หน่วยที่ 2 ความรู้พื้นฐานทางดิจิทัล	สอนครั้งที่ 2
รหัสวิชา 2104-2109 วิชาการโปรแกรมและควบคุมไฟฟ้า	จำนวน 4 ชั่วโมง

สาระการเรียนรู้

- 1) ระบบเลขฐาน (Number System) และการแปลงเลขฐาน
- 2) การอ่านค่าข้อมูลใน PLC
- 3) พื้นฐานลอจิกเกต (Basic Logic Gate)

แนวคิดสำคัญ

ระบบเลขฐาน เป็นพื้นฐานของ PLC ที่ใช้ในการสื่อสารและประมวลผล มีสภาวะการทำงานเป็น ลอจิก 0 และ 1 ควรศึกษาและเรียนรู้ระบบเลขฐานให้มีความเข้าใจ เพื่อให้สามารถกำหนดค่าข้อมูลและ ใช้งานคำสั่งของ PLC ได้อย่างถูกต้อง

จุดประสงค์การเรียนรู้ จุดประสงค์ทั่วไป

- 1) เพื่อให้มีความรู้ เข้าใจเกี่ยวกับระบบเลขฐาน (Number System) และการแปลงเลขฐาน
- 2) เพื่อให้มีความรู้ เข้าใจเกี่ยวกับการอ่านค่าข้อมูลใน PLC
- 3) เพื่อให้มีความรู้ เข้าใจเกี่ยวกับพื้นฐานลอจิกเกต (Basic Logic Gate)
- 4) เพื่อให้ผู้เรียนเป็นผู้มี คุณธรรม จริยธรรมและคุณลักษณะอันพึงประสงค์ สอดคล้องกับ จรรยาบรรณวิชาชีพ

จุดประสงค์เชิงพฤติกรรม

ด้านความรู้

- 1) บอกระบบเลขฐานที่ใช้งานใน PLC ได้ถูกต้อง
- 2) บอกการอ่านค่าข้อมูลใน PLC ได้ถูกต้อง
- 3) แปลงเลขฐานได้ถูกต้อง
- 4) เขียนสมการพื้นฐานลอจิกเกตได้ถูกต้อง

ด้านคุณธรรม จริยธรรมและคุณลักษณะที่พึงประสงค์

1) มีคุณธรรม จริยธรรมและคุณลักษณะที่พึงประสงค์สอดคล้องกับจรรยาบรรณวิชาชีพ

สมรรถนะประจำหน่วย

- 1) แสดงความรู้ในการบอกวิธีการอ่านค่าข้อมูลใน PLC
- 2) แสดงความรู้ในการแปลงเลขฐาน
- 3) แสดงความรู้ในการเขียนสมการพื้นฐานลอจิกเกต

คำแนะนำ

หน่วยที่ 2 ความรู้พื้นฐานทางดิจิทัล ใช้ร่วมกับกิจกรรมเสริมทักษะ กิจกรรมที่ 2 เรื่อง ลอจิกเกต

หน่วยที่ 2 ความรู้พื้นฐานทางดิจิทัล

พีแอลซีใช้ระบบตัวเลขที่เป็น 1 หรือ 0 (BIN) ใช้ในการประมวลผล แต่ในชีวิตประจำวันมักจะใช้ ข้อมูลเลขฐานสิบเป็นส่วนใหญ่ ดังนั้น การแปลงข้อมูลเลขฐานจึงมีความจำเป็น เมื่อต้องอ่านค่าหรือเขียน ค่าจากพีแอลซี ในหน่วยนี้ จะอธิบายถึงการแสดงค่าข้อมูลเลขฐานสอง ฐานสิบ ฐานสิบหก และวิธีการแปลงข้อมูลเลขฐาน

2.1 ระบบเลขฐาน (Number System)

เป็นระบบตัวเลขที่ใช้งานใน PLC มีใช้งานอยู่ด้วยกัน 4 แบบคือ ระบบเลขฐานสอง (Binary : BIN) เลขฐานแปด (Octal : Oct) เลขฐานสิบ (Decimal : DEC) และเลขฐานสิบหก (Hexadecimal : HEC)

ระบบเลขฐานสอง (Binary : Bin)ระบบเลขฐานแปด (Octal : Oct)ระบบเลขฐานสิบ (Decimal : Dec)

- ระบบเลขฐานสิบหก (Hexadecimal : Hex)

สามารถเปรียบเทียบความสัมพันธ์ของตัวเลขฐานสอง เลขฐานแปด เลขฐานสิบ และเลขฐานสิบหก ได้ดังตารางที่ 2.1

ตารางที่ 2.1 การเปรียบเทียบค่าเลขฐานสอง เลขฐานแปด เลขฐานสิบ และเลขฐานสิบหก

·			
เลขฐานสอง	เลขฐานแปด	เลขฐานสิบ	เลขฐานสิบหก
(Binary)	(Octal)	(Decimal)	(Hexadecimal)
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	А
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	Е
1111	17	15	F

- **2.1.1 ระบบเลขฐานสอง (Binary System : Bin)** จะมีตัวเลขที่ใช้งานอยู่ด้วยกัน 2 ตัวคือ ตัวเลข 0 และ 1 หรือในบางครั้งอาจะใช้คำอื่นแทนค่าตัวเลข เช่น False หรือ True
 - การแปลงเลขฐานสองเป็นเลขฐานสิบ

ในการแปลงเลขฐานสองเป็นเลขฐานสิบนั้น สามารถพิจารณาจากน้ำหนัก (Weight) ของเลขฐาน ในแต่ละบิตจากตารางที่ 2.2

ตารางที่ 2.2 การแปลงเลขฐานสองเป็นเลขฐานสิบ

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Bit Number
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	29	28	2 ⁷	2 ⁶	2 ⁵	24	2 ³	22	21	20	Bit Weight
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	Dit Weignt
																Binary Data

ตัวอย่างที่ 1 จงแปลงข้อมูลเลขฐานสองขนาด 16 บิต ซึ่งมีค่าข้อมูลคือ 1010 1001 0110 0101₂ ให้เป็นเลขฐานสิบ จะมีค่าเท่ากับเท่าใด

วิธีทำแบบที่ 1

1. ให้นำข้อมูลเลขฐานสองขนาด 16 บิต ค่าข้อมูลคือ 1010 1001 0110 0101 $_2$ ใส่ลงไปในช่อง Binary Data โดยเรียงตามบิต (ตามตำแหน่งลูกศรชี้) ดังตารางที่ 2.3

ตารางที่ 2.3 การแปลงเลขฐานสองเป็นเลขฐานสิบ

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Bit Number
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	29	28	2	2 ⁶	2 ⁵	24	2 ³	22	21	20	Bit Weight
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	bit Weight
1	0	1	0	1	0	0	1	0	1	1	0	0	1	0	1	Binary Data
†	†	↑	†	†	1	↑	1	†	1	↑	↑	↑	↑	↑	1	

2. พิจารณาน้ำหนักข้อมูลในแต่ละบิตโดยพิจารณาเฉพาะข้อมูลในบิตที่เป็น 1 (ลูกศรชี้สีแดง) และ นำค่าน้ำหนักของข้อมูลที่บิตเป็น 1 มาบวกกันจะได้ผลลัพธ์เป็นเลขฐานสิบ ดังตารางที่ 2.4

ตารางที่ 2.4 การแปลงเลขฐานสองเป็นเลขฐานสิบ

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Bit Number
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	29	28	2 ⁷	2 ⁶	2 ⁵	24	2 ³	22	21	20	Rit Woight
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	Bit Weight
1	0	1	0	1	0	0	1	0	1	1	0	0	1	0	1	Binary Data
	↑		†	1	↑	↑	1	↑	1		↑	↑		1	1	

<mark>ตอบ</mark> จากข้อมูล จะได้ค่าเท่ากับ 32768 + 8192 + 2048 + 256 + 64 + 32 + 4 + 1 = 43365₁₀

วิธีทำแบบที่ 2 เป็นการนำค่าข้อมูลในแต่ละบิตคูณกับน้ำหนักในแต่ละบิต นำค่าที่ได้มาบวกกัน

1010 1001 0110 0101₂ =
$$(1\times2^{15}) + (0\times2^{14}) + (1\times2^{13}) + (0\times2^{12}) + (1\times2^{11}) + (0\times2^{10}) + (0\times2^{10}) + (0\times2^{10}) + (1\times2^{10}) + (1\times2$$

<mark>ตอบ</mark> เลขฐานสองค่าข้อมูลคือ 1010 1001 0110 0101 $_{\scriptscriptstyle 2}$ แปลงเป็นเลขฐานสิบ เท่ากับ 43365 $_{\scriptscriptstyle 10}$

2.1.2 ระบบเลขฐานแปด (Octal System : Oct)

จะมีตัวเลขที่ใช้งานอยู่ด้วยกัน 8 ตัว คือ ตัวเลข 0 - 7

- การแปลงเลขฐานแปดเป็นเลขฐานสิบหก

ให้พิจารณาจากค่าของเลขฐานแปดในแต่ละหลักแปลงออกออกเป็นเลขฐานสอง (โดยเลขฐานแปด 1 Oct จะมีค่าเท่ากับเลขฐานสอง 3 บิต) จากนั้น จึงแปลงเลขฐานสองเป็นเลขฐานสิบหก โดยให้พิจารณา ค่าของเลขฐานสองเป็นกลุ่มแต่ละกลุ่มมีขนาดข้อมูลเท่ากับ 4 บิต พิจารณา จากด้านขวาไปด้านซ้าย (ค่า ของเลขฐานสองขนาด 4 บิต มีค่าเท่ากับเลขฐาน 16 ขนาด 1 หลักหรือ 1 Digit)

<mark>ตัวอย่างที่ 2</mark> จงแปลงข้อมูลเลขฐานแปด 4721₈ ให้เป็นเลขฐานสิบหก วิธีทำ

1. พิจารณาโจทย์จะมีเลขฐานแปด (Oct) เท่ากับ 4 หลัก (Digit 0 – 3) ให้นำค่าของเลขฐาน (Oct) แต่ละหลักที่ได้จากโจทย์ ใส่ลงไปในช่องข้อมูลเลขฐานแปด (Oct Data) ดังตารางที่ 2.5

ตารางที่ 2.5 การแปลงเลขฐานแปดเป็นเลขฐานสอง

	3			2			1			0		Digit Number
4	2	1	4	2	1	4	2	1	4	2	1	Weight
	4			7			2			1		Oct Data
												Bin Data

2. พิจารณาค่าของเลขฐานแปดในแต่ละหลัก โดยพิจารณากลับจากเลขฐานแปด ให้เป็น เลขฐานสอง 3 หลัก ผลลัพธ์ที่พิจาณาจะอยู่ในช่องข้อมูลเลขฐานสอง (Bin Data) ดังตารางที่ 2.6

ตารางที่ 2.6 การแปลงเลขฐานแปดเป็นเลขฐานสอง

	3 2				1			0		Digit Number		
4	2	1	4	2	1	4	2	1	4	2	1	Weight
4			7			2			1		Oct Data	
1	0	0	1	1	1	0	1	0	0	0	1	Bin Data

เลขฐานแปด 4721 แปลงเป็นเลขฐานสองได้เท่ากับ 100111010001

- 3. ให้นำข้อมูลเลขฐานสองมาแบ่งออกเป็นกลุ่ม จะได้ 3 กลุ่ม กลุ่มละ 4 บิต ข้อมูลเลขฐานสอง 100111010001₂ = 1001 1101 0001
- 4. พิจารณาค่าน้ำหนัก (Weight) ของเลขฐานสองแต่ละกลุ่ม แล้วบวกค่าน้ำหนักภายในกลุ่ม (บวกเฉพาะข้อมูลที่มีค่าเป็น 1 ในวงกลมสีแดง) จะได้ผลลัพธ์ ที่พิจาณา อยู่ในช่องข้อมูลเลขฐานสิบหก (Hex Data) จากตารางที่ 2.7

ตารางที่ 2.7 การแปลงเลขฐานสองเป็นเลขฐานสิบหก

	2	2			-	l			()		Digit Number
8	4	2	1	8	4	2	1	8 4 2 1				Weight
1	0	0	1	1	1	0	1	0	(9)	0	1	Bin Data
	9								1	L		Hex Data
เลข	<u>เ</u> ฐานส	ขา	100	1	1	1101			(0001		
เลขฐานสอง 1001 1101 0001 เลขฐานสิบหก 8+1 = 9 8+4+1 = 13 = D 1												

ตอบ ข้อมูลเลขฐานแปด 4721₈ เป็นเลขฐานสิบหกเท่ากับ 9D1₁₆

2.1.3 ระบบเลขฐานสิบ (Decimal System : Dec) จะมีตัวเลขที่ใช้งานอยู่ด้วยกัน 10 ตัวคือ ตัวเลข 0 1 2 3 4 5 6 7 8 9 หรือที่เรียกอีกชื่อหนึ่งว่า BCD CODE

- การแปลงเลขฐานสิบเป็นเลขฐานสอง

ในการแปลงเลขฐานสิบเป็นเลขฐานสองนั้น สามารถทำได้โดยวิธีการหารสั้น โดยการนำค่า เลขฐานสิบที่ต้องการแปลงหารด้วยสองแล้วเขียนผลหารและเศษที่เหลือจากการหารในแต่ละครั้งไว้ ทำต่อ จนกระทั่งผลของการหารเป็น 0 สุดท้าย เขียนเศษที่ได้จากการหาร โดยเขียนจากด้านล่างขึ้นด้านบน

<mark>ตัวอย่างที่ 3</mark> จงแปลงข้อมูลเลขฐานสิบ 67₁₀ ให้เป็นเลขฐานสอง <mark>วิธีทำ</mark>

1. ให้นำข้อมูลเลขฐานสิบ มาตั้งหารด้วย 2 ตลอด จนกว่าจะเหลือค่าน้อยกว่าตัวหาร ดังตาราง ที่ 2.8

ตารางที่ 2.8 การแปลงเลขฐานสิบเป็นเลขฐานสอง

การหาร	ผลหาร	เศษ	2. นำเศษที่ได้จากการหาร เป็นคำตอบ
$\frac{67}{2}$	33	1	โดยเขียนข้อมูลเริ่มจากด้านล่างขึ้น ด้านบน
33	16	1	ตานบน คำตอบ 1000011 ₂
$\frac{\frac{2}{2}}{\frac{16}{2}}$	8	0	
8 - 2	4	0	
$\frac{\overline{4}}{2}$	2	0	
$\frac{2}{2}$	1	0	
<u> </u>			

<mark>ตอบ</mark> 67₁₀ แปลงให้เป็นเลขฐานสอง จะมีค่าเท่ากับ 1000011₂

2.1.4 ระบบเลขฐานสิบหก (Hexadecimal System : Hex)

จะมีตัวเลขที่ใช้งานอยู่ด้วยกัน 16 ตัว โดยใช้ตัวเลข 0 - 9 และใช้อักษรภาษาอังกฤษ A - F แทน ตัวเลขสองหลัก 10 - 15 คือ 0 1 2 3 4 5 6 7 8 9 A B C D E F

- การแปลงเลขฐานสิบหกเป็นเลขฐานสอง

ให้พิจารณากลับจากค่าของเลขฐานสิบหกในแต่ละหลักแปลงออกเป็นเลขฐานสอง (โดยเลขฐานสิบ หก 1 Hex จะมีค่าเท่ากับเลขฐานสอง 4 Bin)

<mark>ตัวอย่างที่ 4</mark> จงแปลงข้อมูลเลขฐานสิบหก F191₁₆ ให้เป็นเลขฐานสอง <mark>วิธีทำ</mark>

1. พิจารณาโจทย์จะมีเลขฐานสิบหก (Hex) เท่ากับ 4 หลัก (Digit 0 – 3) ให้นำค่าของเลขฐาน สิบหก (Hex) แต่ละหลักที่ได้จากโจทย์ ใส่ลงไปในช่องข้อมูลเลขฐานสิบหก (Hex Data) ดังตารางที่ 2.9

ตารางที่ 2.9 การแปลงเลขฐานสิบหกเป็นเลขฐานสอง

		:	3			2	2		1			0				Digit Number	
8	3	4	2	1	8	4	2	1	8	4	2	1	8	4	2	1	Weight
							1)			(9)						Hex Data
																	Bin Data

2. พิจารณาค่าของเลขฐานสิบหกในแต่ละหลักว่ามีค่าเท่ากับเท่าไร จากนั้นพิจารณากลับจาก เลขฐานสิบหก ในแต่ละหลักให้เป็นเลขฐานสองสี่หลัก ผลลัพธ์ที่พิจาณาจะอยู่ในช่องข้อมูลเลขฐานสอง (Bin Data) ดังตารางที่ 2.10

ตารางที่ 2.10 การแปลงเลขฐานสิบหกเป็นเลขฐานสอง

<mark>ตอบ</mark> เลขฐานสิบหก F191 $_{16}$ แปลงเป็นเลขฐานสองได้เท่ากับ 1111 0001 1001 0001 $_2$

- การแปลงเลขฐานสองเป็นเลขฐานสิบหก

การแปลงเลขฐานสองเป็นเลขฐานสิบหก ให้พิจารณาค่าของเลขฐานสองเป็นกลุ่มแต่ละกลุ่มมีขนาด ข้อมูลเท่ากับ 4 บิตพิจารณาจากด้านขวาไปด้านซ้าย (ค่าของเลขฐานสองขนาด 4 บิต มีค่าเท่ากับเลขฐาน 16 ขนาด 1 หลักหรือ 1 Digit)

<mark>ตัวอย่างที่ 5</mark> จงแปลงข้อมูลเลขฐานสอง 0100100111001110₂ ให้เป็นเลขฐานสิบหก <mark>วิธีทำ</mark>

- 3. ให้น้ำข้อมูลเลขฐานสองขนาด 16 บิตมาแบ่งออกเป็นกลุ่ม จะได้ 4 กลุ่ม กลุ่มละ 4 บิต ข้อมูลเลขฐานสอง 0100100111001110 $_2=0100-1001-1100-1110$
- 4. พิจารณาค่าน้ำหนัก (Weight) ของเลขฐานสองแต่ละกลุ่ม แล้วบวกค่าน้ำหนักภายในกลุ่ม (บวกเฉพาะข้อมูลที่มีค่าเป็น 1 ในวงกลมสีแดง) จะได้ผลลัพธ์ที่พิจาณา อยู่ในช่องข้อมูล เลขฐานสิบหก (Hex Data) จากตารางที่ 2.11

ตารางที่ 2.11 การแปลงเลขฐานสองเป็นเลขฐานสิบหก

<mark>ตอบ</mark> ข้อมูลเลขฐานสอง 0100 1001 1100 1110 $_2$ เป็นเลขฐานสิบหกเท่ากับ B671 $_{16}$

2.3.5 การแปลงเลขฐานสิบหกเป็นเลขฐานสิบ

ในการแปลงเลขฐานสิบหกเป็นเลขฐานสิบ ให้ใช้หลักการกระจายค่าออกมาเป็นผลรวมของ เลขฐานสิบ

```
    ตัวอย่างที่ 5 จงแปลงข้อมูลเลขฐานสิบหก 4CA9<sub>16</sub>ให้เป็นเลขฐานสิบ
    วิธีทำ 4CA9<sub>16</sub> = (4× 16³) + (C× 16²) + (A× 16¹) + (9× 16⁰)
    = (4× 16³) + (12× 16²) + (10× 16¹) + (9× 16⁰)
    = 16384 + 3072 + 160 + 9
    ตอบ 4CA9<sub>16</sub> = 19625<sub>10</sub>
```

2.2 การอ่านค่าข้อมูลใน PLC

ข้อมูลภายในของ PLC จะมีคำจำกัดความในการใช้งานที่เรียกกันคือ บิต (Bit) ไบต์ (Byte) เวิร์ด (Word) มีหลักการเรียกและเปรียบเทียบข้อมูลแบบต่าง ๆ ดังนี้ คือ

ข้อมูลเลขฐานสองแต่ละตัวเลข เรียกว่า บิต และข้อมูลเลขฐานสอง ขนาด 4 บิต จะมีค่าเท่ากับ 1 ดิจิต และข้อมูลเลขฐานสองขนาด 8 บิต มีค่าเท่ากับ 1 ไบต์ หรือ 2 ดิจิต และข้อมูลเลขฐานสองขนาด 16 บิต มีค่าเท่ากับ 1 เวิร์ด หรือ 2 ไบต์ หรือ 16 บิต หรือ 4 ดิจิต

1 เวิร์ด 2 ไบต์ 16 บิต 4 ดิจิต

รูปที่ 2.1 การอ่านค่าข้อมูลใน PLC

2.3 พื้นฐานลอจิกเกต (Basic Logic Gate)

พีแอลซี ถูกประกอบขึ้นจากอุปกรณ์และวงจรทางดิจิตอล ที่มีการทำงานในลักษณะของลอจิกและ วงจรดิจิตอล โดยจะมีส่วนประกอบพื้นฐาน คือ ลอจิกเกต (Logic gate) ซึ่งจะมีการทำงานเหมือนระบบ เลขไบนารี่ (เลข 0 กับเลข 1) ดังนั้น การทำงานที่เกี่ยวข้องกับระบบดิจิตอลอิเล็กทรอนิกส์ จำเป็นอย่างยิ่ง ที่จะต้องศึกษา ทำความเข้าใจ การทำงานแบบไบนารี่ของลอจิกเกต (Logic gate) การทำงานของลอจิก เกตพื้นฐาน เช่น AND, OR, NOT, NOR และ NAND เพื่อเป็นพื้นฐานในการ เรียนวงจรลอจิกที่ซับซ้อน ต่อไป

2.3.1 หลักการพื้นฐานของ AND Gate

ใช้เครื่องหมายคูณหรือจุด หลักการคือเมื่อมีสัญญาณอินพุตเป็น 1 ทั้งคู่ จะส่งผลทำให้สัญญาณ เอาต์พุตเป็น 1 แต่ถ้าอินพุตตัวใดตัวหนึ่งหรือทั้งสองตัวเป็น 0 จะทำให้สัญญาณเอาต์พุตเป็น 0 ดังนั้น สมการลอจิกสำหรับเอาต์พุตของ AND Gate จึงเขียนได้ดังนี้

จากสมการลอจิก เครื่องหมาย (●) คือ การคูณแบบ AND สามารถเขียนตารางความจริง (truth table) และสัญลักษณ์ได้ดังรูปที่ 2.2

อิน	พุต	เอาต์พุต
Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

สัญลักษณ์ของ AND Gate

ตารางความจริง

รูปที่ 2.2 ตารางความจริงและสัญลักษณ์ของ AND Gate

2.3.2 หลักการพื้นฐานของ OR Gate

ใช้เครื่องหมายบวก หลักการคือเมื่อสัญญาณอินพุตตัวใดตัวหนึ่งหรือทั้งสองตัวเป็น 1 จะทำให้ สัญญาณเอาต์พุตเป็น 1 แต่ถ้าอินพุตทั้งสองตัวเป็น 0 จะทำให้สัญญาณเอาต์พุตเป็น 0 ดังนั้น สมการ ลอจิกสำหรับเอาต์พุตของ OR Gate จึงเขียนได้ดังนี้

จากสมการลอจิก เครื่องหมาย (+) ไม่ใช่การบวกเลขแบบธรรมดาแต่จะเป็นการบวกแบบ OR ซึ่ง สามารถเขียนตารางความจริง (truth table) และสัญลักษณ์ได้ดังรูปที่ 2.3

อิน	พุต	เอาต์พุต						
Α	В	Υ						
0	0	0						
0	1	1						
1	0	1						
1	1 1							

สัญลักษณ์ของ OR Gate

ตารางความจริง (truth table)

รูปที่ 2.3 ตารางความจริงและสัญลักษณ์ของ OR Gate

2.3.3 หลักการพื้นฐานของ NOT Gate

ใช้เครื่องหมายขีดบนเหนือสัญลักษณ์ของอินพุต ตัวกระทำ NOT ใช้กับตัวแปรอินพุตเดียว แตกต่าง จากตัวกระทำ OR และ AND หลักการคือเมื่อสัญญาณอินพุตเป็น 1 จะทำให้สัญญาณเอาต์พุตเป็น 0 ดังนั้น สมการลอจิกสำหรับเอาต์พุตของ NOT Gate จึงเขียนได้ดังนี้

สัญลักษณ์ขีดบน (bar) ตัว A แทนการกระทำ NOT สมการ Y = NOT A หรือ เท่ากับส่วนกลับของ A หรือ เท่ากับ A bar สามารถเขียนตารางความจริงและสัญลักษณ์ได้ดังรูปที่ 2.4

อินพุต	เอาต์พุต			
Α	$Y = \overline{A}$			
0	1			
1	0			

สัญลักษณ์ของ NOT Gate

ตารางความจริง (truth table)

รูปที่ 2.4 ตารางความจริงและสัญลักษณ์ของ NOT Gate

2.3.4 หลักการพื้นฐานของ NAND Gate

ใช้เครื่องหมายขีดบนเหนือสัญลักษณ์ของอินพุต AND Gate หลักการคือเมื่อสัญญาณอินพุตตัวใด ตัวหนึ่งหรือทั้งคู่เป็น 0 จะทำให้เอาต์พุตเป็น 1 แต่ถ้าอินพุตทั้งสองตัวเป็น 1 จะทำให้สัญญาณเอาต์พุต เป็น 0 ดังนั้น สมการลอจิกสำหรับเอาต์พุตของ NAND Gate จึงเขียนได้ดังนี้

$$Y = \overline{A \cdot B}$$

จากสมการลอจิกจะเห็นว่า NAND Gate มีการกระทำแรกเป็นการกระทำ AND ของอินพุตและการ กระทำที่สองเป็นการกระทำ NOT บนผลคูณแบบ AND สามารถเขียนตารางความจริงและสัญลักษณ์ได้ดัง รูปที่ 2.5

อินพุต		เอาต์พุต			
Α	В	$Y = \overline{A \cdot B}$			
0	0	1			
0	1	1			
1	0	1			
1	1	0			

ตารางความจริง (truth table)

รูปที่ 2.5 ตารางความจริงและสัญลักษณ์ของ NAND Gate

2.3.5 หลักการพื้นฐานของ NOR Gate

ใช้เครื่องหมายขีดบนเหนือสัญลักษณ์ของอินพุต OR Gate หลักการคือเมื่อมีสัญญาณอินพุตเป็น 0 ทั้งคู่ จะส่งผลทำให้สัญญาณเอาต์พุตเป็น 1 แต่ถ้าอินพุตตัวใดตัวหนึ่งหรือทั้งคู่เป็น 1 จะทำให้สัญญาณ เอาต์พุตเป็น 0 ดังนั้น สมการลอจิกสำหรับเอาต์พุตของ NOR Gate จึงเขียนได้ดังนี้

$$Y = \overline{A + B}$$

จากสมการลอจิกจะเห็นว่า NOR Gate มีการกระทำแรกเป็น OR ของอินพุตและการกระทำที่สอง เป็นการกระทำ NOT บนผลบวกแบบ OR สามารถเขียนตารางความจริงและสัญลักษณ์ได้ดังรูปที่ 2.6

อินพุต		เอาต์พุต			
Α	В	$Y = \overline{A + B}$			
0	0	1			
0	1	0			
1	0	0			
1	1	0			

ตารางความจริง (truth table)

รูปที่ 2.6 ตารางความจริงและสัญลักษณ์ของ NOR Gate

2.3.6 หลักการพื้นฐานของ Exclusive OR Gate

ใช้เครื่องหมายบวกในวงกลม หลักการคือเมื่ออินพุตมีสัญญาณ Logical ที่ต่างกัน สัญญาณเอาต์พุต ของ Exclusive OR Gate จะเป็น 1 แต่ถ้าอินพุตมีสัญญาณ Logical ที่เหมือนกัน เอาต์พุตจะเป็น 0 ดังนั้น สมการลอจิกของ Exclusive OR Gate จึงเขียนได้ดังนี้

$$Y = A \oplus B$$

สามารถเขียนตารางความจริงและสัญลักษณ์ของ Exclusive OR Gate ได้ดังรูปที่ 2.7

Α	В	Y = A (+) B
0	0	0
0	1	1
1	0	1
1	1	0

สัญลักษณ์ของ Exclusive OR Gate

ตารางความจริง (truth table)

รูปที่ 2.7 ตารางความจริงและสัญลักษณ์ของ Exclusive OR Gate

สรุป

ข้อมูลภายในของ PLC จะมีคำจำกัดความในการใช้งานที่เรียกกันคือ บิต ไบต์ และเวิร์ด โดย 1 Digit = 4 บิต , 1 ไบต์ = 8 บิต และ 1 เวิร์ด = 2 ไบต์ = 16 บิต ในการใช้งาน PLC มีการ ใช้งานระบบเลขฐานอยู่ด้วยกัน 3 ระบบ คือ

- 1. เลขฐานสอง (Binary : Bin) จะมีตัวเลขที่ใช้งานอยู่ด้วยกัน 2 ตัวคือตัวเลข 0 และ 1 หรือใน บางครั้งอาจะใช้คำอื่นแทนค่าตัวเลข เช่น False หรือ True
- 2. เลขฐานสิบ (Decimal : Dec) จะมีตัวเลขที่ใช้งานอยู่ด้วยกัน 10 ตัวคือตัวเลข 0 1 2 3 4 5 6 7 8 9 หรือที่เรียกอีกชื่อหนึ่งว่า BCD CODE
- 3. เลขฐานสิบหก (Hexadecimal : Hex) มีตัวเลขที่ใช้งานอยู่ 16 ตัว โดยใช้ตัวเลข 0 9 และ ใช้อักษรภาษาอังกฤษ A – F แทนตัวเลขสองหลัก 10 – 15 คือ 0 1 2 3 4 5 6 7 8 9 A B C D E F

สรุปพื้นฐานของลอจิกเกต (Basic Logic Gate)

	ลรุบพนฐานของลอจกเกต (Basic Logic Gate)							
Gate	สัญลักษณ์	สมการลอจิก		ตารางความจริง				
AND Gate A B				Α		В	Υ	
	A			0		0	0	
)— Y	Y = A • B		0		1	0	
	В			1		0	0	
				1		1	1]
				Α		В	Υ	
	A — —			0		0	0	
OR Gate	,) \—Y	Y = A + B		0		1	1	
B—	B—			1		0	1	
				1		1	1	
NOT Gate		Y = A			Α	$A = \overline{A}$		
	AY				0		1	
					1		0	
		Y = A . B		Α	В		Y = A . I	- B
	A			0	0		1	
NAND Gate				0	1	\top	1	
				1			1	
				1	1		0	
NOR Gate A B O-Y				Α	В		Y = A +	B
				0	0		1	
	$A \longrightarrow \sum_{O-Y}$	$Y = \overline{A+B}$		0	1		0	
	B			1	0		0	
				1	1		0	
Exclusive OR A	A	Y = A⊕B		Α	В		Y = A⊕	В
				0	0		0	
				0	1		1	
				1	0		1	
				1	1		0	