SCMA104 Systems of Ordinary Differential Equations and Applications in Medical Science

Pairote Satiracoo

2024-08-07

Contents

รักการและความสำคัญของแคลคูลัสและระบบสมการเชิงอนุพันธ์สามัญ				
The pool of tears	9			
A caucus-race and a long tale	11			

iv *CONTENTS*

หลักการและความสำคัญของแคลคูลัส และระบบสมการเชิงอนุพันธ์สามัญ

แคลคูลัสมีส่วนประกอบหลักที่สำคัญอยู่ 2 องค์ประกอบ คือ

- 1. การหาอนุพันธ์ (differentiation) และ
- 2. การหาปริพันธ์ (Integration)

การ ประยุกต์ เรื่อง การ หา อนุพันธ์ใน การ แก้ ปัญหา เบื้อง ต้น ที่ สำคัญใน ทาง ชีววิทยา หรือ ทางการ แพทย์ ประกอบด้วย การหาอัตราการเปลี่ยนแปลงของปริมาณของตัวแปรที่เราสนใจ และการใช้แคลคูลัสในการ แก้ปัญหาการหาค่าสูงสุดและค่าต่ำสุดของปัญหาหรือฟังก์ชันที่แสดงความสัมพันธ์ของตัวแปรที่เราสนใจ

ตัวอย่างการเปลี่ยนแปลงของปริมาณที่สนใจ เช่น ขนาดของประชากร จำนวนของผู้ติดเชื้อจากโรคทางเดิน หายใจ ระดับน้ำตาลในกระแสเลือด ปริมาณของยาที่มีอยู่ในกระแสเลือกหรือส่วนหนึ่งของร่างกาย โดยที่ การเปลี่ยนแปลงดังกล่าวสามารถเปรียบเทียบได้กับเวลา ดังต่อไปนี้

- ประชากรในประเทศไทยปี พ.ศ. 2566 มีจำนวน 66.05 ล้านคน (ข้อมูลอ้างอิงจาก สำนักงานคณะ กรรมการส่งเสริมการลงทุน)
- ข้อมูลจำนวนผู้รักษาตัวในโรงพยาบาลจากศูนย์ข้อมูล COVID-19 ระหว่างวันที่ 28 กรกฎาคม ถึง วันที่ 3 สิงหาคม พ.ศ. 2567 (ข้อมูลอ้างอิงจาก ศูนย์ข้อมูล Covid-19)
- การเปลี่ยนแปลงของระดับน้ำตาลในเลือดระหว่างมืออาหารสามมือในหนึ่งวัน (รูปภาพอ้างอิงจาก Wikipedia: Blood Sugar Level)
- การเปลี่ยนแปลงของปริมาณยาในกระแสเลือดที่เวลาต่างๆ สำหรับการให้ยาโดยวิธีต่างๆ (รูปภาพ อ้างอิงจาก บทความทางวิชาการในฐานข้อมูล MDPI)

ในการทำความเข้าใจการเปลี่ยนแปลงของปริมาณข้างต้นเทียบกับเวลา เราสามารถประยุกต์ใช้การสร้าง แบบจำลองทางคณิตศาสตร์เพื่อมาใช้อธิบายการเปลี่ยนแปลงของปริมาณต่างๆ ที่เกี่ยวข้อง

Figure 1: ข้อมูลจำนวนผู้รักษาตัวในโรงพยาบาลจากศูนย์ข้อมูล COVID-19

Figure 2: ความผันผวนของระดับน้ำตาลในเลือด (สีแดง) และฮอร์โมนอินชูลิน (สีน้ำเงิน) ในมนุษย์ระหว่าง มื้ออาหารสามมื้อ

Figure 3: ความเข็มข้นของยาในกระแสเลือดที่เวลาต่างๆ

การสร้างแบบจำลองทางคณิตศาสตร์ เป็นกระบวนการอธิบายปัญหาหรือ ปรากฏการ ต่างๆ ที่เกิดขึ้นในธรรมชาติ โดยปกติแล้วจะอยู่ในรูปของสมการทางคณิตศาสตร์ ซึ่งแบบ จำลองทางคณิตศาสตร์นี้จะช่วยให้อธิบายสิ่งต่างๆ ที่เกิดขึ้นในปัญหาหรือปรากฏที่สนใจ

ตัวอย่างต่อไปนี้จะแสดงถึงแนวคิดในการประยุกต์ของแคลคูลัสที่เกี่ยวข้องกับอัตราการเปลี่ยนแปลงของ

ในการทดลองหนึ่ง นักวิจัยต้องการศึกษาการขยายพันธ์ของแบคทีเรียที่มีการการแบ่งตัวที่เรียกว่า binary fission (การแบ่งตัวแบบทวิภาค) ซึ่งแบคทีเรียจะมีการแบ่งจากหนึ่งเป็นสองเซลเท่าๆ กัน และได้ผลการ ทำลองดังต่อไปนี้

Figure 4: กระบวนการแบ่งตัวแบบทวิภาคของแบคทีเรีย

(รูปอ้างอิงจาก BYJU's Learning Website)

Table 1: จำนวนของแบคทีเรียที่เวลา t ใดๆ

เวลา (10 นาที)	0	1	2	3	4	5	6
จำนวนแบคทีเรีย	1	2	4	8	16	32	64

ตาราง @ref(tab:bacteria-table) และ รูปที่ @ref(fig:population-plot) แสดงการ เปลี่ยนแปลงของ จำนวนแบคทีเรียที่เวลาใดๆ ในตัวอย่างนี้การ เปลี่ยนแปลงของจำนวนของแบคทีเรียที่เวลา t สามารถ เขียนในรูปฟังก์ชัน N(t) ถ้าให้ N_0 แทนจำนวนของแบคทีเรียตอนเริ่มการทดลอง แล้วแบบจำลองทาง คณิตศาสตร์สำหรับการเพิ่มของจำนวนแบคทีเรียจะสามารถเขียนในรูปของสมการ

$$N(t) = N_0 \cdot 2^t, \quad t = 0, 1, 2, \dots (\#eq: population - growth)$$
 (1)

ในแบบจำลองทางคณิตศาสตร์นี้การเปลี่ยนแปลงของจำนวนแบคทีเรียที่เวลา t ใดๆ เพิ่มขึ้นในลักษณะที่ เรียกว่า เอกซ์โพเนนเซียล (Exponential Population Growth)

Figure 5: Population Size Over Time

ในการสร้างแบบจำลองทางคณิตศาสตร์ ในตัวอย่างของการขยายพันธ์แบคทีเรีย หรือในปัญหาอื่นๆ แทนที่ เราจะพยายามหาความสัมพันธ์ หรือฟังก์ชัน N(t) ในรูปของเวลา t โดยตรง ถ้าเราทราบกระบวนการที่ เกี่ยวข้องกับการอัตราการเปลี่ยนแปลงของตัวแปร N(t) นั้น เราสามารถนำมาใช้ในการสร้างแบบจำลอง ทางคณิตศาสตร์ ได้ดังต่อนี้ กระบวนการที่เกี่ยวข้องกับการเปลี่ยนแปลงของจำนวนแบคทีเรีย (การเพิ่ม หรือลดลงของแบคทีเรีย) ที่เกิดขึ้นในระหว่างเวลา t และเวลา t+h เกิดจากจำนวนแบคทีเรียที่เพิ่มขึ้น (เกิดขึ้นมาใหม่) ในช่วงเวลาดังกล่าว และลดลงจากจำนวนแบคทีเรียที่ลดลง (ตายไป) ในช่วงเวลาดังกล่าว เช่นกัน ซึ่งเราสามารถเขียนในรูปของสมการได้ดังต่อไปนี้

$$N(t+h)=N(t)$$
 (2)
$$+$$
 จำนวนแบคทีเรียที่เกิดขึ้นใหม่ระหว่าง t และ $t+h$ (3)
$$-$$
 จำนวนแบคทีเรียที่ตายไประหว่าง t และ $t+h(\#eq:population-growth-2)$ (4)

ในที่นี้ "**การเกิด**" เราหมายถึงการเพิ่มจำนวนของแบคทีเรียจากหนึ่งเป็นสอง และเราจะกำหนดให้ h เป็น ช่วงเวลาสั้นๆ (ซึ่งเราสามารถใช้ความรู้แคลคูลัสในการสร้างแบบจำลองทางคณิตศาสตร์ในรูปของสมการ เชิงอนุพันธ์ (differential equation)) ในสมการ @ref(eq:population-growth-2) ถ้าเราสมมติว่า การ เพิ่มของแบคทีเรียเป็นสัดส่วนกับจำนวนแบคทีเรียที่มีอยู่ในขณะนั้น หรือเขียนในรูปของสมการได้ดังนี้

จำนวนแบคทีเรียที่เกิดใหม่ระหว่าง t และ $t+hpprox b\cdot N\cdot h$

จำนวนแบคทีเรียที่ตายไประหว่าง t และ $t+h pprox m \cdot N \cdot h$

โดยที่ค่าคงตัว b และ m ในสมการข้างต้น คือ อัตราการเกิด (birth rate) และอัตราการตาย (mortality rate)

เมื่อแทนจำนวนแบคทีเรียที่เกิดใหม่ และตายไประหว่างช่วงเวลาที่กำหนดลงในสมการ @ref(eq:populationerowth-2) จะได้สมการ

$$N(t+h) - N(t) = b \cdot N(t) \cdot h - m \cdot N(t) \cdot h (\#eq:population-growth-3) \tag{5}$$

เราสามารถจัด รูปสมการ @ref(eq:population-growth-3) ได้ไหมใน รูป ของ**อัตราการ เปลี่ยนแปลง** เ**ฉลี่ย**ของจำนวนแบคทีเรียในช่วงเวลาดังกล่าว ดังนี้

$$\frac{N(t+h)-N(t)}{h} = b \cdot N(t) - m \cdot N(t) \tag{6}$$

$$(\#eq:population - growth - 4) \tag{7}$$

ดังนั้น ถ้าเราให้ h เข้าใกล้ 0 ผ่านการหาค่าลิมิต เราจะได้อัตราการเปลี่ยนแปลงขณะหนึ่ง (instantaneous rate of change) และเขียนได้ในรูปของสมการเชิงอนุพันธ์ ดังนี้

$$\frac{dN}{dt} = \lim_{h \to 0} \frac{N(t+h) - N(t)}{h} = b \cdot N(t) - m \cdot N(t) \tag{8}$$

$$(\#eq:population - qrowth - 5) \tag{9}$$

ทั้งนี้ในการ แก้สมการ เชิง อนุพันธ์ @ref(eq:population-growth-5) เพื่อให้ได้คำตอบ ที่ แสดง จำนวน แบคทีเรีย N(t) ในรูปของฟังก์ชันของ t เราจะต้องกำหนดเงื่อนไขเพิ่มเติมที่เกี่ยวข้องกับจำนวนแบคทีเรีย N(t) ที่เวลา t หนึ่ง โดยทั่วไปเราจะกำหนดค่าเริ่มต้นของจำนวนแบคทีเรียที่ t=0 ดังนั้น ถ้าเรา กำหนดเงื่อนไขเริ่มต้น (initial condition)

$$N(0) = N_0(\#eq:population - growth - 6)$$
(10)

เราสามารถหาคำตอบของสมการเชิงอนุพันธ์ที่มีเงื่อนไขเริ่มต้นโดยวิธีการหาปริพันธ์ (Integration) ได้คำ ตอบของสมการดังนี้

$$N(t) = N_0 e^{(b-m)t} (\#eq: population - growth - 7) \eqno(11)$$

ในการทดลองเลี้ยงยีสต์ในขวดทดลองที่มีอาหารเลี้ยงยีสต์ในปริมาณที่เหมาะสม ผู้ทำการทดลองสนใจ ที่ จะ ประมาณ ค่า ของ ยีสต์ โดย อาศัย แบบ จำลอง การ เปลี่ยนแปลง ของ ประชากร ที่ อธิบาย ด้วย สมการ @ref(eq:population-growth-7) กำหนดให้

- ภายใต้สภาวะของการทดลองที่เหมาะสม ยีสต์จะแบ่งตัวทุกๆ 90 นาที
- ยีสต์มีครึ่งชีวิตเท่ากับ 1 สัปดาห์

จากข้อมูลดังกล่าว จงแสดงวิธีทำเพื่อหาคำตอบจากคำถามต่อไปนี้

- 1. จงประมาณค่าของอัตราการเกิด b (1/ชั่วโมง) และอัตราการตาย m (1/ชั่วโมง)
- 2. เขียน แบบ จำลอง ทาง คณิตศาสตร์ โดย ใช้ ค่า b และ m ที่ ประมาณ ค่า ได้ (สมการ @ref(eq:population-growth-7))
- 3. ใช้เครื่องมือที่นักศึกษามีอยู่ในการวาดกราฟแสดงความสัมพันธ์ของจำนวนยีสต์ที่เวลาต่างๆ
- 4. เปรียบเทียบผลลัพธ์ที่ได้กับรูปภาพแสดงการเปลี่ยนแปลงของยีสต์จากการทดลองในห้องปฏิการ ตามรูปที่ @ref(fig:fig-yeast-cells) (รูปภาพอ้างอิงจาก https://homework.study.com/)

Figure 6: กราฟการเจริญเติบโตของเซลล์ยีสต์

จงใช้อินเทอร์เน็ตเพื่อค้นหาตัวอย่างแบบจำลองทางคณิตศาสตร์ที่อธิบายโดยสมการเชิงอนุพันธ์หรือระบบ สมการเชิงอนุพันธ์ ข้อมูลที่ต้องการประกอบด้วย

- 1. ค้นหาหน้าเว็บที่ให้ข้อมูลเกี่ยวกับแบบจำลองทางคณิตศาสตร์ในปัญหาที่นักศึกษาสนใจ
- 2. จดบันทึก URL ของหน้าเว็บ
- 3. เขียนสรุปสั้นๆ ว่าโมเดลนี้ใช้เพื่ออะไร

โดยสรุป แคลคูลัสและสมการเชิงอนุพันธ์เป็นเครื่องมือสำคัญในการทำความเข้าใจว่าสิ่งต่างๆ เปลี่ยนแปลง ไปอย่างไรและ แคลคูลัสช่วยให้เราวิเคราะห์อัตราการเปลี่ยนแปลงและพื้นที่ใต้เส้นโค้ง ในขณะที่สมการ เชิงอนุพันธ์ช่วยให้เราสร้างแบบจำลองระบบที่ขับข้อนในสาขาต่างๆ เช่น ฟิสิกส์ วิศวกรรม เศรษฐศาสตร์ และชีววิทยา แนวคิดทางคณิตศาสตร์เหล่านี้มีความสำคัญต่อการแก้ปัญหาในโลกแห่งความเป็นจริง เมื่อ โลกของเราก้าวหน้ามากขึ้น ความสำคัญของแคลคูลัสและสมการเชิงอนุพันธ์ก็จะเพิ่มขึ้นอย่างต่อเนื่อง ซึ่ง สนับสนุนความก้าวหน้าทางวิทยาศาสตร์และเทคโนโลยี

The pool of tears

Custom block for latex

My nice heading

This is another tcolorbox.

Here, you see the lower part of the box.

This is a tcolorbox. This is a tcolorbox.

custom block for html

ทฤษฎีบท

An example of an admonition with a title.

10 THE POOL OF TEARS

A caucus-race and a long tale

