

Лекция 8 Online advertising

Владимир Гулин

14 апреля 2018 г.

План лекции

Введение

Онлайн реклама

Виды онлайн рекламы:

- Поисковая реклама
- Контекстная реклама
- Медийная реклама
- Реклама в соц. сетях
- ► RTB
- ▶ Мобильная реклама, реклама внутри приложений и т.д.

Реклама на поиске

Контекстная рреклама

Задача рекламы в общем виде

Нужно найти объявление, наилучшим образом подходящее для

- Пользователя
- Контекста

Поисковая реклама: контекст = запрос

Контекстная реклама: контекст = веб-страница

Иерархия в поисковой рекламе

- Рекламодатель
- Кампания
- Объявление
- ▶ Ключевые фразы

Примеры ключевых фраз:

- ▶ "iphone"
- ▶ "iphone 7"
- ▶ "купить iphone 7"
- ▶ "iphone 7 -ремонт"

Matching

Рекламное объявление показывается, если запрос пользователя matchi-тся с ключевым словом.

Варианты matching-a:

- ключевая фраза подмножество запроса
- ключевая фраза совпадает с запросом
- ключевая фраза совпадает с запросом с учетом порядка слов

Как матчить, если веб-страница?

Model pay-per-click

- ▶ Рекламодатель сообщает ставку (Bid)
- Рекламодатель платит каждый раз, когда пользователь кликает по его объявлению (и переходит на его веб-страницу).

Как выбрать объявления для показа?

Model pay-per-click

- ▶ Рекламодатель сообщает ставку (Bid)
- Рекламодатель платит каждый раз, когда пользователь кликает по его объявлению (и переходит на его веб-страницу).

Как выбрать объявления для показа?

▶ Ранжировать по Bid $\cdot P(click)$ и выбрать топ-k.

 $E[Revenue] \approx Bid \cdot P(click)$

Модель аукциона

Предположим, что в рекламный блок отобралось N объявлений с параметрами $Bid_1,\ldots,Bid_N,P(click)_1,\ldots,P(click)_N$

$$\mathit{Bid}_1\mathit{P}(\mathit{click})_1 < \ldots < \mathit{Bid}_{i-1}\mathit{P}(\mathit{click})_{i-1} < \mathit{Bid}_i\mathit{P}(\mathit{click})_i < \ldots < \mathit{Bid}_N\mathit{P}(\mathit{click})_N$$

Какую сумму заплатит рекламодатель і при клике?

Модель аукциона

Предположим, что в рекламный блок отобралось N объявлений с параметрами $Bid_1,\ldots,Bid_N,P(click)_1,\ldots,P(click)_N$

$$\mathit{Bid}_1\mathit{P}(\mathit{click})_1 < \ldots < \mathit{Bid}_{i-1}\mathit{P}(\mathit{click})_{i-1} < \mathit{Bid}_i\mathit{P}(\mathit{click})_i < \ldots < \mathit{Bid}_N\mathit{P}(\mathit{click})_N$$

Какую сумму заплатит рекламодатель і при клике?

$$\frac{\textit{Bid}_{i-1}\textit{P}(\textit{click})_{i-1}}{\textit{P}(\textit{click})_i} + 1\,\textit{cent}$$

Ранжирование в реальной системе

Важные показатели системы:

- ▶ Общее количество кликов (рекламодатель)
- Конверсия рекламы (рекламодатель)
- Выручка (площадка)
- Релевантность рекламы (пользователь)

Как выбрать объявления для показа?

Ранжирование в реальной системе

Важные показатели системы:

- Общее количество кликов (рекламодатель)
- Конверсия рекламы (рекламодатель)
- Выручка (площадка)
- Релевантность рекламы (пользователь)

Как выбрать объявления для показа?

▶ Ранжировать по $Bid \cdot P(click)^{alpha} \cdot P(conversion)^{\beta} \cdot F_{\gamma}(Relevance)$ и выбрать топ-k.

Ранжирование в реальной системе

Как подобрать параметры α, β, γ ?

- ▶ Провести много экспериментов A/B тестирования, перебирая комбинации параметров α, β, γ
- ▶ Использовать Байесовскую оптимизацию

Задачи машинного обучения в рекламе

- ▶ Классификация объявлений (категоризация, автомодерация)
- Рекомендация ключевых фраз
- ▶ Предсказание релевантности объявлений
- ▶ Предсказание вероятности клика / конверсии
- Прогноз траффика

ХЕШИРОВАНИЕ ПРИЗНАКОВ

Признаки

Машинное обучение с учителем:

Дана выборка
$$(\mathbf{x}_i,y_i)_{i=1}^n, \quad \mathbf{x}_i \in \mathcal{X} = \mathcal{R}^p, y_i \in \mathcal{Y}$$

Нужно построить функцию $\mathit{h}(\cdot):\mathcal{X}
ightarrow \mathcal{Y}$

Признаки

Машинное обучение с учителем:

по выборке $(o_i,y_i)_{i=1}^n,o_i\in O$ (множество объектов), $y_i\in\mathcal{Y}$ сгенерировать p признаков с помощью функций f_1,\ldots,f_p

$$f_i: O \to \mathcal{R}$$

$$\mathbf{x}_i = [f_1(o_i), \dots, f_p(o_i)]$$

Нужно построить функцию $\mathit{h}(\cdot):\mathcal{X}
ightarrow \mathcal{Y}$

Пространства признаков высокой размерности

Пример 1. Классификация текстов. Представление в виде мешка слов Признаки - N-граммы Признаки - N-граммы с пропусками (K-skip-N-grams)

Текст: This is my house

2-граммы: "This is", "is my", "my house" 1-скип-2-граммы: "This ? my", "is ? house"

Размерность быстро растет с ростом N

$$\mathbf{x}_i = [f_1(o_i), \dots, f_p(o_i)]$$

Методы машинного обучения принимают на вход вектор признаков $\mathbf{x} \in \mathcal{R}^p$

Подход 1. Пронумеруем признаки, проставив $f_j(o_i)$ и в обучении и тесте

- ▶ Нумерация может идти дольше, чем онлайн обучение
- Необходимо использовать словарь <признак, индекс> при предсказании

Хранить параметры модели в ассоциативном массиве (хеш-таблица, дерево): map<признак, вес>

$$\mathbf{x}_i = [f_1(o_i), \dots, f_p(o_i)]$$

Методы машинного обучения принимают на вход вектор признаков $\mathbf{x} \in \mathcal{R}^p$

Объект o: This is my house

Метка: у

Признаки: $x = \{$ "This is", "is my", "my house" $\}$

Шаг sgd: ?

Хранить параметры модели в ассоциативном массиве (хеш-таблица, дерево): map<признак, вес>

$$\mathbf{x}_i = [f_1(o_i), \dots, f_p(o_i)]$$

Методы машинного обучения принимают на вход вектор признаков $\mathbf{x} \in \mathcal{R}^p$

Объект o: This is my house Метка: y Признаки: $x=\{$ "This is", "is my", "my house" $\}$ Шаг sgd:

- for key in { "This is", "is my", "my house" }
- $w[key] = w[key] \eta \frac{\partial L}{\partial w[key]}$

Подход 2. Генерировать признаки на лету, использовать ассоциативный массив

- ▶ Нумерация не используется
- ▶ Словари не нужны

CLICK PROBABILITY ESTIMATION

Предсказание вероятности клика. Подход 1

Table: Лог показов рекламной системы

Клик	UserID	BannerID	OrderID	DomainID	Query
0	121223	34534	890	32435	купить холодильник
1	32534	6577	56	6545	туры в египет
0	565331	5798	125	743	смотреть бесплатно кино онлайн

- ▶ Пользователь: регион, пол, возраст, доход, интересы...
- ▶ Объявление: текст, категория,...
- ▶ Запрос: категория, частотность, и т.д.

Предсказание вероятности клика

$$P(click|user, banner, domain,...) = \frac{1}{1 + exp(-w^{T}x)}$$
$$x = [0, 0, 0, 1, 0, ..., 0, 1, 0, ..., 0, 0, 1, 0, ...]$$

Каждому значению UserID, Bannerld, DomainID, словам запроса и т.д. соответсвует фактор

+ Каждой паре значений соответствует фактор.

Пространство ОЧЕНЬ большой размерности!

Обучение

- ▶ Логи показов обычно лежат на кластере MapReduce
- ▶ Запускаем распределенное обучение Vowpal Wabbit на кластере
- ▶ Используем опциии для генерации пар и троек фичей
- Хеширование: подбираем размер хеш-таблицы исходя из наших аппетитов и возможностей

CTR-ы. Подход 2

CTR - click-through rate (кликабельность)

$$CTR = \frac{clicks}{shows}$$

Можно считать кликабельность по любому срезу: баннер, домен, запрос, и т.д.

Имеет смысл их брать за разные периоды времени (месяц, неделя, день, час).

Обучающая выборка

Клик	UserID	BannerID	OrderID	DomainID	Query	BannerID * Query
0	0.12	0.01	0.05	0.10	0.11	0.01
1	0.04	0.20	0.07	0.04	0.01	0.34
0	0.30	0.50	0.08	0.30	0.002	0.15

▶ Используем GBDT

Combined Model:GBDT + LR

Exploration/Explotation

31 / 31

