

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

ducT 680

A SHORT TABLE OF INTEGRALS

PERCE

Escuet 109. 10. 680

HARVARD COLLEGE LIBRARY

mp. 101.10.000

HARVARD COLLEGE LIBRARY

3 2044 096 988 969

; •

• • .

SHORT TABLE OF INTEGRALS

BY

B. O. PEIRCE

HOLLIS PROFESSOR OF MATHEMATICS AND NATURAL PHILOSOPHY IN HARVARD UNIVERSITY

SECOND REVISED EDITION

GINN AND COMPANY

BOSTON · NEW YORK · CHICAGO · LONDON
ATLANTA · DALLAS · COLUMBUS · SAN FRANCISCO

Educat 109. 10. 680

COPYRIGHT, 1899, 1910

BY GINN AND COMPANY

ALL RIGHTS RESERVED

420.1

Since I cannot hope that these formulas are wholly free from misprints, I shall be grateful to any person who will call my attention to such errors as he may discover.

B. O. PEIRCE,
Harvard University, Cambridge.

The Athenaum Press GINN AND COMPANY · PRO-PRIETORS · BOSTON · U.S.A.

TABLE OF INTEGRALS.

I. FUNDAMENTAL FORMS

 $1. \int a \, dx = ax.$

2.
$$\int af(x) dx = a \int f(x) dx.$$

3.
$$\int \frac{dx}{x} = \log x$$
. $[\log x = \log(-x) + (2k+1)\pi i]$

4.
$$\int x^m dx = \frac{x^{m+1}}{m+1}$$
, when m is different from -1.

$$5. \int e^x dx = e^x.$$

6.
$$\int a^x \log a \, dx = a^x.$$

7.
$$\int \frac{dx}{1+x^2} = \tan^{-1}x, \text{ or } -\cot^{-1}x.$$

8.
$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x$$
, or $-\cos^{-1}x$

9.
$$\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1}x$$
, or $-\csc^{-1}x$.

10.
$$\int \frac{dx}{\sqrt{2 x - x^2}} = \text{versin}^{-1}x, \text{ or } -\text{coversin}^{-1}x.$$

11.
$$\int \cos x \, dx = \sin x$$
, or $-\operatorname{coversin} x$.

12.
$$\int \sin x \, dx = -\cos x, \text{ or versin } x.$$

13.
$$\int \cot x \, dx = \log \sin x.$$

14.
$$\int \tan x \, dx = -\log \cos x.$$

15.
$$\int \tan x \sec x \, dx = \sec x$$

$$16. \int \sec^2 x \, dx = \tan x.$$

17.
$$\int \csc^2 x \, dx = -\cot x.$$

In the following formulas, u, v, w, and y represent any functions of x:

18.
$$\int (u + v + w + \text{etc.}) dx = \int u dx + \int v dx + \int w dx + \text{etc.}$$

$$19 a. \int u \, dv = uv - \int v \, du.$$

19 b.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx.$$

20.
$$\int f(y) dx = \int \frac{f(y) dy}{\frac{dy}{dx}}$$

II. RATIONAL ALGEBRAIC FUNCTIONS.

A. — Expressions Involving (a + bx).

The substitution of y or z for x, where $y \equiv a + bx$, $z \equiv (a + bx)/x$, gives

21.
$$\int (a+bx)^m dx = \frac{1}{b} \int y^m dy.$$

22.
$$\int x (a + bx)^m dx = \frac{1}{b^2} \int y^m (y - a) dy$$
.

23.
$$\int x^n (a+bx)^m dx = \frac{1}{b^{n+1}} \int y^m (y-a)^n dy.$$

24.
$$\int \frac{x^n dx}{(a+bx)^m} = \frac{1}{b^{n+1}} \int \frac{(y-a)^n dy}{y^m}.$$

25.
$$\int \frac{dx}{x^{n}(a+bx)^{m}} = -\frac{1}{a^{m+n-1}} \int \frac{(z-b)^{m+n-2} dx}{z^{m}}.$$

Whence

$$26. \int \frac{dx}{a+bx} = \frac{1}{b} \log (a+bx).$$

$$27. \int \frac{dx}{(a+bx)^2} = -\frac{1}{b(a+bx)}.$$

28.
$$\int \frac{dx}{(a+bx)^8} = -\frac{1}{2b(a+bx)^2}.$$

29.
$$\int \frac{x \, dx}{a + bx} = \frac{1}{b^2} [a + bx - a \log (a + bx)].$$

30.
$$\int \frac{x dx}{(a+bx)^2} = \frac{1}{b^2} \left[\log (a+bx) + \frac{a}{a+bx} \right]$$

31.
$$\int \frac{x \, dx}{(a+bx)^3} = \frac{1}{b^2} \left[-\frac{1}{a+bx} + \frac{a}{2(a+bx)^3} \right].$$

32.
$$\int \frac{x^2 dx}{a+bx} = \frac{1}{b^3} \left[\frac{1}{2} (a+bx)^2 - 2a(a+bx) + a^2 \log(a+bx) \right]$$

33.
$$\int \frac{x^2 dx}{(a+bx)^2} = \frac{1}{b^8} \left[a + bx - 2a \log(a+bx) - \frac{a^2}{a+bx} \right]$$

$$34. \int \frac{dx}{x(a+bx)} = -\frac{1}{a} \log \frac{a+bx}{x}.$$

35.
$$\int \frac{dx}{x(a+bx)^2} = \frac{1}{a(a+bx)} - \frac{1}{a^2} \log \frac{a+bx}{x}$$

36.
$$\int \frac{(a+bx)\,dx}{a'+b'x} = \frac{bx}{b'} + \frac{ab'-a'b}{b'^2}\log(a'+b'x).$$

37.
$$\int (a+bx)^{n} (a'+b'x)^{m} dx = \frac{1}{(m+n+1)b} \left((a+bx)^{n+1} (a'+b'x)^{m} - m (ab'-a'b) \int (a+bx)^{n} (a'+b'x)^{m-1} dx \right).$$

38.
$$\int \frac{(a+bx)^n dx}{(a'+b'x)^m} = -\frac{1}{(m-1)(ab'-a'b)} \left(\frac{(a+bx)^{n+1}}{(a'+b'x)^{m-1}} + (m-n-2)b \int \frac{(a+bx)^n dx}{(a'+b'x)^{m-1}} \right)$$

$$= -\frac{1}{(m-n-1)b'} \left(\frac{(a+bx)^n}{(a'+b'x)^{m-1}} + n(ab'-a'b) \int \frac{(a+bx)^{n-1} dx}{(a'+b'x)^m} \right)$$

$$= -\frac{1}{(m-1)b'} \left(\frac{(a+bx)^n}{(a'+b'x)^{m-1}} - nb \int \frac{(a+bx)^{n-1} dx}{(a'+b'x)^{m-1}} \right).$$

$$= -\frac{1}{(m-1)b'} \left(\frac{(a+bx)^n}{(a'+b'x)^{m-1}} - nb \int \frac{(a+bx)^{n-1} dx}{(a'+b'x)^{m-1}} \right).$$

39.
$$\int \frac{dx}{(a+bx)(a'+b'x)} = \frac{1}{ab'-a'b} \cdot \log \frac{a'+b'x}{a+bx}.$$

$$40. \int \frac{dx}{(a+bx)^n (a'+b'x)^m} \\
= \frac{1}{(m-1)(ab'-a'b)} \left(\frac{1}{(a+bx)^{n-1} (a'+b'x)^{m-1}} - (m+n-2) b \int \frac{dx}{(a+bx)^n (a'+b'x)^{m-1}} \right).$$

41.
$$\int \frac{x \, dx}{(a + bx)(a' + b'x)} = \frac{1}{ab' - a'b} \left(\frac{a}{b} \log(a + bx) - \frac{a'}{b'} \log(a' + b'x) \right).$$

42.
$$\int \frac{dx}{(a+bx)^2(a'+b'x)} = \frac{1}{ab'-a'b} \left(\frac{1}{a+bx} + \frac{b'}{ab'-a'b} \log \frac{a'+b'x}{a+bx} \right).$$

43.
$$\int \frac{x \, dx}{(a+bx)^2 (a'+b'x)} = \frac{-a}{b (ab'-a'b) (a+bx)} - \frac{a'}{(ab'-a'b)^2} \log \frac{a'+b'x}{a+bx}.$$

44.
$$\int \frac{x^{3} dx}{(a+bx)^{3} (a'+b'x)} = \frac{a^{3}}{b^{3} (ab'-a'b) (a+bx)} + \frac{1}{(ab'-a'b)^{2}} \left[\frac{a'^{3}}{b'} \log (a'+b'x) + \frac{a (ab'-2 a'b)}{b^{3}} \log (a+bx) \right]$$

45.
$$\int (a+bx)^{\frac{1}{n}} dx = \frac{n}{(n+1)b} (a+bx)^{\frac{n+1}{n}}.$$

46.
$$\int \frac{dx}{(a+bx)^{\frac{1}{n}}} = \frac{n}{(n-1)b} (a+bx)^{\frac{n-1}{n}}.$$

B. — Expressions Involving $(a + bx^n)$.

47.
$$\int \frac{dx}{c^2 + x^2} = \frac{1}{c} \tan^{-1} \frac{x}{c} = \frac{1}{c} \sin^{-1} \frac{x}{\sqrt{x^2 + c^2}}$$

48.
$$\int \frac{dx}{c^2 - x^2} = \frac{1}{2c} \log \frac{c + x}{c - x}, \int \frac{dx}{x^2 - c^2} = \frac{1}{2c} \log \frac{x - c}{x + c}.$$

49.
$$\int \frac{dx}{a+bx^2} = \frac{1}{\sqrt{ab}} \tan^{-1}\left(x\sqrt{\frac{b}{a}}\right), \text{ or } \frac{1}{\sqrt{-ab}} \cdot \tanh^{-1}\left(x\sqrt{\frac{-b}{a}}\right).$$

50.
$$\int \frac{dx}{a + bx^2} = \frac{1}{2\sqrt{-ab}} \log \frac{\sqrt{a} + x\sqrt{-b}}{\sqrt{a} - x\sqrt{-b}}, \text{ if } a > 0, b < 0.$$

51.
$$\int \frac{dx}{(a+bx^2)^2} = \frac{x}{2 a (a+bx^2)} + \frac{1}{2 a} \int \frac{dx}{a+bx^2}$$

52.
$$\int \frac{dx}{(a+bx^2)^{m+1}} = \frac{1}{2 ma} \frac{x}{(a+bx^2)^m} + \frac{2 m-1}{2 ma} \int \frac{dx}{(a+bx^2)^m}$$

$$53. \int \frac{x \, dx}{a + bx^2} = \frac{1}{2b} \log \left(x^2 + \frac{a}{b} \right)$$

54.
$$\int \frac{x \, dx}{(a + bx^2)^{m+1}} = \frac{1}{2} \int \frac{dz}{(a + bz)^{m+1}}, \text{ where } z = x^2.$$

55.
$$\int \frac{dx}{x(a+bx^2)} = \frac{1}{2a} \log \frac{x^2}{a+bx^2}.$$

56.
$$\int \frac{x^2 dx}{a + bx^2} = \frac{x}{b} - \frac{a}{b} \int \frac{dx}{a + bx^2}$$

57.
$$\int \frac{dx}{x^2(a+bx^2)} = -\frac{1}{ax} - \frac{b}{a} \int \frac{dx}{a+bx^2}$$

58.
$$\int \frac{x^2 dx}{(a+bx^2)^{m+1}} = \frac{-x}{2 mb (a+bx^2)^m} + \frac{1}{2 mb} \int \frac{dx}{(a+bx^2)^m}$$

59.
$$\int \frac{dx}{x^2(a+bx^2)^{m+1}} = \frac{1}{a} \int \frac{dx}{x^2(a+bx^2)^m} - \frac{b}{a} \int \frac{dx}{(a+bx^2)^{m+1}}.$$

60.
$$\int \frac{dx}{a + bx^3} = \frac{k}{3a} \left[\frac{k}{4} \log \left(\frac{(k+x)^3}{k^3 - kx + x^3} \right) + \sqrt{3} \tan^{-1} \frac{2x - k}{k\sqrt{3}} \right], \text{ where } bk^3 = a.$$

60.
$$\int \frac{dx}{a+bx^3} = \frac{\kappa}{3a} \left[\frac{1}{2} \log \left(\frac{(\kappa+x)^2}{k^3 - kx + x^3} \right) + \sqrt{3} \tan^{-1} \frac{2x - \kappa}{k\sqrt{3}} \right]$$
, where $bk^3 = a$.
61. $\int \frac{x dx}{a + bx^3} = \frac{1}{3bk} \left[\frac{1}{2} \log \left(\frac{k^2 - kx + x^3}{(k+x)^3} \right) + \sqrt{3} \tan^{-1} \frac{2x - k}{k\sqrt{3}} \right]$, where $bk^3 = a$.
62. $\int \frac{dx}{x(a + bx^n)} = \frac{1}{an} \log \frac{x^n}{a + bx^n}$. 63. $\int \frac{dx}{(a + bx^n)^{m+1}} = \frac{1}{a} \int \frac{dx}{(a + bx^n)^m} - \frac{b}{a} \int \frac{x^n dx}{(a + bx^n)^{m+1}}$

64.
$$\int \frac{x^m dx}{(a+bx^n)^{p+1}} = \frac{1}{b} \int \frac{x^{m-n} dx}{(a+bx^n)^p} - \frac{a}{b} \int \frac{x^{m-n} dx}{(a+bx^n)^{p+1}}.$$
65.
$$\int \frac{dx}{x^m (a+bx^n)^{p+1}} = \frac{1}{a} \int \frac{dx}{x^m (a+bx^n)^p} - \frac{b}{a} \int \frac{dx}{x^{m-n} (a+bx^n)^{p+1}}.$$

66.
$$\int \frac{dx}{x^{m}(a+bx^{n})^{p+1}} = \frac{1}{a} \int \frac{1}{x^{m}(a+bx^{n})^{p}} - \frac{1}{a} \int \frac{dx}{x^{m-n}(a+bx^{n})^{p+1}}.$$
66.
$$\int \frac{1}{b(m+np)} \left[x^{m-n}(a+bx^{n})^{p+1} - (m-n)a \int x^{m-n-1}(a+bx^{n})^{p} dx \right].$$

$$\frac{1}{m+np} \left[x^{m}(a+bx^{n})^{p} + npa \int x^{m-1}(a+bx^{n})^{p-1} dx \right].$$

$$\frac{1}{ma} \left[x^{m}(a+bx^{n})^{p+1} - (m+np+n)b \int x^{m+n-1}(a+bx^{n})^{p} dx \right].$$

$$\frac{1}{a^{m}(p+1)} \left[-x^{m}(a+bx^{n})^{p+1} + (m+np+n) \int x^{m-1}(a+bx^{n})^{p+1} dx \right].$$

C. — Expressions Involving $(a + bx + cx^2)$.

Let $X = a + bx + cx^2$ and $q = 4ac - b^2$, then

67.
$$\int \frac{dx}{X} = \frac{2}{\sqrt{q}} \tan^{-1} \frac{2 cx + b}{\sqrt{q}}$$
, or $-\frac{2}{\sqrt{-q}} \cdot \tanh^{-1} \frac{2 cx + b}{\sqrt{-q}}$.

68.
$$\int \frac{dx}{X} = \frac{1}{\sqrt{-q}} \log \frac{2 cx + b - \sqrt{-q}}{2 cx + b + \sqrt{-q}}, \text{ when } q < 0.$$

69.
$$\int \frac{dx}{X^2} = \frac{2 cx + b}{qX} + \frac{2 c}{q} \int \frac{dx}{X}$$

70.
$$\int \frac{dx}{X^3} = \frac{2 cx + b}{q} \left(\frac{1}{2 X^2} + \frac{3 c}{qX} \right) + \frac{6 c^2}{q^2} \int \frac{dx}{X}$$

71.
$$\int \frac{dx}{X^{n+1}} = \frac{2 cx + b}{nqX^n} + \frac{2(2 n - 1) c}{qn} \int \frac{dx}{X^n}.$$

72.
$$\int \frac{x \, dx}{X} = \frac{1}{2 \, c} \log X - \frac{b}{2 \, c} \int \frac{dx}{X}$$

73.
$$\int \frac{x dx}{X^2} = -\frac{bx + 2a}{qX} - \frac{b}{q} \int \frac{dx}{X}$$

74.
$$\int \frac{x \, dx}{X^{n+1}} = -\frac{2 \, a + bx}{nqX^n} - \frac{b \, (2 \, n - 1)}{nq} \int \frac{dx}{X^n}.$$

75.
$$\int \frac{x^2}{X} dx = \frac{x}{c} - \frac{b}{2c^2} \log X + \frac{b^2 - 2ac}{2c^3} \int \frac{dx}{X}$$

76.
$$\int \frac{x^2}{X^2} dx = \frac{(b^2 - 2 ac) x + ab}{cqX} + \frac{2 a}{q} \int \frac{dx}{X}$$

77.
$$\int \frac{x^m dx}{X^{n+1}} = -\frac{x^{m-1}}{(2n-m+1)cX^n} - \frac{n-m+1}{2n-m+1} \cdot \frac{b}{c} \int \frac{x^{m-1} dx}{X^{n+1}} + \frac{m-1}{2n-m+1} \cdot \frac{a}{c} \int \frac{x^{m-2} dx}{X^{n+1}} \cdot$$

78.
$$\int \frac{dx}{xX} = \frac{1}{2a} \log \frac{x^2}{X} - \frac{b}{2a} \int \frac{dx}{X}$$

79.
$$\int \frac{dx}{x^2 X} = \frac{b}{2 a^2} \log \frac{X}{x^2} - \frac{1}{ax} + \left(\frac{b^3}{2 a^2} - \frac{c}{a} \right) \int \frac{dx}{X}$$

$$80. \int \frac{dx}{x^m X^{n+1}} = -\frac{1}{(m-1)ax^{m-1}X^n} - \frac{n+m-1}{m-1} \cdot \frac{b}{a} \int \frac{dx}{x^{m-1}X^{n+1}} - \frac{2n+m-1}{m-1} \cdot \frac{c}{a} \int \frac{dx}{x^{m-2}X^{n+1}}.$$

81.
$$\int X^{n} dx = \frac{1}{2(2n+1)c} \left((b+2cx) X^{n} + nq \int X^{n-1} dx \right)$$

82.
$$\int \frac{dx}{x X^{n}} = \frac{1}{2 a (n-1) X^{n-1}} - \frac{b}{2 a} \int \frac{dx}{X^{n}} + \frac{1}{a} \int \frac{dx}{x X^{n-1}}.$$

83.
$$\int \frac{dx}{(a'+b'x)X} = \frac{1}{2(ab'^2 - a'bb' + a'^2c)} \left(b' (\log (a'+b'x)^2 - \log X) + (2a'c - bb') \int \frac{dx}{X} \right).$$

84.
$$\int (a'+b'x) X^n dx = \frac{b'X^{n+1}}{2(n+1)c} + \frac{2a'c-bb'}{2c} \int X^n dx.$$

85.
$$\int \frac{(a'+b'x)\,dx}{X^n} = -\frac{b'}{2\,(n-1)\,c\,X^{n-1}} + \frac{2\,a'c-bb'}{2\,c} \int \frac{dx}{X^n}.$$

86.
$$\int (a' + b'x)^m X^n dx = \frac{1}{(m+2n+1)c} \left(b'(a' + b'x)^{m-1} X^{n+1} + (m+n)(2a'c - bb') \int (a' + b'x)^{m-1} X^n dx - (m-1)(ab'^2 - a'bb' + ca'^2) \int (a' + b'x)^{m-2} X^n dx \right).$$

$$87. \int \frac{(a'+b'x)^m dx}{X^n} = \frac{1}{q(n-1)} \left(\frac{(b+2cx)(a'+b'x)^m}{X^{n-1}} - 2(m-2n+3)c \int \frac{(a'+b'x)^m dx}{X^{n-1}} + m(2a'c-bb') \int \frac{(a'+b'x)^{m-1} dx}{X^{n-1}} \right)$$

$$= \frac{1}{(m-2n+1)c} \left(\frac{b'(a'+b'x)^{m-1}}{X^{n-1}} + (m-n)(2a'c-bb') \int \frac{(a'+b'x)^{m-1} dx}{X^n} - (m-1)(ab'^2 - a'bb' + ca'^2) \int \frac{(a'+b'x)^{m-2} dx}{X^n} \right)$$

$$88. \int \frac{X^n dx}{(a'+b'x)^m}$$

$$= \frac{1}{b'^2(m-1)} \left(\frac{-b'X^n}{(a'+b'x)^{m-1}} + n \left(bb' - 2 a'c \right) \int \frac{X^{n-1} dx}{(a'+b'x)^{m-1}} + 2 nc \int \frac{X^{n-1} dx}{(a'+b'x)^{m-2}} \right)$$

$$= -\frac{1}{(m-2n-1)b'^2} \left(\frac{+b'X^n}{(a'+b'x)^{m-1}} + 2 b'n \left(ab'^2 - a'bb' + ca'^2 \right) \int \frac{X^{n-1} dx}{(a'+b'x)^m} + n \left(bb' - 2 a'c \right) \int \frac{X^{n-1} dx}{(a'+b'x)^{m-1}} \right).$$

89.
$$\int \frac{dx}{(a'+b'x)^m X^n}$$

$$= -\frac{1}{(m-1)(ab'^2 - a'bb' + ca'^2)} \left(\frac{b'}{(a'+b'x)^{m-1} X^{n-1}} + (m+n-2)(bb' - 2ca') \int \frac{dx}{(a'+b'x)^{m-1} X^n} \right)$$

$$+ (m+2n-3)c \int \frac{dx}{(a'+b'x)^{m-2} X^n}$$

$$= \frac{1}{2(ab'^2 - a'bb' + ca'^2)} \left(\frac{b'}{(n-1)(a'+b'x)^{m-1} X^{n-1}} + (2a'c - bb') \int \frac{dx}{(a'+b'x)^{m-1} X^n} \right)$$

$$+ \frac{(m+2n-3)b'^2}{n+1} \int \frac{dx}{(a'+b'x)^m X^{n-1}}$$
If $ab'^2 - a'bb' + ca'^2 = 0$,
$$\int \frac{dx}{(a'+b'x)^m X^n}$$

$$-1$$

$$\int \frac{dx}{(a'+b'x)^m X^n} = \frac{-1}{(m+n-1)(bb'-2a'c)} \left(\frac{b'}{(a'+b'x)^m X^{n-1}} + (m+2n-2)c\int \frac{dx}{(a'+b'x)^{m-1} X^n}\right).$$

D. — RATIONAL FRACTIONS.

Every proper fraction can be represented by the general form:

$$\frac{f(x)}{F(x)} = \frac{g_1 x^{n-1} + g_2 x^{n-2} + g_3 x^{n-3} + \dots + g_n}{x^n + k_1 x^{n-1} + k_2 x^{n-2} + \dots + k_n}.$$

If a, b, c, etc., are the roots of the equation F(x) = 0, so that

$$F(x) = (x-a)^{p} (x-b)^{q} (x-c)^{r} \cdot \cdot \cdot,$$

then

$$\frac{f(x)}{F(x)} = \frac{A_1}{(x-a)^p} + \frac{A_2}{(x-a)^{p-1}} + \frac{A_3}{(x-a)^{p-2}} + \dots + \frac{A_p}{x-a} + \dots + \frac{B_1}{(x-b)^q} + \frac{B_2}{(x-b)^{q-1}} + \frac{B_3}{(x-b)^{q-2}} + \dots + \frac{B^q}{x-b} + \dots + \frac{C_1}{(x-c)^r} + \frac{C_2}{(x-c)^{r-1}} + \frac{C_3}{(x-c)^{r-2}} + \dots + \frac{C_r}{x-c} + \dots + \dots + \dots + \dots$$

where the numerators of the separate fractions may be determined by the equations

$$A_{m} = rac{\phi_{1}^{[m-1]}(a)}{(m-1)!}, \quad B_{m} = rac{\phi_{2}^{[m-1]}(b)}{(m-1)!} \quad ext{etc.}, ext{ etc.}$$
 $\phi_{1}(x) = rac{f(x)(x-a)^{p}}{F(x)}, \quad \phi_{2}(x) = rac{f(x)(x-b)^{q}}{F(x)}, \quad ext{etc.}, ext{ etc.}$

If a, b, c, etc., are single roots, then $p = q = r = \cdots = 1$, and

$$\frac{f(x)}{F(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c} \cdot \cdot \cdot$$

$$A = \frac{f(a)}{F'(a)}, \quad B = \frac{f(b)}{F'(b)}, \text{ etc.}$$

where

The simpler fractions, into which the original fraction is thus divided, may be integrated by means of the formulas:

90.
$$\int \frac{h \, dx}{(mx+n)^l} = \int \frac{h \, d(mx+n)}{m \, (mx+n)^l} = \frac{h}{m \, (1-l) \, (mx+n)^{l-1}},$$
 and
$$\int \frac{h \, dx}{mx+n} = \frac{h}{m} \log (mx+n).$$

If any of the roots of the equation f(x) = 0 are imaginary, the parts of the integral which arise from conjugate roots can be combined and the integral brought into a real form. The following formula, in which $i = \sqrt{-1}$, is often useful in combining logarithms of conjugate complex quantities:

$$\log(x \pm yi) = \frac{1}{2}\log(x^2 + y^2) \pm i \tan^{-1}\frac{y}{x}$$

The identities given below are sometimes convenient:

$$\frac{1}{(a+bx^2)(a'+b'x^2)} \equiv \frac{1}{a'b-ab'} \cdot \left[\frac{b}{a+bx^2} - \frac{b'}{a'+b'x^2} \right],$$

$$\frac{m+nx}{(k+lx)(a+bx+cx^2)} \equiv \frac{1}{al^2+ck^2-bkl}.$$

$$\left[\frac{l(ml-nk)}{k+lx} + \frac{c(nk-ml)x+(aln+ckm-blm)}{a+bx+cx^2} \right],$$

$$\frac{l+mx^n}{(a+bx^n)(a'+b'x^n)} \equiv \frac{1}{a'b-ab'} \cdot \left[\frac{bl-am}{a+bx^n} + \frac{a'm-b'l}{a'+b'x^n} \right].$$

$$\frac{1}{(x+a)(x+b)(x+c)} = \frac{A}{x+a} + \frac{B}{x+b} + \frac{C}{x+c},$$
where
$$A = \frac{1}{(a-b)(a-c)}, B = \frac{1}{(b-c)(b-a)}, C = \frac{1}{(c-a)(c-b)}.$$

$$\frac{1}{(x+a)(x+b)(x+c)(x+g)} = \frac{A}{x+a} + \frac{B}{x+b} + \frac{C}{x+c} + \frac{G}{x+g};$$
where
$$A = \frac{1}{(b-a)(c-a)(g-a)}, B = \frac{1}{(a-b)(c-b)(g-b)}, \text{ etc.}$$

III. IRRATIONAL ALGEBRAIC FUNCTIONS.

A. — Expressions Involving $\sqrt{a+bx}$.

The substitution of a new variable of integration, $y = \sqrt{a + bx}$, gives

91.
$$\int \sqrt{a + bx} \, dx = \frac{2}{3b} \sqrt{(a + bx)^3}.$$

92.
$$\int x \sqrt{a + bx} \, dx = -\frac{2(2a - 3bx)\sqrt{(a + bx)^3}}{15b^2}.$$

93.
$$\int x^2 \sqrt{a + bx} \, dx = \frac{2 \left(8 \, a^2 - 12 \, abx + 15 \, b^2 x^2\right) \sqrt{(a + bx)^3}}{105 \, b^3}$$

94.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{dx}{x\sqrt{a+bx}}$$

$$95. \int \frac{dx}{\sqrt{a+bx}} = \frac{2\sqrt{a+bx}}{b}.$$

96.
$$\int \frac{x \, dx}{\sqrt{a + bx}} = -\frac{2(2 \, a - bx)}{3 \, b^3} \, \sqrt{a + bx}.$$

97.
$$\int \frac{x^2 dx}{\sqrt{a+bx}} = \frac{2 \left(8 a^2 - 4 abx + 3 b^2 x^3\right)}{15 b^3} \sqrt{a+bx}.$$

98.
$$\int \frac{dx}{x\sqrt{a+bx}} = \frac{1}{\sqrt{a}} \log \left(\frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right), \text{ for } a > 0.$$

99.
$$\int \frac{dx}{x\sqrt{a+bx}} = \frac{2}{\sqrt{-a}} \tan^{-1} \sqrt{\frac{a+bx}{-a}}, \text{ or } \frac{-2}{\sqrt{a}} \cdot \tanh^{-1} \sqrt{\frac{a+bx}{a}}.$$

100.
$$\int \frac{dx}{x^2 \sqrt{a+bx}} = -\frac{\sqrt{a+bx}}{ax} - \frac{b}{2a} \int \frac{dx}{x\sqrt{a+bx}}$$

101.
$$\int (a+bx)^{\pm \frac{n}{2}} dx = \frac{2}{b} \int y^{1\pm n} dy = \frac{2(a+bx)^{\frac{2\pm n}{2}}}{b(2\pm n)}.$$

102.
$$\int x (a + bx)^{\pm \frac{n}{2}} dx = \frac{2}{b^2} \left[\frac{(a + bx)^{\frac{4 \pm n}{2}}}{4 \pm n} - \frac{a (a + bx)^{\frac{2 \pm n}{2}}}{2 \pm n} \right].$$

103.
$$\int \frac{x^m dx}{\sqrt{a+bx}} = \frac{2 x^m \sqrt{a+bx}}{(2 m+1) b} - \frac{2 ma}{(2 m+1) b} \int \frac{x^{m-1} dx}{\sqrt{a+bx}}$$

104.
$$\int \frac{dx}{x^n \sqrt{a+bx}} = -\frac{\sqrt{a+bx}}{(n-1)ax^{n-1}} - \frac{(2n-3)b}{(2n-2)a} \int \frac{dx}{x^{n-1}\sqrt{a+bx}}$$

105.
$$\int \frac{(a+bx)^{\frac{n}{2}}dx}{x} = b \int (a+bx)^{\frac{n-2}{2}}dx + a \int \frac{(a+bx)^{\frac{n-2}{2}}}{x}dx.$$

106.
$$\int \frac{dx}{x(a+bx)^{\frac{m}{2}}} = \frac{1}{a} \int \frac{dx}{x(a+bx)^{\frac{m-2}{2}}} - \frac{b}{a} \int \frac{dx}{(a+bx)^{\frac{m}{2}}}$$

107.
$$\int f(x, \sqrt[n]{a+b}x) dx = \frac{n}{b} \int f\left(\frac{z^n - a}{b}, z\right) z^{n-1} dz,$$
where $z^n = a + bx$.

108.
$$\int (a+bx)^{\frac{m}{n}} dx = \frac{n(a+bx)^{\frac{m+n}{n}}}{b(m+n)}$$

109.
$$\int f(x, (a + bx)^{\frac{m}{n}}, (a + bx)^{\frac{p}{q}}, \cdots) dx$$

= $\frac{s}{b} \int f\left(\frac{y^{s} - a}{b}, y^{\frac{ms}{n}}, y^{\frac{ps}{q}}, \cdots\right) y^{s-1} dy$,

where $y^s = a + bx$, and s is the least common multiple of n, q, etc.

B.—Expressions Involving Both $\sqrt{a+bx}$ and $\sqrt{a'+b'x}$. Let u=a+bx, v=a'+b'x, and k=ab'-a'b, then

110.
$$\int \sqrt{uv} \, dx = \frac{k + 2 \, bv}{4 \, bb'} \, \sqrt{uv} - \frac{k^2}{8 \, bb'} \int \frac{dx}{\sqrt{uv}}.$$

111.
$$\int \frac{\sqrt{v} \, dx}{\sqrt{u}} = \frac{1}{b} \sqrt{uv} - \frac{k}{2b} \int \frac{dx}{\sqrt{uv}}$$

112.
$$\int \frac{x \, dx}{\sqrt{uv}} = \frac{\sqrt{uv}}{bb'} - \frac{ab' + a'b}{2bb'} \int \frac{dx}{\sqrt{uv}}.$$

113.
$$\int \frac{dx}{\sqrt{uv}} = \frac{2}{\sqrt{bb'}} \log \left(\sqrt{bb'u} + b\sqrt{v} \right)$$

$$= \frac{2}{\sqrt{-bb'}} \tan^{-1} \sqrt{\frac{-b'u}{bv}}, \text{ or } \frac{2}{\sqrt{bb'}} \tanh^{-1} \sqrt{\frac{b'u}{bv}}$$

$$= \frac{1}{\sqrt{-bb'}} \sin^{-1} \frac{2bb'x + a'b + ab'}{k}.$$

114.
$$\int \frac{dx}{v\sqrt{u}} = \frac{1}{\sqrt{kb'}} \log \frac{b'\sqrt{u} - \sqrt{kb'}}{b'\sqrt{u} + \sqrt{kb'}} = \frac{2}{\sqrt{-kb'}} \tan^{-1} \frac{b'\sqrt{u}}{\sqrt{-kb'}}$$

$$115. \int \frac{dx}{v\sqrt{uv}} = -\frac{2\sqrt{u}}{k\sqrt{v}}.$$

116.
$$\int v^m \sqrt{u} \, dx = \frac{1}{(2m+3)b'} \left(2 \, v^{m+1} \sqrt{u} + k \int \frac{v^m \, dx}{\sqrt{u}} \right).$$

117.
$$\int \frac{\sqrt{u} \, dx}{v^m} = -\frac{1}{(2m-3)b'} \left(\frac{2\sqrt{u}}{v^{m-1}} + k \int \frac{dx}{v^m \sqrt{u}} \right)$$
$$= \frac{1}{(m-1)b'} \left(-\frac{\sqrt{u}}{v^{m-1}} + \frac{1}{2}b \int \frac{dx}{v^{m-1} \sqrt{u}} \right).$$

118.
$$\int \frac{v^m dx}{\sqrt{u}} = \frac{2}{(2m+1)b} \left(v^m \sqrt{u} - mk \int \frac{v^{m-1} dx}{\sqrt{u}} \right)$$

119.
$$\int \frac{dx}{v^{m}\sqrt{u}} = -\frac{1}{(m-1)k} \left(\frac{\sqrt{u}}{v^{m-1}} + (m - \frac{3}{2})b \int \frac{dx}{v^{m-1}\sqrt{u}} \right).$$
120.
$$\int v^{m}u^{n-\frac{1}{2}} dx = \frac{1}{(2m+2n+1)b'} \left(2v^{m+1}u^{n-\frac{1}{2}} + (2n-1)k \int v^{m}u^{n-\frac{1}{2}} dx \right).$$
121.
$$\int v^{m}u^{-(n+\frac{1}{2})} dx = \frac{1}{(2n-1)k} \left(2v^{m+1}u^{-(n-\frac{1}{2})} - (2m-2n+3)b' \int v^{m}u^{-(n-\frac{1}{2})} dx \right)$$

$$= \frac{2}{(2n-1)b} \left(-v^{m}u^{-(n-\frac{1}{2})} dx \right).$$
122.
$$\int v^{-m}u^{(n-\frac{1}{2})} dx = \frac{1}{(2m-2n-1)b'} \left(2u^{n-\frac{1}{2}}v^{-(m-1)} + (2n-1)k \int u^{n-\frac{1}{2}}v^{-m} dx \right)$$

$$= \frac{1}{(m-1)b'} \left(-u^{n-\frac{1}{2}}v^{-(m-1)} dx \right).$$
123.
$$\int v^{-m}u^{-(n+\frac{1}{2})} dx = \frac{1}{(2n-1)k} \left(2v^{-(m-1)}u^{-(n-\frac{1}{2})} dx \right).$$
124.
$$\int v^{-m}u^{-(n+\frac{1}{2})} dx = \frac{1}{(2n-1)k} \left(2v^{-(m-1)}u^{-(n-\frac{1}{2})} dx \right).$$

C. — Expressions Involving
$$\sqrt{x^2 \pm a^2}$$
 and $\sqrt{a^2 - x^2}$

124.
$$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} \left[x \sqrt{x^2 \pm a^2} \pm a^2 \log \left(x + \sqrt{x^2 \pm a^2} \right) \right].$$

125.
$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right)$$

126.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log(x + \sqrt{x^2 \pm a^2}).$$

127.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a}$$
, or $-\cos^{-1} \frac{x}{a}$.

128.
$$\int \frac{dx}{x\sqrt{x^3-a^2}} = \frac{1}{a}\cos^{-1}\frac{a}{x}$$
, or $\frac{1}{a}\sec^{-1}\frac{x}{a}$.

129.
$$\int \frac{dx}{x\sqrt{a^2 \pm x^2}} = -\frac{1}{a} \log \left(\frac{a + \sqrt{a^2 \pm x^2}}{x} \right)^{*}$$

130.
$$\int \frac{\sqrt{a^2 \pm x^2}}{x} dx = \sqrt{a^2 \pm x^2} - a \log \frac{a + \sqrt{a^2 \pm x^2}}{x}.$$

131.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \cos^{-1} \frac{a}{x}.$$

132.
$$\int \frac{x \, dx}{\sqrt{a^2 + x^2}} = \pm \sqrt{a^2 \pm x^2}.$$

133.
$$\int \frac{x \, dx}{\sqrt{x^2 - a^2}} = \sqrt{x^2 - a^2}.$$

134.
$$\int x \sqrt{x^2 \pm a^2} \, dx = \frac{1}{8} \sqrt{(x^2 \pm a^2)^3}.$$

135.
$$\int x \sqrt{a^2 - x^2} \, dx = -\frac{1}{8} \sqrt{(a^2 - x^2)^3}.$$

$$\bullet \log\left(\frac{x+\sqrt{x^2+a^3}}{a}\right) = \sinh^{-1}\left(\frac{x}{a}\right); \ \log\left(\frac{x+\sqrt{x^2-a^2}}{a}\right) = \cosh^{-1}\left(\frac{x}{a}\right); \ \log\left(\frac{a+\sqrt{a^2-x^2}}{a}\right) = \operatorname{sech}^{-1}\left(\frac{x}{a}\right); \ \log\left(\frac{a+\sqrt{a^2+x^2}}{x}\right) = \operatorname{csch}^{-1}\left(\frac{x}{a}\right).$$

$$\begin{aligned}
&136. \int \sqrt{(x^2 \pm a^2)^3} \, dx \\
&= \frac{1}{4} \left[x \sqrt{(x^2 \pm a^2)^3} \pm \frac{3 a^2 x}{2} \sqrt{x^2 \pm a^2} + \frac{3 a^4}{2} \log (x + \sqrt{x^2 \pm a^2}) \right]^{\frac{1}{4}} \\
&137. \int \sqrt{(a^2 - x^2)^3} \, dx \\
&= \frac{1}{4} \left[x \sqrt{(a^2 - x^2)^3} + \frac{3 a^2 x}{2} \sqrt{a^2 - x^2} + \frac{3 a^4}{2} \sin^{-1} \frac{x}{a} \right] \\
&138. \int \frac{dx}{\sqrt{(x^2 \pm a^2)^3}} = \frac{\pm x}{a^3 \sqrt{x^2 \pm a^2}} \\
&139. \int \frac{dx}{\sqrt{(a^2 - x^2)^3}} = \frac{x}{a^2 \sqrt{a^2 - x^2}} \\
&140. \int \frac{x \, dx}{\sqrt{(x^2 \pm a^2)^3}} = \frac{-1}{\sqrt{x^3 \pm a^2}} \\
&141. \int \frac{x \, dx}{\sqrt{(a^2 - x^2)^3}} = \frac{1}{\sqrt{a^2 - x^2}} \\
&142. \int x \sqrt{(x^2 \pm a^2)^3} \, dx = \frac{1}{8} \sqrt{(x^2 \pm a^2)^5} \\
&143. \int x \sqrt{(a^2 - x^2)^3} \, dx = -\frac{1}{8} \sqrt{(a^2 - x^2)^5} \\
&144. \int x^2 \sqrt{x^2 \pm a^2} \, dx \\
&= \frac{x}{4} \sqrt{(x^2 \pm a^2)^3} \mp \frac{a^3}{8} x \sqrt{x^2 \pm a^2} - \frac{a^4}{8} \log (x + \sqrt{x^2 \pm a^2})^{\frac{4}{8}} \\
&145. \int x^2 \sqrt{a^2 - x^2} \, dx \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{8} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \\
&= -\frac{x}{4} \sqrt{(a^2 - x^2)^3} + \frac{a^2}{4} \sqrt{a^2 - x^2}$$

 $\log z = \sinh^{-1}\left(\frac{z^2 - 1}{2z}\right) = \cosh^{-1}\left(\frac{z^2 + 1}{2z}\right); \quad \tanh^{-1}z = -i \cdot \tan^{-1}(zi).$ * (See Note on pages 20-21.)

146.
$$\int \frac{\sqrt{a^2 \pm x^2} \, dx}{x^3} = -\frac{\sqrt{a^2 \pm x^2}}{2 \, x^3} \pm \frac{1}{2} \int \frac{dx}{x \sqrt{a^2 \pm x^2}}.$$

147.
$$\int x^5 \sqrt{a^2 \pm x^5} \, dx = (\pm \frac{1}{5} x^2 - \frac{2}{15} a^2) \sqrt{(a^2 \pm x^2)^5}.$$

148.
$$\int \frac{dx}{x^{2}\sqrt{a^{2}\pm x^{2}}} = -\frac{\sqrt{a^{2}\pm x^{2}}}{2 a^{2}x^{2}} \mp \frac{1}{2 a^{2}} \int \frac{dx}{x\sqrt{a^{2}\pm x^{2}}}.$$

149.
$$\int \frac{dx}{x^3 \sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{2 a^2 x^3} + \frac{1}{2 a^3} \sec^{-1} \left(\frac{x}{a}\right).$$

150.
$$\int \frac{x^2 dx}{\sqrt{x^2 \pm a^2}} = \frac{x}{2} \sqrt{x^2 \pm a^2} \mp \frac{a^3}{2} \log (x + \sqrt{x^2 \pm a^2}).$$

151.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$$

152.
$$\int \frac{dx}{x^2 \sqrt{x^2 + a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

153.
$$\int \frac{dx}{x^2 \sqrt{a^2 - x^3}} = -\frac{\sqrt{a^2 - x^3}}{a^2 x}$$

154.
$$\int \frac{\sqrt{x^2 \pm a^2} \, dx}{x^2} = -\frac{\sqrt{x^2 \pm a^2}}{x} + \log (x + \sqrt{x^2 \pm a^2}).$$

155.
$$\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\frac{\sqrt{a^2 - x^2}}{x} - \sin^{-1} \frac{x}{a}.$$

156.
$$\int \frac{x^2 dx}{\sqrt{(x^2 \pm a^2)^3}} = \frac{-x}{\sqrt{x^2 \pm a^2}} + \log(x + \sqrt{x^2 \pm a^2}).$$

157.
$$\int \frac{x^2 dx}{\sqrt{(a^2 - x^2)^3}} = \frac{x}{\sqrt{a^2 - x^2}} - \sin^{-1} \frac{x}{a}.$$

^{* (}See Note on pages 20-21.)

158.
$$\int \frac{f(x^{2}) dx}{\sqrt{a + cx^{2}}} = g \int f\left(\frac{au^{2}}{g^{2} - cu^{2}}\right) \frac{du}{(g^{2} - cu^{2})},$$
where $u = \frac{gx}{\sqrt{a + cx^{2}}}.$

159.
$$\int \frac{xf(x^2) dx}{\sqrt{a + cx^2}} = \frac{1}{c} \int f\left(\frac{u^2 - a}{c}\right) du$$
, where $u^2 = a + cx^2$.

D. — Expressions Involving
$$\sqrt{a + bx + cx^2}$$
.

Let $X = a + bx + cx^2$, $q = 4ac - b^2$, and $k = \frac{4c}{q}$. In order to rationalize the function $f(x, \sqrt{a + bx + cx^2})$ we may put $\sqrt{a + bx + cx^2} = \sqrt{\pm c} \sqrt{A + Bx \pm x^2}$, according as c is positive or negative, and then substitute for x a new variable z, such that

$$z = \sqrt{A + Bx + x^2} \pm x$$
, if $c > 0$.
 $z = \frac{\sqrt{A + Bx - x^2} - \sqrt{A}}{x}$, if $c < 0$ and $\frac{a}{-c} > 0$.
 $z = \sqrt{\frac{x - \beta}{a - x}}$, where a and β are the roots of the equation $A + Bx - x^2 = 0$, if $c < 0$ and $\frac{a}{-c} < 0$.

By rationalization, or by the aid of reduction formulas, may be obtained the values of the following integrals:

160.
$$\int \frac{dx}{\sqrt{X}} = \frac{1}{\sqrt{c}} \log \left(\sqrt{X} + x\sqrt{c} + \frac{b}{2\sqrt{c}} \right), \text{ if } c > 0.$$
161.
$$\int \frac{dx}{\sqrt{X}} = \frac{-1}{\sqrt{-c}} \sin^{-1} \left(\frac{2cx + b}{\sqrt{-q}} \right), \text{ or } \frac{1}{\sqrt{c}} \sinh^{-1} \left(\frac{2cx + b}{\sqrt{q}} \right).$$

$$162. \int \frac{dx}{X\sqrt{X}} = \frac{2(2 cx + b)}{q\sqrt{X}}.$$

163.
$$\int \frac{dx}{X^2 \sqrt{X}} = \frac{2(2 cx + b)}{3 q \sqrt{X}} \left(\frac{1}{X} + 2 k \right).$$

164.
$$\int \frac{dx}{X^n \sqrt{X}} = \frac{2(2cx+b)\sqrt{X}}{(2n-1)qX^n} + \frac{2k(n-1)}{2n-1} \int \frac{dx}{X^{n-1}\sqrt{X}}$$

165.
$$\int \sqrt{X} dx = \frac{(2 cx + b) \sqrt{X}}{4 c} + \frac{1}{2 k} \int \frac{dx}{\sqrt{X}}$$

166.
$$\int X \sqrt{X} dx = \frac{(2 cx + b) \sqrt{X}}{8 c} \left(X + \frac{3}{2 k} \right) + \frac{3}{8 k^2} \int \frac{dx}{\sqrt{X}}$$

167.
$$\int X^2 \sqrt{X} dx$$

$$=\frac{(2\ cx+b)\sqrt{X}}{12\ c}\left(X^2+\frac{5\ X}{4\ k}+\frac{15}{8\ k^2}\right)+\frac{5}{16\ k^8}\int\frac{dx}{\sqrt{X}}$$

168.
$$\int X^n \sqrt{X} dx = \frac{(2 cx + b) X^n \sqrt{X}}{4 (n+1) c} + \frac{2 n+1}{2 (n+1) k} \int \frac{X^n dx}{\sqrt{X}}.$$

169.
$$\int \frac{x \, dx}{\sqrt{x}} = \frac{\sqrt{X}}{c} - \frac{b}{2c} \int \frac{dx}{\sqrt{x}}$$

170.
$$\int \frac{x \, dx}{X \sqrt{X}} = -\frac{2 \left(bx + 2 \, a\right)}{q \sqrt{X}}$$

171.
$$\int \frac{x \, dx}{X^n \sqrt{X}} = -\frac{\sqrt{X}}{(2n-1) \, cX^n} - \frac{b}{2 \, c} \int \frac{dx}{X^n \sqrt{X}}.$$

172.
$$\int \frac{x^2 dx}{\sqrt{X}} = \left(\frac{x}{2c} - \frac{3b}{4c^2}\right) \sqrt{X} + \frac{3b^2 - 4ac}{8c^2} \int \frac{dx}{\sqrt{X}}$$

173.
$$\int \frac{x^2 dx}{X\sqrt{X}} = \frac{(2b^2 - 4ac)x + 2ab}{cq\sqrt{X}} + \frac{1}{c} \int \frac{dx}{\sqrt{X}}$$

174.
$$\int \frac{x^{3}dx}{X^{n}\sqrt{X}}$$

$$= \frac{(2b^{2} - 4ac)x + 2ab}{(2n - 1)cq X^{n-1}\sqrt{X}} + \frac{4ac + (2n - 3)b^{2}}{(2n - 1)cq} \int \frac{dx}{X^{n-1}\sqrt{X}}.$$
175.
$$\int \frac{x^{3}dx}{\sqrt{X}}$$

$$= \left(\frac{x^{2}}{3c} - \frac{5bx}{12c^{2}} + \frac{5b^{2}}{8c^{3}} - \frac{2a}{3c^{2}}\right) \sqrt{X} + \left(\frac{3ab}{4c^{2}} - \frac{5b^{3}}{16c^{3}}\right) \int \frac{dx}{\sqrt{X}}.$$
176.
$$\int x\sqrt{X} dx = \frac{X\sqrt{X}}{3c} - \frac{b}{2c} \int \sqrt{X} dx.$$
177.
$$\int xX\sqrt{X} dx = \frac{X^{2}\sqrt{X}}{5c} - \frac{b}{2c} \int X\sqrt{X} dx.$$
178.
$$\int \frac{xX^{n}dx}{\sqrt{X}} = \frac{X^{n}\sqrt{X}}{(2n + 1)c} - \frac{b}{2c} \int \frac{X^{n}dx}{\sqrt{X}}.$$
179.
$$\int x^{2}\sqrt{X} dx = \left(x - \frac{5b}{6c}\right) \frac{X\sqrt{X}}{4c} + \frac{5b^{2} - 4ac}{16c^{2}} \int \sqrt{X} dx.$$
180.
$$\int \frac{x^{2}X^{n}dx}{\sqrt{X}} = \frac{xX^{n}\sqrt{X}}{2(n + 1)c} - \frac{(2n + 3)b}{4(n + 1)c} \int \frac{xX^{n}dx}{\sqrt{X}}.$$

$$- \frac{a}{2(n + 1)c} \int \frac{X^{n}dx}{\sqrt{X}}.$$
181.
$$\int x^{3}\sqrt{X} dx = \left(x^{2} - \frac{7bx}{8c} + \frac{35b^{2}}{48c^{2}} - \frac{2a}{3c}\right) \frac{X\sqrt{X}}{5c} + \left(\frac{3ab}{8c^{2}} - \frac{7b^{3}}{32c^{3}}\right) \int \sqrt{X} dx.$$
182.
$$\int \frac{dx}{x\sqrt{X}} = -\frac{1}{\sqrt{a}} \log\left(\frac{\sqrt{X} + \sqrt{a}}{x} + \frac{b}{2\sqrt{a}}\right), \text{ if } a > 0.$$

183.
$$\int \frac{dx}{x\sqrt{X}} = \frac{1}{\sqrt{-a}} \sin^{-1}\left(\frac{bx+2a}{x\sqrt{-q}}\right)$$
, or $\frac{-1}{\sqrt{a}} \sinh^{-1}\frac{2a+bx}{x\sqrt{q}}$.

184.
$$\int \frac{dx}{x\sqrt{X}} = -\frac{2\sqrt{X}}{bx}, \text{ if } a = 0.$$

185.
$$\int \frac{dx}{xX^{n}\sqrt{X}} = \frac{\sqrt{X}}{(2n-1)aX^{n}} + \frac{1}{a} \int \frac{dx}{xX^{n-1}\sqrt{X}} - \frac{b}{2a} \int \frac{dx}{X^{n}\sqrt{X}}.$$

186.
$$\int \frac{dx}{x^2 \sqrt{X}} = -\frac{\sqrt{X}}{ax} - \frac{b}{2a} \int \frac{dx}{x\sqrt{X}}$$

187.
$$\int \frac{\sqrt{X} dx}{x} = \sqrt{X} + \frac{b}{2} \int \frac{dx}{\sqrt{X}} + a \int \frac{dx}{x\sqrt{X}}$$

188.
$$\int \frac{X^n dx}{x\sqrt{X}} = \frac{X^n}{(2n-1)\sqrt{X}} + a \int \frac{X^{n-1} dx}{x\sqrt{X}} + \frac{b}{2} \int \frac{X^{n-1} dx}{\sqrt{X}}$$

189.
$$\int \frac{\sqrt{X} dx}{x^2} = -\frac{\sqrt{X}}{x} + \frac{b}{2} \int \frac{dx}{x\sqrt{X}} + c \int \frac{dx}{\sqrt{X}}$$

190.
$$\int \frac{x^m dx}{X^n \sqrt{X}} = \frac{1}{c} \int \frac{x^{m-2} dx}{X^{n-1} \sqrt{X}} - \frac{b}{c} \int \frac{x^{m-1} dx}{X^n \sqrt{X}} - \frac{a}{c} \int \frac{x^{m-2} dx}{X^n \sqrt{X}}.$$

191.
$$\int \frac{x^{m}X^{n}dx}{\sqrt{X}} = \frac{x^{m-1}X^{n}\sqrt{X}}{(2n+m)c} - \frac{(2n+2m-1)b}{2c(2n+m)} \int \frac{x^{m-1}X^{n}dx}{\sqrt{X}} - \frac{(m-1)a}{(2n+m)c} \int \frac{x^{m-2}X^{n}dx}{\sqrt{X}}.$$

192.
$$\int \frac{dx}{x^{m}X^{n}\sqrt{X}} = -\frac{\sqrt{X}}{(m-1)ax^{m-1}X^{n}} - \frac{(2n+2m-3)b}{2a(m-1)} \int \frac{dx}{x^{m-1}X^{n}\sqrt{X}} - \frac{(2n+m-2)c}{(m-1)a} \int \frac{dx}{x^{m-2}X^{n}\sqrt{X}}.$$

$$193. \int \frac{X^n dx}{x^m \sqrt{X}} = -\frac{X^{n-1} \sqrt{X}}{(m-1) x^{m-1}} + \frac{(2 n-1) b}{2 (m-1)} \int \frac{X^{n-1} dx}{x^{m-1} \sqrt{X}} + \frac{(2 n-1) c}{m-1} \int \frac{X^{n-1} dx}{x^{m-2} \sqrt{X}}.$$

194.
$$\int f(x, \sqrt{(x-a)(x-b)}) dx$$

$$= 2(a-b) \int f\left\{\frac{bu^2-a}{u^2-1}, \frac{u(b-a)}{u^2-1}\right\} \frac{u du}{(u^2-1)^2},$$
where $u^2(x-b) = x-a$.

E. — Expressions Involving Products of Powers of
$$(a' + b'x)$$
 and $\sqrt{a + bx + cx^2}$.

Let
$$X = a + bx + cx^2$$
, $v = a' + b'x$, $q = 4ac - b^2$, $\beta = bb' - 2a'c$, $k = ab'^2 - a'bb' + ca'^2$, then

195.
$$\int \frac{dx}{v\sqrt{X}} = \frac{1}{\sqrt{k}} \log \frac{2k + \beta v - 2b'\sqrt{kX}}{v}$$
$$= \frac{1}{\sqrt{-k}} \tan^{-1} \frac{2k + \beta v}{2b'\sqrt{-kX}}$$
$$= \frac{1}{\sqrt{-k}} \sin^{-1} \frac{2k + \beta v}{b'v\sqrt{-q}}, \text{ if } k \neq 0.$$

196.
$$\int \frac{dx}{v\sqrt{X}} = -\frac{2b'\sqrt{X}}{\beta v}$$
, if $k = 0$:
thus, $\int \frac{dx}{(x \pm 1)\sqrt{x^2 - 1}} = \pm \sqrt{\frac{x \mp 1}{x \pm 1}}$.

197.
$$\int \frac{dx}{v^2 \sqrt{X}} = -\frac{b'\sqrt{X}}{kv} - \frac{\beta}{2k} \int \frac{dx}{v\sqrt{X}}.$$

198.
$$\int \frac{dx}{v^2 \sqrt{X}} = -\frac{2 b' \sqrt{X}}{3 \beta v^2} - \frac{2 c}{3 \beta} \int \frac{dx}{v \sqrt{X}}$$
, if $k = 0$.

199.
$$\int \frac{dx}{vX\sqrt{X}} = \frac{1}{k} \left(\frac{b'}{\sqrt{X}} - \frac{1}{2}\beta \int \frac{dx}{X\sqrt{X}} + b'^2 \int \frac{dx}{v\sqrt{X}} \right).$$
200.
$$\int \frac{v \, dx}{X\sqrt{X}} = -\frac{2(2k+\beta v)}{b'q\sqrt{X}}.$$
201.
$$\int \frac{v \, dx}{\sqrt{X}} = \frac{b'\sqrt{X}}{c} - \frac{\beta}{2c} \int \frac{dx}{\sqrt{X}}.$$
202.
$$\int v \sqrt{X} \, dx = \frac{b'X\sqrt{X}}{3c} - \frac{\beta}{2c} \int \sqrt{X} \, dx.$$
203.
$$\int \frac{v \, dx}{X^n \sqrt{X}} = -\frac{b'\sqrt{X}}{(2n-1)cX^n} - \frac{\beta}{2c} \int \frac{dx}{X^n \sqrt{X}}.$$
204.
$$\int \frac{v \, X^n \, dx}{\sqrt{X}} = \frac{b'X^n\sqrt{X}}{(2n+1)c} - \frac{\beta}{2c} \int \frac{X^n \, dx}{\sqrt{X}}.$$
205.
$$\int \frac{dx}{v^m\sqrt{X}} = -\frac{b'\sqrt{X}}{(m-1)kv^{m-1}} - \frac{(2m-3)\beta}{2(m-1)k} \int \frac{dx}{v^{m-1}\sqrt{X}} - \frac{(m-2)c}{(m-1)k} \int \frac{dx}{v^{m-2}\sqrt{X}}, \text{ if } k \neq 0.$$
206.
$$\int \frac{dx}{v^m\sqrt{X}} = -\frac{2b'\sqrt{X}}{(2m-1)\beta v^m} - \frac{2(m-1)c}{(2m-1)\beta} \int \frac{dx}{v^{m-1}\sqrt{X}}, \text{ if } k = 0.$$

$$207. \int \frac{\sqrt{X} \, dx}{v^m} = -\frac{b'X\sqrt{X}}{(m-1) \, kv^{m-1}} - \frac{(2 \, m-5) \, \beta}{2 \, (m-1) \, k} \int \frac{\sqrt{X} \, dx}{v^{m-1}} - \frac{(m-4) \, c}{(m-1) \, k} \int \frac{\sqrt{X} \, dx}{v^{m-2}} = \frac{1}{(m-1) \, b'^2} \left(-\frac{b'\sqrt{X}}{v^{m-1}} + \frac{1}{2} \, \beta \int \frac{dx}{v^{m-1}\sqrt{X}} + c \int \frac{dx}{v^{m-2}\sqrt{X}} \right) = \frac{1}{(m-2) \, b'^2} \left(-\frac{b'\sqrt{X}}{v^{m-1}} - k \int \frac{dx}{v^m\sqrt{X}} - \frac{1}{2} \, \beta \int \frac{dx}{v^{m-1}\sqrt{X}} \right).$$

IRRATIONAL ALGEBRAIC FUNCTIONS. 29

208.
$$\int v^m \sqrt{X} dx = \frac{1}{(m+2)c} \left(b^i v^{m-1} X \sqrt{X} - (m+\frac{1}{2}) \beta \int v^{m-1} \sqrt{X} dx - (m-1) k \int v^{m-2} \sqrt{X} dx \right).$$

209.
$$\int \frac{dx}{v^m X^n \sqrt{X}}$$

$$= -\frac{1}{(m-1)k} \left(\frac{b^i \sqrt{X}}{v^{m-1} X^n} + (m+n-\frac{3}{2}) \beta \int \frac{dx}{v^{m-1} X^n \sqrt{X}} + (m+2n-2)c \int \frac{dx}{v^{m-2} X^n \sqrt{X}} \right), \text{ if } k \neq 0.$$

210.
$$\int \frac{dx}{v^m X^n \sqrt{X}} = \frac{-2}{(2m+2n-1)\beta} \left(\frac{b^i \sqrt{X}}{v^m X^n} + (m+2n-1)c \int \frac{dx}{v^{m-1} X^n \sqrt{X}} \right), \text{ if } k = 0.$$

211.
$$\int \frac{X^n dx}{v^m \sqrt{X}}$$

$$= -\frac{1}{(m+2n-1)c} \left(\frac{b^i X^n \sqrt{X}}{v^m \sqrt{X}} + (m-n-\frac{3}{2}) \beta \right) \left(\frac{X^n dx}{v^m \sqrt{X}} + (m-n-\frac{3}{2}) \beta \right)$$

$$211. \int \frac{X^{n} dx}{v^{m} \sqrt{X}}$$

$$= -\frac{1}{(m-1)k} \left(\frac{b' X^{n} \sqrt{X}}{v^{m-1}} + (m-n-\frac{3}{2}) \beta \right) \int \frac{X^{n} dx}{v^{m-1} \sqrt{X}}$$

$$+ (m-2n-2) c \int \frac{X^{n} dx}{v^{m-2} \sqrt{X}}$$

$$= -\frac{1}{(m-2n)b'^{2}} \left(\frac{b' X^{n-1} \sqrt{X}}{v^{m-1}} + (2n-1)k \int \frac{X^{n-1} dx}{v^{m} \sqrt{X}} \right)$$

$$+ (n-\frac{1}{2}) \beta \int \frac{X^{n-1} dx}{v^{m-1} \sqrt{X}}$$

$$= \frac{1}{(m-1)b'^{2}} \left(-\frac{b' X^{n-1} \sqrt{X}}{v^{m-1}} + (n-\frac{1}{2}) \beta \int \frac{X^{n-1} dx}{v^{m-1} \sqrt{X}} \right)$$

$$+ (2n-1) c \int \frac{X^{n-1} dx}{v^{m-2} \sqrt{X}}$$

212.
$$\int \frac{v^{m}X^{n} dx}{\sqrt{X}} = \frac{1}{(m+2n)c} \left(b'v^{m-1}X^{n} \sqrt{X} - (m+n-\frac{1}{2})\beta \int \frac{v^{m-1}X^{n} dx}{\sqrt{X}} - (m-1)k \int \frac{v^{m-2}X^{n} dx}{\sqrt{X}} \right)$$

213.
$$\int \frac{v^{m} dx}{X^{n} \sqrt{X}} = \frac{1}{(m-2n)c} \left(\frac{b' v^{m-1} \sqrt{X}}{X^{n}} - (m-n-\frac{1}{2}) \beta \int \frac{v^{m-1} dx}{X^{n} \sqrt{X}} - (m-1) k \int \frac{v^{m-2} dx}{X^{n} \sqrt{X}} \right).$$

$$\frac{1}{(x+a)(x+b)\sqrt{X}} = \frac{1}{(b-a)(x+a)\sqrt{X}} + \frac{1}{(a-b)(x+b)\sqrt{X}}$$

$$\frac{1}{\sqrt{a+bx+cx^2} \pm \sqrt{a'+b'x+c'x^2}}$$

$$= \frac{\sqrt{a+bx+cx^2} \mp \sqrt{a'+b'x+c'x^2}}{a-a'+(b-b')x+(c-c')x^2}.$$

$$\frac{\sqrt{X}}{(x+a)(x+b)} = \frac{\sqrt{X}}{(b-a)(x+a)} + \frac{\sqrt{X}}{(a-b)(x+b)}.$$

$$\frac{(x+a)\sqrt{X}}{x+b} = \sqrt{X} + \frac{(a-b)\sqrt{X}}{x+b}.$$

$$\int \sqrt{\frac{ax^2+b}{a'x^2+b'}} dx \text{ is an elliptic integral.}$$

$$\int \frac{x\sqrt{a+bx^2}}{\sqrt{a'+b'x^2}} dx = \frac{1}{b'\sqrt{b'}} \int \sqrt{ab'-a'b+by^2} \cdot dy,$$

where

$$y^2=a'+b'x^2.$$

IV. MISCHLLANEOUS ALGEBRAIC EXPRESSIONS.

214.
$$\int \sqrt{2 \, ax - x^2} \cdot dx = \frac{x - a}{2} \sqrt{2 \, ax - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x - a}{a}.$$

215.
$$\int \frac{dx}{\sqrt{2 ax - x^2}} = \text{versin}^{-1} \frac{x}{a} = \cos^{-1} \left(1 - \frac{x}{a} \right)$$
$$= 2 \sin^{-1} \sqrt{\frac{x}{2 a}}.$$

216.
$$\int \frac{x^n dx}{\sqrt{2 ax - x^2}} = -\frac{x^{n-1} \sqrt{2 ax - x^2}}{n} - \frac{a (1 - 2 n)}{n} \int \frac{x^{n-1} dx}{\sqrt{2 ax - x^2}}.$$

217.
$$\int \frac{dx}{x^{n}\sqrt{2} \, ax - x^{2}} = \frac{\sqrt{2} \, ax - x^{2}}{a \, (1 - 2 \, n) \, x^{n}} + \frac{n - 1}{(2 \, n - 1) \, a} \int \frac{dx}{x^{n - 1}\sqrt{2} \, ax - x^{2}}.$$

218.
$$\int x^{n} \sqrt{2 ax - x^{3}} \cdot dx = -\frac{x^{n-1} \sqrt{(2 ax - x^{3})^{3}}}{n+2} + \frac{(2 n+1) a}{n+2} \int x^{n-1} \sqrt{2 ax - x^{3}} \cdot dx.$$

219.
$$\int \frac{\sqrt{2 ax - x^{2}} \cdot dx}{x^{n}} = \frac{\sqrt{(2 ax - x^{2})^{3}}}{(3 - 2 n) ax^{n}} + \frac{n - 3}{(2 n - 3) a} \int \frac{\sqrt{2 ax - x^{2}} \cdot dx}{x^{n-1}}.$$

220.
$$\int \frac{dx}{x\sqrt{x^n-a^2}} = \frac{2}{an} \sec^{-1} \left(\frac{x^{\frac{n}{2}}}{a}\right).$$

221.
$$\int \frac{dx}{x\sqrt{x^n + a^2}} = \frac{1}{an} \log \frac{\sqrt{a^2 + x^n} - a}{\sqrt{a^2 + x^n} + a}$$

222.
$$\int \frac{x^{\frac{1}{2}} dx}{\sqrt{a^3 - x^3}} = \frac{3}{8} \sin^{-1} \left(\frac{x}{a}\right)^{\frac{3}{2}}$$

223.
$$\int \frac{dx}{(a+bx^{3})\sqrt{x}} = \frac{1}{b\delta^{3}\sqrt{2}} \left\{ \log\left(\frac{x+\delta^{\frac{3}{2}}+\sqrt{2}\delta^{\frac{3}{2}}x}{\sqrt{a+bx^{2}}}\right) + \tan^{-1}\left(1+\frac{\sqrt{2}x}{\delta}\right) - \tan^{-1}\left(1-\frac{\sqrt{2}x}{\delta}\right) \right\}, \text{ where } b\delta^{4} = a.$$

224.
$$\int \frac{\sqrt{x} \cdot dx}{a + bx^2} = \frac{1}{b\delta\sqrt{2}} \left\{ \tan^{-1} \left(1 + \frac{\sqrt{2}x}{\delta} \right) - \tan^{-1} \left(1 - \frac{\sqrt{2}x}{\delta} \right) - \log \left(\frac{x + \delta^2 + \sqrt{2}\delta^2 x}{\sqrt{a + bx^2}} \right) \right\}, \text{ where } b\delta^4 = a.$$

225.
$$\int \frac{x^{\frac{3}{2}} \cdot dx}{a + bx^{2}} = \frac{2\sqrt{x}}{b} - \frac{a}{b} \int \frac{dx}{(a + bx^{2})\sqrt{x}}$$

226.
$$\int \frac{dx}{(a+bx^2)^2 \sqrt{x}} = \frac{\sqrt{x}}{2 a (a+bx^2)} + \frac{3}{4 a} \int \frac{dx}{(a+bx^2) \sqrt{x}}$$

227.
$$\int \frac{\sqrt{x} \cdot dx}{(a + bx^2)^2} = \frac{x^{\frac{3}{2}}}{2 a (a + bx^2)} + \frac{1}{4 a} \int \frac{\sqrt{x} \cdot dx}{(a + bx^2)}$$

If a_1 , a_2 , a_3 , etc., are the roots of the equation

$$p_0x^n + p_1x^{n-1} + p_2x^{n-2} + \cdots + p_n = 0,$$

the integrand in the expression

$$\int \frac{(q_0 x^n + q_1 x^{m-1} + \dots + q_n) dx}{(p_0 x^n + p_1 x^{n-1} + \dots + p_n) \sqrt{a + bx + cx^2}},$$

where m < n, may be expressed as the sum of a number of partial fractions of the form $\frac{A}{(x-a_k)^r \sqrt{a+bx+cx^2}}$, and these can be integrated by the aid of equations given above. Thus,

228.
$$\int \frac{(px+q) dx}{(x-a')(x-b')\sqrt{a+bx+cx^2}} = \frac{q+a'p}{a'-b'} \int \frac{dx}{(x-a')\sqrt{a+bx+cx^2}} - \frac{q+b'p}{a'-b'} \int \frac{dx}{(x-b')\sqrt{a+bx+cx^2}}$$

229.
$$\int \frac{dx}{(a' + c'x^2)\sqrt{a + cx^2}}$$

$$= \frac{1}{\sqrt{a'(ac' - a'c)}} \tan^{-1} x \sqrt{\frac{(ac' - a'c)}{a'(a + cx^2)}}$$

$$= \frac{1}{2\sqrt{a'(a'c - ac')}} \log \frac{\sqrt{a'(a + cx^2)} + x \sqrt{a'c - ac'}}{\sqrt{a'(a + cx^2)} - x \sqrt{a'c - ac'}}.$$

230.
$$\int \frac{x \, dx}{(a' + c'x^2)\sqrt{a + cx^2}}$$

$$= \frac{1}{\sqrt{c'(a'c - ac')}} \tan^{-1} \sqrt{\frac{c'(a + cx^2)}{a'c - ac'}}$$

$$= \frac{1}{2\sqrt{c'(ac' - a'c)}} \log \frac{\sqrt{c'(a + cx^2)} - \sqrt{ac' - a'c}}{\sqrt{c'(a + cx^2)} + \sqrt{ac' - a'c}}$$

231.
$$\int f\left\{x, \sqrt[n]{\frac{a+bx}{a'+b'x}}\right\} dx$$

$$= n(a'b-ab') \int f\left(\frac{a-a'z^n}{b'z^n-b}, z\right) \cdot \frac{z^{n-1}dz}{(b'z^n-b)^2},$$
where $z^n(a'+b'x) = a+bx$.

232.
$$\int f(x, \sqrt[n]{c + \sqrt[m]{a + bx}}) dx$$

$$= \frac{mn}{b} \int f\left\{\frac{(z^n - c)^m - a}{b}, z\right\} (z^n - c)^{m-1} z^{n-1} dz, \bullet$$

where $z^n = c + \sqrt[m]{a + bx}$.

233.
$$\int f \left\{ x, \left[\frac{a+bx}{a'+b'x} \right]^{\frac{m}{n}}, \left[\frac{a+bx}{a'+b'x} \right]^{\frac{p}{q}}, \cdots \right\} dx$$

$$= s(a'b-ab') \int f \left\{ \frac{a'y'-a}{b-b'y'}, y^{\frac{ms}{n}}, y^{\frac{ps}{q}}, \cdots \right\} \frac{y^{s-1}dy}{(b-b'y')^{2}},$$

where $y^{s}(a' + b'x) = a + bx$ and s is the least common multiple of n, q, etc.

234.
$$\int f(x, \sqrt{a + bx + x^2}) dx$$

= $2 \int f\left(\frac{2\sqrt{a} \cdot z - b}{1 - z^2}, \frac{z^2\sqrt{a} - bz + \sqrt{a}}{1 - z^2}\right) \cdot \frac{(z^2\sqrt{a} - bz + \sqrt{a}) dz}{(1 - z^2)^2}$, where $xz + \sqrt{a} = \sqrt{a + bx + x^2}$.

235.
$$\int f(x, \sqrt{a + bx + x^2}) dx$$

$$= \int f\left(\frac{u^2 - a}{b - 2u}, \frac{u^2 - bu + a}{2u - b}\right) \frac{2(bu - a - u^2) du}{(b - 2u)^2},$$
where $u = \sqrt{a + bx + x^2} - x$.

$$\int \frac{dx}{x^4 + a^4} = \frac{1}{4 a^3 \sqrt{2}} \left\{ \log \left(\frac{x^2 + ax\sqrt{2} + a^2}{x^2 - ax\sqrt{2} + a^2} \right) + 2 \tan^{-1} \left(\frac{ax\sqrt{2}}{a^2 - x^2} \right) \right\}$$

$$\int \frac{dx}{x^4 - a^4} = \frac{1}{4 a^3} \left\{ \log \left(\frac{x - a}{x + a} \right) - 2 \tan^{-1} \left(\frac{x}{a} \right) \right\}.$$

V. TRANSCENDENTAL FUNCTIONS.

236.
$$\int \sin x \cdot f(\cos x) dx = -\int f(\cos x) d \cos x.$$

237.
$$\int \cos x \cdot f(\sin x) \, dx = \int f(\sin x) \, d \sin x$$

238.
$$\int \sin x \cdot f(\sin x, \cos x) dx = -\int f(\sqrt{1-z^2}, z) dz,$$
 where $z = \cos x$.

239.
$$\int \frac{dx}{a+b\cos x} = \frac{1}{c(b-a)} \left\{ \int \frac{dz}{z+c} - \int \frac{dz}{z-c} \right\},$$

where
$$z = \tan \frac{1}{2}x$$
, and $c^2 = (b+a)/(b-a)$.

[See 651.]

240.
$$\int \frac{dx}{a \pm b \sin x} = \int \frac{2 dz}{a \pm 2 bz + az^2}, \text{ where } z = \tan \frac{1}{2} x.$$

241.
$$\int f(\sin x) dx = -\int f\left(\cos\left(\frac{\pi}{2} - x\right)\right) d\left(\frac{\pi}{2} - x\right).$$

242.
$$\int f(\tan x) dx = -\int f \cot \left(\frac{\pi}{2} - x\right) d\left(\frac{\pi}{2} - x\right) \cdot$$

243.
$$\int f(\sec x) \, dx = -\int f \csc\left(\frac{\pi}{2} - x\right) d\left(\frac{\pi}{2} - x\right) \cdot$$

244.
$$\int \frac{\sin x \cdot f(\sin^2 x) \, dx}{\sqrt{1 - k^2 \sin^2 x}} = \int \frac{f(z) \, dz}{2\sqrt{(1 - z)(1 - k^2 z)}},$$

where $z = \sin^2 x$

245.
$$\int \frac{\cos x \cdot f(\cos^2 x) \, dx}{\sqrt{1 - k^2 \sin^2 x}} = \int \frac{f(1 - z) \, dz}{2 \sqrt{z \, (1 - k^2 z)}}, \text{ where } z = \sin^2 x.$$

246.
$$\int \frac{\tan x \cdot f(\tan^2 x) \, dx}{\sqrt{1 - k^2 \sin^2 x}} = \int f\left(\frac{z}{1 - z}\right) \frac{dz}{2(1 - z)\sqrt{1 - k^2 z}},$$
 where $z = \sin^2 x$.

247.
$$\int f(ax+b) dx = \frac{1}{a} \int f(ax+b) d(ax+b).$$

248.
$$\int \sec^{n+2} x \ f(\tan x) \ dx = \int (1+z^2)^{\frac{n}{2}} f(z) \ dz; \ z = \tan x.$$

$$249. \int f(\sin x, \cos x) dx$$

$$=-\int f\bigg(\cos\bigg(rac{\pi}{2}-x\bigg),\;\sin\bigg(rac{\pi}{2}-x\bigg)\bigg)d\bigg(rac{\pi}{2}-x\bigg)\cdot$$

250.
$$\int f(x) \cdot \sin^{-1} x \cdot dx = \sin^{-1} x \cdot \phi(x) - \int \frac{\phi(x) dx}{\sqrt{1 - x^2}}, dx,$$
 where $\phi(x) = \int f(x) dx$.

251.
$$\int f(x) \cdot \cos^{-1} x \, dx = \cos^{-1} x \cdot \phi(x) + \int \frac{\phi(x) \, dx}{\sqrt{1 - x^2}}$$

252.
$$\int f(x) \cdot \tan^{-1} x \, dx = \tan^{-1} x \cdot \phi(x) - \int \frac{\phi(x) \, dx}{1 + x^2}$$

253.
$$\int f(x) \cdot \cot^{-1} x \, dx = \cot^{-1} x \cdot \phi(x) + \int \frac{\phi(x) \, dx}{1 + x^2}$$

254.
$$\int f(x, \cos x) dx = -\int f\left(\frac{\pi}{2} - z, \sin z\right) dz,$$
 where $z = \frac{\pi}{2} - x$.

255.
$$\int \frac{\sin x \cdot f(\cos x) dx}{a + b \cos x} = -\frac{1}{b} \int f\left(\frac{z - a}{b}\right) \frac{dz}{z},$$
 where $z = a + b \cos x$.

256.
$$\int f(x, \log x) dx = \int f(e^z, z) e^z dz$$
, where $z = \log x$.

257.
$$\int \frac{f(\log x) dx}{x} = \int f(z) dz, \text{ where } z = \log x.$$

258.
$$\int x^m f(\log x) \, dx = \int e^{(m+1)z} f(z) \, dz.$$

259.
$$\int f(\sin x, \cos x, \tan x, \cot x, \sec x, \csc x) dx$$

$$= \int f\left(\frac{2z}{1+z^2}, \frac{1-z^2}{1+z^2}, \frac{2z}{1-z^2}, \frac{1-z^2}{2z}, \frac{1+z^2}{1-z^2}, \frac{1+z^2}{2z}\right)$$

$$\frac{2 dz}{1+z^2}$$
, where $z = \tan \frac{x}{2}$;

$$= \int f\!\left(z,\,\,\sqrt{1-z^2},\,\,\frac{z}{\sqrt{1-z^2}},\,\,\frac{\sqrt{1-z^2}}{z},\,\,\frac{1}{\sqrt{1-z^2}},\,\frac{1}{z}\right)$$

$$\frac{dz}{\sqrt{1-z^2}}$$
, where $z=\sin x$;

$$= \int f\left(\frac{z}{\sqrt{1+z^2}}, \frac{1}{\sqrt{1+z^2}}, z, \frac{1}{z}, \sqrt{1+z^2}, \frac{\sqrt{1+z^2}}{z}\right)$$

 $\frac{dz}{1+z^2}$, where $z=\tan x$;

$$= \int f\left(\sqrt{z}, \sqrt{1-z}, \sqrt{\frac{z}{1-z}}, \sqrt{\frac{1-z}{z}}, \frac{1}{\sqrt{1-z}}, \frac{1}{\sqrt{z}}\right)$$

 $\frac{dz}{2\sqrt{z(1-z)}}, \text{ where } z = \sin^2 x;$

$$= \int f\left(\sqrt{\frac{z}{1+z}}, \frac{1}{\sqrt{1+z}}, \sqrt{z}, \frac{1}{\sqrt{z}}, \sqrt{1+z}, \sqrt{\frac{1+z}{z}}\right)$$

$$\frac{dz}{2\sqrt{z(1+z)}}, \text{ where } z = \tan^2 x.$$

260.
$$\int \sin x \, dx = -\cos x$$
. [See 247.]

261.
$$\int \sin^2 x \, dx = -\frac{1}{2} \cos x \sin x + \frac{1}{2} x = \frac{1}{2} x - \frac{1}{4} \sin 2x.$$

262.
$$\int \sin^3 x \, dx = -\frac{1}{8} \cos x (\sin^2 x + 2).$$

263.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx.$$

264.
$$\int \cos x \, dx = \sin x$$
. [See 247.]

265.
$$\int \cos^2 x \, dx = \frac{1}{2} \sin x \cos x + \frac{1}{2} x = \frac{1}{2} x + \frac{1}{4} \sin 2x.$$

266.
$$\int \cos^8 x \, dx = \frac{1}{8} \sin x \, (\cos^2 x + 2).$$

267.
$$\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx.$$

268.
$$\int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x.$$

269.
$$\int \sin^2 x \, \cos^2 x \, dx = -\frac{1}{8} \, (\frac{1}{4} \sin 4 \, x - x).$$

270.
$$\int \sin x \, \cos^m x \, dx = -\frac{\cos^{m+1} x}{m+1}$$

271.
$$\int \sin^m x \cos x \, dx = \frac{\sin^{m+1} x}{m+1}$$

272.
$$\int \cos^m x \, \sin^n x \, dx = \frac{\cos^{m-1} x \, \sin^{n+1} x}{m+n} + \frac{m-1}{m+n} \int \cos^{m-2} x \, \sin^n x \, dx.$$

273.
$$\int \cos^m x \sin^n x \, dx = -\frac{\sin^{n-1} x \cos^{m+1} x}{m+n} + \frac{n-1}{m+n} \int \cos^m x \sin^{n-2} x \, dx.$$

$$\begin{aligned} \mathbf{274.} \ \int \frac{\sin^n x \, dx}{\cos^m x} &= \frac{1}{n-m} \left(-\frac{\sin^{n-1} x}{\cos^{m-1} x} + (n-1) \int \frac{\sin^{n-2} x \, dx}{\cos^m x} \right) \\ &= \frac{1}{m-1} \left(\frac{\sin^{n+1} x}{\cos^{m-1} x} - (n-m+2) \int \frac{\sin^n x \, dx}{\cos^{m-2} x} \right) \\ &= \frac{1}{m-1} \left(\frac{\sin^{n-1} x}{\cos^{m-1} x} - (n-1) \int \frac{\sin^{n-2} x \, dx}{\cos^{m-2} x} \right). \end{aligned}$$

$$275. \int \frac{\cos^m x \, dx}{\sin^n x} = -\frac{\cos^{m+1} x}{(n-1)\sin^{n-1} x} - \frac{m-n+2}{n-1} \int \frac{\cos^m x \, dx}{\sin^{n-2} x}$$

$$= \frac{\cos^{m-1} x}{(m-n)\sin^{n-1} x} + \frac{m-1}{m-n} \int \frac{\cos^{m-2} x \, dx}{\sin^n x}$$

$$= -\frac{1}{n-1} \frac{\cos^{m-1} x}{\sin^{n-1} x} - \frac{m-1}{n-1} \int \frac{\cos^{m-2} x \, dx}{\sin^{n-2} x}.$$

276.
$$\int \frac{\sin^m x \, dx}{\cos^n x} = -\int \frac{\cos^m \left(\frac{\pi}{2} - x\right) d\left(\frac{\pi}{2} - x\right)}{\sin^n \left(\frac{\pi}{2} - x\right)}.$$

$$277. \int \frac{dx}{\sin x \cos x} = \log \tan x.$$

278.
$$\int \frac{dx}{\cos x \sin^3 x} = \log \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) - \csc x.$$

$$279. \int \frac{dx}{\sin^{m}x \cos^{n}x}$$

$$= \frac{1}{n-1} \cdot \frac{1}{\sin^{m-1}x \cdot \cos^{n-1}x} + \frac{m+n-2}{n-1} \int \frac{dx}{\sin^{m}x \cdot \cos^{n-2}x}$$

$$= -\frac{1}{m-1} \cdot \frac{1}{\sin^{m-1}x \cdot \cos^{n-1}x} + \frac{m+n-2}{m-1} \int \frac{dx}{\sin^{m-2}x \cdot \cos^{n}x}$$

280.
$$\int \frac{dx}{\sin^m x} = -\frac{1}{m-1} \cdot \frac{\cos x}{\sin^{m-1} x} + \frac{m-2}{m-1} \int \frac{dx}{\sin^{m-2} x}$$

281
$$\int \frac{dx}{\cos^n x} = \frac{1}{n-1} \cdot \frac{\sin x}{\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}.$$

282.
$$\int \tan x \, dx = -\log \cos x$$
. [See 247.]

$$283. \int \tan^2 x \, dx = \tan x - x.$$

284.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx.$$

285.
$$\int \cot x \, dx = \log \sin x$$
. [See 247.]

$$286. \int \operatorname{ctn}^2 x \, dx = -\operatorname{ctn} x - x.$$

287.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx.$$

288.
$$\int \sec x \, dx = \log \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) = \frac{1}{2} \log \frac{1 + \sin x}{1 - \sin x}$$

$$289. \int \sec^2 x \, dx = \tan x.$$

290.
$$\int \sec^{n} x \, dx = \int \frac{dx}{\cos^{n} x} = \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-1} x}$$
$$= \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx.$$

291.
$$\int \csc x \, dx = \log \tan \frac{1}{2} x.$$

$$292. \int \csc^2 x \, dx = -\cot x.$$

293.
$$\int \csc^{n} x \, dx = \int \frac{dx}{\sin^{n} x}$$

$$= -\frac{\cos x}{(n-1)\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} x}$$

$$= -\frac{\cos x}{(n-1)\sin^{n-1} x} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx.$$

294.
$$\int \frac{dx}{1+\sin x} = -\tan\left(\frac{1}{4}\pi - \frac{1}{2}x\right).$$
 [See 241.]

295.
$$\int \frac{dx}{1-\sin x} = \cot \left(\frac{1}{4}\pi - \frac{1}{2}x\right) = \tan \left(\frac{1}{4}\pi + \frac{1}{2}x\right).$$

296.
$$\int \frac{dx}{1 + \cos x} = \tan \frac{1}{2} x, \text{ or } \csc x - \cot x.$$

297.
$$\int \frac{dx}{1-\cos x} = -\cot \frac{1}{2}x$$
, or $-\cot x - \csc x$.

298.
$$\int \frac{dx}{a \pm b \sin x} = \frac{2 \sec \theta}{a} \cdot \tan^{-1} (\sec \theta \cdot \tan \frac{1}{2} x \pm \tan \theta),$$

if a > b, and $b = a \sin \theta$.

299.
$$\int \frac{dx}{a \pm b \sin x} = \frac{\pm \sec a}{b} \log \frac{\sin \frac{1}{2} (a \pm x)}{\cos \frac{1}{2} (x \mp a)},$$

if b > a, and $a = b \sin a$. [See 241.]

300.
$$\int \frac{dx}{a + b \cos x} = \frac{-1}{\sqrt{a^2 - b^2}} \cdot \sin^{-1} \left[\frac{b + a \cos x}{a + b \cos x} \right],$$

so the standard of the control of th

or
$$\frac{1}{\sqrt{b^{2}-a^{2}}} \log \left[\frac{b+a \cos x + \sqrt{b^{2}-a^{2}} \cdot \sin x}{a+b \cos x} \right],$$
or $\frac{1}{\sqrt{b^{2}-a^{2}}} \log \left[\frac{\sqrt{b+a} + \sqrt{b-a} \cdot \tan \frac{1}{2} x}{\sqrt{b+a} - \sqrt{b-a} \cdot \tan \frac{1}{2} x} \right],$
or $\frac{1}{\sqrt{b^{2}-a^{2}}} \tanh^{-1} \left[\frac{\sqrt{b^{2}-a^{2}} \cdot \sin x}{b+a \cos x} \right].$

301.
$$\int \frac{dx}{a+b \tan x} = \frac{1}{a^2+b^2} [b \log (a \cos x + b \sin x) + ax].$$

302.
$$\int \frac{dx}{\sin x + \cos x} = \frac{1}{\sqrt{2}} \log \tan \left(\frac{1}{2} x + \frac{1}{8} \pi \right).$$

303.
$$\int \frac{\sin x \, dx}{a + b \, \cos x} = -\int \frac{\cos \left(\frac{1}{2} \pi - x\right) d\left(\frac{1}{2} \pi - x\right)}{a + b \, \sin \left(\frac{1}{2} \pi - x\right)}$$
$$= -\frac{1}{b} \log (a + b \, \cos x).$$

304.
$$\int \frac{(a'+b'\cos x) dx}{a+b\cos x} = \frac{b'x}{b} + \frac{a'b-ab'}{b} \int \frac{dx}{a+b\cos x}$$

305.
$$\int \frac{(a'+b'\cos x) dx}{(a+b\cos x)^2} = \frac{ab'-a'b}{a^2-b^2} \frac{\sin x}{a+b\cos x} + \frac{aa'-bb'}{a^2-b^2} \int \frac{dx}{a+b\cos x} \cdot \text{ [See 241.]}$$

306.
$$\int \frac{(a'+b'\cos x)\,dx}{(a+b\cos x)^n} = \frac{1}{(n-1)\,(a^2-b^2)} \left[\frac{(ab'-a'b)\sin x}{(a+b\cos x)^{n-1}} + \int \frac{[(aa'-bb')\,(n-1)+(n-2)\,(ab'-a'b)\cos x]\,dx}{(a+b\cos x)^{n-1}} \right].$$

307.
$$\int \frac{(a'+b'\cos x) dx}{(1+\cos x)^n} = \frac{(a'-b')\tan\frac{1}{2}x}{(2n-1)(1+\cos x)^{n-1}} + \frac{n(a'+b')-a'}{2n-1} \int \frac{dx}{(1+\cos x)^{n-1}}.$$

308.
$$\int \frac{dx}{(a+b\cos x)^n} = \frac{1}{(n-1)(a^2-b^2)} \left[\frac{-b\sin x}{(a+b\cos x)^{n-1}} + (2n-3)a \int \frac{dx}{(a+b\cos x)^{n-1}} - (n-2) \int \frac{dx}{(a+b\cos x)^{n-2}} \right]$$

309.
$$\int \frac{dx}{(1+\cos x)^n} = \frac{\tan\frac{1}{2}x}{(2n-1)(1+\cos x)^{n-1}} + \frac{n-1}{2n-1} \int \frac{dx}{(1+\cos x)^{n-1}} \cdot \text{ [See 241.]}$$

310.
$$\int \frac{(a'+b'\cos x) dx}{\sin x (a+b\cos x)} = \frac{a'b-ab'}{a^2-b^2} \log (a+b\cos x)$$
$$+ \frac{a'+b'}{a+b} \log \sin \frac{1}{2} x - \frac{a'-b'}{a-b} \log \cos \frac{1}{2} x.$$

311.
$$\int \frac{(a'+b'\cos x) dx}{\cos x (a+b\cos x)} = \frac{a'}{a} \log \tan \frac{1}{2} (\frac{1}{2}\pi + x) + \frac{(ab'-a'b)}{a} \int \frac{dx}{a+b\cos x}.$$

312.
$$\int \frac{(a'+b'\cos x)\,dx}{\sin x\,(1\pm\cos x)} = \pm\,\frac{\frac{1}{2}\,(a'\mp b')}{1\pm\cos x} + \frac{1}{2}\,(a'\pm b')\log\tan\frac{1}{2}\,x$$

313.
$$\int \frac{dx}{(1-\cos x)^n} = \frac{-\cot \frac{1}{2}x}{(2n-1)(1-\cos x)^{n-1}} + \frac{n-1}{2n-1} \int \frac{dx}{(1-\cos x)^{n-1}} \cdot \text{ [See 241.]}$$

314.
$$\int \frac{dx}{a^2 - b^2 \cos^2 x} = \int \frac{dx}{(a^2 - b^2) + b^2 \sin^2 x}$$
$$= \frac{1}{2 a b \sin a} \log \frac{\sin (a - x)}{\sin (a + x)},$$
or
$$\frac{1}{a^2 \sin \beta} \tan^{-1} \left(\frac{\tan x}{\sin \beta}\right), \text{ where } \cos a = \frac{1}{\cos \beta} = \frac{a}{b}.$$

315.
$$\int \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \tan^{-1} \left(\frac{b \tan x}{a} \right)$$

316.
$$\int \frac{\sin^2 x \, dx}{a + b \cos^2 x} = \frac{\sqrt{a + b}}{b \sqrt{a}} \tan^{-1} \left(\tan x \cdot \sqrt{\frac{a}{a + b}} \right) - \frac{x}{b}$$

317.
$$\int \frac{\sin x \cos x \, dx}{a \cos^2 x + b \sin^2 x} = \frac{1}{2(b-a)} \log (a \cos^2 x + b \sin^2 x).$$

318.
$$\int \frac{dx}{(a+b\cos x + c\sin x)^n} = \int \frac{d(x-a)}{[a+r\cos(x-a)]^n},$$
 where $b=r\cos a$ and $c=r\sin a$.

319.
$$\int \frac{dx}{a + b \cos x + c \sin x}$$
 [See page 61.]
$$= \frac{-1}{\sqrt{a^2 - b^2 - c^2}} \cdot \sin^{-1} \left[\frac{b^2 + c^2 + a (b \cos x + c \sin x)}{\sqrt{(b^2 + c^2)} (a + b \cos x + c \sin x)} \right]$$

$$= \frac{1}{\sqrt{b^2 + c^2 - a^2}} \cdot \log$$

$$\begin{split} & \left[\frac{b^2 + c^2 + a \left(b \cos x + c \sin x \right) + \sqrt{b^2 + c^2 - a^2} \left(b \sin x - c \cos x \right)}{\sqrt{(b^2 + c^2)} \left(a + b \cos x + c \sin x \right)} \right] \\ &= \frac{1}{\sqrt{b^2 + c^2 - a^2}} \cdot \log \frac{\sqrt{b^2 + c^2 - a^2} - c + (b - a) \tan \frac{1}{2} x}{\sqrt{b^3 + c^2 - a^2} + c - (b - a) \tan \frac{1}{2} x} \\ &= \frac{2}{\sqrt{a^2 - b^2 - c^2}} \tan^{-1} \left[\frac{(a - b) \tan \frac{1}{2} x + c}{\sqrt{a^2 - b^2 - c^2}} \right]. \end{split}$$

320.
$$\int \frac{dx}{a(1+\cos x)+c\sin x} = \frac{1}{c} \log (a+c\tan \frac{1}{2}x).$$

321.
$$\int \frac{dx}{(a [1 + \cos x] + c \sin x)^{2}}$$

$$= \frac{1}{c^{3}} \left[\frac{c (a \sin x - c \cos x)}{a (1 + \cos x) + c \sin x} - a \log (a + c \tan \frac{1}{2}x) \right].$$

322.
$$\int \frac{(x+\sin x)\,dx}{1+\cos x} = x\tan \frac{1}{2}x.$$

323.
$$\int \cos x \sqrt{1 - k^2 \sin^2 x} \, dx$$
$$= \frac{1}{2} \sin x \sqrt{1 - k^2 \sin^2 x} + \frac{1}{2 k} \sin^{-1}(k \sin x).$$

324.
$$\int \sin x \sqrt{1 - k^2 \sin^2 x} \, dx^*$$

$$= -\frac{1}{2} \cos x \sqrt{1 - k^2 \sin^2 x} - \frac{1 - k^2}{2 \, k} \log (k \cos x + \sqrt{1 - k^2 \sin^2 x}).$$

325.
$$\int \sin x (1 - k^2 \sin^2 x)^{\frac{3}{2}} dx = -\frac{1}{4} \cos x (1 - k^2 \sin^2 x)^{\frac{3}{2}} + \frac{3}{4} (1 - k^2) \int \sin x \sqrt{1 - k^2 \sin^2 x} dx.$$

326.
$$\int \frac{\cos x \, dx}{\sqrt{1 - k^2 \sin^2 x}} = \frac{1}{k} \sin^{-1}(k \sin x),$$
 or
$$\frac{1}{b} \log(b \sin x + \sqrt{1 + b^2 \sin^2 x}), \text{ where } b^2 = -k^2.$$

327.
$$\int \frac{\sin x \, dx}{\sqrt{1 - k^2 \sin^2 x}} = -\frac{1}{k} \log \left(k \cos x + \sqrt{1 - k^2 \sin^2 x} \right),$$
 or $-\frac{1}{b} \sin^{-1} \frac{b \cos x}{\sqrt{1 + b^2}}$, where $b^2 = -k^2$

328.
$$\int \frac{\tan x \, dx}{\sqrt{1 - k^2 \sin^2 x}} = \frac{1}{2\sqrt{1 - k^2}} \log \left(\frac{\sqrt{1 - k^2 \sin^2 x} + \sqrt{1 - k^2}}{\sqrt{1 - k^2 \sin^2 x} - \sqrt{1 - k^2}} \right).$$

329.
$$\int \frac{x \, dx}{1 + \sin x} = -x \tan \frac{1}{2} \left(\frac{1}{2} \pi - x \right) + 2 \log \cos \frac{1}{2} \left(\frac{1}{2} \pi - x \right).$$

330.
$$\int \frac{x \, dx}{1 - \sin x} = x \, \cot \frac{1}{2} \left(\frac{1}{2} \, \pi - x \right) + 2 \, \log \sin \frac{1}{2} \left(\frac{1}{2} \, \pi - x \right).$$

331.
$$\int \frac{x \, dx}{1 + \cos x} = x \tan \frac{1}{2} x + 2 \log \cos \frac{1}{2} x.$$

332.
$$\int \frac{x \, dx}{1 - \cos x} = -x \cot \frac{1}{2} x + 2 \log \sin \frac{1}{2} x.$$

333.
$$\int \frac{\tan x \, dx}{\sqrt{a+b \tan^2 x}} = \frac{1}{\sqrt{b-a}} \cos^{-1} \left(\frac{\sqrt{b-a}}{\sqrt{b}} \cdot \cos x \right)$$

334.
$$\int \frac{dx}{a+b\tan^2 x} = \frac{1}{a-b} \left[x - \sqrt{\frac{b}{a}} \cdot \tan^{-1} \left(\sqrt{\frac{b}{a}} \cdot \tan x \right) \right].$$

335.
$$\int \frac{\tan x \, dx}{a + b \, \tan x}$$
$$= \frac{1}{a^2 + b^2} \left\{ bx - a \, \log \left(a + b \, \tan x \right) + a \, \log \sec x \right\}$$

$$336. \int x \sin x \, dx = \sin x - x \cos x.$$

337.
$$\int x^2 \sin x \, dx = 2 x \sin x - (x^3 - 2) \cos x.$$

338.
$$\int x^3 \sin x \, dx = (3 \, x^3 - 6) \sin x - (x^3 - 6 \, x) \cos x.$$

339.
$$\int x^m \sin x \, dx = -x^m \cos x + m \int x^{m-1} \cos x \, dx$$
.

340.
$$\int x \cos x dx = \cos x + x \sin x.$$

341.
$$\int x^3 \cos x \, dx = 2 x \cos x + (x^3 - 2) \sin x.$$

342.
$$\int x^3 \cos x \, dx = (3 \, x^2 - 6) \cos x + (x^3 - 6 \, x) \sin x.$$

343.
$$\int x^m \cos x \, dx = x^m \sin x - m \int x^{m-1} \sin x \, dx$$
.

344.
$$\int \frac{\sin x}{x^m} dx = -\frac{1}{m-1} \cdot \frac{\sin x}{x^{m-1}} + \frac{1}{m-1} \int \frac{\cos x}{x^{m-1}} dx.$$

345.
$$\int \frac{\cos x}{x^m} dx = -\frac{1}{m-1} \cdot \frac{\cos x}{x^{m-1}} - \frac{1}{m-1} \int \frac{\sin x}{x^{m-1}} dx.$$

346.
$$\int \frac{\sin x}{x} dx = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!} + \frac{x^9}{9 \cdot 9!} \cdot \cdots$$

347.
$$\int \frac{\cos x}{x} dx = \log x - \frac{x^3}{2 \cdot 2!} + \frac{x^4}{4 \cdot 4!} - \frac{x^6}{6 \cdot 6!} + \frac{x^8}{8 \cdot 8!} \cdot \cdots$$

348.
$$\int \frac{x \, dx}{\sin x} = x + \frac{x^3}{3 \cdot 3!} + \frac{7 \, x^5}{3 \cdot 5 \cdot 5!} + \frac{31 \, x^7}{3 \cdot 7 \cdot 7!} + \frac{127 \, x^9}{3 \cdot 5 \cdot 9!} + \cdots$$

349.
$$\int \frac{x \, dx}{\cos x} = \frac{x^2}{2} + \frac{x^4}{4 \cdot 2!} + \frac{5 \, x^6}{6 \cdot 4!} + \frac{61 \, x^6}{8 \cdot 6!} + \frac{1385 \, x^{10}}{10 \cdot 8!} + \cdots$$

$$350. \int \frac{x \, dx}{\sin^2 x} = -x \, \cot x + \log \sin x.$$

351.
$$\int \frac{x dx}{\cos^2 x} = x \tan x + \log \cos x.$$

352.
$$n^2 \int x^m \sin^n x \, dx$$

$$= x^{m-1} \sin^{n-1} x \, (m \sin x - nx \cos x)$$

$$+ n \, (n-1) \int x^m \sin^{n-2} x \, dx - m \, (m-1) \int x^{m-2} \sin^n x \, dx.$$

353.
$$n^2 \int x^m \cos^n x \, dx$$

$$= x^{m-1} \cos^{n-1} x \, (m \cos x + nx \sin x)$$

$$+ n(n-1) \int x^m \cos^{n-2} x \, dx - m(m-1) \int x^{m-2} \cos^n x \, dx.$$

354.
$$\int \frac{x^{m} dx}{\sin^{n} x}$$

$$= \frac{1}{(n-1)(n-2)} \left[-\frac{x^{m-1}(m \sin x + (n-2)x \cos x)}{\sin^{n-1} x} + (n-2)^{2} \int \frac{x^{m} dx}{\sin^{n-2} x} + m(m-1) \int \frac{x^{m-2} dx}{\sin^{n-2} x} \right].$$
355.
$$\int \frac{x^{m} dx}{\cos^{n} x}$$

355.
$$\int \frac{x^m dx}{\cos^n x}$$

$$= \frac{1}{(n-1)(n-2)} \left[-\frac{x^{m-1}(m\cos x - (n-2)x\sin x)}{\cos^{n-1}x} + (n-2)^2 \int \frac{x^m dx}{\cos^{n-2}x} + m(m-1) \int \frac{x^{m-2} dx}{\cos^{n-2}x} \right].$$

356.
$$\int \frac{\sin^n x \, dx}{x^m}$$

$$= \frac{1}{(m-1)(m-2)} \left[-\frac{\sin^{n-1} x ((m-2)\sin x + nx\cos x)}{x^{m-1}} - n^2 \int \frac{\sin^n x \, dx}{x^{m-2}} + n(n-1) \int \frac{\sin^{n-2} x \, dx}{x^{m-2}} \right].$$

357.
$$\int \frac{\cos^{n} x \, dx}{x^{m}}$$

$$= \frac{1}{(m-1)(m-2)} \left[\frac{\cos^{n-1} x (nx \cos x - (m-2)\cos x)}{x^{m-1}} - n^{2} \int \frac{\cos^{n} x \, dx}{x^{m-2}} + n(n-1) \int \frac{\cos^{n-2} x \, dx}{x^{m-3}} \right].$$

358.
$$\int x^{p} \sin^{m} x \cos^{n} x dx$$

$$= \frac{1}{(m+n)^{2}} \left[x^{p-1} \sin^{m} x \cos^{n-1} x \left(p \cos x + (m+n) x \sin x \right) + (n-1) (m+n) \int x^{p} \sin^{m} x \cos^{n-2} x dx \right]$$

$$- mp \int x^{p-1} \sin^{m-1} x \cos^{n-1} x dx$$

$$- p(p-1) \int x^{p-2} \sin^{m} x \cos^{n} x dx \Big] \cdot$$

$$= \frac{1}{(m+n)^{2}} \Big[x^{p-1} \sin^{m-1} x \cos^{n} x (p \sin x - (m+n)x \cos x) + (m-1) (m+n) \int x^{p} \sin^{m-2} x \cos^{n} x dx + np \int x^{p-1} \sin^{m-1} x \cos^{n-1} x dx - p(p-1) \int x^{p-2} \sin^{m} x \cos^{n} x dx \Big] \cdot$$

359.
$$\int \sin mx \sin nx \, dx = \frac{\sin (m-n)x}{2(m-n)} - \frac{\sin (m+n)x}{2(m+n)}.$$

360.
$$\int \sin mx \cos nx \, dx = -\frac{\cos (m-n)x}{2(m-n)} - \frac{\cos (m+n)x}{2(m+n)} \cdot \frac{\cos (m+n)x}{\sin (m+n)x}$$

361.
$$\int \cos mx \cos nx \, dx = \frac{\sin (m-n)x}{2(m-n)} + \frac{\sin (m+n)x}{2(m+n)}.$$

362.
$$\int \sin^2 mx \, dx = \frac{1}{2m} (mx - \sin mx \cos mx).$$

363.
$$\int \cos^2 mx \, dx = \frac{1}{2m} (mx + \sin mx \cos mx).$$

364.
$$\int \sin mx \cos mx \, dx = -\frac{1}{4m} \cos 2mx$$
.

365.
$$\int \sin nx \sin^m x \, dx = \frac{1}{m+n} \left[-\cos nx \sin^m x + m \int \cos (n-1) x \cdot \sin^{m-1} x \, dx \right].$$

366.
$$\int \sin nx \cos^m x \, dx = \frac{1}{m+n} \left[-\cos nx \cos^m x + m \int \sin (n-1) x \cdot \cos^{m-1} x \, dx \right].$$

367.
$$\int \cos nx \sin^m x \, dx = \frac{1}{m+n} \left[\sin nx \sin^m x - m \int \sin (n-1) x \cdot \sin^{m-1} x \, dx \right].$$

368.
$$\int \cos nx \cos^m x \, dx = \frac{1}{m+n} \left[\sin nx \cos^m x + m \int \cos (n-1) x \cdot \cos^{m-1} x \, dx \right].$$

369.
$$\int \frac{\cos nx \, dx}{\cos^m x} = 2 \int \frac{\cos (n-1) \, x \, dx}{\cos^{m-1} x} - \int \frac{\cos (n-2) \, x \, dx}{\cos^m x}$$

370.
$$\int \frac{\cos nx \, dx}{\sin^m x} = -2 \int \frac{\sin (n-1) x \, dx}{\sin^{m-1} x} + \int \frac{\cos (n-2) x \, dx}{\sin^m x}$$

371.
$$\int \frac{\sin nx \, dx}{\sin^m x} = 2 \int \frac{\cos (n-1)x \, dx}{\sin^{m-1} x} + \int \frac{\sin (n-2)x \, dx}{\sin^m x}$$

372.
$$\int \frac{\sin nx \, dx}{\cos^m x} = 2 \int \frac{\sin (n-1) \, x \, dx}{\cos^{m-1} x} - \int \frac{\sin (n-2) \, x \, dx}{\cos^m x}.$$

373.
$$\int \frac{(\cos px + i \sin px) dx}{\cos nx} = -2i \int \frac{z^{p+n-1} dz}{1 + z^{2n}},$$

where $z = \cos x + i \sin x$. This yields two real integrals.

374.
$$\int \frac{(\cos px + i \sin px) dx}{\sin nx} = -2 \int \frac{z^{p+n-1} dz}{1 - z^{2n}},$$

where $z = \cos x + i \sin x$. This yields two real integrals.

375.
$$\int \frac{(i\cos x - \sin x) dx}{\sqrt[n]{\cos nx}} = \int \frac{dy}{2 - y^n},$$

where $y = \frac{\cos x + i \sin x}{\sqrt[n]{\cos nx}}$. This yields two real integrals.

376.
$$\int \sin ax \sin bx \sin cx dx = -\frac{1}{4} \left\{ \frac{\cos (a-b+c)x}{a-b+c} + \frac{\cos (b+c-a)x}{b+c-a} + \frac{\cos (a+b-c)x}{a+b-c} - \frac{\cos (a+b+c)x}{a+b+c} \right\}$$

378.
$$\int \sin ax \cos bx \cos cx \, dx = -\frac{1}{4} \left\{ \frac{\cos (a+b+c)x}{a+b+c} - \frac{\cos (b+c-a)x}{b+c-a} + \frac{\cos (a+b-c)x}{a+b-c} + \frac{\cos (a+c-b)x}{a+c-b} \right\}.$$

379.
$$\int \cos ax \sin bx \sin cx \, dx = \frac{1}{4} \left\{ \frac{\sin (a+b-c)x}{a+b-c} + \frac{\sin (a-b+c)x}{a-b+c} - \frac{\sin (a+b+c)x}{a+b+c} - \frac{\sin (b+c-a)x}{b+c-a} \right\}.$$

380.
$$\int \sin^{-1} x \, dx = x \sin^{-1} x + \sqrt{1 - x^2}.$$

381.
$$\int \cos^{-1} x \, dx = x \cos^{-1} x - \sqrt{1 - x^2}.$$

382.
$$\int \tan^{-1}x \, dx = x \tan^{-1}x - \frac{1}{2} \log(1 + x^2).$$

383.
$$\int \cot^{-1}x \, dx = x \cot^{-1}x + \frac{1}{2} \log(1 + x^2).$$

384.
$$\int \sec^{-1}x \, dx = x \sec^{-1}x - \log(x + \sqrt{x^2 - 1}).$$

385.
$$\int \csc^{-1}x \, dx = x \csc^{-1}x + \log(x + \sqrt{x^3 - 1}).$$

386.
$$\int \text{versin}^{-1} x \, dx = (x-1) \, \text{versin}^{-1} x + \sqrt{2 \, x - x^2}.$$

387.
$$\int (\sin^{-1}x)^2 dx = x(\sin^{-1}x)^2 - 2x + 2\sqrt{1-x^2}\sin^{-1}x.$$

388.
$$\int (\cos^{-1}x)^2 dx = x (\cos^{-1}x)^2 - 2x - 2\sqrt{1-x^2} \cos^{-1}x.$$

389.
$$\int x \sin^{-1}x \, dx = \frac{1}{4} [(2x^3 - 1)\sin^{-1}x + x\sqrt{1 - x^2}].$$

390.
$$\int x \cos^{-1} x dx = \frac{1}{4} \left[(2x^{2} - 1) \cos^{-1} x - x \sqrt{1 - x^{2}} \right].$$

391.
$$\int x \tan^{-1} x \, dx = \frac{1}{2} [(x^3 + 1) \tan^{-1} x - x].$$

392.
$$\int x \, \operatorname{ctn}^{-1} x \, dx = \frac{1}{2} [(x^2 + 1) \operatorname{ctn}^{-1} x + x].$$

393.
$$\int x \sec^{-1} x \, dx = \frac{1}{2} \left[x^2 \sec^{-1} x - \sqrt{x^2 - 1} \right].$$

394.
$$\int x \csc^{-1} x \, dx = \frac{1}{2} \left[x^3 \csc^{-1} x + \sqrt{x^2 - 1} \right].$$

395.
$$\int x^n \sin^{-1}x \, dx = \frac{1}{n+1} \left(x^{n+1} \sin^{-1}x - \int \frac{x^{n+1} \, dx}{\sqrt{1-x^2}} \right).$$

396.
$$\int x^n \cos^{-1} x \, dx = \frac{1}{n+1} \left(x^{n+1} \cos^{-1} x + \int \frac{x^{n+1} \, dx}{\sqrt{1-x^2}} \right)$$

397.
$$\int x^n \tan^{-1} x \, dx = \frac{1}{n+1} \left(x^{n+1} \tan^{-1} x - \int \frac{x^{n+1} \, dx}{1+x^2} \right).$$

398.
$$\int x^n \operatorname{ctn}^{-1} x \, dx = \frac{1}{n+1} \left(x^{n+1} \operatorname{ctn}^{-1} x + \int \frac{x^{n+1} \, dx}{1+x^2} \right).$$

399.
$$\int \frac{\sin^{-1}x \, dx}{x^2} = \log\left(\frac{1 - \sqrt{1 - x^2}}{x}\right) - \frac{\sin^{-1}x}{x}$$

400.
$$\int \frac{\tan^{-1}x \, dx}{x^2} = \log x - \frac{1}{2} \log (1 + x^2) - \frac{\tan^{-1}x}{x}.$$

401.
$$\int e^{ax} dx = \frac{e^{ax}}{a} \cdot \int f(e^{ax}) dx = \int \frac{f(y) dy}{ay}, \ y = e^{ax}.$$

402.
$$\int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1).$$

403.
$$\int x^m e^{ax} dx = \frac{x^m e^{ax}}{a} - \frac{m}{a} \int x^{m-1} e^{ax} dx.$$

404.
$$\int \frac{e^{ax}}{x^m} dx = \frac{1}{m-1} \left[-\frac{e^{ax}}{x^{m-1}} + a \int \frac{e^{ax} dx}{x^{m-1}} \right].$$

405.
$$\int a^{bx} dx = \frac{a^{bx}}{b \log a} \cdot \int f(a^{bx}) dx = \int \frac{f(y) dy}{b \cdot \log a \cdot y}, \ y = a^{bx}.$$

406.
$$\int x^{n} a^{x} dx = \frac{a^{x} x^{n}}{\log a} - \frac{n a^{x} x^{n-1}}{(\log a)^{2}} + \frac{n (n-1) a^{x} x^{n-2}}{(\log a)^{3}} \cdot \cdot \cdot \\ \pm \frac{n (n-1) (n-2) \cdot \cdot \cdot 2.1 a^{x}}{(\log a)^{n+1}}.$$

407.
$$\int \frac{a^{x} dx}{x^{n}} = \frac{1}{n-1} \left[-\frac{a^{x}}{x^{n-1}} - \frac{a^{x} \cdot \log a}{(n-2)x^{n-2}} - \frac{a^{x} \cdot (\log a)^{2}}{(n-2)(n-3)x^{n-3}} - \dots + \frac{(\log a)^{n-1}}{(n-2)(n-3)\cdots 2.1} \int \frac{a^{x} dx}{x} \right].$$

408.
$$\int \frac{a^x dx}{x} = \log x + x \log a + \frac{(x \log a)^3}{2 \cdot 2!} + \frac{(x \log a)^3}{3 \cdot 3!} + \cdots$$

409.
$$\int \frac{dx}{1 + e^x} = \log \frac{e^x}{1 + e^x}.$$

410.
$$\int \frac{dx}{a + be^{mx}} = \frac{1}{am} [mx - \log(a + be^{mx})].$$

411.
$$\int \frac{dx}{ae^{mx} + be^{-mx}} = \frac{1}{m\sqrt{ab}} \tan^{-1} \left(e^{mx} \sqrt{\frac{a}{b}} \right).$$

412.
$$\int \frac{dx}{\sqrt{a + he^{mx}}} = \frac{1}{m\sqrt{a}} \{ \log (\sqrt{a + be^{mx}} - \sqrt{a}) \}$$

$$-\log(\sqrt{a+b\,e^{mx}}+\sqrt{a})\,\xi, \text{ or } \frac{2}{m\sqrt{-a}}\tan^{-1}\frac{\sqrt{a+be^{mx}}}{\sqrt{-a}}.$$
413.
$$\int \frac{xe^x\,dx}{(1+x)^2} = \frac{e^x}{1+x}, \int x^n \cdot e^{ax^{n+1}}dx = \frac{e^{ax^{n+1}}}{a\,(n+1)}.$$

413.
$$\int \frac{xe^x dx}{(1+x)^2} = \frac{e^x}{1+x}, \quad \int x^n \cdot e^{ax^{n+1}} dx = \frac{e^{ax^{n+1}}}{a(n+1)}.$$

414.
$$\int e^{ax} \sin px \, dx = \frac{e^{ax} (a \sin px - p \cos px)}{a^2 + p^2}.$$

415.
$$\int e^{ax} \cos px \, dx = \frac{e^{ax} (a \cos px + p \sin px)}{a^2 + p^2}.$$

416.
$$\int e^{ax} \log x \, dx = \frac{e^{ax} \log x}{a} - \frac{1}{a} \int \frac{e^{ax} dx}{x}.$$

417.
$$\int e^{ax} \sin^2 x \, dx = \frac{e^{ax}}{4 + a^2} \left(\sin x \, (a \sin x - 2 \cos x) + \frac{2}{a} \right).$$

418.
$$\int e^{ax} \cos^2 x \, dx = \frac{e^{ax}}{4 + a^2} \left(\cos x \left(2 \sin x + a \cos x \right) + \frac{2}{a} \right)$$

419.
$$\int e^{ax} \sin^{n} bx \, dx = \frac{1}{a^{2} + n^{2}b^{2}} \left((a \sin bx) + a \cos bx \right)$$

$$-nb\cos bx)e^{ax}\sin^{n-1}bx+n(n-1)b^2\int e^{ax}\sin^{n-2}bx\cdot dx$$

421.
$$\int e^{ax} \tan^{n} x \, dx$$

$$= \frac{e^{ax} \tan^{n-1} x}{n-1} - \frac{a}{n-1} \int e^{ax} \tan^{n-1} x \, dx - \int e^{ax} \tan^{n-2} x \, dx.$$

422.
$$\int e^{ax} \cot^n x \, dx$$

= $-\frac{e^{ax} \cot^{n-1} x}{n-1} + \frac{a}{n-1} \int e^{ax} \cot^{n-1} x \, dx - \int e^{ax} \cot^{n-2} x \, dx$.

423.
$$\int \frac{e^{ax} dx}{\sin^n x} = -e^{ax} \frac{a \sin x + (n-2)\cos x}{(n-1)(n-2)\sin^{n-1} x} + \frac{a^2 + (n-2)^2}{(n-1)(n-2)} \int \frac{e^{ax} dx}{\sin^{n-2} x}.$$

424.
$$\int \frac{e^{ax} dx}{\cos^{n} x} = -e^{ax} \frac{a \cos x - (n-2) \sin x}{(n-1)(n-2) \cos^{n-1} x} + \frac{a^{2} + (n-2)^{2}}{(n-1)(n-2)} \int \frac{e^{ax} dx}{\cos^{n-2} x}.$$

$$425. \int e^{ax} \sin^{m} x \cos^{n} x dx$$

$$= \frac{1}{(m+n)^{2} + a^{2}} \left\{ e^{ax} \sin^{mx} x \cos^{n-1} x (a \cos x + (m+n) \sin x) - ma \int e^{ax} \sin^{m-1} x \cos^{m-1} x dx + (n-1)(m+n) \int e^{ax} \sin^{m} x \cos^{n-2} x dx \right\}$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ e^{ax} \sin^{m-1} x \cos^n x (a \sin x - (m+n) \cos x) + na \int e^{ax} \sin^{m-1} x \cos^{n-1} x dx + (m-1) (m+n) \int e^{ax} \sin^{m-2} x \cos^n x dx \right\}$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ \left[e^{ax} \cos^{n-1} x \sin^{m-1} x (a \sin x \cos x + n \sin^2 x) - m \cos^2 x \right] + n (n-1) \int e^{ax} \sin^m x \cos^{n-2} x dx + m (m-1) \int e^{ax} \sin^{m-2} x \cos^n x dx \right\}$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ \left[e^{ax} \sin^{m-1} x \cos^{n-1} x (a \sin x \cos x + n \sin^2 x) - m \cos^2 x \right] + n (n-1) \int e^{ax} \sin^{m-2} x \cos^{n-2} x dx + (m-n) (m+n-1) \int e^{ax} \sin^{m-2} x \cos^n x dx \right\}$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ \left[e^{ax} \sin^{m-1} x \cos^{n-1} x (a \sin x \cos x + n \sin^2 x) - m \cos^2 x \right] + m (m-1) \int e^{ax} \sin^{m-2} x \cos^n x dx - m \cos^2 x \right] + m (m-1) \int e^{ax} \sin^m x \cos^{n-1} x dx \right\}.$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ \left[e^{ax} \sin^{m-1} x \cos^{n-1} x (a \sin x \cos x + n \sin^2 x) - m \cos^2 x \right] + m (m-1) \int e^{ax} \sin^m x \cos^{n-1} x dx \right\}.$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ \left[e^{ax} \sin^{m-1} x \cos^{n-1} x (a \sin x \cos x + n \sin^2 x) - m \cos^2 x \right] + m (m-1) \int e^{ax} \sin^m x \cos^{n-1} x dx \right\}.$$

$$426. \int \log x \, dx = x \, \log x - x.$$

427.
$$\int x^m \log x \, dx = x^{m+1} \left[\frac{\log x}{m+1} - \frac{1}{(m+1)^2} \right].$$

428.
$$\int (\log x)^n dx = x (\log x)^n - n \int (\log x)^{n-1} dx.$$

429.
$$\int x^m (\log x)^n dx = \frac{x^{m+1} (\log x)^n}{m+1} - \frac{n}{m+1} \int x^m (\log x)^{n-1} dx.$$

430.
$$\int \frac{(\log x)^n dx}{x} = \frac{(\log x)^{n+1}}{n+1}.$$

431.
$$\int \frac{dx}{\log x} = \log(\log x) + \log x + \frac{(\log x)^2}{2 \cdot 2!} + \frac{(\log x)^3}{3 \cdot 3!} + \cdots$$

432.
$$\int \frac{dx}{(\log x)^n} = -\frac{x}{(n-1)(\log x)^{n-1}} + \frac{1}{n-1} \int \frac{dx}{(\log x)^{n-1}}$$

433.
$$\int \frac{x^m dx}{(\log x)^n} = -\frac{x^{m+1}}{(n-1)(\log x)^{n-1}} + \frac{m+1}{n-1} \int \frac{x^m dx}{(\log x)^{n-1}}.$$

434.
$$\int \frac{x^m dx}{\log x} = \int \frac{e^{-y}}{y} dy$$
, where $y = -(m+1)\log x$.

435.
$$\int \frac{dx}{x \log x} = \log(\log x)$$
, and $\int \frac{(n-1) dx}{x (\log x)^n} = \frac{-1}{(\log x)^{n-1}}$.

436.
$$\int \log (a^2 + x^2) dx = x \cdot \log (a^2 + x^2) - 2x + 2a \cdot \tan^{-1} \left(\frac{x}{a}\right)$$

437.
$$\int (a + bx)^m \log x \, dx$$

$$= \frac{1}{b(m+1)} \left[(a + bx)^{m-1} \log x - \int \frac{(a + bx)^{m+1} \, dx}{x} \right].$$

438.
$$\int x^{m} \log (a + bx) dx$$

$$= \frac{1}{m+1} \left[x^{m+1} \log (a + bx) - b \int \frac{x^{m+1} dx}{a + bx} \right].$$

439.
$$\int \frac{\log(a+bx)dx}{x} = \log a \cdot \log x + \frac{bx}{a} - \frac{1}{2^2} \left(\frac{bx}{a}\right)^2 + \frac{1}{3^2} \left(\frac{bx}{a}\right)^3 - \cdots$$
$$= \frac{1}{2} (\log bx)^2 - \frac{a}{bx} + \frac{1}{2^2} \left(\frac{a}{bx}\right)^2 - \frac{1}{3^2} \left(\frac{a}{bx}\right)^3 + \cdots$$

440.
$$\int \frac{\log x \, dx}{(a+bx)^m} = \frac{1}{b(m-1)} \left[-\frac{\log x}{(a+bx)^{m-1}} + \int \frac{dx}{x(a+bx)^{m-1}} \right].$$

441.
$$\int \frac{\log x \, dx}{a + bx} = \frac{1}{b} \log x \cdot \log (a + bx) - \frac{1}{b} \int \frac{\log (a + bx) \, dx}{x}$$

442.
$$\int (a+bx)\log x \, dx = \frac{(a+bx)^2}{2b}\log x - \frac{a^2\log x}{2b} - ax - \frac{1}{4}bx^2.$$

443.
$$\int \frac{\log x \, dx}{\sqrt{a+bx}}$$

$$= \frac{2}{b} \left[(\log x - 2)\sqrt{a+bx} + \sqrt{a} \log(\sqrt{a+bx} + \sqrt{a}) - \sqrt{a} \log(\sqrt{a+bx} - \sqrt{a}) \right], \text{ if } a > 0$$

$$= \frac{2}{b} \left[(\log x - 2)\sqrt{a+bx} + 2\sqrt{-a} \tan^{-1} \sqrt{\frac{a+bx}{-a}} \right], \text{ if } a < 0.$$

444.
$$\int \sin \log x \, dx = \frac{1}{2} x [\sin \log x - \cos \log x].$$

445.
$$\int \cos \log x \, dx = \frac{1}{2} x [\sin \log x + \cos \log x].$$

446.
$$\int \sinh x \, dx = \cosh x.$$

447.
$$\int \cosh x dx = \sinh x.$$

448.
$$\int \tanh x \, dx = \log \cosh x.$$

449.
$$\int \coth x \, dx = \log \sinh x.$$

450.
$$\int \operatorname{sech} x \, dx = 2 \tan^{-1} e^x$$
.

451.
$$\int \operatorname{csch} x \, dx = \log \tanh \frac{x}{2}.$$

452.
$$\int \sinh^n x \, dx = \frac{1}{n} \sinh^{n-1} x \cdot \cosh x - \frac{n-1}{n} \int \sinh^{n-2} x \, dx$$
$$= \frac{1}{n+1} \sinh^{n+1} x \cosh x - \frac{n+2}{n+1} \int \sinh^{n+2} x \, dx.$$

453.
$$\int \cosh^{n} x \, dx = \frac{1}{n} \sinh x \cdot \cosh^{n-1} x + \frac{n-1}{n} \int \cosh^{n-2} x \, dx$$
$$= -\frac{1}{n+1} \sinh x \cosh^{n+1} x + \frac{n+2}{n+1} \int \cosh^{n+2} x \, dx.$$

454.
$$\int x \sinh x \, dx = x \cosh x - \sinh x.$$

455.
$$\int x \cosh x \, dx = x \sinh x - \cosh x.$$

456.
$$\int x^2 \sinh x \, dx = (x^2 + 2) \cosh x - 2x \sinh x$$
.

457.
$$\int x^n \sinh x \, dx = x^n \cosh x - nx^{n-1} \sinh x + n(n-1) \int x^{n-2} \sinh x \, dx$$

458.
$$\int \sinh^2 x \, dx = \frac{1}{2} (\sinh x \cosh x - x).$$

459.
$$\int \sinh x \cdot \cosh x dx = \frac{1}{4} \cosh (2x).$$

460.
$$\int \cosh^2 x \, dx = \frac{1}{2} \left(\sinh x \, \cosh x + x \right)$$

461.
$$\int \tanh^2 x \, dx = x - \tanh x.$$

462.
$$\int \coth^2 x \, dx = x - \coth x.$$

463.
$$\int \operatorname{sech}^2 x \, dx = \tanh x.$$

$$464. \int \operatorname{csch}^2 x \, dx = - \coth x.$$

465.
$$\int \sinh^{-1} x \, dx = x \, \sinh^{-1} x - \sqrt{1 + x^2}.$$

466.
$$\int \cosh^{-1} x \, dx = x \cosh^{-1} x - \sqrt{x^2 - 1}.$$

467.
$$\int \tanh^{-1} x \, dx = x \tanh^{-1} x + \frac{1}{2} \log (1 - x^3).$$

468.
$$\int x \sinh^{-1} x \, dx = \frac{1}{4} \left[(2 x^2 + 1) \sinh^{-1} x - x \sqrt{1 + x^2} \right].$$

469.
$$\int x \cosh^{-1} x \, dx = \frac{1}{4} \left[(2 \, x^2 - 1) \cosh^{-1} x - x \sqrt{x^2 - 1} \right].$$

470.
$$\int \frac{dx}{\cosh a + \cosh x}$$

$$= \operatorname{csch} a \left[\log \cosh \frac{1}{2} (x+a) - \log \cosh \frac{1}{2} (x-a) \right],$$

$$= 2 \operatorname{csch} a \cdot \tanh^{-1} \left(\tanh \frac{1}{2} x \cdot \tanh \frac{1}{2} a \right).$$

471.
$$\int \frac{dx}{\cos a + \cosh x} = 2 \csc a \cdot \tan^{-1} \left(\tanh \frac{1}{2} x \cdot \tan \frac{1}{2} a \right).$$

472.
$$\int \frac{dx}{1+\cos a \cdot \cosh x} = 2 \csc a \cdot \tanh^{-1}(\tanh \frac{1}{2}x \cdot \tan \frac{1}{2}a).$$

473.
$$\int \sinh x \cdot \cos x \, dx = \frac{1}{2} (\cosh x \cdot \cos x + \sinh x \cdot \sin x).$$

475.
$$\int \sinh x \cdot \sin x \, dx = \frac{1}{2} (\cosh x \cdot \sin x - \sinh x \cdot \cos x).$$

476.
$$\int \cosh x \cdot \sin x \, dx = \frac{1}{4} (\sinh x \cdot \sin x - \cosh x \cdot \cos x)$$
.
477. $\int \sinh (mx) \sinh (nx) \, dx$

$$= \frac{1}{m^2 - n^2} \left[m \sinh (nx) \cosh (mx) - n \cosh (nx) \sinh (mx) \right]$$
478. $\int \cosh (mx) \sinh (nx) \, dx$

$$= \frac{1}{m^2 - n^2} \left[m \sinh (nx) \sinh (mx) - n \cosh (nx) \cosh (mx) \right]$$
479. $\int \cosh (mx) \cosh (nx) \, dx$

$$= \frac{1}{m^2 - n^2} \left[m \sinh (mx) \cosh (nx) - n \sinh (nx) \cosh (mx) \right]$$

$$\int \frac{dx}{a \cos^2 x + c \sin x \cdot \cos x + b \sin^2 x} = \int \frac{d(\tan x)}{a + c \tan x + b \tan^2 x}$$

$$\int \frac{(l + m \cos x + n \sin x) \, dx}{a + b \cos x + c \sin x} = \int \frac{(m \cos \delta + n \sin \delta) \cos z \cdot dz}{Z}$$

$$+ \int \frac{l \cdot dz}{Z} - \int \frac{(m \sin \delta - n \cos \delta) \sin z \cdot dz}{Z}$$
where $b = q \cdot \cos \delta$, $c = q \cdot \sin \delta$, $z = x - \delta$, $z = a + q \cdot \cos z$.
$$\int \sin (mx + a) \cdot \sin (nx + b) \, dx$$

$$= \frac{\sin [mx - nx + a - b]}{2(m - n)} - \frac{\sin [mx + nx + a + b]}{2(m + n)}$$

$$\int \cos (mx + a) \cdot \cos (nx + b) \, dx$$

$$= \frac{\sin [mx + nx + a + b]}{2(m + n)} + \frac{\sin [mx - nx + a - b]}{2(m - n)}$$

$$\int \sin (mx + a) \cdot \cos (nx + b) \, dx$$

$$= -\frac{\cos [mx + nx + a + b]}{2(m + n)} - \frac{\cos [mx - nx + a - b]}{2(m - n)}$$

VL MISCELLANEOUS DEFINITE INTEGRALS.*

480.
$$\int_{0}^{\infty} \frac{a \, dx}{a^{2} + x^{2}} = \frac{\pi}{2}, \text{ if } a > 0; 0, \text{ if } a = 0; -\frac{\pi}{2}, \text{ if } a < 0.$$
481.
$$\int_{0}^{\infty} x^{n-1} e^{-x} \, dx = \int_{0}^{1} \left[\log \frac{1}{x} \right]^{n-1} \, dx \equiv \Gamma(n).$$

$$\Gamma(z+1) = z \cdot \Gamma(z), \text{ if } z > 0.$$

$$\Gamma(y) \cdot \Gamma(1-y) = \frac{\pi}{\sin \pi y}, \text{ if } 1 > y > 0. \quad \Gamma(2) = \Gamma(1) = 1.$$

$$\Gamma(n+1) = n!, \text{ if } n \text{ is an integer.} \qquad \Gamma(z) = \Pi(z-1).$$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}. \qquad Z(y) = D_{y} [\log \Gamma(y)]. \quad Z(1) = -0.577216.$$
482.
$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} \, dx = \int_{0}^{\infty} \frac{x^{m-1} \, dx}{(1+x)^{m+n}} = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}.$$
483.
$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \, dx$$

$$= \frac{1 \cdot 3 \cdot 5 \cdots (n-1)}{2 \cdot 4 \cdot 6 \cdots (n)} \cdot \frac{\pi}{2}, \text{ if } n \text{ is an even integer,}$$

$$= \frac{2 \cdot 4 \cdot 6 \cdots (n-1)}{1 \cdot 3 \cdot 5 \cdot 7 \cdots n}, \text{ if } n \text{ is an odd integer,}$$

$$= \frac{1}{2} \sqrt{\pi} \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2}+1)}, \text{ for any value of } n \text{ greater than } -1.$$

484.
$$\int_0^{\infty} \frac{\sin mx \, dx}{x} = \frac{\pi}{2}$$
, if $m > 0$; 0, if $m = 0$; $-\frac{\pi}{2}$, if $m < 0$.

^{*} For very complete lists of definite integrals, see Bierens de Haan, Tables d'intégrales définies, Amsterdam, 1858-64, and Nouv. Tables d'intégrales définies, Leyden, 1867.

485.
$$\int_0^\infty \frac{\sin x \cdot \cos mx \, dx}{x} = 0, \text{ if } m < -1 \text{ or } m > 1;$$

$$\frac{\pi}{4}, \text{ if } m = -1 \text{ or } m = 1; \frac{\pi}{2}, \text{ if } -1 < m < 1.$$

$$486. \int_0^\infty \frac{\sin^2 x \, dx}{x^2} = \frac{\pi}{2}.$$

487.
$$\int_0^\infty \cos(x^2) \, dx = \int_0^\infty \sin(x^2) \, dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}.$$

488.
$$\int_0^{\pi} \sin kx \cdot \sin mx \, dx = \int_0^{\pi} \cos kx \cdot \cos mx \, dx = 0,$$
 if k is different from m.

489.
$$\int_0^{\pi} \sin^2 mx \, dx = \int_0^{\pi} \cos^2 mx \, dx = \frac{\pi}{2}$$

490.
$$\int_0^\infty \frac{\cos mx \, dx}{1 + x^2} = \frac{\pi}{2} \cdot e^{-m}. \qquad m > 0.$$

491.
$$\int_0^\infty \frac{\cos x \, dx}{\sqrt{x}} = \int_0^\infty \frac{\sin x \, dx}{\sqrt{x}} = \sqrt{\frac{\pi}{2}}.$$

492.
$$\int_0^\infty e^{-a^2x^2} dx = \frac{1}{2a} \sqrt{\pi} \cdot = \frac{1}{2a} \Gamma(\frac{1}{2}).$$

493.
$$\int_0^\infty x^n e^{-\alpha x} dx = \frac{\Gamma(n+1)}{a^{n+1}} = \frac{n!}{a^{n+1}}.$$

494.
$$\int_0^\infty x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)}{2^{n+1} a^n} \sqrt{\frac{\pi}{a}}.$$

495.
$$\int_0^\infty e^{-x^2 - \frac{a^2}{x^2}} dx = \frac{e^{-2a} \sqrt{\pi}}{2}$$
 $a > 0$.

496.
$$\int_0^\infty e^{-nx} \sqrt{x} \, dx = \frac{1}{2n} \sqrt{\frac{\pi}{n}}$$

$$497. \int_0^\infty \frac{e^{-nx}}{\sqrt{x}} dx = \sqrt{\frac{\pi}{n}}$$

498.
$$\int_0^{\infty} \frac{dx}{e^{nx} + e^{-nx}} = \frac{\pi}{4 n}.$$

499.
$$\int_0^\infty \frac{x \, dx}{e^{nx} - e^{-nx}} = \frac{\pi^3}{8 \, n^2}.$$

500.
$$\int_0^{\pi i} \sinh(mx) \cdot \sinh(nx) dx = \int_0^{\pi i} \cosh(mx) \cdot \cosh(nx) dx$$
$$= 0, \text{ if } m \text{ is different from } n.$$

501.
$$\int_0^{\pi i} \cosh^2(mx) dx = -\int_0^{\pi i} \sinh^2(mx) dx = \frac{\pi i}{2}$$

502.
$$\int_{-\pi i}^{+\pi i} \sinh(mx) dx = 0.$$

$$503. \int_0^{\pi i} \cosh(mx) dx = 0.$$

$$504. \int_{-\pi i}^{\pi i} \sinh(mx) \cosh(nx) dx = 0.$$

$$505. \int_0^{\pi i} \sinh(mx) \cosh(mx) dx = 0.$$

506.
$$\int_0^\infty e^{-ax} \cos mx \, dx = \frac{a}{a^2 + m^2}, \text{ if } a > 0.$$

507.
$$\int_0^\infty e^{-ax} \sin mx \, dx = \frac{m}{a^2 + m^2}, \text{ if } a > 0.$$

$$508. \int_0^\infty e^{-a^2x^2} \cos bx \, dx = \frac{\sqrt{\pi \cdot e^{-\frac{b^2}{4a^2}}}}{2a}.$$

a > 0.

$$509. \int_0^1 \frac{\log x}{1-x} dx = -\frac{\pi^3}{6}.$$

$$510. \int_0^1 \frac{\log x}{1+x} dx = -\frac{\pi^3}{12}.$$

511.
$$\int_0^1 \frac{\log x}{1-x^2} dx = -\frac{\pi^3}{8}$$

$$512. \int_0^1 \log\left(\frac{1+x}{1-x}\right) \cdot \frac{dx}{x} = \frac{\pi^2}{4}.$$

513.
$$\int_0^1 \frac{\log x \, dx}{\sqrt{1-x^2}} = -\frac{\pi}{2} \log 2.$$

514.
$$\int_0^1 \frac{(x^p - x^q) dx}{\log x} = \log \frac{p+1}{q+1}, \text{ if } p+1 > 0, q+1 > 0.$$

515.
$$\int_0^1 (\log x)^n dx = (-1)^n \cdot n!.$$

516.
$$\int_0^1 \left(\log \frac{1}{x}\right)^{\frac{1}{2}} dx = \frac{\sqrt{\pi}}{2}$$
.

$$517. \int_0^1 \left(\log \frac{1}{x}\right)^n dx = n!.$$

$$518. \int_0^1 \frac{dx}{\sqrt{\log\left(\frac{1}{x}\right)}} = \sqrt{\pi}.$$

519.
$$\int_0^1 x^m \log \left(\frac{1}{x}\right)^n dx = \frac{\Gamma(n+1)}{(m+1)^{n+1}}, \text{ if } m+1 > 0, n+1 > 0.$$

520.
$$\int_0^\infty \log \left(\frac{e^x+1}{e^x-1}\right) dx = \frac{\pi^3}{4}.$$

521.
$$\int_0^{\frac{\pi}{2}} \log \sin x \, dx = \int_0^{\frac{\pi}{2}} \log \cos x \, dx = -\frac{\pi}{2} \cdot \log 2.$$

522.
$$\int_0^{\pi} x \cdot \log \sin x \, dx = -\frac{\pi^2}{2} \log 2.$$

523.
$$\int_0^{\pi} \log\left(a \pm b \cos x\right) dx = \pi \log\left(\frac{a + \sqrt{a^2 - b^2}}{2}\right) \cdot \quad a \ge b.$$

VII. ELLIPTIC INTEGRALS.

$$F(\phi, k) \equiv \int_{0}^{\phi} \frac{d\theta}{\sqrt{1 - k^{2} \sin^{2} \theta}} \equiv \int_{0}^{x} \frac{dz}{\sqrt{1 - z^{3}} \sqrt{1 - k^{2} z^{2}}} \equiv u,$$
where $k^{2} < 1$, $x = \sin \phi$.
$$E(\phi, k) \equiv \int_{0}^{\phi} \sqrt{1 - k^{2} \sin^{2} \theta} \cdot d\theta.$$

$$\Pi(\phi, n, k) \equiv \int_{0}^{\phi} \frac{d\theta}{(1 + n \sin^{2} \theta) \sqrt{1 - k^{2} \sin^{2} \theta}}.$$

$$\phi \equiv \text{am } u, \sin \phi \equiv x \equiv \text{sn } u, \cos \phi \equiv \sqrt{1 - x^{2}} \equiv \text{cn } u, \tan \phi \equiv \text{tn } u,$$

$$\Delta \phi \equiv \sqrt{1 - k^{2} \sin^{2} \phi} \equiv \sqrt{1 - k^{2} x^{2}} \equiv \text{dn } u, k'^{2} \equiv 1 - k^{2}.$$

$$u \equiv \text{am}^{-1}(\phi, k) \equiv \text{sn}^{-1}(x, k) \equiv \text{cn}^{-1}(\sqrt{1 - x^{2}}, k)$$

$$\equiv \text{dn}^{-1}(\sqrt{1 - k^{2} x^{2}}, k).$$

$$K \equiv F(\frac{1}{2}\pi, k), K' \equiv F(\frac{1}{2}\pi, k'), E \equiv E(\frac{1}{2}\pi, k), E' \equiv E(\frac{1}{2}\pi, k').$$
If $k_{0} = \frac{2k^{3}}{1 + k}$ and $\tan \phi \equiv \frac{\sin 2\omega}{k + \cos 2\omega},$

$$F(\phi, k) \equiv \frac{2}{1 + k} F(\omega, k_{0}).$$

$$524. \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^{2} \sin^{2} \theta}}$$

$$= \frac{\pi}{2} \left[1 + (\frac{1}{2})^{3} k^{2} + \left(\frac{1 \cdot 3}{2 \cdot 4} \right)^{2} k^{4} + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \right)^{2} k^{6} + \cdots \right], \text{ if } k^{3} < 1,$$

$$= K.$$

$$525. \int_{0}^{\frac{\pi}{2}} \sqrt{1 - k^{2} \sin^{2} \theta} \cdot d\theta$$

 $= \frac{\pi}{2} \left[1 - \left(\frac{1}{2}\right)^2 k^{\frac{1}{2}} - \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \frac{k^4}{3} - \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^2 \frac{k^6}{5} - \cdots \right], \text{ if } k^{\frac{1}{2}} < 1,$

526.
$$\int_{0}^{\phi} \frac{d\theta}{\sqrt{1-k^{2}\sin^{2}\theta}} = \frac{2}{\pi} \phi \cdot K - \sin \phi \cos \phi \left[\frac{1 \cdot 1}{2 \cdot 2} k^{3} + \frac{1 \cdot 3}{2 \cdot 4} A_{4} k^{4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} A_{6} k^{6} + \cdots \right]$$
$$= F(\phi, k),$$

where
$$A_4 \equiv \frac{1}{4} \sin^2 \phi + \frac{3}{2 \cdot 4}$$
, $A_6 \equiv \frac{1}{6} \sin^4 \phi + \frac{5}{6 \cdot 4} \sin^2 \phi + \frac{5 \cdot 3}{6 \cdot 4 \cdot 2}$, $A_8 \equiv \frac{1}{8} \sin^6 \phi + \frac{7}{8 \cdot 6} \sin^4 \phi + \frac{7 \cdot 5}{8 \cdot 6 \cdot 4} \sin^2 \phi + \frac{7 \cdot 5 \cdot 3}{8 \cdot 6 \cdot 4 \cdot 2}$, etc.

527.
$$\int_{0}^{\phi} \sqrt{1 - k^{2} \sin^{2} \theta} \cdot d\theta = \frac{2}{\pi} \phi \cdot E + \sin \phi \cos \phi \left[\frac{1 \cdot 1}{2 \cdot 2} k^{2} + \frac{1}{2 \cdot 4} k^{4} A_{4} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6} k^{6} A_{6} + \cdots \right]$$
$$= E(\phi, k).$$

528.*
$$\int_0^x \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}} = \operatorname{sn}^{-1}(x, k)$$
$$= F(\sin^{-1}x, k). \quad 0 < x < 1.$$

529.
$$\int_{x}^{1} \frac{dx}{\sqrt{(1-x^{2})(k^{2}+k^{2}x^{2})}} = \operatorname{cn}^{-1}(x, k)$$
$$= F(\cos^{-1}x, k) = \operatorname{sn}^{-1}(\sqrt{1-x^{2}}, k). \qquad 0 < x < 1.$$

530.
$$\int_{x}^{1} \frac{dx}{\sqrt{(1-x^{2})(x^{2}-k^{12})}} = dn^{-1}(x, k)$$
$$= F(\Delta^{-1}x, k) = sn^{-1}\left(\frac{1}{k}\sqrt{1-x^{2}}, k\right) \cdot 0 < x < 1.$$

531.
$$\int_0^x \frac{dx}{\sqrt{(1+x^2)(1+k'^2x^2)}} = \tan^{-1}(x, k)$$
$$= F(\tan^{-1}x, k) = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}, k\right) \cdot 0 < x < 1.$$

^{*} The next forty-two integrals are copied in order from a class-room list of Prof. W. E. Byerly.

532.
$$\int_0^x \frac{dx}{\sqrt{x(1-x)(1-k^2x)}} = 2 \operatorname{sn}^{-1}(\sqrt{x}, k)$$
$$= 2 F(\sin^{-1}\sqrt{x}, k). \ 0 < x < 1.$$

533.
$$\int_{x}^{1} \frac{dx}{\sqrt{x(1-x)(k'^{2}+k^{2}x)}} = 2 \operatorname{cn}^{-1}(\sqrt{x}, k)$$
$$= 2 F(\cos^{-1}\sqrt{x}, k) = 2 \operatorname{sn}^{-1}(\sqrt{1-x}, k). \quad 0 < x < 1.$$

534.
$$\int_{x}^{1} \frac{dx}{\sqrt{x(1-x)(x-k^{2})}} = 2 \operatorname{dn}^{-1}(\sqrt{x}, k)$$
$$= 2 F(\Delta^{-1}\sqrt{x}, k) = 2 \operatorname{sn}^{-1}\left(\frac{1}{k}\sqrt{1-x}, k\right) \cdot 0 < x < 1.$$

$$535. \int_0^x \frac{dx}{\sqrt{(1+x)(1+k^2x)}} = 2 \operatorname{tn}^{-1}(\sqrt{x}, k)$$

$$= 2 F(\operatorname{tan}^{-1}\sqrt{x}, k) = 2 \operatorname{sn}^{-1}\left(\sqrt{\frac{x}{1+x}}, k\right) \cdot 0 < x < 1.$$

536.
$$\int_0^x \frac{dx}{\sqrt{(a^2-x^2)(b^2-x^2)}} = \frac{1}{a} \operatorname{sn}^{-1} \left(\frac{x}{b}, \frac{b}{a} \right) \cdot \quad a > b > x > 0.$$

537.
$$\int_{x}^{\infty} \frac{dx}{\sqrt{(x^{2}-a^{2})(x^{2}-b^{2})}} = \frac{1}{a} \operatorname{sn}^{-1} \left(\frac{a}{x}, \frac{b}{a} \right)$$
 $x > a > b$.

538.
$$\int_{x}^{b} \frac{dx}{\sqrt{(a^{2} + x^{2})(b^{2} - x^{2})}}$$

$$= \frac{1}{\sqrt{a^{2} + b^{2}}} \operatorname{cn}^{-1} \left(\frac{x}{b}, \frac{b}{\sqrt{a^{2} + b^{2}}} \right)$$
 $b > x > 0.$

539.
$$\int_{b}^{x} \frac{dx}{\sqrt{(a^{2} + x^{2})(x^{2} - b^{2})}}$$

$$= \frac{1}{\sqrt{a^{2} + b^{2}}} \operatorname{cn}^{-1} \left(\frac{b}{x}, \frac{a}{\sqrt{a^{2} + b^{2}}} \right) \cdot \qquad x > b > 0.$$

540.
$$\int_{x}^{a} \frac{dx}{\sqrt{(a^{2}-x^{2})(x^{2}-b^{2})}}$$

$$= \frac{1}{a} \operatorname{sn}^{-1} \left(\sqrt{\frac{a^{2}-x^{2}}{a^{2}-b^{2}}}, \sqrt{\frac{a^{2}-b^{2}}{a^{2}}} \right) \cdot \qquad a > x > b.$$

541.
$$\int_0^x \frac{dx}{\sqrt{(x^3 + a^2)(x^2 + b^2)}}$$
$$= \frac{1}{a} \operatorname{tn}^{-1} \left(\frac{x}{b}, \sqrt{\frac{a^2 - b^2}{a^2}} \right). \qquad x > 0.$$

542.
$$\int_{x}^{\infty} \frac{dx}{\sqrt{(x-a)(x-\beta)(x-\gamma)}}$$

$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{x-\gamma}}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right). \qquad x > a.$$

543.
$$\int_{a}^{x} \frac{dx}{\sqrt{(x-a)(x-\beta)(x-\gamma)}}$$
$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{x-a}{x-\beta}}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right) \cdot \qquad x > a.$$

544.
$$\int_{x}^{a} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)}}$$

$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-x}{a-\beta}}, \sqrt{\frac{a-\beta}{a-\gamma}} \right). \quad a > x > \beta.$$

545.
$$\int_{\beta}^{x} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)}}$$

$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-\beta} \cdot \frac{x-\beta}{x-\gamma}}, \sqrt{\frac{a-\beta}{a-\gamma}} \right) \cdot a > x > \beta.$$

546.
$$\int_{x}^{\beta} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)}} = \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{\beta-\gamma}} \cdot \frac{\beta-x}{a-x}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right) \cdot \beta > x > \gamma.$$

547.
$$\int_{\gamma}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)}}$$

$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{x-\gamma}{\beta-\gamma}}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right). \qquad \beta > x > \gamma.$$

548.
$$\int_{x}^{\gamma} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)}}$$

$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\gamma-x}{\beta-x}}, \sqrt{\frac{a-\beta}{a-\gamma}} \right). \qquad \gamma > x.$$

549.
$$\int_{-\infty}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)}}$$
$$= \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-x}}, \sqrt{\frac{a-\beta}{a-\gamma}} \right). \qquad \gamma > x.$$

$$a > \beta > \gamma > \delta$$
.

550.
$$\int_{a}^{x} \frac{dx}{\sqrt{(x-a)(x-\beta)(x-\gamma)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{a-\delta}} \cdot \frac{x-a}{x-\beta}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \cdot \frac{a-\delta}{\beta-\delta} \right).$$

$$x > a$$

551.
$$\int_{x}^{a} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{a-\beta}} \cdot \frac{a-x}{x-\delta}, \sqrt{\frac{a-\beta}{a-\gamma}} \cdot \frac{\gamma-\delta}{\beta-\delta} \right).$$

$$a > x > \beta$$

552.
$$\int_{\beta}^{x} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-\beta} \cdot \frac{x-\beta}{x-\gamma}}, \sqrt{\frac{a-\beta}{a-\gamma} \cdot \frac{\gamma-\delta}{\beta-\delta}} \right).$$

$$a > x > \beta.$$

$$553. \int_{x}^{\beta} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{\beta-\gamma}} \cdot \frac{\beta-x}{a-x}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \cdot \frac{a-\delta}{\beta-\delta} \right).$$

$$\beta > x > \gamma.$$

$$554. \int_{\gamma}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{\beta-\gamma}} \cdot \frac{x-\gamma}{x-\delta}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \cdot \frac{a-\delta}{\beta-\delta} \right).$$

$$\beta > x > \gamma.$$

$$555. \int_{x}^{\gamma} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{\gamma-\delta}} \cdot \frac{\gamma-x}{\beta-x}, \sqrt{\frac{a-\beta}{a-\gamma}} \cdot \frac{\gamma-\delta}{\beta-\delta} \right).$$

$$\gamma > x > \delta.$$

$$556. \int_{\delta}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)(x-\delta)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{\gamma-\delta}} \cdot \frac{x-\delta}{a-x}, \sqrt{\frac{a-\beta}{a-\gamma}} \cdot \frac{\gamma-\delta}{\beta-\delta} \right).$$

$$\gamma > x > \delta.$$

$$557. \int_{x}^{\delta} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)(\delta-x)}}$$

$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-\delta}} \cdot \frac{\delta-x}{\gamma-x}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \cdot \frac{a-\delta}{\beta-\delta} \right).$$

$$\delta > x.$$

$$558. \int \operatorname{sn} x \, dx = \frac{1}{k} \operatorname{cosh}^{-1} \left(\frac{\operatorname{dn} x}{k} \right).$$

$$559. \int \operatorname{cn} x \, dx = \frac{1}{k} \operatorname{cosh}^{-1} (\operatorname{dn} x).$$

560.
$$\int dn \, x \, dx = \sin^{-1}(\sin x) = am \, x$$
.

$$561. \int \frac{dx}{\operatorname{sn} x} = \log \left[\frac{\operatorname{sn} x}{\operatorname{cn} x + \operatorname{dn} x} \right].$$

562.
$$\int \frac{dx}{\operatorname{cn} x} = \frac{1}{k'} \log \left[\frac{k' \operatorname{sn} x + \operatorname{dn} x}{\operatorname{cn} x} \right].$$

563.
$$\int \frac{dx}{\operatorname{dn} x} = \frac{1}{k'} \tan^{-1} \left[\frac{k' \operatorname{sn} x - \operatorname{cn} x}{k' \operatorname{sn} x + \operatorname{cn} x} \right].$$

564.
$$\int_0^x \sin^2 x \, dx = \frac{1}{k^3} [x - E(\text{am } x, k)].$$

565.
$$\int_0^x \operatorname{cn}^3 x \, dx = \frac{1}{k^2} [E(\operatorname{am} x, k) - k'^2 x].$$

566.
$$\int_0^x dn^2 x dx = E(\text{am } x, k).$$

567.
$$(m+1) \int \operatorname{sn}^m x \, dx = (m+2) (1+k^2) \int \operatorname{sn}^{m+2} x \, dx$$

 $-(m+3) k^2 \int \operatorname{sn}^{m+4} x \, dx + \operatorname{sn}^{m+1} x \operatorname{en} x \operatorname{dn} x.$

568.
$$(m+1) k^{12} \int \operatorname{cn}^m x \, dx = (m+2) (1-2 k^2) \int \operatorname{cn}^{m+2} x \, dx$$

 $+ (m+3) k^2 \int \operatorname{cn}^{m+4} x \, dx - \operatorname{cn}^{m+1} x \operatorname{sn} x \operatorname{dn} x.$

569.
$$(m+1) k^2 \int dn^m x dx = (m+2) (2-k^2) \int dn^{m+2} x dx$$

 $-(m+3) \int dn^{m+4} x dx + k^2 dn^{m+1} x \operatorname{sn} x \operatorname{cn} x.$
Since $\sin^2 \theta \equiv \frac{1}{k^2} - \frac{1}{k^2} (1 - k^2 \cdot \sin^2 \theta),$

$$\int_{0}^{\frac{\pi}{2}} \frac{\sin^{2}\theta \cdot d\theta}{\sqrt{1 - k^{2}\sin^{2}\theta}} = \frac{1}{k^{2}} \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^{2}\sin^{2}\theta}} - \frac{1}{k^{2}} \int_{0}^{\frac{\pi}{2}} \sqrt{1 - k^{2}\sin^{2}\theta} \cdot d\theta.$$

VIII. AUXILIARY FORMULAS.

A. — TRIGONOMETRIC FUNCTIONS.

570.
$$\tan a \cdot \cot a = \sin a \cdot \csc a = \cos a \cdot \sec a = 1$$
,
 $\tan a = \sin a + \cos a$, $\sec^2 a = 1 + \tan^2 a$,
 $\csc^2 a = 1 + \cot^2 a$, $\sin^2 a + \cos^2 a = 1$.

571.
$$\sin a = \sqrt{1 - \cos^2 a} = 2 \sin \frac{1}{2} a \cdot \cos \frac{1}{2} a = \cos a \cdot \tan a$$

$$= \frac{1}{\sqrt{1 + \cot^2 a}} = \frac{\tan a}{\sqrt{1 + \tan^2 a}} = \sqrt{\frac{1 - \cos 2a}{2}} = \frac{2 \tan \frac{1}{2} a}{1 + \tan^2 \frac{1}{2} a}$$

$$= \sqrt{\frac{\sec^2 a - 1}{\sec^2 a}} = \cot \frac{1}{2} a \cdot (1 - \cos a) = \tan \frac{1}{2} a \cdot (1 + \cos a).$$

572.
$$\cos a = \sqrt{1 - \sin^2 a} = \frac{1}{\sqrt{1 + \tan^2 a}} = \frac{\cot a}{\sqrt{1 + \cot^2 a}}$$

$$= \sqrt{\frac{1 + \cos 2 a}{2}} = \frac{1 - \tan^2 \frac{1}{2} a}{1 + \tan^2 \frac{1}{2} a} = \cos^2 \frac{1}{2} a - \sin^2 \frac{1}{2} a$$

$$= 1 - 2 \sin^2 \frac{1}{2} a = 2 \cos^2 \frac{1}{2} a - 1 = \sin a \cdot \cot a$$

$$= \frac{\sin 2 a}{2 \sin a} = \sqrt{\frac{\csc^2 a - 1}{\csc^2 a}} = \frac{\cot \frac{1}{2} a - \tan \frac{1}{2} a}{\cot \frac{1}{2} a + \tan \frac{1}{2} a}.$$

573.
$$\tan a = \frac{\sin a}{\sqrt{1 - \sin^2 a}} = \frac{\sqrt{1 - \cos^2 a}}{\cos a} = \frac{\sin 2 a}{1 + \cos 2 a}$$

$$= \frac{1 - \cos 2 a}{\sin 2 a} = \sqrt{\frac{1 - \cos 2 a}{1 + \cos 2 a}} = \frac{2 \tan \frac{1}{2} a}{1 - \tan^2 \frac{1}{2} a}$$

$$= \frac{\sec a}{\csc a} = \frac{2}{\cot \frac{1}{2} a - \tan \frac{1}{2} a} = \frac{2 \cot \frac{1}{2} a}{\cot^2 \frac{1}{2} a - 1}.$$

574.

	– α.	90° ± α.	180° ± α.	$270^{\circ}\pm \alpha$.	360° ± α.	
sin cos tan ctn sec csc	$-\sin \alpha + \cos \alpha - \tan \alpha - \cot \alpha + \sec \alpha - \csc \alpha$	$+\cos\alpha$ $\mp\sin\alpha$ $\mp\cot\alpha$ $\mp\tan\alpha$ $\mp\csc\alpha$ $+\sec\alpha$	$\mp \sin \alpha$ $-\cos \alpha$ $\pm \tan \alpha$ $\pm \cot \alpha$ $-\sec \alpha$ $\mp \csc \alpha$	$-\cos \alpha$ $\pm \sin \alpha$ $\mp \cot \alpha$ $\mp \tan \alpha$ $\pm \csc \alpha$ $-\sec \alpha$	$\pm \sin \alpha$ $+ \cos \alpha$ $\pm \tan \alpha$ $\pm \cot \alpha$ $+ \sec \alpha$ $\pm \csc \alpha$	

575.

	0°.	30°.	45°.	60°.	90°.	120°.	135°.	150°.	180°.
sin	0	1	$\frac{1}{4}\sqrt{2}$	1 √3	1	1√3	$\frac{1}{2}\sqrt{2}$	1 de la companya de l	0
COS	1	1√3	$\frac{1}{2}\sqrt{2}$	1	0		$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{3}\sqrt{3}$	-1
tan	0	$\frac{1}{\sqrt{3}}$	1	√3	œ	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0
ctn	80	√3	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	-√3	8
sec	1	$\frac{2}{\sqrt{3}}$	√2	2	æ	-2	$-\sqrt{2}$	$-\frac{2}{\sqrt{3}}$	-1
CSC	80	. 2	√2	$\frac{2}{\sqrt{3}}$	1	$\frac{2}{\sqrt{3}}$	√2	2	æ

576.
$$\sin \frac{1}{2} a = \sqrt{\frac{1}{2}(1 - \cos a)}$$
.

577.
$$\cos \frac{1}{2} a = \sqrt{\frac{1}{2}(1 + \cos a)}$$
.

578.
$$\tan \frac{1}{2} a = \sqrt{\frac{1 - \cos a}{1 + \cos a}} = \frac{1 - \cos a}{\sin a} = \frac{\sin a}{1 + \cos a}$$

579. $\sin 2 a = 2 \sin a \cos a$.

580.
$$\sin 3 a = 3 \sin a - 4 \sin^8 a$$
.

581. $\sin 4 a = 8 \cos^8 a \cdot \sin a - 4 \cos a \sin a$.

582.
$$\sin 5 a = 5 \sin a - 20 \sin^8 a + 16 \sin^8 a$$
.

583.
$$\sin 6 a = 32 \cos^5 a \sin a - 32 \cos^8 a \sin a + 6 \cos a \sin a$$

584.
$$\cos 2 a = \cos^2 a - \sin^2 a = 1 - 2 \sin^2 a = 2 \cos^2 a - 1$$
.

585.
$$\cos 3 a = 4 \cos^8 a - 3 \cos a$$
.

586.
$$\cos 4 a = 8 \cos^4 a - 8 \cos^2 a + 1$$
.

587.
$$\cos 5 a = 16 \cos^5 a - 20 \cos^8 a + 5 \cos a$$
.

588.
$$\cos 6 a = 32 \cos^6 a - 48 \cos^4 a + 18 \cos^2 a - 1$$
.

589.
$$\tan 2 a = \frac{2 \tan a}{1 - \tan^2 a}$$

590.
$$\cot 2 a = \frac{\cot^2 a - 1}{2 \cot a}$$

591.
$$\sin(a \pm \beta) = \sin a \cdot \cos \beta \pm \cos a \cdot \sin \beta$$
.

592.
$$\cos(a \pm \beta) = \cos a \cdot \cos \beta \mp \sin a \cdot \sin \beta$$
.

593.
$$\tan (a \pm \beta) = \frac{\tan a \pm \tan \beta}{1 \pm \tan a \cdot \tan \beta}$$

594.
$$\operatorname{ctn}(a \pm \beta) = \frac{\operatorname{ctn} a \cdot \operatorname{ctn} \beta \mp 1}{\operatorname{ctn} a \pm \operatorname{ctn} \beta}$$

595.
$$\sin a \pm \sin \beta = 2 \sin \frac{1}{2} (a \pm \beta) \cdot \cos \frac{1}{2} (a \mp \beta)$$
.

$$33. \cos a + \cos \beta = 2 \cos \frac{1}{2}(a+\beta) \cdot \cos \frac{1}{2}(a-\beta).$$

597.
$$\cos a - \cos \beta = -2 \sin \frac{1}{2} (a + \beta) \cdot \sin \frac{1}{2} (a - \beta)$$
.

598.
$$\tan a \pm \tan \beta = \frac{\sin (a \pm \beta)}{\cos a \cdot \cos \beta}$$

599.
$$\operatorname{ctn} a \pm \operatorname{ctn} \beta = \pm \frac{\sin (a \pm \beta)}{\sin a \cdot \sin \beta}$$

600.
$$\frac{\sin a \pm \sin \beta}{\cos a + \cos \beta} = \tan \frac{1}{2} (a \pm \beta).$$

601.
$$\frac{\sin a \pm \sin \beta}{\cos a - \cos \beta} = -\cot \frac{1}{2}(a \mp \beta).$$

602.
$$\frac{\sin a + \sin \beta}{\sin a - \sin \beta} = \frac{\tan \frac{1}{2} (a + \beta)}{\tan \frac{1}{2} (a - \beta)}$$

603.
$$\sin^2 a - \sin^2 \beta = \sin(a + \beta) \cdot \sin(a - \beta)$$
.

604.
$$\cos^2 a - \cos^2 \beta = -\sin(a+\beta) \cdot \sin(a-\beta).$$

605.
$$\cos^2 a - \sin^2 \beta = \cos (a + \beta) \cdot \cos (a - \beta)$$
.

606.
$$\sin xi = \frac{1}{2}i(e^x - e^{-x}) = i \sinh x.$$

607.
$$\cos xi = \frac{1}{2}(e^x + e^{-x}) = \cosh x$$
.

608.
$$\tan xi = \frac{i(e^x - e^{-x})}{e^x + e^{-x}} = i \tanh x.$$

609.
$$e^{x+y^2} = e^x \cos y + ie^x \sin y$$
.

610.
$$a^{x+yi} = a^x \cos(y \cdot \log a) + ia^x \sin(y \cdot \log a)$$
.

611.
$$(\cos \theta \pm i \cdot \sin \theta)^n = \cos n\theta \pm i \cdot \sin n\theta$$
.

612.
$$\sin x = -\frac{1}{2}i(e^{xi} - e^{-xi}).$$

613.
$$\cos x = \frac{1}{2} (e^{xi} + e^{-xi}).$$

614.
$$\tan x = -i \frac{e^{2xi} - 1}{e^{2xi} + 1}$$

615.
$$\sin(x \pm yi) = \sin x \cos yi \pm \cos x \sin yi$$

= $\sin x \cosh y \pm i \cos x \sinh y$.

616.
$$\cos(x \pm yi) = \cos x \cos yi \mp \sin x \sin yi$$

= $\cos x \cosh y \mp i \sin x \sinh y$.

In any plane triangle,

$$617. \ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

618.
$$a^2 = b^2 + c^2 - 2bc \cos A$$
.

619.
$$\frac{a+b}{a-b} = \frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)} = \frac{\cot \frac{1}{2}C}{\tan \frac{1}{2}(A-B)}$$

620.
$$\sin \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
, where $2s = a+b+c$.

621.
$$\cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}}$$
.

622.
$$\tan \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$
.

623. Area =
$$\frac{1}{2}bc \sin A = \sqrt{s(s-a)(s-b)(s-c)}$$
.

In any spherical triangle,

624.
$$\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$$

625.
$$\cos a = \cos b \cos c + \sin b \sin c \cos A$$
.

626.
$$-\cos A = \cos B \cos C - \sin B \sin C \cos a$$
.

627.
$$\sin a \cot b = \sin C \cot B + \cos a \cos C$$
.

628.
$$\cos \frac{1}{2} A = \sqrt{\frac{\sin s \cdot \sin (s-a)}{\sin b \cdot \sin c}}$$

629.
$$\sin \frac{1}{2} A = \sqrt{\frac{\sin (s-b) \cdot \sin (s-c)}{\sin b \cdot \sin c}}.$$

630.
$$\tan \frac{1}{2}A = \sqrt{\frac{\sin(s-b)\cdot\sin(s-c)}{\sin s\cdot\sin(s-a)}}$$

631.
$$\cos \frac{1}{2} a = \sqrt{\frac{\cos(S-B) \cdot \cos(S-C)}{\sin B \cdot \sin C}}$$
.

632.
$$\sin \frac{1}{2} a = \sqrt{\frac{-\cos S \cdot \cos (S - A)}{\sin B \sin C}}$$

633.
$$\tan \frac{1}{2} a = \sqrt{\frac{-\cos S \cdot \cos (S - A)}{\cos (S - B) \cdot \cos (S - C)}}$$
.
 $2s = a + b + c$. $2S = A + B + C$

634.
$$\cos \frac{1}{2}(A+B) = \frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}c} \sin \frac{1}{2}C$$
.

635.
$$\cos \frac{1}{2}(A-B) = \frac{\sin \frac{1}{2}(a+b)}{\sin \frac{1}{2}c} \sin \frac{1}{2}C.$$

636.
$$\sin \frac{1}{2}(A+B) = \frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}c} \cos \frac{1}{2}C.$$

637.
$$\sin \frac{1}{2}(A-B) = \frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}c} \cos \frac{1}{2}C$$
.

638.
$$\tan \frac{1}{2}(A+B) = \frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} \cot \frac{1}{2}C.$$

639.
$$\tan \frac{1}{2}(A-B) = \frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)} \cot \frac{1}{2}C$$
.

640.
$$\tan \frac{1}{2}(a+b) = \frac{\cos \frac{1}{2}(A-B)}{\cos \frac{1}{2}(A+B)} \tan \frac{1}{2}c$$
.

641.
$$\tan \frac{1}{2}(a-b) = \frac{\sin \frac{1}{2}(A-B)}{\sin \frac{1}{2}(A+B)} \tan \frac{1}{2}c.$$

642.
$$\frac{\cos \frac{1}{2} (a+b)}{\cos \frac{1}{2} (a-b)} = \frac{\cot \frac{1}{2} C}{\tan \frac{1}{2} (A+B)}.$$

In interpreting equations which involve logarithmic and anti-trigonometric functions, it is necessary to remember that these functions are multiple valued. To save space the formulas on this page and the next are printed in contracted form.

643.
$$\sin^{-1}x = \cos^{-1}\sqrt{1-x^3} = \tan^{-1}\frac{x}{\sqrt{1-x^3}} = \sec^{-1}\frac{1}{\sqrt{1-x^3}}$$

$$= \csc^{-1}\frac{1}{x} = 2\sin^{-1}\left[\frac{1}{2} - \frac{1}{2}\sqrt{1-x^3}\right]^{\frac{1}{2}}$$

$$= \frac{1}{2}\sin^{-1}(2x\sqrt{1-x^3}) = 2\tan^{-1}\left[\frac{1-\sqrt{1-x^3}}{x}\right]$$

$$= \frac{1}{2}\tan^{-1}\left[\frac{2x\sqrt{1-x^3}}{1-2x^3}\right] = \frac{1}{2}\pi - \cos^{-1}x$$

$$= \frac{1}{2}\pi - \sin^{-1}\sqrt{1-x^3} = -\sin^{-1}(-x)$$

$$= \cot^{-1}\frac{\sqrt{1-x^3}}{x} = (2n+\frac{1}{2})\pi - i\log(x+\sqrt{x^3-1})$$

$$= \frac{1}{4}\pi + \frac{1}{2}\sin^{-1}(2x^2-1) = \frac{1}{2}\cos^{-1}(1-2x^2).$$
644.
$$\cos^{-1}x = \sin^{-1}\sqrt{1-x^3} = \tan^{-1}\frac{\sqrt{1-x^3}}{x} = \sec^{-1}\frac{1}{x}$$

$$= \frac{1}{2}\pi - \sin^{-1}x = 2\cos^{-1}\sqrt{\frac{1+x}{2}}$$

$$= \frac{1}{2}\cos^{-1}(2x^2-1)$$

$$= 2\tan^{-1}\sqrt{\frac{1-x}{1+x}} = \frac{1}{2}\tan^{-1}\left[\frac{2x\sqrt{1-x^3}}{2x^2-1}\right]$$

$$= \csc^{-1}\frac{1}{\sqrt{1-x^3}} = \pi - \cos^{-1}(-x)$$

$$= \cot^{-1}\frac{x}{\sqrt{1-x^3}}$$

$$= i\log(x+\sqrt{x^3-1}) = \pi - i\log(\sqrt{x^3-1-x}).$$

645.
$$\tan^{-1}x = \sin^{-1}\frac{x}{\sqrt{1+x^2}} = \cos^{-1}\frac{1}{\sqrt{1+x^2}} = \frac{1}{2}\sin^{-1}\frac{2x}{1+x^2}$$

$$= \cot^{-1}\frac{1}{x} = \frac{1}{2}\pi - \cot^{-1}x = \sec^{-1}\sqrt{1+x^2}$$

$$= \frac{1}{2}\pi - \tan^{-1}\frac{1}{x}$$

$$= \csc^{-1}\frac{\sqrt{1+x^2}}{x} = \frac{1}{2}\cos^{-1}\left[\frac{1-x^2}{1+x^2}\right]$$

$$= 2\cos^{-1}\left[\frac{1+\sqrt{1+x^2}}{2\sqrt{1+x^2}}\right]^{\frac{1}{2}} = 2\sin^{-1}\left[\frac{\sqrt{1+x^2}-1}{2\sqrt{1+x^2}}\right]^{\frac{1}{2}}$$

$$= \frac{1}{2}\tan^{-1}\frac{2x}{1-x^2} = 2\tan^{-1}\left[\frac{\sqrt{1+x^2}-1}{x}\right]$$

$$= -\tan^{-1}c + \tan^{-1}\left[\frac{x+c}{1-cx}\right] = -\tan^{-1}(-x)$$

$$= \frac{1}{2}i\log\frac{1-xi}{1+xi} = \frac{1}{2}i\log\frac{i+x}{i-x}$$

$$= -\frac{1}{2}i\log\frac{1+xi}{1-xi}.$$

646.
$$\sin^{-1} x \pm \sin^{-1} y = \sin^{-1} [x \sqrt{1 - y^2} \pm y \sqrt{1 - x^2}].$$

647.
$$\cos^{-1} x \pm \cos^{-1} y = \cos^{-1} \left[xy \mp \sqrt{(1-x^2)(1-y^2)} \right].$$

648.
$$\tan^{-1} x \pm \tan^{-1} y = \tan^{-1} \left[\frac{x \pm y}{1 \mp xy} \right]$$

649.
$$\sin^{-1} x \pm \cos^{-1} y = \sin^{-1} \left[xy \pm \sqrt{(1-x^2)(1-y^2)} \right]$$

= $\cos^{-1} \left[y\sqrt{1-x^2} \mp x\sqrt{1-y^2} \right]$.

650.
$$\tan^{-1} x \pm \cot^{-1} y = \tan^{-1} \left[\frac{xy \pm 1}{y \mp x} \right] = \cot^{-1} \left[\frac{y \mp x}{xy \pm 1} \right]$$

651.
$$\log (x + yi) = \frac{1}{2} \log (x^2 + y^3) + i \tan^{-1}(y/x)$$
.

B. — Hyperbolic Functions.

652.
$$\sinh x = \frac{1}{2}(e^x - e^{-x}) = -\sinh(-x) = -i\sin(ix)$$

= $(\operatorname{csch} x)^{-1} = 2\tanh\frac{1}{2}x + (1 - \tanh^2\frac{1}{2}x)$.

653.
$$\cosh x = \frac{1}{2}(e^x + e^{-x}) = \cosh(-x) = \cos(ix) = (\operatorname{sech} x)^{-1}$$

= $(1 + \tanh^2 \frac{1}{2}x) + (1 - \tanh^2 \frac{1}{2}x)$.

654.
$$\tanh x = (e^x - e^{-x}) + (e^x + e^{-x}) = -\tanh(-x)$$

= $-i \tan(ix) = (\coth x)^{-1} = \sinh x + \cosh x$.

- 655. $\cosh xi = \cos x$.
- 656. $\sinh xi = i \sin x$.
- 657. $\cosh^2 x \sinh^2 x = 1$.
- 658. $1 \tanh^2 x = \operatorname{sech}^2 x$.
- 659. $1 \coth^2 x = \operatorname{csch}^2 x$.
- **660.** $\sinh(x \pm y) = \sinh x \cdot \cosh y \pm \cosh x \cdot \sinh y$.
- **661.** $\cosh(x \pm y) = \cosh x \cdot \cosh y \pm \sinh x \cdot \sinh y$.
- 662. $\tanh(x \pm y) = (\tanh x \pm \tanh y) + (1 \pm \tanh x \cdot \tanh y)$.
- **663.** $\sinh{(2x)} = 2 \sinh{x} \cosh{x}$.
- **664.** $\cosh(2x) = \cosh^2 x + \sinh^2 x = 2 \cosh^2 x 1 = 1 + 2 \sinh^2 x$.
- 665. $\tanh(2x) = 2 \tanh x \div (1 + \tanh^2 x)$.
- **666.** $\sinh\left(\frac{1}{2}x\right) = \sqrt{\frac{1}{2}\left(\cosh x 1\right)}$.
- **667.** $\cosh(\frac{1}{2}x) = \sqrt{\frac{1}{2}(\cosh x + 1)}$.
- **668.** $\tanh(\frac{1}{4}x) = (\cosh x 1) + \sinh x = \sinh x + (\cosh x + 1).$
- **669.** $\sinh x + \sinh y = 2 \sinh \frac{1}{2} (x + y) \cdot \cosh \frac{1}{2} (x y)$.
- 670. $\sinh x \sinh y = 2 \cosh \frac{1}{2} (x + y) \cdot \sinh \frac{1}{2} (x y)$.

671.
$$\cosh x + \cosh y = 2 \cosh \frac{1}{2} (x + y) \cdot \cosh \frac{1}{2} (x - y)$$
.

672.
$$\cosh x - \cosh y = 2 \sinh \frac{1}{2} (x + y) \cdot \sinh \frac{1}{2} (x - y)$$
.

673.
$$d \sinh x = \cosh x \cdot dx$$
.

674.
$$d \cosh x = \sinh x \cdot dx$$
.

675.
$$d \tanh x = \operatorname{sech}^2 x \cdot dx$$
.

676.
$$d \coth x = - \operatorname{csch}^2 x \cdot dx$$
.

677.
$$d \operatorname{sech} x = - \operatorname{sech} x \cdot \tanh x \cdot dx$$
.

678.
$$d \operatorname{csch} x = -\operatorname{csch} x \cdot \operatorname{ctnh} x \cdot dx$$
.

679.
$$\sinh^{-1}x = \log(x + \sqrt{x^2 + 1}) = \int \frac{dx}{\sqrt{x^2 + 1}}$$

= $\cosh^{-1}\sqrt{x^2 + 1}$.

680.
$$\cosh^{-1}x = \log(x + \sqrt{x^3 - 1}) = \int \frac{dx}{\sqrt{x^3 - 1}}$$

= $\sinh^{-1}\sqrt{x^3 - 1}$.

681.
$$\tanh^{-1}x = \frac{1}{2}\log(1+x) - \frac{1}{2}\log(1-x) = \int \frac{dx}{1-x^2}$$

682.
$$ctnh^{-1}x = \frac{1}{2}\log(1+x) - \frac{1}{2}\log(x-1) = \int \frac{dx}{1-x^2}$$

683.
$$\operatorname{sech}^{-1} x = \log \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1} \right) = -\int \frac{dx}{x\sqrt{1 - x^2}}$$

684.
$$\operatorname{csch}^{-1} x = \log \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1} \right) = -\int \frac{dx}{x\sqrt{x^2 + 1}}$$

685.
$$d \sinh^{-1} x = \frac{dx}{\sqrt{1+x^2}}$$

686.
$$d \cosh^{-1} x = \frac{dx}{\sqrt{x^2 - 1}}$$

687.
$$d \tanh^{-1} x = \frac{dx}{1-x^2}$$

688.
$$d \, \text{ctnh}^{-1} x = -\frac{dx}{x^2 - 1}$$
.

689.
$$d \operatorname{sech}^{-1} x = -\frac{dx}{x\sqrt{1-x^2}}$$

690.
$$d \operatorname{csch}^{-1} x = -\frac{dx}{x\sqrt{x^2+1}}$$
.

If m is an integer,

691.
$$\sinh(m\pi i) = 0.$$

692.
$$\cosh(m\pi i) = \cos m\pi = (-1)^m$$
.

693.
$$\tanh(m\pi i) = 0.$$

694.
$$\sinh(x + m\pi i) = (-1)^m \sinh x$$
.

695.
$$\cosh(x + m\pi i) = (-1)^m \cosh(x)$$
.

696.
$$\sinh (2m+1) \frac{1}{2} \pi i = i \sin (2m+1) \frac{1}{2} \pi = \pm i$$

697.
$$\cosh(2m+1)\frac{1}{2}\pi i=0$$
.

698.
$$\sinh\left(\frac{\pi i}{2} \pm x\right) = i \cosh x$$
.

799.
$$\cosh\left(\frac{\pi i}{2} \pm x\right) = \pm i \sinh x$$
.

700.
$$\sinh u = \tan g d u$$
.

701.
$$\cosh u = \sec \operatorname{gd} u$$
.

702.
$$\tanh u = \sin \operatorname{gd} u$$
.

703.
$$\tanh \frac{1}{2} u = \tan \frac{1}{2} \operatorname{gd} u$$
.

704.
$$u = \log \tan (\frac{1}{4}\pi + \frac{1}{2} \operatorname{gd} u).$$
 $\int \sec x \, dx = gd^{-1}x.$

C. — ELLIPTIC FUNCTIONS.

If
$$u \equiv F(\phi, k) \equiv \int_0^x \frac{dz}{\sqrt{(1-z^2)(1-k^2z^2)}} \equiv \int_0^\phi \frac{d\theta}{\sqrt{1-k^2\sin^2\theta}}$$

where k < 1, and $x \equiv \sin \phi$, ϕ is called the *amplitude* of u and is written am $(u, \mod k)$, or, more simply, am u; $x \equiv \sin \phi \equiv \operatorname{sn} u$,

$$\sqrt{1-x^2} \equiv \cos \phi \equiv \operatorname{cn} u, \ \sqrt{1-k^2x^2} \equiv \Delta \phi \equiv \Delta \operatorname{n} u \equiv \operatorname{dn} u,$$
 $K \equiv F(\frac{1}{2}\pi, k), \quad K' \equiv F(\frac{1}{2}\pi, k').$

Hence,
$$am(0) = 0$$
, $sn(0) = 0$, $cn(0) = 1$, $dn(0) = 1$, $am(-u) = -amu$, $sn(-u) = -snu$, $cn(-u) = cnu$, $dn(-u) = dnu$.

705.
$$\operatorname{sn}^2 u + \operatorname{cn}^2 u = 1$$
.

706.
$$dn^2 u + k^2 sn^2 u = 1$$
.

707.
$$dn^2 u - k^2 cn^2 u = 1 - k^2 = k^2$$
.

708. sn
$$2u = \frac{2 \text{ sn } u \cdot \text{cn } u \cdot \text{dn } u}{1 - k^2 \text{ sn}^4 u}$$
.

709. en
$$2u = \frac{\operatorname{cn}^2 u - \operatorname{sn}^2 u \cdot \operatorname{dn}^2 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{1 - 2 \operatorname{sn}^2 u + k^2 \operatorname{sn}^4 u}{1 - k^2 \operatorname{sn}^4 u}$$
$$= 1 - \frac{2 \operatorname{sn}^2 u \cdot \operatorname{dn}^2 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{2 \operatorname{cn}^2 u}{1 - k^2 \operatorname{sn}^4 u} - 1.$$

710. dn 2
$$u = \frac{\operatorname{dn}^2 u - k^2 \operatorname{sn}^2 u \cdot \operatorname{cn}^2 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{1 - 2 k^2 \operatorname{sn}^2 u + k^2 \operatorname{sn}^4 u}{1 - k^2 \operatorname{sn}^4 u}$$
$$= 1 - \frac{2 k^2 \operatorname{sn}^2 u \cdot \operatorname{cn}^2 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{2 \operatorname{dn}^3 u}{1 - k^2 \operatorname{sn}^4 u} - 1.$$

711.
$$\operatorname{sn}^2\left(\frac{u}{2}\right) = \frac{1-\operatorname{cn} u}{1+\operatorname{dn} u} = \frac{1-\operatorname{dn} u}{k^2(1+\operatorname{cn} u)} = \frac{\operatorname{dn} u-\operatorname{cn} u}{k^2+\operatorname{dn} u-k^2\operatorname{cn} u}$$

712.
$$\operatorname{cn}^{2}\left(\frac{u}{2}\right) = \frac{\operatorname{dn} u + \operatorname{cn} u}{1 + \operatorname{dn} u} = \frac{k^{2} \operatorname{cn} u - k^{2} + \operatorname{dn} u}{k^{2}(1 + \operatorname{cn} u)}$$
$$= \frac{k^{2}(1 + \operatorname{cn} u)}{k^{2} + \operatorname{dn} u - k^{2} \operatorname{cn} u}$$

713.
$$dn^{2} \left(\frac{u}{2}\right) = \frac{k^{2} + dn \ u + k^{2} cn \ u}{1 + dn \ u} = \frac{k^{2} (cn \ u + dn \ u)}{k^{2} (1 + cn \ u)}$$

$$= \frac{k^{2} (1 + dn \ u)}{k^{2} + dn \ u - k^{2} cn \ u} .$$

If, moreover,
$$v = \int_0^y \frac{dz}{\sqrt{(1-z^2)(1-k^2z^2)}}$$

714.
$$\operatorname{sn}^2 u - \operatorname{sn}^2 v = \operatorname{cn}^2 v - \operatorname{cn}^2 u$$
.

715.
$$\operatorname{sn}(u \pm v) = \frac{\operatorname{sn} u \cdot \operatorname{en} v \cdot \operatorname{dn} v \pm \operatorname{en} u \cdot \operatorname{sn} v \cdot \operatorname{dn} u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

716.
$$\operatorname{cn}(u \pm v) = \frac{\operatorname{cn} u \cdot \operatorname{cn} v \mp \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{dn} u \cdot \operatorname{dn} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

= $\operatorname{cn} u \cdot \operatorname{cn} v \mp \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{dn} (u \pm v)$.

717.
$$dn (u \pm v) = \frac{dn u \cdot dn v \mp k^2 \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{cn} u \cdot \operatorname{cn} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

$$= dn u \cdot dn v \mp k^2 \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{cn} (u \pm v).$$

718.
$$\operatorname{tn}(u \pm v) = \frac{\operatorname{tn} u \cdot \operatorname{dn} v \pm \operatorname{tn} v \cdot \operatorname{dn} u}{1 \mp \operatorname{tn} u \cdot \operatorname{tn} v \cdot \operatorname{dn} u \cdot \operatorname{dn} v}$$

719.
$$\operatorname{sn}(u+v) + \operatorname{sn}(u-v) = \frac{2 \operatorname{sn} u \cdot \operatorname{en} v \cdot \operatorname{dn} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

720.
$$\operatorname{sn}(u+v) - \operatorname{sn}(u-v) = \frac{2 \operatorname{sn} v \cdot \operatorname{en} u \cdot \operatorname{dn} u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

721.
$$\operatorname{cn}(u+v) + \operatorname{cn}(u-v) = \frac{2 \operatorname{cn} u \cdot \operatorname{cn} v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

722.
$$\operatorname{cn}(u+v) - \operatorname{cn}(u-v) = -\frac{2 \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{dn} u \cdot \operatorname{dn} v}{1 - u^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

723.
$$dn(u+v) + dn(u-v) = \frac{2 dn u \cdot dn v}{1 - k^2 sn^2 u \cdot sn^2 v}$$

724.
$$dn(u+v) - dn(u-v) = -\frac{2 k^2 sn u \cdot sn v \cdot cn u \cdot cn v}{1 - k^2 sn^2 u \cdot sn^2 v}$$

725.
$$\operatorname{sn}(u+v) \cdot \operatorname{sn}(u-v) = \frac{\operatorname{sn}^2 u - \operatorname{sn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

$$= \frac{\operatorname{cn}^2 v + \operatorname{sn}^2 u \cdot \operatorname{dn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v} - 1 = \frac{1}{k^2} \left[\frac{\operatorname{dn}^2 v + k^2 \operatorname{sn}^2 u \cdot \operatorname{cn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v} - 1 \right].$$

726.
$$\operatorname{cn}(u+v) \cdot \operatorname{cn}(u-v) = \frac{\operatorname{cn}^2 u - \operatorname{sn}^2 v + k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

$$=\frac{\operatorname{cn}^2 u + \operatorname{cn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v} - 1 = 1 - \frac{\operatorname{sn}^2 u \cdot \operatorname{dn}^2 v + \operatorname{sn}^2 v \cdot \operatorname{dn}^2 u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

727.
$$dn(u+v) \cdot dn(u-v)$$

$$= \frac{1 - k^2 \operatorname{sn}^2 u - k^2 \operatorname{sn}^2 v + k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

$$= \frac{\operatorname{dn}^2 u + \operatorname{dn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v} - 1.$$

728.
$$\operatorname{sn}(u \pm v)\operatorname{cn}(u \mp v) = \frac{\operatorname{sn} u \cdot \operatorname{cn} u \cdot \operatorname{dn} v \pm \operatorname{sn} v \cdot \operatorname{cn} v \cdot \operatorname{dn} u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

729.
$$\operatorname{sn}(u \pm v)\operatorname{dn}(u \mp v) = \frac{\operatorname{sn} u \cdot \operatorname{dn} u \cdot \operatorname{en} v \pm \operatorname{sn} v \cdot \operatorname{dn} v \cdot \operatorname{en} u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

730.
$$\operatorname{cn}(u \pm v)\operatorname{dn}(u \mp v) = \frac{\operatorname{cn} u \cdot \operatorname{dn} u \cdot \operatorname{cn} v \cdot \operatorname{dn} v \mp k^{2} \operatorname{sn} u \cdot \operatorname{sn} v}{1 - k^{2} \operatorname{sn}^{2} u \cdot \operatorname{sn}^{2} v}$$

731.
$$[1 \pm \operatorname{sn}(u+v)][1 \pm \operatorname{sn}(u-v)] = \frac{(\operatorname{cn} v \pm \operatorname{sn} u \cdot \operatorname{dn} v)^{2}}{1 - k^{2} \operatorname{sn}^{2} u \cdot \operatorname{sn}^{2} v}$$

732.
$$\operatorname{sn}(ui, k) = i \operatorname{sn}(u, k') / \operatorname{cn}(u, k')$$
.

733. en
$$(ui, k) = 1/\text{en}(u, k')$$
.

734.
$$dn(ui, k) = dn(u, k')/cn(u, k')$$
.

D. — Bessel's Functions.

735.
$$J_0(x) = 1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2} - \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \cdots$$

736.
$$K_0(x) = J_0(x) \cdot \log x + \frac{x^2}{2^2} - \frac{x^4 \cdot \Omega_2}{2^2 \cdot 4^2} + \frac{x^5 \cdot \Omega_3}{2^2 \cdot 4^2 \cdot 6^2} - \cdots$$

737.
$$J_n(x) = \frac{n!}{\Gamma(n+1)} \sum_{0}^{\infty} \frac{(-1)^k x^{n+2k}}{2^{n+2k} \cdot k! (n+k)!} \cdot \text{[When } n \text{ is an integer si9 may be used.]}$$

738.
$$K_{n}(x) = J_{n}(x) \cdot \log x - \frac{x^{-n}}{2^{1-n}} \sum_{0}^{n-1} \frac{(n-k-1)! \, x^{2k}}{2^{2k} \cdot k!} - \frac{x^{n}}{2^{1+n}} \sum_{0}^{\infty} \frac{(-1)^{k}}{(n+k)! \, k!} \left[\Omega_{k} + \Omega_{k+n} \left(\frac{x}{2} \right)^{2k} \right].$$

739. According as n is or is not an integer, $A \cdot J_n(x) + B \cdot K_n(x)$, or $A \cdot J_n(x) + B \cdot J_{-n}(x)$ is a particular solution of Bessel's equation, $\frac{d^2z}{dx^2} + \frac{1}{x} \cdot \frac{dz}{dx} + \left(1 - \frac{n^2}{x^2}\right)z = 0.$

740.
$$dJ_0(x)/dx = -J_1(x)$$
; $d[x^n \cdot J_n(x)]/dx = x^n \cdot J_{n-1}(x)$, if $n > \frac{1}{2}$; $d[x^{-n} \cdot J_n(x)]/dx = -x^{-n} \cdot J_{n+1}(x)$, if $n > -\frac{1}{2}$.

741.
$$J_{n-1}(x) - J_{n+1}(x) = 2 \cdot dJ_n(x)/dx$$
; $2 \cdot n \cdot J_n(x) = x \cdot J_{n-1}(x) + x \cdot J_{n+1}(x)$.

When x is large it is sometimes convenient to compute approximate numerical values of $J_n(x)$ by means of the semi-convergent series,

742.
$$J_{n}(x) = \sqrt{\frac{2}{\pi x}} \left[P_{n} \cdot \cos \left\{ \frac{(2n+1)\pi}{4} - x \right\} + Q_{n} \cdot \sin \left\{ \frac{(2n+1)\pi}{4} - x \right\} \right] \cdot$$
743.
$$P_{n} = 1 - \frac{(4n^{2}-1)(4n^{2}-9)}{2!(8x)^{2}} + \frac{(4n^{2}-1)(4n^{2}-9)(4n^{2}-25)(4n^{2}-49)}{4!(8x)^{4}} - \cdots$$
744.
$$Q_{n} = \frac{4n^{2}-1}{8x} - \frac{(4n^{2}-1)(4n^{2}-9)(4n^{2}-25)}{3!(8x)^{3}} + \cdots$$

E. - Series and Products.

[The expression in brackets attached to an infinite series shows values of the variable which lie within the interval of convergence. If a series is convergent for all finite values of x, the expression $[x^2 < \infty]$ is used.]

745.
$$(a+b)^n = a^n + na^{n-1}b$$

 $+ \frac{n(n-1)}{2!} a^{n-2}b^2 + \cdots + \frac{n!}{(n-k)!} \frac{a^{n-k}b^k}{k!} + \cdots \cdot [b^2 < a^2]$

746.
$$(a-bx)^{-1} = \frac{1}{a} \left[1 + \frac{bx}{a} + \frac{b^2x^3}{a^2} + \frac{b^8x^3}{a^8} + \cdots \right] \cdot [b^2x^2 < a^2]$$

747.
$$(1 \pm x)^n = 1 \pm nx + \frac{n(n-1)}{2!}x^2$$

$$\pm \frac{n(n-1)(n-2)x^3}{3!} + \cdots + \frac{(\pm 1)^k n! x^k}{(n-k)! k!} + \cdots$$
[$x^2 < 1$.]

749.
$$(1 \pm x)^{\frac{1}{2}} = 1 \pm \frac{1}{2} x - \frac{1 \cdot 1}{2 \cdot 4} x^{2} \pm \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} x^{3}$$

$$- \frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} x^{4} \pm \cdots \qquad [x^{2} < 1.]$$

750.
$$(1 \pm x)^{-1} = 1 \mp \frac{1}{2}x + \frac{1 \cdot 3}{2 \cdot 4}x^2 \mp \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^3 + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8}x^4 \mp \cdots$$
 [$x^2 < 1$.]

751.
$$(1 \pm x)^{\frac{1}{2}} = 1 \pm \frac{1}{8}x - \frac{1 \cdot 2}{3 \cdot 6}x^{2} \pm \frac{1 \cdot 2 \cdot 5}{3 \cdot 6 \cdot 9}x^{8}$$

$$- \frac{1 \cdot 2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9 \cdot 12}x^{4} \pm \cdots \qquad [x^{2} < 1.]$$

752.
$$(1 \pm x)^{-\frac{1}{2}} = 1 \mp \frac{1}{8}x + \frac{1 \cdot 4}{3 \cdot 6}x^2 \mp \frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9}x^3 + \frac{1 \cdot 4 \cdot 7 \cdot 10}{3 \cdot 6 \cdot 9 \cdot 12}x^4 \mp \cdots$$
 [$x^2 < 1$.]

753.
$$(1 \pm x^3)^{\frac{1}{2}} = 1 \pm \frac{1}{2}x^3 - \frac{x^4}{2 \cdot 4} \pm \frac{1 \cdot 3 \cdot x^6}{2 \cdot 4 \cdot 6} - \frac{1 \cdot 3 \cdot 5 \cdot x^8}{2 \cdot 4 \cdot 6 \cdot 8} \pm \cdots$$

754.
$$(1 \pm x^2)^{-\frac{1}{2}} = 1 \mp \frac{1}{2} x^2 + \frac{1 \cdot 3}{2 \cdot 4} x^4 \mp \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^6 + \cdots$$

755.
$$(1 \pm x)^{-1} = 1 \mp x + x^3 \mp x^8 + x^4 \mp x^5 + \cdots$$
 [$x^2 < 1$.]

756.
$$(1 \pm x)^{\frac{3}{2}} = 1 \pm \frac{3}{2}x + \frac{3 \cdot 1}{2 \cdot 4}x^{2} \mp \frac{3 \cdot 1 \cdot 1}{2 \cdot 4 \cdot 6}x^{3} + \frac{3 \cdot 1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6 \cdot 8}x^{4} \mp \frac{3 \cdot 1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10}x^{5} + \cdots$$
 [$x^{2} < 1$.]

757.
$$(1 \pm x)^{-\frac{3}{2}} = 1 \pm \frac{3}{2}x + \frac{3 \cdot 5}{2 \cdot 4}x^2 + \frac{3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6}x^3 + \cdots \quad [x^2 < 1.]$$

758.
$$(1 \pm x)^{-2} = 1 \pm 2x + 3x^2 \pm 4x^3 + 5x^4 \pm 6x^5 + \cdots$$
 $[x^2 < 1.]$

759.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
 [$x^2 < \infty$.]

760.
$$a^x = 1 + x \log a + \frac{(x \log a)^2}{2!} + \frac{(x \log a)^3}{3!} + \cdots [x^2 < \infty.]$$

761.
$$\frac{1}{2}(e^x + e^{-x}) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$$
 [$x^2 < \infty$.]

762.
$$\frac{1}{2}(e^x - e^{-x}) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$
 [$x^2 < \infty$.]

763.
$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \cdots$$
 [$x^2 < \infty$.]

A series of numbers, B_1 , B_2 , $B_3 \cdots$, of odd and even orders, which appear in the developments of many functions, may be computed by means of the equations,

$$B_{2n} - \frac{2n(2n-1)}{2!} B_{2n-2}$$

$$+ \frac{2n(2n-1)(2n-2)(2n-3)}{4!} B_{2n-4} - \cdots - (-1)^n = 0.$$

$$\frac{2^{2n}(2^{2n}-1)}{2n} B_{2n-1} = (2n-1)B_{2n-2}$$

$$- \frac{(2n-1)(2n-2)(2n-3)}{3!} B_{2n-4} + \cdots - (-1)^{n-1} = 0.$$

Whence $B_1 = \frac{1}{6}$, $B_2 = 1$, $B_3 = \frac{1}{30}$, $B_4 = 5$, $B_5 = \frac{1}{29}$, $B_6 = 61$, $B_7 = \frac{1}{30}$, $B_8 = 1385$, $B_9 = \frac{5}{66}$, $B_{10} = 50521$, $B_{11} = \frac{69}{2730}$, $B_{12} = 2702765$, $B_{13} = \frac{7}{6}$, etc. The B's of odd orders are called Bernoulli's Numbers; those of even orders, Euler's Numbers. What are here denoted by B_{2n-1} and B_{2n} are sometimes represented by B_n and E_n , respectively,

$$\frac{B_{2n-1}}{(2n)!} = \frac{2}{(2^{2n}-1)\pi^{2n}} \left[1 + \frac{1}{3^{2n}} + \frac{1}{5^{2n}} + \frac{1}{7^{2n}} + \cdots \right],$$

$$\frac{B_{2n}}{(2n)!} = \frac{2^{2n+2}}{\pi^{2n+1}} \left[1 - \frac{1}{3^{2n+1}} + \frac{1}{5^{2n+1}} - \frac{1}{7^{2n+1}} + \cdots \right].$$

$$764. \quad \frac{x}{e^x - 1} = 1 - \frac{x}{2} + \frac{B_1 x^2}{2!} - \frac{B_8 x^4}{4!} + \frac{B_6 x^6}{6!} - \frac{B_7 x^8}{8!} + \cdots$$

765.
$$\log x = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{8}(x-1)^8 - \cdots$$
 [2>x>0.]

766.
$$\log x = \frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x} \right)^2 + \frac{1}{3} \left(\frac{x-1}{x} \right)^3 + \cdots$$

$$[x > \frac{1}{2}.]$$

91

767.
$$\log x = 2\left[\frac{x-1}{x+1} + \frac{1}{8}\left(\frac{x-1}{x+1}\right)^{8} + \frac{1}{8}\left(\frac{x-1}{x+1}\right)^{8} + \cdots\right]$$
. $[x > 0.]$

768.
$$\log(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots$$
 [$x^2 < 1$.]

769.
$$\log\left(\frac{1+x}{1-x}\right) = 2\left[x + \frac{1}{8}x^8 + \frac{1}{6}x^5 + \frac{1}{7}x^7 + \cdots\right].$$
 [x⁵<1.]

770.
$$\log\left(\frac{x+1}{x-1}\right) = 2\left[\frac{1}{x} + \frac{1}{3}\left(\frac{1}{x}\right)^3 + \frac{1}{3}\left(\frac{1}{x}\right)^5 + \cdots\right] \cdot [x^3 > 1.]$$

771.
$$\log(x+\sqrt{1+x^2}) = x - \frac{1}{6}x^{\frac{3}{6}} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} + \cdots$$

$$[x^2 < 1.]$$

Series for denary and other logarithms can be obtained from the foregoing developments by aid of the equations,

$$\log_a x = \log_e x \cdot \log_a e$$
, $\log_e x = \log_a x \cdot \log_e a$, $\log_e (-z) = (2n+1)\pi i + \log_e z$.

772.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
 [$x^2 < \infty$.]

773.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = 1 - \operatorname{versin} x. \ [x^2 < \infty.]$$

774.
$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \dots + \frac{2^{2n}(2^{2n} - 1)B_{2n-1}x^{2n-1}}{(2n)!} + \dots [x^2 < \frac{1}{4}\pi^2]$$

775.
$$\cot x = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} - \frac{x^7}{4725}$$

$$- \cdots - \frac{B_{2n-1}(2x)^{2n}}{x(2n)!} - \cdots$$
[$x^2 < \pi^2$.]

776.
$$\sec x = 1 + \frac{x^2}{2!} + \frac{5x^4}{4!} + \frac{61x^6}{6!} + \dots + \frac{B_{2n}x^{2n}}{(2n)!} + \dots \left[x^2 < \frac{\pi^2}{4!} \right]$$

777.
$$\csc x = \frac{1}{x} + \frac{x}{3!} + \frac{7x^8}{3 \cdot 5!} + \frac{31x^5}{3 \cdot 7!} + \dots + \frac{2(2^{2n+1}-1)}{(2n+2)!} B_{2n+1}x^{2n+1} + \dots \qquad [x^2 < \pi^2.]$$

778.
$$\sin^{-1}x = x + \frac{x^3}{6} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots = \frac{1}{2}\pi - \cos^{-1}x.$$
 [$x^2 < 1$.]

779.
$$\tan^{-1}x = x - \frac{1}{8}x^3 + \frac{1}{8}x^5 - \frac{1}{7}x^7 + \cdots = \frac{1}{2}\pi - \cot^{-1}x$$
. $[x^2 < 1.]$

780.
$$\tan^{-1}x = \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \cdots$$
 [x²>1.]

781.
$$\sec^{-1}x = \frac{\pi}{2} - \frac{1}{x} - \frac{1}{6x^3} - \frac{1 \cdot 3}{2 \cdot 4 \cdot 5x^6} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7x^7} - \cdots$$

$$= \frac{1}{2}\pi - \csc^{-1}x. \qquad [x^2 > 1.]$$

782.
$$\log \sin x = \log x - \frac{1}{6} x^2 - \frac{1}{180} x^4 - \frac{1}{2835} x^6$$

$$- \cdots - \frac{2^{2n-1} B_{2n-1} x^{2n}}{n(2n)!} - \cdots \qquad [x^2 < \pi^2]$$

783.
$$\log \cos x = -\frac{1}{2}x^2 - \frac{1}{12}x^4 - \frac{1}{45}x^6 - \frac{1}{25}\frac{7}{20}x^8$$

$$- \cdots - \frac{2^{2n-1}(2^{2n}-1)B_{2n-1}x^{2n}}{n(2n)!} - \cdots \cdot [x^2 < \frac{1}{4}\pi^2.]$$

784.
$$\log \tan x = \log x + \frac{1}{8}x^2 + \frac{7}{70}x^4 + \frac{6}{2}\frac{2}{8}\frac{3}{3}\frac{5}{5}x^6 + \cdots + \frac{(2^{2n-1}-1)2^{2n}B_{2n-1}x^{2n}}{n(2n)!} + \cdots \qquad [x^2 < \frac{1}{4}\pi^2]$$

785.
$$e^{\sin x} = 1 + x + \frac{x^2}{2!} - \frac{3x^4}{4!} - \frac{8x^5}{5!} - \frac{3x^6}{6!} + \frac{56x^7}{7!} + \cdots$$

$$[x^2 < \infty.]$$

786.
$$e^{\cos x} = e \left(1 - \frac{x^2}{2!} + \frac{4x^4}{4!} - \frac{31x^6}{6!} + \cdots \right)$$
 $[x^3 < \infty.]$

787.
$$e^{\tan x} = 1 + x + \frac{x^2}{2!} + \frac{3x^3}{3!} + \frac{9x^4}{4!} + \frac{37x^5}{5!} + \cdots [x^9 < \frac{1}{4}\pi^9]$$

788.
$$e^{\sin^{-1}x} = 1 + x + \frac{x^2}{2!} + \frac{2x^3}{3!} + \frac{5x^4}{4!} + \cdots$$
 [x² < 1.]

789.
$$e^{\tan^{-1}x} = 1 + x + \frac{x^2}{2} - \frac{x^3}{6} - \frac{7x^4}{24} - \cdots$$
 [$x^2 < 1$.]

790.
$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$
 [$x^2 < \infty$.]

791.
$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \frac{x^8}{8!} + \cdots$$
 [$x^2 < \infty$.]

792.
$$\tanh x = (2^{2}-1)2^{2}B_{1}\frac{x}{2!} - (2^{4}-1)2^{4}B_{3}\frac{x^{3}}{4!} + \cdots$$

$$= \Sigma[(-1)^{n-1}2^{2n}(2^{2n}-1)B_{2n-1}x^{2n-1}/(2n)!].$$

$$[x^{2} < \frac{1}{4}\pi^{2}.]$$

794. sech
$$x = 1 + \sum [(-1)^n B_{2n} x^{2n} / (2n)!].$$
 [$x^2 < \frac{1}{4} \pi^2$.]

795.
$$\operatorname{csch} x = \frac{1}{x} - (2-1)2 B_1 \frac{x}{2!} + (2^2 - 1)2 B_2 \frac{x^3}{4!} - \cdots$$

$$= \frac{1}{x} (1 + 2 \sum [(-1)^n (2^{2n-1} - 1) B_{2n-1} x^{2n} / (2n)!]).$$

$$[x^2 < \pi^2.]$$

796.
$$\sinh^{-1} x = x - \frac{1}{8} x^8 + \frac{1 \cdot 3 \cdot x^8}{2 \cdot 4 \cdot 5} - \frac{1 \cdot 3 \cdot 5 \cdot x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \cdots [x^2 < 1.]$$

797.
$$\tanh^{-1}x = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots$$
 [$x^2 < 1$.]

798.
$$\coth^{-1} x = \frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \cdots$$
 [$x^2 > 1$.]

799.
$$\operatorname{csch}^{-1} x = \frac{1}{x} - \frac{1}{2 \cdot 3 \cdot x^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot x^5} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7 \cdot x^7} + \cdots$$

800.
$$\int_0^x e^{-x^2} dx = x - \frac{1}{3} x^3 + \frac{x^5}{5 \cdot 2!} - \frac{x^7}{7 \cdot 3!} + \cdots \qquad [x^2 < \infty.]$$

801.
$$\int_0^x \cos(x^3) dx = x - \frac{x^5}{5 \cdot 2!} + \frac{x^9}{9 \cdot 4!} - \frac{x^{13}}{13 \cdot 6!} + \cdots \cdot [x^2 < \infty.]$$

802.
$$\int_0^1 \frac{x^{a-1} dx}{1+x^b} = \frac{1}{a} - \frac{1}{a+b} + \frac{1}{a+2b} - \frac{1}{a+3b} + \cdots$$

803.
$$f(x+h) = f(x) + h \cdot f'(x+\theta h)$$
.

804.
$$f(x+h) = f(x) + h \cdot f'(x) + \frac{h^2}{2!} f''(x) + \dots + \frac{h^n}{n!} \cdot f^n(x+\theta h).$$

805.
$$f(x+h) = f(x) + h \cdot f'(x) + \frac{h^3}{2!} f''(x) + \dots + \frac{h^n}{(n-1)!} \cdot (1-\theta)^{n-1} \cdot f^n(x+\theta h).$$

806.
$$f(x+h, y+k) = f(x, y) + hf'_x(x+\theta h, y+\theta k) + kf'_y(x+\theta h, y+\theta k).$$

807.
$$f(x+h, y+k) = f(x, y) + \left(h \frac{\partial f(x, y)}{\partial x} + k \frac{\partial f(x, y)}{\partial y}\right) + \frac{1}{2!} \left(h^2 \frac{\partial^2 f(x, y)}{\partial x^2} + 2hk \frac{\partial^2 f(x, y)}{\partial x \cdot \partial y} + k^2 \frac{\partial^2 f(x, y)}{\partial y^2}\right)$$

$$+ \frac{1}{3!} \left(h^{3} \frac{\partial^{3} f(x, y)}{\partial x^{3}} + 3 h^{2} h^{2} \frac{\partial^{3} f(x, y)}{\partial y \cdot \partial x^{2}} + 3 h h^{2} \frac{\partial^{3} f(x, y)}{\partial x \cdot \partial y^{2}} \right)$$

$$+ k^{3} \frac{\partial f(x, y)}{\partial y^{3}} + \dots + R_{n}$$

$$= f(x, y) + (hD_{x} + kD_{y}) f(x, y) + \frac{1}{2!} (hD_{x} + kD_{y})^{2} f(x, y)$$

$$+ \dots + \frac{1}{(n-1)!} (hD_{x} + kD_{y})^{n-1} f(x, y)$$

$$+ \frac{1}{n!} (hD_{x} + kD_{y})^{n} f(x + \theta h, y + \theta k).$$

808.
$$1 = \frac{4}{\pi} \left[\sin \frac{\pi x}{c} + \frac{1}{8} \sin \frac{3 \pi x}{c} + \frac{1}{8} \sin \frac{5 \pi x}{c} + \cdots \right]$$
 [0 < x < c.]

809.
$$x = \frac{2c}{\pi} \left[\sin \frac{\pi x}{c} - \frac{1}{2} \sin \frac{2\pi x}{c} + \frac{1}{8} \sin \frac{3\pi x}{c} - \cdots \right] \cdot \left[-c < x < c. \right]$$

810.
$$x = \frac{c}{2} - \frac{4}{\pi^2} \left[\cos \frac{\pi x}{c} + \frac{1}{3^2} \cos \frac{3 \pi x}{c} + \frac{1}{5^2} \cos \frac{5 \pi x}{c} + \cdots \right] \cdot \left[0 < x < c \right]$$

811.
$$x^{2} = \frac{2c^{2}}{\pi^{3}} \left[\left(\frac{\pi^{3}}{1} - \frac{4}{1} \right) \sin \frac{\pi x}{c} - \frac{\pi^{2}}{2} \sin \frac{2\pi x}{c} + \left(\frac{\pi^{3}}{3} - \frac{4}{3^{3}} \right) \sin \frac{3\pi x}{c} - \frac{\pi^{3}}{4} \sin \frac{4\pi x}{c} + \left(\frac{\pi^{2}}{5} - \frac{4}{5^{3}} \right) \sin \frac{5\pi x}{c} + \cdots \right] \cdot [0 < x < c.]$$

812.
$$x^2 = \frac{c^3}{3} - \frac{4}{\pi^2} \left[\cos \frac{\pi x}{c} - \frac{1}{2^2} \cos \frac{2\pi x}{c} + \frac{1}{3^2} \cos \frac{3\pi x}{c} - \frac{1}{4^2} \cos \frac{4\pi x}{c} + \cdots \right]$$
 $[-c < x < c.]$

813
$$\log \sin \frac{1}{2} x = -\log 2 - \cos x - \frac{1}{2} \cos 2x - \frac{1}{8} \cos 3x - \cdots$$

 $[0 < x < \frac{1}{2} \pi]$

814.
$$\log \cos \frac{1}{2}x = -\log 2 + \cos x - \frac{1}{2}\cos 2x + \frac{1}{3}\cos 3x - \cdots$$

 $\left[0 < x < \frac{1}{2}\pi\right]$

815.
$$f(x) = \frac{1}{2}b_0 + b_1 \cos \frac{\pi x}{c} + b_2 \cos \frac{2\pi x}{c} + \cdots$$

$$+ a_1 \sin \frac{\pi x}{c} + a_2 \sin \frac{2\pi x}{c} + \cdots, [-c < x < c.]$$
where $b_m = \frac{1}{c} \int_{-c}^{+c} f(a) \cos \frac{m\pi a}{c} da$,
$$a_m = \frac{1}{c} \int_{-c}^{+c} f(a) \sin \frac{m\pi a}{c} da$$
.

816.
$$\sin \theta = \theta \left[1 - \left(\frac{\theta}{\pi} \right)^2 \right] \left[1 - \left(\frac{\theta}{2 \pi} \right)^2 \right] \left[1 - \left(\frac{\theta}{3 \pi} \right)^2 \right] \cdots$$

817.
$$\cos \theta = \left[1 - \left(\frac{2\theta}{\pi}\right)^2\right] \left[1 - \left(\frac{2\theta}{3\pi}\right)^2\right] \left[1 - \left(\frac{2\theta}{5\pi}\right)^2\right] \cdots$$

818.
$$\frac{2^{3} \cdot 4^{2} \cdot 6^{2} \cdot \cdots \cdot (2 \, m)^{2} (2 \, m+2)}{1^{2} \cdot 3^{2} \cdot 5^{2} \cdot \cdots \cdot (2 \, m+1)^{2}} > \frac{\pi}{2}$$

$$> \frac{2^{3} \cdot 4^{2} \cdot 6^{2} \cdot \cdots \cdot (2 \, m)^{2} (2 \, m+1)}{1^{2} \cdot 3^{2} \cdot 5^{2} \cdot \cdots \cdot (2 \, m+1)^{2}}.$$

819.
$$J_{n}(x) = \frac{x^{n}}{2^{n} n!} \left\{ 1 - \frac{x^{2}}{2(2n+2)} + \frac{x^{4}}{2 \cdot 4(2n+2)(2n+4)} - \frac{x^{6}}{2 \cdot 4 \cdot 6(2n+2)(2n+4)(2n+6)} + \cdots \right\}.$$

F. — DERIVATIVES.

820.
$$\frac{d(au)}{dx} = \frac{a\,du}{dx}.$$

821.
$$\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

822.
$$\frac{d(uv)}{dx} = v \frac{du}{dx} + u \frac{dv}{dx}$$

823.
$$\frac{d\left(\frac{u}{v}\right)}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}.$$

824.
$$\frac{df(u)}{dx} = \frac{df(u)}{du} \cdot \frac{du}{dx}$$

825.
$$\frac{d^3f(u)}{dx^2} = \frac{df}{du} \cdot \frac{d^3u}{dx^3} + \frac{d^3f}{du^2} \cdot \frac{du^3}{dx^3}$$

826.
$$\frac{dx^n}{dx} = nx^{n-1}.$$

827.
$$\frac{de^x}{dx} = e^x.$$

828.
$$\frac{da^{u}}{dx} = a^{u} \cdot \frac{du}{dx} \cdot \log_{e} a.$$

829.
$$\frac{dx^x}{dx} = x^x (1 + \log_e x)$$
.

830.
$$\frac{d(\log_a x)}{dx} = \frac{1}{x \cdot \log_a a} = \frac{\log_a e}{x}$$

831.
$$\frac{d\sin x}{dx} = \cos x.$$

832.
$$\frac{d\cos x}{dx} = -\sin x.$$

833.
$$\frac{d \tan x}{dx} = \sec^2 x.$$

834.
$$\frac{d \cot x}{dx} = -\csc^2 x.$$

835.
$$\frac{d \sec x}{dx} = \tan x \cdot \sec x.$$

836.
$$\frac{d \csc x}{dx} = -\cot x \cdot \csc x.$$

837.
$$\frac{d \sin^{-1} x}{dx} = \frac{1}{\sqrt{1-x^2}}$$

838.
$$\frac{d \cos^{-1} x}{dx} = \frac{-1}{\sqrt{1-x^2}}$$

839.
$$\frac{d \tan^{-1} x}{dx} = \frac{1}{1+x^2}.$$

840.
$$\frac{d \, \cot^{-1} x}{dx} = -\frac{1}{1+x^2}.$$

841.
$$\frac{d \sec^{-1} x}{dx} = \frac{1}{x\sqrt{x^2-1}}$$

842.
$$\frac{d \csc^{-1} x}{dx} = -\frac{1}{x\sqrt{x^2-1}}$$

$$843. \ \frac{d \sinh x}{dx} = \cosh x.$$

$$844. \frac{d \cosh x}{dx} = \sinh x.$$

$$845. \ \frac{d \tanh x}{dx} = \mathrm{sech}^2 x.$$

$$846. \ \frac{d \coth x}{dx} = - \operatorname{csch}^2 x.$$

847.
$$\frac{d \operatorname{sech} x}{dx} = - \operatorname{sech} x \cdot \tanh x$$
.

848.
$$\frac{d \operatorname{csch} x}{dx} = -\operatorname{csch} x \cdot \operatorname{ctnh} x.$$

849.
$$\frac{d \sinh^{-1} x}{dx} = \frac{1}{\sqrt{x^2 + 1}}$$

850.
$$\frac{d \cosh^{-1} x}{dx} = \frac{1}{\sqrt{x^2 - 1}}$$

851.
$$\frac{d \tanh^{-1} x}{dx} = \frac{1}{1-x^2}$$
.

852.
$$\frac{d \, \operatorname{etnh}^{-1} x}{dx} = \frac{1}{1-x^2}$$
.

853.
$$\frac{d \operatorname{sech}^{-1} x}{dx} = \frac{-1}{x \sqrt{1-x^2}}$$

854.
$$\frac{d \operatorname{csch}^{-1} x}{dx} = \frac{-1}{x \sqrt{x^2 + 1}}$$

855.
$$\frac{d}{db} \int_a^b f(x) dx = f(b).$$

856.
$$\frac{d}{da} \int_a^b f(x) dx = -f(a).$$

857.
$$\frac{d}{dc} \int_{a}^{b} f(x,c) dx = \int_{a}^{b} D_{c} f(x,c) \cdot dx + f(b,c) \frac{db}{dc} - f(a,c) \frac{da}{dc}$$

858.
$$\frac{d^{n}(u \cdot v)}{dx^{n}} = v \cdot \frac{d^{n}u}{dx^{n}} + n \cdot \frac{dv}{dx} \cdot \frac{d^{n-1}u}{dx^{n-1}} + \frac{n(n-1)}{2!} \cdot \frac{d^{2}v}{dx^{2}} \cdot \frac{d^{n-2}u}{dx^{n-2}} + \dots + u \cdot \frac{d^{n}v}{dx^{n}}.$$

859. If $f(x, y, z, \cdots)$ is a homogeneous function of the *n*th order, so that $f(\lambda x, \lambda y, \lambda z, \cdots) \equiv \lambda^n f(x, y, z, \cdots)$, $x \cdot D_x f + y \cdot D_x f + z \cdot D_x f + \cdots \equiv nf$.

860. If
$$x = \phi(y)$$
,

$$\frac{dy}{dx} = \frac{1}{\phi'(y)}, \quad \frac{d^2y}{dx^2} = -\frac{\phi''(y)}{[\phi'(y)]^2}, \\ \frac{d^3y}{dx^3} = \frac{3[\phi''(y)]^2 - \phi'(y) \cdot \phi'''(y)}{[\phi'(y)]^5}.$$

861. If
$$x = f(t)$$
 and $y = \phi(t)$,

$$\frac{dy}{dx} = \frac{\phi'(t)}{f'(t)}, \quad \frac{d^2y}{dx^2} = \frac{f'(t) \cdot \phi''(t) - f''(t) \cdot \phi'(t)}{\left[f'(t)\right]^2}.$$

862. If
$$f(x, y) = 0$$
,

$$\frac{dy}{dx} = -\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y} \equiv -\frac{D_x f}{D_y f},$$

$$\frac{d^3y}{dx^2} = -\frac{D_x^2f \cdot (D_yf)^2 - 2 D_x D_yf \cdot D_xf \cdot D_yf + D_y^2f \cdot (D_xf)^2}{(D_yf)^3} \cdot$$

863. If
$$y = f(u, v)$$
, $u = \phi(x)$, and $v = \psi(x)$,

$$\frac{df}{dx} = \frac{\partial f}{\partial u} \cdot \frac{du}{dx} + \frac{\partial f}{\partial v} \cdot \frac{dv}{dx} = u' \cdot D_{\bullet} f + v' \cdot D_{\bullet} f,$$

$$\begin{split} \frac{d^2f}{dx^2} &= \frac{\partial^2f}{\partial u^2} \cdot \left(\frac{du}{dx}\right)^2 + 2 \frac{\partial^2f}{\partial u \cdot \partial v} \cdot \frac{du}{dx} \cdot \frac{dv}{dx} + \frac{\partial^2f}{\partial^2v} \cdot \left(\frac{dv}{dx}\right)^2 \\ &+ \frac{\partial f}{\partial u} \cdot \frac{d^2u}{dx^2} + \frac{\partial f}{\partial v} \cdot \frac{d^2v}{dx^2} \end{split}$$

$$= u^{2} \cdot D_{u}^{2} f + 2 u' \cdot v' \cdot D_{u} D_{v} f + v'^{2} \cdot D_{v}^{2} f$$

 $+ u'' \cdot D_{v} f + v'' \cdot D_{v} f$

864. If
$$f(x, y, z) = 0$$
, $D_x z = -D_x f/D_x f$,

$$D_x^2 z = -[D_x^2 f \cdot (D_z f)^2]$$

$$-2 D_s f \cdot D_x f \cdot D_x D_y f + D_s^2 f (D_x f)^2]/(D_s f)^3,$$

$$\begin{split} D_{x}D_{y}z &= -\left[D_{x}D_{y}f\cdot(D_{x}f)^{2} - D_{z}fD_{x}f\cdot D_{y}D_{z}f\right. \\ &+ \left.D_{x}f\cdot D_{y}f\cdot D_{x}D_{z}f + D_{x}f\cdot D_{y}f\cdot D_{z}^{2}f\right]/(D_{x}f)^{3}. \end{split}$$

865. If
$$V = \phi(u, v)$$
, $u = f_1(x, y)$, and $v = f_2(x, y)$,
$$D_x V = D_u \phi \cdot D_x u + D_v \phi \cdot D_x v,$$

$$D_x^2 V = D_u^2 \phi \cdot (D_x u)^2 + D_v^2 \phi \cdot (D_x v)^3 + 2 D_u D_v \phi \cdot D_x u \cdot D_x v$$

$$+ D_u \phi D_x^2 u + D_v \phi \cdot D_x^2 v,$$

$$D_y D_x V = D_u^2 \phi \cdot D_x u \cdot D_y u + D_v^2 \phi \cdot D_x v \cdot D_y v$$

$$+ D_u D_v \phi (D_x v \cdot D_y u + D_x u \cdot D_y v)$$

$$+ D_u \phi \cdot D_x D_y u + D_v \phi \cdot D_x D_y v,$$

$$D_x^2 V + D_y^2 V = D_u^2 \phi \cdot [(D_x u)^2 + (D_y u)^2]$$

$$+ D_v^2 \phi \cdot [(D_x v)^2 + (D_y v)^2]$$

$$+ 2 D_u D_v \phi \cdot [D_x u \cdot D_x v + D_y u \cdot D_y v]$$

$$+ D_u \phi \cdot [D_x^2 u + D_y^2 u]$$

$$+ D_v \phi \cdot [D_x^2 v + D_y^2 v].$$

In the special case, $u \equiv r \equiv \sqrt{x^2 + y^2}$, $v \equiv \theta \equiv \tan^{-1}(y/x)$, we have $D_r x = \cos \theta = x/\sqrt{x^2 + y^2}$; $D_r y = \sin \theta = y/\sqrt{x^2 + y^2}$; $D_\theta x = -r \sin \theta = -y \; ; \quad D_\theta y = r \cos \theta = x \; ;$ $D_x r = x/\sqrt{x^2 + y^2} = \cos \theta \; ; \quad D_y r = y/\sqrt{x^2 + y^2} = \sin \theta ;$ $D_x \theta = -y/(x^2 + y^2) = -\sin \theta/r \; ;$ $D_y \theta = x/(x^2 + y^2) = \cos \theta/r \; ; \quad \text{and}$ $D_x^2 V + D_y^2 V = D_r^2 V + \frac{1}{x} \cdot D_r V + \frac{1}{x^2} \cdot D_{\theta}^2 V.$

866. If
$$V = \phi(u, v)$$
, $u = f_1(r, \theta)$, and $v = f_2(r, \theta)$,
$$D_r^2 V + \frac{1}{r} \cdot D_r V + \frac{1}{r^2} \cdot D_{\theta}^2 V = D_u^2 V \cdot \left[(D_r u)^2 + \frac{(D_{\theta} u)^2}{r^2} \right] + D_v^2 V \cdot \left[(D_r v)^2 + \frac{(D_{\theta} v)^2}{r^2} \right] + 2 D_u D_v V \left[D_r u \cdot D_r v + \frac{D_{\theta} u \cdot D_{\theta} v}{r^2} \right]$$

$$+ D_u V \left[D_r^2 u + \frac{1}{r} \cdot D_r u + \frac{1}{r^2} \cdot D_{\theta}^2 u \right]$$

$$+ D_v V \left[D_r^2 v + \frac{1}{r} \cdot D_r v + \frac{1}{r^2} \cdot D_{\theta}^2 v \right]$$

867. If $V = \phi(u, v, w)$, $u = f_1(x, y, z)$, $v = f_2(x, y, z)$, and $w = f_3(x, y, z)$,

$$\begin{split} D_x V &= D_u V \cdot D_x u + D_v V \cdot D_x v + D_w V \cdot D_x w, \\ D_x^2 V &= D_u^2 V \cdot (D_x u)^2 + D_v^2 V \cdot (D_x v)^2 + D_w^2 V \cdot (D_x w)^3 \\ &+ D_u V \cdot D_x^2 u + D_v V \cdot D_x^2 v + D_w V \cdot D_x^2 w \\ &+ 2 (D_u D_v V \cdot D_x u \cdot D_x v + D_u D_w V \cdot D_x u \cdot D_x w \\ &+ D_v D_w V \cdot D_x v \cdot D_x w). \end{split}$$

$$\begin{split} D_{x}^{2}V + D_{y}^{2}V + D_{z}^{2}V &= D_{u}^{2}V \cdot \left[(D_{x}u)^{2} + (D_{y}u)^{2} + (D_{z}u)^{2} \right] \\ &+ D_{v}^{2}V \cdot \left[(D_{x}v)^{2} + (D_{y}v)^{2} + (D_{z}v)^{2} \right] \\ &+ D_{w}^{2}V \left[(D_{x}w)^{2} + (D_{y}w)^{2} + (D_{z}w)^{2} \right] \\ &+ 2 D_{u}D_{v}V \cdot \left[D_{x}u \cdot D_{x}v + D_{y}u \cdot D_{y}v + D_{z}u \cdot D_{z}v \right] \\ &+ 2 D_{v}D_{w}V \cdot \left[D_{x}v \cdot D_{x}w + D_{y}v \cdot D_{y}w + D_{z}v \cdot D_{z}w \right] \\ &+ 2 D_{w}D_{u}V \cdot \left[D_{x}w \cdot D_{x}u + D_{y}w \cdot D_{y}u + D_{z}w \cdot D_{z}u \right] \\ &+ D_{u}V \cdot \left[D_{x}^{2}u + D_{y}^{2}u + D_{z}^{2}u \right] \\ &+ D_{v}V \cdot \left[D_{x}^{2}v + D_{y}^{2}v + D_{z}^{2}v \right] \\ &+ D_{w}V \cdot \left[D_{x}^{2}w + D_{y}^{2}w + D_{z}^{2}w \right]. \end{split}$$

In particular, if

$$x\equiv r\sin\theta\cos\phi,\ y\equiv r\sin\theta\sin\phi,\ z\equiv r\cos\theta,$$

so that $u\equiv r^2\equiv x^2+y^2+z^2,\ v\equiv\theta\equiv\tan^{-1}(\sqrt{x^2+y^3}/z),$
 $w\equiv\phi\equiv\tan^{-1}(y/x),\ \text{we have}$
' $D_rz=\cos\theta=z/\sqrt{x^2+y^2+z^2};$
 $D_x=\sin\theta\cos\phi=x/\sqrt{x^2+y^2+z^2};$

 $D_{x}y = \sin \theta \sin \phi = y / \sqrt{x^2 + y^2 + z^2};$

$$D_{\theta}z = -r \sin \theta = -\sqrt{x^{2} + y^{2}};$$

$$D_{\theta}x = r \cos \theta \cos \phi = zx/\sqrt{x^{2} + y^{2}};$$

$$D_{\theta}y = r \cos \theta \sin \phi = zy/\sqrt{x^{2} + y^{2}};$$

$$D_{\phi}z = 0;$$

$$D_{\phi}x = -r \sin \theta \sin \phi = -y;$$

$$D_{\phi}y = r \sin \theta \cos \phi = x;$$

$$D_{z}r = z/r = \cos \theta;$$

$$D_{z}\theta = -\sqrt{x^{2} + y^{2}}/r^{2} = -\sin \theta/r;$$

$$D_{z}\phi = 0;$$

$$D_{x}r = x/r = \sin \theta \cos \phi;$$

$$D_{x}\theta = xz/r^{2}\sqrt{x^{2} + y^{2}} = \cos \theta \cos \phi/r;$$

$$D_{x}\phi = -y/(x^{2} + y^{2}) = -\sin \phi/r \sin \theta;$$

$$D_{y}r = y/r = \sin \theta \sin \phi;$$

$$D_{y}\theta = zy/r^{2}\sqrt{x^{2} + y^{2}} = \cos \theta \sin \phi/r;$$

$$D_{y}\phi = x/(x^{2} + y^{2}) = \cos \phi/r \sin \theta;$$

$$(D_{x}r)^{2} + (D_{y}r)^{2} + (D_{z}r)^{2} = 1;$$

$$(D_{x}\theta)^{2} + (D_{y}\theta)^{2} + (D_{z}\theta)^{2} = 1/r^{2};$$

$$(D_{x}\phi)^{2} + (D_{y}\phi)^{3} + (D_{z}\phi)^{3} = 1/r^{2} \sin^{3}\theta;$$

$$(D_{x}V)^{3} + (D_{y}V)^{3} + (D_{z}V)^{2}$$

$$= (D_{r}V)^{3} + \left(\frac{D_{\theta}V}{r}\right)^{2} + \left(\frac{D_{\phi}V}{r \sin \theta}\right)^{2};$$

$$D_{x}^{3}V + D_{y}^{2}V + D_{z}^{2}V$$

$$= \frac{1}{r^{3} \sin \theta} \left[D_{r}(r^{2} \cdot D_{r}V) \cdot \sin \theta + \frac{D_{\phi}^{3}V}{\sin \theta} + D_{\theta}(\sin \theta \cdot D_{\theta}V) \right].$$

868. If
$$x = f_1(u, v)$$
, $y = f_2(u, v)$, $z = f_3(u, v)$,
$$D_x z = \frac{D_u f_3 \cdot D_v f_3 - D_v f_3 \cdot D_u f_3}{D_u f_1 \cdot D_v f_2 - D_v f_1 \cdot D_u f_3},$$

$$D_y z = \frac{D_v f_3 \cdot D_u f_1 - D_u f_3 \cdot D_v f_1}{D_u f_1 \cdot D_v f_2 - D_v f_1 \cdot D_u f_3}.$$

869. If
$$x = f(z, u)$$
, and $y = \phi(z, u)$,
$$D_{x}z = D_{u}\phi/(D_{z}f \cdot D_{u}\phi - D_{z}\phi \cdot D_{u}f),$$
$$D_{x}z = D_{u}f/(D_{z}\phi \cdot D_{u}f - D_{z}f \cdot D_{u}\phi).$$

870. If
$$F_1(x, y, z, u, v) = 0$$
,

$$F_2(x, y, z, u, v) = 0, \text{ and } F_3(x, y, z, u, v) = 0,$$

$$D_x z \cdot \begin{vmatrix} D_x F_1 & D_u F_1 & D_v F_1 \\ D_x F_2 & D_u F_3 & D_v F_2 \\ D_x F_4 & D_x F_6 & D_x F_6 \end{vmatrix} = - \begin{vmatrix} D_x F_1 & D_u F_1 & D_v F_1 \\ D_x F_2 & D_u F_3 & D_v F_2 \\ D_x F_6 & D_x F_6 & D_x F_6 \end{vmatrix}.$$

871. If
$$F_1(x, y, z) = 0$$
, and $F_2(x, y, z) = 0$,
$$\frac{dy}{D_x F_1 \cdot D_x F_2 - D_x F_2 \cdot D_x F_1} = \frac{dz}{D_x F_1 \cdot D_y F_2 - D_x F_2 \cdot D_y F_1}$$

$$\frac{dx}{D_y F_1 \cdot D_x F_2 - D_y F_2 \cdot D_x F_1}$$

If each of the quantities $y_1, y_2, y_2, \dots y_n$ is a function of the *n* variables $x_1, x_2, x_3, \dots x_n$, the determinant,

is called the functional determinant or the Jacobian of the y's with respect to the x's and is denoted by the expression,

$$\frac{\partial (y_1, y_2, y_2, \cdots y_n)}{\partial (x_1, x_2, x_3, \cdots x_n)}, \text{ or by J } (y_1, y_2, \cdots y_n).$$

872.
$$\frac{\partial (y_1, y_2, y_2, \cdots y_n)}{\partial (x_1, x_2, x_3, \cdots x_n)} \cdot \frac{\partial (x_1, x_2, x_3, \cdots x_n)}{\partial (y_1, y_2, y_3, \cdots y_n)} \equiv 1.$$

873.
$$\frac{\partial (y_1, y_2, y_3, \dots y_n)}{\partial (z_1, z_2, z_3, \dots z_n)} \cdot \frac{\partial (z_1, z_2, z_3, \dots z_n)}{\partial (x_1, x_2, x_3, \dots x_n)}$$

$$\equiv \frac{\partial (y_1, y_2, y_3, \dots y_n)}{\partial (x_1, x_2, x_3, \dots x_n)}$$

If the y's are not all independent but are connected by an equation of the form $\phi(y_1, y_2, y_3, \dots y_n) = 0$, the Jacobian of the y's with respect to the x's vanishes identically; and, conversely, if the Jacobian vanishes identically, the y's are connected by one or more relations of the above-mentioned form.

The directional derivative of any scalar point function, u, at any point, P, in any fixed direction PQ', is the limit, as PQ approaches zero, of the ratio of $u_Q - u_P$ to PQ, where Q is a point on the straight line PQ' between P and Q'. The gradient, h_u , of the function u at P is the directional derivative of u at P taken in the direction in which u increases most rapidly. This direction is normal to the surface of constant u which passes through P.

874.
$$h_u^2 \equiv (D_x u)^2 + (D_y u)^2 + (D_z u)^2$$

The directional derivative of any scalar point function at any point in any given direction is evidently equal to the product of the gradient and the cosine of the angle between the given direction and that in which the function increases most rapidly.

The normal derivative, at any point, P, of a point function u, taken with respect to another point function v, is the limit as PQ approaches zero of the ratio of $u_Q - u_P$ to $v_Q - v_P$, where Q is a point so chosen on the normal at P of the surface of constant v which passes through P, that $v_Q - v_P$ is positive. If (u, v) denotes the angle between the directions in which u and v increase most rapidly, the normal derivatives of u with respect to v, and of v with respect to u may be written

$$h_u \cos(u, v) \div h_v$$
, and $h_v \cdot \cos(u, v) \div h_u$

respectively. If $h_u = h_v$, these derivatives are equal.

G. — MISCELLANEOUS FORMULAS.

If s is a plane analytic closed curve, n its normal drawn from within outwards, and dA the element of plane area within s, the usual integral transformation formulas for the functions u and v which, with their derivatives of the first order, are continuous everywhere within s, may be written —

875.
$$\int u \cdot \cos(x, n) ds = \iint D_x u \cdot dA.$$

876.
$$\int [u \cdot \cos(x, n) + v \cdot \cos(y, n)] ds = \int \int (D_x u + D_y v) dA.$$

877.
$$\int D_n u \cdot ds = \int \int (D_x^2 u + D_y^2 u) dA$$
.

878.
$$\iint (D_x u \cdot D_x v + D_y u \cdot D_y v) dA$$

$$= \int u \cdot D_x v \cdot ds - \iint u (D_x^2 v + D_y^2 v) dA$$

$$= \int v \cdot D_x u \cdot ds - \iint v (D_x^2 u + D_y^2 v) dA.$$

879.
$$\int \int \lambda \left(D_x u \cdot D_x v + D_y u \cdot D_y v \right) dA = \int \lambda \cdot u \cdot D_n v \cdot ds$$

$$- \int \int u \left[D_x (\lambda \cdot D_x v) + D_y (\lambda \cdot D_y v) \right] dA.$$

If ξ and η are two analytic functions which define a set of orthogonal curvilinear coördinates, and if (ξ, n) and (η, n) represent the angles between n and the directions in which ξ and η , respectively, increase most rapidly.

880.
$$\iint h_{\xi} \cdot h_{\eta} \cdot D_{\eta} \left(\frac{u}{h_{\xi}} \right) dA = \int u \cdot \cos \left(\eta, n \right) ds.$$

881.
$$\iint h_{\xi} \cdot h_{\eta} \cdot D_{\xi} \left(\frac{u}{h_{\eta}} \right) dA = \int u \cdot \cos(\xi, n) ds.$$

882. If r is the distance from a fixed point, Q, in the coördinate plane,

 $\int \frac{\cos (r, n) ds}{r} = 0, \pi, \text{ or } 2\pi, \text{ according as } Q \text{ is without,}$ on, or within s.

If S is an analytic closed surface, n its normal drawn from within outwards, and $d\tau$ the element of volume shut in by S, the usual integral transformation formulas may be written —

883.
$$\int \int u \cos(x, n) dS = \int \int \int D_x u \cdot d\tau.$$

884.
$$\iint [u \cos(x, n) + v \cos(y, n) + w \cos(z, n)] dS$$
$$= \iiint (D_x u + D_y v + D_z w) d\tau.$$

885.
$$\iint D_n u \cdot ds = \iiint (D_x^2 u + D_y^2 u + D_z^2 u) d\tau.$$

886.
$$\iint (D_x u \cdot D_x v + D_y u \cdot D_y v + D_z u \cdot D_z v) d\tau$$

$$= \iint u \cdot D_x v \cdot dS - \iiint u (D_x^2 v + D_y^2 v + D_z^2 v) d\tau$$

$$= \iint v \cdot D_x u \cdot dS - \iiint v (D_x^2 u + D_y^2 u + D_z^2 u) d\tau.$$

887.
$$\iint \lambda (D_x u \cdot D_x v + D_y u \cdot D_y v + D_z u \cdot D_z v) d\tau$$

$$= \iint \lambda \cdot v \cdot D_n u \cdot dS$$

$$- \iiint v [D_x (\lambda D_x u) + D_y (\lambda D_y u) + D_z (\lambda D_z u)] d\tau.$$

If ξ , η , ζ are three analytic functions which define a system of orthogonal curvilinear coordinates,

888.
$$\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\xi} \left(\frac{u}{h_{\eta} \cdot h_{\zeta}} \right) d\tau = \iint u \cdot \cos(\xi, n) dS.$$
889.
$$\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\eta} \left(\frac{u}{h_{\xi} \cdot h_{\zeta}} \right) d\tau = \iint u \cdot \cos(\eta, n) dS.$$
890.
$$\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\zeta} \left(\frac{u}{h_{\xi} \cdot h_{\zeta}} \right) d\tau = \iint u \cdot \cos(\zeta, n) dS.$$

891. If r is the distance from a fixed point, Q,

$$\int \frac{\cos{(r, n)}}{r^2} dS = 0, 2\pi, \text{ or } 4\pi \text{ according as } Q \text{ is without,}$$
 on, or within S .

Stokes's Theorem. — The line integral, taken around a closed curve, of the tangential component of a vector point function, is equal to the surface integral, taken over a surface bounded by the curve, of the normal component of the curl of the vector, the direction of integration around the curve forming a right-handed screw rotation about the normals.

If X, Y, Z are the components of the vector,

892.
$$\int (X dx + Y dy + Z dz) = \int \int [(D_{\nu} Z - D_{z} Y) \cos(x, n) + (D_{z} X - D_{z} Z) \cos(y, n) + (D_{x} Y - D_{\nu} X) \cos(z, n)] dS.$$

Equations 893 to 897 give Poisson's Equation in orthogonal Cartesian, in cylindrical, in spherical, and in orthogonal curvilinear coördinates.

893.
$$\nabla^2 V \equiv D_x^2 V + D_y^2 V + D_z^2 V = -4 \pi \rho$$
.

894.
$$\frac{1}{r} \cdot D_r(r \cdot D_r V) + \frac{1}{r^3} \cdot D_{\theta}^2 V + D_z^2 V = -4 \pi \rho.$$

895.
$$\sin \theta \cdot D_r(r^3 \cdot D_r V) + \frac{D_{\phi}^2 V}{\sin \theta} + D_{\theta}(\sin \theta \cdot D_{\theta} V) = -4 \pi \rho r^2 \sin \theta.$$

896.
$$h_{\xi}^{2} \cdot D_{\xi}^{2} V + h_{\eta}^{2} \cdot D_{\eta}^{2} V + h_{\zeta}^{2} \cdot D_{\zeta}^{2} V$$
$$+ D_{\xi} V \cdot \overline{\nabla}^{2} \xi + D_{\eta} V \cdot \overline{\nabla}^{2} \eta + D_{\zeta} V \cdot \overline{\nabla}^{2} \zeta = -4 \pi \rho.$$

897.
$$h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \left\{ D_{\xi} \left(\frac{h_{\xi}}{h_{\eta} h_{\zeta}} \cdot D_{\xi} V \right) + D_{\eta} \left(\frac{h_{\eta}}{h_{\xi} h_{\zeta}} \cdot D_{\eta} V \right) + D_{\zeta} \left(\frac{h_{\zeta}}{h_{\xi} h_{\eta}} \cdot D_{\zeta} V \right) \right\} = -4 \pi \rho$$

H. — CERTAIN CONSTANTS.

$$\pi = 3.14159 \ 26535 \ 89793$$

$$\log_{10} \pi = 0.49714 98726 94134$$

$$\frac{1}{2} = 0.31830 98861 83791$$

$$\pi^2 = 9.86960 \ 44010 \ 89359$$

$$\sqrt{\pi} = 1.77245 38509 05516$$

$$\log_{10} 2 = 0.30102 99956 63981$$

$$e = 2.71828 \ 18284 \ 59045$$

$$\log_{10} e = 0.43429 44819 03252$$

$$\log_e 10 = 2.30258 50929 94046$$

$$\log_e 2 = 0.69314 \cdot 71805 \cdot 59945$$

$$\log_{10} \log_{10} e = 9.63778 \ 43113 \ 00537$$

$$\log_e \pi = 1.14472 98858 49400$$

860. If
$$x = \phi(y)$$
,

$$\frac{dy}{dx} = \frac{1}{\phi'(y)}, \quad \frac{d^3y}{dx^3} = -\frac{\phi''(y)}{[\phi'(y)]^5},$$
$$\frac{d^3y}{dx^3} = \frac{3[\phi''(y)]^2 - \phi'(y) \cdot \phi'''(y)}{[\phi'(y)]^5}.$$

861. If
$$x = f(t)$$
 and $y = \phi(t)$,

$$\frac{dy}{dx} = \frac{\phi'(t)}{f'(t)}, \quad \frac{d^3y}{dx^3} = \frac{f'(t) \cdot \phi''(t) - f''(t) \cdot \phi'(t)}{\left[f'(t)\right]^3}.$$

862. If
$$f(x, y) = 0$$
,

$$\frac{dy}{dx} = -\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y} \equiv -\frac{D_x f}{D_y f},$$

$$D^2 f \cdot (D f)^2 - 2D D f \cdot D f \cdot D f$$

$$\frac{d^2y}{dx^2} = -\frac{D_x^2f \cdot (D_yf)^2 - 2D_xD_yf \cdot D_xf \cdot D_yf + D_y^2f \cdot (D_xf)^2}{(D_yf)^8}$$

863. If
$$y = f(u, v)$$
, $u = \phi(x)$, and $v = \psi(x)$,

$$\frac{df}{dx} = \frac{\partial f}{\partial u} \cdot \frac{du}{dx} + \frac{\partial f}{\partial v} \cdot \frac{dv}{dx} = u' \cdot D_u f + v' \cdot D_v f,$$

$$\frac{d^2f}{dx^2} = \frac{\partial^2f}{\partial u^2} \cdot \left(\frac{du}{dx}\right)^2 + 2 \frac{\partial^2f}{\partial u \cdot \partial v} \cdot \frac{du}{dx} \cdot \frac{dv}{dx} + \frac{\partial^2f}{\partial^2v} \cdot \left(\frac{dv}{dx}\right)^2$$

$$+\frac{\partial f}{\partial u}\cdot\frac{d^2u}{dx^2}+\frac{\partial f}{\partial v}\cdot\frac{d^2v}{dx^2}$$

$$= u'^{2} \cdot D_{u}^{3} f + 2 u' \cdot v' \cdot D_{v} D_{v} f + v'^{2} \cdot D_{v}^{3} f + u'' \cdot D_{u} f + v'' \cdot D_{v} f.$$

864. If
$$f(x, y, z) = 0$$
, $D_x z = -D_x f/D_z f$,

$$D_x^2 z = - [D_x^2 f \cdot (D_z f)^2]$$

$$-2 D_{s} f \cdot D_{x} f \cdot D_{x} D_{y} f + D_{z}^{2} f (D_{x} f)^{2}] / (D_{s} f)^{2},$$

$$\begin{split} D_{x}D_{y}z &= -\left[D_{x}D_{y}f\cdot(D_{z}f)^{2} - D_{z}fD_{x}f\cdot D_{y}D_{z}f\right.\\ &+ \left.D_{x}f\cdot D_{y}f\cdot D_{x}D_{z}f + D_{x}f\cdot D_{y}f\cdot D_{z}^{2}f\right]/(D_{z}f)^{3}. \end{split}$$

865. If
$$V = \phi(u, v)$$
, $u = f_1(x, y)$, and $v = f_2(x, y)$,
$$D_x V = D_u \phi \cdot D_x u + D_v \phi \cdot D_x v,$$

$$D_x^2 V = D_u^2 \phi \cdot (D_x u)^2 + D_v^2 \phi \cdot (D_x v)^2 + 2 D_u D_v \phi \cdot D_x u \cdot D_x v$$

$$+ D_u \phi D_x^2 u + D_v \phi \cdot D_x^2 v,$$

$$D_y D_x V = D_u^2 \phi \cdot D_x u \cdot D_y u + D_v^2 \phi \cdot D_x v \cdot D_y v$$

$$+ D_u D_v \phi (D_x v \cdot D_y u + D_x u \cdot D_y v)$$

$$+ D_u \phi \cdot D_x D_y u + D_v \phi \cdot D_x D_y v,$$

$$D_x^2 V + D_y^2 V = D_u^2 \phi \cdot [(D_x u)^2 + (D_y u)^2]$$

$$+ D_v^2 \phi \cdot [(D_x v)^2 + (D_y v)^2]$$

$$+ 2 D_u D_v \phi \cdot [D_x u \cdot D_x v + D_y u \cdot D_y v]$$

$$+ D_u \phi \cdot [D_x^2 u + D_y^2 u]$$

$$+ D_v \phi \cdot [D_x^2 v + D_y^2 v].$$

In the special case, $u \equiv r \equiv \sqrt{x^2 + y^2}$, $v \equiv \theta \equiv \tan^{-1}(y/x)$, we have $D_r x = \cos \theta = x/\sqrt{x^2 + y^2}$; $D_r y = \sin \theta = y/\sqrt{x^2 + y^2}$; $D_{\theta} x = -r \sin \theta = -y$; $D_{\theta} y = r \cos \theta = x$; $D_x r = x/\sqrt{x^2 + y^2} = \cos \theta$; $D_y r = y/\sqrt{x^2 + y^2} = \sin \theta$; $D_x \theta = -y/(x^2 + y^2) = -\sin \theta/r$; $D_x \theta = x/(x^2 + y^2) = \cos \theta/r$; and

$$D_x^2 V + D_y^2 V = D_r^2 V + \frac{1}{r} \cdot D_r V + \frac{1}{r^2} \cdot D_{\theta}^2 V.$$
866. If $V = \phi(u, v)$, $u = f_1(r, \theta)$, and $v = f_2(r, \theta)$,

$$\begin{split} D_{r}^{2}V + \frac{1}{r} \cdot D_{r}V + \frac{1}{r^{2}} \cdot D_{\theta}^{2}V &= D_{u}^{2}V \cdot \left[(D_{r}u)^{2} + \frac{(D_{\theta}u)^{2}}{r^{2}} \right] \\ + D_{v}^{2}V \cdot \left[(D_{r}v)^{2} + \frac{(D_{\theta}v)^{2}}{r^{2}} \right] \\ + 2 D_{u}D_{v}V \left[D_{r}u \cdot D_{r}v + \frac{D_{\theta}u \cdot D_{\theta}v}{r^{2}} \right] &= \end{split}$$

$$+ D_u V \left[D_r^2 u + \frac{1}{r} \cdot D_r u + \frac{1}{r^2} \cdot D_{\theta}^2 u \right]$$

$$+ D_v V \left[D_r^2 v + \frac{1}{r} \cdot D_r v + \frac{1}{r^2} \cdot D_{\theta}^2 v \right]$$

867. If
$$V = \phi(u, v, w)$$
, $u = f_1(x, y, z)$, $v = f_2(x, y, z)$, and $w = f_3(x, y, z)$,

$$\begin{split} D_x V &= D_u V \cdot D_x u + D_v V \cdot D_x v + D_w V \cdot D_x w, \\ D_x^2 V &= D_u^2 V \cdot (D_x u)^2 + D_v^2 V \cdot (D_x v)^2 + D_w^2 V \cdot (D_x w)^2 \\ &+ D_u V \cdot D_x^3 u + D_v V \cdot D_x^3 v + D_w V \cdot D_x^3 w \\ &+ 2 (D_u D_v V \cdot D_x u \cdot D_x v + D_u D_w V \cdot D_x u \cdot D_x w \\ &+ D_v D_w V \cdot D_x v \cdot D_x w). \end{split}$$

$$\begin{split} D_{x}^{2}V + D_{y}^{2}V + D_{z}^{2}V &= D_{u}^{2}V \cdot \left[(D_{x}u)^{2} + (D_{y}u)^{2} + (D_{z}u)^{2} \right] \\ &+ D_{v}^{2}V \cdot \left[(D_{x}v)^{2} + (D_{y}v)^{2} + (D_{z}v)^{2} \right] \\ &+ D_{w}^{2}V \left[(D_{x}w)^{2} + (D_{y}w)^{2} + (D_{z}w)^{2} \right] \\ &+ 2 D_{u}D_{v}V \cdot \left[D_{x}u \cdot D_{x}v + D_{y}u \cdot D_{y}v + D_{z}u \cdot D_{z}v \right] \\ &+ 2 D_{v}D_{w}V \cdot \left[D_{x}v \cdot D_{x}w + D_{y}v \cdot D_{y}w + D_{z}v \cdot D_{z}w \right] \\ &+ 2 D_{w}D_{u}V \cdot \left[D_{x}w \cdot D_{x}u + D_{y}w \cdot D_{y}u + D_{z}w \cdot D_{z}u \right] \\ &+ D_{u}V \cdot \left[D_{x}^{2}u + D_{y}^{2}u + D_{z}^{2}u \right] \\ &+ D_{v}V \cdot \left[D_{x}^{2}v + D_{y}^{2}v + D_{z}^{2}v \right] \\ &+ D_{w}V \cdot \left[D_{x}^{2}w + D_{y}^{2}w + D_{z}^{2}w \right]. \end{split}$$

In particular, if

$$x\equiv r\sin\theta\cos\phi,\ y\equiv r\sin\theta\sin\phi,\ z\equiv r\cos\theta,$$

so that $u\equiv r^2\equiv x^3+y^2+z^2,\ v\equiv\theta\equiv\tan^{-1}(\sqrt{x^2+y^2}/z),$
 $w\equiv\phi\equiv\tan^{-1}(y/x),\ \text{we have}$
 $D_rz=\cos\theta=z/\sqrt{x^2+y^2+z^2};$
 $D_x=\sin\theta\cos\phi=x/\sqrt{x^2+y^2+z^2}$:

/

$$D_{r}y = \sin\theta \sin\phi = y/\sqrt{x^{3} + y^{2} + z^{2}};$$

$$D_{\theta}z = -r \sin\theta = -\sqrt{x^{2} + y^{2}};$$

$$D_{\theta}x = r \cos\theta \cos\phi = zx/\sqrt{x^{2} + y^{2}};$$

$$D_{\theta}y = r \cos\theta \sin\phi = zy/\sqrt{x^{3} + y^{2}};$$

$$D_{\phi}y = r \sin\theta \sin\phi = -y;$$

$$D_{\phi}x = -r \sin\theta \sin\phi = -y;$$

$$D_{\phi}y = r \sin\theta \cos\phi = x;$$

$$D_{z}r = z/r = \cos\theta;$$

$$D_{z}\theta = -\sqrt{x^{2} + y^{3}}/r^{2} = -\sin\theta/r;$$

$$D_{z}\phi = 0;$$

$$D_{x}r = x/r = \sin\theta \cos\phi;$$

$$D_{x}\theta = xz/r^{2}\sqrt{x^{2} + y^{2}} = \cos\theta \cos\phi/r;$$

$$D_{x}\theta = xz/r^{2}\sqrt{x^{2} + y^{2}} = \cos\theta \cos\phi/r;$$

$$D_{y}\theta = zy/r^{2}\sqrt{x^{3} + y^{2}} = \cos\theta \sin\phi/r;$$

$$D_{y}\theta = zy/r^{3}\sqrt{x^{3} + y^{3}} = \cos\theta \sin\phi/r;$$

$$D_{y}\theta = x/(x^{2} + y^{3}) = \cos\phi/r \sin\theta;$$

$$(D_{x}r)^{2} + (D_{y}r)^{3} + (D_{x}r)^{2} = 1;$$

$$(D_{x}\theta)^{3} + (D_{y}\theta)^{2} + (D_{z}\theta)^{2} = 1/r^{3};$$

$$(D_{x}\phi)^{2} + (D_{y}\theta)^{2} + (D_{z}\theta)^{3} = 1/r^{3}\sin^{3}\theta;$$

$$(D_{x}V)^{2} + (D_{y}V)^{2} + (D_{z}V)^{3}$$

$$= (D_{r}V)^{2} + (\frac{D_{\theta}V}{r})^{3} + (\frac{D_{\phi}V}{r \sin\theta})^{2};$$

$$D_{x}^{3}V + D_{y}^{3}V + D_{z}^{2}V$$

$$= \frac{1}{r^{3}\sin\theta} \left[D_{r}(r^{2} \cdot D_{r}V) \cdot \sin\theta + \frac{D_{\phi}^{2}V}{\sin\theta} + D_{\theta}(\sin\theta \cdot D_{\theta}V) \right].$$

868. If
$$x = f_1(u, v)$$
, $y = f_2(u, v)$, $z = f_3(u, v)$,
$$D_z z = \frac{D_u f_3 \cdot D_v f_3 - D_v f_3 \cdot D_u f_2}{D_u f_1 \cdot D_v f_2 - D_v f_1 \cdot D_u f_2},$$

$$D_y z = \frac{D_v f_3 \cdot D_u f_1 - D_u f_3 \cdot D_v f_1}{D_u f_1 \cdot D_u f_3 - D_v f_1 \cdot D_u f_3}.$$

869. If
$$x = f(z, u)$$
, and $y = \phi(z, u)$,
$$D_z z = D_u \phi / (D_z f \cdot D_u \phi - D_z \phi \cdot D_u f),$$
$$D_v z = D_u f / (D_z \phi \cdot D_u f - D_z f \cdot D_u \phi).$$

870. If
$$F_1(x, y, z, u, v) = 0$$
,

$$F_2(x, y, z, u, v) = 0, \text{ and } F_8(x, y, z, u, v) = 0,$$

$$D_x z \cdot \begin{vmatrix} D_x F_1 & D_u F_1 & D_v F_1 \\ D_x F_2 & D_u F_2 & D_v F_2 \\ D_x F_8 & D_u F_8 & D_v F_8 \end{vmatrix} = - \begin{vmatrix} D_x F_1 & D_u F_1 & D_v F_1 \\ D_x F_2 & D_u F_2 & D_v F_2 \\ D_x F_8 & D_u F_8 & D_v F_8 \end{vmatrix}.$$

871. If
$$F_1(x, y, z) = 0$$
, and $F_2(x, y, z) = 0$,
$$\frac{dy}{D_x F_1 \cdot D_x F_2 - D_x F_2 \cdot D_x F_1} = \frac{dz}{D_x F_1 \cdot D_y F_2 - D_x F_2 \cdot D_y F_1}$$

$$\frac{dx}{D_y F_1 \cdot D_x F_2 - D_y F_2 \cdot D_x F_1}$$

If each of the quantities $y_1, y_2, y_3, \dots y_n$ is a function of the *n* variables $x_1, x_2, x_3, \dots x_n$, the determinant,

$$\begin{vmatrix} D_{x_1}y_1 & D_{x_2}y_1 & D_{x_3}y_1 \cdots \\ D_{x_1}y_2 & D_{x_2}y_2 & D_{x_6}y_2 \cdots \\ \vdots & \vdots & \vdots & \vdots \\ D_{x_1}y_n & D_{x_2}y_n & D_{x_3}y_n \cdots D_{x_n}y_n \end{vmatrix}$$

is called the functional determinant or the Jacobian of the y's with respect to the x's and is denoted by the expression,

$$\frac{\partial (y_1, y_2, y_3, \cdots y_n)}{\partial (x_1, x_2, x_3, \cdots x_n)}, \text{ or by J } (y_1, y_2, \cdots y_n).$$

872.
$$\frac{\partial (y_1, y_2, y_3, \cdots y_n)}{\partial (x_1, x_2, x_3, \cdots x_n)} \cdot \frac{\partial (x_1, x_2, x_3, \cdots x_n)}{\partial (y_1, y_2, y_3, \cdots y_n)} \equiv 1.$$

873.
$$\frac{\partial (y_1, y_2, y_3, \cdots y_n)}{\partial (z_1, z_2, z_3, \cdots z_n)} \cdot \frac{\partial (z_1, z_2, z_3, \cdots z_n)}{\partial (x_1, x_2, x_3, \cdots x_n)}$$

$$\equiv \frac{\partial (y_1, y_2, y_3, \cdots y_n)}{\partial (x_1, x_2, x_3, \cdots x_n)}.$$

If the y's are not all independent but are connected by an equation of the form $\phi(y_1, y_2, y_3, \dots y_n) = 0$, the Jacobian of the y's with respect to the x's vanishes identically; and, conversely, if the Jacobian vanishes identically, the y's are connected by one or more relations of the above-mentioned form.

The directional derivative of any scalar point function, u, at any point, P, in any fixed direction PQ', is the limit, as PQ approaches zero, of the ratio of $u_Q - u_P$ to PQ, where Q is a point on the straight line PQ' between P and Q'. The gradient, h_u , of the function u at P is the directional derivative of u at P taken in the direction in which u increases most rapidly. This direction is normal to the surface of constant u which passes through P.

874.
$$h_u^2 \equiv (D_x u)^2 + (D_y u)^2 + (D_z u)^2$$
.

The directional derivative of any scalar point function at any point in any given direction is evidently equal to the product of the gradient and the cosine of the angle between the given direction and that in which the function increases most rapidly.

The normal derivative, at any point, P, of a point function u, taken with respect to another point function v, is the limit as PQ approaches zero of the ratio of $u_Q - u_P$ to $v_Q - v_P$, where Q is a point so chosen on the normal at P of the surface of constant v which passes through P, that $v_Q - v_P$ is positive. If (u, v) denotes the angle between the directions in which u and v increase most rapidly, the normal derivatives of u with respect to v, and of v with respect to u may be written

$$h_u \cos(u, v) \div h_v$$
, and $h_v \cdot \cos(u, v) \div h_u$

respectively. If $h_u = h_v$, these derivatives are equal.

G. - MISCELLANEOUS FORMULAS.

If s is a plane analytic closed curve, n its normal drawn from within outwards, and dA the element of plane area within s, the usual integral transformation formulas for the functions u and v which, with their derivatives of the first order, are continuous everywhere within s, may be written —

875.
$$\int u \cdot \cos(x, n) ds = \int \int D_x u \cdot dA.$$

876.
$$\int [u \cdot \cos(x, n) + v \cdot \cos(y, n)] ds = \int \int (D_x u + D_y v) dA.$$

877.
$$\int D_n u \cdot ds = \int \int (D_x^2 u + D_y^2 u) dA$$
.

878.
$$\iint (D_x u \cdot D_x v + D_y u \cdot D_y v) dA$$

$$= \int u \cdot D_x v \cdot ds - \iint u (D_x^2 v + D_y^2 v) dA$$

$$= \int v \cdot D_x u \cdot ds - \iint v (D_x^2 u + D_y^2 v) dA.$$

879.
$$\int \int \lambda \left(D_x u \cdot D_x v + D_y u \cdot D_y v \right) dA = \int \lambda \cdot u \cdot D_x v \cdot ds$$

$$- \int \int u \left[D_x (\lambda \cdot D_x v) + D_y (\lambda \cdot D_y v) \right] dA.$$

If ξ and η are two analytic functions which define a set of orthogonal curvilinear coördinates, and if (ξ, n) and (η, n) represent the angles between n and the directions in which ξ and η , respectively, increase most rapidly.

880.
$$\iint h_{\xi} \cdot h_{\eta} \cdot D_{\eta} \left(\frac{u}{h_{\xi}} \right) dA = \int u \cdot \cos \left(\eta, n \right) ds.$$

881.
$$\int \int h_{\xi} \cdot h_{\eta} \cdot D_{\xi} \left(\frac{u}{h_{\eta}} \right) dA = \int u \cdot \cos(\xi, n) ds.$$

882. If r is the distance from a fixed point, Q, in the coördinate plane,

 $\int \frac{\cos (r, n) ds}{r} = 0, \pi, \text{ or } 2\pi, \text{ according as } Q \text{ is without,}$ on, or within s.

If S is an analytic closed surface, n its normal drawn from within outwards, and $d\tau$ the element of volume shut in by S, the usual integral transformation formulas may be written —

883.
$$\int \int u \cos(x, n) dS = \int \int \int D_x u \cdot d\tau.$$

884.
$$\iint [u \cos(x, n) + v \cos(y, n) + w \cos(z, n)] dS$$

$$= \iiint (D_x u + D_y v + D_z w) d\tau.$$

885.
$$\iint D_n u \cdot ds = \iiint (D_x^2 u + D_y^2 u + D_z^2 u) d\tau.$$

886.
$$\iint (D_x u \cdot D_x v + D_y u \cdot D_y v + D_z u \cdot D_z v) d\tau$$

$$= \iint u \cdot D_n v \cdot dS - \iint u (D_x^2 v + D_y^2 v + D_z^2 v) d\tau$$

$$= \iint v \cdot D_n u \cdot dS - \iiint v (D_x^2 u + D_y^2 u + D_z^2 u) d\tau.$$

887.
$$\iiint \lambda \left(D_x u \cdot D_x v + D_y u \cdot D_y v + D_z u \cdot D_z v \right) d\tau$$

$$= \iint \lambda \cdot v \cdot D_n u \cdot dS$$

$$- \iiint \left[D_x (\lambda D_x u) + D_y (\lambda D_y u) + D_z (\lambda D_z u) \right] d\tau.$$

If ξ , η , ζ are three analytic functions which define a system of orthogonal curvilinear coördinates,

888.
$$\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\xi} \left(\frac{u}{h_{\eta} \cdot h_{\zeta}} \right) d\tau = \iint u \cdot \cos \left(\xi, n \right) dS.$$
889.
$$\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\eta} \left(\frac{u}{h_{\xi} \cdot h_{\zeta}} \right) d\tau = \iint u \cdot \cos \left(\eta, n \right) dS.$$
890.
$$\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\zeta} \left(\frac{u}{h_{\xi} \cdot h_{\eta}} \right) d\tau = \iint u \cdot \cos \left(\zeta, n \right) dS.$$

891. If r is the distance from a fixed point, Q,

$$\int \frac{\cos{(r, n)}}{r^2} dS = 0, 2\pi, \text{ or } 4\pi \text{ according as } Q \text{ is without,}$$
 on, or within S .

Stokes's Theorem. — The line integral, taken around a closed curve, of the tangential component of a vector point function, is equal to the surface integral, taken over a surface bounded by the curve, of the normal component of the curl of the vector, the direction of integration around the curve forming a right-handed screw rotation about the normals.

If X, Y, Z are the components of the vector,

892.
$$\int (X dx + Y dy + Z dz) = \int \int [(D_y Z - D_z Y) \cos (x, n) + (D_z X - D_z Z) \cos (y, n) + (D_z Y - D_y X) \cos (z, n)] dS.$$

Equations 893 to 897 give Poisson's Equation in orthogonal Cartesian, in cylindrical, in spherical, and in orthogonal curvilinear coördinates.

893.
$$\nabla^2 V \equiv D_x^2 V + D_y^2 V + D_z^2 V = -4 \pi \rho$$
.

894.
$$\frac{1}{r} \cdot D_r(r \cdot D_r V) + \frac{1}{r^2} \cdot D_{\theta}^2 V + D_z^2 V = -4 \pi \rho.$$

895.
$$\sin \theta \cdot D_r(r^2 \cdot D_r V) + \frac{D_{\phi}^2 V}{\sin \theta} + D_{\theta}(\sin \theta \cdot D_{\theta} V) = -4 \pi \rho r^2 \sin \theta.$$

896.
$$\begin{aligned} h_{\xi}^{2} \cdot D_{\xi}^{2} V + h_{\eta}^{2} \cdot D_{\eta}^{2} V + h_{\zeta}^{3} \cdot D_{\zeta}^{2} V \\ + D_{\xi} V \cdot \overline{\nabla}^{2} \xi + D_{\eta} V \cdot \overline{\nabla}^{2} \eta + D_{\zeta} V \cdot \overline{\nabla}^{2} \zeta = -4 \pi \rho. \end{aligned}$$

397.
$$h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \left\{ D_{\xi} \left(\frac{h_{\xi}}{h_{\eta} h_{\zeta}} \cdot D_{\xi} V \right) + D_{\eta} \left(\frac{h_{\eta}}{h_{\xi} h_{\zeta}} \cdot D_{\eta} V \right) + D_{\zeta} \left(\frac{h_{\zeta}}{h_{\xi} h_{\eta}} \cdot D_{\zeta} V \right) \right\} = -4 \pi \rho$$

H. - CERTAIN CONSTANTS.

 $\pi = 3.14159 \ 26535 \ 89793$

 $\log_{10} \pi = 0.49714 98726 94134$

$$\frac{1}{2} = 0.31830 98861 83791$$

$$\pi^2 = 9.86960 \ 44010 \ 89359$$

$$\sqrt{\pi} = 1.77245 38509 05516$$

$$\log_{10} 2 = 0.30102 99956 63981$$

$$e = 2.71828 \ 18284 \ 59045$$

$$\log_{10} e = 0.43429 44819 03252$$

$$\log_e 10 = 2.30258 50929 94046$$

$$\log_e 2 = 0.69314 \cdot 71805 59945$$

$$\log_{10}\log_{10}e = 9.63778 \ 43113 \ 00537$$

$$\log_e \pi = 1.14472 98858 49400$$

I. — GENERAL FORMULAS OF INTEGRATION.

F and f represent functions of x, and F', f', F'', f'', their first and second derivatives with respect to x.

898.
$$\int F' \cdot f \cdot dx = F \cdot f - \int F \cdot f' \cdot dx$$
.
899. $\int (F)^n \cdot F' \cdot dx = (F)^{n+1}/(n+1)$.

900.
$$\int (aF+b)^n \cdot F' \cdot dx = (aF+b)^{n+1}/a \ (n+1).$$

901.
$$\int (dF + f)^n \cdot dx = \int F(F + f)^{n-1} dx + \int f(F + f)^{n-1} dx.$$

902.
$$\int F'/(F)^n \cdot dx = -1/(n-1)(F)^{n-1}, \int F'/F \cdot dx = \log F.$$

903.
$$\int (F' \cdot f - F \cdot f')/(f)^2 \cdot dx = F/f.$$

904.
$$\int (F' \cdot f - F \cdot f') / F f \cdot dx = \log (F/f).$$

905.
$$\int \frac{dx}{F \cdot (x^2 - a^2)} = \frac{1}{2a} \int \frac{dx}{F \cdot (x - a)} - \frac{1}{2a} \int \frac{dx}{F \cdot (x + a)}$$

906.
$$\int \frac{dx}{F(F \pm f)} = \pm \int \frac{dx}{F \cdot f} \mp \int \frac{dx}{f(F \pm f)}$$

907.
$$\int \frac{F' \cdot dx}{\sqrt{aF+b}} = (2\sqrt{aF+b})/a.$$

908.
$$\int \frac{F' \cdot dx}{\sqrt{F^2 + a}} = \log (F + \sqrt{F^2 + a}).$$

909.
$$\int \frac{F \cdot dx}{\left(F+a\right)\left(F+b\right)} = \frac{a}{a-b} \int \frac{dx}{F+a} - \frac{b}{a-b} \int \frac{dx}{F+b}.$$

910.
$$\int \frac{F \cdot dx}{(F+f)^n} = \int \frac{dx}{(F+f)^{n-1}} - \int \frac{f \, dx}{(F+f)^n}$$

911.
$$\int \frac{F' \cdot dx}{p^2 + q^2 F^2} = \frac{1}{pq} \cdot \tan^{-1} \frac{qF}{p}, \int \frac{F' \cdot dx}{q^2 F^2 - p^2} = \frac{1}{2 pq} \log \frac{qF - p}{qF + p}$$

912.
$$\int \frac{F^{2n} \cdot dx}{1 - F^{2n}} = -x + \int \frac{dx}{1 - F^{2n}}.$$
913.
$$\int \frac{F' \cdot dx}{F^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{F}{a}\right).$$
914.
$$\int \frac{F' \cdot dx}{a^2 F^2 - b^2} = \frac{1}{2ab} \log \frac{aF - b}{aF + b}.$$
915.
$$\int \frac{F^{2n} \cdot dx}{F^{2n} - b^2} = \int \frac{F^{n} \cdot dx}{2(F^{n} - b)} + \int \frac{F^{n} \cdot dx}{2(F^{n} + b)}.$$
916.
$$\int \frac{F' \cdot dx}{\sqrt{b^2 - F^2}} = \sin^{-1} \left(\frac{F}{b}\right).$$
917.
$$\int \frac{F' \cdot dx}{aF^2 + bF} = \frac{1}{b} \log \frac{F}{aF + b}.$$
918.
$$\int \frac{F' \cdot dx}{aF^2 - bF} = \frac{1}{b} \log \frac{aF - b}{F}.$$
919.
$$\int \frac{F'}{F \sqrt{F^2 - b^2}} = \frac{1}{b} \sec^{-1} \left(\frac{F}{b}\right).$$
920.
$$\int \frac{(F' \cdot f - F \cdot f') dx}{F^2 + f^2} = \tan^{-1} \left(\frac{F}{f}\right).$$
921.
$$\int \frac{(F' \cdot f - F \cdot f') dx}{F^2 - f^2} = \frac{1}{2} \log \left(\frac{F - f}{F + f}\right).$$

J. — Integrals Useful in the Theory of Alternating Currents.

922.
$$\int \sin (\omega t + \phi) dt = -\frac{1}{\omega} \cdot \cos (\omega t + \phi).$$

923. $\int \cos (\omega t + \phi) dt = \frac{1}{\omega} \cdot \sin (\omega t + \phi).$
924. $\int \sin^2(\omega t + \phi) dt = \frac{1}{2}t - \frac{1}{4\omega} \sin 2(\omega t + \phi).$

925.
$$\int \sin(\omega t + \phi) \cdot \cos(\omega t + \phi) dt = \frac{1}{2\omega} \cdot \sin^2(\omega t + \phi).$$

926.
$$\int \cos^2(\omega t + \phi) dt = \frac{1}{2}t + \frac{1}{4\omega}\sin 2(\omega t + \phi).$$

927.
$$\int \sin(\omega t + \lambda) \cdot \sin(\omega t + \mu) dt = \frac{\cos(\mu - \lambda)}{2\omega} (\omega t)$$
$$-\frac{\sin(\omega t + \lambda) \cdot \cos(\omega t + \mu)}{2\omega}$$

928.
$$\int \sin(\omega t + \lambda) \cdot \cos(\omega t + \mu) dt = \frac{\sin(\omega t + \lambda) \cdot \sin(\omega t + \mu)}{2 \omega} - \frac{\sin(\mu - \lambda)}{2 \omega} (\omega t).$$

929.
$$\int \cos(\omega t + \lambda) \cdot \cos(\omega t + \mu) dt = \frac{\cos(\mu - \lambda)}{2\omega} (\omega t) + \frac{\sin(\omega t + \lambda) \cdot \cos(\omega t + \lambda)}{2\omega}.$$

930.
$$\int \sin(mt + \lambda) \cdot \sin(nt + \mu) dt = \frac{\sin[mt - nt + \lambda - \mu]}{2(m - n)} - \frac{\sin[mt + nt + \lambda + \mu]}{2(m + n)}.$$

931.
$$\int \cos(mt + \lambda) \cdot \cos(nt + \mu) dt = \frac{\sin[mt + nt + \lambda + \mu]}{2(m+n)} + \frac{\sin[mt - nt + \lambda - \mu]}{2(m-n)}.$$

932.
$$\int \sin(mt + \lambda) \cdot \cos(nt + \mu) dt = -\frac{\cos[mt + nt + \lambda + \mu]}{2(m+n)} - \frac{\cos[mt - nt + \lambda - \mu]}{2(m-n)}.$$

933.
$$\int \cos(\omega t + \lambda + mx') \cdot \cos(\omega t + \lambda - mx) dx$$

$$= \cos^{2}(\omega t + \lambda) \left[\frac{mx + \sin mx \cdot \cos mx}{2m} \right]$$

$$- \sin^{2}(\omega t + \lambda) \left[\frac{mx - \sin mx \cdot \cos mx}{2m} \right].$$

$$\begin{cases} m \cdot \sin(\omega t + \phi) + n \cdot \cos(\omega t + \phi) = \sqrt{m^{2} + n^{2}} \cdot \sin(\omega t + \phi + \theta) \\ \text{where } \tan \theta = n/m. \end{cases}$$

$$m \cdot \sin(\omega t + \phi) - n \cdot \cos(\omega t + \phi) = \sqrt{m^{2} + n^{2}} \cdot \sin(\omega t + \phi - \theta).$$
934.
$$\int e^{(-b \pm c)t} dt = \frac{-b \mp ci}{b^{2} + c^{2}} e^{(-b \pm c)t}$$

$$= \frac{e^{-bt}}{b^{2} + c^{2}} [(c \cdot \sin ct - b \cdot \cos ct) \mp i (b \cdot \sin ct + c \cdot \cos ct)]$$

$$= \frac{e^{-bt}}{\sqrt{b^{2} + c^{2}}} [\sin (ct - \delta) \mp i \cdot \cos (ct - \delta)], \text{ where } \tan \delta = b/c.$$
935.
$$\int e^{at} \cdot \cos(\omega t + \phi) dt$$

$$= \frac{e^{at}}{a^{2} + \omega^{2}} [\omega \sin(\omega t + \phi) + \alpha \cdot \cos(\omega t + \phi)]$$

$$= \frac{e^{at}}{\sqrt{a^{2} + \omega^{2}}} [\cos [\omega t + \phi - \tan^{-1}(\omega/\alpha)].$$
936.
$$\int e^{at} \cdot \sin(\omega t + \phi) dt$$

$$= \frac{e^{at}}{a^{2} + \omega^{2}} [\alpha \cdot \sin(\omega t + \phi) - \omega \cdot \cos(\omega t + \phi)]$$

$$= \frac{e^{at}}{\sqrt{a^{2} + \omega^{2}}} \sin [\omega t + \phi - \tan^{-1}(\omega/\alpha)].$$
937.
$$\int [e^{at} \cdot \sin(\omega t + \phi)]^{2} dt$$

$$= \frac{e^{2at}}{4} \left[\frac{1}{a} - \frac{\omega \cdot \sin 2(\omega t + \phi) + \alpha \cdot \cos 2(\omega t + \phi)}{a^{2} + \omega^{2}} \right]$$

$$= \frac{e^{2at}}{4} \left[\frac{1}{a} - \frac{\cos [2 \omega t + 2 \phi - \tan^{-1}(\omega/\alpha)]}{\sqrt{a^{2} + \omega^{2}}} \right].$$

938.
$$\int [e^{\alpha t} \cdot \cos(\omega t + \phi)]^2 dt$$

$$= \frac{e^{2\alpha t}}{4} \left[\frac{1}{\alpha} + \frac{\omega \cdot \sin 2(\omega t + \phi) + \alpha \cdot \cos 2(\omega t + \phi)}{\alpha^2 + \omega^2} \right]$$

$$= \frac{e^{2\alpha t}}{4} \left[\frac{1}{\alpha} + \frac{\cos \left[2\omega t + 2\phi - \tan^{-1}(\omega/\alpha) \right]}{\sqrt{\alpha^2 + \omega^2}} \right].$$

In the case of a direct trigonometric function of $(\omega t + \phi)$, $T = 2 \pi/\omega$ is called the *period* or the *cycle*. The mean value for any whole number of periods, reckoned from any epoch, of $\sin(\omega t + \phi)$, $\cos(\omega t + \phi)$, or $\sin(\omega t + \phi) \cdot \cos(\omega t + \phi)$, is zero, whereas the mean value for any whole number of half periods, reckoned from any epoch, of either $\sin^2(\omega t + \phi)$ or $\cos^2(\omega t + \phi)$ is one half. The mean value of $\sin(\omega t)$ from t = 0 to $t = \frac{1}{2}T$, or of $\cos(\omega t)$ from $-\frac{1}{4}T$ to $+\frac{1}{4}T$, is $2/\pi$ or 0.6366.

The mean value, for any number of whole periods, of either $\sin(\omega t + \lambda) \cdot \sin(\omega t + \mu)$ or $\cos(\omega t + \lambda) \cdot \cos(\omega t + \mu)$ is $\frac{1}{2} \cdot \cos(\lambda - \mu)$, while the mean value of $\sin(\omega t + \lambda) \cdot \cos(\omega t + \mu)$ is $\frac{1}{2} \sin(\lambda - \mu)$.

INTERPOLATION.

If values of an analytic function, f(x), are given in a table for a number of values of the argument x, separated from one another consecutively by the constant small interval, δ , the differences between successive tabular values of the function are called *first tabular differences*, the differences of these first differences, second tabular differences, and so on. The tabular differences of the first, second, third, and fourth orders corresponding to x = a are

$$\begin{split} &\Delta_1 \equiv f(a+\delta) - f(a), \\ &\Delta_2 \equiv f(a+2\delta) - 2 \cdot f(a+\delta) + f(a), \\ &\Delta_3 \equiv f(a+3\delta) - 3 \cdot f(a+2\delta) + 3 \cdot f(a+\delta) - f(a), \\ &\Delta_4 \equiv f(a+4\delta) - 4 \cdot f(a+3\delta) + 6 \cdot f(a+2\delta) - 4 \cdot f(a+\delta) + f(a), \end{split}$$
 where $f(a)$ is any tabulated value.

The value of the function for x = (a + h), where $h = k\delta$, is

$$f(a+h) = f(a) + k \cdot \Delta_1 + \frac{k(k-1)}{2!} \cdot \Delta_2 + \frac{k(k-1)(k-2)}{3!} \cdot \Delta_3 + \frac{k(k-1)(k-2)(k-3)}{4!} \cdot \Delta_4 + \cdots$$

$$\left(\frac{2}{\sqrt{\pi}}\int_0^x e^{-x^2}dx.\right)$$

x	0	1	2	3	4	5	6	7	8	9
0.00	0.00000	00113	00226	00339	00451	00564	00677	00790	00903	01016
0.01	0.01128	01241	01354	01467	01580	01792	01805	01918	02031	02144
0.02	0.02256	02369	02482	02595	02708	02820	02933	03046	03159	03271
0.03	0.03384	03497	03610	03722	03835	03948	04060	04173	04286	04398
0.03 0.04	0.04511	04624	04736	04849	04962	05074	05187	05299	05412	05525
0.05	0.05637	05750	05862	05975	06087	06200	06312	06425	06537	06650
0.06	0.06762	06875	06987	07099	07212	07324	07437	07549	07661	07773
0.07	0.07886	07998	08110	08223	08335	08447	08559	08671	08784	08896
0.08	0.09008	09120	09232	09344	09456	09568	09680	09792	09904	10016
0.09	0.10128	10240	10352	10464	10576	10687	10799	10911	11023	11135
0.10	0.11246	11358	11470	11581	11693	11805	11916	12028	12139	12251
0.11	0.12362	12474	12585	12697	12808	12919	13031	13142	13253	13365
0.12	0.13476	13587	13698	13809	13921	14032	14143	14254	14365	14476
0.13	0.14587	14698	14809	14919	15030	15141	15252	15363	15473	15584
0.13	0.15695	15805	15916	16027	16137	16248	16358	16468	16579	16689
0.15	0.16800	16910	17020	17130	17241	17351	17461	17571	17681	17791
0.16	0.17901	18011	18121	18231	18341	18451	18560	18670	18780	18890
0.17	0.18999	19109	19218	19328	19437	19547	19656	19766	19875	19984
0.18	0.20094	20203	20312	20421	20530	20639	20748	20857	20966	21075
0.19	0.21184	21293	21402	21510	21619	21728	21836	21945	22053	22162
0.19	0.22270	22379	22487	22595	22704	22812	22920	23028	23136	23244
0.20	0.23352	23460	23568	23676	23784	23891	23999	24107	24214	24322
0.21	0.24430	24537	24645	24752	24859	24967	25074	25181	25288	2 5395
0.22	0.25502	25609	25716	25823	25930	26037	26144	26250	26357	26463
0.23	0.26570	26677	26783	26889	26996	27102	27208	27314	27421	27527
0.24	0.26370	27739	27845	27950	28056	28162	28268	28373	28479	28584
0.25	0.28690	28795	28901	29006	29111	29217	29322	29427	29532	29637
0.20	0.29742	29847	29952	30056	30161	30266	30370	30475	30579	30684
0.27	0.30788	30892	30997	31101	31205	31309	31413	31517	31621	31725
0.28	0.31828	31922	32036	32139	32243	32346	32450	32553	32656	32760
0.29	0.31828	32966	33069	33172	33275	33378	33480	33583	33686	33788
0.30	0.33891	33993	34096	34198	34300	34403	34505	34607	34709	34811
0.31	0.34913	35014	35116	35218	35319	35421	35523	35624	35725	35827
0.32	0.35928	36029	36130	36231	36332	36433	36534	36635	36735	36836
0.33	0.36936	37037	37137	37238	37338	37438	37538	37638	37738	37838
0.35	0.37938	38038	38138	38237	38337	38436	38536	38635	38735	38834
0.36	0.37938	39032	39131	39230	39329	39428	39526	39625	39724	39822
0.30	0.39933	40019	40117	40215	40314	40412	40510	40608	40705	40803
0.37	0.40901			41194	41291	41388	41486	41583	41680	41777
0.38 0.39	0.40901	40999 41971	41096 42068	42164	42261	42358	42454	42550	42647	42743
0.39			43031	42107	42201	43319	43415	42530	43606	43701
0.40	0.42839	42935		43127	43223 44178			43510		
0.41	0.43797	43892	43988	44083 45030	44178	44273	44368	44463	44557 45501	44652 45595
0.42	0.44747	44841	44936 45876	45030	45124	45219 46157	45313 46250	45407 46343	46436	46529
0.43	0.45689	45782	46000			46157 47086				
0.44	0.46623	46715	46808	46901	46994 47916		47179	47271	47364	47456
0.45	0.47548	47640	47732	47824		48008	48100	48191	48283	48374
0.46	0.48466	48557	48648	48739	48830	48921	49012	49103	49193	49284
0.47	0.49375	49465	49555	49646	49736	49826	49916	50006	50096	50185
0.48	0.50275	50365	50454	50543	50633	50722	50811	50900	50989	51078
0.49	0.51167	51256	51344	51433	51521	51609	51698	51786	51874	51962

$$\left(\frac{2}{\sqrt{\pi}}\int_0^x e^{-x^2}dx.\right)$$

==	_	1					Α			
	0	1	2	8	4	5	6	7	8	9
0.50	0.52050	52138	52226	52313	52401	52488	52576	52663	52750	52837
0.51	0.52924	53011	53098	53185	53272	53358	53445	53531	53617	53704
0.52	0.53790	53876	53962	54048	54134	54219	54305	54390	54476	54561
0.53	0.54646	54732	54817	54902	54987	55071	55156	55241	55 325	55410
0.54	0.55494	55578	55662	55746	55830	55914	55998	56082	56165	56249
0.55	0.56332	56416	56499	56582	56665	56748	56831	56914	56996	57079
0.56	0.57162	572 44	57326	57409	57491	57573	57655	57737	57818	57900
0.57	0.57982	58063	581 44	58226	58307	58388	58469	58550	58631	58712
0.58	0.58792	58873	58953	59034	59114	59194	59274	59354	5 94 34	59514
0.59	0.59594	59673	59753	59832	59912	59991	60070	60149	60228	60307
0.60	0.60386	60464	60543	60621	60700	60778	60856	60934	61012	61090
0.61	0.61168	61246	61323	61401	61478	61556	61633	61710	61787	61864
0.62	0.61941	62018	62095	62171	62 248	62324	62400	62477	62553	62629
0.63	0.62705	62780	62856	62932	63007	63083	63158	63233	63309	63384
0.64	0.63459	63533	63608	63683	63757	63832	63906	63981	64055	64129
0.65	0.64203	64277	64351	64424	64498	64572	64645	64718	64791	64865
0.66	0.64938	65011	65083	65156	65229	65301	65374	65446	65519	65591
0.67	0.65663	65735	65807	65878	65950	66022	66093	66165	66236	66307
0.68	0.66378	66449	66520	66591	66662	66732	66803	66873	66944	67014
0.69	0.67084	67154	67224	67294	67364	67433	67503	67572	67642	67711
0.70	0.67780	67849	67918	67987	68056	68125	68193	68262	68330	68398
0.71	0.68467	68535	68603	68671	68738	68806	68874	68941	69009	69076
0.72	0.69143	69210	69278	69344	69411	69478	69545	69611	69678	69744
0.73	0.69810	69877	69943	70009	70075	70140	70206	70272	70337	70403
0.74	0.70468	70533	70598	70663	70728	70793	70858	70922	70987	71051
0.75	0.71116	71180	71244	71308	71372	71436	71500	71563	71627	71690
0.76	0.71754	71817	71880	71943	72006	72069	72132	72195	72257	72320
0.77	0.72382	72 444	72507	72569	72631	72693	72755	72816	72878	72940
0.78	0.73001	73062	73124	73185	73246	73307	73368	73429	73489	73550
0.79	0.73610	73671	73731	73791	73851	73911	73971	74031	74091	74151
0.80	0.74210	74270	74329	74388	7 444 7	74506	74565	74624	74683	74742
0.81	0.74800	74859	74917	74976	75034	75092	75150	75208	75266	75323
0.82	0.75381	75439	75496	75553	75611	75668	75725	75782	75839	75896
0.83	0.75952	76009	76066	76122	76178	76234	76291	76347	76403	76459
0.84	0.76514	76570	76626	76681	76736	76792	76847	7690 2	76957	77012
0.85	0.77067	77122	77176	77231	77285	77340	77394	77448	77502	77556
0.86	0.77610	77664	77718	77771	77825	77878	77932	77985	78038	78091
0.87	0.78144	78197	78250	78302	78355	78408	78460	78512	78565	78617
0.88	0.78669	78721	78773	78824	78876	78928	78979	79031	79082	79133
0.89	0.79184	79235	79286	79337	79388	79439	79489	79540	79590	79641
0.90	0.79691	79741	79791	79841	79891	79941	79990	80040	80090	80139
0.91	0.80188	80238	80287	80336	80385	80434	80482	80531	80580	80628
0.92	0.80677	80725	80773	80822	80870	80918	80966	81013	81061	81109
0.93	0.81156	81204	81251	81299	81346	81393	81440	81487	81534	81580
0.94	0.81627	81674	81720	81767	81813	81859	81905	81951	81997	82043
0.95	0.82089	82135	82180	82226	82271	82317	82362	82407	82452	82497
0.96	0.82542	82587	82632	82677	82721	82766	82810	82855	82899	82943
0.97	0.82987	83031	83075	83119	83162	83206	83250	83293	83337	83380
0.98	0.83423	83466	83509	83552	83595	83638	83681	83723	83766	83808
0.99	0.83851	83893	83935	83977	84020	84061	84103	84145	84187	84229

$$\left(\frac{2}{\sqrt{\pi}}\int_0^x e^{-x^2}dx.\right)$$

x	0	1	2	3	4	5	6	7	8	9
1.00	0.84270	84312	84353	84394	84435	84477	84518	84559	84600	84640
1.01	0.84681	84722	84762	84803	84843	84883	84924	84964	85004	85044
1.02	0.85084	85124	85163	85203	85243	85282	85322	85361	85400	85439
1.03	0.85478	85517	85556	85595	85634	85673	85711	85750	85788	85827
1.04	0.85865	85903	85941	85979	86017	86055	86093	86131	86169	86206
1.05	0.86244	86281	86318	86356	86393	86430	86467	86504	86541	86578
1.06	0.86614	86651	86688	86724	86760	86797	86833	86869	86905	86941
1.07	0.86977	87013	87049	87085	87120	87156	87191	87227	87262	87297
1.08	0.87333	87368	87403	87438	87473	87507	87542	87577	87611	87646
1.09	0.87680	87715	87749	87783	87817	87851	87885	87919	87953	87987
1.10	0.88021	88054	88088	88121	88155	88188	88221	88254	88287	88320
1.11	0.88353	88386	88419	88452	88484	88517	88549	88582	88614	88647
1.12	0.88679	88711	88743	88775	88807	88839	88871	88902	88934	88966
1.13	0.88997	89029	89060	89091	89122	89154	89185	89216	89247	89277
1.14	0.89308	89339	89370	89400	89431	89461	89492	89522	89552	89582
1.15	0.89612	89642	89672	89702	89732	89762	89792	89821	89851	89880
1.16	0.89910	89939	89968	89997	90027	90056	90085	90114	90142	90171
1.17	0.90200	90229	90257	90286	90314	90343	90371	90399	90142	90171
1.17	0.90200	90512	90540	90568	90595	90623	90651	90599	90706	90733
1.19	0.90761	90788	90815	90843	90870	90897	90924	90951	90708	91005
1.19	0.91031	91058	91085	91111	91138	91164	91191	91217	91243	91269
1.21				91374						
1.22	0.91296	91322	91348 91604	91630	91399 91655	91425 91680	91451 91705	91477	91502 91755	91528
1.22	0.91553 0.91805	91579		91030	91904	91929	91703	91730	92002	91780
1.23 1.24		91830	91855	91879 92123	91904			91978		92026
1.24	0.92051	92075	92099			92171	92195	92219	92243	92266
1.25	0.92290	92314	92337	92361	92384	92408	92431	92454 92684	92477	92500
1.26	0.92524	92547	92570	92593 92819	92615	92638	92661		92706	92729
1.27	0.92751	92774	92796		92841	92863	92885	92907	92929	92951
1.28	0.92973	92995	93017	93039	93061	93082	93104	93126	93147	93168
1.29	0.93190	93211	93232	93254	93275	93296	93317	93338	93359 93566	93380
1.30	0.93401	93422	93442	93463	93484	93504	93525	93545		93586
1.31	0.93606	93627	93647	93667	93687	93707	93727	93747	93767	93787
1.32	0.93807	93826	93846	93866	93885	93905	93924	93944	93963	93982
1.33	0.94002	94021	94040	94059	94078	94097	94116	94135	94154	94173
1.34	0.94191	94210	94229	94247	94266	94284	94303	94321	94340	94358
1.35	0.94376	94394	94413	94431	94449	94467	94485	94503	94521	94538
1.36	0.94556	94574	94592	94609	94627	94644	94662	94679	94697	94714
1.37	0.94731	94748	94766	94783	94800	94817	94834	94851	94868	94885
1.38	0.94902	94918	94935	94952	94968	94985	95002	95018	95035	95051
1.39	0.95067	95084	95100	95116	95132	95148	95165	95181	95197	95213
1.40	0.95229	95244	95260	95276	95292	95307	95323	95339	95354	95370
1.41	0.95385	95401	95416	95431	95447	95462	95477	95492	95507	95523
1.42	0.95538	95553	95568	95582	95597	95612	95627	95642	95656	95671
1.43	0.95686	95700	95715	95729	95744	95758	95773	95787	95801	95815
1.44	0.95830	95844	95858	95872	95886	95900	95914	95928	95942	95956
1.45	0.95970	95983	95997	96011	96024	96038	96051	96065	96078	96092
1.46	0.96105	96119	96132	96145	96159	96172	96185	96198	96211	96224
1.47	0.96237	96250	96263	96276	96289	96302	96315	96327	96340	96353
1.48	0.96365	96378	96391	96403	96416	96428	96440	96453	96465	96478
1.49	0.96490	96502	96514	96526	96539	96551	96563	96575	96587	96599

$$\left(\frac{2}{\sqrt{\pi}}\int_0^x e^{-x^2}dx.\right)$$

\overline{x}	0	2	4	в	8	\boldsymbol{x}	0	2	4	в	8
-											
1.50	0.96611					2.00	0.99532				
1.51	0.96728					2.01	0.99552				
1.52	0.96841	96864	96886	96908	96930	2.02	0.99572	99576	99580	99583	99587
1.53	0.96952					2.03	0.99591				
1.54	0.97059					2.04	0.99609				
1.55	0.97162	97183	97203	97223	97243	2.05	0.99626	99629	99633	99636	99639
1.56	0.97263					2.06	.0.99642				
1.57	0.97360					2.07	0.99658				
1.58	0.97455					2.08	0.99673	99676	99679	99682	99685
1.59	0.97546	97564	97582	97600	97617	2.09	0.99688	99691	99694	99697	99699
1.60	0.97635	97652	97670	97687	97704	2.10	0.99702	99705	99707	99710	99713
1.61	0.97721	97738	97754	97771	97787	2.11	0.99715	99718	99721	99723	99726
1.62	0.97804	97820	97836	97852	97868	2.12	0.99728	99731	99733	99736	99738
1.63	0.97884					2.13	0.99741	99743	99745	99748	99750
1.64	0.97962	97977	97993	98008	98023	2.14	0.99753	99755	99757	99759	99762
1.65	0.98038	98052	98067	98082	98096	2.15	0.99764	99766	99768	99770	99773
1.66	0.98110	98125	98139	98153	98167	2.16	0.99775	99777	99779	99781	99783
1.67	0.98181	98195	98209	98222	98236	2.17	0.99785	99787	99789	99791	99793
1.68	0.98249	98263	98276	98289	98302	2.18	0.99795	99797	99799	99801	99803
1.69	0.98315	98328	98341	98354	98366	2.19	0.99805	99806	99808	99810	99812
1.70	0.98379	98392	98404	98416	98429	2.20	0.99814	99815	99817	99819	99821
1.71	0.98441					2.21	0.99822				
1.72	0.98500	98512	98524	98535	98546	2.22	0.99831	99832	99834	99836	99837
1.73	0.98558					2.23	0.99839				
1.74	0.98613					2.24	0.99846				
1.75	0.98667					2.25	0.99854	99855	99857	99858	99859
1.76	0.98719	98729	98739	98749	98759	2.26	0.99861	99862	99863	99865	99866
1.77	0.98769					2.27	0.99867				
1.78	0.98817					2.28	0.99874				
1.79	0.98864	98873	98882	98891	98900	2.29	0.99880	99881	99882	99883	99885
1.80	0.98909					2.30	0.99886				
1.81	0.98952	98961	98969	98978	98986	2.31	0.99891				
1.82	0.98994	99003	99011	99019	99027	2.32	0.99897	99898	99899	99900	99901
1.83	0.99035					2.33	0.99902				
1.84	0.99074	99081	99089	99096	99104	2.34	0.99906	99907	99908	99909	99910
1.85	0.99111	99118	99126	99133	99140	2.35	0.99911	99912	99913	99914	99915
1.86	0.99147	99154	99161	99168	99175	2.36	0.99915	99916	99917	99918	99919
1.87	0.99182	99189	99196	99202	99209	2.37	0.99920	99920	99921	99922	99923
1.88	0.99216					2.38	0.99924				
1.89	0.99248	99254	99261	99267	99273	2.39	0.99928	99928	99929	99930	99930
1.90	0.99279	99285	99291	99297	99303	2.40	0.99931	99932	99933	99933	99934
1.91	0.99309					2.41	0.99935				
1.92	0.99338					2.42	0.99938				
1.93	0.99366					2.43	0.99941				
1.94	0.99392					2.44	0.99944				
1.95	0.99418					2.45	0.99947				
1.96	0.99443					2.46	0.99950				
1.97	0.99466					2.47	0.99952				
1.98	0.99489					2.48	0.99955				
1.99	0.99511					2.49	0.99957				
2.00	0.99532					2.50	0.99959				
	3.77330			22311		2.50	3.77737		,,,,,,		

120

The Probability Integral.

$$\left(\frac{2}{\sqrt{\pi}}\int_0^x e^{-x^2}dx.\right)$$

\boldsymbol{x}	0	1	2	8	4	5	6	7	8
2.5	0.99959	99961	99963	99965	99967	99969	99971	99972	99974
2.6	0.99976	99978	99979	99980	99981	99982	99983	99984	9998!
2.7	0.99987	99987	99988	99989	99989	99990	99991	99991	99992
2.8	0.99992	99993	99993	99994	99994	99994	99995	99995	9999!
2.9	0.99996	99996	99996	99997	99997	99997	99997	99997	9999
3.0	0.99998	99998	99998	99998	99998	99998	99998	99998	99999

The value, I, of the Probability Integral may always be found from the converge

$$I = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{3 \cdot 1!} + \frac{x^5}{5 \cdot 2!} - \frac{x^7}{7 \cdot 3!} + \cdots \right),$$

but for large values of x, the semiconvergent series

$$I = 1 - \frac{e^{-x}}{x\sqrt{\pi}} \left(1 - \frac{1}{2x^2} + \frac{1 \cdot 3}{(2x^3)^3} - \frac{1 \cdot 3 \cdot 5}{(2x^3)^5} + \cdots \right)$$

is convenient.

Values of the Complete Elliptic Integrals, K and E, for Different Values of the Modulus, k.

$$K = \int_0^{\frac{\pi}{2}} \frac{dz}{\sqrt{1 - k^2 \sin^2 z}}; \ E = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2 z} \cdot dz.$$

sin-1 k	K	E	sin⁻¹ k	K	E	sin-1 k	K	E
0°	1.5708	1.5708	30°	1.6858	1.4675	60°	2.1565	1.2111
l°	1.5709	1.5707	310	1.6941	1.4608	61°	2.1842	1.2015
20	1.5713	1.5703	32°	1.7028	1.4539	62°	2.2132	1.1920
3°	1.5719	1.5697	330	1.7119	1.4469	63°	2.2435	1.1826
40	1.5727	1.5689	340	1.7214	1.4397	64°	2.2754	1.1732
50	1.5738	1.5678	350	1.7312	1.4323	65°	2.3088	1.1638
60	1.5751	1.5665	36°	1.7415	1.4248	66°	2.3439	1.1545
7°	1.5767	1.5649	370	1.7522	1.4171	67°	2.3809	1.1453
80	1.5785	1.5632	380	1.7633	1.4092	68°	2.4198	1.1362
90	1.5805	1.5611	390	1.7748	1.4013	69°	2.4610	1.1272
10°	1.5828	1.5589	40°	1.7868	1.3931	70°	2.5046	1.1184
110	1.5854	1.5564	41°	1.7992	1.3849	71°	2.5507	1.1096
120	1.5882	1.5537	42°	1.8122	1.3765	72°	2.5998	1.1011
13°	1.5913	1.5507	43°	1.8256	1.3680	73°	2.6521	1.0927
140	1.5946	1.5476	440	1.8396	1.3594	74°	2.7081	1.0844
15°	1.5981	1.5442	450	1.8541	1.3506	75°	2.7681	1.0764
16°	1.6020	1.5405	46°	1.8691	1.3418	76°	2.8327	1.0686
170	1.6061	1.5367	470	1.8848	1.3329	770	2.9026	1.0611
18°	1.6105	1.5326	48°	1.9011	1.3238	78°	2.9786	1.0538
19°	1.6151	1.5283	49°	1.9180	1.3147	79°	3.0617	1.0468
20°	1.6200	1.5238	50°	1.9356	1.3055	80°	3.1534	1.0401
21°	1.6252	1.5191	51°	1.9539	1.2963	81°	3.2553	1.0338
22°	1.6307	1.5141	52°	1.9729	1.2870	82°	3.3699	1.0278
23°	1.6365	1.5090	53°	1.9927	1.2776	83°	3.5004	1.0223
24°	1.6426	1.5037	54°	2.0133	1 2681	84°	3. 6519	1.0172
25°	1.6490	1.4981	55°	2.0347	1.2587	85°	3.8317	1.0127
26°	1.6557	1.4924	56°	2.0571	1.2492	86°	4.0528	1.0086
27°	1.6627	1.4864	57°	2.080+	1.2397	87°	4.3387	1.0053
28°	1.6701	1.4803	58°	2.1047	1.2301	88°	4.7427	1.0026
29°	1.6777	1.4740	59°	2.1300	1.2206	89°	5.4349	1.0008

Values of $F(k,\,\phi)$ for Certain Values of k and ϕ . $F(k,\,\phi) = \int_0^\phi \frac{dz}{\sqrt{1-k^2\sin^2z}}.$

ø	$\alpha = \sin^{-1}k$.													
Ψ.	00	10°	15°	30°	45°	60°	75°	80°	90°					
10	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174					
2 °	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349					
30	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524					
40	0.0698	0.0698	0.0698	0.0698	0.0698	0.0699	0.0699	0.0699	0.0699					
5°	0.0873	0.0873	0.0873	0.0873	0.0873	0.0874	0.0874	0.0874	0.0874					
100	0.1745	0.1746	0.1746	0.1748	0.1750	0.1752	0.1754	0.1754	0.1754					
15°	0.2618	0.2619	0.2620	0.2625	0.2633	0.2641	0.2646	0.2647	0.2648					
20°	0.3491	0.3493	0.3495	0.3508	0.3526	0.3545	0.3559	0.3562	0.3564					
25°	0.4363	0.4367	0.4372	0.4397	0.4433	0.4470	0.4498	0.4504	0.4509					
30°	0.5236	0.5243	0.5251	0.5294	0.5356	0.5422	0.5474	0.5484	0.5493					
35°	0.6109	0.6119	0.6132	0.6200	0.6300	0.6408	0.6495	0.6513	0.6528					
40°	0.6981	0.6997	0.7016	0.7116	0.7267	0.7436	0.7574	0.7604	0.7629					
4 5°	0.7854	0.7876	0.7902	0.8044	0.8260	0.8512	0.8727	0.8774	0.8814					
50°	0.8727	0.8756	0.8792	0.8982	0.9283	0.9646	0.9971	1.0044	1.0107					
5 5°	0.9599	0.9637	0.9683	0.9933	1.0337	1.0848	1.1331	1.1444	1.1542					
60°	1.0472	1.0519	1.0577	1.0896	1.1424	1.2125	1.2837	1.3014	1.3170					
65°	1.1345	1.1402	1.1474	1.1869	1.2545	1.3489	1.4532	1.4810	1.5064					
70°	1.2217	1.2286	1.2373	1.2853	1.3697	1.4944	1.6468	1.6918	1.7354					
75°	1.3090	1.3171	1.3273	1.3846	1.4879	1.6492	1.8714	1.9468	2.0276					
80°	1.3963	1.4056	1.4175	1.4846	1.6085	1.8125	2.1339	2.2653	2.4362					
85°	1.4835	1.4942	1.5078	1.5850	1.7308	1.9826	2.4366	2.6694	3.1313					
86°.	1.5010	1.5120	1.5259	1.6052	1.7554	2.0172	2.5013	2.7612	3.3547					
87°	1.5184	1.5297	1.5439	1.6253	1.7801	2.0519	2.5670	2.8561	3.6425					
88°	1.5359	1.5474	1.5620	1.6454	1.8047	2.0867	2.6336	2.9537	4.0481					
89°	1.5533	1.5651	1.5801	1.6656	1.8294	2.1216	2.7007	3.0530	4.7414					
90°	1.5708	1.5828	1.5981	1.6858	1.8541	2.1565	2.7681	3.1534	Inf.					

Values of $E(k, \phi)$ for Certain Values of k and ϕ .

$$E(k, \phi) = \int_0^{\phi} \sqrt{1 - k^2 \sin^2 z} \cdot dz.$$

				α	= sin-1	k.			
φ	0°	10°	15°	300	45°	60°	75°	80°	90°
10	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174
2°	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349
3°	0.0524	0.0524	0.0524	0.0524	0.0524	0.0523	0.0523	0.0523	0.0523
40	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698
50	0.0873	0.0873	0.0873	0.0872	0.0872	0.0872	0.0872	0.0872	0.0872
10°	0.1745	0.1745	0.1745	0.1743	0.1741	0.1739	0.1737	0.1737	0.1736
15°	0.2618	0.2617	0.2616	0.2611	0.2603	0.2596	0.2590	0.2589	0.2588
20°	0.3491	0.3489	0.3486	0.3473	0.3456	0.3438	0.3425	0.3422	0.3420
25°	0.4363	0.4359	0.4354	0.4330	0.4296	0.4261	0.4236	0.4230	0.4226
30°	0.5236	0.5229	0.5221	0.5179	0.5120	0.5061	0.5016	0.5007	0.5000
35°	0.6109	0.6098	0.6085	0.6019	0.5928	0.5833	0.5762	0.5748	0.5736
40°	0.6981	0.6966	0.6947	0.6851	0.6715	0.6575	0.6468	0.6446	0.6428
450	0.7854	0.7832	0.7806	0.7672	0.7482	0.7282	0.7129	0.7097	0.7071
50°	0.8727	0.8698	0.8663	0.8483	0.8226	0.7954	0.7741	0.7697	0.7660
55°	0.9599	0.9562	0.9517	0.9284	0.8949	0.8588	0.8302	0.8242	0.8192
60°	1.0472	1.0426	1.0368	1.0076	0.9650	0.9184	0.8808	0.8728	0.8660
65°	1.1345	1.1288	1.1218	1.0858	1.0329	0.9743	0.9258	0.9152	0.9063
70°	1.2217	1.2149	1.2065	1.1632	1.0990	1.0266	0.9652	0.9514	0.9397
75°	1.3090	1.3010	1.2911	1.2399	1.1635	1.0759	0.9992	0.9814	0.9659
80°	1.3963	1.3870	1.3755	1.3161	1.2266	1.1225	1.0282	1.0054	0.9848
85°	1.4835	1.4729	1.4598	1.3919	1.2889	1.1673	1.0534	1.0244	0.9962
86°	1.5010	1.4901	1.4767	1.4070	1.3012	1.1761	1.0581	1.0277	0.9976
87°	1.5184	1.5073	1.4936	1.4221	1.3136	1.1848	1.0628	1.0309	0.9986
880	1.5359	1.5245	1.5104	1.4372	1.3260	1.1936	1.0674	1.0340	0.9994
89°	1.553 3	1.5417	1.5273	1.4524	1.3383	1.2023	1.0719	1.0371	0.9998
90°	1.5708	1.5589	1.5442	1.4675	1.3506	1.2111	1.0764	1.0401	1.0000

TABLES.

Hyperbolic Functions.

, x	e ^x	e-x	$\sinh x$	$\cosh x$	gd x
0.00 .01 .02 .03	1.0000 1.0100 1.0202 1.0305	1.0000 0.9900 .9802 .9704	0.0000 .0100 .0200 .0300	1.0000 1.0000 1.0002 1.0004	0.0000 0.5729 1.1458 1.7186
.04 .05 .06 .07 .08	1.0408 1.0513 1.0618 1.0725 1.0833 1.0942	.9608 .9512 .9418 .9324 .9231 .9139	.0400 .0500 .0600 .0701 .0801	1.0008 1.0013 1.0018 1.0025 1.0032 1.0041	2.2912 2.8636 3.4357 4.0074 4.5788 5.1497
.10 .11 .12 .13	1.1052 1.1163 1.1275 1.1388 1.1503	.9048 .8958 .8869 .8781	.1002 .1102 .1203 .1304	1.0050 1.0061 1.0072 1.0085 1.0098	5.720 6.290 6.859 7.428 7.995
.15 .16 .17 .18	1.1618 1.1735 1.1853 1.1972 1.2092	.8607 .8521 .8437 .8353 .8270	.1506 .1607 .1708 .1810	1.0113 1.0128 1.0145 1.0162 1.0181	8.562 9.128 9.694 10.258 10.821
.20 .21 .22 .23	1.2214 1.2337 1.2461 1.2586 1.2712	.8187 .8106 .8025 .7945 .7866	.2013 .2115 .2218 .2320 .2423	1.0201 1.0221 1.0243 1.0266 1.0289	11.384 11.945 12.505 13.063 13.621
.25 .26 .27 .28	1.2840 1.2969 1.3100 1.3231 1.3364	.7788 .7711 .7634 .7558 .7483	.2526 .2629 .2733 .2837 .2941	1.0314 1.0340 1.0367 1.0395 1.0423	14.177 14.732 15.285 15.837 16.388
.30 .31 .32 .33	1.3499 1.3634 1.3771 1.3910 1.4049	.7408 .7334 .7261 .7189 .7118	.3045 .3150 .3255 .3360 .3466	1.0453 1.0484 1.0516 1.0549 1.0584	16.937 17.484 18.030 18.573 19.116
.35 .36 .37 .38	1.4191 1.4333 1.4477 1.4623 1.4770	.7047 .6977 .6907 .6839 .6771	.3572 .3678 .3785 .3892 .4000	1.0619 1.0655 1.0692 1.0731 1.0770	19.656 20.195 20.732 21.267 21.800
.40 .41 .42 .43	1.4918 1.5068 1.5220 1.5373 1.5527	.6703 .6636 .6570 .6505	.4108 .4216 .4325 .4434 .4543	1.0811 1.0852 1.0895 1.0939 1.0984	22.331 22.859 23.386 23.911 24.434
.45 .46 .47 .48 .49	1.5683 1.5841 1.6000 1.6161 1.6323	.6376 .6313 .6250 .6188 .6126	.4653 .4764 .4875 .4986 .5098	1.1030 1.1077 1.1125 1.1174 1.1225	24.955 25.473 25.989 26.503
0.50	1.6323	0.6065	0.5211	1.1225	27.015 27.524

⁻This table is taken from Prof. Byerly's Treatise on Fourier's Series, published by Messrs.

TABLES.

Hyperbolic Functions.

x	62	6-2	$\sinh x$	$\cosh x$	$\operatorname{gd} x$
0.50	1.6487	0.6065	0.5211	1.1276	27.524
.51	1.6653	.6005	.5324	1.1329	28.031
.52	1.6820	.5945	.5438	1.1383	28.535
.53	1.6989	.5886	.5552	1.1438	29.037
.54	1.7160	.5827	.5666	1.1494	29.537
.55	1.7333	.5770	.5782	1.1551	30.034
.56	1.7507	.5712	.5897	1.1609	30.529
.57	1.7683	.5655	.6014	1.1669	31.021
.58	1.7860	.5599	.6131	1.1730	31.511
.59	1.8040	.5543	.6248	1.1792	31.998
.60	1.8221	.5488	6367	1.1855	32.483
.61	1.8404	.5433	.6485	1.1919	32.965
.62	1.8589	.5379	.6605	1.198 4	33.444
.63	1.8776	.5326	.6725	1.2051	33.921
.64	1.8965	.5273	.6846	1.2119	34.395
.65	1.9155	.5220	.6967	1.2188	34.867
.66	1.9348	.5169	.7090	1.2258	35.336
.67	1.9542	.5117	.7213	1.2330	35.802
.68	1.9739	.5066	.7336	1.2402	36.265
.69	1.9937	.5016	.7461	1.2476	36.726
.70	2.0138	.4966	.7586	1.2552	37.183
.71	2.0340	.4916	.7712	1.2628	37.638
.72	2.0544	.4867	.7838	1.2706	38.091
.73	2.0751	.4819	.7966	1.2785	38.540
.74	2.0959	.4771	.8094	1.2865	38.987
.75	2.1170	.4724	.8223	1.2947	39.431
.76	2.1383	.4677	.8353	1.3030	39.872
.77	2.1598	.4630	.8484	1.3114	40.310
.78	2.1815	.4584	.8615	1.3179	40.746
.79	2.2034	.4538	.8748	1.3286	41.179
.80	2.2255	.4493	.8881	1.3374	41.608
.81	2.2479	.4449	.9015	1.3464	42.035
.82	2.2705	.440 1	.9150	1.3555	42.460
.83	2.2933	.4360	.9286	1.3647	42.881
.84	2.3164	.4317	.9423	1.3740	43.299
.85	2.3396	.4274	.9561	1.3835	43.715
.86	2.3632	.4232	.9700	1.3932	44.128
.87	2.3869	.4190	.9840	1.4029	44.537
.88	2.4109	.4148	.9981	1.4128	44.944
.89	2.4351	.4107	1.0122	1.4229	45.348
.90	2.4596	.4066	1.0265	1.4331	45.750
.91	2.4843	.4025	1.0409	1.4434	46.148
.92	2.5093	.3985	1.0554	1.4539	46.544
.93	2.5345	.3946	1.0700	1.4645	46.936
.94	2.5600	.3906	1.0847	1.4753	47.326
.95	2.5857	.3867	1.0995	1.4862	47.713
.96	2.6117	.3829	1.1144	1.4973	48.097
.97	2.6379	.3791	1.1294	1.5085	48.478
.98	2.6645	.3753	1.1446	1.5199	48.857
.99	2.6912	.3716	1.1598	1.5314	49.232
1.00	2.7183	0.3679	1.1752	1.5431	49.605

 $\sinh x = \tan g d x$; $\cosh x = \sec g d x$; $\tanh x = \sin g d x$.

TABLES.

Hyperbolic Functions.

x	$l \sinh x$	$l \cosh x$	x	$l \sinh x$	$l \cosh x$	x	$l \sinh x$	$l \cosh x$
1.00	0.0701	0.1884	1.50	0.3282	0.3715	2.00	0.5595	0.5754
1.01	.0758	.1917	1.51	.3330	.3754	2.01	.5640	.5796
1.02	.0815	.1950	1.52	.3378	.3794	2.02	.5685	.5838
1.03	.0871	.1984	1.53	.3426	.3833	2.03	.5730	.5880
1.04	.0927	.2018	1.54	.3474	.3873	2.04	.5775	.5922
1.05	.0982	.2051	1.55	.3521	.3913	2.05	.5820	.5964
1.06	.1038	.2086	1.56	.3569	.3952	2.06	.5865	.6006
1.07	.1093	.2120	1.57	.3616	.3992	2.07	.5910	.6048
1.08	.1148	.2154	1.58	.3663	.4032	2.08	.5955	.6090
1.09	.1203	.2189	1.59	.3711	.4072	2.09	.6000	.6132
1.10	.1257	.2223	1.60	.3758	.4112	2.10	.6044	.6175
1.11	.1311	.2258	1.61	.3805	.4152	2.11	.6089	.6217
1.12	.1365	.2293	1.62	.3852	.4192	2.12	.6134	.6259
1.13	.1419	.2328	1.63	.3899	.4232	2.13	.6178	.6301
1.14	.1472	.2364	1.64	.3946	.4273	2.14	.6223	.6343
1.15	.1525	.2399	1.65	.3992	.4313	2.15	.6268	.6386
1.16	.1578	.2435	1.66	.4039	.4353	2.16	.6312	.6428
1.17	.1631	.2470	1.67	.4086	.4394	2.17	.6357	.6470
1.18	.1684	.2506	1.68	.4132	.4434	2.18	.6401	.6512
1.19	.1736	.2542	1.69	.4179	.4475	2.19	.6446	.6555
1.20	.1788	.2578	1.70	.4225	.4515	2.20	.6491	.6597
1.21	.1840	.2615	1.71	.4272	.4556	2.21	.6535	.6640
1.22	.1892	.2651	1.72	.4318	.4597	2.22	.6580	.6682
1.23	.1944	.2688	1.73	.4364	.4637	2.23	.6624	.6724
1.24	.1995	.2724	1.74	.4411	.4678	2.24	.6668	.6767
1.25	.2046	.2761	1.75	.4457	.4719	2.25	.6713	.6809
1.26	.2098	.2798	1.76	.4503	.4760	2.26	.6757	.6852
1.27	.2148	.2835	1.77	.4549	.4801	2.27	.6802	.6894
1.28	.2199	.2872	1.78	.4595	.4842	2.28	.6846	.6937
1.29	.2250	.2909	1.79	.4641	.4883	2.29	.6890	.6979
1.30	.2300	.2947	1.80	.4687	.4924	2.30	.6935	.7022
1.31	.2351	.2984	1.81	.4733	.4965	2.31	.6979	.7064
1.32	.2401	.3022	1.82	.4778	.5006	2.32	.7023	.7107
1.33	.2451	.3059	1.83	.4824	.5048	2.33	.7067	.7150
1.34	.2501	.3097	1.84	.4870	.5089	2.34	.7112	.7192
1.35	.2551	.3135	1.85	.4915	.5130	2.35	.7156	.7235
1.36	.2600	.3173	1.86	.4961	.5172	2.36	.7200	.7278
1.37	.2650	.3211	1.87	.5007	.5213	2.37	.7244	.7320
1.38	.2699	.3249	1.88	.5052	.5254	2.38	.7289	.7363
1.39	.2748	.3288	1.89	.5098	.5296	2.38	.7333	.7406
1.40	.2797	.3326	1.90	.5143	.5337	2.40	.7377	.7448
1.41	.2846	.3365	1.91	.5188	.5379	2.41	.7421	.7491
1.42	.2895	.3403	1.92	.5234	.5421	2.42	.7465	.7534
1.43	.2944	.3442	1.93	.5279	.5462	2.43	.7509	.7577
1.44	.2993	-3481	1.94	.5324	.5504	2.44	.7553	.7619
1.45	.3041	.3520	1.95	.5370	.5545	2.45	.7597	.7662
1.46	.3090	.3559	1.96	.5415	.5687	2.46	.7642	.7705
1.47	.3138	.3598	1.97	.5460	.5629	2.47	.7686	.7748
1.48	.3186	.3637	1.98	.5505	.5671	2.48	.7730	.7791
1.49	.3234	.3676	1.99	.5550	.5713	2.49	.7774	.7833
1.50	0.3282	0.3715	2.00	0.5595	0.5754	2.50	0.7818	0.7876

Hyperbolic Functions.

x	$l \sinh x$	$l\cosh x$	x	$l \sinh x$	$l\cosh x$	x	$l \sinh x$	$l\cosh x$
2.50	0.7818	0.7876	2.75	0.8915	0.8951	3.0	1.0008	1.0029
2.51	.7862	.7919	2.76	.8959	.8994	3.1	1.0444	1.0462
2.52	.7906	.7962	2.77	.9003	.9037	3.2	1.0880	1.0894
2.53	.7950	.8005	2.78	.9046	.9080	3.3	1.1316	1.1327
2.54	.7994	.8048	2.79	.9090	.9123	3.4	1.1751	1.1761
2.55	.8038	.8091	2.80	.9134	.9166	3.5	1.2186	1.2194
2.56	.8082	.8134	2.81	.9178	.9209	3.6	1.2621	1.2628
2.57	.8126	.8176	2.82	.9221	.9252	3.7	1.3056	1.3061
2.58	.8169	.8219	2.83	.9265	.9295	3.8	1.3491	1.3495
2.59	.8213	.8262	2.84	.9309	.9338	3.9	1.3925	1.3929
2.60	.8257	.8305	2.85	.9353	.9382	4.0	1.4360	1.4363
2.61	.8301	.8348	2.86	.9396	.9425	4.1	1.4795	1.4797
2.62	.8345	.8391	2.87	.9440	.9468	4.2	1.5229	1.5231
2.63	.8389	.8434	2.88	.9484	.9511	4.3	1.5664	1.5665
2.64	.8433	.8477	2.89	.9527	.9554	4.4	1.6098	1.6099
2.65	.8477	.8520	2 90	.9571	.9597	4.5	1.6532	1.6533
2.66	.8521	.8563	2.91	.9615	.9641	4.6	1.6967	1.6968
2.67	.8564	.8606	2.92	.9658	.9684	4.7	1.7401	1.7402
2.68	.8608	.8649	2.93	.9702	.9727	4.8	1.7836	1.7836
2.69	.8652	.8692	2.94	.9746	.9770	4.9	1.8270	1.8270
2.70	.8696	.8735	2.95	.9789	.9813	5.0	1.8704	1.8705
2.71	.8740	.8778	2.96	.9833	.9856	6.0	2.3047	2.3047
2.72	.8784	.8821	2.97	.9877	.9900	7.0	2.7390	2.7390
2.73	.8827	.8864	2.98	.9920	.9943	8.0	3.1733	3.1733
2.74	.8871	.8907	2.99	.9964	.9986	9.0	3.6076	3.6076
2.75	0.8915	0.8951	3.00	1.0008	1.0029	10.0	4.0419	4.0419

For values of x greater than 7.0, we may write, to five places of decimals at least,

 $\log_{10} \sinh x = \log_{10} \cosh x = \log \frac{1}{2} e^x = x (0.4842945) + \overline{1.6989700}.$

The Values of e^{-x} for Certain Values of x.

x	e-x	\boldsymbol{x}	e-x	x	e-*	x	e-x
1/10	0.90484	8/10	0.44933	18/10	0.16530	5	0.00674
1/8	0.88250	9/10	0.40657	2	0.13534	11/2	0.00409
1/6	0.84648	1	0.36788	9/4	0.10540	6	0.00248
2/10	0.81873	11/10	0.33287	5/2	0.08209	13/2	0.00150
1/4	0.77880	9/8	0.32465	8/3	0.06948	7	0.00091
3/10	0.74082	12/10	0.30119	3	0.04979	15/2	0.00055
1/3	0.71653	5/4	0.28650	25/8	0.04394	8	0.00034
4/10	0.67032	13/10	0.27253	16/5	0.04076	9	0.00012
5/10	0.60653	4/3	0.26360	18/5	0.02732	10	0.00004
6/10	0.54881	14/10	0.24660	4	0.01832	11	0.00002
2/3	0.51342	3/2	0.22313	25/6	0.0155 0	12	0.00001
7/10	0.49659	16/10	0.20190	9/2	0.01111	13	0.00000

128 · TABLES.

The Common Logarithms of e^e and e^{-e}.

		
x	log ₁₀ e ^x	log ₁₀ e ^x
0.00001	0.0000043429	1.9999956571
0.00002	0.0000086859	ī.9999913141
0.00003	0.0000130288	ī.9999869712
0.00004	0.0000173718	1.9999826282
0.00005	0.0000217147	1.9999782853
0.00006	0.0000260577	1.9999739423
0.00007	0.0000304006	ī.9999695994
0.00008	0.0000347436	1.9999652564
0.00009	0.0000390865	1.9999609135
0.00010	0.0000434294	<u>1</u> .9999565706
0.00020	0.0000868589	1.9999131411
0.00030	0.0001302883	1.9998697117
0.00040	0.0001737178	1.9998262822
0.00050	0.0002171472	1.9997828528
0.00060	0.0002605767	1.9997394233
0.00070	0.0003040061	1.9996959939
0.00080	0.0003474356	1.9996525644
0.00090	0.0003908650	1.9996091350
0.00100	0.0004342945	1.9995657055
0.00200	0.0008685890	ī.9991314110
0.00300	0.0013028834	1.9986971166
0.00400	0.0017371779	1.9982628221
0.00500	0.0021714724	1.9978285276
0.00600	0.0026057669	1.9973942331
0.00700	0.0030400614	1.9969599386
0.00800	0.0034743559	1.9965256441
0.00900	0.0039086503	1.9960913497
0.01000	0.0043429448	1.99565 7 055 2
0.02000	0.0086858896	ī.9913141104
0.03000	0.0130288345	1.9869711655
0.04000	0.0173717793	1.9826282207
0.05000	0.0217147241	1.9782852759
0.06000	0.0260576689	1.9739423311
0.07000	0.0304006137	1.9695993863

TABLES.

<i>x</i>	log ₁₀ e ^z	log ₁₀ e
0.08000	0.0347435586	1.9652564414
0.09000	0.0390865034	ī.9609134966
0.10000	0.0434294482	1.9565705518
0.20000	0.0868588964	ī.9131411036
0.30000	0.1302883446	1.8697116554
0.40000	0.1737177928	1.8262822072
0.50000	0.2171472410	1.782852759 0
0.60000	0.2605766891	1.73942 3 31 09
0.70000	0.3040061373	1.695993862 7
0.80000	0.3474355855	ī.6525644145
0.90000	0.3908650337	ī.6091349663
1.00000	0.4342944819	ī.5657055181
2.00000	0.8685889638	ī.1314110362
3.00000	1.3028834457	2.6971165543
4.00000	1.7371779276	2.2628220724
5.00000	2.1714724095	3.8285275905
6.00000	2.6057668914	3.3942331086
7.00000	3.0400613733	4.9599386267
8.00000	3. 4743558552	4.5256441448
9.00000	3.9086503371	4.0913496629
10.00000	4.3429448190	3.65705518 10
20.00000	8.6858896381	9.3141103619
30.00000	13.0288344571	14.97116554 29
40.00000	17.3717792761	18.6282207239
50.00000	21.7147240952	22.2852759048
60.00000	26.0576689142	27 .9423310858
70.00000	30.4006137332	31.5993862668
80.00000	34.7435585523	35.2564414477
90.00000	39.0865033713	40.9134966287
100.00000	43.4294481903	44.5705518097
200.00000	86.8588963807	87.1411036193
300.00000	130.2883445710	131.7116554290
400.00000	173.7177927613	174.2822072387
500.00000	217.1472409516	218.8527590484

Note: $\log e^{x+y} = \log e^x + \log e^y$. Thus, $\log e^{113.1478} = 49.139465180$.

TABLES.

Five-Place Natural Logarithms.

==	1 ^			_			0	-			
No.	0	1	2	3	4	5	6	7	8	9	D.
1.00	0.0 0000	0100	0200	0300	0399	0499	0598	0698	0797	0896	100-99
1.01 1.02	0.0 0995	1094 2078	1193 2176	1292 2274	1390 2372	1489 2469	1587 2567	1686 2664	1784 2762	1882 2859	99–98 98–97
1.02	0.0 1980	3053	3150	3247	3343	3440	3537	3633	3730	3826	97-96
1.04	0.0 3922	4018	4114	4210	4306	4402	4497	4593	4688	4784	96-95
1.05	0.0 4879	4974	5069	5164	5259	5354	5449	5543	5638	5733	95-94
1.06	0.0 5827	5921	6015	6110	6204	6297	6391	6485	6579	6672	94
1.07	0.0 6766	6859	6953	7046	7139	7232	7325	7418	7511	7603	93
1.08 1.09	0.0 7696	7789 8709	7881 8801	79 7 3 8893	8066 8984	8158 9075	8250 9167	8342 9258	8434 9349	8526 9430	9392 9291
1.10 1.11	0.0 9531	9622 0526	9713 0616	9803 0706	989 4 0796	9985	*0075 0975	0165 1065	0256 1154	0346 1244	91–90 90–89
1.12	0.1 0430	1422	1511	1600	1689	1778	1867	1956	2045	2133	89
1.13	0.1 2222	2310	2399	2487	2575	2663	2751	2839	2927	3015	88
1.14	0.1 3103	319 1	3278	3366	3453	3540	3 628	3715	3802	3889	88-87
1.15	0.1 3976	4063	4150	4237	4323	4410	4497	4583	4669	4756	87-86
1.16	0.1 4842	4928	5014	5100	5186	5272	5358	5444	5529	5615	86
1.17 1.18	0.1 5700 0.1 6551	5786 6636	5871 6721	5956 6805	6042 6890	6127	6212 7059	6297 7143	6382 7227	6467 7311	85
1.18	0.1 7395	7479	7563	7647	7731	7815	7898	7982	8065	8149	85-84 84-83
1.20	0.1 8232	8315	8399	8482	8565	8648	8731	8814	8897	9979	83
1.20	0.1 8232	9145	9227	9310	9392	9474	9557	9639	9721	9979 9803	83-82
1.22	0.1 9885	9967		0131	0212	0294	0376	0457	0539	0620	82-81
1.23	0.2 0701	0783	0864	0945	1026	1107	1188	1269	1350	1430	81
1.24	0.2 1511	1592	1672	175 3	1833	1914	1994	2074	2154	2234	81-80
1.25	0.2 2314	2394	2474	2554	2634	2714	2793	2873	2952	3032	80-79
1.26	0.2 3111	3191	3270	3349	3428	3507	3586	3665	37+4	3823	79
1.27 1.28	0.2 3902 0.2 4686	3980 4764	4059 4842	4138 4920	4216 4998	4295 5076	4373 5154	4451 5231	4530 5309	4608 5387	79–78 78
1.29	0.2 5464	5542	5619	5697	5774	5811	5928	6005	6082	6159	77
1.30	0.2 6236	6313	6390	6467	6544	6620	6697	6773	6850	6926	77-76
1.31	0.2 7003	7079	7155	7231	7308	7384	7460	7536	7612	7687	76
1.32	0.2 7763	7839	7915	7990	8066	8141	8217	8292	8367	8443	76-75
1.33	0.2 8518	8593	8668	8743	8818	8893	8968	9043	9118	9192	75
1.34	0.2 9267	9342	9416	9491	9565	9639	9714	9788	9862	9936	75-74
1.35	0.3 0010	0085	0158	0232	0306	0380	0454	0528	0601	0675	74
1.36 1.37	0.3 0748	0822 1554	0895 1627	0969 1700	1042 1773	1115 1845	1189 1918	1262 1991	1335 2063	1408 2136	74-73 73-72
1.38	0.3 1461	2281	2353	2426	2498	2570	2642	2714	2786	2858	73-72
1.39	0.3 2930	3002	3074	3146	3218	3289	3361	3433	3504	3576	72-71
1.40	0.3 3647	3719	3790	3861	3933	4004	4075	4146	4217	4288	71
1.41	0.3 4359	4430	4501	4572	4642	4713	4784	4854	4925	4995	71-70
1.42	0.3 5066	5136	5206	5277	5347	5417	5487	5557	5677	5697	70
1.43	0.3 5767	5837	5907	5977	6047	6116	6186	6256	6335	6395	70-69
1.44	0.3 6464	6534	6603	6672	6742	6811	6880	6949	7018	7087	69
1.45	0.3 7156	7225	7294	7363	7432	7501	7569	7638	7707	7775	69
1.46 1.47	0.3 7844 0.3 8526	7912 8594	7981 8662	8049 8730	8117 8 7 98	8186 8866	8254 8934	8322 9001	8390 9069	8458 91 37	68 68
1.48	0.3 9204	9272	9339	9407	9474	9541	9609	9676	9743	9810	68-67
1.49	0.3 9878	9945	*0012	0079	0146	0213	0279	0346	0413	0480	67
1.50	0.4 0547	0613	0680	0746	0813	0879	0946	1012	1078	1145	67-66
	0	1	2	3	4	5	в	7	8	9	

TABLES.

Five-Place Natural Logarithms.

1.50	No.	0	1	2	3	4	5	6	7	8	9	D.
1.52												67–66
1.54												""
1.55												
1.55												1
1.56												
1.58												
1.58 0.4 5742 5806 5869 5932 5995 6058 6122 6185 6248 6310 63 1.59 0.4 6373 6436 6499 6562 6625 6625 6687 6750 6813 6875 6938 63 1.60 0.4 7000 7063 7125 7188 727 7337 7377 7499 7561 62 1.61 0.4 7623 7686 7748 7810 7872 7933 7995 8057 8119 8181 62 61 62 62 62 62 62 62 62 62 62 62 62 62 62 63 62 62 62 62 62 62 62 62 62 62 62 62 62 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63<												
1.59												
1.62						6625						
1.61 0.4 7623 7686 7748 7810 7872 7933 7995 8057 8119 8181 8361	1.60	0.4 7000	7063	7125	7188	7250	7312	7375	7437	7499	7561	62
1.63 0.4 8858 8919 8981 9042 9103 9164 9225 9287 9348 9409 61 1.64 0.4 9470 9531 9592 9652 9713 9774 9835 9896 9956 *0017 61 1.65 0.5 0078 0138 0199 0259 0320 0380 0441 0501 0561 0622 60 1.66 *0.5 0682 0742 0802 0862 0922 0983 1043 1103 1163 1222 60 1.67 0.5 1879 1939 1998 2058 2117 2177 2236 2295 2354 2414 60-59 1.79 0.5 3063 3122 3180 3239 3298 3357 3415 3474 3532 3591 59-58 1.71 0.5 3063 3122 3180 3239 3298 3357 3415 3474 3532 3591 59-58 1.72	1.61	0.4 7623	7686	7748	7810	7872	7933	7995	8057	8119		62
1.64 0.4 9470 9531 9592 9652 9713 9774 9835 9896 9956 *0017 61 1.65 0.5 0682 0742 0802 0862 0922 0830 0441 0501 0561 0622 60 1.66 0.5 0682 0742 0802 0862 0922 0831 1043 1103 1163 1222 60 1.68 0.5 1879 1939 1998 2058 2117 2177 2236 2295 2354 2414 60 60 60 60 60 60 59 1.79 0.5 3063 3122 3180 3239 3298 3357 3415 3474 3532 3591 59-58 1.71 0.5 3639 3708 3766 3825 3883 3941 4000 4058 4116 4174 58 1.72 0.5 4323 4891 4407 4465 4523 4581 4639 4694 4754 </th <th></th> <th>62-61</th>												62-61
1.65 0.5 0078 0138 0199 0259 0320 0380 0441 0501 0561 0622 61-60 1.66 0.5 0682 0742 0802 0882 0922 0983 1043 1103 1123 60 60 1.68 0.5 1879 1939 1998 2058 2117 2177 2236 2295 2354 2414 60 60-59 1.70 0.5 3063 3122 3180 3239 3298 3157 3145 3475 3504 59 1.71 0.5 3643 3708 3766 3825 3883 3411 4000 4058 4116 4174 58 1.72 0.5 4812 4870 4928 4985 5043 5101 5158 5216 5274 531 58-57 1.73 0.5 4812 4870 4928 4985 5043 5101 5158 5216 5274 5331 58-57 1.74 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>												
1.66 *0.5 0682 0742 0802 0862 0922 0983 1043 1103 1163 1222 60 1.67 0.5 1282 1342 1402 1462 1522 1581 1641 1701 1760 1820 60 1.69 0.5 1879 1939 1998 2058 2117 2177 2236 2295 2354 2414 60-59 1.70 0.5 3063 3122 3180 3239 3298 3357 3415 3474 3532 3591 59-58 1.71 0.5 3649 3708 3766 3825 3883 3941 4000 4058 4116 4174 58 1.72 0.5 4232 4291 4349 4407 4465 4523 4581 4696 4754 58 1.73 0.5 4232 4291 4349 4407 4465 4523 4581 4696 4754 58 1.74 0.5 5802 6019												61
1.67 0.5 1282 1342 1402 1462 1522 1581 1641 1701 1760 1820 60 59 1.69 0.5 1879 1939 1998 2058 2117 2177 2236 2295 2354 2414 60 69 60 69 1.70 0.5 3063 3122 3180 3239 3298 3357 3415 3474 3532 3591 59 58 1.71 0.5 3649 3708 3766 3825 3883 3941 4000 4058 4116 4174 58 1.72 0.5 4232 4291 4349 4407 4465 4523 4581 4639 4696 4754 58 1.73 0.5 4812 4870 4928 4985 5043 5101 5158 5216 5274 5331 58 57 1.75 0.5 5802 6019 6076 6133 6190 6247 6304 6361												
1.68 0.5 1879 1939 1998 2058 2117 2177 2236 2295 2354 2414 60-59 1.69 0.5 2473 2532 2591 2650 2709 2768 2827 2886 2945 3004 59 1.70 0.5 3063 3122 3180 3239 3298 3357 3415 3474 3532 3591 59-58 1.71 0.5 3649 3708 3766 3825 3883 3941 4000 4058 4116 4174 58 1.72 0.5 4812 4870 4928 4985 5043 5101 5158 5216 5274 5331 58-67 1.73 0.5 4812 4870 4928 4985 5043 5101 5158 5216 5274 5331 58-67 1.75 0.5 5651 6818 6675 5733 5790 5847 5904 57 1.77 0.5 7092 60176 6133												
1.69 0.5 2473 2532 2591 2650 2709 2768 2827 2886 2945 3004 59 1.70 0.5 3063 3122 3180 3239 3298 3357 3415 3474 3532 3591 59-58 1.71 0.5 3649 3708 3766 3825 3883 3941 4000 4058 4116 4174 58 1.72 0.5 4232 4291 4349 4407 4465 4523 4581 4639 4696 4754 58 1.73 0.5 4322 4870 4928 4985 5043 5101 5158 5616 5733 5790 5847 5904 57 1.74 0.5 5389 5446 5503 5561 5618 5675 5733 5790 5847 5904 57 1.75 0.5 5621 6618 6702 6758 6815 6872 6985 7041 57 1.76 0.5												1
1.70												
1.71 0.5 3649 3708 3766 3825 3883 3941 4000 4058 4116 4174 58 1.72 0.5 4232 4291 4349 4407 4465 4523 4581 4639 4696 4754 58 1.73 0.5 4812 4870 4928 4985 5043 5101 5158 5216 5274 5331 58-57 1.74 0.5 5389 5446 5503 5561 5618 5675 5733 5790 5847 5904 57 1.75 0.5 5631 6588 6645 6702 6758 6815 6872 6928 6985 7041 57 1.76 0.5 6531 6588 6645 6702 6758 6815 6872 6928 6985 7041 57 1.77 0.5 7098 7154 7211 7267 7324 7380 7436 7493 7549 7604 66 7823 56												
1.72 0.5 4232 4291 4349 4407 4465 4523 4581 4639 4696 4754 58 1.73 0.5 4812 4870 4928 4985 5043 5101 5158 5216 5274 5331 58-87 1.74 0.5 5389 5446 5503 5561 5618 5675 5733 5790 5847 5904 57 1.75 0.5 5962 6019 6076 6133 6190 6247 6304 6361 6418 6475 57 1.76 0.5 5831 6588 6645 6702 6758 6815 6872 6928 6985 7041 57 1.77 0.5 7098 7154 7211 7267 7324 7380 7436 7493 7549 7605 56 1.78 0.5 7661 7718 7777 7830 7886 7942 7998 8054 8110 8166 56 1.80 0.5												
1.73 0.5 4812 4870 4928 4985 5043 5101 5158 5216 5274 5331 58-87 1.74 0.5 5389 5446 5503 5561 5618 5675 5733 5790 5847 5904 57 1.75 0.5 5962 6019 6076 6133 6190 6247 6304 6361 6418 6475 57 1.76 0.5 6531 6588 6645 6702 6758 6815 6872 6928 6985 7041 57 1.77 0.5 7098 7154 7211 7267 7324 7380 7436 7493 7549 7605 58 1.78 0.5 7661 7718 7774 7830 7886 7942 7998 8054 8110 8166 56 1.79 0.5 8222 8277 8333 8389 8445 8501 8556 8612 8667 8723 56 1.80 0.5												
1.74 0.5 5389 5446 5503 5561 5618 5675 5733 5790 5847 5904 57 1.75 0.5 5962 6019 6076 6133 6190 6247 6304 6361 6418 6475 57 1.76 0.5 6531 6588 6645 6702 6758 6815 6872 6928 6985 7041 57 1.77 0.5 7098 7154 7211 7267 7324 7380 7436 7493 7549 7605 56 1.79 0.5 8222 8277 8333 8389 8445 8501 8556 8612 8667 8723 56 1.80 0.5 9884 9890 8945 9001 9056 9111 9167 9222 9277 56-55 1.81 0.5 9333 9388 9443 9498 9553 9609 9664 9719 9774 9829 55 1.82 0.5 9884 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>												
1.76 0.5 6531 6588 6645 6702 6758 6815 6872 6928 6985 7041 57 1.77 0.5 7098 7154 7211 7267 7324 7380 7436 7493 7549 7605 56 1.79 0.5 7661 7718 7774 7830 7886 7942 7998 8054 8110 8166 56 1.79 0.5 8222 8277 8333 8389 8445 8501 8556 8612 8667 8723 56 1.80 0.5 8779 8834 8890 8945 9001 9056 9111 9167 9222 2277 56-55 1.81 0.5 9333 9388 9443 9498 9553 9609 9664 9719 9774 9829 55 1.82 0.5 9884 9939 *9048 9103 0133 0158 0213 0268 0322 0377 55 1.83 0.	1.74	0.5 5389				5618						
1.77 0.5 7098 7154 7211 7267 7324 7380 7436 7493 7549 7605 56 1.78 0.5 7661 7718 7774 7830 7886 7942 7998 8054 8110 8166 56 1.79 0.5 8222 8277 8333 8389 8445 8501 8556 8612 8667 8723 56 1.80 0.5 8779 8834 8890 8945 9001 9056 9111 9167 9222 9277 56-55 1.81 0.5 9333 9388 9443 9498 9553 9609 9664 9719 9774 9829 55 1.82 0.5 9884 9939 993 *9048 0103 0158 0213 0268 0322 0377 1.83 0.6 0432 0486 0541 0595 0650 0704 0759 0813 0868 0922 55-54 1.84 0.6 0597	1.75	0.5 5962	6019	6076	6133	6190	6247	6304	6361	6418	6475	57
1.78 0.5 7661 7718 7774 7830 7886 7942 7998 8054 8110 8166 56 1.79 0.5 8222 8277 8333 8389 8445 8501 8556 8612 8667 8723 56 1.80 0.5 8779 8834 8890 8945 9001 9056 9111 9167 9222 9277 56-55 1.81 0.5 9333 9388 9443 9498 9553 9609 9664 9719 9774 9829 55 1.82 0.5 984 9939 9993 *0048 0103 0158 0268 0322 0377 55 1.83 0.6 0432 0486 0541 0595 0650 0704 0759 0813 0868 0922 55-54 1.84 0.6 0977 1031 1085 1139 1194 1248 1302 1356 1410 1464 54 1.85 0.6 1519 1573 1627 1681 1735 1788 1842 1896 1950 <t< th=""><th></th><th></th><th></th><th></th><th>6702</th><th></th><th></th><th></th><th></th><th></th><th>7041</th><th>57</th></t<>					6702						7041	57
1.79 0.5 8222 8277 8333 8389 8445 8501 8556 8612 8667 8723 56 1.80 0.5 8779 8834 8890 8945 9001 9056 9111 9167 9222 9277 56-55 1.81 0.5 9333 9388 9443 9498 9553 9609 9664 9719 9774 9829 55 1.82 0.5 9884 9939 9993 *0048 0103 0158 0213 0268 0322 0377 55 1.83 0.6 0432 0486 0541 0595 0650 0704 0759 0813 0868 0922 55-54 1.84 0.6 0477 1031 1085 1139 1194 1248 1302 1356 1410 1464 54 1.85 0.6 1519 1573 1627 1681 1735 1788 1842 1896 1950 2004 54 1.86 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>												
1.80 0.5 8779 8834 8890 8945 9001 9056 9111 9167 9222 9277 56-55 1.81 0.5 9333 9388 9443 9498 9553 9609 9664 9719 9774 9829 55 1.82 0.5 9884 9939 9993 *0048 0103 0158 0213 0268 0322 0377 55 1.83 0.6 0432 0486 0541 0595 0650 0704 0759 0813 0868 0922 55-54 1.84 0.6 0977 1031 1085 1139 1194 1248 1302 1356 1410 1464 54 1.85 0.6 1519 1573 1627 1681 1735 1788 1842 1896 1950 2004 54 1.87 0.6 2594 2647 2701 2754 2808 2861 2914 2967 3021 3074 53 1.89 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>												
1.81 0.5 9333 9388 9443 9498 9553 9609 9664 9719 9774 9829 55 1.82 0.5 9884 9393 9993 *0048 0103 0158 0213 0268 0322 0377 55 1.83 0.6 0432 0486 0541 0595 0650 0704 0759 0813 0868 0922 55-54 1.84 0.6 0977 1031 1085 1139 1194 1248 1302 1356 1410 1464 54 1.85 0.6 1519 1573 1627 1681 1735 1788 1842 1896 1950 2004 54 1.86 0.6 2594 2647 2701 2754 2808 2861 2914 2967 3021 3074 53 1.87 0.6 2594 2647 2701 2754 2808 2861 2914 2967 3021 3074 53 1.89 0.	1.79					8445			8612		8723	56
1.82 0.5 9884 9939 9993 *0048 0103 0158 0213 0268 0322 0377 55 54 1.83 0.6 0432 0486 0541 0595 0650 0704 0759 0813 0868 0922 55-54 1.84 0.6 0977 1031 1085 1139 1194 1248 1302 1356 1410 1464 54 1.85 0.6 1519 1573 1627 1681 1735 1788 1842 1896 1950 2004 54 1.86 0.6 2058 2111 2165 2219 2272 2326 2380 2433 2487 2540 54-53 1.87 0.6 2594 2647 2701 2754 2808 2861 2914 2967 3021 3074 53 1.89 0.6 3658 3711 3763 3816 3869 3922 3975 4027 4080 4133 53 1.90 0.6 4185 4238 4291 4343 4396 4448 4501 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th> </th></td<>												
1.83 0.6 0432 0486 0541 0595 0650 0704 0759 0813 0868 0922 55-54 1.84 0.6 0977 1031 1085 1139 1194 1248 1302 1356 1410 1464 54 1.85 0.6 1519 1573 1627 1681 1735 1788 1842 1896 1950 2004 54 1.86 0.6 2058 2111 2165 2219 2272 2326 2380 2433 2487 2540 54-53 1.87 0.6 2594 2647 2701 2754 2808 2861 2914 2967 3021 3074 53 1.89 0.6 3658 3711 3763 3816 3869 3922 3975 4027 4080 4133 53 1.90 0.6 4185 4238 4291 4343 4396 4448 4501 4553 4606 4658 53-58 1.91 <											9829	
1.84 0.6 0977 1031 1085 1139 1194 1248 1302 1356 1410 1464 54 1.85 0.6 1519 1573 1627 1681 1735 1788 1842 1896 1950 2004 54 1.86 0.6 2058 2111 2165 2219 2272 2326 2380 2433 2487 2540 54-53 1.87 0.6 2594 2647 2701 2754 2808 2861 2914 2967 3021 3074 53 1.88 0.6 3127 3180 3234 3287 3340 3393 3446 3499 3552 3605 53 1.89 0.6 3658 3711 3763 3816 3869 3922 3975 4027 4080 4133 53 1.90 0.6 4185 4238 4291 4343 4396 4448 4501 4553 4606 4658 53-58 1.91 0.6 4710 4763 4815 4867 4920 4972 5024 5076 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>												
1.85 0.6 1519 1573 1627 1681 1735 1788 1842 1896 1950 2004 54 1.86 0.6 2058 2111 2165 2219 2272 2326 2380 2433 2487 2540 54-53 1.87 0.6 2594 2647 2701 2754 2808 2861 2914 2967 3021 3074 53 1.88 0.6 3127 3180 3234 3287 3340 3393 3446 3499 3552 3605 53 1.89 0.6 3658 3711 3763 3816 3869 3922 3975 4027 4080 4133 53 1.90 0.6 4185 4238 4291 4343 4396 4448 4501 4553 4606 4658 53-58 1.91 0.6 4710 4763 4815 4867 4920 4972 5024 5076 5128 5180 52 1.92								1302				1
1.86 0.6 2058 2111 2165 2219 2272 2326 2380 2433 2487 2540 54-53 1.87 0.6 2594 2647 2701 2754 2808 2861 2914 2967 3021 3074 53 1.88 0.6 3127 3180 3234 3287 3340 3393 3446 3499 3552 3605 53 1.89 0.6 3658 3711 3763 3816 3869 3922 3975 4027 4080 4133 53 1.90 0.6 4185 4238 4291 4343 4396 4448 4501 4553 4606 4658 53-59 1.91 0.6 4710 4763 4815 4867 4920 4972 5024 5076 5128 5180 52 1.92 0.6 5233 5285 5337 5389 5441 5493 5545 5596 5648 5700 52 1.93												
1.87 0.6 2594 2647 2701 2754 2808 2861 2914 2967 3021 3074 53 1.88 0.6 3127 3180 3234 3287 3340 3393 3446 3499 3552 3605 53 1.89 0.6 3658 3711 3763 3816 3869 3922 3975 4027 4080 4133 53 1.90 0.6 4185 4238 4291 4343 4396 4448 4501 4553 4606 4658 53-58 1.91 0.6 4710 4763 4815 4867 4920 4972 5024 5076 5128 5180 52 1.92 0.6 5233 5285 5337 5389 5441 5493 5545 5596 5648 5700 52 1.93 0.6 5752 5804 5856 5907 5959 6011 6062 6114 6166 6217 52 1.95 0.6												
1.88 0.6 3127 3180 3234 3287 3340 3393 3446 3499 3552 3605 53 1.89 0.6 3658 3711 3763 3816 3869 3922 3975 4027 4080 4133 53 1.90 0.6 4185 4238 4291 4343 4396 4448 4501 4553 4606 4658 53-58 1.91 0.6 4710 4763 4815 4867 4920 4972 5024 5076 5128 5180 52 1.92 0.6 5752 5895 5337 5389 5441 5493 5545 5596 5648 5700 52 1.93 0.6 5752 5804 5856 5907 5959 6011 6062 6114 6166 6217 52 1.94 0.6 6269 6320 6372 6423 6475 6526 6578 6629 6680 6732 59-51 1.95												
1.90 0.6 4185 4238 4291 4343 4396 4448 4501 4553 4606 4658 53-59 1.91 0.6 4710 4763 4815 4867 4920 4972 5024 5076 5128 5180 52 1.92 0.6 5233 5285 5337 5389 5441 5493 5545 5596 5648 5700 52 1.93 0.6 5752 5804 5856 5907 5959 6011 6062 6114 6166 6217 52 1.94 0.6 6269 6320 6372 6423 6475 6526 6578 6629 6680 6732 59-51 1.95 0.6 6783 6834 6885 6937 6988 7039 7090 7141 7192 7243 51 1.96 0.6 7803 7854 7905 7956 8006 8057 8107 8158 8209 8259 51 1.98												l .
1.91 0.6 4710 4763 4815 4867 4920 4972 5024 5076 5128 5180 52 1.92 0.6 5233 5285 5337 5389 5441 5493 5545 5596 5648 5700 52 1.93 0.6 5752 5804 5856 5907 5959 6011 6062 6114 6166 6217 52 1.94 0.6 6269 6320 6372 6423 6475 6526 6578 6629 6680 6732 52-51 1.95 0.6 6783 6834 6885 6937 6988 7039 7090 7141 7192 7243 51 1.96 0.6 7294 7345 7396 7447 7498 7549 7600 7651 7702 7753 51 1.97 0.6 7803 7854 7905 7956 8006 8057 8107 8158 8209 8259 51 1.98 0.6 8310 8360 8411 8461 8512 8362 8612 8663 8713 8763 50 1.99 0.6 8813 8864 8914 8964 9014 9064 9115 9165	1.89	0.6 3658	3711	3763	3816	3869	3922	3975	4027	4080	4133	53
1.91 0.6 4710 4763 4815 4867 4920 4972 5024 5076 5128 5180 52 1.92 0.6 5233 5285 5337 5389 5441 5493 5545 5596 5648 5700 52 1.93 0.6 5752 5804 5856 5907 5959 6011 6062 6114 6166 6217 52 1.94 0.6 6269 6320 6372 6423 6475 6526 6578 6629 6680 6732 52-51 1.95 0.6 6783 6834 6885 6937 6988 7039 7090 7141 7192 7243 51 1.96 0.6 7294 7345 7396 7447 7498 7549 7600 7651 7702 7753 51 1.97 0.6 7803 7854 7905 7956 8006 8057 8107 8158 8209 8259 51 1.98 0.6 8310 8360 8411 8461 8512 8362 8612 8663 8713 8763 50 1.99 0.6 8813 8864 8914 8964 9014 9064 9115 9165	1.90	0.6 4185	4238	4291	4343	4396	4448	4501	4553	4606	4658	53- 52
1.92 0.6 5233 5285 5337 5389 5441 5493 5545 5596 5648 5700 52 1.93 0.6 5752 5804 5856 5907 5959 6011 6062 6114 6166 6217 52 1.94 0.6 6269 6320 6372 6423 6475 6526 6578 6629 6680 6732 52-51 1.95 0.6 6783 6834 6885 6937 6988 7039 7090 7141 7192 7243 51 1.96 0.6 7294 7345 7336 7447 7498 7549 7600 7651 7702 7753 51 1.97 0.6 7803 7854 7905 7956 8006 8057 8107 8158 8209 8259 51 1.98 0.6 8310 8360 8411 8461 8512 8562 8612 8663 8713 8763 50 1.99 0.6 8813 8864 8914 8964 9014 9064 9115 9165 9215 9265 200 0.6 9315 9365 9415 9465 9515 9564 9614 9664 9714	1.91	0.64710	4763	4815	4867	4920	4972	5024	5076		5180	
1.94 0.6 6269 6320 6372 6423 6475 6526 6578 6629 6680 6732 59-51 1.95 0.6 6783 6834 6885 6937 6988 7039 7090 7141 7192 7243 51 1.96 0.6 7294 7345 7396 7447 7498 7549 7600 7651 7702 7753 51 1.97 0.6 7803 7854 7905 7956 8006 8057 8107 8158 8209 8259 51 1.98 0.6 8310 8360 8411 8461 8512 8562 8612 8663 8713 8763 50 1.99 0.6 8813 8864 8914 8964 9014 9064 9115 9165 9215 9265 50 200 0.6 9315 9365 9415 9465 9515 9564 9614 9664 9714 9764 50		0.6 5233								5648		52
1.95 0.6 6783 6834 6885 6937 6988 7039 7090 7141 7192 7243 51 1.96 0.6 7294 7345 7396 7447 7498 7549 7600 7651 7702 7753 51 1.97 0.6 7803 7854 7905 7956 8006 8057 8107 8158 8209 8259 51 1.98 0.6 8310 8360 8411 8461 8512 8562 8612 8663 8713 8763 50 1.99 0.6 8813 8864 8914 8964 9014 9064 9115 9165 9215 9265 200 0.6 9315 9365 9415 9465 9515 9564 9614 9664 9714 9764 50												
1.96 0.6 7294 7345 7396 7447 7498 7549 7600 7651 7702 7753 51 1.97 0.6 7803 7854 7905 7956 8006 8057 8107 8158 8209 8259 51 1.98 0.6 8310 8360 8411 8461 8512 8562 8612 8663 8713 8763 50 1.99 0.6 8813 8864 8914 8964 9014 9064 9115 9165 9215 9265 200 0.6 9315 9365 9415 9465 9515 9564 9614 9664 9714 9764 50				-			1					
1.97 0.6 7803 7854 7905 7956 8006 8057 8107 8158 8209 8259 51 1.98 0.6 8310 8360 8411 8461 8512 8562 8612 8663 8713 8763 50 1.99 0.6 8813 8864 8914 8964 9014 9064 9115 9165 9215 9265 200 0.6 9315 9365 9415 9465 9515 9564 9614 9664 9714 9764 50												
1.98 0.6 8310 8360 8411 8461 8512 8562 8612 8663 8713 8763 50 1.99 0.6 8813 8864 8914 8964 9014 9064 9115 9165 9215 9265 50 2.00 0.6 9315 9365 9415 9465 9515 9564 9614 9664 9714 9764 50												
1.99 0.6 8813 8864 8914 8964 9014 9064 9115 9165 9215 9265 50 2.00 0.6 9315 9365 9415 9465 9515 9564 9614 9664 9714 9764 50												
2.00 0.6 9315 9365 9415 9465 9515 9564 9614 9664 9714 9764 50												

TABLES.

Five-Place Natural Logarithms.

No.	0	1	2	3	4	5	6	7	8	9	D.
2.00	0.6 9315	9365	9415	9465	9515	9564	9614	9664	9714	9764	50
2.01	0.6 9813	9863	9913	9963	*0012	0062	0112	0161	0211	0260	50
2.02	0.7 0310	0359	0409	0458	0508	0557	0606	0656	0705	0754	49
2.03 2.04	0.7 0804 0.7 1295	0853	0902 1393	0951 1442	1000	1050 1540	1099 1589	1148	1197	1246	49
		1344			1491	l		1638	1686	1735	49
2.05	0.7 1784	1833	1881	1930	1979	2028	2076	2125	2173	2222	49
2.06	0.7 2271	2319 2803	2368	2416 2900	2465 2948	2513 2996	2561	2610	2658	2707	49-48
2.07 2.08	0.7 2755 0.7 3237	3285	2851 3333	3381	2 948 3429	3477	3044 3525	3092 3573	3141 3621	3189 3669	48 48
2.09	0.7 3716	3764	3812	3860	3908	3955	4003	4051	4098	4146	48
2.10	0.7 4194	4241	4289	4336	4384	4432	4479	4527	4574	4621	48-47
2.11	0.7 4669		4764	4811	4858	4905	4953	5000	5047	5094	47
2.12	0.7 5142	5189	5236	5283	5 330	5377	5424	5471	5518	5565	47
2.13	0.7 5612	5659	5706	5753	5800	5847	5893	5 94 0	5987	6034	47
2.14	0.7 6081	6127	6174	6221	6267	6314	6361	6407	6454	6500	47
2.15	0.7 6547	6593	6640	6686	6733	6779	6825	6872	6 918	6965	47-46
2.16	0.7 7011	7057	7103	7150	7196	7242	7288	7334	7381	7427	46
2.17	0.7 7473	7519	7565	7611	7657	7703	7749	7795	7841	7887	46
2.18	0.7 7932	7978	8024	8070	8116	8162	8207	8253	8299	8344	46
2.19	0.7 8390	8436	8481	8527	8573	8618	8664	8709	8755	8800	46-45
2.20	0.7 8846	8891	8937	8982	9027	9073	9118	9163	9209	9254	45
2.21	0.7 9299	9344	9390	9435	9480	9525	9570	9615	9661	9706	45
2.22	0.7 9751	9796	9841	9886	9931		*0021	0066	0110	0155	45
2.23	0.8 0200	0245	0290	0335	0379	0424	0469	0514	0558	0603	45
2.24	0.8 0648	0692	0737	0781	0826	0871	0915	0960	1004	1049	45-44
2.2 5	0.8 1093	1137	1182	1226	1271	1315	1359	1404	1448	1492	44
2.26 2.27	0.8 1536 0.8 1978	1581 2022	1625 2066	1669 2110	1713 2154	1757 2198	1802 2242	1846 2286	1890 2330	1934 2374	44
2.28	0.8 2418	2461	2505	2549	2593	2637	2680	2724	2768	2812	44
2.29	0.8 2855	2899	2942	2986	3030	3073	3117	3160	3204	3247	44-43
2.80	0.8 3291	3334	3378	3421	3465	3508	3551	3595	3638	3681	43
2.31	0.8 3725	3768	3811	3855	3898	3941	3984	4027	4070	4114	43
2.32	0.8 4157	4200	4243	4286	4329	4372	4415	4458	4501	4544	43
2.33	0.8 4587	4630	4673	4715	4758	4801	4844	4887	4930	4972	43
2.34	0.8 5015	5058	5101	5143	5186	5229	5271	5314	5356	5399	43
2.35	0.8 5442	5484	5527	5569	5612	5654	5697	5739	5781	5824	43-49
2.36	0.8 5866	5909	5951	5993	6036	6078	6120	6162	6205	6247	42
2.37	0.8 6289	6331	6373	6415	6458	6500	6542	6584	6626	6668	42
2.38	0.8 6710	6752	6794	6836	6878	6920	6962	7004	7046	7087	42
2.39	0.8 7129	7171	7213	7255	7297	7338	7380	7422	7464	7505	42
2.40	0.8 7547	7589	7630	7672	7713	7755	7797	7838	7880	7921	42
2.41	0.8 7963	8004 8418	8046	8087 8501	8129	8170	8211	8253 8666	8294	8335 8748	41
2.42 2.43	0.8 8377 0.8 8789	8830	8459 8871	8913	8542 8954	8583 8995	8624 9036	9077	8707 9118	9159	41
2.43	0.8 9200	9241	9282	9323	9364	9405	9036	9486	9527	9568	41
2.45	0.8 9609	9650	9690	9731	9772	9813	9853	9894	9935	9975	41
2.46	0.9 0016	0057	0097	0138	0179	0219	0260	0300	0341	0381	41-40
2.47	0.9 0422	0462	0503	0543	0584	0624	0664	0705	0745	0786	40
2.48	0.9 0826	0866	0906	0947	0987	1027	1067	1108	1148	1188	40
2.49	0.9 1228	1268	1309	1349	1389	1429	1469	1509	1549	1589	40
2.50	0.9 1629	1669	1709	1749	1789	1829	1869	1909	1949	1988	40
	0	1	2	3	4	5	6	7	8	9	

TABLES.

Five-Place Natural Logarithms.

No.	0	1	2	3	4	5	6	7	8	9	D.
2.50	0.9 1629	1669	1709	1749	1789	1829	1869	1909	1949	1988	40
2.51	0.9 2028	2068	2108	2148	2188	2227	2267	2307	2346	2386	40
2.52	0.9 2426	2466	2505	2545	2584	2624	2664	2703	2743	2782	40
2.53	0.9 2822	2861	2901	2940	2980	3019	3059	3098	3138	3177	40-39
2.54	0.9 3216	3256	3295	3334	3374	3413	3452	3492	3531	3570	39
2.55	0.9 3609	3649	3688	3727	3766	3805	3844	3883	3923	3962	39
2.56	0.9 4001	4040	4079	4118	4157	4196	4235	4274	4313	4352	39
2.57	0.9 4391	4429	4468	4507	4546	4585	4624	4663	4701	4740	39
2.58	0.9 4779	4818	4856	4895	4934	4973	5011	5050.	5089	5127	39
2.59	0.9 5166	5204	5243	5282	5320	5359	5397	5436	5 4 74	5513	39–38
2.60	0.9 5551	5590	5628	5666	570 5	5743	5782	5820	5858	5897	38
2.61	0.9 5935	5973	6012	6050	6088	6126	6165	6203	6241	6279	38
2.62	0.9 6317	6356	6394	6432	6470	6508	6546	6584	6622	6660	38
2.63	0.9 6698	6736	6774	6812	6850	6888	6926	6964	7002	7040	38
2.64	0.9 7078	7116	7154	7191	7229	7267	7305	7343	7380	7418	38
2.65	0.9 7456	7494	7531	7569	7607	7644	7682	7720	7757	7795	38
2.66	0.9 7833	7870	7908	7945	7983	8020	8058	8095	8133	8170	38-37
2.67	0.9 8208	8245	8283	8320	8358	8395	8432	8470	8507	8544	37
2.68	0.9 8582	8619	8656	8694	8731	8768	8805	8843	8880	8917	37
2.69	0.9 8954	8991	9028	9066	9103	9140	9177	9214	9251	9288	37
2.70	0.9 9325	9362	9399	9436	9473	9510	9547	9584	9621	9658	37
2.71	0.9 9695	9732	9769	9806	9842	9879	9916	9953		*0026	37
2.72	1.0 0063	0100	0137	0173	0210	0247	0284	0320	0357	0394	37
2.73	1.0 0430	0467	0503	0540	0577	0613	0650	0686	0723	0759	37
2.74	1.0 0796	0832	0869	0905	0942	0978	1015	1051	1087	1124	36
2.75	1.0 1160	1196	1233	1269	1305	1342	1378	1414	1451	1487	36
2.76	1.0 1523	1559	1596	1632	1668	1704	1740	1776	1813	1849	36
2.77	1.0 1885	1921	1957	1993	2029	2065	2101	2137	2173	2209	36
2.78	1.0 2245	2281	2317	2353	2389	2425 2783	2461 2819	2497 2855	2532 2890	2588 2926	36 36
2.79	1.0 2604	2640	2676	2712	2747						
2.80	1.0 2962	2998	3033	3069	3105	3140	3176	3212	3247	3283	36
2.81	1.0 3318	3354	3390	3425	3461	3496	3532	3567	3603	3638	36-35
2.82	1.0 3674	3709	3745	3780	3815	3851	3886	3922	3957	3992	35
2.83	1.0 4028	4063	4098	4134	4169	4204	4239	4275	4310	4345	35
2.84	1.0 4380	4416	4451	4486	4521	4556	4591	4627	4662	4697	35
2.85	1.0 4732	4767	4802	4837	4872	4907	4942	4977	5012	5047	35
2.86	1.0 5082	5117	5152	5187	5222	5257	5292	5327	5361	5396	35
2.87	1.0 5431	5466	5501	5536	5570	5605	5640	5675	5710	5744	35
2.88	1.0 5779	5814	5848	5883	5918	5952	5987	6022	6056	6091 6437	35 35–34
2.89	1.0 6126	6160	6195	6229	6264	6299	6333	6368	6402		
2.90	1.0 6471	6506	6540	6574	6609	6643	6678	6712	6747	6781	34
2.91	1.0 6815	6850	6884	6918	6953	6987	7021	7056	7090	7124	34
2.92	1.0 7158	7193	7227	7261	7295	7329	7364	7398	7432	7466	34
2.93	1.0 7500	7534	7568	7603	7637	7671	7705	7739	7773	7807 8147	34 34
2.94	1.0 7841	7875	7909	7943	7977	8011	8045	8079	8113		
2.95	1.0 8181	8214	8248	8282	8316	8350	8384	8418	8451 8789	8485 8823	34 34
2.96	1.0 8519	8553	8586	8620	8654	8688	8721 9058	8755 9092	9125	9159	34 34
2.97	1.0 8856	8890	8924	8957 9293	8991 9326	9024	9393	9092	9123	9494	34-3 3
2.98 2.99	1.0 9192 1.0 9527	9226 9561	9259 9594	9293 9628	9320	9694	9393	9761	9795	9828	33
3.00	1.0 9861	9895	9928	9961	9994	*0028	0061	0094	0128	0161	33
3.00	0	9895	2	3	4	5	6	7	8	9	
1	U	T	Z	o	4	U	U	•	0		

Five-Place Natural Logarithms.

No.	0	1	2	8	4	5	6	7	8	9	D.
3.00	1.0 9861	9895	9928	9961	9994	*0028	0061	0094	0128	0161	33
3.01 3.02	1.1 0194 1.1 0526	0227 0559	0260 0592	0294 0625	0327 0658	0360	0393 0724	0426 0757	0459 0790	0493 0823	33 33
3.02	1.1 0326	0889	0392	0955	0988	1021	1054	1087	1120	1153	33
3.04	1.1 1186	1219	1252	1284	1317	1350	1383	1416	1449	1481	33
3.05	1.1 1514	1547	1580	1612	1645	1678	1711	1743	1776	1809	33
3.06	1.1 1841	1874	1907	1939	1972	2005	2037	2070	2103	2135	33
3.07	1.1 2168	2200	2233	2265	2298	2330	2363	2396	2428	2460	33-39
3.08 3.09	1.1 2493 1.1 2817	2525 2849	2558 2882	2590 2914	2623 2946	2655 2979	2688 3011	2720 3043	2752 3076	2785 3108	32 32
8.10	1.1 3140	3172	3205	3237	3269	3301	3334	3366	3398 3719	3430 3751	32
3.11 3.12	1.1 3462 1.1 3783	3494 3815	3527 3847	3559 3879	3591 3911	3623 3943	3655 3955	3687 4007	4039	4071	32 32
3.12	1.1 4103	4135	4167	4199	4231	4263	4295	4327	4359	4390	32
3.14	1.1 4422	4454	4486	4518	4550	4581	4613	4645	4677	4708	32
3.15	1.1 4740	4772	4804	4835	4867	4899	4931	4962	4994	5026	32
3.16	1.1 5057	5089	5120	5152	5184	5215	5247	5278	5310	5342	32
3.17	1.1 5373	5405	5436	5468	5499	5531	5562	5594	5625	5657	39-31
3.18 3.19	1.1 5688	5720 6033	5751 6065	5782 6096	5814 6127	5845 6159	5877 6190	5908 6221	5939 6253	5971 6284	31 31
8.20	1.1 6315	6346	6378	6409	6440	6471	6502	6534	6565	6596	31
3.21 3.22	1.1 6627 1.1 6938	6658 6969	6689 7000	6721 7031	6752 7062	6783 7093	6814 7124	6845 7155	6876 7186	6907 7217	31 31
3.23	1.1 7248	7279	7310	7341	7372	7403	7434	7465	7496	7526	31
3.24	1.1 7557	7588	7619	7650	7681	7712	7742	7773	7804	7835	31
3.25	1.1 7865	7896	7927	7958	7989	8019	8050	8081	8111	8142	31
3.26	1.1 8173	8203	8234	8265	8295	8326	8357	8387	8418	844 8	31
3.27	1.1 8479	8510	8540	8571	8601	8632	8662	8693	8723	8754	31-30
3.28 3.29	1.1 8784	8815 9119	8845 9150	8876	8906	8937 9241	8967 9271	8998 9301	9028 9332	9058 9362	30 30
				9180	9210						
3.30 3.31	1.1 9392	9423	9453	9483	9513	9544	9574	9604 9906	9634 9936	9665 9966	30
3.32	1.1 9695	9725 *00 27	9755 0057	9785 0087	9816 0117	9846 0147	9876 0177	0207	0237	0267	30 30
3.33	1.2 0297	0327	0357	0387	0417	0447	0477	0507	0537	0567	30
3.34	1.2 0597	0627	0657	0687	0717	0747	0777	0806	0836	0866	30
3.35	1.2 0896	0926	0956	0986	1015	1045	1075	1105	1135	1164	30
3.36	1.2 1194	1224	1254	1283	1313	1343	1373	1402	1432	1462	30
3.37	1.2 1491	1521	1551	1580	1610	1640	1669	1699	1728	1758	30
3.38 3.39	1.2 1788 1.2 2083	1817 2112	1847 2142	1876 2171	1906 2201	1935 2230	1965 2260	1994 2289	2024 2319	2053 2348	30 29
8.40 3.41	1.2 2378 1.2 2671	2407 2701	2436	2466	2495	2524	2554	2583	2613	2642	29
3.42	1.2 2071	2993	2730 3023	2759 3052	2788 3081	2818 3110	2847 3139	2876 3169	2906 3198	2935 3227	29 29
3.43	1.2 3256	3285	3314	3343	3373	3402	3431	3460	3489	3518	29
3.44	1.2 3547	3576	3605	3634	3663	3692	3721	3750	3779	3808	29
3.45	1.2 3837	3866	3895	3924	3953	3982	4011	4040	4069	4098	29
3.46	1.2 4127	4156	4185	4214	4242	4271	4300	4329	4358	4387	29
3.47	1.2 4415	4444	4473	4502	4531	4559	4588	4617	4646	4674	29
3.48 3.49	1.2 4703 1.2 4990	4732 5019	4761 5047	4789	4818	4847	4875	4904	4933 5219	4962 5248	29
3.50	1.2 5276	5305	5047	5076 5362	5105	5133	5162 5448	5191 5476	5505	5533	29 29–28
	0	1	2	3302	5391 4	5	6	7	8	9	25-20
								•			

Five-Place Natural Logarithms.

1.2 1.2	No.	0	1	2	3	4	5	6	7	8	9	D.
3.51	3.50	1.2 5276	5305	5333	5362	5391	5419	5448	5476	5505	5533	29-28
3.54												
3.54 1.2 6413 6441 6469 6497 6526 6554 6582 6610 6638 6667 98 3.55 1.2 6695 6723 6751 6779 6807 6836 6864 6892 6920 6948 98 3.56 1.2 6976 7004 7032 7060 7088 7116 71144 7172 7210 7229 98 3.57 1.2 7257 7285 7313 7341 7369 7397 7424 7452 7480 7508 98 3.58 1.2 7536 7564 7592 7620 7648 7676 7704 7732 7759 7787 98 3.59 1.2 7815 7843 7871 7899 7927 7954 7982 8010 8038 8066 98 3.60 1.2 8093 8121 8149 8177 8204 8232 8260 8288 8315 8343 98 3.61 1.2 8371 8398 8426 8454 8482 8309 8537 8564 8592 8620 98 3.62 1.2 8647 8675 8703 8730 8758 8785 8813 8841 8868 8896 98 3.63 1.2 8923 8951 8978 9006 9033 9061 9088 9116 9143 9171 98-837 8046 915 916 9143 9171 98-837 8046 915 916 916 916 916 916 916 916 916 916 916												28
3.55												
3.56							i					
3.57 1.2 7257 7285 7313 7341 7369 7424 7452 7480 7508 28 3.59 1.2 7815 7843 7871 7899 7927 7954 7070 7732 7759 7787 28 3.60 1.2 8073 8121 8149 8177 8204 8232 8260 828 8315 8343 28 3.61 1.2 8073 8578 8708 8758 8785 8813 8848 8868 896 28 3.62 1.2 8473 8571 8978 9006 9033 9061 9088 9116 9143 9171 28-47 3.65 1.2 9473 9500 9527 9555 9582 9610 9637 9664 9692 9719 97 3.66 1.2 9473 9000 9828 885 981 9910 9937 9965 9992 971 3.6 3.66 1.2 9474 90110101 1028 9155												
3.58 1.2 7536 7564 7592 7620 7648 7676 7704 7732 7759 7787 28 3.59 1.2 8093 8121 8149 8177 8204 8232 8260 8288 8315 8343 98 3.61 1.2 8371 8398 8426 8454 8482 8509 8537 8564 8592 8620 28 3.62 1.2 8923 8918 878 8006 9033 9061 9688 9116 9143 9171 28-87 3.64 1.2 9198 9226 9253 9281 9308 9336 9333 9309 9418 9445 97 3.64 1.2 9198 9226 9253 9282 9555 9582 9610 9637 9664 9692 9719 97 3,66 1.2 9174 9801 9828 9856 983 9910 937 9965 9972 977 3,67 1.3 613 13 13												
3.59 1.2 7815 7843 7871 7899 7927 7954 7982 8010 8038 8066 28 3.60 1.2 8093 8121 8149 8177 8204 8232 8268 8315 8343 28 3.61 1.2 8071 8398 8426 8454 8482 8509 8537 8564 8592 8620 28 3.62 1.2 8923 8951 8978 9006 9033 9061 9088 9116 9143 9171 28-27 3.64 1.2 9198 9226 9253 9281 9308 9363 9309 9418 9445 97 3.65 1.2 9473 9500 9527 9555 9582 9610 9637 9664 9692 9719 97 3.66 1.2 9473 9500 9527 9555 9582 9610 9637 9664 9692 9719 97 3.66 1.2 9746 977												
8.60 1.2 8093 8121 8149 8177 8204 8232 8260 8288 8315 8343 28 3.61 1.2 8371 8398 8426 8454 8482 8559 8537 8564 8592 8620 28 3.63 1.2 8923 8951 878 9006 9033 9061 9088 9116 9143 9171 28-27 3.64 1.2 9198 9226 9253 9281 9308 9336 9363 9300 9418 9445 27 3.65 1.2 9473 9500 9527 9555 9582 9610 9637 9664 9692 9719 97 3.66 1.2 9746 9774 9801 9828 9856 9883 9910 9937 9965 9992 27 3.67 1.3 0133 360 0887 0914 0941 0941 0946 0454 0454 0454 0475 0494 0475												
3.61												
3.62												
3.63 1.2 8923 8951 8978 9006 9033 9363 9363 9393 9418 9415 27 3.64 1.2 9198 9226 9253 9281 9308 9363 9393 9364 9415 9415 971 27 3.65 1.2 9746 9774 9801 9828 9856 983 9910 9937 9965 9992 27 3.66 1.3 0291 0318 0346 0373 0400 0427 0454 0481 0508 0536 27 3.69 1.3 0563 0590 0617 0644 0671 0698 0725 0752 0779 0806 27 3.70 1.3 0833 0860 0887 0914 0941 0968 0995 1022 1049 1076 27 373 1.3 1461 1668 1694 1721 1748 1775 1802 1828 1855 1882 27 3.73 1.3 2176 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8813</td><td></td><td></td><td></td><td>_</td></td<>								8813				_
3.65												
3.66 1.2 9746 9774 9801 9828 9856 9883 9910 9937 9965 9992 27 3.67 1.3 0019 0046 0074 0101 0128 0155 0183 0210 0237 0264 27 3.68 1.3 0291 0318 0346 0373 0400 0427 0454 0481 0508 0536 27 3.69 1.3 0563 0590 0617 0644 0671 0698 0725 0772 0779 0806 27 3.71 1.3 103 1130 1157 1184 1211 1238 1265 1292 1319 1345 27 3.72 1.3 1312 13157 1184 1211 1748 1775 1802 1828 1855 1614 27 3.74 1.3 1909 1935 1962 1999 2015 2042 2069 2069 2062 2189 24115 27 3.74 1.3 2708	3.64	1.2 9198	9226	9253	9281	9308	9336	9363	9390	9418	9445	27
3.67 1.3 0019 0046 0074 0101 0128 0155 0183 0210 0237 0264 27 3.68 1.3 0291 0318 0346 0373 0400 0427 0454 0481 0508 0536 27 3.70 1.3 0833 0860 0887 0914 0941 0968 0725 0779 0806 97 3.71 1.3 1103 1130 1157 1184 1211 1238 1265 1292 1319 1345 97 3.72 1.3 1372 1399 1426 1453 1480 1507 1534 1560 1587 1614 97 3.73 1.3 1641 1668 1694 1721 1748 1775 1802 1828 1855 1882 97 3.75 1.3 2176 2202 2229 2256 2282 2309 2335 2362 2389 2415 97 3.76 1.3 2442 26					9555	9582	9610	9637	9664		9719	27
3.68 1.3 0291 0318 0346 0373 0400 0427 0454 0481 0508 0536 27 8.70 1.3 0833 0860 0887 0914 0941 0968 0995 1022 1049 1076 37 3.71 1.3 1103 1130 1157 1184 1211 1238 1265 1292 1319 1345 97 3.72 1.3 1372 1399 1426 1453 1480 1507 1534 1560 1587 1614 97 3.73 1.3 1641 1668 1694 1721 1748 1775 1802 1828 1855 1882 97 3.74 1.3 1909 1935 1962 1989 2015 2042 2069 2096 2122 2149 97 3.75 1.3 2472 2468 2495 2522 2548 2575 2601 2628 2651 2681 97 367 1.3 2472							9883					
3.69 1.3 0563 0590 0617 0644 0671 0698 0725 0752 0779 0806 27 8.70 1.3 0833 0860 0887 0914 0941 0968 0995 1022 1049 1076 27 3.71 1.3 1103 1130 1157 1184 1211 1238 1265 1292 1319 1345 97 3.72 1.3 1372 1399 1426 1453 1480 1507 1534 1560 1587 1614 97 3.73 1.3 1276 2202 1989 2015 2042 2069 2096 2122 2149 97 3.75 1.3 2176 2202 2229 2256 2282 2309 2335 2362 2389 2415 97 3.77 1.3 2708 2734 2761 2787 2814 2840 2867 2893 2919 2946 27-36 3.78 1.3 2970 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
1.3 0833												
3.71 1.3 1103 1130 1157 1184 1211 1238 1265 1292 1319 1345 27 3.72 1.3 1372 1399 1426 1453 1480 1507 1534 1560 1587 1614 27 3.73 1.3 1641 1668 1694 1721 1748 1775 1802 1828 1855 1882 27 3.74 1.3 1909 1935 1962 1989 2015 2042 2069 2096 2122 2149 27 3.75 1.3 2176 2202 2229 2256 2282 2309 2335 2362 2389 2415 27 3.76 1.3 2708 2734 2761 2787 2814 2840 2867 2893 2919 2946 27-36 3.79 1.3 3500 3526 3553 3579 3605 3632 3684 3710 3737 26 3.80 1.3 3702 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
3.72 1.3 1372 1399 1426 1453 1480 1507 1534 1560 1587 1614 27 3.73 1.3 1641 1668 1694 1721 1748 1775 1802 1828 1855 1882 27 3.74 1.3 1909 1935 1962 1989 2015 2042 2069 2096 2122 2149 27 3.75 1.3 2176 2202 2229 2256 2282 2309 2335 2362 2389 2415 27 3.76 1.3 2472 2468 2495 2522 2548 2575 2601 2628 2654 2681 27 3.77 1.3 2708 2734 2761 2787 2814 2840 2867 2893 2919 2946 27-36 3.78 1.3 2373 3263 3289 3316 3342 3368 3395 3421 3447 3474 26 3.80 1.3 3763 3789 3815 3842 3863 3894 3390 3946 3												
3.73 1.3 1641 1668 1694 1721 1748 1775 1802 1828 1855 1882 27 3.74 1.3 1909 1935 1962 1989 2015 2042 2069 2096 2122 2149 27 3.75 1.3 2176 2202 2229 2256 2282 2309 2335 2362 2389 2415 27 3.76 1.3 2472 2468 2495 2522 2548 2575 2601 2628 2654 2681 27 3.78 1.3 2972 2999 3025 3052 3078 3105 3131 3157 3184 3210 28 3.79 1.3 3500 3526 3553 3579 3605 3632 3684 3710 3737 26 3.81 1.3 3763 3789 3815 3842 3868 3894 3920 3946 3973 3999 26 3.82 1.3 4025 4051 4077 4104 4130 4156 4182 4208 4234 4260												
3.74 1.3 1909 1935 1962 1989 2015 2042 2069 2096 2122 2149 27 3.75 1.3 2176 2202 2229 2256 2282 2309 2335 2362 2389 2415 27 3.76 1.3 2442 2468 2495 2522 2548 2575 2601 2628 2654 2681 27 3.77 1.3 2708 2734 2761 2787 2814 2840 2867 2893 2919 2946 27-286 3.78 1.3 2972 2999 3025 3052 3078 3105 3131 3115 3184 3210 286 3.80 1.3 3500 3526 3553 3579 3605 3632 3658 3684 3710 3737 28 3.81 1.3 3763 3789 3815 3842 3868 3894 3920 3946 3973 3999 26 3.82 1.3 4025 4051 4077 4104 4130 4156 4182 4208 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
3.75 1.3 2176 2202 2229 2256 2282 2309 2335 2362 2389 2415 27 3.76 1.3 2442 2468 2495 2522 2548 2575 2601 2628 2654 2681 27 3.77 1.3 2708 2734 2761 2787 2814 2840 2867 2893 2919 2946 27-36 3.78 1.3 2972 2999 3025 3052 3078 3105 3131 3157 3184 3210 26 3.79 1.3 3237 3263 3289 3316 3342 3368 3395 3421 3447 3474 28 3.81 1.3 3500 3526 3553 3579 3605 3632 3658 3684 3710 3737 26 3.81 1.3 3603 3799 3815 3842 3868 3894 3920 3946 3973 3999 26 3.82 1.3 4286 4313 4339 4365 4391 4417 4443 4469 4												
3.76 1.3 2442 2468 2495 2522 2548 2575 2601 2628 2654 2681 27 3.77 1.3 2708 2734 2761 2787 2814 2840 2867 2893 2919 2946 27-36 3.78 1.3 2702 2999 3025 3052 3078 3105 3131 3157 3184 3210 26 3.79 1.3 3503 3526 3553 3579 3605 3632 3688 3395 3421 3447 3474 26 3.81 1.3 3763 3789 3815 3842 3868 3894 3920 3946 3973 3999 26 3.82 1.3 4286 4313 4339 4365 4391 4417 4443 4469 4495 4521 26 3.83 1.3 4807 4833 4859 4885 4911 4937 4963 4989 5015 5041 26 3.8							ı					ľ
3.77 1.3 2708 2734 2761 2787 2814 2840 2867 2893 2919 2946 27-98 3.78 1.3 2972 2999 3025 3052 3078 3105 3131 3157 3184 3210 26 3.79 1.3 3237 3263 3289 3316 3342 3368 3395 3421 3447 3474 26 3.80 1.3 3500 3526 3553 3579 3605 3632 3688 3894 3920 3946 3973 3999 26 3.81 1.3 3763 3789 3815 3842 3868 3894 3920 3946 3973 3999 26 3.82 1.3 4286 4313 4339 4365 4391 4417 4443 4469 4495 4521 26 3.84 1.3 4807 4833 4859 4855 4911 4937 4963 4989 5015 5041 26												
3.78 1.3 2972 2999 3025 3052 3078 3105 3131 3157 3184 3210 26 3.79 1.3 3237 3263 3289 3316 3342 3368 3395 3421 3447 3474 26 3.80 1.3 3500 3526 3553 3579 3605 3632 3658 3684 3710 3737 26 3.81 1.3 3763 3789 3815 3842 3868 3894 3920 3946 3973 3999 26 3.82 1.3 4025 4051 4077 4104 4130 4156 4182 4208 4234 4260 26 3.83 1.3 4866 4313 4339 4365 4391 4417 4443 4469 4495 4521 26 3.84 1.3 4807 4833 4859 4885 4911 4937 4963 4989 5015 5041 26 3.85 1.3 58												
3.80 1.3 3500 3526 3553 3579 3605 3632 3658 3684 3710 3737 26 3.81 1.3 3763 3789 3815 3842 3868 3894 3920 3946 3973 3999 26 3.82 1.3 4025 4051 4077 4104 4130 4156 4182 4208 4234 4260 26 3.83 1.3 4286 4313 4339 4365 4391 4417 4443 4469 4495 4521 26 3.84 1.3 4807 4833 4859 4885 4911 4937 4963 4989 5015 5041 26 3.85 1.3 5067 5093 5119 5144 5170 5196 5222 5248 5274 5300 26 3.87 1.3 5325 5351 5377 5403 5429 5455 5480 5506 5532 5558 26 3.89 1.3 58	3.78		2999	3025	3052	3078	3105	3131	3157		3210	26
3.81 1.3 3763 3789 3815 3842 3868 3894 3920 3946 3973 3999 26 3.82 1.3 4025 4051 4077 4104 4130 4156 4182 4208 4234 4260 28 3.83 1.3 4286 4313 4339 4365 4391 4417 4443 4469 4495 4521 26 3.84 1.3 4807 4833 4859 4885 4911 4937 4963 4989 5015 5041 28 3.85 1.3 5067 5093 5119 5144 5170 5196 5222 5248 5274 5300 26 3.87 1.3 5325 5351 5377 5403 5429 5455 5480 5506 5532 5558 26 3.89 1.3 5841 5867 5892 5918 5944 596 5995 56021 6046 6072 28 3.90 1.3 6098 6123 6149 6175 6200 6226 6251 6277 6303	3.79	1.3 3237	3263	3289	3316	3342	3368	3395	3421	3447	3474	26
3.81 1.3 3763 3789 3815 3842 3868 3894 3920 3946 3973 3999 26 3.82 1.3 4025 4051 4077 4104 4130 4156 4182 4208 4234 4260 28 3.83 1.3 4286 4313 4339 4365 4391 4417 4443 4469 4495 4521 26 3.84 1.3 4807 4833 4859 4885 4911 4937 4963 4989 5015 5041 28 3.85 1.3 5067 5093 5119 5144 5170 5196 5222 5248 5274 5300 26 3.87 1.3 5325 5351 5377 5403 5429 5455 5480 5506 5532 5558 26 3.89 1.3 5841 5867 5892 5918 5944 596 5995 6021 6046 6072 28 3.90 1.3 6098 6123 6149 6175 6200 6226 6251 6277 6303<	3.80	1.3 3500	3526	3553	3579	3605	3632	3658	3684	3710	3737	26
3.83 1.3 4286 4313 4339 4365 4391 4417 4443 4469 4495 4521 26 3.84 1.3 4547 4573 4599 4625 4651 4677 4703 4729 4755 4781 26 3.85 1.3 4807 4833 4859 4885 4911 4937 4963 4989 5015 5041 26 3.86 1.3 5067 5093 5119 5144 5170 5196 5222 5248 5274 5300 26 3.87 1.3 5325 5351 5377 5403 5429 5455 5480 5506 5532 5558 26 3.89 1.3 5841 5867 5892 5918 5944 5969 5995 6021 6046 6072 26 3.90 1.3 6098 6123 6149 6175 6200 6226 6251 6277 6303 6328 28 3.91 1.3 6354 6379 6405 6430 6456 6481 6507 6533 6558			3789	3815		3868	3894					26
3.84 1.3 4547 4573 4599 4625 4651 4677 4703 4729 4755 4781 26 3.85 1.3 4807 4833 4859 4885 4911 4937 4963 4989 5015 5041 26 3.86 1.3 5067 5093 5119 5144 5170 5196 5222 5248 5274 5300 26 3.87 1.3 5325 5351 5377 5403 5429 5455 5480 5506 5532 5558 26 3.88 1.3 5841 5867 5892 5918 5944 5969 5995 6021 6046 6072 26 3.90 1.3 6098 6123 6149 6175 6200 6226 6251 6277 6303 6328 26 3.91 1.3 6354 6379 6405 6430 6456 6481 6507 6533 6558 6584 26 3.92 1.3 68					4104							
3.85 1.3 4807 4833 4859 4885 4911 4937 4963 4989 5015 5041 26 3.86 1.3 5067 5093 5119 5144 5170 5196 5222 5248 5274 5300 26 3.87 1.3 5325 5351 5377 5403 5429 5455 5480 5506 5532 5558 26 3.88 1.3 5584 5609 5635 5661 5687 5712 5738 5764 5789 5815 26 3.89 1.3 6098 6123 6149 6175 6200 6226 6251 6277 6303 6328 26 3.91 1.3 6354 6379 6405 6430 6456 6481 6507 6533 6584 26 3.92 1.3 6609 6635 6660 6686 6711 6737 6762 6788 6813 6838 26-285 3.93 1.3 6864 6889 6915 6940 6966 6991 7016 7042 7067												
3.86 1.3 5067 5093 5119 5144 5170 5196 5222 5248 5274 5300 26 3.87 1.3 5325 5331 5377 5403 5429 5455 5480 5506 5532 5558 26 3.88 1.3 5584 5609 5635 5661 5687 5712 5738 5764 5789 5815 26 3.89 1.3 6098 6123 6149 6175 6200 6226 6251 6227 6303 6328 26 3.91 1.3 6354 6379 6405 6430 64456 6481 6507 6533 6558 6584 26 3.92 1.3 6609 6635 6660 6686 6711 6737 6762 6788 6813 6838 26-285 3.93 1.3 6864 6889 6915 6940 6966 6991 7016 7042 7067 7093 25 3.95 1												
3.87 1.3 5325 5351 5377 5403 5429 5455 5480 5506 5532 5558 96 3.88 1.3 5584 5609 5635 5661 5687 5712 5738 5764 5789 5815 26 3.89 1.3 5841 5867 5892 5918 5944 5969 5995 6021 6046 6072 26 3.90 1.3 6098 6123 6149 6175 6200 6226 6251 6277 6303 6328 26 3.91 1.3 6354 6379 6405 6430 6456 6481 6507 6533 6558 6584 26 3.92 1.3 6609 6635 6660 6686 66711 6737 6762 6788 6813 6838 28-28 3.93 1.3 7118 7143 7169 7194 7220 7245 7270 7027 7037 325 3.95 1.3 7372 <												
3.88 1.3 5584 5609 5635 5661 5687 5712 5738 5764 5789 5815 26 3.89 1.3 5841 5867 5892 5918 5944 5969 5995 6021 6046 6072 26 3.90 1.3 6098 6123 6149 6175 6200 6226 6251 6277 6303 6328 26 3.91 1.3 6354 6379 6405 6430 6456 6481 6507 6533 6558 6584 26 3.92 1.3 6609 6635 6660 6686 6711 6737 6762 6788 6813 6838 28-25 3.93 1.3 6864 6889 6915 6940 6966 6991 7016 7042 7067 7093 25 3.95 1.3 7372 7397 7422 7447 7473 7498 7523 7549 7574 7599 25 3.96 1.3												
3.89 1.3 5841 5867 5892 5918 5944 5969 5995 6021 6046 6072 26 3.90 1.3 6098 6123 6149 6175 6200 6226 6251 6277 6303 6328 28 3.91 1.3 6354 6379 6405 6430 6456 6481 6507 6533 6558 6584 26 3.92 1.3 6609 6635 6660 6686 6711 6737 6762 6788 6813 6838 28-25 3.93 1.3 6864 6889 6915 6940 6966 6991 7016 7042 7067 7093 95 3.94 1.3 7118 7143 7169 7194 7220 7245 7270 7296 7321 7346 25 3.95 1.3 7372 7397 7422 7447 7473 749 7523 754 7599 25 3.97 1.3 7877 7												
3.91 1.3 6354 6379 6405 6430 6456 6481 6507 6533 6558 6584 26 3.92 1.3 6609 6635 6660 6686 6711 6737 6762 6788 6813 6838 28-25 3.93 1.3 6864 6889 6915 6940 6966 6991 7016 7042 7067 7093 25 3.94 1.3 7118 7143 7169 7194 7220 7245 7270 7296 7321 7346 25 3.95 1.3 7372 7397 7422 7447 7473 7498 7523 7549 7574 7599 25 3.96 1.3 7877 7902 7927 7952 7977 8002 8028 8053 8078 8103 25 3.98 1.3 8128 8143 8178 8204 8229 8254 8279 8304 8329 8354 25 3.99 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8												
3.91 1.3 6354 6379 6405 6430 6456 6481 6507 6533 6558 6584 26 3.92 1.3 6609 6635 6660 6686 6711 6737 6762 6788 6813 6838 28-25 3.93 1.3 6864 6889 6915 6940 6966 6991 7016 7042 7067 7093 25 3.94 1.3 7118 7143 7169 7194 7220 7245 7270 7296 7321 7346 25 3.95 1.3 7372 7397 7422 7447 7473 7498 7523 7549 7574 7599 25 3.96 1.3 7877 7902 7927 7952 7977 8002 8028 8053 8078 8103 25 3.98 1.3 8128 8143 8178 8204 8229 8254 8279 8304 8329 8354 25 3.99 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8												96
3.92 1.3 6609 6635 6660 6686 6711 6737 6762 6788 6813 6838 28-25 3.93 1.3 6864 6889 6915 6940 6966 6991 7016 7042 7067 7093 25 3.94 1.3 7118 7143 7169 7194 7220 7245 7270 7296 7321 7346 25 3.95 1.3 7372 7397 7422 7447 7473 7498 7523 7549 7574 7599 25 3.96 1.3 7877 7902 7927 7952 7977 8002 8028 8053 8078 8103 25 3.98 1.3 8128 8143 8178 8204 8229 8254 8279 8304 8329 8354 25 3.99 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8829 8854 25 4.00 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8829 8854 25												
3.93 1.3 6864 6889 6915 6940 6966 6991 7016 7042 7067 7093 25 3.94 1.3 7118 7143 7169 7194 7220 7245 7270 7296 7321 7346 25 3.95 1.3 7372 7397 7422 7447 7473 7498 7523 7549 7574 7599 25 3.96 1.3 7624 7650 7675 7700 7725 7751 7776 7801 7826 7851 25 3.97 1.3 7877 7902 7927 7952 7977 8002 8028 8053 8078 8103 25 3.98 1.3 8128 8143 8178 8204 8229 8254 8279 8304 8329 8354 25 3.99 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8829 8854 25												
3.95 1.3 7372 7397 7422 7447 7473 7498 7523 7549 7574 7599 25 3.96 1.3 7624 7650 7675 7700 7725 7751 7776 7801 7826 7851 25 3.97 1.3 7877 7902 7927 7952 7977 8002 8028 8053 8078 8103 25 3.98 1.3 8128 8143 8178 8204 8229 8254 8279 8304 8329 8354 25 3.99 1.3 8379 8404 8429 8454 8479 8504 8529 8554 8579 8604 25 4.00 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8829 8854 25	3.93								7042			
3.96 1.3 7624 7650 7675 7700 7725 7751 7776 7801 7826 7851 25 3.97 1.3 7877 7902 7927 7952 7977 8002 8028 8053 8078 8103 25 3.98 1.3 8128 8143 8178 8204 8229 8254 8279 8304 8329 8354 25 3.99 1.3 8379 8404 8429 8454 8479 8504 8529 8554 8579 8604 25 4.00 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8829 8854 25					7194		I '					25
3.97 1.3 7877 7902 7927 7952 7977 8002 8028 8053 8078 8103 25 3.98 1.3 8128 8143 8178 8204 8229 8254 8279 8304 8329 8354 95 3.99 1.3 8379 8404 8429 8454 8479 8504 8529 8554 8579 8604 95 4.00 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8829 8854 95												
3.98 1.3 8128 8143 8178 8204 8229 8254 8279 8304 8329 8354 95 3.99 1.3 8379 8404 8429 8454 8479 8504 8529 8554 8579 8604 95 4.00 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8829 8854 95												1
3.99 1.3 8379 8404 8429 8454 8479 8504 8529 8554 8579 8604 25 4.00 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8829 8854 25												
4.00 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8829 8854 25												
		0	1	2	3	4	5	6	7	8	9	

TABLES.

Five-Place Natural Logarithms.

No.	0	1	2	3	4	5	6	7	8	9	D.
4.00	1.3 8629	8654	8679	8704	8729	8754	8779	8804	8829	8854	25
4.01	1.3 8879	8904	8929	8954	8979	9004	9029	9054	9078	9103	25 25
4.02	1.3 9128	9153	9178	9203	9228	9252	9277	9302	9327	9352	25
4.03	1.3 9377	9401	9426	9451	9476	9501	9525	9550	7515	9600	25
4.04	1.3 9624	9649	9674	9699	9723	9748	9773	9798	9822	9847	25
4.05 4.06	1.3 9872 1.4 0118	9896 0143	9921 0168	9946 0192	9970 0217	9995 0241	*0020 0266	0044 0291	0069 0315	0094 0340	25
4.07	1.4 0364	0389	0413	0192	0463	0487	0512	0536	0561	0585	25 25
4.08	1.4 0610	0634	0659	0683	0708	0732	0757	0781	0806	0830	25-24
4.09	1.4 0854	0879	0903	0928	0952	0977	1001	1025	1050	1074	24
4.10	1.4 1099	1123	1147	1172	1196	1221	1245	1269	1294	1318	24
4.11	1.4 1342	1367	1391	1415	1440	1464	1488	1512	1537	1561	24
4.12	1.4 1585	1610	1634	1658	1682	1707	1731	1755	1779	1804	24
4.13 4.14	1.4 1828 1.4 2070	1852 2094	1876 2118	1900 2142	1925 2166	1949 2190	1973 2214	1997 2239	2021 2263	2045 2287	24
4.15	1.4 2311	2335	2359	2383	2407	2431	2455	2479	2503	2527	24 24
4.16	1.4 2552	2576	2600	2624	2648	2672	2696	2720	2744	2768	24
4:17	1.4 2792	2816	2840	2864	2887	2911	2935	2959	2983	3007	24
4.18	1.4 3031	3055	3079	3103	3127	3151	3175	3198	3222	3246	24
4.19	1.4 3270	3294	3318	3342	3365	3389	3413	3437	3461	3485	24
4.20	1.4 3508	3532	3556	3580	3604	3627	3651	3675	3699	3723	24
4.21	1.4 3746	3770	3794	3817	3841	3865	3889	3912	3936	3960	24
4.22 4.23	1.4 3984 1.4 4220	4007 4244	4031 4267	4055 4291	4078 4315	4102 4338	4126 4362	4149 4386	4173 4409	4197 44 33	24 24
4.24	1.4 4456	4480	4503	4527	4551	4574	4598	4621	4645	4668	24
4.25	1.4 4692	4715	4739	4762	4786	4809	4833	4856	4880	4903	24-23
4.26	1.4 4927	4950	4974	4997	5021	5044	5068	5091	5115	5138	23
4.27	1.4 5161	5185	5208	5232	5255	5278	5302	5325	5349	5372	23
4.28 4.29	1.4 5395 1.4 5629	5419 5652	5442 5675	5465 5699	5489 5722	5512 5745	5535 5768	5559 5792	5582 5815	5605 5838	23 23
4.80 4.3 1	1.4 5862 1.4 6094	5885 6117	5908 6140	5931 6163	5954 6187	5978 6210	6001 6233	6024 6256	6047 6279	6071 6302	23 23
4.32	1.4 6326	6349	6372	6395	6418	6441	6464	6487	6511	6534	23 23
4.33	1.4 6557	6580	6603	6626	6649	6672	6695	6718	6741	6764	23
4.34	1.4 6787	6810	6834	6857	6880	6903	6926	6949	6972	6995	23
4.35	1.4 7018	7041	7064	7087	7109	7132	7155	7178	7201	7224	23
4.36	1.4 7247	7270	7293	7316	7339	7362	7385	7408	7431	7453	23
4.37 4.38	1.4 7476 1.4 7705	7499 7728	7522 7751	7545 7773	7568 7796	7591 7819	7614 7842	7636 7865	7659 7887	7682 7910	23 23
4.39	1.4 7933	7956	7978	8001	8024	8047	8070	8092	8115	8138	23 23
4.40	1.4 8160	8183	8206	8229	8251	8274	8297	8319	8342	8365	23
4.41	1.4 8387	8410	8433	8455	8478	8501			8569	8591	23
4.42	1.4 8614	8637	8659	8682	8704	8727	8750	8772	8795	8817	23
4.43	1.4 8840	8863	8885	8908	8930	8953	8975	8546 8772 8998 9223	9020	9043	93
4.44	1.4 9065	9088	9110	9133	9155	9178			9245	9268	23
4.45	1.4 9290	9313	9335	9358	9380	9403	9425	9448	9470	9492	23-22
4.46 4.47	1.4 9515 1.4 9739	9537 9761	9560 9784	9582 9806	9605 9828	9627	9649 9873	9672 9895	9694 9918	9716 9940	33 33
4.48	1.4 9962	9985	*0007	0029	0052	0074	0096	0118	0141	0163	22
4.49	1.5 0185	0208	0230	0252	0274	0297	0319	0341	0363	0386	22
4.50	1.5 0408	0430	0452	0474	0497	0519	0541	0563	0585	0608	22
	0	1	2	3	4	5	6	7	8	9	

Five-Place Natural Logarithms.

No	0	1				E	0	7		^	
No.		1	2	3	4	5	6		8	9	D.
4.50	1.5 0408	0430	0452	0474	0497	0519	0541	0563	0585	0608	22
4.51 4.52	1.5 0630 1.5 0851	0652 0873	0674 0895	0696 0918	0718 0940	0741 0962	0763 0984	0785 1006	0807 1028	0829 1050	22 22
4.53	1.5 1072	1094	1116	1138	1160	1183	1205	1227	1249	1271	22
4.54	1.5 1293	1315	1337	1359	1381	1403	1425	1447	1469	1491	22
4.55	1.5 1513	1535	1557	1579	1601	1623	1645	1666	1688	1710	22
4.56	1.5 1732	1754	1776	1798	1820	1842	1864	1886	1908	1929	22
4.57	1.5 1951	1973	1995	2017	2039	2061	2083	2104	2126	2148	22
4.58	1.5 2170	2192	2214	2235	2257	2279	2301	2323	2344	2366	22
4.59	1.5 2388	2410	2432	2453	2475	2497	2519	2540	2562	2584	22
4.60	1.5 2606	2627	2649	2671	2693	2714	2736	2758	2779	2801	22
4.61	1.5 2823	2844	2866	2888	2910	2931	2953	2975	2996	3018	22
4.62	1.5 3039 1.5 3256	3061 3277	3083	3104 3320	3126 3342	3148	3169 3385	3191 3407	3212 3428	3234 3450	22
4.63 4.64	1.5 3471	3493	3299 3515	3536	3558	3364 3579	3601	3622	3644	3665	22 22
4.65	1.5 3687	3708	3730	3751	3773	3794	3816	3837	3859	3880	22-21
4.66	1.5 3007	3923	3944	3966	3987	4009	4030	4052	4073	3000 4094	22-21 21
4.67	1.5 4116	4137	4159	4180	4202	4223	4244	4266	4287	4308	21
4.68	1.5 4330	4351	4373	4394	4415	4437	4458	4479	4501	4522	21
4.69	1.5 4543	4565	4586	4607	4629	4650	4671	4692	4714	4735	21
4.70	1.5 4756	4778	4799	4820	4841	4863	4884	4905	4926	4948	21
4.71	1.5 4969	4990	5011	5032	5054	5075	5096	5117	5138	5160	21
4.72	1.5 5181	5202	5223	52 44	5266	5287	5308	5329	5350	5371	21
4.73	1.5 5393	5414	5435	5456	5477	5498	5519	5540	5562	5583	21
4.74	1.5 5604	5625	5646	5667	5688	5709	5730	5751	5772	5793	21
4.75	1.5 5814	5836	5857	5878	5899	5920	5941	5962	5983	6004	21
4.76 4.77	1.5 6025 1.5 6235	6046 6256	6067 6277	6088 6298	6109 6318	6130 6339	6151 6360	6172 6381	6193 6402	6214 6423	21 21
4.78	1.5 6444	6465	6486	6507	6528	6549	6569	6590	6611	6632	21
4.79	1.5 6653	6674	6695	6716	6737	6757	6778	6799	6820	6841	21
4.80	1.5 6862	6882	6903	6924	6945	6966	6987	7007	7028	7049	21
4.81	1.5 7070	7090	7111	7132	7153	7174	7194	7215	7236	7257	21
4.82	1.5 7277	7298	7319	7340	7360	7381	7402	7423	7443	7464	21
4.83	1.5 7485	7505	7526	7547	7567	7588	7609	7629	7650	7671	21
4.84	1.5 7691	7712	7733	7753	7774	7795	7815	7836	7857	7877	21
4.85	1.5 7898	7918	7939	7960	7980	8001	8022	8042	8063	8083	21
4.86	1.5 8104	8124	8145	8166	8186	8207	8227	8248	8268	8289	21
4.87 4.88	1.5 8309 1.5 8515	8330 8535	8350 8555	8371 8576	8391 8596	8412 8617	8433 8637	8453 8658	8474 8678	8494 8699	21-20
4.89	1.5 8719	8740	8760	8781	8801	8821	8842	8862	8883	8903	20
4.90	1.5 8924	8944	8964	8985		9026	9046		9087	9107	
4.91	1.5 9127	9148	9168	9188	9005 9209	9026	9250	9066 9270	9290	9311	20 20
4.92	1.5 9331	9351	9371	9392	9412	9432	9453	9473	9493	9514	20
4.93	1.5 9534	955	9574	9595	9615	9635	9656	9676	9696	9716	20
4.94	1.5 9737	9757	9777	9797	9817	9838	9858	9878	9898	9919	20
4.95	1.5 9939	9959	9979	9999	*0020	0040	0060	0080	0100	0120	20
4.96	1.6 0141	0161	0181	0201	0221	0241	0261	0282	0302	0322	20
4.97	1.6 0342	0362	0382	0402	0422	0443	0463	0483	0503	0523	20
4.98 4.99	1.6 0543 1.6 0744	0563 0764	0583 0784	0603 0804	0623 0824	0643	0663 0864	0683 0884	0704 0904	0724 0924	20 20
5,00	1.6 0944	0964	0784	1004	1024	1044	1064	1084	1104	1124	20
2,00	0	1	2	3	4	5	6	7	8	9	
=	·										

TABLES.

Five-Place Natural Logarithms.

=						1 -					
No.	0	1	2	8	4	5	6	7	8	9	D.
5.0	1.6 0944	1144	1343	1542	1741	1939	2137	2334	2531	2728	200-196
5.1 5.2	1.6 2924 1.6 4866	3120 5058	3315 5250	3511 5441	3705 5632	3900 5823	4094 6013	4287 6203	4481 6393	4673 6582	196-192
5.3	1.6 6771	6959	7147	7335	7523	7710	7896	8083	8269	8455	192-189 189-185
5.4	1.6 8640	8825	9010	9194	9378	9562	9745		*0111	0293	185-182
5.5	1.7 0475	0656	0838	1019	1199	1380	1560	1740	1919	2098	182-179
5.6	1.7 2277	2455	2633	2811	2988	3166	3342	3519	3695	3871	178-176
5.7	1.7 4047	4222	4397	4572	4746	4920	5094	5267	5440	5613	175-173
5.8 5.9	1.7 5786 1.7 7495	5958 7665	6130 7834	6302 8002	6473 8171	8339	681 <i>5</i> 8507	6985 8675	7156 8842	7326 9009	172-170
											169-167
6.0 6.1	1.7 9176	9342 0993	9509 1156	9675 1319	9840 1482	*0006 1645	0171 1808	0336 1970	0500 2132	0665 2294	167-164
6.2	1.8 2455	2616	2777	2938	3098	3258	3418	3578	3737	3896	164-161 161-159
6.3	1.8 4055	4214	4372	4530	4688	4845	5003	5160	5317	5473	159-156
6.4	1.8 5630	5786	5942	6097	6253	6408	6563	6718	6872	7026	156-154
6.5	1.8 7180	7334	7487	7641	7794	7947	8099	8251	8403	8555	154-152
6.6	1.8 8707	8858	9010	9160	9311	9462	9612	9762	9912	*0061	151-149
6.7	1.9 0211	0360	0509	0658	0806	0954	1102	1250	1398	1545	149-147
6.8 6.9	1.9 1692 1.9 3152	1839 3297	1986 3442	2132 3586	2279 3730	2425 3874	2571 4018	2716 4162	2862 4305	3007 4448	147-145 145-143
											1
7.0 7.1	1.9 4591 1.9 6009	4734 6150	4876 6291	5019 6431	5161 6571	5303	5445 6851	5586 6991	5727 7130	5869 7269	143-141
7.2	1.9 7408	7547	7685	7824	7962	8100	8238	8376	8513	8650	141-139 139-137
7.3	1.9 8787	8924	9061	9198	9334	9470	9606	9742	9877	*0013	137-135
7.4	2.0 0148	0283	0418	0553	0687	0821	0 956	1089	1223	1357	135-133
7.5	2.0 1490	1624	1757	1890	2022	2155	2287	2419	2551	2683	133-132
7.6	2.0 2815	2946	3078	3209	3340	3471	3601	3732	3862	3992	131-130
7.7	2.0 4122	4252	4381	4511	4640	4769	4898	5027	5156	528 4	130-128
7.8 7.9	2.0 5412	5540 6813	5668 6939	5796 7065	5924 7191	6051	6179 7443	6306 7568	6433 7694	6560 7819	128-127 127-125
8.0	2.0 7944	8069	8194	8318	8443	8567	8691	8815	8939	9063	
8.1	2.0 7944	9310	9433	9556	9679	9802	9924	*0047	0169	0291	125-124 123-122
8.2	2.1 0413	0535	0657	0779	0900	1021	1142	1263	1384	1505	122-121
8.3	2.1 1626	1746	1866	1986	2106	2226	2346	2465	2585	2704	120-119
8.4	2.1 2823	2942	3061	3180	3298	3417	3535	3653	3771	3889	119-118
8.5	2.1 4007	4124	4242	4359	4476	4593	4710	4827	4943	5060	118-116
8.6	2.1 5176	5292	5409	5524	5640	5756	5871	5987	6102	6217	116-115
8.7 8.8	2.1 6332 2.1 7475	6447 7589	6562 7702	6677 7816	6791 7929	6905 8042	7020 8155	7134 8267	7248 8380	7361 8493	115-114 114-119
8.9	2.1 8605	8717	8830	8942	9054	9165	9277	9389	9500	9611	112-111
9.0	2.1 9722	9834	9944	*0055	0166	0276	0387	0497	0607	0717	111-110
9.1	2.2 0827	0937	1047	1157	1266	1375	1485	1594	1703	1812	110-109
9.2	2.2 1920	2029	2138	2246	2354	2462	2570	2678	2786	2894	109-108
9.3	2.2 3001	3109	3216	3324	3431	3538	3645	3751	3858	3965	107-106
9.4	2.2 4071	4177	4284	4390	4496	4601	4707	4813	4918	5024	106-105
9.5	2.2 5129	5234	5339	5444	5549	5654	5759	5863	5968	6072	105-104
9.6 9.7	2.2 6176 2.2 7213	6280 7316	6384 7419	6488 7521	6592 7624	6696	6799 7829	6903 7932	7006 8034	7109 8136	104-103
9.7 9.8	2.2 7213	8340	8442	7521 8544	7624 8646	8747	7829 8849	7932 8950	9051	9152	103-102 102-101
9.9	2.2 9253	9354	9455	9556	9657	9757	9858			0158	101-100
10.0	2.3 0259	0358	0458	0558	0658	0757	0857	0956	1055	1154	100-99
	0	1	2	3	4	5	6	7	8	9	
											===

The Natural Logarithms (each increased by 10.) of Numbers between 0.00 and 0.99.

No.	0	1	2	8	4	5	6	7	8	9
0.0		5.395	6.088	6.493	6.781	7.004	7.187	7.341	7.474	7.592
0.1	7.697	7.793	7.880	7.960	8.034	8.103	8.167	8.228	8.285	8.339
0.2	8.391	8.439	8.486	8.530	8.573	8.614	8.653	8.691	8.727	8.762
0.3	8.796	8.829	8.861	8.891	8.921	8.950	8.978	9.006	9.032	9.058
0.4	9.084	9.108	9.132	9.156	9.179	9.201	9.223	9.245	9.266	9.287
0.5	9.307	9.327	9.346	9.365	9.384	9.402	9.420	9.438	9.455	9.472
0.6	9.489	9.506	9.522	9.538	9.554	9.569	9.584	9.600	9.614	9.629
0.7	9.643	9.658	9.671	9.685	9.699	9.712	9.726	9.739	9.752	9.764
0.8	9.777	9.789	9.802	9.814	9.826	9.837	9.849	9.861	9.872	9.883
0.9	9.895	9.906	9.917	9.927	9.938	9.949	9.959	9.970	9.980	9.990

Note: $\log_e x = \log_{10} x \cdot \log_e 10 = (2.30259) \log_{10} x$.

The Natural Logarithms of Whole Numbers from 10 to 209.

No.	0	1	2	3	4	5	6	7	8	9
1	2.3026	3979	4849	5649	6391	7080	7726	8332	8904	9444
2	2.9957	*0 445	0910	1355	1781	2189	2581	2958	3322	3673
3	3.4012	4340	4657	4965	5264	5553	5835	6109	6376	6636
4	3.6889	7136	7377	7612	7842	8067	8286	8501	8712	8918
5	3.9120	9318	9512	9703	9890	*0073	0254	0431	0604	0775
6	4.0943	1109	1271	1431	1589	1744	1897	2047	2195	2341
7	4.2485	2627	2767	2905	3041	3175	3307	3438	3567	3694
8	4.3820	3944	4067	4188	4308	4427	4543	4659	4773	4886
9	4.4998	5109	5218	5326	5433	5539	5643	5747	5850	5951
10	4.6052	6151	6250	6347	6444	6540	6634	6728	6821	6913
11	4.7005	7095	7185	7274	7362	7449	7536	7622	7707	7791
12	4.7875	7958	8040	8122	8203	8283	8363	8442	8520	8598
13	4.8675	8752	8828	8903	8978	9053	9127	9200	9273	9345
14	4.9416	94 88	9558	9628	9698	9767	9836	9904	9972	*0039
15	5.0106	0173	0239	0304	0370	0434	0499	0562	0626	0689
16	5.0752	0814	0876	0938	0999	1059	1120	1180	1240	1299
17	5.1358	1417	1475	1533	1591	1648	1705	1762	1818	1874
18	5.1930	1985	2040	2095	2149	2204	2257	2311	2364	2417
19	5.2470	2523	2575	2627	2679	2730	2781	2832	2883	293 3
20	5.2983	3033	3083	3132	3181	3230	3279	3327	3375	3423

Note: $\log_e 10 = 2.30258509$.

 $\log_e 100 = 4.60517019$.

The Common Logarithms of $\Gamma\left(n\right)$ for Values of n between 1 and 2.

$$\Gamma\left(n\right) = \int_{0}^{\infty} x^{n-1} \cdot e^{-x} dx = \int_{0}^{1} \left[\log \frac{1}{x}\right]^{n-1} dx.$$

n	$\log_{10}\Gamma(n)$								
1.01	1.9975	1.21	1.9617	1.41	1.9478	1.61	ī.9517	1.81	1.9704
1.02	1.9951	1.22	ī.9 60 5	1.42	1.9476	1.62	1.9523	1.82	1.9717
1.03	1.9928	1.23	1.9594	1.43	1.9475	1.63	1.9529	1.83	1.9730
1.04	1.9905	1.24	1.9583	1.44	1.9473	1.64	1.9536	1.84	1.9743
1.05	1.9883	1.25	1.9573	1.45	1.9473	1.65	1.9543	1.85	1.9757
1.06	1.9862	1.26	1.9564	1.46	1.9472	1.66	1.9550	1.86	1.9771
1.07	1.9841	1.27	1.9554	1.47	1.9473	1.67	1.9558	1.87	1.9786
1.08	1.9821	1.28	1.9546	1.48	1.9473	1.68	1.9566	1.88	1.9800
1.09	1.9802	1.29	1.9538	1.49	1.9474	1.69	1.9575	1.89	1.9815
1.10	1.9783	1.30	1.9530	1.50	1.9475	1.70	1.9584	1.90	1.9831
1.11	1.9765	1.31	1.9523	1.51	1.9477	1.71	1.9593	1.91	1.9846
1.12	1.9748	1.32	1.9516	1.52	1.9479	1.72	1.9603	1.92	1.9862
1.13	1.9731	1.33	1.9510	1.53	1.9482	1.73	1.9613	1.93	1.9878
1.14	1.9715	1.34	1.9505	1.54	1.9485	1.74	1.9623	1.94	1.9895
1.15	1.9699	1.35	1.9500	1.55	1.9488	1.75	1.9633	1.95	1.9912
1.16	1.9684	1.36	1.9495	1.56	1.9492	1.76	1.9644	1.96	1.9929
1.17	1.9669	1.37	1.9491	1.57	1.9496	1.77	1.9656	1.97	1.9946
1.18	1.9655	1.38	1.9487	1.58	1.9501	1.78	1.9667	1.98	1.9964
1.19	1.9642	1.39	1.9483	1.59	1.9506	1.79	1.9679	1.99	1.9982
1.20	1.9629	1.40	1.9481	1.60	1.9511	1.80	1.9691	2.00	0.0000

 $\Gamma(z+1) = \dot{z} \cdot \Gamma(z), \ z > 1.$

TABLES.

NATURAL TRIGONOMETRIC FUNCTIONS.

Angle.	Sin.	Csc.	Tan.	Ctn.	Sec.	Cos.	
0°	0.000	∞	0.000	- 00	1.000	1.000	90°
ĭ	0.017	57.30	0.017	57.29	1.000	1.000	89
2	0.035	28.65	0.035	28.64	1.001	0.999	88
3	0.052	19.11	0.052	19.08	1.001	0.999	87
4	0.070	14.34	0.070	14.30	1.002	0.998	86
5°	0.087	11.47	0.087	11.43	1.004	0.996	85°
6	0.105	9.567	0.105	9.514	1.006	0.995	84
7	0.122	8.206	0.123	8.144	1.008	0.993	83
8	0.139	7.185	0.141	7.115	1.010	0.990	82
9	0.156	6.392	0.158	6.314	1.012	0.988	81
10°	0.174	5.759	0.176	5.671	1.015	0.985	80°
11	0.191	5.241	0.194	5.145	1.019	0.982	79
12	0.208	4.810	0.213	4.705	1.022	0.978	78
13	0.225	4.445	0.231	4.331	1.026	0.974	77
14	0.242	4.134	0.249	4.011	1.031	0.970	76
15°	0.259	3.864	0.268	3.732	1.035	0.966	750
16	0.276	3.628	0.287	3.487	1.040	0.961	74
17	0.292	3.420	0.306	3.271	1.046	0.956	73
18	0.309	3.236	0.325	3.078	1.051	0.951	72
19	0.326	3.072	0.344	2.904	1.058	0.946	71
20°	0.342	2.924	0.364	2.747	1.064	0.940	70°
21	0.358	2.790	0.384	2.605	1.071	0.934	69
22	0.375	2.669	0.404	2.475	1.079	0.927	68
23	0.391	2.559	0.424	2.356	1.086	0.921	67
24	0.407	2.459	0.445	2.246	1.095	0.914	66
25°	0.423	2.366	0.466	2.145	1.103	0.906	65°
26	0.438	2.281	0.488	2.050	1.113	0.899	64
27	0.454	2.203	0.510	1.963	1.122	0.891	63
28	0.469	2.130	0.532	1.881	1.133	0.883	62
29	0.485	2.063	0.554	1.804	1.143	0.875	61
30°	0.500	2.000	0.577	1.732	1.155	0.866	60°
81	0.515	1.942	0.601	1.664	1.167	0.857	59
82	0.530	1.887	0.625	1.600	1.179	0.848	58
. 33 34	0.545	1.836	0.649	1.540 1.483	1.192 1.206	0.839	57
	0.559	1.788	0.675			0.829	56
35°	0.574	1.743	0.700	1.428	1.221	0.819	55°
36	0.588	1.701	0.727	1.376	1.236	0.809	54
37 38	0.602	1.662	0.754	1.327 1.280	1.252	0.799	53
38 39	0.616 0.629	1.624 1.589	0.781 0.810	1.235	1.269 1.287	0.788 0.777	52 51
40°				1.192			50°
41	0.643 0.656	1.556 1.524	0.839 0.869	1.192	1.305 1.325	0.766 0.755	49
42	0.669	1.494	0.900	1.111	1.346	0.743	48
43	0.682	1.466	0.933	1.072	1.367	0.743	47
44	0.695	1.440	0.966	1.036	1.390	0.731	46
45°	0.707	1.414	1.000	1.000	1.414	0.707	45°
	Cos.	Sec.	Ctn.	Tan.	Cac.	Sin.	Angle.
	COS.	Dec.	Ctn.	1811.	Cac.	DIU.	Angle.

N	0	1	2	8	4.	5	6	7	8	9	P. P. 1-2-3-4-5
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4-8-12-17-21
11				0531						0755	
12			0864		0934	0969			1072	1106	3- 7-10-14-17
13	1139		1206		1271		1335			1430	3. 6.10.13.16
14	1461	1492	1528	1553	1584	1614	1644	1678	1703	1732	3. 6. 9.12.15
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3. 6. 8.11.14
16				2122			2201	2227	2253		3- 5- 8-11-13
17	2804	2330	2855	2380	2405	2430	2455	2480	2504	2529	2. 5. 7.10.12
18	2553	2577	2601		2648	2672	2695	2718		2765	2. 5. 7. 9.12
19	2788	2810	2838	2856	2878	2900	2923	2945	2967	2989	2. 4. 7. 9.11
20	3010	3032	3054	2075	3096	9119	3139	8160	8181	8201	2. 4. 6. 8.11
21	8222	3243		3284			3345	8865	3885	3404	2. 4. 6. 8.10
22				8483		3522	3541	3560		3598	2. 4. 6. 8.10
28	3617	3636		3674		3711	3729	3747	8766	8784	2. 4. 5. 7. 9
24	3802	3820	3838	3856	3874	3892	3909	3927	8945	3962	2. 4. 5. 7. 9
11 1											
25	8979			4031			4082	4099		4138	2. 3. 5. 7. 9
26					4216				4281		2 3 5 7 8
27						4398				4456	2.3.5.6.8
28			4502		4538		4564			4609	2.3.5.6.8
29	4024	4639	4654	4009	4683	4098	4713	4728	4742	4757	1.3.4.6.7
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1. 3. 4. 6. 7
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1. 3. 4. 6. 7
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1.3.4.5.7
33	5185	5198	5211	5224	5287		5263	5276	5289	5302	1.3.4.5.6
34	5315	5328	5340	5358	5866	5378	5891	5408	5416	5428	1.3.4.5.6
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1. 2. 4. 5. 6
86	5563	5575	5587	5599	5611	5628	5635	5647	5658	5670	1. 2. 4. 5. 6
37	5682	5694	5705	5717	5729	57 4 0	5752	5763	5775	5786	1. 2. 3. 5. 6
88	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1. 2. 3. 5. 6
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1. 2. 3. 4. 6
40	6021	6031	6042	6058	6064	6075	6085	6096	6107	6117	1.2.3.4.5
41		6138	6149	6160	6170		6191			6222	1. 2. 3. 4. 5
42		6243	6253	6263	6274		6294			6325	1. 2. 3. 4. 5
48		6345	6355	6365	6375		6395	6405		6425	1.2.3.4.5
44	6435	6444	6454	6464	6474	6484	6493	6508	6513	6522	1. 2. 3. 4. 5
45	2500	8540	Q551	8581	6571	8580	6590	8500	6609	6618	1. 2. 3. 4. 5
46	6532	6542 6637	6551 6 64 6	6656	6665				6702		1 2 3 4 5
47		6730		6749	6758		.6776			6808	
48		6821	6830	6839	6848	,	6866		6884	6893	1. 2. 3. 4. 4
49	6902	6911	6920	6928	6937		6955	6964	6972	6981	1. 2. 3. 4. 4
										7067	1000
50	6990		7007	7016	7024		7042	7050	7059		1.2.3.3.4
51		7084		7101	7110		7126 7210	7135	7143 7226	7152 7235	1. 2. 3. 3. 4
52 53	7160 7243	7168 7251	7177 7259	7185 7267	7193		7210	7300	7308	7316	1. 2. 2. 3. 4
					7275		7372	7300	7308	7316	
54	1324	1002	1340	7348	1300	/304	1012	1000	1000	1000	1. 4. 2. 0. 2

Note. — This page and the three that follow it are taken from the Mathematical Tables of Prof. J. M. Peirce, published by Messrs. Ginn & Co.

N	0	1	2	3	4	5	6	7	8	9	P. P.
											1. 2. 3. 4. 5
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1. 2. 2. 3. 4
56				7505							1. 2. 2. 8. 4
57				7582		i .		7612			1. 2. 2. 8. 4
58				7657						7701	
59	7709	7716	7728	7731	7738	7745	7752	7760	7767	7774	1. 1. 2. 3. 4
60	7782	7789	7796	7808	7810	7818	7825	7832	7839	7846	1. 1. 2. 3. 4
61	7858	7860	7868	7875	7882	7889	7896	7908	7910	7917	1. 1. 2. 3. 4
62	7924	7931	7938	7945	7952	7959	7966	7978	7980	7987	1 · 1 · 2 · 3 · 3
63				8014				8041			1. 1. 2. 3. 3
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1. 1. 2. 3. 3
65	8129	8186	8142	8149	8156	8162	8169	8176	8182	8189	1. 1. 2. 3. 3
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1. 1. 2. 3. 3
67	8261	8267	8274	8280	8287			8306			1. 1. 2. 3. 3
68				8344				8370			1. 1. 2. 3. 3
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1. 1. 2. 3. 3
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1. 1. 2. 2. 3
71				8581		8543	8549	8555	8561	8567	
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1. 1. 2. 2. 3
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1. 1. 2. 2. 3
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1.1.2.2.3
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1. 1. 2. 2. 3
76					8881					8859	
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1. 1. 2. 2. 3
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1.1.2.2.8
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1. 1. 2. 2. 3
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1.1.2.2.3
81					9106						1. 1. 2. 2. 3
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1. 1. 2. 2. 3
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1. 1. 2. 2. 3
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1. 1. 2. 2. 3
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1. 1. 2. 2. 3
86				9360				9380			1. 1. 2. 2. 3
87				9410				9430			0. 1. 1. 2. 2
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0. 1. 1. 2. 2
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0. 1. 1. 2. 2
90	9549	9547	9559	9557	9589	GERR	9671	9578	9591	9586	0. 1. 1. 2. 2
91				9605			• • • •	9624			0. 1. 1. 2. 2
92				9652				9671			0. 1. 1. 2. 2
93				9699				9717			0. 1. 1. 2. 2
94				9745						9773	0 1 1 2 2
95	9777	0790	0796	9791	979F	9800	9805	9809	0814	0919	0. 1. 1. 2. 2
96		9827		9836						9863	
97		9872			9886			9899			0. 1. 1. 2. 2
98		9917		9926				9943			0. 1. 1. 2. 2
99				9969				9987			0. 1. 1. 2. 2

TABLES.

N	0	1	2	8	4	5	6	7 .	8	9	10
100 101	0000 0043	0004 0048	0009 0052	0013 0056	0017 0060	0022 0065	0026 0069		0035 0077	0039 0082	0043 0086
102			0095		0103	0107	0111			0124	0128
103		0133				0149		0158		0166	0170
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	0212
105		0216		0224		0233	0237			0249	0253
106 107		0257 0298	0261	0265	0269 0310		0278 0318			0290 0330	0294 0334
108		0338	0342		0350		0358			0370	0374
109		0378		0386	0390		0398	0402		0410	0414
110	0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	0453
111		0457	0461		0469	0473	0477	0481		0488	0492
112 113	0492 0531	0496 0535		0504	0508 0546	0512	0515	0519		0527	0531 0569
114	0569	0573	0577	0580	0584	0550 ,0588	0592	0558 0596	0599	0565 0603	0607
115	0607		0615		0622	0626		0633			0645
116	0645	0648	0652		0660	0663	0667		0674		0682
117	0682		0689	0693		0700		0708			0719
118	0719 0755	0722 0759	0726		0734	0737 0774	0741	0745 0781	0748		0755
			0763	0766	0770		0777		0785	0788	0792
120 121	0792	0795	0799	0803	0806	0810	0813	0817	0821	-,	0828
122	0828	0831 0867	0835 0871	0874	0842	0846 0881	0849 0885	0853 0888	0892	0860	0864 0899
123	0899			0910		0917	0920		0927		0984
124	0934	0938	0941	0945	0948	0952	0955	0959	0962	0966	096 9
125	0969	0973		0980		0986		0993	0997	1000	1004
126		1007		1014		1021	1024		1031	1035	1038
127 128	1038	1041 1075		1048 1082		1055 1089	1059 1092	1062 1096	1085	1069	1072 1106
129		1109		1116		1123	1126	1129		1136	1139
130	1139	1143	1146	1149	1153	1156	1159	1163	1166	1169	1173
131	1178	1176			1186	1189	1193	1196		1202	1206
132	1206	1209		1216		1222		1229		1235	1239
133 134	1239	1242 1274		1248	1252 1284	1255 1287		1261 1294		1268 1300	1271 1303
11											_
135 136	1303 1335	1307 1339		1313 1345	1316 1348	1319 1351	1323 1355	1326 1358	1329 1361	1332 1364	1385 1367
137	1367			1377		1383	1386	1389		1396	1399
188		1402		1408			1418			1427	1430
139	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	1461
140	1461				1474	1477		1483		1489	1492
141	1492 1523		1498		1504	1508	1511 1541				1523 1553
142 143		1526 1556	1559		1535 1565	1538 1569	1572		1578		1584
144		1587		1593		1599			1608		1614
145	1614	1617	1620	1623	1626	1629	1632	1635	1638	1641	1644
146	1644	1647	1649	1652	1655	1658	1661		1667	1670	1673
147	1678		1679	1682	1685	1688	1691		1697	1700	1703
148 149	1703 1732			1711	1714 1744	1717 1748	1720 1749	1723			1732 1761
148	1/32	1/30	1/38	1/41	1/44	1140	1/48	1102	1100	1100	1/01

TABLES.

N	0	1	2	3	4	5	6	7	8	9	10
150 151	1761 1790		1767 1796	1770 1798	1772 1801	1775 1804	1778 1807	1781 1810		1787 1816	1790 1818
152	1818	1821		1827	1830	1833			1841	1844	1847
153 154	1847 1875	1850 1878	1853	1884	1858	1861 1889	1864 1892	1867 1895	1870 1898	1872 1901	1875 1903
155	1903	1906	1909	1912	1915	1917	1920	1923		1928	1931
156	1931		1937	1940	1942	1945	1948	1951			1959
157	1959			1967	1970	1973		1978			1987
158 159	1987	1989 2017	199 2 2019	1995	1998 2025			2006 2033			2014 2041
160	2041		2047		2052	2055	2057		2063		2068
161		2071		2076		2082		2087			2005
162	2095	2098		2103				2114		2119	2122
163	2122	2125	2127	2130				2140		2146	2148
164		2151		2156		_		2167		2172	2175
165 166	2175 2201	2177	2180 2206	2183	2185 2212		2191 2217	2193	2196 2222	2198 2225	2201
167	2227	2230		2235		2240		2245			2227 2253
168	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304		2310	2312	2315	2317		2322	2325	2327	2330
171		2333	2335	2338	2340	2343	2345		2350	2353	2355
172 173	2355	2358 2383		2363 2388	2365 2390	2368 2393	2370 2395	2373	2400	2378 2403	2380 2405
174	2405		2410					2423		2428	2430
175	2430	2433	2435	2438	2440	2443	2445	2448	2450	2453	2455
176		2458		2463		2467		2472			2480
177 178		2482 2507	2485 2509	2487	2490 2514	2492	2494	2497 2521	2499		2504 2529
179			2533					2545			2553
180	2553	2555	2558	2560	2562	2565	2567	2670	2572	2574	2577
181	2577		2582	2584		2589	2591		2596	2598	2601
182	2601		2605	2608	2610	2613	2615	2617	2620		2625
183 184	2625 2648	2627	2629 2653	2632	2634 2658	2636	2639 2662		2643 2667	2646 2669	2648 2672
185 186	2672 2695	2674 2697	2676 2700	2679 2702	2681 2704	2683 2707	2686 2709	2688 2711	2690 2714		2695 2718
187	2718	2721	2723	2725	2728	2730	2732	2735	2737	2739	2742
188	2742	2744		2749	2751	2753	2755	2758	2760	2762	2765
189	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2788
190	2788		2792	2794		2799	2801		2806	2808	2810
191 192	2810 2833	2813 2835	2815 2838	2817 2840		2822 2844	2824 2847		2828 2851	2831 2853	2838 2856
193	2856	2858	2860	2862		2867	2869	2871			2878
194	2878	2880	2882	2885	2887	2889	2891	2894		2898	2900
195	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	2923
196	2923	2925	2927	2929	2931	2934	2936		2940	2942	2945
197 198	2945 2967	2947 2969	2949 2971	2951 2973	2953 2975	2956 2978	2958 2980	2960	2962 2984	2964 2986	2967 2989
199			2993			2999	3002		3006	3008	3010

TABLES.

Trigonometric Functions.

0.0000 0°	Nat		5							
` 0.0000 I 0º		Log.	Nat.	Log. 0.0000	Nat.	Log.	Nat.	Log.		
			1.0000		.0000	∞ 7.4637	∞ 343.77	∞ 2.5363	90° 00′ 50	1.5708 1.5679
0.0029 0.0058	10 .0029 20 .0058			.0000	.0029	.7648	171.89	.2352	40	1.5650
0.0087	30 .008		1.0000	.0000	.0087	.9409	114.59	.0591	30	1.5621
0.0116	40 .011		.9999	.0000		8.0658	85.940	1.9342	20	1.5592
0.0145	50 .014	.1627	.9999	.0000	.0145	.1627	68.750	.8373	10	1.5563
	00' .0175	8.2419	.9998	9.9999	.0175	8.2419	57.290	1.7581	89° 00′	1.5533
0.0204	10 .020		.9998	.9999	.0204	.3089	49.104	.6911	50	1.5504
0.0233	20 .0233		.9997	.9999	.0233	.3669	42.964	.6331	40	1.5475
0.0262 0.0291	30 .0262 40 .029		.9997	.9999 .9998	.0262 .0291	.4181 .4638	38.188 34.368	.5819 .5362	30 20	1.5446 1.5417
0.0320	50 .0320		.9995	.9998	.0320	.5053	31.242	.3302 . 49 47	10	1.5388
	00' .0349		.9994	9.9997	.0349	8.5431	28.636	1.4569		1.5359
0.0378	10 .0378		.9993	.9997	.0378	.5779	26.432	.4221	50	1.5330
0.0407	20 .040		.9992	.9996	.0407	.6101	24.542	.3899	40	1.5301
0.0436	30 .0436	.6397	.9990	.9996	.0437	.6401	22.904	.3599	30	1.5272
0.0465	40 .0465		.9989	.9995	.0466	.6682	21.470	.3318	20	1.5243
0.0495	50 .0494		.9988	.9995	.0495	.6945	20.206	.3055	10	1.5213
	00' .0523		.9986	9.9994		8.7194	19.081	1.2806		1.5184
0.0553	10 .0552		.9985	.9993	.0553	.7429	18.075	.2571	50	1.5155
0.0582 0.0611	20 .0581 30 .0610		.9983 .9981	.9993 .9992	.0582 .0612	.7652 .7865	17.169 16.350	.2348 .2135	40 30	1.5126 1.5097
0.0640	40 .0646		.9980	.9991	.0641	.8067	15.605	.1933	20	1.5068
0.0669	50 .0669		.9978	.9990	.0670	.8261	14.924	.1739	īŏ	1.5039
		8.8436	1	9.9989		8.8446	14.301	1.1554		1.5010
0.0727	10 .072		.9974	.9989	.0729	.8624	13.727	.1376	50	1.4981
0.0756	20 .075	.8783	.9971	.9988	.0758	.8795	13.197	.1205	40	1.4952
0.0785	30 .0785			.9987	.0787	.8960	12.706	.1040	30	1.4923
0.0814	40 .0814		.9967	.9986	.0816	.9118	12.251	.0882	20	1.4893
0.0844	50 .084.		.9964	.9985	.0846	.9272	11.826	.0728	10	1.4864
	00' .0872		.9962	9.9983	.0875		11.430	1.0580	85° 00′	1.4835 1.4806
0.0902 0.0931	10 .0902 20 .0929		.9959 .9957	.9982 .9981	.0904 .0934	.9563 .9701	11.059 10.712	.0437 .0299	50 40	1.4777
0.0960	30 .0958		.9954	.9980	.0963	.9836	10.385	.0164	30	1.4748
0.0989	40 .098		.9951	.9979	.0992	.9966	10.078	.0034	20	1.4719
0.1018		9.0070	.9948	.9977		9.0093	9.7882		10	1.4690
	00' .104.		.9945	9.9976	.1051	9.0216	9.5144	0.9784	84° 00′	1.4661
0.1076	10 1074		.9942	.9975	.1080	.0336	9.2553	.9664	50	1.4632
0.1105	20 .110		.9939	.9973	.1110	.0453	9.0098	.9547	40	1.4603
0.1134	30 .113		.9936	.9972	.1139	.0567	8.7769	.9433	30	1.4574
0.1164	40 1.116		.9932	.9971 . 996 9	.1169 .1198	.0678	8.5555	.9322 .9214	20 10	1.4544 1.4515
0.1193	50 .1190		.9929			.0786	8.3450			1.4486
	00' .1219		.9925	9.9968	.1228 .1257	9.0891 .0995	8.1443 7.9530	0.9109 .9005	83° 00′ 50	1.4457
0.1251 0.1280	10 .1248 20 .1276		.9922	.9966	.1237	.1096	7.7704	.8904	40	1.4428
0.1200	30 .130		.9914	.9963	.1317	.1194	7.5958	.8806	30	1.4399
0.1338	40 .133		.9911	.9961	.1346	.1291	7.4287	.8709	20	1.4370
0.1367	50 .136		.9907	.9959	.1376	.1385	7.2687	.8615	10	1.4341
0.1396 8º	00' .139	9.1436	.9903	9.9958	.1405	9.1478	7.1154		82° 00′	1.4312
0.1425	10 .142		.9899	.9956	.1435	.1569	6.9682	.8431	50	1.4283
0.1454	20 .1449		.9894	.9954	.1465	.1658	6.8269	.8342	40	1.4254
0.1484	30 1.1478		.9890	.9952 .9950	.1495 .1524	.1745 .1831	6.6912 6.5606	.8255 .8169	30 20	1.4224 1.4195
0.1513 0.1542	40 .150; 50 .1536		.9886 .9881	.9930	.1554	.1915	6.4348	.8085	10	1.4166
0.1571 90	1	9.1943	.9877	9.9946		9.1997		0.8003		1.4137
0.13/1	Nat.	. 9.1943 Log.	.9011 Nat.	Log.	.1367 Nat.	Log.	\ Nat.	Jog.	\~~ ~~	
/_		INES.		NES.	COTA	NGBNTS.	(AT	GENTS.	DECKER	S./RADIANA

TABLES.

Trigonometric Functions.

RADIANS.	DEGREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
		Nat. Log. .1564 9.1943	Nat. Log. .9877 9.9946	Nat. Log. .1584 9.1997	Nat. Log. 6.3138 0.8003		
0.1571	9° 00′						1.4137
0.1600	10	.1593 .2022	.9872 .9944	.1614 .2078	6.1970 .7922	50	1.4108
0.1629	20	.1622 .2100	.9868 .9942	.1644 .2158	6.0844 .7842	40	1.4079
0.1658	30	.1650 .2176	.9863 .9940	.1673 .2236	5.9758 .7764	30	1.4050
0.1687	40	.1679 .2251	.9858 .9938	.1703 .2313	5.8708 .7687	20	1.4021
0.1716	50	.1708 .2324	.9853 .9936	.1733 .2389		10	1.3992
0.1745	10° 00′	.1736 9.2397	.9848 9.9934	.1763 9.2463	5.6713 0.7537	80° 00′	1.3963
0.1774	10	.1765 .2468	.9843 .9931	.1793 .2536	5.5764 .7464	50	1.3934
0.1804	20	.1794 .2538	.9838 .9929	.1823 .2609	5.4845 .7391	40	1.3904
0.1833	30	.1822 .2606	.9833 .9927	.1853 .2680	5.3955 .7320	30	1.3875
0.1862	40	.1851 .2674	.9827 .9924	.1883 .2750	5.3093 .7250	20	1.3846
0.1891	50	.1880 .2740	.9822 .9922	.1914 .2819	5.2257 .7181	10	1.3817
0.1920	11° 00′	.1908 9.2806	.9816 9.9919	.1944 9.2887	5.1446 0.7113	79° 00′	1.3788
0.1949	10	.1937 .2870	.9811 .9917	.1974 .2953	5.0658 .7047	50	1.3759
0.1978	20	.1965 .2934	.9805 .9914	.2004 .3020	4.9894 .6980	40	1.3730
0.2007	30	.1994 .2997	.9799 .9912	.2035 .3085	4.9152 .6915	30	1.3701
0.2036	40	.2022 .3058	.9793 .9909	.2065 .3149	4.8430 .6851	20	1.3672
0.2065	50	.2051 .3119	.9787 .9907	.2095 .3212	4.7729 .6788	10	1.3643
0.2094	120 00	.2079 9.3179	.9781 9.9904	.2126 9.3275	4.7046 0.6725	78° 00′	1.3614
0.2123	10	.2108 .3238	.9775 .9901	.2156 .3336	4.6382 .6664	50	1.3584
0.2153	20	.2136 .3296	.9769 .9899	.2186 .3397	4.5736 .6603	40	1.3555
0.2182	30	.2164 .3353	.9763 .9896	.2217 .3458	4.5107 .6542	30	1.3526
0.2211	40	.2193 .3410	.9757 .9893	.2247 .3517	4.4494 .6483	20	1.3497
0.2240	50	.2221 .3466	.9750 .9890	.2278 .3576	4.3897 .6424	10	1.3468
0.2269	13° 00′	.2250 9.3521	.9744 9.9887	.2309 9.3634	4.3315 0.6366	77° 00′	1.3439
0.2298	10 10	.2278 .3575	.9737 .9884	.2339 .3691	4.2747 .6309	50	1.3410
0.2327	20	.2306 .3629	.9730 .9881	.2370 .3748	4.2193 .6252	40	1.3381
0.2356	30	.2334 .3682	.9724 .9878	.2401 .3804	4.1653 .6196	30	1.3352
0.2385	40	.2363 .3734	.9717 .9875	.2432 .3859	4.1126 .6141	20	1.3323
0.2414	ŠŎ.	.2391 .3786	.9710 .9872	.2462 .3914	4.0611 .6086	10	1.3294
0.2443	14° 00′	.2419 9.3837	.9703 9.9869	.2493 9.3968		76° 00′	1.3265
0.2473	1 10	.2447 .3887	.9696 .9866	.2524 .4021	3.9617 .5979	50	1.3235
0.2502	20	.2476 .3937	.9689 .9863	.2555 .4074	3.9136 .5926	40	1.3206
0.2531	30	.2504 .3986	.9681 .9859	.2586 .4127	3.8667 .5873	30	1.3177
0.2560	40	.2532 .4035	.9674 .9856	.2617 .4178	3.8208 .5822	20	1.3148
0.2589	50	.2560 .4083	.9667 .9853	.2648 .4230	3.7760 .5770	10	1.3119
0.2618	15° 00′	.2588 9.4130	.9659 9.9849				1.3090
				.2679 9.4281			
0.2647	10 20	.2616 .4177	.9652 .9846 .9644 .9843	.2711 .4331	3.6891 .5669	50	1.3061 1.3032
0.2676 0.2705	30	.2644 .4223 .2672 .4269	.9636 .9839	.2742 .4381 .2773 .4430	3.6470 .5619 3.6059 .5570	40 30	1.3003
0.2734	40	.2700 .4314	.9628 .9836			20	1.2974
0.2763	50		.9628 .9830				
				.2836 .4527	3.5261 .5473	10	1.2945
0.2793	16° 00′	.2756 9.4403	.9613 9.9828	.2867 9.4575	3.4874 0.5425	74° 00′	1.2915
0.2822	10	.2784 .4447	.9605 .9825	.2899 .4622	3.4495 .5378	50	1.2886
0.2851	20	.2812 .4491	.9596 .9821	.2931 .4669	3.4124 .5331	40	1.2857
0.2880	30	.2840 .4533	.9588 .9817	.2962 .4716	3.3759 .5284	30	1.2828
0.2909	40	.2868 .4576	.9580 .9814	.2994 .4762	3.3402 .5238	20	1.2799
0.2938	50	.2896 .4618	.9572 .9810	.3026 .4808	3.3052 .5192	10	1.2770
0.2967	17° 00′	.2924 9.4659	.9563 9.9806	.3057 9.4853	3.2709 0.5147	73° 00′	1.2741
0.2996	10	.2952 .4700	.9555 .9802	.3089 .4898	3.2371 .5102	50	1.2712
0.3025	20	.2979 .4741	.9546 .9798	.3121 .4943	3.2041 .5057	40	1.2683
0.3054	30	.3007 .4781	.9537 .9794	.3153 .4987	3.1716 .5013	30	1.2654
0.3083	40	.3035 .4821	.9528 .9790	.3185 .5031	3.1397 .4969	20	1.2625
0.3113	50	.3062 .4861	.9520 .9786	.3217 .5075	3.1084 .4925	10	1.2595
0.3142	18° 00′	.3090 9.4900	.9511 9.9782	.3249 9.5118		72° 00'	1.5566
. 1	1	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.	\	\
		COSINES.		COTANGENTS	TANGENTS	DECR	AZGAR/SEE
	/	COMMAS.	SINES.	OI WHORKLES	, / , www	7	

TABLES.

Trigonometric Functions.

RADIANS.	DEGREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
0.23.46	100.00	Nat. Log. .3090 9.490	Nat. Log. 0 .9511 9.9782	Nat. Log. .3249 9.5118	Nat. Log. 3.0777 0.4882	700 001	10555
0.3142	18° 00′			.3249 9.5118	3.0777 0.4882		1.2566
0.3171 0.3200	10 20	.3118 .493 .3145 .497		.3281 .5161 .3314 .5203	3.0475 .4839 3.0178 .4797	50 40	1.2537 1.2508
0.3229	30	.3173 .501		.3346 .5245	2.9887 .4755	30	1.2479
0.3258	40	.3201 .505		.3378 .5287	2.9600 .4713	20	1.2450
0.3287	50	.3228 .509		.3411 .5329	2.9319 .4671	ĩŏ	1.2421
0.3316	19° 00′	.3256 9.512	1	.3443 9.5370	2.9042 0.4630	71° 00′	1.2392
0.3345	10	.3283 .516		.3476 .5411	2.8770 .4589	50	1.2363
0.3374	20	.3311 .519		.3508 .5451		40	1.2334
0.3403	30	.3338 .523		.3541 .5491		30	1.2305
0.3432	40	.3365 .527		.3574 .5531	2.7980 .4469	20	1.2275
0.3462	50	.3393 .530	6 .9407 .9734	.3607 .5571	2.7725 .4429	10	1.2246
0.3491	20° 00′	.3420 9.534	1 .9397 9.9730	.3640 9.5611	2.7475 0.4389		1.2217
0.3520	10	.3448 .537		.3673 .5650	2.7228 .4350	50	1.2188
0.3549	20	.3475 .540		.3706 .5689		40	1.2159
0.3578	30	.3502 .544	9367 .9716	.3739 .5727	2.6746 .4273	30	1.2130
0.3607	40	.3529 .547	7 .9356 .9711	.3772 .5766	2.6511 .4234	20	1.2101
0.3636	50	.3557 .551	,	.3805 .5804	•	10	1.2072
0.3665	21° 00′	.3584 9.554		.3839 9.5842	2.6051 0.4158		1.2043
0.3694	10	.3611 .557		.3872 .5879	2.5826 .4121	50	1.2014
0.3723	20 30	.3638 .560 .3665 .564		.3906 .5917 .3939 .5954	2.5605 .4083 2.5386 .4046	40 30	1.1985 1.1956
0.3752 0.3782	40	.3692 .567		.3973 .5991	2.5172 .4009	20 20	1.1936
0.3762	50	.3719 .570		.4006 .6028	2.4960 .3972	10	1.1897
0.3840	22° 00′	.3746 9.573		.4040 9.6064	2.4751 0.3936	68° 00′	1.1868
0.3869	10	.3773 .576		.4074 .6100	2.4545 .3900	50	1.1839
0.3898	20	.3800 .579			2.4342 .3864	40	1.1810
0.3927	30	.3827 .582		.4142 .6172	2.4142 .3828	30	1.1781
0.3956	40	.3854 .585			2.3945 .3792	20	1.1752
0.3985	50	.3881 .588		.4210 .6243	2 3750 .3757	10	1.1723
0.4014	23° 00′	.3907 9.5919	.9205 9.9640	.4245 9.6279	2.3559 0.3721	67° 00′	1.1694
0.4043	10	.3934 .594		.4279 .6314	2.3369 .3686	50	1.1665
0.4072	20	.3961 .597	9182 .9629	.4314 .6348	2.3183 .3652	40	1.1636
0.4102	30	.3987 .600		.4348 .6383	2.2998 .3617	30	1.1606
0.4131	40	.4014 .603		.4383 .6417	2.2817 .3583	20	1.1577
0.4160	50	.4041 .606	1	.4417 .6452	2.2637 .3548	10	1.1548
0.4189	24° 00′	.4067 9.609		.4452 9.6486	2 2460 0 3514	66° 00′	1.1519
0.4218	10	.4094 .612		.4487 .6520	2.2286 .3480	50	1.1490
0.4247	20	.4120 .6149		.4522 .6553	2.2113 .3447	40	1.1461
0.4276	30 40	.4147 .617 .4173 .620		.4557 .6587 .4592 .6620	2.1943 .3413 2.1775 .3380	30 20	1.1432 1.1403
0.4305 0.4334	50	.4200 .623		.4628 .6654	2.1775 .3380 2.1609 .3346	10	1.1374
	25° 00′	.4226 9.6259				65° 00′	
0.4363	23 00	.4253 .6286		.4663 9.6687 .4699 .6720	2.1445 0.3313 2.1283 .3280	50	1.1345 1.1316
0.4392 0.4422	20	.4279 .631		.4734 .6752	2.1263 .3260 2.1123 .3248	40	1.1316
0.4451	30	.4305 .6346		.4770 .6785	2.0965 .3215	30	1.1257
0.4480	40	.4331 .6366		.4806 .6817	2.0809 .3183	20	1.1228
0.4509	50	.4358 .6392			2.0655 .3150	10	1.1199
0.4538	26° 00′	.4384 9.6418			2.0503 0.3118	64° 00′	1.1170
0.4567	10	.4410 .644			2.0353 .3086	50.	1.1141
0.4596	20 \	.4436 .6470	.8962 .9524	.4950 .6946	2.0204 .3054	40	1.1112
0.4625	30	.4462 .6495			2.0057 .3023	30	1.1083
0.4654	40	.4488 .652		.5022 .7009	1.9912 .2991	20	1.1054
0.1683	50	.4514 .6546	1		1.9768 .2960	10	1.1025
0.4712 2	?7° 00′ [.	4540 9.6570			1.9626 0.2928	63° 00′	1.0996
/_		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.	<u>'</u>	\
/		COSINES.	SINES.	COTANGENTS.	TANGENTS.	DEGREE	SHADIANS.
				1	1		

TABLES.

Trigonometric Functions.

RADIANS.	DEGREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		-
0.4712	27° 00′	Nat. Log4540 9.6570	.8910 9.9499	Nat. Log5095 9.7072	Nat. Log. 1.9626 0.2928	63° 00′	1.0996
0.4741	10 20	.4566 .6595 .4592 .6620	.8897 .9492 .8884 .9486	.5132 .7103 .5169 .7134	1.9486 .2897 1.9347 .2866	50 40	1.0966 1.0937
0.4771 0.4800	30	.4592 .6620 .4617 .6644	.8870 .9479	.5206 ,7165	1.9347 .2806	30	1.0908
0.4829	40	.4643 .6668	.8857 .9473	.5243 .7196	1.9074 .2804	20	1.0879
0.4858	50	.4669 .6692	.8843 .9466	.5280 .7226	1.8940 .2774	10	1.0850
0.4887	28° 00′	. 46 95 9.6716	.8829 9.9459	.5317 9.7257	1.8807 0.2743	62° 00′	1.0821
0.4916	10	.4720 .6740	.8816 .9453	.5354 .7287	1.8676 .2713	50	1.0792
0.4945 0.4974	20 30	.4746 .6763 .4772 .6787	.8802 .9446 .8788 .9439	.5392 .7317 .5430 .7348		40 30	1.076 3 1.0734
0.5003	40	.4797 .6810	.8774 .9432	.5467 .7378	1.8291 .2622	20	1.0705
0.5032	50	.4823 .6833	.8760 .9425		1.8165 .2592	10	1.0676
0.5061	29° 00′	.4848 9.6856	.8746 9.9418	.5543 9.7438		61° 00′	1.0647
0.5091	10	.4874 .6378	.8732 .9411	.5581 .7467	1.7917 .2533	50	1.0617
0.5120 0.5149	20 30	.4899 .6901 .4924 .6923	.8718 .9404 .8704 .9397	.5619 .7497 .5658 .7526	1.7796 .2503 1.7675 .2474	40 30	1.0588
0.5178	40	.4950 .6946	.8689 .9390	.5696 .7556		20	1.0539
0.5207	50	.4975 .6968	.8675 .9383	.5735 .7585	1.7437 .2415	10	1.0501
0.5236	30° 00′	.5000 9.6990	.8660 9.9375	.5774 9.7614	1.7321 0.2386	60° 00′	1.0472
0.5265	10	.5025 .7012	.8646 .9368	.5812 .7644	1.7205 .2356	50	1.0443
0.5294	20	.5050 .7033	.8631 .9361	.5851 .7673		40	1.0414
0.5323 0.5352	30 40	.5075 .7055 .5100 .7076	.8616 .9353 .8601 .9346	.5890 .7701 .5930 .7730	1.6977 .2299 1.6864 .2270	30 20	1.0385 1,0356
0.5381	50	.5125 .7097	.8587 .9338	.5969 .7759		10	1.0327
0.5411	31° 00′	.5150 9.7118	.8572 9.9331	.6009 9.7788	1.6643 0.2212	59° 00′	1.0297
0.5440	10	.5175 .7139	.8557 .9323	.6048 .7816	1.6534 .2184	50	1.0268
0.5469	20	.5200 .7160	.8542 .9315	.6088 .7845	1.6426 .2155	40	1.0239
0.5498	30 40	.5225 .7181 .5250 .7201	.8526 .9308	.6128 .7873 .6168 .7902	1.6319 .2127 1.6212 .2098	30 20	1.021 0 1.0181
0.5527 0.5556	50	.5250 .7201 .5275 .7222	.8511 .9300 . 8496 .9292	.6208 .7930		10	1.0151
0.5585	32° 00′	.5299 9.7242	.8480 9.9284	.6249 9.7958		58° 00′	1.0123
0.5614	10	.5324 .7262	.8465 .9276	.6289 .7986	1.5900 .2014	50	1.0094
0.5643	20	.5348 .7282	.8450 .9268	.6330 .8014	1.5798 .1986	40	1.0065
0.5672	30 40	.5373 .7302	.8434 .9260	.6371 .8042 .6412 .8070		30	1.0036
0.5701 0.57 3 0	50	.5398 .7322 .5422 .7342	.8418 .9252 .8403 .9244	.6453 .8097		20 10	0.9977
0.5760	33° 00′	.5446 9.7361	.8387 9.9236	.6494 9.8125	1.5399 0.1875	57° 00′	0.9948
0.5789	10	.5471 .7380	.8371 .9228	.6536 .8153		50	0.9919
0.5818	20	.5495 .7400	.8355 .9219	.6577 .8180		40	0.9890
0.5847	30	.5519 .7419	.8339 .9211	.6619 .8208		30	0.9861
0.5876 0.5905	40 50	.5544 .7438 .5568 .7457	.8323 .9203 .8307 .9194	.6661 .8235 .6703 .8263	1.5013 .1765 1.4919 .1737	20 10	0.9832 0.9803
0.5934	34° 00′	.5592 9.7476	.8290 9.9186	.6745 9.8290	1.4826 0.1710		0.9774
0.5963	10	.5616 .7494	.8274 .9177	.6787 .8317	1.4733 .1683	50 50	0.9745
0.5992	20	.5640 .7513	.8258 .9169	.6830 .8344	1.4641 .1656	40	0.9716
0.6021	30	.5664 .7531	.8241 .9160	.6873 .8371		30	0.9687
0.6050 0.6080	40 50	.5688 .7550 .5712 .7568	.8225 .9151 .8208 .9142	.6916 .8398 .6959 .8425	1.4460 .1602 1.4370 .1575	20 10	0.965 7 0.96 28
0.6109	35° 00′	.5736 9.7586	.8208 .9142	.7002 9.8452	1.4281 0.1548		0.9528
0.6138	10	.5760 .7604	.8192 9.9134 .8175 .9125	.7046 .8479	1.4193 .1521	50	0.9570
0.6167	20	.5783 .7622	.8158 .9116	.7089 .8506	1.4106 .1494	40	0.9541
0.6196	30	.5807 .7640	.8141 .9107	.7133 .8533		30	0.9512
0.6225	40	.5831 .7657	.8124 .9098	.7177 .8559	1.3934 .1441	20	0.9483
0.6254 0.6283	50 36° 00 ′	.5854 7675	.8107 .9089 .8090 9.9080	.7221 .8586		10	0.9454
0.0203	30-00	.5878 9.7692 Nat. Log.	Nat. Log.	Nat. Log.	1.3764 0.1387 Nat. Log.	1242 M	14.54.63
		COSINES.			-\	DECR	IGARI.EES
		COSINES.	SINES.	COTANGENTS	· / FWHOEH 13	7-2	

Trigonometric Functions.

RADIANS.	DEGREES.	SIN E S.	COSINES.	TANGENTS.	COTANGENTS.		
-		Nat Log	Nat. Log.	Nat. Log.	Nat. I.or		
0.6283	36° 00′	Nat. Log5878 9.769	2 .8090 9.9080	Nat. Log7265 9.8613	Nat. Log. 1.3764 0.1387	54° 00′	0.9425
0.6312	10	.5901 .771		.7310 .8639	1.3680 .1361	50	0.9396
0.6341	20	.5925 .772		.7355 .8666	1.3597 .1334	40	0.9367
0.6370	30	.5948 .774		.7400 .8692	1.3514 .1308	30	0.9338
0.6400	. 40	.5972 .776		.7445 .8718	1.3432 .1282	20	0.9308
0.6429	50	.5995 .777	1	.7490 .8745	1.3351 .1255	10	0.9279
0.6458	37° 00′	6018 9.779		.7536 9.8771	1.3270 0.1229	23° 00′	0.9250
0.6487	10	.6041 .781		.7581 .8797 .7627 .8824	1.3190 .1203 1.3111 .1176	50	0.9221
0.6516	20 30	.6065 .782 .6088 .784		.7627 .8824 .7673 .8850	1.3111 .1176 1.3032 .1150	40 30	0.9192 0.9163
0.6545 0.6574	30 40	.6111 .786		.7720 .8876		20	0.9134
0.6603	50	.6134 .787		.7766 .8902	1.2876 .1098	10	0.9105
	38° 00′	.6157 9.789		.7813 9.8928	1.2799 0.1072		0.9076
0.6632 0.6661	10	.6180 .7910		.7860 .8954	1.2723 .1046	52° 00′ 50	0.9076
0.6690	20	.6202 .7926		.7907 .8980	1.2647 .1020	40	0.9018
0.6720	30	.6225 .794		.7954 .9006		30	0.8988
0.6749	40	.6248 .795		.8002 .9032	1.2497 ,0968	20	0.8959
0.6778	50	.6271 .7973		.8050 .9058	1.2423 .0942	10	0.8930
0.6807	39° 00′	.6293 9.7989		.8098 9.9084	1.2349 0.0916	51° 00′	0.8901
0.6836	10	.6316 .8004		.8146 .9110	1.2276 .0890	50	0.8872
0.6865	20	.6338 .8020		.8195 .9135	1.2203 .0865	. 40	0.8843
0.6894	- 30	.6361 .8035	.7716 .8874	.8243 .9161	1.2131 .0839	30	0.8814
0.6923	40	.6383 .8050		.8292 .9187	1.2059 .0813	20	0.8785
0.6952	50	.6406 .8066	.7679 .8853	.8342 .9212	1.1988 .0788	10	0.8756
0.6981	40° 00′	.6428 9.8081	.7660 9.8843	.8391 9.9238	1.1918 0.0762	50° 00′	0.8727
0.7010	10	.6450 .8096		.8441 .9264	1.1847 .0736	50	0.8698
0.7039	-20	.6472 .8111		.8491 .9289	1.1778 .0711	40	0.8668
0.7069	30	.6494 .8125		.8541 .9315	1.1708 .0685	30	0.8639
0.7098	40	.651.7 .8140		.8591 .9341	1.1640 .0659	20	0.8610
0.7127	50	.6539 .8155	1	.8642 .9366	1.1571 .0634	10	0.8581
0.7156	41° 00′	.6561 9.8169		.8693 9.9392	1.1504 0.0608	49° 00′	0.8552
0.7185	10	.6583 .8184		.8744 .9417	1.1436 .0583	50	0.8523
0.7214	20	.6604 .8198		.8796 .9443	1.1369 .0557	40	0.8494
0.7243	30	.6626 .8213 .6648 .8227		.8847 .9468 .8899 .9494	1.1303 .0532	30	0.8465
0.7272 0.7301	40 50	.6648 .8227 .6670 .8241		.8899 .9494 .8952 .9519	1.1237 .0506 1.1171 .0481	20 10	0.8436 0.8407
	42° 00′		1				
0.7330 0.7359	10	.6691 9.8255 .6713 .8269		.9004 9.9544 .9057 .9570	1.1106 0.0456 1.1041 .0430	48° 00′ 50	0.8378 0.8348
0.7389	20	.6734 .8283		.9037 .9370 .9110 .9595	1.0977 .0405	40	0.8319
0.7418	30	.6756 .8297		.9163 .9621	1.0913 .0379	30	0.8290
0.7447	40	.6777 .8311		.9217 .9646		20	0.8261
0.7476	50	.6799 .8324		.9271 .9671	1.0786 .0329	10	0.8232
0.7505	43° 00′	.6820 9.8338		.9325 9.9697	1.0724 0.0303	47° 00'	0.8203
0.7534	10	.6841 .8351		.9380 .9722	1.0661 .0278	50	0.8174
0.7563	20	.6862 .8365		.9435 .9747	1.0599 .0253	40	0.8145
0.7592	30	.6884 .8378	.7254 .8606	.9490 .9772	1.0538 .0228	30	0.8116
0.7621	40	.6905 .8391	.7234 .8594	.9545 .9798	1.0477 .0202	20	0.8087
0.7650	50	.6926 .8405	.7214 .8582	.9601 .9823	1.0416 .0177	10	0.8058
0.7679	44° 00′	.6947 9.8418	.7193 9.8569	.9657 9.9848	1.0355 0.0152	46° 00′	0.8029
0.7709	10	.6967 .8431	.7173 .8557	.9713 .9874	1.0295 .0126	50	0.7999
0.7738	20	.6988 .8444		.9770 .9899	1.0235 .0101	40	0.7970
0.7767	30	.7009 .8457		.9827 .9924	1.0176 .0076	30	0.7941
0.7796	40	.7030 .8469		.9884 .9949	1.0117 .0051	20	0.7912
0.7825	50	.7050 .8482		.9942 .9975	1.0058 .0025	10	0.7883
0.7854	45° 00′	.7071 9.8495		1.0000 0.0000		45° 00′	0.7854
/_		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.	\!	
/	I	COSINES.	SINES.	COTANGENTS.	TANGENTS.	DEGREES	RADIANS.
				1	1		<u> </u>

Equivalents of Radians in Degrees, Minutes, and Seconds of Arc.

BADIANS.	equivalents.	RADIANS.	EQUIVALENTS.				
0.0001	0° 0′ 20″.6 or 0°.005730	0.0600	3° 26′ 15″.9 or 3°.437747				
0.0002	0° 0′41″.3 or 0°.011459	0.0700	4° 0′ 38″.5 or 4°.010705				
0.0003	0° 1′01″.9 or 0°.017189	0.0800	4° 35′ 01″.2 or 4°.583662				
0.0004	0° 1′22″.5 or 0°.022918	0.0900	5° 9′ 23″.8 or 5°.156620				
0.0005	0° 1′43″.1 or 0°.028648	0.1000	5° 43′ 46″.5 or 5°.729578				
0.0006	0° 2′03″.8 or 0°.034377	0.2000	11° 27′ 33″.0 or 11°.459156				
0.0007	0° 2′24″.4 or 0°.040107	0.3000	17° 11′ 19″.4 or 17°.188734				
0.0008	0° 2′45″.0 or 0°.045837	0.4000	22° 55′ 05″.9 or 22°.918312				
0.0009	0° 3′05″.6 or 0°.051566	0.5000	28° 38′ 52″.4 or 28°.647890				
0.0010	0° 3′ 26″.3 or 0°.057296	0.6000	34° 22′ 38″.9 or 34°.377468				
0.0020	0° 6′ 52″.5 or 0°.114592	0.7000	40° 6′ 25″.4 or 40°.107046				
0.0030	0° 10′ 18″.8 or 0°.171887	0.8000	45° 50′ 11″.8 or 45°.836624				
0.0040	0° 13′ 45″.1 or 0°.229183	0.9000	51°33′58″.3 or 51°.566202				
0.0050	0° 17′ 11″.3 or 0°.286479	1.0000	57° 17′ 44″.8 or 57°.295780				
0.0060	0° 20′ 37″.6 or 0°.343775	2.0000	114° 35′ 29″.6 or 114°.591559				
0.0070	0° 24′ 03″.9 or 0°.401070	3.0000	171° 53′ 14″.4 or 171°.887339				
0.0080	0° 2 7′ 30″.1 or 0°.458366	4.0000	229° 10′ 59″.2 or 229°.183118				
0.0090	0° 30′ 56″.4 or 0°.515662	5.0000	286° 28′ 44″.0 or 286°.478898				
0.0100	0° 34′ 22″.6 or 0°.572958	6.0000	343° 46′ 28″.8 or 343°.774677				
0.0200	1° 8′45″.3 or 1°.145916	7.0000	401° 4′ 13″.6 or 401°.070457				
0.0300	1°43′07″.9 or 1°.718873	8.0000	458° 21′ 58″.4 or 458°.366236				
0.0400	2° 17′ 30″.6 or 2°.291831	9.0000	515° 39′ 43″.3 or 515°.662016				
0.0500	2° 51′ 53″.2 or 2°.864789	10.0000	572° 57′ 28″.1 or 572°.957795				

The Values in Circular Measure of Angles which are given in Degrees and Minutes.

ľ	0.0003	9′	0.0026	30	0.0524	20°	0.3491	1000	1.7453
2	0.0006	10′	0.0029	40	0.0698	30°	0.5236	110°	1.9199
3′	0.0009	20′	0.0058	5°	0.0873	40°	0.6981	120°	2.0944
4'	0.0012	30′	0.0087	6°	0.1047	50°	0.8727	130°	2.2689
5′	0.0015	40′	0.0116	7°	0.1222	60°	1.0472	140°	2.4435
6	0.0017	50′	0.0145	80	0.1396	70°	1.2217	150°	2.6180
7	0.0020	1°	0.0175	90	0.1571	80°	1.3963	160°	2.7925
8	0.0023	2°	0.0349	10°	0.1745	90°	1.5708	170°	2.9671
_			1	<u> </u>	1	Ц	<u> </u>	<u> </u>	1

PAGE INDEX.

INTEGRALS.										
										PAGES
Fundamenta			. :	1	;	•	•	٠		8, 4
Rational algo	opraic ex	pression	s invo)(VID			na (a	+ 0	E)	5, 7
44	"	"		66		ban)	9\	•	•	8,9
44	44	44		66		bx +		1 hm :	•9\	10, 11
Rational fra	••	••		••	(4 +	· o x j a.	na (æ	+ 000	- cat-)	11-13
		•	•	•	٠, -	<u> </u>	. */-	<u> </u>	•	18, 14
Irrational al	gebraic e	xpressio:	ns inv	olvii						16, 17
"	46	66		66	√a	+ bac 8	and v	a' +	b'x	18, 19
44	46	44		66		± a2				20-28
"	46	46		66		ax-a		_		. 31
44	44	44		66				•	•	
						+bx	_	•	<u>. </u>	23–27
"	44	. "			(a'+b)	'x) and	i√a	+ pac ·	$+cx^2$	27-30
Miscellaneou				8.	•	•	•	•	•	32-34
General tran				. : .	•	•	٠	•	•	35-37
Expressions								ons	•	38-51
Expressions		; inverse	trigo	nom	etric i	unctio	ns	•	•	51-53
Exponential		•	•	•	•	•	•	•	•	58-56
Logarithmic			-1i - 4.			•	•	•	•	56-58
Expressions				uncu	ODS	•	•	•	•	58-61
Miscellaneou		e integra	rie.	•	•	•	•	•	•	62-65
Elliptic integ	trans .	•	•	•	•	•	•	•	•	6 6–72
,	AUXIL	 TADV T	rop _w			ייי רוצי	A TRT.1	a c		
					AU AI	., 1	a DU.	ш.,		
Trigonometr	ic functio	ons .	•	•	•	•	•	•	•	73-80
Hyperbolic f			•	•	•	•	•	•	•	81-83
Elliptic func	tions, Be	ssel's fu	nction	ns.	•	•	•	•	•	84-87
Series .		•	•	•	•	•	•	•	•	88-96
Derivatives		· •	٠.	•	•	•	•	•	-	97-106
Green's The				as	•	•	•	•	. 10	06-109
Table of mat				•	•	•	•	•	•	109
General form			on	•	•	•	•	•	. 1	10-114
Note on inter			٠,	•	•	•	•	•	٠	115
Table of the			rai	•	•	•	•	•		16-120
Tables of elli			•	•	•	•	•	•		21-128
Table of hyp	erbolic I	unctions	•	•	•	•	•	•	. 12	34-127
Table of valu			٠			•	•	•	• •	127
Table of com	mon loga	tritnms (or ex 8	ana e	- x	•	•	•		28, 129
Five-place ta	DIG OI DS	turai lo	garith	ıns	• .	•	•	•	. 18	30-139
Table of loga	rithms o	I I (X)	·	•			•	•	•	140
Three-place								•	• •	141
Four-place ta						mbers		•		2-145
Four-place to					IOHS	•	•	•	. 14	16-150
Tables for re	uncing L	autans to	o aegi	ees	•	•	•	•	•	151

•

.

