Vicente Lermanda Candia

Resumen $T-k^2$ raster

Related work

Rank y select en bitmaps

▶ Bitmap $B[0 \dots n]$

 \rightarrow select_a(B, i)

Quadtree

Figure 1: A binary raster and its corresponding quadtree.

$$k^2$$
tree

► Region quadtree.

ightharpoonup Dos arreglos, L y T.

$$ightharpoonup p_{hijos} = rank_1(T,p) \cdot k^2$$

▶ Si
$$p_{hijos} > |T| \implies L[p_{hijos} - |T|]$$

κ^3 tree

Figure 2: A sequence of binary rasters and the corresponding k³tree.

rasters

Representación compacta de

k^2 raster

- Matrices de enteros.
- ► Nodos almacenan máximos y mínimos.
- Subdivisión hasta que max y min sean iguales, o hasta llegar a una celda.
- ► Arreglo de bits *T*.
- Codificación diferencial.
- ► Lmax y Lmin.

Step 2

Step 3

Step 1

Figure 3: Example (using k = 2) of integer raster matrix (top), conceptual tree of the k^2 raster, conceptual tree with differential encoding, and final representation of the raster matrix.

3D2D-mapping

► Matriz raster → matriz binaria.

Figure 5: 3D2D-mapping of the matrix of Figure 3

Representación compacta de

rasters time series

4D3D-mapping

d) # 11000000 11000000 10000000 00110011 10001000 110001000 11000100 11000100 11000100 1000100 1000100 1000100 1000100 1000100 1000100 11000100 1000100 1000100 1000100 1000100 1000100 10001000 100010 100010 100010 100010 100010 100010 100010 100010 1000100 100010 100010 100010 100010 100010 100010 100010 100010 1000100 100010 100

Problem definition

▶ Tenemos una secuencia de matrices raster para distintos instantes de tiempo τ . Asumimos que cada celda de los raster almacena un entero.

Querys

ightharpoonup access(r, c, t)

 \blacktriangleright windowQuery $(r_1, r_2, c_1, \overline{c_2}, t_1, t_2)$

ightharpoonup rangeQuery $(r_1, r_2, c_1, c_2, t_1, t_2, rMin, rMax)$

q-cols & q-rows

Figure 7: Definitions.

- ▶ Dada una q-row, q-row_i y la fila original $r|r \in \{0, ..., n-1\}$, definimos *relative_row*(q-row_i, r) de la siguiente forma:
 - Si r ∈ q − row_i, retorna la posición relativa de r dentro de q-row_i.
 - ightharpoonup Si r está en una q-row anterior a q-row $_i$, retorna 0.
 - Si r está en una q-row posterior a q-row $_i$, retorna $\frac{n}{k}-1$.
- La función $relative_col(q col_i, r)$ funciona de manera análoga.

$\overline{\mathsf{T}}$ - k^2 raster

- ► Snapshots y logs.
- ▶ Matrices M_t y M_s .
- $\blacktriangleright \ s = i + 1 \cdot t_{\delta}, i \in [0, (\tau 1)/t_{\delta}].$
- ▶ $t \in [s+1, s+t_{\delta}-1]$.
- ▶ Para representar M_t se usa k^2 raster'.

k^2 raster'

- ightharpoonup Codificado en base a las diferencias con M_s .
- ▶ Bitmap *eqB*.
- ▶ Sea $\alpha \leftarrow maxval_t maxval_s$.
- ▶ Si llegamos a las celdas, $Lmax[z_{tj}] \leftarrow \alpha$.
- ▶ Si $maxval_t == minval_t$, $T_t[z_{tj}] \leftarrow 0$, $eqB[rank_0(T_t, z_{tj})] \leftarrow 0$ y $Lmax[z_{tj}] \leftarrow \alpha$.
- ▶ Si q_{tj} y q_{ts} difieren por completo en α , $T_t[z_{tj}] \leftarrow 0$, $eqB[rank_0(T_t, z_{tj})] \leftarrow 1$ y $Lmax[z_{tj}] \leftarrow \alpha$.

Figure 8: Structures involved in the creation of a $T-k^2$ raster considering $\tau=3$.