

Frequency filtering

Semester 2, 2025 Kris Ehinger

Adversarial images

Network: MobileNet V2

Prediction: English springer (90.08%)

Model: MobileNet V2

Prediction: hot dog (68.88%)

Outline

- Intro to Fourier analysis in 1D
- Fourier analysis of images
- Filtering in frequency
- Applications

Learning outcomes

- Explain at a conceptual level how images are represented in the frequency domain
- Implement filters in the frequency domain
- Explain how frequency representations are used for image compression and analysis

Fourier analysis (in 1D)

Signals

 Any signal or pattern can be described as a sum of sinusoids

Fourier analysis

Any signal can be expressed as a sum of sinusoids

Sum of sinusoids

Sum of sinusoids

Sum of sinusoids

Fourier transform

- Fourier transform decomposes signal into component frequencies
 - Values are complex numbers representing amplitude and phase of sinusoids
 - Time domain -> frequency domain (or, for images, spatial domain -> frequency domain)
- $F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-2i\pi\omega x} dx$
- scipy.fft (1D), scipy.fft2 (2D), scipy.fftn (3D+)
- Inverse Fourier transform converts from frequency domain back to space domain

Frequency spectrum

Signal in spatial (or time) domain

Signal in frequency domain (magnitude)

Frequency spectrum

Frequency spectrum

Values in frequency domain are complex numbers

• For each frequency: magnitude (=amplitude) and

angle (=phase)

Summary

- Any signal or pattern can be described as a sum of sinusoids
- Fourier transform decomposes a signal into its component sinusoids:
 - The axis is frequency
 - Values are complex numbers
 - Magnitude = amplitude of the sinusoid
 - Angle = phase of the sinusoid

Fourier analysis (images)

Images as sinusoids

Image

Fourier transform (magnitude)

How to interpret Fourier spectra

Image

Fourier transform (magnitude)

Fourier transform (magnitude)

Image

Fourier transform (magnitude)

Fourier transform (magnitude)

Image

Fourier transform (magnitude)

Image

Fourier transform (magnitude)

Fourier analysis of images

- Any image can be represented by its Fourier transform
- Fourier transform = for each frequency, magnitude (amplitude) + phase
- Magnitude captures the holistic "texture" of an image, but the edges are mainly represented by Fourier phase

Frequency filtering

Operations in frequency domain

- Operations in the spatial domain have equivalent operations in frequency domain
- Convolution in spatial domain = multiplication in frequency domain

$$FT[h * f] = FT[h]FT[f]$$

• Inverse:

$$FT^{-1}[hf] = FT^{-1}[h] * FT^{-1}[f]$$

Bandpass filter

 Bandpass filter = a filter that removes a range of frequencies from a signal

Low pass filter

 Low pass filter = keep low spatial frequencies, remove high frequencies

Low pass filter

Low pass filter

High pass filter

 High pass filter = keep high spatial frequencies, remove low frequencies

High pass filter

High pass filter

Filter artefacts

Why does this happen?

Inverse convolution theorem

Inverse convolution theorem

Gaussian low pass filter

Gaussian high pass filter

Summary

- Images can be filtered in the spatial domain, or the frequency domain
- Operations in one domain have an equivalent in the other domain
 - Convolution in spatial domain = multiplication in Fourier domain
- Modelling filters in both domains can help understand/debug what a filter is doing

Applications

Image compression

- Frequency domain is a convenient space for image compression
- Why?
- Human visual system is not very sensitive to contrast in high spatial frequencies
- Discarding information in high spatial frequencies doesn't change the "look" of an image

Image compression

- JPEG compression: break image into 8x8 pixel blocks, each represented in frequency space
- Discrete cosine transform (DCT)
- High spatial frequency components are quantised

JPEG compression

Image: https://en.wikipedia.org/wiki/File:Felis_silvestris_silvestris_small_gradual_decrease_of_quality.png

COMP90086 Computer Vision

54

Image forensics

Network: MobileNet V2

Prediction: English springer (90.08%)

Model: MobileNet V2

Prediction: hot dog (68.88%)

Dog vs. hot dog – what changed?

Absolute difference in phase

Image forensics

Which of these are real people vs. GAN-generated?

Spectrum
, & Witherden (2019

Summary

- Any image can be represented in either the spatial or the frequency domain
- Frequency domain is a convenient space for many applications:
 - Filtering
 - Compression
 - Forensics
 - Frequency-based features