МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

20.05.2016 г. – Вариант 1

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

1. Кое от числата е по-голямо от 4?

A)
$$16^{\frac{1}{4}}$$

$$\mathbf{B})\left(\frac{1}{2}\right)^{-\frac{1}{2}}$$

 Γ) $2\sqrt{3}$

2. Стойността на израза $\sqrt{\left(1-\sqrt{2}\right)^2} + \left(\sqrt{2}+1\right)^2$ е:

A)
$$4-\sqrt{2}$$
 B) $2+\sqrt{2}$ **B)** $4+\sqrt{2}$

b)
$$2 + \sqrt{2}$$

B)
$$4 + \sqrt{2}$$

- Γ) 2+3 $\sqrt{2}$
- 3. Допустимите стойности на израза $\frac{x^2-9}{x-3} + \frac{x-2}{x^2-4}$ са:

A)
$$x \neq -2$$

b)
$$x \ne 2, x \ne 3$$

B)
$$x \neq \pm 2$$

- Γ) $x \neq \pm 2$, $x \neq 3$
- **4.** Решенията на уравнението x(3x+1) = 3x+1 са:

B)
$$-\frac{1}{3}$$
 u 1

Б)
$$-1$$
 и 1 **В)** $-\frac{1}{3}$ и 1 **Г)** -1 и $\frac{1}{3}$

- 5. Ако $a = \log_3 3^6 \log_2 2 + \log_5 1$, то стойността на израза $a^{\log_5 25}$ е равна на:
- **A)** 25
- **Б**) 5

B) 2

Γ) 1

6. Решенията на уравнението $5x^2 - 4 = x^4$ са:

$$\Gamma$$
) ± 1 ; ± 2

7. Ако x_1 и x_2 са реалните корени на уравнението $-\frac{1}{5}x + x^2 = 2$, то стойността на

израза $\frac{1}{x_1} + \frac{1}{x_2}$ е равна на:

- **A)** $-\frac{1}{10}$ **B)** $\frac{1}{10}$
- Γ) $\frac{5}{2}$

8. Коя от посочените системи няма решение в множеството на реалните числа?

- A) $\begin{vmatrix} x^2 + y^2 = 4 \\ y = 3 \end{vmatrix}$ B) $\begin{vmatrix} xy = 2 \\ y = x \end{vmatrix}$ B) $\begin{vmatrix} y = x^2 \\ y = x + 1 \end{vmatrix}$ r $\begin{vmatrix} xy = -2 \\ x = 5 \end{vmatrix}$

9. На чертежа правите a и b са успоредни, OA = 8, CD = 16 и OC : AB = 8:9. Дължината на отсечката OB е:

- **A)** 12
- **B)** $\frac{56}{3}$ **B)** 20 Γ) $\frac{80}{3}$

вписаната в триъгълника окръжност се допира до страната AB в точка M, то АМ. МВ е равно на:

- **A)** 0,5
- **Б)** 2

B) 3

Γ) 6

11. Координатите на върха на параболата $y = -2x^2 + 4x - 1$ са:

- **A)** (1;1)
- **B)** (-1;1) **B)** (-1;-7) Γ) (1;-1)

12. Последният член на редицата с общ член $a_n = n(n-7)$, $n \in \mathbb{N}$, е 60. Броят n на членовете на тази редица е:

A) 5

- **Б)** 12
- **B)** 17
- **Г)** 60

13. За растяща геометрична прогресия с първи член, равен на 1, е известно, че $a_1 + a_5 = 5$. Частното q на тази прогресия е равно на:

- **A)** 2
- **Б**) $\sqrt{2}$
- **B)** $-\sqrt{2}$
- Γ) -4

14. Стойността на израза $\sin 150^{\circ} - \cos 240^{\circ} + tg(-45^{\circ})$ е:

A) 2

b) 0

- **B**) $-\frac{1}{2}$
- Γ) 1

15. На диаграмата е дадено процентното разпределение на оценките на ученици в края на първия и в края на втория срок. Броят на учениците и през двата срока е 150. Колко ученици повече са получили оценка "много добър (5)" в края на втория срок в сравнение с първия учебен срок?

A) 15

- **b**) 10
- **B**) 6
- Γ) 4

16. Броят на четните четирицифрени числа с различни цифри, които могат да се запишат само с цифрите 1, 2, 4 и 8, е:

A) 4

- **Б)** 12
- **B)** 18
- **Γ**) 24

17. За $\triangle ABC$ AC = 3 cm, $BC = 3\sqrt{2}$ cm и $\angle BAC$ е два пъти по-голям от $\angle ABC$. Дължината на радиуса на описаната окръжност около *△ABC* е:

- **A)** 1,5 cm
- **B)** $\frac{3\sqrt{2}}{4}$ cm **B)** $\frac{3\sqrt{2}}{2}$ cm Γ) $3\sqrt{2}$ cm

18. В триъгълник с ъгъл 120° дължината на най-голямата страна е 7, а разликата на другите две страни е 2. Намерете дължината най-малката страна на триъгълника.

A) 3

Б) 4

B) 5

Г) 7

19. Страните AB и AD на успоредника ABCD имат съответно дължини $3\ cm$ и 5cm. Диагоналът $BD = 4\sqrt{2} \ cm$. Дължината на другия диагонал на успоредника е:

- A) $4\sqrt{2}$ cm
- **b)** 6 cm **B)** $2\sqrt{13}$ cm
- Γ) 12 cm

20. В правоъгълен трапец ABCD с $\angle BAD = 90^{\circ}$ е вписана окръжност с радиус r = 4. Ако $\sin \angle ABC = 0.8$, то лицето на трапеца е равно на:

- **A)** 36
- **Б)** 72

Отговорите на задачите от 21. до 25. включително запишете в свитъка за свободните отговори!

21. Намерете стойността на израза $\frac{\sin \alpha . \cos \alpha}{\sin^2 \alpha - \cos^2 \alpha}$, ако $tg\alpha = 4$.

22. Решете неравенството $x^3 > \frac{81}{1100}$.

23. Запишете числото x, за което е изпълнено равенството $5\left(\frac{1}{2}\right)^{2x} + 7\left(\frac{1}{2}\right)^{2x} = 6$.

24. През последните няколко последователни вечери на месец април температурите, измерени в градуси, са били следните 2; 3; 2; 4; 17; 16; 17; 17; 14; 14; 15. Намерете стойността на израза 2P+M+S, където P е медианата, M е модата, а S е средната стойност на статистическия ред.

25. Намерете лицето на остроъгълен $\triangle ABC$ със страни $AB = 8 \ cm$, $BC = 7 \ cm$ и $\angle BAC = 60^{\circ}$.

Пълните решения с необходимите обосновки на задачите от 26. до 28. включително запишете в свитъка за свободните отговори!

26. Да се реши уравнението: $\sqrt{\frac{16x}{x-1}} + \sqrt{\frac{x-1}{16x}} = \frac{5}{2}$.

- 27. Три числа, чийто сбор е 21, са последователни членове на растяща геометрична прогресия. Ако първото число не се промени, към второто число се прибави 1, а от третото се извади 1, ще се получат първите три члена на крайна аритметична прогресия, чиято сума е 55. Намерете броя на членовете на получената аритметична прогресия.
- **28.** Около четириъгълника ABCD е описана окръжност. Страните BC и CD са съответно $8\ cm$ и $4\ cm$, а диагоналът BD е $4\sqrt{7}\ cm$. Ако в четириъгълника може да се впише окръжност, намерете лицето на четириъгълника, радиуса на описаната окръжност и радиуса на вписаната окръжност.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0\,,\;\;a\neq 0$$
 $D=b^2-4ac$ $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$ при $D\geq 0$ $ax^2+bx+c=a\big(x-x_1\big)\big(x-x_2\big)$ Формули на Виет: $x_1+x_2=-\frac{b}{a}$ $x_1x_2=\frac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \neq 0$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

$$\begin{array}{l} \sqrt[2k]{a^{2k}} = \left| a \right| & 2^{k+1}\sqrt[3]{a^{2k+1}} = a \quad \text{при} \quad k \in \mathbb{N} \\ \\ \frac{1}{a^m} = a^{-m}, \ a \neq 0 & \sqrt[n]{a^m} = a^{\frac{m}{n}} \quad \sqrt[n]{k} \overline{a} = \sqrt[nk]{a} & \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \quad \text{при} \quad a \geq 0, k \geq 2, n \geq 2 \quad \text{и} \quad m, n, k \in \mathbb{N} \\ \\ a^x = b \Leftrightarrow \log_a b = x & a^{\log_a b} = b & \log_a a^x = x \quad \text{при} \quad a > 0, b > 0 \quad \text{и} \quad a \neq 1 \end{array}$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Вероятност за настъпване на събитието A:

$$p(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}, \quad 0 \le p(A) \le 1$$

Прогресии

Аритметична прогресия: $a_n = a_1 + (n-1)d$ $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$

Геометрична прогресия: $a_n = a_1 \cdot q^{n-1}$ $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}, \ q \neq 1$

Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$c^2 = a^2 + b^2$$

$$S = \frac{1}{2}ab = \frac{1}{2}ch_c$$

$$a^2 = a_1 c$$

$$b^2 = b_1 c$$

$$h_c^2 = a_1 b_1$$

$$h_c^2 = a_1 b_1$$
 $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\operatorname{tg} \alpha = \frac{a}{b}$$

$$\cot \alpha = \frac{b}{a}$$

Произволен триъгълник:

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$ $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Формула за медиана:

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$

$$m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$$

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$
 $m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$ $m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$

Формула за ъглополовяща: $\frac{a}{b} = \frac{n}{m}$

$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - mn$$

Формула за диагоналите на успоредник:

$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:

$$S = \frac{1}{2}ch_c$$

$$S = \frac{1}{2}ab\sin\gamma$$

$$S = \frac{1}{2}ch_c$$
 $S = \frac{1}{2}ab\sin\gamma$ $S = \sqrt{p(p-a)(p-b)(p-c)}$

$$S = pr$$

$$S = pr$$
 $S = \frac{abc}{AR}$

Успоредник:

$$S = ah$$

$$S = ab \sin \alpha$$

$$S = ah_a$$
 $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник:

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot g \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	-α	90°-α	90°+α	180° – α
sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$
tg	$-tg\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-tg\alpha$
cotg	$-\cot g \alpha$	tg α	$-\operatorname{tg}\alpha$	$-\cot g \alpha$

$$\begin{split} \sin\left(\alpha\pm\beta\right) &= \sin\alpha\cos\beta\pm\cos\alpha\sin\beta & \cos\left(\alpha\pm\beta\right) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta \\ tg\left(\alpha\pm\beta\right) &= \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} & \cos\left(\alpha\pm\beta\right) = \frac{\cot\alpha\cos\beta\mp\sin\alpha\sin\beta}{\cot\beta\pm\cot\beta} \\ \sin2\alpha &= 2\sin\alpha\cos\alpha & \cos2\alpha &= \cos^2\alpha-\sin^2\alpha = 2\cos^2\alpha-1 = 1 - 2\sin^2\alpha \\ tg\,2\alpha &= \frac{2tg\,\alpha}{1-tg^2\,\alpha} & \cot 2\alpha &= \frac{\cot^2\alpha-1}{2\cot\beta\alpha} \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha - \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha - \cos^$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

Математика – 20 май 2016 г.

ВАРИАНТ 1

Ключ с верните отговори

Въпроси с изборен отговор

Въпрос №	Верен отговор	Брой точки
1	Б	2
2	Γ	2
3	Γ	2
4	В	2
5	A	2
6	Γ	2
7	A	2
8	A	2
9	В	2
10	Γ	2
11	A	3
12	Б	3
13	Б	3
14	Б	3
15	A	3
16	В	3
17	В	3
18	A	3
19	Б	3
20	Б	3
21	$\frac{4}{15}$	4
22	$x \in (-3;0) \cup (3;+\infty)$	4

23	$x = \frac{1}{2}$	4
24	56 (P=14, M=17, S=11)	4
25	$10\sqrt{3} \text{ cm}^2$	4
26	$x_1 = -\frac{1}{3}, \ x_2 = -\frac{1}{63}$	10
27	5	10
28	$S_{ABCD} = 32\sqrt{3} \ cm^2, \ r = 2\sqrt{3} \ cm,$ $R = \frac{4\sqrt{21}}{3} \ cm$	10

Въпроси с решения

26. Решение и критерии за оценяване.

1. Полагане
$$\sqrt{\frac{16x}{x-1}} = t$$
, $t > 0$ (2 точки).

2. Получаване на уравнението $t + \frac{1}{t} = \frac{5}{2}$ (1 точка).

3. Намиране на $t_1 = 2$, $t_2 = \frac{1}{2}$ (1 точка).

4. Решаване на уравнението $\sqrt{\frac{16x}{x-1}} = 2$ и получаване на $x_1 = -\frac{1}{3}$ (2 точки).

5. Решаване на уравнението $\sqrt{\frac{16x}{x-1}} = \frac{1}{2}$ и получаване на $x_2 = -\frac{1}{63}$ (2 точки).

6. Установяване, че x_1 u x_2 са решения — чрез проверка или определяне на допустими стойности. (2 точки)

II начин. Повдигане на квадрат и получаване на уравнението $\frac{16x}{x-1} + \frac{x-1}{16x} = \frac{17}{4}$ (2 точки), като $x \neq 0$, $x \neq 1$ (1 точка).

Освобождаване от знаменател и получаване на уравнението $189x^2 + 66x + 1 = 0$ (3 **точки).**

Намиране на корените на уравнението $x_1 = -\frac{1}{3}$, $x_2 = -\frac{1}{63}$ (2 точки).

Установяване, че x_1 u x_2 са решения — чрез проверка или определяне на допустими стойности. (2 точки)

27. Решение и критерии за оценяване.

Определяне на геометричната прогресия a_1 , a_1q , a_1q^2

Определяне на аритметичната прогресия a_1 , a_1q+1 , a_1q^2-1

$$\begin{vmatrix} a_1 + a_1 q + 1 + a_1 q^2 = 21 \\ 2(a_1 q + 1) = a_1 + a_1 q^2 - 1 \end{vmatrix} \Rightarrow \begin{vmatrix} a_1 (1 + q + q^2) = 21 \\ a_1 (2q - 1 - q^2) = -3 \end{vmatrix} \Rightarrow \frac{a_1 (1 + q + q^2)}{a_1 (2q - 1 - q^2)} = \frac{21}{-3} \Rightarrow \frac{1 + q + q^2}{2q - 1 - q^2} = -7 \quad DC_q \quad q \neq 1 \Rightarrow 6q^2 - 15q + 6 = 0 \Rightarrow 2q^2 - 5q + 2 = 0$$

$$q_{1,2} = \frac{5 \pm 3}{4} \quad q_1 = 2 \quad q_1 = \frac{1}{2}$$

Геометричната прогресия е растяща $\Rightarrow q=2$ и $a_1=3$.

Геометричната прогресия е 3, 6, 12, аритметичната прогресия е 3, 7, 11.

За аритметичната прогресия
$$a_1=3, d=4, S_n=55$$
 и $S_n=\frac{2a_1+(n-1)d}{2},$ $55=\frac{2.3+(n-1)4}{2}n$, $4n^2+2n-110=0$, $2n^2+n-55=0$, $n_{1,2}=\frac{-1\pm 21}{4}$, $n_1=5\in\mathbb{N}$ и $n_2=-\frac{11}{2}\not\in\mathbb{N}$. Тогава броят на членовете на аритметичната прогресия е $n=5$.

Критерии за оценяване:

- 1. Означаване на членовете на аритметичната и геометричната прогресия **1** точка
 - 2. Съставяне на системата 2 точки.
 - 3. Решаване на системата и определяне на частното 4 точки.
 - 4. Определяне на членовете на аритметичната прогресия 1 точка.
- 5. Съставяне на уравнение за определяне на броя на членовете и определяне на броя им– **2 точки.**

28. Решение и критерии за оценяване.

Прилагане на косинусова теорема за $\triangle BCD$ и определяне на $\angle BCD = 120^{\circ}$ (2 точки). Използване на свойството на страните на описания четириъгълник и определяне зависимостта AD = x, x > 0, AB = x + 4 (1 точка).

За срещуположните ъгли на вписания четириъгълник $\angle A = 60^{\circ}$ (1 точка).

След косинусова теорема за $\triangle ABD$ и решаване на квадратното уравнение $x^2+4x-96=0$, $x_1=8$ и $x_2=-12$ и извод, че само $x_1=8$ е решение (2 точки).

Намиране на лицето на четириъгълника $S_{ABCD} = S_{\triangle ABD} + S_{\triangle BCD} \Longrightarrow$ $S_{\triangle ABCD} = \frac{1}{2}.4.8.\sin 120^{\circ} + \frac{1}{2}.8.12.\sin 60^{\circ}$; $S_{ABCD} = 32\sqrt{3}\ cm^{2}$ (2 точки).

Определяне на радиуса на вписаната окръжност от S = p.r, $r = 2\sqrt{3}$ *cm* (1 точка).

Определяне на радиуса на описаната окръжност чрез синусова теорема за $\triangle ABD$,

откъдето
$$2R = \frac{4\sqrt{7}}{\sin 60^{\circ}}$$
 и $R = \frac{4\sqrt{21}}{3}$ ст (1 точка).