Chap 5. Trees (3)

Contents

- 5.1 Introduction
- **5.2 Binary Trees**
- **5.3 Binary Trees Traversals**
- **5.4 Additional Binary Tree Operations**
- **5.5 Threaded Binary Trees**
- 5.6 Heaps
- **5.7 Binary Search Trees**
- **5.8 Selection Trees**

5.4 Additional Binary Tree Operations

5.4.1 Copying Binary trees

A slightly modified version of postorder traversal

```
treePointer copy(treePointer original)
{/* this function returns a treePointer to an exact copy
  of the original tree */
  treePointer temp;
  if (original) {
    MALLOC(temp, sizeof(*temp));
    temp→leftChild = copy(original→leftChild);
    temp→rightChild = copy(original→rightChild);
    temp→data = original→data;
    return temp;
  }
  return NULL;
}
```

Program 5.6: Copying a binary tree

	temp ₅	
copy() ₅	ori ₅	0
	temp ₃	xxx
copy() ₃	ori ₃	XXX
	temp ₂	xxx
copy() ₂	ori ₂	XXX
	$temp_1$	xxx
copy() ₁	ori ₁	XXX

	temp ₃	XXX
copy() ₃	ori ₃	XXX
5577 73	temp ₂	XXX
copy() ₂	ori ₂	XXX
	temp ₁	xxx
copy() ₁	ori_1	XXX

	temp ₂	XXX
copy() ₂	ori ₂	XXX
	temp ₁	xxx
copy() ₁	ori ₁	xxx

	temp ₆	XXX
copy() ₆	ori ₆	XXX
	temp ₂	XXX
copy() ₂	ori ₂	XXX
	temp ₁	XXX
copy() ₁	ori ₁	XXX

	temp ₇	
copy() ₇	ori ₇	0
	temp ₆	xxx
copy() ₆	ori ₆	XXX
	temp ₂	XXX
copy() ₂	ori ₂	XXX
	$temp_1$	XXX
copy() ₁	ori_1	XXX

5.4 Additional Binary Tree Operations

5.4.2 Testing Equality

- Determining the equivalence of two binary trees
- Equivalent binary trees have the same structure and the same information in the corresponding nodes.
- A modification of *preorder* traversal

Program 5.7: Testing for equality of binary trees

- * Consider the set of formulas from $\{x_1, ..., x_n\}$ and $\{\land (and), \lor (or), \lnot (not)\}$
- The variables are Boolean variables
 - Have only two possible values, true or false
- Set of expressions are defined by the following rules
 - A variable is an expression
 - If x and y are expression, then $\neg x$, $x \land y$, $x \lor y$ are expressions
 - Parentheses can be used to alter the normal order of evaluation
- * formula of propositional calculus : $x_1 \lor (x_2 \land \neg x_3)$
 - If x_1 and x_3 are false and x_2 is true, it is true

The satisfiability problem

Is there an assignment of values to the variables that causes the value of the expression to be true?

The most obvious algorithm

- let (x₁, ..., x_n) take on all possible combinations of true and false values and to check the formula for each combination
 - $O(g \ 2^n)$, or exponential time, where g is the time to substitute values for $x_1, x_2, ..., x_n$ and evaluate the expression.
- Postorder evaluation

$$(x_1 \land \neg x_2) \lor (\neg x_1 \land x_3) \lor \neg x_3$$

Figure 5.18: Propositional formula in a binary tree

For n = 3, All possible combinations of true = t, false = f(t, t, t), (t, t, f), (t, f, t), (t, f, f)(f, t, t), (f, t, f), (f, f, t), (f, f, f)

leftChild	data	value	rightChild
logical;	truct r truct r iter lef lata; t value	node *t node { ftChild;	d,or,true,fal
} ;	V	(7)	
	x ₃	(x3)	

```
for (all 2<sup>n</sup> possible combinations) {
  generate the next combination;
  replace the variables by their values;
  evaluate root by traversing it in
  postorder;
  if (root->value) {
    printf(<combination>);
    return;
    }
}
printf("No satisfiable combination\n");
```

satisfiability algorithm

Figure 5.18: Propositional formula in a binary tree

```
void postOrderEval(treePointer node)
{/* modified post order traversal to evaluate a
    propositional calculus tree */
  if (node) {
    postOrderEval(node→leftChild);
    postOrderEval(node→rightChild);
     switch(node→data) {
                   node→value =
       case not:
             !node→rightChild→value;
            break;
       case and:
                   node→value =
            node→rightChild→value &&
            node→leftChild→value;
            break;
                   node→value =
       case or:
            node→rightChild→value ||
            node→leftChild→value;
            break;
                   node→value = TRUE;
       case true:
            break;
       case false: node→value = FALSE;
```

Program 5.9: Postorder evaluation function

ex) for a combination $(x_1, x_2, x_3) = (t, f, t)$

not/and/or in the data field of non-leaf nodes

true/false in the data field of leaf nodes, x_1 , x_2 , and x_3

5.5 Threaded Binary Trees

- **❖** In a linked representation of a binary tree, the number of null links (null pointers) are actually more than non-null pointers.
- **Consider the following binary tree:**

A Binary tree with the null pointers

5.5 Threaded Binary Trees

A Binary tree with the null pointers

- **❖** In above binary tree, there are 7 null pointers & actual 5 pointers.
- ***** In all there are 12 pointers.
- **❖** We can generalize it that for any binary tree with n nodes there will be (n+1) null pointers and 2n total pointers.
- **The objective here to make effective use of these null pointers.**
- ***** to replace all the null pointers by the appropriate pointer values called threads.

5.5 Threaded Binary Trees

Construct the threads

(1) If *leftChild* is null, replace *leftChild* with a pointer to the node that would be visited before *ptr* in an inorder traversal.

That is we replace the null link with a pointer to the *inorder predecessor* of *ptr.*

(2) If rightChild is null, replace rightChild with a pointer to the node that would be visited after ptr in an inorder traversal.

That is we replace the null link with a pointer to the *inorder successor* of *ptr*.

5.51. Threads

Figure 5.21: Threaded tree corresponding to Figure 5.10(b)

5.5.1. Threads

An empty binary tree is represented by its header node as in Figure 5.22

Figure 5.22: An empty threaded binary tree

5.5.1. Threads

Figure 5.23: Memory representation of threaded tree

5.5.2. Inorder Traversal of a Threaded Binary Tree

- By using the threads, we can perform an inorder traversal without making use of a stack.
- * The succfunction insucc finds the inorder essor of any node in a threaded tree without using a stack.

```
threadedPointer insucc(threadedPointer tree)
{/* find the inorder sucessor of tree in a threaded binary
    tree */
    threadedPointer temp;
    temp = tree→rightChild;
    if (!tree→rightThread)
        while (!temp→leftThread)
        temp = temp→leftChild;
    return temp;
}
```

Program 5.10: Finding the inorder successor of a node

5.5.2. Inorder Traversal of a Threaded Binary Tree

threaded binary tree

Figure 5.23: Memory representation of threaded tree

5.5.3 Inserting a Node into a Threaded Binary Tree

Figure 5.24: Insertion of r as a right child of s in a threaded binary tree

5.5.3 Inserting a Node into a Threaded Binary Tree

```
void insertRight(threadedPointer s,
threadedPointer r)
{/* insert r as the right child of s */
    threadedPointer temp;
    r->rightChild = parent->rightChild;
    r->rightThread = parent->rightThread;
    r->leftChild = parent;
    r->leftThread = TRUE;
    s->rightChild = child;
    s->rightThread = FALSE;
    if (! r->rightThread) {
          temp= insucc(r);
          temp->leftChild = r;
Program 5.12: Right insertion in a
threaded binary tree
```

