Pelatihan STaTiSTiK untuk LaboRatorium (RcChem/11-13 April 2016)

Ahmadi Hamid

(www.AhmadiHamid.com)

masalah analis

Presisi & AKURASI

Poor accuracy Poor precision

Presisi & AKURASI

Makin banyak dilakukan pengukuran, kita akan makin yakin bahwa nilai ratarata mendekati nilai "benar".

Ketidakpastian berkurang sebanding dengan 1/√n

INTERVAL keyakinan

Penetapan kandungan merkuri dalam contoh ikan adalah sebagai berikut: 1.80, 1.58, 1.64, 1.49 ppm Hg. Hitung interval keyakinan 50% dan 90% untuk kadar merkuri dalam ikan.

Find
$$x^{-} = 1.63$$

$$s = 0.131$$

50% interval keyakinan

$$t = 0.765$$
 for $n-1 = 3$

$$\mu = \bar{x} \pm \frac{ts}{\sqrt{n}}$$
 $\mu = 1.63 \pm \frac{(0.765)(0.131)}{\sqrt{4}}$
 $\mu = 1.63 \pm 0.05$

Terdapat 50% kemungkinan bahwa nilai benar rata-rata terletak antara 1.58 dan 1.68 ppm

INTERVAL keyakinan

$$x = 1.63$$

$$s = 0.131$$

90% interval keyakinan:

$$t = 2.353$$
 for $n-1 = 3$

$$\mu = \bar{\mathbf{x}} \pm \frac{\mathbf{ts}}{\sqrt{\mathbf{n}}}$$

$$\mu = \textbf{1.63} \pm \frac{\textbf{(2.353)(0.131)}}{\sqrt{\textbf{4}}}$$

$$\mu$$
 = 1.63 \pm 0.15

Terdapat 90% kemungkinan bahwa nilai benar rata-rata terletak antara 1.48 dan 1.78 ppm

INTERVAL keyakinan

$$x = 1.63$$

$$s = 0.131$$

90% interval keyakinan:

$$t = 2.353$$
 for $n-1 = 3$

$$\mu = \bar{\mathbf{x}} \pm \frac{\mathbf{ts}}{\sqrt{\mathbf{n}}}$$

$$\mu = 1.63 \pm \frac{(2.353)(0.131)}{\sqrt{4}}$$

$$\mu$$
 = 1.63 \pm 0.15

Terdapat 90% kemungkinan bahwa nilai benar rata-rata terletak antara 1.48 dan 1.78 ppm

Seleksi DATA (Uji Dixon/Grubbs)

- Pertama-tama data harus diurut dari kecil ke besar (x1, x2,xn)
- Nilai D atau G hasil perhitungan (menurut rumusnya masing-masing) dibandingkan dengan Nilai D atau G kritis yang ada pada Tabel Dixon/Grubbs

Hasil Analisis Sulfat dalam Air (Diurut)

Kode Lab	Hasil analisis (ppm)	
С	0.0	X1
0	58.3	X2
L	97.3	Х3
1	99.1	X4
J	99.4	
Н	99.5	
K	99.8	
Е	104.0	
N	104.0	
M	105.0	
В	105.5	
G	105.6	
D	114.0	Xn-2
F	130.0	Xn-1
Α	156.0	Xn

(114.0 - 0.0)

$$D_{tabel n = 15} = 0.565$$

Data dr Lab C dibuang

Tertinggi
$$\rightarrow$$
 $D_{13-40} = \begin{array}{c} X_n - X_{n-2} \\ \hline X_n - X_3 \end{array}$

$$D = \frac{(156 - 114)}{(156 - 97.3)} = 0.72$$

 $D_{tabel n = 15} = 0.565$ Data dr Lab A dibuang

Lab A and C outlier

Kode Lab	Hasil analisis (ppm)	
0	58.3	X1
L	97.3	X2
T	99.1	Х3
J	99.4	
Н	99.5	
K	99.8	
Е	104.0	
N	104.0	
М	105.0	
В	105.5	
G	105.6	Xn-2
D	114.0	Xn-1
F	130.0	Xn

$$n = 13$$
Terendah $\Rightarrow D_{13-40} = \frac{X_3 - X_1}{X_{n-2} - X_1}$

$$D = \frac{(99.1 - 58.3)}{(105.6 - 58.3)} = 0.86$$

$$D_{\text{tabel n} = 13} = 0.611$$

Data dr Lab O dibuang

Tertinggi
$$\rightarrow$$
 $D_{13-40} = \begin{array}{c} X_n - X_{n-2} \\ \hline X_n - X_3 \end{array}$

$$D = \frac{(130 - 105.6)}{(130 - 99.1)} = 0.79$$

D
$$_{\text{tabel n} = 13} = 0.611$$

Data dr Lab F dibuang

Lab A, C, O dan F outlier

Kode Lab	Hasil analisis (ppm)	
L	97.3	X1
1	99.1	X2
J	99.4	Х3
Н	99.5	
K	99.8	
Е	104.0	
N	104.0	
M	105.0	
В	105.5	Xn-2
G	105.6	Xn-1
D	114.0	Xn

Terendah
$$\rightarrow$$
 $D_{8-12} = X_2 - X_1$
 $X_{n-1} - X_n$

$$D = \frac{(99.1 - 97.3)}{(105.6 - 97.3)} = 0.22$$

D
$$_{\text{tabel n} = 11} = 0.502$$

Data dr Lab L tidak dibuang

Tertinggi
$$\rightarrow$$
 $D_{8-12} = \frac{X_n - X_{n-1}}{X_n - X_2}$

$$D = \frac{(114 - 105.6)}{(114 - 99.1)} = 0.59$$

Lab A, C, O, F dan D outlier

Kode Lab	Hasil analisis (ppm)	
L	97.3	X1
1	99.1	X2
J	99.4	Х3
Н	99.5	
K	99.8	
Е	104.0	
N	104.0	
M	105.0	
В	105.5	Xn-1
G	105.6	Xn

$$n = 10$$
Terendah \rightarrow
 $D_{8-12} = \begin{array}{c} X_2 - X_1 \\ ----- \\ X_{n-1} - X_1 \end{array}$

$$D = \frac{(99.1 - 97.3)}{(105.5 - 97.3)} = 0.22$$

$$D_{\text{tabel n} = 10} = 0.53$$

Data dr Lab L tidak dibuang

Tertinggi
$$\rightarrow$$
 $D_{8-12} = \frac{X_n - X_{n-1}}{X_n - X_2}$

$$D = \frac{(105.6 - 105.5)}{(105.6 - 99.1)} = 0.02$$

D
$$_{\text{tabel n} = 10} = 0.53$$

Data dr Lab G tidak dibuang

Seleksi DATA (Kelemahan Uji Dixon)

Seleksi DATA (Uji Grubbs)

Uji Grubbs

$$G_{1 \text{ (terendah/ tertinggi)}} = \frac{\left| \overline{x} - x_{i} \right|}{s}$$

$$G_2 = \frac{X_n - X_1}{s}$$

s = <u>SD</u> dari semua hasil X = x rata-rata X_i = data yang diuji X_n = data tertinggi X₁ = data terendah

$$G_{3 pasangan rendah} = 1 - [(n - 3) s_{n-2}^2 / (n-1) s_{n-2}^2]$$

$$G_{3 \text{ pasangan tinggi}} = 1 - [(n - 3) s_{n-2}^2 / (n-1) s_{-2}^2]$$

s_{n-2} = standar deviasi tanpa menyertakan 2 data terendah atau 2 data tertinggi

Seleksi DATA (Uji Grubbs)

Seleksi DATA (Uji Grubbs)

$$G_{3 \text{ pasangan tinggi}} = 1 - [(n - 3) s_{n-2}^2 / (n-1) s_{n-2}^2]$$

2,0 2,1 2,2 2,3 2,3 2,9 3,1
$$s_{n-2}^2 = 0,017$$
 $s^2 = 0,175$

Kontrol sample

memantau presisi (*repeatability & reproducibility*) dalam satu kurun waktu (hari ke bulan)

menunjukkan bahwa proses analisis berada dibawah kontrol statistika

KONTROL SAMPEL

- Homogen
- Stabil
- Matriks sama
- Mudah diperoleh
- Murah

Control Chart

Control Chart (contoh kasus)

Control Chart (contoh kasus)

Control Chart (contoh kasus)

TERIMA KASIH

ahmadihamid.com

github.com/ahmadihamid

0823-1491-9029

admin@ahmadihamid.com