Topology

Robin Adams

 $\mathrm{June}\ 27,\ 2022$

Contents

Ι	Set	Theory	5							
1	Clas	sses	6							
	1.1	Classes	6							
	1.2	Subclasses	6							
	1.3	The Empty Class	6							
	1.4	Finite Classes	6							
	1.5	Universal Class	7							
	1.6	Union	7							
	1.7	Intersection	7							
	1.8	Relative Complement	7							
2	Sets 8									
	2.1	Membership	8							
	2.2	The Empty Set	8							
	2.3	Pair Sets	8							
	2.4	Unions	8							
	2.5	Power Set	9							
	2.6	Covers	9							
	2.7	Subset Axioms	9							
	2.8	Intersection	10							
3	Rela	ations	11							
	3.1	Ordered Pairs	11							
	3.2	Cartesian Product	12							
	3.3	Relations	12							
	3.4	Domain	12							
	3.5	Range	13							
	3.6	Field	13							
	3.7	Functions	13							
	3.8	Single-Rooted	14							
	3.9	Surjective	14							
	3.10	Inverse	14							
	3.11	Composition	15							
	3.12	Identity Function	16							

	3.13	Restriction	17
	3.14	Image	17
	3.15	Infinite Cartesian Product	19
	3.16	Reflexive Relations	20
		Symmetric	20
		Transitivity	20
		Equivalence Relations	20
		Equivalence Class	21
	3.21	Disjoint	21
		Partitions	21
		Quotient Sets	22
		The Finite Intersection Property	23
		Countable Intersection Property	24
	3.26	The Axiom of Choice	25
	3.27	Choice Functions	$\frac{-5}{25}$
		Transitive	26
		Minimal Elements	26
		Well-Founded Relations	26
		Transitive Closure	27
		Fixed Points	27
	0.02	I mod I omio	
4	Car	dinal Numbers	28
	4.1	Countability	29
	4.2	Order Theory	30
	4.3	Partially Ordered Sets	33
	4.4	Strict Partial Order	33
	4.5	Strict Linear Orders	33
	4.6	Well Orderings	33
	4.7	Ordinal Numbers	37
	4.8	Cardinal Numbers	39
	4.9	Cardinal Arithmetic	39
	4.10	Rank of a Set	40
		Transfinite Recursion Again	41
		Alephs	41
		Ordinal Arithmetic	42
		Beth Cardinals	43
		Cofinality	43
		Inaccessible Cardinals	44
	-	Directed Set	44
		Cofinal Set	44
	4.10	Connai bet	11
5			4 -
	Nat	ural Numbers	45
•	Nat 5.1	ural Numbers Successors	45
•			
•	5.1	Successors	45

	5.5 Arithmetic		 	 	 				 48
6	Integers								50
7	Rational Numb	oers							52
8	Real Numbers 8.1 The Cantor	Set	 	 	 				 54 55
9	Finite Sets 9.1 Real Analys								56 57
	9.2 Group Theo								
10	Topological Sp								59
	10.1 Topologies								
	10.2 Closed Set								
	10.3 Interior								
	10.4 Closure								
	10.5 Boundary								
	10.6 Limit Point								
	10.7 Basis for a '10.8 Local Basis								
	10.9 Nets 10.10Locally Find								
	10.10Locally Fill 10.11Open Maps								
	10.11Cpell Maps 10.12Continuous								
	10.12Continuous 10.13Homeomorp								
	10.13Homeomorp								
	10.14The Order 10.15The nth Ro								
	10.16The Produc								
		tinuous in E							
	10.17The Subspa								
	10.18The Box To								
	$10.19T_1$ Spaces								
	10.20Hausdorff S								
	10.21The First C								
	10.22Strong Cont								
	10.23Saturated S								
	10.24Quotient M								
	10.25Quotient To								
	10.26Retractions								
	10.27Homogeneo								
	10.28Regular Spa								
	10.29Dense Sets								
	10.30Connected								
	10.31Totally Disc								 115

10.32Paths and Path Connectedness
10.33The Topologist's Sine Curve
10.34The Long Line
10.35Components
10.36Path Components
10.37Local Connectedness
10.38Local Path Connectedness
10.39Weak Local Connectedness
10.40Quasicomponents
10.41Open Coverings
10.42Lindelöf Spaces
10.43Separable Spaces
10.44The Second Countability Axiom
10.45Sequential Compactness
10.46Limit Point Compactness
10.47Countable Compactness
10.48Subnets
10.49Accumulation Points
10.50Compact Spaces
10.51Perfect Maps
10.52Isolated Points
10.53Local Compactness
10.54Compactifications
44 T 1 1 1 G
11 Topological Groups 158
11.1 The Metric Topology
11.2 Real Linear Algebra
11.3 The Uniform Topology
11.4 Uniform Convergence
11.5 Isometric Imbeddings
11.6 Distance to a Set
11.7 Lebesgue Numbers
11.8 Uniform Continuity
11.9 Epsilon-neighbourhoods
11.10Isometry
11.11Shrinking Maps
11.12Contractions

Part I Set Theory

Chapter 1

Classes

1.1 Classes

We speak informally of *classes*. A class is specified by a unary predicate. We write $\{x \mid P(x)\}$ for the class determined by the predicate P(x).

Definition 1.1.1 (Membership). Let a be an object and \mathbf{A} a class. We define the proposition $a \in \mathbf{A}$ (a is a member or element of A) as follows:

The proposition $a \in \{x \mid P(x)\}$ is the proposition P(a).

Definition 1.1.2 (Equality of Classes). Let A and B be classes. We say A and B are equal, A = B, if and only if they have exactly the same elements.

1.2 Subclasses

Definition 1.2.1 (Subclass). Let **A** and **B** be classes. We say **A** is a *subclass* of **B**, $\mathbf{A} \subseteq \mathbf{B}$, if and only if every member of **A** is a member of **B**.

We say **A** is a *proper* subclass of **B**, **A** \subset **B**, if and only if **A** \subseteq **B** and **A** \neq **B**.

1.3 The Empty Class

Definition 1.3.1 (Empty Class). The *empty* class \emptyset is $\{x \mid \bot\}$.

1.4 Finite Classes

Definition 1.4.1. For any objects a_1, \ldots, a_n , we write $\{a_1, \ldots, a_n\}$ for the class $\{x \mid x = a_1 \lor \cdots \lor x = a_n\}$.

1.5 Universal Class

Definition 1.5.1 (Universal Class). The universal class V is the class $\{x \mid \top\}$.

1.6 Union

Definition 1.6.1 (Union). For any classes **A** and **B**, the *union* $\mathbf{A} \cup \mathbf{B}$ is the class $\{x \mid x \in \mathbf{A} \lor x \in \mathbf{B}\}.$

1.7 Intersection

Definition 1.7.1 (Intersection). For any classes **A** and **B**, the *intersection* $\mathbf{A} \cap \mathbf{B}$ is the class $\{x \mid x \in \mathbf{A} \land x \in \mathbf{B}\}.$

1.8 Relative Complement

Definition 1.8.1 (Relative Complement). For any classes **A** and **B**, the *relative* complement $\mathbf{A} - \mathbf{B}$ is $\{x \in \mathbf{A} \mid x \notin \mathbf{B}\}$.

Chapter 2

Sets

2.1 Membership

We take as undefined the notion of set.

We take as undefined the binary relation of membership, \in . If $a \in A$ we say a is a member or element of A. If this does not hold, we write $a \notin A$.

Axiom 2.1.1 (Axiom of Extensionality). Two sets with exactly the same elements are equal.

We may therefore identify the set A with the class $\{x \mid x \in A\}$.

We say a class **A** is a set iff there exists a set A such that $A = \mathbf{A}$. That is, $\{x \mid P(x)\}$ is a set if and only if there exists a set A such that, for all x, we have $x \in A$ if and only if P(x).

2.2 The Empty Set

Axiom 2.2.1 (Empty Set Axiom). The empty class \emptyset is a set.

2.3 Pair Sets

Axiom 2.3.1 (Pairing Axiom). For any objects u and v, the class $\{u, v\}$ is a set

Theorem 2.3.2 (Pairing). For any object a, the class $\{a\}$ is a set.

PROOF: It is $\{a, a\}$. \square

2.4 Unions

Definition 2.4.1 (Union). For any class of sets **A**, the *union* \bigcup **A** is the class $\{x \mid \exists A \in \mathbf{A}. x \in A\}.$

Axiom 2.4.2 (Union Axiom). For any set A, the union $\bigcup A$ is a set.

Theorem 2.4.3 (Union, Pairing). For any sets A and B, the class $A \cup B$ is a set.

PROOF: It is $\bigcup \{A, B\}$. \square

Theorem Schema 2.4.4 (Union, Pairing). For any objects a_1, \ldots, a_n , the class $\{a_1, \ldots, a_n\}$ is a set.

PROOF: We prove each theorem using the last since $\{a_1, \ldots, a_n, a_{n+1}\} = \{a_1, \ldots, a_n\} \cup \{a_{n+1}\}$. \square

2.5 Power Set

Definition 2.5.1 (Power Class). For any class A, the *power* class $\mathcal{P}A$ is the class of all subsets of A.

Axiom 2.5.2 (Power Set Axiom). For any set A, the power class PA is a set.

2.6 Covers

Definition 2.6.1 (Cover). Let **X** be a class and $A \subseteq \mathcal{P}\mathbf{X}$. Then A covers **X**, or is a covering of **X**, if and only if $\bigcup A = \mathbf{X}$.

2.7 Subset Axioms

Axiom Schema 2.7.1 (Subset Axioms, Aussonderung Axioms). For any classes **A** and **B**, if $A \subseteq B$ and **B** is a set then **A** is a set.

Theorem 2.7.2 (Subset). The universal class V is not a set.

Proof:

- $\langle 1 \rangle 1$. Assume: **V** is a set.
- $\langle 1 \rangle 2$. Let: $R = \{ x \in \mathbf{V} \mid x \notin x \}$
- $\langle 1 \rangle 3$. $R \in R$ if and only if $R \notin R$
- $\langle 1 \rangle 4$. Q.E.D.

Proof: This is a contradiction.

П

Theorem 2.7.3 (Subset). If A is a set and B is a class then A - B is a set.

PROOF: It is a subset of A. \square

2.8 Intersection

Definition 2.8.1 (Intersection). For any class **A** of sets, the *intersection* \bigcap **A** is the class $\{x \mid \forall A \in \mathbf{A}. x \in A\}$.

Theorem 2.8.2 (Subset). For any nonempty class A of sets, we have $\bigcap A$ is a set.

Proof:

- $\langle 1 \rangle 1$. Pick $A \in \mathbf{A}$
- $\langle 1 \rangle 2. \cap \mathbf{A} \subseteq A$
- $\langle 1 \rangle 3$. Q.E.D.

PROOF: By a Subset Axiom.

П

Theorem 2.8.3 (Subset). For any sets A and B, the class $A \cap B$ is a set.

PROOF: From a Subset Axiom since $A \cap B \subseteq A$. \square

Chapter 3

Relations

3.1 Ordered Pairs

Definition 3.1.1 (Ordered Pair (Pairing)). For any sets x and y, the *ordered pair* (x,y) is defined to be $\{\{x\},\{x,y\}\}.$

Theorem 3.1.2 (Pairing). For any sets u, v, x, y, we have (u, v) = (x, y) if and only if u = x and v = y

```
Proof:
\langle 1 \rangle 1. Assume: \{\{u\}, \{u, v\}\} = \{\{x\}, \{x, y\}\}
\langle 1 \rangle 2. \ \{u\} \in \{\{x\}, \{x, y\}\}\
\langle 1 \rangle 3. \ \{u, v\} \in \{\{x\}, \{x, y\}\}\
\langle 1 \rangle 4. \ \{u\} = \{x\} \text{ or } \{u\} = \{x, y\}
\langle 1 \rangle 5. \ \{u, v\} = \{x\} \text{ or } \{u, v\} = \{x, y\}
\langle 1 \rangle 6. Case: \{u\} = \{x, y\}
    \langle 2 \rangle 1. \ u = x = y
   \langle 2 \rangle 2. u = v = x = y
       PROOF: From \langle 1 \rangle 5
\langle 1 \rangle 7. Case: \{u, v\} = \{x\}
   PROOF: Similar.
\langle 1 \rangle 8. Case: \{u\} = \{x\} \text{ and } \{u, v\} = \{x, y\}
    \langle 2 \rangle 1. \ u = x
    \langle 2 \rangle 2. u = y or v = y
   \langle 2 \rangle 3. Case: u = y
       PROOF: This case is the case considered in \langle 1 \rangle 6.
   \langle 2 \rangle 4. Case: v = y
       PROOF: We have u = x and v = y as required.
```

Lemma 3.1.3 (Pairing, Power Set). Let x, y and C be sets. If $x \in C$ and $y \in C$ then $(x, y) \in \mathcal{PPC}$.

Proof:

```
\begin{split} &\langle 1 \rangle 1. \text{ Let: } x, y \text{ and } C \text{ be sets.} \\ &\langle 1 \rangle 2. \text{ Assume: } x \in C \\ &\langle 1 \rangle 3. \text{ Assume: } y \in C \\ &\langle 1 \rangle 4. \quad \{x\} \subseteq C \\ &\langle 1 \rangle 5. \quad \{x,y\} \subseteq C \\ &\langle 1 \rangle 6. \quad \{x\} \in \mathcal{P}C \\ &\langle 1 \rangle 7. \quad \{x,y\} \in \mathcal{P}C \\ &\langle 1 \rangle 8. \quad \{\{x\},\{x,y\}\} \subseteq \mathcal{P}C \\ &\langle 1 \rangle 9. \quad \{\{x\},\{x,y\}\} \in \mathcal{PP}C \\ &\Box \end{split}
```

Lemma 3.1.4 (Pairing, Union). Let x, y and A be sets. If $(x, y) \in A$ then x and y belong to $\bigcup \bigcup A$.

```
Proof:
```

```
\begin{array}{ll} \langle 1 \rangle 1. & \text{Let: } x, y \text{ and } A \text{ be sets.} \\ \langle 1 \rangle 2. & \text{Assume: } (x,y) \in A \\ \langle 1 \rangle 3. & \{x,y\} \in \bigcup A \\ \langle 1 \rangle 4. & x \in \bigcup \bigcup A \\ \langle 1 \rangle 5. & y \in \bigcup \bigcup A \\ & & \\ & & \\ & & \\ & & \\ \end{array}
```

3.2 Cartesian Product

Definition 3.2.1 (Cartesian Product (Pairing)). Let **A** and **B** be classes. The Cartesian product $\mathbf{A} \times \mathbf{B}$ is the class $\{(x,y) \mid x \in \mathbf{A}, y \in \mathbf{B}\}$.

Theorem 3.2.2 (Pairing, Union, Power Set, Subset). For any sets A and B, the Cartesian product $A \times B$ is a set.

PROOF: It is a subset of $\mathcal{PP}(A \cup B)$ by Lemma 3.1.3. \sqcup

3.3 Relations

Definition 3.3.1 (Relation (Pairing)). A relation is a class of ordered pairs. Given a relation \mathbf{R} , we write $x\mathbf{R}y$ for $(x,y) \in \mathbf{R}$. A relation is small iff it is a set.

3.4 Domain

Definition 3.4.1 (Domain (Pairing)). Let **R** be a class. The *domain* of **R** is dom $\mathbf{R} = \{x \mid \exists y. x \mathbf{R} y\}$.

Theorem 3.4.2 (Pairing, Union, Subset). For any set R, the domain dom R is a set.

PROOF: It is a subset of $\bigcup \bigcup R$ by Lemma 3.1.4. \square

3.5 Range

Definition 3.5.1 (Domain (Pairing)). Let **R** be a class. The *range* of **R** is $\operatorname{ran} \mathbf{R} = \{y \mid \exists x. x \mathbf{R} y\}.$

Theorem 3.5.2 (Pairing, Union, Subset). For any set R, the range ran R is a set.

PROOF: It is a subset of $\bigcup \bigcup R$ by Lemma 3.1.4. \square

3.6 Field

Definition 3.6.1 (Field). Let **R** be a class. The *field* of **R** is fld $\mathbf{R} = \operatorname{dom} \mathbf{R} \cup \operatorname{ran} \mathbf{R}$.

Theorem 3.6.2 (Pairing, Union, Subset). For any set R, the field fld R is a set

PROOF: Theorems 2.4.3, 3.4.2 and 3.5.2. \square

3.7 Functions

Definition 3.7.1 (Class Term (Pairing)). A *class term* is a relation **F** such that, for all x, y, y', if x**F**y and x**F**y' then y = y'.

If **F** is a class term and $x \in \text{dom } \mathbf{F}$, then we write $\mathbf{F}(x)$ for the unique y such that $x\mathbf{F}y$.

We write $\mathbf{F} : \mathbf{A} \to \mathbf{B}$ iff \mathbf{F} is a class term, dom $\mathbf{F} = \mathbf{A}$ and ran $\mathbf{F} \subseteq \mathbf{B}$. A function is a class term that is a set.

Axiom 3.7.2 (Axiom of Choice, First Form (Pairing)). For any relation R, there exists a function $H \subseteq R$ such that dom H = dom R.

Theorem 3.7.3. The following are equivalent.

- 1. The Axiom of Choice
- 2. (Multiplicative Axiom) For any function H with domain I such that H(i) is nonempty for all $i \in I$, there exists a function f with domain I such that, for all $i \in I$, we have $f(i) \in H(i)$.
- 3. Every set has a choice function.
- 4. Let A be a set of pairwise disjoint nonempty sets. Then there exists a set C containing exactly one element from each member of A.

3.8 Single-Rooted

Definition 3.8.1 (Single-Rooted (Pairing)). A class **R** is *single-rooted* if and only if, for all x, x', y, if x**R**y and x'**R**y then x = x'.

We call a class term *one-to-one*, *injective* or an *injection* if and only if it is single-rooted.

3.9 Surjective

Definition 3.9.1 (Surjective (Pairing)). Let $\mathbf{F} : \mathbf{A} \to \mathbf{B}$. Then \mathbf{F} is *surjective* if and only if ran $\mathbf{F} = \mathbf{B}$.

3.10 Inverse

Definition 3.10.1 (Inverse (Pairing)). Let **R** be a class. The *inverse* of **R** is $\mathbf{R}^{-1} = \{(y, x) \mid x\mathbf{R}y\}.$

Theorem 3.10.2 (Pairing, Union, Power Set, Subset). For any set R, the inverse R^{-1} is a set.

PROOF: It is a subset of ran $R \times \text{dom } R$. \square

Theorem 3.10.3 (Pairing). For any class \mathbf{F} , we have dom $\mathbf{F}^{-1} = \operatorname{ran} \mathbf{F}$.

PROOF: For any x, we have

$$x \in \text{dom } \mathbf{F}^{-1} \Leftrightarrow \exists y. (x, y) \in \mathbf{F}^{-1}$$

 $\Leftrightarrow \exists y. (y, x) \in \mathbf{F}$
 $\Leftrightarrow x \in \text{ran } \mathbf{F}$

Theorem 3.10.4 (Pairing). For any set \mathbf{F} , we have ran $\mathbf{F}^{-1} = \operatorname{dom} \mathbf{F}$.

PROOF: For any x, we have

$$x \in \operatorname{ran} \mathbf{F}^{-1} \Leftrightarrow \exists y. (y, x) \in \mathbf{F}^{-1}$$

 $\Leftrightarrow \exists y. (x, y) \in \mathbf{F}$
 $\Leftrightarrow x \in \operatorname{dom} \mathbf{F}$

Theorem 3.10.5 (Pairing). For any relation \mathbf{F} , we have $(\mathbf{F}^{-1})^{-1} = \mathbf{F}$.

PROOF: For any z we have

$$z \in (\mathbf{F}^{-1})^{-1} \Leftrightarrow \exists x, y.z = (x, y) \land (y, x) \in \mathbf{F}^{-1}$$
$$\Leftrightarrow \exists x, y.z = (x, y) \land (x, y) \in \mathbf{F}$$
$$\Leftrightarrow z \in \mathbf{F}$$
 (F is a relation)

Theorem 3.10.6 (Pairing). For any class \mathbf{F} , we have \mathbf{F}^{-1} is a class term if and only if \mathbf{F} is single-rooted.

PROOF: Immediate from definitions.

Theorem 3.10.7 (Pairing). Let \mathbf{F} be a relation. Then \mathbf{F} is a class term if and only if \mathbf{F}^{-1} is single-rooted.

PROOF: Immediate from definitions. \Box

Theorem 3.10.8 (Pairing). Let **F** be a one-to-one class term and $x \in \text{dom } \mathbf{F}$. Then $\mathbf{F}^{-1}(\mathbf{F}(x)) = x$.

PROOF: We have $(x, \mathbf{F}(x)) \in \mathbf{F}$ and so $(\mathbf{F}(x), x) \in \mathbf{F}^{-1}$. \square

Theorem 3.10.9 (Pairing). Let **F** be a one-to-one function and $y \in \operatorname{ran} \mathbf{F}$. Then $\mathbf{F}(\mathbf{F}^{-1}(y)) = y$.

PROOF: From Theorems 3.10.3, 3.10.5 and 3.10.8. \square

3.11 Composition

Definition 3.11.1 (Composition (Pairing)). Let **R** and **S** be relations. The *composition* of **R** and **S** is $\mathbf{S} \circ \mathbf{R} = \{(x,z) \mid \exists y.x\mathbf{R}y \wedge y\mathbf{S}z\}.$

Theorem 3.11.2 (Pairing, Union, Power Set, Subset). If R and S are small relations then $S \circ R$ is small.

PROOF: It is a subset of dom $R \times \operatorname{ran} S$. \square

Theorem 3.11.3 (Pairing). Let \mathbf{F} and \mathbf{G} be class terms. Then $\mathbf{G} \circ \mathbf{F}$ is a function, its domain is $\{x \in \text{dom } \mathbf{F} \mid \mathbf{F}(x) \in \text{dom } \mathbf{G}\}$, and for x in this domain, we have $(\mathbf{F} \circ \mathbf{G})(x) = \mathbf{F}(\mathbf{G}(x))$.

PROOF:

```
\langle 1 \rangle 1. \mathbf{G} \circ \mathbf{F} is a class term.
```

- $\langle 2 \rangle 1$. Let: $x(\mathbf{G} \circ \mathbf{F})z$ and $x(\mathbf{G} \circ \mathbf{F})z'$
- $\langle 2 \rangle 2$. Pick y, y' such that $x \mathbf{F} y, x \mathbf{F} y', y \mathbf{G} z$ and $y' \mathbf{G} z'$
- $\langle 2 \rangle 3. \ y = y'$

PROOF: Since \mathbf{F} is a class term.

 $\langle 2 \rangle 4. \ z = z'$

PROOF: Since **G** is a class term.

 $\langle 1 \rangle 2$. dom($\mathbf{G} \circ \mathbf{F}$) = { $x \in \text{dom } \mathbf{F} \mid \mathbf{F}(x) \in \text{dom } \mathbf{G}$ }

Proof:

$$x \in \text{dom}(\mathbf{G} \circ \mathbf{F}) \Leftrightarrow \exists z.x (\mathbf{G} \circ \mathbf{F})z$$

 $\Leftrightarrow \exists y, z.x \mathbf{F} y \land y \mathbf{G} z$
 $\Leftrightarrow x \in \text{dom } \mathbf{F} \land \mathbf{F}(x) \in \text{dom } \mathbf{G}$

 $\langle 1 \rangle 3$. For x in this domain, we have $(\mathbf{F} \circ \mathbf{G})(x) = \mathbf{F}(\mathbf{G}(x))$.

PROOF: Since $(x, \mathbf{F}(x)) \in \mathbf{F}$ and $(\mathbf{F}(x), \mathbf{G}(\mathbf{F}(x))) \in \mathbf{G}$.

Theorem 3.11.4 (Pairing). For any classes \mathbf{F} and \mathbf{G} , we have $(\mathbf{G} \circ \mathbf{F})^{-1} = \mathbf{F}^{-1} \circ \mathbf{G}^{-1}$.

Proof:

$$(x,z) \in (\mathbf{G} \circ \mathbf{F})^{-1} \Leftrightarrow (z,x) \in \mathbf{G} \circ \mathbf{F}$$

$$\Leftrightarrow \exists y.z \mathbf{F} y \wedge y \mathbf{G} x$$

$$\Leftrightarrow \exists y.(y,z) \in \mathbf{F}^{-1} \wedge (x,y) \in \mathbf{G}^{-1}$$

$$\Leftrightarrow (x,z) \in \mathbf{F}^{-1} \circ \mathbf{G}^{-1}$$

3.12 Identity Function

Definition 3.12.1 (Identity Class Term (Pairing)). Let **A** be a set. The *identity class term* id_{**A**} on **A** is $\{(x,x) \mid x \in \mathbf{A}\}.$

Theorem 3.12.2 (Pairing, Power Set, Subset). For any set A, we have id_A is a function.

PROOF: It is a subset of $\mathcal{PP}A$. \square

Theorem 3.12.3 (Extensionality, Pairing, Union, Power Set, Subset). Let $F: A \to B$ and A be nonempty. Then there exists a function $G: B \to A$ such that $G \circ F = \mathrm{id}_A$ if and only if F is one-to-one.

Proof:

- $\langle 1 \rangle 1$. Let: $F: A \to B$
- $\langle 1 \rangle 2$. Assume: A is nonempty
- $\langle 1 \rangle 3$. If there exists $G: B \to A$ such that $G \circ F = \mathrm{id}_A$ then F is one-to-one.
 - $\langle 2 \rangle 1$. Assume: $G: B \to A$ and $G \circ F = \mathrm{id}_A$
 - $\langle 2 \rangle 2$. Let: $x, y \in A$
 - $\langle 2 \rangle 3$. Assume: F(x) = F(y)
 - $\langle 2 \rangle 4. \ x = y$

PROOF: x = G(F(x)) = G(F(y)) = y.

- $\langle 1 \rangle 4$. If F is one-to-one then there exists $G: B \to A$ such that $G \circ F = \mathrm{id}_A$.
 - $\langle 2 \rangle 1$. Assume: F is one-to-one.
 - $\langle 2 \rangle 2$. Pick $a \in A$
 - $\langle 2 \rangle 3.$ Define $G: B \to A$ by: G(y) is the x such that F(x) = y if $y \in \operatorname{ran} F,$ otherwise G(y) = a
 - $\langle 2 \rangle 4$. $G \circ F = \mathrm{id}_A$

PROOF: For $x \in A$ we have $(G \circ F)(x) = G(F(x)) = x$ by Theorem 3.11.3.

Theorem 3.12.4 (Extensionality, Pairing, Union, Power Set, Subset). Let $F: A \to B$ and A be nonempty. If there exists a function $H: B \to A$ such that $F \circ H = \mathrm{id}_B$ then F is surjective.

Proof:

- $\langle 1 \rangle 1$. Let: $F: A \to B$
- $\langle 1 \rangle 2$. Assume: A is nonempty.
- $\langle 1 \rangle 3$. Let: $H: B \to A$ satisfy $F \circ H = \mathrm{id}_B$

$$\langle 1 \rangle 4$$
. Let: $y \in B$
 $\langle 1 \rangle 5$. $F(H(y)) = y$.

Theorem 3.12.5 (Extensionality, Pairing, Union, Power Set, Subset, Choice). Let $F:A\to B$ and A be nonempty. If F is surjective then there exists a function $H:B\to A$ such that $F\circ H=\mathrm{id}_B$.

Proof:

 $\langle 1 \rangle 1$. Assume: F is surjective.

 $\langle 1 \rangle 2$. PICK a function $H \subseteq F^{-1}$ with dom H = B

PROOF: By the Axiom of Choice.

 $\langle 1 \rangle 3. \ H: B \to A$

 $\langle 1 \rangle 4$. $F \circ H = \mathrm{id}_B$

 $\langle 2 \rangle 1$. Let: $y \in B$

 $\langle 2 \rangle 2$. $(y, H(y)) \in F^{-1}$

 $\langle 2 \rangle 3. \ (H(y), y) \in F$

 $\langle 2 \rangle 4$. F(H(y)) = y

3.13 Restriction

Definition 3.13.1 (Restriction (Pairing)). Let **R** be a relation and **A** a class. The *restriction* of **R** to **A** is $\mathbf{R} \upharpoonright \mathbf{A} = \{(x,y) \mid x \in \mathbf{A} \land x\mathbf{R}y\}.$

Theorem 3.13.2 (Pairing, Subset). If R is a small relation then $R \upharpoonright \mathbf{A}$ is small.

PROOF: Since it is a subset of R.

3.14 Image

Definition 3.14.1 (Image (Pairing)). Let **F** and **A** be classes. The *image* of **A** under **F** is $\mathbf{F}(\mathbf{A}) = {\mathbf{F}(x) \mid x \in \mathbf{A}}$.

Theorem 3.14.2 (Pairing, Union, Subset). If F is a set then $F(\mathbf{A})$ is a set.

PROOF: Since it is a subset of ran F. \square

Theorem 3.14.3 (Pairing). For any classes \mathbf{F} and \mathcal{A} we have

$$\mathbf{F}\left(\bigcup \mathcal{A}\right) = \bigcup_{A \in \mathcal{A}} \mathbf{F}(A)$$

PROOF: Each is the class of all y such that $\exists x. \exists A. x \in A \in \mathcal{A} \land y = \mathbf{F}(x)$. \square

Theorem 3.14.4 (Pairing). For any classes F, A_1 , ..., A_n , we have

$$F(A_1 \cup \dots \cup A_n) = F(A_1) \cup \dots \cup F(A_n) \ .$$

Proof: Similar.

Theorem 3.14.5 (Pairing). For any classes \mathbf{F} and \mathcal{A} , we have

$$\mathbf{F}\left(\bigcap \mathcal{A}\right) \subseteq \bigcap_{A \in \mathcal{A}} \mathbf{F}(A)$$
.

Equality holds if \mathbf{F} is single-rooted and \mathcal{A} is nonempty.

PROOF:

- $\begin{array}{c} \langle 1 \rangle 1. \ \mathbf{F} \left(\bigcap \mathcal{A} \right) \subseteq \bigcap_{A \in \mathcal{A}} \mathbf{F} (A) \\ \langle 2 \rangle 1. \ \mathrm{Let:} \ y \in \mathbf{F} \left(\bigcap \mathcal{A} \right) \end{array}$

 - $\langle 2 \rangle 2$. PICK $x \in \bigcap \mathcal{A}$ such that $y = \mathbf{F}(x)$
 - $\langle 2 \rangle 3$. Let: $A \in \mathcal{A}$
 - $\langle 2 \rangle 4. \ x \in A$
 - $\langle 2 \rangle 5. \ y \in \mathbf{F}(A)$
- $\langle 1 \rangle 2$. If **F** is single-rooted then $\mathbf{F}(\bigcap \mathcal{A}) = \bigcap_{A \in \mathcal{A}} \mathbf{F}(A)$
 - $\langle 2 \rangle 1$. Assume: **F** is single-rooted and \mathcal{A} is nonempty.
 - $\langle 2 \rangle 2$. Let: $y \in \bigcap_{A \in \mathcal{A}} \mathbf{F}(A)$
 - $\langle 2 \rangle 3$. Pick $A \in \mathcal{A}$
 - $\langle 2 \rangle 4$. PICK $x \in A$ such that $y = \mathbf{F}(x)$
 - $\langle 2 \rangle 5. \ x \in \bigcap \mathcal{A}$
 - $\langle 3 \rangle 1$. Let: $A' \in \mathcal{A}$
 - $\langle 3 \rangle 2$. PICK $x' \in A'$ such that $y = \mathbf{F}(x')$
 - $\langle 3 \rangle 3. \ x = x'$

Proof: By $\langle 2 \rangle 1$.

 $\langle 3 \rangle 4. \ x \in A'$

Corollary 3.14.5.1 (Pairing). For any class F and nonempty class A, we have

$$\mathbf{F}^{-1}\left(\bigcap \mathcal{A}\right) = \bigcap_{A \in \mathcal{A}} \mathbf{F}^{-1}(A) .$$

Theorem 3.14.6 (Pairing). For any classes \mathbf{F} , $\mathbf{A_1}$, ..., $\mathbf{A_n}$, we have

$$\mathbf{F}(\mathbf{A_1} \cap \cdots \cap \mathbf{A_n}) \subseteq \mathbf{F}(\mathbf{A_1}) \cap \cdots \cap \mathbf{F}(\mathbf{A_n})$$
.

Equality holds if \mathbf{F} is single-rooted.

PROOF: Similar.

Corollary 3.14.6.1 (Pairing). For any classes F, A_1, \ldots, A_n , we have

$$\mathbf{F}^{-1}(\mathbf{A_1} \cap \cdots \cap \mathbf{A_n}) = \mathbf{F}^{-1}(\mathbf{A_1}) \cap \cdots \cap \mathbf{F}^{-1}(\mathbf{A_n})$$
.

Theorem 3.14.7 (Pairing). For any classes F, A and B, we have

$$F(A) - F(B) \subseteq F(A - B)$$
.

Equality holds if \mathbf{F} is single-rooted.

```
Proof:
\langle 1 \rangle 1. Let: F, A and B be sets.
\langle 1 \rangle 2. \mathbf{F}(\mathbf{A}) - \mathbf{F}(\mathbf{B}) \subseteq \mathbf{F}(\mathbf{A} - \mathbf{B})
     \langle 2 \rangle 1. Let: y \in \mathbf{F}(\mathbf{A}) - \mathbf{F}(\mathbf{B})
     \langle 2 \rangle 2. Pick x \in \mathbf{A} such that x \mathbf{F} y
     \langle 2 \rangle 3. \ x \in \mathbf{A} - \mathbf{B}
\langle 1 \rangle 3. If F is single-rooted then \mathbf{F}(\mathbf{A} - \mathbf{B}) = \mathbf{F}(\mathbf{A}) - \mathbf{F}(\mathbf{B}).
     \langle 2 \rangle 1. Assume: F is single-rooted.
     \langle 2 \rangle 2. Let: y \in \mathbf{F}(\mathbf{A} - \mathbf{B})
     \langle 2 \rangle 3. Pick x \in \mathbf{A} - \mathbf{B} such that y = \mathbf{F}(x)
     \langle 2 \rangle 4. \ y \in \mathbf{F}(\mathbf{A})
     \langle 2 \rangle 5. \ y \notin \mathbf{F}(\mathbf{B})
          \langle 3 \rangle 1. Assume: for a contradiction x' \in \mathbf{B} and x' \mathbf{F} y
          \langle 3 \rangle 2. \ x' = x
               Proof: From \langle 2 \rangle 1
          \langle 3 \rangle 3. \ x \in \mathbf{B}
          \langle 3 \rangle 4. Q.E.D.
```

Corollary 3.14.7.1 (Pairing). For any classes F and sets A and B, we have

$$\mathbf{F}^{-1}(\mathbf{A}) - \mathbf{F}^{-1}(\mathbf{B}) = \mathbf{F}^{-1}(\mathbf{A} - \mathbf{B}) .$$

3.15 Infinite Cartesian Product

PROOF: This contradicts $\langle 2 \rangle 3$.

Definition 3.15.1 (Infinite Cartesian Product (Pairing)). Let H be a function with domain I. The Cartesian product $\prod_{i \in I} H(i)$ is the class of all functions f with domain I such that, for all $i \in I$, we have $f(i) \in H(i)$.

Theorem 3.15.2 (Pairing, Union, Power Set, Subset). If H is a function with domain I then $\prod_{i \in I} H(i)$ is a set.

PROOF: It is a subset of $\mathcal{P}(I \times \bigcup \operatorname{ran} H)$. \square

Theorem 3.15.3 (Axiom of Choice, Second Version (Pairing, Union, Power Set, Subset)). The Axiom of Choice is equivalent to the statement: for any function H with domain I, if H(i) is nonempty for all $i \in I$, then $\prod_{i \in I} H(i)$ is nonempty.

Proof:

- $\langle 1 \rangle 1$. If the Axiom of Choice is true then, for any function H with domain I, if H(i) is nonempty for all $i \in I$, then $\prod_{i \in I} H(i)$ is nonempty.
 - $\langle 2 \rangle$ 1. Assume: The Axiom of Choice
 - $\langle 2 \rangle 2$. Let: H be a function with domain I such that H(i) is nonempty for all $i \in I$.
 - $\langle 2 \rangle 3$. PICK a function $f \subseteq \{(i, x) \mid x \in H(i)\}$

```
\langle 2 \rangle 4. \ f \in \prod_{i \in I} H(i)
```

- $\langle 1 \rangle$ 2. If, for any function H with domain I, if H(i) is nonempty for all $i \in I$, then $\prod_{i \in I} H(i)$ is nonempty, then the Axiom of Choice is true.
 - $\langle 2 \rangle$ 1. Assume: for any function H with domain I, if H(i) is nonempty for all $i \in I$, then $\prod_{i \in I} H(i)$ is nonempty
 - $\langle 2 \rangle 2$. Let: R be a relation.
 - $\langle 2 \rangle 3$. Let: I = dom R
 - $\langle 2 \rangle$ 4. Let: H be the function with domain I such that $H(i) = \{y \mid iRy\}$ for all i.
 - $\langle 2 \rangle$ 5. Pick $f \in \prod_{i \in I} H(i)$
 - $\langle 2 \rangle 6. \ f \subseteq R$

3.16 Reflexive Relations

Definition 3.16.1 (Reflexive (Pairing)). Let **R** be a relation on **A**. Then **R** is reflexive on A if and only if, for all $x \in \mathbf{A}$, we have $x\mathbf{R}x$.

3.17 Symmetric

Definition 3.17.1 (Symmetric (Pairing)). Let \mathbf{R} be a relation. Then \mathbf{R} is *symmetric* if and only if, whenever $x\mathbf{R}y$, then $y\mathbf{R}x$.

3.18 Transitivity

Definition 3.18.1 (Transitivity (Pairing)). Let **R** be a relation. Then **R** is transitive if and only if, whenever $x\mathbf{R}y$ and $y\mathbf{R}z$, then $x\mathbf{R}z$.

3.19 Equivalence Relations

Definition 3.19.1 (Equivalence Relation (Pairing)). Let **R** be a relation on **A**. Then **R** is an *equivalence relation* on **A** if and only if **R** is reflexive on **A**, symmetric and transitive.

Theorem 3.19.2 (Pairing). If \mathbf{R} is a symmetric and transitive relation then \mathbf{R} is an equivalence relation on fld \mathbf{R} .

Proof:

- $\langle 1 \rangle 1$. Let: **R** be a symmetric and transitive relation.
- $\langle 1 \rangle 2$. Let: $x \in \operatorname{fld} \mathbf{R}$
- $\langle 1 \rangle 3$. PICK y such that $x \mathbf{R} y$ or $y \mathbf{R} x$
- $\langle 1 \rangle 4$. $x \mathbf{R} y$ and $y \mathbf{R} x$

PROOF: By symmetry.

 $\langle 1 \rangle 5. x \mathbf{R} x$

PROOF: By transitivity.

3.20 Equivalence Class

Definition 3.20.1 (Equivalence Class (Pairing)). Let **R** be an equivalence relation on **A** and $a \in \mathbf{A}$. Then the *equivalence class* of a modulo **R** is

$$[a]_{\mathbf{R}} = \{x \in \mathbf{A} \mid a\mathbf{R}x\}$$
.

Lemma 3.20.2 (Extensionality, Pairing, Subset). Let **R** be an equivalence relation on **A** and $x, y \in \mathbf{A}$. Then $[x]_{\mathbf{R}} = [y]_{\mathbf{R}}$ if and only if $x\mathbf{R}y$.

Proof:

П

```
\begin{split} &\langle 1 \rangle 1. \text{ If } [x]_{\mathbf{R}} = [y]_{\mathbf{R}} \text{ then } x\mathbf{R}y. \\ &\langle 2 \rangle 1. \text{ Assume: } [x]_{\mathbf{R}} = [y]_{\mathbf{R}} \\ &\langle 2 \rangle 2. \ y \in [y]_{\mathbf{R}} \\ &\quad \text{Proof: Since } y\mathbf{R}y \text{ by reflexivity.} \\ &\langle 2 \rangle 3. \ y \in [x]_{\mathbf{R}} \\ &\langle 2 \rangle 4. \ x\mathbf{R}y \\ &\langle 1 \rangle 2. \text{ If } x\mathbf{R}y \text{ then } [x]_{\mathbf{R}} = [y]_{\mathbf{R}}. \\ &\langle 2 \rangle 1. \text{ Assume: } x\mathbf{R}y \\ &\langle 2 \rangle 2. \ [y]_{\mathbf{R}} \subseteq [x]_{\mathbf{R}} \\ &\quad \text{Proof: If } y\mathbf{R}z \text{ then } x\mathbf{R}z \text{ by transitivity.} \\ &\langle 2 \rangle 3. \ [x]_{\mathbf{R}} \subseteq [y]_{\mathbf{R}} \\ &\quad \text{Proof: Similar since } y\mathbf{R}x \text{ by symmetry.} \end{split}
```

3.21 Disjoint

Definition 3.21.1 (Disjoint). Two classes **A** and **B** are *disjoint* if and only if there is no x such that $x \in \mathbf{A}$ and $x \in \mathbf{B}$.

Axiom 3.21.2 (Regularity). For any nonempty set A, there exists $m \in A$ such that m and A are disjoint.

Theorem 3.21.3 (Regularity). No set is a member of itself.

Theorem 3.21.4 (Regularity). There are no sets A and B such that $A \in B$ and $B \in A$.

3.22 Partitions

Definition 3.22.1 (Partition). A partition P of a set A is a set of nonempty subsets of A such that:

- 1. For all $x \in A$ there exists $S \in P$ such that $x \in S$.
- 2. Any two distinct elements of P are disjoint.

3.23 Quotient Sets

Definition 3.23.1 (Quotient Set (Pairing, Power Set, Subset)). Let R be an equivalence relation on A. The quotient set A/R is the set of all equivalence classes modulo R.

This is a set because it is a subset of $\mathcal{P}A$.

Theorem 3.23.2 (Extensionality, Pairing, Power Set, Subset). Let R be an equivalence relation on A. Then the quotient set A/R is a partition of A.

Proof:

```
\langle 1 \rangle 1. For all x \in A there exists y \in A such that x \in [y]_R
  PROOF: Take y = x.
\langle 1 \rangle 2. Any two distinct equivalence classes are disjoint.
   \langle 2 \rangle 1. Assume: z \in [x]_R and z \in [y]_R
   \langle 2 \rangle 2. xRz and yRz
   \langle 2 \rangle 3. \ [x]_R = [z]_R = [y]_R
```

Proof: Lemma 3.20.2.

Definition 3.23.3 (Canonical Map (Pairing, Power Set, Subset)). Let R be an equivalence relation on A. The canonical map $\phi: A \to A/R$ is the function defined by $\phi(a) = [a]_R$.

Theorem 3.23.4. Let R be an equivalence relation on A and $F: A \to B$. Then the following are equivalent:

- 1. For all $x, y \in A$, if xRy then F(x) = F(y).
- 2. There exists $G: A/R \to B$ such that $F = G \circ \phi$, where $\phi: A \to A/R$ is the canonical map.

In this case, G is unique.

```
PROOF:
```

```
\langle 1 \rangle 1. \ 1 \Rightarrow 2
   \langle 2 \rangle 1. Assume: 1
   \langle 2 \rangle 2. Let G = \{([a]_R, b) \mid F(a) = b\}
   \langle 2 \rangle 3. G is a function.
       \langle 3 \rangle 1. Let: (c, b), (c, b') \in G
       \langle 3 \rangle 2. PICK a, a' \in A such that c = [a]_R = [a']_R with F(a) = b and F(a') = b
       \langle 3 \rangle 3. aRa'
           Proof: Lemma 3.20.2.
       \langle 3 \rangle 4. F(a) = F(a')
           Proof: From \langle 2 \rangle 1.
       \langle 3 \rangle 5. b = b'
           Proof: From \langle 3 \rangle 2.
   \langle 2 \rangle 4. F = G \circ \phi
```

```
PROOF: For a \in A we have G(\phi(a)) = G([a]) = F(a). \langle 1 \rangle 2. 2 \Rightarrow 1 \langle 2 \rangle 1. Let: G: A/R \to B be such that F = G \circ \phi \langle 2 \rangle 2. Let: x,y \in A \langle 2 \rangle 3. Assume: xRy \langle 2 \rangle 4. G([x]) = G([y]) Proof: Lemma 3.20.2 \langle 2 \rangle 5. F(x) = F(y) Proof: From \langle 2 \rangle 1. \langle 1 \rangle 3. If G,G':A/R \to B and G \circ \phi = G' \circ \phi then G = G' Proof: For any a \in A we have G([a]) = G'([a]).
```

3.24 The Finite Intersection Property

Definition 3.24.1 (Finite Intersection Property). Let X be a set and $A \subseteq \mathcal{P}X$. Then A satisfies the *finite intersection property* if and only if every nonempty finite subset of A has nonempty intersection.

Lemma 3.24.2. Let X be a set. Let $A \subseteq \mathcal{P}X$ have the finite intersection property. Then there exists a maximal set \mathcal{D} such that $A \subseteq \mathcal{D} \subseteq \mathcal{P}X$ and \mathcal{D} has the finite intersection property.

```
PROOF:
```

```
\langle 1 \rangle 1. Let: \mathbb{F} = \{ \mathcal{D} \mid \mathcal{A} \subseteq \mathcal{D} \subseteq \mathcal{P}X, \mathcal{D} \text{ has the finite intersection property} \}
\langle 1 \rangle 2. Every chain in \mathbb{F} has an upper bound.
    \langle 2 \rangle 1. Let: \mathbb{C} be a chain in \mathbb{F}.
    \langle 2 \rangle 2. Assume: without loss of generality \mathbb{C} \neq \emptyset
               Prove: \bigcup \mathbb{C} \in \mathbb{F}
        PROOF: If \mathbb{C} = \emptyset then \mathcal{A} is an upper bound.
    \langle 2 \rangle 3. \mathcal{A} \subseteq \bigcup \mathbb{C} \subseteq \mathcal{P}X
    \langle 2 \rangle 4. Let: C_1, \ldots, C_n \in \mathbb{C}
               Prove: C_1 \cap \cdots \cap C_n \neq \emptyset
    \langle 2 \rangle 5. Pick C_1, \ldots, C_n \in \mathbb{C} such that C_i \in C_i for all i.
    \langle 2 \rangle 6. Assume: without loss of generality \mathcal{C}_1 \subseteq \cdots \subseteq \mathcal{C}_n
    \langle 2 \rangle 7. \ C_1, \ldots, C_n \in \mathcal{C}_n
    \langle 2 \rangle 8. C_n satisfies the finite intersection property.
    \langle 2 \rangle 9. \ C_1 \cap \cdots \cap C_n \neq \emptyset
\langle 1 \rangle 3. Q.E.D.
    Proof: By Zorn's Lemma.
```

Lemma 3.24.3. Let X be a set. Let $\mathcal{D} \subseteq \mathcal{P}X$ be maximal with respect to the finite intersection property. Then any finite intersection of elements of \mathcal{D} is an element of \mathcal{D} .

Proof:

```
\langle 1 \rangle 1. Let: D_1, D_2 \in \mathcal{D}

\langle 1 \rangle 2. \mathcal{D} \cup \{D_1 \cap D_2\} has the finite intersection property.

PROOF: Any finite intersection of members of \mathcal{D} \cup \{D_1 \cap D_2\} is a finite intersection of members of \mathcal{D}.

\langle 1 \rangle 3. \mathcal{D} = \mathcal{D} \cup \{D_1 \cap D_2\}

PROOF: By maximality of \mathcal{D}.

\langle 1 \rangle 4. D_1 \cap D_2 \in \mathcal{D}.
```

Lemma 3.24.4. Let X be a set. Let $\mathcal{D} \subseteq \mathcal{P}X$ be maximal with respect to the finite intersection property. Let $A \subseteq X$. If A intersects every member of \mathcal{D} then $A \in \mathcal{D}$.

PROOF:

Proposition 3.24.5. Let X be a set. Let $\mathcal{D} \subseteq \mathcal{P}X$ be maximal with respect to the finite intersection property. Let $A, D \in \mathcal{P}X$. If $D \in \mathcal{D}$ and $D \subseteq A$ then $A \in \mathcal{D}$.

Proof:

```
\begin{split} \langle 1 \rangle 1. & \ \mathcal{D} \cup \{A\} \text{ satisfies the finite intersection property.} \\ & \langle 2 \rangle 1. \text{ Let: } D_1, \ldots, D_n \in \mathcal{D} \\ & \langle 2 \rangle 2. & \ D_1 \cap \cdots \cap D_n \cap D \neq \emptyset \\ & \text{PROOF: Since } \mathcal{D} \text{ satisfies the finite intersection property.} \\ & \langle 2 \rangle 3. & \ D_1 \cap \cdots \cap D_n \cap A \neq \emptyset \\ & \langle 1 \rangle 2. & \ \mathcal{D} = \mathcal{D} \cup \{A\} \\ & \text{PROOF: By the maximality of } \mathcal{D}. \\ & \langle 1 \rangle 3. & \ A \in \mathcal{D} \\ & \Box \end{split}
```

Definition 3.24.6 (Graph). Let $f:A\to B$. The graph of f is the set $\{(x,f(x))\mid x\in A\}\subseteq A\times B$.

3.25 Countable Intersection Property

Definition 3.25.1 (Countable Intersection Property). Let X be a set and $A \subseteq \mathcal{P}X$. Then A satisfies the *countable intersection property* if and only if every countable subset of A has nonempty intersection.

Lemma 3.25.2. Let X be a set. Let $\mathcal{D} \subseteq \mathcal{P}X$ be maximal with respect to the countable intersection property. Then any countable intersection of elements of \mathcal{D} is an element of \mathcal{D} .

Proof:

- $\langle 1 \rangle 1$. Let: $\mathcal{D}_0 \subseteq \mathcal{D}$ be countable.
- $\langle 1 \rangle 2$. $\mathcal{D} \cup \{ \bigcap \mathcal{D}_0 \}$ has the countable intersection property.

PROOF: Any countable intersection of members of $\mathcal{D} \cup \{ \bigcap \mathcal{D}_0 \}$ is a finite intersection of members of \mathcal{D} .

 $\langle 1 \rangle 3. \ \mathcal{D} = \mathcal{D} \cup \{ \bigcap \mathcal{D}_0 \}$

PROOF: By maximality of \mathcal{D} .

 $\langle 1 \rangle 4. \cap \mathcal{D}_0 \in \mathcal{D}.$

Lemma 3.25.3. Let X be a set. Let $\mathcal{D} \subseteq \mathcal{P}X$ be maximal with respect to the countable intersection property. Let $A \subseteq X$. If A intersects every member of \mathcal{D} then $A \in \mathcal{D}$.

Proof:

 $\langle 1 \rangle 1$. $\mathcal{D} \cup \{A\}$ has the countable intersection property.

 $\langle 2 \rangle 1$. Let: $\mathcal{D}_0 \subseteq \mathcal{D}$ be countable.

PROVE: $\bigcap \mathcal{D}_0 \cap A \neq \emptyset$

 $\langle 2 \rangle 2. \cap \mathcal{D}_0 \in \mathcal{D}$

Proof: Lemma 3.25.2.

 $\langle 2 \rangle 3. \cap \mathcal{D}_0 \cap A \neq \emptyset$

PROOF: Since A intersects every member of \mathcal{D} .

 $\langle 1 \rangle 2$. Q.E.D.

PROOF: By maximality of \mathcal{D} .

П

3.26 The Axiom of Choice

Axiom 3.26.1 (Axiom of Choice). Let A be a set of disjoint nonempty sets. Then there exists a set C consisting of exactly one element from each member of A.

3.27 Choice Functions

Definition 3.27.1 (Choice Function). Let \mathcal{B} be a set of nonempty sets. A choice function for \mathcal{B} is a function $c: \mathcal{B} \to \bigcup \mathcal{B}$ such that, for all $B \in \mathcal{B}$, we have $c(B) \in \mathcal{B}$.

Lemma 3.27.2 (Existence of a Choice Function (AC)). Every set of nonempty sets has a choice function.

PROOF:

- $\langle 1 \rangle 1$. Let: \mathcal{B} be a set of nonempty sets.
- $\langle 1 \rangle 2$. For $B \in \mathcal{B}$,

Let: $B' = \{B\} \times B$

- $\langle 1 \rangle 3$. $\{ B' \mid B \in \mathcal{B} \}$ is a set of disjoint nonempty sets.
- $\langle 1 \rangle 4$. PICK a set c consisting of exactly one element from each B' for $B \in \mathcal{B}$.
- $\langle 1 \rangle 5$. c is a choice function for \mathcal{B} .

3.28 Transitive

Definition 3.28.1 (Transitive Set). A set *A* is *transitive* if and only if, whenever $x \in y \in A$ then $x \in A$.

Theorem 3.28.2 (Union, Power Set). Let A be a set. Then the following are equivalent.

- 1. A is transitive.
- 2. $\bigcup A \subseteq A$
- 3. For all $a \in A$ we have $a \subseteq A$
- 4. $A \subseteq \mathcal{P}A$

PROOF: From definitions. \square

3.29 Minimal Elements

Definition 3.29.1 (Minimal). Let R be a binary relation and A a set. An element $a \in A$ is minimal w.r.t. R iff there is no $x \in A$ such that xRa.

3.30 Well-Founded Relations

Definition 3.30.1 (Well-Founded). Let R be a relation on A. Then R is well-founded iff every nonempty subset of A has an R-minimal element.

Theorem 3.30.2 (Transfinite Induction). Let R be a well-founded relation on A and $B \subseteq A$. Assume that, for every $t \in A$, if $\{x \in A \mid xRt\} \subseteq B$ then $t \in B$. Then we have B = A.

Theorem 3.30.3 (Transfinite Recursion). Let R be a well-founded relation on a set C.

Let **A** be a class. Let **B** be the class of all functions from a subset of C to **A**. Let $F : B \times C \to A$ be a class term.

Then there exists a unique function $f: C \to \mathbf{A}$ such that, for all $t \in C$, we have $f(t) = \mathbf{F}(f \upharpoonright \{x \in C \mid xRt\}, t)$.

3.31 Transitive Closure

Theorem 3.31.1. Let R be a relation. Then there exists a unique relation R^t such that R^t is transitive, $R \subseteq R^t$, and for every transitive relation S with $R \subseteq S$ we have $R^t \subseteq S$.

Definition 3.31.2 (Transitive Closure). The *transitive closure* of a relation R is this relation R^t .

Theorem 3.31.3. If R is well-founded then R^t is well-founded.

3.32 Fixed Points

Definition 3.32.1 (Fixed Point). Let X be a set. Let $f: X \to X$. Then a fixed point of f is an element $a \in X$ such that f(a) = a.

Chapter 4

Cardinal Numbers

Definition 4.0.1 (Equinumerous). Two sets A and B are equinumerous if and only if there exists a bijection between them.

Theorem 4.0.2. Equinumerosity is an equivalence relation on the class of all sets.

Theorem 4.0.3 (Cantor). No set is equinumerous with its power set.

Definition 4.0.4. We say a set A is *dominated* by B, $A \leq B$, iff A is equinumerous with a subset of B.

Theorem 4.0.5. $A \leq A$

Theorem 4.0.6. If $A \preceq B \preceq C$ then $A \preceq C$.

Theorem 4.0.7 (Schröder-Bernstein Theorem). If $A \preceq B$ and $B \preceq A$ then $A \equiv B$.

PROOF:

- $\langle 1 \rangle 1$. Let: $f: A \to B$ and $g: B \to A$ be injections.
- $\langle 1 \rangle 2$. Define a sequence of sets $C_n \subseteq A$ by

$$C_0 = A - \operatorname{ran} g$$

$$C_{n+1} = g(f(C_n))$$

 $\langle 1 \rangle 3$. Define $h:A \to B$ by

$$h(x) = \begin{cases} f(x) & \text{if } x \in \bigcup_n C_n \\ g^{-1}(x) & \text{if not} \end{cases}$$

 $\langle 1 \rangle 4$. h is a bijection.

Theorem 4.0.8 (AC). For any infinite set A we have $\mathbb{N} \preceq A$.

PROOF: Given a choice funtion f for A, choose a sequence (a_n) in A by $a_n = f(A - \{a_0, \ldots, a_{n-1}\})$. \square

Corollary 4.0.8.1 (AC). A set is infinite if and only if it is equinumerous with a proper subset.

4.1 Countability

Definition 4.1.1 (Countable). A set A is *countable* iff $A \leq \mathbb{N}$.

Theorem 4.1.2 (AC). A countable union of countable sets is countable.

Proposition 4.1.3 (AC). Every infinite set has a countable subset.

4.2 Order Theory

Definition 4.2.1 (Preorder). Let X be a set. A *preorder* on X is a binary relation \leq on X such that:

Reflexivity For all $x \in X$, we have $x \leq x$

Transitivity For all $x, y, z \in X$, if $x \le y$ and $y \le z$ then $x \le z$.

Definition 4.2.2 (Preordered Set). A preordered set consists of a set X and a preorder \leq on X.

Proposition 4.2.3. Let X and Y be linearly ordered sets. Let $f: X \rightarrow Y$ be strictly monotone and surjective. Then f is a poset isomorphism.

Proof:

- $\langle 1 \rangle 1$. f is injective.
 - $\langle 2 \rangle 1$. Let: $x, y \in X$
 - $\langle 2 \rangle 2$. Assume: f(x) = f(y)
 - $\langle 2 \rangle 3. \ x \not< y$

PROOF: By strong motonicity.

 $\langle 2 \rangle 4. \ y \not < x$

PROOF: By strong motonicity.

 $\langle 2 \rangle 5. \ x = y$

PROOF: By trichotomy.

- $\langle 1 \rangle 2$. f^{-1} is monotone.
 - $\langle 2 \rangle 1$. Let: $x, y \in X$
 - $\langle 2 \rangle 2$. Assume: $x \leq y$
 - $\langle 2 \rangle 3. \ f^{-1}(x) \geqslant f^{-1}(y)$

PROOF: By strong motonicity.

 $\langle 2 \rangle 4. \ f^{-1}(x) < f^{-1}(y)$

PROOF: By trichotomy.

Definition 4.2.4 (Interval). Let X be a preordered set and $Y \subseteq X$. Then Y is an *interval* if and only if, for all $a, b \in Y$ and $c \in X$, if $a \le c \le b$ then $c \in Y$.

Definition 4.2.5 (Linear Continuum). A linearly ordered set L is a *linear continuum* if and only if:

- 1. every nonempty subset of L that is bounded above has a supremum
- 2. L is dense

Proposition 4.2.6. Every interval in a linear continuum is a linear continuum.

Proof:

- $\langle 1 \rangle 1$. Let: L be a linear continuum and I an interval in L.
- $\langle 1 \rangle 2$. Every nonempty subset of I that is bounded above has a supremum in I.
 - $\langle 2 \rangle 1$. Let: $X \subseteq I$ be nonempty and bounded above by $b \in I$.

```
\langle 2 \rangle2. Let: s be the supremum of X in L. Proof: Since L is a linear continuum. \langle 2 \rangle3. s \in I \langle 3 \rangle1. Pick a \in X Proof: Since X is nonempty (\langle 2 \rangle 1). \langle 3 \rangle2. a \leq s \leq b \langle 3 \rangle3. s \in I Proof: Since I is an interval (\langle 1 \rangle 1). \langle 2 \rangle4. s is the supremum of X in I \langle 1 \rangle3. I is dense. \langle 2 \rangle1. Let: x, y \in I with x < y \langle 2 \rangle2. Pick z \in L with x < z < y Proof: Since L is dense. \langle 2 \rangle3. z \in I Proof: Since L is an interval.
```

Definition 4.2.7 (Ordered Square). The ordered square I_o^2 is the set $[0,1]^2$ under the dictionary order.

Proposition 4.2.8. The ordered square is a linear continuum.

```
PROOF:
```

```
\langle 1 \rangle 1. Every nonempty subset of I_o^2 bounded above has a supremum.
   \langle 2 \rangle 1. Let: X \subseteq I_o^2 be nonempty and bounded above by (b,c)
   \langle 2 \rangle 2. Let: s = \sup \pi_1(X)
      PROOF: The set \pi_1(X) is nonempty and bounded above by b.
   \langle 2 \rangle 3. Case: s \in \pi_1(X)
      \langle 3 \rangle 1. Let: t = \sup\{y \in [0,1] \mid (s,y) \in X\}
         PROOF: This set is nonempty and bounded above by c.
      \langle 3 \rangle 2. (s,t) is the supremum of X.
   \langle 2 \rangle 4. Case: s \notin \pi_1(X)
      PROOF: In this case (s, 0) is the supremum of X.
\langle 1 \rangle 2. I_o^2 is dense.
   \langle 2 \rangle 1. Let: (x_1, y_1), (x_2, y_2) \in I_o^2 with (x_1, y_1) < (x_2, y_2)
   \langle 2 \rangle 2. Case: x_1 < x_2
      \langle 3 \rangle 1. PICK x_3 with x_1 < x_3 < x_2
      \langle 3 \rangle 2. \ (x_1, y_1) < (x_3, y_1) < (x_2, y_2)
   \langle 2 \rangle 3. Case: x_1 = x_2 and y_1 < y_2
      \langle 3 \rangle 1. PICK y_3 with y_1 < y_3 < y_2
      \langle 3 \rangle 2. (x_1, y_1) < (x_1, y_3) < (x_2, y_2)
```

Proposition 4.2.9. If X is a well-ordered set then $X \times [0,1)$ under the dictionary order is a linear continuum.

PROOF:

 $\langle 1 \rangle 1.$ Every nonempty set $A \subseteq X \times [0,1)$ bounded above has a supremum.

```
⟨2⟩1. Let: A \subseteq X \times [0,1) be nonempty and bounded above ⟨2⟩2. Let: x_0 be the supremum of \pi_1(A) ⟨2⟩3. Case: x_0 \in \pi_1(A) ⟨3⟩1. Let: y_0 be the supremum of \{y \in [0,1) \mid (x_0,y) \in A\} ⟨3⟩2. (x_0,y_0) is the supremum of A. ⟨2⟩4. Case: x_0 \notin \pi_1(A) Proof: In this case (x_0,0) is the supremum of A. ⟨1⟩2. X \times [0,1) is dense. ⟨2⟩1. Let: (x_1,y_1), (x_2,y_2) \in X \times [0,1) with (x_1,y_1) < (x_2,y_2) ⟨2⟩2. Case: x_1 < x_2 ⟨3⟩1. Pick y_3 such that y_1 < y_3 < 1 ⟨3⟩2. (x_1,y_1) < (x_1,y_3) < (x_2,y_2) ⟨2⟩3. Case: x_1 = x_2 and y_1 < y_2 ⟨3⟩1. Pick y_3 such that y_1 < y_2 ⟨3⟩1. Pick y_3 such that y_1 < y_2 ⟨3⟩2. (x_1,y_1) < (x_1,y_3) < (x_2,y_2)
```

Lemma 4.2.10. For all $a, b, c, d \in \mathbb{R}$ with a < b and c < d, we have $[a, b) \cong [c, d)$

PROOF: The map $\lambda t \cdot c + (t-a)(d-c)/(b-a)$ is an order isomorphism.

Proposition 4.2.11. Let X be a linearly ordered set. Let a < b < c in X. Then $[a,c) \cong [0,1)$ if and only if $[a,b) \cong [b,c) \cong [0,1)$.

Proof:

П

```
\langle 1 \rangle 1. If [a, c) \cong [0, 1) then [a, b) \cong [b, c) \cong [0, 1)
   \langle 2 \rangle 1. Assume: f: [a,c) \cong [0,1) is an order isomorphism
   \langle 2 \rangle 2. [a,b) \cong [0,1)
      Proof:
                      [a,b) \cong [0,f(b))
                                                            (by the restriction of f)
                             \cong [0,1)
                                                                        (Lemma 4.2.10)
  \langle 2 \rangle 3. \ [b,c) \cong [0,1)
      PROOF: Similar.
\langle 1 \rangle 2. If [a, b) \cong [b, c) \cong [0, 1) then [a, c) \cong [0, 1)
  Proof:
                   [a,c) = [a,b) * [b,c)
                           \cong [0,1) * [0,1)
                           \cong [0,1/2) * [1/2,1)
                                                                       (Lemma 4.2.10)
                           = 1
```

Proposition 4.2.12 (CC). Let X be a linearly ordered set. Let $x_0 < x_1 < \cdots$ be a strictly increasing sequence in X with supremum b. Then $[x_0, b) \cong [0, 1)$ if and only if $[x_i, x_{i+1}) \cong [0, 1)$ for all i.

Proof:

```
\begin{split} \langle 1 \rangle 1. & \text{ If } [x_0,b) \cong [0,1) \text{ then } [x_i,x_{i+1}) \cong [0,1) \text{ for all } i. \\ \text{PROOF: By Lemma } 4.2.10 \\ \langle 1 \rangle 2. & \text{ If } [x_i,x_{i+1}) \cong [0,1) \text{ for all } i \text{ then } [x_0,b) \cong [0,1) \\ \langle 2 \rangle 1. & \text{ASSUME: } [x_i,x_{i+1}) \cong [0,1) \text{ for all } i \\ \langle 2 \rangle 2. & \text{PICK an order isomorphism } f_i: [x_i,x_{i+1}) \cong [1/2^i,2/2^{i+1}) \text{ for each } i. \\ & \text{PROOF: By Lemma } 4.2.10 \\ & \langle 2 \rangle 3. & \text{The union of the } f_i \text{s is an order isomorphism } [x_0,b) \cong [0,1) \\ & \Box \end{split}
```

4.3 Partially Ordered Sets

Definition 4.3.1 (Partial Order). A partial order on a set X is a preorder \leq that is anti-symmetric, i.e. whenever $x \leq y$ and $y \leq x$ then x = y.

4.4 Strict Partial Order

Definition 4.4.1 (Strict Partial Order). A *strict partial order* on a set X is a relation on X that is transitive and irreflexive.

Proposition 4.4.2. If < is a strict partial order on X and $x, y \in X$, then at most one of x < y, y < x, x = y holds.

Proposition 4.4.3. If < is a strict partial order then the relation \le defined by: $x \le y$ iff x < y or x = y, is a partial order.

Theorem 4.4.4. If R is a well-founded relation then its transitive closure is a partial order.

Definition 4.4.5 (Linear Order). A *linear order* on a set X is a partial order such that, for any $x, y \in X$, either $x \leq y$ or $y \leq x$.

4.5 Strict Linear Orders

Definition 4.5.1 (Strict Linear Order (Extensionality, Pairing)). Let A be a set. A *strict linear order* on A is a binary relation R on A that is transitive and satisfies trichotomy: for any $x, y \in A$, exactly one of xRy, x = y, yRx holds.

Theorem 4.5.2. Let R be a strict linear order on A. Then there is no $x \in A$ such that xRx.

PROOF: Immediate from trichotomy.

4.6 Well Orderings

Definition 4.6.1 (Well-ordering). A well-order on a set X is a linear order such that every nonempty set has a least element.

Proposition 4.6.2. Let \leq be a linear order on X. Then \leq is a well-order iff there is no function $f: \mathbb{N} \to X$ such that f(n+1) < f(n) for all n.

Definition 4.6.3 (Initial Segment). Given a well-ordered set X and $\alpha \in X$, the *initial segment* of X up to α is seg $\alpha = \{x \in X \mid x < \alpha\}$.

Theorem 4.6.4 (Transfinite Induction). Let \leq be a linear order on J. Then the following are equivalent:

- 1. \leq is a well-order on J.
- 2. For every subset $J_0 \subseteq J$, if the following condition holds:
 - For every $\alpha \in J$, if $\operatorname{seg} \alpha \subseteq J_0$ then $\alpha \in J$.

then $J_0 = J$.

Axiom Schema 4.6.5 (Replacement). Let **H** be a class term. If dom **H** is a set then **H** is a set.

Theorem 4.6.6 (Transfinite Recursion). Let J be a well-ordered set and C a set. Let \mathcal{F} be the set of all functions from a section of J to C. Let G be a function with domain \mathcal{F} . Then there exists a unique function h with domain J such that, for all $\alpha \in J$, we have $h(\alpha) = \rho(h \upharpoonright \operatorname{seg} \alpha)$.

Proof:

- $\langle 1 \rangle 1$. If v is a function and $t \in J$, we say v is ρ -constructed up to t iff dom $v = \{x \in J \mid x \leq t\}$ and, for all $x \in \text{dom } v$, we have $v(x) = \rho(v \upharpoonright \text{seg } x)$
- $\langle 1 \rangle 2$. If $t_1 \leq t_2$, v_1 is ρ -constructed up to t_1 , and v_2 is ρ -constructed up to t_2 , then $v_1 = v_2 \upharpoonright \{x \in J \mid x \leq t_1\}$
- $\langle 1 \rangle 3$. Let: \mathcal{K} be the set of all functions that are ρ -constructed up to some $t \in J$ Proof: \mathcal{K} is a set by a Replacement Axiom.
- $\langle 1 \rangle 4$. Let: $F = \bigcup \mathcal{K}$
- $\langle 1 \rangle 5$. F is a function
- $\langle 1 \rangle 6$. For all $x \in \text{dom } F$ we have $F(x) = \rho(F \upharpoonright \text{seg } x)$
- $\langle 1 \rangle 7$. dom F = J
- $\langle 1 \rangle 8$. F is unique

Theorem 4.6.7. The following are equivalent.

- 1. The Axiom of Choice
- 2. (Well-Ordering Theorem) Every set has a well-ordering.
- 3. (Zorn's Lemma) Let X be a poset. If every chain in X has an upper bound in X, then X has a maximal element.

Proof:

 $\langle 1 \rangle 1. \ 1 \Rightarrow 2$

Proof:

- $\langle 2 \rangle 1$. Assume: The Axiom of Choice
- $\langle 2 \rangle 2$. Let: X be a set.
- $\langle 2 \rangle 3$. Pick a choice function for $\mathcal{P}X \setminus \{\emptyset\}$

Proof: Lemma 3.27.2.

- $\langle 2 \rangle$ 4. Let: a tower in X be a pair (T,<) where $T \subseteq X$, < is a well-ordering of T, and $x = c(X \setminus \{y \in T \mid y < x\})$.
- $\langle 2 \rangle$ 5. For any two towers $(T_1, <_1)$ and $(T_2, <_2)$, either these two posets are equal or one is a section of the other.
 - $\langle 3 \rangle 1$
- $\langle 2 \rangle$ 6. For any tower (T,<) in X with $T \neq X$, there exists a tower in X of which (T,<) is a section.
- $\langle 2 \rangle 7$. Let: $T = \bigcup \{ T' \subseteq X \mid \exists R. (T, R) \text{ is a tower in } X \}$
- $\langle 2 \rangle$ 8. Define < on T by: x < y iff there exists a tower (T, R) in X such that $x, y \in T$ and xRy.
- $\langle 2 \rangle 9$. (T, <) is a tower in X.
- $\langle 2 \rangle 10. \ T = X$
- $\langle 2 \rangle 11$. < is a well-ordering of X.
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle$ 1. Assume: The Well-Ordering Theorem
 - $\langle 2 \rangle 2$. Let: X be a poset in which every chain has an upper bound.
 - $\langle 2 \rangle 3$. Pick a well-ordering R of X
 - $\langle 2 \rangle 4$. Define $F: X \to \{0,1\}$ by transfinite R-recursion by:

$$F(a) = \begin{cases} 1 & \text{if } b < a \text{ for all } b \text{ such that } bRa \text{ and } f(b) = 1\\ 0 & \text{otherwise} \end{cases}$$

- $\langle 2 \rangle 5$. Let: $C = \{ a \in X \mid f(a) = 1 \}$
- $\langle 2 \rangle 6$. C is a chain in X
 - $\langle 3 \rangle 1$. Let: $x, y \in C$
 - $\langle 3 \rangle 2$. Assume: without loss of generality xRy
 - $\langle 3 \rangle 3. \ f(y) = 1$
 - $\langle 3 \rangle 4$. for all z such that zRy and f(z) = 1 we have z < y
 - $\langle 3 \rangle 5$. x < y
- $\langle 2 \rangle$ 7. Pick an upper bound u for C
- $\langle 2 \rangle 8$. u is maximal in X
 - $\langle 3 \rangle 1$. Let: $x \in X$ with $u \leq x$
 - $\langle 3 \rangle 2$. for all b such that bRx and f(b) = 1 we have b < x PROOF: Since $b \in C$ so $b \le u \le x$
 - $\langle 3 \rangle 3. \ f(u) = 1$
 - $\langle 3 \rangle 4. \ u \leq x$
 - $\langle 3 \rangle 5. \ u = x$
- $\langle 2 \rangle 9. \ 3 \Rightarrow 1$
 - $\langle 3 \rangle$ 1. Assume: Zorn's Lemma
 - $\langle 3 \rangle 2$. Let: R be a relation
 - $\langle 3 \rangle 3$. Let: \mathcal{A} be the poset of functions that are subsets of R under \subseteq
 - $\langle 3 \rangle 4$. Every chain in \mathcal{A} has an upper bound
 - $\langle 4 \rangle 1$. Let: $\mathcal{C} \subseteq \mathcal{A}$ be a chain.

```
Prove: \bigcup \mathcal{C} \in \mathcal{A}
           \langle 4 \rangle 2. Assume: (x,y),(x,z) \in \bigcup \mathcal{C}
           \langle 4 \rangle 3. Pick f, g \in \mathcal{C} such that f(x) = y and g(x) = z
           \langle 4 \rangle 4. Assume: without loss of generality f \subseteq g
           \langle 4 \rangle 5. \ g(x) = y
           \langle 4 \rangle 6. \ y = z
       \langle 3 \rangle5. Pick F maximal in \mathcal{A}
       \langle 3 \rangle 6. dom F = \text{dom } R
           \langle 4 \rangle 1. Assume: for a contradiction x \in \text{dom } R - \text{dom } F
           \langle 4 \rangle 2. PICK y such that xRy
           \langle 4 \rangle 3. Let: G = F \cup \{(x, y)\}
           \langle 4 \rangle 4. G \in \mathcal{A}
           \langle 4 \rangle 5. \ F \subset G
          \langle 4 \rangle 6. Q.E.D.
              PROOF: This contradicts the maximality of F.
Theorem 4.6.8 (Cardinal Comparability). The Axiom of Choice is equivalent
to the Cardinal Comparability Theorem: for any two sets A and B, either
A \preccurlyeq B \text{ or } B \preccurlyeq A.
Proof:
(1)1. Zorn's Lemma implies Cardinal Comparability
    \langle 2 \rangle 1. Assume: Zorn's Lemma
    \langle 2 \rangle 2. Let: A and B be sets.
    \langle 2 \rangle 3. Let: A be the poset of all injective functions f such that dom f \subseteq C
                      and ran f \subseteq D under \subseteq
    \langle 2 \rangle 4. Every chain in \mathcal{A} has an upper bound.
       \langle 3 \rangle 1. Let: \mathcal{C} \subseteq \mathcal{A} be a chain.
                Prove: \bigcup \mathcal{C} \in \mathcal{A}
       \langle 3 \rangle 2. | JC is a function.
           \langle 4 \rangle 1. Let: (x,y),(x,z) \in \bigcup \mathcal{C}
           \langle 4 \rangle 2. PICK f, g \in \mathcal{C} such that f(x) = y and g(x) = z
           \langle 4 \rangle 3. Assume: without loss of generality f \subseteq g
           \langle 4 \rangle 4. q(x) = y
           \langle 4 \rangle 5. \ y = z
       \langle 3 \rangle 3. \bigcup C is injective.
          PROOF: Similar.
    \langle 2 \rangle5. Pick \hat{f} maximal in \mathcal{A}
       PROOF: By Zorn's Lemma.
    \langle 2 \rangle6. Either dom \hat{f} = C or ran \hat{f} = D
       \langle 3 \rangle 1. Assume: for a contradiction dom \hat{f} \subset C and ran \hat{f} \subset D
       \langle 3 \rangle 2. Pick x \in C - \text{dom } \hat{f} and y \in D - \text{ran } \hat{f}
       \langle 3 \rangle 3. Let: g = \hat{f} \cup \{(x,y)\}
       \langle 3 \rangle 4. \ g \in \mathcal{A}
```

 $\langle 3 \rangle 5. \ \hat{f} \subset g$

```
\langle 3 \rangle 6. Q.E.D.
```

PROOF: This contradicts the maximality of \hat{f} .

- $\langle 2 \rangle 7$. If dom $\hat{f} = C$ then $C \preceq D$
- $\langle 2 \rangle 8$. If ran $\hat{f} = D$ then $D \preceq C$
- (1)2. Cardinal Comparability implies the Well-Ordering Theorem
 - $\langle 2 \rangle$ 1. Assume: Cardinal Comparability
 - $\langle 2 \rangle 2$. Let: A be a set
 - $\langle 2 \rangle 3$. Pick an ordinal α such that $\alpha \not \leq A$
 - $\langle 2 \rangle 4$. $A \leq \alpha$

PROOF: By Cardinal Comparability.

- $\langle 2 \rangle$ 5. Pick an injection $f: A \to \alpha$
- $\langle 2 \rangle 6$. Define < on A by x < y iff $f(x) \in f(y)$
- $\langle 2 \rangle 7$. < is a well-ordering on A.

Theorem 4.6.9. Given two well-ordered sets A and B, either $A \cong B$ or one of A, B is isomorphic to an initial segment of the other.

4.7 Ordinal Numbers

Definition 4.7.1. Let (A, \leq) be a well-ordered set. The *ordinal number* of (A, \leq) is the range of E, where E is the unique function with domain A such that $E(t) = \operatorname{ran}(E \upharpoonright \operatorname{seg} t)$ for all $t \in A$.

Theorem 4.7.2. Let (A, \leq) be a well-ordered set and $E: A \to \alpha$ be the canonical function onto the ordinal of A. Then:

- 1. For all $t \in A$ we have $E(t) \notin E(t)$.
- 2. E is a bijection.
- 3. For any $s, t \in A$, we have s < t if and only if $E(s) \in E(t)$.
- 4. α is a transitive set.
- 5. α is well-ordered by \in
- 6. E is an order isomorphism between (A, \leq) and (α, \in) .

Theorem 4.7.3. Two well-ordered sets are isomorphic if and only if they have the same ordinal number.

Theorem 4.7.4. A set is an ordinal number if and only if it is a transitive set well-ordered by \in .

Theorem 4.7.5. Every member of an ordinal number is an ordinal number.

Theorem 4.7.6. Any transitive set of ordinal numbers is an ordinal number.

Theorem 4.7.7. The empty set is an ordinal number.

Theorem 4.7.8. The successor of an ordinal number is an ordinal number.

Theorem 4.7.9. If A is a set of ordinal numbers then $\bigcup A$ is an ordinal number.

Theorem 4.7.10. Any nonempty set of ordinal numbers has a least element.

Theorem 4.7.11 (Burali-Forti Paradox). The class of ordinal numbers is a proper class.

Theorem 4.7.12 (Hartogs' Theorem). For any set A, there exists an ordinal that is not dominated by A.

Proof:

- $\langle 1 \rangle 1$. Let: α be the class of all ordinals β such that $\beta \leq A$
- $\langle 1 \rangle 2$. α is a set.
 - $\langle 2 \rangle$ 1. Let: W be the set of all pairs (B, \leq) such that $B \subseteq A$ and \leq is a well-ordering on B.
 - $\langle 2 \rangle 2$. Every member of α is the ordinal number of a member of W
 - $\langle 2 \rangle 3$. Q.E.D.

PROOF: By a Replacement Axiom.

- $\langle 1 \rangle 3$. α is an ordinal.
- $\langle 1 \rangle 4$. α is not dominated by A.

Definition 4.7.13. A class term $\mathbf{F} : \mathbf{On} \to \mathbf{On}$ is *continuous* iff, for every limit ordinal λ , we have $\mathbf{F}(\lambda) = \sup_{\alpha < \lambda} F(\alpha)$.

Theorem 4.7.14. Let $\mathbf{F} : \mathbf{On} \to \mathbf{On}$. If \mathbf{F} is continuous and $\mathbf{F}(\alpha) < \mathbf{F}(\alpha+1)$ for every ordinal α , then \mathbf{F} is strictly monotone.

Definition 4.7.15. A class term $\mathbf{F}: \mathbf{On} \to \mathbf{On}$ is *normal* iff it is strictly monotone and continuous.

Theorem 4.7.16. Let $\mathbf{F}: \mathbf{On} \to \mathbf{On}$ be normal. For every ordinal $\beta \geq \mathbf{F}(0)$, there exists a greatest ordinal α such that $\mathbf{F}(\alpha) \leq \beta$.

Theorem 4.7.17. Let $\mathbf{F}: \mathbf{On} \to \mathbf{On}$ be normal. Let S be a set of ordinals. Then $\mathbf{F}(\sup S) = \sup_{\alpha \in S} \mathbf{F}(\alpha)$.

Theorem 4.7.18 (Veblen Fixed-Point Theorem). Let $\mathbf{F} : \mathbf{On} \to \mathbf{On}$ be normal. For every ordinal α , there exists $\beta \geq \alpha$ such that $\mathbf{F}(\beta) = \beta$.

PROOF: Let β be the supremum of α , $\mathbf{F}(\alpha)$, $\mathbf{F}^2(\alpha)$,

Lemma 4.7.19. Let α be an ordinal. Let $(f(\gamma))_{\gamma < \alpha}$ be an α -sequence of ordinals. Then there exists $\beta \leq \alpha$ and an increasing sequence of ordinals $(g(\gamma))_{\gamma < \beta}$ such that $\sup_{\gamma < \alpha} f(\gamma) = \sup_{\gamma < \beta} g(\gamma)$.

4.8 Cardinal Numbers

Definition 4.8.1 (Cardinal Number (AC)). For any set A, the *cardinal number* of A, card A, is the least ordinal equinumerous with A.

There exists some ordinal equinumerous with A by the Well-Ordering Theorem.

Theorem 4.8.2. For any sets A and B, we have $A \equiv B$ if and only if card A = card B.

Theorem 4.8.3. A set A is finite if and only if card A is a natural number.

Theorem 4.8.4. The supremum of a set of cardinal numbers is a cardinal number.

4.9 Cardinal Arithmetic

Definition 4.9.1. For cardinal numbers κ and λ , the *sum* $\kappa + \lambda$ is the cardinal number of $A \cup B$, where A and B are disjoint sets of cardinality κ and λ respectively.

Theorem 4.9.2. $\kappa + \lambda = \lambda + \kappa$

Theorem 4.9.3. $\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$

Theorem 4.9.4. The definition of addition agrees with the definition on natural numbers.

Definition 4.9.5. For cardinal numbers κ and λ , the *product* $\kappa\lambda$ is the cardinality of $\kappa \times \lambda$.

Theorem 4.9.6. $\kappa\lambda = \lambda\kappa$

Theorem 4.9.7. $\kappa(\lambda\mu) = (\kappa\lambda)\mu$

Theorem 4.9.8. $\kappa(\lambda + \mu) = \kappa\lambda + \kappa\mu$

Theorem 4.9.9. The definition of multiplication agrees with the definition on natural numbers.

Theorem 4.9.10 (AC). For any infinite cardinal κ we have $\kappa \kappa = \kappa$.

PROOF:

- $\langle 1 \rangle 1$. Let: B be a set with cardinality κ
- $\langle 1 \rangle 2$. Let: $\mathcal{H} = \{\emptyset\} \cup \{f \mid \exists A \subseteq B.A \text{ is infinite and } f \text{ is a bijection between } A \times A \text{ and } A\}$
- $\langle 1 \rangle 3$. For every chain $\mathcal{C} \subseteq \mathcal{H}$ we have $\bigcup \mathcal{C} \in \mathcal{H}$
- $\langle 1 \rangle 4$. Pick a maximal f_0 in \mathcal{H}
- $\langle 1 \rangle 5. \ f_0 \neq \emptyset$

PROOF: B has a subset of cardinality \aleph_0 and $\aleph_0 \aleph_0 = \aleph_0$.

 $\langle 1 \rangle 6$. Let: A_0 be the set such that f_0 is a bijection between $A_0 \times A_0$ and A_0

$$\langle 1 \rangle 7$$
. Let: $\lambda = \operatorname{card} A_0$
 $\langle 1 \rangle 8$. $\operatorname{card}(B - A_0) < \lambda$
 $\langle 1 \rangle 9$. $\kappa = \lambda$
Proof:

$$\kappa = \operatorname{card} A_0 + \operatorname{card}(B - A_0)$$

$$\leq \lambda + \lambda$$

$$= 2\lambda$$

$$\leq \lambda \lambda$$

$$= \lambda$$

$$< \kappa$$

$$(\langle 1 \rangle 6)$$

Theorem 4.9.11 (Absorption Law). Let κ and λ be cardinal numbers such that $0 < \kappa \le \lambda$ and λ is infinite. Then

$$\kappa + \lambda = \lambda$$
.

Theorem 4.9.12 (Absorption Law). Let κ and λ be cardinal numbers such that $0 < \kappa \le \lambda$ and λ is infinite. Then

$$\kappa\lambda = \lambda$$
.

Definition 4.9.13. For cardinal numbers κ and λ , we write κ^{λ} for the cardinality of the set of functions from λ to κ .

Theorem 4.9.14. $\kappa^{\lambda+\mu} = \kappa^{\lambda} + \kappa^{\mu}$

Theorem 4.9.15. $(\kappa\lambda)^{\mu} = \kappa^{\mu}\lambda^{\mu}$

Theorem 4.9.16. $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda\mu}$

Theorem 4.9.17. The definition of exponentiation agrees with the definition on natural numbers.

Theorem 4.9.18. Given sets A and B, we have card $A \leq \operatorname{card} B$ if and only if $A \leq B$.

Definition 4.9.19. Let $\aleph_0 = \operatorname{card} \mathbb{N}$.

Theorem 4.9.20 (AC). For any infinite cardinal κ we have $\aleph_0 \leq \kappa$.

Theorem 4.9.21 (Maximum Principle (AC)). Every poset has a maximal chain.

4.10 Rank of a Set

Definition 4.10.1 (Cumulative Hierarchy of Sets). For every ordinal α , define the $rank V_{\alpha}$ by transfinite recursion thus:

$$V_0 = \emptyset$$

$$V_{\alpha+1} = \mathcal{P}V_{\alpha}$$

$$V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha}$$

for λ a limit ordinal.

The von Neumann universe is the class $\mathbf{V} = \bigcup_{\alpha \in \mathbf{On}} V_{\alpha}$.

Theorem 4.10.2. If λ is a limit ordinal and $\lambda > \omega$ then V_{λ} is a model of Zermelo set theory.

Lemma 4.10.3 (AC). There exists a well-ordered set in V_{ω_2} whose ordinal is not in V_{ω_2} .

PROOF: Pick a well-ordering < of $\mathcal{P}\mathbb{N}$. Then $(\mathcal{P}\mathbb{N},<) \in V_{\omega_2}$ but its ordinal is not because its ordinal is uncountable. \square

Theorem 4.10.4. The set $V_{\omega 2}$ is not a model of Zermelo-Fraenkel set theory.

Thus, the Replacement Axioms cannot be proven from the other axioms.

Definition 4.10.5 (Well-Founded Set). A set A is well-founded iff $A \in V_{\alpha}$ for some $\alpha \in \mathbf{On}$.

Definition 4.10.6 (Rank). The *rank* of a well-founded set A, rank A, is the least ordinal α such that $A \in V_{\alpha}$.

Theorem 4.10.7. If $A \in B$ and B is well-founded then A is well-founded and rank $A < \operatorname{rank} B$.

Theorem 4.10.8. If A is a set and every member of A is well-founded then A is well-founded and rank $A = \sup_{B \in A} (\operatorname{rank} B + 1)$.

Theorem 4.10.9. The Axiom of Regularity is equivalent to the statement that every set is well-founded.

4.11 Transfinite Recursion Again

Theorem 4.11.1. Let **A** be a class. Let **B** be the class of all functions $f: \alpha \to \mathbf{A}$ for some ordinal α . Let $\mathbf{F}: \mathbf{B} \to \mathbf{A}$ be a class term. Then there exists a unique class term $\mathbf{G}: \mathbf{On} \to \mathbf{A}$ such that, for all $\alpha \in \mathbf{On}$, we have $\mathbf{G}(\alpha) = \mathbf{F}(\mathbf{G} \upharpoonright \alpha)$.

4.12 Alephs

Definition 4.12.1. Define the cardinal number \aleph_{α} for every ordinal α by transfinite recursion on α thus: \aleph_{α} is the least infinite cardinal different from \aleph_{β} for all $\beta < \alpha$.

Theorem 4.12.2. If $\alpha < \beta$ then $\aleph_{\alpha} < \aleph_{\beta}$.

Theorem 4.12.3. Every infinite cardinal has the form \aleph_{α} for some ordinal α .

4.13 Ordinal Arithmetic

Definition 4.13.1 (Sum). Let α and β be ordinals. The *sum* $\alpha + \beta$ is the ordinal of the concatenation of A followed by B, where A is a well-ordered set of ordinal α and B a well-ordered set of ordinal β .

Theorem 4.13.2. Addition is associative.

Theorem 4.13.3. $\alpha + 0 = \alpha$

Theorem 4.13.4. $0 + \alpha = \alpha$

Theorem 4.13.5. For λ a limit ordinal we have $\alpha + \lambda = \sup_{\beta < \lambda} (\alpha + \beta)$

Theorem 4.13.6. For any α , the class term that maps β to $\alpha + \beta$ is normal.

Theorem 4.13.7. $\beta < \gamma$ iff $\alpha + \beta < \alpha + \gamma$.

Theorem 4.13.8. If $\beta \leq \gamma$ then $\beta + \alpha \leq \gamma + \alpha$.

Theorem 4.13.9 (Subtraction Theorem). If $\alpha < \beta$ then there exists a unique δ such that $\alpha + \delta < \beta$.

Definition 4.13.10 (Product). Let α and β be ordinals. The $sum \ \alpha + \beta$ is the ordinal of $A \times B$ ordered under the Hebrew lexicographic order, where A is a well-ordered set of ordinal α and B a well-ordered set of ordinal β .

Theorem 4.13.11. Multiplication is associative.

Theorem 4.13.12. Multiplication distributes over addition on the left.

Theorem 4.13.13. $\alpha 1 = \alpha$

Theorem 4.13.14. $1\alpha = \alpha$

Theorem 4.13.15. $\alpha 0 = 0$

Theorem 4.13.16. $0\alpha = 0$

Theorem 4.13.17. For λ a limit ordinal, we have $\alpha\lambda = \sup_{\beta < \lambda} (\alpha\beta)$.

Theorem 4.13.18. For $\alpha > 0$, the class term that maps β to $\alpha\beta$ is normal.

Theorem 4.13.19. If $\alpha > 0$, then $\beta < \gamma$ iff $\alpha \beta < \alpha \gamma$.

Theorem 4.13.20. If $\beta < \gamma$ then $\beta \alpha < \gamma \alpha$.

Theorem 4.13.21 (Division Theorem). For any ordinals α and δ with $\delta \neq 0$, there exist unique ordinals β and γ with $\gamma < \delta$ and $\alpha = \delta \beta + \gamma$.

Definition 4.13.22 (Exponentiation). For ordinals α and β , define the ordinal α^{β} by transfinite recursion on β by:

$$\alpha^{0} = 1$$

$$\alpha^{\beta+1} = \alpha^{\beta} + \alpha$$

$$\alpha^{\lambda} = \sup_{\beta < \lambda} \alpha^{\beta}$$

for λ a limit ordinal.

Theorem 4.13.23. For $\alpha > 1$, the class term that maps β to α^{β} is normal.

Theorem 4.13.24. If $\alpha > 1$, then $\beta < \gamma$ iff $\alpha^{\beta} < \alpha^{\gamma}$.

Theorem 4.13.25. If $\beta \leq \gamma$ then $\beta^{\alpha} \leq \gamma^{\alpha}$.

Theorem 4.13.26 (Logarithm Theorem). Let α and β be ordinals with $\alpha \neq 0$ and $\beta > 1$. Then there exist unique ordinals γ , δ and ρ such that $\delta \neq 0$, $\delta < \beta$, $\rho < \beta^{\gamma}$, and $\alpha = \beta^{\gamma}\delta + \rho$.

Theorem 4.13.27.

$$\alpha^{\beta+\gamma} = \alpha^{\beta}\alpha^{\gamma}$$

Theorem 4.13.28.

$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma}$$

4.14 Beth Cardinals

Definition 4.14.1. Define the cardinal \beth_{α} for every ordinal α by:

$$\exists_0 = \aleph_0
\exists_{\alpha+1} = 2^{\exists_{\alpha}}
\exists_{\lambda} = \sup_{\alpha < \lambda} \exists_{\alpha}$$

for λ a limit ordinal.

Lemma 4.14.2. For any ordinal α we have card $V_{\omega+\alpha} = \beth_{\alpha}$.

4.15 Cofinality

Definition 4.15.1 (Cofinality). For λ a limit ordinal, the *cofinality* of λ , cf λ , is the least cardinal κ such that λ is the supremum of a set of κ smaller ordinals.

We extend cf to all the ordinals by setting cf 0 = 0 and cf $(\alpha + 1) = 1$.

Theorem 4.15.2. For any limit ordinal λ we have cf $\aleph_{\lambda} = \operatorname{cf} \lambda$.

Lemma 4.15.3. Let λ be a limit ordinal. Then cf λ is the least ordinal α such that there exists an increasing α -sequence of ordinals with limit λ .

Theorem 4.15.4. Let λ be an infinite cardinal. Then cf λ is the least cardinal number κ such that λ can be partitioned into κ sets each of cardinality $< \lambda$.

Theorem 4.15.5 (König's Theorem). Let κ be an infinite cardinal. Then $\kappa < 2^{\text{cf }\kappa}$.

Corollary 4.15.5.1. $2^{\aleph_0} \neq \aleph_{\omega}$.

Definition 4.15.6 (Regular). A cardinal κ is regular iff cf $\kappa = \kappa$.

Theorem 4.15.7. For any ordinal λ , we have cf λ is a regular cardinal.

Definition 4.15.8 (Singular). A cardinal κ is singular iff cf $\kappa < \kappa$.

Theorem 4.15.9. For any ordinal α we have $\aleph_{\alpha+1}$ is a regular cardinal.

4.16 Inaccessible Cardinals

Definition 4.16.1 (Inaccessible). A cardinal number κ is *inaccessible* iff:

- $\kappa > \aleph_0$
- For every cardinal $\lambda < \kappa$ we have $2^{\lambda} < \kappa$
- κ is regular.

Lemma 4.16.2. If κ is inaccessible and $\alpha < \kappa$ then $\beth_{\alpha} < \kappa$.

Lemma 4.16.3. If κ is inaccessible and $A \in V_{\kappa}$ then card $A < \kappa$.

Theorem 4.16.4. If κ is inaccessible then V_{κ} is a model of ZF.

4.17 Directed Set

Definition 4.17.1 (Directed Set). A preodered set P is directed iff, for all $a, b \in P$, there exists $c \in P$ such that $a \le c$ and $b \le c$.

Proposition 4.17.2. Every linearly ordered set is directed.

Proposition 4.17.3. For any set A, the PA under \subseteq is directed.

4.18 Cofinal Set

Definition 4.18.1 (Cofinal). Let A be a preordered set and $B \subseteq A$. Then B is *cofinal* if and only if, for every $x \in A$, there exists $y \in B$ such that $x \leq y$.

Proposition 4.18.2. If A is a directed preordered set and $B \subseteq A$ is cofinal then B is directed.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in B$
- $\langle 1 \rangle 2$. PICK $z \in A$ such that $x \leq z$ and $y \leq z$
- $\langle 1 \rangle 3$. PICK $z' \in B$ such that $z \leq z'$
- $\langle 1 \rangle 4. \ x \leq z' \text{ and } y \leq z'$

Chapter 5

Natural Numbers

5.1 Successors

Definition 5.1.1 (Successor (Pairing, Union)). For any set a, its Successor a^+ is the set $a \cup \{a\}$

Theorem 5.1.2 (Pairing, Union). If a is a transitive set then $\bigcup (a^+) = a$.

Proof:

$$\bigcup (a^{+}) = \bigcup (a \cup \{a\})$$

$$= \bigcup a \cup \bigcup \{a\}$$

$$= \bigcup a \cup a$$

$$= a \qquad (\bigcup a \subseteq a) \square$$

Theorem 5.1.3. If A is a transitive set then A^+ is transitive.

Proof: If A is transitive then $\bigcup (A^+) = A \subseteq A^+$. \square

5.2 Inductive Sets

Definition 5.2.1 (Inductive (Extensionality, Empty Set, Pairing, Union)). A set A is *inductive* iff $\emptyset \in A$ and, for every $a \in A$, we have $a^+ \in A$.

Axiom 5.2.2 (Axiom of Infinity (Extensionality, Empty Set, Pairing, Union)). There exists an inductive set.

5.3 Natural Numbers

 $\begin{array}{l} \textbf{Definition 5.3.1} \; (\text{Natural Number (Extensionality, Empty Set, Pairing, Union)}). \\ \text{A } \textit{natural number} \; \text{is a set that belongs to every inductive set.} \end{array}$

We write \mathbb{N} for the class of all natural numbers.

Theorem 5.3.2 (Extensionality, Empty Set, Pairing, Union, Infinity, Subset). The class of natural numbers is a set. Proof: $\langle 1 \rangle 1$. PICK an inductive set I. PROOF: By the Axiom of Infinity. $\langle 1 \rangle 2$. $\mathbb{N} \subseteq I$ $\langle 1 \rangle 3$. Q.E.D. PROOF: By a Subset Axiom. Theorem 5.3.3 (Extensionality, Empty Set, Pairing, Union, Infinity, Subset). The set \mathbb{N} is inductive. Proof: $\langle 1 \rangle 1. \emptyset \in \mathbb{N}$ PROOF: Since \emptyset is a member of every inductive set. $\langle 1 \rangle 2$. For all $n \in \mathbb{N}$ we have $n^+ \in \mathbb{N}$ PROOF: If n is a member of every inductive set then so is n^+ . Theorem 5.3.4 (Extensionality, Empty Set, Pairing, Union, Infinity, Subset). The set \mathbb{N} is a subset of every inductive set. PROOF: Immediate from definition. Corollary 5.3.4.1 (Proof by Induction (Extensionality, Empty Set, Pairing, Union, Infinity, Subset)). If $A \subseteq \mathbb{N}$ and A is inductive then $A = \mathbb{N}$. **Definition 5.3.5** (Zero (Empty Set)). The natural number zero, 0, is defined to be \emptyset . Theorem 5.3.6 (Extensionality, Empty Set, Pairing, Union, Infinity, Subset). Every natural number except 0 is a successor of a natural number. PROOF: The set $\{x \in \mathbb{N} \mid x = 0 \lor \exists y \in \mathbb{N}. x = y^+\}$ is inductive. \square Theorem 5.3.7 (Extensionality, Empty Set, Pairing, Union, Infinity, Subset). Every natural number is transitive. Proof: By induction using Theorem 5.1.3. \square Theorem 5.3.8 (Extensionality, Empty Set, Pairing, Union, Infinity, Subset). The set \mathbb{N} is transitive. $\langle 1 \rangle 1$. For every natural number n and every $m \in n$ then m is a natural number. $\langle 2 \rangle 1$. Every member of \emptyset is a natural number. Proof: Vacuous. $\langle 2 \rangle 2$. If n is a natural number and a set of natural numbers then n^+ is a set

of natural numbers.

```
PROOF: From the definition of n^+.
   \langle 2 \rangle 3. Q.E.D.
      PROOF: By induction.
Theorem 5.3.9 (Extensionality, Empty Set, Pairing, Union, Infinity, Subset).
Let A be a set, a \in A, and F : A \to A. Then there exists a unique function
h: \mathbb{N} \to A \text{ such that } h(0) = a \text{ and, for all } n \in \mathbb{N}, \text{ we have } h(n^+) = F(h(n)).
\langle 1 \rangle 1. Call a function v acceptable iff dom v \subseteq \mathbb{N}, ran v \subseteq A, and:
           1. If 0 \in \text{dom } v \text{ then } v(0) = a.
           2. For all n \in \mathbb{N}, if n^+ \in \operatorname{dom} v then n \in \operatorname{dom} v and v(n^+) = F(v(n)).
\langle 1 \rangle 2. Let: \mathcal{K} be the set of all acceptable functions.
\langle 1 \rangle 3. Let: h = \bigcup \mathcal{K}
\langle 1 \rangle 4. h is a function.
   (2)1. If (0,y) \in h and (0,y') \in h then y = y'
      PROOF: We have y = y' = a.
   \langle 2 \rangle 2. For any natural number n, if there is at most one y such that (n, y) \in h,
            then there is at most one y such that (n^+, y) \in h
       \langle 3 \rangle 1. Let: n be a natural number.
      \langle 3 \rangle 2. Assume: there is at most one y such that (n,y) \in h
       \langle 3 \rangle 3. Assume: (n^+, y) and (n^+, y') are in h)
       \langle 3 \rangle 4. Pick acceptable functions u and v such that u(n^+) = y and v(n^+) = y
       \langle 3 \rangle 5. n \in \text{dom } u, n \in \text{dom } v \text{ and } y = F(u(n)), y' = F(v(n))
       \langle 3 \rangle 6. \ u(n) = v(n)
          PROOF: By the induction hypothesis \langle 3 \rangle 2
       \langle 3 \rangle 7. \ y = y'
   \langle 2 \rangle 3. Q.E.D.
      PROOF: By induction.
\langle 1 \rangle 5. h is acceptable.
   \langle 2 \rangle 1. If 0 \in \text{dom } h \text{ then } h(0) = a
   \langle 2 \rangle 2. If n^+ \in \text{dom } h then n \in \text{dom } h and h(n^+) = F(h(n))
      \langle 3 \rangle 1. Assume: n^+ \in \text{dom } h
       \langle 3 \rangle 2. PICK an acceptable v such that n^+ \in \text{dom } v
      \langle 3 \rangle 3. \ v(n^+) = F(v(n))
       \langle 3 \rangle 4. \ h(n^+) = F(h(n))
\langle 1 \rangle 6. dom h = \mathbb{N}
   \langle 2 \rangle 1. 0 \in \text{dom } h
      PROOF: Since \{(0,a)\} is an acceptable function.
   \langle 2 \rangle 2. For all n \in \text{dom } h we have n^+ \in \text{dom } h
       \langle 3 \rangle 1. Assume: n \in \text{dom } h
       \langle 3 \rangle 2. Let: v be an acceptable function with n \in \text{dom } v
```

 $\langle 3 \rangle 3$. Assume: without loss of generality $n^+ \notin \text{dom } v$

 $\langle 3 \rangle 4. \ v \cup \{(n^+, F(v(n)))\}$ is acceptable

 $\langle 3 \rangle 5.$ $n^+ \in \text{dom } v$ $\langle 1 \rangle 7.$ If $h': \mathbb{N} \to A$, h'(0) = a and, for all $n \in \mathbb{N}$, we have $h'(n^+) = F(h'(n))$, then h' = hPROOF: Prove h(n) = h'(n) by induction on n.

5.4 Peano Systems

Definition 5.4.1 (Peano System). A *Peano system* consists of a set N, an element $z \in N$, and a function $S: N \to N$ such that:

- \bullet S is one-to-one
- $z \notin \operatorname{ran} S$
- For any set $A \subseteq N$, if $z \in A$ and $S(A) \subseteq A$ then A = N.

Theorem 5.4.2. \mathbb{N} is a Peano system with zero 0 and successor $n \mapsto n^+$.

Theorem 5.4.3. For any Peano system (N, z, S), there exists a unique bijection $h : \mathbb{N} \cong N$ such that h(0) = z and $S(h(n)) = h(n^+)$ for all n.

5.5 Arithmetic

Definition 5.5.1 (Addition). Define addition $+: \mathbb{N}^2 \to \mathbb{N}$ recursively by

$$m + 0 = m$$
$$m + n^+ = (m+n)^+$$

for any $m, n \in \mathbb{N}$.

Theorem 5.5.2. Addition is associative.

Theorem 5.5.3. Addition is commutative

Definition 5.5.4 (Multiplication). Define $multiplication : \mathbb{N}^2 \to \mathbb{N}$ recursively by

$$m0 = 0$$
$$mn^+ = mn + m$$

for any $m, n \in \mathbb{N}$

Theorem 5.5.5. Multiplication is associative.

Theorem 5.5.6. Multiplication is commutative.

Theorem 5.5.7. Multiplication distributes over addition.

Definition 5.5.8. For natural numbers m and n, we write m < n iff $m \in n$. We write $m \le n$ iff m < n or m = n.

Theorem 5.5.9. We have m < n iff $m^+ < n^+$.

Theorem 5.5.10. We never have n < n.

Theorem 5.5.11. The ordering on \mathbb{N} satisfies trichotomy; that is, for any m, n, exactly one of m < n, m = n, n < m holds.

Theorem 5.5.12. For any natural numbers m and n, we have $m \leq n$ iff $m \subseteq n$.

Theorem 5.5.13. We have m < n iff m + p < n + p.

Corollary 5.5.13.1. *If* m + p = n + p *then* m = n.

Theorem 5.5.14. If $p \neq 0$ then m < n iff mp < np.

Corollary 5.5.14.1. If mp = np and $p \neq 0$ then m = n.

Theorem 5.5.15 (Well-Ordering of \mathbb{N}). Any nonempty set $A \subseteq \mathbb{N}$ has a least element.

Corollary 5.5.15.1. There is no function $f : \mathbb{N} \to \mathbb{N}$ such that $f(n^+) < f(n)$ for all n.

Theorem 5.5.16 (Strong Induction). Let $A \subseteq \mathbb{N}$. Suppose that, for every natural number n, if $\forall m < n.m \in A$ then $n \in A$. Then $A = \mathbb{N}$.

Theorem 5.5.17 (Pigeonhole Principle). No natural number is equinumerous with a proper subset of itself.

PROOF: Prove by induction on n that if $f:n\to n$ is injective then it is surjective. \sqcap

Chapter 6

Integers

Lemma 6.0.1. Define \sim on \mathbb{N}^2 by: $(m,n) \sim (p,q)$ iff m+q=n+p. Then \sim is an equivalence relation on \mathbb{N}^2 .

Definition 6.0.2 (Integers). The set \mathbb{Z} of *integers* is \mathbb{N}^2/\sim .

Definition 6.0.3. Define $addition + : \mathbb{Z}^2 \to \mathbb{Z}$ by: (m, n) + (p, q) = (m + p, n + q).

Prove this is well-defined.

Theorem 6.0.4. Addition is associative and commutative.

Definition 6.0.5 (Zero). The integer zero is 0 = (0, 0).

Theorem 6.0.6. For any integer a, we have a + 0 = a.

Theorem 6.0.7. For any integer a, there exists a unique integer b such that a + b = 0.

Definition 6.0.8 (Multiplication). Define multiplication on \mathbb{Z} by (m, n)(p, q) = (mp + nq, mq + np).

Theorem 6.0.9. Multiplication is associative, commutative and distributive over addition.

Definition 6.0.10. The integer one is 1 = (1,0).

Theorem 6.0.11. For any integer a we have a1 = a.

Theorem 6.0.12. $1 \neq 0$

Theorem 6.0.13. Whenever ab = 0 then either a = 0 or b = 0.

Definition 6.0.14. Define < on \mathbb{Z} by: (m,n)<(p,q) iff m+q< n+p.

Theorem 6.0.15. The relation < is a strict linear ordering on \mathbb{Z} .

Theorem 6.0.16. We have a < b iff < +c < b + c.

Corollary 6.0.16.1. *If* a + c = b + c *then* a = b.

Theorem 6.0.17. If 0 < c then a < b iff ac < bc.

Corollary 6.0.17.1. If ac = bc and $c \neq 0$ then a = b.

Definition 6.0.18. We identify any natural number n with the integer (n,0).

Theorem 6.0.19. This embedding preserves 0, 1, addition, multiplication and the ordering.

Chapter 7

Rational Numbers

Definition 7.0.1 (Rational Numbers). The set of rationals \mathbb{Q} is $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) / \sim$, where $(a, b) \sim (c, d)$ iff ad = bc.

Definition 7.0.2 (Addition). Define addition on \mathbb{Q} by: (a,b) + (c,d) = (ad + bc, bd).

Theorem 7.0.3. Addition is commutative and associative

Definition 7.0.4. The rational number 0 is (0,1).

Theorem 7.0.5. For any rational q we have q + 0 = q.

Theorem 7.0.6. For any rational q, there exists a unique rational r such that q + r = 0.

Definition 7.0.7. Define multiplication on \mathbb{Q} by: (a,b)(c,d)=(ac,bd).

Theorem 7.0.8. Multiplication is commutative, associative and distributive over addition.

Definition 7.0.9. The rational number 1 is (1,1).

Theorem 7.0.10. For every nonzero rational r, there exists a nonzero rational q such that rq = 1.

Corollary 7.0.10.1. If qr = 0 then either q = 0 or r = 0.

Definition 7.0.11. Define < on \mathbb{Q} by: for b and d positive, (a,b)<(c,d) iff ad < bc.

Theorem 7.0.12. The relation < is a strict linear ordering on \mathbb{Q} .

Theorem 7.0.13. We have q < r iff q + s < r + s

Corollary 7.0.13.1. *If* q + s = r + s *then* q = r.

Theorem 7.0.14. If s > 0 then we have q < r iff qs < rs.

Corollary 7.0.14.1. If qs = rs and $s \neq 0$ then q = r.

Definition 7.0.15. We identify an integer n with the rational (n,1).

Theorem 7.0.16. This embedding preserves zero, one, addition, multiplication and the ordering.

Chapter 8

Real Numbers

Definition 8.0.1 (Dedekind Cut). A *Dedekind cut* is a subset $X \subseteq \mathbb{Q}$ such that:

- \bullet X is nonempty
- $X \neq \mathbb{Q}$
- \bullet X is closed downward
- X has no largest element.

Definition 8.0.2 (Real Numbers). The set of *real numbers* \mathbb{R} is the set of all Dedekind cuts.

Definition 8.0.3. Define < on \mathbb{R} by: x < y iff x is a proper subset of y.

Theorem 8.0.4. The relation < is a strict linear ordering on \mathbb{R} .

Theorem 8.0.5. Any bounded nonempty subset of \mathbb{R} has a least upper bound.

Definition 8.0.6. Define addition on \mathbb{R} by: $x + y = \{q + r \mid q \in x, r \in y\}$.

Theorem 8.0.7. Addition is associative and commutative.

Definition 8.0.8. The zero real 0 is $\{q \in \mathbb{Q} \mid q < 0\}$.

Theorem 8.0.9. For any $x \in \mathbb{R}$ we have x + 0 = x.

Definition 8.0.10. Given a real x, define $-x = \{q \in \mathbb{Q} \mid \exists r > q. -r \notin x\}$.

Theorem 8.0.11. For any real x we have x + (-x) = 0.

Corollary 8.0.11.1. *If* x + z = y + z *then* x = y.

Theorem 8.0.12. We have x < y iff x + z < y + z.

Definition 8.0.13. Define the absolute value of a real x by $|x| = x \cup -x$.

Theorem 8.0.14. For any real x we have $0 \le |x|$.

Definition 8.0.15. Define multiplication on \mathbb{R} by:

• If x and y are nonnegative then

$$xy = 0 \cup \{qr \mid 0 \le q, 0 \le r, q \in x, r \in y\}$$

- If x and y are both negative then xy = |x||y|
- If one of x and y is negaive and the other not then xy = -|x||y|.

Theorem 8.0.16. Multiplication is associative, commutative and distributive over addition.

Definition 8.0.17. The real number 1 is $\{q \in \mathbb{Q} \mid q < 1\}$.

Theorem 8.0.18. $0 \neq 1$

Theorem 8.0.19. For any real x we have x1 = x

Theorem 8.0.20. For any nonzero x, there exists a real y with xy = 1.

Theorem 8.0.21. If 0 < x then y < z iff xy < xz.

Definition 8.0.22. Identify a rational q with $\{r \in \mathbb{Q} \mid r < q\}$.

Theorem 8.0.23. This embedding preserves zero, one, addition, multiplication and the ordering.

8.1 The Cantor Set

Definition 8.1.1 (Cantor Set). Define the sequence of sets $A_n \subseteq \mathbb{R}$ by

$$A_0 = [0, 1]$$

$$A_n = A_{n-1} - \bigcup_{k=0}^{3^{n-1}-1} ((3k+1)/3^n, (3k+2)/3^n)$$

The Cantor set is $\bigcap_{n=0}^{\infty} A_n$.

Proposition 8.1.2. The set A_n is a union of finitely many disjoint closed intervals of length $1/3^n$, and the endpoints of these intervals lie in C.

Proof: An easy induction on n. \square

Chapter 9

Finite Sets

Definition 9.0.1 (Finite). A set is *finite* iff it is equinumerous with a natural number; otherwise it is *infinite*.

Theorem 9.0.2. No finite set is equinumerous with a proper subset of itself.

PROOF: From the Pigeonhole Principle.

Corollary 9.0.2.1. The set \mathbb{N} is infinite.

Corollary 9.0.2.2. A finite set is equinumerous with a unique natural number.

Lemma 9.0.3. If A is a proper subset of a natural number n then there exists m < n such that $C \equiv m$.

Corollary 9.0.3.1. A subset of a finite set is finite.

Theorem 9.0.4 (Regularity). There is no function f with domain \mathbb{N} such that $f(n+1) \in f(n)$ for all n.

Proof:

```
\langle 1 \rangle 1. Assume: for a contradiction f is a function with domain \mathbb N such that f(n+1) \in f(n) for all n.
```

 $\langle 1 \rangle 2$. Pick $m \in \operatorname{ran} f$ such that $m \cap \operatorname{ran} f = \emptyset$

PROOF: By the Axiom of Regularity.

- $\langle 1 \rangle 3$. Pick $n \in \mathbb{N}$ such that f(n) = m
- $\langle 1 \rangle 4$. $f(n+1) \in m \cap \operatorname{ran} f$
- $\langle 1 \rangle$ 5. Q.E.D.

PROOF: This is a contradiction.

Theorem 9.0.5. A relation R is well-founded if and only if there is no function f with domain \mathbb{N} such that, for all $n \in \mathbb{N}$, we have f(n+1)Rf(n).

9.1 Real Analysis

Definition 9.1.1. Let \mathbb{R}^{∞} be the subset of \mathbb{R}^{ω} consisting of all sequences (a_n) such that $a_n = 0$ for all but finitely many n.

9.2 Group Theory

Definition 9.2.1. Given a group G and sets $A, B \subseteq G$, let $AB = \{ab \mid a \in A, b \in B\}$.

Definition 9.2.2. Given a group G and a set $A \subseteq G$, let $A^{-1} = \{a^{-1} \mid a \in A\}$.

Chapter 10

Topological Spaces

10.1 Topologies

Definition 10.1.1 (Topology). A topology on a set X is a set $\mathcal{T} \subseteq \mathcal{P}X$ such that:

- $X \in \mathcal{T}$.
- For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$.
- For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$.

We call the elements of X points and the elements of \mathcal{T} open sets.

Definition 10.1.2 (Topological Space). A topological space X consists of a set X and a topology on X.

Definition 10.1.3 (Discrete Space). For any set X, the *discrete* topology on X is $\mathcal{P}X$.

Definition 10.1.4 (Indiscrete Space). For any set X, the *indiscrete* or *trivial* topology on X is $\{\emptyset, X\}$.

Definition 10.1.5 (Finite Complement Topology). For any set X, the *finite complement topology* on X is $\{U \in \mathcal{P}X \mid X \setminus U \text{ is finite}\} \cup \{\emptyset\}$.

Definition 10.1.6 (Countable Complement Topology). For any set X, the countable complement topology on X is $\{U \in \mathcal{P}X \mid X \setminus U \text{ is countable}\} \cup \{\emptyset\}$.

Definition 10.1.7 (Finer, Coarser). Suppose that \mathcal{T} and \mathcal{T}' are two topologies on a given set X. If $\mathcal{T}' \supseteq \mathcal{T}$, we say that \mathcal{T}' is *finer* than \mathcal{T} ; if \mathcal{T}' properly contains \mathcal{T} , we say that \mathcal{T}' is *strictly* finer than \mathcal{T} . We also say that \mathcal{T} is *coarser* than \mathcal{T}' , or *strictly* coarser, in these two respective situations. We say \mathcal{T} is *comparable* with \mathcal{T}' if either $\mathcal{T}' \supseteq \mathcal{T}$ or $\mathcal{T} \supseteq \mathcal{T}'$.

Lemma 10.1.8. Let X be a topological space and $U \subseteq X$. Then U is open if and only if, for all $x \in U$, there exists an open set V such that $x \in V \subseteq U$.

```
\langle 1 \rangle 1. \Rightarrow
   PROOF: Take V = U
\langle 1 \rangle 2. \Leftarrow
   PROOF: We have U = \bigcup \{V \text{ open in } X \mid V \subseteq U\}.
Lemma 10.1.9. Let X be a set and \mathcal{T} a nonempty set of topologies on X.
Then \bigcap \mathcal{T} is a topology on X, and is the finest topology that is coarser than
every member of \mathcal{T}.
Proof:
\langle 1 \rangle 1. \ X \in \bigcap \mathcal{T}
   PROOF: Since X is in every member of \mathcal{T}.
\langle 1 \rangle 2. \bigcap \mathcal{T} is closed under union.
   \langle 2 \rangle 1. Let: \mathcal{U} \subseteq \bigcap \mathcal{T}
   \langle 2 \rangle 2. For all T \in \mathcal{T} we have \mathcal{U} \subseteq T
   \langle 2 \rangle 3. For all T \in \mathcal{T} we have \bigcup \mathcal{U} \in T
   \langle 2 \rangle 4. \bigcup \mathcal{U} \in \bigcap \mathcal{T}
\langle 1 \rangle 3. \cap \mathcal{T} is closed under binary intersection.
   \langle 2 \rangle 1. Let: U, V \in \bigcap \mathcal{T}
   \langle 2 \rangle 2. For all T \in \mathcal{T} we have U, V \in T
   \langle 2 \rangle 3. For all T \in \mathcal{T} we have U \cap V \in T
   \langle 2 \rangle 4. U \cap V \in \bigcap \mathcal{T}
Lemma 10.1.10. Let X be a set and \mathcal{T} a set of topologies on X. Then there
exists a unique coarsest topology that is finer than every member of \mathcal{T}.
PROOF: The required topology is given by
\{T \in \mathcal{PP}X \mid T \text{ is a topology on } X \text{ that is finer than every member of } T\},
The set is nonempty since it contains the discrete topology. \square
Definition 10.1.11 (Neighbourhood). A neighbourhood of a point x is an open
set that contains x.
              Closed Set
10.2
Definition 10.2.1 (Closed Set). Let X be a topological space and A \subseteq X.
Then A is closed if and only if X \setminus A is open.
Lemma 10.2.2. The empty set is closed.
PROOF: Since the whole space X is always open. \Box
Lemma 10.2.3. The topological space X is closed.
```

Proof:

Proof: Since \emptyset is open. \square

Lemma 10.2.4. The intersection of a nonempty set of closed sets is closed.

PROOF: Let \mathcal{C} be a nonempty set of closed sets. Then $X \setminus \bigcap \mathcal{C} = \bigcup \{X \setminus C \mid C \in \mathcal{C}\}$ is open. \square

Lemma 10.2.5. The union of two closed sets is closed.

PROOF: Let C and D be closed. Then $X \setminus (C \cup D) = (X \setminus C) \cap (X \setminus D)$ is open. \sqcap

Proposition 10.2.6. Let X be a set and $C \subseteq PX$ a set such that:

- 1. $\emptyset \in \mathcal{C}$
- $2. X \in \mathcal{C}$
- 3. For all $A \subseteq C$ nonempty we have $\bigcap A \in C$
- 4. For all $C, D \in \mathcal{C}$ we have $C \cup D \in \mathcal{C}$.

Then there exists a unique topology \mathcal{T} such that \mathcal{C} is the set of closed sets, namely

$$\mathcal{T} = \{ X \setminus C \mid C \in \mathcal{C} \}$$

Proof:

- $\langle 1 \rangle 1$. Let: $\mathcal{T} = \{ X \setminus C \mid C \in \mathcal{C} \}$
- $\langle 1 \rangle 2$. \mathcal{T} is a topology
 - $\langle 2 \rangle 1. \ X \in \mathcal{T}$

Proof: Since $\emptyset \in \mathcal{C}$

- $\langle 2 \rangle 2$. For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$
 - $\langle 3 \rangle 1$. Let: $\mathcal{U} \subseteq \mathcal{T}$
 - $\langle 3 \rangle 2$. Case: $\mathcal{U} = \emptyset$

PROOF: In this case $\bigcup \mathcal{U} = \emptyset \in \mathcal{T}$ since $X \in \mathcal{C}$

 $\langle 3 \rangle 3$. Case: $\mathcal{U} \neq \emptyset$

PROOF: In this case $X \setminus \bigcup \mathcal{U} = \bigcap \{X \setminus U \mid U \in \mathcal{U}\} \in \mathcal{C}$.

 $\langle 2 \rangle 3$. For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$

PROOF: Since $X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V) \in \mathcal{C}$.

 $\langle 1 \rangle 3$. C is the set of all closed sets in T

PROOF:

$$C$$
 is closed in \mathcal{T}

$$\Leftrightarrow X \setminus C \in \mathcal{T}$$

$$\Leftrightarrow C \in \mathcal{C}$$

 $\langle 1 \rangle 4$. If \mathcal{T}' is a topology and \mathcal{C} is the set of closed sets in \mathcal{T}' then $\mathcal{T}' = \mathcal{T}$ PROOF: We have

$$U \in \mathcal{T}$$
$$\Leftrightarrow X \setminus U \in \mathcal{C}$$

$$\Leftrightarrow X \setminus U$$
 is closed in \mathcal{T}'

$$\Leftrightarrow U \in \mathcal{T}'$$

Proposition 10.2.7. *If* U *is open and* A *is closed then* $U \setminus A$ *is open.*

PROOF: $U \setminus A = U \cap (X \setminus A)$ is the intersection of two open sets. \square

Proposition 10.2.8. If U is open and A is closed then $A \setminus U$ is closed.

PROOF: $A \setminus U = A \cap (X \setminus U)$ is the intersection of two closed sets. \square

10.3 Interior

Definition 10.3.1 (Interior). Let X be a topological space and $A \subseteq X$. The *interior* of A, Int A, is the union of all the open subsets of A.

Lemma 10.3.2. The interior of a set is open.

PROOF: It is a union of open sets. \square

Lemma 10.3.3.

Int $A \subseteq A$

Proof: Immediate from definition. \square

Lemma 10.3.4. If U is open and $U \subseteq A$ then $U \subseteq \operatorname{Int} A$

PROOF: Immediate from definition. \square

Lemma 10.3.5. A set A is open if and only if A = Int A.

PROOF: If A = Int A then A is open by Lemma 10.3.2. Conversely if A is open then $A \subseteq \text{Int } A$ by the definition of interior and so A = Int A.

10.4 Closure

Definition 10.4.1 (Closure). Let X be a topological space and $A \subseteq X$. The *closure* of A, \overline{A} , is the intersection of all the closed sets that include A.

This intersection exists since X is a closed set that includes A (Lemma 10.2.3).

Lemma 10.4.2. The closure of a set is closed.

PROOF: Dual to Lemma 10.3.2.

Lemma 10.4.3.

 $A \subseteq \overline{A}$

PROOF: Immediate from definition.

Lemma 10.4.4. If C is closed and $A \subseteq C$ then $\overline{A} \subseteq C$.

Proof: Immediate from definition. \square

Lemma 10.4.5. A set A is closed if and only if $A = \overline{A}$.

PROOF: Dual to Lemma 10.3.5.

Theorem 10.4.6. Let X be a topological space, $A \subseteq X$ and $x \in X$. Then $x \in \overline{A}$ if and only if every neighbourhood of x intersects A.

PROOF: We have

$$x \in \overline{A}$$

 $\Leftrightarrow \forall C.C \text{ closed } \land A \subseteq C \Rightarrow x \in C$
 $\Leftrightarrow \forall U.U \text{ open } \land A \cap U = \emptyset \Rightarrow x \notin U$
 $\Leftrightarrow \forall U.U \text{ open } \land x \in U \Rightarrow U \text{ intersects } A$

Proposition 10.4.7. *If* $A \subseteq B$ *then* $\overline{A} \subseteq \overline{B}$.

PROOF: This holds because \overline{B} is a closed set that includes A. \square

Proposition 10.4.8.

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

PROOF:

 $\langle 1 \rangle 1. \ \overline{A} \subseteq \overline{A \cup B}$

Proof: By Proposition 10.4.7.

 $\langle 1 \rangle 2. \ \overline{B} \subseteq \overline{A \cup B}$

PROOF: By Proposition 10.4.7.

 $\langle 1 \rangle 3. \ \overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$

- $\langle 2 \rangle 1$. Let: $x \in \overline{A \cup B}$
- $\langle 2 \rangle 2$. Assume: $x \notin \overline{A}$ Prove: $x \in \overline{B}$
- $\langle 2 \rangle 3$. PICK a neighbourhood U of x that does not intersect A
- $\langle 2 \rangle 4$. Let: V be any neighbourhood of x
- $\langle 2 \rangle$ 5. $U \cap V$ is a neighbourhood of x
- $\langle 2 \rangle 6$. $U \cap V$ intersects $A \cup B$

PROOF: From $\langle 2 \rangle 1$ and Theorem 10.4.6.

 $\langle 2 \rangle 7$. $U \cap V$ intersects B

Proof: From $\langle 2 \rangle 3$

- $\langle 2 \rangle 8$. V intersects B
- $\langle 2 \rangle 9$. Q.E.D.

PROOF: We have $x \in \overline{B}$ from Theorem 10.4.6.

Proposition 10.4.9. Let X be a topological space. Let \mathcal{D} be a set of subsets of X that is maximal with respect to the finite intersection property. Let $x \in X$. Then the following are equivalent:

1. For all $D \in \mathcal{D}$ we have $x \in \overline{D}$

2. Every neighbourhood of x is in \mathcal{D} .

PROOF:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. For all $D \in \mathcal{D}$ we have $x \in \overline{D}$
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of x
 - $\langle 2 \rangle 3$. $\mathcal{D} \cup \{U\}$ satisfies the finite intersection property.
 - $\langle 3 \rangle 1$. Let: $D_1, \ldots, D_n \in \mathcal{D}$
 - $\langle 3 \rangle 2. \ D_1 \cap \cdots \cap D_n \in \mathcal{D}$

PROOF: Lemma 3.24.3.

$$\langle 3 \rangle 3. \ x \in \overline{D_1 \cap \cdots \cap D_n}$$

Proof: $\langle 2 \rangle 1$, $\langle 3 \rangle 2$

$$\langle 3 \rangle 4. \ D_1 \cap \cdots \cap D_n \cap U \neq \emptyset$$

PROOF: Theorem 10.4.6, $\langle 2 \rangle 2$, $\langle 3 \rangle 3$.

$$\langle 2 \rangle 4$$
. $\mathcal{D} = \mathcal{D} \cup \{U\}$

PROOF: By the maximality of \mathcal{D} .

$$\langle 2 \rangle 5. \ U \in \mathcal{D}$$

- $\langle 1 \rangle 2$. $2 \Rightarrow 1$
 - $\langle 2 \rangle 1$. Assume: Every neighbourhood of x is in \mathcal{D} .
 - $\langle 2 \rangle 2$. Let: $D \in \mathcal{D}$
 - $\langle 2 \rangle 3$. Every neighbourhood of x intersects D.

PROOF: From $\langle 2 \rangle 1$, $\langle 2 \rangle 2$ and the fact that \mathcal{D} satisfies the finite intersection property.

 $\langle 2 \rangle 4. \ x \in \overline{D}$

PROOF: Theorem 10.4.6, $\langle 2 \rangle 3$.

10.5 Boundary

Definition 10.5.1 (Boundary). The *boundary* of a set A is the set $\partial A = \overline{A} \cap \overline{X \setminus A}$.

Proposition 10.5.2.

Int
$$A \cap \partial A = \emptyset$$

PROOF: Since $\overline{X \setminus A} = X \setminus \text{Int } A$. \square

Proposition 10.5.3.

$$\overline{A} = \operatorname{Int} A \cup \partial A$$

Proof:

$$\operatorname{Int} A \cup \partial A = \operatorname{Int} A \cup (\overline{A} \cap \overline{X \setminus A})$$

$$= (\operatorname{Int} A \cup \overline{A}) \cap (\operatorname{Int} A \cup \overline{X \setminus A})$$

$$= \overline{A} \cap X$$

$$= \overline{A}$$

Proposition 10.5.4. $\partial A = \emptyset$ if and only if A is open and closed.

PROOF: If $\partial A = \emptyset$ then $\overline{A} = \text{Int } A$ by Proposition 10.5.3.

Proposition 10.5.5. A set U is open if and only if $\partial U = \overline{U} \setminus U$.

Proof:

$$\begin{array}{l} \partial U = \overline{U} \setminus U \\ \Leftrightarrow \overline{U} \setminus \operatorname{Int} U = \overline{U} \setminus U \\ \Leftrightarrow \operatorname{Int} U = U \end{array} \qquad (\text{Propositions } 10.5.2, \, 10.5.3) \\ \end{array}$$

10.6 Limit Points

Definition 10.6.1 (Limit Point). Let X be a topological space, $a \in X$ and $A \subseteq X$. Then a is a *limit point*, *cluster point* or *point of accumulation* for A if and only if every neighbourhood of a intersects A at a point other than a.

Lemma 10.6.2. The point a is an accumulation point for A if and only if $a \in \overline{A \setminus \{a\}}$.

PROOF: From Theorem 10.4.6. \square

Theorem 10.6.3. Let X be a topological space and $A \subseteq X$. Let A' be the set of all limit points of A. Then $\overline{A} = A \cup A'$.

Proof:

 $\langle 1 \rangle 1$. For all $x \in \overline{A}$, if $x \notin A$ then $x \in A'$ PROOF: From Theorem 10.4.6. $\langle 1 \rangle 2$. $A \subseteq \overline{A}$ PROOF: Lemma 10.4.3. $\langle 1 \rangle 3$. $A' \subseteq \overline{A}$ PROOF: From Theorem 10.4.6.

Corollary 10.6.3.1. A set is closed if and only if it contains all its limit points.

Proposition 10.6.4. In an indiscrete topology, every point is a limit point of any set that has more than one point.

PROOF: Let X be an indiscrete space. Let A be a set with more than one point and x be a point. The only neighbourhood of x is X, which must intersect A at a point other than x. \square

Lemma 10.6.5. Let X be a topological space and $A \subseteq B \subseteq X$. Then every limit point of A is a limit point of B.

PROOF: Immediate from definitions.

10.7 Basis for a Topology

Definition 10.7.1 (Basis). If X is a set, a *basis* for a topology on X is a set $\mathcal{B} \subseteq \mathcal{P}X$ called *basis elements* such that

- 1. For all $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$.
- 2. For all $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the topology *generated* by \mathcal{B} to be $\mathcal{T} = \{U \in \mathcal{P}X \mid \forall x \in U. \exists B \in \mathcal{B}. x \in B \subseteq U\}.$

We prove this is a topology.

```
PROOF:
```

 $\langle 1 \rangle 1. \ X \in \mathcal{T}$

PROOF: For all $x \in X$ there exists $B \in \mathcal{B}$ such that $x \in B \subseteq X$ by condition 1.

- $\langle 1 \rangle 2$. For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$
 - $\langle 2 \rangle 1$. Let: $\mathcal{U} \subseteq \mathcal{T}$
 - $\langle 2 \rangle 2$. Let: $x \in \bigcup \mathcal{U}$
 - $\langle 2 \rangle 3$. Pick $U \in \mathcal{U}$ such that $x \in U$
 - $\langle 2 \rangle 4$. PICK $B \in \mathcal{B}$ such that $x \in B \subseteq U$

PROOF: Since $U \in \mathcal{T}$ by $\langle 2 \rangle 1$ and $\langle 2 \rangle 3$.

- $\langle 2 \rangle 5. \ x \in B \subseteq \bigcup \mathcal{U}$
- $\langle 1 \rangle 3$. For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$
 - $\langle 2 \rangle 1$. Let: $U, V \in \mathcal{T}$
 - $\langle 2 \rangle 2$. Let: $x \in U \cap V$
 - $\langle 2 \rangle 3$. Pick $B_1 \in \mathcal{B}$ such that $x \in B_1 \subseteq U$
 - $\langle 2 \rangle 4$. Pick $B_2 \in \mathcal{B}$ such that $x \in B_2 \subseteq V$
 - $\langle 2 \rangle$ 5. Pick $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$

PROOF: By condition 2.

 $\langle 2 \rangle 6. \ x \in B_3 \subseteq U \cap V$

Lemma 10.7.2. Let X be a set. Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} is the set of all unions of subsets of \mathcal{B} .

Proof:

- $\langle 1 \rangle 1$. For all $U \in \mathcal{T}$, there exists $\mathcal{A} \subseteq \mathcal{B}$ such that $U = \bigcup \mathcal{A}$
 - $\langle 2 \rangle 1$. Let: $U \in \mathcal{T}$
 - $\langle 2 \rangle 2$. Let: $\mathcal{A} = \{ B \in \mathcal{B} \mid B \subseteq U \}$
 - $\langle 2 \rangle 3. \ U \subseteq \bigcup \mathcal{A}$
 - $\langle 3 \rangle 1$. Let: $x \in U$
 - $\langle 3 \rangle 2$. Pick $B \in \mathcal{B}$ such that $x \in B \subseteq U$

PROOF: Since \mathcal{B} is a basis for \mathcal{T} .

- $\langle 3 \rangle 3. \ x \in B \in \mathcal{A}$
- $\langle 2 \rangle 4. \bigcup \mathcal{A} \subseteq U$

PROOF: From the definition of \mathcal{A} ($\langle 2 \rangle 2$).

- $\langle 1 \rangle 2$. For all $\mathcal{A} \subseteq \mathcal{B}$ we have $\bigcup \mathcal{A} \in \mathcal{T}$
 - $\langle 2 \rangle 1. \ \mathcal{B} \subset \mathcal{T}$

PROOF: If $B \in \mathcal{B}$ and $x \in B$, then there exists $B' \in \mathcal{B}$ such that $x \in B' \subseteq B$, namely B' = B.

 $\langle 2 \rangle 2$. Q.E.D.

PROOF: Since \mathcal{T} is closed under union.

Corollary 10.7.2.1. Let X be a set. Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} is the coarsest topology that includes \mathcal{B} .

PROOF: Since every topology that includes \mathcal{B} includes all unions of subsets of \mathcal{B} . \square

Lemma 10.7.3. Let X be a topological space. Suppose that C is a set of open sets such that, for every open set U and every point $x \in U$, there exists $C \in C$ such that $x \in C \subseteq U$. Then C is a basis for the topology on X.

PROOF:

 $\langle 1 \rangle 1$. For all $x \in X$, there exists $C \in \mathcal{C}$ such that $x \in C$

PROOF: Immediate from hypothesis.

 $\langle 1 \rangle 2$. For all $C_1, C_2 \in \mathcal{C}$ and $x \in C_1 \cap C_2$, there exists $C_3 \in \mathcal{C}$ such that $x \in C_3 \subseteq C_1 \cap C_2$

PROOF: Since $C_1 \cap C_2$ is open.

 $\langle 1 \rangle 3$. Every open set is open in the topology generated by \mathcal{C}

PROOF: Immediate from hypothesis.

 $\langle 1 \rangle 4$. Every union of a subset of \mathcal{C} is open.

PROOF: Since every member of \mathcal{C} is open.

Lemma 10.7.4. Let \mathcal{B} and \mathcal{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' respectively on the set X. Then the following are equivalent.

- 1. $\mathcal{T} \subseteq \mathcal{T}'$
- 2. For all $B \in \mathcal{B}$ and $x \in B$, there exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

PROOF:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: $\mathcal{T} \subseteq \mathcal{T}'$
 - $\langle 2 \rangle 2$. Let: $B \in \mathcal{B}$ and $x \in B$
 - $\langle 2 \rangle 3. \ B \in \mathcal{T}$

Proof: Corollary 10.7.2.1.

 $\langle 2 \rangle 4. \ B \in \mathcal{T}'$

Proof: By $\langle 2 \rangle 1$

 $\langle 2 \rangle$ 5. There exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$

PROOF: Since \mathcal{B}' is a basis for \mathcal{T}' .

 $\langle 1 \rangle 2$. $2 \Rightarrow 1$

```
\begin{array}{l} \langle 2 \rangle 1. \text{ Assume: } 2 \\ \langle 2 \rangle 2. \text{ Let: } U \in \mathcal{T} \\ \text{ Prove: } U \in \mathcal{T}' \\ \langle 2 \rangle 3. \text{ Let: } x \in U \\ \text{ Prove: } \text{ There exists } B' \in \mathcal{B}' \text{ such that } x \in B' \subseteq U \\ \langle 2 \rangle 4. \text{ Pick } B \in \mathcal{B} \text{ such that } x \in B \subseteq U \\ \text{ Proof: Since } \mathcal{B} \text{ is a basis for } \mathcal{T}. \\ \langle 2 \rangle 5. \text{ Pick } B' \in \mathcal{B}' \text{ such that } x \in B' \subseteq B \\ \text{ Proof: By } \langle 2 \rangle 1. \\ \langle 2 \rangle 6. \ x \in B' \subseteq U \end{array}
```

Theorem 10.7.5. Let X be a topological space, $A \subseteq X$ and $x \in X$. Let \mathcal{B} be a basis for X. Then $x \in \overline{A}$ if and only if, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A.

Proof:

 $\langle 1 \rangle 1$. If $x \in \overline{A}$ then, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A. PROOF: This follows from Theorem 10.4.6 since every element of \mathcal{B} is open (Corollary 10.7.2.1).

 $\langle 1 \rangle 2$. Suppose that, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A. Then $x \in \overline{A}$.

- $\langle 2 \rangle 1$. Assume: For all $B \in \mathcal{B}$, if $x \in B$ then B intersects A.
- $\langle 2 \rangle 2$. Let: *U* be an open set that contains *x* Prove: *U* intersects *A*.
- $\langle 2 \rangle 3$. Pick $B \in \mathcal{B}$ such that $x \in B \subseteq U$.
- $\langle 2 \rangle 4$. B intersects A.

PROOF: From $\langle 2 \rangle 1$.

- $\langle 2 \rangle$ 5. U intersects A.
- $\langle 2 \rangle 6$. Q.E.D.

PROOF: By Theorem 10.4.6.

Definition 10.7.6 (Lower Limit Topology on the Real Line). The *lower limit topology on the real line* is the topology on \mathbb{R} generated by the basis consisting of all half-open intervals of the form [a, b).

We write \mathbb{R}_l for the topological space \mathbb{R} under the lower limit topology.

We prove this is a basis for a topology.

Proof:

П

 $\langle 1 \rangle 1$. For all $x \in \mathbb{R}$ there exists an interval [a,b) such that $x \in [a,b)$. PROOF: Take [a,b) = [x,x+1).

 $\langle 1 \rangle 2$. For any open intervals [a,b), [c,d) if $x \in [a,b) \cap [c,d)$, then there exists an interval [e,f) such that $x \in [e,f) \subseteq [a,b) \cap [c,d)$

Proof: Take $[e, f) = [\max(a, c), \min(b, d))$.

Definition 10.7.7 (K-topology on the Real Line). Let $K = \{1/n \mid n \in \mathbb{Z}^+\}$.

The *K*-topology on the real line is the topology on \mathbb{R} generated by the basis consisting of all open intervals (a,b) and all sets of the form $(a,b) \setminus K$.

We write \mathbb{R}_K for the topological space \mathbb{R} under the K-topology.

We prove this is a basis for a topology.

Proof:

- $\langle 1 \rangle 1$. For all $x \in \mathbb{R}$ there exists an open interval (a, b) such that $x \in (a, b)$. PROOF: Take (a, b) = (x 1, x + 1).
- $\langle 1 \rangle$ 2. For any basic open sets B_1 , B_2 if $x \in B_1 \cap B_2$, then there exists a basic open set B_3 such that $x \in B_3 \subseteq B_1 \cap B_2$
 - $\langle 2 \rangle 1$. Case: $B_1 = (a, b), B_2 = (c, d)$

PROOF: Take $B_3 = (\max(a, c), \min(b, d))$.

 $\langle 2 \rangle$ 2. CASE: $B_1 = (a, b)$ or $(a, b) \setminus K$, $B_2 = (c, d)$ or $(c, d) \setminus K$, and they are not both open intervals.

PROOF: Take $B_3 = (\max(a, c), \min(b, d)) \setminus K$.

Lemma 10.7.8. The lower limit topology and the K-topology are incomparable.

PROOF:

 $\langle 1 \rangle 1$. The interval [10, 11) is not open in the K-topology.

PROOF: There is no open interval (a,b) such that $10 \in (a,b) \subseteq [10,11)$ or $10 \in (a,b) \setminus K \subseteq [10,11)$.

 $\langle 1 \rangle 2$. The set $(-1,1) \setminus K$ is not open in the lower limit topology.

PROOF: There is no half-open interval [a,b) such that $0 \in [a,b) \subseteq (-1,1) \setminus K$, since there must be a positive integer n with $1/n \in [a,b)$.

Definition 10.7.9 (Subbasis). A *subbasis* S for a topology on X is a set $S \subseteq PX$ such that $\bigcup S = X$.

The topology generated by the subbasis S is the set of all unions of finite intersections of elements of S.

We prove this is a topology.

Proof:

 $\langle 1 \rangle 1$. The set \mathcal{B} of all finite intersections of elements of \mathcal{S} forms a basis for a topology on X.

 $\langle 2 \rangle 1$. $| \mathcal{B} = X$

PROOF: Since $S \subseteq \mathcal{B}$.

 $\langle 2 \rangle 2$. \mathcal{B} is closed under binary intersection.

PROOF: By definition.

 $\langle 1 \rangle 2$. Q.E.D.

Proof: By Lemma 10.7.2.

We have simultaneously proved:

Proposition 10.7.10. Let S be a subbasis for the topology on X. Then the set of all finite intersections of elements of S is a basis for the topology on X.

Proposition 10.7.11. Let X be a set. Let S be a subbasis for a topology T on X. Then T is the coarsest topology that includes S.

PROOF: Since every topology that includes S includes every union of finite intersections of elements of S. \square

10.8 Local Basis at a Point

Definition 10.8.1 (Local Basis). Let X be a topological space and $a \in X$. A (local) basis at a is a set \mathcal{B} of neighbourhoods of a such that every neighbourhood of a includes some member of \mathcal{B} .

Lemma 10.8.2. If there exists a countable local basis at a point a, then there exists a countable local basis $\{B_n \mid n \geq 1\}$ such that $B_1 \supseteq B_2 \supseteq \cdots$.

PROOF: Given a countable local basis $\{C_n \mid n \geq 1\}$, take $B_n = C_1 \cap \cdots \cap C_n$. \square

10.9 Nets

Definition 10.9.1 (Net). Let X be a topological space. A *net* in X consists of a directed poset J and a family $(x_{\alpha})_{\alpha \in J}$ of points of X indexed by J.

Definition 10.9.2 (Convergence). Let X be a topological space. Let $(x_{\alpha})_{\alpha \in J}$ be a net in X and $l \in X$. Then (x_{α}) converges to the limit l iff, for every limit U of l, there exists $\alpha \in J$ such that, for all $\beta \geq \alpha$, we have $x_{\beta} \in U$.

Lemma 10.9.3. Let X be a topological space. Let $A \subseteq X$ and $l \in X$. Then $l \in \overline{A}$ if and only if there exists a net of points in A that converges to l.

Proof:

- $\langle 1 \rangle 1$. If $l \in \overline{A}$ then there exists a net of points in A that converges to l.
 - $\langle 2 \rangle 1$. Assume: $l \in A$
 - $\langle 2 \rangle 2$. Let: J be the set of neighbourhoods of l under \supseteq
 - $\langle 2 \rangle 3$. For $U \in J$, Pick $a_U \in U \cap A$ Prove: $a_U \to l$ as $U \to \infty$

PROOF: Theorem 10.4.6.

- $\langle 2 \rangle 4$. Let: U be a neighbourhood of l.
- $\langle 2 \rangle 5$. For any $V \subseteq U$ we have $a_V \in V$.
- $\langle 1 \rangle 2$. If there exists a net of points in A that coverges to l, then $l \in \overline{A}$.
 - $\langle 2 \rangle 1$. Let: $(a_{\alpha})_{\alpha \in J}$ be a sequence of points in A that converges to l.
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of l.
 - $\langle 2 \rangle 3$. PICK $\alpha \in J$ such that, for all $\beta \geq \alpha$, we have $a_{\beta} \in U$.
 - $\langle 2 \rangle 4. \ a_{\alpha} \in U \cap A$
 - $\langle 2 \rangle$ 5. Q.E.D.

PROOF: Theorem 10.4.6.

Proposition 10.9.4. Let X be a topological space. Let \mathcal{B} be a basis for the topology on X. Let (a_n) be a sequence in X and $l \in X$. Then $a_n \to l$ as $n \to \infty$ if and only if, for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \ge N$, we have $a_n \in B$.

Proof:

 $\langle 1 \rangle 1$. If $a_n \to l$ as $n \to \infty$ then, for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \ge N$, we have $a_n \in B$.

PROOF: Since every element of \mathcal{B} is open (Corollary 10.7.2.1).

- $\langle 1 \rangle 2$. If, for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \geq N$, we have $a_n \in B$, then $a_n \to l$ as $n \to \infty$.
 - $\langle 2 \rangle 1$. Assume: for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \geq N$, we have $a_n \in B$
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of l.
 - $\langle 2 \rangle 3$. Pick $B \in \mathcal{B}$ such that $l \in B \subseteq U$
 - $\langle 2 \rangle 4$. PICK N such that, for all $n \geq N$, we have $a_n \in B$

Proof: From $\langle 2 \rangle 1$.

 $\langle 2 \rangle$ 5. For all $n \geq N$ we have $a_n \in U$

Lemma 10.9.5. If a sequence (a_n) is constant with $a_n = l$ for all n, then $a_n \to l$ as $n \to \infty$.

Proof: Immediate from definitions. \Box

Theorem 10.9.6. Let X be a linearly ordered set. Let (s_n) be a monotone increasing sequence in X with a supremum s. Then $s_n \to s$ as $n \to \infty$.

Proof:

 $\langle 1 \rangle 1$. Assume: s is not least in X.

PROOF: Otherwise (s_n) is the constant sequence s and the result follows from Lemma 10.9.5.

- $\langle 1 \rangle 2$. Let: U be a neighbourhood of s.
- $\langle 1 \rangle 3$. PICKa < s such that $(a, s] \subseteq U$
- $\langle 1 \rangle 4$. Pick N such that $a < a_N$.
- $\langle 1 \rangle 5$. For all $n \geq N$ we have $a_n \in (a, s]$
- $\langle 1 \rangle 6$. For all $n \geq N$ we have $a_n \in U$.

Theorem 10.9.7. If $\sum_{i=0}^{\infty} a_i = s$ and $\sum_{i=0}^{\infty} b_i = t$ then $\sum_{i=0}^{\infty} (ca_i + b_i) = cs + t$.

PROOF:
$$\sum_{i=0}^{N} (ca_i + b_i) = c \sum_{i=0}^{N} a_i + \sum_{i=0}^{N} b_i \to cs + t \text{ as } n \to \infty.$$

Theorem 10.9.8 (Comparison Test). If $|a_i| \leq b_i$ for all i and $\sum_{i=0}^{\infty} b_i$ converges then $\sum_{i=0}^{\infty} a_i$ converges.

Proof:

 $\langle 1 \rangle 1$. $\sum_{i=0}^{\infty} |a_i|$ converges

PROOF: The partial sums $\sum_{i=0}^{N} |a_i|$ form an increasing sequence bounded above by $\sum_{i=0}^{\infty} b_i$.

- $\langle 1 \rangle 2$. Let: $c_i = |a_i| + a_i$ for all $i \langle 1 \rangle 3$. $\sum_{i=0}^{\infty} c_i$ converges

PROOF: Each c_i is either $2|a_i|$ or 0. So the partial sums $\sum_{i=0}^{N} c_i$ form an increasing sequence bounded above by $2\sum_{i=0}^{\infty} b_i$.

 $\langle 1 \rangle 4$. Q.E.D.

PROOF: Since $a_i = c_i - |a_i|$.

Corollary 10.9.8.1. If $\sum_{i=0}^{\infty} |a_i|$ converges then $\sum_{i=0}^{\infty} a_i$ converges.

Theorem 10.9.9 (Weierstrass M-test). Let X be a set and $(f_n: X \to \mathbb{R})$ be a sequence of functions. Let

$$s_n(x) = \sum_{i=0}^n f_i(x)$$

for all n, x. Suppose $|f_i(x)| \leq M_i$ for all $i \geq 0$ and $x \in X$. If the series $\sum_{i=0}^{\infty} M_i$ converges, then the sequence (s_n) converges uniformly to

$$s(x) = \sum_{i=0}^{\infty} f_i(x) .$$

PROOF:

- $\langle 1 \rangle 1$. Let: $r_n = \sum_{i=n+1}^{\infty} M_i$ for all $n \langle 1 \rangle 2$. Given $0 \leq n < k$, we have $|s_k(x) s_n(x)| \leq r_n$ Proof:

$$|s_k(x) - s_n(x)| = |\sum_{i=n+1}^k f_i(x)|$$

$$\leq \sum_{i=n+1}^k |f_i(x)|$$

$$\leq \sum_{i=n+1}^k M_i$$

 $\langle 1 \rangle 3$. Given $n \geq 0$ we have $|s(x) - s_n(x)| \leq r_n$ PROOF: By taking the limit $k \to \infty$ in $\langle 1 \rangle 2$.

 $\langle 1 \rangle 4$. Q.E.D.

PROOF: Since $r_n \to 0$ as $n \to \infty$.

10.10 Locally Finite Sets

Definition 10.10.1 (Locally Finite). Let X be a topological space and $\{A_{\alpha}\}$ a family of subsets of X. Then A is *locally finite* if and only if every point in X has a neighbourhood that intersects A_{α} for only finitely many α .

The following example shows that we cannot remove the assumption of local finiteness.

Example 10.10.2. Define $f: [-1,1] \to \mathbb{R}$ by: f(x) = 1 if x < -1, f(x) = 0 if x > 1. Let $C_n = [-1,-1/n]$ for $n \ge 1$, and D = [0,1]. Then $[-1,1] = \bigcup_{n=1}^{\infty} C_n \cup D$ and f is continuous on each C_n and each D, but f is not continuous on [-1,1].

10.11 Open Maps

Definition 10.11.1 (Open Map). Let X and Y be topological spaces and $f: X \to Y$. Then f is an *open map* if and only if, for every open set U in X, the set f(U) is open in Y.

Lemma 10.11.2. Let X and Y be topological spaces and $f: X \to Y$. Let \mathcal{B} be a basis for the topology on X. If f(B) is open in Y for all $B \in \mathcal{B}$, then f is an open map.

PROOF: From Lemma 10.7.2. \square

Proposition 10.11.3. Let X and Y be topological spaces. Let \mathcal{B} be a basis for the topology on X. Let $f: X \to Y$. Suppose that, for all $B \in \mathcal{B}$, we have f(B) is open to Y. Then f is an open map.

PROOF: For any $\mathcal{A} \subseteq \mathcal{B}$, we have $f(\bigcup \mathcal{A}) = \bigcup_{B \in \mathcal{B}} f(B)$ is open in Y. The result follows from Lemma 10.7.2. \Box

10.12 Continuous Functions

Definition 10.12.1 (Continuous). Let X and Y be topological spaces. A function $f: X \to Y$ is *continuous* if and only if, for every open set V in Y, the set $f^{-1}(V)$ is open in X.

Proposition 10.12.2. Let X and Y be topological spaces and $f: X \to Y$. Let \mathcal{B} be a basis for Y. Then f is continuous if and only if, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X.

- $\langle 1 \rangle 1$. If f is continuous then, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X. PROOF: Since every element of B is open (Lemma 10.7.2).
- $\langle 1 \rangle 2$. Suppose that, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X. Then f is continuous.
 - $\langle 2 \rangle 1$. Assume: For all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X.
 - $\langle 2 \rangle 2$. Let: V be open in Y.
 - $\langle 2 \rangle 3$. Pick $\mathcal{A} \subseteq \mathcal{B}$ such that $V = \bigcup \mathcal{A}$

PROOF: By Lemma 10.7.2.

 $\langle 2 \rangle 4$. $f^{-1}(V)$ is open in X.

Proof:

$$\begin{split} f^{-1}(V) &= f^{-1}\left(\bigcup \mathcal{A}\right) \\ &= \bigcup_{B \in \mathcal{A}} f^{-1}(B) \end{split}$$

Proposition 10.12.3. Let X and Y be topological spaces and $f: X \to Y$. Let S be a subbasis for Y. Then f is continuous if and only if, for all $S \in S$, we have $f^{-1}(S)$ is open in X.

Proof:

- $\langle 1 \rangle 1$. If f is continuous then, for all $S \in \mathcal{S}$, we have $f^{-1}(S)$ is open in X. PROOF: Since every element of S is open.
- $\langle 1 \rangle 2$. Suppose that, for all $S \in \mathcal{S}$, we have $f^{-1}(S)$ is open in X. Then f is continuous.
 - $\langle 2 \rangle 1$. Assume: For all $S \in \mathcal{S}$, we have $f^{-1}(S)$ is open in X.
 - $\langle 2 \rangle 2$. Let: $S_1, \ldots, S_n \in \mathcal{S}$
 - $\langle 2 \rangle 3. \ f^{-1}(S_1 \cap \cdots \cap S_n)$ is open in A

PROOF: Since $f^{-1}(S_1 \cap \cdots \cap S_n) = f^{-1}(S_1) \cap \cdots \cap f^{-1}(S_n)$.

 $\langle 2 \rangle 4$. Q.E.D.

PROOF: By Propositions 10.12.2 and 10.7.10.

Proposition 10.12.4. Let X and Y be topological spaces and $f: X \to Y$. Let S be a basis for Y. Then f is continuous if and only if, for all $V \in S$, we have $f^{-1}(V)$ is open in X.

Proof:

- $\langle 1 \rangle 1$. If f is continuous then, for all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X. PROOF: Since every element of \mathcal{S} is open.
- $\langle 1 \rangle 2$. Suppose that, for all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X. Then f is continuous.
 - $\langle 2 \rangle 1$. Assume: For all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X.
 - $\langle 2 \rangle 2$. For every set B that is the finite intersection of elemets of \mathcal{S} , we have $f^{-1}(B)$ is open in X.

PROOF: Because $f^{-1}(V_1 \cap \dots \cap V_n) = f^{-1}(V_1) \cap \dots \cap f^{-1}(V_n)$.

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: From Propositions 10.7.10 and 10.12.2.

П

Definition 10.12.5 (Continuous at a Point). Let X and Y be topological spaces. Let $f: X \to Y$ and $x \in X$. Then f is *continuous at* x if and only if, for every neighbourhood V of f(x), there exists a neighbourhood U of x such that $f(U) \subseteq V$.

Theorem 10.12.6. Let X and Y be topological spaces and $f: X \to Y$. Then the following are equivalent:

- 1. f is continuous.
- 2. For all $A \subseteq X$, we have $f(\overline{A}) \subseteq \overline{f(A)}$
- 3. For all $B \subseteq Y$ closed, we have $f^{-1}(B)$ is closed in X.
- 4. f is continuous at every point of X.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: f is continuous.
 - $\langle 2 \rangle 2$. Let: $A \subseteq X$
 - $\langle 2 \rangle 3$. Let: $x \in \overline{A}$ Prove: $f(x) \in \overline{f(A)}$
 - $\langle 2 \rangle 4$. Let: V be a neighbourhood of f(x)
 - $\langle 2 \rangle 5$. $f^{-1}(V)$ is a neighbourhood of x
 - $\langle 2 \rangle 6$. Pick $y \in A \cap f^{-1}(V)$

PROOF: By Theorem 10.4.6.

- $\langle 2 \rangle 7. \ f(y) \in V \cap f(A)$
- $\langle 2 \rangle 8$. Q.E.D.

PROOF: By Theorem 10.4.6.

- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: 2
 - $\langle 2 \rangle 2$. Let: B be closed in Y
 - $\langle 2 \rangle 3$. Let: $x \in \overline{f^{-1}(B)}$

PROVE:
$$x \in f^{-1}(B)$$

 $\langle 2 \rangle 4. \ f(x) \in B$

$$f(x) \in f(\overline{f^{-1}(B)})$$

$$\subseteq \overline{f(f^{-1}(B))} \qquad (\langle 2 \rangle 1)$$

$$\subseteq \overline{B} \qquad (Proposition 10.4.7)$$

$$= B$$

- $\langle 1 \rangle 3. \ 3 \Rightarrow 1$
 - $\langle 2 \rangle 1$. Assume: 3
 - $\langle 2 \rangle 2$. Let: V be open in Y
 - $\langle 2 \rangle 3$. $Y \setminus V$ is closed in Y

 - $\langle 2 \rangle 4.$ $f^{-1}(Y \setminus V)$ is closed in X $\langle 2 \rangle 5.$ $X \setminus f^{-1}(V)$ is closed in X
 - $\langle 2 \rangle 6.$ $f^{-1}(V)$ is open in X

PROOF: For any neighbourhood V of f(x), the set $U = f^{-1}(V)$ is a neighbourhood of x such that $f(U) \subseteq V$.

 $\langle 1 \rangle 5. \ 4 \Rightarrow 1$

```
\begin{array}{l} \langle 2 \rangle 1. \text{ Assume: } 4 \\ \langle 2 \rangle 2. \text{ Let: } V \text{ be open in } Y \\ \langle 2 \rangle 3. \text{ Let: } x \in f^{-1}(V) \\ \langle 2 \rangle 4. V \text{ is a neighbourhood of } f(x) \\ \langle 2 \rangle 5. \text{ PICK a neighbourhood } U \text{ of } x \text{ such that } f(U) \subseteq V \\ \langle 2 \rangle 6. \ x \in U \subseteq f^{-1}(V) \\ \langle 2 \rangle 7. \text{ Q.E.D.} \\ \text{Proof: By Lemma 10.1.8.} \end{array}
```

Theorem 10.12.7. A constant function is continuous.

PROOF: Let X and Y be topological spaces. Let $b \in Y$, and let $f: X \to Y$ be the constant function with value b. For any open $V \subseteq Y$, the set $f^{-1}(V)$ is either X (if $b \in V$) or \emptyset (if $b \notin V$). \square

Theorem 10.12.8. If A is a subspace of X then the inclusion $j: A \to X$ is continuous.

PROOF: For any V open in X, we have $j^{-1}(V) = V \cap A$ is open in A. \square

Theorem 10.12.9. The composite of two continuous functions is continuous.

PROOF: Let $f: X \to Y$ and $g: Y \to Z$ be continuous. For any V open in Z, we have $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is open in X. \square

Theorem 10.12.10. Let $f: X \to Y$ be a continuous function and A be a subspace of X. Then the restriction $f \upharpoonright A: A \to Y$ is continuous.

PROOF: Let V be open in Y. Then $(f \upharpoonright A)^{-1}(V) = f^{-1}(V) \cap A$ is open in A. \square

Theorem 10.12.11. Let $f: X \to Y$ be continuous. Let Z be a subspace of Y such that $f(X) \subseteq Z$. Then the corestriction $f: X \to Z$ is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: V be open in Z.
- $\langle 1 \rangle 2$. PICK U open in Y such that $V = U \cap Z$.
- $\langle 1 \rangle 3. \ f^{-1}(V) = f^{-1}(U)$
- $\langle 1 \rangle 4$. $f^{-1}(V)$ is open in X.

Theorem 10.12.12. Let $f: X \to Y$ be continuous. Let Z be a space such that Y is a subspace of Z. Then the expansion $f: X \to Z$ is continuous.

PROOF: Let V be open in Z. Then $f^{-1}(V) = f^{-1}(V \cap Y)$ is open in X. \square

Theorem 10.12.13. Let X and Y be topological spaces. Let $f: X \to Y$. Suppose \mathcal{U} is a set of open sets in X such that $X = \bigcup \mathcal{U}$ and, for all $U \in \mathcal{U}$, we have $f \upharpoonright U: U \to Y$ is continuous. Then f is continuous.

- $\langle 1 \rangle 1$. Let: V be open in Y
- $\langle 1 \rangle 2. \ f^{-1}(V) = \bigcup_{U \in \mathcal{U}} (f \upharpoonright U)^{-1}(V)$
- $\langle 1 \rangle 3$. For all $U \in \mathcal{U}$, we have $(f \upharpoonright U)^{-1}(V)$ is open in U.
- $\langle 1 \rangle 4$. For all $U \in \mathcal{U}$, we have $(f \upharpoonright U)^{-1}(V)$ is open in X. PROOF: Lemma 10.17.6.

Proposition 10.12.14. Let X and X' be the same set X under two topologies \mathcal{T} and \mathcal{T}' . Let $i: X \to X'$ be the identity function. Then i is continuous if and only if $\mathcal{T}' \subseteq \mathcal{T}$.

Proof: Immediate from definitions. \Box

Proposition 10.12.15. Let $f : \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. Then f is continuous on the right at a if and only if f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$.

Proof:

- $\langle 1 \rangle 1$. If f is continuous on the right at a then f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$.
 - $\langle 2 \rangle 1$. Assume: f is continuous on the right at a.
 - $\langle 2 \rangle 2$. Let: V be a neighbourhood of f(a)
 - $\langle 2 \rangle 3$. PICK b, c such that $f(a) \in (b,c) \subseteq V$.
 - $\langle 2 \rangle 4$. Let: $\epsilon = \min(c f(a), f(a) b)$
 - $\langle 2 \rangle$ 5. Pick $\delta > 0$ such that, for all x, if $a < x < a + \delta$ then $|f(x) f(a)| < \epsilon$
 - $\langle 2 \rangle 6$. Let: $U = [a, a + \delta)$
 - $\langle 2 \rangle 7. \ f(U) \subseteq V$
- $\langle 1 \rangle 2$. If f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$ then f is continuous on the right at a.
 - $\langle 2 \rangle 1$. Assume: f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 3$. PICK a neighbourhood U of a such that $f(U) \subseteq (f(a) \epsilon, f(a) + \epsilon)$
 - $\langle 2 \rangle 4$. Pick b, c such that $a \in [b,c) \subset U$
- $\langle 2 \rangle 5$. Let: $\delta = c a$
- $\langle 2 \rangle$ 6. For all x, if $a < x < a + \delta$ then $|f(x) f(a)| < \epsilon$

Lemma 10.12.16. Let $f: X \to Y$. Let Z be an open subspace of X and $a \in Z$. If $f \upharpoonright Z$ is continuous at a then f is continuous at a.

Proof:

- $\langle 1 \rangle 1$. Let: V be a neighbourhood of f(x)
- $\langle 1 \rangle 2$. PICK a neighbourhood W of x in Z such that $f(W) \subseteq V$
- $\langle 1 \rangle 3$. W is a neighbourhood of x in X such that $f(W) \subseteq V$ PROOF: Lemma 10.17.6.

П

Proposition 10.12.17. Let $f: A \to B$ and $g: C \to D$ be continuous. Define $f \times g: A \times C \to B \times D$ by

$$(f \times g)(a,c) = (f(a), g(c)) .$$

Then $f \times g$ is continuous.

PROOF: $\pi_1 \circ (f \times g) = f \circ \pi_1$ and $\pi_2 \circ (f \times g) = g \circ \pi_2$ are continuous by Theorem 10.12.9. The result follows by Theorem 10.16.11.

Proposition 10.12.18. Let X and Y be topological spaces and $f: X \to Y$. Then f is continuous if and only if, for any net $(a_{\alpha})_{\alpha \in J}$ in X and $l \in X$, if $a_{\alpha} \to l$ as $\alpha \to \infty$ in X then $f(a_{\alpha}) \to f(l)$ as $\alpha \to \infty$.

PROOF:

- (1)1. If f is continuous then, for every net $(a_{\alpha})_{\alpha \in J}$ in X and $l \in X$, if $a_{\alpha} \to l$ as $\alpha \to \infty$ then $f(a_{\alpha}) \to f(l)$ as $\alpha \to \infty$
 - $\langle 2 \rangle 1$. Assume: f is continuous.
 - $\langle 2 \rangle 2$. Let: $(a_{\alpha})_{{\alpha} \in J}$ be a net in X
 - $\langle 2 \rangle 3$. Let: $l \in X$
 - $\langle 2 \rangle 4$. Assume: $a_{\alpha} \to l$ as $\alpha \to \infty$
 - $\langle 2 \rangle$ 5. Let: V be a neighbourhood of f(l)
 - $\langle 2 \rangle$ 6. PICK a neighbourhood U of l such that $f(U) \subseteq V$
 - $\langle 2 \rangle 7$. PICK $\alpha \in J$ such that, for all $\beta \geq \alpha$, we have $a_{\beta} \in U$
 - $\langle 2 \rangle 8$. For all $\beta \geq \alpha$ we have $f(a_{\beta}) \in V$
- $\langle 1 \rangle 2$. If, for every net $(a_{\alpha})_{\alpha \in J}$ in X and $l \in X$, if $a_{\alpha} \to l$ as $\alpha \to \infty$ then $f(a_{\alpha}) \to f(l)$ as $\alpha \to \infty$, then f is continuous.
 - $\langle 2 \rangle 1$. Assume: for every net $(a_{\alpha})_{\alpha \in J}$ in X and $l \in X$, if $a_{\alpha} \to l$ as $\alpha \to \infty$ then $f(a_{\alpha}) \to f(l)$ as $\alpha \to \infty$

PROVE: For every $A \subseteq X$, we have $f(\overline{A}) \subseteq f(A)$

- $\langle 2 \rangle 2$. Let: $A \subseteq X$
- $\langle 2 \rangle 3$. Let: $x \in \overline{A}$

PROVE: $f(x) \in \overline{f(A)}$

- $\langle 2 \rangle 4$. Pick a net $(a_{\alpha})_{{\alpha} \in J}$ of points in A that converges to x
 - Proof: Lemma 10.9.3.
- $\langle 2 \rangle$ 5. $(f(a_{\alpha}))_{\alpha \in J}$ is a net of points in f(A) that converges to f(x) PROOF: From $\langle 2 \rangle$ 1.
- $\langle 2 \rangle 6. \ f(x) \in \overline{f(A)}$

PROOF: Lemma 10.9.3.

 $\langle 2 \rangle 7$. Q.E.D.

PROOF: Theorem 10.12.6.

Theorem 10.12.19 (Pasting Lemma). Let X and Y be topological spaces and $f: X \to Y$. Let $\{A_{\alpha}\}$ be a locally finite family of closed subsets of X that cover X. Suppose $f \upharpoonright A_{\alpha}$ is continuous for all α . Then f is continuous.

- $\langle 1 \rangle 1$. Let X and Y be topological spaces and $f: X \to Y$. Let A and B be closed subsets of X such that $X = A \cup B$. Suppose $f \upharpoonright A$ and $f \upharpoonright B$ are continuous. Then f is continuous.
 - $\langle 2 \rangle 1$. Let: $C \subseteq Y$ be closed.
 - $\langle 2 \rangle 2$. $h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$

- $\langle 2 \rangle 3$. $f^{-1}(C)$ and $g^{-1}(C)$ are closed in X. PROOF: Theorems 10.12.6 and 10.17.7.
- $\langle 2 \rangle 4$. $h^{-1}(C)$ is closed in X.

Proof: Lemma 10.2.5.

 $\langle 2 \rangle 5$. Q.E.D.

PROOF: Theorem 10.12.6.

 $\langle 1 \rangle$ 2. Let X and Y be topological spaces and $f: X \to Y$. Let $\{A_{\alpha}\}$ be a finite family of closed subsets of X that cover X. Suppose $f \upharpoonright A_{\alpha}$ is continuous for all α . Then f is continuous.

PROOF: From $\langle 1 \rangle 1$ by induction.

- $\langle 1 \rangle$ 3. Let X and Y be topological spaces and $f: X \to Y$. Let $\{A_{\alpha}\}$ be a locally finite family of closed subsets of X that cover X. Suppose $f \upharpoonright A_{\alpha}$ is continuous for all α . Then f is continuous.
 - $\langle 2 \rangle 1$. Let: $x \in X$

PROVE: f is continuous at x

- $\langle 2 \rangle$ 2. PICK a neighbourhood U of x that intersects A_{α} for only finitely many α .
- $\langle 2 \rangle 3$. $f \upharpoonright U$ is continuous

Proof: By $\langle 1 \rangle 2$.

 $\langle 2 \rangle 4$. Q.E.D.

PROOF: Lemma 10.12.16.

10.13 Homeomorphisms

Definition 10.13.1 (Homeomorphism). Let X and Y be topological spaces. A *Homeomorphism* f between X and Y, $f: X \cong Y$, is a bijection $f: X \to Y$ such that both f and f^{-1} are continuous.

Lemma 10.13.2. Let X and Y be topological spaces and $f: X \to Y$ a bijection. Then the following are equivalent:

- 1. f is a homeomorphism.
- 2. f is continuous and an open map.
- 3. f is continuous and a closed map.
- 4. For any $U \subseteq X$, we have U is open if and only if f(U) is open.

PROOF: Immediate from definitions.

Proposition 10.13.3. Let X and X' be the same set X under two topologies \mathcal{T} and \mathcal{T}' . Let $i: X \to X'$ be the identity function. Then i is a homeomorphism if and only if $\mathcal{T} = \mathcal{T}'$.

Proof: Immediate from definitions.

Definition 10.13.4 (Topological Property). Let P be a property of topological spaces. Then P is a *topological* property if and only if, for any spaces X and Y, if P holds of X and $X \cong Y$ then P holds of Y.

Definition 10.13.5 (Topological Imbedding). Let X and Y be topological spaces and $f: X \to Y$. Then f is a topological imbedding if and only if the corestriction $f: X \to f(X)$ is a homeomorphism.

Proposition 10.13.6. Let X and Y be topological spaces and $a \in X$. The function $i: Y \to X \times Y$ that maps y to (a, y) is an imbedding.

```
Proof:
```

- $\langle 1 \rangle 1$. *i* is injective
- $\langle 1 \rangle 2$. *i* is continuous.

PROOF: For U open in X and V open in Y, we have $i^{-1}(U \times V)$ is V if $a \in U$, and \emptyset if $a \notin U$.

 $\langle 1 \rangle 3$. $i: Y \to i(Y)$ is an open map.

PROOF: For V open in Y we have $i(V) = (X \times V) \cap i(Y)$.

10.14 The Order Topology

Definition 10.14.1 (Order Topology). Let X be a linearly ordered set with at least two points. The *order topology* on X is the topology generated by the basis \mathcal{B} consisting of:

- all open intervals (a, b);
- all intervals of the form $[\bot, b)$ where \bot is least in X;
- all intervals of the form $(a, \top]$ where \top is greatest in X.

We prove this is a basis for a topology.

- $\langle 1 \rangle 1$. For all $x \in X$ there exists $B \in \mathcal{B}$ such that $x \in B$.
 - $\langle 2 \rangle 1$. Let: $x \in X$
 - $\langle 2 \rangle 2$. Case: x is greatest in X.
 - $\langle 3 \rangle 1$. PICK $y \in X$ with $y \neq x$
 - $\langle 3 \rangle 2. \ x \in (y,x] \in \mathcal{B}$
 - $\langle 2 \rangle 3$. Case: x is least in X.
 - $\langle 3 \rangle 1$. PICK $y \in X$ with $y \neq x$
 - $\langle 3 \rangle 2. \ x \in [x,y) \in \mathcal{B}$
 - $\langle 2 \rangle 4$. Case: x is neither greatest nor least in X.
 - $\langle 3 \rangle 1$. Pick $a, b \in X$ with a < x and x < b
 - $\langle 3 \rangle 2. \ x \in (a,b) \in \mathcal{B}$
- $\langle 1 \rangle 2$. For all $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$

```
\langle 2 \rangle 1. Let: B_1, B_2 \in \mathcal{B} and x \in B_1 \cap B_2

\langle 2 \rangle 2. Case: B_1 = (a,b), B_2 = (c,d)

Proof: Take B_3 = (\max(a,c),\min(b,d)).

\langle 2 \rangle 3. Case: B_1 = (a,b), B_2 = [\bot,d)

Proof: Take B_3 = (a,\min(b,d)).

\langle 2 \rangle 4. Case: B_1 = (a,b), B_2 = (c,\top]

Proof: Take B_3 = (\max(a,c),b).

\langle 2 \rangle 5. Case: B_1 = [\bot,b), B_2 = [\bot,d)

Proof: Take B_3 = [\bot,\min(b,d)).

\langle 2 \rangle 6. Case: B_1 = [\bot,b), B_2 = (c,\top]

Proof: Take B_3 = (c,b).
```

Lemma 10.14.2. Let X be a linearly ordered set. Then the open rays form a subbasis for the order topology on X.

```
Proof:
```

```
\langle 1 \rangle 1. Every open ray is open. \langle 2 \rangle 1. For all a \in X, the ray (-\infty, a) is open. \langle 3 \rangle 1. Let: x \in (-\infty, a) \langle 3 \rangle 2. Case: x is least in X Proof: xin[x, a) = (-\infty, a). \langle 3 \rangle 3. Case: x is not least in X \langle 4 \rangle 1. Pick y < x \langle 4 \rangle 2. x \in (y, a) \subseteq (-\infty, a) \langle 2 \rangle 2. For all a \in X, the ray (a, +\infty) is open. Proof: Similar. \langle 1 \rangle 2. Every basic open set is a finite intersection of open rays. Proof: We have (a, b) = (a, +\infty) \cap (-\infty, b), [\bot, b) = (-\infty, b) and (a, \top] = (-\infty, b) and (a, \top] = (-\infty, b).
```

Definition 10.14.3 (Standard Topology on the Real Line). The *standard topology on the real line* is the order topology on \mathbb{R} generated by the standard order.

Lemma 10.14.4. The lower limit topology is strictly finer than the standard topology on \mathbb{R} .

PROOF:

 $(a, +\infty)$.

```
\langle 1 \rangle 1. Every open interval is open in the lower limit topology. PROOF: If x \in (a,b) then x \in [x,b) \subseteq (a,b). \langle 1 \rangle 2. The half-open interval [0,1) is not open in the standard topology. PROOF: There is no open interval (a,b) such that 0 \in (a,b) \subseteq [0,1).
```

Lemma 10.14.5. The K-topology is strictly finer than the standard topology on \mathbb{R} .

```
\langle 1 \rangle 1. Every open interval is open in the K-topology.
```

Proof: Corollary 10.7.2.1.

 $\langle 1 \rangle$ 2. The set $(-1,1) \setminus K$ is not open in the standard topology. PROOF: There is no open interval (a,b) such that $0 \in (a,b) \subseteq (-1,1) \setminus K$, since there must be a positive integer n with $1/n \in (a,b)$.

Lemma 10.14.6. Let X be a topological space. Let Y be a linearly ordered set in the order topology. Let $f,g:X\to Y$ be continuous. Then $C=\{x\in X\mid f(x)\leq g(x)\}$ is closed.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in X \setminus C$
- $\langle 1 \rangle 2$. f(x) > g(x)

PROVE: There exists a neighbourhood U of x such that $U \subseteq X \setminus C$

 $\langle 1 \rangle 3$. Case: There exists y such that g(x) < y < f(x)

PROOF: Take $U = g^{-1}((-\infty, y)) \cup f^{-1}(y, +\infty)$.

 $\langle 1 \rangle 4$. Case: There is no y such that g(x) < y < f(x)

PROOF: Take $U = g^{-1}((-\infty, f(x))) \cup f^{-1}(g(x), +\infty)$.

Proposition 10.14.7. Let X be a topological space. Let Y be a linearly ordered set in the order topology. Let $f, g: X \to Y$ be continuous. Define $h: X \to Y$ by $h(x) = \min(f(x), g(x))$. Then h is continuous.

PROOF: By the Pasting Lemma applied to $\{x \in X \mid f(x) \leq g(x)\}$ and $\{x \in X \mid g(x) \leq f(x)\}$, which are closed by Lemma 10.14.6.

Proposition 10.14.8. Let X and Y be linearly ordered sets in the order topology. Let $f: X \to Y$ be strictly monotone and surjective. Then f is a homeomorphism.

PROOF:

 $\langle 1 \rangle 1$. f is bijective.

Proof: Proposition 4.2.3.

- $\langle 1 \rangle 2$. f is continuous.
 - $\langle 2 \rangle 1$. For all $y \in Y$ we have $f^{-1}((y, +\infty))$ is open.
 - $\langle 3 \rangle 1$. Let: $y \in Y$
 - $\langle 3 \rangle 2$. PICK $x \in X$ such that f(x) = y

Proof: Since f is surjective.

 $\langle 3 \rangle 3. \ f^{-1}((y, +\infty)) = (x, +\infty)$

PROOF: By strict monotoncity.

 $\langle 2 \rangle 2$. For all $y \in Y$ we have $f^{-1}((-\infty, y))$ is open. PROOF: Similar.

 $\langle 1 \rangle 3$. f^{-1} is continuous.

 $\langle 2 \rangle 1$. For all $x \in X$ we have $f((x, +\infty))$ is open.

PROOF: $f((x, +\infty)) = (f(x), +\infty)$.

 $\langle 2 \rangle 2$. For all $x \in X$ we have $f((-\infty, x))$ is open.

PROOF: $f((-\infty, x)) = (-\infty, f(x))$.

10.15 The nth Root Function

Proposition 10.15.1. For all $n \geq 1$, the function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ defined by $f(x) = x^n$ is a homemorphism.

PROOF:

- $\langle 1 \rangle 1$. f is strictly monotone.
 - $\langle 2 \rangle 1$. Let: $x, y \in \mathbb{R}$ with $0 \le x < y$
 - $\langle 2 \rangle 2$. $x^n < y^n$

$$y^{n} - x^{n} = (y - x)(y^{n-1} + y^{n-2}x + y^{n-3}x^{2} + \dots + x^{n-1})$$

> 0

- $\langle 1 \rangle 2$. f is surjective.
 - $\langle 2 \rangle 1$. Let: $y \in \mathbb{R}_{\geq 0}$
 - $\langle 2 \rangle 2$. Pick $x \in \mathbb{R}$ such that $y \leq x^n$

PROOF: If $y \le 1$ take x = 1, otherwise take x = y.

 $\langle 2 \rangle 3$. There exists $x' \in [0, x]$ such that $(x')^n = y$

PROOF: By the Intermediate Value Theorem.

 $\langle 1 \rangle 3$. Q.E.D.

Proof: Proposition 10.14.8.

Definition 10.15.2. For $n \geq 1$, the *nth root function* is the function $\mathbb{R}_{\geq 0} \to \mathbb{R}_{> 0}$ that is the inverse of $\lambda x.x^n$.

10.16 The Product Topology

Definition 10.16.1 (Product Topology). Let $\{A_i\}_{i\in I}$ be a family of topological spaces. The *product topology* on $\prod_{i\in I} A_i$ is the topology generated by the subbasis consisting of the sets of the form $\pi_i^{-1}(U)$ where $i\in I$ and U is open in A_i .

Proposition 10.16.2. The product topology on $\prod_{i \in I} A_i$ is generated by the basis consisting of all sets of the form $\prod_{i \in I} U_i$ where $\{U_i\}_{i \in I}$ is a family such that each U_i is an open set in A_i and $U_i = A_i$ for all but finitely many i.

Proof: From Proposition 10.7.10. \square

Proposition 10.16.3. If A_i is closed in X_i for all $i \in I$ then $\prod_{i \in I} A_i$ is closed in $\prod_{i \in I} X_i$.

Proof:

$$\left(\prod_{i\in I} X_i\right) \setminus \left(\prod_{i\in I} A_i\right) = \bigcup_{j\in I} \left(\prod_{i\in I} X_i \setminus \pi_j^{-1}(A_j)\right) \square$$

Proposition 10.16.4. Let $\{A_i\}_{i\in I}$ be a family of topological spaces. For $i\in I$, let \mathcal{B}_i be a basis for the topology on A_i . Then $\mathcal{B}=\{\prod_{i\in I}B_i\mid \forall i\in I.B_i\in \mathcal{B}_i, B_i=A_i \text{ for all but finitely many } i\}$ is a basis for the box topology on $\prod_{i\in I}A_i$.

Proof:

- $\langle 1 \rangle 1$. Every set in \mathcal{B} is open.
- $\langle 1 \rangle$ 2. For every point $a \in \prod_{i \in I} A_i$ and every open set U with $a \in U$, there exists $B \in \mathcal{B}$ such that $a \in B \subseteq U$.
 - $\langle 2 \rangle 1$. Let: U be open and $a \in U$
 - $\langle 2 \rangle 2$. PICK a family $\{U_i\}_{i \in I}$ such that each U_i is open in A_i , such that $U_i = A_i$ except for $i = i_1, \ldots, i_n$, and such that $a \in \prod_{i \in I} U_i \subseteq U$.
 - $\langle 2 \rangle 3$. For $j = 1, \ldots, n$, PICK $B_{i_j} \in \mathcal{B}_{i_j}$ such that $a_{i_j} \in B_{i_j} \subseteq U_{i_j}$
 - $\langle 2 \rangle 4$. Let: $B = \prod_{i \in I} B_i$ where $B_i = A_i$ for $i \neq i_1, \ldots, i_n$
 - $\langle 2 \rangle 5. \ B \in \mathcal{B}$
 - $\langle 2 \rangle 6. \ a \in B \subseteq U$
- $\langle 1 \rangle 3$. Q.E.D.

Proof: Lemma 10.7.3.

Proposition 10.16.5. Let $\{A_i\}_{i\in I}$ be a family of topological spaces. Then the projections $\pi_i:\prod_{i\in I}A_i\to A_i$ are open maps.

PROOF: From Lemma 10.11.2. \Box

Example 10.16.6. The projections are not always closed maps. For example, $\pi_1 : \mathbb{R}^2 \to \mathbb{R}$ maps the closed set $\{(x, 1/x) \mid x > 0\}$ to $(0, +\infty)$.

Proposition 10.16.7. Let $\{X_i\}_{i\in I}$ be a family of sets. For $i\in I$, let \mathcal{T}_i and \mathcal{U}_i be topologies on X_i . Let \mathcal{P} be the product topology on $\prod_{i\in I} X_i$ generated by the topologies \mathcal{T}_i , and \mathcal{Q} the product topology on the same set generated by the topologies \mathcal{U}_i . Then $\mathcal{P}\subseteq\mathcal{Q}$ if and only if $\mathcal{T}_i\subseteq\mathcal{U}_i$ for all i.

Proof:

- $\langle 1 \rangle 1$. If $\mathcal{T}_i \subseteq \mathcal{U}_i$ for all i then $\mathcal{P} \subseteq \mathcal{Q}$
 - Proof: By Corollary 10.7.2.1.
- $\langle 1 \rangle 2$. If $\mathcal{P} \subseteq \mathcal{Q}$ then $\mathcal{T}_i \subseteq \mathcal{U}_i$ for all i
 - $\langle 2 \rangle 1$. Assume: $\mathcal{P} \subseteq \mathcal{Q}$
 - $\langle 2 \rangle 2$. Let: $i \in I$
 - $\langle 2 \rangle 3$. Let: $U \in \mathcal{T}_i$
 - $\langle 2 \rangle 4$. Let: $U_i = U$ and $U_j = X_j$ for $j \neq i$
 - $\langle 2 \rangle 5. \prod_{i \in I} U_i \in \mathcal{P}$
 - $\langle 2 \rangle 6. \prod_{i \in I} U_i \in \mathcal{Q}$
 - $\langle 2 \rangle 7. \ U \in \mathcal{U}_i$

PROOF: From Proposition 10.16.5.

П

Proposition 10.16.8 (AC). Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let $A_i \subseteq X_i$ for all $i \in I$. Then

$$\prod_{i \in I} \overline{A_i} = \overline{\prod_{i \in I} A_i} .$$

```
\langle 1 \rangle 1. \overline{\prod_{i \in I} A_i} \subseteq \prod_{i \in I} \overline{A_i}
```

 $\langle 2 \rangle 1$. For all $i \in I$ we have $A_i \subseteq \overline{A_i}$

Proof: Lemma 10.4.3.

- $\langle 2 \rangle 2$. $\prod_{i \in I} A_i \subseteq \prod_{i \in I} \overline{A_i}$
- $\langle 2 \rangle 3$. Q.E.D.

PROOF: Since $\prod_{i \in I} A_i$ is closed by Proposition 10.16.3.

- $\langle 1 \rangle 2$. $\prod_{i \in I} \overline{A_i} \subseteq \overline{\prod_{i \in I} A_i}$
 - $\langle 2 \rangle 1$. Let: $x \in \prod_{i \in I} \overline{A_i}$
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of x
 - $\langle 2 \rangle$ 3. PICK V_i open in X_i such that $x \in \prod_{i \in I} V_i \subseteq U$ with $V_i = X_i$ except for $i = i_1, \ldots, i_n$
 - $\langle 2 \rangle 4$. For $i \in I$, pick $a_i \in V_i \cap A_i$

PROOF: By Theorem 10.4.6 and $\langle 2 \rangle 1$ using the Axiom of Choice.

- $\langle 2 \rangle$ 5. *U* intersects $\prod_{i \in I} A_i$
- $\langle 2 \rangle 6$. Q.E.D.

Proof: $a \in U \cap \prod_{i \in I} A_i$

Example 10.16.9. The closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} is \mathbb{R}^{ω}

Proof:

- $\langle 1 \rangle 1$. Let: $a \in \mathbb{R}^{\omega}$
- $\langle 1 \rangle 2$. Let: *U* be any neighbourhoods of *a*.
- $\langle 1 \rangle 3$. PICK U_n open in \mathbb{R} for all n such that $a \in \prod_{n \geq 0} U_n \subseteq U$ and $U_n = \mathbb{R}$ for all n except n_1, \ldots, n_k
- $\langle 1 \rangle 4$. Let: $b_n = a_n$ for $n = n_1, \ldots, n_k$ and $b_n = 0$ for all other n
- $\langle 1 \rangle 5. \ b \in \mathbb{R}^{\infty} \cap U$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: From Theorem 10.4.6.

П

Proposition 10.16.10. Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let $(a_{\alpha})_{\alpha\in J}$ be a net in $\prod_{i\in I}X_i$ and $l\in \prod_{i\in I}X_i$. Then $a_{\alpha}\to l$ as $\alpha\to\infty$ if and only if, for all $i\in I$, we have $\pi_i(a_{\alpha})\to\pi_i(l)$ as $\alpha\to\infty$.

- $\langle 1 \rangle 1$. If $a_{\alpha} \to l$ as $\alpha \to \infty$ then, for all $i \in I$, we have $\pi_i(a_{\alpha}) \to \pi_i(l)$ as $n \to \infty$ PROOF: Proposition 10.12.18.
- $\langle 1 \rangle 2$. If, for all $i \in I$, we have $\pi_i(a_\alpha) \to \pi_i(l)$ as $\alpha \to \infty$, then $a_\alpha \to l$ as $\alpha \to \infty$
 - $\langle 2 \rangle 1$. Assume: For all $i \in I$, we have $\pi_i(a_\alpha) \to \pi_i(l)$ as $\alpha \to \infty$
 - $\langle 2 \rangle 2$. Let: V be a neighbourhood of l
 - $\langle 2 \rangle$ 3. PICK open sets U_i in X_i such that $l \in \prod_{i \in I} U_i \subseteq V$ and $U_i = X_i$ for all i except $i = i_1, \ldots, i_k$
 - $\langle 2 \rangle 4$. For j = 1, ..., k, PICK α_j such that, for all $\beta \geq \alpha_j$, we have $\pi_{i_j}(a_\beta) \in U_{i_j}$
 - $\langle 2 \rangle$ 5. Pick $\alpha \in J$ such that $\alpha_1, \ldots, \alpha_k \leq \alpha$
 - $\langle 2 \rangle 6$. For all $\beta \geq \alpha$ we have $a_{\beta} \in V$

Theorem 10.16.11. Let A be a topological space and $\{X_i\}_{i\in I}$ be a family of topological spaces. Let $f: A \to \prod_{i\in I} X_i$ be a function. If $\pi_i \circ f$ is continuous for all $i\in I$ then f is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: $i \in I$ and U be open in X_i
- $\langle 1 \rangle 2$. $f^{-1}(\pi_i^{-1}(U))$ is open in A
- $\langle 1 \rangle 3$. Q.E.D.

Proof: Proposition 10.12.3.

10.16.1 Continuous in Each Variable Separately

Definition 10.16.12 (Continuous in Each Variable Separately). Let $F: X \times Y \to Z$. Then F is continuous in each variable separately if and only if:

- for every $a \in X$ the function $\lambda y \in Y.F(a, y)$ is continuous;
- for every $b \in Y$ the function $\lambda x \in X.F(x,b)$ is continuous.

Proposition 10.16.13. Let $F: X \times Y \to Z$. If F is continuous then F is continuous in each variable separately.

PROOF: For $a \in X$, the function $\lambda y \in Y.F(a,y)$ is $F \circ i$ where $i: Y \to X \times Y$ maps y to (a,y). We have i is continuous by Proposition 10.13.6, hence $F \circ i$ is continuous by Theorem 10.12.9.

Similarly for $\lambda x \in X.F(x,b)$ for $b \in Y$. \square

Example 10.16.14. Define $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by

$$F(x,y) = \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Then F is continuous in each variable separately but not continuous.

Proposition 10.16.15. Let $f: A \to C$ and $g: B \to D$ be open maps. Then $f \times g: A \times B \to C \times D$ is an open map.

PROOF: Given U open in A and V open in B. Then $(f \times g)(U \times V) = f(U) \times g(V)$ is open in $C \times D$. The result follows from Proposition 10.11.3. \square

Definition 10.16.16 (Sorgenfrey Plane). The Sorgenfrey plane is \mathbb{R}^2 .

10.17 The Subspace Topology

Definition 10.17.1 (Subspace Topology). Let X be a topological space and $Y \subseteq X$. The *subspace topology* on Y is $\mathcal{T} = \{U \cap Y \mid U \text{ is open in } X\}$.

We prove this is a topology.

```
Proof:
```

```
\begin{array}{l} \text{$\langle 1 \rangle$1.} \ Y \in \mathcal{T} \\ \text{Proof: Since } Y = X \cap Y \\ \text{$\langle 1 \rangle$2. For all } \mathcal{U} \subseteq \mathcal{T}, \text{ we have } \bigcup \mathcal{U} \in \mathcal{T} \\ \text{$\langle 2 \rangle$1. Let: } \mathcal{U} \subseteq \mathcal{T} \\ \text{$\langle 2 \rangle$2. Let: } \mathcal{V} = \{V \text{ open in } X \mid V \cap Y \in \mathcal{U}\} \\ \text{$\langle 2 \rangle$3. } \bigcup \mathcal{U} = (\bigcup \mathcal{V}) \cap Y \\ \text{$\langle 1 \rangle$3. For all } U, V \in \mathcal{T}, \text{ we have } U \cap V \in \mathcal{T} \\ \text{$\langle 2 \rangle$1. Let: } U, V \in \mathcal{T} \end{array}
```

 $\langle 2 \rangle 2$. PICK U', V' open in X such that $U = U' \cap Y$ and $V = V' \cap Y$

 $(2)3. (U \cap V) = (U' \cap V') \cap Y$

Theorem 10.17.2. Let X be a topological space and Y a subspace of X. Let $A \subseteq Y$. Then A is closed in Y if and only if there exists a closed set C in X such that $A = C \cap Y$.

PROOF: We have

$$\begin{array}{l} A \text{ is closed in } Y \\ \Leftrightarrow Y \setminus A \text{ is open in } Y \\ \Leftrightarrow \exists U \text{ open in } X.Y \setminus A = Y \cap U \\ \Leftrightarrow \exists C \text{ closed in } X.Y \setminus A = Y \cap (X \setminus U) \\ \Leftrightarrow \exists C \text{ closed in } X.A = Y \cap U \end{array}$$

Theorem 10.17.3. Let Y be a subspace of X. Let $A \subseteq Y$. Let \overline{A} be the closure of A in X. Then the closure of A in Y is $\overline{A} \cap Y$.

PROOF: The closure of
$$A$$
 in Y is
$$\bigcap \{C \text{ closed in } Y \mid A \subseteq C\}$$

$$= \bigcap \{D \cap Y \mid D \text{ closed in } X, A \subseteq D \cap Y\}$$
 (Theorem 10.17.2)
$$= \bigcap \{D \mid D \text{ closed in } X, A \subseteq D\} \cap Y$$

$$= \overline{A} \cap Y$$

Lemma 10.17.4. Let X be a topological space and $Y \subseteq X$. Let \mathcal{B} be a basis for the topology on X. Then $\mathcal{B}' = \{B \cap Y \mid B \in \mathcal{B}\}$ is a basis for the subspace topology on Y.

- $\langle 1 \rangle 1$. Every element in \mathcal{B}' is open in Y
- $\langle 1 \rangle 2$. For every open set U in Y and point $y \in U$, there exists $B' \in \mathcal{B}'$ such that $y \in B' \subseteq U$
 - $\langle 2 \rangle 1$. Let: U be open in Y and $y \in U$
 - $\langle 2 \rangle 2$. PICK V open in X such that $U = V \cap Y$
 - $\langle 2 \rangle 3$. Pick $B \in \mathcal{B}$ such that $y \in B \subseteq V$

```
\langle 2 \rangle4. Let: B' = B \cap Y

\langle 2 \rangle5. B' \in \mathcal{B}'

\langle 2 \rangle6. y \in B' \subseteq U

\langle 1 \rangle3. Q.E.D.

PROOF: By Lemma 10.7.3.
```

Lemma 10.17.5. Let X be a topological space and $Y \subseteq X$. Let S be a basis for the topology on X. Then $S' = \{S \cap Y \mid S \in S\}$ is a subbasis for the subspace topology on Y.

PROOF: The set $\{B \cap Y \mid B \text{ is a finite intersection of elements of } \mathcal{S}\}$ is a basis for the subspace topology by Lemma 10.17.4, and this is the set of all finite intersections of elements of \mathcal{S}' . \square

Lemma 10.17.6. Let Y be a subspace of X. If U is open in Y and Y is open in X then U is open in X.

Proof:

- $\langle 1 \rangle 1$. PICK V open in X such that $U = V \cap Y$
- $\langle 1 \rangle 2$. U is open in X

PROOF: Since it is the intersection of two open sets V and Y.

Theorem 10.17.7. Let Y be a subspace of X and $A \subseteq Y$. If A is closed in Y and Y is closed in X then A is closed in X.

PROOF: Pick a closed set C in X such that $A = C \cap Y$ (Theorem 10.17.2). Then A is the intersection of two sets closed in X, hence A is closed in X (Lemma 10.2.4). \square

Theorem 10.17.8. Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let A_i be a subspace of X_i for all $i\in I$. Then the product topology on $\prod_{i\in I} A_i$ is the same as the topology it inherits as a subspace of $\prod_{i\in I} X_i$.

PROOF: The product topology is generated by the subbasis

$$\{\pi_{i}^{-1}(U) \mid i \in I, U \text{ open in } A_{i}\}\$$

$$=\{\pi_{i}^{-1}(V) \cap A_{i} \mid i \in I, V \text{ open in } X_{i}\}\$$

$$=\{\pi_{i}^{-1}(V) \mid i \in I, V \text{ open in } X_{i}\} \cap \prod_{i \in I} A_{i}\$$

and this is a subbasis for the subspace topology by Lemma 10.17.5. \square

Theorem 10.17.9. Let X be an ordered set in the order topology. Let $Y \subseteq X$ be an interval. Then the order topology on Y is the same as the subspace topology on Y.

PROOF

 $\langle 1 \rangle 1$. The order topology is finer than the subspace topology.

- $\langle 2 \rangle 1$. For every open ray R in X, the set $R \cap Y$ is open in the order topology.
 - $\langle 3 \rangle 1$. For all $a \in X$, we have $(-\infty, a) \cap Y$ is open in the order topology.
 - $\langle 4 \rangle 1$. Case: For all $y \in Y$ we have y < a

PROOF: In this case $(-\infty, a) \cap Y = Y$.

 $\langle 4 \rangle 2$. CASE: For all $y \in Y$ we have a < y PROOF: In this case $(-\infty, a) \cap Y = \emptyset$.

 $\langle 4 \rangle 3.$ Case: There exists $y \in Y$ such that $y \leq a$ and $y \in Y$ such that

$$a \leq y$$

 $\langle 5 \rangle 1. \ a \in Y$

PROOF: Because Y is an interval.

- $\langle 5 \rangle 2. \ (-\infty, a) \cap Y = \{ y \in Y \mid y < a \}$
- $\langle 3 \rangle 2$. For all $a \in X$, we have $(a, +\infty) \cap Y$ is open in the order topology. PROOF: Similar.
- $\langle 2 \rangle 2$. Q.E.D.

PROOF: By Lemmas 10.14.2 and 10.17.5 and Proposition 10.7.11.

- $\langle 1 \rangle 2$. The subspace topology is finer than the order topology.
- $\langle 2 \rangle 1$. Every open ray in Y is open in the subspace topology.

PROOF: For any $a \in Y$ we have $(-\infty, a)_Y = (-\infty, a)_X \cap Y$ and $(a, +\infty)_Y = (a, +\infty)_X \cap Y$.

 $\langle 2 \rangle 2$. Q.E.D.

PROOF: By Lemma 10.14.2 and Proposition 10.7.11

This example shows that we cannot remove the hypothesis that Y is an interval:

Example 10.17.10. The order topology on I_o^2 is different from the subspace topology as a subspace of \mathbb{R}^2 under the dictionary order topology.

PROOF: The set $\{1/2\} \times (1/2,1)$ is open in the subspace topology but not in the order topology. \square

Proposition 10.17.11. Let X be a topological space, Y a subspace of X, and Z a subspace of Y. Then the subspace topology on Z inherited from X is the same as the subspace topology on Z inherited from Y.

PROOF: The subspace topology inherited from Y is

$$\begin{aligned} &\{V \cap Z \mid V \text{ open in } Y\} \\ = &\{U \cap Y \cap Z \mid U \text{ open in } X\} \\ = &\{U \cap Z \mid U \text{ open in } X\} \end{aligned}$$

which is the subspace topology inherited from X. \square

Definition 10.17.12 (Unit Circle). The unit circle S^1 is $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ as a subspace of \mathbb{R}^2 .

Definition 10.17.13 (Unit 2-sphere). The unit 2-sphere is $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$ as a subspace of \mathbb{R}^3 .

Proposition 10.17.14. Let $f: X \to Y$ be an open map and $A \subseteq X$ be open. Then the restriction $f \upharpoonright A: A \to f(A)$ is an open map.

Proof:

- $\langle 1 \rangle 1$. Let: U be open in A
- $\langle 1 \rangle 2$. U is open in X

PROOF: Lemma 10.17.6.

- $\langle 1 \rangle 3$. f(U) is open in Y
- $\langle 1 \rangle 4$. f(U) is open in f(A)

PROOF: Since $f(U) = f(U) \cap f(A)$.

П

Example 10.17.15. This example shows that we cannot remove the hypothesis that A is open.

Let $A = \{(x,y) \in \mathbb{R}^2 \mid (x > 0 \text{ and } y = 1/x) \text{ or } x = y = 0\}$. Then $\pi_1 : \mathbb{R}^2 \to \mathbb{R}$ is an open map, but $\pi_1 \upharpoonright A : A \to [0, +\infty)$ is not, because it maps the set $\{0,0\}$ which is open in A to $\{0\}$ which is not open in $[0,+\infty)$.

Proposition 10.17.16. Let Y be a subspace of X. Let $A \subseteq Y$ and $l \in Y$. Then l is a limit point of A in Y if and only if l is a limit point of A in X.

PROOF: Both are equivalent to the condition that any neighbourhood of l in X intersects A in a point other than l. \square

10.18 The Box Topology

Definition 10.18.1 (Box Topology). Let $\{A_i\}_{i\in I}$ be a family of topological spaces. The box topology on $\prod_{i\in I} A_i$ is the topology generated by the set of all sets of the form $\prod_{i\in I} U_i$ where $\{U_i\}_{i\in I}$ is a family such that each U_i is open in A_i .

This is a basis since it covers $\prod_{i \in I} A_i$ and is closed under intersection.

Proposition 10.18.2. The box topology is finer than the product topology.

PROOF: From Proposition 10.16.2.

Corollary 10.18.2.1. If A_i is closed in X_i for all $i \in I$ then $\prod_{i \in I} A_i$ is closed in $\prod_{i \in I} X_i$ under the box topology.

PROOF: From Proposition 10.16.3.

Proposition 10.18.3 (AC). Let $\{A_i\}_{i\in I}$ be a family of topological spaces. For $i \in I$, let \mathcal{B}_i be a basis for the topology on A_i . Then $\mathcal{B} = \{\prod_{i\in I} B_i \mid \forall i \in I.B_i \in \mathcal{B}_i\}$ is a basis for the box topology on $\prod_{i\in I} A_i$.

- $\langle 1 \rangle 1$. Every set of the form $\prod_{i \in I} B_i$ is open.
- $\langle 1 \rangle 2$. For every point $a \in \prod_{i \in I} A_i$ and every open set U with $a \in U$, there exists $B \in \mathcal{B}$ such that $a \in B \subseteq U$.

- $\langle 2 \rangle 1$. Let: U be open and $a \in U$
- $\langle 2 \rangle 2$. PICK a family $\{U_i\}_{i \in I}$ such that each U_i is open in A_i and $a \in \prod_{i \in I} U_i \subseteq U$.
- $\langle 2 \rangle$ 3. For $i \in I$, PICK $B_i \in \mathcal{B}_i$ such that $a_i \in B_i \subseteq U_i$

PROOF: Using the Axiom of Choice.

 $\langle 2 \rangle 4. \ a \in \prod_{i \in I} B_i \subseteq U$ $\langle 1 \rangle 3. \text{ Q.E.D.}$

Proof: Lemma 10.7.3.

Theorem 10.18.4. Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let A_i be a subspace of X_i for all $i\in I$. Give $\prod_{i\in I}X_i$ the box topology. Then the box topology on $\prod_{i\in I}A_i$ is the same as the topology it inherits as a subspace of $\prod_{i\in I}X_i$.

PROOF: The box topology is generated by the basis

$$\begin{aligned} &\{\prod_{i\in I} U_i \mid \forall i\in I, U_i \text{ open in } A_i\} \\ &= \{\prod_{i\in I} (V_i\cap A_i) \mid \forall i\in I, V_i \text{ open in } X_i\} \\ &= \{\prod_{i\in I} V_i \mid \forall i\in I, V_i \text{ open in } X_i\} \cap \prod_{i\in I} A_i \end{aligned}$$

and this is a basis for the subspace topology by Lemma 10.17.4. \square

Proposition 10.18.5 (AC). Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Give $\prod_{i\in I} X_i$ the box topology. Let $A_i \subseteq X_i$ for all $i\in I$. Then

$$\prod_{i \in I} \overline{A_i} = \overline{\prod_{i \in I} A_i} .$$

Proof:

 $\langle 1 \rangle 1. \ \overline{\prod_{i \in I} A_i} \subseteq \prod_{i \in I} \overline{A_i}$

 $\langle 2 \rangle 1$. For all $i \in I$ we have $A_i \subseteq \overline{A_i}$

Proof: Lemma 10.4.3.

- $\langle 2 \rangle 2$. $\prod_{i \in I} A_i \subseteq \prod_{i \in I} A_i$
- $\langle 2 \rangle 3$. Q.E.D.

Proof: Since $\prod_{i \in I} A_i$ is closed by Corollary 10.18.2.1.

- $\langle 1 \rangle 2. \prod_{i \in I} \overline{A_i} \subseteq \overline{\prod_{i \in I} A_i}$
 - $\langle 2 \rangle 1$. Let: $x \in \prod_{i \in I} \overline{A_i}$
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of x
 - $\langle 2 \rangle 3$. PICK V_i open in X_i such that $x \in \prod_{i \in I} V_i \subseteq U$
 - $\langle 2 \rangle 4$. For $i \in I$, pick $a_i \in V_i \cap A_i$

PROOF: By Theorem 10.4.6 and $\langle 2 \rangle 1$ using the Axiom of Choice.

- $\langle 2 \rangle 5$. *U* intersects $\prod_{i \in I} A_i$
- $\langle 2 \rangle 6$. Q.E.D.

PROOF: $a \in U \cap \prod_{i \in I} A_i$.

The following example shows that Theorem 10.16.11 fails in the box topology.

Example 10.18.6. Define $f: \mathbb{R} \to \mathbb{R}^{\omega}$ by f(t) = (t, t, ...). Then $\pi_n \circ f = \mathrm{id}_{\mathbb{R}}$ is continuous for all n. But f is not continuous when \mathbb{R}^{ω} is given the box topology because the inverse image of

$$(-1,1) \times (-1/2,1/2) \times (-1/3,1/3) \times \cdots$$

is $\{0\}$ which is not open.

The following example shows that Proposition 10.16.10 fails in the box topology.

Example 10.18.7. Give \mathbb{R}^{ω} the box topology. Let $a_n = (1/n, 1/n, ...)$ for $n \geq 1$ and l = (0, 0, ...). Then $\pi_i(a_n) \to \pi_i(l)$ as $n \to \infty$ for all i, but $a_n \not\to l$ as $n \to \infty$ since the open set

$$(-1,1) \times (-1/2,1/2) \times (-1/3,1/3) \times \cdots$$

contains l but does not contain any a_n .

Example 10.18.8. The set \mathbb{R}^{∞} is closed in \mathbb{R}^{ω} under the box topology. For let (a_n) be any sequence not in \mathbb{R}^{∞} . Let U_n be an open interval around a_n that does not contain 0 if $a_n \neq 0$, and $U_n = \mathbb{R}$ if $a_n = 0$. Then $\prod_{n \geq 0} U_n$ is a neighbourhood of (a_n) that does not intersect \mathbb{R}^{∞} .

10.19 T_1 Spaces

Definition 10.19.1 (T_1 Space). A topological space is T_1 if and only if every singleton is closed.

Lemma 10.19.2. A space is T_1 if and only if every finite set is closed.

PROOF: From Lemma 10.2.5. \Box

Theorem 10.19.3. In a T_1 space, a point a is a limit point of a set A if and only if every neighbourhood of a contains infinitely many points of A.

Proof:

- $\langle 1 \rangle 1$. If a is a limit point of A then every neighbourhood of a contains infinitely many points of A.
 - $\langle 2 \rangle 1$. Assume: a is a limit point of A.
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of a.
 - $\langle 2 \rangle 3$. Assume: for a contradiction U contains only finitely many points of A.
 - $\langle 2 \rangle 4$. $(U \cap A) \setminus \{a\}$ is closed.

PROOF: By the T_1 axiom.

 $\langle 2 \rangle 5$. $(U \setminus A) \cup \{a\}$ is open.

PROOF: It is $U \setminus ((U \cap A) \setminus \{a\})$.

```
\langle 2 \rangle 6. (U \setminus A) \cup \{a\} intersects A in a point other than a. PROOF: From \langle 2 \rangle 1. \langle 2 \rangle 7. Q.E.D. \Box
```

 $\langle 1 \rangle 2$. If every neighbourhood of a contains infinitely many points of A then a is a limit point of A.

PROOF: Immediate from definitions.

(To see this does not hold in every space, see Proposition 10.6.4.)

Proposition 10.19.4. A space is T_1 if and only if, for any two distinct points x and y, there exist neighbourhoods U of x and y of y such that $x \notin V$ and $y \notin U$.

PROOF:

П

- $\langle 1 \rangle 1$. Let: X be a topological space.
- $\langle 1 \rangle 2$. If X is T_1 then, for any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$.

PROOF: This holds because $\{x\}$ and $\{y\}$ are closed.

- $\langle 1 \rangle 3$. Suppose, for any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$. Then X is T_1 .
 - $\langle 2 \rangle$ 1. Assume: For any two distinct points x and y, there exist neighbourhoods U of x and Y of y such that $x \notin V$ and $y \notin U$.
 - $\langle 2 \rangle 2$. Let: $a \in X$
 - $\langle 2 \rangle 3$. $\{a\}$ is closed.

PROOF: For all $b \neq a$ there exists a neighbourhood U of b such that $U \subseteq X \setminus \{a\}$.

Proposition 10.19.5. A subspace of a T_1 space is T_1 .

Proof: From Proposition 10.17.7.

10.20 Hausdorff Spaces

Definition 10.20.1 (Hausdorff Space). A topological space is *Hausdorff* if and only if, for any points x, y with $x \neq y$, there exist disjoint open sets U and V such that $x \in U$ and $y \in V$.

Theorem 10.20.2. Every Hausdorff space is T_1 .

Proof:

- $\langle 1 \rangle 1$. Let: X be a Hausdorff space.
- $\langle 1 \rangle 2$. Let: $b \in X$

PROVE: $\overline{\{b\}} = \{b\}$

- $\langle 1 \rangle 3$. Assume: $a \in \overline{\{b\}}$ and $a \neq b$
- $\langle 1 \rangle 4$. PICK disjoint neighbourhoods U of a and V of b.

```
\langle 1 \rangle 5. U intersects \{b\}
  PROOF: Theorem 10.4.6.
\langle 1 \rangle 6. \ b \in U
\langle 1 \rangle 7. Q.E.D.
  PROOF: This contradicts the fact that U and V are disjoint (\langle 1 \rangle 4).
Proposition 10.20.3. An infinite set under the finite complement topology is
T_1 but not Hausdorff.
Proof:
\langle 1 \rangle 1. Let: X be an infinite set under the finite complement topology.
\langle 1 \rangle 2. Every singleton is closed.
   PROOF: By definition.
\langle 1 \rangle 3. Picka, b \in X with a \neq b
\langle 1 \rangle 4. There are no disjoint neighbourhoods U of a and V of b.
   \langle 2 \rangle 1. Let: U be a neighbourhood of a and V a neighbourhood of b.
   \langle 2 \rangle 2. X \setminus U and X \setminus V are finite.
   \langle 2 \rangle 3. Pick c \in X that is not in X \setminus U or X \setminus V.
   \langle 2 \rangle 4. \ c \in U \cap V
Proposition 10.20.4. The product of a family of Hausdorff spaces is Haus-
dorff.
Proof:
\langle 1 \rangle 1. Let: \{X_i\}_{i \in I} be a family of Hausdorff spaces.
\langle 1 \rangle 2. Let: a, b \in \prod_{i \in I} X_i with a \neq b
\langle 1 \rangle 3. PICK i \in I such that a_i \neq b_i
\langle 1 \rangle 4. PICK U, V disjoint open sets in X_i with a_i \in U and b_i \in V
\langle 1 \rangle 5. \pi_i^{-1}(U) and \pi_i^{-1}(V) are disjoint open sets in \prod_{i \in I} X_i with a \in \pi_i^{-1}(U)
       and b \in \pi_i^{-1}(V)
Theorem 10.20.5. Every linearly ordered set under the order topology is Haus-
dorff.
PROOF:
\langle 1 \rangle 1. Let: X be a linearly ordered set under the order topology.
\langle 1 \rangle 2. Let: a, b \in X with a \neq b
\langle 1 \rangle 3. Assume: w.l.o.g. a < b
\langle 1 \rangle 4. Case: There exists c such that a < c < b
  PROOF: The sets (-\infty, c) and (c, +\infty) are disjoint neighbourhoods of a and
  b respectively.
\langle 1 \rangle5. Case: There is no c such that a < c < b
```

PROOF: The sets $(-\infty, b)$ and $(a, +\infty)$ are disjoint neighbourhoods of a and

b respectively.

Theorem 10.20.6. A subspace of a Hausdorff space is Hausdorff.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a Hausdorff space and Y a subspace of X.
- $\langle 1 \rangle 2$. Let: $x, y \in Y$ with $x \neq y$
- $\langle 1 \rangle 3$. PICK disjoint neighbourhoods U of x and V of y in X.
- $\langle 1 \rangle 4$. $U \cap Y$ and $V \cap Y$ are disjoint neighbourhoods of x and y respectively in Y.

Proposition 10.20.7. A space X is Hausdorff if and only if the diagonal $\Delta = \{(x,x) \mid x \in X\}$ is closed in X^2 .

Proof:

X is Hausdorff

$$\Leftrightarrow \forall x, y \in X. x \neq y \Rightarrow \exists V, W \text{ open.} x \in V \land y \in W \land V \cap W = \emptyset$$
$$\Leftrightarrow \forall (x, y) \in X^2 \setminus \Delta. \exists V, W \text{ open.} (x, y) \subseteq V \times W \subseteq X^2 \setminus \Delta$$
$$\Leftrightarrow \Delta \text{ is closed}$$

П

Theorem 10.20.8. In a Hausdorff space, a net has at most one limit.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a Hausdorff space.
- $\langle 1 \rangle 2$. Assume: for a contradiction $(a_{\alpha})_{\alpha \in J}$ is a net with limits l and m.
- $\langle 1 \rangle 3$. PICK disjoint neighbourhoods U of l and V of m

PROOF: By the Hausdorff axiom.

- $\langle 1 \rangle 4$. PICK α and β such that $a_{\gamma} \in U$ for $\gamma \geq \alpha$ and $a_{\gamma} \in V$ for $\gamma \geq \beta$
- $\langle 1 \rangle 5$. Pick $\gamma \in J$ with $\gamma \geq \alpha$ and $\gamma \geq \beta$
- $\langle 1 \rangle 6. \ a_{\gamma} \in U \cap V$
- $\langle 1 \rangle 7$. Q.E.D.

PROOF: This contradicts the fact that U and V are disjoint $(\langle 1 \rangle 3)$.

To see this is not always true in spaces that are T_1 but not Hausdorff:

Proposition 10.20.9. Let X be an infinite set under the finite complement topology. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence with all points distinct. Then for every $l\in X$ we have $a_n\to l$ as $n\to\infty$.

PROOF: Let U be any neighbourhood of l. Since $X \setminus U$ is finite, there must exist N such that, for all $n \geq N$, we have $a_n \in U$. \square

Proposition 10.20.10. Let X be a topological space. Let Y a Hausdorff space. Let $A \subseteq X$. Let $f, g : \overline{A} \to Y$ be continuous. If f and g agree on A then f = g.

- $\langle 1 \rangle 1$. Let: $x \in \overline{A}$
- $\langle 1 \rangle 2$. Assume: $f(x) \neq g(x)$
- $\langle 1 \rangle 3$. PICK disjoint neighbourhoods V of f(x) and W of g(x).

Proposition 10.20.11. Let $\{X_i\}_{i\in I}$ be a family of Hausdorff spaces. Then $\prod_{i\in I} X_i$ under the box topology is Hausdorff.

Proof:

- $\langle 1 \rangle 1$. Let: $\{X_i\}_{i \in I}$ be a family of Hausdorff spaces.
- $\langle 1 \rangle 2$. Let: $a, b \in \prod_{i \in I} X_i$ with $a \neq b$
- $\langle 1 \rangle 3$. Pick $i \in I$ such that $a_i \neq b_i$
- $\langle 1 \rangle 4$. PICK U, V disjoint open sets in X_i with $a_i \in U$ and $b_i \in V$
- $\langle 1 \rangle$ 5. $\pi_i^{-1}(U)$ and $\pi_i^{-1}(V)$ are disjoint open sets in $\prod_{i \in I} X_i$ with $a \in \pi_i^{-1}(U)$ and $b \in \pi_i^{-1}(V)$

Proposition 10.20.12. Let \mathcal{T} and \mathcal{T}' be two topologies on the same set X with $\mathcal{T} \subseteq \mathcal{T}'$ If \mathcal{T} is Haudorff then \mathcal{T}' is Haudorff.

PROOF: Immediate from definitions.

Proposition 10.20.13. Let X be a Hausdorff space. Let $\mathcal{D} \subseteq \mathcal{P}X$ be maximal with respect to the finite intersection property. Then $\bigcap_{D \in \mathcal{D}} \overline{D}$ contains at most one point.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in \bigcap_{D \in \mathcal{D}} \overline{D}$
- $\langle 1 \rangle 2$. Assume: for a contradiction $x \neq y$
- $\langle 1 \rangle 3$. PICK disjoint open subsets U and V of x and y respectively.
- $\langle 1 \rangle 4. \ U, V \in \mathcal{D}$

Proof: Proposition 10.4.9.

 $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts the fact that $\mathcal D$ satisfies the finite intersection property.

10.21 The First Countability Axiom

Definition 10.21.1 (First Countability Axiom). A topological space X satisfies the *first countability axiom*, or is *first countable*, if and only if every point has a countable local basis.

Example 10.21.2. The space S_{Ω} is first countable. For any $\alpha \in S_{\Omega}$, the set $\{(\beta, \alpha + 1) \mid \beta < \alpha\} \cup \{[0, \alpha + 1)\}$ is a local basis at α .

Lemma 10.21.3 (Sequence Lemma (CC)). Let X be a first countable space. Let $A \subseteq X$ and $l \in \overline{A}$. Then there exists a sequence in A that converges to l.

PROOF:

- $\langle 1 \rangle 1$. PICK a countable local basis $\{B_n \mid n \in \mathbb{Z}^+\}$ at l such that $B_1 \supseteq B_2 \supseteq \cdots$. PROOF: Lemma 10.8.2.
- $\langle 1 \rangle$ 2. For all $n \geq 1$, PICK $a_n \in A \cap B_n$. PROVE: $a_n \to l$ as $n \to \infty$
- $\langle 1 \rangle 3$. Let: U be a neighbourhood of A
- $\langle 1 \rangle 4$. PICK N such that $B_N \subseteq U$
- $\langle 1 \rangle 5$. For $n \geq N$ we have $a_n \in U$

PROOF: $a_n \in B_n \subseteq B_N \subseteq U$

Example 10.21.4. The space $\overline{S_{\Omega}}$ is not first countable, since Ω is a limit point for S_{Ω} but there is no sequence of points in S_{Ω} that converges to Ω .

Theorem 10.21.5 (CC). Let X be a first countable space and Y a topological space. Let $f: X \to Y$. Suppose that, for every sequence (x_n) in X and $l \in X$, if $x_n \to l$ as $n \to \infty$, then $f(x_n) \to f(l)$ as $n \to \infty$. Then f is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: $A \subseteq X$
- $\langle 1 \rangle 2$. Let: $a \in A$

PROVE: $f(a) \in \overline{f(A)}$

 $\langle 1 \rangle 3$. PICK a sequence (x_n) in A that converges to a.

PROOF: By the Sequence Lemma.

- $\langle 1 \rangle 4. \ f(x_n) \to f(a)$
- $\langle 1 \rangle 5. \ f(a) \in \overline{f(A)}$

PROOF: By Lemma 10.9.3.

 $\langle 1 \rangle 6$. Q.E.D.

PROOF: By Theorem 10.12.6.

П

Example 10.21.6 (CC). The space \mathbb{R}^{ω} under the box product is not first countable.

PROOF: Let $\{B_n \mid n \geq 0\}$ be a countable set of neighbourhoods of $\vec{0}$. We will construct a neighbourhood of $\vec{0}$ that does not include any of these.

For $n \geq 0$, pick a neighbourhood U_n of 0 such that $U_n \subset \pi_n(B_p)$. Then $\prod_{n=0}^{\infty} U_n$ is a neighbourhood of $\vec{0}$ that does not include any B_n . \square

Example 10.21.7. If J is an uncountable set then \mathbb{R}^J is not first countable.

Proof:

- $\langle 1 \rangle 1$. Let: $\{B_n \mid n \geq 0\}$ be any countable set of neighbourhoods of $\vec{0}$.
- $\langle 1 \rangle 2$. For $n \geq 0$, PICK a basis element $\prod_{\alpha \in J} U_{n\alpha}$ that contains $\vec{0}$ and is included in B_n .

PROOF: Using the Axiom of Countable Choice.

```
\langle 1 \rangle3. For n \geq 0, Let: J_n = \{ \alpha \in J \mid U_{n\alpha} \neq \mathbb{R} \} \langle 1 \rangle4. Pick \beta \in J such that \beta \notin J_n for any n. Proof: Since each J_n is finite so \bigcup_n J_n is countable. \langle 1 \rangle5. \pi_{\beta}((-1,1)) is a neighbourhood of \vec{0} that does not include any B_n.
```

Example 10.21.8. The space \mathbb{R}_l is first countable.

PROOF: For any real number x, the set $\{[x,q)\mid q\in\mathbb{Q},q>x\}$ is a countable local basis at x. \square

PROOF: For any $a \in \mathbb{R}$, the set $\{[a, a+1/n) \mid n \geq 1\}$ is a countable local basis.

Example 10.21.9. The ordered square is first countable.

PROOF: For any $(a,b) \in I_o^2$ with $b \neq 0,1$, the set $\{(\{a\} \times (b-1/n,b+1/n)) \cap I_o^2 \mid n \geq 1\}$ is a countable local basis.

Proposition 10.21.10. A subspace of a first countable space is first countable.

Proof:

- $\langle 1 \rangle 1$. Let: X be a first countable space.
- $\langle 1 \rangle 2$. Let: $Y \subseteq X$
- $\langle 1 \rangle 3$. Let: $y \in Y$
- $\langle 1 \rangle 4$. PICK a countable local basis \mathcal{B} for y in X
- $\langle 1 \rangle$ 5. $\{ B \cap Y \mid B \in \mathcal{B} \}$ is a countable local basis for y in $Y \cap$

Proposition 10.21.11 (AC). A countable product of first countable spaces is first countable.

PROOF:

- $\langle 1 \rangle 1$. Let: (X_n) be a sequence of first countable spaces.
- $\langle 1 \rangle 2$. Let: $(x_n) \in \prod_n X_n$
- $\langle 1 \rangle 3$. For all n, Pick a countable local basis \mathcal{B}_n for x_n in X_n
- $\langle 1 \rangle 4$. Let: \mathcal{B} be the set of all sets of the form $\prod_n U_n$ where (U_n) is a family such that $U_n \in \mathcal{B}_n$ for finitely many n and $U_n = X_n$ for all other $n \in \mathbb{N}$. \mathcal{B} is a countable local basis for (x_n)

10.22 Strong Continuity

Definition 10.22.1 (Strongly Continuous). Let X and Y be topological spaces and $f: X \to Y$ be a function. Then f is *strongly continuous* if and only if, for every subset $U \subseteq Y$, we have U is open in Y if and only if $f^{-1}(U)$ is open in X.

Proposition 10.22.2. Let X and Y be topological spaces and $f: X \to Y$ be a function. Then f is strongly continuous if and only if, for every subset $C \subseteq Y$, we have C is closed in Y if and only if $f^{-1}(C)$ is closed in X.

PROOF: Since $X \setminus f^{-1}(C) = f^{-1}(Y \setminus C)$. \square

Proposition 10.22.3. Let X, Y and Z be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$. If f and g are strongly continuous then so is $g \circ f$.

PROOF: Since $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$. \Box

Proposition 10.22.4. Let X, Y and Z be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$. If $g \circ f$ is continuous and f is strongly continuous then g is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: $V \subseteq Z$ be open.
- $\langle 1 \rangle 2$. $f^{-1}(g^{-1}(V))$ is open in X.

PROOF: Since $g \circ f$ is continuous.

 $\langle 1 \rangle 3.$ $f^{-1}(V)$ is open in Y.

Proof: Since g is strongly continuous.

Proposition 10.22.5. Let X, Y and Z be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$. If $g \circ f$ is strongly continuous and f is strongly continuous then g is strongly continuous.

PROOF: For $V \subseteq Z$, we have V is open iff $f^{-1}(g^{-1}(V))$ is open iff $g^{-1}(V)$ is open.

10.23 Saturated Sets

Definition 10.23.1. Let X and Y be sets and p: X woheadrightarrow Y a surjective function. Let $C \subseteq X$. Then C is *saturated* with respect to p if and only if, for all $x, y \in X$, if $x \in C$ and p(x) = p(y) then $y \in C$.

Proposition 10.23.2. Let X and Y be sets and $p: X \rightarrow Y$ a surjective function. Let $C \subseteq X$. Then the following are equivalent:

- 1. C is saturated with respect to p.
- 2. There exists $D \subseteq Y$ such that $C = p^{-1}(D)$
- 3. $C = p^{-1}(p(C))$.

PROOF:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: C is saturated with respect to p.
 - $\langle 2 \rangle 2$. $C \subseteq p^{-1}(p(C))$

Proof: Trivial.

- $\langle 2 \rangle 3. \ p^{-1}(p(C)) \subseteq C$
 - $\langle 3 \rangle 1$. Let: $x \in p^{-1}(p(C))$
 - $\langle 3 \rangle 2. \ p(x) \in p(C)$

```
\langle 3 \rangle 3. There exists y \in C such that p(x) = p(y)

\langle 3 \rangle 4. x \in C

PROOF: From \langle 2 \rangle 1.

\langle 1 \rangle 2. 3 \Rightarrow 2

PROOF: Trivial.

\langle 1 \rangle 3. 2 \Rightarrow 1

PROOF: This follows because if p(x) \in D and p(x) = p(y) then p(y) \in D.
```

10.24 Quotient Maps

Definition 10.24.1 (Quotient Map). Let X and Y be topological spaces and $p: X \to Y$. Then p is a *quotient map* if and only if p is surjective and strongly continuous.

Proposition 10.24.2. Let X and Y be topological spaces and $p: X \rightarrow Y$ be a surjective function. Then the following are equivalent.

- 1. p is a quotient map.
- 2. p is continuous and maps saturated open sets to open sets.
- 3. p is continuous and maps saturated closed sets to closed sets.

```
Proof:
```

```
\langle 1 \rangle 1. \ 1 \Rightarrow 2
   \langle 2 \rangle 1. Assume: p is a quotient map.
   \langle 2 \rangle 2. Let: U be a saturated open set in X.
   \langle 2 \rangle 3. \ p^{-1}(p(U)) is open in X.
      PROOF: Since U = p^{-1}(p(U)) be Proposition 10.23.2.
   \langle 2 \rangle 4. p(U) is open in Y.
      PROOF: From \langle 2 \rangle 1.
\langle 1 \rangle 2. \ 1 \Rightarrow 3
  PROOF: Similar.
\langle 1 \rangle 3. \ 2 \Rightarrow 1
   \langle 2 \rangle 1. Assume: p is continuous and maps saturated open sets to open sets.
   \langle 2 \rangle 2. Let: U \subseteq Y
   \langle 2 \rangle 3. Assume: p^{-1}(U) is open in X
   \langle 2 \rangle 4. p^{-1}(U) is saturated.
      Proof: Proposition 10.23.2.
   \langle 2 \rangle 5. U is open in Y.
\langle 1 \rangle 4. \ 3 \Rightarrow 1
  PROOF: Similar.
```

Corollary 10.24.2.1. Every surjective continuous open map is a quotient map.

Corollary 10.24.2.2. Every surjective continuous closed map is a quotient map.

Example 10.24.3. The converses of these corollaries do not hold.

Let $A = \{(x,y) \mid x \geq 0\} \cup \{(x,y) \mid y = 0\}$. Then $\pi_1 : A \to \mathbb{R}$ is a quotient map, but not an open map or a closed map.

We prove that π_1 maps saturated open sets to open sets:

- $\langle 1 \rangle 1$. Let: $\pi_1^{-1}(U)$ be a saturated open set in A Prove: U is open in \mathbb{R}
- $\langle 1 \rangle 2$. Let: $x \in U$
- $\langle 1 \rangle 3. \ (x,0) \in \pi_1(U)^{-1}$
- $\langle 1 \rangle 4$. PICK W, V open in \mathbb{R} such that $(x,0) \subseteq W \times V \subseteq \pi_1(U)^{-1}$
- $\langle 1 \rangle 5. \ x \in W \subseteq U$

It is not an open map because it maps $((-1,1)\times(1,2))\cap A$ to [0,1).

It is not a closed map because it maps $\{(x, 1/x) \mid x > 0\}$ to $(0, +\infty)$.

Proposition 10.24.4. Let $p: X \rightarrow Y$ be a quotient map. Let $A \subseteq X$ be saturated with respect to p. Let $q: A \rightarrow p(A)$ be the restriction of p.

- 1. If A is either open or closed in X then q is a quotient map.
- 2. If p is either an open map or a closed map then q is a quotient map.

PROOF:

- $\langle 1 \rangle 1$. Let: $p: X \to Y$ be a quotient map.
- $\langle 1 \rangle 2$. Let: $A \subseteq X$ be saturated with respect to p.
- $\langle 1 \rangle 3$. Let: $q: A \rightarrow p(A)$ be the restriction of p.
- $\langle 1 \rangle 4$. q is continuous.

PROOF: Theorem 10.12.10.

- $\langle 1 \rangle 5$. If A is open in X then q is a quotient map.
 - $\langle 2 \rangle 1$. Assume: A is open in X.
 - $\langle 2 \rangle 2$. q maps saturated open sets to open sets.
 - $\langle 3 \rangle 1$. Let: $U \subseteq A$ be saturated with respect to q and open in A
 - $\langle 3 \rangle 2$. U is saturated with respect to p
 - $\langle 4 \rangle 1$. Let: $x, y \in X$
 - $\langle 4 \rangle 2$. Assume: $x \in U$
 - $\langle 4 \rangle 3$. Assume: p(x) = p(y)
 - $\langle 4 \rangle 4. \ x \in A$

PROOF: From $\langle 3 \rangle 1$ and $\langle 4 \rangle 2$.

 $\langle 4 \rangle 5. \ y \in A$

PROOF: From $\langle 1 \rangle 2$ and $\langle 4 \rangle 3$

 $\langle 4 \rangle 6. \ q(x) = x(y)$

PROOF: From $\langle 1 \rangle 3$, $\langle 4 \rangle 3$, $\langle 4 \rangle 4$, $\langle 4 \rangle 5$.

 $\langle 4 \rangle 7. \ y \in U$

Proof: From $\langle 3 \rangle 1$, $\langle 4 \rangle 2$, $\langle 4 \rangle 6$

 $\langle 3 \rangle 3$. U is open in X

PROOF: Lemma 10.17.6, $\langle 2 \rangle 1$, $\langle 3 \rangle 1$.

 $\langle 3 \rangle 4$. p(U) is open in Y

Proof: Proposition 10.24.2, $\langle 1 \rangle 1$, $\langle 3 \rangle 2$, $\langle 3 \rangle 3$

```
\langle 3 \rangle 5. q(U) is open in p(A)
         PROOF: Since q(U) = p(U) = p(U) \cap p(A).
   \langle 2 \rangle 3. Q.E.D.
      Proof: By Proposition 10.24.2.
\langle 1 \rangle 6. If A is closed in X then q is a quotient map.
  PROOF: Similar.
\langle 1 \rangle 7. If p is an open map then q is a quotient map.
   \langle 2 \rangle 1. Assume: p is an open map
   \langle 2 \rangle 2. q maps saturated open sets to open sets.
      \langle 3 \rangle 1. Let: U be open in A and saturated with respect to q
      \langle 3 \rangle 2. Pick V open in X such that U = A \cap V
      \langle 3 \rangle 3. p(V) is open in Y
      \langle 3 \rangle 4. \ q(U) = p(V) \cap p(A)
         \langle 4 \rangle 1. \ q(U) \subseteq p(V) \cap p(A)
            PROOF: From \langle 3 \rangle 2.
         \langle 4 \rangle 2. \ p(V) \cap p(A) \subseteq q(U)
            \langle 5 \rangle 1. Let: y \in p(V) \cap p(A)
             \langle 5 \rangle 2. Pick x \in V and x' \in A such that p(x) = p(x') = y
            \langle 5 \rangle 3. \ x \in A
               Proof: By \langle 1 \rangle 2.
            \langle 5 \rangle 4. \ x \in U
                Proof: From \langle 3 \rangle 2
  \langle 2 \rangle 3. Q.E.D.
      Proof: By Proposition 10.24.2.
\langle 1 \rangle 8. If p is a closed map then q is a quotient map.
  PROOF: Similar.
```

Example 10.24.5. This example shows we cannot remove the hypotheses on A and p.

Define $f:[0,1] \to [2,3] \to [0,2]$ by f(x)=x if $x \le 1$, f(x)=x-1 if $x \ge 2$. Then f is a quotient map but its restriction f' to $[0,1) \cup [2,3]$ is not, because ${f'}^{-1}([1,2])$ is open but [1,2] is not.

For a counterexample where A is saturated, see Example 10.25.3.

Proposition 10.24.6. Let $p: A \twoheadrightarrow C$ and $q: B \twoheadrightarrow D$ be open quotient maps. Then $p \times q: A \times B \to C \times D$ is an open quotient map.

PROOF: From Corollary 10.24.2.1, Proposition 10.16.15 and Theorem 10.16.11. \Box

Theorem 10.24.7. Let $p: X \to Y$ be a quotient map. Let Z be a topological space and $f: Y \to Z$ be a function. Then

- 1. $f \circ p$ is continuous if and only if f is continuous.
- 2. $f \circ p$ is a quotient map if and only if f is a quotient map.

```
Proof:
\langle 1 \rangle 1. If f \circ p is continuous then f is continuous.
  Proof: Proposition 10.22.4.
\langle 1 \rangle 2. If f is continuous then f \circ p is continuous.
   Proof: Theorem 10.12.9.
```

 $\langle 1 \rangle 3$. If $f \circ p$ is a quotient map then f is a quotient map.

Proof: Proposition 10.22.5.

 $\langle 1 \rangle 4$. If f is a quotient map then $f \circ p$ is a quotient map.

Proof: From Proposition 10.22.3.

Proposition 10.24.8. Let X and Y be topological spaces. Let $p: X \to Y$ and $f: Y \to X$ be continuous maps such that $p \circ f = id_Y$. Then p is a quotient map.

```
Proof:
```

```
\langle 1 \rangle 1. Let: V \subseteq Y
\langle 1 \rangle 2. Assume: p^{-1}(V) is open in X.
\langle 1 \rangle 3. \ f^{-1}(p^{-1}(V)) is open in Y.
  PROOF: Because f is continuous.
\langle 1 \rangle 4. V is open in Y.
  PROOF: Because f^{-1}(p^{-1}(V)) = V.
```

Quotient Topology 10.25

Definition 10.25.1 (Quotient Topology). Let X be a topological space, Y a set and $p:X \to Y$ be a surjective function. Then the quotient topology on Y is the unique topology on Y with respect to which p is a quotient map, namely $\mathcal{T} = \{ U \in \mathcal{P}Y \mid p^{-1}(U) \text{ is open in } X \}.$

We prove this is a topology.

```
Proof:
\langle 1 \rangle 1. Y \in \mathcal{T}
     PROOF: Since p^{-1}(Y) = X by surjectivity.
\langle 1 \rangle 2. For all \mathcal{A} \subseteq \mathcal{T} we have \bigcup \mathcal{A} \in \mathcal{T}
PROOF: Since p^{-1}(\bigcup \mathcal{A}) = \bigcup_{U \in \mathcal{A}} p^{-1}(U)
\langle 1 \rangle_3. For all U, V \in \mathcal{T} we have U \cap V \in \mathcal{T}
     PROOF: Since p^{-1}(U \cap V) = p^{-1}(U) \cap p^{-1}(V).
```

Definition 10.25.2 (Quotient Space). Let X be a topological space and \sim an equivalence relation on X. Let $p: X \to X/\sim$ be the canonical surjection. Then X/\sim under the quotient topology is called a quotient space, identification space or decomposition space of X.

Here is a counterexample showing we cannot remove all the hypotheses of Proposition 10.24.4 except that A is saturated.

Example 10.25.3. Let $X = (0, 1/2] \cup \{1\} \cup \{1 + 1/n : n \ge 2\}$ as a subspace of \mathbb{R} . Define R to be the equivalence relation on X where xRy iff (x = y) or |x - y| = 1, so we identify 1/n with 1 + 1/n for all $n \ge 2$. Let Y be the resulting quotient space X/R in the quotient topology and $p: X \twoheadrightarrow Y$ the canonical surjection.

Let $A = \{1\} \cup (0, 1/2] \setminus \{1/n : n \ge 2\} \subseteq X$. Then A is saturated under p but the restriction q of p to A is not a quotient map because it maps the saturated open set $\{1\}$ to $\{1\}$ which is not open in p(A).

Proposition 10.25.4. Let X, Y and Z be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$. If f and g are quotient maps then so is $g \circ f$.

Proof: From Proposition 10.22.3. \square

Example 10.25.5. The product of two quotient maps is not necessarily a quotient map.

Let $X = \mathbb{R}$ and X^* the quotient space formed by identifying all positive integers. Let $p: X \to X^*$ be the canonical surjection.

We prove $p \times \mathrm{id}_{\mathbb{Q}} : X \times \mathbb{Q} \to X^* \times \mathbb{Q}$ is not a quotient map.

Proof:

```
\langle 1 \rangle 1. For n \geq 1,
         Let: c_n = \sqrt{2}/n
\langle 1 \rangle 2. For n \geq 1,
         Let: U_n = \{(x,y) \in X \times \mathbb{Q} \mid n-1/4 < x < n+1/4, (y+n > x + y) \}
                   c_n \text{ and } y + n > -x + c_n \text{ or } (y + n < x + c_n \text{ and } y + n < -x + c_n)
\langle 1 \rangle 3. For n \geq 1, we have U_n is open in X \times \mathbb{Q}
\langle 1 \rangle 4. For n \geq 1, we have \{n\} \times \mathbb{Q} \subseteq U_n
\langle 1 \rangle 5. Let: U = \bigcup_{n=1}^{\infty} U_n
\langle 1 \rangle 6. U is open in X \times \mathbb{Q}
\langle 1 \rangle 7. U is saturated with respect to p \times id_{\mathbb{O}}
\langle 1 \rangle 8. Let: U' = (p \times id_{\mathbb{Q}})(U)
\langle 1 \rangle 9. Assume: for a contradiction U' is open in X^* \times \mathbb{Q}
\langle 1 \rangle 10. \ (1,0) \in U'
\langle 1 \rangle 11. PICK a neighbourhood W of 1 in X^* and \delta > 0 such that W \times (-\delta, \delta) \subseteq U'
\langle 1 \rangle 12. \ p^{-1}(W) \times (-\delta, \delta) \subseteq U
\langle 1 \rangle 13. PICK n such that c_n < \delta
\langle 1 \rangle 14. \ n \in p^{-1}(W)
\langle 1 \rangle 15. PICK \epsilon > 0 such that \epsilon < \delta - c_n and \epsilon < 1/4 and (n - \epsilon, n + \epsilon) \subseteq p^{-1}(W)
\langle 1 \rangle 16. \ (n - \epsilon, n + \epsilon) \times (-\delta, \delta) \subseteq U
\langle 1 \rangle 17. PICK a rational y such that c_n - \epsilon/2 < y < c_n + \epsilon/2
\langle 1 \rangle 18. \ (n + \epsilon/2, y) \notin U
\langle 1 \rangle 19. Q.E.D.
   PROOF: This contradicts \langle 1 \rangle 16.
```

Proposition 10.25.6. Let X be a topological space and \sim an equivalence relation on X. Then X/\sim is T_1 if and only if every equivalence class is closed in X.

PROOF: Immediate from definitions.

10.26 Retractions

Definition 10.26.1 (Retraction). Let X be a topological space and $A \subseteq X$. A retraction of X onto A is a continuous map $r: X \to A$ such that, for all $a \in A$, we have r(a) = a.

Proposition 10.26.2. Every retraction is a quotient map.

PROOF: Proposition 10.24.8 with f the inclusion $A \hookrightarrow X$. \square

10.27 Homogeneous Spaces

Definition 10.27.1 (Homogeneous). A topological space X is *homogeneous* if and only if, for any points $a, b \in X$, there exists a homeomorphism $\phi : X \cong X$ such that $\phi(a) = b$.

10.28 Regular Spaces

Definition 10.28.1 (Regular Space). A topological space X is *regular* if and only if, for any closed set A and point $a \notin A$, there exist disjoint open sets U, V such that $A \subseteq U$ and $a \in V$.

10.29 Dense Sets

Definition 10.29.1 (Dense). Let X be a topological space and $A \subseteq X$. Then A is *dense* if and only if $\overline{A} = X$.

10.30 Connected Spaces

Definition 10.30.1 (Separation). A *separation* of a topological space X is a pair of disjoint open sets U, V such that $U \cup V = \emptyset$.

ii

Definition 10.30.2 (Connected). A topological space is *connected* if and only if it has no separation; otherwise it is *disconnected*.

Proposition 10.30.3. A topological space X is connected if and only if the only sets that are both open and closed are X and \emptyset .

Immediate from defintions.

Lemma 10.30.4. If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty sets A and B whose union is Y, neither of which contains a limit point of the other.

PROOF:

```
\langle 1 \rangle 1. Let: A, B \subseteq Y
\langle 1 \rangle 2. If A and B form a separation of Y then A and B are disjoint and nonempty,
        A \cup B = Y, and neither of A and B contains a limit point of the other.
   \langle 2 \rangle 1. Assume: A and B form a separation of Y
   \langle 2 \rangle 2. A and B are disjoint and nonempty and A \cup B = Y
      PROOF: From \langle 2 \rangle 1 and the definition of separation.
   \langle 2 \rangle 3. A does not contain a limit point of B
      \langle 3 \rangle 1. Assume: for a contradiction l \in A and l is a limit point of B in X.
      \langle 3 \rangle 2. l is a limit point of B in Y
         Proof: Proposition 10.17.16.
      \langle 3 \rangle 3. \ l \in B
         \langle 4 \rangle 1. B is closed in Y
            PROOF: Since A is open in Y and B = Y \setminus A from \langle 2 \rangle 1.
         \langle 4 \rangle 2. Q.E.D.
            Proof: Corollary 10.6.3.1.
      \langle 3 \rangle 4. Q.E.D.
         PROOF: This contradicts the fact that A \cap B = \emptyset (\langle 2 \rangle 1).
   \langle 2 \rangle 4. B does not contain a limit point of A
      PROOF: Similar.
\langle 1 \rangle 3. If A and B are disjoint and nonempty, A \cup B = Y, and neither of A and
       B contains a limit point of the other, then A and B form a separation of
   \langle 2 \rangle1. Assume: A and B are disjoint and nonempty, A \cup B = Y, and neither
                        of A and B contains a limit point of the other.
   \langle 2 \rangle 2. A is open in Y
      \langle 3 \rangle 1. B is closed in Y
         \langle 4 \rangle 1. Let: l be a limit point of B in Y
         \langle 4 \rangle 2. l is a limit point of B in X
            Proof: Proposition 10.17.16.
         \langle 4 \rangle 3. \ l \notin A
            Proof: By \langle 2 \rangle 1
         \langle 4 \rangle 4. \ l \in B
            Proof: By \langle 2 \rangle 1 since A \cup B = Y
         \langle 4 \rangle5. Q.E.D.
            Proof: Corollary 10.6.3.1.
      \langle 3 \rangle 2. Q.E.D.
         PROOF: Since A = Y \setminus B.
   \langle 2 \rangle 3. B is open in Y
      PROOF: Similar.
П
```

Example 10.30.5. Every set under the indiscrete topology is connected.

Example 10.30.6. The discrete topology on a set X is connected if and only if $|X| \leq 1$.

Example 10.30.7. The finite complement topology on a set X is connected if and only if either $|X| \le 1$ or X is infinite.

Example 10.30.8. The countable complement topology on a set X is connected if and only if either $|X| \le 1$ or X is uncountable.

Example 10.30.9. The rationals \mathbb{Q} are disconnected. For any irrational a, the sets $(-\infty, a) \cap \mathbb{Q}$ and $(a, +\infty) \cap \mathbb{Q}$ form a separation of \mathbb{Q} .

Lemma 10.30.10. Let X be a topological space. If C and D form a separation of X, and Y is a connected subspace of X, then either $Y \subseteq C$ or $Y \subseteq D$.

PROOF: Otherwise $Y \cap C$ and $Y \cap D$ would form a separation of Y. \square

Theorem 10.30.11. The union of a set of connected subspaces of a space X that have a point in common is connected.

PROOF:

- $\langle 1 \rangle 1$. Let: \mathcal{A} be a set of connected subspaces of the space X that have the point a in common.
- $\langle 1 \rangle 2$. Assume: for a contradiction C and D form a separation of $\bigcup A$
- $\langle 1 \rangle 3$. Assume: without loss of generality $a \in C$
- $\langle 1 \rangle 4$. For all $A \in \mathcal{A}$ we have $A \subseteq C$

Proof: Lemma 10.30.10.

- $\langle 1 \rangle 5. \ D = \emptyset$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 2$.

Theorem 10.30.12. Let X be a topological space and A a connected subspace of X. If $A \subseteq B \subseteq \overline{A}$ then B is connected.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction C and D form a separation of B.
- $\langle 1 \rangle 2$. Assume: without loss of generality $A \subseteq C$

PROOF: Lemma 10.30.10.

- $\langle 1 \rangle 3. \ B \subseteq C$
 - $\langle 2 \rangle 1$. Let: $x \in B$
 - $\langle 2 \rangle 2. \ x \in \overline{A}$
 - $\langle 2 \rangle 3$. Either $x \in A$ or x is a limit point of A.

PROOF: Theorem 10.6.3.

 $\langle 2 \rangle 4$. Either $x \in A$ or x is a limit point of C.

PROOF: Lemma 10.6.5, $\langle 1 \rangle 2$.

 $\langle 2 \rangle 5. \ x \in C$

Proof: Lemma 10.30.4.

 $\langle 1 \rangle 4. \ D = \emptyset$

 $\langle 1 \rangle$ 5. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 1$.

П

Theorem 10.30.13. The image of a connected space under a continuous map is connected.

Proof:

- $\langle 1 \rangle 1$. Let: $f: X \to Y$ be a surjective continuous map where X is connected.
- $\langle 1 \rangle 2$. Assume: for a contradiction C and D form a separation of Y.
- $\langle 1 \rangle$ 3. $f^{-1}(C)$ and $f^{-1}(D)$ form a separation of X.

Theorem 10.30.14. The product of a family of connected spaces is connected.

Proof:

- $\langle 1 \rangle 1$. The product of two connected spaces is connected.
 - $\langle 2 \rangle 1$. Let: X and Y be connected spaces.
 - $\langle 2 \rangle 2$. Pick $a \in X$ and $b \in Y$

PROOF: We may assume X and Y are nonempty since otherwise $X \times Y = \emptyset$ which is connected.

 $\langle 2 \rangle 3$. $X \times \{b\}$ is connected.

PROOF: It is homeomorphic to X.

 $\langle 2 \rangle 4$. For all $x \in X$ we have $\{x\} \times Y$ is connected.

PROOF: It is homeomorphic to Y.

 $\langle 2 \rangle 5$. For any $x \in X$

Let:
$$T_x = (X \times \{b\}) \cup (\{x\} \times Y)$$

 $\langle 2 \rangle 6$. For all $x \in X$, T_x is connected.

PROOF: Theorem 10.30.11 since $(x,b) \in (X \times \{b\}) \cap (\{x\} \times Y)$.

 $\langle 2 \rangle 7$. $X \times Y$ is connected.

PROOF: Theorem 10.30.11 since $X \times Y = \bigcup_{x \in X} T_x$ and (a, b) is a point in every T_x .

 $\langle 1 \rangle 2$. The product of a finite family of connected spaces is connected.

PROOF: From $\langle 1 \rangle 1$ by induction.

- $\langle 1 \rangle 3$. The product of any family of connected spaces is connected.
 - $\langle 2 \rangle 1$. Let: $\{X_{\alpha}\}_{{\alpha} \in J}$ be a family of connected spaces.
 - $\langle 2 \rangle 2$. Let: $X = \prod_{\alpha \in J} X_{\alpha}$
 - $\langle 2 \rangle 3$. Pick $a \in X$

PROOF: We may assume $X \neq \emptyset$ as the empty space is connected.

 $\langle 2 \rangle 4$. For every finite subset K of J,

Let:
$$X_K = \{x \in X \mid \forall \alpha \in J \setminus K.x_\alpha = a_\alpha\}$$

 $\langle 2 \rangle 5$. For every finite $K \subseteq J$, we have X_K is connected.

PROOF: From $\langle 1 \rangle 2$ since $X_K \cong \prod_{\alpha \in K} X_K$.

- $\langle 2 \rangle 6$. Let: $Y = \bigcup_K X_K$
- $\langle 2 \rangle 7$. Y is connected

PROOF: Theorem 10.30.11 since a is a common point.

 $\langle 2 \rangle 8. \ X = \overline{Y}$

```
\begin{array}{l} \langle 3 \rangle 1. \ \ \text{Let:} \ x \in X \\ \langle 3 \rangle 2. \ \ \text{Let:} \ U = \prod_{\alpha \in J} U_{\alpha} \ \text{be a basic neighbourhood of} \ x \ \text{where} \ U_{\alpha} = X_{\alpha} \\ \text{ for all } \alpha \ \text{except} \ \alpha \in K \ \text{for some finite} \ K \subseteq J \\ \langle 3 \rangle 3. \ \ \text{Let:} \ y \in X \ \text{be the point with} \ y_{\alpha} = x_{\alpha} \ \text{for} \ \alpha \in K \ \text{and} \ y_{\alpha} = a_{\alpha} \ \text{for} \\ \text{ all other} \ \alpha \\ \langle 3 \rangle 4. \ y \in U \cap X_K \\ \langle 3 \rangle 5. \ y \in U \cap Y \\ \langle 2 \rangle 9. \ X \ \text{is connected.} \\ \text{Proof: Theorem 10.30.12.} \end{array}
```

Example 10.30.15. The set \mathbb{R}^{ω} is disconnected under the box topology. The set of bounded sequences and the set of unbounded sequences form a separation.

Proposition 10.30.16. Let \mathcal{T} and \mathcal{T}' be two topologies on the same set X. If $\mathcal{T} \subseteq \mathcal{T}'$ and (X, \mathcal{T}') is connected then (X, \mathcal{T}) is connected.

PROOF: If U and V form a separation of (X, \mathcal{T}) then they form a separation of (X, \mathcal{T}') . \square

Proposition 10.30.17. Let X be a topological space and (A_n) a sequence of connected subspaces of X. If $A_n \cap A_{n+1} \neq \emptyset$ for all n then $\bigcup_n A_n$ is connected.

PROOF:

- $\langle 1 \rangle 1$. Assume: for a contradiction C and D form a separation of $\bigcup_n A_n$
- $\langle 1 \rangle 2$. Assume: without loss of generality $A_0 \subseteq C$

PROOF: Lemma 10.30.10.

 $\langle 1 \rangle 3$. For all n we gave $A_n \subseteq C$

Proof:

- $\langle 2 \rangle 1$. Assume: $A_n \subseteq C$
- $\langle 2 \rangle 2$. Pick $x \in A_n \cap A_{n+1}$
- $\langle 2 \rangle 3. \ x \in C$
- $\langle 2 \rangle 4$. $A_{n+1} \subseteq C$

PROOF: Lemma 10.30.10.

 $\langle 2 \rangle 5$. Q.E.D.

PROOF: The result follows by induction.

- $\langle 1 \rangle 4. \ D = \emptyset$
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 1$.

П

Proposition 10.30.18. Let X be a topological space. Let $A, C \subseteq X$. If C is connected and intersects both A and $X \setminus A$ then C intersects ∂A .

PROOF: Otherwise $C \cap A^{\circ}$ and $C \setminus \overline{A}$ would form a separation of C. \square

Example 10.30.19. The space \mathbb{R}_l is disconnected. For any real x, the sets $(-\infty, x)$ and $[x, +\infty)$ form a separation.

Proposition 10.30.20. Let X and Y be connected spaces. Let A be a proper subset of X and B a proper subset of Y. Then $(X \times Y) \setminus (A \times B)$ is connected.

PROOF

- $\langle 1 \rangle 1$. Pick $a \in X \setminus A$ and $b \in Y \setminus B$
- $\langle 1 \rangle 2$. For $x \in X \setminus A$ we have $(X \times \{b\}) \cup (\{x\} \times Y)$ is connected.

PROOF: Theorem 10.30.11 since (x, b) is a common point.

 $\langle 1 \rangle 3$. For $y \in Y \setminus B$ we have $(X \times \{y\}) \cup (\{a\} \times Y)$ is connected.

PROOF: Theorem 10.30.11 since (a, y) is a common point.

 $\langle 1 \rangle 4$. $(X \times Y) \setminus (A \times B)$ is connected.

PROOF: Theorem 10.30.11 since it is the union of the sets in $\langle 1 \rangle 2$ and $\langle 1 \rangle 3$ with (a,b) as a common point.

Proposition 10.30.21. Let $p: X \to Y$ be a quotient map. If Y is connected and $p^{-1}(y)$ is connected for all $y \in Y$, then X is connected.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction C and D form a separation of X.
- $\langle 1 \rangle 2$. C is saturated.
 - $\langle 2 \rangle 1$. Let: $x \in C$, $y \in X$ with p(x) = p(y) = a, say
 - $\langle 2 \rangle 2. \ y \notin D$

PROOF: Otherwise $p^{-1}(a) \cap C$ and $p^{-1}(a) \cap D$ form a separation of $p^{-1}(a)$.

 $\langle 2 \rangle 3. \ y \in C$

 $\langle 1 \rangle 3$. D is saturated.

PROOF: Similar.

 $\langle 1 \rangle 4$. p(C) and p(D) form a separation of Y.

Proposition 10.30.22. Let X be a connected space and Y a connected subspace of X. Suppose A and B form a separation of $X \setminus Y$. Then $Y \cup A$ and $Y \cup B$ are both connected.

PROOF:

- $\langle 1 \rangle 1$. $Y \cup A$ is connected.
 - $\langle 2 \rangle 1$. Assume: for a contradiction C and D form a separation of $Y \cup A$
 - $\langle 2 \rangle 2$. Assume: without loss of generality $Y \subseteq C$
 - $\langle 2 \rangle 3$. PICK open sets A_1, B_1, C_1, D_1 in X with

$$A = A_1 \setminus Y$$

$$B = B_1 \setminus Y$$

$$C = C_1 \cap (Y \cup A)$$

$$D = D_1 \cap (Y \cup A)$$

 $\langle 2 \rangle 4$. $B_1 \cup C_1$ and $A_1 \cap D_1$ form a separation of X

 $\langle 1 \rangle 2$. $Y \cup B$ is connected.

Proof: Similar.

П

Theorem 10.30.23. Let L be a linearly ordered set under the order topology. Then L is connected if and only if L is a linear continuum.

PROOF

```
\langle 1 \rangle 1. If L is a linear continuum then L is connected.
   \langle 2 \rangle 1. Let: L be a linear continuum under the order topology.
   \langle 2 \rangle 2. Assume: for a contradiction C and D form a separation of L.
   \langle 2 \rangle 3. Pick a \in C and b \in D.
   \langle 2 \rangle 4. Assume: without loss of generality a < b.
   \langle 2 \rangle5. Let: S = \{ x \in L \mid a < x \text{ and } [a, x) \subseteq C \}
   \langle 2 \rangle 6. S is nonempty.
      PROOF: Since a \in C and C is open.
   \langle 2 \rangle 7. S is bounded above by b.
      PROOF: Since b \notin C.
   \langle 2 \rangle 8. Let: s = \sup S
   \langle 2 \rangle 9. \ s \in S
      \langle 3 \rangle 1. Let: y \in [a, s)
              Prove: y \in C
      \langle 3 \rangle 2. Pick z with y < z \in S
         PROOF: By minimality of s.
      \langle 3 \rangle 3. \ y \in [a,z) \subseteq C
   \langle 2 \rangle 10. Case: s \in C
      \langle 3 \rangle 1. Pick x such that s < x and [s, x) \subseteq C
         PROOF: Since C is open and s is not greatest in L because s < b.
      \langle 3 \rangle 2. \ x \in S
         PROOF: Since [a, x) = [a, s) \cup [s, x) \subseteq C.
      \langle 3 \rangle 3. Q.E.D.
         PROOF: This contradicts the fact that s is an upper bound for S.
   \langle 2 \rangle 11. Case: s \in D
      \langle 3 \rangle 1. Pick x < s such that (x, s] \subseteq D
      \langle 3 \rangle 2. Pick y with x < y < s
         Proof: Since L is dense.
      \langle 3 \rangle 3. \ y \in C
         Proof: From \langle 2 \rangle 9.
      \langle 3 \rangle 4. \ y \in D
         Proof: From \langle 3 \rangle 1.
      \langle 3 \rangle 5. Q.E.D.
      \langle 3 \rangle 6. Let: L be a linear continuum under the order topology.
      \langle 3 \rangle7. Assume: for a contradiction C and D form a separation of L.
      \langle 3 \rangle 8. Pick a \in C and b \in D.
      \langle 3 \rangle 9. Assume: without loss of generality a < b.
      \langle 3 \rangle 10. Let: S = \{x \in L \mid a < x \text{ and } [a, x) \subseteq C\}
      \langle 3 \rangle 11. S is nonempty.
         PROOF: Since a \in C and C is open.
```

 $\langle 3 \rangle 12$. S is bounded above by b. PROOF: Since $b \notin C$.

```
\langle 3 \rangle 13. Let: s = \sup S
      \langle 3 \rangle 14. \ s \in S
         \langle 4 \rangle 1. Let: y \in [a, s)
                 Prove: y \in C
         \langle 4 \rangle 2. Pick z with y < z \in S
            PROOF: By minimality of s.
         \langle 4 \rangle 3. \ y \in [a, z) \subseteq C
      \langle 3 \rangle 15. Case: s \in C
         \langle 4 \rangle 1. PICK x such that s < x and [s, x) \subseteq C
            PROOF: Since C is open and s is not greatest in L because s < b.
         \langle 4 \rangle 2. \ x \in S
            PROOF: Since [a, x) = [a, s) \cup [s, x) \subseteq C.
         \langle 4 \rangle3. Q.E.D.
            PROOF: This contradicts the fact that s is an upper bound for S.
      \langle 3 \rangle 16. Case: s \in D
         \langle 4 \rangle 1. PICK x < s such that (x, s] \subseteq D
         \langle 4 \rangle 2. Pick y with x < y < s
            Proof: Since L is dense.
         \langle 4 \rangle 3. \ y \in C
            PROOF: From \langle 2 \rangle 9.
         \langle 4 \rangle 4. \ y \in D
            Proof: From \langle 3 \rangle 1.
         \langle 4 \rangle 5. Q.E.D.
            PROOF: This contradicts \langle 2 \rangle 2.
\langle 1 \rangle 2. If L is connected then L is a linear continuum.
   \langle 2 \rangle 1. Assume: L is connected.
   \langle 2 \rangle 2. Every nonempty subset of L that is bounded above has a supremum.
      \langle 3 \rangle 1. Let: X be a nonempty subset of L bounded above by b.
      \langle 3 \rangle 2. Assume: for a contradiction X has no supremum.
      \langle 3 \rangle 3. Let: U be the set of upper bounds of X,
      \langle 3 \rangle 4. U is nonempty.
         PROOF: Since b \in U.
      \langle 3 \rangle 5. U is open.
         \langle 4 \rangle 1. Let: x \in U
         \langle 4 \rangle 2. PICK an upper bound y for X such that y < x
         \langle 4 \rangle 3. Either x is greatest in L and (y, x] \subseteq U, or there exists z > x such
                 that (y,z)\subseteq U
      \langle 3 \rangle 6. Let: V be the set of lower bounds of U.
      \langle 3 \rangle 7. V is nonempty.
         PROOF: Since X \subseteq V
      \langle 3 \rangle 8. V is open.
         \langle 4 \rangle 1. Let: x \in V
         \langle 4 \rangle 2. Pick y \in X with x < y
```

supremum of X.

PROOF: x cannot be an upper bound for X, because it would be the

 $\langle 4 \rangle 3$. Either x least in L and $[x,y) \subseteq V$, or there exists z < x such that

```
(z,y)\subseteq V \langle 3\rangle 9. \ L=U\cup V \langle 4\rangle 1. \ \text{Let:} \ x\in L\setminus U \langle 4\rangle 2. \ \text{Pick} \ y\in X \ \text{such that} \ x< y \langle 4\rangle 3. \ \text{For all} \ u\in U \ \text{we have} \ x< y\leq u \langle 4\rangle 4. \ x\in V \langle 3\rangle 10. \ U\cap V=\emptyset \text{Proof:} \ \text{Any element of} \ U\cap V \ \text{would be a supremum of} \ X. \langle 3\rangle 11. \ U \ \text{and} \ V \ \text{form a separation of} \ L. \langle 3\rangle 12. \ \text{Q.E.D.} \text{Proof:} \ \text{This contradicts} \ \langle 2\rangle 1. \langle 2\rangle 3. \ L \ \text{is dense.} \langle 3\rangle 1. \ \text{Let:} \ x,y\in L \ \text{with} \ x< y \langle 3\rangle 2. \ \text{There exists} \ z\in L \ \text{such that} \ x< z< y \text{Proof:} \ \text{Otherwise} \ (-\infty,y) \ \text{and} \ (x,+\infty) \ \text{would form a separation of} \ L.
```

Corollary 10.30.23.1. The real line \mathbb{R} is connected.

Corollary 10.30.23.2. Every interval in \mathbb{R} is connected.

Corollary 10.30.23.3. The ordered square is connected.

Theorem 10.30.24 (Intermediate Value Theorem). Let X be a connected space. Let Y be a linearly ordered set under the order topology. Let $f: X \to Y$ be continuous. Let $a, b \in X$ and $r \in Y$. Suppose f(a) < r < f(b). Then there exists $c \in X$ such that f(c) = r.

PROOF: Otherwise $f^{-1}((-\infty,r))$ and $f^{-1}((r,+\infty))$ would form a separation of X. \square

Proposition 10.30.25. Every function $f:[0,1] \rightarrow [0,1]$ has a fixed point.

Proof:

```
\langle 1 \rangle 1. Let: g:[0,1] \to [-1,1] be the function g(x) = f(x) - x Prove: there exists x \in [0,1] such that g(x) = 0 \langle 1 \rangle 2. Assume: without loss of generality g(0) \neq 0 and g(1) \neq 0
```

- $\langle 1 \rangle 3. \ \ g(0) > 0$
- $\langle 1 \rangle 4. \ \ g(1) < 0$
- $\langle 1 \rangle 5$. There exists $x \in (0,1)$ such that g(x) = 0

PROOF: By the Intermediate Value Theorem.

Proposition 10.30.26. Give \mathbb{R}^{ω} the box topology. Let $x, y \in \mathbb{R}^{\omega}$. Then x and y lie in the same comoponent if and only if x - y is eventually zero, i.e. there exists N such that, for all $n \geq N$, we have $x_n = y_n$.

PROOF:

 $\langle 1 \rangle 1$. The component containing 0 is the set of sequences that are eventually zero.

```
\langle 2 \rangle 1. Let: B be the set of sequences that are eventually zero.
```

- $\langle 2 \rangle 2$. B is path-connected.
 - $\langle 3 \rangle 1$. Let: $x, y \in B$
 - $\langle 3 \rangle 2$. PICK N such that, for all $n \geq N$, we have $x_n = y_n = 0$
 - $\langle 3 \rangle 3$. Let: $p:[0,1] \to \mathbb{R}^{\omega}, \ p(t)=(1-t)x+ty$ Prove: p is continuous.
 - $\langle 3 \rangle 4$. Let: $t \in [0,1]$ and $\prod_j U_j$ be a basic open neighbourhood of p(t), where each U_j is open in $\mathbb R$
 - $\langle 3 \rangle$ 5. PICK δ such that, for all n < N and all $s \in [0,1]$, if $|s-t| < \delta$ then $p(s)_n \in U_n$
 - $\langle 3 \rangle 6$. For all $s \in [0,1]$, if $|s-t| < \delta$ then $p(s) \in \prod_i U_i$
- $\langle 2 \rangle 3$. B is connected.

PROOF: Proposition 10.32.3.

- $\langle 2 \rangle 4$. If C is connected and $B \subseteq C$ then B = C.
 - $\langle 3 \rangle 1$. Assume: C is connected and $B \subseteq C$
 - $\langle 3 \rangle 2$. Assume: for a contradiction $x \in C \setminus B$
 - $\langle 3 \rangle 3$. For $n \geq 1$, Let: $c_n = 1$ if $x_n = 0$, $c_n = n/x_n$ otherwise
 - $\langle 3 \rangle 4$. Let: $h: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ be the function $h(x) = (c_n x_n)_{n \geq 1}$
 - $\langle 3 \rangle 5$. h is a homeomorphism of \mathbb{R}^{ω} with itself.
 - $\langle 3 \rangle 6$. h(x) is unbounded.

PROOF: For any b > 0, pick N > b such that $x_N \neq 0$. Then $h(x)_N > b$.

- ⟨3⟩7. $h^{-1}(\{\text{bounded sequences}\}) \cap C$ and $h^{-1}(\{\text{unbounded sequences}\}) \cap C$ form a separation of C
- $\langle 3 \rangle 8$. Q.E.D.

PROOF: This contradicts $\langle 3 \rangle 1$.

 $\langle 1 \rangle 2$. Q.E.D.

PROOF: Since $\lambda x.x - y$ is a homeomorphism of \mathbb{R}^{ω} with itself.

Example 10.30.27. The space \mathbb{R}_K is connected.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction U and V form a separation of \mathbb{R}_K
- $\langle 1 \rangle 2$. Assume: without loss of generality $0 \in U$
- $\langle 1 \rangle$ 3. There exists an open interval (a,b) such that $(a,b)-K \subseteq U$ and $(a,b) \nsubseteq U$ PROOF: Otherwise U and V would form a separation of \mathbb{R} .
- $\langle 1 \rangle 4$. Pick $1/n \in (a,b) U$
- $\langle 1 \rangle 5$. $1/n \in V$
- $\langle 1 \rangle 6$. There exists an open interval (c,d) around 1/n that is included in V
- $\langle 1 \rangle 7$. Q.E.D.

PROOF: This is a contradiction since (a,b)-K and (c,d) must intersect.

10.31 Totally Disconnected Spaces

Definition 10.31.1 (Totally Disconnected). A topological space X is *totally disconnected* if and only if the only connected subspaces are the singletons.

Example 10.31.2. Every discrete space is totally disconnected.

Example 10.31.3. The rationals \mathbb{Q} are totally disconnected.

Example 10.31.4. The Cantor set is totally disconnected.

Proof:

- $\langle 1 \rangle 1$. Let: (A_n) be the sequence of sets in Definition 8.1.1.
- $\langle 1 \rangle 2$. Let: C be the Cantor set $\bigcap_n A_n$
- $\langle 1 \rangle 3$. Assume:

for a contradiction $D \subseteq C$ is connected and has more than one point.

- $\langle 1 \rangle 4$. Let: $x, y \in D$ with x < y
- $\langle 1 \rangle 5$. Pick n such that $|x-y| > 1/3^n$
- $\langle 1 \rangle 6$. A_n is a sequence of disjoint intervals of length $1/3^n$
- $\langle 1 \rangle 7$. x and y are in two different intervals out of the intervals that make up A_n
- $\langle 1 \rangle 8$. There exists z with x < z < y such that $z \notin A_n$
- $\langle 1 \rangle 9. \ (-\infty, z) \cap D$ and $(z, +\infty) \cap D$ form a separation of D.

10.32 Paths and Path Connectedness

Definition 10.32.1 (Path). Let X be a topological space and $a, b \in X$. A path from a to b is a continuous function $p:[0,1] \to X$ such that p(0) = a and p(1) = b.

Definition 10.32.2 (Path Connected). A topological space is *path connected* if and only if there exists a path between any two points.

Proposition 10.32.3. Every path connected space is connected.

Proof:

- $\langle 1 \rangle 1$. Let: X be a path connected space.
- $\langle 1 \rangle 2$. Assume: for a contradiction C and D form a separation of X.
- $\langle 1 \rangle 3$. Pick $a \in C$ and $b \in D$.
- $\langle 1 \rangle 4$. PICK a path $p:[0,1] \to X$ from a to b.
- $\langle 1 \rangle 5$. $p^{-1}(C)$ and $p^{-1}(D)$ form a separation of [0,1].
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts Corollary 10.30.23.2.

An example that shows the converse does not hold:

Example 10.32.4. The ordered square is not path connected.

PROOF:

```
\langle 1 \rangle 2. p is surjective.
  PROOF: By the Intermediate Value Theorem.
\langle 1 \rangle 3. For x \in [0,1], PICK a rational q_x \in p^{-1}((x,0),(x,1))
   PROOF: Since p^{-1}((x,0),(x,1)) is open and nonempty by \langle 1 \rangle 2.
\langle 1 \rangle 4. For x, y \in [0, 1], if x \neq y then q_x \neq q_y
  PROOF: We have p(q_x) \neq p(q_y) because ((x,0),(x,1)) and ((y,0),(y,1)) are
   disjoint.
\langle 1 \rangle 5. \{q_x \mid x \in [0,1]\} is an uncountable set of rationals.
\langle 1 \rangle 6. Q.E.D.
  PROOF: This contradicts the fact that the rationals are countable.
Proposition 10.32.5. The continuous image of a path connected space is path
connected.
Proof:
\langle 1 \rangle 1. Let: X be a path connected space, Y a topological space, and f: X \rightarrow Y
               be continuous and surjective.
\langle 1 \rangle 2. Let: a, b \in Y
\langle 1 \rangle 3. Pick c, d \in X with f(c) = a and f(d) = b
\langle 1 \rangle 4. PICK a path p:[0,1] \to X from c to d.
\langle 1 \rangle 5. f \circ p is a path from a to b in Y.
Proposition 10.32.6 (AC). The product of a family of path-connected spaces
is path-connected.
PROOF:
\langle 1 \rangle 1. Let: \{X_{\alpha}\}_{{\alpha} \in J} be a family of path-connected spaces.
\langle 1 \rangle 2. Let: a, b \in \prod_{\alpha \in J} X_{\alpha}
\langle 1 \rangle 3. For \alpha \in J, PICK a path p_{\alpha} : [0,1] \to X_{\alpha} from a_{\alpha} to b_{\alpha}
  Proof: Using the Axiom of Choice.
\langle 1 \rangle 4. Define p: [0.1] \to \prod_{\alpha \in J} X_{\alpha} by p(t)_{\alpha} = p_{\alpha}(t)
\langle 1 \rangle 5. p is a path from a to b.
  PROOF: Theorem 10.16.11.
Proposition 10.32.7. The continuous image of a path-connected space is path-
connected.
Proof:
\langle 1 \rangle 1. Let: f: X \to Y be continuous and surjective where X is path-connected.
\langle 1 \rangle 2. Let: a, b \in Y
\langle 1 \rangle 3. Pick a', b' \in X with f(a') = a and f(b') = b.
\langle 1 \rangle 4. PICK a path p : [0,1] \to X from a' to b'.
\langle 1 \rangle 5. f \circ p is a path from a to b.
```

 $\langle 1 \rangle 1$. Assume: for a contradiction $p:[0,1] \to I_o^2$ is a path from (0,0) to (1,1).

Proposition 10.32.8. Let X be a topological space. The union of a set of path-connected subspaces of X that have a point in common is path-connected.

Proof:

- $\langle 1 \rangle 1.$ Let: ${\mathcal A}$ be a set of path-connected subspaces of X with the point a in common.
- $\langle 1 \rangle 2$. Let: $b, c \in \bigcup \mathcal{A}$
- $\langle 1 \rangle 3$. Pick $B, C \in \mathcal{A}$ with $b \in B$ and $c \in C$.
- $\langle 1 \rangle 4$. PICK a path p in B from b to a.
- $\langle 1 \rangle$ 5. PICK a path q in C from a to c.
- $\langle 1 \rangle$ 6. The concatenation of p and q is a path from b to c in $\bigcup A$.

Proposition 10.32.9. Let $A \subseteq \mathbb{R}^2$ be countable. Then $\mathbb{R}^2 \setminus A$ is path-connected.

Proof:

- $\langle 1 \rangle 1$. Let: $a, b \in \mathbb{R}^2 \setminus A$
- $\langle 1 \rangle 2$. PICK a line l in \mathbb{R}^2 with a on one side and b on the other.
- $\langle 1 \rangle 3$. For every point x on l, LET: p_x be the path in \mathbb{R}^2 consisting of a line from a to x then a line from x to y
- $\langle 1 \rangle 4$. For $x \neq y$ we have p_x and p_y have no points in common except a and b
- $\langle 1 \rangle$ 5. There are only countably many x such that a point of A lies on p_x .
- $\langle 1 \rangle$ 6. There exists x such that p_x is a path from a to b in $\mathbb{R}^2 \setminus A$.

Proposition 10.32.10. Every open connected subspace of \mathbb{R}^2 is path-connected.

Proof:

- $\langle 1 \rangle 1$. Let: U be an open connected subspace of \mathbb{R}^2 .
- $\langle 1 \rangle 2$. For all $x_0 \in U$,

Let: $PC(x_0) = \{ y \in U \mid \text{there exists a path from } x \text{ to } y \}$

- $\langle 1 \rangle 3$. For all $x_0 \in U$, the set $PC(x_0)$ is open and closed in U.
 - $\langle 2 \rangle 1$. Let: $x_0 \in U$
 - $\langle 2 \rangle 2$. $PC(x_0)$ is open in U
 - $\langle 3 \rangle 1$. Let: $y \in PC(x_0)$
 - $\langle 3 \rangle 2$. Pick $\epsilon > 0$ such that $B(y, \epsilon) \subseteq U$

Proof: Since U is open.

 $\langle 3 \rangle 3. \ B(y, \epsilon) \subseteq PC(x_0)$

PROOF: For all $z \in B(y, \epsilon)$, pick a path from x_0 to y then concatenate the straight line from y to z.

- $\langle 2 \rangle 3$. $PC(x_0)$ is closed in U
 - $\langle 3 \rangle 1$. Let: $y \in U$ be a limit point of $PC(x_0)$
 - $\langle 3 \rangle 2$. PICK $\epsilon > 0$ such that $B(y, \epsilon) \subseteq U$
 - $\langle 3 \rangle 3$. Pick $z \in PC(x_0) \cap B(y, \epsilon)$
 - $\langle 3 \rangle 4. \ y \in PC(x_0)$

PROOF: Pick a path from x_0 to z then concatenate the straight line from z to y.

```
\langle 1 \rangle 4. PC(x_0) = U
  Proof: Proposition 10.30.3.
Example 10.32.11. If A is a connected subspace of X, then A^{\circ} is not neces-
sarily connected.
    Take two closed circles in \mathbb{R}^2 that touch at one point. The interior of this
space is two open circles, and these two circles form a separation.
Example 10.32.12. If A is a connected subspace of X then \partial A is not neces-
sarily connected.
    We have [0,1] is connected but \partial[0,1] = \{0,1\} is not.
Example 10.32.13. If A is a subspace of X and A^{\circ} and \partial A are connected,
then A is not necessarily connected.
    We have \mathbb{Q}^{\circ} = \emptyset and \partial \mathbb{Q} = \mathbb{R} are connected but \mathbb{Q} is not connected.
Example 10.32.14. The space \mathbb{R}_K is not path connected.
Proof:
\langle 1 \rangle 1. Assume: for a contradiction p:[0,1] \to \mathbb{R}_K was a path from 0 to 1.
\langle 1 \rangle 2. p([0,1]) as a subspace of \mathbb{R}_K is compact.
   Proof: Theorem 10.50.4.
\langle 1 \rangle 3. p([0,1]) as a subspace of \mathbb{R}_K is connected.
  PROOF: Theorem 10.30.13.
\langle 1 \rangle 4. p([0,1]) is connected as a subspace of \mathbb{R}.
   Proof: Theorem 10.30.13 as the identity map is continuous as a map \mathbb{R}_K \to
\langle 1 \rangle 5. p([0,1]) is convex.
   (2)1. Let: a, b \in p([0, 1]) and a < c < b
   \langle 2 \rangle 2. Assume: for a contradiction c \notin p([0,1])
   \langle 2 \rangle 3. \ (-\infty,c) \cap p([0,1]) \ \text{and} \ (c,+\infty) \cap p([0,1]) \ \text{form a separation of} \ p([0,1])
          as a subspace of \mathbb{R}.
   \langle 2 \rangle 4. Q.E.D.
      PROOF: This contradicts \langle 1 \rangle 4.
\langle 1 \rangle 6. \ [0,1] \subseteq p([0,1])
\langle 1 \rangle 7. [0,1] as a subspace of \mathbb{R}_K is compact.
   PROOF: By Proposition 10.50.3 and \langle 1 \rangle 2.
\langle 1 \rangle 8. Q.E.D.
   Proof: This contradicts Example 10.50.26.
```

10.33 The Topologist's Sine Curve

Definition 10.33.1 (The Topologist's Sine Curve). Let $S = \{(x, \sin 1/x) \mid 0 < x < 1\}$, The topologist's sine curve is the closure \overline{S} of S in \mathbb{R}^2 .

Proposition 10.33.2. The topologist's sine curve is connected.

```
\langle 1 \rangle 1. Let: S = \{(x, \sin 1/x) \mid 0 < x \le 1\}
\langle 1 \rangle 2. S is connected.
  PROOF: Theorem 10.30.13.
\langle 1 \rangle 3. S is connected.
  PROOF: Theorem 10.30.12.
1\} \cup (\{0\} \times [-1.1]).
PROOF: Sketch proof: Given a point (0,y) with -1 \le y \le 1, pick a such that
\sin a = y. Then ((1/a, y), (1/(a + 2\pi), y), (1/(a + 4\pi), y), ...) is a sequence in S
that converges to (0, y).
Conversely, let (x, y) be any point not in S \cup (\{0\} \times [-1, 1]). If x < 0 or y > 1
or y < -1 then we can easily find a neighbourhood that does not intersect
S \cup (\{0\} \times [-1,1]). If x > 0 and -1 \le y \le 1, then we have y \ne \sin 1/x. Hence
pick a neighbourhood that does not intersect S.
Proposition 10.33.4. Every closed subset of \mathbb{R} that is bounded above has a
greatest element.
PROOF: It has a supremum, which is a limit point of the set and hence an
element. \square
Proposition 10.33.5 (CC). The topologist's sine curve is not path connected.
PROOF:
\langle 1 \rangle 1. Assume: For a contradction p : [0,1] \to \overline{S} is a path from (0,0) to (1,\sin 1).
\langle 1 \rangle 2. \{ t \in [0,1] \mid p(t) \in \{0\} \times [-1,1] \} is closed.
  PROOF: Since p is continuous and \{0\} \times [-1, 1] is closed.
\langle 1 \rangle 3. Let: b be the largest number in [0,1] such that p(b) \in \{0\} \times [-1,1].
  Proof: Proposition 10.33.4.
\langle 1 \rangle 4. Let: x : [b,1] \to \overline{S} be the function \pi_1 \circ p
\langle 1 \rangle5. Let: y:[b,1] \to \overline{S} be the function \pi_2 \circ p
(1)6. PICK a sequence t_n in (b,1] such that t_n \to b and y(t_n) = (-1)^n for all n
  \langle 2 \rangle 1. Let: n \geq 1
  \langle 2 \rangle 2. PICK u with 0 < u < x(1/n) and \sin(1/u) = (-1)^n
  \langle 2 \rangle 3. PICK t_n with b < t_n < 1/n and x(t_n) = u
     PROOF: By the Intermediate Value Theorem
\langle 1 \rangle 7. Q.E.D.
  PROOF: This contradicts Proposition 10.12.18 since y is continuous and y(t_n)
  does not converge.
```

Proof:

Corollary 10.33.5.1. The closure of a path-connected subspace of a space is not necessarily path-connected.

10.34 The Long Line

Definition 10.34.1 (The Long Line). The *long line* is the space $\omega_1 \times [0,1)$ in the dictionary order under the order topology, where ω_1 is the first uncountable ordinal.

```
Lemma 10.34.2. For any ordinal \alpha with 0 < \alpha < \omega_1 we have [(0,0),(\alpha,0)) \cong [0,1)
```

```
\begin{split} &\langle 1 \rangle 1. \ [(0,0),(1,0)) \cong [0,1) \\ &\text{PROOF: The map } \pi_2 \text{ is a homeomorphism.} \\ &\langle 1 \rangle 2. \ \text{If } [(0,0),(\alpha,0)) \cong [0,1) \text{ then } [(0,0),(\alpha+1,0)) \cong [0,1) \\ &\text{PROOF: Proposition 4.2.11.} \\ &\langle 1 \rangle 3. \ \text{If } \lambda \text{ is a limit ordinal with } \lambda < \omega_1 \text{ and } [(0,0),(\alpha,0)) \cong [0,1) \text{ for all } \alpha \text{ with } \\ &0 < \alpha < \lambda \text{ then } [(0,0),(\lambda,0)) \cong [0,1) \\ &\langle 2 \rangle 1. \ \text{LET: } \lambda \text{ be a limit ordinal } < \omega_1 \\ &\langle 2 \rangle 2. \ \text{Assume: } [(0,0),(\alpha,0)) \cong [0,1) \text{ for all } \alpha \text{ with } 0 < \alpha < \lambda \\ &\langle 2 \rangle 3. \ \text{PICK a sequence of ordinals } \alpha_0 < \alpha_1 < \cdots \text{ with limit } \lambda \\ &\text{PROOF: Since } \lambda \text{ is countable.} \\ &\langle 2 \rangle 4. \ [(\alpha_i,0),(\alpha_{i+1},0)) \cong [0,1) \text{ for all } i \\ &\text{PROOF: Lemma 4.2.10.} \\ &\langle 2 \rangle 5. \ \text{Q.E.D.} \\ &\text{PROOF: By Proposition 4.2.12.} \end{split}
```

Proposition 10.34.3 (CC). The long line is path-connected.

PROOF: By transfinite induction.

```
Proof:
```

 $\langle 1 \rangle 4$. Q.E.D.

Proposition 10.34.4. Every point in the long line has a neighbourhood homeomorphic to an interval in \mathbb{R} .

PROOF: For any (α, i) in the long line, the neighbourhood $[(0, 0), (\alpha + 1, 0))$ satisfies the condition by Lemma 10.34.2.

10.35 Components

Proposition 10.35.1. Let X be a topological space. Define the relation \sim on X by $a \sim b$ if and only if there exists a connected subspace $A \subseteq X$ with $a, b \in A$.

Then \sim is an equivalence relation on X.

PROOF:

 $\langle 1 \rangle 1$. \sim is reflexive.

PROOF: For any $a \in X$ we have $\{a\}$ is a connected subspace that contains a.

 $\langle 1 \rangle 2$. \sim is symmetric.

PROOF: Trivial.

- $\langle 1 \rangle 3$. \sim is transitive.
 - $\langle 2 \rangle 1$. Let: $a, b, c \in X$
 - $\langle 2 \rangle 2$. Assume: $a \sim b$ and $b \sim c$
 - $\langle 2 \rangle 3$. PICK connected subspaces A and B with $a,b \in A$ and $b,c \in B$
 - $\langle 2 \rangle 4$. $A \cup B$ is a connected subspace that contains a and c

Proof: Theorem 10.30.11.

П

Definition 10.35.2 ((Connected) Component). Let X be a topological space. The *(connected) components* of X are the equivalence classes under the above \sim .

Lemma 10.35.3. Let X be a topological space. If $A \subseteq X$ is connected and nonempty then there exists a unique component C of X such that $A \subseteq C$.

Proof:

- $\langle 1 \rangle 1$. Pick $a \in A$
- $\langle 1 \rangle 2$. Let: C be the \sim -equivalence class of a.
- $\langle 1 \rangle 3. \ A \subseteq C$

PROOF: For all $x \in A$ we have $x \sim a$.

 $\langle 1 \rangle 4$. If C' is a component and $A \subseteq C'$ then C = C'

PROOF: Since we have $a \in C'$.

П

Theorem 10.35.4. Let X be a topological space. The components of X are connected disjoint subspaces of X whose union is X such that each nonempty connected subspace of X intersects only one of them.

Proof:

 $\langle 1 \rangle 1$. Every component of X is connected.

Proof: For $a \in X$, the \sim -equivalence class of a is $\bigcup \{A \subseteq X \mid A \text{ is connected}, a \in A \}$

- A} which is connected by Theorem 10.30.11.
- $\langle 1 \rangle 2$. The components form a partition of X.

PROOF: Immediate from the definition.

- $\langle 1 \rangle 3$. Every nonempty connected subspace of X intersects a unique component of X.
 - $\langle 2 \rangle 1$. Let: $A \subseteq X$ be connected and nonempty.
 - $\langle 2 \rangle 2$. Let: C be the component such that $A \subseteq C$

Proof: Lemma 10.35.3.

- $\langle 2 \rangle 3$. A intersects C
- $\langle 2 \rangle 4$. If A intersects the component C' then C' = C

```
\langle 3 \rangle1. Let: C' be a component that intersects A \langle 3 \rangle2. Pick b \in A \cap C' \langle 3 \rangle3. A \subseteq C' Proof: For all x \in A we have x \sim b. \langle 3 \rangle4. C = C' Proof: By uniqueness in \langle 2 \rangle2.
```

Proposition 10.35.5. Every component of a space is closed.

Proof:

П

- $\langle 1 \rangle 1$. Let: X be a topological space and C a component of X.
- $\langle 1 \rangle 2$. \overline{C} is connected.

PROOF: Theorem 10.30.12.

 $\langle 1 \rangle 3. \ C = \overline{C}$

PROOF: Lemma 10.30.10.

 $\langle 1 \rangle 4$. C is closed.

PROOF: Lemma 10.4.5.

Proposition 10.35.6. If a topological space has finitely many components then every component is open.

Proof: Each component is the complement of a finite union of closed sets.

10.36 Path Components

Proposition 10.36.1. Let X be a topological space. Define the relation \sim on X by: $a \sim b$ if and only if there exists a path in X from a to b. Then \sim is an equivalence relation on X.

Proof:

 $\langle 1 \rangle 1$. \sim is reflexive.

PROOF: For $a \in X$, the constant function $[0,1] \to X$ with value a is a path from a to a.

 $\langle 1 \rangle 2$. \sim is symmetric.

PROOF: If $p:[0,1] \to X$ is a path from a to b, then $\lambda t.p(1-t)$ is a path from b to a.

 $\langle 1 \rangle 3$. \sim is transitive.

PROOF: Concatenate paths.

Definition 10.36.2 (Path Component). Let X be a topological space. The path components of X are the equivalence relations under \sim .

.

Theorem 10.36.3. The path components of X are path-connected disjoint subspaces of X whose union is X such that every nonempty path-connected subspace of X intersects exactly one path component.

PROOF:

 $\langle 1 \rangle 1$. Every path component is path-connected.

PROOF: If a and b are in the same path component then $a \sim b$, i.e. there exists a path from a to b.

 $\langle 1 \rangle 2$. The path components are disjoint and their union is X.

PROOF: Immediate from the definition.

- $\langle 1 \rangle 3.$ Every non-empty path-connected subspace of X intersects exactly one path component.
 - $\langle 2 \rangle 1$. Let: A be a nonempty path-connected subspace of X.
 - $\langle 2 \rangle 2$. Pick $a \in A$
 - $\langle 2 \rangle 3$. A intersects the \sim -equivalence class of a.
 - $\langle 2 \rangle 4$. Let: C be any path component that intersects A.
 - $\langle 2 \rangle$ 5. Pick $b \in A \cap C$
 - $\langle 2 \rangle 6$. $a \sim b$

Proof: Since A is path-connected.

 $\langle 2 \rangle$ 7. C is the \sim -equivalence class of a.

Proposition 10.36.4. Every path component is included in a component.

PROOF:

 $\langle 1 \rangle 1$. Let: X be a topological space and C a path component of X.

 $\langle 1 \rangle 2$. C is path-connected.

PROOF: Theorem 10.36.3.

 $\langle 1 \rangle 3$. C is connected.

Proof: Proposition 10.32.3.

 $\langle 1 \rangle 4$. C is included in a component.

Proof: Lemma 10.35.3.

10.37 Local Connectedness

Definition 10.37.1 (Locally Connected). Let X be a topological space and $a \in X$. Then X is *locally connected* at a if and only if every neighbourhood of a includes a connected neighbourhood of a.

The space X is $locally \ connected$ if and only if it is locally connected at every point.

Example 10.37.2. The real line is both connected and locally connected.

Example 10.37.3. The space $\mathbb{R} \setminus \{0\}$ is disconnected but locally connected.

Example 10.37.4. The topologist's sine curve is connected but not locally connected.

Example 10.37.5. The rationals \mathbb{Q} are neither connected nor locally connected.

Theorem 10.37.6. A topological space X is locally connected if and only if, for every open set U in X, every component of U is open in X.

Proof:

- $\langle 1 \rangle 1$. If X is locally connected then, for every open set U in X, every component of U is open in X.
 - $\langle 2 \rangle 1$. Assume: X is locally connected.
 - $\langle 2 \rangle 2$. Let: U be open in X.
 - $\langle 2 \rangle 3$. Let: C be a component of U.
 - $\langle 2 \rangle 4$. Let: $a \in C$
 - $\langle 2 \rangle$ 5. Let: V be a connected neighbourhood of a such that $V \subseteq U$
 - $\langle 2 \rangle 6. \ V \subseteq C$

Proof: Lemma 10.35.3.

 $\langle 2 \rangle$ 7. Q.E.D.

Proof: Lemma 10.1.8.

- $\langle 1 \rangle 2$. If, for every open set U in X, every component of U is open in X, then X is locally connected.
 - $\langle 2 \rangle 1.$ Assume: for every open set U in X, every component of U is open in X.
 - $\langle 2 \rangle 2$. Let: $a \in X$
 - $\langle 2 \rangle 3$. Let: U be a neighbourhood of a
 - $\langle 2 \rangle 4$. The component of U that contains a is a connected neighbourhood of a included in U.

Example 10.37.7. The ordered square is locally connected.

PROOF: Every neighbourhood of a point includes an interval around that point, which is connected by Theorem 10.30.23.

Example 10.37.8. Let X be the set of all rational points on the line segment $[0,1] \times \{0\}$, and Y the set of all rational points on the line segment $[0,1] \times \{1\}$. Let A be the space consisting of all line segments joining the point (0,1) to a point of X, and all line segments joining the point (1,0) to a point of Y. Then A is path-connected but is not locally connected at any point,

Proposition 10.37.9. Let X and Y be topological spaces and $p: X \twoheadrightarrow Y$ be a quotient map. If X is locally connected then so is Y.

PROOF:

- $\langle 1 \rangle 1$. Let: *U* be an open set in *Y*.
- $\langle 1 \rangle 2$. Let: C be a component of U.
- $\langle 1 \rangle 3. \ p^{-1}(C)$ is a union of components of $p^{-1}(U)$
 - $\langle 2 \rangle 1$. Let: $x \in p^{-1}(C)$
 - $\langle 2 \rangle 2$. Let: D be the component of $p^{-1}(U)$ that contains x.
 - $\langle 2 \rangle 3$. p(D) is connected.

Proof: Theorem 10.30.13.

 $\langle 2 \rangle 4. \ p(D) \subseteq C.$

```
PROOF: From \langle 1 \rangle 2 since p(x) \in p(D) \cap C (\langle 2 \rangle 1, \langle 2 \rangle 2). \langle 2 \rangle 5. D \subseteq p^{-1}(C) (1)4. p^{-1}(C) is open in p^{-1}(U) PROOF: Theorem 10.37.6. \langle 1 \rangle 5. C is open in U PROOF: Since the restriction of p to p:p^{-1}(U) \twoheadrightarrow U is a quotient map by Proposition 10.24.4. \langle 1 \rangle 6. Q.E.D. PROOF: Theorem 10.37.6.
```

10.38 Local Path Connectedness

Definition 10.38.1 (Locally Path-Connected). Let X be a topological space and $a \in X$. Then X is *locally path-connected* at a if and only if every neighbourhood of a includes a path-connected neighbourhood of a.

The space X is *locally path-connected* if and only if it is locally path-connected at every point.

Theorem 10.38.2. A topological space X is locally path-connected if and only if, for every open set U in X, every path component of U is open in X.

Proof:

- $\langle 1 \rangle 1$. If X is locally path-connected then, for every open set U in X, every path component of U is open in X.
 - $\langle 2 \rangle 1$. Assume: X is locally path-connected.
 - $\langle 2 \rangle 2$. Let: *U* be open in *X*.
 - $\langle 2 \rangle 3$. Let: C be a path component of U.
 - $\langle 2 \rangle 4$. Let: $a \in C$
 - $\langle 2 \rangle$ 5. Let: V be a path-connected neighbourhood of a such that $V \subseteq U$
 - $\langle 2 \rangle 6. \ V \subseteq C$

Proof: Lemma 10.35.3.

 $\langle 2 \rangle 7$. Q.E.D.

Proof: Lemma 10.1.8.

- $\langle 1 \rangle 2$. If, for every open set U in X, every component of U is open in X, then X is locally connected.
 - $\langle 2 \rangle$ 1. Assume: for every open set U in X, every component of U is open in X.
 - $\langle 2 \rangle 2$. Let: $a \in X$

- $\langle 2 \rangle 3$. Let: U be a neighbourhood of a
- $\langle 2 \rangle 4$. The component of U that contains a is a connected neighbourhood of a included in U.

Theorem 10.38.3. If a space is locally path connected then its components and its path components are the same.

```
PROOF:
\langle 1 \rangle 1. Let: X be a locally path connected space.
\langle 1 \rangle 2. Let: C be a component of X.
\langle 1 \rangle 3. Let: x \in C
\langle 1 \rangle 4. Let: P be the path component of x
       Prove: P = C
\langle 1 \rangle 5. \ P \subseteq C
   Proof: Proposition 10.36.4.
\langle 1 \rangle6. Let: Q be the union of the other path components included in C
\langle 1 \rangle 7. C = P \cup Q
  Proof: Proposition 10.36.4.
\langle 1 \rangle 8. P and Q are open in C
   \langle 2 \rangle 1. C is open.
      PROOF: Theorem 10.37.6.
   \langle 2 \rangle 2. Q.E.D.
      Proof: Theorem 10.38.2.
\langle 1 \rangle 9. \ Q = \emptyset
   PROOF: Otherwise P and Q would form a separation of C.
```

Example 10.38.4. The ordered square is not locally path connected, since it is connected but not path connected.

Proposition 10.38.5. Let X be a locally path-connected space. Then every connected open subspace of X is path-connected.

```
Proof:
```

```
\langle 1 \rangle 1. Let: U be a connected open subspace of X.
```

 $\langle 1 \rangle 2$. Let: P be a path component of U.

 $\langle 1 \rangle 3$. Let: Q be the union of the other path components of U.

 $\langle 1 \rangle 4$. P and Q are open in U.

PROOF: Theorem 10.38.2.

 $\langle 1 \rangle 5. \ Q = \emptyset$

PROOF: Otherwise P and Q form a separation of U.

10.39 Weak Local Connectedness

Definition 10.39.1 (Weakly Locally Connected). Let X be a topological space and $a \in X$. Then X is weakly locally connected at a if and only if every neighbourhood of a includes a connected subspace that includes a neighbourhood of a.

Proposition 10.39.2. Let X be a topological space. If X is weakly locally connected at every point then X is locally connected.

Proof:

```
⟨1⟩1. ASSUME: X is weakly locally connected at every point. ⟨1⟩2. Let: U be open in X. ⟨1⟩3. Let: C be a component of U. ⟨1⟩4. C is open in X. ⟨2⟩1. Let: x \in C ⟨2⟩2. Pick a connected subspace D of U that includes a neighbourhood V of x. ⟨2⟩3. D \subseteq C Proof: Lemma 10.35.3. ⟨2⟩4. x \in V \subseteq C ⟨2⟩5. Q.E.D. Proof: Lemma 10.1.8. ⟨1⟩5. Q.E.D. Proof: Theorem 10.37.6.
```

Example 10.39.3. The 'infinite broom' (Munkres p.163) is an example of a space that is weakly locally connected at a point p but not locally connected at p.

10.40 Quasicomponents

Proposition 10.40.1. Let X be a topological space. Define \sim on X by $x \sim y$ if and only if there exists no separation U and V of X such that $x \in U$ and $y \in V$. Then \sim is an equivalence relation on X.

Proof:

 $\langle 1 \rangle 1$. \sim is reflexive.

PROOF: Since the two sets that make up a separation are disjoint.

 $\langle 1 \rangle 2$. \sim is symmetric.

PROOF: Immediate from the defintion.

- $\langle 1 \rangle 3$. \sim is transitive.
 - $\langle 2 \rangle 1$. Assume: $x \sim y$ and $y \sim z$
 - $\langle 2 \rangle$ 2. Assume: for a contradiction there is a separation U and V of X with $x \in U$ and $z \in V$
 - $\langle 2 \rangle 3. \ y \in U \text{ or } y \in V$
 - $\langle 2 \rangle 4$. Q.E.D.

PROOF: Either case contradicts $\langle 2 \rangle 1$.

Definition 10.40.2 (Quasicomponents). For X a topological space, the *quasi-components* of X are the equivalence classes under \sim .

Proposition 10.40.3. Let X be a topological space. Then every component of X is included in a quasicomponent of X.

Proof:

- $\langle 1 \rangle 1$. Let: C be a component of X.
- $\langle 1 \rangle 2$. Let: $x, y \in C$

Prove: $x \sim y$

- $\langle 1 \rangle 3$. Assume: for a contradiction there exists a separation U and V of X with $x \in U$ and $y \in V$
- $\langle 1 \rangle 4$. $C \cap U$ and $C \cap V$ form a separation of C.
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 1$.

Proposition 10.40.4. In a locally connected space, the components and the quasicomponents are the same.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a locally connected space and Q a quasicomponent of X.
- $\langle 1 \rangle 2$. PICK a component C of X such that $C \subseteq Q$
- $\langle 1 \rangle 3$. Let: D be the union of the components of X
- $\langle 1 \rangle 4$. C and D are open in X.

PROOF: Theorem 10.37.6.

 $\langle 1 \rangle 5$. D cannot contain any points of Q.

PROOF: If it did, then C and D would form a separation of X and there would be points $x, y \in Q$ with $x \in C$ and $y \in D$.

 $\langle 1 \rangle 6. \ C = Q$

10.41 Open Coverings

Definition 10.41.1 (Open Covering). Let X be a topological space. An *open covering* of X is a covering of X whose elements are all open sets.

10.42 Lindelöf Spaces

Definition 10.42.1 (Lindelöf Space). A topological space X is $Lindel\"{o}f$ if and only if every open covering has a countable subcovering.

Proposition 10.42.2. Let X be a topological space. Then X is Lindelöf if and only if every set of closed sets that has the countable intersection property has nonempty intersection.

PROOF: The following are equivalent.

- 1. X is compact.
- 2. Every open covering of X has a countable subcovering.
- 3. For any set \mathcal{C} of closed sets, if $\{X \setminus C \mid C \in \mathcal{C}\}$ covers X then there is a countable subset \mathcal{C}_0 such that $\{X \setminus C \mid C \in \mathcal{C}_0\}$ covers X

- 4. For any set C of closed sets, if $\bigcap C = \emptyset$ then there is a countable subset C_0 with empty intersection.
- 5. Any set of closed sets with the countable intersection property has nonempty intersection.

Proposition 10.42.3 (CC). Let X be a topological space and \mathcal{B} a basis for the topology on X. Then the following are equivalent.

- 1. X is Lindelöf.
- 2. Every open covering of X by elements of \mathcal{B} has a countable subcovering.

Proof:

 $\langle 1 \rangle 1. \ 1 \Rightarrow 2$

Proof: Immediate from definitions.

- $\langle 1 \rangle 2$. $2 \Rightarrow 1$
 - $\langle 2 \rangle$ 1. Assume: Every open covering of X by elements of \mathcal{B} has a countable subcovering.
 - $\langle 2 \rangle 2$. Let: \mathcal{U} be an open covering of X.
 - $\langle 2 \rangle 3$. $\{ B \in \mathcal{B} \mid \exists U \in \mathcal{U}.B \subseteq U \}$ covers X.
 - $\langle 2 \rangle 4$. PICK a finite subcovering \mathcal{B}_0 .
 - $\langle 2 \rangle$ 5. For $B \in BB$, PICK $U_B \in \mathcal{U}$ such that $B \subseteq U_B$
 - $\langle 2 \rangle 6. \{ U_B \mid B \in \mathcal{B}_0 \} \text{ covers } X.$

Example 10.42.4 (CC). The space \mathbb{R}_l is Lindelöf.

- $\langle 1 \rangle 1$. Let: \mathcal{A} be a covering of \mathbb{R}_l by basic open sets of the form [a,b)
- $\langle 1 \rangle 2$. Let: $C = \bigcup \{(a,b) \mid [a,b) \in \mathcal{A}\}$
- $\langle 1 \rangle 3$. $\mathbb{R} \setminus C$ is countable.
 - $\langle 2 \rangle 1$. For every $x \in \mathbb{R} \setminus C$, PICK a rational q_x such that $(x, q_x) \subseteq C$
 - $\langle 3 \rangle 1$. Let: $x \in \mathbb{R} \setminus C$
 - $\langle 3 \rangle 2$. PICK b such that $[x, b) \in \mathcal{A}$
 - $\langle 3 \rangle 3$. PICK a rational q such that $q \in (x, b)$
 - $\langle 2 \rangle 2$. The mapping $x \mapsto q_x$ is an injection $\mathbb{R} \setminus C \to \mathbb{Q}$
- $\langle 1 \rangle 4$. PICK a countable $\mathcal{A}' \subseteq \mathcal{A}$ that covers $\mathbb{R} \setminus C$
- $\langle 1 \rangle$ 5. Under the standard topology on \mathbb{R} , C is second countable.

Proof: Proposition 10.44.3.

(1)6. PICK a countable $\mathcal{A}'' \subseteq \mathcal{A}$ such that $\{(a,b) \mid [a,b) \in \mathcal{A}''\}$ covers C. PROOF: Proposition 10.42.3.

 $\langle 1 \rangle 7$. $\mathcal{A}' \cup \mathcal{A}''$ covers \mathbb{R}_l .

Ò

A subspace of a Lindelöf space is not necessarily Lindelöf.

Example 10.42.5. The set $[0,1] \times (0,1)$ as a subspace of the ordered square is not Lindelöf.

The open cover $\{\{x\} \times (0,1) \mid x \in [0,1]\}$ has no countable subcover.

10.43 Separable Spaces

Definition 10.43.1 (Separable). A topological space is *separable* if and only if it has a countable dense subset.

Example 10.43.2. The space \mathbb{R}_l is separable. The set \mathbb{Q} is dense.

10.44 The Second Countability Axiom

Definition 10.44.1 (Second Countability Axiom). A topological space satisfies the *second countability axiom*, or is *second countable*, if and only if it has a countable basis.

Example 10.44.2. The space \mathbb{R} is second countable.

The set $\{(a,b) \mid a,b \in \mathbb{Q}\}$ is a basis.

Proposition 10.44.3. A subspace of a second countable space is second countable.

PROOF: If \mathcal{B} is a countable basis for X and $Y \subseteq X$ then $\{B \cap Y \mid B \in \mathcal{B}\}$ is a countable basis for Y. \square

Proposition 10.44.4 (CC). Every second countable space is Lindelöf.

Proof: From Proposition 10.42.3.

The following example shows that the product of two Lindelöf spaces is not necessarily Lindelöf.

Example 10.44.5. The Sorgenfrey plane is not Lindelöf.

Proof:

- $\langle 1 \rangle 1$. Let: $L = \{(x, -x) \mid x \in \mathbb{R}\}$
- $\langle 1 \rangle 2$. L is closed in \mathbb{R}^2_l
- $\langle 1 \rangle 3$. Let: $\mathcal{U} = \{ [a, b) \times [a, -d) \mid a, b, d \in \mathbb{R} \}$
- $\langle 1 \rangle 4$. $\mathcal{U} \cup \{\mathbb{R} \setminus L\}$ covers \mathbb{R}^2
- $\langle 1 \rangle$ 5. Every element of \mathcal{U} intersects L at exactly one point.
- $\langle 1 \rangle$ 6. No countable subset of \mathcal{U} covers \mathbb{R}^2_l .

Proposition 10.44.6. The long line L is not second countable.

Proof:

- $\langle 1 \rangle 1$. Let: \mathcal{B} be a basis for L.
- $\langle 1 \rangle 2$. For $\alpha < \omega_1$, Pick $B_{\alpha} \in \mathcal{B}$ such that $(\alpha, 1/2) \in B_{\alpha} \subseteq ((\alpha, 0), (\alpha + 1, 0))$
- $\langle 1 \rangle 3$. \mathcal{B} is uncountable.

PROOF: The mapping $\alpha \mapsto B_{\alpha}$ is an injection $\omega_1 \to \mathcal{B}$.

Corollary 10.44.6.1. The long line cannot be imbedded into \mathbb{R}^n for any n.

Proposition 10.44.7. Every second countable space is first countable.

Proof:

- $\langle 1 \rangle 1$. Let: X be a second countable space.
- $\langle 1 \rangle 2$. PICK a countable bases \mathcal{B} for X.
- $\langle 1 \rangle 3$. Let: $x \in X$
- $\langle 1 \rangle 4$. $\{ B \in \mathcal{B} \mid x \in B \}$ is a countable local basis at x.

Proposition 10.44.8 (AC). A countable product of second countable spaces is second countable.

Proof:

- $\langle 1 \rangle 1$. Let: (X_n) be a sequence of second countable spaces.
- $\langle 1 \rangle 2$. For each n, PICK a countable basis \mathcal{B}_n of X_n
- $\langle 1 \rangle 3$. Let: $\mathcal{B} = \{ \prod_i U_i \mid U_i \in \mathcal{B}_i \text{ for finitely many } i, U_i = X_i \text{ for all other } i \}$
- $\langle 1 \rangle 4$. \mathcal{B} is a countable basis for $\prod_n X_n$

Proposition 10.44.9 (AC). Any discrete subspace of a second countable space is countable.

Proof:

- $\langle 1 \rangle 1$. Let: X be a second countable space.
- $\langle 1 \rangle 2$. Let: $A \subseteq X$ be discrete.
- $\langle 1 \rangle 3$. PICK a countable basis \mathcal{B} for X.
- $\langle 1 \rangle 4$. For all $a \in A$, PICK $B_a \in \mathcal{B}$ such that $B_a \cap A = \{a\}$
 - $\langle 2 \rangle 1$. Let: $a \in A$
 - $\langle 2 \rangle 2$. PICK U open in X such that $U \cap A = \{a\}$
 - $\langle 2 \rangle 3$. Pick $B \in \mathcal{B}$ such that $a \in B \subseteq U$
- $\langle 1 \rangle 5$. The mapping $A \to \mathcal{B}$ that maps a to B_a is injective.
- $\langle 1 \rangle 6$. A is countable.

Proposition 10.44.10 (AC). Every second countable space is separable.

Proof:

- $\langle 1 \rangle 1$. Let: X be a second countable space.
- $\langle 1 \rangle 2$. PICK a countable basis \mathcal{B} for X.
- $\langle 1 \rangle 3$. For all $B \in \mathcal{B}$ nonempty Pick $a_B \in B$.
- $\langle 1 \rangle 4$. Let: $A = \{ a_B \mid B \in \mathcal{B}, B \neq \emptyset \}$ Prove: A is dense
- $\langle 1 \rangle 5$. Let: $x \in X$
 - Prove: $x \in \overline{A}$
- $\langle 1 \rangle$ 6. Let: U be a neighbourhood of x
 - Prove: U intersects A
- $\langle 1 \rangle 7$. Pick $B \in \mathcal{B}$ such that $x \in B \subseteq U$
- $\langle 1 \rangle 8. \ a_B \in U \cap A$

Example 10.44.11 (AC). The space \mathbb{R}_l is not second countable.

```
PROOF: \langle 1 \rangle 1. Let: \mathcal{B} be any basis for \mathbb{R}_l \langle 1 \rangle 2. For x \in \mathbb{R}, Pick B_x \in \mathcal{B} such that x \in B_x \subseteq [x, x+1) \langle 1 \rangle 3. The mapping \mathbb{R} \to \mathcal{B} that maps x to B_x is injective. Proof: If x < y then x \in B_x and x \notin B_y. \langle 1 \rangle 4. \mathcal{B} is uncountable.
```

10.45 Sequential Compactness

Definition 10.45.1 (Sequentially Compact). A topological space is *sequentially compact* if and only if every sequence has a convergent subsequence.

10.46 Limit Point Compactness

Definition 10.46.1 (Limit Point Compact Space). A topological space is *limit point compact* if and only if every infinite set has a limit point.

Proposition 10.46.2. Every limit point compact T_1 space is sequentially compact.

Proof:

- $\langle 1 \rangle 1$. Let: X be a limit point compact T_1 space.
- $\langle 1 \rangle 2$. Let: (x_n) be a sequence in X.
- $\langle 1 \rangle 3$. Case: $\{x_n \mid n \geq 1\}$ is finite.
 - $\langle 2 \rangle 1$. PICK n such that x_n occurs infinitely often in the sequence (x_n)
 - $\langle 2 \rangle 2$. The subsequence consisting of all the terms equal to x_n is convergent.
- $\langle 1 \rangle 4$. Case: $\{x_n \mid n \geq 1\}$ is infinite.
 - $\langle 2 \rangle 1$. PICK a limit point l for $\{x_n \mid n \geq 1\}$
 - $\langle 2 \rangle 2$. PICK an increasing sequence n_r with $x_{n_r} \in B(x, 1/r)$ for all r PROOF: This is always possible by Theorem 10.19.3.
- $\langle 2 \rangle 3$. (x_{n_r}) converges to l.

Corollary 10.46.2.1. Every compact T_1 space is sequentially compact.

Example 10.46.3. The space $[0,1]^{\omega}$ under the uniform topology is not limit point compact.

The infinite set $\{0,1\}^{\omega}$ has no limit point.

Example 10.46.4. The space [0,1] under the lower limit topology is not limit point compact.

The infinite set $A = \{1 - 1/n \mid n \ge 1\}$ has no limit point. 1 is not a limit point because the neighbourhood $\{1\}$ does not intersect A.

Proposition 10.46.5. A closed subspace of a limit point compact space is limit point compact.

Proof:

```
\langle 1 \rangle 1. Let: X be a limit point compact space.
```

- $\langle 1 \rangle 2$. Let: $A \subseteq X$ be closed.
- $\langle 1 \rangle 3$. Let: $B \subseteq A$ be infinite.
- $\langle 1 \rangle 4$. PICK a limit point l of B in X.
- $\langle 1 \rangle 5. \ l \in A$
- $\langle 1 \rangle 6$. l is a limit point of B in A.

Example 10.46.6. An open subspace of a limit point compact space is not necessarily limit point compact.

The space [0,1] is limit point compact but (0,1) is not.

Example 10.46.7. The continuous image of a limit point compact space is not necessarily limit point compact.

Let Y be the indiscrete space with two points. Then $\mathbb{Z}^+ \times Y$ is limit point compact but \mathbb{Z}^+ is not.

Example 10.46.8. A limit point compact subspace of a Hausdorff space is not necessarily closed.

The space S_{Ω} is limit point compact but is not closed in $\overline{S_{\Omega}}$.

For an example that shows that the product of two limit point compact spaces is not necessarily limit point compact, see L. A. Steen and J. A. Seerbach Jr. *Counterexamples in Topology* Example 112.

10.47 Countable Compactness

Definition 10.47.1 (Countably Compact). A topological space is *countably compact* if and only if every countable open covering has a finite subcovering.

Proposition 10.47.2 (AC). Every closed subspace of a countably compact space is countably compact.

Proof:

- $\langle 1 \rangle 1$. Let: X be a countably compact space.
- $\langle 1 \rangle 2$. Let: $A \subseteq X$ be closed.
- $\langle 1 \rangle 3$. Let: \mathcal{U} be a countable open cover of A.
- $\langle 1 \rangle 4$. For $U \in \mathcal{U}$, Pick an open set V_U is X such that $U = V_U \cap A$
- $\langle 1 \rangle 5$. $\{V_U \mid U \in \mathcal{U}\} \cup \{X A\}$ is a countable open cover of X
- $\langle 1 \rangle$ 6. PICK a finite subcover $\{V_{U_1}, \ldots, V_{U_n}, X A\}$
- $\langle 1 \rangle 7$. $\{U_1, \ldots, U_n\}$ covers A.

Proposition 10.47.3 (AC). Every countably compact space is limit point compact.

```
Proof:
```

- $\langle 1 \rangle 1$. Assume: X is countably compact.
- $\langle 1 \rangle 2$. Let: $A \subseteq X$ be infinite.
- $\langle 1 \rangle 3$. Assume: for a contradiction A has no limit point.
- $\langle 1 \rangle 4$. PICK a countably infinite $B \subseteq A$
- $\langle 1 \rangle 5$. B is discrete.

PROOF: For all $b \in B$, there exists U_b open in X such that $U_b \cap B = \{b\}$.

- $\langle 1 \rangle 6$. $\{ \{b\} \mid b \in B \}$ is a countable cover of B that has no finite subcover.
- $\langle 1 \rangle 7$. B is not countably compact.
- $\langle 1 \rangle 8$. B is not closed in X
- $\langle 1 \rangle 9$. B has a limit point.
- $\langle 1 \rangle 10$. A has a limit point.
- $\langle 1 \rangle 11$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 3$.

П

Proposition 10.47.4 (AC). Every limit point compact T_1 space is countably compact.

Proof:

- $\langle 1 \rangle 1$. Let: X be a limit point compact T_1 space.
- $\langle 1 \rangle 2$. Let: $\{U_n \mid n \in \mathbb{Z}^+\}$ be a countable open cover of X.
- $\langle 1 \rangle 3$. For $n \in \mathbb{Z}^+$,

Let: $V_n = U_1 \cup \cdots \cup V_n$

- $\langle 1 \rangle 4$. Assume: for a contradiction none of the V_n covers X
- $\langle 1 \rangle 5$. For $n \in \mathbb{Z}^+$, PICK $a_n \in X V_n$
- $\langle 1 \rangle 6$. Pick a limit point l for $\{a_n \mid n \in \mathbb{Z}^+\}$
- $\langle 1 \rangle 7$. Pick n such that $l \in U_n$
- $\langle 1 \rangle 8$. Case: $l = a_m$ for some $m \leq n$

PROOF: $U_n - \{a_1, \ldots, a_{m-1}, a_{m+1}, \ldots, a_n\}$ is a neighbourhood of l that intersects $\{a_n \mid n \in \mathbb{Z}^+\}$ only at l, contradicting $\langle 1 \rangle 6$.

 $\langle 1 \rangle 9$. Case: $l \neq a_m$ for any $m \leq n$

PROOF: $U_n - \{a_1, \ldots, a_n\}$ is a neighbourhood of l that does not intersect $\{a_n \mid n \in \mathbb{Z}^+\}$, which contradicts $\langle 1 \rangle 6$.

П

The following example shows we cannot remove the hypothesis that the space is T_1 .

Example 10.47.5. Let Y be the indiscrete space with two points. Then $\mathbb{Z}^+ \times Y$ is a limit point compact space that is not countably compact, since $\{\{n\} \times Y \mid n \in \mathbb{Z}^+\}$ is a countable open cover that has no finite subcover.

Proposition 10.47.6. A topological space is countably compact if and only if every nested sequence $C_1 \supseteq C_2 \supseteq \cdots$ of nonempty closed sets has nonempty intersection.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a topological space.
- $\langle 1 \rangle 2$. If X is countably compact then every nested sequence of nonempty closed sets has nonempty intersection.
 - $\langle 2 \rangle 1$. Assume: X is countably compact.
 - $\langle 2 \rangle 2$. Let: $C_1 \supseteq C_2 \supseteq \cdots$ be a nested sequence of nonempty closed sets.
 - $\langle 2 \rangle 3$. Assume: for a contradiction $\bigcap_n C_n = \emptyset$
 - $\langle 2 \rangle 4$. $\{X C_n \mid n \in \mathbb{Z}^+\}$ covers X
 - $\langle 2 \rangle$ 5. PICK a finite subcover $\{X C_{n_1}, \dots, X C_{n_k}\}$ where $n_1 < \dots < n_k$
 - $\langle 2 \rangle 6. \ C_{n_k} = \emptyset$
 - $\langle 2 \rangle 7$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 2$.

П

- $\langle 1 \rangle 3$. If every nested sequence of nonempty closed sets has nonempty intersection then X is countably compact.
 - $\langle 2 \rangle 1.$ Assume: Every nested sequence of nonempty closed sets has nonempty intersection.
 - $\langle 2 \rangle 2$. Let: $\{U_n \mid n \geq 1\}$ is a countable open cover of X.
 - $\langle 2 \rangle 3$. $X U_1 \supseteq X (U_1 \cup U_2) \supseteq \cdots$ is a nested sequence of closed sets with empty intersection.
 - $\langle 2 \rangle 4$. Pick k such that $X (U_1 \cup \cdots \cup U_k) = \emptyset$
- $\langle 2 \rangle 5. \{U_1, \ldots, U_k\} \text{ covers } X.$

10.48 Subnets

Definition 10.48.1 (Subnet). Let X be a topological space. Let $(a_{\alpha})_{\alpha \in J}$ be a net in X. A *subnet* of $(a_{\alpha})_{\alpha \in J}$ is a net of the form $(a_{g(\beta)})_{\beta \in K}$ where K is a directed set, $g: K \to J$ is monotone, and g(K) is cofinal in J.

Proposition 10.48.2. Let X be a topological space. Let $(a_{\alpha})_{\alpha \in J}$ be a net in X. Let $l \in X$. If (a_{α}) converges to l then any subnet of (a_{α}) converges to l.

Proof:

- $\langle 1 \rangle 1$. Let: X be a topological space.
- $\langle 1 \rangle 2$. Let: $(a_{\alpha})_{\alpha \in J}$ be a net in X.
- $\langle 1 \rangle 3$. Let: $l \in X$
- $\langle 1 \rangle 4$. Assume: $a_{\alpha} \to l$ as $\alpha \to \infty$
- $\langle 1 \rangle$ 5. Let: $(a_{g(\beta)})_{\beta \in K}$ be a subnet of $(a_{\alpha})_{\alpha \in J}$
- $\langle 1 \rangle$ 6. Let: U be a neighbourhood of l.
- $\langle 1 \rangle$ 7. Pick $\alpha \in J$ be such that, for all $\alpha' \geq \alpha$, we have $a_{\alpha'} \in U$
- $\langle 1 \rangle 8$. Pick $\beta \in K$ such that $g(\beta) \geq \alpha$.
- $\langle 1 \rangle 9$. For all $\beta' \geq \beta$ we have $a_{g(\beta')} \in U$.

135

10.49**Accumulation Points**

Definition 10.49.1 (Accumulation Point). Let X be a topological space. Let $(a_{\alpha})_{\alpha \in J}$ be a net in X. Let $l \in X$. Then l is an accumulation point of $(a_{\alpha})_{\alpha \in J}$ if and only if, for every neighbourhood U of l, the set $\{\alpha \in J \mid a_{\alpha} \in U\}$ is cofinal in J.

Lemma 10.49.2. Let X be a topological space. Let $(a_{\alpha})_{\alpha \in J}$ be a net in X. Let $l \in X$. Then l is an accumulation point of $(a_{\alpha})_{\alpha \in J}$ if and only if there exists a subnet of $(a_{\alpha})_{\alpha \in J}$ that converges to l.

Proof:

- $\langle 1 \rangle 1$. Let: X be a topological space.
- $\langle 1 \rangle 2$. Let: $(a_{\alpha})_{\alpha \in J}$ be a net in X.
- $\langle 1 \rangle 3$. Let: $l \in X$
- $\langle 1 \rangle 4$. If l is an accumulation point of $(a_{\alpha})_{\alpha \in J}$ then there exists a subnet of $(a_{\alpha})_{{\alpha}\in J}$ that converges to l.
 - $\langle 2 \rangle 1$. Assume: l is an accumulation point of $(a_{\alpha})_{\alpha \in J}$.
 - $\langle 2 \rangle 2$. Let: $K = \{(\alpha, U) \mid \alpha \in J, U \text{ is a neighbourhood of } l, a_{\alpha} \in U \}$ with $(\alpha, U) \leq (\beta, V)$ if and only if $\alpha \leq \beta$ and $V \subseteq U$
 - $\langle 2 \rangle 3$. K is a directed set
 - $\langle 3 \rangle 1. \leq \text{is reflexive on } K.$
 - $\langle 3 \rangle 2$. \leq is transitive on K.
 - $\langle 3 \rangle 3. \leq \text{is antisymmetric on } K.$
 - $\langle 3 \rangle 4$. For all $(\alpha, U), (\beta, V) \in K$, there exists (γ, W) such that $(\alpha, U) \leq K$ (γ, W) and $(\beta, V) \leq (\gamma, W)$
 - $\langle 4 \rangle 1$. Let: $(\alpha, U), (\beta, V) \in K$
 - $\langle 4 \rangle 2$. Pick $\gamma \in J$ with $\alpha \leq \gamma$ and $\beta \leq \gamma$
 - $\langle 4 \rangle 3$. Pick $\delta \in J$ with $\gamma \leq \delta$ and $a_{\delta} \in U \cap V$
 - $\langle 4 \rangle 4$. $(\alpha, U) \leq (\delta, U \cap V)$ and $(\beta, V) \leq (\delta, U \cap V)$
 - $\langle 2 \rangle 4$. Let: $g: K \to J, g(\alpha, U) = \alpha$
 - $\langle 2 \rangle 5$. g is monotone
 - $\langle 2 \rangle 6$. g(K) is cofinal in J

PROOF: For all $\alpha \in J$ we have $\alpha = g(\alpha, X)$.

- $\langle 2 \rangle 7$. $(a_{q(\alpha,U)})_{(\alpha,U)\in K}$ converges to l.
 - $\langle 3 \rangle 1$. Let: *U* be a neighbourhood of *l*
 - $\langle 3 \rangle 2$. Pick $\alpha \in J$ such that $a_{\alpha} \in U$
 - $\langle 3 \rangle 3$. For all $(\beta, V) \geq (\alpha, U)$ we have $a_{\beta} \in U$ PROOF: Since $a_{\beta} \in V \subseteq U$
- $\langle 1 \rangle 5$. If there exists a subnet of $(a_{\alpha})_{\alpha \in J}$ that converges to l then l is an accumulation point of $(a_{\alpha})_{\alpha \in J}$.
 - $\langle 2 \rangle 1$. Assume: $(a_{g(\beta)})_{\beta \in K}$ converges to l
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of l
 - $\langle 2 \rangle 3$. Let: $\alpha \in J$
 - $\langle 2 \rangle 4$. PICK $\beta \in K$ such that, for all $\beta' \geq \beta$, we have $a_{q(\beta')} \in U$
 - $\langle 2 \rangle$ 5. Pick $\gamma \in K$ such that $g(\gamma) \geq \alpha$
 - $\langle 2 \rangle 6$. Pick $\delta \in K$ with $\beta \leq \delta$ and $\gamma \leq \delta$

```
\langle 2 \rangle 7. \ \alpha \leq g(\delta)
\langle 2 \rangle 8. \ a_{g(\delta)} \in U
```

10.50 Compact Spaces

Definition 10.50.1 (Compact). A topological space is *compact* if and only if every open covering has a finite subcovering.

Lemma 10.50.2. Let X be a topological space and Y a subspace of X. Then Y is compact if and only if every covering of Y by sets open in X has a finite subcovering.

PROOF:

- $\langle 1 \rangle 1$. If Y is compact then every covering of Y by sets open in X has a finite subcovering.
 - $\langle 2 \rangle 1$. Assume: Y is compact.
 - $\langle 2 \rangle 2$. Let: \mathcal{U} be a covering of Y by sets open in X.
 - $\langle 2 \rangle 3$. $\{ U \cap Y \mid U \in \mathcal{U} \}$ is an open covering of Y.
 - $\langle 2 \rangle 4$. PICK a finite subcovering $\{U_1 \cap Y, \dots, U_n \cap Y\}$
 - $\langle 2 \rangle 5$. $\{U_1, \ldots, U_n\}$ is a finite subcovering of \mathcal{U} .
- $\langle 1 \rangle$ 2. If every covering of Y by sets open in X has a finite subcovering then Y is compact.
 - $\langle 2 \rangle 1$. Let: \mathcal{U} be an open covering of Y.
 - $\langle 2 \rangle 2$. Let: $\mathcal{V} = \{ V \text{ open in } X \mid V \cap Y \in \mathcal{U} \}.$
 - $\langle 2 \rangle 3$. \mathcal{V} is a covering of Y by sets open in X.
 - $\langle 2 \rangle 4$. PICK a finite subcovering $\{V_1, \ldots, V_n\}$
 - $\langle 2 \rangle$ 5. $\{V_1 \cap Y, \dots, V_n \cap Y\}$ is a finite subcovering of \mathcal{U} .

Proposition 10.50.3. Every closed subspace of a compact space is compact.

Proof:

- $\langle 1 \rangle 1$. Let: X be a compact space and $Y \subseteq X$ be closed.
- $\langle 1 \rangle 2$. Let: \mathcal{U} be a covering of Y by sets open in X.
- $\langle 1 \rangle 3$. $\mathcal{U} \cup \{X \setminus Y\}$ is an open covering of X.
- $\langle 1 \rangle 4$. PICK a finite subcovering \mathcal{U}_0
- $\langle 1 \rangle$ 5. $\mathcal{U}_0 \cap \mathcal{U}$ is a finite subset of \mathcal{U} that covers Y.

Theorem 10.50.4. The continuous image of a compact space is compact.

Proof:

- $\langle 1 \rangle 1$. Let: $f: X \to Y$ be continuous and surjective.
- $\langle 1 \rangle 2$. Let: \mathcal{V} be an open covering of Y
- $\langle 1 \rangle 3$. $\{ p^{-1}(V) \mid V \in \mathcal{V} \}$ is an open covering of X.
- $\langle 1 \rangle 4$. PICK a finite subcovering $\{p^{-1}(V_1), \dots, p^{-1}(V_n)\}$

```
\langle 1 \rangle 5. \ \{V_1, \dots, V_n\} \text{ covers } Y.
```

Theorem 10.50.5. Let A and B be compact subspaces of X and Y respectively. Let N be an open set in $X \times Y$ that includes $A \times B$. Then there exist open sets U and V in X and Y respectively such that $A \subseteq U$, $B \subseteq V$ and $U \times V \subseteq N$.

Proof:

- $\langle 1 \rangle 1$. For all $x \in A$, there exist neighbourhoods U of x and V of B such that $U \times V \subseteq N$.
 - $\langle 2 \rangle 1$. Let: $x \in A$
 - $\langle 2 \rangle$ 2. For all $y \in B$, there exist neighbourhoods U of x and V of y such that $U \times V \subseteq N$
 - $\langle 2 \rangle 3$. {V open in Y | \exists neighbourhood U of $x, U \times V \subseteq N$ } covers B.
 - $\langle 2 \rangle 4$. PICK a finite subcover $\{V_1, \ldots, V_n\}$
 - $\langle 2 \rangle$ 5. For $i = 1, \ldots, n$, PICK a neighbourhood U_i of x such that $U_i \times V_i \subseteq N$
 - $\langle 2 \rangle 6$. Let: $U = U_1 \cap \cdots \cap U_n$
 - $\langle 2 \rangle 7$. Let: $V = V_1 \cup \cdots \cup V_n$
 - $\langle 2 \rangle 8$. *U* is a neighbourhood of *x*.
 - $\langle 2 \rangle 9$. V is a neighbourhood of B.
 - $\langle 2 \rangle 10. \ U \times V \subseteq N$
- $\langle 1 \rangle 2$. {U open in $X \mid \exists$ neighbourhood V of $B.U \times V \subseteq N$ } covers A.
- $\langle 1 \rangle 3$. Pick a finite subcover $\{U_1, \dots, U_n\}$
- $\langle 1 \rangle 4$. For $i = 1, \ldots, n$, PICK a neighbourhood V_i of B such that $U_i \times V_i \subseteq N$
- $\langle 1 \rangle 5$. Let: $U = U_1 \cup \cdots \cup U_n$
- $\langle 1 \rangle 6$. Let: $V = V_1 \cap \cdots \cap V_n$
- $\langle 1 \rangle 7$. U and V are open.
- $\langle 1 \rangle 8. \ A \subseteq U$
- $\langle 1 \rangle 9. \ B \subseteq V$
- $\langle 1 \rangle 10. \ U \times V \subseteq N$

Corollary 10.50.5.1 (Tube Lemma). Let X and Y be topological spaces with Y compact. Let $a \in X$ and N be an open set in $X \times Y$ that includes $\{a\} \times Y$. Then there exists a neighbourhood W of a such that N includes the tube $W \times Y$.

Theorem 10.50.6. Let X be a topological space. Then X is compact if and only if every set of closed sets that has the finite intersection property has nonempty intersection.

PROOF: The following are equivalent.

- 1. X is compact.
- 2. Every open covering of X has a finite subcovering.
- 3. For any set \mathcal{C} of closed sets, if $\{X \setminus C \mid C \in \mathcal{C}\}$ covers X then there is a finite subset \mathcal{C}_0 such that $\{X \setminus C \mid C \in \mathcal{C}_0\}$ covers X

- 4. For any set \mathcal{C} of closed sets, if $\bigcap \mathcal{C} = \emptyset$ then there is a finite subset \mathcal{C}_0 with empty intersection.
- 5. Any set of closed sets with the finite intersection property has nonempty intersection.

Corollary 10.50.6.1. Let X be a topological space and $C_1 \supseteq C_2 \supseteq \cdots$ a nested sequence of nonempty closed sets. Then $\bigcap_n C_n$ is nonempty.

Proposition 10.50.7. Let \mathcal{T} and \mathcal{T}' be two topologies on the same set X with $\mathcal{T} \subseteq \mathcal{T}'$. If \mathcal{T}' is compact then \mathcal{T} is compact.

Proof:

 $\langle 1 \rangle 1$. Let: $\mathcal{U} \subseteq \mathcal{T}$ cover X

 $\langle 1 \rangle 2$. $\mathcal{U} \subseteq \mathcal{T}'$

 $\langle 1 \rangle 3$. A finite subset of \mathcal{U} covers X.

Ď,

Corollary 10.50.7.1. If \mathcal{T} and \mathcal{T}' are two compact Hausdorff topologies on the same set X, then either $\mathcal{T} = \mathcal{T}'$ or \mathcal{T} and \mathcal{T}' are incomparable.

PROOF: From the Proposition and Proposition 10.20.12.

Example 10.50.8. Any set under the finite complement topology is compact.

Proposition 10.50.9. Let X be a topological space. A finite union of compact subspaces of X is compact.

Proof:

 $\langle 1 \rangle 1$. Let: A and B be compact subspaces of X.

 $\langle 1 \rangle 2$. Let: \mathcal{U} be a set of open sets in X that covers $A \cup B$

 $\langle 1 \rangle 3$. PICK a finite subset \mathcal{U}_1 that covers A.

PROOF: Lemma 10.50.2.

 $\langle 1 \rangle 4$. PICK a finite subset \mathcal{U}_2 that covers B.

PROOF: Lemma 10.50.2.

 $\langle 1 \rangle$ 5. $\mathcal{U}_1 \cup \mathcal{U}_2$ is a finite subset that covers $A \cup B$.

 $\langle 1 \rangle 6$. Q.E.D.

PROOF: Lemma 10.50.2.

П

Proposition 10.50.10. Let A and B be disjoint compact subspaces of the Hausdorff space X. Then there exist disjoint open sets U and V that include A and B respectively.

PROOF: From Theorem 10.50.5 with $N = X^2 \setminus \{(x, x) \mid x \in X\}$. \square

Corollary 10.50.10.1. Every compact subspace of a Hausdorff space is closed.

Theorem 10.50.11. Let $f: X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff then f is a homeomorphism.

```
Proof:
\langle 1 \rangle 1. Let: C \subseteq X be closed.
\langle 1 \rangle 2. C is compact.
  Proof: Proposition 10.50.3.
\langle 1 \rangle 3. f(C) is compact.
  PROOF: Theorem 10.50.4.
\langle 1 \rangle 4. f(C) is closed.
   Proof: Corollary 10.50.10.1.
\langle 1 \rangle 5. Q.E.D.
  PROOF: Lemma 10.13.2.
Proposition 10.50.12. Let X be a compact space, Y a Hausdorff space, and
f: X \to Y a continuous map. Then f is a closed map.
Proof:
\langle 1 \rangle 1. Let: C \subseteq X be closed.
\langle 1 \rangle 2. C is compact.
  Proof: Proposition 10.50.3.
\langle 1 \rangle 3. f(C) is compact.
  PROOF: Theorem 10.50.4.
\langle 1 \rangle 4. f(C) is closed.
  Proof: Corollary 10.50.10.1.
Proposition 10.50.13. If Y is compact then the projection \pi_1: X \times Y \to X
is a closed map.
Proof:
\langle 1 \rangle 1. Let: A \subseteq X \times Y be closed.
\langle 1 \rangle 2. Let: x \in X \setminus \pi_1(A)
\langle 1 \rangle 3. PICK a neighbourhood U of x such that U \times Y \subseteq (X \times Y) \setminus A
  PROOF: By the Tube Lemma.
\langle 1 \rangle 4. \ x \in U \subseteq X \setminus \pi_1(A)
\langle 1 \rangle 5. Q.E.D.
   PROOF: So X \setminus \pi_1(A) is open by Lemma 10.1.8.
Proposition 10.50.14. Let X be a topological space and Y a Hausdorff space.
Let f: X \to Y be continuous. Then the graph of f is closed in X \times Y.
\langle 1 \rangle 1. Assume: f is continuous.
\langle 1 \rangle 2. Let: (x,y) \in (X \times Y) \setminus G_f
\langle 1 \rangle 3. PICK disjoint neighbourhoods U and V of y and f(x) respectively.
\langle 1 \rangle 4. f^{-1}(V) \times U is a neighbourhood of (x, y) disjoint from G_f.
```

Theorem 10.50.15. Let X be a topological space and Y a compact space. Let $f: X \to Y$ be a function. If the graph of f is closed in $X \times Y$ then f is continuous.

```
Proof:
\langle 1 \rangle 1. Assume: G_f is closed.
\langle 1 \rangle 2. Let: x \in X and V be a neighbourhood of f(x).
\langle 1 \rangle 3. G_f \cap (X \times (Y \setminus V)) is closed.
\langle 1 \rangle 4. \pi_1(G_f \cap (X \times (Y \setminus V))) is closed.
   Proof: Proposition 10.50.13.
\langle 1 \rangle 5. Let: U = X \setminus \pi_1(G_f \cap (X \times (Y \setminus V)))
\langle 1 \rangle 6. U is a neighbourhood of x
\langle 1 \rangle 7. \ f(U) \subseteq V
Theorem 10.50.16. Let X be a compact topological space. Let (f_n : X \to \mathbb{R})
be a monotone increasing sequence of continuous functions and f:X\to\mathbb{R}
a continuous function. If (f_n) converges pointwise to f, then (f_n) converges
uniformly to f.
Proof:
\langle 1 \rangle 1. Let: \epsilon > 0
\langle 1 \rangle 2. For all x \in X, there exists N such that, for all n \geq N, we have |f_n(x)|
        |f(x)| < \epsilon
\langle 1 \rangle 3. For n \geq 1,
        LET: U_n = \{ x \in X \mid |f_n(x) - f(x)| < \epsilon \}
\langle 1 \rangle 4. For n \geq 1, we have U_n is open in X.
   \langle 2 \rangle 1. Let: x \in X
   \langle 2 \rangle 2. Let: \delta = \epsilon - |f_n(x) - f(x)|
   \langle 2 \rangle 3. PICK a neighbourhood U of x such that f(U) \subseteq B(f(x), \delta/2)
   \langle 2 \rangle 4. PICK a neighbourhood V of x such that f_n(V) \subseteq B(f_n(x), \delta/2)
   \langle 2 \rangle 5. f(U \cap V) \subseteq U_n
      PROOF: For y \in U \cap V we have
             |f_n(y) - f(y)| \le |f_n(y) - f_n(x)| + |f_n(x) - f(x)| + |f(x) - y(y)|
                                  <\delta/2+|f_n(x)-f(x)|+\delta/2
\langle 1 \rangle 5. \{ U_n \mid n \geq 1 \} covers X
   Proof: From \langle 1 \rangle 2
\langle 1 \rangle 6. Pick N such that X = U_N
   \langle 2 \rangle 1. PICK n_1, \ldots, n_k such that U_{n_1}, \ldots, U_{n_k} cover X.
   \langle 2 \rangle 2. Let: N = \max(n_1, \ldots, n_k)
   \langle 2 \rangle 3. For all i we have U_{n_i} \subseteq U_N
      PROOF: Since (f_n) is monotone increasing.
```

An example to show that we cannot remove the hypothesis that X is com-

 $\langle 1 \rangle 7$. For all $x \in X$ and $n \ge N$ we have $|f_n(x) - f(x)| < \epsilon$

 $\langle 2 \rangle 4. \ X = U_N$

Example 10.50.17. Let $X = (0,1), f_n(x) = -x^n$ and f(x) = 0 for $x \in X$ and $n \geq 1$. Then $f_n \to f$ pointwise and (f_n) is monotone increasing but the convergence is not uniform since, for all $N \ge 1$, there exists $x \in (0,1)$ such that $-x^N < -1/2$.

An example to show that we cannot remove the hypothesis that (f_n) is monotone increasing:

Example 10.50.18. Let X = [0,1], $f_n(x) = 1/(n^3(x-1/n)^2+1)$ and f(x) = 0 for $x \in X$ and $n \ge 1$. Then X is compact and $f_n \to f$ pointwise but the convergence is not uniform since, for all $N \ge 1$, there exists $x \in [0,1]$ such that $f_N(x) = 1$, namely x = 1/N.

Theorem 10.50.19. Let X be a compact Hausdorff space. Let A be a chain of closed connected subsets of X. Then $\bigcap A$ is connected.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction C and D form a separation of $\bigcap A$.
- $\langle 1 \rangle 2.$ Pick disjoint open sets U and V that include C and D respectively. Proof: Proposition 10.50.10.
- $\langle 1 \rangle 3$. $\{A \setminus (U \cup V) \mid A \in \mathcal{A}\}$ is a set of closed sets with the finite intersection property.
 - $\langle 2 \rangle 1$. For all $A \in \mathcal{A}$ we have $A \setminus (U \cup V)$ is closed.
 - $\langle 2 \rangle$ 2. For all $A_1, \ldots, A_n \in \mathcal{A}$ we have $(A_1 \cap \cdots \cap A_n) \setminus (U \cup V)$ is nonempty. PROOF:
 - $\langle 3 \rangle 1$. Let: $A_1, \ldots, A_n \in \mathcal{A}$
 - $\langle 3 \rangle$ 2. Assume: without loss of generality $A_1 \subseteq A_2, \ldots, A_n$ Proof: Since \mathcal{A} is a chain.
 - $\langle 3 \rangle 3$. $A_1 \setminus (U \cup V)$ is nonempty

PROOF: Otherwise $(A_1 \cap \cdots \cap A_n \cap U)$ and $(A_1 \cap \cdots \cap A_n \cap V)$ would form a separation of A_n .

 $\langle 1 \rangle 4$. $\bigcap \mathcal{A} \setminus (U \cup V)$ is nonempty.

PROOF: Theorem 10.50.6.

 $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 1$ since $\bigcap AA \setminus (U \cup V) = \bigcap A \setminus (C \cup D)$.

Theorem 10.50.20 (Tychonoff Theorem (AC)). The product of a family of compact spaces is compact.

Proof:

- $\langle 1 \rangle 1$. Let: $\{X_{\alpha}\}_{{\alpha} \in J}$ be a family of compact spaces.
- $\langle 1 \rangle 2$. Let: $X = \prod_{\alpha \in J} X_{\alpha}$
- $\langle 1 \rangle 3$. For any $\mathcal{A} \subseteq \mathcal{P}X$, we have $\bigcap_{A \in \mathcal{A}} \overline{A} \neq \emptyset$
 - $\langle 2 \rangle 1$. Let: $\mathcal{A} \subseteq \mathcal{P}X$
 - $\langle 2 \rangle 2$. Pick $\mathcal{D} \supseteq \mathcal{A}$ that is maximal with respect to the finite intersection property.

Prove: $\bigcap_{D \in \mathcal{D}} \overline{D} \neq \emptyset$

Proof: Lemma 3.24.2.

 $\langle 2 \rangle 3$. For $\alpha \in J$, PICK $x_{\alpha} \in X_{\alpha}$ such that $x_{\alpha} \in \bigcap_{D \in \mathcal{D}} \overline{\pi_{\alpha}(D)}$

PROOF: Theorem 10.50.6 since $\{\overline{\pi_{\alpha}(D)} \mid D \in \mathcal{D}\}$ is a set of closed sets in X_{α} with the finite intersection property.

- $\langle 2 \rangle 4$. Let: $x = (x_{\alpha})_{\alpha \in J}$ Prove: $x \in \bigcap_{D \in \mathcal{D}} \overline{D}$
- $\langle 2 \rangle$ 5. For any $\beta \in J$ and neighbourhood U of x_{β} in X_{β} , we have $\pi_{\beta}^{-1}(U)$ intersects every element of \mathcal{D}
 - $\langle 3 \rangle 1$. Let: $\beta \in J$
 - $\langle 3 \rangle 2$. Let: U be a neighbourhood of x_{β} in X_{β} .
 - $\langle 3 \rangle 3$. Let: $D \in \mathcal{D}$
 - $\langle 3 \rangle 4. \ x_{\beta} \in \overline{\pi_{\beta}(D)}$

PROOF: From $\langle 2 \rangle 3$

- $\langle 3 \rangle 5$. U intersects $\pi_{\beta}(D)$.
- $\langle 3 \rangle 6. \ \pi_{\beta}^{-1}(U) \text{ intersects } D.$
- $\langle 2 \rangle$ 6. For any $\beta \in J$ and neighbourhood U of x_{β} in X_{β} , we have $\pi_{\beta}^{-1}(U) \in \mathcal{D}$ PROOF: Lemma 3.24.4.
- $\langle 2 \rangle$ 7. Every basic neighbourhood of x is an element of \mathcal{D} PROOF: Lemma 3.24.3.
- $\langle 2 \rangle$ 8. Every basic neighbourhood of x intersects every element of \mathcal{D} PROOF: Since \mathcal{D} satisfies the finite intersection property.
- $\langle 2 \rangle 9$. For all $D \in \mathcal{D}$ we have $x \in \overline{D}$
- $\langle 1 \rangle 4$. Q.E.D.

PROOF: Theorem 10.50.6.

Lemma 10.50.21. Let X and Y be topological spaces. Let A be a set of basis elements for the product topology on $X \times Y$ such that no finite subset of A covers $X \times Y$. If X is compact, then there exists $x \in X$ such that no finite subset of A covers the slice $\{x\} \times Y$.

Proof:

 $\langle 1 \rangle 1$. Assume: for every $x \in X$, there exists a finite subset of $\mathcal A$ that covers $\{x\} \times Y$

PROVE: A finite subset of A covers $X \times Y$

- $\langle 1 \rangle 2. \{ U \mid \exists U_1 \times V_1, \dots, U_n \times V_n \in \mathcal{A}. U = U_1 \cap \dots \cap U_n, V_1 \cup \dots \cup V_n = Y \}$ covers X
- $\langle 1 \rangle 3$. PICK a finite subcover U_1, \ldots, U_m
- $\langle 1 \rangle 4$. PICK $U_{ij} \times V_{ij} \in \mathcal{A}$ such that, for every i, we have $U_i = \bigcap_j U_{ij}$ and $Y = \bigcup_i V_{ij}$
- $\langle 1 \rangle$ 5. The collection of all $U_{ij} \times V_{ij}$ covers $X \times Y$

Theorem 10.50.22 (AC). Let X be a compact Hausdorff space. Then the quasicomponents and the components of X are the same.

PROOF:

- $\langle 1 \rangle 1$. Let: $x, y \in X$
- $\langle 1 \rangle 2$. Assume: x and y are in the same quasicomponent.

PROVE: x and y are in the same component.

- $\langle 1 \rangle 3$. Let: \mathcal{A} be the set of all closed subsets A of X such that x and y are in the same quasicomponent of A.
- $\langle 1 \rangle 4$. For every chain $\mathcal{B} \subseteq \mathcal{A}$ we have $\bigcap \mathcal{B} \in \mathcal{A}$
 - $\langle 2 \rangle 1$. Let: $BB \subseteq \mathcal{A}$ be a chain.
 - $\langle 2 \rangle 2$. Assume: for a contradiction U and V form a separation of $\bigcap \mathcal{B}$ with $x \in U$ and $y \in V$
 - $\langle 2 \rangle 3$. PICK disjoint open sets U', V' in X such that $U \subseteq U'$ and $V \subseteq V'$
 - $\langle 2 \rangle 4$. $\{ B \setminus (U' \cup V') \mid B \in \mathcal{B} \}$ satisfies the finite intersection property.
 - $\langle 3 \rangle 1$. Let: $B_1, \ldots, B_n \in \mathcal{B}$
 - $\langle 3 \rangle$ 2. Assume: without loss of generality $B_1 \subseteq \cdots \subseteq B_n$ PROOF: Since \mathcal{B} is a chain.
 - $\langle 3 \rangle 3. \cap \{B_1 \setminus (U' \cup V'), \dots, B_n \setminus (U' \cup V')\} = B_1 \setminus (U' \cup V')$
 - $\langle 3 \rangle 4$. $B_1 \setminus (U' \cup V')$ is nonempty

PROOF: Otherwise $B_1 \cap U'$ and $B_1 \cap V'$ would form a separation of B_1 , contradicting the fact that x and y are in the same quasicomponent of B_1 .

 $\langle 2 \rangle 5. \cap \mathcal{B} \setminus (U \cup V)$ is nonempty

Proof: Theorem 10.50.6.

 $\langle 2 \rangle 6$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 2$.

 $\langle 1 \rangle$ 5. PICK a minimal element D in \mathcal{A} .

Prove: D is connected.

PROOF: By Zorn's Lemma.

- $\langle 1 \rangle 6$. Assume: for a contradiction U and V form a separation of D.
- $\langle 1 \rangle 7$. Assume: without loss of generality $x, y \in U$

PROOF: We cannot have that one of x, y is in U and the other in V sicnce $D \in \mathcal{A}$.

 $\langle 1 \rangle 8. \ U \in \mathcal{A}$

PROOF: If X and Y form a separation of U with $x \in X$ and $y \in Y$, then X and $Y \cup V$ form a separation of D with $x \in X$ and $y \in Y \cup V$.

 $\langle 1 \rangle 9$. Q.E.D.

PROOF: There is a connected set D that contains both x and y.

PROOF:

- $\langle 1 \rangle 1$. Let: $\{X_{\alpha}\}_{{\alpha} \in J}$ be a family of compact spaces.
- $\langle 1 \rangle 2$. Let: $X = \prod_{\alpha \in J} X_{\alpha}$
- $\langle 1 \rangle 3$. Pick a well-ordering \langle on J such that J has a greatest element.
- (1)4. For $\alpha \in J$ and $p = \{p_i \in X_i\}_{i \leq \alpha}$ a family of points, Let: $Y(p) = \{x \in X \mid \forall i \leq \alpha. x_i = p_i\}$
- $\langle 1 \rangle$ 5. If $\alpha < \alpha'$ and p is an α' -indexed family of points then $Y(p) \subseteq Y(p \upharpoonright \alpha)$ PROOF: From definition.
- $\langle 1 \rangle$ 6. Given $\beta \in J$ and $p = \{p_i \in X_i\}_{i < \beta}$ a family of points, Let: $Z(p) = \bigcap_{\alpha < \beta} Y(p \upharpoonright \alpha)$
- $\langle 1 \rangle 7$. Given $\beta \in J$ and $p = \{ p_i \in X_i \}_{i < \beta}$ a family of points, if A is a finite set

of basic open spaces for X that covers Z(p), then there exists $\alpha < \beta$ such that \mathcal{A} covers $Y(p \upharpoonright \alpha)$

- $\langle 2 \rangle 1$. Assume: without loss of generality β has no immediate predecessor.
- $\langle 2 \rangle 2$. For $A \in \mathcal{A}$, LET: $J_A = \{i < \beta \mid \pi_i(A) \neq X_i\}$
- $\langle 2 \rangle 3$. Let: $\alpha = \max \bigcup_{A \in \mathcal{A}} J_A$
- $\langle 2 \rangle 4$. Let: $x \in Y(p \upharpoonright \alpha)$
- $\langle 2 \rangle$ 5. Let: $y \in Z(p)$ be the point with $y_i = p_i$ for $i < \beta$ and $y_i = x_i$ for $i \ge \beta$
- $\langle 2 \rangle$ 6. PICK $A \in \mathcal{A}$ such that $y \in A$ PROOF: Since \mathcal{A} covers Z(p).
- $\langle 2 \rangle 7$. For $i \in J_A$ we have $x_i \in \pi_i(A)$
- PROOF: Since $i \le \alpha$ so $x_i = p_i$
- $\langle 2 \rangle 8$. For $i \in J \setminus J_A$ we have $x_i \in \pi_i(A)$ PROOF: Since $\pi_i(A) = X_i$
- $\langle 2 \rangle 9. \ x \in A$
- $\langle 1 \rangle$ 8. Assume: for a contraction \mathcal{A} is a set of basic open sets for X that covers X but such that no finite subset of \mathcal{A} covers X
- $\langle 1 \rangle 9$. PICK a set of points $\{p_i\}_{i \in J}$ such that, for all $\alpha \in J$, we have $Y(p \upharpoonright \alpha)$ is not finitely covered by \mathcal{A}
 - $\langle 2 \rangle$ 1. Assume: as transfinite induction hypothesis $\alpha \in J$ and $\{p_i\}_{i < \alpha}$ is a family of points such that, for all $\alpha' < \alpha$, we have $Y(p \upharpoonright \alpha')$ is not finitely covered by \mathcal{A}
 - $\langle 2 \rangle 2$. Z(p) is not finitely covered by \mathcal{A} PROOF: By $\langle 1 \rangle 7$.
 - $\langle 2 \rangle$ 3. PICK $p_{\alpha} \in X_{\alpha}$ such that Y(p) is not finitely covered by \mathcal{A} PROOF: By Lemma 10.50.21 since there is a homeomorphism $\phi: Z(p) \cong X_{\alpha} \times \prod_{\alpha' > \alpha} X_{\alpha'}$ and, given p_{α} , this homeomorphism ϕ restricts to a homeomorphism $Y(p) \cong \{p_{\alpha}\} \times \prod_{\alpha' > \alpha} X_{\alpha'}$.
- $\langle 1 \rangle 10$. Q.E.D.

PROOF: If ω is the greatest element of J then $Y(p \upharpoonright \omega)$ is a singleton.

Theorem 10.50.23. Every complete linearly ordered set in the order topology is compact.

Proof:

- $\langle 1 \rangle 1.$ Let: X be a complete linearly ordered set with least element a and greatest element b.
- $\langle 1 \rangle 2$. Let: \mathcal{A} be an open covering of X.
- $\langle 1 \rangle 3$. For all x < b, there exists y > x such that [x, y] can be covered by at most two elements of \mathcal{A} .
 - $\langle 2 \rangle 1$. Let: $x \in X$
 - $\langle 2 \rangle 2$. Pick $A \in \mathcal{A}$ with $x \in A$
 - $\langle 2 \rangle 3$. Pick y > x such that $[x, y) \subseteq A$
 - $\langle 2 \rangle 4$. Pick $B \in \mathcal{A}$ with $y \in B$
 - $\langle 2 \rangle 5$. [x, y] is covered by A and B
- $\langle 1 \rangle 4$. Let: $C = \{ y \in X \mid [a, y] \text{ can be covered by finitely many elements of } \mathcal{A} \}$

```
\langle 1 \rangle 5. Let: c = \sup C
\langle 1 \rangle 6. \ c > a
   \langle 2 \rangle 1. PICK x > a such that [a, x] can be covered by at most two elements of
       PROOF: From \langle 1 \rangle 3.
    \langle 2 \rangle 2. \ x \in C
\langle 1 \rangle 7. \ c \in C
    \langle 2 \rangle 1. Pick A \in \mathcal{A}
    \langle 2 \rangle 2. Pick x < c such that (x, c] \subseteq A
    \langle 2 \rangle 3. PICK y > x such that y \in C
    \langle 2 \rangle 4. Pick \mathcal{A}_0 \subseteq^{\text{fin}} \mathcal{A} that covers [a, y]
    \langle 2 \rangle 5. \mathcal{A}_0 \cup \{A\} covers [a, c]
\langle 1 \rangle 8. \ c = b
    \langle 2 \rangle 1. Assume: for a contradiction c < b
   \langle 2 \rangle 2. Pick x > c such that [c, x] can be covered by at most two elements of
       PROOF: From \langle 1 \rangle 3.
    \langle 2 \rangle 3. [a, x] can be finitely covered by \mathcal{A}
       PROOF: From \langle 1 \rangle 7.
   \langle 2 \rangle 4. Q.E.D.
       PROOF: This contradicts the maximality of c.
```

Corollary 10.50.23.1. Let X be a linearly ordered set with the least upper bound property. Then every closed interval in X is compact.

Corollary 10.50.23.2. Every closed interval in \mathbb{R} is compact.

Theorem 10.50.24 (Extreme Value Theorem). Any linearly ordered set under the order topology that is compact has a greatest and a least element.

Proof:

- $\langle 1 \rangle 1$. Let: X be a linearly ordered set under the order topology that is compact.
- $\langle 1 \rangle 2$. X has a greatest element.
 - $\langle 2 \rangle 1$. Assume: for a contradiction X has no greatest element.
 - $\langle 2 \rangle 2$. $\{(-\infty, a) \mid a \in X\}$ covers X.
 - $\langle 2 \rangle 3$. Pick a finite subcover $\{(-\infty, a_1), \dots, (-\infty, a_n)\}$, say.
 - $\langle 2 \rangle 4$. Assume: without loss of generality $a_1 \leq \cdots \leq a_n$
 - $\langle 2 \rangle 5. \ X \subseteq (-\infty, a_n)$
 - $\langle 2 \rangle 6$. $a_n < a_n$
- $\langle 1 \rangle 3$. X has a least element.

PROOF: Similar.

Proposition 10.50.25. Every linearly ordered set in which every closed interval is compact satisfies the least upper bound property.

Proof:

```
\langle 1 \rangle 1. Let: X be a linearly ordered set in which every closed interval is compact.
\langle 1 \rangle 2. Let: A \subseteq X be nonempty with upper bound u
\langle 1 \rangle 3. Pick a \in A
\langle 1 \rangle 4. The closed interval [a, u] is compact.
\langle 1 \rangle5. Assume: for a contradiction A has no supremum.
\langle 1 \rangle 6. \{(-\infty, x) \mid x \in A\} \cup \{(x, +\infty) \mid x \text{ is an upper bound of } A\} \text{ covers } [a, u].
   \langle 2 \rangle 1. Let: x \in [a, u]
   \langle 2 \rangle 2. Assume: for all y \in A we have x \notin (-\infty, y)
   \langle 2 \rangle 3. x is an upper bound for A
   \langle 2 \rangle 4. PICK an upper bound y for A with y < x
   \langle 2 \rangle 5. \ x \in (y, +\infty)
\langle 1 \rangle7. PICK a finite subcover \{(-\infty, x_1), \dots, (-\infty, x_m), (y_1, +\infty), \dots, (y_n, +\infty)\}
\langle 1 \rangle 8. Assume: x_m = \max(x_1, \dots, x_m) and y_1 = \min(y_1, \dots, y_n)
\langle 1 \rangle 9. \ x_m \notin (-\infty, x_i) \text{ for any } i
   PROOF: Since x_i \leq x_m
\langle 1 \rangle 10. \ x_m \notin (y_i, +\infty) \text{ for any } i
   PROOF: Since x_m \in A so x_m \leq y_i
\langle 1 \rangle 11. \ x_m \in [a, u]
   \langle 2 \rangle 1. a \notin (y_i, +\infty) for any i
      PROOF: Since y_i is an upper bound for A and a \in A.
   \langle 2 \rangle 2. a \in (-\infty, x_i) for some i
      PROOF: From \langle 1 \rangle 7.
   \langle 2 \rangle 3. a < x_m
      PROOF: Since x_i \leq x_m
   \langle 2 \rangle 4. x_m \leq u
      PROOF: Since u is an upper bound for A and x_m \in A.
\langle 1 \rangle 12. Q.E.D.
```

Example 10.50.26. The set [0,1] is not compact under the K-topology.

PROOF: For every $n \ge 1$, pick an open interval U_n such that $U_n \cap K = \{1/n\}$. Then the open cover $\{[0,1]-K\} \cup \{U_n \mid n \in \mathbb{Z}^+\}$ has no finite subcover. \square

Proposition 10.50.27 (AC). Let X be a compact Hausdorff space. Let A be a countable set of closed sets in X. If every element of A has empty interior, then $\bigcup A$ has empty interior.

Proof:

- $\langle 1 \rangle 1$. Let: X be a compact Hausdorff space.
- $\langle 1 \rangle$ 2. For every closed set A in X and open U in X with $U \nsubseteq A$, there exists a nonempty open set V such that $\overline{V} \subseteq U A$.
 - $\langle 2 \rangle 1$. Let: A be a closed set in X

Proof: This contradicts $\langle 1 \rangle 7$.

- $\langle 2 \rangle 2$. Let: U be an open set in X with $U \not\subseteq A$
- $\langle 2 \rangle 3$. Pick $x \in U A$
- $\langle 2 \rangle$ 4. PICK disjoint neighbourhoods W and V of $A \cup (X U)$ and x respectively.

```
Proof: Proposition 10.50.10.
   \langle 2 \rangle 5. \ \overline{V} \subseteq U - A
      Proof:
                     \overline{V} \subseteq X - W
                                                                      (since V \subseteq X - W)
                        \subseteq X - (A \cup (X - U))
                        = (x - A) \cap U
                        = U - A
\langle 1 \rangle 3. Pick an enumeration \{A_1, A_2, \ldots\} of \mathcal{A}
\langle 1 \rangle 4. Let: U_0 be any nonempty open set
        PROVE: U_0 \nsubseteq \bigcup \mathcal{A}
(1)5. Pick a sequence of nonempty open sets U_1, U_2, \ldots such that, for n \geq 1,
        we have \overline{U_n} \subseteq U_{n-1} - A_n
   \langle 2 \rangle 1. Assume: we have picked U_0, U_1, \ldots, U_n
   \langle 2 \rangle 2. U_n \not\subseteq A_{n+1}
      PROOF: Since A_{n+1} has empty interior.
   \langle 2 \rangle 3. PICK a nonempty open set U_{n+1} such that \overline{U_{n+1}} \subseteq U_n - A_{n+1}
      Proof: By \langle 1 \rangle 2
\langle 1 \rangle 6. Pick a \in \bigcap_{n=0}^{\infty} \overline{U_n}
   PROOF: Corollary 10.50.6.1.
\langle 1 \rangle 7. \ a \in U_0
   PROOF: Since a \in \overline{U_1} \subseteq U_0.
\langle 1 \rangle 8. \ a \notin \bigcup \mathcal{A}
   PROOF: For all n, we have a \in \overline{U_n} \subseteq U_{n-1} - A_n.
Example 10.50.28. The Cantor set is compact.
PROOF: It is a closed subset of the compact set [0,1]. \sqcup
Proposition 10.50.29. Every compact space is limit point compact.
Proof:
\langle 1 \rangle 1. Let: X be a compact space.
\langle 1 \rangle 2. Let: A \subseteq X have no limit points.
        Prove: A is finite.
\langle 1 \rangle 3. A is closed.
   Proof: Corollary 10.6.3.1.
\langle 1 \rangle 4. A is compact.
   Proof: Proposition 10.50.3.
\langle 1 \rangle 5. \{ U \mid U \text{ open }, |U \cap A| = 1 \} covers A.
   PROOF: From \langle 1 \rangle 2, for all a \in A, there is a neighbourhood U of a that
   intersects A in a only.
\langle 1 \rangle 6. PICK a finite subcover \{U_1, \ldots, U_n\}
\langle 1 \rangle 7. For i = 1, \ldots, n,
        Let: U_i \cap A = \{x_i\}.
```

 $\langle 1 \rangle 8. \ A = \{x_1, \dots, x_n\}$

The following examples show that not every limit point compact space is compact.

Example 10.50.30. Let Y be a set with two elements under the indiscrete topology. Then $\mathbb{Z}^+ \times Y$ is limit point compact, since every nonempty set has a limit point. It is not compact, since $\{\{n\} \times Y \mid n \in \mathbb{Z}^+\}$ has no finite subcover.

Example 10.50.31. The space S_{Ω} is limit point compact but not compact.

PROOF:

 $\langle 1 \rangle 1$. S_{Ω} is not compact.

PROOF: From the Extreme Value Theorem, since S_{Ω} has no greatest element.

- $\langle 1 \rangle 2$. Let: A be an infinite subset of S_{Ω} .
- $\langle 1 \rangle 3$. Pick $B \subseteq A$ that is countably infinite.

PROOF: Proposition ??.

- $\langle 1 \rangle 4$. Let: $b = \sup B$
- $\langle 1 \rangle 5. \ B \subseteq [0, b]$
- $\langle 1 \rangle 6$. [0, b] is compact.

PROOF: Corollary 10.50.23.1.

 $\langle 1 \rangle 7$. PICK a limit point x of B in [0, b].

Proof: Proposition 10.50.29.

 $\langle 1 \rangle 8$. x is a limit point of A.

PROOF: Lemma 10.6.5.

П

Proposition 10.50.32 (AC). A topological space is compact if and only if every net has a convergent subnet.

Proof:

- $\langle 1 \rangle 1$. Let: X be a topological space.
- $\langle 1 \rangle 2$. If X is compact then every net has a convergent subnet.
 - $\langle 2 \rangle 1$. Assume: X is compact.
 - $\langle 2 \rangle 2$. Let: $(a_{\alpha})_{\alpha \in J}$ be a net in X.
 - $\langle 2 \rangle 3$. For $\alpha \in J$,

Let: $B_{\alpha} = \{a_{\beta} \mid \alpha \leq \beta\}$

- $\langle 2 \rangle 4$. $\{B_{\alpha} \mid \alpha \in J\}$ has the finite intersection property.
- $\langle 2 \rangle$ 5. Pick $x \in \bigcap_{\alpha \in J} \overline{B_{\alpha}}$
- $\langle 2 \rangle 6$. x is an accumulation point of $(a_{\alpha})_{\alpha \in J}$
 - $\langle 3 \rangle 1$. Let: *U* be a neighbourhood of *x*.
 - $\langle 3 \rangle 2$. Let: $\alpha \in J$
 - $\langle 3 \rangle 3. \ x \in \overline{B_{\alpha}}$
 - $\langle 3 \rangle 4$. There exists $\beta \geq \alpha$ such that $a_{\beta} \in U$
- $\langle 2 \rangle 7$. Q.E.D.

Proof: Lemma 10.49.2.

- $\langle 1 \rangle 3$. If every net in X has a convergent subnet then X is compact.
 - $\langle 2 \rangle 1$. Assume: Every net in X has a convergent subnet.
 - $\langle 2 \rangle 2$. Let: \mathcal{A} be a set of closed sets with the finite intersection property.

```
\begin{array}{l} \langle 2 \rangle 3. \ \ \mathrm{Let:} \ \mathcal{B} \ \mathrm{be} \ \mathrm{the} \ \mathrm{set} \ \mathrm{of} \ \mathrm{all} \ \mathrm{finite} \ \mathrm{intersections} \ \mathrm{of} \ \mathrm{elements} \ \mathrm{of} \ \mathcal{A} \ \mathrm{under} \supseteq . \\ \langle 2 \rangle 4. \ \ \mathrm{For} \ B \in \mathcal{B}, \ \mathrm{Pick} \ a_B \in B \\ \langle 2 \rangle 5. \ \ \mathrm{Pick} \ \mathrm{a} \ \mathrm{convergent} \ \mathrm{subnet} \ (a_{g(\alpha)})_{\alpha \in K} \ \mathrm{with} \ \mathrm{limit} \ l. \\ \ \ \ \mathrm{Prove:} \ \ l \in \bigcap \mathcal{A} \\ \ \ \mathrm{Proof:} \ \mathrm{From} \ \langle 2 \rangle 1. \\ \langle 2 \rangle 6. \ \ \mathrm{Let:} \ \ A \in \mathcal{A} \\ \langle 2 \rangle 7. \ \ \mathrm{Assume:} \ \ \mathrm{for} \ \mathrm{a} \ \mathrm{contradiction} \ l \notin A \\ \langle 2 \rangle 8. \ \ \mathrm{Pick} \ \alpha \in K \ \mathrm{such} \ \mathrm{that}, \ \mathrm{for} \ \mathrm{all} \ \beta \geq \alpha, \ \mathrm{we} \ \mathrm{have} \ a_{g(\beta)} \in X - A \\ \langle 2 \rangle 9. \ \ \mathrm{Pick} \ \beta \in K \ \mathrm{such} \ \mathrm{that} \ g(\beta) \geq A \\ \langle 2 \rangle 10. \ \ \mathrm{Pick} \ \gamma \in K \ \mathrm{with} \ \alpha \leq \gamma \ \mathrm{and} \ \beta \leq \gamma \\ \langle 2 \rangle 11. \ \ a_{g(\gamma)} \in A \ \mathrm{and} \ a_{g(\gamma)} \in X - A \\ \langle 2 \rangle 12. \ \ \mathrm{Q.E.D.} \\ \ \ \ \mathrm{Proof:} \ \mathrm{This} \ \mathrm{is} \ \mathrm{a} \ \mathrm{contradiction}. \\ \ \ \square \end{array}
```

10.51 Perfect Maps

Definition 10.51.1 (Perfect Map). Let X and Y be topological spaces and $f: X \to Y$. Then f is a perfect map if and only if f is a closed map, continuous, surjective and $p^{-1}(y)$ is compact for all $y \in Y$.

Proposition 10.51.2. Let X be a topological space, Y a compact space, and $p: X \to Y$ a closed map such that, for all $y \in Y$, we have $p^{-1}(y)$ is compact. Then X is compact.

Proof:

- $\langle 1 \rangle 1$. Let: \mathcal{A} be a set of closed sets in X with the finite intersection property.
- $\langle 1 \rangle 2$. $\mathcal{B} = \{ p(A_1 \cap \cdots \cap A_n) \mid A_1, \dots, A_n \in \mathcal{A} \}$ is a set of closed sets in Y with the finite intersection property.

PROOF: Since p is a closed map.

 $\langle 1 \rangle 3$. Pick $y \in \bigcap \mathcal{B}$

PROOF: Theorem 10.50.6 since Y is compact.

- $\langle 1 \rangle 4$. $\{A \cap p^{-1}(y) \mid A \in \mathcal{A}\}$ is a set of closed sets in $p^{-1}(y)$ with the finite intersection property.
- $\langle 1 \rangle 5$. Pick $x \in \bigcap_{A \in \mathcal{A}} (A \cap p^{-1}(y))$

PROOF: Theorem 10.50.6 since $p^{-1}(y)$ is compact.

- $\langle 1 \rangle 6. \ x \in \bigcap \mathcal{A}$
- $\langle 1 \rangle 7$. Q.E.D.

PROOF: Theorem 10.50.6.

10.52 Isolated Points

Definition 10.52.1 (Isolated Point). Let X be a topological space and $x \in X$. Then x is an *isolated point* if and only if $\{x\}$ is open.

Theorem 10.52.2 (AC). A nonempty compact Hausdorff space with no isolated points is uncountable.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a nonempty compact Hausdorff space with no isolated points.
- $\langle 1 \rangle 2$. For every nonempty open set U and every point $x \in X$, there exists a nonempty open set $V \subseteq U$ such that $x \notin \overline{V}$.
 - $\langle 2 \rangle 1$. Let: U be a nonempty open set.
 - $\langle 2 \rangle 2$. Let: $x \in X$
 - $\langle 2 \rangle 3$. Pick $y \in U \{x\}$

PROOF: This is possible because U cannot be $\{x\}$.

- $\langle 2 \rangle 4$. PICK disjoint open neighbourhoods W_1 of x and W_2 of y
- $\langle 2 \rangle 5$. Let: $V = W_2 \cap U$
- $\langle 2 \rangle 6$. V is nonempty

PROOF: Since $y \in V$

 $\langle 2 \rangle 7$. V is open

PROOF: From $\langle 2 \rangle 1$, $\langle 2 \rangle 4$, $\langle 2 \rangle 5$.

 $\langle 2 \rangle 8. \ V \subseteq U$

Proof: From $\langle 2 \rangle 5$

 $\langle 2 \rangle 9. \ x \notin V$

PROOF: From $\langle 2 \rangle 4$ and $\langle 2 \rangle 5$

 $\langle 1 \rangle 3$. Let: (a_n) be any sequence of points in X.

PROVE: The set $X - \{a_1, a_2, \ldots\}$ is nonempty.

 $\langle 1 \rangle 4$. PICK a sequence of nonempty open sets V_1, V_2, \ldots , such that $V_1 \supseteq V_2 \supseteq \cdots$ and $a_n \notin \overline{V_n}$ for all n.

PROOF: From $\langle 1 \rangle 2$.

 $\langle 1 \rangle 5$. Pick $a \in \bigcap_{n=1}^{\infty} \overline{V_n}$

PROOF: Corollary 10.50.6.1.

 $\langle 1 \rangle 6. \ \ a \in X - \{a_1, a_2, \ldots\}$

PROOF: We cannot have $a = a_n$ because $a \in \overline{V_n}$.

Corollary 10.52.2.1. For all $a, b \in \mathbb{R}$ with a < b, the closed interval [a, b] is uncountable.

Example 10.52.3. The Cantor set has no isolated points, and is therefore uncountable.

PROOF:

- $\langle 1 \rangle 1$. Let: (A_n) be the sets in Definition 8.1.1.
- $\langle 1 \rangle 2$. Let: $x \in C$
- $\langle 1 \rangle$ 3. Let: A_n be the first set such that x is an endpoint of one of the intervals that make up A_n
- $\langle 1 \rangle 4$. Let: $(a_m)_{m \geq n}$ be the sequence of points defined by: a_m is the point such that either $[a_m, x]$ or $[x, a_m]$ is one of the intervals that make up A_m .
- $\langle 1 \rangle 5$. (a_m) is a sequence of points of C distinct from x that converges to x.

```
PROOF: Since |a_m - x| = 1/3^m for all m. \langle 1 \rangle 6. x is a limit point of C.
```

10.53 Local Compactness

Definition 10.53.1 (Locally Compact). Let X be a topological space and $x \in X$. Then X is *locally compact* at x if and only if there exists a compact subspace of X that includes a neighbourhood of x.

A space is *locally compact* if and only if it is locally compact at every point.

Example 10.53.2. The real line is locally compact, because for every real number x we have $x \in (x - 1, x + 1) \subseteq [x - 1, x + 1]$.

Example 10.53.3. For all $n \geq 1$, we have \mathbb{R}^n is locally compact. For any point $x = (x_1, \dots, x_n)$, we have $x \in (x_1 - 1, x_1 + 1) \times \dots \times (x_n - 1, x_n + 1) \subseteq [x_1 - 1, x_1 + 1] \times \dots \times [x_n - 1, x_n + 1]$.

The following example shows that a countable product of locally compact spaces is not necessarily locally compact.

Example 10.53.4. The space \mathbb{R}^{ω} is not locally compact.

PROOF:

- $\langle 1 \rangle 1$. Assume: for a contradiction $0 \in U \subseteq C$ where U is open and C is compact.
- $\langle 1 \rangle 2$. PICK a basic open set $B = (a_1, b_1) \times \cdots \times (a_n, b_n) \times \mathbb{R} \times \mathbb{R} \times \cdots$ such that $0 \in B \subseteq U$
- $\langle 1 \rangle 3. \ \overline{B} = [a_1, b_1] \times \cdots \times [a_n, b_n] \times \mathbb{R} \times \mathbb{R} \times \cdots$ is compact. Proof:Proposition 10.50.3.
- $\langle 1 \rangle 4$. Q.E.D.

Proof: This is a contradiction.

Example 10.53.5. Every linearly ordered set X with the least upper bound property is locally compact under the order topology.

For any point x, pick a basic open set B such that $x \in B$. Then $x \in B \subseteq \overline{B}$ and \overline{B} is a closed interval, hence compact (Corollary 10.50.23.1).

Proposition 10.53.6. Any closed subspace of a locally compact space is locally compact.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a locally compact space and $Y \subseteq X$ be closed.
- $\langle 1 \rangle 2$. Let: $y \in Y$.
- $\langle 1 \rangle 3.$ Pick a compact subspace C of X and neighbourhood U of y in X such that $U \subseteq C$
- $\langle 1 \rangle 4. \ y \in U \cap Y \subseteq C \cap Y$

 $\langle 1 \rangle$ 5. $C \cap Y$ is compact. PROOF:Proposition 10.50.3.

Proposition 10.53.7. Let X be a Hausdorff space. Let $x \in X$. Then X is locally compact at x if and only if, for every neighbourhood U of x, there exists a neighbourhood V of x such that \overline{V} is compact and $\overline{V} \subseteq U$.

Corollary 10.53.7.1. Every open subspace of a locally compact Hausdorff space is locally compact Hausdorff.

This example shows that a subspace of a locally compact Hausdorff space is not necessarily locally compact Hausdorff.

Example 10.53.8. The rationals \mathbb{Q} are not locally compact.

Assume for a contradiction $C \subseteq \mathbb{Q}$ is compact and includes $(-\epsilon, \epsilon) \cap \mathbb{Q}$. Pick an irrational $\xi \in (-\epsilon, \epsilon)$. Then $\{(-\infty, q) \cap \mathbb{Q} \mid q \in \mathbb{Q}, q < \xi\} \cup \{(q, +\infty) \cap \mathbb{Q} \mid q \in \mathbb{Q}, q > \xi\}$ covers C but no finite subcover does.

Proposition 10.53.9. Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be a family of nonempty spaces. If $\prod_{{\alpha}\in J} X_{\alpha}$ is locally compact under the box topology then each X_{α} is locally compact.

Proof:

- $\langle 1 \rangle 1$. Let: $\alpha \in J$
- $\langle 1 \rangle 2$. Let: $x_{\alpha} \in X_{\alpha}$
- $\langle 1 \rangle 3$. Extend x_{α} to a family $(x_{\beta})_{\beta \in J} \in \prod_{\beta \in J} X_{\beta}$
- $\langle 1 \rangle 4$. PICK a compact $C \subseteq \prod_{\beta \in J} X_{\beta}$ that includes a basic open neighbourhood $\prod_{\beta \in J} U_{\beta}$ of (x_{β}) such that each U_{β} is open in X_{β} .
- $\langle 1 \rangle 5. \ x_{\alpha} \in U_{\alpha} \subseteq \pi_{\alpha}(C)$
- $\langle 1 \rangle 6$. $\pi_{\alpha}(C)$ is compact.

PROOF: Theorem 10.50.4.

Proposition 10.53.10 (AC). Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be a family of nonempty spaces. Then $\prod_{{\alpha}\in J}X_{\alpha}$ is locally compact if and only if each X_{α} is locally compact, and X_{α} is compact for all but finitely many ${\alpha}\in J$.

Proof:

- $\langle 1 \rangle 1$. Let: $\{X_{\alpha}\}_{{\alpha} \in J}$ be a family of nonempty spaces.
- $\langle 1 \rangle 2$. If $\prod_{\alpha \in J} X_{\alpha}$ is locally compact then each X_{α} is locally compact.
 - $\langle 2 \rangle 1$. Assume: $\prod_{\alpha \in J} X_{\alpha}$ is locally compact.
 - $\langle 2 \rangle 2$. For all $\alpha \in J$ we have X_{α} is locally compact.
 - $\langle 3 \rangle 1$. Let: $\alpha \in J$
 - $\langle 3 \rangle 2$. Let: $x_{\alpha} \in X_{\alpha}$
 - $\langle 3 \rangle 3$. Extend x_{α} to a family $(x_{\beta})_{\beta \in J} \in \prod_{\beta \in J} X_{\beta}$
 - $\langle 3 \rangle 4$. PICK a compact $C \subseteq \prod_{\beta \in J} X_{\beta}$ that includes a basic open neighbourhood $\prod_{\beta \in J} U_{\beta}$ of (x_{β}) such that each U_{β} is open in X_{β} .
 - $\langle 3 \rangle 5. \ x_{\alpha} \in U_{\alpha} \subseteq \pi_{\alpha}(C)$
 - $\langle 3 \rangle 6$. $\pi_{\alpha}(C)$ is compact.

Proof: Theorem 10.50.4.

- $\langle 1 \rangle 3$. If $\prod_{\alpha \in J} X_{\alpha}$ is locally compact then X_{α} is compact for all but finitely many $\alpha \in J$.
 - $\langle 2 \rangle 1$. Assume: $\prod_{\alpha \in J} X_{\alpha}$ is locally compact.
 - $\langle 2 \rangle 2$. Pick $x_{\alpha} \in X_{\alpha}$ for all α .
 - $\langle 2 \rangle$ 3. PICK a compact $C \subseteq \prod_{\alpha \in J} X_{\alpha}$ that includes a basic open neighbourhood $\prod_{\alpha \in J} U_{\alpha}$ of (x_{α}) such that each U_{α} is open in X_{α} , and $U_{\alpha} = X_{\alpha}$ for all but finitely many α .
 - $\langle 2 \rangle 4$. For all but finitely many $\alpha \in J$, we have $X_{\alpha} = \pi_{\alpha}(C)$
 - $\langle 2 \rangle$ 5. For all but finitely many $\alpha \in J$, we have X_{α} is compact. PROOF: Theorem 10.50.4.
- $\langle 1 \rangle 4$. If each X_{α} is locally compact and X_{α} is compact for all but finitely many $\alpha \in J$ then $\prod_{\alpha \in J} X_{\alpha}$ is locally compact.
 - $\langle 2 \rangle 1$. Assume: X_{α} is compact for all α except $\alpha_1, \ldots, \alpha_n$
 - $\langle 2 \rangle 2$. Assume: $X_{\alpha_1}, \ldots, X_{\alpha_n}$ are locally compact.
 - $\langle 2 \rangle 3$. Let: $(x_{\alpha}) \in \prod X_{\alpha}$
 - $\langle 2 \rangle$ 4. For i = 1, ..., n, PICK a compact $C_{\alpha_i} \subseteq X_{\alpha_i}$ that includes the neighbourhood U_{α_i} of x_{α_i} .
 - $\langle 2 \rangle$ 5. For $\alpha \neq \alpha_1, \dots, \alpha_n$, LET: $C_{\alpha} = U_{\alpha} = X_{\alpha}$
 - $\langle 2 \rangle 6$. $\prod_{\alpha \in J} C_{\alpha}$ is compact.
 - PROOF: Tychonoff's Theorem.
- $(2)7. (x_{\alpha}) \in \prod U_{\alpha} \subseteq \prod C_{\alpha}$

The following example shows that the continuous image of a locally compact space is not necessarily locally compact.

Example 10.53.11. Pick an enumeration $\{q_1, q_2, \ldots\}$ of \mathbb{Q} . Let $X = \bigcup_{n \in \mathbb{Z}^+} (n, n+1)$. Define $f: X \to \mathbb{Q}$ by $f(x) = q_n$ if $x \in (n, n+1)$. Then f is continuous, X is locally compact, but $f(X) = \mathbb{Q}$ is not locally compact.

Proposition 10.53.12. The image of a locally compact space under a continuous open map is locally compact.

Proof:

- $\langle 1 \rangle 1.$ Let: X be locally compact and $f: X \twoheadrightarrow Y$ be a surjective continuous open map.
- $\langle 1 \rangle 2$. Let: $y \in Y$
- $\langle 1 \rangle 3$. PICK $x \in X$ such that f(x) = y
- $\langle 1 \rangle 4$. PICK a compact $C \subseteq X$ that includes a neighbourhood U of x
- $\langle 1 \rangle$ 5. $y \in f(U) \subseteq f(C)$ and f(U) is open, f(C) is compact.

Lemma 10.53.13. Let X, Y and Z be topological spaces and $p: X \to Y$. If p is a quotient map and Z is locally compact Hausdorff, then $p \times \mathrm{id}_Z : X \times Z \to Y \times Z$ is a quotient map.

PROOF:

```
\langle 1 \rangle 1. Let: X, Y and Z be topological spaces and p: X \to Y.
```

- $\langle 1 \rangle 2$. Assume: p is a quotient map and Z is locally compact Hausdorff.
- $\langle 1 \rangle 3$. Let: $\pi = p \times \mathrm{id}_Z$
- $\langle 1 \rangle 4$. π is sujective.
- $\langle 1 \rangle 5$. π is continuous.
- $\langle 1 \rangle 6$. π is strongly continuous.
 - $\langle 2 \rangle 1$. Let: $A \subseteq Y \times Z$
 - $\langle 2 \rangle 2$. Assume: $\pi^{-1}(A)$ is open.
 - $\langle 2 \rangle 3$. Let: $(y,z) \in A$
 - $\langle 2 \rangle 4$. PICK $x \in X$ such that p(x) = y
 - $\langle 2 \rangle$ 5. PICK open sets U_1 in X and V in Z such that $x \in U_1, z \in V, \overline{V}$ is compact, and $U_1 \times \overline{V} \subseteq \pi^{-1}(A)$
 - (3)1. PICK open sets U_1 in X and V' in Z such that $x \in U_1$, $z \in V'$ and $U' \times V' \subset \pi^{-1}(A)$
 - $\langle 3 \rangle 2$. PICK V open in Z such that $z \in V$, \overline{V} is compact and $\overline{V} \subseteq V'$ PROOF: Proposition 10.53.7.
 - $\langle 2 \rangle$ 6. Let: $U = \bigcup \{U' \text{ open in } X \mid U' \times \overline{V} \subseteq \pi^{-1}(A) \}$
 - $\langle 2 \rangle$ 7. *U* is saturated
 - $\langle 3 \rangle 1$. Let: $a \in U$, $b \in X$ with p(a) = p(b)
 - $\langle 3 \rangle 2. \ \{b\} \times \overline{V} \subseteq \pi^{-1}(A)$
 - $\langle 3 \rangle 3$. PICK U' open in X such that $b \in U'$ and $U' \times \overline{V} \subseteq \pi^{-1}(A)$ PROOF: By the Tube Lemma.
 - $\langle 3 \rangle 4. \ b \in U' \subseteq U$
 - $\langle 2 \rangle 8$. $\pi(U \times V)$ is open

PROOF: Since $\pi(U \times V) = p(U) \times V$.

- $\langle 2 \rangle 9. \ (y,z) \in \pi(U \times V)$
- $\langle 2 \rangle 10. \ \pi(U \times V) \subseteq A$

Theorem 10.53.14. Let A, B, C and D be topological spaces with B and C locally compact Hausdorff. Let p:A woheadrightarrow B and q:C woheadrightarrow D be quotient maps. Then p imes q:A imes C woheadrightarrow B imes D.

PROOF: By Lemma 10.53.13 since $p \times q = (\mathrm{id}_B \times q) \circ (p \times \mathrm{id}_C)$. \square

10.54 Compactifications

Definition 10.54.1 (Compactification). Let X be a topological space. A *compactification* of X consists of a compact Hausdorff space Y and an imbedding $X \to Y$.

Definition 10.54.2 (One-Point Compactification). Let X be a topological space. A *one-point compactification* of X is a compactification $i: X \to Y$ such that Y - i(x) consists of a single point.

Theorem 10.54.3. Let X be a topological space. Then X is locally compact Hausdorff if and only if there exists a one-point compactification $i: X \to Y$. In this case, Y is unique up to unique homeomorphism that commutes with i.

PROOF:

- $\langle 1 \rangle$ 1. For any compact Hausdorff space Y and point $a \in Y$, the space $Y \{a\}$ is locally compact Hausdorff.
 - $\langle 2 \rangle 1$. Let: Y be a compact Hausdorff space.
 - $\langle 2 \rangle 2$. Let: $a \in Y$
 - $\langle 2 \rangle 3$. $Y \{a\}$ is closed.
 - $\langle 2 \rangle 4$. $Y \{a\}$ is locally compact.

Proof: Proposition 10.53.6.

 $\langle 2 \rangle 5$. $Y - \{a\}$ is Hausdorff.

PROOF: Theorem 10.20.6.

- $\langle 1 \rangle 2$. For any locally compact Hausdorff space X, there exists a compact Hausdorff space Y and imbedding $i: X \to Y$ such that Y i(X) is a single point.
 - $\langle 2 \rangle$ 1. Let: X be a locally compact Hausdorff space.
 - $\langle 2 \rangle 2$. Let: $Y = X \cup \{\infty\}$
 - $\langle 2 \rangle$ 3. Define a topology on Y by: $U \subseteq Y$ is open if and only if U is an open set in X or U = Y C where C is a compact subspace of X.
 - $\langle 3 \rangle 1$. Y is open.

PROOF: Since $Y = Y - \emptyset$ and \emptyset is a compact subspace of X.

 $\langle 3 \rangle 2$. For any set of open sets \mathcal{U} we have $\bigcup \mathcal{U}$ is open.

PROOF: We have $\bigcup \mathcal{U} = Y - (\bigcap \{C \subseteq X \mid C \text{ is compact}, Y - C \in \mathcal{U}\} - \bigcup \{U \subseteq X \mid U \text{ is open in } X, U \in \mathcal{U}\})$, where we take the empty intersection to be Y.

- $\langle 3 \rangle 3$. For any open sets U and V we have $U \cap V$ is open.
 - $\langle 4 \rangle 1$. Let: U and V be open sets.
 - $\langle 4 \rangle 2$. Case: U and V are open sets in X.

PROOF: In this case $U \cap V$ is open in X.

 $\langle 4 \rangle 3.$ Case: C_1 and C_2 are compact subspaces of X and $U=X-C_1,$ $V=X-C_2$

PROOF: In this case $C_1 \cup C_2$ is compact and $U \cap V = X - (C_1 \cup C_2)$.

 $\langle 4 \rangle 4.$ CASE: U is open in X, C is a compact subspace of X and V = X - C

PROOF: In this case $U \cap V = U - C$ which is open since C is closed.

- $\langle 2 \rangle 4$. Y is compact.
 - $\langle 3 \rangle 1$. Let: \mathcal{A} be an open cover of Y.
 - $\langle 3 \rangle 2$. Pick C compact in X such that $Y C \in \mathcal{A}$

PROOF: There must be at least one such member of \mathcal{A} since $\infty \in \bigcup \mathcal{A}$.

- $\langle 3 \rangle 3$. $\{ U \cap X \mid U \in \mathcal{A} \{ Y C \} \}$ is a set of open sets in X that covers C.
- $\langle 3 \rangle 4$. PICK a finite subcover $\{U_1 \cap X, \dots, U_n \cap X\}$
- $\langle 3 \rangle 5. \{U_1 \cap X, \dots, U_n \cap X, Y C\} \text{ covers } Y.$
- $\langle 2 \rangle 5$. Y is Hausdorff.
 - $\langle 3 \rangle 1$. Let: $x, y \in Y$ with $x \neq y$
 - $\langle 3 \rangle 2$. Case: $x, y \in X$

PROOF: There are disjoint open sets U, V in X such that $x \in U, y \in V$.

- $\langle 3 \rangle 3$. Case: $x \in X, y = \infty$
 - $\langle 4 \rangle 1$. PICK a compact C that includes a neighbourhood U of x

```
\langle 4 \rangle 2. U and Y-C are disjoint open sets in Y with x \in U and \infty \in Y-C
   \langle 2 \rangle 6. Let i: X \to Y be the inclusion.
   \langle 2 \rangle 7. i is an imbedding.
      \langle 3 \rangle 1. i is continuous
      \langle 3 \rangle 2. i is an open map.
   \langle 2 \rangle 8. \ Y - i(X) = \{ \infty \}
\langle 1 \rangle 3. If X is locally compact Hausdorff, Y and Y' are compact Hausdorff, and
        i: X \to Y, i': \to Y' are imbeddings such that Y-i(X) and Y'-i'(X) each
       have just one point, then there exists a unique homeomorphism \theta: Y \cong Y'
       such that \theta \circ i = i'.
   \langle 2 \rangle 1. Let: Y - i(X) = \{a\} and Y' - i'(X) = \{b\}
   \langle 2 \rangle 2. Let: \theta: Y \to Y' be the function with \theta(a) = b and \theta(i(x)) = i'(x)
   \langle 2 \rangle 3. \theta is a bijection
   \langle 2 \rangle 4. \theta is continuous.
      \langle 3 \rangle 1. Let: U \subseteq Y' be open.
               PROVE: \theta^{-1}(U) is open.
      \langle 3 \rangle 2. Case: b \in U
         \langle 4 \rangle 1. \ Y' - U is compact
         \langle 4 \rangle 2. i(i'^{-1}(Y'-U)) is compact.
         \langle 4 \rangle 3. i(i'^{-1}(Y'-U)) is closed.
         \langle 4 \rangle 4. \ \theta^{-1}(U) = X - i(i'^{-1}(Y' - U))
      \langle 3 \rangle 3. Case: b \notin U
         PROOF: U = i'(V) for some V open in X and \theta^{-1}(U) = i(V).
   \langle 2 \rangle 5. \theta is an open map.
      PROOF: Similar.
   \langle 2 \rangle 6. \theta is unique.
```

PROOF: Since X is locally compact.

Example 10.54.4. S^1 is the one-point compactification of \mathbb{R} .

Example 10.54.5. S^2 is the one-point compactification of \mathbb{R}^2 .

Definition 10.54.6 (Riemann Sphere). The *Riemann sphere* or *extended complex plane* is $\mathcal{C} \cup \{\infty\}$ topologized as the one-point compactification of \mathcal{C} . It is homeomorphic to S^2 .

Example 10.54.7. The one-point compactification of \mathbb{Z}^+ is $\{0\} \cup \{1/n \mid n \in \mathbb{Z}^+\}$.

Chapter 11

Topological Groups

Definition 11.0.1 (Topological Group). A topological group G consists of a T_1 space G and continuous maps $\cdot : G^2 \to G$ and $()^{-1} : G \to G$ such that $(G, \cdot, ()^{-1})$ is a group.

Example 11.0.2. 1. The integers \mathbb{Z} under addition are a topological group.

- 2. The real numbers \mathbb{R} under addition are a topological group.
- 3. The positive reals under multiplication are a topological group.
- 4. The set $\{z \in \mathbb{C} \mid |z| = 1\}$ under multiplication and given the topology of S^1 is a topological group.
- 5. For any $n \geq 0$, the general linear group $GL_n(\mathbb{R})$ is a topological group under matrix multiplication, considered as a subspace of \mathbb{R}^{n^2} .

Lemma 11.0.3. Let G be a T_1 space and $\cdot: G^2 \to G$, $()^{-1}: G \to G$ be functions such that $(G, \cdot, ()^{-1})$ is a group. Then G is a topological group if and only if the function $f: G^2 \to G$ that maps (x, y) to xy^{-1} is continuous.

PROOF:

```
\begin{split} &\langle 1 \rangle 1. \text{ If } G \text{ is a topological group then } f \text{ is continuous.} \\ &\text{Proof: From Theorem } 10.12.9. \\ &\langle 1 \rangle 2. \text{ If } f \text{ is continuous then } G \text{ is a topological group.} \\ &\langle 2 \rangle 1. \text{ Assume: } f \text{ is continuous.} \\ &\langle 2 \rangle 2. \text{ ( )}^{-1} \text{ is continuous.} \\ &\text{Proof: Since } x^{-1} = f(e,x). \\ &\langle 2 \rangle 3. \text{ · is continuous.} \\ &\text{Proof: Since } xy = f(x,y^{-1}). \\ &\Box \end{split}
```

Lemma 11.0.4. Let G be a topological group and H a subgroup of G. Then H is a topological group under the subspace topology.

Proof:

 $\langle 1 \rangle 1$. H is T_1 .

PROOF: From Proposition 10.19.5.

 $\langle 1 \rangle 2$. multiplication and inverse on H are continuous.

PROOF: From Theorem 10.12.10.

Lemma 11.0.5. Let G be a topological group and H a subgroup of G. Then \overline{H} is a subgroup of G.

Proof:

 $\langle 1 \rangle 1$. Let: $x, y \in \overline{H}$ Prove: $xy^{-1} \in \overline{H}$

 $\langle 1 \rangle 2$. Let: *U* be any neighbourhood of xy^{-1}

 $\langle 1 \rangle 3$. Let: $f: G^2 \to G$, $f(a,b) = ab^{-1}$

 $\langle 1 \rangle 4$. $f^{-1}(U)$ is a neighbourhood of (x,y)

 $\langle 1 \rangle$ 5. PICK neighbourhoods V, W of x and y respectively such that $f(V \times W) \subseteq U$.

 $\langle 1 \rangle 6$. Pick $a \in V \cap H$ and $b \in W \cap H$

PROOF: Theorem 10.4.6.

 $\langle 1 \rangle 7. \ ab^{-1} \in U \cap H$

 $\langle 1 \rangle 8$. Q.E.D.

PROOF: By Theorem 10.4.6.

Proposition 11.0.6. Let G be a topological group and $\alpha \in G$. Then the maps $l_{\alpha}, r_{\alpha} : G \to G$ defined by $l_{\alpha}(x) = \alpha x$, $r_{\alpha}(x) = x\alpha$ are homeomorphisms of G with itself.

PROOF: They are continuous with continuous inverses $l_{\alpha^{-1}}$ and $r_{\alpha^{-1}}$. \square

Corollary 11.0.6.1. Every topological group is homogeneous.

PROOF: Given a topological group G and $a,b \in G$, we have $l_{ba^{-1}}$ is a homeomorphism that maps a to b. \square

Proposition 11.0.7. Let G be a topological group and H a subgroup of G. Give G/H the quotient topology. For all $\alpha \in G$, the map $\overline{f_{\alpha}}$ that sends xH to αxH is a homeomorphism $G/H \cong G/H$.

Proof:

 $\langle 1 \rangle 1$. $\overline{f_{\alpha}}$ is well-defined.

PROOF: If $xy^{-1} \in H$ then $(\alpha x)(\alpha y)^{-1} = xy^{-1} \in H$.

 $\langle 1 \rangle 2$. $\overline{f_{\alpha}}$ is continuous.

PROOF: Theorem 10.24.7 since $\overline{f_{\alpha}} \circ p = p \circ f_{\alpha}$ is continuous, where $p: G \twoheadrightarrow G/H$ is the canonical surjection.

 $\langle 1 \rangle 3$. $\overline{f_{\alpha}}^{-1}$ is continuous.

PROOF: Similar since $\overline{f_{\alpha}}^{-1} = \overline{f_{\alpha^{-1}}}$.

Corollary 11.0.7.1. Let G be a topological group and H a subgroup of G. Give G/H the quotient topology. Then G/H is homogeneous.

Proposition 11.0.8. Let G be a topological group and H a subgroup of G. Give G/H the quotient topology. If H is closed in G then G/H is T_1 .

Proof:

```
\langle 1 \rangle 1. Let: p:G \twoheadrightarrow G/H be the canonical surjection \langle 1 \rangle 2. Let: x \in G \langle 1 \rangle 3. p^{-1}(xH) = f_x(H) \langle 1 \rangle 4. p^{-1}(xH) is closed in G
```

PROOF: Since H is closed and f_x is a homemorphism of G with itself.

 $\langle 1 \rangle 5. \{xH\}$ is closed in G/H

Proposition 11.0.9. Let G be a topological group and H a subgroup of G. Give G/H the quotient topology. Then the canonical surjection $p: G \twoheadrightarrow G/H$ is an open map.

Proof:

Proposition 11.0.10. Let G be a topological group and H a closed normal subgroup of G. Then G/H is a topological group under the quotient topology.

Proof:

```
\begin{array}{l} \langle 1 \rangle 1. \ G/H \ \text{is} \ T_1 \\ \text{Proof: Proposition 11.0.8.} \\ \langle 1 \rangle 2. \ \text{The map} \ \overline{m} : (xH,yH) \mapsto xy^{-1}H \ \text{is continuous.} \\ \langle 2 \rangle 1. \ p^2 : G^2 \to (G/H)^2 \ \text{is a quotient map.} \\ \text{Proof: Propositions 10.24.6, 11.0.9.} \\ \langle 2 \rangle 2. \ \overline{m} \circ p^2 \ \text{is continuous.} \\ \text{Proof: As it is} \ p^2 \circ m \ \text{where} \ m : G^2 \to G \ \text{with} \ m(x,y) = xy^{-1} \\ \square \end{array}
```

Lemma 11.0.11. Let G be a topological group and $A, B \subseteq G$. If either A or B is open then AB is open.

PROOF: If A is open we have $AB = \bigcup_{b \in B} r_b(A)$. Similarly if B is open. \sqcup

Definition 11.0.12 (Symmetric Neighbourhood). Let G be a topological group. A neighbourhood V of e is symmetric if and only if $V = V^{-1}$.

Lemma 11.0.13. Let G be a topological group. Let V be a neighbourhood of e. Then V is symmetric if and only if, for all $x \in V$, we have $x^{-1} \in V$.

```
Proof:
\langle 1 \rangle 1. If V is symmetric then, for all x \in V, we have x^{-1} \in V
   PROOF: Immediate from defintions.
\langle 1 \rangle 2. If, for all x \in V, we have x^{-1} \in V, then V is symmetric.
   \langle 2 \rangle 1. Assume: for all x \in V we have x^{-1} \in V
   \langle 2 \rangle 2. \ V \subseteq V^{-1}
      PROOF: If x \in V then there exists y \in V such that x = y^{-1}, namely
      y = x^{-1}
   \langle 2 \rangle 3. \ V^{-1} \subseteq V
      PROOF: Immediate from \langle 2 \rangle 1.
Lemma 11.0.14. Let G be a topological group. For every neighbourhood U of
e, there exists a symmetric neighbourhood V of e such that V^2 \subseteq U.
PROOF:
\langle 1 \rangle 1. Let: U be a neighbourhood of e.
\langle 1 \rangle 2. PICK a neighbourhood V' of e such that V'V' \subseteq U
   Proof: Such a neighbourhood exists because multiplication in G is continu-
\langle 1 \rangle 3. PICK a neighbourhood W of e such that WW^{-1} \subseteq V'
   PROOF: Such a neighbourhood exists because the function that maps (x, y)
   to xy^{-1} is continuous.
\langle 1 \rangle 4. Let: V = WW^{-1}
\langle 1 \rangle 5. V is a neighbourhood of e
   \langle 2 \rangle 1. \ e \in V
      PROOF: Since e \in W so e = ee^{-1} \in V.
   \langle 2 \rangle 2. V is open
      Proof: Lemma 11.0.11.
\langle 1 \rangle 6. V is symmetric
   \langle 2 \rangle 1. For all x \in V we have x^{-1} \in V
      \langle 3 \rangle 1. Let: x \in V
      \langle 3 \rangle 2. PICKy, z \in W such that x = yz^{-1}
      \langle 3 \rangle 3. \ x^{-1} = zy^{-1}
      \langle 3 \rangle 4. \ x^{-1} \in V
      \langle 3 \rangle 5. \ x \in V^{-1}
   \langle 2 \rangle 2. Q.E.D.
      Proof: Lemma 11.0.13
\langle 1 \rangle 7. \ V^2 \subseteq U
```

Proposition 11.0.15. Every topological group is Hausdorff.

Proof:

 $\langle 1 \rangle 1$. Let: G be a topological group.

PROOF: We have $V^2 \subseteq (V')^2 \subseteq U$

 $\langle 1 \rangle 2$. Let: $x, y \in G$ with $x \neq y$

```
\langle 1 \rangle 3. Let: U = G \setminus \{x[^{-1}y]\}
\langle 1 \rangle 4. PICK a symmetric neighbourhood V of e such that VV \subseteq U
   \langle 2 \rangle 1. U is open
      PROOF: Since G is T_1.
   \langle 2 \rangle 2. \ e \in U
      PROOF: Since x \neq y
   \langle 2 \rangle 3. Q.E.D.
      Proof: Lemma 11.0.14.
\langle 1 \rangle 5. Vx and Vy are disjoint neighbourhoods of x and y respectively.
   \langle 2 \rangle 1. Vx is open
      PROOF: Since Vx = r_x(V)
   \langle 2 \rangle 2. Vy is open
      PROOF: Similar.
   \langle 2 \rangle 3. \ Vx \cap Vy = \emptyset
      \langle 3 \rangle 1. Assume: for a contradiction z \in Vx \cap Vy
      \langle 3 \rangle 2. PICK a, b \in V such that z = ax = by
       \langle 3 \rangle 3. \ xy^{-1} \in VV
          PROOF: Since xy^{-1} = a^{-1}b
       \langle 3 \rangle 4. \ xy^{-1} \in U
      \langle 3 \rangle 5. Q.E.D.
          PROOF: From \langle 1 \rangle 3.
Proposition 11.0.16. Every topological group is regular.
\langle 1 \rangle 1. Let: G be a topological group.
\langle 1 \rangle 2. Let: A \subseteq G be a closed set and a \notin A.
\langle 1 \rangle 3. Let: U = G \setminus Aa^{-1}
\langle 1 \rangle 4. PICK a symmetric neighbourhood V of e such that VV \subseteq U
   \langle 2 \rangle 1. U is open
      PROOF: Since Aa^{-1} = r_{a^{-1}}(A) is closed.
   \langle 2 \rangle 2. \ e \in U
      PROOF: Since a \notin A.
   \langle 2 \rangle3. Q.E.D.
      Proof: Lemma 11.0.14.
\langle 1 \rangle 5. VA and Va are disjoint open sets with A \subseteq VA and a \in Va
   \langle 2 \rangle 1. VA is open
      Proof: Lemma 11.0.11
   \langle 2 \rangle 2. Va is open
      Proof: Lemma 11.0.11
   \langle 2 \rangle 3. VA \cap Va = \emptyset
       \langle 3 \rangle 1. Assume: for a contradiction z \in VA \cap Va
      \langle 3 \rangle 2. Pick b, c \in V and d \in A with z = bd = ca
      \langle 3 \rangle 3. \ da^{-1} \in U
          PROOF: Since da^{-1} = b^{-1}c \in VV \subseteq U
```

 $\langle 3 \rangle 4$. Q.E.D.

```
Proposition 11.0.17. Let G be a topological group and H a subgroup of G.
Give G/H the quotient topology. If H is closed in G then G/H is regular.
Proof:
\langle 1 \rangle 1. Let: p: G \rightarrow G/H be the canonical surjection.
\langle 1 \rangle 2. Let: A be a closed set in G/H and aH \in (G/H) \setminus A.
\langle 1 \rangle 3. Let: B = p^{-1}(A)
\langle 1 \rangle 4. B is a closed saturated set in G.
\langle 1 \rangle 5. B \cap aH = \emptyset
\langle 1 \rangle 6. \ B = BH
\langle 1 \rangle 7. PICK a symmetric neighbourhood V of e such that VB does not intersect
   \langle 2 \rangle 1. Let: U = G \setminus Ba^{-1}
   \langle 2 \rangle 2. Pick a symmetric neighbourhood V of e such that VV \subseteq U
      \langle 3 \rangle 1. U is open
         PROOF: Since Ba^{-1} = r_{a^{-1}}(B) is closed.
      \langle 3 \rangle 2. \ e \in U
         PROOF: If e \in Ba^{-1} then a \in B
      \langle 3 \rangle 3. Q.E.D.
         Proof: Lemma 11.0.14
   \langle 2 \rangle 3. VB \cap Va = \emptyset
      PROOF: If vb = v'a for v, v' \in V and b \in B then we have ba^{-1} = v^{-1}v' \in V
      Ba \cap VV \subseteq Ba \cap U.
\langle 1 \rangle 8. p(VB) and p(Va) are disjoint open sets
   \langle 2 \rangle 1. p(VB) and p(Va) are open.
      Proof: Proposition 11.0.9.
   \langle 2 \rangle 2. p(VB) \cap p(Va) = \emptyset
      PROOF: If vbH = v'aH for v, v' \in V, b \in B then v'a = vbh for some h \in H.
      Hence v'a \in Va \cap VBH = Va \cap VB.
\langle 1 \rangle 9. \ A \subseteq p(VB)
\langle 1 \rangle 10. \ aH \in p(Va)
```

Proposition 11.0.18. Let G be a topological group. The component of G that contains e is a normal subgroup of G.

PROOF:

 $\langle 1 \rangle 1$. Let: C be the component of G that contains e.

Proof: This contradicts $\langle 1 \rangle 3$

- $\langle 1 \rangle 2$. For all $x \in G$, xC is the component of G that contains x.
 - $\langle 2 \rangle 1$. Let: $x \in G$
 - $\langle 2 \rangle 2$. Let: D be the component of G that contains x.
 - $\langle 2 \rangle 3. \ xC \subseteq D$

PROOF: Since xC is connected by Theorem 10.30.13.

 $\langle 2 \rangle 4$. $D \subseteq xC$

PROOF: Since $x^{-1}D \subseteq C$ similarly. $\langle 1 \rangle 3$. For all $x \in G$, Cx is the component of G that contains x. PROOF: Similar. $\langle 1 \rangle 4$. For all $x \in C$ we have xC = Cx = C $\langle 1 \rangle$ 5. For all $x \in C$ we have $x^{-1}C = C$ $\langle 1 \rangle 6$. For all $x \in C$ we have $x^{-1} \in C$ $\langle 1 \rangle 7$. For all $x, y \in C$ we have $xy \in C$ PROOF: Since xyC = xC = x.

 $\langle 1 \rangle 8$. For all $x \in G$ we have xC = Cx.

PROOF: From $\langle 1 \rangle 2$ and $\langle 1 \rangle 3$.

Lemma 11.0.19. Let G be a topological group. Let A be a closed set in G and B a compact subspace of G such that $A \cap B = \emptyset$. Then there exists a symmetric neighbourhood U of e such that $AU \cap BU = \emptyset$.

- $\langle 1 \rangle 1$. For all $b \in B$ there exists a symmetric neighbourhood V of e such that $bV^2 \cap A = \emptyset$
 - $\langle 2 \rangle 1$. Let: $b \in B$
 - $\langle 2 \rangle 2$. Let: $W = b^{-1}(G \setminus A)$
 - $\langle 2 \rangle 3$. W is a neighbourhood of e and $bW \cap A = \emptyset$
 - $\langle 2 \rangle 4$. PICK a symmetric neighbourhood V of e such that $V^2 \subseteq W$
- $\langle 1 \rangle 2$. $\{bV^2 \mid b \in B, V \text{ is a symmetric neighbourhood of } e, bV^2 \cap A = \emptyset \}$ is an open cover of B
- $\langle 1 \rangle 3$. PICK a finite subcover $b_1 V_1^2, \ldots, b_n V_n^2$, say.
- $\langle 1 \rangle 4$. Let: $U = V_1 \cap \cdots \cap V_n$
- $\langle 1 \rangle 5$. $BU^2 \cap A = \emptyset$
- $\langle 1 \rangle 6. \ AU \cap BU = \emptyset$

PROOF: If $av \in BU$ where $a \in A$ and $v \in V$ then $a = avv^{-1} \in BU^2 \cap A$.

Proposition 11.0.20 (AC). Let G be a topological group. Let A be a closed set in G, and B a compact subspace of G. Then AB is closed.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in G \setminus AB$
- $\langle 1 \rangle 2$. $A^{-1}x \cap B = \emptyset$
- $\langle 1 \rangle 3$. $A^{-1}x$ is closed.
- (1)4. PICK a symmetric neighbourhood U of e such that $A^{-1}xU \cap BU = \emptyset$
- $\langle 1 \rangle 5$. xU^2 is open

PROOF: Lemma 11.0.11.

 $\langle 1 \rangle 6. \ x \in xU^2 \subseteq G \setminus AB$

Proof:

 $\langle 1 \rangle 1$. Let: $x \in \overline{AB}$ Prove: $x \in AB$

- $\langle 1 \rangle 2$. PICK a net $(a_{\alpha}b_{\alpha})_{\alpha \in J}$ in AB that converges to x.
- $\langle 1 \rangle 3$. PICK a convergent subnet $(b_{g(\beta)})_{\beta \in K}$ of $(b_{\alpha})_{\alpha \in J}$ with limit l.
- $\langle 1 \rangle 4. \ a_{g(\beta)} \to x l^{-1} \text{ as } \beta \to \infty$

PROOF:

$$a_{g(\beta)} = a_{g(\beta)} b_{g(\beta)} b_{g(\beta)}^{-1}$$
$$\to x l^{-1}$$

- $\langle 1 \rangle 5. \ xl^{-1} \in A$
- $\langle 1 \rangle 6. \ l \in B$

PROOF: B is closed because it is compact.

$$\langle 1 \rangle 7. \ x \in AB$$

Corollary 11.0.20.1. Let G be a topological group and $H \leq G$. Let $p: G \twoheadrightarrow G/H$ be the quotient map. If H is compact then p is a closed map.

PROOF: For A closed in G, we have $p^{-1}(p(A)) = AH$ is closed, and so p(A) is closed. \square

Corollary 11.0.20.2. Let G be a topological group and $H \leq G$. If H and G/H are compact then G is compact.

PROOF: From Proposition 10.51.2 since, for all $aH \in G/H$, we have $p^{-1}(aH) = aH$ is compact because it is homemorphic to H. \square

Proposition 11.0.21. Let G be a locally compact topological group. Let $H \leq G$. Then G/H is locally compact.

PROOF: From Propositions 10.53.12 and 11.0.9. \square

11.1 The Metric Topology

Definition 11.1.1 (Metric). Let X be a set. A *metric* on X is a function $d: X^2 \to \mathbb{R}$ such that:

- 1. For all $x, y \in X$, $d(x, y) \ge 0$
- 2. For all $x, y \in X$, d(x, y) = 0 if and only if x = y
- 3. For all $x, y \in X$, d(x, y) = d(y, x)
- 4. (Triangle Inequality) For all $x, y, z \in X$, $d(x, z) \le d(x, y) + d(y, z)$

We call d(x, y) the distance between x and y.

Definition 11.1.2 (Open Ball). Let X be a metric space. Let $a \in X$ and $\epsilon > 0$. The *open ball* with *centre a* and *radius* ϵ is

$$B(a,\epsilon) = \{ x \in X \mid d(a,x) < \epsilon \} .$$

Definition 11.1.3 (Metric Topology). Let X be a metric space. The *metric topology* on X is the topology generated by the basis consisting of all the open balls.

We prove this is a basis for a topology.

PROOF

 $\langle 1 \rangle 1$. For every point a, there exists a ball B such that $a \in B$ PROOF: We have $a \in B(a,1)$.

- $\langle 1 \rangle$ 2. For any balls B_1 , B_2 and point $a \in B_1 \cap B_2$, there exists a ball B_3 such that $a \in B_3 \subseteq B_1 \cap B_2$
 - $\langle 2 \rangle 1$. Let: $B_1 = B(c_1, \epsilon_1)$ and $B_2 = B(c_2, \epsilon_2)$
 - $\langle 2 \rangle 2$. Let: $\delta = \min(\epsilon_1 d(c_1, a), \epsilon_2 d(c_2, a))$ Prove: $B(a, \delta) \subseteq B_1 \cap B_2$
 - $\langle 2 \rangle 3$. Let: $x \in B(a, \delta)$
 - $\langle 2 \rangle 4. \ x \in B_1$

Proof:

$$d(x, c_1) = d(x, a) + d(a, c_1)$$

$$< \delta + d(a, c_1)$$

$$\le \epsilon_1$$

 $\langle 2 \rangle 5. \ x \in B_2$

PROOF: Similar.

Proposition 11.1.4. Let X be a metric space and $U \subseteq X$. Then U is open if and only if, for every $x \in U$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$.

Proof:

 $\langle 1 \rangle 1$. If U is open then, for all $x \in U$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$. $\langle 2 \rangle 1$. Assume: U is open.

- $\langle 2 \rangle 2$. Let: $x \in U$
- $\langle 2 \rangle 3$. Pick $a \in X$ and $\delta > 0$ such that $x \in B(a, \delta) \subseteq U$
- $\langle 2 \rangle 4$. Let: $\epsilon = \delta d(a, x)$ Prove: $B(x, \epsilon) \subseteq U$
- $\langle 2 \rangle 5$. Let: $y \in B(x, \epsilon)$
- $\langle 2 \rangle 6. \ d(y,a) < \delta$

Proof:

$$d(y,a) \le d(a,x) + d(x,y)$$
$$< \delta + d(x,y)$$
$$= \epsilon$$

- $\langle 2 \rangle 7. \ y \in U$
- $\langle 1 \rangle 2$. If, for all $x \in U$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$, then U is open. PROOF: Immediate from definitions.

Definition 11.1.5 (Discrete Metric). Let X be a set. The *discrete metric* on X is defined by

 $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$

Proposition 11.1.6. The discrete metric induces the discrete topology.

PROOF: For any (open) set U and point $a \in U$, we have $a \in B(a,1) \subseteq U$. \square

Definition 11.1.7 (Standard Metric on \mathbb{R}). The *standard metric* on \mathbb{R} is defined by d(x,y) = |x-y|.

Proposition 11.1.8. The standard metric on \mathbb{R} induces the standard topology on \mathbb{R} .

Proof:

- $\langle 1 \rangle 1$. Every open ball is open in the standard topology on \mathbb{R} .
 - PROOF: $B(a, \epsilon) = (a \epsilon, a + \epsilon)$
- $\langle 1 \rangle 2$. For every open set U and point $a \in U$, there exists $\epsilon > 0$ such that $B(a,\epsilon) \subseteq U$
 - $\langle 2 \rangle 1$. Let: U be an open set and $a \in U$
 - $\langle 2 \rangle 2$. PICK an open interval b, c such that $a \in (b,c) \subseteq U$
 - $\langle 2 \rangle 3$. Let: $\epsilon = \min(a b, c a)$
- $\langle 2 \rangle 4. \ B(a, \epsilon) \subseteq U$

Definition 11.1.9 (Metrizable). A topological space X is *metrizable* if and only if there exists a metric on X that induces the topology.

Definition 11.1.10 (Bounded). Let X be a metric space and $A \subseteq X$. Then A is *bounded* if and only if there exists M such that, for all $x, y \in A$, we have $d(x, y) \leq M$.

Definition 11.1.11 (Diameter). Let X be a metric space and $A \subseteq X$. The $diameter ext{ of } A ext{ is}$

$$\operatorname{diam} A = \sup_{x,y \in A} d(x,y) .$$

Definition 11.1.12 (Standard Bounded Metric). Let d be a metric on X. The standard bounded metric corresponding to d is the metric \overline{d} defined by

$$\overline{d}(x,y) = \min(d(x,y),1) .$$

We prove this is a metric.

Proof:

```
\langle 1 \rangle 1. \ d(x,y) \geq 0
   PROOF: Since d(x, y) \ge 0
\langle 1 \rangle 2. \overline{d}(x,y) = 0 if and only if x = y
   PROOF: \overline{d}(x,y) = 0 if and only if d(x,y) = 0 if and only if x = y
\langle 1 \rangle 3. \ \overline{d}(x,y) = \overline{d}(y,x)
   PROOF: Since d(x, y) = d(y, x)
\langle 1 \rangle 4. \ \overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z)
  Proof:
           \overline{d}(x,y) + \overline{d}(y,z) = \min(d(x,y),1) + \min(d(y,z),1)
                                    = \min(d(x,y) + d(y,z), d(x,y) + 1, d(y,z) + 1, 2)
                                    \geq \min(d(x,z),1)
                                    = \overline{d}(x,z)
```

Lemma 11.1.13. In any metric space X, the set $\mathcal{B} = \{B(a, \epsilon) \mid a \in X, \epsilon < 1\}$ is a basis for the metric topology.

Proof:

 $\langle 1 \rangle 1$. Every element of \mathcal{B} is open.

PROOF: From Lemma 10.7.2.

- $\langle 1 \rangle 2$. For every open set U and point $a \in U$, there exists $B \in \mathcal{B}$ such that $a \in B \subseteq U$
 - $\langle 2 \rangle 1$. Let: U be an open set and $a \in U$
 - $\langle 2 \rangle 2$. Pick $\epsilon > 0$ such that $B(a, \epsilon) \subseteq U$
 - $\langle 2 \rangle 3$. $B(a, \min(\epsilon, 1/2)) \subseteq U$
- $\langle 1 \rangle 3$. Q.E.D.

Proof: Lemma 10.7.3.

Proposition 11.1.14. Let d be a metric on the set X. Then the standard bounded metric \overline{d} induces the same metric as d.

PROOF: This follows from Lemma 11.1.13 since the open balls with radius < 1 are the same under both metrics. \square

Lemma 11.1.15. Let d and d' be two metrics on the same set X. Let \mathcal{T} and \mathcal{T}' be the topologies they induce. Then $\mathcal{T} \subseteq \mathcal{T}'$ if and only if, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that

$$B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$$
.

PROOF:

 $\langle 1 \rangle 1$. If $\mathcal{T} \subseteq \mathcal{T}'$ then, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that $B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$

PROOF: From Proposition 11.1.4 since $x \in B_d(x, \epsilon) \in \mathcal{T}'$.

- $\langle 1 \rangle 2$. If, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that $B_{d'}(x, \delta) \subseteq B_d(x, \epsilon)$, then $\mathcal{T} \subseteq \mathcal{T}'$
 - $\langle 2 \rangle$ 1. Assume: For all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that $B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$
 - $\langle 2 \rangle 2$. Let: $U \in \mathcal{T}$
 - $\langle 2 \rangle 3$. For all $x \in U$ there exists $\delta > 0$ such that $B_{d'}(x, \delta) \subseteq U$.
 - $\langle 3 \rangle 1$. Let: $x \in U$
 - $\langle 3 \rangle 2$. PICK $\epsilon > 0$ such that $B_d(x, \epsilon) \subseteq U$

Proof: Proposition 11.1.4

 $\langle 3 \rangle 3$. Pick $\delta > 0$ such that $B_{d'}(x, \delta) \subseteq B_d(x, \epsilon)$

Proof: By $\langle 2 \rangle 1$

 $\langle 3 \rangle 4$. $B_{d'}(x, \delta) \subseteq U$

 $\langle 2 \rangle 4. \ U \in \mathcal{T}'$

Proof: Proposition 11.1.4.

Proposition 11.1.16. \mathbb{R}^2 under the dictionary order topology is metrizable.

PROOF: Define $d: \mathbb{R}^2 \to \mathbb{R}$ by

$$d((x,y),(x,z)) = \max(|y-z|,1)$$

$$d((x,y),(x',y')) = 1 \qquad \text{if } x \neq x' \square$$

$$\langle 1 \rangle 1. \ x \in \bigcap_{i=1}^{N} \pi_i^{-1}() \subseteq B_D(a,\epsilon)$$

Proposition 11.1.17. Let $d: X^2 \to \mathbb{R}$ be a metric on X. Then the metric topology on X is the coarsest topology such that d is continuous.

Proof:

- $\langle 1 \rangle 1$. d is continuous.
 - $\langle 2 \rangle 1$. Let: $a, b \in X$
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 3$. Let: $\delta = \epsilon/2$
 - $\langle 2 \rangle 4$. Let: $x, y \in X$
 - $\langle 2 \rangle$ 5. Assume: $\rho((a,b),(x,y)) < \delta$
 - $\langle 2 \rangle 6. |d(a,b) d(x,y)| < \epsilon$
 - $\langle 3 \rangle 1. \ d(a,b) d(x,y) < \epsilon$

Proof:

$$d(a,b) \le d(a,x) + d(x,y) + d(y,b)$$

$$\le d(x,y) + 2\rho((a,b),(x,y))$$

$$< d(x,y) + 2\delta$$

$$= d(x,y) + \epsilon$$

 $\langle 3 \rangle 2. \ d(a.b) - d(x,y) > -\epsilon$

Proof: Similar.

 $\langle 2 \rangle$ 7. Q.E.D.

 $\langle 1 \rangle 2$. If \mathcal{T} is any topology under which d is continuous then \mathcal{T} is finer than the metric topology.

PROOF: Since $B(a, \epsilon) = d_a^{-1}((-\infty, \epsilon))$

Proposition 11.1.18. Let X be a metric space with metric d and $A \subseteq X$. The restriction of d to A is a metric on A that induces the subspace topology.

PROOF:

- $\langle 1 \rangle 1$. The restriction of d to A is a metric on A.
- $\langle 1 \rangle 2$. Every open ball under $d \upharpoonright A$ is open under the subspace topology. PROOF: $B_{d \upharpoonright A}(a, \epsilon) = B_d(a, \epsilon) \cap A$.
- $\langle 1 \rangle 3$. If U is open in the subspace topology and $x \in U$, then there exists a $d \upharpoonright A$ -ball B such that $x \in B \subseteq U$.
 - $\langle 2 \rangle 1$. PICK V open in X such that $U = V \cap A$
 - $\langle 2 \rangle 2$. Pick $\epsilon > 0$ such that $B_d(x, \epsilon) \subseteq V$
- $\langle 2 \rangle 3$. Take $B = B_{d \uparrow A}(x, \epsilon)$

Corollary 11.1.18.1. A subspace of a metrizable space is metrizable.

Proposition 11.1.19. Every metrizable space is Hausdorff.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a metric space
- $\langle 1 \rangle 2$. Let: $a, b \in X$ with $a \neq b$
- $\langle 1 \rangle 3$. Let: $\epsilon = d(a,b)/2$
- $\langle 1 \rangle 4$. Let: $U = B(a, \epsilon)$ and $V = B(b, \epsilon)$
- $\langle 1 \rangle$ 5. U and V are disjoint neighbourhoods of a and b respectively.

Corollary 11.1.19.1. Every metrizable space is T_1 .

Proposition 11.1.20 (CC). The product of a countable family of metrizable spaces is metrizable.

Proof:

- $\langle 1 \rangle 1$. Let: (X_n, d_n) be a sequence of metric spaces.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. each d_n is bounded above by 1.

Proof: By Proposition 11.1.14.

```
\langle 1 \rangle 3. Let: D be the metric on \mathbb{R}^{\omega} defined by D(x,y) = \sup_i (d_i(x_i,y_i)/i).
```

- $\langle 2 \rangle 1$. $D(x,y) \geq 0$
- $\langle 2 \rangle 2$. D(x,y) = 0 if and only if x = y
- $\langle 2 \rangle 3. \ D(x,y) = D(y,x)$
- $\langle 2 \rangle 4. \ D(x,z) \le D(x,y) + D(y,z)$

Proof:

$$D(x,z) = \sup_{i} \frac{d_i(x_i, z_i)}{i}$$

$$\leq \sup_{i} \frac{d_i(x_i, y_i) + d_i(y_i, z_i)}{i}$$

$$\leq \sup_{i} \frac{d_i(x_i, y_i)}{i} + \sup_{i} \frac{d_i(y_i, z_i)}{i}$$

$$= D(x, y) + D(y, z)$$

- $\langle 1 \rangle 4$. Every open ball $B_D(a, \epsilon)$ is open in the product topology.
 - $\langle 2 \rangle 1$. PICK N such that $1/\epsilon < N$
 - $\langle 2 \rangle 2$. $B_D(a, \epsilon) = \prod_{i=1}^{\infty} U_i$ where $U_i = B(a_i, i\epsilon)$ if $i \leq N$, and $U_i = X_i$ if i > N
- $\langle 1 \rangle 5$. For any open set U and $a \in U$, there exists $\epsilon > 0$ such that $B_D(a, \epsilon) \subseteq U$.
 - $\langle 2 \rangle 1$. Let: $n \geq 1$, V be an open set in \mathbb{R} and $a \in \pi_n^{-1}(V)$
 - $\langle 2 \rangle 2$. Pick $\epsilon > 0$ such that $B_{d_n}(a, \epsilon) \subseteq V$
- $\langle 2 \rangle 3. \ B_D(a, \epsilon/n) \subseteq \pi_n^{-1}(V)$

 \sqcup **Theorem 11.1.21.** Let X and Y be metric space

Theorem 11.1.21. Let X and Y be metric spaces and $f: X \to Y$. Then f is continuous if and only if, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$.

Proof:

- $\langle 1 \rangle 1$. If f is continuous then, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$
 - $\langle 2 \rangle 1$. Assume: f is continuous.
 - $\langle 2 \rangle 2$. Let: $x \in X$ and $\epsilon > 0$
 - $\langle 2 \rangle$ 3. PICK a neighbourhood U of x such that $f(U) \subseteq B(f(x), \epsilon)$ PROOF: Theorem 10.12.6.
 - $\langle 2 \rangle 4$. PICK $\delta > 0$ such that $B(x, \delta) \subseteq U$ PROOF: Proposition 11.1.4.
 - $\langle 2 \rangle 5$. For all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$
- $\langle 1 \rangle 2$. If for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$, then f is continuous.
 - $\langle 2 \rangle 1$. Assume: for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$
 - $\langle 2 \rangle 2$. Let: $x \in X$ and V be a neighbourhood of f(x)
 - $\langle 2 \rangle$ 3. PICK $\epsilon > 0$ such that $B(f(x), \epsilon) \subseteq V$ PROOF: Proposition 11.1.4.
 - $\langle 2 \rangle$ 4. Pick $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$ Proof: By $\langle 2 \rangle$ 1
 - $\langle 2 \rangle$ 5. Let: $U = B(x, \delta)$

 $\langle 2 \rangle$ 6. U is a neighbourhood of x with $f(U) \subseteq V$

 $\langle 2 \rangle$ 7. Q.E.D.

PROOF: Theorem 10.12.6.

Proposition 11.1.22. Let X be a metric space. Let (a_n) be a sequence in X and $l \in X$. Then $a_n \to l$ as $n \to \infty$ if and only if, for all $\epsilon > 0$, there exists N such that, for all $n \geq N$, we have $d(a_n, l) < \epsilon$.

Proof: From Proposition 10.9.4.

Proposition 11.1.23. Every metrizable space is first countable.

PROOF: In any metric space X, the open balls B(a, 1/n) for $n \ge 1$ form a local basis at a.

Example 11.1.24. \mathbb{R}^{ω} under the box topology is not metrizable.

Example 11.1.25. If J is uncountable then \mathbb{R}^J under the product topology is not metrizable.

Example 11.1.26. The space $\overline{S_{\Omega}}$ is not metrizable by Example 10.21.4.

Proposition 11.1.27. A compact subspace of a metric space is bounded.

Proof:

- $\langle 1 \rangle 1$. Let: X be a metric space and $A \subseteq X$ be compact.
- $\langle 1 \rangle 2$. Pick $a \in A$
- $\langle 1 \rangle 3. \{ B(a,n) \mid n \in \mathbb{Z}^+ \} \text{ covers } A$
- $\langle 1 \rangle 4$. PICK a finite subcover $\{B(a, n_1), \dots, B(a, n_k)\}$
- $\langle 1 \rangle 5$. Let: $N = \max(n_1, \ldots, n_k)$
- $\langle 1 \rangle 6$. For all $x, y \in A$ we have d(x, y) < 2N

PROOF:

$$d(x,y) \le d(x,a) + d(a,y)$$

$$< N + N$$

This example shows the converse does not hold:

Example 11.1.28. The space \mathbb{R} under the standard bounded metric is bounded but not compact.

Proposition 11.1.29. A connected metric space with more than one point is uncountable.

Proof:

- $\langle 1 \rangle 1$. Let: X be a connected metric space with more than one point.
- $\langle 1 \rangle 2$. Pick $a \in X$
- $\langle 1 \rangle 3. \ d(a,-): X \to \mathbb{R}$ is continuous.

Proof: Proposition 11.1.17.

 $\langle 1 \rangle 4$. $\{d(a,x) \mid x \in X\}$ is a connected subspace of $\mathbb R$ that includes 0.

PROOF: Theorem 10.30.13.

 $\langle 1 \rangle 5. \ \{ d(a, x) \mid x \in X \} \neq \{ 0 \}$

PROOF: Since X has more than one point.

 $\langle 1 \rangle 6$. $\{d(a,x) \mid x \in X\}$ is uncountable.

PROOF: Since it includes a closed interval (Corollary 10.52.2.1).

11.2 Real Linear Algebra

Definition 11.2.1 (Square Metric). The square metric ρ on \mathbb{R}^n is defined by

$$\rho(\vec{x}, \vec{y}) = \max(|x_1 - y_1|, \dots, |x_n - y_n|)$$

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1. \ \rho(\vec{x}, \vec{y}) \geq 0$

PROOF: Immediate from definition.

 $\langle 1 \rangle 2$. $\rho(\vec{x}, \vec{y}) = 0$ if and only if $\vec{x} = \vec{y}$

PROOF: Immediate from definition.

 $\langle 1 \rangle 3. \ \rho(\vec{x}, \vec{y}) = \rho(\vec{y}, \vec{x})$

PROOF: Immediate from definition.

 $\langle 1 \rangle 4. \ \rho(\vec{x}, \vec{z}) \le \rho(\vec{x}, \vec{y}) + \rho(\vec{y}, \vec{z})$

PROOF: Since $|x_i - z_i| \le |x_i - y_i| + |y_i - z_i|$.

Proposition 11.2.2. The square metric induces the standard topology on \mathbb{R}^n .

Proof:

 $\langle 1 \rangle 1$. For every $a \in X$ and $\epsilon > 0$, we have $B_{\rho}(a, \epsilon)$ is open in the standard product topology.

Proof:

$$B_{\rho}(a,\epsilon) = (a_1 - \epsilon, a_1 + \epsilon) \times \cdots \times (a_n - \epsilon, a_n + \epsilon)$$

- $\langle 1 \rangle 2$. For any open sets U_1, \ldots, U_n in \mathbb{R} , we have $U_1 \times \cdots \times U_n$ is open in the square metric topology.
 - $\langle 2 \rangle 1$. Let: $\vec{a} \in U_1 \times \cdots \times U_n$
 - $\langle 2 \rangle 2$. For i = 1, ..., n, PICK $\epsilon_i > 0$ such that $(a_i \epsilon_i, a_i + \epsilon_i) \subseteq U_i$
 - $\langle 2 \rangle 3$. Let: $\epsilon = \min(\epsilon_1, \dots, \epsilon_n)$
- $\langle 2 \rangle 4. \ B_{\rho}(\vec{a}, \epsilon) \subseteq U$

Definition 11.2.3. Given $\vec{x}, \vec{y} \in \mathbb{R}^n$, define the sum $\vec{x} + \vec{y}$ by

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$
.

Definition 11.2.4. Given $\lambda \in \mathbb{R}$ and $\vec{x} \in \mathbb{R}^n$, define the scalar product $\lambda \vec{x} \in \mathbb{R}^n$ by

$$\lambda(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$$

Definition 11.2.5 (Inner Product). Given $\vec{x}, \vec{y} \in \mathbb{R}^n$, define the inner product $\vec{x} \cdot \vec{y} \in \mathbb{R}$ by

$$(x_1, \ldots, x_n) \cdot (y_1, \ldots, y_n) = x_1 y_1 + \cdots + x_n y_n$$
.

We write \vec{x}^2 for $\vec{x} \cdot \vec{x}$.

Definition 11.2.6 (Norm). Let $n \geq 1$. The *norm* on \mathbb{R}^n is the function $\| \ \| : \mathbb{R}^n \to \mathbb{R}$ defined by

$$||(x_1,\ldots,x_n)|| = \sqrt{x_1^2 + \cdots + x_n^2}$$

Lemma 11.2.7.

$$\|\vec{x}\|^2 = \vec{x}^2$$

PROOF: Immediate from definitions. \square

Lemma 11.2.8.

$$\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$$

PROOF: Each is equal to $(x_1y_1 + x_1z_1, \dots, x_ny_n + x_nz_n)$.

Lemma 11.2.9.

$$|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$$

Proof:

 $\langle 1 \rangle 1$. Assume: $\vec{x} \neq \vec{0} \neq \vec{y}$

PROOF: Otherwise both sides are 0.

- $\langle 1 \rangle 2$. Let: $a = 1/||\vec{x}||$
- $\langle 1 \rangle 3$. Let: $b = 1/||\vec{y}||$
- $\langle 1 \rangle 4$. $(a\vec{x} + b\vec{y})^2 \ge 0$ and $(a\vec{x} b\vec{y})^2 \ge 0$
- $\langle 1 \rangle 5$. $|a^2||\vec{x}||^2 + 2ab\vec{x} \cdot \vec{y} + |b^2||\vec{y}||^2 \ge 0$ and $|a^2||\vec{x}||^2 2ab\vec{x} \cdot \vec{y} + |b^2||\vec{y}||^2 \ge 0$
- $\langle 1 \rangle 6$. $2ab\vec{x} \cdot \vec{y} + 2 \ge 0$ and $-2ab\vec{x} \cdot \vec{y} + 2 \ge 0$
- $\begin{array}{ll} \langle 1 \rangle 7. & \vec{x} \cdot \vec{y} \geq -1/ab \text{ and } \vec{x} \cdot \vec{y} \leq 1/ab \\ \langle 1 \rangle 8. & \vec{x} \cdot \vec{y} \geq -\|\vec{x}\| \|\vec{y}\| \text{ and } \vec{x} \cdot \vec{y} \leq \|\vec{x}\| \|\vec{y}\| \end{array}$

Lemma 11.2.10 (Triangle Inequality).

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$

Proof:

$$\begin{aligned} \|\vec{x} + \vec{y}\|^2 &= \|\vec{x}\|^2 + 2\vec{x} \cdot \vec{y} + \|\vec{y}\|^2 \\ &\leq \|\vec{x}\|^2 + 2\|\vec{x}\| \|\vec{y}\| + \|\vec{y}\|^2 \\ &= (\|\vec{x}\| + \|\vec{y}\|)^2 \end{aligned}$$
 (Lemma 11.2.9)

Definition 11.2.11 (Euclidean Metric). Let $n \geq 1$. The Euclidean metric on \mathbb{R}^n is defined by

$$d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}|| .$$

We prove this is a metric.

 $\langle 1 \rangle 1. \ d(\vec{x}, \vec{y}) \geq 0$

PROOF: Immediate from definition.

 $\langle 1 \rangle 2$. $d(\vec{x}, \vec{y}) = 0$ if and only if $\vec{x} = \vec{y}$

PROOF: $d(\vec{x}, \vec{y}) = 0$ if and only if $\vec{x} - \vec{y} = \vec{0}$.

 $\langle 1 \rangle 3. \ d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x})$

PROOF: Immediate from definition.

 $\langle 1 \rangle 4. \ d(\vec{x}, \vec{z}) \le d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z})$

Proof:

$$\begin{aligned} \|\vec{x} - \vec{z}\| &= \|(\vec{x} - \vec{y}) + (\vec{y} - \vec{z})\| \\ &\leq \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{z}\| \end{aligned}$$
 (Lemma 11.2.10)

Proposition 11.2.12. The Euclidean metric induces the standard topology on

Proof:

- $\langle 1 \rangle 1$. Let: ρ be the square metric.
- $\langle 1 \rangle 2$. For all $\vec{a} \in \mathbb{R}^n$ and $\epsilon > 0$, we have $B_d(\vec{a}, \epsilon) \subseteq B_\rho(\vec{a}, \epsilon)$

 - $\langle 2 \rangle 1$. Let: $\vec{x} \in B_d(\vec{a}, \epsilon)$ $\langle 2 \rangle 2$. $\sqrt{(x_1 a_1)^2 + \dots + (x_n a_n)^2} < \epsilon$ $\langle 2 \rangle 3$. $(x_1 a_1)^2 + \dots + (x_n a_n)^2 < \epsilon^2$

 - $\langle 2 \rangle 4$. For all i we have $(x_i a_i)^2 < \epsilon^2$
 - $\langle 2 \rangle$ 5. For all i we have $|x_i a_i| < \epsilon$
 - $\langle 2 \rangle 6. \ \rho(\vec{x}, \vec{a}) < \epsilon$
- $\langle 1 \rangle 3$. For all $\vec{a} \in \mathbb{R}^n$ and $\epsilon > 0$, we have $B_{\rho}(\vec{a}, \epsilon / \sqrt{n}) \subseteq B_d(\vec{a}, \epsilon)$
 - $\langle 2 \rangle 1$. Let: $\vec{x} \in B_{\rho}(\vec{a}, \epsilon/\sqrt{n})$
 - $\langle 2 \rangle 2$. $\rho(\vec{x}, \vec{a}) < \epsilon / \sqrt{n}$
 - $\langle 2 \rangle 3$. For all i we have $|x_i x_a| < \epsilon / \sqrt{n}$
 - $\langle 2 \rangle 4$. For all i we have $(x_i x_a)^2 < \epsilon^2/n$
 - $\langle 2 \rangle 5. \ d(\vec{x}, \vec{a}) < \epsilon$
- $\langle 1 \rangle 4$. Q.E.D.

PROOF: By Lemma 11.1.15.

Proposition 11.2.13. Let $n \geq 0$. For all $c \in \mathbb{R}^n$ and $\epsilon > 0$, the open ball $B(c,\epsilon)$ is path connected.

Proof:

- $\langle 1 \rangle 1$. Let: $a, b \in B(c, \epsilon)$
- $\langle 1 \rangle 2$. Let: $p:[0,1] \to B(c,\epsilon)$ be the function p(t)=(1-t)a+tb

PROOF: We have
$$p(t) \in B(c,\epsilon)$$
 for all t because
$$d(p(t),c) = \|(1-t)a+tb-c\|$$
$$= \|(1-t)(a-c)+t(b-c)\|$$
$$\leq (1-t)\|a-c\|+t\|b-c\|$$
$$< (1-t)\epsilon+t\epsilon$$

 $\langle 1 \rangle 3$. p is a path from a to b.

Proposition 11.2.14. Let $n \geq 0$. For all $c \in \mathbb{R}^n$ and $\epsilon > 0$, the closed ball $B(c,\epsilon)$ is path connected.

PROOF:

 $\langle 1 \rangle 1$. Let: $a, b \in \overline{B(c, \epsilon)}$

 $\langle 1 \rangle 2$. Let: $p:[0,1] \to \overline{B(c,\epsilon)}$ be the function p(t)=(1-t)a+tb

PROOF: We have $p(t) \in \overline{B(c,\epsilon)}$ for all t because

$$d(p(t), c) = \|(1 - t)a + tb - c\|$$

$$= \|(1 - t)(a - c) + t(b - c)\|$$

$$\leq (1 - t)\|a - c\| + t\|b - c\|$$

$$\leq (1 - t)\epsilon + t\epsilon$$

$$= \epsilon$$

 $\langle 1 \rangle 3$. p is a path from a to b.

Lemma 11.2.15. If $\sum_{i=0}^{\infty} x_i^2$ and $\sum_{i=0}^{\infty} y_i^2$ converge then $\sum_{i=0}^{\infty} |x_i y_i|$ converges.

 $\langle 1 \rangle 1$. For all $N \geq 0$ we have $\sum_{i=0}^{N} |x_i y_i| \leq \sqrt{\sum_{i=0}^{N} |x_i|^2} \sqrt{\sum_{i=0}^{N} |y_i|^2}$ PROOF: By the Cauchy-Schwarz inequality

 $\langle 1 \rangle 2$. Q.E.D.

PROOF: Since $\sum_{i=0}^{N} |x_i y_i|$ is an increasing sequence bounded above by $(\sum_{i=0}^{\infty} x_i^2)(\sum_{i=0}^{\infty} y_i^2)$.

Corollary 11.2.15.1. If $\sum_{i=0}^{\infty} x_i^2$ and $\sum_{i=0}^{\infty} y_i^2$ converge then $\sum_{i=0}^{\infty} (x_i + y_i)^2$ converges.

PROOF: Since $\sum_{i=0}^{\infty} x_i^2$, $\sum_{i=0}^{\infty} y_i^2$ and $2\sum_{i=0}^{\infty} x_i y_i$ all converge.

Definition 11.2.16 (l^2 -metric). The l^2 -metric on

$$\left\{ (x_n) \in \mathbb{R}^\omega \mid \sum_{n=0}^\infty x_n^2 \text{ converges} \right\}$$

is defined by

$$d(x,y) = \left(\sum_{n=0}^{\infty} (x_n - y_n)^2\right)^{1/2}$$

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1$. d is well-defined.

PROOF: By Corollary 11.2.15.1.

- $\langle 1 \rangle 2. \ d(x,y) \ge 0$
- $\langle 1 \rangle 3$. d(x,y) = 0 if and only if x = y
- $\langle 1 \rangle 4$. d(x,y) = d(y,x)
- $\langle 1 \rangle 5. \ d(x,z) \le d(x,y) + d(y,z)$

PROOF: By Lemma 11.2.10.

Theorem 11.2.17. Addition is a continuous function $\mathbb{R}^2 \to \mathbb{R}$.

Proof:

- $\langle 1 \rangle 1$. Let: $a, b \in \mathbb{R}$
- $\langle 1 \rangle 2$. Let: $\epsilon > 0$
- $\langle 1 \rangle 3$. Let: $\delta = \epsilon/2$
- $\langle 1 \rangle 4$. Let: $x, y \in \mathbb{R}$
- $\langle 1 \rangle 5$. Assume: $\rho((a,b),(x,y)) < \delta$
- $\langle 1 \rangle 6$. $|(a+b) (x+y)| < \epsilon$

Proof:

$$|(a+b) - (x+y)| = |a-x| + |b-y|$$

$$\leq 2\rho((a,b),(x,y))$$

$$< 2\delta$$

$$= \epsilon$$

 $\langle 1 \rangle 7$. Q.E.D.

PROOF: Theorem 11.1.21

Theorem 11.2.18. Multiplication is a continuous function $\mathbb{R}^2 \to \mathbb{R}$.

Proof:

- $\langle 1 \rangle 1$. Let: $a, b \in \mathbb{R}$
- $\langle 1 \rangle 2$. Let: $\epsilon > 0$
- (1)3. Let: $\delta = \min(\epsilon/(|a| + |b| + 1), 1)$
- $\langle 1 \rangle 4$. Let: $x, y \in \mathbb{R}$
- $\langle 1 \rangle 5$. Assume: $\rho((a,b),(x,y)) < \delta$
- $\langle 1 \rangle 6$. $|ab xy| < \epsilon$

Proof:

$$|ab - xy| = |a(b - y) + (a - x)b - (a - x)(b - y)|$$

$$\leq |a||b - y| + |b||a - x| + |a - x||b - y|$$

$$< |a|\delta + |b|\delta + \delta^{2}$$

$$\leq |a|\delta + |b|\delta + \delta$$

$$(\langle 1 \rangle 5)$$

$$(\langle 1 \rangle 5)$$

$$\leq \epsilon$$
 ($\langle 1 \rangle 3$)

 $\langle 1 \rangle 7$. Q.E.D.

PROOF: Theorem 11.1.21

Theorem 11.2.19. The function $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ defined by $f(x) = x^{-1}$ is continuous.

PROOF:

 $\langle 1 \rangle 1$. For all $a \in \mathbb{R}$ we have $f^{-1}((a, +\infty))$ is open.

PROOF: The set is

$$(a^{-1}, +\infty)$$
 if $a > 0$
 $(0, +\infty)$ if $a = 0$
 $(-\infty, a^{-1}) \cup (0, +\infty)$ if $a < 0$

 $(-\infty,a^{-1})\cup(0,+\infty) \text{if }a<0$ $\langle 1\rangle 2.$ For all $a\in\mathbb{R}$ we have $f^{-1}((-\infty,a))$ is open.

PROOF: Similar.

 $\langle 1 \rangle 3$. Q.E.D.

Proof: By Proposition 10.12.3 and Lemma 10.14.2.

П

Definition 11.2.20. For $n \geq 0$, the *unit ball* B^n is the space $\{x \in \mathbb{R}^n \mid ||x|| \leq 1\}$.

Proposition 11.2.21. For all $n \geq 0$, the unit ball B^n is path connected.

Proof:

 $\langle 1 \rangle 1$. Let: $a, b \in B^n$

 $\langle 1 \rangle 2$. Let: $p:[0,1] \to B^n$ be the function p(t)=(1-t)a+tb

PROOF: We have $p(t) \in B^n$ for all t because

$$||(1-t)a + tb|| \le (1-t)||a|| + t||b||$$

$$\le (1-t) + t$$

$$= 1$$

 $\langle 1 \rangle 3$. p is a path from a to b.

Definition 11.2.22 (Punctured Euclidean Space). For $n \geq 0$, defined *punctured Euclidean space* to be $\mathbb{R}^n \setminus \{0\}$.

Proposition 11.2.23. For n > 1, punctured Euclidean space $\mathbb{R}^n \setminus \{0\}$ is path connected.

Proof:

 $\langle 1 \rangle 1$. Let: $a, b \in \mathbb{R}^n \setminus \{0\}$

 $\langle 1 \rangle 2$. Case: 0 is on the line from a to b

 $\langle 2 \rangle 1$. PICK a point c not on the line from a to b

 $\langle 2 \rangle 2$. The path consisting of a straight line from a to c followed by a straight line from c to b is a path from a to b.

 $\langle 1 \rangle 3$. Case: 0 is not on the line from a to b

PROOF: The straight line from a to b is a path from a to b.

Corollary 11.2.23.1. For n > 1, the spaces \mathbb{R} and \mathbb{R}^n are not homeomorphic.

PROOF: For any point a, the space $\mathbb{R} \setminus \{a\}$ is disconnected.

Definition 11.2.24 (Unit Sphere). For $n \geq 1$, the unit sphere S^{n-1} is the space

 $S^{n-1} = \{ x \in \mathbb{R}^n \mid ||x|| = 1 \} .$

Proposition 11.2.25. For n > 1, the unit sphere S^{n-1} is path connected.

PROOF: The map $g: \mathbb{R}^n \setminus \{0\} \to S^{n-1}$ defined by $g(x) = x/\|x\|$ is continuous and surjective. The result follows by Proposition 10.32.5. \square

Proposition 11.2.26. Let $f: S^1 \to \mathbb{R}$ be continuous. Then there exists $x \in S^1$ such that f(x) = f(-x).

Proof:

- $\langle 1 \rangle 1$. Let: $g: S^1 \to \mathbb{R}$ be the function g(x) = f(x) f(-x)Prove: There exists $x \in S^1$ such that g(x) = 0
- $\langle 1 \rangle 2$. Assume: without loss of generality g((1,0)) > 0
- $\langle 1 \rangle 3. \ g((-1,0)) < 0$
- $\langle 1 \rangle 4$. There exists x such that g(x) = 0

PROOF: By the Intermediate Value Theorem.

Definition 11.2.27 (Topologist's Sine Curve). Let $S = \{(x, \sin 1/x) \mid 0 < x \le 1\}$. The *topologist's sine curve* is the closure \overline{S} of S.

Proposition 11.2.28.

$$\overline{S} = S \cup (\{0\} \times [-1, 1])$$

Proposition 11.2.29. The topologist's sine curve is connected.

Proof:

- $\langle 1 \rangle 1$. Let: $S = \{(x, \sin 1/x) \mid 0 < x \le 1\}$
- $\langle 1 \rangle 2$. S is connected.

PROOF: Theorem 10.30.13.

 $\langle 1 \rangle 3$. \overline{S} is connected.

PROOF: Theorem 10.30.12.

П

Proposition 11.2.30 (CC). The topologist's sine curve is not path connected.

PROOF:

- $\langle 1 \rangle 1$. Assume: for a contradiction $p:[0,1] \to \overline{S}$ is a path from (0,0) to $(1,\sin 1)$.
- $\langle 1 \rangle 2. \ p^{-1}(\{0\} \times [0,1])$ is closed.
- $\langle 1 \rangle 3$. Let: b be the greatest element of $p^{-1}(\{0\} \times [0,1])$.
- $\langle 1 \rangle 4.$ b < 1

PROOF: Since $p(1) = (1, \sin 1)$.

 $\langle 1 \rangle 5$. PICK a sequence $(t_n)_{n \geq 1}$ in (b,1] such that $t_n \to b$ and $\pi_2(p(t_n)) = (-1)^n$

- $\langle 2 \rangle 1$. Let: $n \geq 1$
- $\langle 2 \rangle 2$. PICK u with $0 < u < \pi_1(p(1/n))$ such that $\sin(1/u) = (-1)^n$
- $\langle 2 \rangle 3$. PICK t_n such that $0 < t_n < 1/n$ and $\pi_1(p(t_n)) = u$

PROOF: One exists by the Intermediate Value Theorem.

 $\langle 1 \rangle 6$. Q.E.D.

Proof: This contradicts 10.12.18.

П

Theorem 11.2.31. Let A be a subspace of \mathbb{R}^n . Then the following are equivalent:

- 1. A is compact.
- 2. A is closed and bounded under the Euclidean metric.
- 3. A is closed and bounded under the square metric.

Proof:

 $\langle 1 \rangle 1. \ 1 \Rightarrow 2$

Proof: By Corollary 10.50.10.1 and Proposition 11.1.27.

 $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

PROOF: If $d(x,y) \leq M$ for all $x,y \in A$ then $\rho(x,y) \leq M/\sqrt{2}$.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

- $\langle 2 \rangle 1$. Assume: A is closed and $\rho(x,y) \leq M$ for all $x,y \in A$
- $\langle 2 \rangle 2$. Pick $a \in A$

Proof: We may assume w.l.o.g. A is nonempty since the empty space is compact.

- $\langle 2 \rangle 3$. A is a closed subspace of $[a_1 M, a_1 + M] \times \cdots \times [a_n M, a_n + M]$
- $\langle 2 \rangle 4$. A is compact

Proof: Proposition 10.50.3.

Corollary 11.2.31.1. The unit sphere S^{n-1} and the closed unit ball B^n are compact for any n.

11.3 The Uniform Topology

Definition 11.3.1 (Uniform Metric). Let J be a set. The *uniform metric* $\overline{\rho}$ on \mathbb{R}^J is defined by

$$\overline{\rho}(a,b) = \sup_{j \in J} \overline{d}(a_j, b_j)$$

where \overline{d} is the standard bounded metric on \mathbb{R} .

The uniform topology on \mathbb{R}^J is the topology induced by the uniform metric.

We prove this is a metric.

Proof:

$$\langle 1 \rangle 1. \ \overline{\rho}(a,b) \geq 0$$

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$. $\overline{\rho}(a,b) = 0$ if and only if a = b

PROOF: Immediate from definitions.

 $\langle 1 \rangle 3. \ \overline{\rho}(a,b) = \overline{\rho}(b,a)$

Proof: Immediate from definitions.

 $\langle 1 \rangle 4. \ \overline{\rho}(a,c) \leq \overline{\rho}(a,b) + \overline{\rho}(b,c)$

Proof:

$$\begin{split} \overline{\rho}(a,c) &= \sup_{j \in J} \overline{d}(a_j,c_j) \\ &\leq \sup_{j \in J} (\overline{d}(a_j,b_j) + \overline{d}(b_j,c_j)) \\ &\leq \sup_{j \in J} \overline{d}(a_j,b_j) + \sup_{j \in J} \overline{d}(b_j,c_j) \\ &= \overline{\rho}(a,b) + \overline{\rho}(b,c) \end{split}$$

Proposition 11.3.2. The uniform topology on \mathbb{R}^J is finer than the product topology.

PROOF:

 $\langle 1 \rangle 1$. Let: $j \in J$ and U be open in \mathbb{R}

PROVE: $\pi_j^{-1}(U)$ is open in the uniform topology. $\langle 1 \rangle 2$. Let: $a \in \pi_j^{-1}(U)$

 $\langle 1 \rangle 3$. PICK $\epsilon > 0$ such that $(a_j - \epsilon, a_j + \epsilon) \subseteq U$

 $\langle 1 \rangle 4. \ B_{\overline{\rho}}(a, \epsilon) \subseteq \pi_j^{-1}(U)$

Proposition 11.3.3. The uniform topology on \mathbb{R}^J is coarser than the box topology.

PROOF:

 $\langle 1 \rangle 1$. Let: $a \in \mathbb{R}^J$ and $\epsilon > 0$

PROVE: $B(a, \epsilon)$ is open in the box topology.

 $\langle 1 \rangle 2$. Let: $b \in B(a, \epsilon)$

 $\langle 1 \rangle 3$. For $j \in J$ we have $|a_j - b_j| < \epsilon$

 $\langle 1 \rangle 4$. For $j \in J$,

Let: $\delta_j = (\epsilon - |a_j - b_j|)/2$ $\langle 1 \rangle 5. \prod_{j \in J} (b_j - \delta_j, b_j + \delta_j) \subseteq B(a, \epsilon)$

Proposition 11.3.4. The uniform topology on \mathbb{R}^J is strictly finer than the product topology if and only if J is infinite.

Proof:

 $\langle 1 \rangle 1$. If J is finite then the uniform and product topologies coincide.

PROOF: The uniform, box and product topologies are all the same.

 $\langle 1 \rangle 2$. If J is infinite then the uniform and product topologies are different.

PROOF: The set $B(\vec{0}, 1)$ is open in the uniform topology but not the product topology.

Proposition 11.3.5 (DC). The uniform topology on \mathbb{R}^J is strictly coarser than the box topology if and only if J is infinite.

PROOF:

 $\langle 1 \rangle 1$. If J is finite then the uniform and box topologies coincide.

PROOF: The uniform, box and product topologies are all the same.

 $\langle 1 \rangle 2$. If J is infinite then the uniform and box topologies are different.

PROOF: Pick an ω -sequence (j_1, j_2, \ldots) in J. Let $U = \prod_{j \in J} U_j$ where $U_{j_i} = (-1/i, 1/i)$ and $U_j = (-1, 1)$ for all other j. Then $\vec{0} \in U$ but there is no $\epsilon > 0$ such that $B(\vec{0}, \epsilon) \subseteq U$.

Proposition 11.3.6. The closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} under the uniform topology is \mathbb{R}^{ω} .

PROOF: Given any open ball $B(a,\epsilon)$, pick an integer N such that $1/\epsilon < N$. Then $B(a,\epsilon)$ includes sequences whose nth entry is 0 for all $n \geq N$. \square

Example 11.3.7. The space \mathbb{R}^{ω} is disconnected under the uniform topology. The set of bounded sequences and the set of unbounded sequences form a separation.

Proposition 11.3.8. Give \mathbb{R}^{ω} the uniform topology. Let $x, y \in \mathbb{R}^{\omega}$. Then x and y are in the same component if and only if x - y is bounded.

Proof:

- $\langle 1 \rangle 1$. The component containing 0 is the set of bounded sequences.
 - $\langle 2 \rangle 1$. Let: B be the set of bounded sequences.
 - $\langle 2 \rangle 2$. B is path-connected.
 - $\langle 3 \rangle 1$. Let: $x.y \in B$
 - $\langle 3 \rangle 2$. Pick b > 0 such that $|x_j|, |y_j| \leq b$ for all j
 - $\langle 3 \rangle 3$. Let: $p:[0,1] \to B$ be the function p(t)=(1-t)x+ty Prove: p is continuous.
 - $\langle 3 \rangle 4$. Let: $t \in [0,1]$ and $\epsilon > 0$
 - $\langle 3 \rangle 5$. Let: $\delta = \epsilon/2b$
 - $\langle 3 \rangle 6$. Let: $s \in [0,1]$ with $|s-t| < \delta$
 - $\langle 3 \rangle 7. \ \overline{\rho}(p(s), p(t)) < \epsilon$

Proof:

$$\overline{\rho}(p(s), p(t)) = \sup_{j} \overline{d}((1-s)x_j + sy_j, (1-t)x_j + ty_j)$$

$$\leq |(s-t)x_j + (t-s)y_j|$$

$$\leq |s-t||x_j - y_j|$$

$$< 2b\delta$$

$$= \epsilon$$

 $\langle 2 \rangle 3$. B is connected.

Proof: Proposition 10.32.3.

 $\langle 2 \rangle 4$. If C is connected and $B \subseteq C$ then B = C.

PROOF: Otherwise $B \cap C$ and $C \setminus B$ form a separation of C. $\langle 1 \rangle 2$. Q.E.D.

PROOF: Since $\lambda x.x - y$ is a Homeomorphism of \mathbb{R}^{ω} with itself.

Example 11.3.9. The space $[0,1]^{\omega}$ under the uniform topology is not locally compact.

It is not compact because the set $\{0,1\}^{\omega}$ has no limit point.

Now, assume for a contradiction $[0,1]^{\omega}$ is locally compact. Pick $\epsilon > 0$ such that $B(0,\epsilon)$ is included in a compact subspace. Then $\overline{B(0,\epsilon)}$ is compact. But $\overline{B(0,\epsilon)} = [0,1]^{\omega}$ if $\epsilon \geq 1$, or $[0,\epsilon]^{\omega}$ if $\epsilon < 1$. In either case $\overline{B(0,\epsilon)} \cong [0,1]^{\epsilon}$ which is not compact.

Example 11.3.10. The space \mathbb{R}^{ω} under the uniform topology is not second countable.

PROOF: The set $\{0,1\}^{\omega}$ is an uncountable discrete subspace. \square

11.4 Uniform Convergence

Definition 11.4.1 (Uniform Convergence). Let X be a set and Y a metric space. Let $(f_n: X \to Y)$ be a sequence of functions and $f: X \to Y$ be a function. Then f_n converges uniformly to f as $n \to \infty$ if and only if, for all $\epsilon > 0$, there exists N such that, for all $n \ge N$ and $x \in X$, we have $d(f_n(x), f(x)) < \epsilon$.

Example 11.4.2. Define $f_n:[0,1]\to\mathbb{R}$ by $f_n(x)=x^n$ for $n\geq 1$, and $f:[0,1]\to\mathbb{R}$ by f(x)=0 if x<1, f(1)=1. Then f_n converges to f pointwise but not uniformly.

Theorem 11.4.3 (Uniform Limit Theorem). Let X be a topological space and Y a metric space. Let $(f_n : X \to Y)$ be a sequence of continuous functions and $f : X \to Y$ be a function. If f_n converges uniformly to f as $n \to \infty$, then f is continuous.

Proof:

```
\langle 1 \rangle 1. Let: x \in X and \epsilon > 0
```

 $\langle 1 \rangle 2$. PICK N such that, for all $n \geq N$ and $y \in X$, we have $d(f_n(y), f(y)) < \epsilon/3$

(1)3. PICK a neighbourhood U of x such that $f_N(U) \subseteq B(f_N(x), \epsilon/3)$ PROVE: $f(U) \subseteq B(f(x), \epsilon)$

 $\langle 1 \rangle 4$. Let: $y \in U$

 $\langle 1 \rangle 5. \ d(f(y), f(x)) < \epsilon$

Proof:

$$d(f(y), f(x)) \leq d(f(y), f_N(y)) + d(f_N(y), f_N(x)) + d(f_N(x), f(x))$$
 (Triangle Inequality)
$$< \epsilon/3 + \epsilon/3 + \epsilon/3$$
 (\langle 1\langle 2, \langle 1\rangle 3)
$$= \epsilon$$

Proposition 11.4.4. Let X be a topological space and Y a metric space. Let $(f_n:X\to Y)$ be a sequence of continuous functions and $f:X\to Y$ be a function. Let (a_n) be a sequence of points in X and $a \in X$. If f_n converges uniformly to f and a_n converges to a in X then $f_n(a_n)$ converges to f(a) uniformly in Y.

Proof:

- $\langle 1 \rangle 1$. Let: $\epsilon > 0$
- (1)2. PICK N_1 such that, for all $n \geq N_1$ and $x \in X$, we have $d(f_n(x), f(x)) < 1$
- (1)3. PICK N_2 such that, for all $n \geq N_2$, we have $a_n \in f^{-1}(B(a, \epsilon/2))$

PROOF: Using the fact that f is continuous from the Uniform Limit Theorem.

- $\langle 1 \rangle 4$. Let: $N = \max(N_1, N_2)$
- $\langle 1 \rangle 5$. Let: n > N
- $\langle 1 \rangle 6. \ d(f_n(a_n), f(a)) < \epsilon$

Proof:

$$d(f_n(a_n), f(a)) \le d(f_n(a_n), f(a_n)) + d(f(a_n), f(a)) \quad \text{(Triangle Inequality)}$$

$$< \epsilon/2 + \epsilon/2 \qquad \qquad (\langle 1 \rangle 2, \langle 1 \rangle 3)$$

$$= \epsilon$$

Proposition 11.4.5. Let X be a set. Let $(f_n : X \to \mathbb{R})$ be a sequence of functions and $f: X \to \mathbb{R}$ be a function. Then f_n converges unifomly to f as $n \to \infty$ if and only if $f_n \to f$ as $n \to \infty$ in \mathbb{R}^X under the uniform topology.

PROOF:

- $\langle 1 \rangle 1$. If f_n converges uniformly to f then f_n converges to f under the uniform topology.
 - $\langle 2 \rangle 1$. Assume: f_n converges uniformly to f
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 3$. Pick N such that, for all $n \geq N$ and $x \in X$, we have $d(f_n(x), f(x)) < \infty$
 - $\langle 2 \rangle 4$. For all $n \geq N$ we have $\overline{\rho}(f_n, f) \leq \epsilon/2$
 - $\langle 2 \rangle$ 5. For all $n \geq N$ we have $\overline{\rho}(f_n, f) < \epsilon$
- $\langle 1 \rangle 2$. If f_n converges to f under the uniform topology then f_n converges uniformly to f.
 - $\langle 2 \rangle 1$. Assume: f_n converges to f under the uniform topology.
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 3$. PICK N such that, for all $n \geq N$, we have $\overline{\rho}(f_n, f) < \min(\epsilon, 1/2)$
 - $\langle 2 \rangle 4$. Let: $n \geq N$
 - $\langle 2 \rangle$ 5. Let: $x \in X$
 - $\langle 2 \rangle 6. \ \overline{\rho}(f_n, f) < \min(\epsilon, 1/2)$

PROOF: From $\langle 2 \rangle 3$.

- $\langle 2 \rangle 7$. $d(f_n(x), f(x)) < \min(\epsilon, 1/2)$
- $\langle 2 \rangle 8. \ d(f_n(x), f(x)) < \epsilon$

11.5 Isometric Imbeddings

Definition 11.5.1. Let X and Y be metric spaces. An isometric imbedding $f: X \to Y$ is a function such that, for all $x, y \in X$, we have d(f(x), f(y)) = d(x, y).

Proposition 11.5.2. Every isometric imbedding is an imbedding.

```
Proof:
```

- $\langle 1 \rangle 1$. Let: $f: X \to Y$ be an isometric imbedding.
- $\langle 1 \rangle 2$. f is injective.

PROOF: If f(x) = f(y) then d(f(x), f(y)) = 0 hence d(x, y) = 0 hence x = y.

 $\langle 1 \rangle 3$. f is continuous.

PROOF: For all $\epsilon > 0$, if $d(x, y) < \epsilon$ then $d(f(x), f(y)) < \epsilon$.

 $\langle 1 \rangle 4.$ $f: X \to f(X)$ is an open map.

PROOF: $f(B(a,\epsilon)) = B(f(a),\epsilon) \cap f(X)$.

11.6 Distance to a Set

Definition 11.6.1. Let X be a metric space, $x \in X$ and $A \subseteq X$ be nonempty. The *distance* from x to A is defined as

$$d(x,A) = \inf_{a \in A} d(x,a) .$$

Proposition 11.6.2. *Let* X *be a metric space and* $A \subseteq X$ *be nonempty. Then the function* $d(-, A) : X \to \mathbb{R}$ *is continuous.*

PROOF:

- $\langle 1 \rangle 1$. Let: X be a metric space.
- $\langle 1 \rangle 2$. Let: $A \subseteq X$ be nonempty.
- $\langle 1 \rangle 3$. Let: $x \in X$ and $\epsilon > 0$
- $\langle 1 \rangle 4$. Let: $\delta = \epsilon$
- $\langle 1 \rangle 5$. Let: $y \in B(x, \delta)$
- $\langle 1 \rangle 6. |d(x,A) d(y,A)| < \epsilon$
 - $\langle 2 \rangle 1. \ d(x,A) d(y,A) < \epsilon$

Proof:

 $\langle 3 \rangle 1$. For all $a \in A$ we have $d(x,A) \leq d(x,y) + d(y,a)$

Proof:

$$d(x, A) \le d(x, a)$$
 (definition of $d(x, A)$)
 $\le d(x, y) + d(y, a)$ (Triangle Inequality)

 $\langle 3 \rangle 2. \ d(x,A) - d(x,y) \le d(y,A)$

 $\langle 2 \rangle 2$. $d(y,A) - d(x,A) < \epsilon$

Proof: Similar.

 $\langle 1 \rangle 7$. Q.E.D.

PROOF: Theorem 11.1.21.

Theorem 11.6.3. Let X be a metric space, $A \subseteq X$ be nonempty, and $x \in X$. Then d(x, A) = 0 if and only if $x \in \overline{A}$.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a metric space.
- $\langle 1 \rangle 2$. Let: $A \subseteq X$ be nonempty.
- $\langle 1 \rangle 3$. Let: $x \in X$
- $\langle 1 \rangle 4$. If d(x,A) = 0 then $x \in \overline{A}$
 - $\langle 2 \rangle 1$. Assume: d(x, A) = 0
 - $\langle 2 \rangle 2$. Let: U be any neighbourhood of x.
 - $\langle 2 \rangle 3$. PICK $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$

Proof: Proposition 11.1.4, $\langle 1 \rangle 1$, $\langle 2 \rangle 2$.

 $\langle 2 \rangle 4$. PICK $a \in A$ such that $d(x, a) < \epsilon$

PROOF: From $\langle 2 \rangle 1$, $\langle 2 \rangle 3$.

 $\langle 2 \rangle 5. \ a \in A \cap U$

PROOF: From $\langle 2 \rangle 3$, $\langle 2 \rangle 4$.

 $\langle 2 \rangle 6$. Q.E.D.

PROOF: Theorem 10.4.6.

 $\langle 1 \rangle 5$. If $x \in \overline{A}$ then d(x, A) = 0

Theorem 11.6.4. Let X be a metric space. Let $A \subseteq X$ be nonempty and compact. Let $x \in X$. Then there exists $a \in A$ such that d(x, A) = d(x, a).

PROOF: By the Extreme Value Theorem, the function $d(x,-):A\to\mathbb{R}$ attains its minimum. \square

11.7 Lebesgue Numbers

Definition 11.7.1 (Lebesgue Number). Let X be a metric space. Let \mathcal{U} be an open covering of X. A Lebesgue number for \mathcal{U} is a real number $\delta > 0$ such that, for every subset $A \subseteq X$ with diameter diameter $< \delta$, there exists $U \in \mathcal{U}$ such that $A \subseteq U$.

Theorem 11.7.2 (Lebesgue Number Lemma). Every open covering of a compact metric space has a Lebesgue number.

Proof:

- $\langle 1 \rangle 1$. Let: X be a compact metric space.
- $\langle 1 \rangle 2$. Let: \mathcal{U} be an open covering of X.
- $\langle 1 \rangle 3$. PICK a finite subset $\{U_1, \ldots, U_n\}$ of \mathcal{U} that covers X.
- $\langle 1 \rangle 4$. For $i = 1, \dots, n$, LET: $C_i = X - U_i$

 $\mathbf{L} = \mathbf{L} \cdot \mathbf{L} \cdot \mathbf{L} \cdot \mathbf{L}$

 $\langle 1 \rangle 5$. Let: $f: X \to \mathbb{R}$,

$$f(x) = 1/n \sum_{i=1}^{n} d(x, C_i)$$

```
\langle 1 \rangle 6. For all x \in X we have f(x) > 0
    \langle 2 \rangle 1. Let: x \in X
    \langle 2 \rangle 2. Pick i such that x \in U_i
       PROOF: From \langle 1 \rangle 3.
    \langle 2 \rangle 3. Pick \epsilon > 0 such that B(x, \epsilon) \subseteq U_i
       Proof: Proposition 11.1.4.
    \langle 2 \rangle 4. \ d(x, C_i) \geq \epsilon
    \langle 2 \rangle 5. f(x) \geq \epsilon/n
\langle 1 \rangle 7. f is continuous.
   Proof: Proposition 11.6.2.
\langle 1 \rangle 8. Let: \delta be the minimum value of f(X)
   PROOF: By the Extreme Value Theorem
\langle 1 \rangle 9. \ \delta > 0
   PROOF: From \langle 1 \rangle 6
\langle 1 \rangle 10. For every subset A \subseteq X with diameter \langle \delta \rangle, there exists U \in \mathcal{U} such that
    \langle 2 \rangle 1. Let: A \subseteq X with diam A < \delta
    \langle 2 \rangle 2. Pick x_0 \in A
    \langle 2 \rangle 3. \ A \subseteq B(x_0, \delta)
    \langle 2 \rangle 4. \ f(x_0) \geq \delta
    \langle 2 \rangle5. PICK m such that d(x_0, C_m) is the largest out of d(x_0, C_1), \ldots, d(x_0, C_n)
    \langle 2 \rangle 6. \ d(x_0, C_m) \ge f(x_0)
    \langle 2 \rangle 7. B(x_0, \delta) \subseteq U_m
    \langle 2 \rangle 8. \ A \subseteq U_m
\langle 1 \rangle 11. \delta is a Lebesgue number for \mathcal{U}
Theorem 11.7.3 (AC). Every sequentially compact metric space is compact.
Proof:
\langle 1 \rangle 1. Let: X be a sequentially comapct metric space.
\langle 1 \rangle 2. Every open covering of X has a Lebesgue number.
    \langle 2 \rangle 1. Let: \mathcal{A} be an open covering of X.
    \langle 2 \rangle 2. Assume: for a contradiction \mathcal{A} has no Lebesgue number.
    \langle 2 \rangle 3. For n \geq 1, PICK a set C_n with diameter \langle 1/n \rangle that is not included in
            any member of A.
    \langle 2 \rangle 4. For n \geq 1, PICK x_n \in C_n.
    \langle 2 \rangle 5. Pick a convergent subsequence (C_{n_r}) of (C_n) with limit a.
    \langle 2 \rangle 6. Pick A \in \mathcal{A} such that a \in A
    \langle 2 \rangle 7. Pick \epsilon > 0 such that B(a, \epsilon) \subseteq A.
    \langle 2 \rangle 8. PICK r such that 1/n_r < \epsilon/2 and d(x_{n_r}, a) < \epsilon/2
    \langle 2 \rangle 9. \ C_{n_r} \subseteq B(a, \epsilon)
```

 $\langle 1 \rangle 3$. For every $\epsilon > 0$, there exists a finite covering of X by ϵ -balls.

 $\langle 2 \rangle 10.$ $C_{n_r} \subseteq A$ $\langle 2 \rangle 11.$ Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 3$.

```
\langle 2 \rangle 1. Assume: for a contradiction that there exists \epsilon > 0 such that X cannot be finitely covered by \epsilon-balls.
```

```
\langle 2 \rangle 2. PICK a sequence of points (x_n) such that x_n \in X - (B(x_1, \epsilon) \cup \cdots \cup B(x_{n-1}, \epsilon))
```

- $\langle 2 \rangle 3.$ $d(x_m, x_n) \geq \epsilon$ for all m, n distinct
- $\langle 2 \rangle 4$. (x_n) has no convergent subsequence
- $\langle 2 \rangle$ 5. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 1$.

- $\langle 1 \rangle 4$. Let: \mathcal{A} be an open covering of X.
- $\langle 1 \rangle$ 5. PICK a Lebesgue number δ for \mathcal{A} .

PROOF: By $\langle 1 \rangle 2$.

- $\langle 1 \rangle 6$. Let: $\epsilon = \delta/3$
- $\langle 1 \rangle 7$. PICK a finite covering $\{B_1, \ldots, B_n\}$ of X be ϵ -balls.

PROOF: By $\langle 1 \rangle 3$.

 $\langle 1 \rangle 8$. For $i = 1, \ldots, n$, PICK $U_i \in \mathcal{A}$ such that $B_i \subseteq A_i$

PROOF: By $\langle 1 \rangle$ 5 since diam $B_i = 2\epsilon < \delta$.

 $\langle 1 \rangle 9. \ \{U_1, \dots, U_n\} \text{ covers } X.$

Example 11.7.4. The space S_{Ω} is not metrizable, because it is sequentially compact but not compact.

11.8 Uniform Continuity

Definition 11.8.1 (Uniformly Continuous). Let X and Y be metric spaces. Let $f: X \to Y$. Then f is uniformly continuous if and only if, for every $\epsilon > 0$, there exists $\delta > 0$ such that, for all $x, y \in X$, if $d(x, y) < \delta$ then $d(f(x), f(y)) < \epsilon$.

Theorem 11.8.2 (Uniform Continuity Theorem). Every continuous function from a compact metric space to a metric space is uniformly continuous.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a compact metric space.
- $\langle 1 \rangle 2$. Let: Y be a metric space.
- $\langle 1 \rangle 3$. Let: $f: X \to Y$ be a continuous function.
- $\langle 1 \rangle 4$. Let: $\epsilon > 0$
- $\langle 1 \rangle 5$. Let: $\mathcal{U} = \{ f^{-1}(B(y, \epsilon/2)) \mid y \in Y \}$
- $\langle 1 \rangle 6$. Pick a Lebesgue number $\delta > 0$ for \mathcal{U} .

PROOF: By the Lebesgue Number Lemma.

- $\langle 1 \rangle 7$. Let: $x, x' \in X$
- $\langle 1 \rangle 8$. Assume: $d(x, x') < \delta$
- (1)9. PICK $y \in Y$ such that $\{x, x'\} \subseteq f^{-1}(B(y, \epsilon/2))$

PROOF: Since diam $\{x, x'\} < \delta$.

 $\langle 1 \rangle 10. \ d(f(x), f(x')) < \epsilon$

Proof:

$$\begin{split} d(f(x),f(x')) &\leq d(f(x),y) + d(y,f(x')) & \text{(Triangle Inequality)} \\ &< \epsilon/2 + \epsilon/2 & \text{($\langle 1 \rangle 9$)} \\ &= \epsilon \end{split}$$

Epsilon-neighbourhoods 11.9

Definition 11.9.1 (ϵ -neighbourhood). Let X be a metric space. Let $A \subseteq X$ be nonempty. Let $\epsilon > 0$. Then the ϵ -neighbourhood of $A, U(A, \epsilon)$, is the set

$$U(A,\epsilon) = \{ x \in X \mid d(x,A) < \epsilon \} .$$

Proposition 11.9.2. Let X be a metric space. Let $A \subseteq X$ be nonempty. Let $\epsilon > 0$. Then $U(A, \epsilon) = \bigcup_{a \in A} B(a, \epsilon)$.

Proof:

- $\langle 1 \rangle 1$. Let: X be a metric space.
- $\langle 1 \rangle 2$. Let: $A \subseteq X$ be nonempty.
- $\langle 1 \rangle 3$. Let: $\epsilon > 0$
- $\langle 1 \rangle 4. \ U(A, \epsilon) \subseteq \bigcup_{a \in A} B(a, \epsilon)$ $\langle 2 \rangle 1. \ \text{Let:} \ x \in U(A, \epsilon)$

 - $\langle 2 \rangle 2$. $d(x,A) < \epsilon$
 - $\langle 2 \rangle 3$. ϵ is not a lower bound for $\{d(x,a) \mid a \in A\}$
 - $\langle 2 \rangle 4$. Pick $a \in A$ such that $d(x, a) < \epsilon$
 - $\langle 2 \rangle 5. \ x \in B(a, \epsilon)$
- $\langle 1 \rangle 5. \bigcup_{a \in A} B(a, \epsilon) \subseteq U(A, \epsilon)$
 - $\langle 2 \rangle 1$. Let: $a \in A$ and $x \in B(a, \epsilon)$
 - $\langle 2 \rangle 2. \ d(x,A) \le d(x,a)$
 - $\langle 2 \rangle 3. \ d(x,A) < \epsilon$
 - $\langle 2 \rangle 4. \ x \in U(A, \epsilon)$

П

Proposition 11.9.3. Let X be a metric space. Let $A \subseteq X$ be nonempty and compact. Let U be an open set such that $A \subseteq U$. Then there exists $\epsilon > 0$ such that $U(A, \epsilon) \subseteq U$.

Proof:

- $\langle 1 \rangle 1$. Let: X be a metric space.
- $\langle 1 \rangle 2$. Let: $A \subseteq X$ be nonempty and compact.
- $\langle 1 \rangle 3$. Let: U be an open set such that $A \subseteq U$
- $\langle 1 \rangle 4$. $\{ B(a, \epsilon) \mid a \in A, \epsilon > 0, B(a, 2\epsilon) \subseteq U \}$ covers A.

Proof: By Proposition 11.1.4.

 $\langle 1 \rangle 5$. PICK a finite subcover $\{B(a_1, \epsilon_1), \ldots, B(a_n, \epsilon_n)\}$

PROOF: Since A is compact $(\langle 1 \rangle 2)$.

 $\langle 1 \rangle 6$. Let: $\epsilon = \min(\epsilon_1, \dots, \epsilon_n)$

```
PROVE: U(A, \epsilon) \subseteq U

\langle 1 \rangle7. Let: x \in U(A, \epsilon)

\langle 1 \rangle8. Pick a \in A such that d(x, a) < \epsilon

PROOF: Proposition 11.9.2.

\langle 1 \rangle9. Pick i such that a \in B(a_i, \epsilon_i)

PROOF: By \langle 1 \rangle5.

\langle 1 \rangle10. d(x, a_i) < 2\epsilon

PROOF: By the Triangle Inequality.

\langle 1 \rangle11. x \in U

PROOF: From \langle 1 \rangle4.
```

This example shows that we cannot weaken the hypothesis that A is compact to A being closed:

Example 11.9.4. Let $X = \mathbb{R}^2$. Let $A = \{(x, 1/x) \mid x > 0\}$. Let $U = \{(x, y) \mid x > 0, y > 0\}$. Then A is nonempty and closed (Proposition 10.50.14). The set U is open and $A \subseteq U$. But there is no $\epsilon > 0$ such that $U(A, \epsilon) \subseteq U$.

Proof:

```
\begin{array}{l} \langle 1 \rangle 1. \ \ \mathrm{Let:} \ \ \epsilon > 0 \\ \langle 1 \rangle 2. \ \ (2/\epsilon, \epsilon/2) \in A \\ \langle 1 \rangle 3. \ \ (2/\epsilon, 0) \in U(A, \epsilon) \\ \langle 1 \rangle 4. \ \ (2/\epsilon, 0) \notin U \\ \square \end{array}
```

11.10 Isometry

Definition 11.10.1 (Isometry). Let X be a metric space. An *isometry* of X is a function $f: X \to X$ such that, for all $x, y \in X$, we have d(x, y) = d(f(x), f(y)).

Proposition 11.10.2. An isometry on a compact metric space is a homeomorphism.

```
Proof:
```

```
\begin{split} \langle 1 \rangle 1. & \text{ Let: } X \text{ be a compact metric space.} \\ \langle 1 \rangle 2. & \text{ Let: } f: X \to X \text{ be an isometry.} \\ \langle 1 \rangle 3. & f \text{ is an imbedding} \\ & \text{PROOF: Proposition 11.5.2.} \\ \langle 1 \rangle 4. & f \text{ is surjective.} \\ & \langle 2 \rangle 1. & \text{Assume: for a contradiction } a \notin f(X) \\ & \langle 2 \rangle 2. & f(X) \text{ is closed} \\ & \text{PROOF: Proposition 10.50.12.} \\ & \langle 2 \rangle 3. & \text{PICK } \epsilon > 0 \text{ such that } B(a,\epsilon) \cap f(X) = \emptyset \\ & \langle 2 \rangle 4. & \text{For } m,n \in \mathbb{N} \text{ with } m \neq n, \text{ we have } d(f^m(a),f^n(a)) \geq \epsilon \\ & \langle 3 \rangle 1. & \text{Assume: without loss of generality } m < n \\ & \langle 3 \rangle 2. & d(a,f^{n-m}(a)) \geq \epsilon \\ & \text{PROOF: } \langle 2 \rangle 3 \end{split}
```

```
\begin{array}{c} \langle 3 \rangle 3. \ d(f^m(a), f^n(a)) \geq \epsilon \\ \quad \text{PROOF: } \langle 1 \rangle 2 \\ \langle 2 \rangle 5. \ \text{The sequence } (f^n(a)) \text{ has a convergent subsequence.} \\ \quad \text{PROOF: Corollary } 10.46.2.1, \ \langle 1 \rangle 1, \text{ Corollary } 11.1.19.1. \\ \langle 2 \rangle 6. \ \text{Q.E.D.} \\ \quad \text{PROOF: } \langle 2 \rangle 4 \text{ and } \langle 2 \rangle 5 \text{ form a contradiction.} \\ \square \\ \qquad \square \end{array}
```

11.11 Shrinking Maps

Definition 11.11.1 (Shrinking Map). Let X be a metric space. Let $f: X \to X$. Then f is a *shrinking map* if and only if, for all $x, y \in X$ with $x \neq y$, we have d(f(x), f(y)) < d(x, y).

Proposition 11.11.2. Let X be a compact metric space. Let $f: X \to X$ be a contraction. Then f has a unique fixed point.

```
Proof:
\langle 1 \rangle 1. Let: A_n = f^n(X) for n \geq 1
\langle 1 \rangle 2. For all n \geq 1 we have A_n is closed.
   Proof: Proposition 10.50.12.
\langle 1 \rangle 3. Let: A = \bigcap_{n=1}^{\infty} A_n
\langle 1 \rangle 4. Pick a \in A
   Proof: Proposition 10.47.6.
\langle 1 \rangle 5. f(A) = A
   \langle 2 \rangle 1. \ f(A) \subseteq A
   \langle 2 \rangle 2. A \subseteq f(A)
       \langle 3 \rangle 1. Let: x \in A
      \langle 3 \rangle 2. For n \geq 1, PICK x_n such that x = f^n(x_n)
      \langle 3 \rangle 3. PICK a convergent subsequence (f^{n_r-1}(x_{n_r})) of (f^{n-1}(x_n)) with limit
          Proof: Corollary 10.46.2.1.
      \langle 3 \rangle 4. f(l) = x
          PROOF: Both are the limit of f(f^{n_r-1}(a_{n_r})) = f^{n_r}(a_{n_r}).
       \langle 3 \rangle 5. \ l \in A
          \langle 4 \rangle 1. Assume: for a contradiction l \notin A
          \langle 4 \rangle 2. PICK N such that l \notin A_N
          \langle 4 \rangle 3. PICK R such that n_R > N
          \langle 4 \rangle 4. For r \geq R we have f^{n_r-1}(a_{n_r}) \in A_N
          \langle 4 \rangle5. Q.E.D.
             PROOF: This is a contradiction.
\langle 1 \rangle 6. diam A = A
   \langle 2 \rangle 1. PICK x, y \in A such that d(x, y) = \operatorname{diam} A
      PROOF: By the Extreme Value Theorem.
   \langle 2 \rangle 2. PICK x', y' \in A such that x = f(x') and y = f(y')
```

```
PROOF: By \langle 1 \rangle 5. \langle 2 \rangle 3. x' = y'
PROOF: If x' \neq y' then diam A = d(x,y) < d(x',y') which is a contradiction. \langle 2 \rangle 4. x = y
\langle 1 \rangle 7. f(a) = a
PROOF: Since a, f(a) \in A
\langle 1 \rangle 8. If f(b) = b then b = a
PROOF: If f(b) = b then b \in A.
```

The following example shows that we cannot weaken the hypothesis from X' is a compact metric space, to X' is a complete metric space.

Example 11.11.3. The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = [x + (x^2 + 1)^{1/2}]/2$ is a shrinking map with no fixed point.

11.12 Contractions

Definition 11.12.1 (Contraction). Let X be a metric space. Let $f: X \to X$. Then f is a *contraction* if and only if there exists $\alpha < 1$ such that, for all $x, y \in X$, we have $d(f(x), f(y)) \leq \alpha d(x, y)$.