

PRELIMINARY ANALYSIS OF RESTAURANT RECOMMENDATION SYSTEM

Computer Science

Sukraat Ahluwalia; Guangze Jin; Shih-Ting Huang Rochester Institute of Technology, Rochester, New York, USA

[sxa4430, gj9530, sh3964]@rit.edu

Motivation

- We love exploring new restaurants and this is an interesting project to perform preliminary analysis of restaurant recommendation system.
- We practiced database and data mining techniques using real-world Yelp open dataset.

Methods

- Building relational DBMS database from Yelp dataset
- Building predicting models for target variable (e.g. goodForKids) using decision tree, random forest, and SVM
- Performing cluster analysis of user attributes

Building Yelp Relational DBMS

Business Entity Set

- Extract business type = [Restaurant, Food, or Diners]
- 65,028 observations
- Attributes: goodForGroup, goodForKids, wheelchair, noiseLevel, alcohol, takeOut, reservation, delivery, hasTV, wifi, priceLevel, creditCard etc.

User Entity Set

• 1,183,362 observations, 9 attributes

Review Entity Set

- Systematic sampled (every 10th) from raw data
- 473,690 observations, 7 attributes

Checkin Entity Set

 One attribute per hour, 24*7 variables, and 135,148 observations

Tip Entity Set

• 1,028,802 observations, 4 attributes

Figure 1. Entity-Relationship diagram of yelp database.

Predicting Models for goodForKids

Date Preparation

 Created dummy variables for multiple category variables

Variable Selection

Correlation analysis for selecting important variables (Figure 3)

Model Establishment

- Split dataset into three sets:
- training set (70%)
- validation set (15%)
- test set (15%)
- Decision Tree Model
- Random Forest Model
- SVM Model

classifier

Figure 3. Variable correlation using Pearson

Results

Built all three models with all variables

Table 1. Overall errors with all variables

	Full	Training	Validation	Test
Decision Tree	14.5%	14.6%	14.3%	13.9%
Random Forest	13.5%	13.2%	13.8%	14.6%
SVM	13.7%	13.6%	13.2%	14.7%

Excluded variables with lower correlation and built models

Table 2. Overall errors with relatively important variables

	Full	Training	Validation	Test		
Decision Tree	14.5%	14.6%	14.3%	13.9%		
Random Forest	12.9%	12.8%	13.9%	12.6%		
SVM	12.8%	12.8%	13.5%	12.4%		

Cluster Analysis of User Attributes

- Collaborative filtering based: finding other users whose rating patterns match the targeted user
- Group similar entities based on a set of attributes
- KMeans clustering algorithm:

$$argmin_{S} \sum_{i=1}^{k} \sum_{x \in S_{i}} ||x - \mu_{i}||^{2}$$

Use K=7 as the number of clusters for the system.

Figure 4. Cluster plots at K=7

Concluding Remarks

- Used Python to build the restaurant database in SQLite (from .json files to .db database).
- Used R to perform correlation analysis of variables.
- Excluded variables with lower correlation to reduce error rate of the predicting models for goodForKids.
- K=7 is the most suitable cluster number for clustering analysis of user attributes.
- Our preliminary findings can contribute to the restaurant recommendation system in the future.

References

- [1] 2017. Yelp Open Dataset. (2017). https://www.yelp.com/dataset/
- 2] Daniar Asanov. 2011. Algorithms and Methods in Recommender Systems. Berlin Institute of Technology.
- 3] Aarshay Jain. 2016. Quick Guide to Build a Recommendation Engine in Python. (2016).
- https://www.analyticsvidhya.com/blog/2016/06/quick-guide-build-recommendation-engine-python/ Ashish Kumar. 2017. Recommendation Engine - Content-Based Filtering & Collaborative Filtering. (2017).

https://www.linkedin.com/pulse/recommendation-engine-content-based-filtering-ashish-kumar