Aula 04 – Introdução à Estatística Descritiva – Programando em R

Luciana Rocha Pedro

GCC 1518 - Estatística e Probabilidade - CEFET Maracanã

26 de março de 2018

Linguagem R

Tabelas

Introdução

000 Introdução

Função	Descrição
rm(x)	deletar variável x
rm(x, y)	deletar as variáveis x e y
rm(list = ls())	deletar todas as variáveis (limpar a workspace)
	sair do R com a opção de salvar o workspace em um
q()	arquivo ("Name.RData") e o histórico de comandos em
	outro arquivo ("Name.RHistory")
ctrl + L	no teclado, pressione "ctrl+L" para limpar a tela
esc	cancelar a linha do cursor
seta para cima	acessar últimos comandos
seta para baixo	limpar a linha do cursor
?comando	informações sobre um comando específico

Introdução

OO● Introdução

Tabela 01

Tabelas •0000000000

Tabela 01 – Informações sobre os alunos da disciplina Inferência Estatística do curso de Estatística da UEM - 21/03/2005.

Num	Sexo	ld	Altura	Peso	Est.Civil	N.Ir.	Transp.	Procedência	Trabalho	Inform	Disc.
1	F	20	1,60	58	Solteiro	1	Próprio	Maringá	Não rel.	TV	2
2	F	26	1,65	59	Solteiro	2	Coletivo	Fora do PR	Não trab.	Revista	0
3	F	18	1,64	55	Solteiro	2	Próprio	Maringá	Não trab.	TV	0
4	F	25	1,73	60	Solteiro	2	Coletivo	Outro no PR	Não rel.	TV	2
5	M	35	1,76	83	Casado	6	Coletivo	Outro no PR	Não rel.	TV	2
6	F	20	1,62	58	Solteiro	2	Coletivo	Outro no PR	Não rel.	Rádio	5
7	F	29	1,72	70	Solteiro	3	Coletivo	Maringá	Não trab.	TV	0
8	M	23	1,71	62	Separado	2	Próprio	Outro no PR	Não rel.	Internet	2
9	F	20	1,63	63	Solteiro	2	Próprio	Maringá	Não trab.	TV	1
10	M	20	1,79	75	Solteiro	2	Próprio	Fora do PR	Não trab.	Internet	2
11	M	20	1,82	66	Solteiro	1	Próprio	Fora do PR	Não trab.	TV	2
12	F	30	1,68	46	Solteiro	3	Próprio	Outro no PR	Parc.rel.	TV	4
13	F	18	1,69	64	Solteiro	1	Próprio	Maringá	Parc.rel.	TV	0
14	M	37	1,82	80	Casado	2	Próprio	Maringá	Não rel.	TV	3
15	M	25	1,83	62	Solteiro	1	Próprio	Outro no PR	Não rel.	TV	2
16	F	20	1,63	68	Solteiro	2	Coletivo	Maringá	Não trab.	TV	2
17	M	21	1,71	80	Solteiro	2	Coletivo	Maringá	Não rel.	Internet	0
18	M	25	1,80	82	Casado	1	Próprio	Outro no PR	Não rel.	Internet	3
19	F	24	1,62	55	Solteiro	2	Próprio	Maringá	Não trab.	Jornal	2
20	M	19	1,74	58	Solteiro	2	Próprio	Maringá	Com.rel.	TV	3
21	F	21	1,55	65	Solteiro	1	Próprio	Maringá	Não trab.	TV	1
22	М	22	1,73	62	Solteiro	0	Próprio	Maringá	Não trab.	Jornal	4

Tabelas

0000000000

Tabela 02 - Número de alunos matriculados na disciplina Probabilidade I do curso de Estatística da Universidade Estadual de Maringá.

Ano	Nº de Alunos
2000	40
2001	59
2002	63
2003	69
2004	71

Fonte: DES/UEM.

Nota: Os números de 2003 e 2004 correspondem a duas turmas.

> rm(list=ls())	
> ano = c(2000,2001,2002,2003,2004)	> tab2
> alunos = c(40, 59, 63, 69, 71)	ano aluno:
> ano	[1,] 2000 4
[1] 2000 2001 2002 2003 2004	[2,] 2001 5
> alunos	[3,] 2002 6
[1] 40 59 63 69 71	[4,] 2003 6
> tab2 = cbind(ano, alunos)	[5,] 2004 7
	I

Aula 04 - Introdução à Estatística Descritiva - Programando em R

Tabela 03 – Municipio de procedência dos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de Maringá, 21/03/2005.

Município de Procedência	N⁰ de Alunos				
Maringá	12				
Outro no Paraná	7				
Fora do Paraná	3				
Total	22				
Fonte: Tabela 01.					

```
> dados = read.table("D:\\Dropbox\\Estatistica\\Aulas\\Tabela 1.csv", header = TRUE, sep = ",")
> names(dados)
[1] "Num"
                   "Sexo"
                                 "Td"
                                               "Altura"
                                                              "Peso"
                                                                            "Est.Civil"
                                                                                          "N.Ir."
                                                                                                         "Transp."
 [9] "Procedencia" "Trabalho"
                                  "Inform"
                                                "Disc."
> attach(dados)
> Procedencia
                    Fora do PR
 [1] Maringa
                                   Maringa
                                                 Outro no PR
                                                                Outro no PR
                                                                              Outro no PR
                                                                                            Maringa
                                                                                                           Outro no PR
 [9] Maringa
                                                                Maringa
                                                                              Maringa
                    Fora do PR
                                   Fora do PR
                                                 Outro no PR
                                                                                            Outro no PR
                                                                                                           Maringa
[17] Maringa
                    Outro no PR
                                   Maringa
                                                 Maringa
                                                                Maringa
                                                                              Maringa
                       Maringa
Levels: Fora do PR
                                 Outro no PR
> summary(Procedencia)
Fora do PR
                   Maringa
                             Outro no PR
                          12
```

Tabelas

0000000000

Tabela 03 - Município de procedência dos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de Maringá 21/03/2005

17ta 111ga, 21/05/2005.					
Município de Procedência	N⁰ de Alunos				
Maringá	12				
Outro no Paraná	7				
Fora do Paraná	3				
Total	22				
Fonte: Tabela 01.					

```
> x = table(Procedencia)
> x
Procedencia
 Fora do PR
                  Maringa
                            Outro no PR
> x = sort(x, decreasing = TRUE)
> x
Procedencia
     Maringa Outro no PR Fora do PR
          12
> tab3 = c(x, sum(x))
> tab3
              Outro no PR Fora do PR
          12
                                                    22
> names(tab3)[4]=" Total"
> tab3
     Maringa Outro no PR Fora do PR
                                                 Total
```

Tabelas

00000000000

Frequências Relativas em Percentual

Tabela 04 – Município de procedência dos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de Meripos 21/03/2005

Município de Procedência	Nº de Alunos	Percentual
Maringá	12	55
Outro no Paraná	7	32
Fora do Paraná	3	13
Total	22	100

Fonte: Tabela 01.

```
> x
Procedencia
     Maringa
              Outro no PR
                           Fora do PR
           12
> p_fi = 100*prop.table(x)
> p_fi
Procedencia
     Maringa
              Outro no PR
    54.54545
                   31.81818
                                 13.63636
> tab41 = c(x,sum(x))
> names(tab41)[4]=" Total"
> tab42 = c(p_fi, sum(p_fi))
> tab4 = cbind(tab41,tab42)
> tab4
             tab41
                       tab42
 Maringa
                 12 54.54545
Outro no PR
                 7 31.81818
 Fora do PR
                 3 13.63636
 Total
                 22 100.00000
```

> tab4 = round(tab4)

/ tab4		
	tab41	tab4
Maringa	12	5
Outro no PR	7	3
Fora do PR	3	1
Total	22	10

Tabelas 00000000000

Tabela 05 - Meio de transporte mais utilizado pelos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de Maringá, 21/03/2005.

Meio de transporte	Nº de Alunos			
Coletivo	7			
Próprio	15			
Total	22			
Fonte: Tabela 01.				

```
> tab5 = table(Transp.)
> tab5
Transp.
Coletivo Proprio
> tab5 = c(tab5, sum(tab5))
> tab5
Coletivo
            Proprio
                              22
> names(tab5)[3]=" Total"
> tab5
Coletivo Proprio
                          Total
                  15
                              22
```

Aula 04 - Introdução à Estatística Descritiva - Programando em R

Tabela Cruzada

Tabelas

00000000000

Tabela 06 - Meio de transporte mais utilizado segundo o sexo dos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de Maringá, 21/03/2005.

Meio de transporte	Se	Total	
	Masculino	Feminino	Total
Coletivo	2	5	7
Próprio	8	7	15
Total	10	12	22

> tab6 = table(Transp.,Sexo)

Fonte: Tabela 01.

> tab6 Sexo Transp. Coletivo Próprio 7 > tab6 = addmargins(tab6) > tab6 Sexo Transp. Sum Coletivo Próprio 8 15

Sum

12 10 22

Distribuição de Frequências Completa

Tabela 08 - Número de irmãos dos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de Maringá, 21/03/2005.

Número de irmãos (x _i)	Fi	fi%	F_{a_i}	f _{ai} %
0	1	4,55	1	4,55
1	6	27,26	7	31,81
2	12	54,55	19	86,36
3	2	9,09	21	95,45
6	1	4,55	22	100,00
Total	22	100,00		

Fonte: Tabela 01.

`	ni	-	M	Tr	

Tabelas

> Freq = table(ni)

> Relativa = 100*prop.table(Freq)

> Acumulada = cumsum(Freq)

> AcumuladaRelativa = cumsum(Relativa)

> tab8 = cbind(Freq, Relativa, Acumulada, AcumuladaRelativa) > tab8 = round(tab8, digits = 2)

> tab8 Freq Relativa Acumulada AcumuladaRelativa 4.55 1 4.55 27.27 31.82 54.55 19 86.36 9.09 21 95.45 4.55 100.00

Tabelas

0000000000

Distribuição de Frequência Pontual

Tabela 09 - Idade dos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de

5.
F_i
2
1
6
2
1
1
1
3
1
1
1
1
1
22

Fonte: Tabela 01.

```
> Id
```

^{[1] 20 26 18 25 35 20 29 23 20 20 20 30 18 37 25 20 21 25 24 19 21 22}

> tab9 = table(Id)

> tab9

^{18 19 20 21 22 23 24 25 26 29 30 35 37} 2 1 6 2 1 1 1 3 1 1 1 1 1

Distribuição de Frequência em Classes

- AT = 37 18 = 19 anos:
- ▶ $k = \sqrt{22} = 4.69 \cong 5$ classes:
- ► $h = \frac{19}{5} = 3,8 \cong 4$ anos.

```
> n = length(Id)
> xmax = max(Id)
                                            > h = AT/k
> xmin = min(Id)
                       > k = sqrt(n)
                                            > h
> AT = xmax - xmin
                                            [1] 3.8
> AT
                       [1] 4.690416
                                            > h = round(h)
                       > k = round(k)
Γ17 19
                                            > h
                                            Γ17 4
                       Γ17 5
```

Distribuição de Frequência em Classes

Tabelas

Tabelas

0000000000

Tabela 10 - Idade dos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de Maringá, 21/03/2005.

Idade	xi	Fi	fi%	Fai	fai %
18 22	20	11	50,00	11	50,00
22 26	24	6	27,27	17	77,27
2630	28	2	9,09	19	86,36
30 34	32	1	4,55	20	90,91
34 38	36	2	9,09	22	100,00
Total	-	22	100,00	-	-

Fonte: Tabela 01.

```
> Id
[1] 20 26 18 25 35 20 29 23 20 20 20 30 18 37 25 20 21 25 24 19 21 22
> xmax = xmax + 1
> Fi = table(cut(Id, breaks = seq(xmin, xmax, h), right = FALSE))
> xi = seq(xmin+h/2, xmax, h)
> fi = 100*prop.table(Fi)
> Fai = cumsum(Fi)
> fai = cumsum(fi)
> tab10 = cbind(xi, Fi, fi, Fai, fai)
```

```
> tab10 = round(tab10, digits = 2)
[18,22) 20 11 50.00 11 50.00
[22,26) 24 6 27,27 17 77,27
[26,30) 28 2 9.09 19 86,36
[30,34) 32 1 4.55 20 90.91
[34,38) 36 2 9.09 22 100.00
```

Gráficos

Figura 02 - Relação trabalho e curso dos alunos da disciplina Inferência Estatística do curso de Estatística da UEM, 21/03/2005.

Fonte: Tabela 01.

```
> fig2 = table(Trabalho)
> fig2
Trabalho
Com.rel.
            Nao rel.
                         Nao trab.
                                     Parc.rel.
> barplot(fig2)
> barplot(sort(fig2), horiz = TRUE)
> barplot(sort(fig2), horiz = TRUE, xlab = "Numero de alunos")
```


Gráfico de Colunas

Figura 03 - Meios de informação utilizados pelos alunos da disciplina Inferência Estatística, curso de Estatística da UEM, 21/03/2005,

Fonte: Tabela 01

```
> fig3 = table(Inform)
> barplot(fig3, ylab = "Numero de alunos")
```


Tabelas

Gráficos

Figura 04 - Município de procedência segundo o tipo de transporte utilizado pelos alunos da disciplina Inferência Estatística do curso de Estatística da UEM. 21/03/2005.

Fonte: Tabela 01

```
> fig4 = table(Transp., Procedencia)
> barplot(fig4, beside = TRUE)
> barplot(fig4, beside = TRUE, legend = rownames(fig4))
```

> barplot(fig4, beside = TRUE, legend = rownames(fig4), col = c("pink", "green"))

Gráficos

Figura 05 - Município de procedência dos alunos da disciplina Inferência Estatística do curso de Estatística da UEM, 21/03/2005.

Fonte: Tabela 01.

```
> fig5 = table(Procedencia)
```


> fig5 = round(100*prop.table(fig5))

> lab = paste(names(fig5), round(fig5))

> lab = paste(lab, "%", sep = "")

> pie(fig5, labels = lab)

Gráfico de Linhas

Figura 06 - Número de matrículas anuais na disciplina Probabilidade do curso de Estatística da UEM, 21/03/2005.

Fonte: Tabela 01

```
> ano = c(2000, 2001, 2002, 2003, 2004)
```


> alunos = c(40, 59, 63, 69, 71)

> plot(ano, alunos, ylim = c(0, 80), xlim = c(1999, 2004))

> lines(ano, alunos)

Gráfico de Bastões

Figura 07 – Número de irmãos dos alunos da disciplina Inferência Estatística do curso de Estatística da UEM. 21/03/2005.

Fonte: Tabela 01.

```
> N.Ir.
[i] 1 2 2 2 6 2 3 2 2 2 1 3 1 2 1 2 2 1 2 2 1 0
> fig7 = table(N.Ir.)
> fig7
N.Ir.
0 1 2 3 6
1 6 12 2 1
> plot(fig7, type = "h")
> par(new = TRUE)
> plot(fig7, type = "p")
```


Figura 08 - Número acumulado de irmãos dos alunos da disciplina Inferência Estatística do curso de Estatística da UEM. 21/03/2005.

Fonte: Tabela 01.

Histograma


```
> hist(Id, breaks = seq(xmin-h, xmax, h), right = FALSE, xaxt = "n", ylim = c(0, 12))
```


> axis(1, seq(xmin-h, xmax, h))

Figura 10 - Idade dos alunos da disciplina Inferência Estatística do curso de Estatística da UEM, 21/03/2005.

Fonte: Tabela 01.

Gráfico de Freqüência Acumulada ou Ogiva

Figura 11 - Idade acumulada dos alunos da disciplina Inferência Estatística do curso de Estatística da UEM, 21/03/2005.

Fonte: Tabela 01.

Diagrama Ramo-e-Folhas

Folha	Freqüência
8 8 9	3
0000000112345569	16
5 7	2
(a) Sem divisão de ramos.	
Folha	Freqüência
Folha 8 8 9	Freqüência 3
	Frequência 3 12
8 8 9	3
	889 0000000112345569 57

Figura 12 - Idade dos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de Maringá, 21/03/2005.

Fonte: Tabela 01.

> stem(Id)

The decimal point is 1 digit(s) to the right of the |

- 1 | 889
- 2 | 00000011234
- 2 | 55569
- 3 I 0
- 3 | 57

Média


```
> vet = c(0, 1, 1, 2, 2, 2, 3, 4)
> vet
[1] 0 1 1 2 2 2 3 4
> mean(vet)
[1] 1.875
```

Medidas Descritivas

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{20 + 26 + 18 + \dots + 21 + 22}{22} = \frac{518}{22} = 23,5 \text{ anos.}$$

> Id

[1] 20 26 18 25 35 20 29 23 20 20 20 30 18 37 25 20 21 25 24 19 21 22

> mean(Id) [1] 23.54545

Média

Moda

A moda (M_o) é o valor que apresenta a maior freqüência da variável entre os valores observados

```
> moda = function(x) {
                                                   > moda = function(x) {
    t = table(x)
                                                       t = table(x)
    return(as.numeric(names(t)[t == max(t)]))
                                                        return(as.numeric(names(t)[t == max(t)]))
                                                   > moda(Id)
                                                   Γ17 20
```

Aula 04 - Introdução à Estatística Descritiva - Programando em R

Moda

$$M_o = I_i + \frac{h(F_i - F_{i-1})}{(F_i - F_{i-1}) + (F_i - F_{i+1})}$$

$$= 18 + \frac{4 \cdot (11 - 0)}{(11 - 0) + (11 - 6)} = 18 + \frac{44}{16} = 18 + 2,75 = 20,75 \text{ anos.}$$

```
> modaclass = function(li, h, F1, F2, F3) {
  modaclass
                               modaclass
}
                             > modaclass(x[1],h,0,Fi[1],Fi[2])
                              20 75
```

Mediana

X	X ₁	X ₂	X3	X ₄		X5	X ₆	X7	X ₈
Valor observado	0	1	1	2	$\frac{x_4 + x_5}{2}$	2	2	3	4
	Md=2	—	- 4 obsei	vações -	\rightarrow				

```
> vet = c(0, 1, 1, 2, 2, 2, 3, 4)
[1] 0 1 1 2 2 2 3 4
```

> median(vet)

Mediana

X	X ₁	X ₂	X ₃	X ₄	X5	X6	X7	X8	X9
Valor observado	0	1	1	1	2	2	3	4	10
← 4 observações → Md=2 ← 4 observações									

Tabelas

Mediana

18, 18, 19, 20, 20, 20, 20, 20, 20, 21, 21, 22, 23, 24, 25, 25, 25, 26, 29, 30, 35, 37

$$M_d = x_{11} + 0, 5 \cdot (x_{12} - x_{11}) = 21 + 0, 5 \cdot (22 - 21) = 21, 5$$
 anos.

```
> Id
[1] 20 26 18 25 35 20 29 23 20 20 20 30 18 37 25 20 21 25 24 19 21 22
> sort(Id)
[1] 18 18 19 20 20 20 20 20 20 21 21 22 23 24 25 25 25 26 29 30 35 37
> median(Id)
[1] 21.5
```

Mediana

$$\begin{array}{lll} M_d & = & I_i + \frac{h(p-F_{a_{i-1}})}{F_i} \\ & = & 18 + \frac{4 \cdot (11-0)}{11} = 18 + \frac{44}{11} = 18 + 4 = 22 \text{ anos.} \\ \\ > \text{medianaclass = function(1i, h, p, Fa1, F2) } \\ & \text{medianaclass = 1i + h*(p - Fa1)/F2} \\ & \text{medianaclass = 1i + h*(p - Fa1)/F2} \\ \\ \} \\ & \text{medianaclass} \\ \} \\ \\ > \text{medianaclass} \\ \\ \\ \geq 22 \end{array}$$

GCC 1518 - Estatística e Probabilidade - CEFET Maracanã

Medidas Separatrizes

Tabelas

18, 18, 19, 20, 20, 20, 20, 20, 21, 21, 22, 23, 24, 25, 25, 25, 26, 29, 30, 35, 37

- o terceiro quartil,
- o quadragésimo percentil,

Aula 04 - Introdução à Estatística Descritiva - Programando em R

```
> summary(Id)
  Min. 1st Qu.
                Median
                         Mean 3rd Qu.
                                         Max.
  18.00 20.00
                 21.50
                         23.55 25.00
                                        37.00
> quantile(Id, seq(0.1, 0.9, 0.1))
 10% 20% 30% 40% 50% 60% 70% 80% 90%
19.1 20.0 20.0 20.4 21.5 23.6 25.0 25.8 29.9
> quantile(Id, c(0.4))
40%
20.4
```

Tabelas

Medidas Separatrizes em Classes

Tabela 10 - Idade dos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de Maringá 21/03/2005

Idade	xi	Fi	f _i %	Fai	fai %
18 22	20	11	50,00	11	50,00
22 26	24	6	27,27	17	77,27
26 30	28	2	9,09	19	86,36
30 34	32	1	4,55	20	90,91
34 38	36	2	9,09	22	100,00
Total	-	22	100,00	-	-

Fonte: Tabela 01.

Medidas Separatrizes em Classes

- o primeiro quartil,
- o terceiro quartil,
- o sétimo decil.
- o nonagésimo percentil.

```
> k = 1
> p = n/4*k
> p
T17 5.5
> Q1 = medianaclass(x[i], h, p, 0, Fi[i])
> Q1
[18,22)
     20
> k = 3
> p = n/4*k
Γ17 16.5
> Q3 = medianaclass(x[i], h, p, Fai[i-1], Fi[i])
> 03
 Γ18,22)
25.66667
```

```
> k = 7
> p = n/10*k
Γ17 15.4
> D7 = medianaclass(x[i], h, p, Fai[i-1], Fi[i])
> D7
 [18,22)
24.93333
> k = 90
> p = n/100*k
> p
[1] 19.8
> P90 = medianaclass(x[i], h, p, Fai[i-1], Fi[i])
> P90
[26,30)
   33.2
```

Amplitude

$$AT = 37 - 18 = 19$$
 anos

Amplitude Interquartílica

$$dq = 25,67 - 20 = 5,67$$
 anos.

$$> dq = Q3 - Q1$$

Amplitude Semi-interquartílica

$$dq_m = 2,84$$
 anos.

[1] 2.833333

Variância e Desvio Padrão

Variância:
$$s^2 = \frac{(20-23,5)^2 + \ldots + (36-23,5)^2}{22-1} = 27,11$$
 anos.

Desvio padrão: $s = \sqrt{27, 11} = 5, 21$ anos.

```
> variancia = function(n, m, x) {
                                      variancia = function(n, m, x) {
    soma = 0
                                           soma = 0
                                                                             > variancia(n. m. x)
    for (i in 1:n){
                                           for (i in 1:n){
                                                                             [1] 27.19481
                                               soma = soma + (x[i]-m)^2
        soma = soma + (x[i]-m)^2
                                                                             > var(Id)
                                                                            [1] 27.11688
    soma
                                         soma
    variancia = soma/(n-1)
                                      + variancia = soma/(n-1)
                                                                            > sqrt(var(Id))
    variancia
                                           variancia
                                                                             [1] 5.207387
                                                                             > sd(Id)
                                                                             [1] 5.207387
```

Variância e Desvio Padrão – Classes

Variância:
$$s^2 = \frac{(20-23,8)^2 \cdot 11 + \ldots + (36-23,8)^2 \cdot 2}{22-1} = 26,63$$
 anos.

```
> varianciaclass = function(k, n, m, x, F) {
                                                 > varianciaclass = function(k, n, m, x, F) {
     soma = 0
                                                      soma = 0
     for (i in 1:k){
                                                      for (i in 1:k){
        soma = soma + (x[i]-m)^2*F[i]
                                                         soma = soma + (x[i]-m)^2*F[i]
                                                      soma
     varianciaclass = soma/(n-1)
                                                      varianciaclass = soma/(n-1)
     varianciaclass
                                                       varianciaclass
  }
```

Tabelas

Variância e Desvio Padrão – Classes

Desvio padrão: $s = \sqrt{23,63} = 5,16$ anos.

```
> n = length(Id)
                                            > s2 = varianciaclass (k, n, m, xi, Fi)
> n
                                            > s2
[1] 22
                                              Γ18,22)
> k = round(sqrt(n))
                                             26.63203
> k
                                            > s = sqrt(s2)
[1] 5
> m
                                              Γ18,22)
Γ17 23.81818
                                             5.160623
> xi = seq(xmin+h/2, xmax, h)
> xi
[1] 20 24 28 32 36
[18,22) [22,26) [26,30) [30,34) [34,38)
```

Coeficiente de Variação

Aula 04 - Introdução à Estatística Descritiva - Programando em R

$$CV = \frac{\sigma}{\mu} \cdot 100 = \frac{5, 16}{23, 8} \cdot 100 = 21,68\%.$$

$$\begin{array}{c} > s \\ \text{[1] 5.160657} \\ > m \\ \text{[1] 22.81818} \\ > \text{CV} = 100 \cdot \text{s/m} \\ > \text{CV} \\ \text{[18,22)} \end{array}$$

21.66674

Medida de Assimetria

> x[1]

Γ17 4 > Fi

Γ17 18 > h

Tabelas

$$A_{s} = \frac{\mu - M_{o}}{\sigma} = \frac{23,8 - 20,75}{5.16} = 0,89.$$

$$\begin{array}{c} > \text{mo = modaclass(x[1],h,0,Fi[1],Fi[2])} \\ > \text{mo} \\ [18,22) \\ > 20.75 \\ > \text{As = (m - mo)/s} \end{array}$$

Medida de Curtose

Tabelas

$$K = \frac{(Q_3 - Q_1)}{2 \cdot (P_{90} - P_{10})} = \frac{(25, 67 - 20)}{2(33, 2 - 18, 8)} = 0,1969.$$

```
> Q3
            > k = 10
                             > P10 = medianaclass(x[i], h, p, 0, Fi[i])
[18,22)
            > p = n/100*k
                             > P10
25.66667
            > p
                             [18,22)
> Q1
           [1] 2.2
                                18.8
[18,22)
           > i = 1
                             > K = (Q3 - Q1)/(2*(P90 - P10))
     20
                             > K
> P90
                             [1] 0.1967593
[26,30)
  33.2
```

BoxPlot

Figura 17 - Idade dos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de Maringá.

- > boxplot(Id)
- > boxplot(Id, horizontal = TRUE)

BoxPlot

Figura 18 - Box plot da idade segundo o sexo dos alunos da disciplina Inferência Estatística do curso de Estatística da Universidade Estadual de Maringá.

> axis(1, at = 1:2, labels = c("Feminino", "Masculino"))

```
> tabf = tab[which(tab[,2] == 1),]
                             > tabf
> tab = cbind(Id. Sexo)
                                   Id Sexo
> tab
                              [1,] 20
      Id Sexo
                              [2,] 26
 Γ1.1 20
                              [3,] 18
 ſ2.1 26
                              ſ4.1 25
                              [5,] 20
 [3,] 18
            1
 [4,] 25
                              [6,] 29
            1
 [5,] 35
                              [7,] 20
 [6,] 20
                              [8,] 30
 [7,] 29
                              [9,] 18
 [8,] 23
                             [10,] 20
                             Γ11.7 24
 [9,] 20
[10,] 20
                             [12,] 21
                            > tabm = tab[which(tab[,2] == 2),]
Γ11.7 20
            2
[12,] 30
                             > tabm
[13,] 18
                                   Id Sexo
            1
[14,] 37
            2
                              Γ1.7 35
[15,] 25
                              [2,] 23
                              Γ3.1 20
Γ16.7 20
            1
[17,] 21
                              [4,] 20
[18,] 25
            2
                              [5,] 37
[19,] 24
                              [6,] 25
[20,] 19
                              [7,] 21
[21,] 21
                              [8,] 25
            1
[22,] 22
            2
                              [9,] 19
                             [10,] 22
                             > boxplot(tabf[,1], tabm[,1], ylab = "Idades", ylim = c(xmin, xmax))
```

BoxPlot 0000

Tabelas

Um investigador deseja estudar a possível relação entre o Salario (em mil reais) e o tempo de Experiencia (em anos completos) no cargo de gerente de agências bancárias de uma grande empresa utilizando 27 pares de observações.

Experiencia	Salario	
0	1.9307	
17	3.1769	
8	2.2769	
15	3.1307	
9	2.7769	
15	3.0923	
8	2.6538	
5	2.2230	
13	2.8538	
20	3.2307	
11	2.8230	
1	1.9076	
6	2.5384	
7	2.5692	

Experiência	Salário
<u> </u>	
23	4.2230
20	4.0923
18	3.6000
27	4.7076
11	3.1461
10	2.9923
29	4.7461
23	4.1153
4	2.3615
22	4.0923
25	4.5076
9	2.9076
25	4.4846

Estatísticas Descritivas

Uma maneira fácil de obter algumas estatísticas descritivas das variáveis em estudo é através do comando summary(), que retorna as estatísticas mínimo, quartis, média e máximo.

Para medir a variabilidade, utilizamos as funções var() e sd() para obtermos a variância e o desvio padrão.

> dados = read.table("D:\\Dropbox\\Estatistica\\Aulas\\BD.csv", sep = ',', header = TRUE)

```
> names(dados)
                                 > summary(Salario)
[1] "Experiencia" "Salario"
                                    Min. 1st Qu. Median
                                                          Mean 3rd Qu.
                                                                          Max.
> attach(dados)
                                   1.908 2.611
                                                  3.092
                                                         3.228
                                                                 4.092
                                                                         4.746
> summary(dados)
                                 > var(Salario)
  Experiencia
                   Salario
                                 [1] 0.7366968
 Min. : 0.00 Min.
                       :1.908
                                 > summary(Experiencia)
 1st Qu.: 8.00 1st Qu.: 2.611
                                   Min. 1st Qu. Median
                                                          Mean 3rd Qu.
                                                                          Max.
 Median -13 00 Median -3 092
                                           8 00 13 00
                                                         14 11 21 00
                                                                        29 00
                                 > var(Experiencia)
 Mean :14.11
               Mean
                     :3.228
 3rd Qu.:21.00
               3rd Qu.:4.092
                                 [1] 68.33333
 Max. :29.00
               Max.
                      :4.746
```

Diagrama de Dispersão

Para verificar a existência de alguma relação entre **Salario** e **Experien**cia, podemos construir um diagrama de dispersão e calcular o coeficiente de correlação linear de pearson entre as variáveis utilizando a função cor.

Regressão Linear Simples

Sejam X e Y, respectivamente, as variáveis Experiência (explicativa) e Salário (resposta). Propõe-se um modelo de regressão linear de primeira ordem, dado pela equação: $y=\alpha+\beta x$, em que α e β são parâmetros desconhecidos. Para ajustar um modelo de regressão linear no R utiliza-se a função lm.

O R retorna o valor dos coeficientes α e β estimados via Método de Mínimos Quadrados. Logo, a equação da reta ajustada é dada por y=1,81+0,10x.

```
> ajuste = lm(Salario ~ Experiencia)
> ajuste

Call:
lm(formula = Salario ~ Experiencia)

Coefficients:
(Intercept) Experiencia
1.8063 0.1008
```


56/57

Diagrama de Dispersão

Para esboçar a reta ajustada no diagrama de dispersão, utilize a função abline.

