

UJIAN TENGAH SEMESTER PROGRAM STUDI TEKNIK ELEKTRO

Semester Gasal Tahun Ajaran 2023/2024

No. Dok.	:	1
Tgl. Terbit	:	16/11/2023
No. Revisi	:	01
Hal	:	1/2

NAMA MATA KULIAH	Pengolahan Sinyal Digital	CAPAIAN PEMBELAJARAN MATA KULIAH
KODE MATA KULIAH	TE201419	
SEMESTER/ SKS	V/3	Sub-CPMK 4
TANGGAL UJIAN	20 November 2023	Mahasiswa mampu merancang FIR Filter (C6, A5, P5) Sub-CPMK 5 Mahasiswa mampu merancang IIR Filter (C6, A5, P5)
WAKTU UJIAN	120 menit	
RUANGAN	F305	
JENIS UJIAN	Open Note A4	
DOSEN PENGAMPU	Mifta Nur Farid, S.T., M.T.	

[Sub-CPMK 4] [Total 50 Poin]

- 1. Terdapat suatu sistem perekaman suara (*speech*) digital di dalam ruangan yang memiliki derau (*noise*). Sistem tersebut memiliki *sampling rate* sebesar 8 kHz. Diasumsikan bahwa informasi berada di frekuensi 1.8 kHz ke bawah dan selainnya hingga *folding frequency* adalah derau. Sebagai seorang *electrical engineer*, anda diminta untuk mendesain 9 taps FIR filter sesuai dengan kasus di atas.
 - a) Apa tipe FIR filter yang sesuai dengan kriteria di atas? [8 Poin]
 - b) Bagaimana ideal impulse response h(n) dari tipe FIR filter yang sudah anda pilih di atas? [8 Poin]
 - c) Berapa *normalized cutoff frequency* Ω dari FIR filter yang and abuat? **[8 Poin]**
 - d) Berapa nilai filter coefficient-nya jika menggunakan Blackman window? [8 Poin]
 - e) Bagaimana fungsi transfer H(z) dari FIR filter yang anda rancang tersebut? [9 Poin]
 - f) Bagaimana *realization* dari FIR filter yang anda buat jika menggunaan *Direct-Form II*? **[9 Poin]**

[Sub-CPMK 5] [Total 50 Poin]

- 2. Terdapat suatu sistem *electrocardiography* (ECG) dengan *sampling rate* sebesar 600 Hz. Namun sistem ECG tersebut memiliki *power supply* yang buruk. Akibatnya sinyal biomedik yang dihasilkan terkena interferensi berupa *hum noise* di 60 Hz hingga harmonic ketiganya. Sebagai seorang *electrical engineer*, anda diminta untuk mendesain suatu Butterworth filter sesuai dengan kasus di atas dengan 3-dB *passband attenuation* dan 10-db *stopband attenuation*.
 - a) Hitunglah berapa *digital frequency* (ω_h , ω_b , ω_{d0}) dari filter digital untuk masing-masing *hum noise*? [7 Poin]
 - b) Hitunglah berapa *analog frequency* (ω_{ah} , ω_{ab} , ω_{0} , ω_{sh} , ω_{sh}) dari filter digital untuk masing-masing *hum noise*? [7 Poin]

UJIAN TENGAH SEMESTER PROGRAM STUDI TEKNIK ELEKTRO Semester Gasal Tahun Ajaran 2023/2024

 No. Dok.
 : 1

 Tgl. Terbit
 : 16/11/2023

 No. Revisi
 : 01

 Hal
 : 2/2

- c) Berapa berapa passband frequency edge v_p dan stopband frequency edge v_s dari filter digital untuk masing-masing hum noise? [7 Poin]
- d) Hitunglah berapa orde filter digital n untuk masing-masing $hum\ noise\ jika\ ?\ {\bf [7\ Poin]}$
- e) Berdasarkan orde filter digital yang telah didapatkan, bagaimana *transfer function* dari *lowpass prototype*-nya $H_p(s)$? **[7 Poin]**
- f) Bagaimana *transfer function* H(z) dari filter yang anda desain? [7 **Poin**]
- g) Bagaimana *realization* dari IIR filter yang anda buat jika menggunaan *Direct-Form II*? **[8 Poin]**

~ Selamat Mengerjakan ~