Due Jun 25, 11:59 PM EDT

Congratulations! You passed!

Latest Submission received 100% Grade 100%

To pass 80% or higher

Go to next item

1/1 point

1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?	1/1 point
	$\bigcirc a^{[3]\{7\}(8)}$	
	○ a ^[8] {7}(3)	
	\bigcirc $a^{[8]\{3\}(7)}$	
	(a) a[3]{8}(7)	
	∠ ⁷ Expand	
2.	Which of these statements about mini-batch gradient descent do you agree with?	1/1 point
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.	
	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches so that the algorithm processes all mini-batches at the same time (vectorization).	
	When the mini-batch size is the same as the training size, mini-batch gradient descent is equivalent to batch gradient descent.	
	∠ ⁷ Expand	
	Correct Correct. Batch gradient descent uses all the examples at each iteration, this is equivalent to having only one mini-batch of the size of the complete training set in mini-batch gradient descent.	
3.	Which of the following is true about batch gradient descent?	1/1 point
	 It is the same as the mini-batch gradient descent when the mini-batch size is the same as the size of the training set. 	
	It has as many mini-batches as examples in the training set.	
	It is the same as stochastic gradient descent, but we don't use random elements.	
	∠ ⁷ Expand	
	Correct Correct. When using batch gradient descent there is only one mini-batch thus it is equivalent to batch gradient descent.	

 $\textbf{4.} \quad \text{Suppose your learning algorithm's cost } J, \text{plotted as a function of the number of iterations, looks like this:}$

Which of the following do you agree with?

- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

⊘ Correct

5. Suppose the temperature in Casablanca over the first two days of March are the following:

1/1 point

March 1st: $heta_1=30^\circ~{
m C}$

March 2nd: $\theta_2=15^\circ~{
m C}$

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+\left(1-\beta\right)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{\rm corrected}$ is the value you compute with bias correction. What are these values?

$$\bigcirc$$
 $v_2=20$, $v_2^{
m corrected}=15$.

$$v_2 = 1$$

corrected , , , ,

∠ Expand

 \odot Correct Correct. $v_2=eta v_{t-1}+ig(1-etaig) heta_t$ thus $v_1=15, v_2=15$. Using the bias correction $rac{v_t}{1-eta^t}$ we get $rac{15}{1-(0.5)^2}=20$.

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

1/1 point

$$\bigcirc \quad lpha = rac{lpha_0}{1+3\,t}$$

$$\bigcap \ lpha = e^{-0.01\,t}lpha_0$$
 .

$$\bigcirc \alpha = \frac{\alpha_0}{\sqrt{1+t}}$$

$$\alpha = 1.01^t \alpha$$

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The yellow and red lines were computed using values $beta_1$ and $beta_2$ respectively. Which of the following are true?

- $\beta_1 > \beta_2$.
- $\beta_1 = \beta_2$.
- (a) $\beta_1 < \beta_2$.
- $\bigcirc \quad \beta_1=0, \beta_2>0.$

Correct

Correct. $eta_1 < eta_2$ since the yellow curve is noisier.

8. Consider the figure:

1/1 point

1/1 point

	The gradient descent process moves more in the horizontal and the vertical axis.	
	The gradient descent process starts oscillating in the vertical direction.	
	 The gradient descent process moves less in the horizontal direction and more in the vertical direction. 	
	The gradient descent process starts moving more in the horizontal direction and less in the vertical.	
	∠ [≯] Expand	
	\bigcirc Correct Yes. The use of a greater value of β causes a more efficient process thus reducing the oscillation in the horizontal direction and moving the steps more in the vertical direction.	
9.	Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]}, b^{[1]},, W^{[L]}, b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)	1/1 point
	\checkmark Try tuning the learning rate $lpha$	
	✓ Correct	
	✓ Try using Adam	
	✓ Correct	
	Try better random initialization for the weights	
	✓ Correct	
	✓ Try mini-batch gradient descent	
	✓ Correct	
	Try initializing all the weights to zero	
	∠ [™] Expand	
10.	. Which of the following statements about Adam is <i>False</i> ?	1/1 point
	\bigcirc The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.	
	Adam combines the advantages of RMSProp and momentum	
	Adam should be used with batch gradient computations, not with mini-batches.	
	. We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)	
	_∠ ^ス Expand	
	(A) Correct	