

เอกสารแนบท้ายประกาศกรมพลศึกษา

เรื่อง การประกวดนวัตกรรมด้านวิทยาศาสตร์การกีฬา ประจำปี พ.ศ. 2568 (Sport Science Innovation Contest 2025)

Sport Science Innovation Contest 2025

เสนอ

สำนักวิทยาศาสตร์การกีฬา กรมพลศึกษา กระทรวงการท่องเที่ยวและกีฬา

โดย

ชื่อผลงาน

Smart Multi-Stage Fitness Test System

ชื่อ / ทีมผู้สมัคร

นาย พัชระ อัลอุมารี

ส่วนที่ 1 ข้อมูลทั่วไป

ชื่อผลงาน	
Smart Multi-Stage Fitness Test System	
ชื่อ/ทีมผู้สมัคร	
นาย พัชระ อัลอุมารี	
สถานภาพผู้สมัคร 🗹 บุคคล	— คณะบุคคล
สถาบันการศึกษา	นิติบุคคล
ท่านเคยส่งผลงานสิ่งประดิษฐ์เข้าร่วมการประกวดนวัตกร	รรมด้านวิทยาศาสตร์การกีฬา ของกรมพลศึกษาหรือไม่ ไม่เคยเข้าร่วม
ท่านเคยส่งผลงานสิ่งประดิษฐ์เข้าร่วมการประกวดนวัตกร หรือไม่	รรมเกี่ยวกับด้านอื่น นอกจากด้านวิทยาศาสตร์การกีฬา
จัดโดย	
ไม่เคยเข้าร่วม	
ชื่อผู้ประสานงานของทีม ชื่อ – สกุล นาย พัชระ อัลอุมารี ที่อยู่สามารถติดต่อได้ บ้านเลขที่18 หมู่บ้านนักกีฬาแหลมทอง ซ.12/3 ถนนกรุง กรุงเทพมหานคร 10250 โทรศัพท์ 0960614238 อีเมล Patcharaalumaree@gmail.com รายชื่อสมาชิก (กรณีสมัครเป็นทีม) 1. ชื่อ - สกุล	เทพกรีฑา เขตสะพานสูง แขวงทับช้าง

	โทรศัพท์	อีเมล
 2. ชื่อ	- สกุล	
•••••	โทรศัพท์	อีเมล
3. ชื่อ	- สกุล	
	โทรศัพท์	อีเมล
4. ชื่อ	- สกุล	
	โทรศัพท์	อีเมล
5. ชื่อ	-	
	โทรศัพท์	อีเมล
6. ชื่อ	- สกุล	
	โทรศัพท์	
	โทรศัพท์	
	โทรศัพท์	อีเมล

ส่วนที่ 2 ข้อมูลเกี่ยวกับผลงานสิ่งประดิษฐ์

1. ท่าง	เประดิษฐ์ผลงานเพื่อทดสอบสมรรถภาพทา	างกายด้านใด (ตอบได้มากกว่า 1 ข้อ)	
	ระบบพลังงานแบบใช้ออกซิเจน	🔲 ระบบพลังงานแบบไม่ใช้ออกซิเจน	
	ความคล่องแคล่วว่องไว	ี ความเร็ว	
	พลังกล้ามเนื้อ	🔲 ความอ่อนตัวของกล้ามเนื้อ	
	ความแข็งแรงของกล้ามเนื้อ	🔲 ความอดทนของกล้ามเนื้อ	
	ความสามารถในการทรงตัว	การทำงานประสานสัมพันธ์	
	ปฏิกิริยาตอบสนองต่อแสง / เสียง	องค์ประกอบของร่างกาย	
	อื่น ๆ (โปรด		
ระบุ)			
	_		
	มมีเป้าหมายจะใช้ผลงานสิ่งประดิษฐ์ของท่า	เนกับใคร (ตอบได้มากกว่า 1 ข้อ)	
	่ บุคคลทั่วไปทุกเพศ ทุกวัย	ผู้พิการ	
	้เด็กและเยาวชน	ี ผ ู้ใหญ่วัยตอนต้น	
	ผู้ใหญ่วัยกลางคน	📆 ผู้สูงอายุ คนชรา	
	นักเรียน นักศึกษา	นักกีฬา ระบุ	
		ครู อาจารย์	
Ħ	อื่น ๆ (โปรด	<u>-</u>	
 ระบุ)			
3. ผล	วานของท่านมีความเป็นนวัตกรรมอย่างไร ₍	(ตอบได้มากกว่า 1 ข้อ)	
	์ คิดใหม่ ทำใหม่ เป็นสิ่งประดิษฐ์ที่ไม่มีจำหน่าย	ยอย่ในท้องตลาด	
		้ เจ้าหน่ายในท้องตลาดทั่วไป แต่มีระบบการทำงาน	เพื่อ
	วัตถุประสงค์ที่แตกต่างออกไป		
	1	ยในท้องตลาด แต่สร้างผลงานขึ้นจากวัสดุ อุปกรถ	น์ ที่มี
ราคา	9 9	9 9	
	ประหยัดและหาได้ในประเทศ		
		เต้นแบบจากวัสดุ อุปกรณ์ ที่มีจำหน่ายในท้องตลา	୭
Ħ	พัฒนาระบบการทำงานบางประการของสิ่งประ		
		d9	

อื่น ๆ (โปรด	
ระบุ)	
 ท่านใช้เทคโนโลยีใด ที่เกี่ยวข้องกับการผลิตผลงานหรือไม่ อย่างไร 	

___ ไม่ได้ใช้

ใช้ (โปรด ระบุ)

1. ภาษาโปรแกรม Python

บทบาทในโครงการ: ควบคุมการทำงานหลักของโปรแกรม เช่น การจัดการเวลา การตรวจสอบสถานะ ของผู้เล่น และการติดต่อกับเซ็นเซอร์ ใช้ในการจัดการเครือข่าย MQTT เพื่อสื่อสารกับ ไมโครคอนโทรลเลอร์ ใช้สำหรับการสร้างส่วนติดต่อผู้ใช้งาน (GUI)

2. MQTT (Message Queuing Telemetry Transport)

บทบาทในโครงการ: ใช้สำหรับส่งข้อมูลจาก ไมโครคอนโทรลเลอร์ (ที่เชื่อมกับเซ็นเซอร์อินฟาเรด) มายังโปรแกรม รองรับการสมัคร (Subscribe) และเผยแพร่ (Publish) ข้อมูลผ่านหัวข้อ (Topic) เช่น fitness_test/# ตรวจจับสถานะของผู้เล่นเมื่อผ่านจุด A และ B

3. Tkinter (Python GUI Library)

บทบาทในโครงการ: ใช้สร้างหน้าต่างโปรแกรมสำหรับแสดงข้อมูล เช่น ตารางแสดงผลของผู้เล่น (Treeview), ปุ่มเริ่มการทดสอบ, และตัวจับเวลา แสดงสถานะของผู้เล่น (เช่น "Passed" หรือ "Fails") พร้อมการเปลี่ยนสี (เขียวสำหรับผ่าน, แดงสำหรับไม่ผ่าน)

4. Threading (การทำงานแบบหลายเธรด)

บทบาทในโครงการ: ใช้ในการจัดการจับเวลาและตรวจสอบสถานะของผู้เล่นในขณะที่ยังคงตอบสนอง กับ GUI ได้อย่างรวดเร็ว ทำให้การนับถอยหลังของเวลาและการตรวจจับสัญญาณเซ็นเซอร์ทำงานได้ไม่ สะดุด

5. ESP32 (Microcontroller)

บทบาทในโครงการ: ใช้ในการรับข้อมูลจากเซ็นเซอร์ IR และส่งข้อมูลผ่านโปรโตคอล MQTT ไปยัง โปรแกรม Python รองรับการตรวจจับนักกีฬาหลายคนพร้อมกันโดยใช้เซ็นเซอร์ IR หลายตัว

6. เซ็นเซอร์ IR (E18-D80NK)

บทบาทในโครงการ: ตรวจจับการเคลื่อนที่ของนักกีฬาที่ผ่านจุดตรวจ A และ B ส่งสัญญาณไปยัง ไมโครคอนโทรลเลอร์ เพื่อรายงานสถานะว่าผ่านจุดตรวจหรือไม่

7. เครือข่ายไร้สาย (Wi-Fi)

บทบาทในโครงการ: รองรับการส่งข้อมูลแบบเรียลไทม์ระหว่าง ไมโครคอนโทรลเลอร์ และ คอมพิวเตอร์ที่รันโปรแกรม Python ช่วยให้ระบบสามารถทำงานได้แบบไร้สาย ทำให้การติดตั้งอุปกรณ์ ในสนามทดสอบสะดวกขึ้น

ร. ท่านใช้วัสดุ อุปกรณ์ ที่มีราคาประหยั	ัด สามารถหาซื้อได้ในประ	เทศ เพื่อผลิตผลงานสิ่งประดิษฐ์
หรือไม่		
ไม่ใช่		ใช่
6. ท่านมีเอกสาร งานวิจัย ที่เกี่ยวข้อง ส	นับสนุนผลงานสิ่งประดิษฐ	ฐ์ของท่านหรือไม่ อย่างไร
ไม่มี		
🖬 ี่มี (โปรดระบุ)		
1. Bangsbo, J., Iaia, F. M., & Krust	rup, P. (2008). The Yo-Yo	intermittent recovery test: A usefu

- Bangsbo, J., Iaia, F. M., & Krustrup, P. (2008). The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Medicine, 38(1), 37-51. https://pubmed.ncbi.nlm.nih.gov/18081366
- Krustrup, P., Mohr, M., Amstrup, T., Rysgaard, T., Johansen, J., Steensberg, A., ... & Bangsbo, J. (2003). The Yo-Yo intermittent recovery test: Physiological response, reliability, and validity. Medicine & Science in Sports & Exercise, 35(4), 697-705. https://pubmed.ncbi.nlm.nih.gov/12673156
- Castagna, C., Impellizzeri, F. M., Chamari, K., Carlomagno, D., & Rampinini, E. (2006). Aerobic fitness and yo-yo continuous and intermittent tests performances in soccer players: A correlation study. Journal of Strength and Conditioning Research, 20(2), 320-325. https://pubmed.ncbi.nlm.nih.gov/16686556
- Deprez, D., Fransen, J., Lenoir, M., Philippaerts, R., & Vaeyens, R. (2015). The Yo-Yo intermittent recovery test level 1 is reliable and valid to assess intermittent endurance capacity in young high-level soccer players. Biology of Sport, 32(1), 65-70. https://pubmed.ncbi.nlm.nih.gov/25713677
- 5. Buchheit, M. (2008). The 30-15 intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players. Journal of Strength and Conditioning Research, 22(2), 365-374. https://pubmed.ncbi.nlm.nih.gov/18550942
- Bangsbo, J. (1994). Fitness training in football A scientific approach. HO+ Storm, Bagsvaerd, Denmark.

7. โปรดระบุรายละเอียดวัสดุ อุปกรณ์ที่ใช้ในการผลิตผลงานสิ่งประดิษฐ์ แต่ละรายการของท่าน

1. ESP32 (Microcontroller)

รายละเอียด: ESP32 เป็นไมโครคอนโทรลเลอร์ที่มีความสามารถในการเชื่อมต่อ Wi-Fi และ Bluetooth คุณสมบัติหลัก: Dual-core CPU รองรับการเชื่อมต่อ Wi-Fi GPIO สำหรับเชื่อมต่อเซ็นเซอร์ บทบาท: รับข้อมูลจากเซ็นเซอร์และส่งผ่าน MQTT ไปยังคอมพิวเตอร์ จำนวน: 2 ชุด (สำหรับเซ็นเซอร์แต่ละจุด)

2. เซ็นเซอร์อินฟราเรด (IR Sensor - รุ่น E18-D80NK)

รายละเอียด: เซ็นเซอร์ตรวจจับวัตถุที่ใช้แลงอินฟราเรด สามารถตรวจจับการเคลื่อนใหวในระยะ 80 ซม.

คุณสมบัติหลัก: ตรวจจับวัตถุแบบไม่สัมผัส ระยะตรวจจับปรับได้ ใช้แรงดันไฟฟ้า 5V

บทบาท: ตรวจจับการเคลื่อนที่ของนักกีฬาเมื่อผ่านจุด A และ B

จำนวน: 4 ตัว (สำหรับนักกีฬา 2 คน, 2 ตัวต่อคน)

3. สายไฟ Wire

รายละเอียด: สายไฟสำหรับเชื่อมต่อวงจรระหว่าง ESP32 และเซ็นเซอร์ บทบาท: ใช้สำหรับการส่งสัญญาณไฟฟ้าระหว่างอุปกรณ์ต่าง ๆ

4. ตัวต้านทาน (Resistor)

รายละเอียด: อุปกรณ์สำหรับควบคุมกระแสไฟฟ้าในวงจร

ค่า: 220 Ω หรือ 1k Ω ตามความต้องการของวงจรเซ็นเซอร์ IR

บทบาท: ใช้ในการป้องกันกระแสไฟเกินและปรับค่าแรงดัน

5. แบตเตอรี่ ชนิดชาจน์ไฟใหม่ได้ (1860 2 Cell)

บทบาท: ใช้ในการป้อนไฟเลี้ยงระบบวงจรและชาจน์ไฟใหม่ได้ทำให้อุปกรณ์ไม่ต้องต่อสายไฟตลอดเวลา

6. Body case สำหรับใส่ตัวอุปกรณ์

8. โปรดระบุรายละเอียดงบประมาณในการผลิตผลงานสิ่งประดิษฐ์ แต่ละรายการของท่าน

- 1. ESP32 (Microcontroller) ราคา 115 บาท / ตัว
- 2. เซ็นเซอร์อินฟราเรด (IR Sensor รุ่น E18-D80NK) ราคา 57 บาท / ตัว
- 3. สายไฟ Wire ราคาประมาณ 10 บาท / ตัว
- 4. ตัวต้านทาน (Resistor) ราคาประมาณ 5 บาท / ตัว
- 5. แบตเตอรี่ ชนิดชาจน์ไฟใหม่ได้ (1860 2 Cell) ราคา 167 บาท / ตัว
- Body case สำหรับใส่ตัวอุปกรณ์ ราคา 28 บาท / ตัว
 รวมเป็นเงินทั้งสิ้น 382 บาท / 1 เซ็นเซอร์
 สำหรับ 1 ผู้ทดสอบจะรวมเป็นเงินทั้งสิ้น 764 บาท (2 เซ็นเซอร์)
 สำหรับ 10 ผู้ทดสอบจะรวมเป็นเงินทั้งสิ้น 7,640 บาท (20 เซ็นเซอร์)

		40	م ه ه	e 60	0 ₩	ауі	. 7
9.	ผลงานของท่า	านมลข	สทธด	านทรพยส	ันทางปญญ	าหรอเม	อยางเร

ไม่มี		
มี สิทธิบัตรเลขที่	ออกเมื่อวันที่	เรื่อง

อนุสิทธิบัตรเลขที่	ออกเมื่อวันที่	.เรื่อง
 อยู่ระหว่างการยื่นขอ สิทธิบัตรเลขที่	ออกเมื่อวันที่	เรื่อง
 อนุสิทธิบัตรเลขที่	ออกเมื่อวันที่	เรื่อง

10. แหวคิดและความสำคัญของผลงานสิ่งประดิษฐ์

การทดสอบสมรรถภาพทางกาย เช่น Beep Test และ Yo-Yo Test เป็นเครื่องมือสำคัญในการประเมิน ความสามารถทางร่างกายของนักกีฬา โดยเฉพาะในการวัด ความทนทานทางแอโรบิก (Aerobic Capacity) และ สมรรถภาพระบบพลังงาน (Energy System Performance) ซึ่งเป็นปัจจัยสำคัญในการพัฒนาทักษะการเล่นกีฬา ในหลายประเภท

แนวคิดหลักของนวัตกรรมนี้คือ: "การสร้างระบบทดสอบสมรรถภาพทางกายที่แม่นยำ ทันสมัย และ อัตโนมัติ ด้วยการผสานเทคโนโลยี IoT, เซ็นเซอร์ตรวจจับการเคลื่อนไหว, และการประมวลผลข้อมูลแบบ เรียลไทม์ เพื่อประเมินสมรรถภาพของนักกีฬาได้อย่างมีประสิทธิภาพ"

นวัตกรรมนี้ช่วยลดข้อจำกัดในการทดสอบแบบดั้งเดิม เช่น การนับคะแนนผิดพลาด การตรวจสอบด้วย สายตาที่ไม่แม่นยำ รวมถึงการบันทึกผลลัพธ์ที่ไม่เป็นระบบ โดยอาศัย ระบบตรวจจับอัตโนมัติ และ เสียง สัญญาณควบคุมจังหวะการวิ่ง เพื่อให้การทดสอบเป็นไปตามมาตรฐานสากล

ความสำคัญของผลงาน:

เพิ่มความแม่นยำในการประเมินสมรรถภาพ (Accuracy Improvement) การใช้ เซ็นเซอร์อินฟราเรด (IR Sensors) ตรวจจับการเคลื่อนไหวช่วยลดข้อผิดพลาดจากการสังเกตด้วยตาเปล่า

ความสะดวกในการจัดการและใช้งาน (Convenience & Automation) ระบบทำงานแบบ อัตโนมัติเต็ม รูปแบบ ตั้งแต่การจับเวลา การตรวจจับสถานะของผู้เล่น ไปจนถึงการแสดงผลลัพธ์ ไม่จำเป็นต้องมีเจ้าหน้าที่ จำนวนมากในการควบคุมการทดสอบ ทำให้เหมาะสำหรับการทดสอบในกลุ่มใหญ่

รองรับการทดสอบที่หลากหลาย (Versatile Testing Capability) รองรับการทดสอบทั้ง Beep Test และ Yo-Yo Test รวมถึงสามารถปรับแต่งโปรโตคอลให้เหมาะสมกับความต้องการเฉพาะได้ สามารถทดสอบนักกีฬา ได้พร้อมกันหลายคน (สูงสุด 10 คน) ด้วยการจัดการเซ็นเซอร์แบบแยกอิสระ

ผลงานนี้พัฒนาในรูปแบบ Open Source เพื่อเปิดโอกาสให้บุคคลทั่วไป นักพัฒนา นักวิจัย และนักกีฬา สามารถนำระบบนี้ไป ปรับปรุง พัฒนา และต่อยอด ได้ทั้งในส่วนของ ซอฟต์แวร์ (Software) และ ฮาร์ดแวร์ (Hardware) มุ่งเน้นการสร้าง ชุมชนนักพัฒนา ที่ร่วมกันแบ่งปันความรู้และประสบการณ์ในการพัฒนาระบบ ทดสอบสมรรถภาพทางกาย เพื่อให้เกิดการ พัฒนาอย่างต่อเนื่อง และสามารถปรับใช้งานได้หลากหลายตาม ความต้องการเฉพาะของแต่ละกลุ่มผู้ใช้งาน

11. วัตถุประสงค์ของการประดิษฐ์ผลงานสิ่งประดิษฐ์

- 1. เพื่อพัฒนาระบบทดสอบสมรรถภาพทางกายที่มีความแม่นยำและน่าเชื่อถือลดความคลาดเคลื่อนที่ เกิดจากการประเมินด้วยสายตาและวิธีการแบบดั้งเดิมใช้ เทคโนโลยีเซ็นเซอร์ (IR Sensors) และ ระบบจับเวลาอัตโนมัติ เพื่อเพิ่มความถูกต้องในการทดสอบ
- 2. เพื่อสนับสนุนการทดสอบสมรรถภาพที่หลากหลายรูปแบบ รองรับทั้ง Beep Test และ Yo-Yo Test รวมถึงสามารถปรับแต่งโปรโตคอลการทดสอบให้เหมาะสมกับกีฬาและกลุ่มเป้าหมายที่แตกต่างกัน ทดสอบได้ทั้ง สมรรถภาพระบบแอโรบิก (Aerobic Capacity) และ แอนแอโรบิก (Anaerobic Performance)
- 3. เพื่อสร้างระบบที่สามารถใช้งานได้ง่ายและสะดวกสำหรับผู้ใช้งานทุกระดับออกแบบ GUI (Graphical User Interface) ที่ใช้งานง่าย รองรับทั้งผู้ฝึกสอน (Coaches) และนักกีฬาสามารถเริ่มการทดสอบ จัดการข้อมูล และแสดงผลลัพธ์ได้อย่างรวดเร็วและสะดวกเข้าใจง่าย
- 4. เพื่อส่งเสริมการเรียนรู้และการพัฒนาเทคโนโลยีในรูปแบบ Open Source เปิดระบบในรูปแบบ Open Source เพื่อให้บุคคลทั่วไปสามารถนำไปปรับปรุง พัฒนา และต่อยอดได้ สนับสนุนการ เรียนรู้ในด้าน IoT, การพัฒนาซอฟต์แวร์, และการออกแบบระบบฮาร์ดแวร์ สำหรับผู้ที่สนใจใน วงการเทคโนโลยี
- 5. เพื่อประยุกต์ใช้เทคโนโลยี IoT ในการพัฒนาระบบทดสอบสมรรถภาพ ใช้ ESP32 และ โปรโตคอล MQTT ในการสื่อสารแบบไร้สาย เพื่อเพิ่มความยืดหยุ่นในการติดตั้งและใช้งาน สามารถขยายระบบ ได้ง่ายเมื่อต้องการรองรับผู้เล่นจำนวนมากหรือต้องการเพิ่มอุปกรณ์เสริม
- 6. เพื่อส่งเสริมการพัฒนาสมรรถภาพทางกายในระดับบุคคลและทีมกีฬา ช่วยให้ โค้ช และ นักกีฬา เข้าใจจุดแข็งและจุดที่ต้องพัฒนาในการฝึกซ้อมช่วยในการออกแบบโปรแกรมฝึกซ้อมที่เหมาะสมกับ ความสามารถของนักกีฬาแต่ละคน โดยอุปกรณ์นี้มีราคาที่ถูกและสามารถเข้าถึงได้ง่าย

12. ข้อบ่งชี้ความเป็นหวัตกรรมของผลงานสิ่งประดิษฐ์

- การผสานเทคโนโลยี IoT เพื่อเพิ่มประสิทธิภาพในการทดสอบ (Integration of IoT Technology)
 ใช้ ESP32 และ โปรโตคอล MQTT เพื่อเชื่อมต่ออุปกรณ์แบบไร้สาย ช่วยให้การรับส่งข้อมูลระหว่าง
 เซ็นเซอร์และระบบประมวลผลทำได้อย่าง รวดเร็วและแม่นยำ
 รองรับการ ขยายระบบ (Scalability) ได้ง่าย โดยสามารถเพิ่มเซ็นเซอร์และผู้เล่นได้อย่างไม่จำกัด
- 2. ระบบตรวจจับการเคลื่อนใหวแบบอัตโนมัติ (Automated Motion Detection System)

- ใช้ เซ็นเซอร์อินฟราเรด (IR Sensors) ในการตรวจจับการเคลื่อนไหวของนักกีฬาแบบเรียลไทม์ ช่วยลดข้อผิดพลาดจากการสังเกตด้วยสายตา ระบบสามารถ แยกแยะการเคลื่อนไหวของผู้เล่นแต่ ละคน ได้อย่างแม่นยำ แม้จะทำการทดสอบพร้อมกันหลายคน
- 3. การวิเคราะห์และแสดงผลแบบเรียลไทม์ (Real-Time Data Processing & Visualization) ระบบสามารถ แสดงผลสถานะของผู้เล่น ได้แบบเรียลไทม์ผ่าน GUI (Graphical User Interface) ที่ ออกแบบมาให้ใช้งานง่าย รองรับการ บันทึกผลการทดสอบอัตโนมัติ
- 4. รองรับการทดสอบสมรรถภาพที่หลากหลาย (Multi-Protocol Fitness Testing)
 สามารถปรับแต่งโปรโตคอลเพื่อรองรับทั้ง Beep Test และ Yo-Yo Test รวมถึงสามารถพัฒนา
 เพิ่มเติมสำหรับการทดสอบสมรรถภาพในรูปแบบอื่น ๆ ได้ ในอนาคต
- 5. นวัตกรรม Open Source เพื่อการพัฒนาต่อยอด (Open Source Innovation for Continuous Development) ระบบนี้ถูกออกแบบในรูปแบบ Open Source เปิดโอกาสให้ นักพัฒนาและนักวิจัย สามารถนำไปปรับปรุง ต่อยอด และพัฒนาได้อย่างอิสระ
- 6. การลดภาระการทำงานของผู้ฝึกสอน (Coach-Friendly System)
 ลดความจำเป็นในการใช้เจ้าหน้าที่หลายคน ในการควบคุมการทดสอบ เนื่องจากระบบสามารถ
 ทำงานอัตโนมัติได้เกือบทั้งหมด ช่วยให้ โค้ชและผู้ฝึกสอน สามารถมุ่งเน้นไปที่การวิเคราะห์ผลลัพธ์
 และวางแผนการฝึกซ้อมได้อย่างเต็มที่

13. ประโยชน์ด้านวิทยาศาสตร์การกีฬาที่ได้รับจากผลงานสิ่งประดิษฐ์

- การประเมินสมรรถภาพทางกายอย่างแม่นยำ (Accurate Fitness Assessment)
 ระบบสามารถ ทดสอบสมรรถภาพ ได้อย่างแม่นยำลดความคลาดเคลื่อนจากการประเมินด้วยสายตา ทำให้ได้ ผลลัพธ์ที่น่าเชื่อถือและถูกต้องมากขึ้น
- 2. การเก็บและวิเคราะห์ข้อมูลเพื่อการวิจัย (Data Collection for Sports Science Research) สามารถบันทึกข้อมูลการทดสอบได้อย่างเป็นระบบ ข้อมูลที่ได้สามารถนำไป วิเคราะห์ เพื่อศึกษา แนวโน้มการพัฒนาสมรรถภาพทางกายของนักกีฬาในระยะยาว
- 3. การออกแบบโปรแกรมฝึกซ้อมที่เหมาะสม (Optimizing Training Programs)
 ข้อมูลที่ได้จากการทดสอบสามารถนำไปใช้ในการ ปรับปรุงโปรแกรมการฝึกซ้อม ให้สอดคล้องกับ
 ความสามารถเฉพาะบุคคลของนักกีฬา ช่วยให้โค้ชสามารถวางแผนการฝึกซ้อมเพื่อ เพิ่ม
 ประสิทธิภาพการทำงานของระบบพลังงาน ที่เหมาะสมกับประเภทกีฬาของนักกีฬา
- 4. การประยุกต์ใช้ในการทดสอบสำหรับกีฬาหลากหลายประเภท (Application in Multiple Sports) รองรับการทดสอบสมรรถภาพทางกายในกีฬาหลากหลายประเภท เช่น ฟุตบอล, บาสเกตบอล, ฟุต ซอล, และกีฬาอื่น ๆ ที่ต้องการความทนทาน สามารถปรับแต่งโปรโตคอลการทดสอบให้เหมาะสม กับ ความต้องการเฉพาะของแต่ละกีฬาได้ในอนาคต

5. การสร้างมาตรฐานใหม่ในการทดสอบสมรรถภาพ ระบบนี้ช่วยในการ สร้างมาตรฐานใหม่ สำหรับ การทดสอบสมรรถภาพทางกาย โดยการใช้ เทคโนโลยีสมัยใหม่ ในการทดสอบที่มีประสิทธิภาพสูง ช่วยให้การทดสอบมี ความน่าเชื่อถือและเป็นมาตรฐานสากล ซึ่งสามารถนำไปใช้ได้ในทุกระดับ ตั้งแต่มือสมัครเล่นจนถึงนักกีฬาระดับอาชีพ

ส่วนที่ 3 ข้อมูลการรับเงินรางวัล

เอกสารการรับเงิน

กรุณาแจ้งรายชื่อผู้รับเงิน ในกรณีที่ผ่านการคัดเลือก กรมพลศึกษาจะดำเนินการติดต่อผู้ที่แจ้งรายชื่อ เพื่อขอรายละเอียดเลขบัญชีและเอกสารการรับเงินต่อไป ชื่อ – สกุล (ผู้รับเงิน) นาย พัชระ อัลอุมารี เลขประจำตัวประชาชน 1100702403790 ที่อยู่ตามบัตรประชาชน

บ้านเลขที่ 18 หมู่บ้านนักกีฬาแหลมทอง ซ. 12/3 ถนนกรุงเทพกรีฑา เขตสะพานสูง แขวงทับช้าง กรุงเทพมหานคร 10250

โทรศัพท์ 0960614238

อีเมล Patcharaalumaree@gmail.com

ผู้ประสานงานโครงการ : นางสาวมัลลิกา บุญเปรม

กรุณาส่ง ใบสมัครพร้อมเอกสารหลักฐานการสมัคร ตามข้อ 4 แห่งการประกวดนวัตกรรมด้านวิทยาศาสตร์ การกีฬา ประจำปี พ.ศ. ๒๕๖8 (Sport Science Innovation Contest 2025)

มาที่อีเมล : saraban@dpe.go.th

- *สามารถติดต่อขอรับใบสมัคร และรายละเอียดการประกวด ได้ที่
- กลุ่มพัฒนาเทคโนโลยีทางการกีฬา สำนักวิทยาศาสตร์การกีฬา กรมพลศึกษา กระทรวงการท่องเที่ยวและ กีฬา โทรศัพท์/โทรสาร 0-2219-2671
- http://www.dpe.go.th เมนู ข่าวองค์กร > ข่าวสารองค์กร > ข่าวด้านวิทยาศาสตร์การกีฬา
- http://sportscience.dpe.go.th
- http://www.facebook.com/สำนักวิทยาศาสตร์การกีฬา กรมพลศึกษา > กล่องข้อความ

กำหนดการประกวด

การดำเนินงาน	ระยะเวลา	ช่องทาง
ผู้สมัคร	1 ม.ค. 68 –	- กลุ่มพัฒนาเทคโนโลยีทางการกีฬา
ติดต่อขอรับใบสมัคร และรายละเอียด	31 มี.ค. 68	สำนักวิทยาศาสตร์การกีฬา กรมพลศึกษา
การประกวด ได้ที่		กระทรวงการท่องเที่ยวและกีฬา
		โทรศัพท์/โทรสาร 0-2219-2671
		- http://www.dpe.go.th เมนู ข่าวองค์กร >
		ข่าวสารองค์กร > ข่าวด้านวิทยาศาสตร์การ
		ก็พา
		- http://sportscience.dpe.go.th
		- http://www.facebook.com/สำนักวิทยาศาสตร์
		การกีฬา กรมพลศึกษา >
		กล่องข้อความ
ส่งใบสมัครพร้อมเอกสารหลักฐานการ	1 ม.ค. 68 –	อีเมล : saraban@dpe.go.th
สมัครตามข้อ ๔ แห่งการประกวด	31 มี.ค. 68	
นวัตกรรมด้านวิทยาศาสตร์การกีฬา		
ประจำปี พ.ศ. ๒๕๖8 (Sport Science		
Innovation Contest 2025)		
ประชุมพิจารณาคลิปวิดีโอฯและ	2 เม.ย. 68	สำนักวิทยาศาสตร์การกีฬา กรมพลศึกษา
เอกสารหลักฐานการสมัครที่ส่งเข้า		
ประกวด		
ประกาศรายชื่อผู้ผ่านเข้าสู่รอบชิงชนะเลิศ	7 เม.ย. ๖8	- http:/www.dpe.go.th เมนู ข่าวองค์กร >
		ข่าวสารองค์กร >ข่าวด้านวิ๊ทยาศาสตร์การกีฬา
		- http://sportscience.dpe.go.th
		- http://www.facebook.com/สำนักวิทยาศาสตร์
		การกีฬา กรมพลศึกษา

การดำเนินงาน	ระยะเวลา	ช่องทาง
จัดแสดงผลงานสิ่งประดิษฐ์และประกวด	6 ส.ค. 68	- ทีมที่ผ่านรอบคัดเลือกทุกทีม จะต้องมาจัด
รอบชิงชนะเลิศ		แสดงผลงานสิ่งประดิษฐ์เพื่อนำเสนอต่อ
		คณะกรรมการ ตั้งแต่เวลา 10.00 น. และ
		ผู้ประกวดต้องอยู่ ณ บูทที่จัดแสดงตลอดเวลา
		ตั้งแต่รายงานตัวจนจบการประกวดฯ
		- ผู้ที่สนใจสามารถรับชมผ่าน Facebook
		Fanpage "สำนักวิทยาศาสตร์การกีฬา กรมพล
		ศึกษา"
		หรือที่เว็บไซต์http://www.facebook.com/
		สำนักวิทยาศาสตร์การกีฬากรมพลศึกษา

หมายเหตุ : กำหนดการประกวดสามารถปรับเปลี่ยนได้ตามความเหมาะสม