Quiz 1

Problems

```
MASTOREF QUIZ 1.
                                                                                                          S#: 20170058 Name: Keonwoo Kom
#1. The given linear system can be transformed into the following form:
      as an augmented matrix. By a sories of elementary row operations on
     the anguarted matrix above,
           \begin{bmatrix} 7 & 1 & 8 & 20 \\ 3 & 2 & -8 & 5 \\ 2 & 1 & 5 & 12 \\ 1 & 1 & -2 & 4 \end{bmatrix} \xrightarrow{E(1,4)} \begin{bmatrix} 1 & 1 & -2 & 4 \\ 3 & 2 & -8 & 5 \\ 2 & 1 & 5 & 12 \\ 7 & 1 & +2 & 20 \end{bmatrix}
                                   E(1,2;-3), E(1,3;-2), E(1,4;-3)
\longrightarrow
0 - 1 - 2 - 7
0 - 1 - 9 + 4
0 - 6 - 90 - 8
                                                    E(2,1;-1), E(2,3;1), E(2,4;6) \begin{bmatrix} 1 & 0 & -4 & | & -3 \\ 0 & 1 & 2 & | & 7 \\ 0 & 0 & 11 & | & 11 \\ 0 & 0 & 34 & | & 34 \end{bmatrix}
E(3;\frac{1}{11}) \begin{bmatrix} 1 & 0 & -4 & | & -3 \\ 0 & 1 & 2 & | & 7 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 34 & | & 34 \end{bmatrix}
                     E(3,1,4), E(3,2;-2), E(3,4;-34)
\xrightarrow{\longrightarrow} \begin{bmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}
    Thus the given syste of linear equations is consistent with the unique solution X = \begin{bmatrix} 7 & 5 & 1 \end{bmatrix}^T.
```

MASTORF Edite 1.

#2. The given option can be translated into the fillewing argumented matrix:

$$\begin{bmatrix} 2 & 3 & 1 & 2 & 1 & 5 \\ 1 & 1 & 4 & 5 & 1 & 2 \\ 3 & -1 & +3 & 1 & 6 \end{bmatrix}$$
By a series of elementary now operations,

$$\begin{bmatrix} 2 & 3 & 1 & 2 & 1 & 5 \\ 1 & 1 & 4 & 5 & 1 & 2 \\ 3 & -1 & -4 & 3 & 6 \end{bmatrix} = \underbrace{E(1,2)}_{3 & -1} \begin{bmatrix} 1 & 1 & 4 & 5 & 1 & 2 \\ 2 & 3 & 1 & 2 & 5 & 5 \\ 3 & -1 & -4 & 3 & 6 \end{bmatrix} = \underbrace{E(1,2,-2)}_{3 & -1} \underbrace{E(1,3,-3)}_{3 & -1} \begin{bmatrix} 1 & 1 & 4 & 5 & 1 & 2 \\ 1 & 1 & 4 & 3 & 6 \end{bmatrix} = \underbrace{E(3,-4)}_{0 & 1} \underbrace{\begin{bmatrix} 1 & 1 & 4 & 5 & 1 & 2 \\ 0 & 1 & -7 & -9 & 1 & 1 \\ 0 & 1 & 4 & 3 & 6 \end{bmatrix}}_{0 & 1 & -7 & -9 & 1 & 1 \\ 0 & 1 & 4 & 3 & 6 \end{bmatrix} = \underbrace{E(2,3)}_{0 & 1} \underbrace{\begin{bmatrix} 1 & 1 & 4 & 5 & 1 & 2 \\ 0 & 1 & 4 & 3 & 6 \\ 0 & 1 & 4 & 3 & 6 \end{bmatrix}}_{0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 1 & 4 & 3 & 6 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0$$

Summary

* Gaussian elemination to make a matrix be in a (reduced) now echelon form. * Pivot partian. position of leading 1's. * Column: The index of leading 1's. * RREF = Row echelon form t each leading 1 is the serio nows are at bottom. Imagine nonzero on try in first nangero on try is 4 in each so nonger now. [2] Life in each so nonger now. [4] * AX = B is consistent if it has a solution. * otherwise, inconsistent * AX = O homogeneous incon system. AX = B (B+O): inhomogeneous in sign. * AX = O as a solution, alled "trivial solh". Other solutions which AX = O may has are alled nontrivial solutions.	DATE
Prot partin. position of leading 1's. * Prior partin. position of leading 1's. * Column: the lumps of leading 1's. * RREF = Row echelon from t each leading 1 is the lumique navero entry in first navero entry is 1 its column. * First navero entry is 4 its column. * Its column. * Decorate of the major row. * Ax = b is consistent if it has a solution. * Atherwise, inconsistent * Ax = 0: homogeneous times system. * Ax = 0: homogeneous times system. * Ax = 0: homogeneous times system. * Ax = 0: inhomogeneous times system. * Ax = 0: inhomogeneous times system. * Ax = 0: a solution, alled "trivial solin". Other solutions which Ax = 0 may has are alled nontrivial solutions	PAGE
Pow echelon form. ** Privat paintin. ** position of leading 1's. ** Column: The modex of leading 1's. ** RREF = Row echelon form + each leading 1 is the ** Privat paintin. ** RREF = Row echelon form + each leading 1 is the ** Private in the modern of leading 1's the ** Serve nows are at bottom. ** first managero entry is 4 ** in each wo nongero row. ** Leading 1's go right ** from top to bottom. ** Ax = D is consistent if it has a solution. ** otherwise, inconsistent ** Ax = D is homogeneous times system. ** Ax = D is moderneous times system. ** Ax = D is inhomogeneous times system. ** Ax = D is a solution, alled "trivial solh". ** Other solutions which Ax = O may has are alled nontrivial solutions.	* Gaussian etimination to make a matrix be in a Creduced
* Ax = D is consistent if it has a solution. * Ax = D is consistent if it has a solution. * Ax = D is homogeneous tream system. Ax = D (b + O): Inhomogeneous time sys. * Ax = D as a solution, alled "trivial solh". Other solutions which Ax = O may has are alled nontrivial solutions.	and education.
* Ax = D is consistent if it has a solution. * Ax = D is consistent if it has a solution. * Ax = D is homogeneous tream system. Ax = D (b + O): Inhomogeneous time sys. * Ax = D as a solution, alled "trivial solh". Other solutions which Ax = O may has are alled nontrivial solutions.	* Prot partin position of leading
first nonzero entry is 1 first nonzero entry is 1 its column. its column. first nonzero entry is 1 in each so nonzero row. (lasting 1's go right from top to bottom. * Ax = b is consistent if it has a solution. * otherwise, inconsistent * Ax = 0: homogeneous tree system. Ax = b (b + 0): inhomogeneous tree system. Ax = 0 as a solution, alled "trivial soln". other solutions which Ax = 0 may has are alled nontrivial solutions	* column: The malex of leading 1?
from to bottom. * Ax = b is consistent if it has a solution. * otherwise, inconsistent * Ax = 0: homogeneous linear system. Ax = b (b + 0): inhomogeneous line sys. * Ax = 0 as a solution, alled "trivial soln". Other solutions which Ax = 0 may has are alled nontrivial solutions.	* KKt = Row echelon farm t each leaving is the
from to bottom. * Ax = b is consistent if it has a solution. * otherwise, inconsistent * Ax = 0: homogeneous linear system. Ax = b (b + 0): inhomogeneous line sys. * Ax = 0 as a solution, alled "trivial soln". Other solutions which Ax = 0 may has are alled nontrivial solutions.	first nonzero entry is 4 its column.
from to bottom. * Ax = b is consistent if it has a solution. * otherwise, inconsistent * Ax = 0: homogeneous linear system. Ax = b (b + 0): inhomogeneous line sys. * Ax = 0 as a solution, alled "trivial soln". Other solutions which Ax = 0 may has are alled nontrivial solutions.	m each no nonzero vow.
* Ax=D is consistent if it has a solution. * otherwise, inconsistent * Ax=O: homogeneous linear system. Ax=D (b+0): inhomogeneous line sys. * Ax=O ×=D as a solution, alled "trivial soln". Other solutions which Ax=O may has are alled nontrivial solutions	12 1 from top to bottom.
* Ax=0: homogeneous timean system. Ax=b (b+0): inhomogeneous time system. * Ax=0 * x=0 as a solution, alled "trivial soln". has the solutions which Ax=0 may has are alled nontrivial solutions.	
AX=0 (b+0): inhomogeneous Im. sys. * AX=0	* otherwise, inconsistent
other solutions which AX=0 may has are called nontrivial solutions	* Ax=0: homogeneous trean system.
other solutions which AX=0 may has are called nontrivial solutions	Ax-O X = O as a solution, all of "trivial soln".
nontrivial solutions	has has a which Ax=0 may has are alled