Discovering soft maximal cliques on weighted graphs with denoised co-occurence consistency measures, MapReduce and GrowShrink

Advait

February 2024

We will first write a baseline algorithm using MapReduce principles to find soft maximal cliques as defined for a weighted graph using lattice structures. We can relate this algorithmic thinking to the GrowShrink algorithm and seed considerations.

1 Soft maximum cliques discovery, Algorithm 1

D is dictionary which stores sub-graph coherence scores for a given clique. D will have partitions based on sub-graph size for reference efficiency. Procedure C find-subgraph-coherence references D for a given sub-graph and returns the coherence value, else computes the coherence score and returns the coherence value. We avoid duplicate computations. We may need D for thresholding and analysis.

We will traverse a lattice structure L corresponding to nodes in a weighted graph G. We elaborate an iterative algorithm starting with data for cliques of size k.

E.g. Consider (a), (b),(c),(d),(e) as nodes in G. Consider k=2 and set S_2 having cliques (a,b), (a,c),(a,e), (b,c) etc. Consider D to be populated for these cliques. Consider a mapping CS_2 which maps an element in S_2 to its candidate list. Since we operate with key-value pairs in map, S_2 can be of the form (x,C(x)) for each x which is a clique of size 2 where C(x) is the computed coherence score referenced in D. Initalized globally, max - clique - list[k] will store maximal cliques of size k.

Procedure $map - block(S_k, CS_k)$:

returns
$$S_{k+1}, CS_{k+1}, P_{k,k+1}, P_{k+1,k}$$

elaborating what happens to each key element x in S_k , we will call $map(S_k, CS_k, f)$ in practise

each node n in $CS_2(x)$ to is added to x to create some y(x + n) of size k+1.

 $CS_{k+1}(y)$ will contain $CS_k(x) - n$. Adjust for thresholding.

(x) – > (y) will be added in pairing $P_{k,k+1}[x]$.

(y)->(x) will be added in paring $P_{k+1,k}[y]$.

Since in our algorithm, we can remove the node of least lnc to find the maximally coherent down neighbor, we do not need to maintain this pairing in practice.

```
(y, C(y)) will be added to S_{k+1}.
```

Avoids redundant computations. Map code is vectorized.

Procedure $reduce - block(P_{k,k+1}, S_{k+1})$:

returns $Grow_k$

elaborating what happens to each key element x in $P_{k,k+1}$, reduce will aggregate according to the keys of $P_{k,k+1}$, which denote clusters of size k and their corresponding one node additional cluster list, will collapse this list to a single value corresponding to the up-neighbour of maximum coherence.

Shuffle according to keys x of $P_{k,k+1}$.

 $Grow_k[x]$ is assigned j such that $S_{k+1}[i] \leq S_{k+1}[j]$ for all i in $P_{k,k+1}[x]$

Procedure $filter - block(S_k, Grow_k, Shrink_k)$:

returns max - clique - list of sub-graphs of size k.

In view of a map reduce paradigm, the filter function can be implemented in terms of map function 2, reduce function 2. For each key x (keys are common to S_k , $Grow_k$, $Shrink_k$, we will compare $S_k(x)$ with $C(Grow_k(x))$ and $C(Shrink_k(x))$ and return true for $S_k(x)$ if it is greater than both. We can aggregate the keys corresponding to the true values (reverse dictionary or streamlined functions) and return the maximal clique list of size k.

Algorithm
$$find - maximal - cliques(k, S_k, CS_k)$$

$$S_{k+1}, CS_{k+1}, P_{k,k+1}, P_{k+1,k} = map - block(S_k, CS_k)$$

$$Grow_k = reduce - block(P_{k,k+1}, S_{k+1})$$

$$Shrink_k = shrink - func(S_k)$$

$$max - clique - list[k] = filter - block(S_k, Grow_k, Shrink_k)$$

$$find - maximal - cliques(k+1, S_{k+1}, CS_{k+1})$$