Álgebra II Ciencia de la Computación Examen Final Curso 2012 – 2013

Nombre: Grupo:

1. Sea $f: \mathbb{R}_3[x] \to \mathbb{R}^2$ tal que:

$$f(x^2 + x) = (1,0)$$
 $f(x - 1) = (0,0)$ $f(x^2 + 1) = (1,0)$

- a) Determine si existe alguna aplicación lineal que satisfaga las condiciones anteriores. ¿Es única? Justifique.
- b) Encuentre una aplicación lineal que satisfaga las condiciones anteriores y tal que $\ker f \oplus L[x^2 + x] = \mathbb{R}_3[x]$.
 - i. Halle su expresión analítica.
 - ii. Halle su conjunto imagen.
 - iii. Determine si es inyectiva y/o sobreyectiva. Justifique.
- 2. Sea $T: MS_2(\mathbb{R}) \to MS_2(\mathbb{R})$ dada por:

$$T\begin{pmatrix} x & y \\ y & z \end{pmatrix} = \begin{pmatrix} 2x + 2y - z & -x - 2y + z \\ -x - 2y + z & -3y + z \end{pmatrix}$$

- a) Demuestre que T es una aplicación lineal.
- b) Halle $A = M(T, (a_i)), (a_i) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
- c) Halle valores propios y subespacios propios.
- d) De ser posible, encuentre una matriz diagonal D semejante con A y una matriz invertible P que garantice $A = P^{-1}DP$.
- 3. Sea $q: \mathbb{R}^3 \to \mathbb{R}$ una forma cuadrática dada por $q(x, y, z) = 2x^2 + 6xy + 2y^2 z^2$
 - a) Halle la matriz asociada a q en la base canónica.
 - b) Encuentre una forma canónica asociada a q mediante transformaciones ortogonales.
 - c) Halle el Índice Positivo de Inercia, Índice Negativo de Inercia y Signatura.
 - d) Determine si es definida positiva. Justifique.
- 4. Demuestre o refute en cada uno de los siguientes casos.
 - a) Toda aplicación lineal $g: \mathbb{R}^3 \to \mathbb{R}^2$ es sobreyectiva.
 - b) Sea $\lambda \neq 0$ valor propio de $A \in M_n(\mathbb{R})$ entonces $\frac{1}{\lambda}$ es valor propio de A^{-1} .
 - c) Toda matriz simétrica de orden 2 con coeficientes en \mathbb{R} es diagonalizable.
 - d) Sea E un espacio vectorial con producto escalar real, $x, y, z \in E$ ortogonales entre sí, entonces $\forall \alpha, \beta \in \mathbb{R}$ se cumple que $\|\alpha x (\alpha y + \beta z)\|^2 = \alpha^2(\|x\|^2 + \|y\|^2) + \beta^2 \|z\|^2$.