ARCH models for Value at Risk forecasting in Latin American stock and Forex markets

Alejandro Cermeño

Pontificia Universidad Católica del Perú

October 19, 2021

Estructura

- Introduction
- 2 Literature Review
- Methodology
- 4 Empirical evidence
 - Data
 - Results
- 5 Conclusions (for stock markets)
- 6 Agenda

Introduction

Motivation

An adequate VaR forecast can help agents and institutions to reduce financial uncertainty, prevent liquidity problems, and optimize provisioning mechanisms.

Introduction

Goals

Identify the optimal ARCH-type model to forecast the one-day ahead Value at Risk (VaR) at 1% and 5% confidence level for a group of Latin American countrys

Literature Review

Stylized facts of financial returns: Franses and van Dijk (2000), Engle (2004) and Teräsvirta (2009)

- Clustering of extreme returns
- Non normality in distribution
- Leverage effect: high volatility after extreme negative returns
- ullet Long memory in r_t^δ or other transformations

Literature Review

- Engle (1982) proposes the ARCH model and Bollerslev (1986) generalizes it to GARCH.
- Arch-type models have been widely developed. Key references are Glosten el at. (1993), Ding et al. (1993) and Baillie et al. (1996).
- Volatility as a key input in Value at Risk: Angelidis et al. (2004) for the major stock indices, Fan et al. (2008) for crude oil price, Liu and Hung (2010) for S&P 100, Brooks and Persand (2003), Ardia and Hoogerheide (2014), among others.

Methodology

A set of ARCH models is used to forecast the one-day ahead VaR at 1% and 5% confidence level for a group of Latin American countrys.

- An ARCH-type model parameters are estimated for a given rolling-window of 250 observations.
- 2 With the fitted model the one-day-ahead volatility.
- VaR is computed from forecasted volatility and distribution parameters.
- The accuracy of the VaR forecasts is analyzed by backtest tests.

Additionally, as a previous step, an in-sample analysis is performed where the models are specified and its parameters estimated with the full available series.

Methodology

A complete ARCH model is divided into three components:

- a mean model: zero, constant, AR(1)
- a volatility process: ARCH, GARCH, GJR, FIGARCH, APARCH.
- ullet a distribution for the standardized residuals: Normal, \mathcal{S} -Student, Skeweed, and generalized error distribution (GED).

The ARCH model of Engle (1982)

$$\sigma_t^2 = \omega + \sum_{\rho=1}^P \alpha_\rho \epsilon_{t-P}^2 \tag{1}$$

The GARCH model of Bollerslev (1986)

$$\sigma_t^2 = \omega + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$$
 (2)

The GJR (1993) model

$$\sigma_t^2 = \omega + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^q \gamma_i I_{[\varepsilon_{t-i} < 0]} \varepsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$$
 (3)

Methodology ARCH models

The FIGARCH of Baillie et al. (1986)

$$\sigma_t^2 = \omega + \left[1 - \beta L - \phi L (1 - L)^d\right] \varepsilon_t^2 + \beta \sigma_{t-1}^2 \tag{4}$$

The APARCH of Ding et al. (1993)

$$\sigma_t^{\delta} = \omega + \sum_{i=1}^{q} \alpha_i \left(|\varepsilon_{t-i}| - \gamma_i I_{[o \ge i]} \varepsilon_{t-i} \right)^{\delta} + \sum_{i=1}^{p} \beta_i \sigma_{t-i}^{\delta}$$
 (5)

Methodology

Distributions

${\sf Methodology}$

Distributions

Methodology Distributions

${\sf Methodology}$

Distributions

Value at Risk and backtest

$$\widehat{VaR}_{t+1}^{\alpha} = -\hat{\mu}_{t+1} - \widehat{\sigma}_{t+1} q_{\alpha} \tag{6}$$

backtest procedures:

- Unconditional coverage (UC) test of Kupiec (1995)
- Conditional Coverage (CC) test of Christoffersen (1998)
- Dynamic quantile (DQ) test of Engle and Manganelli (2004).

Empirical Evidence: Data

- Countries: Argentina, Brazil, Chile, Colombia, Mexico and Peru
- Markets: stocks and Forex
- Frecuency: daily
- Source: Bloomberg Financial Data
- Returns are calculated as $y_t = 100 * [\log{(p_t)} \log{(p_{t-1})}]$

Table 1: Descriptive Statistics for Stock and Forex Markets Returns

Country	Security ID	Start Date	End Date	Obs.	Mean	Std,	Min	Max	Skew	Kurt		
(a) Stock												
Argentina	MERVAL	1991-12-26	2021-08-31	7744	0.06	2.30	-47.69	16.12	-1.43	27.89		
Brasil	IBOV	1995-03-16	2021-08-31	6904	0.05	1.96	-17.23	28.82	0.09	14.05		
Chile	IPSA	1990-08-09	2021-08-31	8104	0.05	1.14	-15.22	11.80	-0.32	12.83		
Colombia	IGBC	2001-07-26	2021-08-31	5244	0.05	1.14	-11.05	14.69	-0.18	15.73		
México	MEXBOL	1994-03-31	2021-08-31	7154	0.04	1.40	-14.31	12.15	0.03	7.56		
Perú	SPBLPGPT	2002-02-07	2021-08-31	5104	0.05	1.35	-13.29	12.82	-0.59	12.69		
(b) Forex												
Argentina	ARS	2014-03-06	2021-08-31	1954	0.13	1.14	-6.03	30.80	12.32	294.71		
Brasil	BRL	1999-06-03	2021-08-31	5804	0.02	1.04	-10.34	7.11	0.07	5.90		
Chile	CLP	1990-01-18	2021-08-31	8249	0.01	0.60	-4.33	4.68	0.25	7.54		
Colombia	COP	1992-09-03	2021-08-31	7564	0.02	0.66	-7.60	6.02	0.17	10.31		
México	MXN	1996-05-09	2021-08-31	6604	0.01	0.71	-6.65	7.98	0.85	11.43		
Perú	PEN	1995-05-25	2021-08-31	6854	0.01	0.30	-2.85	3.55	0.08	14.54		

Table 2a: Estimated Parameters for daily Latin American stock Markets Return

Model	μ	ω	α	β	γ	δ	ν	λ	BIC	log-lik
				Argentin	a (MERVA	.L)				
μ-APARCH-GED	0.0462ª	0.1573 ^a	0.1120 ^a	0.8564ª	0.2148ª	1.9847ª	1.0919 ^a		31888.194	-15912.755
μ -GJR-GED	0.0462 ^a	0.1592 ^a	0.0692 ^a	0.8558 ^a	0.0955ª		1.0921 ^a		31879,24598	-15912,758
				Brazi	l (IBOV)					
μ-APARCH-GED	0.0503ª	0.0701 ^a	0.0759 ^a	0.8980ª	0.4245 ^a	1.7129ª	1.3592ª		26273.472	-13105.796
μ -GJR-GED	0.0510 ^a	0.0814 ^a	0.0275 ^a	0.8933 ^a	0.1067ª		1.3594ª		26266,91876	-13106,939
				Chile	e (IPSA)					
μ-APARCH-GED	0.0304ª	0.0295 ^a	0.1411 ^a	0.8475 ^a	0.1485ª	1.7939ª	1.3146ª		21853.744	-10895.372
$\mu ext{-}FIGARCH ext{-}GED$	0.0372 ^a	0.0400 ^a	0.2548 ^a	0.5357 ^a		0.4905 ^a	1.3183 ^a		21845,49687	-10895,7481
				Colomi	bia (IGBC)	ı				
APARCH-GED		0.0045 ^a	0.0943 ^a	0.9203 ^a	0.2276 ^a	0.3190 ^a	1.0853 ^a		5889.822	-2919.216
μ -APARCH-GED	-0.0000	0.0000	0.1932	0.8068	0.0230	1.8244	1.0100		6023.314	-2981.680
				Mexico	(MEXBOL	.)				
μ-APARCH-GED	0.0316 ^a	0.0160 ^a	0.0786 ^a	0.9214 ^a	0.4290 ^a	1.4718 ^a	1.3037 ^a		22136.973	-11037.422
μ -GJR-GED	0.0331 ^a	0.0167 ^a	0.0312 ^a	0.9131^{a}	0.0988ª		1.3015 ^a		22138,60164	-11042,674
				Peru (S	PBLPGPT	.)				
μ -FIGARCH-GED	0.0397 ^a	0.0846 ^a	0.0867	0.3316 ^a		0.4235 ^a	1.1342 ^a		14482.021	-7215.397
μ-APARCH-GED	0.0375 ^b	0.0394 ^a	0.1473 ^a	0.8337 ^a	0.0743 ^b	1.9825 ^a	1.1281 ^a		14524,71567	-7232,475

a, b, c denote significance level at 1%, 5% and 10% respectively

Table 2a: Estimated Parameters for daily Latin American Forex Markets Return

Model	μ	ω	α	β	γ	δ	ν	λ	BIC	log-lik
				Arge	ntina (ARS)				
μ -FIGARCH-sk ${\cal S}$ μ -FIGARCH- ${\cal S}$	0.0539 ^a 0.0501	0.0003 0.0003	0.0541 0.0768	0.6814 ^b 0.6077 ^a		0.8918 ^a 0.8463 ^a	3.0927 ^a 3.0500 ^a	0.0909 ^b	500.480 505,101	-223.718 -229,8176
				Bra	azil (BRL)					
μ-APARCH-GED GJR-GED	0.0022	0.0139ª 0.0101ª	0.0968 ^a 0.1438 ^a	0.9032 ^a 0.8940 ^a	-0.3064ª -0.0872ª	1.4421 ª	1.3863ª 1.3768ª		14806.536 14800,927	-7372.936 -7378,798
				Ch	ile (CLP)					
APARCH- $\mathcal S$ APARCH-sk $\mathcal S$		0.0270 ^a 0.0177 ^a	0.1300° 0.0884°	0.8686ª 0.9099ª	-0.4153ª 0.2023ª	0.2499 ^a 0.3396 ^a	2.8537 ^a 3.0470 ^a	0.0971 ^a	8009.367 8837.625	-3977.630 -4387.2502
				Colo	mbia (COP)				
μ -FIGARCH-GED FIGARCH-GED	0.0000	0.0024 ^c 0.0024 ^c	0.2664 ^a 0.2662 ^a	0.5728 ^a 0.5730 ^a		0.4672 ^a 0.4675 ^a	1.0100 ^a 1.0100 ^a		10252.889 10244,165	-5099.651 -5099,754
				Mex	ico (MXN)					
μ -APARCH-sk ${\cal S}$ μ -GJR-GED	0.0117ª 0.0331ª	0.0120ª 0.0167ª	0.0966 ^a 0.0312 ^a	0.9034 ^a 0.9131 ^a	-0.4849 ^a 0.0988 ^a	1.1410ª	7.3379 ^a 1.3015 ^a	0.1336ª	11378.144 22138,601	-5653.890 -11042,674
				Pe	ru (PEN)					
μ -FIGARCH-GED μ -APARCH-GED	-0.0000 -0.0000	0.0002 0.0004	0.1766 ^a 0.1618 ^a	0.6098 ^a 0.8382 ^a	-0.1393	0.6468 ^a 2.0107	1.0100° 1.0100°		-2873.629 -2844,943	1463.312 1453,385

a, b, c denote significance level at $1\,\%,\,5\,\%$ and $10\,\%$ respectively

Empirical Evidence

Results: Out-of-sample analysis

Figure: One-step ahead VaR forecast for Peru (SPBLPGPT)

Table 3: Accuracy of VaR predictions for Stock and Forex Markets Returns

	VaR 5%	risk level				VaR 1% risk	level		
Model	% Failures UC CC DQ Model				Model	% Failures	UC	CC	DQ
				(a) Stock	Market Returns				
				Argenti	na (MERVAL)				
AR(1)-GARCH-S	0.0653	0.0373*	0.0078*	0.0000*	AR(1)-FIGARCH-GED	0,0179	0.0272*	0.0518	0.0000
AR(1)-GJR-√	0.0674	0.0185*	0.0061*	0.0011*	GARCH-√	0,0189	0.0133*	0.0331*	0.0000
				Bra	zil (IBOV)				
μ-GJR-GED	0.055285	0.0749	0.0066*	0.0155*	APARCH-S	0.0167	0.0000*	0.0000*	0.0000
μ-APARCH-GED	0.055286	0.0748	0.0067*	0.0155*	APARCH-GED	0.0167	0.0000*	0.0000*	0.0000
				Chi	ile (IPSA)				
GJR-S	0,0568	0.0058*	0.0000*	0.0000*	FIGARCH-sk <i>S</i>	0,0166	0.0000*	0.0000*	0.0000
APARCH- $\mathcal S$	0,0569	0.0058*	0.0000*	0.0000*	GARCH-GED	0,0166	0.0000*	0.0000*	0.0000
				Mexico	(MEXBOL)				
FIGARCH-S	0, 044	0.3030	0.0047*	0.0121*	GJR- <i>N</i>	0,0146	0.0690	0.0003*	0.0000
FIGARCH-GED	0, 04 5	0.3030	0.0003*	0.0002*	APARCH-√	0,0147	0.0690	0.0002*	0.0000
				Peru (SPBLPGPT)				
FIGARCH-GED	0,0569	0.0312*	0.0000*	0.0000*	FIGARCH-skS	0,0165*	0.0000*	0.0000*	0.0000
μ -GARCH- S	0,0571	0.0266*	0.0000*	0.0000*	FIGARCH-GED	0,0173*	0.0000*	0.0000*	0.0000

(b) Forex Market Returns

Conclusions (for stock markets)

- In general, FIGARCH volatility process and leptokurtic distributions are able to produce better one-step-ahead VaR forecasts
- The models that best fit the full series in-sample are not necessarily the ones that obtain the most accurate VaR forecasts out-of-sample
- The models producing the most accurate forecasts vary by market and country.

Agenda'

- Obtain the results also for the Forex market
- Compare the results for the stock market and the Forex market.

References

- Baillie, R., T. Bollerslev, and H. O. Mikkelsen (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 74 (1), 3-30.
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31 (3), 307–327.
- Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review 39 (4), 841–62.
- Ding, Z., C. Granger, and R. Engle (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance 1 (1), 83–106.
- Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica 50 (4), 987–1007.

References

- Engle, R. F. and S. Manganelli (2004). Caviar: Conditional autoregressive value at risk by regression quantiles. Journal of Business Economic Statistics 22 (4), 367–381.
- Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance 48 (5), 1779–1801.
- Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives 3 (2), 73–84.
- Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns:
 A new approach. Econometrica 59 (2), 347–70.