## ELECTROTECNIA TEÓRICA - Recurso do 1º Teste - 2 de fevereiro de 2021

No início da parte A, transcreva e assine a seguinte declaração:

"Ao submeter esta avaliação online, declaro por minha honra que irei resolver a prova não recorrendo a qualquer elemento de consulta, de forma autónoma e sem trocar qualquer informação por qualquer meio, com qualquer pessoa ou repositório de informação, físico ou virtual."

No final da prova, fotografe as respostas com o cartão de cidadão visível sobre cada folha. Siga as INDICAÇÕES no verso.



- **A)** A Fig. 1 representa um corte transversal de uma linha bifilar, no ar ( $\varepsilon$ = $\varepsilon$ 0), constituída pelos condutores 1 e 2, face a um condutor plano (cond. 0). Os condutores da linha são iguais, de raio  $r_0$ =2 mm e comprimento l=1 km, e estão à mesma distância do condutor plano. O campo de disrupção do ar é  $E_d$ =30kV/cm.
- Fez-se uma experiência onde, com o sistema descarregado, se impôs a tensão de U<sub>1</sub>=100 kV (interruptor S<sub>1</sub> fechado) com o condutor 2 isolado (interruptor S<sub>2</sub> aberto). Após a obtenção do equilíbrio eletrostático mediu-se a carga do condutor 1, Q<sub>1</sub>=166,7 μC e a tensão U<sub>2</sub>=66,7 kV. Determine a matriz dos coeficientes de potencial [S]. Depois, verifique, justificadamente, que as capacidades parciais do sistema são as indicadas na Fig. 1.
- 2) Em seguida abriu-se o interruptor  $S_1$  e depois fechou-se o interruptor  $S_2$ . Determine a nova tensão do condutor 1,  $U_1$  e a nova carga do condutor 2,  $Q_2$ .
- 3) Determine a energia dissipada por efeito de Joule na resistência R entre os dois estados de equilíbrio descritos nas alíneas 1) e 2). Justifique.
- 4) Indique a situação, a da alínea 1) ou a de 2), em que o campo elétrico é máximo. Determine o seu valor para a aproximação de condutores finos. Comente sobre a possibilidade de disrupção do dielétrico. Justifique.
- **B**) Considere o circuito magnético representado na Fig.2-a), onde se desprezam as relutâncias magnéticas das peças horizontais e onde as peças verticais (a sombreado), todas iguais, têm comprimento l, secção S e permeabilidade magnética relativa,  $\mu_r$ , dados. Os enrolamentos 1 e 2 têm número de espiras respetivamente  $N_1$  e  $N_2$  também dados. Despreza-se a dispersão e consideram-se os campos uniformes nas peças verticais.



Fig. 2

- 1) Calcule a relutância magnética das peças verticais a sombreado.
- 2) Por aplicação das leis fundamentais, estabeleça as equações que permitem o cálculo dos fluxos  $\phi_1$ ,  $\phi_2$  e  $\phi_0$  indicados na figura em função das correntes  $i_1$  e  $i_2$ .
- 3) Calcule esses fluxos  $\phi_1$ ,  $\phi_2$  e  $\phi_0$  para a situação em que o enrolamento 2 está em aberto (interruptor *S* aberto) e a corrente  $i_1=I_0$  dado.
- 4) Determine os campos de indução magnética **B** e intensidade do campo magnético **H** nas peças verticais a sombreado do circuito magnético na situação da alínea 3). Determine a energia magnética armazenada.
- 5) Relacione os fluxos ligados com cada enrolamento,  $\psi_1$  e  $\psi_2$ , com os fluxos através das secções retas das peças verticais  $\phi_1$ ,  $\phi_2$  e  $\phi_0$ . Determine os valores de  $\psi_1$  e  $\psi_2$  para a situação da alínea 3). Determine os coeficientes de autoindução do enrolamento 1  $L_{11}$  e o coeficiente de indução mútua  $L_M$ . Verifique o valor de  $L_{11}$  por considerações de natureza energética.
- C) Considere ainda o sistema representado na Fig. 2 em que  $L_{11}$ =1 H e  $L_{M}$ =0,25 H e considere agora que as correntes  $i_1$  e  $i_2$  são variáveis no tempo. Desprezam-se as resistências dos enrolamentos.
- 1) Exprima a tensão  $u_1$  em função das correntes  $i_1$  e  $i_2$  e a tensão  $u_2$  em função do fluxo  $\phi_2$ , por aplicação da lei de indução de Faraday.
- 2) Considere que  $i_1(t)$  tem o andamento indicado na Fig.2-b) e que o enrolamento 2 está em aberto (interruptor S aberto). Determine a tensão  $u_2(t)$  e represente o seu andamento temporal.
- 3) Considere ainda que  $i_1(t)$  tem o andamento indicado na Fig.2-b) mas que o enrolamento 2 está em curto-circuito (interruptor S fechado). Determine  $\phi_2$ . Tendo em conta as equações de 2), estabeleça a relação entre as correntes  $i_1$  e  $i_2$ . Determine  $i_2$ . Determine a tensão  $u_1(t)$  e represente o seu andamento temporal.

## ELECTROTECNIA TEÓRICA - Recurso do 1º Teste - 2 de fevereiro de 2021

## INDICAÇÕES

O teste (<u>sem consulta</u>) tem 1,5 horas de duração com mais 5 minutos para a declaração de honra e assinatura e mais 15 minutos para a submissão eletrónica das 3 partes do teste.

Nenhum aluno será admitido no teste após o início da prova.

- No início da parte A, transcreva e assine a seguinte declaração:
- "Ao submeter esta avaliação online, declaro por minha honra que irei resolver a prova não recorrendo a qualquer elemento de consulta, de forma autónoma e sem trocar qualquer informação por qualquer meio, com qualquer pessoa ou repositório de informação, físico ou virtual."
- Fotografe as respostas com o cartão de cidadão visível sobre cada folha em todas as partes.

## Estas duas últimas solicitações são obrigatórias e a sua não inclusão tornará inviável a classificação do teste.

Deve usar três cadernos de folhas, um por cada parte A, B e C, onde conste a identificação do aluno, com nome e número, bem como a data da prova, designação da disciplina e a respetiva parte. No final, para cada parte, fotografe e crie um ficheiro PDF com o nome "T1\_parte X\_número de aluno" com X=A, B ou C conforme a parte e, depois, submeta-os, através da plataforma FENIX, nos projetos "1° Teste de recuperação de ET (Parte X)" com X=A, B ou C conforme a parte.

Não utilize cor vermelha e evite fazer riscos e rasuras.

Na aplicação das leis fundamentais é indispensável indicar numa figura os caminhos, superfícies e normais utilizados.

Nos cálculos de natureza numérica não se esqueça de explicitar as <u>unidades</u> em que as grandezas calculadas estão expressas.

$$\mbox{Constantes características do vazio:} \ \, \mathcal{E}_0 = \frac{10^{-9}}{36\,\pi} \, \mbox{Fm}^{-1} \ \, ; \quad \mu_0 = 4\pi \times 10^{-7} \, \mbox{Hm}^{-1} \ \, ; \quad c = 3\times 10^8 \, \, \mbox{m/s} \, . \label{eq:epsilon}$$

| Cotações: | Parte A       | Parte B       | Parte C       |
|-----------|---------------|---------------|---------------|
|           | 1) 3,0        | 1) 0,5        | 1) 2,0        |
|           | 2) 2,0        | 2) 1,5        | 2) 1,5        |
|           | 3) 1,0        | 3) 1,0        | 3) <u>2,5</u> |
|           | 4) <u>1,0</u> | 4) 2,0        | 6,0           |
|           | 7,0           | 5) <u>2,0</u> |               |
|           |               | 7,0           |               |