

On route to learning how to write proofs, we analyze the algebra of propositions. The following are fundamental logical equivalences. The names given here are nonstandard; we often refer to them by shorter names.

The symbols A , B , and C denote arbitrary statements, and T and F denote “True” and “False” respectively.

- $\neg(\neg A) \equiv A$ (Double Negation)
- $A \vee (\neg A) \equiv T$ (Tautology)
- $A \wedge (\neg A) \equiv F$ (Contradiction)
- $A \vee A \equiv A$ (\vee -Idempotence)
- $A \wedge A \equiv A$ (\wedge -Idempotence)
- $A \vee T \equiv T$ (\vee -Definition)
- $A \vee F \equiv A$ (\vee -Definition)
- $A \wedge T \equiv A$ (\wedge -Definition)
- $A \wedge F \equiv F$ (\wedge -Definition)
- $A \vee B \equiv B \vee A$ (\vee -Commutativity)
- $A \wedge B \equiv B \wedge A$ (\wedge -Commutativity)
- $A \vee (B \vee C) \equiv (A \vee B) \vee C$ (\vee -Associativity)
- $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$ (\wedge -Associativity)
- $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$ ($\vee\wedge$ -Distribution)
- $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$ ($\wedge\vee$ -Distribution)
- $\neg(A \vee B) \equiv (\neg A) \wedge (\neg B)$ (\vee -DeMorgan Law)
- $\neg(A \wedge B) \equiv (\neg A) \vee (\neg B)$ (\wedge -DeMorgan Law)
- $A \oplus B \equiv (A \vee B) \wedge (\neg(A \wedge B))$ (\oplus -Definition)
- $A \implies B \equiv (\neg A) \vee B$ (Material Implication)
- $A \implies B \equiv (\neg B) \implies (\neg A)$ (Contraposition)
- $A \iff B \equiv (A \implies B) \wedge (B \implies A)$ (Biconditional Expansion)