_	_	-	_			
Metr	ic	Pi	·e	fi:	xes	

Metric Prefixes				
peta	Ρ	10^{15}	1 000 000 000 000 000	
tera	Τ	10^{12}	1 000 000 000 000	
giga	G	10^{9}	1 000 000 000	
mega	Μ	10^{6}	1 000 000	
kilo	k	10^{3}	1 000	
hecto	h	10^{2}	100	
deca	da	10^{1}	10	
one		10^{0}	1	
deci	d	10^{-1}	0.1	
centi	$^{\mathrm{c}}$	10^{-2}	0.01	
milli	m	10^{-3}	0.001	
micro	μ	10^{-6}	0.000 001	
nano	n	10^{-9}	0.000 000 001	
pico	р	10^{-12}	0.000 000 000 001	
femto	f	10^{-15}	0.000 000 000 000 001	

Ohm's Law V = IR, $\overline{I = \frac{V}{R}}$, $R = \frac{V}{I}$

Battery Symbol

The side with the longer line is the positive side

Complex Numbers

- $\begin{aligned} \bullet \, z &= x + i y = r e^{i\theta} = r[\cos(\theta) + i\sin(\theta)] \\ \bullet \, [r(\cos(\theta) + i\sin(\theta))]^n &= r^n[\cos(n\theta) + i\sin(n\theta)] \end{aligned}$
- $\bullet z^n = (re^{i\theta}) = r^n e^{in\theta}$
- $\bullet \frac{1}{i} = -i$

- normalized: $sinc(t) = \frac{\sin(\pi t)}{\pi t}$

$$\bullet \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$

$$\angle \frac{a}{b} = \angle a - \angle b$$

Trig

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$$

$$\cos^2(a) + \sin^2(a) = 1 \qquad |\sin(2a)| = 2\sin(a)\cos(a)$$

$$\cos^2(a) = \frac{1}{2}(1 + \cos(2a)) \qquad |\sin^2(a)| = \frac{1}{2}(1 - \cos(2a))$$

Voltage Division between two non-zero points

 $V_{DD}
ightarrow R_1
ightarrow V_1
ightarrow R_2
ightarrow V_{EE} \ V_1 = V_{DD} rac{R_2}{R_1 + R_2} + V_{EE} rac{R_1}{R_1 + R_2}$

(superposition)

AC Resistors and Capacitors

$$R||\frac{1}{Cs} = \frac{R\frac{1}{Cs}}{R + \frac{1}{Cs}} = \frac{R}{RCs + 1}$$

$$\frac{R}{R + \frac{1}{Cs}} = \frac{RCs}{RCs + 1} = \frac{s}{s + \frac{1}{RC}}$$
$$\frac{\frac{1}{Cs}}{R + \frac{1}{Cs}} = \frac{1}{RCs + 1}$$

MOS

MOS DC Biasing

- this is all for NMOS. PMOS is backward $\beta = k'_n(\frac{W}{L})$ cutoff: $V_{GS} < V_{th}$

• cuton:
$$V_{GS} < V_{th}$$

• $I_D = 0$
• triode (linear): $V_{DS} < V_{GS} - V_{th}$
• $I_D = k'_n \frac{W}{L} \left((V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right)$

- active (saturation): $V_{DS} > V_{GS} V_{th}$ * $I_D = \frac{k'_n}{2} \frac{W}{L} (V_{GS} V_{th})^2$ * overdrive voltage $V_{ov} = V_{GS} V_{th}$ to show it's active: show that $V_{DS} > V_{ov}$ (or

$V_{DS} > V_{GS} - V_{th}$) MOS Small Signal

	$\frac{V_o}{V_g}$	R_i	R_o		
CS	$-\frac{R_D R_L}{\frac{1}{g_m} + R_S}$	$R_{G1} R_{G2}$	R_D		

CG	$\frac{R_D R_L}{R_i}$	$\frac{1}{g_m}$	R_D

$$CD \left| \begin{array}{c} \frac{R_L}{\frac{1}{g_m} + R_L} \end{array} \right| R_{G1} || R_{G2} \left| \begin{array}{c} \frac{1}{g_m} \end{array} \right|$$

- $\bullet g_m = k' \frac{W}{L} (V_{GS} V_t) = k' \frac{W}{L} (V_{ov}) = \sqrt{2k' \frac{W}{L} I_D}$
- CS: Common Source
- CG: Common Gate
- CD: Common Drain (buffer)
- $\angle \frac{a}{b} = \angle a \angle b$ •apparently, when calculating the max gain of the frequency response, it is OK to just use the part of he equation that doesn't depend on s

MOS current mirrors

NMOS
• where M1 is the transistor with base shorted to ground (the reference branch)

 $\bullet \stackrel{I_{D1}}{I_{D2}} = \frac{(W/L)_1}{(W/L)_2} \text{ or } I_{D2} = \frac{(W/L)_2}{(W/L)_1} I_{D1}$

Bode Plots

- magnitude is plotted in dB: $|T(j\omega)|_{dB} = 20 \log_{10} |T(j\omega)|$
- starts on y-axis at DC offset with slope 0
- just add together the bode plots of each individual pole, zero, and the DC offset
- poles always slope down, zeros slope up (applies for both magnitude and phase)
- dec=decade, e.g. from 10^0 to 10^1
- magnitude:
- *Pole/Zero at origin: constant slope $\pm 20db/dec$ for all ω ; 0dB at
- $\omega = 10^0 = 1$ *Pole/Zero at ω_0 : 0 for $\omega < \omega_0$ slope $\pm 20 \frac{db}{dec}$ after

*Constant C: constant line at $20 \log_{10}(|C|)$

*Pole at origin: constant $-\frac{\pi}{2}$ or -90°

*Zero at origin: constant $+\frac{\pi}{2}$ or $+90^{\circ}$

*Pole/Zero at ω_0 :

 $0 \text{ for } \omega < \frac{\omega_0}{10}$

slope linearly ($\pm 45^{\circ}/dec$) until $10\omega_0$

0 slope for $\omega > 10\omega_0$

*Constant C: no effect (0 for all ω)

• Prof wants us to actually show the -3dB drop curve, not just a straight intersection

• on the x-axis of the bode plot you need to plot frequency in Hz, so take $s = j\omega$ and divide by 2π

Solving systems with Op Amps

• only applies if the op-amp has feedback

• step 0: if the op amp is ideal, write out ideal properties:

 $V_{+} = V_{-}$ $V_{+} = V_{-}$ $V_{+} = 0, I_{+} = 0$ $V_{-} = 0, I_{+} = 0$

• avoid doing KCL/KVL directly on the output node of the op amp

• ignore resistors from a point at 0V to ground

Op Amp Equations

Inverting Amplifier

Non-Inverting Amplifier

• ideal open-loop behavior: $(V_p - V_n) > 0 \rightarrow V_o = V_{DD}$

• general form: $T(s) = \frac{K_0}{1 + \frac{s}{\omega_0}}$

 $*T(0) = K_0$: DC offset. For these simple ones, it's equal to ideal response

 $*\omega_0 = \frac{\omega_t}{1+R_2/R_1}$

• inverting op amp:

*ideal: $T(s) = \frac{V_o}{V_i} = -\frac{R_2}{R_1}$

* non-ideal:
$$T(s) = \frac{V_i}{V_i} = \frac{R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{-R_2/R_1}{1 + \frac{s}{W_0}} = \frac{-R_2/R_1}{1 + \frac{s}{W_0}}$$
• non-inverting op-amp:

• non-inverting op-amp:

*ideal: $T(s) = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$

*non-ideal:
$$T(s) = \frac{V_i}{V_i} = \frac{1 + R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{1 + R_2/R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2/R_1})}} = \frac{1 + R_2/R_1}{1 + \frac{s}{\omega_0}}$$

RC Filter

• Transmission Function: $T(s) = \frac{V_o(s)}{V_i(s)}$

• Corner frequency: frequency s at which $T(s) = \frac{1}{\sqrt{2}}$

• for simple circuit: ground \rightarrow source $\rightarrow R \rightarrow C \rightarrow$ ground

$$*T(s) = \frac{1}{1+RCs}$$

$$|T(j\omega)| = \frac{1}{\sqrt{1+R^2C^2s^2}}$$

$$|\angle T(j\omega)| = \frac{1}{\sqrt{1+R^2C^2s^2}}$$

• low pass

*corner frequency: $s = \frac{1}{RC}$ (also pole)

* pole: $\frac{1}{RC}$

high pass

 $*T(s) = \frac{V_o}{V_i} = \frac{RCs}{1+RCs}$

*zero: s=0, pole: $s=\frac{1}{RC}$