

Simultaneous Translation for Hiero

Simon Fraser University

Maryam Siahbani, Anoop Sarkar

Hierarchical Phrase-based Translation (Hiero)

Find the correct translation for new input

Hiero Decoder (CKY)

we are very much concerned with what happens in African regions.

Left-to-Right Decoding

O(n^2)
Fewer LM calls

LR-Hiero

Hiero vs LR-Hiero

Greibach Normal Form

$$X \to \langle \gamma, \bar{b} \beta \rangle$$

GNF

Non-GNF X -> <X_1 发生的 X_2 / X_2 happens in X_1>

Simultaneous Translation

http://site.interpretereducationonline.com/interpreting-jokes/

Simultaneous Decoding

<s> we are very much concerned with what happens

X -> <X_1 发生 X_2事情 / what happens X_2 X_1>

Wait till the end ...

Good evening, I would like a taxi to the airport please

(higher fluency and latency)

Translate incrementally ...

Good evening,

0.2 sec buena noches

I would like

0.2 sec me gustaría

a taxi to the airport please

0.8 sec un taxi al aeropuerto por favor

(lower fluency and latency)

Do not segment when reordering is required

Sentence Segmentation

Prehistory:

Batch and Monotone

(Tillmann et al., ACL'1997) (Pytlik and Yarowsky, AMTA'06)

Simultaneous Translation using GNF SCFGs

(Siahbani et al, SLT 2014)

Hiero decoding made possible using LR-Hiero

Train the Segmenter

- Produce word alignment for training data (GIZA++)
- Find all monotone phrase pair boundaries
- Make sure phrase pairs are long enough (phrases of length 3 or more)
- Find a suitable set of features to classify segment boundaries
- Train a classifier to recognize segment boundaries

Datasets

- Train the segmenter:
 - IWSLT 2011 shared task: English-French TED talks
- Train the translation model:
 - EuroParl v7 plus IWSLT 2011 shared task data
- Train the language model:
 - WMT 2011 French data (EuroParl, News Commentary, UN)
- Tuning set and Test set
 - IWSLT 2010 shared task data (dev2010, tst2010)

Features for segmenter

- Basic
 - Word at segment boundary (punct, conj)
 - Position of boundary
 - Length of segment
- Part of speech
 - Trigram before segment
 - Bi/trigram at end of segment

- Decoder
 - Language model (lm)
 - P(e|f) phrase pair (tm₀)
 - P(f|e) phrase pair (tm₁)
 - Lex(e|f) lexical (tm₃)
 - Lex(f|e) lexical (tm₄)
 - Log-linear model score(c)
- Best performing segmenter F1 = 81.6%
 - Basic + POS + (Im,tm_0,c)

Results

	BLEU	Time (secs)
No	25.72	19.62
segmentation		
With	24.48	0.84
segmentation		

Our Current Work

- Pareto Optimality for balancing speed/latency versus fluency/accuracy
 - Take reordering into account
 - Let the decoder decide
 - The "least worst" BLEU score for different segment lengths may result in varying speed

Questions?

Extra Slides

Rule Extraction

Hiero Rule Extraction

Search for sub-phrases within larger ones

Smaller phrases are replaced by non-terminal X

- Estimating rule frequency
 - Unifermited in the fraction of the fulles all rules extracted from the phrase-pair
 X -> <X_1 发生的 X_2 / X_2 happens in X_1>

 - X-> <发生的X_1 / Length of phrase-pairs (usually 10) At most 2 non-terminals

Hiero Rule Extraction: Issues

Unable to capture all alignments

- Allowing more non-terminals in rules is not practical in CKY decoders
 LR-Decoding O(n^2)
- Relax constraints (initial phrase length & number of non-terminals)
 - increases the time complexity of rule extraction

New GNF Rule Extraction

Largest Right Sub-phrase (LRS)

New GNF Rule Extraction

Experiments

SCFG & old GNF: initial phrase length 10, maximum source length 7, 2 non-terminals

GNF-4: all phrase pairs, maximum source length 10, 4 non-terminal

Results (LM calls)

Average number of language model calls on sample set of 50 sentences from testset.

GNF-x (new GNF rules): x non-terminal

Results (BLEU)

old GNF: maximum source length 7, 2 non-terminals GNF-x (new GNF rules): maximum source length 10, x non-terminal

Alignment Coverage

Model	odel Czech-English German-English		Chinese-English	
SCFG	318	351	187	
old GNF	278	300	132	
GNF-4	306	375	163	

Number of sentences (devset) covered in forced decoding mode

Conclusion and Future Directions

- A new algorithm for GNF rule extraction
- Sentence level GNF rules in LR-Hiero:
 - Improve alignment coverage
 - Marginally affects decoding speed
- Rules with more non-terminals are less frequent
- Elaborate features for rules with more than 2 non-terminals

Questions?

Experiments

- 3 language pairs:
 - Cs-En, De-En, Zh-En

	Corpus (train;dev;test)	
Cs-En	Europarl(v7)+CzEng(v0.9); News commentary(nc) 2008&2009; nc 2011	7.95M/3k/3k
De-En	Europarl(v7); WMT2006; WMT2006	1.5M/2k/2k
Zh-En	HK parallel-tex+GALE ph-1; MTC parts 1&3; MTC part 4	2.3M/1928/919

Experiments

- Hiero rule extraction; Kriya (Sankaran et al., 2012)
 - SCFG
 - GNF
- Configuration and settings:
 - Maximum 2 non-terminals
 - maximum source length 7
 - initial phrase length 10
- New GNF extraction:
 - Maximum 4 non-terminals
 - Maximum source length 10
 - All phrase pairs (including sentence level)

Left-to-Right Decoding

Non-GNF X -> <X_1 发生的 X_2 / X_2 happens in X_1>

GNF

New GNF Rule Extraction

Largest Right Sub-phrase (LRS)

- the largest phrase pair (in terms of length of target side) which share the same target right boundary

LRS(2,5) = [4,5]

LRS(2,7) = [5,7]

LRS(5,7) = [6,7] $O(m^2)$

Sub-problem

Distortion Feature

 $r: \langle f_1 X_1 f_2 X_2 f_3, t X_2 X_1 \rangle \quad I = [\vdash, f_1, f_2, f_3, X_2, X_1, \dashv]$

$$d(r) = \sum_{j=1}^{k} |I_j^{\mathcal{L}} - I_{j-1}^{\mathcal{R}}|$$

1 ihre 2 arbeit3 noch4 nicht5 gemacht6

$$r: \langle X_1 noch \ nicht \ X_2 / not \ yet \ X_2 X_1 \rangle \qquad I = [(1,1),(3,5),(5,6),(1,3),(6,6)]$$

$$= [(1,1),(3,5),(5,6),(1,3),(6,6)]$$

$$= [(1,1),(3,5),(5,6),(1,3),(6,6)]$$

$$= [(1,1),(3,5),(5,6),(1,3),(6,6)]$$

$$= [(1,1),(3,5),(5,6),(1,3),(6,6)]$$

$$= [(1,1),(3,5),(5,6),(1,3),(6,6)]$$

Reordering feature

 Number of reordering rules (non-terminals on source and target side are reordered)

$$X \rightarrow \langle X_1 heban X_2 / have X_1 X_2 \rangle$$

 $X \rightarrow \langle X_1 noch nicht X_2 / not yet X_2 X_1 \rangle$

LR-Decoding with Beam Search

- Stacks: hypotheses with same number of source side words covered
- Exhaustively generating all possible partial hypotheses for a given stack

Cube pruning

- each cube: a grouped of hypotheses and applicable rules
- Cubes are fed to a priority queue which fills the current stack

Cube pruning

	made	done	op
	0.9	1.1	3.2
students have not yet [5,6] 10.2	12.5	12.4	14.3
pupils have not yet [5,6] 11.5	12.6	12.8	14.7
student has not already [5,6] 12.7	13.3	13.5	15.4

Time efficiency: avg of LM queries

Translation quality

CKY decoding

we are very much concerned with what happens in African regionss . we are very much iteoncerned frican region happens in what .

