ATTACHMENT

Currently Pending Claims 1-6 from Ser. No. 09/928,883

- 1. A heat transfer element comprising a high heat transfer medium, wherein the high heat transfer medium is formed by dissolving the following compounds in water to produce a mixture, and drying the resulting mixture to produce said heat transfer medium product with said compounds in the following weight percentages:
 - (1) Cobaltic Oxide (Co₂O₃), 0.5-1.0 %;
 - (2) Boron Oxide (B_2O_3) , 1.0-2.0 %;
 - (3) Calcium Dichromate (CaCr₂O₇), 1.0-2.0 %;
 - (4) Magnesium Dichromate (MgCr₂O₇ · $6H_2O$), 10.0-20.0 %;
 - (5) Potassium Dichromate $(K_2Cr_2O_7)$, 40.0-80.0 %;
 - (6) Sodium Dichromate (Na₂Cr₂O₇), 10.0-20.0 %;
 - (7) Beryllium Oxide (BeO), 0.05-0.10 %;
 - (8) Titanium Diboride (TiB₂), 0.5-1.0 %;
 - (9) Potassium Peroxide (K_2O_2) , 0.05-0.10 %;
- (10) A selected metal or Ammonium Dichromate (MCr₂O₇), 5.0-10.0 %; where "M" is selected from the group consisting of potassium, sodium, silver, and ammonium;
 - (11) Strontium Chromate (SrCrO₄), 0.5-1.0 %; and
- (12) Silver Dichromate (Ag₂Cr₂O₇), 0.5%-1.0 %, the heat transfer medium is positioned on a substrate.
- 2. A heat transfer element according to claim 1, wherein the weight percentages in the heat transfer product are:
 - (1) Cobaltic Oxide (Co₂O₃), 0.7-0.8 %;
 - (2) Boron Oxide (B_2O_3) , 1.4-1.6 %;
 - (3) Calcium Dichromate (CaCr₂O₇), 1.4-1.6 %;
 - (4) Magnesium Dichromate (MgCr₂O₇ · 6H₂O), 14.0-16.0 %;
 - (5) Potassium Dichromate $(K_2Cr_2O_7)$, 56.0-64.0 %;
 - (6) Sodium Dichromate (Na₂Cr₂O₇), 14.0-16.0 %;
 - (7) Beryllium Oxide (BeO), 0.07-0.08 %;
 - (8) Titanium Diboride (TiB₂), 0.7-0.8 %;
 - (9) Potassium Peroxide (K_2O_2) , 0.07-0.08 %;
- (10) A selected metal or Ammonium Dichromate (MCr₂O₇), 7.0-8.0 %; where "M" is selected from the group consisting of potassium, sodium, silver, and ammonium;
 - (11) Strontium Chromate (SrCrO₄), 0.7-0.8 %; and
 - (12) Silver Dichromate (Ag₂Cr₂O₇), 0.7-0.8 %.
- 3. A heat transfer element according to claim 1, wherein the weight percentages in the heat transfer medium product are:

- (1) Cobaltic Oxide (Co₂O₃), 0.723 %;
- (2) Boron Oxide (B₂O₃), 1.4472 %;
- (3) Calcium Dichromate (CaCr₂O₇), 1.4472 %;
- (4) Magnesium Dichromate (MgCr₂O₇ · 6H₂O), 14.472 %;
- (5) Potassium Dichromate (K₂Cr₂O₇), 57.888 %;

Sodium Dichromate (Na₂Cr₂O₇), 14.472 %;

Beryllium Oxide (BeO), 0.0723 %;

- (8) Titanium Diboride (TiB₂), 0.723 %;
- (9) Potassium Peroxide (K₂O₂), 0.0723 %;
- (10) (10) A selected metal or Ammonium Dichromate (MCr₂O₇), 7.23 %; where "M" is selected from the group consisting of potassium, sodium, silver, and ammonium;
 - (11) Strontium Chromate (SrCrO₄), 0.723 %; and
 - (12) Silver Dichromate $(Ag_2Cr_2O_7)$, 0.723 %.
- 4. A heat transfer element according to claim 1, wherein the heat transfer element is a heating element.
- 5. A heat transfer element according to claim 1, wherein the heat transfer element is a heat-dissipating element.
- 6. A heat transfer element according to according to claim 1, wherein the heat transfer element is a heat exchange element.

•