Отчёт по лабораторной работе 8

Модель TCP/AQM

Наталья Андреевна Сидорова

Содержание

Список литературы		16
5	Выводы	15
4	Выполнение лабораторной работы	8
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

3.1	Уравнения	• •	'/
4.1	Константы		8
4.2	Размер окна		9
4.3	Размер очереди		9
4.4	Задержка		10
4.5	Модель		10
4.6	Фазовый портрет		11
4.7	Динамика изменений окна и очереди		11
4.8	Новый фазовый портрет		12
4.9	Новый график		12
4.10	Э Код		13
4.11	1 График		13
4.12	2 Фазовый портрет		14

Список таблиц

1 Цель работы

Изучить даннную модель.

2 Задание

- 1. Построить модель TCP/AQM в xcos
- 2. Построить модель TCP/AQM в OpenModelica

3 Теоретическое введение

Математическая модель (рис. 3.1).

$$\dot{W}(t) = \frac{1}{R(t)} - \frac{1}{2} \frac{W(t)W(t - R(t))}{R(t - R(t))} p(t - R(t)), \tag{8.1}$$

$$\dot{Q}(t) = \begin{cases} N(t) \frac{W(t)}{R(t)} - C, & Q(t) > 0, \\ \max\left(N(t) \frac{W(t)}{R(t)} - C, 0\right), & Q(t) = 0, \end{cases}$$
(8.2)

где W(t) — средний размер TCP-окна (в пакетах), Q(t) — средний размер очереди (в пакетах), R(t) — время двойного оборота (Round Trip Time, сек.), C — скорость обработки пакетов в очереди (пакетов в секунду), N(t) — число TCP-сессий, $p(\cdot)$ — вероятностная функция сброса (отметки на сброс) пакета (значения функции $p(\cdot)$ лежат на интервале [0,1]).

Рис. 3.1: Уравнения

4 Выполнение лабораторной работы

Установила в контексте переменные, принимающие конкретные значения: N - число сессий, R - время двойного оборота, K - параметр задержки, C - скорость обработки пакетов, W0 - размер окна, Q0 - размер очереди (рис. 4.1).

Рис. 4.1: Константы

Установила параметры в блоки интегралов (рис. 4.2).

Рис. 4.2: Размер окна

(рис. 4.3).

Рис. 4.3: Размер очереди

Установила параметры в блок задержки (рис. 4.4).

Рис. 4.4: Задержка

Получившаяся модель в хсоз (рис. 4.5).

Рис. 4.5: Модель

Фазовый портрет, который показывает наличие колебаний в параметрах системы (рис. 4.6).

Рис. 4.6: Фазовый портрет

График динамики изменения размера окна и очереди (рис. 4.7).

Рис. 4.7: Динамика изменений окна и очереди

Уменьшила скорость обработки пакетов с 1 до 0.9 (рис. 4.8).

Рис. 4.8: Новый фазовый портрет

(рис. 4.9).

Рис. 4.9: Новый график

Код для реализации в OpenModelica (рис. 4.10).

```
model DU
parameter Real N=1;
parameter Real R=1;
parameter Real K=5.3;
parameter Real C=1;

Real W(start=0.1);
Real Q(start=1);

equation

der(W)= 1/R - W*delay(W, R)/(2*R)*K*delay(Q, R);
der(Q)= if (Q==0) then max(N*W/R-C,0) else (N*W/R-C);

end DU;
```

Рис. 4.10: Код

График изменения размеров окна и очереди (рис. 4.11).

Рис. 4.11: График

Фазовый портрет (рис. 4.12).

Рис. 4.12: Фазовый портрет

5 Выводы

Реализовала модель TCP/AQM в xcos и в OpenModelica.

Список литературы