1. Objective

The overall objective is to predict if a patient has Parkinson's disease or not.

The model is to be built using data obtained from UCI at: https://archive.ics.uci.edu/ml/machine-learning-databases/00470/pd speech features.rar.

2. Exploration and Data Analysis

2.1. Data Description

The data has 755 columns which is made up 745 attributes and a class. The features are made up of various kinds of speech signal processing algorithms such as Time Frequency Features, Mel Frequency Cepstral Coefficients (MFCCs), Wavelet Transform based Features, Vocal Fold Features and tunable Q-factor wavelet transform (TQWT) which were applied t speech recordings of Parkinson's Disease patients so as to extract useful clinical information.

The Columns are given in Table 1. A detailed attribute information can be found at "https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification#."

From the paper where the data was obtained, some of the features are described as shown in Table 1. However, it is noted that features such as identity (ID), gender, tunable Q-factor wavelet transform (TQWT) and class are not included in Table 1.

Table 1: Overview of Features

Feature Set	Measure	Explanation	No of Features
Baseline Features	Jitter variants	Jitter variants are	5
		employed to	
		capture the	
		instabilities	
		occurred in the	
		oscillating pattern	
		of the vocal folds	
		and this feature	
		sub-set quantifies	
		the cycle-to-cycle	
		changes in the	
		fundamental	
		frequency.	
	Shimmer variants	Shimmer variants	6
		are also employed	
		to capture	
		instabilities of the	
		oscillating pattern	
		of the vocal folds,	
		but this time this	
		feature sub-set	

		quantifies the cycle-	
		to-cycle changes in	
		the amplitude	
	Fundamental frequency	The frequency of	5
		vocal fold vibration.)
	parameters		
		Mean, median,	
		standard deviation,	
		minimum and	
		maximum values	
		were used.	
	Harmonicity parameters	Due to incomplete	2
		vocal fold closure,	
		increased noise	
		components occur	
		in speech	
		pathologies.	
		Harmonics to Noise	
		Ratio and Noise to	
		Harmonics Ratio	
		parameters, which	
		quantify the ratio of	
		signal information	
		over noise, were	
		used as features.	
	Dogwood Dowland		4
	Recurrence Period	RPDE gives	1
	Density Entropy (RPDE)	information about	
		the ability of the	
		vocal folds to	
		sustain stable vocal	
		fold oscillations and	
		it quantifies the	
		deviations from F ₀ .	
	Detrended Fluctuation	DFA quantifies the	1
	Analysis (DFA)	stochastic self-	
		similarity of the	
		turbulent noise.	
	Pitch Period Entropy	PPE measures the	1
	(PPE)	impaired control of	
		fundamental	
		frequency F0 by	
		using logarithmic	
		scale	
Time Fraguency	Intensity Parameters	Intensity is related	3
Time Frequency	Intensity Parameters	-	ا
Features		with the power of	
		speech signal in dB.	
		Mean, minimum	
1		and maximum	[

		intensity	
		intensity values	
	Former and Francisco Color	were used.	4
	Formant Frequencies	Frequencies	4
		amplified by the	
		vocal tract; the first	
		four formants were	
	Donadouidable	used as features.	4
	Bandwidth	The frequency	4
		range between the formant	
		frequencies, the	
		first four	
		bandwidths were	
		employed as	
		features	
Mel Frequency	MFCCs	MFCCs are	84
Cepstral Coefficients	IVII CCS	employed to catch	04
(MFCCs)		the PD affects	
(IVII CC3)		in vocal tract	
		separately from the	
		vocal folds	
Wavelet Transform	Wavelet transform (WT)	WT features	182
based Features	features related with F0	quantify the	102
Susca i cutules	icatales related with 10	deviations in F0	
Vocal Fold Features	Glottis Quotient (GQ)	GQ gives	3
Total Fold Federales	Sisters Quotient (GQ)	information about	
		opening and closing	
		durations of the	
		glottis. It is a	
		measure of	
		periodicity in glottis	
		movements.	
	Glottal to Noise	GNE quantifies the	6
	Excitation (GNE)	extent of turbulent	
		noise, which caused	
		by incomplete vocal	
		fold closure, in the	
		speech signal.	
	Vocal Fold Excitation	VFER quantifies the	7
	Ratio (VFER)	amount of noise	
		produced due to	
		the pathological	
		vocal fold	
		vibration by using	
		nonlinear energy	
		and	
		entropy concepts.	

Empirical Mode	EMD decomposes a	6
Decomposition (EMD)	speech signal into	
	elementary signal	
	components by	
	using adaptive basis	
	functions and	
	energy/entropy	
	values obtained	
	from these	
	components are	
	used to quantify	
	noise	

The class features as values of 1's and 0's to which indicate if a patient has the Parkinson's disease or not, respectively.

3. Feature Engineering

The data information can be shown in Table 2 and the top five rows of the data is displaced in Table 3. It can be seen that the columns are unnamed and the data types of data are 'object'. A view of the top 5 rows of the data after reindex is shown in Table 4 and resetting datatypes to float is displaced in table 5.

Table 2: Information of Data Before Feature Engineering

Table 3: A view of the top 5 rows of the Data before Feature Engineering

	Unnamed: 0	Unnamed: 1	Baseline Features	Unnamed: 3	Unnamed: 4	Unnamed: 5	Unnamed: 6	Unnaı
0	id	gender	PPE	DFA	RPDE	numPulses	numPeriodsPulses	meanPeriod
1	0	1	0.85247	0.71826	0.57227	240	239	300.0
2	0	1	0.76686	0.69481	0.53966	234	233	0.0082
3	0	1	0.85083	0.67604	0.58982	232	231	300.0
4	1	0	0.41121	0.79672	0.59257	178	177	0.0108
5 r	ows × 755 c	columns						

Table 4: A view of the top 5 rows of the Data after Feature Engineering

	id	gender	PPE	DFA	RPDE	numPulses	numPeriodsPulses	meanPeriodPulses	stdDev
0	0	1	0.85247	0.71826	0.57227	240	239	0.00806353	
1	0	1	0.76686	0.69481	0.53966	234	233	0.008258256	
2	0	1	0.85083	0.67604	0.58982	232	231	0.00833959	
3	1	0	0.41121	0.79672	0.59257	178	177	0.010857733	
4	1	0	0.3279	0.79782	0.53028	236	235	0.008161574	
5 r	5 rows × 755 columns								

Table 5: Information of Data After Feature Engineering

4. Pre-Modelling

The class (y) is separated from the predicting features (X). Furthermore, stratified shuffle split is used to split into training (X_train;y_test) and testing set (X_test,y_test) so as to maintain equal ratio of predictors as shown in Table 6.

Table 6: Number of rows in Training and Test Sets

Train		Test		
1	0.74	1	0.74	
0	0.25	0	0.25	

Furthermore, the X (train and test) data is scaled to values in between 0 and 1 using the MInMAxScaler.

5. Modelling

The aim is to predict using a deep learning model.

The architecture of the first model is built using an input layer of 754 neurons (with ReLu activation), two hidden layers of 754 neurons each (with ReLu activations), and an output layer of one neuron (with sigmoid activation). Also, all layers are fully connected. Furthermore, it is compiled (using the SGD optimizer, binary-crossentropy loss and accuracy metrics) and fitted with a batch_size of 75 with 100 epochs.

The validation loss and accuracy of the model are 2.7377 and 0.0441 respectively and displaced in Figure 1.

Figure 1: Loss and Accuracy of Model 1

The first model has a very poor loss and accuracy. Hence other models are built.

The second model is built similar the model 1, however with 2000 neurons in each layers, Adam optimizer and a batch size of 50. The resulting validation loss and accuracy of model 2 are 0.0900 and 0.9912 respectively and the corresponding visualization at each epoch is shown in Figure 2.

Figure 2: Loss and Accuracy of Model 2

This is an improved model with a very high accuracy of 99.12%. However, it would be interesting to see what will happen if the number of neurons is increased with the addition of dropout and L2(Ridge) regularization to the model.

Thus, the third model is built with the number of neurons increased to 3000, L2 accuracy and Dropout of 0.3 (i.e., 30% of the neurons in each layer is dropped) in each layer.

The validation loss and validation accuracy of the third model are 0.1570 and 1.0000 respectively with the visualization shown in Figure 3.

Figure 3: Accuracy and Loss of Model 3

The model 3 performed even better.

Lastly, the number of neurons is reduced to 2000 with 50 epochs.

This resulting validation loss and accuracy are 0.1637 and 0.9868 respectively and the values for each epoch is plotted in Figure 4.

Figure 4: Accuracy and Loss of Model 4

It can be seen that the loss of the validation set is lower while and accuracy of the validation set is higher than that of the training set.

Observations/Suggestions

Table 7 gives a summary of the accuracies and loss of the model on the validation sets.

Table 6: Performance Metrics of Models Used for Prediction

Performance	Model						
Metrics	1	2	3	4			
Loss	2.7377	0.0900	0.1570	0.1637			
Accuracy	0.0441	0.9912	1.0000	0.9868			

Model 1 is very bad at predicting. Increasing the number of neurons and regularizing with Adam optimizer increased models 2, 3 and 4 accuracies of predicting if a patient had Parkinson's disease or not with reduced losses.

Furthermore, regularization with L2 (Ridge regularization) and dropout further increased the accuracy to 1.

A look through the plots of the validation loss and accuracy shows that model 4 had a lower validation loss and a higher accuracy than the training set. This is unusual as the training loss is usually lower than those of the testing set. However, this can be put to test with a larger data in the validation set.

Another suggestion is to divide the validation set into two – validation set and test set. Then the final model chosen would be checked with the test set.

Thus, if a model is to be picked, it would be model 2 or 3 until when enough data can be used on model 4.

Succinctly, all model except model 1 achieved the objective of predicting if a patient had Parkinson's disease or not.