RF TEST REPORT

Report No.: 17021567-FCC-R1 Supersede Report No.: N/A

Applicant	Shenzhen Shuaixian Electronic Equipment Co)., Ltd.
Product Name	Bluetooth Earphones		
Model No.	SX-808		
Serial No.	N/A		
Test Standard	FCC Part 15.247: 2017, ANSI C63.10: 2013		
Test Date	November 20 to November 23, 2017		
Issue Date	November 23, 2017		
Test Result	Pass Fail		
Equipment complied	d with the spec	cification	
Equipment did not c	omply with the	e specification \Box	
Trety.l	u	Deon Dai	
Trety Lu Test Engineer		Deon Dai Engineer Reviewer	
This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only			

Issued by: SIEMIC (Nanjing-China) Laboratories

2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email: China@siemic.com.cn

Test Report No.	17021567-FCC-R1
Page	2 of 81

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

According to Comorning According		
Country/Region	Scope	
USA	EMC, RF/Wireless, SAR, Telecom	
Canada	EMC, RF/Wireless, SAR, Telecom	
Taiwan	EMC, RF, Telecom, SAR, Safety	
Hong Kong	RF/Wireless, SAR, Telecom	
Australia	EMC, RF, Telecom, SAR, Safety	
Korea	EMI, EMS, RF, SAR, Telecom, Safety	
Japan	EMI, RF/Wireless, SAR, Telecom	
Singapore	EMC, RF, SAR, Telecom	
Europe	EMC, RF, SAR, Telecom, Safety	

Test Report No.	17021567-FCC-R1
Page	3 of 81

This page has been left blank intentionally.

Test Report No.	17021567-FCC-R1
Page	4 of 81

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1 A	NTENNA REQUIREMENT	9
6.2 (CHANNEL SEPARATION	10
6.3 2	ODB BANDWIDTH	14
6.4 F	PEAK OUTPUT POWER	18
6.5 N	IUMBER OF HOPPING CHANNEL	22
6.6 T	TIME OF OCCUPANCY (DWELL TIME)	25
6.7 E	BAND EDGE	29
6.8 <i>A</i>	AC POWER LINE CONDUCTED EMISSIONS	49
6.9 F	RADIATED EMISSIONS	55
ANN	EX A. TEST INSTRUMENT	66
ANN	EX B. EUT AND TEST SETUP PHOTOGRAPHS	67
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	77
ANN	EX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	80
ANN	EX E. DECLARATION OF SIMILARITY	81

Test Report No.	17021567-FCC-R1
Page	5 of 81

1. Report Revision History

Report No.	Report Version	Description	Issue Date
17021567-FCC-R1	NONE	Original	November 23, 2017

2. <u>Customer information</u>

Applicant Name	Shenzhen Shuaixian Electronic Equipment Co., Ltd.
Applicant Add	No.10 Lane 3, Longxing Rd., Dakang Long Village, Henggang Town, Longgang Dist., Shenzhen, China
Manufacturer	Shenzhen Shuaixian Electronic Equipment Co., Ltd.
Manufacturer Add	No.10 Lane 3, Longxing Rd., Dakang Long Village, Henggang Town, Longgang Dist., Shenzhen, China

3. Test site information

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Address	2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China
FCC Test Site No.	694825
IC Test Site No.	4842B-1
Test Software	EZ_EMC

Test Report No.	17021567-FCC-R1
Page	6 of 81

4. Equipment under Test (EUT) Information

Description of EUT:	Bluetooth Earphones
Main Model:	SX-808
Serial Model:	N/A
Date EUT received:	November 20, 2017
Test Date(s):	November 20 to November 23, 2017
Antenna Gain:	Bluetooth: 2 dBi
Type of Modulation:	Bluetooth: GFSK, π/4-DQPSK, 8DPSK
RF Operating Frequency (ies):	Bluetooth: 2402-2480 MHz
Max. Output Power:	7.345dBm
Number of Channels:	Bluetooth: 79CH
Port:	Power Port
Power:	Input Power: DC5V
	Battery: 3.7V 500mAh 1.85Wh
Trade Name :	Battery: 3.7V 500mAh 1.85Wh N/A
Trade Name : FCC ID:	Battery: 3.7V 500mAh 1.85Wh

Test Report No.	17021567-FCC-R1
Page	7 of 81

Operating Channel list

Channel	Frequency (MHz)								
00	2402	17	2419	34	2436	51	2453	68	2470
01	2403	18	2420	35	2437	52	2454	69	2471
02	2404	19	2421	36	2438	53	2455	70	2472
03	2405	20	2422	37	2439	54	2456	71	2473
04	2406	21	2423	38	2440	55	2457	72	2474
05	2407	22	2424	39	2441	56	2458	73	2475
06	2408	23	2425	40	2442	57	2459	74	2476
07	2409	24	2426	41	2443	58	2460	75	2477
08	2410	25	2427	42	2444	59	2461	76	2478
09	2411	26	2428	43	2445	60	2462	77	2479
10	2412	27	2429	44	2446	61	2463	78	2480
11	2413	28	2430	45	2447	62	2464		
12	2414	29	2431	46	2448	63	2465		
13	2415	30	2432	47	2449	64	2466		
14	2416	31	2433	48	2450	65	2467		
15	2417	32	2434	49	2451	66	2468		
16	2418	33	2435	50	2452	67	2469		

Test Report No.	17021567-FCC-R1
Page	8 of 81

5. Test Summary

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247(a)(1)	Channel Separation	Compliance
§15.247(a)(1)	20 dB Bandwidth	Compliance
§15.247(b)(1)	Peak Output Power	Compliance
§15.247(a)(1)(iii)	Number of Hopping Channel	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(d)	Band Edge	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Emissions	Compliance

Measurement Uncertainty

Emissions					
Test Item	Test Item Description Uncertainty				
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB			
-	-	-			

Test Report No.	17021567-FCC-R1
Page	9 of 81

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit. And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

Antenna must be permanently attached to the unit, it meets up with the ANTENNA REQUIREMENT.

Result: Compliant.

Test Report No.	17021567-FCC-R1
Page	10 of 81

6.2 Channel Separation

Temperature	23°C
Relative Humidity	51%
Atmospheric Pressure	1018mbar
Test date :	November 22, 2017
Tested By:	Trety Lu

Requirement(s):

Requirement(s):							
Spec	Item	Requirement	Applicable				
§ 15.247(a)(1)	a)	Channel Separation < 20dB BW and 20dB BW < 25KHz; Channel Separation Limit=25KHz Channel Separation < 20dB BW and 20dB BW > 25kHz; Channel Separation Limit=2/3 20dB BW	\boxtimes				
Test Setup		Spectrum Analyzer EUT					
Test Procedure	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Use the following spectrum analyzer settings: The EUT must have its hopping function enabled Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥1% of the span Video (or Average) Bandwidth (VBW) ≥RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.						
Remark							
Result	⊠Pas	s					
- · - · D\							

Test Data	⊠Yes	∐N/A
Test Plot		□N/A

Test Report No.	17021567-FCC-R1
Page	11 of 81

Channel Separation measurement result

Type/ Modulation	СН	CH Freq (MHz)	CH Separation (MHz)	Limit (MHz)	Result
	Low Channel	2402	1.008	0.9237	Pass
	Adjacency Channel	2403	1.000	0.9237	Fass
CH Separation	Mid Channel	2441	1.002	0.9253	Pass
GFSK	Adjacency Channel	2440	1.002	0.9203	Fass
	High Channel	2480	1.005	0.9229	Door
	Adjacency Channel	2479	1.005	0.9229	Pass
	Low Channel	2402	4.000	0.841	Dage
	Adjacency Channel	2403	1.008	0.041	Pass
CH Separation	Mid Channel	2441	1.002	0.822	Dage
π/4-DQPSK	Adjacency Channel	2440			Pass
	High Channel	2480	4.000	0.823	Door
	Adjacency Channel	2479	1.002	0.023	Pass
	Low Channel	2402	1 000	0.850 0.843	D
	Adjacency Channel	2403	1.002		Pass
CH Separation	Mid Channel	2441	1 000		Dage
8DPSK	Adjacency Channel	2440	1.002		Pass
	High Channel	2480	1.014	0.042	Dese
	Adjacency Channel	2479	1.014	0.843	Pass

Test Report No.	17021567-FCC-R1
Page	12 of 81

Test Plots

Test Report No.	17021567-FCC-R1
Page	13 of 81

Test Report No.	17021567-FCC-R1
Page	14 of 81

6.3 20dB Bandwidth

Temperature	23°C
Relative Humidity	51%
Atmospheric Pressure	1018mbar
Test date :	November 22, 2017
Tested By:	Trety Lu

Requirement(s):					
Spec	Item	Item Requirement			
§15.247(a) (1)	a)				
Test Setup		bandwidth of the hopping channel, whichever is greater. Spectrum Analyzer EUT			
Test Procedure	Use the	following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a channel RBW ≥1% of the 20 dB bandwidth VBW ≥RBW Sweep = auto Detector function = peak Trace = max hold. The EUT should be transmitting at its maximum data rate. Allow the trastabilize. Use the marker-to-peak function to set the marker to the peaemission. Use the marker-delta function to measure 20 dB down one semission. Reset the marker-delta function, and move the marker to the the emission, until it is (as close as possible to) even with the reference The marker-delta reading at this point is the 20 dB bandwidth of the error value varies with different modes of operation (e.g., data rate, modulatetc.), repeat this test for each variation. The limit is specified in one of subparagraphs of this Section. Submit this plot(s).	ace to k of the side of the e other side of mission. If this tion format,		
Remark					
Result	⊠Pass	☐ Fail			
Test Data ⊠Yes Test Plot ⊠Yes	(See belov	□ N/A w) □ N/A			

Test Report No.	17021567-FCC-R1
Page	15 of 81

Measurement result

Modulation	СН	CH Freq (MHz)	20dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	Low	2402	0.9237	0.8512
GFSK	Mid	2441	0.9253	0.8577
	High	2480	0.9229	0.8589
π/4-DQPSK	Low	2402	1.262	1.1668
	Mid	2441	1.233	1.1796
	High	2480	1.235	1.1868
8DPSK	Low	2402	1.275	1.1597
	Mid	2441	1.265	1.1750
	High	2480	1.264	1.1848

Test Report No.	17021567-FCC-R1
Page	16 of 81

Test Plots

20dB Bandwidth measurement result

Test Report No.	17021567-FCC-R1
Page	17 of 81

Test Report No.	17021567-FCC-R1
Page	18 of 81

6.4 Peak Output Power

Temperature	23°C
Relative Humidity	51%
Atmospheric Pressure	1018mbar
Test date :	November 22, 2017
Tested By:	Trety Lu

Requirement(s):			
Spec	Item	Requirement	Applicable
	a)	FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤1 Watt	\boxtimes
	b)	FHSS in 5725-5850MHz: ≤1 Watt	
	c)	For all other FHSS in the 2400-2483.5MHz band: ≤0.125 Watt.	\boxtimes
§15.247(b) (2)	d)	FHSS in 902-928MHz with ≥ 50 channels: ≤1 Watt	
	e)	FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤0.25 Watt	
	f)	DSSS in 902-928MHz, 2400-2483.5MHz, 5725-5850MHz: ≤1 Watt	
Test Setup		Spectrum Analyzer EUT	
Test Procedure	Use the	following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hope RBW > the 20 dB bandwidth of the emission being measured VBW ≥RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the eindicated level is the peak output power (see the note above regarding attenuation and cable loss). The limit is specified in one of the subpara Section. Submit this plot. A peak responding power meter may be use spectrum analyzer.	mission. The g external agraphs of this
Remark			
Result	⊠Pass	☐ Fail	
Test Data	(See belov	□N/A w) □N/A	

Test Report No.	17021567-FCC-R1
Page	19 of 81

Peak Output Power measurement result

Туре	Modulation	СН	Freq (MHz)	Conducted Power (dBm)	Limit (mW)	Result
		Low	2402	6.215	1000	Pass
	GFSK	Mid	2441	7.345	1000	Pass
		High	2480	7.128	1000	Pass
Output	π/4-DQPSK	Low	2402	4.562	125	Pass
		Mid	2441	6.616	125	Pass
power		High	2480	6.515	125	Pass
		Low	2402	4.866	125	Pass
	8DPSK	Mid	2441	6.753	125	Pass
		High	2480	6.647	125	Pass

Test Report No.	17021567-FCC-R1
Page	20 of 81

Test Plots

Test Report No.	17021567-FCC-R1
Page	21 of 81

8DPSK Output power - Low CH 2402

8DPSK Output power - Mid CH 2441

8DPSK Output power - High CH 2480

Test Report No.	17021567-FCC-R1
Page	22 of 81

6.5 Number of Hopping Channel

Temperature	23°C
Relative Humidity	51%
Atmospheric Pressure	1018mbar
Test date :	November 22, 2017
Tested By:	Trety Lu

Requirement(s):			
Spec	Item	Requirement	Applicable
§15.247(a) (1)(iii)	a)	FHSS in 2400-2483.5MHz ≥ 15 channels	\boxtimes
Test Setup		Spectrum Analyzer EUT	
Test Procedure	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Use the following spectrum analyzer settings: The EUT must have its hopping function enabled. Span = the frequency band of operation RBW ≥1% of the span VBW ≥RBW Sweep = auto Detector function = peak Trace = max hold Allow trace to fully stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).		
Remark			
Result	⊠Pass	□Fail	
Test Data Ye	S	□N/A	

Test Data	⊠Yes	∟N/A
Test Plot	⊠Yes (See below)	□N/A

Test Report No.	17021567-FCC-R1
Page	23 of 81

Number of Hopping Channel measurement result

Туре	Modulation	Frequency Range	Number of Hopping Channel	Limit
Number of Henring	GFSK	2400-2483.5	79	15
Number of Hopping Channel	π/4-DQPSK	2400-2483.5	79	15
Silalillei	8DPSK	2400-2483.5	79	15

Test Plots

Test Report No.	17021567-FCC-R1
Page	24 of 81

 π /4-DQPSK Number of Hopping Channels - 2

 π /4-DQPSK Number of Hopping Channels - 3

8DPSK Number of Hopping Channels - 1

8DPSK Number of Hopping Channels - 2

Test Report No.	17021567-FCC-R1
Page	25 of 81

6.6 Time of Occupancy (Dwell Time)

Temperature	23°C
Relative Humidity	51%
Atmospheric Pressure	1018mbar
Test date :	November 23, 2017
Tested By:	Trety Lu

Requirement(s):

Spec	Item	Requirement	Applicable					
§15.247(a) (1)(iii)	a)	Dwell Time < 0.4s	\boxtimes					
Test Setup		Spectrum Analyze EUT						
Test Procedure	Use the :	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Use the following spectrum analyzer - Span = zero span, centered on a hopping channel - RBW = 1 MHz - VBW ≥RBW - Sweep = as necessary to capture the entire dwell time per hopping channel - Detector function = peak - Trace = max hold - use the marker-delta function to determine the dwell time						
Remark								
Result	⊠Pass	☐ Fail						

Test Data	⊠Yes	☐ N/A
Test Plot	⊠Yes (See below)	□ N/A

Test Report No.	17021567-FCC-R1
Page	26 of 81

Dwell Time measurement result

Туре	Modulation	СН	Pulse Width (ms)	Dwell Time (ms)	Limit (ms)	Result
		Low	2.950	314.67	400	Pass
	GFSK	Mid	2.975	317.33	400	Pass
		High	2.967	316.48	400	Pass
	π/4-DQPSK 8DPSK	Low	2.975	317.33	400	Pass
Dwell Time		Mid	2.975	317.33	400	Pass
		High	2.975	317.33	400	Pass
		Low	2.975	317.33	400	Pass
		Mid	2.975	317.33	400	Pass
		High	2.975	317.33	400	Pass
	Note: Dwell	time=Pulse Ti	me (ms) × (1600 -	÷ 6 ÷ 79) ×31.6		

Note : All packet have been tested ($\rm DH1$, $\rm \, DH2$, $\rm \, DH3$) ,but only worst ($\rm \, DH5$) case is the reported.

Test Report No.	17021567-FCC-R1
Page	27 of 81

Test Plots

Test Report No.	17021567-FCC-R1
Page	28 of 81

Test Report No.	17021567-FCC-R1
Page	29 of 81

6.7 Band Edge

Temperature	23°C
Relative Humidity	51%
Atmospheric Pressure	1018mbar
Test date :	November 20 to November 22, 2017
Tested By:	Trety Lu

Requirement(s):

Spec	Item	Requirement	Applicable
§15.247(a) (1)(iii)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.	⊠
Test Setup		Ant. Tower Support Units Ground Plane Test Receiver	-
Test Procedure	Radiated	follows FCC Public Notice DA 00-705 Measurement Guidelines. Method Only 1. Check the calibration of the measuring instrument using either an internal casignal from an external generator. 2. Position the EUT without connection to measurement instrument. Put it on the and turn on the EUT and make it operate in transmitting mode. Then set it to Le High Channel within its operating range, and make sure the instrument is operarange. 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a convespan including 100kHz bandwidth from band edge, check the emission of EUT Spectrum Analyzer as below: a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz and vid 3MHz with Peak detection at frequency below 1GHz. b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and vid 3MHz with Peak detection for Peak measurement at frequency above 1GHz. c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the is 10Hz with Peak detection for Average Measurement as below at frequency at Measure the highest amplitude appearing on spectral display and set it as a Plot the graph with marking the highest point and edge frequency. 5. Repeat above procedures until all measured frequencies were complete.	ne Rotated table ow Channel and ated in its linear nient frequency , if pass then set alyzer is 120 kHz deo bandwidth is e video bandwidth above 1GHz.
Remark			

Test Report No.	17021567-FCC-R1
Page	30 of 81

est Data ☐Yes ☑N/A	АВ	A Bureau Veritas Group Company			Page 30 of 81			
	Result		⊠Pass	□Fail				
	Test Data Test Plot							

Test Report No.	17021567-FCC-R1
Page	31 of 81

Test Plots GFSK

Test Mode: Hopping Mode

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	61.48	peak	31.53	52.55	4.02	44.48	74.00	-29.52	100	172
2	2400.000	73.63	peak	31.54	52.56	4.01	56.62	74.00	-17.38	100	353
3	2400.000	68.50	AVG	31.54	52.56	4.01	51.49	54.00	-2.51	100	353
4	2483.500	64.75	peak	31.59	52.63	4.06	47.77	74.00	-26.23	100	51

Test Report No.	17021567-FCC-R1
Page	32 of 81

Test Mode: Hopping Mode

Horizontal

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	60.06	peak	31.53	52.55	4.02	43.06	74.00	-30.94	100	223
2	2400.000	76.55	peak	31.54	52.56	4.01	59.54	74.00	-14.46	100	360
3	2400.000	67.88	AVG	31.54	52.56	4.01	50.87	54.00	-3.13	100	360
4	2483.500	69.53	peak	31.59	52.63	4.06	52.55	74.00	-21.45	100	139

Test Report No.	17021567-FCC-R1
Page	33 of 81

Test Mode: Low channel TX Mode

Vertical

					101	tioui					
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	60.46	peak	31.53	52.55	4.02	43.46	74.00	-30.54	100	328
2	2400.000	89.18	peak	31.54	52.56	4.01	72.17	74.00	-1.83	100	113
3	2400.000	63.81	AVG	31.54	52.56	4.01	46.80	54.00	-7.20	100	113
4	2402 440	106 20	neak	31 54	52 56	4 01	89 19	74 00	15 19	100	197

Test Report No.	17021567-FCC-R1
Page	34 of 81

Test Mode: Low channel TX Mode

Horizontal

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	59.95	peak	31.53	52.55	4.02	42.95	74.00	-31.05	100	151
2	2400.000	88.52	peak	31.54	52.56	4.01	71.51	74.00	-2.49	100	127
3	2400.000	56.97	AVG	31.54	52.56	4.01	39.96	54.00	-14.04	100	127
4	2402.700	106.09	peak	31.54	52.56	4.01	89.08	74.00	15.08	100	115

Test Report No.	17021567-FCC-R1
Page	35 of 81

Test Mode: High channel TX Mode

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2474.960	63.46	peak	31.58	52.62	4.05	46.47	74.00	-27.53	100	148
2	2479.960	103.39	peak	31.59	52.62	4.06	86.42	74.00	12.42	100	29
3	2483.500	65.95	peak	31.59	52.63	4.06	48.97	74.00	-25.03	100	17

Test Report No.	17021567-FCC-R1
Page	36 of 81

Test Mode: High channel TX Mode

Horizontal

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2474.160	63.52	peak	31.58	52.62	4.05	46.53	74.00	-27.47	100	196
2	2480.320	106.06	peak	31.59	52.62	4.06	89.09	74.00	15.09	100	196
3	2483.500	73.16	peak	31.59	52.63	4.06	56.18	74.00	-17.82	100	64
4	2483.500	54.63	AVG	31.59	52.63	4.06	37.65	54.00	-16.35	100	53
5	2486.240	62.45	peak	31.59	52.63	4.06	45.47	74.00	-28.53	100	124

Test Report No.	17021567-FCC-R1
Page	37 of 81

$\pi/4$ -DQPSK:

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	60.85	peak	31.53	52.55	4.02	43.85	74.00	-30.15	100	150
2	2400.000	73.47	peak	31.54	52.56	4.01	56.46	74.00	-17.54	100	235
3	2400.000	68.32	AVG	31.54	52.56	4.01	51.31	54.00	-2.69	100	235
4	2483.500	60.93	peak	31.59	52.63	4.06	43.95	74.00	-30.05	100	296

Test Report No.	17021567-FCC-R1
Page	38 of 81

Test Mode: Hopping Mode

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	59.93	peak	31.53	52.55	4.02	42.93	74.00	-31.07	100	160
2	2400.000	81.44	peak	31.54	52.56	4.01	64.43	74.00	-9.57	100	172
3	2400.000	67.63	AVG	31.54	52.56	4.01	50.62	54.00	-3.38	100	172
4	2483.500	70.67	peak	31.59	52.63	4.06	53.69	74.00	-20.31	100	148

Test Report No.	17021567-FCC-R1
Page	39 of 81

Test Mode: Low channel TX Mode

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2367.990	61.50	peak	31.52	52.53	4.04	44.53	74.00	-29.47	100	185
2	2390.000	61.76	peak	31.53	52.55	4.02	44.76	74.00	-29.24	100	185
3	2400.000	80.32	peak	31.54	52.56	4.01	63.31	74.00	-10.69	100	360
4	2400.000	65.53	AVG	31.54	52.56	4.01	48.52	54.00	-5.48	100	360
5	2402.180	99.43	peak	31.54	52.56	4.01	82.42	74.00	8.42	100	360

Test Report No.	17021567-FCC-R1
Page	40 of 81

Test Mode: Low channel TX Mode

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2383.850	61.24	peak	31.53	52.55	4.03	44.25	74.00	-29.75	100	90
2	2390.000	59.49	peak	31.53	52.55	4.02	42.49	74.00	-31.51	100	272
3	2400.000	78.78	peak	31.54	52.56	4.01	61.77	74.00	-12.23	100	114
4	2400.000	68.49	AVG	31.54	52.56	4.01	51.48	54.00	-2.52	100	114
5	2402.180	98.12	peak	31.54	52.56	4.01	81.11	74.00	7.11	100	127

Test Report No.	17021567-FCC-R1
Page	41 of 81

Test Mode: High channel TX Mode

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2472.160	63.60	peak	31.58	52.62	4.05	46.61	74.00	-27.39	100	163
2	2479.840	103.80	peak	31.59	52.62	4.06	86.83	74.00	12.83	100	32
3	2483.500	66.04	peak	31.59	52.63	4.06	49.06	74.00	-24.94	100	32
4	2486.720	64.65	peak	31.59	52.63	4.06	47.67	74.00	-26.33	100	163

Test Report No.	17021567-FCC-R1
Page	42 of 81

Test Mode: High channel TX Mode

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2463.040	65.35	peak	31.58	52.61	4.05	48.37	74.00	-25.63	100	185
2	2480.480	106.06	peak	31.59	52.62	4.06	89.09	74.00	15.09	100	125
3	2483.500	72.10	peak	31.59	52.63	4.06	55.12	74.00	-18.88	100	113
4	2483.500	56.45	AVG	31.59	52.63	4.06	39.47	54.00	-14.53	100	113
5	2486.000	62.73	peak	31.59	52.63	4.06	45.75	74.00	-28.25	100	197

Test Report No.	17021567-FCC-R1
Page	43 of 81

8DPSK Mode:

Test Mode: Hopping Mode

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	61.27	peak	31.53	52.55	4.02	44.27	74.00	-29.73	100	172
2	2400.000	74.06	peak	31.54	52.56	4.01	57.05	74.00	-16.95	100	76
3	2400.000	67.49	AVG	31.54	52.56	4.01	50.48	54.00	-3.52	100	76
4	2483.500	64.10	peak	31.59	52.63	4.06	47.12	74.00	-26.88	100	124

Test Report No.	17021567-FCC-R1
Page	44 of 81

Test Mode: Hopping Mode

	11411411												
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree		
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)		
1	2390.000	59.79	peak	31.53	52.55	4.02	42.79	74.00	-31.21	100	126		
2	2400.000	82.85	peak	31.54	52.56	4.01	65.84	74.00	-8.16	100	223		
3	2400.000	69.48	AVG	31.54	52.56	4.01	52.47	54.00	-1.53	100	223		
4	2483.500	62.00	peak	31.59	52.63	4.06	45.02	74.00	-28.98	100	360		

Test Report No.	17021567-FCC-R1
Page	45 of 81

Test Mode: Low channel TX Mode

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2324.700	64.43	peak	31.49	52.50	4.09	47.51	74.00	-26.49	100	281
2	2390.000	59.88	peak	31.53	52.55	4.02	42.88	74.00	-31.12	100	160
3	2400.000	78.68	peak	31.54	52.56	4.01	61.67	74.00	-12.33	100	353
4	2400.000	68.38	AVG	31.54	52.56	4.01	51.37	54.00	-2.63	100	353
5	2402.050	98.68	peak	31.54	52.56	4.01	81.67	74.00	7.67	100	353

Test Report No.	17021567-FCC-R1
Page	46 of 81

Test Mode: Low channel TX Mode

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2375.920	60.69	peak	31.53	52.54	4.03	43.71	74.00	-30.29	100	187
2	2390.000	58.63	peak	31.53	52.55	4.02	41.63	74.00	-32.37	100	18
3	2400.000	75.96	peak	31.54	52.56	4.01	58.95	74.00	-15.05	100	320
4	2400.000	67.62	AVG	31.54	52.56	4.01	50.61	54.00	-3.39	100	320
5	2401.920	95.68	peak	31.54	52.56	4.01	78.67	74.00	4.67	100	320

Test Report No.	17021567-FCC-R1
Page	47 of 81

Test Mode: High channel TX Mode

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2464.720	64.17	peak	31.58	52.61	4.05	47.19	74.00	-26.81	100	9
2	2480.000	100.95	peak	31.59	52.62	4.06	83.98	74.00	9.98	100	354
3	2483.500	63.51	peak	31.59	52.63	4.06	46.53	74.00	-27.47	100	354
4	2491.880	63.07	peak	31.60	52.63	4.07	46.11	74.00	-27.89	100	0

Test Report No.	17021567-FCC-R1
Page	48 of 81

Test Mode: High channel TX Mode

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2472.800	61.01	peak	31.58	52.62	4.05	44.02	74.00	-29.98	100	161
2	2480.000	98.03	peak	31.59	52.62	4.06	81.06	74.00	7.06	100	149
3	2483.500	62.06	peak	31.59	52.63	4.06	45.08	74.00	-28.92	100	149
4	2490.920	61.58	peak	31.59	52.63	4.06	44.60	74.00	-29.40	100	316

Test Report No.	17021567-FCC-R1				
Page	49 of 81				

6.8 AC Power Line Conducted Emissions

Temperature	23°C
Relative Humidity	51%
Atmospheric Pressure	1018mbar
Test date :	November 21,2017
Tested By:	Trety Lu

Requirement(s):

Spec	Item	Requirement			Applicable		
		For Low-power radio-freque public utility (AC) power line onto the AC power line on a to 30 MHz, shall not exceed 50 [mu]H/50 ohms line impeapplies at the boundary betweether the statement of t					
47CFR§15.20		Frequency ranges					
7, RSS210	a)	(MHz)	Limit (Average			
(A8.1)	۵,	0.15 ~ 0.5	79	66			
(7.0.1)		0.5 ~ 30	73	60			
			Class B Limit				
		Frequency ranges	Limit (
		(MHz)	QP	Average			
		0.15 ~ 0.5	66 – 56	56 – 46			
		0.5 ~ 5	56	46			
		5 ~ 30	60	50			
Test Setup		2.Both of L from othe	nits were connected to se ISNs (AMN) are 80cm from r units and other metal pla	EUT and at least 80cm nes support units.			
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50 [mu]H/50 EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable. All other supporting equipment were powered separately from another main supply. The EUT was switched on and allowed to warm up to its normal operating condition. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. High peaks, relative to the limit line, The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power). 						
Remark	We test 3 modulations, only show GFSK test data in the report.						

Test Report No.	17021567-FCC-R1
Page	50 of 81

Test Data ⊠Yes □N/A

Test Plot ⊠Yes (See below) □N/A

Data sample

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBµV)		(dB)	(dB)	(dB)	(dBμV)	(dBµV)	(dB)

Frequency (MHz) = Emission frequency in MHz

Reading ($dB\mu V$) = Receiver Reading Value

Detector=Quasi Peak Detector or Average Detector

Lisn/ISN= Insertion loss of LISN

Ps_Lmt= Insertion loss of transient limiter (The transient limiter included 10dB attenuation)

Cab_L= cable loss

Result (dB μ V) = Reading Value + Corrected Value

Limit (dB μ V) = Limit stated in standard

Calculation Formula:

Margin (dB) = Result (dB μ V) – limit (dB μ V)

Test Report No.	17021567-FCC-R1
Page	51 of 81

Test Mode: Transmitting BT Mode (GFSK-Low Channel)
--

Test Data

Phase Line Plot at 120Vac, 60Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.1500	29.46	QP	0.10	-10.00	0.36	39.92	66.00	-26.08
2	0.1500	18.70	AVG	0.10	-10.00	0.36	29.16	56.00	-26.84
3	0.1900	25.43	QP	0.10	-10.00	0.30	35.83	64.04	-28.21
4	0.1900	15.98	AVG	0.10	-10.00	0.30	26.38	54.04	-27.66
5	0.4860	19.85	QP	0.12	-10.00	0.21	30.18	56.24	-26.06
6	0.4860	15.20	AVG	0.12	-10.00	0.21	25.53	46.24	-20.71
7	0.7340	16.41	QP	0.13	-10.00	0.20	26.74	56.00	-29.26
8	0.7340	11.35	AVG	0.13	-10.00	0.20	21.68	46.00	-24.32
9	1.5500	17.58	QP	0.15	-10.00	0.20	27.93	56.00	-28.07
10	1.5500	12.25	AVG	0.15	-10.00	0.20	22.60	46.00	-23.40
11	1.8780	14.86	QP	0.16	-10.00	0.19	25.21	56.00	-30.79
12	1.8780	9.81	AVG	0.16	-10.00	0.19	20.16	46.00	-25.84

Test Report No.	17021567-FCC-R1
Page	52 of 81

Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.1500	30.30	QP	0.11	-10.00	0.36	40.77	66.00	-25.23
2	0.1500	18.96	AVG	0.11	-10.00	0.36	29.43	56.00	-26.57
3	0.1900	25.95	QP	0.10	-10.00	0.30	36.35	64.04	-27.69
4	0.1900	16.50	AVG	0.10	-10.00	0.30	26.90	54.04	-27.14
5	0.4900	21.95	QP	0.11	-10.00	0.21	32.27	56.17	-23.90
6	0.4900	17.79	AVG	0.11	-10.00	0.21	28.11	46.17	-18.06
7	1.0340	15.58	QP	0.13	-10.00	0.19	25.90	56.00	-30.10
8	1.0340	10.46	AVG	0.13	-10.00	0.19	20.78	46.00	-25.22
9	1.4740	17.27	QP	0.15	-10.00	0.20	27.62	56.00	-28.38
10	1.4740	12.03	AVG	0.15	-10.00	0.20	22.38	46.00	-23.62
11	25.4580	21.31	QP	1.42	-10.00	0.67	33.40	60.00	-26.60
12	25.4580	10.57	AVG	1.42	-10.00	0.67	22.66	50.00	-27.34

Test Report No.	17021567-FCC-R1
Page	53 of 81

Test Mode: Transmitting BT Mode (GFSK-Low Channel)

Test Data

Phase Line Plot at 230Vac, 50Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.1540	29.43	QP	0.10	-10.00	0.35	39.88	65.78	-25.90
2	0.1540	17.92	AVG	0.10	-10.00	0.35	28.37	55.78	-27.41
3	0.2580	21.91	QP	0.10	-10.00	0.20	32.21	61.50	-29.29
4	0.2580	13.87	AVG	0.10	-10.00	0.20	24.17	51.50	-27.33
5	0.4860	18.48	QP	0.12	-10.00	0.21	28.81	56.24	-27.43
6	0.4860	13.44	AVG	0.12	-10.00	0.21	23.77	46.24	-22.47
7	1.3060	16.05	QP	0.15	-10.00	0.21	26.41	56.00	-29.59
8	1.3060	10.90	AVG	0.15	-10.00	0.21	21.26	46.00	-24.74
9	1.8580	15.15	QP	0.16	-10.00	0.20	25.51	56.00	-30.49
10	1.8580	10.03	AVG	0.16	-10.00	0.20	20.39	46.00	-25.61
11	26.9940	23.87	QP	1.27	-10.00	0.70	35.84	60.00	-24.16
12	26.9940	10.97	AVG	1.27	-10.00	0.70	22.94	50.00	-27.06

Test Report No.	17021567-FCC-R1
Page	54 of 81

Test Data

Phase Neutral Plot at 230Vac, 50Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.1580	27.86	QP	0.11	-10.00	0.35	38.32	65.57	-27.25
2	0.1580	17.28	AVG	0.11	-10.00	0.35	27.74	55.57	-27.83
3	0.2780	20.33	QP	0.10	-10.00	0.20	30.63	60.88	-30.25
4	0.2780	13.39	AVG	0.10	-10.00	0.20	23.69	50.88	-27.19
5	0.4820	19.64	QP	0.11	-10.00	0.21	29.96	56.30	-26.34
6	0.4820	15.23	AVG	0.11	-10.00	0.21	25.55	46.30	-20.75
7	0.6500	16.70	QP	0.12	-10.00	0.20	27.02	56.00	-28.98
8	0.6500	11.76	AVG	0.12	-10.00	0.20	22.08	46.00	-23.92
9	1.6980	17.32	QP	0.16	-10.00	0.21	27.69	56.00	-28.31
10	1.6980	12.09	AVG	0.16	-10.00	0.21	22.46	46.00	-23.54
11	26.8540	19.50	QP	1.41	-10.00	0.70	31.61	60.00	-28.39
12	26.8540	7.52	AVG	1.41	-10.00	0.70	19.63	50.00	-30.37

Test Report No.	17021567-FCC-R1
Page	55 of 81

6.9 Radiated Emissions

Temperature	23°C	
Relative Humidity	51%	
Atmospheric Pressure	1018mbar	
Test date :	November 21 to November 22, 2017	
Tested By:	Trety Lu	

Requirement(s):								
Spec	Item	Requirement		Applicable				
47CFR§15.20		Except higher limit as specified elsewhere i low-power radio-frequency devices shall no specified in the following table and the leve exceed the level of the fundamental emissic edges Class A Frequency range (MHz) 30 – 88	t exceed the field strength levels of any unwanted emissions shall not on. The tighter limit applies at the band Limit Field Strength (µV/m) 90	V				
5, §15.209, §15.247(d)	a)	216 – 960 Above 960	88 – 216 150 216 – 960 210 Above 960 300					
		Class B						
		Frequency range (MHz)	Field Strength (µV/m)					
		30 – 88 88 – 216	100 150					
		216 – 960	200					
		Above 960	500					
Test Setup		Test I	ad Plane Receiver	-				
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen. The EUT was then rotated to the direction that gave the maximum emission. Finally, the antenna height was adjusted to the height that gave the maximum emission. Finally, the antenna height was adjusted to the height that gave the maximum emission. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak measurement at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz with Peak detection for Average Measurement as below at frequency above 1GHz. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were 							

Test Report No.	17021567-FCC-R1
Page	56 of 81

Remark	We test 3 modulations, only show GFSK test data in the report.
Result	Pass Fail

Test Data Yes

Yes (See below)

Data sample

Test Plot

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)

Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Receiver Reading Value

Detector= Peak Detector or Quasi Peak Detector

Ant_F=Antenna Factor

PA_G=Pre-Amplifier Gain

Cab_L=Cable Loss

Result ($dB\mu V/m$) = Read ing Value + Corrected Value

Limit (dB μ V/m) = Limit stated in standard

Height (cm) = Height of Receiver antenna

Degree = Turn table degree

Calculation Formula:

Margin (dB) = Result (dB μ V/m) – limit (dB μ V/m)

Test Report No.	17021567-FCC-R1
Page	57 of 81

Test Mode: Transmitting BT Mode (GFSK-Low Channel)

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	124.1330	46.62	QP	16.06	46.87	1.81	17.62	43.50	-25.88	100	213
2	172.5988	46.16	QP	13.85	46.44	2.11	15.68	43.50	-27.82	100	188
3	319.9370	51.77	QP	15.36	48.68	2.86	21.31	46.00	-24.69	200	196
4	603.5392	49.53	QP	20.34	48.39	3.94	25.42	46.00	-20.58	100	278
5	734.4913	40.35	QP	22.23	45.29	4.35	21.64	46.00	-24.36	100	104
6	881.4067	45.81	QP	23.28	45.95	4.80	27.94	46.00	-18.06	100	54

Test Report No.	17021567-FCC-R1						
Page	58 of 81						

Test Mode: Transmitting BT Mode (GFSK-Low Channel)

Below 1GHz

Horizontal Polarity Plot @3m

	Tionzontair olarity rice wom										
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	293.0842	54.59	QP	16.66	48.34	2.73	25.64	46.00	-20.36	200	70
2	293.0842	54.59	QP	16.66	48.34	2.73	25.64	46.00	-20.36	200	70
3	460.7271	43.84	QP	16.00	49.17	3.43	14.10	46.00	-31.90	200	267
4	603.5392	46.75	QP	21.30	48.39	3.94	23.60	46.00	-22.40	200	88
5	691.9867	40.62	QP	22.31	45.96	4.23	21.20	46.00	-24.80	200	12
6	721.7259	42.57	QP	22.53	45.71	4.31	23.70	46.00	-22.30	300	233

Test Report No.	17021567-FCC-R1
Page	59 of 81

Test Mode: Transmitting BT Mode (GFSK-Middle Channel)

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	230.0985	50.42	QP	14.88	47.57	2.41	20.14	46.00	-25.86	200	213
2	460.7271	55.13	QP	15.98	49.17	3.43	25.37	46.00	-20.63	100	318
3	537.5891	50.13	QP	17.18	48.82	3.70	22.19	46.00	-23.81	100	352
4	614.2142	48.39	QP	20.59	47.47	3.98	25.49	46.00	-20.51	100	346
5	691.9867	47.75	QP	22.40	45.96	4.23	28.42	46.00	-17.58	200	211
6	881.4067	45.52	QP	23.28	45.95	4.80	27.65	46.00	-18.35	100	102

Test Report No.	17021567-FCC-R1
Page	60 of 81

Test Mode:

Transmitting BT Mode (GFSK-Middle Channel)

Below 1GHz

Horizontal Polarity Plot @3m

	Tionzonian Folding Fire Com										
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	120.6991	44.13	QP	16.00	46.61	1.79	15.31	43.50	-28.19	200	28
2	187.7530	50.46	QP	12.71	46.61	2.21	18.77	43.50	-24.73	200	12
3	318.8170	52.53	QP	16.73	48.66	2.86	23.46	46.00	-22.54	300	189
4	383.9318	51.07	QP	16.14	48.80	3.16	21.57	46.00	-24.43	300	51
5	603.5392	51.80	QP	21.30	48.39	3.94	28.65	46.00	-17.35	200	11
6	731.9203	47.81	QP	22.59	45.38	4.34	29.36	46.00	-16.64	200	249

Test Report No.	17021567-FCC-R1
Page	61 of 81

Test Mode: Transmitting BT Mode (GFSK-High Channel)

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	191.7450	56.90	QP	12.88	46.81	2.23	25.20	43.50	-18.30	195	360
2	230.0985	62.58	QP	14.88	47.57	2.41	32.30	46.00	-13.70	100	274
3	337.2155	63.03	QP	15.71	48.88	2.94	32.80	46.00	-13.20	100	155
4	460.7271	59.56	QP	15.98	49.17	3.43	29.80	46.00	-16.20	200	271
5	603.5392	43.71	QP	20.34	48.39	3.94	19.60	46.00	-26.40	200	354
6	863.0562	50.02	QP	22.89	46.25	4.74	31.40	46.00	-14.60	100	172

Test Report No.	17021567-FCC-R1
Page	62 of 81

Test Mode: Transmitting BT Mode (GFSK-High Channel)

Below 1GHz

Horizontal Polarity Plot @3m

	11011201111111 1 101 (20111										
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	143.8295	51.57	QP	13.03	47.97	2.04	18.67	43.50	-24.83	202	56
2	230.0985	55.59	QP	14.88	47.57	2.41	25.31	46.00	-20.69	202	105
3	332.5187	60.86	QP	15.62	48.82	2.92	30.58	46.00	-15.42	300	159
4	460.7271	58.40	QP	15.98	49.17	3.43	28.64	46.00	-17.36	202	273
5	691.9867	46.99	QP	22.40	45.96	4.23	27.66	46.00	-18.34	300	110
6	881.4067	47.51	QP	23.28	45.95	4.80	29.64	46.00	-16.36	202	107

Test Report No.	17021567-FCC-R1
Page	63 of 81

Test Mode: Transmitting BT Mode (GFSK - Low Channel)

Above 1GHz Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	1867.000	69.46	peak	30.53	51.61	3.99	52.37	74.00	-21.63	200	228
2	2989.000	60.91	peak	31.55	52.81	4.43	44.08	74.00	-29.92	100	246
3	4808.000	59.95	peak	33.18	53.35	6.10	45.88	74.00	-28.12	200	250
4	8225.000	55.95	peak	35.48	54.29	8.09	45.23	74.00	-28.77	100	204
5	9823.000	54.77	peak	38.28	53.97	9.11	48.19	74.00	-25.81	200	330
6	11523.000	56.41	peak	38.60	53.18	10.09	51.92	74.00	-22.08	117	360

					110112	-Oiitai					
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	1867.000	51.34	AVG	30.53	51.61	3.99	34.25	54.00	-19.75	200	278
2	4808.000	62.14	peak	33.18	53.35	6.10	48.07	74.00	-25.93	200	143
3	7970.000	55.21	peak	36.51	54.74	7.82	44.80	74.00	-29.20	100	357
4	9602.000	54.66	peak	37.74	53.81	8.94	47.53	74.00	-26.47	100	42
5	11710.000	56.01	peak	38.56	53.51	10.02	51.08	74.00	-22.92	200	129
6	13019.000	54.45	peak	40.54	51.81	9.64	52.82	74.00	-21.18	200	69

Test Report No.	17021567-FCC-R1
Page	64 of 81

Test Mode:

Transmitting BT Mode (GFSK - Mid Channel)

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	1867.000	68.98	peak	30.53	51.61	3.99	51.89	74.00	-22.11	200	141
2	4876.000	64.47	peak	33.33	53.66	6.00	50.14	74.00	-23.86	200	306
3	8191.000	55.89	peak	35.65	54.36	8.06	45.24	74.00	-28.76	200	164
4	9857.000	55.06	peak	38.36	54.00	9.13	48.55	74.00	-25.45	100	321
5	11047.000	55.42	peak	38.42	53.22	9.56	50.18	74.00	-23.82	200	167
6	13070.000	54.18	peak	40.65	51.83	9.62	52.62	74.00	-21.38	200	303

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	1867.000	42.43	AVG	30.53	51.61	3.99	25.34	54.00	-28.66	100	179
2	4876.000	59.63	peak	33.33	53.66	6.00	45.30	74.00	-28.70	200	26
3	6406.000	55.70	peak	34.05	52.54	5.84	43.05	74.00	-30.95	200	359
4	9279.000	55.18	peak	36.75	54.21	8.49	46.21	74.00	-27.79	100	76
5	10469.000	54.37	peak	38.61	53.10	9.34	49.22	74.00	-24.78	200	315
6	11098.000	55.57	peak	38.44	53.21	9.62	50.42	74.00	-23.58	200	334

Test Report No.	17021567-FCC-R1
Page	65 of 81

Test Mode:

Transmitting BT Mode (GFSK -High Channel)

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	1765.000	70.83	peak	29.94	51.12	4.01	53.66	74.00	-20.34	200	35
2	4961.000	63.47	peak	33.51	54.04	5.88	48.82	74.00	-25.18	200	337
3	7443.000	59.75	peak	35.01	54.87	7.33	47.22	74.00	-26.78	100	349
4	9806.000	57.18	peak	38.23	53.96	9.09	50.54	74.00	-23.46	100	224
5	11013.000	56.62	peak	38.41	53.23	9.52	51.32	74.00	-22.68	200	314
6	13495.000	42.99	AVG	41.59	52.00	9.40	41.98	54.00	-12.02	200	18

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	1867.000	69.72	peak	30.53	51.61	3.99	52.63	74.00	-21.37	200	329
2	4961.000	60.97	peak	33.51	54.04	5.88	46.32	74.00	-27.68	200	218
3	6015.000	56.33	peak	33.42	51.33	5.85	44.27	74.00	-29.73	200	289
4	7443.000	58.80	peak	35.01	54.87	7.33	46.27	74.00	-27.73	200	156
5	9313.000	55.98	peak	36.86	54.14	8.55	47.25	74.00	-26.75	200	352
6	10401.000	55.72	peak	38.62	53.24	9.33	50.43	74.00	-23.57	200	108

Test Report No.	17021567-FCC-R1
Page	66 of 81

Annex A. TEST INSTRUMENT

la atmum ant	Model	Serial #	Cal Data	Cal Dua	la usa
Instrument		Seriai #	Cal Date	Cal Due	In use
AC Line Conducted Emission	ns				
R&S EMI Test Receiver	ESPI3	101216	05/03/2017	05/02/2018	
V-LISN	ESH3-Z5	838979/005	03/30/2017	03/29/2018	\boxtimes
Transient Limiter	LIT-153	531021	10/30/2017	10/29/2018	\boxtimes
SIEMIC EZ_EMC Conducted Emissions software	Ver.ICP-03A1	N/A	N/A	N/A	\boxtimes
RF conducted test					
R&S EMI Receiver	ESPI3	101216	05/03/2017	05/02/2018	\boxtimes
Spectrum Analyzer	N9010A	MY47191130	03/30/2017	03/29/2018	\boxtimes
Radiated Emissions					
Spectrum Analyzer	N9010A	MY47191130	05/03/2017	05/02/2018	\boxtimes
R&S EMI Receiver	ESPI3	101216	05/03/2017	05/02/2018	\boxtimes
Antenna (30MHz~6GHz)	JB6	A121411	10/31/2017	10/30/2018	\boxtimes
EMCO Horn Antenna (1 ~18GHz)	3115	N/A	11/15/2017	11/14/2018	\boxtimes
INFOMW Antenna (1 ~18GHz)	JXTXLB- 10180	J2031081120092	10/07/2017	10/06/2018	
Hp Pre-Amplifier	8447F	1937A01160	10/30/2017	10/29/2018	\boxtimes
Agilent Pre-Amplifier	8447B	N/A	10/30/2017	10/29/2018	\boxtimes
SIEMIC EZ_EMC Radiated Emissions software	Ver.ICP-03A1	N/A	N/A	N/A	\boxtimes

Test Report No.	17021567-FCC-R1
Page	67 of 81

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

EUT - Top View

EUT - Bottom View

Test Report No.	17021567-FCC-R1
Page	68 of 81

EUT - Front View

EUT - Rear View

Test Report No.	17021567-FCC-R1
Page	69 of 81

EUT - Left View

EUT - Right View

Test Report No.	17021567-FCC-R1
Page	70 of 81

Annex B.ii. Photograph: EUT Internal Photo

EUT – Uncover Front View

Antenna

Test Report No.	17021567-FCC-R1
Page	71 of 81

EUT PCB1 - Rear View

EUT PCB2 - Front View

Test Report No.	17021567-FCC-R1
Page	72 of 81

EUT PCB2 - Rear View

EUT Battery - Front View

Test Report No.	17021567-FCC-R1
Page	73 of 81

Test Report No.	17021567-FCC-R1
Page	74 of 81

Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Test Setup Front View

Conducted Emissions Test Setup Side View

Test Report No.	17021567-FCC-R1
Page	75 of 81

Radiated Spurious Emissions Test Setup Below 1GHz Front View

Radiated Spurious Emissions Test Setup Below 1GHz Rear View

Test Report No.	17021567-FCC-R1
Page	76 of 81

Radiated Spurious Emissions Test Setup Above 1GHz

Test Report No.	17021567-FCC-R1
Page	77 of 81

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Block Configuration Diagram for Conducted Emissions

Test Report No.	17021567-FCC-R1
Page	78 of 81

Block Configuration Diagram for Radiated Emissions

Test Report No.	17021567-FCC-R1
Page	79 of 81

Annex C. ii. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Manufacturer	Equipment Description	Model	Serial No
XIAOMI	Adapter	CH-P002	N/A
DELL	Laptop	Inspiron 14-3443	N/A

Test Report No.	17021567-FCC-R1
Page	80 of 81

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see attachment

Test Report No.	17021567-FCC-R1
Page	81 of 81

Annex E. DECLARATION OF SIMILARITY

N/A