

SISTEMAS DE NUMERAÇÃO E REPRESENTAÇÕES DE DADOS									
CAMPUS PRAÇA DA LIBERDADE									
Turno: M	Período:2	Data: 01/08/2021							
GUIA 2	Valor: 5	Nota:							
Disciplina: Arquitetura de Computadores I									
Professor: IIII IO CONIWAY DSc									

Representação de dados

Função contínua em um intervalo.

Função discreta em um intervalo.

Computadores Analógicos x Digitais

com estados contínuos (corrente, tensão, pressão, vazão etc.)

com estados discretos (ou valores distintos distribuídos

Sistemas de Numeração Exemplo:

Sistema decimal

$$1x2^{7}+0x2^{6}+1x2^{5}+0x2^{4}+0x2^{3}+0x2^{2}+1x2^{1}+1x2^{0}$$
 - forma canônica $128+0+32+0+0+0+2+1=163$

Sistema binário

1010 0011(2)

- número na base 2

representado apenas com algarismos {0,1}

- 49	27	26	2 ⁵	24	23	22	21	20	potências da base 2
	128	64	32	16	8	4	2	1	valor equivalente da potência
8	1	0	1	0	0	0	1	1	coeficientes

Equivalentes em sistemas com potências de 2

1010 0011₍₂₎ = [1010] [0011]₍₁₆₎ = A3₍₁₆₎ e A₍₁₆₎=10 em hexadecimal (grupos de 4)
=
$$10x16^{1} + 3x16^{0}$$
 = $163_{(10)}$ com algarismos
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

OBS: Caso necessário, completar com zeros (0) para formar grupos de mesmo tamanho.

1.) Converter decimal para binário

Sistema decimal

$$163_{(10)} = 1 \times 10^2 + 6 \times 10^1 + 3 \times 10^0$$

- na forma canônica

Para converter um valor decimal (base=10) para binário (base=2), usar divisões sucessivas por 2 e tomar os restos na <u>ordem inversa</u> em que forem calculados:

operação quociente resto

$$163/2 = 81 + 1 \text{ (último)}$$
 $81/2 = 40 + 1$
 $40/2 = 20 + 0$
 $20/2 = 10 + 0$
 $10/2 = 5 + 0$
 $5/2 = 2 + 1$
 $2/2 = 1 + 0$
 $1/2 = 0 + 1 \text{ (primeiro)}$

Sistema binário

1010 0011(2)

- número na base 2

ou

27	26	25	24	23	22	21	20	potências da base 2
128	64	32	16	8	4	2	1	valor equivalente da potência
1	0	1	0	0	0	1	1	coeficientes

2.) Converter binário para decimal

Para converter um valor binário (base=2) para decimal (base=10), usar a soma dos produtos de cada algarismo pela potência da base equivalente à posição:

Sistema binário

1010 0011(2)

- número na base 2

Sistema decimal

$$1x2^{7}+0x2^{6}+1x2^{5}+0x2^{4}+0x2^{3}+0x2^{2}+1x2^{1}+1x2^{0}$$
 - forma canônica $128+0+32+0+0+0+2+1=163$

3.) Converter decimal para base 16 (hexadecimal)

Para converter um valor decimal para a base 16 (hexadecimal):

```
operação quociente resto

163 / 16 = 10 + 3 (último)

10 / 16 = 0 + 10 (primeiro, substituindo pelo algarismo A=10)
```

Sistema hexadecimal

A3(16)

- número na base 16

4.) Converter da base 16 para decimal

Sistema hexadecimal

$$A3_{(16)} = (A=10)x16^1+3x16^0$$
 - número na base 16 forma canônica = 160 + 3 = 163₍₁₀₎

5.) Sistema binário (base=2) para quaternário (base=16=24):

```
1010\ 0011_{(2)} = [1010]\ [0011]_{(16)} = A3_{(16)}\ e\ A_{(16)} = 10 agrupar de 4 em 4 e substituir pelos dígitos equivalentes
```

OBS: Caso necessário, completar com zeros para formar os grupos.

Tabela de Conversão Decimal-Binário-Hexadecimal

X ₍₁₀₎ decimal	X ₍₂₎ binário	X ₍₁₆₎ hexadecimal
00	0000 0000	00
01	0000 0001	01
02	0000 0010	02
03	0000 0011	03
04	0000 0100	04
05	0000 0101	05
06	0000 0110	06
07	0000 0111	07
08	0000 0000	08
09	0000 0001	09
10	0000 0010	0A
11	0000 0011	0B
12	0000 0100	0C
13	0000 0101	0D
14	0000 0110	0E
15	0000 0111	0F

Representações de potências de 2.

X	2 ^X	X ₍₁₀₎	$X_{(2)}$	X ₍₁₆₎
0	20	1	1	1
1	21	2	10	2
2	22	4	100	4
3	23	8	1000	8
4	24	16	1 0000	10
5	25	32	10 0000	20
6	2 ⁶	64	100 0000	40
7	27	128	1000 0000	80
8	28	256	1 0000 0000	100
9	2 ⁹	512	10 0000 0000	200
10	210	1024	100 0000 0000	400

Termos associados à representação de dados em binário

Termo	Quantidade	Observação						
bit	1	" <u>b</u> inary dig <u>it</u> " – dígito binário (0 ou 1)						
nibble	4 bits	dígito hexadecimal equivalente (semiocteto)						
byte	8 bits	octeto (Werner Buchholz, 1956) – unidade de armazenamento						
word	xx bits	dependente do sistema (ex.: 14, 16, 32, 54, 64 etc.)						
kiloBytes (kB)	1024 Bytes	(ex.: arquivo texto)						
MegaBytes (MB)	1024 kiloBytes (kB)	1 048 576 bytes (ex.: arquivo mp3)						
GigaBytes (GB)	1024 MegaBytes (MB)	1 073 741 824 bytes (ex.: filme)						
TeraBytes (TB)	1024 GigaBytes (GB)	1 099 511 627 776 bytes (ex.: 800 filmes)						
PetaBytes (PB)	1024 TeraBytes (TB)	1 125 899 906 842 624 bytes (ex.: acervo do Google)						
ExaBytes (EB)	1024 PetaBytes (PB)	(ex.: acervo da Internet)						
ZetaBytes (ZB)	1024 ExaBytes (EB)							
YottaByes (YB)	1024 ZetaByes (ZB)							

Representação de símbolos por códigos equivalentes (Tabela ASCII - 8 bits)

Dec	H	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Hx	Oct	Html Ch	nr
0	0	000	NUL	(null)	32	20	040	6#32;	Space	64	40	100	a#64;	0	96	60	140	a#96;	
1				(start of heading)	33	21	041	6#33;	1	65	41	101	A	A	97	61	141	a	a
2	2	002	STX	(start of text)	34	22	042	6#34;	rr	66	42	102	B	В	98	62	142	b	b
3	3	003	ETX	(end of text)	35	23	043	6#35;	#	67	43	103	C	C	99	63	143	c	C
4	4	004	EOT	(end of transmission)	36	24	044	a#36;	ş	68	44	104	D	D	100	64	144	d	d
5	5	005	ENQ	(enquiry)	37			6#37;		69	45	105	E	E	101	65	145	e	e
6	6	006	ACK	(acknowledge)	38			&		70	46	106	a#70;	F	102	66	146	f	f
7	7	007	BEL	(bell)	39	27	047	'	1	71	47	107	G	G	103	67	147	g	g
8	8	010	BS	(backspace)	40	28	050	a#40;	(72	48	110	6#72;	H	104	68	150	h	h
9	9	011	TAB	(horizontal tab)	41	29	051))	73	49	111	6#73;	I	105	69	151	i	i
10	A	012	LF	(NL line feed, new line)	42	2A	052	6#42;	*			100000	J					j	
11	В	013	VT	(vertical tab)	43	2B	053	+	+	10.7	-		K					k	
12	C	014	FF	(NP form feed, new page)	44	20	054	¢#44;	,				L		108	6C	154	l	1
13	D	015	CR	(carriage return)	45	2D	055	-	-				6,#77;					m	
14	E	016	SO	(shift out)				.		78			N					n	
15	F	017	SI	(shift in)	47	2F	057	6#47;	/	79			O					o	
16	10	020	DLE	(data link escape)	48			0		80			P					p	
17	11	021	DC1	(device control 1)	49	31	061	1	1	81			Q		113	71	161	q	q
18	12	022	DC2	(device control 2)	50	32	062	2	2	82	52	122	R	R	114	72	162	r	r
				(device control 3)		100.0	0.000	3					S					s	
20	14	024	DC4	(device control 4)				4					T					t	
21	15	025	NAK	(negative acknowledge)				5					%#85 ;					u	
22	16	026	SYN	(synchronous idle)				 4 ;					V					v	
23	17	027	ETB	(end of trans. block)				7			_		%#87 ;					w	
24	18	030	CAN	(cancel)	56			8					X					x	
25	19	031	EM	(end of medium)	57			9					6#89;					y	
26	1A	032	SUB	(substitute)	58			:					%#90 ;					z	
27	1B	033	ESC	(escape)	59			;					[{	
28	10	034	FS	(file separator)	60	30	074	<	<	92	5C	134	\	1					
		035		(group separator)				=		93]					}	
		036		(record separator)				>					^					~	
31	1F	037	US	(unit separator)	63	3F	077	?	2	95	5F	137	_	_	127	7F	177	a#127;	DEL
														S	ource	: w	ww.a	sciitable.	.com

Tabela ASCII Estendida

128	Ç	144	É	161	í	177	******	193	_	209	=	225	B	241	±
129	ü	145	æ	162	ó	178		194	Т	210	П	226	Г	242	2
130	é	146	Æ	163	ú	179	1	195	F	211	L	227	π	243	≤
131	â	147	ô	164	ñ	180	+	196	-	212	L	228	Σ	244	1
132	ä	148	ö	165	Ñ	181	4	197	+	213	F	229	σ	245	1
133	à	149	ò	166	•	182	1	198	F	214	Г	230	μ	246	÷
134	å	150	û	167	۰	183	П	199	-	215	#	231	τ	247	æ
135	ç	151	ù	168	3	184	7	200	L	216	+	232	Φ	248	•
136	ê	152	_	169		185	4	201	F	217	7	233	•	249	
137	ë	153	Ö	170	4	186		202	止	218	Г	234	Ω	250	
138	è	154	Ü	171	1/2	187	ח	203	īF	219		235	8	251	V
139	ï	156	£	172	1/4	188	J.	204	F	220		236	00	252	_
140	î	157	¥	173	1	189	Ш	205	=	221	1	237	ф	253	2
141	ì	158	7	174	«	190	4	206	#	222		238	8	254	
142	Ä	159	f	175	>>	191	1	207	_	223	-	239	\circ	255	
143	Å	160	á	176		192	L	208	Ш	224	α	240	=		

Source: www.asciitable.com

Sistemas de Numeração - Operações aritméticas

Exemplos:

1.) Adição

Sistema binário

Relações fundamentais:

$$0_{(2)} + 0_{(2)} = 0_{(2)}$$
 $0_{(2)} + 1_{(2)} = 1_{(2)}$
 $1_{(2)} + 0_{(2)} = 1_{(2)}$
 $1_{(2)} + 1_{(2)} = 10_{(2)}$ (zero e "vai-um" para a próxima potência)

Aplicação:

1111 \leftarrow "vai-um"

101101₍₂₎ \leftarrow operando 1

+ 111₍₂₎ \leftarrow operando 2

Sistema hexadecimal

110100₍₂₎ ← resultado

Aplicação:

1111 1
$$\leftarrow$$
 "vai-um" (excessos de 16)
101101₍₂₎ 2D₍₁₆₎ \leftarrow operando 1
+ 111₍₂₎ + 7₍₁₆₎ \leftarrow operando 2
110100₍₂₎ 34₍₁₆₎ \leftarrow resultado

Subtração

Relações fundamentais:

 $0_{(2)} - 0_{(2)} = 0_{(2)}$ $0_{(2)} - 1_{(2)} = ???$

 $1_{(2)} - 0_{(2)} = 1_{(2)}$

 $1_{(2)} - 1_{(2)} = 0_{(2)}$

10₍₂₎ - 1₍₂₎ = 01₍₂₎ (zero e "vem-um" para a potência considerada)

 $100_{(2)}$ - $1_{(2)}$ = $011_{(2)}$ (zero e "vem-um" para as potências necessitadas)

Aplicação:

OBS:

Quando se "toma emprestado" na potência seguinte, um valor unitário é debitado na potência que "empresta",

e "creditado" na potência que o recebe, compensada a diferença entre essas potências.

Multiplicação

Sistema binário

Relações fundamentais:

$$0_{(2)} * 0_{(2)} = 0_{(2)}$$

 $0_{(2)} * 1_{(2)} = 0_{(2)}$

 $1_{(2)} * 0_{(2)} = 0_{(2)}$

 $1_{(2)} * 1_{(2)} = 1_{(2)}$

Aplicação:

1111

+ 000000-

101101--

11100001₍₂₎ ← resultado

Divisão

Sistema binário

Aplicação:

-	11100001 ₍₂₎ 101 ₍₂₎ 101 1 ₍₂₎	-	11100001 ₍₂₎ 101 ₍₂₎ 101 10 ₍₂₎
	010		0100
-	11100001 ₍₂₎ 101 ₍₂₎ 101 101 ₍₂₎		11100001 ₍₂₎ 101 ₍₂₎ 101 1011 ₍₂₎
-	01000 101	<u>.</u>	01000 101
	00011	_	000110 101
			0000010
-	11100001 ₍₂₎ 101 ₍₂₎ 101 10110 ₍₂₎	-	11100001 ₍₂₎ 101 ₍₂₎ 101 101101 ₍₂₎
-	01000 101	-	01000 101

Sistemas de Numeração - Representações de dados

1.m

± e

0.0, 0.0e0

String

"", "0", null

A representação de dados numéricos necessita, por vezes, utilizar uma indicação especial para sinal (positivo e negativo). Para isso, é comum reservar o primeiro bit (o mais a direita para isso), em valores inteiros ou reais. Entretanto, a representação de valores negativos necessitará de ajustes a fim de que as operações aritméticas produzam resultados coerentes.

Tipos Tamanho Intervalo [false:true] boolean 1 byte false, true [-128 : 127] byte 1 byte 0, 0x00 [0:255] (sem sinal) [0:65535] char 2 bytes '0','\u0000' (Unicode) short [-32768: 32767] 2 bytes (sinal+amplitude) 0 a [-2³¹ : 2³¹-1] int 4 bytes (sinal+amplitude) 0 a [-2⁶³ : 2⁶³-1] 8 bytes long (sinal+amplitude) 0L ± a float [-3.4e⁻³⁸: 3.4e³⁸] 4 bytes IEEE754 (sinal+amplitude+1 .mantissa) 0.0f ± е 1.m double [-1.7e⁻³⁰⁸ : 1.7e³⁰⁸] 8 bytes

Representações para tipos de dados comuns (em Java)

Representação binária dependente do número de bits.

IEEE754

(sinal+amplitude+1.

.mantissa)

n bytes

A representação binária depende da quantidade de bits disponíveis e dos formatos escolhidos.

Para os valores inteiros, por exemplo, pode-se utilizar o formato em que o primeiro bit, à esquerda, para o sinal e o restante para a amplitude, responsável pela magnitude (grandeza) do valor representado.

Exemplo:

$$5_{(10)} = 101_{(2)}$$

+ $5_{(10)} = 0101_{(2)}$
- $5_{(10)} = 1101_{(2)}$

Essa represesentação, contudo, não é conveniente para realizar operações, pois ao adicionar ambos, obtém-se:

$$+5_{(10)} = 0101_{(2)}$$

$$-5_{(10)} = 1101_{(2)}$$

$$0_{(10)} = (1) 0010_{(2)}$$

o que ultrapassa a quantidade de bits originalmente escolhida e, obviamente, não é igual a zero em sua amplitude.

Complemento de 1

Uma das possíveis representações para valores negativos pode ser aquela onde se invertem os valores individuais de cada bit.

Exemplo:

```
5_{(10)} = 101_{(2)}
+5_{(10)} = 0101_{(2)}
- 5_{(10)} = 1010_{(2)} (complemento de 1)
```

Essa represesentação, contudo, também não é conveniente para realizar operações, pois ao adicionar ambos, obtém-se:

```
\begin{array}{ccc} +5_{(10)} = & \underline{0}101_{(2)} \\ -5_{(10)} = & \underline{1}010_{(2)} \\ \hline \\ -0_{(10)} = & \underline{1}111_{(2)} \rightarrow +0_{(10)} = & \underline{0}000_{(2)} \end{array}
```

o que mantém a quantidade de bits originalmente escolhida, mas gera duas representações para zero (-0) e (+0), o que requer ajustes adicionais nas operações.

Complemento de 2

Outra das possíveis representações para valores negativos pode ser aquela onde se invertem os valores individuais de cada bit, e acrescenta-se mais uma unidade ao valor encontrado, buscando completar o que falta para atingir a próxima potència da base.

Exemplo:

```
5_{(10)} = 101_{(2)}
+5_{(10)} = 0101_{(2)}
- 5_{(10)} = 1010_{(2)} (complemento de 1, ou C<sub>1</sub>(5))
- 5_{(10)} = 1011_{(2)} (complemento de 2, ou C<sub>2</sub>(5))
```

Essa represesentação é bem mais conveniente para realizar operações, pois ao adicionar ambos, obtém-se:

```
+5_{(10)} = \frac{0}{1}010_{(2)}-5_{(10)} = \frac{1}{1}011_{(2)}0_{(10)} = (1) \frac{0}{2}000_{(2)}
```

com uma única representação para zero, mas com um excesso (1) que não é comportado pela quantidade de bits originalmente escolhida. Porém, se desprezado esse excesso, o valor poderá ser considerado correto, com a ressalva de que a quantidade de bits deverá ser rigorosamente observada (ou haverá risco de transbordamento – OVERFLOW).

Para efeitos práticos, o tamanho da representação deverá ser sempre indicado, e as operações deverão ajustar os operandos para a mesma quantidade de bits (de preferência, a maior possível).

```
Exemplo:
```

De modo inverso, dado um valor em complemento de 2, se desejado conhecer o equivalente positivo, basta retirar uma unidade e substituir os valores individuais de cada dígito binário.

Exemplo:

$$\underline{1}$$
011₍₂₎ (complemento de 2, com 4 bits)
 $\underline{1}$ 011₍₂₎ - 1 = $\underline{1}$ 010₍₂₎ e invertendo $\underline{0}$ 101₍₂₎ = +5₍₁₀₎
logo, $\underline{1}$ 011₍₂₎ = -5₍₁₀₎
Portanto, para diferentes quantidades de bits:

$$\underline{1}$$
1011₍₂₎ = $\underline{1}$ 1010₍₂₎ = $\underline{0}$ 0101₍₂₎ = 5₍₁₀₎

$$\underline{1}$$
1111011₍₂₎ = $\underline{1}$ 1111010₍₂₎ = $\underline{0}$ 00000101₍₂₎ = 5₍₁₀₎

Resumindo:

?

correspondente, aplica-se o complemento de 2 (inverte todos os bits e soma 1)

?

correspondente, aplica-se o complemento de 2 (inverte todos os bits e soma 1)

Subtração mediante uso de complemento

Operar a subtração mediante uso de complemento pode ser mais simples do que realizar a operação diretamente, como visto anteriormente.

Aplicação:

OBS:

Quando se "toma emprestado" na potência seguinte, um valor unitário é debitado na potência que "empresta", e "creditado" na potência que o recebe, compensada a diferença entre essas potências.

Aplicação do complemento:

Para aplicar o complemento, a primeira providência é normalizar os operandos na mesma quantidade de bits, reservado o bit de sinal.

Em seguida, calcular e substituir o subtraendo pelo complemento:

```
C2 ( \bigcirc 000111<sub>(2)</sub> ) = C1 ( \bigcirc 000111<sub>(2)</sub> ) + 1<sub>(2)</sub> = \bigcirc 1111000<sub>(2)</sub> + 1<sub>(2)</sub> = \bigcirc 1111001<sub>(2)</sub>
0 101001<sub>(2)</sub>
0 101001<sub>(2)</sub>
0 111<sub>(2)</sub> 	 0 - 1 111001<sub>(2)</sub>
```

Para finalizar, operar a soma dos operandos, respeitando a quantidade de bits:

Observar que o bit que exceder a representação deverá ser desconsiderado, por não haver onde acomodá-lo. Ainda poderá haver erro por transbordamento (OVERFLOW).

ATIVIDADE A SER ENTREGUE – REGRAS GERAIS

- 1. Este GUIA 2 deverá ser entregue em um único arquivo PDF (outras formas não serão aceitas, tornando nula a atividade). Dica: Vá confeccionando o relatório em Word (.doc), acrescentando as respostas aos exercícios, listagens de programas e figuras, se for o caso, e ao final, converta para PDF.
- 2. Como nosso curso é de Ciência da Computação, vamos dar também um enfoque de programação nas atividades deste GUIA. Assim, a atividade inclui a confecção de pequenos programas de teste. Neste relatório o aluno poderá escrever o programa na linguagem que está mais familiarizado, preferencialmente, a linguagem adotada no curso no semestre atual.

Poderá confeccionar o programa para ser executado em modo texto (resultado na tela do DOS), ou modo gráfico, se tiver conhecimento desta técnica.

Deverá ser incluída no relatório a listagem do (s) programa (s), bem como a exibição do(s) resultado(s) na tela (tela de saída do DOS em modo texto ou modo gráfico).

3. Para facilitar o estudo da parte teórica do GUIA, o aluno deverá assistir aos seguintes vídeos (somente sistemas decimal, binário e hexadecimal):

http://www.youtube.com/user/henriquencunha/videos http://www.youtube.com/watch?v=Ojd770C2GTk

- 4. Para as atividades abaixo, mostrar as etapas para a resposta aos itens de 'a' até 'e'. **Sugestão**: Para a representação dos tipos binário e hexadecimal, pode ser utilizado o tipo String.
 - 4.1. Fazer as conversões de decimal para binário:
 - a.) 27(10) = X(2)
 - b.) 51(10) = X(2)
 - c.) 713(10) = X(2)
 - d.) 312(10) = X(2)
 - e.) 360(10) = X(2)
 - 4.2. Escrever uma função dec2bin(x). Esta função recebe um número inteiro decimal e devolve o binário correspondente. Faça um programa main que passa para a função os números decimais dos itens de 'a' até 'e' e que imprima os binários correspondentes na tela. Mostre o código e os resultados exibidos na tela, no relatório.

- 4.3. Fazer as conversões de binário para decimal:
- a.) 10101(2) = X(10)
- b.) 11010(2) = X(10)
- c.) 101001(2) = X(10)
- d.) 111001(2) = X(10)
- e.) 100011(2) = X(10)
- 4.4. Escrever uma função **bin2dec(x)**. Esta função recebe um número binário e devolve o decimal correspondente. Faça um programa **main** que passa para a função os números binários dos itens de 'a' até 'e' e que imprima os binários correspondentes na tela. Mostre o código e os resultados exibidos na tela, no relatório.
- 4.5. Fazer as conversões de decimal para hexadecimal:
- a.) 73(10) = X(16)
- b.) 47(10) = X16
- c.) 61(10) = X(16)
- d.) 157(10) = X(16)
- e.) 171(10) = X(16)
- 4.6. Escrever uma função dec2hex(x). Esta função recebe um número inteiro decimal e devolve o hexadecimal correspondente. Faça um programa main que passa para a função os números decimais dos itens de 'a' até 'e' e que imprima os hexadecimais correspondentes na tela. Mostre o código e os resultados exibidos na tela, no relatório.
- 4.7. Fazer as conversões de hexadecimal para decimal:
- a.) 73(16) = X(10)
- b.) ABC(16) = X10)
- c.) 100(16) = X(10)
- d.) 9A8(16) = X(10)
- e.) 100016) = X(10)
- 4.8. Escrever uma função hex2dec(x). Esta função recebe um número hexadecimal e devolve o decimal correspondente. Faça um programa main que passa para a função os números hexadecimais dos itens de 'a' até 'e' e que imprima os decimais correspondentes na tela. Mostre o código e os resultados exibidos na tela, no relatório.
- 4.9. Converter entre símbolos e códigos de representação alfanumérico (ASCII). **Sugestão**: veja a codificação da tabela ASCII acima.
- a.) "PUC-Minas" = X(16_ASCII) (converter para os nove algarismos hexa corresp.)
- b.) "2021-1" = $X(16_ASCII)$
- c.) "Brasil" = X(16 ASCII)
- d.) 124 101 122 104 105(16) = X(ASCII) (converter para o texto ASCII corresp.)
- e.) 62 2E 68 2E 2D 6D 67(16) = X(ASCII)

4.10

Escrever a função **ASCII2hex(x)**. Esta função recebe um texto ASCII e devolve os caracteres hexadecimais correspondentes.

Escrever a função **hex2ASCII(xx)**. Esta função recebem caracteres hexadecimais e devolve o texto ASCII correspondentes.

Faça um programa **main** que teste as funções acima. Mostre o código e os resultados exibidos na tela, no relatório

Bibliografia

Guias Práticos – Arquitetura de Computadores I – Professor Teldo Cruz Franqueira Apostila Introdução aos Sistemas de Numeração – Professor Júlio C. D. Conway