## ACEROS INOXIDABLES

## o Oxidación y conscion del hiero

la pieza, pues se cuartea (R = vol. óxido 771).

Adiciones de Molibdeno y cobre (20.5%) mejoran el comportamiento a carosión atmosférica, y adxiones de Alminio y Silicio (21%) mejoran el comportamiento a oxidación a alta temperatura.

El cromo forma capas de ócido impermeablesincluso para espesares de capa de pocos átomos, pasivando al cromo y sus aleaciones: adiciones de cromo al hierro, superiores al 12:1., le transfiere resistencia a la carosión, y han de ser superiores al 20:1, para dor una buena resistencia a la ocidación a alta temperatura

Otros elementos de aleación se usan para mejorar el comportamiento a carosión (sobre todo el níquel), para estabilizar la ferrita o la anstenita, o para posibilitar los tratamientos termicos (el corbano, p.e.)

- Acero inoxidable - resiste la carosión atmosférica - Acero refractorio - resiste la oxidación a alta temperatua



bajo contenido en carbono.







12.1. Cr => 1 compsion

12.1. Cr => INOXIDABLE!



Fig. 103. - Acción del eromo sobre la oxidación a elevada temperatura de las aleaciones Fe-Cr. Mantenimiento de las muestras al aire a 1 000° C durante 48 horas (Apraiz).

dos aleaciones Fe-cran más del 121. Cr son aceros inoxidables femilios: no son tratables térmicamente pues uo se producen transformaciones; si nos fijamos en el diagrama Fe-És vemos que con ese contenido en cromo no tenemos opción de entror en el bucle y -, no podemos austeuizor, ni templar, ....

son aceros de bajas durezas y son feromagnéticos. Si se les adiciona. Corbano, que amplia el bucle r pues es un elemento gammageno; estatuos hablando de acrosinozidables martensitios. Ahara el acero puede austeuizarses disolviendose los corburos de croullo, y par temple se produce martensta. Annuentando el contenido de croux anumentarà la templabilidad i y podremas dar revenidos,... San acros de alta resistencia que pueden conseguir buena plasticidad y

san también ferramagnéticos. Si se les adiciona Niquel pueden déverse acros inocidables austeniticos. Ciertas combinaciones CI-Ni produceu austeuita que no se transforma en enfrancient:

- No térmiamente por falta de difusion

<sup>-</sup> No atruiramente por tever muy baja Ms (inférior a Tamb) debido a la gran mutidad de allantes.

Son acros de bastante plasticidad, annque más resistente que los femiticos, y presentan el mejor comportamiente a comosión.

Resumiendo:

| T426                  | INOXIDABLE           | REFRACTORIO                   |                                                                  |
|-----------------------|----------------------|-------------------------------|------------------------------------------------------------------|
| ACERO<br>FERRÍTICO    | 14-17%. Cr           | 25 - 36%. Cr                  | No tratable<br>Baja resistencia                                  |
|                       |                      | ·                             | Tenewagnético                                                    |
| ACERO<br>MARTENSÍTICO | 14% G-<br>0'2-0'71.C | Si 1 %. Cr<br>leugo que 1%. C | Tratam. ténuicas Alta residencia Buena plasticidad Feramagnética |
| ACERO<br>AUSTENÍTICO  | 181. Gr<br>61. Ni    | 25%. Cr<br>20%. No            | Baja resisteusia<br>No Fenomagnéhico.                            |

En les acres aux tensiscos, et corbano aigina precipitación de corbanos en el borde de grano por permanencias entre 500 y 900°C, rebajando el 1. Cr en zonas adjacentes y sensi bilizandos a la corosion intergrandar. Arra entarlo:

- Atradir menos de 0.08:1.C
- No caleutor bacia souas dande se precipitars
- Aviador formadores de corburas mais dividos que el cr, como Ti, No o Ta.



Fig. 12.1. The Fe-Cr phase diagram. (Ref 12.3)

Car un carteuido en Cr712%. NO PUEDO AUSTENIZAR!



Fig. 12.2. Gamma loops formed in various binary systems of iron. (Ref 12.4)

Dayand Bass





Fig. 12.3. The Fe-Ni phase diagram. (Ref 12.3)



Fig. 105.—Bucles austeníticos de los aceros al cromo con diferentes porcentajes de carbono (Apraiz).



Fig. 107.—Acción combinada del cromo y del níquel sobre la situación de las zonas críticas de los aceros de muy bajo contenido en carbono (Apraiz).

Diagramas Fe-Ni au diferentes il cr

admiss tien el aces muy alta templatificad x la gran nutidad de aliantes que tiene (solo ou estos es un 28%!!)



Fig. 12.5. Vertical sections through the Fe-Cr-Ni ternary system at constant Fe contents. (Ref 12.2)



Martensincos Fig. 109.—Diagrama de Schaeffler.



Fig. 12.18. Microstructure of annealed ferritic stainless steel (E-Brite 26-1 containing 26% chromium and 1% molybdenum). Etched electrolytically in 60% HNO<sub>3</sub>-H<sub>2</sub>O. Light micrograph. Courtesy of G. Vander Voort, Carpenter Technology Corp., Reading, PA