MATLAB 기초 사용법 연습

Prof. Chang-Joo Kim

MATLAB 윈도

초기 화면: 현재 폴더와 파일

데이터 입력 (1): 실수 데이터 화면 입력

데이터 입력

$$a = 1$$

$$b = 2$$

$$c = a + b$$

$$d = 5c$$

$$e = \frac{d}{3}$$

데이터 입력 (2): 연산결과를 화면에 출력하지 않음 (;)

데이터 입력

$$a = 1;$$

$$b = 2;$$

$$c = a + b;$$

$$d = 5c;$$

$$e = \frac{d}{3}$$

데이터 입력 (3): 데이터 유형 (정수, 실수, 복소수)

복소수 데이터 입 MATLAB R2013b 력

a1 = 1 b1 = 2 + j b2 = 2 - 2i b3 = 2 + 3i c1 = a1 + b1 c2 = a1 + b2

명령창에서 연산 (1)

- ; 을 붙이면 command window에 표시되지 않음
- 별도의 변수를 지정하지 않고 수식만 입력시 ans 라는 변수에 값이 저장
- 일반적인 연산법칙을 따르며 ^,(*,/),(+,-)순서로 우선적으로 연산됨

명령창에서 연산 (2): Matlab Operation & Commands (1)

Math Operations

Symbol	Operation	MATLAB form
^	exponentiation:	A^b
*	multiplication:	a*b
/	right division:	a/b
\	left division:	a∖b
+	addition:	a+b
-	subtraction:	a-b

Math Functions

e ^x	exp(x)		
\sqrt{x}	sqrt(x)	sin ⁻¹ x	asin(x)
ln x	log(x)	tan-1x	atan(x)
$\log_{10} x$	log10(x)		
cos x	cos(x)		
sin x	sin (x)		
tan x	tan(x)		
cos-1x	acos(x)		

• Special Numbers

ans	Temporary variable containing the most recent answer
eps	Specifies the accuracy of floating point precision
i ,j	The imaginary unit
Inf	Infinity
NaN	Indicates an undefined numerical result
pi	The number: = 3.141592

명령창에서 연산 (3): Matlab Operation & Commands (2)

Rational Operators

Relational operator	Meaning
<	Less than
<=	Less than or equal to
>	Greater than
>=	Greater than or equal to
==	Equal to
~=	Not equal to

```
>> x = [6,3,9]; y = [14,2,9];

>> z = (x<y)

z =

1 0 0

>> z = (x>y)

z =

0 1 0

>> z = (x==y)

z =

0 0 1

>> z = (x~=y)

z =

1 1 0

>> z = (x>8)

z =

0 0 1
```

Commands

clc	clears the Command window
clear	Removes all variables form memory
exist('name')	Determines if a file or variable exists having the name 'name'
quit	Stops MATLAB
who	Lists the variable currently in memory
whos	List the current variables and size and indicates if they have imaginary parts
:	Colon: generates and array having regularly spaced elements
,	Comma: separates elements of an array
:	Semicolon: suppress screen printing; also denotes a new row in an array
•••	Ellipsis: continues a line

행렬의 표현법 (1)

- 행렬 연산 시 일반적인 행렬 연산법칙을 따름
- 행렬의 각 원소끼리 연산을 하고자 할 때는 연산기호 앞에 "."을 붙임
- M-file에서 행렬작성시엔 ;로 구별하지 않고 새로운 line에 작성해도 별개의 행으로 인식
- 행렬의 특정 원소나 열, 행만을 뽑아 낼 수 있음

```
e=a(1,1) \rightarrow e=1

f=a(1,:) \rightarrow f=[1 2]

g=a(:,1) \rightarrow g=[1

3]

a(1,1)=3 \rightarrow a=[3, 2; 3, 4]
```

```
>> clear all
\Rightarrow a=[1 2;3 4];
>> b=[4 3;2 1];
>> c=a+b
c =
     8
            5
    20
           13
>> d=a.*b
d =
            6
     4
```

행렬의 표현법 (2)

■ ":"는 범위를 의미하며 x:y:z 인 경우엔 y씩 만큼 건너 뛰어 x 부터 z까지 의 숫자로 한 행을 만드는 것을 의미

$$h=[0:2:8; 0:3:12]$$
 $\rightarrow h=[0 2 4 6 8]$
 $0 3 6 9 12]$

$$K=h(1,2:4) \rightarrow k=[2 4 6]$$

행렬의 표현법 (3)

■ ": "는 범위를 의미하며 x:y:z 인 경우엔 y씩 만큼 건너 뛰어 x 부터 z까지 의 숫자로 한 행을 만드는 것을 의미

```
h=[0:2:8; 0:3:12]
\rightarrow h=[0 2 4 6 8]
0 3 6 9 12]
```

$$k=h(1,2:4) \rightarrow k=[2 4 6]$$

행렬의 표현법 (4): 연산

```
Matrix 연산 : plus
>> A=[1 2 3; 4 5 6]
A =
      2 3
>> B=[11 12 13; 14 15 16]
B =
  11 12 13
  14 15 16
>> C= A + B
C =
  12 14 16
  18 20 22
\rightarrow C= a + b
??? Undefined function or variable 'a'.
>> who
```

연산식

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 11 & 12 & 13 \\ 14 & 15 & 16 \end{pmatrix}$$
$$C = A + B$$

변수의 대소문자 구분

who: 현재 정의되어 있는 변수명

Your variables are:

A B C

행렬의 표현법 (5): 연산

Matrix 연산 : scalar product

연산식

P = cA

20

>>

Matrix 연산: matrix transpose

>>

연산식

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
$$A^{T} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

행렬의 표현법 (6): 연산

Matrix 연산: matrix product

A =

1 2 3 4 5 6

>> B=[10 20; 30 40; 50 60]

B =

10 20 30 40 50 60

>> c=A*B

c =

220 280 490 640 연산식

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

$$B = \begin{pmatrix} 10 & 40 \\ 20 & 50 \\ 30 & 60 \end{pmatrix}$$

$$c = AB$$

■ Matrix 연산: 선형 시스템의 해

>> A=[6 12 4; 7 -2 3; 2 8 -9]; b=[70; 5; 64]; >> x=inv(A)*b

x =

linv: 역핼렬 계산 내장함수

3.0000 5.0000 -2.0000

>>

연산식

$$Ax = b$$

$$A = \begin{pmatrix} 6 & 12 & 4 \\ 7 & -2 & 3 \\ 2 & 8 & -9 \end{pmatrix}, b = \begin{pmatrix} 70 \\ 5 \\ 64 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$x = A^{-1}b$$

행렬 (1): 행렬의 입력/덧셈

행렬 데이터 입력과 덧셈

$$a1 = \begin{bmatrix} 1, 2, 3, 4 \end{bmatrix}$$

$$b1 = \begin{bmatrix} 10 & 20 & 30 & 40 \end{bmatrix}$$

$$c1 = a1 + b1$$

$$\begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix}$$

$$b2 = \begin{bmatrix} 50; 60; 70; 80 \end{bmatrix}$$

$$c2 = a2 + b2$$

$$a3 = \begin{bmatrix} 1, 2, 3; 4, 5, 6 \end{bmatrix}$$

$$b3 = \begin{bmatrix} 10, 20, 30; 40, 50, 60 \end{bmatrix}$$

$$c3 = a3 + b3$$

복소수는 허수부 마지막에 "i" 혹은 "j"로 표시

77

행렬 (2): 행렬의 입력/곱셈

행렬 데이터 입력과 곱셈

$$a1 = [1,2,3,4,5;6,7,8,9,10]$$

$$b1 = [16;27;38;49;510]$$

$$c1 = a1*b1$$

$$d1 = b1*a1$$

행렬 (3): 행렬의 크기 (size 명령어와 help)

행렬의 크기

```
a1 = [1,2,3,4,5;6,7,8,9,10]

b1 = [16;27;38;49;510]

size(a1)

size(b1)

[s1,s2] = size(a1)

[s3,s4] = size(b1)

help\ size
```


행렬 (4): 행렬의 요소

행렬의 크기

```
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
     11,12,13,14,15,16,17,18,19,20
     21, 22, 23, 24, 25, 26, 27, 28, 29, 30
a = 31,32,33,34,35,36,37,38,39,40
     41, 42, 43, 44, 45, 46, 47, 48, 49, 50
     51,52,53,54,55,56,57,58,59,60
     61, 62, 63, 64, 65, 66, 67, 68, 69, 70
c1 = a(2,5)
c2 = a(1, 2:6)
c3 = a(1:3,2)
c4 = a(2:3,4:7)
c5 = a(1, 2:2:6)
c6 = a(1:3:7,2)
c7 = a(1:3:7,2:2:6)
```


행렬 (5) : 행렬의 요소

행렬의 요소

```
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
     11,12,13,14,15,16,17,18,19,20
     21, 22, 23, 24, 25, 26, 27, 28, 29, 30
a = 31,32,33,34,35,36,37,38,39,40
     41, 42, 43, 44, 45, 46, 47, 48, 49, 50
     51,52,53,54,55,56,57,58,59,60
     61, 62, 63, 64, 65, 66, 67, 68, 69, 70
c1 = a(2,5)
c2 = a(1, 2:6)
c3 = a(1:3,2)
c4 = a(2:3,4:7)
c5 = a(1,2:2:6)
c6 = a(1:3:7,2)
c7 = a(1:3:7,2:2:6)
```

```
Command Window
New to MATLAB? Watch this Video, see Example
   >> c3=a(1:3,2)
   c3 =
       12
       22
   >> c4=a(2:3,4:7)
   c4 =
       14 15
                   16
                          17
       24
             25
                          27
                   26
   >> c5=a(1.2:2:6)
   c5 =
```

6

```
>> c6=a(1:3:7.2)
c6 =
    32
    62
>> c7=a(1:3:7.2:2:6)
c7 =
           4
                 6
    32
          34
                36
    62
                66
          64
```

행렬 (6): Empty (null) 행렬

- The empty or null array
 - √ contains no elements. []
 - √ Row and columns can be deleted by setting the selecteed row or column equal to the null array.
 - -A(3,:) = [] deletes the third row in A.
 - -A(:,2:4) = [] deletes the second through fourth columns in A.
 - A([1:4],:) deletes the first and fourth row of A.

$$\mathbf{A} = \begin{bmatrix} 6 & 9 & 4 \\ 1 & 5 & 7 \end{bmatrix} \qquad \mathbf{A(1,5)} = \mathbf{3} \qquad \mathbf{A} = \begin{bmatrix} 6 & 9 & 4 & 0 & 3 \\ 1 & 5 & 7 & 0 & 0 \end{bmatrix}$$

B = **A(:,5:-1:1)**_B =
$$\begin{bmatrix} 3 & 0 & 4 & 9 & 6 \\ 0 & 0 & 7 & 5 & 1 \end{bmatrix}$$

행렬 (7) : 요소별 연산

Element-by-element operations

```
<example 1>
>> x = [1 2 3];
\Rightarrow y = [4 5 6];
>> x.^y
ans =
      32 729
>> y.^2
ans =
  16 25 36
>> 2.^[x y]
ans =
               16 32 64
       4 8
```

```
<example 2>
```

```
>> x = 0:0.01:5;
>> y = sin(x^2);
??? Error using ==>
mpower
Matrix must be square.
```

$$\rangle$$
 v = sin(x.^2);

cf) ==> 2^[1 2 3 4 5 6] = [2^1 2^2 2^3 2^4 2^5 2^6]

명령창에서 프로그램 작성 (1)

- Relational operators
 - √ to make comparisons

- Conditional statements
 - √ to write programs that make decisions
 - √ if, else, elseif
- Loops
 - √ a structure for reputation a calculation a number of times
 - √ for, while

명령창에서 프로그램 작성 (2)

Conditional Statements

- √ Contain one or more of the if, else, and elseif
- √ The end statement denotes the end of a conditional statement
- √ The else and elseif statements may be omitted if not required

if expression
commands
else if expression
commands
else
commands
end

<example>

$$y = \begin{cases} 15\sqrt{4} + 10 & \text{if } x \ge 9 \\ 10x + 10 & \text{if } 0 \le x < 9 \\ 10 & \text{if } x < 0 \end{cases}$$
If $x > = 9$

$$y = 15*sqrt(4*x) + 10$$
elseif $x > = 0$

$$y = 10*x + 10$$
else
$$y = 10$$
end

명령창에서 프로그램 작성 (3)

Loops

- √ Repeat a calculation a given number of times
- √ for loop: the number of passes is known ahead of time
- √ while loop: the looping process must terminate when a specified condition is satisfied

```
<example of a while loop>
x = 5; k = 0;
while x < 25
    k = k + 1;
    y(k) = 3*x;
    x = 2*x - 1;
end
y(1) = 15, y(2) = 27, y(3) = 51</pre>
```

명령창에서 프로그램 작성

$$a = \sum_{j=1}^{10} j = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55$$

```
Command Window
New to MATLAB? Watch this Video, see Example
   >> f=0;
   >> for j=1:10
   f=f+j;
   end
   >> f
   f =
        55
```

새로운 m-file 작성 (1)

■ 별도의 file을 작성하여 저장해 놓은 뒤, 원하는 때 마다 불러서 사용 가능

새로운 m-file 작성 (2)

- Editor에서 수식 작성
- 파일을 저장 후 저장된 파일을 command window에서 입력
- Path로 지정된 폴더 내에 있는 경우 실행 됨
- Path(path," 파일 경로")명령으로 Path 추가 가능
- Path 명령으로 Path 확인 가능
- Menubar의 File->set
 Path에서 Path 확인 및 편집 가능

새로운 m-file 작성 (3)

■ M-file 내에 다른 M-file 명을 입력하여도 command window에서 입력한 것과 동일하게 실행 됨

간단한 m-file 작성 (1)

$$a = \sum_{j=1}^{10} j = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55$$

간단한 m-file 작성 (2)

$$a = \sum_{j=1}^{10} j = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55$$

간단한 m-file 작성 (3)

$$a = \sum_{j=1}^{10} j = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55$$

간단한 m-file 작성 (4): 실행

연산

$$a = \sum_{j=1}^{10} j = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55$$

who 명령어: 메모리에 저장된 변수 clear all 명령어 : 모든 변수 삭제

2차 방정식 m-file (1): 작성

연산

$ax^2 + bx + c = 0$

함수의 기본 형태 Function [출력변수] = 함수명(입력변수)

```
% Finding roots for the 1st order and the 2nd order polynomial
equations
% y = a(1,1)+a(2,1)*x + a(3,1)*x^2
     a(3,1) : polynomial coefficients
     epsilon eisilon : very very small number (0.1^16)
 m : number of roots
 root real : real parts of roots
  root imag : imaginary parts of roots
function [m,root real,root imag] = root formula(a,epsilon eisilon)
 Computaion of two roots
   root real(1:2,1) = 0.0; root imag(1:2,1) = 0.0;
                                                       m = 2;
                                                              dd = bb*bb - 4.0*aa*cc;
   aa = a(3,1); bb = a(2,1); cc = a(1,1);
                                                               coef = 0.5/aa;
                                                              real part = -bb*coef;
                                                              imag part = sqrt(abs(dd))*coef;
   if abs(aa) < epsilon_eisilon</pre>
                                                               if dd < 0.0
             if abs(bb) < epsilon eisilon</pre>
                                                                  root real(1:2,1) = real part;
                 m = 0:
                                                                  root imag(1,1) = imag part;
                 return
                                                                  root imag(2,1) =-imag part;
             else
                 m = 1;
                                                                  root imag(1:2,1) = 0.0;
                 root real(1,1) = -cc/bb;
                                                                  root real(1,1) = real part + imag part;
                 return
                                                                  root real(2,1) = real part - imag part;
                                                               end
```

2차 방정식 m-file (2): 실행

연산

$$x^2 - 1 = 0$$
$$x^2 + x + 1 = 0$$

함수의 기본 형태 (주의 파일명과 함수명을 일치시킬 것)

Function [출력변수] = 함수명(입력변수)

실행명령

[출력변수] = 함수명(입력변수)

2-D 데이터 plot (1)

- Plot (변수a, 변수b)
 - → 변수a를 X축으로, 변수b를 Y축으로 하여 그래프 작성
- Plot(변수a, 변수b,' 그래프모양 지정')
 - → 표시될 색과 그래프의 모양을 지정 할 수 있음

r: Red k: Black y: Yellow

b: Blue

-:bar .:dot *:star

r*: red star, y-: Yellow bar

- Grid on/Grid off : Grid 표시 및 숨김
- Hold on/Hold ff: 먼저 생성된 그래프 위에 새로운 그래프를 덮어 씌움, 씌우지 않음

2-D 데이터 plot (2)

■ 함수의 Plot 예: 다음의 두 함수를 x=0 에서 x=10까지 구분 그리기

2-D 데이터 plot (3)

■ help 함수: m-file 프로그램의 정보제공

>> help plot PLOT Linear plot. PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix, then the vector is plotted versus the rows or columns of the matrix, whichever line up. If X is a scalar and Y is a vector, length(Y) disconnected points are plotted.

PLOT(Y) plots the columns of Y versus their index. If Y is complex, PLOT(Y) is equivalent to PLOT(real(Y),imag(Y)). In all other uses of PLOT, the imaginary part is ignored.

Various line types, plot symbols and colors may be obtained with PLOT(X,Y,S) where S is a character string made from one element from any or all the following 3 columns:

```
point
b
   blue
                                  solid
   green
              o circle
                                  dotted
g
            x x-mark
                              -. dashdot
   red
                                  dashed
                 plus
   cyan
                              (none) no line
   magenta
               * star
m
У
   yellow
              s square
   black
                 diamond
             triangle (down)
              triangle (up)
             triangle (left)
              triangle (right)
              pentagram
              hexagram
```

2-D 데이터 plot (4)

Subplot

√ 여러 개의 Plot을 한 화면에 나타낼 때 사용

subplot(m,n,i)
plot(x,y)

√ m X n 개로 나누어진 영역 중 i 번째의 그래프

2-D 데이터 plot (5)

```
x1=0:0.1:10;
      f1=sin(x1).*cos(x1+pi/2);
      subplot(221)
       plot(x1, f1)
 5
      x2=0:0.1:100;
      f2=x2.^4-0.4*x2.^3+10*x2.^2-30*x2+5;
       subplot(222)
 8 -
       plot(x2, f2)
 9 -
10
11 -
       x3=0:0.1:100;
12 -
      f3=-(0.4*x3.^3).*sin(x3);
13 -
      subplot(223)
      plot(x3,f3)
14 -
15 -
       grid on
16
17 -
       xlabel('x3')
      ylabel('f3')
18 -
19
20 -
      x4=1:1:200;
21 -
      f4=sqrt(x4).*log(x4);
22 -
      subplot(224)
23 -
       plot(x4,f4)
```


2-D 데이터 plot (6): Plot Commands

Plot Commands

[x,y] = ginput(n)	Enables the mouse to get <i>n</i> points form a plot, and returns the x and y coordinates in the vectors x and y, which have a length <i>n</i> .	
grid	Puts grid lines on the plot.	
gtext ('text')	Enables placement of text with the mouse.	
plot(x,y)	Generates a plot of the array y versus the array x on rectilinear axes.	
title('text')	Puts text in a title at the top of the plot.	
xlabel ('text')	Adds a text label to the horizontal axis (the abscissa).	
ylabel ('text')	Adds a text label to the vertical axis (the ordinate).	

Contour plot (1)

```
x=0:0.1:10;
y=0:0.1:10;
[X,Y]=meshgrid(x,y);
% mesh grid :
% Vector를 행렬로 변환
Z=X.*sin(Y);
figure(1);
mesh(X,Y,Z)
xlabel('x');
xlabel('y');
zlabel('z');
colorbar;
%Color 막대 표현
figure(2);
c=contour(X,Y,Z);
xlabel('x');
vlabel('v');
zlabel('z');
colorbar;
figure(3);
c=contour(X,Y,Z,30);
xlabel('x');
ylabel('y');
zlabel('z');
clabel(c);
%clabel :
%윤곽선 높이 라벨 추개
```


End of Lecture

Appendix A: Matlab Operation & Commands (1)

Math Operations

Symbol	Operation	MATLAB form
^	exponentiation:	A^b
*	multiplication:	a*b
/	right division:	a/b
\	left division:	a∖b
+	addition:	a+b
-	subtraction:	a-b

Math Functions

e ^x	exp(x)		
\sqrt{x}	sqrt(x)	sin ⁻¹ x	asin(x)
ln x	log(x)	tan-1x	atan(x)
$\log_{10} x$	log10(x)		
cos x	cos(x)		
sin x	sin (x)		
tan x	tan(x)		
cos ⁻¹ x	acos(x)		

• Special Numbers

ans	Temporary variable containing the most recent answer	
eps	Specifies the accuracy of floating point precision	
i ,j	The imaginary unit	
Inf	Infinity	
NaN	Indicates an undefined numerical result	
pi	The number: = 3.141592	

Appendix A: Matlab Operation & Commands (2)

• Directory and Path Handler

addpath dirname	Adds the directory dirname to the search path	
cd dirname	Changes the current directory to dirname	
dir	Lists all files in the current directory	
dir dirname	Lists all the files in the directory dirname	
path	Displays the MATLAB search path	
pathtool	Starts the Set Path tool	
pwd	Displays the current directory	
rmpath dirname	Removes the directory dirname from the search path	
what	Lists the MATLAB-specific files found in the current working directory. Most data files and other non-MATLAB files are not listed. Use <i>dir</i> to get a list of all files	
what dirname	Lists the MATLAB-specific files in directory dirname	

Appendix A: Matlab Operation & Commands (3)

• Input/output commands

disp(A)	Displays the contents, but not the name, of the array A.
disp('text')	Displays the text string enclosed within single quotes.
format	Controls the screen's output display format
fprintf	Performs formatted writes to the screen or to a file
x = input('text')	Displays the text in quotes, waits for user input from the keyboard, and stores the value in x.
x = input('text', 's')	Displays the text in quotes, waits for user input from the keyboard, and stores the input as a string in x
k = menu ('title', 'option1', 'option2',)	Displays a menu whose title is in the string variable 'title', and whose choices are 'option1', 'option2', and so on.

Appendix B: Array Functions

Some Useful Array Functions

Command	Description	
cat(n, A, B, C,)	Creates a new array by concatenating the arrays A,B,C, and so on along the dimension n.	
find(x)	Computes an array containing the indices of the nonzero elements of the array x.	
[u, v, w] = find(A)	Computes the arrays u and v, containing the row and column indices of the nonzero elements of the matrix A, and the array w, containing the values of the nonzero elements. The array w may be omitted.	
length(A)	Computes either the number of elements of A if A is a vector or the largest value of m or n if A is an m_{\times} n matrix	
linspace(a, b, n)	Creates a row vector of n regularly spaced values between a and b	
logspace(a, b, n)	Creates a row vector of n logarithmically spaced values between a and b	
max(A)	Returns the algebraically largest element in A if A is a vector. Returns a row vector containing the largest elements in each column if A is a matrix. If any of the elements are complex, max(A) returns the elements that have the largest magnitudes.	
$[\mathbf{x}, \mathbf{k}] = \max(\mathbf{A})$	Similar to max(A) but stores the maximum values in the row vector x and their indices in the row vector k	
min(A)	Same as max(A) but returns minimum values.	
$[x, k] = \min(A)$	Same as [x, k]=max(A) but returns minimum values.	
size(A)	Returns a row vector [m,n] containing the sizes of the m× n array A.	
sort(A)	Sorts each column of the array A in ascending order and returns an array the same size as A.	
sum(A)	Sums the elements in each column of the array A and returns a row vector containing the sums	

Appendix B: Array Operations

Element-by-element operations

Symbol	Operation	Form	Example
+	Scalar – array addition	A + b	[6,3] + 2 = [8,5]
-	Scalar – array subtraction	A – b	[8,3] – 5 = [3,-2]
+	Array addition	A + B	[6,5] + [4,8] = [10,13]
-	Array subtraction	A-B	[6,5] – [4.8] = [2,-3]
.*	Array multiplication	A.*B	[3,5] .* [4,8] = [12,40]
J	Array right division	A./B	[2,5] ./ [4,8] = [2/4, 5/8]
.\	Array left division	A.\B	[2,5] .\ [4,8] = [2\4, 5\8]
.^	Array exponentiation	A.^B	[3,5].^2 = [3^2, 5^2]
			2.^[3,5] = [2^3, 2^5]
			[3,5].^[2,4] = [3^2, 5^4]