Методы оптимизации. Семинар 9. Сопряжённые функции

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

7 ноября 2017 г.

Напоминание

- Конус возможных направлений
- Касательный конус
- Острый экстремум

Определение

Снова сопряжённое?

- Ранее были рассмотрены сопряжённые (двойственные) множества и, в частности, конусы
- Сейчас будут рассмотрены сопряжённые (двойственные) функции
- Далее будет введена двойственная оптимизационная задача

Определение

Пусть $f: \mathbb{R}^n \to \mathbb{R}$. Функция $f^*: \mathbb{R}^n \to \mathbb{R}$ называется сопряжённой функцией к функции f и определена как $f^*(\mathbf{y}) = \sup_{\mathbf{x} \in dom \ f} (\mathbf{y}^\mathsf{T} \mathbf{x} - f(\mathbf{x})).$

Область определения f^* — это множество таких \mathbf{y} , что супремум конечен.

Свойства и интерпретации

- Сопряжённая функция f^* всегда выпукла как супремум линейных функций независимо от выпуклости f
- ullet Неравенство Юнга-Фенхеля: $\mathbf{y}^{\mathsf{T}}\mathbf{x} \leq f(\mathbf{x}) + f^*(\mathbf{y})$
- ullet Если f дифференцируема, то $f^*(\mathbf{y}) = \nabla f^\mathsf{T}(\mathbf{x}^*)\mathbf{x}^* f(\mathbf{x}^*)$, где \mathbf{x}^* даёт супремум.
- Геометрический смысл

Примеры

- 1. Линейная функция: $f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}} \mathbf{x} + b$
- 2. Отрицательная энтропия: $f(x) = x \log x$
- 3. Индикаторная функция множества $S\colon I_S(x)=0$ iff $x\in S$
- 4. Норма: f(x) = ||x||.
- 5. Квадрат нормы: $f(x) = \frac{1}{2} ||x||^2$

Резюме

- Сопряжённые функции
- Неравенство Юнга-Фенхеля и другие свойства
- Примеры