CMP 334 (3/6/19)

HW 8 (two's complement circuit)

Combinational circuit design Inverters, decoders, multiplexers

Signed Arithmetic (review)

Condition flags and comparisons

Arithmetic / Logical Units

 $HW 7 (W \leftarrow X + Y + Z)$

ALU operations (explicit and implicit)

Condition flags and conditional branches

The **TOY** ALU

HW 8: Two's Complement Circuit

Use the four step *Combinational Circuit Design Process* presented in class to design circuits that take a 3-bit unsigned binary integer **X** as input and produces as output a 3-bit unsigned binary integer **Y** that is the two's complement of **X**.

$$Y = 2^3 - X = \overline{X} + 1$$

Do not minimize the circuits for **Y** as a part of this assignments.

Extra credit: minimize the circuits for Y.

Combinational Circuit Design

Combinational circuit Output determined by input

Design process

1. Specify semantics

```
Black Box: input and output (informal semantics)
Truth Table (formal semantics)
```

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

Combinational Circuit Design

Combinational circuit

Output determined by input

Design process

- Specify semantics
 Black Box: *input* and *output* (informal semantics)
 Truth Table (formal semantics)
- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

HW 8: Two's Complement

Informal semantics:

$$\mathbf{X} = 4 \cdot \mathbf{x}_2 + 2 \cdot \mathbf{x}_1 + \mathbf{x}_0$$

 $\mathbf{Y} = 4 \cdot \mathbf{y}_2 + 2 \cdot \mathbf{y}_1 + \mathbf{y}_0 = \mathbf{\ddot{X}} = 8 - \mathbf{X} = \mathbf{\ddot{X}} + 1$

X	X ₂	X ₁	\mathbf{X}_{0}	Y	y ₂	y ₁	y ₀
	0	0	0				
	0	0	1				
	0	1	0				
	0	1	1				
	1	0	0				
	1	0	1				
	1	1	0				
	1	1	1				

X	X ₂	X ₁	\mathbf{X}_{0}	Y	y ₂	y ₁	y ₀
0	0	0	0				
1	0	0	1				
2	0	1	0				
3	0	1	1				
4	1	0	0				
5	1	0	1				
6	1	1	0				
7	1	1	1				

X	X_2	X ₁	\mathbf{X}_{0}	Y	y ₂	y ₁	\mathbf{y}_{0}
0	0	0	0	8			
1	0	0	1	7			
2	0	1	0	6			
3	0	1	1	5			
4	1	0	0	4			
5	1	0	1	3			
6	1	1	0	2			
7	1	1	1	1			

X	X ₂	X ₁	\mathbf{X}_{0}	Y	y ₂	y ₁	y ₀
0	0	0	0	8	0	0	0
1	0	0	1	7	1	1	1
2	0	1	0	6	1	1	0
3	0	1	1	5	1	0	1
4	1	0	0	4	1	0	0
5	1	0	1	3	0	1	1
6	1	1	0	2	0	1	0
7	1	1	1	1	0	0	1

Combinational Circuit Design

Combinational circuit

Output determined by input

Design process

1. Specify semantics

Black Box: *input* and *output* (informal semantics)

Truth Table (formal semantics)

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

X	X ₂	X ₁	\mathbf{X}_{0}	Y	y ₂	y ₁	y ₀
0	0	0	0	8	0	()	0
1	0	0	1	7	1	1	1
2	0	1	0	6	1	1	0
3	0	1	1	5	1	()	1
4	1	0	0	4	1	()	0
5	1	0	1	3	0	1	1
6	1	1	0	2	0	1	0
7	1	1	1	1	0	0	1

X	X ₂	X ₁	X_0	Y	y ₀
0	0	0	0	8	0
1	0	0	1	7	1
2	0	1	0	6	0
3	0	1	1	5	1
4	1	0	0	4	0
5	1	0	1	3	1
6	1	1	0	2	0
7	1	1	1	1	1

X	X_2	X ₁	X_0	Y	y ₀	
0	0	0	0	8	0	
1	0	0	1	7	1	$\overline{\mathbf{x}}_{2}\overline{\mathbf{x}}_{1}\mathbf{x}_{0}$
2	0	1	0	6	0	
3	0	1	1	5	1	
4	1	0	0	4	0	
5	1	0	1	3	1	
6	1	1	0	2	0	
7	1	1	1	1	1	

X	X ₂	X ₁	X_0	Y	y ₀	
0	0	0	0	8	0	
1	0	0	1	7	1	$\overline{\mathbf{x}}_{2}\overline{\mathbf{x}}_{1}\mathbf{x}_{0}$
2	0	1	0	6	0	
3	0	1	1	5	1	$\overline{\mathbf{x}}_{2}\mathbf{x}_{1}\mathbf{x}_{0}$
4	1	0	0	4	0	
5	1	0	1	3	1	
6	1	1	0	2	0	
7	1	1	1	1	1	

X	X_2	X ₁	X_0	Y	\mathbf{y}_{0}	
0	0	0	0	8	0	
1	0	0	1	7	1	$\mathbf{x}_{2}\mathbf{x}_{1}\mathbf{x}_{0}$
2	0	1	0	6	0	
3	0	1	1	5	1	$\mathbf{\bar{x}}_{2}\mathbf{x}_{1}\mathbf{x}_{0}$
4	1	0	0	4	0	
5	1	0	1	3	1	$\mathbf{x}_{2}\mathbf{\overline{x}}_{1}\mathbf{x}_{0}$
6	1	1	0	2	0	
7	1	1	1	1	1	

X	X ₂	X ₁	X_0	Y	\mathbf{y}_{0}	
0	0	0	0	8	0	
1	0	0	1	7	1	$\mathbf{x}_{2}\mathbf{x}_{1}\mathbf{x}_{0}$
2	0	1	0	6	0	
3	0	1	1	5	1	$\mathbf{x}_{2}\mathbf{x}_{1}\mathbf{x}_{0}$
4	1	0	0	4	0	
5	1	0	1	3	1	$\mathbf{x}_{2}\mathbf{\overline{x}}_{1}\mathbf{x}_{0}$
6	1	1	0	2	0	
7	1	1	1	1	1	$\mathbf{X}_{2}\mathbf{X}_{1}\mathbf{X}_{0}$

$$\mathbf{y}_0 = \overline{\mathbf{x}}_2 \overline{\mathbf{x}}_1 \mathbf{x}_0 + \overline{\mathbf{x}}_2 \mathbf{x}_1 \mathbf{x}_0 + \mathbf{x}_2 \overline{\mathbf{x}}_1 \mathbf{x}_0 + \mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_0$$

X	X_2	X ₁	\mathbf{X}_{0}	Y	\mathbf{y}_{0}	
0	0	0	0	8	0	
1	0	0	1	7	1	$\mathbf{x}_{2}\mathbf{x}_{1}\mathbf{x}_{0}$
2	0	1	0	6	0	
3	0	1	1	5	1	$\mathbf{\bar{x}}_{2}\mathbf{x}_{1}\mathbf{x}_{0}$
4	1	0	0	4	0	
5	1	0	1	3	1	$\mathbf{x}_{2}\mathbf{\overline{x}}_{1}\mathbf{x}_{0}$
6	1	1	0	2	0	
7	1	1	1	1	1	$\mathbf{X}_{2}\mathbf{X}_{1}\mathbf{X}_{0}$

X	X ₂	X ₁	\mathbf{X}_{0}	Y	y ₂	y ₁	y ₀
0	0	0	0	8	0	0	0
1	0	0	1	7	1	1	1
2	0	1	0	6	1	1	0
3	0	1	1	5	1	0	1
4	1	0	0	4	1	0	0
5	1	0	1	3	0	1	1
6	1	1	0	2	0	1	0
7	1	1	1	1	0	0	1

X	X ₂	X ₁	X_0	Y	y ₁
0	0	0	0	8	0
1	0	0	1	7	1
2	0	1	0	6	1
3	0	1	1	5	0
4	1	0	0	4	0
5	1	0	1	3	1
6	1	1	0	2	1
7	1	1	1	1	0

X	X ₂	X ₁	X_0	Y	y ₁	
0	0	0	0	8	0	
1	0	0	1	7	1	$\overline{\mathbf{x}}_{2}\overline{\mathbf{x}}_{1}\mathbf{x}_{0}$
2	0	1	0	6	1	
3	0	1	1	5	0	
4	1	0	0	4	0	
5	1	0	1	3	1	
6	1	1	0	2	1	
7	1	1	1	1	0	

X	X_2	X ₁	\mathbf{X}_{0}	Y	y ₁	
0	0	0	0	8	0	
1	0	0	1	7	1	×
2	0	1	0	6	1	×
3	0	1	1	5	0	
4	1	0	0	4	0	
5	1	0	1	3	1	
6	1	1	0	2	1	
7	1	1	1	1	0	

X	X_2	X ₁	X_0	Y	y ₁	
0	0	0	0	8	0	
1	0	0	1	7	1	$\overline{\mathbf{x}}_{2}\overline{\mathbf{x}}_{1}\mathbf{x}_{0}$
2	0	1	0	6	1	$\overline{\mathbf{x}}_{2}\mathbf{x}_{1}\overline{\mathbf{x}}_{0}$
3	0	1	1	5	0	
4	1	0	0	4	0	
5	1	0	1	3	1	$\mathbf{x}_{2}\mathbf{\overline{x}}_{1}\mathbf{x}_{0}$
6	1	1	0	2	1	
7	1	1	1	1	0	

X	X_2	X ₁	X_0	Y	y ₁	
0	0	0	0	8	0	
1	0	0	1	7	1	$\mathbf{x}_{2}\mathbf{x}_{1}\mathbf{x}_{0}$
2	0	1	0	6	1	$\mathbf{\overline{x}}_{2}\mathbf{x}_{1}\mathbf{\overline{x}}_{0}$
3	0	1	1	5	0	
4	1	0	0	4	0	
5	1	0	1	3	1	$\mathbf{x}_{2}\mathbf{\overline{x}}_{1}\mathbf{x}_{0}$
6	1	1	0	2	1	$\mathbf{x}_{2}\mathbf{x}_{1}\mathbf{\overline{x}}_{0}$
7	1	1	1	1	0	

$$\mathbf{y}_1 = \overline{\mathbf{x}}_2 \overline{\mathbf{x}}_1 \mathbf{x}_0 + \overline{\mathbf{x}}_2 \mathbf{x}_1 \overline{\mathbf{x}}_0 + \mathbf{x}_2 \overline{\mathbf{x}}_1 \mathbf{x}_0 + \mathbf{x}_2 \mathbf{x}_1 \overline{\mathbf{x}}_0$$

X	X ₂	X ₁	\mathbf{X}_{0}	Y	y ₁	
0	0	0	0	8	0	
1	0	0	1	7	1	$\overline{\mathbf{x}}_{2}\overline{\mathbf{x}}_{1}\mathbf{x}_{0}$
2	0	1	0	6	1	$\overline{\mathbf{x}}_{2}\mathbf{x}_{1}\overline{\mathbf{x}}_{0}$
3	0	1	1	5	0	
4	1	0	0	4	0	
5	1	0	1	3	1	$\mathbf{x}_{2}\mathbf{\overline{x}}_{1}\mathbf{x}_{0}$
6	1	1	0	2	1	$\mathbf{x}_{2}\mathbf{x}_{1}\mathbf{\overline{x}}_{0}$
7	1	1	1	1	0	

X	X ₂	X ₁	\mathbf{X}_{0}	Y	y ₂	y ₁	Y ₀
0	0	0	0	8	0	0	0
1	0	0	1	7	1	1	1
2	0	1	0	6	1	1	0
3	0	1	1	5	1	0	1
4	1	0	0	4	1	0	0
5	1	0	1	3	0	1	1
6	1	1	0	2	0	1	0
7	1	1	1	1	0	0	1

X	X ₂	X ₁	X_0	Y	y ₂
0	0	0	0	8	0
1	0	0	1	7	1
2	0	1	0	6	1
3	0	1	1	5	1
4	1	0	0	4	1
5	1	0	1	3	0
6	1	1	0	2	0
7	1	1	1	1	0

X	X ₂	X ₁	X_0	Y	y ₂	
0	0	0	0	8	0	
1	0	0	1	7	1	$\overline{\mathbf{x}}_{2}\overline{\mathbf{x}}_{1}\mathbf{x}_{0}$
2	0	1	0	6	1	
3	0	1	1	5	1	
4	1	0	0	4	1	
5	1	0	1	3	0	
6	1	1	0	2	0	
7	1	1	1	1	0	

X	X ₂	X ₁	X_0	Y	y ₂	
0	0	0	0	8	0	
1	0	0	1	7	1	$\overline{\mathbf{x}}_{2}\overline{\mathbf{x}}_{1}\mathbf{x}$
2	0	1	0	6	1	$\overline{\mathbf{x}}_{2}\mathbf{x}_{1}\overline{\mathbf{x}}_{2}$
3	0	1	1	5	1	
4	1	0	0	4	1	
5	1	0	1	3	0	
6	1	1	0	2	0	
7	1	1	1	1	0	

X	X_2	X ₁	\mathbf{X}_{0}	Y	y ₂
0	0	0	0	8	0
1	0	0	1	7	1
2	0	1	0	6	1
3	0	1	1	5	1
4	1	0	0	4	1
5	1	0	1	3	0
6	1	1	0	2	0
7	1	1	1	1	0

X	X_2	X ₁	\mathbf{X}_{0}	Y	y ₂	
0	0	0	0	8	0	
1	0	0	1	7	1	$\overline{\mathbf{x}}_{2}$
2	0	1	0	6	1	$\overline{\mathbf{x}}_{2}$
3	0	1	1	5	1	$\overline{\mathbf{x}}_{2}$
4	1	0	0	4	1	\mathbf{X}_2
5	1	0	1	3	0	
6	1	1	0	2	0	
7	1	1	1	1	0	

$$y_2 = \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 \overline{x}_0 + \overline{x}_2 x_1 x_0 + \overline{x}_2 \overline{x}_1 \overline{x}_0$$

X	\mathbf{X}_{2}	X ₁	X_0	Y	y ₂	
0	0	0	0	8	0	
1	0	0	1	7	1	$\overline{\mathbf{x}}_{2}\overline{\mathbf{x}}_{1}\mathbf{x}$
2	0	1	0	6	1	$\overline{\mathbf{x}}_{2}\mathbf{x}_{1}\overline{\mathbf{x}}$
3	0	1	1	5	1	$\overline{\mathbf{x}}_{2}\mathbf{x}_{1}\mathbf{x}$
4	1	0	0	4	1	$\mathbf{x}_{2}\mathbf{\overline{x}}_{1}\mathbf{\overline{x}}$
5	1	0	1	3	0	
6	1	1	0	2	0	
7	1	1	1	1	0	

Two's Complement Formulas

$$\mathbf{y}_{0} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{0}$$

$$\mathbf{y}_{1} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

Combinational Circuit Design

Combinational circuit

Output determined by input

Design process

Specify semantics
 Black Box input and output (informal semantics)

Truth Table

(formal semantics)

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional) Boolean algebra Karnaugh maps
- 4. Boolean formula → combinational circuit

$$y_0 = \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 x_0 + x_2 \overline{x}_1 x_0 + x_2 x_1 x_0$$

$$y_1 = \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 \overline{x}_0 + x_2 \overline{x}_1 x_0 + x_2 x_1 \overline{x}_0$$

$$y_2 = \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 \overline{x}_0 + \overline{x}_2 x_1 x_0 + \overline{x}_2 \overline{x}_1 \overline{x}_0$$

Two's Complement Circuits

Two's Complement Gate Array

Combinational Circuit Design

Combinational circuit

Output determined by input

Design process

1. Specify semantics

```
Black Box: input and output (informal semantics)
Truth Table (formal semantics)
```

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

Simplification of Boolean Formulas

$$\mathbf{y}_{0} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{0}$$

$$\mathbf{y}_{1} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$y_0 = \overline{x_2} \overline{x_1} x_0 + \overline{x_2} x_1 x_0 + x_2 \overline{x_1} x_0 + x_2 x_1 x_0$$

$$y_1 = x_2 x_1 x_0 + x_2 x_1 x_0 + x_2 x_1 x_0 + x_2 x_1 x_0$$

$$y_2 = x_2 x_1 x_0 + x_2 x_1 x_0 + x_2 x_1 x_0 + x_2 x_1 x_0$$

$$y_0 = \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 x_0 + x_2 \overline{x}_1 x_0 + x_2 x_1 x_0$$

$$y_0 = \overline{x_2} \overline{x_1} x_0 + \overline{x_2} \overline{x_1} x_0 + x_2 \overline{x_1} x_0 + x_2 \overline{x_1} x_0$$

$$y_{0} = \overline{x_{2}} \overline{x_{1}} x_{0} + \overline{x_{2}} x_{1} x_{0} + x_{2} \overline{x_{1}} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = \overline{x_{2}} x_{1} x_{0} + \overline{x_{2}} x_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$\overline{x_{2}} x_{0} + x_{2} \overline{x_{1}} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = \overline{x}_{2} \overline{x}_{1} x_{0} + \overline{x}_{2} x_{1} x_{0} + x_{2} \overline{x}_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = \overline{x}_{2} x_{1} x_{0} + \overline{x}_{2} x_{1} x_{0} + x_{2} \overline{x}_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$\overline{x}_{2} x_{0} + x_{2} \overline{x}_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = \overline{x}_{2} \overline{x}_{1} x_{0} + \overline{x}_{2} x_{1} x_{0} + x_{2} \overline{x}_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = \overline{x}_{2} x_{0} + x_{2} \overline{x}_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = \overline{x}_{2} x_{0} + x_{2} x_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$\overline{x}_{2} x_{0} + x_{2} x_{0}$$

$$y_{0} = \overline{x}_{2} \overline{x}_{1} x_{0} + \overline{x}_{2} x_{1} x_{0} + x_{2} \overline{x}_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = \overline{x}_{2} x_{0} + x_{2} \overline{x}_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = \overline{x}_{2} x_{0} + x_{2} x_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = \overline{x}_{2} \overline{x}_{1} x_{0} + \overline{x}_{2} x_{1} x_{0} + x_{2} \overline{x}_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = \overline{x}_{2} x_{0} + x_{2} \overline{x}_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = \overline{x}_{2} x_{0} + x_{2} x_{1} x_{0} + x_{2} x_{1} x_{0}$$

$$y_{0} = x_{0}$$

$$y_0 = x_0$$

$$y_1 = \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 \overline{x}_0 + x_2 \overline{x}_1 x_0 + x_2 x_1 \overline{x}_0$$

$$y_2 = \overline{x_2} \overline{x_1} x_0 + \overline{x_2} \overline{x_1} \overline{x_0} + \overline{x_2} \overline{x_1} x_0 + \overline{x_2} \overline{x_1} \overline{x_0}$$

Simplification of y₁ Formula

$$y_1 = \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 \overline{x}_0 + x_2 \overline{x}_1 x_0 + x_2 x_1 \overline{x}_0$$

Simplification of y₁ Formula

$$y_1 = x_2 x_1 x_0 + x_2 x_1 x_0 + x_2 x_1 x_0 + x_2 x_1 x_0$$

$$\mathbf{y}_{1} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{1} = \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{1} = \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{1} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{1} = \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{1} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{1} = \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \mathbf{x}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{1} = \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \mathbf{x}_{1} \overline{\mathbf{x}}_{0}$$

$$y_0 = x_0$$

$$\mathbf{y}_1 = \overline{\mathbf{x}}_1 \mathbf{x}_0 + \mathbf{x}_1 \overline{\mathbf{x}}_0$$

$$y_2 = \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 \overline{x}_0 + \overline{x}_2 x_1 x_0 + \overline{x}_2 \overline{x}_1 \overline{x}_0$$

$$y_2 = \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 \overline{x}_0 + \overline{x}_2 x_1 x_0 + \overline{x}_2 \overline{x}_1 \overline{x}_0$$

$$y_2 = \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 \overline{x}_0 + \overline{x}_2 x_1 x_0 + \overline{x}_2 \overline{x}_1 \overline{x}_0$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$+ \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_2 = \overline{\mathbf{x}}_2 \mathbf{x}_0 + \overline{\mathbf{x}}_2 \mathbf{x}_1 + \mathbf{x}_2 \overline{\mathbf{x}}_1 \overline{\mathbf{x}}_0$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

$$\mathbf{y}_{2} = \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \mathbf{x}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{0}$$

Simplified 2's Complement Formulas

$$y_0 = x_0$$

$$\mathbf{y}_1 = \overline{\mathbf{x}}_1 \mathbf{x}_0 + \mathbf{x}_1 \overline{\mathbf{x}}_0$$

$$\mathbf{y}_2 = \overline{\mathbf{x}}_2 \mathbf{x}_0 + \overline{\mathbf{x}}_2 \mathbf{x}_1 + \mathbf{x}_2 \overline{\mathbf{x}}_1 \overline{\mathbf{x}}_0$$

Combinational Circuit Design

Combinational circuit

Output determined by input

Design process

Specify semantics
 Black Box input and output (informal semantics)

Truth Table

(formal semantics)

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional) Boolean algebra Karnaugh maps
- 4. Boolean formula → combinational circuit

Circuit:
$$y_0 = x_0$$

Circuit: $y_0 = x_0$

Circuit:
$$\mathbf{y}_1 = \overline{\mathbf{x}}_1 \mathbf{x}_0 + \mathbf{x}_1 \overline{\mathbf{x}}_0$$

$$\overline{\mathbf{x}}_{1}\mathbf{x}_{0} + \mathbf{x}_{1}\overline{\mathbf{x}}_{0} - \mathbf{x}_{1}\mathbf{x}_{1}$$

Circuit:
$$\mathbf{y}_1 = \overline{\mathbf{x}}_1 \mathbf{x}_0 + \mathbf{x}_1 \overline{\mathbf{x}}_0$$

Circuit: $\mathbf{y}_1 = \overline{\mathbf{x}}_1 \mathbf{x}_0 + \mathbf{x}_1 \overline{\mathbf{x}}_0$

Circuit: $\mathbf{y}_1 = \overline{\mathbf{x}}_1 \mathbf{x}_0 + \mathbf{x}_1 \overline{\mathbf{x}}_0$

Circuit: $\mathbf{y}_1 = \overline{\mathbf{x}}_1 \mathbf{x}_0 + \mathbf{x}_1 \overline{\mathbf{x}}_0$

€1 Y_0

Circuit:
$$\mathbf{y}_2 = \overline{\mathbf{x}}_2 \mathbf{x}_0 + \overline{\mathbf{x}}_2 \mathbf{x}_1 + \mathbf{x}_2 \overline{\mathbf{x}}_1 \overline{\mathbf{x}}_0$$

$$\bar{\mathbf{x}}_{2}\mathbf{x}_{0} + \bar{\mathbf{x}}_{2}\mathbf{x}_{1} + \bar{\mathbf{x}}_{2}\bar{\mathbf{x}}_{1}\bar{\mathbf{x}}_{0} - \mathbf{\mathbf{x}}_{2}\mathbf{\mathbf{x}}_{2}$$

Circuit:
$$\mathbf{y}_2 = \overline{\mathbf{x}}_2 \mathbf{x}_0 + \overline{\mathbf{x}}_2 \mathbf{x}_1 + \mathbf{x}_2 \overline{\mathbf{x}}_1 \overline{\mathbf{x}}_0$$

€1 Y_0

Circuit:
$$\mathbf{y}_2 = \overline{\mathbf{x}}_2 \mathbf{x}_0 + \overline{\mathbf{x}}_2 \mathbf{x}_1 + \mathbf{x}_2 \overline{\mathbf{x}}_1 \overline{\mathbf{x}}_0$$

€1 Y_0

Circuit: $\mathbf{y}_2 = \overline{\mathbf{x}}_2 \mathbf{x}_0 + \overline{\mathbf{x}}_2 \mathbf{x}_1 + \mathbf{x}_2 \overline{\mathbf{x}}_1 \overline{\mathbf{x}}_0$

⟨1) Y_0

Circuit: $\mathbf{y}_2 = \overline{\mathbf{x}}_2 \mathbf{x}_0 + \overline{\mathbf{x}}_2 \mathbf{x}_1 + \mathbf{x}_2 \overline{\mathbf{x}}_1 \overline{\mathbf{x}}_0$

⟨1) Y_0

Two's Complement Circuits

Combinational Circuit Design

Combinational circuit Output determined by input

Design process

1. Specify semantics

```
Black Box: input and output (informal semantics)
Truth Table (formal semantics)
```

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

Inverters, Decoders, Multiplexer

Inverter: select data input or its negation

- 1 data input
- 1 selector input
- 1 output

Decoder: select unique output to be 1 (true)

N selector inputs

2^N outputs

Multiplexer: select unique data input to be output

2^N data inputs

N selector inputs

1 output

Inverter Black Box

Inverter Truth Table

Inverter Formula

$$q = \overline{s}d + \overline{s}d$$

Inverter Circuit

$$q = \overline{s}d + \overline{s}d$$

Inverter Component Icon

$$q = \overline{s}d + \overline{s}\overline{d}$$

Inverter Summary

Inverter: select data input or its negation

- 1 data input
- 1 selector input
- 1 output

N-Bit Decoder

Each different combination of N input bits uniquely specifies one of 2^N outputs. An output is **1** if and only if the corresponding input combination is active (true). For any input, exactly one output is **1**.

N-Bit Decoder Truth Table:

N input (selector) columns

2^N output columns

2^N rows

Exactly one 1 in each output column

Exactly one 1 in each output row

1-Bit Decoder Black Box

1-Bit Decoder Truth Table

1-Bit Decoder Formulas

$$\mathbf{w}_0 = \overline{\mathbf{s}}$$

$$\mathbf{W}_{1} = \mathbf{S}$$

S	\mathbf{W}_{0}	W ₁
0	1	0
1	0	1

$$\mathbf{w}_0 = \mathbf{s}$$

1-Bit Decoder Component Icon

S	\mathbf{W}_{0}	\mathbf{W}_{1}
0	1	0
1	0	1

$$\mathbf{w}_0 = \mathbf{s}$$

$$\mathbf{w}_1 = \mathbf{s}$$

2-Bit Decoder

2-bit Decoder Truth Table

#	S ₁	$\mathbf{S_0}$	\mathbf{W}_{00}	\mathbf{W}_{01}	\mathbf{W}_{10}	W ₁₁
0	0	0	1	0	0	0
1	0	1	0	1	0	0
2	1	0	0	0	1	0
3	1	1	0	0	0	1

2-bit Decoder Formulas

$w_{11} = s_1 s_0$	\mathbf{W}_{11}	\mathbf{W}_{10}	\mathbf{W}_{01}	\mathbf{W}_{00}	S_0	S ₁	#
$w_{10} = s_1 s_0$	0	0	0	1	0	0	0
_	0	0	1	0	1	0	1
$\mathbf{w}_{01} = \mathbf{s}_{1}\mathbf{s}_{0}$	0	1	0	0	0	1	2
$w_{00} = s_1 s_0$	1	0	0	0	1	1	3

Decoder Summary

Decoder: select unique output to be 1 (true)

N selector inputs

2^N outputs

M-way Multiplexer ($M \equiv 2^N$)

N (lg M) *selector* input bits choose one of 2^N (M) *data* input bitss to output

2^N-way multiplexer truth table:

```
2^{N} data input columns (\mathbf{d_i} \ 0 \le \mathbf{i} < 2^{N})
N selector input columns (\mathbf{s_j} \ 0 \le \mathbf{j} < N, \ 0 \le \mathbf{s} < 2^{N})
1 output column (\mathbf{x} = \mathbf{d_s})
```


#	S	d_1	d_0	q
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

1-Bit Decoder

Two Way Multiplexer Circuit

$$X = \overline{S}A + SB$$

4-Way Multiplexer Black Box

S ₁	S ₀	d ₁₁	d ₁₀	d ₀₁	d_{00}	q
0	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	0	0
0	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1	1
0	1	$\sqrt{}$	$\sqrt{}$	0	$\sqrt{}$	0
0	1	$\sqrt{}$	$\sqrt{}$	1	$\sqrt{}$	1
1	0	$\sqrt{}$	0	$\sqrt{}$	$\sqrt{}$	0
1	0	$\sqrt{}$	1	$\sqrt{}$	$\sqrt{}$	1
1	1	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	0
1	1	1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1

S ₁	S ₀	d ₁₁	d ₁₀	d_{01}	d_{00}	q	
0	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	0	0	
0	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1	1	$\overline{s}_{1}\overline{s}_{0}d_{00}$
0	1	$\sqrt{}$	$\sqrt{}$	0	$\sqrt{}$	0	1 0 00
0	1	$\sqrt{}$	$\sqrt{}$	1	$\sqrt{}$	1	$+ \bar{s}_{1}^{-} s_{0}^{-} d_{01}^{-}$
1	0	$\sqrt{}$	0	$\sqrt{}$	$\sqrt{}$	0	
1	0	$\sqrt{}$	1	$\sqrt{}$	$\sqrt{}$	1	$+ s_1 \overline{s}_0 d_{10}$
1	1	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	0	
1	1	1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1	$+ s_{1}s_{0}d_{11}$

A and B Multiplexers

2^N-Way Multiplexer Summary

N selector inputs specify one of 2^N data inputs to output

n-bit Binary Numbers

Unsigned:
$$b_{n-1}b_{n-2} \dots b_1 b_0$$
 $(b_i = 0 \text{ or } b_i = 1)$ value: $b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12^1 + b_02^0$ range: $[0 \dots 2^n - 1]$ n-bit sum: $\mathbf{A} \stackrel{\leftarrow}{+} \mathbf{B} = \mathbf{A} + \mathbf{B} - \mathbf{c} \cdot \mathbf{2}^n$ n-bit diff: $\mathbf{A} \stackrel{\leftarrow}{-} \mathbf{B} \equiv \mathbf{A} \stackrel{\leftarrow}{+} (\mathbf{2}^n - \mathbf{B}) = \mathbf{A} \stackrel{\leftarrow}{+} \overline{\mathbf{B}} + 1 = \mathbf{A} - \mathbf{B} + \mathbf{2}^n - \mathbf{c} \cdot \mathbf{2}^n$ Signed: $b_{n-1}b_{n-2} \dots b_1 b_0$ $(b_i = 0 \text{ or } b_i = 1)$

Signed:
$$b_{n-1}b_{n-2} ... b_1 b_0$$
 $(b_i = 0 \text{ or } b_i = 1)$
Value: $-b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + ... + b_12^1 + b_02^0$

Range: $[-2^{n-1} .. 2^{n-1}-1]$

n-bit sum: A + B = A + B iff v=0

n-bit diff: A - B = A - B iff v=0

Honesty Criteria

The n-bit result **r** of a binary operation on n-bit values **a** and **b** is **honest** (**deceptive**) if it is **the same as** (**different from**) the whole number result of the same operation on the same values.

- (n-bit) unsigned subtraction is *honest* iff (c = 1) Carry flag is set
- (n-bit) signed addition is *honest* iff (v = 0) a and b have different signs or a, b, and r have same sign
- (n-bit) signed subtraction is *honest* iff (v = 0) a and b have same sign or a and r have same sign

Condition Flags

$$A = B$$
 ??

$$A \ge B$$

unsigned

both
$$A = B$$

$$A = B$$
 if and only if $A - B = 0$

$$A \ge B$$
 if and only if $A - B \ge 0$

$$A-B \ge 0$$

unsigned

both
$$A-B=0$$

$$A = B$$
 if and only if $A - B = 0$

$$A \ge B$$
 if and only if $A - B \ge 0$

$$A-B \ge 0$$

unsigned

both
$$A-B=0$$
 z

$$A = B$$
 if and only if $A - B = 0$

$$A \ge B$$
 if and only if $A - B \ge 0$

$$A-B \ge 0$$
 c

unsigned

both
$$A-B=0$$
 z

$$A \neq B$$
 if and only if $A - B \neq 0$

$$A < B$$
 if and only if $A - B < 0$

$$A-B \ge 0$$
 c $A-B < 0$

unsigned

both
$$A-B=0$$
 Z $A-B \neq 0$

$$A \neq B$$
 if and only if $A - B \neq 0$

$$A < B$$
 if and only if $A - B < 0$

$$A-B \ge 0$$
 c $A-B < 0$ c

unsigned

both
$$A-B=0$$
 Z $A-B \neq 0$ Z

$$A \leq B$$
 if and only if $A - B \leq 0$

$$A > B$$
 if and only if $A - B > 0$

$$A-B \ge 0$$
 c $A-B < 0$ c

unsigned

$$A-B \le 0$$
 $A-B > 0$

both
$$A-B=0$$
 Z $A-B \neq 0$ Z

$$A \leq B$$
 if and only if $A - B \leq 0$

$$A > B$$
 if and only if $A - B > 0$

$$A-B \ge 0$$
 c $A-B < 0$ c

unsigned

$$A-B \le 0$$
 $z+c$ $A-B > 0$

both
$$A-B=0$$
 Z $A-B \neq 0$ Z

$$A \leq B$$
 if and only if $A - B \leq 0$

$$A > B$$
 if and only if $A - B > 0$

$$A-B \ge 0$$
 c $A-B < 0$ c

unsigned

$$A-B \le 0$$
 $z+\overline{c}$ $A-B > 0$ \overline{c}

both
$$A-B=0$$
 Z $A-B \neq 0$ Z

$$A \ge B$$
 if and only if $A - B \ge 0$

$$A < B$$
 if and only if $A - B < 0$

$$A-B \ge 0$$
 c $A-B < 0$ c

unsigned

$$A-B \le 0$$
 $z+\overline{c}$ $A-B > 0$ $\overline{z}c$

both
$$A-B=0$$
 Z $A-B \neq 0$ Z

$$A-B \ge 0$$
 $A-B < 0$

Condition Flags

$$A \ge B$$
 if and only if $A - B \ge 0$

$$A < B$$
 if and only if $A - B < 0$

$$A-B \ge 0$$
 c $A-B < 0$ c

unsigned

$$A-B \le 0$$
 $z+\overline{c}$ $A-B > 0$ zc

both
$$A-B=0$$
 Z $A-B \neq 0$ Z

$$A-B \ge 0$$
 $\overline{nv+nv}$ $A-B < 0$

$$A \ge B$$
 if and only if $A - B \ge 0$

$$A < B$$
 if and only if $A - B < 0$

$$A-B \ge 0$$
 c $A-B < 0$ c

unsigned

$$A-B \le 0$$
 $z+\overline{c}$ $A-B > 0$ \overline{c}

both
$$A-B=0$$
 Z $A-B \neq 0$ Z

$$A-B \ge 0$$
 $nv+nv$ $A-B < 0$ $nv+nv$

$$A \ge B$$
 if and only if $A - B \ge 0$

$$A < B$$
 if and only if $A - B < 0$

$$A-B \ge 0$$
 c $A-B < 0$ c

unsigned

$$A-B \le 0$$
 $z+\overline{c}$ $A-B > 0$ $\overline{z}c$

both
$$A-B=0$$
 Z $A-B \neq 0$ Z

$$A-B \ge 0$$
 $nv+nv$ $A-B < 0$ $nv+nv$

signed $A-B \le 0$ A-B > 0

$$A \ge B$$
 if and only if $A - B \ge 0$

$$A < B$$
 if and only if $A - B < 0$

$$A-B \ge 0$$
 c $A-B < 0$ c

unsigned

$$A-B \le 0$$
 $z+c$ $A-B > 0$ zc

both
$$A-B=0$$
 Z $A-B \neq 0$ Z

$$A-B \ge 0$$
 $nv+nv$ $A-B < 0$ $nv+nv$

signed
$$A-B \le 0$$
 $z+nv+nv$ $A-B > 0$

$$A \ge B$$
 if and only if $A - B \ge 0$

$$A < B$$
 if and only if $A - B < 0$

$$A-B \ge 0$$
 c $A-B < 0$ c

unsigned

$$A-B \le 0$$
 $z+\overline{c}$ $A-B > 0$ $\overline{z}c$

both
$$A-B=0$$
 Z $A-B \neq 0$ Z

$$A-B \ge 0$$
 $nv+nv$ $A-B < 0$ $nv+nv$

signed ____

$$A-B \le 0$$
 $z+nv+nv$ $A-B > 0$ $znv+nv$

unsigned
$$A \ge B c \qquad A < B \overline{c}$$

$$A \le B \overline{z+c} \qquad A > B \overline{z}c$$
both
$$A = B \overline{z} \qquad A \ne B \overline{z}$$
signed
$$A \ge B \overline{nv+nv} \qquad A < B \overline{nv+nv}$$

HW 10: Condition Flags

For each line in the table on the following page indicate whether the assertion would be true (T), false (?), or unknown (?) if the codition flags obtained their indicated values after the ALU performed the indicated operation.

oner	ration	flags	assertion	T/F/?
•••				1/1/:
A-B	unsigned	ZNCV	result is honest	
A+B	signed	ZNCV	result is honest	
A+B	unsigned	ZNCV	result is honest	
A-B	signed	ZNCV	result is honest	
A+B	unsigned	ZNCV	result is honest	
A+B	signed	ZNCV	result is honest	
A-B	unsigned	ZNCV	A > B	
A-B	signed	ZNCV	A = B	
A-B	unsigned	ZNCV	A < B	
A+B	signed	ZNCV	$A \leq B$	
A-B	unsigned	ZNCV	A > B	
A-B	signed	ZNCV	$A \leq B$	
A+B	unsigned	ZNCV	A < B	
A-B	signed	ZNCV	$A \geq B$	
A-B	unsigned	ZNCV	$A \leq B$	
A-B	signed	ZNCV	$A \geq B$	

Honesty Criteria

The n-bit result **r** of a binary operation on n-bit values **a** and **b** is **honest** (**deceptive**) if it is **the same as** (**different from**) the whole number result of the same operation on the same values.

- (n-bit) unsigned subtraction is *honest* iff (c = 1) Carry flag is set
- (n-bit) signed addition is *honest* iff (v = 0) a and b have different signs or a, b, and r have same sign
- (n-bit) signed subtraction is *honest* iff (v = 0) a and b have same sign or a and r have same sign

HW 9: Signed Binary Arithmetic

For each of the <X, Y> pairs in the table below:

- a) Convert X and Y → binary
- b) Compute X+Y (the 8-bit sum)
- c) Compute Y (the 2's complement of Y)
- d) Compute $X-Y \equiv X+Y$ (the 8-bit difference)
- e) Indicate the signs of X, Y, X+Y, Y, and X-Y
- f) Convert X+Y, Y, and X-Y→ hexadecimal
- g) Indicate condition flag (z, n, c, v) values for X+Y, X-Y
- h) Is X+Y honest? is X-Y honest?

Where $\langle X, Y \rangle =$

- 1) <0x4F, 0x6D> 2) <0xB3, 0x17>
- 3) $<0\times A3$, $0\times 95>$ 4) $<0\times 6E$, $0\times 3A>$

Signed Arithmetic Example: X4

Signed Arithmetic: X4 a)

X Y X+Y X-Y0x5A

0x5A

01011010 01011010

Signed Arithmetic: X4 b)

Signed Arithmetic: X4 c)

X	Y	X + Y	~Y	X – Y
0x5A	0x5A			
01011010	01011010	01011010 01011010	01011010 10100101	
		0 1 0 1 1 0 1 0 010110100	$\frac{0000001}{10100110}$	

Signed Arithmetic: X4 d)

X	Y	X + Y	~Y	X – Y
0x5A	0x5A			
01011010	01011010	01011010 01011010	$\overline{01011010}$ 10100101	01011010 10100110
		01011010 01011010 010110100	$\frac{00000001}{10100110}$	10100110 111111110 10000000

Signed Arithmetic: X4 e)

X	Y	X + Y	~Y	X – Y
0x5A	0x5A			
01011010	01011010	01011010	$\overline{01011010}$ 10100101	01011010 10100110
		01011010	00000001	1 1 1 1 1 1 0
		010110100	10100110	100000000

Signed Arithmetic: X4 f)

X	Y	X + Y	~Y	X - Y
0 x 5 A	0x5A			
01011010	01011010	01011010 01011010	01011010 10100101	01011010 10100110
		0 1 0 1 1 0 1 0 010110100	10100110	1 1 1 1 1 1 0 10000000
		0xB4	0xA6	0 x 00

Signed Arithmetic: X4

X	Y	X + Y	~Y	X – Y
0 x 5 A	0x5A			
01011010	01011010	01011010 01011010 0 1 0 1 1 0 1 0 010110100	01011010 10100101 00000001 10100110	01011010 10100110 1 1 1 1 1 1 0 10000000
		0xB4 oVerflow	0xA6	0x00 no oVerflow

Signed Arithmetic: X4

X	Y	X + Y	~Y	X – Y
0 x 5 A	0x5A			
01011010	01011010	01011010	01011010	01011010
		01011010	10100101	10100110
		0 1 0 1 1 0 1 0	00000001	11111110
		010110100	10100110	10000000
		0xB4	0xA6	0 x 00
		oVerflow — —		no oVerflow

Signed Arithmetic: X4

X	Y	X + Y	~Y	X – Y
0 x 5 A	0x5A			
01011010	01011010	01011010 01011010 01011010 010110100	01011010 10100101 00000001 10100110	01011010 10100110 1 1 1 1 1 1 0 10000000
		0xB4 oVerflow	0xA6	0x00 no oVerflow

Signed Arithmetic: X4 g)

X	Y	X + Y	~Y	X – Y
0x5A	0x5A			
01011010	01011010	01011010 01011010 01 0 1 1 0 1 0 010110100	01011010 10100101 00000001 10100110	01011010 10100110 1 1 1 1 1 1 0 10000000
		0xB4	0xA6	0x00
		zncv		zncv

Signed Arithmetic: X4 h)

X	Y	X + Y	~Y	X – Y
0x5A	0x5A			
01011010	01011010	01011010 01011010 01 0 1 1 0 1 0 010110100	01011010 10100101 00000001 10100110	01011010 10100110 1 1 1 1 1 1 0 10000000
		0xB4	0xA6	0 x 00
		zncv		zncv
		(s) deceptive		(s) honest