Nervcellsfysiologi

Textbooks:

Bear kap:3-6, 23, 25 Purves kap:2-8; 22-25 Block 2 Nervcellsfysiologi Eric Hanse

Action potentials "in action"

The withdrawal reflex

Functional cell assemblies, or engrams

Excitability– the likelihood of evoking action potentials

Synaptic and Intrinsic Excitability

Modulation and Plasticity of Excitability

Electrophysiology – different levels of reductionism

Patch-clamp recordings

Extracellular recordings

Membrane potential

Pumps, concentration differences and equilibrium potential

Nernst equation

$$E_{jon} = 2.303 (RT/zF) log([jon]_{u}/_{[jon]_{i}})$$

$$E_{jon} = 61.54 \log(^{[jon]_u}/_{[jon]_i})$$

The Na/K-pump pumps 2 K⁺ in and 3 Na⁺ out of the cell.

Copyright $\ensuremath{\mathbb{C}}$ 2002, Elsevier Science (USA). All rights reserved.

Ion channels 4pa

	Gating							
Selectivity		Voltage	Ligand	Ca ^{2+,} cAMP, cGMP	Temp	Mech	Н	"leak"
	Na							
	K							
	N/K							
	N/K/Ca							
	Ca ²⁺							
	Cl/HCO ₃							

Leak channels

The resting permeability for K⁺ is much higher than for Na⁺, but the driving force (at resting membrane potential) is much higher for Na⁺ than for K⁺. The resultant currents for K⁺ and Na⁺ are therefore equal

The Sodium "Leak" Has Finally Been Plugged

Neuron 54, May 24, 2007

Membrane potential

The Goldman equation $V_m = 61.54 \text{ mV log}$

$$\frac{P_{K}[K^{+}]_{u} + P_{Na}[Na^{+}]_{u}}{P_{K}[K^{+}]_{i} + P_{Na}[Na^{+}]_{i}}$$

Action potential – "all-or-none"

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Propagation of the action potential

Myelin Diameter Temperatur

	Muscle nerve	Cutaneous nerve	Fiber diameter (µm)	Conduction velocity (ms)
Myelinated				
Large	I	A-C	13-20	80-120
Small	II	Αβ	6-12	35-75
Smallest	III	Aδ	1-5	5-30
Unmyelinated	IV	С	0.2-1.5	0.5-2

Refractory period following the action potential

Absolute refractory period = Voltage-gated Na⁺-channels are inactivated, making a new action potential impossible.

Relative refractory period = Voltage-gated Na⁺-channels deinactivates during this period and the membrane potential is hyperpolarized. A stronger than normal depol is required to evoke an action potential.

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Optical recording of the action potential

Hochbaum et al (2014) **All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins** *Nature Methods* 11: 825-833

Synaptic excitation and inhibition

"Modulatory Rec"

Glu and GABA synapses

Kasthuri et al (2015) **Saturated reconstruction of a volume of neocortex** Cell 162: 648661

Cortical pyramidal cell:

ca. 30000 Glutamate synapses (90%)

ca. 2000 GABA synapses (10%)

Megías, Emri, Freund & Gulyás (2001) Neuroscience 102:527

Presynaptic release of transmitter vesicle

SNARE-mediated exocytosis

Glutamate uptake in astrocytes

Synapses are usually small and unreliable, but many (and plastic)

3 quantal parameters determine the signalling strength of a synaptic connection

Synaptic strength = $n \times p \times q$

n = no. of release sites

p = release probability

The probability that an action potential will cause the release of one vesicle

q = quantal size

The magnitude of the postsynaptic response to one vesicle

The Glutamate synapse

- 1. The AMPA receptor channel:
- -opened by glutamate
- -permeates Na⁺ and K⁺
- -gives rise to a brief (ca. 10 ms) EPSP
- 2. The NMDA receptor channel:
- -opened by glutamate (and Gly/D-Ser) + depol
- -permeates Na⁺, K⁺ and Ca²⁺
- gives rise to a brief long-lasting (ca. 100 ms) EPSP
- -is necessary for the induction of synaptic plasticity; Long-term potentiation (LTP) och long-term depression (LTD).
- 3. Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors that, for example, can give rise to Ca²⁺ release from ER and facilitate synaptic plasticity.

The GABA synapse

 $\mathsf{GABA}_\mathsf{A} \, \mathsf{Rec}$

The i.c. Cl⁻ concentration determines the response of the GABA_A receptor channels

Nature Reviews | Neuroscience

Intrinsic excitability – all ion channels of the neuron, except the ligand-gated in the synapses

E.c. Calcium

From Hille "Ion channels in excitable membranes" 3rd ed

Families of voltage-gated Na⁺, Ca²⁺ and K⁺ channels

Regulation of action potential frequency – AfterHyperPolarisation (AHP) and gKca²⁺

Fig. 2. Diagram of the proposed mechanisms of action of norepinephrine and acetylcholine in blocking the slow Ca^{2+} -activated K^+ conductance.

Nicoll, RA

Different firing patterns because of differences in intrinsic excitability

Modulation and Plasticity of Excitability

Neuromodulation

Modulate:

- *Release probability
- *Intrinsic excitability
- *Plasticity

<u>Co-transmitters</u> <u>"Classical"</u>

ACh, NA, 5-HT, Histamin, DA

<u>Co-transmitters</u> <u>Peptides</u>

Orexin, Galanin, Endorphin, CCK, VIP, Oxytocin...

Retrograde transmitters

endocannabinoids, NO, neurotrophins

Hormones

Cortisol, Estrogen, Progersteron, Ghrelin, Insulin Vasopressin, AF...

Gliotransmitters

Glu ATP → Adenosine D-serine, Taurine

Neurotransmitters

Glu via mGluRs GABA via GABA_BRs

Cytokines, Chemokines

TNFα IL-1β....

Modulation and Plasticity of Excitability

Long-term synaptic plasticity (min – years); LTP and LTD

Modulation and Plasticity of Excitability

