

Cours de Thermique du bâtiment

Vidéo n°4

Rayonnement 1 : apports solaires (CLO)

Simon Rouchier Maître de Conférences Polytech Annecy-Chambéry Université de Savoie

vidéo réalisée le 14/10/2015

Ensoleillement global horizontal

Fdir

Données de départ

 $F_{dir,Hz}$ [W/m²] $F_{dif,Hz}$ [W/m²] H_{S} [°] Az_{S} [°]

Ensoleillement direct

$$E_{dir} = F_{dir} \cos(I) - F_{dir} = \frac{F_{dir,Hz}}{\sin(H_S)}$$
avec

Fdir

$$E_{dir}$$
: inconnue

 $F_{dir,Hz}$; $F_{dif,Hz}$; H_S ; Az_S : données météo

 β ; Az : orientation de la paroi

Ensoleillement direct

$$E_{dir} = \frac{F_{dir,Hz}}{\sin(H_S)} \left[\cos(H_S) \cdot \sin(\beta) \cdot \cos(Az_S - Az) + \sin(H_S) \cdot \cos(\beta) \right]$$

Ensoleillement diffus

$$E_{dif} = F_{dif,Hz} \frac{1 + \cos(\beta)}{2}$$

Ensoleillement réfléchi

$$E_{ref} = \left[F_{dir,Hz} + F_{dif,Hz}\right] \cdot \frac{1 - \cos(\beta)}{2}. \text{ alb}$$

$$\Phi_{CLO} = \alpha.S. \left(E_{dir} + E_{dif} + E_{ref}\right) \quad [W]$$

$$E_{dir} \times \tau_D(I)$$

$$E_{dif} \times \tau_d$$

$$E_{ref}$$

