06-20416 and 06-12412 (Intro to) Neural Computation

03 - Maximum Likelihood

Per Kristian Lehre

Previous lecture

- Linear regression models
 - model linear relationship between input and output
 - Mean square error as cost function
- Optimisation
- Derivatives
 - The chain rule
- Ordinary Least Square (OLS)
- Gradient Descent

Outline

- Probabilistic models
- Some probabilistic concepts
 - Random variable, density function, normal distribution, joint density function, empirical distribution
- Maximum likelihood
 - Likelihood function and Maximum likelihood estimate
 - Learning via log-likelihood
 - Example: linear regression revisited

Cartoon picture of ML

Prediction of Heart Weights Revisited

- De have considered a deterministic model $f(x) = \omega x,$
- · However there is variation in the data

 there are cats with the same body wight,
 but different heart weights

- A probabilistic model can account for variance in the data, for example F(x) = Wx + N

where

 $N \sim \mathcal{N}(0, \sigma^2)$

is a "noise term" which is normally distributed with expectation 0 and varience σ^2 .

- F(x) is a "random variable" which can be described by a "conditional density" P (3/x; 10)

Random Variables and Probability Density Functions A random variable takes a value that depends on a random phenomenon, e.g. - the number of dots when throwing a dice (6 possible values) - the temperature at 9 am (infinitely many possible values) The density function of a continuous vandom variable X is a function P: R->R st. Sp(x)dx = Pc(a & X & b)

The normal distribution has probability density function

$$f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Parameters of the distribution

Expectation

The expected value of f(X) when X is a vandom variable with Probability density function P is

 $\mathbb{E}_{x\sim p} f(x) := \int_{-\infty} p(x) f(x) dx$

Example

 $\mathbb{E}_{\chi \sim N(\mu, \sigma^2)} \chi = \mu.$

Joint Distributions and Independence

The joint density function

of n random variables X,..., X

is a function P: R > R such that $\int P(x^{(n)},...,x^{(n)}) dx^{(n)} dx^{(n)}$ $= P_r((x^{(n)},...,x^{(n)}) \in D$ for any n-dimensional domain $D \in \mathbb{R}$

If $X^{(n)}$, $X^{(n)}$ are n inderpendent vandom variables with density functions $P^{(n)}$, ..., $P^{(n)}$ and joint density P, then

$$P\left(x^{(1)},\ldots,x^{(n)}\right) = \frac{n}{1} P^{(i)}\left(x^{(i)}\right)$$

$$\hat{z} = 1$$

Empirical Distribution

Given in independent samples X',..., X'n)
from an unknown distribution D,
we can construct an approximation of D
by uniformly sampling from the set {x'',..., x'''}?

Criven X⁽¹⁾,..., X⁽ⁿ⁾ vi.i.d samples from D_g the empirical distribution of D has density function

$$P_{n}(x) := \frac{1}{n} \sum_{i=1}^{n} \left(\chi^{(i)} - x \right)$$

where S is the Dirac delta, i.e., $\delta(x)=0$ for $x\neq 0$ and $\int \delta(x)dx=1$.

NB
$$E_{x\sim \hat{P}_n} f(x) = \frac{1}{n} \sum_{i=1}^n f(x^{(i)})$$

Learning task verisited Instead of deterministically predicting an omtput og for a given input x, we will train a probabilistic model represented by a conditional density function density function of output Punodel (ry / x; 0) parameter of model Criven training data and a family of probability models,

Criven training data and a family of probability models,

we need to choose the parameter(s) & which are appropriate for the data

—> Maximum Likelihood Estimate

Likelihood function Given independent training data (x,y),...,(x,y), and a probabilistic model Pmodel with parameter 0, the likelihood function is defined as training data (fixed) $\mathcal{L}\left(\Theta;\left(x^{(1)},y^{(4)}\right),...,\left(x^{(n)},y^{(n)}\right)\right)$ model: = $\prod_{i=1}^{n} P_{model} \left(y_{i}^{(i)} \mid x_{i}^{(i)} \right)$ (variable)

conditional conditional density L(0j...) is the likelihood that the observed data came from the model with parameter O.

Maximum Likelihood Estimate (MLE)

Given training data and a family of models indexed by a parameter of which of the models are most likely to have produced the data?

$$\bigoplus_{M \in \mathbb{E}} = \underset{\theta}{\text{argmax}} \left\{ \left(\theta; \left(x^{(i)}, y^{(i)} \right), \dots, \left(x^{(i)}, y^{(i)} \right) \right) \right.$$

$$= \underset{i=1}{\text{argmax}} \left\{ \left(\theta; \left(x^{(i)}, y^{(i)} \right), \dots, \left(x^{(i)}, y^{(i)} \right) \right\} \right.$$

Log-likelihood

For numerical and analytical reasons, a convenient reformulation is

Learning via log-likelihood

Neural network models are often trained by minimising the negative log-likelihood of the model given the training data, rie., by minimising the function

 $J(\Theta) = \mathbb{E}_{(x,y) \sim \hat{D}} \left[-\log \operatorname{Pmodul}(y|x;\Theta) \right]$

cost function model parameter(s)

empirical distribution of deta

Example: Linear Regression

Predicting heart weight from body weight with model

$$F(x) = wx + N \text{ when } N \sim N(0, \sigma^2)$$

F(x)~ N(wx, o²) g r.e., a model with conditional density

Produl
$$(y \mid x; \omega) = \frac{1}{\sqrt{2\pi\sigma^2}} exp \left(-\frac{(y-x\omega)^2}{2\sigma^2} \right)$$

=>
$$W_{\text{MLE}} = \operatorname{argmin}_{\hat{v}=1}^{n} - \log \operatorname{Pmodul}_{\hat{v}=1}^{(i)} |\chi^{(i)}_{j} \omega$$

= arginin
$$\sqrt{\frac{1}{2\pi\sigma^2}} + \left(\frac{ci}{\sqrt{2\pi\sigma^2}}\right)^2$$

 $v = 1$ constant

= argunin
$$\frac{1}{n}$$
 $\sum_{i=1}^{n} \frac{1}{2} \left(\gamma_{i}^{(i)} - \chi^{(i)} \omega \right)^{2}$

Summary

- Probabilistic models
- Some probabilistic concepts
 - Random variable, density function, normal distribution, joint density function, empirical distribution
- Maximum likelihood
 - Likelihood function and Maximum likelihood estimate
 - Learning via log-likelihood. Example: linear regression
- Compulsory reading
 - Goodfellow et al., 3.1-3.8, 3.9.3, 5.5

Next lecture

Gradient descent in higher dimensions