Arquitectura y sistemas operativos

UTN - Mar del Plata

Planificación

- El planificador (scheduler) del sistema operativo decide que algoritmo de planificación utilizar (FCFS, SJF, Prioridades, Round Robin).
- Los algoritmos de planificación se utilizan cuando hay 2 o mas procesos listos para su ejecución.

Colas de planificación

- El sistema operativo usa una serie de colas para planificar los recursos. Estas pueden ser las siguientes:
- Cola de trabajos: procesos de almacenamiento secundario esperando memoria principal.
- Cola de procesos listos: procesos en memoria, listos y esperando su ejecución.
- Cola de dispositivos: para cada dispositivo hay una cola de procesos esperando utilizarlo.

Funciones del planificador de procesos

- ▶ 1. Llevar control del estado de cada proceso.
- Decidir que proceso usa el procesador y durante cuanto tiempo, para ello empleara un cierto criterio en base al cual tomar las decisiones.
- 3. Asignar el procesador al proceso.
- 4. Quitar el procesador al proceso.

Tipos de planificación

- Largo plazo: cuando se crea un proceso se puede decidir alguno de los criterios para su planificación, como por ejemplo la prioridad o quantum (tiempo máximo que se permite a un proceso el uso del procesador).
- Corto plazo: cada vez que un proceso abandona la CPU, toma la decisión de que proceso planificar en función de la política de planificación establecida y del valor de los parámetros planificados.
- Mediano plazo: otras partes del sistema operativo pueden intervenir en la planificación de forma indirecta (swap), al sacar un proceso de memoria, etc hace que este no sea planificable.

Evaluación de rendimiento de planificación

- **Equidad:** procesan la CPU de forma equitativa.
- Eficiencia: utilización del CPU al 100%.
- Tiempo de Retorno/Finalización/Ejecución: tiempo que tarda en ejecutarse un proceso en concreto.
- Tiempo de respuesta: minimizar el tiempo de atención para usuarios interactivos.
- Tiempo de espera: tiempo que un proceso espera en cola de procesos listos.
- Rendimiento (productividad): numero de trabajos procesados por unidad de tiempo.

Tipos de Planificación

No apropiativo: el proceso en ejecución conserva el uso de la CPU mientras lo desee.

Ejemplo: FCFS, SJF y Prioridades

Apropiativo: el sistema operativo puede expulsar a un proceso de la CPU.

Ejemplo: Prioridades, SRTF y Round Robin.

Algoritmo – FCFS

- FCFS First come, first server
- El primer proceso que entro en la cola de procesos listos es el primero al que se le asigna CPU.
- Se implementa con una cola FIFO (first in, first out).
- Es un algoritmo del tipo ejecución hasta terminación.
- Sensible al orden de llegada de los procesos.

Algoritmo – FCFS Ejemplo

Proceso	Duracion						
P1	9	0		9		13	15
P2	4	ki —	P1	, ,	P2		P3
P3	2						1
Tiemp	oo de espera: 21 = 0	2=9, 13=13	CENT. P	= 7,3 ×.ES	PEDO MEDIO		
Tiemp Tiempo	oo de espera: $21 = 0$ o de retorno: $21 = 0$	P2 = 9, P3 = 13 / P2 = 13, P3 = 15	CENT.P :	= 7,3 ×.ES	LEIDE MEDIO		
Tiempo	oo de espera: $21 = 0$ o de retorno: $21 = 0$ o espera medio: $20 + 0$	P2 = 13, P3 = 15	CENT.P	=7,3 ×.ES	PEDO MEDIO		
Tiempo Tiempo	o de retorno: P1 = 9,	P2 = 13, P3 = 15 9 + 13) / 3 = 7,3					
Tiempo Tiempo	o de retorno: P1 = 9, o espera medio: (0 +	P2 = 13, P3 = 15 9 + 13) / 3 = 7,3					

Algoritmo – SJF

- SJF Short Job First (Primero el trabajo corto).
- Se asocia a cada proceso la longitud de su siguiente ráfaga de CPU.
- Si CPU disponible se le asigna al proceso de menor longitud de ráfaga, si hay 2 con igual longitud de ráfaga se usa FCFS.
- Solamente se puede aplicar si se conoce de antemano la duración de cada trabajo.
- Posibilidad de inanición -> si continuamente llegan trabajos cortos, los trabajos largos nunca llegan a ejecutarse.

Algoritmo – SJF Ejemplo

	₩										
Proceso	Llegada	Duracion		V 10 3	1.						
P1	0	7		0 1 1	ĭ	<i>!</i> [7	8	12		16
P2	2	4			P1		P3		P2	P4	
P3	4	1	Ę	^ <u>^</u>	()	9\ ?મ	1	9			
P4	5	4		(2	J. C.A.		ı				
Tiempo	espera:			1.2							
P1 = (0 In	icio proceso -	0 llegada pro	oceso) = 0	٦							
P2 = (8 In	icio proceso -	2 llegada pro	oceso) = 6	12							
P3 = (7 In	icio <mark>proceso -</mark>	4 llegada pro	oceso) = 3	8							
P4 = (12 I	nicio proceso	- 5 llegada pr	oceso) = 7	16							
4/	19 = 015	5-AP									
Tiempo	espera medi	0 = (0 + 6 + 3 +	7)/4=4								
1200			37								

9. 700

Algoritmo – SRTF

- SRTF (Shortest Remaining Time First) Primero el menor tiempo restante.
- El planificador siempre escoge el proceso que tiene el menor tiempo de ejecución restante esperado.
- El planificador podría expulsar al proceso actual cuando llega un nuevo proceso con menor ráfaga.
- El planificador debe tener una estimación del tiempo de proceso para realizar la función seleccionada, y existe riesgo de inanición para los procesos más largos.

Algoritmo - SRTF Ejemplo

				1	1 B	چ √ (
Proceso	Llegada	Duracion			-	1			1
P1	0	5 /	0	2	2 4	5	7	1	11 16
P 2-	2	OZA		P1	P2	Р3	P2	P4	P1
63 2	4	1		1		4	1)
<u>P</u> A	5	Å				61	1		
								7. M. E	
						91	0	7. M. E 0,5	
Tiempo de	respuesta:					P2	O	•	
						R 3	Ø		
P1 = (0 Ini	cio proceso	- 0 llegada p	roceso) = 0)		Ph	2		
P2 = (2 Ini	cio proceso	- 2 llegada p	roceso) = ()		, i			
P3 = (4 Ini	cio proceso	- 4 llegada p	roceso) = 0)					
P4 = (\$4) In	icio de pro	ceso - 5 insta	nte de lleg	ada) =\sigma 🤈	١				
7									
Tiempo re	spuesta me	edio=(0 + 0 + 0	0 + 6)/4= 1	,5					

Algoritmo - Prioridades

- Se asigna una prioridad a cada proceso.
- El de menor prioridad se ejecuta en CPU, si hay 2 procesos de igual prioridad se utiliza FCFS.
- Se asigna números a la prioridad.

Algoritmo - Prioridades ejemplo

Proceso	Duracion	Prioridad					
P1	10	3					
P2	1	1	← 1				
P3	2	4					
P4	1	5					
P5	5	2					
PV					1		
0 1		6			16	18	19
P2	PS	5		P1		P3	P4
Tiempo med	dio: Respues	4	1	+. ¢	7.0	4.M.E	
P1 = (1	6 fin del proce	so - 10 durac	ion) = 6	6	(6	6+0+16+18	= 8,5
P2 = (1 fin del proce	so - 1 duracio	on) = 0	ر ن ک	18	6	
P3 = (1	8 fin del proce	so - 2 duracio	on) = 16	18	19		
P4 = (1	8 fin del proce	so - 1 duracio	on) = 18	٨	6		
P5 = (6 fin del proce	so - 5 duracio	on) = 1				
Tiempo esp	pera medio = (6+0+16+18	3+1)/5=8,2				
Tiempo med	dio retorno = (16+1+18+	19 + 6)/5 = 12				

Algoritmo - Round Robin

- También llamado Turno Rotatorio Circular.
- Adecuado para implementar tiempo compartido.
- Corresponde a FCFS con expropiación.
- Cada proceso tiene un quantum (cuanto) de tiempo máximo. Si cuando expira el quantum de tiempo el proceso continua en CPU, el planificador lo desaloja y lo ingresa al final de la cola de listos.
- Un proceso puede abandonar la CPU: libremente (si ráfaga de CPU < quantum) o después de interrupción (si ráfaga de CPU > quantum).

Algoritmo - Round robin ejemplo

Proceso	Duracion		14/	
P1	24	6	pn p2	
P2	3	1	P3	
P3	3	4	P1 20	
	CPU	エ	P A 16	
quantum = 4			PA 12	
0 4	7	10		30
P1	P2	P3	P1	
Tiempo esp	era medio: (0	+4+7+(10-	4))/3 = 5,66	
91 13		12 13 6		