Estatística Básica

Armando Oscar Cavanha Filho

1- INTRODUÇÃO

A Estatística tem ampliado a sua participação na linguagem das atividades profissionais da atualidade, já que os números e seus significados traduzem, de forma objetiva, as questões do cotidiano, propiciando análises com base em fatos e DADOS. A seguir são apresentados alguns conceitos e definições úteis sobre Estatística:

- A Estatística compreende a coleta, a apresentação e a caracterização da informação, visando assistir a análise de dados e o processo de decisão.
- A Estatística Descritiva envolve a coleta, a análise e a apresentação de conjuntos de dados, para descrever as diversas características destes conjunto de dados.
- A Estatística Inferencial consiste nos métodos de estimativas de uma população com base nos estudos sobre amostras (por vezes é impossível trabalhar com a população inteira).
- A População (Universo) é a totalidade dos ítens que estão sendo considerados.
- A Amostra é a parte da população que é selecionada para análise.
- População finita é aquela que possui um limite quantitativo (exemplo: a produção de veículos no país, ou no mundo, a cada ano), enquanto a infinita se

refere de quantitativos sem limite (exemplo: todos os resultados, cara ou coroa, dos lances de uma moeda qualquer).

- O Parâmetro é uma medida sintética que descreve um estado da população.
- Os Dados podem ser do tipo Qualitativos ou Quantitativos (Discretos ou Contínuos).
- Os Dados Quantitativos Discretos são aqueles que podem ser contados (exemplo: número de peças de roupa).
- Os Dados Quantitativos Contínuos são os que podem ser medidos. Estão limitados pela precisão do sistema de medição (exemplo: altura ou peso de um indivíduo).
- Números randômicos ou aleatórios são valores tomados sem nenhuma lei de formação, normalmente obtidos de uma tabela apropriada ou gerados eletronicamente por microprocessadores.
- Estudos Enumerativos envolvem a tomada de decisão, com base nas características de uma população sob análise (ex. Votações políticas).
- Estudos Analíticos envolvem a tomada de uma ação sobre um processo visando o aumento de performance no futuro (ex. Processo de fabricação de peças de automóveis).

2 – MEDIDAS DE TENDÊNCIA CENTRAL

I - MÉDIA ARITMÉTICA

A média aritmética de um conjunto é o resultado da divisão entre a soma de todos os valores pela quantidade de valores.

$$\sum_{\mathbf{N}} Xi$$

Exemplo: Dados os valores 5,4,8,9,2,1, qual a média aritmética do conjunto dado ?

X1	5
X2	4
X3	8

X4	9
X5	2
X6	1
Soma	29
Soma / n	4,833333

A média aritmética deste conjunto é 4,83.

II - MÉDIA GEOMÉTRICA

A média geométrica é o resultado da raíz enésima do produto de todos os valores dados.

$$Xg = \sqrt[n]{X1.X2...Xn}$$

Exemplo: Dados os valores 5,4,8,9,2,1, qual a média geométrica do conjunto dado ?

		produto
		1
X1	5	5
X2	4	20
X3 X4 X5	8	160
X4	9	1440
X5	2	2880
X6	1	2880
	produto	7385
	Produto ^ (1/n)	4,41291

A média geométrica deste conjunto é 4,41.

III - MÉDIA HARMÔNICA

A média harmônica é o recíproco da média aritmética dos recíprocos de todos os valores dados.

Exemplo: Dados os valores 5,4,8,9,2,1, qual a média harmônica do conjunto dado ?

		Inverso
X1	5	0,2
X2	4	0,25
X3	8	0,125
X4	9	0,111111
X3 X4 X5 X6	2	0,5
X6	1	1

Soma	2,186111
Soma/n	0,364352
1/soma/n	2,7446

A média harmônica deste conjunto é 2,74.

IV - MÉDIA PONDERADA

A média ponderada é a média (aritmética, harmônica ou geométrica) que leva em conta o quanto cada valor é mais confiável ou mais frequente no conjunto de dados.

Média aritmética ponderada:

Exemplo: Dados:

Valor	Frequência ou peso
5	3
4	4
8	1
9	2
2	2
1	8

qual a média aritmética ponderada do conjunto dado ?

X1	5	f1	3	x1f1	15
X2	4	f2	4	x2f2	16
Х3	8	f3	1	x3f3	8
X4	9	f4	2	x4f4	18
X5	2	f5	2	x5f5	4
x6	1	f6	8	x6f6	8

soma f	20	soma xf	69
		soma xf / soma f	3,45

A média aritmética ponderada deste conjunto é de 3,45.

Média geométrica ponderada:

Exemplo: Dados:

Valor	Frequência ou peso
5	3
4	4
8	1
9	2
2	2

1 8

qual a média geométrica ponderada do conjunto dado ?

						1
x 1	5	f1	3	x1^f1	125	125
x2	4	f2	4	x2^f2	256	32000
х3	8	f3	1	x3^f3	8	256000
x4	9	f4	2	x4^f4	81	20736000
x 5	2	f5	2	x5^f5	4	82944000
x 6	1	f6	8	x6^f6	1	82944000
		som a f	20		Produto	82944000
		_		_	Prod ^ (1/ som f)	2,488509

A média geométrica ponderada deste conjunto é 2,48.

Média harmônica ponderada:

Exemplo: Dados:

Valor	Frequência ou peso
5	3
4	4
8	1
9	2
2	2
1	8

qual a média harmônica ponderada do conjunto dado ?

Estatística Básica – Armando O. Cavanha F.

x1	5	f1	3	x1f1	15	1/x1f1	0,07
x2	4	f2	4	x2f2	16	1/x2f2	0,06
х3	8	f3	1	x3f3	8	1/x3f3	0,13
x4	9	f4	2	x4f4	18	1/x4f4	0,06
x 5	2	f5	2	x5f5	4	1/x5f5	0,25
x6	1	f6	8	x6f6	8	1/x6f6	0,13
		soma f	20			soma 1/xf	0,68
						Som/n	0,03
						1/so/n	29,21

A média harmônica ponderada deste conjunto é 29,21.

V - PONTO MÉDIO DO INTERVALO

É a média aritmética dos extremos.

Exemplo: Dados:

Valo	r
5	
4	
8	
9	
2	
1	

Qual o ponto médio do intervalo ?

Valores em ordem crescente	
1	
2	

4	
5	
8	
9	

$$Pmi = (1 + 9) / 2 = 5$$

O ponto médio do intervalo deste conjunto é 5.

VI - MEDIANA

É o valor que se encontra na posição média da série ordenada de dados. Para quantidade de dados par, é a média dos dois valores de posição média da série ordenada.

Exemplo: Dada a série:

Valor	
5	
4	
8	
9	
2	
1	

Ordena-se a série:

valores em ordem crescente	
1	
2	
4	
5	
8	
9	

A mediana deste conjunto é (4+5)/2 = 4,5.

Se a série dada for:

Valor
5
4
8
9
2
1
7

Então:

valores em ordem crescente	
1	
2	
4	
5	
7	

8	
9	

A mediana deste conjunto é 5.

VII - MODA

É o valor de mais alta frequência de aparecimento na série dada.

Exemplo: Dada a série:

Valor	Frequência ou peso
5	3
4	4
8	1
9	2
2	2
1	8

A moda deste conjunto é 1 (aparece oito vezes).

Caso os dados fossem:

Valor	Frequência ou peso
5	3
4	4
8	1
9	8
2	2
1	8

Existiriam duas modas para este conjunto de dados: 9 e 1, cada uma com 8 aparecimentos (série bi-modal).

3- MEDIDAS DE DISPERSÃO

Trata-se da medida de variação ou distribuição dos dados. Uma série de dados pode ter os valores mais "aproximados" ou mais "espalhados" que outra.

I - FAIXA

É a diferença entre o maior e o menor valor da série.

Exemplo: Dada a série:

Valor	
5	
4	
8	
9	
2	
1	

Então:

valores em ordem crescente
1
2
4
5
8
9

$$FAIXA = 9 - 1 = 8$$

A faixa deste conjunto de dados é 8.

II - VARIÂNCIA e DESVIO PADRÃO

Para a amostra

É aproximadamente a média aritmética dos quadrados dos desvios de todos os valores sobre a média aritmética da população.

onde x é cada valor da série, m é a média aritmética da série.

Exemplo: Dada a série seguinte (amostra), qual a variância?

Valor	
5	
4	
8	
9	
2	
1	

Então:

	Valor	va-me	(va-me)^2
	5	0,17	0,03
	4	-0,83	0,69
	8	3,17	10,03
	9	4,17	17,36
	2	-2,83	8,03
	1	-3,83	14,69
Soma	29		50,83
Média arit	4,83	varian	10,17

A variância deste conjunto é 10,17.

O Desvio Padrão é a raiz quadrada da variância

No exemplo = $10,17^{(1/2)} = 3,19$.

Para a população

$$\Sigma(x-m)$$

$$s2(x) = -----$$
n

Exemplo: Dada a série seguinte (população), qual a variância?

Valor	
5	
4	
8	
9	
2	
1	

Valor	va-me	(va-me)^2
5	0,17	0,03

	4	-0,83	0,69
	8	3,17	10,03
	9	4,17	17,36
	2	-2,83	8,03
	1	-3,83	14,69
soma	29		50,83
média arit	4,83	varian	8,47

A variância deste conjunto é 8,47.

O Desvio Padrão é a raiz quadrada da variância.

No exemplo, $8,47^{(1/2)} = 2,91$

III - COEFICIENTE DE VARIAÇÃO

É a razão entre o desvio padrão e a média aritmética, apresentada na forma percentual:

Exemplo: Dada a série seguinte, qual o coeficiente de variação ?

Val	lor	
5		
4		
8		
9		
2		
1		

Estatística Básica – Armando O. Cavanha F.

	Valor	dif	dif^2
	5,00	0,17	0,03
	4,00	-0,83	0,69
	8,00	3,17	10,03
	9,00	4,17	17,36
	2,00	-2,83	8,03
	1,00	-3,83	14,69
soma	29,00		50,83
media	4,83	varian	10,17
		Des pad	3,19

IV-DESVIO MÉDIO

É a média dos desvios absolutos da amostra com relação à média.

Exemplo: Dada a série seguinte, qual o desvio médio ?

Valor	Dif	mod dif
5,00	0,17	0,17
4,00	-0,83	0,83
8,00	3,17	3,17
9,00	4,17	4,17

	2,00	-2,83	2,83
	1,00	-3,83	3,83
Soma	29,00		15,00
Media	4,83		2,50

O desvio médio deste conjunto é 2,50.

4- HISTOGRAMAS

São gráficos em barras que apresentam a dispersão dos dados ao longo da faixa de existência.

Após ordenar a série dada, divide-se a série em grupos em intervalos iguais, quantificando-os, criando-se então o gráfico. É normal ter-se a quantidade de classes entre 4 e 12. Esta escolha é subjetiva e toma-se este número em função do gráfico que se deseja obter.

Exemplo: Dada a série seguinte, traçar o histograma para 4 classes.

Valor	
5	
4	
8	
9	
2	
1	

Série ordenada:

Valor	
1	
2	
4	
5	
8	
9	

A faixa é 9-1=8, e o intervalo, para 4 classes, 8/4=2

Portanto:

Classe	Valores
>1 <= 3	1,2
>3 <= 5	4,5
>5 <= 7	
>7 <= 9	8,9

5 - FREQUÊNCIA RELATIVA

Frequência relativa de uma classe é a frequência dessa classe dividida pela de todas elas, em percentagem.

classe	valores	freq relat %
>1 <=3	1,2	33,33333
>3 <=5	4,5	33,33333
>5 <=7		
>7 <=9	8,9	33,33333
		100

FREQUÊNCIA ACUMULADA

Frequência acumulada é o gráfico de frequência de ocorrências, por classe, apresentado de forma cumulativa.

classe valores	freq relat	freq	relat
----------------	------------	------	-------

Estatística Básica – Armando O. Cavanha F.

			acumul
>1 <=3	1,2	33,33333	33,33333
>3 <=5	4,5	33,33333	66,66667
>5 <=7		0	66,66667
>7 <=9	8,9	33,33333	100

6 - TIPOS DE CURVAS DE FREQUÊNCIA

Segundo a forma resultante do traçado da distribuição de freqüências, podem aparecer diversos tipos de curvas, como:

Curvas simétricas, em forma de sino, normais:

Curvas desviadas para a esquerda:

Curvas desviadas para a direita:

Curvas em forma de U:

Curvas com mais de uma moda, bimodal:

Curvas com mais de uma moda, multimodal:

Exemplo para curva normal: Dados os valores seguintes, obter o histograma.

10	9	9
11	11	7
11	10	13
11	10	10
9	8	11
9	12	9

10	8	10
10	12	10
10	10	11
9	11	12

Resultados:

media	10,1
des pad	1,322224
classes	6
intervalo de classes	1,00

A curva resultante se assemelha a uma normal, pois o seu formato parece um sino.

O cálculo das diversas medidas de tendência central e medidas de dispersão pode auxiliar na análise dos dados, mostrando que o posicionamento da média, moda e mediana se alterna em função do tipo de curva:

