

Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées d'Al Hoceima

COURS D'ÉLECTRONIQUE ANALOGIQUE

Filière: AP2(S2)

2020-2021

ISMAEL DRIOUCH

Table des matières

1	\mathbf{QU}	QUADRIPOLES			
	1.1	Introd	luction:	7	
		1.1.1	Définition d'un quadripôle :	7	
		1.1.2	Représentation d'un quadripôle :	7	
	1.2	Repré	sentation matricielle d'un quadripôle	8	
		1.2.1	Matrice impédance	8	
		1.2.2	Matrice admittance	10	
		1.2.3	Matrice hybride	11	
		1.2.4	Matrice de transfert	13	
	1.3	Associ	iation de quadripôles	14	
		1.3.1	Association en série de deux quadripôles	14	
		1.3.2	Association en parallèle de deux quadripôles	15	
		1.3.3	Association en chaîne	16	
	1.4	Analy	se des quadripôles : grandeurs des quadripôles	17	
		1.4.1	Impédance d'entrée	18	
		1.4.2	Impédance de sortie	18	
		1.4.3	Gain en tension	18	
		1.4.4	Gain en courant	19	
	1.5	Quadr	ripôles particuliers	19	
		1.5.1	Réciprocité	19	
		1.5.2	Quadripôle passif	19	
		1.5.3	Quadripôle symétrique	20	

2	2 FILTRES PASSIFS				
	2.1	Introd	luction	22	
		2.1.1	Définition	22	
		2.1.2	Principaux types de filtres	23	
	2.2	Théo	rie du filtrage	24	
		2.2.1	Notion de fonction de transfert	24	
		2.2.2	Représentation en diagramme de Bode	25	
	2.3	Filtre	du premier ordre	26	
		2.3.1	Etude d'un filtre passe-bas	26	
		2.3.2	Etude d'un filtre Passe haut	29	
	2.4	Filtre	du second ordre	31	
		2.4.1	Filtre passe-bas du second ordre	31	
		2.4.2	Filtre passe-haut du second ordre	34	
		2.4.3	Filtre passe-bande du second ordre	35	
3	Sen	ni-Con	ducteurs	37	
	3.1	Introd	luction	38	
	3.2	Génér	alités	38	
		3.2.1	Structure de la matière	38	
		3.2.2	Cristal	39	
		3.2.3	Milieux matériels	39	
		3.2.4	Notion de bande d'énergie :	40	
	3.3	Semice	onducteur non dopé et dopé	41	
		3.3.1	Semiconducteurs intrinsèques	41	
		3.3.2	Conduction des semi-conducteurs	43	
		3.3.3	Semiconducteur extrinsèque : Dopage	45	
		3.3.4	Populations des porteurs de charge dans le régime extrinsèque	46	

TABLE DES MATIÈRES

4	Diodes à Semi-conducteurs			48
	4.1	Introd	uction	49
	4.2	Créati	on d'une jonction PN	49
		4.2.1	Définition	49
		4.2.2	Formation de la jonction PN	49
	4.3	Joneti	on PN hors l'équilibre	51
		4.3.1	Polarisation d'une jonction PN en direct	51
		4.3.2	Polarisation d'une jonction PN en inverse	52
		4.3.3	Loi de conduction	52
	4.4	Diode	à jonction	53
		4.4.1	Constitution et Symbole	53
		4.4.2	Caractéristiques d'une diode	54
		4.4.3	Résistance statique	55
		4.4.4	Résistance dynamique	56
		4.4.5	Modèles simplifiés de la diode à jonction PN	56
	4.5	Diode	: Application	58
		4.5.1	Introduction	58
		4.5.2	Diodes de redressement	58
	4.6	Filtrag	ge	63
	4.7	Régula	ation	64
		4.7.1	Symbole et caractéristique de la Diode Zener	64
5	Tra	nsistor	Bipolaire	66
	5.1	Introd	uction	67
	5.2	Définit	tion	67
	5.3	Descri	ption et Symbole :	67
	5.4	Foncti	onnement du transistor bipolaire en régime statique	69
		5.4.1	Effet transistor	69
		5.4.2	Transistor NPN polarisé	70

TABLE DES MATIÈRES

	5.4.3	Relations fondamentales	70
5.5	Caractéristiques du transistor NPN		71
	5.5.1	Différents montages	71
	5.5.2	Réseau de caractéristiques d'un transistor bipolaire NPN	71
	5.5.3	Régime de fonctionnement en émetteur commun :Point de fonction-	
		nement	72
	5.5.4	Modélisation du transistor NPN en régime statique	73
5.6	Transistor en régime dynamique		
	5.6.1	Schéma équivalent d'un transistor en alternatif	74
	5.6.2	Etude d'un émetteur commun	75

Chapitre 1

QUADRIPOLES

1.1 Introduction:

L'objectif de ce chapitre consiste à présenter les notions fondamentales sur les quadripôles, leurs définitions et leurs matrices représentatives ainsi que leurs paramètres fondamentaux comme les impédances d'entrée, de sortie, les gains en tension et en courant.

1.1.1 Définition d'un quadripôle :

Un quadripôle est un composant ou un circuit (ensemble de composants) à deux entrées et deux sorties qui permet de traiter des signaux ou de transférer de l'énergie entre deux dipôles : une paire de bornes en entrée sur laquelle est appliqué un signal et une paire en sortie par laquelle est extrait le signal traité. L'entrée d'un quadripôle est alimentée par un générateur, tandis que la sortie du quadripôle alimente une charge (La charge peut par exemple être un système de mesure).

On distingue deux types de quadripôles : actifs et passifs.

Quadripôle est dit passif s'il ne comporte aucune source d'énergie, et est constitué uniquement de composant passifs (bobine, résistors, condensateurs...). Il est actif dans le cas contraire.

Q=est dit linéaire si les éléments qui le composent sont linéaires (R, L, C...).

1.1.2 Représentation d'un quadripôle :

Le quadripôle peut être défini par quatre grandeurs électriques : tension et courant d'entrée $(V_1 \text{ et } I_1)$, tension et courant de sortie $(V_2 \text{ et } I_2)$. Par convention, on donne le sens positif aux courants qui pénètrent dans le quadripôle. C'est une convention récepteur.

Symbole d'un quadripôle.

Schéma représentant le quadripôle.

7

Chapitre 1

Les tensions et les courants aux bornes du quadripôle sont liés par des équations linéaires. Plusieurs représentations matricielles sont possibles qui sont utilisées pour représenter les quadripôles.

1.2 Représentation matricielle d'un quadripôle

Il existe six combinaisons possibles pour exprimer deux variables parmi quatre en fonction de deux autres. Le choix du type de matrice est déterminé par les conditions du problème étudié.

1.2.1 Matrice impédance

On exprime les tensions en fonction des courants. Les éléments de la matrice ont la dimension d'impédances (résistances). Les équations caractéristiques de ce quadripôle peuvent se mettre sous la forme :

$$\begin{cases} V_1 = Z_{11}I_1 + Z_{12}I_2 \\ V_2 = Z_{21}I_1 + Z_{22}I_2 \end{cases}$$

ou encore sous forme matricielle:

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} * \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Z \end{bmatrix} * \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

[Z] est la matrice impédance du quadripôle. Les éléments de cette matrice s'appellent les paramètres Z en circuit ouvert $(I_1 = 0 \text{ ou } I_2 = 0)$. Ils se définissent comme suit :

- $Z_{11} = \frac{V_1}{I_1} \mid_{I_2=0}$ Impédance d'entrée à sortie ouverte.
- $Z_{21} = \frac{V_2}{I_1}\mid_{I_2=0}$ Impédance de transfert direct à sortie ouverte.
- $Z_{12} = \frac{V_1}{I_2}\mid_{I_1=0}$ Impédance de transfert inverse à entrée ouverte.
- $Z_{22} = \frac{V_2}{I_2}\mid_{I_1=0}$ Impédance de sortie à entrée ouverte.

• Remarque : Les éléments de la matrice ont la dimension des impédances.

Schéma équivalent de ce quadripôle

Exemple d'application : Quadripole en T

En appliquant la loi des mailles (ou première loi de Kirschhoff) aux deux mailles de la figure, on obtient :

$$\begin{cases} V_1 = R_1 I_1 + R_3 (I_1 + I_2) = (R_1 + R_3) I_1 + R_3 I_2 \\ V_2 = R_2 I_2 + R_3 (I_1 + I_2) = R_3 I_1 + (R_2 + R_3) I_2 \end{cases}$$

Nous trouvons : $Z_{11}=R_1+R_3$, $Z_{12}=R_3=Z_{21}$ et $Z_{22}=R_2+R_3$. Donc la matrice impédance du quadripôle est :

$$\begin{bmatrix} Z \end{bmatrix} = \begin{bmatrix} R_1 + R_3 & R_3 \\ R_3 & R_2 + R_3 \end{bmatrix}$$

9

1.2.2 Matrice admittance

Les paramètres d'admittance sont utilisés pour relier les courants aux tensions. Les équations caractéristiques de ce quadripôle peuvent se mettre sous la forme :

$$\begin{cases} I_1 = Y_{11}V_1 + Y_{12}V_2 \\ I_2 = Y_{21}V_1 + Y_{22}V_2 \end{cases}$$

ou encore sous une forme matricielle:

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} * \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Y \end{bmatrix} * \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

[Y] est la matrice admittance du quadripôle. Les éléments de cette matrice s'appellent les paramètres Y en court-circuit ($V_1 = 0$ ou $V_2 = 0$). Ils se définissent comme suit :

- $Y_{11} = \frac{I_1}{V_1}\mid_{V_2=0}$ admittance d'entrée à sortie en court-circuit $(V_2=0).$
- $Y_{21} = \frac{I_2}{V_1} \mid_{V_2=0}$ admittance de transfert à sortie en court-circuit $(V_2=0)$.
- $Y_{12} = \frac{I_1}{V_2} \mid_{V_1=0}$ admittance de transfert inverse à entrée en court-circuit $(V_1=0)$.
- $Y_{22} = \frac{I_2}{V_2} \mid_{V_1=0}$ admittance de sortie à entrée en court-circuit $(V_1=0)$.
- Remarque 1 : Les éléments de la matrice ont la dimension des admittances.
- Remarque 2 : En comparant les équations de la matrice impédance et de la matrice admittance, nous obtenons : $[Y] = [Z]^{-1}$ et $[Z] = [Y]^{-1}$.

Schéma équivalent du quadripôles en Y

En appliquant les lois des noeuds (ou seconde loi de Kirschhoff) aux noeuds d'entrée et de sortie, on obtient :

$$\begin{cases} I_1 = I_1' + I' = \frac{V_1}{R_1} + \frac{V_1 - V_2}{R_3} = (\frac{1}{R_1} + \frac{1}{R_3})V_1 - \frac{1}{R_3}V_2 \\ I_2 = I_2' - I' = \frac{V_2}{R_2} - \frac{V_1 - V_2}{R_3} = -\frac{1}{R_3}V_1 + (\frac{1}{R_2} + \frac{1}{R_3})V_2 \end{cases}$$

Nous trouvons par identification : $Y_{11} = \frac{1}{R_1} + \frac{1}{R_3}$, $Y_{12} = \frac{1}{R_3} = Z_{21}$ et $Y_{22} = \frac{1}{R_2} + \frac{1}{R_3}$. Donc la matrice admittance du quadripôle est :

$$[Y] = \begin{bmatrix} \frac{1}{R_1} + \frac{1}{R_3} & -\frac{1}{R_3} \\ -\frac{1}{R_3} & \frac{1}{R_2} + \frac{1}{R_3} \end{bmatrix}$$

1.2.3 Matrice hybride

Les paramètres hybrides sont utilisés pour relier la tension d'entrée V_1 et le courant de sortie I_2 au courant d'entrée I_1 et à la tension de sortie V_2 . Les équations caractéristiques de ce quadripôle peuvent se mettre sous la forme :

$$\begin{cases} V_1 = h_{11}I_1 + h_{12}V_2 \\ I_2 = h_{21}I_1 + h_{22}V_2 \end{cases}$$

ou encore sous forme matricielle:

$$\begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} * \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} H \end{bmatrix} * \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$

[H] est la matrice hybride du quadripôle. Les éléments de cette matrice s'appellent les paramètres hybrides. Ils se définissent comme suit :

1.2. REPRÉSENTATION MATRICIELLE D'UN QUADRIPÔLE

- $h_{11} = \frac{V_1}{I_1} \mid_{V_2=0}$ impédance d'entrée à sortie en court-circuit $(V_2=0)$.
- $h_{21} = \frac{I_2}{I_1} \mid_{V_2=0}$ gain en courant à sortie en court-circuit $(V_2=0)$.
- $h_{12} = \frac{V_1}{V_2} \mid_{I_1=0}$ gain en tension inverse à entrée ouverte $(I_1=0)$.
- $h_{22} = \frac{I_2}{V_2} \mid_{V_1=0}$ admittance de sortie à entrée ouverte $(I_1=0)$.
- Remarque : On utilise parfois la matrice hybride inverse $[G] = [H]^{-1}$.

Schéma équivalent du quadripôles en H

Exemple d'application : En reprenant l'exemple du Quadripole en π , les coefficients de la matrice hybride de ce quadripole sont :

• Si la sortie est en court-circuit $(V_2 = 0)$.

$$\left\{h_{11} = \frac{V_1}{I_1} \mid_{V_2 = 0} = \frac{R_1 R_3}{R_1 + R_3} \quad ; \left\{h_{21} = \frac{I_2}{I_1} \mid_{V_2 = 0} = -\frac{R_3}{R_1 + R_3}\right\} \right\}$$

• Si l'entré est en circuit-ouvert $(I_1 = 0)$.

$$\left\{h_{22} = \frac{I_2}{V_2}\mid_{I_1=0} = \frac{R_1 + R_2 + R_3}{R_2(R_1 + R_3)} \quad ; \left\{h_{12} = \frac{V_1}{V_2}\mid_{I_1=0} = \frac{R_1}{R_1 + R_3} \right\} \right\}$$

Donc la matrice hybride du quadripôle est :

$$\begin{bmatrix} H \end{bmatrix} = \begin{bmatrix} \frac{R_1 R_3}{R_1 + R_3} & \frac{R_1}{R_1 + R_3} \\ -\frac{R_1}{R_1 + R_3} & \frac{R_1 + R_2 + R_3}{R_2(R_1 + R_3)} \end{bmatrix}$$

1.2.4 Matrice de transfert

Les paramètres de transfert (ou de chaine ou bien aussi de transmission) sont utilisés pour exprimer les grandeurs de sortie en fonction des grandeurs d'entrée. Les équations caractéristiques de ce quadripôle peuvent se mettre sous la forme :

$$\begin{cases} V_2 = T_{11}V_1 - T_{12}I_1 \\ I_2 = T_{21}V_1 - T_{22}I_1 \end{cases}$$

ou encore sous forme matricielle:

$$\begin{bmatrix} V_2 \\ I_2 \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} * \begin{bmatrix} V_1 \\ -I_1 \end{bmatrix} = \begin{bmatrix} T \end{bmatrix} * \begin{bmatrix} V_1 \\ -I_1 \end{bmatrix}$$

[T] est la matrice de transfert du quadripôle. Les éléments de cette matrice s'appellent les paramètres de transfert. Ils se définissent comme suit :

- $T_{11} = \frac{V_2}{V_1} \mid_{I_1=0}$ est l'amplification en tension (nombre).
- $T_{21} = \frac{I_2}{V_1} \mid_{I_1=0}$ est une admittance.
- $T_{12} = -\frac{V_2}{I_1}\mid_{V_1=0}$ est une impédance.
- $T_{22} = -\frac{I_2}{I_1}|_{V_1=0}$ est l'amplification en courant (nombre).

Attention: Contrairement aux autres représentations matricielles, pour la matrice de transfert T, on utilise le courant $-I_1$ (courant sortant du quadripole) à la place du courant I_1 (courant entrant dans le quadripole).

• Remarque : On utilise parfois la matrice de transfert inverse qui donne les paramètres d'entrée en fonction des paramètres de sortie.

Schéma équivalent

De l'équation qui définit les paramètres chaîne, on peut extraire : $V_2 = T_{11}V_1 - T_{12}I_1$. L'inversion de la relation matricielle correspondante aux paramètres chaîne conduit à :

$$\begin{bmatrix} V_1 \\ -I_1 \end{bmatrix} = \frac{1}{\Delta T} \begin{bmatrix} T_{22} & -T_{12} \\ -T_{21} & T_{11} \end{bmatrix} * \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

ce qui permet d'exprimer la tension V_1 sous la forme : $V_1 = \frac{T_{22}}{\Delta T} V_2 - \frac{T_{12}}{\Delta T} I_2$

Exemple d'application : En reprenant l'exemple du Quadripole en ${\cal T}.$

Pour déterminer les coefficients de la matrice de transfert T de ce quadripole, nous allons considérer successivement les cas $I_1 = 0$ et $V_1 = 0$.

• Si l'entrée est en circuit-ouvert $(I_1 = 0)$.

$$\left\{ T_{11} = \frac{V_2}{V_1} \mid_{I_1 = 0} = \frac{R_2 + R_3}{R_3} \quad ; \left\{ T_{21} = \frac{I_2}{V_1} \mid_{I_1 = 0} = \frac{1}{R_3} \right\} \right\}$$

• Si l'entrée est en court-circuit $(V_1 = 0)$.

$$\left\{ T_{22} = -\frac{I_2}{I_1} \mid_{V_1 = 0} = \frac{R_1 + R_3}{R_3} \quad ; \left\{ T_{12} = -\frac{V_2}{I_1} \mid_{V_1 = 0} = R_1 + R_2 + \frac{R_2 R_1}{R_3} \right\} \right\}$$

Donc la matrice de transfert du quadripôle est :

$$[T] = \begin{bmatrix} \frac{R_2 + R_3}{R_3} & R_1 + R_2 + \frac{R_2 R_1}{R_3} \\ \frac{1}{R_3} & \frac{R_1 + R_3}{R_3} \end{bmatrix}$$

1.3 Association de quadripôles

1.3.1 Association en série de deux quadripôles

Dans ce cas, la tension d'entrée (de sortie) du quadripôle résultant est la somme des tensions d'entrée (de sortie) des quadripôles associés en série : $V_1 = V_1' + V_1''$ et $V_2 = V_2' + V_2''$. Les courants sont identiques : $I_1 = I_1' = I_1''$ et $I_2 = I_2' = I_2''$.

Utilisons les matrices d'impédance, nous avons pour les deux quadripôles :

$$\begin{bmatrix} V_1' \\ V_2' \end{bmatrix} = \begin{bmatrix} Z' \end{bmatrix} * \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} et \begin{bmatrix} V_1'' \\ V_2'' \end{bmatrix} = \begin{bmatrix} Z'' \end{bmatrix} * \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

Ce qui nous permet d'écrire :

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z \end{bmatrix} * \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \Rightarrow \begin{bmatrix} Z \end{bmatrix} = \begin{bmatrix} Z' \end{bmatrix} + \begin{bmatrix} Z'' \end{bmatrix}$$

La matrice [Z] du quadripôle équivalent à la mise en série de Q' et Q" est donnée par : Z = Z' + Z".

1.3.2 Association en parallèle de deux quadripôles

Dans le cas de l'association en parallèle de deux quadripôles Q' et de Q', les tensions sont communes aux deux quadripôles, nous utilisons donc les matrices admittances.

Les intensités des courants du quadripôle équivalent correspondent aux sommes des intensités des deux quadripôles :

$$\begin{cases} I_1 = I_1' + I_1'' \\ I_2 = I_2' + I_2'' \end{cases}$$

Nous avons en effet pour les deux quadripôles :

$$\begin{bmatrix} I_1' \\ I_2' \end{bmatrix} = \begin{bmatrix} Y' \end{bmatrix} * \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} et \begin{bmatrix} I_1'' \\ I_2'' \end{bmatrix} = \begin{bmatrix} Y'' \end{bmatrix} * \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

Ce qui nous permet d'écrire :

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y \end{bmatrix} * \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \Rightarrow \begin{bmatrix} Y \end{bmatrix} = \begin{bmatrix} Y' \end{bmatrix} + \begin{bmatrix} Y'' \end{bmatrix}$$

La matrice [Y] du quadripôle équivalent à la mise en parallèle de Q' et Q" est donnée par : Y = Y' + Y''.

1.3.3 Association en chaîne

Dans le cas d'une mise en cascade (ou en chaîne) de deux quadripôles Q' et Q'', l'utilisation des paramètres de transfert devient particulièrement avantageuse :

Nous avons en effet pour les deux quadripôles :

$$\begin{bmatrix} V_2' \\ I_2' \end{bmatrix} = \begin{bmatrix} T' \end{bmatrix} * \begin{bmatrix} V_1' \\ -I_1' \end{bmatrix} et \begin{bmatrix} V_2'' \\ I_2'' \end{bmatrix} = \begin{bmatrix} T'' \end{bmatrix} * \begin{bmatrix} V_1'' \\ -I_1'' \end{bmatrix}$$

Dans cette association, nous avons les relations suivantes entre les courants et entre les tensions :

$$\begin{cases} V_2'' = V_2 \\ I_2'' = I_2 \end{cases} \begin{cases} V_1'' = V_2' \\ I_2' = -I_1'' \end{cases} \begin{cases} V_1' = V_1 \\ I_1' = I_1 \end{cases}$$

Ce qui nous permet d'écrire :

$$\begin{bmatrix} V_2 \\ I_2 \end{bmatrix} = \begin{bmatrix} T \end{bmatrix} * \begin{bmatrix} V_1 \\ -I_1 \end{bmatrix} \Rightarrow \begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} T'' \end{bmatrix} * \begin{bmatrix} T' \end{bmatrix}$$

La matrice [T] du quadripôle équivalent à la mise en chaine de Q' et Q" est donnée par : T=T"*T'. Ce produit n'est pas commutatif.

1.4 Analyse des quadripôles : grandeurs des quadripôles

Considérons le cas très général pour lequel un quadripôle est connecté en sortie à un dipôle charge d'impédance Z_L et en entrée à un dipôle source d'impédance interne Z_g

1.4. ANALYSE DES QUADRIPÔLES : GRANDEURS DES QUADRIPÔLES

En utilisant la matrice impédance du quadripôle nous pouvons écrire :

$$\begin{cases} V_1 = Z_{11}I_1 + Z_{12}I_2 \\ V_2 = Z_{21}I_1 + Z_{22}I_2 = -Z_LI_2 \end{cases} et \left\{ V_1 = E_g - Z_gI_1 \right\}$$

1.4.1 Impédance d'entrée

C'est l'impédance vue à l'entrée quand la sortie est connectée à une charge d'impédance Z_L . L'impédance d'entrée est $Z_E = \frac{V_1}{I_1}$. D'après les équations précédentes, nous obtiendrons :

$$Z_E = Z_{11} - \frac{Z_{12}Z_{21}}{Z_{22} + Z_L}$$

1.4.2 Impédance de sortie

C'est l'impédance vue à la sortie quand l'entrée est fermée par l'impédance du générateur Z_g . L'impédance de sortie est $Z_S=\frac{V_2}{I_2}\mid_{E_g=0}$. L'impédance de sortie Z_S vaut alors :

$$Z_S = Z_{22} - \frac{Z_{12}Z_{21}}{Z_g + Z_{11}}$$

1.4.3 Gain en tension

Le gain en tension est défini par le rapport de la tension de sortie V_2 du quadripôle par la tension d'entrée $V_1:A_V=\frac{V_2}{V_1}$.

$$A_V = \frac{V_2}{V1} = \frac{-Z_L I_2}{Z_E I_1} = \frac{Z_{21} Z_L}{Z_{11} Z_L + \Delta Z}$$

avec $\Delta Z = Z_{11}Z_{22} - Z_{12}Z_{21}$ est le déterminant de la matrice [Z].

1.4.4 Gain en courant

Le gain en courant est défini par le rapport du courant de sortie I_2 du quadripôle par le courant d'entrée $I_1:A_I=\frac{I_2}{I_1}$.

$$A_I = \frac{I_2}{I_1} = -\frac{Z_{21}}{Z_L + Z_{22}}$$

1.5 Quadripôles particuliers

1.5.1 Réciprocité

Un circuit est dit réciproque si, lorsqu'on place une source de tension à son entrée et qu'on mesure le courant de court-circuit à sa sortie, on obtient le même résultat qu'en branchant la source à la sortie et en mesurant le courant de court-circuit à l'entrée.

1.5.2 Quadripôle passif

Nous rappelons que le quadripôle passif est un quadripôle ne contenant pas de générateurs de tension ou de courant. Soit un quadripôle passif dont la tension d'entée est E et le courant de court-circuit en sortie est I_s . D'après le théorème de réciprocité, le courant dans l'entrée en court-circuit est $I_e = I_s$ si la tension de sortie est E.

En appliquant ce théorème à la matrice admittance, on a : $I_s = Y_{21}V_1 = Y_{21}E$ et $I_e = Y_{12}V_2 = Y_{12}E$ d'où $\mathbf{Y_{12}} = \mathbf{Y_{21}}$. Des calculs analogues montrent que pour un quadripole passif on a aussi :

$${Z_{12} = Z_{21} \quad ; \{h_{12} = -h_{21} \quad \{\Delta T = 1\}\}}$$

1.5.3 Quadripôle symétrique

Un quadripôle est dit symétrique si la permutation des deux accès entre eux ne modifie pas le quadripôle. Autrement dit, un quadripôle est symétrique si rien ne distingue l'entrée de la sortie. Nous avons alors :

$${Z_{11} = Z_{22} \quad ; Y_{11} = Y_{22} \quad ; T_{11} = T_{22} \quad ; \Delta H = 1}$$

Passage d'une matrice à une autre

rassage a ane matrice a ane aatro				
	Matrice [Z]	Matrice [Y]	Matrice [H]	Matrice [T]
Matrice [Z]	$\begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}$	$\begin{bmatrix} \frac{Y_{22}}{\Delta Y} & \frac{-Y_{12}}{\Delta Y} \\ \frac{-Y_{21}}{\Delta Y} & \frac{Y_{11}}{\Delta Y} \end{bmatrix}$	$\begin{bmatrix} \frac{\Delta H}{H_{22}} & \frac{H_{12}}{H_{22}} \\ -\frac{H_{21}}{H_{22}} & \frac{1}{H_{22}} \end{bmatrix}$	$\begin{bmatrix} \frac{T_{11}}{T_{21}} & \frac{\Delta T}{T_{21}} \\ \frac{1}{T_{21}} & \frac{T_{22}}{T_{21}} \end{bmatrix}$
Matrice [Y]	$\begin{bmatrix} \frac{Z_{22}}{\Delta Z} & \frac{-Z_{12}}{\Delta Z} \\ \frac{-Z_{21}}{\Delta Z} & \frac{Z_{11}}{\Delta Z} \end{bmatrix}$	$\begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{H_{11}} & \frac{-H_{12}}{H_{11}} \\ \frac{H_{21}}{H_{11}} & \frac{\Delta H}{H_{11}} \end{bmatrix}$	$\begin{bmatrix} \frac{T_{22}}{T_{12}} & \frac{-\Delta T}{T_{12}} \\ \frac{-1}{T_{12}} & \frac{T_{11}}{T_{12}} \end{bmatrix}$
Matrice [H]	$\begin{bmatrix} \frac{\Delta Z}{Z_{22}} & \frac{Z_{12}}{Z_{11}} \\ -Z_{21} & \frac{Z_{11}}{\Delta Z} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{Y_{11}} & \frac{-Y_{12}}{Y_{11}} \\ \frac{Y_{21}}{Y_{11}} & \frac{\Delta Y}{Y_{11}} \end{bmatrix}$	$\begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix}$	$\begin{bmatrix} \frac{T_{12}}{T_{22}} & \frac{\Delta T}{T_{22}} \\ \frac{-1}{T_{22}} & \frac{T_{21}}{T_{22}} \end{bmatrix}$
Matrice [T]	$\begin{bmatrix} \frac{Z_{11}}{Z_{21}} & \frac{\Delta Z}{Z_{21}} \\ \frac{1}{Z_{21}} & \frac{Z_{22}}{Z_{21}} \end{bmatrix}$	$\begin{bmatrix} \frac{-Y_{22}}{Y_{21}} & \frac{1}{Y_{21}} \\ \frac{\Delta Y}{Y_{21}} & \frac{Y_{11}}{Y_{21}} \end{bmatrix}$	$\begin{bmatrix} \frac{-\Delta H}{H_{21}} & \frac{-H_{11}}{H_{21}} \\ \frac{-H_{22}}{H_{21}} & \frac{-1}{H_{21}} \end{bmatrix}$	$\begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$

$$\left\{ \Delta Z = Z_{11} Z_{22} - Z_{12} Z_{21} \right\} \qquad \left\{ \Delta Y = Y_{11} Y_{22} - Y_{12} Y_{21} \right\}$$

$$\left\{ \Delta H = H_{11}H_{22} - H_{12}H_{21} \right\} \qquad \left\{ \Delta H = H_{11}H_{22} - H_{12}H_{21} \right\}$$