

Sentiment Classification with Neural Text Representation on Amazon Reviews

19/05/2025

Proposed approaches

CONTEXTUAL EMBEDDINGS

DATASET - 'AMAZON REVIEW FULL SCORE DATASET'

ORIGINAL DATASET

		-111	
Ra	ting	Title	Review
0	3	more like funchuck	Gave this to my dad for a gag gift after direc
1	5	Inspiring	I hope a lot of people hear this cd. We need m
2	5	The best soundtrack ever to anything.	I'm reading a lot of reviews saying that this
3	4	Chrono Cross OST	The music of Yasunori Misuda is without questi
4	5	Too good to be true	Probably the greatest soundtrack in history! U
5	5	There's a reason for the price	There's a reason this CD is so expensive, even
6	1	Buyer beware	This is a self-published book, and if you want
7	4	Errors, but great story	I was a dissapointed to see errors on the back
8	1	The Worst!	A complete waste of time. Typographical errors
9	1	Oh please	I guess you have to be a romance novel lover f

3 COLUMS

BALANCED DATASET

DATASET - 'AMAZON REVIEW FULL SCORE DATASET'

	Text	Rating
0	more like funchuck Gave this to my dad for a g	3
1	Inspiring I hope a lot of people hear this cd	5
2	The best soundtrack ever to anything. I'm read	5
3	Chrono Cross OST The music of Yasunori Misuda	4

DATA CLEANING:

- Check rows with null values
- Check duplications
- Merge the columns Title and Review in one single column called Text

STATISTICS:

- On average, each text has a length of about 80 words
- The **standard deviation** is **43.26**, indicating a **moderate to high variability** in text length.

SUBSET:

It's been created a subset of 500K reviews

TEXT PREPROCESSING (I) - EMOTIONAL TOKENS

TEXTUAL EMOJI:

```
○ :),:),:-) → HAPPY○ :(,:(,:-(→SAD
```

0 ...

EMOJI UNICODE-BASED:

- UUUUU → HAPPY
- WWW → ANGRY
- 0 ..

PUNCTUATION:

- ? → QUESTION_MARK
- $\circ \quad \ \ !!! \to \textbf{STRONG_EXCLAMATION}$
- \circ ?! \rightarrow SURPRISE
- 0 ...

MAIUSC TEXT:

O THIS CD IS SO BAD → ALL CAPS

Inspired by:

Agarwal et al. (2011) – *Sentiment Analysis of Twitter Data*, Columbia University.

Krouska et al. (2016) – The Effect of Preprocessing Techniques on Twitter Sentiment Analysis, University of Piraeus

TEXT PREPROCESSING (II)

- REMOVE OF URL and @ MENTIONS
- REMOVE THE STOPWORDS
- REMOVE PUNCTUATION, NUMBERS AND SPECIAL CHARACTERS
- EXPAND THE CONTRACTED FORMS (I'll → I Will, they're → They are)
- LOWERCASING
- **LEMMATIZATION** WITH **SPACY** (For 500K instances, 1.57h, Google Colab)

```
important_words = {
    "not", "no", "nor", "never", "none", "nobody", "nothing", "neither", "nowhere",
    "don't", "doesn't", "didn't", "can't", "couldn't", "won't", "wouldn't",
    "shouldn't", "wasn't", "weren't", "isn't", "aren't", "hasn't", "haven't", "hadn't",
    "cannot", "without", "hardly", "barely", "rarely", "scarcely",
    "dont", "doesnt", "didnt", "cant", "couldnt", "wont", "wouldnt",
    "shouldnt", "wasnt", "werent", "isnt", "arent", "hasnt", "havent", "hadnt"
}
stop_words = stop_words - important_words
```


TEXT PREPROCESSING (III)

NOT PREPROCESSED

PREPROCESSED

A ^B C Text	1 ² 3 Rating
no lonesome dove lonesome dive one good book ever read dead man walk can not hold candle ranger portray bumble i	3
not hoping not expect magicali pretty easy tool not toughon one stuck bolt first one use break without even give fight nd	2
roof bag bag hold good however not waterproof dry clothe arrive atour destination	2
suspensful truly read review write previous reader book read book intrigue ultimately premise story bengal tiger lose no	5
receive broken son receive gift bowl break tell call company not do yet not know resolution	2
computer literate little bit not read may already notice title review one bad technothriller one could choose reading wou	1

yes antiamerican get complaint book stem overuse italic exclamation_mark every se

love dvds all_caps wild wild west dvds great all_caps sure co

STATIC EMBEDDING APPROACH - OVERVIEW

RESULTS FROM THE PAPER THAT INSPIRED OUR WORK

Tang, H., Zhang, N., Yu, X., Mao, T., & Wang, L. (2022). *Enhancing Sentiment Analysis with Word2Vec and LSTM: A Comparative Study*. Qianjiang College, Hangzhou Normal University.

Model	Accuracy	Precision	Recall	F1
CNN	0.737	0.702	0.768	0.733
BILSTM	0.745	0.737	0.779	0.742
Bi-LSTMCNN	0.751	0.729	0.783	0.750
Word2vec+SVM	0.762	0.731	0.798	0.767
Word2vec+LSTM	0.789	0.742	0.824	0.782

Dataset of 20K comments on the COVID-19 topic.

Static embedding + "traditional ML" approach

- GloVe word embeddings (pretrained)
- Single embedding per review
- Two pooling approaches:
 - Average word embeddings per review
 - Element-wise maximum across all word embeddings in a review.
- Evaluate the impact of different level of text preprocessing on the performances:
 - a minimal preprocessing
 - a heavier preprocessing

Static embedding + "traditional ML" approach

- Classifiers used:
 - SVM
 - Logistic Regression
 - MLP
 - Random forest
 - XGBoost
 - O KNN

These baseline techniques are consistent with those discussed in:

Wankhade et al. (2022), A Survey on Sentiment Analysis Methods,
Applications, and Challenges,
Springer.

- Tools:
 - simple classifiers in scikit-learn

Traditional ML – Experiments

- 100K subsample of the dataset
- Train/test split: 80/20
- Binary classification task
- Experiment (A): minimal and coarse preprocessing (lowercasing, remove punctuation)
- Experiment (B): heavier and more accurate text processing (as illustrated before)
- Fair comparison: same setting for both experiments (same pretrained embedding, same dim)
- **Evaluation metrics**: **Accuracy**, Precision, Recall, F1 and taking **time** into consideration too

Traditional ML – Results – Experiment (A)

model	Accuracy (%) Avg Pooling	Training time Avg Pooling	Accuracy (%) Max Pooling	Training time Max Pooling
SVM	0.79	9 min	0.71	13 min
Logistic Regression	0.78	5 s	0.68	5 s
MLP	0.80	5 min	0.70	10 min
Random forest	0.76	2 min	0.72	1 min
XGBoost	0.77	10 s	0.78	8 s
KNN	0.70	10 s (test time)	0.61	12 s (test time)

Traditional ML – Results – Experiment (B)

model	Accuracy (%) Avg Pooling	Training time Avg Pooling	Accuracy (%) Max Pooling	Training time Max Pooling
SVM	0.80	9 min	0.72	14 min
Logistic Regression	0.79	2 s	0.69	2 s
MLP	0.79	2 min	0.69	8 min
Random forest	0.76	2 min	0.73	1 min
XGBoost	0.79	10 s	0.78	8s
KNN	0.71	12 s (test time)	0.62	12 s (test time)

Static embedding + RNN ... and its many variants

 Adjust max sequence length dynamically based on the token per review distribution

Keras

A deep learning library

- review as a sequence of static embedding vector:
 - Embedding layer from Keras (randomly initialized and trained from scratch)
 - Pretrained embedding (GloVe, fasText,...): frozen or trainable=True to finetune
 - Tools:
 - Keras, that allows rapid prototyping and automatic use of GPU

Static embedding + RNN ... and its many variants

Many architectures have been tested varying both

- the **Recurrent layer:**
 - o LSTM/BiLSTM
 - GRU
 - Simple Vanilla RNN
 - Stacked BiLSTM
- and the Classification head:
 - MLP (dense layers)
 - CNN + dense layer

Trained with:

- Binary cross-entropy loss
- Adam optimizer
- Epochs: ~5 with early stopping

Models architecture inspired by: **Tang et al. (2022)** – Enhancing Sentiment Analysis with Word2Vec and LSTM: A Comparative Study

Deep Learning approach (RNN) – Experiment

Experiment setup:

- 500 K subsample of the dataset, balanced in the target class
- Train/test split: 80/20
- Evaluated with Accuracy, Precision, Recall and F1 score on internal test set
- Optimized binary cross-entropy loss, used adam optimizer
- Early stopping, monitoring loss on VL set, with patience
- In models where it is not explicitly reported, minimal text preprocessing has been performed,
 i.e. lowercasing and removing line breaks
- Where '+PreProc' is indicated, heavier pre-processing has been performed that includes also: removing punctuation, removal of stopwords, lemmatization, etc ... as illustrated before

Deep Learning approach (RNN) - Results (I)

model	Accuracy-%	Precision-%	Recall-%	F1 Score-%	TR time
BiLSTM	0.935	0.939	0.931	0.935	4 min 30 s
BiLSTM + CNN	0.932	0.923	0.942	0.933	3 min
GRU	0.932	0.931	0.932	0.932	1 min 15 s
LSTM	0.930	0.937	0.923	0.930	1 min
Vanilla RNN	0.905	0.903	0.907	0.905	1 min 30 s
Stacked BiLSTM	0.931	0.928	0.934	0.931	4 min 30 s

Deep Learning approach (RNN) – Results (II)

model	Accuracy-%	Precision-%	Recall-%	F1 Score-%	TR time
Glove+ BiLSTM	0.931	0.941	0.920	0.930	4 min 15 s
FasText + BiLSTM	0.930	0.927	0.935	0.931	3 min 45 s
+PreProc + BiLSTM	0.905	0.895	0.918	0.906	2 min
+PreProc + BiLSTM + CNN	0.902	0.910	0.893	0.901	1 min

Deep Learning approach (RNN) – Results (III)

model	Accuracy-%	Precision-%	Recall-%	F1 Score-%	TR time
+PreProc + GRU	0.901	0.892	0.911	0.902	40 s
+PreProc + LSTM	0.901	0.900	0.902	0.901	38 s
+PreProc + Vanilla RNN	0.884	0.891	0.875	0.883	33 s
+PreProc + Stacked BiLSTM	0.903	0.908	0.896	0.902	1 min

Deep Learning approach (RNN) – Results (IV)

model	Accuracy-%	Precision-%	Recall-%	F1 Score-%	TR time
+PreProc + Glove + BiLSTM	0.903	0.895	0.912	0.903	2 min
+PreProc + FasText+ BiLSTM	0.902	0.887	0.921	0.903	2 min
W2V + LSTM	0.93	0.93	0.93	0.93	2 min 30 s
+PreProc + W2V + LSTM	0.91	0.91	0.91	0.91	2 min 30 s

Conclusion & Insights

- The approach based on deep learning and RNNs achieves excellent performance significantly outperforming the other approach called "traditional ML"
- Both approaches work with minimal text pre-processing
- Both approaches seem to work slightly better or at least no worse with minimal preprocessing than with heavy preprocessing
- Static embeddings combined with traditional ML techniques and RNNs have proven to be not just an historical example but a simple and effective one.

Sentiment Classification with BERT

Model Architecture

Bert plus a fully connected neural network to cope with binary sentiment classification

Introduction to BERT

BERT is a bidirectional transformer pretrained on unlabeled text to predict masked tokens in a sentence and to predict whether one sentence follows another. BERT is also very versatile because its learned language representations can be adapted for other NLP tasks(sentiment analysis) by fine-tuning an additional layer or head.

Introduction to Datasets & Data Preprocessing

Datasets: amazon_review_full_csv (3M reviews)
Data Preprocessing:

- 1. Ratings mapping: ratings < 3 were mapped to 0 (negative), and ratings > 3 were mapped to 1 (positive).
- 2. sampled 1% of the entire dataset as a subset: from this subset, 80% was used for training, 20% was used for validation.

Introduction to Datasets & Data Preprocessing

- 2. From the remaining 99% of the original dataset (i.e., data not used in training/validation), I sampled another 1% as a test set to evaluate the model's generalization performance.
- 3. Convert NAN in the title to 'NULL' & text preprocessing like convert the text to lowercase and so on.

Introduction to Model & Hyperparameters

Model: bert-base-uncased parameters = 110Mattention heads = 12hidden layers = 12hidden size = 768vocabulary size = 30522 intermediate size = 3072activation function = gelu

Introduction to Model & Hyperparameters

Model: Classifier head

Layer 1 (bert hidden size \rightarrow 512) plus BatchNorm1d(512) plus GELU plus Dropout(0.5)

Layer 2 (512 \rightarrow 256) plus BatchNorm1d(256) plus SiLU plus Dropout(0.3)

Layer 3 (256 \rightarrow n_classes) n_classes in our case is 2

Experiment & Results

60k samples - encoder trainable - 10 epochs (patience 3)

Metric	60k - Fine tuning
Train Accuracy	98.5728%
Validation Accuracy	93.7292%
Test Accuracy	93.98%
Time Spent	14minutes

Experiment & Results

Future Work

1. To improve performance and robustness, future work will involve training and testing the model on various large-scale datasets.

2. To make the model lightweight and suitable for deployment on resource-constrained devices, I aim to experiment with distilled versions of BERT.

Sentiment Classification with RoBERTa

RoBERTa

Why RoBERTa (Meta AI, 2019)

- 1. Drops NSP (Next Sentence Prediction) objective.
- 2. Dynamic masking + larger mini batches and higher Learning Rate.
- 3. Pretrained on 160GB of text (10x BERT data).
- 4. Byte-level BPE tokenizer.

Sources: Meta Al blog, Hugging Face

Data Preparation and Sampling

- Raw corpus loading: amazon_review_full_csv (3M reviews).
- Label mapping: 1 2 + -> 0 (negative) and 4-5 + -> 1 (positive).
- Stratified sampling:
 - o Pilot run: 30K
 - o Main runs: 200K
 - Maintains class ratio
- Split: Train 50% / Val 20% / Internal Test 30%.

Text Cleaning and Tokenization

- Cleaning: drop NaN, merge title+text, replace '\n' with space.
- Sequence length probe: tokenize a random 10k reviews
 -> 95th percentile ≈ 200 tokens.
- Max length = 205: trims only the 5% longest reviews while reducing padding for the rest.
- Tokenizer: RoBERTa byte-level BPE.
- Caching: save inputs_ids, attention_mask, label to NPZ
 tokenize once.

Token length stats:

Mean: 98.8

95th percentile: 203

Max: 313

Data Pipeline and Dynamic Padding

- NPZ -> Python generator -> tf.Data.Dataset.from_generator
- Shuffle (buffer_size = train_size): shuffle of the training split at each epoch.
- Repeat (dataset.repeat()): let's the dataset loop so model.fit can stream multiple epochs.
- padded_batch:
 - Pads each bach to its longest sequence (dynamic).
 - Uses <pad> ID for input_ids, O for the attention mask.
- Why dynamic padding?
 - Less GPU vs global pad
 - Smaller tensors -> faster throughput
- Prefatch: tf.data.AUTOTUNE -> runtime chooses the buffer size to keep GPU busy without wasting RAM.

Model and Hyperparameters

- Base model: facebook/roberta-base
 - o parameters = 125M
 - o hidden layers = 12
 - hidden encoder size = 768
 - vocabulary size = 50265
 - feed-forward size = 3072
 - activation = GELU
- Custom Classification Head: Dense 768 -> 256 -> Dropout (0.3) -> 64 -> 1
- Loss / Optimizer: BinaryCrossentropy / AdamW lr 2e-5
- Batch size: 32
- Early Stopping: patience=2 (fine-tune), patience=5 (frozen) with restore_best_weight=True

Experiment flow

1. Experiment A:

30k samples - encoder trainable - 3 epochs (patience 2)

2. Experiment B:

200k samples - encoder trainable - 3 epochs (patience 2)

3. Experiment C:

200k samples - encoder frozen - 5 epochs (patience 2)

4. Experiment D:

200k samples - encoder frozen - 20 epochs (patience 5)

Results: Experiments A and B

Metric	A - 30k (15k TR) - fine tune	B - 200k (100k TR) - fine tune
Train acc	90.3%	94%
Val acc	94.1%	95.5%
Internal Test acc	94.5%	95.7%
Training time	7.5 min	41 min

Both trained for 3 epochs, restored weights at epoch 1 (based on val loss).

Validation accuracies are reported at the epoch where the validation loss reached its minimum (i.e., restore_best_weights=True).

- Runned on GPU NVIDIA A100 -

Results: Experiments C and D

Metric	C - 200k (100k TR) - frozen - 5 epochs	D - 200k (100k TR) - frozen - 20 epochs	
Train acc	78 %	83.3 %	
Val acc	83.2 %	89 %	
Internal Test acc	86.3%	89.4 %	
Total time	35 min	135 min	

Validation accuracies are reported at the epoch where the validation loss reached its minimum (i.e., restore_best_weights=True).

- Runned on GPU NVIDIA A100 -

Comparative Summary

Ехр	Tot. Samples	Encoder	Epochs	Val %	Int. Test %	Time (min)
Α	30k	Trainable	3	94.1%	94.5%	7.5
В	200k	Trainable	3	95.5%	95.7%	41
С	200k	Frozen	5	83.2%	86.3%	35
D	200k	Frozen	20	89%	89.4%	135

Validation accuracies are reported at the epoch where the validation loss reached its minimum (i.e., restore_best_weights=True).

⁻ Runned on GPU NVIDIA A100 -

Framework and Libraries

Main frameworks and libraries used to develop RoBERTa-based experiments:

- Python 3.11
- TensorFlow 2.18 / Keras API
- Hugging Face Transformers 4.51.3
- Pandas 2.2.2
- Numpy 2.0.2
- Scikit-learn 1.6.1

RoBERTa: Future works

- Scale training set to a larger sample from the raw dataset (e.g >= 400k)
- Experiment with **DistilRoBERTa** for a faster and lightweight baseline

High Level Comparison of All Approaches

Static + ML:

- ~ 80% accuracy
- Training time: 2-14 min

- Simple and easy to run \checkmark
- Ran on Colab CPU

Static + RNNs:

- Trained with more data
- ~ 93.5% accuracy **√**

~ 0.5 to 4.5 min training \checkmark

Ran on Colab GPU

BERT (Fine-tuned):

~ 94% accuracy √

Ran on Colab A100 GPU (1)

RoBERTa (Fine-tuned) A / B:

~ 94.5% / 95.7% accuracy 👚

- Training time:
 - A. 7.5 min (15k TR)

B. 41 min (100k TR)

Ran on Colab A100 GPU 🔼

Thanks for the attention

19/05/2025