Math 245 course note

Chenxuan Wei May 2021

Contents

1	Sum and direct sum	3
	1.1 Intro	3
	1.2 Sum and direct Sums	4
2	Matrix Representations of Linear Maps	6
	2.1 Basic notation of Matrix Representation	6
	2.2 Invariant	7
3	Isomorphism	8
	3.1 Definition of Isomorphism	8
4	Quotients	9
5	Invarient Subspaces	12
6	Triangularization	14
	6.1 The theorem	14
	6.2 Application of the theorem	15
7	Cayley - Hamilton Theorem	16
8	Jordan Form	18
	8.1 Intro	18
	8.2 Jordan from	19
9	Inner Produce space	22
	9.1 Intro	22
	9.2 Inner Produce	23
10	Polar Decomposition	24

1 Sum and direct sum

1.1 Intro

- 1. The field we are going to use in this course including:
 - *R*
 - C
 - $Z_p = \text{modules with prime } p$
- 2. Vector space (V) have the following property:
 - $\vec{x} + \vec{y} \in V$
 - $\bullet \ \vec{x} + \vec{y} = \vec{y} + \vec{x}$
 - $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{x})$
 - $\vec{0} \in V$
 - \bullet $-\vec{x} \in V$
 - $c\vec{x} \in V$
 - $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
 - $\bullet (c+d)\vec{x} = c\vec{x} + d\vec{x}$
 - $c(d\vec{x} = (cd)\vec{x})$
 - $1\vec{x} = \vec{x}$
- 3. Some example including
 - $F^n, n \ge 1$ which is a n-tuples
 - $M_{m,n}(F)$ which is m * n matrices
 - $M_n(F)$ which is n * n matrices
 - F[t] polynomial in t with degree = ∞
 - $F_n[t]$ polynomial in t with degree = n
 - C(R,R) continuoues from R to R

1.2 Sum and direct Sums

1. Sum

let V be a vector space

 $U_1, U_2 \dots U_n \subseteq V$ are subspaces

$$\sum_{k=1}^{n} U_k = Sum = \{\sum_{p=1}^{n} \vec{u_p} : \vec{u_p} \in U_k\}$$

Note: $\sum_{k=1}^{n} U_k$ is a subspace of V

2. Internal Direct Sum

If the following 2 condition is saticified

- $V = \sum_{k=1}^{n} U_k$
- $\forall \vec{v} \in V$ can be written **uniquely** as $\vec{v} = \sum_{p=1}^{n} \vec{u_p}$, for some $\vec{u_p} \in U_k$

then V is **internal direct sum** of $U_1, U_2 \dots U_n$

$$V = \bigoplus_{k=1}^{n} U_k$$

3. Proposition Let V be vector space $U_1, U_2 \dots U_n \subseteq V$ subspace

$$V = \bigoplus_{k=1}^{n} U_k \iff$$

- $V = \sum_{k=1}^{n} U_k$
- if $\sum_{p=1}^{n} \vec{u_p} = \vec{0}$, for some $\vec{u_p} \in U_k$, then $\forall p, \vec{u_p} = \vec{0}$ linear independence

4. Corollary

Let $U_1, U_2 \subseteq V$, are subspace then $V = U_1 \oplus U_2 \iff$

- $\bullet \ V = U_1 + U_2$
- $\bullet \ U_1 \cap U_2 = \{\vec{0}\}$

5. External Direct Sum

Let $U_1, U_2 \subseteq F$ be vector spaces

then the External Direct sum of them $U_1 \oplus U_2 = \{(\vec{u_1}, \vec{u_2}) : \vec{u_1} \in U_1, \vec{u_2} \in U_2\}$

with the following property

•
$$(\vec{u_1}, \vec{u_2}) + (\vec{u_1'}, \vec{u_2'}) = (\vec{u_1} + \vec{u_1'}, \vec{u_2} + \vec{u_2'}) \in U_1 \oplus U_2$$

• let
$$\lambda \in F \ \lambda(\vec{u_1}, \vec{u_2}) = (\lambda \vec{u_1}, \lambda \vec{u_2}) \in U_1 \oplus U_2$$

Note:

(a)
$$F^n = F \oplus F \oplus \ldots \oplus F$$
 n times

(b) if
$$V = U_1 \oplus \ldots \oplus U_n$$
 is external, it is also internal

(c)
$$U'_{i} \subseteq V$$
 where $U'_{i} = \{(\vec{0}, \vec{0}, \dots \vec{u_{i}}, \vec{0} \dots \vec{0}) \in V\}$

6. Proposition

if
$$U, V \subseteq W$$
 are subspaces, B, C are basis where $B = \{\vec{b_1} \dots \vec{b_n}\} \subseteq U$, $C = \{\vec{c_1} \dots \vec{c_n}\} \subseteq V$ and $W = U \oplus V$ then $B \cup C$ is a basis for W work for any number of B, C

2 Matrix Representations of Linear Maps

2.1 Basic notation of Matrix Representation

- 1. Space of linear map of V and W, V and U are vector space, $\zeta(V,W)=\{T:V\to W\}$ or if $V=W,\,\zeta(V)=\{T:V\to V\}$
- 2. Now let $T \in \zeta(V)$ and a baiss $B = \{\vec{v_1} \dots \vec{v_n}\}$ for V For $1 \le k \le n$, we write $T(\vec{v_k}) = \sum_{i=1}^n a_{ik} \vec{v_i} = a_{1k} \vec{v_1} + \dots a_{nk} \vec{v_n}$ for $a_{ik} \in F$
- 3. The matrix representation of T, relevent to basis B

with
$$[T]_B = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 For $\vec{v} \in V$ with $v = b_1 \vec{v_1} + \dots + b_n \vec{v_n}$

 $\begin{aligned}
& o_n v_n \\
& \text{by linearity } T(\vec{v}) \\
&= T(b_1 \vec{v_1} + \dots + b_n \vec{v_n}) \\
&= b_1 T(\vec{v_1}) + \dots + b_n T(\vec{v_n})
\end{aligned}$

4. Suggestion: Look for a "nice basis for V say B, that make $[T]_B$ diagonal or a upper triangluar one

2.2 Invariant

1. Invariant

For $T \in \zeta(V)$, a subspace $U \subseteq V$ is invariant for T if:

- if $\forall \vec{u} \in U, T(\vec{u}) \in U$
- or $\{T(\vec{u}) : \vec{u} \in U\} \subseteq U$

2. Example: Trivial invariant

For any $T \in \zeta(V)$ the subspaces $0 \subseteq V$ and V are both invariant for T

3. Finding Non-trivial invariant Suppose:

- $T \in \zeta(W)$, W is a vector space and $W = U \oplus V$ for $U, V \subseteq W$
- U is an invariant of $T \to \forall \vec{u} \in U, T(\vec{u}) \in U$
- $B = {\vec{u_1} \dots \vec{u_m}}$, and $C = {\vec{v_1} \dots \vec{v_n}}$ be bases for U and V

then $D = B \cup C$ is a basis for W by proposition of external direct sum

then
$$[T]_D = a \ (m+n \times m+n) \text{ matrix} = \begin{pmatrix} a_{11} & \dots & a_{1m} & \dots & \dots \\ \vdots & & & & & \\ a_{m1} & \dots & a_{mm} & & \\ 0 & \dots & 0 & & \\ \vdots & & & & \\ 0 & \dots & 0 & & \end{pmatrix}$$

 $T(\vec{u_1}) \in U$ since $\vec{u_1} \in U$ and U is invarient of T

Note: $\vec{u_1} = \sum_{i=1}^{n} a_{i1} \vec{u_i}$

similarly to $\forall 1 \leq k \leq m, T(u_k)$

4. Conclusion:

Since U is T invariant

We can get the nice block upper triangular form matrix representation of ${\cal T}$

3 Isomorphism

3.1 Definition of Isomorphism

1. **Isomorphism** Let V, W be vector spaces

A linear map $T:V\to W$ is an isomophism if it is a bijection we write $V\cong W$

2. **Bijection** from Math 239

Let A and B be two set

 $T:A\to B$ is bijection if

- $\forall a, a' \in A$, if T(a) = T(a') then a = a' one-to-one
- $\forall b \in B, \exists a \in A \text{ such } f(a) = b \text{ onto}$

Or $\exists W : B \to A$ such

- $\forall a \in A, W(T(a)) = a$
- $\forall b \in B, T(W(b) = b)$
- 3. Fact

If $T: V \to W$ is an isomorphism then

 $T^{-1}: W \to V$ always exist (by Bijection) is also:

- Linear
- Bijection
- Isomorphism
- 4. Idea:

Isomorphic vector spaces are "the same" up to a relabeling. Specifically, suppose:

- $T: V \to W$ is an isomorphism
- $B = \{v_i\}$ be a basis for V

Then $\{w_i = T(v_i)\}$ is a baiss for W.

In particular, note that for $v \in V$, written as

$$v = a_1 v_{i1} + \dots + a_n v_{in}$$

Then by linearty, $T(v) = a_1 w_{i1} + \cdots + a_n w_{in}$

4 Quotients

1. Equivalence relation (\sim)

Let $U \subseteq V$ be a subspace, V is a vector space.

$$\vec{v_1} \sim \vec{v_2} \text{ if } \vec{v_1} - \vec{v_2} \in U$$

it has the following property:

 $\forall v_1, v_2, v_3 \in V$

- Reflexive: $\vec{v_1} \sim \vec{v_1}$
- Symmetric: $(\vec{v_1} \sim \vec{v_2}) \Leftrightarrow (\vec{v_2} \sim \vec{v_1})$
- Transitive: $\vec{v_1} \sim \vec{v_2}$, $\vec{v_2} \sim \vec{v_3} \rightarrow \vec{v_1} \sim \vec{v_3}$

2. Equivalence class of $\vec{v} \in V$

is $\vec{v} + U$

- $\bullet = \{ \vec{v} + \vec{u} : \vec{u} \in U \}$
- $\bullet = \{ \vec{v'} \in V : \vec{v'} \sim \vec{v} \}$

Note: Every element have a unique Equivalence class

3. Quocient space

Let $U \subseteq V$ be a subspace, the quotient space V/U is a new vector space is the set $\{\vec{v} + U : \vec{v} \in V\}$ with

- $(\vec{v_1} + U) + (\vec{v_2} + U) = \vec{v_1} + \vec{v_2} + U$
- $\lambda(\vec{v} + U) = \lambda \vec{v} + U$

4. Motivation:

when we consider V/U, we collapsing U by set every element in U to $\vec{0}$ Hence, $V/\{\vec{0}\} = V$

Taking Quotient "undoes" direct sum

5. Proposition

If
$$W = U \oplus V$$
 for $U, V \subseteq W$
then, $W/U \cong V$ (W/U and V are bijection)

• Proof:

Let
$$T: W/U \to V$$
 be a Isomorphism where $T(\vec{w} + U) = \vec{v}$ where $\vec{w} = \vec{u} + \vec{v}$ for $\vec{v} \in V, \vec{u} \in U$

– Proof of onto: For
$$\vec{v} \in V$$
, $T(\vec{v} + U) = \vec{v}$ since $\vec{v} = \vec{0} + \vec{v}$, $\vec{0} \in U$

Suppose
$$T(\vec{w_1} + U) = T(\vec{w_2} + U)$$

write $\vec{w_1} = \vec{u_1} + \vec{v_1}, \vec{w_2} = \vec{u_2} + \vec{v_2}$ for $\vec{u_1}, \vec{u_2} \in U, \vec{v_1}, \vec{v_2} \in V$
Then $T(\vec{w_1}) = \vec{v_1}, T(\vec{w_2}) = \vec{v_2}$
 $\rightarrow \vec{v_1} = \vec{v_2}$
 $\rightarrow \vec{w_1} - \vec{w_2}$
 $= (\vec{u_1} + \vec{v_1}) - (\vec{u_2} + \vec{v_2})$
 $= (\vec{u_1} - \vec{u_2}) \in U + (\vec{v_1} - \vec{v_2}) = 0$
 $\rightarrow \vec{w_1} - \vec{w_2} \in U$
 $\rightarrow \vec{w_1} \sim \vec{w_2}$ or $\vec{w_1} + U = \vec{w_2} + U$

Hence, T is a Isomorphism

6. Fact:

If $W = U \oplus V$, B be a basis for V, then $v_i + U \subseteq W/U$ is a basis for W/U To see this, note that $\vec{v_i} + U = T^{-1}(\vec{v_i})$ Suppose $W = U \oplus V$ for $U, V \subseteq W$ Let $T \in \zeta(W)$ and U is T-invariant then, T induces a quotient linear map $\overline{T} \in \zeta(W/U)$ $\overline{T}(\vec{v} + U) = T(\vec{v}) + U, \vec{v} + U \in W/U$ \overline{T} is linear

7. Induced quotient map \overline{T}

For vector space $W=U\oplus V,\,U,V\subseteq W$ $T\in\zeta(W)$ such that U is T-invariant, the induced quotient map $\overline{T}\in\zeta(W/U)$ $\overline{T}(\vec{w}+U)=T(\vec{w})+U,\vec{w}+U\in W/U$

It has the following property:

• It is linear

8. Matrix representation of \overline{T}

Let $W = U \oplus V$, $T \in \zeta(W)$ as above, so U is T-invariant and $\overline{T} \in \zeta(W/U)$

Let $\{\vec{u_1} \dots \vec{u_m}\}$ and $\{\vec{v_1} \dots \vec{v_n}\}$ be basis for U and V, then:

- $\{\vec{u_1}, \dots, \vec{u_m}, \vec{v_1}, \dots, \vec{v_n}\}$ is a basis for W
- matrix representation of T is $[T] = \begin{pmatrix} A & ? \\ 0 & B \end{pmatrix}$
- where $A = [T|_u]$ is the restriciont to U
- $B = [\overline{T}]$ where $\overline{T} \in \zeta(W/U)$ where $B = (B_{ij})_{i,j=1}^n$
- det(T) = det(A)det(B)
- $\{\vec{v_1} + U, \dots, \vec{v_n} + U\}$ is a basis for W/U
- $T(\vec{v_i}) = \vec{u} + \sum_{k=1}^n b_{ki} \vec{v_k}$
- $\overline{T}(v_i + U) = \sum_{k=1}^n b_{ki}(\vec{v_k} + U)$

5 Invarient Subspaces

- 1. Important fact related to eigenvector of $T \in \zeta(V)$ Ker(T) and Ran(T) are both invariant Let $T \in \zeta(V)$ and $U \subseteq V$ is invariant, dim(U) = 1, $B(U) = \{\vec{u}\}$ Then, $\vec{u} \neq 0$ so \vec{u} is a eigenvector for T with eigenvalue λ In addition, if $\vec{u} \in V$ is a eigenvector for T, $span(\vec{u})$ is a one dimensional invariant subspace for T
- 2. Polynomial of matrix rep of Linear transformation Let $T \in \zeta(V)$ let $p \in F[t]$ then $p(T) = a_0 I_v + a_1 T + a_2 T^2 + \ldots + a_n T^n$
- 3. Little theorem If $T_1
 ldots T_n
 leq \zeta(V)$, then let $T = T_1 T_2
 ldots T_n$ is not invertible iff one of T_i is not invertible

4. Theorem

For $V \subseteq C$ dim(V) is finite, $\forall T \in \zeta(V)$ have an eigenvector and 1-dim invariant subspace

• Proof of the theorem

Let $\dim(V) = n$, and $0 \neq \vec{v_0} \in V$

Then the set, $\{\vec{v}, T\vec{v}, T^2\vec{v}, \dots, T^n\vec{v}\}$ is always a linear dependent set since

- If all element are distinct, there are n+1 element, and the $\dim(V)=n$, then it is dependent
- If there are some element that are same, the it is clrearly dependent

So, there exist $a_0, a_1, \ldots, a_n \in C$, such that

$$a_0(T^0 = I_n)\vec{v} + a_1T\vec{v} + \ldots + a_mT^m\vec{v} = 0$$
(1)

where $m \leq n$ and $\forall i, a_i \neq 0$ Hence Let $p \in C[t]$ where $p(t) = a_0 + a_1 t + \ldots + a_m t^m$

Then (1) is quivalent to $p(T)\vec{v} = 0$, since $p \in C[t]$, then by fundemantal theorem of algebra, we can factor p as

$$p(t) = (t - \lambda_1) \dots (t - \lambda_m)$$

Then

$$p(T) = (T - \lambda_1 I_v) \dots (T - lambda_m I_v)$$

Since p(T)V = 0 by little theorem

Some $T - lambda_i I_v$ is not invertible, so $Ker(T - \lambda_i I_v) \neq 0$ by rank-nullity theorem

Sp $\exists \vec{u} \in V$, such that $(T - \lambda_i I_v) \vec{u} = 0 \rightarrow T u = \lambda_i \vec{u}$

Hencem \vec{u} is an eigenvector for T

6 Triangularization

6.1 The theorem

1. Recall: Diagonizeable

A matrix $A \in M_n(F)$ is upper triangular, where $\forall i > j, A_{ij} = 0$ Lower triangular is defined similarly

2. Triangularization Theorem

For $T \in \zeta(V)$ and $\dim(V) = \text{finite}, V \subseteq C$

then there is a basis for V which the maxtirx representation of T is upper triangular.

- Proof of the Triangularization Theorem by induction
 - Base Case

If $\dim(V) = 1$, then it is already upper triangular since 1×1 is always upper triangular

- Inductinve Step

Assume result holds $\forall n \geq 2$, up to n-1, we want to prove the result holds for dim(V) = n

T has an eigenvector \vec{u} by the result from last lecture, and has a 1-dim invariant subspace U, and this is non-trivial since $dim(V) \geq 2$

Let $U = span(\vec{u})$, By extention theorem

we can extend $\{\vec{u}\}$ in to a basis $\{\vec{u}, \vec{v_1}, \dots, \vec{v_n}\}$ for V

Let $U' = span(\{\vec{v_1} \dots \vec{v_n}\})$, then $V = U \oplus U'$

Consider $\overline{T} \in \zeta(V/U)$ where $U' \sim V/U$

Then sim(V/U) = n-1 we can get a basis $\{w_1+U, \ldots, w_{n-1}+U\}$ for V/U, which \overline{T} has a upper triangular matrix

Thus $\{w_1, \ldots, w_{n-1}\}$ is a basis for U', and $\{u, w_1, \ldots, w_{n-1}\}$ is a basis for V.

THe matrix representation of T has the following form:

$$\begin{pmatrix}
* & * \\
0 & [\overline{T}]_{\{\vec{w_1}+U,\dots,\vec{w_{n-1}}+U\}}
\end{pmatrix}$$

Hence, this matrix is upper triangular, which means the theorem is true.

6.2 Application of the theorem

3. Theorem

Let $A \in M_n(F)$ be upper triangular, then $det(A) = A_{11} \times A_{22} \times A_{33} \dots A_{nn}$

4. Corollary

Let $A \in M_n(F)$ be upper triangles, then eigenvalus of A, listed with multiplicity

are $A_{11}, A_{22}, \dots, A_{nn}$

• Mulplicity = number of one eigenvalue shows up

7 Cayley - Hamilton Theorem

1. Review

For $V \subseteq F$, $T \in \zeta V$, then characteristic polynomial of T is

$$P_T(t) = det(T - tI_v) \in F[t]$$

where t is eigenvalue of T

2. Cayley-Hamilton Theorem Let V be a vector space, $T \in \zeta(V)$, then

$$P_T(T) = 0$$

In particular, this hold for any field F

• Proof of the theorem

- Assume we are working on the filed C
- Then Let $B = \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}$ where $[T]_B$ is upper triangular. by triangularization Theorem
- And $[P_T(T)]_B = P_T([T]_B)$
- It is suffices to check $P_T([T]_B) = 0$, and since $P_{[T]_B}(t) = P_T(t)$
- We can assume T is upper triangular matrix where $T_{ii} = \lambda_i$
- And λ_i are eigenvalus of T, so the roots of $P_T(t)$
- Hence, $P_T(t) = (t \lambda_1) \dots (t \lambda_n)$
- Note L = $T \lambda_i I_v$ is a upper triangular matrix that have the property of $L_{jj} = \lambda_j \lambda_i$ and there is a 0 is the middle
- Hence $P_T(T) = (T \lambda_1 I_v) \dots (T \lambda_n I_v)$
 - * Lemma:

Let $A_1, A_2, \dots A_n \in M_n(F)$ be upper triangular, with $A_{1_{1_1}} = 0$

Then
$$A_1 A_2 \dots A_n = 0$$

- * Prove by induction:
 - · Base case:

 $A_1 = 0$, yea it is ture

· Hypothesis:

Assume it is true for n-1 which $A_1 A_2 \dots A_{n-1} = 0$

· Inductive steps:
Consider
$$A_i = \begin{pmatrix} B_i & * \\ 0 & * \end{pmatrix}$$
 Note B_i is upper triangular, and $B_{i_{ii}} = 0$

Hence $A_1 \dots A_{n-1} = \begin{pmatrix} B_1 \dots B_{n-1} & * \\ 0 & * \end{pmatrix} = \begin{pmatrix} 0 & * \\ 0 & * \end{pmatrix}$

Hence $A_1 \dots A_n = \begin{pmatrix} 0 & * \\ 0 & * \end{pmatrix} \begin{pmatrix} * & * \\ 0 & 0 \end{pmatrix}$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Hence, the lemma is true. And the theorem is true

8 Jordan Form

8.1 Intro

- 1. Math 146: Diagonalization Not every linear transformation is diagonalizable
- 2. (Upper) Triangularization
 Can answer all question since the top part might be very complex
- 3. Similar for linear transformation Let $A \in \zeta(V)$ and $B \in \zeta(W)$ if A is similar to B if $\exists P \in \zeta(V, W)$ such $B = PAP^{-1}$

Note: S is an Isomomorphism, V and W have bijection relationship between them

8.2 Jordan from

1. Nilpotent

Let $T \in \zeta(V)$ is nilpotent if $\exists n \in N, T^n = 0$ The order of T is n

- if T is nilpotnet, then it is not invertible
- Ex.

$$N = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

is a nilpolent of order 3

- In addition, $N(\vec{e_1})=0, N(\vec{e_2})=\vec{e_1}, N(\vec{e_3})=\vec{e_2}$
- Note, if $N \in M_n(F)$ is left or right shift, it is a nilpotnet with order n.

2. Left shift

If
$$N \in zeta(V)$$
 and $N(\vec{v_1}) = 0, N(\vec{v_i}) = \vec{v_{i-1}}$

3. Right shift

If
$$N \in zeta(V)$$
 and $N(\vec{v_n}) = 0, N(\vec{v_i}) = \vec{v_{i+1}}$

4. Direct sum decomposition

Let V be a vector space, $V = V_1 \oplus \ldots \oplus V_n$ be direct sum devomposition

For T_1, \ldots, T_n with $T_i \in \zeta(V_i)$, the direct sum of $T \in \zeta(V) = T_1 \oplus \ldots T_n$ Hence, $T(\vec{v}) = T_1(\vec{v_1}) + \ldots + T_n(\vec{v_n})$ and $\vec{v} = \vec{v_1} + \ldots + \vec{v_n}$

Note: Let $B_1, \ldots B_n$ are bases for V_1, \ldots, V_n , then $B = B_1 \cap \ldots \cap B_n$ is a basis for $V = V_1 \oplus \ldots \oplus V_n$

a basis for $V = V_1 \oplus \ldots \oplus V_n$ Then The matrix representation of $[T]_B = \begin{pmatrix} [T_1]_{B_1} & 0 & 0 \\ 0 & \ldots & 0 \\ 0 & 0 & [T_n]_{B_n} \end{pmatrix}$

In addition, For $T \in \zeta(V)$ if $V = V_1 \oplus \ldots \oplus V_n$ for $V_1 \ldots V_n \subseteq V$ and each V_i is invariant for T

Then Let $T_i = T/V_i$, $T = T_1 \oplus \ldots \oplus T_n$

This is because if $\vec{v} \in V$ decomposes as $\vec{v} = \vec{v_1} + \ldots + \vec{v_n}$ for $\vec{v_i} \in V_i$ then

$$T(\vec{v}) = T(\vec{v_1} + \ldots + \vec{v_n})$$

$$=T(\vec{v_1})+\ldots+T(\vec{v_n})$$

$$=T|_{V_1}(\vec{v_1})+\ldots+T|_{V_n}(\vec{v_n})$$

$$= T_1(\vec{v_1}) + \ldots + T_n(\vec{v_n})$$

and $T_i \in \zeta(V_i)$ by the invariance of V_i of T

5. Sum of Right shift

Let V be a vector space, $N \in \zeta(V)$ and N is Nilpotent, then N is a direct sum of right shifts

Specifically, there are subspaces $V_1, \ldots, V_k \subseteq V$ invariant for N Such $V = V_1 \oplus \ldots \oplus V_k$ and $N = N_1 \oplus \ldots \oplus N_k$ where $N_i = N/V_i$

• Proof of the Theorem

The theorem is equivalent to show that there is a basis for V of the form $\{\vec{v_1}, N\vec{v_1}, \dots, N^{a_1-1}\vec{v_1}, \vec{v_2}, \dots, N^{a_k-1}\vec{v_k}\}$ Note: V_i will be span $\{\vec{v_i}, \dots, N^{a_i-1}\vec{v_i}\}$, clearly each V_i is invariant

• We will use induction on n = dim(V)

for N, and restriction $N|_{V_i}$ will be a right shift

- Base case: n=0, then it is trivial since nothing is in the vector space n=1, let $V_i=\{0\}$, then everything times 0 is zero, so it is invariant
- Inductive hypothesis: Suppose $n \geq 2$ assume the result holds for nilpotent maps acting on vector spaces of dim at most n. Then if N=0, it is trival. So assume $N\neq 0$. Since N is nilpotent, it is not invertible, so by the rank nullity theorem. dim(ran(N)) < n. Also, ran(N) is invariant for N.

Apply the induction hypothesis, to $N|_{ran(N)}$, we get a bsis for ran(N) in the form of $\{\vec{v_1}, \ldots, N^{b_1-1}\vec{v_1} \ldots N^{b_e-1}\vec{v_e}\}$

Then $N^{b_i}\vec{v_i} = 0 \ \forall i$

Since $\vec{v_i} \in ran(N)$, $\exists \vec{u_i} \in V$ such that $N\vec{u_i} = v_i \forall i$

Note $N^{b_i-1}\vec{v_i} \in Ker(N) \forall i$ and linear independent

Hence , by extention theorem, can extend to a basis $\{N^{b_1-}\vec{v_1},N^{b_l-1}\vec{v_l},\vec{w_1},\vec{w_m}\}$

6. Claim: $\{\vec{u_1}, N\vec{u_1}, \dots, N^{b_1}\vec{u_1}, \dots, N^{b_l}\vec{u_l}, \vec{w_1}, \dots, \vec{w_m}\}$ is a basis for V since $N\vec{w_i} = 0$ proof is waiting

9 Inner Produce space

9.1 Intro

1. Norm

For
$$z = (z_1, \ldots, z_n) \in C^n$$
, the norm of z is $||z|| = \sqrt{\sum_{i=1}^n |z_i|^2}$ where $|z_i|^2 = z_i * \overline{z_i}$ and $\overline{z_i}$ is conjugate
Note: if $z \in R^n$ then $||z|| = \sqrt{z_1^2 + \ldots + z_n^2}$

2. Intuation

 \mathbb{R}^n and \mathbb{C}^n are vector spacese with additional structure:

- Length/distances
- Angles

Inner produce space is a vector space with this additional structure.

3. Relationship between angle and length

For
$$x, y \in R^2$$
 let $z = x - y = (x_1 - y_1, x_2 - y^2)$
By $\cos \text{law}$, $||z||^2 = ||x||^2 + ||y||^2 - 2||x|| \times ||y|| \times \cos(\theta)$
 $(x_1 - y_1)^2 + (x_2 - y_2)^2 = x_1^2 + x_2^2 + y_1^2 + y_2^2 - 2||x|| \times ||y|| \times \cos(\theta)$
Hence, $||x|| \times ||y|| \cos(\theta) = x_1 y_1 + x_2 y_2$
If x and y are unit vector, $\cos(\theta) = x_1 y_1 + x_2 y_2$

9.2 Inner Produce

1. Euclidean inner product on C^n

$$\langle \vec{x}, \vec{y} \rangle = x_1 \overline{y_1} + \ldots + x_n \overline{y_n}$$

Note: $\langle \vec{z}, \vec{z} \rangle = ||z||^2$

2. Inner Produce

For a complex vector space V, an inner produce on V is a function $<*,*>:V\times V->C$ such that

- Positivity: $\langle \vec{v}, \vec{v} \rangle \ge 0 \ \forall \vec{v} \in V$
- Non-degeneracy: $\langle \vec{v}, \vec{v} \rangle \neq 0 \iff \vec{v} = 0$
- Linearty in First component: $<\vec{u}+\lambda\vec{v},\vec{w}>=<\vec{u},\vec{w}>+\lambda<\vec{v},\vec{w}>, \forall \vec{u},\vec{v}m\vec{w}\in V$
- Conjugate linear in second component: $<\vec{u},\vec{v}+\lambda\vec{w}>=<\vec{u},\vec{v}>+\bar{\lambda}<\vec{u},\vec{w}>, \forall \lambda \in C$
- Symmetry: $\langle \vec{v}, \vec{w} \rangle = \overline{\langle \vec{w}, \vec{v} \rangle}$

We call the vector space V, equipped <*,*> is an inner product space.

3. Norm

For a inner product space, the norm ——*.*——:V-¿R is defined by $||v|| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$ where $v \in V$

10 Polar Decomposition

1. Basic Idea

For inner product space V and $T \in \zeta(V)$, the adjoint $T^* \in \zeta(V)$ should be viewed as higher - dimensional generalization of complex conjugation

- 2. Dictionary
 - $z \in R \iff \overline{z} = z$ is related to T is self-adjoint ie. $T^* = T$
 - z is purely imaginary $\iff \overline{z} = -z$ is related to T is skew-adjoint ie. $T^* = -T$
 - z has length 1 ie lies on complex unit cricle $\iff \overline{z}z=1$ is related to T is unitary ie. $T^*T=TT^*=I_v$
- 3. Note

If $U \in \zeta(V)$ is unitary, then every eugenvalue $\lambda \in C$ satisfies $|\lambda| = 1$ To see this, recall U is normal and if $\vec{v} \in V$ is an eigenvector for U, then $\overline{\lambda}$ is an eigenvalue for U^* with \vec{v}

Hence $\langle U\vec{v}, U\vec{v} \rangle = \langle \lambda \vec{v}, \lambda \vec{v} \rangle = \lambda \overline{\lambda} ||v||^2 = |\lambda|^2 ||v||^2$ But also, $\langle U\vec{v}, U\vec{v} \rangle = \langle U^*U\vec{v}, \vec{v} \rangle = \langle \vec{v}, \vec{v} \rangle = ||v||^2$, hence we get what we need

4. Def

Let V be an inner porduct space, $T \in \zeta(V)$, and $Re(T) = \frac{T+T^*}{2}$, $Im(T) = \frac{T-T^*}{2i}$ Note Re(T) and Im(T) are self-adjoint

5. Proposition

Let V be a inner product space, $T \in \zeta(V)$, then T = Re(T) + iIm(T), and this decomposition is unique

6. Unitaries and Orthonormal Bases (This is a iff statement) Let V, W be inner product spaces, $\{\vec{v_1}, \dots, \vec{v_n}\}, \{\vec{w_1}, \dots, \vec{w_n}\}$ be orthonormal basis

Define $U \in \zeta(V, W)$ by $U(\vec{v_i}) = \vec{w_i}$, then U is unitary.

- To show this, recall from A3, U is unitary if $||U\vec{v}|| = ||\vec{v}||$ all $\vec{v} \in V$ (ie, U is an isometry) and U is invertible which $U^{-1} = U^*$ Now $\langle U(a_1\vec{v_1} + \ldots + a_n\vec{v_n}), U(a_1\vec{v_1} + \ldots + a_n\vec{v_n}) \rangle$ $= \langle a_1\vec{w_1} + \ldots + a_n\vec{w_n}, a_1\vec{w_1} + \ldots + a_n\vec{w_n} \rangle$ $= ||a_1\vec{w_1} + \ldots + a_n\vec{w_n}||^2$ $= |a_1|^2 + \ldots + |a_n|^2$ $= ||a_1\vec{v_1} + \ldots + a_n\vec{v_n}|$ Hence it is isometry
- Suppose we start with unitary Let $\{\vec{v_1}, \dots, \vec{v_n}\}$ be an orthonormal basis for V. Then $\{U\vec{v_1}, \dots, U\vec{v_n}\} \in W$ is an orthonormal basis for W. Since U is invertible, it is a basis. To see that is orthonormal, note $\langle U\vec{v_i}, U\vec{v_j} \rangle = \langle U^*U\vec{v_i}, \vec{v_j} \rangle = \langle \vec{v_i}, \vec{v_j} \rangle = 1$ or 0
- 7. Polar decomposition

For $z \in C$, the polar decomposition of $z = re^{i\theta}$ for $r \geq 0, \theta \in [0, 2\Pi)$ Note $r = |z|, e^{i\theta} = \frac{z}{|z|}$ So letting $u = e^{i\theta}$, then z = u|z|

8. Theorem (polar decomposition)

Let V be a inner profuct space, $T \in \zeta(V)$. Then there exists a unitary $U \in \zeta(V)$ such that

$$T = U|T|$$
, where $|T| = (T^*T)^{\frac{1}{2}}$

Note T^*T is self-adjoint and positive and there is a unique S such $S^2 = T^*T$

• Proof:

Observe $||(|T|\vec{v}||^2 = <|T|\vec{v}, |T|\vec{v}> = <(T*T)^{\frac{1}{2}}\vec{v}, (T*T)^{\frac{1}{2}}\vec{v}>$

 $= < T * T\vec{v}, \vec{v} >$ by adjoint

 $= < T\vec{v}, T\vec{v} >$ by adjoint

 $=||T\vec{v}||^2$

Hence $|||T|\vec{v}|| = ||T\vec{v}||$ for all $\vec{v} \in V$. In particular, note this implies the range of |T| and T have same dim

Define a unitary $U_1: Ran(|T|) - > Ran(T)$ by $U_1|T|\vec{v} = T\vec{v}$

And U_1 is unitary follows from above since U_1 os an isometry and is invertible since they have the saem dim

Now we extend U_1 to be unitary on V, where

 $V = Ran(|T|) \oplus Ran(|T|) = Ran(T) \oplus Ran(T)$ note one is the projection

Let $\{e_1, \ldots, e_n\}$, $\{f_1, \ldots, f_n\}$ be orthonormal bases

Define $U_2: Ran(|T|)^* - > Ran(T)$ by $U_2e_I = f_i$

Then U_2 is unitary since it maps on orthonormal basis to an orthonormal basis.

Lastly, Define U: V - > V by $U_{\vec{v}} = U_1 \vec{v_1} + U_2 \vec{v_2}$ where $\vec{v} = \vec{v_1} + \vec{v_2}$, $\vec{v_1} \in Ran(|T|)$ and $\vec{v_2} \in the projection$

Then U is unitary since

$$\begin{aligned} ||U_v||^2 &= ||U_1\vec{v_1} + U_2\vec{v_2}||^2 = ||U_1\vec{v_1}||^2 + ||U_2\vec{v_2}||^2 \\ &= ||\vec{v_1}||^2 + ||\vec{v_2}||^2 = ||\vec{v_1} + \vec{v_2}||^2 = ||\vec{v}|| \end{aligned}$$

Hence it is unitary