In-Lab Group Activity for Week 5: Row, Column and Null Space

Cole **Bardin** Name:

Problem 1: Row, Column and Null Space

first last

The coefficient matrix A and its reduced form B are shown below.

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 7 & 7 \end{bmatrix} \leftrightarrow \begin{bmatrix} \mathbf{1} & 1 & 0 & 0 \\ 0 & 0 & \mathbf{1} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = B$$

a. The transformation $\vec{\mathbf{x}} \mapsto A \vec{\mathbf{x}}$ maps the vector $\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ in \mathbb{R}^4 to the vector: ii.

i.
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

i.
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 ii. $\begin{bmatrix} x_3 + x_4 \\ x_1 + x_2 \\ 7x_3 + 7x_4 \end{bmatrix}$ iii. $\begin{bmatrix} x_1 + x_2 \\ x_3 \\ x_4 \end{bmatrix}$ iv. $\begin{bmatrix} x_3 + x_4 \\ x_1 + x_2 \\ x_2 + x_3 \end{bmatrix}$

iii.
$$\begin{bmatrix} x_1 + x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

iv.
$$\begin{bmatrix} x_3 + x_4 \\ x_1 + x_2 \\ x_2 + x_3 \end{bmatrix}$$

b. Fill out the following table of properties of the matrix A. Rank is always the number of pivots.

Rank	Dimension of	Dimension of	Dimension of
	Row Space	Column Space	Null Space
2	R4	R3	2

c. Find a basis for the **column space** of A.

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

It's the ramp or plane $x_3 = 7x_1$.

Required Answer Method: Choose the column(s) from A that have pivots in B.

- **d.** Do the pivot columns of B also form a basis for the column space of A?
- Yes

No

1

e. Find a basis for the **row space** of A. Must give rows!

Answer Method: Choose the non-zero rows from *B*.

f. Write out the **null space** for the homogenous equation $A\vec{x} = \vec{0}$ in vector parametric form:

$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x2 \\ x2 \\ -x3 \\ x3 \end{bmatrix} = x_2 \cdot \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \cdot \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

Problem 2: Row, Column and Null Space

The coefficient matrix A and its reduced form B are shown below. Below, R combines all the rowreducing operations into a single, square invertible matrix.

$$A = \begin{bmatrix} x_1 & x_2 & x_3 & x_1 & x_2 & x_3 \\ 1 & 1 & -2 \\ 1 & 1 & -2 \\ 2 & 2 & -4 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = B = RA$$

- **a.** One of these is **not** the same for the matrices A and B.
 - i. Null space
- ii. Column space

- iii. Row space
- **b.** Fill out the following table of properties of the matrix A. **Rank** is always the number of pivots.

Rank	Dimension of Row Space	Dimension of Column Space	Dimension of Null Space
1	3	3	2

c. Find a basis for the **column space** of A. $\begin{cases} 1 \\ 2 \end{cases}$ It's the **line**: $x_1 = x_2 = \frac{x_3}{2}$.

Required Answer Method: Choose the column(s) from A that have pivots in B.

d. Do the pivot columns of B also form a basis for the column space of A?

Yes

No

e. Find a basis for the **row space** of A. Must give row(s)!

$$\{ [1 \ 1 \ -2] \}$$

Answer Method: Choose the non-zero rows from *B*.

f. Write out the null space for the homogenous equation $A\vec{x} = \vec{0}$ in vector parametric form:

$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x3 - x2 \\ x_2 \ (free) \\ x_3 \ (free) \end{bmatrix} = x_2 \cdot \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

- **g.** Find a <u>particular</u> solution to the nonhomogeneous equation $A\vec{x} = \vec{b}$ where $\vec{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- i. $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ iii. $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ iii. $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ iv. $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ v. $\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$

Problem 3: Match each matrix with its determinant!

Hints: Subtract R1 from R2 & R4 for D. Use Cofactor expansion for E.

Do not use MATLAB except to check your hand calculations.

$$A = \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 3 & 5 \\ 2 & 2 & 2 \end{bmatrix} \qquad D = \begin{bmatrix} 4 & 1 & 1 & 1 \\ 4 & 5 & 1 & 1 \\ 0 & 0 & 1 & 7 \\ 4 & 1 & 1 & 2 \end{bmatrix} \qquad E = \begin{bmatrix} 0 & 1 & 1 \\ 3 & 9 & 5 \\ 0 & 1 & 4 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 3 & 5 \\ 2 & 2 & 2 \end{bmatrix}$$

$$D = \begin{bmatrix} 4 & 1 & 1 & 1 \\ 4 & 5 & 1 & 1 \\ 0 & 0 & 1 & 7 \\ 4 & 1 & 1 & 2 \end{bmatrix}$$

$$E = \begin{bmatrix} 0 & 1 & 1 \\ 3 & 9 & 5 \\ 0 & 1 & 4 \end{bmatrix}$$

Two-arrow rule Triangular matrix rule!

Identical rows!

Use the EROs suggested above. **Cofactor expansion!**

a. Each of these determinants is a perfect square or the negative of a square.

i. This matrix has determinant equal to +4.

- Α
- Ε

ii. This matrix has determinant equal to 0.

iii. This matrix has determinant equal to -9.

iv. This matrix has determinant equal to +16.

This matrix has determinant equal to +25. ٧.

- Ε

Ε

b. Find the determinant |A| of the 4×4 matrix A. We are given that A can be row-reduced to the matrix

$$B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$
 usi

 $B = \begin{bmatrix} 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$ using the row operations itemized below. Starting with A:

Fill in the missing constant after each step.

i. Swap the first two rows and name the result A_1 .

$$|A_1| = \boxed{-1} \cdot |A|$$

ii. Subtract row 1 of A_1 from its second row and name the result A_2 .

$$|A_2| = \boxed{-1} \cdot |A|$$

iii. Subtract twice row 1 of A_2 from its last row and name the result A_3 .

iv. Divide row 5 of A_3 by 5 and name the result B.

$$|B| = \boxed{-1/5} \cdot |A|$$

3

v. Give the determinant of B above. |B| = |B|

vi. Give the determinant of A. |A| =-25

If you want to double check, the mystery matrix A is revealed on the next page as well as the row operations that result in *B*.

Mystery Matrix
$$A = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 2 & 2 & 2 & 27 \end{bmatrix} \longrightarrow A_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 3 \\ 0 & 0 & 1 & 3 \\ 2 & 2 & 2 & 27 \end{bmatrix} \longrightarrow A_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 3 \\ 2 & 2 & 2 & 27 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 25 \end{bmatrix} \longrightarrow B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$