See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/24032926

ChemInform Abstract: Chemical and Pharmacological Studies of the Plants from Genus Celastrus

ARTICLE in CHEMISTRY & BIODIVERSITY · FEBRUARY 2009

Impact Factor: 1.52 · DOI: 10.1002/cbdv.200700403 · Source: PubMed

CITATIONS

14

READS

54

7 AUTHORS, INCLUDING:

Manli Zhang

Hebei Medical University

151 PUBLICATIONS 1,618 CITATIONS

SEE PROFILE

Yu-Cheng Gu

Syngenta

271 PUBLICATIONS 2,171 CITATIONS

SEE PROFILE

Shi Qing

Beijing University of Chemical Technology

232 PUBLICATIONS 6,972 CITATIONS

SEE PROFILE

Hiromasa Kiyota

Okayama University

225 PUBLICATIONS 1,676 CITATIONS

SEE PROFILE

REVIEW

Chemical and Pharmacological Studies of the Plants from Genus Celastrus

by Xiao-Hui Su a), Man-Li Zhang a), Wen-Hong Zhan a), Chang-Hong Huo a), Qing-Wen Shi* a), Yu-Cheng Gu b), and Hiromasa Kiyota c)

 a) School of Pharmaceutical Sciences, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei Province, P. R. China (e-mail: shiqingwen@hebmu.edu.cn)
 b) Jealott's Hill International Research Centre, Syngenta, Berkshire, RG426EY, UK
 c) Graduate School of Agricultural Sciences, Tohoku University, 1-1 Tsutsumidori-Amamiya, Aoba-ku, Sendai 981-8555, Japan

The plants of genus *Celastrus*, distributed in Asia, have been used as natural insecticides and folk medicines to treat fever, chill, joint pain, edema, rheumatoid arthritis, and bacterial infection in China for a long time. This contribution reviews the chemical constituents, 1-144, isolated from the plants in genus *Celastrus* in the past few decades, and their biological activities. The compounds listed are sesquiterpenes (β -agarofurans), diterpenes, triterpenes, alkaloids, and flavonoids.

Contents

- 1. Introduction
- 2. Phytochemical and Biological Studies
 - 2.1. Sesquiterpenes (β -Agarofurans 1–97)
 - 2.2. Diterpenes **98–104**
 - 2.3. Triterpenes 105-129
 - 2.4. Alkaloids 130-132
 - 2.5. Flavonoids 133-144
 - 2.6. Crude Extract
- 3. Outlook

1. Introduction. – The genus *Celastrus* comprise *ca.* 50 species throughout the world. They are widely distributed in Asia, especially in China [1]. The plants of Celastraceae family have been used as natural insecticides [2], and also as important folk medicines to treat fever, chill, joint pain, edema, rheumatoid arthritis, and bacterial infection in China for a long time [3]. For example, *C. hypoleucus* has been used for the treatment of inflammation and detumescence [4]. *C. orbiculatus* has been used to treat rheumatoid arthritis and bacterial infection in folk medicine [5]. Previous studies on chemical constituents have disclosed the presence of various β -dihydroagarofuran sesquiterpene polyol esters and alkaloids [4]; some of them exhibited insecticidal or insect antifeedant activities, and antitumor activities [6][7]. Recently, the antitumor-promoting activity of β -dihydroagarofuran compounds has also been reported [8].

In this review, we summarize the phytochemical progress, and list all of the compounds isolated from the genus *Celastrus* over the past few decades. Also included are the biological activities of compounds isolated in recent years, and a few structure—activity relationships were also discussed.

2. Phytochemical and Biological Studies. – 2.1. Sesquiterpenes (β -Agarofurans 1–97). The family Celastraceae is well-known to produce various β -dihydroagarofuran derivatives. We now list 97 compounds of this type which were obtained since 1980s. The plants investigated include C. angulatus, C. orbiculatus, C. paniculatus, C. stephanotiifolius, C. flagellaris, C. gemmatus, C. hindsii, C. rosthornianus, etc. The most substitution variation was found in positions C(4), C(6), and C(13) of the skeleton. For example, the C(4) of compounds 1–27 are all replaced by a OH group in comparison to the others (*Table*). The ¹³C-NMR spectra of β -dihydroagarofuran derivatives have two common characteristics at δ (C) 89.0 and 50.0 ppm, which indicate the presence of C(5) and C(10), respectively.

The insecticidal sesquiterpene polyol esters 1-22 were all isolated from the root bark of C. angulatus except compound 5, which was obtained from the leaves of the same plant (Table). Compounds 16-20 exhibited insecticidal activity against the larvae of Mythimna separata with the KD_{50} values of 168.8, 58.9, 91.4, 271.5, and 159.8 µg/g, respectively. The presence of a β -furancarbonyloxy group in 16 and 17 was considered to be the reason why 18-20 were more active than 16 and 17 [16]. Sesquiterpenoids 23-**36** were isolated from *C. paniculatus* subsp. *paniculatus*, *C. rosthornianus*, *C. hindsii*, *C.* paniculatus, C. angulatus, and C. flagellaris, respectively. The root of C. orbiculatus yielded 14 sesquiterpene esters, 37-50 (Table). Compounds 48-52 were also obtained from the seeds of C. stephanotiifolius together with 61-63 and 66-70. Sesquiterpenes **39**, **42**–**44**, **46**, and **47**, a diterpene, celaphanol A (**98**), and a triterpene, celastrol (**111**), were tested for their effects on LPS-induced NF-κB activation in murine macrophage RAW264.7 cells transfected with NF-κB-mediated reporter gene construct, and on nitric oxide (NO) production in LPS-stimulated RAW264.7 cells [28]. Celastrol (111) was the most active, while compounds orbiculins D, H, and I (42, 46, and 47, resp.), and celaphanol A (96) showed moderate inhibition in both NF-κB activation and NO production. The results also suggested that the furoyloxy groups at C(6) and C(9) (orbiculins H, I, and D) are important structural factors of dihydro-β-agarofuran sesquiterpenes in the modulation of NF-κB activity. Investigating MDR-reversing activity, S. E. Kim et al. discovered that orbiculin A (39), celafolin A-1 (48), and celorbicol ester (49) partially or completely reversed resistance to adriamycin (ADR), vinblastine (VLB), and paclitaxel (TX) of multidrug-resistant KB-V1 and MCF7/ ADR cells [27]. Compound 37, ejap-2 (38), orbiculin A (39), orbiculin E (43), orbiculin F (44), and triptogelin C-1 (50) turned out to be more active than verapamil in reversing vinblastine resistance in multidrug-resistant KB-V1 cells [26]. Orbiculin A (39), orbiculin E (43), and triptogelin C-1 (50), which have an AcO group at C(2), showed strong reversal activity; orbiculin F (44) with a furoyloxy at C(2) was half active compared to orbiculin E (43); orbiculin G (45) with a benzoyloxy at C(2) was the weakest; compounds 37 and 38, which have two AcO groups at C(1) and C(13), exhibited strong activity irrespective of the presence of an ester group at C(2). These results suggest that the polarity of C(1)/C(2) or C(1)/C(13) is an important factor in

$$\frac{R^{1}}{1}$$
 R⁹ R¹³ R¹³

2 Nic Fu Hang Nic Fu Ac

Nic Bz Ac

	R^1	R^2	R^6	R^8	R^9	R ¹³
5	Cin	Ac	Ac	Ac	Ac	Ac
6	Ac	Ac	Н	iBut	Bz	Hang
7	Ac	Ac	Н	Fu	Bz	iBut
8	Ac	Ac	Н	iBut	Bz	iBut
٥	۸۵	iDt	ы	Nio	D-	۸.

OAc / OBz

	R^2	R^6	R ⁸	R^9	R^{13}
10	Fu	Ac	iBut	Nic	iBut
11	Ac	Ac	iBut	Fu	iBut
12	Ac	Ac	Fu	Fu	Hang
13	Ac	Н	iBut	Bz	Ac
14	Ac	Ac	Fu	Fu	iBut
15	Ac	Ac	Ac	Bz	iBut
16	Ac	Ac	Fu	Bz	iBut
17	Ac	Ac	iBut	Fu	Hang
18	Ac	Ac	iBut	Bz	iBut
19	Ac	Ac	iBut	Bz	Hang

NOR8

ОАс

28

	R^1	\mathbb{R}^2	R ⁸
33	Ac	Н	OAc
34	Ac	OAc	Н
35	Н	OAc	Н
36	Ac	OAc	OBz
37	Ac	OBz	Н
38	Ac	Н	Н

	R^1	R ²	R^6	_R ⁸
23	Bz	Н	Ac	Н
24	Bz	Н	Bz	Н
25	Ac	OBz	Н	OBz
26	Ac	OFu	Н	OBz
27	Ac	OHang	Н	OBz

	R^1	R^2	R^6	R ⁸	R^9
39	Ac	OAc	Bz	Н	Bz
40	Ac	Н	Fu	Н	Bz
41	Ac	Н	Bz	Н	Fu
42	Ac	Н	Fu	Н	Fu
43	Ac	OAc	Fu	Н	Bz
44	Ac	OFu	Fu	Н	Bz
45	Ac	OBz	Bz	Н	Bz
46	Ac	Н	Fu	OAc	Fu
47	Ac	OFu	Fu	Н	Fu
48	Ac	Н	Cin	Н	Bz
49	Ac	Н	Bz	Н	Bz
50	Ac	OAc	Ac	Н	Bz
51	Ac	Н	Ac	Н	Bz
52	Ac	Н	Ac	OAc	Bz
53	Н	Н	Н	Н	Н
54	Ac	OHang	Н	OBz	Bz
55	Ac	OHang	Н	OFu	Bz
56	Ac	OAc	Bz	Н	Cir
57	Ac	Н	Ac	OAc	Fu

	R1	R²	R ^o
58	Ac	Н	Cin
59	Н	ОН	Bz
60	Ac	Н	Bz
61	Bz	Н	Bz
62	Bz	Н	Hang
63	Bz	Н	Н
64	Ac	Н	Ac

92 Fu

Ac

65

 R^2

66 H

Ac 68

67 Ac

 R^2 R^1

OAc

OAc

ОН

OR9

 R^8

Н

Н

Н

 R^9

Cin

Cin

Cin

Ac

MDR-reversal activity [26]. In addition, compounds 49-52, 63, and 66-67 were also examined for the inhibitory tendency on the EBV-EA (Epstein-Barr virus early antigen) activation. The inhibitory effects of compounds 63 and 66 on the activation of early antigen and the viabilities of Raji cell were stronger than those of other compounds [29]. Compounds 53-58 were isolated from C. orbiculatus, C. rosthornianus, C. hindsii, and C. paniculatus. Angulatueoid G (59) and angulatueoid H (60) were obtained from the seeds of C. angulatus (Table). Angulatueoid G (59; 100 ppm) showed insect antifeedant effect against Aulacophora femoralis (73.2% antifeedant rate) and Piutella xylostella (87.7% antifeedant rate) [34]. The plant C. orbiculatus also contained the sesquiterpene isocelorbicol 71 and 72. Celastrine B (73) was obtained from C. flagellaris. The seed oil of C. gemmatus was the source of compounds 74-77. The investigation of the seeds and seed oil of *C. angulatus* led to the isolation of **78–91**. Besides 28, 57, and 58, compound 92 was also isolated from C. paniculatus. Compound 93, which was obtained from the leaves of C. angulatus, showed strong nonselective cytotoxicity against four of the NCl panel cell lines (leukemia (PRMI-8226), CNS cancer (U251), prostate cancer (PC-3), and breast cancer (MDA-MB-231/ATCC)) through preliminary biological study on antitumor activity [41]. The more special compounds are 94-97, which were isolated from C. gemmatus and C. hindsii. Besides the 6/6/5 rings, C(3) and C(14) also form another large ring with a fused pyridine ring. 2.2. Diterpenes 98-104. In 1999, Chen et al. isolated three diterpenes, 98-100, from the stem of C. stephanotifolius (Table). Celaphanol A (98) was also obtained from C. orbiculatus. Xiong et al. reported the isolation and synthesis of (+)-7-deoxynimbidiol (101) in 2006. In the same year, Wang et al. isolated three diterpenes, i.e., celahypodiol (102), furreginol (103), and suigol (104), together with three triterpenes, 107, 108, and

119, from *C. hypoleucus*. Celahypodiol (**102**) and (3β)-olean-12-ene-3,23-diol (**119**)

Table. Chemical Constituents from the Genus Celastrus

Compound	Name	Plant	Part	Ref.
1	2α , 6β -Diacetoxy- 9β -(3-furoyloxy)-13-(isobuty-ryloxy)-1 α -(nicotinoyloxy)- β -dihydroagarofuran- 4β -ol	C. angulatus	Root bark	[9]
2	2α ,6 β -Diacetoxy-9 β -(3-furoyloxy)-13-[(2-methylbutanoyl)oxy]-1 α -(nicotinoyloxy)- β -dihydroagarofuran-4 β -ol	C. angulatus	Root bark	[9]
3	2α ,6 β ,13-Triacetoxy-9 β -(3-furoyloxy)-1 α -(nicotinoyloxy)- β -dihydroagarofuran-4 β -ol	C. angulatus	Root bark	[9]
4	$2\alpha,6\beta,13$ -Triacetoxy- 9β -(benzoyloxy)- 1α -(nicotinoyloxy)- β -dihydroagarofuran- 4β -ol	C. angulatus	Root bark	[9]
5	$2\alpha,6\beta,8\beta,9\alpha,13$ -Pentaacetoxy- 1α -(cinnamoyloxy)- β -dihydroagarofuran- 4β -ol	C. angulatus	Leaf	[10]
6	$1\alpha,2\alpha$ -Diacetoxy- 9α -(benzoyloxy)- 8β -(isobuty-ryloxy)- 13 -[(2-methylbutanoyl)oxy]- β -dihydroagarofuran- $4\beta,6\beta$ -diol	C. angulatus	Root bark	[11]
7	1α,2α-Diacetoxy-9α-(benzoyloxy)-8β-(3-furoyloxy)-13-(isobutyryloxy)-β-dihydroagarofuran- 4β,6β-diol	C. angulatus	Root bark	[11]
8	Angulatin A	C. angulatus	Root bark	[12]
9	1α , 13-Diacetoxy- 9α -(benzoyloxy)- 2α -(isobutyryloxy)- 8β -(nicotinoyloxy)- β -dihydroagarofuran- 4β , 6β -diol	C. angulatus		
10	1α ,6 β -Diacetoxy- 2α -(3-furoyloxy)- 8α ,13-bis(isobutyryloxy)- 9β -(nicotinoyloxy)- β -dihydroagarofuran- 4β -ol	C. angulatus	Root bark	[13]
11	1α ,2 α ,6 β -Triacetoxy-9 β -(3-furoyloxy)-8 α ,13-bis(isobutyryloxy)- β -dihydroagarofuran-4 β -ol	C. angulatus	Root bark	[14]
12	$1\alpha,2\alpha,6\beta$ -Triacetoxy- $8\alpha,9\beta$ -bis(3-furoyloxy)-13- [(2-methylbutanoyl)oxy]- β -dihydroagaro- furan- 4β -ol	C. angulatus	Root bark	[14]
13	$1\alpha,2\alpha,13$ -Triacetoxy- 9β -(benzoyloxy)- 8α -(isobuty-ryloxy)- β -dihydroagarofuran- $4\beta,6\beta$ -diol	C. angulatus	Root bark	[14]
14	Celangulin II: $1\alpha,2\alpha,6\beta$ -triacetoxy- $8\alpha,9\beta$ -bis(3-furoyloxy)-13-(isobutyryloxy)- β -dihydroagaro-furan- 4β -ol	C. angulatus	Root bark	[14][15]
15	Celangulin III	C. angulatus	Root bark	[15]
16	1α , 2α , 6β -Triacetoxy- 9β -(benzoyloxy)- 8α -(3-furoyloxy)-13-(isobutyryloxy)- β -dihydroagarofuran- 4β -ol	C. angulatus	Root bark	[16]
17	$1\alpha,2\alpha,6\beta$ -Triacetoxy- 9β -(3-furoyloxy)- 8α -(isobutyryloxy)- 13 -[(2-methylbutanoyl)oxy]- β -dihydroagarofuran- 4β -ol	C. angulatus	Root bark	[16]
18	$1\alpha,2\alpha,6\beta$ -Triacetoxy- 9β -(benzoyloxy)- $8\alpha,13$ -bis(isobutyryloxy)- β -dihydroagarofuran- 4β -ol	C. angulatus	Root bark	[16]
19	$1\alpha,2\alpha,6\beta$ -Triacetoxy- 9β -(benzoyloxy)- 8α -(isobutyryloxy)- 13 -[(2-methylbutanoyl)oxy]- β -dihydroagarofuran- 4β -ol	C. angulatus	Root bark	[16]
20	$1\alpha, 2\alpha, 6\beta, 8\beta, 13$ -Pentaacetoxy- 9β -(benzoyloxy)- β -dihydroagarofuran- 4β -ol	C. angulatus	Root bark	[16]
21	Celangulin	C. angulatus	Root bark	[2]

Table (cont.)

Compour	nd Name	Plant	Part	Ref
22	Celangulin IV	C. angulatus	Root bark	[15]
23	6β -Acetoxy- 1α , 9β -bis(benzoyloxy)- β -dihydro-	C. paniculatus,	Seed	[17]
	agarofuran-4 β -ol	subsp. paniculatus		
24	$1\alpha,6\beta,9\beta$ -Tris(benzoyloxy)- β -dihydroagaro-	C. paniculatus,	Seed	[17]
	furan-4 β -ol	subsp. paniculatus		
25	1α -Acetoxy- 2α , 8α , 9β -tris(benzoyloxy)- β -	C. rosthornianus	Root bark	[18]
	dihydroagarofuran-4 β ,6 β -diol			
26	1α -Acetoxy- 8α , 9β -bis(benzoyloxy)- 2α -(3-furoyl-	C. rosthornianus	Root bark	[18]
	oxy)- β -dihydroagarofuran- 4β , 6β -diol			
27	1α -Acetoxy- 8α , 9β -bis(benzoyloxy)- 2α -[(2-methyl-	C. rosthornianus	Root bark	[19]
•0	butanoyl)oxy]- β -dihydroagarofuran- 4β , 6β -diol	C. hindsii	Stem	[20]
28	$1\alpha,6\beta,8\beta,13$ -Tetraacetoxy- 9α -(benzoyloxy)- β -	C. paniculatus	Whole plant	
•0	dihydroagarofuran	G 1.	Seed	[22]
29	$1\alpha,6\beta,8\alpha,13$ -Tetraacetoxy- 9α -(benzoyloxy)- β -	C. angulatus	Root bark	[11]
20	dihydroagarofuran-2α-ol	G 1.	T 6	[00]
30	$2\alpha,6\beta,13$ -Triacetoxy- $1\alpha,9\alpha$ -bis(benzoyloxy)- 8α -	C. angulatus	Leaf	[23]
21	(nicotinoyloxy)-β-dihydroagarofuran	ā l.	т с	[00]
31	$2\alpha,6\beta,13$ -Triacetoxy- 9α -(benzoyloxy)- 8α -	C. angulatus	Leaf	[23]
22	(nicotinoyloxy)- β -dihydroagarofuran- 1α -ol	G G 11 :	0 1 1	FO 41
32	Celastrine A	C. flagellaris	Seed oil	[24]
33	Ejap-3	C. flagellaris	Seed oil	[24]
34	Celahin B	C. hindsii	Stem	[25]
35	Celahin C	C. hindsii	Stem	[25]
36	Celahin D	C. hindsii	Stem	[20]
37	$1\alpha,6\beta,13$ -Triacetoxy- $2\alpha,9\beta$ -bis(benzoyloxy)- β -	C. orbiculatus	Root	[26]
38	dihydroagarofuran	Carbiaulatus	Doot	[26]
	Ejap-2	C. orbiculatus	Root	[26]
39 40	Orbiculin A Orbiculin B	C. orbiculatus C. orbiculatus	Root	[27]
40 41	Orbiculin B Orbiculin C	C. orbiculatus	Root	[26]
42	Orbiculin C Orbiculin D	C. orbiculatus	Root	[26]
42	Orbiculin E	C. orbiculatus	Root Root	[26] [26]
43 44	Orbiculin E Orbiculin F	C. orbiculatus	Root	[26]
45 45	Orbiculin G	C. orbiculatus	Root	[26]
46	Orbiculin H	C. orbiculatus	Root	[28]
47	Orbiculin I	C. orbiculatus	Root	[28]
48	Celafolin A-1	C. stephanotiifolius		[29]
40	Cciaioini A-1	C. orbiculatus	Root	[27]
49	1α -Acetoxy- 6β , 9β -bis(benzoyloxy)- β -dihydro-	C. stephanotiifolius		[29]
42	agarofuran	C. orbiculatus	Root	[27]
50	Triptogelin C-1	C. orbiculatus	Root	[26]
20	mptogenii e i	C. stephanotiifolius		[29]
51	1α ,6β-Diacetoxy-9β-(benzoyloxy)-β-dihydro-	C. stephanotiifolius		[29]
J1	agarofuran	c. stephanoutjouus	Seed	[27]
52	Celafolin C-1	C. stephanotiifolius	Seed	[29]
53	Celorbicol	C. orbiculatus	Seed oil	[30]
54	1α -Acetoxy- 8α , 9β -bis(benzoyloxy)- 2α -[(2-methyl-	C. rosthornianus	Root bark	[31]
~7	butanoyl)oxy]- β -dihydroagarofuran- 6β -ol	C. hindsii	Stem	[20]
55	$1a$ -Acetoxy- 9β -(benzoyloxy)- $8a$ -(3-furoyloxy)- $2a$ -	C. rosthornianus	Root bark	[31]
	[(2-methylbutanoyl)oxy]- β -dihydroagarofuran- 6β -ol		1100t bark	[31]

Table (cont.)

Compound	Name	Plant	Part	Ref
56	$1\alpha,2\alpha$ -Diacetoxy-6β-(benzoyloxy)-9β-(cinnamoyloxy)-β-dihydroagarofuran	C. orbiculatus	-	[32]
57	1α ,6 β ,8 α -Triacetoxy-9 β -(3-furoyloxy)- β -dihydroagarofuran	C. paniculatus	Seed oil	[33]
58	1α ,6 β -Diacetoxy-9 α -(benzoyloxy)-8 α -(cinnamoyloxy)- β -dihydroagarofuran	C. paniculatus	Seed oil	[33
59	Angulatueoid G	C. angulatus	Seed	[34]
60	Angulatueoid H	C. angulatus	Seed	[34
61	Celafolin D-1	C. angulatus	Seed oil	[35
		C. stephanotiifolius	Seed	[29]
62	Celafolin D-3	C. stephanotiifolius	Seed	[29
63	Celafolin D-2	C. stephanotiifolius	Seed	[29]
64	$1\alpha,6\beta,8\alpha$ -Triacetoxy- 9α -(benzoyloxy)- β -	C. paniculatus	Seed	[22
	dihydroagarofuran	<i>1</i> · · · · · · · · · · · · · · · · · · ·		L
65	1α ,6β,8β-Triacetoxy-9β-(benzoyloxy)-β-	C. paniculatus	Seed	[22]
	dihydroagarofuran	F		L
66	Celafolin B-2	C. stephanotiifolius	Seed	[29]
67	$1\alpha, 2\alpha$ -Diacetoxy-9β-(cinnamoyloxy)-β-	C. stephanotiifolius	Seed	[29
	dihydroagarofuran	C. flagellaris	Seed oil	[24
68	Celafolin B-1	C. stephanotiifolius	Seed	[29
69	Celafolin B-3	C. stephanotiifolius	Seed	[29
		C. flagellaris	Seed oil	[24
70	1α -Acetoxy-9 β -(cinnamoyloxy)- β -dihydroagarofuran	C. stephanotiifolius	Seed	[29
71	Isocelorbicol	C. orbiculatus	Seed oil	[30
72	$1\alpha,2\alpha,8\beta$ -Triacetoxy- 9β -(cinnamoyloxy)- β -dihydroagarofuran	C. orbiculatus	-	[32
73	Celastrine B	C. flagellaris	Seed oil	[24
74	$1\alpha,2\alpha$ -Diacetoxy-9 β -[(2,3-epoxy-3-phenylpro-	C. gemmatus	Seed oil	[7]
	panoyl)oxy]-β-dihydroagarofuran	er gemmanas	occu on	Γ, 1
75	1α -Acetoxy- 2α -(benzolyloxy)- 9β -[(2,3-epoxy-3-	C. gemmatus	Seed oil	[7]
	phenylpropanoyl)oxy]- β -dihydroagarofuran	er gemmanas	occu on	Γ, 1
76	1α -Acetoxy- 2α -(butanoyloxy)- 9β -[(2,3-epoxy-3-	C. gemmatus	Seed oil	[7]
70	phenylpropanoyl)oxy]- β -dihydroagarofuran	c. gemmanas	occu on	[,]
77	1α -Acetoxy-9 β -[(2,3-epoxy-3-phenylpropano-	C. gemmatus	Seed oil	[7]
,,	yl)oxy]- β -dihydroagarofuran	c. gemmanas	occu on	[,]
78	$1\alpha,8\beta$ -Diacetoxy- 9α -(benzoyloxy)-13-(nicotinoyl-	C. angulatus	Seed	[36
	oxy)- β -dihydroagarofuran	c. angmuns	Seed	[50
79	$1\alpha,2\alpha,8\beta$ -Triacetoxy- 9β -(benzoyloxy)-13-(nicotin-	C. angulatus	Seed	[37
• /	$1a,2a,6\beta$ - $11a$ -cetoxy- 3β -(benzoyloxy)-13-(meotin-oyloxy)- β -dihydroagarofuran	c. anguans	Seed	[37]
80	Angulatueoid A	C. angulatus	Seed	[38
81	Angulatueoid B	C. angulatus	Seed	[38]
82	Angulatueoid C	C. angulatus C. angulatus	Seed	[38]
02	Angulatucolu	_	Seed	
83	Angulatueoid D	C. paniculatus		[22]
	Angulatueoid D	C. angulatus	Seed	[38
84	Angulatueoid E	C. angulatus	Seed	[39
85 86	Angulatueoid F	C. angulatus	Seed	[39
86	1\alpha-Acetoxy-9\alpha-(benzoyloxy)-13-(nicotinoyl-	C. angulatus	Seed oil	[40]
	oxy)- β -dihydroagarofuran- 8β -ol			

Table (cont.)

Compound	Name	Plant	Part	Ref.
87	1α -Acetoxy- 9α -(benzoyloxy)- 8β -[(2-methylbutanoyl)oxy]-13-(nicotinoyloxy)- β -dihydroagarofuran	C. angulatus	Seed oil	[40]
88	1α -Acetoxy- 9α -(benzoyloxy)- 8β -(isobuty-ryloxy)- 13 -(nicotinoyloxy)- β -dihydroagarofuran	C. angulatus	Seed oil	[40]
89	1α-Acetoxy-8α,9α-bis(benzoyloxy)-13-(nicotinoyloxy)-β-dihydroagarofuran	C. angulatus	Seed oil	[40]
90	1α ,8 α ,13-Triacetoxy-9 α -(benzoyloxy)- β -dihydroagarofuran	C. angulatus	Seed oil	[35]
91	1α ,8 β -Diacetoxy-13-(benzoyloxy)-9 β -(nicotinoyloxy)- β -dihydroagarofuran	C. angulatus	Seed	[36]
92	$1\alpha,8\beta,13$ -Triacetoxy- 9β -(3-furoyloxy)- β -dihydroagarofuran	C. paniculatus	Whole plant	[21]
93	$1\alpha,2\alpha,9\beta$ -Triacetoxy-13-(benzoyloxy)-8 β - [(2-hydroxy-2-methylpropanoyl)oxy]- β - dihydroagarofuran-4 β -ol	C. angulatus	Leaf	[41]
94	Emarginatine E	C. hindsii	Stem	[20]
95	Angulatamine	C. gemmatus	Root bark	[42]
96	Celahinine A	C. hindsii	Stem	[43]
97	Emarginatine A	C. hindsii	Stem	[43]
98	Celaphanol A	C. stephanotifolius	Stem	[44]
	•	C. orbiculatus	Root	[28]
99	Celaphanol B	C. stephanotifolius	Stem	[44]
100	Nimbidiol	C. stephanotifolius	Stem	[44]
101	(+)-7-Deoxynimbidiol	C. hypoleucus	Stalk	[45]
102	Celahypodiol	C. hypoleucus	Stalk	[46]
103	Furreginol	C. hypoleucus	Stalk	[46]
104	Suigol	C. hypoleucus	Stalk	[46]
105	Lup-29(30)-ene-3 β ,29-diol	C. hypoleucus	Stalk	[46]
106	Lup-20(29)-ene- 1β ,3 β -diol	C. hypoleucus	Stalk	[46]
107	6β -Hydroxy-3-oxolup-20(29)-ene	C. angulatus	Root bark	[47]
108	Lupenone	C. hindsii	Stem	[20]
109	Sitosterin 3-glucoside	C. angulatus	Root bark	[47]
110	Sitosterol	C. angulatus	Root bark	[47]
		C. hypoleucus	Stalk	[48]
111	Celastrol	C. orbiculatus	Root	[28]
		C. paniculatus	Root outer bark	[49]
		C. hypoleucus	Root	[50]
112	Pristimerin	C. paniculatus	Root outer bark	[49]
		C. hypoleucus	Root	[50]
113	Celasdin A	C. hindsii	Stem	[51]
114	Celasdin B	C. hindsii	Stem	[51]
115	Friedelin	C. hindsii	Stem	[51]
116	Canophyllol	C. hindsii	Stem	[51]
117	Maytenfolone-A	C. hindsii	Stem	[51]
118	Celasdin C	C. hindsii	Stem	[51]
119	Olean-12-ene- 3β , 6α -diol	C. hypoleucus	Stalk	[46]

Table (cont.)

Compound	Name	Plant	Part	Ref.
120	3β -Hydroxyoleana-9(11),12-diene	C. angulatus	Root bark	[47]
121	(3β) -Olean-12-ene-3,23-diol	C. hypoleucus	Stalk	[48]
122	6α -Hydroxyolean-12-en-3-one	C. hypoleucus	Stalk	[48]
123	Zeylasterone	C. paniculatus	Root outer bark	[49]
124	Zeylasteral	C. paniculatus	Root outer bark	[49]
125	28-Oxolup-20(29)-en-3 β -yl caffeate	C. stephanotifolius	Stem	[44]
126	28-Hydroxylup-20(29)-en-3β-yl caffeate	C. stephanotifolius	Stem	[44]
127	Betulin	C. stephanotifolius	Stem	[44]
128	28-Oxoolean-3β-yl caffeate	C. stephanotifolius	Stem	[44]
129	3β -Caffeoylolean-28-oic acid	C. stephanotifolius	Stem	[44]
130	3-Oxo-4-benzyl-3,4-dihydro-1 <i>H</i> -pyrrolo[2,1- <i>c</i>]-oxazine-6-carbaldehyde	C. orbiculatus	Fruit	[52]
131	Chinese bittersweet alkaloid I	C. angulatus	Seed	[53][54]
132	Chinese bittersweet alkaloid II	C. angulatus	Seed	[53][54]
133	Quercetin 3- β -D-rutinoside (rutin)	C. hindsii	Leaf	[55]
134	Kaempferol 3- β -D-rutinoside	C. hindsii	Leaf	[55]
135	Rosmarinic acid	C. hindsii	Leaf	[55]
136	Lithospermic acid	C. hindsii	Leaf	[55]
137 138	Lithospermic acid B	C. hindsii C. hindsii	Leaf Leaf	[55]
	4-{2-[2-Carboxy-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenoxy]ethyl}-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydrobenzofuran-3-carboxylic acid 1-carboxy-2-(3,4-dihydroxyphenyl)ethyl ester			[55]
139	4-{2-[2-Carboxy-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenoxy]ethyl}-2-(3,4-dihydroxyphenyl)-2,3-dihydro-7-hydroxybenzofuran-3-carboxylic acid 1-carboxy-2-[2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydrobenzofuran-3-carboxylic acid 1-carboxy-2-(3,4-dihydroxyphenyl)ethoxycarbonyl]ethyl ester	C. hindsii	Leaf	[55]
140	4-{3-[2-(3-{[1-carboxy-2-(3,4-dihydroxy-phenyl)ethoxy]carbonyl}-7-hydroxy-2-methyl-2,3-dihydrobenzofuran-4-yl)-1-carboxyethoxy]-3-oxoprop-1-enyl}-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydrobenzofuran-3-carboxylic acid 1-carboxy-2-(3,4-dihydroxyphenyl)ethyl ester	C. hindsii	Leaf	[55]
141	(–)-5- O - β -D-Glucosyl-3- O -benzoylepicatechin	C. orbiculatus	Aerial part	[56]
142	(-)-Epiafzelechin	C. orbiculatus	Aerial part	[56]
143	(-)-Epicatechin	C. angulatus C. orbiculatus	– Aerial part	[57] [56]
144	(+)-Catechin	C. angulatus	Root bark	[47] [57]

showed moderate antitumor activity against human mammary carcinoma (Bcap 37), human colon carcinoma (RKO), human hepatocellular carcinoma (SMMC 7721), and human erythroleukemia (K 562) with the IC_{50} values from 11.21 to 38.03 µg/ml [46].

- 2.3. Triterpenes 105-129. Compounds 105-110 are the 6/6/6/6/5-ring triterpenes, which have been isolated from C. angulatus, C. paniculatus, C. hypoleucus, and C. hindsii (Table). Celastrol (111) and pristimerin (112), occurring in C. hypoleucus, C. paniculatus, and C. orbiculatus, exhibited inhibitory effects against diverse phytopathogenic fungi. They were found to inhibit the mycelial growth of Rhizoctonia solani KÜHN and Glomerella cingulata (STONEM) SPAULD and SCHRENK in vitro. In addition, pristimerin (112) and celastrol (111) showed good preventive and curative effects against wheat powdery mildew in vivo [50]. From the stem of C. hindsii, seven triterpenes, 113-118, were isolated. Biological evaluation showed that celasdin B (114) exhibited an anti-HIV replication activity in H9 lymphocyte cells with an EC_{50} value of 0.8 μ g/ml and toxicity at 5.5 μ g/ml, and maytenfolone-A (117) an EC_{50} value of 1.8 μ g/ ml and a lower toxicity at 7.0 μg/ml [51]. Compound 117 also demonstrated cytotoxicity against hepatoma (ED_{50} 2.3 µg/ml) and nasopharynx carcinoma (ED_{50} 3.8 µg/ml) [51]. Compound 120 was obtained from C. angulatus. The stalk of C. hypoleucus yielded two triterpenes, 121 and 122. Compound 121 showed moderate antitumor activity against human cervical squamous carcinoma cells, with an IC_{50} value of 28.9 µg/mg relative to 5.6 µg/mg for cisplatin used as a positive control [48]. Zeylasterone (123) and zeylasteral (124) were isolated from C. paniculatus. The OH groups at C(3) of compounds 125-129, which were obtained from the stem of C. stephanotifolius, were esterified by a β -caffeic acid.
- 2.4. Alkaloids 130–132. From the fruit of *C. orbiculatus*, an alkaloid, 130, was isolated (*Table*). Both 131 and 132, which were isolated from the seeds of *C. angulatus*, contain a 1,3-oxazine moiety, which displayed a novel skeleton, so far not found in the natural products. Chinese bitter-sweet alkaloid II (132) demonstrated moderate cytotoxicity against non-small lung cancer (NCL-H23) cell line at concentrations of 3.0×10^{-5} mm (GI_{50}) by the *National Cancer Institute in vitro* cytotoxicity screen [54].
- 2.5. Flavonoids 133–144. In 2006, eight phenolic compounds, 133–140, were obtained from C. hindsii (Table). They were the five known compounds 133–137 and three novel oligomers of rosmarinic acid, i.e., a dimer, 138, and two trimers, 139 and 140. The major components in the extract were rosmarinic acid (135) and lithospermic acid B (137). These compounds could suppress the autoxidation of methyl linoleate in bulk phase and the radical-initiated peroxidation of soybean phosphatidylcholine in liposomes. Therefore, the extract of C. hindsii is expected to be a source of natural antioxidants [55]. Compounds 141–143 were obtained from C. orbiculatus. The (–)-epicatechin (143) was also isolated from C. angulatus together with (+)-catechin (144). Compound 141–143 exhibited antioxidant activity with IC_{50} values of 25, 7.5, and 8.5 µg/ml, respectively [56]. (–)-Epicatechin (143) also exhibited a dose-dependent inhibition on COX activity with an IC_{50} value of 15 µM and significant anti-inflammatory activity on carrageenin-induced mouse paw edema, when the compound (100 mg/kg) was orally administrated 1 h before carrageenin treatment [58].
- 2.6. Crude Extract. Along with the compounds mentioned, the pharmacological activities of extracts were also discussed. Ethanolic extract of C. aculeatus was shown to

have anti-inflammatory and analgesic activity [59]. Aqueous extracts of *C. paniculatus* seed exhibited free-radical-scavenging capacity, and protected cultured rat neuronal cell (FBNC) cultures from H₂O₂-induced oxidative injury and glutamate-induced toxicity by modulating glutamate receptor function [60][61]. Also, the seed oil of *C. paniculatus* showed similar activities, and the authors presumed that the activity of protecting neuronal cells against H₂O₂-induced toxicity is in part due to their antioxidant properties, and their ability to induce antioxidant enzymes [62]. Regarding the activity of enhancing cognition, aqueous extracts of seed have been reported to improve learning and memory in rats. Aqueous extracts of *C. paniculatus* seed reduced oxidative stress in the brain by increasing endogenous antioxidant enzymes [63]. Rats treated with the seed oil of *C. paniculatus* for 15 days exhibited a significant decrease in the levels of norepinephrine, dopamine, and serotonin, and their respective metabolites in both brain and urine. It indicated that the seed oil of *C. paniculatus* caused an overall decrease in the turnover of all the three central monoamines, and implicates the involvement of these aminergic systems in the learning and memory process [64].

3. Outlook. – The plants of the genus *Celastrus* are widespread in China. The studies on chemical constituents in recent years have disclosed that β -dihydroagarofuran sesquiterpenes and triterpenes are the important active components. Along with the use as natural insecticides and insect-feeding deterrents, the plants of genus *Celastrus* still offer wide-reaching interesting and applicable prospects, such as anti-inflammatory and antitumor activity, modulability of multidrug resistance, and antioxidation. The activity-screening and structure–activity relationship studies of triterpenes of this genus are to be continued to search for new medicines.

Financial support in part to Q. W. S. from SREFROCS (Scientific Research Foundation for the Returned Overseas Chinese Scholars) from Hebei Province and State Education Ministry (China) is gratefully acknowledged. We also appreciate the financial support from Syngenta Ltd. (2005-Hebei Medical University-Syngenta-01).

REFERENCES

- [1] Botany Institute of Chinese Academy of Sciences, in 'Index of High Plant in China', Beijing House of Science Press, 1985, 261.
- [2] N. Wakabaysshi, W. J. Wu, R. M. Water, R. E. Redfern, G. D. Mills, A. B. DeMilo, W. R. Lusby, D. Andrzejewski, J. Nat. Prod. 1988, 51, 537.
- [3] P. D. Chen, J. Y. Liang, Strait Pharm. J. 1999, 11, 3.
- [4] R. Brüning, H. Wagner, *Phytochemistry* **1978**, *17*, 1821.
- [5] B. S. Jung, M. K. Shin, 'Encyclopedia of illustrated Korean natural drugs', 1989, p. 366.
- [6] Y. Q. Tu, D. G. Wu, J. Zhou, Y. Z. Chen, X. F. Pan, J. Nat. Prod. 1990, 53, 603.
- [7] Y. Q. Tu, D. G. Wu, J. Zhou, Y. Z. Chen, Phytochemistry 1990, 29, 2923.
- [8] Y. Takaishi, K. Ujita, H. Tokuda, H. Nishino, A. Iwashi, T. Fujita, Cancer Lett. 1993, 68, 129.
- [9] J. K. Liu, Z. J. Jia, D. G. Wu, J. Zhou, Q. G. Wang, Phytochemistry 1990, 29, 2503.
- [10] Y. H. Wang, Y. Q. Tu, Y. Z. Chen, Chin. Chem. Lett. 1994, 5, 51.
- [11] W. J. Wu, M. A. Wang, W. M. Zhou, J. B. Zhu, Z. Q. Ji, Z. N. Hu, *Phytochemistry* 2001, 58, 1183.
- [12] M. T. Wang, H. L. Qin, M. Kong, Y. Z. Li, Phytochemistry 1991, 30, 3931.
- [13] J. K. Liu, X. W. Han, Z. J. Jia, Y. Ju, H. Q. Wang, Phytochemistry 1991, 30, 3437.
- [14] J. K. Liu, H. Becker, J. Zapp, D. G. Wu, Phytochemistry 1995, 40, 841.
- [15] W. J. Wu, J. Nat. Prod. 1992, 55, 1294.

- [16] W. J. Wu, M. A. Wang, J. B. Zhu, W. M. Zhou, Z. N. Hu, Z. Q. Ji, J. Nat. Prod. 2001, 64, 364.
- [17] K. Zhang, Y. H. Wang, Y. Z. Chen, Y. Q. Tu, H. Jing, H. M. Huang, X. F. Huang, J. S. Fan, Phytochemistry 1998, 48, 1067.
- [18] Y. Q. Tu, Phytochemistry 1991, 30, 1321.
- [19] Y. Q. Tu, Phytochemistry 1992, 31, 2155.
- [20] H. C. Huang, C. C. Shen, C. F. Chen, Y. C. Wu, Y. H. Kuo, Chem. Pharm. Bull. 2000, 48, 1079.
- [21] H. Sang, H. Q. Wang, Y. Q. Tu, Y. Z. Chen, Phytochemistry 1991, 30, 1547.
- [22] N. Borbone, F. Borrelli, D. Montesano, A. A. Lzzo, S. D. Marino, R. Capasso, F. Zollo, *Planta Med.* 2007, 73, 792.
- [23] Y. H. Wang, L. Yang, Y. Q. Tu, K. Zhang, Y. Z. Chen, J. Nat. Prod. 1997, 60, 178.
- [24] M. A. Wang, F. H. Chen, J. Nat. Prod. 1997, 60, 602.
- [25] Y. H. Kuo, C. J. Chou, L. M. Yang-Kuo, Y. Y. Hu, Y. C. Chen, C. F. Chen, K. H. Lee, *Phytochemistry* 1996, 41, 549.
- [26] S. E. Kim, H. S. Kim, Y. S. Hong, Y. C. Kim, J. J. Lee, J. Nat. Prod. 1999, 62, 697.
- [27] S. E. Kim, Y. H. Kim, J. J. Lee, J. Nat. Prod. 1998, 61, 108.
- [28] H. Z. Jin, B. Y. Hwang, H. S. Kim, J. H. Lee, Y. H. Kim, J. J. Lee, J. Nat. Prod. 2002, 65, 89.
- [29] Y. Takaishi, S. Ohshima, K. Nakano, T. Tomimatsu, H. Tokuda, H. Nishino, A. Iwashima, J. Nat. Prod. 1993, 56, 815.
- [30] C. R. Smith, R. W. Miller, D. Weisleder, W. K. Rohwedder, N. Eickman, J. Clardy, J. Org. Chem. 1976, 41, 3264.
- [31] Y. Q. Tu, Y. Z. Chen, Phytochemistry 1991, 30, 4169.
- [32] M. A. Wang, F. H. Chen, Chin. Chem. Lett. 1995, 6, 229.
- [33] Y. Q. Tu, T. X. Wu, Z. Z. Li, T. Zhen, Y. Z. Chen, J. Nat. Prod. 1991, 54, 1383.
- [34] D. G. Wu, J. K. Liu, C. Q. Cheng, Phytochemistry 1992, 31, 4219.
- [35] Y. Q. Tu, Y. J. Hu, W. J. Wu, N. Y. Chen, X. F. Pan, Phytochemistry 1992, 31, 3633.
- [36] Y. H. Wang, L. Yang, Y. Q. Tu, K. Zhang, Y. Z. Chen, J. S. Fan, J. Nat. Prod. 1998, 61, 942.
- [37] Y. Q. Tu, Y. X. Cui, Y. X. Ma, Chin. Chem. Lett. 1993, 4, 219.
- [38] C. Q. Cheng, D. G. Wu, J. K. Liu, Phytochemistry 1992, 31, 2777.
- [39] J. K. Liu, C. Q. Cheng, D. G. Wu, Phytochemistry 1993, 32, 379.
- [40] Y. Q. Tu, G. S. Huang, Y. X. Ma, X. L. Wu, Q. B. Song, J. Nat. Prod. 1992, 55, 1320.
- [41] W. P. Yin, T. Z. Zhao, L. J. Gao, D. P. Zou, J. X. Kang, Chin. Chem. Lett. 1999, 10, 487.
- [42] J. K. Liu, D. G. Wu, Z. J. Jia, Phytochemistry 1993, 32, 487.
- [43] Y. H. Kuo, C. F. Chen, L. M. Yang-Kuo, J. Nat. Prod. 1995, 58, 1735.
- [44] B. Chen, H. Q. Duan, Y. Takaishi, Phytochemistry 1999, 51, 683.
- [45] Y. Xiong, K. W. Wang, Y. J. Pan, H. X. Sun, J. Tu, Bioorg. Med. Chem. Lett. 2006, 16, 786.
- [46] K. W. Wang, J. S. Mao, Y. P. Tai, Y. J. Pan, Bioorg. Med. Chem. Lett. 2006, 16, 2274.
- [47] P. D. Chen, J. Y. Liang, Strait Pharm. J. 2002, 14, 33.
- [48] K. W. Wang, H. X. Sun, B. Wu, Y. J. Pan, Helv. Chim. Acta 2005, 88, 990.
- [49] C. B. Gamlath, A. A. L. Gunatilaka, Y. Tezuka, T. Kikuchi, S. Balasubramaniam, *Phytochemistry* 1990, 29, 3189.
- [50] D. Q. Luo, H. Wang, X. Tian, H. J. Shao, J. K. Liu, Pest. Manage. Sci. 2005, 61, 85.
- [51] Y. H. Kuo, L. M. Yang-Kuo, *Phytochemistry* **1997**, *44*, 1275.
- [52] Y. Q. Guo, X. Li, J. H. Wang, J. Xu, N. Li, Fitoterapia 2005, 76, 273.
- [53] W. P. Yin, T. Z. Zhao, L. J. Gao, D. P. Zou, H. M. Liu, J. X. Kang, Phytochemistry 1999, 52, 1731
- [54] W. P. Yin, T. Z. Zhao, L. J. Gao, J. Luoyang Inst. Technol. 2000, 21, 67.
- [55] T. N. Ly, M. Shimoyamada, R. Yamauchi, J. Agric. Food Chem. 2006, 54, 3786.
- [56] B. Y. Hwang, H. S. Kim, J. H. Lee, Y. S. Hong, J. S. Ro, K. S. Lee, J. J. Lee, J. Nat. Prod. 2001, 64, 82.
- [57] X. H. Liu, G. S. Ma, M. Wang, Nat. Prod. Res. Dev. 1999, 11, 11.
- [58] K. R. Min, B. Y. Hwang, H. S. Lim, B. S. Kang, G. J. Oh, J. Lee, S. H. Kang, K. S. Lee, J. S. Ro, Y. Kim, Planta Med. 1999, 65, 460.
- [59] M. M. Yang, L. Tong, Y. Y. Chen, Chin. Arch. Tradit. Chin. Med. 2005, 23, 51.

- [60] P. B. Godkar, R. K. Gordon, A. Ravindran, B. P. Doctor, J. Ethnopharmacol. 2004, 93, 213.
- [61] P. B. Godkar, R. K. Gordon, A. Ravindran, B. P. Doctor, Fitoterapia 2003, 74, 658.
- [62] P. B. Godkar, R. K. Gordon, A. Ravindran, B. P. Doctor, Phytomedicine 2006, 13, 29.
- [63] M. H. V. Kumar, Y. K. Gupta, *Phytomedicine* **2002**, *9*, 302.
- [64] K. Nallm, K. S. Karanth, A. Rao, A. R. Aroor, J. Ethnopharmacol. 1995, 47, 101.

Received November 2, 2007