DESTRUCTION OF THE KONDO CLOUD IN THE GENERALISED SIAM: Unitary RG Perspective

arXiv:2111.10580v2[cond-mat.str-el]

ABHIRUP MUKHERJEE 1, SIDDHARTHA LAL 1

¹DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA

FEBRUARY 17, 2022

THE GENERALISED SIAM MODEL

THE MODEL

$$H = \sum_{k\sigma} \epsilon_k \tau_{k\sigma} + V \sum_{k\sigma} \left(c_{d\sigma}^{\dagger} c_{k\sigma} + \text{h.c.} \right) - \frac{1}{2} U \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + J \vec{S}_d \cdot \vec{s} + K \vec{C}_d \cdot \vec{C}$$

supplement 1-particle hybridisation with **spin-exchange** and **charge isospin-exchange**

Schrieffer and Wolff 1966; Anderson 1961.

THE MODEL

$$H = \sum_{k\sigma} \epsilon_k \tau_{k\sigma} + V \sum_{k\sigma} \left(c_{d\sigma}^{\dagger} c_{k\sigma} + \text{h.c.} \right) - \frac{1}{2} U \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + J \vec{S}_d \cdot \vec{s} + K \vec{C}_d \cdot \vec{C}$$

$$C_{d}^{z} = \frac{1}{2}(\hat{n}_{d} - 1)$$

$$C_{d}^{+} = c_{d\uparrow}^{\dagger} c_{d\downarrow}^{\dagger}$$

$$C_{d}^{-} = c_{d\downarrow} c_{d\uparrow}$$

$$C_{d}^{+} = c_{d\downarrow} c_{d\uparrow}$$

$$C_{d}^{+} = c_{d\downarrow} c_{d\uparrow}$$

$$C_{d}^{-} = c_{d\downarrow} c_{d\uparrow}$$

$$C_{d}^{+} = c_{d\downarrow} c_{d\uparrow}$$

$$C_{d}^{-} = c_{d\downarrow} c_{d\uparrow}$$

Schrieffer and Wolff 1966; Anderson 1961.

U > O (J > O, K < O): FLOW TOWARDS STRONG-COUPLING

$$J
ightarrow \mathbf{AFM}, \quad K
ightarrow \mathbf{FM}$$

$$d_0 = \omega - \frac{D}{2} - \frac{U}{2} + \frac{K}{4}, \quad d_1 = \omega - \frac{D}{2} + \frac{U}{2} + \frac{J}{4}, \quad d_2 = \omega - \frac{D}{2} + \frac{J}{4}, \quad d_3 = \omega - \frac{D}{2} + \frac{K}{4}$$

$$\Delta V = \frac{3n_{j}VJ}{8} \left(\frac{1}{|d_{2}|} + \frac{1}{|d_{1}|}\right) > O$$

$$\Delta J = \frac{n_{j}J^{2}}{|d_{2}|} > O$$

$$\Delta K = \frac{n_{j}K^{2}}{|d_{3}|} > O$$

$$10^{1}$$

$$\frac{U_{0}/D_{0} = 0.1}{V_{0}/D_{0} = 0.01}$$

$$\frac{U_{0}/D_{0} = 0.1}{J_{0}/D_{0} = 0.005}$$

$$\frac{S}{10^{-1}}$$

$$\frac{U_{0}/D_{0} = 0.1}{J_{0}/D_{0} = 0.005}$$

$$\frac{S}{10^{-1}}$$

$$\frac{U_{0}/D_{0} = 0.1}{J_{0}/D_{0} = 0.005}$$

$$\frac{S}{10^{-1}}$$

$$\frac$$

(K is irrelevant)

U > O (J > O, K < O): FLOW TOWARDS STRONG-COUPLING

 $J \rightarrow$ AFM, $K \rightarrow$ FM

V < I

U > 0 FIXED POINT HAMILTONIAN

$$H^* = \sum_{k < k^*, \sigma} \epsilon_k \hat{n}_{k\sigma} + \frac{U^*}{2} \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + J^* \vec{S}_d \cdot \vec{s}_{<}$$

$$+ V^* \sum_{k < k^*, \sigma} \left(c_{d\sigma}^{\dagger} c_{k\sigma} + \text{h.c.} \right)$$

$$= \text{IOMs}$$

$$E < E_F$$

$$E > E_F$$

$$\vec{S}_{<} = \frac{1}{2} \sum_{k, k' < k^*} c_{k\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{k', \beta}$$

ZERO-BANDWIDTH LIMIT OF FIXED POINT

HAMILTONIAN

ZERO-BANDWIDTH LIMIT OF FIXED POINT HAMILTONIAN

Route to the zero-bandwidth model

At strong-coupling fixed point,

- kinetic energy acts as a perturbation
- compress the bandwidth to just the Fermi surface

$$H_{\text{zero bw}}^* = (\epsilon_F - \mu) \, \hat{n}_{k_F} + \frac{U^*}{2} \, (\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow})^2 + V^* \sum_{\sigma} \left(c_{d\sigma}^{\dagger} c_{O\sigma} + \text{h.c.} \right) + J \vec{S}_d \cdot \vec{S}_O$$
(center of motion)

■ Setting
$$\mu$$
 = ϵ_F gives a **two-site model**

$$H_{\rm zero}^* = \frac{U^*}{2} \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + V^* \sum_{\sigma} \left(c_{d\sigma}^{\dagger} c_{o\sigma} + \text{h.c.} \right) + J \vec{S}_d \cdot \vec{S}_0$$

ZERO-BANDWIDTH LIMIT OF FIXED POINT HAMILTONIAN

Effective two-site problem

$$|\Psi\rangle_{gs} = \frac{c_s}{\sqrt{2}} (|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle) + \frac{\sqrt{1-c_s^2}}{\sqrt{2}} (|2,0\rangle + |0,2\rangle), \quad c_s \to 1 \text{ as } D \to \infty$$

Effective Hamiltonian in singlet subspace

We treat the dispersion as a real-space nearest neighbour hopping.

$$H^* = -\frac{U}{2} \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + J^* \vec{S}_d \cdot \vec{s}_0$$

$$+ V \sum_{\sigma} \left(c^{\dagger}_{d\sigma} c_{0\sigma} + \text{h.c.} \right)$$

$$- t \sum_{i\sigma} \left(c^{\dagger}_{i\sigma} c_{i+1,\sigma} + \text{h.c.} \right)$$

Effective Hamiltonian in singlet subspace

Initially consider **just the first site**. Treat **hopping as perturbation**:

$$|\Psi\rangle_{GS}^* = c_s |SS\rangle + \sqrt{1 - c_s^2} |CT, o\rangle$$

$$V = -t \sum_{\sigma} \left(c_{O\sigma}^{\dagger} c_{1,\sigma} + \text{h.c.} \right)$$

Effective Hamiltonian in singlet subspace

Upto **fourth order**, effective Hamiltonian is

$$H_{ ext{eff}}^*$$
 = constant + $lpha \mathcal{P}_{ ext{charge}}$
 $\mathcal{P}_{ ext{charge}} \longrightarrow ext{projector onto } \hat{n}_1
eq 1$

- For $U \ll V \ll J$, we get $o < \alpha \ll 1$
- a very weak local FL on 1st site

SIGNATURES OF BREAKDOWN OF SCREENING -

JOURNEY TOWARDS LOCAL MOMENT PHASE

- We will work with a Hilbert space of (6+1=) **7 sites**
- **Recreate RG flow** by tuning the parameters U, V, J
- Observe various measures of entanglement and correlation along this variation

Breakdown of renormalised perturbation theory

Perturbation parameter, zero mode gap and local FL strength

DESTRUCTION OF KONDO CLOUD

Mutual information within the Kondo cloud

■ loss of spin-flip scattering and **disappearance of Kondo cloud**

DESTRUCTION OF KONDO CLOUD

Many-particle correlations in k-space

■ loss of entanglement within the K cloud, breakdown of screening

Mutual information in real space

■ d and o disentangle, o gets entangled with the lattice

Impurity entanglement entropy

■ impurity site disentangles from the lattice

Real space spin-spin correlations

- impurity **spin compensation vanishes** (loss of screening)
- Spin correlation between o and 1 increases

Real space diagonal and off-diagonal correlations

- Correlations between o and 1 increase
- Result of tight-binding hopping **breaking the singlet**

Variation of real-space correlations with distance

- Correlations fall off with distance
- Even sites are AFM in correlation, odd sites are FM

VARIATION OF SPECTRAL FUNCTION

WHAT'S HAPPENING?

■ Rewinding the RG flow shows the **decoupling** of the impurity site.

- Rewinding the RG flow shows the **decoupling** of the impurity site.
- When used as an auxiliary model, this a **metal-insulator transition**.

- Rewinding the RG flow shows the **decoupling** of the impurity site.
- When used as an auxiliary model, this a **metal-insulator transition**.
- Stabilising the insulating phase under RG still remains to be done.

- Rewinding the RG flow shows the **decoupling** of the impurity site.
- When used as an auxiliary model, this a **metal-insulator transition**.
- Stabilising the insulating phase under RG still remains to be done.
- For this, we will insert a **Hubbard term on the zeroth site**, and check the RG flows.

OTHER MEASURES OF CORRELATION IN GEN.

SIAM

REAL SPACE CORRELATIONS

REAL SPACE CORRELATIONS AS FUNCTIONS OF DISTANCE

MEASURES OF CORRELATION IN PURE SIAM

Breakdown of renormalised perturbation theory

Perturbation parameter, zero mode gap and local FL strength

DESTRUCTION OF KONDO CLOUD

Mutual information within the Kondo cloud

DESTRUCTION OF KONDO CLOUD

Many-particle correlations in k-space

Mutual information in real space

Impurity entanglement entropy

Real space spin-spin correlations

Real space off-diagonal 1-particle and 2-particle correlations

Real space diagonal correlations

Variation of real-space correlations with distance

IMPURITY SPECTRAL FUNCTION (GEN. SIAM)

Formed Kondo cloud Hamiltonian

$$V_{1234} = \left(\epsilon_{k_1} - \epsilon_{k_3}\right) \left[1 - \frac{2}{J^*} \left(\epsilon_{k_3} - \epsilon_{k_1} + \epsilon_{k_2} + \epsilon_{k_4}\right)\right]$$

- Mixture of Fermi liquid and two-particle off-diagonal scattering term
- Fermi liquid part: result of Ising scattering
- 2P off-diagonal term: Non-Fermi liquid in character result of spin-flip scattering
- NFL part **leads to screening** and formation of singlet

Impurity specific heat

■ Fermi-liquid part renormalises one-particle self-energy

$$\bar{\epsilon}_k = \epsilon_k + \Sigma_k$$

$$\epsilon_{R} = \epsilon_{R} + \Sigma_{R}$$

$$\Sigma_{R} = \sum_{R'\sigma'} \frac{\epsilon_{R'}\epsilon_{R}}{J^{*}} \delta n_{R',\sigma'}$$

■ Fermi-liquid part reno **Implierity specific heat** $C_V = \gamma \times T$ one-particle **self-energy**

$$\bar{\epsilon}_{k} = \epsilon_{k} + \Sigma_{k}$$

$$\Sigma_{k} = \sum_{k'\sigma'} \frac{\epsilon_{k'}\epsilon_{k}}{J^{*}} \delta n_{k',\sigma'}$$

 \blacksquare Compute renormalisation in C_V :

$$C_{\text{imp}} = \sum_{k,\sigma} \frac{1}{T^2} \left[\frac{(\bar{\epsilon}_k)^2 e^{\beta \bar{\epsilon}_k}}{(e^{\beta \bar{\epsilon}_k} + 1)^2} - \frac{(\epsilon_k)^2 e^{\beta \epsilon_k}}{(e^{\beta \epsilon_k} + 1)^2} \right]$$

Wilson 1975; Andrei, Furuya, and Lowenstein 1983; Wiegmann 1981.

$R = \frac{\chi}{\gamma}$

$$\chi(T \rightarrow 0) = \frac{1}{2J^*}$$

$$\gamma(T \rightarrow 0) = \frac{1}{4J^*}$$

R saturates to 2 as $T \rightarrow 0$

Wilson ratio

Wilson 1975; Andrei, Furuya, and Lowenstein 1983; Wiegmann 1981.