4 method for signature 'Rn_tDensity, ANY'
evaluate(object, x)
## S4 method for signature 'standardSimplex_Dirichlet,matrix'
evaluate(object, x)
## S4 method for signature 'standardSimplex_exp_sum,matrix'
evaluate(object, x)
## S4 method for signature 'unitBall_normGauss,matrix'
evaluate(object, x)
## S4 method for signature 'unitBall_polynomial,matrix'
evaluate(object, x)
## S4 method for signature 'unitCube_BFN1,matrix'
evaluate(object, x)
## S4 method for signature 'unitCube_BFN2,matrix'
evaluate(object, x)
## S4 method for signature 'unitCube_BFN3,matrix'
evaluate(object, x)
## S4 method for signature 'unitCube_BFN4,matrix'
evaluate(object, x)
## S4 method for signature 'unitCube_Genz1, matrix'
evaluate(object, x)
## S4 method for signature 'unitCube_cos2, matrix'
evaluate(object, x)
## S4 method for signature 'unitCube_floor,matrix'
evaluate(object, x)
## S4 method for signature 'unitCube_max,matrix'
evaluate(object, x)
## S4 method for signature 'unitSphere_innerProduct1,matrix'
evaluate(object, x)
## S4 method for signature 'unitSphere_polynomial,matrix'
```

exactIntegral 11

```
evaluate(object, x)
```

Arguments

object Test function that gets evaluated

x Matrix where each row represents one evaluation point

Value

Vector where each element is an evaluation of the test function for a node point (row in x)

Author(s)

Klaus Herrmann

exactIntegral

Get exact integral for test function instance

Description

exactIntegral is a generic function that allows to calculate the exact value of a test function instance over the associated integration domain.

```
exactIntegral(object)

## S4 method for signature 'Pn_lognormalDensity'
exactIntegral(object)

## S4 method for signature 'Pn_logtDensity'
exactIntegral(object)

## S4 method for signature 'Rn_Gauss'
exactIntegral(object)

## S4 method for signature 'Rn_floorNorm'
exactIntegral(object)

## S4 method for signature 'Rn_normalDensity'
exactIntegral(object)

## S4 method for signature 'Rn_tDensity'
exactIntegral(object)

## S4 method for signature 'standardSimplex_Dirichlet'
exactIntegral(object)
```

12 exactIntegral

```
## S4 method for signature 'standardSimplex_exp_sum'
exactIntegral(object)
## S4 method for signature 'unitBall_normGauss'
exactIntegral(object)
## S4 method for signature 'unitBall_polynomial'
exactIntegral(object)
## S4 method for signature 'unitCube_BFN1'
exactIntegral(object)
## S4 method for signature 'unitCube_BFN2'
exactIntegral(object)
## S4 method for signature 'unitCube_BFN3'
exactIntegral(object)
## S4 method for signature 'unitCube_BFN4'
exactIntegral(object)
## S4 method for signature 'unitCube_Genz1'
exactIntegral(object)
## S4 method for signature 'unitCube_cos2'
exactIntegral(object)
## S4 method for signature 'unitCube_floor'
exactIntegral(object)
## S4 method for signature 'unitCube_max'
exactIntegral(object)
## S4 method for signature 'unitSphere_innerProduct1'
exactIntegral(object)
## S4 method for signature 'unitSphere_polynomial'
exactIntegral(object)
```

Arguments

object The test function that gets evaluated

Value

Numeric value of the integral of the test function

getIntegrationDomain 13

Author(s)

Klaus Herrmann

getIntegrationDomain Get description of integration domain for test function instance

Description

getIntegrationDomain is a generic function that returns a description of the integration domain associate to the test function instance.

```
getIntegrationDomain(object)
## S4 method for signature 'Pn_lognormalDensity'
getIntegrationDomain(object)
## S4 method for signature 'Pn_logtDensity'
getIntegrationDomain(object)
## S4 method for signature 'Rn_Gauss'
getIntegrationDomain(object)
## S4 method for signature 'Rn_floorNorm'
getIntegrationDomain(object)
## S4 method for signature 'Rn_normalDensity'
getIntegrationDomain(object)
## S4 method for signature 'Rn_tDensity'
getIntegrationDomain(object)
## S4 method for signature 'standardSimplex_Dirichlet'
getIntegrationDomain(object)
## S4 method for signature 'standardSimplex_exp_sum'
getIntegrationDomain(object)
## S4 method for signature 'unitBall_normGauss'
getIntegrationDomain(object)
## S4 method for signature 'unitBall_polynomial'
getIntegrationDomain(object)
## S4 method for signature 'unitCube_BFN1'
```

14 getReferences

```
getIntegrationDomain(object)
## S4 method for signature 'unitCube_BFN2'
getIntegrationDomain(object)
## S4 method for signature 'unitCube_BFN3'
getIntegrationDomain(object)
## S4 method for signature 'unitCube_BFN4'
getIntegrationDomain(object)
## S4 method for signature 'unitCube_Genz1'
getIntegrationDomain(object)
## S4 method for signature 'unitCube_cos2'
getIntegrationDomain(object)
## S4 method for signature 'unitCube_floor'
getIntegrationDomain(object)
## S4 method for signature 'unitCube_max'
getIntegrationDomain(object)
## S4 method for signature 'unitSphere_innerProduct1'
getIntegrationDomain(object)
## S4 method for signature 'unitSphere_polynomial'
getIntegrationDomain(object)
```

Arguments

object

Test function for which the description is returned

Value

Description of the integration domain of the function

Author(s)

Klaus Herrmann

getReferences

Get references for test function instance

Description

getReferences is a generic function that returns a vector of references associated to the test function instance.

getReferences 15

```
getReferences(object)
## S4 method for signature 'Pn_lognormalDensity'
getReferences(object)
## S4 method for signature 'Pn_logtDensity'
getReferences(object)
## S4 method for signature 'Rn_Gauss'
getReferences(object)
## S4 method for signature 'Rn_floorNorm'
getReferences(object)
## S4 method for signature 'Rn_normalDensity'
getReferences(object)
## S4 method for signature 'Rn_tDensity'
getReferences(object)
## S4 method for signature 'standardSimplex_Dirichlet'
getReferences(object)
## S4 method for signature 'standardSimplex_exp_sum'
getReferences(object)
## S4 method for signature 'unitBall_normGauss'
getReferences(object)
## S4 method for signature 'unitBall_polynomial'
getReferences(object)
## S4 method for signature 'unitCube_BFN1'
getReferences(object)
## S4 method for signature 'unitCube_BFN2'
getReferences(object)
## S4 method for signature 'unitCube_BFN3'
getReferences(object)
## S4 method for signature 'unitCube_BFN4'
getReferences(object)
## S4 method for signature 'unitCube_Genz1'
getReferences(object)
```

16 getTags

```
## S4 method for signature 'unitCube_cos2'
getReferences(object)

## S4 method for signature 'unitCube_floor'
getReferences(object)

## S4 method for signature 'unitCube_max'
getReferences(object)

## S4 method for signature 'unitSphere_innerProduct1'
getReferences(object)

## S4 method for signature 'unitSphere_polynomial'
getReferences(object)
```

Arguments

object

Test function for which the references are returned

Value

Vector with references for the specific function

Author(s)

Klaus Herrmann

getTags

Get tags for test function instance

Description

getTags is a generic function that returns a vector of tags associated to the test function instance.

```
getTags(object)
## S4 method for signature 'Pn_lognormalDensity'
getTags(object)
## S4 method for signature 'Pn_logtDensity'
getTags(object)
## S4 method for signature 'Rn_Gauss'
getTags(object)
## S4 method for signature 'Rn_floorNorm'
```

getTags 17

```
getTags(object)
## S4 method for signature 'Rn_normalDensity'
getTags(object)
## S4 method for signature 'Rn_tDensity'
getTags(object)
## S4 method for signature 'standardSimplex_Dirichlet'
getTags(object)
## S4 method for signature 'standardSimplex_exp_sum'
getTags(object)
## S4 method for signature 'unitBall_normGauss'
getTags(object)
## S4 method for signature 'unitBall_polynomial'
getTags(object)
## S4 method for signature 'unitCube_BFN1'
getTags(object)
## S4 method for signature 'unitCube_BFN2'
getTags(object)
## S4 method for signature 'unitCube_BFN3'
getTags(object)
## S4 method for signature 'unitCube_BFN4'
getTags(object)
## S4 method for signature 'unitCube_Genz1'
getTags(object)
## S4 method for signature 'unitCube_cos2'
getTags(object)
## S4 method for signature 'unitCube_floor'
getTags(object)
## S4 method for signature 'unitCube_max'
getTags(object)
## S4 method for signature 'unitSphere_innerProduct1'
getTags(object)
## S4 method for signature 'unitSphere_polynomial'
```

18 pIntRule

```
getTags(object)
```

Arguments

object

Test function for which the tags are returned

Value

Vector with tags related to the function

Author(s)

Klaus Herrmann

multIntTestFunc

multIntTestFunc: A package to define test functions for multivariate numerical integration.

Description

The multIntTestFunc package provides multivariate test functions to test numerical integration routines. The functions are available in all dimensions n>=1 and the exact value of the integral is known.

multIntTestFunc functions

The multIntTestFunc functions are S4 classes that are instantiated with the dimension and additional parameters if necessary. They implement methods to evaluate the function for given evaluation points (arranged in a matrix) and to evaluate the exact value of the integral of the function over the respective integration domain.

pIntRule	Product rule for numerical quadrature from univariate nodes and
	weights

Description

The function allows to build a multivariate quadrature rule from univariate ones. The multivariate node points are all possible combinations of the univariate node points, and the final weights are the product of the respective univariate weights.

```
pIntRule(x, dim = NULL)
```

Arguments

Χ

Either a list with two elements \$nodes and \$weights representing a one dimensional quadrature formula which are then used for all dimensions, or a list where each element is a itself a list with two elements \$nodes and \$weights. In this case the respective quadrature rule is used for each dimension.

dim

An integer that defines the dimension of the output quadrature formula. Default is NULL. If dim is NULL then x has to be a list of quadrature rules (list of lists) and the dimensions is automatically generated. If dim is a positive integer value the same quadrature rule is used in all dimensions.

Value

A list with a matrix of multivariate node points (each row is one point) and a vector of corresponding weights

Author(s)

Klaus Herrmann

Examples

```
require(statmod)
herm <- gauss.quad(2,"hermite")
lag <- gauss.quad(3,"laguerre")
qRule1 <- pIntRule(herm,2)
qRule2 <- pIntRule(list(herm,lag))</pre>
```

Pn_lognormalDensity-class

An S4 class to represent the function
$$\frac{1}{(\prod_{-i=1}\hat{} nx_{-i})\sqrt{(2\pi)\hat{} n \det(\Sigma)}} \exp(-((\ln(\vec{x}) - \vec{\mu})\hat{} T\Sigma\hat{} - 1(\ln(\vec{x}) - \vec{\mu}))/2) \ on \ [0,\infty)\hat{} n$$

Description

Implementation of the function

$$f \colon R^n \to [0, \infty), \ \vec{x} \mapsto f(\vec{x}) = \frac{1}{(\prod_{i=1}^n x_i) \sqrt{(2\pi)^n \det(\Sigma)}} \exp(-((\ln(\vec{x}) - \vec{\mu})^T \Sigma^{-1} (\ln(\vec{x}) - \vec{\mu}))/2),$$

where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $[0, \infty)^n = \times_{i=1}^n [0, \infty)$. In this case the integral is know to be

$$\int_{R^n} f(\vec{x})d\vec{x} = 1.$$

Details

The instance needs to be created with three parameters representing the dimension n, the location vector $\vec{\mu}$ and the variance-covariance matrix Σ which needs to be symmetric positive definite.

Slots

dim An integer that captures the dimension
mean A vector of size dim with real entries.
sigma A matrix of size dim x dim that is symmetric positive definite.

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
f <- new("Pn_lognormalDensity",dim=n,mean=rep(0,n),sigma=diag(n))</pre>
```

Pn_logtDensity-class An S4 class to represent the function
$$(\prod_i = 1 \hat{\ } nx_i \hat{\ } -1) \frac{\Gamma[(\nu+n)/2]}{\Gamma(\nu/2)\nu \hat{\ } n/2\pi \hat{\ } n/2|\Sigma| \hat{\ } 1/2} \left[1 + \frac{1}{\nu}(\log(\vec{x}) - \vec{\delta}) \hat{\ } T\Sigma \hat{\ } -1(\log(\vec{x}) - \vec{\delta})\right] \hat{\ } - (\nu - n) \hat{\ } -$$

Description

Implementation of the function

$$f \colon [0,\infty)^n \to (0,\infty), \ \vec{x} \mapsto f(\vec{x}) = (\prod_{i=1}^n x_i^{-1}) \frac{\Gamma\left[(\nu+n)/2\right]}{\Gamma(\nu/2)\nu^{n/2}\pi^{n/2} \left|\Sigma\right|^{1/2}} \left[1 + \frac{1}{\nu}(\log(\vec{x}) - \vec{\delta})^T \Sigma^{-1}(\log(\vec{x}) - \vec{\delta})\right]^{-(\nu+n)/2},$$

where $n \in \{1, 2, 3, ...\}$ is the dimension of the integration domain $[0, \infty)^n = \times_{i=1}^n [0, \infty)$. In this case the integral is know to be

$$\int_{[0,\infty)^n} f(\vec{x})d\vec{x} = 1.$$

Details

The instance needs to be created with four parameters representing the dimension n, the location vector $\vec{\delta}$, the variance-covariance matrix Σ which needs to be symmetric positive definite and the degrees of freedom parameter ν .

Slots

dim An integer that captures the dimension

delta A vector of size dim with real entries.

sigma A matrix of size dim x dim that is symmetric positive definite.

df A positive numerical value representing the degrees of freedom.

Rn_floorNorm-class 21

Author(s)

Klaus Herrmann

Examples

```
n \leftarrow as.integer(3)
f \leftarrow new("Pn_logtDensity",dim=n,delta=rep(0,n),sigma=diag(n),df=3)
```

Rn_floorNorm-class

An S4 class to represent the function $\frac{\Gamma(n/2+1)}{\pi^{\hat{}}n/2(1+\lfloor \|\vec{x}\|_2^2n\rfloor)^{\hat{}}s}$ on $R^{\hat{}}n$

Description

Implementation of the function

$$f \colon R^n \to [0, \infty), \ \vec{x} \mapsto f(\vec{x}) = \frac{\Gamma(n/2 + 1)}{\pi^{n/2} (1 + \lfloor \|\vec{x}\|_2^n \rfloor)^s},$$

where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $R^n = \times_{i=1}^n R$ and s > 1 is a parameter. In this case the integral is know to be

$$\int_{R^n} f(\vec{x})d\vec{x} = \zeta(s),$$

where $\zeta(s)$ is the Riemann zeta function.

Details

The instance needs to be created with two parameters representing n and s.

Slots

dim An integer that captures the dimension

s A numeric value bigger than 1 representing a power

Author(s)

Klaus Herrmann

```
n <- as.integer(3)
f <- new("Rn_floorNorm",dim=n,s=2)</pre>
```

Rn_Gauss-class

An S4 class to represent the function $\exp(-\vec{x} \cdot \vec{x})$ on R^n

Description

Implementation of the function

$$f \colon R^n \to (0,\infty), \ \vec{x} \mapsto f(\vec{x}) = \exp(-\vec{x} \cdot \vec{x}) = \exp(-\sum_{i=1}^n x_i^2),$$

where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $R^n = \times_{i=1}^n R$. In this case the integral is know to be

$$\int_{\mathbb{R}^n} f(\vec{x}) d\vec{x} = \pi^{n/2}.$$

Details

The instance needs to be created with one parameter representing n.

Slots

dim An integer that captures the dimension

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
f <- new("Rn_Gauss",dim=n)</pre>
```

Rn_normalDensity-class

An S4 class to represent the function
$$\frac{1}{\sqrt{(2\pi)^{\hat{}} n \det(\Sigma)}} \exp(-((\vec{x} - \vec{\mu})^{\hat{}} T\Sigma^{\hat{}} - 1(\vec{x} - \vec{\mu}))/2)$$
 on $R^{\hat{}} n$

Description

Implementation of the function

$$f \colon R^n \to (0, \infty), \ \vec{x} \mapsto f(\vec{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} \exp(-((\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu}))/2),$$

where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $R^n = \times_{i=1}^n R$. In this case the integral is know to be

$$\int_{R^n} f(\vec{x})d\vec{x} = 1.$$

Rn_tDensity-class 23

Details

The instance needs to be created with three parameters representing the dimension n, the location vector $\vec{\mu}$ and the variance-covariance matrix Σ which needs to be symmetric positive definite.

Slots

dim An integer that captures the dimension
mean A vector of size dim with real entries.
sigma A matrix of size dim x dim that is symmetric positive definite.

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
f <- new("Rn_normalDensity",dim=n,mean=rep(0,n),sigma=diag(n))</pre>
```

Description

Implementation of the function

$$f \colon R^n \to (0, \infty), \ \vec{x} \mapsto f(\vec{x}) = \frac{\Gamma\left[(\nu + n)/2 \right]}{\Gamma(\nu/2)\nu^{n/2}\pi^{n/2} \left[1 + \frac{1}{\nu} (\vec{x} - \vec{\delta})^T \Sigma^{-1} (\vec{x} - \vec{\delta}) \right]^{-(\nu + n)/2},$$

where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $R^n = \times_{i=1}^n R$. In this case the integral is know to be

$$\int_{R^n} f(\vec{x}) d\vec{x} = 1.$$

Details

The instance needs to be created with four parameters representing the dimension n, the location vector $\vec{\delta}$, the variance-covariance matrix Σ which needs to be symmetric positive definite and the degrees of freedom parameter ν .

Slots

dim An integer that captures the dimension

delta A vector of size dim with real entries.

sigma A matrix of size dim x dim that is symmetric positive definite.

df A positive numerical value representing the degrees of freedom.

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
f <- new("Rn_tDensity",dim=n,delta=rep(0,n),sigma=diag(n),df=3)</pre>
```

standardSimplex_Dirichlet-class

An S4 class to represent the function
$$\prod_i i = 1^n x_i v_i - 1(1 - x_1 - \dots - x_n)^v v_n + 1 - 1$$
 on T_n

Description

Implementation of the function

$$f: T_n \to (0, \infty), \ \vec{x} \mapsto f(\vec{x}) = \prod_{i=1}^n x_i^{v_i - 1} (1 - x_1 - \dots - x_n)^{v_{n+1} - 1},$$

where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $T_n = \{\vec{x} \in \mathbb{R}^n : x_i \ge 0, \|\vec{x}\|_1 \le 1\}$ and $v_i > 0, i = 1, \ldots, n+1$, are constants. The integral is known to be

$$\int_{T_n} f(\vec{x}) d\vec{x} = \frac{\prod_{i=1}^{n+1} \Gamma(v_i)}{\Gamma(\sum_{i=1}^{n+1} v_i)},$$

where $v_i > 0$ for i = 1, ..., n + 1.

Details

The instance needs to be created with two parameters representing the dimension n and the vector of positive parameters.

Slots

dim An integer that captures the dimension

 \vee A vector of dimension n+1 with positive entries representing the constants

Author(s)

Klaus Herrmann

```
n <- as.integer(3)
f <- new("standardSimplex_Dirichlet",dim=n,v=c(1,2,3,4))</pre>
```

standardSimplex_exp_sum-class

An S4 class to represent the function $\exp(-c(x_1 + \ldots + x_n))$ on T

Description

Implementation of the function

$$f: T_n \to (0, \infty), \vec{x} \mapsto f(\vec{x}) = \exp(-c(x_1 + \ldots + x_n)),$$

where $n \in \{1,2,3,\ldots\}$ is the dimension of the integration domain $T_n = \{\vec{x} \in \mathbb{R}^n : x_i \geq 0, \|\vec{x}\|_1 \leq 1\}$ and c > 0 is a constant. The integral is known to be

$$\int_{T_n} f(\vec{x}) d\vec{x} = \frac{\Gamma(n) - \Gamma(n, c)}{\Gamma(n) c^n},$$

where $\Gamma(s,x)$ is the incomplete gamma function.

Details

The instance needs to be created with two parameters representing the dimension n and the parameter c>0.

Slots

dim An integer that captures the dimension

coeff A strictly positive number representing the constant

Author(s)

Klaus Herrmann

```
n <- as.integer(3)
f <- new("standardSimplex_exp_sum",dim=n,coeff=1)</pre>
```

unitBall_normGauss-class

An S4 class to represent the function $\frac{1}{(2\pi)^{\hat{}}n/2}\exp(-\|\vec{x}\|_2^{\hat{}}2/2)$ on $B^{\hat{}}n$

Description

Implementation of the function

$$f \colon B_n \to [0, \infty), \ \vec{x} \mapsto f(\vec{x}) = \frac{1}{(2\pi)^{n/2}} \exp(-\|\vec{x}\|_2^2/2) = \frac{1}{(2\pi)^{n/2}} \exp(-\frac{1}{2} \sum_{i=1}^n x_i^2),$$

where $n \in \{1, 2, 3, ...\}$ is the dimension of the integration domain $B_n = \{\vec{x} \in \mathbb{R}^n : ||\vec{x}||_2 \le 1\}$. In this case the integral is know to be

$$\int_{B_n} f(\vec{x}) d\vec{x} = P[Z \le 1] = F_{\chi_n^2}(1),$$

where Z follows a chisquare distribution with n degrees of freedom.

Details

The instance needs to be created with one parameter representing n.

Slots

dim An integer that captures the dimension

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
f <- new("unitBall_normGauss",dim=n)</pre>
```

unitBall_polynomial-class

An S4 class to represent the function $\prod i = 1^n x_i^a i$ on B_n

unitCube_BFN1-class 27

Description

Implementation of the function

$$f \colon B_n \to R, \ \vec{x} \mapsto f(\vec{x}) = \prod_{i=1}^n x_i^{a_i},$$

where $n \in \{1, 2, 3, ...\}$ is the dimension of the integration domain $B_n = \{\vec{x} \in R^n : \|\vec{x}\|_2 \le 1\}$ and $a_i \in \{0, 1, 2, 3, ...\}$, i = 1, ..., n, are parameters. If at least one of the coefficients a_i is odd, i.e., $a_i \in \{1, 3, 5, 7, ...\}$ for at leas one i = 1, ..., n, the integral is zero, otherwise the integral is known to be

$$\int_{B_n} f(\vec{x}) d\vec{x} = 2 \frac{\prod_{i=1}^n \Gamma(b_i)}{\Gamma(\sum_{i=1}^n b_i)(n + \sum_{i=1}^n a_i)},$$

where $b_i = (a_i + 1)/2$.

Details

The instance needs to be created with two parameters representing the dimension n and a n-dimensional vector of integers (including 0) representing the exponents.

Slots

dim An integer that captures the dimension expo An vector that captures the exponents

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
f <- new("unitBall_polynomial",dim=n,expo=c(1,2,3))</pre>
```

unitCube_BFN1-class An S4 class to represent the function $\prod \hat{n}_i = 1 |4x_i - 2|$ on $[0, 1] \hat{n}$

Description

Implementation of the function

$$f: [0,1]^n \to (-\infty,\infty), \ \vec{x} \mapsto f(\vec{x}) = \prod_{i=1}^n |4x_i - 2|$$

, where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $C_n = [0, 1]^n$. The integral is known to be

$$\int_{C_n} f(\vec{x}) d\vec{x} = 1.$$

Details

The instance needs to be created with one parameter representing the dimension n.

Slots

dim An integer that captures the dimension

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
f <- new("unitCube_BFN1",dim=n)</pre>
```

Description

Implementation of the function

$$f: [0,1]^n \to (-\infty,\infty), \vec{x} \mapsto f(\vec{x}) = \prod_{i=1}^n i \cos(ix_i)$$

, where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $C_n = [0, 1]^n$. The integral is known to be

$$\int_{C_n} f(\vec{x}) d\vec{x} = \prod_{i=1}^n \sin(i).$$

Details

The instance needs to be created with one parameter representing the dimension n.

Slots

dim An integer that captures the dimension

Author(s)

Klaus Herrmann

```
n <- as.integer(3)
f <- new("unitCube_BFN2",dim=n)</pre>
```

unitCube_BFN3-class 29

Description

Implementation of the function

$$f: [0,1]^n \to (-\infty,\infty), \ \vec{x} \mapsto f(\vec{x}) = \prod_{i=1}^n T_{\nu(i)}(2x_i - 1)$$

, where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $C_n = [0, 1]^n$ and T_k is the Chebyshev polynomial of degree k and $\nu(i) = (i \mod 4) + 1$. The integral is known to be

$$\int_{C_n} f(\vec{x}) d\vec{x} = 0.$$

Details

The instance needs to be created with one parameter representing the dimension n.

Slots

dim An integer that captures the dimension

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
f <- new("unitCube_BFN3",dim=n)</pre>
```

Description

Implementation of the function

$$f: [0,1]^n \to (-\infty,\infty), \ \vec{x} \mapsto f(\vec{x}) = \sum_{i=1}^n (-1)^i \prod_{j=1}^i x_j$$

, where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $C_n = [0, 1]^n$. The integral is known to be

$$\int_{C_n} f(\vec{x}) d\vec{x} = -(1 - (-1/2)^n)/3.$$

30 unitCube_cos2-class

Details

The instance needs to be created with one parameter representing the dimension n.

Slots

dim An integer that captures the dimension

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
f <- new("unitCube_BFN4",dim=n)</pre>
```

unitCube_cos2-class

An S4 class to represent the function $(\cos(\vec{x} \cdot \vec{v}))^2$ on $[0,1]^n$

Description

Implementation of the function

$$f: [0,1]^n \to [0,1], \ \vec{x} \mapsto f(\vec{x}) = (\cos(\vec{x} \cdot \vec{v}))^2,$$

where $n \in \{1, 2, 3, ...\}$ is the dimension of the integration domain $C_n = [0, 1]^n$ and \vec{v} is a *n*-dimensional parameter vector where each entry is different from 0. The integral is known to be

$$\int_{C_n} f(\vec{x}) d\vec{x} = \frac{1}{2} + \frac{1}{2} \cos(\sum_{j=1}^n v_j) \prod_{j=1}^n \frac{\sin(v_j)}{v_j}.$$

Details

The instance needs to be created with two parameters representing the dimension n and the n-dimensional parameter vector where each entry is different from 0.

Slots

dim An integer that captures the dimension coeffs A vector of non-zero parameters

Author(s)

Klaus Herrmann

```
n <- as.integer(3)
f <- new("unitCube_cos2",dim=n, coeffs=c(-1,2,-2))</pre>
```

unitCube_floor-class 31

unitCube_floor-class $An S4 class to represent the function [x_1 + ... + x_n] on [0,1]^n$

Description

Implementation of the function

$$f: [0,1]^n \to [0,n], \vec{x} \mapsto f(\vec{x}) = [x_1 + \ldots + x_n],$$

where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $C_n = [0, 1]^n$. The integral is known to be

$$\int_{C_n} f(\vec{x}) d\vec{x} = \frac{n-1}{2}.$$

Details

The instance needs to be created with one parameter representing the dimension n.

Slots

dim An integer that captures the dimension

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
f <- new("unitCube_floor",dim=n)</pre>
```

unitCube_Genz1-class An S4 class to represent the function $\cos{(2\pi u + \sum ^n n_i = 1a_ix_i)}$ on $[0,1]^n$

Description

Implementation of the function

$$f: [0,1]^n \to (-\infty, \infty), \ \vec{x} \mapsto f(\vec{x}) = \cos\left(2\pi u + \sum_{i=1}^n a_i x_i\right)$$

, where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $C_n = [0, 1]^n$. The integral is known to be

$$\int_{C_n} f(\vec{x}) d\vec{x} = \frac{2^n \cos(2\pi u + \sum_{i=1}^n a_i/2) \prod_{i=1}^n \sin(a_i/2)}{\prod_{i=1}^n a_i}.$$

32 unitCube_max-class

Details

The instance needs to be created with three parameter representing the dimension n, the real number u and the vector $(a_1, ..., a_n)$.

Slots

dim An integer that captures the dimension

- u A real number representing a shift in the integrand
- a A vector of real numbers, each non-zero, increasing the difficulty of the integrand with higher absolute values

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
u <- pi
a <- rep(exp(1),n)
f <- new("unitCube_Genz1",dim=n, u=u, a=a)</pre>
```

unitCube_max-class

An S4 class to represent the function $max(x_1, ..., x_n)$ on $[0, 1]^n$

Description

Implementation of the function

$$f: [0,1]^n \to [0,n], \vec{x} \mapsto f(\vec{x}) = \max(x_1, \dots, x_n)$$

, where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $C_n = [0, 1]^n$. The integral is known to be

$$\int_{C_n} f(\vec{x}) d\vec{x} = \frac{n}{n+1}.$$

Details

The instance needs to be created with one parameter representing the dimension n.

Slots

dim An integer that captures the dimension

Author(s)

Klaus Herrmann

Examples

```
n <- as.integer(3)
f <- new("unitCube_max",dim=n)</pre>
```

unitSphere_innerProduct1-class

An S4 class to represent the function $(\vec{x} \cdot \vec{a})(\vec{x} \cdot \vec{b})$ on $S^n - 1$

Description

Implementation of the function

$$f \colon S^{n-1} \to R, \ \vec{x} \mapsto f(\vec{x}) = (\vec{x} \cdot \vec{a})(\vec{x} \cdot \vec{b}),$$

where $n \in \{1, 2, 3, ...\}$ is the dimension of the integration domain $S^{n-1} = \{\vec{x} \in R^n : ||\vec{x}||_2 = 1\}$ and \vec{a} and \vec{b} are two n-dimensional parameter vectors. The integral is known to be

$$\int_{S^{n-1}} f(\vec{x}) d\vec{x} = \frac{2\pi^{n/2} (\vec{a} \cdot \vec{b})}{n\Gamma(n/2)},$$

where $\vec{a} \in \mathbb{R}^n$ and $\vec{b} \in \mathbb{R}^n$.

Details

Due to the difficulty of testing $\|\vec{x}\|_2 = 1$ in floating point arithmetic this class also implements the function "domainCheckP". This allows to pass a list with an additional non-negative parameter "eps" representing a non-negative real number ε and allows to test $1 - \varepsilon \le \|\vec{x}\|_2 \le 1 + \varepsilon$. See also the documentation of the function "checkUnitSphere" that is used to perform the checks.

The instance needs to be created with three parameters representing the dimension n and the two n-dimensional (real) vectors \vec{a} and \vec{b} .

Slots

dim An integer that captures the dimension

- a A n-dimensional real vector
- b A n-dimensional real vector

Author(s)

Klaus Herrmann

```
n <- as.integer(3)
f <- new("unitSphere_innerProduct1",dim=n,a=c(1,2,3),b=c(-1,-2,-3))</pre>
```

unitSphere_polynomial-class

An S4 class to represent the function $\prod i = 1 nx_i a_i$ on S n - 1

Description

Implementation of the function

$$f \colon S^{n-1} \to R, \, \vec{x} \mapsto f(\vec{x}) = \prod_{i=1}^n x_i^{a_i},$$

where $n \in \{1, 2, 3, \ldots\}$ is the dimension of the integration domain $S^{n-1} = \{\vec{x} \in R^n : ||\vec{x}||_2 = 1\}$ and $a_i \in \{0, 1, 2, 3, \ldots\}$, $i = 1, \ldots, n$, are parameters. If at least one of the coefficients a_i is odd, i.e., $a_i \in \{1, 3, 5, 7, \ldots\}$ for at least one $i = 1, \ldots, n$, the integral is zero, otherwise the integral is known to be

$$\int_{S^{n-1}} f(\vec{x}) d\vec{x} = 2 \frac{\prod_{i=1}^{n} \Gamma(b_i)}{\Gamma(\sum_{i=1}^{n} b_i)},$$

where $b_i = (a_i + 1)/2$.

Details

Due to the difficulty of testing $\|\vec{x}\|_2 = 1$ in floating point arithmetic this class also implements the function "domainCheckP". This allows to pass a list with an additional non-negative parameter "eps" representing a non-negative real number ε and allows to test $1 - \varepsilon \le \|\vec{x}\|_2 \le 1 + \varepsilon$. See also the documentation of the function "checkUnitSphere" that is used to perform the checks.

The instance needs to be created with two parameters representing the dimension n and a n-dimensional vector of integers (including 0) representing the exponents.

Slots

dim An integer that captures the dimension expo An vector that captures the exponents

Author(s)

Klaus Herrmann

```
n <- as.integer(3)
f <- new("unitSphere_polynomial",dim=n,expo=c(1,2,3))</pre>
```

Index

```
checkClosedUnitBall.3
                                                                                                                                                                                                                                      domainCheck,unitCube_Genz1,matrix-method
checkClosedUnitCube, 3
                                                                                                                                                                                                                                                                               (domainCheck), 7
checkPos, 4
                                                                                                                                                                                                                                        domainCheck,unitCube_max,matrix-method
checkRn, 5
                                                                                                                                                                                                                                                                                (domainCheck), 7
checkStandardSimplex, 5
                                                                                                                                                                                                                                       domainCheck,unitSphere_innerProduct1,matrix-method
checkUnitSphere, 6
                                                                                                                                                                                                                                                                                (domainCheck), 7
                                                                                                                                                                                                                                        domainCheck,unitSphere_polynomial,matrix-method
domainCheck, 7
                                                                                                                                                                                                                                                                               (domainCheck), 7
{\tt domainCheck,Pn\_lognormalDensity,matrix-method}_{\tt domainCheckP,\,8}
                                         (domainCheck), 7
                                                                                                                                                                                                                                        domainCheckP,unitSphere_innerProduct1,matrix,list-method
domainCheck,Pn_logtDensity,matrix-method
                                                                                                                                                                                                                                                                                (domainCheckP), 8
                                         (domainCheck), 7
                                                                                                                                                                                                                                        domainCheckP,unitSphere_polynomial,matrix,list-method
domainCheck,Rn_floorNorm,matrix-method
                                                                                                                                                                                                                                                                                (domainCheckP), 8
                                         (domainCheck), 7
domainCheck,Rn_Gauss,matrix-method
                                                                                                                                                                                                                                       evaluate, 9
                                         (domainCheck), 7
                                                                                                                                                                                                                                       evaluate, Pn_lognormalDensity, matrix-method
domainCheck,Rn_normalDensity,matrix-method
                                                                                                                                                                                                                                                                                (evaluate), 9
                                         (domainCheck), 7
                                                                                                                                                                                                                                        evaluate, Pn_logtDensity, ANY-method
domainCheck, Rn_tDensity, matrix-method
                                                                                                                                                                                                                                                                               (evaluate), 9
                                         (domainCheck), 7
{\tt domainCheck, standardSimplex\_Dirichlet, matrix-method} te, {\tt Rn\_floorNorm, matrix-method} te, {\tt
                                                                                                                                                                                                                                                                                (evaluate), 9
                                         (domainCheck), 7
domain Check, standard Simplex\_exp\_sum, matrix-me \verb| Model | uate, Rn\_Gauss, matrix-method |
                                                                                                                                                                                                                                                                               (evaluate), 9
                                         (domainCheck), 7
domain Check, unit Ball\_norm Gauss, matrix-method\ evaluate, Rn\_normal Density, matrix-method\ evaluate, Rn\_
                                                                                                                                                                                                                                                                                (evaluate), 9
                                         (domainCheck), 7
domain Check, unit Ball\_polynomial, matrix-method evaluate, Rn\_tDensity, ANY-method evaluate, Rn\_tDensity, and Rn\_tDensity,
                                                                                                                                                                                                                                                                                (evaluate), 9
                                         (domainCheck), 7
                                                                                                                                                                                                                                        evaluate, standardSimplex_Dirichlet, matrix-method
domainCheck,unitCube_BFN1,matrix-method
                                                                                                                                                                                                                                                                               (evaluate), 9
                                         (domainCheck), 7
                                                                                                                                                                                                                                       evaluate, standardSimplex_exp_sum, matrix-method
domainCheck,unitCube_BFN2,matrix-method
                                                                                                                                                                                                                                                                                (evaluate), 9
                                         (domainCheck), 7
                                                                                                                                                                                                                                       evaluate,unitBall_normGauss,matrix-method
domainCheck,unitCube_BFN3,matrix-method
                                                                                                                                                                                                                                                                               (evaluate), 9
                                         (domainCheck), 7
                                                                                                                                                                                                                                        evaluate, unitBall_polynomial, matrix-method
domainCheck,unitCube_BFN4,matrix-method
                                         (domainCheck), 7
                                                                                                                                                                                                                                                                               (evaluate), 9
domainCheck,unitCube_cos2,matrix-method
                                                                                                                                                                                                                                        evaluate,unitCube_BFN1,matrix-method
                                         (domainCheck), 7
                                                                                                                                                                                                                                                                               (evaluate), 9
domainCheck,unitCube_floor,matrix-method
                                                                                                                                                                                                                                        evaluate,unitCube_BFN2,matrix-method
                                         (domainCheck), 7
                                                                                                                                                                                                                                                                                (evaluate), 9
```

36 INDEX

evaluate,unitCube_BFN3,matrix-method	(exactIntegral), 11
(evaluate), 9	exactIntegral,unitCube_Genz1-method
evaluate,unitCube_BFN4,matrix-method	(exactIntegral), 11
(evaluate), 9	exactIntegral,unitCube_max-method
evaluate,unitCube_cos2,matrix-method	(exactIntegral), 11
(evaluate), 9	exactIntegral,unitSphere_innerProduct1-method
evaluate,unitCube_floor,matrix-method	(exactIntegral), 11
(evaluate), 9	exactIntegral,unitSphere_polynomial-method
<pre>evaluate,unitCube_Genz1,matrix-method (evaluate), 9</pre>	(exactIntegral), 11
evaluate, unitCube_max, matrix-method	getIntegrationDomain, 13
(evaluate), 9	getIntegrationDomain,Pn_lognormalDensity-method
	(gotIntagrationDomain) 12
evaluate,unitSphere_innerProduct1,matrix-meth	getIntegrationDomain,Pn_logtDensity-method
(evaluate), 9	(getIntegrationDomain), 13
evaluate,unitSphere_polynomial,matrix-method	getIntegrationDomain,Rn_floorNorm-method
(evaluate), 9	(getIntegrationDomain), 13
exactIntegral, 11	getIntegrationDomain,Rn_Gauss-method
exactIntegral,Pn_lognormalDensity-method	(getIntegrationDomain), 13
(exactIntegral), 11	getIntegrationDomain,Rn_normalDensity-method
exactIntegral,Pn_logtDensity-method	(getIntegrationDomain), 13
(exactIntegral), 11	getIntegrationDomain,Rn_tDensity-method
exactIntegral, Rn_floorNorm-method	
(exactIntegral), 11	(getIntegrationDomain), 13
exactIntegral,Rn_Gauss-method	<pre>getIntegrationDomain, standardSimplex_Dirichlet-method</pre>
(exactIntegral), 11	(getIntegrationDomain), 13
exactIntegral,Rn_normalDensity-method	<pre>getIntegrationDomain, standardSimplex_exp_sum-method</pre>
(exactIntegral), 11	(getIntegrationDomain), 13
exactIntegral,Rn_tDensity-method	<pre>getIntegrationDomain,unitBall_normGauss-method</pre>
(exactIntegral), 11	(getIntegrationDomain), 13
	getIntegrationDomain,unitBall_polynomial-method
exactIntegral, standardSimplex_Dirichlet-metho	(getIntegrationDomain), 13
(exactIntegral), 11	<pre>getIntegrationDomain,unitCube_BFN1-method</pre>
<pre>exactIntegral,standardSimplex_exp_sum-method</pre>	(getIntegrationDomain), 13
(exactIntegral), 11	<pre>getIntegrationDomain,unitCube_BFN2-method</pre>
exactIntegral,unitBall_normGauss-method	(getIntegrationDomain), 13
(exactIntegral), 11	<pre>getIntegrationDomain,unitCube_BFN3-method</pre>
exactIntegral,unitBall_polynomial-method	(getIntegrationDomain), 13
(exactIntegral), 11	<pre>getIntegrationDomain,unitCube_BFN4-method</pre>
exactIntegral,unitCube_BFN1-method	(getIntegrationDomain), 13
(exactIntegral), 11	<pre>getIntegrationDomain,unitCube_cos2-method</pre>
exactIntegral,unitCube_BFN2-method	(getIntegrationDomain), 13
(exactIntegral), 11	<pre>getIntegrationDomain,unitCube_floor-method</pre>
exactIntegral,unitCube_BFN3-method	(getIntegrationDomain), 13
(exactIntegral), 11	getIntegrationDomain,unitCube_Genz1-method
exactIntegral,unitCube_BFN4-method	(getIntegrationDomain), 13
(exactIntegral), 11	getIntegrationDomain,unitCube_max-method
exactIntegral,unitCube_cos2-method	(getIntegrationDomain), 13
(exactIntegral), 11	getIntegrationDomain,unitSphere_innerProduct1-method
exactIntegral, unitCube_floor-method	(getIntegrationDomain), 13
exactifices at, ulli conse_1 1001 -Ille tilou	(Rectifical action policatil), 13

INDEX 37

e gatt ags,Rn_floorNorm-method(getTags),
16
<pre>getTags,Rn_Gauss-method(getTags), 16</pre>
<pre>getTags,Rn_normalDensity-method</pre>
(getTags), 16
<pre>getTags,Rn_tDensity-method(getTags), 16</pre>
<pre>getTags,standardSimplex_Dirichlet-method</pre>
(getTags), 16
<pre>getTags,standardSimplex_exp_sum-method</pre>
(getTags), 16
<pre>getTags,unitBall_normGauss-method</pre>
(getTags), 16
<pre>getTags,unitBall_polynomial-method</pre>
(getTags), 16
<pre>getTags, unitCube_BFN1-method (getTags),</pre>
od 16
getTags,unitCube_BFN2-method(getTags),
16
<pre>getTags,unitCube_BFN3-method(getTags),</pre>
16
<pre>getTags,unitCube_BFN4-method(getTags),</pre>
16
<pre>getTags,unitCube_cos2-method(getTags),</pre>
16
getTags,unitCube_floor-method
(getTags), 16
getTags,unitCube_Genz1-method
(getTags), 16
<pre>getTags,unitCube_max-method(getTags),</pre>
16
<pre>getTags,unitSphere_innerProduct1-method</pre>
(getTags), 16
<pre>getTags,unitSphere_polynomial-method</pre>
(getTags), 16
]
multIntTestFunc, 18
-I-+D.:l- 10
pIntRule, 18
Pn_lognormalDensity
(Pn_lognormalDensity-class), 19
Pn_lognormalDensity-class, 19
Pn_logtDensity (Pn_logtDensity-class),
20
Pn_logtDensity-class, 20
Rn_floorNorm (Rn_floorNorm-class), 21
Rn_floorNorm-class, 21
Rn_Gauss (Rn_Gauss-class), 22
Rn_Gauss-class, 22

38 INDEX

```
Rn_normalDensity
        (Rn_normalDensity-class), 22
Rn_normalDensity-class, 22
Rn_tDensity (Rn_tDensity-class), 23
Rn_tDensity-class, 23
standardSimplex_Dirichlet
        (standardSimplex_Dirichlet-class),
standardSimplex_Dirichlet-class, 24
standardSimplex_exp_sum
        (standardSimplex_exp_sum-class),
standardSimplex_exp_sum-class, 25
unitBall_normGauss
        (unitBall_normGauss-class), 26
unitBall_normGauss-class, 26
unitBall_polynomial
        (unitBall_polynomial-class), 26
unitBall_polynomial-class, 26
unitCube_BFN1 (unitCube_BFN1-class), 27
unitCube_BFN1-class, 27
unitCube_BFN2 (unitCube_BFN2-class), 28
unitCube_BFN2-class, 28
unitCube_BFN3 (unitCube_BFN3-class), 29
unitCube_BFN3-class, 29
unitCube_BFN4 (unitCube_BFN4-class), 29
unitCube_BFN4-class, 29
unitCube_cos2 (unitCube_cos2-class), 30
unitCube_cos2-class, 30
unitCube_floor(unitCube_floor-class),
unitCube_floor-class, 31
unitCube_Genz1 (unitCube_Genz1-class),
        31
unitCube_Genz1-class, 31
unitCube_max (unitCube_max-class), 32
unitCube_max-class, 32
unitSphere_innerProduct1
        (unitSphere_innerProduct1-class),
unitSphere_innerProduct1-class, 33
unitSphere_polynomial
        (unitSphere_polynomial-class),
unitSphere_polynomial-class, 34
```