ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Дисциплина: «Прикладная математика»

Отчет по лабораторной работе №2 Методы одномерной минимизации Вариант 5 "Разделение моря"

Студенты: Никитин Александр, M32041 Игнатьев Андрей, M32041 Курепин Даниил, M32041

Преподаватель: Гомозова Валерия Эдуардовна

Задачи:

- 1. Решить задачу в соответствии с номером варианта. Для решения реализовать алгоритмы одномерной минимизации функции без производной: метод дихотомии, метод золотого сечения, метод Фибоначчи, метод парабол и комбинированный метод Брента.
- 2. Сравните методы по количеству итераций и количеству вычислений функции в зависимости от разной точности. Для каждого метода обязательно указывайте, как изменяется отрезок при переходе к следующей итерации.
- 3. Протестировать реализованные алгоритмы для задач минимизации многомодальных функций, например, на различных полиномах. Могут ли метод золотого сечения/Брента не найти локальный минимум многомодальной функции?
- 4. По результатам выполнения лабораторной работы необходимо подготовить отчет. Отчет должен содержать описание реализованных вами алгоритмов, ссылку на реализацию, необходимые тесты и таблицы.
- 5. Для защиты лабораторной работы необходимо знать описание методов на языке математики, пояснять полученные результаты, а также уметь обосновать разумность примененных Вами методов для данных функции.

Вариант 5

Разделение моря

«И простер Моисей руку свою на море, и гнал Господь море сильным восточным ветром всю ночь и сделал море сушею, и расступились воды. И пошли сыны Израилевы среди моря по суше: воды же были им стеною по правую и по левую сторону». Моисеевой рукой раздвинулись воды, и для его спутников со стороны берега море описывалось следующей функцией:

$$y(x) = e^{\sin(x)} \cdot x^2$$

Чтобы успешно пересечь море, необходимо найти наиболее низкую точку расступившихся волн, чтобы выйти максимально сухим из воды.

Теория

Метод дихотомии

Метод дихотомии или метод половинного деления — это итеративный метод, основанный на выборе некоторого шага $\delta < \frac{\varepsilon}{2}$, где длина конечного отрезка неопределённости. Берется середина отрезка [a,b] и сравниваются значения функции F=f(x) в точках на расстоянии δ от середины отрезка. По результатам сравнения функции выбираются новые границы отрезка [a,b] и операция повторяется до момента, пока отрезок неопределенности [a,b] не станет меньше заданной точности ε .

Ограничения на функцию для корректной работы алгоритма:

- 1. Непрерывность
- 2. Унимодальность на отрезке [a, b].

Скорость сходимости:

Из-за того, что δ это небольшое значение, то на каждой итерации отрезок неопределенности уменьшается примерно на половину.

Следовательно,
$$len(a_n, b_n) \approx \frac{b_0 - a_0}{2^n}$$

Алгоритм имеет линейную скорость сходимости.

Количество итераций для завершения алгоритма:

$$N = \frac{\ln\left(\frac{b_0 - a_0}{\varepsilon}\right)}{\ln(2)}$$

Метод золотого сечения

Метод золотого сечения — это итеративный метод, основанный на сокращении отрезка неопределённости. Опираясь на свойства золотого сечения отрезка, этот метод использует найденные значения F(x) более рационально, чем метод дихотомии, что позволяет переходить к очередному отрезку, содержащему точку X^* после вычисления одного, а не двух значений F(x). Метод основан на делении текущего отрезка [A;B], где содержится искомый экстремум, на две неравные части, подчиняющиеся правилу золотого сечения, для определения следующего отрезка, содержащего максимум.

Точки x_1, x_2 находятся симметрично относительно середины отрезка $[b_0, a_0]$ и делят его в пропорции золотого сечения:

$$x_1 = a_i + \frac{3 - \sqrt{5}}{2}(b_i - a_i)$$

$$x_2 = a_i + \frac{\sqrt{5} - 1}{2}(b_i - a_i)$$

Метод Фибоначчи

Метод Фибоначчи — это улучшение реализации поиска с помощью золотого сечения, служащего для нахождения минимума/максимума функции. Подобно методу золотого сечения, он требует двух вычислений функции на первой итерации, а на каждой последующей только по одному. Однако этот метод отличается от метода золотого сечения тем, что коэффициент сокращения интервала неопределенности меняется от итерации к итерации.

Последовательность чисел Фибоначчи: $F_n = (F_{n-1}) + (F_{n-2})$

Алгоритм метода Фибоначчи:

Сначала выберем начальный отрезок [a, b], где будем искать минимум функции f(x). Находим количество итераций N, необходимых для достижения заданной точности ε .

Для этого мы используем формулу
$$N = \left[\frac{\log\left(\varepsilon*\frac{F(n+1)}{b-a}\right)}{\log\left(F_i\right)}\right].$$

Дальше нужно вычислить $x_1 = a + \frac{F(n-1)}{F(n+1)}$ и $x_2 = a + \frac{F(n)}{F(n+1)}$. После этого нам нужно сравнить функции в точках x_1, x_2 .

Если $f(x_1) < f(x_2)$, то выбираем новый отрезок $[a, x_2]$, а если $f(x_1) > f(x_2)$, то $[x_1, b]$. Данные операции продолжаются до достижения заданной точности.

По факту, данный метод почти идентичен методу Золотого сечения, но он делит отрезок с помощью чисел Фибоначчи.

Метод парабол

Метод парабол — это метод, основанной на интерполяции функции с помощью параболы. Имеет сверхлинейную скорость сходимости.

Алгоритм метода парабол:

Мы аппроксимируем оптимизированную функцию с помощью квадратичной функции $p(x) = ax^2 + bx + c$. Для того, чтобы найти коэффициенты аппроксимирующей параболы a, b, c необходимо решить систему линейных уравнений:

$$ax_i^2 + bx_i + c = f_i = f(x_i); \quad i \in [1,3]; \quad x_1 < x_2 < x_3, x_{min} \in [x_1, x_3].$$

$$u = -\frac{b}{2a} = x_2 - \frac{1}{2} \frac{(x_2 - x_1)^2 (f_2 - f_3) - (x_2 - x_3)^2 (f_2 - f_1)}{(x_2 - x_1)(f_2 - f_3) - (x_2 - x_3)(f_2 - f_1)}$$

При этом у нас есть ограничения: точка аппроксимации x должна быть выбрана так, чтобы:

В таком случае точка гарантированно попадает в интервал

 $[x_1, x_3]$. Значит, внутри интервала у нас определены две точки x_2 и u, так с помощью сравнения значений функции f в которых мы сокращаем интервалы поиска.

Комбинированный метод Брента

Метод золотого сечения представляет собой надежный способ оптимизации, который сходится за гарантированное число итераций, но обладает лишь линейной скоростью сходимости.

Метод парабол работает быстрее в малой окрестности оптимального решения, но может работать долго и неустойчиво на начальных стадиях итерационного процесса. Поэтому на практике для решения задачи одномерной оптимизации используется метод Брента, который эффективно комбинирует эти две стратегии.

В данном методе на каждой итерации отслеживаются значения в шести точках (не обязательно различных): a, c, x, w, v, u.

Точки \boldsymbol{a} , \boldsymbol{c} задают текущий интервал поиска решения, \boldsymbol{x} — точка, соответствующая наименьшему значению функции, \boldsymbol{w} — точка, соответветствующая второму снизу значению функции, \boldsymbol{v} — предыдущее значение \boldsymbol{w} . В отличие от метода парабол, в методе Брента аппроксимирующая парабола строится с помощью трех наилучших точек \boldsymbol{x} , \boldsymbol{w} , \boldsymbol{v} (в случае, если эти три точки различны и значения в них также различны).

При этом минимум аппроксимирующей параболы u принимается в качестве следующей точки оптимизационного процесса, если:

- 1. u попадает внутрь интервала [a, c] и отстоит от границ интервала не менее, чем на ε ;
- 2. u отстоит от точки x не более, чем на половину от длины предпредыдущего шага.

Если точка u отвергается, то следующая точка находится с помощью золотого сечения большего из интервалов [a, x] и [x, c].

Результаты

График

Мы использовали нашу исходную функцию (по варианту) и получили такую зависимость количества итераций, выполненных каждым методом от заданной точности.

Многомодальные функции

Мы протестировали наши методы одномерной минимизации на трех различных полиномах четвертой степени:

- 1. $x^4 12x^3 + 47x^2 72x + 36$
- 2. $x^4 6x^3 + 11x^2 6x + 1$
- 3. $x^4 6x^3 29x^2 + 294x 735$

В результате методы Дихотомии, Золотого сечения, Брента и Фибоначчи дали верные результаты, а метод парабол дал только один приблизительно верный результат – на втором полиноме.

Ниже представлены результаты соответственно полиномам:

```
1.
Dichotomy search: min 5.056544232498577, iterations amount 35, calls count 70
Golden section search: min 5.056545396810725, iterations amount 48, calls count 50
Parabolas search: min 4.436562228704588e-10, iterations amount 95, calls count 98
Fibonacci search: min 5.0565488769326645, iterations amount 30, calls count 31
Brent search: min 5.056545285757963, iterations amount 52, calls count 53
```

Dichotomy search: min 2.618034539641121, iterations amount 35, calls count 70 Golden section search: min 2.618033995861629, iterations amount 48, calls count 50 Parabolas search: min 2.650468733378375e-10, iterations amount 102, calls count 105 Fibonacci search: min 2.618031760367016, iterations amount 30, calls count 31 Brent search: min 2.6180340005555967, iterations amount 67, calls count 68

```
Dichotomy search: min -3.934230555911025, iterations amount 36, calls count 72 Golden section search: min -3.9342289363669787, iterations amount 50, calls count 52 Parabolas search: min 4.5717807317657844e-10, iterations amount 55, calls count 58 Fibonacci search: min -3.9342360256392244, iterations amount 30, calls count 31 Brent search: min -3.9342288546073148, iterations amount 83, calls count 84
```

Вывод

По результатам тестирования таких методов одномерной оптимизации, как метод дихотомии, метод золотого сечения, метод Фибоначчи, метод парабол и комбинированный метод Брента, были сделаны выводы:

- 1. Методы Фибоначчи и Дихотомии показали себя лучшими по количеству итераций для достижения заданной точности (Дихотомии немного лучше).
- 2. Метод Брента и Золотого сечения показали себя хуже по количеству итераций, но лучше по количеству вычислений функции.
- 3. Метод парабол на нашей функции показал стабильно плохой результат.
- 4. Методы Дихотомии, Золотого сечения и Фибоначчи могут применяться не только на унимодальных функциях, но и на многомодальных функциях. Метод парабол оказался абсолютно неприменим для нахождения минимума многомодальной функции.