Xinshi, Wang 661975305

Homework 5

- 1. Let x, y and z be real numbers. Do the following
 - Prove that if $x \cdot z = y \cdot z$ and $z \neq 0$, then x = y.
 - Prove that if $x \neq 0$ then $x^2 > 0$.

1.Proof:

$$\begin{array}{ll} x \cdot y = y \cdot z \\ (x \cdot z) \cdot \frac{1}{z} = (y \cdot z) \cdot \frac{1}{z} & \text{by M1 since } x \cdot z = y \cdot z \text{ , } \frac{1}{z} = \frac{1}{z} \text{ , and } \frac{1}{z} \text{ exists since } z \neq 0 \\ x \cdot (z \cdot \frac{1}{z}) = y \cdot (z \cdot \frac{1}{z}) & \text{by M3} \\ x \cdot 1 = y \cdot 1 & \text{by M5} \\ x = y & \text{by M4} \end{array}$$

2.**Proof:** By the trichotomy law, we consider three exhaustive cases. (i). x > 0 (ii) x = 0 (iii) x < 0. Since in this case $x \neq 0$, we only need to consider two exhaustive cases where x > 0 or x < 0.

(i)
$$x > 0$$

$$0 \cdot x < x \cdot x$$
 by $O4$ since $0 < x$ and $x > 0$ by Theorem $3.22(b)$ by the definition of x^2

Therefore we have shown that $x^2 > 0$ when x > 0.

(ii) x < 0

$$x \cdot x > 0 \cdot x$$
 by Theorem 3.22(b) since $x < 0$ and $x < 0$ $x \cdot x > 0$ by Theorem3.22(b) by the definition of x^2

Therefore we have shown that $x^2 > 0$ when x < 0.

Therefore we have proved if $x \neq 0$ then $x^2 > 0$.

2. Let S and T be nonempty bounded subsets of \mathbb{R} with $S \subseteq T$. Prove that $\inf(T) \leq \inf(S) \leq \sup(S) \leq \sup(T)$.

Proof: In order to prove $\inf(T) \leq \inf(S) \leq \sup(S) \leq \sup(T)$, we need to show (i). $\inf(T) \leq \inf(S)$ (ii). $\inf(S) \leq \sup(S)$ (iii). $\sup(S) \leq \sup(T)$.

First we prove $\inf(T) \leq \inf(S)$. In oder to show $\inf(T) \leq \inf(S)$, we assume $\inf(T) > \inf(S)$. Since $\inf(T) > \inf(S)$, there exists $s' \in S$ such that $s' < \inf(T)$ by the definition of infimum. Since $s \subseteq T$ and $s' \in S$, $s' \in T$. Because $\inf(T) \leq t$ for all $t \in T$ and $s' \in T$, s' cannot be smaller than $\inf(T)$. Therefore $\inf(T) > \inf(S)$ leads to contradiction. Hence $\inf(T) \leq \inf(S)$.

Then we need to prove $\inf(S) \leq \sup(S)$. Let $s \in S$. By definition of infimum, $\inf(S) \leq s$. By definition of supremem, $s \leq \sup(S)$. Therfore $\inf(S) \leq s \leq \sup(S)$. Hence we have shown $\inf(S) \leq \sup(S)$.

Finally we need to prove $\sup(S) \leq \sup(T)$. In order to show $\sup(S) \leq \sup(T)$, we assume $\sup(S) > \sup(T)$ which means $\sup(T) < \sup(S)$. By definition of supremem if $\sup(T) < \sup(S)$ then there exists $s' \in S$ such that $s' > \sup(T)$. Since $s \subseteq T$ and $s' \in S$, $s' \in T$. Because $\sup(T) \geq t$ for all $t \in T$ and $s' \in T$, s' cannot be greater than $\inf(T)$. Therefore $\sup(S) > \sup(T)$ leads to contradiction. Hence $\sup(S) \leq \sup(T)$.

Therefore we have proved $\inf(T) \leq \inf(S) \leq \sup(S) \leq \sup(T)$.

The function is clearly differentiable and thus continious on domain [1, 9] Thus the conditions of MVT is satisfied.

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
$$\frac{1}{2} \times \frac{1}{\sqrt{x}} = \frac{3 - 1}{8}$$
$$\frac{1}{\sqrt{x}} = \frac{1}{2}$$
$$x = 2$$

(b). NO Assume there exists a function f such that $f'(x) \ge 10$, $\forall x \in \mathbb{R}$. we know $\exists c \in \mathbb{R}$ such that $f'(c) = \frac{f(4) - f(0)}{4} = 1 \le 10$. Therefore we found a contradiction thus there does not exist that function f such that $f'(x) \ge 10$, $\forall x \in \mathbb{R}$.