Appendices

I. Appendix A, Numbers, Inequalities, and Absolute Values, p. A2

A. Example 1, p. A4

1.
$$1+x < 7x+5 \Rightarrow -6x < 4$$
, $\frac{-6x}{-6} > \frac{4}{-6}$, $x > -\frac{2}{3}$

2.
$$1+x < 7x+5 \Rightarrow -4 < 6x$$
, $\frac{-4}{6} < \frac{6x}{6}$, $-\frac{2}{3} < x$, $x > -\frac{2}{3}$

B. Example 2, p. A5

1.
$$4 \le 3x-2 < 13 \Rightarrow 6 \le 3x < 15$$
, $2 \le x < 5$ OR 2×5 : half-closed interval

C. Example 3, p. A5

1.
$$x^2 - 5x + 6 \le 0$$
; check boundary values: $\Rightarrow (x-2)(x-3) = 0 \Rightarrow x=2, 3$

D. Example 4, p. A6

1.
$$x^3 + 3x^2 > 4x$$
; check boundary values: $\Rightarrow x(x^2 + 3x - 4) = 0$, $x(x+4)(x-1) = 0$, $\Rightarrow x = 0$, $x = 0$,

3. Each of these two is an open interval.

E. Extra example #1

1.
$$2x+1 < 4x-3 \le x+7 \implies 4 < 2x$$
 and $3x \le 10 \implies x > 2$ and $x \le \frac{10}{3}$

2.
$$2 < x \le \frac{10}{3}$$
 OR $\left(2, \frac{10}{3}\right]$: half-open interval

F. Extra example #2

1.
$$\frac{1+x}{1-x} > 1$$
; check boundary values: $\Rightarrow 1+x=1-x$, $2x=0$, $\underline{x}=0$

2. Observe:
$$x \neq 1$$
 \leftarrow F \rightarrow $0 \leftarrow 1$ \leftarrow $0 \leftarrow x \leftarrow 1$ \rightarrow 0

G. Extra example #3

1.
$$|2x+1| = |5x+3| \implies 2x+1 = 5x+3$$
 or $2x+1 = -5x-3$,

2.
$$3x = -2$$
 or $7x = -4$, $x = -\frac{2}{3}$ or $x = -\frac{4}{7}$, $x = -\frac{2}{3}$, $x = -\frac{4}{7}$

H. Example 8, p. A8

1.
$$|3x+2| \ge 4$$
; check boundary values: $\Rightarrow 3x+2 = 4$ or $3x+2 = -4$,

2.
$$3x = 2$$
 or $3x = -6$, $x = \frac{2}{3}$ or $x = -2$, $x = \frac{2}{3}$, -2

3.
$$x \le -2 \text{ or } x \ge \frac{2}{3}$$
 OR $\left[\left(-\infty, -2 \right] \cup \left[\frac{2}{3}, \infty \right) \right]$

I. Properties of absolute value

1. If
$$a \ge 0$$
, $|a| = a$.

2. If
$$a < 0$$
, $|a| = -a$.

$$3. \quad \sqrt{a^2} = |a| .$$

4. Triangle Inequality Theorem:
$$|a+b| \le |a| + |b|$$
.

II. Appendix B, Coordinate Geometry and Lines, p. A10

A. Abscissa: x – coordinate, 1^{st} coordinate, Ordinate: y – coordinate, 2^{nd} coordinate

III. Appendix C, Graphs of 2nd Degree Equations, p. A16

A. #32, p. A23

1. Identify and sketch:
$$4x^2 + 9y^2 - 16x + 54y + 61 = 0 \implies 4(x^2 - 4x +) + 9(y^2 + 6y +) = -61$$
,

2.
$$4(x^2-4x+4)+9(y^2+6y+9)=-61+16+81$$
, $4(x-2)^2+9(y+3)^2=36$, $\frac{(x-2)^2}{9}+\frac{(y+3)^2}{4}=1$,

3.
$$(2, -3), a=3, b=2 \Rightarrow \boxed{\text{ellipse}}$$

IV. Appendix D, Trigonometry, p. A24

A. Know trigonometric identities, pp. A28-A29

Optional:
$$tan(x+y)$$
 and $tan(x-y)$

V. Appendix Extras

A. Binomial Theorem

1.
$$(a+b)^n =$$

$$\binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \binom{n}{3}a^{n-3}b^{3} + \cdots + \binom{n}{n-3}a^{3}b^{n-3} + \binom{n}{n-2}a^{2}b^{n-2} + \binom{n}{n-1}a^{1}b^{n-1} + \binom{n}{n}a^{0}b^{n} = 0$$

$$a^{n}b^{0} + na^{n-1}b^{1} + \frac{n(n-1)}{2}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{6}a^{n-3}b^{3} + \cdots + \frac{n(n-1)(n-2)}{6}a^{3}b^{n-3} + \frac{n(n-1)}{2}a^{2}b^{n-2} + na^{1}b^{n-1} + a^{0}b^{n}$$

$$=a^{n}+na^{n-1}b+\frac{n(n-1)}{2}a^{n-2}b^{2}+\frac{n(n-1)(n-2)}{6}a^{n-3}b^{3}+\cdots+\frac{n(n-1)(n-2)}{6}a^{3}b^{n-3}+\frac{n(n-1)}{2}a^{2}b^{n-2}+nab^{n-1}+b^{n}$$

B. Factoring the difference of Perfect *n* th Powers

1.
$$x^n - a^n = (x - a) \cdot (x^{n-1}a^0 + x^{n-2}a^1 + x^{n-3}a^2 + x^{n-4}a^3 + \cdots + x^3a^{n-4} + x^2a^{n-3} + x^1a^{n-2} + x^0a^{n-1})$$

=
$$(x-a) \cdot (x^{n-1} + x^{n-2}a + x^{n-3}a^2 + x^{n-4}a^3 + \cdots + x^3a^{n-4} + x^2a^{n-3} + xa^{n-2} + a^{n-1})$$

Chapter 1: Functions and Models

I. 1.1, Four Ways to Represent a Function, p. 11

A. Functional representation

- 1. Equation
- 2. Table
- 3. Graph
- 4. Words

- B. Topics are shown geometrically: graphically or visually, numerically, algebraically, and verbally: descriptive
- C. Example 6, p. 17
 - 1. a. Find the domain and sketch $f(x) = \sqrt{x+2}$;

Domain: $x+2 \ge 0$, $x \ge -2$ OR $[-2, \infty)$

- b. Find the domain of $g(x) = \frac{1}{x^2 x}$; $\Rightarrow \frac{1}{x^2 x} = \frac{1}{x(x-1)} \Rightarrow x \neq 0$, 1; Domain: $\{x \mid x \neq 0, x \neq 1\}$
- D. Extra example
 - 1. Find the domain of $h(x) = \sqrt{2-x-x^2}$; $\Rightarrow 2-x-x^2 \ge 0$; check boundary values: $\Rightarrow 2-x-x^2 = 0$,

$$\Rightarrow$$
 $(2+x)(1-x) = 0$, $\Rightarrow x = -2$, 1

$$\boxed{-2 \le x \le 1} \qquad \underline{OR} \qquad \boxed{[-2, 1]}$$

E. Sketch the piecewise function $f(x) = \begin{cases} 1-x, & x \le 1 \\ x^2, & x > 1 \end{cases}$; \Rightarrow

F. Function symmetry

1. Even function:
$$f(-x) = f(x)$$

a. E.g.
$$\cos x$$
, x^2 , $7x^6 + 4x^2 - 3$

b. Includes all polynomials with even exponents

2. Odd function:
$$f(-x) = -f(x)$$

a. E.g.
$$\sin x$$
, x^3 , $8x^7 - 5x^3 + 2x$

b. Includes all polynomials with odd exponents

G. Increasing and decreasing functions

1. A function
$$f$$
 is increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I .

2. A function
$$f$$
 is decreasing on an interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I .

A. Transformations

1. Analyze Figure 1, Figure 2, and Figure 3, p. 39

B. Example 1, p. 40

1. Use $y = \sqrt{x}$ to graph the following:

a.

b.

d.

e.

C. Example 2, p. 40

1. Sketch $x^2 + 6x + 10 \implies x^2 + 6x + 9 + 1 = (x+3)^2 + 1$; vertex: (-3, 1)

D. Example 3, p. 40

1. Sketch using the sine function

E. Example 5, p. 42

1. Sketch
$$y = |x^2 - 1|$$

- F. Composition of functions
 - 1. Example 8, p. 44
 - 2. $f(x) = \sqrt{x}$, $g(x) = \sqrt{2-x}$, find each function and domain
 - a. $f \circ g$

i.
$$f(g(x)) = \sqrt{\sqrt{2-x}} = \sqrt[4]{2-x} \implies 2-x \ge 0, 2 \ge x, \boxed{x \le 2}$$

b. $g \circ f$

i.
$$g(f(x)) = \sqrt{2-\sqrt{x}} \implies 2-\sqrt{x} \ge 0$$
, $2 \ge \sqrt{x}$, $\sqrt{x} \le 2$, $\underline{x} \le 4$: $x \le 4 \cap x \ge 0$, $[0, 4]$

c. $f \circ f$

i.
$$f(f(x)) = \sqrt{\sqrt{x}} = \boxed{\sqrt[4]{x}} \Rightarrow \boxed{x \ge 0}$$

d. $g \circ g$

i.
$$g(g(x)) = \sqrt{2-\sqrt{2-x}} \implies 2-\sqrt{2-x} \ge 0$$
, $2 \ge \sqrt{2-x}$, $\sqrt{2-x} \le 2$, $2-x \le 4$, $-x \le 2$,

$$x \ge -2 : x \ge -2 \cap x \le 2, \overline{\left[-2, 2\right]}$$

G. Example 9, p. 45

1. Find
$$f \circ g \circ h$$
 if $f(x) = \frac{x}{x+1}$, $g(x) = x^{10}$, $h(x) = x+3 \Rightarrow$

$$f \circ g \circ h = f(g(h(x))) = f(g(x+3)) = f((x+3)^{10}) = \frac{(x+3)^{10}}{(x+3)^{10}+1}$$

H. Extra example #1

- 1. $\phi(x) = \sqrt{\frac{x^2 2x}{x 1}}$, find domain $\Rightarrow \frac{x^2 2x}{x 1} = \frac{x(x 2)}{x 1} \Rightarrow \varphi(x)$
- 2. Domain: $[0, 1) \cup [2, \infty)$

I. Extra example #2

1. Graph
$$y = 2 - \sqrt{x+1} \implies$$

J. Extra example #3

1. Graph
$$y = |x| - 1 \Rightarrow$$

