Toegepaste Informatica

2022 - 2023

Logica en Gates

Logica

- Sinds onstaan mensheid
- Aristoteles (384 322 v.Chr)
 probeerde "waarheid" te
 verklaren met logica.
 - Syllogisme:

"Alle mensen zijn stervelingen Ik ben een mens

Dus, ik ben starveling"

Geschiedenis

- Zoektocht van 2000 jaar:
 - Logica omzetten naar wiskunde
 - Voowaarden:
 - Alleen basissymbolen
 - Allen basis operatoren

George Boole

- 1815-1864
- Hoogleraar wiskunde
- 1854:
 - "An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities"
 - Grondlegging Booleans algebra
 - Basis van moderne computerlogica

- Veel overeenkomsten met gewone algebra:
 - Basisoperatoren: +, -, x
 - Operanden onder de vorm van letters
 - Zelfde regels:
 - Optellen en vermenigvuldigen zijn commutatief

$$A + B = B + A$$

 $A * B = B * A$

• Optellen en vermenigvuldigen zijn associatief

$$A + (B + C) = (A + B) + C$$

 $A * (B + C) = (A * B) * C$

Vermenigvuldigen is distributief over optellen

$$A * (B + C) = (A * B) + (A * C)$$

- Geen getallen, maar "classes"
 - Verzameling van elementen of eigenschappen
- Vb Katten:
 - Geslacht: M of V
 - Kleur:
 - G (gekleurd)
 - Z (zwart)
 - W (wit)
 - A (alle andere kleuren)
 - Gecastreerd
 - C (wel gecastreerd)
 - N (niet gecastreerd)

- Operatoren
 - +,*,-
 - Volledig andere betekenis
- +
 - Verzameling van twee klassen
 - Vb: Z + W = de klasse van alle zwarte OF witte katten
- *
 - Doorsnede van twee klassen
 - Vb: V * G = de klasse van alle vrouwelijk gekleurde katten

- Symbolen 1 en 0
 - 1 = het universum
 - Vb 1 = de klassen van alle katten: M + V = 1
 - 0 = een lege klasse
- —
 - Uitsluiting uit het universum
 - Vb 1 M = de klasse van alle katten uitgezonderd mannelijke katten

- Klaar voor Booleaanse algebra
- Criteria voldaan?
- Vb
 - Op zoek naar kat die:
 - Wit of gekleurd en gecastreerd
 - Vrouwelijk, gecastreerd en eender welke kleur buiten wit
 - Zwarte kat
 - Booleaanse formule?

$$(M * G * (W + G)) + (V * G * (1 - W)) + Z$$

- Formule omvormen naar verstaanbare taal:
 - + vervangen door OR
 - vervangen door AND
 - 1 vervangen door NOT
- Formule?
 - (M AND G AND (W OR G)) OR (V AND G AND (NOT W)) OR Z

- Booleaanse test:
 - Testen of criteria voldoen
 - Letters vervangen door 0 of 1
 - 1 = criteria voldaan
 - 0 = criteria niet voldoen
 - Vb:
 - Niet-gecastreerde, gekleurde kater => Zoeken we dit?
 - Formule?

$$(1*0*(0+1))+(0*0*(1-0))+0$$

- Formule niet wiskundig oplossen!
- Gebruik maken van waarheidstabellen:

AND	0	1
0	0	0
1	0	1

OR	0	1
0	0	1
1	1	1

- Volgorde van bewerking steeds respecteren:
 - 1. Haakjes
 - 2. NOT
 - 3. AND
 - 4. OR

• Formule oplossen:

$$x = (1 * 0 * (0 + 1) + (0 * 0 * (1 - 0)) + 0$$

$$= (1 * 0 * 1) + (0 * 0 * 1) + 0$$

$$= 0 + 0 + 0$$

$$= 0$$

- Nadelen gebruik van formules:
 - Snel complex en verwarrend
 - Meer klassen en voorwaarden
- Oplossing?
 - Visueel maken
 - Elektrische schakelingen

AND (Seriële schakeling)

• OR (Parallelle schakeling)

• Formule visueel maken met schakelingen?

- Link computersystemen?
 - Basis van computersysteem
 - CPU opgebouwd uit logische gates (transistoren):
 - 2 of meerdere inputs
 - 1 output

• 3 gates gekend: AND, OR, NOT

NOT Gate

- AND, OR en NOT zijn niet enigste gates
- NAND en XOR ook veel gebruikt

NAND	0	1
0	1	1
1	1	0

XOR	0	1
0	0	1
1	1	0

- Gates beperken zich niet tot 2 ingangen.
- Meerdere ingangen mogelijk:

- Ook waarheidstabellen kunnen meer dan 2 variabelen hebben.
- Opgave:
 - Probeer zelf de waarheidstabel op te stellen van AND en OR met eerst 3 inputs en daarna 4 inputs

- Waarheidstabellen
 - Eenvoudigste voorstelling van een booleaanse functie
 - Overzicht van alle mogelijke waarden
 - Uitkomst van booleaanse functie bij gebruik van waarden

Х	У	Z	S
0	0	0	F_0
0	0	1	F_1
0	1	0	F ₂
0	1	1	F ₃
1	0	0	F ₄
1	0	1	F ₅
1	1	0	F ₆
1	1	1	F ₇

Waarheidstabel

• Eerste regel leest:

•
$$s = F_0$$
 als $x = 0$, $y = 0$, $z = 0$

 Alle volgende regels rij per rij overlopen

Х	У	Z	S
0	0	0	F_0
0	0	1	F_1
0	1	0	F ₂
0	1	1	F ₃
1	0	0	F ₄
1	0	1	F ₅
1	1	0	F ₆
1	1	1	F ₇

Waarheidstabel

 Wat zijn de resultaten in s gebruikmakende van volgende functie:

•
$$s = x * (y + \overline{z})$$

Х	У	Z	S
0	0	0	F_0
0	0	1	F_1
0	1	0	F ₂
0	1	1	F_3
1	0	0	F ₄
1	0	1	F ₅
1	1	0	F ₆
1	1	1	F ₇

Opgave

 Zet volgende formule om naar een schakeling met gates. (Tip, gebruik een programma zoals draw.io)

•
$$A + B + (C * A) + (B * \overline{C}) + \overline{D}$$

Opgaven

 Gegeven volgende waarheidstabel en functies:

•
$$x + (\overline{y} * z)$$

•
$$(y * x) + z$$

•
$$\overline{x} + \overline{y} + \overline{z}$$

• Vul de waarheidstabel aan

X	у	Z	S
0	0	0	F_0
0	0	1	F_1
0	1	0	F ₂
0	1	1	F_3
1	0	0	F_4
1	0	1	F ₅
1	1	0	F_6
1	1	1	F ₇