Práctica 4

Ejercicio 1. Sea (X,d) un espacio métrico. Se dice que un conjunto $A \subset X$ es nunca denso si $\overline{A}^{\circ} = \emptyset$. Probar que A es nunca denso si y sólo si para todo abierto no vacío $U \subset X$ existe otro abierto no vacío $V \subset U$ tal que $V \cap A = \emptyset$.

Ejercicio 2. Probar que \mathbb{R}^n no puede escribirse como unión numerable de subespacios vectoriales propios.

Ejercicio 3. Sean (X, d) un espacio métrico completo sin puntos aislados y sea D un subconjunto denso y numerable de X. Probar que D no es un G_{δ} .

Ejercicio 4. Demostrar que no existe ninguna función $f: \mathbb{R} \longrightarrow \mathbb{R}$ que sea continua sólo en los racionales.

Sugerencia: Para cada $n \in \mathbb{N}$ considerar

$$U_n = \left\{ x \in \mathbb{R} / \exists U \subseteq \mathbb{R} \text{ abierto con } x \in U \text{ y diam}(f(U)) < \frac{1}{n} \right\}$$

Ejercicio 5. Sea $(I_n)_{n\in\mathbb{N}}$ la sucesión de intervalos de [0,1] con extremos racionales y para cada $n\in\mathbb{N}$ sea

$$E_n = \{ f \in C[0,1] / f \text{ es monótona en } I_n \}.$$

- i) Probar que para cada $n \in \mathbb{N}$, E_n es un cerrado de interior vacío en $(C[0,1], d_{\infty})$.
- ii) Deducir que existen funciones continuas en el intervalo [0,1] que no son monótonas en ningún subintervalo.

Ejercicio 6.

- i) Mostrar que el intervalo $(0,1] \subset \mathbb{R}$ no es compacto.
- ii) Sea $S = (a, b) \cap \mathbb{Q}$ con $a, b \in \mathbb{R} \mathbb{Q}$. Probar que S es un subconjunto cerrado y acotado pero no compacto de (\mathbb{Q}, d) , donde d es la métrica usual de \mathbb{R} .

Ejercicio 7. Sea $E = \{e^{(n)} \in \ell^{\infty} / n \in \mathbb{N}\}$, donde cada sucesión $e^{(n)} = (e_k^{(n)})_{k \in \mathbb{N}}$ está definida por

$$e_k^{(n)} = \begin{cases} 0 & \text{si } k \neq n \\ 1 & \text{si } k = n \end{cases}$$

Probar que E es discreto, cerrado y acotado, pero no compacto.

Ejercicio 8. Sea $c_0 = \{(x_n)_{n \in \mathbb{N}} \subset \mathbb{R} / \lim_{n \to \infty} x_n = 0\}$. Se define en c_0 la métrica

$$d(x,y) = \sup\{|x_n - y_n| / n \in \mathbb{N}\}.$$

Demostrar que la bola cerrada $\overline{B}(x,1) = \{y \in c_0 / d(x,y) \le 1\}$ no es compacta.

Ejercicio 9. Sea X un espacio métrico y sea $(a_n)_{n\in\mathbb{N}}\subset X$ tal que $\lim_{n\to\infty}a_n=a\in X$. Probar que el conjunto $K=\{a_n\mid n\in\mathbb{N}\}\cup\{a\}\subset X$ es compacto.

Ejercicio 10. Probar que todo espacio métrico compacto es separable.

Ejercicio 11. Sea (X, d) un espacio métrico. Probar que:

- i) Si (X, d) es compacto, todo subconjunto cerrado de X es compacto.
- ii) Toda unión finita y toda intersección (finita o infinita) de subconjuntos compactos de X es compacta.
- iii) Un subconjunto $F\subset X$ es cerrado si y sólo si $F\cap K$ es cerrado para todo compacto $K\subset X.$

Ejercicio 12. Sean (X,d) e (Y,d') espacios métricos. Se considera $(X\times Y,d_{\infty})$, donde

$$d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{d(x_1, x_2), d'(y_1, y_2)\}.$$

Probar que $(X \times Y, d_{\infty})$ es compacto si y sólo si (X, d) e (Y, d') son compactos.

Ejercicio 13. Sea X un espacio métrico compacto y sea $f: X \longrightarrow \mathbb{R}$ una función continua tal que f(x) > 0 para todo $x \in X$. Probar que existe $\varepsilon > 0$ tal que $f(x) \ge \varepsilon$ para todo $x \in X$.

Ejercicio 14. Sea (X, d) un espacio métrico.

- i) Sean $F \subset X$ un cerrado y $x \in X F$. Probar que no es cierto en general que exista un punto $y \in F$ tal que d(x,y) = d(x,F). Es decir, la distancia entre un punto y un cerrado puede no realizarse.
- ii) Sean $K \subset X$ un compacto y $x \in X K$. Probar que existe $y \in K$ tal que d(x,K) = d(x,y). Es decir, la distancia entre un punto y un compacto siempre se realiza.
- iii) Probar que si X tiene la propiedad de que toda bola cerrada es compacta (por ejemplo, si $X = \mathbb{R}^n$) entonces sí vale que la distancia entre un punto y un cerrado siempre se realiza.
- iv) Sean $F, K \subset X$ dos subconjuntos disjuntos de X tales que F es cerrado y K es compacto. Probar que la distancia d(F,K) entre F y K es positiva, pero puede no realizarse.
- v) Sean $K_1, K_2 \subset X$ dos subconjuntos compactos de X tales que $K_1 \cap K_2 = \emptyset$. Probar que existen $x_1 \in K_1$ y $x_2 \in K_2$ tales que $d(K_1, K_2) = d(x_1, x_2)$. Es decir, la distancia entre dos compactos siempre se realiza.

Ejercicio 15. Sea (X, d) un espacio métrico completo. Se define

$$\mathcal{K}(X) = \{ K \subset X / K \text{ es compacto y no vacío} \}.$$

- i) Sea $\tilde{d}(A,B) = \sup_{a \in A} \{d(a,B)\}$. Verificar que, en general, \tilde{d} **no** es una métrica en $\mathcal{K}(X)$.
- ii) Se define $d: \mathcal{K}(X) \times \mathcal{K}(X) \to \mathbb{R}$ como $d(A, B) = \max\{\tilde{d}(A, B), \tilde{d}(B, A)\}$. Probar que para todo $\varepsilon > 0$ vale

$$d(A,B) < \varepsilon \iff A \subset B(B,\varepsilon) \quad \text{y} \quad B \subset B(A,\varepsilon),$$

donde $B(C,\varepsilon) = \{x \in X / d(x,C) < \varepsilon\}$ para cada $C \subset X$.

iii) Probar que d es una métrica en $\mathcal{K}(X)$.

Ejercicio 16. Dado un cubrimiento por abiertos $(U_i)_{i\in I}$ de un espacio métrico (X,d), un número $\varepsilon > 0$ se llama número de Lebesgue de $(U_i)_{i\in I}$ si para todo $x\in X$ existe $j\in I$ tal que $B(x,\varepsilon)\subset U_j$. Probar que todo cubrimiento por abiertos de un espacio métrico compacto tiene un número de Lebesgue.

Ejercicio 17. Sea (X, d) un espacio métrico. Se dice que una familia $(F_i)_{i \in I}$ de subconjuntos de X tiene la propiedad de intersección finita (P.I.F.) si cualquier subfamilia finita de $(F_i)_{i \in I}$ tiene intersección no vacía.

Probar que los siguientes enunciados son equivalentes:

- i) X es compacto.
- ii) Toda familia $(F_i)_{i\in I}$ de subconjuntos cerrados de X con la P.I.F. tiene intersección no vacía.
- iii) Todo subconjunto infinito de X tiene un punto de acumulación en X.
- iv) Toda sucesión en X tiene una subsucesión convergente.
- \mathbf{v}) X es completo y totalmente acotado.

Ejercicio 18. Sean (X, d) e (Y, d') espacios métricos y $f: X \longrightarrow Y$ continua y biyectiva. Probar que si (X, d) es compacto, entonces f es un homeomorfismo.

Ejercicio 19. Sea (X, d) un espacio métrico compacto. Probar que para cada espacio métrico (Y, d'), la proyección $\pi: X \times Y \to Y$ definida por $\pi(x, y) = y$ es cerrada.

Ejercicio 20. Sean (X,d) e (Y,d') espacios métricos, y sea $f: X \longrightarrow Y$ una función. Probar que si Y es compacto y el gráfico de f es cerrado en $(X \times Y, d_{\infty})$, entonces f es continua. Comparar con el ejercicio 15 de la pretica 3.

Ejercicio 21.

- i) Sea $f: \mathbb{R}_{\geq a} \longrightarrow \mathbb{R}$ una función que es uniformemente continua en [a, b] y también en $[b, +\infty)$. Probar que f es uniformemente continua en $\mathbb{R}_{\geq a}$.
- ii) Deducir que \sqrt{x} es uniformemente continua en $\mathbb{R}_{\geq 0}$.

iii) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ continua y tal que $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$. Probar que f es uniformemente continua en \mathbb{R} .

Ejercicio 22. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función continua y abierta.

- i) Probar que f no tiene extremos locales; es decir, no existen $x_0 \in \mathbb{R}$ y $\varepsilon > 0$ tales que $f(x_0) \leq f(x)$ (resp. $f(x_0) \geq f(x)$) para todo $x \in (x_0 \varepsilon, x_0 + \varepsilon)$.
- ii) Comprobar que existen $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$ tales que $f(\mathbb{R}) = (a, b)$.
- iii) Mostrar que $f: \mathbb{R} \longrightarrow (a,b)$ es un homeomorfismo y que ella y su inversa son funciones monótonas.

Ejercicio 23. Sea (X,d) un espacio métrico compacto y sea $f:X\longrightarrow \mathbb{R}$ una función semicontinua superiormente. Probar que f está acotada superiormente en X y que f alcanza máximo en X.