Problem Set 5

1 Huggett (1993)

Consider the Bellman equation corresponding to the Huggett model:

$$V(a,s) = \max_{-\phi \le a' \le (1+r)a + ws} U((1+r)a + ws - a') + \beta \sum_{s} \pi(s,s')V(a',s'). \tag{1}$$

We choose the functional form $U(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$.

 $\pi(s,s')$ is given by the following transition matrix (in Matlab notation):

and $s \in S$, where S: [0.6177 0.8327 1.0000 1.2009 1.6188]

1. (For this subquestion only) Consider the following Markov transition matrix. Find its associated stationary distribution analytically.

$$\begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.2 & 0.3 \\ 0 & 0.7 & 0.3 \end{bmatrix}$$

2. Simulate the Markov chain $\pi(s, s')$ and estimate its persistence and long-run variance. The goal of the simulation is to obtain a long history of realizations $s_N = (s_1, s_2, \ldots, s_N)$, for a large value of N. In order to do that, start from a random $s_1 \in S$. Then, generate a random number between 0 and 1 and compare it with the (cumulative) transition probabilities. For instance, if $s_1 = 0.6177$ and the random number you have generated is below 0.7497, $s_2 = 0.6177$, while if it is between 0.9658 and 0.9980, $s_2 = 1$. Repeat for a large number of times N and use the history you have computed to compute persistence and variance. You can generate random numbers from the uniform distribution on the [0,1] interval with the Matlab function rand(.).

- 3. Numerically find the stationary distribution over S implied by the Markov chain: $\xi(s) = \pi(s, s')'\xi(s)$. You can use any of the methods described in Problem Set 3. Determine the total labor supply implied by the stationary distribution: $N = \sum \xi(s_i) * s_i$.
- 4. Let $\beta = 0.96$, $\gamma = 2$, w = 1, and $\phi = -2$. Solve for the stationary equilibrium of the Huggett economy. In particular:
 - (a) First write down pseudo code that outlines the various steps of your algorithm.
 - (b) Use the Value Function Iteration and the bisection method to find the equilibrium interest rate of this economy.
 - Given an interest rate, to find the ergodic distribution, simulate asset and income transitions for (100,1000,10000) households and (100,1000,10000) time periods.
 - You can plot the evolution of the total asset stock of the economy over these time periods to verify the convergence of the asset distribution.
 - To find the interest rate using the bisection method, you need to find a high enough interest rate r^H for which asset demand is positive, and a low enough interest rate r^L for which asset demand is negative. We then know that the interest rate that clears the asset market is between them. We then guess an interest rate $r^G = \frac{r^L + r^H}{2}$. If asset demand at r^G is positive (negative), we update $r^H = r^G$ ($r^L = r^G$) and then update the guess. We repeat until asset demand is close enough to zero.
 - Once you have found the equilibrium interest rate, plot a histogram of the asset distribution at the last time period of the simulated economy.