Ejercicios Tema 2. Conjuntos y Aplicaciones

Objetivos: Al terminar el tema el alumno debe ser capaz de:

- 1. Conocer las operaciones con conjuntos: complementario, unión, intersección y producto cartesiano.
- 2. Conocer las propiedades del álgebra de Boole definida en conjuntos.
- 3. Dada una correspondencia, reconocer si es o no aplicación.
- 4. Saber calcular la imagen directa y la imagen recíproca de un conjunto por una aplicación.
- 5. Saber si una aplicación es o no inyectiva, sobreyectiva y/o biyectiva.
- 6. Saber componer aplicaciones.

Ejercicios:

- 1. Describe los siguientes conjuntos, indicando todos sus elementos, y halla el cardinal de cada uno de ellos:
 - i) El conjunto de los enteros pares cuyo cuadrado es menor que 16.
 - ii) $B = \{x \in \mathbb{Z} \mid -1 < x + 1 \le 8\}.$
 - iii) El conjunto de los enteros positivos cuyo triple es menor que 24.
 - iv) El conjunto de las cadenas binarias de longitud menor o igual que 2.
 - v) El conjunto de soluciones reales de la ecuación $x^2 + 1 = 0$.
 - vi) El conjunto de soluciones enteras de la ecuación (x-1)(x-1) = 0.
- **2.** Comprueba en los siguientes casos si $B \in A$ (B es un elemento de A), $B \subseteq A$ (B es un subconjunto de A), o ambos casos o ninguno:

 - i) $B = \{1\}$ y $A = \{1, 2, 3\}$ iv) $B = \{1, 2\}$ y $A = \{1, 2, \{1, 2\}, 3\}$
 - ii) $B = \{1\}$ y $A = \big\{\{1\}, \{2\}, 3\big\}$ v) $B = \{1\}$ y $A = \big\{\{1, 2\}, 3\big\}$

 - iii) $B = \{1\}$ y $A = \{1, 2, \{1, 2\}\}$ vi) $B = \{1, 2\}$ y $A = \{\{1\}, \{2\}, \{3\}\}$
- 3. Sea $A = \{x, y, \{x\}, \{z\}, \{y, z\}\}$. Justifica si es verdadera o falsa cada una de las siguientes afirmaciones:

i)
$$\{x\} \in \mathcal{P}(A)$$

iv) $\{\{x\}, \{y\}\} \subseteq \mathcal{P}(A)$

ii)
$$y \in \mathcal{P}(A)$$

v) $\{\{x\}, \{z\}\} \subseteq \mathcal{P}(A)$

iii)
$$\{\{y,z\}\}\in\mathcal{P}(A)$$

vi) $\{\{x,y\}\}\subseteq \mathcal{P}(A)$

4. En el dominio $U = \mathbb{Z}$, se consideran los siguientes subconjuntos de \mathbb{Z} :

$$A_1 = \{x \in \mathbb{Z} \mid x \text{ es múltiplo de 3}\}, \qquad A_2 = \{x \in \mathbb{Z} \mid x \text{ es múltiplo de 4}\},$$

 $A_3 = \{x \in \mathbb{Z} \mid x \text{ divide a 60}\}.$

Razona si es verdadera o falsa cada una de las afirmaciones siguientes:

i)
$$[20 \in A_2 \cap \overline{A_1}] \wedge [18 \in A_2 \setminus A_3]$$

ii)
$$\{10,4,6\} \subseteq \overline{A_1 \cup \overline{A_3}}$$

iii)
$$\exists x \ [\ x \in \overline{A_3} \cap (A_2 \cup A_1)]$$

$$U = \{ n \in \mathbb{Z} \mid 1 \le n \le 24 \}$$

 $B = \{ n \in U \mid n \text{ es par} \}$

$$A = \{n \in U \mid n \text{ es divisor de } 24\}$$
 $C = \{n \in U \mid n \text{ es primo}\}$

$$C = \{ n \in U \mid n \text{ es primo} \}$$

Determina los elementos de los siguientes conjuntos:

i)
$$A \cup B$$

iii)
$$\overline{A \cup B}$$

v)
$$(A \cup B) \cap C$$

ii)
$$A \cap B \cap C$$

iv)
$$\overline{A \cap B}$$

vi)
$$C \setminus B$$

6. Para $X = \{1, \{y, z\}, y, \emptyset\}$ e $Y = \{1, y, z\}$, determina los conjuntos siguientes:

i)
$$X \setminus \emptyset$$

iii)
$$\{y, z\} \setminus X$$
 v) $X \cap Y$

$$y \mid X \cap Y$$

ii)
$$X \setminus \{\emptyset\}$$

iv)
$$X \setminus \{\{y, z\}\}$$
 vi) $\mathcal{P}(Y) \cap X$

vi)
$$\mathcal{P}(Y) \cap X$$

7. Sean $A = \{\emptyset, \{a\}, b\}$ y $B = \{a, b\}$. Indica, razonadamente, si es verdadera o falsa cada una de las afirmaciones siguientes:

i)
$$\{\emptyset\} \in \mathcal{P}(A)$$

iii)
$$\{a,b\} \in \mathcal{P}(A)$$

i)
$$\{\emptyset\} \in \mathcal{P}(A)$$
 iii) $\{a,b\} \in \mathcal{P}(A)$ v) $\{\{a\},\{b\}\} \in \mathcal{P}(A)$

ii)
$$\{\emptyset\} \in \mathcal{P}(B)$$

iv)
$$\{a, b\} \in \mathcal{P}(B)$$

ii)
$$\{\emptyset\} \in \mathcal{P}(B)$$
 iv) $\{a,b\} \in \mathcal{P}(B)$ vi) $\{\{a\},\{b\}\} \in \mathcal{P}(B)$

8. Halla el número de subconjuntos de cardinal par del conjunto $A = \{a, b, c, d, e\}$ que no tienen ni a b ni a c.

9. Para un universo U, sean $A, B \subseteq U$ tales que $|A \cup B| = 13$ y $|A \cap B| = 5$. Calcula el número de conjuntos C tales que $A \cap B \subseteq C \subseteq A \cup B$.

10. Sean A y B conjuntos con $B \subset A$, tales que |A| = 52 y |B| = 23.

i) Calcula el número de elementos de $\mathcal{P}(A \setminus B)$.

- ii) Calcula el número de suconjuntos de A que contienen un único elemento de B.
- **11.** Sean $A = \{2, 4, 6, 8, 10\}, B = \{2, 3, 5, 7, 11\}$ y $C = \{1, 2, 5, 9, 10\}$. Justifica si es verdadera o falsa cada una de las siguientes afirmaciones:

$$(2,7) \in (A \cap B) \times C$$

$$(2,8) \notin A \times (B \cup C)$$

$$(2,7) \in (A \cap B) \times C \qquad (2,8) \notin A \times (B \cup C) \qquad (5,7) \in (A \cup B) \times (B \cap C)$$

- 12. Sean $A, B, C \subseteq U$ conjuntos cualesquiera, demuestra que:
 - i) $A = B \iff (A \cup \overline{B}) \cap (\overline{A} \cup B) = U$.
 - ii) $A \cup (B \setminus C) = (A \cup B) \setminus (C \setminus A)$
 - iii) $A \subseteq C \iff A \cup (B \cap C) = (A \cup B) \cap C$
 - iv) Si A es el complementario de C, entonces $A \cup (B \cap C) = A \cup B$.
- **3.** Sea A un conjunto no vacío cualquiera y sean $X, Y, Z \in \mathcal{P}(A)$. Sabiendo que $(\mathcal{P}(A) \cup \cup)$ tiene estructura de álgebra de Boole, utiliza manas de que $(\mathcal{P}(A), \overline{}, \cup, \cap)$ tiene estructura de álgebra de Boole, utiliza mapas de Karnaugh para simplificar cada uno de los conjuntos siguientes:

 i) $(X \cap Y) \cup (X \cap \overline{Y}) \cup (\overline{X} \cap \overline{Y})$ ii) $[X \cup \overline{(Y \cup \overline{Z})}] \cap [\overline{X} \cap \overline{(Y} \cup \overline{Z})]$ 4. Sea $A = \{x \in \mathbb{Z} \mid x^2 \leq 9\}$. Da una partición de A formada por tres subconque $(\mathcal{P}(A), \overline{}, \cup, \cap)$ tiene estructura de álgebra de Boole, utiliza mapas de

i)
$$(X \cap Y) \cup (X \cap \overline{Y}) \cup (\overline{X} \cap \overline{Y})$$
 ii) $\left[X \cup \overline{(Y \cup \overline{Z})}\right] \cap \overline{\left[\overline{X} \cap (\overline{Y} \cup \overline{Z})\right]}$

- juntos de A.
- **15.** Comprueba si son o no inyectivas y/o sobreyectivas las siguientes aplicaciones:
 - i) $f: \mathbb{Z} \to \mathbb{Z}$, f(z) = z + 2 para cada $z \in \mathbb{Z}$.
 - ii) $f: \mathbb{Z} \to \mathbb{Z}$, f(z) = 2z + 1 para cada $z \in \mathbb{Z}$.
 - iii) $f: \mathbb{Z} \to \mathbb{Z}$, $f(z) = 3z^2 + 2$ para cada $z \in \mathbb{Z}$.
 - iv) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, f(x,y) = 2xy para cada $(x,y) \in \mathbb{Z} \times \mathbb{Z}$.
 - v) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, f(x,y) = x(y-2) + 1$ para cada $(x,y) \in \mathbb{Z} \times \mathbb{Z}$.
 - **16.** Sean $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$ y $f : A \to B$ tal que f(1) = f(2) = a y f(3) = f(4) = c. Calcula:
 - i) $f(\{1\})$

- iv) $f(\{1,2\})$
- vii) $f^{-1}(\{a,c\})$

- ii) $f(\{1,3\})$
- v) $f^{-1}(\{c\})$
- viii) $f(\{1,2,3\})$

iii) Im(f)

- vi) $f^{-1}(\{b\})$
- ix) $f^{-1}(B)$
- 17. Sea $\mathbb{N} = \{0, 1, 2, \cdots\}$ el conjunto de números naturales y sea $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ la aplicación definida por f(x,y)=3x(y+2), para cada $(x,y)\in\mathbb{N}\times\mathbb{N}$. Calcula $f(2,5), f^{-1}(\{18\}) y f^{-1}(\{4,6\}).$
 - j. Es f una aplicación inyectiva? j. Es sobreyectiva? Razona las respuestas.

- **18.** Sean $A = \{a, b, c, d\}$ y $B = \{2, 4, 6, 8\}$ conjuntos, y sea $f : A \to B$ una aplicación tal que f(a) = 8, f(b) = 2.
 - i) Calcula f(c) y f(d) de modo que f sea inyectiva y $c \in f^{-1}(\{4\})$.
 - ii) Estudia si f es sobreyectiva y biyectiva.
 - iii) Halla, si existe, la aplicación f^{-1} .
- 19. Define una aplicación inyectiva $f:\{a,b,c\} \to \{x,y,z,t\}$ que verifique todas las condiciones siguientes:

i) Im
$$f \subseteq \{x, y, z\}$$

ii)
$$a \in f^{-1}(\{x\})$$

i) Im
$$f \subseteq \{x, y, z\}$$
 ii) $a \in f^{-1}(\{x\})$ iii) $c \in f^{-1}(\{y, t\})$.

20. Define una aplicación $f:\{a,b,c,d\} \to \{x,y,z,t\}$ que verifique todas las condiciones siguientes:

i)
$$f({a,b}) = {x,y}$$

iii)
$$a \notin f^{-1}(\{x, z\})$$

ii)
$$c \in f^{-1}(\{z\})$$

iv)
$$f(\{c,d\}) = \{y,z\}$$

ciones siguientes:

i) $f(\{a,b\}) = \{x,y\}$ ii) $a \notin f^{-1}(\{x,z\})$ ii) $c \in f^{-1}(\{z\})$ iv) $f(\{c,d\}) = \{y,z\}$ ¿Es f una aplicación sobreyectiva? Calcula $f^{-1}(\{x,z\})$.

21. Sean $A = \{a,b,c,d,e,k\}, B = \{d,e\}$ y consideremos la aplicación $f: \mathcal{P}(A) \longrightarrow \mathbb{N}$ $X \leadsto f(X) = |X \cup B|$

$$f: \mathcal{P}(A) \longrightarrow \mathbb{N}$$

$$X \leadsto f(X) = |X \cup B|$$

Estudia si f una aplicación inyectiva y/o sobreyectiva. Calcula:

i)
$$f(\emptyset)$$

v)
$$f(C_2)$$
,

ii)
$$f(\{a\})$$

para
$$C_2 = \{\{b\}, \{b, c\}\} \subseteq \mathcal{P}(A)$$

iii)
$$f(\{b,c\})$$

vi)
$$f^{-1}(Y_1)$$
, para $Y_1 = \{3\} \subseteq \mathbb{N}$

iv)
$$f(C_1)$$
, vii) $f^{-1}(Y_2)$, para $Y_2 = \{1\} \subseteq \mathbb{N}$ para $C_1 = \{\{a, d\}, \emptyset\} \subseteq \mathcal{P}(A)$ viii) $f^{-1}(Y_3)$, para $Y_3 = \{2, 6\} \subseteq \mathbb{N}$

vii)
$$f^{-1}(Y_2)$$
, para $Y_2 = \{1\} \subseteq \mathbb{N}$

22. (a) Sea
$$f: X \to Y$$
 una aplicación inyectiva. Decide si es verdadera o falsa cada una de las siguientes afirmaciones. Razona la respuesta.

- Todo elemento de X tiene una única imagen en Y.
- \bullet Todo elemento de Y es imagen de, al menos, un elemento de X.
- \bullet Todo elemento de Y es imagen de, a lo sumo, un elemento de X.
- (b) Sean $A = \{a, e, i, o, u\}$ y $B = \{a, e\}$. Considera $f : \mathcal{P}(A) \to \mathcal{P}(A) \times \mathcal{P}(A)$ la aplicación definida por $f(X) = (X \cap B, X \cap \overline{B})$ para cada $X \in \mathcal{P}(A)$.
 - Halla $f(\emptyset)$, $f(\{a, i, u\})$ y f(A).
 - Demuestra que f es inyectiva. ¿Es f sobreyectiva? ¿Por qué?