Front matter

title: "Отчёт по лабораторной работе №4" subtitle: "Алгоритм Евклида" author: "Попова Юлия"

Generic otions

lang: ru-RU toc-title: "Содержание"

Bibliography

bibliography: bib/cite.bib csl: pandoc/csl/gost-r-7-0-5-2008-numeric.csl

Pdf output format

toc: true # Table of contents toc_depth: 2 lof: true # List of figures fontsize: 12pt linestretch: 1.5 papersize: a4 documentclass: scrreprt

118n

polyglossia-lang: name: russian options: - spelling=modern - babelshorthands=true polyglossia-otherlangs: name: english

Fonts

mainfont: PT Serif romanfont: PT Serif sansfont: PT Sans monofont: PT Mono mainfontoptions: Ligatures=TeX romanfontoptions: Ligatures=TeX, Scale=MatchLowercase monofontoptions: Scale=MatchLowercase, Scale=0.9

Biblatex

biblatex: true biblio-style: "gost-numeric" biblatexoptions:

- parentracker=true
- backend=biber
- hyperref=auto
- language=auto
- autolang=other*
- citestyle=gost-numeric

Misc options

indent: true header-includes:

• \linepenalty=10 # the penalty added to the badness of each line within a paragraph (no associated penalty node) Increasing the value makes tex try to have fewer lines in the paragraph.

- \interlinepenalty=0 # value of the penalty (node) added after each line of a paragraph.
- \hyphenpenalty=50 # the penalty for line breaking at an automatically inserted hyphen
- \exhyphenpenalty=50 # the penalty for line breaking at an explicit hyphen
- \binoppenalty=700 # the penalty for breaking a line at a binary operator
- \relpenalty=500 # the penalty for breaking a line at a relation
- \clubpenalty=150 # extra penalty for breaking after first line of a paragraph
- \widowpenalty=150 # extra penalty for breaking before last line of a paragraph
- \displaywidowpenalty=50 # extra penalty for breaking before last line before a display math
- \brokenpenalty=100 # extra penalty for page breaking after a hyphenated line
- \predisplaypenalty=10000 # penalty for breaking before a display
- \postdisplaypenalty=0 # penalty for breaking after a display
- \floatingpenalty = 20000 # penalty for splitting an insertion (can only be split footnote in standard LaTeX)
- \raggedbottom # or \flushbottom
- \usepackage{float} # keep figures where there are in the text
- \floatplacement{figure}{H} # keep figures where there are in the text

Цель работы

Изучение алгоритма Евклида нахождения НОД и его вариаций.

Теоретические сведения

Наибольший общий делитель

Наибольший общий делитель (НОД) – это число, которое делит без остатка два числа и делится само без остатка на любой другой делитель данных двух чисел. Проще говоря, это самое большое число, на которое можно без остатка разделить два числа, для которых ищется НОД.

Алгоритм Евклида

При работе с большими составными числами их разложение на простые множители, как правило, неизвестно. Но для многих прикладных задач теории чисел поиск разложения числа на множители является важной, часто встречающейся практической задачей. В теории чисел существует сравнительно быстрый способ вычисления НОД двух чисел, который называется алгоритмом Евклида.

Алгоритм Евклида

- Вход. Целые числа \$a, b; 0 < b < a\$.
- Выход. \$d =\$ HOД\$(a,b)\$.
- 1. Положить $r_0 = a$, $r_1 = b$, i = 1.
- 2. Найти остаток \$r_i+1\$ от деления \$r_i-1\$ на \$r_i\$.
- 3. Если $r_i+1=0$, то положить $d=r_i$. В противном случае положить i=i+1 и вернуться на шаг 2.
- 4. Результат: \$d\$.

```
Пример: Найти НОД для 30 и 18.
```

```
30 / 18 = 1 (остаток 12)
```

18 / 12 = 1 (остаток 6)

12 / 6 = 2 (остаток 0)

Конец: НОД – это делитель 6.

Бинарный алгоритм Евклида

Бинарный алгоритм Евклида вычисления НОД оказывается более быстрым при реализации этого алгоритма на компьютере, поскольку использует двоичное представление чисел а и b. Бинарный алгоритм Евклида основан на следующих свойствах наибольшего общего делителя (считаем, что 0 < b ≤ a):

- Вход. Целые числа \$a, b; 0 < b ≤ a\$.
- Выход. \$d =\$ HOД\$(a,b)\$.
- 1. Положить \$g = 1\$.
- 2. Пока оба числа a и b четные, выполнять a = a/2, b = b/2, b = b/2, b = b/2, a = b/2 до получения хотя бы одного нечетного значения a или b.
- 3. Положить u = a, v = b.
- 4. Пока \$u \neq 0\$, выполнять следующие действия.
 - Ока \$u\$ четное, полагать \$u = u/2\$.
 - Пока \$v\$ четное, полагать \$v = v/2\$.
 - \circ При \q u \q eq v $\$ положить $\$ u = u v $\$. В противном случае положить $\$ v = v u $\$.
- 5. Положить \$d = qv\$.
- 6. Результат: \$d\$

Расширенный алгоритм Евклида

Расширенный алгоритм Евклида находит наибольший общий делитель d чисел a и b и его линейное представление, t. e. целые числа x и y, для которых ax + by = d, и не требует «возврата», как в рассмотренном примере. Пусть d – HOД для a и b, t. e. d = (a, b), t е a > b. Тогда существуют такие целые числа x и y, что d = ax +by. Иными словам, HOД двух чисел можно представить t виде линейной комбинации этих чисел t с целыми коэффициентами

- Вход. Целые числа \$a, b; 0 < b ≤ a\$.
- Выход: \$d =\$ HOД\$(a, b)\$; такие целые числа \$x, y\$, что \$ax + by = d\$.
- 1. Положить $r_0 = a$, $r_1 = b$, $r_0 = 1$, $r_1 = 0$, $r_0 = 0$, $r_1 = 1$, $r_0 = 1$
- 2. Разделить с остатком r_i-1 на r_i : r_i :
- 3. Если $r_{i+1} = 0$, то положить $d = r_{i}$, $x = x_{i}$, $y = y_{i}$. В противном случае положить $x_{i+1} = (x_{i+1}) q_{i}x_{i}$, $y_{i+1} = y_{i+1} q_{i}y_{i}$, $y_{i+1} = y_{i+1} q_{i+1}y_{i}$, $y_{i+1} = y_{i+1} q_{i+1}y_{i}$
- 4. Результат: \$d, x, y\$.

Выполнение работы

Реализация алгоритмов на языке Python

```
# функция уменьшает число до тех пор пока одно из них не станет нулем
# практически для этого используется цикл
def evklidsimply(a,b):
    while a != 0 and b != 0:
        if a >= b:
            a %= b
        else:
            b %= a
    return a or b
# функция расширенного евклида
\# ax + by = gcd(a,b)
# алгоритм находит нод и его линейное представление
def evklid_extended(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        div, x, y = evklid_extended(b % a, a)
    return (div, y - (b // a) * x, x)
# функция бинарного евклида
def binary_evklid(a,b):
    g = 1 # переменная для подсчета
    # согласно условиям и пунктам задачи мы все делаем
    # по пунктам
    while(a % 2 == 0 and b % 2 == 0):
        a = a/2
        b = b/2
        g = 2*g
    u,v = a,b
    while u != 0:
        if u % 2 == 0:
            u = u/2
        if v % 2 == 0:
            v = v/2
        if u >= v:
            u = u - v
        else:
            v = v - u
    d = g*v
    return d
# функция расширенного бинарного евклида
def evklid_binary_extended(a, b):
    g = 1 # переменная для подсчетов
    # выполняем все согласно алгоритму
    # объяснять даже не надо все по пунктам расписано в условии задачи
    while (a \% 2 == 0 \text{ and } b \% 2 == 0):
        a = a / 2
```

```
b = b / 2
        g = 2 * g
    u = a
    v = b
    A = 1
    B = 0
    C = 0
    D = 1
    while u != 0:
        if u % 2 == 0:
            u = u/2
            if A % 2 == 0 and B % 2 ==0:
                A = A/2
                B = B/2
            else:
                A = (A+b)/2
                B = (B-a)/2
        if v % 2 == 0:
            v = v / 2
            if C%2==0 and D%2==0:
                C = C/2
                D = D/2
            else:
                C = (C+b)/2
                D = (D-a)/2
        if u >= v:
            u = u - v
            A = A - C
            B = B - D
        else:
            v = v - u
            C = C - A
            D = D - B
    d = g*v
    x = C
    y = D
    return (d,x,y)
def main():
    # положим числа в переменные
    a = int(input("Введите числа a"))
    b = int(input("Введите число b"))
    if a >= 0 and 0 <= b <= a:
    # проверяем условия что все в порядке согласно условиям задачи
        print("Вызываем функицю Евклида")
        print(evklidsimply(a,b))
        # вызываем функцию простого евклида
        print("А теперь можно вызвать функцию расширенного")
        print(evklid_extended(a,b))
        # вызываем функцию расширенного евклида
        print("А теперь функция бинарного Евклида")
        print(binary_evklid(a,b))
        # вызываем функцию бинарного евклида
        print("А теперь функция расширенного бинарного Евклида")
```

```
print(evklid_binary_extended(a,b))
# вызываем функцию расширенного бинарного евклида
```

Контрольный пример

```
a = 99
b = 8

[40] evklid_simply(a, b)

1

[41] evklid_extended(a, b)

(1, 3, -37)

[42] binary_evklid(a, b)

1.0

[43] evklid_binary_ext(a, b)

(1.0, 3.0, -37.0)

[#fig:001}
```

Выводы

Изучили алгоритм Евклида нахождения НОД.

Список литературы{.unnumbered}

- 1. ВЫЧИСЛЕНИЕ НАИБОЛЬШЕГО ОБЩЕГО ДЕЛИТЕЛЯ
- 2. В очередной раз о НОД