COORDINATION IN SOCIAL NETWORKS

Chun-Ting Chen

January 9, 2015

MOTIVATION

- The relevant information in making joint decision is dispersed in the society. (Hayek 1945)
- If so, how people act collectively?
 - Ex.: protest, currency attack, joint investment, etc.

THIS PAPER SHOWS

• In a long-term relationship, people can aggregate such information and coordinate their actions.

WHAT THIS PAPER DOES?

- I model a repeated game with incomplete information and network-monitoring.
 - Players can only observe own/neighbors' types and own/neighbors' actions.
- Look for an equilibrium in which the pay-off relevant information become commonly known in finite time.
 - · A strong requirement.
- Such equilibrium can be constructed under some assumptions.

RELATED LITERATURE

• Strategic learning in repeated game with incomplete information

	without discount factor	with discount factor
perfect monitoring	[Forges 1992]*, etc	[Jordan 1995],[Peski 2014]*, etc
imperfect monitoring network-monitoring	[Aumann and Maschiler 1990], etc [Renault and Tomala 1998], etc	This paper

• Collective action: [Chwe 2000]*, [Morris and Shin 1998], etc.

MODEL

Time line

- There is a fixed, finite, connected, undirected, and commonly known network.
- Players of two types— S or B —chosen by nature according to a probability distribution.
- Types are then fixed over time.
- Players play a stage game— a collective action —infinitely repeatedly with common discount factor.

MODEL

What player can/cannot observe

- Players can observe own/neighbors' types and actions, but not others'.
- Pay-off is hidden.
 - Viewing the pay-off as the expected pay-off: [Aumann and Maschiler 1990], [Miyahara and Sekiguchi 2013], [Wolitzky 2013], etc.

MODEL

- Stage game—k-threshold game: a protest ([Chwe 2000])
 - S-type's action set= {p, n}
 - B-type's action set= $\{n\}$
 - (Expected) pay-offs for S-type:

$$egin{array}{lll} u_{S_i}(a_{S_i},a_{- heta_i}) &=& 1 & ext{if } a_{S_i} = \mathbf{p} ext{ and } \#\{j:a_{ heta_j} = \mathbf{p}\} \geq k \\ u_{S_i}(a_{S_i},a_{- heta_i}) &=& -1 & ext{if } a_{S_i} = \mathbf{p} ext{ and } \#\{j:a_{ heta_j} = \mathbf{p}\} < k \\ u_{S_i}(a_{S_i},a_{- heta_i}) &=& 0 & ext{if } a_{S_i} = \mathbf{n} \end{array}$$

STATIC EX-POST PARETO EFFICIENT OUTCOME

Type profile	Static ex-post efficient outcome
At least k S-types exist	All S-types play p
Otherwise	All S-types play n

EQUILIBRIUM CONCEPT

- WPBE (weak perfect Bayesian equilibrium)
- Sequential equilibrium

APEX EQUILIBRIUM

APEX (approaching ex-post efficient) equilibrium

DEFINITION (APEX STRATEGY)

An equilibrium is APEX ⇔

 $\forall \theta$, there is a finite time T^{θ}

such that the actions in the equilibrium path repeats the static ex-post efficient outcome after T^{θ} .

RESULT 1: APEX FOR k = n

THEOREM (k = n)

If k = n, then an APEX sequential equilibrium exists whenever discount factor is sufficiently high.

Definition for APEX for k < n

DEFINITION

 θ has **strong connectedness** \Leftrightarrow for every pair of S-types, there is a path consisting of S-types to connect them.

DEFINITION

 π has full support on strong connectedness \Leftrightarrow

 $\pi(\theta) > 0$ if and only if θ has strong connectedness.

WITHOUT STRONG CONNECTEDNESS

Let k=2 and n=3

- A B-type will not reveal information.
- Without full support on strong connectedness, in general, an Apex equilibrium does not exist when pay-off is hidden.

RESULT 2: APEX FOR k < n

Theorem (k < n)

If k < n, then if network is a tree, if prior π has full support on strong connectedness, then an APEX WPBE exists whenever discount factor is sufficiently high.

OUTLINE FOR EQUILIBRIUM CONSTRUCTION

- **1** APEX sequential equilibrium for k = n.
 - An example.
 - Sketch of proof.
- \bigcirc APEX WPBE for k < n.
 - Consider cheap talk.
 - Consider "costly" talk.
 - Sketch of proof.

AN EXAMPLE FOR k = n

Let k = n = 3, when discount factor is high enough, an APEX sequential equilibrium can be constructed by

- Period 1
 - S-type 2: choose **p** if $\theta = (S, S, S)$;
 - S-type 2: choose **n** if $\theta \neq (S, S, S)$, and then choose **n** forever.
 - S-type 1 (or S-type 3): p.
- Period 2
 - If S-type 2 chooses p in the last period ⇒ S-type 1 (or S-type 3) chooses p forever;
 - If S-type 2 chooses \mathbf{n} in the last period \Rightarrow S-type 1 (or S-type 3) chooses \mathbf{n} forever.
- Any deviation ⇒ Choosing n forever.

AN EXAMPLE FOR k = n

Main features in equilibrium construction in this example

- The 1st-period actions serve as "messages" to reveal the relevant information.
- The 2nd-period is a commonly known "timing" to coordinate (part of equilibrium strategy).
- Playing **n** forever serves as a "grim trigger".

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor \Rightarrow play ${\bf p}$ unless ${\bf n}$ is observed, and then play ${\bf n}$ forever.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor \Rightarrow play **p** unless **n** is observed, and then play **n** forever.
- "Timing" to coordinate.
 - Finite network
 ⇒ there is a finite time T such that players coordinate to the static ex-post efficient
 outcome.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor \Rightarrow play **p** unless **n** is observed, and then play **n** forever.
- "Timing" to coordinate.
 - Finite network ⇒ there is a finite time T such that players coordinate to the static ex-post efficient outcome.
- Any deviation ⇒ play "n forever".

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor ⇒ play p unless n is observed, and then play n forever.
- "Timing" to coordinate.
 - Finite network ⇒ there is a finite time T such that players coordinate to the static ex-post efficient
 outcome.
- Solution ⇒ play "n forever".
- A belief system for sequential equilibrium can be chosen.

- Challenges:
 - How to find that finite time "T" for every state?
 - Only two actions used for transmit relevant information.
 - Group punishment is hard to be made. (Network-monitoring)

- By definition of APEX,
 - ullet After T, actions are infinitely repeated and thus information can not be updated.
- Idea:
 - Assume T is fixed, commonly known, and independent from states.
 - Players can transmit information by "talking" only within T rounds.
 - Consider an augmented T-round "cheap talk" phase.
 - Consider an augmented T-round "costly talk" phase.

Time line

- Nature choose θ according to π .
- Types are then fixed over time.
- At the first T rounds, players play T-round cheap talk.
- At T + 1 round, players play a one-shot k-Threshold game.
- · Game ends.

- T is a big number.
- A "letter-writing technology" for player i:
 - A set of sentences: $W = \{n, p\}^L$, where L is a big number.
 - · A fixed grammar:

$$M_i^1 = \{f | f : \Theta_{G_i} \to W\} \cup \{\emptyset\} \; ; M_i^{t+1} = \{f | f : \prod_{j \in G_i} M_j^t \to W\} \cup \{\emptyset\} \; \text{for} \; T \ge t \ge 1$$

Example of a WPBE construction:

- k = 5, n = 8 and T = 2.
- G and $\theta =$

- Equilibrium path
 - At t = 1,

Example of a WPBE construction:

- k = 5, n = 8 and T = 2.
- G and θ =

- Equilibrium path
 - At t = 2.

S-type 4
$$(p, n, p, p, p, n, p, p)$$
8
S-type 5 (p, n, p, p, p, n, p, p)
S-type 1,2,6,8 \emptyset

• At t = 3, all S-types play **p**, then game ends.

- Off-path strategy
 - If S-type 4 (or 5) make detectable deviation (e.g. wrong sentence)

 others play n and then n.
 - If S-type 4 (or 5) make undetectable deviation ⇒ he is facing a possibility of failure to coordinate.
- Off-path belief
 - Detectable deviation ⇒ believing that all players outside neighborhood are B-types.

If there is a fixed cost ϵ to send the letter...

- Off-path strategy
 - If S-type 4 (or 5) make detectable deviation (e.g. wrong sentence, playing ∅)
 ⇒ others play ∅ and then n.
 - If S-type 4 (or 5) make undetectable deviation ⇒ he is facing a possibility of failure to coordinate.
- Off-path belief
 - Detectable deviation ⇒ believing that all players outside neighborhood are B-types.

If there is a fixed cost ϵ to send the letter...

- Off-path strategy
 - If S-type 4 (or 5) make detectable deviation (e.g. wrong sentence, playing ∅)
 ⇒ others play ∅ and then n.
 - If S-type 4 (or 5) make undetectable deviation ⇒ he is facing a possibility of failure to coordinate.
- Off-path belief
 - Detectable deviation ⇒ believing that all players outside neighborhood are B-types.

So, when ϵ is small enough and T is large enough, an weak equilibrium can be constructed when ϵ is independent from messages.

FREE RIDER PROBLEM

However, if ϵ is not independent from messages, then a Free Rider Problem may occur.

- Suppose $\epsilon \downarrow$ when announce more S-types in the 1st round.
- k = 5, n = 8 and T = 2.
- G and $\theta =$

- S-type 4 and S-type 5 will deviate from truthfully announcement.
- Why? They will report more S-types to save costs in the 1st round and "wait for" each others' truthfully announcement (Free Rider Problem).

RESULT 2: APEX FOR k < n

Theorem (k < n)

If k < n, then if network is a tree, if prior π has full support on strong connectedness, then an APEX WPBE exists whenever discount factor is sufficiently high.

- The Free Rider Problem may exist in tree networks, but it can be solved.
- ② Detectable deviation ⇒ playing n forever (by off-path belief).
- Undetectable deviation ⇒ facing a possibility of coordination failure.
- Any deviation will let APEX fail with positive probability.
- APEX outcome gives maximum ex-post continuation pay-off after T.
- Sufficiently high discount factor will impede deviation.

FURTHER WORKS

- Tackle cyclic networks.
- Look for a general model such that a finite-time communication protocol exists and this protocol can be extended to an equilibrium.