《芯片设计自动化与智能优化》 Detailed Placement

The slides are partly based on Prof. David Z. Pan's lecture notes at UT Austin.

Yibo Lin

Peking University

Typical Placement Flow

WL: 1.05e+6

WL: 1.02e+6

Global placement

Legalization

Detailed Placement

Outline

- What is placement
- History of placement algorithms
- Global placement
 - Quadratic placement: FastPlace & SimPL
 - Nonlinear placement: NTUplace & ePlace
- Legalization
 - Tetris
 - Row-based algorithms: Abacus, DP, LP, MCF
 - Integer linear programming

Detailed placement

- Global move & swap
- Independent set matching
- Local reordering
- Row-based algorithms: DP, LP, MCF
- Other topics
 - Routability-driven placement
 - Timing-driven placement
 - Macro placement

Detailed Placement – Problem Formulation

- Input
 - Legal placement
- Output
 - Refine the locations of blocks
 - Guarantee legality
- Objective
 - Minimize wirelength
- Other objectives
 - Timing, routability, etc.

$$(x_{c2} - x_{c1})^2 + (y_{c2} - y_{c1})^2 = c$$

$$|x_{c2} - x_{c1}| + |y_{c2} - y_{c1}| = c$$

Find the optimal warehouse location that minimizes the distances to all cities? Cities are located in x_1, x_2, \dots, x_n

$$\min_{x_w} |x_w - x_1| + |x_w - x_2| + |x_w - x_3| + |x_w - x_4|$$

 x_1 χ_2 χ_3 χ_4 Cities χ_4 x_1 x_2 χ_3 Cities

Cities

Find the optimal warehouse location that minimizes the distances to all cities? Cities are located in x_1, x_2, \dots, x_n

$$\min_{x_w} |x_w - x_1| + |x_w - x_2| + |x_w - x_3|$$

 x_1 x_2 x_3

Cities

Cities

Cities

Find the optimal warehouse location that minimizes the distances to all cities? Cities are located in x_1, x_2, \dots, x_n

Optimal solution

Median of $\{x_1, x_2, \dots, x_n\}$

Case I: n is an odd number Case II: n is an even number Time complexity to compute median

Sorting: $O(n \log n)$

Kth smallest/largest I: expected O(n)

Kth smallest/largest II: worst case O(n)

Optimal Region

- Consider cell 1
 - Net1: {1, 2, 3, 4}
 - Net2: {1, 5, 6}
 - Net3: {1, 7, 8}
- Assume all other cells are fixed
- The region for cell 1 to achieve minimum total wirelength

Optimal Region

- Consider cell 1
 - Net1: {1, 2, 3, 4}
 - Net2: {1, 5, 6}
 - Net3: {1, 7, 8}
- Assume all other cells are fixed
- The region for cell 1 to achieve minimum total wirelength
 - Medians of $\{x_1^l, x_1^r, x_2^l, x_2^r x_3^l, x_3^r\}$
 - Medians of $\{y_1^l, y_1^u, y_2^l, y_2^u, y_3^l, y_3^u\}$
 - A REGION, not a point!

Global Move & Swap

- Generalize swap and move
 - Regard move as swapping with a whitespace
- For each cell
 - Compute its optimal region
 - Enumerate all swap candidates within the optimal region (or expanded regions) and compute cost
 - Swap with the best one if applicable
- Heuristic cost function
 - Wirelength changes
 - Penalizing if swapping with cells of different sizes
 - Penalizing if causing overlaps

Independent Set Matching

- "Independent"
 - Cells do not directly connect with each other
- Sliding windows

Extract an independent set of cells

Bipartite matching

Local Reordering

- For a small window in a row
 - Enumerating all the combinations of orders
 - Choose the order with the best cost
- Sliding window

All permutations

. . .

- Consider a single row of placement
 - Keep the relative order of cells in a row
 - Cells on other rows are fixed
- Multiple algorithms to solve
 - Linear programming
 - Dynamic programming [Taghavi+, ICCAD2010]
 - Clumping algorithm [Kahng+, ASPDAC1999]
- Legalization problem

$$-\min_{\mathbf{x}} \sum_{i} |x_i - x_i^{gp}|,$$

$$- x_i \ge L, x_i \le R$$

Detailed placement problem

$$-\min_{x,R_e,L_e} \sum_{e\in E} (R_e - L_e)$$
,

$$-s.t. \quad x_i - x_{i-1} \ge w_i,$$

$$- x_i \ge L_e, x_i \le R_e, \forall i \in e, e \in E$$

$$- x_i \ge L, x_i \le R$$

- Consider a row of cells {1, 2, 3}
 - Cells {4, 5, 6} are fixed
 - 5 nets: {1, 4}, {1, 3}, {2, 5}, {2, 3}, {3, 6}
 - Introduce $\{L_i, R_i\}$ as the bounding box for each net i
 - $-\min_{x,R_i,L_i} \quad \sum_{i=1}^5 R_i L_i \,,$
 - -s.t. $x_i x_{i-1} \ge w_i$
 - Net1: $x_1 \ge L_1$, $x_1 \le R_1$, $x_4^c \ge L_1$, $x_4^c \le R_1$,
 - Net2: $x_1 \ge L_2$, $x_1 \le R_2$, $x_3 \ge L_2$, $x_3 \le R_2$,
 - Net3: $x_2 \ge L_3$, $x_2 \le R_3$, $x_5^c \ge L_3$, $x_5^c \le R_3$,
 - Net4: $x_2 \ge L_4$, $x_2 \le R_4$, $x_5^c \ge L_4$, $x_5^c \le R_4$,
 - Net5: $x_3 \ge L_5$, $x_3 \le R_5$, $x_6^c \ge L_5$, $x_6^c \le R_5$,
 - $x_i \ge L, x_i \le R$

Differential constraints only

Can be solved with dual min-cost flow

- Solve with dynamic programming
 - Find an independent subproblem
 - Place cells c_1, \dots, c_i, c_i being at or to the left of the i^{th} feasible location s_i ,
 - Minimize $\sum_{k=1}^{i} cost_k(x)$
- Recursion
 - $-P_i(s_j) = \min\{P_i(s_{j-1}), P_{i-1}(s_j w_{i-1}) + cost_i(s_j)\}\$

How to handle cell c_i connected to cell c_j in the same row (i < j)?

- Runtime complexity
 - $-(i \, range) \times (j \, range) = n \times (K \sum w_i) \approx O(n^2)$

Clumping algorithm

- Piece-wise linear and convex $cost_i$
- Find the minimum interval for c_i , i.e., where slope of $cost_i$ is 0.
- Scan adjacent cell starting from left
- If c_{i-1} and c_i can not be put in their minimum intervals without overlap, replace them with c_{i-1}' , with all the pins replicated, then consider placing c_{i-1}'
- Otherwise place c_i on the leftmost legal site
- Complexity $O(m^2)$, m is #nets
- Use RB tree to reduce to $O(m \log m)$

- Clumping algorithm
 - Piece-wise linear and convex $cost_i$

Row-based Algorithms – Window Interleaving

- Any way to permute cells rather than keep the order?
 - Divide a row of cells into K partitions
 - Keep the relative order within each partition
- Dynamic programming
 - Subproblem
 - Denote S_{ij} as the interleaving if $\{a_1,a_2,\cdots,a_i\}$ and $\{b_1,b_2,\cdots,b_j\}$, with $C(S_{ij})$ minimized
 - $-C(S_{ij})$ denotes the cost of S_{ij}
 - Recursion

$$-S_{0,0} = 0, C(S_{0,0}) = 0$$

$$-S_{ij} = \begin{cases} S_{i-1,j}a_i, & \text{if } C(S_{i-1,j}a_i) < C(S_{i,j-1}b_j), \\ S_{i,j-1}b_j, & \text{otherwise} \end{cases}$$

Famous Detailed Placement Algorithms

- ► Kahng, Andrew B., Paul Tucker, and Alexander Zelikovsky. "Optimization of linear placements for wirelength minimization with free sites." ASPDAC 1999.
- Pan, Min, Natarajan Viswanathan, and Chris Chu. "An efficient and effective detailed placement algorithm." ICCAD 2005.
- Tang, Xiaoping, Ruiqi Tian, and Martin DF Wong. "Optimal redistribution of white space for wire length minimization." ASPDAC. 2005.

- Parallel detailed placement algorithms on CPU and GPU
 - Lin, Yibo, Wuxi Li, Jiaqi Gu, Haoxing Ren, Brucek Khailany, and David Z. Pan. "ABCDPlace: Accelerated batch-based concurrent detailed placement on multithreaded CPUs and GPUs." TCAD 2020.

Summary of Detailed Placement

- Optimal region
- Global move & swap
- Independent set matching
- Local reordering
- Row-based placement
 - Linear placement: linear programming, min-cost flow, dynamic programming
 - Window interleaving