Curso: Análise e Desenvolvimento de Sistemas - 2018

Disciplina: Linguagem de Programação

Lista de exercícios 2

Desenvolva os algoritmos a seguir utilizando a Linguagem C:

- 1) (BACKES, 2012) Faça um programa que receba dois números e mostre qual deles é o maior. Salve o projeto com o nome "1_numero_maior".
- 2) (PUGA & RISSETI, 2016) Verifique se o número fornecido pelo usuário é par ou ímpar. Para isto, apresente uma mensagem mostrando o número digitado e o resultado do teste. Salve o projeto com o nome "2_numero_par_impar".
- 3) (BACKES, 2012) Leia um número fornecido pelo usuário. Se esse número for positivo, calcule a raiz quadrada do número. Se o número for negativo, mostre uma mensagem dizendo que o número é inválido. Salve o projeto com o nome "3_raiz_quadrada".
- 4) Escreva um algoritmo que leia um número informado pelo usuário e informe se o número é positivo, negativo ou zero. Salve o projeto com o nome "4_numero_positivo_negativo_zero".
- 5) (PUGA & RISSETI, 2016) De acordo com um valor fornecido pelo usuário, verifique se ele é múltiplo de 3, ou múltiplo de 7. Apresente uma mensagem mostrando o número digitado e o resultado do teste. Salve o projeto com o nome "5_multiplo_de_3_ou_7".
- 6) Escreva um algoritmo classifique uma nota informada pelo aluno, de 0 a 5, em conceitos, da seguinte forma:
 - Conceito A: 5
 - Conceito B: 4
 - Conceito C: 3
 - Conceito D: 2
 - Conceito E: 1

Salve o projeto com o nome "6_conceitos".

- 7) (BACKES, 2012) Leia um número real. Se o número for positivo imprima a raiz quadrada. Do contrário, imprima o número ao quadrado. Salve o projeto com o nome "7_raiz_e_potencia".
- 8) (BACKES, 2012) Faça um programa que leia um número e, caso ele seja positivo, calcule e mostre:
- O número digitado ao quadrado
- A raiz quadrada do número digitado

Salve o projeto com o nome "8_potencia_e_raiz".

- 9) (BACKES, 2012) Faça um programa que receba um número inteiro e verifique se este número é par ou ímpar. Salve o projeto com o nome "9_par_ou_impar".
- 10) (BACKES, 2012) Escreva um programa que, dados dois números inteiros, mostre na tela o maior deles, assim como a diferença existente entre ambos. Salve o projeto com o nome "10_diferenca".
- 11) (BACKES, 2012) Faça um programa que leia 2 notas de um aluno, verifique se as notas são válidas e exiba na tela a média destas notas. Uma nota válida deve ser, obrigatoriamente, um valor entre 0.0 e 10.0, onde caso a nota não possua um valor válido, este fato deve ser informado ao usuário e o programa termina. Salve o projeto com o nome "11 ler 2 notas".
- 12) (BACKES, 2012) Leia o salário de um trabalhador e o valor da prestação de um empréstimo. Se a prestação for maior que 20% do salário imprima: "Empréstimo não concedido", caso contrário imprima: "Empréstimo concedido". Salve o projeto com o nome "12 emprestimo".
- 13) (BACKES, 2012) Faça um programa que receba a altura e o sexo de uma pessoa e calcule e mostre seu peso ideal, utilizando as seguintes fórmulas (onde h corresponde a altura):
- Homens: (72.7 * h) 58
- Mulheres: (62, 1 * h) 44, 7

Salve o projeto com o nome "13 peso ideal".

- 14) (BACKES, 2012) Escreva um programa que leia um número inteiro maior do que zero e devolva, na tela, a soma de todos os seus algarismos. Por exemplo, ao número 251 corresponder a o valor 8 (2 + 5 + 1). Se o número lido n ao for maior do que zero, o programa terminar a com a mensagem "número inválido". Salve o projeto com o nome "14 somar algarismos".
- 15) (BACKES, 2012) Faça um algoritmo que calcule a média ponderada das notas de 3 provas. A primeira e a segunda prova tem peso 1 e a terceira tem peso 2. Ao final, mostrar a média do aluno e indicar se o aluno foi aprovado ou reprovado. A nota para aprovação deve ser igual ou superior a 60 pontos. Salve o projeto com o nome "15 media ponderada".
- 16) (PUGA & RISSETI, 2016) Um aluno realizou três provas de uma determinada disciplina. Levando em consideração o critério apresentado a seguir, faça um programa que mostre se ele ficou para exame e, em caso positivo, que nota este aluno precisa obter, no exame, para passar de ano. Salve o projeto com o nome "16_exame_final".

Média = (Prova 1 + Prova 2 + Prova 3) / 3

A média deve ser maior ou igual a 7,0. Se não conseguir, a nova média deve ser:

Final = (Média + Exame) / 2

A média final, para aprovação, deve ser maior ou igual a 5,0.

- 17) (BACKES, 2012) A nota final de um estudante é calculada a partir de três notas atribuídas entre o intervalo de 0 até 10, respectivamente, a um trabalho de laboratório, a uma avaliação semestral e a um exame final. A média das três notas mencionadas anteriormente obedece aos pesos: Trabalho de Laboratório: 2; Avaliação Semestral: 3; Exame Final: 5. De acordo com o resultado, mostre na tela se o aluno está reprovado (média entre 0 e 2,9), de recuperação (entre 3 e 4,9) ou se foi aprovado. Faça todas as verificações necessárias. Salve o projeto com o nome "17 nota final".
- 18) (BACKES, 2012) Usando switch, escreva um programa que leia um inteiro entre 1 e 7 e imprima o dia da semana correspondente a este número. Isto e, domingo se 1, segunda-feira se 2, e assim por diante. Salve o projeto com o nome "18_dia_da_semana".
- 19) (PUGA & RISSETI, 2016) Calcule o tempo de duração de uma ocorrência, considerando a entrada do período inicial e final por meio de três valores inteiros positivos, que devem representar a hora, o minuto e o segundo desta ocorrência. O usuário deverá fornecer os dois períodos e escolher se quer o resultado em hora, minuto ou segundo. Salve o projeto com o nome "10 ocorrencias".
- 20) (BACKES, 2012) Usando switch, escreva um programa que leia um inteiro entre 1 e 12 e imprima o mês correspondente a este número. Isto e, janeiro se 1, fevereiro se 2, e assim por diante. Salve o projeto com o nome "20_mes".
- 21) (BACKES, 2012) Faça um programa que mostre ao usuário um menu com 4 opções de operações matemáticas (as básicas, por exemplo). O usuário escolhe uma das opções e o seu programa então pede dois valores numéricos e realiza a operação, mostrando o resultado. Salve o projeto com o nome "21_menu_operacoes".
- 22) (PUGA & RISSETI, 2016) Uma loja de departamentos está oferecendo diferentes formas de pagamento, conforme as opções listadas a seguir. Faça um algoritmo que leia o valor total de uma compra e calcule o valor do pagamento final de acordo com a opção escolhida. Se a escolha for por pagamento parcelado, calcule também o valor da parcela. Ao final, apresente o valor total e o valor das parcelas. Salve o projeto com o nome "22_compras".
- a) Pagamento à vista: conceder desconto de 5%.
- b) Pagamento em 3 parcelas: o valor não sofre alteração.
- c) Pagamento em 5 parcelas: acréscimo de 2%.

- d) Pagamento em 10 parcelas: acréscimo de 8%.
- 23) Escreva um algoritmo que receba uma letra informada pelo usuário e informe se essa letra é uma vogal ou uma consoante. Salve o projeto com o nome "23_letras_alfabeto".
- 25) (BACKES, 2012) Faça um programa para verificar se um determinado número inteiro e divisível por 3 ou 5, mas não simultaneamente pelos dois. Salve o projeto com o nome "25_numero_divisivel_por_3_ou_5".
- 26) (BACKES, 2012) Dados três valores, A, B, C, verificar se eles podem ser valores dos lados de um triângulo e, se forem, se e um triângulo escaleno, equilátero ou isóscele, considerando os seguintes conceitos:
 - O comprimento de cada lado de um triângulo é menor do que a soma dos outros dois lados.
 - Chama-se equilátero o triângulo que tem três lados iguais.
 - Denominam-se isósceles o triángulo que tem o comprimento de dois lados iguais.
 - Recebe o nome de escaleno o triangulo que tem os três lados diferentes.

Salve o projeto com o nome "26_triangulo".

- 27) (BACKES, 2012) Escreva o menu de opções abaixo. Leia a opção do usuário e execute a operação escolhida. Escreva uma mensagem de erro se a opção for inválida. Escolha a opção:
- 1- Soma de 2 numeros.
- 2- Diferença entre 2 numeros (maior pelo menor).
- 3- Produto entre 2 números.
- 4- Divisão entre 2 números (o denominador não pode ser zero).

Salve o projeto com o nome "27_operacoes".

- 28) (BACKES, 2012) Leia a idade e o tempo de serviço de um trabalhador e escreva se ele pode ou não se aposentar. As condições para aposentadoria são:
 - Ter pelo menos 65 anos,
 - Ou ter trabalhado pelo menos 30 anos,
 - Ou ter pelo menos 60 anos e trabalhado pelo menos 25 anos.

Salve o projeto com o nome "28_aposentadoria".

- 29) (PUGA & RISSETI, 2016) Dada a equação $\Delta = b^2 4ac$, receba os valores para cada variável, calcule o valor da equação e em seguida as raízes utilizando a fórmula -b +- raiz(Δ) / (2*a). Por isso, verifique o resultado obtido para o delta:
- a) Se for igual a zero, deve-se calcular apenas uma raiz.
- b) Se for maior do que zero, deve-se calcular as duas raízes.
- c) Se for menor do que zero, não é possível calcular nenhuma raiz.

Salve o projeto com o nome "29 baskara".

- 30) (BACKES, 2012) Determine se um determinado ano lido e bissexto. Sendo que um ano é bissexto se for divisivel por 400 ou se for divisivel por 4 e não for divisível por 100. Por exemplo: 1988, 1992, 1996. Salve o projeto com o nome "30_bissexto".
- 31) (BACKES, 2012) Uma empresa vende o mesmo produto para quatro diferentes estados. Cada estado possui uma taxa diferente de imposto sobre o produto (MG 7%; SP 12%; RJ 15%; MS 8%). Faça um programa em que o usuário entre com o valor e o estado destino do produto e o programa retorne o preço final do produto acrescido do imposto do estado em que ele será vendido. Se o estado digitado não for válido, mostrar uma mensagem de erro. Salve o projeto com o nome "31_preco_final".
- 32) (PUGA & RISSETI, 2016) Desenvolva os algoritmos para cada uma das proposições a seguir:
- a) Obter 4 valores fornecidos pelo usuário e identificar qual deles é o maior. Salve o projeto com o nome "32_algoritmo_a"..
- b) Ler 3 valores inteiros e positivos, apresentando-os em ordem crescente. Salve o projeto com o nome "32_algoritmo_b".
- c) Ler um valor fornecido pelo usuário, verificando se é ímpar e múltiplo de outro número também fornecido pelo usuário. Salve o projeto com o nome "32_algoritmo_c".
- 33) (BACKES, 2012) Leia a distância em Km e a quantidade de litros de gasolina consumidos por um carro em um percurso, calcule o consumo em Km/l e escreva uma mensagem de acordo com a tabela abaixo:

Consumo	KM/L	Mensagem
Menor que	8	Venda o carro
Entre	8 e 14	Econômico
Maior que	12	Super econômico

Salve o projeto com o nome "33_consumo_gasolina".

34) (BACKES, 2012) Escreva um programa que, dada a idade de um nadador, classifique-o em uma das seguintes categorias:

Categoria	Idade
Infantil A	5 a 7
Infantil B	8 a 10
Juvenil A	11 a 13
Juvenil B	14 a 17
Sênior	Maiores de 18 anos

Salve o projeto com o nome "34_categorias".

- 35) (BACKES, 2012) Faça uma prova de matemática para crianças que estão aprendendo a somar números inteiros menores do que 100. Escolha números aleatórios entre 1 e 100, e mostre na tela a pergunta: qual é a soma de a + b, onde a e b são os números aleatórios. Pecça a resposta. Faça cinco perguntas ao aluno, e mostre para ele as perguntas e as respostas corretas, além de quantas vezes o aluno acertou. Salve o projeto com o nome "35_perguntas".
- 36) (BACKES, 2012) Faça um programa que receba três números e mostre-os em ordem crescente. Salve o projeto com o nome "36_ordem_crescente".
- 37) (BACKES, 2012) Faça um programa que receba a altura e o peso de uma pessoa. De acordo com a tabela a seguir, verifique e mostra qual a classificação dessa pessoa:

A16	Peso		
Altura	Até 60	Entre 60 e 90 (inclusive)	Acima de 90
Menor que 1,20	Α	D	G
De 1,20 a 1,70	В	Е	Н
Maior que 1,70	С	F	I

Salve o projeto com o nome "37_classificacao_pessoa".

38) (BACKES, 2012) Escrever um programa que leia o código do produto escolhido do cardápio de uma lanchonete e a quantidade. O programa deve calcular o valor a ser pago por aquele lanche. Considere que a cada execução somente será calculado um pedido. O cardápio da lanchonete segue o padrão abaixo:

Especificação	Código	Preço
Cachorro quente	100	1,20
Bauru simples	101	1,30
Bauru com ovo	102	1,50
Hamburguer	103	1,20
Cheeseburger	104	1,70
Suco	105	2,20
Refrigerante	106	1,00

Salve o projeto com o nome "38_cardapio".

39) (BACKES, 2012) Um produto vai sofrer aumento de acordo com a tabela abaixo. Leia o preço antigo, calcule e escreva o preço novo, e escreva uma mensagem em função do preço novo, de acordo com a segunda tabela:

Preço antigo	Percentual de aumento
Até R\$ 50,00	5%
Entre R\$ 50,00 e R\$ 100,00	10%
Acima de R\$ 100,00	15%

Salve o projeto com o nome "39_produtos".

40) (BACKES, 2012) Leia a nota e o número de faltas de um aluno, e escreva seu conceito. De acordo com a tabela abaixo, quando o aluno tem mais de 20 faltas ocorre uma redução de conceito.

Nota	Conceito (até 20 faltas)	Conceito (mais de 20 faltas)
9.0 até 10.0	Α	В
7.5 até 8.9	В	С
5.0 até 7.4	С	D
4.0 até 4.9	D	E
0.0 até 3.9	E	E

Salve o projeto com o nome "40_conceitos".

41) (BACKES, 2012) Leia uma data e determine se ela e válida. Ou seja, verifique se o mês está entre 1 e 12, e se o dia existe naquele mês. Note que Fevereiro tem 29 dias em anos bissextos, e 28 dias em anos não bissextos. Salve o projeto com o nome "41 verificar data".

42) (BACKES, 2012) As tarifas de certo parque de estacionamento são as seguintes:

- 1 a e 2a hora R\$ 1,00 cada
- 3 a e 4a hora R\$ 1,40 cada
- 5 a hora e seguintes R\$ 2,00 cada

O número de horas a pagar é sempre inteiro e arredondado por excesso. Deste modo, quem estacionar durante 61 minutos pagará por duas horas, que é o mesmo que pagaria se tivesse permanecido 120 minutos. Os momentos de chegada ao parque e partida deste são apresentados na forma de pares de inteiros, representando horas e minutos. Por exemplo, o par 12 50 representará "dez para a uma da tarde". Pretende-se criar um programa que, lidos pelo teclado os momentos de chegada e de partida, escreva na tela o preço cobrado pelo estacionamento. Admite-se que a chegada e a partida se dão com intervalo não superior a 24 horas. Portanto, se uma dada hora de chegada for superior a da partida, isso não é uma situação de erro, antes significa que a partida ocorreu no dia seguinte ao da chegada. Salve o projeto com o nome "42_estacionamento".

43) (BACKES, 2012) Leia uma data de nascimento de uma pessoa fornecida através de três números inteiros: Dia, Mês e Ano. Teste a validade desta data para saber se esta é uma data válida. Teste se o dia fornecido e um dia válido: dia > 0, dia ≤ 28 para o mês de fevereiro (29 se o ano for bissexto), dia \leq 30 em abril, junho, setembro e novembro, dia \leq 31 nos outros meses. Teste a validade do mês: mês > 0 e mês < 13. Teste a validade do ano: ano ≤ ano atual (use uma constante definida com o valor igual a 2018). Imprimir: "data válida" ou "data inválida" no final da execução do programa. Salve projeto com nome "43_verificar_data_nascimento".

- 44) (BACKES, 2012) Uma empresa decide dar um aumento aos seus funcionários de acordo com uma tabela que considera o salário atual e o tempo de serviço de cada funcionário. Os funcionários com menor salário terão um aumento proporcionalmente maior do que os funcionários com um salário maior, e conforme o tempo de serviço na empresa, cada funcionário irá receber um bônus adicional de salário. Faça um programa que leia:
 - O valor do salário atual do funcionário;
 - O tempo de serviço desse funcionário na empresa (número de anos de trabalho na empresa).

Use as tabelas abaixo para calcular o salário reajustado deste funcionário e imprima o valor do salário final reajustado, ou uma mensagem caso o funcion ario n ao tenha direito a nenhum aumento.

Salário atual (R\$)	Reajuste (%)	Tempo de serviço	Bônus (R\$)
Até 500,00	25%	Abaixo de 1 ano	Sem bônus
Até 1.000,00	20%	De 1 a 3 anos	100,00
Até 1.500,00	15%	De 4 a 6 anos	200,00
Até 2.000,00	10%	De 7 a 10 anos	300,00
Acima de 2.000,00	Sem reajuste	Mais de 10 anos	500,00

Salve o projeto com o nome "44_atualizacao_salarial".

45) (BACKES, 2012) O custo ao consumidor de um carro novo e a soma do custo de fábrica, da comissão do distribuidor, e dos impostos. A comissão e os impostos são calculados sobre o custo de fábrica, de acordo com a tabela abaixo. Leia o custo de fábrica e escreva o custo ao consumidor.

Custo de fábrica	% do distribuidor	% dos impostos
Até R\$ 12.000,00	5	isento
Entre R\$ 12.000,00 e R\$ 25.000,00	10	15
Acima de R\$ 25.000,00	15	20

Salve o projeto com o nome "45_custo_carro".

46) (BACKES, 2012) Faça um algoritmo que calcule o IMC de uma pessoa e mostre sua classificação de acordo com a tabela abaixo:

IMC	Classificação
< 18,5	Abaixo do peso
18,6 - 24,9	Saudável
25,0 - 29,9	Peso em excesso
30,0 - 34,9	Obesidade grau I
35,0 - 39,9	Obesidade grau II
>= 40,0	Obesidade grau III

Salve o projeto com o nome "46_imc".