

Arbore. Definiție TAoCP Knuth:

Set T de noduri

Există un nod numit rădăcină root(T)

Celelalte noduri sunt partiționate în $m \ge 0$ seturi **disjuncte** $T_1, T_2, ..., T_m$. Fiecare astfel de set este un arbore. Astfel arborii $T_1, T_2, ..., T_m$ sunt subarbori ai rădăcinii.

Graf. Definiție:

Graf G = (V, E). Unde:

V – setul de noduri – Vertex

E − setul de muchii − Edges

 $E \subseteq \{(x,y)|(x,y) \in V^2 \land x \neq y\}$

Arbore vs Graf

Un arbore este un graf neorientat - orice muchie poate fi parcursă în ambele direcţii connex - există o cale, parcurgând muchiile, de la un nod la oricare altul

fără cicluri - nu există nici o cale de forma $(v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n \rightarrow v_0)$

Arbore - stocare

Listă conexiuni

1	1	1	2	4	4	5	6
2	3	4	5	6	7	8	9

Vector părinți

1	2	3	4	5	6	7	8	9
-	1	1	1	2	4	4	5	6

Ca orice alt graf: ex. Matrice adiacență

Care este rădăcina arborelui?

Care este rădăcina arborelui?

Care sunt frunzele arborelui?

Care sunt frunzele arborelui?

Mărimi arbore

- Height (Înălțime) mărimea celei mai lungi căi de la nodul rădăcină la un nod frunză.
- Width (Lățime) numărul de noduri după un nivel.
- Degree of a node (gradul unui nod) număr copii nod.
- Degree of tree (gradul arborelui) numărul maxim de copii al unui nod din arbore.

Afișarea unui arbore fără recursivitate

- Adăugăm rădăcina în coadă
- Până ce coada este goală
 - · Scoatem un nod din coadă
 - Adăugăm toți copiii în coadă

Afișare: 1

Afișare: 1 2

Afișare: 1 2 3

Afișare: 1 2 3 4

Afișare: 1 2 3 4 5

Afișare: 1 2 3 4 5 6

Afișare: 1 2 3 4 5 6 7

Afişare:

Afișare: 1 2 3 4 5 6 7 8 9

- Adăugăm rădăcina în stivă
- Până ce stiva este goală
 - Scoatem un nod din stivă
 - Adăugăm toți copiii în stivă

Cum va fi afișat arborele?

Afişare:

Afișare:

Afișare: 1

Afișare: 1 4

Afișare: 1 4 7

Afișare: 1 4 7 6

Afișare: 1 4 7 6 9

Afișare: 1 4 7 6 9 3

Afișare: 1 4 7 6 9 3 2

Afișare: 1 4 7 6 9 3 2 5

Afișarea unui arbore folosind o stivă

Afișare: 1 4 7 6 9 3 2 5 8

Arbori binari

Fiecare nod are maxim doi copii.

```
typedef struct binaryTreeNode
{
    void *value;
    struct binaryTreeNode *childLeft;
    struct binaryTreeNode *childRight;
    // struct binaryTreeNode *parent;
} binaryTreeNode;
```


Parcurgere arbori binari

Recursiv:

- inorder (left, root, right)
- preorder (root, left, right)
- postorder (left, right, root)

Parcurgere arbori binari - inorder

```
void printBinaryTree(binaryTreeNode *bTreeNode)
{
    if (bTreeNode == NULL)
        return;
    printBinaryTree(bTreeNode->childLeft);
    printBTData(bTreeNode->value);
    printBinaryTree(bTreeNode->childRight);
}
```


Parcurgere arbori binari - inorder

```
void printBinaryTree(binaryTreeNode *bTreeNode)
{
   if (bTreeNode == NULL)
        return;
   printBinaryTree(bTreeNode->childLeft);
   printBTData(bTreeNode->value);
   printBinaryTree(bTreeNode->childRight);
}
```


Afișare: 8 5 2 1 9 6 4 7

Parcurgere arbori binari - preorder

```
void printBinaryTree(binaryTreeNode *bTreeNode)
{
   if (bTreeNode == NULL)
       return;
   printBTData(bTreeNode->value);
   printBinaryTree(bTreeNode->childLeft);
   printBinaryTree(bTreeNode->childRight);
}
```


Parcurgere arbori binari - preorder

```
void printBinaryTree(binaryTreeNode *bTreeNode)
{
    if (bTreeNode == NULL)
        return;
    printBTData(bTreeNode->value);
    printBinaryTree(bTreeNode->childLeft);
    printBinaryTree(bTreeNode->childRight);
}
```


Afișare: 1 2 5 8 4 6 9 7

Parcurgere arbori binari - postorder

```
void printBinaryTree(binaryTreeNode *bTreeNode)
{
   if (bTreeNode == NULL)
        return;
   printBinaryTree(bTreeNode->childLeft);
   printBinaryTree(bTreeNode->childRight);
   printBTData(bTreeNode->value);
}
```


Parcurgere arbori binari - postorder

```
void printBinaryTree(binaryTreeNode *bTreeNode)
{
   if (bTreeNode == NULL)
       return;
   printBinaryTree(bTreeNode->childLeft);
   printBinaryTree(bTreeNode->childRight);
   printBTData(bTreeNode->value);
}
```


Afișare: 8 5 2 9 6 7 4 1

Înălțime arbori binari - Recursiv

```
int getBinaryTreeHeight(binaryTreeNode *bTreeNode)
{
   if (bTreeNode == NULL)
      return 0;

   int hL = getBinaryTreeHeight(bTreeNode->childLeft);
   int hR = getBinaryTreeHeight(bTreeNode->childRight);
   return fmax(hL, hR) + 1;
}
```


Parcurgere Arbore - Recursiv

```
void printTree(treeNode *treeNode)
{
    if (treeNode == NULL)
        return;
    printTreeData(treeNode->value);
    for (int i = 0; i < treeNode->numChildren; i++)
        printTree(treeNode->children[i]);
}
```


Parcurgere Arbore - Recursiv

```
void printTree(treeNode *treeNode)
{
    if (treeNode == NULL)
        return;
    printTreeData(treeNode->value);
    for (int i = 0; i < treeNode->numChildren; i++)
        printTree(treeNode->children[i]);
}
```


Afișare: 1 2 5 8 3 4 6 9 7

Înălțime arbori - Recursiv

```
int getTreeHeight(treeNode *treeNode)
    if (treeNode == NULL)
        return 0;
    int maxH = 0;
    for (int i = 0; i < treeNode->numChildren; i++)
        int h = getTreeHeight(treeNode->children[i]);
        maxH = fmax(maxH, h);
    return maxH + 1;
```


- Avem un vector sortat.
- Se verifică dacă un element este în vector și pe ce poziție se află.
- Dorim o variantă mai rapidă decât liniar (să nu verificăm toate elementele din vector).

- Comparăm elementul căutat cu cel din mijloc.
 - · Dacă este mai mic, căutăm recursiv în partea stângă.
 - Dacă este mai mare căutăm recursiv în partea dreaptă.

Căutăm 3

Căutăm 3

Între pozițiile 0 1

Căutăm 3

Între pozițiile 0 7

Căutăm 3

Între pozițiile 0 3

Căutăm 3

Între pozițiile 3 3

Complexitate?

Căutăm 3

Între pozițiile 3 3

Complexitate $O(log_2(N))$

Cristian Chilipirea – Structuri de Date și Algoritmi

Arbori binari de căutare

Fiecare nod reprezintă un număr.

Pentru oricare nod:

- Toate elementele de pe subarborele stâng sunt mai mici decât acesta.
- Toate elementele de pe subarborele drept sunt mai mari decât acesta.

Arbori binari de căutare

```
void printBinaryTree(binaryTreeNode *bTreeNode)
{
    if (bTreeNode == NULL)
        return;
    printBinaryTree(bTreeNode->childLeft);
    printBTData(bTreeNode->value);
    printBinaryTree(bTreeNode->childRight);
}
```


Afișare inorder:

Arbori binari de căutare

```
void printBinaryTree(binaryTreeNode *bTreeNode)
{
    if (bTreeNode == NULL)
        return;
    printBinaryTree(bTreeNode->childLeft);
    printBTData(bTreeNode->value);
    printBinaryTree(bTreeNode->childRight);
}
```


Afișare inorder: 1 2 4 5 6 7 8 9

Arbori binari de căutare - Căutarea

```
int bstSearch(binaryTreeNode *bstNode, int needle) {
   if (bstNode == NULL)
        return 0;
   if (bstNode->value == needle)
        return 1;
   if (bstNode->value < needle)
        return bstSearch(bstNode->childRight, needle);
   if (bstNode->value > needle)
        return bstSearch(bstNode->childLeft, needle);
}
```


Arbori binari de căutare – Creare nod nou

```
binaryTreeNode *createBSTNode(int value)
{
    binaryTreeNode *newBSTNode = (binaryTreeNode *)malloc(sizeof(binaryTreeNode));
    if (newBSTNode == NULL)
        return NULL;
    newBSTNode->value = value;
    newBSTNode->childLeft = NULL;
    newBSTNode->childRight = NULL;
    return newBSTNode;
}
```


Arbori binari de căutare – Inserare nod

```
binaryTreeNode *bstInsert(binaryTreeNode *bstNode, binaryTreeNode *toInsert)
   if (bstNode == NULL)
        return toInsert;
   if (bstNode->value < toInsert->value)
        bstNode->childRight = bstInsert(bstNode->childRight, toInsert);
   else if (bstNode->value >= toInsert->value)
        bstNode->childLeft = bstInsert(bstNode->childLeft, toInsert);
   return bstNode;
```

```
rootBST = bstInsert(rootBST, createBSTNode(3));
```


Arbori binary de căutare - Ștergere nod

```
binaryTreeNode *bstRemove(binaryTreeNode *bstNode, int value)
    if (bstNode == NULL)
        return NULL;
    if (bstNode->value == value) {
        binaryTreeNode *aux = bstInsert(bstNode->childLeft, bstNode->childRight);
        free(bstNode);
        return aux;
    if (bstNode->value < value)</pre>
        bstNode->childRight = bstRemove(bstNode->childRight, value);
    else if (bstNode->value > value)
        bstNode->childLeft = bstRemove(bstNode->childLeft, value);
    return bstNode;
```


Complexitate

$$\Omega(1) \le insert|search|delete \le O(h)$$

h este înălțimea arborelui

$$2^{h-1} = ?$$

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$N = 1 + 2 + 4 + 8 + \dots + ?$$

= $2^{0} + 2^{1} + 2^{2} + \dots + 2^{h-1}$

$$2^{h-1} = ?$$

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$N = 1 + 2 + 4 + 8 + \dots + ?$$

$$= 2^{0} + 2^{1} + 2^{2} + \dots + 2^{h-1}$$

$$= 0000 \ 0000 \ 0000 \ 0001 + \dots$$

$$0000 \ 0000 \ 0000 \ 0100 + \dots$$

$$2^{h-1} = ?$$
 ...

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$N = 1 + 2 + 4 + 8 + \dots + ?$$

$$= 2^{0} + 2^{1} + 2^{2} + \dots + 2^{h-1}$$

$$= 0000 \ 0000 \ 0000 \ 0001 + \dots$$

$$0000 \ 0000 \ 0000 \ 0100 + \dots$$

= 1111 1111 1111 1111 (h biți)

$$2^{h-1} = ?$$

. . .

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$N = 1 + 2 + 4 + 8 + \dots + ?$$

$$= 2^{0} + 2^{1} + 2^{2} + \dots + 2^{h-1}$$

$$= 0000 \ 0000 \ 0000 \ 0001 + \dots$$

$$0000 \ 0000 \ 0000 \ 0100 + \dots$$

= 1111 1111 1111 1111 (
$$h$$
 biţi)
= $2^h - 1$

$$2^{h-1} = ?$$

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$N = 2^h - 1$$
$$N + 1 = 2^h$$

$$h = \log_2(N+1)$$

Dacă arborele este echilibrat

$$2^{h-1} = ?$$

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$N = 2^h - 1$$
$$N + 1 = 2^h$$

$$h = \log_2(N)$$

$$2^{h-1} = ?$$

Complexitate

	Vector	Listă	Arbore binar căutare echilibrat
Complexitate acces	O(1)	O(N)	O(log2(N))
Complexitate inserție	O(N)	O(N)	O(log2(N))
Complexitate inserție capete	O(N)/O(1)	O(1)	O(log2(N))
Complexitate ștergere	O(N)	O(N)	O(log2(N))
Complexitate ștergere capete	O(N)/O(1)	O(1)	O(log2(N))