Análisis Matemático II

Ejercicios del Capítulo 0: cálculo de integrales y sucesiones de funciones.

1. Calcular las siguientes integrales usando el **Teorema de Fubini**:

a)
$$\int_{I} \frac{x^2}{1+y^2} d(x,y), I = [0,1] \times [0,1].$$

b)
$$\int_{I} y \log x \ d(x,y), \ I = [1,e] \times [1,e].$$

c)
$$\int_I x^3 y^3 d(x,y)$$
, $I = [0,1] \times [0,1]$.

d)
$$\int_{I} \frac{1}{(1+x+y)^2} d(x,y), I = [0,1] \times [0,1].$$

e)
$$\int_{I} x \log(xy) d(x,y)$$
, $I = [2,3] \times [1,2]$.

f)
$$\int_{I} y \cos(xy) d(x,y)$$
, $I = [0,1] \times [1,2]$.

$$g) \ \int_E 1 \ d(x,y), \ \text{siendo} \ E = \{(x,y) \in [0,1] \times [0,1] : x+y \leq 1\} \ (\text{triángulo}).$$

h)
$$\int_{E} 1 \ d(x, y)$$
, siendo $E = \{(x, y) \in [0, 1] \times [0, 1] : x^{2} + y^{2} \le 1\}$ (cuadrante circular).

2. (Cambio de variable: **coordenadas polares en** \mathbb{R}^2) Consideremos los siguientes abiertos $U = \mathbb{R}^+ \times] - \pi, \pi[, V = \mathbb{R}^2 \setminus \{(x,0) : x \leq 0\}, y$ la aplicación $\phi : U \longrightarrow V$ definida por

$$\phi(\rho, \theta) = (\rho \cos \theta, \rho \sin \theta).$$

Probar que ϕ es un difeomorfismo y usarlo para calcular, mediante el Teorema del Cambio de Variable, las siguientes integrales:

a)
$$\int_E 1 d(x, y)$$
, siendo $E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le r^2\}$ (círculo de radio r).

b) La integral del apartado 1.- h) (cuadrante circular).

c)
$$\int_{E} (x^2 + y^2) d(x, y)$$
, siendo $E = \{(x, y) \in \mathbb{R}^2 : 4 \le x^2 + y^2 \le 9\}$ (corona circular de radios 2 y 3).

d)
$$\int_{E} (x^2 + y^2) d(x, y)$$
, siendo $E = B((1, 0), 1)$ (círculo de centro $(1, 0)$ y radio 1).

3. (Cambio de variable: **coordenadas cilíndricas en** \mathbb{R}^3) Consideremos los siguientes abiertos $U = \mathbb{R}^+ \times]-\pi, \pi[\times \mathbb{R}, V = \mathbb{R}^3 \setminus \{(x,0,z): x \leq 0\}, y$ la aplicación $\phi: U \longrightarrow V$ definida por

$$\phi(\rho, \theta, z) = (\rho \cos \theta, \rho \sin \theta, z).$$

Probar que ϕ es un difeomorfismo y usarlo para calcular, mediante el Teorema del Cambio de Variable, las siguientes integrales:

1

- a) $\int_E 1\,d(x,y)$, siendo $E=\{(x,y,z)\in\mathbb{R}^3:\ x^2+y^2\le r^2\ ,\ 0\le z\le h\}$ (cilindro de radio r y altura h).
- b) $\int_{E} \sqrt{x^2 + y^2 + z^2} d(x, y, z)$, siendo $E = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z \le 3\}$ (cono).
- c) $\int_E 1 d(x,y)$, siendo $E = \{(x,y,z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z \le \sqrt{1 x^2 y^2}\}$ (cucurucho de helado).
- 4. (Cambio de variable: **coordenadas esféricas en** \mathbb{R}^3) Consideremos los siguientes abiertos $U = \mathbb{R}^+ \times] \pi, \pi[\times] \pi/2, \pi/2[, V = \mathbb{R}^3 \setminus \{(x,0,z) : x \leq 0\}, y$ la aplicación $\phi : U \longrightarrow V$ definida por

$$\phi(\rho, \theta, \varphi) = (\rho \cos \theta \cos \varphi, \rho \sin \theta \cos \varphi, \rho \sin \varphi).$$

Probar que ϕ es un difeomorfismo y usarlo para calcular, mediante el Teorema del Cambio de Variable, las siguientes integrales:

- a) $\int_E 1 d(x, y)$, siendo $E = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le r^2\}$ (esfera de radio r).
- b) La integral del apartado 3.- c) (cucurucho de helado).
- 5. Consideremos la sucesión de funciones $f_n:[0,+\infty[\longrightarrow \mathbb{R}$ definida por

$$f_n(x) = \frac{2nx^2}{1 + n^2x^4} \ .$$

- a) Estudiar la convergencia puntual.
- b) Estudiar la convergencia uniforme en intervalos de la forma [0, a] y $[a, +\infty[$ (donde a > 0).
- 6. Dado $\alpha \in \mathbb{R}$, consideremos la sucesión de funciones $f_n : [0,1] \longrightarrow \mathbb{R}$ definida por

$$f_n(x) = n^{\alpha} x (1 - x^2)^n .$$

- a) ¿Para qué valores de α hay convergencia uniforme en [0,1]?
- b) ¿Para qué valores de α hay convergencia uniforme en [a,1] (donde 0 < a < 1)?
- 7. Consideremos la sucesión de funciones $f_n:[0,\pi/2]\longrightarrow \mathbb{R}$ definida por

$$f_n(x) = n(\cos x)^n \sin x$$
.

- a) Estudiar la convergencia puntual.
- b) Estudiar la convergencia uniforme en intervalos de la forma [0,a] y $[a,\pi/2]$ (donde $0 < a < \pi/2$).
- 8. Consideremos la sucesión de funciones $f_n:]0, \pi[\longrightarrow \mathbb{R}$ definida por

$$f_n(x) = \frac{\sin^2(nx)}{n \sin x} .$$

- a) Estudiar la convergencia puntual.
- b) Estudiar la convergencia uniforme en intervalos de la forma $]0,a], [a,\pi[y[a,b]]$ (donde $0 < a < b < \pi$).
- 9. Estudia la convergencia puntual y uniforme de la sucesión de funciones $f_n: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f_n(x) = \sqrt[n]{1 + x^{2n}}$$
.

10. Consideremos la sucesión de funciones $f_n: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f_n(x) = n \operatorname{sen}(x/n)$$
.

Estudiar la convergencia uniforme en intervalos de la forma $]-\infty,-a],$ [-a,a] y $[a,+\infty[$ (donde a>0).

11. Estudiar la convergencia uniforme en $[0, +\infty[$ de la sucesión de funciones $f_n : [0, +\infty[\longrightarrow \mathbb{R}$ definida por

$$f_n(x) = \arctan\left(\frac{n+x}{1+nx}\right)$$
.