Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-224. Вариант 17

1. Пусть
$$z = \frac{3\sqrt{3}}{2} - \frac{3i}{2}$$
. Вычислить значение $\sqrt[7]{z^2}$, для которого число $\frac{\sqrt[7]{z^2}}{\frac{1}{2} + \frac{\sqrt{3}i}{2}}$ имеет аргумент $-\frac{38\pi}{21}$.

2. Решить систему уравнений:

$$\begin{cases} x(-8+6i) + y(8+11i) = 71 + 158i \\ x(-12-15i) + y(5+4i) = 11 + 407i \end{cases}$$

- 3. Найти корни многочлена $2x^6 + 10x^5 30x^4 70x^3 + 1088x^2 + 5040x + 8000$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -2 2i$, $x_2 = 4 3i$, $x_3 = -4$.
- 4. Даны 3 комплексных числа: 24-14i, 27-7i, -9-17i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -4$, $z_2 = -4i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z| < 1\\ |arg(z+2+5i)| < \frac{5\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (1, 6, 2), b = (-1, 6, -9), c = (0, -1, 1). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-8,5,-12) и плоскость P:-18x+18y+90=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-11, -1, 8), $M_1(1, 9, -1)$, $M_2(100, 0, -1)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 5x - 22y + 22z + 287 = 0 \\ -2x - 9y + 10z + 95 = 0 \end{cases} \qquad L_2: \begin{cases} 7x - 13y + 12z - 1618 = 0 \\ 9x + 13y - 16z + 1386 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .