Lazy White Falcon

White Falcon just solved the data structure problem below using heavy-light decomposition. Can you help her find a new solution that doesn't require implementing any fancy techniques?

There are 2 types of query operations that can be performed on a tree:

- 1. 1 u x: Assign x as the value of node u.
- 2. 2 u v: Print the sum of the node values in the unique path from node u to node v.

Given a tree with N nodes where each node's value is initially 0, execute Q queries.

Input Format

The first line contains ${f 2}$ space-separated integers, ${f N}$ and ${f Q}$, respectively.

The N-1 subsequent lines each contain ${f 2}$ space-separated integers describing an undirected edge in the tree.

Each of the $oldsymbol{Q}$ subsequent lines contains a query you must execute.

Constraints

- $1 < N, Q < 10^5$
- $1 \le x \le 1000$
- ullet It is guaranteed that the input describes a connected tree with N nodes.
- Nodes are enumerated with 0-based indexing.

Output Format

For each type-2 query, print its integer result on a new line.

Sample Input

3 3 0 1 1 2 1 0 1 1 1 2 2 0 2

Sample Output

3

Explanation

After the first 2 queries, the value of node $n_0=1$ and the value of node $n_1=2$. The third query requires

us to print the sum of the node values in the path from nodes 0 to 2, which is 1+2+0=3. Thus, we print ${\bf 3}$ on a new line.