Basic identities of matrix/vector ops	j j	Vector norms (beyond euclidean)	Determinant of square-diagonals =>	If all else fails, try to find row/column with MOST zeros	If associated to same eigenvalue λJthen eigenspace	$ \sigma_1,,\sigma_p $ are singular values of \underline{A} .	Variance (Bessel's correction) of $\alpha_1,, \alpha_m$ is
$(A+B)^T = A^T + B^T (AB)^T = B^T A^T (A^{-1})^T = (A^T)^{-1} $	Notice: $Q_j c_j = \sum_{i=1}^{J} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \sum_{i=1}^{J} \text{proj}_{\mathbf{q}_j} (\mathbf{a}_{j+1})$, so	vector norms are such that: $ x = 0 \iff x = 0$	$\left \text{diag}(a_1,, a_n) \right = \prod_i a_i$ (since they are technically triangular matrices)	Perform minimal EROs/ECOs to get that row/column to be all-but-one zeros	E_{λ} has spanning-set $\{\mathbf{x}_{\lambda_i}, \dots\}$	(Positive) singular values are (positive) square-roots	$\operatorname{Var}_{\mathbf{w}} = \frac{1}{m-1} \sum_{j} \alpha_{j}^{2} = \frac{1}{m-1} \mathbf{w}^{T} \left(\sum_{j} \overline{\mathbf{r}_{j}^{T} \mathbf{r}_{j}} \right) \mathbf{w}$
$(AB)^{-1} = B^{-1}A^{-1}$	rewrite as	$\frac{ \lambda x = \lambda x }{ x + y \le x + y }$		Don't forget to keep track of sign-flipping &	$x_1,, x_n$ are linearly independent \Rightarrow apply Gram-Schmidt $q_{\lambda_i}, \leftarrow x_{\lambda_i},$	of eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$ i.e. $\sigma_1^2,, \sigma_D^2$ are eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$	$= \frac{1}{m-1} \mathbf{w}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{w}$
For $\underline{A \in \mathbb{R}^{m \times n}}$ $\underline{A_{ij}}$ is the i -th ROW then j -th COLUMN	j j	$ \mathbf{r}_p $ norms: $ \mathbf{x} _p = (\sum_{i=1}^n \mathbf{x}_i ^p)^{1/p}$	The (column) rank of AJ is number of linearly	scaling-factors Do Laplace expansion along that row/column =>	Then $\{\mathbf{q}_{\lambda_i}, \dots\}$ is orthonormal basis (ONB) of E_{λ_i}	$\ A\ _2 = \sigma_1 (link \text{ to } \underline{matrix \text{ norms}} $	First (principal) axis defined =>
$(A^{T})_{ij} = A_{ji} \left[(AB)_{ij} = A_{i\star} \cdot B_{\star j} = \sum_{i} A_{ik} B_{kj} \right]$	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \mathbf{a}_{j+1} - \sum_{i=1} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$	$p = 1$: $\ \mathbf{x}\ _1 = \sum_{i=1}^n \mathbf{x}_i $	independent columns, i.e. <u>rk(A)</u> I.e. its the number of pivots in row-echelon-form	notice all-but-one minor matrix determinants go to		Let $r = rk(A)$, then number of strictly positive singular	$w_{(1)} = \arg \max_{\ \mathbf{w}\ =1} \mathbf{w}^T A^T A \mathbf{w}$
R	$\begin{bmatrix} \mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m \end{bmatrix} \underline{m \ge n}$	$p=2$; $\ \mathbf{x}\ _{2} = \sqrt{\sum_{i=1}^{n} \mathbf{x}_{i}^{2}} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$	I.e. its the dimension of the column-space	zero	$Q = (\mathbf{q}_1,, \mathbf{q}_n)$ is an ONB of $\mathbb{R}^n \Longrightarrow Q = [\mathbf{q}_1 \mathbf{q}_n]$ is orthogonal matrix i.e. $Q^{-1} = Q^T$	values is r	= arg max _{w =1} (m-1) Var _w = v ₁
$(Ax)_i = A_{i*} \cdot x = \sum_j A_{ij} x_j \left[\underbrace{x^T y = y^T x = x \cdot y = \sum_i x_i y_i} \right]$	<u>n</u> j	$p = \infty$ $\ \mathbf{x}\ _{\infty} = \lim_{p \to \infty} \ \mathbf{x}\ _{p} = \max_{1 \le i \le n} \mathbf{x}_{i} $	rk(A) = dim(C(A))] I.e. its the dimension of the image-space	Representing EROs/ECOs as transfor- mation matrices	$ \mathbf{q}_1, \dots, \mathbf{q}_n $ are still eigenvectors of $\underline{A} = A = QDQ^T$	i.e. $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_p = 0$	i.e. w(1) the direction that maximizes variance Var _w i.e. maximizes variance of projections on line Rw (1)
$\mathbf{x}^T A \mathbf{x} = \sum_i \sum_j A_{ij} \mathbf{x}_i \mathbf{x}_j \mathbf{x}_i \mathbf{x}_j \mathbf{x}_k^T = [0 \dots \mathbf{x} \dots 0]$	$(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m \text{for } U_n \subset \mathbb{R}^m $	Any two norms in \mathbb{R}^n are equivalent, meaning there	$rk(A) = dim(im(f_A))$ of linear map $f_A(x) = Ax$	For $A \in \mathbb{R}^{m \times n}$, suppose a sequence of:	(spectral decomposition)	$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^I$	
$\mathbf{e}_{k}\mathbf{x}^{T} = [0^{T}; \dots; \mathbf{x}^{T}; \dots; 0^{T}]$	$ j=1 \Rightarrow u_1 = a_1 \text{ and } q_1 = \hat{u}_1 \text{ i.e. start of iteration}$	exist $r>0$; $s>0$ such that: $\forall x \in \mathbb{R}^{n}$, $r\ x\ _{a} \le \ x\ _{b} \le s\ x\ _{a}$	The (row) rank of A is number of linearly independent	EROs transform A EROS A' => there is matrix RJs.t.	A = QDQ ^T can be interpreted as scaling in direction of its eigenvectors:		σ ₁ u ₁ ,, σ _r u _r (columns of <u>US</u>) are principal components/scores of A
Scalar-multiplication + addition distributes over:	$ j=2 \Rightarrow \frac{\mathbf{u}_2 = \mathbf{a}_2 - (\mathbf{q}_1 \cdot \mathbf{a}_2)\mathbf{q}_1}{\mathbf{q}_2 = \mathbf{u}_2} $ and $ \mathbf{q}_2 = \mathbf{u}_2 $ etc Linear independence guarantees that $\mathbf{a}_{j+1} \notin U_j$	$\ \mathbf{x}\ _{\infty} \leq \ \mathbf{x}\ _{2} \leq \ \mathbf{x}\ _{1}$	rows The row/column ranks are always the same, hence	$RA = A'$ $ECOs$ transform $A \rightsquigarrow_{ECOs} A' \implies$ there is matrix C s.t.	-1) Perform a succession of reflections/planar	SVD is similar to spectral decomposition, except it always exists	Recall: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ with $\sigma_1 \ge \cdots \ge \sigma_r > 0$ so that
column-blocks =>	For exams: compute $\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j c_j$	Equivalence of ℓ_1, ℓ_2 and $\ell_{\infty} \Rightarrow \ \mathbf{x}\ _2 \leq \sqrt{n} \ \mathbf{x}\ _{\infty}$	$ rk(A) = dim(C(A)) = dim(R(A)) = dim(C(A^T)) = rk(A^T)$	AC = A'	rotations to change coordinate-system	If $\underline{n \le m}$ then work with $\underline{A^T A \in \mathbb{R}^{n \times n}}$	relates principal axes and principal components
$\lambda A + B = \lambda [A_1 A_C] + [B_1 B_C] = [\lambda A_1 + B_1 \lambda A_C + B_C]$ row-blocks \Rightarrow	-1) Gather $Q_j = [\mathbf{q_1} \dots \mathbf{q_j}] \in \mathbb{R}^{m \times j}$	$\ \mathbf{x}\ _1 \le \sqrt{n} \ \mathbf{x}\ _2$	A jis full-rank iff $rk(A) = min(m, n)$, i.e. its as linearly	Both transform A → EROs+ECOs A' => there are	-2) Apply scaling by λ _i to each dimension q _i -Undo those reflections/planar rotations	Obtain eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2 \ge 0$ of $A^T A$	Data compression: If $\sigma_1 \gg \sigma_2$ then compress A by projecting in direction of principal component =>
$\lambda A + B = \lambda [A_1;; A_r] + [B_1;; B_r] = [\lambda A_1 + B_1;; \lambda A_r + B_r]$	-2) Compute $\mathbf{c}_i = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$	Induce metric $d(x,y) = y-x $ has additional properties:	independent as possible	matrices R, C s.t. RAC = A'	Extension to C ⁿ	Obtain orthonormal eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^n$ of	A≈01 u 1 v 1
Matrix-multiplication distributes over:	-3) Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}	Translation invariance: $d(x+w, y+w) = d(x, y)$	Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{m \times n}$ are equivalent if there exist	FORWARD: to compute these transformation	Standard inner product: $(x, y) = x^{\dagger} y = \sum_{i} \overline{x_{i}} y_{i}$	A^TA (apply normalization e.g. Gram-Schmidt!!!! to eigenspaces E_{G_i}	
column-blocks \Rightarrow $AB = A[B_1 B_p] = [AB_1 AB_p]$ row-blocks \Rightarrow $AB = \overline{[A_1;; A_p]B = [A_1B;; A_pB]}$	Duran autient dat aus durat 8 manus	Scaling: $d(\lambda x, \lambda y) = \lambda d(x, y)$	two invertible matrices $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$	matrices: Start with $[I_m \mid A \mid I_n]$, i.e. Aland identity matrices	Conjugate-symmetric: $\langle x, y \rangle = \overline{\langle y, x \rangle}$	$V = [v_1 \dots v_n] \in \mathbb{R}^{n \times n}$ is orthogonal so $V^T = V^{-1}$	Cholesky Decomposition
	$x^T y = y^T x = x \cdot y = \sum_{i} x_i y_i x \cdot y = a b \cos x^2 y$	Matrix norms Matrix norms are such that: $ A = 0 \iff A = 0$	such that $\mathbf{A} = \mathbf{P}\tilde{\mathbf{A}}\mathbf{Q}^{-1}$ Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{n \times n}$ are similar if there exists an	For every ERO on A), do the same to LHS (i.e. I _m)	Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$	$r = rk(A) = no. of strictly + ve \sigma_i$	Consider positive (semi-)definite $A \in \mathbb{R}^{n \times n}$ Cholesky Decomposition is $A = LL^{T}$ where L is
$AB = [A_1 A_p][B_1;; B_p] = \sum_{i=1}^{p} A_i B_i$	i	$ \lambda A = \lambda A A A A A A A A A $	invertible matrix $P \in \mathbb{R}^{n \times n}$ such that $A = P\tilde{A}P^{-1}$	For every ECO on Al do the same to RHS (i.e. $\overline{I_n}$)	We can <u>diagonalise</u> real matrices in <u>C</u> Jwhich lets us	Let $\mathbf{u}_i = \frac{1}{a_i} A \mathbf{v}_i$ then $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^m$ are orthonormal	lower-triangular
e.g. for $A = [a_1 \mid \mid a_n]$, $B = [b_1;; b_n]$ $\Rightarrow AB = \sum_i a_i b_i$	$x \cdot y = y \cdot x \cdot x \cdot (y + z) = x \cdot y + x \cdot z \cdot \alpha x \cdot y = \alpha(x \cdot y)$	Matrices Fm×n are a vector space so matrix norms	Similar matrices are equivalent, with Q = P	Once done, you should get $[I_m \mid A \mid I_n] \rightsquigarrow [R \mid A' \mid C]$ with $RAC = A' \mid$	diagonalise more matrices than before Least Square Method	(therefore linearly independent)	For positive semi-definite => always exists, but non-unique
Projection: definition & properties	$x \cdot x = x ^2 = 0 \iff x = 0$ for $x \neq 0$, we have $x \cdot y = x \cdot z \implies x \cdot (y - z) = 0$	are vector norms, all results apply Sub-multiplicative matrix norm (assumed by default)	AJis diagonalisable iff AJis similar to some diagonal matrix DJ		If we are solving Ax = b and b ∉ C(A) , i.e. no solution,	The <u>orthogonal compliment</u> of span $\{u_1,, u_r\}$	For positive-definite => always uniquely exists s.t.
A projection $\underline{\pi: V \rightarrow V}$ is a endomorphism such that	$ x \cdot y \le x y $ (Cauchy-Schwartz inequality)	is also such that $ AB \le A B $	Properties of determinants	If the sequences of EROs and ECOs were $R_1,, R_{\lambda}$ and	then Least Square Method is: Finding xjwhich minimizes Ax-b ₂	$span(u_1,,u_r)^{\perp} = span(u_{r+1},,u_m)$	diagonals of LJare positive
	$ u+v ^2 + u-v ^2 = 2 u ^2 + 2 v ^2$ (parallelogram law)	Common matrix norms, for some <u>A ∈ R^{m×n}</u>	Consider $A \in \mathbb{R}^{n \times n}$, then $A_{ii}' \in \mathbb{R}^{(n-1) \times (n-1)}$ the	$C_1,, C_{\mu}$ respectively $R = R_{\lambda} \cdots R_1$ and $C = C_1 \cdots C_{\mu}$ so	Recall for $A \in \mathbb{R}^{m \times n}$ we have unique decomposition	Solve for unit-vector $\underline{\mathbf{u}_{r+1}}$ s.t. it is orthogonal to $\underline{\mathbf{u}_1, \dots, \mathbf{u}_r}$	Finding a Cholesky Decomposition:
A square matrix P such that $P^2 = P$ is called a	$ u+v \le u + v $ (triangle inequality) $u \perp v \iff u+v ^2 = u ^2 + v ^2$ (pythagorean	$\ \mathbf{A}\ _1 = \max_j \ \mathbf{A}_{\star j}\ _1$	(i, j) minor matrix of Al, obtained by deleting i th row	$(R_{\lambda} \cdots R_{1})A(C_{1} \cdots C_{\mu}) = A'$	for any $\mathbf{b} \in \mathbb{R}^m$ $\mathbf{b} = \mathbf{b}_i + \mathbf{b}_k$	Then solve for unit-vector u _{r+2} s.t. it is orthogonal	Compute LL^T and solve $A = LL^T$ by matching terms
It is called an orthogonal projection matrix if	theorem)	$\ \mathbf{A}\ _2 = \sigma_1(\mathbf{A})$ i.e. largest singular value of \mathbf{A}	and j th column from A	$R^{-1} = R_1^{-1} \cdots R_n^{-1}$ and $C^{-1} = C_{U}^{-1} \cdots C_{1}^{-1}$, where	where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_k \in \ker(A^T)$	to u ₁ ,, u _{r+1} And so on	For square roots always pick positive If there is exact solution then positive-definite
$P^2 = P = P^{\dagger}$ (conjugate-transpose)	$\ c\ ^2 = \ a\ ^2 + \ b\ ^2 - 2\ a\ \ b\ \cos b\hat{a}\ $ (law of cosines)	$(square-root of largest eigenvalue of \underline{A}^T\underline{A} or \underline{A}\underline{A}^T)\ \underline{A}\ _{\infty} = \max_i \ \underline{A}_{i*}\ _{1} note that \ \underline{A}\ _{1} = \ \underline{A}^T\ _{\infty}$	Then we define determinant of \underline{A} , i.e. $\underline{\det(A)} = A $, as	$\begin{bmatrix} R_i^{-1}, C_i^{-1} \end{bmatrix}$ are inverse EROs/ECOs respectively	$\ A\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \ A\mathbf{x} - \mathbf{b}_i\ _2 = 0 \iff A\mathbf{x} = \mathbf{b}_i$	$U = [\mathbf{u}_1 \mid \dots \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ is orthogonal so $U^T = U^{-1}$	If there are free variables at the end, then positive
	Transformation matrix & linear maps For linear map $f: \mathbb{R}^n \to \mathbb{R}^m$ ordered bases		$det(A) = \sum_{k=1}^{n} (-1)^{j+k} A_{jk} det(A_{jk}')$, i.e. expansion along	are inverse exostectos respectively	To Alika a second	$S = diag_{m \times n}(\sigma_1,, \sigma_n)$ AND DONE!!!	semi-definite
	For linear map $f: \mathbb{R}^m \to \mathbb{R}^m$ ordered bases $(\mathbf{b}_1, \dots, \mathbf{b}_n) \in \mathbb{R}^m$ and $(\mathbf{c}_1, \dots, \mathbf{c}_m) \in \mathbb{R}^m$	Frobenius norm: $\ \mathbf{A}\ _F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} ^2}$	i th row *(for any i)	BACKWARD: once $R_1,,R_{\lambda}$ and $C_1,,C_{\mu}$ for which	$A^T Ax = A^T b$ is the normal equation which gives solution to least square problem:	If $m < n$ then let $B = A^T$	parameterized on free variables
πjis the identity operator on U	$A = \mathbf{F}_{CB} \in \mathbb{R}^{m \times n}$ is the transformation-matrix of f	V₁=1 j=1	$\det(A) = \sum_{i=1}^{n} (-1)^{R+j} A_{kj} \det(A_{kj}')$ i.e. expansion along	$RAC = A'$ are known , starting with $[I_m \mid A \mid I_n]$	$\ Ax - b\ _2$ is minimized $\iff Ax = b_i \iff A^T Ax = A^T b$	apply above method to $\underline{B} J \Rightarrow \underline{B} = A^T = USV^T$ $A = B^T = VS^T U^T$	[1 1 1] [1 0 0]
The linear map $\pi^* = I_V - \pi$ is also a projection with $W = \text{im}(\pi^*) = \text{ker}(\pi)$ and $U = \text{ker}(\pi^*) = \text{im}(\pi)$, i.e. they	w.r.t to bases B and C	A matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is consistent with the vector norms $\ \cdot\ _{a}$ on \mathbb{R}^{n} and $\ \cdot\ _{b}$ on \mathbb{R}^{m} if	k=1	For $i=1 \rightarrow \lambda$ perform R_i on AJ perform $R_{\lambda-i+1}^{-1}$ on LHS	Linear Regression	Tricks: Computing orthonormal	e.g. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} = LL^T$ where $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & c & \sqrt{1-c^2} \end{bmatrix}$, $c \in [0,1]$
$w = im(\pi^-) = ker(\pi)$ and $u = ker(\pi^-) = im(\pi)$, i.e. they swapped	$\frac{f(\mathbf{b}_{j}) = \sum_{i=1}^{m} A_{ij} \mathbf{c}_{i}}{ $	for all $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$ and $\underline{\mathbf{x}} \in \mathbb{R}^n$ $\Rightarrow \ \mathbf{A}\mathbf{x}\ _b \le \ \mathbf{A}\ \ \mathbf{x}\ _a$	j j th column (for any j j	(i.e. l _m)	Let $y = f(t) = \sum_{j=1}^{n} s_j f_j(t)$ be a mathematical model,	vector-set extensions	[1 = 1 = 1
π] is a projection along W] onto U]	If f^{-1} exists (i.e. its bijective and $\underline{m} = n$) then	If $a = b$, $\ \cdot \ $ is compatible with $\ \cdot \ _a$	When det(A) = 0] we call AJa singular matrix Common determinants	For $j=1 \rightarrow \mu$ perform C_j on A_j perform $C_{\mu-j+1}^{-1}$ on	where f_j are basis functions and s_j are parameters	You have orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^m$ \Longrightarrow need	If A = LL ^T you can use <u>forward/backward substitution</u>
π [*] is a projection along <u>U</u> onto <u>W</u> π [*] is the identity operator on <u>W</u>	$(\mathbf{F}_{CB})^{-1} = \mathbf{F}^{-1}_{BC}$ (where \mathbf{F}^{-1}_{BC} is the	Frobenius norm is consistent with ℓ_2 norm \Rightarrow $\ Av\ _2 \le \ A\ _F \ v\ _2$	For <u>n = 1</u>], det(A) = A ₁₁	RHS (i.e. In)	Let (t_i, y_i) , $1 \le i \le m, m \gg n$ be a set of observations ,	to extend to orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_m \in \mathbb{R}^m$ Special case => two 3D vectors => use cross-product =>	to solve equations
V]can be decomposed as V = U ⊕ W]meaning every	transformation-matrix of f^{-1}	For a vector norm $\ \cdot\ $ on \mathbb{R}^n , the subordinate	For <u>n = 2</u> , det(A) = A ₁₁ A ₂₂ - A ₁₂ A ₂₁ det(I _n) = 1	You should get [I _m A I _n] → [R ⁻¹ A' C ⁻¹] with	and t, y ∈ R ^m are vectors representing those observations	$a \times b \perp a, b$	For $\underline{Ax = b} \Rightarrow \text{let } \underline{y = L^T x}$ Solve $\underline{Ly = b}$ by forward substitution to find \underline{y}
vector $\underline{x \in V}$ Can be uniquely written as $\underline{x = u + w}$ $\underline{u \in U}$ and $u = \pi(x)$		matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is	Multi-linearity in columns/rows: if	$A = R^{-1}A'C^{-1}$	$ f_j(t) = [f_j(t_1),, f_j(t_m)]^T$ is transformed vector		Solve $L^T x = y$ by backward substitution to find x
$w \in W \text{ I and } w = x - \pi(x) = (I_{x'} - \pi)(x) = \pi^*(x)$	The transformation matrix of the identity map is called	$\ A\ = \max\{\ Ax\ : x \in \mathbb{R}^n, \ x\ = 1\}$	$A = [a_1 a_j a_n] = [a_1 \lambda x_j + \mu y_j a_n] $ then	You can mix-and-match the forward/backward modes	$A = [f_1(t) f_n(t)] \in \mathbb{R}^{m \times n}$ is a matrix of columns	Extension via standard basis $I_m = [e_1 e_m]$ using [(tweaked) GS:	[11 0 0]
	change-in-basis matrix The identity matrix I _m represents id _R m w.r.t. the	$= \max \left\{ \frac{\ \mathbf{A}\mathbf{x}\ }{\ \mathbf{x}\ } : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0 \right\}$	$det(A) = \lambda det([a_1 x_i a_n])$	i.e. inverse operations in inverse order for one, and	$z = [s_1,, s_n]^T$ is vector of parameters	Choose candidate vector: just work through	For n = 3] => L = l ₂₁ l ₂₂ 0 .
i.e. the image and kernel of <u>π</u> are orthogonal	standard basis $E_m = \langle e_1,, e_m \rangle \implies i.e. I_m = I_{EE}$	$= \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ \le 1\}$	+ µ det ([a ₁ y _j a _n])	operations in normal order for the other e.g. you can do $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C]$ to get	Then we get equation Az=y => minimizing Az-y 2	e ₁ ,,e _m sequentially starting from e ₁ ⇒ denote the current candidate e _k	[l ₃₁ l ₃₂ l ₃₃]
subspaces infact they are eachother's orthogonal compliments,	If $B = (\frac{b_1,, b_m}{b_m})$ is a basis of \mathbb{R}^m , then $I_{EB} = [\frac{b_1}{, b_m}]$ is the transformation matrix from B	Vector norms are compatible with their subordinate matrix norms	And the exact same linearity property for rows	$AC = R^{-1}A' \Rightarrow \text{useful for LU factorization}$	is the solution to Linear Regression So applying LSM to Az = y is precisely what Linear	Orthogonalize: Starting from $j = r$ going to $j = m$ with	$LL^T = \begin{bmatrix} l_{11} & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^2 * l_{22}^2 & l_{21}l_{31} * l_{22}l_{32} \end{bmatrix}$
i.e. U [±] = W, W [±] = U (because finite-dimensional vectorspaces)	to E	For $p = 1, 2, \infty$ matrix norm $\ \cdot\ _p$ is subordinate to	Immediately leads to: $ A = A^T \cdot A = \lambda^n A \cdot A $ and $ AB = BA = A \cdot B \cdot A = A \cdot A \cdot A = A $	Eigen-values/vectors	Regression is	each iteration => with current orthonormal vectors	[l ₁₁ l ₃₁ l ₂₁ l ₃₁ *l ₂₂ l ₃₂ l ₃₁ *l ₃₂ *l ₃₃]
so we have $\pi(x) \cdot y = \pi(x) \cdot \pi(y) = x \cdot \pi(y)$	$I_{BE} = (I_{EB})^{-1}$, so $\Rightarrow F_{CB} = I_{CE} F_{EE} I_{EB}$	the vector norm $\ \cdot\ _p$ (and thus compatible with)	Alternating: if any two columns of Alare equal (or any	Consider $A \in \mathbb{R}^{n \times n}$, non-zero $\mathbf{x} \in \mathbb{C}^n$ is an eigenvector	We can use normal equations for this => $\ Az-y\ _2$ is minimized $\iff A^TAz=A^Ty$	u ₁ ,,u _j Compute	Forward/backward substitution
or equivalently, $\pi(x) \cdot (y - \pi(y)) = (x - \pi(x)) \cdot \pi(y) = 0$	Dot-product uniquely determines a vector w.r.t. to	Properties of matrices	two rows of A are equal), then A = 0 (its singular)	with eigenvalue $\lambda \in \mathbb{C}[\text{for } A] \text{ if } Ax = \lambda x]$ $ \text{If } Ax = \lambda x \text{ then } A(kx) = \lambda(kx) \text{ for } k \neq 0$, i.e. kx is also an	Solution to normal equations unique iff Ajis full-rank,	$\mathbf{w}_{j+1} = \mathbf{e}_k - \sum_{i=1}^{j} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1}^{j} (\mathbf{u}_i)_k \mathbf{u}_i$	Forward substitution: for lower-triangular
By Cauchy–Schwarz inequality we have ∥π(x)∥ ≤ ∥x∥	basis	Consider <u>A</u> ∈ R ^{m×n}	Immediately from this (and multi-linearity) => if columns (or rows) are linearly-dependent (some are	eigenvector	i.e. it has linearly-independent columns	=e _k -U _i c _i	$\begin{bmatrix} \ell_{1,1} & 0 \\ \vdots & \ddots \end{bmatrix}$
The orthogonal projection onto the line containing	If $a_i = x \cdot b_i$; $x = \sum_i a_i b_i$, we call a_i the coordinate-vector of x_i w.r.t. to a_i	If <u>Ax = x</u> for all <u>x</u> then <u>A = I</u> For square <u>A</u> , the trace of <u>A</u> is the sum if its diagonals ,	linear combinations of others) then A = 0	AJhas at most nJdistinct eigenvalues		Where $U_i = [\mathbf{u}_1 \dots \mathbf{u}_i]$ and $\mathbf{c}_i = [(\mathbf{u}_1)_k, \dots, (\mathbf{u}_i)_k]^T$	$\begin{bmatrix} \vdots & \vdots & \vdots \\ \ell_{n,1} & \dots & \ell_{n,n} \end{bmatrix}$
vector \underline{u} jis $\text{proj}_{\underline{u}} = \hat{u}\hat{u}^T$, i.e. $\text{proj}_{\underline{u}}(v) = \frac{\underline{u} \cdot v}{\underline{u} \cdot \underline{u}} u$; $\hat{u} = \frac{\underline{u}}{\ \underline{u}\ }$	Rank-nullity theorem:	i.e. tr(A)	Stated in other terms \Rightarrow rk(A) < n \iff A = 0 \iff RREF(A) \neq I _n \iff A = 0 (reduced row-echelon-form)	The set of all eigenvectors associated with eigenvalue $\underline{\lambda}$ is called eigenspace E_{λ} of \underline{A}	Positive (semi-)definite matrices	NOTE: $\mathbf{e}_{k} \cdot \mathbf{u}_{i} = (\mathbf{u}_{i})_{k}$ i.e. k th component of \mathbf{u}_{i}	For Lx = b], just solve the first row
A special case of $\pi(x) \cdot (y - \pi(y)) = 0$ is $u \cdot (v - \text{proj}_{u} v) = 0$	dim(im(f)) + dim(ker(f)) = rk(A) + dim(ker(A)) = n	AJis symmetric iff $A = A^T$ AJis Hermitian, iff $A = A^{\dagger}$ i.e.	$\Leftrightarrow C(A) \neq \mathbb{R}^n \iff A = 0 (column-space)$	$ E_{\lambda} = \ker(A - \lambda) $	Consider symmetric $\underline{A \in \mathbb{R}^{n \times n}}$ i.e. $\underline{A = A^T}$ A is positive-definite $iff x^T Ax > 0$ for all $x \neq 0$	If $\mathbf{w}_{j+1} = 0$ then $\mathbf{e}_k \in \text{span}\{\mathbf{u}_1, \dots, \mathbf{u}_j\} => \text{discard}$	$\ell_{1,1} x_1 = b_1 \implies x_1 = \frac{b_1}{\ell_{1,1}}$ and substitute down
since $\operatorname{proj}_{U}(u) = u$ If $U \subseteq \mathbb{R}^{n}$ is a k -dimensional subspace with	f_lis injective/monomorphism iff ker(f)={0} iff A_lis full-rank	its equal to its conjugate-transpose	For more equivalence to the above, see invertible	The geometric multiplicity of ∆ is	A Jis positive-definite iff all its eigenvalues are strictly	w _{j+1} choose next candidate e _{k+1} try this step	Then selve the second row
orthonormal basis (ONB) $(\mathbf{u}_1,, \mathbf{u}_k) \in \mathbb{R}^m$		AA^{T} and $A^{T}A$ are symmetric (and positive	matrix theorem Interaction with EROs/ECOs:	$\dim(E_{\lambda}) = \dim(\ker(A - \lambda I))$	positive -A is positive-definite => all its diagonals are strictly	Normalize: w _{i+1} ≠0 so compute unit vector	$\ell_{2,1} x_1 + \ell_{2,2} x_2 = b_2 \implies x_2 = \frac{b_2 - \ell_{2,1} x_1}{\ell_{2,2}}$ and
Let $\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_h] \in \mathbb{R}^{m \times k}$ matrix	$u \perp v \iff u \cdot v = 0$, i.e. u_1 and v_2 are orthogonal	semi-definite) For real matrices, Hermitian/symmetric are	Swapping rows/columns flips the sign	The spectrum $Sp(A) = \{\lambda_1,, \lambda_n\}$ of \underline{A} is the set of all eigenvalues of \overline{A}	positive	$\mathbf{u}_{j+1} = \hat{\mathbf{w}}_{j+1}$	substitute down
Orthogonal projection onto U is $\pi_U = UU^T$	u and v are orthonormal iff $u \perp v$, $ u = 1 = v $ $A \in \mathbb{R}^{n \times n}$ is orthogonal iff $A^{-1} = A^T$	equivalent conditions	Scaling a row/column by <u>λ ≠ 0</u>] will scale the determinant by <u>λ] (by multi-linearity)</u>	The characteristic polynomial of A Jis	-Ajis positive-definite => max(A _{ij} , A _{jj})> A _{ij} i.e. strictly larger coefficient on the diagonals	Repeat: keep repeating the above steps, now with	and so on until all <u>x</u> i jare solved
Can be rewritten as $\pi_U(v) = \sum_i (\mathbf{u}_i \cdot v) \mathbf{u}_i$	Columns of A = [a ₁ a _n] are orthonormal basis	Every eigenvalue λ_i of Hermitian matrices is real	Remember to scale by λ^{-1} to maintain equality, i.e.	$P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	i.e. strictly larger coefficient on the diagonals Alis positive-definite => all upper-left submatrices are	new orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_{j+1}$	Backward substitution: for upper-triangular
· If $(\mathbf{u}_1,, \mathbf{u}_k)$ is not orthonormal , then "normalizing	(ONB) $C = \langle \mathbf{a}_1, \dots, \mathbf{a}_n \rangle \in \mathbb{R}^n$ so $A = \mathbf{I}_{EC}$ is	geometric multiplicity of λ_i = geometric multiplicity of λ_i	$\det(A) = \lambda^{-1} \det([a_1 \mid \dots \mid \lambda a_i \mid \dots \mid a_n])$	$a_0 = A \int_{A \in C} a_{n-1} = (-1)^{n-1} \operatorname{tr}(A) \int_{A \in C} a_n = (-1)^n \int_{A \in C} a_n = $	also positive-definite	SVD Application: Principal Compo-	u _{1,1} u _{1,n}
factor" $(\mathbf{U}^{T}\mathbf{U})^{-1}$ is added $\Rightarrow \pi_{U} = \mathbf{U}(\mathbf{U}^{T}\mathbf{U})^{-1}\mathbf{U}^{T}$	change-in-basis matrix Orthogonal transformations preserve	eigenvectors x ₁ ,x ₂ associated to distinct	Invariant under addition of rows/columns	The algebraic multiplicity of \(\lambda \) is the number of	Sylvester's criterion: A Jis positive-definite iff all upper-left submatrices have strictly positive	nent Analysis (PCA) Assume $A_{uncentered} \in \mathbb{R}^{m \times n}$ represent \underline{m} samples of	0 u _{n,n}]
For line subspaces U = span{u}, we have	lengths/angles/distances $\Rightarrow Ax _2 = x _2$, $AxAy = xy$	eigenvalues $\frac{\lambda_1, \lambda_2}{\lambda_1}$ are orthogonal , i.e. $\frac{\mathbf{x}_1 \perp \mathbf{x}_2}{\lambda_1}$	Link to invertable matrices $\Rightarrow A^{-1} = A ^{-1}$ which means A is invertible $\iff A \neq 0$, i.e. singular	times it is repeated as root of P(λ) 1]≤ geometric multiplicity of λ	determinant	n rdimensional data (with m≥n)	For <u>Ux = b</u> , just solve the last row
$(\mathbf{U}^T \mathbf{U})^{-1} = (u^T u)^{-1} = 1/(u \cdot u) = 1/\ u\ $	Therefore can be seen as a succession of reflections	A Jis triangular iff all entries above (<i>lower-triangular</i>) or	matrices are not invertible	≤ algebraic multiplicity of \(\lambda\)	Alis positive semi-definite iff $x^T Ax \ge 0$ for all x	Data centering: subtract mean of each column from that column's elements	$u_{n,n} \times_n = b_n \implies x_n = \frac{b_n}{u_{n,n}}$ and substitute up
Gram-Schmidt (GS) to gen. ONB from	dat(A) 11dat(A) 11d-H-i	below (upper-triangular) the main diagonal are zero	For block-matrices:	Let $\lambda_1,, \lambda_n \in C$ be (potentially non-distinct)	AJis positive semi-definite iff all its eigenvalues are	that column's elements Let the resulting matrix be $\underline{A} \in \mathbb{R}^{m \times n}$, who's columns	Then solve the second-to-last row
lin. ind. vectors Gram-Schmidt is iterative projection => we use	s.t. [\lambda =1]	Determinant $\Rightarrow A = \prod_i a_{ii}$ i.e. the product of diagonal elements	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$	eigenvalues of \underline{A} , with $\underline{x}_1,, \underline{x}_n \in \mathbb{C}^n$ their	non-negative -AJis positive semi-definite => all its diagonals are	have mean zero	$\begin{vmatrix} u_{n-1,n-1}x_{n-1} + u_{n-1,n}x_n = b_{n-1} \\ b_{n-1} - u_{n-1,n-1}x_{n-1} \end{vmatrix}$ and substitute up
current j dim subspace, to get next (j+1) dim	$A \in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $A^T A = I$ or $AA^T = I$		$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1} B)$ if Alor D are	eigenvectors $ \operatorname{tr}(A) = \sum_{i} \lambda_{i} \text{ and } \operatorname{det}(A) = \prod_{i} \lambda_{ij} $	non-negative	PCA is done on centered data-matrices like \underline{A} : SVD exists i.e. $\underline{A} = USV^T$ and $r = rk(A)$	$\Rightarrow x_{n-1} = \frac{b_{n-1} - u_{n-1,n-1} \times x_{n-1}}{u_{n-1,n}}$ and substitute up
subspace Assume orthonormal basis (ONR) (g. g.) ∈ R ^m	If <u>n > m</u> then all <u>m</u> prows are orthonormal vectors If <u>m > n</u> then all <u>n</u> pcolumns are orthonormal vectors	A is diagonal iff $A_{ij} = 0, i \neq j$, i.e. if all off-diagonal		Alis diagonalisable iff there exist a basis of R ⁿ	\underline{A} is positive semi-definite \Rightarrow max $(A_{ij}, A_{jj}) \ge A_{ij} $	Let $A = [\mathbf{r}_1;; \mathbf{r}_m]$ be rows $\mathbf{r}_1,, \mathbf{r}_m \in \mathbb{R}^n$ \Rightarrow each	and so on until all x _i Jare solved
Assume orthonormal basis (ONB) $(\mathbf{q}_1,, \mathbf{q}_j) \in \mathbb{R}^m$ for $j \mid \mathbf{dim}$ subspace $U_j \subset \mathbb{R}^m$	$U \perp V \subset \mathbb{R}^n \iff \mathbf{u} \cdot \mathbf{v} = 0$ for all $\mathbf{u} \in U, \mathbf{v} \in V$, i.e. they are	entries are zero Written as	= det(D) det(A-BD ⁻¹ C) invertible, respectively	consisting of $x_1,, x_n$ Alis diagonalisable iff $r_i = g_i$, where	i.e. no coefficient larger than on the diagonals -AJis positive semi-definite => all upper-left	row corresponds to a sample Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m$ \Rightarrow each	Thin QR Decomposition w/ Gram-
	orthogonal subspaces Orthogonal compliment of $U \subset \mathbb{R}^n$ is the subspace	$\operatorname{diag}_{m \times n}(\mathbf{a}) = \operatorname{diag}_{m \times n}(a_1, \dots, a_p), p = \min(m, n)$ where	Sylvester's determinant theorem:	$ \mathbf{r}_i $ = geometric multiplicity of λ_i and	submatrices are also positive semi-definite	column corresponds to one dimension of the data	Schmidt (GS)
	$U^{\perp} = \{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \perp y \}$	$\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p$ diagonal entries of $\underline{\mathbf{A}}$	$\det(I_m *AB) = \det(I_n *BA)$	g_i = geometric multiplicity of λ_i	Alis positive semi-definite => it has a Cholesky	Let $X_1,, X_n$ be random variables where each X_i	Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n}$ $(\underline{m \ge n})$, i.e.
P _j = Q _j Q _j is ortnogonal projection onto U _j	$= \left\{ x \in \mathbb{R}^n \mid \forall y \in \mathbb{R}^n : \ x\ \le \ x + y\ \right\}$	For $x \in \mathbb{R}^n$ $Ax = \operatorname{diag}_{m \times n}(a_1, \dots, a_p)[x_1 \dots x_n]^T$ [if	Matrix determinant lemma: $\det(\mathbf{A} + \mathbf{u}\mathbf{v}^T) = (1 + \mathbf{v}^T \mathbf{A}^{-1} \mathbf{u}) \det(\mathbf{A})$	Eigenvalues of $\underline{A^k}$ are $\lambda_1, \dots, \lambda_n$	Decomposition	corresponds to column c _i i.e. each X _i corresponds to i th component of data	a ₁ ,,a _n ∈ R ^m are linearly independent
$P_{\perp j} = I_m - Q_j Q_j^T$ is orthogonal projection onto	R'' = U = U + and (U +) + = U	=[a ₁ x ₁ a _p x _p 0 0]' ∈ R'''	$\frac{\det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det(\mathbf{I}_m + \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}) \det(\mathbf{A})}{\det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det(\mathbf{A} + \mathbf{U}\mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}) \det(\mathbf{A})}$	Let $P = [\mathbf{x}_1 \mathbf{x}_n]$, then	For any $M \in \mathbb{R}^{m \times n}$, MM^T and M^TM are symmetric and	i.e. random vector $X = [X_1,, X_n]^T$ models the data	Apply $\underline{GS} \ \underline{q_1,, q_n} \leftarrow GS(\underline{a_1,, a_n})$ to build ONB $(\underline{q_1,, q_n}) \in \mathbb{R}^m \text{ [for C(A)]}$
$\left(u_{j}\right)^{\perp}$ (orthogonal compliment)	$U \perp V \iff U^{\perp} = V$ and vice-versa $Y \subseteq X \implies X^{\perp} \subseteq Y^{\perp}$ and $X \cap X^{\perp} = \{0\}$	$\frac{p = m_1 \text{those } \text{tail-zeros } \text{don't } \text{exist})}{\text{diag}_{m \times n}(\mathbf{a}) + \text{diag}_{m \times n}(\mathbf{b}) = \text{diag}_{m \times n}(\mathbf{a} + \mathbf{b})}$		$AP = [\lambda_1 \mathbf{x}_1 \dots \lambda_n \mathbf{x}_n] = [\mathbf{x}_1 \dots \mathbf{x}_n] \operatorname{diag}(\lambda_1, \dots, \lambda_n) = PD$ $\Rightarrow \text{if } P^{-1} = \text{ exists then}$	positive semi-definite	r ₁ ,,r _m	For exams: more efficient to compute as
Uniquely decompose next U _j ∌ a _{j+1} = v _{j+1} + u _{j+1}	Any x ∈ R ⁿ can be uniquely decomposed into	Consider diag _{n×k} $(c_1,, c_q)$, $q = \min(n, k)$, then	$\det(\mathbf{A} + \mathbf{U}\mathbf{W}\mathbf{V}^T) = \det(\mathbf{W}^{-1} + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}) \det(\mathbf{W}) \det(\mathbf{A})$	A = PDP ⁻¹ , i.e. A is diagonalisable	Singular Value Decomposition (SVD) & Singular Values	Co-variance matrix of \underline{X} is $Cov(A) = \frac{1}{m-1} A^T A \Longrightarrow$	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$
$v_{i+1} = P_i(a_{i+1}) \in U_i \Rightarrow \text{discard it!!}$	$\mathbf{x} = \mathbf{x}_i + \mathbf{x}_k$ where $\mathbf{x}_i \in U$ and $\mathbf{x}_k \in U^{\perp}$	$\operatorname{diag}_{m \times n}(a_1,, a_p)\operatorname{diag}_{n \times k}(c_1,, c_q)$	Tricks for computing determinant	P = I _{EB} is change-in-basis matrix for basis	Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$ is any	$(A^TA)_{ij} = (A^TA)_{ji} = Cov(X_i, X_j)$	·1) Gather $Q_j = [\mathbf{q}_1 \mid \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ all-at-once
$\mathbf{u}_{j+1} = P_{\perp j} \left(\mathbf{a}_{j+1} \right) \in \left(U_j \right)^{\perp} \implies \text{we're after this!!}$	For matrix $\underline{A} \in \mathbb{R}^{m \times n}$ and for row-space $\underline{R(A)}$, column-space $\underline{C(A)}$ and null space $\underline{R(A)}$		If block-triangular matrix then apply	$B = \langle x_1,, x_n \rangle$ of eigenvectors $ fA = F_{EE} \text{ is transformation-matrix of linear map } f $	decomposition of the form A = USV , where		·2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$
Let $\mathbf{q}_{j+1} = \hat{\mathbf{u}}_{j+1} \Rightarrow$ we have next ONB $\langle \mathbf{q}_1,, \mathbf{q}_{j+1} \rangle$	$ R(A)^{\perp} = \ker(A) \text{and } C(A)^{\perp} = \ker(A^{T}) $	Where $r = \min(p, q) = \min(m, n, k)$ and $s \in \mathbb{R}^S$, $s = \min(m, k)$	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)$	then F _{EE} = I _{EB} F _{BB} I _{BE}	Orthogonal $U = [\mathbf{u}_1 \mid \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ and $V = [\mathbf{v}_1 \mid \mid \mathbf{v}_n] \in \mathbb{R}^{n \times n}$	$v_1,, v_r$ (columns of V) are principal axes of A	all-at-once
for $U_{j+1} = s$ start next iteration	Any $b \in \mathbb{R}^m$ can be uniquely decomposed into	$ \underline{\mathbf{s}} \in \mathbb{R}^3, s = \min(m, k) $ Inverse of square-diagonals =>	If close to triangular matrix apply EROs/ECOs to get it	Spectral theorem: if A is Hermitian then P^{-1} exists: $ fx_i, x_j _{1}$ associated to different eigenvalues then	$S = \text{diag}_{m \times n} (\sigma_1, \dots, \sigma_p)$ where $p = \min(m, n)$ and	Let $\underline{\mathbf{w}} \in \mathbb{R}^n$ be some unit-vector \Longrightarrow let $\underline{\alpha_j} = \underline{\mathbf{r}}_j \cdot \underline{\mathbf{w}}$ be the	· 3) Compute $Q_j c_j \in \mathbb{R}^m$, and subtract from a_{j+1}
$ \mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$ where	$b = b_i + b_k$, where $b_i \in C(A)$ and $b_k \in \ker(A^T)$	diag $(a_1,,a_n)^{-1}$ = diag $(a_1^{-1},,a_n^{-1})$, i.e. diagonals	there, then its just product of diagonals If Cholesky/LU/QR is possible and cheap then do it,		σ ₁ ≥···≥σ _p ≥0	projection/coordinate of sample rj onto w	Can now rewrite $\mathbf{a}_j = \sum_{i=1}^{j} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = \mathbf{Q}_j \mathbf{c}_j$
$\frac{a_{j+1} - (a_m - a_j \cdot a_j)}{c_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T}$	$b = b_i + b_k$, where $b_i \in R(A)$ and $b_k \in ker(A)$	diag $(a_1,, a_n)^{-1}$ = diag $(a_1^{-1},, a_n^{-1})$ i.e. diagonals cannot be zero (division by zero undefined)	then apply [AB] = [A][B]	$ \mathbf{x}_i \perp \mathbf{x}_j $			ा ना=1त्य क्षेत्रा चुन्
" ' = [q1 ' aj+1, , qj ' aj+1]							

Choose $Q = Q_n = [\mathbf{q}_1 \dots \mathbf{q}_n] \in \mathbb{R}^{m \times n}$, notice its	proj _{Lu} = uu ^T and proj _{Pu} = I _n -uu ^T =>	$ a^{n}k^{+\cdots+n}1f n_{b} n_{1} (n_{1},,n_{b}) $	\tilde{f} is backwards stable if $\forall x \in X$, $\exists \tilde{x} \in X$ s.t. $\tilde{f}(x) = f(\tilde{x})$	For FP matrices , let $ M _{ij} = M_{ij} $, i.e. matrix $ M $ of	Stability depends on growth factor of max _{i,j} u _{i,j}	Rayleigh quotient for <u>Hermitian</u> $A = A^{\dagger}$ is	Nonlinear Systems of Equations
semi-orthogonal since Q ^T Q=I _n	$H_{\mathbf{u}} = \operatorname{proj}_{\mathbf{p_u}} - \operatorname{proj}_{\mathbf{l_u}}$	$\begin{vmatrix} \frac{\partial^n k^{+\cdots+n} 1 f}{\partial \mathbf{x}_{\cdot}^n k \cdots \partial \mathbf{x}_{\cdot}^{n} 1} &= \partial^n_{i_k} \cdots \partial^n_{i_1} f &= f^{(n_1, \dots, n_k)}_{i_1 \cdots i_k} \end{vmatrix}$	and $\frac{\ \tilde{x}-x\ }{\ x\ } = O(\epsilon_{\text{mach}})$	absolute values of MI	$\frac{\text{Stability}}{\text{max}_{i,j} a_{i,j} } \text{depends on growth-factor } \rho = \frac{\max_{i,j} a_{i,j} }{\max_{i,j} a_{i,j} }$	$R_{A}(\mathbf{x}) = \frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T}}$	Recall that $\nabla f(\mathbf{x})$ is direction of max . rate-of-change
Notice \Rightarrow $\mathbf{a}_j = Q_j \mathbf{c}_j = \mathbf{Q}[\mathbf{q}_1 \cdot \mathbf{a}_j, \dots, \mathbf{q}_j \cdot \mathbf{a}_j, 0, \dots, 0]^T = \mathbf{Q}\mathbf{r}_j$	Visualize as preserving component in Pu then	Its an N -th order partial derivative where $N = \sum_{k} n_{k}$	i.e. exactly the right answer to nearly the right	$fl(\lambda \mathbf{A}) = \lambda \mathbf{A} \cdot E; E _{ij} \leq \lambda \mathbf{A} _{ij} \in \text{mach}$	⇒ for partial pivoting ρ≤2 ^{m-1}	X I X	
Let $R = [r_1 \dots r_n] \in \mathbb{R}^{n \times n} = >$	flipping component in L _u	$\nabla f = [\partial_1 f,, \partial_n f]^T$ is gradient of $\underline{f} = \langle \nabla f \rangle_i = \frac{\partial_1 f}{\partial x_i}$	question, a subset of stability	$fl(A+B)=(A+B)+E; E _{ij} \le A+B _{ij} \in mach$	$\ U\ = O(\rho \ A\) = \sum_{i=1}^{\infty} \tilde{I} \tilde{U} = \tilde{P}A + \delta A \int_{0}^{\infty} \ \delta A\ = O(\rho \epsilon_{\text{machine}})$	Eigenvectors are stationary points of R_A $R_A(x)$ is closest to being like eigenvalue of x , i.e.	$\frac{1}{\mathbf{x}^{(k+1)}} = \frac{\mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)})}{\mathbf{x}^{(k+1)}}$ for step length α
$\begin{bmatrix} \mathbf{q}_1^T \mathbf{a}_1 & \dots & \mathbf{q}_1^T \mathbf{a}_n \end{bmatrix}$	H _u is involutory, orthogonal and symmetric, i.e.	$\nabla^T f = (\nabla f)^T$ is transpose of ∇f , i.e. $\nabla^T f$ is row vector	•, ø, ø, ø, ø inner-product, back-substitution w/ triangular systems, are <u>backwards stable</u>	$f(AB) = AB + E; E _{ij} \le n\epsilon_{mach}(A B)_{ij} + O(\epsilon_{mach}^2)$	=> only backwards stable if ρ = O(1)	$R_A(\mathbf{x}) = \underset{\alpha}{\operatorname{argmin}} \ A\mathbf{x} - \alpha\mathbf{x}\ _2$	Wat: 31 16 2 11 1 11 1
A = QR = Q notice its	$H_{\mathbf{u}} = H_{\mathbf{u}}^{-1} = H_{\mathbf{u}}^{T}$		If backwards stable f and f has condition number	Taylor series about $a \in \mathbb{R}$ is		$R_A(x) - R_A(v) = O(x - v ^2)$ as $x \to v$ where v is	If A is positive-definite, solving $Ax = b$ and $min_x f(x) = \frac{1}{2} x^T Ax - x^T b$ are equivalent
	Modified Gram-Schmidt	$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})}{\delta}$ is	$\kappa(x)$ then relative error $\frac{\ \tilde{f}(x)-f(x)\ }{\ f(x)\ } = O(\kappa(x)\epsilon_{\text{mach}})$	$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + O\left((x-a)^{n+1}\right) \text{ as } \underline{x \to a}$	Full pivoting is PAQ = LU finds largest entry in	eigenvector	Get iterative methods $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \mathbf{p}^{(k)}$ for step
upper-triangular Full QR Decomposition	Go check <u>Classical GM</u> first, as this is just an alternative computation method	directional-derivative of f	Accuracy, stability, backwards stability are		bottom-right submatrix Makes it pivot with row/column swaps before normal	((a) at (k)	length $\alpha^{(k)}$ and directions $p^{(k)}$
Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (m \ge n),$	Let $P_{\perp} \mathbf{q}_{j} = \mathbf{I}_{m} - \mathbf{q}_{j} \mathbf{q}_{j}^{T}$ be projector onto <u>hyperplane</u>	It is <u>rate-of-change</u> in direction <u>u</u> , where <u>u</u> ∈ ℝ ⁿ is unit-vector	norm-independent for fin-dim X, Y	Need $\underline{a=0} = f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + O(x^{n+1})$ as	elimination	Power iteration: define sequence $b^{(k+1)} = \frac{Ab^{(k)}}{\ Ab^{(k)}\ }$	
i.e. a₁ a₂ ∈ R ^m are linearly independent	(Rq _i) [⊥] i.e. <u>orthogonal compliment</u> of line Rq _i	$ \frac{\mathbf{u} \cdot \mathbf{u} - \mathbf{v} \cdot \mathbf{v}}{\mathbf{D}_{\mathbf{u}} f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u}} = \nabla f(\mathbf{x}) \mathbf{u} \cos(\theta) => D_{\mathbf{u}} f(\mathbf{x}) $	Big-O meaning for numerical analysis	$\sum_{k=0}^{n} {p \choose k} e^{k} \cdot O(e^{n+1})$	Very expensive $O(m^3)$ search-ops, partial pivoting only needs $O(m^2)$	with initial b ⁽⁰⁾ s.t. b ⁽⁰⁾ = 1	Conjugate gradient (CG) method: if $A \in \mathbb{R}^{n \times n}$ symmetric then $(\mathbf{u}, \mathbf{v})_A = \mathbf{u}^T A \mathbf{v}$ is an inner-product
Apply QR decomposition to obtain: $ ONB(q_1,,q_n) \in \mathbb{R}^m for C(A) $	i i i	maximized when cos θ = 1	In complexity analysis $f(n) = O(g(n))$ as $n \to \infty$	$e.g.(1+\epsilon)^p = \frac{\sum_{k=0}^{n} \binom{r}{k} e^{-k} \cdot O\left(e^{-k+1}\right)}{\sum_{k=0}^{n} \frac{p!}{k!(p-k)!} e^{-k} \cdot O\left(e^{-n+1}\right)} \text{ as } \underline{e} \to 0$	Metric spaces & limits	Assume dominant $\lambda_1; \mathbf{x}_1$ exist for AI, and that	GC chooses p ^(k) that are conjugate w.r.t. Al i.e.
Semi-orthogonal $Q_1 = [\mathbf{q}_1 \dots \mathbf{q}_n] \in \mathbb{R}^{m \times n}$ and	Notice: $P_{\perp j} = \mathbf{I}_m - Q_j Q_j^T = \prod_{i=1}^{J} (\mathbf{I}_m - \mathbf{q}_i \mathbf{q}_i^T) = \prod_{i=1}^{J} P_{\perp} \mathbf{q}_i$	i.e. when x, u are <u>parallel</u> => hence ∇f(x) is <u>direction</u> of max. rate-of-change	But in <u>numerical analysis</u> $f(\varepsilon) = O(g(\varepsilon))$ as $\varepsilon \to 0$, i.e. $\limsup_{\varepsilon \to 0} \ f(\varepsilon)\ / \ g(\varepsilon)\ < \infty$	$= \sum_{k=0}^{\infty} \frac{1}{k!(p-k)!} \epsilon^{-k} + O(\epsilon^{-k-1})$	Metrics obey these axioms	proj _{x1} (b ⁽⁰⁾)≠0	$(\mathbf{p}^{(i)}, \mathbf{p}^{(j)})_{A} = 0 \text{for } i \neq j $
upper-triangular $R_1 \in \mathbb{R}^{n \times n}$, where $A = Q_1 R_1$	i=1 i=1		i.e. ∃C, δ > 0 s.t. ∀ε , we have	Floreston Metrico	$\frac{d(x, y) = 0}{d(x, y) = 0} x \neq y \implies d(x, y) > 0 d(x, y) = d(y, x) $	Under above assumptions,	And chooses α ^(k) s.t. residuals
Compute basis extension to obtain remaining	Re-state: $\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} \Longrightarrow$	f has local minimum at x_{loc} if there's radius $r>0$ s.t. $\forall x \in B[r; x_{loc}]$ we have $f(x_{loc}) \le f(x)$	$0 < \ \varepsilon\ < \delta \implies \ f(\varepsilon)\ \le C \ g(\varepsilon)\ $ $O(g) \text{is set of functions}$	Elementary Matrices Identity I _n = [e ₁ e _n] = [e ₁ ;; e _n] has elementary	$d(x,z) \le d(x,y) + d(y,z)$	$\mu_{k} = R_{A} \left(\mathbf{b}^{(k)} \right) = \frac{\mathbf{b}^{(k)} + \mathbf{A} \mathbf{b}^{(k)}}{\mathbf{b}^{(k)} + \mathbf{b}^{(k)}}$ converges to dominant	$\mathbf{r}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) = \mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}$ are orthogonal
$\mathbf{q}_{n+1}, \dots, \mathbf{q}_m \in \mathbb{R}^m$ where $(\mathbf{q}_1, \dots, \mathbf{q}_m)$ is ONB for \mathbb{R}^m	$\mathbf{u}_{j+1} = \left(\prod_{i=1}^{J} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{j+1} = \left(P_{\perp \mathbf{q}_{j}} \cdots P_{\perp \mathbf{q}_{1}}\right) \mathbf{a}_{j+1}$	$f \mid \text{has global minimum } \underset{\text{glob}}{we \mid \text{have}} \text{if } \forall \mathbf{x} \in \mathbb{R}^n \mid \text{we have}$	$\frac{ g(g) }{\{f: \limsup_{\epsilon \to 0} f(\epsilon) / g(\epsilon) < \infty\}}$	vectors e ₁ ,,e _n for rows/columns	For metric spaces, mix-and-match these infinite/finite	b(k) † b(k)	$k=0 \Rightarrow \mathbf{p}(0) = -\nabla f(\mathbf{x}(0)) = \mathbf{r}(0)$
Notice $(\mathbf{q}_{n+1},, \mathbf{q}_m)$ is ONB for $C(A)^{\perp} = \ker(A^{\top})$	Projectors P ₁ q ₁ ,, P ₁ q _j are iteratively applied to	$f(\mathbf{x}_{glob}) \le f(\mathbf{x})$		Row/column switching: permutation matrix Pij	$\frac{\liminf_{t \to \infty} definitions:}{\lim_{t \to \infty} f(x) = +\infty} \iff \forall r \in \mathbb{R}, \exists N \in \mathbb{N}, \forall x > N: f(x) > r$	$\frac{1}{(b_k)}$ converges to some dominant x_1 associated with	$\frac{1}{k \ge 1} = \sum_{\mathbf{p}^{(k)} = \mathbf{r}^{(k)} - \sum_{i < k} \frac{(\mathbf{p}^{(i)}, \mathbf{r}^{(k)})_{\mathbf{A}}}{(\mathbf{p}^{(i)}, \mathbf{p}^{(i)})_{\mathbf{A}}} \mathbf{p}^{(i)}$
Let $Q_2 = [\mathbf{q}_{n+1} \dots \mathbf{q}_m] \in \mathbb{R}^{m \times (m-n)}$ let	a _{i+1} ; removing its components along q ₁ ; then along	A local minimum satisfies optimality conditions:	Smallness partial order $O(g_1) \leq O(g_2)$ defined by	obtained by <u>switching</u> e _i and e _j in I _n (same for rows/columns)	$\lim_{X \to p} f(x) = L \iff \begin{cases} \forall \varepsilon > 0, \exists \delta > 0, \forall x \in X : \\ 0 < d_X(x, p) < \delta \implies d_Y(f(x), L) < \varepsilon \end{cases}$	$\frac{\lambda_1}{\lambda_1} \Rightarrow \ Ab^{(k)}\ $ converges to $ \lambda_1 $	(b) (b) (c) n(k) r(k)
$Q = [Q_1 \mid Q_2] \in \mathbb{R}^{m \times m} \left[\text{let } R = [R_1; 0_{m-n}] \in \mathbb{R}^{m \times n} \right]$	q2 and so on	$\nabla f(\mathbf{x}) = 0$, e.g. for $\underline{n} = 1$ jits $f'(\mathbf{x}) = 0$	$\underbrace{\text{set-inclusion}}_{\text{i.e. as } \epsilon \to 0} \underbrace{O(g_1) \subseteq O(g_2)}_{\text{j.e. as } \epsilon \to 0} \underbrace{g_1(\epsilon) \text{goes to zero}}_{\text{faster}} \text{ than } g_2(\epsilon) $	Applying P _{ij} from left will swap rows, from right will		If $\operatorname{proj}_{\mathbf{X}_1}(\mathbf{b}^{(0)}) = 0$ then (\mathbf{b}_k) ; (μ_k) converge to second	$\alpha^{(k)} = \operatorname{argmin}_{\alpha} f(\mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}) = \frac{\mathbf{p}^{(k)} \cdot \mathbf{r}^{(k)}}{\langle \mathbf{p}^{(k)}, \mathbf{p}^{(k)} \rangle_{\mathbf{A}}}$
Then full QR decomposition is $A = QR = [Q_1 Q_2] \begin{bmatrix} R_1 \\ 0_{m-n} \end{bmatrix} = Q_1 R_1$	Let $\mathbf{u}_{k}^{(j)} = \left(\prod_{i=1}^{j} P_{\perp} \mathbf{q}_{i}\right) \mathbf{a}_{k}$, i.e. $\underline{\mathbf{a}_{k}}$ without its	$ \nabla^2 f(\mathbf{x}) $ is positive-definite, e.g. for $\underline{n} = 1$ jits $\underline{f''(x)} > 0$	Roughly same hierarchy as complexity analysis but	swap columns	Cauchy sequences, i.e. $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall m, n \ge N : d(a_m, a_n) < \epsilon$, converge in	dominant λ_2 ; \mathbf{x}_2 instead If no dominant λ (i.e. multiple eigenvalues of	Without rounding errors, CG converges in ≤ n
M=QK=[Q1 Q2][0 _{m-n}]=Q1K1	components along q ₁ ,,q _j	$\mathbf{H}(f) = \nabla^2 f = \mathbf{J}(\nabla f)^T$ is $\mathbf{Hessian} \Rightarrow \mathbf{H}(f)_{ij} = \frac{\partial^2 f}{\partial \mathbf{x}_i \partial \mathbf{x}_i}$	flipped (some don't fit the pattern) e.g, $O(\epsilon^3) < O(\epsilon^2) < O(\epsilon) < O(1)$	$P_{ij} = P_{ij}^T = P_{ij}^{-1}$, i.e. <u>applying twice</u> will undo it	complete spaces	If no dominant λ] (i.e. multiple eigenvalues of maximum λ then ⟨b _k ⟩ will converge to <u>linear</u>	iterations Similar to to <u>Gram-Schmidt</u> (but different
Q is orthogonal , i.e. $Q^{-1} = Q^T$, so its a basis	Notice: $\mathbf{u}_j = \mathbf{u}_i^{(j-1)}$, thus $\mathbf{q}_j = \hat{\mathbf{u}}_j = \mathbf{u}_i^{(j-1)}/r_{jj}$ where		Maximum:	Row/column scaling: $D_i(\lambda)$ obtained by scaling $\underline{e_i}$ by $\underline{\lambda}$ in \underline{I}_n (same for rows/columns)	You can manipulate matrix limits much like in real	combination of their corresponding eigenvectors	inner-product)
transformation $proj_{C(A)} = Q_1 Q_1^T proj_{C(A)} \perp = Q_2 Q_2^T are orthogonal$		Interpret $F: \mathbb{R}^n \to \mathbb{R}^m$ as \underline{m} functions $F_i: \mathbb{R}^n \to \mathbb{R}$ (one per output-component)	$O(\max(g_1 , g_2)) = O(g_2) \iff O(g_1) \leq O(g_2)$	Applying P_{ij} from left will scale rows, from right will	analysis, e.g. $\lim_{n\to\infty} (A^n B + C) = (\lim_{n\to\infty} A^n) B + C$	Slow convergence if dominant λ_1 not <u>"very</u>	$\frac{\langle \mathbf{p}^{(0)},,\mathbf{p}^{(n-1)}\rangle}{\mathbb{R}^n}$ and $\frac{\langle \mathbf{r}^{(0)},,\mathbf{r}^{(n-1)}\rangle}{\mathbb{R}^n}$ are $\frac{\text{bases}}{\mathbb{R}^n}$ for
$\frac{\text{projections} \text{ onto } C(A)}{\text{projections} \text{ onto } C(A)} C(A)^{\perp} = \ker(A^{T}) \text{ respectively}$	$r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ $	$J(F) = \left[\nabla^T F_1;; \nabla^T F_m\right] \text{ is } Jacobian \Longrightarrow J(F)_{ij} = \frac{\partial F_i}{\partial x_i}$	e.g. $O(\max(\epsilon^k, \epsilon)) = O(\epsilon)$	scale columns	Turn metric limit $\lim_{n\to\infty} x_n = L$ into real limit	dominant"	
Notice: $QQ^T = I_m = Q_1Q_1^T + Q_2Q_2^T$	- Iterative step: $\mathbf{u}_{k}^{(j)} = \left(P_{\perp \mathbf{q}_{j}}\right) \mathbf{u}_{k}^{(j-1)} = \mathbf{u}_{k}^{(j-1)} - \left(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{(j-1)}\right) \mathbf{q}_{j}$			$D_j(\lambda) = \text{diag}(1,, \lambda,, 1)$ so all diagonal properties	$\lim_{n\to\infty} d(x_n, L) = 0 \text{ to leverage real analysis}$ Bounded monotone sequences converge in \mathbb{R}	$\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_1\ = O\left(\left \frac{\lambda_2}{\lambda_1}\right ^k\right)$ for phase factor	tion A = QUQ [†]
Generalizable to $A \in \mathbb{C}^{m \times n}$ by changing transpose to	$\begin{bmatrix} \mathbf{u}_{k}^{k} = (P_{\perp}\mathbf{q}_{j})\mathbf{u}_{k}^{k} & = \mathbf{u}_{k}^{k} & -(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{k} +)\mathbf{q}_{j} \end{bmatrix}$ i.e. each iteration j of MGS computes $P_{\perp}\mathbf{q}_{j}$ (and	Conditioning A problem is some f: X → Y where X, Y are normed	Using functions $f_1,, f_n$ let $\Phi(f_1,, f_n)$ be formula defining some function	apply, e.g. $D_j(\lambda)^{-1} = D_j(\lambda^{-1})$	Sandwich theorem for limits in R J=> pick easy	$\alpha_R \in \{-1, 1\}$ it may <u>alternate</u> if $\lambda_1 < 0$	Any $A \in \mathbb{C}^{m \times m}$ has Schur decomposition $A = QUQ^{\dagger}$
conjugate-transpose	7	vector-spaces	Then $\Phi(O(g_1),, O(g_n))$ is the <u>class of functions</u>	Row addition: $L_{ij}(\lambda) = \mathbf{I}_n + \lambda \mathbf{e}_i \mathbf{e}_j^T$ performs	upper/lower bounds	$\alpha_R = \frac{(\lambda_1)^R c_1}{ \lambda_2 ^R c_2 }$ where $c_1 = \mathbf{x}_1^{\dagger} \mathbf{b}^{(0)}$ and assuming	Q is unitary, i.e. $Q^{\dagger} = Q^{-1}$ and upper-triangular U
Lines and hyperplanes in $\mathbb{E}^n(=\mathbb{R}^n)$	projections under it) in one go At start of iteration j ∈ 1n we have ONB	A problem <i>instance</i> is f with fixed input $x \in X$, shortened to <i>just</i> "problem" (with $x \in X$ Jimplied)	$\{\Phi(f_1,, f_n) : f_1 \in O(g_1),, f_n \in O(g_n)\}$	$R_i \leftarrow R_i + \lambda R_j$ when applying from left	$\lim_{n\to\infty} r^n = 0 \iff r < 1 \text{ and }$	$\frac{\mathbf{b}^{(k)}; \mathbf{x}_1 \text{ are normalized}}{\mathbf{b}^{(k)}; \mathbf{x}_1 \text{ are normalized}}$	Diagonal of U contains eigenvalues of A
Consider standard Euclidean space E''(=R'')	$\mathbf{q}_1, \dots, \mathbf{q}_{j-1} \in \mathbb{R}^m$ and residual $\mathbf{u}_i^{(j-1)}, \dots, \mathbf{u}_n^{(j-1)} \in \mathbb{R}^m$	δx is small perturbation of $x_1 = \delta f = f(x + \delta x) - f(x)$	e.g. $e^{O(1)} = \{e^{f(\epsilon)} : f \in O(1)\}$	$\lambda e_i e_j^T$ is zeros except for λ in (i,j) th entry	$\lim_{n\to\infty} \sum_{i=0}^{n} ar^i = \frac{a}{1-r} \iff r < 1$		
		A problem (instance) is:	General case:	$L_{ij}(\lambda)^{-1} = L_{ij}(-\lambda)$ both <u>triangular matrices</u>	Iterative Techniques	$(A-\sigma I)$ has eigenvalues $\lambda - \sigma$	Algorithm 1 Basic QR iteration
with standard origin of R.	Compute $r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ = \mathbf{q}_{j} = \frac{\mathbf{u}_{j}^{(j-1)}}{r_{jj}} $	Well-conditioned if <u>all small δx</u> lead to small δf , i.e.	$\Phi_1(O(f_1),,O(f_m)) = \Phi_2(O(g_1),,O(g_n))$ means $\Phi_1(O(f_1),,O(f_m)) \subseteq \Phi_2(O(g_1),,O(g_n))$	LU factorization w/ Gaussian elimina-	Systems of Equations Let $A, R, G \in \mathbb{R}^{n \times n}$ where G^{-1} exists \Longrightarrow splitting	$\Rightarrow \underline{\text{power-iteration}} \text{ on } \underline{(A-\sigma I)} \text{ has } \frac{\lambda_2 - \sigma}{\lambda_1 - \sigma}$	1: for $k = 1, 2, 3,$ do 2: $A^{(k-1)} = Q^{(k-1)}R^{(k-1)}$
A line $L = \mathbb{R} \mathbf{n} + \mathbf{c}$ jis characterized by direction $\mathbf{n} \in \mathbb{R}^n$	For each $k \in (j+1)n$ compute $r_{jk} = \mathbf{q}_j \cdot \mathbf{u}_{k}^{(j-1)} = >$	if κ_j is small (e.g. 1) 10) 10^2 • III-conditioned if some small $\delta \kappa_j$ lead to large δf_j i.e.	e.g. $\epsilon^{O(1)} = O(k^{\epsilon})$ means $\{\epsilon^{f(\epsilon)} : f \in O(1)\} \subseteq O(k^{\epsilon})$	Recall: you can represent EROs and ECOs as	A=G+R Ihelps iteration	Eigenvector guess => estimated eigenvalue	3: $A^{(k)} = R^{(k-1)}Q^{(k-1)}$
(n ≠0) and offset from origin c∈L It is customary that:	$\mathbf{u}_{k}^{(j)} = \mathbf{u}_{k}^{(j-1)} - r_{jk} \mathbf{q}_{j}$	if KJis large (e.g. 106 10 ¹⁶)	not necessarily true	transformation matrices R, C respectively	$\frac{Ax = b rewritten \ as \ x = Mx + c }{M = -G^{-1}R; \ c = -G^{-1}b}$ where	Inverse (power-)iteration: perform power iteration on	4: end for
$ \mathbf{n} $ is a unit vector, i.e. $ \mathbf{n} = \hat{\mathbf{n}} = 1$	Next ONB $(\mathbf{q}_1,, \mathbf{q}_j)$ and next residual $\mathbf{u}_{i+1}^{(j)},, \mathbf{u}_n^{(j)}$		$\frac{ \text{Special case: } f = \Phi(O(g_1), \dots, O(g_n)) }{ f \in \Phi(O(g_1), \dots, O(g_n)) } \text{ means}$	LU factorization => finds A = LU where L, U are	Define f(x)=Mx+c and sequence	$(A-\sigma I)^{-1}$ to get $\lambda_{1,\sigma}$ closest to σ_I	For $A \in \mathbb{R}^{m \times m}$ leach iteration $A^{(k)} = Q^{(k)} R^{(k)}$ produces
$c \in L$ is closest point to origin, i.e. $c \perp n$ If $c \neq \lambda n = L$ [not vector-subspace of \mathbb{R}^n]		Absolute condition number $cond(x) = \hat{\kappa}(x) = \hat{\kappa} \ of \ \underline{f} \ at \ \underline{x}$;	e.g. $(\varepsilon+1)^2 = \varepsilon^2 + O(\varepsilon)$ means	lower/upper triangular respectively	$\mathbf{x}^{(k+1)} = f(\mathbf{x}^{(k)}) = M\mathbf{x}^{(k)} + \mathbf{c}$ with starting point $\mathbf{x}^{(0)}$	$(A-\sigma I)^{-1}$ has <u>eigenvalues</u> $(\lambda-\sigma)^{-1}$ so <u>power iteration</u>	orthogonal $Q^{(k)^T} = Q^{(k)^{-1}}$
i.e. 0 ∉ L i.e. L doesn't go through the origin	NOTE: for $j=1$ => $q_1,, q_{j-1} = \emptyset$, i.e. none yet	$\widehat{\kappa} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ \delta f\ }{\ \delta x\ }$	$\epsilon \mapsto (\epsilon+1)^2 \in \{\epsilon^2 + f(\epsilon) : f \in O(\epsilon)\}$ not necessarily true	Naive Gaussian Elimination performs	Limit of $\langle x_R \rangle$ is fixed point of f => unique fixed point of f is solution to $Ax = b$	will yield largest (λ _{1,σ} - σ) ⁻¹	$A^{(k+1)} = R^{(k)}Q^{(k)} = (Q^{(k)}^TQ^{(k)})R^{(k)}Q^{(k)}$
	By end of iteration $\underline{j=n}$, we have ONB $(\mathbf{q}_1,,\mathbf{q}_n) \in \mathbb{R}^m$	=> for $\frac{\text{most problems}}{\ \delta x\ }$ simplified to $\hat{\kappa} = \sup_{\delta x} \frac{\ \delta f\ }{\ \delta x\ }$		$[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid U \mid I_n]$ to get $AI_n = R^{-1} U$ using only row addition	If - is consistent norm and M < 1 then (x _k)	i.e. will yield smallest $\lambda_{1,\sigma} - \sigma$, i.e. will yield $\lambda_{1,\sigma}$	So $= O(k)^T A(k) O(k)$ means
·If c= λn i.e. L= Rn => L Jis vector-subspace of R ⁿ i.e. 0∈L i.e. L Jgoes through the origin	[r ₁₁ r _{1n}]	If <u>Jacobian</u> $J_f(x)$ exists then $\hat{k} = J_f(x) $, where <u>matrix</u>	Let $f_1 = O(g_1)$, $f_2 = O(g_2)$ and let $k \neq 0$ be a constant	R ⁻¹ i.e. inverse EROs in <u>reversed order</u> , is	converges for any x(0) (because Cauchy-completeness)	11 - 1	$A^{(k+1)}$ is similar to $A^{(k)}$
LJhas $\underline{\dim(L)} = 1$ and orthonormal basis (ONB) $\{\hat{\mathbf{n}}\}$	$A = [a_1 a_n] = [q_1 q_n]$ \therefore $\vdots = QR$	norm - jinduced by norms on X Jand Y J	$ f_1 f_2 = O(g_1g_2) f \cdot O(g) = O(fg) f \cdot O(k \cdot g) = O(g) $ $ f_1 + f_2 = O(\max(g_1 , g_2)) $	lower-triangular so <u>L = R⁻¹</u>	We want to find M < 1 and easy to compute M; c Stopping criterion usually the relative residual	$\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_{1,\sigma}\ = O\left(\left\ \frac{\lambda_{1,\sigma} - \sigma}{\lambda_{2,\sigma} - \sigma}\right\ ^R\right)\right) \text{ where } \mathbf{x}_{1,\sigma}$	Setting $\underline{A^{(0)}} = \underline{A}$ we get $\underline{A^{(k)}} = (\underline{Q^{(k)}})^T \underline{AQ^{(k)}}$ where
A hyperplane $P = (R\mathbf{n})^{\perp} + c = \{x + c \mid x \in R^n, x \perp \mathbf{n} \}$ is	corresponds to thin QR decomposition	Relative condition number $\underline{\kappa}(x) = \kappa \text{ of } \underline{f} \text{ at } \underline{x} \text{ is}$	\Rightarrow if $g_1 = g = g_2$ then $f_1 + f_2 = O(g)$	Algorithm 1 Gaussian elimination 1: $U = A, L = I$	b-Ax ^(R)	corresponds to $\lambda_{1,\sigma}$ and $\lambda_{2,\sigma}$ is $2nd$ -closest to σ	$\tilde{Q}(k) = Q(0) \dots Q(k-1)$
A hyperplane $P = (R\mathbf{n})^{-1} + \mathbf{c} = \{x + \mathbf{c} \mid x \in R^n, x \perp \mathbf{n}\}\$ is $= \{x \in R^n \mid x \cdot \mathbf{n} = \mathbf{c} \cdot \mathbf{n}\}\$	Where A ∈ R ^{m×n} is full-rank, Q ∈ R ^{m×n} is	$\kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	Floating-point numbers	2: for $k = 1$ to $m - 1$ do	<u>" b </u>	Efficiently compute <u>eigenvectors</u> for known eigenvalues σ	Under <u>certain conditions</u> QR algorithm converges to Schur decomposition
characterized by normal $n \in \mathbb{R}^n \mid (n \neq 0)$ and offset from	semi-orthogonal, and $R \in \mathbb{R}^{n \times \overline{n}}$ is upper-triangular	=> for most problems simplified to / δf , δx \	Consider base/radix $\beta \ge 2$ (typically 2) and precision $t\ge 1$ (24) or 53 for IEEE single/double precisions)	3: for $j = k + 1$ to m do 4: $\ell_{\tilde{l},k} = u_{\tilde{l},k}/u_{k,k}$	Assume A [s diagonal is non-zero (w.l.o.g.	Eigenvalue guess => estimated eigenvector	
origin <u>c∈P</u> It <i>represents</i> an (n − 1) dimensional slice of the	Classical vs. Modified Gram-Schmidt These algorithms both compute thin thin QR	$K = \sup_{\delta X} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	Floating-point numbers are discrete subset	5: $u_{j,k:m} = u_{j,k:m} - \ell_{j,k}u_{k,k:m}$ 6: end for	permute/change basis if isn't) then A = D+L+U where D	Algorithm 3 Inverse iteration 1: for $k = 1, 2, 3,$ do	We can apply shift $\mu^{(k)}$ at iteration k
n-dimensional space	decomposition	If <u>Jacobian</u> $J_f(x)$ exists then $\kappa = \frac{\ J_f(x)\ }{\ f(x)\ /\ x\ }$	$\mathbf{F} = \left\{ (-1)^{S} \left(m/\beta^{t} \right) \beta^{e} \mid 1 \le m \le \beta^{t}, \ s \in \mathbb{B}, m, e \in \mathbb{Z} \right\}$	7: end for	is diagonal of Al, L, U are strict lower/upper triangular	2: $\hat{x}^{(k)} = (A - \sigma I)^{-1} x^{(k-1)}$	$\Rightarrow \underline{A^{(k)}}_{-\mu}(k)_{I} = \underline{Q^{(k)}}_{R}(k); \underline{A^{(k+1)}}_{=R}(k)_{Q}(k)_{+\mu}(k)_{I}$ If shifts are <u>good</u> eigenvalue estimates then <u>last</u>
It is customary that: njis a unit vector , i.e. n = n = 1	Modified Gram-Schmidt 1: for $i = 1$ to n do	More important than $\hat{\mathbf{k}}$ for numerical analysis	s jis sign-bit , <u>m/β^t</u> is mantissa , e jis exponent (8) bit for single, 11 bit for double)	The pivot element is simply <u>diagonal entry</u> $u_{kk}^{(k-1)}$	parts of AJ	3: $x^{(k)} = \hat{x}^{(k)}/\max(\hat{x}^{(k)})$ 4: $\lambda^{(k)} = (x^{(k)})^T A x^{(k)}$	column of Q(R) converges quickly to an eigenvector
$c \in P$ is closest point to origin, i.e. $c = \lambda n$	Classical Gram-Schmidt 2: $u_j = a_j$	Matrix condition number Cond(A) = $\kappa(A) = A A^{-1} $ => comes up so often that has its own name	Equivalently, can restrict to $\beta^{t-1} \le m \le \beta^t - 1$ for unique		Jacobi Method:	5: end for	Estimate µ(k) with Rayleigh quotient =>
With those $\Rightarrow P = \{x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \lambda\}$	2: $u_i = a_i$ 4: for $i = 1$ to n do	$A \in \mathbb{C}^{m \times m}$ is well-conditioned if $\kappa(A)$ is small,	mjand ej	fails if $u_{kk}^{(k-1)} \approx 0$	$\frac{G = D; R = L + U \Rightarrow M = -D^{-1}(L + U); \mathbf{c} = D^{-1}\mathbf{b} }{ (R+1) (R+1) }$	Can reduce matrix inversion $O(m^3)$ to $O(m^2)$ by	$\mu^{(k)} = (A_k)_{mm} = (\tilde{\mathbf{q}}_m^{(k)})^T A \tilde{\mathbf{q}}_m^{(k)}$ where $\tilde{\mathbf{q}}_m^{(k)}$ is \underline{m} th
·If c·n≠0]=> P not vector-subspace of ℝ ⁿ i.e. 0 ∉ P i.e. P doesn't go through the origin	3: for $i = 1$ to $j - 1$ do 5: $r_{ij} = u_j _2$ 4: $r_{ij} = q_i^* a_j$ 6: $q_i = u_i / r_{ij}$	ill-conditioned if large	F ⊂ R Jis idealized (ignores over/underflow), so is countably infinite and self-similar (i.e. F = βF	$\frac{\ \delta A\ }{\ L\ \cdot \ U\ } = O(\epsilon_{\text{mach}})$ only backwards	$\frac{\mathbf{x}_{i}^{*}}{ \mathbf{x}_{i}^{*} } = \frac{1}{A_{ii}} \left(\frac{\mathbf{b}_{i} - \sum_{j \neq i} A_{ij} \mathbf{x}_{j}^{*}}{ \mathbf{x}_{i}^{*} } \right) = \mathbf{x}_{i}^{*}$ only needs	pre-factorization	column of $\tilde{\underline{Q}}^{(k)}$
Plis affine-subspace of R ⁿ	5: $u_j = u_j - r_{ij}q_i$ 7: for $k = j+1$ to n do 6: end for 8: $r_{jk} = q_i^*u_k$	$\frac{K(\mathbf{A}) = K(\mathbf{A}^{-1}) \left K(\mathbf{A}) = K(\gamma \mathbf{A}) \right }{K(\mathbf{A})} \ \cdot \ = \ \cdot \ _{2} \implies K(\mathbf{A}) = \frac{\sigma_{1}}{\sigma_{m}}$	For all $x \in \mathbb{R}$ there exists $fl(x) \in \mathbb{F}$ s.t.	stable if L · U ≈ A	\mathbf{b}_{i} ; $\mathbf{x}^{(k)}$; $A_{i\star} = \frac{\text{row-wise parallelization}}{k}$		
$- \frac{\mathbf{f} \cdot \mathbf{n} = 0}{\mathbf{p} \cdot \mathbf{n}} $ i.e. $P = (\mathbf{R} \mathbf{n})^{\perp} = P \cdot \mathbf{j}$ is vector-subspace of	7: $r_{jj} = u_j _2$ 9: $u_k = u_k - r_{jk}q_j$	- amanta	$ x-fl(x) \le \epsilon_{\text{mach}} x $ Equivalently $fl(x) = x(1+\delta)$, $ \delta \le \epsilon_{\text{mach}}$	Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$	Course Colidate (C.C.) III III		
R ⁿ i.e. 0∈PJ, i.e. PJgoes through the origin	8: $q_j = u_j/r_{jj}$ 10: end for 9: end for 11: end for	For $\underline{\mathbf{A} \in \mathbb{C}^{m \times n}}$ the problem $f_{\underline{\mathbf{A}}}(x) = \underline{\mathbf{A}}x$ has	Machine epsilon $\epsilon_{\text{mach}} = \epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t} \underline{is} $	Solving $Ax = LUx$ is $\sim \frac{2}{3} m^3$ flops (back substitution is	Gauss-Seidel (G-S) Method: $G = D + L; R = U = M = -(D + L)^{-1} U; C = (D + L)^{-1} b$		
P has dim(P)=n-1	Computes at j th step:	$\kappa = \ \mathbf{A}\ \frac{\ \mathbf{x}\ }{\ \mathbf{A}\mathbf{x}\ } \Rightarrow \text{if } \underline{\mathbf{A}^{-1}} \text{ exists then } \underline{\kappa \leq \text{Cond}(\mathbf{A})}$	maximum relative gap between FPs	NOTE: Householder triangularisation requires $\sim \frac{4}{3} m^3$	$\frac{1}{ \mathbf{x}_{i}^{(k+1)} } = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right)$		
Notice $L = \mathbb{R}_{n}$ and $P = (\mathbb{R}_{n})^{\perp}$ are orthogonal	Classical GS => j th column of Q and the j th column of R	$ f_{A^{-1}}(b) = f_{A^{-1}(b)}(b) $	Half the gap between 1 Jand next largest FP 2-24 ≈ 5.96 × 10 ⁻⁸ and 2-53 ≈ 10 ⁻¹⁶ for single/double	nousenouse triangularisation requires ~ 3 m ³	Computing $\mathbf{x}_{i}^{(k+1)}$ needs \mathbf{b}_{i} ; $\mathbf{x}^{(k)}$; $\mathbf{A}_{i\star}$ and $\mathbf{x}_{i}^{(k+1)}$ for		
compliments, so:	Modified GS ⇒ j th column of Q and the j th row of		12 × 5.96 × 10 ~ Jana 2 ~ × 10 - 10 Jtor single/double	Partial pivoting computes PA = LU Jwhere P Jis a			
proj _L = $\hat{\mathbf{n}}\hat{\mathbf{n}}^T$ is orthogonal projection onto LJ(along PJ)	RI Both have flop (floating-point operation) count of	For $\underline{\mathbf{b}} \in \mathbb{C}^m$, the problem $\underline{f}_{\underline{\mathbf{b}}}(A) = A^{-1}\underline{\mathbf{b}}$ (i.e. finding $\underline{\mathbf{x}}$ in	FP arithmetic: let ∗,⊕ be real and floating	permutation matrix => PPT =1, i.e. its orthogonal	j < i ⇒ lower storage requirements		
projp = id _R n - projL = I _n - nn is ortnogonal	O(2mn ²)	$\underline{Ax = b}$ has $\kappa = A A^{-1} = Cond(A)$	counterparts of <u>arithmetic operation</u> For x, y ∈ F we have	For <u>each column j</u> finds <u>largest entry</u> and row-swaps to make it <u>new pivot</u> => P _j	Successive over-relaxation (SOR):		
projection onto P]*(along L] -L = im (proj _I) = ker (proj _P) and	NOTE: Householder method has $2(mn^2 - n^3/3)$ flop	Stability Given a problem $f: X \rightarrow Y$, an algorithm for f is	$x \circledast y = fl(x * y) = (x * y)(1 * \varepsilon), \delta \le \varepsilon_{mach}$	Then performs <u>normal elimination</u> on that column =>	$G = \omega^{-1}D + L; R = (1 - \omega^{-1})D + U \Longrightarrow$		
$P = \ker(\operatorname{proj}_{L}) = \operatorname{im}(\operatorname{proj}_{P})$	count, but better numerical properties	Given a problem $f: X \to Y$ an algorithm for f is $\tilde{f}: X \to Y$	Holds for <i>any</i> <u>arithmetic operation</u> $\textcircled{\$} = \$, \$, \$, \lozenge$	<u>u</u>	$M = -(\omega^{-1}D + L)^{-1}((1 - \omega^{-1})D + U); \mathbf{c} = -(\omega^{-1}D + L)^{-1}\mathbf{b}$		
$\mathbb{R}^n = \mathbb{R} \mathbf{n} \bullet (\mathbb{R} \mathbf{n})^{\perp}$, i.e. all vectors $\mathbf{v} \in \mathbb{R}^n$ uniquely	Recall: Q [†] Q = I _n => check for loss of orthogonality	Input $x \in X$ is first rounded to $fl(x)$, i.e. $\tilde{f}(x) = \tilde{f}(fl(x))$	Complex floats implemented pairs of real floats, so above applies to complex ops as-well	Result is L _{m-1} P _{m-1} L ₂ P ₂ L ₁ P ₁ A=U, where	$\begin{bmatrix} \mathbf{x}_{i}^{(k+1)} = \frac{\omega}{A_{ij}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right) \end{bmatrix}_{\text{for}}$		
	with $\ \mathbf{I}_n - Q^{\dagger} Q\ = \text{loss}$	Absolute error $= \ \tilde{f}(x) - f(x)\ $ $\ \tilde{f}(x) - f(x)\ $	Caveat: $\epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t}$ must be scaled by factors on	$\frac{L_{m-1}P_{m-1}L_2P_2L_1P_1 = L'_{m-1}L'_1P_{m-1}P_1}{\text{Setting } L = (L'_{m-1}L'_1)^{-1}, P = P_{m-1}P_1 \text{ gives}$	*(1-ω)x _i ^(R)		
Householder Maps: reflections	Classical GS => $\ I_n - Q^{\dagger}Q\ \approx \text{Cond}(A)^2 \epsilon_{\text{mach}}$	relative error => $\frac{\ \bar{f}(x)-f(x)\ }{\ f(x)\ }$	the order of 2 ^{3/2} , 2 ^{5/2} for \otimes , \otimes respectively	Setting L = (L _{m-1} L ₁) P = P _{m-1} P ₁ gives	relaxation factor ω > 1		
Two points $\mathbf{x}, \mathbf{y} \in \mathbb{E}^n$ are reflections w.r.t hyperplane	• Modified GS ⇒ $\ I_n - Q^{\dagger}Q\ \approx \text{Cond}(A) \epsilon_{\text{mach}}$	$ \tilde{f} $ is accurate if $\forall x \in X$, $ \tilde{f}(x) - f(x) = O(\epsilon_{mach})$	(x, a, ax)	Algorithm 2 Gaussian elimination with partial pivoting	If A is strictly row diagonally dominant then		
$\frac{P = (Rn)^{\perp} + c}{-1} \text{ if:}$ -1) The translation $\vec{x}y = y - x$ is parallel to normal n_{\perp} i.e.	NOTE: Householder method has $\ \mathbf{I}_n - Q^{\dagger} Q \ \approx \epsilon_{\text{mach}} \ $	\tilde{f} is stable if $\forall x \in X$, $\exists \tilde{x} \in X$ s.t.	$\approx (x_1 * \dots * x_n) * \sum_{i=1}^n x_i \left(\sum_{j=i}^n \delta_j \right)^{; \delta_j \le \epsilon_{\text{mach}}}$	1: $U = A, L = I, P = I$ 2: for $k = 1$ to $m - 1$ do	Jacobi/Gauss-Seidel methods converge; A Jis strictly		
xy=λn	Multivariate Calculus Consider f: R ⁿ → R!	$\frac{\ \tilde{f}(x)-f(\tilde{x})\ }{\ f(\tilde{x})\ } = O\left(\epsilon_{\text{mach}}\right) \text{ and } \frac{\ \tilde{x}-x\ }{\ x\ } = O\left(\epsilon_{\text{mach}}\right)$	$(x_1 \otimes \cdots \otimes x_n) \approx (x_1 \times \cdots \times x_n)(1 + \epsilon), \epsilon \le 1.06(n - 1)\epsilon_{\text{mach}}$	3: $i = \operatorname{argmax} u_{i,k} $	row diagonally dominant if $ A_{ij} > \sum_{j \neq i} A_{ij} $		
-2) Midpoint $\underline{m = 1/2(x+y) \in P}$ ties on \underline{P} i.e. $\underline{m \cdot n = c \cdot n}$	When clear write i th component of input as i instead	i.e. nearly the right answer to nearly the right question	$\frac{\operatorname{fl}(\sum x_i y_i) = \sum x_i y_i (1 + \epsilon_i)}{1 + \epsilon_i = (1 + \delta_i) \times (1 + \eta_i) \cdots (1 + \eta_n)} \text{ where }$ $\frac{\operatorname{fl}(\sum x_i y_i) = \sum x_i y_i (1 + \epsilon_i)}{1 + \epsilon_i + \epsilon_i} \text{ where }$	4: $u_{k,k:m} \leftrightarrow u_{l,k:m}$ 5: $\ell_{k,1:k-1} \leftrightarrow \ell_{i,1:k-1}$	If A] is positive-definite then G-S and SOR $(\underline{\omega} \in (0, 2))$ converge		
Suppose $P_{\mathbf{u}} = (\mathbb{R}\mathbf{u})^{\perp}$ goes through the origin with unit normal $\mathbf{u} \in \mathbb{R}^{n}$	of x _i	outer-product is stable	$ 1+\epsilon_i \approx 1+\delta_i + (\eta_i + \dots + \eta_n) $	6: $\rho_{k,i} \leftrightarrow \rho_{i,i}$	Eigenvalue Problems		
	Level curve w.r.t. to $c \in \mathbb{R}$ jis all points s.t. $f(x) = c$ Projecting level curves onto \mathbb{R}^n gives f s		$\frac{ f (x^Ty) - x^Ty \le \sum x_i y_i \varepsilon_i }{ f (x^Ty) - x^Ty \le \sum x_i y_i \varepsilon_i }$	7: for $j = k + 1$ to m do 8: $\ell_{j,k} = u_{j,k}/u_{k,k}$	If A is diagonalizable then eigen-decomposition is		
hyperplane Pu	contour-map		Assuming ne _{mach} ≤ 0.1 =>	9: $u_{j,k;m} = u_{j,k;m} - \ell_{j,k}u_{k,k;m}$ 10: end for	Dominant λ_1 ; x_1 are such that $ \lambda_1 $ is strictly largest		
Recall: let Lu = Ru	nu Lth order partial derivative west is left of a first		$ fl(x^Ty) - x^Ty \le \phi(n)\epsilon_{\text{mach}} x ^T y $ where $ x _i = x_i $	11: end for	for which $\underline{Ax = \lambda x}$		
	n_k th order partial derivative w.r.t i_k of, of n_1 th order partial derivative w.r.t i_1 of f is:		is <u>vector</u> and φ(n) is <u>small function</u> of n _J Summing a series is <u>more stable</u> if terms <u>added in</u>	Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$; results in $L_{ij} \le 1$			
			order of increasing magnitude	so L = O(1)			
				1	i	1	