

CS240 Algorithm Design and Analysis

Lecture 9

Network Flow (Cont.)

Quan Li Fall 2024 2024.10.27

Team	Wins	Losses	To play	Against = r _{ij}			
i	Wi	l _i	r _i	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

· Which teams have a chance of finishing the season with most wins?

- Montreal eliminated since it can finish with at most 80 wins, but Atlanta already has 83
- $w_i + r_i < w_j \rightarrow team i eliminated$
- Sufficient, but not necessary!

Team	Wins	Losses	To play	Against = r _{ij}				
i	Wi	l _i	r _i	Atl	Phi	NY	Mon	
Atlanta	83	71	8	-	1	6	1	
Philly	80	79	3	1	-	0	2	
New York	78	78	6	6	0	-	0	
Montreal	77	82	3	1	2	0	=	

- · Which teams have a chance of finishing the season with most wins?
 - Philly can win 83, but still eliminated...
 - If Atlanta loses all games, then New York wins 84...

Baseball elimination problem

- Set of teams S
- Distinguished team $z \in S$
- Team x has won w_x games already
- Teams x and y play each other g_{xy} additional times
- Is there any outcome of the remaining games in which team z finishes with the most (or tied for the most) wins?

Baseball Elimination: Max Flow Formulation

- Can team 3 finish with most wins?
 - Assume team 3 wins all remaining games \rightarrow w₃ + g₃ wins
 - Divvy remaining games so that all teams have $\leftarrow w_3 + g_3$ wins

Baseball Elimination: Max Flow Formulation

- Theorem. Team 3 is not eliminated iff max flow saturates all edges leaving source
 - Integrality theorem → each remaining game between x and y added to number of wins for team x or team y
 - Capacity on (x, t) edges ensure no team wins too many games

Team	Wins	Losses	To play	Against = r _{ij}				
i	w _i	l _i	r _i	NY	Bal	Bos	Tor	Det
NY	75	59	28	_	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

- · Which teams have a chance of finishing the season with most wins?
 - Detroit could finish season with 49 + 27 = 76 wins

Team	Wins	Losses	To play	Against = r _{ij}				
i	w _i	l _i	r _i	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996

- Which teams have a chance of finishing the season with most wins?
 - Detroit could finish season with 49 + 27 = 76 wins
- Certificate of elimination. R = {Ny, Bal, Bos, Tor}
 - Have already won w(R) = 278 games

- Remaining games among R is r(R) = 3+8+7+2+7 = 27
- Average team in R wins at least (278 + 27)/4 > 76 games

Certificate of elimination

$$T \subseteq S$$
, $w(T) := \sum_{i \in T}^{\# \text{ wins}} w_i$, $g(T) := \sum_{\{x,y\} \subseteq T}^{\# \text{ remaining games}} \sum_{\{x,y\} \subseteq T}^{\# \text{ remaining games}}$,

• Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a subset T* such that

$$\frac{\overline{w(T^*) + g(T^*)}}{|T^*|} > w_z + g_z$$

- Proof. ←
 - The average number of wins of teams in T* is larger than the maximum number of wins of z

Proof. →

- Use max flow formulation, and consider min cut (A, B)
- Define T* = team nodes on source side of min cut
- Observer $x-y \in A$ iff both $x \in T^*$ and $y \in T^*$
 - Infinite capacity edges ensure if $x-y \in A$ then $x \in A$ and $y \in A$
 - If $x \in A$ and $y \in A$ but $x-y \in B$, then adding x-y to A decreases capacity of cut

Proof. →

- Use max flow formulation, and consider min cut (A, B)
- Define T* = team nodes on source side of min cut
- Observer $x-y \in A$ iff both $x \in T^*$ and $y \in T^*$
- Since z is eliminated, by max-flow min-cut theorem:

$$g(S - \{z\}) > cap(A,B)$$

$$= g(S - \{z\}) - g(T^*) + \sum_{x \in T^*}^{\text{capacity of team edges entering t}} (w_z + g_z - w_x)$$

$$= g(S - \{z\}) - g(T^*) - w(T^*) + |T^*| (w_z + g_z)$$

Project Selection

Project Selection

Projects with prerequisites

Can be positive or negative

- \bullet Set P of possible projects. Project v has associated revenue p_{ν}
 - Some projects generate money: create e-commerce interface, design web page
 - Others cost money: upgrade computers, get site license
- Set of prerequisites E. If (v, w) ∈ E, can't do project v unless also do project w
- A subset of projects A ⊆ P is feasible if the prerequisite of every project in A also belongs to A
- Project selection. Choose a feasible subset of projects to maximize revenue

Project Selection: Prerequisite Graph

· Prerequisite graph

- Include an edge from v to w if can't do v without also doing w
- {v, w, x} is feasible subset of projects
- {v, x} is infeasible subset of projects

infeasible

Project Selection: Min Cut Formulation

Min Cut formulation

- Assign capacity ∞ to all prerequisite edges
- Add edge (s, v) with capacity p_v if $p_v > 0$
- Add edge (v, t) with capacity $-p_v$ if $p_v < 0$
- For notational convenience, define $p_s = p_t = 0$

Project Selection: Min Cut Formulation

- Claim. (A, B) is min cut iff A { s } is optimal set of project
 - Infinite capacity edges ensure A { s } is feasible
 - Max revenue because:

$$cap(A,B) = \sum_{v \in B: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v)$$

$$= \sum_{v \in B: p_v > 0} p_v + \sum_{v \in A: p_v > 0} p_v - \sum_{v \in A: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v)$$

$$= \sum_{v: p_v > 0} p_v - \sum_{v \in A} p_v$$

Open Pit Mining

- Open-pit mining. (studied since early 1960s)
 - · Blocks of earth are extracted from surface to retrieve ore
 - Each block v has net value p_v = value of ore- processing cost
 - · Can't remove block v before w or x

立志成才报图谷民

Summary

Concepts

- s-t flow
- Max-flow
- s-t cut
- Min-cut

Max-flow min-cut theorem: The value of the max flow is equal to the value of the min cut

Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for all edge e ∈ E
- Find an augmenting path P in the residual graph G_f
 - Can be chosen using capacity scaling
- Augment flow along path P
- Repeat until you get stuck

```
Ford-Fulkerson(G, s, t, c) {
   foreach e \in E f(e) \leftarrow 0
   G_f \leftarrow residual graph
   while (there exists augmenting path P) {
       f \leftarrow Augment(f, c, P)
       update G<sub>f</sub>
   return f
```


Applications

Problems covered in class

- Bipartite Matching
- Disjoint Paths
- Circulation with Demands (+ edge lower bounds)
- Survey Design
- Image Segmentation
- Baseball Elimination
- Project Selection

