A Microservices Framework for Real time Model Scoring using Structured Streaming

Vedant Jain

#SAISStreaming1

About me

- Solutions Architect @ Databricks
- x-Hortonworks, JPMC

- Machine learning
- Model scoring
- Microservices
- Structured Streaming
- Demo

Machine Learning

"...what we want is a machine that can learn from experience."

Types of Machine Learning

· Unsupervised Learning

Types of Machine Learning

Supervised Learning

Labels

Activity

Biking Standing Sitting

Types of Machine Learning

Supervised Learning

Machine Learning Process

- Machine learning
- Model scoring
- Microservices
- Structured Streaming
- Demo

Model Scoring

Propensity: Likelihood of a user to commit a certain action

Lead: How closely matched lead is to target profile

Credit: Ability of the user to keep promise if granted access

Affinity: How similar are two products or users etc.

Attrition/Churn: Likelihood of a customer to drop a service and/or start using a competitor's service

Anomaly Detection: Identification of rare or invalid transaction

Model Scoring on "Big Data"

Machine Learning Pipeline

- Phone/Watch
- Gyroscope/Accelerometer
- CSV

- Drop null values
- Calculate moving averages on 10 minute window
- Convert to single parquet

- OneHotEncoder
- RF Classifier
- Cross Tabulation
- K-Means Clustering
- Hyperparameter Tuning
- Pipelines

- Deploy Pipelines to Docker
- Serve the models using Python Flask

- Machine learning
- Model scoring
- Microservices
- Structured Streaming
- Demo

Properties:

- Decomposition: Logic is broken down into multiple independent components
- > Isolation: Component services are deployed and maintained independently of one another

Benefits:

- Reduced Regression Testing time
- ✓ Organizational Autonomy
- ✓ Cloud/On-premise Agnostic
- √ Scalability/Reusability

Example:

Company A tracks user's activity through smart devices and wants to provide tailored content to the users based on their behavior.

Χ	Υ	Z	Activity
0.5	-3.4	9.2	Biking
-2.3	2.9	3.2	Standing
1.3	2.3	-4.5	Sitting

User	Bike	Stand	Sit	Cluster
Α	0.1	0.3	0.6	0
В	0.0	0.3	0.7	1

- Machine learning
- Model scoring
- Microservices
- Structured Streaming
- Demo

Structured Streaming

- High-level streaming API built on Spark SQL engine
- Runs the same computation as batch queries in Datasets/DataFrames
- Event time, windowing, sessions, sources & sinks
- End-to-end exactly once semantics
- Late Data Handling

Data stream as an unbounded table

ML Limitations in Streaming

- Many models/transformers/estimators are not supported
- Limited to only models built in Spark MLLib
- Not ideal for Continuous Learning

- Machine Learning
- Model scoring
- Microservices
- Structured Streaming

Demo

https://github.com/vedantja/eu summit demo