Investigation of the mechanism of formation of nitrosubstituted nicotine analog via the (3 + 2) Cycloaddition reaction of (E)-substituted nitroethene derivatives and C, N-Disubstituted pyridinyl nitrones: A Density Functional Theory study

**Presented by: Oscar Appiah** 

Supervisors: Evans Adei, Ph.D.

Richard Tia, Ph.D.

# **Outline**

- Introduction and literature review
- Aims and objectives
- Justification
- Methodology
- Scheme
- Results and discussion
- Conclusion

- Nicotine analog is one of the five-membered ring compound prepared from (3 + 2) Cycloaddition reaction.
- Nicotine is a major alkaloid found in tobacco plants [1]. Due to its biological activity, a lot of researchers have developed interest in it [2].

**Nicotine** 

- 1. Sun, B., Tian, Y.X., Zhang, F., Chen, Q., Zhang, Y., Luo, Y., Wang, X.R., Lin, F.C., Yang, J. and Tang, H.R., 2018. Variations of alkaloid accumulation and gene transcription in Nicotiana tabacum. *Biomolecules*, 8(4), p.114.
- 2. Powledge, T.M., 2004. Nicotine as therapy. PLoS Biol, 2(11), p.e404.

- (3 + 2) Cycloaddition reaction is a useful method for the synthesis of five-membered heterocycles[1,2].
- It involves the reaction between a dipolar ophile and a 1,3 dipole. This reaction was initially suggested by Smith in 1938, but was generalized by Huisgen in 1960's for worldwide application [3,4]. This reaction is the most efficient method for the preparation of five-membered heterocycles.



- 1. Huisgen, R., 2000. Adventures with heterocycles. *Chemical and pharmaceutical bulletin*, 48(6), pp.757-765.
- 2. Padwa, A. and Pearson, W.H. eds., 2003. Synthetic applications of 1, 3-dipolar cycloaddition chemistry toward heterocycles and natural products (Vol. 59). John Wiley & Sons.
- 3. Smith, L.I., 1938. Aliphatic Diazo Compounds, Nitrones, and Structurally Analogous Compounds. Systems Capable of Undergoing 1, 3-Additions. Chemical Reviews, 23(2), pp.193-285.
- 4. Huisgen, R., 1963. 1, 3-dipolar cycloadditions. Past and future. *Angewandte Chemie International Edition in English*, 2(10), pp.565-598.

• Singh et al in 2005 reported the development of an efficient route to novel analog by reacting  $\alpha$ -(3-Pyridyl)-N-phenylnitrone nicotine dipolarophiles.

#### Scheme 1



Singh, G., Ishar, M.P.S., Girdhar, N.K. and Singh, L., 2005. Investigations on regio-and stereoselectivities in cycloadditions involving α-(3-pyridyl)-N-phenylnitrone: Development of an efficient route to novel nicotine analogs. Journal of heterocyclic chemistry, 42(6), pp.1047-1054.

#### Reaction Time and Yields (%) of the products (5-7)

| Serial No. | X                    | Reaction time (h) | Yield (%) of v<br>5:6:7 | arious products    |                |
|------------|----------------------|-------------------|-------------------------|--------------------|----------------|
| 1          | OEt                  | 30                | <b>5a</b> (90)          | 6a(traces)         | 7a()           |
| 2          | OisoButyl            | 12                | <b>5b</b> (90)          | <b>6b</b> (traces) | <b>7b</b> ()   |
| 3          | Ph                   | 24                | <b>5c</b> (90)          | <b>6c</b> (<5)     | <b>7c</b> ()   |
| 4          | 4-Pyridyl            | 24                | <b>5d</b> (87)          | <b>6d</b> ()       | 7d()           |
| 5          | CH(OMe) <sub>2</sub> | 24                | <b>5e</b> (75)          | <b>6e</b> ()       | <b>7e</b> ()   |
| 6          | CN                   | 18                | <b>5f</b> (40)          | <b>6f</b> (30)     | <b>7f</b> (20) |
| 7          | COMe                 | 10                | <b>5g</b> (10)          | <b>6g</b> (¬10)    | <b>7g</b> (70) |
| 8          | CO <sub>2</sub> Me   | 15                | <b>5h</b> (15)          | <b>6h</b> (15)     | <b>7h</b> (60) |

• Kuzenkov et al in 2018 synthesized substituted 3-(1,2-oxazolidin-3-yl)pyridines by reacting N-(pyridin-3-ylmethylidene)-N-phenylaminoxide with ethyl acrylate, styrene and their derivatives.

2a, 2b 1,  $R^1 = R^2 = H$ ,  $R^3 = Ph$  (a);  $R^1 = H$ ,  $R^2 = COOEt$ ,  $R^3 = C_6H_4F-4$  (b);  $R^1 = Cl$ ,  $R^2 = COOEt$ ,  $R^3 = H$  (c);  $R^1 = Cl$ ,  $R^2 = H$ ,  $R^3 = Ph$  (d);  $R^1 = Cl$ ,  $R^2 = H$ ,  $R^3 = C_6H_4Br-4$  (e);  $R^1 = H$  (a),  $R^1 = H$  (b).

• Fryźlewicz et al also reported on the reaction between (*E*)-3,3,3-Trichloro-1-nitroprop-1-ene and *N*-aryl(pyridin-3-yl) nitrones.



Fryźlewicz, A., Łapczuk-Krygier, A., Kula, K., Demchuk, O.M., Dresler, E. and Jasiński, R., 2020. Regio-and stereoselective synthesis of nitrofunctionalized 1, 2-oxazolidine analogs of nicotine. *Chemistry of Heterocyclic Compounds*, pp.1-3.

## **Aims and Objectives**

- From the papers reviewed, a novel reaction route for synthesizing a nicotine analog has been developed by singh et al in 2005.
- This reaction route which possesses a high degree of regio- and stereoselectivity has been used been worked on by other researchers such as Kuzenkov et al and Fryźlewicz et al.
- But through all their research, an explanation on the selectivity observed in the reaction has not been explored.
- My objective is to apply computational chemistry tools to explore the selectivity observed and also provide a mechanistic insight into the effects of substituents on the reaction.

## Aims and objectives

- ❖To ascertain what is controlling the regio- and stereoselectivity.
- ✓ The mechanistic effect of a wide range of substituents on both reactants with different electronic and steric effects.
- To investigate the effect of solvent on the rate and selectivities of the reaction.

## **Justification**

- This will help rationalize this unique reactivity pattern seen with the reaction of (E)-nitro-substituted alkene with nitrones for the formation of nicotine analogs.
- The study will provide a justification to the experimental result that was obtained.

## **Methodology**

- The geometries of the molecular systems were constructed and minimized using "Spartan 10" model builder.
- Geometry and energy optimization of the stationary points (reactants, transition states structures and products) were carried out using B3LYP-D3 method with 6-311G (d, p) basis sets using "Gaussian 09".
- The rate constants of the reaction at a 25°C [k(T)] were calculated using equation:  $K(T) = \frac{K_B}{hc^{\circ}} e^{-\Delta^{\dagger}G/RT}$ , where  $K_B = 1.380662 \times 10^{-23}$  J/K, T = 298.15 K,  $h = 6.62617 \times 10^{-34}$  Js, R = 1.987 cal/mol,  $c = 1.\Delta^{\dagger}G^{\circ}$  is Gibbs free energy of activation.
- The global reactivity indices were calculated using:  $\omega = \mu^2/2\eta$ ,

$$N=E_{HOMO(Nuc)}-E_{HOMO(TCE)}$$
 , where  $\mu=(E_{HOMO}+E_{LUMO})/2$  and 
$$\eta=(E_{HOMO}-E_{LUMO}).$$

•  $E_{HOMO(TCE)} = -9.120689505 \text{ eV}$ 

**Scheme 3**: Proposed scheme for the reaction of (E)-substituted nitroethene derivative (A1) with C, N-

disubstituted pyridinyl nitrone (A2)



# RESULTS AND DISCUSSION



**Figure 1:** Gibbs free energy profile for the reaction of (E)-substituted-nitroethene with C, N-Disubstituted pyridinyl nitrone in both gas phase and solvent phase (benzene).

**Table 1**: Rate constants of the reaction (E)-substituted-nitroethene with N-Phenyl-C-pyridinyl-nitrone for the formation of the various cycloadducts computed in both gas phase and solvent phase (benzene) at room temperature.  $\mathbf{R1} = \mathbf{CC13}$ ,  $\mathbf{R2} = \mathbf{Phenyl}$  and  $\mathbf{R3} = \mathbf{H}$ 

| Products | Rate constants[k(T)]/s-1 | Rate constants[k(T)]/s-1 |
|----------|--------------------------|--------------------------|
|          | Gas phase                | Solvent phase (benzene)  |
| P1A      | $3.07 \times 10^9$       | $7.43 \times 10^8$       |
| P2A      | $3.87 \times 10^{12}$    | $1.81 \times 10^{12}$    |
| P1B      | $2.21 \times 10^{10}$    | $4.23 \times 10^9$       |
| P2B      | -                        | $5.85 \times 10^6$       |

# Solvent effect

**Table 2**: Activation energies and reaction energies of the various elementary steps in the reaction between (E)-substituted-nitroethene derivatives with *N*-substituted-*C*-pyridinyl-nitrones in different solvents.

 $R1 = CCl_3$ , R2 = Phenyl and R3 = H

| Solvent      | TS1A | TS1B | TS2A | TS2B | P1A   | P1B   | P2A   | P2B   |
|--------------|------|------|------|------|-------|-------|-------|-------|
| Benzene      | 5.4  | 4.3  | 0.7  | 8.2  | -23.1 | -25.8 | -21.4 | -20.9 |
| Toluene      | 5.4  | 4.4  | 0.8  | 8.3  | -23.0 | -25.7 | -21.3 | -20.8 |
| Nitromethane | 6.0  | 5.1  | 0.9  | 9.4  | -21.1 | -24.3 | -19.9 | -19.3 |

**Table 3:** Activation energies and reaction energies of the various elementary steps in the reaction between (E)-substituted-nitroethene derivatives with C, N-disubstituted pyridinyl nitrone at different level of theories.  $R1 = CCl_3$ , R2 = Phenyl and R3 = H

Basis sets : 6-311G (d, p)

| Level of theory | TS1A | TS2A | TS1B | TS2B | P1A   | P2A   | P1B   | P2B   |
|-----------------|------|------|------|------|-------|-------|-------|-------|
| B3LYP           | 18.6 | 14.2 | -    | 22.5 | -11.4 | -9.8  | -13.1 | -6.7  |
| B3LYP-D3        | 5.4  | 0.7  | 4.3  | 8.2  | -23.1 | -21.4 | -25.8 | -20.9 |
| M06             | -5.7 | -5.8 | 5.6  | 9.9  | -29.3 | -27.5 | -32.7 | -21.0 |
| M06-2X          | 3.5  | -2.5 | 2.9  | 5.7  | -35.4 | -34.7 | -38.3 | -33.4 |

**Table 4:** Activation energies and reaction energies (in kcal/mol) of the various elementary steps in the reaction of **(E)-substituted- nitroethene derivatives** and *N*-Phenyl-*C*-pyridinyl Nitrones.

| <b>R</b> 1      | TS1A | TS2A | TS1B | TS2B | P1A   | P2A   | P1B   | P2B   |
|-----------------|------|------|------|------|-------|-------|-------|-------|
| H               | 6.3  | 4.1  | 7.5  | 8.3  | -19.2 | -17.5 | -22.4 | -21.8 |
| <b>EDG</b>      |      |      |      |      |       |       |       |       |
| Methyl          | 8.4  | 4.4  | 11.4 | 12.8 | -17.7 | -17.6 | -19.9 | -17.8 |
| $\mathrm{NH}_2$ | 12.9 | 9.9  | 21.1 | 20.3 | -9.8  | -10.3 | -9.1  | -2.5  |
| <b>EWG</b>      |      |      |      |      |       |       |       |       |
| CN              | 5.1  | 4.3  | 4.7  | 5.6  | -17.0 | -14.1 | -20.8 | -19.3 |
| Br              | 6.2  | 3.8  | 7.2  | 9.0  | -24.6 | -23.8 | -23.1 | -22.1 |
| BG              |      |      |      |      |       |       |       |       |
| Phenyl          | 8.4  | 6.9  | 15.8 | 11.0 | -16.8 | -14.7 | -17.8 | -15.3 |

**Table 5:** Activation energies and reaction energies (in kcal/mol) of the various elementary steps in the reaction of (E)-substituted nitroethene (R1 =  $CCl_3$ ) with C, N-disubstituted pyridinyl nitrones derivatives.

| R2            | R3     | TS1A | TS2A | TS1B | TS2B | P1A   | P2A   | P1B   | P2B   |
|---------------|--------|------|------|------|------|-------|-------|-------|-------|
| Methyl        | Н      | 6.4  | 3.3  | 10.0 | 11.4 | -21.1 | -19.6 | -23.5 | -18.4 |
| $NH_2$        | H      | 5.7  | 3.0  | 12.6 | 10.5 | -22.6 | -20.8 | -25.1 | -21.6 |
| OH            | H      | 11.6 | 7.7  | 13.1 | 13.7 | -15.6 | -14.3 | -18.2 | -13.8 |
| CN            | H      | 4.0  | 1.9  | 7.0  | 6.9  | -29.6 | -     | -31.8 | -27.5 |
| Br            | H      | 14.2 | 12.2 | 15.2 | 17.6 | -13.5 | -12.1 | -15.2 | -14.0 |
| 4-Me-         | H      | 6.5  | 1.9  | -    | 9.4  | -21.7 | -19.8 | -24.2 | -18.8 |
| Ph            |        |      |      |      |      |       |       |       |       |
| <b>4-F-Ph</b> | H      | 5.6  | 0.9  | 4.7  | 8.5  | -21.6 | -19.7 | -24.2 | -18.8 |
| 4-Br-Ph       | H      | 5.6  | 0.9  | 4.6  | 8.4  | -23.5 | -21.6 | -26.1 | -21.0 |
| 4-Cl-Ph       | H      | 5.6  | 0.9  | 4.6  | 8.5  | -21.7 | -19.9 | -24.3 | -19.3 |
| Ph            | Methyl | 3.8  | -0.4 | 5.4  | 7.4  | -24.7 | -23.0 | -22.9 | -16.6 |
| Ph            | OH     | -    | -7.1 | -2.4 | -1.3 | -26.3 | -     | -25.6 | -20.0 |
| Ph            | CN     | 12.8 | 6.8  | 12.5 | 15.3 | -16.1 | -15.2 | -16.5 | -9.7  |
| Ph            | Br     | 8.1  | 3.1  | 7.8  | 11.3 | -31.4 | -30.9 | -26.8 | -30.6 |
| Ph            | Phenyl | 7.6  | -8.8 | 0.8  | 1.2  | -24.8 | -24.3 | -20.4 | -17.7 |

Fig 2: Graphical illustration of the highest occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) interaction between (E)-substituted-nitroethene (A1) and N-phenyl-C-pyridinyl-Nitrone (A2).

R1 = CCl<sub>3</sub>, R2 = Phenyl and R3 = H



**Table 6:** Global reactivity indices for (E)-substituted-nitroethene, **A1** (alkene). HOMO, LUMO energies, electronic chemical potential ( $\mu$ ), chemical hardness ( $\eta$ ), global electrophilicity ( $\omega$ ) and global nucleophilicity (N). All in eV.

| R1               | НОМО  | LUMO  | μ     | η    | ω    | N    |
|------------------|-------|-------|-------|------|------|------|
| CCl <sub>3</sub> | -8.70 | -1.85 | -5.27 | 6.84 | 2.03 | 0.43 |
| Н                | -8.36 | -2.80 | -5.58 | 5.56 | 2.80 | 0.76 |
| Methyl           | -8.17 | -2.57 | -5.37 | 5.60 | 2.57 | 0.95 |
| $\mathrm{NH}_2$  | -6.74 | -1.91 | -4.33 | 4.83 | 1.94 | 2.38 |
| CN               | -8.90 | -3.74 | -6.32 | 5.16 | 3.87 | 0.22 |
| Br               | -8.09 | -3.01 | -5.55 | 5.08 | 3.03 | 0.03 |
| Phenyl           | -7.09 | -2.89 | -4.99 | 4.20 | 2.96 | 2.03 |

**Table 7:** Global reactivity indices for *N*-Substituted-*C*-pyridinyl-nitrones, **A2** (three-atom components). HOMO, LUMO energies, electronic chemical potential  $(\mu)$ , chemical hardness  $(\eta)$ , global electrophilicity  $(\omega)$  and global nucleophilicity (N). All in eV.

| R2              | R3            | НОМО  | LUMO  | μ     | η    | ω    | N    |
|-----------------|---------------|-------|-------|-------|------|------|------|
| Methyl          | Н             | -6.09 | -1.85 | -3.97 | 4.24 | 1.86 | 3.03 |
| $\mathrm{NH}_2$ | H             | -6.25 | -1.93 | -4.09 | 4.32 | 1.94 | 2.87 |
| ОН              | $\mathbf{H}$  | -6.34 | -1.89 | -4.12 | 4.45 | 1.91 | 2.78 |
| CN              | H             | -6.81 | -3.04 | -4.93 | 3.77 | 3.22 | 2.31 |
| Br              | H             | -6.21 | -2.16 | -4.19 | 4.05 | 2.17 | 2.91 |
| Phenyl          | Н             | -6.06 | -2.30 | -4.18 | 3.76 | 2.33 | 3.06 |
| 4-Me-Ph         | Н             | -6.02 | -2.12 | -4.07 | 3.90 | 2.12 | 3.10 |
| 4-Cl-Ph         | Н             | -6.16 | -2.44 | -4.30 | 3.72 | 2.49 | 2.96 |
| <b>4-F-Ph</b>   | Н             | -6.11 | -2.35 | -4.23 | 3.76 | 2.38 | 3.01 |
| 4-Br-Ph         | H             | -6.15 | -2.45 | -4.30 | 3.70 | 2.50 | 2.97 |
| Ph              | Me            | -5.98 | -1.86 | -3.92 | 4.12 | 1.86 | 3.14 |
| Ph              | $\mathbf{OH}$ | -5.85 | -2.03 | -3.94 | 3.82 | 2.03 | 3.27 |
| Ph              | CN            | -6.64 | -2.81 | -4.73 | 3.83 | 2.92 | 2.48 |
| Ph              | Br            | -6.21 | -2.16 | -4.19 | 4.05 | 2.17 | 2.91 |
| Ph              | Ph            | -6.00 | -2.21 | -4.11 | 3.79 | 2.23 | 3.12 |

# **Conclusion**

- The 32CA reaction between (E)-substituted-nitroethene derivatives (A1, R1= CCl3) and C, N-disubstituted-pyridinyl nitrone derivatives (A2, R2= Phenyl and R3 = H) is fully regio- and stereoselective towards the formation of the exo 4-nitro substituted nicotine analog product (P2A). This reaction is kinetically controlled.
- Solvent show no significant effect on the energetic pattern.
- Electron-donating and withdrawing groups on both A1 and A2 increase the activation energies of the reaction relative to the parent reaction but reaction trend remains the same.
- EDGs substitution on the alkene is fully regioselective to path A whiles EWGs substitution is partially regioselective to both path A and B.
- The reactions are kinetically controlled due to the thermodynamic stability of all the considered isomeric products in all reactions studied.

# **THANK YOU**