HW 11

2. Грамматика $\ll S->aSbbbb|aaaSbb|c\gg$ задаёт язык

 $L = \{a^{n+3m}\ c\ b^{4n+2m}\},$ где n и m неотрицательные целые числа - количество применений первого и второго правил соответственно

Очевидно, что порядок правил неважен, мы можем вначале применить все первые правила, затем все вторые и получим то же самое слово

Поэтому можно переписать нашу грамматику в такой вид:

S - > aSbbbb|T

T->aaaSbb|c

А это уже однозначная грамматика, так как по количеству букв a и b мы можем восстановить количество применений первого и второго правил:

Пусть $w = a^n \ c \ b^m$ и мы применили x раз первое правило и y раз второе

Тогда x + 3y = n и 4x + 2y = m

Эта система имеет единственное решение:

$$x = (3m - 2n)/10$$
 и $y = (4n - m)/10$

Значит дерево вывода задаётся однозначно

3. $F - > \epsilon | aFaFbF$

Заметим, что каждый раз, когда мы используем какое-нибудь правило и на свет рождается новая буква b, то обязательно где-то слева от неё рождаются две буквы a

Поэтому на любом префиксе букв a хоть бы в 2 раза больше чем букв b

Ну и так как мы всегда добавляем ровно 1 b и 2 a, то суммарно в строке букв a ровно в 2 раза больше

4. Давайте сократим грамматику F->a|bF|cFF так, чтобы она принимала только слова из второй грамматики

Заметим, что в грамматике :

$$K->aM|cM$$

$$M - > aK|bK|\epsilon$$

Нетерминалы чередуются

Kдопускает только буквы a и c,а Mтолько буквы a и b

И так как начинаем мы с K, а заканчиваем M, то все слова состоят из нечетного количества букв

 $\overline{}$ То есть это слова вида: (a|c)(a|b)(a|c)(a|b)...(a|c)

То есть в нашей первой грамматике нам нужно чередовать правила bF и cFF так, чтобы не оказалось bb и cc и в слове было нечётное количество букв

Получается такая грамматика:

Нетерминалы C_0, C_1 будут отвечать за переходы, которые начинаются с буквы c и содержат суммарно чётное и нечётное количество букв соответственно Аналогично B_0 и B_1

Грамматика:

 $C_1 o a|cB_0B_0|cB_1C_1$ (других переходов нету, потому что во всех остальных будет bb либо cc Например не подходит переход $C_1 o cC_1B_1$, так как первая буква c будет стоять рядом со второй буквой c из C_1) $C_0 o cB_0B_1|cB_1C_0$

 $B_1 \to a|bC_0$
 $B_0 \to bC_1$

P.S. с написанным алгоритмом СҮК так легко проверять свой ответ, ка
аайф :)