Особые точки

Feature (corners)

What?

Особая точка (feature) - точка изображения, окрестность которой O(m) можно отличить от окрестности любой другой точки изображения O(n) в некоторой другой окрестности любой точки $O_2(m)$

Detection

Метод извлечения особых точек из изображения. Независимо от преобразования изображения, должны находиться одни и те же особые точки.

Example

А,В - поверхности

С, D - границы

E, **F** - углы

Description

Идентификатор особой точки, выделяющий её из остального множества особых точек

Зачем?

Сопоставление изображений:

- Совмещение изображений
- Поиск фрагмента на изображении

Image Alignment

- 1. Выделение особых точек
- 2. Сопоставление особых точек
- 3. Выравнивание изображений

Pattern matching

Типы особенностей

- Углы
- Края/границы
- Пятна
- Фон

Corners

Edge

Blob

Свойства особых точек

Haralick, Shapir, 1992

- Отличимость (distinctness)
- Инвариантность (invariance)
- Стабильность (stability)
- Уникальность (uniqueness)
- Интерпретируемость (interpretability)

Отличимость

Точка должна быть отличимой в своей окрестности

Инвариантность

Независимость к аффинным преобразованиям

Стабильность

Определение особых точек устойчиво к шумам и ошибкам

Уникальность

Должна быть глобальная уникальность для улучшения различимости повторяющихся

паттернов

Интерпретируемость

Можно использовать для анализа соответствий

Свойства особых точек

Tuytellars, Mikolajczyk, 1992

- Повторяемость (repeatability)
- Отличительность / информативность (distinctiveness/informativeness)
- Локальность (locality)
- Количество (quantity)
- Точность (accuracy)
- Эффективность (efficiency)

Повторяемость

Особая точка находится на одном и том же месте, несмотря ни на что

Информативность

Окрестности особых точек отличаются друг от друга, точки можно выделить и сопоставить

Локальность

Точка должна занимать небольшую область изображения

Количество

Количество точек должно быть достаточным для обнаружения даже небольших объектов

Точность

Точки должны локализовываться при любом масштабировании

Эффективность

Сложность алгоритма должна быть приемлемой

Corners Detection

Углы - особые точки, которые формируются из пересечения 2х или более граней

Corners Detection

Подходы

- 1. Интенсивность
- 2. Контуры
- 3. Модели

Corners detection

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Moravec, 1977

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$
Window function Shifted intensity Intensity

1 in window, 0 outside

Moravec, 1977

$$C(x,y) = \min(E(u,v))$$

Карта вероятности нахождения углов в (x, y)

$$C(x,y) = \begin{cases} C(x,y), & C(x,y) < T \\ 0, & \text{otherwise} \end{cases}$$

Non-max suppression

Moravec, 1977

Недостатки:

- Не является инвариантным к повороту
- Ограничение к направлению углов
- Ошибки в случае диагональных ребер

Harris and Stephers, 1988

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^2$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \left(\sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

1 in window, 0 outside

$$R = det(M) - k(trace(M))^{2}$$
$$det(M) = \lambda_{1}\lambda_{2}$$
$$trace(M) = \lambda_{1} + \lambda_{2}$$

- Пороговая обработка
- Немаксимальное подавление

Преимущества:

- Инвариантен к поворотам
- Частично инвариантен к аффинному преобразованию

Недостатки:

- Чувствителен к шуму
- Зависит от масштаба

Shi-Tomasi, 1993

Модификация детектора Харриса

$$C(x, y) = \min(\lambda_1, \lambda_2)$$

Форстнер и Гёлч, 1987

$$R = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

$$1 - \left(\frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2}\right)^2 = 4 \frac{\det(M)}{(trace(M))^2}$$

SUSAN, 1997

FAST, 2005

FAST, 2005

$$I_{p_i} > I_p + t \qquad I_{p_i} < I_p - t$$

FAST, 2005

Недостатки:

- Вблизи окрестности может обнаружиться несколько особенностей
- Эффективность зависит от порядка рассмотрения пикселей

Blobs detector

$$W(x,y) = \nabla^2 G(x,y)$$

Оператор Лапласса $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

Гауссов импульс

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$W(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}} \left(\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} \right)$$

DoG

$$\Delta G(x,y) = C \cdot \left(\frac{1}{\sigma_1^2} e^{-\frac{x^2 + y^2}{2\sigma_1^2}} - \frac{1}{\sigma_2^2} e^{-\frac{x^2 + y^2}{2\sigma_2^2}} \right)$$

Аппроксимация LoG

Laplacian of Gaussian

Difference of Gaussians

