1、正弦波振荡电路组成:<

选频网络

正反馈网络

稳幅环节

2、正弦波振荡电路组成的作用:

放大电路:保证电路从起振到平衡,获得输出量,实现能量控制

选频网络:确定电路的振荡频率

正反馈网络:引入正反馈,使放大电路的输入信号等于反馈信号

稳幅环节: 非线性环节, 使输出信号幅值稳定

3、产生正弦波自激振荡的条件:

起振条件: $\dot{A}\dot{F}>1$ $\left\{ \begin{array}{l} \text{幅度条件:} \ |\dot{A}\dot{F}|>1 \\ \\ \text{相位条件:} \ \phi_{A}+\phi_{F}=2n\pi, \ n=0, \ \pm 1, \ \pm 2,\cdots \end{array} \right.$

RC正弦波振荡电路

4、正弦波振荡电路的分类: <

变压器反馈式振荡电路

LC正弦波振荡电路〈电感反馈式振荡电路

电容反馈式振荡电路

石英晶体正弦波振荡电路

- 4、正弦波振荡电路的频率特点:
 - (1) RC正弦波振荡电路:振荡频率低,一般在1MHz以下
 - (2) LC正弦波振荡电路:振荡频率高,一般在1MHz以上
 - (3) 石英晶体正弦波振荡电路: 振荡频率稳定
- 5、常见RC桥式正弦波振荡电路:

$$f_0 = \frac{1}{2\pi RC}$$

振荡平衡时: $\dot{\mathbf{F}} = \frac{1}{3}$ $\dot{\mathbf{A}} = 3$

- ⇒RC正弦波振荡电路选择的 放大电路的Å>3
- ⇒ 共集电极放大电路不能用于 RC桥式正弦波振荡电路

4、LC振荡电路:

J	<u></u>		<u> </u>	\sim
名称	选频网络		分类	f_0
		XX		**************************************
		变压器反馈式		$f_0 = \frac{1}{2\pi\sqrt{LC}}$
LC振荡电路	LC网络	电容三点式	$\begin{array}{c c} & & \\ & & \\ & & \\ \end{array}$	$C = \frac{C_1 C_2}{C_1 + C_2}$
,5C			\mathbb{C}_{2}	$f_0 = \frac{1}{2\pi\sqrt{LC}}$
		电感三点式	L_1 C	$L=L_1+L_2+2M$ (M忽略时,M=0) $f_0=rac{1}{2\pi\sqrt{LC}}$