Q1a)

50, 20, 40, 55, 45, 30, 10, 15, 35, 60, 5, 25

50, 20, 40, 55, 45, 30, 10, 15, 35, 60, 5, 25

50, 20, 40, 55, 45, 30, 10, 15, 35, 60, 5, 25

50, 20, 40, 55, 45, 30 10, 15, 35, 60, 5, 25

50, 20, 40, 55, 45, 30, 10, 15, 35, 60, 5, 25

50, 20, 40, 55, 45, 30, 10, 15, 35, 60, 5, 25

50, 20, 40, 55, 45, 30, 10, 15, 35, 60, 5, 25

50, 20, 40, 55, 45, 30, 10, <mark>15</mark>, 35, 60, 5, 25

50, 20, 40, 55, 45, 30, 10, 15, 35, 60, 5, 25

50, 20, 40, 55, 45, 30, 10, 15, 35, 60, 5, 25

50, 20, 40, 55, 45, 30, 10, 15, 35, 60, <mark>5</mark>, 25

50, 20, 40, 55, 45, 30, 10, 15, 35, 60, 5, <mark>25</mark>

Q1b)

Pre-order: 50, 20, 10, 5, 15, 40, 30, 25, 35, 45, 55, 60 In-order: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 Post-order: 5, 15, 10, 25, 35, 30, 45, 40, 20, 60, 55, 50

Q1c)

Delete 60

Leaf Node, directly delete

Delete 30

Internal Node, replace by maximum in left sub tree

Delete 20

Internal Node, replace by maximum in left sub tree

Q1d)

Pre-order: 50, 15, 10, 5, 40, 25, 35, 45, 55 In-order: 5, 10, 15, 25, 35, 40, 45, 50, 55 Post-order: 5, 10, 35, 25, 45, 40, 15, 55, 50 2a)

Refactor & Restore AVL property

Add 65

Refactor & Restore AVL Property

2b)

Add 75

Refactor & Restore AVL property

Add 23

No need to Refactor & Restore AVL Property

Add 32

Add 32

2c)

Remove 15

Refactor & Restore AVL property

Remove 35 Replaced by largest value in left sub tree No need to Refactor & Restore AVL property

Remove 25 No need to Refactor and Restore AVL property

Remove 30

Refactor and Restore AVL property

Q3 (a) Insertion sort

Note: The array is displayed only after iterations where changes are made to the array definsertionSort(arr):

Total swaps made: 22 swaps : One Swap

Assignments: Line 3, Line 4, Line 6, Line 7, Line 8

Comparisions: Line 5
Total Assignemnts: 74
Total Comparisions: 32
Assignments + Comparisions: 106

Total swaps made: 10 swaps

Assignments: Line 3, Line 6, Line 7
Comparisions: Line 5
Total Assignemnts: 37
Total Comparisions: 55
Assignments + Comparisions: 92

Q3 (c) Heap sort

Note: The heapify method creates a max heap and stores it in arr, thereby rearragning the elements

```
1
        def heapSort(arr):
2
                n = len(arr)
3
4
                for i in range(n // 2 - 1, -1, -1):
5
                       heapify(arr, n, i)
6
7
                for i in range(n-1, 0, -1):
8
                       arr[i], arr[0] = arr[0], arr[i]
9
                       heapify(arr, i, 0)
10
                                                            Note: This is the algorithm which
        def heapify(arr, n, i):
11
                                                            was hand traced.
12
               largest = i
                                                            NOT COMPILED AND RUN
               l = 2 * i + 1
13
               r = 2 * i + 2
14
15
               if l < n and arr[i] < arr[l]:
16
                       largest = 1
17
18
19
                if r < n and arr[largest] < arr[r]:
20
                       largest = r
21
                if largest != i:
22
23
                       arr[i],arr[largest] = arr[largest],arr[i]
24
                       heapify(arr, n, largest)
```

13	11	4	40	7	34	25	17	50	17	14
Init	ial M	ax-H	leap	form	ned	8 9	swap	s pe	rforr	ned

After 1st Iteration

	Swap 1 swap performed											
	14	40	34	17	17	4	25	13	11	7	50	
		Refo	rm n	nax-l	neap	2	swa	ps po	erfor	med		•
	40 17 34 14 17 4 25 13 11 7 50											
ľ												

After 2nd Iteration

Swap 1 swap performed											
7 17 34 14 17 4 25 13 11 40 50											
Reform max-heap 2 swaps performed											
34 17 25 14 17 4 7 13 11 40 50											
											•

After 3rd Iteration

Swap 1 swap performed											
1	11	17	25	14	17	4	7	13	34	40	50
		Refo	rm i	nax-	heap) 1	swa	ар ре	rfor	med	
2	25	17	11	14	17	4	7	13	34	40	50

After 4th Iteration

	Swap 1 swap performed											
	13 17 11 14 17 4 7 25 34 40 50											
	Reform max-heap 2 swaps performed											
	17 17 11 14 13 4 7 25 34 40 50											
'												

After 5th Iteration

Swap 1 swap performed											
7 17 11 14 13 4 17 25 34 40 50											
Reform max-heap 2 swaps performed											
17 14 11 7 13 4 17 25 34 40 50											
	•			'		•					

After 6th Iteration

Swap 1 swap performed											
4 14 11 7 13 17 17 25 34 40 50											
	Refo	rm n	nax-l	heap	2	swa	ps p	erfor	med		
Reform max-heap 2 swaps performed 14 13 11 7 4 17 17 25 34 40 50											
											_

After 7th Iteration

Swap 1 swap performed										
4	13	11	7	14	17	17	25	34	40	50
Reform max-heap 2 swaps performed										
13 7 11 4 14 17 17 25 34 40 50										

After 8th Iteration

After 9th Iteration

	Swap 1 swap performed											
	4 7 11 13 14 17 17 25 34 40 50											
l .	Reform max-heap 1 swap performed											
	7 4 11 13 14 17 17 25 34 40 50											
												•

After 10th Iteration

	Swap 1 swap performed											
	4	7	11	13	14	17	17	25	34	40	50	
	Reform max-heap 0 swap performed											
	4 7 11 13 14 17 17 25 34 40 50											
•	_											

Total swaps made: 33 swaps

Assignments: Line 2, Line 8, Line 12, Line 13, Line

14, Line 17, Line 20, Line 23

Comparisions: Line 16, Line 19, Line 22

Total Assignemnts: 177
Total Comparisions: 114
Assignments + Comparisions: 291

Q3) (d) Merge sort

[13] [11] [4] [40] [7] [34] [25] [17] [50] [17] [14] [11 13] [4 40] [7 34] [17 25] [17 50] [14] [4 11 13 40] [7 17 25 34] [14 17 50] [4 7 11 13 17 25 34 40] [14 17 50] [4 7 11 13 14 17 17 25 34 50]

Algorithm followed:

1	Repeat Until: Array not sorted
2	Select pairs of arrays
3	Repeat Until: No element left in list
4	Find smallest element by comparision
5	Merge smallest element into array (Assignment)
6	Mark smallest element as added

Example:

Line 2: Select pairs of arrays

[11 13] [4 40]

Loop start

Line 4: Find smallest element by comparision (Ignore added elements)

[11 13] [4 40]

Line 5: Merge smallest element into array

[4 11 13] [40]

Line 6: Mark smallest element as added

[4 11 13] [40]

Loop back and repeat process

This process repeats until the whole array is sorted

Number of comparisions

$$\sum_{i=1}^{2} i + \sum_{i=1}^{4} i + \sum_{i=1}^{8} i + \sum_{i=1}^{11} i = 115$$

Total Comparisions: 115
Total Assignments: 40
Assignments + Comparisions: 155

Note: This is the algorithm which was hand traced.

NOT COMPILED AND RUN

Q3 (e) Quick Sort

```
Algorithm used:
```

```
1     def quickSort(arr, l, r):
2         if( l>= r):
3         return

4         p = partition(arr, l, r)
5         quickSort(arr, l, p-1)
6         quickSort(arr, p+1, r)
```

```
def partition(arr, l, r):
8
         pivot = arr[r]
9
         i = l-1
         for j in range(l, r):
10
           if arr[j] < pivot:
11
              i += 1
12
13
              swap(arr[i], arr[j])
14
              swap(arr[i+1], arr[r])
15
         return(i+1)
```

```
Original List

13 | 11 | 4 | 40 | 7 | 34 | 25 | 17 | 50 | 17 | 14
```

1st Recursive Call – quickSort(arr, 0, len(arr)-1)

```
l = 0, r = 10
    11
                                   50
                                        17
13
             40
                      34 | 25 | 17
                                            14
            Pivot = 14 at Index 10
       Array output after partition call:
                     34
13
                 14
                          25
                              17
                                   50
                                        17
    11
                                            40
           After parition call (p = 4)
```

2nd Recursive Call – quickSort(arr, 0, 3)

3rd Recursive Call – quickSort(arr, 0, 0)

Base Case - No changes to array

4th Recursive Call - quickSort(arr, 2, 3)

5th Recursive Call – quickSort(arr, 2, 1)

Base Case - No changes to array

6th Recursive Call - quickSort(arr, 3, 3)

Base Case - No changes to array

7th Recursive Call - quickSort(arr, 5, 10)

8th Recursive Call – quickSort(arr, 5, 8)

9th Recursive Call - quickSort(arr, 5, 4)

Base Case - No changes to array

10th Recursive Call - quickSort(arr, 6, 8)

11th Recursive Call - quickSort(arr, 6, 7)

12th Recursive Call – quickSort(arr, 6, 5)

Base Case – No changes to array

13th Recursive Call – quickSort(arr, 7, 7)

Base Case - No changes to array

14th Recursive Call – quickSort(arr, 9, 8)

Base Case - No changes to array

15th Recursive Call - quickSort(arr, 10, 10)

Base Case - No changes to array

 Final Sorted array

 4
 7
 11
 13
 14
 17
 17
 25
 34
 40
 50

Assignments: Line 4, Line 8, Line 9, Line 12, Line 13,

Line 14

Comparisions: Line 2, Line 11

Total Assignemnts:51Total Comparisions:41Assignments + Comparisions:92

Q4) (1)

0 1 2	2 3 4	5 6	7	8	9
-------	-------	-----	---	---	---

0	0	0	0	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0	1	0	0
2	0	1	0	1	1	1	0	1	1	0
3	0	0	1	0	0	1	0	0	0	0
4	0	0	1	0	0	1	1	0	0	0
5	0	0	1	1	1	0	1	0	0	0
6	1	0	0	0	1	1	0	0	1	1
7	0	1	1	0	0	0	0	0	1	0
8	0	0	1	0	0	0	1	1	0	1
9	1	0	0	0	0	0	1	0	1	0

Q4) (2)

0	\rightarrow	6	9				
1	\rightarrow	2	7				
2	\rightarrow	1	3	4	5	7	8
3	\rightarrow	2	5				
4	\rightarrow	2	5	6			
5	\rightarrow	2	3	4	6		
6	\rightarrow	0	4	5	8	9	
7	\rightarrow	1	2	8			
8	\rightarrow	2	6	7	9		
9	\rightarrow	0	6	8			

Q4) (3)

BFS(0)

Vertex	A	djac	ent	Ve	rtic	es	3 5
0	6	9					
1	2	7					
2	1	3	4	5	7	8	
3	2	5					
4	2	5	6				2 4 6 0
5	2	3	4	6			
6	0	4	5	8	9		
7	1	2	8				
8	2	6	7	9			7 8 9
9	0	6	8				
Queue =	= 0						
BFS Tra	iver	sal	=				

Vertex	A	djac	ent	Ve	rtic	es	3 5
0	6	9					
1	2	7					
2	1	3	4	5	7	8	
3	2	5					
4	2	5	6				2 4 6 0
5	2	3	4	6			
6	0	4	5	8	9		
7	1	2	8				
8	2	6	7	9			1 7 8 9
9	0	6	8				
Queue =	= 6	, 9					
BFS Tra	ver	sal	= 0				

Vertex	A	djad	cent	Ve	rtice	es
0	6	9				
1	2	7				
2	1	3	4	5	7	8
3	2	5				
4	2	5	6			
5	2	3	4	6		
6	0	4	5	8	9	
7	1	2	8			
8	2	6	7	9		
9	0	6	8			
0	In	1	r 0	ı		

Queue = |9, 4, 5, 8|

BFS Traversal = 0, 6

Vertex	A	djao	cent	Ve	rtice	es
0	6	9				
1	2	7				
2	1	3	4	5	7	8
3	2	5				
4	2	5	6			
5	2	3	4	6		
6	0	4	5	8	9	
7	1	2	8			
8	2	6	7	9		
9	0	6	8			
Λ	1.4	٦	ΩI			

Queue = |4, 5, 8|

BFS Traversal = 0, 6, 9

Vertex	A	djao	cent	Ve	rtic	es	3 5
0	6	9					
1	2	7					
2	1	3	4	5	7	8	
3	2	5					
4	2	5	6				$\begin{pmatrix} 2 \end{pmatrix} \qquad \begin{pmatrix} 4 \end{pmatrix} \qquad \begin{pmatrix} 6 \end{pmatrix} \qquad \begin{pmatrix} 0 \end{pmatrix}$
5	2	3	4	6			
6	0	4	5	8	9		
7	1	2	8				
8	2	6	7	9			7 8 9
9	0	6	8				
Queue =	= 5	, 8,	2	•	•		
BFS Tra	iver	sal	= 0	, 6,	9, 4		

Vertex	A	djao	cent	Ve	rtic	es	3 5
0	6	9					
1	2	7					
2	1	3	4	5	7	8	
3	2	5					
4	2	5	6				2 4 6 0
5	2	3	4	6			
6	0	4	5	8	9		
7	1	2	8				
8	2	6	7	9			7 8 9
9	0	6	8				
Queue =	= 2	, 3,	7				
BFS Tra	iver	sal	= 0	, 6,	9, 4	, 5,	3

Vertex	A	djac	ent	Ve	rtic	es	35
0	6	9					
1	2	7					
2	1	3	4	5	7	8	
3	2	5					
4	2	5	6				$\begin{pmatrix} 2 \end{pmatrix} \qquad \begin{pmatrix} 4 \end{pmatrix} \qquad \begin{pmatrix} 6 \end{pmatrix} \qquad \begin{pmatrix} 0 \end{pmatrix}$
5	2	3	4	6			
6	0	4	5	8	9		
7	1	2	8				
8	2	6	7	9			7 8 9
9	0	6	8				
Queue =	= 7	, 1					
BFS Tra	iver	sal	= 0	, 6,	9, 4	, 5, 8	3, 2, 3

BFS Traversal - 0, 6, 9, 4, 5, 8, 2, 3, 7, 1

Note: The tree structure is shown highlighted in red

Q4 (4)

Vertex	Α	djao	cent	Ve	rtic	es	2
0	6	9					3
1	2	7					
2	1	3	4	5	7	8	
3	2	5					
4	2	5	6				2
5	2	3	4	6			
6	0	4	5	8	9		
7	1	2	8				
8	2	6	7	9			1
9	0	6	8				
ъ по п			_				

DFS Traversal = 0

Vertex	A	djao	ent	Ve	rtice	es
0	6	9				
1	2	7				
2	1	3	4	5	7	8
3	2	5				
4	2	5	6			
5	2	3	4	6		
6	0	4	5	8	9	
7	1	2	8			
8	2	6	7	9		
9	0	6	8			

DFS Traversal = 0, 6

Vertex	A	djao	ent	Ve	rtic	es
0	6	9				
1	2	7				
2	1	3	4	5	7	8
3	2	5				
4	2	5	6			
5	2	3	4	6		
6	0	4	5	8	9	
7	1	2	8			
8	2	6	7	9		
9	0	6	8			

DFS Traversal = 0, 6, 4

Vertex	Adjacent Vertices					
0	6	9				
1	2	7				
2	1	3	4	5	7	8
3	2	5				
4	2	5	6			
5	2	3	4	6		
6	0	4	5	8	9	
7	1	2	8			
8	2	6	7	9		
9	0	6	8			
1						

DFS Traversal = 0, 6, 4, 2

Vertex	A	djao	cent	Ve	rtic	es	3
0	6	9					3 5
1	2	7					
2	1	3	4	5	7	8	
3	2	5					
4	2	5	6				$\begin{pmatrix} 2 \end{pmatrix}$ $\begin{pmatrix} 4 \end{pmatrix}$ $\begin{pmatrix} 6 \end{pmatrix}$ $\begin{pmatrix} 0 \end{pmatrix}$
5	2	3	4	6			
6	0	4	5	8	9		
7	1	2	8				
8	2	6	7	9			7 8 9
9	0	6	8				
DFS Tra	iver	sal	= 0	, 6,	4, 2	, 1	

Vertex	A	djao	cent	Ve	rtic	es	
0	6	9					3 5
1	2	7					
2	1	3	4	5	7	8	
3	2	5					
4	2	5	6				(2) (4) (6) (0)
5	2	3	4	6			
6	0	4	5	8	9		
7	1	2	8				
8	2	6	7	9			7 8 9
9	0	6	8				
DFS Tra	ver	sal	= 0	, 6,	4, 2	, 1, '	7, 8

Vertex	A	djao	cent	Ve	rtic	es	35
0	6	9					3
1	2	7					
2	1	3	4	5	7	8	
3	2	5					
4	2	5	6				(2) (4) (6) (0)
5	2	3	4	6			
6	0	4	5	8	9		
7	1	2	8				
8	2	6	7	9			$\overline{}$
9	0	6	8				
DFS Tra	ver	sal	= 0	, 6,	4, 2	, 1,	7, 8, 9

DFS Traversal = 0, 6, 4, 2, 1, 7, 8, 9, 3, 5

Note: The tree structure is shown highlighted in red

Q5) 1)

Step	Edge Considered	Cost	Accepted/Rejected
1	AD	1	Accepted
2	CD	1	Accepted
3	CE	1	Accepted
4	BE	1	Accepted
5	GD	1	Accepted
6	FG	1	Accepted
7	GH	1	Accepted
8	AC	2	Rejected
9	EG	2	Rejected
10	FH	2	Rejected
11	ВС	3	Rejected
12	CG	3	Rejected
13	AF	4	Rejected
14	DF	5	Rejected
15	AB	6	Rejected

Q5) 2)

Vertex	Visited?	Cost	Predecessor
A	Yes	0	-
D	Yes	1	A
С	Yes	1	D
E	Yes	1	С
В	Yes	1	Е
F	Yes	1	G
G	Yes	1	D
Н	Yes	1	G

Q6) (a) BFS topological

In-Degree	V	A	djad	cent	Ve	rtic	es	
0	Α	В	С	D	Е	G	Н	
1	В	D						17
1	С	Н	I					H 20 B 7
3	D							
3	Е	F	J					40 / 14 \ 10
1	F							G A D D
1	G	E						31 22 10 12
2	Н							9 42 11
1	I	D	Е					
1	J							$F \leftarrow 5$ $E \leftarrow 7$ J
Queue = A								
BFS Topolo	gica	al =						

In-Degree	V	A	Adjacent Vertices						
0	A	В	С	D	Е	G	Н		
0	В	D							
0	С	Н	I						
2	D								
2	Е	F	J						
1	F								
0	G	Е							
1	Н								
1	I	D	Е						
1	J								
Queue = B, C, G									
BFS Topolo	BFS Topological = A								

In-Degree	V	A	Adjacent Vertices					
0	Α	В	С	D	Е	G	Н	
0	В	D						
0	С	Н	I					
1	D							
2	E	F	J					
1	F							
0	G	Е						
1	Н							
1	I	D	Е					
1	J							
0	CI		•	•		•	•	

Queue = |C, G|

BFS Topological = A, B

In-Degree	V	Α	Adjacent Vertices							
0	Α	В	С	D	Е	G	Н			
0	В	D								
0	С	Н	I							
1	D									
2	Е	F	J							
1	F									
0	G	Е								
0	Н									
0	I	D	Е							
1	J									

Queue = |G, H, I|

BFS Topological = A, B, C

In-Degree	V	Α	djao	cent	Ve	rtic	es	Ç
0	Α	В	С	D	Е	G	Н	**
0	В	D						
0	С	Н	I					(H) B
1	D							\
1	Е	F	J					
1	F							G (D (12)
0	G	Е						
0	Н							11
0	I	D	Е					
1	J							F ← 5 (E) * 7 (J)
Queue = H	[, I							
BFS Topolo	gica	al =	A, I	3, C,	G			

In-Degree	V	Α	djao	cent	Ve	rtic	es	C
0	Α	В	С	D	Е	G	Н	~
0	В	D						
0	С	Н	I					H B
0	D							U
0	Е	F	J					
1	F							G+ A- D
0	G	Е						
0	Н							
0	I	D	Е					
1	J							F ← 5 E 7 J
Queue = D	, E							
BFS Topolo	gica	al =	A, E	3, C,	G, I	I, I	•	

In-Degree	V	Α	djao	cent	Ve	rtic	es	Ç
0	Α	В	С	D	Е	G	Н	
0	В	D						
0	С	Н	I					(H) B
0	D							(4)
0	Е	F	J					
0	F							G+ -A- D+ I
0	G	Е						
0	Н							
0	I	D	Е					
0	J							(F) (E) (J)
Queue = F	, J							

BFS Topological = A, B, C, G, H, I, D, E

In-Degree	V	A	dja	cent	Ve	rtic	es	Ç
0	Α	В	С	D	Е	G	Н	
0	В	D						
0	С	Н	I					H) B
0	D							
0	E	F	J					
0	F							G+ (A)- (D)
0	G	Е						
0	Н							
0	I	D	Е					
0	J							F (J)
Oueue = III								

BFS Topological = A, B, C, G, H, I, D, E, F

In-Degree	V	Α	djao	cent	Ve	rtic	es	C
0	Α	В	С	D	Е	G	Н	
0	В	D						
0	С	Н	I					(H) B
0	D							
0	Е	F	J					
0	F							G+ -A- D- I
0	G	Е						
0	Н							
0	I	D	Е					
0	J							F E- J
Queue =								
BFS Topolo	gica	al =	A, E	3, C,	G, I	Ι, Ι,	, F, J	

BFS Topological = A, B, C, G, H, I, D, E, F, J

Q6) (a) DFS topological

```
Algorithm topological Sort DFS( Graph G )
        Initialize a list L
        Mark all vertices as unvisited
        while there exists an unvisited vertex v
                visit(L, v)
        end-while
Algorithm visit(L, v)
        if v is unvisited
                for each unvisited neighbor w of v
                        visit(L, w)
                end-for
                mark v visited
                add v to front of L
        end-if
        visit(L, A)
            o visit(L, B)
                        visit(L, D)
                        mark D as visited
                        L = \{D\}
            o mark B as visited
            \circ L = {B, D}
            o visit(L, C)
                        visit(L, H)
                        mark H as visited
                        L = \{H, B, D\}
                        visit(L, I)
                                visit(L, E)
                                    o visit(L, F)
                                    o mark F as visited
                                    \circ \quad L = \{F, H, B, D\}
                                    o visit(L, I)
                                    o mark J as visited
                                     \circ \quad L = \{J, F, H, B, D\}
                                mark E as visited
                                L = \{E, J, F, H, B, D\}
                        mark I as visited
                        L = \{I, E, J, F, H, B, D\}
            o mark C as visited
            \circ L = {C, I, E, J, F, H, B, D}
            o visit(L, G)
            o mark G as visited
            \circ L = {G, C, I, E, J, F, H, B, D}
```

mark A as visited

 $L = \{A, G, C, I, E, J, F, H, B, D\}$

DFS Topological = $\{A, G, C, I, E, J, F, H, B, D\}$

Options	Cost
A,B	14
A,C	20
A,D	22
A,G	31
A,E	42

Options	Cost				
A,C	20				
A,D	22				
A,G	31				
A,E	42				

37 yer 3) 6	17 20 40 40 5 42 E 42	14 10 11 11 7 J	7 12 12 27
Vertex	Visited?	Cost	Predecessor
Α	Yes	0	-
В	Yes	14	A
С	Yes	20	Α

Options	Cost
A,D	22
A,G	31
A,E	42
C,I	27
C,H	37

Options	Cost
A,G	31
A,E	42
C,I	27
C,H	37

Options	Cost
A,E	42
C,I	27
C,H	37
G,E	40

Note: (A,E) is no longer an option because E is relaxed by the edge (G, E).

Options	Cost
A,E	42
C,H	37
G,E	40
I,E	38

Note: (G,E) is no longer an option because E is relaxed by the edge (I, E).

Options	Cost
A,E	42
G,E	40_
I,E	38

45 yz 45 29 45			
Vertex	Visited?	Cost	Predecessor
Α	Yes	0	-
В	Yes	14	A
С	Yes	20	A
D	Yes	22	A
G	Yes	31	A
I	Yes	27	С
Н	Yes	37	С
Е	Yes	38	I

Options	Cost
A,E	42
G,E	40
E,F	43
E,J	45

Options	Cost
A,E	42
G,E	40
E,J	45

Options	Cost
A,E	42
G,E	40

Therefore, the shortest distance from node A to every other node is as follows:

