QUIZ 4

1. (3 points) True or False

(1) \mathbf{T}/\mathbf{F} The null space of $m \times n$ matrix is a subspace of \mathbb{R}^m .

(2) \mathbf{T}/\mathbf{F} The column space of $m \times n$ matrix is a subspace of \mathbb{R}^m .

(3) \mathbf{T}/\mathbf{F} The row space of $m \times n$ matrix is a subspace of \mathbb{R}^m .

2. Given a set of vectors

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}, \mathbf{a}_3 = \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix}, u = \begin{bmatrix} 2 \\ -1 \\ 10 \end{bmatrix}$$

(1) (3 points) Show that the above set of vectors $\mathcal{B} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ form a basis for \mathbb{R}^3 .

(2) (3 points) Find the coordinates of the vector u below in this coordinate-system (i.e. find $[u]_{\mathcal{B}}$).

1