

به نام خدا

دانشگاه تهران دانشکده مهندسی برق و کامپیوتر شبکه های عصبی و یادگیری عمیق

تمرین سری 3

شايان واصف احمدزاده	نام و نام خانوادگی
810197603	شماره دانشجویی
1 دی 1400	تاریخ ارسال گزارش

فهرست گزارش سوالات

3	
12	سوال Auto-associative Net – ۲
18	سوال Discrete Hopfield Net – 3
25	سوال Bidirectional Associative Memory – 4

سوال Character Recognition using Hebbian Learning Rule – 1

الف)

با تشکیل ماتریس وزن و بازیابی دوباره خروجی ، خروجی جدید را بصورت زیر رسم می کنیم :

شكل 1-1-1: خروجي بازيابي شده توسط روش Hebbian learning rule

ب)

برای پیدا کردن کوچکترین سایز خروجی که به کمک آن بتوان خروجی را به طور کامل بازیابی کرد، bipolar ابتدا به کمک ابزار itertools ، برای تعداد دلخواه خانه موجود در خروجی ، تعداد حالات مختلف موجود را بدست می آوریم . برای مثال برای تعداد 2 خانه برای خروجی ، 4 حالت زیر وجود دارد :

```
list(itertools.product([-1, 1], repeat=2))
[(-1, -1), (-1, 1), (1, -1), (1, 1)]
```

شكل 1-2-1 : تعداد حالات ممكن براى 3 خانه براى خروجى

همچنین چون در مجموع 3 خروجی داریم ، پس یک انتخاب نیز در اینجا مطرح می شود که از بین حالات بالا ، کدام را به خروجی اول ، دوم و سوم نسبت دهیم . به کمک دستور combination برای c(4,3) = 4 حالت بالا به تعداد c(4,3) = 4 انتخاب داریم :

```
[((-1, -1), (-1, 1), (1, -1)),
((-1, -1), (-1, 1), (1, 1)),
((-1, -1), (1, -1), (1, 1)),
((-1, 1), (1, -1), (1, 1))]
```

شكل 1-2-2: تعداد انتخاب هاى ممكن براى انتخاب سه خروجي

با این حساب می توان بیان کرد که برای تعداد n خانه ، به تعداد $c(2^n,3)$ حالت برای انتخاب سه خروجی وجود دارد.(در اینجا n می تواند از n تا n می تواند از n می تواند

حال تابعی مینویسیم("check_min_size") که از تعداد خانه 2 شروع به برسی کرده و تا خانه 14 پیش رود . برای هر تعداد خانه ، حالات انتخاب 3 خروجی را مانند بالا برسی کرده و برای هر حالت ، ماتریس وزن و در نهایت خروجی بازیابی شده را بدست آورد . در صورتی که خروجی بازیابی شده با خروجی داده شده به شبکه یکسان باشد ، حلقه را متوقف کرده و خروجی را برگرداند.

با اجرای تابع ، برای همان تعداد 2 خانه ، ترکیبی از 3 خروجی پیدا می شود که شرط بالا را اغنا می کند :

شكل 1-2-3: خروجى مطلوب با كمترين سايز ممكن (2 خانه)

پ)

قبل از برسی حالات مختلف ، دو مفهوم $\frac{Acc}{2}$ و $\frac{Tot_Acc}{2}$ را بیان می کنیم :

- Acc : در هر بار اجرای الگوریتم ، سه دقت متفاوت برای سه حالت خروجی بدست میآید. بنابراین Acc یک ماتریس <u>8*100</u> میباشد که 100 ، تعداد بار اجرای الگوریتم میباشد.
- ➡ Tot_Acc: برای هر سطر موجود در ماتریس Acc، میانگین دقت های بدست آمده برای سه خروجی را به عنوان میانگین کل دقت خروجی بدست می آوریم. بنابرین Tot_Acc یک ماتریس خروجی را به عنوان میانگین کل دقت خروجی بدست می آوریم. بنابرین 100 می باشد .

اضافه کردن %10 نویز (خروجی با اندازه 15):

در این حالت ، در هر بار اجرای الگوریتم ، به تعداد 6 عنصر از 63 عنصر ورودی را دارای نویز می کنیم و معیار های بالا را برسی می کنیم :

```
Acc, Tot_Acc=Test_adding_noise(targetSet,10)

Tot_Acc

array([100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100
```

```
Acc,Tot_Acc=Test_adding_noise(Min_out_size,10)

Tot_Acc

array([100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100
```

شکل 2-3-1 : دقت بدست آمده برای خروجی مینیمال (2 خانه) و اعمال $\frac{10\%}{}$ نویز

اضافه کردن %40 نویز (خروجی با اندازه 15):

در این حالت ، در هر بار اجرای الگوریتم ، به تعداد 25 عنصر از 63 عنصر ورودی را دارای نویز می کنیم و معیار های بالا را برسی می کنیم :

```
Acc, Tot_Acc=Test_adding_noise(targetSet,40)
Tot_Acc
array([100.
                 , 100.
                                 84.44666667, 100.
       84.44666667, 80.00333333, 100.
                 , 100.
                          , 95.55666667,
       60.
                                              71.113333333,
      100.
                    77.78
                                95.55666667,
                                              60.00333333,
       95.55666667, 84.44666667, 100.
                                              95.55666667,
                           , 68.89
       44.44666667, 100.
                                              84.44666667,
                 , 86.67
                              , 86.66666667, 91.113333333,
       48.89
                 , 88.89
                              , 100.
                                              95.55666667,
       80.
                 , 100.
                                95.55666667, 80.00333333,
                 , 95.55666667, 100.
                              , 100.
                 , 88.89
       57.78
                                            , 100.
                 , 100.
                               , 71.11333333, 88.89
                 , 95.55666667, 95.55666667, 80.
       88.89
                             , 88.89
                                           , 86.67
       77.78
                   80.00333333, 73.33333333, 95.55666667,
                 , 100.
      100.
                             , 68.88666667,
                                              91.113333333,
                              , 100.
                                           , 84.44666667,
       68.88666667, 71.11
                 , 100.
                              , 77.78
      100.
                              , 100.
                                            , 84.44666667,
                   88.89
                              , 80.00333333, 88.89
       95.55666667, 100.
       84.44666667, 88.89
                              , 100. , 100.
                 , 71.11333333, 68.88666667, 100.
                 , 100.
                           , 100.
                                        , 75.55666667,
       88.89
       86.66666667, 77.78
                              , 64.44666667, 100.
                , 75.55666667, 73.33333333, 91.11333333])
       66.67
```

شکل 1-3-3: دقت بدست آمده برای خروجی اصلی (15 خانه) و اعمال %40 نویز در ادامه Tot_Acc بدست آمده را رسم می کنیم:

شکل 1-3-1 دقت بدست آمده برای خروجی اصلی (15 خانه) و اعمال 40% نویز طبق نتایج بدست آمده ، در 30 بار تکرار آزمایش ، هر سه خروجی درست یازیابی شده اند.

همچنین برای هر ستون موجود در Acc (دقت بدست آمده برای هر خروجی) ، kde ها را در یک نمودار رسم می کنیم :

شکل 1-3-5: kde فقت های بدست آمده برای 3 خروجی اصلی (15 خانه) و اعمال %40 نویز طبق شکل بالا ، برای خروجی اول (پترن A) نسبت به دو خروجی دیگر، بازیابی بهتری داشته ایم . اضافه کردن %40 نویز (خروجی با اندازه 2):

```
Acc, Tot_Acc=Test_adding_noise(Min_out_size, 40)
Tot_Acc
                                               66.6666667,
arrav([100.
                    83.33333333.
                                 50.
                                  66.66666667, 83.333333333,
       83.33333333, 100.
             , 100.
      100.
                                  50.
                                               83.33333333,
                    66.6666667,
      100.
                                  33.3333333, 100.
       66.6666667,
                                               83.33333333.
                     66.66666667, 100.
      100.
                     66.6666667,
                                 66.66666667, 66.66666667,
       50.
                     50.
                               , 100.
                                             , 100.
      100.
                     83.3333333, 66.6666667, 83.33333333,
       33.3333333, 100.
                             , 100.
                                             , 100.
                               , 83.3333333, 50.
                                               66.6666667,
                 , 100.
                              , 83.33333333,
                                               50.
                  , 100.
                                               66.6666667,
                               , 100.
                    83.33333333, 66.66666667,
                                               83.33333333.
       50.
       83.3333333, 83.3333333, 66.6666667, 66.66666667,
                    66.66666667, 100.
                                               83.33333333,
      100.
       83.3333333, 100.
                                 83.33333333, 66.66666667,
       83.3333333, 83.3333333, 83.3333333, 100.
      100.
                    83.33333333, 83.33333333, 100.
                           , 100.
       83.3333333, 100.
                                              100.
       66.66666667, 50.
                               , 66.66666667, 100.
       66.6666667, 83.33333333, 66.66666667, 50.
       83.33333333, 83.33333333, 100.
                                               83.33333333,
       66.66666667, 100.
                               , 100.
                 , 83.3333333, 66.6666667, 66.6666667])
```

شکل 1-3- δ : دقت بدست آمده برای خروجی مینیمال (δ خانه) و اعمال δ 40% نویز

: مربوط به Tot_Acc ، مربوط (Kernel density estimation) kde در ادامه در ادامه

شکل 1-3-1 : kde دقت بدست آمده برای خروجی مینیمال (2 خانه) و اعمال %40 نویز طبق نتایج بدست آمده ، در 37 بار تکرار آزمایش ، هر سه خروجی درست بازیابی شده اند. همچنین برای هر ستون موجود در Acc (دقت بدست آمده برای هر خروجی) ، kde را در یک نمودار رسم می کنیم :

شكل 2 دقت هاى بدست آمده براى 3 خروجى مينيمال (2 خانه) و اعمال 40% نويز

ت)

اضافه کردن %Missing value 10 خروجی با اندازه 15):

```
Acc,Tot_Acc=Test_adding_Missing(targetSet,10)

Tot_Acc

array([100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.
```

شكل 1-4-1: دقت بدست آمده براى خروجى اصلى (15 خانه) و اعمال 10% Missing 10% اضافه كردن 15% Missing value 10% خروجى با اندازه 2):

```
Acc,Tot_Acc=Test_adding_Missing(Min_out_size,10)

Tot_Acc

array([100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
```

شکل 1-4-2: دقت بدست آمده برای خروجی اصلی (15 خانه) و اعمال 10% Missing اسکل 1-4-2: دقت بدست آمده ، با اضافه کردن 10% Missing اسلام هر دو خروجی اورجینال و مینیمال برای هر 100 تکرار آزمایش درست بازیابی میشوند.

اضافه کردن %Missing value 40 (خروجي با اندازه 15):

```
Acc, Tot_Acc=Test_adding_Missing(targetSet, 40)
 Tot_Acc
 array([100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
                                                   100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
                                                  100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 
                                                  100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
                                                  100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
                                                 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 
                                                  100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
                                                 100.])
print(f"we have {np.sum((Tot_Acc==100).astype('int'))} times 100% totall accuracy")
we have 100 times 100% totall accuracy
```

شكل 1-4-3 : دقت بدست آمده براى خروجى اصلى (15 خانه) و اعمال 40%

اضافه کردن %Missing value 40 (خروجی با اندازه 2):

```
Acc, Tot_Acc=Test_adding_Missing(Min_out_size, 40)
Tot_Acc
array([100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
      100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
      100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
      100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
      100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
      100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
      100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
      100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
      100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
      100.])
print(f"we have {np.sum((Tot_Acc==100).astype('int'))} times 100% totall accuracy")
```

we have 100 times 100% totall accuracy

شكل 1-4-1 : دقت بدست آمده براى خروجى مينيمال (2 خانه) و اعمال $\frac{40\%}{1}$ همچنین ، با اضافه کردن 40% Missing هر دو خروجی اورجینال و مینیمال برای هر 100 تکرار آزمایش درست بازیابی میشوند.

(3

طبق نتایج بدست آمده ، مقاومت شبکه در برابر از دست دادن اطلاعات(Missing value) بیشتر از اضافه کردن نویز می باشد . (robust تر می باشد)

در قسمت قبل هم مشاهد کردیم که برای %40 نویز ، دقت کاهش مییابد ولی برای %40 Missing ، همچنان شبکه درست بازیابی می کند.

همچنین باتوجه به احتمال ، اگر خروجی با ابعاد کمتری از 15 یافت شود که بتواند خروجی را درست بازیابی کند ، احتمال خطا در خروجی با ابعاد کمتر ، کمتر از خروجی با ابعاد بیشتر خواهد بود .

همینطور که در قسمت ψ ، برای خروجی با سایز 15 ، تعداد 30 عدد آزمایش با دقت %100 داشتیم ، درحالیکه این مقدار برای سایز 2 ، 37 عدد بود که با نتیجه بالا همخوانی دارد.

سوال Auto-associative Net – ۲

(1

به کمک Modified Hebbian rule ، شبکه را آموزش میدهیم و ماتریس وزن را تشکیل میدهیم . مشخصا ، عناصر روی قطر اصلی ماتریس وزن ، صفر میباشد :

```
inputSet = np.hstack((x1,x2))
weight = inputSet @ inputSet.T - inputSet.shape[1]*np.eye(inputSet.shape[0])
array([[ 0., 2., 2., 2., 0., 2., 2., 0., 2., 2., -2., 2., 2.,
      2., 2.],
     [ 2., 0., 2., 2., 0., 2., 0., 2., 2., -2., 2., 2.,
      2., 2.],
              0., 2., 0., 2., 2., 0., 2., 2., -2., 2., 2.,
      2., 2.],
     [ 2., 2., 2., 0., 0., 2., 2., 0., 2., 2., -2., 2.,
       2., 2.],
     [0., 0., 0., 0., 0., 0., -2., 0., 0., 0., 0., 0.,
      0., 0.],
     [ 2., 2., 2., 2., 0., 0., 2., 0., 2., 2., -2., 2.,
     2., 2.],
[2., 2., 2., 2., 0., 2., 0., 0., 2., 2., -2., 2., 2.,
      2., 2.],
     0., 0.],
     [ 2., 2., 2., 2., 0., 2., 2., 0., 0., 2., -2., 2.,
      2., 2.],
     [\ 2.,\ 2.,\ 2.,\ 2.,\ 0.,\ 2.,\ 0.,\ 2.,\ 0.,\ -2.,\ 2.,\ 2.,
       2., 2.],
     [-2., -2., -2., -2., 0., -2., -2., 0., -2., -2., 0., -2., -2.,
      -2., -2.],
     [ 2., 2., 2., 2., 0., 2., 2., 0., 2., 2., -2., 0., 2.,
       2., 2.],
     [2., 2., 2., 2., 0., 2., 2., 0., 2., 2., -2., 2., 0.,
      2., 2.],
     [\ 2.,\ 2.,\ 2.,\ 2.,\ 0.,\ 2.,\ 2.,\ 0.,\ 2.,\ 2.,\ -2.,\ 2.,\ 2.,
       0., 2.],
     [ 2., 2., 2., 2., 0., 2., 2., 0., 2., 2., -2., 2.,
       2., 0.]])
weight.diagonal()
```

شكل 2-1-1: ماتريس وزن بدست آمده ناشى از دو پترن ورودى

(2)

به این منظور ، دو تابع "add_mistake" و "add_missing_value" مینویسیم که به ازای تعداد دلخواه داده شده ، در ورودی Missing/Noise ایجاد کند . برای اینکه تمامی حالات ممکن را در نظر بگیریم از

دستور combination موجود در کتابخانه itertools بهره میبریم بطوریکه مثلا برای نویزی کردن 6 خانه از c خانه ورودی ، تمام c حالت را در نظر بگیریم و در یک آرایه ذخیره کنیم .

سپس تابعی بنام "return_acc" مینویسیم که با گرفتن تعداد دلخواه Noise/Missing سپس تابعی بنام "return_acc" مینویسیم که با گرفتن تعداد دلخواه حالات حالت های بدست آمده ، پترن بازیابی شده را با پترن اصلی مقایسه می کند و میانگین دقت تمامی حالات مای بدست آمده ، پترن بازیابی شده را با پترن اصلی مقایسه می کند و میانگین دقت تمامی حالات c(15,n) که c(15,n) که c(15,n)

*نکته : از آنجایی که ما نمیدانیم نویزی کردن یا حذف کردن اطلاعات مروبط به کدام اندیس ورودی (از 1 تا 15) ، تاثیر بیشتری در بازیابی آن دارد ، ترکیب تمامی حالات را در نظر میگیریم و سپس بر روی آنها میانگین میگیریم .

در زیر نمودار دقت پترن بازیابی شده برای دو پترن ورودی (x1 و x2) ، بر حسب تعداد خانه هایی که دچار Noise شده اند ، می باشد :

شکل 2-2-1: دقت پترن بازیابی شده بر حسب تعداد خانه های نویزی در ورودی

طبق نتایج بالا ، با افزودن بیش از 6 نویز (40%) ، دقت به طور چشم گیری کاهش پیدا می کند و برای 9 نویز به بالا ، دقت تقریبا صفر می باشد . همچنین برای یک اشتباه در ورودی ، دقت تقربیا برابر 100 می باشد .

(3

تمامی مراحل فوق را اینبار برای حذف اطلاعات برای 0 تا 15 خانه انجام می دهیم و نمودار دقت پترن بازیابی شده برای دو پترن ورودی (x2 و x1) ، بر حسب تعداد خانه هایی که دچار Missing شده اند را رسم می کنیم :

شكل 2-3-1: دقت پترن بازيابي شده بر حسب تعداد خانه هاي Missing در ورودي

طبق نتایج در بالا ، می توان گفت که شبکه نسبت به حذف اطلاعات، مقاومتر (robust تر) از افزودن نویز به شبکه می باشد . برای مثال در شکل بالا ، با حذف اطلاعات 13 خانه نیز همچنان دقت نسبتا خوبی را دارد ، این در حالی است که در قسمت قبل (افزودن نویز) ، دقت شبکه نزدیک صفر می شد.

بنظر میرسد ، چون دو پترن ورودی تنها در یک unit (یک خانه) متفاوت میباشند ، با نویزی کردن آنها ، شبکه میتواند به اشتباه بیفتد . همین شباهت بین دو پترن ورودی باعث میشود که شبکه نسبت به حذف اطلاعات tobust شود و در صورتی که اطلاعات یکی از دو پترن تا حدی گم شود ، شبکه به کمک پترن دیگر ، پترن اولیه را تا حدی بازیابی میکند.

البته اگر به شکل کلی پترن ها نگاه کنیم ، متوجه می شویم که در پترن ها در هر جهت تقارن وجود دارد و این خود ایجاب می کند که شبکه در حذف اطلاعات نسبت به حذف نویز robust تر باشد.

*مانند این میماند که شما برای یادآوری یک چهارراه ، تنها یک خیابان آن را به خوبی میشناسید و با رسیدن به چهار راه و دیدن آن خیابان ، چهار راه را بیاد میآورید.

(4

حال اینبار ، ماتریس وزن خود را به کمک پترن به شکل صفر و پترن داده شده توسط سوال(عدد 1) تشکیل میدهیم :

```
inputSet_new = np.hstack((x1,x3))
weight\_new = inputSet\_new \ @ \ inputSet\_new.T \ - \ inputSet\_new.shape[1]*np.eye(inputSet\_new.shape[0])
weight_new
              0.,
array([[ 0.,
                                  0., 2., -2.,
         0.,
              0.],
       [ 0.,
              2.],
                                      0., 0.,
         2.,
              2.],
       [ 2.,
         0.,
              0.],
         0.,
              0.],
       [ 0.,
         2.,
              2.],
       [ 2.,
              0.,
                   0., 2., -2.,
                                  0., 0., -2.,
                                                 0., 2., -2.,
         0.,
              0.],
              0.,
       [-2.,
                                  0., -2., 0., 0., -2., 2., 0., -2.,
                   0., -2., 2.,
         0.,
              0.],
             2.,
                                                      0.,
       [ 0.,
                      0., 0.,
                                           0.,
              2.],
              0.,
       [ 2.,
                   0., 2., -2.,
                                  0., 2., -2.,
                                                 0., 0., -2., 0.,
         0.,
              0.],
       [-2.,
              0.,
         0.,
              0.],
              2.,
       [ 0.,
                                           0.,
                                                      0.,
              2.],
              2.,
       [ 0.,
                                2.,
weight_new.diagonal()
```

شکل 2-4-1 : ماتریس وزن بدست آمده ناشی از دو پترن جدید ورودی

حال نمودار دقت پترن بازیابی شده برای دو پترن ورودی (x3 و x1) ، بر حسب تعداد خانه هایی که دچار Noise شدهاند ، می باشد :

شکل 2-4-2: دقت پترن بازیابی شده بر حسب تعداد خانه های نویزی در ورودی

اینبار نمودار دقت پترن بازیابی شده برای دو پترن ورودی (x3 و x1) ، بر حسب تعداد خانه هایی که دچار Missing شده اند را رسم می کنیم :

شكل 2-4-3 : دقت پترن بازيابي شده بر حسب تعداد خانه هاي Missing در ورودي

طبق $\frac{\text{mكل}}{2-4-2}$ ، مى توان گفت هنگامى كه دو پترن ورودى تفاوت بیشترى با هم دیگر دارند ، با تعداد خانه هاى نویزى بیشترى (با افزودن تا 3 نویز) ، همچنان دقت 300 داریم و در واقع افزودن تعداد كمى نویز دقت بهترى را نسبت به حالتى كه دو پترن با هم شباهت دارند (300 نتیجه مى دهد .

ولى آيا با افزودن تعداد نويز بيشتر همچنان اين نتيجه را ميتوان گرفت ؟

با مقایسه دو $\frac{\text{mكل 2-4-2}}{\text{smooth}}$ و $\frac{2-2-1}{\text{smooth}}$ مى توان گفت كه وقتى دو پترن شباهت كمترى دارند ، نمودار حالت smooth ترى پیدا كرده و در بازه 5 نویز تا 10 نویز حالت خطى به خود مى گیرد و در خارج این بازه شیب آن آهسته تر كاهش یا افزایش مى باشد . در حالیكه وقتى دو ورودى شباهت دارند ، نمودار در بازه $\frac{1}{2}$ تا $\frac{1}{2}$ نویز حالت خطى داشته ولى شیب آن بیشتر است و در خارج این بازه به سرعت كاهش یا افزایش مى باید .

*در واقع ما با ایجاد تفاوت بین دو پترن ورودی ، حساسیت شبکه را نسبت به نویز کاهش دادیم و شبکه نسبت به نویز مقاوم تر خواهد بود . بنابراین روند تغییرات دقت ، روند مناسب تری خواهد بود .

همچنین نتیجه جالب دیگر در تحلیل حذف اطلاعات میباشد . با مقایسه دو نمودار $\frac{2-4-2}{6}$ و $\frac{2-6-1}{6}$ میتوان نتیجه گرفت هنگامی که دو پترن ورودی شباهت بیشتری به هم دارند ، با حذف اطلاعات کمتری همچنان میتوان دقت قابل قبولی گرفت (در نمودار $\frac{2-4-6}{6}$ تا حذف $\frac{10}{6}$ واحد از اطلاعات

همچنان دقتی نزدیک به 100% داریم درحالیکه در نمودار 2-3-1 تا حذف 3 واحد از اطلاعات ، دقت 100% داریم).

که با تحلیل آورده شده در انتهای بخش $\, 3 \,$ ، قابل توجیه است .

همچنین مانند قسمت قبل ، با ایجاد تفاوت در بین دو ورودی ، نمودار حالت smooth تری به خود گرفته و نسبت به حذف اطلاعات ، حساسیت کمتری خواهد داشت .

سوال Discrete Hopfield Net – 3

(1

با اجرای کد قرار داده شده ، به تصویر آموزش و تست زیر میرسیم :

Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

شکل 3-1-1: شکل های سیاه و سفید باینری آموزش و تست برای عکس pacman

(2

ماتریس وزن را به کمک تک عکس ورودی داده شده توسط ماتریس x (ماتریس ورودی) میسازیم :

x ماتریس وزن ایجاد شده توسط ماتریس ورودی x

(3

کد مربوط به این قسمت را به دو بخش زیر تقسیم می کنیم:

قسمت اول : در این قسمت تابعی مینویسیم که در یک دور کامل (1 round) ، برای تمام در این قسمت تابعی مینویسیم که در یک دور کامل (Discrete Hopfiled Net) ، برای تمام موجود در ورودی ، طبق قاعده کافته موجود در ابتهای هر دور ، پترن بازیابی شده را با پترن اولیه مقایسه کند و اگر این دو یکسان بودند ، توقف کند .

طبق این الگوریتم با دادن تصویر سمت راست برای یک دور(10000 epochs) تصویر بازیابی شده بر تصویر اصلی منطبق بوده و متوقف می شویم :

شكل 3-3-1: تصوير همگرا شده بعد از يك دور بروز رساني تمام 10000

■ قسمت دوم : در این قسمت طبق خواسته سوال ، به ترتیب طی هر unit ، epoch به سمت دوم : در این قسمت طبق خواسته سوال ، به ترتیب طی شکل داده شده را بروز رسانی می کنیم و در طی epoch های مشخص ، خروجی بدست آمده را رسم کرده و همگرایی آنرا برسی می کنیم :

شكل 3-3-2: روند تغييرات عكس بازيابي شده در طي epoch هاي مختلف

(4

در ابتدا به دلخواه ، قسمتی از عکس داده شده را crop می کنیم و به عنوان عکس تست به شبکه در نظر می گیریم . دو عکس باینری آموزش و تست به صورت زیر می باشد :

Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

شكل 3-4-1: شكل هاى سياه و سفيد باينرى آموزش و تست براى عكس ghost

در ادامه ، دو قسمت ذکر شده در بخش 3 را تکرار می کنیم :

ت قسمت اول :

unit 10000 : تصویر همگرا شده بعد از یک دور بروز رسانی تمام 2-4-3

🗢 قسمت دوم

شکل 3-4-3: روند تغییرات عکس بازیابی شده در طی epoch های مختلف در نهایت طبق خواسته سوال ، پترن ghost را به عنوان پترن آموزش و پترن pacman_test را به عنوان پترن تست در نظر می گیریم و در زیر رسم می کنیم:

Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

شکل 3-4-4: شکل های سیاه و سفید باینری آموزش و تست برای عکس های بیاد و سفید باینری اموزش و تست برای عکس های بیاد

در ادامه ، دو قسمت ذکر شده در بخش 3 را تکرار می کنیم :

🗢 قسمت اول :

unit 10000 مکل 3-4-5: تصویر همگرا شده بعد از دو دور بروز رسانی تمام

همانطور که مشاهده می شود ، شکل بازیابی شده به شکل اصلی همگرا نشده و بنابراین تا دو round پیش می رویم و به دلیل اینکه عکس بدست آمده با عکس بازیابی شده در اولین round تفاوتی ندارد ، متوقف می شویم :

شكل 3-4-6: روند تغييرات عكس بازيابي شده در طي epoch هاي مختلف

طبق نتایج بالا ، طبیعتا چون عکس تست داده شده به شبکه از جنس ورودی نیست ، شبکه در بازیابی آن دچار مشکل شده است .

اما برای برسی دلیل همگرایی به خروجی بدست آمده در $\frac{\text{mکل 6-4-5}}{\text{mbd}}$ ، باید توجه داشت که در بروز رسانی unit الگوریتم unit ، Hofild منتاظر ورودی وجود دارد .

از آنجا که مقادیر موجود در ماتریس ورودی شبکه (1 و 1-) در بسیاری از خانه ها، مکمل مقادیر موجود در ماتریس تست داده شده به شبکه میباشد (با مقایسه خانه های متناظر در دو عکس آموزش و تست ، میتوان دید که در اکثر اوقات ، منتاظر با یک خانه سیاه در عکس ورودی ، یک خانه سفید در عکس تست وجود دارد و برعکس)

بنابراین ما به شبکه عکسی با درصد زیاد نویزی از ورودی آموزش داده شده به آن را نشان می دهیم (در اکثر unit های منتظر ، 1 به جای 1- و 1- به جای 1 وجود دارد) و چیزی که شبکه بازیابی می کند ورژن کاملا نویزی شده ورودی خود می باشد .

برای برسی ادعای بالا ، مقدار از درصد نویز موجود در عکس تست داده شده به شبکه را کاهش میدهیم:

Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

شکل 3-4-3 : شکل های سیاه و سفید باینری آموزش و تست برای عکس های ghost , pacman_test1

حال نتایج برای epoch های مختلف رسم می کنیم :

شکل 3-4-8: روند تغییرات عکس بازیابی شده در طی epoch های مختلف همانطور که مشاهده می شود ، ادعای بالا درست بود و گرفتن مقداری از نویز عکس تست ، می توان همچنان عکس ورودی را بازیابی کرد.

سوال Bidirectional Associative Memory – 4

الف)

در ابتدا ، ماتریس های ورودی ، خروجی و وزن مربوط به سه پترن اول را در زیر می آوریم :

```
three_seq
                                three_seq=np.hstack((x1,x2,x3))
                                three_target=np.hstack((y1,y2,y3)).T
array([[-1, 1, 1],
                                # Calculate weight Matrix for firt three sample: W
       [1, 1, 1],
                                W=three_seq @ three_target.T
       [ 1, 1,
                1],
       [ 1, 1,
                 1],
       [-1, -1,
                -1],
       [-1, -1,
                 1],
                                array([[-1, 1, 1],
       [ 1, 1,
                 1],
                                       [-3, -1, -1],
       [-1, 1,
                 1],
                                       [-3, -1, -1],
       [-1, -1, 1],
                                       [-3, -1, -1],
       [ 1, 1, 1],
                                       [3, 1, 1],
       [-1, -1, 1],
                                       [ 1, 3, -1],
       [-1, -1, -1],
                                       [-3, -1, -1],
       [-1, 1, 1],
       [ 1, 1, -1],
[ 1, 1, 1]])
                                       [-1, 1, 1],
                                       [1, 3, -1],
                                       [-3, -1, -1],
                                       [ 1, 3, -1],
   three_target
                                       [3, 1, 1],
                                       [-1, 1, 1],
   array([[-1, -1, -1],
[-1, -1, 1],
                                       [-1, -3, 1],
                                      [-3, -1, -1]])
          [-1, 1, -1]])
```

شکل 4-1-1 : ماتریس ورودی ، خروجی و ماتریس وزن

ب)

برای این منظور دو تابع به نام 'TestInputs' و 'TestInputs' مینویسیم که در اولی خروجی حاصل از ورودی داده شده را توسط ماتریس وزن محاسبه می کنیم و در دومی ورودی بازیابی شده توسط خروجی را توسط ماتریس وزن محاسبه می کنیم:

```
def testInputs(y_old , x, weight):
    # Multiply the input pattern with the weight matrix
    # (weight.T X x)
    y = weight.T @ x
    for i,row in enumerate(y.T):
        row[row < 0] = -1
        row[row >= 0] = 1
        row[row==0] =y_old.T[i,:][np.where(row==0)[0]]
    return np.array(y)
```

شکل 4-2-1: خروجی بازیابی شده بعد از بدست آوردن ماتریس ورودی

```
def testTargets(x_old, y, weight):
    # Multiply the target pattern with the weight matrix
    # (weight X y)
    x = weight @ y
    for i,row in enumerate(x.T):
        row[row < 0] = -1
        row[row > 0] = 1
        row[row=0] = x_old.T[i,:][np.where(row==0)[0]]
    return np.array(x)
```

شكل 4-2-2: ورودى بازيابي شده بعد از بدست آوردن ماتريس خروجي

همانطور که در دو تابع نوشته شده مشاهده می شود ، قبل از ورود به تابع فعال ساز ، در صورتی یکی از unit ساز بر مقدار متناظر با اندیس آن در ورودی / خروجی قبلی جایگزین می کنیم . در ادامه در قالب یک while loop ، شرط توقف را چک می کنیم و تا جایی که مقدار قبلی خروجی با مقدار جدید خروجی بدست آمده (همینطور برای ورودی) برابر نباشد (همگرا نشده باشیم) ادامه می دهیم . باید توجه کرد که شرط فوق به معنای همگرا شدن به ورودی و خروجی مطلوب شبکه نیست و به این معنا است که شبکه بیشتر از این قابلیت یادآوری خروجی ها و Pattern های در ورودی را ندارد

خروجی های حاصل از اجرای الگوریتم را در زیر میبینیم:

```
number of iteration is 1

Reconstructed y1:

[-1 -1 -1]

Reconstructed y2:

[-1 -1 -1]

Reconstructed y3:

[-1 -1 -1]

element by element comparison of the given output and the reconstructed one :

[[ True True True]

[ True True False]

[ True False True]]

epoch شكل 4-2-3: خروجي بازيابي شده و مقايسه آن با خروجي اصلي در اولين
```

```
Input X1:
                                                   Reconstructed X1:
                                                   [['.' '@' '@']
[['.' '@' '@']
['@' '.' '.']
['@' '.' '.']
                                                    ['@' '.' '.']
                                                    ['@' '.' '.']
                                                    [,@, ,., ,.,]
 ['.'' '@' '@']]
Input X2:
                                                   Reconstructed X2:
[['@' '@' '@']
                                                   [['@' '@' '@']
                                                    ['@' '.' '.']
                                                    ['@' '@' '.']
 ['@' '@' '.']
 ['@' '.' '.']
                                                    ['@' '.' '.']
                                                    ['@' '@' '@']]
 ['@' '@' '@']]
                                                   Reconstructed X3:
Input X3:
                                                   [['@' '@' '@']
[['@' '@' '@']
                                                    ['@' '.' '.']
['@' '.' '@']
                                                    ['@' '@' '.']
['@' '.' '.']
 ['@' '@' '@']
['@' '@' '.']
                                                    ['@' '@' '@']]
 شکل 4-2-4 : ورودی بازیابی شده و مقایسه آن با ورودی اصلی در اولین epoch
  number of iteration is 2
  Reconstructed y1:
  [-1 -1 -1]
  Reconstructed y2:
  [-1 -1 -1]
  Reconstructed y3:
  [-1 -1 -1]
  element by element comparison of the given output and the reconstructed one :
  [[ True True True]
   [ True True False]
   [ True False True]]
   شكل 4-2-5: خروجي بازيابي شده و مقايسه آن با خروجي اصلى در دومين epoch
```

```
Input X1:
                                        Reconstructed X1:
[['.' '@' '@']
                                        [['.' '@' '@']
['@' '.' '.']
                                         ['@' '.' '.']
['@' '.' '.']
                                         ['@' '.' '.']
 ['@' '.' '.']
                                         ['@' '.' '.']
                                         ['.' '@' '@']]
 ['.' '@' '@']]
                                        Reconstructed X2:
Input X2:
                                        [['@' '@' '@']
[['@' '@' '@']
                                         ['@' '.' '.']
['@' '@' '.']
['@' '@' '.']
                                         ['@' '.' '.']
 ['@' '.' '.']
                                         ['@' '@' '@']]
['@' '@' '@']]
                                        Reconstructed X3:
Input X3:
[['@' '@' '@']
                                        [['@' '@' '@']
['@' '.' '@']
                                         ['@' '@' '.']
['@' '@' '@']
                                         ['@' '.' '.']
['@' '@' '.']
['@' '.' '@']]
                                         ['@' '@' '@']]
```

شکل 4-2-6 : ورودی بازیابی شده و مقایسه آن با ورودی اصلی در دومین epoch

طبق نتایج بالا ، در بین سه خروجی داده شده ، شبکه تنها اولین خروجی را درست به یاد می آورد و در دو خروجی دیگر ، یک unit را اشتباه به یاد می آورد .

همچنین در بین ورودی ها (Patterns) ، دو ورودی اول (C و C) به درستی بازیابی می شوند ولی ورودی سوم (R) ، به حرف E همگرا می شود و شبکه در به یاد آوری این پترن به مشکل می خورد . همچنین در تعداد E epoch E ، شبکه همگرا می شود .

پ)

در این قسمت به طور رندوم از بین 15 unit بین 40% ورودی (40%) را انتخاب کرده و علامت آنها را تغییر میدهیم (از 1+ به 1- و بر عکس) و خروجی را تغییر نمیدهیم و تمام مراحل قسمت قبل را برای 100 بار تکرار آزمایش انجام میدهیم .

در زیر unit (kernel density estimation) kde مربوط به درصد موفقیت حدس هر unit از 3 unit موجود در خروجی را برای هر پترن (اگر خروجی مربوط به یک پترن درست بازیابی شود ، درصد موفقیت %100 است.) نشان می دهد :

شكل kdeplot : 1-3-4 مربوط به خروجي بازيابي شده مربوط به هر پترن

طبق شکل بدست آمده ، بعد از تکرار 100 بار آزمایش ، خروجی مربوط به پترن دوم و سوم تقریبا جمع دو گوسی با میانگین های 33 (یکی از 3 تا درست) و 66 (2 تا از 3 تا درست) میباشد و با نویزی کردن پترن های دوم و سوم ، مدل در بازیابی خروجی به اشتباه میافتد و در نهایت 2 تا از 3 unit ناد می آورد .

همچنین طبق شکل برای میانگین 66 ، احتمال یادآوری خروجی دوم بیشتر از خروجی سوم میباشد (نمودار نارنجی بالاتر از نمودار سبز رنگ است) . که طبق نتایج بدست آمده در بخش قبل ، (پترن سوم در بازیابی به پترن دوم همگرا میشد) قابل استناد است .

ولی برای نمودار آبی رنگ (خروجی اول) ، یک نمودار نسبتا شبیه به توزیع uniform داریم و تقریبا میشود. میشود گفت که در هر بار نویزی کردن پترن اول ، خروجی مربوط به آن به احتمال 1/3 بازیابی میشود. (به احتمال 1/3 ، هر سه unit مربوط به خروجی اول درست به یادآورده میشوند) .

همچنین count plot زیر ، تعداد خروجی درست بازیابی شده از 3 خروجی موجود (یک خروجی درست بازیابی شده ، اگر هر 3 unit مربوط به آن درست بدست آمده باشد) را نشان می دهد :

شکل 3-4-2: Count plot مربوط به تعداد خروجی درست بازیابی شده از $\bf 8$ خروجی موجود طبق نمودار بالا ، با نویزی کردن ورودی ، تقریبا در $\bf 65$ حالت ، هر سه خروجی اشتباه به یادآورده می شوند و در $\bf 35$ حالت ، تنها یک خروجی از $\bf 8$ خروجی (خروجی مربوط به پترن اول ($\bf C$)) درست بازیابی می شوند .

ت)

طبق نتیجه بدست آمده از قسمت μ ، با دادن دو پترن اول (μ و μ) به شبکه ، در طی epoch های محدود ، همان پترن ها به یادآورده می شوند . پس ماکسیمم دو پترن می توان به شبکه داد .

ث)

مراحل ب و ت را برای تمام 6 پترن ورودی تکرار می کنیم :

```
number of iteration is 1
 Reconstructed v1:
 [-1 -1 -1]
 Reconstructed y2:
 [-1 -1 -1]
 Reconstructed y3:
 [-1 -1 -1]
 Reconstructed v4:
 [-1 1 1]
 Reconstructed y5:
 [ 1 -1 -1]
 Reconstructed y6:
 [ 1 -1 1]
 element by element comparison of the given output and the reconstructed one :
  [[ True True True True True] [ True True False True True True]
   [ True False True True True ]]
         شکل 4-4-1: خروجی بازیابی شده و مقایسه آن با خروجی اصلی در اولین epoch
                           Reconstructed X1: Input X4:
                                                                                Reconstructed X4:
Input X1:
                           [['.' '@' '@']
['@' '.' '.']
['@' '.' '.']
                                                      [['.' '@' '.']
['@' '.' '@']
['@' '.' '@']
                                                                               [['.' '@' '.']
['@' '.' '@']
['@' '.' '@']
['@' '.' '@']
['@' '.' '.']
['@' '.' '.']
                                                                                ['@' '@' '@']
                                                      ['.' '@' '.']]
 [,,, ,@, ,@,]]
                            ['.' '@' '@']]
                            Reconstructed X2: Input X5:
Input X2:
                                                                                Reconstructed X5:
                                                      [['@' '@' '@']
[['@' '@' '@']
                            [['@' '@' '@']
                                                                                [['@' '@' '@']
                           ['@' '@' '@']
['@' '.' '.']
['@' '@' '.' '.']
                                                      ['@' '.' '.']
['@' '.' '.']
['@' '.' '.']
['@' '.' '.']
['@' '@' '.']
                                                                               ['@' '.' '.']
['@' '.' '.']
['@' '@' '.'
 ['@' '@' '@']]
                           Reconstructed X3: Input X6:
Input X3:
                                                                                Reconstructed X6:
                                                                               [['@' '@' '@']
['@' '.' '.']
['@' '@' '.']
['@' '.' '.']
                           ['@' '@' '@']
['@' '.' '.']
['@' '@' '.']
                                                      [['@' '@' '@']
[['@' '@' '@']
                                                     [,6, ,., ,.,]
[,6, ,6, ,6,]
[,6, ,, ,6,]
[,6, ,, ,6,]
 ['@' '@' '@']
['@' '@' '@']
 ['@' '.' '@']]
                            [ , @ , , @ , ] ]
```

شکل 4-4-2 : ورودی بازیابی شده و مقایسه آن با ورودی اصلی در اولین epoch

```
number of iteration is 2
Reconstructed v1:
[-1 -1 -1]
Reconstructed y2:
[-1 -1 -1]
Reconstructed y3:
[-1 -1 -1]
Reconstructed v4:
[-1 1 1]
Reconstructed y5:
[ 1 -1 -1]
Reconstructed y6:
[ 1 -1 -1]
element by element comparison of the given output and the reconstructed one :
 [[ True True True True True] [ True True False True True True]
 [ True False True True False]]
```

شكل 4-4-3: خروجي بازيابي شده و مقايسه آن با خروجي اصلى در دومين epoch

```
Input X1:
                                   Reconstructed X1:
                                                                     Input X4:
                                                                                                       Reconstructed X4:
[['.' '@' '@']
                                                                     [['.' '@' '.']
['@' '.' '@']
['@' '.' '@']
                                   [['.' '@' '@']
                                                                                                       [['.' '@' '.']
['@' '.' '@']
['@' '@' '@']
['.' '@' '@']]
                                    ['@' '.' '@']
['@' '.' '.']
['@' '.' '.']
 ['@' '.' '.']
['@' '.' '.']
                                    ['.' '@' '@']]
                                                                      ['.' '@' '.']]
 ['.' '@' '@']]
                                   Reconstructed X2:
Input X2:
                                                                     Input X5:
                                                                                                       Reconstructed X5:
                                                                     ['@' '.' '@']
['@' '.' '.']
['@' '.' '.']
                                                                                                       ['@' '.' '.']
['@' '@' '.']
['@' '.' '.']
                                   [['@' '@' '@']
[['@' '@' '@']
                                    [ '@' '.' '.']
[ '@' '@' '.']
 [.@. .@. .@.]]
                                   Reconstructed X3:
Input X3:
                                                                     Input X6:
                                                                                                        Reconstructed X6:
                                   ['@' '@' '@']
['@' '.' '.']
['@' '.' '.']
[['@' '@' '@']
                                                                      [['@' '@' '@']
                                                                                                        [['@' '@' '@']
                                                                                                        ['@' '.' '.']
['@' '.' '.']
['@' '.' '.']
 ['@' '.' '@']
['@' '@' '@']
['@' '@' '@']
                                                                     [, 6, , ·, , ·, ]]
[, 6, , 6, , 6, ]
[, 6, , 6, , 6, ]
[, 6, , 6, , 6, ]
                                    ['@' '@' '@']]
```

شکل 4-4-4 : ورودی بازیابی شده و مقایسه آن با ورودی اصلی در دومین epoch

در سومین epoch ، نتایج مشابه epoch دوم میباشد و به همین دلیل متوقف میشویم .

طبق نتایج بدست آمده ، برای S پترن اول نتایجی مشابه بخش ب داریم . برای S پترن بعدی (S بترن S بترن S را با دو unit اضافه به یاد می آورد و به جای پترن S را به خاطر می آورد.

همچنین نکته جالب در مورد بازیابی خروجی در این است که ، در اولین epoch ، تنها خروجی های دوم و سوم (مربوط به پترن های E و E) درست بازیابی نمیشوند. اگر به پترن های بدست آمده در اولین epoch نگاه کنید ، متوجه می شوید که علاوه بر دو پترن E و E ، شبکه دو پترن E و E را نیز همانند هم به یاد می آورد .

*چون در دومین epoch ، از اطلاعات موجود در epoch اول استفاده می شود ، شبکه که در اولین epoch * تنها 2 خطا در خروجی داشت ، به دلیل شباهت دو پترن P و P ، در دومین epoch دارای P خطا می شود . در واقع خروجی مربوط به پترن آخر که در اولین epoch درست بازیابی شده بود در دومین epoch به غلط بازیابی می شود .

در نهایت در Epoch سوم ، به دلیل اینکه شبکه قادر به یادآوری بیشتری نمیباشد ، متوقف میشویم . \mathbf{F} بنابراین طبق مشاهدات ، شبکه به جای پترن \mathbf{F} ، پترن \mathbf{F} ، به جای پترن \mathbf{F} ، پترن \mathbf{F} ،

یکی از دلایل این میباشد که شبکه به جای ذخیره کلیات قرار گیری unit ها ، به رابطه بین unit های مشکی و سفید توجه می کند ، همانطور که ما برای به یادآوری برخی وقایع ، سعی کنیم ربط آنها را به هم پیدا کنیم .

برای اینکه در کی از رابطه بین پترن ها داشته باشیم ، فاصله اقلیدسی دو به دو پترن ها را طبق ماتریس متناظر آنها بدست می آوریم و توسط Heat map رسم می کنیم :

شکل 4-4-5: مقایسه دو به دو پترن های ورودی در یک Heat map

طبق شکل بالا هم ، برای مثال پترن های 5 و F (P و P) کمترین فاصله (بیشترین شباهت) را بین بقیه پترن ها دارند.

در نهایت مانند قسمت ت ، تعداد %40 ورودی ها را دارای نویز می کنیم و اینبار برای هر 6 پترن دو نمودار de و de را رسم می کنیم :

شکل kdeplot : 6-4-4 مربوط به خروجی بازیابی شده مربوط به هر پترن

طبق شکل بدست آمده ، بعد از تکرار 100 بار آزمایش ، اینبار خروجی مربوط به پترن دوم و سوم و طبق شکل بدست آمده ، بعد از تکرار 100 بار آزمایش ، اینبار خروجی مربوط به پترن دوم و سوم و شم تقریبا جمع دو گوسی با میانگین های 100 بار 100

می باشد و با نویزی کردن پترن های دوم و سوم و ششم ، مدل در بازیابی خروجی به اشتباه می افتد و در نهایت 2 تا از 3 unit خروجی را درست به یاد می آورد .

همچنین طبق شکل برای میانگین 66 ، احتمال یادآوری خروجی ششم بیشتر از دوم، و دوم بیشتر از خروجی ششم بیشتر از خروجی سوم میباشد (نمودار قهوهای بالاتر از نارنجی و نارنجی بالاتر از سبز) . که طبق نتایج بدست آمده در بخش قبل ، (پترن سوم در بازیابی به پترن دوم و پترن ششم به پترن پنجم همگرا میشد) قابل استناد است .

همچنین برای نمودار نارنجی یک توزیع به تقریب بسیار خوب uniform داریم که نشان می دهد احتمال اتفاق هر کدام از حالات 1/3 می باشد ولی دو نمودار آبی و بنفش (مربوط به پترن E و F) ، بین دو حالت uniform و گوسی هستند که احتمال وقوع بازیابی درست در خروجی نسبت به نمودار نارنجی بیشتر است . طبق اینکه می دانیم پترن های F و F در حالت بدون نویز درست بازیابی می شوند این نتیجه منتظره می باشد.

همچنین count plot زیر ، تعداد خروجی درست بازیابی شده از 6 خروجی موجود (یک خروجی درست بازیابی شده ، اگر هر 3 unit مربوط به آن درست بدست آمده باشد) را نشان می دهد :

شكل Count plot : 7-4-4 مربوط به تعداد خروجی درست بازیابی شده از 6 خروجی موجود

طبق نمودار بالا ، با نویزی کردن ورودی ، تقریبا در 24 حالت ، هر 6 خروجی اشتباه به یادآورده میشوند و در 48 حالت ، تنها یک خروجی از 6 خروجی (خروجی مربوط به پترن اول (C)) و در 25 حالت ، دو خروجی از 6 خروجی از 6 خروجی و در 8 حالت ، سه خروجی از 8 خروجی درست بازیابی میشوند .