Machine Learning Back Propagation

Murray Shanahan

Overview

- The basics
- The maths
- Finishing touches
- Taking things further

Motivation

- Machine learning achieved some notable success in the 2000s using deep neural networks (deep learning)
- These are feedforward networks of artificial neurons (or perceptrons) with many hierarchical layers
- The early layers learn low-level features (eg: edges), and the later layers learn high-level features (eg: cats)
- The foundation for most of these techniques is a learning rule called back propagation
- These notes draw on a tutorial by Michael Nielsen:
 http://neuralnetworksanddeeplearning.com/index.html

The basics

Artificial Neurons

 Artificial neurons compute some function a (called the activation function) of the sum z of their weighted inputs

$$z(x) = \sum_{i=1}^{n} w_i x_i$$

We'll use the sigmoid function

$$a(x) = \sigma(z(x)) = \frac{1}{1 + e^{-z(x)}}$$

Feedforward Networks

- Back propagation works with feedforward networks
- A feedforward network comprises an input layer, an output layer, and a number of hidden layers
- All connections go from the i^{th} layer to the $i+1^{th}$
- The output of the network is obtained by computing the outputs of each layer in turn, starting from the input layer

Training a Network

- The function a network computes is determined by all its weights
- Suppose we want a network that computes some function, but we don't know what weights to use
- The back propagation rule allows us to train the network using lots of example input-output pairs, adjusting the weights to gradually improve its performance
- Learning to recognise handwritten digits is a standard benchmark

A fragment of the MNIST dataset of handwritten digits (http://neuralnetworksanddeeplearning.com)

Recognising Digits

A network for handwritten digit recognition

- For this task, the input is a 28x28 array of pixels. So the input layer comprises 784 neurons
- The output layer comprises 10 neurons, one for each possible digit
- Let's use a single hidden layer of 30 neurons

The Cost Function

- We need a measure of how well a given network performs
- Suppose we want the network to compute a vector y(x)
- Let a_i^l denote the output of the i^{th} neuron in the l^{th} layer
- Then the *cost C* for a set of examples of *x* is

$$C = \frac{1}{2n} \sum_{x} \frac{1}{m} \sum_{i} \left(y_i(x) - a_i^L \right)^2$$

where n is the number of examples and m is the number of neurons in the output layer L

The Basic Idea

- Suppose we initialise the network with random weights from a normal distribution with mean 0
- The challenge is to read in a set of training examples and adjust the weights up or down to reduce the cost function averaged over that training set
- When presented with an unseen set of test examples, the network should then be better than it was before the weights were adjusted
- The network will get better and better if we do this lots of times

Cost Gradients

- But how do we adjust the weights?
- For each training example, we need to know the gradient of the cost with respect to each weight. In other words we need an expression for

$$\Delta_{jkl} = \frac{\partial C}{\partial w_{jk}^l}$$

where w_{jk}^l is the weight of the connection from neuron k in layer l-1 to neuron j in layer l

ullet Then we can nudge w^l_{jk} in the direction of $-\Delta_{jkl}$

Gradient Descent

 More precisely, each weight is repeatedly updated as follows

$$w_{jk}^l \rightarrow w_{jk}^l - \eta \Delta_{jkl}$$

where η is the *learning rate*

- The resulting algorithm performs
 gradient descent on the weights in
 order to minimise the cost function
- η has to be just right to ensure that the algorithm converges quickly without over-fitting

Imperial College London

The maths

Output Layer Cost Gradients 1

- For the output layer L, we know
 - How cost varies with the output of neuron j
 - How the output of neuron j varies with the weighted sum of its inputs, and
 - How the weighted sum of its inputs varies with the weight of the connection from neuron k in layer L-1

$$\frac{\partial C}{\partial a_j^L} = \frac{1}{n} \sum_{x} \left(a_j^L - y_j(x) \right)$$

$$\frac{\partial a_j^L}{\partial z_j^L} = \sigma'(z_j^L)$$

$$\frac{\partial z_j^L}{\partial w_{jk}^L} = a_k^{L-1}$$

Output Layer Cost Gradients 2

 So we can apply the chain rule to get the expression we need for neurons in the output layer

$$\frac{\partial C}{\partial w_{jk}^{L}} = \frac{\partial z_{j}^{L}}{\partial w_{jk}^{L}} \cdot \frac{\partial a_{j}^{L}}{\partial z_{j}^{L}} \cdot \frac{\partial C}{\partial a_{j}^{L}}$$

$$\frac{\partial C}{\partial w_{jk}^{L}} = a_k^{L-1} \sigma'(z_j^L) \frac{1}{n} \sum_{x} \left(a_j^L - y_j(x) \right)$$

Hidden Layer Cost Gradients 1

- But what about neurons further back, in the hidden layers?
- Let's consider layer L-1. Using the chain rule, we have

$$\frac{\partial C}{\partial w_{jk}^{L-1}} = \frac{\partial z_{j}^{L-1}}{\partial w_{jk}^{L-1}} \cdot \frac{\partial a_{j}^{L-1}}{\partial z_{j}^{L-1}} \cdot \sum_{i} \frac{\partial z_{i}^{L}}{\partial a_{j}^{L-1}} \cdot \frac{\partial a_{i}^{L}}{\partial z_{i}^{L}} \cdot \frac{\partial C}{\partial a_{i}^{L}}$$

Sum over these neurons

Hidden Layer Cost Gradients 2

• Similarly, for hidden layer L-2 (if there is one) we get

$$\frac{\partial C}{\partial w_{jk}^{L-2}} = \frac{\partial z_{j}^{L-2}}{\partial w_{jk}^{L-2}} \cdot \frac{\partial a_{j}^{L-2}}{\partial z_{ij}^{L-2}} \cdot \sum_{i1} \left(\frac{\partial z_{i1}^{L-1}}{\partial a_{j}^{L-2}} \cdot \frac{\partial a_{i1}^{L-1}}{\partial z_{i1}^{L-1}} \cdot \sum_{i2} \left(\frac{\partial z_{i2}^{L}}{\partial a_{i1}^{L-1}} \cdot \frac{\partial a_{i2}^{L}}{\partial z_{i2}^{L}} \cdot \frac{\partial C}{\partial a_{i2}^{L}} \right) \right)$$

Differentiating, we get

$$\frac{\partial C}{\partial w_{jk}^{L-2}} = a_k^{L-3} \sigma'(z_j^{L-2}) \sum_{i1} \left(w_{i1j}^{L-1} \sigma'(z_{i1}^{L-1}) \sum_{i2} \left(w_{i2i1}^{L} \sigma'(z_{i2}^{L}) \frac{\partial C}{\partial a_{i2}^{L}} \right) \right)$$

Hidden Layer Cost Gradients 3

Rearranging, we get

$$\frac{\partial C}{\partial w_{jk}^{L-2}} = a_k^{L-3} \sum_{i1} \left(w_{i1j}^{L-1} \sum_{i2} \left(w_{i2i1}^L \frac{\partial C}{\partial a_{i2}^L} \sigma'(z_{i2}^L) \right) \sigma'(z_{i1}^{L-1}) \right) \sigma'(z_j^{L-2})$$

Now we can see a way of simplifying the expression

$$\frac{\partial C}{\partial w_{jk}^{L-2}} = a_k^{L-3} \sum_{i1} \left(w_{i1j}^{L-1} \sum_{i2} \left(w_{i2i1}^{L} \frac{\partial C}{\partial a_{i2}^{L}} \sigma'(z_{i2}^{L}) \right) \sigma'(z_{i1}^{L-1}) \right) \sigma'(z_j^{L-2})$$

The Main Equations

• Generalising gives us the three main equations of back propagation in terms of the error δ at each neuron

$$\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l$$
 Eq1

$$\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L)$$
 Eq2

$$\delta_j^l = \sum_i \left(w_{ij}^{l+1} \delta_i^{l+1} \right) \sigma'(z_j^l)$$
 Eq3

• Note the form of Eq3 entails that δ is computed from the output layer back. Hence the term back propoagation

The finishing touches

More Derivatives

- Just a few more details are needed to give the complete algorithm
- Eq2 is neutral about the cost function, so we need to plug in the derivative of the one we're using
- And we need to know the derivative of the sigmoid function

$$\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L) \qquad \text{Eq2}$$

$$\frac{\partial C}{\partial a_i^L} = \frac{1}{n} \sum_{x} \left(a_i^L - y_i(x) \right)$$

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

Adding Biases 1

- For back propagation to work effectively, every neuron is given an extra input, its bias
- This is simply added to the weighted sum of inputs *z*

$$z(x) = b + \sum_{i=1}^{n} w_i x_i$$

 Biases are randomly initialised and adjusted during learning, just like weights

Adding Biases 2

- Now we need an expression for the gradient of cost with respect to bias
- The derivation is analogous to that for weights, but a bit simpler. The result is the 4th and final basic equation of back propagation

$$\frac{\partial C}{\partial b_i^l} = \delta_j^l$$
 Eq4

Whenever we update weights, we also update biases

$$b_j^l \to b_j^l - \eta \frac{\partial C}{\partial b_j^l}$$

Stochastic Gradient Descent

- Ideally, to compute the necessary cost gradients, we would average over the whole training set
- But it's faster to use *stochastic* gradient descent
- The idea is to repeatedly pick a small sample of the training set (called a *mini-batch*), to estimate the gradients based on that sample, and then update the weights and biases accordingly
- More precisely, the training set is randomly shuffled, then chopped up into mini-batches, which are processed one at a time in this way
- And this is done several times

Putting it all Together

```
repeat
      shuffle training set
      partition training set into mini-batches
      for each mini-batch mb
4
         initialise all estimates of dC/dw and dC/db
5
         for each training example in mb
6
            for i = 2 to I_i
8
               compute z for each neuron in layer i
9
               compute a for each neuron in layer i
            for i = L to 2 step -1
10
               compute \delta for each neuron in layer i
11
            for i = 2 to I_1
12
13
               update dC/dw for each weight w using \delta
14
               update dC/db for each bias b using \delta
         for i = 2 to I_1
15
16
            update weights using dC/dw
17
            update biases using dC/db
```

Acceleration

- The key to getting algorithms like this to be effective is to exploit the available computing power
- A central idea is vectorisation turning inefficient for-loops into efficient matrix operations
- A good example is calculating the outputs of neurons

The Results

- Each pass through the entire dataset is known as an epoch
- Using the back propagation algorithm on the MNIST handwritten digit dataset, it's possible to obtain a success rate better than 95% using
 - a three-layer network with 30 hidden nodes
 - a mini-batch size of 10
 - a learning rate of $\eta = 3.0$
 - 50,000 training examples
 - in just three epochs
- On a contemporary (2015) laptop this takes a few minutes

Taking things further

Variations on the Theme

- There are many variations on the basic theme of the algorithm described
- The activation function can be varied (eg: tanh)
- The cost function can be varied (eg: cross-entropy)
- The neuron can be made stochastic (eg: Boltzmann machines)
- The architecture of the network can be varied
 - Convolutional networks
 - Autoencoders
 - Stacked hidden layers

Convolutional Neural Networks

Weights w_1 to w_3 are shared with neurons 2 and 3

- Convolutional neural networks (CNNs) are useful for spatially-structured data (eg: vision)
- A CNN has two main features
 - Instead of all-to-all connectivity, neurons in hidden layers are connected to spatially contiguous subsets of neurons in previous layers
 - Weights are shared among neurons rather than being unique to each connection

Autoencoders

- In an autoencoder, the output layer has the same number of neurons as the input layer
- The cost function compares the input layer to the output layer, and tries to minimise the difference
- Training the network turns the hidden layer(s) into a compressed representation of the input
- This can be used for image reconstruction or denoising
- And for unsupervised feature learning

For unsupervised feature learning, cut here after training

Compressed representation of input (if hidden layer has fewer neurons than input layer)

Further Study

 The excellent tutorial from Michael Nielsen that I based some of the notes on

http://neuralnetworksanddeeplearning.com/index.html

 A very good and thorough series of tutorials from the developers of Theano, a Python deep learning library

http://deeplearning.net/tutorial/contents.html