BUNDESREPUBLIK DEUTSCHLANG 014 8

Bescheinigung

Die SCHERING AKTIENGESELLSCHAFT in Berlin/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Verfahren zur Detektion von Mikroorganismen in Produkten, insbesondere in Arzneimitteln und Kosmetika"

am 12. Mai 1998 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 12 Q und G 01 N der Internationalen Patentklassifikation erhalten.

München, den 14. Juli 1999

Deutsches Patent- und Markenamt

Der Präsident

n Auftrag

Nietiedt

chen: <u>198 22 108.8</u>

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Zusammenfassung

Die Erfindung betrifft ein Detektionsverfahren und ein Testkit zur schnellen, ökonomischen Detektion von Keimen in pharmazeutischen und Kosmetischen Produkten. Dabei werden spezifische Sonden und Primer eingesetzt, deren Replikation durch eine spezielle Idikatorsystem sichtbar gemacht wird, wobei ein Fluoreszenz-Farbstoff freigesetzt wird.

Verfahren zur Detektion von Mikroorganismen in Produkten, insbesondere in Arzneimitteln und Kosmetika

Die Erfindung umfaßt Verfahren zum Nachweis mikrobieller Verunreinigungen nicht-steriler Produkte, bevorzugt nach GMP-Richtlinien. Weiterhin umfaßt die Erfindung einen Testkit zum Nachweis mikrobieller Verunreinigungen und die Verwendung von Primersequenzen und Sondensequenzen zur Bestimmung von Mikroorganismen in Produkten, insbesondere in Arzneimitteln und Kosmetika einschließlich ihrer Ausgangsstoffe und Zwischenprodukte.

Das Verfahren dient zur quantitativen Identifizierung von Bakterien durch Detektion spezifisch amplifizierter DNA-Sequenzen und soll als Ersatz entsprechender Methoden in der Europäischen Pharmakopöe, Abschnitt 2.6.12-13,1997 (EP) sowie weiteren nationalen Monographien wie zum Beispiel USP eingesetzt werden.

Die Herstellung von Arzneimitteln und Kosmetika nach GMP-Richtlinien beinhaltet chemische. physikalische und biologische Prüfungen Sicherstellung der Qualität. Bei Kosmetika muß der Hersteller dafür sorgen, daß von Fertigprodukten den keine Gesundheitsgefährdung (EG Kosmetikverordnung, 76, 768 EWG (KOSVO), 6). Änderungsrichtlinie der EG KOSVO 93/35/EEC, 1993 und Forderungen des nationalen Rechts in Deutschland (LMBG § 24).

Bei Arzneimitteln sind die mikrobiologischen Reinheitsanforderungen wesentlich präziser und decken die Anforderungen der KOSVO mit ab (EP Abschnitt 2.6.12-13,1997).

Die Anforderungen beinhalten zwei Gruppen:

- (i). Die Zählung der gesamten lebensfähigen aeroben Bakterien und Pilze (Gruppe Gesamtkeimzahl) sowie
- (ii). Den Abwesenheitsnachweis bestimmter Mikroorganismen: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus faecalis, Salmonellen und Enterobactriaceae (Gruppe Leitkeime).

15

Stand der Technik

Keimzahlbestimmung mit Nährmedien

Als Methoden zur Zählung der gesamten lebensfähigen aeroben Bakterien (Gruppe Gesamtkeimzahl) werden in der EP konventionelle mikrobiologische Techniken beschrieben, die das Wachstum der nachzuweisenden Mikroorganismen in bestimmten Flüssignährmedien oder auf Agarplatten beinhalten. Im Handel sind zahlreiche entsprechende Fertigprodukte oder deren Ausgangsstoffe erhältlich.

- Die Anwendung der in der EP beschriebenen Methoden zur Bestimmung der aeroben Keime (Gruppe Gesamtkeimzahl) hat folgende Nachteile:
 - Die Effizienz ist niedrig, da hoher Zeitbedarf bis zum Ergebniserhalt (3-5 Tage) besteht.
 - Die Ergebnisse sind unpräzise. Die Akzeptanzgrenzen dürfen um den Faktor 5 schwanken, EP, Abschnitt 2.6.12
 - Die Testmethoden sind schlecht und nur im geringen Maße automatisierbar.
 - Bedingt durch die N\u00e4hrmedieneigenschaften k\u00f6nnen nur gut wachsende Mikroorganismen, nicht aber, wie gefordert, alle aeroben Mikroorganismen nachgewiesen werden.
 - Die Lagerhaltungskosten sind für Medien und Brutschränke hoch.
 - Bei Arzneimitteln mit bakteriostatischen Eigenschaften führt die Anwendung der EP-Methoden aufgrund der geringen Wiederfindung zugesetzter Testmikroorganismen teilweise zu nicht verwertbaren Ergebnissen.
 - Umfangreiche Plastikabfälle fallen an.
 - Die Energiekosten f
 ür Medienherstellung und Autoklavieren der anfallenden Abf
 älle sind hoch.
- Die Fertilitätsprüfung aller Medienchargen ist sehr aufwendig
 insbesondere wegen kurzer Haltbarkeiten von Fertigmedien.

Alternative Methoden zur Gesamtkeimzahlbestimmung im Handel sind: Geräte, die mittels Laserscan arbeiten wie z.B. CHEMSCAN (Chemunex):

- Diese Methode ist ungeeignet zum Nachweis von Mikroorganismen, die wie die Bakteriengattung Sarcina keine Einzelkolonien bilden.
 - Außerdem eignet sich diese Methode nicht für feste und ölige Prüfprodukte.

20

Nachweis spezieller Mikroorganismen durch unterschiedliche Kultureigenschaften und spezielle Stoffwechselprodukte

Als Methoden zur Bestimmung spezieller Keime (Gruppe Leitkeime) werden in der EP mikrobiologische Techniken beschrieben, die zur Grobdifferenzierung das Wachstum der jeweiligen Mikroorganismen in bestimmten selektiven Nährmedien oder auf Agarplatten beinhalten. Anschließend werden zur Feindifferenzierung spezifische Stoffwechselreaktionen der jeweiligen Mikroorganismen wurde genutzt. Entsprechende Nachweissysteme, wie z.B. APILAB oder VITEK, sind weit verbreitet.

- Die Anwendung der in der EP beschriebenen Methoden zur Bestimmung der speziellen Keime (Gruppe Leitkeime) hat die gleichen Nachteile, wie für die Anwendung der EP-geforderten Methoden zur Bestimmung der aeroben Keime (siehe oben). Ein zusätzlicher Nachteil ist, daß
- die Selektivität der Nachweismethoden auf Stoffwechselunterschiede beschränkt ist und damit nur unzureichende Differenzierungen zuläßt.

Nachweis spezieller Mikroorganismen durch ATP-Gehaltsbestimmung nach Vorkultivierung

Alternative Methoden im Markt sind: Mikrobiologische Schnelltests, beruhend auf einem Vitalnachweis durch ATP-Bestimmung (z.B. Firma Millipore) nach Vermehrung der Mikroorganismen in Nährmedien.

Nachteil:

- Speziesbestimmungen sind nicht möglich und
- die Meßergebnisse unterliegen hohen Schwankungen in Abhängigkeit des Vitalitätszustands und sind für unterschiedliche Bakteriengattungen sehr verschieden.

Nachweis spezieller Mikroorganismen nach Vorkultivierung mittels DNA-Sonden, Primern und PCR

Weitere alternative Methoden im Handel sind unterschiedliche PCR-Applikationen, die aber, wie z.B. bei Chen et al. 1997, J. Food Microbiol. 35, 239-250 auf die Prüfung von Lebensmitteln ausgerichtet sind und eventuell nicht die strengen GMP-Anforderungen an die Qualitätsprüfung von Arzneimitteln erfüllen.

 Die vorhandenen PCR-Applikationen sind in der Regel anfällig für Kontaminationen durch PCR-Produkte, sind wenig reproduzierbar und schwer quantifizierbar. Darüber hinaus sind sie zeitaufwendig, da bei den

10

25

30

alternativen PCR-Verfahren in der Regel mehrere Hybridisierungsschritte zur Detektion des PCR-Produktes notwendig sind.

Diese Technologien sind in der Regel außerdem nur begrenzt automatisierbar und störanfällig, da in der Regel zu mehreren Zeitpunkten der Applikation verschiedene Reagenzien zugegeben werden müssen.

Bei dem Verfahren gemäß der Patente US 4,800,159 und US 4,683,195 wird die zu amplifizierende Nukleinsäure, die einzelsträngig vorliegt oder einzelsträngig gemacht wird, mit einem molaren Überschuß zweier Oligonukleotidprimer unter Hybridisierungsbedingungen und in Gegenwart eines induzierenden Agens für die Polymerisation und Nukleotiden behandelt, wobei die Primer so gewählt werden, daß für jeden Strang ein zum Nukleinsäurenstrang komplementäres Verlängerungsprodukt des betreffenden Primers synthetisiert wird und daß ein Verlängerungsprodukt eines Primers, wenn es von seinem Komplement getrennt ist, als Matrize zur Synthese eines Verlängerungsproduktes des anderen Primers dienen kann. Nach Trennen der Verlängerungsprodukte von den Matrizen, an denen sie synthetisiert wurden, können die gebildeten Verlängerungsprodukte zur erneuten Umsetzung mit den Primern verwendet werden. Durch die zyklische Wiederholung der Schritte ergibt sich eine theoretisch exponentielle Vermehrung einer Nukleinsäuresequenz, die innerhalb der äußeren Hybridisierungspositionen der Primer liegt.

Quantitativer Nachweis von Mikroorganismen-DNA durch eine spezielle Fluoreszenz-PCR-Technologie

Eine verfeinerte Methode ist das Verfahren gemäß Patent US 5,210,015 von Gelfand et al. Dabei wird eine Oligonukleotid-Sondenkonstruktion verwendet, die mit einem Teil des Nukleinsäurestrangs der Matrize hybridisiert, wobei die Oligonukleotidsonde so ausgewählt wird, daß sie zwischen die Primerpaare (Vorwärts- und Rückwärtsprimer) für die Amplifikation der diagnostischen Zielsequenz des jeweiligen Mikroorganismus paßt. Die Sondenkonstruktion und Synthese basiert auf der TaqMan-Technologie (Holland et al. 1993 und Lyamichez et al. 1993).

Chemische Grundlage dieser neuen Methode ist der 1991 erstmalig publizierte 5'-Nuklease PCR-Assay (Holland et al. 1991, PNAS USA 88: 7276). Kernstück dieser Methode ist die 5'-Nuklease-Aktivität der TaqPolymerase und der Einsatz von fluoreszenzmarkierten, sequenzspezifischen Gensonden. Diese Gensonden sind am 5'-Ende mit einem Fluorescein-Derivat (Reporter) und am 3'-Ende mit einem Rhodaminderivat (Quencher) markiert. Durch die räumliche Nähe beider Farbstoffe wird die Fluoreszenzstrahlung des Reporters von dem

5

10

20

25

30

Quencherfarbstoff absorbiert. Während der Polymerasekettenreaktion (PCR) werden Reporter und Quencher durch die 5'-Nuklease-Aktivität der Taq-Polymerase räumlich voneinander getrennt. Die Fluoreszenzstrahlung des Reporters wird nicht mehr gequencht und kann direkt gemessen und quantifiziert werden. Je mehr Sonden gespalten werden, desto höher ist die Fluoreszenz-Emission der Reportermoleküle. Die Menge an freigesetzter Emission ist der Menge der entstehenden PCR Produkte proportional und diese ist wiederum der Kopienzahl der in der PCR eingesetzten Gene proportional. Über die Genkopienzahl läßt sich die in der Analysenprobe vorhandene Organismenzahl berechnen. Die Methode ist extrem sensitiv, da während der PCR Reaktion eine Genvermehrung und somit eine Signalamplifikation stattfindet. Da verschiedene Reporterfarbstoffe am Markt zur Verfügung stehen, können interne Kontrollen und Standards bei jeder Reaktion mitgeführt werden. Darüber hinaus kann eine Probe auf das Vorhandensein mehrerer Gene/Organismen gleichzeitig untersucht werden. Zur Zeit stehen im Handel drei verschiedene Reporterfarbstoffe zur Verfügung.

Primerdefinition (inklusive deren Variationen)

Unter einem Primer wird ein Molekül verstanden, das an einem polymeren Grundgerüst eine Anzahl von Nukleotiden aufweist. Die Seguenz der Nukleobasen wird so gewählt, daß sie zu aufeinanderfolgenden Basen der zu amplifizierenden Nukleotidsequenz zu mehr als 80% komplementär sind. Dieses besitzt jeweils mindestens ein verlängerbares Unter Verlängerung wird insbesondere die enzymkatalysierte Ankopplung von Baseneinheiten unter Verwendung von Mononukleosid-Triphosphat-Einheiten oder Oligonukleotiden verstanden. Als Enzym wird bevorzugt eine DNA-Polymerase eingesetzt. Die Nukleinsäure, die Nukleotidsequenzen enthält, welche amplifiziert werden sollen, dient hierbei als Matrize für den spezifischen Einbau von Basen. Die Sequenz der Matrize bestimmt die Sequenz der an den Primer angehängten Basen. Als Primer werden Moleküle mit 15-30 Basen verwendet. Als verlängerbares Ende dient im Falle einer DNA-Polymerase bevorzugt das 3'-Ende. Besonders bevorzugt sind Primer, die vollständig homolog zu einer Teilsequenz der Zielnukleotidsequenzen SEQ. ID. NO.1-5 sind (Beispiel 24).

5

10

15

20

25

Sondendefinition (inklusive Variationen):

Unter einer Sonde wird ein Molekül verstanden, das wie die Primer an einem polymeren Grundgerüst eine Anzahl von Nukleotiden aufweist. Dabei wird ein Sondenkonstruktionsverfahren gemäß Patent US 5,210,015, verwendet, das bereits oben beschrieben wurde. Die Nukleinsäuresonden der vorliegenden Erfindung sind 18-30 Nukleobasen lang. Spezifische Sequenzen erhält man durch Aussuchen einer mindestens 18 Basen langen Sequenz aus den jeweiligen Matritzen (SEQ. ID. NO. 1-5, Beispiel 24). Erfindungsgemäß sind daher Sonden bevorzugt, die zu mindestens 90% homolog zu einem Teil der jeweiligen Matritzen (SEQ. ID. NO. 1-5) sind. Besonders bevorzugt sind Sonden mit strenger Homologie.

Gegenstand der Erfindung sind Nukleotidsequenzen, die zu mindestens 80%, bevorzugt zu 90 % komplementär sind zu den Ziel-Nukleotidsequenzen SEQ. ID. NO. 1-5.

Die Homologie (in %) ergibt sich aus der Anzahl an identischen Purin- bzw. Pyrimidinbasen in einer gegebenen Nukleotidsequenz.

20 **Definition von Hybridisieren:**

Hybridisieren liegt dann vor, wenn die folgenden Verfahrensschritte vorliegen, bevorzugt die folgenden Bedingungen.

Die erfindungsgemäßen Primer und Sonden binden an komplementäre Basen bevorzugt an komplementäre Nukleotidsequenzen im Erbgut der Zielorganismen aus der Gruppe Gesamtkeimzahl und an komplementäre Nukleotidsequenzen im Erbgut der Zielorganismen aus der Gruppe Leitkeime. Darüber hinaus binden sie bevorzugt nicht an Nukleinsäure - Sequenzen, die für andere Mikroorganismen spezifisch sind.

30 **Definition von Arzneimittel:**

Diese Substanzen sind die in den Monographien der EP beschriebenen Wirkstoffe, Rohstoffe, Hilfsstoffe, und Zubereitungen, die zur Anwendung in der Humanmedizin und Veterinärmedizin bestimmt sind.

35 **Definition von Kosmetika:**

Diese Substanzen sind nicht in den Monographien der Pharmakapöen beschrieben, sondern unterliegen den Richtlinien der KOSVO und des LMBG.

Sie umfassen Rohstoffe, Hilfsstoffe und Zubereitungen, die zur Anwendung an Menschen und Tieren bestimmt sind.

Definition von Mikroorganismus:

Dieser Begriff umfaßt in erster Linie Organismen, die im menschlichen und tierischen Körper Krankheiten hervorrufen können und nur mikroskopisch wahrnehmbar sind. Sie sind in der Regel einzellig bzw. treten in lockeren Verbänden gleichartiger Zellen auf und werden aufgrund ihrer einfachen zellulären Organisation als Protisten bezeichnet. Ihre morphologischen und kulturell-biochemischen Merkmale, sowie ihre chemische Zusammensetzung, Antigen -Eigenschaften und genetischen Merkmale sind in der Literatur gut dokumentiert, z.B. in: Mikrobiologische Diagnostik, Burkhardt, 1992.

20

30

35

Definition von PCR-Reagenzien:

PCR-Reagenzien sind Stoffe, die für eine PCR Reaktion mit maximaler Sensitivität und Spezifität notwendig sind, insbesondere DNA-Polymerase, Mg²⁺ Ionen wie z. B. MgCl₂, Kaliumsalze wie z.B. KCl, Additive wie z.B. Glycerin oder DMSO oder Formamid, Primer und Sonden, Desoxynukleotide, Puffersubstanz wie z. B. Tris-Base sowie optionale Zusätze in Form von passiven Fluoreszenzreferenz-Verbindungen wie z.B. das Fluoreszenzfarbstoff-Derivat ROX und z. B. 7-Deaza-2-deoxy-GTP als Ersatz von dGTP.

Aufgabe

Aufgabenschwerpunkt der vorliegenden Erfindung bildet die Entwicklung von Nachweisverfahren für Mikroorganismen, die erfahrungsgemäß häufig als Produktkontaminanten auftreten. Das sind insbesondere in Bezug auf die Gruppe der Leitkeime: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonellen Arten und in Bezug auf die Gruppe Gesamtkeimzahl: die Bakterien.

Die Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Reagenzien, Verfahren und die Verwendung von Substanzen, die den Nachweis mikrobieller Verunreinigungen nicht-steriler Produkte zum Beispiel entsprechend Anforderungen der EP einfacher, präziser und effizienter gestalten. Dabei sollen weniger Komponenten als zum Beispiel entsprechend Anforderungen der EP enthalten sein. Eine weitere Aufgabe ist es, sehr sensitive und quantitative Nachweise für die geforderten Mikroorganismen zur Verfügung zu stellen.

Lösung

Die Aufgabe wird gelöst durch:

Testkit zum Nachweis mikrobieller Verunreinigungen nicht steriler Produkte, insbesondere nach GMP-Richlinien, auch Kosmetika und Lebensmittel, umfassend mindestens ein DNA-Fragment, das die folgenden SEQ ID und Spacer (Abstandhalter) umfaßt:

- (a) einen Forward-Primer (SEQ ID Forward-Primer);
- (b) eine Sonde (SEQ ID Sonde);
- (c) einen Reverse-Primer (SEQ ID Reverse-Primer);
 - (d) gegebenenfalls einen Spacer zwischen Forward-Primer und Sonde,
 - (e) gegebenenfalls einen Spacer zwischen Sonde und Reverse-Primer,
 - (f) gegebenenfalls einen Spacer _{upstream} des Forward-Primers
 - (g) gegebenenfalls einen Spacer downstream des Reverse-Primers
 - wobei die SEQ ID [(SEQ ID Forward-Primer); (SEQ ID Sonde); und (SEQ ID Reverse-Primer)] auch Varianten umfassen, bei denen eine, zwei oder drei Nukleotide substituiert, deletiert und / oder insertiert sind,

dabei hat die Variante im wesentlichen dieselbe Funktion wie die Sequenz der SEQ ID [(SEQ ID Forward-Primer); (SEQ ID Sonde); und (SEQ ID Reverse-Primer)],

bei Sonden die Funktion der Bindung an DNA und bei Primern die Funktion der Bindung an DNA und die Bereitstellung eines verlängerbaren 3' Endes für die DNA-Polymerase;

wobei die Spacer 0-40 Nukleotiden umfassen,

30 das DNA-Fragment genommen aus der Gruppe

(i) für Staphylococus aureus

SEQ. ID. NO. 6 als Forward-Primer

SEQ. ID. NO. 7 als Sonde und

SEQ. ID. NO. 8 als Reverse-Primer

35 (ii) für Pseudomonas aeruginosa

SEQ. ID. NO. 9 als Forward-Primer

SEQ. ID. NO. 10 als Sonde und

SEQ. ID. NO. 11 als Reverse-Primer

20

SEQ. ID. NO. 12 als Forward-Primer

SEQ. ID. NO. 13 als Sonde und

SEQ. ID. NO. 14 als Reverse-Primer

5 (iv) für Salmonella ssp.

SEQ. ID. NO. 15 als Forward-Primer

SEQ. ID. NO. 16 als Sonde und

SEQ. ID. NO. 17 als Reverse-Primer

(v) für Bakterien

SEQ. ID. NO. 18 als Forward-Primer

SEQ. ID. NO. 19 als Sonde und

SEQ. ID. NO. 20 als Reverse-Primer

Alle genannten Sequenzen sind in dem Beispiel 24 aufgeführt. Für eine erfolgreiche TaqMan-PCR werden an die Primer- und Sondensequenzen (Beispiel 24) folgende Anforderungen gestellt:

- Primer sollten zwischen 15-30 Basen lang sein.
- Sondensequenz muß sich zwischen Primer Sequenzen auf der zu amplifizierende DNS befinden.
- Sonde sollte zwischen gegebenenfalls 18-30 Basen lang sein.
- Sonde sollte einen GC-Gehalt von 40 60% besitzen.
- Der Tm der Sonde (Schmelzpunkt) sollte um 5 10 C° über dem Tm der Primer liegen
- Am 5' Ende der Sonde sollte sich ein G befinden.
 - In der Sondensequenz sollte nie mehr als 3 mal die selbe Base hintereinander folgen.
 - Keine Komplementarität zwischen Sonde und Primern oder innerhalb der Primer und keine auffälligen Sekundärstrukturen innerhalb der Sonde und der Primer.

Trotz dieser allgemeinen Richtlinien für das Design von Primern und Sonden (Livak et al. 1995, Guidelines for designing Taqman fluorogenic probes for the 5'

10

20

Nuclease assays, Perkin Elmer Research News) muß die optimale Primer- und Sondenkombination für jede TaqMan-PCR-Anwendung neu experimentell bestimmt werden. Es konnte in einer Reihe von Beispielen (Beispiel 25) gezeigt werden, daß obwohl oben genannten Richtlinien eingehalten wurden, kein optimales TaqMan PCR System entwickelt werden konnte. Auf der anderen Seite ist man durch die Sequenzcharakteristika der diagnostischen Zielsequenz des jeweiligen Organismus (z.B. hoher GC Gehalt, stark repetitive Sequenzen oder konservierte Sequenzbereiche) ggf. gezwungen, Primer- und Sondensequenzen auszuwählen, die nicht den oben genannten

Designrichtlinien entsprechen. Konsequenz dieser Einschränkungen zu den Richtlinien ist, daß zum Erreichen der notwendigen Spezifität und Sensitivität eines TaqMan-PCR-Tests die Auswahl der diagnostischen Zielsequenz aus dem Genom des zu detektierenden Mikroorganismus und die experimentelle Determinierung der optimalen Primer- und Sondensequenzen essentiell ist.

- d. PCR-Reaktionsbedingungen einschließlich TaqMan Puffer: Die Spezifität und Sensitivität eines TaqMan-PCR Tests wird neben den Primerund Sondensequenzen (a - c) durch folgende Parameter bestimmt:
- 20 (i) Höhe der Denaturierungstemperatur in den ersten PCR-Zyklen
 - (ii) Höhe der Annealingtemperatur während der Amplifikationsphase der PCR
 - (iii) Anzahl der PCR Zyklen
 - (iv) Einsatz von PCR-Additiven wie Glycerin und / oder Formamid
 - (v) Einsatz von 7-Deaza-2-deoxy-GTP neben GTP bei Genen mit hohem G/C Gehalt
 - (vi) Höhe der Mg⁺⁺-Ionen-Konzentration im PCR-Puffer
 - (vii) Konzentration der Primer und Sonde
 - (viii) Menge an Taq-DNA-Polymerase
- 30 (ix) Abstand des cis-orientierten Primers zur Sonde

Alle diese Parameter wurden bei der Entwicklung hier aufgeführten TaqMan-PCR Tests experimentell berücksichtigt (Daten nicht gezeigt).

35 Beschreibung der Nukleinsäuren, die als diagnostische Zielsequenzen eingesetzt werden:

Unter den Nukleinsäuren, die zur Verwendung des Amplifikationsverfahren und Nachweisverfahrens für die oben genannten Zielorganismen verwendet werden

15

können, werden insbesondere genomische Nukleinsäuren verstanden. Genomische Nukleinsäure- Sequenzen enthalten unter anderem auch die Gene bzw. Genfragmente, die für eine bestimmte Mikroorganismenart, -gattung, -familie oder -abteilung charakteristisch sind. Die Nukleinsäure-Sequenzen können in einen PCR-Test als diagnostische Zielsequenzen für einen spezifischen Nachweis dieser Art, Gattung, Familie oder Abteilung eingesetzt werden.

Für den Nachweis der oben genannten Zielorganismen wurden folgende Zielsequenzen ausgewählt:

Genbezeichnung

1	\sim
	11

25

30

Organismus/nen

5

(i) (ii) (iii)	Staphylococus aureus Pseudomonas aeruginosa Escherichia coli	cap 8 alg Q mur A
(iv)	Salmonella ssp.	inv A
(v)	Bakterien	16S r RNA

Die Gene, aus denen die diagnostischen Zielsequenzen ausgewählt wurden, werden in den Beispielen detailliert beschrieben.

Verfahren

Die Erfindung umfaßt weiterhin ein Verfahren zur Detektion von Mikroorganismen in Produkten, insbesondere Arzneimitteln oder Kosmetika, welches Verfahren die folgenden Schritte umfaßt:

- a) Einsetzen von Primern und fluoreszenzmarkierten Sonden mit den entsprechenden Sequenzen und deren Variationen,
- (i) für Staphylococus aureus
 - SEQ. ID. NO. 6 als Forward-Primer
 - SEQ. ID. NO. 7 als Sonde und
 - SEQ. ID. NO. 8 als Reverse-Primer
- (ii) für Pseudomonas aeruginosa
 - SEQ. ID. NO. 9 als Forward-Primer
- 35 SEQ. ID. NO. 10 als Sonde und
 - SEQ. ID. NO. 11 als Reverse-Primer

(iii) für Escherichia coli

SEQ. ID. NO. 12 als Forward-Primer

SEQ. ID. NO. 13 als Sonde und

SEQ. ID. NO. 14 als Reverse-Primer

5 (iv) für Salmonella ssp.

SEQ. ID. NO. 15 als Forward-Primer

SEQ. ID. NO. 16 als Sonde und

SEQ. ID. NO. 17 als Reverse-Primer

(v) für Bakterien

SEQ. ID. NO. 18 als Forward-Primer

SEQ. ID. NO. 19 als Sonde und

SEQ. ID. NO. 20 als Reverse-Primer

- b) Vervielfältigen der DNA mit PCR; und
- c) Bestrahlung mit spezifischen Wellenlängen, die den Fluoreszenzfarbstoff anregen,
- d) Messung und Quantifizierung der Emission des angeregten Fluoreszenzfarbstoffes.

20

25

30

10

Die Erfindung umfaßt ein erfindungsgemäßes Verfahren, wobei die Herstellung der Sonden auf der TaqMan-Detektionstechnologie beruht.

Kern der Erfindung

die Kern der Erfindung ist Kombination bestimmter ausgewählter Sonden/Primer-Paare, die Mikroorganismen zufriedenstellend detektieren können. Die Optimierung der Sonden/Primer-Paare und der PCR Reaktionsbedingungen auf Sensitivität und Eignung zur GMP-konformen Produktprüfung nach EP, 2.6.12-13: Microbial contamination of products not required to comply with the test for sterility (1997) ist ebenfalls wesentlich. Dabei wird eine PCR-Technologie nach den US-Patenten US 4,800,159 und US 4,683,195 verwendet. Dabei findet insbesondere die TagMan-Technologie Anwendung, die in dem US-Patent 5,210,015 beschrieben ist, welches am 11. Mai 1993 als Patent herausgegeben worden ist.

Bei dem erfindungsgemäßen Verfahren oder dem erfindungsgemäßen Testkit handelt es sich um eine spezielle Ausführungsform der Fluoreszenz-PCR Technologie (TaqMan) für die oben genannten Zielmikroorganismen.

Vorteile:

Die erfindungsgemäßen Verfahren und die Testkits sind denen in der EP vorgeschriebenen Analysenmethoden in vielen Punkten weit überlegen (für Kosmetika wird z. Zt. noch keine vorgeschriebene Methode gefordert) und sollen diese, nach Validierung des Verfahrens mit dem jeweiligen Prüfprodukt, vollständig ersetzen. Die Möglichkeit, andere Analysenmethoden zu benutzen, wird in der EP (General Notices) explizit zugelassen, wenn sie die gleichen Ergebnisse wie die vorgeschriebenen Methoden ergeben.

10

20

25

30

Insbesondere hat das erfindungsgemäße Verfahren die folgenden Vorteile:

- (A) Kit und Verfahren zum Nachweis von Mikroorganismen der Gruppe Gesamtkeimzahl :
- Erstmals können durch Anwendung dieses Kits und Verfahrens ohne vorhergehende Kultivierung alle kontaminierenden Bakterien, deren Sequenz in der NiH Datenbase, USA, Stand 11.1997, beschrieben sind, analytisch bestimmt werden. Dabei werden lebende und nicht-vermehrungsfähige Bakterien quantitativ und sehr präzise mit einer Sensitivität von 1-3 Bakterien im Prüfprodukt erfaßt. Konsequenz der Anwendung ist eine deutliche erhöhte Produktsicherheit für den Verbraucher, da:
 - Sporen und schwer kultivierbare Bakterien, von denen eine Gesundheitsgefährdung ausgehen kann, erfaßt werden können,
 - Nicht-vermehrungsfähige Bakterien, die schwer nachweisbare Toxine enthalten, ebenfalls erfaßt werden können,
 - Kontaminierende DNA bakterieller Herkunft, deren Abwesenheit zur Zeit schon in Biologicals und Produkten aus der rDNA-Technologie gezeigt werden muß, (EP,1997 und USP 1995) in allen Prüfprodukten einfach und effizient nachgewiesen werden kann.
- Außerdem gibt es für die Anwendung keine besonderen Sicherheitsauflagen, da keine Komponenten des Kits einer Gefahrstoffverordnung unterliegen.
- (B) Alle beanspruchten Kits und Verfahren:
- Die Anwendung hat ökonomische Vorteile für Verbraucher und Hersteller,
 da die bisherigen Verfahren um mehrere Tage zeitaufwendiger sind und häufig den zeitbestimmenden Schritt in der Freigabeanalytik darstellen. Schnelle Ergebnisse zur mikrobiologischen Sicherheit eines biologisch anfälligen Prüfprodukts führen zur Senkung der Kosten in Entwicklung und Produktion wie

z.B. niedrigere Lagerhaltungskosten oder schnellerer Response auf variable Marktanfragen und damit insgesamt zur Senkung der Gestehungskosten, die in preiswertere Produkte einmünden.

- Die Anwendung hat ökologische Vorteile, da die Reduktion von
- Analysenzeit und Analysenmaterial (Plastik und Medien) die erheblichen Energiekosten deutlich erniedrigt.

Beispiele:

Die nachfolgenden Beispiele beschreiben die entwickelten PCR-Schnelltests zur Detektion der Zielmikroorganismen, inklusive aller Sequenzvariationen und Targetsequenzen

	(i)	Staphylococus aureus	(Beispiele 1-5)
10	(ii)	Pseudomonas aeruginosa	(Beispiele 6-9)
	(iii)	Escherichia coli	(Beispiele 10-13)
	(iv)	Salmonella ssp.	(Beispiele 14-17)
15	(iv)	Bakterien	(Beispiele 18-23)
	(vi)	Target-Sonden-und Primersequenzen	(Beispiel 24)
20	(vii)	Sequenzvariationen	(Beispiel 25)
	(viii)	(Entwicklungssequenzen Sonden und Primer mit nicht zufriedenstellender Testspezifität/Sensitivität	(Beispiel 26)

Beispiel 1

DNA-Freisetzung nach Voranreicherung

Je 100 µl-Aliquote der jeweiligen Mikroorganismen-Kultur wurde zur Freisetzung der DNS lysiert (Makino et al. Applied Environ. Microbiol. 3745-3747,1995). Die DNS wurde von Proteinen und sonstigen PCR-Inbibitoren gereinigt und dann in PCR Amplifikationsexperimenten eingesetzt.

Beispiel 2

10 Nachweis von Staphylococcus aureus

15

20

30

Der Nachweis von *S. aureus* erfolgte durch erfindungsgemäße artspezifische Amplifikation von cap-8 Gensequenzen (SEQ. ID. NO. 1, siehe Beispiel 24). Das cap-8 Gencluster verschlüsselt Proteine, die bei der Biosynthese der Kapsel von S. aureus beteiligt sind. Die Kapsel umhüllt die Oberfläche dieser Bakterien und stellt einen Schutzmechanismus gegen die Abwehrmechanismen der Wirtsorganismen dar. Die molekulare Zusammensetzung der Kapsel ist für *S. aureus* spezifisch und stellt sozusagen einen molekularen Fingerabdruck dieser Staphylococcen-Art dar. Der (open reading frame O) ORF-O des cap-8 Genclusters ist in den verschiedenen Serotypen von *S. aureus* konserviert (Sau und Lee 1996, J. Bacteriol. 178, 2118-2126). Die DNA-Sequenzen aus dem ORF-O des cap-8 Genclusters (SEQ. ID. NO. 1) wurden als diagnostische DNA-Sequenzen zur Synthese von artspezifischen DNA-Primern und Sonden ausgewählt.

Als Resultat von DNA-Sequenzdatenbank-Vergleichen und praktischen Optimierungsarbeiten, unter Verwendung verschiedener Primer- und Sondenkombinationen, wurden folgende cap-8 spezifische DNA-Sequenzen als optimale Primer- / Sonden Kombination bestimmt:

1. PCR-Sonde

20 mer 5'-TAMRA- CCT GGT CCA GGA GTA GGC GG 3' - FAM (Sonde cap-8 # 15460*, als reverse complement einsetzen) SEQ. ID. NO. 7

Sonden wurden von der Firma PE Applied Biosystems Division, Weiterstadt, Deutschland hergestellt. Es handelt sich um einzelsträngige Oligonukleotide, die am 5' Ende mit einem Fluoreszenzderivat (FAM = 6-carboxyfluorescein) und am 3' Ende mit einem Rhodaminderivat (TAMRA = 6-carboxytetramethylrhodamine)

modifiziert worden. Synthese und Reinigung erfolgte entsprechend der Vorschriften von PE-Applied Biosystems.

2. PCR-Primer

5

10

24 mer: 5' -AGA TGC ACG TAC TGC TGA AAT GAG -3'
(Primer cap-8 forward # 15297*)

SEQ. ID. NO. 6

26 mer: 5' -GTT TAG CTG TTG ATC CGT ACT TTA TT - 3'
(Primer cap-8 reverse # 15485* als reverse complement einsetzen) SEQ. ID.

NO. 8

*Die Positionen beziehen sich auf die in der von Sau and Lee (1996, J. Bacteriol. 178, 2118-2126) publizierten cap-8 DNS Sequenz.

Synthese und Reinigung der PCR Primer Oligonukleotide erfolgte durch die Firma PE Applied Biosystems und nach deren Protokollen.

Beispiel 3

20 PCR-Bedingungen für den Nachweis von Staphylococcus aureus

Nach Variation von Primer- und Sondenkonzentration, und MgCl₂ Konzentration ergaben sich folgende Bedingungen als optimal:

25

30

Alle Komponenten wurden von der Firma PE Applied Biosystems, Weiterstadt, bezogen. Herstellung der TaqMan-PCR-Reaktionsgemische, Durchführung der PCR Reaktionen und Bedienung der PCR Heizblocks bzw. des Fuoreszenz-Detektors (PE ABD Modell 7700 oder Modell LS50B) erfolgte nach Anweisungen des Geräteherstellers (User's Manual, ABI Prism 7700 Sequence Detection System, PE Applied Biosystems 1997, bzw. Users Manual, PE ABI LS50 B).

Folgende Komponenten wurden in einem PCR Reaktionsgefäß (PE Applied Biosystems Best. Nr. N8010580) gemischt:

Komponente DNA	Volumen (µl) 5.00	Endkonzentration (in 50 μl)	Menge 1 fg - 100 ng
Bidest 10 fach konzentrierter TaqMan Puffer A*	10.25 5.00	1 x	
25 mM MgCl2	8.00	4 mM	
Lösung DATP DCTP DGTP DUTP 5' Primer # 15297 Sonde # 15460 3' Primer # 15485 Ampli Taq Gold* AmpErase UNG*	2.00 2.00 2.00 2.00 5.00 3.00 5.00 0.25 0.50	200 mM 200 μM 200 μM 400 μM	15 pmol 6 pmol 15 pmol 1.25 units 0.50 units
Gesamtvolumen	50.00		

^{* (}aus: TaqMan PCR Core Reagents, N 8080229, PE Applied Biosystems)

Für eine optimale Reproduzierbarkeit der Ergebnisse ist darauf zu achten, daß bei jedem PCR-Lauf möglichst viele Komponenten des PCR-Mixes in einem sogenannten Mastermix vorgemischt werden. Unter Standardbedingungen wird nur das zu untersuchende DNA-Material (0 -15.25 µl) als Komponente in jedes PCR Reaktionsgefäß separat zugeben.

Die PCR-Reaktionen werden in dem PCR Heizblock des ABI Sequence Detectors 7700 durchgeführt. Funktional äquivalent sind PCR-Heizblöcke mit vergleichbaren Heiz- und Wärmetransfereigenschaften, wie z. B. die PE ABI Geräte Modell 7200, 9700, 9600 und 2400. Das PCR-Zyklusprofil ist wie folgt:

Cycle	Temperatur (°C)	Zeit (min)	Wieder- holungen
Hold	50	2:00	1
Hold	95	10:00	1
Cycle	95	0:15	40
Cycle	60	1:00	
Hold	25	5:00	

Für detaillierte Erklärungen zum PCR-Zyklus-Profil siehe: User's Manual, ABI Prism 7700 Sequence Detection System, PE Applied Biosystems 1997.

Beispiel 4

Selektivität des S. aureus PCR-Schnelltests

4.1 Elektrophoretische Analyse

Um die Selektivität des PCR-Tests abzuschätzen, wurde genomische DNA aus verschiedenen Organismen isoliert und im PCR Test eingesetzt (Abb. 1, Sambrock et al. 1993). Die entstandenen PCR-Produkte wurden elektrophoretisch analysiert. Die PCR-Produkte hatten eine Größe von 213 Basenpaaren. Kontrollsequenzierungen der PCR-Produkte verifizierte, daß es sich um *cap8-0* DNA handelte (ohne Abb.)

10

20

Die DNA (10 ng pro Spur, 2-14) aller eingesetzten *S. aureus* Stämme (Lane 2-5) wurde von den *cap8-0* Primern (# 15297 und # 15485) detektiert. Dem gegenüber wurde die DNA einer nahe verwandten *Staphylococcus* Art, *S. epidermidis* (Lane 6) und die anderer bakterieller Gattungen (Lane 7-11) nicht detektiert. DNA aus Pilz, Fisch und Mensch (Lane 12-14) wurden als Kontrollen eingesetzt und ergaben kein Detektionssignal. NTC (= no template control) ist die Wasserkontrolle, in der keine DNA eingesetzt wurde.

4.2 Fluoreszenzanalyse

Neben der elektrophoretischen Analyse wurde die Selektivität der diagnostischen PCR als TaqMan-Fluoreszenztest unter Verwendung der oben

20

genannten Primer und Fluoreszenzsonde bestimmt. Die Resultate sind als Ct-Werte (Threshold cycle) angegeben.

C_t-Wert: Die bei der TagMan-PCR stattfindende Hydrolyse Fluoreszenzsonde führt zu einem Anstieg der Reporterfluoreszenzstrahlung von einem PCR-Zyklus zum Nächsten. Die Zyklenzahl, bei der erstmals die Reporterfluoreszenzstrahlung über der Hintergrundstrahlung (NTC) des Systems liegt und linear ansteigt, wird "Threshold cycle" (C_t) genannt. (Hintergrundstrahlung (NTC) ist die Reporterfluoreszenzstrahlung in PCR Kontrollreaktionen, in denen keine Template-DNA eingesetzt wurde.) Sowohl die Menge an freiwerdender Reporterstrahlung als auch der "Treshold cycle" (Ct-Schwellenwert-Zykluszahl) sind proportional zu der Menge an entstehenden PCR Produkten und somit zu der Menge an eingesetzten Genkopien (Keimzahl).

Je mehr Genkopien eingesetzt werden, desto niedriger ist der resultierende C_t -Wert. In einem PCR - System mit 100%iger Effizienz nimmt der C_t - Wert mit jeder Verdopplung der Start-Genkopienzahl um einen Zyklus ab. Bei einer PCR-Reaktion die z.B. 40 Zyklen umfaßt, und bei der kein PCR Produkt entsteht, wird der C_t -Wert per Definition 40 sein.

Es werden je 10 ng an Template-DNA in den PCR-Reaktionen für den Spezifizitätstest eingesetzt. Die Reaktionsbedingungen sind in Beispiel 3 angegeben.

Liste der getesteten DNA-Isolate

(je 10 ng genomische DNS analysiert)

10

20

Organismus

	Resultat (als CT-Wert)
Staphylococcus aureus Arten	,
S. aureus	
DSM 683 (ATCC 9144)	17
DSM 1104 (ATCC 25923)	17
DSM 6148 `	17
DSM 346 (ATCC 6538)	17
S. epidermidis	• •
DSM 1798 (ATCC 12228)	40
	DSM 683 (ATCC 9144) DSM 1104 (ATCC 25923) DSM 6148 DSM 346 (ATCC 6538) S. epidermidis

21

Resultat

Andere bakterielle Gattungen Organismus

		(als CT-Wert)
5	Pseudomonas aeruginosa	
	DSM 1117 (ATCC 27853)	40
	DSM 1128 (ATCC 9027)	40
	DSM 3227 (ATCC 19429)	40
	DSM 50071 (ATCC 10145)	40
10	Salmonella typhimurium	
	DSM 5569 (ATCC 13311)	40
	Streptococcus faecalis	
	DSM 2981 (ATCC 14506)	40
15	(reclassified DSM 2570 (ATCC 29212)	40
	as Enterococcus faecalis)	
	DSM 6134	40
	Escherichia coli	
20	DSM 787 (ATCC 11229)	40
	DSM 1576 (ATCC 8739)	40
	Eukaryonten	
25	Neurospora crassa	40
	Mensch (Perkin Elmer ABI, 401846)	40
	Salmon (Sigma D 9156)	40
	Wasser	40

30

Nach etwa 17 Zyklen wurde erstmals ein linearer Anstieg der FAM-Fluoreszenz über der FAM-Hintergrundstrahlung der Fluoreszenzsonde detektiert, wenn *S. aureus* genomische DNA in der Fluoreszenz-PCR eingesetzt wurde. Wurde DNS von *S. epidermidis* in der PCR angesetzt, einer nahe verwandten Art von *S. aureus* innerhalb der Gattung *Staphylococcus*, so ließ sich kein signifikanter Anstieg der FAM-Reporterfluoreszenz detektieren.

Die Ergebnisse der PCR-Analyse mit DNA aus verschiedenen bakteriellen Gattungen, *Staphylococcus*-Arten und *Staphylococcus aureus* Stämmen zeigt die Spezifität des entwickelten *S. aureus* Tests. Nur *S. aureus* DNS wurde von den *cap-8* Primern und Sonden detektiert.

Beispiel 5

Sensitivität des S. aureus Nachweisverfahrens

Um die Sensitivität des *S. aureus* PCR-Tests zu bestimmen, wurde genomische *S. aureus* DNA präpariert und in PCR-Experimenten eingesetzt.

10 fg genomische *S. aureus* DNA entsprechen 3 Genomen (Strauss and Falkow 1997, *Science* 276, 707-712).

 $10 ext{ fg} = 3 ext{ KBE}$

10 pg = 3.000 KBE

10 ng = 3.000.000 KBE

Verschiedene Mengen an *S. aureus* DNA (1 fg bis 100 ng) wurden in der Fluoreszenz-PCR eingesetzt (Abb. 2). Die gezeigten Daten stellen Mittelwerte aus 6 unabhängigen Experimenten dar. Die Menge an freiwerdender Fluoreszenz und somit an entstehenden PCR-Produkten wurde als CT-Wert angegeben.

Das Ergebnis zeigt, daß sich die DNA von 3 Bakterienzellen mittels Fluoreszenz-PCR nachweisen läßt. Der PCR-Schnelltest erlaubt eine lineare Quantifizierung der eingesetzten *S. aureus* Genome über 5 log Stufen, d. h. zwischen 3 und 300.000 KBE (1ng DNS).

Beispiel 6

Nachweis von Pseudomonas aeruginosa

Der Nachweis von *Pseudomonas aeruginosa* erfolgte durch erfindungsgemäße artspezifische Amplifikation von *algQ*-Gensequenzen (Sequenzen s. Beispiel 24). Das *algQ*-Gen verschlüsselt Elemente eines Schutzmechanismus der von Pseudomonas aeruginosa im Laufe der Evolution entwickelt wurde, und der für diese Bakterienart spezifisch ist.

Die Produktion von Alginat ist eine einzigartige Virulenzeigenschaft von Pseudomonas aeruginosa. Alginat ist ein Polymer aus Mannuron- und Guluronsäure (1,4 glykosidisch verknüpft). Dieses Polymer bildet eine viskoses Gel auf der Bakterienoberfläche. Die Produktion dieses Biogels ist sehr sensitiv reguliert. Die Fähigkeit, Alginat zu synthetisieren, ist bei allen Pseudomonas aeruginosa Stämmen vorhanden. Sie ist charakteristisch für diese Bakterienart. Alginat-Synthese ist ein energiekonsumierender Prozeß und deshalb reguliert.

10

15

20

Ein Gen, das Alginat-Synthese reguliert, ist das *algQ* -Gen (Konyecsni and Deretic 1990, J. Bacteriol. 172, 2511-2520). Es verschlüsselt die sensorische Komponente eines Signaltransduktions-Systems (Roychoudhury et al. 1993, PNAS USA 90: 965-969). Da das *algQ*- Gen an der Regulation eines spezifischen Schutzmechanismus beteiligt ist, stellt es einen genetischen Marker mit diagnostischer Potenz zur Identifizierung der Art *Pseudomonas aeruginosa* dar.

Als Resultat von DNA-Sequenzdatenbank-Vergleichen und praktischen Optimierungsarbeiten, unter Verwendung verschiedener Primer- und Sondenkombinationen, wurden folgende *algQ*-spezifische DNA-Sequenzen als optimale Primer- / Sonden Kombination bestimmt:

10

15

20

1. PCR-Sonde:

26 mer: 5'-FAM - CCA ACG CCG AAG AAC TCC AGC ATT TC - TAMRA (Sonde algQ # 911): SEQ. ID. NO. 10

Die Sonden wurden von der Firma PE Applied Biosystems Division, Weiterstadt, Deutschland hergestellt. Es handelt sich um einzelsträngige Oligonukleotide, die am 5' Ende mit einem Fluoreszenzderivat (FAM = 6-carboxyfluorescein) und am 3' Ende mit einem Rhodaminderivat (TAMRA = 6-carboxytetramethylrhodamine) modifiziert worden. Synthese und Reinigung erfolgte entsprechend der Vorschriften von PE-Applied Biosystems.

2. PCR-Primer:

23 mer: 5'-CTT CGA TGC CCT GAG CGG TAT TC-3' (Primer algQ forward # 876*) SEQ. ID. NO. 9

Reverse Primer Sequence (# 1147):

23 mer: 5'-CTG AAG GTC CTG CGG CAA CAG TT-3'
(Primer algQ reverse # 1147* als reverse complement einsetzen) SEQ. ID. NO.
11

35

30

* Positionen beziehen sich auf die in Konyecsni and Deretic 1990, J. Bacteriol. 172, 2511-2520 publizierte DNA-Sequenz.

Synthese und Reinigung der PCR Primer Oligonukleotide erfolgte durch die Firma PE Applied Biosystems und nach deren Protokollen.

Beispiel 7 5 PCR-Bedingungen für den Nachweis von *P. aeruginosa*

Nach Variation von Primer- und Sondenkonzentration, und MgCl₂ Konzentration ergaben such folgende Bedingungen als optimal:

10	Komponente	Volumen	Endkonzentration	Menge
	·	(µl)	(in 50 µl)	DNA
	5.00	. ,	, , ,	1 fg - 100 ng
	Bidest	7.25		
	10 x TaqMan Puffer A	5.00	1 x	
15	25 mM MgCl2 Lösung	13.00	6.5 m M	
	dATP	2.00	200 µM	
	dCTP	2.00	200 µM	
	dGTP	2.00	200 µM	
	dUTP	2.00	400 µM	
20	5' Primer # 876	1.00		3 pmol
	Sonde # 911	4.00		8 pmol
	3' Primer # 1147	5.00		15 pmol
	AmpliTaq Gold	0.25		1.25 units
	AmpErase UNG	0.50		0.50 units
25	DMSO	1,00		
		50.00		

Für eine optimale Reproduzierbarkeit der Ergebnisse ist darauf zu achten, daß bei jedem PCR-Lauf möglichst viele Komponenten des PCR-Mixes in einem sogenannten Mastermix vorgemischt werden. Unter Standardbedingungen wird nur das zu untersuchende DNA-Material (0-15.25 µl) als Komponente in jedes PCR Reaktionsgefäß separat zugeben.

Die PCR-Reaktionen werden in dem PCR Heizblock des ABI Sequence Detectors 7700 durchgeführt. Funktional äquivalent sind PCR-Heizblöcke mit vergleichbaren Heiz- und Wärmetransfereigenschaften, wie z. B. die PE ABI Geräte Modell 7200, 9700, 9600 und 2400.

Das PCR-Zyklenprofil für die *Pseudomonas aeruginosa* PCR ist wie folgt:

51541 -	- TagMan	5.5.1998	07 05 98
J 1 J 7 1 -	- I auiviaii	J.J. 1330	07.00.30

	Cycle	Temperatur (°C)	Zeit (min)	Wiederholungen
	Hold	50	2:00	1
5	Hold	95	10:00	1
	Cycle	97 60	0:30 1:00	4
10	Cycle	9 4 60	0:30 1:00	41
	Hold	25	5:00	

25

15 Für Details zu PCR-Bedingungen siehe Beispiel 3.

Beispiel 8 Selektivität des *Pseudomonas aeruginosa* PCR-Schnelltests

Um die Selektivität des PCR-Tests abzuschätzen, wurde genomische DNA aus verschiedenen Organismen isoliert und im Fluoreszenz-PCR Test eingesetzt. Die Menge an entstandenen PCR Produkten wurde als CT-Wert (Threshold Cycle, für Ct-Wert s. Definition Beispiel 4) angegeben .

25

Liste der getesteten DNA-Isolate (je 10 ng genomische DNS analysiert)

	Organismus		Resultat (als CT-Wert)
30	Pseudomonas Arten		(die et vveit)
	P. aeruginosa	DSM 1117 (ATCC 27853)	19
		DSM 1128 (ATCC 9027)	19
		DSM 3227 (ATCC 19429)	19
		DSM 50071 (ATCC 10145)	19
35	P. putida	DSM 50026	45
	P. fluoreszenz	ATCC 948	45
	Andere bakterielle Arte	n	
	Staphylococcus aureus	DSM 683	45
40		DSM 1104	45
		DSM 6148	45
		DSM 6538P	45
	Streptococcus faecalis	DSM 2981	45
		DSM 6134	45
45		ATCC 29212	45
	Salmonella typhimurium	ATCC 13311	45
	Escherichia coli	DSM 301	45

	20	
	DSM 787	45
	DSM 1103	45
	ATCC 8739	45
5	Eukaryonten	
	Neurospora crassa	45
	Arabidopsis thaliana	45
	Salmon (Sigma D9156)	45
	Mensch (Perkin Elmer ABI, 401846)	45
10		
	Wasser	45

20

25

35

40

Ausschließlich *Pseudomonas aeruginosa* Stämme ergaben ein positives Ergebnis im PCR-Schnelltest. Nach 19 PCR Zyklen (CT=19) war erstmals ein linearer Anstieg der Fluoreszenz meßbar, wenn 10 ng *P. aeruginosa* DNS eingesetzt wurden. Der PCR Test war hochspezifisch. Auch die nahe verwandten Arten *P. putid*a und *P. fluoreszenz* ergaben kein Fluoreszenzsignal im PCR-Schnelltest.

Als Positivkontrolle wurden die selben bakteriellen DNS, die im algQ-PCR-Test analysiert worden waren mit dem universellen 16S rRNA PCR System (s. Beispiel 19) untersucht. Alle bakteriellen DNS ergaben ein positives Signal mit dem 16S rRNA System. Das bedeutet, alle DNS ließen sich 16S rRNA-PCR-amplifizieren, aber lediglich die *P. aeruginosa* DNS ließen sich *algQ*-PCR-amplifizieren.

Das algQ-System ist Pseudomonas aeruginosa spezifisch.

Zusätzlich wurden die entstandenen PCR-Produkte elektrophoretisch analysiert (vgl. Beispiel 3). Die PCR-Produkte hatten eine Größe von 294 Basenpaaren (ohne Abb.). Kontrollsequenzierungen der PCR-Produkte verifizierte, daß es sich um algQ DNS handelte (ohne Abb.)

Beispiel 9

Sensitivität und Linearität des P. aeruginosa PCR-Schnelltests

Um die Sensitivität des *P. aeruginosa* PCR-Tests zu bestimmen, wurde genomische *P. aeruginosa* DNS präpariert und in PCR-Experimenten eingesetzt (Abb.3). Verschiedene Mengen an *P. aerugonosa* Genomkopien wurden in der Fluoreszenz-PCR eingesetzt (Abb. 3). Die gezeigten Daten stellen Mittelwerte und Standardabweichungen aus 4 unabhängigen Experimenten dar. Die Menge an freiwerdender Fluoreszenz und somit an entstehenden PCR-Produkten wird als CT-Wert angegeben. Die PCR- Reaktion wurde über 45 Zyklen

durchgeführt. Der CT-Wert der Wasserkontrolle (NTC = no template control) betrug 45.

Das Ergebnis zeigt, daß sich die DNS von 3 Bakterienzellen mittels Fluoreszenz-PCR nachweisen läßt. Der PCR-Schnelltest erlaubt eine lineare Quantifizierung der eingesetzten *P. aeruginosa* Genome über 4 log Stufen, d. h. zwischen 3 und 30.000 KBE.

Beispiel 10

10

15

20

25

30

Nachweis von Escherichia coli

Der Nachweis von *E. coli* erfolgte durch erfindungsgemäße artspezifische Amplifikation von *mur*A-Gensequenzen

Spezifische Bereiche des murA-Gens dienten als diagnostisches Ziel für die Entwicklung eines PCR-Schnelltests zum Nachweis von Escherichia coli. Warum wurde dieses Gen als diagnostisches Ziel gewählt? Das murA Gen verschlüsselt das Enzym UDP-N-Acetylglucosamin Enolpyruvyltransferase, ein wichtiges Strukturgen von E. coli (Marquardt et al. 1992, J. Bacteriol. 174, 5748-5752). Dieses Enzym katalysiert den ersten Schritt der Peptidoglykan-Synthese, im Falle von E. coli des Mureins, welches einen essentiellen Bestandteil der bakteriellen Zellwand darstellt. Die Zellwandkomposition ist als ein charakteristisches Merkmal von Bakterienarten anzusehen. Es wurde die murA Nukleotidsequenz von E. coli mit der nahe verwandten Enterobakteriaceaen-Art Enterobacter cloacae verglichen. Auf Grund der identifizierten Sequenzunterschiede wurde das murA-Gen als genetischer Marker mit diagnostischer Potenz zur Identifizierung der Enterobakteriaceaen-Art Escherichia coli ausgewählt.

Als Resultat von DNS-Sequenzdatenbank-Vergleichen und praktischer Optimierungsarbeiten, unter Verwendung verschiedener Primer- und Sondenkombinationen, wurden folgende *murA*-spezifische DNA-Sequenzen als optimale Primer- / Sonden Kombination bestimmt:

Forward Primer Sequence (# 767*):

35 5' GTT CTG TGC ATA TTG ATG CCC GCG 3'

SEQ. ID. NO. 12

Sonde (# 802):

5'-FAM - TCT GCG CAC CTT ACG ATC TGG TT - TAMRA 3' SEQ. ID. NO. 13

Reverse Primer Sequence (# 884):
5' GCA AGT TTC ACT ACC TGG CGG TTG 3'
(als reverse complement einsetzen)

SE

SEQ. ID. NO. 14

* Positionen beziehen sich auf die in Marquardt et al. 1992, J. Bacteriol. 174, 5748-5752 publizierte DNA-Sequenz (Genbank: M92358).

Die Sonden wurden von der Firma PE Applied Biosystems Division, Weiterstadt, Deutschland hergestellt. Es handelt sich um einzelsträngige Oligonukleotide, die am 5' Ende mit einem Fluoreszenzderivat (FAM = 6-carboxyfluorescein) und am 3' Ende mit einem Rhodaminderivat (TAMRA = 6-carboxytetramethylrhodamine) modifiziert worden. Synthese und Reinigung erfolgte entsprechend der Vorschriften von PE-Applied Biosystems.

Beispiel 11 PCR-Bedingungen für den Nachweis von *Escherichia coli*

Nach Variation von Primer- und Sondenkonzentration, der MgCl₂ bzw. Glycerin Konzentration und der Nukleotidkomposition ergaben sich folgende Bedingungen als optimal:

	Komponente	Volumen	Endkonzentration	Men	ge
		(µI)	(in 50 µl)		
	DNA	5.00		1 fg	- 100 ng
25	Bidest	8.75			
	10 x TaqMan Puffer	A 5.00	1 x		
	25 mM MgCl2 Lösur	ng 7.00	3.5 mM		
	dATP	2.00	200 µM		
)	dCTP	2.00	200 µM		
30	7-deaza-dGTP	2.00	200 µM		
	dUTP	2.00	400 µM		
	Glycerin 40%	2.50	2%		
	5' Primer # 767	5.00		15	pmol
	Sonde # 802	3.00		6	pmol
35	3' Primer # 884	5.00		15	pmol
	AmpliTaq Gold	0.25		1.2	5 units
	AmpErase UNG	0.50			0.50
	units				
			-		
40		50.00			

5

10

15

Das PCR-Zyklenprofil für die Escherichia coli PCR:

Cycle	Temperatur (□C°)	Zeit (min)	Wiederholung
Hold	50	2:00	1
Hold	95	10:00	1
Cycle	95	0:15	40
	60	1:00	
Hold	25	5:00	

Für Details siehe Beispiel 3.

Beispiel 12

Selektivität des Escherichia coli PCR-Schnelltests

10

Um die Selektivität des PCR-Tests abzuschätzen, wurde genomische DNA aus verschiedenen Organismen isoliert und im Fluoreszenz-PCR Test eingesetzt. Die Menge an entstandenen PCR Produkten wurde als CT-Wert (Threshold Cycle) angegeben (Tab.).

15

Liste der getesteten DNA-Isolate

(je 10 ng genomische DNS analysiert)

20	Organismus		Resultat (als CT-Wert)
	Escherichia coli Stämme		(als OT-VVEIL)
	Escherichia coli		
	DSM 301		16
	DSM 787		16
25	DSM 1103		16
	ATCC 8739		16
	Andere Enterobacteriaceae		
	Acetobacter pasteurianus	DSM 3509	40
30	Acinetobacter calcoaceticus	DSM 6962	40
	Aeromonas enteropelogenes	DSM 6394	40
	Alcaligenes faecalis	DSM 30030	40
	Budvicia aquatica	DSM 5075	40

	Buttiauxella agrestis	DSM 4586	40
	Cedecea davisae	DSM 4568	40
	Chromobacterium violaceum	DSM 30191	40
	Enterobacter cloacae	DSM 30054	40
5	Edwardsiella tarda	DSM 30052	40
J	Ewingella americana	DSM 4580	40
	Erwinia amylovora	DSM 30165	40
	Hafnia alvei	DSM 30163	40
	Haemophilus influenzae	DSM 4690	40
10	Halomonas elongata	DSM 2581	40
10	Helicobacter pylori	DSM 4867	40
	Kluyvera ascorbata	DSM 4611	40
	Leclercia adecarboxylata	DSM 5077	40
	Legionella pneumophilia	DSM 7515	40
15	Leminorella grimontli	DSM 5078	40
15	Levinea malonatica	DSM 4596	40
	Listeria monocytogenes	DSM 20600	40
	Moellerella wisconsensis	DSM 5076	40
	Morganella morganii sp.	DSM 30164	40
20	Pantoea agglomerans	DSM 3493	40
20	Photorhabdus luminescens	DSM 3368	40
	Plesiomonas shigelloides	DSM 8224	40
	Pragia fontium	DSM 5563	40
	Providencia stuarti	DSM 4539	40
25	Proteus mirabilis	DSM 788	40
	Rhanella aquatilis	DSM 4594	40
	Serratia marcescens	DSM 30121	40
	Tatumella ptyseos	DSM 5000	40
	Vibrio proteolyticus	DSM 30189	40
30	Xenorhabdus nematophilus	DSM 3370	40
	Yersinia enterocolitica	DSM 4780	40
	Andere bakterielle Arten		
\	Pseudomonas aeruginosa	DSM 1128 (ATCC 9027)	40
35	Bacillus subtilis	,	40
55	Salmonella typhimurium	ATCC 13311	40
	Pseudomonas mirabelis	DSM 788	40
	Staphylococcus aureus	DSM 6538P	40
	Streptococcus faecalis	DSM 2981	40
40	Klebsiella pneumonia	ATCC 10031	40
10	Citrobacter freundii	DSM 30040	40
	Eukaryonten		
	Neurospora crassa		40
45	Arabidopsis thaliana		40
75	Salmon (Sigma D9156)		40
	Mensch (Perkin Elmer ABD,	401846)	40
			40
	Wasser		40

Lediglich *Escherichia coli* Stämme ergaben ein positives Ergebnis im PCR-Schnelltest. Nach 16 PCR Zyklen (CT=16) war erstmals ein linearer Anstieg der Fluoreszenz meßbar, wenn 10 ng *Escherichia coli* DNS eingesetzt wurden. Der PCR Test war hochspezifisch. Auch ein nahe verwandte Enterobacteriaceaen-Art, *Enterobacter cloacae*, ergab kein Fluoreszenzsignal im PCR-Schnelltest (Tab.).

Als Positivkontrolle wurden dieselben bakteriellen DNS, die im *murA*-PCR-Test analysiert worden waren (Tab.) mit dem universellen 16S rRNA PCR System (s. Beispiel 19) untersucht. Alle bakteriellen DNS ergaben ein positives Signal mit dem 16S rRNA System. D. h. alle DNS ließen sich 16S rRNA-PCR-amplifizieren, aber lediglich die *Escherichia coli* DNS ließen sich *murA*-PCR-amplifizieren.

Das murA-System ist spezifisch für Escherichia coli.

Zusätzlich wurden die entstandenen PCR-Produkte elektrophoretisch analysiert (vgl. Bericht *Staphylococcus aureus*). Die PCR-Produkte hatten eine Größe von 142 Basenpaaren (ohne Abb.). Kontrollsequenzierungen der PCR-Produkte verifizierten, daß es sich um *murA* DNS handelte (ohne Abb.)

Beispiel 13 Sensitivität des *E. coli* Test

Um die Sensitivität des *Escherichia coli* PCR-Tests zu bestimmen, wurde genomische *Escherichia coli* DNS präpariert und in PCR-Experimenten eingesetzt (Abb. 4).

Verschiedene Mengen an *Escherichia coli* Genomkopien wurden in der Fluoreszenz-PCR eingesetzt (Abb. 4). Die gezeigten Daten stellen Mittelwerte und Standardabweichungen aus 4 unabhängigen Experimenten dar. Die Menge an freiwerdender Fluoreszenz und somit an entstehenden PCR-Produkten wird als CT angegeben. Die PCR Reaktion wurde über 40 Zyklen durchgeführt. Der CT-Wert der Wasserkontrolle (NTC = no template control) betrug 40.

Das Ergebnis zeigt, daß sich die DNS von 3 Bakterienzellen mittels Fluoreszenz-PCR nachweisen läßt. Der PCR-Schnelltest erlaubt eine lineare Quantifizierung der eingesetzten *Escherichia coli*-Genome über 6 log Stufen, d.

h. zwischen 3 und 3.000000 KBE.

35

10

15

20

25

Beispiel 14 Nachweis von *Salmonella ssp.* (Subspezies)

Der Nachweis von Salmonella spp. der Art Salmonella enterica erfolgte durch erfindungsgemäße spezifische Amplifikation von invA-Gensequenzen

Spezifische Bereiche des invA Gens dienten als diagnostisches Ziel für die Entwicklung eines PCR-Schnelltests zum Nachweis von Salmonella spp. Warum wurde dieses Gen als diagnostisches Ziel gewählt? Das invA Gen verschlüsselt einen Salmonella-spezifischen Virulenzfaktor. Verschiedene Untersuchungen an einer Reihe von Salmonellen haben gezeigt, daß diese Bakterienarten an Epithelzellen binden. Bei diesem Prozeß wird das Actin-System der Wirtszellen von den Bakterien beeinflußt. Als Reaktion umschließen die Wirtszellen die Bakterienzellen. Nach vollständigem Einschluß existieren die Zytoplasma der Wirtszellen. in Vesikeln im Bakterien Einschließungsprozeß (engl. invasion) sind die sogenannten inv Gene (invA-H) von Salmonella beteiligt. Mutanten in dem invA Gen binden noch an Wirtszellen, werden von diesen aber nicht mehr aufgenommen. Die inv Gensequenz Salmonella Subspezies stark konserviert erhalten (Salyers and Whitt 1994, Salmonella Infection, in: Bacterial Pathogenesis ASM Press, Washington D.C. p233). Das invA Gen von Salmonella wurde isoliert und die Nukleotidsequenz aufgeklärt (Galan and Curtis 1989, PNAS USA 86: 6383-7, Galan and Curtis 1991, Infection and Immunity 59: 2901-2908, und siehe: Rahn et al. 1992, Mol. Cell. Probes 6: 271-279). Da das invA Gen an der Expression eines spezifischen Virulenzmechanismus von Salmonellen beteiligt ist, stellt es einen genetischen Marker mit diagnostischer Potenz zur Identifizierung von Salmonella ssp. dar (Rahn et al. 1992, Mol. Cell. Probes. 6: 271-279).

Als Resultat von DNS-Sequenzdatenbank-Vergleichen und praktischer Optimierungsarbeiten, unter Verwendung verschiedener Primer- und Sondenkombinationen, wurden folgende *invA*-spezifische DNA-Sequenzen als optimale Primer- / Sonden Kombination bestimmt:

Forward Primer Sequence (# 269*):

5' GTG AAA TTA TCG CCA CGT TCG GGC 3' Sonde (# 333):

SEQ. ID. NO. 15

5'-FAM - CTT CTC TAT TGT CAC CGT GGT CCA - TAMRA 3' SEQ. ID. NO. 16

5

10

20

30

Reverse Primer Sequence (# 542):
5' GGT TCC TTT GAC GGT GCG ATG AAG 3'
(als reverse complement einsetzen)

SEQ. ID. NO. 17

* Positionen beziehen sich auf die in Boyd et al. 1996, Appl. Environ. Microbiol. 62: 804-808 publizierte DNA-Sequenz (Genbank: U43237).

Die Sonden wurden von der Firma PE Applied Biosystems Division, Weiterstadt, Deutschland hergestellt. Es handelt sich um einzelsträngige Oligonukleotide, die am 5' Ende mit einem Fluoreszenzderivat (FAM = 6-carboxyfluorescein) und am 3' Ende mit einem Rhodaminderivat (TAMRA = 6-carboxytetramethylrhodamine) modifiziert wurden. Synthese und Reinigung erfolgte entsprechend der Vorschriften von PE-Applied Biosystems.

Beispiel 15 PCR-Bedingungen für den Nachweis von Salmonellen

Nach Variation von Primer- und Sondenkonzentration, und MgCl₂ Konzentration ergaben such folgende Bedingungen als optimal:

Komponente	Volumen	Endkonzentration	Menge
	(µl)	(in 50 µl)	
DNA	5.00		1 fg - 100 ng
Bidest	11.25	5	
10 x TaqMan Puffe	er A 5.00	1 x	
25 mM MgCl2 Lösi	ung 7.00	3.5 mM	
dATP	2.00	200 µM	
dCTP	2.00	200 µM	
dGTP	2.00	200 µM	
dUTP	2.00	400 µM	
5' Primer # 269	5.00	·	15 pmol
Sonde # 333	3.00		6 pmol
3' Primer # 542	5.00		15 pmol
AmpliTaq Gold	0.25		1.25 units
AmpErase UNG	0.50		0.50 units
	50.00)	

40

35

5

10

15

20

Das PCR-Zyklenprofil für die Salmonella ssp. PCR:

Cycle	Temperatur	Zeit (min)	Wiederholung
	(□C)		
Hold	50	2:00	1
Hold	95	10:00	1
Cycle	95	0:15	40
	60	1:00	
Hold	25	5:00	

Für Details siehe Beispiel 3.

Beispiel 16

5

10

15

Selektivität des Salmonella ssp. PCR-Schnelltests

Um die Selektivität des PCR-Tests abzuschätzen, wurde genomische DNA aus verschiedenen Organismen isoliert und im Fluoreszenz-PCR Test eingesetzt. Die Menge an entstandenen PCR Produkten wurde als CT-Wert (Threshold Cycle) angegeben (CT- Definition s. Beispiel 4).

Liste der getesteten DNA-Isolate (je 10 ng genomische DNS analysiert)

	Organismus		Resultat (als CT-Wert)
20	Salmonella enterica		,
	Subspezies		
	Salmonella typhimurium	ATCC 13311	15
	Salmonella typhi		15
25	Salmonella agona		15
	Salmonella borismorbifica	ins	15
	Salmonella anatum		15
	Salmonella brandenburg		15
	Salmonella derby		15
30	Salmonella montevideo		15
	Salmonella newport		15
	Salmonella parathyphi B		15
	Salmonella pullorum		15
	Salmonella dublin		15
35	Salmonella enteritidis		15
	Salmonella hadar		15
	Salmonella infantis		15

Beispiel 17 Sensitivität des PCR-Schnelltests

Um die Sensitivität des Salmonella ssp. PCR-Tests zu bestimmen, wurde genomische Salmonella typhimurium DNS präpariert und in PCR-Experimenten eingesetzt (Abb. 5).

Verschiedene Mengen an Salmonella typhimurium Genomkopien wurden in der Fluoreszenz-PCR eingesetzt (Abb. 5). Die gezeigten Daten stellen Mittelwerte und Standardabweichungen aus 4 unabhängigen Experimenten dar. Die Menge an freiwerdender Fluoreszenz und somit an entstehenden PCR-Produkten wird als CT angegeben. Die PCR Reaktion wurde über 40 Zyklen durchgeführt. Der CT-Wert der Wasserkontrolle (NTC = no template control) betrug 40.

Das Ergebnis zeigt, daß sich die DNS von 3 Bakterienzellen mittels Fluoreszenz-PCR nachweisen läßt. Der PCR-Schnelltest erlaubt eine lineare Quantifizierung der eingesetzten Salmonella typhimurium Genome über 6 log Stufen, d. h. zwischen 3 und 3.000000 KBE.

10

15

20

25

DNA-Freisetzung ohne Voranreicherung in Nährmedien

DNS aus verschiedenen Testmikroorganismen wurde entsprechend Boom et al., 1990, extrahiert, von Proteinen und sonstigen PCR-Inhibitoren gereinigt (Quiagen Säulen Kit, 1995) und in PCR Amplifikationsexperimenten eingesetzt.

Beispiel 19

Nachweis von Bakterien universell

Der Nachweis von Bakterien erfolgte durch erfindungsgemäße spezifische Amplifikation von konservierten 16S rRNA Gensequenzen (SEQ. ID. NO. 5, siehe Beispiel 24). Bestimmte 16S rRNA-spezifische DNA-Sequenzen haben sich im Laufe der Evolution konserviert, sind deshalb im Genom aller Bakterien vorhanden und können als Primer und Sonden zum universellen Nachweis von Bakterien eingesetzt werden (Relman 1993, Weisburg et al.1991, J. Bacteriol. 173).

Als Resultat von DNS-Sequenzdatenbank-Vergleichen verschiedener Primerund Optimierungsarbeiten, unter Verwendung DNAwurden folgende **16S** rRNA-spezifische Sondenkombinationen, Sequenzen als optimales Primer-/SondenKombination bestimmt:

1. PCR Sonde

23 mer: 5'- FAM - TTA AGT CCC GCA ACG AGC GCA AC - TAMRA - 3' (Sonde 16S rRNA # 1090): SEQ. ID. NO. 19

5

Sonden wurden von der Firma PE Applied Biosystems Division, Weiterstadt, Deutschland hergestellt. Es handelt sich um einzelsträngige Oligonukleotide, die am 5' Ende mit einem Fluoreszenzderivat (FAM = 6-carboxyfluorescein) und am 3' Ende mit einem Rhodaminderivat (TAMRA = 6-carboxytetramethylrhodamine) modifiziert worden. Synthese und Reinigung erfolgte entsprechend der Vorschriften von PE-Applied Biosystems.

2. PCR Primer

15 19 mer: 5'- GCA TGG CTG TCG TCA GCT C - 3'

(Primer 16S rRNA forward # 1053*)

SEQ. ID. NO. 18

20 mer: 5'- TGA CGG GCG GTG TGT ACA AG - 3'

(Primer 16S rRNA reverse # 1386*)

SEQ. ID. NO. 20

20

* Positionen beziehen sich auf die DNS Sequenz des 16S rRNA Gens (E. coli in Weisburg et al.1991, J. Bacteriol. 173)

Synthese und Reinigung der PCR -Primer -Oligonukleotide erfolgte durch die Firma PE Applied Biosystems und nach deren Protokollen.

Beispiel 20

PCR Bedingungen für den Nachweis von Bakterien universell

Nach Variation von Primer- und Sondenkonzentration, und MgCl₂ Konzentration Temperatur und Zyklenprofil der PCR und Abstand des Reporterfarbstoffs zum Quencherfarbstoff innerhalb der Sonde ergaben sich folgende Bedingungen als optimal:

Folgende Komponenten wurden in einem PCR Reaktionsgefäß (PE Applied Biosystems Best. No. N8010580) gemischt.:

30

51541 - TaqMan 5.5.1998 07.05.98

38

	Komponente	Volumen (μΙ)	Endkonzentration (in 50 μl)	Meng	e
5	DNA Bidest Wasser 10 x TaqMan Puffer A	1.00 17.25 5.00	1 x	1 fg -	100 ng
10	25 mM MgCl ₂ Lösung dATP dCTP dGTP dUTP	11.00 1.00 1.00 1.00 1.00	5.5 mM 200 µM 200 µM 200 µM 400 µM		
15	5' Primer #1053 Sonde#1090 3' Primer #1386 AmpliTaq AmpErase UNG	5.00 1.00 5.00 0.25 0.50	400 nM 40 nM 400 nM	20 2 20 1.25 u 0.50	
	•	50.00			

Für eine optimale Reproduzierbarkeit der Ergebnisse ist darauf zu achten, daß bei jedem PCR-Lauf möglichst viele Komponenten des PCR-Mixes in einem sogenannten Mastermix vorgemischt werden. Unter Standardbedingungen wird nur das zu untersuchende DNA-Material (0-15.25 μl) als Komponente in jedes PCR Reaktionsgefäß separat zugeben.

Das PCR-Zyklusprofil ist wie folgt:

25

Cycle	Temperatur (□C)	Zeit (min)	Wiederholung	
Hold	50	2:00	1	
Hold	95	10:00	1	
Cycle	95	0:15	40	
Cycle	60	1:00		
Hold	25	5:00		

Dieses Schema ist kompatibel für PCR-Geräte mit Heizblock, wie z.B.:

GeneAMP PCR Geräte 2400 und 9600 und das ABI Prism 7700 Sequence Detection System von Perkin Elmer. Für Details siehe Beispiel 3.

Nach Abschluß der PCR Reaktionen wurden die Proben in das Fluorimeter LS-50B, mit Zusatz zur Detektion von Fluoreszenz in Mikrotiterplatten der Firma Perkin Elmer transferiert. Messung und Quantifizierung der Fluoreszenzstrahlung erfolgt nach Angaben des Herstellers (PE Applied Biosystems, Weiterstadt, Germany).

10 Beispiel 21

15

20

30

35

Selektivität des universellen bakteriellen PCR-Schnelltests

Um die Selektivität des PCR-Tests abzuschätzen, wurde genomische DNA von verschiedenen Organismen isoliert und in dem universellen PCR-Test eingesetzt (Abb. 6). Die Menge an entstandenen PCR-Produkten wird in relativen Fluoreszenzeinheiten angegeben (Abb. 6)

Der entwickelte PCR Test detektiert selektiv Bakterien.

Die unterschiedlichen Signalintensitäten der bakteriellen Proben reflektierten die eingesetzten variablen DNA-Mengen.

Die entstandenen PCR-Produkte wurden elektrophoretisch analysiert. Die PCR Produkte hatten eine Größe von 330 Basenpaaren (ohne Abb.). Kontrollsequenzierungen dieser PCR-Produkte ergaben, daß es sich tatsächlich um 16S rRNA handelte (ohne Abb.). Der PCR-Schnelltest ist 16S rRNA-spezifisch.

Beispiel 22

Sensitivität und Linearität des Schnelltests zum Nachweis von Bakterien

Um die Sensitivität des PCR Tests zu bestimmen, wurde *Salmonella* DNS präpariert und in PCR-Experimenten eingesetzt. Es wurden verschiedene Verdünnungen der DNS hergestellt. Jede Verdünnung wurde dreifach parallel hergestellt und in dem PCR-Test eingesetzt (Abb. 7). Die Menge an freiwerdender Fluoreszenz wird als sogenannter RQ Wert angegeben.

Der RQ Wert ist die Differenz zwischen der Reporter-(R) Fluoreszenzstrahlung in einer PCR Reaktion, in der Template DNS (hier genomische Salmonella DNS) eingesetzt wurde (R⁺) und der Reporter-Fluoreszenzstrahlung, in einer

PCR-Reaktion, in der keine DNS eingesetzt wurde (R⁻). R⁻ entspricht also der Hintergrundsstrahlung. Die Reporter-Strahlung (R) wird jeweils zur Quencher-Stahlung (Q) ins Verhältnis gesetzt. Die Quencher-Strahlung ändert sich während der PCR-Reaktion nicht und stellt somit einen internen Standard dar, gegen den normiert wird.

Das Ergebnis zeigt, daß sich die DNS von 1-3 Salmonella Bakterien mittels Fluoreszenz-PCR nachweisen ließ. Die Fluoreszenzstrahlung, die nach 40 PCR Zyklen entsteht, liegt signifikant über der Hintergrundstrahlung.

Der Fluoreszenz-PCR-Test erlaubt die lineare Quantifizierung der eingesetzten Salmonella Genome über mindestens 4 log Stufen d. h. zwischen 1-3 und 30.000 KBE (Abb. 7).

15

20

Beispiel 23

Produktprüfung mit dem bakteriellen Schnelltest

Die Anwendung des entwickelten PCR-Schnelltests wurde durch *spiking* Experimente untersucht. 10 ml WFI (Wasser für Injektionszwecke, Chargen Nr. 63022) wurden mit 50 KBE Salmonellen gespikt (5 KBE/ml). DNS wurde aus den verschiedenen, gespikten Proben präpariert (Boom et al. 1990), gereinigt (Qiagen 1995) und im PCR-Schnelltest analysiert (Abb. 8).

Die gespikten Salmonellen ließen sich im Prüfprodukt nachweisen. Die Nachweismenge betrug 90% der eingesetzten DNA-Menge (Abb. 8). Dieser Wert reflektiert die Materialverluste, die bei der DNS Präparation aus den gespikten Produkten auftreten. Trotz dieser Verluste ließen sich 1-3 KBE/ml in dem gespikten Prüfprodukt nachweisen. Auf der anderen Seite waren im nichtgespikten Prüfprodukts keine Salmonella Keime detektierbar (Abb. 8). Die Sterilität des Prüfprodukts wurde durch Membranfiltration entsprechend der Methoden in der EP (1997) nachgewiesen.

30

Beispiel 24

Target-Gen-, Primer- und Sondensequenzen für die verschiedenen

5 Organismen / -gruppen

SEQ. ID. NO. 1

Staphylococcus aureus

5'

10

AGATGCACGT ACTGCTGAAA TGAGTAAGCT AATGGAAAAC ACATATAGAG
ACGTGAATAT TGCTTTAGCT AATGAATTAA CAAAAATTTG CAATAACTTA
AATATTAATG TATTAGTTGT GATTGAAATG GCAAACAAAC ATCCGCGTGT
TAATATCCAT CAACCTGGTC CAGGAGTAGG CGGTCATTGT TTAGCTGTTG
ATCCGTACTT TATT 3' (Primer und Sondensequenzen sind

unterstrichen)

5 **SEQ. ID. NO. 6**

5' AGATGCACGT ACTGCTGAAA TGAG 3'

SEQ. ID. NO. 7

5'- TAMRA - CCTGGTCCAG GAGTAGGCGG - FAM -3'

(als reverse complement einsetzen)

SEQ. ID. NO. 8

5' GTTTAGCTGT TGATCCGTAC TTTATT 3'

(als reverse complement einsetzen)

SEQ. ID. NO. 2

Pseudomonas aeruginosa

25 5'

 CACCGAATCC GCGCTGAACT TCAACGACCG CTGCGACAAC GGCGATTGCC
GTGAAGGAGC CTGCCTCATC GCGGAGCTGA AGGTCCTGCG GCAACAGTTG
CACGAACGCT 3' (Primer und Sondensequenzen sind

unterstrichen)

SEQ. ID. NO. 9

5' CTTCGATGCC CTGAGCGGTA TTC 3'

SEQ. ID. NO. 10

5' - FAM - CCAACGCCGA AGAACTCCAG CATTTC - TAMRA - 3'

SEQ. ID. NO. 11

5' CTGAAGGTCC TGCGGCAACA GTT 3' (als reverse complement einsetzen)

SEQ. ID. NO. 3

Escherichia coli

5'

AAAGTAGAAC GTAATG<u>GTTC TGTGCATATT GATGCCCGCG</u> ACGTTAATGT
AT<u>TCTGCGCA CCTTACGATC TGGTT</u>AAAAC CATGCGTGCT TCTATCTGGG
CGCTGGGGCC GCTGGTAGCG CGCTTTGGTC AGGG<u>GCAAGT</u>
TTCACTACCT

20

GGCGGTTGTA CGATCGGTGC GCGTCCGGTT GATCTACACA

TTTCTGGCCT

CGAACAATTA GGCGCGACCA TC 3' (Primer und Sondensequenzen sind unterstrichen)

SEQ. ID. NO. 12

5' GTTC TGTGCATATT GATGCCCGCG 3'

25 **SEQ. ID. NO. 13**

5' - FAM - TCTGCGCACC TTACGATCTG GTT - TAMRA - 3'

SEQ. ID. NO. 14

5' GCAAGT TTCACTACCT GGCGGTTG 3

(als reverse complement einsetzen)

SEQ. ID. NO. 4 Salmonella ssp.

5'

5 TGATTGAAGC CGATGCCGGT GAAATTATCG CCACGTTCGG
GCAATTCGTT

ATTGGCGATA GCCTGGCGGT GGGTTTTGTT GT<u>CTTCTCTA TTGTCACCGT</u>

<u>GGTCCA</u>GTTT ATCGTTATTA CCAAAGGTTC AGAACGTGTC

GCGGAAGTCG

10

CGGCCCGATT TTCTCTGGAT GGTATGCCCG GTAAACAGAT

GAGTATTGAT

GCCGATTTGA AGGCCGGTAT TATTGATGCG GATGCCGCGC

GCGAACGGCG

AAGCGTACTG GAAAGGGAAA GCCAGCTTTA CGGTTCCTTT

15 GACGGTGCGA

TGAAGTTTAT 3' (Primer und Sondensequenzen sind unterstrichen)

SEQ. ID. NO. 15

5' GTGAAATTAT CGCCACGTTC GGGC 3'

SEQ. ID. NO. 16

5' - FAM - CTTCTCTATT GTCACCGTGG TCCA - TAMRA - 3'

SEQ. ID. NO. 17

5' GGTTCCTTTG ACGGTGCGAT GAAG 3' (als reverse complement einsetzen)

SEQ. ID. NO. 5 Bakterien

25 **5'**

GCATGGCTGT CGTCAGCTCG TGTTGTGAAA TGTTGGG<u>TTA</u>
AGTCCCGCAA

CGAGCGCAAC CCTTATCCTT TGTTGCCAGC GGTCCGGCCG

GGAACTCAAA

GGAGACTGCC AGTGATAAAC TGGAGGAAGG TGGGGATGAC

GTCAAGTCAT

5 CATGGCCCTT ACGACCAGGG CTACACACGT GCTACAATGG

CGCATACAAA

GAGAAGCGAC CTCGCGAGAG CAAGCGGACC TCATAAAGTG

CGTCGTAGTC

CGGATTGGAG TCTGCAACTC GACTCCATGA AGTCGGAATC

GCTAGTAATC

GTGGATCAGA ATGCCACGGT GAATACGTTC CCGGGCCTTG

TACACACCGC

CCGTCA 3' (Primer und Sondensequenzen sind unterstrichen)

(am Beispiel E. coli, Weisburg et al. 1991, J. Bakteriol. 173:

15 598.)

SEQ. ID. NO. 18

5' GCATGGCTGT CGTCAGCTC 3'

SEQ. ID. NO. 19

5' - FAM - TTAAGTCCCG CAACGAGCGC AAC - TAMRA - 3'

SEQ. ID. NO. 20

5' CTTGTACACA CCGCCCGTCA 3'

(als reverse complement einsetzen)

Beispiel 25

25

Varianten in den Primer- und Sondensequenzen. Als Varianten werden die Primer- / Sondensequenzkombinationen definiert, die die Target-DNA-Sequenzen mit gleicher Spezifität (100%) und vergleichbarer Sensitivität (>70%) detektieren, wie die in Beispiel 24 angegebenen Sequenzen.

Forward Primer

60

Sonde

Reverse Primer

Staphylococcus aureus (PCR-Bedingungen wie in Beispiel 3) 5 SEQ. ID. NO 6 AGATGCACGT ACTGCTGAAA TGAG/TAMRA-CCTGGTCCAG GAGTAGGCGG-FAM / GTTTAGCTGT TGATCCGTAC TTTATT SEQ. ID. NO 23 AGATGCACGT ACTGCTGAAA TGAG /TAMRA-CCTGGTCCAG GAGTAGGCGG-FAM / CATTGTTTAGCTGT TGATCCGTAC T 10 GCACGT ACTGCTGAAA TGAGTAAG/TAMRA-CCTGGTCCAG GAGTAGGCGG-FAM / GTTTAGCTGT TGATCCGTAC TTTATT **Pseudomonas aeruginosa** (PCR-Bedingungen wie in Beispiel 7) 15 SEO. ID. NO CTTCGATGCC CTGAGCGGTA TTC/FAM-CCAACGCCGA AGAACTCCAG CATTTC-TAMRA/CTGAAGGTCC TGCGGCAACA SEO. ID. NO 11 10 20 CAGGCCTTCG ATGCCCTGA GC /FAM-CCAACGCCGA AGAACTCCAG CATTTC-TAMRA/CTGAAGGTCC TGCGGCAACA GTT CTTCGATGCC CTGAGCGGTA TTC/FAM-CCAACGCCGA AGAACTCCAG CATTTC-TAMRA/GCTGAAGGTCC TGCGGCAACA G 25 Escherichia coli (PCR-Bedingungen wie in Beispiel 11) SEO. ID. NO 12 GTTCTGTGCA TATTGATGCC CGCG/FAM-TCTGCGCACC TTACGATCTG GTT-TAMRA/GCAAGTTTCA CTACCTGGCG GTTG 30 SEO, ID, NO 27 13 TAGAACGTAA TGGTTCTGTGC AT/FAM-TCTGCGCACC TTACGATCTG GTT-TAMRA /GCAAGTTTCA CTACCTGGCG GTTG 13 GTTCTGTGCA TATTGATGCC CGCG /FAM-TCTGCGCACC TTACGATCTG GTT-TAMRA/CTGGCCTCGA ACAATTAGGC GCG 35 TAGAACGTAA TGGTTCTGTGC AT/ FAM-TCTGCGCACC TTACGATCTG GTT-TAMRA /CTGGCCTCGA ACAATTAGGC GCG Salmonella ssp (PCR-Bedingungen wie in Beispiel 15) 40 GTGAAATTAT CGCCACGTTC GGGC/FAM-CTTCTCTATTGTCACCGTGG TCCA-TAMRA/GGTTCCTTTG ACGGTGCGAT GAAG SEQ. ID. NO GTGAAATTAT CGCCACGTTC GGGC / FAM-TT(T/C)GTTATTGGCGATAGCCTGGC-TAMRA /GGTTCCTTTG ACGGTGCGAT GAAG SEQ. ID. NO 1 1.5 22 GTGAAATTAT CGCCACGTTC GGGC/TAMRA-TTCTCTGGATGGTATGCCCGGTA-FAM /GGTTCCTTTG ACGGTGCGAT GAAG 50 Bakterien (PCR-Bedingungen wie in Beispiel 20) SEQ. ID. NO 18 20 GCATGGCTGT CGTCAGCTC / FAM-TTAAGTCCCG CAACGAGCGC AAC-TAMRA / CTTGTACACA CCGCCCGTCA 55 SEQ. ID. NO TGCATGGCTGT CGTCAGCTC / FAM-TTAAGTCCCG CAACGAGCGC AAC-TAMRA / CTTGTACACA CCGCCCGTCA SEO, ID. NO 30 GCATGGCTGT CGTCAGCTC / FAM-TTGGGTTAAGTCCCG CAACGAGC-TAMRA / CTTGTACACA CCGCCCGTCA

Beispiel 26

5

Fehlvarianten in den Primer- und Sondensequenzen. Als Fehlvarianten werden die Primer- / Sondenkombinationen definiert, die die Target-DNA-Sequenzen mit nicht zufriedenstellender Spezifität (<100%) und Sensitivität (<70%) detektieren, wie die in Beispiel 24 angegebenen Sequenzen.

10 vgl. Figur mit Primern und Sonden

15

25

30

40

45

Forward Primer Sonde

Reverse Primer

Staphylococcus aureus (PCR-Bedingungen wie in Beispiel 3)

SEQ. ID. NO 31

ATGCACGTAC TGCTGAAATG AG / FAM-AACACATATA GAGACGTGAA TATTGC- TAMRA / GTTTAGCTGT
TGATCCGTAC TT

SEQ. ID. NO 6 32 23
AGATGCACGT ACTGCTGAAA TGAG /FAM-AACACATATA GAGACGTGAA TATTGC-TAMRA/CATTGTTTAGCTGT
GATCCGTAC T

SEQ. ID. NO 24 8
GCACGT ACTGCTGAAA TGAGTAAG/FAM-AACACATATA GAGACGTGAA TATTGC-TAMRA/GTTTAGCTGT TGATCCGTAC
TTTATT

Pseudomonas aeruginosa (PCR-Bedingungen wie in Beispiel 7)
SEQ. ID. NO 9 34 11
CTTCGATGCC CTGAGCGGTA TTC/FAM - CAATTGCTGC TGGACTATGT ATCTG- TAMRA/CTGAAGGTCC TGCGGCAACA
GTT

35

SEQ. ID. NO 35 34 11 CAACGCCGA AGAACTCCAG CATTC/FAM-CAATTGCTGC TGGACTATGT ATCTG-TAMRA/CTGAAGGTCC TGCGGCAACA GTT

SEQ. ID. NO 9 36 26 CTTCGATGCC CTGAGCGGTA TTC/FAM-AACGCCGA AGAACTCCAG CATTTCTGC-TAMRA/ GCTGAAGGTCC TGCGGCAACA G

SEQ. ID. NO 9 36 11 CTTCGATGCC CTGAGCGGTA TTC/FAM-AACGCCGA AGAACTCCAG CATTTCTGC-TAMRA/CTGAAGGTCC TGCGGCAACA GTT

Escherichia coli (PCR-Bedingungen wie in Beispiel 11)

SEQ. ID. NO 12
GTTCTGTGCA TATTGATGCC CGCG / FAM-TCTGCGCACC TTACGATCTG GTT-TAMRA / CATTTCTGGC CTCGAACAAT

TA
SEQ. ID. NO 27
TAGAACGTAA TGGTTCTGTGC AT/FAM-CCGCTGGTAG CGCG(T/C)TTTGG TCA-TAMRA/GCAAGTTTCA CTACCTGGCG
GTTG
SEQ. ID. NO 12
38

55 GTTCTGTGCA TATTGATGCC CGCG/FAM-CCGCTGGTAG CGCG(T/C)TTTGG TCA-TAMRA/CATTTCTGGC CTCGAACAAT TA

	SEQ. ID. NO 39	13 GGG / FAM-TCTGCGCACC TTACGATCTG GTT-	28			
	GCG TARGULAGU	ddd / fair fefdeddaec ffaedafefd gff-	TANKA / CIGGOCICON NO.E.T.M.CCC			
_	SEQ. ID. NO 39	38	28			
5	GCG	GGG/FAM-CCGCTGGTAG CGCG(T/C)TTTGG TC				
	SEQ. ID. NO 39	38	37			
	TA	GGG/FAM-CCGCTGGTAG CGCG(T/C)TTTGG TC	A-TAMRA/ CATTTCTGGC CTCGAACAAT			
10	SEQ. ID. NO 39	38	14			
- •		GGG/FAM-CCGCTGGTAG CGCG(T/C)TTTGG TC	A-TAMRA/GCAAGTTTCA CTACCTGGCG			
	Salmonella ssp. (I	PCR-Bedingungen wie in Beispiel	15)			
15	SEO. ID. NO 40	16	17			
		ATTAT/FAM-CTTCTCTATTGTCACCGTGG TCCA-	TAMRA/GGTTCCTTTG ACGGTGCGAT			
	SEQ. ID. NO 40	21	17			
20		ATTAT/FAM-TT(T/C)GTTATTGGCGATAGCCTGG	C-TAMRA/GGTTCCTTTG ACGGTGCGAT			
20	GAAG SEO. ID. NO 40	22	17			
	-	ATTAT/TAMRA-TTCTCTGGATGGTATGCCCGGTA-	- ·			
	110.11.00001. 1000001011.	minity make Trotorous Commodes Court	THE AUTHORITIES HOSDINGSHI GARA			
2.5	SEQ. ID. NO 40	41	17			
25	TTGAAGCCGA TGCCGGTGAA ATTAT/FAM-TTTGTTGTCT TCTCTATTGT CACC-TAMRA/GGTTCCTTTG ACGGTGCGAT GAAG					
	SEQ. ID. NO 15	41	17			
	GAAG CGCCACGTTC	GGGC/FAM-TTTGTTGTCT TCTCTATTGT CACC-	ramra/GGTTCCTTTG ACGGTGCGAT			
30						
	Bakterien (PCR-E	sedingungen wie in Beispiel 20)				
	SEQ. ID. NO 18	19	42			
	GCATGGCTGT CGTCAGCTC	/ FAM-TTAAGTCCCG CAACGAGCGC AAC-TAMRA	/ AAGTCGTAAC AAGGTAACCA			
35	SEO. ID. NO 29	19	42			
33		/ FAM - TTAAGTCCCG CAACGAGCGC AAC -				
	SEQ. ID. NO 43	30	20			
	_	C / FAM - TTGGGTTAAGTCCCG CAACGAGC -				
40						
	SEQ. ID. NO 43 GGATTAGATA CCCTGGTAGT	30 C / FAM - TTGGGTTAAGTCCCG CAACGAGC -	42 TAMRA / AAGTCGTAAC AAGGTAACCA			

ALLGEMEINE ANGABEN (1)

(i) ANMELDER:

(A) SCHERING AKTIENGESELLSCHAFT NAME:

MÜLLERSTRASSE 178 (B) STRASSE:

(C) ORT: **13353 BERLIN**

(E) **DEUTSCHLAND** LAND:

(F) POSTLEITZAHL: 13353

BEZEICHNUNG DER ERFINDUNG: Verfahren zur Detektion von (ii)

Mikroorganismen in Produkten, insbesondere in

Arzneimitteln und Kosmetika 10

(iii) **ANZAHL DER SEQUENZEN:** 43 Sequenzprotokolle

COMPUTERLESBARE FASSUNG (iv)

(A) DATENTREÄGER: DISKETTE

(B) COMPUTER: **486/INTEL**

(C) BETRIEBSSYSTEM: **WINDOWS**

(D) SOFTWARE: WINWORD;

DATEN DER JETZIGEN ANMELDUNG: (v)

(2) ANGABEN ZU SEQ ID NO: 1: 20

15

35

SEQUENZKENNZEICHEN (i)

SEQUENZLÄNGE: 214 Nukleotide ART DER SEQUENZ: Nukleotidsequenz

Einzelstrangform STRANGFORM:

TOPOLOGIE: linear HYPOTHETISCH: nein

ANTISENS: nein ART DES MOLEKÜLS: Primer-Sonde-Primer

URSPRÜNGLICHE HERKUNFT: Staphylococcus aureus

Primer-Sonde-Primer für Staphylococcus aureus

SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

AGATGCACGT ACTGCTGAAA TGAGTAAGCT AATGGAAAAC 040 080 ACATATAGAG ACGTGAATAT TGCTTTAGCT AATGAATTAA CAAAAATTTG CAATAACTTA AATATTAATG TATTAGTTGT 120 GATTGAAATG GCAAACAAAC ATCCGCGTGT TAATATCCAT 160 CAACCTGGTC CAGGAGTAGG CGGTCATTGT TTAGCTGTTG 200 ATCCGTACTT TATT 214

ANGABEN ZU SEQ ID NO: 2: (2)

SEQUENZKENNZEICHEN 40 (i)

SEQUENZLÄNGE:

310 Nukleotide ART DER SEQUENZ: Nukleotidsequenz

Einzelstrangform STRANGFORM:

TOPOLOGIE: linear

50

HYPOTHETISCH: nein ANTISENS: nein ART DES MOLEKÜLS: Primer-Sonde-Primer URSPRÜNGLICHE HERKUNFT: Staphylococcus aureus Primer-Sonde-Primer für Pseudomonas aeruginosa 5 SEQUENZBESCHREIBUNG: SEQ ID NO: 2: CAGGCCTTCG ATGCCCTGAG CGGTATTCAG GCACCGGCGC 040 CCAACGCCGA AGAACTCCAG CATTTCTGCC AATTGCTGCT 080 GGACTATGTA TCTGCCGGAC ACTTCGAGGT CTACGAGCAA 120 CTGACGGCGG AAGGCAAGGC CTTCGGCGAT CAGCGCGGCC 10 160 TGGAGCTGGC CAAGCAGATC TTCCCCCGGC TGGAAGCCAT 200 CACCGAATCC GCGCTGAACT TCAACGACCG CTGCGACAAC 240 GGCGATTGCC GTGAAGGAGC CTGCCTCATC GCGGAGCTGA 280 AGGTCCTGCG GCAACAGTTG CACGAACGCT 310 15 ANGABEN ZU SEQ ID NO: 3: (2) SEQUENZKENNZEICHEN (i) SEQUENZLÂNGE: 222 Nukleotide ART DER SEQUENZ: Nukleotidsequenz STRANGFORM: Einzelstrangform 20 TOPOLOGIE: linear HYPOTHETISCH: nein ANTISENS: nein ART DES MOLEKÜLS: Primer-Sonde-Primer URSPRÜNGLICHE HERKUNFT: Staphylococcus aureus 25 MERKMAL: Primer-Sonde-Primer für Escherichia coli SEQUENZBESCHREIBUNG: SEQ ID NO: 3: AAAGTAGAAC GTAATGGTTC TGTGCATATT GATGCCCGCG 040 ACGTTAATGT ATTCTGCGCA CCTTACGATC TGGTTAAAAC 080 CATGCGTGCT TCTATCTGGG CGCTGGGGCC GCTGGTAGCG 120 CGCTTTGGTC AGGGGCAAGT TTCACTACCT GGCGGTTGTA 160 CGATCGGTGC GCGTCCGGTT GATCTACACA TTTCTGGCCT 200 CGAACAATTA GGCGCGACCA TC 222 (2) ANGABEN ZU SEQ ID NO: 4: **SEQUENZKENNZEICHEN** (i) SEQUENZLÄNGE: 310 Nukleotide ART DER SEQUENZ: Nukleotidsequenz STRANGFORM: Einzelstrangform **TOPOLOGIE:** 40 linear HYPOTHETISCH: nein ANTISENS: nein ART DES MOLEKÜLS: Primer-Sonde-Primer URSPRÜNGLICHE HERKUNFT: Salmonella ssp. MERKMAL: 45 Primer-Sonde-Primer für Salmonella ssp. SEQUENZBESCHREIBUNG: SEQ ID NO: 4: TGATTGAAGC CGATGCCGGT GAAATTATCG CCACGTTCGG 040 GCAATTCGTT ATTGGCGATA GCCTGGCGGT GGGTTTTGTT 080 GTCTTCTCTA TTGTCACCGT GGTCCAGTTT ATCGTTATTA 120

CCAAAGGTTC AGAACGTGTC GCGGAAGTCG CGGCCCGATT 160

5

10

15

20

25

30

40

ART DES MOLEKÜLS:

TTCTCTGGAT GGTATGCCCG GTAAACAGAT GAGTATTGAT GCCGATTTGA AGGCCGGTAT TATTGATGCG GATGCCGCGC GCGAACGGCG AAGCGTACTG GAAAGGGAAA GCCAGCTTTA 280 CGGTTCCTTT GACGGTGCGA TGAAGTTTAT 310 ANGABEN ZU SEQ ID NO: 5: (2) SEQUENZKENNZEICHEN (i) SEQUENZLÄNGE: 356 Nukleotide ART DER SEQUENZ: Nukleotidsequenz STRANGFORM: Einzelstrangform TOPOLOGIE: linear HYPOTHETISCH: nein ANTISENS: nein ART DES MOLEKÜLS: Primer-Sonde-Primer URSPRÜNGLICHE HERKUNFT: Bakterien Primer-Sonde-Primer für Bakterien MERKMAL: SEQUENZBESCHREIBUNG: SEQ ID NO: 5: GCATGGCTGT CGTCAGCTCG TGTTGTGAAA TGTTGGGTTA 040 AGTCCCGCAA CGAGCGCAAC CCTTATCCTT TGTTGCCAGC 080 GGTCCGGCCG GGAACTCAAA GGAGACTGCC AGTGATAAAC TGGAGGAAGG TGGGGATGAC GTCAAGTCAT CATGGCCCTT 160 ACGACCAGGG CTACACACGT GCTACAATGG CGCATACAAA 200 GAGAAGCGAC CTCGCGAGAG CAAGCGGACC TCATAAAGTG 240 CGTCGTAGTC CGGATTGGAG TCTGCAACTC GACTCCATGA 280 AGTCGGAATC GCTAGTAATC GTGGATCAGA ATGCCACGGT 320 GAATACGTTC CCGGGCCTTG TACACACCGC CCGTCA ANGABEN ZU SEQ ID NO: 6: (2) SEQUENZKENNZEICHEN SEQUENZLÄNGE: 24 Nukleotide ART DER SEQUENZ: Nukleotidsequenz STRANGFORM: Einzelstrangform TOPOLOGIE: linear HYPOTHETISCH: nein ANTISENS: nein ART DES MOLEKÜLS: Primer cap-8 forward # 15297*) MERKMAL: Primer cap-8 forward # 15297*) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: AGATGCACGT ACTGCTGAAA TGAG 024 (2)ANGABEN ZU SEQ ID NO: 7: SEQUENZKENNZEICHEN SEQUENZLÄNGE: 20 Nukleotide ART DER SEQUENZ: Nukleotidsequenz STRANGFORM: Einzelstrangform TOPOLOGIE: linear HYPOTHETISCH: nein ANTISENS: nein

Sonde cap-8 # 15460*

MERKMAL:

Sonde cap-8 # 15460*, als reverse complement

eingesetzt, TAMRA vor und FAM nach der Sequenz

SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

CCTGGTCCAG GAGTAGGCGG

020

(2) ANGABEN ZU SEQ ID NO: 8:

(i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

26 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

10 STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH: ANTISENS:

nein nein

ART DES MOLEKÜLS:

Primer cap-8 reverse # 15485

15 MERKMAL:

Primer cap-8 reverse # 15485* als reverse

complement eingesetzt

SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

GTTTAGCTGT TGATCCGTAC TTTATT

026

20

5

(2) ANGABEN ZU SEQ ID NO: 9:

(i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

23 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz Einzelstrangform

25 STRANGFORM: TOPOLOGIE:

linear

HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Primer algQ forward # 876*

MERKMAL:

Primer algQ forward # 876*

SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

CTTCGATGCC CTGAGCGGTA TTC

023

(2) ANGABEN ZU SEQ ID NO: 10:

(i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

26 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz Einzelstrangform

STRANGFORM: TOPOLOGIE:

linear

40 HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Sonde algQ # 911

MERKMAL:

Sonde algQ # 911, FAM vor und TAMRA nach der

Sequenz

45 SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

CCAACGCCGA AGAACTCCAG CATTTC

026

(2) ANGABEN ZU SEQ ID NO: 11:

(i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

ART DER SEQUENZ:

23 Nukleotide

STRANGFORM:

Nukleotidsequenz Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Reverse Primer Sequence (# 1147):

MERKMAL:

Primer algQ reverse # 1147* als reverse complement

eingesetzt

SEQUENZBESCHREIBUNG: SEQ ID NO: 11: 10

CTGAAGGTCC TGCGGCAACA GTT

023

(2)ANGABEN ZU SEQ ID NO: 12:

SEQUENZKENNZEICHEN (i) SEQUENZLÄNGE:

24 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH:

nein

ANTISENS: 20

nein

ART DES MOLEKÜLS:

Forward Primer Sequence (# 767*):

MERKMAL:

Forward Primer Sequence (# 767*):

SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

GTTCTGTGCA TATTGATGCC CGCG

024

25

15

ANGABEN ZU SEQ ID NO: 13: (2)

SEQUENZKENNZEICHEN (i)

23 Nukleotide

SEQUENZLÄNGE: ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Sonde (# 802) Sonde (# 802), FAM vor und RAMARA nach der

MERKMAL: Sequenz

SEQUENZBESCHREIBUNG: SEQ ID NO: 13:

TCTGCGCACC TTACGATCTG GTT

(2) ANGABEN ZU SEQ ID NO: 14: 40

> SEQUENZKENNZEICHEN (i)

SEQUENZLÄNGE:

24 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE: 45

linear

HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Reverse Primer Sequence (# 884)

MERKMAL:

Reverse Primer Sequence (# 884)als reverse

complement eingesetzt

SEQUENZBESCHREIBUNG: SEQ ID NO: 14:

GCAAGTTTCA CTACCTGGCG GTTG

024

5

(2) ANGABEN ZU SEQ ID NO: 15:

SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

24 Nukleotide

10 ART DER SEQUENZ: Nukleotidsequenz Einzelstrangform

STRANGFORM: TOPOLOGIE:

linear

HYPOTHETISCH:

nein nein

ART DES MOLEKÜLS: 15

ANTISENS:

Forward Primer Sequence (# 269*) Forward Primer Sequence (# 269*)

MERKMAL: SEQUENZBESCHREIBUNG: SEQ ID NO: 15:

GTGAAATTAT CGCCACGTTC GGGC

024

20

(2) ANGABEN ZU SEQ ID NO: 16:

SEQUENZKENNZEICHEN (i) SEQUENZLÄNGE:

24 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE: 25

linear

HYPOTHETISCH:

nein nein

ANTISENS: ART DES MOLEKÜLS:

Sonde (# 333)

MERKMAL:

Sonde (# 333), FAM vor und TAMARA nach der

Sequenz

SEQUENZBESCHREIBUNG: SEQ ID NO: 16:

CTTCTCTATT GTCACCGTGG TCCA

024

30

(2) ANGABEN ZU SEQ ID NO: 17:

(i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

24 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH: 40

nein nein

ANTISENS: ART DES MOLEKÜLS:

Reverse Primer Sequence (# 542)

MERKMAL:

Reverse Primer Sequence (# 542) als reverse

complement eingesetzt

SEQUENZBESCHREIBUNG: SEQ ID NO: 17: 45

GGTTCCTTTG ACGGTGCGAT GAAG

024

(2)ANGABEN ZU SEQ ID NO: 18:

SEQUENZKENNZEICHEN (i)

54

SEQUENZLÄNGE:

19 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz Einzelstrangform

STRANGFORM: TOPOLOGIE:

linear

5 HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Primer 16S rRNA forward # 1053* Primer 16S rRNA forward # 1053*

MERKMAL:

Filliel 103 IKNA lolward # 103

SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

10 GCATGGCTGT CGTCAGCTC

019

(2) ANGABEN ZU SEQ ID NO: 19:

(i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

23 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH:

nein

ANTISENS:
20 ART DES MOLEKÜLS:

nein Sonde 16S rRNA # 1090

MERKMAL:

Sonde 16S rRNA # 1090, FAM vor und TAMARA

nach der Sequenz

SEQUENZBESCHREIBUNG: SEQ ID NO: 19:

TTAAGTCCCG CAACGAGCGC AAC

023

25

30

35

40

(2) ANGABEN ZU SEQ ID NO: 20:

(i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

20 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM: TOPOLOGIE:

Einzelstrangform linear

HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Primer 16S rRNA reverse # 1386*

MERKMAL:

Primer 16S rRNA reverse # 1386*

SEQUENZBESCHREIBUNG: SEQ ID NO: 20:

TGACGGCGG TGTGTACAAG

020

(2) ANGABEN ZU SEQ ID NO: 21:

(i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE: 23 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear

45 HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Sonde

MERKMAL:

Sonde von Salmonella ssp

SEQUENZBESCHREIBUNG: SEQ ID NO: 21: TTTGTTATTG GCGATAGCCT GGC 023

ANGABEN ZU SEQ ID NO: 22: (2)

SEQUENZKENNZEICHEN (i)

SEQUENZLÄNGE:

ART DER SEQUENZ:

23 Nukleotide

STRANGFORM:

Nukleotidsequenz Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH: 10

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Sonde

MERKMAL:

Sonde von Salmonella ssp.

SEQUENZBESCHREIBUNG: SEQ ID NO: 22:

TTCTCTGGAT GGTATGCCCG GTA

023

5

(2) ANGABEN ZU SEQ ID NO: 23:

SEQUENZKENNZEICHEN (i)

SEQUENZLÄNGE:

25 Nukleotide

ART DER SEQUENZ: 20

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE: HYPOTHETISCH: linear nein

ANTISENS:

nein

ART DES MOLEKÜLS: 25

Reverse Primer

MERKMAL:

Reverse Primer für Staphylococcus aureus

SEQUENZBESCHREIBUNG: SEQ ID NO: 23:

CATTGTTTAG CTGT TGATCC GTAC T

025

024

30 (2)ANGABEN ZU SEQ ID NO: 24:

> **SEQUENZKENNZEICHEN** (i)

SEQUENZLÄNGE:

24 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear-

HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Primer

MERKMAL:

Forward Primer für Staphylococcus aureus

40 SEQUENZBESCHREIBUNG: SEQ ID NO: 24:

GCACGT ACTG CTGAAA TGAG TAAG

(2)ANGABEN ZU SEQ ID NO: 25:

SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

21 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH:

nein

51541 - TaqMan 5.5.1998 07.05.98

ANTISENS:

nein

ART DES MOLEKÜLS:

Primer

MERKMAL:

Forward Primer für Pseudomonas aeruginosa

SEQUENZBESCHREIBUNG: SEQ ID NO: 25:

CAGGCCTTCG ATGCCCTGAG C

021

(2)ANGABEN ZU SEQ ID NO: 26:

(i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

22 Nukleotide

ART DER SEQUENZ: 10

Nukleotidsequenz Einzelstrangform

56

STRANGFORM: TOPOLOGIE:

linear

HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS: 15

MERKMAL:

Primer

Reverse Primer für Pseudomonas aeruginosa SEQUENZBESCHREIBUNG: SEQ ID NO: 26:

GCTGAAGGTC CTGCGGCAAC AG

022

(2) ANGABEN ZU SEQ ID NO: 27: 20

> SEQUENZKENNZEICHEN (i)

SEQUENZLÄNGE:

23 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz Einzelstrangform

STRANGFORM: **TOPOLOGIE:** 25

linear

HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Primer

MERKMAL:

Forward Primer für E. coli

SEQUENZBESCHREIBUNG: SEQ ID NO: 27:

TAGAACGTAA TGGTTCTGTG

023

SEQUENZKENNZEICHEN (i)

SEQUENZLÄNGE: 35

23 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz Einzelstrangform

STRANGFORM: TOPOLOGIE:

linear

HYPOTHETISCH:

nein

ANTISENS: 40

nein

ART DES MOLEKÜLS:

Primer

MERKMAL:

Reverse Primer für E. coli

SEQUENZBESCHREIBUNG: SEQ ID NO: 28:

CTGGCCTCGA ACAATTAGGC GCG

023

45

(2) ANGABEN ZU SEQ ID NO: 29:

(i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

23 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM: TOPOLOGIE:

Einzelstrangform linear

HYPOTHETISCH:

nein nein

ANTISENS:

Primer

ART DES MOLEKÜLS: MERKMAL:

Forward Primer für Bakterien

SEQUENZBESCHREIBUNG: SEQ ID NO: 29:

TGCATGGCTG TCGTCAGCTC

020

10

15

25

30

ANGABEN ZU SEQ ID NO: 30: (2)

SEQUENZKENNZEICHEN (i) SEQUENZLÄNGE:

23 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE: HYPOTHETISCH: linear nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Sonde

MERKMAL: 20

Sonde für Bakterien allgemein

SEQUENZBESCHREIBUNG: SEQ ID NO: 30:

TTGGGTTAAG TCCCG CAACG AGC

033

ANGABEN ZU SEQ ID NO: 31: (2)

SEQUENZKENNZEICHEN (i)

SEQUENZLÄNGE:

22 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE: HYPOTHETISCH: linear nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Primer

MERKMAL:

Forward Primer für Staphylococcus aureus

SEQUENZBESCHREIBUNG: SEQ ID NO: 31:

ATGCACGTAC TGCTGAAATG AG 35

032

ANGABEN ZU SEQ ID NO: 32: (2) (i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

26 Nukleotide

ART DER SEQUENZ: 40

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear nein

HYPOTHETISCH: ANTISENS:

nein

ART DES MOLEKÜLS: 45

MERKMAL:

Sonde Sonde für Staphylococcus aureus

SEQUENZBESCHREIBUNG: SEQ ID NO: 32:

AACACATATA GAGACGTGAA TATTGC

(2) ANGABEN ZU SEQ ID NO: 33:

SEQUENZKENNZEICHEN (i)

SEQUENZLÄNGE:

22 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH: 10 ANTISENS:

nein

nein

ART DES MOLEKÜLS:

Primer

MERKMAL:

Reverse Primer für Staphylococcus aureus

SEQUENZBESCHREIBUNG: SEQ ID NO: 33:

GTTTAGCTGT TGATCCGTAC TT

022

035

15

20

35

(2) ANGABEN ZU SEQ ID NO: 34:

(i) **SEQUENZKENNZEICHEN**

SEQUENZLÄNGE:

25 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH:

nein nein

ANTISENS:

Sonde

ART DES MOLEKÜLS: MERKMAL:

Sonde für Pseudomonas aeruginosa

SEQUENZBESCHREIBUNG: SEQ ID NO: 34:

CAATTGCTGC TGGACTATGT ATCTG

025

(2) ANGABEN ZU SEQ ID NO: 35:

30 (i) SEQUENZKENNZEICHEN SEQUENZLÄNGE:

25 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH: ANTISENS:

nein nein

ART DES MOLEKÜLS:

Primer

MERKMAL:

Forward Primer für Pseudomonas aeruginosa

SEQUENZBESCHREIBUNG: SEQ ID NO: 35:

CAACGCCGAA GAACTCCAGC ATTTC 40

> (2) ANGABEN ZU SEQ ID NO: 36:

SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

27 Nukleotide

ART DER SEQUENZ: 45

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

ANTISENS:

linear

HYPOTHETISCH:

nein nein ART DES MOLEKÜLS: Sonde

Sonde für Pseudomonas aeruginosa MERKMAL:

SEQUENZBESCHREIBUNG: SEQ ID NO: 36:

AACGCCGA AG AACTCCAG CA TTTCTGC 027

ANGABEN ZU SEQ ID NO: 37: (2)

(i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE: 22 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM: 10

5

15

35

Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Primer

MERKMAL:

Reverse Primer für Escherichia coli

SEQUENZBESCHREIBUNG: SEQ ID NO: 37:

CATTTCTGGC CTCGAACAAT TA 022

(2)ANGABEN ZU SEQ ID NO: 38:

SEQUENZKENNZEICHEN 20 (i)

SEQUENZLÂNGE:

23 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

linear

HYPOTHETISCH: 25

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Sonde

MERKMAL:

Sonde für Escherichia coli

SEQUENZBESCHREIBUNG: SEQ ID NO: 38:

CCGCTGGTAG CGCGTTTTGG TCA 023

(2)ANGABEN ZU SEQ ID NO: 39:

SEQUENZKENNZEICHEN (i)

SEQUENZLÄNGE:

23 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz Einzelstrangform

STRANGFORM:

linear

TOPOLOGIE: HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS: 40

Primer

MERKMAL:

Forward Primer für Escherichia coli

SEQUENZBESCHREIBUNG: SEQ ID NO: 39:

ATGAAGCTGC TAAGCCAGCT GGG

023

(2)ANGABEN ZU SEQ ID NO: 40: 45

> SEQUENZKENNZEICHEN (i)

SEQUENZLÄNGE:

25 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

60

STRANGFORM:

Einzelstrangform

TOPOLOGIE:

MERKMAL:

linear

HYPOTHETISCH: **ANTISENS:**

nein

ART DES MOLEKÜLS:

nein Primer

Forward Primer für Salmonella ssp

SEQUENZBESCHREIBUNG: SEQ ID NO: 40:

TTGAAGCCGA TGCCGGTGAA ATTAT

025

10 (2) ANGABEN ZU SEQ ID NO: 41:

> (i) SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

24 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM:

Einzelstrangform

TOPOLOGIE: 15

linear

HYPOTHETISCH: ANTISENS:

nein

ART DES MOLEKÜLS:

nein

MERKMAL:

Sonde Sonde für Salmonella ssp

SEQUENZBESCHREIBUNG: SEQ ID NO: 41: 20

TTTGTTGTCT TCTCTATTGT CACC

024

(2)ANGABEN ZU SEQ ID NO: 42:

SEQUENZKENNZEICHEN (i)

25 SEQUENZLÄNGE:

20 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz

STRANGFORM: **TOPOLOGIE:**

Einzelstrangform linear

HYPOTHETISCH:

nein

30 **ANTISENS:**

nein

ART DES MOLEKÜLS:

Primer

MERKMAL:

Reverse Primer für Bakterien allgemein

SEQUENZBESCHREIBUNG: SEQ ID NO: 42:

AAGTCGTAAC AAGGTAACCA

020

35

40

(2)ANGABEN ZU SEQ ID NO: 43:

SEQUENZKENNZEICHEN

SEQUENZLÄNGE:

21 Nukleotide

ART DER SEQUENZ:

Nukleotidsequenz Einzelstrangform

STRANGFORM: TOPOLOGIE:

linear

HYPOTHETISCH:

nein

ANTISENS:

nein

ART DES MOLEKÜLS:

Primer

MERKMAL: 45

Forward Primer für Bakterien allgemein

SEQUENZBESCHREIBUNG: SEQ ID NO: 43:

GGATTAGATA CCCTGGTAGT C

021

Patentansprüche:

- 1. Testkit zum Nachweis mikrobieller Verunreinigungen nicht steriler Produkte, insbesondere nach GMP-Richlinien, auch Kosmetika und Lebensmittel, umfassend mindestens ein DNA-Fragment, das die folgenden SEQ ID und Spacer (Abstandhalter) umfaßt:
 - (a) einen Forward-Primer (SEQ ID Forward-Primer);
 - (b) eine Sonde (SEQ ID Sonde);
 - (c) einen Reverse-Primer (SEQ ID Reverse-Primer);
 - (d) gegebenenfalls einen Spacer zwischen Forward-Primer und Sonde,
 - (e) gegebenenfalls einen Spacer zwischen Sonde und Reverse-Primer,
 - (f) gegebenenfalls einen Spacer upstream des Forward-Primers
 - (g) gegebenenfalls einen Spacer downstream des Reverse-Primers
 wobei die SEQ ID [(SEQ ID Forward-Primer); (SEQ ID Sonde); und (SEQ ID Reverse-Primer)] auch Varianten

Sonde); und (SEQ ID Reverse-Primer)] auch Varianten umfassen, bei denen eine, zwei oder drei Nukleotide substituiert, deletiert und / oder insertiert sind,

dabei hat die Variante im wesentlichen dieselbe Funktion wie die Sequenz der SEQ ID [(SEQ ID Forward-Primer); (SEQ ID Sonde); und (SEQ ID Reverse-Primer)],

bei Sonden die Funktion der Bindung an DNA und bei Primern die Funktion der Bindung an DNA und die Bereitstellung eines verlängerbaren 3' Endes für die DNA-Polymerase;

wobei die Spacer 0-40 Nukleotiden umfassen,

- 30 das DNA-Fragment genommen aus der Gruppe
 - (i) für Staphylococus aureus

SEQ. ID. NO. 6 als Forward-Primer

SEQ. ID. NO. 7 als Sonde und

SEQ. ID. NO. 8 als Reverse-Primer

35 (ii) für Pseudomonas aeruginosa

SEQ. ID. NO. 9 als Forward-Primer

SEQ. ID. NO. 10 als Sonde und

SEQ. ID. NO. 11 als Reverse-Primer

20

10

(iii) für Escherichia coli

SEQ. ID. NO. 12 als Forward-Primer

SEQ. ID. NO. 13 als Sonde und

SEQ. ID. NO. 14 als Reverse-Primer

5 (iv) für Salmonella ssp.

SEQ. ID. NO. 15 als Forward-Primer

SEQ. ID. NO. 16 als Sonde und

SEQ. ID. NO. 17 als Reverse-Primer

(v) für Bakterien

10

15

20

25

30

SEQ. ID. NO. 18 als Forward-Primer

SEQ. ID. NO. 19 als Sonde und

SEQ. ID. NO. 20 als Reverse-Primer

- Einsetzen von Primern und fluoreszenzmarkierten Sonden mit den entsprechenden Sequenzen und deren Variationen,
- (i) für Staphylococus aureus

SEQ. ID. NO. 6 als Forward-Primer

SEQ. ID. NO. 7 als Sonde und

SEQ. ID. NO. 8 als Reverse-Primer

(ii) für Pseudomonas aeruginosa

SEQ. ID. NO. 9 als Forward-Primer

SEQ. ID. NO. 10 als Sonde und

SEQ. ID. NO. 11 als Reverse-Primer

(iii) für Escherichia coli

SEQ. ID. NO. 12 als Forward-Primer

SEQ. ID. NO. 13 als Sonde und

SEQ. ID. NO. 14 als Reverse-Primer

(iv) für Salmonella ssp.

SEQ. ID. NO. 15 als Forward-Primer

SEQ. ID. NO. 16 als Sonde und

SEQ. ID. NO. 17 als Reverse-Primer

35 (v) für Bakterien

SEQ. ID. NO. 18 als Forward-Primer

SEQ. ID. NO. 19 als Sonde und

SEQ. ID. NO. 20 als Reverse-Primer

- b) Vervielfältigen der DNA mit PCR; und
- c) Bestrahlung mit spezifischen Wellenlängen, die den Fluoreszenzfarbstoff anregen.
- 5 d) Messung und Quantifizierung der Emission des angeregten Fluoreszenzfarbstoffes.
- 3. Verfahren nach Anspruch 2, wobei die Herstellung der Sonden auf der TaqMan-Detektionstechnologie beruht.

Abb. 1

Die DNA (10 ng pro Spur, 2-14) aller eingesetzten S. aureus Stämme (Lane 2-5) wurde von den cap8-0 Primern (# 15297 und # 15485) detektiert. Dem gegenüber wurde die DNA einer nahe verwandten Staphylococcus Art, S. epidermidis (Lane 6), und die anderer bakterieller Gattungen (Lane 7-11) nicht detektiert. Pilz, Fisch und menschliche DNA (Lane 12-14) wurden als Kontrollen eingesetzt und ergaben kein Detektionssignal. NTC (= no template control) ist die Wasserkontrolle, in der keine DNA eingesetzt wurde.

Abb. 2

Abb. 3

Escherichia coli murA Amplification

Salmonella sp. invA Amplification

Abb. 6

5

10

Die DNA (1 - 10 ng) aller eingesetzten Bakterien (*Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa* und *Streptococcus faecalis*) wurde von dem 16S rRNA Primer/Sonden Set detektiert. Wurde genomische DNA (10 ng) von Pilzen (*Neurospora crassa*), Pflanzen (*Arabodopsis thaliana*) oder vom Menschen (*Human*,Perkin Elmer ABI, 401846) eingesetzt, so entsprach die gemesse Fluoreszenzstrahlung der Wasserkontrolle (no DNA control).

Abb. 7

KBE Salmonella

Fluoreszenzstrahlung in Abhängigkeit von der Menge an eingesetzter Salmonella DNS. In dem PCR-Schnelltest wurden Salmonella DNS Mengen eingesetzt, die aus 1-3, 50, 500 usw. Keimen isoliert wurde. Die Menge an freiwerdender Fluoreszenz wird als sogenannter RQ Wert angegeben.

$$RQ = (R^+ / Q) - (R^- / Q)$$

5

10

Abb. 8 Wasser für Injektionszwecke (10 ml Analysenvolumen) wurde jeweils in vier unabhängigen Experimenten auf die Gegenwart von Bakterien analysiert. Als positive Kontrolle wurden 250 fg genomischer Salmonella DNS eingesetzt (Abb. 8, ganz links). Parallel wurde das Prüfprodukt mit 50 KBE / 10 ml Salmonella gespikt und dann analysiert (jeweils rechts). Es werden die Einzelergebnisse dargestellt.