

Limiti  $f(x) = \frac{1}{x}$ tutto l'asse!  $f(x) = \sin\left(\frac{1}{x}\right)$ (x) = x sim =





$$f(x) = \begin{cases} l_m(x) & \text{if } x > 0 \\ 0 & \text{if } x = \{-1, -2\} \end{cases}$$

1. gradico



possibili x,  $\{x=0, x=+\infty, x=1\}$ 

 $\chi_{o} \in [0, +\infty)$  e limite  $a + \infty$ 

-2, 1 sono imea isolati non c'é nella da coladere



$$\int_{x-1}^{(x)} \frac{x^2-1}{x-1} \quad \text{you fich a mo chec} \quad \lim_{x\to 1} \int_{(x)} \frac{1}{2}$$

$$\int_{x\to 1}^{(x)} \frac{x^2-1}{x-1} \quad \text{you fich a mo chec} \quad \lim_{x\to 1} \int_{(x)} \frac{1}{2}$$

$$\int_{x\to 1}^{(x)} \frac{1}{x-1} = \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} \right) \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left( \frac{1}{2} - \frac{1}{$$



## Teorema di unicità f: Df ⊆ IR -> IR; X, de accum in Df l, l, ER teliche: $\lim_{x\to\infty} f(x) = \ln e \lim_{x\to\infty} f(x) = \ln e$ Chimostrizuro par assurche, ponen de le + la 7 E1, E2 >0: B(G, E-InB(G2E2I= 0) destr definitione de limite trovismo S1, S2>0 tah che f(x) e B(ly En[ + x e B(x, g,[ e fo) & B (lz, Ez[ + x & B(xo, Sz[ chiemanno J= B(xo, SIE 1 B(Xo, S2 E + \$

ellors  $x \in J: f(x) \in B(l_1, E_1 E_1)$   $f \in f(x) \in B(l_2, E_2 E_1)$   $f \in f(x) \in B(l_2, E_3 E_1)$ assurda, prima abolizmo scelto B(l, E, L nB(lz, Ez C = p mentre are chairmo il contrerio! Teasma di permenenza del segno

J: Dy-> IR ; xo zacumu. di Dj

· se kim f(x)=l>0 zlaz

35>0 => f(x)>0 + x e B (x, 5[1])

· se kim f(x)=1<0 zlaz

35>0 => f(x)<0 fxeB(x,5[nDg



$$\forall E > 0 \exists m > 0 | f(x) - l < E \forall x \in Jm, +0 \in 0 D$$

prosime volte care definizioni di:

$$\lim_{x \to \pm \infty} f(x) = \pm \infty \quad \text{(separate)}$$



$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R}, & \text{ in te dativo } x > x_0
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

$$\begin{cases}
\lim_{x \to x_0} f(x) = l \in \mathbb{R} \text{ (limite dativo } x > x_0)
\end{cases}$$

esemplo  $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil frague che lim} \\ (x) = -\infty \end{cases}$   $\begin{cases} (x) = \frac{1}{x-2}, & \text{veil fr$ 

tearems del confronto (constiniari)

f g h función definite se intervallo I; Xo chi acc.
per I

assumizmo  $f(x) \leq g(x) \leq h(x) \quad \forall x \in I$ 

• If  $\lim_{x\to x_0} f(x) = l$  e  $\lim_{x\to x_0} h(x) = l$  alore  $\lim_{x\to x_0} g(x) = l$ 

· Je hm / (x)=+00 = llaz lim q(x)=+00

· Se him h(x)=-00 = laz kim g(x) = -00

limite di unz semma lim f(x)=l e R; lim g(x)=m e R x->x0 g(x)=m e R

allows  $\lim_{x\to x} \left( \frac{1}{2} (x) + g(x) \right) = l + m$ 

dimostrizmo che fissato 
$$E > 0$$
 possizmo trovare  $G > 0$  tale che  $g(x) + g(x) \in \mathbb{B}\left(l+m, E\right) \quad \forall x \in \mathbb{B}\left(x_0, \delta\right) = 1$ 

$$|g(x) + g(x)| = |g(x) - (l+m)| < E \quad \forall x : |x-x_0| < \delta$$
Sappiamo che possiamo trovare  $G > 0$  tale che  $|g(x) - l| < E \quad \forall x : |x-x_0| < \delta$ 
e inoltre troviamo  $G > 0$  tale che  $|g(x) - m| < E \quad \forall x : |x-x_0| < \delta$ 

$$|g(x) + g(x) - l - m| = |(f(x) - l) + (g(x) - m)|$$

$$|g(x) + g(x) - l| + |g(x) - m|$$

$$|g(x) - m| + |g(x) - m|$$

$$|g(x) - m$$

| lim   | l(x) = l | lim                 | (x) = | hs |
|-------|----------|---------------------|-------|----|
| ×->×0 | f(v) = l | <i>\times&gt;\%</i> |       | ·  |

| 1.    | (1)       | <u> </u> |      |      |  |
|-------|-----------|----------|------|------|--|
| K-7Ko | (fa)+ za) | m e R    | + 00 | - 80 |  |
|       | me R      | m + l    | + 00 | - 00 |  |
| l     | + 00      | + ∞      | + 00 | Find |  |
|       |           |          |      |      |  |
|       | - 00      | - 00     | Find | - 00 |  |
|       |           |          |      |      |  |

Find=[ 00-0] (colodi porticolori de compiese)

$$\lim_{x\to x_0} g(x) = \lim_{x\to x_0} g(x) = \lim_{x\to x_0} e(x)$$

|      |                |      | 1              | m    |      |      |
|------|----------------|------|----------------|------|------|------|
| lim  | \$6).g(x)      | ۷0   | <del>-</del> 0 | > c  | 400  | -00  |
| ~ ~0 | 0 0            |      |                |      |      |      |
|      | < 0            | l·m  | Ò              | l·m  | - 8  | +00  |
|      | ١٠ ٥           | 0    | 0              | 0    | Find | Find |
| l    | > <sub>G</sub> | l·m  | 0              | l·m  | +00  | -00  |
| . •  | +8             | - 80 | F ind          | + 00 | +∞   | -00  |
|      | - ∞            | 100  | Find           | - 00 | -00  | +00  |

## limite del vapporto

$$\lim_{x\to\infty} \int_{c}^{(x)} = l \in \mathbb{R}$$
 allora  $\lim_{x\to\infty} \frac{1}{\int_{c}^{(x)}} = \frac{1}{l}$ 

|          | · ·      |      |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|----------|----------|------|------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 0 ·      | {(x) / l |      | **                     | interess | e per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (im<br>×->xo= |
| lim      | 0        |      |                        | (den.)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| X->∪     | g(x)-m   |      |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|          | U        | < 0  | $\left(o^{\pm}\right)$ | <b>%</b> | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -00           |
|          | <0       | l/m  | 7 8*                   | 2/m      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С             |
|          | 0 ±      | 0    | [%]                    | 0        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0             |
| (hupe) R | > 0      | l/m  | ± 00                   | l/m      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O             |
|          | + 00     | - 00 | + ∞                    | + &      | 818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [ 😤 ]         |
|          | _ 00     | 400  | + 2                    | 8        | [\varksign{\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\varksign{\varksign}\vark |               |

lim 
$$\frac{-3}{x^2}$$
 -> denominatae tende a zero, il numae tentar di aescere  $x \to > 0^+$   $x^2$  ma il visultato  $e - \infty$ 

## forme indeterminate

torme indeterminate

$$\lim_{x \to 2} \frac{x^3 - 8}{x - z} = 0 \quad \text{forms indeterminate} \qquad 1 \quad \text{C} \quad \text{C} \quad -8$$

$$\lim_{x \to 2} \frac{(x - z)(x^2 + 2x + 4)}{(x - z)(x^2 + 2x + 4)} \qquad 2 \quad \text{C} \quad \text{C} \quad \text{C}$$

$$\lim_{x \to 2} \frac{(x - z)(x^2 + 2x + 4)}{(x - z)(x^2 + 2x + 4)} \qquad 2 \quad \text{C}$$

ecco a cosa punta!

2) 
$$\lim_{X \to Z^+} \frac{x-Z}{\sqrt{x^2-4}} = \left[\begin{array}{c} 0\\ 0 \end{array}\right]$$

$$D: x^2 - 4 > 0 \qquad x^2 > 4 \qquad X > \pm 2 = x < - \pi / 2 > 2$$

$$\lim_{x \to 2} + \frac{x-2}{\sqrt{x^2 \cdot 4}} \cdot \frac{\sqrt{x^2 - 4}}{\sqrt{x^2 \cdot 4}} = \frac{(x-7)(\sqrt{x^2 - 4})}{x^2 - 4} = \frac{(x-8)(x+2)}{(x+2)}$$

$$\frac{\sqrt{x^2-4}}{x+z} = \frac{o}{4} = \frac{o}{6}$$
 Selizione finale!

3) 
$$\lim_{x\to 70} \frac{\sqrt{4+x}-2}{x} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

$$\frac{\left(\sqrt{4+x}-7\right)\left(\sqrt{4+x}+2\right)}{X\left(\sqrt{4+x}+2\right)} = \lim_{\chi \to 0} = \frac{4+\chi-4}{\chi\left(\sqrt{4+x}+2\right)} = \frac{1}{4}$$

4) 
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 2}}{2x + 1} = \left[\frac{\infty}{\infty}\right] = \frac{\sqrt{x^2}(1 + \frac{2}{x^2})}{x(2 + \frac{7}{x})} = \frac{|x| \cdot \sqrt{1 + \frac{2}{x^2}}}{x(2 + \frac{7}{x})}$$

$$D: x \neq -\frac{1}{2}$$

$$= \frac{|x| \cdot 1}{|x| \cdot 2} = \frac{1}{|x|}$$

$$\lim_{x \to 2^+} \sqrt{x^2 + \sqrt{x^2}} = \frac{1}{|x|} = \frac{1}{|x|}$$

$$\lim_{x \to 2^+} \sqrt{x^2 + \sqrt{x^2}} = \frac{1}{|x|} = \frac{1}{|x|}$$

$$\lim_{x \to 2^+} \sqrt{x^2 + \sqrt{x^2}} = \frac{1}{|x|} = \frac{1}{|x|}$$

$$\lim_{x \to 2^+} \sqrt{x^2 + \sqrt{x^2}} = \frac{1}{|x|} = \frac{1}{|x|}$$

$$\lim_{x \to 2^+} \sqrt{x^2 + \sqrt{x^2}} = \frac{1}{|x|} = \frac{1}{|x|} = \frac{1}{|x|}$$

$$\lim_{x \to 2^+} \sqrt{x^2 + \sqrt{x^2}} = \frac{1}{|x|} = \frac{1}{|x|}$$

$$\frac{\sqrt[3]{x^{2}-4}}{\sqrt[3]{x^{2}-4}} + \frac{\sqrt[3]{x^{2}-4}}{\sqrt[3]{x^{2}-4}} = \frac{x-2}{\sqrt[3]{(x+2)}(x+2)} + \frac{1}{\sqrt[3]{x+2}}$$

$$= \frac{\sqrt[3]{x^{2}-4}}{\sqrt[3]{x^{2}-4}} + \frac{1}{\sqrt[3]{x^{2}-4}} + \frac{1}{\sqrt[3]{x+2}}$$

$$= \frac{\sqrt[3]{x^{2}-4}}{\sqrt[3]{x^{2}-4}} + \frac{1}{\sqrt[3]{x^{2}-4}} + \frac{1}{\sqrt[3]{x+2}}$$

$$= \frac{\sqrt[3]{x^{2}-4}}{\sqrt[3]{x^{2}-4}} + \frac{1}{\sqrt[3]{x^{2}-4}} + \frac{1}{\sqrt[3]{x^{2}-4}}$$

$$= \frac{\sqrt[3]{x^{2}-4}}{\sqrt[3]{x^{2}-4}} + \frac{1}{\sqrt[3]{x^{2}-4}} + \frac{1}{\sqrt[3]{x^{2}-4}}$$

$$= \frac{\sqrt[3]{x^{2}-4}}{\sqrt[3]{x^{2}-4}} + \frac{\sqrt[3]{x^{2}-4}}{\sqrt[3]{x^{2}-4}}$$

$$= \frac{\sqrt[3]{x^{2}-4}}{\sqrt[3]{x^{2}-4}} +$$

$$\lim_{x \to 1} \frac{x^4 - x^3 + x^2 - x}{(x^2 - 1)} = \frac{x(x^2 - 1)(x - 1)}{(x - 1)(x + 1)} = 1$$

$$\frac{1 - 1 - 1 - 1 C}{1 0 1 0}$$

$$\frac{1}{1 0 1 0}$$

$$\frac{(x^3 + x)(x - 1)}{(x^3 + x)(x - 1)}$$

lim  $\begin{cases}
(x) & \text{if le e periodica, me attensione.} \\
\text{lim } & \text{ces}(x) + x = +\infty \\
x \to +\infty & \text{if } 1
\end{cases}$ 

 $\lim_{x\to\pm\infty} f(x) = l \qquad \lim_{x\to\pm\infty} |f(x)| = |l|$ 

## Forme indeterminate

$$[1^{\infty}] \rightarrow \lim_{x \to +\infty} (1 + \frac{1}{x})^{x}$$

1) Ricanosco la farma indet

2) Ussue i "trucchi" por visolvene (es. delapital)

miti notewi

 $\frac{1}{1} \lim_{x \to 0} \frac{x}{x} = 1$ 

DIM



per il teorems del confronto

X= zneglo in vol

sin(x) < x < t > sin(x)

 $1 < \frac{x}{\sin(x)} < \frac{1}{\cot(x)}$   $\frac{1}{x \rightarrow c}$   $\frac{1}{x \rightarrow c}$ 

$$\lim_{x \to 0} \frac{1}{x} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to 0} \frac{1}{x} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1}{x} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1}{x} \frac{1}{x} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x^2} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x^2} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x^2} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x^2} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x^2} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x^2} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x^2} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x^2} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x^2} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x^2} \frac{1}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x} \frac{1}{x} = 1$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x} = 1$$

$$\frac{1 - cds(x)}{x^2} = \frac{1 - cds(x)}{z^2}$$

$$= 1 - 2sin^2 x$$

$$cds(x) = 1 - 2sin^2 \left(\frac{x}{z}\right)$$

$$cds(x) = 1 - 2sin^2 \left(\frac{x}{z}\right)$$

$$\frac{1}{x^2} = \frac{z}{z^2} = \frac{z}{z^2} = \frac{z}{z}$$

$$\frac{z}{x^2} = \frac{z}{z}$$

$$x = zt$$

2) 
$$\lim_{X \to +\infty} \left(1 + \frac{1}{X}\right)^{x} = e$$

$$\lim_{X \to$$





MoHo simbe 
$$x \to 0^+$$
  $x^P$ .  $\log x^P = 0$ 

BeR,  $\rho > 0$ 
 $y = \frac{1}{x}$ 
 $x = \frac{1}{y}$  combio vowebli

 $\lim_{y \to +\infty} \frac{1}{y^p} \log_a \frac{1}{y^p} = \lim_{x \to +\infty} \frac{\log_a y}{\log_a y} = 0$  $\lim_{R \to +\infty} \frac{a^{x}}{x^{p}} \quad (a>1, p>0)$ [=] = + \( \text{(non lo dimostre, essende simile ad precedenti)}