Optimized Implementation of Logic Functions

Chapter 4

Chapter Objectives

- Synthesis of logic functions
- Analysis of logic circuits
- Techniques for deriving minimum-cost implementation of logic functions
- Graphical representation of logic functions in the form of Karnaugh maps

000

Contents

- 1. Karnaugh Map
- 2. Strategy for Minimization
- 3. Minimization of POS Forms
- 4. Incompletely Specified Function
- 5. Multiple-Output Circuits
- 6. Multilevel Synthesis
- 7. Analysis of Multilevel Circuits

KARNAUGH MAP

Why Karnaugh Map?

Table 2-2 *Truth Tables for F*₁ *and F*₂

	F ₂	F ₁	z	y	x
	0	0	. 0	0	0
	1	1 (1)	1	0	0
	0	0	0	1	0
(1) :(3)	1	0	1	1	0
(2):(3),(4)	1	1(2)	0	0	1
(3):(1),(5)	1	1(3)	1	0	1
(4):(2),(5)	0	1(4)	0	1	1
(5):(3),(4)	O	1(5)	1	1	1

$$F_1 = x'y'z + xy'z' + xy'z + xyz' + xyz$$
(1) (2) (3) (4) (5)

O O Minimization by Boolean Functions O O O

$$F_{1} = x'y'z + xy'z' + xy'z + xyz' + xyz$$

$$= y'z(x' + x) + xz'(y' + y) + xy(z' + z)$$

$$= y'z + xz' + xy$$

OOO Why Karnaugh Map?

000

- How can we find minimum cost expression?
- Is it a unique optimal solution for a given truth table?
- Are there any strategies or procedures for the minimum cost implementation?

00

Karnaugh Map

$$m_0 + m_4 = ?$$

 $m_2 + m_6 = ?$

$$f = x_3' + x_1 x_2'$$

Row number	x_1	x_2	x_3	f
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1	

$$m_0 + m_2 = x_1' x_2' x_3' + x_1' x_2 x_3'$$

$$= x_1' x_3' (x_2' + x_2)$$

$$= x_1' x_3'$$

$$m_4 + m_6 = x_1 \ x_2' x_3' + x_1 \ x_2 \ x_3'$$

= $x_1 \ x_3' (x_2' + x_2)$
= $x_1 \ x_3'$

$$x_1'x_3' + x_1x_3' = x_3'$$

$$m_4 + m_5 = x_1 x_2' x_3' + x_1 x_2' x_3$$

= $x_1 x_2' (x_3' + x_3)$
= $x_1 x_2'$

Figure 4.1. The function $f(x_1, x_2, x_3) = \Sigma(0, 2, 4, 5, 6)$.

Karnaugh Map

	x_1	x_2	x_3	
m_4	1	0	0	
m_5	1	0	1	

$$m_4 + m_5 = x_1 \ x_2'(x_3' + x_3)$$
$$x_3 = 0 \qquad 1$$

	x_1	x_2	x_3		•
m_0	0	0	0		
$m_0 \ m_2$	0	1	0		_
$m_4 \ m_6$	1	0	0		
m_6	1	1	0	! 	
			χ_2'		

$$m_0 + m_2 = x_1' x_3' (x_2' + x_2)$$

$$m_4 + m_6 = x_1 \ x_3'(x_2' + x_2)$$

$$x_2 = 0 \qquad 1$$

 $x_2 = 0$ 1

 x_1

Two-Variable Map

(a) Truth table

(b) Karnaugh map

Figure 4.2. Location of two-variable minterms.

Two-Variable Map

$$= x'_1 x_2 + x_1 x_2$$

$$= x_2 (x'_1 + x_1)$$

$$x_1 = 0 1$$

$$x'_1 = m_0 + m_1$$

$$= x'_1 x'_2 + x'_1 x_2$$

$$= x'_1 (x'_2 + x_2)$$

$$x_2 = 0 1$$

Figure 4.3. The function of Figure 2.15.

Three-Variables Map

$\frac{x_1}{x_1}$	x_2	x_3	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

(b) Karnaugh map

(a) Truth table

Figure 4.4. Location of three-variable minterms.

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Figure 2.18

$$x_3x_2' + x_3'x_1 + x_2'x_1 = x_3x_2' + x_3'x_1$$

 $let x = x_3, y = x_2', z = x_1$

Figure 4.5. Examples of three-variable Karnaugh maps.

					$= x_1' x_3' (x_2' + x_2)$
Row number	$ x_1 $	x_2	x_3		$= x_1'x_3'$
0 1 2 3 4 5 6 7	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$	$ \begin{aligned} & = x_1 \ x_2' x_3' + x_1 \ x_2 \ x_3' \\ & = x_1 \ x_3' (x_2' + x_2) \\ & = x_1 \ x_3' \\ & = x_1 x_3' \end{aligned} $ $ \begin{aligned} & = x_1 x_3' \\ & = x_1 x_3' \end{aligned} $
	Figur	e 4.1		1 0 0 0	$f = x_3' + x_1 x_2'$

(b) The function of Figure 4.1

 $m_0 + m_2 = x_1' x_2' x_3' + x_1' x_2 x_3'$

Figure 4.5. Examples of three-variable Karnaugh maps.

Four-Variables Map

Figure 4.6. A four-variable Karnaugh map

Figure 4.7. Examples of four-variable Karnaugh maps.

Figure 4.7. Examples of four-variable Karnaugh maps.

Figure 4.7. Examples of four-variable Karnaugh maps.

Figure 4.7. Examples of four-variable Karnaugh maps.

Five-Variables Map

Figure 4.8. A five-variable Karnaugh map.

STRATEGY FOR MINIMIZATION

Terminology

- Literal: Each appearance of a variables is called a literal
- Implicant: A product term that indicates the input valuation(s) for which a given function is equal to 1 is called an implicant of the function
- Prime implicant: An implicant is called a prime implicant if it cannot be combined into another implicant that has fewer literals
- Cover: A collection of implicants that accounts for all variations for which a given function is equal to 1 is called a cover for that function
- Cost: The number of gates + the total number of input to all gates

000

Literal and Implicant

Literal

$$x_1x_2'x_3$$
: 3 literals

 $x_1'x_3x_4'x_6$: 4 literals

Implicant

- Basic implicant: minterm
- ➤ Implicants of Figure 4.9: 11 implicants
 - 5 minterms $(m_0, m_1, m_2, m_3, m_7)$
 - 5 pairs of minterms $(m_0+m_1,m_0+m_2,m_1+m_3,m_2+m_3,m_3+m_7)$
 - 1 implicant of 4 minterms $(m_0 + m_1 + m_2 + m_3)$

Figure 4.9. Three-variable function $f(x_1, x_2, x_3) = \sum m(0, 1, 2, 3, 7)$.

OOO Prime Implicant and Cover OOO

Prime Implicants

$$> x_1'$$
 and x_2x_3

Cover

$$f = \sum (0,1,2,3,7)$$

$$f = x'_1 x'_2 + x'_1 x_2 + x_2 x_3$$

$$f = x'_1 + x_2 x_3$$

Figure 4.9. Three-variable function $f(x_1, x_2, x_3) = \Sigma m(0, 1, 2, 3, 7)$.

000

Cover and Cost

Cover

$$f = \sum (0,1,2,3,7)$$

Canonical SOP form

$$f = x_1' x_2' + x_1' x_2 + x_2 x_3$$

$$f = x_1' + x_2x_3$$

Optimal Solution !!!

Cost

: 4 gates + 9 =
$$13$$

OOO Minimization Procedure OOO

- Generate all prime implicants for the given function f
- 2. Find the set of essential prime implicants
- If the set of essential prime implicants covers all valuations for f = 1, then this set is the desired cover of f.

Figure 4.10. Four-variable function f ($x_1,..., x_4$) = Σ m(2, 3, 5, 6, 7, 10, 11, 13, 14).

Figure 4.11. The function $f(x_1,...,x_4) = \Sigma m(0, 4, 8, 10, 11, 12, 13, 15).$

Figure 4.12. The function $f(x_1,...,x_4) = \Sigma m(0, 2, 4, 5, 10, 11, 13, 15).$

000

MINIMIZATION OF PRODUCT-OF-SUMS FORMS

O Minimization of POS Forms

$$x + yz = (x + y)(x + z)$$

Figure 4.13. POS minimization of $f(x_1, x_2, x_3) = \Pi M(4, 5, 6)$.

O Minimization of POS Forms

$$f = (x_3 + x_4)(x_2 + x_3)(x_1' + x_2' + x_3' + x_4')$$

Figure 4.14. POS minimization of $f(x_1,...,x_4) = \Pi M(0, 1, 4, 8, 9, 12, 15)$.

OOO INCOMPLETELY SPECIFIED

FUNCTION

O Incompletely Specified Function O O

Don't care term: d

x_1	x_2	χ_3	x_4	f	2
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	1	
0	0	1	1	0	
0	1	0	0	1	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	

x_1	x_2	x_3	x_4		f	
1	0	0	0		0	-
1	0	0	1		0	
1	0	1	0		1	
1	0	1	1	_	0	
1	1	0	0		d	
1	1	0	1		d	
1	1	1	0		d	
1	1	1	1		d	

Figure 4.15. Two implementations of the function $f(x_1,...,x_4) = \Sigma m(2, 4, 5, 6, 10) + D(12, 13, 14, 15)$

Incompletely Specified Function

Figure 4.15. Two implementations of the function $f(x_1,...,x_4) = \Sigma m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).$

O Incompletely Specified Function O O

$$f = (x_2 + x_3)(x_1 + x_3' + x_4') (x_2 + x_3' + x_4')$$
 Without don't care terms
$$x_1 x_2$$

$$x_3 x_4 = 00 \quad 01 \quad 11 \quad 10$$

$$(x_2 + x_3)$$

$$00 \quad 0 \quad 1 \quad d \quad 0$$

$$(x_2 + x_3' + x_4')$$

$$11 \quad 0 \quad 0 \quad d \quad 0$$

$$(x_3' + x_4')$$

$$10 \quad 1 \quad 1 \quad d \quad 1$$

$$(x_1 + x_3' + x_4')$$

$$f = (x_2 + x_3)(x_2 + x_3)$$
 With don't care terms
$$(b)$$
 POS implementation

Figure 4.15. Two implementations of the function $f(x_1,...,x_4)$

= Σ m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).

MULTIPLE-OUTPUT CIRCUITS

O Multiple-Output Circuits

Figure 4.16. An example of multiple-output synthesis.

Multiple-Output Circuits

(c) Combined circuit for f_1 and f_2

Figure 4.16. An example of multiple-output synthesis.

(a) Optimal realization of f_3

(b) Optimal realization of f_4

$$f_3 = x_2 x_4 + x_1' x_4 + x_1' x_2 x_3$$
 $f_4 = x_1 x_4 + x_2' x_4 + x_1' x_2 x_3 x_4'$

Figure 4.17. An example of multiple-output synthesis.

$$f_3 = x_1 x_2 x_4 + x_1' x_4 + x_1' x_2 x_3 x_4'$$
 $f_4 = x_1 x_2 x_4 + x_2' x_4 + x_1' x_2 x_3 x_4'$

(c) Optimal realization of f_3 and f_4 together

Figure 4.17. An example of multiple-output synthesis.

(d) Combined circuit for f_3 and f_4

Figure 4.17. An example of multiple-output synthesis.

Cost for Multiple-Output

$$f_3 = x_2 x_4 + x_1' x_4 + x_1' x_2 x_3$$

Cost for f_3

- 2 x 2-input ANDs, 1 x 3-input AND, 1 x 3-input OR
- $-4+(2 \times 2+1 \times 3+1 \times 3)=14$

$$f_4 = x_1 x_4 + x_2' x_4 + x_1' x_2 x_3 x_4'$$

Cost for f_4

- 2 x 2-input ANDs, 1 x 4-input AND, 1 x 3-input OR
- $-4+(2 \times 2+1 \times 4+1 \times 3)=15$

Total cost : 14 + 15 = 29

Cost for Multiple-Output

$$f_3 = x_1 x_2 x_4 + x_1' x_4 + x_1' x_2 x_3 x_4'$$

Cost for f_3

- 1 x 2-input AND, 1 x 3-input AND, 1 x 4-input AND, 1 x 3-input OR
- $-4+(1\times2+1\times3+1\times4+1\times3)=16$

$$f_4 = x_1 x_2 x_4 + x_2' x_4 + x_1' x_2 x_3 x_4'$$

Cost for f_4

- 1 x 2-input AND, 1 x 3-input AND, 1 x 4-input AND, 1 x 3-input OR
- $-4+(1\times2+1\times3+1\times4+1\times3)=16$

Cost for f_3 and f_4 together

- 2 x 2-input ANDs, 1 x 3-input AND, 1 x 4-input AND, 2 x 3-input OR
- $-6+(2\times2+1\times3+1\times4+2\times3)=23$

Total cost :
$$16 + 16 - 9 = 23$$

$$\frac{(29-23)}{29} \times 100 \% = 21\%$$

MULTILEVEL SYNTHESIS

Multilevel Synthesis

000

- Fan-in problem
 - Limited number of inputs
 - Fan-out problem: Limited number of outputs
- Implementation
 - CPLD: two-level logic expression (Sum of Products)
 - FPGA: multilevel logic expression
- Two Important Techniques for Synthesis of Multilevel Circuits
 - Factoring
 - Functional Decomposition

Standard SOP form

$$f(x_1, \dots, x_7) = x_1 x_3 x_6' + x_1 x_4 x_5 x_6' + x_2 x_3 x_7 + x_2 x_4 x_5 x_7$$

Figure 4.18. Implementation in a CPLD.

4-to-1 Multiplexer, LUT (Look Up Table), Logic Cell x_3 x_1 x_4 0 x_6 x_5 x_6 x_2 D x_2 ***** * D x_7 B

Figure 4.19. Implementation in an FPGA.

LUT operation

AND
$$\begin{bmatrix} x_1 & 0 & \\ & 0 & \\ & 0 & \\ x_2 & 1 & \end{bmatrix}$$
 $A = x_1 x_2$

OR
$$- \begin{bmatrix} x_1 & 0 & \\ & 1 & \\ & 1 & \\ x_2 & 1 & \end{bmatrix} - A = x_1 + x_2$$

NAND
$$- \begin{bmatrix} x_1 & 1 & & \\ & 1 & & \\ & & 1 & \\ & x_2 & 0 & \end{bmatrix} - A = (x_1 x_2)'$$

NOR
$$- \begin{bmatrix} x_1 & 1 & & \\ & 0 & & A \\ & x_2 & 0 & \end{bmatrix} - A = (x_1 + x_2)'$$

X-OR
$$\begin{bmatrix} x_1 & 0 & & \\ & 1 & & A \\ & & 1 & \\ x_2 & 0 & & \end{bmatrix}$$
 $A = x_1 \oplus x_2$

Factoring

$$f = x_1 x_6'(x_3 + x_4 x_5) + x_2 x_7(x_3 + x_4 x_5)$$

2 x 3-input ANDs, 2 x 2-input ANDs, 3 x 2-input OR

In the previous slide, the circuit has a maximum fan-in of two, 2-input LUTs

By the distributive property,

$$f = (x_3 + x_4 x_5) (x_1 x_6' + x_2 x_7)$$

4 x 2-input ANDs, 2 x 2-input ORs

Factoring

$$f = x_1 x_2 x_3 x_4 x_5 x_6 x_7 = (x_1 x_2 x_3 x_4) x_5 x_6 x_7$$

1 x 7 input AND = 2 x 4-input ANDs

If Fan-in: Max. 4

Figure 4.20. Using four-input AND gates to realize a seven-input product term.

 $f = x_1 x_2' x_3 x_4' x_5 x_6 + x_1 x_2 x_3' x_4' x_5' x_6$ 2 x 6-input ANDs, 1 x 2-input OR If Fan-in: Max. 4

Figure 4.21. A factored circuit.

Example 4.5

For four input system, x_1 , x_2 , x_3 and x_4 (1) $f_1 = 1$ if at least one of x_1 and $x_2 = 1$, $(x_1 + x_2)x_3x_4$ both x_3 and $x_4 = 1$; $f_1 = 1$ if $x_1 = x_2 = 0$ and either x_3 or $x_4 = 1$ $x_1'x_2'(x_3 + x_4)$

(2) $f_2 = 1$ in all cases except when both x_1 and $x_1 = 0 \frac{x_1' x_2'}{x_1'}$ or when both x3 and x4 = $0 \frac{x_3' x_4'}{x_4'}$

$$f_1 = (x_1 + x_2)x_3x_4 + x_1'x_2'(x_3 + x_4) \qquad f_2' = x_1'x_2' + x_3'x_4'$$

$$f_2 = (x_1'x_2' + x_3'x_4')'$$

$$f_2 = (x_1 + x_2)(x_3 + x_4)$$

 x_3x_4

$$f_1 = (x_1 + x_2)x_3x_4 + x_1'x_2'(x_3 + x_4)$$

$$= x_3x_4 + x_1'x_2'(x_3 + x_4)$$

$$= x_3x_4 + (x_1 + x_2)'(x_3 + x_4)$$

$$f_1 = x_3 x_4 + (x_1 + x_2)' (x_3 + x_4)$$

Example 4.5

$$f_2 = (x_1 + x_2)(x_3 + x_4)$$

Figure 4.22. Circuit for Example 4.5.

OOO Functional Decomposition OOO

◆ Example 4.6

$$f = x_1'x_2x_3 + x_1x_2'x_3 + x_1x_2x_4 + x_1'x_2'x_4$$

- Minimum cost SOP expression
- 4 x 3-input ANDs, 1 x 4-input OR
- Cost: $5 + (4 \times 3 + 1 \times 4) = 21$

$$f = (x'_1x_2 + x_1x'_2)x_3 + (x_1x_2 + x'_1x'_2)x_4$$

$$g(x_1, x_2) = x'_1x_2 + x_1x'_2 \qquad \text{X-OR}$$

$$g'(x_1, x_2) = x_1x_2 + x'_1x'_2 \qquad \text{X-NOR}$$

- 6 x 2-input ANDs, 3 x 2-input OR
- Cost: $9 + (6 \times 2 + 3 \times 2) = 27$

4 x 2-input ANDs, 2 x 2-input OR

• Cost:
$$6 + (4 \times 2 + 2 \times 2) = 18$$

$$f = gx_3 + g'x_4$$

Figure 4.23. Logic circuit for Example 4.6.

Figure 4.24. The structure of decomposition in Example 4.6.

Example 4.7

$$f = x_1 x_3' x_4 + x_1 x_3 x_4' + x_2 x_3' x_4 + x_2 x_3 x_4' + x_3' x_4 x_5 + x_3 x_4' x_5 + x_1' x_2' x_3' x_4' x_5' + x_1' x_2' x_3 x_4 x_5'$$

6 x 3-input ANDs, 2 x 5-input ANDs, 1 x 8-input OR Cost: 9 + (6 x 3 + 2 x 5 + 1 x 8) = 45___

Functional Decomposition

$$k = x_3' x_4 + x_3 x_4' = x_3 \oplus x_4$$

$$g = x_1 + x_2 + x_5$$

AND

$$\boldsymbol{k}$$

$$x_5 = 0$$

 $x_5 = 1$

kg

$$x_5 = 0$$

$$x_5 = 1$$

x_3x_4 x_1	x_2			
	00	01	11	10
00	1	1	1	1
01				
11	1	1	1	1
10				

k'

 $x_5 = 1$

x_3x_4 x_1	x_2	01	11	10
00				
01				
11				
10				

 $x_5 = 1$

01 11 10 00 01 11 $x_5 = 0$

x_3x_4	x_1	x_2	01	11	10
	00				
	01				
	11				
	10				
g'	•		<i>x</i> ₅	= 1	

k'g'

Decomposition for Example 4.70

$$f = h[g(x_1, x_2, x_5), k(x_3, x_5)]$$

(b) Circuit obtained using decomposition

4 x 2-input ANDs, 2 x 2-input ORs, 1 x 3-input OR

Cost: $7 + (4 \times 2 + 2 \times 2 + 1 \times 3) = 22$

Implementation of XOR

(a) Sum-of-products implementation

Figure 4.26. Implementation of XOR

Implementation of XOR

(b) NAND gate implementation

Figure 4.26. Implementation of XOR

Implementation of XOR

(c) Optimal NAND gate implementation

Figure 4.26. Implementation of XOR

(a) Circuit with AND and OR gates

Figure 4.27. Conversion to a NAND-gate circuit.

(b) Inversions needed to convert to NANDs

Figure 4.27. Conversion to a NAND-gate circuit.

(c) NAND-gate circuit

Figure 4.27. Conversion to a NAND-gate circuit.

Figure 4.28. Conversion to a NOR-gate circuit.

(b) NOR-gate circuit

Figure 4.28. Conversion to a NOR-gate circuit.

ANALYSIS OF MULTILEVEL CIRCUITS

O Analysis of Multilevel Circuits O O

$$f = P_3 P_5 = (x_1 + x_2 x_3)(x_4(x_5 + x_6) + x_7)$$

= $x_1 x_4 x_5 + x x_4 x_6 + x_1 x_7 + x_2 x_3 x_4 x_5 + x_2 x_3 x_4 x_6 + x_2 x_3 x_7$

Figure 4.29. Circuit for Example 4.10.

Summary

- Optimized logic circuits can be implemented by the Karnaugh map.
- Don't care terms in incompletely specified functions can be regarded by 0 or 1 for minimized logic function.
- Multiple output circuits can be efficiently implemented using the common units for multiple outputs.
- To solve the fan-in problem, output must be expressed in a form called a multilevel logic expression.
- Two important techniques for multilevel function are factoring and functional decomposition.