0.1 群

定义 0.1

 $\diamondsuit(S,\cdot)$ 是一个幺半群, $x \in S$ 。我们称 x 是**可逆的**, 当且仅当

$$\exists y \in S, x \cdot y = y \cdot x = e$$

其中 y 被称为 x 的**逆元**,记作 x^{-1} 。

命题 0.1 (逆元存在必唯一)

令 (S,\cdot) 是一个幺半群。假设 $x \in S$ 是可逆的,则其逆元唯一。也就是说,如果 $y,y' \in S$ 都是它的逆元,则y = y'。

证明 假设 y, y' 都是 x 的逆元。则 $y \cdot x = e, x \cdot y' = e$. 从而

$$y = y \cdot e = y \cdot x \cdot y' = e \cdot y' = y'.$$

定义 0.2 (群)

令 (G,\cdot) 是一个幺半群, 若 G 中所有元素都是可逆的,则我们称 (G,\cdot) 是一个**群**. 换言之,若·是 G 上的一个二元运算,则我们称 (G,\cdot) 是个**群**,或 G 对·构成群,当这个运算满足结合律,存在单位元,且每个元素具有逆元。再进一步展开来说,同样等价地,若·是 G 上的一个二元运算,则我们称 (G,\cdot) 是个**群**,当

$$\forall x, y, z \in G, x \cdot (y \cdot z) = (x \cdot y) \cdot z,$$

$$\exists e \in G, \forall x \in G, x \cdot e = e \cdot x = x,$$

$$\forall x \in G, \exists y \in G, x \cdot y = y \cdot x = e.$$

命题 0.2

 $\Diamond(G,\cdot)$ 是一个群, $\Diamond x \in G$, 则 $(x^{-1})^{-1} = x$ 。

证明 方便起见,我们令 $y = x^{-1}$,于是有 $x \cdot y = y \cdot x = e$ 。我们要证明 $y^{-1} = x$,而这就是 $y \cdot x = x \cdot y = e$,显然成立。这就证明了逆元的逆元是自身.

命题 0.3

 $令(G, \cdot)$ 是一个群,令 $x, y \in G$,则 $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$ 。

证明 我们利用定义来证明。一方面,利用广义结合律, $(x \cdot y) \cdot (y^{-1} \cdot x^{-1}) = e$; 另一方面,同理可以得到另一边的等式 $(y^{-1} \cdot x^{-1}) \cdot (x \cdot y) = e$,这就告诉我们 $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$ 。

定义 0.3

设 (G,\cdot) 是一个群,且 $x \in G$ 。若 $n \in \mathbb{N}_1$,我们定义 $x^{-n} = (x^{-1})^n$,另外定义 $x^0 = e$ 。

命题 0.4

设 (G,\cdot) 是一个群,且 $x \in G$.则满足

- (1) $x^{-n} = (x^{-1})^n = (x^n)^{-1}, \forall n \in \mathbb{Z}.$
- (2) $x^{m+n} = x^m \cdot x^n, \forall m, n \in \mathbb{Z}$.
- (3) $x^{mn} = (x^m)^n = (x^n)^m, \forall m, n \in \mathbb{Z}.$

证明

- (1) (i) 当 n = 0 时, 结论显然成立.
 - (ii) 当 $n \in \mathbb{N}_1$ 时, 只需证明 $(x^{-1})^n = (x^n)^{-1}$ 即可. 注意到

$$x^{n} \cdot (x^{-1})^{n} = \left(\underbrace{x \cdots x}_{n \uparrow}\right) \cdot \left(\underbrace{x^{-1} \cdots x^{-1}}_{n \uparrow}\right) = e,$$
$$(x^{n})^{-1} \cdot x^{n} = \left(\underbrace{x^{-1} \cdots x^{-1}}_{n \uparrow}\right) \cdot \left(\underbrace{x \cdots x}_{n \uparrow}\right) = e.$$

故根据逆元的定义可知结论成立.

(iii) 当 n 为负整数时, 令 m = -n, 则 $m \in \mathbb{N}_1$. 从而我们只需证 $x^m = (x^{-1})^{-m} = (x^{-m})^{-1}$ 即可. 根据定义 0.3可得

$$x^{-m} \cdot x^{m} = (x^{-1})^{m} \cdot x^{m} = \left(\underbrace{x^{-1} \cdots x^{-1}}_{m \uparrow}\right) \cdot \left(\underbrace{x \cdots x}_{m \uparrow}\right) = e,$$

$$x^{m} \cdot x^{-m} = x^{m} \cdot (x^{-1})^{m} = \left(\underbrace{x \cdots x}_{m \uparrow}\right) \cdot \left(\underbrace{x^{-1} \cdots x^{-1}}_{m \uparrow}\right) = e.$$

故根据逆元的定义可知 $x^m = (x^{-m})^{-1}$. 又由定义 0.3可知, $\left(x^{-1}\right)^{-m} = \left(\left(x^{-1}\right)^{-1}\right)^m = x^m$. 故结论成立.

- (2) 首先注意到,
 - (i) 如果 $m, n \in \mathbb{N}_1$,则由推论??就立刻得到这个性质。若 m 或 n 是 0,利用单位元的性质也是显然的。从而我们只需证明当 m, n 至少有一个小于 0 时, $x^{m+n} = x^m \cdot x^n$. 故我们可以不失一般性,假设 m < 0,记 m' = -m,则 $x^m = x^{-m'} = (x^{-1})^{m'}$ 。
 - (ii) 若 n < 0,记 n' = -n,则同理, $x^n = (x^{-1})^{n'}$,故 $x^{m+n} = (x^{-1})^{m'+n'}$,这里 $m', n' \in \mathbb{N}_1$,于是就有 $x^{m+n} = (x^{-1})^{m'+n'} = (x^{-1})^{m'} (x^{-1})^{n'} = x^m x^n,$

因此得证了.

(iii) 若
$$0 < n < m'$$
,则 $x^{m+n} = x^{-(m'-n)} = (x^{-1})^{m'-n}$ 。而 $x^m \cdot x^n = (x^{-1})^{m'} \cdot x^n$. 于是
$$x^{m+n} = x^m \cdot x^n$$

$$\Leftrightarrow (x^{-1})^{m'-n} = (x^{-1})^{m'} \cdot x^n$$

$$\Leftrightarrow \underbrace{x^{-1} \cdots x^{-1}}_{m'-n} = \underbrace{\left(x^{-1} \cdots x^{-1}\right)}_{m' \wedge x} \cdot x^n$$

对上式两边左乘 $x^{m'-n}$, 得到

$$x^{m+n} = x^m \cdot x^n \Leftrightarrow \underbrace{x^{-1} \cdots x^{-1}}_{m'-n \uparrow} = \left(\underbrace{x^{-1} \cdots x^{-1}}_{m' \uparrow}\right) \cdot x^n$$

$$\Leftrightarrow x^{m'-n} \cdot \left(\underbrace{x^{-1} \cdots x^{-1}}_{m'-n \uparrow}\right) = x^{m'-n} \cdot \left(\underbrace{x^{-1} \cdots x^{-1}}_{m' \uparrow}\right) \cdot x^n$$

$$\Leftrightarrow \left(\underbrace{x \cdots x}_{m'-n \uparrow}\right) \cdot \left(\underbrace{x^{-1} \cdots x^{-1}}_{m'-n \uparrow}\right) = \left(\underbrace{x \cdots x}_{m'-n \uparrow}\right) \cdot \left(\underbrace{x^{-1} \cdots x^{-1}}_{m' \uparrow}\right) \cdot x^n$$

$$\Leftrightarrow e = \left(\underbrace{x^{-1} \cdots x^{-1}}_{n \uparrow}\right) \cdot x^n \Leftrightarrow e = (x^n)^{-1} \cdot x^n$$

上式最后一个等式显然成立,故此时结论成立.

(iv) 若
$$n \ge m'$$
, 则 $x^{m+n} = x^{n-m'}$ 。 而 $x^m \cdot x^n = (x^{-1})^{m'} \cdot x^n$. 于是

$$x^{m+n} = x^m \cdot x^n$$

$$\Leftrightarrow x^{n-m'} = (x^{-1})^{m'} \cdot x^n$$

$$\Leftrightarrow \underbrace{x \cdots x}_{n-m'} = (x^{-1})^{m'} \cdot \left(\underbrace{x \cdots x}_{n \uparrow}\right)$$

对上式两边右乘 $(x^{-1})^{n-m'}$, 得到

$$x^{m+n} = x^m \cdot x^n \Leftrightarrow \underbrace{x \cdots x}_{n-m' \uparrow} = (x^{-1})^{m'} \cdot \left(\underbrace{x \cdots x}_{n \uparrow}\right)$$

$$\Leftrightarrow \left(\underbrace{x \cdots x}_{n-m' \uparrow}\right) \cdot (x^{-1})^{n-m'} = (x^{-1})^{m'} \cdot \left(\underbrace{x \cdots x}_{n \uparrow}\right) \cdot (x^{-1})^{n-m'}$$

$$\Leftrightarrow \left(\underbrace{x \cdots x}_{n-m' \uparrow}\right) \cdot \left(\underbrace{x^{-1} \cdots x^{-1}}_{n-m' \uparrow}\right) = (x^{-1})^{m'} \cdot \left(\underbrace{x \cdots x}_{n \uparrow}\right) \cdot \left(\underbrace{x^{-1} \cdots x^{-1}}_{n-m' \uparrow}\right)$$

$$\Leftrightarrow e = (x^{-1})^{m'} \cdot \left(\underbrace{x \cdots x}_{m' \uparrow}\right) \Leftrightarrow e = (x^{-1})^{m'} \cdot x^{m'}$$

上式最后一个等式显然成立,故此时结论成立.

(3) 先证 $x^{mn} = (x^m)^n$. 对 $\forall m \in \mathbb{Z}$, 固定 m, 对 n 使用数学归纳法. 当 n = 1 时, 结论显然成立. 假设当 n = k 时, 结论成立, 即 $x^{mk} = (x^m)^k$. 则由 (2) 的结论可得

$$x^{m(k+1)} = (x^m)^{k+1} = (x^m)^k \cdot x^m = (x^m)^{k+1}$$
.

故由数学归纳法可知, $x^{mn} = (x^m)^n, \forall n \in \mathbb{Z}$. 再由 m 的任意性可知 $x^{mn} = (x^m)^n, \forall m, n \in \mathbb{Z}$. 同理可证 $x^{nm} = (x^n)^m, \forall m, n \in \mathbb{Z}$. 由于 $x^{nm} = x^{mn}, \forall m, n \in \mathbb{Z}$. 因此 $x^{mn} = (x^m)^n = (x^n)^m, \forall m, n \in \mathbb{Z}$.

定义 0.4 (Abel 群)

 $\ddot{x}(G,\cdot)$ 是一个群, 我们称它是 Abel 群, 或交换群, 当该运算满足交换律, 即

$$\forall x,y \in G, x \cdot y = y \cdot x$$

例题 0.1 常见的群

- 1. 我们称只有一个元素的群为**平凡群**,记作 e. 其中的二元运算是 $e \cdot e = e$.
- 2. 常见的加法群有 (\mathbb{Z} , +), (\mathbb{Q} , +), (\mathbb{R} , +), (\mathbb{C} , +) 等. 这些加法群分别称为整数加群、有理数加群、实数加群、复数加群.
- 3. 常见的乘法群有 (\mathbb{Q}^{\times} ,+), (\mathbb{R}^{\times} ,+), (\mathbb{C}^{\times} ,+) 等, 其中 \mathbb{Q}^{\times} = $\mathbb{Q}\setminus 0$, 类似地定义其余两个集合. 这些乘法群分别称为有理数乘群、实数乘群、复数称群.
- 4. 在向量空间中,n 维欧式空间对加法构成群即 (\mathbb{R}^n , +). 类似地 (\mathbb{C}^n , +), (\mathbb{Q}^n , +), (\mathbb{Z}^n , +) 也是群. 对于这些群, 单位元都是零向量, 加法逆元则是对每个坐标取相反数, 如 (x_1, \dots, x_n) 的加法逆元是 ($-x_1, \dots, -x_n$).
- 5. 所有的 $m \times n$ 矩阵也对加法构成群, 单位元都是零矩阵, 加法逆元则是对每一项取相反数. 对于 $n \times n$ 的实矩阵加法群, 我们记作 ($M(n,\mathbb{R})$, +), 类似地我们将 $n \times n$ 的复矩阵加法群记作 ($M(n,\mathbb{C})$, +).

证明 证明都是显然的.

引理 0.1

 $\Diamond(S,\cdot)$ 是一个幺半群, $\Diamond G$ 是其所有可逆元素构成的子集,则 (G,\cdot) 是个群。

 \Diamond

注 我们称呼幺半群中的可逆元素为"单位",因此 G 是由所有该运算下的单位构成的集合(在这里甚至是群)。 证明 首先结合律完全继承自 S,不需要证明。而单位元是可逆的,因此 $e \in G$ 。剩下要证明 G 中每个元素都有 (G 中的)逆元,而这几乎是显然的。假设 $x \in G$,则 x 是可逆元素,我们取 $y \in S$,使得 $x \cdot y = y \cdot x = e$ (这里要注意我们只能首先保证 y 在全集 S 中)。接下来我们要证明 $y \in G$,即 y 可逆,而这是显然的,因为 x 正是它的 逆。所以 $y \in G$ 。这样,就证明了 (G, \cdot) 是个群.

定义 0.5 (子群)

令 (G,\cdot) 是一个群,且 $H\subset G$ 。 我们称 H 是 G 的**子**群,记作 H< G, 当其包含了单位元,在乘法和逆运算下都封闭,即

 $e \in H$,

 $\forall x, y \in H, x \cdot y \in H,$ $\forall x \in H, x^{-1} \in H.$

命题 0.5 (子群也是群)

 $\Diamond(G,\cdot)$ 是一个群。若 H 是 G 的子群,则 (H,\cdot) 也是个群。

证明 就二元运算的良定义性而言,子群第一个条件(封闭性)就满足了,这使得我们后面的谈论是有意义的。 首先,结合律肯定满足,因为它是个子集。其次,根据子群的第二个条件, $e \in H$ 是显然的。再次,我们要证明 每个H 中元素有H 中的逆元,而这是子群的第三个条件。

命题 0.6 (子群的等价条件)

(H,·) 是子群等价于

 $e \in H,$ $\forall x, y \in H, x \cdot y^{-1} \in H.$

证明 假设 (H,\cdot) 是子群。令 $x,y \in H$,利用逆元封闭性得到 $y^{-1} \in H$,再利用乘法封闭性得到 $x \cdot y^{-1} \in H$ 。 反过来,假设上述条件成立. 令 $x \in H$,则 $e \cdot x^{-1} = x^{-1} \in H$,这证明了逆元封闭性。接下来,令 $x,y \in H$,则 利用逆元封闭性, $y^{-1} \in H$,故 $x \cdot (y^{-1})^{-1} = x \cdot y \in H$ 。这就证明了乘法封闭性。

综上, 这的确是子群的等价条件。

定义 0.6 (一般线性群)

我们对于那些n*n可逆实矩阵构成的乘法群,称为 **(实数上的)** n **阶一般线性群**,记作 ($GL(n,\mathbb{R})$,·)。由于一个矩阵可逆当且仅当其行列式不为零,因此

 $GL(n,\mathbb{R}) = \{A \in M(n,\mathbb{R}) : \det(A) \neq 0\}.$

定义 0.7 (特殊线性群)

我们将由那些行列式恰好是 1 的 n*n 实矩阵构成的乘法群称为 (实数上的)n 阶特殊线性群,记作 ($SL(n,\mathbb{R}),\cdot$),即

 $SL(n,\mathbb{R}) = \{A \in M(n,\mathbb{R}) : \det(A) = 1\}.$

命题 0.7

 $(SL(n,\mathbb{R}),\cdot)$ 是个群。

证明 根据定义, $SL(n,\mathbb{R})$ 首先是 $GL(n,\mathbb{R})$ 的子集,那么只要证明它是个子群即可。首先,乘法单位元单位矩

阵的行列式恰好是 1(这也是为什么我们定义特殊线性群是行列式是 1 的矩阵构成的群的原因),这就证明了 $I \in SL(n,\mathbb{R})$ ($I = I_n$ 指的是 n 阶单位矩阵)。另外,我们要证明 $SL(n,\mathbb{R})$ 在乘法下封闭。令 A,B 是两个行列式为 1 的 n*n 实矩阵。由于行列式满足 $\det(AB) = \det(A) \det(B)$,因此 AB 的行列式也是 1,也就在特殊线性群中。这就证明了特殊线性群确实是个群。至于逆元封闭性,我们利用 $\det(A^{-1}) = \frac{1}{\det(A)}$ 。假设 $\det(A) = 1$,则 $\det(A^{-1}) = 1$,于是 $A^{-1} \in SL(n,\mathbb{R})$ 。综上,特殊线性群确实是个群。

定义 0.8 (群同态)

令 (G,\cdot) , (G',*) 是两个群,且 $f:G\to G'$ 是一个映射。我们称 f 是一个**群同态**,当其保持了乘法运算,即 $\forall x,y\in G,\, f(x\cdot y)=f(x)*f(y).$

命题 0.8

若 $f:(G,\cdot)\to (G',*)$ 是一个群同态,则 $f(e)=e',\ f(x^{-1})=f(x)^{-1}$ 。

 $\widehat{\mathbb{Y}}$ 笔记 也就是说,f 不仅把乘积映到乘积,而且把单位元映到单位元,把逆元映到逆元。在这个意义下,实际上f 将所有群G 的"信息"都保持到了G'上,包括单位元,乘法和逆元。至于结合律(或者更基础的封闭性),显然两边本来就有,就不必再提。

证明 首先,因为 $e \cdot e = e$,所以利用同态的性质, $f(e) = f(e \cdot e) = f(e) * f(e)$ 。这时,两边同时左乘 $f(e)^{-1}$,就可以各约掉一个 f(e),得到 e' = f(e),这就证明了 f 把单位元映到单位元。

另一方面,令 $x \in G$,则 $e' = f(e) = f(x \cdot x^{-1}) = f(x) * f(x^{-1})$ 。同理 $e' = f(x^{-1}) * f(x)$ 。于是由定义, $f(x^{-1})$ 就是 f(x)的逆元,即 $f(x^{-1}) = f(x)^{-1}$ 。这就证明了这个命题。

命题 0.9

det: $GL(n,\mathbb{R}) \to (\mathbb{R}^{\times},\cdot)$ 是一个乘法群同态。

证明 证明是显然的.

定义 0.9 (群同态的核与像)

令 $f:(G,\cdot)\to (G',*)$ 是一个群同态,则我们定义 f 的核与像,记作 $\ker(f)$ 与 $\operatorname{im}(f)$,分别为 $\ker(f)=\{x\in G: f(x)=e'\}\subset G,$ $\operatorname{im}(f)=\{y\in G':\exists x\in G,y=f(x)\}=\{f(x):x\in G\}\subset G'.$

等 筆记 群同态的核与像示意图如下:

图 1: 群同态的核与像示意图

命题 0.10

令 $f:(G,\cdot)\to (G',*)$ 是一个群同态,则核是定义域的子群,像是陪域的子群,即 $\ker(f)< G,\quad \operatorname{im}(f)< G'.$

证明 先证明第一个子群关系。我们利用 f(e) = e' 来说明 $e \in \ker(f)$ 。接着,设 $x, y \in \ker(f)$,只需证明 $xy^{-1} \in \ker(f)$ 。利用同态的性质, $f(xy^{-1}) = f(x)f(y)^{-1} = e'e'^{-1} = e'$,这就证明了 $xy^{-1} \in \ker(f)$ 。第一个子群关系得证。

再证明第二个子群关系。同样由于 f(e) = e',我们有 $e' \in \operatorname{im}(f)$ 。接着,设 $y = f(x), y' = f(x') \in \operatorname{im}(f)$,只需证明 $yy'^{-1} \in \operatorname{im}(f)$ 。同样利用同态的性质, $yy'^{-1} = f(x)f(x')^{-1} = f(xx'^{-1}) \in \operatorname{im}(f)$ 。第二个子群关系也得证。这样我们就证完了整个命题。

例题 0.2 证明:($SL(n,\mathbb{R}),\cdot$) < ($GL(n,\mathbb{R}),\cdot$).

证明 由命题 0.9可知, $\det: GL(n,\mathbb{R}) \to (\mathbb{R}^{\times},\cdot)$ 是一个乘法群同态. 注意到 $\ker(\det) = (SL(n,\mathbb{R}),\cdot)$, 因此由命题 0.10可知, $(SL(n,\mathbb{R}),\cdot) = \ker(\det) < (GL(n,\mathbb{R}),\cdot)$.

定义 0.10 (满同态与单同态)

令 $f:(G,\cdot)\to (G',*)$ 是一个群同态,我们称 f 是一个**满同态**当 f 是满射,称 f 是一个**单同态**当 f 是单射。

命题 0.11

令 $f:(G,\cdot)\to (G',*)$ 是一个群同态,则 f 是一个单同态当且仅当 $\ker(f)=\{e\}$ 。也就是说,一个群同态是单的当且仅当核是平凡的。

证明 假设 f 是单的,那么因为 f(e) = e',因此若 f(x) = e',则利用单射的性质我们一定有 x = e,这就证明了 核是平凡的。(这个方向是显然的)

另一个方向不那么显然。我们假设 $\ker(f) = \{e'\}$ 。假设 $x, x' \in G$,使得 f(x) = f(x'),我们只须证明 x = x'。在这里,我们同时右乘 $f(x')^{-1}$,得到 $f(x)f(x'^{-1}) = f(xx'^{-1}) = e'$ 。而因为核是平凡的,所以必须有 $xx'^{-1} = e$ 。接下来同时右乘 x',我们就得到 x = x'。这就证明了这个命题。

🔮 笔记 平凡群,满同态和单同态示意图如下:

图 2: 平凡群,满同态和单同态示意图

定义 0.11 (群同构)

令 $f:(G,\cdot)\to (G',*)$ 是一个映射,我们称 f 是一个**群同构**,当 f 既是一个双射,又是一个群同态。简单来说,同构就是双射的同态。

命题 0.12 (群同构的逆也是群同构)

若 $f:(G,\cdot)\to (G',*)$ 是一个群同构,则 f^{-1} 也是群同构。

证明 因为 f^{-1} 也是双射,所以我们只须证明 f^{-1} 是群同态。令 $x', y' \in G'$,设 x' = f(x), y' = f(y)。则 $x' * y' = f(x \cdot y), x = f^{-1}(x'), y = f^{-1}(y')$,故 $f^{-1}(x' * y') = x \cdot y = f^{-1}(x') \cdot f^{-1}(y')$ 。这就完成了证明。

定义 0.12 (两个群的直积)

令 $(G, \cdot_1), (G', \cdot_2)$ 是两个群, 我们记 $(G \times G', *)$ 为 (G, \cdot_1) 和 (G', \cdot_2) 的**直积**. 满足对于 $(x, y), (x', y') \in G \times G',$ 有

$$(x, y) * (x', y') = (x \cdot_1 x', y \cdot_2 y').$$

命题 0.13 (两个群的直积仍是群)

若 $(G, \cdot_1), (G', \cdot_2)$ 是两个群,则它们的直积 $(G \times G', *)$ 还是一个群。

证明 封闭性: 因为 G 在 \cdot_1 下封闭, G' 在 \cdot_2 下封闭, 而 $G \times G'$ 的元素乘积是逐坐标定义的,则 $G \times G'$ 在 * = (\cdot_1, \cdot_2) 下也是封闭的。

结合律:同样,逐坐标有结合律,故整体也有结合律。

单位元: 设 e, e' 分别是 $(G, \cdot_1), (G', \cdot_2)$ 的单位元,则不难想象,(e, e') 是直积的单位元。对于任意 $(x, y) \in G \times G'$,我们有 $(x, y) * (e, e') = (x \cdot_1 e, y \cdot_2 e') = (x, y)$,另一边也是同理,这就证明了 (e, e') 是直积的单位元。

逆元: 对于任意 $(x,y) \in G \times G'$,设 x^{-1}, y^{-1} 分别是 x,y 的逆元,则同样不难想象, (x^{-1}, y^{-1}) 是 (x,y) 的逆元。

定义 0.13 (一族群的直积)

令 $(G_i, \cdot_i)_{i \in I}$ 是一族群,其中 I 是一个指标集。我们记它们的**直积**为 $(\prod_{i \in I} G_i, *)$.满足对于 $(x_i)_{i \in I}, (y_i)_{i \in I} \in I$

$$\prod_{i\in I}G_i$$
, f

$$(x_i)_{i \in I} * (y_i)_{i \in I} = (x_i \cdot_i y_i)_{i \in I}.$$

命题 0.14 (一族群的直积仍是群)

 $\widehat{\mathbb{S}}$ 笔记 最经典的例子就是通过 n 个实数加群 (\mathbb{R} , +) 直积得到的 (\mathbb{R}^n , +)。

证明 证明与命题 0.13同理. 故我们只列出一些重点。封闭性与结合律是显然的。单位元是 $(e_i)_{i\in I}$,而 $(x_i)_{i\in I}$ 的 逆元是 $(x_i^{-1})_{i\in I}$ 。

定义 0.14 (投影映射)

若 $(G_i, \cdot_i)_{i \in I}$ 是一族群, $j \in I$ 是任意指标,我们定义映射到指标 j 的**投影映射**为

$$p_j: \prod_{i\in I} G_i \to G_j.$$

对于 $(x_i)_{i \in I}$, 我们称 $p_i((x_i)_{i \in I}) = x_i$ 为 $(x_i)_{i \in I}$ 的**投影**.

命题 0.15 (投影映射是群同态)

 $\ddot{\pi}(G_i,\cdot_i)_{i\in I}$ 是一族群, $j\in I$ 是任意指标,则投影映射 $p_j:\prod_{i\in I}G_i\to G_j$ 是个群同态。

证明
$$\diamondsuit(x_i)_{i\in I}, (y_i)_{i\in I} \in \prod_{i\in I} G_i$$
,则

$$\begin{split} p_{j}((x_{i})_{i \in I}) &= x_{j}, \quad p_{j}((y_{i})_{i \in I}) = y_{j} \\ p_{j}((x_{i})_{i \in I} * (y_{i})_{i \in I}) &= p_{j}((x_{i} \cdot_{i} y_{i})_{i \in I}) = x_{j} \cdot_{j} y_{j} = p_{j}((x_{i})_{i \in I}) \cdot_{j} p_{j}((y_{i})_{i \in I}). \end{split}$$