(十) 图论: 树 (Trees)

魏恒峰

hfwei@nju.edu.cn

2021年05月13日

Rooted Trees in Computer Science

Definition (Rooted Trees (有根树))

bfs

dfs: in-order, pre-order, post-order

search trees

Theorem (Cayley's Formula)

The number T_n of labeled trees on $n \ge 2$ vertices is n^{n-2} .

Theorem (Cayley's Formula)

The number T_n of labeled trees on $n \ge 2$ vertices is n^{n-2} .

Arthur Cayley (1821 $\sim 1895)$

Chapter 33: Cayley's formula for the number of trees

By Double Counting.

— Jim Pitman

By Double Counting.

— Jim Pitman

https://en.wikipedia.org/wiki/Double_counting_(proof_technique)#Counting_trees

By Double Counting.

— Jim Pitman

https://en.wikipedia.org/wiki/Double counting (proof technique) #Counting trees

How many ways are there of forming a rooted tree from an empty graph by adding directed edges one by one?

Choose one of the T_n labeled trees on n vertices.

Choose one of the T_n labeled trees on n vertices.

Choose one of its n vertices as root.

Choose one of the T_n labeled trees on n vertices.

Choose one of its n vertices as root.

Choose one of the (n-1)! possible sequences in which to add its n-1 directed edges.

$$T_n n(n-1)! = T_n n!$$

We obtain a rooted forest with k trees.

We obtain a rooted forest with k trees.

There are n(k-1) choices for the next edge to add.

We obtain a rooted forest with k trees.

There are n(k-1) choices for the next edge to add.

We obtain a rooted forest with k trees.

There are n(k-1) choices for the next edge to add.

$$\prod_{k=2}^{n} n(k-1) = n^{n-1}(n-1)! = n^{n-2}n!$$

$$T_n n! = n^{n-2} n!$$

$$T_n n! = n^{n-2} n!$$

$$T_n = n^{n-2}$$

$$T_n n! = n^{n-2} n!$$

$$T_n = n^{n-2}$$

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn