

SPAC

SANDY PINES WILDLIFE CENTRE

APSC 103

***** TEAM 843C

Sam McKinlay(20480954)Adham Abdelrahim(20397916)Jawad Rizvi(20458137)Grayden Martens(20491579)Kheireddine Ghettas(20456738)

4/16/2025

Sandy Pines Wildlife Centre Struggles to:

- Locate potential canid locations.
- Capture rehabilitated canids.

Computer Simulation Goals:

- · Models animal behaviour.
- Optimizes trap placement.

Capture System Goals:

- Humane and minimal stress capture.
- Effective and efficient capture times.

Key Objectives

Requirements:

- Maintainable year-round.
- Within the \$10,000 implementation budget.
- Adapt to pre-existing structures in the environment.
- Low maintenance and reusable.

Success Criteria:

- 80% successful when applied to real-life scenarios
- 80% approval rate when used by Sandy Pines Staff
- Changes trap location recommendation based on different inputs

DESIGN PROCESS OVERVIEW

KEY CHALLENGES

- Finding high quality research on Canids.
- Integrating everyone's different code and debugging code.
- Understanding and fully defining the scope.

SOCIAL ENVIRONMENTAL AND FINANCIAL CONSIDERATIONS

Queen's

- No budget needed; project is entirely simulation-based.
- All tools used were free or provided by Queen's University.
- Societal and environmental impacts had minimal influence on overall simulation design.
- Environmental impacts were considered during trap method research.
- Focus was on finding safe and humane trapping methods for wildlife.

FINAL DESIGN SOLUTION

Frontend

- User-Friendly info collection.
- Made using Pygame.
- Conveys information
 using an easy-to understand heatmap and
 grid.

FINAL DESIGN SOLUTION

Frontend

- User-Friendly info collection.
- Made using Pygame.
- Conveys information using an easy-tounderstand heatmap and grid.

FINAL DESIGN SOLUTION

Backend

- Works using an agent-based model.
- · Uses researched behaviours.
- Loops through all foxes, then outputs data.

IFINAL DESIGN SOLUTION

Traps

- Locations are determined through the simulation.
- We suggest a safe shelter trap disguised to mimic a den environment.
- Can be found commercially
- (starting at 205 CAD).

EVALUATING SOLUTIONS

Requirements

Passes Trap Requirements

Frontend Survey Results Pass

Back End Tests Pass / Efficient Capturing

Troubles Targeting Specific Canids

AREAS FOR IMPROVEMENT

Lessons Learned

- Version control through Git was crucial for collaboration and avoiding merge conflicts.
- Setting aside sufficient time for testing and evaluating the final model.
- Clear communication prevents duplication of work and ensures task alignment.

Potential Improvements

- Refactor codebase to improve performance and reduce redundancy.
- Gathering more research data on foxes and coyotes to enhance the canid brain.
- Introduce more complex environment dynamics.

AFTER PROJECT CONSIDERATIONS

• Code is being delivered to the clients through a GitHub link and executable file (as shown in the demo later).

 There is no physical prototype to dispose of or deliver to the clients.

TEAM 843C

SUMMARY OF KEY POINTS

FUTURE RECOMMENDATIONS

- Developed a fully code-based simulation modelling agentenvironment interactions.
- The system supports trap placement, environment evolution, and autonomous agent behaviour.
- The design met the project objectives and is openly accessible on GitHub.

- Implement reinforcement learning to optimize agent decision-making.
- Expand the simulation to support multi-agent scenarios.
- Deploy the simulation in a **browser-based interface** for accessibility.
- Gather user testing **feedback** for usability improvements.

DON'T HESITATE TO ASK QUESTIONS!

Together, we can make a difference for wildlife.

HTTPS://843C.CARRD.CO/