Roll No. - 18058568015

Examination: B.Sc.(H)

Subject: Statistics

Paper: Time Series Analysis

Code: 32377905

Ques 1.

THEORY (Formula Used)

METHOD OF PARTIAL SUMS:

Equation for modified exponential curve: $y_t = a + bc^t$ (1) The given time series data is split up into 3 equal parts, each containing n consecutive values of y_t corresponding to t=1,2,...,n; t=n+1,n+2,...,2n; t=2n+1,2n+2,...,3n. Let S1, S2 and S3 represent the partial sums of the 3 parts respectively, such that,

- $S_1 = \sum_{t=1}^n yt$ $S_2 = \sum_{t=n+1}^{2n} yt$ $S_3 = \sum_{t=2n+1}^{3n} yt$

Substituting for y_t from equation (1), we get the values of a, b and c.

- $c = \left(\frac{S3 S2}{S2 S1}\right)^{1/n}$ $b = \frac{(c-1)((S2 S1)^3)}{c((S3 2S2 + S1)^2)}$ $a = \frac{1}{n} \left[\frac{S1S3 (S2^2)}{S3 2S2 + S1}\right]$

GROMPERTZ CURVE:

The Grompertz curve describes a trend in which the growth increments of the logarithms are declining by a constant percentage. Thus the natural values of the trend would show a declining ratio of increase, but the ratio does not decrease by either a constant amount or a constant percentage.

Equation: $y_t = a + b^{c^t}$ Taking log both sides, $\log y_t = \log a + c^t * \log b$ Let, $\log y_t = Y_t$, $\log a = A$, $\log b = B$ Therefore, we get $Y_t = A + Bc^t$

The above equation is comparable to the equation of modified exponential curve.

CALCULATIONS:

<u>Table 1.1</u>

t	Time(hours)	Deaths (y)	Y _t	Yt(estimated)	Estimated Deaths(y)
1	0	59	4.077537444	3.921351612	50.46861266
2	0.1	97	4.574710979	4.620081927	101.5023476
3	0.2	102	4.624972813	5.127285229	168.5588975
4	0.6	291	5.673323267	5.495460452	243.5836588
5	0.7	394	5.976350909	5.762716193	318.21148
6	0.9	432	6.068425588	5.95671521	386.3389953
7	1.3	456	6.12249281	6.097537699	444.7612846
8	1.4	491	6.196444128	6.199759729	492.6306621
9	1.7	500	6.214608098	6.273961964	530.5753397
10	2.1	520	6.253828812	6.327824832	559.9373107
11	2.4	536	6.284134161	6.3669235	582.2637362
12	2.6	568	6.342121419	6.395304941	599.0259631
13	2.9	604	6.403574198	6.415906825	611.4950285
14	3.3	650	6.476972363	6.430861584	620.7085102
15	3.7	695	6.543911846	6.441717136	627.4833493
16	3.8	725	6.586171655	6.449597103	632.44743
17	3.9	800	6.684611728	6.455317114	636.0754025

<u>Table 1.2</u>

S1=	24.92689541
S2=	30.85579944
S3=	32.05071399

<u>Table 1.3</u>

C=	0.725892795
B=	-3.51169387
A=	6.470464891

R=	0.965275084

RESULT:

- Trend values using Grompertz Curve (method of partial sums) have been calculated and shown in Table 1.1.
- The trend values have been plotted along with the given values in Graph 1.1.
- Correlation coefficient between the given amount and the estimated amount is: $R^2 = 0.965275084$.

CONCLUSION:

• The R² value calculated is almost equal to 1 (0.965275084). This indicates that the values estimated are almost equal to the given values.

Ques 3.

THEORY (Formula Used)

<u>Correlogram</u>: A correlogram is a visual way to show autocorrelation in the data that changes over time (i.e. time series data).

<u>Correlogram of Moving Average:</u> For a moving average of extent m, with weights $(a_1, a_2, ...a_m)$ of random components $(\varepsilon_i; i=1,2,...)$, the generated series is given by:

$$\begin{split} y_i &= a_1 \epsilon_{i+1} + a_2 \epsilon_{i+2} + \dots + a_{k+1} \epsilon_{i+k+1} + \dots + a_m \epsilon_{i+m} \\ y_{i+k} &= a_1 \epsilon_{i+k+1} + a_2 \epsilon_{i+k+2} + \dots + a_{m-k} \epsilon_{i+m-k} + \dots + a_m \epsilon_{i+k+m} \end{split}$$

Where ε_i 's are iid N(0, σ^2). Thus,

$$E(y_i) = 0 = E(y_{i+k})$$

And
$$Var(y_i) = E(y_i^2) = (a_1^2 + a_2^2 + ... + a_m^2)\sigma^2 = \sigma^2 \sum_{j=1}^m a_j^2 \ \forall \ i = 1, 2, ...$$

Similarly, $Var(y_{i+k}) = \; E(y_{i+k}^2) = \; \sigma^2 \sum_{j=1}^m a_j^2$

$$E(y_i y_{i+k}) = (a_1 a_{k+1} + a_2 a_{k+2} + \dots + a_{m-k} a_m) \sigma^2 = \sigma^2 \sum_{j=1}^{m-k} a_j a_{j+k}, k < m$$

$$r_{k} = \frac{E(y_{i} y_{i+k})}{\sqrt{\operatorname{Var}(y_{i}) \operatorname{Var}(y_{i+k})}}$$

$$= \frac{\sum_{j=1}^{m-k} a_{j} a_{j+k}}{\sum_{j=1}^{m} a_{j}^{2}}, \text{ if } k < m$$

$$r_{k} = 0, \text{ if } k \ge m$$

CALCULATIONS:

Table 3.1

	_	- 2	k					
m	а	a2	1	2	3	4	5	6
1	0.25	0.0625						
2	0.125	0.015625	0.03125					
3	-0.9375	0.878906	-0.11719	-0.23438				
4	-0.46875	0.219727	0.439453	-0.05859	-0.11719			
5	-0.23438	0.054932	0.109863	0.219727	-0.0293	-0.05859		
6	-0.11719	0.013733	0.027466	0.054932	0.109863	-0.01465	-0.0293	
7	-0.125	0.015625	0.014648	0.029297	0.058594	0.117188	-0.01563	-0.03125
SUM	-1.50781	1.261047	0.505493	0.010986	0.021973	0.043945	-0.04492	-0.03125

Table 3.2

k	1	2	3	4	5	6
r	0.400852	0.008712	0.017424	0.034848	-0.03562	-0.02478

Graph 3.1

RESULT:

- The value of autocorrelation (r_k) for the order k have been shown in <u>Table 3.2</u>
- <u>Graph 3.1</u> shows the correlogram plotted for the moving average.

Ques 4.

THEORY (Formula Used)

VARIATE DIFFERENCE METHOD:

- 1. We first have to find the values of Δyt , $\Delta^2 yt$, $\Delta^3 yt$... for the given values of t and yt.
- 2. Then compute: V1 = $\frac{\mu_2'(\Delta yt)}{C_1^2}$, V2 = $\frac{\mu_2'(\Delta^2 yt)}{C_2^4}$
- 3. If, let us say, V1 and V2 do not differ significantly than either of them can be regarded as an estimate of V. Otherwise, calculate V3, V4, ... till two successive estimates of V are homogeneous.

Significance of $(V_k - V_{k+1})$. Homogeneity of two successive estimates of V cannot be tested by Variance Ratio Test (F-test) since the consecutive terms are not independent. O. Andersen obtained the standard error of $(V_k - V_{k+1})$ and found that for large samples,

$$R_k = \frac{V_k - V_{k+1}}{V_k} \cdot H_{kN} \sim N(0, 1) \qquad ...(2.67)$$

where V_k and V_{k+1} are consecutive estimates of V from the kth and (k+1)th differences of y_t and H_{kN} ; a function of k and N (the total number of observations in the given time series), corresponds to the variance of the ratio and has been tabulated in the book "Variate Difference Method" by G. Titner. Thus if $|R_k| > 1.96$, the difference is significant (otherwise not) at 5% level of significance.

CALCULATIONS:

Table 4.1

t	yt	Δyt	Δ^2 yt	Δ^3 yt	Δ ⁴ yt	Δ ⁵ yt	Δ^6 yt
1	1006						
		112					
2	1118		-106				
		6		-30			
3	1124		-136		184		
		-130		154		-238	
4	994		18		-54		67
		-112		100		-171	
5	882		118		-225		530
		6		-125		359	
6	888		-7		134		-605
		-1		9		-246	

7	887		2		-112		642
		1		-103		396	
8	888		-101		284		-791
		-100		181		-395	
9	788		80		-111		373
	700	-20		70		-22	
10	768		150	, 0	-133		-66
10	, 00	130	130	-63	100	-88	
11	898	100	87		-221		739
	030	217	0,	-284		651	7.00
12	1115		-197	20.	430	001	-1253
12	1113	20	137	146	130	-602	1233
13	1135	20	-51	110	-172	002	1089
15	1133	-31	31	-26	1,2	487	1003
14	1104	31	-77	20	315	407	-1437
17	1104	-108	,,	289	313	-950	1437
15	996	100	212	203	-635	330	1995
15	330	104	212	-346	033	1045	1333
16	1100	104	-134	340	410	1043	-1561
10	1100	-30	-134	64	410	-516	-1301
17	1070	-30	-70	04	-106	-310	1140
17	1070	-100	-70	-42	-100	624	1140
18	970	-100	-112	-42	518	024	-2054
10	370	-212	-112	476	310	-1430	-2034
19	758	-212	364	470	-912	-1430	3035
15	738	152	304	-436	-312	1605	3033
20	910	132	-72	-430	693	1003	-3482
20	310	80	-12	257	033	-1877	-3402
21	990	80	185	237	-1184	-10//	5315
21	330	265	103	-927	-1104	3438	3313
22	1255	203	-742	-321	2254	3436	-6796
22	1233	-477	-742	1327	2234	-3358	-0730
23	778	-4//	585	1527	-1104	-3336	2620
23	776	108	363	222	-1104	-738	2020
24	996	108	909	223	1042	-/38	F000
24	886	016	808	1610	-1842	4200	5098
25	1002	916	011	-1619	2510	4360	7000
25	1802	105	-811	900	2518	2520	-7888
20	1007	105	00	899	1010	-3528	F202
26	1907	102	88	111	-1010	1.77	5202
27	2100	193	22	-111	664	1674	4222
27	2100	170	-23	FF2	664	3650	-4333
100	2270	170	F30	553	1005	-2659	7272
28	2270	700	530	4.442	-1995	4740	7372
	2070	700	043	-1442	2740	4713	00.40
29	2970		-912		2718		-8943

		-212		1276		-4230	
30	2758		364		-1512		4635
		152		-236		405	
31	2910		128		-1107		3718
		280		-1343		4123	
32	3190		-1215		3016		-8685
		-935		1673		-4562	
33	2255		458		-1546		6204
		-477		127		1642	
34	1778		585		96		-3109
		108		223		-1467	
35	1886		808		-1371		3870
		916		-1148		2403	
36	2802		-340		1032		-2025
		576		-116		378	
37	3378		-456		1410		
		120		1294			
38	3498		838				
		958					
39	4456						
SUM=		3450	846	944	1324	1226	

<u>Table 4.2</u>

TUDIC T.Z						
	(∆yt)²	$(\Delta^2 yt)^2$	$(\Delta^3 yt)^2$	$(\Delta^4 yt)^2$	$(\Delta^5 yt)^2$	$(\Delta^6 yt)^2$
	12544					
		11236				
	36		900			
		18496		33856		
	16900		23716		56644	
		324		2916		4489
	12544		10000		29241	
		13924		50625		280900
	36		15625		128881	
		49		17956		366025
	1		81		60516	
		4		12544		412164
	1		10609		156816	
		10201		80656		625681
	10000		32761		156025	
		6400		12321		139129
	400		4900		484	
		22500		17689		4356

16900		3969		7744	
	7569		48841		546121
47089		80656		423801	
	38809		184900		1570009
400		21316		362404	
	2601		29584		1185921
961		676		237169	
	5929		99225		2064969
11664		83521		902500	
	44944		403225		3980025
10816		119716		1092025	
	17956		168100		2436721
900		4096		266256	
	4900		11236		1299600
10000		1764		389376	
	12544	_	268324		4218916
44944	_	226576		2044900	
	132496		831744		9211225
23104		190096		2576025	
	5184		480249		12124324
6400		66049		3523129	-
	34225		1401856		28249225
70225	0 1220	859329		11819844	
	550564		5080516		46185616
227529		1760929		11276164	
	342225		1218816		6864400
11664		49729		544644	
	652864		3392964		25989604
839056		2621161		19009600	
	657721		6340324		62220544
11025		808201		12446784	
	7744		1020100		27060804
37249		12321		2802276	
	529		440896		18774889
28900	010	305809		7070281	
	280900		3980025		54346384
490000		2079364		22212369	
	831744		7387524		79977249
44944		1628176		17892900	-
	132496		2286144		21483225
23104		55696		164025	
	16384		1225449		13823524
78400		1803649		16999129	
	1476225		9096256		75429225
874225		2798929		20811844	

		209764	•	2390116	•	38489616
	227529		16129		2696164	
		342225		9216		9665881
	11664		49729		2152089	
		652864		1879641		14976900
	839056		1317904		5774409	
		115600		1065024		4100625
	331776		13456		142884	
		207936		1988100		
	14400		1674436			
		702244				
	917764					
SUM=	5304150	7570320	18751974	52956958	166229342	568108286

Table 4.3

μ' ₂ (Δyt)	$\mu'_2(\Delta^2 yt)$	$\mu'_2(\Delta^3 yt)$	$\mu'_2(\Delta^4 yt)$	$\mu'_2(\Delta^5 yt)$	$\mu'_2(\Delta^6 yt)$
139582.895	204603.243	520888.167	1513055.943	4889098.294	17215402.606

Table 4.4

V1	V2	V3	V4	V5	V6
69791.447	34100.541	26044.408	21615.085	19401.184	18631.388

Table 4.5

H(1,39)	H(2,39)	H(3,39)	H(4,39)	H(5,39)
11.995	15.818	18.489	20.351	21.617

Table 4.6

R1	R2		R3	R4	R5
6.134		3.737	3.144	2.084	0.858

RESULT:

We have:

$$|R_1| = 6.134$$
, $|R_2| = 3.737$, $|R_3| = 3.144$, $|R_4| = 2.084$, $|R_5| = 0.858$

Now,

- As $|R_1| > 1.96$, therefore difference between V_1 and V_2 is significant.
- As $|R_2| > 1.96$, therefore difference between V_2 and V_3 is significant.
- As $|R_3| > 1.96$, therefore difference between V_3 and V_4 is significant.
- As $|R_4| > 1.96$, therefore difference between V_4 and V_5 is significant.
- As $|R_5| < 1.96$, therefore difference between V_5 and V_6 is not significant

CONCLUSION:

As the difference between V5 and V6 is insignificant, hence we can say that any of the two can be taken as the variance of the random component.

Therefore,

Variance of the random component = 19401.184

OR

Variance of the random component = 18631.388

Ques 5.

THEORY (Formula Used)

- Exponential smoothing is a time series forecasting method for univariate data.
 Forecasts produced using exponential smoothing methods are weighted averages of past observations, with the weights decaying exponentially as the observations get older.
- Equation $F_{t+1} = \alpha D_t + (1 \alpha) F_t$, is used to forecast the values for the next months. Here, F is forecasted value, D is demand and α is smoothing constant.
- For t=1, F_t is the first forecasting value, obtained by calculating median of the first 6 observations.

WHAT WOULD BE THE SIZE OF α :

A measure of effectiveness of exponential smoothing can be obtained under the assumption that the process is completely stable, so that X_1, X_2, \ldots are independent, identically distributed random variables with variance σ^2 . It then follows that (for large t)

$$\operatorname{var}[F_{t+1}] \approx \frac{\alpha \sigma^2}{2 - \alpha} = \frac{\sigma^2}{(2 - \alpha)/\alpha}$$

so that the variance is statistically equivalent to a moving average with $(2 - \alpha)/\alpha$ observations. For example, if α is chosen equal to 0.1, then $(2 - \alpha)/\alpha = 19$. Thus, in terms of its variance, the exponential smoothing method with this value of α is *equivalent* to the moving-average method that uses 19 observations.

or
$$\frac{(2-\alpha)}{\alpha} = n$$
 (no. of observations)

And we can find the value of α .

CALCULATIONS

<u>Table 5.1</u>

<u> </u>					
Given Data					
t	yt				
1990	23832				
1991	26410				
1992	24735				
1993	21778				
1994	24104				
1995	28846				
1996	29010				
1997	31749				
1998	35508				
1999	31830				
2000	25510				
2001	24333				
2002	29709				
2003	36543				
2004	45218				
2005	22432				
2006	32146				
2007	44452				
2008	26111				
2009	50675				
2010	36313				
2011	37552				
2012	42794				
2013	45476				
2014	44069				
2015	47052				
2016	44333				
2017	46169				
2018	54110				
2019	49850				
2020					
2021					
2022					

Table 5.2

<u>Table 5.2</u>					
Exponential					
Smoothing					
a= 0.64					
28846					
28522.51613					
28386.22477					
28150.66188					
27739.5224					
27504.97257					
27591.49047					
27683.00721					
27945.32933					
28433.24356					
28652.38914					
28449.65436					
28184.06375					
28282.44674					
28815.38566					
29873.61884					
29393.5144					
29571.09412					
30531.15256					
30245.98143					
31563.98263					
31870.37084					
32236.92756					
32918.02901					
33728.22069					
34395.36774					
35211.92466					
35800.38113					
36469.32429					
37607.4324					
38397.27547					
39136.16092					
39827.37635					

α= 0.064516 1-α= 0.935484

Graph 5.1

RESULT:

- Table 5.2 shows the exponential smoothing done for the data given in <u>Table 5.1</u>
- Alpha was calculated to be 0.64
- <u>Graph 5.1</u> has been plotted to compare the values obtained for different smoothing constants.
- Value forecasted for the next 3 years is:

2020	3216.129
2021	6224.766
2022	9039.297

CONCLUSION:

- The logical weights are assigned to all the variables, means more weight has been given to recent values and less to previous.
- Hence we can say that the value of α should be minimum and logical to get the best forecast value.