Power and Limitations of Algebraic Proofs of Stability Based on Semidefinite Programming

Bachir El Khadir, Amir Ali Ahmadi

Princeton University

Motivation

Dynamical systems are everywhere:

Walking robot Self driving cars Moons orbiting a planet
In many applications we are interested in certifying a qualitative property of a family of trajectories of a nonlinear
dynamical system: stability, safety, periodicity ...

We focus on proving **asymptotic stability for autonomous systems**:

$$\dot{x} = f(x)$$
.

Lyapunov theory

The system $\dot{x} = f(x)$ is stable in the sense of Lyapunov if for every $\epsilon > 0$, there exists a $\delta = \delta(\epsilon) > 0$ such that $||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon$, $\forall t \geq 0$.

The system is locally asymptotically stable (LAS) if it is stable in the sense of Lyapunov and if there exists a scalar $\hat{\delta} > 0$ such that $||x(0)|| < \hat{\delta} \Rightarrow \lim_{t \to \infty} x(t) = 0$.

The system globally asymptotically stable (GAS) if it is stable in the sense of Lyapunov and $\lim_{t\to\infty} x(t) = 0 \ \forall x(0)$.

It is well known that the system is LAS if there exists a continuously differentiable (Lyapunov) function V: $\mathbb{R}^n \to \mathbb{R}$ that vanishes at the origin and satisfies V(x) > 0 and $-\langle \nabla V(x), f(x) \rangle > 0$ for all $x \in S \setminus \{0\}$, where S is a neighborhood of the origin.

Moreover, if V is in addition radially unbounded (i.e., satisfies $V(x) \to \infty$ when $||x|| \to \infty$) and if $S = \mathbb{R}^n$, then the origin is GAS.

How to find such a function V?

- When are algebraic techniques helpful?
- What are some of their limitations?

SOS techniques to the rescue

Idea: Replace positivity constraint with SOS constraint. A polynomial $p(x_1, \ldots, x_n)$ is SOS (sum of squares) if it can be decomposed as

$$p(x) = \sum_{i=1}^{k} q_i^2(x)$$
, where q_i are polynomials.

SOS decompositions are algorithmically tractable.

$$V(x)$$
 and $-\dot{V}(x)$ SOS $\Longrightarrow V(x)$ and $-\dot{V}(x) \ge 0$ \Longrightarrow Stability

Example:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} -x^3 - xz^2 \\ -y - x^2y \\ -z - \frac{3z}{z^3 + 1} + 3x^2z \end{pmatrix}$$

Couple of lines of code in SOSTOOLS, YALMIP... $V = 4.1068x^2 + 5.5489y^2 + 1.7945z^2.$

Limitations

Polynomial Lyapunov functions may not exist ...

 $\dot{x} = -x + xy$ is GAS, but has $\dot{y} = -y$ no polynomial Lyapunov function of any degree [Ahmadi, Krstic, Parrilo]!

... or they can exist but be hard to find

 $V(x) = x_1^2 + x_2^2$ is a Lyapunov function, but SOS fails to find any degree 2 Lyapunov function.

A complexity theoretic limitation

Testing asymptotic stability of cubic vector fields is strongly NP-hard [Ahmadi]. Unless P=NP, small-sized algebraic certificates of stability do not exist for some stable systems.

Theorem 1: A more severe limitation

The polynomial dynamical system

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} := f(x,y) = \begin{pmatrix} -2y(-x^4 + 2x^2y^2 + y^4) \\ 2x(x^4 + 2x^2y^2 - y^4) \end{pmatrix} - (x^2 + y^2) \begin{pmatrix} 2x(x^4 + 2x^2y^2 - y^4) \\ 2y(-x^4 + 2x^2y^2 + y^4) \end{pmatrix}$$

is GAS but does not admit an analytic Lyapunov function even locally.

Proof idea

0.4

Consider the rational function $W(x) = \frac{x^4 + y^4}{x^2 + y^2}$. The function f can written as $f = R\nabla W - (x^2 + y^2)\nabla W$, where R is the rotation matrix by $\frac{\pi}{2}$ radians.

This proves that the system is GAS, as W is a corresponding Lyaponuv function.

Near the origin, the dominating term is $R\nabla W$, so the trajectories are close to the level sets of W. Therefore, any analytic Lyapunov function has to be constant on these levels sets, which is impossible.

Theorem 2: A converse result for homogeneous systems

A homogeneous dynamical system $\dot{x} = f(x)$ is asymptotically stable iff it admits a rational Lyapunov function of the form

$$V(x) = \frac{p(x)}{(\sum x_i^2)^r}$$
, where p is a polynomial.

Furthermore, when f is polynomial, V can be found by SOS programming.

Proof idea

- A stable homogeneous system f has a homogeneous Lyapunov functions V [Rosier].
- Use Bernstein polynomials to Approximate V by a polynomial p s.t. $p \approx V$ and and $\nabla p \approx \nabla V$ on the unit cube.
- Homogenize p as $R(x) := ||x||^2 p(\frac{x}{||x||})$ for the approximation to hold on \mathbb{R}^n .

The degree of the rational function can be arbitrarily high

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} -2\pi y(x^2 + y^2) - 2y(2x^2 + y^2) \\ 4\pi x(x^2 + y^2) + 2x(2x^2 + y^2) \end{pmatrix}$$

GAS for $\theta \in (0, \pi)$, so a rational Lyapunov function V_{θ} exists. The degree of the numerator however has to diverge, otherwise, the limit $V_0 := \lim_{\theta \to 0} V_{\theta}$ would be constant on the trajectories for $\theta = 0$, but in this case the trajectories are non-algebraic periodic orbits.