Homework 3

108B (5403) Machine Learning 王傳鈞 **041604**7

本次作業所使用到的程式碼,都已經上傳到 <u>GitHub</u> 當中,若有需要參考其詳細內容,歡迎點擊連結直接前往網頁瀏覽。例如:「Q6.m」的 MATLAB source code 代表是第六題所使用到的程式碼。

第一題

證明: $f: \mathbb{R}^n \to \mathbb{R}$ 是 strictly convex function。 若 x^* 是 local minimizer,則 x^* 是唯一的 global minimizer。

- $\forall x, y \in \mathbb{R}^n$ $f(\lambda x + (1 \lambda)y) < \lambda f(x) + (1 \lambda)f(y)$ for any $\lambda \in (0, 1)$
- $\exists \Omega \subset \mathbb{R}^n, \varepsilon > 0 \ f(x) \ge f(x^*) \ \text{for all} \ x \in \Omega \setminus \{x^*\} \ \text{and} \ \|x x^*\|_2 < \varepsilon$
- 1. global minimizer

(by contradiction)

假設 x^*_{local} 是 local minimizer、 x^*_{global} 是 global minimizer。

$$\Rightarrow f(x^*_{\text{global}}) < f(x^*_{\text{local}})$$
 (relation A)

取
$$x_{\lambda} = \lambda x^*_{\text{local}} + (1 - \lambda) x^*_{\text{global}}$$
,其中 $\lambda \in (0, 1)$ 且 $\|x_{\lambda} - x^*_{\text{local}}\| < \varepsilon$

$$\Rightarrow f(x^*_{local}) < f(x_{\lambda}) = f(\lambda x^*_{local} + (1 - \lambda) x^*_{global})$$

$$< \lambda f(x^*_{local}) + (1 - \lambda) f(x^*_{global}) \cdots (by convexity)$$

$$< \lambda f(x^*_{local}) + (1 - \lambda) f(x^*_{local}) = f(x^*_{local}) \cdots (by relation A)$$

$$\Rightarrow f(x^*_{local}) < f(x^*_{local}) \rightarrow \leftarrow$$

2. uniqueness

(by contradiction)

假設 x_1^* 和 x_2^* 都是 global minimizer,且 $x_1^* \neq x_2^*$ 。

$$\Rightarrow f(x_1^*) = f(x_2^*)$$
 (relation B)

取 $x_{\lambda} = \lambda x_{1}^{*} + (1 - \lambda) x_{2}^{*}$,其中 $\lambda \in (0, 1)$

0416047 王傳鈞

$$\Rightarrow f(x_{\lambda}) = f(\lambda x^*_1 + (1 - \lambda)x^*_2)$$

$$< \lambda f(x^*_1) + (1 - \lambda)f(x^*_2)$$
 (by convexity)
$$< \lambda f(x^*_1) + (1 - \lambda)f(x^*_1) = f(x^*_1)$$
 (by relation B)
$$\Rightarrow f(x_{\lambda}) < f(x^*_1) \rightarrow \leftarrow$$

第二題

- $\forall x, y \in \mathcal{F}, t \in [0,1]$, 考慮 tx + (1-t)y
- (a) 若 t = 0 or 1, 則:tx + (1 t)y = x or $y \in \mathcal{F}$
- (b) 若 $t \in (0,1)$,則:

已知
$$g(x) \le 0$$
 且 $h(x) = 0 \setminus g(y) \le 0$ 且 $h(y) = 0$
 $y : g_i$ 是 convex for $i = 1, 2, ..., m$, h_i 是 linear for $j = 1, 2, ..., k$
 $g_i(tx + (1-t)y) \le tg_i(x) + (1-t)g_i(y) \le 0$ for $i = 1 \sim m$
 $h_j(tx + (1-t)y) = th_j(x) + (1-t)h_j(y) = 0$ for $j = 1 \sim k$
 $tx + (1-t)y \in \mathcal{F}$

• 綜合以上 (a) 與 (b) 所述,所以 \mathcal{F} 是一個 convex set

第三題

By Farkas' lemma,
$$\mathbb{R}$$
 $A \in \mathbb{R}^{m \times (n+1)}$ \widehat{n} $\widehat{b} = \widehat{o} \in \mathbb{R}^{n+1}$

$$\Rightarrow \begin{cases} \vec{\beta} \in \mathbb{R}^{n+1} & \text{such that } A \vec{\beta} \leq \widehat{o} \\ \vec{\alpha} \in \mathbb{R}^{m} & \text{such that } A^{T} \vec{\alpha} = \widehat{o} & \underline{A} & \vec{\alpha} \neq \widehat{o} \end{cases} \text{ and } \widehat{a} \neq \widehat{o} \end{cases}$$

$$\Rightarrow \begin{cases} \vec{\beta} = \begin{bmatrix} \vec{x} \\ t \end{bmatrix}, & \vec{\beta} \neq \widehat{a} \neq \widehat{a} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow \begin{cases} \vec{x} \in \mathbb{R}^{n+1} \\ \vec{x} \neq \widehat{o} \end{cases} \Rightarrow$$

第四題

pf:

(⇒) 已知
$$\vec{x} \in \mathbb{R}^n$$
 such that $A\vec{x} = \vec{b}$
 $\therefore A\vec{x} \leq \vec{b}$ 自然 成立
 $\therefore A\vec{x} = \vec{b}$ $\therefore A\vec{x} = [(A\vec{x})_1 \ (A\vec{x})_2 \ \cdots \ (A\vec{x})_m]^T$
 $= \vec{b} = [b_1 \ b_2 \ \cdots \ b_m]^T$
 $\Rightarrow \sum_{i=1}^m (A\vec{x})_i = \sum_{i=1}^m b_i \Rightarrow \vec{1}^T A\vec{x} = \vec{1}^T \vec{b}$

(全) 已知
$$A\vec{x} \leq \vec{b}$$
 且 $\vec{1}^T A \vec{x} \geq \vec{1}^T \vec{b}$

$$\Rightarrow \begin{cases}
(A\vec{x})_{i} \leq b_{i} & \text{for } i = 1 \leq m \\
\sum_{i=1}^{m} (A\vec{x})_{i} = \sum_{i=1}^{m} b_{i}
\end{cases}$$

$$\Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i = 1
\end{bmatrix} \Rightarrow \begin{bmatrix}
m \\ A\vec{x} \\ i =$$

第五題

- Primal problem : $M \underset{\vec{x}}{A} X p^T \vec{x}$ subject to $A \vec{x} = b$
- Dual problem : $\min_{\vec{y}} \mathbf{b}^{\mathrm{T}} \vec{y}$ subject to $\mathbf{A}^{\mathrm{T}} \vec{y} \ge p$

第六題

• 以下符號採用:
$$A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 1 \\ 4 & -1 \\ 1 & -1 \\ 1 & -2 \end{bmatrix}$$
、 $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ 、 $b = \begin{bmatrix} 2 \\ -2 \\ 1 \\ 1 \\ -2 \\ -1 \end{bmatrix}$,並尋找 $\min_{\vec{x}} ||A\vec{x} - b||_p$

- (a) $\min_{\vec{x}} ||A\vec{x} b||_1$: $\vec{x}^* = (0.4444, 0.7777)^T \cdot ||A\vec{x} b||_1^* = 4.1111$
- (b) $\min_{\vec{x}} ||A\vec{x} b||_2$: $\vec{x}^* = (0.2381, 0.9524)^T \cdot ||A\vec{x} - b||_2^* = 2.3401$
- (c) $\min_{\vec{x}} ||A\vec{x} b||_{\infty}$: $\vec{x}^* = (0.2500, 1.2500)^T \cdot ||A\vec{x} b||_{\infty}^* = 1.2500$
- 以下繪圖六條方程式,與 $min||A\bar{x}-b||_1 \cdot min||A\bar{x}-b||_2 \cdot min||A\bar{x}-b||_\infty$ 各自的 \bar{x}^* 座標點

