4.2 Pandas 的数据框

2023年9月18日

Pandas 的数据框

DataFrame,中文译为数据框,是一种二维带标签的数据结构。您可以将其视为电子表格或 SQL 表,或 Series 对象的字典。它通常是最常用的 pandas 对象。

1. 读取和创建数据框

获取数据框可以通过2种方式: 读取数据文件、或者创建的方式。读取数据文件的方法如下:

DataFrame 的对象 - 基本上是一个数值表,每一行和每一列都有一个标签。上面的 CSV 文件来自一个音乐流媒体服务的数据,包含 4 个艺术家及其曲风、粉丝数、播放量这四列。

练习

使用 pd.read_csv() 加载路径下的 CSV 文件: 'datasets/music.csv'

[]:

如果通过编程的方式创建数据框,那么方法如下:

```
[1]: import pandas as pd

df = pd.DataFrame({'Artist':['Billie Holiday','Jimi Hendrix', 'Miles Davis',

'SIA'],

'Genre': ['Jazz', 'Rock', 'Jazz', 'Pop'],

'Listeners': [1300000, 2700000, 1500000, 2000000],

'Plays': [27000000, 70000000, 48000000, 74000000]})
```

df

	Artist	Genre	Listeners	Plays
0	Billie Holiday	Jazz	1,300,000	27,000,000
1	Jimi Hendrix	Rock	2,700,000	70,000,000
2	Miles Davis	Jazz	1,500,000	48,000,000
3	SIA	Pop	2,000,000	74,000,000

2. 选择

我们可以使用其标签选择任何一列:

df['Artists']

	Artist
0	Billie Holiday
1	Jimi Hendrix
2	Miles Davis
3	SIA

我们可以使用它们的编号(包括两个边界行的编号)选择一个或多个行:

df[1:3]

	Artist	Genre	Listeners	Plays
1	Jimi Hendrix	Rock	2,700,000	70,000,000
2	Miles Davis	Jazz	1,500,000	48,000,000

练习

选择第0行

[]:

我们可以用列标和行号用.loc 来选择表格的任何片断(但这里会包括两个边界行号):

df.loc[1:3,['Artist']]

	Artist				
1	Jimi Hendrix				
2	Miles Davis				
3	SIA				

练习

选择第1和第2行,列名为"Artist" and "Plays"的部分。

[]:

3. 过滤

我们可以很容易地使用特定行的值来过滤行。例如,这里是我们的爵士乐手:

df[df['Genre'] == 'Jazz']

	Artist	Genre	Listeners	Plays
0	Billie Holiday	Jazz	1,300,000	27,000,000
2	Miles Davis	Jazz	1,500,000	48,000,000

练习

选择 Genre 是 "Rock" 的行

[]:

以下是拥有超过180万名听众的艺术家:

df[df['Listeners'] > 1800000]

	Artist	Genre	Listeners	Plays
1	Jimi Hendrix	Rock	2,700,000	70,000,000
3	SIA	Pop	2,000,000	74,000,000

练习

选择 "Plays" 小于 50,000,000 的行

[]:

4. 处理缺失值

在你的数据科学旅程中, 你要处理的许多数据集都有缺失值。比方说, 我们的数据框有一个缺失值:

df

	Artist	Genre	Listeners	Plays
0	Billie Holiday	Jazz	1,300,000	27,000,000
1	Jimi Hendrix	Rock	2,700,000	NaN
2	Miles Davis	Jazz	1,500,000	48,000,000
3	SIA	Pop	2,000,000	74,000,000

Pandas 提供了多种方法来处理这个问题。最简单的是直接放弃有缺失值的行:

df.dropna()

	Artist	Genre	Listeners	Plays
0	Billie Holiday	Jazz	1,300,000	27,000,000
2	Miles Davis	Jazz	1,500,000	48,000,000
3	SIA	Pop	2,000,000	74,000,000

另一种方法是用 fillna() 填入缺失的值(例如用 0)。

5. 分组

当你开始用某些标准对行进行分组并汇总它们的数据时,事情就会变得非常有趣。例如,让我们按流派"Genre"对我们的数据集进行分组,看看每种流派有多少听众和播放次数:

df.groupby('Genre').sum()

	Listeners	Plays
Genre		
Jazz	2,800,000	75,000,000
Pop	2,000,000	74,000,000
Rock	2,700,000	70,000,000

Pandas 将两行 "Jazz" 爵士乐归为一行,由于我们使用了 sum()聚合,它将两位爵士乐艺术家的听

众和播放次数加在一起,并将总和显示在合并的爵士乐列中。

这不仅有趣,而且是一种极其强大的数据分析方法。现在你知道了 groupby(), 你就可以折叠数据集并从中发掘出洞察力。聚合是统计智慧的第一支柱, 也是统计学的基础工具之一。

除了 sum(), pandas 还提供了多个聚合函数,包括计算平均值的 mean(), min(), max(),以及其他多个函数。更多关于 groupyby()的信息请参见 Group By 用户指南。

如果你充分使用 groupby(),并且不使用 pandas 中的其他东西,那么你就会把 pandas 发挥到极致。但是这个库仍然可以为你提供更多的东西。

练习

按"Genre"分组,使用 mean()作为聚合函数

[]:

6. 从现有的列创建新的列

在数据分析过程中,我们经常发现自己需要从现有的列中创建新的列。Pandas 让这一切变得轻而易举。

df['Avg Plays'] = df['Plays']/df['Listeners']

	Artist	Genre	Listeners	Plays	Avg Plays
0	Billie Holiday	Jazz	1,300,000	27,000,000	20
1	Jimi Hendrix	Rock	2,700,000	70,000,000	25
2	Miles Davis	Jazz	1,500,000	48,000,000	32
3	SIA	Pop	2,000,000	74,000,000	37

通过告诉 Pandas 用一列除以另一列,它意识到我们要做的是分别除以各个数值(即每行的 "Plays" 值除以该行的 "Listeners" 值)。

参考

- 10 Minutes to pandas: https://pandas.pydata.org/pandas-docs/stable/10min.html
- A Gentle Visual Intro to Data Analysis in Python Using Pandas: https://jalammar.github.io/gentle-visual-intro-to-data-analysis-python-pandas/

[]:[