Seminar aus Maschinellem Lernen

Pareto optimale lineare Klassifikation

Vesselina Poulkova

Betreuer: Eneldo Loza Mencía

Gliederung

- 1. Einleitung
- 2. Pareto optimale lineare Klassifizierer
- 3. Generelle Voraussetzung für Pareto Optimalität
- 4. Classification with Scale Mixtures of Normal Distributions
- 5. Robuste lineare Klassifikation
- 6. Kernelbasierte Klassifikation
- 7. Empirische Trade off Analyse
- 8. Fazit

1. Einleitung

■ Pareto Effizienz in der Wirtschaft:

■ Pareto optimales Gleichgewicht ist eine Allokation, in der es keine Möglichkeit gibt ein Subjekt besser zu stellen, ohne mindestens ein anderes Subjekt schlechter zu stellen.

1. Einleitung

Zwei - Klassen - Problem: Einen linearen Klassifizierer finden, der Wahrscheinlichkeiten für eine Falschklassifikation von Instanzen minimiert.

Annahmen:

- Zwei-klassen Klassifikation, in der der Input Raum X \mathbb{R}^n ist, und der Output Menge Y {-1, +1} ist. Das Trainingspaar (x, y), wo x ε X und y ε Y, wird Beispiel genannt. Ein Beispiel wird negativ (positiv) genannt, falls sein Klassenattribut -1(+1) ist.
- Die negativen (positiven) Beispiele haben die Verteilung D_(D₊)
- Idee: D_(D₊) sind normalverteilt

1. Einleitung

- True negative rate: wie oft ein negatives Beispiel korrekt klassifiziert wird
- True positive rate: wie oft ein positives Beispiel korrekt klassifiziert wird
- Trade-off in zwei-klassen Klassifikation
 - Klassifizierer h: X → Y ordnet jeder Instanz von X eine binäre Klasse zu.
 - Das Klassifikationsergebnis von h ist das Paar: $(P_{tn}(h), P_{tp}(h))$
 - $P_{\rm tn}(h)$ ist die Wahrscheinlichkeit von der "true negative" Rate
 - $P_{\rm tp}(h)$ ist die Wahrscheinlichkeit von der "true positive" Rate

$$P_{\text{tn}}(h) = \Pr(h(x) = -1 \mid y = -1)$$

 $P_{\text{tp}}(h) = \Pr(h(x) = +1 \mid y = +1)$

- False positive Rate: $P_{\rm fp}(h) = 1 P_{\rm tn}(h)$
- False negative Rate: $P_{\text{fn}}(h) = 1 P_{\text{tp}}(h)$

- Standard Klassifikationsproblem:
 - Gegeben: Familie Klassifizierer H
 - Finde einen Klassifizierer in H, der die Fehlerrate minimiert.
- Linearer Klassifizierer h(x)= sgn (a^Tx-b)
- a Gewichtsvektor
- b Threshold
- H= $\{(a, b) | a \in \mathbb{R}^n \setminus \{0\}, b \in \mathbb{R}\}$
- Die klassebedingte Normalverteilung D_= $N(\mu_{+}, \Sigma_{+})$ und D = $N(\mu_{+}, \Sigma_{+})$
- Erwartungswert μ, Kovarianz Matrix Σ (positiv definit)

■ Die Trainingsdaten werden in zwei Klassen unterteilt

- Ein Paar von richtig klassifizierten Wahrscheinlichkeiten (α, β) ist erreichbar von H, falls es einen Klassifizierer gibt h ε H, so dass $P_{tn}(h) \ge \alpha$ und $P_{tp}(h) \ge \beta$.
- Alle erreichbaren Paare (α, β) definieren eine Fläche [0, 1] x [0, 1]

■ Die Kurve entlang der oberen Grenze von diesem Viereck wird optimale Tausch - Kurve genannt (optimal trade-off curve) => ein Klassifizierer wird **Pareto optimal** genannt, falls das Paar (P_{tn}(h), P_{tp}(h)) auf der

optimalen Tausch - Kurve liegt.

• Mit der Normalverteilung können die "true negative" und "true positive" Rate von jedem linearen Klassifizierer (a,b) ausgerechnet werden:

$$\Pr(a^T x < b \mid y = -1) = \Phi\left(\frac{b - a^T \mu_-}{\sqrt{a^T \Sigma_- a}}\right),$$

$$\Pr(a^T x > b \mid y = +1) = \Phi\left(\frac{a^T \mu_+ - b}{\sqrt{a^T \Sigma_+ a}}\right),$$

- Φ ist die kumulative Verteilungsfunktion von der Standardnormalverteilung
- $\mathcal{L}(\mu_-, \Sigma_-, \mu_+, \Sigma_+)$ ist die gefundene Menge von pareto optimalen Klassifizierern

Die optimale Trade-off Kurve

- Berechnung von $\mathcal{L}(\mu_-, \Sigma_-, \mu_+, \Sigma_+)$:
 - Trade-off Analyse mittels konvexer Optimierung:

Min
$$\sqrt{a^T \Sigma_+ a} + \lambda \sqrt{a^T \Sigma_- a}$$

Nebenbedingung: $a^T(\mu_+ - \mu_-) = 1$,wo a $\in \mathbb{R}^n$ und Parameter $\lambda > 0$.

- Das Problem ist streng konvex => eine einzige Lösung a_λ
- b kann dann aus a berechnet werden: $b_{\lambda} = \mu_{+}^{T} a_{\lambda} d_{\lambda} \left(a_{\lambda}^{T} \Sigma_{+} a_{\lambda} \right)^{1/2}$
- Ergebnis: Pareto optimale Klassifizierer (a*, b*) mit:

$$P_{\mathrm{tn}}(a^\star,b^\star), P_{\mathrm{tp}}(a^\star,b^\star) > 0.5$$
 , wo $\{(a_\lambda,b_\lambda) \mid 0 < \lambda < \infty\}$

- Die optimale Trade-off Kurve mit Verteilung D und D₊ ist monoton fallend
- Für $\lambda > 0$ ist die Kurve $\alpha = \Phi(\lambda \Phi^{-1}(\beta))$ monoton steigend
- Die zwei Kurven schneiden sich im Punkt: $(\Phi(\lambda\Phi^{-1}(\beta_{\lambda})),\beta_{\lambda})$
- Falls $\mu_{+} \neq \mu_{-}$: $\Phi(\lambda \Phi^{-1}(\beta_{\lambda})) > 0.5$, $\beta_{\lambda} > 0.5$
- Alle Punkte auf der Kurve zwischen Punkt A und B können gefunden werden
- Lösen des Problems: Max β

NB:
$$\Phi\left(\frac{b - a^{T}\mu_{-}}{a^{T}\Sigma_{+}a}\right) = \alpha,$$

$$\Phi\left(\frac{a^{T}\mu_{+} - b}{a^{T}\Sigma_{+}a}\right) = \beta,$$

$$\Phi^{-1}(\alpha) = \lambda\Phi^{-1}(\beta),$$

• Min
$$\sqrt{a^T \Sigma_+ a} + \lambda \sqrt{a^T \Sigma_- a}$$

 $\text{Min } \sqrt{a^T \Sigma_+ a} + \lambda \sqrt{a^T \Sigma_- a}$ $\text{NB: } a^T (\mu_+ - \mu_-) = 1 \, ,$ wo a $\in \mathbb{R}^n$ und Parameter $\lambda > 0$

- Optimale Lösung $(a_{\lambda}, b_{\lambda}, \alpha_{\lambda}, \beta_{\lambda})$
- $(a_{\lambda}, b_{\lambda})$ ist der pareto optimale Klassifizierer mit $P_{\text{tn}}(a_{\lambda}, b_{\lambda}) = \alpha_{\lambda} = \Phi(\lambda \Phi^{-1}(\beta_{\lambda}))$ und $P_{\text{tp}}(a_{\lambda}, b_{\lambda}) = \beta_{\lambda}$
- $lacktriangledown \Phi^{-1}$ ist streng wachsend
- Max Φ⁻¹(β)
- NB: $\mu_{-}^{T}a + \Phi^{-1}(\alpha)\sqrt{a^{T}\Sigma_{-}a} = b,$ $\mu_{+}^{T}a - \Phi^{-1}(\beta)\sqrt{a^{T}\Sigma_{+}a} = b,$ $\Phi^{-1}(\alpha) = \lambda\Phi^{-1}(\beta).$

$$=> \text{ Max } \frac{a^T(\mu_+ - \mu_-)}{\sqrt{a^T \Sigma_+ a} + \lambda \sqrt{a^T \Sigma_- a}}$$

NB:
$$a \neq 0$$

- $\text{Min } \sqrt{a^T \Sigma_+ a} + \lambda \sqrt{a^T \Sigma_- a}$ $\text{NB: } a^T (\mu_+ \mu_-) = 1 \ ,$
- NB: $a^T(\mu_+ \mu_-) = 1$, wo a $\varepsilon \, \mathbb{R}^n$ und Parameter $\lambda > 0$

3. Generale Voraussetzung für pareto Optimalität

Keine Normalverteilung => Pareto Optimum kann auch gefunden werden

Behauptung:

$$P_{\text{tn}}(a,b) = \kappa_{-} \left(\frac{b - a^{T} \mu_{-}}{\sqrt{a^{T} \Sigma_{-} a}} \right)$$

$$P_{\text{tp}}(a,b) = \kappa_{+} \left(\frac{a^{T} \mu_{+} - b}{\sqrt{a^{T} \Sigma_{+} a}} \right)$$

• k_ und k_ sind streng wachsend in \mathbb{R} . Die Menge von pareto - optimalen Klassifizieren ist: $\mathcal{L}(\mu_-, \Sigma_-, \mu_+, \Sigma_+)$

•
$$D_- = N(\mu_-, \lambda_- \Sigma_-)$$
 und $D_+ = N(\mu_+, \lambda_+ \Sigma_+)$

4. Classification with Scale Mixtures of Normal Distributions

- Mix aus unterschiedlich skalierten Normalverteilungen:
 - Dichtefunktion:

$$p_X(x) = \int \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-(x-\mu)^T \lambda \Sigma(x-\mu)} p_{\Lambda}(\lambda) d\lambda$$

- Diese Verteilung wird $S(\mu, \Sigma, p_{\Lambda})$ genannt
- Lemma: Falls $x \sim S(\mu, \Sigma, p_{\Lambda})$. Dann:

$$\Pr(a^Tx>b) = \kappa\left(\frac{a^T\mu - b}{\sqrt{a^T\Sigma a}}\right) \text{ , mit: } \kappa(u) = \int_0^\infty \Phi\big(u/\sqrt{\lambda}\big)p_\Lambda(\lambda)\ d\lambda$$

■ Für jede p_ und p_ kann $\mathcal{L}(\mu_-, \Sigma_-, \mu_+, \Sigma_+)$ berechnet werden mit der klassbedingten Verteilungen $D_- = S(\mu_-, \Sigma_-, p_-)$ und $D_+ = S(\mu_+, \Sigma_+, p_+)$

5. Robuste lineare Klassifikation

- D_ und D₊ sind unbekannt, aber wichtige Information darüber ist gegeben.
- Worst- case Wahrscheinlichkeiten:

$$P_{\text{tn}}^{\text{wc}}(h) = \inf\{\Pr(h(x) < 0) \mid x \sim D_{-} \in \mathcal{D}_{-}\}\$$

 $P_{\text{tp}}^{\text{wc}}(h) = \inf\{\Pr(h(x) > 0) \mid x \sim D_{+} \in \mathcal{D}_{+}\}\$

- Klassifikation mit der Schranke von Tschebyschev
 - Die klassebedingte Verteilung ist nicht vollständig bekannt:

$$D_- \in \mathcal{D}_- = \mathcal{D}(\mu_-, \Sigma_-), \qquad D_+ \in \mathcal{D}_+ = \mathcal{D}(\mu_+, \Sigma_+)$$

5. Robuste lineare Klassifikation

Durch die Tschebyschev Schranke kann die worst-case true negative und positive Rate berechnet werden:

$$\begin{split} P_{\mathrm{tn}}^{\mathrm{wc}}(a,b) &= \inf \left\{ \Pr(a^T x < b) \mid x \sim D_- \in \mathcal{D}_- \right\} \\ &= \Psi \left(\frac{b - a^T \mu_-}{\sqrt{a^T \Sigma_- a}} \right), \\ P_{\mathrm{tp}}^{\mathrm{wc}}(a,b) &= \inf \left\{ \Pr(a^T x > b) \mid x \sim D_+ \in \mathcal{D}_+ \right\} \\ &= \Psi \left(\frac{a^T \mu_+ - b}{\sqrt{a^T \Sigma_+ a}} \right), \end{split}$$

■ Die Funktion ψ ist streng wachsend über (0,∞):

$$\Psi(u) = u_+^2/(1 + u_+^2), \qquad u_+ = \max\{u, 0\}$$

5. Robuste lineare Klassifikation

■ Die optimale Trade-off Kurve mit der Schranke von Tschebyschev

6. Kernelbasierte Klassifikation

Trade-off Analysis mit kernelbasierten Klassifizierern

$$\phi: (x_1, x_2) \longrightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

Abbildung: http://omega.albany.edu:8008/machine-learning-dir/notes-dir/ker1/phiplot.gif

6. Kernelbasierte Klassifikation

- Klassifizierer h: X \rightarrow Y, $h(x) = \text{sgn}(a^T \phi(x) b)$
 - a ∈ H ist ein Gewichtsvektor in dem hochdimensionalen Hilbert Raum H
 - φ ist eine Abbildung von X nach H
 - Verteilung: $N(\tilde{\mu}_-, \tilde{\Sigma}_-)$ und $N(\tilde{\mu}_+, \tilde{\Sigma}_+)$ für die negative und positive Klasse
 - Trainingsinstanzen: $\{x_1,\ldots,x_{m_+}\}$ von der positiven Klasse und $\{x_{m_++1},\ldots,x_m\}$ von der negativen Klasse, mit $m_-=m-m_+$
 - Erwartungswert:

$$\tilde{\mu}_{+} = \frac{1}{m_{+}} \sum_{i=1}^{m_{+}} \phi(x_{i}), \quad \tilde{\mu}_{-} = \frac{1}{m_{-}} \sum_{i=m_{+}+1}^{m} \phi(x_{i})$$

7. Empirische Trade - off Analyse

- Trainingsinstanzen, um die Stichproben Erwartungswert und Varianz abzuschätzen
- Pareto optimalen Klassifizierer finden
- True positive und negative rate finden
- Mehrmals wiederholen und die Resultaten sammeln.
- Die Trade-off Kurve kann dann durch Regression der kleinsten Quadrate berechnet werden

7. Empirische Trade-off Analyse

- Ionosphere benchmark data set from the UCI repository:
 - 351 points in \mathbb{R}^{34}
 - 70% der Daten werden als Trainingsinstanz benutzt
 - Kernelbasierte Klassifikation ist besser

8. Fazit

- Klassifikation mit der Schranke von Tschebyschev ist vergleichbar mit dem MEMPM Algorithmus.
- Die Klassifizierer, die mit der robusten linearen Klassifikation gefunden werden, kann man mit den Ergebnissen von der Support Vector Machine vergleichen.
- Es wurden aber keine direkten Tests gemacht.
- Die Robustheit Analyse basiert auf der Behauptung, dass es keinen Schätzfehler gibt bei der Schätzung des Erwartungswerts und der Varianz.
- Die pareto optimalen Klassifizierer können unter dem "small sample problem" leiden.

Vielen Dank für Ihre Aufmerksamkeit!