

Data Analysis and Visualization

Linear regression

Matthias Heinig, Jan Krumsiek

Overview: Linear regression

- · A simple linear model
- · Parameter estimation
- · Hypothesis testing
- · Multiple linear regression
- Model selection
- Diagnostic plots

A simple linear model

A simple linear model

A simple linear model allows to study the relationship between two continuous variables

- \cdot one variable x is the *predictor*, *explanatory* or *independent* variable
- the other variable y is the *response*, *outcome* or *depdentent* variable
- the model is called *simple* because we study only one predictor variable

Goals of the analysis are

- 1. Prediction of future observations.
- 2. Assessment of the effect of, or relationship between, explanatory variables on the response.
- 3. A general description of data structure.

Further reading:

https://rafalab.github.io/dsbook/case-study-is-height-hereditary.html (https://rafalab.github.io/dsbook/case-study-is-height-hereditary.html)

Deterministic vs statistical model

Deterministic

Statistical

$$F = \frac{5}{9}C + 32$$

$$M = 389 - 6L$$

Model specification

For a data set $(x, y)_i$ with $i \in \{1 ... N\}$ the simple linear model is defined as

$$y_i = \alpha + \beta x_i + \epsilon_i$$

with free parameters α and β and a random error $\epsilon_i \sim N(0,\sigma^2)$ that is i.i.d. (independently and indentically distributed)

Model visualized

Model likelihood

$$y_i = \alpha + \beta x_i + \epsilon_i$$

The normal distribution is defined as

$$N(\epsilon, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{\epsilon^2}{2\sigma^2})$$

with this model we can now compute the likelihood of the data $(x, y)_i$ with $i \in \{1 ... N\}$ as a function of the model parameters α, β, σ^2

$$L(\alpha, \beta, \sigma^2) = \prod_{i=1}^{N} N(\epsilon_i, \sigma^2)$$

$$= \prod_{i=1}^{N} N(y_i - \hat{y}_i, \sigma^2)$$

$$= \prod_{i=1}^{N} N(y_i - (\alpha + \beta x_i), \sigma^2)$$

Quiz

Which assumption allows to factorize the Likelihood of the data under the linear model

$$y_i = \alpha + \beta x_i + \epsilon_i$$

as

$$L(\alpha, \beta, \sigma^2) = \prod_{i=1}^{N} N(\epsilon_i, \sigma^2)?$$

- \bigcirc A Independence and identical distribution of the predictors x_i
- \bigcirc B Independence and identical distribution of the responses y_i
- \circ C Independence and identical distribution of the errors ϵ_i

Submit Show Hint Show Answer Clear

Parameter estimation

Problem: How do we find the best parameters of our model?

Solution: maximize the (log) likelihood of our data

$$\log(L(\alpha, \beta, \sigma^2)) = -0.5N \log(2\pi\sigma^2) + \sum_{i=1}^{N} -\frac{(y_i - (\alpha + \beta x_i))^2}{2\sigma^2}$$

How to maximize a quadratic function?

We compute gradient and set it to zero, this yields:

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$$

$$\hat{\beta} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - (\hat{\alpha} + \hat{\beta}x_i)^2)$$

with means denoted by \bar{x} and \bar{y} .

Intuition

Maximizing the likelihood is actually equivalent to minimizing the residual sum of squares (RSS).

$$RSS = \sum_{i=1}^{N} (y_i - (\alpha + \beta x_i))^2$$

Geometric representation

Maximizing the likelihood is actually equivalent to minimizing the squared distance between observation and prediction

Fit a simple linear model in R

```
skincancer = read.table("extdata/skincancer.txt", header=T)
head(skincancer)
##
          State Lat Mort Ocean Long
## 1
        Alabama 33.0 219
                              1 87.0
## 2
        Arizona 34.5 160
                              0 112.0
       Arkansas 35.0 170
                           0 92.5
## 3
## 4 California 37.5 182
                           1 119.5
       Colorado 39.0 149
## 5
                           0 105.5
## 6 Connecticut 41.8 159
                             1 72.8
m = lm(Mort ~ Lat, data=skincancer)
coef(m)
## (Intercept)
                      Lat.
## 389.189351
                -5.977636
```

Other useful functions for 1m objects

- \cdot predict compute the fitted values or predict response for new data
- · resid compute the residuals

How well does our model fit the data?

Any data set will give us estimates of the model, but how good is the model overall?

· Compute model predictions

$$\hat{y}_i = \hat{\alpha} + \hat{\beta} x_i$$

· Compute the *residuals* (compare predictions with the actual values)

$$\hat{\epsilon}_i = \hat{y}_i - y_i$$

· Compute the residual sum of squares

$$RSS = \sum_{i=1}^{N} \hat{\epsilon}_i^2$$

 \cdot Compare the residual sum of squares to the total sum squares (SS) of y

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}} = 1 - \frac{RSS}{SS}$$

 R^2 is called the *coefficient of determination* and represents the percentage of variance explained by the model.

Quiz

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}} = 1 - \frac{RSS}{SS}$$

What is the range of values that \mathbb{R}^2 can take?

- A -infinity < R2 < infinity
- B 0 < R2 < infinity
- C -infinity < R2 < 1
- OD0<R2<1

Submit Show Hint Show Answer Clear

Hypothesis testing

Now that we can estimate the parameters and assuming the Gaussian noise model we can ask:

Is there a linear relationship between y and x?

Quiz

$$y = \alpha + \beta x + \epsilon$$

Which expression would indicate a linear relationship?

- A alpha = 0
- B beta = 0
- C alpha != 0
- D beta != 0

Submit Show Hint Show Answer Clear

Hypothesis testing

Using the assumption of indenpendent Gaussian noise we can derive the theretical distributions of our estimates.

$$\hat{\beta} \sim N(\beta, \sigma^2/Ns_X^2)$$

where s_X^2 is the variance of X.

Note that the true value of β and σ^2 are usually not known and need to be estimated. Using the estimate $\hat{\sigma}^2$ to compute the so called standard error $\hat{se}(\hat{\beta}) = \hat{\sigma}^2/Ns_X^2$ we obtain the following distribution

$$\frac{\hat{\beta} - \beta}{\hat{se}(\hat{\beta})} \sim t_{N-2}$$

where t_{N-2} denotes the student's t distribution with N-2 degrees of freedom.

Hypothesis testing: P-value

The P-value of a statistical test is the **probability** of the value of a **test statistic** at least as extreme as the one observed in our data **under the null hypothesis**.

In our case:

- Null hypothesis $H_0: \beta_0 = 0$
- test statistic is $\hat{t}=\frac{\hat{eta}-eta_0}{\hat{se}(\hat{eta})}=\frac{\hat{eta}}{\hat{se}(\hat{eta})}$
- · probability under the null model: $P(t \ge \hat{t}) \sim t_{N-2}$

To confirm a liner relation between y and x we need to reject the null hypothesis at significance level $\alpha (= 0.05)$:

- · Accept H_0 if $P(|t| \ge |\hat{t}|) > \alpha$
- Reject H_0 if $P(|t| \ge |\hat{t}|) \le \alpha$

Quiz

When would we speak of a linear relationship with $H_0: \beta = 0$ at significance level α ?

- \bigcirc A Reject H0 if P($|t| > | \text{hat}\{t\}|) > \text{alpha}$
- \bigcirc B Reject H0 if P($|t| > | \text{hat}\{t\}|) < alpha$

Submit Show Hint Show Answer Clear

Hypothesis testing in R

```
m = lm(Mort ~ Lat, data=skincancer)
summary(m)
##
## Call:
## lm(formula = Mort ~ Lat, data = skincancer)
## Residuals:
               10 Median
      Min
                              30
                                     Max
## -38.972 -13.185 0.972 12.006 43.938
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 389.1894 23.8123 16.34 < 2e-16 ***
## Lat.
         -5.9776 0.5984 -9.99 3.31e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.12 on 47 degrees of freedom
## Multiple R-squared: 0.6798, Adjusted R-squared: 0.673
## F-statistic: 99.8 on 1 and 47 DF, p-value: 3.309e-13
```

Relation to the *classical* t-test

Two group t-test with equal variance

- mean group 0: μ_0
- mean group 1: μ_1
- **H0**: $\mu_0 = \mu_1$

$$t = \frac{\bar{X}_0 - \bar{X}_1}{s_p}$$

· s_p : pooled standard deviation

Linear model with one indicator variable

$$y = \alpha + \beta x$$

- group 0: x = 0
- group 1: x = 1
- · mean group 0: $\mu_0 = \alpha$
- mean group 1: $\mu_1 = \alpha + \beta$

• **H0**:
$$\beta = 0 \Leftrightarrow \alpha = \alpha + \beta \Leftrightarrow \mu_0 = \mu_1$$

$$t = \frac{\beta}{se}$$

• se: standard error of β

Multiple linear regression

Multiple linear regression

For a data set $(\mathbf{x}, y)_i$ with $i \in \{1 ... N\}$ and \mathbf{x} a vector of length p the multiple linear regression model is defined as

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i$$

with free parameters α and β and a random error $\epsilon_i \sim N(0, \sigma^2)$ that is i.i.d. (independently and indentically distributed)

The model can be written in matrix notation

$$\mathbf{y} = X\beta + \epsilon$$

here the matrix X is of dimension $(N \times p + 1)$ where each row corresponds to the vector \mathbf{x} with a 1 prepended to accommodate the intercept. The error is distributed as $\epsilon \sim N(\mathbf{0}, \Sigma)$ as a multivariate Gaussian with covariance $\Sigma = \sigma^2 I$ (i.i.d).

Parameter estimation

By the method of maximum likelihood (also for least squares) we obtain

$$\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y}$$

$$\hat{\sigma}^2 = \frac{\hat{\epsilon}^T \hat{\epsilon}}{N - p}$$

Nested models and hypothesis testing

Example model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

- · General concept: **nested models**
- · Comparison of a full model Ω to a reduced model ω
- · Model ω is a special case of the more general model Ω

Examples

- test of individual predictor x_1
 - Full model: all eta can take any value
 - Reduced model: $\beta_1 = 0$ other β can take any value
- test of two predictors x_1 and x_2
 - Full model: all eta can take any value
 - Reduced model: $\beta_1 = \beta_2 = \beta_3 = 0$ (only the mean β_0 can take any value)

Geometric representation

Maximizing the likelihood is actually equivalent to minimizing the squared distance between observation and prediction

Likelihood ratio test (LRT)

Define the ratio of the two maximized likehoods as test statistic and reject if the ratio is too large

$$\frac{\max_{\beta,\sigma\in\Omega}L(\beta,\sigma)}{\max_{\beta,\sigma\in\omega}L(\beta,\sigma)}$$

Looking at the details we find that $L(\hat{\beta},\hat{\sigma}) \propto (\hat{\sigma^2})^{-n/2}$, which gives us a test that rejects if

$$\frac{\hat{\sigma}_{\omega}^2}{\hat{\sigma}_{\Omega}^2} > \text{a constant}$$

is too large. This is equivalent to

$$\frac{RSS_{\omega}}{RSS_{\Omega}} > \text{a constant}$$

$$\frac{RSS_{\omega}}{RSS_{\Omega}} - 1 > \text{a constant} - 1$$

$$\frac{RSS_{\omega} - RSS_{\Omega}}{RSS_{\Omega}} > \text{another constant}$$

Distribution of the LRT

- · q number of parameters in (dimension of) model Ω
- $\cdot \; p$ number of parameters in (dimension of) model ω
- test statistic

$$F = \frac{(RSS_{\omega} - RSS_{\Omega})/(q - p)}{RSS_{\Omega}/(n - q)}$$

- \cdot F is distributed according to the F distribution with (q p) and (n q) degrees of freedom
- \cdot Reject the LRT if F is larger that the critital value corresponding to the significance level
- · This analysis is also frequently referred to as "Analysis of Variance": **ANOVA**

Example: testing the difference of means in 3 groups

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Indicator variables

- group "6 cylinders": $x_1 = 1$
- group "8 cylinders": $x_2 = 1$

Test the effect of both indicators at the same time

- **H0**: $\beta_1 = \beta_2 = 0$
- · Full model: Ω is the space where all three eta can take any value
- · Reduced model: ω is the space where only β_0 can take any value

Example in R

```
data("mtcars")
## for the example we need a factor
## else it will be interpreted as number
mtcars$cyl <- as.factor(mtcars$cyl)</pre>
## fit the full model
full <- lm(mpg ~ cyl, data=mtcars)</pre>
## have a look at the model matrix
## which is automatically created
head(model.matrix(full))
##
                     (Intercept) cyl6 cyl8
## Mazda RX4
                                  1
## Mazda RX4 Wag
                                1 1
## Datsun 710
## Hornet 4 Drive
## Hornet Sportabout
## Valiant
                                          0
## fit the reduced model (only the intercept "1")
reduced <- lm(mpg ~ 1, data=mtcars)</pre>
```

Example in R

```
## compare the models
anova(reduced, full)

## Analysis of Variance Table
##
## Model 1: mpg ~ 1
## Model 2: mpg ~ cyl
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 31 1126.05
## 2 29 301.26 2 824.78 39.697 4.979e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Adjusting for continuous confounding variables

- in the car example a large fuel consumption might be due to
 - strong engine
 - heavy cars
- many cylinders might be used in heavy cars with strong engines?
 - include the confounders in the reduced model

```
full <- lm(mpg ~ cyl + hp + wt, data=mtcars)
reduced <- lm(mpg ~ hp + wt, data=mtcars)
anova(reduced, full)

## Analysis of Variance Table
##
## Model 1: mpg ~ hp + wt
## Model 2: mpg ~ cyl + hp + wt
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 29 195.05
## 2 28 176.62 1 18.427 2.9213 0.09848 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Model selection

How do we know which variables need to be in the model?

- · We want to explain the data in the simplest way
- · Unnecessary predictors will add noise to the estimation of other quantities that we are interested in
- Collinearity is caused by having too many variables trying to do the same job
- Procedures
 - Backward Flimination
 - Forward Selection
- · Decision to keep / drop variables based on
 - Hypothesis tests
 - Information criteria (AIC, BIC)
- · All procedures are heuristics, so try out!

Backward elimination

- 1. Start with all the predictors in the model
- 2. Remove the predictor with highest p-value greater than $lpha_{crit}$
- 3. Refit the model and goto 2
- 4. Stop when all p-values are less than $lpha_{crit}$

Forward selection

This just reverses the backward method.

- 1. Start with no variables in the model.
- 2. For all predictors not in the model, check their p-value if they are added to the model. Choose the one with lowest p-value less than α_{crit} .
- 3. Continue until no new predictors can be added.

Diagnostic plots

Quiz

Which are the most important assumptions of the linear model for hypothesis testing?

- A Relation between y and x is linear
- O B Errors (residuals) are identically and independently distributed
- C Errors (residuals) follow a normal distribution
- O D A, B and C

Submit Show Hint Show Answer Clear

Diagnostic plots

How to check our assumptions graphically?

- Relation between y and x is linear
- · Errors (residuals) are identically and independently distributed
- · Errors (residuals) follow a normal distribution

Relation between y and x is linear

Simple linear regression

Scatter plot of y versus x

```
plot(Mort ~ Lat, data=skincancer,
xlab="Latitude", ylab="Mortality")
m = lm(Mort ~ Lat, data=skincancer)
abline(m, lwd=2)
```

Multiple linear regression

Scatter plot of y versus \hat{y}

```
m <- lm(mpg ~ cyl + hp + wt, data=mtcars)
plot(mpg ~ predict(m), data=mtcars)
abline(a=0, b=1, lwd=2)</pre>
```


Residuals are identically and independently distributed

The residuals across all data points come from the same distribution with the same parameters.

- Normal distribution
- · Mean $\mu = 0$
- · Standard deviation σ

Scatter plot of residuals \hat{e} and predicted values \hat{y}

```
m = lm(Mort ~ Lat, data=skincancer)
plot(resid(m) ~ predict(m))
abline(h=0)
```


What could go wrong?

Variance not constant: **heteroscedascity**

```
x <- 1:100
y <- rnorm(100, mean=5 * x, sd=0.1*x)
m <- lm(y ~ x)
plot(resid(m) ~ predict(m))
abline(h=0)</pre>
```


What to do when the variance is not constant?

- \cdot transformation of the response y
 - log transformation
 - square root transformation
 - variance stabilizing transformation

Consequence of heteroscedascity

· Hypothesis tests are invalid because standard errors of estimates are inconsistent

What could go wrong?

Relation between x and y is not linear

```
x <- 1:100
y <- rnorm(100, mean=0.01 * x^3)
m <- lm(y ~ x)
plot(resid(m) ~ predict(m))
abline(h=0)</pre>
```


What to do when relation is not linear?

- transformation of the data x
 - in our example x^3 , in practice difficult to know! Try out!

```
x <- 1:100
y <- rnorm(100, mean=0.01 * x^3)
xt <- x^3
m <- lm(y ~ xt)
plot(resid(m) ~ predict(m))
abline(h=0)</pre>
```


Consequence of non-linear relation: bad fit

What could go wrong?

Residuals are not normal

```
x <- 1:100
y <- rpois(100, lambda=5 * x)
m <- lm(y ~ x)
plot(resid(m) ~ predict(m))
abline(h=0)</pre>
```


QQ-Plot to check for normal residuals

Normally distributed residuals

```
x <- 1:100
y <- rnorm(100, mean=5 * x)
m <- lm(y ~ x)
qqnorm(resid(m))
abline(a=0, b=1, lwd=2)</pre>
```

Poisson distributed residuals

```
x <- 1:100
y <- rpois(100, lambda=x)
m <- lm(y ~ x)
qqnorm(resid(m))
abline(a=0, b=1, lwd=2)</pre>
```

Normal Q-Q Plot

Normal Q-Q Plot

Consequence of non-normal residuals

- · Hypothesis test may not be valid
- · Unreliable error rates
 - True type-I error (false positive) is not lpha
 - True type-II error (false negative) is not eta
- · In particular problematic for small data sets

Summary and conclusion

Linear models

- · are a powerful and versatile tool
- · can be used to
 - predict future data
 - assess linear relations between variables (hypothesis testing)
 - describe the structure of the data (multiple linear regression)
 - control for confounding (multiple linear regression)
- assumptions need to be checked (diagnostic plots)
- · can be generalized for different distributions (GLMs for classification: next lecture)