COL341: Assignment 4 Report

Nihar Patel

2017MT60780

Splitting for Decision Tree:

- I one hot encoded all the features (except continuous one). So each feature split at node has two choices- 0 or 1, giving us a binary decision tree
- For continuous features, I tried three types of splitting:
 - Threshold-based splitting: Here I sorted a column of features, then for each case where y label changes from 0 to 1 or 1 to 0, I computed gain for the split there and then took the split with maximum gain
 - Mean splitting: computed mean of the feature values, and then split by comparing it with feature values. Left for less than mean and right for greater than mean
 - Median splitting: Same as mean splitting but instead of mean, I computed median of the feature column
- Here I used Information Gain (entropy) to split the node by maximising gain

Pruning:

- I started by post traversing the decision tree. At each node, I computed the error on validation data at that node, and compared it with the error for if the node was replaced by a leaf.
- If the error by replacing the node with a leaf is less, I replaced the node with leaf
- After fully traversing the tree for pruning, I computed error on whole validation data.

 I kept pruning (by post traversing) the decision tree till the validation error kept decreasing.

Results:

Splitting method	Pruning	Test accuracy	Validation
			accuracy
Threshold-based	No	0.81	0.813
splitting			
Threshold-based	Yes	0.78933	0.83173
splitting			
Mean splitting	No	0.8103	0.802
Mean splitting	Yes	0.76933	0.90567
Median splitting	No	0.80733	0.79933
Median splitting	Yes	0.77533	090667