Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## Session 5: loglinear regression part 2

Levi Waldron

CUNY SPH Biostatistics 2

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## Learning objectives and outline

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## Learning objectives

- 1 Define and identify over-dispersion in count data
- Define the negative binomial (NB) distribution and identify applications for it
- 3 Define zero-inflated count models
  - 4 Fit and interpret Poisson and NB, with and without zero inflation

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

### Outline

- 1 Review of log-linear Poisson glm
- 2 Review of diagnostics and interpretation of coefficients
- 3 Over-dispersion
  - Negative Binomial distribution
- 4 Zero-inflated models

### Resources:

- Vittinghoff section 8.1-8.3
- Short tutorials on regression in R (and Stata, SAS, SPSS, Mplus)
  - https://stats.idre.ucla.edu/other/dae/

#### Levi Waldron

Learning objectives and outline

#### Review

Overdispersion

Zero Inflation

## **Review**

#### Levi Waldron

Learning objectives and outline

#### Review

Overdispersion

Zero Inflation

### Components of GLM

- Random component specifies the conditional distribution for the response variable - it doesn't have to be normal but can be any distribution that belongs to the "exponential" family of distributions
- Systematic component specifies linear function of predictors (linear predictor)
- Link [denoted by g(.)] specifies the relationship between the expected value of the random component and the systematic component, can be linear or nonlinear

#### Levi Waldron

Learning objectives and outline

#### Review

Overdispersion

Zero Inflation

## Motivating example: Choice of Distribution

- Count data are often modeled as Poisson distributed:
  - mean  $\lambda$  is greater than 0
  - variance is also  $\lambda$
  - Probability density  $P(k,\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$



#### Levi Waldron

Learning objectives and outline

#### Review

Overdispersion

Zero Inflation

### Poisson model: the GLM

The **systematic part** of the GLM is:

$$log(\lambda_i) = \beta_0 + \beta_1 RACE_i + \beta_2 TRT_i + \beta_3 ALCH_i + \beta_4 DRUG_i$$

Or alternatively:

$$\lambda_{i} = \exp(\beta_{0} + \beta_{1} RACE_{i} + \beta_{2} TRT_{i} + \beta_{3} ALCH_{i} + \beta_{4} DRUG_{i})$$

The **random part** is (Recall the  $\lambda_i$  is both the mean and variance of a Poisson distribution):

$$y_i \sim Poisson(\lambda_i)$$

#### Levi Waldron

Learning objectives and outline

#### Review

Overdispersion

Zero Inflation

## Example: Risky Drug Use Behavior

- Outcome is # times the drug user shared a syringe in the past month (shared\_syr)
- Predictors: sex, ethn, homeless
  - filtered to sex "M" or "F", ethn "White", "AA", "Hispanic"

```
summary(needledat2$shared_syr)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 0.000 0.000 0.000 3.122 0.000 60.000 2 var(needledat2$shared syr, na.rm = TRUE)
```

```
## [1] 113.371
```

#### Levi Waldron

Learning objectives and outline

#### Review

Overdispersion

Zero Inflation

## Example: Risky Drug Use Behavior

### Exploratory plots



• There are a let of zeros and variance is much greater than

#### Levi Waldron

Learning objectives and outline

#### Review

Overdispersion

Zero Inflation

## Fitting a Poisson model

#### Levi Waldron

Learning objectives and outline

#### Review

Overdispersion

Zero Inflation

## Residuals plots



\* Poisson model is definitely not a good fit.

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## **Over-dispersion**

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## When the Poisson model doesn't fit

- 1 Variance > mean (over-dispersion)
  - Negative binomial distribution
- 2 Excess zeros (zero inflation)
  - Can introduce zero-inflation

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## **Negative binomial distribution**

- The binomial distribution is the number of successes in n trials:
  - Roll a die ten times, how many times do you see a 6?
- The negative binomial distribution is the number of successes it takes to observe r failures:
  - How many times do you have to roll the die to see a 6 ten times?
  - Note that the number of rolls is no longer fixed.
  - In this example, p=5/6 and a 6 is a "failure"

| Levi Waldron                          |
|---------------------------------------|
| Learning<br>objectives and<br>outline |
| Review                                |
| Over-<br>dispersion                   |
| Zero Inflation                        |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |

Session 5: loglinear

regression part 2

## **Negative binomial GLM**

One way to parametrize a NB model is with a systematic part equivalent to the Poisson model:

$$log(\lambda_i) = \beta_0 + \beta_1 RACE_i + \beta_2 TRT_i + \beta_3 ALCH_i + \beta_4 DRUG_i$$

Or:

 $\lambda_i = \exp(\beta_0 + \beta_1 RACE_i + \beta_2 TRT_i + \beta_3 ALCH_i + \beta_4 DRUG_i)$ 

And a **random part**:

$$y_i \sim \mathsf{NB}(\lambda_i, heta)$$

- $\theta$  is a **dispersion parameter** that is estimated
- When  $\theta = 0$  it is equivalent to Poisson model MASS::glm.nb() uses this parametrization, dnbinom()

does not • The Poisson model can be considered **nested** within the Negative Binomial model

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## Negative Binomial Random Distribution



Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## Compare Poisson vs. Negative Binomial

Negative Binomial Distribution has two parameters: # of trials n, and probability of success p



#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## **Negative Binomial Regression**

```
Session 5:
   loglinear
  regression
    part 2
Learning
```

#### Levi Waldron

summary(fit.negbin)

##

objectives and outline

#### Review

Overdispersion

Zero Inflation

```
## Call:
## MASS::glm.nb(formula = shared syr ~ sex + ethn + homeless, data = needledat2,
      init.theta = 0.07743871374, link = log)
##
## Deviance Residuals:
      Min
              10 Median
                                30
                                        Max
## -0.8801 -0.7787 -0.6895 -0.5748 1.5675
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.4641 0.8559 0.542 0.5876
## sexM
            -1.0148 0.8294 -1.224 0.2211
## ethnHispanic 1.3424 1.3201 1.017 0.3092
## ethnWhite 0.2429 0.7765 0.313 0.7544
## homelessyes 1.6445 0.7073 2.325 0.0201 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for Negative Binomial(0.0774) family taken to be 1)
##
      Null deviance: 62.365 on 114 degrees of freedom
## Residual deviance: 56.232 on 110 degrees of freedom
    (2 observations deleted due to missingness)
## ATC: 306.26
##
## Number of Fisher Scoring iterations: 1
##
##
##
               Theta: 0.0774
##
            Std Err : 0.0184
##
   2 x log-likelihood: -294.2550
```

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

### Likelihood ratio test

Basis: Under  $H_0$ : no improvement in fit by more complex model, difference in model residual deviances is  $\chi^2$ -distributed.

Deviance:  $\Delta(D) = -2 * \Delta(\log likelihood)$ 

(ll.negbin <- logLik(fit.negbin))</pre>

```
## 'log Lik.' -147.1277 (df=6)
(ll.pois <- logLik(fit.pois))</pre>
```

```
## 'log Lik.' 1.675949e-255 (df=6)
```

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## **NB** regression residuals plots









#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## **Zero Inflation**

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## Zero inflated "two-step" models

**Step 1**: logistic model to determine whether count is zero or Poisson/NB

**Step 2**: Poisson or NB regression distribution for  $y_i$  not set to zero by 1.

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## Poisson Distribution with Zero Inflation



#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

# Zero-inflated Poisson regression

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

```
summary(fit.ZIpois)
```

##

```
## Call:
## pscl::zeroinfl(formula = shared_syr ~ sex + ethn + homeless, data = needledat2,
      dist = "poisson")
##
##
## Pearson residuals:
##
      Min
              10 Median
                              3Q
                                    Max
## -1 0761 -0 5784 -0 4030 -0 3341 10 6835
##
## Count model coefficients (poisson with log link):
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.2168 0.1796 17.908 < 2e-16 ***
## sexM
             -1.4725 0.1442 -10.212 < 2e-16 ***
## ethnHispanic -0.1524 0.1576 -0.968 0.333244
## ethnWhite -0.5236 0.1464 -3.577 0.000348 ***
## homelessves 1.2034 0.1455 8.268 < 2e-16 ***
## Zero-inflation model coefficients (binomial with logit link):
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.06263 0.65227 3.162 0.00157 **
## sexM
             -0.05068 0.58252 -0.087 0.93068
## ethnHispanic -1.76122   0.81177 -2.170   0.03004 *
## ethnWhite -0.50187 0.56919 -0.882 0.37792
## homelessyes -0.53013 0.48108 -1.102 0.27047
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Number of iterations in BFGS optimization: 12
## Log-likelihood: -299.8 on 10 Df
```

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## Zero-inflated Negative Binomial regression

- NOTE: zero-inflation model can include any of your variables as predictors
- WARNING Default in zerinfl() function is to use all variables as predictors in logistic model

```
Session 5:
loglinear
regression
part 2
```

summarv(fit.ZInegbin)

#### Levi Waldron

Learning objectives and outline

#### Review

Overdispersion

#### Zero Inflation

```
##
## Call:
## pscl::zeroinfl(formula = shared svr ~ sex + ethn + homeless, data = needledat2.
      dist = "negbin")
##
## Pearson residuals:
      Min
              10 Median
                            30
##
                                   Max
## -0.5402 -0.3255 -0.2714 -0.1926 5.1496
##
## Count model coefficients (negbin with log link):
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.8410 1.1845 2.399 0.01646 *
## seyM
             -2.2282 0.9351 -2.383 0.01718 *
## ethnHispanic -0.4123 0.9831 -0.419 0.67492
## ethnWhite -0.4299 0.8648 -0.497 0.61908
## homelessyes 1.9460 0.7103 2.740 0.00615 **
## Log(theta) -1.1971 0.5159 -2.320 0.02032 *
##
## Zero-inflation model coefficients (binomial with logit link):
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.6867 0.8465 1.993 0.0463 *
## sexM
            -0.9920 0.8016 -1.238 0.2159
## ethnHispanic -13.1868 281.9134 -0.047 0.9627
## ethnWhite -0.7455 0.7304 -1.021 0.3074
## homelessyes 0.3554 0.7397 0.480 0.6309
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Theta = 0.3021
## Number of iterations in BFGS optimization: 24
## Log-likelihood: -142.8 on 11 Df
```

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

### Zero-inflated NB - simplified

- Model is much more interpretable if the exposure of interest is *not* included in the zero-inflation model.
- E.g. with HIV status as the only predictor in zero-inflation model:

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

```
summary(fit.ZInb2)
```

```
##
## Call:
## pscl::zeroinfl(formula = shared syr ~ sex + ethn + homeless + hiv | hiv.
      data = needledat2, dist = "negbin")
##
## Pearson residuals:
      Min
               10 Median
                              30
##
                                     Max
## -0.4299 -0.3646 -0.3559 -0.3299 6.3053
##
## Count model coefficients (negbin with log link):
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.6685 0.9470 3.874 0.000107 ***
## seyM
              -1.7648 0.6205 -2.844 0.004454 **
## ethnHispanic -1.5807 0.7446 -2.123 0.033769 * ## ethnWhite -1.1267 0.6924 -1.627 0.103687
## homelessyes 1.0313 0.5693 1.812 0.070028 .
## hivpositive -1.0820 1.0167 -1.064 0.287235
## hivyes 2.3724 0.7829 3.030 0.002444 **
## Log(theta) 0.1395 0.4647 0.300 0.764009
##
## Zero-inflation model coefficients (binomial with logit link):
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.2163
                           0.2851 4.265
                                             2e-05 ***
## hivpositive -0.3493 0.9389 -0.372 0.710
## hivyes
           -17.9654 3065.6271 -0.006 0.995
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Theta = 1.1497
## Number of iterations in BFGS optimization: 12
## Log-likelihood: -122.5 on 11 Df
```

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

## Intercept-only ZI model

```
Session 5:
loglinear
regression
part 2
```

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

#### Zero Inflation

```
summary(fit.ZInb3)
```

```
##
## Call:
## pscl::zeroinfl(formula = shared_syr ~ sex + ethn + homeless | 1, data = needledat2,
      dist = "negbin")
##
## Pearson residuals:
      Min
              10 Median
                             30
                                    Max
## -0.3159 -0.3123 -0.3040 -0.2953 5.2940
## Count model coefficients (negbin with log link):
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.08542
                         1.42671 1.462 0.1438
## sexM
             -1.43809 0.89189 -1.612 0.1069
## ethnHispanic 0.48130 1.16642 0.413 0.6799
## ethnWhite -0.07418 0.81066 -0.092 0.9271
## homelessyes 1.62076 0.67706 2.394 0.0167 *
## Log(theta) -1.12538 0.89372 -1.259 0.2080
##
## Zero-inflation model coefficients (binomial with logit link):
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 0.5211
                        0.7600 0.686
                                           0.493
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Theta = 0.3245
## Number of iterations in BFGS optimization: 13
## Log-likelihood: -146.8 on 7 Df
```

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

#### Zero Inflation

### **Confidence intervals**

Use the confint() function for all these models (don't try to specify which package confint comes from). E.g.:

confint(fit.ZInb3)

```
## count_(Intercept) -0.7108906 4.8817285
## count_sexM -3.1861592 0.3099794
## count_ethnHispanic -1.8048349 2.7674386
## count_ethnWhite -1.6630517 1.5146931
## count_homelessyes 0.2937565 2.9477701
## zero_(Intercept) -0.9685313 2.0106906
```

#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

### Residuals vs. fitted values

I invisibly define functions plotpanel1 and plotpanel2 that will work for all types of models (see lab). These use Pearson residuals.



#### Levi Waldron

Learning objectives and outline

Review

Overdispersion

#### Zero Inflation

## Quantile-quantile plots for residuals



Normal Q-Q Plot







still over-dispersed - ideas?

#### Levi Waldron

Learning objectives and outline

#### Review

Overdispersion

#### Zero Inflation

## **Summary / Conclusions**

- These are multiplicative models
- Fitting zero-inflated models can be problematic (convergence, over-complicated default models), especially for small samples
- Use QQ and residuals plots to assess model fit
- Can use LRT to compare nested models