Intro to Deep Learning

ECE30007 Intro to Al Project

Artificial Neural Network

Perceptron (Rosenblatt, 1957)

Artificial Neural Network

$$f\left(\sum_{i} w_{i} x_{i}\right) = y$$
if $\sum_{i} w_{i} x_{i} > 0$ $y = 1$

$$Otherwise \qquad y = 0$$

$$\sum_{i} w_{i} x_{i} = w_{0} x_{0} + w_{1} x_{1} + w_{2} x_{2}$$

For input (1,1)
$$\sum_{i} w_{i} x_{i} = -1 \times 1 + 1 \times 1 + 1 \times 1 = 1,$$

$$f(\sum_{i} w_{i} x_{i}) = y = 1. \text{ (Class 1)}$$

Let $w_0 = -1$ and $w_1 = w_1 = 1$

For input (0,1)
$$\sum_{i} w_{i} x_{i} = -1 \times 1 + 1 \times 0 + 1 \times 1 = 0,$$

$$f(\sum_{i} w_{i} x_{i}) = y = 0. \text{ (Class 2)}$$

Artificial Neural Network

Perceptron cannot solve XOR problem (or nonlinear problem)

But Multi-layer network can solve non-linear problem.

(0, 0)

convolutional neural networks (CNNs)

- many practical applications
 - image recognition, speech recognition, Google's and Baidu's photo taggers
- won several competitions
 - ImageNet, Kaggle facial expression, Kaggle multimodal learning, German traffic signs, connectomics, handwriting, etc
- one of the few models that can be trained purely supervised

German traffic sign recognition competition

- single-image, multi-class
- more than 40 classes
- more than 50K images in total
- · large, lifelike database

rank	team	method	accuracy (%)
1	IDSIA	Committee of CNNs	99.46
2	INI	Human performance	98.84
3	Sermanet	Multi-scale CNNs	98.31
4	CAOR	Random Forests	96.14

image processing

image processing

(출처:https://brohrer.github.io/how_convolutional_neural_networks_work.html)

from brain science

Hubel & Wiesel (1950s)

- simple cells detect local features.
- complex cells "pool" the outputs of simple cells within a retinotopic neighborhood.

deep learning history

• "Neocognitron" by K. Fukushima, 1980 Biological Cybernetics

• convolutional neural networks by Y. LeCun et al., 1989 Neural Computation

algorithms

building blocks

since 1986

- restricted Boltzmann machine (RBM)
- auto-encoder (AE)
- · sparse coding
- · and so on

deep networks

since 2006

generative models

- deep belief networks (DBNs)
- generative stochastic networks (GSNs)
- deep Boltzmann machines (DBMs)
- and so on (VAE, GAN, Diffusion model)

discriminative models

- convolutional neural networks (CNNs)
- recurrent neural networks (RNNs)
- fine tuning of generative models
- and so on

examples of CNNs

LeNet 1989

AlexNet 2012

forward prop in CNNs

- for convolutional layers
 - kernel size, stride
 - number of kernels

for pooling layers

kernel size, stride

max-pooling: (Poggio 1999 nature)
a key mechanism for object recognition

- 1. Kernel(or filter)
- 2. Stride
- 3. Padding

(from https://github.com/vdumoulin/conv_arithmetic)

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

	_			
0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1

Input Image

Feature Detector Feature Map

from https://www.superdatascience.com/

-1	-1	-1
-1	8	-1
-1	-1	-1

outline

from http://setosa.io/ev/image-kernels/

0.06	0.12	0.06
0.12	0.25	0.12
0.06	0.12	0.06

blur

pooling

• high resolution may not be necessary for a given task.

sampling can reduce computation cost while keeping necessary information

pooling

how to sample?

activation function

Sigmoid

Linear

activation function

Rectified Linear Unit (ReLU)

$$f(x) = max(ax,x)$$

$$f(x) = max(ax,x)$$

from http://www.datasciencecentral.com/m/blogpost?id=6448529%3ABlogPost%3A408853

convolution layer

Convolution

- Kernel
- Stride
- Padding

Subsampling

- Max Pooling
- Average Pooling

Activation Function

- ReLU
- Leaky ReLU

convolution layer: step 1

convolution layer: step 2

convolution layer: step 3

convolution layer: step 1 again

iterative convolution layer

fully connected layer

height/16 * width/16 * 256

softmax and loss function

• softmax: from output of neural network to probability

$$\operatorname{softmax}(y)_i = \frac{\exp(y_i)}{\sum_j \exp(y_j)}$$

• cross-entropy: loss function Given p for ground truth, q for predicted value from softmax.

$$H(p,q) = -\sum_x p(x)\, \log q(x).$$

ImageNet Challenge

1.2 Million Images(1,200,000), 1000 Categories

the first deep learning on ImageNet data: AlexNet

ImageNet

ImageNet data set

Recognition task (Top-5)

network structure

253440-186624-64896-64896-43264-4096-4096-1000

- 8 layers: 650K neurons, 60M parameters
- Trained on 2 GPUs
- 5-6 days of training (90 iterations)

Trained filters

• 1000/10,184 categories

- 1.2M/8.9M training images
- 50K validation
- 150K test

(Krizhevsky et al 2012)

results on ILSVRC-2010/ImageNet2009 (error %)

	previous SOTA	deep learning (CNNs)
top-1	45.7 / 78.1	37.5 / 67.4
top-5	25.7 / 60.9	17.0 / 40.9

improvement after AlexNet

before CNNs ImageNet experiments 28.2 25.8 Deep Learning (CNN) 152 layers 16.4 11.7 19 layers 22 layers 7.3 6.7 3.57 shallow 8 layers 8 layers ILSVRC'12 ILSVRC'11 ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'10 ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

VGG Network

simple architecture and very popular.

VGG Network

from http://www.hirokatsukataoka.net/research/cnnfeatureevaluation/cnnfeatureevaluation.html

Google Network

from https://arxiv.org/pdf/1409.4842.pdf

PyTorch

PYTORCH

You may need to install

- >> pip install torch
- >> pip install torchvision
- >> pip install scikit-image
- Python-based scientific computing package
 - to use the power of GPUs instead of Numpy
 - to provide maximum flexibility and speed for deep learning

```
import torch
x = torch.Tensor(5,3)
y = torch.Tensor(5,3)
print(x, y)
```

```
import torch
x = torch.Tensor(5,3)
y = torch.Tensor(5,3)
print(x, y)
```


PyTorch

Converting a Torch Tensor to a Numpy array and vice versa is breeze (Torch Tensor ←→ Numpy)

```
1  a = torch.ones(5)
2  print(a)
3  b = a.numpy()
4  print(b)
5  c = torch.from_numpy(b)
6  print(c)

tensor([1., 1., 1., 1., 1.])
[1. 1. 1. 1. 1.]
```

tensor([1., 1., 1., 1., 1.])

PyTorch - Cuda

- CUDA Tensors
 - Tensors can be moved onto any device using the .to method

Autograd

- The autograd provides automatic differentiation for all operations on Tensors.
- Once you finish your computation, you can call .backward() for autograd
- Autograd allows you to automatically compute gradients.

Autograd

feed-forward neural networks

$$h_t = \sigma(\mathbf{W}_{xh}x_t + b_h),$$

$$y_t = W_{hy}h_t + b_y,$$

Autograd allows you to automatically compute gradients.

Autograd

- · each object has an fprop/bprop method,
- forward propagation:
 - calling fprop of each box in the right order
- backpropagation:
 - calling bprop in the reverse order

 a large portion of deep learning research is based on Theano, PyTorch or TensorFlow

torch.nn

Torch.nn?

Neural Network Module.

Easy to make neural network such as Linear, CNN, RNN, and so on...

```
class NetFF(nn.Module):
  def init (self):
     super(NetFF, self).__init__()
     self.fc1 = nn.Linear(784, 500)
     self.fc2 = nn.Linear(500, 300)
     self.fc3 = nn.Linear(300, 100)
     self.fc4 = nn.Linear(100, 10)
  def forward(self, x):
     x = x.view(-1, 784)
     x = torch.tanh(self.fc1(x))
     x = torch.tanh(self.fc2(x))
     x = torch.tanh(self.fc3(x))
     x = self.fc4(x)
     return F.log_softmax(x, dim=1)
```

loss and optimizer

Loss function

How to define the loss? (MSE, RMSE, CrossEntropy, L1, NLL, etc..)

Optimizer

How to update weights ? (SGD, Adam, RMSProp, AdaDelta, etc...)

Practice

 Please check that you have two folders / two files in your current directory.

- Folders
 - data
 - results
- Script files
 - Week13_Lab_MNIST_student.ipynb
 - Week13_Lab_ImageNet_student.ipynb

Practice – MNIST

0	0	0	0	0	0	Ø	\bigcirc	Õ	O	0
1	i	ļ	l	/	1	i	/	1	1)
2	2	Z	2	2	2	2	z	7	2	2
3	3	3	3	3	3	3	3	3	3	3
Ч	4	Ч	4	4	4	4	4	4	4	4
3	5	5	5	5	ς	5	ડ	5	5	5
6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	1	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	ප	9

MNIST dataset [28X28] = [1 X 784]

Hand Written Digit Number from 0 to 9 Data includes data and label.

Pytorch Dataset(torchvision) provides 50,000 images to train, 10,000 images to test.

Packages

```
1  from __future__ import print_function
2  import argparse
3  import torch
4  import torch.nn as nn
5  import torch.nn.functional as F
6  import torch.optim as optim
7  from torchvision import datasets, transforms
```

Models

```
class NetFF(nn.Module):
   def init (self):
        super(NetFF, self). init ()
        self.fc1 = nn.Linear(784, 500)
        self.fc2 = nn.Linear(500, 300)
        self.fc3 = nn.Linear(300, 100)
        self.fc4 = nn.Linear(100. 10)
   def forward(self, x):
        x = x.view(-1, 784)
        x = torch.tanh(self.fc1(x))
        x = torch.tanh(self.fc2(x))
        x = torch.tanh(self.fc3(x))
        x = self.fc4(x)
        return F.log softmax(x, dim=1)
```

```
class NetCNN(nn.Module):
    def init (self):
        super(NetCNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, 500)
        self.fc2 = nn.Linear(500.10)
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log softmax(x, dim=1)
```

Train() and test() functions

```
def train(model, device, train_loader, optimizer, epoch, log_interval):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
            torch.save(model.state_dict(),"./results/mnist_cnn.pth")
def test(model, device, test loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # sum up batch loss
            test loss += F.nll loss(output, target, reduction='sum').item()
            # get the index of the max log-probability
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test loss /= len(test loader.dataset)
    print('\nTest: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))
```


Parameters and Data load

```
seed = 1
 2 | epochs = 2
 3 batch size = 32
4 test batch size = 1000
5 | Ir = 0.001 # learning rate
6 \mid \mathsf{momentum} = 0.9
   log interval = 200
   save_model = True
10 | use cuda = torch.cuda.is available()
   device = torch.device("cuda" if use_cuda else "cpu")
   kwargs = {'num workers': 1, 'pin memory': True} if use cuda else {}
13
   transform=transforms.Compose([
15
      transforms.ToTensor().
      transforms.Normalize((0.1307,), (0.3081,)) ])
16
17
   train loader = torch.utils.data.DataLoader(
19
        datasets.MNIST('./data', train=True, download=True, transform=transform),
20
        batch size=batch size, shuffle=True, **kwargs)
21
   test loader = torch.utils.data.DataLoader(
23
        datasets.MNIST('./data', train=False, transform=transform),
24
        batch_size=test_batch_size, shuffle=True, **kwargs)
25
```


NetFF Model training/testing

```
torch.manual seed(seed)
model = NetFF().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
for epoch in range(1, epochs + 1):
    train(model, device, train loader, optimizer, epoch, log interval)
    test(model, device, test loader)
if (save model):
    torch.save(model,"./results/mnist NetFF.pth")
Train Epoch: 1 [0/60000 (0%)] Loss: 2.309637
Train Epoch: 1 [6400/60000 (11%)]
                                        Loss: 1.329176
Train Epoch: 1 [12800/60000 (21%)]
                                        Loss: 0.706647
Train Epoch: 1 [19200/60000 (32%)]
                                        Loss: 0.438433
Train Epoch: 1 [25600/60000 (43%)]
                                        Loss: 0.593319
Train Epoch: 1 [32000/60000 (53%)]
                                        Loss: 0.353528
Train Epoch: 1 [38400/60000 (64%)]
                                        Loss: 0.276715
Train Epoch: 1 [44800/60000 (75%)]
                                        Loss: 0.546666
                                        Loss: 0.174126
Train Epoch: 1 [51200/60000 (85%)]
Train Epoch: 1 [57600/60000 (96%)]
                                        Loss: 0.285674
Test: Average loss: 0.3004, Accuracy: 9155/10000 (92%)
Train Epoch: 2 [0/60000 (0%)]
                              Loss: 0.343893
Train Epoch: 2 [6400/60000 (11%)]
                                        Loss: 0.128626
Train Epoch: 2 [12800/60000 (21%)]
                                        Loss: 0.349224
Train Epoch: 2 [19200/60000 (32%)]
                                        Loss: 0.306493
Train Epoch: 2 [25600/60000 (43%)]
                                        Loss: 0.306759
Train Epoch: 2 [32000/60000 (53%)]
                                        Loss: 0.119653
Train Epoch: 2 [38400/60000 (64%)]
                                        Loss: 0.246272
Train Epoch: 2 [44800/60000 (75%)]
                                        Loss: 0.407206
Train Epoch: 2 [51200/60000 (85%)]
                                        Loss: 0.331753
Train Epoch: 2 [57600/60000 (96%)]
                                        Loss: 0.114386
```


Test: Average loss: 0.2307, Accuracy: 9343/10000 (93%)

NetFF Model training/testing

```
torch.manual seed(seed)
model = NetCNN().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
for epoch in range(1, epochs + 1):
    train(model, device, train_loader, optimizer, epoch, log_interval)
    test(model, device, test loader)
if (save model):
    torch.save(model,"./results/mnist NetCNN.pth")
Train Epoch: 1 [0/60000 (0%)] Loss: 2.303299
Train Epoch: 1 [6400/60000 (11%)]
                                        Loss: 0.593885
Train Epoch: 1 [12800/60000 (21%)]
                                        Loss: 0.222533
Train Epoch: 1 [19200/60000 (32%)]
                                        Loss: 0.395274
Train Epoch: 1 [25600/60000 (43%)]
                                        Loss: 0.148499
Train Epoch: 1 [32000/60000 (53%)]
                                        Loss: 0.187254
Train Epoch: 1 [38400/60000 (64%)]
                                        Loss: 0.202007
Train Epoch: 1 [44800/60000 (75%)]
                                        Loss: 0.050570
Train Epoch: 1 [51200/60000 (85%)]
                                        Loss: 0.163213
Train Epoch: 1 [57600/60000 (96%)]
                                        Loss: 0.074786
Test: Average loss: 0.1089, Accuracy: 9687/10000 (97%)
Train Epoch: 2 [0/60000 (0%)] Loss: 0.322160
Train Epoch: 2 [6400/60000 (11%)]
                                        Loss: 0.089705
Train Epoch: 2 [12800/60000 (21%)]
                                        Loss: 0.052976
Train Epoch: 2 [19200/60000 (32%)]
                                        Loss: 0.108583
Train Epoch: 2 [25600/60000 (43%)]
                                        Loss: 0.084108
Train Epoch: 2 [32000/60000 (53%)]
                                        Loss: 0.114488
Train Epoch: 2 [38400/60000 (64%)]
                                        Loss: 0.161090
Train Epoch: 2 [44800/60000 (75%)]
                                        Loss: 0.079185
Train Epoch: 2 [51200/60000 (85%)]
                                        Loss: 0.008939
Train Epoch: 2 [57600/60000 (96%)]
                                        Loss: 0.097126
```


Testing with one test image

```
load_model = torch.load("./results/mnist_NetCNN.pth")
```

```
from skimage import io

img_name = './data/mnist_test_images/test2.jpg'
test_img = io.imread(img_name).reshape(28,28)
test_data = transform(test_img).view(1,1,28,28).to(device)
with torch.no_grad():
   output=load_model(test_data)
print(img_name, output.argmax(dim=1).cpu().numpy()[0])
```

```
./data/mnist_test_images/test2.jpg 4
```


Testing with multiple test image

```
from skimage import io
           import time
           import glob
           file list = glob.glob("./data/mnist test images/*.jpg")
           for img name in file list:
             test img = io.imread(img name).reshape(28,28)
             test_data = transform(test_img).view(1,1,28,28).to(device)
             with torch.no grad():
               output=load model(test data)
             print(img name, output.argmax(dim=1).cpu().numpy()[0])
             time.sleep(0.5)
           ./data/mnist test images\test9.jpg 4
           ./data/mnist test images\test7.jpg 3
           ./data/mnist test images\test8.jpg 1
           ./data/mnist test images\test3.jpg 1
           ./data/mnist test_images\test19.jpg 9
           ./data/mnist test images\test2.jpg 4
           ./data/mnist_test_images\test20.jpg 4
           ./data/mnist_test_images\test4.jpg 9
           ./data/mnist test images\test17.jpg 8
           ./data/mnist test images\test18.jpg 6
           ./data/mnist test images\test6.jpg 1
ECE30007 Intro
           ./data/mnist test images\test5.jpg 2
```

ImageNet Example

- it takes too much time to train.
- so, we will just test with a pretrained model

ImageNet class names

```
import csv
    name_file = './data/imagenet_install/class_names.csv'
   limagenet_class = {}
   file_in = csv.reader(open(name_file))
   for row in file in:
     imagenet_class[int(row[0])] = row[1]
 9 | imagenet_class
{0: 'tench, Tinca tinca',
1: 'goldfish, Carassius auratus',
2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
3: 'tiger shark, Galeocerdo cuvieri',
4: 'hammerhead. hammerhead shark'.
5: 'electric ray, crampfish, numbfish, torpedo',
6: 'stingray'.
7: 'cock'.
8: 'hen',
9: 'ostrich. Struthio camelus'.
 10: 'brambling, Fringilla montifringilla',
 11: 'goldfinch, Carduelis carduelis'.
 12: 'house finch, linnet, Carpodacus mexicanus',
 13: 'junco, snowbird',
 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea',
 15: 'robin, American robin, Turdus migratorius',
 16: 'bulbul'.
 17: 'jay',
 18: 'magpie',
```


classification with images

4개 항목

classification of a single image

```
import torch
   try:
      model # does exist
   except NameError: # mode/ does not exist
      import pretrainedmodels.utils as utils
 6
      model = torch.load('./results/imagenet_nasnetalarge.pth')
8
     load_img = utils.LoadImage()
      tf_img = utils.TransformImage(model)
10
11
    # your file name
    img_file = './data/images/cat_224.jpg'
12
13
    input_img = load_img(img_file)
    input tensor1 = tf img(input img)
15
16
    input_tensor2 = input_tensor1.unsqueeze(0)
17
   output_logits = model(input_tensor2) # 1x1000
18
19
   print("{} is [{}: {}]".format(img_file ,output_logits.argmax(),
20
                               imagenet_class[int(output_logits.argmax())]))
21
```

./data/images/cat_224.jpg is [281: tabby, tabby cat]

classification of many images in a directory

```
try:
    model # does exist
   except NameError: # mode/ does not exist
 4
     import pretrainedmodels.utils as utils
     model = torch.load('./results/imagenet_nasnetalarge.pth')
 5
     load_img = utils.LoadImage()
6
     tf_img = utils.TransformImage(model)
8
9
   import glob
   dir_path = './data/images/'
   ima list = glob.glob(dir path+'*.*')
11
12
13
   for img_file in img_list:
    input_img = load_img(img_file)
14
     input_tensor1 = tf_img(input_img)
15
     input_tensor2 = input_tensor1.unsqueeze(0)
16
17
     output_logits = model(input_tensor2) # 1x1000
18
     print("{} is [{}: {}]".format(img_file.split('/')[-1] ,output_logits.argmax(),
19
20
                               imagenet_class[int(output_logits.argmax())]))
```

```
images\cat_2.jpg is [282: tiger cat]
images\cat_224.jpg is [281: tabby, tabby cat]
images\lambda IMG_7543.JPG is [559: folding chair]
images\lambda KakaoTalk_20191010_180310925.jpg is [504: coffee mug]
```


Practice: classify your own image

- take a photo
- put the photo in the './data/images' directory
- classify them

