Langage fonctionnel et Récursivité

Programmation Fonctionnelle Master 2 I2L apprentissage

SÉBASTIEN VEREL

verel@lisic.univ-littoral.fr

http://www-lisic.univ-littoral.fr/~verel

Université du Littoral Côte d'Opale Laboratoire LISIC Equipe OSMOSE

Septembre 2018

Objectifs de la séance 02

- Savoir les principes de la programmation fonctionnelle
- Ecrire un algorithme récursif avec un seul test
- Etablir le lien entre définition par récurrence et algorithme récursif

Question principale du jour :

Comment écrire ce que l'on ne connait pas encore?

Plan

1 Langage fonctionnel

2 Récursivité

3 Résolution de problèmes par récursivité

Bibliographie

Basée sur le livre et les considérations de Jean-Paul Roy Université Nice Sophia Antipolis

Spécialiste de la programmation fonctionnelle :

http://deptinfo.unice.fr/~roy/

"Premiers cours de programmation avec Scheme - Du fonctionnel pur aux objets avec DrRacket", Ellipse, 432 pages, 2010.

Paradigmes de programmation

- Paradigme procédural ou impératif (1955) :
 - Machine à état,
 - Ordres (procédures) à la machine
- Paradigme fonctionnel (1958) :
 - Fonction, structure d'arbre
 - Composition de fonction, principe de récurrence
- Paradigme à objets (1967) :
 - Division du monde en classe, objets
 - Envoie de messages
- Styles complémentaires,
- Langages rarement bornés à un style (souplesse) et évoluent constamment
- Un informaticien jongle avec ces styles selon les besoins

Paradigme procédural, impératif

Le plus ancien, Fortran (1955) puis Pascal, C.

Principe

Programme = suite d'instructions pilotant un ordinateur cf. Machine de Turing, machine à états.

Effets de bord

- Suppose de connaître l'état de la machine,
- Modification zone de mémoire partagée : effet de bord
 Pensez aux applications distribuées où il y a un partage de ressource
- Source de nombreux bugs (mauvaise allocation, utilisation imprévue de variable, état imprévus, etc.)
- Monde virtuel de la mémoire ne cesse d'être modifiée (débutants!)
- Technique de réduction des interactions (programmation structurée, variable locale, encapsulation)

Paradigme procédural, impératif

Outil principal

Itération pour le calcul répétitif

- Programmation structurée : Pascal
- C est incontournable pour les professionnels au plus prés de l'architecture et de l'OS
- Considéré comme langage machine de haut niveau (nombreux compilateurs se contentent de traduire en C!)
- Evolution du C vers l'objet (C++, objective C, C#)

Paradigme à objets

- Emergence avec Smalltalk (milieu 1970),
- Popularisé Java et C++ (années 90)
- Basé sur le besoin de Réutilisation du logicielle et d'Extensibilité

Principe

Notion de classes et d'objets

cf. math, ensembles et éléments

- Objets ont des capacités définies par des méthodes (fonctions),
- Exécuter par envoie de "message".
- Calcul décentralisé dans les objets.

Tous les langages populaires sont objets

- Réfuter la notion d'instruction,
- Pas de notion de temps,
- Pas de modification (comme en mathématique)

Principe

Eléments de base = fonctions

cf. lambda calcul (Alonzo Church, année 1930)

• S'appuie sur des mécanismes mentaux primitifs : Définition par récurrence

Récursivité

- Pas d'effet de bord, pas d'opérations d'affectation :
 En interne, pile pour stocker les informations temporaires (notion d'environnement)
- Calcul consiste en l'évaluation d'une fonction pour éviter toute modification "d'états"
- Résultat dépend seulement des entrées et non pas de l'état du programme
- transparence référentielle : remplacement des entrées par des fonctions qui ont les mêmes valeurs (voir ex. tableau)
- Auto-référent : capable de parler de lui-même Fonction, type de base Construction au cours de l'exécution

- Ancètre LISP (John McCarthy, 1958)
- Fortran (55) : besoin numérique militaire, les gestionnaires
- LISP: problèmes symbolique IA
 Démonstration automatique, planification jeu d'échec, compréhension langage naturel, calcul formel, mécanismes cognitifs

Exemples: emacs, autocad, PathFinder, certains jeux et les application d'erlang (telecom), langage Xquery/XSLT, scala avec le "big data", etc.

Différent impératif / fonctionnel

Impératif : $\{l_1 ; l_2\}$ Fonctionnel : $f_1 \circ f_2$

Approximativement

• Programmation fonctionnelle :

Exécuter un programme : évaluer un arbre, et le résultat du programme est la valeur de l'arbre.

Sens au programme = valeur

• Programmation impérative :

Exécuter un programme : évaluer un arbre, dont la valeur n'est pas importante.

Au fur et à mesure de l'évaluation de l'arbre, des actions sont produites sur le monde extérieur.

Sens au programme = actions

Exemple du calcul du pgcd

```
Algorithme PGCD(a, b : entier) : entier
début

si b = 0 alors

retourner a

sinon

c \leftarrow a \mod b

retourner PGCD(b, c)

fin si

fin
```

Pour
$$a = 70$$
 et $b = 462$

Pour a = 70 et b = 462

1. PGCD(70, 462)

- 1. PGCD(70, 462)
- 2. $b \neq 0$

- 1. PGCD(70, 462)
- 2. $b \neq 0$
- 5. c = 70

- 1. PGCD(70, 462)
- 2. $b \neq 0$
- 5. c = 70
- 6. PGCD(462, 70)

- 1. PGCD(70, 462)
- 2. $b \neq 0$
- 5. c = 70
- 6. PGCD(462, 70)
- 2. $b \neq 0$
- 5. c = 42
- 6. PGCD(70, 42)

- 1. PGCD(70, 462)
- 2. $b \neq 0$
- 5. c = 70
- 6. PGCD(462, 70)
- 2. $b \neq 0$
- 5. c = 42
- 6. PGCD(70, 42)
- 2. $b \neq 0$
- 5. c = 28

- 1. PGCD(70, 462)
- 2. $b \neq 0$
- 5. c = 70
- 6. PGCD(462, 70)
- 2. $b \neq 0$
- 5. c = 42
- 6. PGCD(70, 42)
- $2. \ b \neq 0$
- 5. c = 28
- 5. C = 28
- 6. PGCD(42, 28)
- 2. $b \neq 0$
- 5. c = 14

Pour a = 462 et b = 70

- 6. PGCD(28, 14)
- 2. $b \neq 0$
- 5. c = 0

Pour a = 462 et b = 70

- 6. PGCD(28, 14)
- 2. $b \neq 0$
- 5. c = 0
- 6. PGCD(14, 0)
- 2. b = 0
- 3. PGCD = 14

Elements de l'algorithme

Base: initialisation de la récurrence
 si b = 0 alors
 retourner a
 sinon
 ...
 fin si

Elements de l'algorithme

```
    Base : initialisation de la récurrence

     si b=0 alors
       retourner a
     sinon
     fin si

    Hérédité : calcul à partir de paramètres plus "petits"

     si b=0 alors
     sinon
       retourner PGCD(b, c)
     fin si
  fin
```

Définition (informelle)

Algorithmes récursifs

Un algorithme récursif est un algorithme qui fait appel à lui-même dans le corps de sa propre définition.

Définition (informelle)

Algorithmes récursifs

Un algorithme récursif est un algorithme qui fait appel à lui-même dans le corps de sa propre définition.

Il existe deux types d'algorithmes récursifs :

les algorithmes récursifs qui se terminent :
 au bout d'un nombre fini d'opérations, l'algorithme s'arrête.

Définition (informelle)

Algorithmes récursifs

Un algorithme récursif est un algorithme qui fait appel à lui-même dans le corps de sa propre définition.

Il existe deux types d'algorithmes récursifs :

- les algorithmes récursifs qui se terminent :
 au bout d'un nombre fini d'opérations, l'algorithme s'arrête.
- les algorithmes récursifs qui ne se terminent pas :
 on peut imaginer que l'algorithme continue "éternellement"
 de calculer.

```
Algorithme suiteU(n: entier): réel début si n=0 alors retourner 2 sinon retourner \frac{1}{2} suiteV(n-1) + 2 fin si fin
```

```
Algorithme suiteU(n: entier): réel début si n=0 alors retourner 2 sinon retourner \frac{1}{2} suiteV(n-1) + 2 fin si fin suiteU n'est pas un algorithme résursif
```

```
Algorithme suiteV(n: entier): réel début si n=0 alors retourner 2 sinon retourner \frac{1}{2} suiteV(n-1) +2 fin si fin
```

```
Algorithme suiteV(n: entier): réel début si n=0 alors retourner 2 sinon retourner \frac{1}{2} suiteV(n-1) +2 fin si fin suiteV est un algorithme résursif qui se termine
```

```
Algorithme suiteW(n: entier): réel début si n=0 alors retourner 2 sinon retourner \frac{1}{2} suiteW(n-3)+2 fin si fin
```

```
Algorithme suiteW(n: entier): réel début si n=0 alors retourner 2 sinon retourner \frac{1}{2} suiteW(n-3)+2 fin si fin
```

- suiteW(n) est un algorithme résursif :
 - si *n* est un multiple de 3, suiteW se termine
 - sinon suiteW ne se termine pas

Exemple d'exécution Calcul de la puissance

Définition mathématique :

$$a^n = \begin{cases} 1, & \text{si } n = 0 \\ a^{n-1}.a, & \text{sinon} \end{cases}$$

Exemple d'exécution

Calcul de la puissance

Définition mathématique :

$$a^n = \begin{cases} 1, & \text{si } n = 0 \\ a^{n-1}.a, & \text{sinon} \end{cases}$$

```
Algorithme puissance(a: réel, n: entier): réel début si n=0 alors retourner 1 sinon retourner puissance(a, n-1) * a fin si fin
```

Exemple d'exécution Calcul de la puissance

Calcul de la puissance

Calcul de $(2.5)^3$: a = 2.5 et n = 3.

1. puissance(2.5, 3)

Calcul de la puissance

- 1. puissance(2.5, 3)
- 2. —> puissance(2.5, 2)

Calcul de la puissance

- 1. puissance(2.5, 3)
- 2. —> puissance(2.5, 2)
- 3. ——-> puissance(2.5, 1)

Calcul de la puissance

- 1. puissance(2.5, 3)
- 2. —> puissance(2.5, 2)
- 3. ——-> puissance(2.5, 1)
- 4. ——————— puissance(2.5, 0) = 1

Calcul de la puissance

- 1. puissance(2.5, 3)
- 2. —> puissance(2.5, 2)
- 3. ——-> puissance(2.5, 1)
- 4. ————————— puissance(2.5, 0) = 1
- 5. ——-> puissance(2.5, 1) = 1 * 2.5 = 2.5

Calcul de la puissance

- 1. puissance(2.5, 3)
- 2. —> puissance(2.5, 2)
- 3. ——-> puissance(2.5, 1)
- 4. ————— puissance(2.5, 0) = 1
- 5. ——-> puissance(2.5, 1) = 1 * 2.5 = 2.5
- 6. \longrightarrow puissance(2.5, 2) = 2.5 * 2.5 = 6.25

Calcul de la puissance

- 1. puissance(2.5, 3)
- 2. —> puissance(2.5, 2)
- 3. ——-> puissance(2.5, 1)
- 4. ————— puissance(2.5, 0) = 1
- 5. ——-> puissance(2.5, 1) = 1 * 2.5 = 2.5
- 6. \longrightarrow puissance(2.5, 2) = 2.5 * 2.5 = 6.25
- 7. puissance(2.5, 3) = 6.25 * 2.5 = 15.625

Principe d'exécution

- en rouge : parcours "aller"
- en bleu : parcours "retour"

En Haskell

En Haskell

```
* calcul de la puissance d'un nombre
*
* arguments :
 - a : nombre
 - n : puissance
* resultat :
 - a^n
-----}
puissance :: (Fractional a, Integral b) => a -> b -> a
puissance x \ 0 = 1
puissance x n = puissance x (n - 1) * x
```

En Erlang

```
* calcul de la puissance d'un nombre
*
* arguments:
* - a : nombre
 - n : puissance
* resultat :
  - a^n
puissance :: (Fractional a, Integral b) => a -> b -> a
puissance x \ 0 = 1
puissance x n \mid n > 0 = puissance x (n - 1) * x
              | n < 0 = 1 / puissance x (-n)
```

PGCD en Haskell

PGCD en Haskell

Intérêts

- bien adapté à la résolution de certains problèmes (et pas seulement mathématiques!)
- algorithmes souvent moins "laborieux" à écrire : moins de variables, beaucoup moins de boucles.
- une résolution par algorithme récursif nécessite souvent de prendre du recul pour résoudre le problème (avantage!)

A ne pas oublier!

Hérédité: calcul à partir de paramètres plus "petits"
 si b = 0 alors
 sinon
 retourner PGCD(b, b mod a)
 fin si
 fin

A ne pas oublier!

• Base : initialisation de la récurrence

```
si b = 0 alors
retourner a
sinon
...
```

fin si

Parallèle entre principe de récurrence et algorithme récursif

définition mathématique par récurrence très proche définition d'un algorithme récursif (cf. puissance)

Parallèle entre principe de récurrence et algorithme récursif

définition mathématique par récurrence très proche définition d'un algorithme récursif (cf. puissance)

Modes de calcul proches :

$$a^3 = a.a^2 = a.a.a^1 = a.a.a$$

Parallèle entre principe de récurrence et algorithme récursif

définition mathématique par récurrence très proche définition d'un algorithme récursif (cf. puissance)

Modes de calcul proches :

$$a^3 = a.a^2 = a.a.a^1 = a.a.a$$

Souvent, définition mathématique valide lorsque algorithme récursif associé se termine.

Correction du petit jeu "plus petit, plus grand" Analyse

Correction du petit jeu "plus petit, plus grand" Analyse

```
{-----
* Lance le jeu
-----}
play :: IO ()
play = tour (rnd 100) 5
* Tirage d'un nombre aléatoire entre 1 et m
* arguments :
* - aucun
* resultat :

    * - nombre entier pseudo-aléatoire

-----}
rnd :: Int -> Int
rnd m = 42
  -- randomIO (1, m)
```

```
* tour: Permet de jouer un tour de jeu
 * arguments :
 * - x : nombre a deviner
 * - n : nombre de tours possibles
 *
 * resultat :
  - aucun
tour :: Int -> Int -> IO ()
tour \times 0 =
   putStrLn $ "Perdu loser. Le nombre était " ++ (show x)
```

```
* tour: Permet de jouer un tour de jeu
 * arguments :
 * - x : nombre a deviner
 * - n : nombre de tours possibles
 *
* resultat :
 * - aucun
 -----}
tour :: Int -> Int -> IO ()
tour \times 0 =
  putStrLn $ "Perdu loser. Le nombre était " ++ (show x)
tour \times n = do
  p <- askNumber
  if p == x
     then putStrLn "Ouais Youpi c'est gagné."
```

```
tour x n = do
  p <- askNumber
if p == x
  then putStrLn "Ouais Youpi c'est gagné."
  else do
   if p < x
        then putStrLn "le nombre proposé est trop petit."
        else putStrLn "le nombre proposé est trop grand."
        tour x (n-1)</pre>
```

```
* Demande un nombre sur l'entrée standard
 * arguments:
  - aucun
 * resultat :
     - nombre entier dans un TO
askNumber :: IO Int.
askNumber = do
   putStr "Proposez votre nombre : "
   pString <- getLine
   return (read pString :: Int)
```

Peux-t-on écrire le calcul de la puissance avec le même principe?

```
* calcul de la puissance d'un nombre
* arguments :
  - a : nombre
 - n : puissance
* resultat :
   - a^n
puissance :: (Fractional a, Integral b) => a -> b -> a
puissance x \ 0 = 1
puissance x n \mid n > 0 = puissance x (n - 1) * x
              | n < 0 = 1 / puissance x (-n)
```

Récursivité terminale : calcul de la puissance

```
Algorithme puissance Terminale (a : réel, n : entier, acc : réel) :
  réel
début
  si n=0 alors
    retourner acc
  sinon
    retourner puissance Terminale (a, n-1, acc * a)
  fin si
fin
Comment s'exécute cet algorithme? puissance Terminale (2.5, 3, 1)
```

récursivité terminale : équivalent à une itération

Peux-t-on écrire le calcul de la puissance avec le même principe ?

Peux-t-on écrire le calcul de la puissance avec le même principe?

```
* calcul de la puissance d'un nombre
*
* arguments:
  - a : nombre
* - n : puissance
* - accumulateur
* resultat :
  - a^n
puissanceTerm :: (Fractional a, Integral b) => a -> b -> a -> a
puissanceTerm x 0 acc = acc
puissanceTerm x n acc \mid n > 0 = puissanceTerm x (n - 1) (acc * x
                      | n < 0 = 1 / puissanceTerm x (-n) acc
```

Récursivité terminale

Comment s'exécute l'algorithme "puissanceTerminale(2.5, 3, 1)"?

Récursivité terminale

Comment s'exécute l'algorithme "puissanceTerminale(2.5, 3, 1)"?

Récursivité terminale

- Utilisation de paramètres auxiliaires (accumulateurs),
- Equivalent à une itération (dérécursivation),
- Meilleur complexité (moins de temps de calcul)
 Certains compilateurs compilent les récursivités en récursivité terminale
- Style "moins naturel"

Calcul de la factorielle

Factorielle

$$n! = \begin{cases} 1, & \text{si } n = 0 \\ n.(n-1)!, & \text{sinon} \end{cases}$$

Calcul de la factorielle

Factorielle

$$n! = \begin{cases} 1, & \text{si } n = 0 \\ n.(n-1)!, & \text{sinon} \end{cases}$$

```
Algorithme factorielle(n : entier) : entier

début

si n = 0 alors

retourner 1

sinon

retourner n * factorielle(n-1)

fin si

fin
```

Factorielle en Haskell

Factorielle en Haskell

Calcul de 3!.

1. factorielle(3) = 3 * factorielle(2)

- 1. factorielle(3) = 3 * factorielle(2)
- 2. \longrightarrow factorielle(2) = 2 * factorielle(1)

- 1. factorielle(3) = 3 * factorielle(2)
- 2. \longrightarrow factorielle(2) = 2 * factorielle(1)
- 3. ——-> factorielle(1) = 1 * factorielle(0)

- 1. factorielle(3) = 3 * factorielle(2)
- 2. \longrightarrow factorielle(2) = 2 * factorielle(1)
- 3. ——-> factorielle(1) = 1 * factorielle(0)
- 4. \longrightarrow factorielle(0) = 1

- 1. factorielle(3) = 3 * factorielle(2)
- 2. \longrightarrow factorielle(2) = 2 * factorielle(1)
- 3. ——-> factorielle(1) = 1 * factorielle(0)
- 4. \longrightarrow factorielle(0) = 1
- 5. ——-> factorielle(1) = 1 * 1 = 1

- 1. factorielle(3) = 3 * factorielle(2)
- 2. \longrightarrow factorielle(2) = 2 * factorielle(1)
- 3. ——-> factorielle(1) = 1 * factorielle(0)
- 4. —————— \Rightarrow factorielle(0) = 1
- 5. ——-> factorielle(1) = 1 * 1 = 1
- 6. > factorielle(2) = 2 * 1 = 2

- 1. factorielle(3) = 3 * factorielle(2)
- 2. \longrightarrow factorielle(2) = 2 * factorielle(1)
- 3. ——-> factorielle(1) = 1 * factorielle(0)
- 4. ——-> factorielle(0) = 1
- 5. ——-> factorielle(1) = 1 * 1 = 1
- 6. > factorielle(2) = 2 * 1 = 2
- 7. factorielle(3) = 3 * 2 = 6

Quand utiliser un algorithme récursif?

- Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s)?
- Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"?
- Est-il possible de résoudre le problème à l'aide de la résolution du problème portant sur une (des) "plus petite(s)" valeur(s) du paramètre?

Si oui, oui, oui alors la résolution par un algorithme récursif est à envisager.

Tours de Hanoï (Édouard Lucas 1842 - 1891)

Le problème des tours de Hanoï consiste à déplacer N disques de diamètres différents d'une tour de départ à une tour d'arrivée en passant par une tour intermédiaire et ceci en un minimum de coups, tout en respectant les règles suivantes :

- on ne peut déplacer plus d'un disque à la fois,
- on ne peut placer un disque que sur un autre disque plus grand que lui ou sur un emplacement vide.

• Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s) ?

- Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s)?
 - → Oui le nombre de disques.
- Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"?

- Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s)?
 - --- Oui le nombre de disques.
- Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"?
 - \longrightarrow Oui lorsque le nombre de disque est 1.
- Est-il possible de résoudre le problème à l'aide de la résolution du problème portant sur une (des) "plus petite(s)" valeur(s) du paramètre?

- Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s)?
 - → Oui le nombre de disques.
- Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"?
 - \longrightarrow Oui lorsque le nombre de disque est 1.
- Est-il possible de résoudre le problème à l'aide de la résolution du problème portant sur une (des) "plus petite(s)" valeur(s) du paramètre?
 - \longrightarrow Oui...

Algorithme récursif

 $\begin{array}{ll} \textbf{Algorithme} & \mathsf{hanoi}(\mathsf{n} : \mathsf{entier}, \ \mathsf{A} : \mathsf{caractère}, \ \mathsf{B} : \mathsf{caractère}, \ \mathsf{C} : \\ \mathsf{caractère} \) : \mathsf{rien} \end{array}$

Algorithme récursif

```
Algorithme hanoi(n : entier, A : caractère, B : caractère, C :
  caractère ) : rien
début
  si n=1 alors
    écrire("déplacer", A, " vers", C)
  sinon
    hanoi(n-1, A, C, B);
    écrire("déplacer", A, " vers", C)
    hanoi(n-1, B, A, C);
  fin si
fin
```

En Haskell

Codage d'un mouvement

Couple de char :

('A', 'B')

Déplacement de la tige A vers la tige B

Ajouter un élément à une liste

Element : UneListe

Concaténer deux listes

List1 ++ List2

Hanoi en Haskell

```
{-----
* resolution des tours de Hanoi
* Arguments:
* - n : nombre de disques du probleme
* - a : pic initial
* - b : pic intermediaire
* - c : pic final
* Resultat :
* list des mouvements (couple)
hanoi :: Int -> Char -> Char -> [ (Char, Char) ]
hanoi 0 _ _ _ = [ ]
hanoi n a b c = hanoi (n-1) a c b ++ ((a,c) : hanoi (n-1) b a c )
```

- hanoi(2, a, b, c).
- hanoi(3, a, b, c)
- hanoi(4, a, b, c)

Quel est le nombre de déplacements en fonction de n?

- hanoi(2, a, b, c).
- hanoi(3, a, b, c)
- hanoi(4, a, b, c)

Quel est le nombre de déplacements en fonction de n?

Pour tout entier $n \ge 1$, $C_n = 2^n - 1$. A démontrer par récurrence...

Pour n = 64, les moines d'Hanoi y sont encore...

Résolution de problèmes par récursivité

Temps de diffusion

Calculer
$$T_a(n) = a + 2a + 3a + \ldots + n.a$$

• Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s) ?

Temps de diffusion

Calculer
$$T_a(n) = a + 2a + 3a + \ldots + n.a$$

- Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s)?
 → Oui n.
- Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"?

Temps de diffusion

Calculer
$$T_a(n) = a + 2a + 3a + \ldots + n.a$$

- Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s)?
 → Oui n.
- Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)" ?
 → Oui pour n = 0 ou n = 1
- Est-il possible de résoudre le problème à l'aide de la résolution du problème portant sur une (des) "plus petite(s)" valeur(s) du paramètre?

Temps de diffusion

Calculer
$$T_a(n) = a + 2a + 3a + \ldots + n.a$$

- Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s)?
 → Oui n.
- Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)" ?
 → Oui pour n = 0 ou n = 1
- Est-il possible de résoudre le problème à l'aide de la résolution du problème portant sur une (des) "plus petite(s)" valeur(s) du paramètre?

$$\longrightarrow$$
 Oui, $T_a(n) = T_a(n-1) + n.a$

Temps de diffusion Algorithme

```
Algorithme diffusion(a : réel, n : entier) : réel début 

si n = 0 alors 

retourner 0 

sinon 

retourner diffusion(a, n-1) +n.a 

fin si 

fin
```

En Haskell

En Haskell

Calcul de $T_4(3)$

1. diffusion(4, 3)

- 1. diffusion(4, 3)
- 2. —> diffusion(4, 2)

- 1. diffusion(4, 3)
- 2. —> diffusion(4, 2)
- 3. ——-> diffusion(4, 1)

- 1. diffusion(4, 3)
- 2. —> diffusion(4, 2)
- 3. ——-> diffusion(4, 1)
- 4. ————— > diffusion(4, 0) = 0

- 1. diffusion(4, 3)
- 2. —> diffusion(4, 2)
- 3. ——-> diffusion(4, 1)
- 4. ———————— \rightarrow diffusion(4, 0) = 0
- 5. ——-> diffusion(4, 1) = 0 + 4 = 4

- 1. diffusion(4, 3)
- 2. —> diffusion(4, 2)
- 3. ——-> diffusion(4, 1)
- 4. ————— > diffusion(4, 0) = 0
- 5. ——-> diffusion(4, 1) = 0 + 4 = 4
- 6. \longrightarrow diffusion(4, 2) = 4 + 2.4 = 12

- 1. diffusion(4, 3)
- 2. —> diffusion(4, 2)
- 3. ——-> diffusion(4, 1)
- 4. ————— > diffusion(4, 0) = 0
- 5. ——-> diffusion(4, 1) = 0 + 4 = 4
- 6. \longrightarrow diffusion(4, 2) = 4 + 2.4 = 12
- 7. diffusion(4, 3) = 12 + 3.4 = 24

Complexité temporelle

Approximativement : nombre d'opérations élémentaires pour exécuter l'algorithme

Comparer les complexités des algorithmes hanoi et diffusion.

Etant donné un nombre n de droites, calculer le nombre R_n maximum de régions du plan obtenus

 Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s)?

Etant donné un nombre n de droites, calculer le nombre R_n maximum de régions du plan obtenus

- Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s)?
 - \longrightarrow Oui le nombre n de droites.
- Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"?

Etant donné un nombre n de droites, calculer le nombre R_n maximum de régions du plan obtenus

- Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s)?
 - \longrightarrow Oui le nombre *n* de droites.
- Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"?
 - \longrightarrow Oui pour n = 0 ou n = 1
- Est-il possible de résoudre le problème à l'aide de la résolution du problème portant sur une (des) "plus petite(s)" valeur(s) du paramètre?

Etant donné un nombre n de droites, calculer le nombre R_n maximum de régions du plan obtenus

- Est-ce que le problème dépend d'un (ou plusieurs) paramètre(s)?
 - \longrightarrow Oui le nombre n de droites.
- Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"?
 - \longrightarrow Oui pour n = 0 ou n = 1
- Est-il possible de résoudre le problème à l'aide de la résolution du problème portant sur une (des) "plus petite(s)" valeur(s) du paramètre?
 - \longrightarrow Oui, en comptant le nombre régions ajoutées lorsqu'on ajoute une droite à n-1 droites : une région supplémentaire par droite coupée, plus une dernière région.

Régionnement du plan Algorithme

```
Algorithme region(n : entier) : entier début si n = 0 alors retourner 1 sinon retourner region(n-1) +n fin si fin
```

En Haskell

En Haskell