1 BAYES-THEORIE

2 AKTIVIERUNGSFUNKTIONEN

Marius

3 FEHLERFUNKTIONEN

- $E_{MSE}(w) = \frac{1}{2} \sum_{x \in X} \sum_{k} (t_k^x o_k^x)^2$
- Mean-Squared-Error = $\frac{1}{N} * SSE$
- $E_{CE}(w) = -\sum_{x \in X} \sum_{k} [t_k^x * log(o_k^x) + (1 t_k^x) * log(1 o_k^x)]$

4 PERZEPTRON LERNALGORITHMUS

$$w_i^{t+1} = w_i^t + \eta(t_x - o_x)x_i$$

5 BACKPROPAGATION

$$w=w-\eta\nabla_w E(x,w) \text{ mit } \nabla_w E=\tfrac{\partial E}{\partial o} \tfrac{\partial o}{\partial \sigma} \tfrac{\partial o}{\partial w}$$

6 Hopfield

Aktivierung

7 BOLTZMANN-MASCHINEN

Aktivierung

8 RESTRICTED-BOLTZMANN-MASCHINEN

Aktivierung

9 REINFORCEMENT LEARNING

Q-Learning Bellmanngleichung Policyfunktion TD-Learning — SARSA

10 GENERALISIERUNG

 $<\epsilon_{\check{ ext{D}est}}>=<\epsilon_{train}>+2\cdot\sigma^2\frac{p}{n}$ mit Varianz σ , Parameteranzahl p und Anzahl an Trainingsbeispielen n

11 NORMALISIERUNG

- Max-Min (Rescaling): $x' = \frac{x min(x)}{max(x) min(x)}$
- Standardisierung: $x' = \frac{x \bar{x}}{\sigma}$
- Skalierung auf Einheitslänge: $x' = \frac{x}{||x||}$
- lückenhafte Daten: Null filling Smoothing

12 REGULARISIERUNG

- L1 Norm: $||w||_{L1} = \sum_{j} |w_{j}|$
- L2 Norm: $||w||_{L2} = \sum_{i} w_{j}^{2}$
- KL-Divergenz:
- Cross-Entropy: $E_{CE}(w) = -\sum_{x \in X} \sum_k [t_k^x * log(o_k^x) + (1 t_k^x) * log(1 o_k^x)]$
- Edit-Distance:
- Dropout:
- Meiosis:

13 Adaptive Lernratenanpassung

- AdaGrad: $w_t = w_{t-1} \frac{\eta}{\sqrt{G_t + \epsilon}} L(x, w_{t-1})$ mit der Diagonalmatrix G_t , die die Beträge des Gradienten enthält und ϵ : Smoothingterm, um Division durch 0 zu verhindern
- $w_t = w_{t-1} \frac{RMS[\Delta w]_{t-1}}{RMS[g]_t} g_t$, wobei $RMS[\Delta w]_t$ der "root mean squared error" $\sqrt{E[\Delta w^2]_t + \epsilon}$ ist.
- RMSProp: $w_t = w_{t-1} \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t$

14 UPDATES FÜR BACKPROP

- Momentum-Term: $\Delta w_{ij}(t) = -\eta \frac{\partial E}{\partial w_{ij}(t)} + \alpha * \Delta w_{ij}(t-1)$
- QuickProp:
- WeightElimination:

15 AUTOENCODERS

Deaktivierung von Sparse Autoencoder:

16 Shared Weights bei TDNNs

Formel:

17 KOMISCHES BILD MIT RANDOM cos EINFÜGEN

18 LVQ

Random Formeln hier: