《电机与拖动》实验

实验二 单相变压器参数测定

专业/班级 自动化/自动191

学号/姓名 2019308130215/孟令昶

报告日期 _____2021年10月31日___

中国农业大学信息与电气工程学院

一. 实验项目

- 1.空载实验 测取空载特性 $U_0=f(I_0)$, $P_0=f(U_0)$ 。
- 2.短路实验 测取短路特性 $U_{sh}=f(I_{sh})$, $P_{sh}=f(I_{sh})$ 。

二. 实验目的

1. 通过空载和短路实验测定变压器的变比、参数、铁损耗、铜损耗

三. 实验设备及仪器

MATLAB 软件 R2016b

四. 实验方法

- 1. 空载实验
 - (1) 电路原理如图 1-1

图 1-1 空载电路原理图

(2) 实验步骤

按表 1-1 寻找元件, 按图 1-2 即电气结构图连接电路

表 1-1 元件表(Matlab R2016b 更改后的路径)

元件名称	图形	出处
电压表	Voltage Measurement	Powerlib/Measurements/Voltage Measurement
电流表	Current Measurement	Powerlib/Measurements/Current Measurement
功率表	V P	Powerlib_meascontrol /Measurements/Power
交流电压源	AC Voltage Source	Powerlib/Electrical Sources /AC Voltage Source
变压器	Linear Transformer1	Powerlib/Elements /Linear Transformer
示波器	Scope	Simulink/Commonly Used Blocks/ Scope

图 1-2 空载实验电气结构图

注意:此处由于版本问题,Simulink 新版本在做电气仿真时需要添加额外的"powergui"模块,否则电气设备无法正常运行。

因此,本实验空载实验实际电器结构图如图 1-2-1 所示:

图 1-2-1 空载实验实际电器结构图

各元件参数设置如下:

- a. 功率表——如表 1-2 图 a, 频率 50Hz;
- b. 变压器——如表 1-2 图 b, 频率 50Hz, 选单线圈;
- c. 电压源——如表 1-2 图 c, 在 1.2~0.5U_N 的范围内,注意**填写值为峰值**;
- d. 仿真参数——如表 1-2 图 d。

表 1-2 元件参数设置

(3) 实验内容

先取电压源的值为 $1.2U_N$. 逐次降低电源电压,使其在 $1.2~0.5U_N$ 的范围内变化;读取变压器的 U_0 、 I_0 、 P_0 ,共取 6 组数据,记录于表 1-3 中。其中 $U=U_N$ 的点必须测,并在该点附近测的点应密些。电压表、电流表的读数都是有效值,因此峰值处取数要÷根号 2。

序号	实验数据				计算数据			
	$U_0(kV)$	$U_2(kV)$	$I_0(A)$	$P_0(kW)$	k	$R_0(k\Omega)$	$Z_0(k\Omega)$	
1	218.2	509.0	3.324	718.7	1:2.333	65.04	65.65	
2	190.9	445.5	2.909	550.6	1:2.334	65.06	65.63	
3	185.6	432.6	2.825	519.2	1:2.331	65.06	65.71	
4	181.8	424.3	2.770	499.3	1:2.334	65.05	65.62	
5	172.7	403.0	2.631	450.4	1:2.334	65.06	65.63	

表 1-3 空载实验数据

6 145.5 339.4 2.217 319.6 1 : 2.333 65.04 65.61	6	145.5	339.4	2.217	319.6	1:2.333	65.04	65.61
---	---	-------	-------	-------	-------	---------	-------	-------

其中: $k = U_0/U_2$, $R_m \approx R_0 = P_0/I_0^2$, $Z_m = U_0/I_0$

2. 短路实验

(1) 电路原理如图 1-3

图 1-3 短路实验电气结构图

实验时,变压器的高压线圈接电源,低压线圈直接短路。

(2) 实验步骤

按表 1-1 寻找元件,按图 1-4 即电气结构图连接电路

图 1-4 短路实验电气结构图

各元件参数设置及仿真参数设置同空载实验相同,参照表 1-2

此处同样的,也需要添加 powergui 模块,因此实际短路实验的电气结构图如图 1-4-1 所示,参数设置方面,因为在高压侧通电,因此此处需要将空载实验的高低压侧参数再颠倒回原始状态。

图 1-4-1 短路实验实际电器结构图

(3) 实验内容

a. 逐次增加输入电压,直到短路电流等于 $1.1I_N$ 为止。在 $0.5\sim1.1I_N$ 范围内测取变压器的 U_{sh} 、 I_{sh} 、 P_{sh} ,共取 6 组数据记录于表 1-4 中,其中 $I_{sh}=I_N$ 的点必测。**根据设置的参数 IN=589.1A,假设环境温度=室温 25°C**:

序号		实验数据	计算数据		
	U_{sh} (V)	$I_{sh}(A)$	$P_{sh}(W)$	\mathbf{Z}_{sh}	R_{sh}
1	33997.7	295.3	245300	115. 13	2.813
2	42320.3	367.1	380100	115.30	2.821
3	52764.3	458.4	602300	115. 10	2.866
4	56398.8	487.8	680400	115.63	2.860
5	68044.9	589.1	985900	115. 59	2. 845
6	74670.5	648.0	1198000	115. 23	2.853

表 1-4 短路实验数据

其中: $Z_{sh} = U_{sh}/I_N$, $R_{sh} = P_{sh}/I_N^2$

五. 根据实验数据计算

1. 计算变比

根据空载实验测取变压器的一次、二次侧电压的 6 组数据,分别计算出变比,然后取其平均值作为变压器的变比 k,

K1=1: 2.333; K2=1: 2.334; K3=1: 2.331; K4=1: 2.334; K5=1: 2.334; K6=1: 2.333; 平均值 K=(K1+K2+K3+K4+K5+K6)/6=1: 2.333

故 K=1: 2.333

- 2. 绘出空载特性曲线并计算励磁参数
- (1) 绘出空载特性曲线 $U_0=f(I_0)$, $P_0=f(U_0)$

理想的空载特性曲线如下图所示

利用附录中代码 1-1 绘制曲线 $U_0=f(I_0)$,结果如下图 1 所示,标出 U0=UN 时的点,此时 I0=2.77A:

图 1 空载特性曲线 U₀=f(I₀)

利用附录中代码 1-2 绘制出曲线 $P_0=f(U_0)$, 结果如下图 2 所示,标出 U0=UN 时的点,此时 P0=499.3kW;

图 2 空载特性曲线 P0=f (U0)

(2) 计算励磁参数

从空载特性曲线上查出对应于空载电压 $U_0=U_N$ 时的 I_0 和 P_0 值,并用下述公式计算励磁参数: $Z_m=U_0/I_0$, $X_m=\sqrt{Z_m^2-R_m^2}$

从图中可以得出空载电压 U0=UN=181.87kV 时,I0=2.77A,P0=499.3kW,带入上述公式得出励磁参数:

$$\begin{split} Z_m &= U_0/I_0 = \mathbf{65.66} & (\mathbf{k}\,\Omega\,\,) \\ R_m &\approx R_0 = P_0/I_0^2 = \mathbf{65.07} & (\mathbf{k}\,\Omega\,\,) \\ X_m &= \sqrt{Z_m^2 - R_m^2} &= \mathbf{8782} & (\Omega\,\,) \end{split}$$

由于在二次侧加电压,故上述计算值需要进行向一次侧的折算,折算值

$$R_{m0} = R_m \times k^2 = 354.2 \quad (k \Omega)$$

$$X_{m0} = X_m \times k^2 = 46.17$$
 (k Ω)

- 3.绘出短路特性曲线并计算短路参数
- (1) 绘出短路特性曲线 $U_{sh}=f(I_{sh})$ 、 $P_{sh}=f(I_{sh})$ 、 $\cos \phi_{sh}=f(I_{sh})$ 。 理想的短路特性曲线如下图所示

利用附录中代码 1-3 绘制出曲线 $U_{sh}=f(I_{sh})$, 结果如下图 3 所示,标出 $I_{sh}=I_{N}$ 时的点,此时 $U_{sh}=68040V$;

图 3 短路特性曲线 U_{sh}=f(I_{sh})

利用附录中代码 1-4 绘制出曲线 $P_{sh}=f(I_{sh})$, 结果如下图 4 所示,标出 $I_{sh}=I_{sh}$ 时 $I_{sh}=I_{sh}$ 可 $I_{sh}=I_{s$

图 4 短路特性曲线 $P_{sh}=f(I_{sh})$

由 $\cos \phi_{sh}=Psh/(Ush*Ish)$,利用附录中代码 1-5 绘制出曲线 $\cos \phi_{sh}=f(I_{sh})$,结果如下图 5 所示,可以看出功率因数接近于 0,说明电路基本不消耗有功功率,符合实际。

图 5 短路特性曲线 $\cos \varphi_{sh} = f(I_{sh})$

(2) 计算短路参数

从短路特性曲线上查出对应于短路电流 $I_{sh}=I_N$ 时的 U_{sh} 和 P_{sh} 值,并用下述公式计算短路参数: $Z_{sh}=U_{sh}/I_N$, $R_{sh}=P_{sh}/I_N^2$, $X_{sh}=\sqrt{Z_{sh}^2-R_{sh}^2}$ 。

由图中得出假设环境温度=25℃时,I_{sh}=I_N=589.1A 时,Ush=68040V,Psh=985900W,带入上述公式得出短路参数:

$$Z_{sh} = U_{sh}/I_N = 115.5 \quad (\Omega)$$

$$R_{sh} = P_{sh}/I_N^2 = 2.841 \quad (\Omega)$$

 $X_{sh} = \sqrt{Z_{sh}^2 - R_{sh}^2} = 115.46 \quad (\Omega)$

默认使用的是铜线,假设环境温度=室温 25℃,换算到 75℃:

$$R_{sh75\%} = R_{sh} \times (234.5 + 75) / (234.5 + \theta) = 3.289 \quad (\Omega)$$

$$Z_{sh75\%} = 115.5 \quad (\Omega)$$

所以一二次测的漏电阻

$$R_1 = R_2' = 1/2 R_{sh75\%} = 1.644 \quad (\Omega)$$

一二次测得漏电抗

$$X_{\sigma 1} = X_{\sigma 2} = 1/2 X_{sh} = 57.73 \quad (\Omega)$$

4.利用空载和短路实验计算得出的参数,画出实验用变压器折算到高压方的"T"型等效电路图。

图 6 Matlab 内置变压器默认参数下的"T"型等效电路

六. 实验总结

本次实验的数据测定比较多,读数的时候需要注意电流表电压表的读数是有效值,因此 仿真的时候可以用 RMS 测定有效值(有偏差),也可以在正弦波峰值处读数÷根 2 计算有效 值,要有耐心。

空载实验在低压侧通电,画等效电路的时候要向高压侧折算;短路实验在高压侧通电,要进行温度换算。本次空载仿真实验,无论是默认参数下,还是利用课本习题 12 中的数据进行仿真,Rm 的计算值都跟实际相差不大,但是 Zm 几乎都近似等于 Rm 的值,这个地方的原因我和同学讨论过后一直没有找到。

附录:

1.

Ish=[295.3 367.1 458.4 487.8 588.7 648.0];

代码 1-1:

```
1.
      U0=[218.2 190.9 185.6 181.8 172.7 145.5 ];
2.
      I0=[3.324 2.909 2.825 2.770 2.631 2.217];
3.
      plot(I0,U0,'.-');
4. xlabel('电流{\itI}_0/A');
5.
      ylabel('电压{\itU}_0/(kV)');
6. title('变压器空载特性曲线 U0=f(I0)');
7.
      grid();
8. [y0,I] = min(abs(U0-181.87));
9.
      x0=I0(I)
10. y0=U0(I)
11. hold on
12. plot(x0,y0,'b.','markersize',20)
13. hold off
  代码 1-2:
1.
      U0=[218.2 190.9 185.6 181.8 172.7 145.5 ];
2. P0=[718.7 550.6 519.2 499.3 450.4 319.6];
3.
      plot(U0,P0,'.-');
4. xlabel('电压{\itU}_0/(kV)');
5.
      ylabel('功率{\itP}_0/kW');
6. title('变压器空载特性曲线 P0=f(U0)');
7.
      grid();
8. [y0,I] = min(abs(U0-181.87));
9.
      x0=U0(I)
10. y0=P0(I)
11.
      hold on
12. plot(x0,y0,'b.','markersize',20)
13. hold off
  代码 1-3:
1.
      Ish=[295.3 367.1 458.4 487.8 589.1 648.0 ];
2.
      Ush=[33997.7 42320.3 52764.3 56398.8 68044.9 74670.5 ];
3. plot(Ish,Ush,'.-');
4.
      xlabel('电流{\itI}_sh/(A)');

 ylabel('电压{\itU}_sh/V');

6.
      title('变压器空载特性曲线 Ush=f(Ish)');
7. grid();
8.
      [y0,I] =min(abs(Ish-589.1));
9. x0=Ish(I)
10. y0=Ush(I)
11. hold on
12.
      plot(x0,y0,'b.','markersize',20)
13. hold off
  代码 1-4:
```

```
2.
       Psh=[245300 380100 602300 680400 985900 1198000];
  3.
       plot(Ish,Psh,'.-');
  4. xlabel('电流{\itI}_sh/(A)');
  5.
       ylabel('功率{\itP}_sh/W');
  6. title('变压器空载特性曲线 Psh=f(Ish)');
  7.
       grid();
  8. [y0,I] = min(abs(Ish-589.1));
  9.
       x0=Ish(I)
  10. y0=Psh(I)
  11. hold on
  12. plot(x0,y0,'b.','markersize',20)
  13. hold off
    代码 1-5:
       Ish=[295.3 367.1 458.4 487.8 589.1 648.0 ];
1.
2.
       Ush=[33997.7 42320.3 52764.3 56398.8 68044.9 74670.5 ];
       Psh=[245300 380100 602300 680400 985900 1198000];
3.
4.
       UIsh=Ush.*Ish;
5.
       cosfish=Psh./UIsh;
6.
       plot(Ish,cosfish,'.-');
7.
       xlabel('电流{\itI}_{sh}/(A)');
       ylabel('功率因数{\itcosφ}_{sh}');
9.
       title('变压器空载特性曲线 cosφsh=f(Ish)');
       grid();
       [y0,I] =min(abs(Ish-589.1));
11.
12.
       x0=Ish(I);
       y0=cosfish(I);
13.
14.
       hold on
       plot(x0,y0,'b.','markersize',20);
15.
16.
       hold off
```