Inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted.	-	N-run,
Changed a file from non-ASCII to ASCII Changed the margins in cases where the sequence for the sequence for the sequence forms to the next line. Edited a format error in the Current Application Data section, specifically: Edited the Current Application Data section with the actual current number. The number inputted by the applicant was the prior applicant data; or other. Added the mandatory heading and subheadings for "Current Application Data". Edited the "Number of Sequences" field. The applicant spelled out a number instead of using an integer. Changed the spelling of a mandatory field (the headings or subheadings), specifically: Corrected the SEQ ID NO when obviously incorrect. The sequence numbers that were edited were: Inserted or corrected a nucleic number at the end of a nucleic line. SEQ ID NO's edited: Corrected subheading placement. All responses must be on the same line as each subheading. If the applicant placed a response below the subheading, this was moved to its appropriate place. Inserted colons after headings/subheadings: Headings edited included: Deleted extra, invalid, headings used by an applicant, specifically: Deleted: Innor-ASCII garbage at the beginning/end of files; secretary initials/filename at end of files appropriate mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an order in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop coden in artino acid sequences and adjusted the "(A)Length:" field accordingly (error due to a Patentin bug). Sequences corrected: Other:		
Changed the margins in cases where the sequence for the sequence field for sequence field for the sequence field for the sequence field for the sequence field for the sequence field fi	rkal N	10710
Edited the Current Application Data section with the actual current number. The number inputted by the applicant was the prior application data; or other. Added the mandatory heading and subheadings for "Current Application Data". Edited the "Number of Sequences" field. The applicant spelled out a number instead of using an integer. Changed the spelling of a mandatory field (the headings or subheadings), specifically: Corrected the SEQ ID NO when obviously incorrect. The sequence numbers that were edited were: Inserted or corrected a nucleic number at the end of a nucleic line. SEQ ID NO's edited: Corrected subheading placement. All responses must be on the same line as each subheading. If the applicant placed a response below the subheading, this was moved to its appropriate place. Inserted colons after headings/subheadings: Headings edited included: Deleted extra, invalid, headings used by an applicant, specifically: Deleted: one nASCII garbage* at the beginning/end of files; secretary initials/filename at end of files page numbers throughout text; other invalid text, such as linserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending step codon in armo acid sequences and adjusted the "(A)Length: field accordingly (error due to a Patentin bug). Sequences corrected: Other:		· M / -
Edited the Current Application Data section with the actual current number. The number inputted by the applicant was the prior application data; or other. Added the mandatory heading and subheadings for "Current Application Data". Edited the "Number of Sequences" field. The applicant spelled out a number instead of using an integer. Changed the spelling of a mandatory field (the headings or subheadings), specifically: Corrected the SEQ ID NO when obviously incorrect. The sequence numbers that were edited were: Inserted or corrected a nucleic number at the end of a nucleic line. SEQ ID NO's edited: Corrected subheading placement. All responses must be on the same line as each subheading. If the applicant placed a response below the subheading, this was moved to its appropriate place. Inserted colons after headings/subheadings: Headings edited included: Deleted extra, invalid, headings used by an applicant, specifically: Deleted: non-ASCII garbage at the beginning/end of files: secretary initials/filename at end of file page numbers throughout text; other invalid text, such as Inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an origin in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stap coden in animo acid sequences and adjusted the "(A)Length:" field accordingly (error due to a Patentin bug). Sequences corrected: Other:		
Added the mandatory heading and subheadings for "Current Application Data". Edited the "Number of Sequences" field. The applicant spelled out a number instead of using an integer. Changed the spelling of a mandatory field (the headings or subheadings), specifically: Corrected the SEQ ID NO when obviously incorrect. The sequence numbers that were edited were: Inserted or corrected a nucleic number at the end of a nucleic line. SEQ ID NO's edited: Corrected subheading placement. All responses must be on the same line as each subheading. If the applicant placed a response below the subheading, this was moved to its appropriate place. Inserted colons after headings/subheadings: Headings edited included: Deleted extra, invalid, headings used by an applicant, specifically: Deleted: One-ASCII garbage at the beginning/end of files: secretary initials/filename at end of files inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop coden in artifice acid sequences and adjusted the "(A)Length: field accordingly (error due to a Patentin bug). Sequences corrected: Other:		Edited a format error in the Current Application Data section, specifically:
Edited the 'Number of Sequences' field. The applicant spelled out a number instead of using an integer. Changed the spelling of a mandatory field (the headings or subheadings), specifically: Corrected the SEQ ID NO when obviously incorrect. The sequence numbers that were edited were: Inserted or corrected a nucleic number at the end of a nucleic line. SEQ ID NO's edited: Corrected subheading placement. All responses must be on the same line as each subheading. If the applicant placed a response below the subheading, this was moved to its appropriate place. Inserted colons after headings/subheadings. Headings edited included: Deleted extra, invalid, headings used by an applicant, specifically: Deleted: Onen-ASCII 'garbage' at the beginning/end of files; secretary initials/filename at end of files inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A 'Hard Page Break' code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop coden in antino acid sequences and adjusted the '(A)Length: field accordingly (error due to a Patentin bug). Sequences corrected: Other:	•	Edited the Current Application Data section with the actual current number. The number inputted by the applicant was the prior application data; or other
Changed the spelling of a mandatory field (the headings or subheadings), specifically: Corrected the SEQ ID NO when obviously incorrect. The sequence numbers that were edited were: Inserted or corrected a nucleic number at the end of a nucleic line. SEO ID NO's edited: Corrected subheading placement. All responses must be on the same line as each subheading. If the applicant placed a response below the subheading, this was moved to its appropriate place. Inserted colons after headings/subheadings: Headings edited included: Deleted extra, invalid, headings used by an applicant, specifically: Deleted: non-ASCII garbage at the beginning/end of files: secretary initials/filename at end of file page numbers throughout text; other invalid text, such as Inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop coden in any no acid sequences and adjusted the "(A)Length: field accordingly (error due to a Patentin bug). Sequences corrected:		Added the mandatory heading and subheadings for "Current Application Data".
Corrected the SEQ ID NO when obviously incorrect. The sequence numbers that were edited were: Inserted or corrected a nucleic number at the end of a nucleic line. SEQ ID NO's edited: Corrected subheading placement. All responses must be on the same line as each subheading. If the applicant placed a response below the subheading, this was moved to its appropriate place. Inserted colons after headings/subheadings: Headings edited included: Deleted extra, invalid, headings used by an applicant, specifically: Deleted: Inserted mandatory headings, specifically: Inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop coden in antino acid sequences and adjusted the "(A)Length:" field accordingly (error due to a Patentin bug). Sequences corrected: Other:		Edited the "Number of Sequences" field. The applicant spelled out a number instead of using an integer.
Corrected the SEQ ID NO when obviously incorrect. The sequence numbers that were edited were: Inserted or corrected a nucleic number at the end of a nucleic line. SEQ ID NO's edited: Corrected subheading placement. All responses must be on the same line as each subheading. If the applicant placed a response below the subheading, this was moved to its appropriate place. Inserted colons after headings/subheadings: Headings edited included: Deleted extra, invalid, headings used by an applicant, specifically: Deleted: non-ASCII 'garbage' at the beginning/end of files: secretary initials/filename at end of file page numbers throughout text; other invalid text, such as Inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be defeted. Deleted ending step coden in antimo acid sequences and adjusted the "(A)Length:" field accordingly (error due to a Patentin bug). Sequences corrected:		
Corrected subheading placement. All responses must be on the same line as each subheading. If the applicant placed a response below the subheading, this was moved to its appropriate place. Inserted colons after headings/subheadings: Headings edited included: Deleted extra, invalid, headings used by an applicant, specifically: Deleted: non-ASCII *garbage* at the beginning/end of files; secretary initials/filename at end of file page numbers throughout text; other invalid text, such as Inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A *Hard Page Break* code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop coden in antino acid sequences and adjusted the *(A)Length:* field accordingly (error due to a Patentin bug). Sequences corrected:		•
Inserted colons after headings/subheadings: Headings edited included: Deleted extra, invalid, headings used by an applicant, specifically: Deleted: Inon-ASCII garbage* at the beginning/end of files; secretary initials/filename at end of file page numbers throughout text; other invalid text, such as Inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences trad to be deleted. Deleted ending stop coden in antino acid sequences and adjusted the "(A)Length:" field accordingly (error due to a PatentIn bug). Sequences corrected:		Inserted or corrected a nucleic number at the end of a nucleic line. SEQ ID NO's edited:
Deleted extra, invalid, headings used by an applicant, specifically: Deleted: non-ASCII "garbage" at the beginning/end of files: secretary initials/filename at end of files page numbers throughout text; other invalid text, such as Inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop codon in antino acid sequences and adjusted the "(A)Length:" field accordingly (error due to a PatentIn bug). Sequences corrected:		Corrected subheading placement. All responses must be on the same line as each subheading. If the applicant placed a response below the subheading, this was moved to its appropriate place.
Deleted: non-ASCII "garbage" at the beginning/end of files; secretary initials/filename at end of file page numbers throughout text; other invalid text, such as Inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop codon in antino acid sequences and adjusted the "(A)Length:" field accordingly (error due to a Patentin bug). Sequences corrected:		Inserted colons after headings/subheadings. Headings edited included:
Inserted mandatory headings, specifically: Corrected an obvious error in the response, specifically: Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop coden in antino acid sequences and adjusted the "(A)Length:" field accordingly (error due to a Patentin bug). Sequences corrected: Other:	_	Deleted extra, invalid, headings used by an applicant, specifically:
Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop coden in antino acid sequences and adjusted the "(A)Length:" field accordingly (error due to a Patentin bug). Sequences corrected: Other:		Deleted: non-ASCII "garbage" at the beginning/end of files; secretary initials/filename at end of file page numbers throughout text; other invalid text, such as
Edited identifiers where upper case is used but lower case is required, or vice versa. Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop coden in antino acid sequences and adjusted the "(A)Length: field accordingly (error due to a Patentin bug). Sequences corrected: Other:		Inserted mandatory headings, specifically:
Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop coden in antino acid sequences and adjusted the "(A)Length: field accordingly (error due to a Patentin bug). Sequences corrected: Other:		
Corrected an error in the Number of Sequences field, specifically: A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted. Deleted ending stop codon in antino acid sequences and adjusted the "(A)Length: field accordingly (error due to a Patentin bug). Sequences corrected: Other:		Edited identifiers where upper case is used but lower case is required, or vice versa.
Deleted ending stop codon in antino acid sequences and adjusted the *(A)Length:* field accordingly (error due to a Patentin bug). Sequences corrected: Other:		
due to a Patentin bug). Sequences corrected: Other:	•	A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted.
	. (Deleted ending stop codon in antino acid sequences and adjusted the "(A)Length:" field accordingly (error due to a Patentin bug). Sequences corrected:
		Other:

Examiner: The above corrections must be communicated to the applicant in the first Office 3/1/95

Action. DO NOT send a copy of this form.

1600

RAW SEQUENCE LISTING DATE: 09/08/2003 PATENT APPLICATION: US/09/508,745 TIME: 10:42:46

Input Set : A:\PTO.AMC.txt

```
3 <110> APPLICANT: Cory, Suzanne
 4
         Adams, Jerry
 5
         Print, Cris
 6
         Gibson, Leonie
         Koentgen, Frank
 9 <120> TITLE OF INVENTION: A METHOD OF TREATMENT AND AN ANIMAL MODEL USEFUL FOR
10
         SAME
12 <130> FILE REFERENCE: 13464
14 <140> CURRENT APPLICATION NUMBER: 09/508,745
15 <141> CURRENT FILING DATE: 2000-07-12
17 <150> PRIOR APPLICATION NUMBER: PCT/AU98/00764
18 <151> PRIOR FILING DATE: 1998-09-16
20 <160> NUMBER OF SEQ ID NOS: 8
22 <170> SOFTWARE: PatentIn Ver. 2.1
24 <210> SEQ ID NO: 1
25 <211> LENGTH: 581
26 <212> TYPE: DNA
27 <213> ORGANISM: Homo sapiens
29 <220> FEATURE:
30 <221> NAME/KEY: CDS
31 <222> LOCATION: (1)..(579)
33 <400> SEQUENCE: 1
34 atg gcg acc cca gcc tcg gcc cca gac aca cgg gct ctg gtg gca gac
35 Met Ala Thr Pro Ala Ser Ala Pro Asp Thr Arg Ala Leu Val Ala Asp
36
38 ttt gta ggt tat aag ctg agg cag aag ggt tat gtc tgt gga gct ggc
                                                                      96
39 Phe Val Gly Tyr Lys Leu Arg Gln Lys Gly Tyr Val Cys Gly Ala Gly
42 ccc ggg gag ggc cca gca gct gac ccg ctg cac caa gcc atg cgg gca
                                                                      144
43 Pro Gly Glu Gly Pro Ala Ala Asp Pro Leu His Gln Ala Met Arg Ala
           . 35
46 gct gga gat gag ttc gag acc cgc ttc cgg cgc acc ttc tct gat ctg
                                                                      192
47 Ala Gly Asp Glu Phe Glu Thr Arg Phe Arg Arg Thr Phe Ser Asp Leu
        50
                            55
50 gcg gct cag ctg cat gtg acc cca ggc tca gcc caa caa cgc ttc acc
                                                                      240
51 Ala Ala Gln Leu His Val Thr Pro Gly Ser Ala Gln Gln Arg Phe Thr
                        70
                                            75
54 cag gtc tcc gat gaa ctt ttt caa ggg ggc ccc aac tgg ggc cgc ctt
55 Gln Val Ser Asp Glu Leu Phe Gln Gly Gly Pro Asn Trp Gly Arg Leu
                                         90
58 gta gcc ttc ttt gtc ttt ggg gct gca ctg tgt gct gag agt gtc aac
59 Val Ala Phe Phe Val Phe Gly Ala Ala Leu Cys Ala Glu Ser Val Asn
60
               100
                                   105
                                                        110
```

Input Set : A:\PTO.AMC.txt

```
62 aag gag atg gaa cca ctg gtg gga caa gtg cag gag tgg atg gtg gcc
                                                                      384
63 Lys Glu Met Glu Pro Leu Val Gly Gln Val Gln Glu Trp Met Val Ala
           115
                               120
66 tac ctg gag acg cgg ctg gct gac tgg atc cac agc agt ggg ggc tgg
                                                                      432
67 Tyr Leu Glu Thr Arg Leu Ala Asp Trp Ile His Ser Ser Gly Gly Trp
       130
                           135
70 gcg gag ttc aca gct cta tac ggg gac ggg gcc ctg gag gag gcg cgg
                                                                      480
71 Ala Glu Phe Thr Ala Leu Tyr Gly Asp Gly Ala Leu Glu Glu Ala Arg
                       150
                                            155
74 cgt ctg cgg gag ggg aac tgg gca tca gtg agg aca gtg ctg acg ggg
                                                                      528
75 Arg Leu Arg Glu Gly Asn Trp Ala Ser Val Arg Thr Val Leu Thr Gly
                   165
                                        170
78 gcc gtg gca ctg ggg gcc ctg gta act gta ggg gcc ttt ttt gct agc
                                                                      576
79 Ala Val Ala Leu Gly Ala Leu Val Thr Val Gly Ala Phe Phe Ala Ser
               180
                                   185
82 aag tg
                                                                      581
83 Lys
86 <210> SEQ ID NO: 2
87 <211> LENGTH: 193
88 <212> TYPE: PRT
89 <213> ORGANISM: Homo sapiens
91 <400> SEQUENCE: 2
92 Met Ala Thr Pro Ala Ser Ala Pro Asp Thr Arg Ala Leu Val Ala Asp
                                        10
95 Phe Val Gly Tyr Lys Leu Arg Gln Lys Gly Tyr Val Cys Gly Ala Gly
98 Pro Gly Glu Gly Pro Ala Ala Asp Pro Leu His Gln Ala Met Arg Ala
                                40
101 Ala Gly Asp Glu Phe Glu Thr Arg Phe Arg Arg Thr Phe Ser Asp Leu
                             55
105 Ala Ala Gln Leu His Val Thr Pro Gly Ser Ala Gln Gln Arg Phe Thr
                         70
                                             75
108 Gln Val Ser Asp Glu Leu Phe Gln Gly Gly Pro Asn Trp Gly Arg Leu
111 Val Ala Phe Phe Val Phe Gly Ala Ala Leu Cys Ala Glu Ser Val Asn
112
                100
                                    105
114 Lys Glu Met Glu Pro Leu Val Gly Gln Val Gln Glu Trp Met Val Ala
            115
                                120
117 Tyr Leu Glu Thr Arg Leu Ala Asp Trp Ile His Ser Ser Gly Gly Trp
        130
                            135
120 Ala Glu Phe Thr Ala Leu Tyr Gly Asp Gly Ala Leu Glu Glu Ala Arg
                        150
                                             155
123 Arg Leu Arg Glu Gly Asn Trp Ala Ser Val Arg Thr Val Leu Thr Gly
                    165
                                        170
126 Ala Val Ala Leu Gly Ala Leu Val Thr Val Gly Ala Phe Phe Ala Ser
127
                180
                                    185
129 Lys
134 <210> SEO ID NO: 3
135 <211> LENGTH: 581
```

Input Set : A:\PTO.AMC.txt

```
136 <212> TYPE: DNA
137 <213> ORGANISM: Mus musculus
139 <220> FEATURE:
140 <221> NAME/KEY: CDS
141 <222> LOCATION: (1)..(579)
143 <400> SEQUENCE: 3
144 atg gcg acc cca gcc tca acc cca gac aca cgg gct cta gtg gct gac
145 Met Ala Thr Pro Ala Ser Thr Pro Asp Thr Arg Ala Leu Val Ala Asp
148 ttt gta ggc tat aag ctg agg cag aag ggt tat gtc tgt gga gct ggc
                                                                       96
149 Phe Val Gly Tyr Lys Leu Arg Gln Lys Gly Tyr Val Cys Gly Ala Gly
152 cct ggg gaa ggc cca gcc gcc ccg ctg cac caa gcc atg cgg gct
                                                                       144
153 Pro Gly Glu Gly Pro Ala Ala Asp Pro Leu His Gln Ala Met Arg Ala
156 get gga gac gag ttt gag acc egt tte ege ege ace tte tet gae etg
                                                                       192
157 Ala Gly Asp Glu Phe Glu Thr Arg Phe Arg Arg Thr Phe Ser Asp Leu
         50
                             55
160 gcc gct cag cta cac gtg acc cca ggc tca gcc cag caa cgc ttc acc
                                                                       240
161 Ala Ala Gln Leu His Val Thr Pro Gly Ser Ala Gln Gln Arg Phe Thr
162 65
                         70
164 cag gtt tcc gac gaa ctt ttc caa ggg ggc cct aac tgg ggc cgt ctt
                                                                       288
165 Gln Val Ser Asp Glu Leu Phe Gln Gly Gly Pro Asn Trp Gly Arg Leu
                     85
168 gtg gca ttc ttt gtc ttt ggg gct gcc ctg tgt gct gag agt gtc aac
                                                                       336
169 Val Ala Phe Phe Val Phe Gly Ala Ala Leu Cys Ala Glu Ser Val Asn
                100
                                    105
172 aaa gaa atg gag cct ttg gtg gga caa gtg cag gat tgg atg gtg gcc
                                                                       384
173 Lys Glu Met Glu Pro Leu Val Gly Gln Val Gln Asp Trp Met Val Ala
            115
                                120
176 tac ctg gag aca cgt ctg gct gac tgg atc cac agc agt ggg ggc tgg
                                                                       432
177 Tyr Leu Glu Thr Arg Leu Ala Asp Trp Ile His Ser Ser Gly Gly Trp
        130
                            135
180 gcg gag ttc aca gct cta tac ggg gac ggg gcc ctg gag gag gca cgg
181 Ala Glu Phe Thr Ala Leu Tyr Gly Asp Gly Ala Leu Glu Glu Ala Arg
182 145
                        150
                                            155
184 cgt ctg cgg gag ggg aac tgg gca tca gtg agg aca gtg ctg acg ggg
                                                                       528
185 Arg Leu Arg Glu Gly Asn Trp Ala Ser Val Arg Thr Val Leu Thr Gly
                    165
                                        170
188 gcc gtg gca ctg ggg gcc ctg gta act gta ggg gcc ttt ttt gct agc
                                                                       576
189 Ala Val Ala Leu Gly Ala Leu Val Thr Val Gly Ala Phe Phe Ala Ser
190
                                    185
192 aag tg
                                                                       581
193 Lys
196 <210> SEQ ID NO: 4
197 <211> LENGTH: 193
198 <212> TYPE: PRT
199 <213> ORGANISM: Mus musculus
201 <400> SEQUENCE: 4
```

Input Set : A:\PTO.AMC.txt

202	Met	Ala	Thr	Pro	Ala	Ser	Thr	Pro	Asp	Thr	Arg	Ala	Leu	Val	Ala	Asp	
203	1				5					10					15		
205	Phe	Val	Gly	Tyr	Lys	Leu	Arg	Gln	Lys	Gly	Tyr	Val	Cys	Gly	Ala	Gly	
206				20					25					. 30			
209	Pro	Gly	Glu	Gly	Pro	Ala	Ala	Asp	Pro	Leu	His	Gln	Ala	Met	Arq	Ala	•
210		-	35	-				40					45				
	Ala	Glv	Asp	Glu	Phe	Glu	Thr	Ara	Phe	Ara	Ara	Thr		Ser	Asp	Leu	
213	•	50					55	5		9	9	60					
	Δla		Gln	T.e.11	His	Val		Pro	Glv	Ser	Δla		Gln	Arg	Phe	Thr	
216	65	112.4	0111	пси	1115	70	-	110	OLY	JCI	75	0111	0111	1119	1110	80	
		U = 1	Sor	Aen	Clu	_	Dha	Gln	Clv	C1 17		Nan	Ψтъ	Gly	Λκα		
219	0,111	٧۵١	561	,	85	пси	1110	GIII	Сту	90	110	N311	ııp	Gry	95	neu	
	Wal	7/1 ~	Dho	Dho		Dho	C1,,	7/1 ~	71-		Cvic	71-	Clu	Ser		700	
222	Val	нта	rne	100	val	rne	дту	мта		ьеu	Cys	нта	GIU		vaı	ASII	
	T	C1	Mat		D	T	t7-1	C1	105	17-1	C1-	7	m	110	77-1	ת ד ת	
	гàг	GIU		GIU	Pro	ьeu	vaı		GIN	vaı	GIN	Asp	_	Met	vaı	Ата	
225	_	-	115		_	_		120	_	~ 1	·	_	125	~ 1	~ 1	_	
	_		GLu	Thr	Arg	Leu		Asp	Trp	TTE	His		Ser	Gly	GLY	Trp	
228		130			,		135					140					
		Glu	Phe	Thr	Ala		Tyr	Gly	Asp	Gly		Leu	Glu	Glu	Ala	Arg	
	145					150					155					160	
233	Arg	Leu	Arg	Glu	Gly	Asn	Trp	Ala	Ser	Val	Arg	Thr	Val	Leu	Thr	Gly	
234					165					170					175		
236	Ala	Val	Ala	Leu	Gly	Ala	Leu	Val	Thr	Val	Gly	Ala	Phe	Phe	Ala	Ser	
237				180					185					190			
000	T																
239	ьур																
	_)> SE	EQ II	ONO:	: 5												
243	<210)> SE l> LE															
243 244	<210 <211		ENGT	1: 58										•			
243 244 245	<210 <211 <212	l> LE 2> TY	ENGTI PE:	1: 58 DNA	33	sar	oiens										
243 244 245 246	<210 <211 <212 <213	1> LE 2> T) 3> OF	ENGTI (PE: RGAN)	1: 58 DNA (SM:	33	o sar	oiens										
243 244 245 246 248	<210 <211 <212 <213 <220	1> LE 2> T\ 3> OF 0> FE	ENGTH PE: RGANI EATUH	H: 58 DNA (SM: RE:	33 Homo	o sar	oiens	5									
243 244 245 246 248 249	<210 <211 <212 <213 <220 <221	1> LE 2> TY 3> OF 0> FE 1> NA	ENGTI (PE: RGAN) EATUI AME/I	H: 58 DNA (SM: RE: KEY:	Homo CDS			5									
243 244 245 246 248 249 250	<210 <211 <212 <213 <220 <221 <221	1> LE 2> T) 3> OE 0> FE 1> NA 2> LO	ENGTI (PE: RGAN) EATUI AME/I DCAT)	H: 58 DNA SM: RE: REY: ON:	Homo CDS (1)			5			-						
243 244 245 246 248 249 250 252	<210 <211 <212 <213 <220 <221 <222 <400	1> LE 2> TY 3> OF 0> FE 1> NA 2> LO 0> SE	ENGTH (PE: RGAN) EATUH AME/H DCATI EQUEN	H: 58 DNA SM: RE: REY: ION: ICE:	Homo CDS (1)	(57	79)		gac	aca	Caa	act	cta	. ata	σca	αac	48
243 244 245 246 248 249 250 252 253	<210 <211 <211 <213 <220 <221 <221 <400 atg	1 > LE 2 > T) 3 > OE 0 > FE 1 > NF 2 > LO 0 > SE gcg	ENGTI (PE: RGAN) EATUI AME/I DCAT] EQUEI acc	H: 58 DNA SM: SE: SEY: ON: SCE: CCa	Homo CDS (1). 5 gcc	(57	79) gcc	cca						gtg Val			48
243 244 245 246 248 249 250 252 253 254	<210 <211 <212 <221 <220 <221 <400 atg	1 > LE 2 > T) 3 > OE 0 > FE 1 > NF 2 > LO 0 > SE gcg	ENGTI (PE: RGAN) EATUI AME/I DCAT] EQUEI acc	H: 58 DNA SM: SE: SEY: ON: SCE: CCa	Homo CDS (1). 5 gcc Ala	(57	79) gcc	cca		Thr				gtg Val	Ala		48
243 244 245 246 248 249 250 252 253 254 255	<210 <211 <211 <221 <220 <221 <400 atg Met	1> LE 2> TY 3> OF 0> FE 1> NA 2> LO 0> SE gcg Ala	ENGTH (PE: RGANI EATUH AME/H DCATI EQUEN acc Thr	H: 58 DNA ISM: RE: REY: ION: RCE: CCA Pro	Homo CDS (1). 5 gcc Ala 5	tcg Ser	79) gcc Ala	cca Pro	Asp	Thr 10	Arg	Ala	Leu	Val	Ala 15	Asp	
243 244 245 246 248 249 250 252 253 254 255 257	<210 <211 <211 <221 <220 <221 <400 atg Met 1	1 > LE 2 > TY 3 > OF 0 > FF 1 > NA 2 > LO 0 > SE gcg Ala gta.	ENGTH YPE: RGAND EATUH AME/H DCATI EQUEN acc Thr	H: 58 DNA ISM: RE: REY: ION: RCE: CCa Pro	Homo CDS (1). 5 gcc Ala 5 aag	tcg Ser	79) gcc Ala agg	cca Pro cag	Asp	Thr 10 ggt	Arg	Ala	Leu tgt	Val gga	Ala 15 gct	Asp	48
243 244 245 246 248 249 250 252 253 254 255 257 258	<210 <211 <211 <221 <220 <221 <400 atg Met 1	1 > LE 2 > TY 3 > OF 0 > FF 1 > NA 2 > LO 0 > SE gcg Ala gta.	ENGTH YPE: RGANI EATUH AME/H DCATI EQUEN acc Thr	H: 58 DNA ISM: ISM: ICE: ICE: CCa Pro tat Tyr	Homo CDS (1). 5 gcc Ala 5 aag	tcg Ser	79) gcc Ala agg	cca Pro cag	Asp aag Lys	Thr 10 ggt	Arg	Ala	Leu tgt	Val gga Gly	Ala 15 gct	Asp	
243 244 245 246 248 249 250 252 253 254 255 257 258 259	<210 <211 <211 <221 <220 <221 <400 atg Met 1 ttt Phe	1> LE 2> TY 3> OF 0> FF 1> NA 2> LO 0> SE gcg Ala yta.	ENGTH (PE: RGAND EATUH AME/H DCATD EQUEN acc Thr ggt Gly	DNA DNA SM: SM: SY: ON: CCa Pro tat Tyr 20	Homo CDS (1) 5 gcc Ala 5 aag Lys	tcg Ser ctg Leu	gcc Ala agg Arg	cca Pro cag Gln	Asp aag Lys 25	Thr 10 ggt Gly	Arg tat Tyr	Ala gtc Val	Leu tgt Cys	Val gga Gly 30	Ala 15 gct Ala	Asp ggc Gly	96
243 244 245 246 248 249 250 252 253 254 255 257 258 259 261	<210 <211 <211 <221 <220 <221 <400 atg Met 1 ttt Phe	1> LE 2> TY 3> OF 0> FF 1> NA 2> LC 0> SE gcg Ala gta. Val	ENGTH (PE: RGAND EATUH AME/H DCATD EQUEN acc Thr ggt Gly gag	DNA DNA SM: SM: SE: SEY: ON: JCE: cca Pro tat Tyr 20 ggc	Homo CDS (1) 5 gcc Ala 5 aag Lys	tcg Ser ctg Leu	gcc Ala agg Arg	cca Pro cag Gln gac	Asp aag Lys 25 ccg	Thr 10 ggt Gly ctg	Arg tat Tyr cac	Ala gtc Val caa	Leu tgt Cys gcc	Val gga Gly 30 atg	Ala 15 gct Ala cgg	Asp ggc Gly gca	
243 244 245 246 248 249 250 252 253 254 255 257 258 259 261 262	<210 <211 <211 <221 <220 <221 <400 atg Met 1 ttt Phe	1> LE 2> TY 3> OF 0> FF 1> NA 2> LC 0> SE gcg Ala gta. Val	ENGTH YPE: RGAND RGATUH AME/H DCATI EQUEN acc Thr ggt Gly gag Glu	DNA DNA SM: SM: SE: SEY: ON: JCE: cca Pro tat Tyr 20 ggc	Homo CDS (1) 5 gcc Ala 5 aag Lys	tcg Ser ctg Leu	gcc Ala agg Arg	cca Pro cag Gln gac Asp	Asp aag Lys 25 ccg	Thr 10 ggt Gly ctg	Arg tat Tyr cac	Ala gtc Val caa	tgt Cys gcc Ala	Val gga Gly 30	Ala 15 gct Ala cgg	Asp ggc Gly gca	96
243 244 245 246 248 249 250 252 253 254 255 257 258 261 262 263	<210 <211 <211 <221 <220 <221 <400 atg Met 1 ttt Phe ccc Pro	1> LE 2> TY 3> OF 0> FF 1> NA 2> LC 0> SE gcg Ala gta. Val	ENGTH (PE: RGAN) EATUH AME/H DCATI EQUEN acc Thr ggt Gly gag Glu 35	H: 58 DNA ISM: ISM: ICE: ICE: ICE: ICE: ICE	Homo CDS (1).5 gcc Ala 5 aag Lys cca Pro	tcg Ser ctg Leu gca Ala	gcc Ala agg Arg gct Ala	cca Pro cag Gln gac Asp 40	Asp aag Lys 25 ccg Pro	Thr 10 ggt Gly ctg Leu	Arg tat Tyr cac His	Ala gtc Val caa Gln	tgt Cys gcc Ala 45	yal gga Gly 30 atg Met	Ala 15 gct Ala cgg Arg	Asp ggc Gly gca Ala	96 144
243 244 245 246 248 249 250 252 253 254 255 257 258 261 262 263 265	<210 <211 <211 <221 <220 <221 <400 atg Met 1 ttt Phe ccc Pro	1> LE 2> TY 3> OF 0> FF 1> NA 2> LO 0> SE gcg Ala gta. Val ggg Gly	ENGTH (PE: RGAN) EATUR AME/R DCATI EQUEN acc Thr ggt Gly gag Glu 35 gat	H: 58 DNA ISM: ISM: ICE: ICEY: ICE: ICEA Pro tat Tyr ggc Gly gag	Homo CDS (1), 5 gcc Ala 5 aag Lys cca Pro	tcg Ser ctg Leu gca Ala	gcc Ala agg Arg gct Ala acc	cca Pro cag Gln gac Asp 40 cgc	Asp aag Lys 25 ccg Pro	Thr 10 ggt Gly ctg Leu	Arg tat Tyr cac His	Ala gtc Val caa Gln acc	tgt Cys gcc Ala 45	Val gga Gly 30 atg Met	Ala 15 gct Ala cgg Arg	Asp ggc Gly gca Ala	96
243 244 245 246 248 249 250 252 253 254 255 257 261 262 263 265 266	<210 <211 <211 <221 <220 <221 <400 atg Met 1 ttt Phe ccc Pro	1> LE 2> TY 3> OF 0> FE 1> NA 2> LC 0> SE gCg Ala gta. Val ggg Gly	ENGTH (PE: RGAN) EATUR AME/R DCATI EQUEN acc Thr ggt Gly gag Glu 35 gat	H: 58 DNA ISM: ISM: ICE: ICEY: ICE: ICEA Pro tat Tyr ggc Gly gag	Homo CDS (1), 5 gcc Ala 5 aag Lys cca Pro	tcg Ser ctg Leu gca Ala	gcc Ala agg Arg gct Ala acc	cca Pro cag Gln gac Asp 40 cgc	Asp aag Lys 25 ccg Pro	Thr 10 ggt Gly ctg Leu	Arg tat Tyr cac His	Ala gtc Val caa Gln acc Thr	tgt Cys gcc Ala 45	yal gga Gly 30 atg Met	Ala 15 gct Ala cgg Arg	Asp ggc Gly gca Ala	96 144
243 244 245 246 248 249 250 252 253 254 255 257 261 262 263 265 266 267	<210 <211 <211 <221 <220 <221 <400 atg Met 1 ttt Phe ccc Pro	1> LE 2> TY 3> OF 0> FE 1> NA 2> LC 0> SE gCg Ala gta. Val ggg Gly gga Gly 50	ENGTH (PE: RGAN) RGATUH AME/H DCATI EQUEN acc Thr ggt Gly gag Glu 35 gat Asp	H: 58 DNA SM: SM: SE: CEY: ON: CCa Pro tat Tyr 20 ggc Gly gag Glu	Homo CDS (1), 5 gcc Ala 5 aag Lys cca Pro	tcg Ser ctg Leu gca Ala gag Glu	gcc Ala agg Arg gct Ala acc Thr 55	cca Pro cag Gln gac Asp 40 cgc Arg	Asp aag Lys 25 ccg Pro ttc	Thr 10 ggt Gly ctg Leu cgg Arg	Arg tat Tyr cac His cgc Arg	Ala gtc Val caa Gln acc Thr 60	tgt Cys gcc Ala 45 ttc Phe	yal gga Gly 30 atg Met tct Ser	Ala 15 gct Ala cgg Arg gat Asp	Asp ggc Gly gca Ala ctg Leu	96 144 192
243 244 245 246 248 250 252 253 254 255 261 262 263 265 266 267 269	<210 <211 <211 <221 <222 <222 <400 atg Met 1 ttt Phe CCC Pro gct Ala	1> LE 2> TY 3> OF 0> FE 1> NA 2> LC 0> SE gcg Ala gta. Val ggg Gly gga Gly 50 gct	ENGTH (PE: (RGAN) (H: 58 DNA SM: SM: SE: CY: CON: CCa Pro tat Tyr 20 ggc Gly gag Glu ctg	Homo CDS (1).5 gcc Ala 5 aag Lys cca Pro ttc	tcg Ser ctg Leu gca Ala gag Glu	gcc Ala agg Arg gct Ala acc Thr 55 acc	cca Pro cag Gln gac Asp 40 cgc Arg	Asp aag Lys 25 ccg Pro ttc Phe	Thr 10 ggt Gly ctg Leu cgg Arg	Arg tat Tyr cac His cgc Arg	Ala gtc Val caa Gln acc Thr 60 cag	tgt Cys gcc Ala 45 ttc Phe	Val gga Gly 30 atg Met tct Ser	Ala 15 gct Ala cgg Arg gat Asp	Asp ggc Gly gca Ala ctg Leu acc	96 144
243 244 245 246 248 250 252 253 254 255 257 262 263 265 266 267 269 270	<210 <211 <211 <221 <222 <222 <400 atg Met 1 ttt Phe ccc Pro gct Ala gcg Ala	1> LE 2> TY 3> OF 0> FE 1> NA 2> LC 0> SE gcg Ala gta. Val ggg Gly gga Gly 50 gct	ENGTH (PE: (RGAN) (H: 58 DNA SM: SM: SE: CY: CON: CCa Pro tat Tyr 20 ggc Gly gag Glu ctg	Homo CDS (1).5 gcc Ala 5 aag Lys cca Pro ttc	tcg Ser ctg Leu gca Ala gag Glu gtg Val	gcc Ala agg Arg gct Ala acc Thr 55 acc	cca Pro cag Gln gac Asp 40 cgc Arg	Asp aag Lys 25 ccg Pro ttc Phe	Thr 10 ggt Gly ctg Leu cgg Arg	Arg tat Tyr cac His cgc Arg gcc Ala	Ala gtc Val caa Gln acc Thr 60 cag	tgt Cys gcc Ala 45 ttc Phe	yal gga Gly 30 atg Met tct Ser	Ala 15 gct Ala cgg Arg gat Asp	Asp ggc Gly gca Ala ctg Leu acc Thr	96 144 192
243 244 245 246 248 250 252 253 254 255 261 262 263 265 266 267 270 271	<210 <211 <211 <221 <222 <222 <400 atg Met 1 ttt Phe ccc Pro gct Ala gcg Ala 65	1> LE 2> TY 3> OF 0> FE 1> NA 2> LC 0> SE gcg Ala gta. Val ggg Gly gga Gly gct Ala	ENGTH (PE: RGANI) RGATUE AME/F CCATII EQUEN acc Thr Gly gag Glu 35 gat Asp Cag Gln	H: 58 DNA SM:	Homo CDS (1).5 gcc Ala 5 aag Lys cca Pro ttc Phe cat	tcg Ser ctg Leu gca Ala gag Glu gtg Val 70	gcc Ala agg Arg gct Ala acc Thr 55 acc	cca Pro cag Gln gac Asp 40 cgc Arg	Asp aag Lys 25 ccg Pro ttc Phe ggc Gly	Thr 10 ggt Gly ctg Leu cgg Arg	Arg tat Tyr cac His cgc Arg gcc Ala 75	Ala gtc Val caa Gln acc Thr 60 cag Gln	tgt Cys gcc Ala 45 ttc Phe caa Gln	yal gga Gly 30 atg Met tct Ser cgc Arg	Ala 15 gct Ala cgg Arg gat Asp ttc Phe	Asp ggc Gly gca Ala ctg Leu acc Thr 80	96 144 192 240
243 244 245 246 248 250 252 253 254 255 261 262 263 265 266 267 270 271	<210 <211 <211 <221 <222 <222 <400 atg Met 1 ttt Phe ccc Pro gct Ala gcg Ala 65	1> LE 2> TY 3> OF 0> FE 1> NA 2> LC 0> SE gcg Ala gta. Val ggg Gly gga Gly gct Ala	ENGTH (PE: RGANI) RGATUE AME/F CCATII EQUEN acc Thr Gly gag Glu 35 gat Asp Cag Gln	H: 58 DNA SM:	Homo CDS (1).5 gcc Ala 5 aag Lys cca Pro ttc Phe cat	tcg Ser ctg Leu gca Ala gag Glu gtg Val 70	gcc Ala agg Arg gct Ala acc Thr 55 acc	cca Pro cag Gln gac Asp 40 cgc Arg	Asp aag Lys 25 ccg Pro ttc Phe ggc Gly	Thr 10 ggt Gly ctg Leu cgg Arg	Arg tat Tyr cac His cgc Arg gcc Ala 75	Ala gtc Val caa Gln acc Thr 60 cag Gln	tgt Cys gcc Ala 45 ttc Phe caa Gln	Val gga Gly 30 atg Met tct Ser	Ala 15 gct Ala cgg Arg gat Asp ttc Phe	Asp ggc Gly gca Ala ctg Leu acc Thr 80	96 144 192

Input Set : A:\PTO.AMC.txt

074																	
274	Gln	Val	Ser	Asp	Glu 85	Leu	Phe	Gln	Gly	Gly 90		Asn	Trp	Gly	Arg 95	Leu	
	gta	~~~	++0	+++		+++	~~~	~a+	~~~			aat	~~~	2 a t		220	336
																	330
	Val	Ата	Pne		ьeu	Pne	GIY	Ата		Leu	Cys	Ата	GLu		vaı	Asn	
279				100					105					110			
281	aag	gag	atg	gaa	cca	ctg	gtg	gga	caa	gtg	cag	gag	tgg	atg	gtg	gcc	384
	Lys																
283	4		115					120					125				
	+	a+ a		200	~~~	a+ ~	~+ ~		+~~	5 ± 5	~~~	200		~~~	~~~	+~~	432
	tac																432
	Tyr		GIU	Thr	Arg	Lеu		Asp	Trp	TTE	HIS		Ser	GTÀ	GTÀ	Trp	
287		130					135					140					
289	gcg	gag	ttc	aca	gct	cta	tac	ggg	gac	ggg	gcc	ctg	gag	gag	gcg	cgg ·	480
	Ala																
	145					150	-	-	-	_	155					16Ó	•
	cgt	cta	caa	aaa	aaa		taa	aca	+ ==	ata		202	ata	cta	200		528
																	320
	Arg	теп	Arg	GIU	_	ASII	тrр	Ата	ser		Arg	Inr	vai	ьец		GTÀ	
295					165					170					175		
297	gcc	gtg	gca	ctg	ggg	gcc	ctg	gta	act	gta	ggg	gcc	ttt	ttt	gct	agc	576
298	Ala	Val	Ala	Leu	Gly	Ala	Leu	Val	Thr	Val	Gly	Ala	Phe	Phe	Ala	Ser	
299				180					185		-			190			
	aag	tga	а														583
	Lys	cgu	u														303
	-	\	70 TF	. NO.					•	•							
	<210															•	
	<213				93												
307	~21°	יידי ככ	/DF.														
				PRT													
	<213				Homo	sar	oiens	5									
308		3> OF	RGANI	ISM:		sa <u>r</u>	oiens	5									
308 310	<213 <400	3> OF 0> SE	RGANI EQUEN	ISM: NCE:	6	-			Asp	Thr	Arq	Ala	Leu	Val	Ala	Asp	
308 310 311	<213	3> OF 0> SE	RGANI EQUEN	ISM: NCE:	6	-			Asp	Thr 10	Arg	Ala	Leu	Val	Ala 15	Asp	
308 310 311 312	<213 <400 Met 1	3> OF 0> SE Ala	RGANI EQUEN Thr	ISM: NCE: Pro	6 Ala 5	Ser	Ala	Pro		10	_	•			15		
308 310 311 312 314	<213 <400 Met	3> OF 0> SE Ala	RGANI EQUEN Thr	ISM: NCE: Pro Tyr	6 Ala 5	Ser	Ala	Pro	Lys	10	_	•		Gly	15		
308 310 311 312 314 315	<213 <400 Met 1 Phe	3> OF)> SE Ala Val	RGANI EQUEN Thr Gly	SM: NCE: Pro Tyr 20	6 Ala 5 Lys	Ser	Ala Arg	Pro Gln	Lys 25	10 Gly	Tyr	Val	Cys	Gly 30	15 Ala	Gly	
308 310 311 312 314 315 317	<213 <400 Met 1	3> OF)> SE Ala Val	RGANI EQUEN Thr Gly Glu	SM: NCE: Pro Tyr 20	6 Ala 5 Lys	Ser	Ala Arg	Pro Gln Asp	Lys 25	10 Gly	Tyr	Val	Cys Ala	Gly 30	15 Ala	Gly	
308 310 311 312 314 315 317 318	<213 <400 Met 1 Phe	3> OF D> SE Ala Val Gly	RGANI EQUEN Thr Gly Glu 35	ISM: NCE: Pro Tyr 20 Gly	6 Ala 5 Lys Pro	Ser Leu Ala	Ala Arg Ala	Pro Gln Asp 40	Lys 25 Pro	10 Gly Leu	Tyr His	Val Gln	Cys Ala 45	Gly 30 Met	15 Ala Arg	Gly Ala	
308 310 311 312 314 315 317 318	<213 <400 Met 1 Phe	3> OF D> SE Ala Val Gly	RGANI EQUEN Thr Gly Glu 35	ISM: NCE: Pro Tyr 20 Gly	6 Ala 5 Lys Pro	Ser Leu Ala	Ala Arg Ala	Pro Gln Asp 40	Lys 25 Pro	10 Gly Leu	Tyr His	Val Gln	Cys Ala 45	Gly 30 Met	15 Ala Arg	Gly Ala	
308 310 311 312 314 315 317 318	<213 <400 Met 1 Phe	3> OF D> SE Ala Val Gly	RGANI EQUEN Thr Gly Glu 35	ISM: NCE: Pro Tyr 20 Gly	6 Ala 5 Lys Pro	Ser Leu Ala	Ala Arg Ala	Pro Gln Asp 40	Lys 25 Pro	10 Gly Leu	Tyr His	Val Gln	Cys Ala 45	Gly 30 Met	15 Ala Arg	Gly Ala	
308 310 311 312 314 315 317 318 320 321	<213 <400 Met 1 Phe Pro	3> OF D> SF Ala Val Gly Gly 50	RGANI Thr Gly Glu 35 Asp	ISM: NCE: Pro Tyr 20 Gly	6 Ala 5 Lys Pro Phe	Ser Leu Ala Glu	Ala Arg Ala Thr 55	Pro Gln Asp 40 Arg	Lys 25 Pro	10 Gly Leu Arg	Tyr His Arg	Val Gln Thr 60	Cys Ala 45 Phe	Gly 30 Met Ser	15 Ala Arg Asp	Gly Ala Leu	
308 310 311 312 314 315 317 318 320 321 323	<213 <400 Met 1 Phe Pro Ala	3> OF D> SF Ala Val Gly Gly 50	RGANI Thr Gly Glu 35 Asp	ISM: NCE: Pro Tyr 20 Gly	6 Ala 5 Lys Pro Phe	Ser Leu Ala Glu Val	Ala Arg Ala Thr 55	Pro Gln Asp 40 Arg	Lys 25 Pro	10 Gly Leu Arg	Tyr His Arg	Val Gln Thr 60	Cys Ala 45 Phe	Gly 30 Met Ser	15 Ala Arg Asp	Gly Ala Leu Thr	
308 310 311 312 314 315 317 318 320 321 323 324	<213 <400 Met 1 Phe Pro Ala Ala 65	3> OF D> SE Ala Val Gly Gly 50 Ala	RGANI Thr Gly Glu 35 Asp	ISM: NCE: Pro Tyr 20 Gly Glu Leu	6 Ala 5 Lys Pro Phe His	Ser Leu Ala Glu Val	Ala Arg Ala Thr 55 Thr	Pro Gln Asp 40 Arg	Lys 25 Pro Phe Gly	10 Gly Leu Arg Ser	Tyr His Arg Ala 75	Val Gln Thr 60 Gln	Cys Ala 45 Phe Gln	Gly 30 Met Ser	15 Ala Arg Asp Phe	Gly Ala Leu Thr 80	
308 310 311 312 314 315 317 318 320 321 323 324 326	<213 <400 Met 1 Phe Pro Ala	3> OF D> SE Ala Val Gly Gly 50 Ala	RGANI Thr Gly Glu 35 Asp	ISM: NCE: Pro Tyr 20 Gly Glu Leu	6 Ala 5 Lys Pro Phe His	Ser Leu Ala Glu Val	Ala Arg Ala Thr 55 Thr	Pro Gln Asp 40 Arg	Lys 25 Pro Phe Gly	10 Gly Leu Arg Ser	Tyr His Arg Ala 75	Val Gln Thr 60 Gln	Cys Ala 45 Phe Gln	Gly 30 Met Ser	15 Ala Arg Asp Phe Arg	Gly Ala Leu Thr 80	
308 310 311 312 314 315 317 318 320 321 323 324 326 327	<213 <400 Met 1 Phe Pro Ala Ala 65 Gln	3> OF POSE Ala Val Gly 50 Ala	GANI EQUEN Thr Gly Glu 35 Asp Gln Ser	ISM: NCE: Pro Tyr 20 Gly Glu Leu Asp	6 Ala 5 Lys Pro Phe His Glu 85	Ser Leu Ala Glu Val 70 Leu	Ala Arg Ala Thr 55 Thr	Pro Gln Asp 40 Arg Pro Gln	Lys 25 Pro Phe Gly	10 Gly Leu Arg Ser Gly 90	Tyr His Arg Ala 75 Pro	Val Gln Thr 60 Gln Asn	Cys Ala 45 Phe Gln Trp	Gly 30 Met Ser Arg	15 Ala Arg Asp Phe Arg 95	Gly Ala Leu Thr 80 Leu	
308 310 311 312 314 315 317 318 320 321 323 324 326 327 329	<213 <400 Met 1 Phe Pro Ala Ala 65	3> OF POSE Ala Val Gly 50 Ala	GANI EQUEN Thr Gly Glu 35 Asp Gln Ser	Tyr 20 Gly Glu Leu Asp	6 Ala 5 Lys Pro Phe His Glu 85	Ser Leu Ala Glu Val 70 Leu	Ala Arg Ala Thr 55 Thr	Pro Gln Asp 40 Arg Pro Gln	Lys 25 Pro Phe Gly Gly	10 Gly Leu Arg Ser Gly 90	Tyr His Arg Ala 75 Pro	Val Gln Thr 60 Gln Asn	Cys Ala 45 Phe Gln Trp	Gly 30 Met Ser Arg Gly Ser	15 Ala Arg Asp Phe Arg 95	Gly Ala Leu Thr 80 Leu	
308 310 311 312 314 315 317 318 320 321 323 324 326 327 329 330	<213 <400 Met 1 Phe Pro Ala Ala 65 Gln Val	3> OF D> SF Ala Val Gly 50 Ala Val	GLU Glu 35 Asp Gln Ser	Tyr 20 Gly Glu Leu Asp	6 Ala 5 Lys Pro Phe His Glu 85 Leu	Ser Leu Ala Glu Val 70 Leu Phe	Ala Arg Ala Thr 55 Thr Phe Gly	Pro Gln Asp 40 Arg Pro Gln Ala	Lys 25 Pro Phe Gly Gly Ala 105	10 Gly Leu Arg Ser Gly 90 Leu	Tyr His Arg Ala 75 Pro	Val Gln Thr 60 Gln Asn	Cys Ala 45 Phe Gln Trp Glu	Gly 30 Met Ser Arg Gly Ser 110	15 Ala Arg Asp Phe Arg 95 Val	Gly Ala Leu Thr 80 Leu Asn	
308 310 311 312 314 315 317 318 320 321 323 324 326 327 329 330	<213 <400 Met 1 Phe Pro Ala Ala 65 Gln	3> OF D> SF Ala Val Gly 50 Ala Val	GLU Glu 35 Asp Gln Ser	Tyr 20 Gly Glu Leu Asp	6 Ala 5 Lys Pro Phe His Glu 85 Leu	Ser Leu Ala Glu Val 70 Leu Phe	Ala Arg Ala Thr 55 Thr Phe Gly	Pro Gln Asp 40 Arg Pro Gln Ala	Lys 25 Pro Phe Gly Gly Ala 105	10 Gly Leu Arg Ser Gly 90 Leu	Tyr His Arg Ala 75 Pro	Val Gln Thr 60 Gln Asn	Cys Ala 45 Phe Gln Trp Glu	Gly 30 Met Ser Arg Gly Ser 110	15 Ala Arg Asp Phe Arg 95 Val	Gly Ala Leu Thr 80 Leu Asn	
308 310 311 312 314 315 317 318 320 321 323 324 326 327 329 330	<213 <400 Met 1 Phe Pro Ala Ala 65 Gln Val	3> OF D> SF Ala Val Gly 50 Ala Val	GLU Glu 35 Asp Gln Ser	Tyr 20 Gly Glu Leu Asp	6 Ala 5 Lys Pro Phe His Glu 85 Leu	Ser Leu Ala Glu Val 70 Leu Phe	Ala Arg Ala Thr 55 Thr Phe Gly	Pro Gln Asp 40 Arg Pro Gln Ala	Lys 25 Pro Phe Gly Gly Ala 105	10 Gly Leu Arg Ser Gly 90 Leu	Tyr His Arg Ala 75 Pro	Val Gln Thr 60 Gln Asn	Cys Ala 45 Phe Gln Trp Glu	Gly 30 Met Ser Arg Gly Ser 110	15 Ala Arg Asp Phe Arg 95 Val	Gly Ala Leu Thr 80 Leu Asn	
308 310 311 312 314 315 317 318 320 321 323 324 326 327 329 330 332 333	<213 <400 Met 1 Phe Pro Ala Ala 65 Gln Val	3> OF Ala Val Gly 50 Ala Val Ala Glu	GANDEQUENT Thr Gly Glu 35 Asp Gln Ser Phe Met 115	Tyr 20 Gly Glu Leu Asp Phe 100 Glu	6 Ala 5 Lys Pro Phe His Glu 85 Leu Pro	Ser Leu Ala Glu Val 70 Leu Phe Leu	Ala Arg Ala Thr 55 Thr Phe Gly Val	Pro Gln Asp 40 Arg Pro Gln Ala Gly 120	Lys 25 Pro Phe Gly Gly Ala 105 Gln	10 Gly Leu Arg Ser Gly 90 Leu Val	Tyr His Arg Ala 75 Pro Cýs Gln	Val Gln Thr 60 Gln Asn Ala Glu	Cys Ala 45 Phe Gln Trp Glu Trp 125	Gly 30 Met Ser Arg Gly Ser 110 Met	15 Ala Arg Asp Phe Arg 95 Val	Gly Ala Leu Thr 80 Leu Asn Ala	
308 310 311 312 314 315 317 318 320 321 323 324 326 327 329 330 332 333 335	<213 <400 Met 1 Phe Pro Ala Ala 65 Gln Val	3> OF D> SF Ala Val Gly 50 Ala Val Ala Glu Leu	GANDEQUENT Thr Gly Glu 35 Asp Gln Ser Phe Met 115	Tyr 20 Gly Glu Leu Asp Phe 100 Glu	6 Ala 5 Lys Pro Phe His Glu 85 Leu Pro	Ser Leu Ala Glu Val 70 Leu Phe Leu	Ala Arg Ala Thr 55 Thr Phe Gly Val	Pro Gln Asp 40 Arg Pro Gln Ala Gly 120	Lys 25 Pro Phe Gly Gly Ala 105 Gln	10 Gly Leu Arg Ser Gly 90 Leu Val	Tyr His Arg Ala 75 Pro Cýs Gln	Val Gln Thr 60 Gln Asn Ala Glu Ser	Cys Ala 45 Phe Gln Trp Glu Trp 125	Gly 30 Met Ser Arg Gly Ser 110 Met	15 Ala Arg Asp Phe Arg 95 Val	Gly Ala Leu Thr 80 Leu Asn Ala	
308 310 311 312 314 315 317 318 320 321 323 324 326 327 329 330 332 333 335 336	<213 <400 Met 1 Phe Pro Ala Ala 65 Gln Val Lys Tyr	3> OF D> SF Ala Val Gly 50 Ala Val Ala Glu Leu 130	GGANI EQUENT Thr Gly Glu 35 Asp Gln Ser Phe Met 115 Glu	ISM: NCE: Pro Tyr 20 Gly Glu Leu Asp Phe 100 Glu Thr	6 Ala 5 Lys Pro Phe His Glu 85 Leu Pro Arg	Ser Leu Ala Glu Val 70 Leu Phe Leu Leu	Ala Arg Ala Thr 55 Thr Phe Gly Val Val 135	Pro Gln Asp 40 Arg Pro Gln Ala Gly 120 Asp	Lys 25 Pro Phe Gly Gly Ala 105 Gln	10 Gly Leu Arg Ser Gly 90 Leu Val	Tyr His Arg Ala 75 Pro Cýs Gln	Val Gln Thr 60 Gln Asn Ala Glu Ser 140	Cys Ala 45 Phe Gln Trp Glu Trp 125 Ser	Gly 30 Met Ser Arg Gly Ser 110 Met	15 Ala Arg Asp Phe Arg 95 Val Val Gly	Gly Ala Leu Thr 80 Leu Asn Ala Trp	
308 310 311 312 314 315 317 318 320 321 323 324 326 327 329 330 332 333 335 336 338	<213 <400 Met 1 Phe Pro Ala Ala 65 Gln Val Lys Tyr Ala	3> OF D> SF Ala Val Gly 50 Ala Val Ala Glu Leu 130	GGANI EQUENT Thr Gly Glu 35 Asp Gln Ser Phe Met 115 Glu	ISM: NCE: Pro Tyr 20 Gly Glu Leu Asp Phe 100 Glu Thr	6 Ala 5 Lys Pro Phe His Glu 85 Leu Pro Arg	Ser Leu Ala Glu Val 70 Leu Phe Leu Leu Leu	Ala Arg Ala Thr 55 Thr Phe Gly Val Val 135	Pro Gln Asp 40 Arg Pro Gln Ala Gly 120 Asp	Lys 25 Pro Phe Gly Gly Ala 105 Gln	10 Gly Leu Arg Ser Gly 90 Leu Val	Tyr His Arg Ala 75 Pro Cýs Gln His Ala	Val Gln Thr 60 Gln Asn Ala Glu Ser 140	Cys Ala 45 Phe Gln Trp Glu Trp 125 Ser	Gly 30 Met Ser Arg Gly Ser 110 Met	15 Ala Arg Asp Phe Arg 95 Val Val Gly	Gly Ala Leu Thr 80 Leu Asn Ala Trp Arg	
308 310 311 312 314 315 317 318 320 321 323 324 326 327 329 330 332 333 335 336 338 339	<pre><213 <400 Met 1 Phe Pro Ala Ala 65 Gln Val Lys Tyr Ala 145</pre>	3> OF D> SF Ala Val Gly 50 Ala Val Ala Glu Leu 130 Glu	GANDEQUENT Thr Gly Glu 35 Asp Gln Ser Phe Met 115 Glu Phe	ISM: NCE: Pro Tyr 20 Gly Glu Leu Asp Phe 100 Glu Thr	6 Ala 5 Lys Pro Phe His Glu 85 Leu Pro Arg Ala	Ser Leu Ala Glu Val 70 Leu Phe Leu Leu 150	Ala Arg Ala Thr 55 Thr Phe Gly Val Val 135 Tyr	Pro Gln Asp 40 Arg Pro Gln Ala Gly 120 Asp Gly	Lys 25 Pro Phe Gly Gly Ala 105 Gln Trp	10 Gly Leu Arg Ser Gly 90 Leu Val Ile Gly	Tyr His Arg Ala 75 Pro Cys Gln His Ala 155	Val Gln Thr 60 Gln Asn Ala Glu Ser 140 Leu	Cys Ala 45 Phe Gln Trp Glu Trp 125 Ser Glu	Gly 30 Met Ser Arg Gly Ser 110 Met Gly Glu	15 Ala Arg Asp Phe Arg 95 Val Val Gly Ala	Gly Ala Leu Thr 80 Leu Asn Ala Trp Arg 160	
308 310 311 312 314 315 317 318 320 321 323 324 326 327 329 330 332 333 335 336 338 339 341	<213 <400 Met 1 Phe Pro Ala Ala 65 Gln Val Lys Tyr Ala	3> OF D> SF Ala Val Gly 50 Ala Val Ala Glu Leu 130 Glu	GANDEQUENT Thr Gly Glu 35 Asp Gln Ser Phe Met 115 Glu Phe	ISM: NCE: Pro Tyr 20 Gly Glu Leu Asp Phe 100 Glu Thr	6 Ala 5 Lys Pro Phe His Glu 85 Leu Pro Arg Ala	Ser Leu Ala Glu Val 70 Leu Phe Leu Leu 150	Ala Arg Ala Thr 55 Thr Phe Gly Val Val 135 Tyr	Pro Gln Asp 40 Arg Pro Gln Ala Gly 120 Asp Gly	Lys 25 Pro Phe Gly Gly Ala 105 Gln Trp	10 Gly Leu Arg Ser Gly 90 Leu Val Ile Gly	Tyr His Arg Ala 75 Pro Cys Gln His Ala 155	Val Gln Thr 60 Gln Asn Ala Glu Ser 140 Leu	Cys Ala 45 Phe Gln Trp Glu Trp 125 Ser Glu	Gly 30 Met Ser Arg Gly Ser 110 Met Gly Glu	15 Ala Arg Asp Phe Arg 95 Val Val Gly Ala	Gly Ala Leu Thr 80 Leu Asn Ala Trp Arg 160	
308 310 311 312 314 315 317 318 320 321 323 324 326 327 329 330 332 333 335 336 338 339	<pre><213 <400 Met 1 Phe Pro Ala Ala 65 Gln Val Lys Tyr Ala 145</pre>	3> OF D> SF Ala Val Gly 50 Ala Val Ala Glu Leu 130 Glu	GANDEQUENT Thr Gly Glu 35 Asp Gln Ser Phe Met 115 Glu Phe	ISM: NCE: Pro Tyr 20 Gly Glu Leu Asp Phe 100 Glu Thr	6 Ala 5 Lys Pro Phe His Glu 85 Leu Pro Arg Ala	Ser Leu Ala Glu Val 70 Leu Phe Leu Leu 150	Ala Arg Ala Thr 55 Thr Phe Gly Val Val 135 Tyr	Pro Gln Asp 40 Arg Pro Gln Ala Gly 120 Asp Gly	Lys 25 Pro Phe Gly Gly Ala 105 Gln Trp	10 Gly Leu Arg Ser Gly 90 Leu Val Ile Gly	Tyr His Arg Ala 75 Pro Cys Gln His Ala 155	Val Gln Thr 60 Gln Asn Ala Glu Ser 140 Leu	Cys Ala 45 Phe Gln Trp Glu Trp 125 Ser Glu	Gly 30 Met Ser Arg Gly Ser 110 Met Gly Glu	15 Ala Arg Asp Phe Arg 95 Val Val Gly Ala	Gly Ala Leu Thr 80 Leu Asn Ala Trp Arg 160	

VERIFICATION SUMMARY

DATE: 09/08/2003

PATENT APPLICATION: US/09/508,745

TIME: 10:42:47

Input Set : A:\PTO.AMC.txt

1600

RAW SEQUENCE LISTING DATE: 09/08/2003 PATENT APPLICATION: US/09/508,745 TIME: 10:42:16

Input Set: A:\13464.seq.txt

Output Set: N:\CRF4\09082003\I508745.raw

```
3 <110> APPLICANT: Cory, Suzanne
        Adams, Jerry
 5
         Print, Cris
 6
        Gibson, Leonie
        Koentgen, Frank
 9 <120> TITLE OF INVENTION: A METHOD OF TREATMENT AND AN ANIMAL MODEL USEFUL FOR
        SAME
12 <130> FILE REFERENCE: 13464
14 <140> CURRENT APPLICATION NUMBER: 09/508,745
15 <141> CURRENT FILING DATE: 2000-07-12
17 <150> PRIOR APPLICATION NUMBER: PCT/AU98/00764
18 <151> PRIOR FILING DATE: 1998-09-16
20 <160> NUMBER OF SEQ ID NOS: 8
22 <170> SOFTWARE: PatentIn Ver. 2.1
```

Does Not Comply Corrected Diskette Needec

ERRORED SEQUENCES

```
417 <210> SEQ ID NO: 8
418 <211> LENGTH: 193
419 <212> TYPE: PRT
420 <213> ORGANISM: Mus musculus
422 <400> SEQUENCE: 8
423 Met Pro Thr Pro Ala Ser Thr Pro Asp Thr Arg Ala Leu Val Ala Asp
424 . 1
                      5
                                         10
426 Phe Val Gly Tyr Arg Leu Arg Gln Lys Gly Tyr Val Cys Gly Ala Gly
               20
                                     25
429 Pro Gly Glu Gly Pro Ala Ala Asp Pro Leu His Gln Ala Met Arg Ala
430
                                 40
432 Ala Gly Asp Glu Phe Glu Thr Arg Phe Arg Arg Thr Phe Ser Asp Leu
435 Ala Ala Gln Leu His Val Thr Pro Gly Ser Ala Gln Gln Arg Phe Thr
                         70
                                             75
438 Gln Val Ser Asp Glu Leu Phe Gln Gly Gly Pro Asn Trp Gly Arg Leu
                    85
                                         90
441 Val Ala Phe Phe Val Phe Gly Ala Ala Leu Cys Ala Glu Ser Val Asn
                                    105
444 Lys Glu Met Glu Pro Leu Val Gly Gln Val Gln Asp Trp Ile Val Ala
            115
                                120
447 Tyr Leu Glu Thr Arg Leu Ala Asp Trp Ile His Ser Ser Gly Gly Trp
                           135
                                                140
450 Ala Asp Phe Thr Ala Leu Tyr Gly Asp Gly Ala Leu Glu Asp Ala Arg
451 145
                        150
                                            155
                                                                160
```

RAW SEQUENCE LISTING

DATE: 09/08/2003

PATENT APPLICATION: US/09/508,745

TIME: 10:42:16

Input Set : A:\13464.seq.txt

Output Set: N:\CRF4\09082003\I508745.raw

453 Arg Leu Arg Glu Gly Asn Trp Ala Ser Val Ser Thr Val Val Thr Gly 454 165 170 456 Ala Val Ala Leu Gly Ala Leu Val Thr Val Gly Ala Phe Phe Ala Ser

457 180

E--> 468 (1)

VERIFICATION SUMMARY

DATE: 09/08/2003

PATENT APPLICATION: US/09/508,745

TIME: 10:42:17

Input Set : A:\13464.seq.txt

Output Set: N:\CRF4\09082003\I508745.raw

L:468 M:332 E: (32) Invalid/Missing Amino Acid Numbering, SEQ ID:8