

Dengue virus (DENV) universal MGB TaqMan 2017

Ian Mackay, Judy Northill

Abstract

This protocol was designed and developed at this laboratory.

The assay targets the capsid peptide coding region of DENV 1-4 and is designed as a qualitative screening test for human cases of DENV infection.

Citation: Ian Mackay, Judy Northill Dengue virus (DENV) universal MGB TaqMan 2017. protocols.io

dx.doi.org/10.17504/protocols.io.ntideke

Published: 14 Mar 2018

Before start

- If using a different brand or model of real-time thermocycler, check the concentration of ROX is adequate.
- Method assumes the user is familar with the thermocycler and software used to run the protocol.

Materials

SensiFAST™ Probe Lo-ROX Kit BIO-84002 by Bioline

Protocol

Oligonucleotide sequences

Step 1.

Name	Sequence (5'-3')
DU5-F1	GAAYAACCAACGRAARAAGRCG
DU5-F2	ATGAACCAACG R AA R AAGGTGG
DU5-R13	GAGAATCTCTTCGCCAACTGTG
DU5-R2	TGAGAATCTCTT Y GTCA R CTG Y TG
DU5-R4	GAGAATCTCTTCACCAACCCTTG
DU5-MGB2017	6FAM - AATATGCTGAAACGCG - MGBNFQ

Reagents

Step 2.

SuperScript™ III Platinum™ One-Step qRT-PCR Kit <u>11732088</u> by <u>Life Technologies</u>

Reaction set-up

Step 3.

The assay has been used on both a Rotor-Gene 6000 and a Rotor-Gene Q real-time thermocycler

Prepare sufficient mix for the number of reactions.

Include a suitable 'dead volume' as necessary if using a robotic dispenser.

MIX PREPARATION

Reagent	Vol. (μl) x	1 Final reaction concentration
Nuclease-free water	4.26	N/A
DU5-F1	0.09	900nM
DU5-F2	0.09	900nM
DU5-R13	0.03	300nM
DU5-R2	0.03	300nM
DU5-R4	0.03	300nM
DU5-DU5-F1	0.03	150nM
2X Reaction Mix ¹	10	1X
ROX reference dye (25µM)	0.04	50nM
SuperScript [™] III/Platinum [™] Taq Mix	(¹ 0.4	1X
TOTAL	15	N/A

¹Superscript[™]III Platinum[™] One-step qRT-PCR kit; ²See Guidelines

Dispense 15µL to each reaction well.

Add 5µL of template (extracted RNA, controls or NTC [nuclease-free water]).

Total reaction volume is 20µL

Ampification

Step 4.

50°C	5min	
95°C	2min	
95°C	3s	40X
60°C	30s*	

Result analysis

Step 5.

The definition used for a satisfactory positive result from a real-time fluorogenic PCR should include each of the following:

- 1. A **sigmoidal curve** the trace travels horizontally, curves upward, continues in an exponential rise and followed by a curve towards a horizontal plateau phase
- 2. A **suitable level of fluorescence** intensity as measured in comparison to a positive control (y-axis)
- 3. A **defined threshold (C_T) value** which the fluorescent curve has clearly exceeded (Fig.1 arrow), which sits early in the log-linear phase and is <40 cycles

A flat or non-sigmoidal curve or a curve that crosses the threshold with a $C_T > 40$ cycles is considered a negative result. NTCs should not produce a curve

Figure 1. Examples of satisfactory sigmoidal amplification curve shape when considering an assay's fluorescent signal output. The crossing point or threshold cycle (C_T) is indicated (yellow arrow); it is the value at which fluorescence levels surpass a predefined (usually set during validation, or arbitrary) threshold level as shown in this normalized linear scale depiction. LP-log-linear phase of signal generated during the exponential part of the PCR amplification; TP-a slowing of the amplification and accompanying fluorescence signal marks the transition phase; PP-the plateau phase is reached when there is little or no increase in fluorescent signal despite continued cycling.