

Motivation

A sequence of intergers are given: i_1, i_2, ..., i_n. Define the interval of interest(IOI) with respect to x, parameterized by[I, r] subjected to: gcd(i_I, i_I+1, ..., i_r)=x, where 1<=I<=r<=n.

Gcd here means the greatest common divisor.

Goal

Count all possible intervals with respect to x=x_1, x_2, ..., x_q for the given sequence i_1, i_2, ..., i_n.

输入

- 1. The first line: an integer n, $(1 \le n \le 10^5)$, indicating the length of the given sequence.
- 2. Next line: n integers separated by space: i_1, i_2, ..., i_n (1<=i_{}<=10^9).
- 3. The third line: an integer q, $(1 \le q \le 3*10^5)$, indicating the number of xs
- 4. The forth line: q integers separted by space: x_1 , x_2 , ..., x_q , $(1 <= x_{\{\}} <= 10^9)$.

输出

For each x, output the number of possible IOIs with respect to x_1, x_2, ...

输入样例 1 🖺

输出样例 1

提示

Observation1: gcd(a, b, c) = gcd(gcd(a, b), c)

Observation2: for the sequence i_1, ..., i_n, define the sequence k_1=i_1, k_j=gcd(k_{j-1},i_{j}) for 2<=j<=n. The number of distinct values in k sequence is no more than 1+log_2^{i_1}.

Hint1: Divide & conquer may be useful:

- 1. count IOIs at left half(by recursion)
- 2. count IOIs at right half(by recursion)
- 3. merge and conut intervals that start from the left half and end at right half(how to count efficiently?, hint: observation 2)

Hint2: try to set a AVL tree / hash, count gcd for all x in one time.

Hint3: the solution of nlogn is possible