

Data Structures and Algorithms Design

BITS Pilani

Hyderabad Campus

CONTACT SESSION 6-PLAN

Contact Sessions(#)	List of Topic Title	Text/Ref Book/external resource
6	Graphs - Terms and Definitions, Properties, Representations (Edge List, Adjacency list, Adjacency Matrix), Graph Traversals (Depth First and Breadth First Search)	T1: 6.1, 6.2, 6.3

Graphs

- Graphs
 - Definition
 - Applications
 - Terminology
 - Properties
 - ADT
- Data structures for graphs
 - Edge list structure
 - Adjacency list structure
 - Adjacency matrix structure

Graphs

- A graph is a pair (V, E), where
 - V is a set of nodes, called vertices
 - E is a collection of pairs of vertices, called edges
 - Vertices and edges are **positions** and store elements
- Example:
 - A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route

Graphs

- Edge Types
- Directed edge
 - ordered pair of vertices $(\underline{u},\underline{v})$
 - first vertex \underline{u} is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (u,v)
 - e.g., a flight route
- Directed graph
 - all the edges are directed
 - e.g., flight network
- Undirected graph
 - all the edges are undirected
 - e.g., route network

Graphs-Applications

- Electronic circuits
 - Printed circuit board
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
- Databases
 - Entity-relationship diagram

Graphs-Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

Graphs-Terminology

- Path
 - sequence of alternating vertices and edges
 - begins with a vertex.
 - ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - $P_1 = (V,b,X,h,Z)$ is a simple path
 - $P_2=(U,c,W,e,X,g,Y,f,W,d,V)$ is a path that is not simple

Graphs-Terminology

- Cycle
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples
 - C_1 =(V,b,X,g,Y,f,W,c,U,a) is a simple cycle
 - $C_2=(U,c,W,e,X,g,Y,f,W,d,V,a)$

is a cycle that is not simple

We can visualize collaborations among the researchers of a certain discipline by constructing a graph whose vertices are associated with the researchers themselves, and whose edges connect pairs of vertices associated with researchers who have coauthored a paper or book.

Is it a directed or undirected graph?

Such edges are **undirected** because coauthorship is a symmetric relation; that is, if A has coauthored something with B, then B necessarily has coauthored something with A.

- We can associate with an object-oriented program a graph whose vertices represent the classes defined in the program, and whose edges indicate inheritance between classes. There is an edge from a vertex v to a vertex u if the class for v extends the class for u.
- Is it a directed or undirected graph?
- Such edges are directed because the inheritance relation only goes in one direction (that is, it is asymmetric).

- A city map can be modelled by a graph whose vertices are intersections or dead ends, and whose edges are stretches of streets without intersections.
- Directed or undirected?
- This graph has **both undirected edges**, which correspond to stretches of two-way streets, **and directed edges**, which correspond to stretches of one-way streets. Thus, a graph modelling a city map is a mixed graph

- Physical examples of graphs are present in the electrical wiring and plumbing networks of a building.
- Such networks can be modelled as graphs, where each connector, fixture, or outlet is viewed as a vertex, and each uninterrupted stretch of wire or pipe is viewed as an edge.
- Such graphs are actually components of much larger graphs, namely the local power and water distribution networks.
- Depending on the specific aspects of these graphs that we are interested in, we may consider their edges as undirected or directed, for, in principle, water can flow in a pipe and current can flow in a wire in either direction.

Graph-Example 5-Path and Cycle

Given a graph G representing a city map, we can model a couple driving from their home to dinner at a recommended restaurant as traversing a path though G.

If they know the way, and don't accidentally go through the same intersection twice, then they traverse a simple path in G.

Likewise, we can model the entire trip the couple takes, from their home to the restaurant and back, as a cycle.

If they go home from the restaurant in a completely different way than how they went, not even going through the same intersection twice, then their entire round trip is a simple cycle.)

Finally, if they travel along one-way streets for their entire trip, then we can model their night out as a directed cycle.

Graphs-Properties

Property 1

If G is a graph with m edges, then

$$\sum_{v} \deg(v) = 2m$$

Proof: each edge is counted twice

Property 2

Let G be a simple graph with n vertices and m edges.

In an undirected graph with no self-loops and no multiple edges

$$m \le n (n-1)/2$$
 is $O(n^2)$

Proof: each vertex has degree at most (n-1)

Property 3

If G is a directed graph with m edges, then

$$\sum_{v \in G} indeg(v) = \sum_{v \in G} outdeg(v) = m$$

Graphs-Properties

Example

- n=4
- $\mathbf{m} = 6$
- $\bullet \quad \deg(v) = 3$

indegree (a) = 1 ouldeg (a) = 2

innovate achieve lead

Graphs-ADT

- A graph is a positional container of elements that are stored at the graph's vertices and edges
- Vertices and edges
 - are positions
 - store elements
- Accessor methods

- **Complexity**
- fincidentEdges(v): Return an iterator of the edges incident upon v
- end Vertices (e): Return an array of size 2 storing the end vertices of e.
- degree(v):
- adjacent Vertices(v):Return an iterator of the vertices adjacent to v.
- opposite(y, e):Return the endpoint of edge e distinct from y
- -(areAdjacent(v, w):Return whether vertices v and w are adjacent

Graphs-ADT

Methods Dealing with Directed Edges

- directed Edges(): Return an iterator of all directed edges.
- undirected Edges(): Return an iterator of all undirected edges.
- sdestination(e): Return the destination of the directed edge e.
- origin (e): Return the origin of the directed edge e.
- isDirected(e): Return true if and only if the edge e is directed.

Graphs-ADT

Update methods

- insertVertex(o):Insert and return a new vertex storing the object o
- insertEdge(v, w, o):Insert and return an undirected edge between vertices v and w, storing the object o.
- insertDirectedEdge(v, w, o)
- removeVertex(v):Remove vertex v and all its incident edges.
- removeEdge(e)
- Generic methods
 - numVertices()
 - numEdges()
 - vertices():Return an iterator of the vertices of G.
 - edges()

Graphs-ADT

Also supports

- size() ~
- isEmpty() elements ()
- positions()
- replaceElement(p, o)
- swapElements (p, q)

where p and q denote positions, and o denotes an object (that is, an element)

Data Structure for Graphs

- Edge list structure
- Adjacency list structure
- Adjacency matrix

Edge List Structure

- Vertex object
 - Element, o
- Edge object -
 - **e**lement
 - origin vertex object
 - destination vertex object
- Vertex sequence
 - sequence of vertex objects
- Edge sequence
 - sequence of edge objects

Time Complexity

Methods	Edge List- Time Complexity
incidentEdges(v)	O(m)
areAdjacent(v, w)	O(m)
insertVertex(o)	O(1)
insertEdge(v, w, o)	O(1)
removeVertex(v)	O(m)
removeEdge(e)	O(1)

innovate achieve lead

Edge List Structure

Adjacency List Structure

- Extends edge list structure
- Add extra information that supports direct access to the incident edges (and thus to the adjacent vertices) of each vertex
- For each vertex v, store a reference to a list of the vertices adjacent to it.

Adjacency List

Time Complexity

		\downarrow
	Edge List	Adjacency List
incidentEdges(v)	m// (deg(v)
areAdjacent(v, w)	m	min(deg(y),deg(w))
insertVertex(o)	1	1~
insertEdge(v, w, o)	1	1
removeVertex(v)	m	deg(v)
removeEdge(e)	1	1

Adjacency Matrix Structure

• The *adjacency-matrix representation* of a graph G =(V,E), the <u>vertices</u> are numbered 1,2,...,|V| in some arbitrary manner. Then the adjacency-matrix representation of a graph G consists of a |V| X |V| matrix

$$A = (a_{ij})$$
 such that
$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E, \\ 0 & \text{otherwise}. \end{cases}$$

achie

Adjacency Matrix

Asymptotic Performance

	Edge List	Adjacency List	Adjacency Matrix
incidentEdges(v)	m	deg(v)	n
areAdjacent(v, w)	m	min(deg(v),deg(w))	1
insertVertex(o)	1	1	n^2
insertEdge(v, w, o)	1	1	1
removeVertex(v)	m	deg(v)	<u>n^2</u>
removeEdge(e)	1	1	1

Graph ADT

THANK YOU!

BITS Pilani

Hyderabad Campus