INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4049B buffers HEX inverting buffers

Product specification
File under Integrated Circuits, IC04

January 1995

HEX inverting buffers

HEF4049B buffers

HEX INVERTING BUFFERS

The HEF4049B provides six inverting buffers with high current output capability suitable for driving TTL or high capacitive loads. Since input voltages in excess of the buffers' supply voltage are permitted, the buffers may also be used to convert logic levels of up to 15 V to standard TTL levels. Their guaranteed fan-out into common bipolar logic elements is shown in the table below.

Fig. 1 Functional diagram.

Fig. 3 Logic diagram (one gate).

16 15 14 13 12 11 10 9 n.c. O₆ I₆ n.c. O₅ I₅ O₄ I₄ HEF4049B V_{DD} O₁ I₁ O₂ I₂ O₃ I₃ V_{SS} 1 2 3 4 5 6 7 8

Fig. 2 Pinning diagram.

HEF4049BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4049BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4049BT(D): 16-lead SO; plastic (SOT109-1) (): Package Designator North America

Guaranteed fan-out in common logic families

driven element	guaranteed fan-out
standard TTL	2
74LS	9
74L	16

Input protection

Fig. 4 Input protection circuit that allows input voltages in excess of V_{DD}.

APPLICATION INFORMATION

Some examples of applications for the HEF4049B are:

- LOCMOS to DTL/TTL converter
- HIGH sink current for driving 2 TTL loads
- HIGH-to-LOW level logic conversion

FAMILY DATA

| See Family Specifications | Specifications

HEX inverting buffers

HEF4049B buffers

D.C. CHARACTERISTICS $V_{SS} = 0 \text{ V}$; $V_I = V_{SS} \text{ or } V_{DD}$

HEF	V _{DD} V	VO V	symbol	-40 min. max.	T _{amb} (°C) +25 min. max.	+85 min. max.
Output (sink) current LOW	4,75 10 15	0,4 0,5 1,5	l _{OL}	3,5 – 12,0 – 24,0 –	2,9 – 10,0 – 20,0 –	2,3 – mA 8,0 – mA 16,0 – mA
Output (source) current HIGH	5 10 15	4,6 9,5 13,5	-10Н	0,52 — 1,3 — 3,6 —	0,44 — 1,1 — 3,0 —	0,36 — mA 0,9 — mA 2,4 — mA
Output (source) current HIGH	5	2,5	-Іон	1,7 –	1,4 –	1,1 — mA

HEC	V _{DD} V	Vo V	symbol	—55 min. max.	T _{amb} (°C) +25 min. max.	+125 min. max.
Output (sink) current LOW	4,75 10 15	0,4 0,5 1,5	loL	3,6 — 12,5 — 25,0 —	2,9 — 10,0 — 20,0 —	1,9 — mA 6,7 — mA 13,0 — mA
Output (source) current HIGH	5 10 15	4,6 9,5 13,5	-1он	0,52 — 1,3 — 3,6 —	0,44 — 1,1 — 3,0 —	0,36 — mA 0,9 — mA 2,4 — mA

	V _{DD} V	symbol	typ.	max.		typical extrapolation formula
Propagation delays I _n → O _n HIGH to LOW	5 10 15	^t PHL	35 15 12	70 30 25	ns ns ns	26 ns + (0,18 ns/pF) C _L 11 ns + (0,08 ns/pF) C _L 9 ns + (0,05 ns/pF) C _L
LOW to HIGH	5 10 15	^t PLH	50 25 20	100 50 40	ns ns ns	23 ns + (0,55 ns/pF) C _L 14 ns + (0,23 ns/pF) C _L 12 ns + (0,16 ns/pF) C _L
Output transition times HIGH to LOW	5 10 15	^t THL	20 10 7	40 20 14	ns ns ns	3 ns + (0,35 ns/pF) C _L 3 ns + (0,14 ns/pF) C _L 2 ns + (0,09 ns/pF) C _L
LOW to HIGH	5 10 15	^t TLH	60 30 20	120 60 40	ns ns ns	10 ns + (1,0 ns/pF) C _L 9 ns + (0,42 ns/pF) C _L 6 ns + (0,28 ns/pF) C _L

	V _{DD}	typical formula for P (μW)	where f; = input freq. (MHz)
Dynamic power	5	2500 $f_i + \Sigma (f_0 C_L) \times V_{DD}^2$	f_O = output freq. (MHz) C_L = load capacitance (pF) $\Sigma(f_OC_L)$ = sum of outputs V_{DD} = supply voltage (V)
dissipation per	10	11000 $f_i + \Sigma (f_0 C_L) \times V_{DD}^2$	
package (P)	15	35000 $f_i + \Sigma (f_0 C_L) \times V_{DD}^2$	