Fonctions vectorielles

$$\alpha 15 - MP^*$$

1 Limites, continuité, calcul différentiel

1.1 Notion de limite

Soit E un ev normé de dimension finie (evnf), $f:A\subset\mathbb{R}\longrightarrow E$. Si $x\in\overline{A}$, on dit que $\lim_{y\to x}f(y)=l\in E$ si $\forall \varepsilon>0, \exists \alpha>0/\forall y\in A,$ $[(y\neq x)\wedge(|y-x|\leqslant \alpha)]\Longrightarrow (\|f(y)-l\|\leqslant \varepsilon)$. Elle ne dépend pas de la norme.

1.2 Continuité

E un evnf, $f:A\subset\mathbb{R}\longrightarrow E$; c'est la notion classique puisque \mathbb{R} et E sont a fortiori des espaces métriques. Si $x\in A$, f est continue en x ssi $\lim_{y\to x}f(y)=f(x)$.

- 1. La continuité en un point (resp. sur A) ne dépend pas de la norme considérée
- 2. On peut toujours écrire $f: x \longmapsto \sum_{i=1}^{n} f_i(x)e_i$, si $\mathcal{B} = (e_1, \dots, e_n)$ est une base de E et $f_i: A \longrightarrow E$. f est alors continue ssi chaque f_i l'est.

1.3 Dérivée en un point, fonction dérivée

Soit I un intervalle de \mathbb{R} , E un evnf, $f:I\longrightarrow E$. Si $x\in I$, f'(x) est, si elle existe, la quantité $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$. Si f est dérivable en tout point de I, on peut ainsi définir la fonction dérivée $f':I\longrightarrow E$.

f'(x) existe ssi $f(x+h) = f(x) + h \cdot l + \vec{o}(h)$, avec $\|\vec{o}(h)\| = o(h)$. Dans ce cas, f'(x) = l. On peut ainsi définir les notions classiques \mathcal{D}^1 , \mathcal{C}^1 , \mathcal{D}^k , \mathcal{C}^k , \mathcal{C}^∞ .

1.4 Calcul différentiel

1.4.1 Linéarité

Soit $f: I \subset \mathbb{R} \xrightarrow{\mathcal{D}^1} E$, $l \in \mathcal{L}(E, F)$ où E, F sont deux evnf. Alors $l \circ f$ est \mathcal{D}^1 et $(l \circ f)' = l \circ (f')$. Soit $f, g: I \subset \mathbb{R} \xrightarrow{\mathcal{D}^1} E$, E evnf. Alors $\forall \lambda, \mu \in \mathbb{R}$, $\lambda f + \mu g$ est \mathcal{D}^1 et $(\lambda f + \mu g)' = \lambda f' + \mu g'$.

1.4.2 *n*-linéarité

 $E_1, \dots E_n, E \text{ des evnf}, \ f_i: I \subset \mathbb{R} \xrightarrow{\mathcal{D}^1} E_i, \ \Phi: \prod_{i=1}^n E_i \longrightarrow E \ n-\text{lineaire}. \ \text{Soit} \ F: x \in I \longmapsto \Phi(f_1(x), \dots, f_n(x)) \ ; \ F \text{ est } \mathcal{D}^1 \text{ et}: X \in I, \ F'(x) = \Phi(f'_1(x), f_2(x), \dots, f_n(x)) + \Phi(f_1(x), f'_2(x), \dots, f_n(x)) + \dots + \Phi(f_1(x), f_2(x), \dots, f'_n(x)).$ Exemples:

- $M, N : I \subset \mathbb{R} \xrightarrow{\mathcal{D}^1} \mathfrak{M}_n(\mathbb{K})$, alors $t \longmapsto M(t)N(t)$ est \mathcal{D}^1 et (MN)' = M'N + MN'.
- E un evnf, $f: I \xrightarrow{\mathcal{D}^1} E$, $\lambda: I \xrightarrow{\mathcal{D}^1} \mathbb{K}$; alors $t \longmapsto \lambda(t) f(t)$ est \mathcal{D}^1 et : $(\lambda f)' = \lambda' f + \lambda f'$. De même, si $\lambda: I \xrightarrow{\mathcal{D}^1} \mathbb{K}^*$, $(\frac{f}{\lambda})$ est \mathcal{D}^1 et $(\frac{f}{\lambda})' = \frac{\lambda f' \lambda' f}{\lambda^2} f$.

On a la formule de Leibniz : $f_1:I \xrightarrow{\mathcal{D}^k} E_1, f_2:I \xrightarrow{\mathcal{D}^k} E_2, \varphi:E_1 \times E_2 \longrightarrow E$ bilinéaire, $F:t \in I \longmapsto \varphi(f_1(t), f_2(t))$. Alors F est \mathcal{D}^k et $\forall t \in I$, $F^{(k)}(t) = \sum_{i=0}^k \binom{k}{i} \varphi(f_1^{(i)}(t), f_2^{(k-i)}(t))$.

2 Inégalités du calcul différentiel

2.1 Inégalités des accroissements finis

Soit E un evnf, une fonctions $f:[a,b]\subset\mathbb{R}\longrightarrow E$ satisfait les conditions de Rolle si f est continue sur [a,b] et dérivable sur [a,b]. Soit $f:[a,b]\longrightarrow E, q:[a,b]\longrightarrow \mathbb{R}$ telles que f et q satisfont les conditions de Rolle.

- Propriété 1 : Si de plus on a $\forall x \in]a,b[,\|f'(x)\| \leq g'(x)$, alors $\|f(b)-f(a)\| \leq g(b)-g(a)$.
- Propriété 2 (cas particulier) : Soit $M \in \mathbb{R}^+$, $g: x \longmapsto Mx$. Si f satisfait les hypothèses de Rolle et $\forall x \in]a, b[$, $\|f'(x)\| \leq M$, alors $\|f(b) f(a)\| \leq M(b-a)$.

Corollaires : Soit I un intervalle de \mathbb{R} , $f:I\longrightarrow E$ telle que f est continue sur I et dérivable sur I.

- 1. Si f' = 0 sur \tilde{I} , alors f est constante sur I.
- 2. Si f' est bornée, alors f est lipschitzienne.

2.2 Inégalité de Taylor-Lagrange

Soit E un evnf, $f:[a,b] \xrightarrow{\mathcal{C}^{n+1}} E$. Si $\forall x \in [a,b], ||f^{(n+1)}(x)|| \leq M$, alors

$$f(b) - f(a) = \sum_{k=1}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \gamma_{n+1}$$

avec $\|\gamma_{n+1}\| \leq M \frac{(b-a)^{n+1}}{(n+1)!}$.

2.3 Formule de Taylor-Young

Soit $f: I \xrightarrow{\mathcal{C}^n} E$. Soit $a \in I$, alors : $f(a+h) = \sum_{k=0}^n \frac{h^k}{k!} f^{(k)}(a) + o(h^n)$.

3 Calcul intégral

3.1 Intégrabilité sur un segment

Soit E un evn, $f: |a,b| \longrightarrow E$. On appelle somme de Riemann de f sur |a,b| toute expression de la forme :

$$S(f) = \sum_{i=0}^{n-1} (x_{i+1} - x_i) f(c_i)$$

où $a = x_0 \leqslant x_1 \leqslant \ldots \leqslant x_n = b$ est un partage de [a,b], noté σ , et pour tout $i,c_i \in [x_i,x_{i+1}]$. On appelle $\delta(\sigma) = \max_{0 \leqslant i \leqslant n-1} (x_{i+1} - x_i)$ le module du partage. f est intégrable sur [a,b] si il existe $I \in E$ tel que : $\forall \varepsilon > 0$, $\exists \alpha > 0 / (\delta(\sigma) \leqslant \alpha) \Longrightarrow (\|S(f) - I\| \leqslant \varepsilon)$. I est alors unique et on pose : $\int_0^b f(t) dt = I$. Si E est complet, toute fonction C^0 (même C_0^0) est intégrable sur tout segment.

- Inégalité triangulaire : E un evnf, $f:[a,b] \xrightarrow{\mathcal{C}_m^0} E$, alors $\|\int_a^b f(t) dt\| \leqslant \int_a^b \|f(t)\| dt$.
- Intégration par parties : Si I est un segment, $f_1: I \xrightarrow{\mathcal{C}^0, \mathcal{C}_m^1} E_1$, $f_2: I \xrightarrow{\mathcal{C}^0, \mathcal{C}_m^1} E_2$, $\mathcal{B}: E_1 \times E_2 \longrightarrow E$ bilinéaire, alors :

$$\int_{a}^{b} \mathcal{B}(f_{1}'(x), f_{2}(x)) dx + \int_{a}^{b} \mathcal{B}(f_{1}(x), f_{2}'(x)) dx = \left[\mathcal{B}(f_{1}(x), f_{2}(x))\right]_{a}^{b}$$

• Formule de Taylor-Laplace : avec les notations du 2.2, $\gamma_{n+1} = \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$

3.2 Intégration sur un intervalle quelconque

E evn, I un intervalle de \mathbb{R} , $f: I \xrightarrow{C_m^0} E$. Même si $\int_a^b f(t) dt$ a un sens pour tout segment $[a,b] \subset I$, cela ne suffit pas à donner un sens à $\int_I f$. Si E est de Banach et si ||f|| est intégrable sur I, alors $\int_I f$ a un sens (par exemple $\int_I f = \lim_{\substack{X \to \inf I \\ Y \to \sup I}} \int_X^Y f(t) dt$). On dit alors que f est intégrable sur I. Si E est de Banach :

- Propriétés : Si I=(a,b) avec $-\infty\leqslant a< b\leqslant +\infty,\,c\in I$ et $f:I\xrightarrow{\mathcal{C}^0_{m}}E,\,f$ est intégrable ssi $f|_{(a,c]}$ et $f|_{[c,b)}$ le sont. Dans ce cas, $\int_I f=\int_{(a,c)}f+\int_{[c,b)}f.$
- Intégration par parties : Soit E, E_1 , E_2 trois evnf, $f:I \xrightarrow{C^0,C_m^1} E_1$, $g:I \xrightarrow{C^0,C_m^1} E_2$, $\mathcal{B}:E_1\times E_2\longrightarrow E$ bilinéaire. Si $\mathcal{B}(f_1',f_2)$ et $\mathcal{B}(f_1,f_2')$ sont intégrables, alors $\int_I \mathcal{B}(f_1',f_2) + \int_I \mathcal{B}(f_1,f_2') = [\mathcal{B}(f_1,f_2)]_{\inf I}^{\sup I}$.
- Si $\lim_{\substack{X \to \inf I \\ Y \to \sup I}} \int_X^Y f(t) dt$ existe mais f non intégrable, on dit que f est semi-intégrable. Par exemple, $f(x) = \frac{\sin x}{x}$ est semi-intégrable sur $[0, +\infty[$.
- Soit $f: I \xrightarrow{C_m^o} E$ semi-intégrable ; si $c \in I$, $\exists_{Y \to \sup I} \int_c^Y f(t) dt$ et $\exists_{X \to \inf I} \int_X^c f(t) dt$; cela permet de définir $\int_I f = \lim_{Y \to \sup I} \int_c^Y f + \lim_{X \to \inf I} \int_X^c f$.

3.3 Théorème de relèvement

On rappelle que $\mathbb{U}=\{z\in\mathbb{C}/|z|=1\}$. Soit I un intervalle de $\mathbb{R},\ f:I\overset{\mathcal{C}^{k\geqslant 1}}{\longrightarrow}\mathbb{U},\ \text{alors}:$

- 1. $\exists \varphi : I \xrightarrow{\mathcal{C}^k} \mathbb{R}$ telle que $\forall t \in I, f(t) = e^{i\varphi(t)}$.
- 2. Si deux fonctions $\varphi_1, \varphi_2: I \xrightarrow{\mathcal{C}^k} \mathbb{R}$ satisfont cela, alors $\exists m \in \mathbb{Z}/\varphi_2 \varphi_1 = \underline{2m\pi}$.

Tout cela reste vrai avec k=0. De même si $f:I \xrightarrow{C^k\geqslant 1} \mathbb{C}^*, \exists \rho:I \xrightarrow{C^k} \mathbb{R}^{+*}, \exists \theta:I \xrightarrow{C^k} \mathbb{R}$ telles que $\forall t\in I, f(t)=\rho(t)e^{i\theta(t)}$. Dans ce cas, ρ est unique et θ est unique à $2m\pi$ près $(m\in\mathbb{Z})$.

On en déduit une condition suffisante de représentation polaire : Soit E un plan affine euclidien orienté, rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) . Soit $\gamma : t \in I \longmapsto (x(t), y(t)) \in E$, avec $x, y : I \xrightarrow{C^k} \mathbb{R}$ On suppose que pour tout $t \in I$, $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ et $\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$

forment une famille libre. Dans ce cas, pour tout t, $(x(t), y(t)) = (\rho(t)\cos\theta(t), \rho(t)\sin\theta(t))$, où $\rho: I \xrightarrow{C^k} \mathbb{R}^+$ et $\theta: I \xrightarrow{C^k} \mathbb{R}$. $\theta|_I^{\varrho(I)}$ est un C^k -difféomorphisme de I sur $\theta(I) = J$. L'application $\rho = \rho(\omega)$ est définie par : $\forall \omega, \rho(\omega) = \rho(\theta^{-1}(\omega)) : I \longrightarrow \mathbb{R}^+$.

3

3.4 Rappel : difféomorphismes

Soit I, J deux intervalles de $\mathbb{R}, k \in \mathbb{N}^* \bigcup \{+\infty\}$, on dit que $f: I \longrightarrow J$ est un \mathbb{C}^k -difféomorphisme de I sur J si :

- f est C^k sur I
- f est bijective
- f^{-1} est C^k sur J.