

Antitrust Policy

FINOS

Fintech
Open Source
Foundation

All project meetings are subject to the <u>Linux Foundation Antitrust Policy</u>. The following topics must not be discussed:

- Price-sensitive information
- Actual or projected changes in production, output, capacity or inventories
- Matters relating to bids, prospective bids, or bid policies
- Matters relating to actual or potential individual suppliers that might influence the business conduct of firms toward such suppliers
- Matters relating to actual or potential customers that might have the effect of influencing the business conduct of firms toward such customers
- Current or projected costs of procurement, development or manufacture of any product
- Market shares for any product or for all products
- Confidential or otherwise sensitive business plans or strategy

If you have questions, please contact legal@finos.org

Meeting Notice

FINOS

Fintech
Open Source
Foundation

- FINOS Project leads are responsible for observing the FINOS guidelines for running project meetings. Project maintainers can find additional resources in the <u>FINOS Maintainers</u> <u>Cheatsheet</u>.
- All participants in FINOS project meetings are subject to the <u>LF Antitrust Policy</u>, the <u>FINOS</u>
 Community Code of Conduct and all other FINOS policies.
- FINOS meetings involve participation by industry competitors, and it is the intention of FINOS and the Linux Foundation to conduct all of its activities in accordance with applicable antitrust and competition laws. It is therefore extremely important that attendees adhere to meeting agendas, and be aware of, and not participate in, any activities that are prohibited under applicable US state, federal or foreign antitrust and competition laws. Please contact legal@finos.org with any questions.
- FINOS project meetings may be recorded for use solely by the FINOS team for administration purposes. In very limited instances, and with explicit approval, recordings may be made more widely available.

Zenith

Emerging Technology Special Interest Group July 13th, 2023

Agenda

- Announcements
- POC Program
- Deep Dives
- Any Other Admin
- Calls to Arms
- Any Other Business
- Thanks & Close-Out

Blogs & Znglists

New Blogs

- Meta releasing 'Game Super Resolution' technology for Quest
- Zoom joins the tools in Meta Horizon Workrooms

Znglist Updates

- Zenith Showcase is now live with 2 new videos
 - Zenith Program Overview
 - Brain Trust Overview

Upcoming Events

Thursday, July 13 (Today!)

11am EST / 4pm BST

FDC3: Web Browsers - Calendar Invite

11pm EST / 4pm BST

Morphir - Calendar Invite

https://www.finos.org/news-and-events

August 2 –Open Source London

Our August meetup in partnership with Scott Logic will be hosted at NatWest's Bishopsgate offices in London and will focus AI and open source, and the opportunities and challenges of harnessing AI's business potential. Register here.

November 1 –
 Open Source in Finance Forum - NYC

Registration is open for our annual Open Source in Finance Forum in the Marriott Marquis Hotel in Times Square NYC. <u>Find</u> information on how to sponsor or register here.

New Teammates

New Teammates

Carly Richmond

Developer Engagement

Move List

New Teammates

Leo Mordasini

POC Program Co-ordinator

Move List

New Teammates

Polina Levyant

Developer

Move List

Deep Dive

Primers

First Primer Launch

Artificial Intelligence

Next Primers

- Quantum Tech
- Spatial Computing

Initial Technologies			
Artificial Intelligence	4D Printing		
Blockchain & DLT	Biotechnology		
IOT, 5G & 6G	Regulatory Technology		
Robotics & RPA	Next-Gen Materials		
Spatial Computing	Natural Language Processing		
Quantum Technology	Advanced Data Processing		
Neural Interfacing	Cloud Computing		

Crypto Agility

Space Technology

Technology Readiness

Introduction to AI

History of Al

Current AI ETAC

Technology Readiness

Current Blockers

- Learning
- Perception
- Reasoning

Introduction to Al

Introduction to AI

History of Al

Current AI ETAC

Technology Readiness

Current Blockers

Weak Al

- Collects Information
- Analyses preferences
- Improves over time

Introduction to AI

History of Al

Current Al ETAC

Technology Readiness

Current Blockers

Strong Al

Artificial
General
Intelligence
(AGI)

- Learn new skills
- Apply knowledge to plan ahead
- Adapt as changes occur

Introduction to Al

History of Al

Current AI ETAC

Technology Readiness

Current Blockers

Strong Al

Known

Introduction to AI

History of Al

Current AI ETAC

Technology Readiness

Current Blockers

Strong Al

Domains

AlphaGo becomes the first program to master Go using neural networks and tree search (Jan 2016, Nature)

Knowledge

Domain

knowledge

AlphaGo Zero learns to play completely on its own, without human knowledge (Oct 2017, Nature)

AlphaZero masters three perfect information games using a single algorithm for all games (Dec 2018, Science)

MuZero learns the rules of the game, allowing it to also master environments with unknown dynamics. (Dec 2020, Nature)

Introduction to AI

History of Al

Current AI ETAC

Technology Readiness

Current Blockers

Superintelligence in Al

- Completely Self Aware
- Surpasses human intelligence in every way
- Still complete science fiction
- Data is from the 24th Century

Introduction to Al

History of Al

Current AI ETAC

Technology Readiness

Current Blockers

Imitation Game/Turing Test proposed by Alan Turing (1950)

TURING TEST EXTRA CREDIT: CONVINCE THE EXAMINER THAT HE'S A COMPUTER.

- 1. Take a neutral evaluator
- 2. Observe a conversation between two parties
- 3. Decide which one is the machine
- 4. Test to see if machines can "think"

Arthur Samuel develops a Checkers playing algorithm (1952)

Alpha-Beta Pruning: Search algorithm that seeks to decrease the number of nodes evaluated by the minimax algorithm in its search tree. Can be used well in adversarial games!

First use of the term "Artificial Intelligence" and the Logic Theorist program (1955)

"The science and engineering of making intelligent machines"

John McCarthy

First use of the term "Artificial Intelligence" and the Logic Theorist program (1955)

From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

Frank Rosenblatt creates Perceptron Neural Networks Innovation (1957)

Binary classifier algorithm which can tell if an input belongs to a specific class

Developments through the 20th Century

Developments of the 60s

STUDENT is an early artificial intelligence program that solves algebra word problems. It is written in Lisp by Daniel G. Bobrow as his PhD thesis in 1964 (Bobrow 1964). It was designed to read and solve the kind of word problems found in high school algebra books. The program is often cited as an early accomplishment of AI in natural language processing.

Introduction to Al

History of Al

Current AI ETAC

Technology Readiness

Current Blockers

Developments of the 60s

DENDRAL

Shakey the Robot

Backpropagation

Developments of the 70s

Funding cuts caused by lack of progress and over-ambitious statements

Raj Reddy publishes "Speech Recognition by Machine: A Review" creating a brilliant primer on early **Natural Language Processing** (NLP)

The Stanford Cart crosses a chair-filled room becoming an **Autonomous Vehicle**

Developments of the 80s

WABOT-2

Mercedes-Benz self-driving car

Developments of the 90s

Long short-term memory (LSTM)

Developments of the 90s

Developments through the 21st Century

Technology Readiness

Introduction to Al

History of Al

Current AI ETAC

Technology Readiness

Current Blockers

PPORTUNITY	IMPACT	IMPACT	
	Macro	Micro	
Trigger	Network Effects & Interactions	Competitive Advantage	Technical Merit
Players	Distruptees	\$ Financial Benefits	Tools, Ecosystem & Skills
Drivers		Supply Chain	Friction
UTURE			
Timeline		Risks	
SUMMARY			

Introduction to Al

History of Al

Current AI ETAC

Technology Readiness

Current Blockers

Al Development Tools				
Al Chipsets	Data Annotation	Synthetic Data		
Data De-Identification	Data Quality & Observability	Version Control & Experiment Tracking		
Model Validation & Monitoring	Machine Learning Platforms	Machine Learning Deployment		
Resource Optimisation	Computer Vision	Natural Language Processing		

For the Final Primer

- Showcasing of where the commercialisation of adoption lies for each technology
- Considerations for ethics and fair use by members of the open source community
- Where we perceive security vulnerabilities
- What comes next once blockers are resolved?

Technology Readiness

Al Chipsets

Extremely specialised & expensive to make

Data Annotation

- Labelling & tagging datasets to train AI models
- Used in supervised machine learning
- Scaling automation is complex and costly

Synthetic Data

- Mirrors existing patterns and distributions
- Helps to address privacy concerns

Data De-Identification

- Anonymises and pseudonymisation protect sensitive information
- Crucial for addressing data privacy regulations

TRL 7

Data Quality & Observability

- Ensures that AI data is accurate, consistent and trustworthy
- Relies on Anomaly detection, governance frameworks & data profiles

Version Control & Experiment Tracking

- Ensures AI reproducibility and managing projects
- Involves tracking code versions, parameters and results

Model Validation & Monitoring

Detects model drift, bias and ensures ongoing accuracy

Machine Learning Platforms

- Infrastructure & tools to develop, train and deploy
 Al models
- Focus on integrated environments for data preparation, model building and deployment pipelines

Machine Learning Deployment

Requires managed model versions, scalability and real-time interference

Resource Optimisation

- Focuses on the efficient utilisation of CPU, GPU or cloud infrastructure
- Seeks to improve performance while reducing operational costs

TRL 6

 Can cover tasks like object recognition, image classification & scene understanding

Natural Language Processing

- Involves interaction between computers and human language
- Covers tasks like language understanding, sentiment analysis and language generation

Al Chipsets

- ☐ Complexity and cost of development
- ☐ Optimisation for specific algorithms
 - Convolutional Neural Networks (CNNs)
 - Recurrent Neural Networks (RNNs)
 - Transformer Networks
 - Deep Reinforcement Learning
 - Generative Adversarial Networks (GANs)

Data Annotation

Blockers:

- ☐ Availability of high-quality annotated datasets
- ☐ Standards of consistency for automation
- Blueprints for automated annotation

Synthetic Data

- ☐ Identification of Financial Services use cases
- ☐ Generating accurate & diverse synthetic data
- Validation of effectiveness

Data De-Identification

Blockers:

☐ Standards for obfuscation to satisfy evolving privacy regulations

Data Quality & Observability

- ☐ Identification of common data inconsistencies
- ☐ Establishing comprehensive data quality processes for automation or process improvement

Version Control & Experiment Tracking

Blockers:

- ☐ Integration with common platforms
 - Identification of expected platforms for interoperability
- ☐ Understanding versioning control governance at different levels of enterprise

Model Validation & Monitoring

- ☐ Automation of validation & monitoring
- ☐ Mathematical models for model drift & bias

Machine Learning Platforms

Blockers:

- ☐ Creating common use frameworks for rapid testing/training deployment
- Addressing scalability for adaptations of microsystems

Machine Learning Deployment

- ☐ Defining common deployment pipelines
- ☐ Creating plug-ins for specific purposes from common framework such as Miniature model training

Resource Optimisation

Blockers:

- ☐ Creation of common libraries for industry standard hardware
- ☐ Creation of guiding principles for ASICs and their designers

Computer Vision

- ☐ Defining core libraries for accuracy and robustness
- □ Addressing example real-world scenarios to further develop core libraries

Technology Readiness

Natural Language Processing

- ☐ Create standard language models for common global languages
- ☐ Develop interoperability into special purpose usecases and domains
- ☐ Scale for running on diverse systems
 - Local device configurations
 - Windows
 - MacOS
 - Linux
 - Entry tier common cloud provider offerings

Any Other Admin

Please add your attendance to this call!

https://github.com/finos/zenith/issues/41

Join our mailing list for future updates

(You don't need to put anything in the message)

Next Deep Dive:

Tech Passporting for enterprise and innovation

Call to Arms

Potential POCs

Get in touch with us through the mail group

Any Other Business?

Thank you

Join the discussion at zenith.finos.org

