DESIGN OF A HOT-WATER SUPPLY SYSTEM FOR PRIMARY HEALTH CENTER IN LEKKI, LAGOS, NIGERIA

Sustainable Renewable Energy Technologies

Supervisor -Dr. Herena Torio

Presented By:

- ***** Kayode Awonugba
- **❖** Dinesh Papal
- * Rajasekar Reddy

luftkollektorfeldern

OUTLINE

Motivation **Project Demographic details System Layout Environmental Conditions Project Descriptions Solar Collector Model Selection Sensitivity Analysis**

MOTIVATION

- ☐ Harnessing of potential solar energy at the project location.
- ☐ Going green by switching from conventional to renewable energy sources.
- □ Potentiality to meet hot water demand from available natural resources.
- □ Negligible operational and minimum maintenance.
- Economically viable option for primary health care centres.

PROJECT DEMOGRAPHICS DETAILS

- □ Location: Lekki, Lagos, Nigeria (Latitude: 6.452, Longitude: 3.494)
- ☐ Source of irradiance database PVGIS-SARAH 2

Primary Health Care Centre

ENVIRONMENTAL CONDITIONS IN LEKKI

 \square Monthly average ambient temperature (2015 - 2020)

ENVIRONMENTAL CONDITIONS IN LEKKI

☐ Monthly average horizontal irradiation

Months of the year

PROJECT DESCRIPTION

- **☐** Application Type:
 - ☐ Hot water supply system
 - Outlet Temperature for DHW system = 50° C,
 - Inlet Temperature = 22°C (Winter) and 27°C (Summer)
 - **□** Building Characteristic:
 - primary health care centre
 - 4 person max at any given time

System Layout

Energy Demand

Application	Consumption per day per person (Litre)	Number of People	Total consumption per day (Litre)
Shower	25	4	100
Sterilization	15	4	60
Laundry and Cleaning	20	-	20

- Required outlet temperature for DHW system = $50^{\circ}C$
- Average monthly energy demand = **948,832 KJ**
- Constant demand

SOLAR COLLECTOR MODEL SELECTION

Solar Collector	Parameters
Unical AG S.p.a	$ \eta_0 = 0.726 $ $ a1 = 3.74 $ $ a2 = 0.006 $
Planet-Max 300	$ \eta_0 = 0.727 $ $ a1 = 3.29 $ $ a2 = 0.010 $
Acrobaleno SXM	$ \eta_0 = 0.719 $ $ a1 = 3.81 $ $ a2 = 0.013 $

Efficiency of Collector [%]:
$$\eta_{coll} = \eta_0 - c_1 \left(\frac{T_m - T_a}{G_T} \right) - c_2 \left(\frac{T_m - T_a}{G_T} \right)^2$$

SOLAR COLLECTOR SPECIFICATION AND JUSTIFICATION

☐ Acrobaleno SXM Specifications:

- Efficiency: Winter (63.8 %) Summer (66.5 %)
- Solar plate collector area: 2.34 m²
- Flow rate per gross area: 0.02 Kg/(m²Sec)

☐ Justification:

- Flat plate collector fits well in tropical weather.
- Cost effective.
- Application is for primary health care center.
- Less maintenance over their lifespan.
- Ease to integrate into the existing structure on rooftop.

TILT ANGLE COMPARISON

- \Box Optimum tilt angle = 10 degrees
- ☐ Orientation: South latitude of Lekki 6.452 °N

Comparison of Optimal tilt and monthly irradiation on a plane

F- CHART DESIGN & ASSESSMENT METHOD

SENSITIVITY ANALYSIS

Variation of Solar Fraction with Collector area

ANNUAL SOLAR FRACTION VS TILT ANGLE

STORAGE DESIGN

Application	Daily Consumption per person (Litre)	Number of People	Total consumption per day (Litre)
Shower	25	4	100
Sterilization	15	4	60
Laundry and Cleaning	20	-	20

- V_{st} = Volume of the storage
- Daily Water Requirement= (100+60+20) = 180 liters
- V_{st} = **360** liters (assumed 2 days of autonomy)

CONCLUSION

Identifying the most efficient Solar collector ensures optimal performance across the year.
 Designed Collector significantly meeting most of the demand with given irradiance.
 Identified the best collector area to meet hot water demand.
 Solar collector fraction is higher for summer months and lower for winter.
 Sensitivity analysis result shows the optimal tilt angle and area that fits in the range of β= 6 to 10° tilt angle.
 Optimal storage size defined to meet the daily water storage.

THANK YOU!!