Efficieny as the measure. In the moment, impotent worry over outcomes might be exchanged for learning to use a general tool, say Redfield enumeration.

Semigroup. A semigroup is a set X together with a set of functions \mathfrak{F} from X itself.

Monoid. A monoid is a semigroup where \mathfrak{F} contains the identity function.

Group. A group is a monoid where for each $f \in \mathfrak{F}$, there is $g \in \mathfrak{F}$ so that applying f and then applying g gives the identity function.

Danger. A semigroup is *dangerous* if it has a fixed-point-free element.

Graphical. A semigroup $\mathfrak{S} := (X, \mathfrak{F})$ is graphical if, for some directed graph $\mathcal{G} := (V, \mathfrak{E})$, there is a representation of X as $X = \prod_{v \in V} \mathbb{Z}_2$ such that f is in \mathfrak{F} just in case for each $v \in V$, the function f^v given by $f^v(x) := f(x)_v$ is independent of $V - N^+(v)$. Such a \mathcal{G} is a witness for \mathfrak{S} .

Witnesses. For each semigroup \mathfrak{S} , write $\mathcal{W}(\mathfrak{S})$ for the witnesses of \mathfrak{S} . Note that if \mathfrak{S} is not graphical, then $\mathcal{W}(\mathfrak{S}) = \emptyset$.

Problem. Classify the dangerous graphical semigroups by their witness sets.