

Ministry of Micro, Small and Medium Enterprises, Government of India

MSME –TDC, Chennai
CERTIFIED LEAN SIX SIGMA
GREEN BELT TRAINING

DAY-3

ANALYZE PHASE

IDENTIFY CRITICAL 'X'

Dr.Gopal Sivakumar

ANALYZE PHASE OVERVIEW

Factors responsible for Waste, Risks and Variation

ANALYZE PHASE DELIVERABLES

Sufficiency of Validated Factors

STEP 7: List all probable X's

The key objective of analyze phase is to identify factors responsible for the gap in performance.

Sources of gap in performance

- □Sources of waste Value add and Non-value add analysis
- □Sources of Risk Failure Mode and Effect Analysis
- □Sources of Variation Quality Screening using a set of tools and by engaging a cross functional team to identify and prioritize factors responsible for variation

Typical symbols used in Process Maps

0	Start & End Points	I dentify the boundaries of the process.
	Activity	What is being done. Indicates necessary and unnecessary activities performed in the process.
>	Decision	Illustrates decision points and where loops occur in the process. Also used to accept, reject, approve, etc.
↑	Arrow	Represents a process path/flow.
0	Input or Output	Shows important inputs or outputs without describing in detail.
O	Process Connectors	Connect flow to another page or process.
A#	Activity Number	Shows the activity in the sequence performed.
D#	Decision Number	Shows the decision points in the sequence performed.

Cross-Functional Process

Value add / Non-value add analysis

- Reducing cycle time
- Preventing rework & Duplication of efforts
- Identifying and segregating value-add and non-value added tasks

PROCESS FMEA

■Whenever changes are made targeting some improvement goals

■When analyzing failures

DESIGN FMEA

■During design or redesign, after QFD

SOURCE OF VARIATION: Qualitative Screening

Brainstorming

- Group discussion to identify potential factors
- Voluntary generation of a large volume of creative and new idea by the participants

■ Five Why's Analysis

■By repeatedly asking the question "Why", GB/BB can peel away the layers of symptoms which can lead to the root cause of a problem.

Fishbone / C&E / Ishikawa Diagram

- C-E diagram (Cause and Effect diagram) is an effective way to summarize and list various causes and root causes.
- In C-E diagram, the most important thing is to show correlation between cause-effect, and all possible causality needs to be considered.
- Two ways of developing Fishbone diagram
 - Put first level causes in main bones
 - Or use 5M+1E on main bones
 - Men Materials Methods
 - Machines Measurements Environment

Pareto Diagram

■ The Pareto chart is named after Vilfredo Pareto, an Italian engineer, sociologist, economist, political scientist and philosopher.

Pareto is a special type of bar chart where the plotted values are arranged from largest to smallest. A Pareto chart is one of the basic quality control tools used to highlight the most frequently occurring defects.

80-20 Rule

- ■20% of the people contain 80% of the wealth;
- ■20% of the product line may generate 80% of the waste;
- ■20% of the customers may generate 80% of the complaints,
- ■80% of the warehouse space is taken up by 20% of the part numbers etc.

Cat egory	Frequency	Cumulat ive frequency
Unreadable print ing	180	180
Ink blot ches	60	240
Colours not to specification	18	258
Incorrect 'use by' dat e	12	270
Ot her	10	280
Wrong label	9	289
Torn label	8	297
Label on crooked	3	300
Tot al	300	

Stratification

- 1. Subdivisions
- 2. Multi-perspective (weighted pareto) analysis
- 3. Repeat analysis

STEP 8: Identify critical X's

Sample Vs. Census

	Conditions Favoring the Use of	
Type of Study	Sample	Census
1. Budget	Small	Large
2. Time available	Short	Long
3. Population size	Large	Small
4. Variance in the characteristic	Small	Large
5. Cost of sampling errors	Low	High
6. Cost of nonsampling errors	High	Low
7. Attention to individual cases	Yes	No

Understanding Sampling Risk & Errors

Z	ACCEPT	CONFIDENCE LEVEL (1-a)	CONSUMER'S RISK (β) – Type II error		
DECISIO	REJECT	MANUFACTURER'S RISK (a) – Type I error	POWER OF TEST (1-β)		
		GOOD	BAD		
	REALITY				

HYPOTHESIS TESTING

- A procedure that evaluates two mutually exclusive statements about a population.
- A hypothesis test uses sample data to determine which statement is best supported by the data.
- These two statements are called the null hypothesis and the alternative hypotheses.

Null Hypothesis: H₀ States that a population parameter is equal to a desired value.

- Statement of Innocence / No Change / No difference
- Statement that has to be assumed, if you cannot prove otherwise

Alternative Hypothesis: H_1 or H_A States that the population parameter is different than the desired value.

- Statement that will be valid if null hypothesis is rejected
- Just like a court case, we first assume that the accused (X) is innocent and then try to prove it otherwise based on evidence (Data).
 - If evidence does not show significant difference, we cannot reject the innocence (Ho)
 - But if Evidence is strong enough, we reject the Innocence (Ho) and pronounce the suspect Guilty (Ha).

P-Value

The probability of significance

If P value is less than 0.05, the X factor has an impact on the Y response

If P < 0.05; Reject Null Hypothesis

If P value is more than 0.05, the X factor has no impact on the Y response

If P > 0.05; Accept Null Hypothesis

Continuous Y and Discrete X

SCATTER PLOT

Scatterplots are used to explore the potential relationship between a pair of continuous variables.

For example, you could examine the relationship between the fuel efficiency of a vehicle and its horsepower, or plant growth and soil PH.

Scatter Diagram Interpretation

USES OF SCATTER DIAGRAM

- ❖ If an increase in Y depends on increase in X, then, if X is controlled, Y will be naturally controlled.
- ❖ If X is increased, Y will increase somewhat. Then Y seems to have causes other than X.

Scatter Plot

CORRELATION

A measure of linear association between two variables.

It quantifies correlation with a single number - the correlation coefficient- which describes both the strength and direction of the relationship. The correlation coefficient ranges from -1 to 1 where:

-1 describes a relationship where an increase in one variable is accompanied by a predictable and consistent decrease in the other.

0 describes a random or nonexistent relationship.

1 describes a relationship where an increase in one variable is accompanied by a predictable and consistent increase in the other.

Low correlation does not mean no relationship exists


```
N\Sigma xy - (\Sigma x)(\Sigma y)
r = \sqrt{[N\Sigma x^2 - (\Sigma x)^2][N\Sigma y^2 - (\Sigma y)^2]}
Where:
N = \text{number of pairs of scores}
\Sigma xy = \text{sum of the products of paired scores}
\Sigma x = \text{sum of x scores}
\Sigma y = \text{sum of y scores}
\Sigma x^2 = \text{sum of squared x scores}
\Sigma y^2 = \text{sum of squared y scores}
```

This graph illustrates a very strong relationship with a Pearson correlation coefficient of 0.

Pearson's correlation coefficient (r)

If one variable tends to increase as the other decreases, the coefficient is negative. The above correlation is -0.93.

At +0.23 the data points appear to fall randomly around the line. This model does not account for much of the variance.

Conversely, if the two variables tend to increase together the coefficient is positive. Here the correlation is +0.92.

Correlation coefficients only measure linear relationships. A meaningful nonlinear relationship can exist even if the correlation coefficient is 0. Look at a scatterplot to determine this.

REGRESSION ANALYSIS

Generates an equation to describe the statistical relationship between one or more predictors and the response variable and to predict new observations.

Ministry of Micro, Small and Medium Enterprises, Government of India

Dr. Gopal Sivakumar

campustocorporateprogram@gmail.com