U74LVC2G157 cmos ic

SINGLE 2-LINE TO 1-LINE DATA SELECTOR OR MULTIPLEXER

DESCRIPTION

The **U74LVC2G157** is a single 2-line to 1-line data selector or multiplexer which is featured a common strobe $(\overline{\mathtt{G}})$ input. When the strobe is high, the output Y is low and \overline{Y} is high regardless of the levels of other inputs. When the strobe is low, a single bit is selected from one of two sources and is transferred to the output with the true and complementary data.

This device has power-down protective circuit, preventing device destruction when it is powered down.

- * Operate from 1.65V to 5.5V
- * Inputs accept voltages to 5.5V
- * I_{off} supports partial-power-down mode
- * Low power dissipation: I_{CC}=10µA(Max.)
- * ±24mA output drive(V_{CC}=3.3V)
- * Max tpd at 6ns of 3.3V

ORDERING INFORMATION

Ordering	Dookogo	Dooking	
Lead Free	Halogen Free	- Package	Packing
U74LVC2G157L-S08-T	U74LVC2G157G-S08-T	SOP-8	Tube
U74LVC2G157L-S08-R	U74LVC2G157G-S08-R	SOP-8	Tape Reel

■ PIN CONFIGURATION

■ FUNCTION TABLE (EACH GATE)

	INP	OUT	PUT		
$\bar{\overline{G}}$	Ā/B	Α	В	Υ	$\overline{\overline{Y}}$
Н	Χ	Χ	Χ	L	Н
L	L	L	Х	L	Н
L	L	Η	Χ	Н	L
L	Н	Χ	L	L	Н
L	Н	Χ	Н	Н	L

Note: H: HIGH voltage level; L: LOW voltage level; X: Don't care

■ LOGIC DIAGRAM (positive logic)

■ ABSOLUTE MAXIMUM RATING

	PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage		V_{CC}	-0.5 ~ +6.5	V
Input Voltage		V_{IN}	-0.5 ~ +6.5	V
Output in the high or low state			-0.5 ~ V _{CC} +0.5	V
Output Voltage	Output in the high-impedance or power-off state	V _{OUT}	-0.5 ~ +6.5	V
V _{CC} or GND Curre	V _{CC} or GND Current		±100	mA
Continuous Outpo	ut Current (V _{OUT} =0 to V _{CC)}	l _{out}	±50	mA
Input Clamp Curr	ent (V _{IN} <0)	I_{lK}	-50	mA
Output Clamp Current (V _{OUT} <0)		I _{OK}	-50	mA
Storage Tempera	ture Range	T _{STG}	-65 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Cumple Valtage		Operating	1.65		5.5	V	
Supply Voltage	V _{CC}	Data retention only	1.5			V	
Input Voltage	V _{IN}		0		5.5	V	
Output Voltage	V _{OUT}		0		V_{CC}	V	
		V _{CC} =1.65V~1.95V	0.65*V _{CC}				
High Lovel Innet Valtage	.,	V _{CC} =2.3V~2.7V	1.7			V	
High-Level Input Voltage	V _{IH}	V _{CC} =3.0V~3.6V	2			V	
		V _{CC} =4.5V~5.5V	0.7*V _{CC}				
		V _{CC} =1.65V~1.95V			0.35*V _{CC}		
Landa alle a titalia	.,	V _{CC} =2.3V~2.7V			0.7	V	
Low-Level Input Voltage	V _{IL}	V _{CC} =3.0V~3.6V			0.8		
		V _{CC} =4.5V~5.5V			0.3*V _{CC}		
		V _{CC} =1.65V			-4	mA	
		V _{CC} =2.3V			-8	mA	
High-level Output Current	I _{OH}	V _{CC} =3.0V			-16	mA	
		V _{CC} =3.0V			-24	mA	
		V _{CC} =4.5V			-32	mA	
		V _{CC} =1.65V			4	mA	
		V _{CC} =2.3V			8	mA	
Low-level Output Current	I _{OL}	V _{CC} =3.0V			16	mA	
·		V _{CC} =3.0V			24	mA	
		V _{CC} =4.5V			32	mA	
		V _{CC} =1.65V~1.95V, 2.3V~2.7V			20	ns/V	
Input Transition Rise or Fall	Δt/Δν	V _{CC} =3.0V~3.6V			10	ns/V	
Rate		V _{CC} =4.5V~5.5V			5	ns/V	
Operating Temperature	TA		-40		85	°C	

U74LVC2G157 cmos ic

■ ELECTRICAL CHARACTERISTICS (T_A =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		V _{CC} =1.65V~5.5V, I _{OH} =-100μA	V _{CC} -0.1				
		V _{CC} =1.65V, I _{OH} =-4mA	1.2				
High Lovel Output Voltage	\/	V _{CC} =2.3V, I _{OH} =-8mA	1.9			V	
High-Level Output Voltage	V _{OH}	V _{CC} =3.0V, I _{OH} =-16mA	2.2			·	
		V _{CC} =3.0V, I _{OH} =-24mA	2.3				
		V _{CC} =4.5V, I _{OH} =-32mA	3.8				
		V _{CC} =1.65V~5.5V, I _{OH} =-100μA			0.1	.45).3	
	Vol	V _{CC} =1.65V, I _{OH} =4mA			0.45		
Low-Level Output Voltage		V _{CC} =2.3V, I _{OH} =8mA			0.3		
Low-Level Output Voltage		V _{CC} =3.0V, I _{OH} =16mA			0.4		
		V _{CC} =3.0V, I _{OH} =24mA			0.55		
		V _{CC} =4.5V, I _{OH} =32mA			0.55		
Input Leakage Current	I _{I(LEAK)}	V_{CC} =0V~5.5V, V_{IN} =5.5V or GND			±5	μΑ	
Power OFF Leakage Current	I _{OFF}	V _{CC} =0V, V _{IN} or V _{OUT} =5.5V			±10	μΑ	
Quiocoant Supply Current	1-	V _{CC} =1.65V~5.5V,			10		
Quiescent Supply Current	lα	V _{IN} =5.5V or GND, I _{OUT} =0			10	μA	
Additional Quiescent Supply	ΔI_Q	V_{CC} =3V~5.5V, One input at V_{CC} -0.6V,			500	114	
Current	ΔIQ	other inputs at V _{CC} or GND		500		μA	
Input Capacitance	C _{IN}	V_{CC} =3.3V, V_{IN} = V_{CC} or GND		5		pF	

■ SWITCHING CHARACTERISTICS (T_A =25°C, unless otherwise specified)

PARAMETER	AMETER SYMBOL TEST CONDITIONS MIN		MIN	TYP	MAX	UNIT	
		V _{CC} =1.65V~1.95V	4.4		14		
Propagation delay from input	t _{PLH} /t _{PHL}	V _{CC} =2.3V~2.7V	2.1		8		
(A or B) to output(Y or \overline{Y})		V _{CC} =3.0V~3.6V	2		6	ns	
		V _{CC} =4.5V~5.5V	1.4		4		
		V _{CC} =1.65V~1.95V	4.9		16		
Propagation delay from input	t _{PLH} /t _{PHL}	V _{CC} =2.3V~2.7V	2.5		9		
(\overline{A}/B) to output(Y or \overline{Y})		V _{CC} =3.0V~3.6V	2.1		6	ns	
		V _{CC} =4.5V~5.5V	1.6		4		
		V _{CC} =1.65V~1.95V	4.2		14		
Propagation delay from input	t _{PLH} /t _{PHL}	V _{CC} =2.3V~2.7V	2		8		
(\overline{G}) to output(Y or \overline{Y})		V _{CC} =3.0V~3.6V	1.6		6	ns	
		V _{CC} =4.5V~5.5V	1.3		4		

\blacksquare OPERATING CHARACTERISTICS (T_A =25°C , unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Dissipation Capacitance		V _{CC} =1.8V, f=10MHz		35		pF
	l Cpd	V _{CC} =2.5V, f=10MHz		35		pF
		V _{CC} =3.3V, f=10MHz		37		pF
		V _{CC} =5V, f=10MHz		40		рF

U74LVC2G157 cmos ic

■ TEST CIRCUIT AND WAVEFORMS

TEST CIRCUIT

V	Inputs		/		Б
V _{CC}	V_{IN}	t _R , t _F	V _M	CL	R_L
V _{CC} =1.65V~1.95V	V_{CC}	≤2ns	V _{CC} /2	30pF	1ΚΩ
V _{CC} =2.3V~2.7V	V_{CC}	≤2ns	V _{CC} /2	30pF	500Ω
V _{CC} =3.0V~3.6V	3.0V	≤2.5ns	1.5V	50pF	500Ω
V _{CC} =4.5V~5.5V	V_{CC}	≤2.5ns	V _{CC} /2	50pF	500Ω

PROPAGATION DELAY TIMES

Note: 1. C_L includes probe and jig capacitance.

2. All input pulses are supplied by generators having the following characteristics: PRR ≤10MHz, Zo = 50Ω.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.