. •			RESTRI	CIED 内部文件	F	-
		Soluti	ons		Marks	
1.	(a)	Median mark = 49	9.5		1 A	
	(b)			1		
		Marks	No. of Students			
		20 - 29	10			
		30 - 39	10			
		40 - 49	20			
		50 - 59	30			·
		60 - 69	10			
		Mean mark		•	1A+1A	1A for any two correct, 1A for the rest
		$=$ $\frac{24.5 \times 10 + 34}{1}$	1.5 × 10 + 44.5 × 20	$0 + 54.5 \times 30 + 64.5 \times 10$	1M	Accept 25,35,etc,
			00			denominator = Σf
		= \frac{3760}{80}				
_		= 47	• • • • • • • • • • • • • • • • • • • •	•••••	1A	Must show working
			***		5	
2.	(a)	$X \propto \frac{y^2}{z}$			1	
		$x = \frac{ky^2}{z}$ for so	me constant k		1A	For either
		$18 = \frac{k(3)^2}{2} \qquad \dots$		•••••	1M	Substituting for
		k = 4			1A	k
		i.e. $x = \frac{4y^2}{z}$				
	(b)	Putting $y = 1$,	$z = 4$, $x = \frac{4(1)}{4}$	<u>2</u>	1M	Substituting for k
			= 1		1A	
					5	
3.	(a)	$\frac{150000}{15} = £1000$	0	• • • • • • • • • • • • • • • • • • • •	1A	
		$10000(0.146)\left(\frac{30}{36}\right)$			1A	
		= £120	,			
		Amount = £(1000	0 + 120)		1M	٠.
		= £ 10120	•••••	•••••	1A	Accept 10100 ~
	(c)	14.50 × 10120				10120
		= HK\$146740 .	• • • • • • • • • • • • • • • • • • • •		1A 	Accept 146000 ~ 147000

-	RESTRICTED 内部文	任	
	Solutions	Marks	
4.	(a) $2a = 3b = 5c$		
	$\frac{2a}{30} = \frac{3b}{30} = \frac{5c}{30} \qquad \dots$	1M	
	$\therefore a:b:c=15:10:6$	2 A	Correct ratio not in this form, 1A only
	Alternatively		
	$\frac{a}{b} = \frac{3}{2} , \qquad \frac{b}{c} = \frac{5}{3}$		
	Writing $\frac{a}{b} = \frac{15}{10}$, $\frac{b}{c} = \frac{10}{6}$	1M	
	$\therefore a:b:c=15:10:6$	2A	See above
	(b) $a = 15k$	1	
	b = 10k	1M	for either
_	c = 6k		
	a - b + c = (15 - 10 + 6)k	1	
	= 55	1M	
	k = 5		
	c = 30	1A	
		6	
5.	$\sin^2\theta - 3\cos\theta - 1 = 0$		
	$1 - \cos^2\theta - 3\cos\theta - 1 = 0 \qquad \dots$	1M	$\sin^2\theta = 1 - \cos^2\theta$
	$\cos^2\theta + 3\cos\theta = 0$	1A	
	$\cos\theta\left(\cos\theta+3\right)=0$		
	$\cos \theta = 0$ or $\cos \theta = -3$ (rejected)	1A+1A	Accept $\cos \theta = 0$
	$\therefore \theta = 90^{\circ} \text{or} 270^{\circ} \left(\frac{\pi}{2} \text{or} \frac{3\pi}{2}\right) \qquad \dots$	1A+1A	Withhold 1 mark
			for each extraneous answer
		6	

		RESTRICTED 内部文件	-	
		Solutions	Marks	
6.	(a)	Putting $x = 0$, $y = 5$. $\therefore A = (0,5)$	1A	OR The coordinates of A are $x=0$, $y=5$
	(b)		1A 1A	
	(2)	Putting $y = x + 5$ (or $x = y - 5$) $x + 5 = x^2 - 6x + 5$ ($y = (y - 5)^2 - 6(y - 5) + 5$) $x^2 - 7x = 0$ x(x - 7) = 0 x = 0 or $y = 7$	1 A	
		At D , $x = 7$	1A 1A	
		$y = x^{2} - 6x + 5$ $D(7, 12)$ $O(5)$ $C((7, 0))$		
, =-	(a)	$\alpha + \beta = -\frac{20}{10} (= -2)$	6 1A	
		$4^{\alpha} \times 4^{\beta} = 4^{\alpha + \beta} \qquad \dots$	1A	
		$= 4^{-2} \left(= \frac{1}{16} = 0.0625 \right)$	1A	
	(b)	$\alpha\beta = \frac{1}{10}$	1A	
		$\log_{10}\alpha + \log_{10}\beta = \log_{10}\alpha\beta \qquad \dots$	1A	
		$= \log_{10} \frac{1}{10}$		
		= -1	1A 6	

	RESTRICTED 内部文件				
		Solutions	Marks		
8.	(a)	$L_2: y-2=1(x-0)$ x-y=-2 (or $x-y+2=0$, etc.) $L_3: \frac{x}{5}+\frac{y}{5}=1$ i.e. $x+y=5$ (or $x+y-5=0$, etc.)	2A]	2+1	
	(b)	The region is determined by the inequalities $x \le 4$ $x - y \ge -2$	1A 1A 1A	Withhold 1 mark if '=' omitted or for each extra- neous constrains Note other equivalent forms	
	(c)	(i) Drawing the line $x + 2y - 3 = c$	1M + 1A	OR Finding the values of P at any vertex	
		P is minimum at the point $(4, 1)$ and the minimum value of $P = 4 + 2(1) - 3 = 3$. (ii) $x + 2y - 3 \ge 7$	1A 1A	At (4,6), P=13 (4,1), P=3 (1.5,3.5), P=5.9	
		$x + 2y \ge 10$ Drawing $x + 2y = 10$ in the figure. The possible range of values of x is $2 \le x \le 4$.	1A 1A		
		$m{L_1}$	6		
	6	7 7 7 7 4			
	3	272y=10			
	1	2 +2 3 = 0 x+y-1 = 0			
		x			

1

		NESI NIC I ED 内面 X H		
·		Solutions	Marks	
9.	(a)	C = (2,1) A = (2,0) y	1A	
		†	1A	
		L	2	
		B		
		$\begin{pmatrix} & & & & \\ $		·
		$\frac{1}{0}$		
		,		
	(a)	Putting $y = mx$ in S	1M	Let $\angle COA = \theta$
		$x^2 + (mx)^2 - 4x - 2mx + 4 = 0$		$\tan\theta = \frac{1}{2}$ 1M
		$x^2 + (mx)^2 - 4x - 2mx + 4 = 0$	1	$\angle BOA = 2\theta \qquad 1M$ $\therefore m = \tan 2\theta \qquad 1A$
		$(1 + m^2) x^2 - (4 + 2m) x + 4 = 0$	1A	$= \frac{2\tan\theta}{1-\tan^2\theta} \qquad 1A$
				$\begin{array}{ccc} 1 - \tan^2 \theta \\ 1 & 1 \end{array}$
				$= \frac{2 \times \frac{1}{2}}{1 - \frac{1}{4}} = \frac{4}{3} 1A$
				$1 - \frac{1}{4}$ 3
		For tangency, $(4 + 2m)^2 - 4(1 + m^2)(4) = 0$ $3m^2 - 4m = 0$	1M	
		3111 - 4111 = U	1A	
		$m = \frac{4}{3} \text{ as } m \neq 0$	1A	
		_		
			5	
	(c)	(i) As OA, OB are tangents, $\angle OAC = 90^{\circ}$ and $\angle OBC = 90^{\circ}$	1	For either
		∴ ∠ OAC + ∠ OBC = 180°	_	101 01001
		So O, A, C, B are concyclic.	1	
		(ii) As $\angle OAC = 90^{\circ}$, OC is a diameter of the required circle,		
		whose centre = $(1, \frac{1}{2})$ and radius = $\frac{\sqrt{5}}{2}$.	1A+1A	
		_		
		Equation of the circle is $(x-1)^2 + (y-\frac{1}{2})^2 = \frac{5}{4}$	1A	
		i.e. $x^2 + y^2 - 2x - y = 0$		
				`
		Alternatively	:	
		(1) Let the circle be $x^2 + y^2 + ax + by + c = 0$		
		Values of a , b , c obtained by substitution	1A+1	A+1A
		(2) As OC is a diameter, the circle is		
		$\frac{y-0}{x-0}\cdot\frac{y-1}{x-2}=-1$	2A	
		i.e. $x^2 + y^2 - 2x - y = 0$		
		1.e. $x^2 + y^2 - 2x - y = 0$	1A	
			5	l

Solutions	Marks	
 (a) (i) The probability that the candidate fails on the first attempt but passes on the second is (1 - 0.7) × 0.7 = 0.21	1A + 1M 1A 1M+1A 1A 1A 1M	1 - 0.7 $p \times 0.7$ Alternatively 1A for any two: 0.6×0.7 0.3×0.6×0.7 0.4×0.6×0.7 0.3×0.4×0.6×0.7 0.3×0.4×0.6×0.2 Ans. 2A
(b) No. expected = 0.764 × 10000 = 7640 (7644)	1M 1A —2	

RESTRICTED 内部文件				
	Solutions	Marks		
1. (a)	Let $\angle AOA' = \theta$			
	$OA \times \theta = 40\pi$	1		
	$OB \times \theta = 80\pi$	→ 1A	for either	
	$\frac{OA}{OB} = \frac{40\pi}{80\pi} \left(= \frac{1}{2} \right)$	1A		
	$\frac{OA}{OA+60} = \frac{1}{2}$			
	OA = 60 cm	1A		
	$60\theta = 40\pi \text{ (or } 120\theta = 80\pi\text{)}$	1M		
	$\theta = \frac{2}{3}\pi \ (= 120^\circ)$	1A		
	Alternatively			
	From Fig.5a, by similiar triangles, $\frac{OA}{OB} = \frac{40}{80} \; (= \frac{1}{2})$	2A		
	$\frac{OA}{OA + 60} = \frac{1}{2}$ $\therefore OA = 60 \text{ cm}$	1A		
	Let $\angle AOA' = \theta$ 600 = 40 π (or 1200 = 80 π)	1м		
	$\theta = \frac{2}{3}\pi$	1A		
(b)	Area of ABB'A' = $\frac{1}{3}\pi 120^2 - \frac{1}{3}\pi 60^2$	1M	Area of sector	
	$= 3600\pi \text{cm}^2$	+ 1M	\bigcirc - \bigcirc	
	- 3000 RCIII -	1A	V	
(c)	The shortest distance = distance between A and C in Figure 5b.	3	Attempt to fir	
	$\angle AOC = \frac{120}{2} = 60^{\circ}$	1A	AC	
	$AC^2 = OA^2 + OC^2 - 2(OA)(OC)\cos 60^\circ$	1м 7	∠ <i>CAO</i> = 90°	
	$= 60^2 + 120^2 - 2(60)(120)(\frac{1}{2})$		$\angle CAO = 90^{\circ}$ $\sin 60^{\circ} = \frac{AC}{OC}$ $\therefore AC = 60\sqrt{3} \text{ cm } 1$ $(= 104)$	
	= 10800	1 1	$\therefore AC = 60\sqrt{3} \text{ cm } 1$	
	AC = 104 cm (103.923)	1 _A	(= 104)	
		4	•	

.	· · · · · · · · · · · · · · · · · · ·	RESTRICTED 内部文件	- -	_
		Solutions	Marks	
12.	(a)	$d_3 = 0.9 d_1$		
		= 7.2	1A	
		$d_5 = d_3 \times 0.9 = 6.48$	1 A	
		$d_{2n-1} = 8(0.9)^{n-1}$	2 A	
			4	
	(b)	$d_6 = 10 \times 0.9^2 = 8.1$	1A	
		$d_{2n} = 10 \times 0.9^{n-1}$	1A	
	(c)	(i) $d_1 + d_3 + d_5 + \cdots + d_{2n-1}$		
		$= 8 + 8(0.9) + 8(0.9)^{2} + + 8(0.9)^{n-1}$:	
		$= \frac{8[1 - (0.9)^n]}{1 - 0.9} \dots$	1M	Attempting to sum
_		$= 80(1 - 0.9^{n})$	1 A	as G.P.
		(ii) $d_2 + d_4 + d_6 + \cdots + d_{2n}$	IA	·
		$= 10 + 10(0.9) + 10(0.9)^{2} + \cdots + 10(0.9)^{n-1}$		
		$= \frac{10[1 - (0.9)^n]}{1 - 0.9}$		
		$= 100 (1 - 0.9^{n}) \dots$	1 A	
			3	
	(d)	$d_0 + d_1 + d_2 + d_3 + \cdots$		
	(4)	$= 10 + (d_1 + d_3 + d_5 + \cdots) + (d_2 + d_4 + d_6 + \cdots)$	1M	Grouping even and
		$= 10 + \frac{8}{1 - 0.9} + \frac{10}{1 - 0.9} \dots$		odd terms
		_ ,,,	1M	Either infinite sum
_		= 190	1A	
		$d_0 = 10$	3	
		d_4		
		$d_1 = 8$ d_5 d_3		
		d_6		
		$d_2 = 10$		

		Solutions	Marks	
13.	(a)	Consider ABC and ABD .		
		AB = AB (common side) BC = BD (radii of the same circle) CA = DA (radii of the same circle)	1A 1A 1A	
		∴ $\triangle ABC \equiv \triangle ABD$ (SSS)	3	
	(b)	(i) \(\alpha CAD = 2 \alpha FED \) (= 110°)	1M	
		$\angle CAB = \frac{1}{2} \angle CAD = \angle FED$ = 55°	1A	
		∠ ABC = 180 - 95 - 55 = 30°	1M 1A	
		∴ ∠EFD = ∠ABC = 30°	1A	·
		(ii)(1)		

	A labelled diagram showing a cirlce through D touching CF at F .	1A		
(2)	Through F draw a diameter FG . Join DG .		<u>OR</u>	
	$\angle DGF = 30^{\circ}$ (\angle in alt. segment)	1A	∠ <i>DGF</i> = 30°	1A .
	$\angle FDG = 90^{\circ} \ (\angle in a semi-circle) \dots$	1 A	∠ <i>DFG</i> = 60°	1 A
	$\frac{DF}{FG} = \frac{1}{2} \ (= \sin 30')$		∴ ∠ <i>FDG</i> = 90°	
	i.e. FG = 2DF	1 A	FG = 2DF	1 A
		9		
	Alternatively			
	Through F and D , draw the radii FO and DO . As $OF \perp CF$, $\angle DFO = 90^{\circ} - 30^{\circ} = 60^{\circ}$. As FO and DO are radii of the same circle,	1 A		
	∠ FDO = 60° ∴ Δ DFO is equilateral	1A		
	The diameter = $2 \times FO = 2 \times DF$.	1A		

		RESTRICTED 内部文件	<u> </u>	7
		Solutions	Marks	
14.	(a)	Consider AAGH .		
		$GH = 1000 \sin \theta m$	1A	
		$AH = 1000\cos\theta \text{ m}$	1A	
	(b)	$\angle HAB = 30^{\circ} \text{ (or } \angle AHB = 60^{\circ}\text{)}$	1A	
		BH = AHsin30°	1A	BH = GH
		= $1000\cos\theta\sin30^\circ$		= 1000sin0 1M
		= $500\cos\theta$ m	1A	
		Since \(\(\mathcal{GBH} = \cdot 45^\circ \), \(\mathcal{BH} = \mathcal{GH} \)	1M	
		$500\cos\theta = 1000\sin\theta$		·
		$\tan\theta = \frac{1}{2}$		
		$\theta = 26.6^{\circ}$ (26.565)	1A	Accept 26°34'~26°36'
				20 34 20 30
	(c)	$EF = AB = AH\cos 30^{\circ}$		
		= 1000cos26.565° x cos30°		·
		= 774.597m ~ 775m	1A	Accept 774m
		BE = CE		•
		= DF		
		= 800		
		EH = 800 - 500 cos26.565°		
		= 352.786 = 353m	1A	
		$\tan \angle FHE = \frac{774.597}{352.786} \left(\text{or} \frac{775}{353} \right)$	1M	
•		$\angle FHE \approx 65.5^{\circ}$ (or $\angle EFH = 24.5^{\circ}$)	1A	65°29′~65°30′
		G is S65.5°E of D (or 114°)	1A	(24°29′ ~ 24°30′)
		NORTH		
	A LE	$ \begin{array}{c} D \\ \hline $		