

Networks

- Удаленный доступ
- Распределенный доступ
- Высокопроизводительные вычисления
- Коммуникации

Устройства

- Кабель
- Повторитель
- Хаб
- Коммутатор
- Маршрутизатор
- Moct

Model OSI

Open Systems Interconnection
 Basic Reference Model

Layer	Function	Example
Layer	Function	Lxample
Application (7)	Services that are used with end user applications	SMTP,
Presentation (6)	Formats the data so that it can be viewed by the user Encrypt and decrypt	JPG, GIF, HTTPS, SSL, TLS
Session (5)	Establishes/ends connections between two hosts	NetBIOS, PPTP
Transport (4)	ort (4) Responsible for the transport protocol and error handling	
Network (3)	Reads the IP address form the packet.	Routers, Layer 3 Switches
Data Link (2)	Reads the MAC address from the data packet	Switches
Physical (1)	Send data on to the physical wire.	Hubs, NICS, Cable

TCP/IP

Распределение протоколов по уровням модели OSI

	TCP/IP	OSI	
7		Прикладной	напр., HTTP, SMTP, SNMP, FTP, Telnet, SSH, SCP, SMB, NFS, RTSP, BGP
6	6 Прикладной Представления		напр., XDR, AFP, TLS, SSL
5		Сеансовый	напр., ISO 8327 / CCITT X.225, RPC, NetBIOS, PPTP, L2TP, ASP
4	Транспортный	Транспортный	напр., TCP, UDP, SCTP, SPX, ATP, DCCP, GRE
3	Сетевой	Сетевой	напр., IP, ICMP, IGMP, CLNP, OSPF, RIP, IPX, DDP, ARP
2	Канальный	Канальный	напр., Ethernet, Token ring, HDLC, PPP, X.25, Frame relay, ISDN, ATM, SPB, MPLS
1	капальяви	Физический	напр., электрические провода, радиосвязь, волоконно-оптические провода, инфракрасное излучение

TCP vs UDP

	TCP	UDP
Размер заголовка, байт	20-60	8
Форма передачи данных	Поток	Датаграмма
Надежность	Да	Нет
Упорядоченность	Да	Нет
Контроль перегрузок	TCP Congestion Avoidance Algorithm	Нет
Тяжеловесность	Дополнительные 3 пакета для установки соединения	Никаких дополнительных пакетов не нужно
Применение	Там, где нужна надежность и упорядоченность www, e-mail, FTP, SSH	Там, где высокая нагрузка на сервер и потеря некоторых пакетов некритична DNS, DHCP, SNMP, голосовой и видео трафик, игры

IPv4 vs IPv6

	Internet Protocol version 4 (IPv4)	Internet Protocol version 6 (IPv6)
Deployed	1981	1999
Address Size	32-bit number	128-bit number
Address Format	Dotted Decimal Notation: 192.149.252.76	Hexadecimal Notation: 3FFE:F200:0234:AB00: 0123:4567:8901:ABCD
Profix Notation	192.149.0.0./24	3FFE:F200:0234::/48
Number of Addresses	2 ³² = ~4,294,967,296	2 ¹²⁸ = ~340,282,366, 920,938,463,463,374, 607,431,768,211,456

IPv4 vs IPv6

IPv4 Header

Version IHL	Type of Service	То	tal Length
Identification		Flags	Fragment Offset
Time to Live	Time to Live Protocol Header Checksu		er Checksum
Source Address			
Destination Address			
Options			Padding
Поля которые перешли из IPv4 в IPv6 без изменений			
Поля убранные из IPv6			
Поля переименованные в IPv6			
Новое поле в IPv6			

IPv6 Header

DNS

- Распределённость администрирования
- Распределённость хранения информации
- Кэширование информации
- Иерархическая структура
- Резервирование

Domain records

- А и АААА записи
- CNAME
- MX
- NS
- TXT
- SRV

Socket

- Stream sockets
- Datagram sockets

Socket example

```
import socket
sock = socket.socket()
sock.bind(('', 2042))
sock.listen(1)
conn, addr = sock.accept()
    name = conn.recv(1024)
    if not name:
    conn.send(bytes("Hello, dear ", 'utf-8')
+ name)
conn.close()
```

```
import socket
sock = socket.socket()
sock.connect(("localhost", 2042))
message = input("Your name: ")
sock.send(bytes(message, 'utf-8'))
data = sock.recv(1024)
sock.close()
print(data)
```

