Chapter 34 Équations différentielles linéaires scalaires du premier ordre

Exercice 34.1 (*)

Déterminer les solutions réelles des équations différentielles suivantes sur l'intervalle I indiqué.

1.
$$y'(t) - \frac{1}{1+t^2}y(t) = 0$$
, sur $I = \mathbb{R}$.

2.
$$(t^2 - 1)y'(t) + ty(t) = 0$$
, sur $I =]-1, 1[$.

3.
$$\cos(t)y'(t) - \sin(t)y(t) = 0$$
, sur $I = \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.

Exercice 34.2 (*)

Soit l'équation différentielle

$$y'(x) + \frac{\sin x}{2 - \cos x}y(x) = 2\sin x. \tag{E}$$

- **1.** Déterminer une primitive de $x \mapsto \frac{\sin x}{2 \cos x}$ sur \mathbb{R} .
- **2.** Résoudre sur \mathbb{R} l'équation sans second membre (H) associée à (E).
- **3.** Chercher une solution particulière de (E) sous la forme $x \mapsto a \cos(x) + b$ avec $(a, b) \in \mathbb{R}^2$. Résoudre (E) sur \mathbb{R} .
- **4.** Trouver la fonction h définie sur \mathbb{R} , solution de (E) et qui vérifie h(0) = 1.

Exercice 34.3 (*)

Déterminer les solutions réelles de l'équation différentielle

$$y'(t) + \frac{3}{2t}y(t) = \frac{1}{2\sqrt{t}}, \quad t \in]0, +\infty[.$$
 (E)

Exercice 34.4 (*)

Résoudre sur $I =]0, +\infty[$ l'équation différentielle suivante, avec condition initiale

$$xy' - 2y = x^2 \ln x$$
 et $y(e) = 0$. (1)

Exercice 34.5 (***)

Résoudre sur $I =]1, +\infty[$ l'équation

$$y'(x) + \frac{1}{x \ln(x)} y(x) = \frac{e^x}{\ln(x)}.$$
 (E)

Exercice 34.11

Déterminer les solutions réelles des équations différentielles suivantes.

1.
$$ty'(t) - 2y(t) = t^3 e^t \text{ sur } [0, +\infty[$$
.

2.
$$ty'(t) - y(t) = \ln t$$
.

3.
$$2y'(t) + ty(t) = t^3$$
.

Exercice 34.12

On considère l'équation différentielle d'inconnue $y : \mathbb{R} \to \mathbb{R}$,

$$(1+t^2)y'(t) + ty(t) = \sqrt{1+t^2}. (E)$$

- **1.** Déterminer la solution $f_m: \mathbb{R} \to \mathbb{R}$ de cette équation (E) telle que $f_m(1) = \sqrt{2}m$.
- 2. Écrire une équation de la tangente T_m au point A de coordonnées $(1, \sqrt{2}m)$, à Γ_m la courbe représentative de f_m .
- **3.** Prouver que lorsque m parcourt \mathbb{R} , toutes ces tangentes T_m sont concourantes en un point dont on précisera les coordonnées.

Exercice 34.13

On cherche à résoudre l'équation différentielle

$$t^2 y'(t) - y(t) = 0. (E)$$

- **1.** On note I l'un des intervalles $]-\infty,0[$ ou $]0,+\infty[$. Résoudre E sur I.
- **2.** Quelles sont les solutions sur \mathbb{R} ?

Exercice 34.14

On considère l'équation différentielle

$$y'(t) - 2y(t) = 2e^{-2|t|}. (E)$$

- **1.** Résoudre E sur $]-\infty, 0[$.
- **2.** Résoudre E sur $]0, +\infty[$.
- **3.** Déterminer les solutions de E sur \mathbb{R} . Sont-elles de classe \mathscr{C}^1 ? Sont-elles deux fois dérivables?
- **4.** Trouver la solution particulière de E qui est bornée sur \mathbb{R} .

Exercice 34.16

Résoudre l'équation différentielle

$$\sqrt{|x|}y' - y = x \tag{E}$$

dans chacun des intervalles $I_1 =]0, +\infty[$ et $I_2 =]-\infty, 0[$.

Montrer qu'il existe une et une seule fonction $u: \mathbb{R} \to \mathbb{R}$ qui est solution dans \mathbb{R} entier de l'équation.

Exercice 34.21 Recherche de solutions maximales

Résoudre, chercher les solutions maximales (c'est-à-dire celles qu'on ne peut pas prolonger en d'autres solutions) et tracer les courbes intégrales des équations différentielles suivantes

- 1. $t^2v'(t) + tv(t) = 1$;
- 2. $\sin(t)y'(t) 2y(t)\cos(t) = 0$;
- 3. $|t|y'(t) + y(t) = t^2$;
- **4.** $y'(t)\sin(t)\cos(t) y(t) + 1 = 0$;
- 5. $t(t^2 + 1)y'(t) + 2y(t) = t^2$.

Exercice 34.23

On cherche à résoudre sur I =]0, 1[l'équation différentielle

$$te^{y(t)}y'(t) - 2e^{y(t)} = -t^2.$$
 (E)

1. Montrer que si y est solution de (E), alors $w: t \mapsto e^{y(t)}$ est solution de l'équation différentielle

$$tw'(t) - 2w(t) = -t^2.$$
 (E')

- 2. Résoudre (E') sur]0, 1[.
- **3.** Résoudre (E) sur]0, 1[.

Exercice 34.24

Soit a > 0. On considère l'équation différentielle du premier ordre non linéaire

$$y' = a|y|. (E)$$

On considère une solution f de (E) sur \mathbb{R} .

- **1.** Quel est le sens de variation de f?
- **2.** On suppose qu'il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) > 0$. Montrer que f est à valeurs > 0.
- **3.** On suppose qu'il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) < 0$. Montrer par un raisonnement analogue que f est à valeurs < 0.
- **4.** Résoudre (E) sur \mathbb{R} .