

Cross-Validation for training and testing co-occurrence network inference algorithms

Daniel Agyapong

da2343@nau.edu

PhD student

Dr. Toby Hocking

Toby.Hocking@nau.edu

Machine Learning Director

School of Informatics, Computing, and Cyber Systems

INTRODUCTION

Microbial relationships

Source:

https://journals.asm.org/doi/10.1128/mSystems.00124-19

 Most state-of-the-art methods focus on inferring positive and negative associations between bacteria.

 Reconstructing microbial networks to represent these interactions would help to understand the complex behaviors in microbial communities.

Real Microbiome Abundance Data

Data	Citation	Samples	Taxa
amgut1	https://journals.plos.org/ploscompbiol/artic le?id=10.1371/journal.pcbi.1004226	289	127
amgut2		296	138
hmp216S	https://ibdmdb.org/tunnel/public/summary.html	47	45
hmp2prot		47	43
enterotype	https://journals.plos.org/plosone/article?id	280	553
esophagus	=10.1371/journal.pone.0061217	3	58
crohns	https://www.mcgill.ca/statisticalgenetics/software	100	5
Baxter_CRC	http://www.raeslab.org/companion/ocean-	490	117
glne007	interactome.html	490	338
iOraldat	https://bmcbioinformatics.biomedcentral.c om/articles/10.1186/s12859-020-03911-w	86	63

Each data set is a matrix of counts, for example:

Taxa

Samples

Different algorithms infer different co-occurence networks

Which is a more accurate interpretation for these data?

Research Questions

For some particular real data sets:

- How can we automatically learn hyper-parameters? (let the data tell us the "best" threshold, rather than choosing arbitrarily)
- Which of the available microbial network analysis algorithms is most accurate and gives least test error?
- How many samples are needed for Cross Validation to be useful.

What are some of the Existing Algorithms?

There are a lot of existing algorithms, each with various hyper-parameters which determine the sparsity (number of edges) in network.

Pearson/Spearman Correlation

 Threshold on correlation constant Least Absolute
Shrinkage and
Selection Operator
(LASSO)

 Degree of L1 regularization Gaussian Graphical Model (GGM)

 Inverse Covariance (Precision) Matrix

Existing Evaluation Types

Category of Evaluation Type	External Data	Sub-Sample Analysis
Methods	SparCC, REBACCA, SPIEC-EASI, gCoda, COZINE, HARMONIES, mLDM	CClasso
Issues	Lack of generalizabilityLack of ground truthBiases in external data	Sensitivity to the choice of subsampling parametersLimited scope

Proposal: Cross-validation for training and testing co-occurrence network inference algorithms

Repeat for each output taxon and Fold ID

Results: Training the Pearson correlation threshold using cross-validation

 Subtrain error decreases as the model complexity increases whilst the validation error shows a U shape.

 We select the threshold which gives the minimum validation error, in this example r2=0.5 (Best number of edges = 785).

Results: Training the Lasso algorithm with cross-validation

- Train set split into subtrain set (used to learn regression coefficients) and validation set (used to learn model complexity, degree of L1 regularization, which controls sparsity / number of edges in cooccurence network).
- The lamda value (degree of L1 regularization) which has the minimimum the validation error corresponds to 1176 edges.

Results: Algorithms can be compared using test error

Results: How many samples are needed for CV to be useful

REFERENCES

- https://www.liebertpub.com/doi/10.1089/cmb.2021.0406
- https://smnh.tau.ac.il/en/interactions-among-living-organisms/
- https://scikit-learn.org/stable/modules/cross_validation.html
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768662/
- https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004226
- https://www.sciencedaily.com/releases/2018/05/180515092931.htm

Contact: da2343@nau.edu

Reproducibility: https://github.com/EngineerDanny/CS685-Microbe-Network-Research

THANK YOU

ANY QUESTIONS?