# Optimization in Data Science

Brian J. Mann

Feb 29, 2016

## **Objectives**

- Understand How Gradient Descent Works
- Use Gradient Descent to Optimize the Cost Function For Logistic Regression
- Stochastic Gradient Descent and Newton's Method

## Agenda

#### Morning

- 1. What is Gradient Descent and why do we need it?
- 2. An example of gradient descent
- 3. Using Gradient Descent to Solve Logistic Regression

#### Afternoon

- 1. Stochastic Gradient Descent and Examples
- 2. Newton's Method and Examples

#### Cost Functions

- Machine learning often involves fitting a model to test data
- ► The best fit is often determined using a cost function or likelihood function
  - ► Linear Regression:

$$\sum (y_i - \beta^T x_i)^2$$

Logistic Regression:

$$\sum y_i \log g(\beta^T x_i) + (1 - y_i) \log(1 - g(\beta^T x_i))$$
$$\left(g(z) = \frac{1}{1 + e^{-z}}\right)$$

## Linear Regression

► The cost function  $\sum (y_i - \beta^T x_i)^2$  can be represented in matrix format:

$$||y - X\beta||^2$$

▶ Has a closed-form solution for the minimum

$$\beta = (X^T X)^{-1} X^T y$$

- ►  $(X^TX)^{-1}$  very hard to compute if you have many features (say > 10,000)
- Is there a quicker way?

## Logistic Regression

▶ The log-likelihood function

$$\sum y_i \log g(\beta^T x_i) + (1 - y_i) \log(1 - g(\beta^T x_i))$$

has no such closed form for its maximum.

How will you find the maximum?

Ideas?

#### Gradient Descent

- ► Algorithm for finding the minimum of a function
- Question: Can be used to find maxima by \_\_\_\_\_?

#### Recall

▶ The gradient of a multivariate function  $f(x_1,...,x_n)$  is

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right)$$

ightharpoonup 
abla f(a) points in the direction of greatest increase of f at a

#### Gradient Descent

- ▶ Minimize *f*
- ► Choose:
  - ▶ a starting point *x*
  - learning rate  $\alpha$
  - ightharpoonup threshold  $\epsilon$
- ▶ Move in the direction of  $-\nabla f(x)$ :
  - Set  $y = x \alpha \nabla f(x)$
- ▶ If  $\frac{|f(x)-f(y)|}{|f(x)|}$  <  $\epsilon$ , return f(y) as the min, and y as the argmin

#### Gradient Descent

- ▶ alpha is called the *step-size* or *learning rate* 
  - ▶ If 'alpha' is too small, convergence takes a long time
  - ▶ If 'alpha' is too big, can overshoot the minimum



Figure 1:alpha too large

## Convergence Criteria

#### Choices:

- $|f(x)-f(y)| < \epsilon$
- ► Max number of iterations
- ▶ Magnitude of gradient  $|\nabla f| < \epsilon$

### **Gradient Ascent**

- ▶ To maximize f, we can minimize -f
- ▶ Still use almost the same algorithm
  - Just replace

$$y = x - \alpha \nabla f(x)$$

with

$$y = x + \alpha \nabla f(x)$$

# Some Examples

Examples

# What Can Go Wrong

Where do you think gradient descent fails?

# Example



Figure 2:Non-convex function

# More Bad Things

- ▶ Need differentiable and convex cost/likelihood function
- Only finds local extrema
- Poor performance without feature scaling

## Back to Logistic Regression

Trying to maximize the log-likelihood function

$$\ell(\beta) = \sum y_i \log g(\beta^T x_i) + (1 - y_i) \log(1 - g(\beta^T x_i))$$

▶ To use gradient ascent: need to compute  $\nabla \ell(\beta)$ 

## More Logistic Regression

First, let's compute the derivative of the sigmoid function g:

$$\frac{d}{dz}g(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= \frac{d}{dz} (1 + e^{-z})^{-1}$$

$$= -(1 + e^{-z})^{-2} (-e^{-z})$$

$$= \frac{1}{1 + e^{-z}} (\frac{e^{-z}}{1 + e^{-z}})$$

$$= g(z) (\frac{1 + e^{-z} - 1}{1 + e^{-z}})$$

$$= g(z) (\frac{1 + e^{-z}}{1 + e^{-z}} - \frac{1}{1 + e^{-z}})$$

$$= g(z) (1 - g(z))$$

Figure 3: g'(z)

# More Logistic Regression

▶ Using this and the chain rule, compute  $\frac{\partial \ell}{\partial \beta_i}$ 

$$\begin{split} \frac{\partial}{\partial \beta_{j}} \ell(\beta) &= \frac{\partial}{\partial \beta_{j}} \left( \sum_{i=1}^{n} y_{i} \log \left( g(\beta^{T} x_{i}) \right) + (1 - y_{i}) \log \left( 1 - g(\beta^{T} x_{i}) \right) \right) \\ &= \sum_{i=1}^{n} \left( \frac{y_{i}}{g(\beta^{T} x_{i})} - \frac{1 - y_{i}}{1 - g(\beta^{T} x_{i})} \right) \frac{\partial}{\partial \beta_{j}} \left( g\left( \beta^{T} x_{i} \right) \right) \\ &= \sum_{i=1}^{n} \left( \frac{y_{i}}{g(\beta^{T} x_{i})} - \frac{1 - y_{i}}{1 - g(\beta^{T} x_{i})} \right) g(\beta^{T} x_{i}) \left( 1 - g(\beta^{T} x_{i}) \right) \frac{\partial}{\partial \beta_{j}} \left( \beta^{T} x_{i} \right) \\ &= \sum_{i=1}^{n} \left( \frac{y_{i}}{g(\beta^{T} x_{i})} - \frac{1 - y_{i}}{1 - g(\beta^{T} x_{i})} \right) g(\beta^{T} x_{i}) \left( 1 - g(\beta^{T} x_{i}) \right) x_{ij} \end{split}$$

Figure 4:Computing  $\nabla \ell$ 

# More Logisitic Regression

Simplifying:

$$\frac{\partial}{\partial \beta_j} \ell(\beta) = \sum_{i=1}^n \left( y_i \left( 1 - g(\beta^T x_i) \right) - (1 - y_i) g(\beta^T x_i) \right) x_{ij}$$

$$= \sum_{i=1}^n \left( y_i - y_i g(\beta^T x_i) - g(\beta^T x_i) + y_i g(\beta^T x_i) \right) x_{ij}$$

$$= \sum_{i=1}^n \left( y_i - g(\beta^T x_i) \right) x_{ij}$$

$$= \sum_{i=1}^n \left( y_i - f(x_i) \right) x_{ij}$$

Figure 5:Computing  $\nabla \ell$ 

## More Logisitic Regression

▶ This is what you'll use to update the value of  $\beta$  in each iteration of gradient descent

### Stochastic Gradient Descent

## Why Not Regular Gradient Descent?

► Can you think of some problems with gradient descent as we learned it this morning?

#### Problems with Gradient Descent

- Memory constrained
  - Need to store all data in memory
- CPU constrained
  - ► Cost function is a function of all data
- What if you are getting new data continuously?

### Solution

▶ Only use a single data point, or a small subset of your data!

## Algorithm

- Same as gradient descent except at each step compute the cost function by using just one observation
- For example in linear regression, instead of computing the gradient of

$$\sum_{i} (y_i - \beta^T x_i)^2$$

randomly select some  $x_i, y_i$  and compute the gradient of

$$y_i - \beta^T x_i$$

## **Properties**

- ▶ Faster than *batch* Gradient Descent on average
- Prone to oscillation around an optimum
- Only requires one observation in memory at once

#### **Variants**

- Can use a small subset of your data instead of a single observations
  - "Minibatch" Stochastic GD
- "Online" Stochastic GD updates the model by performing a gradient descent step each time a new observation is collected

## Newton's Method

#### What Is It?

- Optimization technique similar to gradient descent
- ▶ Uses a root-finding method applied to f'(x)

# Algorithm in One Dimension

- $\triangleright$  Choose initial  $x_0$
- ▶ While  $f'(x) > \epsilon$ :

$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$$

# **Higher Dimensions**

$$y_{i+1} = y_i - H(y_i)^{-1} \nabla f(y_i)$$

(  $H(a) = \left[\frac{\partial f}{\partial x_i \partial x_j}(a)\right]$  is the *Hessian* matrix, the matrix of second partial derivatives at a)

#### **Problems**

- ▶ Hessian might be singular, or computation can be slow
- Can diverge with a bad starting guess