EE5327 Optimization Presentation 2

Sachin Goyal (EE18MTECH11015), Subhra Shankha Bhattacherjee (EE19MTECH01008)

February 28, 2019

Question:

38) The following table gives the cost matrix of a transportation problem

The basic feasible solution given by $x_{11} = 3$, $x_{13} = 1$, $x_{23} = 6$, $x_{31} = 2$, $x_{32} = 5$ is

- 1. degenerate and optimal
- 2. optimal but not degenerate
- 3. degenerate but not optimal
- 4. neither degenerate nor optimal

Theoretical Solution:

Check for degeneracy:

To check whether the solution is non-degenerate,

m+n-1 = number of allocated cells,

where m and n are the dimension of the cost matrix.

Given cost matrix is of dimension 3X3.

We calculate m + n - 1 = 3 + 3 - 1 = 5, which is equal to the number of allocated cells i.e. 5.

So, we conclude the problem is non degenerate.

Check for optimality:

We use UV or MODI method to check for optimality. Arrange the cost matrix as follows:

	<i>v</i> ₁	v ₂	<i>V</i> 3
u_1	4	5	6
<i>u</i> ₂	3	2	2
из	1	1	2

Table: 1

and
$$x_{11}=3$$
, $x_{13}=1$, $x_{23}=6$, $x_{31}=2$, $x_{32}=5$, x_{12} , x_{21} , x_{22} , $x_{33}=0$.

To find the u_i and v_j

For allocated cells, we find the u_i and v_j using the formula

$$u_i + v_j = C_{ij} (1)$$

Where C_{ij} are the coefficient of the cost matrix.

Assuming $u_1 = 0$, we find all the values of u and v, the cost matrix table becomes:

	v_1 =4	$v_2 = 4$	<i>v</i> ₃ =6
$u_1 = 0$	4	5	6
<i>u</i> ₂ =-4	3	2	2
<i>u</i> ₃ =-3	1	1	2

Table: 2

Computing penalties

Computing the penalties for the unallocated cells using the following equation.

$$P_{ij} = u_i + v_j - C_{ij} \tag{2}$$

Penalties are
$$P_{12} = -1$$
, $P_{13} = -3$, $P_{22} = -1$, $P_{33} = 1$,

For the feasable solution to be optimal the penalties should be zero or negative. But here we see P_{33} is positive. So the solution is not optimal.

Optimal Solution

We select the unallocated cell with positive penalty and draw a loop in the table starting from that cell through allocated cells.

The loop path: $C_{33}
ightarrow C_{13}
ightarrow C_{11}
ightarrow C_{31}$

We alternately assign (+) and (-) signs to the cells in the loop starting from the first loop being assigned (+).

We select the minimum value of the two negatively assigned cells (in our case $\mathcal{C}_{31}=1$) and subtract this value from the (-) assigned cells and add to the (+) assigned cells.

Optimal Solution

Thus, the new table with new allocated values is:

	<i>v</i> ₁	<i>V</i> ₂	<i>V</i> 3
u_1	4	5	6
<i>u</i> ₂	3	2	2
и3	1	1	2

Table: 1

with
$$x_{11} = 4$$
, $x_{23} = 6$, $x_{31} = 1$, $x_{32} = 5$ and $x_{33} = 1$.

We repeat the above process for finding new u_i and v_j

Optimal Solution

Again assuming $u_1 = 0$, we find all the values using equation (1).

	v ₁ =4	v ₂ =4	<i>v</i> ₃ =5
$u_1 = 0$	4	5	6
$u_2 = -3$	3	2	2
<i>u</i> ₃ =-3	1	1	2

Table: 2

Optimal Solution Found

We find the penalty using equation (2).

$$P_{12} = -1, P_{13} = -1, P_{21} = -2, P_{22} = -1,$$

Thus, we see all the penalties are negative, which satisfies the condition for optimality.

Thus, the optimal values are

$$x_{11} = 4$$
, $x_{23} = 6$, $x_{31} = 1$, $x_{32} = 5$ and $x_{33} = 1$.

Putting these values in the objective funtion $4x_{11} + 5x_{12} + 6x_{13} + 3x_{21} + 2x_{22} + 2x_{23} + x_{31} + x_{32} + 2x_{33}$ yields 36.

Conversion to LP

The cost matrix with demand and supply is:

	D_1	D_2	D_3	
S_1	4	5	6	4
S_2	3	2	2	6
<i>S</i> ₃	1	1	2	7
	5	5	7	

Table: 3

LP Form

We convert the given problem (Table 3) to LP.

Minimize

$$4x_{11} + 5x_{12} + 6x_{13} + 3x_{21} + 2x_{22} + 2x_{23} + x_{31} + x_{32} + 2x_{33}$$
 s.t.

$$x_{11} + x_{12} + x_{13} \le 4 \tag{3}$$

$$x_{21} + x_{22} + x_{23} \le 6 \tag{4}$$

$$x_{31} + x_{32} + x_{33} \le 7 \tag{5}$$

$$-x_{11} - x_{21} - x_{31} \le -5 \tag{6}$$

$$-x_{12} - x_{22} - x_{32} \le -5 \tag{7}$$

$$-x_{31} - x_{23} - x_{33} \le -7 \tag{8}$$

$$-x_{11},\ldots,-x_{33}\leq 0$$
 (9)

Code using CVXPY

```
from cvxpv import *
from numpy import matrix
A = matrix([
[1,1,1,0,0,0,0,0,0,0],
[0,0,0,1,1,1,0,0,0],
[0.0.0.0.0.0.1.1.1].
[-1.0.0.-1.0.0.-1.0.0].
[0,-1,0,0,-1,0,0,-1,0],
[0.0.-1.0.0.-1.0.0.-1]
[-1.0.0.0.0.0.0.0.0.0].
[0,-1,0,0,0,0,0,0,0].
[0.0,-1.0,0.0,0.0,0.0].
[0.0.0.-1.0.0.0.0.0.0].
[0.0.0.0.-1.0.0.0.0].
[0,0,0,0,0,-1,0,0,0],
[0,0,0,0,0,0,-1,0,0],
[0,0,0,0,0,0,0,-1,0],
[0,0,0,0,0,0,0,0,-1]])
b = matrix([4,6,7,-5,-5,-7,0,0,0,0,0,0,0,0,0])
c=matrix([4.0, 5.0, 6.0, 3.0,
2.0 , 2.0 , 1.0 , 1.0 , 2.0])
x = Variable(9,1)
#Cost function
f = c*x
obj = Minimize(f)
#Constraints
constraints = [A*x <= b.transpose()]</pre>
#soLution
Problem(obj, constraints).solve()
```

Result

Thus, we see these values matches our theoretical solution.