

Diplomarbeit

Empfangsstation für globales Satellitenbodenstationsnetzwerk SatNOGS

Ritter Gabriel und Metzler Jakob

Betreuer: König Christian

2024

Ritter Gabriel und Metzler Jakob

 $Emp fangs station\ f\"{u}r\ globales\ Satelliten boden stations netzwerk\ SatNOGS$

Diplomarbeit, 2024

Betreuer: König Christian

Höhere Technische Bundeslehr- und Versuchsanstalt Rankweil

Elektronik und technische Informatik

Negrellistraße 50

6830 Rankweil

"In der Welt der drahtlosen Kommunikation sind Antennen die Stimme, die ohne Worte spricht, aber dennoch eine universelle Sprache vermittelt."

Unbekannt

"Von Anfang an übertraf Maxwells Theorie alle anderen an Eleganz und an der Vielzahl der Beziehungen zwischen den verschiedenen Phänomenen, die sie einschloss."

Heinrich Hertz

Vorwort

Unsere Diplomarbeit nahm ihren Lauf als einige freundliche Mitglieder des TU-Wien-Space-Teams auf unsere Schule zu kamen und uns ein Projekt vorstellten: eine Bodenstation zum Empfang von Daten eines Satelliten der 2024 in den LEO befördert werden sollte - des STS1.

Dies weckte unser Interesse, bald fanden wir uns in einem Team wieder das hochmotiviert und bereit war loszulegen.

Abstract

0.1 Abstract (deutsch)

Ziel der Diplomarbeit ist es, eine funktionstüchtige Satelliten-Ground-Station aufzubauen, um mit Satelliten im Amateurfunkband, vor allem auch dem CubeSat des STS1, kommunizieren zu können.

Im ersten Schritt muss hierzu die Ground-Station selbst aufgebaut werden. Dazu gehören zum Beispiel die Demodulation, Low-Noise-Amplification und ein Software-Defined-Radio. Sobald die Ground-Station funktionstüchtig ist, sollen drei verschiedene Antennen-Typen gebaut und mit der Ground-Station betrieben werden, um den besten Antennen-Typ für den Empfang der CubeSat-Daten zu ermitteln. Die empfangenen Daten sollen weiters über eine grafische Benutzeroberfläche übersichtlich dargestellt werden können.

Im letzten Schritt werden die verschiedenen Antennen charakterisiert und Werte wie die Richtcharakteristik und der Gain ermittelt.

0.2 Abstract (english)

The goal of the thesis is to establish a functional satellite ground station to communicate with satellites in the amateur radio band, especially the CubeSat STS1.

In the first step, the ground station itself needs to be set up. This includes tasks such as demodulation, low-noise amplification, and a software-defined radio. Once the ground station is operational, three different types of antennas will be constructed and operated with the ground station to determine the best antenna type for receiving CubeSat data. The received data should be presented in a clear manner through a graphical user interface.

In the final step, the various antennas will be characterized, and values such as directional characteristics and gain will be determined.

Inhaltsverzeichnis

	0.1	Abstract (deutsch)	vii
	0.2	Abstract (english)	vii
1	Rati	ionale	1
2	Einf	ührung	3
	2.1	SatNOGS-Netzwerk	3
	2.2	grundlegende Antennentheorie	6
		2.2.1 Einführung	6
		2.2.2 Antennenfeldzonen	6
		2.2.3 Polarisation	7
		2.2.4 Kenngrößen einer Antenne	7
	2.3		
		2.3.1 Antennentypen	11
		2.3.2 Baluns	11
3	Aufs	setzen der Bodenstation	13
_		Code	
		Erklärung	
4	Sim	ulation	15
_		Quadrifilare Helix-Antenne (QFH)	
	7.1	4.1.1 3D-Modelle	
		4.1.2 CENOS	
	4 2	gerichtete Helix-Antenne	
	1.4	4.2.1 3D-Modelle	
		4.2.2 CENOS	
_	17		
5		struktion der Antennen	17
		Quadrifilare Helix-Antenne (QFH)	
	5.2	gerichtete Helix-Antenne	17
6	Disc	ruccion	10

	6.1 Summary of findings	19
7	Schlussfolgerung	21
8	Literaturverzeichnis	23
9	Abkürzungsverzeichnis	25
10	Begleitprotokoll	27
11	Anhang	29
12	Perspectives	31
13	Bibliography	33

Rationale

Wieso ist das thema relevant, motivation für diese DA

1

Einführung

In diesem Kapitel werden die theoretischen Grundlagen der Antennen-und Leitertheorie gelegt sowie das SatNOGS Netzwerk näher erläutert.

2.1 SatNOGS-Netzwerk

Das SatNOGS-Netzwerk spielt eine zentrale Rolle in unserer Diplomarbeit und bietet hunderten Forschern, Amateurfunkern und Interessierten eine Plattform für verlässliche Kommunikation mit Satelliten.

Das, was SatNOGS zu so einer attraktiven Lösung macht, ist der Fakt dass die Bodenstation um den ganzen Globus verteilt sind. Der große Vorteil davon ist, dass der Empfang von Satellitendaten nun über alle verfügbaren Empfangsstationen laufen kann.

In Abbildung 2.1 wird die Topologie des SatNOGS-Netzwerkes abstrahiert dargestellt. Alle über das Netzwerk verfügbaren Bodenstationen sind mit SatNOGS-Servern verbunden. Auf diese Server kann über die Website bzw. API zugegriffen werden, welche die empfangenen Satellitendaten für alle Benutzer erreichbar macht.

Abbildung 2.1: Erklärung des SatNOGS Netzwerkes

Abbildung 2.2: SatNOGS-Systemtopologie

Um näher auf den Ablauf des Datenempfangs und der benötigten Systemblöcke einzugehen wird auf Abbildung 2.2 verwiesen.

Zum Empfang von Daten kommen zwei Antennentypen infrage: Direktionale oder omnidirektionale Antennen. Eine direktionale Antenne folgt dem Verlauf des Satelliten. Dies bringt den Vorteil mit sich, dass eine höhere Empfangsleistung erzielt, und somit klarere Daten empfangen werden, jedoch wird für solch ein Modell ein Rotator benötigt. Der Vorteil einer omnidirektionalen Antenne ist, dass kein teurer Rotator notwendig ist, allerdings können damit nur schwer brauchbare Daten empfangen werden.

Für gerichtete Antennen können verschiedene Rotatoren benutzt werden, unter anderem der SSatNOGS-Rotatorßowie diverse Open-Source-Rotatoren und Rotatoren welche zum Verkauf stehen.

Zur Demodulation der Daten sind ein SDR (Software Defined Radio) sowie ein LNA (Low Noise Amplifier) notwendig. Das SDR übernimmt softwaretechnisch Aufgaben welche normalerweise von Hardware übernommen werden (Demodulation, Filter, Mixer, etc...). Der LNA, wie der Name schon andeutet, ist für die Verstärkung kleiner Signale mit besonderer Rauscharmut verantwortlich.

Die Aufgabe des SatNOGS Clients kann in der Regel von jedem Linux-PC oder RaspberryPi übernommen werden. Allerdings wird die Kompatibilität zwar für alle Linux-basierten PCs, jedoch nur für die RaspBerryPis Version 3, 3+ und 4 garantiert.

Der SatNOGS Client ist mit den Servern verbunden, der die Bodentation als solche im Netzwerk repräsentiert. Die Server unterhalten weiters eine Datenbank, welche Daten über Satelliten enthält, die mit den Empfangsstationen erreichbar sind.

2.2 grundlegende Antennentheorie

2.2.1 Einführung

Um die in der Diplomarbeit bearbeiteten Inhalte besser verstehen zu können, wird eine Einführung in die Grundlagen der Antennentheorie gegeben.

2.2.2 Antennenfeldzonen

Das von einer Antenne abgestrahlte Feld lässt sich in 3 verschiedene Regionen einteilen: das Nahfeld, das Übergangsfeld (Fresnel-Region) und das Fernfeld (Fraunhofer-Region).

Je nach Literatur erfolgt der Übergang zwischen den Feldzonen fließend. Eine Möglichkeit die Zonen einzuteilen ist in der nachfolgenden Tabelle einzusehen.

Nahfeld	Übergangsfeld	Fernfeld
$r < 0.2 \lambda$	$0.2 \le r \le 4\lambda$	$r > 0.4\lambda$

Das Nahfeld ist darin besonders, dass das elektrische und magnetische Feld mit unterschiedlichen Faktoren in Abhängigkeit der Entfernung abnehmen. Im Übergangsfeld nehmen das elektrische und magnetische Feld zwar mit dem gleichen Faktor ab, jedoch unterscheiden Sie sich noch in der Phase und Amplitude.

Im Gegensatz zum reaktiven Nahfeld wird beim Fernfeld Wirkleistung abgestrahlt. Hierbei sind die elektrische und magnetische Komponente der Welle in Phase und nehmen im gleichen Maß ab.

Da unsere Diplomarbeit einen Fokus auf die Satellitentechnik hat, ist für dieses Dokument nur das Fernfeld relevant.

2.2.3 Polarisation

Die Polarisationsart wird von der Ausrichtung des Vektors der elektrischen Feldstärke bestimmt. Es lässt sich zwischen drei verschiedenen Arten der Polarisation unterscheiden.

• Lineare Polarisation

- horizontale Polarisation
 Eine horizontale Polarisation liegt vor, wenn der elektrische Feldstärkevektor sich periodisch ändert und die Feldlinien parallel zum Boden verlaufen.
- vertikale Polarisation
 Eine vertikale Polarisation liegt vor, wenn die elektrischen Feldlinien senkrecht zum Erdboden liegen. Eine vertikale Polarisation liegt vor wenn

• Zirkulare Polarisation

Der Betrag des elektrischen Feldstärkevektors ist konstant. Der Feldstärkevektor rotiert in einer Spirale um den in Ausbreitungsrichtung weisenden Vektor. Ein Spiralumlauf ist nach der Wellenlänge λ vollendet.

Elliptische Polarisation
Betrag sowie Richtung des elektrischen Feldstärkevektors ändern sich
laufend. Bei der Rotation beschreibt der Vektor eine Ellipse.

linear (vertikal, horizontal), Zirkular, Elliptisch

2.2.4 Kenngrößen einer Antenne

abc

2.3 Antennengewinn

Als Antennengewinn wird die "bündelndeËigenschaft einer gerichteten Antenne im Vergleich zu einer Bezugsantenne bezeichnet. Hierbei ist die Vergleichsantenne meist ein Kugelstrahler.

Der Gewinn der Antenne berechnet sich mit dem Verhältnis der maximalen Empfangsleistung der gerichteten Antenne zu der des Kugelstrahlers. Wird als Bezugsantenne der Kugelstrahler verwendet, so wird die Empfangsleistung mit dem Index 'i' versehen um dies zu kennzeichnen.

$$G = \frac{P_{max}}{P_i} \tag{2.1}$$

Welligkeit

Die Welligkeit oder das Stehwellenverhältnis (SWR) gibt Aufschluss über die Spannungsverteilung auf der Speiseleitung und ist ein Maß für die Qualität der Anpassung. Sie beschreibt, wie groß der Anteil der reflektierten Wellen ist. Je schlechter die Anpassung, desto größer der Anteil der Wellen, welche reflektiert werden.

$$SWR = \frac{U_{max}}{U_{min}} = \frac{I_{max}}{I_{min}} = \frac{1 + |\rho|}{1 - |\rho|}$$
 (2.2)

Wobei ρ der Reflexionsfaktor ist.

Richtcharakteristik und Richtdiagramm

Die Richtcharakteristik beschreibt das Abstrahlverhalten einer Antenne. Hierbei wird die unter einem bestimmten Winkel (θ , ϕ) auftretende Feldstärke auf einen Maximalwert bezogen.

$$C(\theta, \phi) = \frac{E(\theta, \phi)}{E_{max}}$$
 (2.3)

Wobei θ der Elevationswinkel (vertikal Winkel) und ϕ den Azimutwinkel (horizontaler Winkel) repräsentiert.

Abbildung 2.3: Richtdiagramm einer stark bündelnden Antenne

Hierbei ist zu bemerken dass in Abbildung 2.3 entgegen der üblichen Konvention das Richtdiagramm aus dem Verhältnis zwischen Strahlungsleistungsdichte und ihrem Maximalwert ergibt. Es ist gebräuchlich, das Diagramm auf den Maximalwert zu normieren, sodass sich bei der maximalen Feldstärke 0 dB Dämpfung ergeben.

Der größte Teil der Leistung ist naheliegend in der Hauptkeule zu finden, während es nötig ist die Neben-und Rückwärtskeulen möglichst klein zu halten, um unnötige Abstrahlung in die Umgebung zu vermeiden. Die Halbwertsbreite der Hauptkeule ist der Wert ab dem die Leistungsdichte auf die

Hälfte abgesunken ist.

Eine weitere wichtige Kenngröße bei Richtantennen ist das Vor-Rückwärtsverhältnis. Dies ist die Fähigkeit einer Richtantenne, Strahlung aus anderen Richtungen als der Hauptstrahlrichtung zu unterdrücken.

Einfluss der Erde auf das Richtdiagramm

Wird das Strahlungsdiagramm einer Antenne über dem Boden mit dem einer Antenne im Freiraum verglichen, lassen sich große Unterschiede erkennen. Der Boden dient als Reflektor wobei seine Reflexionseigenschaften von der Dielektrizitätskonstante sowie der Leitfähigkeit bestimmt werden.

Für die Reflexion elektromagnetischer Wellen am Erdboden trifft das Reflexionsgesetz zu, das bedeutet, dass der Einfallswinkel gleich dem Ausfallswinkel ist. Hierbei kann es zu Überlagerungen zwischen den reflektierten und nicht reflektierten Wellen kommen und somit können destruktive und konstruktive Interferenzen entstehen.

Die Polarisierung der verwendeten Antenne spielt eine entscheidende Rolle bei der Reflexion. Bei einer vertikal polarisierten Antenne ist der Stromverlauf von Spiegelbild und Original gleichphasig. Bei einer horizontal polarisierten Antenne hingegen ist der Stromverlauf zwischen Reflexion und Original gegenphasig.

Der Abstand vom Boden spielt ebenfalls eine kritische Rolle und hat großen Einfluss auf das resultierende Richtdiagramm der Antenne. Wird beispielsweise ein Dipol $\frac{\lambda}{2}$ vom Boden entfernt aufgestellt, so verändert sich sein Richtdiagramm so sehr, dass aus der omnidirektionalen Antenne ein Strahler mit zwei Strahlungskeulen wird.

2.3.1 Antennentypen

Um ein grundlegendes Verständnis für die in der Diplomarbeit aufgebauten und charakterisierten Antennentypen zu vermitteln, werden diese nun näher erläutert.

Dipol

QFH (Quadrifilar Helical Antenna)

2.3.2 Baluns

Strombalun

Mantelwellensperre, schwach gegen statische Entladungen, da Balun -> konvertiert balanced zu unbalanced

Spannungsbalun

Konvertiert "balancedßu ünbalanced"guter Schutz gegen statische Entladung, keine Mantelwellensperre.

Un-Un

Aufsetzen der Bodenstation

3

- **3.1 Code**
- 3.2 Erklärung

Simulation 4

4.1 Quadrifilare Helix-Antenne (QFH)

- 4.1.1 3D-Modelle
- **4.1.2 CENOS**
- 4.2 gerichtete Helix-Antenne
- 4.2.1 3D-Modelle
- **4.2.2 CENOS**

Konstruktion der Antennen

5

- **5.1 Quadrifilare Helix-Antenne (QFH)**
- **5.2** gerichtete Helix-Antenne

Discussion

6.1 Summary of findings

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muß keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

7

Schlussfolgerung

Literaturverzeichnis

Abbildungsverzeichnis

2.1	Erklärung des SatNOGS Netzwerkes	4
2.2	SatNOGS-Systemtopologie	4
2.3	Richtdiagramm einer stark bündelnden Antenne	9

9

Abkürzungsverzeichnis

Begleitprotokoll 1

Anhang 11

Das hier ist der zweite Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muß keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Und nun folgt – ob man es glaubt oder nicht – der dritte Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muß keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Perspectives 12

The development of a virtual reality setup brings about exciting possibilities. Hopefully, we will soon see ants express innate behaviours such as searching, navigation, associative learning, etc. without moving in physical space. Coupled with the potential of exploring the neural basis of these behaviours is very promising indeed. To enable this, I believe work should be targeted in two directions:

Implement new virtual reality software. The current software (ViRMEn) has allowed us to probe the use of virtual reality with wood ants, however, it imposes certain limitations in the long term. It is written in Matlab, and customising it has remained a challenge throughout. Furthermore, one is limited to simple virtual environments created within ViRMEn. There are other potential software solutions openly available, e.g. MouseoVeR/FlyOver from Janelia Research Campus (Cohen2017MouseoVeRLaboratory). This software is written in the open source programming language Python, and uses environments created in the open source 3D software, Blender. Not only will adopting this solution improve our ability to customise experiments to our needs, it will also improve the reproducibility by being based solely on open source software.

Develop reward system. Associative learning experiments entails establishing an association between a cue and a reward (e.g. **Fernandes2017a**), as does traditional navigation experiments with central place foragers (e.g. **Buehlmann2018TheCharacteristics**). To allow such behaviour, the setup needs to allow distribution of reward. This could potentially be accomplished by introducing a syringe with a sucrose solution, however, this approach will first have to be developed and validated before beginning any learning experiments.

Bibliography 13