

Machine Intelligence Full Example of Genetic Algorithm

Dr. Arti Arya

Department of Computer Science

artiarya@pes.edu

+080-66186629 Extn 6629

MACHINE INTELLIGENCE

Full Example of Genetic algorithm

Dr. Arti Arya

Department of Computer Science and Engineering

A Solved Example of GA

Consider the following optimization problem:

$$Min. f(x) = x \sin 10\pi x + 1.0$$

$$s. t.$$

$$-1 \le x \le 2$$

Let crossover rate be 0.5 and mutation rate be 0.1. Consider one generation with a population of 10 chromosomes.

A Solved Example of GA

Step 1: Initialization and Evaluation of the population

Let the initial population be:

-0.4691, 0.1572, -0.5914, 0.6454, 0.7796, 1.0580, 0.0991, 0.2772, 0.5605, 1.6327

Compute the cost (value of f(x)) corresponding to each initial value of x(initial chromosome in the population)

x	y=f(x)
-0.4691	1.3872
0.1572	0.8468
-0.5914	0.8422
0.6454	1.6387
0.7796	0.5339
1.0580	2.0248
0.0991	1.0028
0.2772	1.1820
0.5605	0.4697
1.6327	2.3962

A Solved Example of GA

Sort the values of f(x) in ascending order. Min f(x)=0.4697 for x=0.5605

Step 2: Selection (Roulette Wheel)

Normalizing the values of f(x) between 0.1 and 0.9. Lets normalize using

$$f(x) = \frac{(max.range - \min. range)(f(x) - min.f(x))}{max.f(x) - \min f(x)} + \min. range$$

Here min. range=0.1, max. range=0.9 $f(x_1)=0.4697$ (this is also min cost) $f(x_2)=2.3962$ (max cost)

x	y=f(x)	Normalized
0.5605	0.4697	0.1000
0.7796	0.5339	0.1269
-0.5914	0.8422	0.2584
0.1572	0.8468	0.2566
0.0991	1.0028	0.3213
0.2772	1.1820	0.3958
-0.4691	1.3872	0.4808
0.6454	1.6387	0.5855
1.0580	2.0248	0.7458
1.6327	2.3962	0.9000

Probability of ith chromosome to be selected in the pool of population of size n for crossover operation is

$$Prob. = \sum_{i=1}^{n} \frac{normalized\ cost\ of\ individual\ chromosome}{sum\ of\ all\ the\ normalized\ costs}$$

Finally we'll *flip these probabilities* so that best chromosome gets the highest probability.

The best chromosome is the one with the minimum cost and should have highest probability of selection.

x	Normalized f(x)	Prob.	Flipped Prob.
0.5605	0.1000	0.02339	0.2159
0.7796	0.1269	0.03045	0.1789
-0.5914	0.2584	0.06114	0.1405
0.1572	0.2566	0.06157	0.1154
0.0991	0.3213	0.0771	0.0950
0.2772	0.3958	0.0950	0.0771
-0.4691	0.4808	0.1154	0.06157
0.6454	0.5855	0.1405	0.06114
1.0580	0.7458	0.1789	.03045
1.6327	0.9000	0.2159	0.02339

Chromo.	Cost in ascending order	Nomalized	d Prob.	Prob.	Prob.	Randon Valus generated
0.5605	0.4697	0.1000	0.2359	0.2159	0.2160	for selection.
0,7796	0.5344	0.1269	0.03045	011789	0.3949	0.2345
-0.5914	0.8424	0.2584	0.06114	0.1405	0.5354	0.6190
0.1572	0.8468	0.2566	0.06157	0.1154	0.6508	0.1389
0.0991	1.0027	0.3213	0.0771	0.0950	0.7458	0.8430
0.2772	1.1820	0.3958	0.0950	0.0771	0.8229	0.0579
0.4691	1,3868	0.4808	0:1154	0.06157	0 8844	ndt · 10,9805
0.6454	1.6389	0,5855	0.1405	0.06(14	0.9456	10:7784
1.0580	2.0249	0.7458	0.1789	0.03045	0.9760	0,4111
1.6327	2.3962	0,9000	0.2159	0.2339	1.000	0.2513

For Roulette Wheel Selection Process, Consider a random no. say 0.6777 and this random no. fits between 0.6508 and 0.7458 Therefore, 5thchromosome ie 0.0991 is selected.

So, consider another random number=0.2345

It fits between 0.2160 and 0.3949

Therefore, Chromosome corresponding to 0.3949 ie 2nd chromosome(0.7796) is selected.

For this problem the random nos. considered are 0.6190 (4th Chrom),

0.1389(1st Chro), 0.8430(7th Chrom), 0.0579(1st Chro), 0.9805(10th Chrom), 0.7784(6th), 0.4111(3rd), 0.2513 (2nd) are selected.

Like this, 10 chromosomes that are best fit are selected.

Lets divide the pool of 10 chromosomes into 2 subsets of 5 chromo each.

		raya No.
Male I		Date
	0991)	Mate 2
	0.7796)	#1 (0.5605)
#4 (0 11572)	# 10 (1.6327)
#1 ((2002,0	# 3 (-0,5914)
#7	(-0.4691)	# 2 (0.7796)

Step 3: Crossover

As crossover rate =0.5
Therefore, # of crossovers=5
And # of mutations =1

Crossover operator used is Directional crossover given as follows:

 $C_1 = P1 + R(P2 - P1)$

 $C_2 = P2 + R(P1 - P2)$

Where R is a random number

(The random nos. considered for crossover step are

0.3451,0.4539,0.8674,0.1004,0.7801)

Selection of Chromosom e for mating		Random number for Directional X	Crossover Operator
5 th (0.0991)	1 st (0.5605)	0.3451	C ₅ : 0.0991+0.3451(0.5605-0.0991)=0.2583 C ₁ : 0.5605+0.3451(0.0991-0.5605)= <mark>0.4013</mark>
2 nd (0.7796)	10 th (1.6327)	0.1004	C ₂ : 0.7796+0.4539(1.6327-0.7796)= 1.1668 C ₁₀ : 1.6327+0.4539(0.7796-1.6327)=1.2454
4 th (0.1572)	6 th (0.2772)	0.4539	C ₄ : 0.1572+0.8674(0.2772-0.1572)=0.2613 C ₆ : 0.2772+0.8674(0.1572-0.2772)=0.1731
1st (0.5605) (0.4013)	3rd (-0.5914)	0.7801	C ₁ : 0.4013+0.1004(-0.5914-0.4013)=0.3016 C ₃ : -0.5914+0.1004(0.4013+0.5914)= -0.4917
7 th (-0.4691)	2 nd (0.7796) (1.1668)	0.8674	C ₇ : 0.8071 C ₂ : -0.1094

The new chromosomes so obtained will be looked into for whether they lie within the boundary limits of -1 and 2, if not then parent chromosome will not be replaced by the new offspring.

Mutation

Lets select 3rd chromosome(offspring) randomly. Replace it by a new random no. between -1 and 2.

Population	Rawouly	Repeace the
after crossoner	Selected	selected chromo.
V	Chromo.	inth new metrin
		limits.
0.3016		0.3016
-0.1094	Lets	-0,1094
1-0.4917	Select	-0.6283
0.2613	3rd	0,2613
0.2583	chrous.	0.2583
0.1731	ab	0,1731
0.8071	randon.	0.8071
0.6454		0.6454
1.0580		1.0580
1.2454	χ*	1,2454
, , , ,	1.5	
		New population
		for the next
		generation.
		0 =

Step 5: Termination

Depending on how many generations or any other criteria for stopping the algorithm.

THANK YOU

Dr. Arti Arya

Department of Computer Science

artiarya@pes.edu

080-66186629 Extn 6629