Fundamentos y Estructuras de Programación Nociones de Complejidad Computacional

Carlos Alberto Ramirez Restrepo

Programa de Ingeniería de Sistemas Pontificia Universidad Javeriana Cali, Colombia carlosalbertoramirez@javerianacali.edu.co

Plan

- 2 Cálculo de complejidad por conteo
- 3 Cálculo de complejidad por inspección

Plan

- Generalidades
- 2 Cálculo de complejidad por conteo
- Cálculo de complejidad por inspección

√ Como se vio anteriormente, de forma general, un problema se denomina no decidible cuando no es posible encontrar un algoritmo que lo resuelva.

- √ Como se vio anteriormente, de forma general, un problema se denomina no decidible cuando no es posible encontrar un algoritmo que lo resuelva.
- ✓ Los problemas para los cuales existe un algoritmo que los resuelva se denominan decidibles.

- ✓ Como se vio anteriormente, de forma general, un problema se denomina no decidible cuando no es posible encontrar un algoritmo que lo resuelva.
- ✓ Los problemas para los cuales existe un algoritmo que los resuelva se denominan decidibles.
- ✓ Por otro lado, los problemas computacionales pueden ser también clasificados de acuerdo a su complejidad en problemas tratables y problemas intratables.

- ✓ Como se vio anteriormente, de forma general, un problema se denomina no decidible cuando no es posible encontrar un algoritmo que lo resuelva.
- ✓ Los problemas para los cuales existe un algoritmo que los resuelva se denominan decidibles.
- ✓ Por otro lado, los problemas computacionales pueden ser también clasificados de acuerdo a su complejidad en problemas tratables y problemas intratables.
- ✓ La complejidad de un algoritmo mide el grado u orden de crecimiento que tiene el tiempo de ejecución del algoritmo dado el tamaño de la entrada que tenga.

✓ Un problema es denominado intratable si, con entradas grandes, no puede ser resuelto por ningún computador, no importa lo rápido que sea, cuanta memoria tenga o cuanto tiempo se le de para que lo resuelva.

- ✓ Un problema es denominado intratable si, con entradas grandes, no puede ser resuelto por ningún computador, no importa lo rápido que sea, cuanta memoria tenga o cuanto tiempo se le de para que lo resuelva.
- ✓ Lo anterior sucede debido a que los algoritmos que existen para solucionar estos problemas tienen una complejidad muy grande.

Existen dos maneras de hallar la complejidad de un algoritmo:

1. por conteo, ó

Existen dos maneras de hallar la complejidad de un algoritmo:

- 1. por conteo, ó
- 2. por inspección o tanteo.

Plan

- 2 Cálculo de complejidad por conteo
- 3 Cálculo de complejidad por inspección

Cálculo de complejidad por conteo

 Para encontrar la complejidad de un algoritmo por conteo se debe tomar cada línea de código y determinar cuántas veces se ejecuta.

Cálculo de complejidad por conteo

- Para encontrar la complejidad de un algoritmo por conteo se debe tomar cada línea de código y determinar cuántas veces se ejecuta.
- Luego, se debe sumar las cantidades encontradas y la complejidad será del orden del resultado dado.

Cálculo de complejidad por conteo

- Para encontrar la complejidad de un algoritmo por conteo se debe tomar cada línea de código y determinar cuántas veces se ejecuta.
- Luego, se debe sumar las cantidades encontradas y la complejidad será del orden del resultado dado.
- Esta complejidad es una aproximación de cuánto se demorará todo el algoritmo en ejecutarse.

Cálculo de complejidad por conteo - Ejemplo

Considere el siguiente algoritmo:

```
void imprime100(){
   int i = 1;
   while(i <= 100){
      printf("%d",i);
      i++;
   }
}</pre>
```

Cálculo de complejidad por conteo - Ejemplo

Para calcular la complejidad de este algoritmo por conteo se puede utilizar una tabla donde se numeran las líneas de código y se determine el número de veces que se ejecuta cada una:

Número de línea	Línea de código	Número de ejecuciones
1	<pre>void imprime100(){</pre>	
2	int i = 1;	1
3	while(i <= 100){	101
4	<pre>printf("%d",i);</pre>	100
5	i++;	100
6	}	
7	}	

Cálculo de complejidad por conteo - Ejemplo

Para calcular la complejidad de este algoritmo por conteo se puede utilizar una tabla donde se numeran las líneas de código y se determine el número de veces que se ejecuta cada una:

Número de línea	Línea de código	Número de ejecuciones
1	<pre>void imprime100(){</pre>	
2	int i = 1;	1
3	while(i <= 100){	101
4	<pre>printf("%d",i);</pre>	100
5	i++;	100
6	}	
7	}	

La suma de las cantidades encontradas es:

Número total ejecuciones = 1 + 101 + 100 + 100 = 302

Cálculo de complejidad por conteo - Ejemplo

✓ Dado que 302 es una constante, luego se tiene que la complejidad del algoritmo anterior es O(1).

Cálculo de complejidad por conteo - Ejemplo

- ✓ Dado que 302 es una constante, luego se tiene que la complejidad del algoritmo anterior es ${\cal O}(1).$
- √ O(1) es la notación utilizada para expresar que el tiempo de computo de un algoritmo es una función constante con respecto al tamaño de la entrada.

Cálculo de complejidad por conteo - Ejemplo 2

Considere el siguiente algoritmo:

```
void imprimeN(int n){
   int i = 1;
   while(i <= n){
      printf("%d",i);
      i++;
   }
}</pre>
```

Cálculo de complejidad por conteo - Ejemplo

Se enumeran las líneas y se procede a contabilizar:

Número de línea	Línea de código	Número de ejecuciones
1	<pre>void imprimeN(int n){</pre>	
2	int i = 1;	1
3	$while(i \le n){}$	n+1
4	<pre>printf("%d",i);</pre>	n
5	i++;	n
6	}	
7	}	

Cálculo de complejidad por conteo - Ejemplo

Se enumeran las líneas y se procede a contabilizar:

Número de línea	Línea de código	Número de ejecuciones
1	<pre>void imprimeN(int n){</pre>	
2	int i = 1;	1
3	$while(i \le n){$	n+1
4	<pre>printf("%d",i);</pre>	n
5	i++;	n
6	}	
7	}	

La suma de las cantidades encontradas es:

Número total ejecuciones
$$= 1 + (n+1) + n + n = 3n + 2$$

Cálculo de complejidad por conteo - Ejemplo

✓ Dado que 3n+2 es una función lineal, luego se tiene que la complejidad del algoritmo anterior es O(n).

Cálculo de complejidad por conteo - Ejemplo

- ✓ Dado que 3n+2 es una función lineal, luego se tiene que la complejidad del algoritmo anterior es O(n).
- \checkmark O(n) es la notación utilizada para expresar que el tiempo de computo del algoritmo es una función lineal del tamaño de la entrada.

Cálculo de complejidad por conteo - Ejemplo 3

```
Considere el siguiente algoritmo:
```

```
void imprime_mitad(int n){
  int i = n;
  while(i > 0){
    printf("%d",i);
    i = i / 2;
  }
}
```

Cálculo de complejidad por conteo - Ejemplo 3

✓ A primera vista, el algoritmo anterior es similar a los algoritmos de los ejemplos anteriores.

Cálculo de complejidad por conteo - Ejemplo 3

- A primera vista, el algoritmo anterior es similar a los algoritmos de los ejemplos anteriores.
- \checkmark No obstante, en cada iteración el valor de i es reducido a la mitad.

Cálculo de complejidad por conteo - Ejemplo 3

- A primera vista, el algoritmo anterior es similar a los algoritmos de los ejemplos anteriores.
- \checkmark No obstante, en cada iteración el valor de i es reducido a la mitad.
- ✓ Entonces en lugar de imprimirse los números de 1 a n, en realidad se imprimirán los números n, n/2, n/4, n/8, ..., $n/2^k$

Cálculo de complejidad por conteo - Ejemplo 3

 \checkmark De lo anterior, es requerido encontrar la iteración en la cual el algoritmo finaliza, osea el punto donde $n=2^k$.

Cálculo de complejidad por conteo - Ejemplo 3

- ✓ De lo anterior, es requerido encontrar la iteración en la cual el algoritmo finaliza, osea el punto donde $n=2^k$.
- \checkmark Para hallar el valor de k, se utilizan las propiedades de los logaritmos:

$$n = 2^k$$

$$log_2 \ n = log_2 \ 2^k$$

$$log_2 \ n = k$$

Cálculo de complejidad por conteo - Ejemplo 3

- ✓ De lo anterior, es requerido encontrar la iteración en la cual el algoritmo finaliza, osea el punto donde $n=2^k$.
- \checkmark Para hallar el valor de k, se utilizan las propiedades de los logaritmos:

$$n = 2^k$$

$$log_2 \ n = log_2 \ 2^k$$

$$log_2 \ n = k$$

✓ En consecuencia, el número de iteraciones que se realizan es log_2n .

Cálculo de complejidad por conteo - Ejemplo 3

De esta manera se tiene lo siguiente:

Número de línea	Línea de código	Número de ejecuciones
1	<pre>void imprime_mitad(int n){</pre>	
2	<pre>int i = n;</pre>	1
3	while(i > 0){	$log_2 n + 2$
4	<pre>printf("%d",i);</pre>	$log_2 n + 1$
5	i = i/2;	$log_2 n + 1$
6	}	
7	}	

Cálculo de complejidad por conteo - Ejemplo 3

De esta manera se tiene lo siguiente:

Número de línea	Línea de código	Número de ejecuciones
1	<pre>void imprime_mitad(int n){</pre>	
2	<pre>int i = n;</pre>	1
3	$while(i > 0){$	$log_2 n + 2$
4	<pre>printf("%d",i);</pre>	$log_2 n + 1$
5	i = i/2;	$log_2 n + 1$
6	}	
7	}	

La suma de las cantidades encontradas es:

Número total ejecuciones
$$=1+(log_2\ n+2)+(log_2\ n+1)+(log_2\ n+1)$$

$$=3log_2\ n+5$$

Cálculo de complejidad por conteo - Ejemplo 3

✓ Dado que $3log_2$ n+5 es una función logarítmica, luego se tiene que la complejidad del algoritmo anterior es $O(log_2 n)$.

Cálculo de complejidad por conteo - Ejemplo 3

- ✓ Dado que $3log_2$ n+5 es una función logarítmica, luego se tiene que la complejidad del algoritmo anterior es $O(log_2 n)$.
- ✓ O(log₂ n) es la notación utilizada para expresar que el tiempo de computo del algoritmo es una función logarítmica del tamaño de la entrada.

Considere el siguiente algoritmo:

Cálculo de complejidad por conteo - Ejemplo 4

```
void imprimeNxN(int n){
  for(int i=1; i<=n; i++){
    for(int j=1; j<=n; j++){
      printf("%d",(i-1)*n + j);
    }
}</pre>
```

Qué hace este algoritmo?

Cálculo de complejidad por conteo - Ejemplo 4

Se enumeran las líneas y se procede a contabilizar:

# Línea	Línea de código	Número de ejecuciones
1	<pre>void imprimeNxN(int n){</pre>	
2	for(int i=1; i<=n; i++){	n+1
3	for(int j=1; j<=n; j++){	n * (n + 1)
4	printf("%d",(i-1)*n + j);	n*n
5	}	
6	}	
7	}	

Cálculo de complejidad por conteo - Ejemplo 4

Se enumeran las líneas y se procede a contabilizar:

# Línea	Línea de código	Número de ejecuciones
1	<pre>void imprimeNxN(int n){</pre>	
2	for(int i=1; i<=n; i++){	n+1
3	for(int j=1; j<=n; j++){	n * (n + 1)
4	printf("%d",(i-1)*n + j);	n*n
5	}	
6	}	
7	}	

La suma de las cantidades encontradas es:

Número total ejecuciones $= (n+1) + n * (n+1) + n * n = 2n^2 + 2n + 1$

Cálculo de complejidad por conteo - Ejemplo 4

✓ Dado que $2n^2 + 2n + 1$ es una función cuadrática, luego se tiene que la complejidad del algoritmo anterior es $O(n^2)$.

- ✓ Dado que $2n^2 + 2n + 1$ es una función cuadrática, luego se tiene que la complejidad del algoritmo anterior es $O(n^2)$.
- \checkmark $O(n^2)$ es la notación utilizada para expresar que el tiempo de computo del algoritmo es una función cuadrática del tamaño de la entrada.

Cálculo de complejidad por conteo - Ejemplo 5

Considere el siguiente algoritmo:

```
int sumaVector(int *v, int n){
   int i = 0;
   int sum = 0;
   while(i < n){
      if(v[i] % 2 != 0)
        sum = sum + v[i];
      i++;
   }
   return sum;
}</pre>
```

Cálculo de complejidad por conteo - Ejemplo 5

```
Considere el siguiente algoritmo:
```

```
int sumaVector(int *v, int n){
   int i = 0;
   int sum = 0;
   while(i < n){
      if(v[i] % 2 != 0)
        sum = sum + v[i];
      i++;
   }
   return sum;
}</pre>
```

Qué cálculo realiza este algoritmo?

Cálculo de complejidad por conteo - Ejemplo 5

✓ Cuando se analizan algoritmos con condicionales (como el algoritmo anterior) hay que tener en cuenta que el conteo se hace considerando si las guardas de los condicionales se cumplen o no.

- Cuando se analizan algoritmos con condicionales (como el algoritmo anterior) hay que tener en cuenta que el conteo se hace considerando si las guardas de los condicionales se cumplen o no.
- √ La complejidad en estos algoritmos se halla:

- ✓ Cuando se analizan algoritmos con condicionales (como el algoritmo anterior) hay que tener en cuenta que el conteo se hace considerando si las guardas de los condicionales se cumplen o no.
- √ La complejidad en estos algoritmos se halla:
 - en el peor de los casos (cuando se asume que las guardas de los condicionales siempre se cumplen),

- Cuando se analizan algoritmos con condicionales (como el algoritmo anterior) hay que tener en cuenta que el conteo se hace considerando si las guardas de los condicionales se cumplen o no.
- √ La complejidad en estos algoritmos se halla:
 - en el peor de los casos (cuando se asume que las guardas de los condicionales siempre se cumplen),
 - el caso promedio (cuando se asume que las guardas algunas veces se cumplen y otras veces no)

- ✓ Cuando se analizan algoritmos con condicionales (como el algoritmo anterior) hay que tener en cuenta que el conteo se hace considerando si las guardas de los condicionales se cumplen o no.
- √ La complejidad en estos algoritmos se halla:
 - en el peor de los casos (cuando se asume que las guardas de los condicionales siempre se cumplen),
 - el caso promedio (cuando se asume que las guardas algunas veces se cumplen y otras veces no)y
 - el mejor de los casos (cuando se asume que las guardas no se cumplen).

Cálculo de complejidad por conteo - Ejemplo 5

Se enumeran las líneas y se procede a contabilizar:

# Línea	Línea de código	Número de ejecuciones
1	<pre>int sumaVector(int *v, int n){</pre>	
2	int i = 0;	1
3	<pre>int sum = 0;</pre>	1
4	$while(i < n){$	n+1
5	if(v[i] % 2 != 0)	n
6	<pre>sum = sum + v[i];</pre>	?
7	i++;	n
8	}	
9	return sum;	1
10	}	

Cálculo de complejidad por conteo - Ejemplo 5

✓ La cantidad de veces que se ejecuta la línea 6 es indefinida debido a que depende de si la guarda del condicional es verdadera o falsa.

- ✓ La cantidad de veces que se ejecuta la línea 6 es indefinida debido a que depende de si la guarda del condicional es verdadera o falsa.
- ✓ Por esta razón tenemos que analizar esta situación desde los tres casos:

- La cantidad de veces que se ejecuta la línea 6 es indefinida debido a que depende de si la guarda del condicional es verdadera o falsa.
- ✓ Por esta razón tenemos que analizar esta situación desde los tres casos:
 - En el mejor de los casos ningún elemento del vector es impar por lo que la línea 6 no se ejecutaría nunca.

- ✓ La cantidad de veces que se ejecuta la línea 6 es indefinida debido a que depende de si la guarda del condicional es verdadera o falsa.
- ✓ Por esta razón tenemos que analizar esta situación desde los tres casos:
 - En el mejor de los casos ningún elemento del vector es impar por lo que la línea 6 no se ejecutaría nunca.
 - \circ En el caso promedio, aproximadamente la mitad de los elementos será impar y la otra mitad par. En este caso la línea se ejecutaría n/2 veces.

- ✓ La cantidad de veces que se ejecuta la línea 6 es indefinida debido a que depende de si la guarda del condicional es verdadera o falsa.
- ✓ Por esta razón tenemos que analizar esta situación desde los tres casos:
 - En el mejor de los casos ningún elemento del vector es impar por lo que la línea 6 no se ejecutaría nunca.
 - o En el caso promedio, aproximadamente la mitad de los elementos será impar y la otra mitad par. En este caso la línea se ejecutaría n/2 veces.
 - En el peor caso todos los elementos del vector son impares por lo que siempre que se ejecute la línea 5 se ejecutará la línea 6. Luego esta línea se ejecutará n veces.

Cálculo de complejidad por conteo - Ejemplo 5

La suma de las cantidades encontradas es entonces:

Cálculo de complejidad por conteo - Ejemplo 5

La suma de las cantidades encontradas es entonces:

✓ En el mejor de los casos:

Número total ejecuciones
$$= 1+1+(n+1)+n+\mathbf{0}+n+1 = 3n+4$$

✓ En el caso promedio:

Número total ejecuciones
$$= 1+1+(n+1)+n+\mathbf{n}/2+n+1 = 7/2n+4$$

Cálculo de complejidad por conteo - Ejemplo 5

La suma de las cantidades encontradas es entonces:

✓ En el mejor de los casos:

Número total ejecuciones
$$= 1+1+(n+1)+n+\mathbf{0}+n+1 = 3n+4$$

✓ En el caso promedio:

Número total ejecuciones
$$= 1+1+(n+1)+n+\mathbf{n}/\mathbf{2}+n+1 = 7/2n+4$$

✓ En el peor de los casos:

Número total ejecuciones
$$= 1+1+(n+1)+n+n+n+1 = 4n+4$$

Por lo tanto, la complejidad del algoritmo es, en este algoritmo particular, O(n).

Cálculo de complejidad por conteo - Ejemplo 6

Considere ahora el siguiente algoritmo más complejo:

```
void algoritmo(int *a, int n){
  for(int j=1; j<n; j++){
    int clave = a[j];
    int i = j-1:
    while(i>=0 && a[i] > clave){
      a[i+1] = a[i];
      i = i-1;
    }
    a[i+1] = clave;
}
```

Cálculo de complejidad por conteo - Ejemplo 6

Considere ahora el siguiente algoritmo más complejo:

```
void algoritmo(int *a, int n){
  for(int j=1; j<n; j++){
    int clave = a[j];
    int i = j-1:
    while(i>=0 && a[i] > clave){
       a[i+1] = a[i];
       i = i-1;
    }
    a[i+1] = clave;
}
```

Qué cálculo realiza este algoritmo?

Cálculo de complejidad por conteo - Ejemplo 6

Se enumeran las líneas y se procede a contabilizar:

# Línea	Línea de código	Número de ejecuciones
1	<pre>void algoritmo(int *a, int n){</pre>	
2	for(int j=1; j <n; j++){<="" td=""><td>n</td></n;>	n
3	<pre>int clave = a[j];</pre>	n-1
4	int $i = j-1$:	n-1
5	while(i>=0 && a[i] > clave){	$t_1 + t_2 + \ldots + t_{n-1}$
6	a[i+1] = a[i];	$(t_1-1)+\ldots+(t_{n-1}-1)$
7	i = i-1;	$(t_1-1)+\ldots+(t_{n-1}-1)$
8	}	
9	a[i+1] = clave;	n-1
10	}	
11	}	

Donde cada t_j corresponde al número de veces que se cumple la condición del **while** en la iteración j.

Cálculo de complejidad por conteo - Ejemplo 6

Se enumeran las líneas y se procede a contabilizar:

# Línea	Línea de código	Número de ejecuciones
1	<pre>void algoritmo(int *a, int n){</pre>	
2	for(int j=1; j <n; j++){<="" td=""><td>n</td></n;>	n
3	<pre>int clave = a[j];</pre>	n-1
4	int i = j-1:	n-1
5	while(i>=0 && a[i] > clave){	$t_1 + t_2 + \ldots + t_{n-1}$
6	a[i+1] = a[i];	$(t_1-1)+\ldots+(t_{n-1}-1)$
7	i = i-1;	$(t_1-1)+\ldots+(t_{n-1}-1)$
8	}	
9	a[i+1] = clave;	n-1
10	}	
11	}	

En el mejor caso cúanto vale cada t_j ?

Cálculo de complejidad por conteo - Ejemplo 6

Se enumeran las líneas y se procede a contabilizar:

```
# Línea
          Línea de código
                                                   Número de ejecuciones
          void algoritmo(int *a, int n){
             for(int j=1; j<n; j++){
                                                             n
   3
                                                           n-1
                int clave = a[j];
                int i = j-1:
                                                           n-1
                while(i>=0 && a[i] > clave){ t_1 + t_2 + ... + t_{n-1}
   5
                                                 (t_1-1)+\ldots+(t_{n-1}-1)
                  a[i+1] = a[i];
                                                 (t_1-1)+\ldots+(t_{n-1}-1)
                  i = i-1:
   8
               a[i+1] = clave;
                                                           n-1
  10
  11
```

En el mejor caso, $t_j = 1$.

Cálculo de complejidad por conteo - Ejemplo 6

Se enumeran las líneas y se procede a contabilizar:

# Línea	Línea de código	Número de ejecuciones
1	<pre>void algoritmo(int *a, int n){</pre>	
2	for(int j=1; j <n; j++){<="" td=""><td>n</td></n;>	n
3	<pre>int clave = a[j];</pre>	n-1
4	int i = j-1:	n-1
5	while(i>=0 && a[i] > clave){	$t_1 + t_2 + \ldots + t_{n-1}$
6	a[i+1] = a[i];	$(t_1-1)+\ldots+(t_{n-1}-1)$
7	i = i-1;	$(t_1-1)+\ldots+(t_{n-1}-1)$
8	}	
9	a[i+1] = clave;	n-1
10	}	
11	}	

En el peor caso cúanto vale cada t_j ?

Cálculo de complejidad por conteo - Ejemplo 6

Se enumeran las líneas y se procede a contabilizar:

```
# Línea
          Línea de código
                                                   Número de ejecuciones
          void algoritmo(int *a, int n){
             for(int j=1; j<n; j++){
                                                             n
   3
                                                           n-1
                int clave = a[j];
                int i = j-1:
                                                           n-1
                while(i>=0 && a[i] > clave){ t_1 + t_2 + ... + t_{n-1}
   5
                                                 (t_1-1)+\ldots+(t_{n-1}-1)
                  a[i+1] = a[i];
                                                 (t_1-1)+\ldots+(t_{n-1}-1)
                  i = i-1:
   8
               a[i+1] = clave;
                                                           n-1
  10
  11
```

En el peor caso, $t_j = j$.

Cálculo de complejidad por conteo - Ejemplo 6

Se enumeran las líneas y se procede a contabilizar:

# Línea	Línea de código	Número de ejecuciones
1	<pre>void algoritmo(int *a, int n){</pre>	
2	for(int j=1; j <n; j++){<="" td=""><td>n</td></n;>	n
3	<pre>int clave = a[j];</pre>	n-1
4	int $i = j-1$:	n-1
5	while(i>=0 && a[i] > clave){	$t_1 + t_2 + \ldots + t_{n-1}$
6	a[i+1] = a[i];	$(t_1-1)+\ldots+(t_{n-1}-1)$
7	i = i-1;	$(t_1-1)+\ldots+(t_{n-1}-1)$
8	}	
9	a[i+1] = clave;	n-1
10	}	
11	}	

En el caso promedio, se supone que se necesitan j/2 comparaciones, esto es, $t_i=j/2$.

Cálculo de complejidad por conteo - Ejemplo 6

La suma de las cantidades encontradas es entonces:

✓ En el mejor caso:

$$\begin{aligned} \text{Total} &= n + (n-1) + (n-1) + \sum_{j=1}^{n-1} \mathbf{1} + \sum_{j=1}^{n-1} \mathbf{0} + \sum_{j=1}^{n-1} \mathbf{0} + (n-1) \\ &= n + (n-1) + (n-1) + (n-1) + (n-1) = 5n - 4 \end{aligned}$$

Cálculo de complejidad por conteo - Ejemplo 6

La suma de las cantidades encontradas es entonces:

✓ En el mejor caso:

$$\begin{aligned} \mathsf{Total} \;\; &= \;\; n + (n-1) + (n-1) + \sum_{j=1}^{n-1} \mathbf{1} + \sum_{j=1}^{n-1} \mathbf{0} + \sum_{j=1}^{n-1} \mathbf{0} + (n-1) \\ &= \;\; n + (n-1) + (n-1) + (n-1) + (n-1) \; = \; 5n-4 \end{aligned}$$

Por lo tanto, la complejidad del algoritmo es en el mejor caso ${\cal O}(n).$

Cálculo de complejidad por conteo - Ejemplo 6

La suma de las cantidades encontradas es entonces:

✓ En el peor caso:

Total =
$$n + (n-1) + (n-1) + \sum_{j=1}^{n-1} \mathbf{j} + \sum_{j=1}^{n-1} \mathbf{j} - \mathbf{1} + \sum_{j=1}^{n-1} \mathbf{j} - \mathbf{1} + (n-1)$$

= $n + 3(n-1) + n(n+1)/2 + 2(n(n+1)/2 - (n-1))$
= $n + 3(n-1) + n(n+1)/2 + n(n+1) - 2(n-1)$
= $n + (n-1) + n(n+1)/2 + n(n+1)$
= $2n - 1 + n^2/2 + n/2 + n^2 + n = 3n^2/2 + 7n/2 - 1$

Cálculo de complejidad por conteo - Ejemplo 6

La suma de las cantidades encontradas es entonces:

✓ En el peor caso:

Total =
$$n + (n-1) + (n-1) + \sum_{j=1}^{n-1} \mathbf{j} + \sum_{j=1}^{n-1} \mathbf{j} - \mathbf{1} + \sum_{j=1}^{n-1} \mathbf{j} - \mathbf{1} + (n-1)$$

= $n + 3(n-1) + n(n+1)/2 + 2(n(n+1)/2 - (n-1))$
= $n + 3(n-1) + n(n+1)/2 + n(n+1) - 2(n-1)$
= $n + (n-1) + n(n+1)/2 + n(n+1)$
= $2n - 1 + n^2/2 + n/2 + n^2 + n = 3n^2/2 + 7n/2 - 1$

Por lo tanto, la complejidad del algoritmo es en el peor caso $O(n^2)$.

Plan

- Generalidades
- 2 Cálculo de complejidad por conteo
- 3 Cálculo de complejidad por inspección

Cálculo de complejidad por inspección

√ Hallar la complejidad por inspección o tanteo, es un método más rápido pero impreciso y, si no se cuenta con la suficiente experiencia, poco confiable.

- ✓ Hallar la complejidad por inspección o tanteo, es un método más rápido pero impreciso y, si no se cuenta con la suficiente experiencia, poco confiable.
- ✓ Simplemente se mira la estructura del algoritmo y se siguen las tres siguientes reglas:

- ✓ Hallar la complejidad por inspección o tanteo, es un método más rápido pero impreciso y, si no se cuenta con la suficiente experiencia, poco confiable.
- ✓ Simplemente se mira la estructura del algoritmo y se siguen las tres siguientes reglas:
 - 1. La complejidad de una asignación es O(1).

- √ Hallar la complejidad por inspección o tanteo, es un método más rápido pero impreciso y, si no se cuenta con la suficiente experiencia, poco confiable.
- ✓ Simplemente se mira la estructura del algoritmo y se siguen las tres siguientes reglas:
 - 1. La complejidad de una asignación es O(1).
 - La complejidad de un condicional es 1 más el máximo entre la complejidad del cuerpo del condicional cuando la guarda es positiva y el cuerpo del condicional cuando la guarda es negativa.

- √ Hallar la complejidad por inspección o tanteo, es un método más rápido pero impreciso y, si no se cuenta con la suficiente experiencia, poco confiable.
- ✓ Simplemente se mira la estructura del algoritmo y se siguen las tres siguientes reglas:
 - 1. La complejidad de una asignación es O(1).
 - La complejidad de un condicional es 1 más el máximo entre la complejidad del cuerpo del condicional cuando la guarda es positiva y el cuerpo del condicional cuando la guarda es negativa.
 - La complejidad de un ciclo es el número de veces que se ejecuta el ciclo multiplicado por la complejidad del cuerpo del ciclo.

Complejidades

A continuación se resumen las diferentes complejidades que puede tener un algoritmo:

Complejidad	Nombre
O(1)	Constante
$O(log \ n)$	Logarítmica
O(n)	Lineal
$O(nlog \ n)$	
$O(n^2)$	Cuadrática
$O(n^3)$	Cúbica
$O(n^c), \ c > 3$	Polinomial
$O(2^n)$	
$O(3^n)$	
$O(c^n), c > 3$	Exponencial
O(n!)	Factorial
$O(n^n)$	

Complejidades

A continuación se resumen las diferentes complejidades que puede tener un algoritmo:

Complejidad	Nombre
O(1)	Constante
$O(log \ n)$	Logarítmica
O(n)	Lineal
$O(nlog \ n)$	
$O(n^2)$	Cuadrática
$O(n^3)$	Cúbica
$O(n^c), \ c > 3$	Polinomial
$O(2^n)$	
$O(3^n)$	
$O(c^n), c > 3$	Exponencial
O(n!)	Factorial
$O(n^n)$	

Se dice que un problema es tratable si su complejidad es polinomial o menor.

Introducción

Ejercicio

Calcule la complejidad del siguiente algoritmo:

```
int programa(int n){
   int s = 0;
   int i = 1;
   while(i \le n){
     int t = 0;
     int j = 1;
     while(j \le i){
       t = t + 1;
        j = j + 1;
     s = s + t;
     i = i + 1;
   return s;
```

Introducción

Ejercicio

Calcule la complejidad del siguiente algoritmo:

```
Algoritmo(valores[1..n]){
   suma=0
   contador=0
   for(i=1; i<n; i++){
      for(j=i+1; j<=n; j++){
         if(valores[i] < valores[j]){</pre>
            for(h=j; h<=n; h++){
              suma += valores[i]
         else{
            contador++
            break;
         }}}
   return contador
```

Preguntas

