<u>Applications of Derivatives</u>

Maxima and Minima

Important Concepts

(Section 2)

by SURYA KUMARI

Lecture 2

Understanding

Maximum and Minimum values of a function in its domain.

Maximum value of a function.

Definition:

Let f be a real valued function defined on an interval I (or on the domain D). Then

- f(x) is said to have the *maximum value in I*, if there exists a point *a* in **I** if
- $f(x) \le f(a)$ for all x in the interval I.

a is called the point of **maximum**.

f(a) is called the **maximum value** of the function in the interval **I**.

Minimum value of a function.

Definition:

Let f be a real valued function defined on an interval I (or on the domain D). Then

f(x) is said to have the **minimum value in I**, if there exists a point **a** in **I** if

 $f(x) \ge f(a)$ for all x in the interval I.

a is called the point of minimum

f(a) is called the **minimum value** of the function in the interval **I**.

Points to Remember:

A function f defined on an interval I

- may attain the maximum value at a point in I but not the minimum value at any point in I.
- may attain the minimum value at a point in I but not the maximum value at any point in I.
- may attain both the maximum and minimum values at some points in I.
- may not attain both the maximum and minimum values at some points in I.

Lecture 3

Understanding

Local Maximum and Local Minimum

Local maximum value of a function.

Definition:

f(x) is said to have the **local maximum value** at x = a if whenever x is near a, $f(x) \le f(a)$

f(a) is a **local maximum value** for f if there is some $\mathcal{E} > 0$, so that whenever x is in $(a - \mathcal{E}, a + \mathcal{E})$

$$f(x) \le f(a)$$

a is called the point of local **maximum**

f(a) is called the **local maximum value** of f(x) at x=a

Local minimum value of a function.

Definition:

f(x) is said to have the **local minimum value** at x = a if whenever x is near a, $f(x) \ge f(a)$

f(a) is a **local minimum value** for f if there is some $\mathcal{E} > 0$, so that whenever x is in $(a - \mathcal{E}, a + \mathcal{E})$

$$f(x) \ge f(a)$$

a is called the point of local **minimum**

f(a) is called the **local minimum value** of f(x) at x=a

Points to Remember:

Local maximum
or
Relative maximum
Local minimum
or
Relative minimum

A function may have more than one local maxima and more than one local minima.

- Local maximum and local minimum occur alternately.
- A local maximum value at some point may be less than a local minimum value of the function at another point.

Lecture 4

Understanding

Global Maximum and Global Minimum

Global maximum value of a function.

Definition:

Let f be a real valued function defined on the domain D (subset of \mathbb{R}), then

f(x) is said to have the **greatest value** or **global maximum value** at a point **a** in its domain if $f(x) \le f(a)$ for all x in the domain of f(x).

a is called the point of **maximum**

f(a) is called the **global maximum value** of the function on D

Global minimum value of a function.

Definition:

Let f be a real valued function defined on the domain D (subset of \mathbb{R}), then

f(x) is said to have the *least value* or *global minimum* value at a point a in its domain if $f(x) \ge f(a)$ for all x in the domain of f(x).

a is called the point of minimum

f(a) is called the global minimum value of the function on D

Points to Remember:

<u>1</u>

Global maximum or Absolute maximum

Global minimum or Absolute minimum

or Extremum values

<u>2</u>

- i. A local maximum value need not be the global maximum value.
- ii. A global maxima can be a local maxima.
- iii.A local minimum value need not be the global minimum value.
- iv.A global minima can be a local minima.

Lecture 5

Absolute Maximum and Absolute Minimum values in a Closed Interval.

Theorem 1:

Let f be a continuous function on an interval I=[a,b]. Then

- (i) f has the absolute maximum value and f attains it at least once in I.
- (ii) f has the absolute minimum value and f attains it at least once in I.

Theorem 2:

Let f be a differentiable function on a closed interval I=[a,b] and let c be any interior point of I. Then

(i) f'(c) = 0, if f attains its absolute maximum value at c.

(ii) f'(c) = 0, if f attains its absolute minimum value at c.

Working Rule

Step 1. Find f '(x).

Step 2. Put f'(x) = 0 and find values of x. Let $c_1, c_2, c_3, ..., c_n$ be the values of x.

Step 3. Evaluate f(x) at these points $c_1, c_2, c_3, ..., c_n$ where f'(x) = 0

i.e. Find
$$f(c_1), f(c_2), f(c_3), \dots, f(c_n)$$
.

Step 4. Evaluate f(x) at the points where derivative fails to exist.

Step 5. Find f(a) and f(b) (Evaluate f at the end points).

Step 6.Identify the maximum and minimum values of fout of the values calculated in steps 3,4,5.

This maximum value will be the absolute maximum (greatest) value of f in I=[a,b]

and

the minimum value will be the absolute minimum (least)value of f in I=[a,b]

Points to Remember:

Global maximum or

in

Absolute maximum

the

Global minimum or

given

Absolute minimum

or Extremum values

interval

Lecture 6

Behaviour of f'(x) at

Local Maxima and Local Minima

Case 1:

f(x) is increasing for values of x slightly less than c (in the left neighbourhood of c).

ceases to increase at x = c

f(x) is decreasing for values of x slightly greater than c (in the right neighbourhood of c).

f'(x)>0, for x∈(c-h,c)

$$f(x)$$
 $c-h$
 $c+h$
 $f(x)$
 $f'(x)<0$, for x∈(c,c+h)

Thus f '(x) changes sign from positive to negative as x increases through c

Case 2:

When c is a point of **Local minima**

f(x) is decreasing for values of x slightly less than c (in the left neighbourhood of c).

ceases to decrease at x = c

f(x) is increasing for values of x slightly greater than c (in the right neighbourhood of c).

f'(x)<0, for
$$x \in (c-h,c)$$

$$f(x) \longrightarrow c-h \qquad c+h$$
f'(x)>0, for $x \in (c,c+h)$

Thus f '(x) changes sign from negative to positive as x increases through c

Theorem:

Let f be a function defined on an open interval I. Suppose $c \in I$ be any point. If f has a local maxima or a local minima at x=c, then either f'(c) = 0 or f is not differentiable at c.

(proof beyond the scope of this course)

Remark 1:

The **converse** of this theorem is not true.

i.e. a point at which the derivative vanishes need not be a point of local maxima or local minima.

Remark 2:

A function may attain a maximum or minimum value at a point without being derivable there at.

Remark 3:

Geometrical meaning:

The tangent to the curve y = f(x) at a point where the ordinate is maximum or minimun is parallel to the x- axis.