Math 3140 Homework 3

Chapter 3: 1bd, 2bd, 3, 5, 7, 12.

Due date: Wednesday, 9/19

1. Find all $x \in \mathbb{Z}$ satisfying each of the following equations.

(a) $3x \equiv 2 \pmod{7}$

(d) $9x \equiv 3 \pmod{5}$

(b) $5x + 1 \equiv 13 \pmod{23}$

(e) $5x \equiv 1 \pmod{6}$

(c) $5x + 1 \equiv 13 \pmod{26}$

- (f) $3x \equiv 1 \pmod{6}$
- **2.** Which of the following multiplication tables defined on the set $G = \{a, b, c, d\}$ form a group? Support your answer in each case.

- **3.** Write out Cayley tables for groups formed by the symmetries of a rectangle and for $(\mathbb{Z}_4, +)$. How many elements are in each group? Are the groups the same? Why or why not?
- 5. Describe the symmetries of a square and prove that the set of symmetries is a group. Give a Cayley table for the symmetries. How many ways can the vertices of a square be permuted? Is each permutation necessarily a symmetry of the square? The symmetry group of the square is denoted by D_4 .
- 7. Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group.
- **12.** Let $\mathbb{Z}_2^n = \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{Z}_2\}$. Define a binary operation on \mathbb{Z}_2^n by $(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n).$

Prove that \mathbb{Z}_2^n is a group under this operation. This group is important in algebraic coding theory.