```
| Import cities | Import citie
```

Interplacja Lagrenge'a

Wielomian interpolacyjny Lagrange'a:

$$P_n(x) = \sum_{j=1}^n \left(y_j \prod_{k=1 top k \neq j}^n rac{x-x_k}{x_j-x_k}
ight)$$

```
In [230]: 
def my_lagrange(x, y):
    assert x.size = y.size
    result = np.polytd(0)
    for j in range(x.size):
        result += my_lagrange_Pj(x, y, j)
    return result

def my_lagrange_Pj(x, y, j):
    p = np.polytd(1,0)
    d = np.polytd(1)
    m = 1.0
    for k in range(x.size):
        if(k == j):
            continue
        d * p - x[k]
        m *= x[j] - x[k]
    return y[j]*(d/m)
```

```
In [208]:  \begin{aligned} & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```


Interpolacja Newtona

Wielomian interpolacyjny Newtona:

$$P_n(x) = \sum_{i=0}^n \left(a_i \prod_{j=0}^{i-1} \left(x-x_j
ight)
ight)$$

gdzie:

$$a_i = f[x_0, x_1, \dots, x_i]$$

```
In [409]:  \begin{aligned} & p\_{\rm my\_newton} = {\rm my\_newton(x,\ y)} \\ & {\rm display\_poly(p\_my\_newton)} \end{aligned}   P(x) = -0.00041x^4 + 0.091x^3 - 7.1x^2 + (2.3 \cdot 10^{+02})x + (-2.5 \cdot 10^{+03})
```

In [670]: plot_poly((p_my_newton, "newton"), x, y)

Biblioteczna implementacja interpolacji

```
In [671]: p_lib_interp = ip.interpld(x, y, fill_value="extrapolate", kind="quadratic")
plot_poly((p_lib_interp, "library spline2"), x, y)
```


In [672]: plot_polys([(p_lib_interp, "spline2"), (p_my_newton, "newton"), (p_my_lagrange, "lagrange")], x, y)

Funkcje sklejane

```
In [529]: p_2spline = ip.interpld(x, y, fill_value="extrapolate", kind="quadratic")
p_3spline = ip.interpld(x, y, fill_value="extrapolate", kind="cubic")
```


Czasy obliczeń

```
In [531]:
    def measure_my_lagrange(x, y):
        start = time.perf_counter_ns()
        my_lagrange(x, y)
        end = time.perf_counter_ns()
        return end - start

    def measure_my_newton(x, y):
        start = time.perf_counter_ns()
        my_newton(x, y)
        end = time.perf_counter_ns()
        ny_newton(x, y):
        end = time.perf_counter_ns()
        return end - start

    def measure_quadratic(x, y):
        start = time.perf_counter_ns()
        ip.interpId(x, y, fill_value="extrapolate", kind="quadratic")
        end = time.perf_counter_ns()
        return end - start

    def measure_cubic(x, y):
        start = time.perf_counter_ns()
        ip.interpId(x, y, fill_value="extrapolate", kind="cubic")
        end = time.perf_counter_ns()
        ip.interpId(x, y, fill_value="extrapolate", kind="cubic")
        end = time.perf_counter_ns()
        return end - start

    def measure_lagrange(x, y):
        start = time.perf_counter_ns()
        ip.lagrange(x, y)
        end = time.perf_counter_ns()
        ip.lagrange(x, y)
        end = time.perf_counter_ns()
        return end - start
```

```
0 my_lagrange 4 2666500.0
1 my_newton 4 621700.0
     spline2 4 442500.0
2
3
      spline3 4 597300.0
     lagrange 4 699500.0
    type
               n time
1345 my_lagrange 30 45464100.0
1346 my_newton 30 26262300.0
       spline2 30 295200.0
1348
        spline3 30 303700.0
      lagrange 30 35497700.0
1349
```

type

```
In [649]: aggregated = df.groupby(['type', 'n'], as_index=False).agg(['mean', 'sem']).reset_index() aggregated('mean') = aggregated.time['mean'] aggregated('serr'] = aggregated.time['sem'] aggregated.drop('time', level=0, axis=1, inplace=True) aggregated
```

Out[649]:

	type	n	mean	serr
0	lagrange	4	738470.0	9.305372e+04
1	lagrange	5	1125660.0	1.377599e+05
2	lagrange	6	1421080.0	7.508160e+04
3	lagrange	7	2034860.0	2.146058e+05
4	lagrange	8	2788850.0	2.892664e+05
5	lagrange	9	3654320.0	4.693349e+05
6	lagrange	10	4500090.0	5.349104e+05
7	lagrange	11	5566500.0	4.696283e+05
8	lagrange	12	6486290.0	8.006597e+05
9	lagrange	13	7361130.0	7.468532e+05
10	lagrange	14	7486310.0	2.214806e+05
11	lagrange	15	8535590.0	1.916560e+05
12	lagrange	16	9577970.0	2.393944e+05
13	lagrange	17	12932190.0	1.726611e+06
14	lagrange	18	14777800.0	1.447887e+06
15	lagrange	19	15360990.0	1.348207e+06
16	lagrange	20	15728540.0	9.060842e+05
17	lagrange	21	18569420.0	1.044582e+06
18	lagrange	22	19190020.0	9.947843e+05
19	lagrange	23	24275330.0	1.963576e+06
20	lagrange	24	22254430.0	4.635985e+05
21	lagrange	25	24482760.0	1.023824e+06
22	lagrange	26	29198620.0	2.808571e+06
23	lagrange	27	29540820.0	8.501232e+05
24	lagrange	28	33346630.0	1.998021e+06
25	lagrange	29	33716790.0	1.157054e+06 1.730196e+06
26	lagrange	30	37840620.0 1158960.0	1.1001000-00
27 28	my_lagrange	4 5	1158960.0 1543430.0	2.051884e+05 2.406124e+05
28	my_lagrange	6	1963460.0	2.406124e+05 1.119836e+05
	my_lagrange			
105	spline2	28	406260.0	6.712702e+04
106	spline2	29	307240.0	9.538066e+03
107	spline2	30	387600.0	3.729534e+04
108	spline3	4	368440.0	4.367120e+04
109	spline3	5	306680.0	3.392746e+04
110	spline3	6	286910.0	2.551898e+04
111	spline3	7	291320.0	2.387629e+04
112	spline3	8	299450.0	3.183398e+04
113	spline3	9	313750.0	3.573910e+04
114	spline3	10	307710.0	3.033995e+04
115	spline3	11	567070.0	2.580873e+05
116	spline3	12	268710.0	1.274380e+04
117	spline3	13	308460.0	3.424639e+04
118	spline3	14	264280.0	1.551991e+04
119	spline3	15	275690.0	2.461740e+04
120	spline3	16	283770.0	1.503353e+04
121	spline3	17	271180.0	2.227505e+04
122	spline3	18	412950.0	1.056309e+05
123	spline3	19	295170.0	3.541711e+04
124	spline3	20	260310.0	1.030425e+04
125	spline3	21	305040.0	2.990184e+04
126	spline3		281440.0	1.093224e+04
127	spline3	23		2.501454e+04
128	spline3		310350.0	
129	spline3		339690.0	
130	spline3			6.200235e+04
131	spline3			6.881954e+03
132	spline3		300780.0	3.625540e+04
133	spline3	29	295520.0	2.704109e+04
134	spline3	30	323680.0	2.829328e+04

135 rows × 4 columns

Efekt Rungego

Out[18]: (-100, 200)

