

Lecture: Basics of Deep Learning An Introduction

Dr. Goutam Chakraborty

SAS® Professor of Marketing Analytics

Director of MS in Business Analytics and Data Science* (http://analytics.okstate.edu/mban/)

Director of Graduate Certificate in Business Data Mining (http://analytics.okstate.edu/certificate/grad-data-mining/)

Director of Graduate Certificate in Marketing Analytics (http://analytics.okstate.edu/certificate/grad-marketing-analytics/)

- *Name change pending internal approval.
- · Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited.
- Some of the slides were developed by Mr. Sanjoy Dey, used with permission.

Outline

• What are similarities and differences between machine learning (ML) and deep learning (DL)?

2

Artificial Neural Net (ANN)

Developed with the intention to resemble how the human brain works (in particular its ability to learn from experience)!

-

Feed Forward Neural Network

- Input data values are passed through from input layer to hidden layer to the output layer
 - ➤ Usually all input values are massaged/transformed so that their ranges are restricted to (0,1) or (-1,1)
 - > The output value is also restricted to (0,1) but we can always convert it back to its original range
- Values for each weight usually start randomly as each observation is first fed forward through the network
 - Output from feed forward is compared with the actual value and the error is sent backwards
 - > The weights are updated (slowly) to see its effect on error
 - > Algorithm tries to find optimal weights to minimize overall error

6

However, the true essence of deep learning is the methods that enable the increased extraction of information derived from a neural network with more than one hidden layer.

Machine Learning (ML) vs. Deep Learning (DL)

Feature engineering

- Domain knowledge e.g., finger print reading
- Algorithms
 - > SVM
 - Random Forest
 - > Logistic regression
 - Decision trees
 - Naïve Bayes
- Deep learning is end-to-end model without the need for significant domain knowledge and feature engineering

8

Deep Learning: End-to-End Learning

Specific to Deep learning

- Features are learnt by the network
- · Little need for domain knowledge
- Lots of data required to train

Common issues in Deep Learning and Machine learning

- Requires clean data
- Be careful not to over fit or, under fit data during training
- Choose **hyper parameters** carefully
- Choice of cost function

11

Lecture: Basics of Deep Learning Building Blocks

Dr. Goutam Chakraborty

SAS® Professor of Marketing Analytics

Director of MS in Business Analytics and Data Science* (http://analytics.okstate.edu/mban/)

Director of Graduate Certificate in Business Data Mining (http://analytics.okstate.edu/certificate/grad-data-mining/)

Director of Graduate Certificate in Marketing Analytics (http://analytics.okstate.edu/certificate/grad-marketing-analytics/)

- *Name change pending internal approval.
- Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited.
- Some of the slides were developed by Mr. Sanjoy Dey, used with permission.

12

Qutline

Traditional Neuron

- Different activation functions
- A bit of math to formalize back propagation
 - > Details see Deep learning book by Goodfellow, Bengio and Courville
 - > You will see many terms such as: Vectors, Matrices, Tensors and Jacobian...

13

Basic Building Blocks: The Artificial Neuron

14

Traditional Neural Networks (ML) Versus Deep Learning (DL)						
	Aspect	Traditional	Deep Learning			
	Hidden activation	Hyperbolic Tangent (tanh)	Rectified Linear (RELU) and other variants			
V	function(s) Weight initialization	Constant Variance	Normalized Variance			
	Regularization	Stopped Training, L1, and L2	Stopped Training, L1, L2, Dropout, and Batch Normalization			
			20			
			29			

Lecture: Basics of Deep Learning Training Efficiency

SAS® Professor of Marketing Analytics

Director of MS in Business Analytics and Data Science* (http://analytics.okstate.edu/mban/)

Director of Graduate Certificate in Business Data Mining (http://analytics.okstate.edu/certificate/grad-data-mining/)

Director of Graduate Certificate in Marketing Analytics (http://analytics.okstate.edu/certificate/grad-marketing-analytics/)

- *Name change pending internal approval.
- Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited.
- Some of the slides were developed by Mr. Sanjoy Dey, used with permission.

33

Outline

Gradient Descent and its variants

- Mini batches
- Batch normalization
- CPU vs. GPU
- Hyperparameters: Data scientist's expertise

34

Traditional Neural Networks (ML) Versus Deep Learning (DL)						
	Aspect	Traditional	Deep Learning			
	 Hidden activation function(s) Weight initialization 	Hyperbolic Tangent (tanh)	Rectified Linear (RELU) and other variants			
		Constant Variance	Normalized Variance			
	Regularization	Stopped Training, L1, and L2	Stopped Training, L1, L2, Dropout, and Batch Normalization			
	Gradient-based learning	Batch GD and BFGS	Stochastic GD, Adam, and LBFGS			
			35			

$$\delta^{(i)} = -\eta \nabla g^{(i)} + \alpha \delta^{(i-1)}$$

- Uses a single training (i)
 observation to calculate an approximate gradient for each descent step
- Results in a chaotic progression to the error minima but faster than
 GD

30

ADAM Optimization

- The ADAM method introduces two new **hyperparameters** to the mix, (β^t_1) and (β^t_2) where t represents the iteration count.
 - > The adjustable beta terms are used to approximate a *signal-to-noise* ratio that is used to scale the step size.
 - > When the approximated single-to-noise ratio is small, the step size is near zero.
- A learning rate, α , is also included in the optimization method

40

Batch Normalization

Standardizes each piece of input data by subtracting its mean and dividing by its standard deviation

• It then follows this calculation by *multiplying* the data by the value of a *learned constant* and then *adding* the value of *another learned constant*

$$\gamma * (\frac{X_i - \mu}{\sigma}) + \beta$$

42

Traditional Neural Networks (ML) Versus Deep Learning (DL)						
	Aspect	Traditional	Deep Learning			
	Hidden activation function(s)	Hyperbolic Tangent (tanh)	Rectified Linear (RELU) and other variants			
	Weight initialization	Constant Variance	Normalized Variance			
	Regularization	Stopped Training, L1, and L2	Stopped Training, L1, L2, Dropout, and Batch Normalization			
	Gradient-based learning	Batch GD and BFGS	Stochastic GD, Adam, and LBFGS			
	Processor	CPU	GPU			

