计算机组成原理 Homework4 (9.27)

中国人民大学 信息学院 崔冠宇 2018202147

1. 使用 D 触发器设计一个同步 5 进制计数器. 要求写出功能表、卡诺图化简、画出电路图.

解: 因为 $2^2 = 4 < 5$, $2^3 = 8 > 5$, 所以需要 3 个触发器. 先画出状态转移图:

记各 \mathbf{D} 触发器的输出端分别为 Q_0 、 Q_1 、 Q_2 ,输入端分别为 D_0 、 D_1 、 D_2 , Q_i^n 表示当前状态的输出, Q_i^{n+1} 表示下一个状态的输出. 结合 \mathbf{D} 触发器的特征函数 $Q_i^{n+1} = D_i$, 写出功能表:

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	D_2	D_1	D_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	0	0	0	0	0	0
1	0	1	×	×	×	×	×	×
1	1	0	×	×	×	×	×	×
1	1	1	×	×	×	×	×	×

分别画出 D_i 关于 Q_i^n 的卡诺图如下:

表 1: D₀

Q_0Q_1	00	01	11	10
0	1	1	0	0
1	0	×	×	×

可见 $D_0 = \bar{Q_0}\bar{Q_2}$.

表 2: D₁

Q_0Q_1	00	01	11	10
0	0	1	0	1
1	0	×	×	×

可见 $D_1 = Q_0 \bar{Q}_1 + \bar{Q}_0 Q_1 = Q_0 \oplus Q_1$.

表 3: D2

Q_0Q_1	00	01	11	10
0	0	0	1	0
1	0	×	×	×

可见 $D_2 = Q_0 Q_1$.

绘制出电路图如下(为清晰起见,模仿老师 PPT 上的画法,部分线未连接,仅做了标注):

2. 使用 J-K 触发器设计一个 2 位同步计数器, 但是受外部外加控制信号 T 的的影响, 状态转移图如下 (图略). 要求写出功能表、卡诺图化简、画出电路图.

解: 设各 J-K 触发器的输出端分别为 Q_0 、 Q_1 ,输入端分别为 J_0 、 K_0 和 J_1 、 K_1 . 为简单起见, 令 $J_0 = K_0 = A$, $J_1 = K_1 = B$. 功能表如下:

Q_1^n	Q_0^n	T	Q_1^{n+1}	Q_0^{n+1}	B	A
0	0	0	0	1	0	1
0	0	1	0	1	0	1
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	0	1	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	1	0	0	1	1

分别画出 A、B 关于 Q_0 、 Q_1 和 T 的卡诺图:

表 4: A

T Q_0Q_1	00	01	11	10
0	1	0	1	1
1	1	1	1/	1

可见 $A = T + Q_0 + \bar{Q}_1$.

表 5: B

T Q_0Q_1	00	01	11	10
0	0	1	1	1
1	0	0	1	1

可见 $B = Q_0 + Q_1 \overline{T}$.

绘制出电路图如下(为清晰起见,模仿老师 PPT 上的画法,部分线未连接,仅做了标注):

