Correction du devoir surveillé 5.

Exercice 1

- **1**°) **a**) Par le calcul : $A = \begin{pmatrix} -2 & 0 & -2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ et $A^2 = \begin{pmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{pmatrix}$ Donc, $A^2 = -A$.
 - **b)** On a M = I + 4A. On pose, pour $n \in \mathbb{N} : H_n : \exists u_n \in \mathbb{R}, M^n = I + u_n A$.
 - $\star M^0 = I$ donc, en posant $u_0 = 0$, on a bien $M^0 = I + u_0 A$. Donc H_0 est vraie.
 - ★ On suppose H_n vraie pour un rang $n \in \mathbb{N}$ fixé.

$$\begin{split} M^{n+1} &= M^n \times M \\ &= (I + u_n A) \times (I + 4A) \\ &= I + (4 + u_n) A + 4 u_n A^2 \\ &= I + (4 - 3 u_n) A \qquad \text{car } A^2 = -A \end{split}$$

On pose : $u_{n+1} = 4 - 3u_n$. Alors H_{n+1} est vraie.

 \star On a montré par récurrence qu'il existe une suite u de réels telle que :

$$\forall n \in \mathbb{N}, \ M^n = I + u_n A.$$

c) $(u_n)_{n\in\mathbb{N}}$ est une suite arithmético-géométrique.

On résout, pour $\ell \in \mathbb{R}$, l'équation : $\ell = 4 - 3\ell \iff \ell = 1$.

On pose alors : $\ell = 1$ et pour tout $n \in \mathbb{N}$, $v_n = u_n - \ell = u_n - 1$.

Soit $n \in \mathbb{N}$. En effectuant la différence membre à membre des 2 lignes suivantes :

$$\begin{array}{rcl} u_{n+1} & = & 4 - 3u_n \\ \ell & = & 4 - 3\ell \\ \hline u_{n+1} - \ell & = & -3(u_n - \ell) \end{array}$$

Ainsi, pour tout $n \in \mathbb{N}$, $v_{n+1} = -3v_n : (v_n)$ est une suite géométrique de raison -3.

Donc, $\forall n \in \mathbb{N}, v_n = (-3)^n v_0 = (-3)^n (u_0 - 1) = -(-3)^n$.

Ainsi,
$$\forall n \in \mathbb{N}, \ u_n = 1 - (-3)^n$$
.

On en déduit que : $\forall n \in \mathbb{N}, \ M^n = I + (1 - (-3)^n)A$.

d) Effectuons des opérations élémentaires sur les lignes :

$$\begin{pmatrix} -7 & 0 & -8 \\ 4 & 1 & 4 \\ 4 & 0 & 5 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 0 & 5 \\ 4 & 1 & 4 \\ -7 & 0 & -8 \end{pmatrix} \quad L_1 \leftrightarrow L_3 \quad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 0 & 5 \\ 0 & 1 & -1 \\ 0 & 0 & 3 \end{pmatrix} \qquad \begin{array}{c} L_2 \leftarrow L_2 - L_1 \\ L_3 \leftarrow 4L_3 + 7L_1 \end{array} \qquad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 4 & 0 & 7 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 0 & 5 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \qquad L_3 \leftarrow \frac{L_3}{3} \qquad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ \frac{4}{3} & 0 & \frac{7}{3} \end{pmatrix}$$

$$I_{3} \qquad L_{2} \leftarrow L_{2} + L_{3} L_{1} \leftarrow L_{1} - 5L_{3} L_{1} \leftarrow \frac{L_{1}}{4} \qquad \begin{pmatrix} -\frac{5}{3} & 0 & -\frac{8}{3} \\ \frac{4}{3} & 1 & \frac{4}{3} \\ \frac{4}{3} & 0 & \frac{7}{3} \end{pmatrix}$$

On a transformé M par opérations élémentaires sur les lignes en I_3 .

Ainsi,
$$M$$
 est inversible et $M^{-1} = \begin{pmatrix} -\frac{5}{3} & 0 & -\frac{8}{3} \\ \frac{4}{3} & 1 & \frac{4}{3} \\ \frac{4}{3} & 0 & \frac{7}{3} \end{pmatrix}$.

e) Pour n = -1, l'expression de 1c donne

$$I + (1 - (-3)^{-1})A = I + \left(1 + \frac{1}{3}\right)A = I + \frac{4}{3}A = \begin{pmatrix} -\frac{5}{3} & 0 & -\frac{8}{3} \\ \frac{4}{3} & 1 & \frac{4}{3} \\ \frac{4}{3} & 0 & \frac{7}{3} \end{pmatrix}$$

Donc L'expression de 1c est encore valable pour n = -1 .

 $\mathbf{2}^{\circ}$) a) Par calcul, $J^2 = J$

On pose, pour tout $n \in \mathbb{N}^*$, $H_n : J^n = J$.

- \star On a bien $J^1 = J$ donc H_1 est vraie.
- \star Si H_n est vraie pour un rang $n \in \mathbb{N}^*$, alors $J^{n+1} = J^n J = JJ = J$ d'après ci-dessus, donc H_{n+1} est vraie.
- \star Conclusion: $\forall n \in \mathbb{N}^*, J^n = J$
- **b)** En posant a = -3, b = 4, on a bien : M = aI + bJ. Or 4J et -3I commutent, donc d'après la formule du binôme, pour tout $n \in \mathbb{N}^*$,

$$\begin{split} M^n &= \sum_{k=0}^n \binom{n}{k} (4J)^k (-3I)^{n-k} \\ &= \sum_{k=0}^n \binom{n}{k} 4^k (-3)^{n-k} J^k I^{n-k} \\ &= \sum_{k=1}^n \binom{n}{k} 4^k (-3)^{n-k} J^k + \binom{n}{0} (-3)^n J^0 \quad \text{car } n \geq 1 \\ &= \sum_{k=1}^n \binom{n}{k} 4^k (-3)^{n-k} J + (-3)^n I \quad \text{grâce à la question précédente} \\ &= \left(\sum_{k=1}^n \binom{n}{k} 4^k (-3)^{n-k} \right) J + (-3)^n I \\ &= \left(\sum_{k=0}^n \binom{n}{k} 4^k (-3)^{n-k} - \binom{n}{0} (-3)^n \right) J + (-3)^n I \\ &= ((4-3)^n - (-3)^n) J + (-3)^n I \quad \text{par la formule du binôme dans } \mathbb{R} \\ &= \boxed{(1-(-3)^n) J + (-3)^n I} \end{split}$$

Pour n=0, $\left(1-(-3)^0\right)J+(-3)^0I=0.J+I=I=M^0$, donc la formule est encore vraie pour n = 0.

Exercice 2

Partie 1 : Généralités

1°) Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2, \lambda \in \mathbb{R}$. On note $A = (a_{i,j})$ et $B = (b_{i,j})$.

$$\operatorname{Tr}(\lambda A + B) = \sum_{i=1}^{n} (\lambda a_{i,i} + b_{i,i})$$
$$= \lambda \sum_{i=1}^{n} a_{i,i} + \sum_{i=1}^{n} b_{i,i}$$
$$= \lambda \operatorname{Tr}(A) + \operatorname{Tr}(B)$$

Ainsi, Tr est linéaire

$$\mathbf{2}^{\circ}) \star \text{Soit } y \in \mathbb{R}. \text{ On pose } A = \begin{pmatrix} y & 0 & \dots & 0 \\ 0 & 0 & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \dots & & 0 \end{pmatrix} \text{ (i.e. } A = yE_{1,1}). \text{ Alors, } \text{Tr}(A) = y.$$

Ainsi, $\forall y \in \mathbb{R}, \exists A \in \mathcal{M}_n(\mathbb{R}), y = \text{Tr}(A), \text{ donc } \boxed{\text{Tr est surjective}}$

★ On constate que
$$n = \text{Tr}(I_n)$$
 et aussi que $\text{Tr}(nE_{1,1}) = \text{Tr}\begin{pmatrix} n & 0 & \dots & 0 \\ 0 & 0 & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \dots & & 0 \end{pmatrix} = n.$

On a : $Tr(I_n) = Tr(nE_{1,1})$ et $I_n \neq nE_{1,1}$ puisque $n \neq 1$. Donc, Tr n'est pas injective

 3°) A et ${}^{\mathrm{t}}A$ ont exactement la même diagonale donc la même trace : $\overline{\mathrm{Tr}(A) = \mathrm{Tr}({}^{\mathrm{t}}A)}$

$$\mathbf{4}^{\circ}) \ D = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}. \text{ Par une récurrence élémentaire, pour tout } p \in \mathbb{N}, D^p = \begin{pmatrix} \lambda_1^p & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n^p \end{pmatrix}.$$

Ainsi, pour tout $p \in \mathbb{N}$, $\text{Tr}(D^p) = \sum_{i=1}^n \lambda_i^p$.

5°) a) Posons
$$C = AB$$
. On note $C = (c_{i,j})$. On a $\text{Tr}(AB) = \text{Tr}(C) = \sum_{i=1}^{n} c_{i,i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{i,j} b_{j,i}\right)$, donc $\text{Tr}(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b_{j,i}$.

b) Posons D = BA. On note $D = (d_{i,j})$. En intervertissant les \sum dans le résultat précédent :

$$\operatorname{Tr}(AB) = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{i,j} b_{j,i}$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} b_{j,i} a_{i,j} \right) \quad \text{car } \times \text{ est commutative dans } \mathbb{R}$$

$$= \sum_{j=1}^{n} d_{j,j} \quad \text{car } D = BA$$

$$= \operatorname{Tr}(D)$$

Ainsi,
$$Tr(AB) = Tr(BA)$$

c) Par l'absurde, supposons qu'il existe des matrices A et B de $\mathcal{M}_n(\mathbb{R})$ telles que : AB - BA = I_n .

Alors, $Tr(AB - BA) = Tr(I_n)$.

Par linéarité de Tr et puisque $Tr(I_n) = n : Tr(AB) - Tr(BA) = n$.

Or Tr(AB) = Tr(BA) par la question précédente donc 0 = n : exclu.

Ainsi, il n'est pas possible de trouver deux matrices A et B de $\mathcal{M}_n(\mathbb{R})$ telles que $AB - BA = I_n$.

6°) Soit A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles qu'il existe $P \in GL_n(\mathbb{R})$ telle que $A = PBP^{-1}$.

$$Tr(A) = Tr((PB)P^{-1}) = Tr(P^{-1}(PB))$$
 par 5b.

Or,
$$P^{-1}(PB) = (P^{-1}P)B = B$$
.

Donc,
$$|\operatorname{Tr}(A) = \operatorname{Tr}(B)|$$

Partie 2 : Calcul des puissances de certaines matrices

7°) On pose
$$U = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $V = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$

7°) On pose
$$U = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $V = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

Alors, $U^{\mathsf{t}}V = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} (y_1 \dots y_n) = \begin{pmatrix} x_1y_1 & \dots & x_1y_n \\ \vdots & \ddots & \vdots \\ x_ny_1 & \dots & x_ny_n \end{pmatrix}$. On a bien : $A = U^{\mathsf{t}}V$.

8°)
$$A^2 = (U^{\mathrm{t}}V)(U^{\mathrm{t}}V) = U(\underbrace{{}^{\mathrm{t}}VU}_{\lambda \in \mathbb{R}})^{\mathrm{t}}V = \lambda U^{\mathrm{t}}V = \lambda A.$$

Or,
$$\lambda = {}^{\mathrm{t}}VU = \begin{pmatrix} y_1 & \dots & y_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i y_i = \mathrm{Tr}(A).$$

Ainsi,
$$A^2 = \text{Tr}(A).A$$

- **9°)** Pour $p \in \mathbb{N}^*$, on note $H_p : A^p = (\operatorname{Tr}(A))^{p-1}.A$.
 - ★ Pour $p = 1 : (\operatorname{Tr}(A))^{1-1} . A = A = A^1$. Donc H_1 est vraie.
 - \star Soit $p \in \mathbb{N}^*$ fixé. On suppose que H_p est vraie.

$$A^{p+1} = A^p \times A$$

$$= (\operatorname{Tr}(A))^{p-1} \cdot A \times A$$

$$= (\operatorname{Tr}(A))^{p-1} \cdot A^2$$

$$= (\operatorname{Tr}(A))^p \cdot A \qquad \operatorname{car} A^2 = \operatorname{Tr}(A) \cdot A$$

Donc, H_{p+1} est vraie.

★ On a montré par récurrence que : $\forall p \in \mathbb{N}^*, A^p = (\operatorname{Tr}(A))^{p-1}.A$

Partie 3 : Une application définie à l'aide de la trace

 $10^{\circ}) \ a)$

$$\varphi(B, A) = \operatorname{Tr}({}^{t}BA)$$

$$= \operatorname{Tr}({}^{t}({}^{t}BA)) \quad \text{par } 3$$

$$= \operatorname{Tr}({}^{t}A{}^{t}({}^{t}B))$$

$$= \operatorname{Tr}({}^{t}AB)$$

$$\varphi(B, A) = \varphi(A, B)$$

b) On suppose que
$$A$$
 est symétrique et B antisymétrique.

$$\varphi(A, B) = \operatorname{Tr}({}^{\operatorname{t}}AB) = \operatorname{Tr}(AB) \operatorname{car} {}^{\operatorname{t}}A = A.$$

$$\varphi(B, A) = \operatorname{Tr}({}^{\mathsf{t}}BA) = \operatorname{Tr}(-BA) \operatorname{car} {}^{\mathsf{t}}B = -B.$$

Comme Tr est linéaire, $\varphi(B, A) = -\text{Tr}(BA)$.

Or, par 5b,
$$\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$$
 donc $\varphi(B, A) = -\operatorname{Tr}(AB) = -\varphi(A, B)$.

Mais on a aussi, par la question précédente, $\varphi(A, B) = \varphi(B, A)$.

Donc,
$$2\varphi(A, B) = 0$$
 i.e. $\varphi(A, B) = 0$.

11°) a)
$$\varphi(A, A) = \text{Tr}({}^{t}AA) = \sum_{i=1}^{n} b_{i,i} \text{ en notant } A' = {}^{t}A \text{ et } B = A'A.$$

$$\forall i \in \{1, \dots, n\}, \ b_{i,i} = \sum_{k=1}^{n} a'_{i,k} a_{k,i} = \sum_{k=1}^{n} a_{k,i} a_{k,i}.$$

Ainsi,
$$\varphi(A, A) = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{k,i}^{2} \right)$$
.

b)
$$\forall (k,i) \in \{1,\ldots,n\}^2, \ a_{k,i} \in \mathbb{R} \ \text{donc} \ a_{k,i}^2 \geq 0. \ \text{Donc}, \ \boxed{\varphi(A,A) \geq 0}$$

c) On suppose que
$$\varphi(A, A) = 0$$
. Alors, $\sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{k,i}^{2} \right) = 0$.

Comme, pour tout $(k,i) \in \{1,\ldots,n\}^2$, $a_{k,i}^2 \ge 0$, on en déduit que : $\forall (k,i) \in \{1,\ldots,n\}^2$, $a_{k,i} = 0$.

Ainsi, A est la matrice nulle.

On en déduit que :
$$\varphi(A, A) = 0 \implies A = 0$$

Partie 4: Résolution d'une équation

12°) Soit
$$X \in \mathcal{M}_n(\mathbb{R})$$
.

$$\operatorname{Tr}(X + \operatorname{Tr}(X).I_n) = \operatorname{Tr}(X) + \operatorname{Tr}(X).\operatorname{Tr}(I_n)$$
 par linéarité de Tr.

Donc,
$$\operatorname{Tr}(X + \operatorname{Tr}(X).I_n) = (n+1)\operatorname{Tr}(X)$$

13°) On va raisonner par analyse/synthèse.

Soit
$$X \in \mathcal{M}_n(\mathbb{R})$$
.

★ Supposons que X est solution de (*) i.e.
$$X + \text{Tr}(X).I_n = B$$
.

Alors, en passant à la trace,
$$Tr(X + Tr(X).I_n) = Tr(B)$$

Donc, par la question précédente,
$$(n+1)\text{Tr}(X) = \text{Tr}(B)$$
.

Comme
$$n + 1 \neq 0$$
, il vient : $Tr(X) = \frac{Tr(B)}{n+1}$.

Or
$$X = B - \text{Tr}(X).I_n$$
. Donc, $X = B - \frac{\text{Tr}(B)}{n+1}.I_n$.

On a montré que s'il y a une solution, elle est unique.

★ Réciproquement, on pose
$$X = B - \frac{\operatorname{Tr}(B)}{n+1} I_n$$
. Alors $X \in \mathcal{M}_n(\mathbb{R})$.

De plus,
$$\operatorname{Tr}(X) = \operatorname{Tr}(B) - \frac{\operatorname{Tr}(B)}{n+1} \cdot n = \operatorname{Tr}(B) \left(1 - \frac{n}{n+1}\right) = \frac{\operatorname{Tr}(B)}{n+1}$$
.

Ainsi,
$$X + \text{Tr}(X).I_n = B - \frac{\text{Tr}(B)}{n+1}.I_n + \frac{\text{Tr}(B)}{n+1}.I_n = B.$$

Donc X est solution de (*).

Finalement, il y a une seule solution à l'équation
$$(*): B - \frac{\operatorname{Tr}(B)}{n+1}.I_n$$
.

Exercice 3

- 1°) f est de classe C^{∞} sur \mathbb{R}_{+}^{*} comme quotient de fonctions de classe C^{∞} .
- **2°) a)** On pose, pour $n \in \mathbb{N}$, $H_n : \exists (a_n, b_n) \in \mathbb{R}^2$, $\forall x \in \mathbb{R}_+^*$, $f^{(n)}(x) = \frac{a_n + b_n \ln x}{x^{n+1}}$.
 - ★ $\forall x > 0, f^{(0)}(x) = f(x) = \frac{\ln x}{x} = \frac{0 + 1 \cdot \ln x}{x}.$ On pose: $a_0 = 0, b_0 = 1$. Alors, H_0 est vraie.
 - \star Supposons que H_n vraie pour un rang n fixé dans $\mathbb N$:

$$\exists (a_n, b_n) \in \mathbb{R}^2, \, \forall x > 0, \, f^{(n)}(x) = \frac{a_n + b_n \ln x}{x^{n+1}}$$

En dérivant, pour tout x > 0,

$$f^{(n+1)}(x) = (f^{(n)})'(x) = \frac{\frac{b_n}{x}x^{n+1} - (a_n + b_n \ln x)(n+1)x^n}{x^{2n+2}}$$
$$= \frac{b_n - (a_n + b_n \ln x)(n+1)}{x^{n+2}}$$
$$= \frac{b_n - (n+1)a_n - (n+1)b_n \ln x}{x^{n+2}}$$

On pose : $a_{n+1} = b_n - a_n(n+1)$ et $b_{n+1} = -(n+1)b_n$. Alors, H_{n+1} est vraie.

- ★ On a montré par récurrence que : $\forall n \in \mathbb{N}, \ \exists (a_n, b_n) \in \mathbb{R}^2, \ \forall x \in \mathbb{R}_+^*, \ f^{(n)}(x) = \frac{a_n + b_n \ln x}{x^{n+1}}$
- b) Soient a'_n , b'_n des réels tels que : $\forall x > 0$, $f^{(n)}(x) = \frac{a_n + b_n \ln x}{x^{n+1}} = \frac{a'_n + b'_n \ln x}{x^{n+1}}$. On pose x = 1. Alors $a_n = a'_n$. On pose x = e. Alors $\frac{a_n + b_n}{e^{n+1}} = \frac{a_n + b'_n}{e^{n+1}}$. D'où $a_n + b_n = a_n + b'_n$ puis $b_n = b'_n$. D'où l'unicité de a_n et b_n pour tout $n \in \mathbb{N}$.
- **3°)** $f = \ln \times u$, de plus ln et u sont de classe C^{∞} sur \mathbb{R}_+^* donc, par la formule de Leibniz, pour tout $n \in \mathbb{N}^*$ et tout x > 0,

$$f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} \ln^{(k)}(x) u^{(n-k)}(x)$$

$$= \ln x \times u^{(n)}(x) + \sum_{k=1}^{n} \binom{n}{k} \ln^{(k)}(x) \frac{(-1)^{n-k}(n-k)!}{x^{n+1-k}}$$

$$= \frac{(-1)^n n! \ln x}{x^{n+1}} + \sum_{k=1}^{n} \binom{n}{k} u^{(k-1)}(x) \frac{(-1)^{n-k}(n-k)!}{x^{n+1-k}}$$

$$\operatorname{car} \ln^{(k)} = (\ln')^{(k-1)} = u^{(k-1)} \text{ pour } k \ge 1$$

$$= \frac{(-1)^n n! \ln x}{x^{n+1}} + \sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^{k-1}(k-1)!}{x^k} \frac{(-1)^{n-k}(n-k)!}{x^{n+1-k}}$$

$$= \frac{(-1)^n n! \ln x}{x^{n+1}} + \sum_{k=1}^{n} \frac{n!}{k!(n-k)!} \frac{(-1)^{n-1}(k-1)!(n-k)!}{x^{n+1}}$$

$$f^{(n)}(x) = \frac{(-1)^n n! \ln x}{x^{n+1}} + \frac{(-1)^{n-1} n!}{x^{n+1}} \sum_{k=1}^{n} \frac{1}{k}$$

4°) Soit $n \in \mathbb{N}^*$. Par unicité de a_n et b_n , il vient : $a_n = (-1)^{n-1} n! \sum_{k=1}^n \frac{1}{k}$ et $b_n = (-1)^n n!$

Exercice 4

- 1°) a) $f(x) \xrightarrow[x \to 0]{} 1$. C'est une limite finie donc f est prolongeable par continuité en 0 en posant f(0) = 1. Comme, par ailleurs, f est également continue sur \mathbb{R}_+^* par quotient, on obtient que f ainsi prolongée est continue sur \mathbb{R}_+ .
 - **b)** f est continue sur \mathbb{R}_+ .
 - f est dérivable sur \mathbb{R}_+^* par quotient.
 - Pour tout $x \in \mathbb{R}_+^*$, $f'(x) = \frac{x \cos x \sin x}{r^2}$.

$$f'(x) \underset{x\to 0}{=} \frac{x(1+o(x))-x+o(x^2)}{x^2} \underset{x\to 0}{=} \frac{o(x^2)}{x^2} \underset{x\to 0}{=} o(1)$$

Ainsi, $f'(x) \xrightarrow[x\to 0]{} 0$.

D'après le théorème de la limite de la dérivée, on a $\frac{f(x) - f(0)}{x - 0} \xrightarrow[x \to 0]{} 0$.

On en déduit que f est dérivable en 0 et que f'(0) = 0.

L'information trouvée plus haut se réécrit donc : $f'(x) \xrightarrow[x \to 0]{} f'(0)$. Ainsi f' est continue en 0.

Comme, par ailleurs, f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* par quotient, on obtient que f est de classe \mathcal{C}^1 sur \mathbb{R}_+

 (2°) a) g est dérivable sur $\left[0, \frac{\pi}{3}\right]$ comme produit et différence de fonctions dérivables.

Et, pour tout $x \in \left[0, \frac{\pi}{3}\right]$, $g'(x) = \cos x - x \sin x - \cos x = -x \sin x$.

Or sin est positive sur $\left[0, \frac{\pi}{3}\right]$, donc $g' \le 0$ sur $\left[0, \frac{\pi}{3}\right]$.

Ainsi g est décroissante sur $\left[0, \frac{\pi}{3}\right]$.

Comme g(0) = 0, pour tout $x \ge 0$, $g(x) \le 0$

b) $\forall x > 0, f'(x) = \frac{g(x)}{r^2} \text{ et } f'(0) = 0.$

Ainsi, pour tout $x \ge 0$, $f'(x) \le 0$

3°) Par quotient, h est dérivable sur $\left]0, \frac{\pi}{3}\right]$, et pour tout $x \in \left]0, \frac{\pi}{3}\right]$,

$$h'(x) = \frac{\cos(x)x^2 - \sin(x)2x}{(x^2)^2} = \frac{x\cos(x) - 2\sin(x)}{x^3} = \frac{g(x) - \sin(x)}{x^3}$$

Or, sur $\left]0, \frac{\pi}{3}\right]$, $x^3 > 0$, $-\sin(x) < 0$ et $g(x) \le 0$, donc h'(x) < 0.

Ainsi h est strictement décroissante sur $\left]0, \frac{\pi}{3}\right]$.

De plus, cette fonction est continue sur cet intervalle. Par le théorème de la bijection, h réalise une bijection de $\left]0,\frac{\pi}{3}\right]$ sur $J=\left[h\left(\frac{\pi}{3}\right),\lim_{x\to 0^+}h(x)\right[$.

Par ailleurs, $h\left(\frac{\pi}{3}\right) = \frac{\sin\left(\frac{\pi}{3}\right)}{\left(\frac{\pi}{3}\right)^2} = \left(\frac{3}{\pi}\right)^2 \sin\left(\frac{\pi}{3}\right) < 1 \text{ car } 0 < \sin\left(\frac{\pi}{3}\right) < 1 \text{ et car } 3 < \pi.$

Ainsi, $1 \in J$. Donc il existe un unique réel $\alpha \in \left]0, \frac{\pi}{3}\right]$ tel que $h(\alpha) = 1$.

4°) φ est dérivable sur $\left[0,\frac{\pi}{3}\right]$ par somme. Soit $x \in \left[0,\frac{\pi}{3}\right]$:

$$\varphi'(x) = g'(x) + 2Cx = -x\sin x + 2Cx = x(2C - \sin x).$$

Or
$$0 \le x \le \frac{\pi}{3}$$
 donc $0 \le \sin x \le \frac{\sqrt{3}}{2} = 2C$, d'où $\varphi'(x) \ge 0$.

Ainsi, φ est croissante sur $\left[0, \frac{\pi}{3}\right]$.

De plus
$$\varphi(0) = 0$$
 donc, pour tout $x \in \left[0, \frac{\pi}{3}\right], \varphi(x) \ge 0$.

- 5°) Soit $x \in \left]0, \frac{\pi}{3}\right]$; comme f'(x) est négatif, $|f'(x)| = -f'(x) = -\frac{g(x)}{x^2}$. On sait que : $\varphi(x) \ge 0$ donc $g(x) + Cx^2 \ge 0$ ie $-g(x) \le Cx^2$. Comme $x^2 > 0$, il vient : $-\frac{g(x)}{r^2} \le -C$. Finalement $|f'(x)| \le C$ C'est encore vrai pour x = 0
- **6°)** a) Pour $n \in \mathbb{N}$, on pose $H_n : u_n$ existe et $u_n \in \left[0, \frac{\pi}{2}\right]$.
 - \star H_0 est vraie.
 - \star On suppose que H_n est vraie pour un rang n fixé dans \mathbb{N} . Ainsi, u_n existe et $u_n \in \left[0, \frac{\pi}{3}\right]$. Comme f est définie sur \mathbb{R}_+ , $u_{n+1} = f(u_n)$ existe. De plus, $f' \leq 0$ donc f décroît sur l'intervalle $\left[0, \frac{\pi}{3}\right]$, donc $f(0) \geq f(u_n) \geq f\left(\frac{\pi}{3}\right)$.

Or
$$f(0) = 1$$
 et $f\left(\frac{\pi}{3}\right) = \frac{\sin\left(\frac{\pi}{3}\right)}{\frac{\pi}{3}} \ge 0$.

Ainsi, $0 \le u_{n+1} \le 1 \le \frac{\pi}{3}$. Donc, H_{n+1} est vraie.

- ★ On a montré par récurrence que, pour tout $n \in \mathbb{N}$, u_n existe et $0 \le u_n \le \frac{\pi}{2}$.
- b) f est dérivable sur $\left[0, \frac{\pi}{3}\right]$ et, pour tout $x \in \left[0, \frac{\pi}{3}\right], |f'(x)| \leq C$. Donc, par l'inégalité des accroissements finis

$$\forall (x,y) \in \left[0, \frac{\pi}{3}\right]^2, |f(x) - f(y)| \le C|x - y|$$

En particulier, pour tout $n \in \mathbb{N}$, u_n et α sont dans $\left[0, \frac{\pi}{3}\right]$, donc $|f(u_n) - f(\alpha)| \leq C|u_n - \alpha|$. Or $f(u_n) = u_{n+1}$, et comme $h(\alpha) = \frac{\sin \alpha}{\alpha^2} = 1$, on a $f(\alpha) = \frac{\sin \alpha}{\alpha} = \alpha$. Ainsi

$$\forall n \in \mathbb{N}, |u_{n+1} - \alpha| \le C|u_n - \alpha|.$$

- c) Pour $n \in \mathbb{N}$, on pose $H_n : |u_n \alpha| \leq C^n$.
 - $\star |u_0 \alpha| = |\alpha| = \alpha \operatorname{car} \alpha \ge 0$. Or $h(\alpha) = 1$ i.e. $\sin(\alpha) = \alpha^2$. On en tire que $\alpha^2 \le 1$, donc Ainsi $|u_0 - \alpha| = \alpha \le 1 = C^0$, H_0 est vraie.
 - \star On suppose que H_n est vraie pour un rang n fixé dans \mathbb{N} . $|u_{n+1} - \alpha| \le C|u_n - \alpha|$. Or $|u_n - \alpha| \le C^n$ par H_n . Comme $C \geq 0$, il vient : $|u_{n+1} - \alpha| \leq C^{n+1}$. Ainsi, H_{n+1} est vraie.
 - \bigstar On a montré par récurrence que, pour tout $n \in \mathbb{N}, |u_n \alpha| \leq C^n$
- d) $C = \frac{\sqrt{3}}{4} \operatorname{donc} -1 < C < 1$. Ainsi, $C^n \underset{n \to +\infty}{\longrightarrow} 0$.

Donc, par le théorème d'encadrement, $(u_n - \alpha)$ converge vers 0. Donc $|u_n|$ converge vers α