Theoretische Informatik:	\mathbf{Blatt}	1
Abgabe bis 18. September 2015		

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 1

(a) Insgesamt gibt es 3^n verschiedene Wörter der Länge n.

Zunächst ziehen wir die drei verschieden Wörter a, b, c der Länge 1 ab.

Anschließend ziehen wir Wörter

Für jede Länge 1..m schauen wir die Anzahl Möglichkeiten an, ein Teilwort zu bilden.

Bei Länge 1 können wir an jeder der m Positionen anfangen und ein Teilwort der Länge 1 nehmen

Bei Länge 2 können wir das letzte Teilwort mit Anfang bei m-1 entnehmen, da es Länge 2 hat

Bei Länge i lassen sich Teilwörter an den Stellen $\{1, 2, ..., m-i+1\}$ mit Länge i nehmen. Es gibt also höchstens

$$\sum_{i=1}^{m} m - i + 1 = \sum_{i=1}^{m} k \tag{1}$$

verschiedene Teilwörter, falls keine von ihnen gleich sind.

- (b) Fallunterschiedung:
 - n = 1: 0 Wörter
 - n=2:0 Wörter
 - n=3: 3! verschiedene Wörter
 - n > = 3:

Es gibt insgesamt 3^n viele verschiedene Wörter.

Es gibt genau 3 Wörter $\{a^n, b^n, c^n\}$ die genau einen Buchstaben enthalten.

Es gibt $3 * 2^n$ viele Wörter, die genau zwei verschiedene Zeichen enthalten.

Die übrigbleibenden $3^n-3-3\cdot 2^n$ Wörter sind die gesuchten, verschiedenen, in denen jeder Buchstabe $\{a,\,b,\,c\}$ einmal vorkommt

Aufgabe 2

(a)

$$L_2 \cdot (L_2 - L_1) = \{ xy | x \in L_2 \land y \in L_2 - L_1 \}$$
 (2)

$$= \{xy | x \in L_2 \land y \in L_2 \land y \notin L_1\} \tag{3}$$

$$= \{xy | (x \in L_2 \land y \in L_2) \land (x \in L_2 \land y \notin L_1)\}$$

$$\tag{4}$$

$$= \{xy | x \in L_2 \land y \in L_2\} - \{xy | x \in L_2 \land y \in L_1\}$$
 (5)

$$= (L_2)^2 - L_2 \cdot L_1 \tag{6}$$

(b) z.Z $({a}^*{b}^*)^* \neq ({a, b}^2)^*$

Beweis: wir Zeigen, dass a in $(\{a\}^*\{b\}^*)^*$ ist, aber nicht in $(\{a,b\})^2$

$$a = a\lambda \in \{a\}^*\lambda \subseteq \{a\}^*\{b\}^*$$

$$\Rightarrow a \in \{a\}^*\{b\}^*$$

Beweis für $\lambda \in \{a\}^* \{b\}^*$ analog.

$$\Rightarrow \quad a = a\lambda \in \{\{a\}^*\{b\}^*\}\{\{a\}^*\{b\}^*\} = \{\{a\}^*\{b\}^*\}^2 \subseteq \{\{a\}^*\{b\}^*\}^*$$

$$\Rightarrow \quad a \in \{\{a\}^*\{b\}^*\}^*$$

```
z.Z. a \notin (\{a, b\})^2 = \{aa, ab, bb, ba\}^* = L^*
```

Begründung: Das Wort a hat Länge 1. Jedes Element in L hat Länge 2. Durch Konkatenation mit beliebiger Potenz liegen in L^* Wörter mit Länge > 2 und λ mit Länge 0. Aber kein Wort mit Länge 1.

(c)

Aufgabe 3

- (a) Behauptung: $L = \{ab\}^*$
 - Zu zeigen: L ist eine Sprache: $L \subseteq \Sigma^*$

Beweis: $\Sigma = \{a, b\} \Rightarrow \Sigma^* = \{a, b\}^* \stackrel{\text{def}}{=} \bigcup_{i \in \mathbb{N}} \{a, b\}^i = (\bigcup_{i \in \mathbb{N}, \text{ i gerade}} \{a, b\}^i) \cup (\bigcup_{i \in \mathbb{N}, \text{ i ungerade}} \{a, b\}^i) \Rightarrow \bigcup_{i \in \mathbb{N}, \text{ i gerade}} \{a, b\}^i \subseteq \Sigma^*$

– Zu zeigen: $L \subseteq \bigcup_{i \in \mathbb{N}, \text{ i gerade}} \{a, b\}^i$ Beweis: $\bigcup_{i \in \mathbb{N}, \text{ i gerade}} \{a, b\}^i = \bigcup_{k \in \mathbb{N}} \{a, b\}^{2k} = \bigcup_{k \in \mathbb{N}} (\{a, b\}^2)^k = \bigcup_{k \in \mathbb{N}} \{aa, ab, ba, bb\}^k$ $\bigcup_{k \in \mathbb{N}} \{a, b\}^k \subseteq \bigcup_{k \in \mathbb{N}} \{aa, ab, ba, bb\}^k \Rightarrow$

– Zu zeigen: $L \neq \{\lambda\}^*$

Beweis: $\{\lambda\}^* \stackrel{\text{def}}{=} \{\lambda^i \mid i \in \mathbb{N}\} = \{\lambda, \lambda^2, \lambda^3, \dots\} = \{\lambda, \lambda, \lambda, \dots\} = \{\lambda\}$

 $L = \{ab\}^* \stackrel{\mathrm{def}}{=} \{(ab)^i \mid i \in \mathbb{N}\} = \{\lambda, ab, abab, ababab, \cdots\}$

Damit ist $L \neq \{\lambda\}^*$ (da z.B. $ab \in L$, aber $ab \notin \{\lambda\}$)

– Zu zeigen: $L \neq \{a\}^*$

Beweis: $\{a\}^* \stackrel{\text{def}}{=} \{a^i \mid i \in \mathbb{N}\}$, enthält insbesondere keine Wörter, die den Buchstaben b enthalten. In $L = \{ab\}^* \stackrel{\text{def}}{=} \{(ab)^i \mid i \in \mathbb{N}\}$ gibt es allerdings Wörter, die b enthalten, womit $L = \{ab\}^* \neq \{a\}^*$ gelten muss.

- Zu zeigen: $L \neq \{b\}^*$

Beweis: Analog zu $L \neq \{a\}^*$.

– Zu zeigen: $L \neq \{a,b\}^*$

Beweis: $\{a,b\}^* \stackrel{\text{def}}{=} \{\lambda,a,b,aa,ba,ab,bb,\cdots\}$, insbesondere gilt $a,b \in \{a,b\}^*$.

Dagegen ist $L = \{ab\}^* \stackrel{\text{def}}{=} \{(ab)^i \mid i \in \mathbb{N}\} = \{\lambda, ab, abab, ababab, \cdots\},$ womit gilt $a, b \notin \{ab\}^*$.

Daraus folgt, dass $L \neq \{a, b\}^*$ gelten muss.

(b) Behauptung: Es gibt keine nichtleere endliche Sprache $L \neq \lambda$ über dem Alphabet $\{a,b\}$, die die Bedingung $L^2 = L$ erfüllt.

Beweis: Sei L eine nichtleere endliche Sprache $L \neq \lambda$. Dann $\exists l \in L : l = \max L$. Das Wort ll muss in L^2 enthalten sein (und ist sogar das längste Wort in L^2). Sei $|l| = k \Rightarrow |ll| = 2k$. Da $k \neq 0$, ist das längste Wort in L^2 doppelt so lang wie das längste Wort in L, womit $L^2 \neq L$ ist.