DM13 - Spectromètre de masse

Exercice 1 - Spectromètre de masse

Le spectromètre de masse permet de mesurer la masse des particules chargées avec une telle précision qu'il peut servir à déterminer des compositions isotopiques. Dans cet exercice, on montre qu'il permet de déterminer la composition isotopique du mercure.

Une source émet des ions mercure $^{200}_{80} Hg^{2+}$ et $^{202}_{80} Hg^{2+}$. Ces ions passent dans le spectromètre de masse où ils sont accélérés puis séparés afin de mesurer leur rapport isotopique. Le schéma simplifié du spectromètre est représenté ci-dessous.

Données

Distance séparant les deux plaques de l'accélérateur : $d = 1,00 \,\mathrm{m}$

Tension entre les deux plaques de l'accélérateur : $U = 1,00 \times 10^4 \,\mathrm{V}$ Charge élémentaire : $e = 1,6 \times 10^{-19} \,\mathrm{C}$

Unité de masse atomique (masse d'un nucléon) : $1 \text{ u} = 1,67 \times 10^{-27} \text{ kg}$ Champ électrique dans le filtre de vitesse : $E_1 = 5,30 \times 10^4 \text{ V} \cdot \text{m}^{-1}$

Champ magnétique dans le filtre de vitesse : $B_1 = 0.383 \,\mathrm{T}$

Champ magnétique dans le séparateur : $B_2 = 0,200 \,\mathrm{T}$ Distance entre la fente de sortie et le collecteur 1 $F_3O_1 = 1,44 \,\mathrm{m}$ Distance entre la fente de sortie et le collecteur 2 $F_3O_2 = 1,45 \,\mathrm{m}$

Accélération des ions

Des ions de masse m et de charge q > 0 sont émis par une source située en F_1 , sans vitesse initiale. Ils sont accélérés entre F_1 et F_2 par une différence de potentiel U appliquée entre les plaques conductrices P_1 et P_2 .

- 1. Préciser la plaque dont le potentiel électrique est le plus élevé et représenter sur le schéma le champ accélérateur E_0 , supposé uniforme, qui règne dans l'entrefer séparant F_1 de F_2 . Calculer numériquement $E_0 = \|\overrightarrow{E_0}\|$.
- 2. Établir l'expression littérale de la vitesse v_0 des ions au niveau de la plaque P_2 .
- 3. Calculer numériquement les vitesses v_{01} et v_{02} des ions ${}^{200}_{80}\mathrm{Hg}^{2+}$ et ${}^{202}_{80}\mathrm{Hg}^{2+}$ à leur arrivée en F_2 .

L'hypothèse de vitesse nulle en F_1 est difficile à réaliser en pratique : il existe une certaine dispersion des vitesses en F_2 et il est nécessaire de réaliser un filtrage en vitesse pour améliorer les performances de l'appareil.

Filtre de vitesse

Les ions traversent la plaque P_2 par la fente F_2 avec un vecteur vitesse perpendiculaire à P_2 . Ils entrent dans l'espace séparant P_2 et P_3 où règnent :

- un champ $\overrightarrow{E_1}$ uniforme situé dans le plan du schéma et parallèle à P_2 ;
- un champ $\overrightarrow{B_1}$ uniforme perpendiculaire au plan du schéma.
- 4. Sous quelle condition les ions peuvent-ils avoir une trajectoire rectiligne les amenant de F_2 à F_3 ?
- 5. En déduire que seuls les ions de vitesse $v_0 = \frac{E_1}{B_1}$ parviennent en F_3 .
- 6. Calculer numériquement cette vitesse et en déduire quel isotope du mercure parvient en F_3 avec ces réglages.

Pour mesurer la composition isotopique du mercure, on règle la valeur de E_1 pour assurer le passage de $^{200}_{80}$ Hg²⁺ pendant une minute, puis on change sa valeur pour que les ions $^{202}_{80}$ Hg²⁺ passent pendant une minute. Pendant cette opération, la valeur de B_1 reste constante.

Séparation des ions

Après F_3 , les ions pénètrent dans une région où ne règne qu'un champ magnétique uniforme $\overrightarrow{B_2}$ normal au plan du schéma. Ils sont déviés vers les collecteurs C_1 et C_2 .

- 7. Montrer que le mouvement d'un ion dans cette région est uniforme.
- 8. Sachant que la trajectoire des ions est circulaire, déterminer son rayon R_1 pour les ions $^{200}_{80}$ Hg²⁺ et R_2 pour les ions $^{202}_{80}$ Hg²⁺.
- 9. Déterminer le collecteur $(C_1$ ou $C_2)$ qui reçoit les ions $^{200}_{80} Hg^{2+}$ et celui qui reçoit les ions $^{202}_{80} Hg^{2+}$.
- 10. Les quantités d'électricité reçues en 1 min par les collecteurs C_1 et C_2 sont $Q_1 = 1,20 \times 10^{-7} \,\mathrm{C}$ et $Q_2 = 3,5 \times 10^{-8} \,\mathrm{C}$. Déterminer la composition du mélange d'ions et en déduire la masse atomique du mercure.