Learning a selectivity—invariance—selectivity feature extraction architecture for images

Michael U. Gutmann University of Helsinki

michael.gutmann@helsinki.fi

Aapo Hyvärinen University of Helsinki

aapo.hyvarinen@helsinki.fi

Motivation

Motivation

- Research question
- Data
- Architecture
- Learning
- Results
- Summary

- We are very good at detecting specific patterns while being invariant/tolerant to possible variations.
- It is the pairing of selectivity with invariance which is important. ("tolerant selectivity")
- Tolerant selectivities occur at multiple levels

(a) "Low-level"

(b) "Higher-level"

Lower- and higher-level tolerant selectivities:

- a) Same face, luminance and contrast vary
- b) Same face, facial expression varies
 (From "Facial Expressions A Visual Reference for Artists" by Mark Simon.)

Question asked and methodology

Motivation

Research question

- Data
- Architecture
- Learning
- Results
- Summary

Basic hypothesis:

Higher level tolerant selectivities emerge through a sequence of elementary *selectivity* and *invariance* computations.

(see for example: Riesenhuber & Poggio, Nature 1999; Kouh & Poggio, NeCo 2008; Rust & Stocker, Curr Op Neurobiol, 2010)

- Question asked: In a system with three processing layers, what should be selected and tolerated at each level of the hierarchy?
- Methodology:
 - ◆ Learn the selectivity and invariance computations from images, using as few assumptions as possible.
 - ◆ Learning = fitting a probability density function

Data and preprocessing

- Motivation
- Research guestion

Data

- Architecture
- Learning
- Results
- Summary

- Tiny images dataset, converted to gray scale: complete scenes downsampled to 32 by 32 images

 (Torralba et al, TPAMI 2008)
- Preprocessing:
 - Removing DC component
 - Normalizing norm after whitening
 - Reducing the dimension from $32 \cdot 32 = 1024$ to 200
- Preprocessing can be considered a form of luminance and contrast gain control, followed by low-pass filtering.

Examples from the tiny images dataset before preprocessing.

Feature extraction architecture

- Motivation
- Research guestion
- Data

Architecture

- Learning
- Results
- Summarv

- Let $\mathbf{x} \in \mathbb{R}^{200}$ be a vectorized image after preprocessing.
- Feature extraction with three processing layers:

$$y_i^{(1)} = \mathbf{w}_i^{(1)T} \mathbf{x}$$
 $i = 1 \dots 100$
$$y_k^{(2)} = f_{\text{th}} \left(\ln \left[\sum_{i=1}^{100} w_{ki}^{(2)} (y_i^{(1)})^2 + 1 \right] + b_k^{(2)} \right) \quad k = 1 \dots 50$$

$$ilde{\mathbf{y}}^{(2)} = \mathsf{gain}\;\mathsf{control}(\mathbf{y}^{(2)})$$

$$y_j^{(3)} = f_{\text{th}} \left(\mathbf{w}_j^{(3)T} \tilde{\mathbf{y}}^{(2)} + b_j^{(3)} \right)$$
 $j = 1 \dots n^{(3)}$

Thresholding function $f_{th}(u)$: smooth version of $\max(u,0)$ Gain control: centering, normalizing the norm after whitening, dimension reduction (similar to the preprocessing)

■ Parameters of interest: feature vectors $\mathbf{w}_i^{(1)}$, pooling weights $w_{ki}^{(2)} \geq 0$, higher-order feature vectors $\mathbf{w}_j^{(3)}$ Other parameters: the thresholds $b_k^{(2)}$ and $b_k^{(3)}$

Learning

- Motivation
- Research question
- Data
- Architecture

Learning

- Results
- Summary

- First, learn the parameters of layers one and two. Keeping them fixed, learn the parameters of layer three.
- For layer one and two, fit the pdf

$$p(\mathbf{x}; \underline{\mathbf{w}_i^{(1)}, w_{ki}^{(2)}, b_k^{(2)}}) \propto \exp\left[\sum_{k=1}^{50} y_k^{(2)}\right].$$

■ For layer three, fit the pdf

$$p(\mathbf{x}; \underbrace{\mathbf{w}_j^{(3)}, b_j^{(3)}}) \propto \exp \left[\sum_{j=1}^{n^{(3)}} y_j^{(3)}\right].$$

- Basic idea: the overall activity of the feature outputs determines how probable the input is.
- We do not know the partition functions: Likelihood is intractable. Use noise-contrastive estimation for the fitting.

(Gutmann and Hyvärinen, JMLR2012)

Noise-contrastive estimation

Motivation

Research guestion

Data

Architecture

Learning

Results

Summary

(Gutmann and Hyvärinen, JMLR2012)

■ Purpose: learn parameters θ of a pdf p_{θ} when you do not know the partition function.

Here:
$$p_{\theta}(\mathbf{x}) = p(\mathbf{x}; \mathbf{w}_i^{(1)}, w_{ki}^{(2)}, b_k^{(2)}) \text{ or } p_{\theta}(\mathbf{x}) = p(\mathbf{x}; \mathbf{w}_j^{(3)}, b_j^{(3)})$$

- Intuition: Learn the differences between the data and auxiliary "noise" whose properties you know. Deduce from the differences the properties of the observed data.
- More concrete:
 - 1. Choose a random variable ${\bf z}$ with known pdf $p_{\bf z}$ where sampling is easy.

Here: Uniform distribution in the sphere where the data is defined

- 2. Obtain an auxiliary sample of z ("noise").
- 3. Perform logistic regression on the data and the auxiliary "noise"; use the ratio p_{θ}/p_{z} in the regression function.
- The procedure provides a consistent estimator of θ .

Results, layers one and two

The $\mathbf{w}_i^{(1)}$ are Gabor-like, the $w_{ki}^{(2)}$ are sparse (94.5%: < 10^{-6} ; 5.1%: > 10) Mostly complex-cell like pooling

Each row corresponds to a different $y_k^{(2)}$

$$y_k^{(2)} = f_{\text{th}} \left(\ln \left[\sum_{i=1}^{100} w_{ki}^{(2)} (\mathbf{w}_i^{(1)T} \mathbf{x})^2 + 1 \right] + b_k^{(2)} \right)$$

All the learned features for layer one and two

Results, layer three

Features with enhanced selectivity to orientation and space.

Complete set of
$$\mathbf{w}_{i}^{(3)}$$
 for $n^{(3)} = 10$. See paper for $n^{(3)} = 100$.

$$egin{aligned} \tilde{\mathbf{y}}^{(2)} &= \mathsf{gain} \, \mathsf{control}(\mathbf{y}^{(2)}) \ y_j^{(3)} &= f_\mathsf{th} \left(\mathbf{w}_j^{(3) \, T} ilde{\mathbf{y}}^{(2)} + b_j^{(3)}
ight) \end{aligned}$$

k-th element of $\mathbf{w}_{i}^{(3)}$ is positive: Activity of $y_k^{(2)}$ is detected. Corresponding icon is colored in red.

k-th element of $\mathbf{w}_{i}^{(3)}$ is negative: Inactivity of $y_k^{(2)}$ is detected. Corresponding icon is colored in blue.

Results, layer three

Descriptors of overall image properties?

Feature outputs were computed for 10000 randomly chosen tiny images.

Summary

- Motivation
- Research question
- Data
- Architecture
- Learning
- Results
- Summarv

- Selectivity and invariance/tolerance are important for any feature extraction system.
- Question asked: In a system with three processing layers, what should be selected and tolerated at each level of the hierarchy?
- Looked for an answer by fitting probabilistic models to images:
 - → First layer: Selectivity to Gabor-like image structure
 - → Second layer: Tolerance to exact orientation or localization of the stimulus ("complex-cells")
 - → Third layer: Enhanced selectivity to orientation and/or location of the stimulus