Elektronika pro informační technologie (IEL), ak. r. 2021/2022

Zadání laboratoře č. 5

"Integrovaný obvod a logická hradla"

Cíle: Seznámit se s významem logických úrovní/hodnot (log.0, log.1) v dané realizaci a s konkrétním IO (integrovaným obvodem), prakticky ověřit funkčnost hradel z IO a využít hradla z IO ke konstrukci vybraných praktických obvodů.

(1) MOTIVACE ANEB "PROČ TOMU VĚNOVAT ČAS A JAKÉ KOMPETENCE LZE ZÍSKAT ?"

Na základě sady experimentů budete moci ověřit, pochopit a objasnit význam vývodů konkrétního IO a logických úrovní/hodnot, činnost NAND hradla dané realizace a jeho vybraných aplikací.

(2) Výstup a způsob jeho hodnocení aneb "Co se ode mne očekává a co za to ?"

Za záznam výsledků měření do tabulky, předvedení a objasnění činnosti bistabilního klopného obvodu (KO) a za ověření a objasnění činnosti astabilního popř. monostabilního KO lze získat až **3 body**.

(3) Prostředky aneb "Co je k dispozici?"

Zdroj ss. napětí s omezením proudu, nepájivé pole, krabička s konstrukčními prvky (rezistory, diody, kondenzátory, tlačítko, IO s NAND hradly, vodiče), měřicí přístroje. Integrovaný obvod (IO) nevyjímejte z nepájivého pole!

(4) Základní schéma(ta) aneb "Z čeho se bude vycházet ?"

	Vstupy		Výstup	Napěťové úrovně pro log.0/1 na v(ý)stupech TTL logických hradel		
	x	y	$\overline{x \wedge y}$	Acceptable TTL gate Acceptable TTL gate input signal levels output signal levels		
d)	$\log.0$	$\log.0$	$\log.1$	High — 5 V high-level noise margin High — 5 V		
	$\log.0$	$\log.1$ $\log.0$	$\log.1$ $\log.1$	2.7 V		
	$\log.1$	$\log 1$	$\log.0$	low-level noise margin		

Obrázek 1: Varianty schematické značky 2vstup. hradla NAND (a, b), vývody a rozmístění hradel v IO s NAND hradly (c), očekávané vlastnosti 2vstupového hradla realizovaného v TTL logice (d)

(5) Postup samostatných činností aneb "Co dělat a na co si dát pozor ?"

Obrázek 2: Schémata klopných obvodů (KO) k zapojení (volitelné části jsou zbarveny červeně): a) bistabilní KO typu RS, b) astabilní KO, c) monostabilní KO; ①, ② jsou uzly, jejichž sledování by mělo přispět k objasněn dějů v obvodech

Experiment 1: i) Prostudujte rozmístění vývodů IO (viz Obr. 1c) a připojte na IO napájecí napětí, tj. 7. vývod IO k 0 V (GND) a 14. vývod IO k +5 V (Vcc).

ii) S využitím tab. z Obr. 1c **identifikujte** v IO alespoň dvě funkční NAND hradla. Funkčnost hradla je nutno ověřit pro každou vstupní kombinaci!!!

iii) Z funkčních NAND hradel **zapojte** obvod dle Obr. 2a a analyzujte jeho chování pro kombinace předepsané v Tab. 1. **Odměřte** log. hodnoty a hodnoty napětí chybějící v Tab. 1, **předvedte** a **objasněte** činnost obvodu vyučující(mu).

vstupy		výstupy/stav				
\overline{S}_t	\overline{R}_t	Q_t Q_{t+1}			komentář	
[logická hodnota] [V]						
0	0	X			"nedovolený stav" (neplatí $\overline{Q} = \text{not } Q$ ")	
0	1	X			set=nastav (stav do log. 1)	
1	0	X			reset=nuluj (stav do log. 0)	
1	1	0			zachovej stav	
1	1	1				

Tabulka 1: Pravdivostní tabulka RS-KO; t resp. t+1 označuje stávající resp. následující úsek času

Experiment 2: i) V rámci zvolené studentské skupiny zapojte některý z obvodů z Obr. 2b,c.

ii) Ve skupině **sledujte** (alespoň) průběh napětí mezi uzly 1 resp. 2 a zemí; vyučující(mu) **objasněte** děje způsobující sledovaný průběh pro dané hodnoty R, C a vliv změny R, C na děje v obvodu a na průběh sledovaných napětí.

(6) Shrnutí, vyhodnocení a interpretace výsledků aneb "Jaká jsou zjištění ?"

Předpokladem správné funkce IO je připojení IO na napájecí napětí, log.0/1 na v(ý)stupu logického hradla představuje napětí z určitého rozsahu¹. Bistabilní KO má dva klidové stavy (log.0 nebo log.1); změna jeho stavu není samovolná². Monostab. KO má jeden klid. stav, jehož dočasnou změnu lze vyvolat příslušným vstupním podnětem³. Astab. KO mění stav samovolně, tj. klid. stav nemá.

7 K zamyšlení/zapamatování aneb "Něco do dalšího studia a života."

Nezapojený vstup logického hradla nemusí vždy představovat vstupní log.0/1. RS KO je základem 1bitové statické paměťové buňky a dalších sekvenčních obvodů⁴ – zkuste některé z nich najít. Astab. KO lze využít např. ke generování obdélníkového (hodinového) signálu s požadovanou periodou/frekvencí a střídou – zkuste přijít na to, jak tyto požadované parametry zajistit⁵. Monostab. KO lze využít např. pro generování log. impulsu požadované šířky – zkuste vypočítat hodnoty R, C pro její zajištění.

¹napětí mimo tento rozsah může vést k nestabilitě chování hradla a jeho nesprávné logické funkci

 $^{^2}$ každý ze jeho stavů lze nastavit a uchovat až do explicitního požadavku na jeho změnu, což je chování odpovídající požadavkům kladeným na paměťovou buňku

³např. stiskem tlačítka; po uplynutí předem daného času obvod samovolně změní svůj stav na klidový

⁴např. KO typu D, registrů či paměti cache

⁵např. pomocí vhodné volby hodnot R, C