Computer Networks The Network Layer – Data Plane

Prof. Navrati Saxena San Jose State University

Network layer: our goals

- •understand principles behind network layer services, focusing on data plane:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - addressing
 - generalized forwarding
 - Internet architecture

- instantiation, implementation in the Internet
 - IP protocol
 - NAT

Network layer: "data plane" roadmap

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

Generalized Forwarding, SDN

Network-layer services and protocols

- transport segment from sending to receiving host
 - sender: encapsulates segments into datagrams, passes to link layer
 - receiver: delivers segments to transport layer protocol
- network layer protocols in every Internet device: hosts, routers
- routers:
 - examines header fields in all IP datagrams passing through it
 - moves datagrams from input ports to output ports to transfer datagrams along end-end path

Two key network-layer functions

network-layer functions:

- forwarding: move packets from a router's input link to appropriate router output link
- routing: determine route taken by packets from source to destination
 - routing algorithms

analogy: taking a trip

- *forwarding:* process of getting through single interchange
- routing: process of planning trip from source to destination

Network layer: data plane, control plane

Data plane:

- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port

Control plane

- network-wide logic
- determines how datagram is routed among routers along endend path from source host to destination host
- two control-plane approaches:
 - traditional routing algorithms: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Per-router control plane

Individual routing algorithm components in each and every router interact in the control plane

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for *individual* datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a *flow* of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in interpacket spacing

Network-layer service model

Network Architecture		Service	Quality of Service (QoS) Guarantees ?				
		Model	Bandwidth	Loss	Order	Timing	
-	Internet	best effort	none	no	no	no	

Internet "best effort" service model

No guarantees on:

- i. successful datagram delivery to destination
- ii. timing or order of delivery
- iii. bandwidth available to end-end flow

Network-layer service model

Network Architecture		Service	Quality of Service (QoS) Guarantees?				
		Model	Bandwidth	Loss	Order	Timing	
	Internet	best effort	none	no	no	no	

Reflections on best-effort service:

- simplicity of mechanism has allowed Internet to be widely deployed adopted
- sufficient provisioning of bandwidth allows performance of real-time applications (e.g., interactive voice, video) to be "good enough" for "most of the time"
- replicated, application-layer distributed services (datacenters, content distribution networks) connecting close to clients' networks, allow services to be provided from multiple locations
- congestion control of "elastic" services helps

It's hard to argue with success of best-effort service model

Network layer: "data plane" roadmap

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- Generalized Forwarding, SDN
 - Match+action
 - OpenFlow: match+action in action
- Middleboxes

Router architecture overview

high-level view of generic router architecture:

Input port functions

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- input port queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port functions

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- destination-based forwarding: forward based only on destination IP address (traditional)
- generalized forwarding: forward based on any set of header field values

Destination-based forwarding

		forwa	rding table –			
Destination	Destination Address Range					
11001000 through	00010111	000 <mark>10000</mark>	00000000		Λ	
11001000 through	00010111	000 <mark>10000</mark>	00000100		3	
	00010111	000 <mark>10000</mark>	00000111		J	
11001000	00010111	000 <mark>11000</mark>	11111111			
11001000 through	00010111	000 <mark>11001</mark>	0000000		2	
11001000	00010111	000 <mark>11111</mark>	11111111			
otherwise					3	

Q: but what happens if ranges don't divide up so nicely?

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination A	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
otherwise				3

examples:

which interface?	10100001	00010110	00010111	11001000
which interface?	10101010	00011000	00010111	11001000

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination .	Link interface			
11001000	00010111	00010***	*****	0
11001000	000.0111	00011000	*****	1
11001000	match! 1	00011***	*****	2
otherwise				3

examples

11001000 00010111 00010 100 10100001 which interface?
11001000 00010111 00011000 10101010 which interface?

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination A	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
otherwise				3
	matchl			

examples:

11001000	match!	00010110	10100001	which interface?
11001000	00010111	00011000	10101010	which interface?

longest prefix match

11001000

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination A	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	0000111	00011***	*****	2
otherwise	match!			3
11001000	_	00010110	1010001	which interface?

00011000

which interface?

examples

- we'll see why longest prefix matching is used shortly, when we study addressing
- longest prefix matching: often performed using ternary content addressable memories (TCAMs)
 - content addressable: present address to TCAM: retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: ~1M routing table entries in TCAM

Switching fabrics

- transfer packet from input link to appropriate output link
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable

Switching fabrics

- transfer packet from input link to appropriate output link
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three major types of switching fabrics:

Switching via memory

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access routers

Switching via interconnection network

- Crossbar, Clos networks, other interconnection nets initially developed to connect processors in multiprocessor
- multistage switch: nxn switch from multiple stages of smaller switches
- exploiting parallelism:
 - fragment datagram into fixed length cells on entry
 - switch cells through the fabric, reassemble datagram at exit

Switching via interconnection network

- scaling, using multiple switching "planes" in parallel:
 - speedup, scaleup via parallelism
- Cisco CRS router:
 - basic unit: 8 switching planes
 - each plane: 3-stage interconnection network
 - up to 100's Tbps switching capacity

Input port queuing

- If switch fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention: only one red datagram can be transferred. lower red packet is *blocked*

one packet time later: green packet experiences HOL blocking

Output port queuing

Buffering required when datagrams arrive from fabric faster than link transmission rate. Drop policy: which datagrams to drop if no free buffers?

Datagrams can be lost due to congestion, lack of buffers

 Scheduling discipline chooses among queued datagrams for transmission

Priority scheduling – who gets best performance, network neutrality

Output port queuing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gbps link: 2.5 Gbit buffer
- more recent recommendation: with N flows, buffering equal to

$$\frac{\mathsf{RTT} \cdot \mathsf{C}}{\sqrt{\mathsf{N}}}$$

- but too much buffering can increase delays (particularly in home routers)
 - long RTTs: poor performance for realtime apps, sluggish TCP response
 - recall delay-based congestion control: "keep bottleneck link just full enough (busy) but no fuller"

Buffer Management

Abstraction: queue

buffer management:

- drop: which packet to add, drop when buffers are full
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
- marking: which packets to mark to signal congestion (ECN, RED)

Packet Scheduling: FCFS

packet scheduling: deciding which packet to send next on link

- first come, first served
- priority
- round robin
- weighted fair queueing

Abstraction: queue

FCFS: packets transmitted in order of arrival to output port

- also known as: First-in-firstout (FIFO)
- real world examples?

Scheduling policies: priority

Priority scheduling:

- arriving traffic classified, queued by class
 - any header fields can be used for classification
- send packet from highest priority queue that has buffered packets
 - FCFS within priority class

Scheduling policies: round robin

Round Robin (RR) scheduling:

- arriving traffic classified, queued by class
 - any header fields can be used for classification
- server cyclically, repeatedly scans class queues, sending one complete packet from each class (if available) in turn

Network layer: "data plane" roadmap

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- Generalized Forwarding, SDN
 - match+action
 - OpenFlow: match+action in action

Network Layer: Internet

host, router network layer functions:

IP Datagram format

IP protocol version number header length(bytes)

"type" of service:

- diffserv (0:5)
- ECN (6:7)

TTL: remaining max hops (decremented at each router)

upper layer protocol (e.g., TCP or UDP)

overhead

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead for TCP+IP

IP addressing: introduction

- IP address: 32-bit identifier associated with each host or router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

dotted-decimal IP address notation:

Subnets

■ What's a subnet?

- device interfaces that can physically reach each other without passing through an intervening router
- IP addresses have structure:
 - subnet part: devices in same subnet have common high order bits
 - host part: remaining low order bits

network consisting of 3 subnets

Subnets

Recipe for defining subnets:

- detach each interface from its host or router, creating "islands" of isolated networks
- each isolated network is called a *subnet*

subnet 223.1.1.0/24

subnet mask: /24

(high-order 24 bits: subnet part of IP address)

Subnets

- where are the subnets?
- what are the /24 subnet addresses?

Practice – Do it yourself!

IP addresses: how to get one?

That's actually two questions:

- 1. Q: How does a *host* get IP address within its network (host part of address)?
- 2. Q: How does a *network* get IP address for itself (network part of address)

How does host get IP address?

- hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

goal: host dynamically obtains IP address from network server when it "joins" network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/on)
- support for mobile users who join/leave network

DHCP client-server scenario

IP addresses: how to get one?

Q: how does network get subnet part of IP address?

A: gets allocated portion of its provider ISP's address space

ISP's block <u>11001000 00010111 0001</u>0000 00000000 200.23.16.0/20

ISP can then allocate out its address space in 8 blocks:

Network layer: "data plane" roadmap

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- Generalized Forwarding, SDN
 - match+action
 - OpenFlow: match+action in action
- Middleboxes

NAT: network address translation

NAT: all devices in local network share just one IPv4 address as far as outside world is concerned

all datagrams leaving local network have same source NAT IP address: 138.76.29.7, but different source port numbers

datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

NAT: network address translation

- all devices in local network have 32-bit addresses in a "private" IP address space that can only be used in local network
- advantages:
 - just one IP address needed from provider ISP for all devices
 - can change addresses of host in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - security: devices inside local net not directly addressable, visible by outside world

NAT: network address translation

IPv6: motivation

initial motivation: 32-bit IPv4 address space would be completely allocated

IPv6 datagram format

flow label: identify datagrams in same "flow." (concept of "flow" not well defined).

What's missing (compared with IPv4):

- no checksum (to speed processing at routers)
- no fragmentation/reassembly
- no options (available as upper-layer, next-header protocol at router)

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers ("packet within a packet")
 - tunneling used extensively in other contexts (4G/5G)

Chapter 4 Network Layer: Data Plane

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Thank you