Válido somente com assinatura e carimbo do IFCE

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

PROGRAMA DE UNIDADE DIDÁTICA – PUD

DISCIPLINA: CIRCUITOS ELETRÔNICOS		
Código:		
Carga Horária:	80	
Número de Créditos:	2.2	
Código pré-requisito:		
Semestre:	3	
Nível:	Bacharelado	

EMENTA

Amplificadores de dois ou mais estágios. Transistor de efeito de campo de junção (JFET), Transistor de efeito de campo de metal óxido (MOSFET). Circuitos com JFET e MOSFET. Amplificador operacional. Circuitos com amplificador operacional Filtros ativos e circuitos osciladores. Conversores AD e DA. Laboratório de amplificadores. Prática com transistores de efeito campo. Prática com amplificadores operacionais. Projeto de filtros ativos e osciladores.

OBJETIVO

Entender, analisar e projetar circuitos com os seguintes componentes: transistor a efeito de campo e amplificador operacional.

PROGRAMA

Unidade 1: Amplificador Operacional – 1.1 Características do amplificador operacional ideal e do amplificador operacional real. 1.2 Amplificador inversor. 1.3 Amplificador não inversor. 1.4 Amplificador somador. 1.5 Circuito integrador. 1.6 Circuito diferenciador. 1.7 Circuitos comparadores com e sem realimentação. 1.8 Filtros ativos de banda larga: passa baixa, passa alta, passa faixa e filtro rejeita faixa. Unidade 2: Circuitos osciladores – 2.1 Multivibrador astável: gerador de onda quadrada. 2.2 Gerador de onda triangular. 2.3 Teoria da oscilação senoidal. 2.4 Oscilador a ponte de Wien. 2.5 Oscilador Colpitts. Unidade 3: Transistor a efeito de campo (JFET) – 3.1 Curva de dreno. 3.2 Curva de transcondutância. 3.3 Polarização da porta. 3.4 Autopolarização. 3.5 divisor de tensão e polarização da fonte. 3.6 Polarização por fonte de corrente. 3.7 Amplificação fonte comum. Unidade 4: transistor de efeito de campo de metal óxido (MOSFET) – 4.1 MOSFET tipo depleção. 4.2 Polarização MOSFET do tipo depleção. 4.3 Aplicação do MOSFET tipo depleção. 4.4 MOSFET tipo intensificação. 4.5 Polarização do MOSFET tipo intensificação.

METODOLOGIA DE ENSINO

As ações pedagógicas estão centradas no desenvolvimento de habilidades cognitivas. Essas habilidades incluem, entre outras, o raciocínio, a investigação e a formação de conceitos.

A disciplina é desenvolvida no formato presencial: exposição teórica, práticas de laboratório, seminários e atividades a serem desenvolvidas extra-sala de aula. Os conteúdos das aulas serão detalhados conforme o cronograma do semestre.

AVALIACÃO

A avaliação é realizada de forma processual e cumulativa. A saber: avaliações escritas, trabalhos extra-sala de aula e dinâmicas em sala. A freqüência é obrigatória, respeitando os limites de ausência previstos em lei.

BIBLIOGRAFIA BÁSICA

BOGART, Thedore F., Jr. Dispositivos e circuitos eletrônicos. São Paulo (SP): Makron Books, 2004. v. 1.

BOGART, Thedore F., Jr. Dispositivos e circuitos eletrônicos. São Paulo (SP): Makron Books, 2001. v. 2.

Válido somente com assinatura e carimbo do IFCE

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

BOYLESTAD, Robert; NASHELSKY, Louis. **Dispositivos eletrônicos e teoria de circuitos**. 3.ed. Rio de Janeiro (RJ): Prentice-Hall do Brasil, 1984.

BIBLIOGRAFIA COMPLEMENTAR

MILLMAN, Jacob; GRABEL, Arvin. Microelectronica. 2.ed. Lisboa (Portugal): McGraw-Hill, 1992. 2 v.

MALVINO, Albert Paul; BATES, David J. **Eletrônica (tradução da 7ª edição)** . 7.ed. São Paulo (SP): McGraw-Hill, 2007. v. 1.

MALVINO, Albert Paul; LEACH, Donald P. Eletrônica. São Paulo (SP): Makron Books, 1987. v.1.

SANTOS, Edval J. P. Eletrônica analógica integrada e aplicações. São Paulo (SP): Livraria da Física, 2011.

PERTENCE JÚNIOR, Antônio. **Amplificadores operacionais e filtros ativos:** teoria, projetos, aplicações e laboratório. 4.ed. São Paulo (SP): McGraw-Hill, 1988/2007.

Coordenador do Curso	Setor Pedagógico