Goodreads Dataset: Exploratory Data Analysis and Spoiler Detection Model

Micol Clement, Rhea Sablani, Lanxue Zha, Xile Zhang

01 Dataset Overview

.

.

.........

.....

........

Goodreads Dataset

- Goodreads
 - social cataloging website
 - users can sign up, register and rate books, write reviews
- Dataset is extract of concentrated reviews in English
- Over 1.3M English book reviews across 25K books and 19K users where each book/user has at least one associated spoiler review
- Columns: review_id, review, book_id, true/false for spoiler, rating, timestamp, user_id

Data Cleaning

- JSON → CSV
- Renaming columns
 - Class: has spoiler = 1; no spoiler = 0
- Took subset of data because GoodReads didn't support spoiler tag until 2011

02Project Goals

........

.

Objectives

- Explore if there are relationships between the different features and whether or not a review contained a spoiler about a book
- Create machine learning models for predicting whether or not a review contains a spoiler
- Evaluate models with the following metrics: train time, accuracy, precision, recall, F1 score, and AUC

03 Exploratory Data Analysis

Ex. Review & Review Distribution

Spoiler review example

"Come on? So Victor is the good guy and the hero and Eli is the bad villain? I'm sorry. I don't buy it. They both did bad things. While this does have a good build up for a sequel (fingers crossed) when Eli breaks out of jail, I don't think that was a good ending. Isn't the idea that good and evil are fluid? I was surprised the athame was connected to the thing that killed Cas's father. I was very surprised by that. I was also surprised by the whole last 50 pages or so, it was NOT what I expected"

• Non-spoiler review example

This was an amusing read... romantic, spicy, and humorous. The battling wars between Evil and Carter were genius, had me chuckling all along. Wonderful love-hate romcom, with some steam added.

Imbalanced data 93.7% of dataset has non-spoiler reviews

Spoiler vs Non-Spoiler Reviews

Minimal differences between spoiler reviews and non-spoiler reviews with regards to the distribution of # characters in review, # words in review, and rating given

04Spoiler Detection Model

.....

Background & Preprocessing

- Common algorithms for spoiler detection include SVM and LSTM
- Goal: predict whether or not review is detected as spoiler
- Subset of data (year > 2011)
- Preprocessing
 - Removed stop words, numbers, non-alphabetic characters
 - Stem and lemmatize text
 - Encode data with bag of words

What has SVM learnt from data

	shoot	alert	die	kill	family
coefficient	2.509725	-2.495762	2.362985	2.173229	-1.518742

LSTM-Attention Model:

- Encoding using the Tokenizer of tensorflow.
- Initial embedding weights from the pretrained GloVe embedding

attention A w1

Bi-LSTM

Output

Self-Attention

Word Embedding

Results

	Baseline SVM	Balanced SVM	LSTM	Balanced LSTM	Attention LSTM
Train time (s)	36.4	84.7	52.53	9.4	41.62
Accuracy	0.955	0.88	0.958	0.907	0.887
Precision	0.4	0.241	0.941	0.296	0.259
Recall	0.0225	0.789	0.162	0.636	0.820
F1 score	0.0426	0.368	0.276	0.403	0.394
AUC	0.902	0.905	0.831	0.858	0.912

Questions?