STAT 341 - Worksheet 2/01/2019

Your Name (scribe):			
Partner Name(s):			

c. Is your result in b a contradiction to the Cramer-Rao theorem? Why or why not?

2.	time of 1, 2, ar and ea	owner of a car wash wants to know how many cars are coming in at a particular slow ne of day, 9am-10am Sun-Fri. For a week, she records the number of cars to be 3, 0, 5, 2, and 1. Assume that number of car washes at this time are Poisson with some rate λ d each day is independent of days before it. a. What is the population? What is the parameter?		
	b.	What variable are we measuring? What is the sample?		
	C.	Derive the method of moments estimators to estimate the rate of car washes during this slow time. Estimate $^\lambda$ using this estimator and the data provided.		
	d.	Can you come up with another estimator for $^\lambda$?		