Resumo Artigo principal

Danilo Souza - 201006840008

February 2, 2015

1 Passo a Passo

O algortimo segue os passos abaixo:

- Definir as (regiões de interesse)
- Considera a imagem como um grafo
 - Nós do grafo = pixels
 - Arestas = conectam os pixels usando distâncias ponderadas
- Calcula a distância geodésica (custo das arestas) utilizando 1 e 2
 - Cálculo dos pesos
 - * Definir um conjunto de imagens F_i e escolher um subconjunto a partir dessas imagens
 - * Definir pesos diferentes para cada canal $N_c(19 \text{ canais foram utilizados})$. Selecionar o número de canais é um ponto crítico pois um grande número é necessário para atender a um maior espectro de imagens, porém as informações mais importantes de uma dada imagem normalmente se concentram em poucos canais
 - * Selecionar os canais usando 16 filtros gabor mais 2 canais de crominância (C_b e C_r) e um de luminância. O framework foi projetado para ser utilizado com qualquer tipo de filtro
 - · A saída dos filtros de Gabor são normalizadas devido ao ruído e complexidade presentes em imagens naturais.
 - * Calcular pesos diferentes para cada canal para da imagem. (robustez do algoritmos, se adapta aos dados de entrada)
 - * Dado um conjunto de pixels (Ω_1, Ω_2) correspondentes aos "rabiscos" l_1, l_2 , a função densidade de probabilidade (FDP) é aproximada para uma gaussianda com Ω_1, Ω_2 .
 - * Calcula-se a probabilidade de um pixel x pertencer ao "rabisco" l_1 baseado no canal F_i
 - * A probabilidade de um pixel x pertencer a uma região l_i é dada pelo somatório da probabilidade do mesmo pixel x calculada para cada canal multiplicada pelo peso do mesmo canal.
 - * Para a separação de múltiplipas regiões o cálculo é parecido, a diferença está no cálculo da função peso W_i , que é o somatório da função peso da região atual competindo com todas as outras regiões (essa comparação ocorre sempre aos pares) (W_{ij})
 - * O algoritmo assume que o usuário irá sempre marcar regiões da imagem que são diferentes e a informação contida nessas regiões poderá ser usada para separar as diferentes texturas.
- Baseado no cálculo anterior, encontra-se a probabilidade de um determinado pixel pertencer a um dada região de interesse usando 3

$$d(s,t) := \min_{C_{s,t}} \int |\nabla Y \dot{C}_{s,t}(p)| dp \tag{1}$$

$$d_i(t) = \min_{s \in \Omega_c: label(s) = l_i} d(s, t)$$
 (2)

$$Pr(t \in l_i) = \frac{d_i(t)^{-1}}{\sum_{j \in [1, N_l]} d_j(t)^{-1}}$$
(3)

2 Anotações Gerais

2.1 Anotações introdutórias

matting - seperação suave de fundo e frente da imagem distâncias ponderadas - são o centro do framework proposto

As técnicas de segmentação citadas no texto são em sua maioria para imagens coloridas ou em níveis de cinza, onde o gradiente da intensidade (ou da cor) é baixo na região de interesse e alto nas bordas, entretanto esta afirmação não é válida para imagens mais complexas (com texturas, por exemplo). Para alcaçar segmentação nessas imagens o autor usa um conjunto adaptativo de filtros Gabor e escolhe a função peso da distância geodésica de acordo com a imagem.

A complexidade do algoritmo é linear em relação ao número de pixels graças ao uso da distância geodésica para o cálculo da probailidade de um pixel pertencer à uma região.

A abordagem é interativa onde o objetivo principal é adicionar cor (ou outro efeito) à uma imagem, no artigo tomado como base pelo autor são dados uma série de "rabiscos" (que marcam regiões de interesse na imagem) em uma imagem somente de luminância, e então é calculada a distância geodésica do mesmo canal de luminância para posteriormente calcular a probabilidade de um pixel pertencer a um dado "rabisco" . Sejam s e t dois pixels da imagem Ω e $C_{s,t}$ o caminho conectando esses pixels e Y sendo o canal de luminância dado, a distância geodésica é dada pela equação 1.

Onde p é o arco euclidiano. Seja Ω_c um conjunto de pixels marcados, ou seja, as regiões de interesse dadas pelo usuário l_i , $i \in [1, N_l]$, a distância de um pixel t para uma única região l_i , $i \in [1, N_l]$ é dada por:

A probabilidade $P(t \in l_i \text{ de um pixel ser associado à região } l_i \text{ é dada pela equação } 3.$

O artigo propõe o uso de pesos diferentes para o calculo da distância geodésica e considera a imagem como um grafo onde os pixels são os nós e as distâncias geodésicas são os pesos das arestas ligando cada pixel aos seus vizinhos.

O valor dos pixels assinalados pelo usário bem como sua posição são utilizados pelo algoritmos afim de evitar quebras de segmentos de fundo e/ou frente (primeiro plano).

2.2 Anotações sobre os pesos

Cada "rabisco" possui uma função peso. As distâncias ponderadas devem ser calculadas para cada "rabisco", entretanto não precisam, necessariamente ser calculadas para toda a imagem (i.e, se um pixel já recebeu um valor baixo o suficiente pode-se assumir que esse pixel já pertence à uma dada região da imagem).

Os canais são escolhidos baseados no conjunto de pixels Ω_c definido pelo usuário, assumido que o usuário irá sempre marcar com *labels* diferentes regiões que sejam de fato diferentes na imagem.