Сопряженные функции. Семинар 6-7. 6-13 октября 2019 г.

Семинарист: Данилова М.

Сопряженные функции

Определение сопряженной функции

Определение 1. Замкнутая функция

Пусть $f: E \to \mathbb{R}$ — функция, заданная на множестве E в нормированном пространстве V. Функция f называется замкнутой, если еріf является замкнутым множеством.

Определение 2. Сопряженная функция

Пусть $f: E \to \mathbb{R}$ - функция, заданная на множестве E в евклидовом пространстве V. Сопряженной функцией или сопряженной функцией Фенхеля для функции f называется функция $f^*: E_* \to \mathbb{R}$, определенная как

$$f^*(s) = \sup_{x \in E} \{ \langle s, x \rangle - f(x) \},$$

где $E_*=\{s\in V: \sup_{x\in E}\{\langle s,x\rangle-f(x)<+\infty\}\}$. Преобразование $f\mapsto f^*$ называют **преобразование Лежандра-Фенхеля**.

Замечание 1. Сопряженная функция f^* - выпуклая и замкнутая функция как поточечный супремум семейства аффинных функций, независимо от того, является ли при этом исходная функция f выпуклой или замкнутой.

Замечание 2. В более общем случае сопряженная функция определяется на двойственном пространстве V^* всевозможных непрерывных линейных функционалов на V; в этом случае $s \in V^*$ - линейный функционал, а операция $\langle s, x \rangle$ интерпретируется как вычисление линейного функционала s на аргументе x.

Утверждение 1. Неравенство Фенхеля—**Юнга** Пусть $f: E \to \mathbb{R}$ - функция, заданная на множестве E в евклидовом пространстве V, и пусть $f^*: E_* \to \mathbb{R}$ - сопряженная функция. Тогда для всех $x \in E$ и всех $s \in E_*$ выполнено

$$\langle s, x \rangle \le f^*(s) + f(x).$$

Рис. 1: Функция $f: \mathbb{R} \to \mathbb{R}$, значение $y \in \mathbb{R}$. Сопряженная функция $f^*(y)$ - максимальный разрыв между линейной функцией yx и f(x).

Свойства и примеры

Далее будем рассматривать функцию $f:\mathbb{R}^n\to\mathbb{R}$, тогда сопряженная к ней функция $f^*:\mathbb{R}^n\to\mathbb{R}$ определяется как

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x)),$$

где $\mathrm{dom} f$ - область определения функции f, а $\mathrm{dom} f^*$ - множество таких y, что супремум конечен.

Пример 1. Рассмотрим сопряженные функции для функций $f: \mathbb{R} \to \mathbb{R}$.

1. Аффинная функция f(x) = ax + b, dom f = R.

$$f^*(y) = -b$$
$$y = a$$

2. Отрицательный логарифм $f(x) = -\log x$, $\text{dom} f = R_{++}$.

$$f^*(y) = -\log(-y) - 1$$
$$y < 0$$

3. Экспонента $f(x) = \exp(x)$, dom f = R.

$$f^*(y) = y \log y - y$$
$$y \ge 0$$
$$f^*(0) = 0$$

4. Отрицательная энтропия $f(x) = x \log x$, $\text{dom } f = R_+$, f(0) = 0.

$$f^*(y) = \exp(y - 1)$$

5. Обратная функция $f(x) = \frac{1}{x}$, dom $f = R_{++}$.

$$f^*(y) = -2\sqrt{-y}$$
$$y \le 0$$

Пример 2. Строго выпуклая квадратичная функция

Рассмотрим функцию $f(x) = \frac{1}{2}x^TQx, \ Q \in S_{++}^n$.

Сопряженная к ней функция

$$f^*(y) = \frac{1}{2}y^T Q^{-1}y.$$

Пример 3. Индикаторная функция множества

Рассмотрим функцию I_S - индикатор множества $S \subseteq \mathbb{R}^n$.

 $I_S(x) = 0$, если $\text{dom} I_S = S$, при других значениях x - функция $I_S(x)$ не определена.

Сопряженная к ней функция

$$I_S^*(y) = \sup_{x \in S} (y^T x),$$

так же данная функция назвается **опорной функцией** множества S.

Определение 3. Сопряженная норма

Пусть $\|\cdot\|$ - норма в \mathbb{R}^n , тогда сопряженная норма определяется как

$$||y||_* = \sup_{||x|| \le 1} y^T x.$$

Пример 4. Норма

Пусть $\|\cdot\|$ - норма в \mathbb{R}^n , сопряженная норма $\|\cdot\|_*$.

Сопряженная функция к функции f(x) = ||x||

$$f^*(y) = \begin{cases} 0 & \|y\|_* \le 1\\ \infty & \text{иначе.} \end{cases}$$

Замечание 3. Сопряженная функция $\|\cdot\|^*$ для нормы $\|\cdot\|$ не равна сопряженной норме $\|\cdot\|_*$. Сопряженная функция $\|\cdot\|^*$ - это индикаторная функция единичного шара относительно сопряженной нормы Несмотря на схожие обозначения, функции $\|\cdot\|^*$ и $\|\cdot\|_*$ являются разными: например, сопряженная норма $\|\cdot\|_*$ всегда определена на всем пространстве (как и любая норма), в то время как сопряженная функция $\|\cdot\|^*$ оказывается определенной на собственном подмножестве.

Пример 5. Квадрат нормы

Пусть $f(x) = \frac{1}{2} ||x||^2$, где $||\cdot||$ - норма, $||x||_*$ - сопряженная норма.

Сопряженная функция

$$f^*(y) = \frac{1}{2} ||y||_*^2.$$

Свойства

- 1. f^* выпуклая функция вне зависимости от f;
- 2. Неравенство Фенхеля

$$f(x) + f^*(y) \ge x^T y \quad \forall x, y;$$

Например для функции $f(x) = \frac{1}{2}x^TQx, \ Q \in S^n_{++},$

мы получаем следующее неравенство

$$x^{T}y \le \frac{1}{2}x^{T}Qx + \frac{1}{2}y^{T}Q^{-1}y;$$

- 3. если f выпукла и замкнута, то $f^{**} = f$;
- 4. если f дифференцируема, выпукла и $\mathrm{dom} f = \mathbb{R}^n$, то

$$f^*(y) = \nabla f^T(x^*)x^* - f(x^*),$$

где x^* - супремум $(y^Tx - f(x))$.

5. Разделение переменных

$$f(x_1, x_2) = f_1(x_1) + f_2(x_2)$$

$$f^*(y_1, y_2) = f_1^*(y_1) + f_2^*(y_2),$$

где f_1, f_2 - выпуклые функцие.

Двойственная и сопряженная функции

1. Рассмотрим следующую задачу

$$\min \quad f(x)$$

s.t.
$$x = 0$$
,

лагранжиан принимает форму $L(x,\nu) = f(x) + \nu^T x$,

двойственная функция
$$g(\nu) = \inf_x \left(f(x) + \nu^T x \right) = -\sup_x \left((-\nu)^T x - f(x) \right) = -f^*(-\nu);$$

2. теперь рассмотрим другую, более общую задачу

$$\min \quad f_0(x)$$

s.t.
$$Ax \prec b$$

$$Cx = d$$

двойственная функция

$$g(\lambda, \nu) = \inf_{x} (f_0(x) + \lambda^T (Ax - b) + \nu^T (Cx - d))$$

= $-b^T \lambda - d^T \nu + \inf_{x} (f_0(x) + (A^T \lambda + C^T \nu)^T x)$
= $-b^T \lambda - d^T \nu - f_0^* (-A^T \lambda - C^T \nu),$

где

$$dom g = \{(\lambda, \nu) \mid -A^T \lambda - C^T \nu \in dom f_0^* \}.$$