ETHTerakoya x Blockchain EXE

What's Rollup?

2021/02/04 Shuhei Hiya@Cryptoeconomics Lab

Cryptoeconomics Lab

Agenda

What's Rollup?

What's Optimistic Rollup?

What's ZK-Rollup?

ORU vs zkRU

Products of ORU & zkRU

Name	Highlights		
Optimism (synthetix)	ORU that can write smart contracts with Solidity		
FuelCore	UTXO-based ORU		
Arbitrum	Unique VM called AVM. Dichotomous dispute resolution model		
zkSync (curve, balancer)	zkRollup that aims for a smart contract platform		
zkSwap	AMM using zkSync technology		
Loopring	Currently has the highest L2 DEX trading volume (\$10M volume)		
StarkEx, StartNet	Validium, Rollup platform-type		

Why learn about Rollup now?

Rollup is transitioning from research to practical use and is heading towards platforms. In other words, we are now reaching the stage where it is possible to actually develop applications on Rollup.

In this presentation, we will be introducing the basics of why Rollup improves the throughput of Ethereum.

As much as possible, we will explain the essential parts of the protocol rather than focus on specific products.

Agenda

What's Rollup?

What's Optimistic Rollup?

What's ZK-Rollup?

ORU vs zkRU

Why Scaling?

To increase Ethereum capacity

Ethereum is currently at approx. 15 tps

Increasing capacity with Ethereum Layer 2

Reduces the time of sending transactions to the blockchain

What's Rollup?

A technology that improves throughput while maintaining **data availability**Throws transaction data in the blockchain as calldata but only saves the
Merkle Root as state

What's Rollup?

No. of transactions processable per second

A technology that improves throughput while maintaining **data availability**Throws transaction data in the blockchain as calldata but only saves the
Merkle Root as state

Difference between transaction calldata and state

```
function commitBlock(
    uint32 _blockNumber,
    bytes calldata _txs,
    bytes calldata _merkleRoot
) external nonReentrant {
    require(checkMerkleRoot(_txs, _merkleRoot), "merkle root must be valid");
    blocks[_blockNumber] = _merkleRoot;
}
```

State

Difference between transaction calldata and state

- Ethereum currently has a state size of ~45GB and a chain size of 300GB.
- Unlike transactions, states cannot be truncated in full nodes.
- Validating transactions means a lot of random accesses to the state, meaning the state must be kept in the RAM.

To sum things up, states are costly, transaction calldata are cheap.

https://etherscan.io/chartsync/chaindefault

What happens when there is no data availability?

tx content is currently unknown

i.e. Plasma's Exit Game

Knowing the original tx requires a **special mechanism**, and only a few of these can be realized. **Rollup is a general-purpose solution for this.**

What's Rollup

A technology that improves throughput while maintaining data availability

Optimistic Rollup

Validates transactions on the blockchain only if a problem occurs

ZK-Rollup

Validates transactions on the blockchain via (zk-)SNARKS every time

A comparison from a gas-cost reduction perspective

In Ethereum, state, computation, and calldata rise proportionately to the number of transactions.

In Rollup and Plasma, gas consumption by states and computations is constant.

	State	Computation	CallData
Ethereum	O(n)	O(n)	O(n)
zkRollup	С	C or log(n)	O(n)
Optimistic Rollup	С	С	O(n)
Plasma/Sidechain	С	С	С

n is the no. of transactions, c is constant

Gas cost comparison per transaction (approximate)

Around 10 times more effective for money transfers and great for complex transactions like DEX

	Money Transfer	DEX swap	
L1	22,000 gas	Approx. 80,000 gas	
ORU	2,576 gas	3,600 gas	
zkRU	1,153 (833+320) gas	4,406 (3750+656) gas	

zkRU is expected to store 360tx per block, with verification costs being 300,000 gas.

Throughput Calculation

The maximum no. of transactions per block can be calculated by dividing the block gas limit by the previous slide's "gas per tx." However, in zkRU, circuit size and proof generation time are bottlenecks.

Assuming the maximum gas limit is 10M, the maximum no. of transactions per block will be as shown in the table below. Throughput is determined by how often this block is registered in L1.

	Money Transfer	DEX swap	
L1	30 tx per block	8.3 tx per block	Note that zkRU's capacity still has room for improvement.
ORU	258 tx per block	185 tx per block	
zkRU	320 tx per block	80 tx per block	

Suppose it takes 600 seconds to generate proof for a 320txx block. Ten machines will be needed to get a block time of 70 seconds (meaning tps=5.3).

Why Rollup

Not sacrificing data availability has many benefits.

Agenda

What's Rollup?

What's Optimistic Rollup?

What's ZK-Rollup?

ORU vs zkRU

What is Optimistic Rollup

Validates transactions on the blockchain only if a problem occurs

- Aggregator is permissionless
 - Anyone can validate transactions
- Easy EVM-compatibility
- Withdrawals to L1 take around a week
 - There is also a way to immediately exchange tokens between L1 and L2.

How Optimistic Rollup works

How Optimistic Rollup works

Deposit

Sending Transaction

Sending Transaction

When a invalid block is created

When a invalid block is created

When a invalid block is created

Fraud Proof

Invalid block = block containing invalid state transitions Fraud proof means proof of invalid state transitions

OVM (Optimistic Virtual Machine) is a mechanism that enables fraud proofs via EVM-compatible state transitions.

Exploring ORU

Fraud proof validates blocks via EVM when a problem occurs. For this reason:

- Withdrawal to L1 takes about one week
- Applications can be EVM-compatible

Topics we won't be covering right now:

- How OVM works
- MEVAuction and Sequencer
- Further transaction cost reduction with BLS signature aggregation

Agenda

What's Rollup?

What's Optimistic Rollup?

What's ZK-Rollup?

ORU vs zkRU

In zkRollup, the correctness of the block is verified in L1 via (zk-)SNARK.

- Like ORU, aggregator is permissionless
- Withdrawal to L1 only takes a few minutes
- The block execution proof generation makes improving throughput a bottleneck
- Has restrictions on smart contract development
- Has a security advantage over ORU

SNARK Properties

$$F(x) = y$$

How zkRollup works

How zkRollup works

Exodus mode

A withdrawal request can be thrown directly on-chain if the withdrawal request is ignored by all full nodes. If the withdrawal request is not processed, it goes into an emergency mode called **Exodus Mode**.

Emergency fund withdrawal procedure

zk-SNARK protocol comparison

	Proof size	Verification cost	Proving Time	
Groth16	188 bytes	Approx. 200k gas	quasiliner	Trusted setup is required.
Plonk	500 bytes	Approx. 300k gas	quasiliner	Universal trusted setup = increase the number of participants in the setup to gradually make it more secure. The same setup can be used with different programs.
Redshift	96-234kb (2^20-2^28 constraint)		quasiliner	Trusted setup is not required.
Stark	80kb- (786k hash invocations)	Approx. 1M- gas	quasiliner	Trusted setup is not required.

Practically speaking, the lower you go, the faster it gets.

Conclusion zkRU

Since zkRollup has verified that the block is correct, it is no longer necessary to assume a sufficient number of validators for safety. This means assets can be immediately withdrawn to L1.

Topics we won't be covering right now:

- Development of zk-SNARK protocols
- Zk Programming (Zinc, Cairo)
- zk-SNARK protocol proof generation time improvements
 - Improvements using AWS F1 instances: https://medium.com/matter-labs/worlds-first-practical-hardware-for-zero-knowledge-proofs-acceleration-72bf974f8d6e

Agenda

What's Rollup?

What's Optimistic Rollup?

What's ZK-Rollup?

ORU vs zkRU

ORU vs zkRU (user-side)

Latency (time it takes for tx to be verifiable)

- ORU gets immediate economic finality, L1 finality after challenge period (around 1-7 days)
- zkRU gets immediate economic finality, L1 finality after block proof generation (around 1-10 mins.)

Withrawal to L1

- Withdrawals take a week for ORU
- Withdrawals are immediate for zkRU

https://vitalik.ca/general/2020/08/20/trust.html

ORU vs zkRU (developer, node admin-side)

Programmability

- ORU is EVM-compatible
- zkRU has some quirks in programmability but has seen significant improvements with Cairo and Zinc.

Cost

- ORU can be operated on cheap machines but needs to be distributed across multiple validators.
- zkRU requires high-spec machines to generate proofs and multiple machines to improve throughput.

https://vitalik.ca/general/2020/08/20/trust.html

ORU vs zkRU, which is safer?

Unsafe = defined by an invalid block getting finality at L1

	Assumptions required for safety
ORU	Assumes that many miners are honest
zkRU	None

ORU must assume that L1 has a certain level of censorship resistance. As for zkRU, assets are safe even if the withdrawal is censored. On the other hand, depending on the zk-SNARKS protocol, there may be situations that rely on the trustworthiness of the person who set it up.

https://vitalik.ca/general/2020/08/20/trust.html

Products of ORU & zkRU

Name	Feature		
Optimism (synthetix)	ORU that can write smart contracts with Solidity		
FuelCore	UTXO-based ORU		
Arbtrum	Unique VM called AVM. Dichotomous dispute resolution model		
zkSync (curve, balancer)	zkRollup that aims for a smart contract platform		
zkSwap	AMM using zkSync technology		
loopring	Currently has the highest L2 DEX trading volume (\$10M volume)		
StarkEx, StartNet	Validium, Rollup platform-type		

Interesting fields not covered by today's presentation

- Economics surrounding Aggregators (MEVAuction)
- Private Transactions (opzkru, zkzkru)
- Frontrunning (MEV-Geth)

Conclusion

Discussed Rollup, an Ethereum scaling technology

- Rollup can improve throughput while maintaining Ethereum's safety and decentralization as much as possible.
- Increases throughput tens to hundreds of times
- ORU can execute EVM-compatible smart contracts. zkRU is also rapidly fixing its smart contract development bottleneck.
- zkRU is more secure, and withdrawals to L1 only take minutes.