Série 1 : Espaces vectoriels

Exercice 1. 1. Peut-on munir \mathbb{Q} d'une structure d'espace vectoriel sur \mathbb{R} .

2. Peut-on munir $(\mathbb{Z},+)$ d'une structure d'espace vectoriel sur le corps $\mathbb{Z}/p\mathbb{Z}$ (p premier) ou sur \mathbb{Q} ou sur \mathbb{R} en considérant comme loi externe la multiplication par la partie entière d'un réel.

Exercice 2. Soit \mathbb{R}_+^* muni de la loi interne définie par : $a \oplus b = a.b, \forall a, b \in \mathbb{R}_+^*$ et de la loi externe définie par : $\lambda \otimes a = a^{\lambda}, \forall \lambda \in \mathbb{R}, \forall a \in \mathbb{R}_+^*$. Montrer que $(\mathbb{R}_+^*, \oplus, \otimes)$ est un espace vectoriel sur \mathbb{R} .

Exercice 3. Soit E un \mathbb{R} -espace vectoriel. On munit le produit cartésien $E \times E$ de l'addition usuelle et de la multiplication externe par les complexes définie par :

$$(a+ib).(x,y) = (ax - by, ay + bx).$$

Montrer que $E \times E$ est un \mathbb{C} -espace vectoriel. Celui-ci est appelé complexifié de E.

Exercice 4. On definit sur $E = \mathbb{R}^2$

— *l'addition par* : (x,y) + (z,t) = (x+z,y+t).

— La lois externe ·, ayant $\mathbb R$ comme corps des scalaires, par $\lambda \cdot (x,z) = (2x,0)$.

Montrer que (E,+,.) n'est pas un espace vectoriel sur \mathbb{R} ?

Exercice 5. Les sous-ensembles F suivants sont-ils des sous-espaces vectoriels de E.

- 1. $E = \mathbb{R}^4$. $F = \{(x, y, z, t) \in \mathbb{R}^4 : x y = z\}$
- 2. $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$. $F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(x) = f(1-x), \forall x \in \mathbb{R} \}$
- 3. $E = \mathbb{R}^3$. $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \text{ et } 2x y + 3z = 0\}$
- 4. $E = \mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites réelles et $F = \{(u_n)_{n \in \mathbb{N}} \in E : (u_n) \text{ est constante } \}.$
- 5. $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$. $F = \{ f \in E : f \text{ est croissante} \}$.
- 6. $E = \mathbb{R}^3$. $F = \{(x, y, z) \in \mathbb{R}^3 : xyz = 0\}$.
- 7. $E = \mathbb{R}^3$. $F_c = \{(a+c, -a, a+b) : a, b \in \mathbb{R}\}$. (Discuter suivant la valeur de c).

Exercice 6. Les familles suivantes de E sont-elles libres ou liées?

- 1. $E = \mathbb{R}^5$. $x_1 = (1,2,1,2,1)$, $x_2 = (2,1,2,1,2)$, $x_3(0,1,0,0,1)$ et $x_4 = (1,0,1,1,0)$.
- 2. $E = \mathbb{R}_2[X]$. $P_1(X) = 1$; $P_2(X) = -2X + 1$; $P_3(X) = 6X^2 6X + 1$.
- 3. $E = \mathbb{R}^{\mathbb{R}}$. $f_1: x \mapsto \cos^2(x)$; $f_2: x \mapsto \sin^2(x)$; $f_3: x \mapsto \cos(2x)$.
- 4. $E = \mathcal{F}(]0, +\infty[,\mathbb{R})$. $f_1: x \mapsto x$; $f_2: x \mapsto x^2$; $f_3: x \mapsto x \ln(x)$; $f_4: x \mapsto x^2 \ln(x)$.
- 5. $E = \mathbb{R}^3$. $x_1 = (3,1,m)$, $x_2 = (1,3,2)$ et $x_3 = (1,-1,4)$. (discuter suivant la valeur de m).

Exercice 7. Dans cet exercice on étudie l'espace vectoriel $\mathbb R$ sur le corps $\mathbb Q$.

- a) Montrer que la famille $\{1, \sqrt{2}, \sqrt{3}\}$ est libre.
- b) Chercher la définition d'un nombre transcendant. (utiliser Google).
- c) Déduire une famille de réels infinie est libre.
- d) A l'aide du théorème fondamental de l'Arithmétique montrer l'ensemble des ln(p) où p est premier est libre.

Exercice 8. Dans chacun des cas suivants, montrer que les ensembles F et G sont des sous-espaces vectoriels de E, et qu'ils sont supplémentaires.

- 1. $E = \mathbb{R}^2$ et $F = \{(x,y) \in E \mid x+y=0\}$ et $G = \{(x,y) \in E \mid x-y=0\}$.
- 2. $E = \mathcal{F}([-1,1],\mathbb{R})$ l'ensemble des fonctions de [-1,1] dans \mathbb{R} . $F = \{f \in E \mid f \text{ est constante sur } [-1,1]\}$ et $G = \{f \in E : f(0) = 0\}$
- 3. $E = C^1(\mathbb{R}, \mathbb{R})$ $F = \{ f \in E | f(0) = f'(0) = 0 \}$ et $G = \{ x \to ax + b | a, b \in \mathbb{R} \}.$

Exercice 9. Soient $E = \{(x,y,z) \in \mathbb{R}^3 \mid x+y-z=0 \text{ et } x-y-z\}$ un sous-ensemble de \mathbb{R}^3 et $F = \{(x,y,z) \in \mathbb{R}^3 \mid x+y-2z=0\}$ un sous-espace vectoriel de \mathbb{R}^3 . Soient b=(1,1,1) et c=(0,2,1).

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Déterminer une base de E.
- 3. Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 et que $\{b,c\}$ est une base de F.
- 4. Montrer que $\mathbb{R}^3 = E \oplus F$.

Exercice 10. Soient $F = Vect(2, 4X - X^2, (X - 2)^2, X - 2)$ et $G = \{P \in \mathbb{R}_4[X] : P(0) = P'(0) = 0\}.$

- 1. Montrer que F est un sous-espace vectoriel de $\mathbb{R}_4[X]$.
- 2. Déterminer une base de F.
- 3. Montrer que G est un sous-espace vectoriel de $\mathbb{R}_4[X]$ et Déterminer une base de G.
- 4. Montrer que $\mathbb{R}_4[X] = F \oplus G$.

Exercice 11. Soit G le sous-espace de \mathbb{R}^4 engendré par les vecteurs : u = (1, -1, 2, -2)v = (4, 0, 1, -5)w = (3, 1, -1, -3). Soit $H = \{(x, y, z, t) \in \mathbb{R}^4 : x + y = 0 \text{ et } x - y + z + 2t = 0\}$.

- 1. Déterminer la dimension de G.
- 2. Montrer que H est un sous-espace vectoriel de \mathbb{R}^4 .
- 3. Déterminer les dimensions des sous-espaces $G \cap H$ et G + H.
- 4. Trouver un sous-espace F de \mathbb{R}^4 tel que $\mathbb{R}^3 = (G + H) \oplus F$.