20598 - Finance with Big Data

PC Lab #3: Creating a Factor from Text Data (Week 4)

Clément Mazet-Sonilhac clement.mazetsonilhac@unibocconi.it

Department of Finance, Bocconi University

PC Labs Grading

- PC Labs solutions are submitted as Jupyter Notebooks, via email
 - Email title: PCLab#3 Group X Name1 Name2 Name3
 - Your Jupyter Notebook starts in the same way (same .ipynb name)
 - Tell me (again) how long did it take
- PC Labs grade will depend on :
 - Your ability to submit it before the deadline (Friday, midnight)
 - The quality of your code (comments, readability, use of functions, etc.)
 - The structure of the Jupyter Notebook: well organized, explain what you are doing and why
 - Your ability to complete the tasks and innovate
 - You should maybe produce less, but more useful outputs

Goals

- Manipulate and visualize financial Tweets
- Clean text data
- Perform Tweets' sentiment analysis
- Compute a measure of media attention

Big picture context

- You've just been hired by a sophisticated hedge-fund
- The hedge-fund manager is interested in Twitter's predictive power
- He asks you to perform sentiment analysis on a sample of recent financial tweets
- ... and to build a firm-level measure of media attention: that may be a great factor idea!

Task #1: Basic manipulation and descriptive statistics

- Import the Data_PCLab3_Twitter_Stock_Sentiment.csv data and describe the sample (data available on BBoard)
- How many tweets, how many words per tweets, distribution of number of words per tweets, average sentiment, etc.

Task #2 : Cleaning and Visualization

(You might know better than me)

- Usual cleaning steps:
 - cleaning URLs, mentions, hashtags, emojis
 - tokenization, lemmatization, stopword removal
 - tweet-specific text preprocessing with ekphrasis (normalizes hashtags, elongated words, emoticons).
- Plot a word cloud for text with positive and negative sentiment separately
- What is the number of unique words?

Task #3 : Sentiment analysis

• Tweet sentiment is provided (1 vs. 0) — Should you trust it?

Task #3 : Sentiment analysis

- Tweet sentiment is provided (1 vs. 0) Should you trust it?
- To produce your own sentiment analysis, use either :
 - Pretrained transformer (e.g., Twitter-RoBERTa, FinBERT)
 - GPT-style LLM zero-shot/few-shot classification
- What is the performance of these methods on financial tweets? I.e., compare it to the original classification.

Task #4 : Measuring media attention (1)

 Use the list of tickers gathered during last PC Lab (see the web-scrapping part) to compute the number of tweets about each stock

```
- e.g., AAPL: 36 tweets, 12 negative, 24 positive
```

- Rank the stocks by their amount of total media attention, or, alternatively: positive and negative media attention, level of disagreement (dispersion), etc.
- Be creative!

Task #4 : Measuring media attention (2)

- Create 10 portfolios based on your preferred measure of media attention
- Do you see a correlation between media attention g and stock returns?

Task #4 : Measuring media attention (2)

- Create 10 portfolios based on your preferred measure of media attention
- Do you see a correlation between media attention g and stock returns?

- If yes, could Twitter attention is likely to be a good factor?
- Optional: same, but use FF-5 factors to purge returns from what a traditional model predicts, and plot media attention vs. erros

Task #4 : Measuring media attention (3) — Optional

- Download the Fama-French 5 factors (Mkt-RF, SMB, HML, RMW, CMA, and RF) from Ken French's Data Library
- Regress the stock's excess returns on these five factors
- Save the residuals from this regression. These represent the component of returns unexplained by traditional risk factors (abnormal returns).
- Redo same plot (see previous slide), but residuals vs. media attention.

Packages you may need (Outdated)

 Among others: wordcloud, nltk.stem, nltk.corpus, nltk.tokenize, gensim, tensorflow, string.punctuation, sklearn, etc.