Интеллектуальный анализ данных (Data Mining)

Шорохов С.Г.

кафедра математического моделирования и искусственного интеллекта

Лекция 7. Регрессия

Регрессия

Пусть даны независимые переменные (признаки) $X_1, X_2, ..., X_d$ и зависимая переменная (отклик) Y, тогда целью регрессии является прогнозирование значения Y на основе значений $X_1, X_2, ..., X_d$, т.е. цель состоит в том, чтобы определить функцию регрессии f, такую, что

$$Y = f(\mathbf{X}) + \varepsilon = f(X_1, X_2, ..., X_d) + \varepsilon,$$

где ε — случайная ошибка, которая предполагается независимой от многомерной случайной величины $\mathbf{X}=\left(X_1,X_2,...,X_d\right)^T\in\mathbb{R}^d$, причем $\mathbb{E}\left[\varepsilon\right]=0$.

Выражение для Y состоит из двух слагаемых, одно из которых зависит от переменных $X_1, X_2, ..., X_d$, а другое зависит от опибки, независимой от переменных $X_1, X_2, ..., X_d$. Слагаемое опибки соответствует неустранимой неопределенности, присущей Y, а также, возможно, влиянию ненаблюдаемых, скрытых (латентных) переменных. Таким образом, функция регрессии f может быть построена как условное математическое ожидание

$$f(x_1,...,x_d) = \mathbb{E}[Y \mid X_1 = x_1,...,X_d = x_d]$$

Линейная регрессия

В линейной регрессии функция регрессии f предполагается линейной по признакам $\mathbf{X} = \left(X_1, X_2, ..., X_d\right)^T$, т.е.

$$f\left(\mathbf{X}\right) = \beta + \omega_{1}X_{1} + \omega_{2}X_{2} + \dots + \omega_{d}X_{d} = \beta + \sum_{i=1}^{d} \omega_{i}X_{i} = \beta + \boldsymbol{\omega}^{\mathbf{T}}\mathbf{X},$$

где β — истинное (неизвестное) смещение (bias), ω_i — истинный (неизвестный) коэффициент регрессии или вес для признака $X_i, \boldsymbol{\omega} = (\omega_1, \omega_2, ..., \omega_d)^T$ — d-мерный вектор истинных весов.

Линейная функция f определяет гиперплоскость $f(\mathbf{X})=0$ в пространстве признаков \mathbb{R}^d , причем вектор весов $\boldsymbol{\omega}$ ортогонален (перпендикулярен) гиперплоскости $f(\mathbf{X})=0$, а смещение β задает точки пересечения гиперплоскости с осями координат пространства признаков. Функция регрессии f полностью определяется d+1 параметрами β и ω_i для i=1,...,d.

Наиболее распространенным подходом к оценке (прогнозированию) параметров линейной регрессии (коэффициентов смещения β и регрессии ω) является метод наименьших квадратов.

Метод наименьших квадратов

Задача оценки параметров линейной регрессии заключается в подборе таких значений коэффициентов смещения b и регрессии $\mathbf{w}=(w_1,...,w_d)^T$, чтобы значения функции регрессии $\hat{\mathbf{y}}=b+\mathbf{w}^T\mathbf{x}$ были максимально близки к имеющимся значениям отклика. Суть метода наименьших квадратов (МНК) заключается в выборе в качестве «меры близости» суммы квадратов отклонений значений функции регрессии от значений отклика.

Пусть обучающие данные ${\bf D}$ содержат d-мерные векторы значений признаков ${\bf x}_i$ и значения откликов y_i (для i=1,...,n), тогда требуется определить параметры b и ${\bf w}$, минимизирующие сумму квадратов остаточных ошибок (SSE или Sum of Squared Errors)

$$\min_{b, \mathbf{w}} SSE = \min_{b, \mathbf{w}} \sum_{i=1}^{n} \varepsilon_i^2 = \min_{b, \mathbf{w}} \sum_{i=1}^{n} (y_i - \hat{y}_i)_i^2 = \min_{b, \mathbf{w}} \sum_{i=1}^{n} (y_i - b - \mathbf{w}^T \mathbf{x}_i)^2$$

Основные подходы к минимизации SSE:

- продифференцировать SSE по неизвестным параметрам, приравнять производные к нулю и решить полученную систему уравнений
- использовать численные методы минимизации

Коэффициент смещения в парной регрессии

В парной (bivariate) регрессии обучающие данные **D** содержат один признак $\mathbf{X} = (x_1, x_2, ..., x_n)^T$ вместе с откликом $\mathbf{Y} = (y_1, y_2, ..., y_n)^T$, а линейная функция регрессии зависит от двух скалярных параметров b и w: $\hat{y} = b + w x$.

Остаточная ошибка для точки x_i равна $\varepsilon_i = y_i - \hat{y}_i = y_i - b - w \, x_i$ и параметры парной регресии $b, \, w$ определяются из задачи минимизации:

$$\min_{b, w} SSE = \min_{b, w} \sum_{i=1}^{n} \varepsilon_i^2 = \min_{b, w} \sum_{i=1}^{n} (y_i - b - w x_i)^2.$$

Дифференцируем SSE по b и приравниваем результат к нулю:

$$\frac{\partial}{\partial b}SSE = -2\sum_{i=1}^{n} (y_i - b - w x_i) = 0 \Rightarrow b = \frac{1}{n}\sum_{i=1}^{n} y_i - w \frac{1}{n}\sum_{i=1}^{n} x_i.$$

Отсюда получаем следующее выражение для коэффициента смещения \boldsymbol{b}

$$b = \mu_{\mathbf{Y}} - w \,\mu_{\mathbf{X}}, \, \mu_{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} x_i, \, \mu_{\mathbf{Y}} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

Коэффициент регрессии в парной регрессии

Дифференцируем SSE по w и получаем:

$$\frac{\partial}{\partial w}SSE = -2\sum_{i=1}^{n} x_i \left(y_i - b - w x_i\right) = 0 \Rightarrow \sum_{i=1}^{n} x_i y_i - b\sum_{i=1}^{n} x_i - w\sum_{i=1}^{n} x_i^2 = 0 \Rightarrow$$

$$\sum_{i=1}^{n} x_i y_i - \mu_{\mathbf{Y}} \sum_{i=1}^{n} x_i + w \mu_{\mathbf{X}} \sum_{i=1}^{n} x_i - w\sum_{i=1}^{n} x_i^2 = 0 \Rightarrow$$

$$w = \frac{\sum_{i=1}^{n} x_i y_i - n \, \mu_{\mathbf{X}} \mu_{\mathbf{Y}}}{\sum_{i=1}^{n} x_i^2 - n \, \mu_{\mathbf{X}}^2}$$

Коэффициент регрессии w также может быть выражен через ковариацию ${f X}$ и ${f Y}$ и дисперсию ${f X}$:

$$w = \frac{\sum_{i=1}^{n} (x_i - \mu_{\mathbf{X}}) (y_i - \mu_{\mathbf{Y}})}{\sum_{i=1}^{n} (x_i - \mu_{\mathbf{X}})^2} = \frac{\sigma_{\mathbf{XY}}}{\sigma_{\mathbf{X}}^2} = \frac{\operatorname{cov}(\mathbf{X}, \mathbf{Y})}{\operatorname{var}(\mathbf{X})}$$

Оценка параметров парной регрессии

Итак, в парной регресии

$$\hat{y} = b + w x$$

оценка параметров регрессии b и w по обучающим данным

$$\mathbf{D} = \left\{ \mathbf{X} = (x_1, x_2, ..., x_n)^T, \ \mathbf{Y} = (y_1, y_2, ..., y_n)^T \right\}$$

производится по формулам

$$b = \mu_{\mathbf{Y}} - \frac{\sigma_{\mathbf{XY}}}{\sigma_{\mathbf{X}}^2} \mu_{\mathbf{X}}, \ w = \frac{\sigma_{\mathbf{XY}}}{\sigma_{\mathbf{X}}^2},$$

где

$$\mu_{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \mu_{\mathbf{Y}} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$
$$\sigma_{\mathbf{XY}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_{\mathbf{X}}) (y_i - \mu_{\mathbf{Y}}),$$
$$\sigma_{\mathbf{X}}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_{\mathbf{X}})^2.$$

Пример парной регрессии в наборе Ирисы

В наборе данных Ирисы длина лепестка (petal length) X рассматривается как независимая переменная и ширина лепестка (petal width) Y как отклик. Исследуем зависимость ширины лепестка Y от длины лепестка X.

Средние, дисперсии и ковариация в наборе Ирисы

Средние значения для переменных X и Y равны

$$\mu_X = \frac{1}{150} \sum_{i=1}^{150} x_i = \frac{563.8}{150} = 3.7587$$

$$\mu_Y = \frac{1}{150} \sum_{i=1}^{150} y_i = \frac{179.8}{150} = 1.1987$$

Дисперсии X и Y и ковариация X и Yравны

$$\sigma_X^2 = \frac{1}{150} \sum_{i=1}^{150} (x_i - \mu_X)^2 = 3.0924$$

$$\sigma_Y^2 = \frac{1}{150} \sum_{i=1}^{150} (y_i - \mu_Y)^2 = 0.5785$$

$$\sigma_{XY} = \frac{1}{150} \sum_{i=1}^{150} (x_i - \mu_X) \cdot (y_i - \mu_Y) = 1.2877$$

Линейная регрессия для набора Ирисы

Предполагая линейную связь между откликом Y и независимой переменной X, вычислим следующие коэффициенты регрессии (наклона) и смещения

$$w = \frac{\sigma_{XY}}{\sigma_X^2} = \frac{1.2877}{3.0924} = 0.4164$$

$$b = \mu_Y - w \,\mu_X = 1.1987 - 0.4164 \cdot 3.7587 = -0.3665$$

Таким образом, полученная функция линейной регрессии имеет вид

$$\hat{y} = -0.3665 + 0.4164 \, x$$

Сумма квадратов остаточных ошибок SSE вычисляется следующим образом:

$$SSE = \sum_{i=1}^{150} \varepsilon_i^2 = \sum_{i=1}^{150} (y_i - \hat{y}_i)^2 = 6.343$$

Линия регрессии для набора Ирисы

Изобразим на плоскости линию регресии, отражающую зависимость ширины лепестка Y от длины лепестка X. Сплошной черный кружок показывает среднюю точку, остаточная ошибка показана для двух точек x_9 и x_{35} .

Множественная регрессия

В множественной регрессии (multiple regression) несколько независимых признаков $X_1, X_2, ..., X_d$ и один отклик Y. Обучающая выборка $\mathbf{D} \in \mathbb{R}^{n \times d}$ содержит n точек $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{id})^T$ в d-мерном пространстве вместе с соответствующими наблюдаемыми значениями откликов y_i .

Вместо того, чтобы рассматривать смещение b отдельно от весов w_i , можно ввести новый атрибут X_0 , значение которого всегда равно единице $(x_{i0}=1)$.

Тогда прогнозируемое значение отклика для расширенной (d+1)-мерной точки $\tilde{\mathbf{x}}_i$ можно записать как

$$\hat{y}_i = w_0 x_{i0} + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id} = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}_i,$$

где $\tilde{\mathbf{w}} = (w_0, w_1, w_2, ..., w_d)^T$, $\tilde{\mathbf{x}}_i = (x_{i0}, x_{i1}, x_{i2}, ..., x_{id})^T$. Таким образом, для обучающей выборки \mathbf{D} вектор прогнозируемых значений откликов равен

$$\mathbf{\hat{Y}} = \tilde{\mathbf{D}}\tilde{\mathbf{w}},$$

где $\tilde{\mathbf{D}}$ – дополненная обучающая выборка, состоящая из расширенных точек $\tilde{\mathbf{x}}_i = (1, x_{i1}, x_{i2}, ..., x_{id})^T$.

Решение задачи множественной регрессии

Задача множественной регрессии состоит в том, чтобы найти наиболее подходящую линейную функцию регресии $f(\tilde{\mathbf{x}}) = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$, определяемую расширенным вектором весов $\tilde{\mathbf{w}}$, которая минимизирует ошибку SSE:

$$SSE = \sum_{i=1}^{n} \varepsilon_{i}^{2} = \|\mathbf{\varepsilon}\|^{2} = \|\mathbf{Y} - \hat{\mathbf{Y}}\|^{2} = (\mathbf{Y} - \hat{\mathbf{Y}})^{T} (\mathbf{Y} - \hat{\mathbf{Y}}) =$$

$$= \mathbf{Y}^{T} \mathbf{Y} - 2\mathbf{Y}^{T} \hat{\mathbf{Y}} + \hat{\mathbf{Y}}^{T} \hat{\mathbf{Y}} = \mathbf{Y}^{T} \mathbf{Y} - 2\mathbf{Y}^{T} (\tilde{\mathbf{D}} \tilde{\mathbf{w}}) + (\tilde{\mathbf{D}} \tilde{\mathbf{w}})^{T} (\tilde{\mathbf{D}} \tilde{\mathbf{w}}) =$$

$$= \mathbf{Y}^{T} \mathbf{Y} - 2\tilde{\mathbf{w}}^{T} (\tilde{\mathbf{D}}^{T} \mathbf{Y}) + \tilde{\mathbf{w}}^{T} (\tilde{\mathbf{D}}^{T} \tilde{\mathbf{D}}) \tilde{\mathbf{w}}$$

Дифференцируя SSE по $\tilde{\mathbf{w}}$ и приравнивая результат к нулю, получим, что оптимальный вектор весов $\tilde{\mathbf{w}}$ множественной регрессии задается формулой

$$\tilde{\mathbf{w}} = \left(\tilde{\mathbf{D}}^T \tilde{\mathbf{D}}\right)^{-1} \tilde{\mathbf{D}}^T \mathbf{Y},$$

где $\tilde{\mathbf{D}}=\begin{pmatrix}\mathbf{1}&\mathbf{D}\end{pmatrix}$ – дополненная обучающая выборка (матрица размерами $n imes(d+1)),\,\mathbf{Y}$ – вектор значений откликов для точек $\mathbf{D}.$

Множественная регрессия для набора Ирисы

Рассматривая независимые признаки длину чашелистика X_1 (sepal length) и длину лепестка X_2 (petal length), а также ширину лепестка (petal width) как отклик Y, исследуем множественную регрессию в наборе данных Iris (количество точек n=150).

Уравнение множественной регрессии

Имеем $X_0 = \mathbf{1}_{150}$ и $\tilde{\mathbf{D}} \in \mathbb{R}^{150 \times 3}$ (всего три признака X_0, X_1, X_2), тогда

$$\tilde{\mathbf{D}}^T \tilde{\mathbf{D}} = \begin{pmatrix} 150.0 & 876.50 & 563.80 \\ 876.5 & 5223.85 & 3484.25 \\ 563.8 & 3484.25 & 2583.00 \end{pmatrix}, \, \tilde{\mathbf{D}}^T \mathbf{Y} = \begin{pmatrix} 179.80 \\ 1127.65 \\ 868.97 \end{pmatrix}$$

$$(\tilde{\mathbf{D}}^T \tilde{\mathbf{D}})^{-1} = \begin{pmatrix} 0.793 & -0.176 & 0.064 \\ -0.176 & 0.041 & -0.017 \\ -0.017 & 0.064 & 0.009 \end{pmatrix}$$

Дополненный вектор весов $\tilde{\mathbf{w}}$ вычисляется как

$$\tilde{\mathbf{w}} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix} = (\tilde{\mathbf{D}}^T \tilde{\mathbf{D}})^{-1} \tilde{\mathbf{D}}^T \mathbf{Y} = \begin{pmatrix} -0.014 \\ -0.082 \\ 0.45 \end{pmatrix}$$

Тогда $b = w_0 = -0.014$ и уравнение множественной регрессии имеет вид

$$\hat{y} = -0.014 - 0.082 \, x_1 + 0.45 \, x_2$$

Гиперплоскость множественной регрессии

На рисунке показана построенная гиперплоскость и остаточная ошибка для каждой точки. Положительные ошибки (т.е. $\varepsilon_i>0$ или $\hat{y}_i>y_i$) белые, а отрицательные ошибки (т.е. $\varepsilon_i<0$ или $\hat{y}_i< y_i$) серые. Значение ошибки SSE для модели множественной регрессии равно 6.18.

QR-факторизация матрицы (1)

Если размерность d пространства признаков высока, то задача вычисления обратной матрицы к матрице $\tilde{\mathbf{D}}^T\tilde{\mathbf{D}}$ размерности $(d+1)\times(d+1)$ (нецентрированной матрице рассеяния) является вычислительно сложной.

Для того, чтобы облегчить вычисление обратной матрицы $(\tilde{\mathbf{D}}^T \tilde{\mathbf{D}})^{-1}$, можно использовать т.н. ортогонализацию Грама-Шмидта для матрицы $\tilde{\mathbf{D}}$, в результате которой получаем QR-разложение $\tilde{\mathbf{D}} = \mathbf{Q} \, \mathbf{R}$, где по построению \mathbf{Q} – матрица размерами $n \times (d+1)$ с ортогональными стобцами вида

$$\mathbf{Q} = \left(\begin{array}{ccc} | & | & | \\ U_0 & U_1 & \dots & U_d \\ | & | & | \end{array} \right)$$

и ${\bf R}$ – верхнетреугольная матрица размерами $(d+1)\times (d+1)$ вида

$$\mathbf{R} = \begin{pmatrix} 1 & p_{10} & p_{20} & \dots & p_{d0} \\ 0 & 1 & p_{21} & \dots & p_{d1} \\ 0 & 0 & 1 & \dots & p_{d2} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

QR-факторизация матрицы (2)

Тогда для $\tilde{\mathbf{D}}$ имеем представление

$$\underbrace{\begin{pmatrix} \begin{vmatrix} & & & & & & \\ X_0 & X_1 & \dots & X_d \\ & & & & \end{vmatrix}}_{\tilde{\mathbf{D}}} = \underbrace{\begin{pmatrix} & & & & & \\ U_0 & U_1 & \dots & U_d \\ & & & & & \end{vmatrix}}_{\mathbf{Q}} \cdot \underbrace{\begin{pmatrix} 1 & p_{10} & \dots & p_{d0} \\ 0 & 1 & \dots & p_{d1} \\ \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}}_{\mathbf{R}}$$

и в силу ортогональности столбцов матрицы ${f Q}$ имеем

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{\Delta} = \begin{pmatrix} \|U_0\|^2 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & \|U_d\|^2 \end{pmatrix}$$

Отсюда выводим уравнение для определения вектора весов $\tilde{\mathbf{w}}$:

$$\begin{split} \tilde{\mathbf{w}} &= \left(\tilde{\mathbf{D}}^T \tilde{\mathbf{D}} \right)^{-1} \tilde{\mathbf{D}}^T \mathbf{Y} \Rightarrow \tilde{\mathbf{D}}^T \tilde{\mathbf{D}} \tilde{\mathbf{w}} = \tilde{\mathbf{D}}^T \mathbf{Y} \Rightarrow \mathbf{R}^T \left(\mathbf{Q}^T \mathbf{Q} \right) \mathbf{R} \tilde{\mathbf{w}} = \mathbf{R}^T \mathbf{Q}^T \mathbf{Y} \Rightarrow \\ &\Rightarrow \mathbf{R}^T \Delta \mathbf{R} \tilde{\mathbf{w}} = \mathbf{R}^T \mathbf{Q}^T \mathbf{Y} \Rightarrow \Delta \mathbf{R} \tilde{\mathbf{w}} = \mathbf{Q}^T \mathbf{Y} \Rightarrow \mathbf{R} \tilde{\mathbf{w}} = \Delta^{-1} \mathbf{Q}^T \mathbf{Y} \end{split}$$

Система уравнений $\mathbf{R}\tilde{\mathbf{w}} = \mathbf{\Delta}^{-1}\mathbf{Q}^T\mathbf{Y}$ решается обратной подстановкой.

Лекция 7

Алгоритм регрессии методом QR-факторизации

Алгоритм основан на QR-факторизации, которая выражает матрицу $\tilde{\mathbf{D}}$ как произведение двух матриц: ортогональной матрицы Q и верхней (или правой) треугольной матрицы \mathbf{R} .

Multiple-Regression (\mathbf{D}, \mathbf{Y}) :

1
$$ilde{\mathbf{D}} \leftarrow \left(\mathbf{1} \qquad \mathbf{D}\right) \ / /$$
 дополненные входные данные с $X_0 = \mathbf{1} \in \mathbb{R}^n$

2
$$\{\mathbf{Q},\mathbf{R}\}\leftarrow \mathrm{QR}$$
-факторизация $(ilde{\mathbf{D}})$ // $\mathbf{Q}=ig(U_0 \quad U_1 \quad \cdots \quad U_dig)$

1
$$\tilde{\mathbf{D}} \leftarrow \begin{pmatrix} \mathbf{1} & \mathbf{D} \end{pmatrix} //$$
 дополненные входные данные с $X_0 = \mathbf{1} \in \mathbb{R}^n$
2 $\{\mathbf{Q}, \mathbf{R}\} \leftarrow \mathbf{Q}\mathbf{R}$ -факторизация $(\tilde{\mathbf{D}})$ // $\mathbf{Q} = \begin{pmatrix} U_0 & U_1 & \cdots & U_d \end{pmatrix}$
3 $\boldsymbol{\Delta} \leftarrow \begin{pmatrix} \|U_0\|^2 & 0 & \cdots & 0 \\ 0 & \|U_1\|^2 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \|U_d\|^2 \end{pmatrix}$ // квадраты норм по диагонали $\boldsymbol{\Delta} \leftarrow \begin{pmatrix} \frac{1}{\|U_0\|^2} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \|U_d\|^2 \end{pmatrix}$ // обратные квадраты норм $\boldsymbol{\Delta} \leftarrow \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \frac{1}{\|U_d\|^2} \end{pmatrix}$ // обратные квадраты норм

$$oldsymbol{\Delta}^{-1} \leftarrow egin{pmatrix} \frac{\|U_0\|^2}{0} & 0 & \cdots & 0 \\ 0 & \frac{1}{\|U_1\|^2} & \cdots & 0 \\ & & & & \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \frac{1}{\|U_J\|^2} \end{pmatrix} // \text{ обратные квадраты норм}$$

- 5 $\mathbf{R} ilde{\mathbf{w}} \leftarrow \mathbf{\Delta}^{-1} \mathbf{Q}^T \mathbf{Y}$ // веса $ilde{\mathbf{w}}$ находятся обратной подстановкой
- $\mathbf{\hat{Y}} \leftarrow \mathbf{Q} \mathbf{\Delta}^{-1} \mathbf{Q}^T \mathbf{Y}$ // прогноз отклика без определения весов $\tilde{\mathbf{w}}$

QR-факторизация в наборе Ирисы

Найдем зависимость ширины лепестка Y от длины чашелистника X_1 и длины лепестка X_2 для набора данных Ирисы с n=150 точками.

Ортогонализация Грама–Шмидта приводит к следующей QR-факторизации:

$$\underbrace{\left(\begin{array}{ccc|c} | & | & | \\ X_0 & X_1 & X_2 \\ | & | & | \end{array}\right)}_{\tilde{\mathbf{D}}} = \underbrace{\left(\begin{array}{ccc|c} | & | & | \\ U_0 & U_1 & U_2 \\ | & | & | \end{array}\right)}_{\mathbf{Q}} \cdot \underbrace{\left(\begin{array}{ccc|c} 1 & 5.843 & 3.759 \\ 0 & 1 & 1.858 \\ 0 & 0 & 1 \end{array}\right)}_{\mathbf{R}},$$

где $\mathbf{Q} \in \mathbb{R}^{150 \times 3}$ и матрицы $\mathbf{\Delta}$ и $\mathbf{\Delta}^{-1}$ равны

$$\boldsymbol{\Delta} = \begin{pmatrix} 150.0 & 0 & 0 \\ 0 & 102.17 & 0 \\ 0 & 0 & 111.35 \end{pmatrix}, \, \boldsymbol{\Delta}^{-1} = \begin{pmatrix} 0.00667 & 0 & 0 \\ 0 & 0.00979 & 0 \\ 0 & 0 & 0.00898 \end{pmatrix}$$

Уравнение регрессии в наборе Ирисы

Используем обратную подстановку для определения $\tilde{\mathbf{w}}$:

$$\mathbf{R}\tilde{\mathbf{w}} = \mathbf{\Delta}^{-1}\mathbf{Q}^T\mathbf{Y}$$
 или $\begin{pmatrix} 1 & 5.843 & 3.759 \\ 0 & 1 & 1.858 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 1.1987 \\ 0.7538 \\ 0.4499 \end{pmatrix}$

Обратная подстановка начинается с веса w_2 , потом определяется w_1 и, наконец, w_0 :

$$\begin{split} w_2 &= 0.4499, \\ w_1 + 1.858 \, w_2 = 0.7538 \Rightarrow \\ w_1 &= 0.7538 - 0.8358 = -0.082, \\ w_0 + 5.843 \, w_1 + 3.759 \, w_2 = 1.1987 \Rightarrow \\ w_0 &= 1.1987 + 0.4786 - 1.6911 = -0.0139 \end{split}$$

Модель множественной регрессии в наборе Ирисы построена в виде:

$$\hat{y} = -0.0139 - 0.082 \, x_1 + 0.4499 \, x_2$$

Mножественная регрессия при помощи SGD

Вместо использования подхода на основе QR-факторизации для точного решения задачи множественной регрессии можно использовать алгоритм стохастического градиентного спуска (SGD). Градиент целевой функции SSE по весам $\tilde{\mathbf{w}}$ задается как

$$\nabla_{\tilde{\mathbf{w}}} = \frac{\partial}{\partial \tilde{\mathbf{w}}} SSE = -\tilde{\mathbf{D}}^T \mathbf{Y} + \left(\tilde{\mathbf{D}}^T \tilde{\mathbf{D}}\right) \tilde{\mathbf{w}}$$

Стартуя с начального вектора весов $\tilde{\mathbf{w}}^{(0)},$ мы обновляем веса согласно следующей итеративной процедуре:

$$\tilde{\mathbf{w}}^{(t+1)} = \tilde{\mathbf{w}}^{(t)} - \eta \nabla_{\tilde{\mathbf{w}}} = \tilde{\mathbf{w}}^{(t)} + \eta \tilde{\mathbf{D}}^T \left(\mathbf{Y} - \tilde{\mathbf{D}} \tilde{\mathbf{w}}^{(t)} \right),$$

где $\tilde{\mathbf{w}}^{(t)}$ — оценка вектора весов на шаге $t,~\eta>0$ — шаг обучения. Вектор весов обновляется по одной (случайной) точке набора \mathbf{D} на каждой итерации, т.е.

$$\tilde{\mathbf{w}}^{(t+1)} = \tilde{\mathbf{w}}^{(t)} - \eta \nabla_{\tilde{\mathbf{w}}} (\tilde{\mathbf{x}}_k) = \tilde{\mathbf{w}}^{(t)} + \eta \left(y_k - \tilde{\mathbf{x}}_k \tilde{\mathbf{w}}^{(t)} \right) \tilde{\mathbf{x}}_k$$

Алгоритм регрессии методом SGD

Входными данными для алгоритма множественной регрессии при помощи SGD являются матрица входных данных \mathbf{D} , вектор откликов \mathbf{Y} для точек набора \mathbf{D} , шаг обучения $\eta>0$, требуемая точность $\varepsilon>0$.

Multiple Regression: SGD ($\mathbf{D}, \mathbf{Y}, \eta, \varepsilon$):

```
1 \tilde{\mathbf{D}} \leftarrow (\mathbf{1} \quad \mathbf{D}) \; / \; создаем дополненные входные данные 2 t \leftarrow 0 \; / \; инициализируем счетчик шагов/итераций 3 \tilde{\mathbf{w}}^{(0)} \leftarrow случайный вектор в \mathbb{R}^{d+1} \; / \; начальный вектор весов 4 repeat 5 | foreach k=1,2,\cdots,n (в случайном порядке) do | \nabla_{\tilde{\mathbf{w}}}(\tilde{\mathbf{x}}_k) \leftarrow -(y_k - \tilde{\mathbf{x}}_k^T \tilde{\mathbf{w}}^{(t)}) \cdot \tilde{\mathbf{x}}_k \; / \; вычислить градиент в \tilde{\mathbf{x}}_k 7 | \tilde{\mathbf{w}}^{(t+1)} \leftarrow \tilde{\mathbf{w}}^{(t)} - \eta \cdot \nabla_{\tilde{\mathbf{w}}}(\tilde{\mathbf{x}}_k) \; / \; обновить оценку для весов 8 | t \leftarrow t+1 9 until ||\tilde{\mathbf{w}}^{(t)} - \tilde{\mathbf{w}}^{(t-1)}|| \leqslant \varepsilon
```

Пример множественной регрессии с SGD

Рассматривается множественная регрессия для набора данных Ирисы с признаками длины чашелистника X_1 и длины лепестка X_2 и шириной лепестка Y в качестве отклика.

Используя точный подход, получаем модель множественной регрессии в виде

$$\hat{y} = -0.0139 - 0.082 \, x_1 + 0.4499 \, x_2$$

Используя SGD, получаем следующую модель для $\eta=0.001$ и $\varepsilon=0.0001$:

$$\hat{y} = -0.031 - 0.078 \, x_1 + 0.45 \, x_2$$

Результаты подхода SGD по сути такие же, как и для точного метода, с небольшой разницей в коэффициенте смещения.

Значение ошибки SSE для точного метода составляет 6.179, тогда как для SGD ошибка составляет 6.181.

Гребневая (L_2) регрессия

Для линейной регрессии вектор $\hat{\mathbf{Y}}$ лежит в линейном подпространстве, порожденном вектор-столбцами дополненной матрицы данных $\tilde{\mathbf{D}}$. Часто данные бывают зашумлены или не определены, поэтому вместо того, чтобы подгонять модель к данным точно, целесообразно использовать модель, более устойчивую к ошибкам в данных.

Регуляризация модели – это метод добавления некоторых дополнительных ограничений к условиям модели (обычно в форме штрафа за сложность модели) с целью повысить качество модели. Например, регуляризация может накладывать ограничение на L_2 -норму вектора весов $\tilde{\mathbf{w}}$.

Для этого в гребневой (ridge) регрессии к ошибке $\|\mathbf{Y} - \mathbf{\hat{Y}}\|^2$ добавляется слагаемое регуляризации $(\|\tilde{\mathbf{w}}\|^2)$ и решается задача минимизации функции

$$J(\tilde{\mathbf{w}}) = \left\| \mathbf{Y} - \hat{\mathbf{Y}} \right\|^2 + \alpha \|\tilde{\mathbf{w}}\|^2 = \left\| \mathbf{Y} - \tilde{\mathbf{D}}\tilde{\mathbf{w}} \right\|^2 + \alpha \|\tilde{\mathbf{w}}\|^2$$

Коэффициент $\alpha \geqslant 0$ управляет балансом между квадратом нормы вектора весов и квадратом ошибки прогноза в процессе минимизации. Таким образом, гребневая регрессия – это линейная регрессия с регуляризацией L_2 .

Вектор весов в гребневой регрессии

Для построения точного решения дифференцируем функцию $J\left(\tilde{\mathbf{w}}\right)$ по $\tilde{\mathbf{w}}$ и приравниваем результат к нулю, чтобы получить вектор весов в виде

$$\tilde{\mathbf{w}} = \left(\tilde{\mathbf{D}}^T \tilde{\mathbf{D}} + \alpha \mathbf{I}\right)^{-1} \tilde{\mathbf{D}}^T \mathbf{Y},$$

где \mathbf{I} – единичная $(d+1) \times (d+1)$ -матрица. Матрица $\tilde{\mathbf{D}}^T \tilde{\mathbf{D}} + \alpha \mathbf{I}$ всегда является обратимой (невырожденной) для $\alpha > 0$, даже если матрица $\tilde{\mathbf{D}}^T \tilde{\mathbf{D}}$ не обратима (вырождена).

Если число λ_i является собственным значением матрицы $\tilde{\mathbf{D}}^T\tilde{\mathbf{D}}$, то $\lambda_i+\alpha$ является собственным значением матрицы $\tilde{\mathbf{D}}^T\tilde{\mathbf{D}}+\alpha\mathbf{I}$. Поскольку матрица $\tilde{\mathbf{D}}^T\tilde{\mathbf{D}}$ неотрицательно определенная, она имеет неотрицательные собственные значения. Даже если $\lambda_i=0$, то соответствующее собственное значение матрицы $\tilde{\mathbf{D}}^T\tilde{\mathbf{D}}+\alpha\mathbf{I}$ равно $\lambda_i+\alpha=\alpha>0$.

Регуляризованная таким образом регрессия называется гребневой (ridge) регрессией, потому что она добавляет «гребень» вдоль главной диагонали матрицы $\tilde{\mathbf{D}}^T\tilde{\mathbf{D}}$, т.е. решение зависит от $\tilde{\mathbf{D}}^T\tilde{\mathbf{D}}+\alpha\mathbf{I}$.

Если выбирается положительное $\alpha>0,$ то гребневая регрессия гарантирует существование точного решения.

Гребневая регрессия для набора Ирисы

Рассматриваем длину лепестка X (petal length) как признак и ширину лепестка (petal width) как переменную отклика Y и исследуем гребневую регрессию в наборе данных Ирисы (с количеством точек n=150).

Уравнения гребневой регрессии для набора Ирисы

Нецентрированная матрица рассеяния (uncentered scatter matrix) равна

$$\tilde{\mathbf{D}}^T \tilde{\mathbf{D}} = \begin{pmatrix} 150.0 & 563.8 \\ 563.8 & 2583.0 \end{pmatrix}$$

Получим различные линии наилучшего соответствия для различных значений параметра регуляризации α :

$$\alpha = 0 \Rightarrow \hat{y} = -0.367 + 0.416 x,$$

$$\|\tilde{\mathbf{w}}\|^2 = \left\| (-0.367, 0.416)^T \right\|^2 = 0.308, SSE = 6.34$$

$$\alpha = 10 \Rightarrow \hat{y} = -0.244 + 0.388 x,$$

$$\|\tilde{\mathbf{w}}\|^2 = \left\| (-0.244, 0.388)^T \right\|^2 = 0.210, SSE = 6.75$$

$$\alpha = 100 \Rightarrow \hat{y} = -0.021 + 0.328 x,$$

$$\|\tilde{\mathbf{w}}\|^2 = \left\| (-0.021, 0.328)^T \right\|^2 = 0.108, SSE = 9.97$$

Линии гребневой регрессии для набора Ирисы

По мере увеличения α больше внимания уделяется минимизации квадрата нормы $\tilde{\mathbf{w}}$. Поскольку с увеличением α роль слагаемого с $\|\tilde{\mathbf{w}}\|^2$ в минимизации увеличивается, соответствие модели данным обучающего набора уменьшается, что видно по увеличению значений ошибки SSE.

$\overline{\Gamma}$ ребневая регрессия при помощи SGD

Вместо обращения матрицы $\tilde{\mathbf{D}}^T\tilde{\mathbf{D}} + \alpha \mathbf{I}$, как это требуется в точном решении для гребневой регрессии, можно использовать алгоритм стохастического градиентного спуска. Градиент функции $J\left(\tilde{\mathbf{w}}\right)$ по $\tilde{\mathbf{w}}$, умноженный для удобства на $\frac{1}{2}$, равен

$$\nabla_{\tilde{\mathbf{w}}} = \frac{\partial}{\partial \tilde{\mathbf{w}}} J(\tilde{\mathbf{w}}) = -\tilde{\mathbf{D}}^T \mathbf{Y} + (\tilde{\mathbf{D}}^T \tilde{\mathbf{D}}) \tilde{\mathbf{w}} + \alpha \tilde{\mathbf{w}}$$

Используя (пакетный) градиентный спуск, можно итеративно вычислить $\tilde{\mathbf{w}}$ следующим образом

$$\tilde{\mathbf{w}}^{(t+1)} = \tilde{\mathbf{w}}^{(t)} - \eta \nabla_{\tilde{\mathbf{w}}} = (1 - \eta \alpha) \, \tilde{\mathbf{w}}^{(t)} + \eta \, \tilde{\mathbf{D}}^T \left(\mathbf{Y} - \tilde{\mathbf{D}} \tilde{\mathbf{w}}^{(t)} \right)$$

В методе SGD вектор весов обновляется по одной (случайной) точке на каждой итерации:

$$\tilde{\mathbf{w}}^{(t+1)} = \tilde{\mathbf{w}}^{(t)} - \eta \nabla_{\tilde{\mathbf{w}}} (\tilde{\mathbf{x}}_k) = \left(1 - \frac{\eta \alpha}{n}\right) \tilde{\mathbf{w}}^{(t)} + \eta \left(y_k - \tilde{\mathbf{x}}_k \tilde{\mathbf{w}}^{(t)}\right) \tilde{\mathbf{x}}_k$$

Здесь константа регуляризации α масштабируется делением на n, так как исходное значение предназначалось для всех n точек набора данных \mathbf{D} .

Алгоритм гребневой регрессии при помощи SGD

Входными данными для алгоритма множественной гребневой регрессии при помощи SGD являются матрица входных данных D, вектор откликов Y для точек набора D, шаг обучения $\eta > 0$, требуемая точность $\varepsilon > 0$.

```
Ridge Regression: SGD (\mathbf{D}, \mathbf{Y}, \eta, \varepsilon):
```

- 1 $\mathbf{D} \leftarrow (\mathbf{1} \quad \mathbf{D})$ // дополненные входные данные
- $2 \ t \leftarrow 0 \ //$ инициализация счетчика шагов/итераций
- з $\tilde{\mathbf{w}}^{(0)} \leftarrow$ случайный вектор в \mathbb{R}^{d+1} // начальный вектор весов
- 4 repeat

foreach
$$k=1,2,\cdots,n$$
 (в случайном порядке) do

6 $\nabla_{\tilde{\mathbf{w}}}(\tilde{\mathbf{x}}_k) \leftarrow -(y_k - \tilde{\mathbf{x}}_k^T \tilde{\mathbf{w}}^{(t)}) \cdot \tilde{\mathbf{x}}_k + \frac{\alpha}{n} \tilde{\mathbf{w}} //$ градиент в точке $\tilde{\mathbf{x}}_k$ 7 $\tilde{\mathbf{w}}^{(t+1)} \leftarrow \tilde{\mathbf{w}}^{(t)} - \eta \cdot \nabla_{\tilde{\mathbf{w}}}(\tilde{\mathbf{x}}_k) //$ обновить оценку для весов

7
$$\mathbf{\ddot{w}}^{(t+1)} \leftarrow \mathbf{\ddot{w}}^{(t)} - \eta \cdot \nabla_{\mathbf{\tilde{w}}}(\mathbf{\ddot{x}}_k)$$
 // обновить оценку для весов

$$s \quad t \leftarrow t+1$$

9 until
$$\|\tilde{\mathbf{w}}^{(t)} - \tilde{\mathbf{w}}^{(t-1)}\| \leqslant \varepsilon$$

Гребневая регрессия с SGD для набора Ирисы

Применим гребневую регрессию к набору данных Ирисы (n=150), используя длину лепестка X (petal length) в качестве независимого признака и ширину лепестка Y (petal width) в качестве переменной отклика.

Используя SGD (с параметрами $\eta=0.001$ и $\varepsilon=0.0001$), получим уравнения гребневой регресии для разных значений константы регуляризации α :

$$\alpha = 0 \Rightarrow \hat{y} = -0.366 + 0.416 x, SSE_{SGD} = 6.37, SSE_{Ridge} = 6.34$$

$$\alpha = 10 \Rightarrow \hat{y} = -0.244 + 0.387 x, SSE_{SGD} = 6.76, SSE_{Ridge} = 6.38$$

$$\alpha = 100 \Rightarrow \hat{y} = -0.022 + 0.327 x, SSE_{SGD} = 10.04, SSE_{Ridge} = 8.87$$

Полученные при помощи SGD уравнения гребневой регрессии, в целом, соответствуют уравнениям гребневой регресии, полученным ранее точным способом.

Регрессия лассо (L_1)

Лассо (least absolute selection and shrinkage operator, lasso) – это метод регуляризации, направленный на обнуление части весов регрессии.

Сделаем допущение, что признаки $X_1, X_2, ..., X_d$ и отклик Y центрированы (будем использовать обозначения $\bar{\mathbf{D}}$ и $\bar{\mathbf{Y}}$). Центрирование освобождает нас от необходимости явного использования в регрессии коэффициента смещения $b=w_0$.

Регрессия лассо (в отличие от гребневой регрессии) использует для регуляризации норму L_1 :

$$\min_{\mathbf{w}} J\left(\mathbf{w}\right),\,J\left(\mathbf{w}\right) = \frac{1}{2} \left\| \mathbf{\bar{Y}} - \mathbf{\bar{D}w} \right\|^2 + \alpha \, \left\| \mathbf{w} \right\|_1,$$

где коэффициент $\alpha\geqslant 0$ — константа регуляризации и для вектора весов $\mathbf{w}=(w_1,w_2,...,w_d)$

$$\|\mathbf{w}\|_1 = \sum_{i=1}^d |w_i|$$

Целевая функция в регрессии лассо

Использование нормы L_1 приводит к разреженности вектора весов ${\bf w}.$

Гребневая регрессия L_2 уменьшает значения коэффициентов регрессии w_i , но они могут оставаться небольшими, но все же отличными от нуля.

Регрессия L_1 способна обнулять коэффициенты регрессии, что приводит к более интерпретируемой модели, особенно когда в наборе данных много признаков.

Целевая функция в регрессии лассо состоит из двух частей: функции квадрата ошибки $\|\bar{\mathbf{Y}} - \bar{\mathbf{D}}\mathbf{w}\|^2$, являющейся выпуклой и дифференцируемой, и функции штрафа L_1

$$\alpha \|\mathbf{w}\|_1 = \alpha \sum_{i=1}^d |w_i|,$$

которая является выпуклой, но недифференцируемой при $w_i=0$. Поэтому мы не можем просто вычислить градиент и приравнять его к нулю, как это делается в случае гребневой регрессии. Задачу минимизации в регрессии лассо можно решить с помощью обобщенного подхода субградиентов.

Лекция 7

Существование производной в регрессии лассо

Рассмотрим функцию абсолютного значения f(w) = |w|.

Когда w > 0, имеем f'(w) = +1, а когда w < 0, имеем f'(w) = -1.

В точке w = 0 производная не существует.

Субградиенты в регрессии лассо

Субградиенты обобщают понятие производной.

Для функции f(w) = |w| наклон m любой прямой, проходящей через точку w=0 и остающей ниже или касающейся графика функции f, называется субградиентом функции f в точке w=0.

Понятие субдифференциала

Множество всех субградиентов функции |w| называется субдифференциалом и обозначается как $\partial |w|$.

Субдифференциал функции f(w) = |w| при w = 0 определяется формулой $\partial |w| = [-1, 1].$

Рассматривая любые значения w, получим следующую формулу для субдифференциала функции f(w) = |w|:

$$\partial |w| = \begin{cases} +1, & w > 0 \\ -1, & w < 0 \\ [-1, 1], & w = 0 \end{cases}$$

Когда производная (градиент) функции существует, субдифференциал принимает единственное значение и равен значению производной (или градиенту). Когда производной не существует, субдифференциал соответствует набору субградиентов.

Субдифференциал в парной регрессии лассо

Рассмотрим парную регрессию лассо с единственным независимым признаком \bar{X} и откликом \bar{Y} (оба признака центрированы). Тогда модель парной регрессии задается в виде

$$\hat{y}_i = w \, x_i.$$

Целевая функция регрессии лассо записывается в виде

$$J(w) = \frac{1}{2} \sum_{i=1}^{n} (y_i - w x_i)^2 + \alpha |w|.$$

Субдифференциал функции J(w) вычисляется следующим образом:

$$\partial J(w) = \frac{1}{2} \sum_{i=1}^{n} 2(y_i - w x_i)(-x_i) + \alpha \partial |w| = 0$$

$$= -\sum_{i=1}^{n} x_i y_i + w \sum_{i=1}^{n} x_i^2 + \alpha \partial |w| = -\bar{\mathbf{X}}^T \bar{\mathbf{Y}} + w \|\bar{\mathbf{X}}\|^2 + \alpha \partial |w|$$

Определение весов в парной регрессии лассо

Приравняем субдифференциал $J\left(w\right)$ к нулю и получим

$$\partial J(w) = 0 \Rightarrow w \|\bar{\mathbf{X}}\|^{2} + \alpha \,\partial |w| = \bar{\mathbf{X}}^{T}\bar{\mathbf{Y}} \Rightarrow w + \eta \,\alpha \,\partial |w| = \eta \,\bar{\mathbf{X}}^{T}\bar{\mathbf{Y}}, \,\eta = \frac{1}{\|\bar{\mathbf{X}}\|^{2}}$$

В соответствии с тремя случаями для субдифференциала функции абсолютного значения |w|, нужно рассмотреть три случая:

9
$$w > 0$$
, $\partial |w| = +1$:

$$w = \eta \, \bar{\mathbf{X}}^T \bar{\mathbf{Y}} - \eta \, \alpha$$
$$w > 0 \Rightarrow \eta \, \bar{\mathbf{X}}^T \bar{\mathbf{Y}} > \eta \, \alpha \Rightarrow \left| \eta \, \bar{\mathbf{X}}^T \bar{\mathbf{Y}} \right| > \eta \, \alpha$$

$$w < 0, \ \partial |w| = -1$$
:

$$w = \eta \, \bar{\mathbf{X}}^T \bar{\mathbf{Y}} + \eta \, \alpha$$
$$w < 0 \Rightarrow \eta \, \bar{\mathbf{X}}^T \bar{\mathbf{Y}} < -\eta \, \alpha \Rightarrow |\eta \, \bar{\mathbf{X}}^T \bar{\mathbf{Y}}| > \eta \, \alpha$$

3
$$w = 0, \partial |w| \in [-1, +1]$$
:

$$w \in \left[\eta \, \bar{\mathbf{X}}^T \bar{\mathbf{Y}} - \eta \, \alpha, \, \eta \, \bar{\mathbf{X}}^T \bar{\mathbf{Y}} + \eta \, \alpha \right]$$
$$w = 0 \Rightarrow \left| \eta \, \bar{\mathbf{X}}^T \bar{\mathbf{Y}} \right| \leqslant \eta \, \alpha$$

Функция мягкого порога

Пусть $\tau \geqslant 0$ — некоторое фиксированное значение. Определим функцию мягкого порога (soft-threshold function) $S_{\tau}: \mathbb{R} \to \mathbb{R}$ следующим образом:

$$S_{\tau}(z) = \operatorname{sign}(z) \max \{0, |z| - \tau\}$$

Тогда указанные выше три случая можно компактно записать как:

$$w = S_{\eta \alpha} \left(\eta \, \bar{\mathbf{X}}^T \bar{\mathbf{Y}} \right),$$

где $\tau=\eta\,\alpha$. Таким образом, полученная формула задает оптимальное решение (вектор весов) задачи парной регрессии лассо.

Алгоритм регрессии лассо при помощи SGD


```
L_1-Regression (D, Y, \alpha, \eta, \varepsilon):
 1 \mu \leftarrow mean(\mathbf{D}), \mu_Y \leftarrow mean(\mathbf{Y}) // вычисляем средние значения
 2 \bar{\mathbf{D}} \leftarrow \mathbf{D} - \mathbf{1} \cdot \boldsymbol{\mu}^T // центрируем входные данные
 з \bar{\mathbf{Y}} \leftarrow Y - \mu_Y \cdot \mathbf{1} // центрируем отклик
 4 t \leftarrow 0 // счетчик шагов/итераций
 5 \mathbf{w}^{(0)} \leftarrow случайный вектор в \mathbb{R}^d // начальный вектор весов
 6 repeat
          foreach k = 1, 2, \dots, d do

abla(w_{\iota}^{(t)}) \leftarrow -ar{X}_{\iota}^T(ar{\mathbf{Y}} - ar{\mathbf{D}} \ \mathbf{w}^{(t)}) \ // вычисляем градиент
          w_k^{(t+1)} \leftarrow w_k^{(t)} - \eta \cdot \nabla(w_k^{(t)}) // обновить оценку весов
          w_k^{(t+1)} \leftarrow \mathcal{S}_{\eta \cdot lpha} (w_k^{(t+1)}) \; / / \;функция мягкого порога
10
        t \leftarrow t + 1
11
12 until \|\mathbf{w}^{(t)} - \mathbf{w}^{(t-1)}\| < \varepsilon
13 b \leftarrow \mu_Y - \left(\mathbf{w}^{(t)}\right)^T \mu \ // вычислить смещение
```

Регрессия лассо для полного набора Ирисы

Применим регрессию лассо к полному набору данных Ирисы с n=150 точками и четырьмя независимыми признаками, а именно шириной чашелистика X_1 (sepal-width), длиной чашелистника X_2 (sepal-length), шириной лепестка X_3 (petal-width) и длиной лепестка X_4 (petal-length).

Признак типа ириса содержит переменную отклика Y. Существует три типа ирисов, а именно Iris-setosa, Iris-versicolor и Iris-virginica, которые имеют коды $0,\,1$ и 2 соответственно.

Результаты регрессии L_1 для различных α и $\eta=0.0001$ показаны ниже:

$$\begin{array}{l} \alpha = 0: \; \hat{y} = +0.19 - 0.11 \, x_1 - 0.05 \, x_2 + 0.23 \, x_3 + 0.61 \, x_4, \; SSE = 6.96, \; \|\mathbf{w}\|_1 = 0.44 \\ \alpha = 1: \; \hat{y} = -0.08 - 0.08 \, x_1 - 0.02 \, x_2 + 0.25 \, x_3 + 0.52 \, x_4, \; SSE = 7.09, \; \|\mathbf{w}\|_1 = 0.34 \\ \alpha = 5: \; \hat{y} = -0.55 + 0.00 \, x_1 + 0.00 \, x_2 + 0.36 \, x_3 + 0.17 \, x_4, \; SSE = 8.82, \; \|\mathbf{w}\|_1 = 0.16 \\ \alpha = 10: \; \hat{y} = -0.58 + 0.00 \, x_1 + 0.00 \, x_2 + 0.42 \, x_3 + 0.00 \, x_4, \; SSE = 10.15, \; \|\mathbf{w}\|_1 = 0.18 \end{array}$$

Обратите внимание на эффект обнуления некоторых весов для значений $\alpha=5$ и $\alpha=10.$

Отбор значимых признаков регрессией лассо

Построим и сравним коэффициенты гребневой регрессии (L_2) и регрессии лассо (L_1) с одинаковым уровнем квадратичной ошибки.

При $\alpha=5$ модель регрессии лассо имеет ошибку SSE =8.82.

Установим значение параметра $\alpha=35$ в гребневой регрессии, что приведет к аналогичной ошибке SSE. Две модели имеют следующее представление:

$$L_1: \, \hat{y} = -0.553 + 0.00 \, x_1 + 0.00 \, x_2 + 0.359 \, x_3 + 0.17 \, x_4, \, \|\mathbf{w}\|_1 = 0.156$$

$$L_2: \hat{y} = -0.394 + 0.019 x_1 - 0.051 x_2 + 0.316 x_3 + 0.212 x_4, \|\mathbf{w}\|_1 = 0.598$$

В модели гребневой регрессии коэффициенты при x_1 и x_2 малы и, следовательно, менее важны, но они не равны нулю.

В модели регрессии лассо коэффициенты для x_1 и x_2 в точности равны нулю, остаются только признаки x_3 и x_4 .

Таким образом, регрессия лассо может осуществлять отбор значимых признаков.

Сравнение регрессии лассо и гребневой регрессии

Основное различие регрессии лассо (L_1) и гребневой регрессии (L_2) заключается в том, что регрессия лассо может приводить к обнулению весов некоторых независимых переменных, тогда как гребневая регрессия уменьшает их до значений, близких к нулю.

Регрессия для нелинейных данных

Линейной регрессии вида

$$Y = \beta + \boldsymbol{\omega}^{\mathbf{T}} \mathbf{X} + \varepsilon = \beta + \sum_{i=1}^{d} \omega_i X_i + \varepsilon$$

может быть недостаточно для выявления взаимосвязи между признаками $X_1, X_2, ..., X_d$ и откликом Y в случае, когда эта взаимосвязь является нелинейной. В этом случае можно воспользоваться т.н. полиномиальной регрессией, в которой используются степени независимых переменных, которые рассматриваются как отдельные независимые переменные в модели множественной регрессии.

Полиномиальная регрессия

Полиномиальная регрессия — это форма регрессионного анализа, в которой взаимосвязь между независимой переменной X и зависимой переменной Y моделируется как полином m-й степени от X

$$Y = f(X, \mathbf{w}) + \varepsilon = w_0 + w_1 X + w_2 X^2 + \dots + w_m X^m + \varepsilon$$

Полиномиальная регрессия соответствует нелинейной зависимости между значением X и соответствующим условным средним значением Y, обозначаемым $\mathbb{E}\left[Y\mid X\right]$. Хотя полиномиальная регрессия подгоняет нелинейную модель к нелинейным данным, как задача статистической оценки она является линейной в том смысле, что функция регрессии $\mathbb{E}\left[Y\mid X\right]$ является линейной по неизвестным параметрам $\mathbf{w}=\left(w_0,w_1,...,w_m\right)^T$, которые оцениваются на основе имеющихся данных. По этой причине полиномиальная регрессия считается частным случаем множественной линейной регрессии.

Уравнения полиномиальной регрессии

Пусть входные данные имеют вид $\mathbf{D} = \left\{ \mathbf{X} = (x_1, ..., x_n)^T, \mathbf{Y} = (y_1, ..., y_n)^T \right\}$, тогда модель полиномиальной регрессии принимает вид системы линейных уравнений относительно весов $\mathbf{w} = (w_0, w_1, ..., w_m)^T$:

$$Y = V w + \varepsilon$$
,

где ${\bf V}$ представляет собой $n \times (m+1)$ -матрицу Вандермонда вида

$$\mathbf{V} = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \\ 1 & x_2 & x_2^2 & \dots & x_2^m \\ 1 & x_3 & x_3^2 & \dots & x_3^m \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^m \end{bmatrix}, \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Можно доказать, что матрица Вандермонда ${\bf V}$ при m < n имеет максимальный ранг m+1 тогда и только тогда, когда все точки x_i различны. Тогда $(m+1)\times (m+1)$ -матрица ${\bf V}^T{\bf V}$ будет невырожденной, т.е. будет существовать обратная матрица $({\bf V}^T{\bf V})^{-1}$.

Коэффициенты полиномиальной регрессии

Матрица V нелинейным образом зависит от значений признака X, но функция полиномиальной регрессии является линейной относительно коэффициентов регрессии (весов) $\mathbf{w} = (w_0, w_1, ..., w_m)^T$:

$$\hat{\mathbf{Y}} = f(\mathbf{X}, \mathbf{w}) = \mathbf{V}(\mathbf{X}) \mathbf{w},$$

поэтому в случае максимального ранга матрицы V коэффициенты регрессии **w** могут быть определены методом наименьших квадратов:

$$\min_{\mathbf{w}} SSE = \min_{\mathbf{w}} \|\boldsymbol{\varepsilon}\|^2 = \min_{\mathbf{w}} \|\mathbf{Y} - \hat{\mathbf{Y}}\|^2 = \min_{\mathbf{w}} \|\mathbf{Y} - \mathbf{V}(\mathbf{X}) \|\mathbf{w}\|^2$$

Приравнивая градиент SSE по \mathbf{w} к нулю и решая полученные уравнения, получим формулу для коэффициентов полиномиальной регрессии

$$\mathbf{w} = \left(\mathbf{V}^T \mathbf{V}\right)^{-1} \mathbf{V}^T \mathbf{Y}$$

Таким образом, задачи полиномиальной регрессии решаются с помощью методов множественной регрессии, если переменные $X, X^2, X^3, ...$ трактуются как отдельные независимые переменные в модели множественной регрессии.

Лекция 7

Линейная регрессия общего вида

Полиномиальную регрессию можно обобщить на случай линейной регрессии общего вида, когда восстанавливается зависимость переменной \mathbf{Y} от другой или нескольких других переменных (признаков) $\mathbf{X} \in \mathbb{R}^d$ с линейной зависимостью от неизвестных коэффициентов $\mathbf{w} = (w_1, ..., w_m) \in \mathbb{R}^m$ вида:

$$\mathbf{Y} = f(\mathbf{X}, \mathbf{w}) = \sum_{k=1}^{m} w_k f_k(\mathbf{X}),$$

где $f_1(\mathbf{X}),...,f_m(\mathbf{X})$ – некоторые базисные функции. В качестве базисных функций могут рассматриваться различные полиномы, сплайны, радиальные базисные функции, вейвлеты и т.п.

Пусть даны значения независимых переменных $\mathbf{x}_i \in \mathbb{R}^d, i=\overline{1,n}$ и соответствующие значения зависимой переменной $y_i \in \mathbb{R}, i=\overline{1,n}$. Введем матрич-

ные обозначения
$$\mathbf{F}(\mathbf{X}) = \begin{pmatrix} f_1(\mathbf{x}_1) & \dots & f_m(\mathbf{x}_1) \\ \dots & \dots & \dots \\ f_1(\mathbf{x}_n) & \dots & f_m(\mathbf{x}_n) \end{pmatrix}, \mathbf{Y} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}.$$

Коэффициенты линейной регрессии общего вида

 $n \times m$ -матрица $\mathbf{F}(\mathbf{X})$ имеет нелинейную зависимость общего вида от значений признаков X, но функция регрессии f(X, w) является линейной относительно коэффициентов регрессии (весов) w:

$$\hat{\mathbf{Y}} = f(\mathbf{X}, \mathbf{w}) = \mathbf{F}(\mathbf{X}) \mathbf{w},$$

поэтому в случае максимальности ранга матрицы F аналогично случаю полиномиальной регрессии коэффициенты регрессии w могут быть определены методом наименьших квадратов:

$$\min_{\mathbf{w}} SSE = \min_{\mathbf{w}} \|\boldsymbol{\varepsilon}\|^2 = \min_{\mathbf{w}} \|\mathbf{Y} - \hat{\mathbf{Y}}\|^2 = \min_{\mathbf{w}} \|\mathbf{Y} - \mathbf{F}(\mathbf{X}) \|\mathbf{w}\|^2$$

Приравнивая градиент SSE по \mathbf{w} к нулю и решая полученные уравнения, получим формулу для коэффициентов линейной регрессии общего вида

$$\mathbf{w} = \left(\mathbf{F}^T \mathbf{F}\right)^{-1} \mathbf{F}^T \mathbf{Y}$$

Таким образом, задачи линейной регрессии общего вида также решаются с помощью методов множественной регрессии, если переменные $f_1(\mathbf{X}), ...,$ $f_m({\bf X})$ трактуются как отдельные независимые переменные в модели множественной регрессии.

Лекция 7

Псевдообратная матрица

Матрица \mathbf{F} имеет размеры $n \times m$, где, вообще говоря, n > m, матрица \mathbf{F}^T имеет размеры $m \times n$, а матрицы $\mathbf{F}^T \mathbf{F}$ и $\left(\mathbf{F}^T \mathbf{F}\right)^{-1}$ – размеры $m \times m$.

Матрица $\mathbf{F}^+ = (\mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T$ в формуле весов линейной регрессии общего вида называется псевдообратной матрицей (или матрицей Мура–Пенроуза):

$$\mathbf{F}^{+}\mathbf{F} = \left(\mathbf{F}^{T}\mathbf{F}\right)^{-1}\mathbf{F}^{T}\mathbf{F} = \mathbf{1}_{m},$$

где $\mathbf{1}_m$ – единичная $m \times m$ -матрица. Матрица $\mathbf{F}\mathbf{F}^+ = \mathbf{F} \left(\mathbf{F}^T\mathbf{F}\right)^{-1}\mathbf{F}^T$ (размерами $n \times n$) называется проекционной матрицей.

Значение функции SSE для построенного вектора весов ${\bf w}$ будет равно

$$SSE = \left\| \mathbf{Y} - \mathbf{F}\mathbf{F}^{+}\mathbf{Y} \right\|^{2}$$

Если столбцы матрицы \mathbf{F} линейно-зависимы (случай мультиколлинеарности), то матрица $\mathbf{F}^T\mathbf{F}$ будет вырожденой и обратная матрица $\left(\mathbf{F}^T\mathbf{F}\right)^{-1}$ не существует.

Если же столбцы матрицы ${\bf F}$ будут близки к линейной зависимости, то обращение матрицы ${\bf F}^T{\bf F}$ будет сложной вычислительной задачей.

Проблема мультиколлинеарности

Если определитель матрицы $\mathbf{F}^T \mathbf{F}$ близок к нулю (имеются собственные числа близкие к нулю), то

- решение задачи линейной регрессии общего вида ${\bf w}$ становится неустойчивым и неинтерпретируемым и может содержать слишком большие компоненты w_j различных знаков
- на обучающих данных функция $SSE = \|\mathbf{Y} \mathbf{Fw}\|^2$ может иметь малые значения, а на контрольных (или новых) данных функция $SSE = \|\mathbf{Y}' \mathbf{F}'\mathbf{w}\|^2$ может принимать значительно большие значения (т.е. будет иметь место переобучение)

Для устранения мультиколлинеарности (и переобучения) можно провести:

- отбор признаков, то есть отбрасывание тех признаков, которые могут оказаться линейно-зависимыми с другими признаками
- регуляризацию (накладываем дополнительные ограничения на вектор коэффициентов вида $\|\mathbf{w}\| \leqslant \alpha$)
- преобразование признаков (отобразить входные данные на новое пространство признаков)

Data Mining 2024

Оценка качества регрессии (MSE, RMSE, MSPE)

Пусть $\mathbf{Y} = (y_1, y_2, ..., y_n)^T$ – вектор значений откликов, а $\hat{\mathbf{Y}} = (\hat{y}_1, \hat{y}_2, ..., \hat{y}_n)^T$ – вектор прогнозируемых значений откликов. Тогда для оценки качества регрессии можно использовать показатели:

 \bullet Среднее квадратичное отклонение (Mean Squared Error, MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Корень среднеквадратичного отклонения (Root Mean Squared Error, RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

 \bullet Среднее квадратичное процентное отклонение (Mean Squared Percentage Error, MSPE)

$$MSPE = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{y_i} \right)^2$$

Оценка качества регрессии (МАЕ, МАРЕ)

• Среднее абсолютное отклонение (Mean Absolute Error, MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Метрика МАЕ более устойчива к выбросам, чем MSE. Например, что если для одной точки отклонение очень большое (точка представляет собой выброс), а для остальных точек — маленькое, то значение MAE увеличится от этой одной точки меньше, чем MSE, т.к. в MSE отклонения возводятся в квадрат.

• Среднее абсолютное процентное отклонение (Mean Average Percentage Error, MAPE)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

Метрика MAPE усредняет значения отклонений, деленных на значение целевой переменной.

Оценка качества регрессии (MSLE, MedAE)

• Среднее квадратичное логарифмическое отклонение (Mean Squared Logar Error, MSLE)

$$MSLE = \frac{1}{n} \sum_{i=1}^{n} (\ln(1 + y_i) - \ln(1 + \hat{y}_i))^2$$

• Медианное абсолютное отклонение (Median Absolute Error, MedAE)

$$MedAE = median(|y_1 - \hat{y}_1|, ... |y_n - \hat{y}_n|)$$

• Максимальная ошибка (maximum residual error, MaxErr)

$$MaxErr = \max_{i=1,n} |y_i - \hat{y}_i|$$

Коэффициент детерминации

Коэффициент детерминации (coefficient of determination) R^2 представляет собой долю дисперсии \mathbf{Y} , которая была объяснена независимой переменной модели.

Коэффициент \mathbb{R}^2 вычисляется по формуле

$$R^{2} = 1 - \frac{MSE}{\mathbb{V}[\mathbf{Y}]} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}},$$

где $\mathbb{V}[\mathbf{Y}] = \frac{1}{n} \sum_{i=1}^n \left(y_i - \overline{y}\right)^2$ — дисперсия $\mathbf{Y}, \ \overline{y} = \frac{1}{n} \sum_{i=1}^n y_i$ — выборочное среднее зависимой переменной \mathbf{Y} . Чем больше значение коэффициента детерминации R^2 , тем лучше данные описываются заданной моделью. В случае, когда $R^2 = 1$, все точки набора данных в точности лежат на линии регрессии.

Проблемы переобучения и недообучения

Одной из основных проблем машинного обучения является т.н. переобучение.

Переобучение (overfitting, overtraining) — это ситуация, когда обучаемая модель для данных обучающего набора прогнозирует отклики, которые близко или даже точно соответствуют откликам в этом наборе, однако для данных, не участвовавших в процессе обучения, модель вырабатывает предсказания низкого качества. Переобучение может возникать

- при использовании слишком сложных моделей
- при слишком долгом процессе обучения
- при неудачной обучающей выборке

Недообучение (underfitting) — это ситуация, когда обучаемая модель не обеспечивает приемлемого качества (достаточно малой величины средней ошибки) даже на обучающем наборе. Недообучение может возникать

- при использовании слишком простых моделей
- при прекращении процесса обучения до достижения состояния с достаточно малой ошибкой
- при неудачной обучающей выборке

Пример недообучения

Пример переобучения

Пример подходящей модели

Кривые обучения

Кривая обучения — графическое представление зависимости меры (показателя) качества обучения (по вертикальной оси) от определенного показателя модели обучения (по горизонтальной оси). Например, в примерах ниже представлена зависимость средней ошибки от объема датасета.

Кривые обучения при переобучении

При переобучении небольшая средняя ошибка на обучающей выборке не обеспечивает такую же малую ошибку на тестовой выборке.

Переобучение связано с высокой дисперсией (variance) алгоритма обучения.

Кривые обучения при недообучении

При недообучении независимо от объема обучающего датасета как на обучающей выборке, так и на тестовой выборке небольшая средняя ошибка не достигается.

Недообучение связано с высоким смещением (bias) алгоритма обучения.

Останов обучения модели при переобучении

Возможные решения при пере/недообучении

Возможные решения при переобучении:

- Увеличение количества данных в наборе;
- Уменьшение количества параметров модели;
- Добавление регуляризации (увеличение коэффициента регуляризации).

Возможные решения при недообучении:

- Добавление новых параметров в модель;
- Использование для описания модели более сложных функций (с более высокой степенью);
- Уменьшение коэффициента регуляризации.

Модели регрессии в scikit-learn

- линейная регрессия (LinearRegression)
- полиномиальная регрессия (PolynomialFeatures+LinearRegression)
- стохастический градиентный спуск (SGDRegressor)
- гребневая регрессия (Ridge)
- регрессия лассо (Lasso)
- регрессия эластичная сеть (ElasticNet)
- регрессия на основе метода ближайших соседей (KNeighborsRegressor)
- регрессия на основе деревьев решений (DecisionTreeRegressor)
- регрессия на основе метода опорных векторов (SVR)