Deutsch

Englisl

Français

SI 5MER SI 7MER SI 9MER SI 11MER

## **™** Dimplex

Montage- und Gebrauchsanweisung

Installation and Operating Instructions

Instructions d'installation et d'utilisation



Sole/Wasser-Wärmepumpe für Innenaufstellung Brine-to-Water
Heat Pump for
Indoor Installation

Pompe à chaleur eau glycolée-eau pour installation intérieure

## Table of contents

| 1  | Please Read Immediately                   | E-2 |
|----|-------------------------------------------|-----|
|    | 1.1 Important Information                 | E-2 |
|    | 1.2 Legal Regulations and Directives      | E-2 |
|    | 1.3 Energy-Efficient Use of the Heat Pump | E-2 |
| 2  | Purpose of the Heat Pump                  | E-3 |
|    | 2.1 Application                           | E-3 |
|    | 2.2 Operating Principle                   | E-3 |
| 3  | Basic Device                              | E-3 |
| 4  | Accessories                               | E-4 |
|    | 4.1 Brine Circuit Manifold                | E-4 |
| 5  | Transport                                 | E-4 |
| 6  | Set-up                                    | E-4 |
|    | 6.1 General Information                   | E-4 |
|    | 6.2 Acoustic Emissions                    | E-4 |
| 7  | Installation                              | E-5 |
|    | 7.1 General Information                   | E-5 |
|    | 7.2 Heating System Connection             | E-5 |
|    | 7.3 Heat Source Connection                | E-5 |
|    | 7.4 Electrical Connection                 | E-5 |
| 8  | Commissioning                             | E-6 |
|    | 8.1 General Information                   |     |
|    | 8.2 Preparation                           |     |
|    | 8.3 Start-up Procedure                    | E-6 |
| 9  | Maintenance and Cleaning                  |     |
|    | 9.1 Maintenance                           |     |
|    | 9.2 Cleaning the Heating System           |     |
|    | 9.3 Cleaning the Heat Source System       | E-7 |
| 10 | Faults / Trouble-Shooting                 | E-7 |
| 11 | Decommissioning / Disposal                | E-7 |
| 12 | Device Information                        | E-8 |
| An | hang / Appendix / Annexes                 | A-I |

## Please Read Immediately

## 1.1 Important Information

### <u>∧ AT</u>TENTION!

The heat pump is not secured to the wooden pallet.

#### ∧ ATTENTION!

The heat pump must not be tilted more than 45° (in any direction).

#### 

Do not use the holes in the panel assemblies for lifting the device!

#### ATTENTION!

Flush the heating system prior to connecting the heat pump.

## **ATTENTION!**

The supplied dirt trap must be inserted in the heat source inlet of the heat pump to protect the evaporator against the ingress of impurities.

#### ATTENTION!

The brine solution must contain at least a 25 % concentration of a monoethylene glycol or propylene glycol-based antifreeze, which must be mixed before filling.

#### ATTENTION!

The heat pump must be started up in accordance with the installation and operating instructions of the heat pump controller.

### ATTENTION!

We recommend the installation of a suitable corrosion protection system to prevent the formation of deposits (e.g. rust) in the condenser of the heat pump.

#### ∧ ATTENTION!

Any work on the heat pump may only be performed by authorised and qualified after-sales service technicians.

### **⚠** ATTENTION!

Disconnect all electrical circuits from the power source prior to opening the device.

## 1.2 Legal Regulations and Directives

This heat pump conforms to all relevant DIN/VDE regulations and EU directives. Refer to the EC Declaration of Conformity in the appendix for details.

The heat pump must be connected to the power supply in compliance with all relevant VDE, EN and IEC standards. Any further connection requirements stipulated by local utility companies must also be observed.

The heat pump is to be connected to the heat source system and the heating or cooling system in accordance with all applicable regulations.

Persons, especially children, who are not capable of operating the device safely due to their physical, sensory or mental abilities or their inexperience or lack of knowledge, must not operate this device without supervision or instruction by the person in charge.

Children must be supervised to ensure that they do not play with the device.

## 1.3 Energy-Efficient Use of the Heat Pump

By operating this heat pump you are helping to protect our environment. The heating or cooling system and the heat source must be properly designed and dimensioned to ensure efficient operation. It is particularly important to keep water flow temperatures as low as possible in heating operation. All connected energy consumers should therefore be suitable for low flow temperatures. Raising the heating water temperature by 1 K corresponds to an increase in energy consumption of approx. 2.5 %. Low-temperature heating systems with flow temperatures between 30 °C and 50 °C are well-suited for energy-efficient operation.

## 2 Purpose of the Heat Pump

## 2.1 Application

The brine-to-water heat pump is designed for use in existing or newly built heating systems. Brine is used as the heat carrier in the heat source system. Borehole heat exchangers, ground heat collectors or similar systems can be used as the heat source.

## 2.2 Operating Principle

#### Heating

The heat generated by the sun, wind and rain is stored in the ground. This heat stored in the ground is collected at a low temperature by the brine circulating in the ground collector, ground coil or similar device. A circulating pump then conveys the "heated" brine to the evaporator of the heat pump. There the heat is given off to the refrigerant in the refrigerating cycle. This cools the brine so that it can once again absorb thermal energy in the brine circuit.

The refrigerant is drawn in by the electrically driven compressor, compressed and "pumped" to a higher temperature level. The electrical power needed to run the compressor is not lost in this process. Most of it is absorbed by the refrigerant.

Subsequently, the refrigerant is passed through the condenser where it transfers its heat energy to the heating water. Depending on the set operating point (thermostat setting), the heating water is thus heated up to a max. of 60 °C.

#### Cooling

The functions of the evaporator and the liquifier are reversed in the "Cooling" operating mode.

The heating water gives up its heat to the refrigerant via the liquifier which is now functioning as an evaporator. The refrigerant is pumped to a higher temperature level using the compressor. Heat passes into the brine via the liquifier (evaporator in heating operation) and consequently into the ground.

## 3 Basic Device

The basic device consists of a ready-to-use heat pump for indoor installation, complete with sheet metal casing, control panel and integrated controller. The refrigerating cycle contains the refrigerant R407C. R407C refrigerant is CFC-free, non-ozone depleting and non-combustible.

All components required for the operation of the heat pump are located on the control panel. An external wall temperature sensor including fixing accessories and a dirt trap are supplied with the heat pump. The power feed for the load current and the control current must be installed by the customer.

The supply lead of the brine circulating pump (to be provided by the customer) must be connected to the control panel. If required, the supply lead of the brine pump is be equipped with a motor protection device.

The customer must provide both the collector and the brine circuit manifold.



- 1) Liquifier
- Control panel
- 3) Evaporator
- 4) Compressor

www.dimplex.de E-3

## 4 Accessories

### 4.1 Brine Circuit Manifold

The brine circuit manifold merges the individual collector loops of the heat source system into a single main pipe which is connected to the heat pump. Integrated ball valves allow the individual brine circuits to be shut off for de-aeration purposes.



## 5 Transport

A lift truck is suited for transporting the unit on a level surface. Carrying straps may be used if the heat pump needs to be transported on an uneven surface or carried up or down stairs. These straps can be passed directly underneath the wooden pallet.

#### ATTENTION!

The heat pump is not secured to the wooden pallet.



## ATTENTION!

The heat pump must not be tilted more than 45° (in any direction).

Use the holes provided in the sides of the frame to lift the unit without the pallet. The side panel assemblies must be removed for this purpose. Any commercially available length of pipe can be used as a carrying aid.

## **ATTENTION!**

Do not use the holes in the panel assemblies for lifting the device!

## 6 Set-up

### 6.1 General Information

The unit may only be installed indoors in rooms with low humidity on a level, smooth and horizontal surface. The entire base of the frame should lie directly on the floor to ensure a good soundproof seal. If this is not the case, additional sound insulation measures may be necessary.

The heat pump must be installed so that maintenance work can be carried out without hindrance. This can be ensured by maintaining a clearance of approx. 1 m in front of and on each side of the heat pump.



### 6.2 Acoustic Emissions

The heat pump operates silently due to efficient sound insulation. To prevent noise transmission to the foundation, a suitable, sound dampening rubber mat should be placed underneath the base frame of the heat pump.

To prevent any sound from being transmitted to the heating system, we recommend connecting the heat pump to the heating system by means of hose sections.

### 7 Installation

#### 7.1 General Information

The following connections need to be established on the heat pump:

- Flow and return flow of the brine system
- Flow and return flow of the heating system
- Power supply

## 7.2 Heating System Connection

#### **⚠** ATTENTION!

Flush the heating system prior to connecting the heat pump.

Before connecting the heating water system to the heat pump, the heating system must be flushed to remove any impurities, residue from sealants, etc. Any accumulation of deposits in the liquifier could cause the heat pump to completely break down.

Once the heating system has been installed, it must be filled, deaerated and pressure-tested.

The sensors which are delivered already connected and loosely placed in the switch box must be mounted and insulated according to the block diagram.

#### Minimum heating water flow rate

The minimum heating water flow rate through the heat pump must be assured in all operating states of the heating system. This can be accomplished, for example, by installing either a manifold without differential pressure or an overflow valve. The procedure for adjusting an overflow valve is described in the Chapter Start-Up.

## Antifreeze protection for installation locations prone to frost

The antifreeze function of the heat pump controller is active whenever the controller and the heat circulating pumps are ready for operation. If the heat pump is taken out of service or in the event of a power failure, the system has to be drained. The heating circuit should be operated with a suitable antifreeze if heat pump systems are implemented in buildings where a power failure can not be detected (holiday home).

#### 7.3 Heat Source Connection

The following procedure must be observed when connecting the heat source:

Connect the brine pipe to the heat pump flow and return. The hydraulic plumbing diagram must be adhered to.

#### **⚠** ATTENTION!

The supplied dirt trap must be inserted in the heat source inlet of the heat pump to protect the evaporator against the ingress of impurities.

In addition, a micro bubble air separator must be installed in the heat source system.

The brine liquid must be produced prior to charging the system. The liquid must have an antifreeze concentration of at least 25 % to ensure frost protection down to -14  $^{\circ}$ C.

Only monoethylene glycol or propylene glycol-based antifreeze may be used.

The heat source system must be de-aerated and checked for leaks.

### <u>∧ ATTENTION!</u>

The brine solution must contain at least a 25 % concentration of a monoethylene glycol or propylene glycol-based antifreeze, which must be mixed before filling.

#### 7.4 Electrical Connection

The following electrical connections must be established on the heat pump:

- Connection of the control line to the control panel of the heat pump via terminal X1: L/N/PE.
- Connection of the mains cable to the control panel of the heat pump via terminal X6: L/N/PE.
- Connection of the brine circulating pump (to be provided by the customer) to the control panel of the heat pump via terminal X1: PE and pump contactor K5: 14/24. As an option, the brine pump can also be directly connected (see terminal connection plan).

All electrical components required for the operation of the heat pump are located on the control panel.

For detailed instructions concerning the connection and functioning of the heat pump controller (e.g. external wall sensor included in the scope of supply) refer to the operating manual supplied with the controller.

A disconnecting device with a contact gap of at least 3 mm (e.g. utility blocking contactor or power contactor) as well as a 1-pole circuit breaker have to be provided by the customer. The required conductor cross-section is to be selected according to the power consumption of the heat pump, the technical connection requirements of the respective utility company as well as all applicable regulations. Details on the power consumption of the heat pump are listed on both the product information sheet and the type plate. The connection terminals are designed for a max. conductor cross-section of 10mm<sup>2</sup>.

www.dimplex.de E-5

## 8 Commissioning

#### 8.1 General Information

To ensure that start-up is performed correctly, it should only be carried out by an after-sales service technician authorised by the manufacturer. This may be a condition for extending the guarantee (see Warranty). Start-up should be carried out in heating operation.

## 8.2 Preparation

The following items need to be checked prior to start-up:

- The heat pump must be fully connected, as described in Chapter 7.
- The heat source system and the heating circuit must have been filled and checked.
- The dirt trap must be inserted in the brine inlet of the heat pump.
- All valves that could impair proper flow in the brine and heating circuits must be open.
- The heat pump controller must be adapted to the heating system in accordance with the controller's operating instructions.

## 8.3 Start-up Procedure

The heat pump is started up via the heat pump controller.

### ∧ ATTENTION!

The heat pump must be started up in accordance with the installation and operating instructions of the heat pump controller.

If an overflow valve is fitted to assure the minimum heating water flow rate, the valve must be set in accordance with the requirements of the respective heating system. Incorrect adjustment can lead to faulty operation and increased energy consumption. We recommend carrying out the following procedure to correctly adjust the overflow valve:

Close all of the heating circuits that may also be closed during operation (depending on the type of heat pump usage) so that the most unfavourable operating state - with respect to the water flow rate - is achieved. This normally means the heating circuits of the rooms on the south and west sides of the building. At least one heating circuit must remain open (e.g. bathroom).

The overflow valve should be opened far enough to produce the maximum temperature spread between the heating flow and return flow listed in the table below for the current heat source temperature. The temperature spread should be measured as close as possible to the heat pump. The heating element of mono energy systems should be disconnected.

| Heat source temperature |       | Max. temperature spread between heating flow and return |  |  |
|-------------------------|-------|---------------------------------------------------------|--|--|
| From                    | То    | flow                                                    |  |  |
| -5° C                   | 0° C  | 10 K                                                    |  |  |
| 1° C                    | 5° C  | 11 K                                                    |  |  |
| 6° C                    | 9° C  | 12 K                                                    |  |  |
| 10° C                   | 14° C | 13 K                                                    |  |  |
| 15° C                   | 20° C | 14 K                                                    |  |  |
| 21° C                   | 25° C | 15 K                                                    |  |  |

Any faults occurring during operation are displayed on the heat pump controller and can be corrected as described in the operating manual of the heat pump controller.

## 9 Maintenance and Cleaning

#### 9.1 Maintenance

The heat pump is maintenance-free. To prevent faults due to sediment in the heat exchangers, care must be taken to ensure that no impurities can enter either the heat source system or the heating system. In the event that operating malfunctions due to contamination occur nevertheless, the system should be cleaned as described below.

## 9.2 Cleaning the Heating System

The ingress of oxygen into the heating water circuit may result in the formation of oxidation products (rust), particularly if steel components are used. This oxygen enters the heating system via the valves, the circulating pumps and/or plastic pipes. It is therefore essential - in particular with respect to the piping of underfloor heating systems - that only diffusion-proof materials are used.

### **ATTENTION!**

We recommend the installation of a suitable corrosion protection system to prevent the formation of deposits (e.g. rust) in the condenser of the heat pump.

Residue from lubricants and sealants may also contaminate the heating water.

In the case of severe contamination leading to a reduction in the performance of the liquifier in the heat pump, the system must be cleaned by a heating technician.

According to today's state of knowledge, we recommend using a 5 % phosphoric acid solution for cleaning purposes. However, if cleaning needs to be performed more frequently, a 5 % formic acid solution should be used.

In either case, the cleaning fluid should be at room temperature. We recommend flushing the heat exchanger in the direction opposite to the normal flow direction.

To prevent acidic cleaning agents from entering the heating system circuit, we recommend connecting the flushing device directly to the flow and return flow of the liquifier. It is important that the system be thoroughly flushed using appropriate neutralising agents to prevent any damage from being caused by cleaning agent residue remaining in the system.

Acids must be used with great care and all relevant regulations of the employers' liability insurance associations must be adhered to

If in doubt, contact the manufacturer of the chemicals!

# 9.3 Cleaning the Heat Source System

#### ATTENTION!

The supplied dirt trap must be inserted in the heat source inlet of the heat pump to protect the evaporator against the ingress of impurities.

Clean the dirt trap's filter screen one day after start-up and subsequently in weekly intervals. If no more signs of contamination are evident, the filter can be removed to reduce pressure drops.

## 10 Faults / Trouble-Shooting

This heat pump is a quality product and is designed for trouble-free operation. In the event that a fault should occur, it will be indicated on the heat pump manager display. Simply consult the Faults and Trouble-Shooting page in the operating instructions of the heat pump controller.

If you cannot correct the fault yourself, please contact your aftersales service technician.

## **ATTENTION!**

Any work on the heat pump may only be performed by authorised and qualified after-sales service technicians.

### ATTENTION!

Disconnect all electrical circuits from the power source prior to opening the device

# 11 Decommissioning / Disposal

Before removing the heat pump, disconnect it from the power source and close all valves. Observe all environmentally-relevant requirements regarding the recovery, recycling and disposal of materials and components in accordance with all applicable standards. Particular attention should be paid to the proper disposal of refrigerants and refrigeration oils.

www.dimplex.de E-7

## 12 Device Information

| 1        | Type and order code                                  |                           |              | SI 5MER                | SI 7MER                 | SI 9MER                 | SI 11MER                |
|----------|------------------------------------------------------|---------------------------|--------------|------------------------|-------------------------|-------------------------|-------------------------|
| 2        | Design                                               |                           |              |                        | 511111111               | 5. 5                    |                         |
| -<br>2.1 | Model                                                |                           |              | Reversible             | Reversible              | Reversible              | Reversible              |
| 2.2      | Degree of protection according to                    | EN 60 529                 |              | IP20                   | IP20                    | IP20                    | IP20                    |
| 2.3      | Installation location                                | 211 00 020                |              | Indoors                | Indoors                 | Indoors                 | Indoors                 |
| 3        | Performance data                                     |                           |              |                        |                         |                         |                         |
| 3.1      | Operating temperature limits:                        |                           |              |                        |                         |                         |                         |
|          | Heating water flow                                   |                           | °C           | Up to 55               | Up to 55                | Up to 55                | Up to 55                |
|          | Cooling, flow                                        |                           | °C           | +7 to +20              | +7 to +20               | +7 to +20               | +7 to +20               |
|          | Brine (heat source, heating)                         |                           | °C           | -5 to +25              | -5 to +25               | -5 to +25               | -5 to +25               |
|          | Brine (heat sink, cooling)                           |                           | °C           | +5 to +25              | +5 to +25               | +5 to +25               | +5 to +25               |
|          | Antifreeze                                           |                           |              | Monoethylene<br>glycol | Monoethylene<br>glycol  | Monoethylene<br>glycol  | Monoethylene<br>glycol  |
|          | Minimum brine concentration (-13                     | °C freezing temperatu     | re)          | 25%                    | 25%                     | 25%                     | 25%                     |
| 3.2      | Temperature spread of heating wa                     | ter (flow/return flow) a  | t B0 / W35K  | 9.4                    | 9.1                     | 10.6                    | 9.9                     |
| 3.3      | Heat output / COP                                    | at B-5 / W55 <sup>1</sup> | kW /         | 4.0 / 2.0              | 5.4 / 2.1               | 7.5 / 2.0               | 9.8 / 2.1               |
|          |                                                      | at B0 / W50 1             | kW /         | 4.8 / 2.7              | 6.2 / 2.7               | 8.8 / 2.8               | 11.3 / 2.9              |
|          |                                                      | at B0 / W35 <sup>1</sup>  | kW /         | 4.9 / 3.9              | 6.4 / 3.8               | 9.3 / 4.0               | 11.6 / 4.1              |
| 3.4      | Cooling capacity / COP                               | at B20 / W8               | kW /         | 5.4 / 4.6              | 7.0 / 4.5               | 9.9 / 4.6               | 11.4 / 4.6              |
|          |                                                      | at B20 / W18              | kW /         | 6.6 / 5.3              | 8.6 / 5.3               | 12.0 / 5.4              | 14.1 / 5.3              |
|          |                                                      | at B10 / W8               | kW /         | 5.4 / 5.6              | 7.0 / 5.5               | 9.9 / 5.6               | 11.6 / 5.7              |
|          |                                                      | at B10 / W18              | kW /         | 6.8 / 6.7              | 8.8 / 6.6               | 12.4 / 6.7              | 14.1 / 6.5              |
| 3.5      | Sound power level                                    |                           | dB(A)        | 54                     | 55                      | 56                      | 56                      |
| 3.6      | Heating water flow with an internal                  | pressure differential     | of m³/h / Pa | 0.45 / 1,900           | 0.6 / 3,300             | 0.75 / 2,300            | 1.0 / 4,100             |
| 3.7      | Brine throughput with an internal p (heat source) of | pressure differential     | m³/h / Pa    | 1.2 / 16,000           | 1.7 / 29,500            | 2.3 / 25,000            | 3.0 / 24,000            |
| 3.8      | Refrigerant; total filling weight                    |                           | type / kg    | R407C / 0.9            | R407C / 0.9             | R407C / 1.25            | R407C / 1.6             |
| 4        | Dimensions, connections a                            | and weight                |              |                        |                         |                         |                         |
| 4.1      | Device dimensions without connect                    | ctions <sup>2</sup>       | H x W x L mm | 805 × 650 × 462        | $805\times650\times462$ | $805\times650\times462$ | $805\times650\times462$ |
| 4.2      | Device connections to heating sys                    | tem                       | Inch         | G 11/4" external       | G 1¼" external          | G 1¼" external          | G 1¼" external          |
| 4.3      | Device connections to heat source                    | •                         | Inch         | G 11/4" external       | G 1¼" external          | G 1¼" external          | G 11/4" external        |
| 4.4      | Weight of the transportable unit(s)                  | incl. packing             | kg           | 115                    | 117                     | 124                     | 128                     |
| 5        | <b>Electrical Connection</b>                         |                           |              |                        |                         |                         |                         |
| 5.1      | Nominal voltage; fuse protection                     |                           | V/A          | 230 / 16               | 230 / 16                | 230 / 20                | 230 / 25                |
| 5.2      | Nominal power consumption <sup>1</sup>               | B0 W35                    | kW           | 1.25                   | 1.68                    | 2.3                     | 2.8                     |
| 5.3      | Starting current with soft starter                   |                           | Α            | 24                     | 26                      | 38                      | 38                      |
| 5.4      | Nominal current B0 W35 / cos $\phi$                  |                           | A /          | 6.8 / 0.8              | 9.1 / 0.8               | 12.5 / 0.8              | 15.2 / 0.8              |
| 6        | Complies with the Europea                            | n safety regulation       | ons          | 3                      | 3                       | 3                       | 3                       |
| 7        | Additional model features                            |                           |              |                        |                         |                         |                         |
| 7.1      | Water in device protected against                    | freezing <sup>4</sup>     |              | Yes                    | Yes                     | Yes                     | Yes                     |
| 7.2      | Performance levels                                   |                           |              | 1                      | 1                       | 1                       | 1                       |
| 7.3      | Controller internal/external                         |                           |              | Internal               | Internal                | Internal                | Internal                |
|          |                                                      |                           |              | •                      |                         |                         |                         |

<sup>1.</sup> This data indicates the size and capacity of the system. For an analysis of the economic and energy efficiency of the system, both the bivalence point and the regulation should also be taken into consideration. The specified values, e.g. B10 / W55, have the following meaning: Heat source temperature 10 °C and heating water flow temperature 55 °C.

<sup>2.</sup> Note that additional space is required for pipe connections, operation and maintenance.

<sup>3.</sup> See CE declaration of conformity

<sup>4.</sup> The heat circulating pump and the heat pump controller must always be ready for operation.

## Anhang / Appendix / Annexes

| 1 | Maßbilder / Dimension Drawings / Schémas cotés                                                   | A-II      |  |  |
|---|--------------------------------------------------------------------------------------------------|-----------|--|--|
|   | 1.1 Maßbild / Dimension Drawing / Schéma coté                                                    | A-II      |  |  |
| 2 | Diagramme / Diagrams / Diagrammes                                                                | A-III     |  |  |
|   | 2.1 Heizbetrieb / Heating operation / Mode chauffage SI 5MER                                     | A-III     |  |  |
|   | 2.2 Kühlbetrieb / Cooling operation / Mode refroidissement SI 5MER                               | A-IV      |  |  |
|   | 2.3 Heizbetrieb / Heating operation / Mode chauffage SI 7MER                                     | A-V       |  |  |
|   | 2.4 Kühlbetrieb / Cooling operation / Mode refroidissement SI 7MER                               | A-VI      |  |  |
|   | 2.5 Heizbetrieb / Heating operation / Mode chauffage SI 9MER                                     | A-VII     |  |  |
|   | 2.6 Kühlbetrieb / Cooling operation / Mode refroidissement SI 9MER                               | A-VIII    |  |  |
|   | 2.7 Heizbetrieb / Heating operation / Mode chauffage SI 11MER                                    | A-IX      |  |  |
|   | 2.8 Kühlbetrieb / Cooling operation / Mode refroidissement SI 11MER                              |           |  |  |
| 3 | Stromlaufpläne / Circuit Diagrams / Schémas électriques                                          | A-XI      |  |  |
|   | 3.1 Steuerung Standardregler / Control via the standard controller / Commande régulateur stand   | ardA-XI   |  |  |
|   | 3.2 Steuerung Kühlregler / Control via the cooling controller / Commande régulateur refroidissen | nentA-XII |  |  |
|   | 3.3 Last / Load / Charge                                                                         | A-XIII    |  |  |
|   | 3.4 Anschlussplan Standardregler / Terminal diagram for standard controller / Schéma de branc    | nement du |  |  |
|   | régulateur standard                                                                              | A-XIV     |  |  |
|   | 3.5 Anschlussplan Kühlregler / Terminal diagram for cooling controller / Schéma de branchemen    | t du      |  |  |
|   | régulateur de refroidissement                                                                    | A-XV      |  |  |
|   | 3.6 Legende / Legend / Légende                                                                   | A-XVI     |  |  |
| 4 | Hydraulisches Prinzipschema / Hydraulic Plumbing Diagram / Schéma hydrauliqueA-XVI               |           |  |  |
|   | 4.1 Darstellung / Schematic View / Représentation                                                |           |  |  |
|   | 4.2 Legende / Legend / Légende                                                                   |           |  |  |
| 5 | Konformitätserklärung / Declaration of Conformity / Déclaration de conformité                    | A-XIX     |  |  |

## 1 Maßbilder / Dimension Drawings / Schémas cotés

## 1.1 Maßbild / Dimension Drawing / Schéma coté











## 2 Diagramme / Diagrams / Diagrammes

## 2.1 Heizbetrieb / Heating operation / Mode chauffage SI 5MER



## 2.2 Kühlbetrieb / Cooling operation / Mode refroidissement SI 5MER



## 2.3 Heizbetrieb / Heating operation / Mode chauffage SI 7MER



## 2.4 Kühlbetrieb / Cooling operation / Mode refroidissement SI 7MER



## 2.5 Heizbetrieb / Heating operation / Mode chauffage SI 9MER



## 2.6 Kühlbetrieb / Cooling operation / Mode refroidissement SI 9MER



## 2.7 Heizbetrieb / Heating operation / Mode chauffage SI 11MER



## 2.8 Kühlbetrieb / Cooling operation / Mode refroidissement SI 11MER



# 3 Stromlaufpläne / Circuit Diagrams / Schémas électriques

# 3.1 Steuerung Standardregler / Control via the standard controller / Commande régulateur standard



# 3.2 Steuerung Kühlregler / Control via the cooling controller / Commande régulateur refroidissement



## 3.3 Last / Load / Charge



# 3.4 Anschlussplan Standardregler / Terminal diagram for standard controller / Schéma de branchement du régulateur standard



# 3.5 Anschlussplan Kühlregler / Terminal diagram for cooling controller / Schéma de branchement du régulateur de refroidissement



## 3.6 Legende / Legend / Légende

|              | Desktheft des seurs sie eels et werden werde bein                                            | Wiles because and he becaused the his alice and                                                   | La constitue à fil de la ôtac include au alemana de dis                                                |
|--------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| A1           | Drahtbrücke, muss eingelegt werden, wenn kein<br>Sperrschütz vorhanden ist                   | Wire jumper, must be inserted if no blocking contactor is fitted                                  | Le cavalier à fil doit être inséré en absence de dis-<br>joncteur de blocage du fournisseur d'énergie. |
| A2           | Drahtbrücke, muss bei Verwendung des 2ten Sper-                                              | Wire jumper, must be removed if the 2nd disable                                                   | Cavalier à fil à retirer si la 2e entrée de coupure est                                                |
| / \_         | reinganges entfernt werden                                                                   | contactor is used                                                                                 | utilisée                                                                                               |
| А3           | Drahtbrücke, muss bei Einsatz eines Motorschutz-                                             | Wire jumper, must be removed if a motor protection                                                | Retirer le cavalier à fil si utilisation d'un contact de                                               |
|              | kontaktes, für die Primärpumpe, entfernt werden                                              | contact is used for the primary pump                                                              | disjoncteur de moteur, pour la pompe primaire                                                          |
| A4           | Drahtbrücke, muss bei Einsatz eines Motorschutz-                                             | Wire jumper, must be removed when a motor pro-                                                    | Retirer le cavalier à fil si utilisation d'un contact de                                               |
|              | kontaktes, für den Verdichter, entfernt werden                                               | tection contact is used for the compressor                                                        | disjoncteur de moteur, pour le compresseur                                                             |
|              | Offene Drahtbrücken oder Kontakte bedeuten<br>Sperre oder Störung                            | Open wire jumpers or contacts mean: block or fault                                                | Cavaliers à fil ou contacts ouverts signifient cou-<br>pure ou panne                                   |
| B2*          | Pressostat Niederdruck Sole                                                                  | Low-pressure brine controller                                                                     | Pressostat eau glycolée basse pression                                                                 |
| B3*          | Thermostat Warmwasser                                                                        | Hot water thermostat                                                                              | Thermostat eau chaude                                                                                  |
| B4*          | Thermostat Schwimmbadwasser                                                                  | Swimming pool water thermostat                                                                    | Thermostat eau de piscine                                                                              |
| C1           | Betriebskondensator Verdichter                                                               | Running capacitor, compressor                                                                     | Condensateur de service - compresseur                                                                  |
| E9*          | Elekt. Tauchheizkörper-Warmwasser                                                            | Electric immersion heater hot water                                                               | Thermoplongeur électr. eau chaude                                                                      |
| E10*         | Wärmeerzeuger (Heizkessel oder Elekt. Heiz-                                                  | Heat generator 2 (boiler or electric heating element)                                             | 2e générateur de chaleur (chaudière ou cartouche                                                       |
| F2           | stab)                                                                                        | Load fuga for N11 relay outputs at 112                                                            | chauffante électrique)                                                                                 |
| Г            | Lastsicherung für N1-Relaisausgänge an J13<br>4,0 ATr                                        | Load fuse for N1 relay outputs at J13 4.0 slow-acting                                             | Coupe-circuit de la charge pour sorties de relais N1<br>sur J13 4,0 ATr                                |
| F3           | Lastsicherung für Relaisausgänge an J15 bis J18                                              | Load fuse relay outputs at J15 to J18 at N1 and J12                                               | Coupe-circuit de charge pour sorties de relais en                                                      |
|              | am N1 und J12 am N2 4,0 ATr                                                                  | at N2 4.0 slow-acting                                                                             | J15 jusqu'à J18 pour N1 et en J12 pour N2 4,0 ATr                                                      |
| F4           | Pressostat Hochdruck                                                                         | High-pressure controller                                                                          | Pressostat haute pression                                                                              |
| F5           | Pressostat Niederdruck                                                                       | Low-pressure controller                                                                           | Pressostat basse pression                                                                              |
| H5           | Leuchte Störfernanzeige                                                                      | Remote fault indicator lamp                                                                       | Témoin de télédétection de pannes                                                                      |
| J1J18        | Klemmensteckverbinder an N1 (Heizregler)                                                     | Terminal connector at N1 (Heating controller)                                                     | Connecteur à bornes sur N1 (Régulateur de chauf-                                                       |
| 14 145       | Klemmensteckverbinder an N2 (Kühlregler)                                                     | Terminal connector at N2 (applies controller)                                                     | fage)                                                                                                  |
| J1J15        | Menimensteckverbinder an NZ (Kuniregier)                                                     | Terminal connector at N2 (cooling controller)                                                     | Connecteur à bornes sur N2 (régulateur refroidis-<br>sement)                                           |
| K5           | Schütz Primärpumpe (M11)                                                                     | Contactor, primary pump (M11)                                                                     | Contacteur pompe primaire (M11)                                                                        |
| K20*         | Schütz für E10                                                                               | Contactor for E10                                                                                 | Contacteur pour E10                                                                                    |
| K21*         | Schütz für E9                                                                                | Contactor for E9                                                                                  | Contacteur pour E9                                                                                     |
| K22*         | EVU Sperrschütz                                                                              | Utility blocking contactor                                                                        | Contacteur de coupure de la société d'électricité                                                      |
| K23*         | SPR Hilfsrelais                                                                              | SPR auxiliary relay                                                                               | Relais auxiliaire « SPR »                                                                              |
| K25          | Startrelais für N7                                                                           | Start relay for N7                                                                                | Relais départ sur N7                                                                                   |
| M1           | Verdichter                                                                                   | Compressor                                                                                        | Compresseur                                                                                            |
| M11*<br>M13* | Primärpumpe Heizungsumwälzpumpe Hauptkreis                                                   | Primary pump Heat circulating pump of the main circuit                                            | Pompe primaire Circulateur de chauffage circuit principal                                              |
| M14*         | Heizungsumwälzpumpe 1. Heizkreis                                                             | Heat circulating pump of heating circuit 1                                                        | Circulateur de chauffage 1er circuit de chauffage                                                      |
| M15*         | Heizungsumwälzpumpe 1. Heizkreis                                                             | Heat circulating pump of heating circuit 2                                                        | Circulateur de chauffage 2e circuit de chauffage                                                       |
| M16*         | Zusatzumwälzpumpe                                                                            | Auxiliary circulating pump                                                                        | Circulateur supplémentaire                                                                             |
| M18*         | Warmwasserumwälzpumpe                                                                        | Hot water circulating pump                                                                        | Circulateur d'eau chaude                                                                               |
| M19*         | Schwimmbadwasserumwälzpumpe                                                                  | Swimming pool water circulating pump                                                              | Circulateur d'eau de piscine                                                                           |
| M21*         | Mischer Hauptkreis                                                                           | Mixer for main circuit                                                                            | Mélangeur circuit principal                                                                            |
| M22*         | Mischer 2. Heizkreis                                                                         | Mixer for heating circuit 2                                                                       | Mélangeur 2e circuit de chauffage                                                                      |
| N1<br>N2     | Heizregler                                                                                   | Heating controller                                                                                | Régulateur de chauffage                                                                                |
| N2<br>N3/N4* | Kühlregler Raumstationen für die Taupunktregelung                                            | Cooling controller  Room stations for dew point regulation                                        | Régulateur refroidissement Stations de pièce pour régulation du point de con-                          |
| 110/114      | Raumstationer for the Taupunktregetung                                                       | Room stations for dew point regulation                                                            | densation                                                                                              |
| N5*          | Taupunktwächter                                                                              | Dew point monitor                                                                                 | Contrôleur du point de condensation                                                                    |
| N7           | Sanftanlaufsteuerung                                                                         | Soft start control                                                                                | Commande de démarrage progressif                                                                       |
| N9*          | Raumthermostat                                                                               | Room thermostat                                                                                   | Thermostat de pièce                                                                                    |
| N14          | Bedienteil                                                                                   | Operating element                                                                                 | Commande                                                                                               |
| R1*          | Außenfühler                                                                                  | External sensor                                                                                   | Sonde extérieure                                                                                       |
| R2<br>R3*    | Rücklauffühler Warmwasserfühler (alternativ zum Warmwasser-                                  | Return flow sensor  Hot water sensor (as an alternative to the hot water                          | Sonde de retour<br>Sonde d'eau chaude (alternative au thermostat eau                                   |
| No           | thermostat)                                                                                  | thermostat)                                                                                       | chaude)                                                                                                |
| R5*          | Fühler für 2ten Heizkreis                                                                    | Sensor for heating circuit 2                                                                      | Sonde pour 2e circuit de chauffage                                                                     |
| R6           | Eingefrierschutzfühler (Sole)                                                                | Flow temperature limit sensor (brine)                                                             | Sonde antigel (eau glycolée)                                                                           |
| R7           | Kodierwiderstand 19k6                                                                        | Coding resistor 19.6 kOhm                                                                         | Résistance de codage 19k6                                                                              |
| R8           | Frostschutzfühler Kühlen                                                                     | Flow sensor, cooling                                                                              | Sonde antigel refroidissement                                                                          |
| R9           | Frostschutzfühler Heizen                                                                     | Flow sensor, heating                                                                              | Sonde antigel chauffage                                                                                |
| R10*         | Sensoren von N5                                                                              | Sensors from N5                                                                                   | Capteurs de N5                                                                                         |
| T1<br>Y1     | Sicherheitstrenntransformator 230/24 VAC-50VA<br>Klemmenleiste Netz-Steuerung L/N/PE-230VAC- | Safety isolating transformer 230/24 V AC-50 VA Terminal strip for mains control L/N/PE-230 V AC - | Transformateur sectionn. sécu. 230/24 VAC-50VA<br>Bornier commande réseau L/N/PE-230VAC-50Hz/          |
| X1           | 50Hz/Sicherungen/N- und PE-Verteiler                                                         | 50 Hz/fuses/N and PE terminal block                                                               | fusibles/distributeur N et PE                                                                          |
| X2           | Klemmenleiste 24 VAC-Verteiler                                                               | Terminal strip for 24 V AC terminal block                                                         | Bornier distributeur pour 24 V AC                                                                      |
| X3           | Klemmenleiste GND-Verteiler für Sensoren                                                     | Terminal strip for GND terminal block for sensors                                                 | Bornier distributeur GND pour capteurs                                                                 |
| X4           | Klemmenleiste Verdichter                                                                     | Terminal strip for compressor                                                                     | Bornier compresseur                                                                                    |
| X5           | Klemmenleiste 0 VAC-Verteiler                                                                | Terminal strip for 0 V AC terminal block                                                          | Bornier distributeur pour 0 V AC                                                                       |
| X6           | Klemmenleiste Leistungseinspeisung L/N/PE-                                                   | Terminal strip for power supply L/N/PE-230 V AC -                                                 | Bornier alimentation puissance L/N/PE-230V AC-                                                         |
| V1           | 230VAC-50Hz                                                                                  | 50 Hz                                                                                             | 50 Hz                                                                                                  |
| Y1           | Vier-Wege-Umschaltventil                                                                     | Four-way valve                                                                                    | Vanne d'inversion 4 voies                                                                              |
|              | Abkürzungen:                                                                                 | Abbreviations:                                                                                    | Abréviations :                                                                                         |
| EVS          | EVU-Sperreingang                                                                             | Utility disable contactor                                                                         | Entrée de coupure fournisseur d'énergie                                                                |
| SPR          | Zusätzlicher Sperreingang                                                                    | Supplementary disable contactor                                                                   | Entrée de « coupure courant » complémentaire                                                           |
| STF*         | Störfernanzeige                                                                              | Remote fault indicator                                                                            | Télédétection de pannes                                                                                |
| MA           | Mischer AUF                                                                                  | Mixer OPEN                                                                                        | Mélangeur OUVERT                                                                                       |
| MZ           | Mischer ZU                                                                                   | Mixer CLOSED                                                                                      | Mélangeur FERME                                                                                        |
| *            | Bauteile sind extern beizustellen                                                            | Components to be supplied from external sources                                                   | Pièces à fournir par le client                                                                         |
|              | bauseits bei Bedarf anzuschließen<br>werksseitig verdrahtet                                  | To be connected by the customer as required Wired ready for use                                   | à raccorder par le client au besoin<br>câblé départ usine                                              |
|              | WOINGGERING VEHICALITIES                                                                     | vviica icauy ioi use                                                                              | oubio depart dollie                                                                                    |

4 Hydraulisches Prinzipschema / Hydraulic Plumbing Diagram / Schéma hydraulique

## 4.1 Darstellung / Schematic View / Représentation



## 4.2 Legende / Legend / Légende

| $\overline{\bowtie}$    | Absperrventil                         | Shutoff valve                                                                  | Robinet d'arrêt                                                                |
|-------------------------|---------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $\nearrow$              | Absperrventil mit Entwässerung        | Shutoff valve with drainage                                                    | Robinet d'arrêt avec écoulement                                                |
|                         | Sicherheitsventil                     | Safety valve                                                                   | Vanne de sécurité                                                              |
|                         | Umwälzpumpe                           | Circulating pump                                                               | Circulateur                                                                    |
| $\tilde{\bigcirc}$      | Ausdehnungsgefäß                      | Expansion vessel                                                               | Vase d´expansion                                                               |
|                         | Raumtemperaturgesteuertes Ventil      | Room temperature-controlled valve                                              | Vanne commandée par température                                                |
| $\overline{\mathbb{Z}}$ | Absperrventil mit Rückschlagventil    | Shutoff valve with check valve                                                 | Robinet d'arrêt avec clapet anti-retour                                        |
|                         | Wärmeverbraucher                      | Heat consumer                                                                  | Consommateur de chaleur                                                        |
| <b>)</b>                | Dreiwegemischer                       | Three-way mixer                                                                | Mélangeur 3 voies                                                              |
|                         | Schmutzfänger                         | Dirt trap                                                                      | Collecteur d'impuretés                                                         |
|                         | -                                     | ·                                                                              | •                                                                              |
| 0                       | Temperaturfühler                      | Temperature sensor                                                             | Sonde de température                                                           |
| <del>-W-</del>          | Flexibler Anschlussschlauch           | Flexible connection hose                                                       | Tuyau de raccord flexible                                                      |
|                         |                                       |                                                                                |                                                                                |
| 1                       | Wärmepumpe                            | Heat pump                                                                      | Pompe à chaleur                                                                |
| 2                       | Pufferspeicher                        | Buffer tank                                                                    | Réservoir tampon                                                               |
| 3                       | Wärmepumpenregler                     | Heat pump controller                                                           | Régulateur de pompe à chaleur                                                  |
| 4                       | Elektroverteilung                     | Electrical distribution system                                                 | Distributeur courant électrique                                                |
| (5)                     | Warmwasserspeicher                    | Hot water cylinder                                                             | Réservoir d'eau chaude                                                         |
| 6                       | Erdwärmesonden                        | Borehole heat exchangers                                                       | Sondes géothermiques                                                           |
| 7                       | Soleverteiler                         | Brine circuit manifold                                                         | Distributeur d'eau glycolée                                                    |
| 8                       | Solesammler                           | Brine collector                                                                | Absorbeur à circulation d'eau glycolée                                         |
|                         |                                       |                                                                                |                                                                                |
| E9                      | Tauchheizkörper Warmwasser            | Immersion heater hot water                                                     | Thermoplongeur eau chaude                                                      |
| E10                     | 2ter Wärmeerzeuger                    | Heat generator 2                                                               | 2e générateur de chaleur                                                       |
| M11                     | Soleumwälzpumpe                       | Brine circulating pump                                                         | Circulateur d'eau glycolée                                                     |
| M13                     | Heizungsumwälzpumpe                   | Heat circulating pump                                                          | Circulateur de chauffage                                                       |
| M14                     | Umwälzpumpe für Heiz- und Kühlbetrieb | Circulating pump for heating and cooling                                       | Circulateur pour mode chauffage et re-                                         |
|                         | (elektronisch geregelt)               | operation (electronically regulated) Heating pump for heating circuit 2 (elec- | froidissement (rég. électroniquement)  Pompe chauffage 2e circuit de chauffage |
| M15                     | nisch geregelt)                       | tronically regulated)                                                          | (régulée électroniquement)                                                     |
| M18                     | Warmwasserumwälzpumpe                 | Hot water circulating pump                                                     | Circulateur d'eau chaude                                                       |
| N1                      | Standardregler                        | Standard controller                                                            | Régulateur standard                                                            |
| N2                      | Kühlregler                            | Cooling controller                                                             | Régulateur de refroidissement                                                  |
| N3/N4                   | Raumklimastation                      | Room climate control station                                                   | Station de climatisation de pièce                                              |
| R1                      | Außenwandfühler                       | External wall sensor                                                           | Sonde de paroi extérieure                                                      |
| R2                      | Rücklauffühler                        | Return flow sensor                                                             | Sonde de retour                                                                |
| R3                      | Warmwasserfühler                      | Hot water sensor                                                               | Sonde d'eau chaude                                                             |
| R5                      | Rücklauffühler 2ter Heizkreis         | Return flow sensor for heating circuit 2                                       | Sonde de retour 2e circuit de chauffage                                        |
| R9                      | Frostschutzfühler Heizwasser          | Flow sensor, heating water                                                     | Sonde antigel eau de chauffage                                                 |
| EV                      | Elektroverteilung                     | Electrical distribution system                                                 | Distributeur courant électrique                                                |
| KW                      | Kaltwasser                            | Cold water                                                                     | Eau froide                                                                     |
| MA                      | Mischer AUF - 2ter Heizkreis          | Mixer OPEN - heating circuit 2                                                 | Mélangeur OUVERT - 2e cct. chauffage                                           |
| MZ                      | Mischer ZU - 2ter Heizkreis           | Mixer CLOSED - heating circuit 2                                               | Mélangeur FERME - 2e cct. chauffage                                            |
| WW                      | Warmwasser                            | Hot water                                                                      | Eau chaude                                                                     |

# 5 Konformitätserklärung / Declaration of Conformity / Déclaration de conformité

## EG - Konformitätserklärung EC Declaration of Conformity Déclaration de conformité CE

(€

Der Unterzeichnete The undersigned La société soussignée, Glen Dimplex Deutschland GmbH Geschäftsbereich Dimplex Am Goldenen Feld 18 D - 95326 Kulmbach

bestätigt, dass das (die) nachfolgend bezeichnete(n) Gerät(e) aufgrund seiner (ihrer) Konzipierung und Bauart sowie in der von uns in Verkehr gebrachten Ausführung den der EG-Richtlinien entspricht (entsprechen).

Bei einer nicht mit uns abgestimmten Änderung des (der) Gerät(e)s verliert diese Erklärung ihre Gültigkeit. hereby confirm that the design and construction of the product(s) listed below, in the version(s) placed on the market by us, conform to the relevant requirements of the applicable EC directives.

This declaration becomes invalidated if any modifications are made to the product(s) without our prior authorisation.

certifie que l'appareil / les appareils ciaprès, par leur conception et leur mode de construction ainsi que par la définition technique avec laquelle il(s) sont mis en circulation par notre société, est / sont conforme(s) aux directives fondamentales CEE afférentes.

Ce certificat perd sa validité pour tout appareil modifié sans notre consentement.

#### Bezeichnung / Designation / Désignation

## Sole/Wasser-Wärmepumpen für Innenaufstellung mit R407C

Brine-to-water heat pumps for indoor installation, containing R407C

Pompes à chaleur eau glycolée/eau pour installation intérieure avec R407C

#### EG - Richtlinien / EC Directives / Directives CEE

EG- Niederspannungsrichtlinie / EC Low Voltage Directive / Directive CEE relative à la basse tension (2006/95/EG)

EG-EMV-Richtlinie / EC EMC Directive / Directive CEE relative à la compatibilité électromagnétique (89/336/EWG)

Druckgeräterichtlinie / Pressure Equipment Directive / Directive CEE relative aux appareils sous pression (97/23/EG)

#### Typ(e): Harmonisierte EN/Harmonized EB Standards/Normes EN harmonisées:

 SI
 5MER
 EN 255:1997

 SI
 7MER
 EN 378:2000

 SI
 9MER
 DIN 8901

 SI
 11MER
 DIN EN 60335-1 (VDE 0700 T1):2006

DIN EN 60335-2-40 (VDE 0700 T40):2006-11

DIN EN 60335-2-40 (VDE 0700 T40):2006-1 DIN EN 55014-1 (VDE 0875 T14-1):2003-09 DIN EN 55014-2 (VDE 0875 T14-2):2002-08 DIN EN 61000-3-2 (VDE 0838 T2):2005-09 DIN EN 61000-3-3 (VDE 0838 T3):2002-05 EN 60335-1:2002+A11+A1+A12+ Corr.+A2:2006 EN 60335-2-40:2003+A11+A12+A1+Corr.:2006

EN 55014-1:2000+A1:2001+A2:2002 EN 55014-2:1997+A1:2001 EN 61000-3-2:2000+A2:2005

EN 61000-3-3:1995+Corr.:1997+A1:2001

#### Nationale Richtlinien / National Directives / Directives nationales

 D
 A
 CH

 BGR 500
 SVT

Kulmbach, 09.02.2007

CE02W01M.doc

Wolfgang Weinhold Geschäftsführer / Managing Director Andreds Tilch
Spartenleiter / Head of business unit