Multi-level Logic: Combinatorial Circuits

Becker/Molitor, Chapter 8.1

Jan Reineke Universität des Saarlandes

Implementation of Boolean functions

Wanted:

- Cheaper representations that need not be based on Boolean polynomials
 - There are Boolean functions whose best representations via Boolean polynomials are very expensive...
- Practical implementation of these representations

Approach:

- Find implementations for simple Boolean functions
- Compose these to implement more complex functions
 - → leads to hierarchical models

Examples of simple Boolean functions...

i_2	i_1	AND_2
0	0	0
0	1	0
1	0	0
1	1	1

i_2	i_1	OR_2
0	0	0
0	1	1
1	0	1
1	1	1

i	NOT
0	1
1	0

i_2	i_1	$NAND_2$
0	0	1
0	1	1
1	0	1
1	1	0

i_2	i_I	NOR_2
0	0	1
0	1	0
1	0	0
1	1	0

i_2	i_I	XOR_2
0	0	0
0	1	1
1	0	1
1	1	0

Short excursion: Transistors

- A transistor can be seen as a voltage-controlled switch:
 - Gate g controls the conductivity between source and sink
- n-type transistor:
 - transmits, if gate is 1
 - disconnects, if gate is 0
- p-type transistor:
 - transmits, if gate is 0
 - disconnects, if gate is 1

Short excursion: MOS transistors

- CMOS = Complementary Metal Oxide Semiconductor
- CMOS uses n-type as well as "complementary" p-type transistors

Short excursion: CMOS inverter (1/3)

Short excursion: CMOS inverter (2/3)

Short excursion: CMOS inverter (3/3)

Short excursion: CMOS NAND

Output is 0 iff

there is a transmitting path from 0 to the output, i.e., *iff* both n-type transistors transmit, a = b = 1, then NAND(a, b) = 0

Output is 1 iff

there is a transmitting path from 1 to the output, i.e., *iff* one of the p-type transistors transmits, a = 0 or b = 0, then NAND(a, b) = 1

Implementation of Boolean functions

• In this way, implementations of all required basic operations are designed.

These comprise the cells of a cell library.

More complex functions:
 "Composition" of these basic operations

Implementation of Boolean functions: Example of a Boolean function $f \in \mathbf{B}_{8, 2}$

Questions:

1. How to model circuits mathematically?

Syntax

- 2. Which Boolean function is computed by a given circuit?
- Concrete simulation
- Symbolic simulation

Semantics

Modeling circuits

Intuitively:

A circuit is a directed graph with some additional properties.

Modeling circuits (1/3)

- A cell library BIB \subseteq B_n contains basic operations corresponding to basic gates
- A 5-tuple $C = (X_n, G, type, IN, Y_m)$ is called **circuit** with **n** inputs and **m** outputs (for library BIB) *iff*
 - $-X_n = (x_1, ..., x_n)$ is a finite sequence of inputs.
 - G = (V, E) is a directed acyclic graph (DAG) with $\{0, 1\} \cup \{x_1, ..., x_n\} \subseteq V$ and $E \subseteq V \times V$.
 - The set $I = V \setminus (\{0, 1\} \cup (x_1, ..., x_n))$ is called the set of gates.

Modeling circuits (2/3)

- The mapping type : $I \rightarrow BIB$ assigns a cell type $type(v) \in BIB$ to each gate $v \in I$.
- For each gate $v \in I$ with $type(v) \in \mathbf{B}_k$ we have indeg(v) = k.

For $v \in V \setminus I = \{0, 1\} \cup \{x_1, ..., x_n\}$ we have indeg(v) = 0.

Modeling circuits (3/3)

- The mapping $IN : I \to V^*$ determines the order of the incoming edges, i.e., if indeg(v) = k then $IN(v) = (v_1, ..., v_k)$ with $\forall 1 \le i \le k$: $(v_i, v) \in E$.
- The sequence $Y_n = (y_1, ..., y_n)$ designates the nodes $y_i \in V$ as the circuit's outputs.

Example circuit

Types of gates:

$$type(g_1) = type(g_4) = XOR_2$$

 $type(g_2) = type(g_6) = AND_2 ...$

Inputs:

$$X = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$$

Outputs:

$$Y = (g_7, g_8)$$

Gates:

$$I = \{g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8\}$$

Edges of the graph:

$$E = \{(x_1, g_7), (x_2, g_1), (x_3, g_1), (x_4, g_2) \\ (x_5, g_2), (x_6, g_3), (x_7, g_3), (x_8, g_5), \\ (x_8, g_6), (g_1, g_4), (g_2, g_4), ...\}$$

Order of the incoming edges:

$$IN(g_1)=(x_2, x_3)$$

 $IN(g_4)=(g_1, g_2) ...$

Semantics of circuits (1/2)

- Let $C = (X_n, G, typ, IN, Y_m)$ be a circuit for the cell library BIB.
- Let $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbf{B}^n$ be an input valuation.
- A valuation $\Phi_{C,\alpha}: V \to \{0, 1\}$ for all nodes $v \in V$ is given via the following definitions:

```
-\Phi_{C,\alpha}(x_i) = \alpha_i \ \forall 1 \le i \le n
-\Phi_{C,\alpha}(0) = 0, \ \Phi_{C,\alpha}(1) = 1
-\text{If } v \in I \text{ with}
```

 $type(v) = g \in \mathbf{B}_k \text{ and } IN(v) = (v_1, ..., v_k),$ then

$$\Phi_{\mathrm{C},\alpha}(v) := \mathrm{g}(\Phi_{\mathrm{C},\alpha}(v_1),\,...,\,\Phi_{\mathrm{C},\alpha}(v_k)).$$

Why is $\Phi_{C,\alpha}(v)$ well-defined?

Because the underlying graph G is acyclic! Not acyclic!

Semantics of circuits (2/2)

- Then $(\Phi_{C,\alpha}(y_1), ..., \Phi_{C,\alpha}(y_m))$ is the output valuation of the circuit under the input valuation $\alpha = (\alpha_1, ..., \alpha_n)$.
- The computation of $\Phi_{C,\alpha}$ under the input valuation α is called **simulation** of C under valuation α .

Example: Simulation

Which Boolean function does a circuit compute?

Definition:

The function computed at a node v

$$\psi(v): B^n \to B$$

is defined as

$$\psi(v)(\alpha) := \Phi_{C,\alpha}(v)$$

for an arbitrary $\alpha \in \mathbf{B}_{n}$.

Definition:

The function computed by circuit C is

$$f_C := (\psi(y_1), ..., \psi(y_m))$$

Symbolic simulation

• Symbolic simulation does not simulate a circuit for fixed Boolean inputs. Rather it simulates the circuit on Boolean variables.

• In this way it determines the Boolean expression representing the Boolean function computed by a circuit

Example: Symbolic simulation

Brainstorming:

Cost and Speed

What are reasonable measures of

- (a) Cost and
- (b) Speed

of circuits?

Circuits

Cost of circuits

Definition (Cost):

The hardware cost C(C) of a circuit C is its number of gates $|I| = |V \setminus (\{0, 1\} \cup (x_1, ..., x_n))|$.

Remark:

- Circuits are defined based on a cell library BIB
 - → Cost depends on the choice of the library.
- If not stated otherwise, in the following we will use the standard library STD:

STD := {NOT, AND, OR, EXOR, NAND, NOR}

Circuits 24

Speed of a circuit

Definition (Depth):

The depth depth(C) of a circuit C is the maximal number of gates on a path from an arbitrary input x_i to an arbitrary output y_i of C.

Remark:

• Depth is only a reasonable indicators of a circuit's speed if the switching speed of each gate in the library is approximately the same.

Example: Cost and depth of circuits

Cost: 8

Depth: 3

Hierarchical circuits

In hierarchical circuits, subcircuits are represented by symbols.

The corresponding ("flat") circuit is obtained by replacing the symbols by their defining subcircuits.

Example Hierarchical circuits

_1rcuits

Circuits vs Boolean functions

Every circuit computes a Boolean function.

But can **every** Boolean function be computed by a circuit?

Circuits vs Boolean functions

Theorem:

Let $f \in B_{n,m}$.

Then there is a circuit that computes f.

Reminder:

Lemma:

For every Boolean function $f \in B_{n,1}$ there is a Boolean expression that describes f.

Circuits vs Boolean expressions

Lemma:

For every Boolean expression $e \in BE(X_n)$ there is a circuit $C = (X_n, G, typ, IN, Y_m)$, such that $\psi(e) = f_C$.

Proof:

By induction over the structure of the Boolean expression.

Recapitulation: Boolean expressions

Definition:

The set $BE(X_n)$ of fully parenthesized Boolean expressions over X_n is the smallest subset of A^* , inductively defined as follows:

- The elements 0 and 1 are Boolean expressions
- The variables $x_1, ..., x_n$ are Boolean expressions
- Let g and h be Boolean expressions. Then so is their Disjunction (g + h), their Conjunction $(g \cdot h)$, and their Negation (~g).

Circuits vs Boolean functions

Theorem:

Let $f \in B_{n,m}$.

Then there is a circuit that computes f.

Proof:

Case 1: $f \in B_n = B_{n,1}$. $\exists e \in BE(X_n)$, that computes f.

The theorem then directly follows from the previous lemma.

Case 2: $f \in B_{n,m}$, $m \ge 2$.

Interpret $f: B_{n,m} = B^n \to B^m$ as a sequence of functions $(f_1, ..., f_m)$ with $f_i: B_n \to B$.

Construct a circuit for each f_i.

Compose the circuits (see the following illustration).

Construction of a circuit for a Boolean function from $B_{n,m}$.

Example: Generalized EXOR

Given:

Function $exor_{16} \in B_{16}$ with

$$exor_{16}(x_1, ..., x_{16}) = \left(\sum_{i=1}^{16} x_i\right) \mod 2 = 1 \text{ if number of } x_i \text{ with } x_i = 1 \text{ is odd}$$

Wanted:

Circuit implementation for $exor_{16}$.

Assumption: exor₂ is an element of our cell library.

Observations:

- 1. $exor_{16}$ can be constructed from several $\otimes = exor_2$.
- 2. \otimes is an associative operation!

Implementation of exor₄:

Depth: 3
Cost: 3

Can we do better?

Idea: Make use of associativity:

 $(((\mathbf{x}_1 \otimes \mathbf{x}_2) \otimes \mathbf{x}_3) \otimes \mathbf{x}_4) = (((\mathbf{x}_1 \otimes \mathbf{x}_2) \otimes (\mathbf{x}_3 \otimes \mathbf{x}_4))$

Better implementation of exor₄:

Better implementation of exor₈:

 $(((x_1 \otimes x_2) \otimes (x_3 \otimes x_4)) \otimes (((x_5 \otimes x_6) \otimes (x_7 \otimes x_8))$

Better implementation of exor₁₆:

How do cost and depth depend on n for exor_n?

39

Recursive construktion of generalized EXOR

Implementation of exor_{2n}:

$$depth(exor_{2n}) = depth(exor_n) + 1$$

 $depth(exor_1) = 0$

$$\rightarrow$$
 depth(exor_n) = log₂ n

$$C(exor_{2n}) = 2 \cdot C(exor_n) + 1$$
$$C(exor_1) = 0$$

$$\rightarrow$$
 C(exor_n) = n-1

Circuits 40

Efficient implementation of arbitrary associative operations

Lemma:

The function $x_1 \circ x_2 \dots \circ x_n$ can be implemented using \circ gates with 2 inputs in a circuit of depth $\lceil \log_2 n \rceil$.

Proof by induction over n.

Circuits 4

Two-level normal form of EXOR₁₆

Question: How large is the smallest Boolean polynomial of exor₁₆?

Answer: 215 monomials with 16 literals each!

Question: How large it the smallest Boolean polynomial for exor_n?

Answer: 2^{n-1} monomials with n literals each!

Exponentially higher cost than the multi-level implementation!

Cost of the implementation of Boolean expressions via circuits

Define the cost C(E) of a Boolean expression E to be the number of operations in the expression.

Theorem:

For every Boolean expression $e \in BE(X_n)$ there is a circuit $C = (X_n, G, typ, IN, Y_m)$, such that $\psi(e) = f_C$ and $C(C) \leq C(E)$.

Follows from proof of earlier lemma.

Reusing subcircuits can sometimes help reduce the cost.

Cost of the implementation of Boolean functions via circuits

Theorem:

For every $f \in B_n$ there is a circuit C implementing f, s.t. $C(C) \le n2^{n+1}$ -1 and $depth(C) \le n+\lceil \log_2 n \rceil+1$.

Proof sketch:

(Cost:) A function $f \in \mathbf{B}_n$ has at most 2^n minterms.

Every minterm can be implemented using 2n-1 gates.

The disjunction of all minterms can be implemented using at most 2ⁿ-1 gates.

(Depth:) Every minterm can be implemented in depth $\lceil \log_2 n \rceil + 1$. The disjunction can be implemented in depth n (= $\log_2 2^n$).

Summary

Circuits implement arbitrary Boolean functions from $B_{n,m}$.

Optimal Boolean polynomials can be much larger than corresponding multi-level circuits: exponential differences are possible!

Outlook

There are algorithms to compute optimal multi-level circuits

- harder than computing minimal polynomials
- mostly heuristics, i.e., not guaranteed to be optimal
- not covered in this course
- Here: Circuits for special functions, in particular arithmetic