Math 121A: Linear Algebra

Eli Griffiths

October 18, 2023

Table of Contents

Introduction 2			
1.1	Fields	2	
1.2	Vector Spaces	2	
	1.2.1 Subspaces	3	
1.3	Span and Independence	4	
1.4	Basis and Dimension	5	
Linear Maps 7			
2.1	Linearity	7	
List of Theorems			
List of	List of Definitions		

Introduction

1.1 Fields

A field is an algebraic structure intended to capture the properties of the rational and real numbers.

Definition 1.1 (Field). A field \mathbb{F} is a set \mathbb{F} equipped with an addition and multiplication operator such that

- 1. Elements commute under both operations
- 2. Associativity holds for both operators
- 3. $\exists 1, 0 \in \mathbb{F}$ such that $\lambda + 0 = \lambda$ and $\lambda 1 = \lambda$ for all $\lambda \in \mathbb{F}$
- 4. $\forall \lambda \in \mathbb{F}, \exists ! \gamma \in \mathbb{F} \text{ such that } \lambda + \gamma = 0$
- 5. $\forall \lambda \in \mathbb{F}$ where $\lambda \neq 0$, $\exists ! \gamma \in \mathbb{F}$ such that $\lambda \gamma = 0$

Consider a prime number p. It is then possible to construct the field \mathbb{F}_p where

$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$$

Consider the simplest example, $\mathbb{F}_2 = \{0, 1\}$. It is clear that this makes up a field as 1 has a multiplicative and additive inverse. In the case of $\mathbb{F}_4 = \{0, 1, 2, 3\}$, 2 has no multiplicative inverse and hence isnt a field. In general, if $a, b \neq 0$ and ab = 0, then a and b do not have inverses.

Proof. Let $a, b \in \mathbb{F}$. Assume towards contradiction that ab = 0 and that a or b have inverses. WLOG, assume that there is a $c \in F$ such that ac = 1.

1.2 Vector Spaces

Definition 1.2 (Vector Space). Let \mathbb{F} be a field. A vector space V over a field \mathbb{F} is a set V equipped with addition and scalar multiplication such that

- 1. (V, +) is an abelian group
- **2**. (V, \cdot) is associative and distributive, that is $\forall a, b \in \mathbb{F}$ and $\forall u, v \in V$
 - (a) a(u+v) = au + av
 - (b) (a+b)v = av + bv
- 3. $\exists ! 1 \in \mathbb{F} \text{ such that } \forall v \in V, 1v = v$

Example 1.1. Let \mathbb{F} be a field and $n \in \mathbb{N}$. Let

$$\mathbb{F}^n = \{(a_1, a_2, a_3, \ldots) : a_i \in \mathbb{F}\}$$

2

where

$$(a_1, a_2, a_3, \ldots) + (b_1, b_2, b_3, \ldots) = (a_1 + b_1, a_2 + b_2, a_3 + b_3, \ldots)$$

 $e \cdot (a_1, a_2, a_3, \ldots) = (ea_1, ea_2, ea_3, \ldots)$

Then $(\mathbb{F}^n, +, \cdot)$ is a vector space. This gives rise to all the familiar vector spaces $\mathbb{C}^n, \mathbb{R}^n, \mathbb{Q}^n, \dots$

Remark. If $K \supset F$ are fields, then $(K, +, \cdot)$ is a vector space over F

Theorem 1.1. Let V be a vector space and $u, v, w \in V$. Then u + w = v + w implies u = v.

Proof. Im too lazy:P

There are more exotic examples of vector spaces. Consider the set of continuous, real value functions over the interval [0, 1].

Example 1.2.

$$C = \{f : [0,1] \rightarrow \mathbb{R} \mid f \text{ is continuous}\}\$$

This set can be turned into a vector space by defining the following operations

$$+ \Rightarrow (f+g)(x) = f(x) + g(x)$$

 $\cdot \Rightarrow (cf)(x) = cf(x)$

1.2.1 Subspaces

Definition 1.3 (Subspace). Let V be a vector space over a field \mathbb{F} . A subset $W \subset V$ is called a subspace if W is also a vector space over \mathbb{F} .

Theorem 1.2. Let $W \subset V$ be a non-empty subset of V. W is a subspace of V if and only if

1. W is closed under +

$$w_1 + w_2 \in W, \forall w_1, w_2 \in W$$

2. W is closed under \cdot

$$cw \in W, \forall w \in W, c \in \mathbb{F}$$

An equivalent formulation of the conditions is that W is closed under linear combination, or symbolically

$$c_1w_1 + c_2w_2 \in W, \forall c_1, c_2 \in \mathbb{F}, w_1, w_2 \in W$$

Consider the vector space \mathbb{R}^2 . After some time, it becomes clear that the only subspaces of \mathbb{R}^2 are $\{\vec{0}\}$ and $\{c(a,b)|c\in\mathbb{R}\}$ where $a,b\in\mathbb{R}$ (aka all lines that go through the origin). If a line does not go through the origin of \mathbb{R}^2 , then it's clear it fails to be a subspace. Examine the line y+x=1. Since it does not contain the zero vector, it fails to be closed under scalar multiplication as any vector in y+x=1 will become the zero vector.

Example 1.3 (Polynomial Space). Let $\mathcal{P}_n(\mathbb{F}) := \{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 : a_i \in \mathbb{F}\}$. $\mathcal{P}_n(\mathbb{F})$ is a vector space $\forall n \in \mathbb{N}_0$. Additionally, $\mathcal{P}_{n-1}(\mathbb{F})$ is a subspace of $\mathcal{P}_n(\mathbb{F})$.

Example 1.4 (Matrix Space). Let
$$M_{n\times m}(\mathbb{F}):=\left\{\begin{pmatrix} a_{11}&\cdots&a_{1m}\\ \vdots&&\vdots\\ a_{n1}&\cdots&a_{nm}\end{pmatrix}:a_{ij}\in\mathbb{F}\right\}$$
. Then

 $M_{n\times m}(\mathbb{F})$ is a vector space. An example subspace of $M_{n\times m}(\mathbb{F})$ is the set of upper triangular matrices.

Theorem 1.3 (Trivial Subspaces). For every non-zero vector space V, it has at least two subspaces $\{\vec{0}\}$ and V.

Theorem 1.4 (Subspace Construction). Let V_1, V_2 be subspaces of V over \mathbb{F} . Then

- 1. $V_1 \cap V_2$ is a subspace
- 2. $V_1 + V_2 = \{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$ is a subspace
- 3. $V_1 \cup V_2$ is a subspace if and only if $V_1 \subset V_2$ or $V_2 \subset V_1$

1.3 Span and Independence

Definition 1.4 (Linear Combination). Let V be a vector space and $v_1, v_2, \ldots, v_n \in V$. A linear combination of $\{v_1, v_2, \ldots, v_n\}$ is a vector of the form

$$c_1v_1 + c_2v_2 + \ldots + c_nv_n$$

where $c_i \in \mathbb{F}$.

Definition 1.5 (Span). The span of a set of vectors $\{v_1, v_2, \ldots, v_n\}$ is the set of all linear combinations of those vectors. It is denoted by span $\{v_1, v_2, \ldots, v_n\}$. For an infinite set of vectors, an alternative definition helps

$$\operatorname{span}(S) = \bigcap_{\substack{w \supseteq S \\ w < V}} W = \operatorname{Smallest \ subspace \ that \ contains \ } S$$

Definition 1.6 (Subset Independence). Let S be a subset of a vector space V.

1. If every non-empty finite subset of S is linearly independent, S is called indepen-

dent.

2. If there exists a non-empty finite subset of S that is linearly dependent, S is called dependent.

1.4 Basis and Dimension

Definition 1.7. A maximal independent set of vectors is a independent subset of a vector space that, if any other vector is added from the vector space, would be become dependent. That is, given a maximally independent subset $W = \{v_1, v_2, v_3, \ldots\}, u \in \text{span}(W)$.

Definition 1.8 (Basis). Let $\{u_1, u_2, u_3, \ldots\} \subset V$. Then $\{u_1, u_2, u_3, \ldots\}$ is a basis of V if every vector $v \in V$ can be uniquely written as $v = c_1u_1 + c_2u_2 + \ldots$ with $c_i \in \mathbb{F}$. Equivalently, it is a basis if

- 1. $V = \text{span}\{u_1, u_2, u_2, \ldots\}$
- 2. $\{u_1, u_2, u_2, \ldots\}$ is independent

Theorem 1.5. Let $V = \text{span}\{v_1, v_2, \dots, v_n\}$ and $W = \{v_1, v_2, \dots, v_r\}$ be a maximally independent subset of V. Then W is a basis for V.

Proof. Since W is maximally independent, $v_i \in W$ for $1 \le i \le n$. Therefore $V = \operatorname{span}(W)$. Since W is independent and spans V, it is a basis for V.

Corollary 1.1. Let $V = \{v_1, v_2, \dots, v_n\}$. Any maximally independent subset of V forms a basis of V over \mathbb{F} .

Theorem 1.6. If S is an independent subset of a vector space V, it can be extended to a basis of V (by the Axiom of Choice).

Theorem 1.7. Let $R = \{v_1, v_2, \dots, v_n\}$ and $W = \{w_1, w_2, \dots, w_m\}$ be bases of V over \mathbb{F} . Then m = n.

Proof. Since R is a basis, $w_i = \sum_{j=1}^n a_j v_j$. This can be expressed in matrix form

$$\begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

Since W is also a basis, $v_i = \sum_{j=1}^m b_j w_j$ meaning

$$\begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & & \vdots \\ b_{m1} & \cdots & b_{nm} \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$$

This means that AB = I. By starting with W instead of R, it follows that BA = I. Therefore A and B are invertible meaning they must be square, hence n = m.

Definition 1.9 (Dimension). The dimension of a vector space V is the number of vectors in a basis of V.

Theorem 1.8. Let W be a subspace of V such that $\dim V = n < \infty$. If $\dim W = \dim V$, W = V.

Proof.

Linear Maps

2.1 Linearity

Definition 2.10 (Linear Map). A map $T: V \to W$ is linear if T(au+bv) = aT(u)+bT(v) for all $a, b \in \mathbb{F}$ and $u, v \in V$.

Theorem 2.9. If $\{v_1, v_2, \ldots, v_n\}$ is a basis of V,

$$T(a_1v_1 + a_2v_2 + \ldots + a_nv_n) = a_1T(v_1) + a_2T(v_2) + \ldots + a_nT(v_n)$$

A linear map can be defined just by declaring the images of a vector spaces basis vectors as the map has to obey linearity over a basis. This leads to a natural formulation of a linear map as a matrix where the columns are the images of the basis vectors under T.

Definition 2.11 (Null Space and Range). Let $T: V \to W$ be F-linear. Then

- 1. $N(T) = \{v \in V : T(v) = 0\}$ is a subspace of V
- 2. $R(T) = T(V) = \{T(v) : v \in V\}$ is a subspace of W

Theorem 2.10. Let $T: V \to W$ be F-linear. Then

$$\dim V = \dim(N(T)) + \dim(R(T))$$
= nullity T + rank T

Proof. Let S be a basis of N(T). Then #S = nullity T. S can be extended to be a basis of V with some S' such that $S \cup S'$ is a basis. Therefore

$$\dim V = \#(S \cup S') = \#S + \#S' = \operatorname{nullity} T + \#S$$

Theorem 2.11. $T: V \to W$ is one-to-one if and only if $N(T) = \{0\}$

Proof. The forward direction follows by considering $T(v_1) = T(v_2)$ and setting v_2 to zero. Consider the backwards direction. If $T(v_1) = T(v_2)$, then $T(v_1 - v_2) = 0$. Therefore $v_1 - v_2 \in N(T) = \{0\}$ meaning $v_1 - v_2 = 0$. Hence $v_1 = v_2$ meaning $v_1 = v_2$ meaning $v_2 = v_3$ meaning $v_1 = v_2$ meaning $v_2 = v_3$ meaning $v_3 = v_3$ meaning

Theorem 2.12. Let $T:V\to V$ be a linear map where $\dim V=n<\infty$. Then T is bijective.

Proof. By the dimension formula,

$$n = \dim V = \operatorname{nullity} T + \operatorname{rank} T$$

If T is injective, then

$$\operatorname{nullity} T = 0 \implies \operatorname{rank} T$$

$$\implies \operatorname{rank} T = n$$

$$\implies R(T) = V$$

List of Theorems

_	Theorem (Trivial Subspaces)
List	of Definitions
1.1	Definition (Field)
1.2	Definition (Vector Space)
1.3	Definition (Subspace)
1.4	Definition (Linear Combination)
1.5	Definition (Span)
1.6	Definition (Subset Independence)
1.8	Definition (Basis)
1.9	Definition (Dimension)
2.1	o Definition (Linear Map)
2.1	1 Definition (Null Space and Range)