Convolution & Optimization

Kang Zhao

zhaokang@bupt.edu.cn

Outline

- Basic Convolution Computation
 - Useful resource: https://stanford.edu/~shervine/teaching/cs-230/cheatsheetconvolutional-neural-networks
- Data Reuse: Input/Output/Weight stationary
- Img2Col and advanced Img2Col
- Sparse Matrix Multiplication

CNN Computation with Multiple Channels


```
for(int h = 0; h < H-2; h++) {
  for(int w = 0; w < W-2; w++) {
    float sum = 0;
    for(int ci = 0; ci < CI; ci++) {</pre>
      for(int m = 0; m < K; m++) {</pre>
        for(int n = 0; n < K; n++) {</pre>
          sum += A[ci][h+m][w+n] * W[ci][m][n];
    B[h][w] = sum;
                         Output
```

CNN Computation with Multiple Channels


```
for(int h = 0; h < H-2; h++) {</pre>
  for(int w = 0; w < W-2; w++) {
    float sum = 0;
    for(int ci = 0; ci < CI; ci++) {</pre>
      for(int m = 0; m < K; m++) {</pre>
        for(int n = 0; n < K; n++) {</pre>
           sum += A[ci][h+m][w+n] * W[ci][m][n];
    B[h][w] = sum;
```


Output

CNN Computation with Multiple Kernels

CNN Computation with Multiple Kernels

How do we explore parallelism?

Convolution Acceleration

Parallelism 1: across output channel (kernel)

Convolution Acceleration

Parallelism 2: across input channel

Convolution Acceleration

Parallelism 3: across width dimension

Address the Scalability

- Both memory and computation can explode under aggressive parallelism
- Approaches
 - Try not partition more than 2 dimensions
 - Consider tiling: cut the input image and intermediate feature maps into small cubes
 - Need to **consider tile boundary** significantly affect the accuracy
 - Parallelize at PE-granularity

Read more:

- Parallelize at PE level:
 - https://sharc-knowledgebase.netlify.app/articles/pynq/u5o/multiple_kernel_execution_demo/
- Convolution tiling:
 - https://sharc-knowledgebase.netlify.app/articles/cnn/tiling-based_convolution_for_hls/
- Thanks to Akshay Kamath @ Sharc

Cutting One Layer into Tiles

8 InputTiles, 12 OutputTiles

Layer Padding: zero padding

6x6 input

3x3 kernel

Layer Padding: zero padding

Layer Padding: zero padding

Tile Padding: dealing with tile boundary

Tile Padding: dealing with tile boundary

Data Reuse: Optimize Latency & Energy

- Data movement is slow and expensive (energy)
 - Once we load the data from DRAM to BRAM, let's try to use them as much as possible

Ways of reusing data in BRAM:

- Input stationary
- Weight stationary
- Output stationary
- Note: the "stationary" definition here is a little bit different as in systolic array

Assume only 2 tiles (1-in, 1-out) and a few kernels can fit into BRAM

Assume only 2 tiles (1-in, 1-out) and a few kernels can fit into BRAM

Next: which tile(s) to swap out?

Try to keep the input tile(s) in BRAM as long as possible

Load/store into/from BRAM and used for computation

Try to keep the input tile(s) in BRAM as long as possible

Load/store into/from BRAM and used for computation

Output Stationary

Try to keep the output tile(s) in BRAM as long as possible

Output Stationary

Try to keep the output tile(s) in BRAM as long as possible

Which is Better?

- Good question... I personally like output stationary
- Design space exploration (DSE)
 - o Depending on your tile size, partition scheme, etc.
 - Please try to calculate if you're interested

Read more:

 Zhang, Chen, et al., "Optimizing fpga-based accelerator design for deep convolutional neural networks." FPGA 2015

Outline

- Basic Convolution Computation
- Data Reuse: Input/Output/Weight stationary
- Img2Col and advanced Img2Col
- Sparse Matrix Multiplication

From Convolution to Matrix Multiplication

• Img2Col (image-to-column) convolution – GEMM(General Matrix Multiply)

From Convolution to Matrix Multiplication

Img2Col Pros and Cons

Pros

- Good performance and easy to implement (especially on GPUs)
- Applicable for any convolution configuration on any platform
- BLAS-friendly memory layout to enjoy SIMD/locality/parallelism

Cons

Large extra memory overhead

Memory-efficient Convolution

An improvement: remove "spatial" redundancy

o Smaller memory footprint, cache locality, and explicit parallelism

Cho, Minsik, and Daniel Brand. "MEC: memory-efficient convolution for deep neural network." In International Conference on Machine Learning. PMLR, 2017.

Sparse Matrix Multiplication (SpMM)

DNNs may be redundant (over-parameterized), and filters may be sparse

Sparse Matrix Representation

Α			
0	0	3	0
7	0	0	0
0	0	4	8
6	5	3	0
2	0	0	1
0	0	0	8

A matrix example

Compressed
Sparse Row
(CSR)

Compressed
Sparse Column
(CSC)

Related Papers

- Lin, Colin Yu, Ngai Wong, and Hayden Kwok-Hay So. "**Design space exploration for sparse matrix-matrix multiplication on FPGAs.**" *International Journal of Circuit Theory and Applications* 41, no. 2 (2013): 205-219.
- Zhuo, Ling, and Viktor K. Prasanna. "Sparse matrix-vector multiplication on FPGAs." In *Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-programmable gate arrays*, pp. 63-74. 2005.
- Fowers, Jeremy, Kalin Ovtcharov, Karin Strauss, Eric S. Chung, and Greg Stitt. "A high memory bandwidth fpga accelerator for sparse matrix-vector multiplication." In 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines, pp. 36-43. IEEE, 2014.
- Zhang, Yan, Yasser H. Shalabi, Rishabh Jain, Krishna K. Nagar, and Jason D. Bakos. "FPGA vs. GPU for sparse matrix vector multiply." In 2009 International Conference on Field-ProgrammableTechnology, pp. 255-262. IEEE, 2009.
- Jain, Abhishek Kumar, Hossein Omidian, Henri Fraisse, Mansimran Benipal, Lisa Liu, and Dinesh Gaitonde. "A domain-specific architecture for accelerating sparse matrix vector multiplication on fpgas." In 2020 30th International conference on field-programmable logic and applications (FPL), pp. 127-132. IEEE, 2020.

• ...

Summary

- Basic Convolution Computation
 - o Parallelism across Height, Width, Channel, Kernel, ...
 - Scalability is an issue, and tiling is almost unavoidable
- Data Reuse: Input/Output/Weight stationary
 - Depends on how you partition your tiles
- Img2Col and advanced Img2Col
 - Good for regular memory and GPU matrix multiplication but bad for memory
- Sparse Matrix Multiplication
- Converting Convolution to Matrix Multiplication can explore sparsity but has to pay extra cost