Introduction To Python Programming

Introduction to Python programming Course Outline

- Intro to Computer Science
- Environment Setup (Anaconda)
- Command Line
- Conda & pip package managers
- Jupyter Notebook
- Input & Output
- Variables
- U Data types
 - Numbers & Math
 - Boolean & Comparison and Logic
 - Strings
 - Lists
 - Tuples
 - Sets
 - Dictionaries

- File Handling
- If Conditions
- For Loops
- Built-in functions & Operators (zip, enumerate, range, ...)
- List Comprehensions
- Functions
- Lambda Expressions
- Map, Filter, Reduce
- Variables Scope
- Modules & Packages

Introduction to Python programming Course Outline

- Intro to Computer Science
- Environment Setup (Anaconda)
- Command Line
- Conda & pip package managers
- Jupyter Notebook
- Input & Output
- Variables
- U Data types
 - Numbers & Math
 - Boolean & Comparison and Logic
 - Strings
 - Lists
 - Tuples
 - Sets
 - Dictionaries

- File Handling
- If Conditions
- For Loops
- Built-in functions & Operators (zip, enumerate, range, ...)
- List Comprehensions
- Functions
- Lambda Expressions
- Map, Filter, Reduce
- Variables Scope
- Modules & Packages

- How Computers Work
- Decimal & Binary numbering systems
- How computer stores Words (ASCII)
- How computer stores Images
- How computer stores Videos
- How computer stores Audio
- Technology Tree
- Why python

- How Computers Work
- Decimal & Binary numbering systems
- How computer stores Words (ASCII)
- How computer stores Images
- How computer stores Videos
- How computer stores Audio
- Technology Tree
- Why python

How Computers Work

- How Computers Work
- Decimal & Binary numbering systems
- How computer stores Words (ASCII)
- How computer stores Images
- How computer stores Videos
- How computer stores Audio
- Technology Tree
- Why python

Decimal & Binary numbering systems

Decimal & Binary numbering systems

Decimal

$$1 \times 100 = 100$$

 $5 \times 10 = 50$
 $4 \times 1 = 4$
 154

Binary

Decimal & Binary numbering systems

- How Computers Work
- Decimal & Binary numbering systems
- How computer stores Words (ASCII)
- How computer stores Images
- How computer stores Videos
- How computer stores Audio
- Technology Tree
- Why python

How computer stores Words (ASCII)

ASCII BINARY ALPHABET

Α	1000001	N	10 0 1110
В	1000010	О	10 0 1111
С	1000011	P	1010000
D	1000100	Q	1010001
Ε	1000101	\mathbf{R}	1010010
F	1000110	S	1010011
G	1000111	\mathbf{T}	1010100
\mathbf{H}	1001000	U	1010101
Ι	1001001	V	1010110
J	1001010	W	1010111
K	1001011	X	1010111
\mathbf{L}	1001100	Y	1011001
M	1001101	Z	1011010

Full Table

http://www.asciitable.com/

- How Computers Work
- Decimal & Binary numbering systems
- How computer stores Words (ASCII)
- How computer stores Images
- How computer stores Videos
- How computer stores Audio
- Technology Tree
- Why python

What We See

What Computers See

Height

Width

Grayscale Digital Images

We can generate a grayscale image by using Pixels each pixel has a single value between 0 (White) and 255 (Black) and values in between are gray variations.

RGB Digital Images

We can generate an RGB image by using Pixels each pixel has 3 values for each color (red, green, blue) each color has value between 0 (Dark) and 255 (Light) and values in between are color variations.

How computer stores Images (Red)

How computer stores Images (Green)

How computer stores Images (Blue)

How computer stores Images (White)

How computer stores Images (Black)

How computer stores Images (Pink)

How computer stores Images (Yellow)

Resolution: 100x100

Width: 100 pixels Height: 100 pixels

- How Computers Work
- Decimal & Binary numbering systems
- How computer stores Words (ASCII)
- How computer stores Images
- How computer stores Videos
- How computer stores Audio
- Technology Tree
- Why python

How computer stores Videos

- How Computers Work
- Decimal & Binary numbering systems
- How computer stores Words (ASCII)
- How computer stores Images
- How computer stores Videos
- How computer stores Audio
- Technology Tree
- Why python

How computer stores Audio

- How Computers Work
- Decimal & Binary numbering systems
- How computer stores Words (ASCII)
- How computer stores Images
- How computer stores Videos
- How computer stores Audio
- Technology Tree
- Why python

Programming?!

Just writing code for executing some sequential instructions to perform various tasks.

Computers are **FAST** but **DUMB**, they need to know what to do.

Technology Tree

- Embedded Systems
- Operating Systems
- Desktop Applications
- Web Applications
- Mobile Applications
- Database Systems
- Networking & Server administration
- Internet of Things
- Game Development
- AR/VR
- Compression
- Encryption

- Security & Ethical Hacking
- Machine & Deep Learning
- Data Science
- O Computer Vision
- Speech Processing
- Natural Language Processing
- Autonomous
- Blockchain
- Big Data
- Computer Graphics
- Compiler Design
- Q.

- How Computers Work
- Decimal & Binary numbering systems
- How computer stores Words (ASCII)
- How computer stores Images
- How computer stores Videos
- How computer stores Audio
- Technology Tree
- Why python

Why Python?!

>_ Easy to Learn, Read, Maintain.

>_ Very Big Community so you will find a lot of Libraries to use.

Python 2 vs 3?!

Intro to Computer Science **Environment Setup (Anaconda)** Command Line Conda & pip package managers Jupyter Notebook Input & Output Variables Data types Numbers & Math Boolean & Comparison and Logic Strings Lists Tuples

Sets

Dictionaries

File Handling If Conditions For Loops Built-in functions & Operators (zip, enumerate, range, ...) List Comprehensions Functions Lambda Expressions Map, Filter, Reduce Variables Scope Modules & Packages

ANACONDA

Awesome Python Distribution.

Free and open-source distribution of the Python and R programming languages for scientific computing (data science, machine learning applications). Anaconda distribution includes data-science packages suitable for Windows, Linux, and macOS.

https://www.anaconda.com

Visual Studio Code

Awesome Code Editor.

https://code.visualstudio.com

- Intro to Computer Science
- Environment Setup (Anaconda)
- Command Line
- Conda & pip package managers
- Jupyter Notebook
- Input & Output
- Variables
- U Data types
 - Numbers & Math
 - Boolean & Comparison and Logic
 - Strings
 - Lists
 - Tuples
 - Sets
 - Dictionaries

- File Handling
- If Conditions
- For Loops
- Built-in functions & Operators (zip, enumerate, range, ...)
- List Comprehensions
- Functions
- Lambda Expressions
- Map, Filter, Reduce
- Variables Scope
- Modules & Packages

Command Line

>_ cd

>_ dir

>_ copy

>_ del

>_ move

•••

```
Command Prompt
Microsoft Windows [Version 10.0.17763.1098]
(c) 2018 Microsoft Corporation. All rights reserved.
C:\Users\Eslam Jekso>
```

Intro to Computer Science **Environment Setup (Anaconda)** Command Line Conda & pip package managers Jupyter Notebook Input & Output Variables Data types Numbers & Math Boolean & Comparison and Logic Strings Lists Tuples

Sets

Dictionaries

File Handling If Conditions For Loops Built-in functions & Operators (zip, enumerate, range, ...) List Comprehensions Functions Lambda Expressions Map, Filter, Reduce Variables Scope Modules & Packages

conda & pip package managers

```
https://anaconda.org/

• • •
1 conda install --package name--
```


https://pypi.org/

- Intro to Computer Science
 Environment Setup (Anaconda)
- Command Line
- Conda & pip package managers
- Jupyter Notebook
- Input & Output
- Variables
- U Data types
 - Numbers & Math
 - Boolean & Comparison and Logic
 - Strings
 - Lists
 - Tuples
 - Sets
 - Dictionaries

- File Handling
- ☐ If Conditions
- For Loops
- Built-in functions & Operators (zip, enumerate, range, ...)
- List Comprehensions
- Functions
- Lambda Expressions
- Map, Filter, Reduce
- Variables Scope
- Modules & Packages

Run Python Script via Command Line

- 1- Make a .py file
- 2- Write code & Save it
- 3- Open cmd
- 4- >_ python file.py

Command Prompt

Microsoft Windows [Version 10.0.17763.1098] (c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\Eslam Jekso>

Run Python via Jupyter Notebook

- 1- Open cmd in a folder
- 2- >_ jupyter notebook

Jupyter Notebook

- Create new .ipynb file
- Naming the notebook
- Menu buttons (Run, Insert, Delete cells, etc...)
- Move Cell up or down
- Copy, Paste and Cut Cells
- Merge Cells
- Saving the notebook for checkpoints
- Code and Markdown Cells
- Export .py file
- Kernel
- Use command line in Jupyter using '!' operator

Jupyter Notebook (Shortcuts)

O Ctrl + Enter --- > Execute Cell \bigcirc Shift + Enter --- > Execute Cell then go to the next cell O Alt + Enter --- > Execute Cell then insert new cell below O A and B ---> Insert Cell Above or Below Shift + Up or Down --- > Select Cells Above or Below \bigcirc C and V and X --- > Copy, Paste and Cut Cells inside Notebook \bigcirc Ctrl + C or \lor or \lor --- > Copy, Paste and Cut Cells outside Notebook O Double D --- > Delete Cells Shift + M --- > Merge Cells --- > Save Notebook

Questions ?!

Thanks!

>_ Live long and prosper

