Práctica 1: Aproximación de funciones

Polinomio de Taylor

- 1. a) Para cada caso calcular el polinomio de Taylor de orden n en x_0 :
 - i) $f_1(x) = e^{2x}$ en $x_0 = 0$, n = 5.

 - ii) $f_2(x) = xe^{x-1}$ en $x_0 = 1$, n = 4. (x-1) (x-1)
 - b) Para las funciones $f_i(x)$ del ítem anterior aproximar el valor indicado:
 - i) $f_1(0.2)$ y $f_1(2)$
 - ii) $f_2(0.9)$
 - iii) $f_3(0.1)$.
- 2. a) Probar que si f(x) es una función impar entonces $P_n(x)$, el polinomio de Taylor centrado en $x_0 = 0$, sólo tiene potencias impares. Análogamente, si f(x) es una función par entonces $P_n(x)$ sólo tiene potencias pares. f(x) = f(-x) Calcular el polinomio de Taylor de orden 3 centrado en $x_0 = 0$ de $f(x) = \sec(x)$ y $g(x) = \tan(x)$.

Aproximación del error

3. a) Para cada una de las siguientes funciones calcular el polinomio de Taylor de orden n en x_0 y encontrar la expresión del resto.

1

- i) $f_1(x) = \cos(x)$ en $x_0 = 0$,
- ii) $f_2(x) = \frac{1}{x-3}$ en $x_0 = 1$.
- iii) $f_3(x) = \ln(\cos(x))$ en $x_0 = 0$ y n = 3.
- b) Para cada una de las funciones del ítem anterior acotar el error cometido
 - i) $f_1(x)$ en $(-\pi,\pi)$, para todo $n \in \mathbb{N}$
 - ii) $f_2(x)$ en (0,2) para $n=1,\ldots,5$.
 - iii) $f_3(x)$ en (-1,1).
- c) Para cada función del ejercicio anterior graficar $f_i(x)$ y $P_n(x)$.

tj 2a)
$$f'(n)$$
 $g(x) = f(x)$ $g(x) = f(x)$

- 4. a) Desarrollar el polinomio de Taylor de orden n centrado en $x_0 = 0$ de $f(x) = (1+x)^a$ con $a \in \mathbb{R}$.
 - b) Aplicando el ítem anterior para un valor de $a \in \mathbb{R}$ adecuado, calcular $\frac{1}{\sqrt[3]{1.1}}$ con su polinomio de Taylor de orden 4. Acotar el error cometido.
- 5. Dada la función $f(x) = \ln\left(\frac{x+1}{2}\right)$
 - a) Acotar el error cometido al calcular ln(1,1) usando el polinomio de Taylor de f(x) de orden 3 centrado en $x_0 = 1$.
 - b) Hallar un valor aproximado de ln(1,1) con un error menor que 10^{-5}
- 6. Calcular un valor aproximado de $\sqrt[3]{9}$ con un error menor que 10^{-3} .

Interpolación polinomial

- 7. Para cada uno de los conjuntos de datos dados, calcular el polinomio p(x) interpolador de grado menor o igual que 3:
 - a) en la forma de Lagrange,
 - b) por coeficientes indeterminados.

Verificar los resultados en Python. Graficar el polinomio interpolador.

X	-2	-1	2	3
у	4	1	4	9

X	0	1	3	5
У	1	2	3	4

- 8. Para cada una de las siguientes funciones¹, hallar el polinomio interpolador P_n en n+1 puntos equiespaciados en el intervalo [a,b], para los valores de n indicados. Graficar simultáneamente la función con sus respectivos interpoladores. Usando Python, estimar máx $_{x \in [a,b]} |f(x) P_n(x)|$.
 - a) $f_1(x) = \text{sen}(\pi x)$, [a, b] = [0, 0.5], n = 1, 2, 3, 6.
 - b) $f_2(x) = \frac{1}{1 + 25x^2}$, [a, b] = [-1, 1], n = 5, 10, 15.
 - c) $f_3(x) = \frac{2}{e^x + e^{-x}}(x)$, [a, b] = [-5, 5], n = 2, 9, 11, 13.
- 9. Encontrar una función del tipo $4^{ax^3+bx^2+cx+d}$ que interpole la siguiente tabla de datos:

x	-2	-1	0	1
y	1	4	0.25	16

 f_3 es conocida como la función secante hiperbólica, la inversa multiplicativa del coseno hiperbólico.

- 10. Hallar y graficar una función del tipo $e^{a_4x^4+a_3x^3+\cdots+a_0}$ que interpole a la función f(x)=1/x en 5 nodos equiespaciados en el intervalo [1, 10].
- 11. En una planta química se sintetiza un producto que es utilizado posteriormente como conservante de productos enlatados. El rendimiento del proceso depende de la temperatura.

Se dispone de los siguientes datos

$T(^{\circ}C)$							
R(%)	35.5	37.8	43.6	45.7	47.3	50.1	51.2

Se considera un rendimiento óptimo el que va de 38.5% a 45%, por lo que la planta trabaja a $175^{\circ}C$. Si la temperatura de trabajo cae a $162^{\circ}C$ por una avería, ¿será el proceso satisfactorio hasta que sea reparada?

12. El pentóxido de dinitrógeno gaseoso puro reacciona en un reactor intermitente según la reacción estequiométrica

$$2N_2O_5 \rightleftharpoons 2N_2O_4 + O_2$$

Calculamos la concentración de pentóxido de dinitrógeno existente en ciertos instantes, obteniendo los siguientes datos

T(s)	2	200	400	650	1100	1900	2300
C	5.5	5.04	4.36	3.45	2.37	1.32	0.71

Si lo tenemos en el reactor un tiempo máximo de 35 minutos (2100 segundos), ¿cuál es la concentración de pentóxido de dinitrógeno que queda sin reaccionar?

Polinomios de Chebyshev

- 13. a) Hallar n de modo que el polinomio P_n que interpola a la función $f(x) = e^{2x}$ en los ceros de T_{n+1} verifique que $||f P_n||_{\infty} \le 10^{-2}$ en [-1, 1].
 - b) Repetir el ítem anterior para $f(x) = e^x$, $x \in [0, 4]$.
- 14. Para n = 9, 11, 13; graficar simultáneamente el polinomio $W_{n+1}(x) = \prod_{i=0}^{n} (x-x_i)$, donde $x_i = -1 + \frac{2i}{n}$, $i = 0, \ldots, n$ y el polinomio $T_{n+1}/2^n$ donde T_{n+1} es el (n+1)-ésimo polinomio de Chebyshev.
- 15. Sea $f: [-1,1] \to \mathbb{R}$ definida por $f(x) = \frac{1}{(2+x)^2}$.
 - a) Acotar el error cometido al interpolar en n + 1 puntos equiespaciados y al interpolar en los ceros de Chebyshev.

- b) En cada caso determinar, si es posible, la mínima cantidad de nodos necesarios que se deben considerar para asegurar que el error cometido es menor que 10^{-4} .
- 16. Repetir el Ejercicio 8 usando los polinomios que interpolan a la función f en los ceros del polinomio de Chebyshev de grado n+1 en el intervalo correspondiente. Comparar

Interpolación de Hermite

17. Sea $f(x) = \cos(\pi x)$, hallar un polinomio de grado menor o igual que 4 que verifique

$$p(-1) = f(-1), \ p(0) = f(0), \ p(1) = f(1), \ p'(1) = f'(1), \ p''(1) = f''(1).$$

Interpolación lineal y cúbica segmentada

18. Calcular un spline cúbico que interpole la siguiente tabla de datos

x	0	0.5	1
y	0	1	0

Graficar el spline junto con la función $f(x) = \text{sen}(\pi x)$.

19. Dada la siguiente tabla de datos

x	2	6	7	12
y	4	4	6	7

- a) Calcular un spline cúbico que interpole los datos.
- b) Calcular el polinomio interpolador.
- c) Graficar el spline y el polinomio interpolador.
- 20. En su artículo², Hubert Frings y Mable Frings estudiaron la influencia de la temperatura sobre el número de chirridos por minuto de grillos (neoconocephalus ensinger) machos. A partir de la siguiente tabla (Tabla 1 en H. Frings et al)

$T(^{\circ}C)$	8	9	14	17	18	19	20.5	21.5	23	24	25	26
$N(min^{-1})$	264	285	346	417	438	495	524	540	643	693	744	780

- (a) Construir el polinomio interpolador en el intervalo [8, 26].
- (b) Calcular un spline cúbico que interpole los datos.
- (c) Graficar el polinomio interpolador y el spline. Qué observa?

²H. Frings and M. Frings, The effects of temperature on chirp-rate of male cone-headed grasshoppers, neoconocephalus ensiger, Journal of Experimental Zoology 134 (1957), no 3