BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2016-2017 Course Handout (Part II)

Date: 1/8/2016

In addition to Part I (General Handout for all courses appended to the time table), this portion gives farther details regarding the course:

Course No. : CHEM F213

Course Title : Physical Chemistry-II

Instructor-in charge : **K. Sumithra** Instructor : **G. Sundar**

Scope and Objective: The principles of quantum mechanics will be introduced, and application to problems in electronic structure of atoms, chemical bonding and spectroscopy will be discussed.

Text Books: 'Quantum Chemistry', Donald A. McQuarrie, University Science Books (First Indian Edition 2003, Viva Books Private Limited).

Reference Books:

- (a) 'Quantum Chemistry', Ira N Levine, 5th ed., PHI (2008).
- (b) Physical Chemistry', P W Atkins & Julio de Paula, 8th ed., OUP (2006).
- (c) 'Introduction to Quantum Mechanics with applications to Chemistry', Linus Pauling and E. Bright Wilson, Jr., Dover (1962)

Course Plan:

Lect.	Topics	Learning Objectives	Ref. to text
No.			
	Development of Qua		
1-2	Origins of Quantum	Blackbody Radiation, Photoelectric Effect, Atomic	1.1-1.10
	Theory	Vibration in Crystals, Line Spectra & Bohr Model of	
		H Atom.	
3	Wave-Particle	De Broglie's postulate, Heisenberg Uncertainty	1.11-1.14
	Duality	Principle	
4-5	The Wave Equation	Normal modes, superposition, Fourier series	2.1-2.5
6-8	Postulates of	Wave function,, Operators and Observables,	3.1-3.4,
	Quantum	Schrodinger equation, Time Evolution and Stationary	3.7,8,11, 4.1-4.9
	Mechanics	States, Uncertainty	
	Some Exactly Solvab		
9-10	Particle in a Box	Bound States, Zero Point Energy, Symmetry,	3.4-3.11, 6.1-6.2
		Superposition States, Degeneracy in 2 and 3	
		dimensions	
11-12	Finite Potential	Bound States in Wells, Probability Current,	Class Notes,
	Wells and Barriers	Reflection and Tunneling	Ref (b) 12.3
13-15	Harmonic Oscillator	Eigenstates, Molecular Vibration	5.1-5.13
16-18	Angular Momentum	Energy levels, Commutation Relations and	6.3-6.7, 6.10
	and Rigid Rotator	Wavefunctions, Molecular Rotation	
19-20	The Hydrogen atom	Energy levels, Wavefunctions – Angular and Radial	6.8-6.11
	_	Parts, Orbitals	

	Approximation Methods						
21-23	Variation Method	Variation theorem, application including Linear Variation	6.12, 7.3-7.7, 8.1,2				
24-25	Stationary State	Systematic Correction of Wavefunctions and	7.1,2, 8.2				
	Perturbation Theory	Energies, Treatment of Degenerate States	Ref (a) 9.1-7				
	Many Electron Aton	any Electron Atoms					
26-27	Many Electron Wavefunctions	Systems of Identical Particles, Spin & Permutation Symmetry, Pauli Principle, Slater Determinants	8.4-6				
28	SCF Method	Hartree and Hartree-Fock Methods, Periodicity	8.3,7,8				
29-30	Atomic Terms and Spectra	tomic Terms and Addition of Angular Momenta, Spin-Orbit					
	Molecules						
31	Born-Oppenheimer Approximation	Separation of nuclear and electronic motion	9.1				
32-33	Valence Bond Theory – H ₂	Localized Electron Pair Bonds	9.2-9.5				
34-35	Molecular Orbital Theory – H ₂ ⁺ , H ₂	Linear Combination of Atomic Orbitals, Comparison to VB Picture	9.6-9.8				
36-37	Homonuclear Diatomic Molecules	Molecular Electronic Configuration, SCF-LCAO-MO Wavefunctions, Molecular Terms	9.9-9.15				
38-40	Hückel MO theory	π -electron approximation for conjugated systems, energies and delocalization, charge distribution and bond orders					
41-42	Molecular Spectroscopy	Vibration-Rotation Spectra, Selection Rules, Electronic Spectra and the Franck-Condon Principle	10.1-10.18				

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Remarks
Assignments *		20	Continuous	*
Test 1	60 min.	20	8/9/2016, 11:30-12:30 pm	СВ
Test 2	60 min.	20	25/10/2016, 11:30-12:30 pm	CB
Comprehensive Examination	3 hrs.	40	7/12/2016 (AN)	CB

^{*} Assignments will be evaluated continuously along with the lecture classes and averaged to 20% of total marks.

Note: Active and regular participation in the class room discussions is expected from each student.

Make-up policy: for genuine cases only

Chamber consultation hour: Monday 11am -12 pm

Notices concerning the course will be displayed on the Chemistry Department Notice Board and CMS.

Instructor-in-Charge CHEM F213