Para cada uno de los problemas:

- a. Especifique que diseño es el adecuado en cada situación.
- b. Determine la unidad experimental, factores, niveles, tratamientos y variable de respuesta.
- c. Halle las estadísticas descriptivas
- d. Plantee el modelo estadístico y especifique cada una de sus componentes.
- e. Plantee la hipótesis a probar.
- f. Realice el ANOVA y analice sus resultados.
- g. Si es necesario realice una prueba post anova
- h. ¿Qué conclusiones y recomendaciones obtiene para el estudio?

Problema 1

Uno de los objetivos de la industria metalúrgica nacional es determinar cuál de los tres elementos: níquel, hierro o cobre es el mejor agente soldante. Se sueldan una serie de lingotes de acero utilizando cada uno de los posibles agentes soldantes (níquel, hierro o cobre). Existen diferencias entre los lingotes de acero utilizados en este proceso, se utiliza en total 7 lingotes (todos diferentes), se mide la fuerza (expresada en 1000 libras por pulgada cuadrada) necesaria para soldar los lingotes. Los resultados fueron:

	AGENTE SOLDANTE					
LINGOTE	NIQUEL	HIERRO	COBRE			
1	67.0	71.9	72.2			
2	67.5	68.8	66.4			
3	76.0	82.6	74.5			
4	72.7	78.1	67.3			
5	73.1	74.2	73.2			
6	65.8	70.8	68.7			
7	75.6	84.9	69.0			

Problema 2

Un agrónomo realizo un experimento para determinar los efectos combinados de un herbicida y un insecticida en el crecimiento y desarrollo de plantas de algodón (delta de hoja suave).

Insecticida	Herbicida					
insecticida	0.0	0.5	1.0	1.5	2.0	
0	122.0	72.5	52.0	36.3	29.3	
20	82.8	84.8	71.5	80.5	72.0	
40	65.8	68.8	79.5	65.8	82.5	
60	68.0	70.0	68.8	77.3	68.3	
80	57.5	60.8	63.0	69.3	73.3	

Hacer un análisis completo que permita conocer como es la respuesta del desarrollo de las plantas de algodón ante las distintas dosis de Herbicida.

Problema 2

Se están estudiando los factores que influyen en la resistencia a la ruptura de una fibra sintética. Se selecciona tres operadores y cuatro máquinas, para el experimento se utilizan fibras de un mismo lote de producción. Los resultados son los siguientes:

OPERARIO	MAQUINA (B)				
(A)	1	2	3	4	
1	109	110	108	110	
1	110	115	109	108	
2	110	110	111	114	
2	112	111	109	112	
3	116	112	114	120	
3	114	115	119	117	

Hacer un análisis completo que permita conocer como es la respuesta de la resistencia a la ruptura de la fibra sintética ante los distintos Operarios y Maquinas.

Problema 4

Dos tipos de moluscos A y B fueron sometidos a tres concentraciones distintas de agua de mar (100%, 75% y 50%) y se observó el consumo de oxígeno midiendo la proporción de O₂ por unidad de peso seco del molusco.

Concentración de	Tipo de Molusco							
agua de Mar	A			В				
100%	7.16	8.26	6.78	14	6.14	6.14	3.68	10
	13.6	11.1	8.93	9.66	10.4	11.6	5.49	5.8
75%	5.2	13.2	5.2	8.39	4.47	4.95	9.96	6.49
	7.18	10.4	6.37	7.18	5.75	5.44	1.8	9.9
50%	11.11	10.5	9.74	14.6	9.63	14.5	6.38	10.2
	18.8	11.11	9.74	11.8	13.4	17.7	14.5	12.3

Hacer un análisis completo que permita conocer como es el consumo de oxígeno en las distintas concentraciones de agua de mar y si estas conclusiones son las mismas para cada tipo de molusco.