Лабораторная работа № 7

Определение производительности сеялочного агрегата

Цель работы: определить производительность сеялочного агрегата.

Эффективность работы различных машинно-тракторных агрегатов с точки зрения выполнения объёмов и работ характеризуется их производительностью.

Производительность агрегата — это объём в соответствующих единицах измерения (га, т, ткм и т.д.), выполненный агрегатом в соответствующие единицы времени (час, смена, сутки и т.д.).

Существуют понятия «теоретическая», «фактическая» и «нормативная» производительность. Чаще всего эти понятия сочетаются с названиями «часовая» и «сменная». Фактическая производительность агрегата (часовая и сменная) выражается формулами:

Wcm :=
$$0.1 \cdot \text{Bp} \cdot \text{Vp} \cdot \text{Tcm} \cdot \tau$$

Wcm = $29.317 \frac{\text{ra}}{\text{cm}}$

где B_p – рабочая ширина захвата агрегата, м; V_p – рабочая скорость агрегата, км/ч; $T_p = T_{cm} \, \tau$ – рабочее время смены, ч; T_{cm} – время смены (обычно – 7 часов), ч; τ – коэффициент использования времени смены.

					Лабораторная работа №7			
Изм.	Лист	№ докум.	Подпись	Дата				
Разраб.		Веренич А.Н.			Определение	Лит.	Лист	Листов
Провер.		Попов В.Б.			производительности		1	4
					. сеялочного ГГТУ им. П.О.С		VIIII II O CIVIDAD	
Зав. каф.		Попов В.Б.			aepeeama	гр. С-41		

При нормировании механизированных сельскохозяйственных работ учитывают баланс времени смены по следующим составным элементам (ч):

$$T_{cm} = T_{m3} + T_{p} + T_{x} + T_{Texh} + T_{To} + T_{nh}$$
,

где $T_{\text{пз}}$ – подготовительно-заключительное время; T_p – время чистой работы в борозде; T_x – время на холостые ходы, повороты, заезды; $T_{\text{техн}}$ – время остановок агрегата на технологическое обслуживание; $T_{\text{то}}$ – время на внутрисистемное техническое обслуживание агрегата; $T_{\text{лн}}$ – время внутрисменных перерывов на отдых и личные надобности.

Время чистой работы Тр определяется по формуле

$$T_P = \frac{2L_P n_{II}}{1000V_P} = 0,642$$
,

где $n_{\text{ц}}$ – количество циклов работы агрегата за смену (один цикл – движение агрегата в загоне «туда—обратно»); V_p – рабочая скорость агрегата, км/ч.

Время, затрачиваемое на выполнение холостых ходов T_x , определяется из выражения

$$T_X = \frac{2L_X n_{\rm u}}{1000V_X} = 0.075$$

где V_x — скорость агрегата при выполнении поворотов (в целях упрощения расчётов можно принять $V_x \approx V_p$), км/ч.

Время на выполнение подготовительно-заключительных работ $T_{\rm II3}$ включает в себя: затраты времени на проведение ежесменного технического обслуживания агрегата $t_{\rm eto}$, получение наряда и сдачу работы $t_{\rm IIH}$, на переездах в начале и конце смены $t_{\rm IIM}$.

$$T_{\scriptscriptstyle \Pi 3} = t_{e\scriptscriptstyle TO} + t_{\scriptscriptstyle \Pi H} + t_{\scriptscriptstyle \Pi M}$$

Значения элементов времени $T_{\text{пз}}$ регламентируются соответствующими нормативными документами в следующих пределах: $t_{\text{пм}} = 29$ мин; $t_{\text{пн}} = 4$ мин. В конкретных случаях, когда известно расстояние переезда, $t_{\text{пм}}$ можно рассчитать.

Время $T_{\text{техн}}$, затрачиваемое на технологическое обслуживание агрегата, включает в себя затраты времени на очистку рабочих органов машин $t_{\text{оч}}$, на

Изм.	Лист	№ докум.	Подпись	Дата

проверку качества работы $t_{n\kappa}$, на технологические регулировки t_{per} , а также на заправку, разгрузку технологических ёмкостей машин или разгрузку бункеров комбайнов t_{oc} .

$$T_{\text{техн}} = t_{\text{оч}} + t_{\text{рег}} + n_{\text{ц}}t_{\text{ос}} + t_{\text{пк}}$$
, $n_{\text{ц}} = 11.736$ $n_{\text{ц}} := 12$ циклов $T_{\text{техн}} := t_{\text{оч}} + t_{\text{рег}} + n_{\text{ц}} \cdot t_{\text{оц}} + t_{\text{пк}}$ $T_{\text{техн}} := \frac{T_{\text{техн}}}{60}$ $T_{\text{техн}} := \frac{T_{\text{техн}}}{60}$

где $n_{\text{ц}}$ – количество циклов за смену.

Элементы $T_{\text{техн}}$, так же как $t_{\text{оч}}$, $t_{\text{пк}}$ и $t_{\text{рег}}$, устанавливаются по данным контрольных наблюдений. Для расчётов можно принять $t_{\text{оч}}=4...22$ мин, $t_{\text{рег}}=5...15$ мин, $t_{\text{пк}}=5...10$ мин.

Часто в расчётах принимают время выгрузки зерна из бункера комбайна 3...4 мин. Время $T_{\tau o}$, затрачиваемое на внутрисменное техническое обслуживание в течение смены, обычно составляет 0,17...0,5 ч (в зависимости от сложности машины). А время $T_{\pi h}$, затрачиваемое на внутрисменный регламентированный отдых и личные надобности, составляет 25...38 мин. Показателем, характеризующим рациональность использования времени смены, является коэффициент τ – коэффициент использования времени смены

Рабочий ход агрегата $L_{\text{техн}}$ определяется из выражения

$$L_{ ext{TEXH}} = rac{10^4 ext{V} \gamma \lambda}{q B_P} \,,$$

$$L_{ ext{TEXH}} := rac{10^4 ext{V} \cdot \gamma \cdot \lambda}{q \cdot bp} \,.$$

$$L_{ ext{TEXH}} = 3.811 ext{X} \, 10^3 \,... \, M$$

где q — норма расхода материала (зерна, удобрений и т.д.) или урожайность, т/га.

Изм.	Лист	№ докум.	Подпись	Дата

$$r\mu := \frac{tp\mu}{t\mu}$$

Для приближённых расчётов, например, при необходимости сравнения производительности агрегатов с различными вариантами их составов или способов движения можно применять значения коэффициента использования циклового времени

$$\tau \mu := \frac{tp\mu}{t\mu}$$

$$\tau \mu = 0.704$$

Вывод: В ходе выполнения лабораторной работы рассчитали сменную производительность сеялочного агрегата, состоящего из трактора ДТ-75М, сцепки СП-11 и трёх сеялок СЗ-3,6 составила 29,317 га/см, при норме производительности данной сеялки W_{cm} = 3.2 - 4.3 га/ч (22.4-30.1 га/см).

Изм.	Лист	№ докум.	Подпись	Дата