Seguridad, privacidad y aspectos legales

Álvaro López García

Grupo de Computación Avanzada y e-Ciencia Instituto de Física de Cantabria (IFCA) - CSIC-UC

Máster universitario en ciencia de datos / Master in Data Science

Aplicación en el entorno Open Science

Parte I

Tabla de contenidos

1. ¿Cómo publicar un dataset en abierto?

2. Licencias de datos

3. Minimizar los riesgos

¿Cómo publicar un dataset en abier-

to?

Como publicar un dataset open data? I

Tim Berners-Lee 5* data: http://5stardata.info/en/

- * Make your stuff available on the Web (whatever format) under an open license.
- ** Make it available as structured data (e.g., Excel instead of image scan of a table).
- *** Make it available in a non-proprietary open format (e.g., CSV instead of Excel).
- **** Use URIs to denote things, so that people can point at your stuff.
- ***** Link your data to other data to provide context.

Como publicar un dataset open data? II

Como publicar un dataset open data? III

Pasos:

- Escoger los datos que se quieran publicar en abierto.
- Escoger un portal de datos abiertos.
- Escoger una licencia.
- Para cada dataset:
 - Identificar un estándar y/o formato aplicable.
 - Aplicar técnicas para eliminar los riesgos de publicar datos en abierto.
 - o Exportar los datos al formato elegido.
 - o Publicar el dataset.
- Actualizar, curar y mantener los datos.

Licencias de datos

Licencias abiertas I

Licencia

Contrato o permiso oficial que se concede a alguien para utilizar, copiar, modificar, estudiar, distribuir un bien, normalmente no tangible.

- Es necesario establecer que queremos que se pueda hacer con nuestros datos.
- Los usuarios de los datos necesitan saber que se puede hacer con unos datos.
- Preservar la visibilidad de la organización.
- La EU PSI Directive⁵ establece: «Conditions for re-use shall be non-discriminatory for comparable categories of re-use»
- Diferentes licencias: datos, contenido, código, etc.

Licencias abiertas II

- Respecto a la propiedad, se puede.
 - Transferir la propiedad y todos los derechos.
 - Renunciar a los derechos (dominio público)
- La licencia da un permiso, pero:
 - El copyright sobre los trabajos/contenidos generados es del creador.
 - El *database-right* sobre las colecciones de datos recopiladas es de la persona que la generó.

 $^{^{5}}_{\rm https://ec.europa.eu/digital-single-market/en/european-legislation-reuse-public-sector-information}$

Licencias abiertas de datos I

- Una licencia abierta puede permitir:
 - Republicar el contenido o los datos (gratis o no).
 - o Crear contenido derivado.
 - Hacer dinero con el contenido.
- Únicas restricciones aceptables, según la Open Definition⁶:

Atribución (attribution) hay que decir explícitamente quien es la fuente. Compartir-igual (Share-alike) hay que compartir los datos o cualquier trabajo derivado de la misma manera.

- Se puede aplicar ninguna, una o las dos.
- Tres grandes grupos:

Dominio público No hay restricciones.

Atribución Hay que decir quien originó los datos.

Atribución y compartir-igual Hay que decir quién originó los datos y, cualquier trabajo derivado, hay que distribuirlo bajo la misma

licencia.

https://opendefinition.org/

Licencias de contenido

- Licencias para fotos, textos, etc.
- Licencias recomendadas: Creative Commons (CC).
- Última versión: 4.0, validez internacionales.
- Hay varias liencias CC, pero no todas se consideran abiertas.

Dominio público CC0

Atribución CC-by

Atribución y compartir-igual CC-by-sa

Creative Commons

Escala de libertad

Creative Commons

Compatibilidad entre licencias

Licencias de datos/bases de datos

- Licencias recomendadas: CC 4.0 y Open Data Commons.
- Se puede diferenciar entra la base de datos y el contenido (diferentes licencias).

Dominio público CC0 PDDL

Atribución CC-by ODC-by

Atribución y compartir-igual CC-by-sa ODBL

Publicador de datos I

¿Qué licencia escoger?

- Depende del modelo de negocio, si es que hay alguno.
- Establecer el tipo de atribución que se requiere.
- Establacer cómo se requiere la atribución.
- Licencia dual, datos bajo dos licencias: una open y otra no. Menos restricciones.
- Si el contenido es republicado o derivado de otro contenido (y la licencia nos ha dejado), hay que publicarlo con la misma licencia (share-alike).

Publicador de datos II

¿Qué licencia escoger?

License chooser: https://creativecommons.org/share-your-work/

Utilizador o consumidor de datos

Qué puedo hacer?

- A tener en cuenta, no siempre se puede...
 - o Republicar.
 - Aportar valor añadido.
 - Publicar extractos.
 - o Publicar contenido derivado.
- Hay que comprobar que nos permite hacer una licencia.
- CCO: https://www.kaggle.com/donorschoose/io
- CC-BY-SA 4.0: https://www.kaggle.com/ardamavi/sign-language-digits-dataset
- ODbL, DbCL: https://www.kaggle.com/nickhould/craft-cans
- Otros: https: //www.kaggle.com/unitednations/global-commodity-trade-statistics

Minimizar los riesgos

¿Riesgos? ¿Qué riesgos?

- Como hemos visto publicar datos en abierto puede tener un riesgo.
- Aunque no existan datos personales existen riesgos.
- Compromiso entre utilidad de los datos y privacidad.
- Es necesario evaluar los riesgos de publicar un dataset.

Evaluando el riesgo-beneficio

Activo Elementos que pueden generar un riesgo o un beneficio

Evento Situaciones generadas por un activo, que llevan consigo una resultado positivo (beneficio) o negativo (riesgo)

Fuente Generadores de eventos

Probabilidad Certidumbre de que algo suceda o no.

Impacto Efecto negativo o positivo del evento. La magnitud del impacto depende de la escala y de la gravedad.

Resultado Riesgo o beneficio. Síntesis de la probabilidad e impacto, con respecto a un peligro (riesgo) o a una oportunidad (beneficio).

Calculando el riesgo/beneficio

1. Identificar los activos.

Filas, columnas, entradas, conjuntos de entradas que contribuyen al beneficio.

Filas, columnas, entradas, conjuntos de entradas que contribuyen al riesgo.

2. Identificar los eventos (¿voy a publicar datos individuales o agregados).

¿De que forma es beneficioso este dataset? ¿Cómo se va a usar?

 $\ensuremath{\text{¿De}}$ qué forma comporta un riesgo este dataset? $\ensuremath{\text{¿C\'omo}}$ se va a explotar?

3. Identificar las fuentes.

¿Quién puede usar este dataset?

¿Quién puede explotar este dataset?

4. Identificar beneficio/riesgo

Probabilidad e impacto.

Evaluación riesgo/beneficio

Activos Trayectos, recogidas y entregas de taxis de NYC

Eventos

Entradas individuales

Fuentes

Beneficio-Riesgo / Probabilidad

86/92

Evaluación riesgo/beneficio

Activos

Trayectos, recogidas y entregas de taxis de NYC

Beneficios

Eventos

Entradas individuales

- Entender patrones de tráfico
 - Estudiar ubicación de paradas
 - Estudiar condiciones de trabajo de conductores

Fuentes

- Ciudadanos
- Periodistas
- Investigadores
- Empresas innovadoras

Beneficio-Riesgo / Probabilidad

Activos

Travectos, recogidas y entregas de taxis de NYC

Beneficios

- Estudiar ubicación de paradas
- Estudiar condiciones de trabajo de conductores

Entender patrones de

Eventos

tráfico

Entradas individuales

Fuentes

- Ciudadanos
- Periodistas
- Investigadores
- Empresas innovadoras

Beneficio-Riesgo / Probabilidad

	В	М	(A)
В	В	В	М
M	В	M	A
(A)	M	Α	(A)

Riesgos

- Identificación de conductores
- Identificación de pasaieros y travectos
- Uso por otras compañías

- Otras compañías (comptentencia)
- Ciudadanos
- Periodistas
- Investigadores

	В	М	(A)
В	В	В	М
M	В	M	A
(A)	М	Α	(A)

¿Y ahora qué? I

Una vez calculado el riesgo, tenemos que aplicar una mitigación y evaluar la privacidad y utilidad del nuevo dataset. Ejemplos:

- Eliminar campos que contengan información sensible.
 - Privacidad Alta, eliminar el riesgo.
 - **Utilidad** Se elimina la utilidad que puedan aportar esos campos.
- Eliminar registros que sean particularmente sensibles.
 - Privacidad Alta, elimina el riesgo de los registros eliminados.
 - **Utilidad** Alta, solo se elimina un subconjunto de datos.
- Agregar datos, producir datos terciarios, estadísticas, etc.
 - Privacidad Alta, no se hacen públicos datos individuales.
 - Utilidad Baja, no se pueden analizar entradas individuales, solo estadísticas

¿Y ahora qué? II

Generalizar datos, reducir precisión de los datos.

Privacidad Depende de la generalización. A mayor generalización, mayor privacidad

Utilidad Depende de la generalización. A mayor generalización, menor utilidad.

k-anonimato.

Privacidad Similar a la generalización.

Utilidad Similar a la generalización.

Añadir ruido a los datos originales.

Privacidad A mayor ruido, mayor privacidad, pero dependiendo de la densidad de la población.

Utilidad A mayor ruido, menor utilidad.

¿Y ahora qué? III

 Identificadores anónimos, eliminando atributos individuales y sustituyéndolos por un identificador sin relación con los datos.

Privacidad Si es aleatorio, alta. Sin embargo, no protegen contra la re-identificación. Una vez identificado un individuo en una entrada se puede generalizar (para ese individuo).

Utilidad Alta, no hay impacto en la utilidad.

 Privacidad diferencial. Permite analizar una población sin acceder a las entradas individuales.

Privacidad Alta, protección robusta.

Utilidad Alta, no se modifican los datos.

Aplicando la mitigación

1. Ratio riesgo/beneficio.

Con el riesgo y el beneficio ya calculados, generando una nueva tabla

2. Obtener posibles mitigaciones.

Establecer qué se puede hacer para controlar el riesgo.

- 3. Calcular el riesgo beneficio después de las mitigaciones.
- 4. Decisión final. Resultado.

Activos Riesgo/beneficio Mitigaciones Riesgo/Beneficio

 Trayectos, recogidas y entregas de taxis de NYC

XXX

Activos

 Trayectos, recogidas y entregas de taxis de NYC

Riesgo/beneficio

Beneficio: Alto

Riesgo: Alto

Mitigaciones

XXX

Activos

 Trayectos, recogidas y entregas de taxis de NYC

Riesgo/beneficio

Beneficio: Alto

Riesgo: Alto

Mitigaciones

XXX

Activos

 Trayectos, recogidas y entregas de taxis de NYC

Riesgo/beneficio

Riesgo: Alto

Beneficio: Alto

Mitigaciones

 Ratio riesgo/beneficio: Medio

- Eliminación de atributos.
 - Eliminación de entradas.
- Agregar datos.
- Generalizar datos.
- Anonimato.
- etc.

XXX

Activos

 Trayectos, recogidas y entregas de taxis de NYC

Riesgo/beneficio

- Beneficio: Alto
- Riesgo: Alto

Mitigaciones

 Ratio riesgo/beneficio: Medio

- Nuevo beneficio: Alto
- Nuevo riesgo: Medio

	В	М	А
В	M	В	В
М	Α	M	В
Α	Α	Α	M

- Eliminación de atributos.
 - Eliminación de entradas.
- Agregar datos.
- Generalizar datos.
- Anonimato.
- etc.

Activos

Travectos, recogidas v entregas de taxis de NYC

Riesgo/beneficio

- Beneficio: Alto
- Riesgo: Alto

Mitigaciones

Ratio riesgo/beneficio: Medio

> Generalizar datos Anonimato.

- Nuevo beneficio: Alto
- Nuevo riesgo: Medio

 Eliminación de atributos. 		В	M	(A)
	В	M	В	В
 Eliminación de entradas. 	$\left(M\right)$	Α	M	В
 Agregar datos. 	Α	Α	Α	М

Activos

 Trayectos, recogidas y entregas de taxis de NYC

Riesgo/beneficio

- Beneficio: Alto
- Riesgo: Alto

Mitigaciones

 Ratio riesgo/beneficio: Medio

Generalizar datos

- Nuevo beneficio: Alto
- Nuevo riesgo: Medio

- Anonimato.
- Anominato
- etc.

Activos

 Trayectos, recogidas y entregas de taxis de NYC

Riesgo/beneficio

- Beneficio: Alto
- Riesgo: Alto

Mitigaciones

 Ratio riesgo/beneficio: Medio

Riesgo/Beneficio

- Nuevo beneficio: Alto
- Nuevo riesgo: Medio

	В	M	(A)
В	М	В	В
$\left(M\right)$	Α	М	(B)
Α	Α	Α	M

- Eliminación de atributos.
- Eliminación de entradas.
- Agregar datos.
- Generalizar datos.
- Anonimato.
- etc.

Resultado Publicación de dataset con datos de recogida y entrega generalizados.

Más información

- San Francisco «Open Data Release Toolkit»
 - o https://datasf.org/resources/open-data-release-toolkit/
 - https://docs.google.com/document/d/ 1ZGknij29YfoYtYZFn6uGqpqGTXwmZNkdUNaNhK1-6pc
- Open Data Commons https://opendatacommons.org/
- Australia «Open Council Data» https://opencouncildata.org/how-to-publish-data/
- NYU Databrary http://databrary.org/resources/policies/best-practices.html
- European Data Portal «Open Data Licensing»
 https://www.europeandataportal.eu/en/resources/training-companion/open-data-licensing

Preguntas?