LOG BARRIER METHOD.

Linear Programming Formulation

max	$\mathbf{c}^\intercal \mathbf{x}$		
	$A\mathbf{x}$	\leq	\mathbf{b}
	\mathbf{X}	\geq	0

```
\mathbf{c}^{\intercal} \mathbf{x}
A\mathbf{x} + \mathbf{x}_s = \mathbf{b}
\mathbf{x}, \mathbf{x_s} \geq 0
```

Primal Standard form with Slack Variables

Log Barrier Trick

Inequality constrained optimization:

$$\max f(x) \text{ s.t. } g(x) \ge 0$$

Log Barrier Transformation of Inequality:

$$\max f(x) + \mu(\log(g(x)))$$

Log Barrier Trick (Log Function)

• log(x) is -lnf if $x \le 0$

 Adding log(x) to objective forbids x <= 0

Log Barrier Trick

$$\max f(x) + \mu(\log(g(x)))$$

A $\mu \to 0$, we converge to solution of original problem.

- Solve log-barrier problem for initial mu (start with g(x) > 0)
- Gradually decrease mu ($\mu \to 0$).
- Stopping criterion: Change in x is below tolerance.

Linear Programming Formulation

max	$\mathbf{c}^\intercal \mathbf{x}$		
	$A\mathbf{x}$	\leq	\mathbf{b}
	\mathbf{X}	\geq	0

```
\mathbf{c}^{\intercal} \mathbf{x}
A\mathbf{x} + \mathbf{x}_s = \mathbf{b}
\mathbf{x}, \mathbf{x_s} \geq 0
```

Primal Standard form with Slack Variables

Log Barrier Formulation

$$\mathbf{max}$$
 $\mathbf{c}^{\mathsf{T}} \mathbf{x}$
 $A\mathbf{x} + \mathbf{x}_s = \mathbf{b}$
 $\mathbf{x}, \mathbf{x_s} \geq 0$

$$\max_{\mathbf{c}^{\mathsf{T}}} \mathbf{x} + \mu \sum_{j=1}^{n} \log(x_j) + \mu \sum_{i=1}^{m} \log(x_{s,i})$$

s.t. $A\mathbf{x} + \mathbf{x_s} = \mathbf{b}$

Equality Constrained Optimization

$$\max_{\mathbf{c}^{\mathsf{T}}} \mathbf{x} + \mu \sum_{j=1}^{n} \log(x_j) + \mu \sum_{i=1}^{m} \log(x_{s,i})$$

s.t. $A\mathbf{x} + \mathbf{x_s} = \mathbf{b}$

$$L(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mu & \sum_{j=1}^{n} \log(x_j) + \mu \sum_{i=1}^{m} \log(x_{s,i}) \\ +\mathbf{y}^{\mathsf{T}} & (A\mathbf{x} + \mathbf{x_s} - \mathbf{b}) \end{pmatrix}$$

$$\frac{\partial L}{\partial x_i} = c_j + \frac{\mu}{x_i} + \mathbf{y}^{\mathsf{T}} A_{:,j}$$