Estructuras de Datos Clase 14 – Colas con prioridad

Dr. Sergio A. Gómez http://cs.uns.edu.ar/~sag

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Bahía Blanca, Argentina

ADT Cola con prioridad

- Una cola con prioridad almacena una colección de elementos que soporta:
 - Inserción de elementos arbitraria
 - Eliminación de elementos en orden de prioridad (el elemento con 1era prioridad puede ser eliminado en cualquier momento)
- Nota: Una cola con prioridad almacena sus elementos de acuerdo a su prioridad relativa y no expone una noción de "posición" a sus clientes.

Prioridad: Atributo de un individuo que sirve para pesar al individuo en un conjunto de individuos.

Ejemplo: Promedio de un alumno para otorgar becas

<u>Ejemplo</u>: Gravedad de la situación de un paciente en una sala de espera para decidir a quién atender primero

<u>Ejemplo:</u> Tiempo esperado de ejecución de un proceso para decidir a qué proceso darle la CPU en un ambiente multiprogramación (la política de asignación de la CPU mediante la política de shortest-job first minimiza la suma de los tiempos de tiempo de espera de todos los procesos).

Comparación de prioridades con órdenes totales

- Una cola con prioridad necesita un criterio de comparación ≤ que sea un orden total para poder resolver siempre la comparación entre prioridades.
- Sea S un conjunto y ≤ una relación binaria en S, entonces (S, ≤) es un orden total ssi:
 - Reflexivo: para todo k en S, vale $k \le k$
 - Antisimétrico: para todo k_1 , k_2 en S, vale que si $k_1 \le k_2$ y $k_2 \le k_1$ entonces $k_1 = k_2$
 - <u>Transitivo</u>: para todo k_1 , k_2 , k_3 en S, vale que si $k_1 \le k_2$ y $k_2 \le k_3$ entonces $k_1 \le k_3$
- Nota: Si (S, ≤) es un orden total, todos los pares de elementos de S son comparables entre sí mediante ≤.
- Nota: ≤ en los números enteros y reales y ≤ para cadenas de texto (comparación alfabética u orden lexicográfico) son órdenes totales.

Cola con prioridad

- Una cola con prioridad es un colección de elementos, llamados valores, los cuales tienen asociada una prioridad que es provista en el momento que el elemento es insertado.
- Un par prioridad-valor insertado en un cola con prioridad se llama una entrada.
- Operaciones fundamentales de una cola con prioridad P:
 - insert(k, x): Inserta un valor x con prioridad k en P
 - removeMin(): Retorna y remueve de P una entrada con la prioridad más pequeña

Entradas

Problema: ¿Cómo asociar prioridades con valores?

```
public interface Entry<K,V> {
         public K getKey(); // Retorna la prioridad de la entrada
         public V getValue(); // Retorna el valor de la entrada
public class Entrada<K,V> implements Entry<K,V> {
         private K clave;
         private V valor;
         public Entrada(K k, V v) { clave = k; valor = v; }
         public K getKey() { return clave; }
         public V getValue() { return value; }
         public void setKey( K k ) { clave = k; }
         public void setValue(V v) { value = v; }
         public String toString( ) {
                  return "(" + getKey() + "," + getValue() + ")";
```

ADT Comparador

<u>Problema:</u> ¿Cómo comparar claves de tipo genérico K? compare(a,b) = Retorna un entero i tal que:

- i<0, si a<b
- i=0, si a=b
- i>0, si a>b

Ocurre un error si a y b no pueden ser comparados.

Está especificado por la interfaz java.util.Comparator.

Ejemplo de Comparador

```
public class Persona { // Archivo: Persona.java
         protected String nombre;
        protected float peso;
         public Persona(String nombre; float peso ) { ... }
         public float getPeso() { return peso; }
        ... otras operaciones...
// Archivo: ComparadorPersona.java
public class ComparadorPersona<E extends Persona>
         implements java.util.Comparator<E> {
  public int compare( E a, E b ) { // Comparo las personas por su peso
     return (int) (a.getPeso() - b.getPeso());
  } Notar que cuando a pesa menos que b, se retorna un negativo; si pesan
(más o menos) lo mismo, se retorna 0 y si a pesa más que b, se retorna un
positivo. Pensar cómo programar la operación con if's anidados.
```

Comparador por defecto

El comparador por defecto delega su comportamiento en el comportamiento de la operación compareTo del tipo básico E:

```
public class DefaultComparator<E extends Comparable<E>>
   implements java.util.Comparator<E> {
      public int compare( E a, E b ) {
          return a.compareTo( b );
      }
}
```

ADT Cola con Prioridad

Dada una cola con prioridad P:

- size(): Retorna el número de entradas en P.
- isEmpty(): Testea si P es vacía
- min(): Retorna (pero no remueve) una entrada de P con la prioridad más pequeña; ocurre un error si P está vacía.
- insert(k,x): Inserta en P una entrada con prioridad k y valor x; ocurre un error si k es inválida (e.g. k es nula).
- removeMin(): Remueve de P y retorna una entrada con la prioridad más pequeña; ocurre una condición de error si P está vacía.

Interfaz Cola con prioridad en Java

```
/** K representa el tipo de la prioridad del objecto de tipo V almacenado en la
cola con prioridad*/
public interface PriorityQueue<K,V> {
 /** Retorna el número de ítems en la cola con prioridad. */
 public int size();
 /** Retorna si la cola con prioridad está vacía. */
 public boolean isEmpty();
 /** Retorna pero no elimina una entrada con minima prioridad. */
 public Entry<K,V> min() throws EmptyPriorityQueueException;
 /**Inserta un par clave-valor y retorna la entrada creada.*/
 public Entry<K,V> insert(K key, V value) throws InvalidKeyException;
 /** Remueve y retorna una entrada con minima prioridad. */
 public Entry<K,V> removeMin() throws EmptyPriorityQueueException;
```

```
public class Principal {
  public static void main(String[] args) {
   // Creo una cola con prioridad implementada con un Heap
   // con prioridades de tipo entero y valores de tipo string.
   // El constructor recibe el tamaño y el comparador de prioridades.
   PriorityQueue<Integer, String> cola = new Heap<Integer, String>(20,
            new DefaultComparator<Integer>() );
   try {
         cola.insert(40, "Sergio"); // Inserto a Sergio con prioridad 40.
         cola.insert(30, "Martin"); // Inserto a Martín con prioridad 30.
         cola.insert(15, "Matias"); // Inserto a Matías con prioridad 15.
         cola.insert(5, "Carlos"); // Inserto a Carlos con prioridad 5.
         cola.insert(100, "Marta"); // Inserto a Marta con prioridad 100.
         // Imprimo la entrada con mínima prioridad: (5, Carlos).
         System.out.println("Min: " + cola.min());
         // Vacío la cola: puede lanzar EmptyPriorityQueueException
         while (!cola.isEmpty()){
                   Entry<Integer,String> e = cola.removeMin();
                   System.out.println("Entrada: " + e);
         } // Salen las prioridades: 5, 15, 30, 40 y 100 en ese orden.
  } catch(InvalidKeyException e) { e.printStackTrace();
  } catch(EmptyPriorityQueueException e) { e.printStackTrace();
 } }
```

Implementación de cola con prioridad con listas

• Lista no ordenada:

- ✓ insert: Se inserta al principio de la lista
- ✓ min, removeMin: Para hallar el mínimo o removerlo es necesario recorrer toda la lista

Lista ordenada:

- ✓ insert: Para insertar en forma ordenada es necesario recorrer toda la lista en el peor caso
- ✓ min, removeMin: El mínimo es el primer elemento de la lista.

Método	Lista no ordenada	Lista ordenada
size, isEmpty	O(1)	O(1)
insert	O(1)	O(n)
min, removeMin	O(n)	O(1)

Nota: Ver fragmentos de código 8.7 y 8.8 de [GT].

Cola con prioridad implementada con Heap

Un <u>(mín)heap</u> es un árbol binario que almacena una colección de entradas en sus nodos y satisface dos propiedades adicionales:

- Propiedad de orden del heap (árbol parcialmente ordenado): En un heap T, para cada nodo v distinto de la raíz, la clave almacenada en v es mayor o igual que la clave almacenada en el padre de v.
- Propiedad de árbol binario completo: Un heap T con altura h es un árbol binario completo si los nodos de los niveles 0,1,2,...,h-1 tienen el máximo número de nodos posibles y en el nivel h-1 todos los nodos internos están a la izquierda de las hojas y si hay un nodo con un hijo, éste debe ser un hijo izquierdo (y el nodo debiera ser el nodo interno de más a la derecha).

Ejemplos de árboles binarios completos

Ejemplo de MínHeap con altura 3

Nota: Se muestran sólo las claves de las entradas

Nota: La *propiedad de orden del heap* hace que la magnitud de las prioridades de los hijos sean mayores a la de su padre.

Nota: La propiedad de *árbol binario completo* hace que el último nivel se llene de izquierda a derecha. Gómez

16

Ejemplo de MáxHeap

Nota: Se muestran sólo las claves de las entradas.

Nota: Las magnitudes de las prioridades de los hijos son menores a las de su padre.

Nota: Para lograr esto en el código que veremos tengo que personalizar el comportamiento del comparador de prioridades.

cola.insert(20)

cola.insert(20)
cola.insert(45)

cola.insert(20)
cola.insert(45)
cola.insert(30)

cola.insert(20)

cola.insert(45)

cola.insert(30)

cola.insert(16)

16 es menor a 45 y viola la propiedad de orden parcial => hay que intercambiarlos

cola.insert(20)

cola.insert(45)

cola.insert(30)

cola.insert(16)

16 es menor a 20 y viola la propiedad de orden parcial => hay que intercambiarlos

cola.insert(20)

cola.insert(45)

cola.insert(30)

cola.insert(16)

16 ya llegó a la raíz => ya terminé la inserción

cola.insert(20)

cola.insert(45)

cola.insert(30)

cola.insert(16)

cola.insert(18)

18 es menor que 20 => hay que intercambiarlos

cola.insert(20)

cola.insert(45)

cola.insert(30)

cola.insert(16)

cola.insert(18)

18 es mayor que 16 => terminé

cola.insert(20)

cola.insert(45)

cola.insert(30)

cola.insert(16)

cola.insert(18)

cola.insert(33)

33 es mayor que 30 => terminé

cola.insert(20)

cola.insert(45)

cola.insert(30)

cola.insert(16)

cola.insert(18)

cola.insert(33)

cola.insert(25)

25 es menor que 30 => los intercambio

cola.insert(20)

cola.insert(45)

cola.insert(30)

cola.insert(16)

cola.insert(18)

cola.insert(33)

cola.insert(25)

25 es mayor que 16 => terminé

cola.insert(20)
cola.insert(45)
cola.insert(30)
cola.insert(16)
cola.insert(18)
cola.insert(33)
cola.insert(25)

e ← cola.removeMin()

e será 16 porque está en la raíz La raíz se reemplaza con la hoja más profunda y más a la derecha (es decir el último nodo del recorrido por niveles)

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
```


30 es mayor que que 18 y que 25 Intercambio 30 por el menor de sus hijos (18)

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
```


30 es mayor que 20 Intercambio 30 por el menor de sus hijos (20)

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
```


30 llegó a una hoja => terminé

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
```


Reemplazo 18 por 33 (hoja más profunda y más a la derecha)

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
```


33 es mayor a 20 y 25 => intercambio 33 con el menor de sus hijos (el 20)

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
```


33 es mayor a 30 => intercambio 33 con el menor de sus hijos (el 30)

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
```


33 llegó a una hoja => terminé

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
e ← cola.removeMin() // 20
```


Reemplazo 20 por último nodo (el 33)

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
e ← cola.removeMin() // 20
```


33 es mayor a 30 y a 25 => reemplazo 33 por el 25

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
e ← cola.removeMin() // 20
```


33 llegó a una hoja => terminé

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
e ← cola.removeMin() // 20
e ← cola.removeMin() // 25
```


Reemplazo 25 por último nodo (el 45)

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
e ← cola.removeMin() // 20
e ← cola.removeMin() // 25
```


45 es mayor a 30 y a 33 => Lo intercambio por el menor (el 30)

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
e ← cola.removeMin() // 20
e ← cola.removeMin() // 25
```


45 llegó a una hoja => terminé

```
cola.insert( 20 )
cola.insert( 45 )
cola.insert( 30 )
cola.insert( 16 )
cola.insert( 18 )
cola.insert( 33 )
cola.insert( 25 )
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
e ← cola.removeMin() // 20
e ← cola.removeMin() // 25
e ← cola.removeMin() // 30
```


Reemplazo el 30 por el último nodo del listado por niveles

cola.insert(20)
cola.insert(45)
cola.insert(30)
cola.insert(16)
cola.insert(18)
cola.insert(33)
cola.insert(25)
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
e ← cola.removeMin() // 20
e ← cola.removeMin() // 25
e ← cola.removeMin() // 30

33 es menor a 45 => terminé

```
cola.insert( 20 )
    cola.insert( 45 )
    cola.insert( 30 )
    cola.insert( 16 )
    cola.insert( 18 )
    cola.insert( 25 )
    e ← cola.removeMin() // 16
    e ← cola.removeMin() // 18
    e ← cola.removeMin() // 20
    e ← cola.removeMin() // 25
    e ← cola.removeMin() // 30
    e ← cola.removeMin() // 30
```

```
cola.insert(20)
cola.insert(45)
cola.insert(30)
cola.insert(16)
cola.insert(18)
cola.insert(33)
cola.insert(25)
e ← cola.removeMin() // 16
e ← cola.removeMin() // 18
e ← cola.removeMin() // 20
e \leftarrow cola.removeMin() // 25
                                      Elimino el 45 => terminé porque el árbol quedó
e ← cola.removeMin() // 30
                                      vacío.
e ← cola.removeMin() // 33
e ← cola.removeMin() // 45
```

Altura del heap

- <u>Propiedad</u>: Un heap T con n entradas tiene una altura $h = \lfloor \log n \rfloor$.
- Justificación: Como T es completo, la cantidad n de nodos mínima se da con nivel h-1 lleno y hay un nodo en nivel h:

$$n \ge 1 + 2 + 4 + \dots + 2^{h-1} + 1 = 2^h - 1 + 1 = 2^h$$
.

Luego, $h \leq \log_2 n$.

La cantidad *n* de nodos es máxima cuando el nivel *h* está lleno:

$$n \le 1 + 2 + 4 + \dots + 2^h = 2^{h+1} - 1$$

Luego, $h \ge \log_2(n+1) - 1$.

Por lo tanto, como h es entero, entonces $h = \lfloor \log n \rfloor$.

Representación con arreglos del árbol binario

Hijo_izquierdo(i) = 2i Hijo_derecho(i) = 2i+1 Padre(i) = i div 2

Nota: La componente 0 del arreglo no se usa.

Nota: Las components del arreglo representan el listado por niveles del árbol.

Implementación en Java

public class Heap<K,V> implements PriorityQueue<K,V>{

```
protected Entrada<K,V>[] elems;
protected Comparator<K> comp;
protected int size;
private class Entrada<K,V> implements Entry<K,V> //Clase anidada
    private K clave; private V valor;
    public Entrada(K clave, V valor) {
         this.clave = clave:
         this.valor = valor;
    public K getKey() { return clave; }
    public V getValue() { return valor; }
    public String toString() {
      return "(" + clave + ", " + valor + ")"; }
```

```
public Heap(int maxElems, Comparator<K> comp ) {
        // Ojo: ¡¡Mirar bien cómo se hace la creación del arreglo!!
       // Creo un arreglo de maxElems entradas
        elems = (Entrada<K,V> []) new Entrada[maxElems];
        this.comp = comp; // Me guardo el comparador del cliente
        size = 0; // Digo que el árbol está vacío porque no tiene entradas
public int size() {
       return size; // Size es la cantidad de entradas del árbol
public boolean isEmpty() {
        return size == 0; // El árbol está vacío cuando no tiene entradas
```

```
public Entry<K,V> min() throws EmptyPriorityQueueException
{
    if (isEmpty())
        throw new EmptyPriorityQueueException();
    return elems[1];
    // Recuerde que la componente 0 del arreglo no se usa
}
```

```
public Entry<K,V> insert(K key, V value) throws InvalidKeyException
 Entrada<K,V> entrada = new Entrada<K,V>(key, value); // Creo una entrada nueva
 elems[++size] = entrada; // Incremento size y pongo la entrada nueva al final del arreglo
 // Burbujeo para arriba.
 int i = size; // seteo indice i de la posicion corriente en arreglo que es la última
 boolean seguir = true; // Bandera para saber cuándo encontré la ubicación de entrada
 while ( i>1 && seguir ) {
          Entrada <K,V> elemActual = elems[i]; // obtengo entrada i-ésima
          Entrada <K,V> elemPadre = elems[i/2]; // obtengo el padre de la entrada i-ésima
          if( comp.compare(elemActual.getKey(), elemPadre.getKey()) < 0) {</pre>
             Entrada<K,V> aux = elems[i]; // Intercambio entradas si están desordenadas
             elems[i] = elems[i/2];
             elems[i/2] = aux;
             i /= 2; // Reinicializo i con el índice de su padre
           } else // Si no pude intercambiar => la entrada ya estaba ordenada
                    seguir = false; // Aviso que terminé
 } // fin while
 return entrada;
T_{insert}(n) = O(h) = O(log_2(n)) si n es la cantidad de nodos del heap this y h su altura.
```

```
public Entry<K,V> removeMin() throws EmptyPriorityQueueException {
Entry<K,V> entrada = min(); // Salvo valor a retornar.
if( size == 1 ) { elems[1] = null; size = 0; return entrada; }
else {
  // Paso la última entrada a la raíz y la borro del final del arreglo y decremento size:
  elems[1] = elems[size]; elems[size] = null; size--;
 // Burbujeo la nueva raíz hacia abajo buscando su ubicación correcta:
 int i = 1; // i es mi ubicación corriente (Me ubico en la raíz)
 boolean seguir = true; // Bandera para saber cuándo terminar
 while (seguir) {
   // Calculo la posición de los hijos izquierdo y derecho de i; y veo si existen realmente:
   int hi = i*2; int hd = i*2+1;
   boolean tieneHijoIzquierdo = hi <= size(); boolean tieneHijoDerecho = hd <= size();
   if(!tieneHijoIzquierdo) seguir = false; // Si no hay hijo izquierdo, llegué a una hoja
   else {
         int m; // En m voy a computar la posición del mínimo de los hijos de i:
         if( tieneHijoDerecho ) {
            // Calculo cuál es el menor de los hijos usando el comparador de prioridades:
            if( comp.compare( elems[hi].getKey(), elems[hd].getKey()) < 0 ) m = hi;
            else m = hd;
          } else m = hi; // Si hay hijo izquierdo y no hay hijo derecho, el mínimo es el izq.
    } // Fin else
```

```
// Me fijo si hay que intercambiar el actual con el menor de sus hijos:
if( comp.compare(elems[i].getKey(), elems[m].getKey()) > 0 ) {
    Entrada<K,V> aux = elems[i]; // Intercambio la entrada i con la m
    elems[i] = elems[m];
    elems[m] = aux;
    i = m; // Reinicializo i para en la siguiente iteración actualizar a partir de posición m.
    } else seguir = false; // Si la comparación de entrada i con la m dio bien, termino.
} // Fin while
return entrada;
} // Fin método removeMin
```

El método tiene la complejidad del bucle while, que en el peor escenario realiza tantas iteraciones como altura h tiene árbol (el comparador funciona en orden 1 y los accesos al arreglo se realizan en orden 1; min() también tiene orden 1).

Recuerde que probamos que h es del orden de logaritmo base 2 de la cantidad de nodos del árbol.

```
Entonces, T_{removeMin}(n) = O(h) = O(log_2(n))
```

Aplicación: Heap Sort

- Objetivo: Ordenar un arreglo A de N enteros en forma ascendente
- <u>Estrategia</u>: Insertar los n elementos del arreglo en un heap inicialmente vacío y luego eliminarlos de a uno y almacenarlos en el arreglo.
- Algoritmo HeapSort(a, n)
 cola ← new ColaConPrioridad()
 para i ← 0..n-1 hacer
 cola.insert(a[i])
 para i ← 0..n-1 hacer
 a[i] ← cola.removeMin()

Complejidad temporal de Heap Sort

Tamaño de la entrada:

```
n = cantidad de componentes de a
\frac{Algoritmo}{Algoritmo} HeapSort(a, n)
cola \leftarrow new ColaConPrioridad() c_1
para i \leftarrow 0..n-1 hacer Realiza n iteraciones
cola.insert(a[i]) la iteración i cuesta c_2log_2(i)
para i \leftarrow 0..n-1 hacer Realiza n iteraciones
a[i] \leftarrow cola.removeMin() la iteración i cuesta c_3log_2(n-i)
```

Complejidad:

```
T_{\text{heapsort}}(n) = c_1 + c_2 n \log_2(n) + c_3 n \log_2(n) = O(n \log_2(n))
```

 $SPACE_{heapsort}(n) = O(n)$ porque usa una estructura auxiliar (la heap) de tamaño n

Recordar que $SPACE_A(n)$ es la cantidad de memoria extra que usa el algoritmo A para resolver el problema.

Heap sort in place

En lugar de usar una cola con prioridades externa (de tamaño n) al arreglo a, se puede usar una porción del mismo arreglo a para implementar la cola con prioridades y así no usar memoria adicional.

a

Max heap de tamaño i

Porción de tamaño n-i del arreglo no ordenada

Paso 1: para i=0 hasta n-1 insertar a[i] en la maxheap

Paso 2: para i=n-1 hasta 0 eliminar el máximo elemento de la maxheap y ubicarlo en a[i].

Complejidad: $T_{heapsortinplace}(n) = O(nlog_2(n))$

 $SPACE_{heapsortinplace}(n) = O(1)$ porque no usa estructuras auxiliares

Bibliografía

 Capítulo 8 de M. Goodrich & R. Tamassia, Data Structures and Algorithms in Java. Fourth Edition, John Wiley & Sons, 2006.