METHOD OF TREATMENT OF VISUAL TRACT DISEASES

Publication number: RU2128485 Publication date: 1999-04-10

Inventor: GIMRANOV R F; GIMRANOVA ZH V

Applicant: GIMRANOV RINAT FAZYLZHANOVICH: GIMRANOVA

ZHANNA VLADIMIROVNA

Classification:

- international: A61F9/00; A61N1/32; A61N1/36; A61N2/04; A61N2/08; A61N5/06; A61F9/00; A61N1/32; A61N1/36; A61N2/00;

A61N5/06; (IPC1-7): A61F9/00; A61N1/32; A61N1/36;

A61N2/08; A61N5/06

- European:

Application number: RU19960107842 19960416 Priority number(s): RU19960107842 19960416

Report a data error here

Abstract of RU2128485

FIELD: ophthalmology. SUBSTANCE: region of visual cortex projection is exposed to pulsed magnetic field of 0.1-0.25 T synchronized with frequencies of brain electrical activity. Simultaneously percutaneous stimulation of optic nerve is performed by electric stimulation of eyeld region, and daily photostimulation is carried out for 15-20 min in the course of 10-15 seances. EFFECT: enhanced efficiency of treatment. 1 ex.

Data supplied from the esp@cenet database - Worldwide

(19) RU (11) 2 128 485 (13) C1 (51) MПК⁶ A 61 F 9/00, A 61 N 1/32,

1/36, 2/08, 5/06

Гимранов Ринат Фазылжанович,

Гимранова Жанна Владимировна

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(21), (22) Заявка: 96107842/14, 16.04.1996

(46) Дата публикации 10.04.1999

æ

N N œ 4 ∞ Ġ റ

	(72) Изобретатель: Гимранов Р.Ф., Гимранова Ж.В.	
(98) Адрес для переписки: 141420, Московская обл. Химкинский р-н г. Сходня ул. Первомайская, 30, кв. 97 Гимранову Р.Ф.	(73) Патентообладатель: Гимранов Ринат Фазылжанович, Гимранова Жанна Владимировна	Ċ
(54) СПОСОБ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЙ ЗРИТЕЛЫ	ного тракта	
(57) Реферат: Изобретение относится к офтальмологии.	одновременно с чрескожной стимуляцией зрительного нерва, путем электростимуляции	•
Способ заключается в том, что на область проекции зрительной коры воздействуют	области век и с фотостимуляции в жедневно в течение 15-20 мин по 10-15 свансов. Способ позволяет повысить эффективность лечения заболеваний эрительного тракта.	•
импульсным магнитным полем 0,1-0,25 Т, ринхронизированным с частотами		c
электрической активности мозга		7
		,
		=
		Ω

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(71) Заявитель

(19) RU (11) 2 128 485 (13) C1 (51) Int. CL. 5 A 61 F 9/00, A 61 N 1/32, 1/36, 2/08, 5/06

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

	(12)	ABSTRACT	OF INVENTION
--	------	----------	--------------

(21), (22) Application:	96107842/14,	16.04.1996
-------------------------	--------------	------------

(46) Date of publication: 10.04,1999

Gimranovu R.F.

- (98) Mail address: 141420, Moskovskaja obl.Khimkinskij r-n g.Skhodnja ul.Pervomajskaja, 30, kv.97
- (71) Applicant: Gimranov Rinat Fazylzhanovich, Gimranova Zhanna Vladimirovna
 - (72) Inventor: Gimranov R.F., Gimranova Zh.V.
 - (73) Proprietor: Gimranov Rinat Fazylzhanovich, Gimranova Zhanna Vladimirovna

(54) METHOD OF TREATMENT OF VISUAL TRACT DISEASES

(57) Abstract:

Z

2128485 C

FIELD: ophthalmology, SUBSTANCE: region of visual cortex projection is exposed to pulsed magnetic field of 0.1-0.25 T synchronized with frequencies of brain electrical activity Simultaneousty

percutaneous stimulation of optic nerve is performed by electric stimulation of eyelid region, and daily photostimulation is carried out for 15-20 min in the course of 10-15 seances. EFFECT: enhanced efficiency of treatment, 1 ex

O

5

œ

ø

212

~

N 0 4 œ m

Изобретение относится к медицине, а именно к офтальмологии, и может быть также использовано при лечении заболеваний центральной и периферической нервной системы с нарушением афферентных и путей, эфферентину центральных

анализаторов. Известен способ лечения заболеваний зрительного тракта с помощью вращающегося магнитного поля (а.с. № 1711875), Магнитное поле вращается с переменной угловой скоростью. Воздействие производят от переднего отрезка глаза до области проекции зрительного анализатора на затылочных буграх, период вращения синхронизируют с пульсацией кровотока во внутренней сонной артерии, причем максимальная индукция магнитного поля составляет 0,1 - 0,25 Т, а время воздействия от 1 до 5 мин.

Однако данный метод обладает недостатками. Каждая область воздействия подвергается стимуляции независимо от остальных, что при заболеваниях зрительного тракта оказывается недостаточно эффективным

Наиболее близким, выбранным нами в количестве прототила является способ лечения заболеваний зрительного тракта путем воздействия цуга волн бегущего магнитного поля, волны бегущего магнитного поля возбуждают в течение систолы в одной из ветвей внутренней сонной артерии. повторное возбуждение цуга волн синхронизируют с систолой от переднего отрезка глаза до области проекции зрительных анализаторов на затылочных буграх с обеих сторон с индукцией 0.1 - 0.25 Т. в пределах систолы проводят импульсную фотостимуляцию через зрачки обеих глаз световым потоком в видимом диапазоне длин волн мощностью не более 100 мВт и длительностью не более длительносты систолы (патент N 1826174).

Однако способ обладает значительными недостатками. Он не позволяет наиболее эффективно воздействовать на центральные звенья зрительного анализатора, так как не учитывает Функциональную работу центральных звеньев зрительного анализатора, а только учитывает состояние в кровеносном сосуде.

Задачей изобретения является увеличение эффективности лечения зрительного тракта.

Поставленная задача достигается тем, что с помощью индукторов создают импульсное магнитное поле в области проекции зрительных анализаторов на затылочных буграх с обеих сторон головы, причем частоту импульсного магнитного поля выбирают согласно наиболее оптимальным реакциям биоэлектрической активности мозга, а максимальную величину магнитного поля обеспечивают в интервале 0,1 - 0,25 Тл, в момент импульса магнитного поля проводят импульсную фотостимуляцию через зрачки обеих глаз световым потоком в видимом диапазоне длин мощностью не более 100 мВт и длительностью не более 10 мсек. одновременно воздействуют чрескожным импульсным током прямоугольной отрицательной полярности на зрительный нерв через веки глаз с силой тока 50 - 1000 мкА, длительность импульса не более 5 мс.

Авторами проведена необходимая

экспериментальная работа, позволяющая определить интервалы между импульсами магнитного поля для каждого пациента строго индивидуально. Подбор частот стимуляции производится на основании

спектрально-когерентного анализа эпектроэнцефалограммы, изменение амплитуд и латенсий вызванных зрительных потенциалов при различных частотах стимуляции импульсным магнитным полем.

Функциональные изменения. обнаруженные в нервной системе при действии магнитных полей, коррелируют с морфологическими перестройками в ее клеточных элементах, нарушение условно-рефлекторной деятельности сопровождается обратными изменениями аксоно-дендритных связей в коре больших полушарий и выраженной реакцией

элементов на

действие электромагнитного поля. Обнаружено, что ИМП способно вызывать более выраженный эффект, чем переменное магнитное поле (ПеМП) тех же напряженностей (Холодов Ю.А., Шилко М.А. Электромагнитные поля в нейрофизиологии. М.: Наука, 1979, 126 с.). При выявлении существенных параметров они обнаружили, что информативным параметром ИМП является не только его

глиальных

амплитудное значение, но и частотный спектр. На основании этих данных нами было выбрано импульсное магнитное поле (ритмическое) в качестве воздействия. Ритмическая активация мембраны

пресинаптического аксона ведет к повышению потенции покоя (гиперполяризации) и, таким образом, ведет к увеличению амплитуды потенциала действия (ПД). Высокоамплитудный ПД RHSHRRAT высвобождение большого количества медиаторов в синаптическую щель. Этот процесс приблизительно противоположен тому, что происходит во время пресинаптического торможения, когда уменьшение амплитуды пресинаптического

œ

40 потенциала действия ведет к снижению количества высвобождаемого медиатора. Так же ритмическая активация сопровождается увеличением запаса доступного медиатора. готового к выделению. Такая мобилизация тоже улучшает синаптическую передачу, потому что каждый потенциал действия вызывает высвобождение более значительной фракции медиатора, запасенного в пресинаптичеком окончании Во

время ритмической стимуляции возрастает пресинаптическая концентрация Са 2+, поскольку ионы Са 2+, которые входят в нервное окончание во время потенциала действия, не успевают выйти оттуда, соответственно увеличивается

высвобождение медиатора (Human Phesiology. Edited by R.F.Schmidt and высвобождение G.Thews. Berlin Heidelberg New York 1983 113 n)

Функциональные связи в корковых и подкорковых звеньях зрительного анализатора, приведшие к созданию новой функциональной системы, устойчивого патологического состояния вследствие нарушений в зрительной афферентации, не выполняют полностью возложенные на них зрительные функции.

С целью создания новых функциональных связей сигналы с периферических звеньев

-3

зрительного анализатора в результате воздействия фотовспышки и импульсного электрического тока приводят афферентный сигнал в центральные звенья зрительного анализатора. А в момент прихода адекватного сигнала нейрональные клетки эрительной коры, вследствие воздействия импульсного магнитного поля оптимальной частоты. вызывающего наибольшую синхронизацию в нейронах зрительной коры, находятся в наиболее подготовленном состоянии для образования ПД. Порог раздражения для возникновения потенциала действия адекватных сигналов с периферии при этом, вследствие смещения потенциала покоя воздействующим ИМП, наиболее низок Вследствие ритмических синхронизированных воздействий импульсным магнитным полем импульсной фотостимуляцией, чрескожной электростимуляцией импульсной активизируются, изменяют свое функциональное состояние синаптические связи и тем самым образуют новую функциональную систему для наиболее

оптимального проведения и анализа адекватного зрительного стимула. Способ осуществляется следующим

образом. Подбор частоты действующего магнитного поля проводится на основании анализа спектрально-когерентных данных ЭЭГ (быстрое преобразование Фурье), изменения амплитуд и латенсий компонентов N 75, P 100 и N 145 зрительных вызванных потенциалов полученных при различных частотах стимуляции импульсным магнитным полем. Больной находится в свето- и звуконепроницаемой камере (адаптация в течении 10 мин) с хлороеребрянными электродами, укрепленными на скальпе согласно международной схеме 10/20. После записи фоновой ЭЭГ (1 мин записи) и ЗВП (100 усреднений) производится воздействие импульсным магнитным полем с частотой 1 Гц и регистрируются ЭЭГ и ЗВП, далее такая же процедура производится и при стимуляции с другими частотами ИМП 2,3 Гц и т.д. Затем производится анализ полученных данных ЭЭГ и ЗВП. Применяется спектрально-когерентный анализ ЭЭГ (см. книгу "Биопотенциалы мозга человека" под редакцией В. С.Русинова, Москва, "Медицина", 1987, с. 17 - 228.) всех 1-минутных отрезков (фоновой и при стимуляциях импульсным магнитным полем). Далее определяют амплитуду и латентность основных пиков ЗВП - N 75, Р 100 и N 145 до воздействия и при воздействии ИМП с различными частотами. Таким образом. полученные данные позволяют определить на какой частоте воздействия ИМП происходит наибольшее увеличение спектральной мощности и значений функции когерентности (между затылочными отведениями), увеличение амплитуды и уменьшение латентности основных компонентов ЗВП и на этой частоте производится воздействие ИМП. Для проведения данной процедуры мы использовали электроэнцефалограф Нихон Коден *EEG - 4217*, соединенный посредством АЦП (L - 200) с компьютером. оснащенным программным обеспечением для спектрально-когерентного анализа и записи ЭЭГ, записи и анализа эрительных вызванных потенциалов фирмы "МБН" (Москва). Магнитостимуляция проводилась

N

00

4

 ∞

Ġ

посредством магнитостимулятора "Сердолик 10 - 06"

Затем больной усаживается на кресло в свето-, звукрнепроницаемом кабинете с закрепленными индукторами магнитного поля в проекции области зрительной коры. Магнитостимуляцию проводят посредством магнитостимулятора Сердолик 10 - 06 (г. Воронеж), соединенного через внешний выход с электростимулятором ЭСЛ-2. который позволяет регулировать частоту и длительность импульса магнитного поля. Фотостимуляцию проводят фотостимулятором от электроэнцефалографа фирмы Нихон Коден "EEG - 4217" (Япония)

через зрачки обеих глаз световым потоком в видимом диапазоне длин волн мощностью не более 100 мВт. Непосредственная электростимуляция зрительного нерва проводится прибором фирмы Нихон Коден "ES - 41" (Япония), прямоугольными импульсами отрицательной полярности с амплитудой 50 - 1000 мкА, длительностью

импульса 0,2 - 5 мс. Сила тока определяется индивидуальной чувствительностью, отрицательный электрод фиксируется на веки, положительный электрод, имеющий значительно большую площадь, находится в ВОЗДЕЙБЕНЕ ВОЗДЕЙБЕНЕ МАГИТИНЫМ И 275 руке. Одновременное импульсным фотостимуляцией и электростимуляцией ведется с частотой, определенной на основании анализа биоэлектрической активности мозга. В ходе лечения возможна корректировка частоты при изменении

реакции мозга на проводимов лечение. Стимуляцию проводят по 15 - 20 мин ежедневно.

Способ лечения характеризуется 35 спедующими клиническими примерами. Пример 1. Больной X. находился на

лечении с диагнозом: частичная атрофия зрительного нерва обеих глаз. Зрение снизилось 8 месяцев назад, прошел курс консервированного лечения по

месту жительства. При обращении - зрение на правый глаз -0,4 н/к, на левый глаз - 0,3 н/к, порог электрической чувствительности: OD - 72, OS - 86 мкА, электрическая лабильность: OD -

29. OS - 32 Fu.

12, MKB;

Компьютерная периметрия (120 точек): od - умеренное снижение светочувствительности фовеа 27 Дб, слепое пятно в норме, единичные относительные и абсолютные скотомы на периферии в нижнем полуполе, оз - снижение светочувствительность фовеа до 28 Дб, слепое пятно в норме, единичные относительные и абсолютные скотомы на периферии и в нижне наружном квадранте, увеличение слепого пятна По данным ЭРГ:

изменения параметров ЭРГ od белый свет. a - 20. b - 39. мкВ os a -23, b - 41, MKB; красный: а - 10, b - 12, мкВ а - 11, b -

незначительные

синий: a - 7, b - 18, мкВ a - 7, b - 19, мкВ Глазное дно: ДЗН на od четкие, калибр сосудов равномерный, в макулярной зоне очаговой патологии не выявлено. ДЗН на os сероватого цвета, калибр равномерный, в макулярной области очаговой

патологии не выявлено. Заключительный диагноз: частичная

атрофия зрительных нервов обеих глаз.

Диагноз подтвержден данными исследованиями вспышечных зрительных потенциалов, выраженные изменения по типу частичной атрофии зрительных нервов с поражением всех его отделов.

Больному сделано нейрофизиологическое обследование: функциональное ЭЭГ, вЗВП и определена наиболее оптимальная частота стимуляции - 4.5 Гш.

Больному проведено 10 сванов магнитогимулици при максимальной магнитогимулици при максимальной магнитогимулици 0.2 Тл в импульсном магнитом спове фотостимулицей и электро-помулицей соему таза. Дригельность сванов 15 ммн. сограз арели повысилась справа до 0.9 мн., электро-мессия до 0.0 мн., электро-мессия до 0.0 мн., электро-мессия слева до 16 мл., электро-мессия до 10 мл., электро-мессия до 10 мл., электро-мессия рабитысть прибизилась к норме справа - 25, спева 28 гм.

По данным ЭРГ: положительная динамика. od белый свет: a - 16, b - 30, мкВ os a - 20, b - 38, мкВ;

красный, а - 8, b - 10, меВ а - 9, b - 10, меВ, сний а - 5, b - 16, меВ а - 6, b - 16, меВ компьютерная перимотрия (120 гочей): од - повышение светочурствительности фовев до 29 ДВ, спепсе пятно в норме, единиченые относительные и абсолотичень соготомы за периферии в нижнем полуполе уменьшились, се - повышение светочувствительность фовев до 31 ДВ, спепсе пятно в норме, единиченые относительные и абсолотичень скотомы на периферии и в нижне наружном квадранте уменьшились.

Зрительные вызванные потенциалы; отмечается значительная положительная динамика состояния парацентральных

N

m

4

отделов и незначительная - аксиальных отделов зрительного нерва.

Использование предлагаемого способа позволяет получить следующий положительный эффект:

 Увеличить эрительные функции в 2 - 2,5 раза, сократить площадь абсолютных скотом и увеличить угол эрения на 10 - 15.

 Обеспечить эффективность лечения при отсутствии положительных результатов при использовании традиционных методов печения (пазерное, фармакологическое лечение, вазореконструктивные операции и

т.д.)
Предпагаемый способ лечении может быть использован при лечении и других заболеваний с нарушением афферентации и эфферентации в различных отделях нервнюй системы, приводящих к нарушению функциональных связей в центральной нервной системы,

Формула изобретения:

Способ лечения заболеваний зрительного тракта. включающий возлействие синхронизированным магнитным полем 0,1 -0,25 Т на области проекции зрительной коры с фотостимуляцией глаза ежедневно в течение 15 - 20 мин, 10 -15 сеансов на курс лечения, отличающийся тем, что используется импульсное магнитное поле с длительностью импульса не более 5 мс. синхронизированное с частотами электрической активности мозга 0,5 - 50 Гц, одновременно проводят чрескожную импульсную электростимуляцию зрительного нерва на область век глаз прямоугольными импульсами отрицательной полярности при силе тока 50 - 1000 мкА и длительности импульса не более 5 мс

128485 C

_

35

40

45

50

55

60