

PRIMER PARCIAL 27 de febrero de 2019

Estudiante: Isabella Martinez Mortinez

Nota:

4.7

[0.5pt.] Defina de manera recursiva las funciones P[A], la cual cuenta el número de ocurrencias de letras proposicionales de A, y C[A], la cual cuenta el número de ocurrencias de conectivos de A. Observe que, por ejemplo, $P[\neg(p \land \neg p)] = 2$ y $C[\neg(p \land \neg p)] = 3$.

[0.5pts.] Presente el paso a paso de cada una de estas funciones sobre la fórmula:

$$\neg(p \to q) \land p$$

[1pt.] Demuestre que $\log_2(P[A]) \leq C[A]$. [Ayuda: $\log_2(x) = y \sin x = 2^y$.]

2. [1pt] Sea $U = \{A_1, \ldots, A_n\}$ un conjunto de fórmulas. Demuestre que si U es insatisfacible y A_i es válida para algún $i = 1, \ldots, n$, entonces $U - \{A_i\}$ es insatisfacible.

3. [2pts.] Demuestre el teorema de sustitución salva veritate: Sea B una fórmula arbitraria y A y A' fórmulas tales que $A \in \text{Subforms}(B)$ y $A \equiv A'$. Se tiene que $B \equiv B\{A \to A'\}$.

Ayuda: Puede asumir los siguientes lemas:

Lema I: Sean A y B fórmulas. Si $A \equiv B$, entonces $\neg A \equiv \neg B$.

Lema II: Sean A, B A' y B' fórmulas. Si $A \equiv A'$ y $B \equiv B'$, entonces $A \odot B \equiv A' \odot B'$, para $\odot \in \{\land, \lor \rightarrow, \leftrightarrow\}$.

Lema III: $\neg B\{A \leftarrow A'\} = \neg (B\{A \leftarrow A'\})$

Lema IV: $(B \odot C)\{A \leftarrow A'\} = B\{A \leftarrow A'\} \odot C\{A \leftarrow A'\}$, para $\odot \in \{\land, \lor \rightarrow, \leftrightarrow\}$.