돈돈돈 쓰쓰쓰 돈돈돈

32기 안현진

문제 파일을 다운받았다. 와이어샤크 캡쳐 파일이다.

1. 패킷 분석

No.	Time	Source	Destination	Protocol	Length	Info		
IEV	1 2024-07-24 11:00:20.56202	192.168.100.138	192.168.100.135	TCP	74	40628 → 1	.2345 [SYN] Seq=0 \
	2 2024-07-24 11:00:20.56290	192.168.100.135	192.168.100.138	TCP	74	12345 → 4	0628 [SYN	, ACK] Se
	3 2024-07-24 11:00:20.56296	192.168.100.138	192.168.100.135	TCP	66	40628 → 1	.2345 [ACK] Seq=1 /

간단하게 패킷을 살펴보고 문제 풀이를 해보자. 총 69개의 패킷이 캡쳐되었고 1~3번 패킷은 3-Way handshake 과정이다. 신뢰성 있고 안정적인 연결을 설정하기 위해 사용한다.

- ->1번 패킷: 135가 138로, 포트 40628에서 포트 12345로 SYN 패킷을 보낸다. seq=0은 연결을 시작하겠다는 의미이다. 이것을 보고 연결 시작점을 알 수 있다. seq(Sequence Number)은 TCP 프로토콜 패킷 내에서 데이터의 순서를 추적하고 신뢰할 수 있는 데이터 전송을 보장하는 데 사용된다.
- ->2번 패킷: 138이 135로, SYN에 대한 ACK를 보내면서 SYN을 보낸다.
- ->3번 패킷: 135가 138로 ACK를 보내며 TCP연결이 성립된다.
- # SYN(Synchronize Sequence Number)은 연결을 요청할 때 사용한다.
- # ACK(Acknowledgement)는 패킷을 받았다는 응답을 할 때 사용한다.
- # PSH(Push) 플래그는 TCP 프로토콜에서 사용되는 플래그로, 데이터가 즉시 처리되도록 하는 역할을 한다.

[PSH, ACK] Seq=5 Ack=1 Win=64256 Len=1 TSval=3905454005 TSecr=1515121044

- ->PSH와 ACK 플래그가 설정된 패킷.
- ->Seq=5: 시퀀스 번호가 5번이라는 의미. 패킷이 전송하는 데이터가 연결 내에서 5번째 byte 부터 시작됨을 의미한다.
- ->Ack=1: 송신 측이 수신 측으로부터 시퀀스 번호0까지 받았다는 의미. 이제 수신 측에서 1 이후의 데이터를 기다리고 있다는 의미이다.
- ->Win=64256: 윈도우 크기를 의미한다. 송신 측이 수신 측으로부터 추가로 받을 수 있는 데이터 양을 의미한다.
- ->Len=1: 이 패킷의 데이터 길이는 1byte라는 의미이다.
- ->TSval: 송신 측의 현재 타임스탬프 값.
- ->TSecr: 수신 측이 이전에 보낸 패킷에 포함된 타임스탬프 값. 수신 측이 보내는 응답에서 해당 타임스탬프를 그대로 돌려주는 것으로, 왕복 시간을 계산하는데 사용된다.

66 2024-07-24 11:00:23.57704 192.168.100.135	192.168.100.138	TCP	66 12345 → 40628 [FIN, ACK] Seq=1 Ac
67 2024-07-24 11:00:23.58070 192.168.100.138	192.168.100.135	TCP	66 40628 → 12345 [ACK] Seq=138 Ack=2
68 2024-07-24 11:00:23.67670 192.168.100.138	192.168.100.135	TCP	66 40628 → 12345 [FIN, ACK] Seq=138
69 2024-07-24 11:00:23.67706 192.168.100.135	192.168.100.138	TCP	66 12345 → 40628 [ACK] Seq=2 Ack=139

66~69번 패킷은 TCP연결을 종료하는 4-Way handshake 과정이다.

- ->66번 패킷: 138(클라이언트)이 135(서버)에게 FIN 플래그가 설정된 패킷을 보낸다. 클라이언트가 서버에게 더 이상 데이터를 전송하지 않겠다는 의미이다.
- ->67번 패킷: 135가 138에게 FIN 패킷을 성공적으로 확인했다는 의미로 ACK 패킷을 보낸다.
- ->68번 패킷: 135(서버)도 138(클라이언트)에게 더 이상 데이터를 보내지 않겠다는 의미로 FIN플래그를 보낸다.
- ->69번 패킷: 138도 FIN 패킷을 성공적으로 확인했다는 의미로 ACK를 보내고, TCP연결은 종료된다.

2. 문제 풀이

TCP 스트림 따라가기를 누르면 이런 메시지가 나타난다.

그리고 '돈돈돈 쓰쓰쓰 돈돈돈'을 구글에 검색하면 모스부호와 관련된 정보들이 나온다. 이걸 가지고 메시지를 해석해보자. 일단 2e와 2d를 모스부호로 변환해보았다. 2e는 ··- - - ··로 변환된다.

	–	

문자열 전체를 모스부호로 번역하면 위의 결과가 나온다. 그런데 이 결과를 변환하면 flag 형식의 답이 나오지 않는다.

위의 결과는 모스부호 변환기를 사용했을때의 결과였다. 이게 문제였나 싶어서 '출력 가능 아스키 문자표'를 검색해 다시 한번 찾아보았다.

0101101	055	45	2D	<u>-</u>	12
0101110	056	46	2E	,	13

2e가 있나 검색해보니 아까와는 다른 결과가 나왔다. 2e와 2d가 각각 점과 선이라고 한다. 문자열을 점과 선으로 바꿔보면

이런 결과물이 나온다. 이걸 모스부호 번역기로 번역해보면

```
I7'S_MORSE_CODE!
```

flag가 나온다. 플래그 형식에 맞추면 3S{I7'S_MORSE_CODE!}이다.

+찾아보니 2e에 대한 아스키 문자 자체, 그 문자에 해당하는 아스키 코드의 Hx, 모스 부호가 서로 다른 체계에서 나온것이라 해석 결과가 다른거라고 한다. 나는 아스키 코드가 아닌 모스 부호로 접근해서 해석 결과가 다르게 나온거였다.

<참고자료>

3-Way Handshake — 다락방 (tistory.com)