Année univ : 2021-2022 Département de de Mathématiques

1 ere Master mathématique appliquée et statistique

Corrigé de l'examen de Programmation Linaire 1

Solution 1 Les variables de décision sont la quantité de boîtiers des trois types de batteries, que nous noterons x_A, x_B, x_G .

La fonction objectif à maximiser est le profit total moins les coûts totaux. Le profit est évidemment donné par

$$2500x_A + 2000x_B + 3000x_G$$

il faut y soustraire les contributions du coût du cuivre et de la main-d'œuvre, égales respectivement à

$$500(x_B + 2x_G)$$

et

$$1200x_A + 600x_B + 400x_G$$

et donc, en réordonnant les termes, la fonction objectif devient

$$z = 1300x_A + 900x_B + 1600x_G.$$

Il y a trois contraintes. La première exprime la contrainte sur la disponibilité du cuivre :

$$x_B + 2x_G \le 4000$$

les deuxième et troisième concernent les restrictions à la production des batteries Alpha :

$$x_A \ge 2x_B, \quad x_A \le x_G$$

l'ajout des contraintes de non-négativité complète la formulation.

$$\begin{cases} \max 1300x_A + 900x_B + 1600x_G \\ x_B + 2x_G \le 4000 \\ x_A \ge 2x_B \\ x_A \le x_G \\ x_A, x_B, x_G \ge 0. \end{cases}$$

Solution 2 (1) Les droites de délimitation sont

$$x = 0$$
, $y = 0$, $3x + 2y = 6$, $4x + y = 8$

et l'ensemble des solutions admissibles S est présenté ci-dessous.

Solution 3 Dans toute solution de base, il peut y avoir au plus m = 2 variables non nulles, de sorte qu'au moins s - m = 5 - 2 = 3 variables doivent être 0 :

(a) Soit
$$x_1 = 0$$
; $x_3 = 0$; les contraintes
deviennent
$$\begin{cases} 3x_2 + 4x_5 = 2 \\ -2x_4 + x_5 = 0 \end{cases}$$
 et pour toute solu-
tion de base, au moins une des autres variables
doit également être nulle.

L'unique solution est $x_4 = \frac{1}{4}$; $x_5 = \frac{1}{2}$; c'est une solution de base réalisable.

(ii) Si
$$x_4 = 0$$
; le système d'équations devient
$$\begin{cases} 3x_2 + 4x_5 = 2 \\ x_5 = 0 \end{cases}$$

L'unique solution est $x_2 = \frac{2}{3}$; $x_5 = 0$; c'est une solution de base réalisable.

(iii) Si
$$x_5 = 0$$
; le système d'équations devient
$$\begin{cases} 3x_2 = 2 \\ -2x_4 = 0 \end{cases}$$

L'unique solution est $x_2 = \frac{2}{3}$; $x_4 = 0$; c'est une solution de base réalisable.

Les sommets de S sont :

$$p_1 = (2;0);$$
 $p_2 = (0;3);$ $p_3 = (0;8)$

(2) S'il s'agit d'un problème de maximisation, on veut que la fonction objectif soit constante le long du segment de droite joignant p_1 et p_3 ; c'est-àdire,

$$z = 4x + y$$

de sorte que

$$a = 4$$
 et $b = 1$.

(3) S'il s'agit d'un problème de minimisation, on veut que la fonction objectif soit constante le long du segment de droite joignant p1 et p₂; c'est-à-dire

$$z = 3x + 2y;$$

de sorte que

$$a = 3$$
 et $b = 2$

(b)Soit $x_1 = 0$; $x_4 = 0$; les contraintes deviennent $\int 3x_2 + 4x_3 + 4x_5 = 2$

$$x_5 = 0$$

(i) $Si \ x_2 = 0$; le système d'équations devient $\begin{cases} 4x_3 + 4x_5 = 2 \\ x_5 = 0 \end{cases}$

L'unique solution est
$$x_3 = \frac{1}{2}$$
; $x_5 = 0$; c'est une solution de base réalisable.

(ii) Si $x_3 = 0$; le système d'équations devient $\begin{cases} 3x_2 + 4x_5 = 2 \end{cases}$

L'unique solution est $x_2 = \frac{2}{3}$; $x_5 = 0$; c'est une solution de base réalisable.

(iii) Si $x_5=0$; le système d'équations devient $\begin{cases} 3x_2+4x_3=2\\ x_5=0 \end{cases}$. Il existe une infinité de solutions $x_2=t;\ x_3=\frac{1}{2}-\frac{3}{4}t$; dont aucune n'est une solution de base.

Solution 4

	Forme standard	Problème auxiliaire		
	$\max z = x_1 - x_2 - 4x_3$	$\int \min z' = a$		
	$-2x_1 + x_2 - x_3 - e_1 = 1$	$\int -2x_1 + x_2 - x_3 - e_1 + a = 1$		
`	$3x_1 + 5x_2 - 5x_3 + e_2 = 6$	$3x_1 + 5x_2 - 5x_3 + e_2 = 6$		
	$x_1, x_2, x_3, e_1, e_2 \ge 0.$	$x_1, x_2, x_3, e_1, e_2, a \ge 0.$		

Phase 1

Le tableau initial de la phase 1 est

	x_1	x_2	x_3	e_1	e_2	a	b
a	-2	1	-1	-1	0	1	1
e_2	3	5	-5	0	1	0	6
z	1	-1	-4	0	0	0	0
z/	0	0	0	0	0	1	0

$$L_4 \longleftarrow L_4 - L_1$$

	x_1	x_2	x_3	e_1	e_2	a	b
a	-2	1	-1	-1	0	1	1
e_2	3	5	-5	0	1	0	6
z	1	-1	-4	0	0	0	0
z/	2	-1	1	1	0	0	0
		1					

$$L_1 \longleftarrow L_1, \quad L_2 \longleftarrow L_2 - 5L_1, \quad L_3 \longleftarrow L_3 + L_1, \quad L_4 \longleftarrow L_4 + L_1$$

	x_1	x_2	x_3	e_1	e_2	a	b
x_2	-2	1	-1	-1	0	1	1
e_2	13	0	0	5	1	-5	1
\overline{z}	-1	0	-5	-1	0	1	1
z/	0	0	0	0	0	0	0

Ceci est le tableau final de la phase 1 et représente la solution réalisable de base au problème auxiliaire donné par $x_1 = 0$; $x_2 = 1$; $x_3 = e_1 = 0$

Puisque la variable artificielle a est hors base, et $z\prime=0$, alors nous pouvons utiliser la solution $x_1=0$; $x_2=1$; $x_3=e_1=0$ en tant que solution faisable de base initiale à la forme canonique du problème original. Le tableau final de la phase 1 peut alors être utilisé comme tableau initial de la phase 2,

Phase 2

	x_1	x_2	x_3	e_1	e_2	b
x_2	-2	1	-1	-1	0	1
e_2	13	0	0	5	1	1
z	-1	0	-5	-1	0	1

C'est le tableau final de la phase 2 et représente la solution optimale $x_1=0$; $x_2=1$; $x_3=0$ avec $z_{max}=-1$.