수열의 합과 일반항의 관계 (Relationship between Sum of Sequence and General Term)

수열 $\{a_n\}$ 의

수열의 합과 일반항 사이의 관계

수열 $\{a_n\}$ 의 첫째항부터

수열의 합과 일반항 사이의 관계

수열 $\{a_n\}$ 의 첫째항부터 제n항까지의

수열의 합과 일반항 사이의 관계

수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을

수열의 합과 일반항 사이의 관계

$$a_1 =$$

$$a_1 = S_1$$

$$a_1 = S_1, \quad a_n$$

$$a_1 = S_1, \quad a_n = S_n$$

$$a_1 = S_1, \quad a_n = S_n -$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1}$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 =$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 =$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

$$S_2 = a_1 + a_2$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1 S_2 = a_1 + a_2 =$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2 = S_1 + a_2$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$ = $S_1 + a_2$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$ = $S_1 + a_2$, $a_2 =$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$ = $S_1 + a_2$, $a_2 = S_2$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$ = $S_1 + a_2$, $a_2 = S_2 - a_2$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$ = $S_1 + a_2$, $a_2 = S_2 - S_1$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$ = $S_1 + a_2$, $a_2 = S_2 - S_1$
 $S_3 =$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 +$

$$= S_1 + a_2 , a_2 = S_2 - S_1$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 +$
 $= S_1 + a_2$, $a_2 = S_2 - S_1$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $= S_1 + a_2$, $a_2 = S_2 - S_1$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $= S_1 + a_2$, $a_2 = S_2 - S_1$
 $= S_2 +$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $= S_1 + a_2$, $a_2 = S_2 - S_1$
 $= S_2 + a_3$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $= S_1 + a_2 , a_2 = S_2 - S_1$
 $= S_2 + a_3 , a_3 =$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $= S_1 + a_2 , a_2 = S_2 - S_1$
 $= S_2 + a_3 , a_3 = S_3$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $= S_1 + a_2 , a_2 = S_2 - S_1$
 $= S_2 + a_3 , a_3 = S_3 -$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $= S_1 + a_2 , a_2 = S_2 - S_1$
 $= S_2 + a_3 , a_3 = S_3 - S_2$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_4 = a_1 + a_2 + a_3$
 $S_5 = a_1 + a_2 + a_3$
 $S_7 = a_1 +$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_4 = a_1 + a_2$
 $S_5 = a_1 + a_2$
 $S_7 = a_1 + a_2$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_4 = a_1 + a_2 +$
 $S_4 = a_1 + a_2 +$
 $S_4 = a_1 + a_2 +$
 $S_5 = a_1 + a_2 +$
 $S_7 = a_1 + a_2 +$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_4 = a_1 + a_2 + a_3 + a_1 + a_2 + a_3 + a_3 + a_4 + a_5$
 $= S_1 + a_2 , a_2 = S_2 - S_1$
 $= S_2 + a_3 , a_3 = S_3 - S_2$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_4 = a_1 + a_2 + a_3 + a_4$
 $= S_1 + a_2$, $a_2 = S_2 - S_1$
 $= S_2 + a_3$, $a_3 = S_3 - S_2$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_4 = a_1 + a_2 + a_3 + a_4$
 $= S_1 + a_2 , a_2 = S_2 - S_1$
 $= S_2 + a_3 , a_3 = S_3 - S_2$
 $= S_3 +$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_4 = a_1 + a_2 + a_3 + a_4$
 $= S_1 + a_2$, $a_2 = S_2 - S_1$
 $= S_2 + a_3$, $a_3 = S_3 - S_2$
 $= S_3 + a_4$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_4 = a_1 + a_2 + a_3 + a_4$
 $= S_1 + a_2 , a_2 = S_2 - S_1$
 $= S_2 + a_3 , a_3 = S_3 - S_2$
 $= S_3 + a_4 , a_4 =$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_4 = a_1 + a_2 + a_3 + a_4$
 $= S_1 + a_2 , a_2 = S_2 - S_1$
 $= S_2 + a_3 , a_3 = S_3 - S_2$
 $= S_3 + a_4 , a_4 = S_4$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_4 = a_1 + a_2 + a_3 + a_4$
 $= S_1 + a_2 , a_2 = S_2 - S_1$
 $= S_2 + a_3 , a_3 = S_3 - S_2$
 $= S_3 + a_4 , a_4 = S_4 -$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_4 = a_1 + a_2 + a_3 + a_4$
 $S_5 = a_1 + a_2 + a_3 + a_4$
 $S_6 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$
 $S_7 = a_1 + a_2 + a_3 + a_4$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$ = $S_1 + a_2$, $a_2 = S_2 - S_1$
 $S_3 = a_1 + a_2 + a_3$ = $S_2 + a_3$, $a_3 = S_3 - S_2$
 $S_4 = a_1 + a_2 + a_3 + a_4$ = $S_3 + a_4$, $a_4 = S_4 - S_3$
 $S_5 = a_1 + a_2 + a_3 + a_4 + a_5$ = $S_4 + a_5$, $a_5 = S_5$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$ = $S_1 + a_2$, $a_2 = S_2 - S_1$
 $S_3 = a_1 + a_2 + a_3$ = $S_2 + a_3$, $a_3 = S_3 - S_2$
 $S_4 = a_1 + a_2 + a_3 + a_4$ = $S_3 + a_4$, $a_4 = S_4 - S_3$
 $S_5 = a_1 + a_2 + a_3 + a_4 + a_5$ = $S_4 + a_5$, $a_5 = S_5 -$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$ = $S_1 + a_2$, $a_2 = S_2 - S_1$
 $S_3 = a_1 + a_2 + a_3$ = $S_2 + a_3$, $a_3 = S_3 - S_2$
 $S_4 = a_1 + a_2 + a_3 + a_4$ = $S_3 + a_4$, $a_4 = S_4 - S_3$
 $S_5 = a_1 + a_2 + a_3 + a_4 + a_5$ = $S_4 + a_5$, $a_5 = S_5 - S_4$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라고 하면

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

 $S_n =$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_n = a_1 +$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_n = a_1 + a_2 +$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_n = a_1 + a_2 + \cdots +$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_n = a_1 + a_2 + \cdots + a_{n-1} + \cdots$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_n = a_1 + a_2 + \cdots + a_{n-1} + a_n =$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_n = a_1 + a_2 + \cdots + a_{n-1} + a_n = S_{n-1} + a_n$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_n = a_1 + a_2 + \cdots + a_{n-1} + a_n = S_{n-1} + a_n$$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_n = a_1 + a_2 + \cdots + a_{n-1} + a_n = S_{n-1} + a_n$$
, $a_n =$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_n = a_1 + a_2 + \cdots + a_{n-1} + a_n = S_{n-1} + a_n$$
, $a_n = S_n$

수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라고 하면

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

 $S_n = a_1 + a_2 + \cdots + a_{n-1} + a_n = S_{n-1} + a_n$, $a_n = S_n - a_n + a_n = S_n - a_n$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_n = a_1 + a_2 + \dots + a_{n-1} + a_n = S_{n-1} + a_n$$
, $a_n = S_n - S_{n-1}$

$$a_1 = S_1, \quad a_n = S_n - S_{n-1} \quad (n \ge 2)$$

$$S_n = a_1 + a_2 + \dots + a_{n-1} + a_n = S_{n-1} + a_n$$
, $a_n = S_n - S_{n-1}$

Github:

https://min7014.github.io/math20200629003.html

Click or paste URL into the URL search bar, and you can see a picture moving.