Matrix Chain Multiplication

we saw better, when namet,
AER ^{nxm} , BER ^{mxk} . We saw better, when hamet, but let us use name one. Loosn't monter this lecture
Multiplying A and B: naively nmk time.
Than, given AI,, Ak s.t. A. ER with Mi=nim ie[n-i].
Can we compute A.A At? (let Me:= Mk)
· ·
First Q, Is it even "well-defined"?
We only defined multiplication of two matrices A.B.
so when we write A Ak, we need to specify
the order in which we multiply
two interpretations (some)
put parantheses s.t. if we multiply from inner ones, each
paranthesis contains always two matrices.
(e.g., (((A, Az)A3)A4) vs ((A, Az)(A2Azl) vs)
2) Construct a full binary there (i.e., each non-leaf node
has exactly the children)
that has each Ai,, Ak as leaves.
6000

Second Q Okay, then is it obay to wire A Ak?
A: Yes, if you only care about the answer $B=A_1\cdots A_k\in\mathbb{R}^{N_1\times N_1}$.
Lema, VAI, Az, Az, (A, Az) Az = A, (AzAz) (associativity)
(Note: AIAZ = AZA, (NON-commutativity))
Once you have this, then any parantheses/tree give some answan
Eg.,
Okay, the answer doesn't depend on parantheses/tree,
but "computation time" does!! n
((A, Az) Az): 2 multiplications. Time: ninznz + ninzmz
$(A_1(A_2A_3))$: "Time: $N_2N_3M_3 + N_1N_2M_3$
$i-\int_{1}^{1} N_{1}=1$, $N_{2}=N_{3}=m_{3}=(0, (A_{1}A_{2})A_{3})$ wins.
How to compute the sptimal tree?

Dynasic Programing for Matrix Mult.

V | \le i \le j \le k, let

T[i,j]: Optimal running time to multiply A: ... Az.

Base case: T[i,i]=0 Vi ∈[1].

Recurrence Relation.

T[i,j]=min(T[i,k]+T[k+1,j]+n;nk+1Nj+1)

((A...Ak) (ALLI ... AS))

outer paranthesis

divides Ai...Ak and Akai...Aj

root divides Ar. Ak and Akar. Aj

Lenna, Thing is indeed optimal running time to multiply An. A.J.

Pf. Induction on j-i. If j=1, easy.

Chin disker, (T[7,k]+T[k+1,j]+N:Nk+1Nj+1) is the optimal running time to mattiply Ai...A; given that the last multiplication is (A1...Ak) (Acon...Aj).

(Ni Nexily is the cost of lost mult, and by induction hypothesis,

 $T[i,k] = optimel time to multiply <math>A_1 \cdots A_t$. (k-i < j-i) $T[k+1,j] = " " A_{k+1} \cdots A_j (j-k-1 < j-i)). 1$

So, (opt. time for A: Aj) = min (opt. time for A:	Az given Lastmutt.
is (A1-Ak) (Aku)	
= min (T[i,k]+T[k41,j]] + N; Nk+, Nj+,
= T[1,j]	
1 LI, J	<u>D.</u>
Punning time: O(k3)	

Optimal Binary Sounds Tree

Input: n keys k, <... < kn. and (2n+1) probabilities describing a randon search x. Pi = Pr[x=ki]. Vi E[n] (led di= (ki, kin)) 2: = Pr[k; <x < k; +1] [EInti] (assure 6=-0, kn=+0) Output: Binary search tree : full binary tree whose - non leaves correspond to fi... kn. (left to right)
- leaves " to do,..., dn that minimizes "expected search time"= Ex [depth of node containing x] H (left) (right) If x=d=, search time is 2 vs 3. If $(p_1, p_2, g_1, g_2, g_3) = (0.1, 0.1, 0.2, 0.3, 0.3)$ Expected search time = 2.4 vs 2.5 Same DP: Let T[i,j] = optimal search time for diskindinarion, ki, di. Base case: T[i, i]= &i.i.

Running time: $O(n^3)$ naturely, but unlike matrix chain multiplication $O(n^2)$ is known!