More on Sets and Irrationality

Matthew Seguin

1.3.2

a. Let $S = \mathbb{R}$ and $B = \{b\}$ for any $b \in \mathbb{R}$ then $B \subset S$.

Clearly here infB = b and supB = b. So this is an example of a set B where $infB \ge supB$.

Note: if the question asked for a set B where infB > supB this would not be possible as by definition infB is less than or equal to any element of B and supB is greater than or equal to any element of B. So we can only possibly get $infB \ge supB$ and not infB > supB.

b. It is not possible to have a finite set that does not contain its own supremum.

Proof:

Let $A = \{a_1, a_2, ..., a_n\}$ be a finite set and $S \supseteq A$ be the superset of A for finding the infimum and supremum.

We can assume that A is ordered so that if $j, k \in [1, n] \subset \mathbb{Z}$ with j < k then $a_j < a_k$ (A is in increasing order) because if it isn't we can simply rearrange A so that it is.

Then since every element of A is in S we have $a_1 \in S$ and $a_n \in S$. Clearly for all $x \in A$, $a_1 \le x$ and $a_n \ge x$.

So a_1 is a lower bound of A and a_n is an upper bound of A.

Say $x \in S$ such that x is a lower bound of A then for all $y \in A$, $x \le y$ and since $a_1 \in A$ we have that $x \le a_1$.

So
$$infA = a_1$$

Say $x \in S$ such that x is an upper bound of A then for all $y \in A$, $x \ge y$ and since $a_n \in A$ we have that $x \ge a_n$.

So
$$sup A = a_n$$

Therefore since A and S were arbitrary choices of a finite set and any superset, any finite set contains its

supremum and its infimum. \square

C. Let $S = \mathbb{R}$ and $A = \{x \in \mathbb{Q} : a_1 < x \le a_2\}$. For some $a_1, a_2 \in \mathbb{Q}$. Clearly A is a bounded subset of \mathbb{Q} .

We know $a_2 \in S$, $x \le a_2$ for all $x \in A$. Therefore a_2 is an upper bound of A. If $y \in S$ is an upper bound of A then for all $x \in A$ we know $y \ge x$ so since $a_2 \in A$ we have that $y \ge a_2$.

Therefore
$$sup A = a_2$$
.

We also know $a_1 \in S$, $x > a_1$ for all $x \in A$. Therefore a_1 is a lower bound of A. If $y \in S$ such that $y > a_1$ then since \mathbb{Q} is dense in \mathbb{R} there exists an $r \in \mathbb{Q}$ such that $a_1 < r < y$. So either $a_1 < r \le a_2$ so that $r \in A$ and therefore y > z for some $z \in A$ and is not a lower bound of A or $a_2 < r < y$ and therefore y is not a lower bound of A.

Therefore
$$infA = a_1$$
.

Since $sup A = a_2 \in A$ and $inf A = a_1 \notin A$ this is an example of a bounded subset of \mathbb{Q} that contains its supremum but not its infimum.

1.3.11

a. This is true. Let A and B both be nonempty sets so $A \subseteq B$.

Let
$$x = \sup B$$
. Then $x \ge b$ for all $b \in B$. Since $A \subseteq B$ if $a \in A$ then $a \in B$.

So we also know $x \ge a$ for all $a \in A$ and is an upper bound of A, meaning it must be greater than or equal to sup A.

Therefore
$$x = \sup B > \sup A \square$$

b. This is true. Let A and B be sets such that supA < infB.

Let $x = \sup A$ and $y = \inf B$, according to our assumptions then x < y.

Consider
$$z = \frac{x+y}{2}$$
 then since $x < y$ by adding x to both sides and dividing by 2 we get $x < \frac{x+y}{2} = z$.

Similarly since x < y by adding y to both sides and dividing by 2 we get $z = \frac{x + y}{2} < y$.

So
$$x < z < y$$
, and since $x \in \mathbb{R}$ and $y \in \mathbb{R}$ we know $\frac{x+y}{2} = z \in \mathbb{R}$

Since $x = \sup A$ and $y = \inf B$ we know $x \ge a$ for all $a \in A$ and $y \le b$ for all $b \in B$.

So we have that $a \le x < z < y \le b$ for all $a \in A$ and all $b \in B$.

So $z \in \mathbb{R}$ is such an example where a < z < b for all $a \in A$ and all $b \in B$.

Therefore if sup A < inf B there does exist a $c \in \mathbb{R}$ such that a < c < b for all $a \in A$ and all $b \in B$

C. This is false. Let $A=(-\infty,t)$ and $B=(t,\infty)$ for some $t\in\mathbb{R}$.

Then a < t < b for all $a \in A$ and all $b \in B$. So t is both an upper bound for A and a lower bound for B.

• Showing $t = \sup A$:

If $z \in \mathbb{R}$ such that z < t then adding t to both sides and dividing by 2 we get $\frac{z+t}{2} < t$.

Similarly since z < t by adding z to both sides and dividing by 2 we get $z < \frac{z+t}{2}$.

So $r = \frac{z+t}{2} \in A$ and therefore z < w for some $w \in A$ and can't be an upper bound of A.

Therefore if $z \in \mathbb{R}$ is an upper bound of A then $z \geq t$, so sup A = t.

• Showing t = infB:

If $z \in \mathbb{R}$ such that z > t then adding t to both sides and dividing by 2 we get $\frac{z+t}{2} > t$.

Similarly since z > t by adding z to both sides and dividing by 2 we get $z > \frac{z+t}{2}$.

So $r = \frac{z+t}{2} \in B$ and therefore z > w for some $w \in B$ and can't be a lower bound of B.

Therefore if $z \in \mathbb{R}$ is a lower bound of B then $z \leq t$, so infB = t.

Since sup A = t = inf B, we have that $sup A \not< inf B$.

So this is such an example where there exists a $c \in \mathbb{R}$ such that a < c < b for all $a \in A$ and all $b \in B$ but $\sup A \nleq \inf B$.

Therefore the existence of a $c \in \mathbb{R}$ such that a < c < b for all $a \in A$ and all $b \in B$ does not imply that $\sup A < \inf B \square$

1.4.5

From problem 1.4.1 we have: If $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ then $a + t \in \mathbb{I}$ and if $t \neq 0$ then $at \in \mathbb{I}$.

Let
$$a, b \in \mathbb{R}$$
 such that $a < b$, then $a - \sqrt{2}, b - \sqrt{2} \in \mathbb{R}$ and $a - \sqrt{2} < b - \sqrt{2}$.

Furthermore, as proved in a previous Sample Work, $\sqrt{2} \in \mathbb{I}$.

So for all $a, b \in \mathbb{R}$ such that a < b, since \mathbb{Q} is dense in \mathbb{R} there exists a $q \in \mathbb{Q}$ such that $a - \sqrt{2} < q < b - \sqrt{2}$.

By adding $\sqrt{2}$ to each side we have that for all $a, b \in \mathbb{R}$ such that a < b, there exists a $q \in \mathbb{Q}$ such that $a < q + \sqrt{2} < b$.

Let
$$t=q+\sqrt{2}$$
 for this $q\in\mathbb{Q}$. By the result of problem 1.4.1 we have that $t=q+\sqrt{2}\in\mathbb{I}$

Therefore for all $a, b \in \mathbb{R}$ there exists a $t \in \mathbb{I}$ such that a < t < b

1.4.8

a. Let $A = \{x \in \mathbb{Q} : x < t\}$ and $B = \{x \in \mathbb{I} : x < t\}$ for some $t \in \mathbb{R}$.

Clearly since if $x \in \mathbb{Q}$ then $x \notin \mathbb{I}$ and vice versa we know that $A \cap B = \phi$.

• Showing $t = \sup A$:

Since t > x for all $x \in A$, t is an upper bound of A.

If $y \in \mathbb{R}$ such that y < t then since \mathbb{Q} is dense in \mathbb{R} there exists an $x \in \mathbb{Q}$ such that y < x < t.

Since for this $x \in \mathbb{Q}$ we know x < t, $x \in A$ so y < z for some $z \in A$ and therefore can't be an upper bound of A.

So if $w \in \mathbb{R}$ is an upper bound of A then $w \geq t$.

Therefore sup A = t.

• Showing t = supB:

Since t > x for all $x \in B$, t is an upper bound of B.

If $y \in \mathbb{R}$ such that y < t then since \mathbb{I} is dense in \mathbb{R} there exists an $x \in \mathbb{I}$ such that y < x < t.

Since for this $x \in \mathbb{I}$ we know x < t, $x \in B$ so y < z for some $z \in B$ and therefore can't be an upper bound of B.

So if $w \in \mathbb{R}$ is an upper bound of B then $w \geq t$.

Therefore supB = t.

So
$$sup A = t = sup B$$
, and $t \notin A$, $t \notin B$

So this is an example of sets A and B where $A \cap B = \phi$, $supA \notin A$, $supB \notin B$, and supA = supB.

b. For $n \in \mathbb{N}$, let $J_n = (-\frac{1}{n}, \frac{1}{n})$. Notice that $0 \in J_n$ for all $n \in \mathbb{N}$.

Let $x \in \mathbb{R}$ be such that x > 0. By the Archimedean property there exists an $m \in \mathbb{N}$ such that $\frac{1}{m} < x$.

Since
$$\frac{1}{m} < x$$
 we have that $x \notin J_m$, and therefore $x \notin \bigcap_{i=1}^{\infty} J_i$.

Let $x \in \mathbb{R}$ be such that x < 0. Then -x > 0. By the Archimedean property there exists an $m \in \mathbb{N}$ such that $\frac{1}{m} < -x$.

Since $\frac{1}{m} < -x$ we have that $x < -\frac{1}{m}$ and consequently $x \notin J_m$, and therefore $x \notin \bigcap_{i=1}^{\infty} J_i$.

So if
$$x \neq 0$$
 then $x \notin J_n$ for some $n \in \mathbb{N}$ therefore $\bigcap_{i=1}^{\infty} J_i = \{0\}$.

So this is an example of a sequence of nested open intervals $J_1 \supseteq J_2 \supseteq J_3 \supseteq ...$ such that $\bigcap_{i=1}^{\infty} J_i \neq \phi$ and $\bigcap_{i=1}^{\infty} J_i$ only has a finite number of elements.

C. For $n \in \mathbb{N}$ let $L_n = [n, \infty)$. Then $L_1 \supseteq L_2 \supseteq L_3 \supseteq ...$

Let $x \in \mathbb{R}$ then by the Archimedean property there exists an $n \in \mathbb{N}$ such that n > x.

Since x < n we have that $x \notin L_n$ and therefore $x \notin \bigcap_{i=1}^{\infty} L_i$.

Therefore
$$\bigcap_{i=1}^{\infty} L_i = \phi$$
.

So this is an example of nested unbounded closed intervals $L_1 \supseteq L_2 \supseteq L_3 \supseteq ...$ such that $\bigcap_{i=1}^{\infty} L_i = \phi$.

d. Let $I_1, I_2, I_3, ...$ be closed bounded intervals such that $\bigcap_{i=1}^n I_i \neq \emptyset$ for all $n \in \mathbb{N}$.

Then $\bigcap_{i=1}^n I_i$ is a closed bounded interval itself for all $n \in \mathbb{N}$. That is $\bigcap_{i=1}^n I_i = [a_n, b_n]$ for some $a_n, b_n \in \mathbb{R}$.

Furthermore
$$\bigcap_{i=1}^{n+1} I_i = (\bigcap_{i=1}^n I_i) \cap I_{n+1} \subseteq \bigcap_{i=1}^n I_i$$
 because if $x \in \bigcap_{i=1}^{n+1} I_i$ then $x \in \bigcap_{i=1}^n I_i$.

Denote $\bigcap_{i=1}^n I_i$ as $[a_n, b_n]$ since each $\bigcap_{i=1}^n I_i$ is a closed bounded interval.

So we have that $[a_1, b_1] \supseteq [a_2, b_2] \supseteq [a_3, b_3] \supseteq \dots$ as a sequence of closed bounded nested intervals.

The nested interval property tells us that $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \phi$.

Therefore
$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \bigcap_{n=1}^{\infty} \bigcap_{i=1}^{n} I_i = I_1 \cap (I_1 \cap I_2) \cap (I_1 \cap I_2 \cap I_3) \cap ... = I_1 \cap I_2 \cap I_3 \cap ... = \bigcap_{n=1}^{\infty} I_n \neq \phi$$
.

So if you have closed bounded intervals I_1, I_2, I_3, \dots (not necessarily nested) such that $\bigcap_{i=1}^n I_i \neq \phi$ for all $n \in \mathbb{N}$ then it

can not be that
$$\bigcap_{n=1}^{\infty} I_n = \phi \square$$

External Sources

I believe that Abbott's book had an analogous example to my solution for 1.4.8.c. where they took $A_1 = \mathbb{N} = \{1, 2, 3, ...\}$, $A_2 = \{2, 3, 4, ...\}$, $A_3 = \{3, 4, 5, ...\}$, ... then proceeded to show that $\bigcap_{i=1}^{\infty} A_i = \phi$.

This idea from the book also contributed to my solution for 1.4.8.b.