GRAPHS MSCI 240: Algorithms & Data Structures	
lecture summary lots of definitions more definitions graph data structures how to represent graphs in code	
slides by Mark Hancock 2	

Topic	Building Java Programs	Algorithms (Sedgewick)
classes, ADTs	chapter 8	1.2
arrays	chapter 7	
ArrayList <t></t>	chapter 10	1.3
Stack/Queue	chapter 14, (11)	1.3
LinkedList	chapter 16	1.3
Complexity		1.4
Searching	chapter 13	pp. 46-47
Sorting		chapter 2.1-2.3
Recursion	chapter 12	1.1 (p. 25)
Binary Trees	chapter 17	chapter 3.1-3.2
Dictionaries	chapter 18.1	chapter 3.4
Graphs	N/A (Wikipedia good)	chapter 4.1
Heaps/Priority Queues	chapter 18.2	chapter 2.4

.

	1
1. 1.6. %	
graph definitions	
	-
slider by Mark Hancock 4.	
]
a graph is a set of vertices (a.k.a. nodes), V, and a set of edges, E, where each edge connects a pair of vertices	
e.g., $V = \{1,2,3,4\}, E = \{(1,2), (1,3), (2,3), (3,4)\}$ vertices	
adjacent: u is adjacent to $v \Leftrightarrow (u, v) \in E$	
degree (of a vertex $v \in V$): the number of	
edges connected to a vertex edge	
4 3	
4 is adjacent to 3	
degree(3) = 3	
slides by Mark Hancock S	
	1
e.g. (social),	
$V = \{\text{Jerry, Elaine, George, Kramer, Newman}\}$	
adjacent nodes?	
degree of J,E,G,K,N?	
$ \times $	
(G) (K) (N)	
slides by Mark Hancock 6	

complete graph: a graph where each vertex is connected to every other vertex

e.g., complete graphs of size 4 and 5

slides by Mark Hancock

directed graph: each edge in E is an ordered pair has a direction

in-degree (of $v \in V$): number of edges entering a vertex in-degree of 1,2,3?

out-degree (of $v \in V$): number of edges leaving a vertex out-degree of 1,2,3?

slides by Mark Hancock

how many edges are in a complete (undirected) graph?

let n = |V| (number of vertices)

let m = |E| (number of edges)

$$m = (n-1) + \dots + 2 + 1 = \sum_{i=1}^{n-1} i = \frac{n \cdot (n-1)}{2} \in {}^{\textcolor{red}{O}}(n^2)$$

alternatively,
$$m=\binom{n}{2}=\frac{n!}{2!\,(n-2)!}=\frac{n\cdot(n-1)}{2}\in {\color{blue}\mathcal{O}(n^2)}$$

slides by Mark Hancock

L C St	
more definitions	
sides by Mark Hancack 10	
dense graph when m is in $\Theta(n^2)$ (e.g., almost all the edges)	
sparse graph	
when $m \ll n^2$ (e.g., only 1-2 edges per vertex, max, $\therefore m \in O(n)$)	
(« means way less than)	
slides by Mark Hancock. 11	
	_
path: sequence of vertices connected by edges	
e.g., [1,2,5,7,11,8,12] is a path from 1 to 12	
length of path: number of edges along the path e.g., [1,2,5,7,11,8,12] has length 6	
(1)	
slides by Mark Hancock. 12	

	-
graph data structures	
slides by Mark Hancock. 13	
there are two primary ways to represent graphs:	
adjacency list good for sparse graphs	
adjacency matrix good for dense graphs	
good for dense graphs	
sildes by Mark Hancack 14	
$V = \{1,2,3,4,5\}$	
$E = \{(1,2), (1,3), (2,3), (3,4)\}$	
adjacency list:	
adjacency matrix: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4 0 0 1 0 0 0 5 0 0 0 0 0	
slides by Mark Hancock. 15	

IntGraphList class (undirected) public class IntGraphList { private MashMapcInteger, LinkedList<Integer>> adjacencyList; public IntGraphList() { adjacencyList = new MashMapc>(); } // precondition: value has not been added before public void addVertex(int value) { adjacencyList.put(value, new LinkedList<>()); } // precondition: first and second must already be added as vertices public void addVege(int first, int second) { adjacencyList.get(first).add(second); adjacencyList.get(second).add(first); } }

IntGraphMatrix class (undirected) public class IntGraphMatrix { private boolean[][] adjMatrix; private int numVertices; public IntGraphMatrix(int numVertices) { adjMatrix = new boolean[numVertices][numVertices]; this.numVertices = numVertices; } // no addVertex method (fixed number of vertices, numbered 1 to n) // precondition: 0 <= first, second < numVertices public void addEdge(int first, int second) { adjMatrix[first][second] = true; adjMatrix[second][first] = true; } </pre>

how much space does an adjacency list use?
how much space does an adjacency matrix use?
sparse vs. dense graphs?

graph summary	
graphs have vertices and edges (pairs of vertices) definitions: adjacent, degree (in/out), complete, sparse, dense, path	
graphs can be undirected or directed	
graphs can be stored with an adjacency list (better for sparse) or an adjacency matrix (better for dense)	
slides by Mark Hancock. 19	
next: breadth-first search	