Package 'portfolio.optimization'

August 24, 2018

Type Package

Title Contemporary Portfolio Optimization

Version 1.0-0
Date 2018-08-20
Maintainer Ronald Hochreiter < ron@hochreiter.net>
Description Simplify your portfolio optimization process by applying a contemporary modeling way to model and solve your portfolio problems. While most approaches and packages are rather complicated this one tries to simplify things and is agnostic regarding risk measures as well as optimization solvers. Some of the methods implemented are described by Konno and Yamazaki (1991) <doi:10.1287 mnsc.37.5.519="">, Rockafellar and Uryasev (2001) <doi:10.21314 jor.2000.038=""> and Markowitz (1952) <doi:10.1111 j.1540-6261.1952.tb01525.x="">.</doi:10.1111></doi:10.21314></doi:10.1287>
Depends R (>= 3.5), xts, MASS, magrittr, modopt.matlab
License MIT + file LICENSE
URL http://www.finance-r.com/ RoxygenNote 6.1.0 NeedsCompilation no Author Ronald Hochreiter [aut, cre] Repository CRAN Date/Publication 2018-08-24 16:10:18 UTC
R topics documented:
portfolio.optimization-package 2 active.extension 3 alpha 3 aux_portfolio.default 4 aux_risk.alias 5 aux_simulate.scenarios 5 linear.constraint.eq 6 linear.constraint.iq 6

	long.only	7
	lower.bound	
	momentum	8
	objective	9
	optimal.portfolio	
	optimal.portfolio.1overN	10
	optimal.portfolio.expected.shortfall	11
	optimal.portfolio.expected.shortfall.long.short	11
	optimal.portfolio.mad	12
	optimal.portfolio.mad.long.short	12
	optimal.portfolio.markowitz	13
	optimal.portfolio.momentum	13
	optimal.portfolio.reward	14
	po.tutorial	15
	portfolio.loss	15
	portfolio.model	16
	portfolio.weights	17
	print.portfolio.model	17
	sp100w17	18
	sp100w17av	19
	sp100w17av30s	19
	upper.bound	20
Index		21
inuex		

Contemporary Portfolio Optimization

Description

Simplify your portfolio optimization process by applying a contemporary modeling way to model and solve your portfolio problems. While most approaches and packages are rather complicated this one tries to simplify things and is agnostic regarding risk measures as well as optimization solvers. Some of the methods implemented are described by Konno and Yamazaki (1991) <doi:10.1287/mnsc.37.5.519>, Rockafellar and Uryasev (2001) <doi:10.21314/JOR.2000.038> and Markowitz (1952) <doi:10.1111/j.1540-6261.1952.tb01525.x>.

Author(s)

References

http://www.finance-r.com/

portfolio.optimization-package

active.extension 3

See Also

Useful links:

• http://www.finance-r.com/

active.extension

Enable active extension portfolios

Description

active.extension adds corresponding long/short constraints for a diverse set of active extension portfolios (e.g. 130/30 portfolios)

Usage

```
active.extension(model, up = 130, down = 30)
```

Arguments

model the portfolio.model to activate up percentage long (e.g. 130) down percentage short (e.g. 30)

Value

portfolio.model with active extension enabled

Author(s)

alpha

Set new alpha of a portfolio.model

Description

alpha sets a new alpha for VaR and Expected Shortfall

Usage

```
alpha(model, alpha)
```

Arguments

model the portfolio.model to be changed alpha the value alpha (between 0 and 1)

4 aux_portfolio.default

Value

the adapted portfolio.model

Author(s)

Examples

```
data(sp100w17av30s)
model <- optimal.portfolio(scenario.set)
cvar95 <- optimal.portfolio(objective(model, "expected.shortfall"))
cvar90 <- optimal.portfolio(alpha(cvar95, 0.1))</pre>
```

aux_portfolio.default Set portfolio.model default values

Description

aux_portfolio.default sets portfolio.model default values

Usage

```
aux_portfolio.default(model)
```

Arguments

model

the portfolio.model to be reset

Value

a portfolio.model with all default values set

Author(s)

aux_risk.alias 5

aux_risk.alias

Convert risk alias names to internal names

Description

aux_risk.alias converts risk alias names to internal names

Usage

```
aux_risk.alias(risk)
```

Arguments

risk

the risk name to be standardized

Value

the standardized risk name (if any)

Author(s)

aux_simulate.scenarios

Simulate a multivariate-normal scenario.set

Description

aux_simulate.scenarios simulates a scenario.set given a mean vector and a covariance matrix using mvrnorm of the MASS package

Usage

```
aux_simulate.scenarios(mu, Sigma, n = 1000, seed = 280277)
```

Arguments

mu mean vector of asset returns

Sigma covariance matrix of asset returns

n number of scenarios to simulate (default 1000)

seed random number seed (default 280277)

Value

A scenario set 'simulation' with mean 'mu' and covariance 'Sigma'

6 linear.constraint.iq

Author(s)

linear.constraint.eq Create or update a vector-based linear equality constraint set

Description

linear.constraint.eq creates a vector-based linear equality constraint: Aeq(range) * factors == beq

Usage

```
linear.constraint.eq(constraints.linear, range, beq, factors = NULL)
```

Arguments

constraints.linear

the current set of equality constraints

range the range of the variables to set (default 1 if factors is NULL)

beq right-hand side scalar

factors values to set for each variable in the given range

Value

the new (updated) set of equality constraints

Author(s)

linear.constraint.iq Create or update a vector-based linear inequality constraint set

Description

linear.constraint.iq creates a vector-based linear inequality constraint: Aeq(range) * factors
<= beq</pre>

Usage

```
linear.constraint.iq(constraints.linear, range, b, factors = NULL,
  leq = TRUE)
```

long.only 7

Arguments

constraints.linear

the current set of inequality constraints

range the range of the variables to set (default 1 if factors is NULL)

b right-hand side scalar

factors values to set for each variable in the given range

leq if false then the sign of the constraint will be inversed

Value

the new (updated) set of inequality constraints

Author(s)

long.only

Disable active extension portfolios

Description

long.only switches a portfolio.model back to long-only by disabling the active extension

Usage

```
long.only(model)
```

Arguments

model

the portfolio.model to deactivate active extensions

Value

portfolio.model with active extension disabled

Author(s)

8 momentum

lower.bound

Set lower bounds on assets

Description

lower.bound sets lower bounds on assets within a portfolio.model

Usage

```
lower.bound(model, v1 = NULL, v2 = NULL)
```

Arguments

model the portfolio.model to adapt the lower bounds

v1 either one lower bound or lower bounds for all assets

v2 if not empty then v1 contains the positions (or names) and v2 the bounds

Value

portfolio.model with new lower bounds

Author(s)

momentum

Set momentum parameters for a portfolio.model

Description

momentum sets a new alpha for VaR and Expected Shortfall

Usage

```
momentum(model, n_momentum, n_momentum.short = NULL)
```

Arguments

model the portfolio.model to be changed n_momentum amount of momentum assets long n_momentum.short

amount of momentum assets short

Value

the adapted portfolio.model

objective 9

Author(s)

objective

Set new objective of a portfolio.model

Description

objective sets a new objective for VaR and Expected Shortfall

Usage

```
objective(model, objective = "markowitz")
```

Arguments

model the portfolio.model to be changed

objective the new objective

Value

the adapted portfolio.model

Author(s)

Examples

```
data(sp100w17av30s)
model <- portfolio.model(scenario.set)
mad <- optimal.portfolio(objective(model, "mad"))</pre>
```

optimal.portfolio

Meta-function to optimize portfolios given a portfolio.model instance

Description

optimal.portfolio optimizes the portfolio of a model given the current specification

Usage

```
optimal.portfolio(input = NULL, ...)
p.opt(input = NULL, ...)
opt.p(input = NULL, ...)
```

Arguments

input either a portfolio.model or something to convert to a new model ... other parameters to be passed on to the optimization sub-functions.

Value

an S3 object of class portfolio.model with the optimized portfolio.

Author(s)

Examples

```
data(sp100w17av30s)
model <- optimal.portfolio(scenario.set)</pre>
```

```
{\it optimal.portfolio.1overN} \\ {\it I over N portfolio}
```

Description

optimal.portfolio.1overN adds a 1 over N portfolio to the portfolio.model

Usage

```
optimal.portfolio.1overN(model)
```

Arguments

model the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

optimal.portfolio.expected.shortfall

Portfolio Optimization minimizing Conditional Value at Risk (CVaR)

Description

optimal.portfolio.expected.shortfall conducts a Portfolio Optimization minimizing Conditional Value at Risk (CVaR) based on Rockafellar and Uryasev (2001)

Usage

```
optimal.portfolio.expected.shortfall(model)
```

Arguments

model

the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

optimal.portfolio.expected.shortfall.long.short

Portfolio Optimization minimizing Conditional Value at Risk (CVaR) with active extensions

Description

optimal.portfolio.expected.shortfall.long.short conducts a Portfolio Optimization minimizing Conditional Value at Risk (CVaR) based on Rockafellar and Uryasev (2001) with active extensions

Usage

```
optimal.portfolio.expected.shortfall.long.short(model)
```

Arguments

model

the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

optimal.portfolio.mad Portfolio Optimization minimizing MAD

Description

optimal.portfolio.mad conducts a Portfolio Optimization minimizing Mean Absolute Deviation (MAD) based on Konno and Yamazaki (1991)

Usage

```
optimal.portfolio.mad(model)
```

Arguments

model

the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

 ${\tt optimal.portfolio.mad.long.short}$

Portfolio Optimization minimizing MAD (Active Extension)

Description

optimal.portfolio.mad.long.short conducts a Portfolio Optimization minimizing Mean Absolute Deviation (MAD) based on Konno and Yamazaki (1991) including an active extension

Usage

```
optimal.portfolio.mad.long.short(model)
```

Arguments

model

the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

optimal.portfolio.markowitz

Portfolio Optimization minimizing Standard Deviation

Description

portfolio.weights conducts a Portfolio Optimization minimizing Standard Deviation based on Markowitz (1952).

Usage

```
optimal.portfolio.markowitz(model)
```

Arguments

model

the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

optimal.portfolio.momentum

Momentum portfolio including momentum for active extensions

Description

optimal.portfolio.momentum adds a momentum portfolio to the portfolio.model

Usage

```
optimal.portfolio.momentum(model)
```

Arguments

model

the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

optimal.portfolio.reward

Compute maximum/minimum return portfolio given the constraints

Description

optimal.portfolio.reward computes a maximum/minimum return portfolio given the constraints

Usage

```
optimal.portfolio.reward(model)
```

Arguments

model

the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

po.tutorial 15

po.tutorial

Open a specific portfolio.optimization package tutorial

Description

po.tutorial returns the filename of a specific portfolio.optimization package tutorial. If no tutorial is given or the tutorial is missspelled, a list of available tutorials is printed.

Usage

```
po.tutorial(tutorial = "")
```

Arguments

tutorial

name of the tutorial to open

Value

Nothing if no tutorial specified, otherwise the path to the tutorial.

Author(s)

Examples

```
## Not run:
file.edit(po.tutorial("101"))
file.edit(po.tutorial("compare"))
## End(Not run)
```

portfolio.loss

Return the loss distribution of the portfolio.model

Description

portfolio.loss return the loss distribution of the portfolio.model

Usage

```
portfolio.loss(model)
l(model)
```

portfolio.model

Arguments

model

the portfolio.model to display

Value

nothing

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

portfolio.model

Create a portfolio.model instance (or fix an existing one)

Description

portfolio.model creates a new S3 portfolio.model instance or fixes an existing one.

Usage

```
portfolio.model(input = NULL)
p.mo(input = NULL)
```

Arguments

input

model, scenario.set or mean.covariance list

Value

an S3 object of class portfolio.model

Author(s)

portfolio.weights 17

portfolio.weights

Return the portfolio weights of a portfolio.model

Description

portfolio.weights return the portfolio weights of a portfolio.model

Usage

```
portfolio.weights(model)
portfolio(model)
w(model)
weights(model)
x(model)
```

Arguments

model

the portfolio.model to return the portfolio weights from

Value

a vector of portfolio weights or NULL if no weights are available yet.

Author(s)

Examples

```
data(sp100w17av30s)
portfolio.weights(optimal.portfolio(scenario.set))
```

Description

 $\verb|print.portfolio.model| overloads print() and outputs some information about the portfolio.model object$

sp100w17

Usage

```
## S3 method for class 'portfolio.model' print(x, ...)
```

Arguments

x the portfolio.model to display

... further parameters

Value

nothing

Author(s)

sp100w17

S&P 100 weekly stock returns 2017

Description

A dataset sp100w17 containing the (crude) weekly returns of (almost) all S&P 100 stocks of 2017, daily basis (101 stocks, 251 returns).

Usage

```
data(sp100w17)
```

Format

One xts time series object with 251 rows and 101 columns.

Details

Furthermore contains a vector sp100w17av with the average trading volume of all stocks in 2017 - to be used for a subselection.

sp100w17av 19

sp100w17av

S&P 100 average trading volume over the whole year 2017

Description

A vector sp100w17av with the average trading volume of all stocks in 2017 - to be used e.g. for a subselection.

Usage

data(sp100w17)

Format

One named numeric vector of length 101.

sp100w17av30s

S&P 100 weekly stock returns 2017 of 30 stocks with the highest average trading volume over the whole year

Description

A sceario sp100w17 containing the (crude) weekly returns of (almost) all S&P 100 stocks of 2017, daily basis (101 stocks, 251 returns).

Usage

data(sp100w17av30s)

Format

A named matrix scenario.set with 251 rows and 30 columns.

20 upper.bound

upper.bound Set upper bounds on assets	upper.bound	up

Description

upper.bound sets lower bounds on assets within a portfolio.model

Usage

```
upper.bound(model, v1 = NULL, v2 = NULL)
```

Arguments

model the portfolio.model to adapt the upper bounds

v1 either one upper bound or lower bounds for all assets

v2 if not empty then v1 contains the positions (or names) and v2 the bounds

Value

portfolio.model with new upper bounds

Author(s)

Index

```
*Topic datasets
                                                portfolio.optimization
    sp100w17, 18
                                                        (portfolio.optimization-package),
    sp100w17av, 19
    sp100w17av30s, 19
                                                portfolio.optimization-package, 2
                                                portfolio.weights, 17
                                                print.portfolio.model, 17
active.extension, 3
alpha, 3
                                                scenario.set (sp100w17av30s), 19
aux_portfolio.default, 4
                                                sp100w17, 18
aux_risk.alias,5
                                                sp100w17av, 19
aux_simulate.scenarios, 5
                                                sp100w17av30s, 19
l (portfolio.loss), 15
                                                upper.bound, 20
linear.constraint.eq, 6
linear.constraint.iq, 6
                                                w (portfolio.weights), 17
long.only, 7
                                                weights (portfolio.weights), 17
lower.bound, 8
                                                x (portfolio.weights), 17
momentum, 8
objective, 9
opt.p (optimal.portfolio), 9
optimal.portfolio, 9
optimal.portfolio.1overN, 10
optimal.portfolio.expected.shortfall,
optimal.portfolio.expected.shortfall.long.short,
        11
optimal.portfolio.mad, 12
{\tt optimal.portfolio.mad.long.short,}\ 12
optimal.portfolio.markowitz, 13
optimal.portfolio.momentum, 13
optimal.portfolio.reward, 14
p.mo(portfolio.model), 16
p.opt(optimal.portfolio), 9
po.tutorial, 15
portfolio (portfolio.weights), 17
portfolio.loss, 15
portfolio.model, 16
```