CHAPITRE 14

Continuité

Table des matières

Ι		2
II	Continuité uniforme	7
III	Fonctions à valeurs dans $\mathbb C$	10
IV	Annexe	12

Première partie

1

Remarque

De même si
$$a \in \mathscr{D}$$
 et si $\lim_{\substack{x \to a \\ \leqslant}} f(x)$ existe (resp. $\lim_{\substack{x \to a \\ \leqslant}} f(x)$) alors $f(a) = \lim_{\substack{x \to a \\ \leqslant}} f(x)$ (resp $f(a) = \lim_{\substack{x \to a \\ \leqslant}} f(x)$)

Definition

Soit f définie sur \mathscr{D} et $a\in\mathscr{D}$. On dit que f est continue en a si $\lim_{x\to a}f(x)$ existe ou si $\lim_{x\to a}f(x)=f(a)$.

Proposition

f est continue en a si et seulement si

$$\lim_{\substack{x \to a \\ <}} f(x) = \lim_{\substack{x \to a \\ >}} a = f(a)$$

Lemme

Soient
$$a \neq b$$
 deux éléments de $\overline{\mathbb{R}}$
Alors $\exists V \in \mathscr{V}_a, \exists W \in \mathscr{V}_b, V \cap W = \emptyset$

Théorème

Soit f définie sur \mathcal{D} et $a \in \overline{\mathcal{D}}, \ \ell \in \overline{\mathbb{R}}$

$$f(x) \xrightarrow[x \to a]{} \ell \iff \forall (x_n) \in \mathscr{D}^{\mathbb{N}} \left(x_n \xrightarrow[n \to +\infty]{} a \implies f(x_n) \xrightarrow[n \to +\infty]{} \ell \right)$$

Proposition

Si
$$f(x) \xrightarrow[x \to a]{} \ell$$
 et $g(x) \xrightarrow[x \to a]{} \ell_2$ alors

1.
$$f(x) + g(x) \xrightarrow[x \to a]{} \ell_1 + \ell_2$$

2.
$$f(x) \times g(x) \xrightarrow{x \to a} \ell_1 \times \ell_2$$

3. Si
$$\ell_2 \neq 0$$
, $\frac{f(x)}{g(x)} \xrightarrow{x \to a} \frac{\ell_1}{\ell_2}$

Proposition

Si
$$f(x) \xrightarrow[x \to a]{} \ell_1$$
 et $g(x) \xrightarrow[x \to \ell_1]{} \ell_2$ alors $g(f(x)) \xrightarrow[x \to a]{} \ell_2$

Corollaire

Une somme, un produit, une composée de fonctions continues sont continues.

Remarque

Pour démontrer que f(x) n'a pas de limite quands x tend vers a. On cherche deux suites (x_n) et (y_n) de limite a avec

$$\begin{cases} f(x_n) \longrightarrow \ell_1 \\ f(y_n) \longrightarrow \ell_2 \\ \ell_1 \neq \ell_2 \end{cases}$$

Théorème

Limite monotone

Soit f une fonction croissante sur]a, b[avec $a \neq b \in \overline{\mathbb{R}}$.

1. Si f est majorée,

$$\exists M \in \mathbb{R}, \forall x \in]a, b[, f(x) \leqslant M$$

alors
$$\lim_{x \to b} f(x) = \sup_{x \in]a,b[} f(x) \in \mathbb{R}$$

2. Si f n'est pas majorée,

$$\lim_{\substack{x \to b \\ <}} f(x) = +\infty$$

3. Si f est minorée,

$$\exists m \in \mathbb{R}, \forall x \in]a,b[,f(x) \leqslant m$$

alors
$$\lim_{\substack{x \to a \\ >}} a f(x) = \inf_{]a,b[} f \in \mathbb{R}$$

4. Si
$$f$$
n'est pas minorée, $\lim\limits_{x\, \stackrel{\longrightarrow}{\rightarrow}\, a} f(x) = -\infty$

Remarque

Avec les hypothèses ci-dessus, pour tout $x \in]a, b[$,

f est croissante sur]a,x[, et majorée par f(x) donc $\lim_{t\, \xrightarrow{}\, x} f(t) \in \mathbb{R}$

f est croissante sur]x,b[et minorée par f(x) donc $\lim_{t\, \xrightarrow{>}\, x} f(t)\in \mathbb{R}$

$$\lim_{\substack{t \, \xrightarrow{} \, x}} f(t) \leqslant f(x) \leqslant \lim_{\substack{t \, \xrightarrow{} \, x}} f(t)$$

Ι

Théorème

Théorème des valeurs intermédiaires

Soit f une fonction continue sur un intervalle $I,\,a < b$ deux éléments de I.

$$\forall y \in [f(a),f(b)] \cup [f(b),f(a)]\,, \ \exists x \in [a,b], \ y=f(x)$$

Lemme

Soit f une fonction continue sur un intervalle I, a < b deux éléments de I tels que $f(a) \leqslant 0 \leqslant f(b)$. Alors,

$$\exists x \in [a, b], f(x) = 0$$

Corollaire

Soit f continue sur un intervalle I. Alors, f(I) est un intervalle.

Corollaire

On peut généraliser le théorème des valeurs intermédiaires au cas où $\begin{cases} a \in \overline{R} \\ b \in \overline{\mathbb{R}} \end{cases}$ en remplaçant f(a) par $\lim_{x \to a} f(x)$ et f(b) par $\lim_{x \to b} f(x)$

Théorème

Théorème de la bijection

Soit f continue, strictement monotone sur un intervalle I. Alors, J = f(I) est un intervalle de même nature (ouvert, semi-ouvert ou fermé) et f établit une bijection de I sur J.

Théorème

Soit f continue sur un segment [a,b]. Alors, f est bornée et atteint ses bornes, i.e.

$$\exists (m,M) \in \mathbb{R}^2, f([a,b]) = [m,M]$$

 $\underline{\wedge}$ On peut avoir $m \neq f(a)$ et $M \neq f(b)$

Deuxième partie Continuité uniforme

II

Remarque

 $f: \mathbb{R} \to \mathbb{R}$ continue,

$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists \eta > 0, \forall y \in]x - \eta, x + \eta[, |f(x) - f(y)| \leq \varepsilon$$

Ici, η dépend de ε et de x

Dans certaines situations, il serait préférable d'avoir

$$\forall \varepsilon > 0, \exists \eta > 0, \forall (x, y) \in \mathbb{R}^2, |x - y| \leqslant \eta \implies |f(x) - f(y)| \leqslant \varepsilon$$

Lemme

Soit f uniformément continue sur un intervalle I. Soient $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ deux suites d'éléments dans I telles que $x_n-y_n\xrightarrow[n\to+\infty]{}0$.

Alors,
$$\lim_{n \to +\infty} (f(x_n) - f(y_n)) = 0$$

Théorème

Théorème de Heine

Soit f une function continue sur [a,b]. Alors, f est uniformément continue sur [a,b].

Remarque

$$\begin{cases} \eta > 0 \\ \varepsilon > 0 \end{cases}$$

$$\begin{cases} |x - y| \leqslant \eta \\ |f(x) - f(y)| \leqslant \varepsilon \end{cases}$$

Definition

Soit $f:I\to\mathbb{R}$ où I est un intervalle et $k\in\mathbb{R}.$ On dit que f est $\underline{k\text{-lipschitzienne}}$ si

$$\forall (x,y) \in I^2, |f(x) - f(y)| \leqslant k |x - y|$$

On dit que f est lipschitzienne s'il existe $k \in \mathbb{R}$ tel que f soit k-lipschitzienne.

Proposition

Soit f une fonction lipschitzienne sur I. Alors, f est uniformément continue sur I donc continue sur I.

Théorème

Soit $f:I\to\mathbb{R}$ dérivable sur I telle qu'il existe $M\in\mathbb{R}$ vérifiant

$$\forall x \in I, |f'(x)| \leqslant M$$

Alors

$$\forall (a,b) \in I^2, |f(a) - f(b)| \leqslant M |a - b|$$

donc f est M-lipschitzienne.

${\bf Corollaire}$

Soit f de classe \mathscr{C}^1 sur [a,b]. Alors f est lipschitzienne.

Troisième partie Fonctions à valeurs dans $\mathbb C$

Definition

V est un voisinage de ℓ s'il existe r>0 tel que $V\supset D(\ell,r)$ où $D(l,r)=\{z\in\mathbb{C}\mid |z-\ell|< r\}$

Proposition

Soit $f:I\to\mathbb{C}$ et $a\in I,\,\ell\in\mathbb{C}.$

$$f(x) \xrightarrow[x \to a]{} \ell \iff \begin{cases} \mathfrak{Re}(f(x)) \xrightarrow[x \to a]{} \mathfrak{Re}(\ell) \\ \mathfrak{Im}(f(x)) \xrightarrow[x \to a]{} \mathfrak{Im}(\ell) \end{cases}$$

Remarque

Rappel

On dit que : $I \to \mathbb{C}$ est bornée s'il existe $M \in \mathbb{R}$ tel que

$$\forall x \in I, |f(x)| \leqslant M$$

Quatrième partie Annexe

IV Annexe

Théorème

Théorème 2.11 $f:I\to J$ bijective monotone avec I et J deux intervalles. Alors, f^{-1} est continue (et f aussi)

Definition

Un $\underline{\text{hom\'eomorphisme}}$ est une application bijective, continue dont la réciproque est $\underline{\text{continue}}$.