	rklund, J. (2013). Business process modelling, simulation, and design. ging Process Flows – This book is in the reading list		Book pg no
Lecture 7: Analysing Process Flows		Slide pg no	
Process Throughput	 Process Throughput Inflow and Outflow rates typically vary over time (see figure on next slide) R_i(t) = Arrival/Inflow rate of jobs at time t R_o(t) = Departure/Outflow rate of finished jobs at time t IN = Average inflow rate over time OUT = Average outflow rate over time A stable system must have IN = OUT = λ λ = the process flow rate out λ = process throughput 	9	149
Work-In- Progress	Work-In-Process ("WIP") ■ WIP(t) comprises all jobs that have entered the process but not yet left it — including jobs waiting for the previous batch to be completed ■ WIP(t) = Work in process at time t — WIP(t) increases when R₁(t)>R₀(t) — WIP(t) decreases when R₁(t) <r₀(t) in="" over="" process="" td="" time<="" wip="Average" work="" ■=""><td>12</td><td>150</td></r₀(t)>	12	150
Cycle Time	Process Cycle Time The difference between a job's departure time and its arrival time = cycle time One of the most important attributes of a process Also referred to as throughput time The cycle time includes both value adding and non-value adding activity times Processing time Inspection time Transportation time Storage time Waiting time Cycle time is a powerful tool for identifying process improvement potential	16	152
Little's Law Formula	Little's Formula: WIP = λ·CT	17	153
Turnover ratio (Inventory)	Turnover ratio = 1/CT	17	153

Rework		22	155
Rework	A B C D 20% Assuming a job is never reworked more than once CT = (1+r)T Assuming a reworked job is no different than a regular job CT = T/(1-r)	22	155
Multiple Paths	■ Assume that m different paths originate from a decision point $-p_i = \text{The probability that a job is routed to path i}$ $-T_i = \text{The time to go down path i}$ $\text{CT} = p_1 T_1 + p_2 T_2 + + p_m T_m = \sum_{i=1}^{m} p_i T_i$	28	156
Parallel Activities	F G M process segments in parallel T _i = Average process time for process segment i to be completed CT _{parallel} = Max{T ₁ , T ₂ ,,T _M }	31	157
Cycle Time Efficiency	Cycle Time Efficiency = Theoretical Cycle Time CT	33	159

Capacity Needs and Utilization, I	Step 1 – Calculate unit load for each resource ■ The total resource time required to process one job — N _i = Number of jobs flowing through activity i for every new job entering the process — T _i = The processing time for activity i in the current resource — M = Total number of activities using the resource Unit load for Resource = ∑M N _i · T _i	42	163
Capacity Needs and Utilization, II	Step 2 – Calculate the unit capacity The number of jobs per time unit that can be processed Unit capacity for resource j = 1 / Unit load for resource j Step 3 – Determine the resource pool capacity A resource pool is a set of identical resources available for use Pool capacity is the number of jobs per time unit that can be processed Let M = Number of resources in the pool Pool capacity = M*Unit capacity = M / Unit load	44	163
Capacity Needs and Utilization, III	Capacity is related to resources not to activities! The process capacity is determined by the bottleneck The bottleneck is the resource or resource pool with the smallest capacity (the slowest resource in terms of jobs/time unit) The slowest resource will limit the process throughput Capacity Utilization The theoretical process capacity is obtained by focusing on processing times as opposed to activity times Delays and waiting times are disregarded The actual process throughput ≤ The theoretical capacity! Capacity Utilization = Actual Throughput Theoretical Process Capacity	46	164