Topics in Combinatorics Sheet 1

Otto Pyper

1. We can count the LHS differently. For $b \in B$, let $b_x = \{x : b \in A + x\} = \{b - a : a \in A\}$, so $|b_x| = |A|$. Then $|(A + x) \cap B| = \sum_{b \in B} \mathbb{I}_{x \in b_x}$, and hence

$$\begin{split} \sum_{x \in \mathbb{Z}_n} |(A+x) \cap B| &= \sum_{x \in \mathbb{Z}_n} \sum_{b \in B} \mathbb{I}_{x \in b_x} \\ &= \sum_{b \in B} \sum_{x \in \mathbb{Z}_n} \mathbb{I}_{x \in b_x} \\ &= \sum_{b \in B} |b_x| = \sum_{b \in B} |A| \\ &= |A||B| \end{split}$$

Hence for some x, $|(A+x) \cap B| \ge |A||B|/n$, otherwise the sum over all x is too small.

Given |A|, |B| and n, we have for all x that $|(A+x) \cap B| \le \max_x |(A+x) \cap B|$, and so $|A||B| \le n \max_x |(A+x) \cap B|$, and we have the lower bound $\max \ge |A||B|/n$, or the ceiling thereof if |A||B|/n is not an integer.

In the case where |A||B|/n is an integer and the bound is attainable, we must then have $|(A+x)\cap B| = |A||B|/n$ for all x, else the sum is again too small.

If |A||n, it is very helpful to find $A \leq \mathbb{Z}_n$, as then $\{(A+x): 0 \leq x < n/|A|\}$ partitions \mathbb{Z}_n into disjoint cosets, so for B we can freely pick k elements from each coset, for any fixed $1 \leq k \leq |A|$.

In general we do not have this niceness, but it may still be the case that |A||n, in which case for any given |B| we can minimise $\max_x |(A+x) \cap B|$ by taking A a subgroup as above and then choosing B as evenly as possible from the cosets, so that for any x, y we have $||(A+x) \cap B| - |(A+y) \cap B|| \le 1$, which is best possible (with all = 0 iff n divides |A||B|).

In even further generality, making no assumptions about the sizes |A|, |B|, we might still hope the above is possible - that for any x, y we have $||(A+x) \cap B| - |(A+y) \cap B|| \le 1$.

The plan will be to space A 'as evenly as possible' across \mathbb{Z}_n , and take B to be a consecutive set of |B| integers. Henceforth write |A| = a, |B| = b. As there is some non-empty intersection, we also assume wlog that $0 \in A \cap B$. Let $|A \cap B| = c$, and we assume further that this is the maximum size. Then for any x, we need $\lfloor ab/n \rfloor = c - 1 \le |(A+x) \cap B| \le c$. If there are y intersections of size c - 1, and n - y of size c, then y(c - 1) + (n - y)c = ab, so $y = nc - ab = n - ab - \lfloor ab/n \rfloor$.

A set X is spaced 'as evenly as possible' if for all $x, y \in X$, $|x-y| \le 1$ for an appropriate norm.

We will space A as evenly as possible. We find a consecutive pair of integers s, s+1 such that there exist $p, q \in \mathbb{N} \geq 0$ such that ps+q(s+1)=n and p+q=a. In particular, as=n-q and a(s+1)=n+p, so $s\leq n/a\leq s+1$. So $s=\lfloor n/a\rfloor, \ q=n-a\lfloor n/a\rfloor$.

My gut says this should be possible if we space A as evenly as possible, and then space the larger gaps as evenly as possible, and so on...

2. Choose a random subset $V \subset G$ of vertices, where for $x \in G$ we have $x \in V$ with probability p. Then for any $v, w \in G$, $\mathbb{P}[v \in V, w \in W, vw \in E(G)] = p(1-p)m/\binom{n}{2}$. Hence

$$\mathbb{E}[\#\text{edges from }V\text{ to }W] = \sum_{v \neq w \in V} p(1-p) \frac{m}{\binom{n}{2}}$$

$$= n(n-1)p(1-p) \frac{m}{\binom{n}{2}}$$

$$= \frac{m}{2}$$

Hence there exists some V for which at least half of the edges are between V and W.

- 3. (i) Presumably the ε_i are chosen from $\{-1,1\}$ each with probability 1/2, so that $\mathbb{E}[\varepsilon_i]=0$, and $\mathbb{E}[\varepsilon_i^2]=1$ (if > 0, the first result does not hold). Let $X=\sum_i a_i \varepsilon_i$. Then $\mathbb{E}\sum_i a_i \varepsilon_i=\sum_i a_i \mathbb{E}[\varepsilon_i]=0$ by linearity of expectation. Similarly, since $\mathbb{E}[\varepsilon_i \varepsilon_j]=\mathbb{E}[\varepsilon_i]\mathbb{E}[\varepsilon_j]=0$ for $i\neq j$ by independence, we have that $\mathbb{E}[(\sum_i a_i \varepsilon_i)^2]=\sum_i a_i^2 \mathbb{E}[\varepsilon_i^2]=\sum_i a_i^2$.
- (ii) We can expand X^{2k} and take expectation.

$$X^{2k} = \sum_{i_1 + \dots + i_n = 2k} \frac{(2k)!}{i_1! \cdots i_n!} (a_1 \varepsilon_1)^{i_1} \cdots (a_n \varepsilon_n)^{i_n}$$

When taking expectation, we remark that if i_j is odd for any j, then $\mathbb{E}[\varepsilon_j^{i_j}] = 0$ so the expectation of the entire summand is zero. Thus every i_j is even, which we may write as $i_j = 2m_j$. Hence

$$\mathbb{E}[X^{2k}] = \sum_{m_1 + \dots + m_n = k} \frac{(2k)!}{(2m_1)! \cdots (2m_n)!} a_1^{2m_1} \cdots a_n^{2m_n}$$

This expression is very similar to the expansion of $Var[X]^k$, the difference being the factorial coefficient in each summand:

$$(\operatorname{Var}[X])^k = \sum_{m_1 + \dots + m_n = k} \frac{k!}{m_1! \dots m_n!} a_1^{2m_1} \dots a_n^{2m_n}$$

If we write $S = \{(m_1, \ldots, m_n) : \sum m_j = k\}$, we can express these sums as $\sum_{s \in S} A_s p_s$ and $\sum_{s \in S} B_s p_s$ respectively. Let t be such that A_t/B_t is maximised. Then for all s, we have $p_s A_s B_t \leq p_s B_s A_t$, and hence (summing over s) we have that

$$\frac{\sum_{s \in S} A_s p_s}{\sum_{s \in S} B_s p_s} \le \frac{A_t}{B_t}$$

And the constant A_t/B_t is a quotient of multinomial coefficients, which is dependent only on k.

4. We choose a random antisymmetric relation on [N], by saying that for i < j, $(i,j) \in R$ with probability p, and $(j,i) \in R$ with probability 1-p. That is to say we go through each subset $\{i,j\}$, and flip a coin with probability p of landing heads. If heads, we put $(i,j) \in R$. If tails, we put $(j,i) \in R$.

Then define X_S to be the indicator function of the event 'there exists $x \in [N]$ with xRs for all $s \in S$ ', and then define $X = \sum_{S \in [N]^{(k)}} X_S$. We will take $\mathbb{E}[X]$, so we need to know $\mathbb{E}[X_S]$.

I'm going to write down a big formula and explain it later.

$$\mathbb{P}[X_S = 0] = \prod_{m=0}^{k} \left[(1 - p^{k-m} (1-p)^m)^{s_{m+1} - s_m - 1} \right]$$

The idea here is that we have a k-set $S = \{s_1 < s_2 < \cdots < s_k\}$, and we've defined $s_0 = 0$, $s_{k+1} = N+1$. We then take the product over all $x \in [N] \setminus S$ that we do not have xRs for all $s \in S$. This exact probability depends only on where x is relative to the s_i ; so if it is between s_m and s_{m+1} , then the probability x relates to all of them is $(1-p)^m p^{k-m}$, so 1- that is the probability this doesn't happen.

Taking the product over all $s_m < x < s_{m+1}$ gives the probability that these all fail, hence the exponent $s_{m+1} - s_m - 1$ in the multiplicand. Then taking the product over all such m gives the probability we have success for no $x \in [N] \setminus S$. We will henceforth denote this product as p_S .

So now we have

$$\mathbb{E}[X] = \sum_{S \in [N]^{(k)}} (1 - p_S)$$
$$= {N \choose k} - \sum_{S \in [N]^{(k)}} p_S$$

and the idea is to appropriately choose p and N so that the latter sum is less than 1. Then since X takes integer values, there must be some relation for which $X = \binom{N}{k}$, i.e. every k-set is related to by some x.

While it could have been helpful, it turns out that we didn't need p in full generality, and could have just used p = 1/2. This hugely simplifies the situation, as we then just have $p_S = (1 - 2^{-k})^{N-k}$. The latter sum is then $\binom{N}{k}(1-2^{-k})^{N-k}$, which is exponentially decaying in N and so is indeed eventually small enough.

This also gives us an upper bound on how large N needs to be, as

$$\binom{N}{k}(1-2^{-k})^{N-k} < 1$$

$$\iff \left(\frac{eN}{k}\right)^k \left(1-2^{-k}\right)^{N-k} < 1$$

$$\iff N^k (1-2^{-k})^N < \left(\frac{k}{e}\right)^k (1-2^{-k})^k = c_k$$

$$\iff k \log N + N \log(1-2^{-k}) < \log c_k$$

$$\iff \frac{N}{\log N} > -\frac{k}{\log(1-2^{-k})} + \frac{\log c_k}{\log N \log(1-2^{-k})}$$

For any fixed k, the latter term vanishes as $N \to \infty$, so we can ignore this term (it is also negative, so we will obtain a stronger condition).

For any $\varepsilon > 0$, we have $N^{\varepsilon} > \log N$ for sufficiently large N, and hence $N/\log N < N^{1-\varepsilon}$. Thus, for any $\varepsilon > 0$ and sufficiently large k, N, and noting that $\log(1 - 2^{-k}) \approx -2^{-k}$, we have the sufficient condition for a solution:

$$|X| \ge k^{\frac{1}{1-\varepsilon}} 2^{k/(1-\varepsilon)}$$

or, for instance, a uniform bound $|X| \ge k^2 2^{2k}$ implies such an antisymmetric relation exists.

5. Colour each member of X red with probability p and blue with probability 1 - p. Let X_i be the indicator of the event that A_i is not monochrome, and let $X = \sum_{i=1}^r X_i$.

 $\mathbb{P}[X_i = 1] = 1 - (1/2)^m - (1 - 1/2)^m = 1 - 2^{1-m}$, since $X_i = 1$ iff the elements of A_i are not all red and not all blue. Hence:

$$\mathbb{E}[X] = \sum_{i=1}^{r} \mathbb{P}[X_i = 1]$$
$$= r(1 - 2^{1-m}) = r - 2^{1-m}r$$

So if $r < 2^{m-1}$ then $2^{1-m}r < 1$, and hence $\mathbb{E}[X] > r - 1$, so there exists some colouring for which $X \ge r$; but $X \le r$, so there exists a colouring for which every A_i contains at least one red element and at least one blue element.

Let R(m) be the least r such that there exist sets A_1, \ldots, A_r of size m such that for every red-blue colouring there is some i with A_i monochrome. We can bound R(m) recursively.

Given R(m), construct R(m) m+1-sets by extending the $A_1, \ldots, A_{R(m)}$ m-sets.

Pick a set of $B = \{b_i : 1 \le i \le m+1\}$ such that $B \cap A_i = \emptyset$ for all i, and then take the sets $C_{i,j} = A_i \cup \{b_j\}$, altogether along with B. Then in any red-blue colouring there must be some i such that $A_i \subset C_{i,j}$ is monochrome, say blue. So then we either have a monochrome set, or every b_j has been coloured red - in which case B is monochrome.

Therefore $R(m+1) \leq R(m)(m+1) + 1$. Thus:

$$\begin{split} R(m) &\leq 1 + R(m-1)m \\ &\leq 1 + m + R(m-2)(m-1)m \\ &\leq \sum_{j=0}^k \frac{m!}{(m-j)!} + R(m-(k+1))(m-k)(m-(k-1))\dots(m) \\ &\leq \sum_{j=0}^{m-2} + R(1)m! = \sum_{j=0}^{m-1} \frac{m!}{(m-j)!} = m! \sum_{j=0}^{m-1} \frac{1}{(m-j)!} \\ &= m! \sum_{\ell=1}^m \frac{1}{\ell!} \leq m! (-1 + \sum_{\ell=0}^\infty \frac{1}{\ell!}) \\ &\leq m! (\ell-1) \end{split}$$

So we have an upper bound $R(m) \leq m!(e-1)$ for each m.

6.