Harmadik típusú nyelvek és véges automaták Formális nyelvek, 10. gyakorlat

Célja: Az automata-nyelvekre vonatkozó tételek elmélyítése, gyakorlati alkalmazása

Fogalmak: reguláris kifejezés, Kleene-tétel, általánosított reguláris kifejezés, direkt szorzat automata, maradéknyelvek és tulajdonságaik, MYHILL-NERODE tétel, kis Bar-Hillel lemma

Feladatok jellege: Néhány reguláris és általánosított reguláris kifejezés felírása. Egy egyszerű automata Kleene-nyelveinek elkészítése. Automatakészítés a szimmetrikus differenciához valamely konkrét, nagyon egyszerű VDA-k esetén. Konkrét nyelvek maradéknyelvei halmazának felírása, ezekből MYHILL-NERODE alapján következtetések levonása. Konkrét nyelvről kis Bar-Hillel lemmával kimutatni, hogy nem reguláris.

2005/06 II. félév

Formális nyelvek (10. gyakorlat)

L3 és VDA

2005/06 II. félév

félév 1/15

Házi feladatok megoldása

1. feladat

Készítsünk VDA-t, mely épp az $L = a(b \cup c(ba)^*ca)^*b \cup b$ nyelv szavait fogadja el! $(T = \{a, b, c\})$

Megoldás:

	а	b	С
$\rightarrow q_0$	q_1	q_2	$q_{\rm zs}$
q_1	$q_{\rm zs}$	q ₃	q_4
$\leftarrow q_2$	$q_{\rm zs}$	$q_{\rm zs}$	$q_{\rm zs}$
$\leftarrow q_3$	$q_{\rm zs}$	q ₃	q_4
q_4	$q_{\rm zs}$	q 5	q 6
q 5	q_4	$q_{\rm zs}$	$q_{\rm zs}$
q_6	q_1	$q_{\rm zs}$	$q_{\rm zs}$
$q_{ m zs}$	$q_{\rm zs}$	$q_{\rm zs}$	$q_{\rm zs}$

Formális nyelvek (10. gyakorlat)

 \mathcal{L}_3 és VDA

2005/06 II. félév

2/15

Házi feladatok megoldása

2. feladat

Melyik nyelvet fogadja el a következő automata?

	а	b	C
$\rightarrow q_0$	q_1	q_2	q ₃
q_1	q_4	q_2	q_4
q_2	q 0	q_4	q ₃
<i>← q</i> ₃	q_4	q ₃	q_4
q_4	q ₄	q_4	q_4

Megoldás:

 $(aba \cup ba)^*(abc \cup bc \cup c)b^*$

Házi feladatok megoldása

3. feladat

Készítsünk KMP automatát a következő mintához! babbcabc $(T = \{a, b, c\})$

Megoldás:

Formális nyelvek (10. gyakorlat)

		а	b	С
\longrightarrow	$oldsymbol{q}_arepsilon$	$oldsymbol{q}_arepsilon$	q_b	$q_{arepsilon}$
	q_b	q_{ba}	q_b	$q_{arepsilon}$
	q_{ba}	$oldsymbol{q}_arepsilon$	q_{bab}	$q_{arepsilon}$
	q_{bab}	q_{ba}	q _{babb}	$oldsymbol{q}_arepsilon$
	~	~	~	~
	q_{babb}	q_{ba}	q_b	q_{babbc}
	Чbabb q babbc	9ba 9babbca	q_b	4babbc Q ε
C	q _{babbc}	q _{babbca}	q_b	$q_{arepsilon}$
C	q _{babbc} q _{babbca}	q_{babbca}	q _b q _{babbcab}	$q_{arepsilon}$

Formális nyelvek (10. gyakorlat) L₃ és VDA 2005/06 II. félév 3/15

 \mathcal{L}_3 és VDA

2005/06 II. félév

VDA-hoz 3NF

Adjunk 3NF nyelvtant, mely ugyanezt a nyelvet generálja, amit az automata elfogad!

	а	b
\rightarrow q_0	q 0	q_2
q_1	q_1	q_4
q_2	q_1	q ₃
$\leftarrow q_3$	q 0	q_4
$\leftarrow q_4$	q ₂	q ₃

Megoldás:

$$\begin{split} G &= \langle \{a,b\}, \{q_0,q_1,q_2,q_3,q_4\}, \mathcal{P}, q_0 \rangle \\ q_0 &\to aq_0 \mid bq_2 \\ q_1 &\to aq_1 \mid bq_4 \\ q_2 &\to aq_1 \mid bq_3 \\ q_3 &\to aq_0 \mid bq_4 \\ q_4 &\to aq_2 \mid bq_3 \\ q_3 &\to \varepsilon \\ q_4 &\to \varepsilon \end{split}$$

Formális nyelvek (10. gyakorlat)

L3 és VDA

2005/06 II. félév

VDA konstruálása 3.típusú nyelvtanhoz

3NF-re alakítás

$$S \rightarrow abA \mid aB \mid bS$$

$$A \rightarrow ccA \mid B \mid a$$

$$B \rightarrow S | abB | b$$

Megoldás:

1. lépés: Láncmentesítés

$$S \rightarrow abA \mid aB \mid bS$$

$$A \rightarrow ccA \mid abB \mid b \mid abA \mid aB \mid bS \mid a$$

$$B \rightarrow abA \mid aB \mid bS \mid abB \mid b$$

Formális nyelvek (10. gyakorlat)

L3 és VDA

2005/06 II. félév

VDA konstruálása 3.típusú nyelvtanhoz

3NF-re alakítás

2. lépés: Hosszredukció

$$S \rightarrow aK_1 \mid aB \mid bS$$
 $K_1 \rightarrow bA$
 $A \rightarrow cK_2 \mid aK_3 \mid b \mid aK_1 \mid aB \mid bS \mid a$ $K_2 \rightarrow cA$
 $B \rightarrow aK_3 \mid aB \mid bS \mid aK_1 \mid b$ $K_3 \rightarrow bB$

3. lépés: " $A \rightarrow a$ " alakú szabályok eliminálása

$$\begin{array}{lll} S \rightarrow aK_1 \mid aB \mid bS & K_1 \rightarrow bA \\ A \rightarrow cK_2 \mid aK_3 \mid bF \mid aK_1 \mid aB \mid bS \mid aF & K_2 \rightarrow cA \\ B \rightarrow aK_3 \mid aB \mid bS \mid aK_1 \mid bF & K_3 \rightarrow bB \\ F \rightarrow \varepsilon & \end{array}$$

VDA konstruálása 3.típusú nyelvtanhoz

1. lépés: NDA

$$S \rightarrow aK_1 \mid aB \mid bS$$
 $K_1 \rightarrow bA$ $A \rightarrow cK_2 \mid aK_3 \mid bF \mid aK_1 \mid aB \mid bS \mid aF$ $K_2 \rightarrow cA$ $B \rightarrow aK_3 \mid aB \mid bS \mid aK_1 \mid bF$ $K_3 \rightarrow bB$ $F \rightarrow \varepsilon$

	а	b	С
$\to \textbf{S}$	<i>K</i> ₁ , <i>B</i>	S	
Α	B, K_1, K_3, F	S, F	K_2
В	K_1, K_3, B	S, F	
K_1		Α	
K ₂ K ₃ ← F			Α
K_3		В	
<i>← F</i>			

VDA konstruálása 3.típusú nyelvtanhoz

2. lépés: NDA-ból VDA

 $A = \langle A, T, \delta, a_0, F \rangle$ NDA-hoz $A' = \langle A', T, \delta', a'_0, F' \rangle$ VDA

Ötlet: \mathcal{A}' kövesse végig \mathcal{A} összes lehetséges működését!

A determinisztikussá tett automata állapotainak halmaza a nemdeterminisztikus automata hatványhalmaza, azaz $A' := 2^A$

A $\{b_1, \dots b_s\}$ állapothoz és a t betûhöz a VDA állapotátmenet-függvénye a nemdeterminisztikus automata állapotátmenet-függvényének a b_i állapotokhoz és t betûhöz tartozó képeinek (azaz: állapotok halmazainak) unióját rendelje, azaz:

$$\delta'(\{b_1,\ldots b_s\},t):=\bigcup_{i=1}^s \delta(b_i,t).$$

A kezdőállapot $a'_0 := \{a_0\}$, az elfogadó állapotok F' halmaza, pedig azon állapotokból álljon, melyek tartalmaznak F-beli állapotot.

Formális nyelvek (10. gyakorlat)

 \mathcal{L}_3 és VDA

2005/06 II. félév

VDA konstruálása 3.típusú nyelvtanhoz

Nemdeterminisztikus automatából determinisztikus

		а	b	С
\longrightarrow	{ S }	{ <i>B</i> , <i>K</i> ₁ }	{S}	{}
	$\{B, K_1\}$	$\{B, K_1, K_3\}$	{S, A, F}	{}
	{}	{}	{}	{}
	$\{B, K_1, K_3\}$	$\{B, K_1, K_3\}$	$\{S, A, B, F\}$	{}
\leftarrow	$\{\mathcal{S}, \mathcal{A}, \mathcal{F}\}$	$\{B, K_1, K_3, F\}$	{S,F}	$\{K_2\}$
\leftarrow	$\{\mathcal{S}, \mathcal{A}, \mathcal{B}, \mathcal{F}\}$	$\{B, K_1, K_3, F\}$	{S,F}	$\{K_2\}$
\leftarrow	$\{B, K_1, K_3, F\}$	$\{B, K_1, K_3\}$	{S, A, B, F}	{}
\leftarrow	$\{\mathcal{S}, \mathcal{F}\}$	{ <i>B</i> , <i>K</i> ₁ }	{S}	{}
	$\{\mathit{K}_{2}\}$	{}	{}	{ A }
	{ A }	$\{B, K_1, K_3, F\}$	{S, F}	$\{K_2\}$

Formális nyelvek (10. gyakorlat)

L₃ és VDA

2005/06 II. félév 10

\mathcal{L}_3 -beli-e egy nyelv?

Kis Bar-Hillel lemma

Minden $L \in \mathcal{L}_3$ nyelvhez van olyan $n = n(L) \in \mathbb{N}$ nyelvfüggő konstans, hogy minden $u \in L$ szó esetén ha tekintjünk egy tetszőleges $u = \alpha_1 u' \alpha_2$ olyan felbontását, ahol $I(u') \geq n$, akkor van u'-nek olyan v részszava $(u' = \beta_1 v \beta_2)$, hogy $0 < I(v) \leq n$, és minden $i \geq 0$ esetén $\alpha_1 \beta_1 v^i \beta_2 \alpha_2 \in L$.

Egy L nyelv $p \in T^*$ -ra vonatkozó maradéknyelve $L_p := \{ v \mid pv \in L \}$.

Myhill-Nerode tétel

 $L \in \mathcal{L}_3$ akkor és csak akkor, ha $\left|\{L_p\}_{p \in T^*}\right| < \infty$, ahol T = T(L) az L nyelv ábécéje.

Myhill-Nerode tétel

Maradéknyelvek

Határozzuk meg a maradéknyelveit az alábbi nyelveknek!

1.
$$L = \{a, abb, bb, b\}$$

2.
$$L = \{0, 1\}*00 \cup \{0\}$$

3. HE

Megoldások:

1.feladat

$$\begin{array}{l} \textit{L}_{\varepsilon} = \textit{L}, \textit{L}_{a} = \{\varepsilon, \textit{bb}\}, \textit{L}_{b} = \{\varepsilon, \textit{b}\}, \textit{L}_{ab} = \{\textit{b}\}, \textit{L}_{bb} = \{\varepsilon\}, \textit{L}_{abb} = \{\varepsilon\}. \\ \textit{L}_{u} = \emptyset \quad \forall \textit{u} \not \in \text{Pre}(\textit{L}). \end{array}$$

A maradéknyelvek halmaza tehát:

$$\{\emptyset, \{\varepsilon\}, \{b\}, \{\varepsilon, b\}, \{\varepsilon, bb\}, L\}$$

Formális nyelvek (10. gyakorlat) \mathcal{L}_3 és VDA 2005/06 II. félév 11/15 Formális nyelvek (10. gyakorlat) \mathcal{L}_3 és VDA 2005/06 II. félév 12/15

Myhill-Nerode tétel

Maradéknyelvek

2.feladat

$$L_{u} = \begin{cases} L \setminus \{0\} & 1 \in \operatorname{Suf}(u) \\ L & u = \varepsilon \vee 0 \in \operatorname{Suf}(u) \wedge 00 \notin \operatorname{Suf}(u) \wedge u \neq 0 \\ L \cup \{\varepsilon\} & u = 0 \vee 00 \in \operatorname{Suf}(u) \end{cases}$$

3.feladat Legyen $k \in \mathbb{N}$ -re:

$$\begin{aligned} & \mathrm{HE}_{k}^{P} := \{u \in \{(,)\}^{*} \, | \, \ell_{(}(u) - \ell_{)}(u) = k \wedge \ell_{(}(v) \geq \ell_{)}(v), \forall v \in \mathrm{Pre}(u) \} \\ & \mathrm{HE}_{k}^{S} := \{u \in \{(,)\}^{*} \, | \, \ell_{)}(u) - \ell_{(}(u) = k \wedge \ell_{)}(v) \geq \ell_{(}(v), \forall v \in \mathrm{Suf}(u) \} \\ & \mathrm{Ekkor} \, L_{u} = \left\{ \begin{array}{ll} \mathrm{HE}_{k}^{S} & u \in \mathrm{HE}_{k}^{P} \\ \emptyset & u \not\in \mathrm{HE}_{k}^{P} \end{array} \right. \end{aligned}$$

Myhill-Nerode tétele alapján mivel az első két nyelvnek véges sok (6 illetve 3) maradéknyelve van, míg a harmadiknak végtelen, ezért az első két nyelv \mathcal{L}_3 -beli, a helyes zárójelezések nyelve viszont nem.

Formális nyelvek (10. gyakorlat)

 \mathcal{L}_3 és VDA

2005/06 II. félév

/ 15

Házi feladat

1. Készítsünk VDA-t a következő nyelvtanhoz!

$$S \rightarrow acA \mid bB \mid \varepsilon$$

$$A \rightarrow B \mid b \mid C$$

$$B \rightarrow S \mid abB \mid a$$

$$C \rightarrow acbC \mid B$$

2. Határozzuk meg a palindromák nyelvének

$$(L = \{u \in T^* \mid u = u^{-1}\})$$
 maradéknyelveit! (T tetszőleges.)

3. Bizonyítsuk be, hogy a palindromák nyelve nem \mathcal{L}_3 -beli a Myhill-Nerode tétel illetve a Kis Bar-Hillel lemma segítségével! $(|T| \geq 2)$

Formális nyelvek (10. gyakorlat)

L₃ és VDA

2005/06 II. félév

5 / 15

Kis Bar-Hillel Lemma

Feladat:

 $\text{Kifejezések} \overset{?}{\in} \mathcal{L}_3$

Megoldás:

Nem. Indirekt módon. Tegyük fel, hogy Kifejezések $\in \mathcal{L}_3$. A Kis Bar-Hillel lemma alapján ekkor létezik n=n(L). Vegyük a következő kifejezést: $u:=(^nx)^n$, és legyen $u'=(^n$. Mivel $I(u')\geq n$, így alkalmazhatjuk a Kis Bar-Hillel lemmát.

Ezek szerint u'-ben létezik v nemüres, beiterálható részszó. Legyen $v:=(^d,$ ahol d>0. A lemma szerint $(^{n-d-k}\{(^d\}^i(^kx)^n=(^{n+(i-1)d}x)^n$ eleme a Kifejezések nyelvének. (Az előző képletben "{" és "}" metazárójelek!) Ez viszont $i\neq 1$ esetén a nyelv definíciója miatt nem teljesül, tehát ellentmondásra jutottunk.

Formális nyelvek (10. gyakorlat)

 \mathcal{L}_3 és VDA

2005/06 II. félév 14 / 15