

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
LASDIDA E	рограммное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работа №2 по курсу «Математическая статистика» на тему: «Интервальные оценки»

Студент	ИУ7-63Б (Группа)	_	(Подпись, дата)	Лысцев Н. Д. (И. О. Фамилия)
Преподава	атель	_	(Подпись, дата)	Власов П. А. (И. О. Фамилия)

СОДЕРЖАНИЕ

1	Зад	ание	3		
2	2 Теоретические сведения				
	2.1	Определение γ -доверительного интервала для значения пара-			
		метра распределения случайной величины	4		
	2.2	Формулы для вычисления границ γ -доверительного интерва-			
		ла для математического ожидания и дисперсии нормальной			
		случайно величины	4		
3	Тек	ст программы	6		
4	Рез	ультаты расчетов для выборки из индивидуального вари-			
	энт	a	q		

1 Задание

Цель работы: построение доверительных интервалов для математического ожидания и дисперсии нормальной случайной величины.

Содержание работы

- 1. Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ
 - а) вычисление точечных оценок $\hat{\mu}(\vec{x}_n)$ и $S^2(\vec{x}_n)$ математического ожидания MX и дисперсии DX соответственно;
 - б) вычисление нижней и верхней границ $\underline{\mu}(\vec{x}_n)$, $\overline{\mu}(\vec{x}_n)$ для γ -доверительного интервала для математического ожидания MX;
 - в) вычисление нижней и верхней границ $\underline{\sigma}^2(\vec{x}_n)$, $\overline{\sigma}^2(\vec{x}_n)$ для γ -доверительного интервала для дисперсии $\mathrm{D}X$.
- 2. вычислить $\hat{\mu}$ и S^2 для выборки из индивидуального варианта;
- 3. для заданного пользователем уровня доверия γ и N объема выборки индивидуального варианта:
 - а) на координатной плоскости Oyn построить прямую $y = \hat{\mu}(\vec{x}_N)$, также графики функций $y = \hat{\mu}(\vec{x}_n)$, $y = \underline{\mu}(\vec{x}_n)$ и $y = \overline{\mu}(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N.
 - б) на другой координатной плоскости Ozn построить прямую $z=S^2(\vec{x}_N)$, также графики функций $z=S^2(\vec{x}_n)$, $z=\underline{\sigma}^2(\vec{x}_n)$ и $z=\overline{\sigma}^2(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N.

2 Теоретические сведения

2.1 Определение γ -доверительного интервала для значения параметра распределения случайной величины

Пусть X — случайная величина, закон распределения которой известен с точностью до неизвестного параметра θ .

Опр. Интервальной оценкой с уровнем доверия $\gamma \in (0,1)$ параметра θ называется пара статистик $\underline{\theta}(\vec{X})$ и $\overline{\theta}(\vec{X})$ таких, что выполняется равенство:

$$P\{\underline{\theta}(\vec{X}) < \theta < \overline{\theta}(\vec{X})\} = \gamma. \tag{2.1}$$

Опр. Доверительным интервалом с уровнем доверия γ для параметра θ называется интервал $(\underline{\theta}(\vec{x}), \overline{\theta}(\vec{x}))$, отвечающий выборочным значениям статистики $\underline{\theta}, \overline{\theta}$, задающих оценку уровня γ для θ .

2.2 Формулы для вычисления границ γ - доверительного интервала для математического ожидания и дисперсии нормальной случайно величины

Пусть $X \sim N(\mu, \sigma^2)$, где μ и σ^2 — неизвестны.

Тогда для построения γ -доверительного интервала для μ используется центральная статистика

$$T(\vec{X}, \mu) = \frac{\mu - \overline{X}}{S(\vec{X})} \sqrt{n} \sim St(n-1), \tag{2.2}$$

и границы γ -доверительного интервала для μ вычисляются по формулам:

$$\underline{\mu}(\vec{X}) = \overline{X} - \frac{S(\vec{X})t_{\frac{1+\gamma}{2}}^{(n-1)}}{\sqrt{n}},\tag{2.3}$$

$$\overline{\mu}(\vec{X}) = \overline{X} + \frac{S(\vec{X})t_{\frac{1+\gamma}{2}}^{(n-1)}}{\sqrt{n}},\tag{2.4}$$

где
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $S(\vec{X}) = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$,

 $t_{\frac{1+\gamma}{2}}^{(n-1)}$ — квантиль уровня $\frac{1+\gamma}{2}$ распределения Стьюдента с n-1 степенями свободы,

n — объем выборки.

Для построения γ -доверительного интервала для σ^2 используется центральная статистика

$$T(\vec{X}, \sigma^2) = \frac{(n-1)S^2(\vec{X})}{\sigma^2} \sim \chi^2(n-1),$$
 (2.5)

и границы γ -доверительного интервала для σ^2 вычисляются по формулам:

$$\underline{\sigma}^{2}(\vec{X}) = \frac{(n-1)S^{2}(\vec{X})}{h_{\frac{1+\gamma}{2}}^{(n-1)}},$$
(2.6)

$$\overline{\sigma}^2(\vec{X}) = \frac{(n-1)S^2(\vec{X})}{h_{\frac{1-\gamma}{2}}^{(n-1)}},$$
(2.7)

где n — объем выборки,

$$S^{2}(\vec{X}) = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2},$$

 $h_{\frac{1+\gamma}{2}}^{(n-1)}$ и $h_{\frac{1-\gamma}{2}}^{(n-1)}$ — квантили уровня $\frac{1+\gamma}{2}$ и $\frac{1-\gamma}{2}$ соответственно распределения хи-квадрат с n-1 степенями свободы.

3 Текст программы

Листинг 3.1 – Текст программы (начало)

```
function lab_02()
x = load("sel.txt");
N = length(x);
fprintf("\n1.a) вычисление оценок mu и S_quad " + ...
    "математического ожидания МХ и дисперсии DX
      соответственно \n");
mu = sum(x) / N;
S_quad = sum((x - mu) .^2) / (N - 1);
fprintf("\nmu = %.4f\n", mu);
fprintf("\nS_quad = \%.4f\n", S_quad);
gamma = 0.9;
fprintf("\n1.6) вычисление нижней и верхней границдля " + ...
    "датта-доверительного интервала для математического ожидания
      MX \setminus n");
quant_St = tinv((1 + gamma) / 2, N - 1);
mu_lower = mu - (sqrt(S_quad) * quant_St / sqrt(N));
mu_upper = mu + (sqrt(S_quad) * quant_St / sqrt(N));
fprintf("\nНижняя граница gamma-доверительного " + ...
    "интервала для mu = %.4f\n", mu_lower);
fprintf("Верхняя граница gamma-доверительного " + ...
    "интервала для mu = %.4f\n", mu_upper);
fprintf("\ngamma-доверительный интервал для mu: " + ...
    "(%.4f, %.4f)\n", mu_lower, mu_upper);
fprintf("\n1.в) вычисление нижней и верхней границ для " + ...
    "gamma-доверительного интервала для дисперсии DX\n");
quant_chi1 = chi2inv((1 - gamma) / 2, N - 1);
```

Листинг 3.2 – Текст программы (продолжение)

```
quant_chi2 = chi2inv((1 + gamma) / 2, N - 1);
sigma_lower = S_quad * (N - 1) / quant_chi2;
sigma_upper = S_quad * (N - 1) / quant_chi1;
fprintf("\nНижняя граница gamma-доверительного интервала " + ...
    "для sigma = %.4f\n", sigma_lower);
fprintf("Верхняя граница gamma-доверительного интервала " + ...
    "для sigma = %.4f\n", sigma_upper);
fprintf("\ngamma-доверительный интервал для " + ...
    "sigma: (\%.4f, \%.4f)\n", sigma_lower, sigma_upper);
mu_N = zeros(N, 1) + mu;
mu_n = zeros(N, 1);
mu_lower_n = zeros(N, 1);
mu_upper_n = zeros(N, 1);
S_quad_N = zeros(N, 1) + S_quad;
S_quad_n = zeros(N, 1);
S_quad_lower_n = zeros(N, 1);
S_quad_upper_n = zeros(N, 1);
for i = 1 : N
   mu_n(i) = sum(x(1:i)) / i;
    S_{quad_n(i)} = sum((x(1 : i) - mu_n(i)) .^2) / (i - 1);
    quant_st_i = tinv((1 + gamma) / 2, i - 1);
   mu_lower_n(i) = mu_n(i) - (quant_st_i * sqrt(S_quad_n(i)) /
      sqrt(i));
   mu_upper_n(i) = mu_n(i) + (quant_st_i * sqrt(S_quad_n(i)) /
      sqrt(i));
    quant_chi1_i = chi2inv((1 - gamma) / 2, i - 1);
    quant_chi2_i = chi2inv((1 + gamma) / 2, i - 1);
    S_quad_lower_n(i) = S_quad_n(i) * (i - 1) / quant_chi2_i;
    S_quad_upper_n(i) = S_quad_n(i) * (i - 1) / quant_chi1_i;
end
```

Листинг 3.3 – Текст программы (конец)

```
fprintf('\nЗадание 3.a)\n');
fprintf('График в отдельном окне\n');
plot((1 : N), mu_N, 'r', 'LineWidth', 1);
hold on;
plot((1 : N), mu_n, 'g', 'LineWidth', 1);
hold on;
plot((1 : N), mu_lower_n, 'b', 'LineWidth', 1);
hold on;
plot((1 : N), mu_upper_n, 'k', 'LineWidth', 1);
hold on;
grid on;
xlabel("n");
ylabel('\mu');
legend('\mu\^(x_N)', '\mu\^(x_n)', '\mu^{-}(x_n)',
  '\mu_{-}(x_n)');
fprintf('\nЗадание 3.6)\n');
fprintf('График в отдельном окне\n');
figure()
plot((1 : N), S_quad_N, 'r', 'LineWidth', 1);
hold on;
plot((1 : N), S_quad_n, 'g', 'LineWidth', 1);
hold on;
plot((1 : N), S_quad_lower_n, 'b', 'LineWidth', 1);
hold on;
plot((1 : N), S_quad_upper_n, 'k', 'LineWidth', 1);
hold on;
grid on;
xlabel("n");
ylabel('\sigma');
legend('S^2(x_N)', 'S^2(x_n)', '\sigma^{2} -}(x_n)',
  '\sigma^2_{-}(x_n)');
end
```

4 Результаты расчетов для выборки из индивидуального варианта

Листинг 4.1 – Результаты расчетов для выборки из индивидуального варианта

```
1.a) вычисление оценок mu и S_quad математического ожидания МХ и
  дисперсии DX соответственно
mu = -3.6762
S_quad = 0.8664
1.6) вычисление нижней и верхней границдля датта-доверительного
  интервала для математического ожидания МХ
Нижняя граница дамма-доверительного интервала для ми = -3.8170
Верхняя граница датма-доверительного интервала для ти = -3.5353
gamma-доверительный интервал для mu: (-3.8170, -3.5353)
1.в) вычисление нижней и верхней границ для дамма-доверительного
  интервала для дисперсии DX
Нижняя граница gamma-доверительного интервала для sigma = 0.7088
Верхняя граница gamma-доверительного интервала для sigma = 1.0875
gamma-доверительный интервал для sigma: (0.7088, 1.0875)
Задание 3.а)
График в отдельном окне
Задание 3.6)
График в отдельном окне
```


Рисунок 4.1 – Прямая $y=\hat{\mu}(\vec{x}_N)$ и графики функций $y=\hat{\mu}(\vec{x}_n),\,y=\underline{\mu}(\vec{x}_n)$ и $y=\overline{\mu}(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N

Рисунок 4.2 – Прямая $z=S^2(\vec{x}_N)$ и графики функций $z=S^2(\vec{x}_n),\,z=\underline{\sigma}^2(\vec{x}_n)$ и $z=\overline{\sigma}^2(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N