McKay correspondence

Jacob Fjeld Grevstad

February 14, 2019

Abstract

The goal of this thesis is to establish a 1-1 correspondence between quivers created from the four following sets whenever G is a finite subgroup of $SL(2,\mathbb{C})$ and S is the power series ring $\mathbb{C}[\![x,y]\!]$

- The Maximal Cohen-Macaulay modules of the fixed ring S^G .
- The indecomposable projective modules of the skew group algebra S#G.
- The indecomposable projective modules of $End_{S^G}(S)$.
- The irreducible representations of G (indecomposable $\mathbb{C}G$ -modules).

Much of the thesis will be used to define these four quivers and to develope tools to establish such a correspondence. A similar correspondence can be established for a general field k and a finite subgroup of GL(n,k) with order nonzero in k, but the case for $SL(2,\mathbb{C})$ is the most interesting as the quivers will be extended Dynkin diagrams.

Finite subgroups of SL(2,C)

characters and irreducible representations

Recall that the trace of a matrix is defined to be the sum of its diagonal element and that the trace satisfies two important equations. Namely

$$tr(A+B) = tr(A) + tr(B)$$
 and $tr(AB) = tr(BA)$

For a given representation of G, $\rho: G \to GL_n(\mathbb{C})$ we define its characther by $\chi_{\rho}: G \to \mathbb{C}$, $\chi_{\rho}(g) = tr(\rho(g))$.

Proposition. Conjugate elements in G take the same value under a character.

Proof. Let g and g' be in the same conjugacy class. Then there exists an element h such that $h^{-1}gh = g'$. Then we have

$$\chi(g') = \chi(h^{-1}gh) = tr(\rho(h)^{-1}\rho(g)\rho(h)) \stackrel{*}{=} tr(\rho(g)\rho(h)\rho(h)^{-1}) = tr(\rho(g)) = \chi(g)$$

In (*) we use the fact that
$$tr(AB) = tr(BA)$$
.

Lemma. For a finite abelian group G any irreducible representation must be 1-dimensional.

Proof. Let $\rho: G \to GL(V)$ be an irreducible representation. Since G is abelian we have that $\rho(g)\rho(h)v = \rho(h)\rho(g)v$, and thus $\rho(g)$ is a homomorphism of G-representations. Then by Schur's lemma $\rho(g)$ must be a scalar multiplication. This implies that ρ can be written as a direct sum of 1-dimensional representations, but since ρ is irreducible ρ must be 1-dimensional.

Proposition. If χ is the character of a representation, ρ , with dimension n of a group G, and g is an element of G with order m, then the following holds

- (1) $\chi(1) = n$
- (2) $\chi(g)$ is the sum of m-th roots of unity.
- (3) $chi(g^{-1}) = \overline{\chi(g)}$

Proof.

(1) The first result is immidiate.

$$\chi(1) = tr \left(\begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \right) = n$$

- (2) Since $\langle g \rangle$ is an abelian group, rho decomposes into n 1-dimensional $\langle g \rangle$ -representations. Then there is a basis such that $\rho(g)$ is diagonal. Since g has order m it follows that the diagonal entries of $\rho(g)$ must be m-th roots of unity. Thus $\chi(g) = tr(\rho(g))$ must be the sum of m-th roots of unity.
- (3) Using the same basis as above and the fact that $\underline{\omega}^{-1} = \overline{\omega}$ when ω is a root of unity we see that $\chi(g^{-1}) = tr(\rho(g)^{-1}) = \overline{tr(\rho(g))} = \overline{\chi(g)}$.

The McKay quiver

Definition. Let G be a finite subgroup of $GL(n,\mathbb{C})$, and let V be the cannonical representation (the one that sends g to g). Then we define the $\underline{McKay\ quiver}$ of G to be the quiver with vertices the irreducible representations of G, denoted V_i . For two irreducible representations V_i and V_j we say there is an arrow from the former to the latter if and only if V_j is a direct summand of $V \otimes V_i$.

Example. Let G be the group generated by $g = \begin{bmatrix} \omega^2 & 0 \\ 0 & \omega^3 \end{bmatrix}$, where ω is the primitive fifth root of unity. Then there are five different irreducible representations, the one sending g to ω , ω^2 , ω^3 , ω^4 respectively, and the trivial representation. Denote the representation sending g to ω^i by V_i , and let $V = V_2 \oplus V_3$ be the canonical representation. Note that $V_i \otimes V_j = V_{i+j}$, where i+j is understood to be modulo 5. Then we get the following McKay-quiver

Skew algebra S#G indecomposable projectives

Definition. If G is a subgroup of $GL_n(\mathbb{C})$, we can extend the group action of G to $\mathbb{C}[x_1, \dots, x_n]$. We then define the skew algebra $\mathbb{C}[x_1, \dots, x_n] \# G$ to be the algebra generated by elements of the form $f \cdot g$ with $f \in \mathbb{C}[x_1, \dots, x_n]$ and $g \in G$, and we define the multiplication by

$$(f_1 \cdot g_1) \cdot (f_2 \cdot g_2) = (f_1 \cdot f_2^{g_1}) \cdot (g_1 \cdot g_2)$$

Where f^g denotes the image of f under the action of g.

Theorem. We have an isomorphism of rings

$$e\mathbb{C}[x,y]\#Ge \simeq \mathbb{C}[x,y]^G$$

where $e = \frac{1}{|G|} \sum_{g \in G} g$.

Proof. Let f^g denote the image of f under the action of g. Then if we let f(x,y)g be an element of the skew algebra we get that $ef(x,y)ge = f(x,y)^e \cdot ege = f(x,y)^e \cdot e$. It then follows that $e\mathbb{C}[x,y]\#Ge$ is isomorphic to the image of e. Since ge = g for all $g \in G$ it is clear that the image of e is contained in the fixed ring. For the converse you just need to notice that the fixed ring is fixed under e and thus is contained in the image.

Lemma. Let $S = \mathbb{C}[x, y]$. An S # G-modulo is projective if it is projective as an S-module.

Proof. First we need to see that an S#G-linear map is just an S-linear map such that f(g(m)) = g(f(m)) for all $g \in G$. Equivalently f(m) =

 $g(f(g^{-1}(m)))$. This allows us to define a group action $f^g(m) = g(f(g^{-1}(m)))$. Then we can restate it as

$$\operatorname{Hom}_{S\#G}(M,N) = \operatorname{Hom}_{S}(M,N)^{G}$$

Clearly if f is S#G-linear then it's in $\operatorname{Hom}_S(M,N)^G$. To see the other inclusion, let f be an S-linear map such that fixed under G. Then $f(s \cdot gm) = sf(gm) = s \cdot g(f(g^{-1}gm)) = s \cdot gf(m)$, and hence f is S#G-linear. Nextly I want to show that $-^G$ is an exact functor.

If K is the kernel of a map $f: M \to N$, then the kernel of the inuced map $f^G: M^G \to N^G$ is of course just $K \cap M^G$ which equals K^G . Assume f is epi and let $n \in N^G$. Consider a preimage m such that f(m) = n. Let $\theta = \frac{1}{|G|} \sum_{g \in G} g(m)$. Then θ is in M^G and $f(\theta) = \frac{1}{|G|} \frac{1}{|G|} \sum_{g \in G} g(f(m)) = \frac{1}{|G|} \frac{1}{|G|} \sum_{g \in G} n = n$.

This implies that if $\operatorname{Hom}_S(P,-)$ is exact then $\operatorname{Hom}_S(P,-)^G = \operatorname{Hom}_{S\#G}(P,-)$ is exact and our lemma follows.

Theorem. Let $S = \mathbb{C}[x, y]$ and let $\mathfrak{m} = \langle x, y \rangle_S$. Then there are bijections between the indecomposable projective S # G-modules and the indecomposable $\mathbb{C}G$ -modules given by

$$\mathcal{F}: P \mapsto P/\mathfrak{m}P$$
$$\mathcal{G}: W \mapsto S \otimes_{\mathbb{C}} W$$

Where the S#G-module structure on $S \otimes_{\mathbb{C}} W$ is given by $(s \cdot g) \cdot f \otimes v = sf^g \otimes g(v)$.

Proof. To see that this are bijections we will show that they are mutuall inverses. First to see that $\mathcal{F}(\mathcal{G}(W)) \cong W$ we simply look at the definition

$$\frac{S \otimes_{\mathbb{C}} W}{\mathfrak{m} S \otimes_{\mathbb{C}} W} \cong S/\mathfrak{m} \otimes_{\mathbb{C}} W \cong \mathbb{C} \otimes_{\mathbb{C}} W \cong W$$

Next we consider $\mathcal{G}(\mathcal{F}(P)) = S \otimes_{\mathbb{C}} P/\mathfrak{m}P$. Notice that the top of $S \otimes_{\mathbb{C}} P/\mathfrak{m}P$ is isomorphic to $P/\mathfrak{m}P$. Then by the uniquness of tops we have that $S \otimes_{\mathbb{C}} P/\mathfrak{m}P \cong P$.

The only thing that remains to show is that \mathcal{F} and \mathcal{G} are well-defined maps with the correct images. Namely that $\mathcal{F}(P)$ is an indecomposable $\mathbb{C}G$ -module and that $\mathcal{G}(W)$ is an indecomposable projective S#G-module.

Since P is an indecomposable projective we have that $\mathcal{F}(P)$ is a simple S#G-module. By the natural inclusion $\mathbb{C}G \hookrightarrow S\#G$ $\mathcal{F}(P)$ becomes a $\mathbb{C}G$ -module. Assume that $\mathcal{F}(P)$ decomposes as $P_1 \oplus P_2$ as a $\mathbb{C}G$ -module. Then since the action of x and y are trivial on $\mathcal{F}(P)$, $P_1 \oplus P_2$ is a decomposition of S#G-modules. This implies that $P_1 = 0$ or $P_2 = 0$, and we have that $\mathcal{F}(P)$ is indecomposable.

Lastly we want to show that $\mathcal{G}(W)$ is projective and indecomposable. \square

$End_{S^G}(S)$

MCM modules

Definition. If R is a local ring with residual field k we define the <u>depth</u> of a module, M, to be the minimal n such that the extension $Ext_R^n(\overline{k}, \overline{M})$ is non-zero.

Definition. If M is a module over a local ring R with Krull-dimension d we say that M is maximal Cohen Macaulay (MCM) if the depth of M equals d.