Krylov Subspace Recycling For Matrix Functions

Liam Burke

School Of Mathematics, Trinity College Dublin

Computational and Applied Mathematics Seminar November 2022

General Overview

Computational challenge : A sequence of matrix function applications on a set of vectors

$$f(\mathbf{A}^{(i)})\mathbf{b}^{(i)} \qquad i = 1, 2, \dots, N \tag{1}$$

- Each $\mathbf{A}^{(i)} \in \mathbb{C}^{n \times n}$ is slowly changing.
- Each $\mathbf{b}^{(i)} \in \mathbb{C}^n$ is available in sequence rather than simultaneously.

Examples

- Solution to a sequence of linear systems : $\mathbf{A}^{(i)}\mathbf{x}^{(i)} = \mathbf{b}^{(i)}$.
- Solution to systems of ODE's: $\exp(\mathbf{A}^{(i)})\mathbf{b}^{(i)}$.
- Lattice QCD simulations : $sign(\mathbf{A}^{(i)})\mathbf{b}^{(i)}$.

Goal: A Krylov subspace recycling algorithm for (1).

What is augmentation and recycling?

Augmentation and Recycling

- An augmented Krylov subspace method is a projection method which projects a problem onto the subspace $S_j = V_j \oplus \mathcal{U}$ where V_j is a Krylov subspace and \mathcal{U} is an augmentation subspace.
- A recycling method is an augmented method used to treat a sequence of problems where the augmentation subspace is recycled from the Krylov subspace used to solve a previous problem in the sequence.

Example: Sequence of linear systems

$$\mathbf{A}^{(1)}\mathbf{x}^{(1)} = \mathbf{b}^{(1)} \qquad \rightarrow \mathcal{U}^{(1)} \rightarrow \qquad \mathbf{A}^{(2)}\mathbf{x}^{(2)} = \mathbf{b}^{(2)}$$
$$\rightarrow \mathcal{U}^{(2)} \rightarrow \dots \rightarrow \mathcal{U}^{(N-1)} \rightarrow \mathbf{A}^{(N)}\mathbf{x}^{(N)} = \mathbf{b}^{(N)}$$

GCRO-DR

Figure – Convergence plot of two system solves using a fixed Poisson matrix $\mathbf{A} \in \mathbb{R}^{10,000 \times 10,000}$. The first system uses standard GMRES, and the second system uses the GCRO-DR algorithm with a recycling subspace \mathcal{U} constructed from the first system solve ($\dim(\mathcal{U}) = 2$).

Overview

I will give a brief background :

- Matrix Functions
- Projection Methods
- Krylov Subspace Methods (Augmented and Recycled)

And then discuss recent work...

 L. Burke, A. Frommer, G. Ramirez, K. M Soodhalter -Krylov Subspace Recycling For Matrix Functions, arXiv:2209.14163 [math.NA] (2022)

A definition..

Cauchy integral definition of $f(\mathbf{A})$

For the matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ with spectrum $\Lambda(\mathbf{A})$, if f is analytic in a region containing the closed contour Γ which in turn contains $\Lambda(\mathbf{A})$ in its interior, $f(\mathbf{A})$ can be defined as

$$f(\mathbf{A}) = \frac{1}{2\pi i} \int_{\Gamma} f(\sigma)(\sigma \mathbf{I} - \mathbf{A})^{-1} d\sigma.$$

As a consequence we have:

$$f(\mathbf{A})\mathbf{b} = \frac{1}{2\pi i} \int_{\Gamma} f(\sigma) (\sigma \mathbf{I} - \mathbf{A})^{-1} \mathbf{b} d\sigma.$$

Thus $f(\mathbf{A})\mathbf{b}$ contains, in its integrand, the solution $\mathbf{x}(\sigma)$ of the shifted linear system

$$(\sigma \mathbf{I} - \mathbf{A})\mathbf{x}(\sigma) = \mathbf{b}.$$

Projection Methods For Linear Systems

Problem

Solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{A} \in \mathbb{C}^{n \times n}$ and

- **A** is only available as some function which takes a vector $\mathbf{v} \in \mathbb{C}^n$ and returns $\mathbf{v} \leftarrow \mathbf{A}\mathbf{v}$.
- Consider two j dimensional subspaces V_j , $\widetilde{V}_j \subset \mathbb{C}^n$, $j \ll n$.
- For an initial guess \mathbf{x}_0 , (initial residual \mathbf{r}_0) compute correction $\mathbf{t}_j \in \mathcal{V}_j$ and update $\mathbf{x}_j = \mathbf{x}_0 + \mathbf{t}_j$ such that

$$\mathbf{r}_j = \mathbf{b} - \mathbf{A}\mathbf{x}_j \perp \widetilde{\mathcal{V}}_j.$$

Problem on subspace V_j

Solve for $\mathbf{y} \in \mathbb{C}^j$, the $j \times j$ linear system

$$\widetilde{\mathbf{V}}_{j}^{*}\mathbf{A}\mathbf{V}_{j}\mathbf{y}_{j}=\widetilde{\mathbf{V}}_{j}^{*}\mathbf{r}_{0}.$$

• Update $\mathbf{x}_j = \mathbf{x}_0 + \mathbf{V}_j \mathbf{y}_j$.

Suitable choice of V_j and V_j ?

The subspaces \mathcal{V}_j and \mathcal{V}_j should be chosen such that

- It is cheap (and practical) to build a basis for V_j and \widetilde{V}_j .
- \bullet The matrix $\widetilde{\textbf{V}}_{j}^{*}\textbf{A}\textbf{V}_{j}$ is non-singular.
- V_j contains a good approximate solution for small j.

Common to choose V_j to be a Krylov subspace $K_j(\mathbf{A}, \mathbf{r}_0)$.

Krylov subspace $\mathcal{K}_j(\mathbf{A}, \mathbf{r}_0)$

The j dimensional Krylov subspace built from the matrix ${\bf A}$ and vector ${\bf r}_0$ is defined as the subspace

$$\mathcal{K}_j(\mathbf{A},\mathbf{r}_0) = \operatorname{span}\{\mathbf{r}_0,\mathbf{A}\mathbf{r}_0,\mathbf{A}^2\mathbf{r}_0,\dots,\mathbf{A}^{j-1}\mathbf{r}_0\}$$

Numerically unstable to construct the Krylov matrix.

$$\mathbf{V}_j = \begin{bmatrix} \mathbf{r}_0 & \mathbf{A}\mathbf{r}_0 & \mathbf{A}^2\mathbf{r}_0 & \dots & \mathbf{A}^{j-1}\mathbf{r}_0 \end{bmatrix}.$$

Columns become linearly dependent quickly.

Liam Burke 8 / 23

Algorithm Arnoldi with Modified Gram-Schmidt

- 1: **Input** : **A**, \mathbf{r}_0 , cycle length m 2: Compute $\mathbf{v}_1 \leftarrow \frac{\mathbf{r}_0}{\|\mathbf{r}_0\|}$
- 3: **for** j = 1, 2, ...m **do**
- 4: $\mathbf{w} \leftarrow \mathbf{A}\mathbf{v}_i$
- 5: **for** i = 1, 2, ..., j **do**
- 6: $h_{i,j} \leftarrow \mathbf{v}_i^* \mathbf{w}$
- 7: $\mathbf{w} \leftarrow \mathbf{w} h_{i,j} \mathbf{v}_i$
- 8: end for
- 9: $h_{i+1,i} \leftarrow \|\mathbf{w}\|_2$
- 10: $\mathbf{v}_{i+1} \leftarrow \mathbf{w}/h_{i+1,i}$
- 11: end for

Arnoldi Relation (after j steps)

$$\mathbf{A}\mathbf{V}_j = \mathbf{V}_{j+1}\overline{\mathbf{H}}_j = \mathbf{V}_j\mathbf{H}_j + h_{j+1,j}\mathbf{v}_{j+1}\mathbf{e}_j^T$$

1. $\mathbf{V}_{i+1} \in \mathbb{C}^{n \times (j+1)}$, $\overline{\mathbf{H}}_i \in \mathbb{C}^{(j+1) \times j}$, $\mathbf{H}_i \in \mathbb{C}^{j \times j}$ and $\mathbf{H}_i \in \mathbb{C}^{j \times j}$

Full Orthogonalization Method (FOM)

• We will focus on the choice $V_j = V_j = \mathcal{K}_j(\mathbf{A}, \mathbf{r}_0)$.

Problem on Krylov subspace $\mathcal{K}_j(\mathbf{A}, \mathbf{r}_0)$

Solve for $\mathbf{y} \in \mathbb{C}^j$, the $j \times j$ linear system

$$\mathbf{H}_j \mathbf{y}_j = \|\mathbf{r}_0\| \mathbf{e}_1.$$

Algorithm Restarted FOM

- 1: Input : $\mathbf{A} \in \mathbb{C}^{n \times n}$, $\mathbf{b} \in \mathbb{C}^n$, $\mathbf{x} \in \mathbb{C}^n$, tolerance ϵ
- $2: \mathbf{r} = \mathbf{b} \mathbf{A}\mathbf{x}$
- 3: while $\|\mathbf{r}\| > \epsilon \ \mathbf{do}$
- 4: Build a basis for the Krylov subspace $\mathcal{K}_{j}(\mathbf{A}, \mathbf{r})$ via the Arnoldi algorithm generating \mathbf{V}_{j+1} and $\overline{\mathbf{H}}_{j}$.
- 5: Solve $\mathbf{H}_j \mathbf{y} = ||\mathbf{r}|| \mathbf{e}_1$ for \mathbf{y} .
- 6: $\mathbf{x} \leftarrow \mathbf{x} + \mathbf{V}_j \mathbf{y}$
- 7: $\mathbf{r} \leftarrow \mathbf{r} \mathbf{V}_{j+1} \overline{\mathbf{H}}_j \mathbf{y}$
- 8: end while

Shifted Linear Systems

Shift invariance of a Krylov subspace

For any $\sigma \in \mathbb{C}$ we have

$$\mathcal{K}_j(\mathbf{A}, \mathbf{r}_0) = \mathcal{K}_j(\sigma \mathbf{I} - \mathbf{A}, \mathbf{r}_0^{(\sigma)})$$

provided $\mathbf{r}_0 = \beta \mathbf{r}_0^{(\sigma)}, \ \beta \in \mathbb{C}.$

• Leads to a shifted Arnoldi relation

$$(\sigma \mathbf{I} - \mathbf{A}) \mathbf{V}_j = \mathbf{V}_j (\sigma \mathbf{I} - \mathbf{H}_j) - h_{j+1} \mathbf{v}_{j+1} \mathbf{e}_j^T.$$

- Allows for efficient solution to shifted linear systems $(\sigma_i \mathbf{I} \mathbf{A}) \mathbf{x}^{(i)} = \mathbf{b}$ over a single Krylov subspace.
- Shifted FOM approximation

$$\mathbf{x}_j^{(i)} = \|\mathbf{b}\|\mathbf{V}_j(\sigma_i\mathbf{I} - \mathbf{H}_j)^{-1}\mathbf{e}_1.$$

Arnoldi Approximation To $f(\mathbf{A})\mathbf{b}$

Recall: Cauchy integral definition of $f(\mathbf{A})$

For the matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ with spectrum $\Lambda(\mathbf{A})$, if f is analytic in a region containing the closed contour Γ which in turn contains $\Lambda(\mathbf{A})$ in its interior, $f(\mathbf{A})$ can be defined as

$$f(\mathbf{A}) = \frac{1}{2\pi i} \int_{\Gamma} f(\sigma) (\sigma \mathbf{I} - \mathbf{A})^{-1} d\sigma.$$

Thus the Arnoldi approximation can be derived via

$$\begin{split} f(\mathbf{A})\mathbf{b} &= \frac{1}{2\pi i} \int_{\Gamma} f(\sigma)\mathbf{x}(\sigma) d\sigma \approx \|\mathbf{b}\| \mathbf{V}_{j} \frac{1}{2\pi i} \int_{\Gamma} f(\sigma) (\sigma \mathbf{I} - \mathbf{H}_{j})^{-1} d\sigma \mathbf{e}_{1} \\ &= \|\mathbf{b}\| \mathbf{V}_{j} f(\mathbf{H}_{j}) \mathbf{e}_{1}. \end{split}$$

How to develop an augmented / recycled method?

• Need to develop a recycled shifted FOM for linear systems

$$(\sigma_i \mathbf{I} - \mathbf{A}) \mathbf{x}^{(i)} = \mathbf{b}.$$

• Take an approximation from some Krylov subspace $\mathbf{t}_{j}^{(i)} \in \mathcal{V}_{j}$ and an augmentation subspace $\mathbf{s}_{j}^{(i)} \in \mathcal{U}$.

$$\mathbf{x}_{j}^{(i)} = \mathbf{V}_{j}\mathbf{y}_{j}^{(i)} + \mathbf{U}\mathbf{z}^{(i)}$$
 $\mathbf{y}_{j}^{(i)} \in \mathbb{C}^{j}, \mathbf{z}^{(i)} \in \mathbb{C}^{k}$

• Use a well known residual projection framework which describes augmented Krylov subspace methods in terms of solving a projected problem. Impose

$$\mathbf{r}_{j}^{(i)} = \mathbf{b} - (\sigma_{i}\mathbf{I} - \mathbf{A})(\mathbf{V}_{j}\mathbf{y}_{j}^{(i)} + \mathbf{U}\mathbf{z}^{(i)}) \perp \widetilde{\mathcal{V}}_{j} + \widetilde{\mathcal{U}}$$

• This yields the following linear system for $\mathbf{z}_{j}^{(i)}$ and $\mathbf{y}_{j}^{(i)}$:

$$\begin{bmatrix} \widetilde{\mathbf{U}}^*(\sigma_i\mathbf{I} - \mathbf{A})\mathbf{U} & \widetilde{\mathbf{U}}^*(\sigma_i\mathbf{I} - \mathbf{A})\mathbf{V}_j \\ \widetilde{\mathbf{V}}_j^*(\sigma_i\mathbf{I} - \mathbf{A})\mathbf{U} & \widetilde{\mathbf{V}}_j^*(\sigma_i\mathbf{I} - \mathbf{A})\mathbf{V}_j \end{bmatrix} \begin{bmatrix} \mathbf{z}_j^{(i)} \\ \mathbf{y}_j^{(i)} \end{bmatrix} = \begin{bmatrix} \widetilde{\mathbf{U}}^*\mathbf{b} \\ \widetilde{\mathbf{V}}_j^*\mathbf{b} \end{bmatrix}$$

• A block LU factorization to eliminate the bottom left block allows us to express $\mathbf{y}_{i}^{(i)}$ as the solution to the problem :

Problem on subspace V_j

Solve the linear system for $\mathbf{y}_{j}^{(i)}$

$$\widetilde{\textbf{V}}_{j}^{*}(\textbf{I}-\textbf{Q}_{\sigma_{i}})(\sigma_{i}\textbf{I}-\textbf{A})\textbf{V}_{j}\textbf{y}_{j}^{(i)}=\widetilde{\textbf{V}}_{j}^{*}(\textbf{I}-\textbf{Q}_{\sigma_{i}})\textbf{b},$$

with the projector $\mathbf{Q}_{\sigma_i} := (\sigma_i \mathbf{I} - \mathbf{A}) \mathbf{U} (\widetilde{\mathbf{U}}^* (\sigma_i \mathbf{I} - \mathbf{A}) \mathbf{U})^{-1} \widetilde{\mathbf{U}}^*$.

Projected problem

The framework then describes this problem as equivalent to applying the following projection method :

Find $\mathbf{t}_{j}^{(i)} \in \mathcal{V}_{j}$ as an approximate solution corresponding to shift σ_{i} for the projected and shifted linear system

$$(\mathbf{I} - \mathbf{Q}_{\sigma_i})(\sigma_i \mathbf{I} - \mathbf{A}) \mathbf{x}^{(i)} = (\mathbf{I} - \mathbf{Q}_{\sigma_i}) \mathbf{b}$$
 (2)

such that
$$\mathbf{r}_{j}^{(i)} = (\mathbf{I} - \mathbf{Q}_{\sigma_{i}})(\mathbf{b} - (\sigma_{i}\mathbf{I} - \mathbf{A})\mathbf{t}_{j}^{(i)}) \perp \widetilde{\mathcal{V}}_{j}$$
.

• Requires basis for projected Krylov subspace

$$\mathcal{K}_j((\mathbf{I} - \mathbf{Q}_{\sigma_i})(\sigma_i \mathbf{I} - \mathbf{A}), (\mathbf{I} - \mathbf{Q}_{\sigma_i})\mathbf{b}).$$

- Shift invariance no longer holds.
 - \implies Requires separate Krylov space for each σ_i
 - \implies Not practical.

Equivalence to the unprojected problem

Find $\mathbf{t}_{j}^{(i)} \in \mathcal{V}_{j}$ as an approximate solution corresponding to shift σ_{i} for the shifted linear system

$$(\sigma_i \mathbf{I} - \mathbf{A}) \mathbf{x}^{(i)} = \mathbf{b}$$

such that
$$\mathbf{r}_{j}^{(i)} = \mathbf{b} - (\sigma_{i}\mathbf{I} - \mathbf{A})\mathbf{t}_{j}^{(i)} \perp (\mathbf{I} - \mathbf{Q}_{\sigma_{i}})^{*}\widetilde{\mathcal{V}}_{j}$$
.

- Requires only a basis for $\mathcal{K}_i(\mathbf{A}, \mathbf{b})$.
 - \implies Shift invariance still holds.
 - \implies Practical to implement.

General outline

- Build basis for $\mathcal{K}_j(\mathbf{A}, \mathbf{b})$.
- Solve for $\mathbf{y}_{j}^{(i)}$ on $\mathcal{K}_{j}(\mathbf{A}, \mathbf{b})$.
- Compute $\mathbf{z}^{(i)}$ using $\mathbf{y}_{i}^{(i)}$.
- Update $\mathbf{x}_{i}^{(i)} = \mathbf{V}_{j}\mathbf{y}_{i}^{(i)} + \mathbf{U}\mathbf{z}^{(i)}$.

990

rsFOM method for linear systems

• Choose $V_j = \widetilde{V}_j = \mathcal{K}_j(\mathbf{A}, \mathbf{b})$ and $\widetilde{\mathcal{U}} = \mathcal{U}$.

Problem for each $\mathbf{y}_j^{(i)}$ on the Krylov subspace $\mathcal{K}_j(\mathbf{A}, \mathbf{b})$

Solve the linear system

$$(\mathbf{V}_j^*(\mathbf{I} - \mathbf{Q}_{\sigma_i})\mathbf{V}_{j+1}(\sigma_i\overline{\mathbf{I}} - \overline{\mathbf{H}}_j))\mathbf{y}_j^{(i)} = \mathbf{V}_j^*(\mathbf{I} - \mathbf{Q}_{\sigma_i})\mathbf{b}$$

- Never want to explicitly construct projector $(\mathbf{I} \mathbf{Q}_{\sigma_i})$.
- Only implicitly compute product via

$$\mathbf{V}_{j}^{*}(\mathbf{I} - \mathbf{Q}_{\sigma_{i}})\mathbf{V}_{j+1}(\sigma_{i}\overline{\mathbf{I}} - \overline{\mathbf{H}}_{j}) = \sigma_{i}\mathbf{I} - \mathbf{H}_{j} - \mathbf{K}^{(i)}\mathbf{L}^{(i)}\mathbf{M}(\sigma_{i}\overline{\mathbf{I}} - \overline{\mathbf{H}}_{j})$$

with

$$\mathbf{K}^{(i)} = \sigma_i \mathbf{V}_j^* \mathbf{U} - \mathbf{V}_j^* \mathbf{C}$$
$$\mathbf{L}^{(i)} = (\sigma_i \mathbf{U}^* \mathbf{U} - \mathbf{U}^* \mathbf{C})^{-1}, \ \mathbf{M} = \mathbf{U}^* \mathbf{V}_{j+1}.$$

Recycled FOM For Functions Of Matrices $r(FOM)^2$

rsFOM solution given via

$$\mathbf{x}_j^{(i)} = \mathbf{V}_j \mathbf{y}_j^{(i)} + \mathbf{U}(\sigma_i \mathbf{U}^* \mathbf{U} - \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* (\mathbf{b} - \mathbf{V}_{j+1}(\sigma_i \overline{\mathbf{I}} - \overline{\mathbf{H}}_j) \mathbf{y}_j^{(i)}.$$

Sub into integral expression of $f(\mathbf{A})\mathbf{b}$ and treat via quadrature to obtain..

Augmented FOM approximation for $f(\mathbf{A})\mathbf{b}$

$$\begin{split} \widetilde{f}_{j} = & \mathbf{V}_{j} \sum_{\ell=1}^{n_{quad}} \omega_{\ell} f(z_{\ell}) \mathbf{y}_{j}^{(\ell)} \\ &+ \mathbf{U} \sum_{\ell=1}^{n_{quad}} \omega_{\ell} f(z_{\ell}) (z_{\ell} \mathbf{U}^{*} \mathbf{U} - \mathbf{U}^{*} \mathbf{C})^{-1} \mathbf{U}^{*} (\mathbf{b} - \mathbf{V}_{j+1} (z_{\ell} \overline{\mathbf{I}} - \overline{\mathbf{H}}_{j}) \mathbf{y}_{j}^{(\ell)}), \end{split}$$

where z_{ℓ} and ω_{ℓ} are quadrature nodes and weights respectively.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ®

Recycled FOM For Functions Of Matrices $r(FOM)^2$

Algorithm $r(FOM)^2$

- 1: Input : $\mathbf{A} \in \mathbb{C}^{n \times n}$, $\mathbf{b} \in \mathbb{C}^n$, scalar function f, $\mathbf{U} \in \mathbb{C}^{n \times k}$, $\mathbf{C} = \mathbf{A}\mathbf{U}$, Arnoldi cycle length j, nodes z_{ℓ} and weights ω_{ℓ}
- 2: Build a basis for $\mathcal{K}_j(\mathbf{A}, \mathbf{b})$ to generate \mathbf{V}_{j+1} and $\overline{\mathbf{H}}_j$
- 3: Set $\mathbf{t}_1 = 0 \in \mathbb{C}^j$, $\mathbf{t}_2 = 0 \in \mathbb{C}^k$
- 4: **for** $\ell = 1, ..., n_{quad}$ **do**
- 5: $\mu \leftarrow \omega_{\ell} f(z_{\ell})$
- 6: Solve $(z_{\ell}\mathbf{I} \mathbf{H}_{j} \mathbf{K}^{(\ell)}\mathbf{L}^{(\ell)}\mathbf{M}(z_{\ell}\overline{\mathbf{I}} \overline{\mathbf{H}}_{j}))\mathbf{y} = \mathbf{V}_{j}^{*}(\mathbf{I} \mathbf{Q}_{z_{\ell}})\mathbf{b}$
- 7: $\mathbf{t}_1 \leftarrow \mathbf{t}_1 + \mu \ \mathbf{y}$
- 8: $\mathbf{t}_2 \leftarrow \mathbf{t}_2 + \mu (z_{\ell} \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} (\mathbf{U}^* \mathbf{b} \mathbf{U}^* \mathbf{V}_{j+1} (z_{\ell} \overline{\mathbf{I}} \overline{\mathbf{H}}_j) \mathbf{y})$
- 9: end for
- 10: $f_1 \leftarrow \mathbf{V}_j \mathbf{t}_1 + \mathbf{U} \mathbf{t}_2$
- 11: Update ${\bf U}$ and ${\bf C}$

Computational Cost Analysis

operation	arithmetic cost	how often
U*U and U*C	$2k^2n$	1
V_i^*U and V_i^*C	2kjn	1
$\mathbf{M} = \mathbf{U}^* \mathbf{V}_{j+1}$	k(j+1)n	1
$\mathbf{M}(z_{\ell}\mathbf{I} - \overline{\mathbf{H}}_j) := \mathbf{R}(z_{\ell})$	kj(j+1)	n_{quad}
$\mathbf{L}(z_{\ell}) = (z_{\ell}\mathbf{U}^{*}\mathbf{U} - \mathbf{U}^{*}\mathbf{C})^{-1}$	k^3	n_{quad}
$\mathbf{L}(z_{\ell})\mathbf{R}(z_{\ell}) =: \mathbf{S}(z_{\ell})$	k^2j	n_{quad}
$\mathbf{K}(z_{\ell})\mathbf{S}(z_{\ell}) =: \mathbf{T}(z_{\ell})$	kj^2	n_{quad}
Solve for \mathbf{y} , system matrix is $\mathbf{T}(z_{\ell})$	$\frac{1}{3}j^3$	n_{quad}
$\begin{bmatrix} 1 & 1 & 1 & 1 & (0.1.2 + 0.11 + 1$		

total cost : $n(2k^2 + 2jk + k(j+1)) + n_{quad}(kj(j+1) + k^3 + k^2j + kj^2 + \frac{1}{3}j^3)$ Table – Arithmetic cost of r(FOM)²

• The n_{quad} term in the cost is not dependent on the dominant n and thus the number of quadrature points can be increased without causing large growths in cost.

How to cheaply construct \mathcal{U} ?

- \mathcal{U} should be a space spanned by approximate eigenvectors corresponding to k smallest eigenvalues.
- Use ritz or harmonic- ritz vectors.

Harmonic Ritz problem

The harmonic Ritz problem for the matrix \mathbf{A} with respect to the augmented Krylov subspace space $\mathcal{K}_j(\mathbf{A}, \mathbf{b}) + \mathcal{U}$ involves solving the following eigenproblem

$$\overline{\mathbf{G}}_{j}^{*}\widehat{\mathbf{W}}_{j+1}^{*}\widehat{\mathbf{W}}_{j+1}\overline{\mathbf{G}}_{j}\mathbf{g}_{i} = \theta_{i}\overline{\mathbf{G}}_{j}^{*}\widehat{\mathbf{W}}_{j+1}^{*}\widehat{\mathbf{V}}_{j}\mathbf{g}_{i},$$

where
$$\widehat{\mathbf{W}}_{j+1} = \begin{bmatrix} \mathbf{C} & \mathbf{V}_{j+1} \end{bmatrix}$$
 and $\overline{\mathbf{G}}_j := \begin{bmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \overline{\mathbf{H}}_j \end{bmatrix}, \mathbf{D} \in \mathbb{C}^{k \times k}$.

Results

Figure – Recycling with $\epsilon = 0$ and $\epsilon = 10^{-3}$, j = 50 Arnoldi iterations, recycle subspace dimension of size k = 20 and $n_{quad} = 30$.

Thank You!