1. 概述

输入加权和
$$u_j = \sum_{i=1}^n \omega_{ji} V_i + I_j, x_j = g(u), x_j = g(u_j)$$
 其中输入 $V_i = f(x_i)$, I_i : 外界的输入

1.1. 输入类型

1.1.1. 离散型

$$x_j = u_j \quad V_j = f(x_j) = \begin{cases} 1 & x_j \ge 0 \\ -1 & x_j < 0 \end{cases}$$

1.1.2. 连续型

$$\frac{dx_{j}}{dt} = -x_{j} + \sum_{i=1}^{n} \omega_{ji} V_{j} + I_{j} \quad V_{j} = f(x_{j}) = \frac{1}{1 + e^{-x_{j}}} \quad f(x_{j}) \text{ 有多种选择}$$

1.2. 相空间的状态

1.2.1. 稳定性(平衡点)

状态轨迹最终收敛到状态空间的某一点

- 渐近稳定点 在稳定点 \overrightarrow{x}^* 的邻域 δ 内,从任何 点状态出发的轨迹都收敛到 \overrightarrow{x}^* \overrightarrow{x}^* : 吸引子 δ : 吸引域
- 不稳定的稳定点
- 伪稳定点

1.2.2. 极限环

1.2.3. 发散(不存在稳定点)

1.2.4. 混沌

在有限范围内发散、对初始条件很敏感

1.3. 应用

连续网络:优化 离散网络:联想记忆

2. 连续型反馈网络

2.1. 概述

$$u_{j} = \sum_{i=1}^{n} \omega_{ji} V_{j} + I_{i} \quad \frac{dx_{i}}{dt} = -\frac{x_{i}}{I_{i}} + u_{i} \quad V_{i} = f(x_{i}) \quad f(\cdot) : sigmoid$$
 函数
$$C_{i} \frac{dx_{i}}{dt} = -\frac{x_{i}}{R_{i}} + \sum_{j=1}^{n} \frac{1}{k_{ij}} (V_{j} - x_{i}) + I_{i}^{*}$$

$$V_{2} \underbrace{V_{i}}_{V_{n}} \underbrace{V_{i}}_{V_{i}} \underbrace{V_{i}}_{V_{n}} \underbrace{V_{i}}_{V_{$$

2.2. 稳定性讨论

2.2.1. lyapunov 李亚普诺夫函数法

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = f_i(x_1, x_2, \cdots, x_n, t) \ i = 1, 2, \cdots, n \ f_i()$$
: 非线性函数对于该状态方程,找到一个可微的函数 $V(x_1, x_2, \cdots, x_n)$,若 $V(x_1, x_2, \cdots, x_n) \geqslant 0$,且 $x_i = 0, i = 1, 2, \cdots, n$ 时, $V(x_1, \cdots, x_n) = 0$,则该函数为 lyapunov 函数若 $\frac{\mathrm{d}V}{\mathrm{d}t} \leqslant 0$,则该系统稳定

2.2.2. 能量函数 —— 对 lyapunor 函数的推广

对于 $\frac{\mathrm{d}x_i}{\mathrm{d}t} = f_i(x_1, x_2, \dots, x_n, t), i = 1, 2, \dots, n$,找到可微的函数 $E(x_1, x_2, \dots, x_n)$,

若 |E| < m,则有界,若 $\frac{dV}{dt} \le 0$,则系统稳定

对于连续反馈网络的能量函数定义为

$$E = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{ij} V_i V_j - \sum_{i=1}^{n} I_i V_i + \sum_{i=1}^{n} \int_0^{V_i} \frac{1}{I_i} f^{-1}(\eta) d\eta \quad V_i = f(x_i) \quad f^{-1}(V_i) = x_i$$

•
$$|E| \leq \frac{1}{2} \sum_{i} \sum_{j} \omega_{ij} |V_i| |V_j| + \sum_{i} |I_i| |V_i| + \sum_{i=0}^{n} \int_{0}^{V_i} \frac{1}{I_i} f^{-1}(\eta) \, d\eta = E_{max}$$
 有界

• 如果 $\omega_{ij} = \omega_{ji}$, $V_i = f(x_i)$ 单调上升,则 $\frac{dE}{dt} \leq 0$ 证明:

$$\begin{split} \frac{\mathrm{d}E}{\mathrm{d}t} &= -\frac{1}{2} \sum_{i} \sum_{j} \omega_{ij} V_{j} \frac{\mathrm{d}V_{i}}{\mathrm{d}t} - \frac{1}{2} \sum_{i} \sum_{j} \omega_{ji} V_{i} \frac{\mathrm{d}V_{j}}{\mathrm{d}t} - \sum_{i} I_{i} \frac{\mathrm{d}V_{i}}{\mathrm{d}t} + \sum_{i=1}^{n} \frac{x_{i}}{I_{i}} \frac{\mathrm{d}V_{i}}{\mathrm{d}t} \\ &= \sum_{i} \left(-\sum_{j} \omega_{ij} V_{j} - I_{i} + \frac{x_{i}}{I_{i}} \right) \frac{\mathrm{d}V_{i}}{\mathrm{d}t} \\ &= \sum_{i} \left(-\frac{\mathrm{d}x_{i}}{\mathrm{d}t} \cdot \frac{\mathrm{d}V_{i}}{\mathrm{d}t} \right) \\ &= \sum_{i} \left[-\frac{\mathrm{d}x_{i}}{\mathrm{d}t} \left(\frac{\partial V_{i}}{\partial x_{i}} \frac{\mathrm{d}x_{i}}{\mathrm{d}t} \right) \right] \\ &= -\sum_{i} \frac{\partial V_{i}}{\partial x_{i}} \left(\frac{\mathrm{d}x_{i}}{\mathrm{d}t} \right)^{2} \quad \frac{\partial V_{i}}{\partial x_{i}} \geqslant 0 \quad \mathring{\mathbb{P}} \mathbb{H} \mathcal{L} \mathcal{H} \end{split}$$

$$\frac{dE}{dt} = 0$$
 时, $\frac{dx}{dt} = 0$,网络达到稳定

2.3. 优化

目标函数 $J(\vec{x})$ $\vec{x} \in R^n$,约束条件 $g(\vec{x})$,优化:在 $g(\vec{x})$ 的约束下,使得 $J(\vec{x})$ 最小用连续反馈神经网络求解时,构造能量函数,从而求解

$$E = J(\vec{x}) + Cg(\vec{x}) \implies \frac{dE}{dt} = \sum_{i} \frac{\partial E}{\partial x_{i}} \frac{dx_{i}}{dt}, \quad \stackrel{\triangle}{=} \frac{dx_{i}}{dt} = -\frac{\partial E}{\partial x_{i}}, \quad \frac{dE}{dt} = \sum_{i} \left[-\left(\frac{dx_{i}}{dt}\right)^{2} \right] \leqslant 0$$

当
$$\frac{dE}{dt} = 0$$
 时,求得稳定点

或当
$$\frac{\mathrm{d}V_i}{\mathrm{d}t} = -\frac{\partial E}{\partial V_i}$$
 时, $\frac{\mathrm{d}E}{\mathrm{d}t} = \sum_i \frac{\partial E}{\partial V_i} \frac{\mathrm{d}V_i}{\mathrm{d}t} = -\sum_i \left(\frac{\mathrm{d}x_i}{\mathrm{d}t}\right)^2 \leqslant 0$

2.4. 设计步骤

- 设计能量函数 E, 并加上 $\sum_{i} \frac{1}{I_i} \int_0^{V_i} f^{-1}(\eta) d\eta$
- 使得 $\frac{\mathrm{d}x_i}{\mathrm{d}t} = -\frac{\partial E}{\partial x_i}$
- 由状态方程 $\frac{\mathrm{d}x_i}{\mathrm{d}t} = -\frac{x_i}{I_i} + \sum_{j=1}^n \omega_{ij} V_j + I_i$,得到 ω_{ij}, I_i
- 用电路实现

2.5. 应用

2.5.1. A/D 转换: 输入模拟量 A → 输出数字量 $V_i \in \{0,1\}$ "四位"

构建能量函数: 目标函数
$$J(\overrightarrow{V}) = \frac{1}{2} \left(A - \sum_{i=0}^{3} V_{i} 2^{i} \right)^{2} \rightarrow 0$$

约束条件 $g(\overrightarrow{V}) = -\frac{1}{2} \sum_{i=0}^{3} \left(2^{i} \right)^{2} (V_{i} - 1) V_{i}$
 $E = \frac{1}{2} \left(A - \sum_{i=0}^{3} V_{i} 2^{i} \right)^{2} - \frac{1}{2} \sum_{i=0}^{3} \left(2^{i} \right)^{2} (V_{i} - 1) V_{i} + \sum_{i=0}^{3} \frac{1}{I_{i}} \int_{0}^{V_{i}} f^{-1}(\eta) \, d\eta$ ①
$$\frac{\partial E}{\partial V_{i}} = -\frac{dV_{i}}{dt} = -\frac{\partial V_{i}}{\partial x_{i}} \cdot \frac{dx_{i}}{dt} = -C_{i} \frac{dx_{i}}{dt} \left(\frac{\partial V_{i}}{\partial x_{i}} \approx C_{i} \right)$$
曲 ① 式得 $\frac{\partial E}{\partial V_{i}} = -2^{2}A + \sum_{j=0}^{3} 2^{i+j}V_{j} + 2^{2i-1} + \frac{x_{i}}{I_{i}} = -C_{i} \frac{dx_{i}}{dt} \xrightarrow{\Leftrightarrow C_{i}=1} -\frac{dx_{i}}{dt}$
其中 $\frac{dx_{i}}{dt} = -\frac{x_{i}}{I_{i}} - \sum_{j=0}^{3} 2^{i+j}V - 2^{2i-1} + 2^{i}A$

対照
$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = -\frac{x_i}{I_i} + \sum_{j=0}^n \omega_{ij} V_j + I_i$$
,可得
$$\omega_{ij} = -2^{i+j} \ (i \neq j), I_i = -2^{2i-1} + 2^i A, \omega_{ij} = \omega_{ji}$$

$$[\omega] = \begin{bmatrix} 0 & -2 & -2^2 & -2^3 \\ -2 & 0 & -2^3 & -2^4 \\ -2^2 & -2^3 & 0 & -2^5 \\ -2^3 & -2^4 & -2^5 & 0 \end{bmatrix} \qquad \begin{cases} I_0 = -0.5 + A \\ I_1 = -2 + 2A \\ I_2 = -8 + 4A \\ I_3 = -32 + 8A \end{cases}$$

2.5.2. TSP (旅行商) 问题

问题: 旅行商跑遍 n 个城市所走的距离最短

、 顺序					
城市	1	2	3	4	5
1	0	1	0	0	0
2	0	0	1	0	0
3	1	0	0	0	0
4	0	0	0	1	0
5	0	0	0	0	1

目标函数:
$$J(\vec{V}) = \frac{D}{2} \sum_{x} \sum_{\substack{i \ x \neq y}} \sum_{y} d_{xy} V_{xi} (V_{y,i+1} + V_{y,i-1})$$

约束条件:
$$g(\vec{V}) = \frac{A_1}{2} \sum_{i} \sum_{\substack{x \ x \neq y}} \sum_{y} V_{xi} V_{yi} + \frac{A_2}{2} \sum_{x} \sum_{\substack{i \ i \neq j}} \sum_{j} V_{xi} V_{xj} + \frac{A_3}{2} \left(\sum_{x} \sum_{i} V_{xi} - n \right)^2$$