Data cloning in R with the dclone package

Peter Solymos

Quantitative Ecology Meeting - Dec 13, 2013 - Univ. Alberta

Data cloning (DC)

DC is a computational tric to get **MLE and asymptotic variance** using general purpose Bayesian MCMC sotware

Introduced by Lele et al. 2007, see also Lele et al. 2010 (PDFs here)

Motivated by the need to fit **hierarchical models** without subscribing to the Bayesian paradigm

Hierarchical models (Normal-Normal LMM)

You often have more unknowns than observations:

$$Y_{ij} \mid \mu_{ij} \sim \textit{Normal}(\mu_{ij}, \sigma^2)$$

 $i = 1, \dots, n; j = 1, \dots, m_n$
 $\mu_{ij} = X_{ij}^T \theta + \epsilon_i$

Often called random effects:

$$\epsilon_i \sim Normal(0, \tau^2)$$

More generally

$$(y \mid X = x) \sim h(y; X = x, \theta_1)$$

$$X \sim g(x; \theta_2)$$

$$\theta = (\theta_1, \theta_2)$$

$$L(\theta; y) = \int h(y \mid x; \theta_1) g(x; \theta_2) dx$$

Frequentist toolkit

It is based on a data model that gives a likelihood:

- which parameter values are most likely to lead to this set of observations given the model?
- the fact that we can write down the likelihood does not mean we can estimate the parameters
- for random effects it leads to a multidimensional integral, derivatives, noisy likelihood surface

LMMs and GLMMs can be fit quite efficiently using e.g. {Ime4}.

But what do we do with growth models, differential equations, more complex mixed models, etc.?

Bayesian toolkit

No real restrictions other than battling funny error (trap) messages or initial values.

It might take forever, but you'll get a bunch of numbers at the end, called the posterior:

$$\pi(\theta \mid y) = \frac{L(\theta; y)\pi(\theta)}{\int L(\theta; y)\pi(\theta)d\theta}$$

How do I change my beleif about $\pi(\theta)$ after observing the data?

Binomial model

Model: $Y_i \sim Binomial(1, p)$

Data: $y_1, y_2, ..., y_n$

PMF: $P(Y = y) = p^{y}(1 - p)^{1-y}$

Likelihood: $L(p; y_1, y_2, ..., y_n) = \prod_{i=1}^n p^{y_i} (1-p)^{1-y_i}$

Go to the code & app!

DC theory

$$y^{(K)} = (y, \dots, y)$$

$$L(\theta; y^K) = L(\theta; y)^K$$

$$\pi_K(\theta \mid y) = \frac{[L(\theta; y)]^K \pi(\theta)}{\int [L(\theta; y)]^K \pi(\theta) d\theta}$$

$$\pi_K(\theta \mid y) \sim MVN(\hat{\theta}, \frac{1}{K}I^{-1}(\hat{\theta}))$$

Make MLE great again!

- we can use Bayesian MCMC toolkit for frequentist inference
- mean of the posterior is the MLE $(\hat{ heta})$
- K times the posterior variance is the variance of the MLE
- no need to calculate high dimensional integrals and second derivatives
- noisy likelihood surface no numerical optimization involved
- bonus: independent of the specification of the prior distribution.

Go to the app!

{dclone} R package

Described in Solymos 2010 (R Journal, PDF in this repo) On CRAN since 2009 (10 years!)

Binomial-Binomial model

- W_i: this denotes the observed status at the location i, can be 0 or 1,
- Y_i : this denotes the true status at the location i, can be 0 or 1; this status is unknown.
- True status: $Y_i \sim Bernoulli(\varphi)$
- Observed status: $(W_i \mid Y_i = y_i) \sim Bernoulli(p^{y_i}(1-p)^{1-y_i})$

$$L(p,\varphi;w_1,w_2,\ldots,w_n) = \prod_{i=1}^n P(W_i = w_i;p,\varphi) = \prod_{i=1}^n (p\varphi)^{w_i} (1-p\varphi)^{1-w_i}$$

Go to the code!

DC in action

I used DC to prove identifiability of single visit N-mixture model in SOlymos et al. 2012. Stuff implemented in $\{detect\}$ package

Did some SAR modeling (that is being cited beside Gould and Rosenzweig), see {sharx} package.

{PVAClone} package to fit PVA models with observation error.

Can we somehow identify the params?

- True status: $Y_i \sim Bernoulli(\varphi)$.
- Observed status: $(W_{i,t} \mid Y_i = 1) \sim Bernoulli(p)$ and $W_{i,t} \mid Y_i = 0$ equals 0 with probability 1.

The likelihood function is:

$$L(p,\varphi;w_{1,1},\ldots,w_{n,T}) = \prod_{i=1}^{n} \left[\varphi\left({Y \choose w_{i\cdot}} p^{w_{i\cdot}} (1-p)^{T-w_{i\cdot}} \right) + (1-\varphi)I(w_{i\cdot} = 0) \right]$$

Go back to code!

So you say I should wait more?

Increasing K most often leads to a linear increase in DAG size

- good: easy to predict how much longer it takes
- bad: what already takes long enough will take as much longer

HPC to the rescue!

Go back to code!

The End

For more stuff: go to datacloning.org

Dclonified BUGS examples:

https://github.com/datacloning/dcexamples/

S4 magic:

https://cran.r-project.org/web/packages/dcmle/index.html

Dclone mailing list:

https://groups.google.com/forum/#!forum/dclone-users