Time-Ordering Invariance Under Monotone Clock Changes

Addendum to LTQG: $\sigma = \log(\tau/\tau_0)$

October 15, 2025

Context

Let $\tau \in I \subset \mathbb{R}$ with I an interval and let $\sigma = F(\tau)$ be a monotone C^1 change of clock with $F': I \to (0, \infty)$. Consider a (possibly time-dependent) Schrödinger generator $H(\tau)$ on a Hilbert space \mathcal{H} . Write $U_{\tau}(t_2, t_1)$ for the τ -time propagator solving

$$i \,\partial_{\tau} U_{\tau}(\tau, \tau_0) = H(\tau) \,U_{\tau}(\tau, \tau_0), \qquad U_{\tau}(\tau_0, \tau_0) = \mathbf{1}, \tag{1}$$

and define the σ -time generator by the usual chain rule

$$\tilde{H}(\sigma) := \frac{d\tau}{d\sigma} H(\tau(\sigma)) = \frac{H(\tau(\sigma))}{F'(\tau(\sigma))}.$$
(2)

Denote by $U_{\sigma}(\sigma_2, \sigma_1)$ the corresponding σ -time propagator.

Main Lemma (Time-Ordering Invariance)

Lemma 1 (Chronological invariance under monotone clocks). If F is strictly increasing, then for any $\tau_1 \leq \tau_2$ we have

$$\mathcal{T}_{\tau} \left[\exp \left(-i \int_{\tau_1}^{\tau_2} H(\tau) d\tau \right) \right] = \mathcal{T}_{\sigma} \left[\exp \left(-i \int_{\sigma_1}^{\sigma_2} \tilde{H}(\sigma) d\sigma \right) \right], \tag{3}$$

with $\sigma_i = F(\tau_i)$. In particular, $U_{\tau}(\tau_2, \tau_1) = U_{\sigma}(\sigma_2, \sigma_1)$.

Proof. Strict monotonicity implies that the map $\tau \mapsto \sigma = F(\tau)$ preserves order: $\tau_a < \tau_b \iff \sigma_a < \sigma_b$. Hence the chronological partitions used to define Dyson expansions can be transported bijectively. Start from the Dyson series in τ :

$$U_{\tau}(\tau_{2}, \tau_{1}) = \mathbf{1} + \sum_{n \geq 1} (-i) \int_{\tau_{1} \leq t_{n} \leq \dots \leq t_{1} \leq \tau_{2}}^{H(t_{1})} H(t_{1}) dt_{1} \dots dt_{n}.$$

$$(4)$$

Change variables $s_k = F(t_k)$; then $dt_k = \frac{dt_k}{ds_k} ds_k = \frac{1}{F'(t_k)} ds_k$ and the ordered simplex is mapped to $\sigma_1 \leq s_n \leq \cdots \leq s_1 \leq \sigma_2$ by monotonicity. Each factor transforms as $H(t_k) dt_k = \tilde{H}(s_k) ds_k$ by definition of \tilde{H} . Therefore every *n*-simplex integral equals the corresponding σ -time Dyson term, yielding the identity.

Existence & Uniqueness Hypotheses

Assumption 1 (Bounded case). $H(\tau)$ is strongly measurable and $\sup_{\tau \in I} ||H(\tau)|| < \infty$. Then the Dyson series converges in operator norm and defines a unique unitary propagator.

Assumption 2 (Kato Class (unbounded case)). $H(\tau)$ is self-adjoint on a dense domain D (independent of τ), $\tau \mapsto H(\tau)\psi$ is continuous $\forall \psi \in D$, and the family is stable in the sense of Kato (domain invariance and suitable bounds). Under these hypotheses the evolution family U_{τ} exists and is unique; the reparameterization $\tilde{H}(\sigma) = \frac{d\tau}{d\sigma}H(\tau(\sigma))$ preserves the same class, so U_{σ} exists and equals U_{τ} by Lemma 1.

Theorem 1 (Unitary equivalence under monotone reparameterization). Under either set of hypotheses above, $U_{\tau}(\tau_2, \tau_1) = U_{\sigma}(\sigma_2, \sigma_1)$ for $\sigma_j = F(\tau_j)$. Consequently, spectra of Heisenberg-evolved observables and transition probabilities coincide for τ - and σ -descriptions.

Remark 1 (Application to LTQG). For $F(\tau) = \log(\tau/\tau_0)$ with $\tau > 0$ we have $\frac{d\tau}{d\sigma} = \tau$ and hence $\tilde{H}(\sigma) = \tau(\sigma) H(\tau(\sigma))$. The lemma shows that the reparameterization leaves all physical predictions invariant while making multiplicative early-time structure additive in σ .