Math 351: Homework 1 (Due September 14)

Name: Jack Ellert-Beck

From the **0.1** exercises on pages 9, work exercises 1,2,3,5,6,7.

Problem 1

Prove the following equivalences:

a)
$$\neg (P \lor Q) \equiv (\neg P \land \neg Q)$$

	P	Q	$\neg P$	$\neg Q$	$P \vee Q$	$\neg (P \lor Q)$	$ (\neg P \land \neg Q) $
ĺ	T	T	F	F	T	\mathbf{F}	\mathbf{F}
	T	F	F	T	T	\mathbf{F}	\mathbf{F}
	F	T	T	F	T	${f F}$	${f F}$
	F	F	T	T	F	\mathbf{T}	${f T}$

b)
$$\neg (P \land Q) \equiv (\neg P \lor \neg Q)$$

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg(P \land Q)$	$(\neg P \lor \neg Q)$
T	T	F	F	T	\mathbf{F}	\mathbf{F}
T	F	F	T	F	${f T}$	${f T}$
F	T	T	F	F	${f T}$	${f T}$
F	F	T	T	F	${f T}$	${f T}$

Problem 2

Prove that $P \implies Q \equiv (\neg P) \lor Q$. Deduce that the negation of $P \implies Q$ is $P \land (\neg Q)$.

P	Q	$\neg P$	$(\neg P) \lor Q$	$P \implies Q$
T	T	F	${f T}$	\mathbf{T}
T	F	F	${f F}$	\mathbf{F}
F	T	T	${f T}$	\mathbf{T}
F	F	T	${f T}$	${f T}$

Since $P \implies Q$ is equivalent to $(\neg P) \lor Q$, their negations will be equivalent. So we negate $(\neg P) \lor Q$ and manipulate using equivalences from Problem 1 to find the negation:

$$\neg(P \implies Q) = \neg(\neg P \lor Q)
= \neg(\neg P \lor \neg(\neg Q))
= \neg(\neg(P \land (\neg Q)))
= P \land (\neg Q).$$

We also used the fact that $\neg(\neg P) \equiv P$, which we now show with a truth table:

$$\begin{array}{c|c|c} P & \neg P & \neg (\neg P) \\ \hline \mathbf{T} & F & \mathbf{T} \\ \mathbf{F} & T & \mathbf{F} \end{array}$$

Problem 3

Find the negation of the following statements.

a)
$$\neg (P \land \neg Q) \lor R$$

$$\neg(\neg(P \land \neg Q) \lor R) = (P \land \neg Q) \land \neg R$$
$$= P \land \neg Q \land \neg R.$$

b)
$$P \implies (Q \vee R)$$

$$\neg(P \implies (Q \lor R)) = P \land \neg(Q \lor R)$$
$$= P \land \neg Q \land \neg R.$$

c)
$$\neg (P \lor Q) \implies (R \lor S)$$

$$\neg (\neg (P \lor Q) \implies (R \lor S)) = \neg (\neg (P \lor Q) \land \neg (R \lor S))$$
$$= (P \lor Q) \lor (R \lor S)$$
$$= P \lor Q \lor R \lor S.$$