Modélisation E/R des Données

- 1. Objectifs et principes
- 2. Le modèle Entité-Association (E/R)
- 3. Passage au relationnel
- 4. Conclusion

_

Élaborer un modèle conceptuel

- Isoler les concepts fondamentaux
 - Que vont représenter les données de la BD?
 - Découvrir les concepts élémentaires du monde réel
 - Décrire les concepts agrégés et les sous-concepts
 - Découvrir les relations entre ces concepts
- Faciliter la visualisation du système
 - Diagrammes avec notations simples et précises
 - Compréhension visuelle et non seulement intellectuelle

1. Objectifs de la Modélisation

- Permettre une meilleure compréhension
 - Le monde réel est complexe
 - Concentration sur les aspects cruciaux du problème
- Réduire la distance sémantique entre le langage des utilisateurs et le langage des concepteurs
 - abstraction du réel perçu en termes compréhensibles et visibles
- Permettre une conception progressive
 - Abstractions et raffinements successifs, prototypage rapide
- Automatisation de la construction du schéma de la BD

Dériver le schéma de la BD

- Schéma
 - Définition de tous les types de données de la base et de leurs liens
- Agrégation de données
 - Type élémentaire (de base): Entier, Réel, String, ...
 - Type complexe (composé): Collection de types élémentaires
 - Tuple:
 - Exemple: Type Personne (nom: String, Prenom: String, age: Réel)
 - Instance ou occurrence Personne("Dupont", "Jules", 20)
 - Set
 - Exemple : Voitures {id:String}; Voitures {"75AB75", "1200VV94"}
 - Bag, List, ...
- Possibilité d'intégrer des relations entre données (liens)
 - Exemple : Personne → Voitures; "Dupont" → "75AB75"

Modélisation à plusieurs niveaux

2. Le Modèle Entité – Association (E/R Model)

- Ensemble de concepts pour modéliser les données d'une application (d'une entreprise)
- Ensemble de symboles graphiques associés
- Formalisé en 1976 par P. Chen
- Etendu vers E/R généralisé puis vers l'objet

Exemple de modèle E/R

Entité

- Un objet du monde réel qui peut être identifié et que l'on souhaite représenter
 - La <u>classe d'entité</u> correspond à une collection d'entités décrites par leur type commun (le format)
 - L'<u>instance d'entité</u> correspond à un élément particulier de la classe d'entité (un objet)
 - Attention: on dit entité pour les deux ! Comprendre selon le contexte.
- Il existe généralement plusieurs entités dans une classe

Représentation d'une entité

• Rectangle avec attributs (UML)

Nveh: Int
Type: String
Marque: String
Vitesse: Int
Km: Int

Nom

Attribut: Type

• Rectangle avec attributs accrochés (E/R)

Attribut

- Description des propriétés des entités
- Toutes les instances d'une entité ont les mêmes attributs
 - Attribut simple: attribut ayant une valeur d'un type de base
 - Attribut composé: attribut constitué d'un groupe d'attributs
 - Attribut multi-valué: attribut pouvant avoir plus d'une valeur
- Avec le modèle E/R de base tout attribut est simple
- Avec le modèle E/R étendu, les attributs peuvent être complexes
 - Composés et multi-valués

Exemple d'instance d'entité

Identifiant ou Clé

- Un identifiant aussi appelé clé est un (groupe d') attribut qui permet de retrouver une instance d'entité unique à tout instant parmi celles de la classe.
 - Exemple: NVeh dans Voitures, NSS dans Personnes
- Un identifiant peut être constitué de plusieurs attributs (clé composée)
 - Exemple:
 - [N°, Rue, CodePostal] pour Maisons
 - [CodeProduit, Id_Fournisseur] pour Produit

Association

- Les entités sont reliées ensemble par des associations
 - Entre instances: exemple 1 véhicule est associé à 1 personne
 - Entre classes: abstraction des associations entre instances
- Une association peut avoir des attributs (propriétés)
 - Ex: la date de l'achat

Association: quelques définitions

Multiplicité

Personne

employé

Entreprise 1..* emploie 0.

- Association (Association)
 - Une relation entre des instances de deux (ou plusieurs) classes
- Lien (Link)
 - Une instance d'association
- Rôle (Role)
 - Une extrémité d'une association
- Attribut de lien (Link attribute)
 - Un attribut de l'association instancié pour chaque lien \ Rôle
- Cardinalité (Multiplicity)
 - Le nombre d'instance d'une entité pour chaque instance de l'autre
- Degré
 - Nombre de classes reliées par l'association

Représentation E/R

Degré d'une association

• La plupart des associations sont de degré 2 (binaires)

Cardinalités min et max

Cardinalité maximum

• Indique le nombre maximum d'instances d'une classe d'entité participant à une association

• Cardinalité minimum

• Indique le nombre minimum d'instances d'une classe d'entité participant à une association

• Se lit

- Etudiant Examen
- Un étudiant passe entre 0 et 7 examens
- Un examen est passé par au moins un étudiant, sans limite supérieure de nombre

Représentation UML

Cardinalités: notations UML

Exemple en UML

Se lit:

- Une voiture est possédée par une seule personne
- Une personne peut posséder un nombre quelconque de voitures
- ATTENTION : les cardinalités sont indiquées sur l'extrémité inverse du lien par rapport à E/R

Associations ...

◆ Attribut d'association = propriété du lien entre deux objets

Personne 0.1 Loue 0.* Voiture

N° contrat

 Classe d'association = élément ayant à la fois les propriétés d'une classe et d'une association

Agrégation et Composition

Agrégation

- association particulière spécifiant une relation « tout-partie » entre l'agrégat et un composant.
- Notée

Composition

- forme forte d'agrégation avec cycle de vie des parties lié à celui du composite (la destruction du composite entraîne celle des composants)
- Notée
- Distinction utile pour exprimer des contraintes d'intégrité

Exemples Flotte Véhicule d'entreprise Parent Personne 0..2 Chien **Enfants** ¹ Composition <S'occupe de 0..2 oreille Tête patte Tronc

Hiérarchies de classes

- Gérer la complexité
 - Arborescences de classes d'abstraction croissante
- Généralisation
 - Super-classes
- Spécialisation
 - Sous-classes

Généralisation

- Généralisation = relation taxonomique entre un élément plus général et un élément plus spécifique qui est entièrement conforme avec le premier élément, et qui ajoute de l'information supplémentaire
- Héritage = mécanisme par lequel des éléments plus spécifiques incorporent la structure et le comportement d'éléments plus généraux

Généralisation

- Factoriser les éléments communs
 - attributs, opérations et contraintes

Spécialisation

• Extension cohérente d'un ensemble de classes

Domaines

- Ensemble nommé de valeurs
 - Un attribut peut prendre sa valeur dans un domaine
 - Généralisation des types élémentaires
- Exemples
 - Liste de valeurs (1,2,3)
 - Type contraint (0< val <100)
- Permettent de préciser les valeurs possibles des attributs
- Utile pour déclarer des contraintes d'intégrité

La pratique de la conception

- Bien comprendre le problème à résoudre
- Essayer de conserver le modèle simple
- Bien choisir les noms
- Ne pas cacher les associations sous forme d'attributs
 - utiliser les associations
- Faire revoir le modèle par d'autres
 - définir en commun les objets de l'entreprise
- Documenter les significations et conventions
 - élaborer le dictionnaire

3. Passage au relationnel

- Implémentations des entités et associations sous forme de tables
 - mémorisent les états des entités et liens
- Les attributs correspondent aux colonnes des tables
 - nom attribut → nom colonne
 - Ensemble de valeurs → domaine
- Exemple
 - **Etudiant** (<u>Ne</u>: integer, Nom: string, Prénom: string, Age: integer)

Traduction des associations

- Règle de base
 - Une association est représentée par une table dont le schéma est le nom de l'association et la liste des clés des entités participantes suivie des attributs de l'association
 - Exemples :
 - POSSEDE (N° SS, N° VEH, Date, Prix)
 - ABUS (Nv, Nb, Date, Quantité)
- Amélioration possible
 - Regrouper les associations 1 --> n avec la classe cible
 - Exemple :
 - VOITURE (N° VEH, MARQUE, TYPE, PUISSANCE, COULEUR)
 - POSSEDE (N° SS, N° VEH, DATE, PRIX)
 - regroupés si toute voiture a un et un seul propriétaire

Exemple

BUVEURS (NB REF ABUS.NB, NOM, TYPE)
VINS (NV, CRU, MILLESIME, DEGRE)
ABUS(NB REF BUVEURS.NB, NV REF VINS.NV, DATE, QUANTITE)

À cause de l'association (obligatoire).

6. Conclusion

- Intérêt de l'utilisation d'une méthode de conception
 - proche du monde réel
 - démarche sémantique claire
 - diagrammes standards
- Passage au relationnel semi-automatique
 - outils du commerce utilisables (Objecteering, Rose, etc.)