Санкт-Петербургский национальныйисследовательский университет информационных технологий, механики и оптики

Группа	M3215	_К работе допущен
Студент <u>Вас</u>	сильков Д.А., Лавренов Д.А.	Работа выполнена
Преполават	ель Тимофеева Э.О.	Отчет принят

Рабочий протокола и отчет по лабораторной

работе №1.05

ИССЛЕДОВАНИЕ КОЛЕБАНИЙ ФИЗИЧЕСКОГО МАЯТНИКА

1. Цель работы.

Изучение характеристик затухающих колебаний физического маятника.

2. Задачи, решаемые при выполнении работы.

- 2.1. Измерение периода затухающих колебаний.
- 2.2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 2.3. Определение зависимости периода колебаний от момента инерции физического маятника.
- 2.4. Определение преобладающего типа трения.
- 2.5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.

3. Объект исследования.

Физический маятник

4. Метод экспериментального исследования.

Замер таких величин, как амплитуда отклонения и время колебаний.

5. Рабочие формулы и исходные данные.

1) Основное уравнение динамики вращательного движения:

$$I\varepsilon = M_{\text{TSJK}} + M_{\text{comp}},$$

2) Угловое ускорение:

$$\varepsilon = \frac{d^2\varphi}{dt^2}.$$

3) Сила сопротивления (сила вязкого трения):

$$F_{\text{comp}} = -rv,$$

4) Момент силы сопротивления:

$$M_{\text{comp}} = F_{\text{comp}}l,$$

$$M_{\text{comp}} = -rvl = -r\frac{ds}{dt}l = -r\frac{d(l\varphi)}{dt} = -rl^2\frac{d\varphi}{dt}.$$

5) Момент силы тяжести:

$$M_{\text{\tiny TSJK}} = -mglsin\varphi.$$

Для малых углов отклонения:

$$M_{\text{THK}} = -mgl\varphi$$
.

6) Уравнение свободных затухающих колебаний физического маятника:

$$I\frac{d^{2}\varphi}{dt^{2}} = -mgl\varphi - rl^{2}\frac{d\varphi}{dt}.$$

$$\omega_{0}^{2} = \frac{mgl}{I}, \beta = \frac{rl^{2}}{2I}$$

$$\frac{d^{2}\varphi}{dt^{2}} + 2\beta\frac{d\varphi}{dt} + \omega_{0}^{2}\varphi = 0.$$

$$\varphi = A_{0}e^{-\beta t}cos(\omega t + \alpha_{0}),$$

7) Период колебаний:

$$T = 2\pi \sqrt{\frac{I}{mgl}} = 2\pi \sqrt{\frac{l_{\rm np}}{g}}.$$

8) Связь момента инерции относительно точки подвеса I с моментом инерции относительно центра масс I_0 :

$$I = I_0 + ml^2$$

9) Приведенная длина физического маятника:

$$l_{\rm np} = \frac{I}{ml} = \frac{I_0}{ml} + l.$$

10) Экспоненциальный закон убывания амплитуды при вязком трении:

$$\varphi = A_0 e^{-\beta t}.$$

$$ln\frac{A}{A_0} = -\beta t,$$

11) Циклическая частота затухающих колебаний:

$$\omega = \sqrt{\omega_0^2 - \beta^2},$$

12) Логарифмический декремент затухания:

$$\lambda = \ln \frac{A(t)}{A(t+T)} = \beta T.$$

13) Линейный закон уменьшения амплитудных значений:

$$A(t = nT) = A_0 - 4n\Delta\varphi_3$$
.

$$m_2 = 408 \, c$$
; $l_1 = 57 \, \text{MM}$; $l_0 = 25 \, \text{MM}$; $b = 40 \, \text{MM}$

6. Измерительные приборы.

Наименование средства измерения	Предел измерений	Цена деления	Погрешность, $\Delta_{\rm H}$
Шкала	60°	1°/дел.	1°
Секундомер			

7. Схема установки.

Работа выполняется на универсальном стенде (рис. 4).

Рис. 4. Универсальный стенд

В работе используется передняя крестовина.

Угол отклонения маятника отсчитывается по шкале в угловых градусах. Время измеряется механическим или электронным секундомером. Характеристики средств измерений привести в табл. 1.

8. Результаты прямых измерений и их обработки. Таблица 2.

Амплитуда отклонения Время	25。	20。	15。	10∘	5。
t_1, c	29,90	76,81	140,65	214,83	316,14
t_2, c	38,41	84,15	138,69	218,55	314,77
<i>t</i> ₃ , <i>c</i>	40,20	84,06	142,24	216,66	318,02
t_{cp},c	36,17	81,67	140,53	216,68	316,31

Таблица 3.

Положение					
боковых					
грузов	t_1, c	t_2, c	t_3, c	t_{cp},c	T, c
1 риска	7,9	8,13	8,18	8,07	0,807
2 риски	8,46	8,6	8,63	8,563	0,856
3 риски	9,15	9,16	9,13	9,147	0,915
4 риски	9,62	9,65	9,67	9,647	0,965
5 рисок	10,53	10,4	10,44	10,457	1,046
6 рисок	11,26	11,2	11,24	11,233	1,123

Таблица 4.

Риски	1	2	3	4	5	6
Rверх	0,077					
Rниж	0,202					
Rбок	0,077	0,102	0,127	0,152	0,177	0,202
Ігр	0,024	0,028	0,032	0,038	0,045	0,052
I	0,032	0,036	0,04	0,046	0,053	0,06
Іпр эксп	0,165	0,186	0,212	0,236	0,277	0,32
Іпр теор	0,525	0,585	0,662	0,756	0,866	0,993

9. Графики График зависимости квадрата периода от момента инерции маятника.

График зависимости амплитуды колебаний от времени:

10. Окончательные результаты.

$$l_{np \ni \kappa cn} = 0.232 \,\mathrm{M}$$

$$l_{npmeop} = 0.731 \,\mathrm{M}$$

11. Выво∂

В ходе данной работы мы исследовали колебания физического маятника: определил зависимость амплитуды колебаний от времени; зависимость квадрата периода колебаний от момента инерции; получил экспериментальное и теоретическое значения приведенной длины. По графику A(t) можно сделать вывод о преобладании вязкого трения, так как амплитуда убывает по экспоненциальному закону $A = A_0 e^{-\beta t}$

poyum-Hammenegene myere news geren of Chequino mugeux Fu 600 1 Jan Mulara 10 Congressen mm 3 presence t,c 7,15 9,01 9,16 1.05 Anund Magnenes Rummun M3215 B. 03. 24

9,15 9,16 9,13 mm 54 9,62 9,85 mm se 5 10,53 10,40 Q10,44

mms t, C 11,20 1

63, C you summer 40,20 38,41 Im /1m 1 ch 24,15 16 81 29,06 200 Zu Zu 20,65 18,69 22,24 34,83 3m 3 04 38,55 36,66 5 m SM Su 16,14 19,77 18,02 1 morea 2 menn 7,90 8,13 8,60 8,63 8,18