Digital Signal Processing Zusammenfassung

Table of Contents

Sampling Rate Conversion Decimation Interpolation Polyphase Filter Structure Sampling Rate Conversion	:
Filter Banks	2
Quadrature Mirror Filters DFT Filter Banks	
Random Signals Autocorrelation and Spectrum Spectral Shaping	4
Linear Models for Stochastic Processes Spectral Density Estimation	2
Wiener Filters Unconstrained Wiener Filters The Principle of Orthogonality	3
Kalman Filter	3
Linear Predictive Coding	3
LMS Algorithm The LMS Algorithm Acoustic Echo Cancellation Hello World	:
Digital Signal Processing (DSP)	
Signal Analysis A/D & D/A Conversion Sampling & Aliasing	4

Sampling Rate Conversion

Decimation *** Reducing sampling rate by an **Integer Factor** D

Decimated Frequency: $F_Y = F_X/D \iff \Omega_Y = \Omega_{X,V}/D$

Ideally filtered

$$Y(z) = \frac{1}{D} \sum_{d=0}^{D-1} V \bigg(\frac{\Omega}{D} - 2\pi \cdot \frac{d}{D} \bigg)$$

Direct Implementation

FIR Filter of order M produces full signal v[n]+ downsampler discards D-1 samples afterwards → inefficient!

General Formula

$$Y(z) = \frac{1}{D} \sum_{d=0}^{D-1} V \bigg(\frac{\Omega}{D} - 2\pi \cdot \frac{d}{D} \bigg)$$

Efficient Implementation

Downsampling beforehand allows the multiplier to operate at the reduced sampling rate

→ much better!

Interpolation Formula

$R(\Omega) = \sum_{n=-\infty}^{\infty} r[n] e^{-j\Omega \cdot n} = \sum_{n=-\infty}^{\infty} y[m] e^{-j\Omega \cdot I \cdot m} = Y(I\Omega)$

Low Pass Filter For $\Omega \in [-\pi, \pi]$

$$H(z) = \begin{cases} I \text{ if } \Omega \in [-\pi/I, \pi/I] \\ 0 \text{ otherwise} \end{cases}$$

Lowpass-filter uses

Direct Implementation

FIR or IIR Filter ; I-1 out of I r[n] samples are zero → inefficient!

Ω and **NOT** Ω ! Efficient Implementation

Upsampling after filtering → multiplier operates at **reduced** sampling rate $(F_Y) \rightarrow \mathbf{much}$

better!

Polyphase Filter Structure ******* Efficient filter implementation

TODO Relearn

Split filter into M downsampled variants of the impulse resonse h[k]. Every variant $p_{i[k]}$ holds only every M-th coefficient ("sum" of variants = h[k])

$$\begin{cases} p_i[k] = h[kM+i], & i=0,1,...,M-1 \quad | \quad H(z) = \sum_{i=0}^{M-1} z^{-1} P_i(z^M) \\ \\ P_{i(z)} = \sum_{k=-\infty}^{\infty} p_i[k] z^{-k} = \sum_{k=-\infty}^{\infty} h[kM+i] z^{-k}, & i=0,1,...,M-1 \end{cases}$$

I TODO include fourier transform equation by hand!

Sampling Rate Conversion

 $F_X \Rightarrow F_R = I \cdot F_X \Rightarrow F_V = F_R \Rightarrow F_Y = I/D \cdot F_X = 1/D \cdot F_V$

Decimation ⇒ loss of information

Interpolation ⇒ higher intermediate sampling rate

$$F_H(\Omega) = \min\left(\frac{\pi}{I}, \frac{\pi}{D}\right)$$

Filter Banks

TODO

Quadrature Mirror Filters

TODO :

DFT Filter Banks

TODO

Random Signals

TODO ;

Autocorrelation and Spectrum *

TODO

Spectral Shaping

1 TODO

Linear Models for Stochastic Processes

1 TODO

Spectral Density Estimation

TODO

Wiener Eiltere
Wiener Filters
(TODO)
Unconstrained Wiener Filters ************************************
(TODO)
The Principle of Orthogonality
(TODO)
Kalman Filter
(TODO)
Linear Predictive Coding
(TODO)
LMS Algorithm
(TODO)
The LMS Algorithm ************************************
(TODO)
Acoustic Echo Cancellation ••••••
(TODO)
Hello World
Hello World

Digital Signal Processing (DSP)

DSP concerned in the application of the following methods: (1) **Signal Generation**, (2) Signal Analysis, (3) Signal Composition, (4) Signal Selection

Pros (3 P's): Programmability, Parametrizability, Re-Peatability

Cons: additional effort for ADC & DAC, No processing of broadband HF, electromagnetic disturbance

Signal Analysis

Sampling an Analog Signal

$$f_S = \frac{1}{T_S} \quad x(n \cdot T_S) = x[n]$$

Other Functions

causal: x[n] = 0 for n < 0 T_S : Always known! unit impulse

$$\delta[n] = \begin{cases} 0 : n \neq 0 \\ 1 : n = 0 \end{cases}$$

step impulse

$$u[n] = \begin{cases} 0 : n < 0 \\ 1 : n \ge 0 \end{cases}$$

periodic symbols ($k = T_0/T_S$)

$$x[n] = x[n + T_0/T_S]$$
$$= \hat{X} \cdot e^{j2\pi \cdot f_0 \cdot n \cdot T_S}$$

$$=\hat{X}(C()+j\cdot S())$$

expected/mean value

$$\mu_x = \frac{1}{N} \sum_{i=0}^{N-1} x[i]$$

(mean value)² / avg DC power linear correlation

$$\rho^2 = \frac{1}{N} \sum_{i=0}^{N-1} x[i]^2$$

$$A_{dB}=10$$

Acoustic signals: corresponds to audible power content

$$A_{dB} = 10 \cdot \log_{10} \left(\frac{P_1}{P_1}\right)$$

 $z[n] = \sum_{i=-\infty}^{\infty} x[i]y[n-i]$

=x[n]*y[n]

 $z[n] = \{1, 2, 2.5, 1, 0, 0, -0.5\}$

circular convolution

$$A_{dB} = 10 \cdot \log_{10} \left(\frac{P_1}{P_2}\right)$$

Signal-to-Noise-ratio

variance/avg AC power

$$SNR = 10 \cdot \log_{10} \left(\frac{P_S}{P_N} \right)$$

$$= 20 \cdot \log_{10} \left(\frac{U_S}{U_N} \right)$$

$$A_{dB} = 10 \cdot \log_{10} \left(\frac{P_1}{P_2}\right)$$

static correlation $(x = y \Rightarrow \uparrow R)$ ⇒ yields new signal, quantify-

ing the similarty of x and y

$$2 = \frac{1}{N} \sum_{i=1}^{N-1} x[i]y[i]$$

$$r_{xy}[n] = \frac{1}{N} \sum_{i=0}^{N-1} x[i] y[i+n]$$

A/D & D/A Conversion

Code/Decode z.B. DFT & IDFT; Interpolate z.B. Tiefpass-Filter

Sampling & Aliasing **

$$x_{s(t)} = \sum_{n = -\infty}^{\infty} x(t) \cdot \delta(t - nT_s)$$

 \bigwedge Sampling \rightarrow period. Spektrum mit f_s -vielfachen Spiegelbilder \bigwedge

Bei Bilderüberlagerung entsteht Aliasing.

Theorem! $\left[f_{\max} < rac{f_S}{2}
ight]$