Задача 1

 R^0

-	1	2	3	4	5	6
1		a				
2		b	a	b		
3					b	
4					b	
$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$					a	b
6						

 \mathbb{R}^1

	1	2	3	4	5	6
$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$		a				
2		b	a	b		
3					b	
4					b	
5					a	b
6						

 \mathbb{R}^2

	1	2	3	4	5	6
1		$a ab^*b$	ab^*a	ab^*b		
2		$b bb^*b$	$a bb^*a$	$b bb^*b$		
3					b	
4					b	
5					a	b
6						

 \mathbb{R}^3

 R^4

 R^5

В финальной таблице R^6 изменится только ячейка (1,6), поэтому ее напишу отдельно:

 $R_{16}^6 = (ab^*ab|ab^*bb)a^*b|(ab^*ab|ab^*bb|(ab^*ab|ab^*bb)a^*a)(a|aa^*a)^*(b|aa^*b)$ Получил РВ, эквивалентное ДКА.

Задача 2

Т.к. ДКА полный, то он прочтет до конца любое слово из T^* . Рассмотрим два произвольных слова и и у из одного класса эквивалентности по L. Предположим, что при их прочтении посредством ДКА, автомат остановился в разных состояниях. Теперь "допишем"к каждому из этих двух слов произвольную цепочку символов $t \in T^*$. Из определения эквивалентности получаем, что слова ut и vt одновременно принадлежат или не принадлежат языку L. Значит, при прочтении этих слов автоматом, он либо остановится в конечных сосотояниях $q_f 1, q_f 2$, либо остановится в неконечных состояниях $q_n f 1, q_n f 2$ для обоих слов ut и vt. Учитывая, что автомат минимальный (т.е. в нем нет никаких двух состояний, из которых по одному и тому символу переход происходит в одно состояние), получаем, что цепочка t прочитывается в нем только один раз (т.е. последовательность состояний и ребер, проход по которым прочитывает цепочку t, в автомате единственна). Из этого следует, что после прочтения и и v и перед прочтением t минимальный автомат должен находиться в одном и том же состоянии, а наше предположение противоречит минимальности автомата.

Задача 3

Разделим все слова z из T^* по их длине:

- 1)Первая группа { $z \in T^* : |z| \ge |\mathbf{w}|$ }. Они делятся на $|\mathbf{w}|+2$ класса по языку $\mathbf{L} = \operatorname{PreSuf}(\mathbf{w})$: в первом классе C_1 слова, не начинающиеся \mathbf{c} w. При дописывании к ним чего угодно они попадают в \tilde{L} (дополнение \mathbf{L}). Остальные слова, т.е. начинающиеся \mathbf{c} w, разделяться $|\mathbf{w}|+1$ классов $\{Q_i\}$, аналогично языку $\operatorname{Suf}(\mathbf{w})$ \mathbf{c} семинара.
- 2)Вторая группа слова { $z \in T^* : |z| < |\mathbf{w}|$ }. Слова отсюда попадут в класс C_1 , если не являются префиксом w. Остается рассмотреть только префиксы w. Каждый префикс образует собвественный (еще не рассмотренный) класс P_i , т.к., очевидно, что префиксы не попадают в класс C_1 и ни один из "префиксных"классов не совпадает ни с одним классом из $\{Q_i\}$, т.к. чтобы получить слово из языка префикс нужно "дописать" до слова w, а слово из $\{Q_i\}$ не нужно. Префиксов всего $|\mathbf{w}|$ (с нулевым и не считая слова w).

Таким образом, получено $2^*|w|+2$ классов экв-ти. Т.к. кол-во классов конечно, то язык регулярен. Т.к. число классов экв-ти регулярного языка равно числу состояний в min $\Pi \angle KA$, то в min $\Pi \angle KA$, распознающем

 $\operatorname{PreSuf}(w)$, будет $2^*|w|+2$ состояний.

Задача 4

Классов эквивалентости для языка правильных скобочных последовательностей L не конечное число. Это следует из того, что язык нерегулярен, что несложно получить от противного по лемме о накачке для правильных скобочных последовательностей вида $\{(n)^n, n \geq 0\}$.

Слова входящие в L, входят в один класс C_1 , т.к. дописывание к ним всяких слов из L не выыводит их из L, а дописывание слова из \tilde{L} - выводит.

Теперь изучим \tilde{L} . Если слово имеет вид $(S_1(S_2...(S_n, \text{где } S_i\text{- пустая строка или правильная скобочная последовательность, то оно попадает в класс, взаимооднознозначно соответсвующий числу открывающих скобок в нем, не считая <math>S_i$. Тогда дописав всем таким словам любое слово вида $S_a(S_b)...S_p(S_b)$, в котором то же число закрывающих скобок, не считая (не считая S_i), попадаем в L, иначе (т.е. когда другое число скобок ")"или среди S_i есть неправильные последовательности) - попадаем в \tilde{L} .

Еще в один новый класс попадают все слова вида $(S_1(S_2...(S_n, где хотя бы одна из подпоследовательностей <math>S_i$ - неправильная (при дописании любого слова они попадают в \tilde{L}).

Задача 5

```
Moe имя - nick=w, |w|=4
```

Опираясь на задачи 2 и 3 получаем, что состояний 10. состояние - класс:

```
1 - е(пустое слово)
2 - n
3 - ni
```

4 - nic

 $5 - \{x|overlap(x, w) = 4\}$

 $6 - \{x|overlap(x, w) = 3\}$

```
7 - \{x|overlap(x,w)=2\}
8 - \{x|overlap(x,w)=1\}
9 - \{x|overlap(x,w)=0\}
10 - слова с началом \tilde{w}(не w)
```


Все слова из языка будут приняты автоматом, т.к. по построению финальными состояниями в нем являются состояния, эквивалентные классам K, которые являются подмножествами самого языка. Причем каждое слово из языка принадлежит какому-нибудь такому классу K, т.к. все T^* разбито на классы. Т.е. слово при чтении слова из языка автомат обязательно пройдет сотояния 1-2-3-4-5 и вернется в него по одному из путей (9-8-7-6-5),(8-7-6-5),(7-6-5),(6-5), если после w в этом слове есть еще символы, т.к. слово заканчивается на w.

Если слово принято автоматом, то оно принадлежит языку, т.к. если при чтении слова автомат остановился в конечном состоянии (5), отображающем соответсвующий класс, который является подмножеством языка.