

Universidade Federal do Ceará	
Disciplina: APRENDIZAGEM DE MÁQUINA PROBABILÍSTICA	Código: CK0475/CKP9013
Professor(a): César Lincoln C. Mattos	
Semestre: 2025.2	
Discente:	Matrícula:

Trabalho 2

Leia as Instruções:

• O trabalho é individual.

Curso: Ciência da Computação

- As implementações poderão ser realizadas em quaisquer linguagens de programação.
- Para a avaliação do trabalho, recomenda-se o envio de arquivo Jupyter notebook com os códigos executados e os resultados visíveis nas células.
- 1. Implemente um modelo de regressão linear Bayesiana para os dados disponíveis em linear_regression_data.csv. Apresente os seguintes gráficos:
 - Os dados originais e a predição a priori do modelo. Indique a incerteza da predição $(\pm 2\sigma)$.
 - Os dados originais e a predição a posteriori do modelo. Indique a incerteza da predição $(\pm 2\sigma)$.
- 2. Implemente um modelo de regressão polinomial Bayesiana para os dados disponíveis em polynomial_regression_data.csv. Utilize um modelo polinomial de grau 5. Apresente os seguintes gráficos:
 - Os dados originais e a predição a priori do modelo. Indique a incerteza da predição $(\pm 2\sigma)$.
 - Os dados originais e a predição a posteriori do modelo. Indique a incerteza da predição $(\pm 2\sigma)$.
- 3. Implemente um modelo de regressão logística Bayesiana para os dados disponíveis em logistic_regression_data.csv.
 - A solução MAP deve ser encontrada através do algoritmo IRLS. A predição pode ser feita via aproximação de Monte Carlo ou via função probit.
 - Apresente um gráfico contendo os dados e uma representação da distribuição preditiva encontrada (heat map no espaço bidimensional).