Model Theory Problem Sheet 4

Extra exercises are marked with a $\star\star$. I DO <u>NOT</u> EXPECT YOU TO ANSWER THEM. I hope they can bring you joy.

Definition 1. Let \mathcal{L}_{ring} be the language of rings. For p prime, we denote by ACF $_p$ the theory of algebraically closed fields of characteristic p. Similarly, ACF $_0$ denotes the theory of algebraically closed fields of characteristic 0.

EXERCISE 1. Let ϕ be an \mathcal{L}_{ring} -sentence. Prove that the following are equivalent:

- ACF₀ $\models \phi$;
- for all sufficiently large primes p, ACF $_p \models \phi$;
- there are arbitrarily large primes p such that $ACF_p \models \phi$.

Deduce that ACF₀ is not finitely axiomatizable.

Definition 2. Let K be a field. We say that a map $f: K^n \to K^n$ is a **polynomial map** if it is of the form

$$f(x_1,...,x_n) = (p_1(x_1,...,x_n),...,p_n(x_1,...,x_n)),$$

where $p_i \in K[x_1, ..., x_n]$ for each $i \le n$.

The following theorem was first proven using model theory (indeed, you only need Exercise 1 and the fact that ACF_p is complete for each prime p):

** **EXERCISE 2.** Prove the Ax-Grothendieck Theorem: let $f : \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map. If f is one to one, then f is onto. [Hint: for $d \in \mathbb{N}$, there is an \mathcal{L}_{ring} -sentence Φ_d expressing that for all polynomial maps f such that every polynomial p_i in it has degree < d, if f is one-to-one, then it is onto.]

Definition 3. Let \mathcal{L}_{gr} consist of a single binary relation E and T_{gr} be the theory of undirected graphs without loops. For $n, m \in \mathbb{N}$, the Alice restaurant axiom $A_{n,m}$ is the following \mathcal{L}_{gr} sentence:

$$\forall x_1,\ldots,x_n,y_1,\ldots,y_m\Big(\bigwedge_{i,j}x_i\neq y_j\rightarrow \big(\exists z\bigwedge_{i\leq n}E(z,x_i)\wedge\bigwedge_{j\leq m}\big(\neg E(z,y_j)\wedge z\neq y_j\big)\Big)\Big).$$

Let T_{rg} be obtained by $T_{gr} \cup \{A_{n,m} | n, m \in \mathbb{N}\}$. We call T_{rg} the **theory of the random graph**.

Definition 4. We say that an \mathcal{L} -formula ϕ is **quantifier-free** if it does not contain any quantifier.

Definition 5. We say that an \mathcal{L} -theory T has **quantifier elimination** if every \mathcal{L} -sentence is equivalent, modulo T, to a quantifier-free \mathcal{L} -formula. That is, for every \mathcal{L} -formula $\phi(\overline{x})$ with free variables \overline{x} , there is a quantifier-free \mathcal{L} -formula $\psi(\overline{x})$ such that

$$T \vdash \forall \overline{x}(\phi(\overline{x}) \leftrightarrow \psi(\overline{x}))$$
.

EXERCISE 3. Show that the theory of the random graph is ω -categorical. Deduce that it is complete and with quantifier elimination.

The following is really an exercise in probability, but it is the reason for the name of the random graph.

** **EXERCISE 4.** Let 0 . Take <math>n vertices and for each pair of distinct vertices choose independently at random with probability p whether they form an edge. Let G(n, p) be the graph obtained in this manner. Show that for each $k, l \in \mathbb{N}$,

$$\mathbb{P}(G(n,p) \models A_{k,l}) \to 1 \text{ as } n \to \infty.$$

Prove that for any \mathcal{L}_{gr} -sentence ϕ , $T_{rg} \vDash \phi$ if and only if

$$\mathbb{P}(G(n,p) \models \phi) \to 1 \text{ as } n \to \infty.$$

Model Theory Problem Sheet 4

EXERCISE 5. Show that the following theories do NOT have quantifier elimination:

- Th(N;<);
- $Th(\mathbb{Z};+);$
- Th(\mathbb{R} ; 0, 1, +, ·, -);
- $Th(\mathbb{Q}; 0, 1, +, \cdot, -, <)$.