Cluster Analysis

Enrique J. De La Hoz D.

UTB - Data Science

Cluster Analysis

A form of exploratory data analysis (EDA) where observations are divided into meaningful groups that share common characteristics (features).

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

The flow of cluster analysis

Figure 6:

Distance between two observations

- Distance vs Similarity
 - ▶ \$ DISTANCE = 1 SIMILARITY\$

Figure 7:

Figure 8:

Figure 9:

13 / 36

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:

dist() Function

```
two_players
##
## BLUE 0 0
## RED
        9 12
dist(two_players, method = "euclidean")
##
       BLUE
## RED 15
```

More than 2 Observations

BLUE

GREEN 19.10497 13.03840

```
two_players_3
##
## BLUE 0 0
## RED 9 12
## GREEN -2 19
dist(two players 3, method = "euclidean")
```

RED 15.00000

##

R.F.D

Observation	Height (feet)	Weight (lbs)	
1	6.0	200	
2	6.0	202	
3	8.0	200	

Figure 16:

Figure 17:

DISTANCE: 2

Figure 18:

DISTANCE: 2

Figure 19:

DISTANCE: 2

DISTANCE: 2

How to do it?

$$\textit{height}_{\textit{scaled}} = \frac{\textit{height} - \textit{mean(height)}}{\textit{sd(height)}}$$

Scaling Distance

Figure 21:

Scaling Distance

DISTANCE: 0.06

DISTANCE: 10.7

Using R

```
Height Weight
##
## 1
        6
             200
## 2
   6 202
## 3 8
             200
##
          Height Weight
## [1,] -0.5773503 -0.5773503
## [2.] -0.5773503 1.1547005
## [3.] 1.1547005 -0.5773503
## attr(,"scaled:center")
      Height Weight
##
## 6.666667 200.666667
## attr(,"scaled:scale")
##
    Height Weight
## 1.154701 1.154701
```

Distance for categorical Data

	wine	beer	whiskey	vodka
1	TRUE	TRUE	FALSE	FALSE
2	FALSE	TRUE	TRUE	TRUE

Figure 23:

Jaccard Index

$$J(A,B) = \frac{A \cap B}{A \cup B}$$

Figure 24:

Calculatind Jaccard Distance

	wine	beer	whiskey	vodka
1	TRUE	TRUE	FALSE	FALSE
2	FALSE	TRUE	TRUE	TRUE

Figure 25:

$$J(1,2) = \frac{1 \cap 2}{1 \cup 2} = \frac{1}{4} = 0.25$$

$$Distance(1,2) = 1 - J(1,2) = 0.75$$

Jaccard Distance in R

More than two categories

	color	sport	
1	red	soccer	
2	green	hockey	
3	blue	hockey	
4	blue	soccer	

		colorblue	colorgreen	colorred	sporthockey	sportsocce
	1	0	0	1	0	1
Γ	2	0	1	0	1	0
Γ	3	1	0	0	1	0
Γ	4	1	0	0	0	1

Figure 26:

Dummification in R

color sport
1 red soccer

colorx

##

dum

```
## 2 green hockey
## 3 blue hockey
## 4 blue soccer

library(dummies)
dum<- dummy.data.frame(colorx)</pre>
```

Genera

```
dist(dum, method = "binary")
## 1 2 3
```

```
## 2 1.0000000
## 3 1.0000000 0.6666667
## 4 0.6666667 1.0000000 0.6666667
```