Double- and Half-Angle Identities

Use a double-angle identity to find the exact value of each expression.

1) sin 120°

2) tan 60°

3) $\cos \frac{4\pi}{3}$

4) $\sin \frac{5\pi}{3}$

Use a half-angle identity to find the exact value of each expression.

5) tan 45°

6) sin 165°

7) $\sin \frac{5\pi}{6}$

8) $\cos 30^{\circ}$

Use a double-angle or half-angle identity to find the exact value of each expression.

9) $\cot \frac{\pi}{3}$

10) $\cot \frac{2\pi}{3}$

11) $\sec \frac{5\pi}{12}$

12) cot 60°

13) cot 240°

14) $\cot \frac{5\pi}{3}$

15)
$$\sin \theta = -\frac{7}{25}$$
 and $270^{\circ} < \theta < 360^{\circ}$
Find $\cos \frac{\theta}{2}$

16)
$$\cos \theta = \frac{1}{3} \text{ and } 0^{\circ} < \theta < 90^{\circ}$$

Find $\sin 2\theta$

17)
$$\cos \theta = \frac{4}{5}$$
 and $270^{\circ} < \theta < 360^{\circ}$
Find $\sin 2\theta$

18)
$$\cos \theta = \frac{2\sqrt{5}}{5}$$
 and $0^{\circ} < \theta < 90^{\circ}$
Find $\sin \frac{\theta}{2}$

19)
$$\cos \theta = -\frac{4}{5}$$
 and $90^{\circ} < \theta < 180^{\circ}$
Find $\sin \frac{\theta}{2}$

20)
$$\cos \theta = -\frac{15}{17}$$
 and $180^{\circ} < \theta < 270^{\circ}$
Find $\tan \frac{\theta}{2}$

21)
$$\tan \theta = -\frac{7}{24}$$
 and $\frac{3\pi}{2} < \theta < 2\pi$
Find $\cot \frac{\theta}{2}$

22)
$$\cot \theta = \frac{4}{3} \text{ and } \pi < \theta < \frac{3\pi}{2}$$

Find $\sin 2\theta$

23)
$$\cot \theta = \frac{4}{3}$$
 and $\pi < \theta < \frac{3\pi}{2}$
Find $\cot 2\theta$

24)
$$\tan \theta = 2$$
 and $0 < \theta < \frac{\pi}{2}$
Find $\sin \frac{\theta}{2}$

25)
$$\sin \theta = -\frac{3}{5}$$
 and $\frac{3\pi}{2} < \theta < 2\pi$
Find $\tan \frac{\theta}{2}$

26)
$$\cot \theta = -\frac{3\sqrt{91}}{91}$$
 and $\frac{3\pi}{2} < \theta < 2\pi$
Find $\sin \frac{\theta}{2}$

Double- and Half-Angle Identities

Use a double-angle identity to find the exact value of each expression.

1) sin 120°

$$\frac{\sqrt{3}}{2}$$

2) tan 60°

$$\sqrt{3}$$

3) $\cos \frac{4\pi}{3}$

$$-\frac{1}{2}$$

4) $\sin \frac{5\pi}{3}$

$$-\frac{\sqrt{3}}{2}$$

Use a half-angle identity to find the exact value of each expression.

5) tan 45°

1

6) sin 165°

$$\frac{\sqrt{6}-\sqrt{2}}{4}$$

7) $\sin \frac{5\pi}{6}$

$$\frac{1}{2}$$

8) cos 30°

$$\frac{\sqrt{3}}{2}$$

Use a double-angle or half-angle identity to find the exact value of each expression.

9) $\cot \frac{\pi}{3}$

$$\frac{\sqrt{3}}{3}$$

10)
$$\cot \frac{2\pi}{3}$$

11) $\sec \frac{5\pi}{12}$

$$\sqrt{6} + \sqrt{2}$$

12) cot 60°

$$\frac{\sqrt{3}}{3}$$

13) cot 240°

$$\frac{\sqrt{3}}{3}$$

14) $\cot \frac{5\pi}{3}$

$$-\frac{\sqrt{3}}{2}$$

15)
$$\sin \theta = -\frac{7}{25}$$
 and $270^{\circ} < \theta < 360^{\circ}$
Find $\cos \frac{\theta}{2}$

$$-\frac{7\sqrt{2}}{10}$$

17)
$$\cos \theta = \frac{4}{5}$$
 and $270^{\circ} < \theta < 360^{\circ}$
Find $\sin 2\theta$

$$-\frac{24}{25}$$

19)
$$\cos \theta = -\frac{4}{5}$$
 and $90^{\circ} < \theta < 180^{\circ}$
Find $\sin \frac{\theta}{2}$

$$\frac{3\sqrt{10}}{10}$$

21)
$$\tan \theta = -\frac{7}{24}$$
 and $\frac{3\pi}{2} < \theta < 2\pi$
Find $\cot \frac{\theta}{2}$

23)
$$\cot \theta = \frac{4}{3} \text{ and } \pi < \theta < \frac{3\pi}{2}$$
Find $\cot 2\theta$

25)
$$\sin \theta = -\frac{3}{5} \text{ and } \frac{3\pi}{2} < \theta < 2\pi$$
Find $\tan \frac{\theta}{2}$

16)
$$\cos \theta = \frac{1}{3} \text{ and } 0^{\circ} < \theta < 90^{\circ}$$
Find $\sin 2\theta$

$$\frac{4\sqrt{2}}{9}$$

18)
$$\cos \theta = \frac{2\sqrt{5}}{5}$$
 and $0^{\circ} < \theta < 90^{\circ}$
Find $\sin \frac{\theta}{2}$

$$\frac{\sqrt{50 - 20\sqrt{5}}}{10}$$

20)
$$\cos \theta = -\frac{15}{17}$$
 and $180^{\circ} < \theta < 270^{\circ}$
Find $\tan \frac{\theta}{2}$

22)
$$\cot \theta = \frac{4}{3} \text{ and } \pi < \theta < \frac{3\pi}{2}$$
Find $\sin 2\theta$

$$\frac{24}{25}$$

24)
$$\tan \theta = 2$$
 and $0 < \theta < \frac{\pi}{2}$
Find $\sin \frac{\theta}{2}$

$$\frac{\sqrt{50 - 10\sqrt{5}}}{10}$$

26)
$$\cot \theta = -\frac{3\sqrt{91}}{91}$$
 and $\frac{3\pi}{2} < \theta < 2\pi$
Find $\sin \frac{\theta}{2}$

$$\frac{\sqrt{35}}{10}$$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com