Lab Session 2 Proof by Induction

Construction and Verification of Software

Nova School of Science and Technology Mário Pereira mjp.pereira@fct.unl.pt

Version of September 16, 2025

Preface

From this point on, we will start using some auxiliary definitions from the Coq standard library. You shall start your Coq developments by the following lines:

From Coq Require Import Lists.List. (* Library on lists *)
Import ListNotations. (* Syntactic-sugar for list values *)

1 Proof by Induction

1.1 Natural Numbers

Exercise 1. Prove the following lemma:

Exercise 2. Prove the following lemma:

Lemma mult_0_r :
$$\forall$$
 n: nat, Coq $n \times 0 = 0$.

Exercise 3. Prove the following lemma:

Exercise 4. Prove the following lemma:

Exercise 5. Prove the following lemma:

```
\label{eq:coq} \begin{array}{l} \texttt{Lemma add\_assoc}: \forall \; n \; \texttt{m} \; p \text{: nat}, \\ n + (\texttt{m} + \texttt{p}) = (\texttt{n} + \texttt{m}) + \texttt{p}. \end{array}
```

Exercise 6. Given the following definitions

show that the following Lemma holds:

fact_acc n 1.

```
Lemma power_alt_correct : \forall n m: nat, power n m = power_alt n m.
```

Hint: you might want to prove an auxiliary Lemma about the result of pow p q, for any natural numbers p and q.

Exercise 7. Provide a definition for the function fact, of type $nat \rightarrow nat$, which computes the factorial of its argument.

Exercise 8. Consider the following alternative formulation of the factorial function:

Prove that fact_alt is a correct implementation of the factorial function, *i.e.*, prove the following statement:

```
\label{eq:correct}  \mbox{Lemma fact\_alt\_correct}: \forall \ n \mbox{: nat}, \\  \mbox{fact\_alt } n = \mbox{fact n}. \\
```

1.2 Lists

Exercise 9. Prove the following lemma:

Exercise 10. Prove the following lemma:

```
Lemma app_assoc : \forall 11 12 13: list nat, Coq (11 ++12) ++13 = 11 ++(12 ++13).
```

Consider the following definition of a function that reverses a list of natural numbers:

```
Fixpoint rev (1: list nat) : list nat := Coq match 1 with |[] \Rightarrow [] \\ |h :: t \Rightarrow rev t +++[h] \\ end.
```

Exercise 11. Prove the following lemma:

```
Lemma app_nil_r : \forall 1 : list nat, Coq 1++[] = 1.
```

Exercise 12. Prove the following lemma:

```
\label{eq:length:def}  \mbox{Lemma rev\_length}: \forall \mbox{ 1: list nat}, \\ \mbox{length (rev 1)} = \mbox{length 1}.
```

Exercise 13. Prove the following lemma:

Exercise 14. Prove the following lemma:

1.3 Trees

Consider the following definition for a binary tree of natural numbers:

```
Inductive tree : Type := Coq
| Leaf : tree
| Node (l: tree) (v: nat) (r: tree).
```

Exercise 15. Provide a definition for the function mirror, of type tree \rightarrow tree, which "mirrors" its argument. Your mirror check should check the following examples: ${\tt Example\ mirror1:mirror\ Leaf} = {\tt Leaf}.$ Cog Proof. reflexivity. Qed. Example mirror2 : $\mathtt{mirror}\;(\mathtt{Node}\;(\mathtt{Node}\;\mathtt{Leaf}\;0\;\mathtt{Leaf})\;1\;(\mathtt{Node}\;\mathtt{Leaf}\;2\;\mathtt{Leaf})) =$ Node (Node Leaf 2 Leaf) 1 (Node Leaf 0 Leaf). Proof. reflexivity. Qed. Exercise 16. Prove the following lemma: $\texttt{Lemma mirror_involutive:} \ \forall \ \texttt{t: tree},$ Coq $\mathtt{mirror}\;(\mathtt{mirror}\;\mathtt{t})=\mathtt{t}.$