NASA Contract Report 145245

Research on Graphite Reinforced Glass Matrix Composites

J.F. Bacon, K.M. Prewo

Contract NAS1-14346 - June 1977

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

19951206 000

DTIC QUALITY INSPECTED 5

77-11-37

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

```
O PARITY
                                                                                                                                                                                                                                                               CORPORATE AUTHOR: UNITED TECHNOLOGIES RESEARCH CENTER EAST HARTFORD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            INFORMATION SERVICE, SPRINGFIELD, VA 22161/ORDER NO. N78-12144. 🕂📆
                                                                                                                                                                                                                                                                                                            RESEARCH ON GRAPHITE REINFORCED GLASS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IL
L
                                                                                                                                                                                                                                                                                                                                                                       PERSONAL AUTHORS: BACON ,J. F. :PREWO ,K. M. ;THOMPSON,E
REPORT DATE: JUN , 1977
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S PRINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           AVAILABILITY: NATIONAL TECHNICAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     **** ON ON OTHE WAY WAY ON ONE OF THE STREET
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S LOS CLOSSO
                                                                                                                                                                                                                                                                                                                                                                                                                                      N78-12144, R77-912545-15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   REPORT CLASSIFICATION: UNCLASSIFIED
                                                                                                                                                                                 TITTLESS OF THE SYMPOSIUM ON CORRELATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               NOT NEXT ACCESSION
                                                                                                                                                                                                                                                                                                                                               DESCRIPTIVE NOTE: ANNUAL REPT.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                         NAS1-14346
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  OK-1458448
                                                                                                                                                            -- 5 - CORPORATE AUTHOR: TECHNICAL COOPERATION PROGRAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        XQE 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               NASA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        LIMITATIONS (ALPHA):
                                                                                                                                                                                                                                                                                                                                                                                                                   1096
*MSG DI4 DROLS PROCESSING - LAST INPUT IGNORED
                                                                                                                                                                                                                                                                                                          UNCLASSIFIED TITLE:
                                                                                                                                                                                                                                               AD NUNBER: 0112302
                                                                                                                                                                                                                                                                                                                          MATRIX COMPOSITES,
                                       *NSG DI4 DROLS PROCESSING-LAST INPUT IGNORED
                                                                                                                                          -- 2 - FIELDS AND GROUPS: 11/4, 11/6, 11/7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      LIMITATION CODES:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            MONITOR ACRONYM:
                                                                                                                                                                                                                                                                                                                                                                                                                                                        CONTRACT NUMBER:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               MONITOR SERIES:
                                                                                                                                                                                                                                                                                                                                                                                                                                     AMPORT NUMBER:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FOR HELPS ANSI
                                                                                                                                                                                                                                                                                                                                                                                                               PAGINATION:
                                                                                                                   -- 1 - AD MUMBER: 8958766
                                                                                                                                                                                                      j.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    A11-Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              01-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              04
                                                                                                                                                                                                                                                                                                                                                                                                                                   ₩...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           €
-
[
                                                                                                                                                                                                                                                                                                                                                                                            ---
                                                                                                                                                                                                                                                                                                                                                                                                                10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    <u>이</u>
```

UNITED TECHNOLOGIES RESEARCH CENTER

East Hartford, Connecticut 06108

Report R77-912545-15

Research on Graphite Reinforced Glass Matrix Composites

Annual Report Contract NAS1-14346

REPORTED BY

J. Bacon

Sal M. Kur

E. R. Thompson, Manage
Materials Sciences

DATE June 1977

NO. OF PAGES _____109

COPY NO.

ABSTRACT

This report contains the results obtained in the first twelve months of research under NASA Langley Contract NAS1-14346 for the origination of graphite-fiber reinforced glass matrix composites. Included in the report is a summary of the research by other investigators in this area. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a C.G.W. 7740 (Pyrex) glass matrix. The graphite fibers used included Hercules HMS, Hercules HTS, Thornel 300S, and Celanese DG-102 and, of these, the Hercules HMS and Celanese DG-102 graphite fibers in C.G.W. 7740 gave the most interesting but widely different results.

Hercules HMS fiber in C.G.W. 7740 glass (Pyrex) showed an average four-point flexural strength of 848 MPa or 127,300 psi. As the test temperature was raised from room temperature to 560°C in argon or vacuum, the strength was higher by 50%. However, in air similar tests at 560°C gave a severe loss in strength. These composites also have good thermal cycle properties in argon or vacuum, greatly increased toughness compared to glass, and no loss in strength in a 100 cycle fatigue test.

Celanese DG-102 fiber in C.G.W. 7740 glass (Pyrex) had a much lower flexural strength but did not suffer any loss in this strength when samples were heated to 560° C in air for 4 hrs.

Acces	sion For	2.70
	GRA&I	Til and
DTIC	•	й
	permi	Ħ
Justi	Legiton_	
TITI	A CONTRACTOR OF THE PARTY OF TH	ered
Ey_	PIT 375	Zec-195
Distri	bution/	
(Tabl)	ability (Codes
	tell and	/05
Mot	Spec kal	
0-11		y
	į	

Report R77-912545-15

Research Services on Graphite Reinforced Glass Matrix Composites

TABLE OF CONTENTS

I.	SUMMARY	1
II.	BACKGROUND	2
	A. Review of the Literature	2 4
III.	MATERIALS USED DURING FIRST YEAR'S EFFORT	7
	A. Graphite Fiber	7 7
IV.	PROCESSING	14
	A. Description of Fabrication Process	14 16
٧.	PROPERTIES OF TWO SELECTED SYSTEMS	55
	A. Composites of Hercules HMS Graphite Fiber and 7740 Glass B. Composites of Celanese DG-102 Graphite Fiber and Pyrex Glass	55 93
VI.	CONCLUSIONS AND RECOMMENDATIONS	.06
ਸੁਕਸ਼ਤ	CRENCES	.08

LIST OF TABLES

No.		Page
I	Early UTRC Experiments	5
II	Carbon Fibers and Their Characteristic Properties	8
III	Carbon Fiber Obtained for this Study	10
IV	Characteristic Properties of Glasses Used	11
V	Graphite Fiber Reinforced Glass Matrix Composites Prepared and Evaluated	20
VI	Effect of Amount of Glass in Slurry on Achieved Flexural Strength of Graphite Fiber Reinforced Glass Composite	23
VII	Effect of Hot Pressing Pressure on Achieved Flexural	
	Strength of Graphite Fiber Reinforced Glass Composite	24
VIII	Effect of Temperature on Achieved Flexural Strength of	
,	Graphite Fiber-Glass Composite	25
IX	Fiber Content and Composite Strength for Several Celanese Graphite Fibers in Corning Glass Works 7740 Glass Matrix Composites	31
X	Choice of Graphite Fiber and Its Effect on Ultimate Three-	-
Λ	Point Flexural Strength of Graphite Fiber-Glass Matrix	
	Composite	37
XI	Elevated Temperature Exposure of Thornel 300S Graphite Fiber Reinforced 7740	45
XII	Three-Point Bend Strength of Hercules HTS Fiber in C.G.W. 7740 Glass Measured at Elevated Temperatures	46
XIII	Preliminary Evidence That Choice of Glass Effects the Three-	
	Point Flexural Strength of Graphite Fiber-Glass Matrix Composites	48
XIV	Three Point Flexural Strength Values for HTS Graphite in	
	Pyrex Glass Matrix Evaluated at Three L/D Ratios	49
XV	Comparison of 3-Point Bend and 4-Point Bend Test Data for	
	Several Graphite Fiber-Glass Composites	50
IVX	Possible Reactions Between SiO ₂ and Carbon at Temperatures Above 1400°C	51
XVII	Loss in Weight of Celanese DG-102 Graphite Fiber Vycor Glass Composites as a Function of Temperature	53
XVIII	Flexural Strength of HMS Reinforced 7740	59
XIX	Flexural Properties of HMS Reinforced 7740	62
XX	Elevated Temperature Exposure of Hercules HMS-10K Graphite	
$\Lambda\Lambda$	Reinforced 7740	66
XXI	Room Temperature Elastic Modulus Comparison	67
XXII	Hercules HMS-10K Reinforced 7740 LB 139	69
	Fracture Toughness Specimen Dimensions	81
XXIII	LINCOUTE TOURITHEDS DECETHED DIMENSTOND	

LIST OF TABLES (Cont'd)

No.		Page
XXIV	Fracture Toughness Comparison at 22°C	86
VXX	Thermal Cycling HMS Reinforced 7740	87
IVXX	Four Point Flexural Fatigue	88
IIVXX	Determination of Graphite Fiber Content for Several Graphite	
	Fiber-Pyrex Glass Matrix Samples	92
XXVIII	Effect of Atmosphere on Strength of Celanese DG-102 Graphite	
	Fiber Reinforced Pyrex Glass Composites	96
XXIX	Flexural Strength of Typical Specimens of Celanese Graphite	
	Fiber DG-102 Reinforced Pyrex Glass Matrix Composites	98
XXX	Flexural Strength of Celanese Graphite Fiber DG-102 Reinforced	
	Pyrex Glass Composite at Elevated Temperatures	100
	· · · · · · · · · · · · · · · · · · ·	

LIST OF ILLUSTRATIONS

Fig.	<u>o.</u>	Page
1	Typical Fibers as Seen in Scanning Electron Micrographs	9
2	Viscosity-Temperature Curves	12
3	Scanning Electron Micrographs of Glass Powders	13
14	Slurry Method of Coating Graphite Fiber	15
5	Micrographs of Typical UTRC Carbon Fiber Reinforced	
	Glass Matrix Composites	17
6	Fracture Strength of Thornel 75 - Glass Matrix Composite	
	and Micrographs of Material Near the Fracture Surface	18
7	Micrographs After Fracture of Three Typical Samples	19
8	Optical Micrographs of Four Unfractured Samples	26
9	Tape Map of Unfractured Sample LB94 Celanese DG-102 Fiber,	
	7740 Glass Matrix, Hot Pressed at 1025°C	27
10	Tape-Map of Unfractured Sample LB95 Celanese DG-102 Fiber,	
	7740 Glass Matrix, Hot Pressed at 1050°C	28
11	Tape-Map of Unfractured Sample LB96 Celanese DG-102 Fiber,	
	7740 Glass Matrix, Hot Pressed at 1075°C	29
12	Tape-Map of Unfractured Sample LB97 Celanese DG-102 Fiber,	
	7740 Glass Matrix, Hot Pressed at 1100°C	30
13	Scanning Electron Micrograph of Fracture Surface of LB95	33
14	Scanning Electron Micrograph of Fracture Surface of LB96	34
15	Scanning Electron Micrograph of Fractured Surface of LB97-L2	35
16	Distribution of Strength of Three Graphite Fiber Glass	26
	Matrix Composites	36
17	Thornel 300S Graphite Fiber in Pyrex Glass Matrix Tape-Map	40
_	of Cross Section	40
18	Optical Micrographs of Thornel 300 Fiber in C.G.W. 7740	41
	Glass Matrix	4 1
19	Thornel 300S Graphite Fiber-Pyrex Glass Matrix Cross-Section	42
	Perpendicular to Fiber Direction	46
20	Thornel 300S Graphite Fiber Pyrex Glass Matrix Cross-Section	43
0.7	Parallel to Fiber Direction	7.5
21	Tape-Map of Unfractured Sample LB 81 Thornel 300 Fiber	1414
	C.G.W. 7740 Glass Matrix Flexural Strength of Hercules HTS Graphite Fiber Reinforced	-1-1
22		47
00	7740 Glass Matrix Composite as a Function of Test Temperature	54
23	New Centorr Hot Press at UTRC Optical Tape Map LB135F Hercules HMS Graphite in Pyrex	56
24	Typical Micrographs LB135F Hercules HMS Graphite In Tylex	, ,
25	• -	57
	in Pvrex	ノ١

LIST OF ILLUSTRATIONS (Cont'd)

Fig. No.		Page
26	Hercules HMS-10K Reinforced 7740	60
27	Three Point Bend Strength of Specimens Tested at 22°C	61
28	Load-Deflection Traces for the 3-Pt Bend Tests on Hercules	
	HMS-10K Reinforced 7740	63
29	Load-Strain Traces for the 4 Pt Bend Tests on Strain	
	Gauged Hercules HMS-10K Reinforced 7740	64
30	Flexural Strength of Hercules HMS-10K Fiber Reinforced 7740	
	Glass as a Function of Test Temperature	68
31	HMS-7740 Three Point Flexural Test Specimens	71
32	Hercules HMS-10K Reinforced 7740	72
33	Hercules HMS-10K Reinforced 7740	73
34	Flexural Strength of Hercules HMS-10K Fiber Reinforced	
	7740 Thermoplastic as a Function of Test Temperature	74
35	Flexural Strength Comparison	75
36	Specific Flexural Strength Comparison	77
37	Flexural Strength Comparison	78
38	Specific Flexural Strength Comparison	79
39	Fracture Toughness Specimen	80
40	Load vs Deflection Trace for Specimen LB-140-2 Tested at	
	22°C	83
41	Instrumented Impact Trace	84
42	Instrumented Impact Traces	85
43	Temperature Cycle	87
14 14	Flexural Strength of HMS Graphite-Pyrex Glass Composite	
	after Thermal Cycling	89
45	Effect of Fatigue on Bend Strength of HMS Graphite Fiber in	
	Pyrex Glass Matrix Composite	91
46	Tape-Map of Celanese DG-102 Fiber in C.G.W. 7740 Glass Matrix-	
	Unfractured Sample	94
47	Scanning Electron Micrographs Fracture Surface Celanese	
	DG-102 Fiber in C.G.W. 7740 Glass Matrix	95
48	Flexural Strength of Celanese Fiber Reinforced 7740 Glass	
	as a Function of Test Temperature	99
49	Celanese Fiber Reinforced 7740	101
50	Celanese Fiber Reinforced 7740	102
51	Celanese Fiber Reinforced 7740	103
52	3 Point Bend Specimen LB98-CC	104

I. SUMMARY

Fiber reinforced composites are widely accepted as structural materials because of their desirable attributes of high strength, high modulus and low density. However, even the best of the organic matrix composites reinforced by carbon, boron or glass fiber is limited in use to temperatures below 300°C. Substitution of a metallic matrix for the organic matrix, such as composites of boron or graphite fiber reinforced aluminum, extends the use temperature range only slightly. By contrast, the graphite fiber reinforced borosilicate glass matrix composite which is the subject of this report has exhibited excellent mechanical properties up to 650°C.

Of the two types of graphite fiber reinforced borosilicate-glass composites whose characteristics are given in detail in this report, the Hercules HMS graphite reinforced composite provides the highest level of structural performance. This system has exhibited a flexural strength of up to 977 MPa (142,000 psi) at room temperature. This high level of strength is maintained up to moderate temperatures becoming greater than 1292 MPa at 600°C, a value equal to the strength of HMS graphite fiber reinforced epoxy specimens tested at room temperature. Above 650°C, bend specimens of the HMS graphite fiber reinforced borosilicate glass do not fracture, but instead deform extensively. Specimens of this composite, when tested for fracture toughness, gave results which compare favorably with aluminum alloys and graphite fiber reinforced epoxy composites. The HMS fiber-reinforced glass composite also displays excellent strength retention after exposure to 100 fatigue or thermal cycles, but it suffers degradation of strength when heated to 560°C in air for 4 hrs. Overcoming this strength degradation will be a major task of the second year's research on these types of composites.

The second type of graphite fiber-borosilicate glass composite discussed in detail is reinforced with Celanese DG-102 graphite fiber. This composite has a flexural strength of 340 MPa (49,600 psi) at room temperature and again it increases in strength by almost 40% as the test temperature is increased to 650°C. The relatively low value of strength for this composite is maintained even after 4 hrs exposure to air at 560°C.

The contract monitor for this program is Dennis Dicus and his helpful comments are greatly appreciated.

II. BACKGROUND

At the inception of this program the sales of high performance fiber reinforced composite materials exceeded a million pounds yearly. In general, most of these composites were organic polymer (epoxy resins, polyimides, polycarbonates, and similar materials) matrices reinforced with a great variety of fibers including Kevlar*, carbon, graphite, fused silica, glass, and boron. In general, almost all of these composites were limited to use temperatures not exceeding 300°C.

At the start of this contract, there were no reinforced glass matrix composites commercially available except the age-old wire reinforced glass used for improving the burglar resistance of homes and stores and the AVCO developed tungsten mesh reinforced fused silica intercontinental ballistic missile nose cones. Yet if one conceives of glass as just a high-temperature thermoplastic, the substitution of a glassy matrix for the low temperature polymers in composite materials seems a natural way to proceed. This concept, however, had attracted sparse attention in the past.

A. Review of the Literature

Siefert (Ref. 1) has patented two glass compositions particularly suitable for producing fiber (stainless steel, boron, graphite) reinforced glass composites by pulling the fibers through a molten glass bath and then through a constricting orifice. He states that the resulting composites exhibit high stiffness, a flexural strength higher than aluminum, high impact resistance (being much more impact resistant than monolithic glass), and a capability to withstand temperatures of 538°C for 100 hrs without loss of properties.

Siefert (Ref. 2) extended his work to boron, tungsten and molybdenum reinforced glass composite formed by fusing the glass coated metal fibers together by drawing the fiber through a glass tube and softening a narrow band of the glass tube around the fiber. His boron fiber glass reinforced matrix had flexural properties of 1103 MPa (160,000 psi), a compressive strength of 2069 MPa (300,000 psi), a modulus of 158 GPa (23 x 106 psi) and retained its properties when loaded to 50% ultimate tensile strength and kept in water for 5.7 days as well as after being held at 1000°F for 100 hrs. Finally, samples of his composites when notched and subjected to an impact test were found to have high impact strength and to show no decrease in strength over unnotched samples.

^{*}Registered trademark, DuPont Corp., Wilmington, Delaware

Sambell, et al (Ref. 3) fabricated carbon fiber composites using chopped fibers and magnesia, alumina, soda-lime glass, borosilicate glass, and a lithia aluminosilicate glass-ceramic as matrices. He found that thermal stresses resulting from a mismatch in thermal expansion coefficients ruled out any success with the magnesia, alumina, and soda-lime glass matrices but not with the Pyrex or low expansion glass ceramics. For these he found that the addition of carbon fibers produced substantial increases in the work of fracture and that all composites had lower strengths than the matrix materials if randomly oriented fibers were used (but that the borosilicate glass matrix with partially aligned fibers was stronger and had improved thermal shock characteristics).

Sambell, et al (Ref. 4) continued their investigations using continuous graphite fibers in the same matrix materials, i.e., alumina, magnesia, sodalime glass, borosilicate glass and a lithia-aluminosilicate glass ceramic. They found that the reinforced glass had a strength sevenfold greater than the unreinforced glass and showed a tenfold increase in work of fracture.

Phillips (Ref. 5) investigated in detail the tenfold increase in work of fracture shown by the 40 vol % carbon fiber reinforced Pyrex glass and attempted to explain the results in terms of the initial rate of release of strain energy during fiber fracture and the interfacial strengths of the fibers during pull out. In Ref. 6, Phillips, et al discussed in detail the mechanical properties of the carbon fiber reinforced Pyrex glass in terms of volume fraction of fiber, the orientation of the fibers, fiber damage during fabrication, matrix porosity, matrix critical strain, interface properties and the mode of failure in bend tests. They found from preliminary stress cycling experiments, at stresses above that at which the matrix cracks are formed, that crack propagation is inhibited by the fibers. They also found that to a first approximation, Young's modulus for the composite is that predicted by the rule of mixtures.

Levitt (Ref. 7) developed graphite fiber reinforced composites where the matrix composition was $\text{Li}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot\text{nSiO}_2$ with n = 3, 4 and 8. He used a drum winding apparatus to produce graphite fiber/ceramic matrix tapes which were then hot pressed to their final dimensions. He obtained fivefold increases in modulus of rupture with no fall off after repeated thermal cycling to $1200\,^{\circ}\text{C}$ for all three compositions reinforced by continuous graphite tows. His composites were generally characterized by low porosity, intimate fiber-matrix contact and an uncracked matrix, which was the result of a suitable thermal expansion match between fiber and matrix and the occurrence of a strong fiber-matrix bond. Izod impact energies of 4.2 to 6.3 kJ/m² (20 to 30 ft/lb/in.²) for the notched specimens and 15.75 kJ/m² (75 ft-lbs/in.²) for the unnotched specimens were obtained at room temperature.

Phillips (Ref. 8) has investigated the interfacial bonding and the toughness of four different carbon fiber reinforced glass and glass-ceramic composites and finds that he can explain his results on the basis of the difference in thermal shrinkage between the glass-ceramic and Pyrex matrices resulting in differences in fiber-matrix interfacial shear bond strength and consequent differences in pull out.

Lange (Ref. 9) found that a significant increase in fracture energy was observed (up to 5 times the fracture energy of the glass without second-phase dispersion) when 40 vol % of 44 micron average size alumina particles were dispersed uniformly in a sodium borosilicate glass and that the flexural strength was almost doubled for the same dispersion.

Hasselman and Fulrath (Ref. 10) developed a fracture theory for a composite system based on a dispersion of alumina particles in a continuous glass matrix and then proceeded to verify it experimentally. They found that for 47.5 vol % of 15 micron (average size) alumina particles, the strength (as determined by four-point bend tests) of the sodium borosilicate glass was increased from 101 MPa (14,700 psi \pm 12.7%) to 162 MPa (23,600 psi \pm 3.7%) in accordance with the predictions of their theory.

B. Background Research on Glass Matrix Composites

Because of the many favorable conclusions stated in the references just cited, UTRC, in the late fall of 1975, turned its attention to research on new high temperature fiber reinforced glass composites. This research was intended to supplant the widely used epoxy resin-glass, boron, or carbon fiber composites which are, as mentioned, limited in service to a few hundred degrees Fahrenheit, by the much higher temperature composites consisting of glass matrices reinforced by graphite, alumina, silicon carbide, or boron nitride fibers. These glass matrix composites should be suitable for use at intermediate to elevated temperatures (700-1100°C) where aluminum composites would fail by melting and nickel matrix composites by lack of thermochemical stability.

This initial research at UTRC was largely in the area of graphite fiber reinforced glass matrices. However, it also included experiments with alumina fiber, silicon carbide fiber, boron fiber, and Borsic (silicon carbide coated boron) fibers. As shown in Table I, even these early experiments gave promising results.

The first five samples in the table were hot pressed at 13.8 MPa (2000 psi) and 15 min dwell time. The best of these data indicated that the addition of carbon fiber even at this early date was capable of giving an approximate tenfold increase in strength compared to the unreinforced glass. In addition,

Table I

Early UTRC Experiments

Mechanical Properties of Hot Pressed Samples (measured at room temperature except as noted)

	Temp. of Hot	% Fiber		Flexural rength
<u>Material</u>	Pressing (°C)	in Sample	MPa	(psi)
7740 Glass - Thornel 300	1050	34.4	300	43,500
7740 Glass - Thornel 300	1100	40.5	376	54 , 500
7740 Glass - Thornel 300	1100		364	52 , 750
7740 Glass - Thornel 300	1150	40.5	400	58 , 050
7740 Glass - Thornel 300	1225	40.5	305	44,300
7740 Glass - FP Al_2O_3	1100		138	20,000
$1723 \text{ Glass} - \text{FP Al}_2\text{O}_3$	1100	27	232	33,600
7740 Glass - HM (u)	880		278	40,250
7740 Glass - 5.6B	700	19	383	55,500
7740 Glass - 5.6B	700	30	572	83,000
7740 Glass - 5.6B	700	50	603	87,400
7740 Glass - 5.6B	700	3 ¹ 4	532	77,100
7740 Glass - 5.6B	700	3 ¹ 4	590	85,600 @ 300°C
7740 Glass - 5.6B	700	34	584	84,700 @ 600°C
7740 Glass - Borsic	700	30	353	51 , 150
7740 Glass - 8.0B	700	36	587	85,100
7740 Glass - 5.6 SiC	700	36	531	77,000
7913 Glass - Thornel 300	1550	37	186	27,000
7913 Glass - Thornel 300	1600	37	145	21,000
7913 Glass - Thornel 300	1650	37	108	15,700

as the data for the boron fibers in Pyrex glass indicate, these composites can be expected to maintain their structural integrity as well as at least their original flexural strength up to the softening point of the particular glass used as the matrix, in this case, 600° C.

III. MATERIALS USED DURING FIRST YEAR'S EFFORT

A. Graphite Fiber

The types of fibers readily available in this country for a research program on the generation of new types of graphite fiber reinforced glass matrix composites are shown in Table II. It will be noted that they vary widely in several important characteristics such as the number of fibers in each, the strength and modulus of the fiber, the precursor used to make the fiber, and the price. It is perhaps not so obvious that the use of each fiber presents a distinct surface chemistry problem, but if one considers the finish on the fiber surface and the chemical elements found on the fiber surface as shown in Table II the problem is evident. This is particularly true if one examines the distinctive shape of each carbon fiber as shown in Fig. 1. It is apparent, therefore, that any given glass matrix reinforced with a given graphite fiber will show its own characteristic behavior.

To broaden the investigation as much as practicable, UTRC purchased some of each carbon fiber shown in Table III. In examining this table, it is obvious that the so-called low price fibers derived from a pitch base are far from low-priced at this time and possess only a mediocre strength. What is not obvious, however, is that one of the fibers highly considered for this program, namely Thornel 75 WYL 30 1/2, is no longer available. The Celanese DG-102 fiber has proven to be a suitable substitute in modulus although not in strength and the Hercules HMS fiber is a suitable substitute in strength but not in modulus.

B. Glasses

The types of glasses which were considered for use on the UTRC/NASA-Langley program are shown in Table IV. Just as the graphite fibers show individual characteristics, the glasses also vary widely in their nature possessing different coefficients of linear expansion, different chemical compositions, varied environmental stability, and, of course, different temperature working ranges. Although all the glasses in the table have relatively low thermal expansion coefficients, only the titanium silicate glass has an expansion coefficient as low as that of the graphite fibers.

Just how different the working characteristics of these glasses are is shown in Fig. 2. It is apparent, therefore, that any resultant graphite fiber-glass matrix composites will have their own fabrication conditions. The glasses as they actually arrive at UTRC are shown in the scanning electron micrograph of Fig. 3. Although each glass is purchased solely on the basis that ninety percent must pass through a 36.0 mesh screen; actually all glasses contain numerous fine particles under one micron in size, and it is believed that these fine particles contribute greatly to the fabrication process to be described in the next section.

Table II

Carbon Fibers and Their Characteristic Properties

Result of Spectroscopic Examination		High Na, high Si, Cr	High Na, very high K	Very low Na highest Fe, Si, Ti, Zr	Very high Na, high Cu high Sn, Zn	Moderate Na high Mg, Sn, P	Intermediate Na very high P high Ca, Ta, Zn	
Cost per Pound	300	06	75	250	01	32	385	320
Coeff. Linear Expansion cm/cm ^o C (axial)		-5.7 x 10 ⁻⁷	-3.8 x 10 ⁻⁷					
Density Rms/cm ³	1.850	1.808	1.658	1.96	1.76	1.75	1.80	1.66
Strength	352	392	110	250	360	385	380	315
Strength MPa	2427	2703	2830	1724	2482	2655	2620	2172
Modulus psi x 106	55.9	6.03	37.2	77.0	34.0	33.0	78.0	57.0
Modulus GPa	385	351	256	531	234	228	538	393
Precursor Size of Fiber (microns)	PAN	PAN 7.3	PAN 7.6	PAN 8	PAN 6.9	PAN 8.4	Rayon 6.0	Rayon 6.6
Finish Used	PVA 0.86	Oxidized	Oxidized	Oxi di zed	UC 309	uc 309	PvA	PVA
No. of Fibers in Tow	1,000	10,000	10,000	384	3,000	1,000	720	720
Type of Fiber	Hercules HM/PVA	Hercul e s HMS	Hercules HTS	Celanese DG-102	Thornel 300 Grade WYP30 1/0	Thornel 300 Grade WYP90 1/0	Thornel 75 Grade WYLL60 1/2	Thornel 50 Grade WYG130 1/2

TYPICAL FIBERS AS SEEN IN SCANNING ELECTRON MICROGRAPHS

77-07-202-3

Table III

Carbon Fiber Obtained for this Study

	Number of Fibers	Tensile Strength		Yor Mod	Present Cost	
	in Tow	<u>MPa</u>	(ksi)	<u>GPa</u>	(10 ⁶ psi)	(\$/lb)
Hercules HTS Hercules HTS Special Hercules HM (µ) - PVA Hercules HMS - 10 K Hercules HMS - 3 K	10,000 1,000 1,000 10,000 3,000	2979 2875 2427 2344 2330	432 417 352 340 338	234 234 385 296-331 370	34 34 55•9 43-48 53•7	75 300 300 90 175
Thornel 50 WYG 130 1/2 Thornel 75 WYL 160 1/2 Thornel 300 WYP 30 1/2 Thornel 300 WYP 90 1/0	1,540 1,540 3,000 1,000	2172 2620 2482 2655	315 380 360 385	393 538 234 227	57 78 34 33	320 385 40 32
Thornel Pitch VS 0022-1 Thornel Pitch VS 0022-2 Thornel Pitch VS 0022-3	2,160	1145 945 993	166 137 144	469 345 414	68 50 60	55 55 55
Thornel Pitch VS 0032-1 Thornel Pitch VS 0032-2		1282 1083	186 157	386 400	56 58	270 270
Celanese DG 102	384	1724	250	531	77	250

Table IV

Characteristic Properties of Glasses Used

Modulus 10 ⁶ psi	9.1	12.7	12.4	9.8	10.5	9.8
Coef. Linear Expansion cm/cm ^o C x 10-7	32.5	94	53	5.5	3,5	୯
Dielectric Constant	9**	6.3	5.2	3.8	3.8	0•η
Index of	1.474	1.574	1.547	1.458	1.459	1.484
p b	2,23	2,64	2.49	2.18	2,20	2.21
Working Point *104	1252°C	1168				
Liquidus	1017°C	1070	1050	1700	1700	1600
Soften Point *107.5-8	821°C	908	970	1530	1580	1500
Anneal Point	2 ₆₀ °C	710	810	1020	1084	1000
Strain Point *1014.5	510°C	999	760	890	926	
Nature of Glass	Boro- silicate	Alumino- silicate	Magnesio- alumino- silicate	High silica	Pure silica	Titanium silicate
Type of	C.G.W.	C.G.W. 1723	Ferro S	C.G.W. 7913	C.G.W. 7940	C.G.W. 7971

*viscosity, in poises

SCANNING ELECTRON MICROGRAPHS OF GLASS POWDERS

IV. PROCESSING

A. Description of Fabrication Process

As discussed earlier, several methods exist for coating the fiber as required in the construction of a fiber reinforced glass matrix composite and, indeed, in our earlier evaluation UTRC considered as many as six different processes. However, much the simplest and lowest cost method, if it can be made to work, consists of pulling the graphite fiber tow through a slurry containing the finely ground glass particles.

In the slurry process for coating the graphite fiber with glass, the graphite fiber is unwound from the spool and pulled through an agitated organic solution containing a suspension of fine glass particles. The process is shown schematically in Fig. 4. In greater detail, the continuous graphite tow is unwound from the drum on which it is received at a moderate rate of speed, pulled through a slip comprised of powdered glass, solvent and plasticizer to impregnate the tow, and rewound onto a large rotating drum covered with mylar tape to prevent sticking of the impregnated graphite fiber. The slip may be composed of 40 grams of powdered glass and 3 grams of polyvinyl alcohol dissolved in 100 grams of water to which 2 grams of ethylene glycol is added as a plasticizer. Alternately, the slip may comprise 85 grams of glass in 225 ml of toluene to which 5 grams of polystyrene and 5 drops of tergitol have been added. The large drum is run at one revolution per minute or a linear speed of 5 ft/min. Excess glass and solvent are removed by pressing a squeegee against the drum as it winds. The ground glass used is sized, currently, so that 90% passes through a 325 mesh sieve.

After the tape is dry (sometimes heating with a radiant heat source is necessary to remove excess solvent) it is cut and removed from the drum and then cut into strips or squares which are layed up to give unidirectional or crossplied fiber alignment and then hot pressed. The hot pressing may be carried out in vacuum using metal dies coated with colloidal boron nitride at pressures of 13.8 to 20.7 MPa (2000 to 3000 psi) and temperatures of 1050 to 1200°C for the common borosilicate glass. Alternately, the hot pressing may be done in argon using graphite dies sprayed with boron nitride powder, pressures of 13.8 to 27.6 MPa (2000 to 4000 psi), and a temperature of 1400°C for the Corning ultra-low expansion glasses. In addition, as each layer of tape is placed in the die, a packet of glass weighing 0.05 to 0.15 grams (the heavier the tape layer, the smaller the glass packet) is inserted between layers in an attempt to achieve a 60 to 70% volume loading of graphite fiber in the composite. The mold is then vibrated to ensure uniform distribution of the glass over the tape surface.

The process just described seems very straightforward. Nevertheless, as is shown in the following section, variables such as hot pressing temperature, hot pressing pressure, hot pressing atmosphere, dwell time in the hot press, amount of glass in the slurry, and amount of glass introduced between layers must all be standardized before an optimum composite can be produced. This learning process can be illustrated by examining Figs. 5, 6 and 7. Figure 5 shows the types of microstructures obtained at a very early stage in the UTRC graphite fiber reinforced glass matrix program as does Fig. 6 but with a second type of graphite fiber. Figure 7, on the other hand, is taken from the third monthly report and shows both the much greater fiber density and uniformity of fiber distribution obtained after 90 days of progress on the program. The fiber density and uniformity of fiber distribution continued to improve, as will be shown by micrographs of the most recent samples in the latter sections of this report.

In Table V data are given for all the graphite reinforced glass matrix composites fabricated to date. In this tabulation the temperature and pressure of hot pressing, the type of graphite fiber and the type of glass are the principal variables tabulated against the flexural strengths and densities achieved where these have been measured. The hot pressed sample size is typically $6.35~\rm cm$ x $2.22~\rm cm$ x $0.635~\rm cm$. From this sample nine flexural samples can be cut and these are typically $5.08~\rm cm$ x $0.508~\rm cm$ x $0.127~\rm cm$.

B. Effect of Processing Variables and Material Constituents

The procedure for assembling a graphite fiber reinforced glass matrix composite consists of a number of processes each with its own variables. In making the glass coated graphite fiber tape the speed with which the fiber moves through the slurry, the amount of glass in the slurry, the organic constituents in the slurry and their proportions can all be varied. In cutting the tape and stacking it into the die the amount of additional glass introduced between each layer and the number of layers must be determined experimentally. In the actual hot pressing operation the number of temperatures at which we stop to outgas, the hot pressing temperature, pressure, atmosphere and dwell time, the temperature to which the die is cooled before release of pressure, the mechanical fit of the die, and, indeed, even the particular hot press to be used must all be decided. Of course, the types of graphite fiber and of glass used in forming the glass matrix are of great importance. This section will examine the effect five of these variables have on flexural strength.

FRACTURE STRENGTH OF THORNEL 75 —GLASS MATRIX COMPOSITE AND MICROGRAPHS OF MATERIAL NEAR THE FRACTURE SURFACE

MICROGRAPHS AFTER FRACTURE OF THREE TYPICAL SAMPLES (500X)

 $\label{thm:composite} Table\ V$ Graphite Fiber Reinforced Glass Matrix Composites Prepared and Evaluated

Sample G1 10 LB 11 LB 12 LB 13	Glass 7913 7913 7913 7913	Fiber Thornel 75	Hot Pres Conditi Pressure 1b/in. ² 2000 13.8 MPa	Temp °C 1550 1600 1650 1550	Fle Str MPa 165 198 193 165	psi 24,000 28,700 28,000 24,000	Density gms/cm ³ 1.585 1.695 1.605 1.585	Highest Density Achieved Similar Composite gms/cm ³ 2.138
LB 53 LB 53B	7913+7740 7913		ļ	1600 1600	319 199	46,330 28,900	2.138 1.732	1
LB 90 LB 91 LB 92 LB 93 LB 94 LB 95 LB 96	7740	Celanese DG 102	2000 13.8 MPa	1120 1120 1115 1110 1025 1050 1075	250 227 187 330 356 230 289	36,300 32,800 27,100 47,800 57,700 33,400 42,000	2.011 2.046 2.060 2.043 1.936 1.997	2.060
LB 97 LB 97B LB 97C LB 97D LB 97E LB 97F LB 97G LB 97H LB 97I	7740	Celanese DG 102	2000 13.8 MPa	1100 1100 1100 1200 1200 1200 1200 1200	342 *309	49,600 *44,800	1.969 1.980 1.969 2.025 2.049 Cracked Cracked Cracked	2.060
LB 98 LB 112 LB 107 LB 108 LB 131 LB 132	7740 8913 7913 7913 7740 7740	Celanese DG 102	2000 13.8 MPa	1120 1850 1600 1650 1100	310 227 243	45,000 32,900 35,200	1.969 1.375 1.952 2.000	2.060 2.060 2.060
LB 135 LB 135B LB 135C LB 135D LB 135E LB 135F LB 135G LB 135H LB 135J LB 135J LB 135K LB 135K LB 135M LB 135M LB 135N LB 135N LB 135N	7740	Hercules HMS	2000 13.8 MPa	1100 1120 1100 1100 1200 1200 1200 1200	526 *574 977 *848 *577 *483	76,300 83,300 142,000 *127,300 *83,700 *70,100	1.960 1.972 1.976 1.920 1.939 1.957 1.955 1.949 1.943 1.937 1.955 1.951	1.976

^{*4-}Point Flexural Test

Table V (Cont'd)

Sample	Glass	<u>Fiber</u>	Hot Pres Conditi Pressure lb/in. ²	_	Fle	e-Point xural ength <u>psi</u>	Density gms/cm ³	Highest Density Achieved Similar Composite gms/cm ³
LB 136 LB 137 LB 138 LB 139 LB 140 LB 157	7740 7740 7740 7740 7740 7740	Hercules HMS	2000 13.8 MPa	1100 1100 1100 1100 1100	648 648 661	94,000 94,000 96,000	1.960 1.957 1.952	1.976
LB 158 LB 159 LB 171 LB 172 LB 173 LB 174	7740 7740 1723 1723 1723 1723			1100 1100 1120 1120 1120	353	51,300	1.977 1.9637 1.9489	
LB 147 LB 148 LB 148B LB 148C LB 148D LB 148E LB 148F	7740	Hercules HTS	2000 13.8 MPa	1100 1100 1100 1100 1100 1200	370	53,700	1.902 1.597 1.858 1.886 1.865 1.800	1.902
LB 149 LB 150 LB 151 LB 152				1100 1100 1100 1100	324	47,000	1.000	
C2639-2,3 C265B-1,2 G1 1-1,2 G1 2a,b G1 3a,b G1 4a,b G1 5a,b G1 6a,b	7740	Thornel 300	2000 13.8 MPa	1100 1100 1225 1600 1650 1550 1150	364 376 304 147 109 187 359 259	52,750 54,450 44,000 21,300 15,800 27,100 52,000 37,500	1.931 1.603 1.955 2.013	2,013
LB 75 LB 78 LB 79 LB 80 LB 81 LB 82		Thornel 300S Thornel 300 Thornel 300 Thornel 300	4000 27.6 MPa	1050 1050 1050 1100	273 312 376 479 210	39,700 45,200 54,600 69,400 30,500	1.757 1.829	
LB 133 LB 160 LB 161 LB 151B LB 161C LB 161D LB 161E LB 161F		Thornel 300 Thornel 300S	2000 13.8 MPa	1100 1100 1120 1120 1120 1120 1120 1200	342 498	49,600 72,200	1.566 1.700 1.674 1.640 1.675 1.673	
LB 162 LB 163 LB 134				1120 1120 1100	499 488	72,500 70,800	1.823 1.829	

1. Effect of Amount of Glass in Slurry

In Table VI the effect of the amount of glass in the slurry used to coat the graphite is shown. As can be seen, doubling the glass added to the slurry results in a decrease of strength. Similar tests run with 45 grams of glass in the slurry and 135 grams of glass in the slurry confirm that the best choice seems to be about 85 grams of glass in 200 grams of isopropyl alcohol, 10 grams of polyvinyl alcohol and 5 drops of a wetting agent such as Tergitol's H.D. 527.

2. Effect of Hot Pressing Pressure

The effect of hot pressing pressure on the achieved flexural strength of a Thornel 300 7740 glass composite is shown in Table VII. Doubling the pressure applied to the hot press from 13.8 to 27.6 MPa (2000 to 4000 psi) increases the flexural strength approximately 10%. More importantly, however, it also appears to decrease the scatter shown by the three-point flexural strength data. However, since it has been found that a slight increase in hot pressing temperature achieves much the same result, this is a preferred operational procedure, for at 27.6 MPa (4000 psi) on the unsupported (not filament wound) graphite dies customarily used at UTRC, operation at the higher pressure greatly shortens die life.

3. Effect of Temperature

The effect of temperature on achieved flexural strength of the graphite fiber-glass matrix composite is much greater than the effect of pressure or of the amount of glass present in the slurry. Optical and scanning electron microscopic examination shows exactly what happens as the temperature is increased, and fully explains the data shown in Table VIII. When only the optical micrographs of selected areas of these samples are examined as in Fig. 8, one is unable to sense any significant difference in the samples. However, if one studies the optical tape maps of entire cross sections of the samples (taken at 50X) shown in Figs. 9, 10, 11 and 12, the complete story of what has happened to the samples as the hot pressing temperature is increased from 1025°C to 1100°C is apparent. At 1025°C, Fig. 9, the individual tows are distinct and surrounded by glass rich areas, i.e. they have maintained their individual identity. On the other hand, at 1100°C, Fig. 12, the memories of the individual tows are almost entirely eliminated. Figures 10 and 11, specimens prepared at 1050°C and 1075°C respectively, show intermediate steps in the progression from memories of individual tows to almost complete obliteration of tow identity. This is due to a factor of four change in viscosity of the 7740 glass as the temperature is increased from 1025°C to 1100°C. As shown in Table IX, these results cannot be explained by a variation in the fiber content of the composites.

Table VI

Effect of Amount of Glass in Slurry on Achieved Flexural Strength of Graphite Fiber Reinforced Glass Composite

Glass Added Between Layers	0.11		€900
Glass in Slurry Ems	0 		⊗
3-Point Flexural Strength MPa	41,700 40,200 35,000 37,800 39,300 44,400	39,700	60,600 h7,300 73,100 51,500 66,200 73,400
3- Flexura MPa	287 242 261 271 306	274	418 326 504 355 456 505
Pressure	2000 13.8 MPa		2000 13.8 MPa
Temp. of Hot Press	1050 argon		1050 argon
Fiber	Thornel 300		Thornel 300
Glass	0477		0 1 7 7 7
Specimen	LB 75-2 -3 -5 -6 -7	Average	LB 78-1 -2 -4 -5 -7 -8

Table VII

Effect of Hot Pressing Pressure on Achieved Flexural Strength of Graphite Fiber Reinforced Glass Composite

Glass in Slurry gms	∞	80
Glass Added Between Layers Ems	00.0	†LU*0
d 3-Point 1 Strength psi	60,600 47,300 25,100 73,100 51,500 38,500 66,200 73,400 32,400 32,300 44,100 49,300	65,080 48,600 60,500 Test 49,200 66,700 38,600 57,900 57,900 50,000
Achieved Flexural <u>MPa</u>	418 326 173 504 355 506 506 506 211 223 340	449 335 417 100 339 460 266 399 345
sing ons Pressure psi	2000 13.8 MPa	14000 27.6 MPa
Hot Pressing Conditions Temp. Pre	1050 Argon	1050 Argon
Material Fiber	Thornel 300	Thornel 300
Ma Glass	0777	0777
Specimen	LB 78-1 -2 -3 -3 -4 -5 -6 -7 -9 -10 -11	LB 79-1 -2 -3 -4 -5 -6 -7 -8 Average

Table VIII

Effect of Temperature on Achieved Flexural Strength of Graphite Fiber-Glass Composite

Specimen	Mat <u>Glass</u>	erial <u>Fiber</u>		ressing itions Pressure _psi	Density gms/cm ³		Flexu	th on 3 Pt ral Test <u>x 10³ psi</u>	Vibrated 	Glass Added Between Layers gms	Glass in Slurry gms
LB 94 L-1 L-2 L-3 C-1 C-2 C-3 R-1 R-2 R-3	7740	Celanese	1025	2000 13.8 MPa	1.97		414 330 248 301 291 285 456 418	60.0 47.9 35.9 43.7 42.2 41.3 66.1 60.7	yes	0.05	85
						avg	356	51.7			
LB 95 L-1 L-2 L-3 C-1 C-2 C-3 R-1 R-2 R-3	7740	Celanese	1050	2000 13.8 MPa	2.021		265 218 259 202 199 252 173 215 294	38.5 31.6 37.6 29.3 28.9 36.5 25.1 31.2 42.6	yes	0.05	85
						avg	230	33.4			
LB 96 L-1 L-2 L-3 C-1 C-2 C-3 R-1 R-2 R-3	7740	Celanese	1075	2000 13.8 MPa	1.937		295 274 313 271 268 320 261 302 300	42.8 39.8 45.4 39.3 38.9 46.4 37.8 43.8 43.5	yes	0.05	85
						avg	290	42.0			
LB 97 L-1 L-2 L-3 C-1 C-2 C-3 R-1 R-2 R-3	7740	Celanese	1100	2000 13.8 MPa	1.969		399 411 265 339 340 293 281 362 392	57.8 59.6 38.4 49.1 49.3 42.5 40.8 52.5 56.8	yes	0.05	85
						avg	342	49.6			

TAPE MAP OF UNFRACTURED SAMPLE LB94 CELANESE DG-102 FIBER, 7740 GLASS MATRIX, HOT PRESSED AT 1025 °C

TAPE-MAP OF UNFRACTURED SAMPLE LB95 CELANESE DG-102 FIBER, 7740 GLASS MATRIX, HOT PRESSED AT 1050 °C

TAPE-MAP OF UNFRACTURED SAMPLE LB96 CELANESE DG-102 FIBER, 7740 GLASS MATRIX, HOT PRESSED AT 1075 °C

TAPE-MAP OF UNFRACTURED SAMPLE LB97 CELANESE DG-102 FIBER, 7740 GLASS MATRIX, HOT PRESSED AT 1100 °C

Table IX

Fiber Content and Composite Strength for Several Celanese Graphite Fibers in Corning Glass Works 7740 Glass Matrix Composites

		<i>%</i>	Porosity	5.9	7.0	7.0	3.0
		Vol %	Glass	38.0	37.9	39.8	9.44
		Vol %	Carbon	56.1	61.4	56.2	52.4
		Weight %	Glass	43.5	41.3	9.44	49.2
		*Weight %	Carbon	56.5	58.7	55.4	50.8
		Density	gms/cm ³	1.97	2.021	1.937	1.969
Point	exural	rtexura. Strength	avg, ksi	51.7	33.4	42.0	9.64
m	FT	St	MPa	356	230	290	342
		Fiber	Celanese	Celanese	Celanese	Celanese	
			Glass	7740	7740	0477	7740
			Sample	LB 94	95	96	76

*May include residues from polyvinyl alcohol and polystyrene used in sample preparation. All samples were cut from top and bottom surfaces of the same specimen used to prepare nine flexural strength samples. Temperatures of preparation of samples were 1025, 1050, 1075 and 1100°C respectively.

Figures 13, 14, and 15 examine the nature of the fracture surface of these Celanese DG-102 graphite fiber-Pyrex glass specimens prepared at the several temperatures. It is apparent from the scanning electron micrographs that the breaks are fibrous in appearance. Examination of the higher magnification micrographs indicates that the glass is around each and every fiber and tightly bonded to it which as is shown later accounts for the fine environmental stability of these types of composites.

Figure 16 summarizes the joint effects of temperature and pressure. Here the results of three composites made at two different temperatures and two different pressures are plotted on probability paper. It is seen that as the pressure and temperature are increased toward some optimum value, not only does the average three-point flexural strength of the composite increase but the actual spread in individual values of the three-point flexural tests decreases. The approximate linearity of these plots on probability paper indicates that the distribution of three-point flexural values for a given composite is Gaussian in character and that the Gaussian distribution becomes more sharply peaked as we approach optimum hot pressing conditions.

4. Graphite Fiber Effect

Although processing variables such as the temperature and pressure of the hot pressing operation are very important, their influence on the achieved flexural strength of the graphite fiber-glass composite is actually much less than that of the kind of graphite fiber selected to form the composite. In Table X are shown some of the best and more recent results obtained in measuring the three-point bend strength of four types of graphite fiber in 7740 glass matrices. These results may be summarized by saying that at this time the Hercules-HMS graphite fibers in 7740 glass are expected to average higher than 690 MPa or 100,000 psi in three-point flexural strength with corresponding figures of 500 MPa or 72,000 psi for Thornel 300S fiber, 370 MPa or 54,000 psi for Hercules HTS fiber, and 340 MPa or 49,000 psi for Celanese DG-102 fiber. Again as Table X demonstrates there seems to be no valid connection between the modulus and strength of the fiber used and the flexural strength of the composite. It is obvious therefore that the flexural strength of the composite must be dependent on variables not yet properly studied such as the surface chemistry of the fiber and the degree of bonding obtained between a particular kind of fiber and a particular kind of glass.

In the next major section (Section V) of this report the properties achieved with the Hercules HMS fiber in 7740, which gave the strongest composite, and those achieved with the Celanese DG-102 fiber, which is the composite with the greatest environmental stability, are examined in detail. Before concluding this section, therefore, it seems advisable to examine the properties obtained with

SCANNING ELECTRON MICROGRAPH OF FRACTURE SURFACE LB95--R3, 294 MPa (42.6 ksi) 1050°C PREPARATION

SCANNING ELECTRON MICROGRAPH OF FRACTURE SURFACE OF LB96-L2, 274 MPa (39.8 ksi) 1075°C PREPARATION

SCANNING ELECTRON MICROGRAPH OF FRACTURED SURFACE OF LB97-L2, 410 MPa (59.6 ksi) 1100°C PREPARATION

DISTRIBUTION OF STRENGTH OF THREE THORNEL 300 FIBER GLASS MATRIX COMPOSITES

Table X

Choice of Graphite Fiber and Its Effect on Ultimate Three-Point Flexural Strength of Graphite Fiber-Glass Matrix Composite

Sample Number	Type of Fiber	Fiber Modulus psixl0 ⁶	Fiber Strength psixl0 ³	Number of Fibers in Tow	Glass	Fle	ee-Point exural rength psix103
LB 135 RC CB LC CC TC TR TL RL RB Average	Hercules HMS	50.9 351 GPa	392 2703 MPa	10,000	7740	673 663 705 734 640 705 733 746 614 689	97.7 96.2 102.0 106.0 92.9 102.0 106.0 108.0 89.0 99.98
LB 161 TR RC RB TC CC CB TL LC LB Average	Thornel 300S	33 228 GPa	385 2655 MPa	1,000	7740	504 397 516 474 528 556 467 522 519 498	73.1 57.6 74.8 68.8 76.5 80.6 67.7 75.7 75.3 72.23
LB 148 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 Average	Hercules HTS	37.2 257 GPa	410 2827 MPa	10,000	7740	338 408 341 357 410 389 408 379 456 354 343 407 319 297 348 370	49.0 59.2 49.5 51.7 59.4 56.4 59.2 54.9 66.1 51.4 49.8 59.1 46.3 43.0 50.4 53.7

Table X (cont'd)

Sample Number	Type of Fiber	Fiber Modulus psixl0 ⁶	Fiber Strength psixl0 ³	Number of Fibers in Tow	Glass	Fle	ee-Point exural rength psix103
LB 97 L1 L2 L3 C1 C2 C3 R1 R2 R3	Celanese DG 102	77.0 530 GPa	250 1724 MPa	384	7740	399 411 265 339 340 293 281 362 392	57.8 59.6 38.4 49.1 49.3 42.5 40.8 52.5 56.8
Average						342	49.6

the fiber giving the next best result, i.e. Thornel 300 graphite fiber in 7740 glass. In Figs. 17-21 are shown typical optical micrographs of Thornel 300S in 7740 glass. As Figs. 17-19 show, the usual composites made with this material have a very high density of fiber but with a nonuniform distribution with some glass rich areas. This factor may account for the poor high temperature behavior of the Thornel 300 graphite fiber reinforced 7740 glass matrix shown in Table XI where it will be noted that the composite is degraded to about 50% of its original strength when heated in argon at 560°C for 4 hrs and subsequently tested at room temperature and to 25% of its original strength when heated in air for 4 hrs at 560°C. The data obtained for composites made with the Hercules HTS fiber are given in Table X and Fig. 22 as a function of test temperature.

5. Effect of Matrix Composition

The effect of the glass matrix composition on the achieved properties of the graphite fiber reinforced glass matrix composite has received only preliminary study since the C.G.W. 7740 glass seems adequate for a composite whose use temperature, as stated by this contract, is 540°C or 1000°F. The choice of glass matrix composition is, however, important as seen in Table XIII where it is shown that the Hercules HMS graphite fiber used to reinforce a 7740 glass matrix has nearly twice the flexural strength of a Hercules HMS graphite fiber aluminosilicate (C.G.W. 1723) glass matrix.

6. Comparison of Three and Four-Point Flexural Strengths

The effect of span-to-depth ratio on three-point flexural strength was evaluated, over a wide range (20 to 60). The data shown in Table XIV indicate the strength is not a function of the L/D ratio within this range.

The relationship of the three-point flexural strength for these graphite fiber reinforced glass composites to the four-point flexural strength was also evaluated as can be seen in Table XV.

7. High Temperature Limitation on Processing

In Table XVI are shown thermodynamic predictions of reactions which could limit the temperature at which the graphite fiber-reinforced glass composite could be hot pressed. Since thermodynamic considerations merely assure that such reactions can take place and say nothing about the speed with which they occur, it is of interest to investigate the situation experimentally. In

77-02-158-3

OPTICAL MICROGRAPHS OF THORNEL 300 FIBER IN C.G.W. 7740 GLASS MATRIX 200X

THORNEL 300S GRAPHITE FIBER-PYREX GLASS MATRIX CROSS-SECTION PERPENDICULAR TO FIBER DIRECTION

THORNEL 300S GRAPHITE FIBER 7740 GLASS MATRIX CROSS—SECTION PARALLEL TO FIBER DIRECTION

50µ

TAPE-MAP OF UNFRACTURED SAMPLE LB 81 THORNEL 300 FIBER C.G.W. 7740 GLASS MATRIX

76-06-292-7

Table XI

Elevated Temperature Exposure of Thornel 300S

Graphite Fiber Reinforced 7740

Specime	n	Expo	sure Condi	tions	20°C 3- Bend S	-Point trength	Average
	_	Time	Temp.	Atmosphere	MP a	10 ³ psi	
]	IC RC RB CC IL	4 hrs	560°C	Argon	212 206 248 262 316	30.8 29.9 36.0 38.0 45.9	249 (36.1)
(IR CB CL LB		none		314 501 563 574	45.5 72.7 81.6 83.2	488 (70.8)
I I	CC* CC* LB* RB*	4 hrs	560°C	Air	154 113 112 79 152	22.3 16.4 16.2 11.4 22.1	122 (17.7)
(TR RC TB		none		451 445 528 574	65.4 64.6 76.6 83.3	499 (72.4)

^{*}Fibers changed color to white as a result of air anneal

Table XII

Three-Point Bend Strength of Hercules HTS Fiber in C.G.W. 7740

Glass Measured at Elevated Temperatures

Sample No.	Test Temperature	3-Point Flex MPa	ural Strength psi x 10 ³
LB 149 CC ₁ CC ₂ BC LB	Room Temp. Room Temp. Room Temp. Room Temp.	352 318 290 293	57.1 46.2 42.0 42.5
$^{ ext{TL}}$	550	537	77 . 9
	550	448	65 . 0
LC ₂	600	459	66.6
TR	600	586	85.0
RC ₁	650	511	74.1
RC ₂	650	509	73.8
RB	700	379	54.9
TC	700	291	42.2

FLEXURAL STRENGTH OF HERCULES HTS GRAPHITE FIBER REINFORCED 7740 GLASS MATRIX COMPOSITE AS A FUNCTION OF TESTITEMPERATURE

Table XIII

Preliminary Evidence That Choice of Glass Effects the Three-Point
Flexural Strength of Graphite Fiber-Glass Matrix Composites

Sample Number	Type of Fiber	Type of Glass	Cond	ressing itions Press.(psi)		ee-Point al Strength psi x 10 ³
LB 135 RC CB LC CC TC TR TL RL RB Average	Hercules HMS	C.G.W. 7740	1100	2000 13.79 MPa	673 663 705 734 640 705 733 746 614 689	97.7 96.2 102.0 106.0 92.9 102.0 106.0 108.0 89.0 99.98
LB 172 TR RC1 RC2 RC3 TC CC1 CC2 CB TL LC1 LC2 LB Average	Hercules HMS	C.G.W. 1723	1120	2000 13.79 MPa	289 337 324 277 411 562 not 296 408 353 299 371 357	41.9 48.9 47.1 40.2 59.6 81.6 tested 43.0 59.1 51.1 43.4 53.8 51.8

Table XIV

Three Point Flexural Strength Values for HTS Graphite in Pyrex Glass Matrix Evaluated at Three L/D Ratios

LB 148

				Three	Point	
Specimen	Span	Thickness	L/D	Flexural	Strength	Average
	in.	in.		<u>MPa</u>	kpsi	kpsi
LB 148					,	
1	1.5	0.025	60	338	49.0	
2		0.025	60	408	59.2	
3		0.024	62.5	341	49.5	
14		0.029	51.7	357	51.7	
5		0.026	57.7	410	59.4	53.8
6		0.064	23.4	389	56.4	
7		0.060	25	408	59.2	
8		0.056	26.8	379	54.9	
9		0.062	24.2	456	66.1	
10		0.062	24.2	354	51.4	57.6
1.1		0.048	31.25	343	49.8	
12		0.048	31.25	407	59.1	
13		0.048	31.25	319	46.3	
14		0.049	30.6	297	43.0	
15	1	0.048	31.25	348	50.4	49.7

Table XV

Comparison of 3-Point Bend and 4-Point Bend Test
Data for Several Graphite Fiber-Glass Composites

Charles	3-Point Flexur MPa	-	Strain (4-Point Flexur MPa	_
Specimen	Mra	psi	1.17 (0)	<u> </u>
LB 136 - 3 tests - 6 tests	648	94,000	517	75,000
LB 135F - 9 tests LB 135G - 9 tests	977	142,000	848	127,300
LB 97 - 9 tests LB 97D - 9 tests	342	49,600	309	44,800

Table XVI

Possible Reactions Between SiO₂ and Carbon at Temperatures Above 1673°K*

1)
$$SiO_{2(\beta q,\ell)} + 3C \longrightarrow SiC + 2CO(g)$$

2)
$$SiO_2(\beta q, \ell) + C \longrightarrow SiO(g) + CO(g)$$

3)
$$SiO(g) + 2C \longrightarrow SiC + CO(g)$$

$$4)$$
 SiO(g) + C \longrightarrow Si(ℓ) + CO(g)

Based on 1st and most important reaction, equilibrium vapors pressures are

Temp (°K)	Equilibrium P _{CO(atm)}
1200	1.02 x 10 ⁻⁴
1400	6.98×10^{-3}
1600	1.62 x 10 ⁻¹
1800	1.84
2000	12.4

^{*}Data taken from Bacon, James F., Alex A. Hasapis and James W. Wholley, Jr., Physics & Chemistry of Glasses, Vol. 1, No. 3, June 1960, pp 90-98.

Table XVII the finished weight of the hot-pressed sample is compared with its initial weight as a function of temperature for six Celanese DG-102 graphite fibers in Vycor (C.G.W. 7913) hot-pressed at very high temperatures. The table shows that despite the thermodynamic predictions of reactions at temperatures as low as 1400°C, actual hot pressing operations can be carried out at temperatures of 1600°C for the usual 1 hr dwell time at temperature. Above 1600°C, however, the reactions between glass and fiber make operations impractical. In considering these results it should be noted that the Celanese DG-102 graphite is the fiber with greatest environmental stability and the Vycor glass (C.G.W. 7913) a 96% SiO₂, 3% Al₂O₃ glass is a highly stable glass designed for use at high temperatures.

8. Fabrication in New Hot Press

Samples LB 97E,F,G,H,I; LB 135F,G,H,I,J,K,L,M,N,O; LB 148E and F; and LB 161 E and F have been prepared in a new Centorr Hot Press. This equipment is shown in Fig. 23. It permits the fabrication of specimens as large as 6 in. x 4 in. x 1 in. (3 in. thick before pressing) formed with a load up to 60 tons and temperatures of 2100°C in a vacuum of 10⁻⁶ torr or under argon. This press is double acting in place of the single acting presses used early on this program. With this new press samples were obtained that had greatly improved bending strengths.

Table XVII

Loss in Weight of Celanese DG-102 Graphite Fiber Vycor Glass
Composites as a Function of Temperature

Sample	Weight of All Material Before Hot Pressing gms	Finished Weight of Sample After Hot Pressing 1 hr gms	Temperature at Which Hot Pressing Was Performed °C
LB 107	22.55	22.35	1600
LB 108	22.55	15.92	1650
LB 109	22.55	10.64	1700
LB 110	22.55	10.89	1750
LB 111	22.55	9.01	1800
LB 112	22.55	7.14	1850

V. PROPERTIES OF TWO SELECTED SYSTEMS

The two most completely characterized graphite fiber reinforced glass matrix composites developed to date are the Hercules HMS graphite fiber in 7740 and the Celanese DG-l02 graphite fiber in 7740 composites. The properties obtained thus far for the HMS graphite composites are as follows. An average three-point flexural strength of 977 MPa or 142,000 psi and an average four-point flexural strength (with strain gages) of 848 MPa or 127,300 psi have been measured. These composites have an average modulus of 200 to 206 GPa or 29 to 30 million psi, and a use temperature of 600° C or 1112° F as judged by the fact that the flexural strength in argon increases as the temperature increases from room temperature to 560° C. Very limited thermal cycling and fatigue tests with loads up to 80% UTS, 100 cycles only, show no deterioration in properties for these composites. But the HMS graphite fiber 7740 glass composites do fall to 72% of room temperature strength when heated in air at 560° C for 4 hrs.

On the other hand, the second type of composite which the first year's research has shown to be of major interest is that consisting of Celanese DG-102 fibers reinforcing a 7740 glass matrix. While it is true that at this time the Celanese DG-102 fiber composite has a RT three-point flexural strength of only 342 MPa or 49,600 psi and a four-point flexural strength (with strain gages) of 309 MPa or 49,800 psi it does have a much higher modulus of 303 GPa or 44 million psi. The Celanese DG-102 fiber composite maintains these properties even when heated in air for 4 hrs at 560°C. It is the purpose of this section to examine the basis for these statements in detail.

A. Composites of Hercules HMS Graphite Fiber and 7740 Glass

1. Microstructure

The microstructure of a typical high strength HMS graphite fiber in 7740 glass composite is shown as an optical tape-map of the entire cross section of a test specimen in Fig. 24 and at higher magnification in Fig. 25. The almost unbelievable high density of fiber packing in these samples is immediately visible together with the great uniformity of fiber distribution. Yet, despite the high fiber density the micros lead to the conclusion that each fiber is still completely surrounded by glass with only a few fibers in actual contact with one another. It is believed that this achievement of higher fiber density accounts in part for the strength of these composites.

OPTICAL TAPE MAP LB135F HERCULES HMS GRAPHITE IN 7740

2. Flexural Strength

The three-point flexural strength of the best HMS graphite fiber reinforced Pyrex composite made in the UTRC press originally used for this work is shown in Table XVIII and directly below the flexural strength of a similar composite made in the new Centorr press at a slightly higher temperature. While both sets of data show the very high flexural strengths now customarily to be associated with this type of composite, the difference between the two sets of data must be ascribed to factors as yet poorly understood. For example, the new Centorr press is double acting instead of the single action of the press originally used, the later samples are made in new and more tightly fitting dies, the test specimens from the samples were cut by different technicians and on different grinding and cutting equipment, and the two samples were made from different tapes.

However, not only are both samples of Table XVIII high in flexural strength, they also show small standard deviations or a very small spread in test values as can be seen from the plots on probability paper shown in Figs. 26 and 27. Since the linearity of these plots suggests a Gaussian distribution of flexural strengths with small standard deviations, these materials are unique among most brittle materials and can be employed by the designer with a high degree on confidence.

In Table XIX the four-point strain-gaged flexural strength is shown for the second specimen of Hercules HMS graphite fiber reinforced 7740 produced in the new press. The average four-point flexural strength of 876 MPa (127,000 psi) completely corroborated the three-point flexural data reported in Table XVIII for sample LB 135F. The fact that strain gages were used in this measurement as shown in Table XIX also enables one to compute accurate moduli values for this sample and these average 194 GPa or 28.2 million psi. Using the rule of mixtures this would correspond to an approximate fiber content of 47% by volume. The data of Table XIX illustrate that, as might be expected due to the larger volume of specimens experiencing maximum stress in four-point bend, the composite strength is lower for the four-point test than for the three-point test. The average strength of 883 MPa (128,000 psi) is still quite high and failure strains up to 0.42% were recorded.

Typical load deflection traces for two specimens taken from another hot pressed HMS graphite fiber in Pyrex sample are shown in Fig. 28. Both totally linear and combined linear - nonlinear deflections were exhibited; however, in all cases specimens did not fracture completely but instead cracks were diverted in the interior of the specimen so that failed specimens remained visibly intact after test. The load strain curves for four-point bend tests on a second HMS fiber Pyrex glass sample are shown in Fig. 29 and represent the two types of

Table XVIII

Flexural Strength of HMS Reinforced 7740

		Hot Pressing		Thr	ee-Point
Sample	Thickness	Temperature	Type of	Flexur	al Strength
Number	in.	°C	Load Curve	MPa	psi x 10 ³
			۸.		
LB 135 RC	0.060	1100	~ /	673	97.7
CB	0.056			663	96.2
LC	0.059			705	102.0
CC	0.049			734	106.0
TC	0.032			640	92.9
\mathtt{TR}	0.033			705	102.0
${ m TL}$	0.034			733	106.0
LB	0.033			746	108.0
RB	0.054	Į.	1	614	89.0
			Average	689	99.98
th Jampa	0.050	1200	N	1070	155.0
LB 135FRC	0.059	1200		1010	146.0
CB LC	0.059 0.068		1	1050	152.0
	0.059			1140	165.0
CC TC	0.059			903	131.0
	0.062			903 946	137.0
TR				698	101.0
TL	0.063			1050	152.0
LB	0.060			983	143.0
RB	0.061	Ψ	Ψ	903	±43•∪
			Average	977	142.0

HERCULES HMS-10K REINFORCED 7740

THREE POINT BEND STRENGTH OF SPECIMENS TESTED AT 22°C

Table XIX

Flexural Properties

HMS Reinforced 7740 Sample LB 135G

4-Point Be	end Strength 10 ³ psi	Elastic Mod GPa 10 ⁶	lulus psi	Strain to Failure $\epsilon_{\hat{f}}$
896	130	185 2	26.8	0.485
938	136	196 2	28.5	0.477
800	116	201 2	29.2	0.397
876	127	194 2	28.2	0.453
878	127			

LOAD-DEFLECTION TRACES FOR THE 3-PT BEND TESTS ON HERCULES HMS-10K REINFORCED 7740

LOAD-STRAIN TRACES FOR THE 4 PT BEND TESTS ON STRAIN GAUGED HERCULES HMS-10K REINFORCED 7740

behavior observed. In the case of specimen BL, a nearly bilinear curve was obtained with a secondary elastic modulus 26×10^6 psi as compared to the initial value of 29 x 10⁶ psi. This type of behavior in composites has often been associated with a transition from elastic-elastic to elastic-plastic regions of fiber-matrix behavior; however, for the current system this transition is unlikely and the operative mechanism is not known. It could be related to some unbonding or matrix fracture mode or it could also be due to some structural defect initiated failure. In contrast, specimen CB demonstrated a linear loadstrain trace to failure. It should be noted, however, that there were three major interruptions in this loading curve which resulted in the load dropping off and then recovering. These are indicative of some structural changes in the specimen at regions removed from the strain gage, and thus if viewed from the point of a load vs crosshead displacement curve this specimen would have exhibited a curve like that of specimen BR in Fig. 28. In the four-point test, as well as the three-point test, this material is able to blunt incipient fractures such that the overall specimen can continue to bear load. Also, as in the case of three point bend, all specimens were visibly still intact after fracture, i.e. the cracks were not able to propagate through the whole specimen.

3. Effect of Test Atmosphere on Bend Strength

The environmental stability of this system was also evaluated by exposure to air and argon at 560°C. The data, Table XX, indicate some degradation due to exposure to air. No visible material change could be detected; however, in contrast to the Celanese reinforced 7740 composite, it should be recalled that in this system the fiber does not bond as tightly to the matrix and thus may not be as well protected by the glass. In addition, the higher modulus Celanese fiber, due to its crystallographic orientation, is more oxidation resistant than the somewhat lower modulus Hercules fiber.

4. Comparison of Elastic Modulus

The elastic modulus for HMS reinforced 7740 is compared with values of E_{ll} characteristic of other composite systems in Table XXI. The specific modulus comparison given in the last column indicates the superiority of the glass matrix composite.

5. High Temperature Flexural Strength

Composite specimens were tested in three-point bend over a series of temperatures up to 700°C in argon. The resultant data are presented in Fig. 30 and Table XXII. The average strength of 120,000 psi at RT (825 MPa) is higher at 600°C, i.e. 175,000 psi (1213 MPa), and only at 700°C is the deformation of the

Table XX

Elevated Temperature Exposure of Hercules HMS-10K
Graphite Reinforced 7740

Specimen	Expos	ure Condi	tions	
	Time	Temp.	Atmos.	10^3 psi
LB-138	4 hrs	560°C	Argon	78.3 82.3 86.7 113.0 90.1 Avg.
LB-138		None		69.6 81.1 111.0 122.0 95.9 Avg.
LB-137	4 hrs	560°C	Air	62.1 67.6 70.2 72.1 68.0 Avg.
LB-137		None		79.9 91.6 92.3 99.1 106.5 93.9 Avg.

Table XXI

Room Temperature Elastic Modulus Comparison

System with Calculated	Dens ρ	ity		Modulus	Ε ₁₁ /ρ
Fiber Contents	(gm/cm^3)	(lb/in. ³)	GPa	10 ⁶ psi	108/psi/lb/in.3
50 v/o Celanese DG-102- 7740	2.02	0.072	296	43	5.94
50 v/o HMS-7740	1.98	0.071	193	28	3.94
42 v/o T50-Al	2.30	0.083	207	30	3.61
50 v/o B - Al	2.70	0.097	227	33	3.40
43 v/o B-Ti	3.70	0.133	234	34	2.56

FLEXURAL STRENGTH OF HERCULES HMS-10K FIBER REINFORCED 7740 GLASS AS A FUNCTION OF TEST TEMPERATURE

SPECIMEN SET LB-139

Table XXII

Hercules HMS-10K Reinforced 7740 LB 139

3 Point Flexural Strength Tested at Temperature in Argon

Test Temperature	Flexural S	Strength
(°C)	MPa	10^3 psi
22	863	125
22	785	114
500	793	115
550	1081	157
550	706	102
600	1292	187
600	1134	164
650	772	1.12
700	347*	50.3*

^{*}Specimen highly deformed so that this number is not strictly valid

specimen excessively large. The specimen fractures are shown in Fig. 31 indicating a fibrous nature to the RT fracture surface while at the higher temperatures the specimens delaminated in a limited way. None of these specimens failed completely and a bend fixture had to be used to take the photos shown in Fig. 31 since delaminations are not visible in the unstressed condition.

The load deflection traces for these composites are given in Figs. 32 and 33. A significant transition in load-deflection trace characteristics accompanies the change in fracture appearance noted above.

- 6. Comparison of High Temperature Strength with that of Other Composite Systems
 - a. Graphite Reinforced Thermoplastic

The three-point bend data presented in Fig. 34 have recently been obtained for a NASA sponsored program at UTRC*. The fiber is the same Hercules HMS fiber used on this program to reinforce 7740. Note the following points in comparison with Fig. 30.

The resin matrix composite maximum flexural strength at room temperature is approximately equal to the strength of the HMS-7740 at 600°C , although greater at room temperature.

The rate of strength decrease in the vicinity of the resin glass transition temperature is rapid, as it is for the glass matrix composite above 650°C .

b. Graphite Reinforced Aluminum

The only flexural strength data for graphite reinforced aluminum the authors could find was recently published by W. Harrigan of Aerospace Corporation. These data, for wire and plates, are presented in Fig. 35 as a function of test temperature and compared with the data of Fig. 30.

^{*}Novak, R. C., Graphite Fiber Reinforced Thermoplastic Resins, NAS3-20077, CR-135196, 1976.

HMS-7740 THREE POINT FLEXURAL TEST SPECIMENS

HERCULES HMS-10K REINFORCED 7740

LB-139
3 PT BEND AT TEMPERATURE

HERCULES HMS-10K REINFORCED 7740

LB-139

3 PT BEND AT TEMPERATURE

FLEXURAL STRENGTH OF HERCULES HMS—10K FIBER REINFORCED 7740 THERMOPLASTICS AS A FUNCTION OF TEST TEMPERATURE*

■ HMS—P1700 POLYSULFONE

♦ HMS-300P POLYETHERSULFONE

^{*} UTRC CONTRACT NAS3-20077, 1976

FLEXURAL STRENGTH COMPARISON

- O HERCULES HMS-7740 (UTRC)
- ☐ THORNEL-50-202 AI WIRE (REPORT SAMSO-TR-76-31-JUNE 1976)

- Over the entire test temperature range, the glass matrix composite is equal to or superior to the aluminum matrix composite in strength.
- •On a specific property basis the glass matrix composite would offer an additional advantage which in this case would be significant. The density of the aluminum matrix composite is approximately 2.4 grams per cubic centimeter while that of the HMS-7740 is approximately 2.0 grams per cubic centimeter. The specific strength comparison is given in Fig. 36.
- The maximum use temperature of the glass matrix composite should be significantly greater than that of the graphite aluminum.

c. Borsic Reinforced Ti-6Al-4V

This is the only metal matrix composite with a plausible use temperature in the range of RT-500°C (excluding reinforced high temperature superalloys which have a much higher density). Therefore, the comparison with this system at temperatures above 300°C is very meaningful. The data are presented in Fig. 37. In this case flexural data over the temperature range of interest are not available so Borsic-Ti tensile test data were used. To make a more realistic comparison, the Borsic-Ti composite tensile data were multiplied by a factor of 1.4 which, in the past at UTRC, has been shown to be the ratio of flexural strength to tensile strength at room temperature for Borsic-Ti. In addition, the data were divided by composite density to obtain the specific flexural strength comparison shown in Fig. 38. At temperatures above 150°C the glass matrix composite is clearly superior to the titanium matrix composite.

7. Fracture Toughness Testing

Notched three point bend specimens were fabricated and tested in an attempt to characterize the fracture toughness of this composite system. The specimen geometry is given in Fig. 39 and specimen dimensions with resultant data are given in Table XXIII.

Two types of mechanical test procedures were used.

- Specimen 140-2 was tested in slow 3 point bend at room temperature.
- The other three specimens were tested using the UTRC instrumented impact testing machine which is capable of operating at elevated temperatures.

SPECIFIC FLEXURAL STRENGTH COMPARISON

FLEXURAL STRENGTH COMPARISON

SPECIFIC FLEXURAL STRENGTH COMPARISON

FRACTURE TOUGHNESS SPECIMEN

Table XXIII

Fracture Toughness Specimen Dimensions

Specimen	(cm)	B (cm)	10		Test Span	I m
LB-140-1 -2	0.330	066.0		0.691 0.691	3.98 3.80	0.0
LB-157-1 -2	0.330	0.954		852 852	3.98 3.98	5.0
		Specimen	Specimen Test Data			
Specimen	Test Speed (cm/min)	Test Temp	$MN/m^{3/2}$	K _c 10 ³ psi ⁄in	Energy Per Joules/m ²	Unit Area ft-lbs/in ²
LB-140-1 -2	20,000 0.127	. 55	21.4	19.5	23,500	23,500 11.3
LB-157-1	20,000	600	15.8	15.8 14.3 10, 19.0 17.3 11,	10,600	5.1

The load vs deflection trace for the slow bend test is presented in Fig. 40. The increase in load to failure is linear and the value of fracture toughness of $22.1 \text{ MM/m}^{3/2}$ was calculated on the basis of the maximum load.

By comparison, the load-time traces for the instrumented impact tests are given in Figs. 41 and 42. The initial peaks in these tests are the inertial peaks which have to do with the high velocity of impact. Aside from these inertial peaks, the rise to maximum load is also nearly linear for these tests and the value of $K_{\rm C}$ was also calculated on the basis of the maximum load.

The data in Table XXIII indicate that at 22°C there was no effect of dramatically increasing test speed. The fracture toughness did, however, decrease with increasing test temperature. This is opposite to the variation in strength described previously; note that even the values obtained at the higher temperatures are greater when compared to other composites and more conventional engineering alloys, Table XXIV.

8. Effect of Thermal Cycling on Flexural Strength

Sample LB 135G, HMS in 7740, was tested by thermal cycling specimens at an interval of 8 minutes and 20 seconds as indicated by the thermal cycle shown in Fig. 43. As noted in Table XXV and as drawn in Fig. 44, the thermal cycling had little or no effect on the four-point bend strength of the specimens and these, after cycling, looked exactly as they had initially.

9. Fatigue Studies and the Effect on Flexural Strength

Sample LB 135, again an HMS graphite fiber in C.G.W. 7740 glass composite made in the Centorr press, was subjected to four-point flexural fatigue testing. These specimens were prefatigued to between 0.8 and 0.08 of the as-fabricated four-point bend strength. Table XXVI and Fig. 45 show that the samples suffered no deterioration in strength after 100 cycles.

10. Analysis of Graphite Fiber Content of HMS Composites

It has proven very easy to separate the graphite fibers from glass matrix using HF solutions. The fibers are recovered in a virtually intact condition and show no effect of having been encased in glass by hot pressing. In Table XXVII are shown the results of the analysis for two of the composites used in the tests of this section. The sample LB 138 has a three-point flexural strength of 661 MPa and 96,000 psi and was prepared in the older press used in this program as was sample LB 139.

LOAD VS DEFLECTION TRACE FOR SPECIMEN LB-140-2 TESTED AT 22°C

INSTRUMENTED IMPACT TRACE

INSTRUMENTED IMPACT TRACES

Table XXIV

Fracture Toughness Comparison at 22°C

Material	k	CIC
	$MN/m^{3/2}$	10 ³ psi √in
0°-HMS/7740	21.7	19.8
0/90-AS Graphite/AR 288*	14.25-1.973	13-18
Morganite II/Epoxy** 0° 90° 45° +45° 0/+45°/90	35 1.75 2.52 19.73 24.1	32 1.6 2.3 18 22
2014-T6 Aluminum Alloy***	21.92	20
6061-T651 Aluminum Alloy***	29.6	27

^{*}UTRC data using compact tension specimens

^{**}H. Konish and T. Cruse, J. Comp. Materials, Vol. 6, p 114, 1972

^{***}Damage Tolerant Design Handbook MCIC-HB-Ol

Table XXV

Thermal Cycling

HMS Reinforced 7740 Spec LB 135 G

Condition		4 Point Bend MPa	Strength 10 ³ psi	*Elastic GPa	Modulus 10 ⁶ psi
As Fabricated		896	130	185	26.8
		938	136	196	28.5
		800	116	201	29.2
	Average	876	127		
After 20 Cycles **		917	133	196	28.5
		910	132	203	29.4
		834	121	189	27.4
	Average	889	129		
After 100 Cycles **	·+	786	114	174	25.2
		614	89	167	24.2
		758	110	185	26.9
	Average	717	104		

^{*} Tested with major and minor spans of 5cm and 1.27cm

^{**} Cycled while in argon containing glass tube between 590-630°C and 110°C Target temperature 560°C or annealing point of glass matrix

^{**+} The 100 cycles extended overnight with result that temperature exceeded target temperature (annealing point of glass matrix is 560° C or 1040° F) by 33° C.

FLEXURAL STRENGTH OF HMS THORNEL 300—7740 GLASS COMPOSITE AFTER THERMAL CYCLING

Table XXVI

Four Point Flexural Fatigue
(Major and minor spans of 5 cm and 1.27 cm)

HMS Reinforced 7740 Spec LB 135 H

Condition	4 Point Bend MPa	Strength 103 psi	Elastic l GPa	Modulus 10 ⁶ psi
As Fabricated	548	79	200	29.0
	532	77	195	28.3
After 3 cycles between 484 GPa and 48 GPa	325	47	185	26.8
After 20 cycles between 337 GPa and 34 GPa	519	75	186	26.9
After 20 cycles between 390 GPa and 39 GPa	658	95	194	28.1
After 20 cycles between 450 GPa and 45 GPa	574	83	210	30.5
After 20 cycles between 520 GPa and 52 GPa	638	92	208	30.1
After 100 cycles between 430 GPa and 43 GPa	575	84	207	30.0
After 100 cycles between 445 GPa and 44 GPa	573	83	201	29.1

EFFECT OF FATIGUE ON BEND STRENGTH OF HMS THORNEL 300 FIBER IN 7740 GLASS MATRIX COMPOSITE

Table XXVII

Determination of Graphite Fiber Content for Several Graphite Fiber-Pyrex Glass Matrix Samples

Analysis No.	72340	72341
Weight % Glass	45.8	42.1
Weight % C	54.2	57.9
% Porosity	0.0	r. 3
Vol % Glass	9.04	36.6
Vol % C	59.2	62.1
Sample Identity	LB 138 HMS	LB 139 HMS

B. Composites of Celanese DG-102 Graphite Fiber and Pyrex Glass

Because composites formed of Celanese DG-102 graphite fibers in Pyrex glass showed strengths only about one-third as great as the composites made with HMS graphite fiber in Pyrex glass, they have not been studied as extensively. But these same Celanese DG-102 graphite fibers in Pyrex glass composites have now been shown to have very much greater environmental stability than those made with HMS graphite fibers and Pyrex. Research during the second year of this program will attempt to produce composites with higher strength; we now obtain at room temperature only about one-third of the strength of the fiber in the composite that would be predicted based on the law of mixtures

1. Microstructure

The typical microstructures found in the Celanese DG-102 graphite fiber-Pyrex glass composites are shown in Figs. 46 and 47. The optical tape map of Fig. 46 shows that in the composites of Celanese fiber made to date the memory of the individual tows persists. Figure 47 reflects the fact that a Celanese fiber-Pyrex glass tow fractures in a brittle-brittle manner just as one would expect with an all ceramic material and this is further emphasized by the scanning electron micrograph at the bottom of the figure, which shows again that each fiber is indeed surrounded by glass and very tightly bonded to it. It is this tight bonding that probably accounts for both the low strength of the composite and its superior environmental stability.

2. Effect of Atmosphere

The three-point flexural strength of several specimens of Celanese DG-102 graphite fiber reinforced Pyrex glass composites was measured at room temperature. Other specimens of the same composites were first heated for 4 hrs at 560°C in either air or argon before carrying out the flexural tests at room temperature. As Table XXVIII shows, within experimental error, the exposure to either air or argon had no effect on the properties of the composite in contrast to similar tests carried out on HMS graphite fiber reinforced Pyrex composites where the air exposure at temperature resulted in a very high loss of strength. While admittedly both of the composites tested for which the data are shown in Table XXVIII are well below the average strength of Hercules HMS graphite fiber reinforced Pyrex matrix composites the data of this table are important in nature since all other graphite reinforced glass composites tested by UTRC show a pronounced degradation in strength when heated in air and subsequently tested. Further research in this area is obviously necessary in an attempt to improve the strength of these composites while maintaining their unique environmental stability.

TAPE-MAP OF CELANESE DG 102 FIBER IN C.G.W. 7740 GLASS MATRIX-UNFRACTURED SAMPLE

76-06-292-8

SCANNING ELECTRON MICROGRAPHS FRACTURE SURFACE CELANESE DG 102 FIBER IN C.G.W. 7740 GLASS MATRIX

76-06-292-6

Table XXVIII

Effect of Atmosphere on Strength of Celanese DG-102 Graphite
Fiber Reinforced C.G.W. 7740 Glass Composites

				20°C 3.	-Point	
Specimen	Exposu	re Conditi	ons.	Bend S	trength	
	Time	Temp.	Atmos.	MPa	10 ³ psi	
LB-131	4 hrs	560°C	Argon	180	26.1	
				233	33.7	
				245	35.6	
				291	42.2	
				303	44.0	
				<u>328</u>	47.6	
				263	38.2	Avg.
LB-131		None		155	22.5	
				187	27.1	
				192	27.8	
				221	32.0	
				275	39.9	
				326	47.9	
				227	32.9	Avg.
LB-132	4 hrs	560°C	Air	145	21.1	
				188	27.2	
				202	29.3	
				234	33.9	
				280	40.6	
				308	44.7	٨
				226	32.8	Avg.
LB-132		None		172	25.0	
				225	32.6	
				228	33.1	
				241	34.9	
				279	40.5	
				<u>312</u>	45.3	
				243	35.2	Avg.

3. Typical Flexural Strength and Modulus

Table XXIX lists the three-point flexural strength, the four-point flexural strength, and modulus for two typical samples of Celanese DG-102 graphite fiber reinforced Pyrex glass composites. Sample LB 97 was hot pressed in an older press at 1100°C and 13.8 MPa (2000 psi) while sample LB 97E was produced in the new press at 1200°C and 13.8 MPa (2000 psi). While slightly stronger composites of this nature have been produced the values of this table are more typical and representative of this composite at this stage of development.

4. Flexural Strength at Elevated Temperatures

The Celanese fiber reinforced 7740 composite system was tested in three-point bend as a function of temperature. In carrying out these tests an argon atmosphere was used.

The test results for specimen set LB 98 are presented in Fig. 48 and Table XXX. As can be seen, there is a marked change in composite performance with increasing temperature. As the composite reaches the annealing point of the matrix glass, the composite flexural strength is nearly double the value at room temperature. This increase in strength is probably due to the increased strain capacity of the matrix. For this composite system, of Celanese fiber and 7740, the bond between fiber and matrix is very strong. Therefore, it is likely that the composite strength is limited by the matrix failure strain at room temperature. At temperatures above the strain point of the glass, however, the matrix can deform to a greater extent, because of its lower viscosity. a larger percentage of the fiber strain, and hence strength, can be utilized. At temperatures above the annealing point (560°C), a large decrease in strength is noticed, however, the strengths calculated above this temperature are fictitious because the specimens do not fracture; instead the specimens deform to a very large extent. This is illustrative of an even further drop in matrix viscosity. At 700°C the viscosity of 7740 is 10¹⁰ poises while at 510°C it is $10^{14.5}$ poises.

Examination of the specimen fracture modes confirms the above description. At room temperature the specimens fracture without any permanent deformation and very little fiber pull out on the fracture surface, Fig. 49. At 500-550°C there is also no sign of specimen plastic deformation, however, additional fiber pull out is visible on the fracture surface, Fig. 50. This fiber-matrix separation occurred on the tensile side of each specimen. Finally at 700°C, Fig. 51, the specimen does not fracture but instead deforms to the full extent of motion of the test apparatus. In the last figure of this series, Fig. 52, we show the manner in which the sample plastically deformed to fit the test plunger. At the time of deformation the sample was still carrying a load of 42,000 psi

Table XXIX

Flexural Strength of Typical Specimens of Celanese Graphite Fiber DG-102 Reinforced C.G.W. 7740 Glass Matrix Composites

A. 3-Point Flexural Tests with 5.0 cm Span

Specimen	LB 97		Flexural MPa	Strength ksi
L 1 L 2			399 411	57 . 8
L 3			265	38.4
C 1 C 2			339 340	49.1 49.3
C 3			293	49.3 42.5
R l			281	40.8
R 2			362	52.5
R 3		Average	392 342	56.8 49.6

B. 4-Point Flexural Tests with Inner Span 1.25 cm and Outer Span 5.0 cm

Specimen LB 97	E	Flexural	Strength	Mod	lulus
		MPa	ksi	GPa	10 ⁶ psi
TR		289	41.9	277	40.2
CR		301	43.7	269	39.0
BR		336	48.7	271	39.3
	Average	309	44.8	272	39.5

FLEXURAL STRENGTH OF CELANESE FIBER REINFORCED 7740 GLASS AS A FUNCTION OF TEST TEMPERATURE

Table XXX

Flexural Strength of Celanese Graphite Fiber DG-102 Reinforced C.G.W. 7740 Glass Composite at Elevated Temperatures

	Temperature at Which Flexural Strength was	3-Point Flexural Strength Span 5.0 cm	
Specimen	Measured °C	MPa	<u>ksi</u>
LB 98BL CR	RT RT	374 250	54.2 36.2
TL BR	500 500	515 481	74.7 69.7
CL	550	565	82
TR	600	196	28.4
TC CC	700 700 – 635	292 305	42.3 44.3

CELANESE FIBER REINFORCED 7740 TEST TEMPERATURE 22 °C LB-98

CELANESE FIBER REINFORCED 7740 TEST TEMPERATURE 500-550 °C LB-98

CELANESE FIBER REINFORCED 7740 TEST TEMPERATURE 700 °C LB-98

3 POINT BEND SPECIMEN LB98-CC

TEST TEMPERATURE = 700°C

a) OVERALL SIDE VIEW

600 μ

b) AREA LOADING-SIDE VIEW

 2000μ

c) BUCKLED AREA OF CONTACT WITH LOADING NOSE —TOP VIEW

2000 μ

which is also the approximate room temperature flexural strength for these high modulus graphite fiber composites. This behavior may be compared to the deformation under load undergone by a graphite fiber epoxy resin matrix as it passes through the transition from brittle to ductile behavior.

From the above it would appear that a use temperature of up to 550°C would be reasonable for this composite system. Specimen performance approaches that of resin matrix composites tested at much lower temperatures. As an example, approximately 50% unidirectional Celanese fiber reinforced epoxy typically exhibits a tensile strength of 758 MPa (110,000 psi) at 22°C while the current composites of Celanese fiber reinforced C.G.W. 7740 glass fail at 345 MPa (50,000 psi) at 22°C and 565 MPa (82,000 psi) at 550°C for a volume percent fiber of 47%.

VI. CONCLUSIONS AND RECOMMENDATIONS

At the end of the first year's research, we have two principal types of graphite fiber reinforced glass matrix composites, each of which have some excellent but different properties.

The first type of composite consists of Hercules HMS graphite fiber reinforced C.G.W. 7740 glass matrix. Its properties are:

Room temperature 4-point flexural strength of 848 MPa (127,300 psi)
Average flexural modulus of 200 to 206 GPa (29 to 30 million psi)
Use temperature in argon or vacuum of 600°C (1112°F)
50% higher flexural strength at 560°C than at room temperature
No loss in strength with thermal or fatigue cycling in argon or vacuum
Greatly increased toughness compared to glass, i.e. about same as
commonly used lower temperature composites
When heated in air to 560°C suffers severe loss of strength.

The second type of composite consists of Celanese DG-102 fiber reinforced C.G.W. 7740 glass matrix with these properties:

Room temperature 4-point flexural strength of 309 MPa (45,000 psi) Average flexural modulus of 272 to 303 GPa (39.5 to 40 million psi) Use temperature of 600°C again with 50% higher strength at this temperature than at room temperature

No loss in strength when heated in air to 560°C for 4 hrs and subsequently tested.

Based on the observations made during the first year's effort, the following recommendations are offered:

A systematic study of the mechanism controlling the oxidation of the HMS graphite fiber 7740 glass matrix composites at elevated temperatures should be carried out.

At the same time an effort should be made to partially block the bond between the Celanese DG-102 graphite fiber in 7740 glass matrices to see if a higher percentage of the strength of the graphite fiber can be attained while maintaining the oxidation resistance of these composites.

The number of graphite fiber, glass and/or Pyroceram matrix combinations should be expanded and evaluated to see if some new combination can offer both strength and oxidation resistance.

Biaxially reinforced specimens should be fabricated and evaluated.

An extensive characterization of the properties of the best graphite fiber-glass matrix system should be undertaken to provide a better understanding of how such composites can be used.

REFERENCES

- 1. Siefert, August C.: Fiber-Reinforced Ceramics, U.S. Patent 3,607,608, Sept. 21, 1971.
- 2. Siefert, August C.: Method of Making Glass-Metal Fiber Composites, U.S. Patent 3,792,985, Feb. 19, 1974.
- 3. Sambell, R. A. J., D. H. Bowen, D. C. Phillips: Carbon Fibre Composites with Ceramic and Glass Matrices, Part I, Discontinuous Fibres Journal of Materials Science, 7 (1972) pp 663-675.
- 4. Sambell, R. A. J., A. Briggs, D. C. Phillips, and D. H. Bowen: Carbon Fibre Composites with Ceramic and Glass Matrices, Part II, Continuous Fibres Journal of Materials Science, 7 (1972) pp 676-681.
- 5. Phillips, D. C.: The Fracture Energy of Carbon-Fibre Reinforced Glass, Journal of Materials Science, 7 (1972) pp 1175-1191.
- 6. Phillips, D. C., R. A. J. Sambell, D. H. Bowen: The Mechanical Properties of Carbon Fibre Reinforced Pyrex Glass, Journal of Materials Science, 7 (1972) pp 1454-1464.
- 7. Levitt, S. R.: High Strength Graphite Fibre/Lithium Aluminosilicate Composites, Journal of Materials Science, 8 (1973) pp 793-806.
- 8. Phillips, D. C.: Interfacial Bonding and the Toughness of Carbon Fibre Reinforced Glass and Glass Ceramics, Journal of Materials Science, 9 (1974) pp 1847-1854.
- 9. Lange, F. F.: Fracture Energy and Strength Behavior of Sodium Borosilicate Glass-Al₂O₃ Composite System, Journal American Ceramic Society, Vol. 5¹/₄, No. 12, pp 61¹/₄-620, Sept. 1971.
- 10. Hasselman, D. P. H. and R. M. Fulrath: Proposed Fracture Theory of a Dispersion Strengthened Glass Matrix, Journal American Ceramic Society, Vol. 49, No. 2, pp 69-72, Feb. 1966.
- 11. Harris, Bryan: The Nature and Properties of Carbon Fibres and Their Composites, Carbon Fibres in Engineering, Editor, Marcus Langley, McGraw-Hill, London, 1973, pp 1-45.

- 12. Sambell, R. A. J., D. C. Phillips and D. H. Bowen: The Technology of Carbon Fibre Reinforced Glasses and Ceramics, Harwell Materials Bulletin, AERE-R7612, Feb. 1974.
- 13. Donald, I. W. and P. W. McMillan: Review, Ceramic-Matrix Composites, Journal of Materials Science II (1976) pp 949-972.

NASA Contractor Report 145245

DISTRIBUTION LIST NAS1-14346	No. of Copies
NASA Langley Research Center Hampton, VA 23665 Attn: Report & Manuscript Control Office, Mail Stop 180A Dennis L. Dicus, Mail Stop 188B	1 59
NASA Ames Research Center Moffett Field, CA 94035 Attn: Library, Mail Stop 202-3	1
NASA Dryden Flight Research Center P. O. Box 273 Edwards, CA 93523 Attn: Library	1
NASA Goddard Space Flight Center Greenbelt, MD 20771 Attn: Library	1
NASA Lyndon B. Johnson Space Center 2101 Webster Seabrook Road Houston, TX 77058 Attn: JM6/Library	1
NASA Marshall Space Flight Center Huntsville, AL 35812 Attn: Library, AS61L	1
Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103 Attn: Library, Mail 111-113	1
NASA Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn: Library, Mail Stop 60-3	1
NASA John F. Kennedy Space Center Kennedy Space Center, FL 32899 Attn: Library, IS-DOC-1L	1
National Aeronautics & Space Administration Washington, DC 20546 Attn: RW	1
Plastics Technical Evaluation Center SARPA-FR-M-D Picatinny Arsenal Dover, NJ 07801 Attn: A. M. Anzalone, Building 3401	1

NASA Contractor Report 145245

DISTRIBUTION LIST NAS1-14346

No. of Copies

NASA Scientific & Technical Information Facility 6571 Elkridge Landing Road Linthicum Heights, MD 21090

30 plus original