Задача 1. Исследуйте задачу оптимального контроля

$$\inf_{\alpha} \left\{ \int_{t}^{T} L(y_x(s), \alpha(s)) ds + g(y_x(T)) \right\}, \quad \dot{y}_x = f(y_x(s), \alpha(s)), y_x(t) = x,$$

где

$$L(x,a) = c_1 x^2 + c_2 a^2$$
, $f(x,a) = c_3 x + c_4 a$, $g(x) = c_5 x^2$,

по следующему плану: напишите соответствующее уравнение Гамильтона-Якоби, найдите решение u с условием u(x,T)=g(x), выпишите уравнение на оптимальное решение y_x .

Задача 2. В проблеме оптимального контроля из задачи 1 положим

$$f(x,a) = a$$
, $L(x,a) = 0$, $g(x) = e^{-x^2}$, $a \in [-1,1]$.

Найдите функцию значения u(x,t) и исследуйте ее на непрерывность и дифференцируемость.

Задача 3. В проблеме оптимального контроля из задачи 1 положим

$$f(x,a) = x^a$$
, $L(x,a) = 0$, $g(x) = -x$, $a \in [0,1]$.

Найдите функцию значения u(x,t) и исследуйте ее на непрерывность и дифференцируемость.

Задача 4. Пусть u — вязкостное решение уравнения

$$u_t + H(x, t, u, \nabla u) = 0$$

на $\mathbb{R}^d \times (0,T)$. Докажите, что $v(x,t)=e^{-\lambda t}u(x,t)$ является вязкостным решением уравнения $v_t+\lambda v+e^{-\lambda t}H(x,t,e^{\lambda t}u,e^{\lambda t}\nabla u)=0.$

Задача 5. Пусть u — вязкостное решение уравнения

$$u_t + H(x, \nabla u) = 0$$

на $\mathbb{R}^d \times (0,T)$ и $u \in C(\mathbb{R}^d \times (0,T])$. Докажите, что если $\varphi \in C^1(\mathbb{R}^{d+1})$ и $u-\varphi$ в точке (x_0,T) достигает локального максимума, то

$$\varphi_t(x_0, T) + H(x_0, \nabla \varphi(x_0, T)) \le 0.$$

Задача 6. Докажите, что в определении вязкостного решения функцию $\varphi \in C^1(\Omega)$ можно заменить на $\varphi \in C^\infty(\Omega)$.

Задача 7. Уравнение

$$u + \frac{1}{2}|u'|^2 = 0$$

имеет классические решения $u \equiv 0$ и $u_s(x) = -\frac{1}{2}(x-s)^2$, где $s \in \mathbb{R}$. Докажите, что в классе ограниченных функций $u \equiv 0$ является единственным вязкостным решением.