Search II:

A 100 0

Explored Frontier Unexplored

A 100 0

General framework

A **relaxation** P_{rel} of a search problem P has costs that satisfy:

 $\operatorname{Cost}_{\operatorname{rel}}(s,a) \leq \operatorname{Cost}(s,a).$

Definition: relaxed heuristic

Given a relaxed search problem $P_{\rm rel}$, define the relaxed heuristic $h(s) = {\rm FutureCost_{rel}}(s)$, the minimum cost from s to an end state using ${\rm Cost_{rel}}(s,a)$.

Proof of A* correctness

• Consider any path $[s_0,a_1,s_1,\ldots,a_L,s_L]$:

CS221 / Spring 2020 / Finn & Anari

Exploring states

UCS: explore states in order of PastCost(s)

Question

Suppose we want to travel from city 1 to city n (going only forward) and back to city 1 (only going backward). It costs $c_{ij} \geq 0$ to go from i to j. Which of the following algorithms can be used to find the minimum cost path (select all that apply)?

depth-first search				
breadth-first search				
dynamic programming				
uniform cost search				

activate deactivate reset report

CS221 / Spring 2020 / Finn & Anari

DP versus UCS

N total states, n of which are closer than end state

Algorithm	Cycles?	Action costs	Time/space
DP	no	any	O(N)
UCS	yes	≥ 0	$O(n \log n)$

Note: UCS potentially explores fewer states, but requires

more overhead to maintain the priority queue

Note: assume number of actions per state is constant (independent of m and M)

(independent of n and N)

Analysis of uniform cost search

Theorem: correctness

When a state s is popped from the frontier and moved to explored, its priority is $\operatorname{PastCost}(s)$, the minimum cost to s.

Proof:

CS221 / Spring 2020 / Finn & Anari

12