Examenul național de bacalaureat 2021

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Testul 4

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 = \frac{(2a_1 + 6r) \cdot 7}{2} = \frac{(2 \cdot (-5) + 6 \cdot 8) \cdot 7}{2} = \frac{(2a_1 + 6r) \cdot 7}{2} = ($	3 p
	=133	2 p
2.	$\Delta = 1 - 4a(-a-1) = (2a+1)^2$	2 p
	$\Delta > 0 \Rightarrow a \neq -\frac{1}{2}$ și, cum a este număr real nenul, obținem $a \in \mathbb{R} \setminus \left\{-\frac{1}{2}, 0\right\}$	3 p
3.	$\sqrt[3]{x^3 + x^2 - 9} = x \Leftrightarrow x^2 - 9 = 0$	3 p
	x = -3 sau $x = 3$	2 p
4.	$5A_3^2 - 3C_5^3 = 5 \cdot \frac{3!}{(3-2)!} - 3 \cdot \frac{5!}{(5-3)! \cdot 3!} =$	2p
	$= 5 \cdot 6 - 3 \cdot \frac{4 \cdot 5}{2} = 30 - 30 = 0$	3 p
5.	$\frac{2}{5} = \frac{m}{-m^2 - 1} \Leftrightarrow 2m^2 + 5m + 2 = 0$	3 p
	$m = -2 \text{ sau } m = -\frac{1}{2}$	2p
6.	$\mathcal{A}_{\triangle ABC} = \frac{AC \cdot BC \cdot \sin C}{2} \Rightarrow 15 = \frac{6 \cdot 10 \cdot \sin C}{2} \Rightarrow \sin C = \frac{1}{2}$	3 p
	Cum $AB > BC > AC$, unghiul C are măsura cea mai mare dintre unghiurile ΔABC , deci unghiul C are măsura de 150°	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & -1 \\ 1 & -1 \end{vmatrix} = 1 \cdot (-1) - (-1) \cdot 1 =$	3p
	=-1+1=0	2 p
b)	$A \cdot A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
	$M(a,b) \cdot M(x,y) = (aI_2 + bA)(xI_2 + yA) = axI_2 + ayA + bxA + ybA \cdot A = axI_2 + (ay + bx)A =$ = $M(ax, ay + bx)$, pentru orice numere reale a , b , x și y	3 p
c)	$B = xI_2 + 2yA + yI_2 + 2xA = M(x + y, 2(x + y))$, pentru orice numere reale $x \neq y$	2 p
	Cum $C = M(2xy, \sqrt{2}(x+y))$, obținem că $x + y = 2xy = 0$, deci $x = y = 0 \Rightarrow x^2 + y^2 = 0$	3 p
2.a)	$(1*2) \circ (1*3) = (2+2+4+2) \circ (3+2+6+2) = 10 \circ 13 = 10+13+2=25$	3 p
	$1*(2 \circ 3) = 1*(2+3+2) = 1*7 = 7+2+14+2=25$, deci $(1*2) \circ (1*3) = 1*(2 \circ 3)$	2 p

	7 7 7	
b)	$x \circ (-2) = (-2) \circ x = x$, pentru orice număr real x , deci $e = -2$	2 p
	x * e = x * (-2) = -2x + 2x + (-4) + 2 = -2 = e, pentru orice număr real x	3 p
c)	$n*(-n)=2-n^2$, $n\circ(-n)=2$, pentru orice număr natural n	2p
	$2-n^2 \ge 2 \Leftrightarrow n^2 \le 0$, deci $n=0$	3p

SUBIECTUL al III-lea (30 de puncte)

	,	
1.a)	$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} \left(x - 1 + \sqrt{x^2 - x + 1} \right) = 0, \lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(x \ln(x + 1) \right) = 0 \text{si} f(0) = 0, \text{ deci}$ $\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = f(0), \text{ de unde obținem că } f \text{ este continuă în } x = 0$	3 p
		255
	Cum f este continuă pe $(-\infty,0)$ și pe $(0,+\infty)$, obținem că f este continuă pe $\mathbb R$	2p
b)	Pentru orice $x \in (0, +\infty)$, $f'(x) = \ln(x+1) + \frac{x}{x+1}$ și $f''(x) = \frac{1}{x+1} + \frac{1}{(x+1)^2}$	3 p
	$f''(x) > 0$, pentru orice $x \in (0, +\infty)$, deci funcția f este convexă pe $(0, +\infty)$	2p
c)	Dacă $a \in (-\infty,0)$, atunci panta tangentei la graficul funcției f în punctul $A(a,f(a))$ este	
	$f'(a) = 1 + \frac{2a-1}{2\sqrt{a^2 - a + 1}}$	2 p
	Cum $f'(a) = 0 \Leftrightarrow 2\sqrt{a^2 - a + 1} = 1 - 2a \Leftrightarrow 4a^2 - 4a + 4 = 4a^2 - 4a + 1$, ceea ce este imposibil, obținem că, pentru orice număr real a , $a < 0$, tangenta la graficul funcției f în punctul A	3p
	$\mathbf{n}\mathbf{u}$ este paralelă cu axa Ox	
2.a)	$f'(x) = 2 \cdot \frac{1}{2\sqrt{x}} - \left(-\frac{1}{x^2}\right) =$	3p
	$= \frac{1}{\sqrt{x}} + \frac{1}{x^2} = \frac{x\sqrt{x} + 1}{x^2} = g(x), \text{ pentru orice } x \in (0, +\infty), \text{ deci funcția } f \text{ este o primitivă a funcției } g$	2p
- L)		
b)	$\int_{\frac{1}{4}}^{4} g(x)dx = f(x) \Big _{\frac{1}{4}}^{4} = f(4) - f(\frac{1}{4}) =$	3 p
	$= \frac{15}{4} + 3 = \frac{27}{4}$	2p
c)	$\int_{m}^{1} f^{2}(x) \cdot g(x) dx = \int_{m}^{1} f^{2}(x) \cdot f'(x) dx = \frac{1}{3} f^{3}(x) \Big _{m}^{1} = \frac{1}{3} (f^{3}(1) - f^{3}(m))$	3 p
	Cum $f(1)=1$, obținem $f(m)=0$, deci $m=\frac{1}{\sqrt[3]{4}}$, care convine	2p