

VERSION 1

MAR 27, 2023

OPEN BACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.3byl4jb78lo5/v1

Protocol Citation: Jose Avila Cervantes 2023. DNA - Ball Python DNA Amplification with TFEC primers. **protocols.io** https://dx.doi.org/10.17504/p rotocols.io.3byl4jb78lo5/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's

working

Created: Oct 18, 2022

Last Modified: Mar 27, 2023

PROTOCOL integer ID:

71489

1 REAGENTS

10X PCR Buffer

ONA - Ball Python DNA Amplification with TFEC primers V.1

Jose Avila Cervantes¹

¹Lolita Genomics

Jose Avila Cervantes

ABSTRACT

PCR amplification with Tfec set Exon 5 to genotype Piedball morph in Ball python (Python regius)

LEFT PRIMER AACTCAGAGCACTCCATGACC
RIGHT PRIMER CAGGTGTGCCCCTTTCATAA

- MgSO4 [M] 20 millimolar (mM)
- Tag Polymerase 5U/ul
- Primer Tfec exon5 Left [M] 10 micromolar (µM)
- Primer Tfec exon5 Right [M] 10 micromolar (μΜ)
- DNTP's [M] 10 micromolar (µM)
- Ultra Pure Water
- 100bp ladder (100-2,000 bp)
- SYBR Safe DNA stain
- Loading dye
- Agarose

2 EQUIPMENT

- DNA LoBind tubes 1.5mL
- PCR 8-Strip tubes 0.2mL
- Micropipettes
- Thermal Cycler

3 MASTER MIX

Below is the recommended volume for one sample. Adjust for the number of samples to process and add 10% to account for pipetting error. Thaw all reagents at room temperature before using them except the Taq DNA polymerase, which has to be kept on ice at all times. Premix all reagents and add the Taq DNA polymerase at the end, vortex thoroughly for \bigcirc 00:00:30 seconds. Aliquot the master mix in to each tube \square 28 \square and then add \square 2 \square of DNA sample. The final volume for each reaction is \square 30 \square .

A	В	
Reagent	Volume (uL)	
10x PCR Buffer	3	
MgSO4	4.5	
Taq Polymerase	0.3	
Primer F	1.5	
Primer R	1.5	
DNTP's	0.6	
Template-DNA	2	
Water	16.6	

4 PCR CONDITIONS

A	В	С	D
STEP	TIME	TEMPERATURE (°C)	
Initial Denaturation	3 min	94	
Denaturation	15 sec	94	
Annealing	30 sec	53.2	25 Cycles
Extension	30 sec	74	
Final Extension	2 min	74	

Table 2. Thermocycler program

5 AMPLICON QUALITY CHECK

- 1. Prepare a 1% agarose gel with 1X SYBR Safe DNA stain.
- 2. Add \pm 4 μ L of 100bp ladder (100-2,000 bp) in the first well.
- 3. Premix \square 4 μ L of sample and \square 1 μ L of 10X loading dye or \square 3 μ L of sample and \square 1 μ L of 6X loading dye. Load this mixture in each well.

- 3. Run the samples for \bigcirc 00:35:00 at a 100V.
- 4. Visualize in a trans illuminator and take a photo of the gel.
- 5. The product should be a clear, single band around 200 bp.