MKID READOUT UPDATE

OLD SETUP

OLD SETUP

TRANSITIONAL SETUP

- freqsweep + fit_aly_sweep + aly_pow_sweep = 6 files 23 functions 823 lines
- freqsweep + fitres + powsweep = 3 files 19 functions 558 lines
- Translating the programs is helping me understand how to use them

FREQSWEEP

- Call freqsweep to take a sweep over all frequencies and all channels (S11, S12, S21, S22)
- Data saved to an hdf5 file
- Example on the right is old data, taken by a similar program, with an actual mkid (replotted using freqsweep)

- Call fitres to find each resonator's f0, Q, and Qc parameters
- Uses filters and absolute values to find likely resonator points

 Cuts a window of data around each resonator and fits a circle in the complex plane

 Use circle fit parameters to translate and rotate each resonator circle to the origin

- Use parameter guesses from circle fit and other methods to perform a rough fit (fine red line)
- Use rough fit parameters to perform a fine fit (fine blue line)
- Old matlab program skipped the fine fit
- All data is saved back to the original hdf5 file

POWSWEEP

- Powsweep reads in the resonator locations from the file (found using fitres)
- Performs small window sweeps over each resonator for various powers
- Records data to the hdf5 file

FINDPOW

- Program I am working on now
- Reads the powsweep data and finds the maximum value each resonator can be driven at before f0 begins to shift

ABOUT THE FITTING

Jiansong's thesis

$$t_{21}(f) = ae^{-2\pi jf\tau} \left[1 - \frac{Q_r/Q_c e^{j\phi_0}}{1 + 2jQ(\frac{f - f_r}{f_r})} \right]$$

parameters: $a, \tau, f_r, Q, Q_c, \phi_0$

$$z = e^{2\pi i (f - f_1)\tau} \left[zinf + \frac{zd}{1 + 2iQ\left(\frac{f - f_0}{f_0}\right)} \right]$$

parameters: zinf, zd, τ , f_0 , Q,

HEMT TESTING SETUP

- Soldered 6 resistors of different values to 6 different channels on the tester board (at least 1 per HEMT)
- Resistors were connected to drain supply/return(Ids) and drains sense+/-(Vds), but not gate supply/return(Vgs)
- Connected the tester board to the 100-way cable and 25-way cable (so that each channel was connected as it would be when testing HEMTs)
- Did not close the box or cool down
- Took data using my version of the LabVIEW program

CHANNEL 1A 56Ω

CHANNEL 1D 133Ω

CHANNEL 2C 333Ω

CHANNEL 3B 473Ω

CHANNEL 4B 100Ω

CHANNEL 5B 237Ω

HOORAY FOR OHM'S LAW

- All other channels were open (like 4D on the right)
- Ids and Vds seem to be connected properly
- The LabVIEW program is working correctly

ACTUAL HEMT PLOTTING/FITTING SOFTWARE

 Want to fit to equations (mathematical model for N-channel JFET), which can be found on the Mathworks website or Delphine Boursette's presentation.

Off

$$Vgs - Vt \le 0$$

$$Id = 0$$

Linear

$$0 < Vds < Vgs - Vt$$

$$Id = \beta * Vds(2(Vgs - Vt) - Vds)(1 + \lambda * Vds)$$

Saturation

$$0 < Vgs - Vt \le Vds$$

$$Id = \beta * (Vgs - Vt)^{2}(1 + \lambda * Vds)$$

CURVEFIT 2D AND 3D

Fake data fits using curve_fit

CURVEFIT 2D AND 3D

- Real data fits using curve_fit (data taken from the confluence page)
- Data dragged down by small Ids error given to points with small Ids

CHERENT	' DROCRAMMIN	IC ACCHRACY (I	ocal or Remote Sense)
CURRENT	FNUGNAMM	ICI ACCUNACI IL	acai oi neinote sense

MODEL	RANGE		PROGRAMMING RESOLUTION	ACCURACY (1 Year) ³ 23°C ±5°C ±(% rdg. + amps)	NOISE (peak-peak) 0.1Hz – 10Hz
2400, 2410:	1.00000 μ		50 pA	0.035% + 600 pA	5 pA
ALL:	10.0000 μ 100.000 μ 1.00000 m	A A	500 pA 5 nA 50 nA	0.033% + 2 nA 0.031% + 20 nA 0.034% + 200 nA	5 nA 50 nA 500 nA
2400, 2420,2425 2430, 2440:	, 10.0000 m	A	500 nA	0.045% + 2 μA	50 μΑ
2410 Only:	20.0000 m	A	500 nA	$0.045\% + 4 \mu A$	200 nA
ALL:	100.000 m	Α	5 μΑ	0.066% + 20 μA	1 μΑ
2400, 2410:	1.00000	A^2	50 μA	$0.27\% + 900 \mu A$	100 μΑ
2420, 2425, 2430, 2440:	1.00000	A	50 μA	0.067% + 900 μA	50 μΑ
2420, 2425:	3.00000	A ²	150 μΑ	$0.059\% + 2.7 \mathrm{mA}$	150 μΑ
2430:		A ² / A ⁴	500 μΑ	0.059% + 2.8 mA	300 μΑ
2440:	5.00000	A	50 μA	0.10% + 5.4 mA	500 μΑ

- Following slides are frequency sweeps of...
 - Two 3dB attenuators with no device (blue)
 - YY160629 with two 3dB attenuators (red)

