統計分析

第三講

王寧寧, Ph.D

oliningning@qq.com

2022/11/07

主要内容

• 非參數檢驗

- 。 配對樣本秩和檢驗
- 。 獨立樣本秩和檢驗
- 多組樣本秩和檢驗

• 卡方檢驗

- 。 獨立四個表
- 。 配對四格表
- 。 **R** ×**C** 列聯表

參數檢驗和非參數檢驗

(parametric statistics)

 $\frac{\mathbf{D}\mathbf{m}$ 总体分布类型,对未知参数(μ 、 π)进行统计推断

依赖于特定分布类 型,比较的是参数

非参数统计

(nonparametric statistics)

对总体的分布类 型<mark>不作任何要求</mark>

不受总体参数的影响, 比较分布或分布位置

适用范围广;可用于任何类型 资料(等级资料,或">50mg")

对于符合参数统计分析条件者,采用 非参数统计分析,其检验效能较低

• 參數檢驗

- ο 正態總體
- 。 方差齊性

• 非參數檢驗

- 。 對分佈不做假定
- 不對總體參數進行推斷
- 對總體的分佈或分佈位置進行檢驗

參數檢驗與非參數檢驗比較

参数检验	非参检验
要求资料服从正态分布	 对资料的没有特殊要求,总体为偏态、总体分布未知的计量资料(尤其在n<30的情况) 等级资料 有过大或过小值的数据,或数据的某一端没有具体值 总体方差不齐
检验效率高	检验效率低,容易犯第二类错误,原 因信息丧失或信息利用不足。

配對資料符號秩和檢驗(Wilcoxon signed rank test)

符號秩和檢驗的一般步骤

• 建立檢驗假設,確定檢驗水準

- \circ H_0 : 差值的總體中位數為0;
- \circ H_1 : 差值的總體中位數不為0;
- $\circ \ \alpha = 0.05$

• 計算檢驗統計量

- 。 算出對子差值
- 。 根據差值的絕對值大小編秩
- 。 將秩次冠以正負號, 計算正、負秩和
- 用不為"0"的對子數和 絕對值較小的秩和作爲統計量

【例】臨床某醫生研究白癜風病人的白介素IL-6水平(u/ml)在白斑部位與正常部位有無差異,調查的資料如下表

白	白癜风病人不同部位白介素IL-6指标(u/ml)					
病人号	白斑部位	正常部位	d=正常-白斑	秩次		
1	40.03	88. 57	48. 54	6		
2	97. 13	80.00	-17.13	-3		
3	80.32	123.72	43. 40	4		
4	25.32	39.03	13.71	2		
5	19.61	24.37	4.76	1		
6	14.50	92.75	78. 25	8		
7	49.63	121.57	71.94	7		
8	44.56	89.76	45. 20	5		
合计			T ₊ =33	T_=3		

本例一般步骤

- 建立檢驗假設,確定檢驗水準
 - \circ H_0 : 差值的總體中位數為0;
 - \circ H_1 : 差值的總體中位數不為0;
 - $\circ \ \alpha = 0.05$
- 計算檢驗統計量
 - \circ 絕對值較小的秩和 T=3 作爲統計量, n=8
- ·根據P值,做出結論
 - 根據**SPSS**軟件結果,P < 0.05, 在**0.05**的檢驗水平下,拒絕原假設,認爲 差值的中位數不為**0**。

兩獨立樣本的秩和檢驗

【例】对无淋巴细胞转移与有淋巴细胞转移的胃癌患者,观察其生存时间,问两组患者的生存时间是否不同?

两组患者生存时间(月)					
	II胞转移		II胞转移		
时间	秩次	时间	秩次		
12	4.5	5	1		
25	10	8	2		
27	11	12	4.5		
29	12. 5	12	4.5		
38	17	12	4.5		
42	19	17	7		
46	20	21	8		
46	21	24	9		
56	23	29	12.5		
60	24	30	14		
		34	15		
		36	16		
		40	18		
		48	22		
n ₁ =10	T ₁ =162	n ₂ =14	$T_2=138$		

• 建立檢驗假設,確定檢驗水準

- \circ H_0 : 兩總體中位數相同;
- \circ H_1 : 兩總體中位數不相同;
- $\circ \ \alpha = 0.05$

• 計算檢驗統計量

。 統一編秩,分別求秩和,相同數值取平均秩次,選樣本小的秩和作爲統計量: T=162

·根據P值,做出結論

。 根據SPSS軟件結果, P < 0.05,在0.05的檢驗水平下拒絕原假設,認爲兩總體中位數不相同。

【例】44 例健康人与24例慢性气管炎病人痰液嗜酸性粒细胞数的测量值(10⁶/L),间健康人与慢性气管炎病人痰液嗜酸性粒细胞数有无显著差别?

	两组人痰嗜酸性粒细胞的秩和计算						
嗜酸性	频数		- 秩次范围	平均建步	秩和		
粒细胞数	健康	病人	总	1人1人16日	1 2010.10	4Д/Н	
(1)	(2)	(3)	(4)	(5)	(6)	$(7) = (3) \times (5)$	
-	5	11	16	1-16	8.5	93.5	
+	18	10	28	17-44	30.5	305	
++	16	3	19	45-63	54.0	162	
+++	5	0	5	64-68	66	0	
合计	44	24				T.=560.5	

• 建立檢驗假設,確定檢驗水準

- \circ H_0 : 兩總體中位數相同;
- \circ H_1 : 兩總體中位數不相同;
- $\circ \ \alpha = 0.05$

• 計算檢驗統計量

。 統一編秩,分別求秩和,相同數值取平均秩次,選樣本小的秩和作爲統計量: T=560.5

·根據P值,做出結論

。 根據SPSS軟件結果, P < 0.05,在0.05的檢驗水平下拒絕原假設,認爲兩總體中位數不相同。

多組獨立樣本的秩和檢驗(Kruskal-Wallis 法)

【例】研究白血病時,測定四組鼠脾 DNA的含量,結果列於下表,試分析各 組DNA含量有無差別?

表9-6 各组鼠脾DNA含量(mg)的秩和计算							
正常		患自	发性自	患移植白血		患移植白血	
脾		血丸	허脾	病的腫	单(甲组)	病的脾(乙组)	
含量	秩次	含量	秩次	含量	秩次	含量	秩次
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
12.3	18	10.8	8	9.3	1	9.5	2
13.2	22	11.6	13	10.3	3. 5	10.3	3. 5
13.7	26	12.3	18	11.1	11	10.5	5
15.2	28	12.7	21	11.7	14	10.5	6
15.8	29	13.5	23	11.7	15	10.5	7
16.9	30	13.5	24	12.0	16	10.9	9
17.3	31	14.8	27	12.3	18	11.0	10
17.4	32			12.4	20	11.5	12
				13.6	25		

• 建立檢驗假設,確定檢驗水準

- \circ H_0 : 四組鼠脾**DNA**含量的總體分佈相同;
- \circ H_1 : 四組鼠脾**DNA**含量的總體分佈不完全相同;
- $\circ \ \alpha = 0.05$

• 計算檢驗統計量

。 統一編秩,分別求秩和,相同數值取平均秩次,構造 \mathbf{H} 統計量: H=19.9

·根據P值,做出結論

。 根據SPSS軟件結果, P < 0.05,在0.05的檢驗水平下拒絕原假設,認爲 四組鼠脾DNA含量的總體分佈不完全相同。

非參數檢驗小結

- 非參數檢驗在假設檢驗中不對參數作明確的推 斷,也不涉及樣本取自何種分佈的總體。它的 適用範圍較廣。常用的非參方法較為簡便。易 於理解掌握。當資料適用參數檢驗方法時,用 非參常會損失部分信息,降低檢驗效能。
- 秩和檢驗是通過對數據依小到大排列秩次,求 秩和來進行假設檢驗的方法,可用於兩獨立樣 本比較、配對資料比較、多個獨立樣本比較、 隨機配伍組比較等。

卡方檢驗

Karl Pearson

英國統計學家Pearson提出的一種主要用於分析 分類變量數據的假設檢驗方法,該方法主要用途 是推斷兩個或多個總體率及構成比之間有無差別 【例】吲達帕胺片治療原發性高血壓療效,將患者隨機分為兩組,試驗組用吲達帕胺片加輔助治療,對照組用安慰劑加輔助治療。試分析有效性。

组别	有效	无效	合计	有效率 (%)
对照组	20(25.8)a	24(18.2)b	44(a+b)	45.5
试验组	21(15.2)c	5(10.8)d	26(c+d)	80.8
合计	41(a+c)	29(b+d)	70(n)	58.6

• 建立檢驗假設並設定檢驗水平

$$\circ \ \ H_0:\pi_1=\pi_2$$

$$\circ H_1:\pi_1
eq\pi_2$$

$$\circ \ \alpha = 0.05$$

• 計算卡方檢驗統計量

。 卡方統計量:
$$\chi^2 = \sum rac{(A-T)^2}{T} = 8.4 \sim \chi^2(1)$$

·計算P值,得出結論

P < 0.05,拒絕原假設,在0.05的檢驗水平下認爲试验组与对照组的总体有效率不等。

獨立四個表卡方檢驗的結果選擇

- •當 $n \geq 40$ 且 $T \geq 5$ 時,選擇標準卡方檢驗
- ・當 $n \geq 40$ 且 $1 \leq T < 5$ 時, 選擇校正的卡方檢驗
- ・當 n < 40或 T < 1 時,選擇Fisher 確切概率 法

【例】某醫師欲比較胞磷膽鹼與神經節苷 酯治療腦血管疾病的療效,將58例腦血管 疾病患者隨機分為兩組,結果見表。問兩 種藥物治療腦血管疾病的有效率是否相 等?

药物分组	有效	无效	合计	有效率(%)
胞磷胆碱组	25 (23. 7)	3 (4.3)	28	89. 29
神经节苷酯组	24 (25. 3)	6 (4.7)	30	80. 00
合计	49	9	58	84. 48

• 建立檢驗假設並設定檢驗水平

$$_{\circ}~H_{0}$$
: $\pi_{1}=\pi_{2}$

$$_{\circ}~H_{1}$$
: $\pi_{1}
eq\pi_{2}$

$$_{\circ}$$
 $lpha=0.05$

- 選擇Fisher確切概率法的P值,得出結論
 - P < 0.05,拒絕原假設,在0.05的檢驗水平下認爲兩组的总体有效率不等。

配對四個表卡方檢驗

【例】現有198份痰標本,每份標本分別用A、B兩種培養基培養結核菌,問A、B兩種培養基培養結核菌,問A、B兩種培養基的陽性培養率是否不等?

A培养基	B培	养基	合计
	+	_	
+	48 (a)	24 (b)	72
_	20 (c)	106 (d)	126
合计	68	130	198

• 建立檢驗假設並設定檢驗水平

$$\circ H_0: B = C$$

$$\circ H_1: B \neq C$$

$$\circ \ \alpha = 0.05$$

• 計算卡方檢驗統計量

$$\circ$$
 卡方統計量: $\chi^2=rac{(b-c)^2}{b+c}\sim \chi^2(1)$

·計算P值,得出結論

P > 0.05,不拒絕原假設,在0.05的檢驗水平下不認爲兩種培養基的总体 陽性率不等。 R×C列聯表的卡方檢驗

【例】某醫院用3種方案治療急性肝炎254例, 觀察結果如下, 問3種方案治療急性 肝炎的有效率是否不同。

组别	有效	无效	合计	有效率(%)
西药组	51	49	100	51.00
中药组	35	45	80	43.75
中西药结合组	59	15	74	79.73
合计	145	109	254	57.09

• 建立檢驗假設並設定檢驗水平

$$\circ \ H_0$$
: $\pi_1 = \pi_2 = \pi_3$

 \circ $H_1: \pi_1 \pi_2, \pi_3$ 不全相等

 $\circ \ \alpha = 0.05$

• 計算卡方檢驗統計量

。 卡方統計量:
$$\chi^2 = \sum rac{(A-T)^2}{T} = 22.81 \sim \chi^2(2)$$

·計算P值,得出結論

。 P < 0.05,拒絕原假設,在0.05的檢驗水平下認爲 $\pi_1 \pi_2, \pi_3$ 不全相等。

謝謝大家!