Introduction to embbeded Al

B. Miramond / UCA

Labs sessions

- Lab0 Installation of the training framework
- Lab1 First training on specific dataset
 - Learn a model and optmize/reduce the size of the networks
- Lab2 First / manual deployment on MCU
- Lab3 Automatic deployment on MCU
- Lab4 Collect data and build your own dataset
- Lab5 Processing of audio data / project
- Lab6 Project

Organization of the lectures

- Introduction to embedded AI
- 2. Machine learning and artificial neural networks
- 3. Supervised vs unsupervised learning
- 4. Convolutional neural networks
- 5. MicroAl a software framework for neural compression
- 6. Challenges about Edge AI

Some references

- Comprendre le Deep Learning Une introduction aux réseaux de neurones
 JC Heudin Ed. Science eBook
- Deep Learning
 Ian Goodfellow, Joshua Bengio et Aaron Courville Ed. MIT Press
- Le Machine Learning avec Python
 Andreas C.Mueller et Sarah GUIDO, Collection O'Reilly
- Deep Learning avec TensorFlow
 Aurélien Géron Ed. Dunod
- Machine Learning avec Scikit-Learn
 Aurélien Géron Ed. Dunod

Introduction to embbeded Al

B. Miramond / UCA

From embedded systems to Edge Intelligence

Data volume explodes with AI, 5G, IoT

ONLY 25% of usable data reaches a datacenter

75% of data must be analyzed on site immediately

AI / Edge processors market has important growth GPUs and FPGAs should not dominate this market. The impact on traditionally dominant companies in France and Europe will be immense in Aerospace, Automotive, Defense, Telecom,...

¹ Application-specific integrated circuit.

² Central processing unit.

³ Field programmable gate array.
4 Graphics-processing unit.

A contrasted picture on Cloud Artificial Intelligence

Digital Neural Network Accelerators

https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/

Digital Neural Network Accelerators

https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/

- Specialized chips for Al calculation in the cloud
 - Nvidia GPU, US
 - Google TPU, US
 - Baidu Kunlun, CH
 - GraphCore, EN
 - Intel Movidius, US
 - Cerebras, US => 300.000 cores per wafer, 15kW

At the Edge

- NVIDIA Jetson can provide 11 T FLOPs, dissipating up to 15 W
- Myriad X 4TOPS dissipating up to 1,5 W
- Google Coral = 4
 TOPS for 2W
- ..

Edge Lines and their specific constraints

	Memory	Computation	Power	Efficiency
Edge Servers	GB	1 Tops	100 W	10 Gops/W
Gateway	МВ	100 Gops	1 W	100 Gops/W
IoT Nodes	Hundreds of kB	1 Gops	1 mW	1 000 Gops/W

Deep Learning, the last trend of Al

The short story of neural networks

1890, Ramon Y Cajal

Diversity of morphology and behaviour

1950, Warren McCulloch et Walter Pitts

Binary inputs/outputs

1952, Hodgkin Huxley Spike dynamics

1957, Frank Rosebblatt real input, linearly separable data

Electrical Transmission

Cajal, R. S. Recollections of My Life (translated by E. H. Craigie with the assistance of . Cano) (Am. Phil. Soc., Philadelphia, 1937; reprinted by MIT Press, Cambridge, Massachusetts, 1989)

Three generations of neural networks

• First generation of neural networks - Perceptron

- Formal neuron (Mc Culloh & Pitts)
 - Binary input / output
 - threshold gates
 - Linearly separable data
- Perceptron (Rosenblatt)
 - Real input/output
 - Single-layer perceptrons
 - · Linearly separable data
 - Learning algorithm

Second generation – Back Propagation

- Multi-layer perceptron
- the output layer would give a probability value for a givenoutcome
- Rumelhart backpropagation (BP) trainin galgorithm (Gradient descent), 1986
- Requires computational units with derivable activation function

Third generation - Spiking neuron

- Bio-inspired modeling
- Discrete representation of inputs/outputs
- Time representation
- Internal state

1958, Mark I Perceptron machine, Cornell

ANN, one method of Machine Learning

A mostly complete chart of

B. Miramond

Perceptron algorithm

- Each change of **w** decreases the error on a specific point. However, changes for several points are correlated, that is different points could change the weights in opposite directions. Thus, this iterative algorithm requires several loops to converge.
- Guarantee to find a separating hyperplane if one exists—if data is linearly separable
- If data are not linearly separable, then this algorithm loops indefinitely

$$s_j^l(t) = \sum_{i=0}^{N_{l-1}} w_{ij}^l(t) \times y_i^{l-1}(t)$$

$$y_j^l(t) = f(s_j^l(t)),$$

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6):386.

MLP: Multi-layer perceptron

- Solution: Combine multiple linear separators.
- Introduction of "hidden" units into NN make them much more powerful: they are no longer limited to linearly separable problems.
- Earlier layers transform the problem into more tractable problems for the latter layers.
- Learning takes place by adjusting the weights in the network, so that the desired output is produced whenever a training instance is presented.

Deep learning

- Often: inputs x are raw signals or feature vectors,
- Often: outputs y are vectors which highest value indicate the category of the input.
- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

Overall architecture: multiple stages of

Normalization → filter bank → non-linearity → pooling

- Normalization: variations on whitening
 - -Subtractive: average removal, high pass filtering
 - Divisive: local contrast normalization, variance normalization
- Filter bank: dimension expansion, projection on overcomplete basis
- Non-linearity: sparsification, saturation, lateral inhibition....
 - Rectification (relu), component-wise shrinkage, tanh,...

$$ReLU(x)=max(x, 0)$$

- Pooling: aggregation over space or feature type
 - Max, Lp norm, log prob.

$$X_i$$
; L_p : $\sqrt[p]{X_i^p}$; $PROB$: $\frac{1}{b} \log \left(\sum_i e^{bX_i} \right)$

The convolutional net model

(Multistage Hubel-Wiesel system)

Example of data, the MNIST dataset non-linearly separable data

B. Miramond

20

EdgeAI, let's play!

The field of possibilities is only limited by your imagination

IDEX Sith project, F. Ferrero, L. Rodriguez, B. Miramond

