Теория и реализация языков программирования.

Задание 6: Грамматики

Сергей Володин, 272 гр.

задано 2013.10.09

Задача 1

Задача 2

 $\Sigma\stackrel{\text{\tiny def}}{=}\{a,b\},\,\Sigma^*\supset L\stackrel{\text{\tiny def}}{=}\{w\in\Sigma^*\big|w=w^R\}$ — язык палиндромов из a,b.

1. Определим КС-грамматику $\Gamma \stackrel{\text{def}}{=} (\{S\}, \Sigma, P, S), P \stackrel{\text{def}}{=} \big\{\underbrace{S \longrightarrow \varepsilon}, \underbrace{S \longrightarrow aSa}, \underbrace{S \longrightarrow bSb}, \underbrace{S \longrightarrow a}, \underbrace{S \longrightarrow b}, \underbrace{S \longrightarrow b}, \underbrace{S \longrightarrow bSb}, \underbrace{S \longrightarrow a}, \underbrace{S \longrightarrow$

Докажем, что $L(\Gamma) = L$:

- (a) $L(\Gamma) \subseteq L$. Пусть $w \in L(\Gamma) \Rightarrow S \Longrightarrow^* w$. |w| = n. Рассмотрим последовательность $\{w_k\}_{k=0}^I \subset (N \cup \Sigma)^*$ слов в выводе. $w_0 = S, \ w_I = w$. Индукцией по k докажем $P(k) = [w_k = w_k^R, \forall i \colon w_k[i] = S \hookrightarrow i = \frac{|w_k|+1}{2}]$.
 - 1. $k = 0 \Rightarrow w_k \equiv w_0 = S$. Поэтому $\exists ! i = 1 : w_0[i] = S$. Но $1 \equiv \frac{1+1}{2}$ и $w_0^R = S^R = S = w_0 \Rightarrow P(0)$
 - 2. Пусть P(n), n < I. Докажем, P(n+1). $P(n) \Rightarrow w_n = w_n^R, \forall i : w_n[i] = S \hookrightarrow i = \frac{|w_n|+1}{2}$.

Предположим, что $\nexists i \colon w_n[i] = S \Rightarrow w \in \Sigma^*$. Тогда ни одно правило не может быть применено, так как в левой части каждого правила $S \in N$. Но n < I (это не конец вывода) \Rightarrow противоречие.

Значит, $\exists i \colon w_n[i] = S$. Но $P(n) \Rightarrow \forall i \colon w_n[i] = S \hookrightarrow i = \frac{|w_n|+1}{2}$. Поэтому $\exists ! i = \frac{|w_n|+1}{2} \colon w_n[i] = S$. Значит, $w_n = xSy$, $|x| = |y|, \ x, y \in \Sigma^*$. $w_n^R = y^R S x^R$. S в w_n входит один раз $\Rightarrow x = y^R$.

Рассмотрим правила (1)—(4):

- (1). $w_n = xSy \stackrel{(1)}{\Longrightarrow} x\varepsilon y \equiv xy = xx^R = w_{n+1}$ палиндром: $(xx^R)^R = x^{RR}x^R = xx^R$. $w_{n+1} = xy \in \Sigma^* \Rightarrow \forall i \hookrightarrow w_{n+1}[i] \neq S \Rightarrow P(n+1)$
- (2). $w_n = xSx^R \stackrel{(2)}{\Longrightarrow} xaSax^R = w_{n+1}$. $w_{n+1}^R = x^R a^R S^R a^R x^R = xaSax^R \equiv w_{n+1}$. $a \neq S \Rightarrow \exists ! i \colon w_{n+1} = S, i = \frac{|w_n|+1}{2} + 1 = \frac{|w_n|+3}{2} \equiv \frac{|w_{n+1}|+1}{2} \Rightarrow P(n+1) \blacksquare.$
- (3). $w_n = xSx^R \stackrel{(3)}{\Longrightarrow} xbSbx^R = w_{n+1}. \ w_{n+1}^R = x^R b^R S^R b^R x^R = xbSbx^R \equiv w_{n+1}. \ b \neq S \Rightarrow \exists! i \colon w_{n+1} = S,$ $i = \frac{|w_n|+1}{2} + 1 = \frac{|w_n|+3}{2} \equiv \frac{|w_{n+1}|+1}{2} \Rightarrow P(n+1) \blacksquare.$
- $(4). \ w_n = xSx^R \xrightarrow{(4)} xax^R = w_{n+1}. \ w_{n+1}^R = x^R a^R x^R = xax^R \equiv w_{n+1}. \ w_{n+1} = xax^R \in \Sigma^* \Rightarrow \forall i \hookrightarrow w_{n+1}[i] \neq S \Rightarrow P(n+1) \blacksquare$
- $(5). \ w_n = xSx^R \overset{(5)}{\Longrightarrow} xbx^R = w_{n+1}. \ w_{n+1}^R = x^R^Rb^Rx^R = xbx^R \equiv w_{n+1}. \ w_{n+1} = xbx^R \in \Sigma^* \Rightarrow \forall i \hookrightarrow w_{n+1}[i] \neq S \Rightarrow P(n+1) \blacksquare$

Итак, доказано $\forall k \in \overline{0,I} \hookrightarrow P(k) \Rightarrow P(I) \Rightarrow w \equiv w_I \stackrel{P(I)}{=} w_I^R \equiv w^R \Rightarrow w \in L \blacksquare$

- (b) $L \subseteq L(\Gamma)$. Пусть $w \in L \Rightarrow w^R = w$. |w| = n. Рассмотрим $n \mod 2$:
 - 0. $n \mod 2 = 0 \Rightarrow w = xy, \ |x| = |y|. \ w = w^R \Rightarrow xy = y^R x^R.$ Поскольку $|x| = |y|, \ y = x^R \Rightarrow \boxed{w = xx^R}.$ 0. $n \mod 2 = 1 \Rightarrow w = x\sigma y, \ |x| = |y|, \ \sigma \in \Sigma. \ w = w^R \Rightarrow x\sigma y = y^R \sigma^R x^R = y^R \sigma x^R.$ Так как $|x| = |y|, \ y = x^R \Rightarrow x^R \Rightarrow x\sigma y = y^R \sigma^R x^R = y^R \sigma^R x^R$.
 - 0. $n \mod 2 = 1 \Rightarrow w = x\sigma y, |x| = |y|, \sigma \in \Sigma.$ $w = w^R \Rightarrow x\sigma y = y^R\sigma^R x^R = y^R\sigma x^R.$ Τακ κακ $|x| = |y|, y = x^R = w = x\sigma x^R$.

Значит, $L = \{xx^R, xax^R, xbx^R | x \in \Sigma^*\}.$

Построим вывод $S \Longrightarrow^* xSx^R$:

- а. Пусть $x = \varepsilon$. $S \stackrel{(1)}{\Longrightarrow} \varepsilon = \varepsilon \varepsilon^R = w \Rightarrow w \in L(\Gamma) \blacksquare$.
- b. Иначе $x=x_1...x_m, \forall i\in\overline{1,m}\hookrightarrow x_i\in\Sigma$. Рассмотрим символы $x_m,...,x_1$. Применим правило (2), если $x_i=a$ и (3) иначе. Примененное правило обозначим за R(i) Получим $S\stackrel{(R(m))}{\Longrightarrow}x_mSx_m\Longrightarrow...\stackrel{(R(1))}{\Longrightarrow}x_1...x_mSx_m...x_1$.

Теперь покажем, как получить w:

- 1. $w=xx^R$. Было получено $S\Longrightarrow^*xSx^R$. Тогда $S\Longrightarrow^*xSx^R\stackrel{(1)}{\Longrightarrow}xx^R$
- 2. $w=xax^R$. Было получено $S\Longrightarrow^*xSx^R$. Тогда $S\Longrightarrow^*xSx^R\stackrel{(4)}{\Longrightarrow}xax^R$
- 3. $w=xbx^R$. Было получено $S\Longrightarrow^*xSx^R$. Тогда $S\Longrightarrow^*xSx^R\stackrel{(5)}{\Longrightarrow}xbx^R$

Получаем $w \in L(\Gamma)$.

Otbet:
$$\Gamma \stackrel{\text{\tiny def}}{=} (\{S\}, \Sigma, P, S), \ P \stackrel{\text{\tiny def}}{=} \left\{S \longrightarrow \varepsilon, \ S \longrightarrow aSa, \ S \longrightarrow bSb, \ S \longrightarrow a, \ S \longrightarrow b \right\}$$

2. Определим грамматику $\overline{\Gamma}$

Задача 3

$$\Sigma \stackrel{\text{def}}{=} \{a,b\}. \ \Sigma^* \supset L^= \stackrel{\text{def}}{=} \{w \in \Sigma^* \big| |w|_a = |w|_b\}. \ \text{KC-грамматика} \ \Gamma = \{N,\Sigma,P,S\}, \ P \stackrel{\text{def}}{=} \big\{\underbrace{S \longrightarrow SS}_{(1)}, \underbrace{S \longrightarrow aSb}_{(2)}, \underbrace{S \longrightarrow bSa}_{(3)}\big\}$$

Задача 4

 $\Sigma\stackrel{\text{\tiny def}}{=}\{a,b\},\ \Sigma^*\supset L\stackrel{\text{\tiny def}}{=}\{w\in\Sigma^*\big||w|_b\leqslant|w|_a\}.$ Определим грамматику Γ .

Задача 5