StuDocu.com

Tentamen 27 juni 2012, vragen

Basiswiskunde (Technische Universiteit Eindhoven)

TECHNISCHE UNIVERSITEIT EINDHOVEN

Faculteit Wiskunde en Informatica

Tentamen Basiswiskunde, 2DL00, woensdag 27 juni 2012, 18.30-21.30 uur.

Het tentamen bestaat uit 13 opgaven.

De antwoorden en uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk opgeschreven te worden.

U mag géén gebruik maken van een laptop, een grafische of programmeerbare rekenmachine, een formulekaart, boeken en ander schriftelijk materiaal.

U mag een eenvoudige rekenmachine alleen ter controle gebruiken.

- 1. Los de ongelijkheid $\frac{2x}{\sqrt{1-x^2}} \le x$ op.
- 2. Beschouw de functie f met $f(x) = 2\ln(1-x)$.
 - (a) Laat zien dat de functie f eenduidig (one-to-one) is.
 - (b) Bepaal het domein $D(f^{-1})$ en het bereik $R(f^{-1})$ van de inverse functie.
 - (c) Bepaal de inverse functie $f^{-1}(x)$.
- 3. Beschouw de functie f met $f(x) = \sqrt[3]{1+x}$. Het Taylorpolynoom van orde 2 rond a=0 wordt met $p_2(x)$ aangegeven.
 - (a) Bepaal het Taylorpolynoom $p_2(x)$.
 - (b) Geef met behulp van p_2 een benadering voor $\sqrt[3]{1.03}$.
 - (c) Geef een geschikt interval waarbinnen $\sqrt[3]{1.03}$ ligt.
- 4. Bepaal de vergelijking van de raaklijn in het punt P:(1,-2) aan de kromme K, impliciet gegeven door de vergelijking $x^3+xy+y^2=3$.
- 5. Bewijs de identiteit $\frac{1 \cos(2x)}{\sin(2x)} = \tan(x)$.
- 6. Gegeven is dat $\varphi = \arctan(2x)$.

Bereken $\cos(\varphi)$, $\sin(\varphi)$ en $\tan(2\varphi)$.

Notatie: $\arctan = \tan^{-1}$

7. Toon aan dat $\frac{\sqrt[3]{8+x}-2}{x} \le \frac{1}{3}$ voor alle x in \mathbb{R} met x > 0.

Hint: gebruik de middelwaardestelling.

zie volgende pagina

- 8. Beschouw de functie f met $f(x) = xe^{x^2-3x}$. Op welke intervallen is de functie f monotoon stijgend?
- 9. (a) Bepaal het Taylorpolynoom van orde 2 rond a=1 van de functie $f(x)=\ln(2-x)$.
 - (b) Bereken $\lim_{x\to 1} \left(\frac{\ln(2-x)}{(x-1)^2} + \frac{1}{x-1} \right)$.
- 10. Bereken de integraal $\int_0^{\pi} x \sin(x) \cos(x) dx$.
- 11. Beschouw de integraal $I_0 = \int_e^{e^2} \frac{\ln^2(\ln(x))}{\ln(x)x} dx$.
 - (a) Herschrijf de integraal I_0 met behulp van de substitutie $u = \ln(x)$,.
 - (b) Bereken de integraal I_0 .
- 12. Beschouw de functie F met $F(x) = \int_0^{x^2} e^{t^2} (1-t) dt$. Bepaal F'(x).

Hint: reken de integraal niet uit.

13. Bereken $\int x^3 e^{x^2} dx$.

Voor de onderdelen van de opgaven kunnen de volgende aantallen punten worden behaald:

Opgave	1:	3	punten	Opgave	4:	2	punten	Opgave	9b:	3	punten
Opgave	2a:	1	punt	Opgave	5:	3	punten	Opgave	10:	3	punten
	2b:	2	punten	Opgave	6:	3	punten	Opgave	11a:	2	punten
Opgave	3a:	1	punt	Opgave	7:	2	punten		11b:	2	punten
	3b:	2	punten	Opgave	8:	2	punten	Opgave	12:	3	punten
	3c:	2	punten	Opgave	9a:	1	punt	Opgave	13:	3	punten

Het cijfer voor het tentamen wordt bepaald door het totaal der behaalde punten van dit gedeelte door 4 te delen en tot een geheel getal af te ronden.

Bij het vaststellen van het cijfer wordt een bonusregeling toegepast.