Learning Outcomes

Objective

ELO has ML models to understand the importance of aspects and preferences for their customer's lifecycle.

We use Root Mean Square Error (RMSE) to predict the customer loyalty.

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i^2)^2}$$
,

So we can give better opportunities to most loyalty customers (i.e. promotions)

Steps

First thing

We reduce the memory size with **reduce_men_usage** user defined function

After reducing, filled all the missing values in historical and new_merchant data.

Feature Extracting for Historical and New_Merchant data

- Purchase Date, Authorized Flag columns from historical and new_merchant data
- Calculated sum, min, max, variance from the features we extracted
- Created new columns for these calculated features, group by them with card_id (submission purpose), merge these columns with train data and test data.
- After adding these data into train and test, we deleted historical and new_merchant.

Outliers

We added a new column in training data set for outliers

We assigned 1 to the outliers that are below -30, otherwise 0.

We trained the Light GBM model with stratified k-fold with 5 folds, draw feature importances and calculated root mean square errors.

Tuning the hyper-parameters params = {'boosting': 'gbdt', (to tune the hyper-parameters) 'objective':'regression',

'metric': 'rmse',
'learning rate': 0.01, # 0.003! #0.005 #0.006

'num_leaves': 110, #110 #100 #150 large, but over-fitting 'max_bin': 66, #60 #50 # large,but slower,over-fitting

'max_depth': 10, # deal with over-fitting
'min_data_in_leaf': 30, # deal with over-fitting

'min_child_samples': 20,
'feature_fraction': 0.5, #0.5 #0.6 #0.8
'bagging fraction': 0.8,

'bagging_freq': 40,#5
'bagging_seed': 11,

'lambda_I1': 2, #1.3! #5 #1.2 #
'lambda_I2': 0.1 #0.1

Trial	Early_stoppi ng _rounds	fold	max_dept h	Loss error	Rank on Kaggle
1	200	5	Default -1	3.6542	
2	200	10	Default -1	3.6514	
3	100	10	Default -1	3.6526	
4	100	5	6 (trick)	3.650 (better)	425 / 1850
5	200	5	6	3.6504	
6	100	10	6	3.6488 (best result so far)	
7	300	10	6	3.6505	
8	100	5	6	3.650536	Note: Verbose_Eval = 20, Verbose_Eval = 500, 100
					Each testing took 20 ~ 25 mins

In Progress

- CATBoost Algorithm works a bit better Validation which is 3.6280198
 (Just did use CATBoost model implemented which score 23 %
 Before was 25% (accomplishment)
- Currently running with the XGBoost with RepeatKFold

What next???

- Trying to manipulate outliers more efficiently from training dataset
- Trying to run the model with using categorical features cause it already has built-in categorical feature parameter
- Could change to repeated k-fold