graphe

Moi

October 28, 2016

Soit G := (A, S) un graphe et $p \in \mathbb{N}^*$.

Soit n := Card(A).

Associons à chaque sommet de G la variable x_i et à chaque couleur une racine

En effet,
$$0 = x_i^p - x_j^p = \underbrace{(x_i - x_j)}_{(2)} \sum_{k=0}^{p-1} x_i^k x_j^{p-1-k}$$

Associons à chaque sommet de G la variable x_i et à chaque couleur une racine pème de l'unité i.e. $\forall i \in [\![1,n]\!], x_i^p = 1.$ On impose de plus que si x_i et x_j sont adjacents alors $x_i \neq x_j$. Cela revient à dire que $\sum_{k=0}^{p-1} x_i^k x_j^{p-1-k} = 0.$ En effet, $0 = x_i^p - x_j^p = \underbrace{(x_i - x_j)}_{\neq 0} \sum_{k=0}^{p-1} x_i^k x_j^{p-1-k}.$ G est coloriable avec p couleurs si, et seulement si, le système $\begin{cases} \forall i \in [\![1,n]\!], x_i^p = 1 \\ \forall i,j \in [\![1,n]\!], x_i \text{ et } x_j \text{ sont adjacents }, \sum_{k=0}^{p-1} x_i^k x_j^{p-1-k} = 0 \end{cases}$ a une solution solution