(1) Numéro de publication:

0 346 208 A1

12

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 89401548.6

22 Date de dépôt: 05.06.89

(5) Int. Cl.4: C 07 D 215/54

C 07 D 215/42,

C 07 D 215/60,

C 07 D 471/04,

C 07 D 401/06, A 61 K 31/47,

A 61 K 31/44

//(C07D471/04,221:00,221:00)

30 Priorité: 06.06.88 FR 8807498 15.06.88 FR 8808025

43 Date de publication de la demande: 13.12.89 Bulletin 89/50

(A) Etats contractants désignés: AT BE CH DE ES FR GB GR IT LI LU NL SE

7) Demandeur: SANOFI 40, Avenue George V F-75008 Paris (FR) inventeur: Mendes, Etienne 2, place Jeanne d'Arc F-31000 Toulouse (FR)

> Vernieres, Jean-Claude rue Sabatié Garat F-31600 Muret (FR)

Keane, Peter Eugène 8 rue Marcel Doret Roquettes F-31120 Portet-sur-Garonne (FR)

Bachy, André 2, Impasse Professeur Astre F-31100 Toulouse (FR)

Mandataire: Varady, Peter et al
Cabinet Lavoix 2, Place d'Estienne d'Orves
F-75441 Paris Cedex 09 (FR)

Amino-4 quinoléines et naphtyridines, leur procédé de préparation et leur application comme médicaments.

Ι

(57) L'invention a pour objet des composés de formule I

$$\begin{array}{c}
R_{3} \\
R_{4}-N-CH-(CH_{2})_{n}-CONR_{1}R_{2}
\end{array}$$

$$\begin{array}{c}
R_{5} \\
R_{6} \\
C
\end{array}$$

$$\begin{array}{c}
COZ \\
R_{10}
\end{array}$$

$$\begin{array}{c}
COZ \\
R_{10}
\end{array}$$

dans laquelle R₁ et R₂ représentent l'atome d'hydrogène, un groupe alkyle ou alkényle en C₁ à C₆, un groupe phényle ou benzyle ou R₁ et R₂ forment avec l'atome d'azote auquel ils sont rattachés un hétérocycle saturé en C₄ à C₆, R₃ représente l'hydrogène un groupe alkyle en C₁ à C₆, phényle ou phénylalkyle en C₇ à C₉, R₄ représente l'atome d'hydrogène ou un groupe alkyle en C₁ à C₄, R₅ et R₆, représentent un atome d'hydrogène ou d'halogène, un groupe alkyle ou alkoxy en C₁ à C₃, un groupe nitro ou trifluorométhyle; Z représente un groupe OH, alkoxy en C₁ à C₆, alkyle en C₁ à C₄, benzyle, aryle en C₄ à C₆ avec ou sans hétéroatome, ou NR₈R₉, R₈ et R₉ étant

l'hydrogène, un groupe alkyle en C_1 à C_4 , phényle ou benzyle; R_{10} représente l'atome d'hydrogène, un groupe alkyle en C_1 à C_4 ou groupe phényle ; n représente 0,1 ou 2, p représente 0 ou 1 et l'un des symboles A,B,C,D représente N et les autres CH ou A,B,C,D, représentent chacun CH, ainsi que leurs sels d'addition.

Médicaments.

EP 0 346 208 A1

Description

5

10

15

20

25

30

35

40

45

50

Amino-4 quinoléines et naphtyridenes, leur procédé de préparation et leur application comme médicaments

La présente invention concerne de nouveaux dérivés d'amino-4 quinoléines et naphtyridines, leur procédé de préparation et leur application en thérapeutique.

On connaît déjà des dérivés de naphtyridines et surtout de quinoléines utiles en thérapeutique pour des activités pharmacologiques très diverses, telles que antibactériennes, antihypertensives, anxiolytiques, anti-inflammatoires, et analgésiques, activités dépendant essentiellement des groupes substituant les noyaux aromatiques. Parmi ceux-ci, quelques dérivés ont été signalés comme se fixant sur les récepteurs de benzodiazépines, on peut citer notamment :

-les amino-4 carbamoyl-3 quinoléines, décrites dans EP-A-0 245 054, de formule A :

dans laquelle R₁, R₂, R₃, R₄ sont H ou des groupes hydrocarbonés : alkyle, aryle, aralkyle; -les quinoléines, décrites dans FR-A-2 582 514, de formule B

dans laquelle R₁, R₂, R₃, R₄ représentent H ou des groupes alkyles ou aryles, Z représente un groupe aryle et X représente CH-R₄, N-R₄, SO, SO₂, O ou S et V et W représentent H, halogène, alkyle, alkoxy, NO₂ ou CF₃; - les naphtyridines, décrites dans EP-A-0 234 971, de formule C

dans laquelle R représente un groupe cycloalkyle, hétéroaryle, phényle substituté ou non, A représente N, S, SO, ou O et R₁, R₂ représentent notamment H ou un groupe alkyle; - les quinoléines, décrites dans FR-A-2 581 382, de formule D

dans laquelle R_1 , R_2 , R_3 représentent H, un groupe alkyle ou aryle, et R_4 représente OH, un groupe alkoxy ou alkyle.

On a maintenant trouvé de nouveaux composés qui ne se fixent pas, à des doses pharmacologiquement significatives, sur les récepteurs centraux des benzodiazépines comme ces composés, mais se fixent uniquement sur Les récepteurs de type périphérique dont on sait que l'occupation entraîne des activités pharmacologiques différentes de celles résultant de l'activation des récepteurs centraux.

L'invention concerne les composés répondant à la formule I

60

$$\begin{array}{c}
R_{4}-N-CH-(CH_{2})_{n}-CONR_{1}R_{2} \\
R_{5} \\
R_{6} \\
C \\
D \\
R_{10}
\end{array}$$
10

dans laquelle

 R_1 et R_2 , identiques ou différents, représentent chacun l'atome d'hydrogène, un groupe alkyle en C_1 à C_6 ou alkényle en C_2 à C_6 , un groupe phényle ou benzyle, ou R_1 et R_2 forment avec l'atome d'azote auquel ils sont attachés un hétérocycle saturé en C_4 à C_8 , pouvant comporter un second hétéroatome, tels que pipéridine, pyrrolidine, morpholine, pipérazine,

15

20

25

30

35

40

R₃ représente l'atome d'hydrogène, un groupe alkyle en C₁ à C₆, phénylalkyle en C₇ à C₉, ou phényle,

R4 représente l'atome d'hydrogène ou un groupe alkyle en C1 à C4,

 R_5 et R_6 , identiques ou différents représentent chacun un atome d'hydrogène ou d'halogène, un groupe alkyle ou alkoxy en C_1 à C_3 , un groupe nitro, trifluorométhyle, ou ensemble forment un groupe méthylènedioxy, Z représente OR_7 et R_7 représente l'atome d'hydrogène ou un groupe alkyle en C_1 à C_6 ; NR_8R_9 et R_8 et R_9 identiques ou différentes reorésentent chacun l'atome d'hydrogène, un groupe alkyle en C_1 à C_4 , un groupe phényle ou benzyle; un groupe alkyle en C_1 à C_4 ; un groupe benzyle ou un groupe aryle en C_4 à C_6 avec ou sans hétéroatome tel que phényle, pyridyle, pyrrolyle, furyle, thiényle, ou imidazolyle,

R₁₀ représente l'atome d'hydrogène, un groupe alkyle en C₁ à C₄ ou un groupe phényle ;

n représente 0, 1 ou 2; p représente 0 ou 1; et l'un des symboles A,B,C,D représente N et les autres CH ou A,B,C,D représentent chacun CH,

étant entendu que lorsque Z n'est pas un groupe aryle ou benzyle, R3 ne représente pas H ainsi que leurs sels d'addition avec les acides ou les bases pharmaceutiquement acceptables.

Parmi les acides, on peut citer les acides halogénhydriques, nitrique, sulfurique, phosphorique ou les acides carboxyliques tels que l'acide acétique, formique, succinique, tartrique, oxalique et aspartique ou les acides sulfoniques tels que l'acide méthanesulfonique ou benzénesulfonique; les sels avec les bases peuvent être des sels alcalins, alcalino-terreux ou des sels avec des amines telles que la lysine, la piperazine ou l'éthanolamine.

Les groupes alkyles peuvent être linéaires, ramifiés ou cycliques.

Les groupes phényles ou benzyles peuvent être substitués par les halogènes, les groupes alkoxy, alkyles ou thioalkyles en C₁ à C₃, les groupes nitro, trifluorométhyle ou hydroxyle.

Lorsqu'il existe un carbone assymétrique, les racémiques et les stéréoisomères sont objets de l'invention. Parmi les produits préférés objets de l'invention, on peut citer les esters de quinoléine ou de naphtyridine-1,5 de formule I dans laquelle R₁₀ est H, R₇ représente un groupe alkyle en C₁ à C₃ et plus particulièrement éthyle, R₃ représente un alkyle en C₁ à C₃ et plus particulièrement le groupe méthyle, n est 0 et R₄ représente H et mieux ceux où le symbole C est substitué par un atome différent de H, ainsi que les composés pour lesquels Z représente un groupe aromatique ou hétéroaromatique, n est 0 et R₄ représente H et plus particulièrement parmi ceux-ci, ceux dans lesquels R₁ représente un radical alkyle en C₁ à C₄ et R₂ représente un noyau phényle substitué ou non.

Un autre objet de l'invention est le procédé de préparation des composés de formule I qui consiste à faire réagir sur l'amine de formule II :

le dérivé de formule III

$$\begin{array}{c|c}
 & X \\
 & R_5 \\
\hline
 & R_6
\end{array}$$

$$\begin{array}{c|c}
 & X \\
\hline
 & COZ \\
\hline
 & R_{10}
\end{array}$$

$$\begin{array}{c}
 & 60 \\
\hline
 & 60
\end{array}$$

dans lesquelles R₁, R₂, R₃, R₄, R₅, R₆, R₁₀, Z, A, B, C, D, n et p ont les mêmes significations que dans la 65

formule I et X représente un halogène tel que CI ou Br ou un groupe sulfonate RSO₃ dans lequel R est un groupe alkyle ou benzyle.

La substitution de l'amine II peut être effectuée dans des conditions classiques, à une température comprise entre 80°C et 180°C, et de préférence pour fixer l'acide formé en présence d'une base organique ou minérale telle qu'une amine tertiaire ou un carbonate alcalin ; on opère en général dans un solvant organique, tel qu'un hydrocarbure comme le toluène, tel qu'un alcool comme l'éthanol ou l'isopropanol, tel qu'un éther comme le dioxanne, ou tel qu'un solvant aprotique polaire, comme le diméthylformamide ; la réaction peut aussi être effectuée à une pression supérieure à la pression atmosphérique, comprise entre 5 et 70 x 10⁵ Pa, dans une enceinte close; on peut aussi effectuer la réaction en milieu diphasique, en présence d'un catalyseur de transfert de phase.

Certains dérivés de formule II ont déjà été décrits, tel que l'amino-2 N-N-diéthylpropanamide dans J. Chem. Soc. p. 2972-2980 (1952). Les autres peuvent être préparés à partir de produits connus en appliquant des méthodes classiques et par example :

- à partir des dérivés d'aminoacides IV, dont la fonction amine est protégée sous forme de carbamate labile et la fonction acide est activée par un groupe succinimidoyle ou p-nitrophénylcarboxy comme décrit par G.W. Anderson dans J.A.C.S. 86 p. 1839-1842 (1964) :

dans laquelle Z_1 représente succinimidyl ou p-nitrophényl, R_3 , R_4 , et n ont les mêmes significations que dans la formule I et R représente un groupe alkyle en C_1 à C_4 , sur lesquels on fait réagir l'amine HN R_1 R_2 , pour donner le composé de formule V:

(dans laquelle R₁, R₂, R₃, R₄, et n ont la même signification que dans la formule I et R est un alkyle), avant d'éliminer le groupement carboxylique protégeant l'amine terminale par action d'un acide tel que les acides trifluoroacétique, sulfurique ou chlorhydrique;

- à partir d'amides de formule VI

5

10

15

25

35

45

50

65

(dans laquelle X représente Cl ou Br, et R₁, R₂, R₃ et n ont les mêmes significations qu'à la formule I) qui peuvent être préparés selon le procédé décrit dans Synthetic Organic Chemistry - chap. 19; R.B. Wagner et H.D. Zook (1953), publié par J. Wiley et Sons et pour n = O et R₃ = H par action de HNR₁R₂ sur CICH₂COCI, sur lesquels on fait réagir l'amine R₄-N H₂, à une température comprise entre 60° C et 130° C, en solution dans un alcool ou un éther, à pression atmosphérique ou entre 5 et 40 x 10⁵ Pa, éventuellement en présence d'une base minérale ou organique; le mode opératoire peut être celui décrit par J.B.M. Bettolo et J.F. Cavalla dans Gazz. Chim. Ital. p. 896-907 (1954)

- par l'intermédiaire d'un phtalimide de formule VII lorsque R₄ = H,

selon une méthode analogue à celle décrite par R.D. Haworth et coll. dans J. Chem. Soc. p. 2972-2980 (1952).

Certaines quinoléines de départ ou les dérivés hydroxylés en 4 correspondants (formule III :

A = B = C = D = CH; X = OH ou CI) sont des composés connus décrits notamment dans J. Med. Chem

22, 7 p. 816-823 (1979) ou dans FR-A-2 581 382, précédemment cité; et celles dans lesquelles R₁₀ est différent de H, peuvent être préparées par la méthode décrite par R.P. Staiger et E.B. Miller dans J. Org. Chem. 24, p. 1214 (1959).

Les naphtyridines de formule III, dans lesquelles X = OH et Z représente OR₇ peuvent être préparées par des méthodes classiques, précédemment décrites, par example, dans Heterocyclic compounds -vol. 7 (1961) : naphtyridines (Chap. 2) Ed. J. Wiley.

5

20

25

40

55

60

65

Les nouveaux composés de formule III dans lesquels X = OH et Z représente un groupe alkyle ou aryle peuvent être obtenus par cyclisation de composés de formule VIII :

dans laquelle R_5 , R_6 et A, B, C, D ont les mêmes significations que dans la formule I, et Z représente un groupe alkyle en C_1 à C_4 , ou aryle en C_4 à C_6 tel que phényle, furyle, thiényle, pyridyle, imidazolyle ou pyrolyle.

On peut effectuer cette cyclisation par chauffage du composé VIII, à une température comprise entre 180°C et 310°C, dans un solvant de point d'ébullition élevé, tel que le diphényle ou le diphényléther ou leur mélange.

La cyclisation peut aussi être réalisée par action de l'acide sulfurique et de l'anhydride acétique selon un procédé décrit par R.K. MAPARA, dans J. Indian Chem. Soc., 1954, 31, 951, ou par action d'un ester polyphosphorique (PPE) comme décrit par H. AGUI, dans J. Heterocyclic. Chem. 1975, 557.

Les composés de formule VIII peuvent être obtenus par réaction d'un mélange équimoléculaire d'orthoformiate d'éthyle, d'amine aromatique et de dérivé d'acétate d'éthyle selon le schéma réactionnel:

$$CH(OC_2H_5)_3 + B + CH_2 \longrightarrow VIII$$

$$CO_2C_2H_5 \longrightarrow VIII$$

$$CO_2 \times CO_2 \times CO_2 \times CO_2$$

$$CO_2 \times CO_2 \times CO_2$$

$$CO_2 \times CO$$

dans ces formules R5, R6, Z et A, B, C, D ont les mêmes significations que dans la formule VIII.

La réaction s'effectue en général à une tem-pérature de 80 à 160°C, de préférence dans un solvant, en éliminant l'éthanol au fur et à mesure de sa formation.

Les composés de formule VIII peuvent aussi être préparés à partir de l'amine aromatique du schéma ci-dessus, sur laquelle on fait réagir l'orthoformiate d'éthyle pour donner, de façon connue, une formamidine de formule :

$$R_{5} \stackrel{\text{A}}{\underset{\text{follow}}{}} N - C = N$$

$$N - C = N$$

dans laquelle R₅, R₆ et A, B, C, D ont la même signification que dans la formule I et qui donne le produit de formule VIII par réaction avec le dérivé d'acétate d'éthyle du schéma précédent en présence d'un excès d'orthoformiate d'éthyle.

Les composés de formule III dans lesquels X représente un halogène sont préparés, de façon classique par réaction des dérivés hydroxylés correspondants, avec SOCl₂, POCl₃ ou PCl₅ lorsque X = Cl ou avec PBr₃ ou POBr₃ lorsque X = Br, de préférence en excès, à une température comprise entre 60°C et 190°C, éventuellement dans un solvant tel que le dichloroéthane, le toluène ou le chlorobenzène.

Les composés de formule I qui sont des N-oxydes peuvent être préparés à partir des N-oxydes des composés de formule III dans laquelle X représente un halogène; ceux-ci résultent de l'action d'un péracide sur l'amine, selon un procédé classique par exemple par action de l'acide m-chloroperbenzoïque sur la quinoléine ou la naphtyridine en solution dans l'acide acétique.

Les composés de formule I dans lesquels Z = OH sont obtenus par action d'une base, par exemple d'un carbonate alcalin en milieu hydroalcoolique sur l'ester correspondant, suivie de la libération de l'acide de son sel.

Les composés de formule I dans lesquels $Z=NR_8R_9$ sont obtenus par action de l'amine HNR_8R_9 sur le composé de formule I dans lequel Z = OR7, et de préférence OC2H5, à une température comprise entre 60°C et 120°C sans solvant ou dans un solvant tel que le diméthylformamide. Ils peuvent être obtenus aussi à partir des composés de formule III dans laquelle X est un halogène et Z est Cl, que l'on fait réagir sur NH3 ou l'amine de formule HNR₈R₉ pour obtenir le composé de formule III dans lequel Z est HNR₈R₉, les composés de formule I étant ensuite préparés de façon classique; certains des chlorures d'acide de départ ont été décrits dans FR-A-2 581 382.

Les énantiomères des composés de formule I peuvent être préparés soit à partir des amines de formule II optiquement actives, notamment lorsque les amino-acides de formule

10

15

25

30

35

40

50

55

65

sont commerciaux, soit par recristallisation d'un sel de l'amine de formule I racémique avec un acide optiquement actif tel que les acides camphosulfoniques lévogyre ou dextrogyre, selon une technique connue.

Les sels d'addition des fonctions amines des composés de formule I sont préparés par action d'un acide minéral ou organique sur l'amine en solution et le sel est isolé soit par évaporation du solvant soit par addition d'un non solvant dans le milieu.

Les sels d'acide carboxylique sont préparés par action d'une base minérale telle que NaOH ou d'une base organique sur l'acide en solution.

. L'invention concerne aussi les médicaments comprenant au moins un composé de formule I ou l'un de ses sels pharmaceutiquement acceptables.

Ces composés ont, en effet, une affinité, in vitro et in vivo, pour les récepteurs des benzodiazépines de type périphérique sans présenter d'affinité spécifique pour les récepteurs centraux des benzodiazépines.

On sait que les ligands de ces récepteurs périphériques ont une action sur le système cardiovasculaire, comme vasodilatateurs périphériques qui augmentent le flux sanguin coronaire, qu'ils sont immunomodulateurs ou qu'ils peuvent modifier le comportement en étant anxiolytiques.

Les composés selon l'invention pourront être, selon les cas, utilisés chez l'homme pour la prévention et le traitement des maladies cardiovasculaires ou encore comme antiallergiques et dans la prévention et le traitement des états infectieux ou encore pour le traitement des états anxieux. Chez les animaux et notamment les bovins, les porcins, les ovins et les caprins, les composés selon l'invention seront utilisés pour la prévention et le traitement des états infectieux, notamment en renforçant leurs défenses immunitaires.

Les médicaments de l'invention seront administrés chez l'homme par exemple par voie orale, sous forme de comprimés, gélules ou granulés, ou par voie rectale sous forme de suppositoires ou par voie parentérale sous forme de soluté injectable, à raison de 1 mg à 400 mg par jour, en une ou plusieurs prises selon la structure du composé, l'âge du malade et la nature et la gravité de la maladie.

Ils pourront aussi être administrés aux animaux, incorporés à l'alimentation ou par injection, à des doses comprises entre 0,01 mg/jour et 100 mg/kg/jour.

Les composés de formule I, ou leurs sels, seront associés aux excipients usuels compatibles avec leur réactivité chimique, pour donner des formes pharmaceutiques à libération immédiate ou prolongée.

Les exemples suivants illustrent l'invention. Les analyses élémentaires des produits isolés répondent aux normes habituelles. Les produits sont caractérisés par leurs points de fusion instantanés éventuellement par leur spectre RMN (m signifie massif, d doublet, s singulet, t triplet et (x H) que la bande correspond à x protons) la référence interne est Si(CH₃)₄); les spectres infra rouge présentent les bandes caractéristiques des structures attendues. Sauf mention contraire, p = o dans les exemples.

1. Préparation des amines de formule II :

a) N,N-dipropyl (amino-2) propanamide (formule II : $R_1=R_2=C_3H_7,\,R_3=CH_3,\,R_4=H,\,n=1)$

58g de N-(terbutoxycarbonyl) alanine, préparéE à partir d'alanine racémique, 33g de N-hydroxysuccinimide et 59g de dicyclohexylcarbodiimide, en solution dans 1400 ml de dioxanne, sont maintenus sous agitation pendant 6 heures. On sépare alors le précipité et évapore le solvant sous pression réduite. Le résidue est lavé par une solution aqueuse de Na₂CO₃ à 5%.

Après séchage, on isole 81g de composé de formule IV : $(R_3 = CH_3, R_4 = H, R = C_2H_5, n = 1)$ qui fond à 143°C.

(A partir de L-alanine, on obtient dans les mêmes conditions un produit fondant à 168°C).

On dissout 80g de ce produit dans 700 ml de tétrahydrofuranne contenant 140 ml de dipropylamine et on laisse 48 heures sous agitation. On évapore alors le solvant sous pression réduite et on obtient après lavage à l'eau et séchage 80g de composé de formule V dans laquelle R₁ = R₂ = C₃ H₇, R₃ = CH₃, R₄ = H, $R = C_2H_5$, n = 1, qui fond à 92°C.

(Le produit préparé à partir du produit IV dérivé de L - alanine ne cristallise pas).

Ce composé est dissous dans 400ml de chloroforme; on y ajoute, à 5°C, 160ml d'acide trifluoracétique en solution dans 200ml de chloroforme et après 3 heures d'agitation, on évapore le solvant sous pression réduite. On verse de l'eau sur le résidu et neu tralise par addition de NaOH avant d'extraire le produit attendu dans le

dichlorométhane. On obtient ainsi 29g d'huile jaune. Spectre (H-RMN : 60 MHz, DMSOd6) δ (ppm) : 0,6 - 1,2 (m, 9H); 1,2 - 1,8 (m,4H); 2,2 -2,6 (s,2H échangeables); 3 - 3,4 (m,5H). (On isole de la même façon l'amine dérivée de la L-alanine ou son trifluoroacétate après évaporation du chloroforme).

b) N,N-dibutyl (amino-2) propanamide:

7 g du composé de formule IV, préparé en a) sont dissous dans 100 ml de tétrahydrofuranne contenant 30 ml de N,N-dibutylamine; après 30 heures sous agitation, le solvant est éliminé par distillation et le résidu est lavé à l'eau pour donner 7,5g de produit de formule V, dans laquelle $R_1=R_2=C_4H_9$, $R_3=CH_3$, $R_4=H$, $R=C_2$ H_5 et n=1, qui fond à 80° C.

Ce produit est dissous dans 100 ml de CHCl₃ contenant 28 ml de CF₃-COOH à 0°C; et traité comme son analoque.

c) N-méthyl N-(chloro-4)phényl (amino-2)propanamide :

On introduit lentement, à 5° C, 17,6ml de chlorure de chloro-2propionyle dans une solution, dans 50ml d'éther éthylique, de 24,2ml de N-méthyl (chloro-4)phénylamine et 30ml de triéthylamine; on laisse le mélange revenir à température ambiante, sous agitation; 5 heures après la fin de l'addition le précipité est séparé, le solvant est évaporé sous pression réduite et le résidu est dissous dans l'éther éthylique; la solution organique est lavée par une solution aqueuse de HCl (0,5 N) puis à l'eau avant élimination du solvant pour donner, avec 55% de rendement, le produit de formule VI, dans laquelle $R_1 = CH_3$ $R_2 = (Cl-4)$ C_6H_4 , $R_3 = CH_3$, n = o, X = Cl.

5g de ce composé sont maintenus à 100°C, pendant 3 heures, dans un autoclave de 100ml contenant 60 ml d'ammoniac liquide. Après 12 heures, au cours desquelles le milieu revient à température ambiante, on élimine l'ammoniac et on extrait l'amine cherchée dans l'éther éthylique.

On obtient ainsi 2,5 g d'huile.

¹H RMN (60 mHz, $CDCl_3$) δ : 1,1 - 1,2 (d,6H); 2 - 2,3 (m,2H échangeables); 3,2 (s,3H); 3,3 - 3,6 (m,1H); 6,9 - 7,5 (m,4H).

d) N,N-dipropyl (amino-2)-phényl-3 propanamide (formule II : $R_1=R_2=C_3H_7, R_3=CH_2\,C_6\,H_5, R_4=H, n=0$)

26,5g de N-(tert-butoxycarbonyl) phényl alanine (F = 110°C), préparée par action du ditert-butyldicarbonate sur la phényl alanine racémique, 11,5g de N-hydroxysuccinimide, 20,6g de dicyclohexylcarbodiimide sont introduits dans 500ml de dioxanne; après 4 heures d'agitation, l'insoluble est séparé et le solvant évaporé sous pression réduite. On obtient le produit de formule IV correspondant, fondant à 138°C.

Après réaction avec 12g de dipropylamine on obtient le produit de formule V correspondant, fondant à 94°C, qui par action de l'acide trifluoracétique dans le chloroforme, donne le trifluoroacétate de l'amide de formule II recherché, fondant à 108°C, avec un rendement global de 40%.

e) amino-2 N-méthyl N-(chloro-4 phényl)acétamide (formule II : $R_1 = CH_3$, $R_2 = 4$ -ClC₆H₄, $R_3 = R_4 = H$, n = 0)

Dans une solution dans la tétrachlorure de carbone, de 111,5g de chlorure d'acide de N-phtaloylglycine, on introduit simultanément goutte à goutte entre 0° et 5°C, 70,8g de N-méthyl (chloro-4)aniline et 101g de triéthylamine. On élimine le chlorhydrate de triéthylamine précipité en fin de réaction, après lavage 2 fois avec 100 ml de CCl₄. Après séchage des solutions organiques et élimination du solvant, on obtient avec 95% de rendement le phtalimide de formule VII de F = 180°C (isopropanol).

79,5g de ce composé est mis en suspension dans 1500 ml d'une solution 0,16 M de N_2H_4 , H_2O dans C_2H_5OH et le milieu est maintenu 3 heures au reflux avant distillation du solvant. Le résidu es repris dans 500 ml de HCl aqueux 2N et l'ensemble est maintenu 2 heures à 50°C. Après filtration, le filtrat est amené à sec et le résidu est recristallisé dans l'isopropanol (rdt 75%) F=186°C.

2. Préparation des quinoléines de formule III

1) Benzoyl-3 dichloro-4,6 quinoléine.

a) Préparation du benzoyl-3 chloro-6 hydroxy-4 quinoléine, (III : $R_5=6$ -CI; $R_6=H$; $R_{10}=H$; $Z=C_6H_5$; A=B=C=D=CH; X=OH)

Un mélange de chloro-4 aniline (25,5g), d'orthoformiate d'éthyle (33,3 ml) et de benzoylacétate d'éthyle (34,6 ml) est chauffé à 165°C jusqu'à ce que l'alcool formé soit entièrement distillé. Par addition d'éther de pétrole, l'intermédiaire (chloro-4 anilino)-3 benzoyl-2 acrylate d'éthyle cristallise. Il est recristallisé dans le cyclohexane, F = 111°C (Rdt 45%) puis ajouté à 150 ml d'oxyde de diphényle porté à une température de 200°C.

L'ensemble est chauffé à 240°C pendant 5 heures tout en effectuant une distillation lente. Après addition d'éther de pétrole les cristaux obtenus sont filtrés et séchés sous vide F>260°C (Rdt 86%).

65

5

10

15

20

25

30

35

40

45

50

55

b) Préparation du benzoyl-3 dichloro-4,6 quinoléine (III : $X=CI;R_5=6$ -CI; $R_6=H;R_{10}=H;Z=C_6H_5;A=B=C=D=CH)$

2 g de benzoyl-3 chloro-6 hydroxy-4 quinoléine sont ajoutés par petites quantités sous azote à 10 ml de chlorure de phosphoryle. La solution est portée 3 heures au reflux. Après évaporation du solvant, le résidu est versé sur de la glace et le mélange neutralisé par addition de carbonate de sodium. Le produit attendu est extrait au dichlorométhane : cristaux (éther isopropylique) $F = 148^{\circ}$ C (Rdt 48%).

Les quinoléines de formule III, dans laquelle X = CI, $R_6 = H$ mentionnées dans le tableau i suivant ont été préparées en appliquant le même mode opératoire que ci-dessus.

TABLEAU I

10

40

45

50

55

60

65

	Z	R ₅	F°C
	C ₆ H ₅	7-F	95
15	C ₆ H ₅	7-CF ₃	97
	C ₆ H ₅	6-CI	148
	C ₆ H ₅	7-CI	121
	C ₆ H ₅	8-Cl	171
20	C ₆ H ₅	5-CI	135
20	C ₆ H ₅	Н	130
	C ₆ H ₅	6-OCH₃	147
	C ₅ H ₄ N-4	7-Cl	132
	C ₅ H ₄ N-3	7-Cl	134
25	C ₆ H ₅	7-Br	134
	C ₆ H ₅	6-Br	140

2) Benzoyl-3 chloro-4 méthoxy-6 quinoléine (III : X = CI, $R_5 = 6$ -OCH₃, $R_6 = H$; $R_{10} = H$; $Z = C_6H_5$, A = B = C = D = CH).

a) bis(méthoxy-4 phényl) formamidine

20 g de méthoxy-4 aniline et 166 ml d'orthoformiate d'éthyle sont chauffés 2 heures à 150° C. L'alcool formé est distillé simultanément. On précipite la formamidine par addition d'éther de pétrole dans le milieu refroidi. F = 114° C (Rdt 40%).

b) benzoyl-2 (méthoxy-4 anilino)-3 acrylate d'éthyle (VIII : $R_5=4$ -OCH $_3$; $R_6=H$; $Z=C_6H_5$; A=B=C=D=CH)

Un mélange de bis(méthoxy-4 phényl)formamidine (8 g), d'orthoformiate d'éthyle (6,2 ml) et de benzoylacétate d'éthyle (5,4 ml) est chauffé 2 heures à 170°C en distillant l'alcool formé. On poursuit le chauffage après une nouvelle addition de benzoylacétate d'éthyle (5,4 ml) pendant 2 heures.

Le produit attendu est purifié par chromatographie sur colonne en éluant avec un mélange de cyclohexane + d'acétate d'éthyle (6/4) pour donner une huile claire (Rdt 60%).

c) benzoyl-3 hydroxy-4 méthoxy-6 quinoléine, (III : $R_5=6$ -OCH $_3$; $R_6=H$; $R_{10}=H$; $Z=C_6H_5$; A=B=C=D=CH; X=OH)

10 g de benzoyl-2 (méthoxy-4 anilino)-3 acrylate d'éthyle sont ajoutés à 155 ml d'oxyde de diphényle à 220° C. L'ensemble est maintenu 20 mn à 245° C pendant que l'éthanol formé est distillé. Par addition d'éther de pétrole à la solution refroidie, le produit attendu cristallise. F = 260° C (Rdt 50%).

d) 2 g de benzoyl-3 hydroxy-4 méthoxy-6 quinoléine sont ajoutés à 40 ml de chlorure de phosphoryle et la solution est portée 3 heures au reflux. Après concentration le résidu est versé sur de la glace. La solution est neutralisée par addition de carbonate de sodium, le dérivé chloré est extrait dans le dichlorométhane. Cristaux F = 147°C (Rdt 85%).

3) Dichloro-4,6 (chloro-4 benzoyl)-3 quinoléine (III : $R_5=6$ -Cl; $R_6=H$; $Z=(Cl-4)C_6H_4$; A=B=C=D=CH; X=Cl)

a) 2 g de chloro-4 aniline, 2,27 g d'orthoformiate d'éthyle, 3,47 g de chloro-4 benzoyl acétate d'éthyle (préparé selon Burton, J. Chem. Soc. 1928, 904), sont chauffés 4 heures, en distillant l'éthanol. Le (chloro-4 anilino)-3 chloro-4 benzoyl-2 acrylate d'éthyle brut obtenu est ajouté ensuite à 76 ml de diphényl éther, le mélange est chauffé à 250°C pendant 30 minutes. La (chloro-4 benzoyl)-3 chloro-6 hydroxy-4 quinoléine est obtenue avec un rendement de 53%. F> 260°C.

b) 2,5 g du produit précédent sont ajoutés à 25 ml de chlorure de phosphoryle. On chauffe 3 heures au reflux. Après traitement la dichloro-4,6 (chloro-4 benzoyl)-3 quinoléine est obtenue, $F = 170^{\circ}C$ (Rdt 90%).

4) Dichloro-4,7 isonicotinoyl-3 quinoléine (III : $X=CI;\ R_5=7$ -CI; $R_6=H;\ R_{10}=H;\ Z=C_5H_4N-2;\ A=B=C=D=CH)$

a) isonicotinoyl-acétate d'éthyle :

l'isonicotinate d'éthyle (20g 0,132 mole) est introduit dans une suspension dans le tétrahydrofuranne (120 ml) d'hydrure de sodium (0,185 mole) et le mélange st porté au reflux. Après addition d'acétate d'éthyle (19,4 ml 0,198 mole) le reflux est maintenu une nuit. Après hydrolyse et évaporation du solvant organique, la phase aqueuse est lavée à l'acétate d'éthyle et elle est acidifiée par addition d'acide acétique. Après extraction par le dichlorométhane, et évaporation du solvant organique, les cristaux obtenus sont séchés sous vide. F = 70° C (Rdt 86%).

b) (chloro-3 anilino)-3 isonicotinoyl-2 acrylate d'éthyle, (VIII : $R_5=3$ -CI; $R_6=H$; $Z=C_5H_4N-3$; A=B=C=D=CH)

Un mélange de bis(chloro-3 phényl) formamidine (5g), d'isonicotinoyl acétate d'éthyle (3,64g) et d'orthoformiate d'éthyle (3,74 ml) est chauffé 45 minutes à 140°C, avant une nouvelle addition d'isonicotinoyl acétate d'éthyle (3,64 g); le milieu réactionnel est alors encore chauffé 2 heures à 150°C.

Le produit attendu est purifié par chromatographie sur colonne de silice, en éluant avec un mélange cyclohexane/acétate d'éthyle (1/1) puis recristallisé dans un mélange d'éther isopropylique/acétate d'éthyle (8/2) F = 93°C (Rdt 87%).

¹H RMN (80 MHZ, CDCl₃) 0,8-1,2 (t, 3H) 3,8-4,2 (q, 2H) 7-7,5 (m, 6H) 8,4-8,8 (m, 3H) 12-12,5 (d, 1H échangeable).

c) chloro-7 hydroxy-4 isonicotinoyl-3 quinoléine, (III : $R_5=7$ -CI; $R_6=H$; $R_{10}=H$; $Z=C_5H_4N-2$; A=B=C=D=CH; X=OH)

5,3 g de (chloro-3 anilino)-3 isonicotinoyl-2 acrylate d'éthyle sont chauffés 20 minutes à 250° C dans 85 ml de diphényléther. Les cristaux obtenus par refroidissement sont lavés à l'éther de pétrole puis recristallisés dans diméthylacétamide. F > 260° C (Rdt 60%).

d) dichloro-4,7 isonicotinoyl-3 quinoléine

2,7 g de chloro-7 hydroxy-4 isonicotinoyl-3 quinoléine sont ajoutés sous azote à 60 ml de POCl₃ et portés 5 heures au reflux. Après filtration le précipité est versé dans la glace. La solution aqueuse est basifiée par le carbonate de sodium avant d'en extrai re dans le dichlorométhane, le dérivé chloré : cristaux (éther isopropylique) F = 132°C (Rdt 53%).

3. Préparation des naphtyridines de formule III

1) benzoyl-3 chloro-4 naphtyridine-1,5 (III: X = CI; $R_5 = R_6 = R_{10} = H$; $Z = C_6H_5$; A = N; B = C = D = CH)

a) (pyridyl-3)amino-3 benzoyl-2 acrylate d'éthyle, (VIII: R₅ = R₆ = H; Z = C₆H₅; A = N; B = C = D = CH) Un mélange équimoléculaire d'amino-3 pyridine, d'orthoformiate d'éthyle et de benzoylacétate d'éthyle est chauffé 3 heures à 125-130° C, sous un léger courant d'azote. La réaction terminée, le produit est purifié par chromatographie sur colonne de silice (toluène-éthanol, 95-5). F = 115° C (éther isopropylique) Rdt 60%.

1H RMN (60 MHz CDCl₃ + acide trifluoroacétique) : 0,7-1,2 (m,3H) 3,8-4,2 (q,2H) 7,1-7,9 (m,7H) 8,3-8,8 (m,3H).

b) benzoyl-3 hydroxy-4-naphtyridine-1,5 (III : $R_5=R_6=H$; $R_{10}=H$; $Z=C_6H_5$; A=N; B=C=D=CH; X=OH)

120 g de (pyridyl-3) amino-3 benzoyl-2 acrylate d'éthyle sont cyclisés dans le Dowtherm A (mélange de 816 ml de diphényloxyde et 318 g de biphényle) par chauffage à 245-250°C, pendant 30 minutes. Le composé qui précipite dans le milieu après refroidissement à température ambiante, est filtré et lavé à l'éther de pétrole Rdt 40%; F>260°C.

c) benzoyl-3 chloro-4 naphtyridene-1,5 (III : X=CI; $R_5=R_6=H$; $R_{10}=H$; $Z=C_6H_5$; A=N; B=C=D=CH)

19,5 g de benzoyl-3 hydroxy-4 naphtyridine -1,5 sont ajoutés à 200 ml d'oxychlorure de phosphore au reflux. Le reflux est maintenu 0,5 heure. La réaction terminée, l'excès d'oxychlorure de phospore est éliminé sous pression réduite et le résidu huileux est neutralisé par addition de NaOH aqueux concentré. Après extraction par du dichlorométhane, la phase organique est lavée à l'eau puis séchée sur sulfate de magnésium. Le produit est recristallisé dans cyclohexane. F = 119°C (Rdt 60%).

5

10

15

20

25

30

35

40

45

50

55

- 2)[(bromo-7-chloro-4 naphtyridine-1,5)yl-3] carboxylate d'éthyle obtenu en applicant le mode opératoire précédent, au dérivé hydroxylé; ce produit fond à 130°C.
- 3) benzoyl-3 chloro-4 méthyl-2 naphtyridine-1,5 (formule II : X = CI; $R_5 = R_6 = H$; $R_{10} = CH_3$; $Z = C_6H_5$: A = N; B = C = D = CH; p = O)
 - a) benzoyl-3 hydroxy-4 méthyl-2 naphtyridine-1,5.

5

10

15

25

45

50

55

65

Le benzoyl-2(amino-3 pyridinyl)-3 crotonate d'éthyle, préparé par condensation de benzoyl-2 éthoxy-3 crotonate d'éthyle et d'amino-3 pyridine, est cyclisé avec 55% de rendement par chauffage dans le Dowtherm selon le procédé décrit précédemment. F > 260°C.

¹HRMN (80MHz, DMSOd₆)δ: 2,4 (s,3H); 7,4-8,2 (m,7H); 8,7-8,9 (d,1H); 12,1-12,4(m,1H).

- b) 7g du dérivé précédent sont dissous dans 50 ml de toluène et on ajoute, à la température de reflux du solvant, 10 ml de POCl3, goutte à goutte. Le reflux est maintenu pendant 30 minutes après la fin de l'addition et les solvants sont évaporés. Après neutralisation et séchage, le résidu fond à 120°C. Rendement 40%.
- 4) benzoyl-3 chloro-4 naphtyridine-1,6 (III : X = CI; $R_5 = R_6 = H$; $R_{10} = H$; $Z = C_6H_5$, A = C = D = CH, B = N
- 28 g de benzoyl-3 hydroxy-4 naphtyridine-1,6, F > 260°C, préparé à partir de l'amino-4 pyridine en appliquant le procédé décrit précédemment pour la préparation de la benzoyl-3 chloro-4 naphttyridine-1,5 sont additionnés à 300 ml d'oxychlorure de phosphore et le mélange est maintenu une heure au reflux. Après traitement, le composé attendu est recristallisé dans l'acétate d'éthyle. Rdt 80%.

¹H RMN (60 MHz, CDCl₃) 7,4-8 (m,6H) 8,8-9 (m,2H) 9,75 (s,1H).

- 5) benzoyl-3 dichloro-4,7 naphtyridene-1,8 (III : $X=Cl;\ R_5=7$ -Cl; $R_{10}=R_6=H;\ Z=C_6H_5,$ A = B = C = CH, D = N)
- a) benzoyl-3 chloro-7 hydroxy-4 naphtyridine-1,8 (III : $R_5=7$ -CI; $R_6=R_{10}=H$; $Z=C_6H_5$; A = B = C = CH, D = N; X = OH)

Au mélange, porté à 210°C, de 185 ml de diphényloxyde et 65 g de biphényle est ajouté 27,5 g de (chloro-6 pyridyl-2) amino-3 acrylate d'éthyle. L'addition terminée, on élève la température jusqu'à 240-245°C et maintenant cette température pendant 2 heures. Après refroidissement le composé qui précipite est filtré et est lavé à l'éther de pétrole. (F = > 260°C).

¹H RMN (80MHz, DMSO-d₆)7,4-8 (m,6H) 8,3-8,7 (m,2H) 13-13,5 (m,1H)

b) benzoyl-3 dichloro-4,7 naphtyridine- 1,8:

9g de benzoyl-3-chloro-7 hydroxy-4 naphtyridine-1,8 et 30 ml d'oxychlorure de phosphore sont portés au reflux pendant une heure. L'oxychlorure de phosphore en excès est éliminé par distillation sous pression réduite et le résidu est dissous dans le dichlorométhane. Cette phase organique est lavée jusqu'à neutralité par une solution aqueuse de NaOH. Après décantation et lavage à l'eau, la solution de dichlorométhane est séché sur sulfate de sodium puis concentrée. Le produit est recristallisé dans le cyclohexane. F = 160°C (Rdt

¹H-RMN (60 MHz, CDCl₃) 7,4-7,9 (m,6H) 8,5-8,7 (d, 1H) 9 (s,1H).

6) [(dichloro-4,7 naphtyridine-1,8)yl-3] carboxylate d'éthyle

10 g de [(chloro-7 hydroxy-4 naphtyridine-1,8-yl-3] carboxylate d'éthyle et 100 ml de POCl3 sont portés au reflux, durant 1 heure, puis l'excés de POCl3 est éliminé par distillation et le résidu, repris avec du chlorure de méthylène est neutralisé par addition d'une solution aqueuse concentrée de NaOH. Après séchage et évaporation du solvant le résidu est purifié par chromatographie sur colonne de silice en éluant avec un mélange de toluène et d'éthanol (98/2 -v/v). Après recristallisation dans le cyclohexane, la naphyridine fond à 134-136°C.

- 7) benzoyl-3 chloro-4 naphtyridine-1,7 (formule III : $X=CI;\ R_5=R_6=R_{10}=H;\ Z:C_6H_5;$ A = B = D = CH : C = N; p = O
- a) 7-oxyde de benzoyl-3 hydroxy-4 naphtyridine-1,7 préparé à partir d'amino-3 pyridine 1-oxyde, décrit par J.C. Murray et C.R. Hauser dans J. Org. Chem. p. 2008-14 (1954), et de benzoylacétate d'éthyle et d'orthoformiate d'éthyle selon le procédé décrit pour la benzoyl-3 hydroxy-4 naphtyridine-1,5; on obtient ce produit avec 70% de rendement F > 260°C.
- b) benzoyl-3 hydroxy-4-naphtyridine-1,7

6,5 g du N-oxyde précédemment préparé sont introduits dans 240 ml d'acide acétique concentré, avec 12,7 ml d'anhydride acétique et 2g de charbon palladié à 10% et le mélange est agité à température ambiante sous atmosphère d'hydrogène, jusqu'à fin d'absorption de H2. Après filtration, le filtrat est amené à sec et le résidu repris dans 300 ml d'eau est neutralisé par addition de NaOH; le précipité formé est isolé; on obtient ainsi avec 85% de rendement le produit attendu qui fond à 228°C.

c) 2g du dérivé hydroxyle précédent sont chlorés par chauffage dans 20 ml de POCl₃ au reflux, pendant 45

minutes; le produit isolé après évaporation de l'excès de POCl₃ et neutralisation est purifié par chromatographie sur colonne de silice, en éluant par un mélange de toluène et d'éthanol (99/1); la naphtyridine obtenue avec 60% de rendement fond à 123°C.

 $^{1}HRMN$ (80MHz, CDCl₃) δ : 7,4-7,9 (m,5H); 8-8,2(d,1H); 8,7-8,9 (d,1H); 9 (s,1H); 10,6 (s,1H).

8) benzoyl-3 chloro-4 naphtyridine-1,5 oxyde-1 (formule III : X = CI; $R_5 = R_6 = R_{10} = H$; $Z = C_6H_5$; A = N; B = C = D = CH; p = 1)

5

10

20

25

30

35

40

45

50

55

60

65

On agite 4 jours à température ambiante 5,37g de benzoyl-3 chloro-4 naphtyridine-1,5 et 3,8g d'acide de m-chloroperbenzoïque dans 200 ml d'acide acétique pur. L'acide acétique est alors évaporé et le résidu repris dans 500 ml de chlorure de méthylène; la phase organique est lavée par une solution saturée de bicarbonate de sodium puis à l'eau; après séchage, le solvent est éliminé et le résidu purifié par chromatographie et recristallisé dans le toluène. F = 135°C.

¹HRMN (80 MHz,CDCl₃) δ : 7,6-8,3 (m,6H); 9-9,2 (m,2H); 9,3-9,5 (m,1H).

EXEMPLE 1:

[(N,N-dipropylcarbamoyl- 1 éthylamino)-4 trifluorométhyl-7 quinoléinyl]-3 carboxylate d'éthyle (formule I : $R_1=R_2=C_3H_7$; $R_3=CH_3$, $R_4=H$, p=o, $R_5=H$, $R_6=7$ -CF3, $R_{10}=H$, $Z=OC_2H_5$, A=B=C=D=CH) numéro de référence : SR 26241.

On chauffe 6 heures à sa température de reflux, une solution dans 100ml d'éthanol, de 2,6g de N,N-dipropyl(amino-2) propanamide, 3g de (chloro-4 trifluorométhyl-7 quinoléinyl-3)carboxylate d'éthyle (F = 60°C) et 2 ml de triéthylamine.

Après élimination du solvant le résidu est repris dans l'eau et le dichlorométhane. La phase organique est décantée, le solvant évaporé et le résidu purifié par chromatographie sur une colonne de silice en éluant à l'éther isopropylique. Après recristallisation dans l'hexane, on obtient avec 32% de rendement le produit recherché; F = 100°C.

¹H RMN (80 mHz, CDCl₃)δ; 0,6-1 (m,6H); 1,3-1,8 (m,10H); 2,9-3,8 (m,4H); 4,3-4,7 (1,2H); 4,9-5,3 (m,1H); 7,5-8,35 (m,3H); 9,2 (s,1H); 9,5-9,7 (d,1H échangeable).

EXEMPLES 2 à 30 : esters dérivés de quinoléine

Ces exemples de composés de formule I dans laquelle A = B = C = D = CH, et n = p = 0 figurent dans le tableau II; les produits ont été préparés en appliquant le méthode décrite à l'exemple 1.

TABLEAU II

EX N	• SR	R ₁	R ₂	R ₃	R ₄	R ₅	^R 6	Z	^R 10		istiques iques · [\propto] ²⁰ (C,SOLVANT
2	26399	с ₃ н ₇	с _з н ₇	снз	н	н	5-Cl	0C ₂ H ₅	н	9 4	
. 3	26058	с _з н ₇	с _з н ₇	снз	н	Н	6-C1	0C ₂ H ₅	н	59 ·	
4	26274	с _з н ₇	с _з н ₇	снз	н	Н	6-C1	0C ₂ H ₅	н	170(HCL)	-19(1;H ₂ C
5	26310	с _з н ₇	с _з н ₇	снз	Н	н	7-C1	ос ₂ н ₅	н	83	
6	26378	с _з н ₇	с _з н ₇	снз	н	н	7-Cl	0C ₂ H ₅	н	160(HCl)	-0,9(1;
7	26422	с _з н ₇	с _з н ₇	снз	н	н	7-C1	0C ₂ H ₅	н	175(HCl)	CH ₃ OF +1,9(1;
8	26351	с _з н ₇	с _з н ₇	снз	н	н	8-C1	0C ₂ H ₅	н	98	сн ₃ он
9	26377	с ₃ н ₇	с _э н ₇	снз	н	н	7-Br	0C ₂ H ₅	н	160(HCl,	120)
10	26421	с ₃ н ₇	с _з н ₇	СНЗ	н	6-CH ₃	7-CH ₃	0C ₂ H ₅	н	170(HCl,	H20)
1 1	26492	с ₃ н ₇	с _з н ₇	CH3	н	6-C1	7-C1	0C ₂ H ₅	н	106	
1 2	26357	С ₃ Н ₇	с _з н ₇	СНз	н	н	6-0CH ₃	0C2H5	Н	140(malé	ate)
13	26522	С _а н ₇	с _з н ₇	CH ₃	н	`н	7-0CH ₃	0C ₂ H ₅	Н	102	
1 4	25552	с _з н ₇	с ₃ н ₇	СНЗ	н	6	,7-ОСН ₂ О	0C ₂ H ₅	н	130(malé	ate, H ₂ 0)
15	26426	С ₃ Н ₇	с _з н ₇	СНЗ	н	н	н	OC2H5	н	170(malé	ate)
16	25487	с _з н ₇	с _з н ₇	CH3	н	н	6-cyclo-	0C ₂ H ₅	н	100	
1 7	26449	с ₃ н ₇	C ₃ H ₇	CH ₃	н	Н	hexyl 7-Cl	OC H 4	н	8 4	
18	26454	C ₂ H ₅	J ,	CH ₃	н	н	7-C1	0C ₂ H ₅	н	100	
19	26362	C ₄ H ₉		CH ₃	н	н	7-CF ₃	0C ₂ H ₅	н	140	
20	26423		(4-C1)- -C ₆ H ₄	•	н	н	7-Cl	ос ₂ н ₅	Н	146	

TABLEAU II (suite)

20	Caractéristic physiques F°C(sel) [a (C,SC	R ₁₀	Z	R ₆	R ₅	R 4	R ₃	R ₂	^R 1	SR	EX N
10											
	60	н	oc ₂ H ₅	7-CF ₃	н	н	с ₂ н ₅	с _з н ₇	с ₃ н ₇	26306	21
	95	н	0C ₂ H ₅	7-CF ₃	Н	Н	CH2C6H5	с _з н ₇	с _з н ₇	26258	22
15	huile	снз	^{0C} 2 ^H 5	6-C1	н	н	снз	сз ^Н 7	с _з н ₇	26319	23
	110	с _в н ₅	oc ₂ H ₅	6-Cl	н	н	снз	с _з н ₇	с _з н ₇	26269	2 4
H ₂ O) ₂₀	160(maléate,	н	0C ₂ H ₅	7-0CH ₃	-0CH ₃	Н 6	снз	с _з н ₇	с _з н ₇	26641	25
	88	н	ос ₂ н ₅	7 – F	н	Н	снз	с _з н ₇	с _з н ₇	26920	26
	huile .	н	0C ₂ H ₅	7-C1	н	СНЗ	снз	с _з н ₇	с _з н ₇	26619	27
25	> 260	н	он	7-C1	н	Н	снз	с _з н ₇	с _з н ₇	26632	28
	126	н	0C ₂ H ₅	7-CF ₃	`н	н	C ₆ H ₅	с _з н ₇	с ₃ н ₇	26275	29
30	102	н	ос ₂ н ₅	6-C1	н	н	C ₆ H ₅	с _э н ₇	с ₃ н ₇	26529	30

EXEMPLE 31:

40

45

50

55

60

35

{[Chloro-6 (N,N-dipropylcarbamoyl)-1 éthylamino)-4 naphtyridine-1,5]yl-3} carboxylate d'éthyle. (formule I : $R_1=R_2=C_3H_7, R_3=CH_3, R_4=R_5=H, R_6=6$ -Cl, $R_{10}=H, Z=OC_2H_5; A=N, B=C=D=CH_1$ $R_1=R_2=R_3$ $R_2=R_3$ $R_3=R_3=R_3$ $R_3=R_3=R_3$

On maintient 1 heure, à sa température de relfux, une solution dans 30 ml d'éthanol de 2,7 g de [(dichloro-4,6 naphtyridine-1,5)yl-3] carboxylate d'éthyle F = 114°C, 2,2 g d'hémisulfate de N,N-dipropyl(amino-2)propanamide et 3,1 ml de triéthylamine.

Le solvant est alors éliminé sous pression réduite et le résidu est dissous dans 50ml de dichlorométhane; la solution organique est lavée par 2 fois 10ml d'eau, puis le solvant est éliminé, après séchage.

Le résidu est purifié par chromatographie sur colonne de silice en éluant avec un mélange de toluène et d'éthanol (99/1).

Après recristallisation dans le cyclohexane, le produit attendu fond à 133° C. ¹H RMN (60MH, CDCl₃) δ : 0,6-1 (t,6H); 1,1-1,8 (m,10H); 2,8-3,8 (m,4H); 4,1-4,6 (q,2H); 6,1-6,5 (m,1H); 7,2-7,5 (d,1H); 7,7-8 (s,1H); 8,95 (s,1H); 10,4-10,7 (d,1H échangeable).

EXEMPLE 32:

{[chloro-6(N,N-dipropylcarbamoylméthyl)-1 éthylamino)- 4 naphtyridine-1,5]-yl-3} carboxylate d'éthyle (formule I: $R_1=R_2=C_3H_7,\,R_3=CH_3;\,R_4=R_5=H;\,R_6=6$ -CI; $R_{10}=H;\,Z=OC_2H_5;\,A=N,\,B=C=D=CH;\,n=1;\,p=o.$ Référence: SR 26331.

En appliquant le mode opératoire décrit à l'exemple 31, on obtient avec 37% de rendement, le produit recherché qui fond à 102°C après recristallisation dans l'acétate d'éthyle.

¹H RMN (80 MHz, CDCl₃)δ: 0,55-1,00 (t,6H); 1,15-1,80 (m,10H);2,50-2,95 (m,2H); 3,00-3,50 (m,4H); 4,10-4,50 (q,2H); 5,40-5,80 (m,1H); 7,30-7,50 (d,1H); 7,90-8,10 (d,1H); 9,01 (s,1H); 9,40-9,60 (d,1H).

EXEMPLE 33:

{[bromo-7(N,N-dipropylcarbamoyl-1 éthylamino)-4 naphtyridine-1,5]yl-3} carboxylate d'éthyle (formule I : $R_1=R_2=C_3$ H_7 , $R_3=CH_3$, $R_4=R_5=R_{10}=H$, $R_6=7$ -Br, $Z=OC_2$ H_5 , n=p=O, A=N, B=C=D=CH). Référence : SR 26579.

3,01g de [(bromo-7 chloro-4 naphtyridine-1,5)yl-3]carboxylate d'éthyle, 2,86g de trifluoracétate de N,N-dipropylamino-2 propanamide et 2,7 ml de triéthylamine sont dissous dans 50ml d'éthanol et la solution est portée une heure au reflux. Le solvant est évaporé; une solution du résidu dans le chlorure de méthylène est lavée à l'eau et le solvant évaporé.

Le produit attendue, après recristallisation dans le cyclohexane fond à 96°C.

EXEMPLE 34:

[chloro-7 N-N dipropylcarbamoylméthyl]-1 éthylamino]-4 naphtyridine-1,5]-yl-3] carboxylate d'éthyle (formule I: $R_1=R_2=C_3H_7$; $R_3=CH_3$; $R_4=R_5=R_{10}=H$; $R_6=7$ -Cl; Z-OC₂H₅; A=N, B=C=D=CH; n=1; p=0). Référence SR 26869.

En appliquant le mode opératoire décrit à l'exemple 31, on obtient avec 40% de rendement, cet ester qui fond à 88°C après recristallisaion dans le pentane.

EXEMPLE 35:

20

25

30

{[chloro-7(N,N-dipropylcarbamoyl-1 éthylamino)-4 naphtyridine-1,8]-yl-3} carboxylate d'éthyle (formule I : $R_1=R_2=C_3H_7,\ R_3=CH_3,\ R_4=R_5=R_{10}=H,\ R_6=7$ -Cl, Z - OC₂H₅, A = B = C = CH, D = N, n = p = O). Référence : SR 26493.

3g de [(dichloro-4,7 naphtyridine-1,8)-yl-3] carboxylate d'éthyle, 2,5g d'hémisulfate de N,N-dipropyl (amino-2)propanamide et 3,6ml de triéthylamine sont introduits dans 30ml d'isopropanol et le mélange est maintenu 3h au reflux. Le solvant est évaporé; le résidu, en solution dans le chlorure de méthylène, est lavé à l'eau puis chromatographié sur colonne de silice en éluant avec un mélange de cyclohexane et d'acétate d'éthyle (80/20). Après recristallisation dans l'éther éthylique, il fond à 93°C.

EXEMPLE 36:

{[chloro-7 (N-méthyl N-(chloro-4 phényl)carbamoylméthylamino)-4 naphtyridine-1,8]-yl-3} carboxylate d'éthyle (formule I : $R_1 = CH_3$; $R_2 = 4$ - CIC_6H_4 ; $R_3 = CH_3$; $R_4 = R_5 = R_{10} = H$; $R_6 = 7$ -CI, $Z = OC_2H_5$; A = B : C = CH, D = N; n = p = o). Référence SR 26555.

Préparé avec un rendement de 10% environ, en appliquant le mode opératoire décrit à l'exemple 35, ce produit après recristalisation dans l'éthanol fond à 206-208°C.

40 EXEMPLE 37 :

N,N-dipropyl[(benzoyl-3 chloro-6)quinolyl-4]aminoacétamide (formule $I: R_1 = R_2 = C_3H_7$; $R_3 = R_4 = R_{10} = H$; $R_5 = 6$ -Cl; $Z = C_6H_5$; n = p = o; A = B = C = D = CH). Référence SR 26199.

2 g de benzoyl-3 dichloro-4,6 quinoléine et 1,55 g de chlorhydrate d'amino-2 N,N-dipropyl acétamide, préparé selon Haworth et al., J. Chem. Soc., 1952, 2972, sont chauffés au reflux 4 heures en présence de 2,2 ml de triéthylamine dans 50 ml d'isopropanol. Après concentration à sec, l'huile résiduelle est dissoute dans le dichlorméthane, et la phase organique est lavée à l'eau.

Le produit attendu peut être purifié par chromatographie sur gel de silice (éluant : cyclohexane-acétate d'éthyle (1/1) : on obtient des cristaux jaune clair. F = 109° C - 110° C (Rdt 46%).

 1 H RMN (80 MHz Me₂SO-d₆) (p.p.m.) : 0,6-0,8 (t,6H) 1,3-1,7 (m,4H) 2,9-3,3 (m,4H) 4,1-4,3 (d,2H) 7,4-7,9 (m,8H) 8,4 (s,1H) 8,5 (t, 1H, échangeable D₂0).

EXEMPLES 38 à 73

Les composés préparés à partir des quinoléines de formule III dans lesquelles Z représente un groupe aryle et R₆ = R₁₀ = H, n = p = O, en appliquant le procédé décrit à l'exemple 37, sont indiqués dans le tableau III suivant:

60

50

TABLEAU III

EX	REF. SR	R ₁	^R 2	R ₃	R ₄	R ₅	Z	F°C (sel)
38	26290	С ₃ Н ₇	С ₃ Н ₇	Н	Н	7-C1	C ₆ H ₅	118
39	26307	C3H7	с ₃ н ₇	Н	Н	8-Cl	c H S	97
40	26303	C ₃ H ₇	с ₃ н ₇	Н	н	н	C ₆ H ₅	93
4 1	26372	C ₃ H ₇	C3H7	н	н	6~0CH ₃		126
42	26483	C ₂ H ₅	С ₂ н ₅	Н	Н	6-Cl	С ₆ Н ₅	108
43	26485	C ₂ H ₅	С ₂ н ₅	Н	н	7-C1	c _e H _s	172
		2 3	2 3				0 3	(malé-
	•							ate)
4 4	26386	C'H	C ₄ H ₉	Н	н	7-C1	c ₆ H ₅	106
45	26467	_	СН (СН 3) С 2 Н	, н	Н	7-C1	С ₆ Н ₅	168
		J	5 2 .	•			0 5	(malé-
								ate)
46	26412	снз	(ci-4)c ₆ H ₄	н	Н	7-Cl	C ₆ H ₅	126
47	26397	С ₃ Н ₇	(C1-4)C ₅ H ₄	н	Н	7-Cl	C _E H ₅	181
48	26226	C ₃ H ₇	C ₃ H ₇	СНЗ	н	6-C1	C ₆ H ₅	120
	•	- ,						(HCl,
								1/2H ₂ 0
49	26385	C ₃ H ₇	С _З Н ₇	СНз	Н	7-Cl	C 6 H 5	206
			• .	J				(HCl)
50	26450	снз	(C1-4)C ₆ H ₄	СНз	Н	7-C1	C ₆ H ₅	155
51	26294	C ₃ H ₇	с ₃ н ₇	н	СНЗ	6-C1	с ₆ н ₅	117
52	26304	С ₃ Н ₇	с _з н ₇	Н	н		(C1-4)-	139
		٠.	.				-c ₆ H,	
53	26439	C 3 H 7	с _з н ₇	н	Н	7-C1	C_H_N-4	162
54	26588	• .	(C1-4)C6H4	н	H.		C5H4N-4	
55	26610	C 3H 7	с ₃ н ₇	н	н		C_H_N-3	
		٠,	•				3 T	(malé-
							•	ate)

TABLEAU III (suite)

EX	REF.	R ₁	R ₂	В 3	R ₄	^R 5	Z	F°C (sel)
					-			
56	26643	снз	(C1-4)C ₅ H ⁴	Н	Н	7-Cl	C ₅ H ₄ N-3	105
57	26581	с ₃ н ₇	c ₃ H ₇	Н	н	5-Cl	C ₆ H ₅	217
58	26620		(C1-4)C6H4	н	Н	6-C1	C ₆ H ₅	187
59	26644	C ₃ H ₇	С ₃ Н ₇	Н	Н	6-Br	C ₆ H ₅	104
60	26676	СНЗ	(diCl-3,4)	Н	н	7-Cl	C ₆ H ₅	126
			C ₆ H ₄					
61	26706	СНЗ	(C1-4)C6H4	Н	Н	7 - F	C ₆ H ₅	206
6 2	26778	-	(CF3-4)C6H4	н	Н	7-C1	C _B H ₅	204
63	26794	_	(C1-4)C6H4	н	Н	7-CF ₃	C ₆ H ₅	160
6 4	26841	снз	(C1-4)C6H4	Н	СНЗ	7-C1	c ₆ H ₅	145
65	26846	-	(OCH ₃ -4)	н	н	7-Cl	C H 5	111
			C H 4					
66	26876	снз	(C1-4)C6H4	Н	Н	7-Br	с ₆ н ₅	125
67	27195	снз	(OCH ₃ -4)	н	Н	7-Br	c ₆ H ₅	144
		_	C _B H ₄					
68	27196	снз	(OCH ₃ -4)	Н	Н	7-Cl	C ₆ H ₅	153
			c ₆ H ₄					
89	27271	снз	(OC ₂ H ₅ -4)	Н	н	7-Cl	`с ₆ н ₅	166
			C ₆ H ₄					
70	27778	снз	(C1-4)C ₆ H ₄	Н	Н	7-CH3	C ₆ H ₅	110
7 1	27295	снз	(SCH3-4)C6H4	н	н	7-C1	с ₆ н ₅	140
72	27307	снз	(OCH3-2,4)C	нзн	н	7-Cl	C ₆ H ₅	170
73	26680	С ₃ Н ₇	с ₃ н ₇	C ₆ H ₅	н	7-C1		165
		- '	• .	- 0				

55

60

65

50

EXEMPLE 74 : [(N,N-dipropylcarbamoyl-1 éthylamino)-4 chloro-6 quinoléinyl]-3 carboxamide (Formule I : $R_1=R_2=C_3H_7$; $R_3=CH_3$; $R_4=R_5=H$; n=p=0; $R_6=6$ -Cl, $R_{10}=H$, $Z=NH_2$, A=B=C=D=CH) numéro de référence 27277 (hydrate)

a) (dichloro-4,6 quinoléinyl)-3 carboxamide

3g de chlorure d'acide (dichloro-4,6 quinoléinyl)-3 carboxylique préparé selon la méthode décrite dans J. Med. Chem. 14 (1), p. 17-23, (1971) sont mis en solution dans 80 ml de dioxanne dans lequel on fait barboter pendant 2 h. un courant d'ammoniac gazeux à la température du laboratoire. On filtre le précipitéde chlorure d'ammonium puis on évapore le solvant. Le résidu est dissous dans du chlorure de méthylène et la phase

organique est lavée à l'eau jusqu'à neutralité puis séchée. Le cristaux obtenus après évaporation du solvant sont lavés avec de l'éther isopropylique. $F = 209^{\circ}C$ Rdt = 65%.

b) On porte au reflux pendant 3 h 2g de l'amide précédent, 3,4g d'amino-2 N,N-dipropylpropanamide et 3,5 ml de triéthylamine dans 50 ml d'isopropanol. On évapore le solvant, dissout le résidu dans le chlorure de méthylène et lave la phase organique dans l'eau. Après séchage et élimination de CH_2Cl_2 , le résidu est recristallisé deux fois dans l'acétate d'éthyle. $F = 184^{\circ}C$ (monohydrate) Rdt = 40%.

5

10

15

25

30

35

40

45

50

55

60

65

Une solution, dans 30 ml d'éthanol, de 1,075 g de benzoyl-3 chloro-4 naphtyridine-1,5 et 0,86 g de chlorhydrate de l'amino-2 N,N-dipropyl-acétamide et 1,23 ml de triéthylamine est portée au reflux pendant 1,5 heures. Après concentration à sec, le résidu est dissous dans le dichlorométhane et la phase organique est lavée à l'eau avant d'être décantée et séchée sur sulfate de magnésium.

Le composé recherché est purifié par chromatographie sur colonne de silice en éluant avec un mélange toluène/éthanol (99-1). F = 108°C (éther diisopropylique) (Rdt 45%).

 1 H RMN (60 MHz Me₂ SO-d₆) 0,5-0,9 (m,6H) 1,1-1,7 (m,4H) 2,8-3,3 (q,4H) 3,6 (s,1H (hydrate) 4,2-4,3 (d,2H) 7,4-7,9 (m,6H) 8,1-8,5 (m,2H) 8,7-8,9 (d,-1H) 9,3-9,8 (m,1H échangeable).

EXEMPLE 76:

N-méthyl N-(chloro-4 phényl) (benzoyl-3 naphtyridine-1,5)yl-4 aminoacétamide 1-oxyde (formule I : $R_1=CH_3$; $R_2=Cl-4$ C_6H_4 ; $R_3=R_4=R_5=R_6=R_{10}=H$; n=o; p=1; $Z=C_6H_5$; A=N; B=C=D=CH). Référence SR 26838.

Un mélange dans 60 ml d'éthanol de 1g de benzoyl-3 chloro-4 naphtyridine-1,5 1-oxyde, 0,9 g de chlorhydrate d'amino-2 N-méthyl N-(chloro-4 phényl) acétamide et de 0,54 ml de triéthylamine est maintenu sous agitation 15 heures à température ambiante; le milieu est concentré à sec puis repris dans le chlo-rure de méthylène. Le produit final est purifié par chromatographie sur colonne de silice en éluant par un mélange de toluène et éthanol (90/10 v/v) et recristallisé dans le toluène. F = 243°C. Rendement 40%.

EXEMPLES 77 à 117 :

Les naphtyridines figurant dans le tableau IV pour lesquelles $R_6 = R_{10} = H$, p = o suivant ont été préparées en appliquant le procédé décrit dans l'exemple 75.

TABLEAU IV

E×	Réf.SR	Posit.N	R ₁	. R ₂	. R ₃	R 4	R ₅	Z	n	F°C	SOLVANT RECRIST.
78	26286	A = N	С ₃ Н ₇	с _з н ₇	н	н	6-Cl	С ₆ Н ₅	0	128	acétate
79	26494	A '= N	с _з н ₇	с _з н ₇	н	н	7-Br	с _в н ₅	0	114	d'éthyl∈ Cyclo- hexane
80	26410	B = N	с _з н ₇	с _з н ₇	Н	Н	Н	C ₆ H ₅	0	148	toluène
8 1	26332	A = N	C 5 H 1 1	с ₅ н ₁₁	Н	н	н	с ₆ н ₅	0	88	acétate d'éthyle
8 2	26528	A = N	снз	сн(сн ₃)с ₂ н ₅	Н	Н	н	C 6 H 5	0	134	toluène
83	26361	A = N	н	c(c ₃ H ₇) ₃	н	н	н	C ₆ H ₅	0	186	toluène
8 4	26276	A = N	снз	(C1-4)C6H4	Н	Н	н	C 6 H 5	0	184	acétoni- trile
8 5	26336	A = N	снз	(C1-4)C ₆ H ₄	Н	н	6-C1	с ₆ н ₅	0	208	acétate
86	26516	A = N	снз	(C1-4)C6H4	Н	Н	7-Br	с ₆ н ₅	0	204	d'éthyl∈ toluène
87	26409	B = N	снз	(C1-4)C6H4	н	н	н	с ₆ н ₅	0	217	toluène
88	26411	A = N	с _з н ₇	(C1-4)C6H4	Н	н	Н	с ₆ н ₅	0	173	
8 9	26359	A = N	с _з н ₇	с ₃ н ₇	снз	Н	н	с ₆ Н ₅	1	115	cyclo-
90	26455	A = N	СНЗ	(C1-4)C ₆ H ₄	СНЗ	н	н	с ₆ Н ₅	0	189	hexane toluène
9 1	26517	D = N	снз	(C1-4)C6H4	СНЗ	Н	7 - Cl	C ₆ H ₅	0	192	- éthanol
9 2	26554	D = N	снз	(C1-4)C6H4	н	Н	7-Cl	C ₆ H ₅	0	94 209	éthano]
93	26360	A = N	с _з н ₇	с ₃ н ₇	н	снз	н	с ₆ н ₅	0	146	acétate
9 4	27303	A = N	с ₂ н ₅	(F-2C1 ₄)C ₆ H ₃	н	Н	н	с ₆ н ₅	0	155	d'éthyle cyclo-
9 5	26871	A = N	н	(C1-4)C ₆ H ₄	н	н	Н	с ₆ н ₅	0	210	hexane toluène
96	26858	A = N	C 2 H 5	(C1-4)C ₆ H ₄	н	н	Н	C 6 H 5	0	160	éthanol
97	26919	C = N	СНЗ	(C1-4)C ₆ H ₄	н	н	н	C ₆ H ₅	0	165	toluène
98	27297	A = N	снз	(C1-4)C ₆ H ₄	н	Н	н	(OH-4			acétoni.
99	26830	A = N	снз	(C1-4)C ₆ H ₄	н	н	7-C1	C 6 H 4 C 6 H 5	0	195	trile toluène
			•	- *							

TABLEAU IV (suite)

Ex.	Réf.SR	Pos	it.	. R ₁	R ₂	^R з	R 4	R ₅	Z	n	F°C	SOLVANT RECRIST
100	26698	A =	N	снз	(C1-4)C ₆ H ₄	н	н	6-0CH3	с ₆ н ₅	0	247	toluène
101	26640	D =	И	снз	(C1-2)C ₆ H ₄	н	н	7-C1	C ₆ H ₅	0	120	cyclo- hexane
102	26651	A =	N	снз	(C1-2)C6H4	н	Н	Н	C ₆ H ₅	ο	132	cyclo- hexane
103	26847	A =	N	снз	(CF ₃ -4)C ₆ H ₄	Н	н	Н	с _в н ₅	0	220	toluène
104	27161	A =	N	снз	(CH ₃ 0-4)C ₆ H ₄	н	н	н	с ₆ н ₅	0	150	cyclo- hexane
105	26980	A =	N	снз	(CH ₃ -4)C ₆ H ₄	н	н	Н	с ₆ н ₅	0	175	cyclo- hexane
06	26803	A =	N	снз	C 6 H 5	н	н	н	C ₆ H ₅	0	105	cyclo- hexane
07	26731	A =	N	снз	(C1-4)C ₆ H ₄	Н	н	н	с ₆ н ₅	1	165	toluène
108	26710	A =	N	снз	(C1-4)C6H4	н	снз	н	C ₆ H ₅	0	90 (éther de pétrole
09	26578	D =	N	снз	(C1-4)C ₆ H ₄	Н	снз	7-C1	с ₆ Н ₅	0	198	éthanol
10	27181	A =	N	CH-CH	(C1-4)C ₆ H ₄	Н	н	Н	с ₆ н ₅	0	160	cyclo- hexane
111	27153	A =	N	= HC ₂	(C1-4)C ₆ H ₄	н	н	н () 0	165	benzène
112	26918	A =	N	снз	(C1-4)C ₆ H ₄	н	н	6,7-C1	C 6 H 4 C 6 H 5	0	163	éthanol
113	26708	A =	N	снз	(C1-3,4)C ₆ H ₃	н	н	н	с ₆ н ₅	0	176	cyclo- hexane
114	26972	A =	N	снз	(C1-2,4)C ₆ H ₃	Н	н	Н	C ₆ H ₅	0	154	cyclo- hexane
115	26947	A =	N	снз	(C1-2,6)C ₆ H ₃	н	н	Н	с ₆ н ₅	0	195	éthanol
116	27249	A =	N	снз	cyclohexyl	Н	Н	н	C 6 H 5	0	185	éthanol
117	27252	A =	N	снз	(F-2Cl-4)	Н	. Н	н	C ₆ H ₅	0	138	cyclo- hexane

Les composés des exemples précédents sont peu toxiques, et chez la souris leur DL50 par voie orale est en général supérieure à 1000 mg/kg; ainsi celle du composé de l'exemple 1 est de 1100 mg/kg et celle de l'exemple 84 est supérieure à 1800 mg/kg. Les produits des exemples 3, 67, 90, 107, 114 sont atoxiques à la dose de 500 mg/kg p.o. chez la souris.

45

50

55

60

65

On a aussi étudié leur affinité in vitro, pour les récepteurs centraux des benzodiazépines et ceux de type périphérique selon les méthodes décrites dans ce qui suit : on a déterminé in vitro la Cl50, c'est-à-dire la concentration du produit étudié dans le milieu qui inhibe 50% de la fixation sur les récepteurs des benzodiazépines présents, d'un ligand connu comme spécifique de ces récepteurs. Les résultats obtenus montrent que les produits de l'invention ont une affinité spécifique pour les récepteurs de type périphérique mais ne se fixent pas sur les récepteurs centraux.

Les méthodes mises en oeuvre ont été les suivantes :

a) détermination de la concentration du produit étudié inhibant 50% de la fixation spécifique sur les récepteurs de type périphérique du (chloro-2 phényl)-1N-méthyl N-(méthylpropyl)isoquinolyl-3 carboxamide (ou PK 11195), ligand connu de ces récepteurs.

La technique est analogue à celle décrite par J. Benavides et Coll. dans Brain Res. Bull. 13 p. 69-77 (1984) et références citées.

Les suspensions de protéines membranaires de cerveau de chat ont été préparées comme décrit par J. Benavides.

Les essais d'inhibition de la fixation du [³H]PK11195 sur les récepteurs par les produits à tester ont été effectués à 4°C, sur 2ml de suspension contenant 0,05mg de protéines et 0,5nM de[³H]PK11195; les incubations ont duré 2h 30.

La fixation non spécifique a été définie comme la quantité de [³H] PK 11195 déplacé du récepteur par 10 μM de chloro-7 dihydro-1,3 méthyl-1 (chloro-4 phényl)-5 2H-benzodiazépine-1,4 one-2 ou RO 5-48-64 autre ligand connu.

10

25

30

35

40

45

50

55

60

65

Les concentrations de produit à tester inhibant 50% de la fixation spécifique de PK11195 au récepteur (Cl50), ont été calculées en appliquant la méthode logit-log décrite par Finney dans Probit analysis-Cambridge University Press. 1979.

b) détermination de la concentration du produit à étudier inhibant 50% de la fixation spécifique du flunitrazépam sur les récepteurs centraux.

Les cerveaux de rats, prélevés après décapitation, sont broyés puis mis en suspension dans une solution aqueuse de saccharose (0,32 M). Le mélange est centrifugé et le culot remis en suspension homo-gène dans une solution tamponnée par TRIS-HCI (50mM; PH = 7,4). Des parties aliquotes de cette suspension sont incubées à 4°C après introduction de [3 H]flunitrazepam, seul ou avec des quantités croissantes du composé à tester. On détermine par scintillation liquide, la quantité de produit marqué fixé sur les membranes après leur séparation du milieu d'incubation par fixation sur filtre de fibres de verre et on calcule par la méthode logit-log la Cl50; la fixation non spécifique du flunitrazépam est déterminée en introduisant 2 μ M de clonazépam.

Les résultats de ces essais pour des composés représentatifs de l'invention figurent dans le tableau V.

TABLEAU V

SR	CI 50 (nM)	CI 50 (nM)
	(périphérique)	(central)
6241	3	>20000
6399	7	12700
6310	1	> 2 0 0 0 0
6351	6	30000
6377	1	> 2 0 0 0 0
6421	5	53000
6492	1	>20000
6522	11	>20000
6552	3 1	12400
6487	39	>20000
6378	1	>20000
6579	1	>20000
6493	1 2	> 2 0 0 0 0
6449	1	>20000
6362	3	>20000
6423	1	12600
6306	1 1	>20000
6319	8	14000
6269	16	> 2 0 0 0 0
6641	356	>20000
6920	18	>20000
6619	132	>20000
6632	101	>20000
6869	172	>20000
6555	5	>20000
6275	22	>20000
6529	16	>20000
6581	43	>10000
6620	2,8	>10000

EP 0 346 208 A1

TABLEAU V (suite I)

SR	CI 50 (nM)	CI 50 (nM)
	(périphérique)	(central)
26676	1,1	>10000
26706	4	>10000
267 78	27	>10000
26794	1 1	>10000
26841	17	>10000
26846	2,9	>10000
26876	0,5	>10000
27195	1	>10000
27196	0,8	>10000
27271	6 8	>10000
26199	13	1640
26290	1 0	>10000
26307	175	>10000
26286	6	5480
26494	2	13000
26485	4 0	>10000
26386	16	>10000
26332	29	>10000
2636.1	16	>10000
26276	0,3	13400
26336	0,3	2120
26409	8 4	>10000
26554	28	>10000
26412	0,4	>10000
26397	4	>10000
26226	4	. 11800
26450	2	>10000
26455	1	>10000
26517	27	>10000

EP 0 346 208 A1

TABLEAU V (suite 2)

SR	CI 50 (nM)	CI 50 (nM)
	(PERIPHERIQUE)	(CENTRAL)
26360	8 9	>10000
26304	13	14500
26439	8 9	>10000
26588	2,1	>10000
26610	35	>10000
26643	1,2	>10000
26858	0,77	>10000
26919	52	>10000
26554	28	>10000
26830	0,13	>10000
26698	1,95	>10000
26878	246	>10000
26640	4 6	3550
26651	0,93	8490
26847	1,59	>10000
27161	2,3	>10000
26980	1,31	9750
26803	7,1	5430
26731	2,74	>10000
26710	3,2	>10000
26578	330	48900
27181	0,89	>10000
27153	1,62	47900
26918	0,16	1680
26708	2,8	>10000
26947	0,79	18600
26838	10,8	7650
K11195	1,3	21400
05-4864	4 4	inactif
IAZEPAM	523	11
HLORDIAZE-	inactif	654
OXIDE		

On a aussi étudié l'affinité in vivo pour les récepteurs de type périphérique de certains composés de l'invention. Les essais ont été effectués chez la souris, en utilisant le ligand [3H] PK11195.

Les produits à tester, en suspension dans une solution aqueuse de carboxyméthylcellulose (10/0 p/v) sont administrés, par voie orale à des groupes de 4 souris, 25 mn avant l'injection intra-veineuse de [3H] PK11195. à raison de 200 uCi/kg (activité spécifique 66 Ci/mmole). 5 mn après l'injection, les animaux sont sacrifiés par décapitation et les différents organes sont prélevés et broyés dans 10 ml de tampon à base de Tris-HCl (50 mM; pH = 7.4) pour donner des homogénats.

Les groupes témoins recoivent uniquement la solution de carboxyméthylcellulose et l'injection de [3H]PK11195.

On détermine pour chaque organe par scintigraphie :

- 1 la quantité de ligand radioactif présente dans un organe en mesurant la radioactivité d'une partie aliquote de l'homogénat.
- 2 la quantité de ligand radioactif fixée sur les tissus membranaires d'un organe en mesurant la radioactivité fixée sur un filtre de fibres de verre par filtration d'une autre partie aliquote de l'homogénat.
- 3. la quantité de ligand radioactif fixée non spécifiquement sur les tissus membranaires en incubant un homogénat témoin avec un excès de RO54864, ligand connu, suivi de la fixation des membranes sur filtre et de la mesure de la radioactivité restant sur les membranes.

L'inhibition de la fixation spécifique, notée FS, est égale à la différence des radioactivités mesurées en 2 et 3 divisée par la mesure en 1.

Les pourcentages d'inhibition de la fixation dans différents organes déterminés pour des composés de l'invention et les produits de référence figurent dans le tableau VI; ils sont donnés par la formule :

EMI ID = 46/1 HE = 20 WI = 95 TI = MAT

5

10

15

20

25

45

50

55

60

65

TABLEAU VI 30 % inhibition SR Dose (mg/kg) rein coeur rate thymus cerveau 35 69 30 34 26276 8 78 37 nd nd 26830 25 64 26 nd nd 25 79 62 nd nd 26412 nd nd 25 64 nd 26876 84 nd 84 nd nd 25 95 26858 40 78 nd nd 25 92 nd 27161 nd nd 80 26846 25 91 nd nd nd 52 25 87 nd 27153 39

76

71

74

52

29

11

31

30

28

32

54

73

27

27

nd = non déterminé

26310

PK 11195

RO5-4864

Revendications

1. Composés de formule I

25

15

15

$$\begin{array}{c}
R_{3} \\
R_{4}-N-CH-(CH_{2})_{n}-CONR_{1}R_{2} \\
R_{5} \\
R_{6} \\
C \\
D \\
R_{10}
\end{array}$$

$$\begin{array}{c}
COZ \\
R_{10} \\
CO)_{P}
\end{array}$$

dans laquelle R_1 et R_2 identiques ou différents, représentent chacun l'atome d'hydrogène, un groupe alkyle en C_1 à C_6 ou alkényle en C_2 à C_6 , un groupe phényle ou benzyle, ou R_1 et R_2 forment avec l'atome d'azote auquel ils sont rattachés un hétérocycle saturé en C_4 à C_8 , R_3 représente l'atome d'hydrogène, un groupe alkyle en C_1 à C_6 , phénylalkyle en C_7 à C_9 , ou phényle

15

20

25

30

35

40

45

50

60

 R_4 représente l'atome d'hydrogène ou un groupe alkyle en C_1 à C_4 ,

 R_5 et R_6 , identiques ou différents représentent chacun un atome d'hydrogène ou d'halogène, un groupe alkyle ou alkoxy en C_1 à C_3 , un groupe nitro, trifluorométhyle,

ou ensemble forment un groupe méthylènedioxy,

Z représente OR_7 dans lequel R_7 représente l'atome d'hydrogène ou un groupe alkyle en C_1 à C_6 ; NR_8R_9 dans lequel R_8 et R_9 représentent chacun l'atome d'hydrogène, un groupe alkyle en C_1 à C_4 , un groupe phényle ou benzyle; un groupe alkyle en C_1 à C_4 ; un groupe benzyle; un groupe aryle en C_4 à C_6 avec ou sans hétéroatome,

phényle ou benzyle; un groupe alkyle en C_1 à C_4 ; un groupe benzyle; un groupe aryle en C_4 à C_6 avec sans hétéroatome, R_{10} représente l'atome d'hydrogène, un groupe alkyle en C_1 à C_4 ou un groupe phényle, étant entendu que lorsque Z n'est pas un groupe benzyle ou aryle, R_3 , ne représente pas H,

les groupes phényle et benzyle pouvant être substitués par les atomes d'halogène, les groupes alkoxy, alkyles et thioalkyles en C₁ à C₃, les groupes nitro, trifluorométhyle et hydroxy, les groupes alkyle et alkoxy pouvant être linéaires, ramifiés ou cycliques

n représente 0,1 ou 2, p représente 0 ou 1 et l'un des symboles A,B,C,D représente N et les autres CH ou A,B,C,D représentent chacun CH,

sous forme d'un racémique ou des énantiomères,

ainsi que leurs sels d'addition avec les acides ou les bases pharmaceutiquement acceptables.

- 2. Composés selon la revendication 1, répondant à la formule I dans laquelle Z est un groupe phényle substitué ou non.
- 3. Composés selon la revendication 2, dans laquelle Z est un groupe phényle non substitué.
- 4. Composés selon la revendication 1, répondant à la formule I dans laquelle Z est un groupe pyridyle, pyrrolyle, furyle, thiényle ou imidazolyle.
 - 5. Composés selon la revendication 1, répondant à la formule I dans laquelle Z est un groupe OR7.
 - 6. Composés selon la revendication 5, dans laquelle R7 représente un groupe alkyle.
 - 7. Composés selon la revendication 5, dans laquelle Z représente un groupe alkyle en C_1 à C_3 .
- 8. Composés selon l'une des revendications 1 à 7 de formule I dans laquelle A, B, C et D représentent chacun CH.
- 9. Composés selon l'une des revendications 1 à 7 de formule I dans laquelle l'un des symboles A, B, C ou D représente N.
- 10. Composés selon la revendication 9 dans laquelle A représente N.
- 11. Composés selon la revendication 1 de formule I dans laquelle R_1 et R_2 représentent chacun un groupe alkyle en C_1 à C_6 , R_3 représente un groupe alkyle en C_1 à C_3 , R_{10} représente l'hydrogène et Z_1 représente C_2 représente C_3 avec C_4 représentant un groupe alkyle en C_4 à C_6 .
- 12. Composés selon la revendication 11 dans lesquels R4 représente l'hydrogène.
- 13. Composés selon la revendication 11 dans lesquels R₄ représente l'hydrogène et le symbole C est substitué.
- 14. Composés selon la revendication 1 de formule I dans laquelle R_1 représente un groupe alkyle, R_2 et Z représentent chacun un groupe phényle pouvant être substitué.
- 15. Composés selon la revendication 1 de formule I dans laquelle R₁ représente un groupe alkyle R₂ et Z représentent un groupe phényle pouvant être substitué, R₃ et R₁₀ représentent chacun l'atome d'hydrogène.
- 16. Composés selon l'une des revendications 14 et 15 pour lesquels les symboles A, B, C et D représentent chacun CH.
- 17. Composés selon l'une des revendications 14 et 15 pour lesquels le symbole A représente N et B, C et D représentent CH.
- 18. [chloro-7(N,N-dipropylcarbamoyl-1)éthylamino-4 quinoléinyl]-3 carboxylate d'éthyle et ses sels d'addition avec les acides phrmacologiquement acceptables.
- 19. N-méthyl N-(chloro-4)phényl [benzoyl-3 chloro-7 quinoléinyl]-4 aminoacétamide et ses sels d'addition avec les acides pharmacologiquement acceptables.

20. N-méthyl N-(chloro-4)phényl (benzoyl-3 naphtyridine-1,5)yl-4 aminoacétamide et ses sels d'addition avec les acides pharmacologiquement acceptables.

21. Procédé de préparation des composés de formule I, caractérisé en ce que l'on fait réagir l'amine de formule II :

avec un composé de formule III :

5

10

15

20

25

30

35

40

45

50

55

60

$$\begin{array}{c|c}
 & X \\
 & Coz \\
 & R_6 & R_{10} \\
 & (O) P
\end{array}$$

dans lequelles R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_{10} , Z, A, B, C, D, n et p ont les mêmes significations que dans la revendication 1 et X représente un atome d'halogène ou un groupe sulfonate.

22. Composition pharmaceutique comprenant comme principe actif un composé selon l'une quelconque des revendications 1 à 20 ainsi qu'un excipient compatible.

Revendications pour les Etats contractants suivants: ES,GR

1. Procédé de préparation de composés de formule l

$$\begin{array}{c}
R_{3} \\
R_{4}-N-CH-(CH_{2})_{n}-CONR_{1}R_{2} \\
R_{5} \\
R_{6} \\
C \\
D \\
N \\
R_{10}
\end{array}$$

dans laquelle R_1 et R_2 identiques ou différents, représentent chacun l'atome d'hydrogène, un groupe alkyle en C_1 à C_6 ou alkényle en C_2 à C_6 , un groupe phényle ou benzyle, ou R_1 et R_2 forment avec l'atome d'azote auquel ils sont rattachés un hétérocycle saturé en C_4 à C_8 ,

R₃ représente l'atome d'hydrogène, un groupe alkyle en C₁ à C₆, phénylalkyle en C₇ à C₉, ou phényle R₄ représente l'atome d'hydrogène ou un groupe alkyle en C₁ à C₄,

 R_5 et R_6 , identiques ou différents représentent chacun un atome d'hydrogène ou d'halogène, un groupe alkyle ou alkoxy en C_1 à C_3 , un groupe nitro, trifluorométhyle, ou ensemble forment un groupe méthylènedioxy,

Z représente OR7 dans lequel R7 représente l'atome d'hydrogène ou un groupe alkyle en C1 à C6; NR8R9 dans lequel R8 et R9 représentent chacun l'atome d'hydrogène, un groupe alkyle en C1 à C4, un groupe phényle ou benzyle; un groupe alkyle en C1 à C4; un groupe benzyle; un groupe aryle en C4 à C6 avec ou sans hétéroatome.

R₁₀ représente l'atome d'hydrogène, un groupe alkyle en C₁ à C₄ ou un groupe phényle,

étant entendu que lorsque Z n'est pas un groupe benzyle ou aryle, R₃, ne représente pas H,

les groupes phényle et benzyle pouvant être substitués par les atomes d'halogène, les groupes alkoxy, alkyles et thioalkyles en C₁ à C₃, les groupes nitro, trifluorométhyle et hydroxy, les groupes alkyle et alkoxy pouvant être linéaires, ramifiés ou cycliques

n représente 0,1 ou 2, p représente 0 ou 1 et l'un des symboles A,B,C,D représente N et les autres CH ou A,B,C,D représentent chacun CH,

sous forme d'un racémique ou des énantiomères,

ainsi que leurs sels d'addition avec les acides ou les bases pharmaceutiquement acceptables, caractérisé en ce que l'on fait réagir l'amine de formule II :

avec un composé de formule III:

dans lequelles R₁, R₂, R₃, R₄, R₅, R₆, R₁₀, Z, A, B, C, D, n et p ont les mêmes significations que dans la formule I et X représente un atome d'halogène ou un groupe sulfonate.

- 2. Procédé selon la revendication 1, caractérise en ce que l'on prépare les composés répondant à la formule I dans laquelle Z est un groupe phényle substitué ou non.
- 3. Pocédé selon la revendication 2, caractérisé en ce que l'on prépare les composés dans laquelle Z est un groupe phényle non substitué.
- 4. Procédé selon la revendication 1, caractérisé en ce que l'on prépare les composés répondant à la formule I dans laquelle Z est un groupe pyridyle, pyrrolyle, furyle, thiényle ou imidazolyle.
- 5. Procédé selon la revendication 1, caractérisé en ce que l'on prépare les composés répondant à la formule I dans laquelle Z est un groupe OR7.
- 6. Procédé selon la revendication 5, caractérisé en ce que l'on prépare les composés de formule I dans laquelle R7 représente un groupe alkyle.
- 7. Procédé selon la revendication 5, caractérisé en ce que l'on prépare les composés de formule I dans laquelle Z représente un groupe alkyle en C₁ à C₃.
- 8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'on prépare les composés de formule I dans laquelle A, B, C et D représentent chacun CH.
- 9. Procédé selon l'une des revendications 1 à 7 de formule I dans laquelle l'un des symboles A, B, C ou D représente N.
- 10. Procédé selon la revendication 9, caractérisé en ce que l'on prépare les composés de formule I dans laquelle A représente N.
- 11. Procédé selon la revendication 1, caractérisé en ce que l'on prépare les composés de formule I dans laquelle R₁ et R₂ représentent chacun un groupe alkyle en C₁ à C₆, R₃ représente un groupe alkyle en C₁ à C₃, R₁₀ représente l'hydrogène et Z représente OR₇ avec R₇ représentant un groupe alkyle en C₁ à C₆.
- 12. Procédé selon la revendication 11, caractérisé en ce que l'on prépare les composés dans lesquels R4 représente l'hydrogène.
- 13. Procédé selon la revendication 11 dans lesquels R₄ représente l'hydrogène et le symbole C est substitué.
- 14. Procédé selon la revendication 1, caractérisé en ce que l'on prépare les composés de formule I dans laquelle R₁ représente un groupe alkyle, R₂ et Z représentent chacun un groupe phényle pouvant être substitué.
- 15. Procédé selon la revendication 1, caractérisé en ce que l'on prépare les composés de formule I dans laquelle R₁ représente un groupe alkyle R₂ et Z représentent un groupe phényle pouvant être substitué, R₃ et R₁₀ représentent chacun l'atome d'hydrogène.
- 16. Procédé selon l'une des revendications 14 et 15, caractérisé en ce que l'on prépare les composés pour lesquels les symboles A, B, C et D représentent chacun CH.
- 17. Procédé selon l'une des revendications 14 et 15 pour lesquels le symbole A représente N et B, C et D représentent CH.
- 18. Procédé selon la revendication 1, caractérisé en ce que l'on prépare le [chloro-7(N,N-dipropylcarbamoyl-1)éthylamino-4 quinoléinyl]-3 carboxylate d'éthyle et ses sels d'addition avec les acides pharmacologiquement acceptables.
- 19. Procédé selon la revendication 1, caractérisé en ce que l'on prépare N-méthyl N-(chloro-4)phényl [benzoyl-3 chloro-7 quinoléinyl]-4 aminoacétamide et ses sels d'addition avec les acides pharmacologiquement acceptables.
- 20. Procédé selon la revendication 1, caractérisé en ce que l'on prépare N-méthyl N-(chloro-4)phényl (benzoyl-3 naphtyridine-1,5)yl-4 aminoacétamide et ses sels d'addition avec les acides pharmacologiquement acceptables.

65

5

20

25

30

35

40

45

50

55

RAPPORT DE RECHERCHE EUROPEENNE

EP 89 40 1548

DO	CUMENTS CONSIDI	ERES COMME PE	RTINENTS	
Catégorie	Citation du document avec des parties pe	indication, en cas de besoin	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.4)
A	EP-A-0 205 362 (SA * Page 30, ligne 8 revendications 1,13 (Cat. D)	- page 34, ligne	35; 382 1,22	C 07 D 215/54 C 07 D 215/42 C 07 D 215/60 C 07 D 471/04
A,D	EP-A-0 245 054 (IC * Page 6, ligne 24 revendications 1,8	- page 7a, ligne	19;	C 07 D 401/06 A 61 K 31/47 A 61 K 31/44 // C 07 D 471/04
A	EP-A-0 018 735 (AMPRODUCTS) * Page 2; revendica		1,22	C 07 D 221:00 C 07 D 221:00)
A	CHEMICAL ABSTRACTS, novembre 1982, page 162862n, Columbus, TITKOVA et al.: "Sy 4-aubstituted 3-carbethoxy[carbox, their properties activity", & KHIM16(6), 699-701 * Résumé *	706, résumé no. Ohio, US; R.M. nthesis of y]-1,5-naphthyri and biological		DOMAINES TECHNIQUES RECHERCHES (Int. Cl.4) C 07 D 215/00 C 07 D 471/00 C 07 D 401/00 A 61 K 31/00
	ésent rapport a été établi pour to	Date d'achevement de la re	abanda da d	The same of the sa
	HAYE	04-08-198		Examinateur NNAN J.
X : part Y : part auti A : arri O : divi	CATEGORIE DES DOCUMENTS (ticulièrement pertinent à lui seul ticulièrement pertinent en combinaisore document de la même catégorie ère-plan technologique ulgation non-écrite ument intercalaire	E:do da n avec un D:cl L:clt	éorie ou principe à la base de l cument de brevet antérieur, ma te de dépôt ou après cette date lé dans la demande é pour d'autres raisons	'învention ais publié à la

EPO FORM 1503 03.82 (P0402)

[11] Patent/Publication Number: EP346208A1

[43] Publication Date: Dec, 13 1989

[54] 4-AMINO QUINOLINES AND NAPHTHYRIDINES, PROCESS FOR THEIR PREPARATION AND THEIR USE AS MEDICAMENTS

[72] Inventor(s):

Mendes, Etienne; , F 31000 ToulouseFR Vernieres, Jean Claude; , F 31600 MuretFR Keane, Peter Eugène; , F 31120 Portet sur GaronneFR Bachy, André; , F 31100 ToulouseFR

[71] Assignee/Applicant: SANOFI SA; , FR

[30] Priority:

EP Jun, 5 1989 EP1989401548A FR Jun, 6 1988 FR19887498A FR Jun, 15 1988 FR19888025A

[21] Application Number: EP1989401548A

[22] Application Date: Jun, 5 1989

[51] Int. Cl.8: C07D021542 C07D021554 C07D021560 C07D040106 C07D047104 C07D049104

[52] **ECLA:** C07D021542 C07D021554; C07D021560; C07D040106+215+213; C07D047104+221B+221B+2; C07D049104+317A+221A

[56] References Cited:

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

18735 Nov, 12 1980 EP A1 Santilli, Arthur Attilio 205362 Dec, 17 1986 EP A1 Vernieres, Jean Claude 245054 Nov, 11 1987 EP A1 Warawa, Edward John

OTHER PUBLICATIONS:

CHEMICAL ABSTRACTS, vol. 97, no. 19, 8 novembre 1982, page 706, résumé no. 162862n, Columbus, Ohio, US; R.M. TITKOVA et al.: "Synthesis of 4-aubstituted 3-carbethoxyÄcarboxyÜ-1,5-naphthyridines, their properties and biological activity", & KHIM.-FARM. ZH. 1982, 16(6), 699-701

Attorney, Correspondent, or Firm - Polus, Camille75441 Paris Cedex 09FR

[57] ABSTRACT

The invention relates to the compounds of formula I in which R1 and R2 denote the hydrogen atom,

a C1-C6 alkyl or alkenyl group, a phenyl or benzyl group, or R1 and R2 with the nitrogen atom to which they are attached form a saturated C4-C8 heterocyclic ring, R3 denotes hydrogen, a C1-C6 alkyl, phenyl or C7-C9 phenylalkyl group, R4 denotes the hydrogen atom or a C1-C4 alkyl group, R5 and R6 denote a hydrogen or halogen atom, a C1-C3 alkyl or alkoxy group or a nitro or trifluoromethyl group; Z denotes an OH, C1-C6 alkoxy, C1-C4 alkyl, benzyl C4-C6 aryl group with or without a heteroatom, or NR8R9, R8 and R9 being hydrogen, a C1-C4, phenyl or benzyl group; R10 denotes the hydrogen atom, a C1-C4 alkyl group or a phenyl group; n denotes 0,1 or 2, p denotes 0 or 1 and one of the symbols A,B,C,D denotes N and the others CH or each of A,B,C and D denotes CH, and their addition salts. Medications.

DETAILS

La présente invention concerne de nouveaux dérivés d'amino-4 quinoléines et naphtyridines, leur procédé de préparation et leur application en théra-peutique.

On connaît déjà des dérivés de naphtyridines et surtout de quinoléines utiles en thérapeutique pour des activités pharmacologiques très diverses, telles que antibactériennes, antihypertensives, anxiolyti-ques, anti-inflammatoires, et analgésiques, activités dépendant essentiellement des groupes substituant les noyaux aromatiques. Parmi ceux-ci, quelques dérivés ont été signalés comme se fixant sur les récepteurs de benzodiazépines, on peut citer notamment :-les amino-4 carbamoyl-3 quinoléines, dé-crites dans EP-A-0 245 054, de formule A : dans laquelle R₁ , R₂ , R₃ , R₄ sont H ou des groupes hy-drocarbonés : alkyle, aryle, aralkyle;-les quinoléines, décrites dans FR-A-2 582 514, de formule B dans laquelle R₁ , R₂ , R₃ , R₄ représentent H ou des groupes alkyles ou aryles, Z représente un groupe aryle et X représente CH-R₄ , N-R₄ , SO, SO₂ , O ou S et V et W représentent H, halogène, alkyle, alkoxy, NO₂ ou CF₃ ;-les naphtyridines, décrites dans EP-A-0 234 971, de formule C dans laquelle R représente un groupe cycloalkyle, hétéroaryle, phényle substituté ou non, A représente N, S, SO, ou O et R₁ , R₂ représentent notamment H ou un groupe alkyle;-les quinoléines, décrites dans FR-A-2 581 382, de formule D dans laquelle R₁ , R₂ , R₃ représentent H, un groupe alkyle ou aryle, et R₄ représente OH, un groupe alkoxy ou alkyle.

On a maintenant trouvé de nouveaux composés qui ne se fixent pas, à des doses pharmacologiquement significatives, sur les récepteurs centraux des ben-zodiazépines comme ces composés, mais se fixent uni-quement sur Les récepteurs de type périphérique dont on sait que l'occupation entraı̂ne des activités phar-macologiques différentes de celles résultant de l'ac-tivation des récepteurs centraux.

L'invention concerne les composés répondant à la formule I dans laquelle R₁ et R₂, identiques ou différents, représentent chacun l'atome d'hydrogène, un groupe alkyle en C₁ à C□ ou alkényle en C₂ à C□, un groupe phényle ou benzyle, ou R₁ et R₂ forment avec l'atome d'azote auquel ils sont attachés un hétérocycle saturé en C₄ à C₁, pouvant comporter un second hétéroatome, tels que pipéridine, pyrrolidine, morpholine, pipérazine, R₃ représente l'atome d'hydrogène, un groupe alkyle en C₁ à C□, phénylalkyle en C□ à C□, ou phényle, R₄ représente l'atome d'hydrogène ou un groupe alkyle en C₁ à C₄, R□ et R□, identiques ou différents représentent chacun un atome d'hydrogène ou d'halogène, un groupe alkyle ou alkoxy en C1 à C3, un groupe nitro, trifluorométhy-le, ou ensemble forment un groupe méthylènedioxy, Z représente OR□ et R□ représente l'atome d'hydrogène ou un groupe alkyle en C_1 à $C\Box$; $NR\Box R\Box$ et $R\Box$ identiques ou différentes reorésentent chacun l'atome d'hydrogène, un groupe alkyle en C₁ à C₄, un groupe phényle ou benzyle; un groupe alkyle en C₁ à C₄; un groupe benzyle ou un groupe aryle en C₄ à C□ avec ou sans hétéroatome tel que phényle, pyridyle, pyrrolyle, furyle, thiényle, ou imidazolyle, R₁ □ représente l'atome d'hydrogène, un groupe alkyle en C₁ à C₄ ou un groupe phényle; n représente 0, 1 ou 2; p représente 0 ou 1; et l'un des symboles A,B,C,D représente N et les autres CH ou A.B.C.D représentent chacun CH, étant entendu que lorsque Z n'est pas un groupe aryle ou benzyle, R₃ ne représente pas H ainsi que leurs sels d'addition avec les acides ou les bases

pharmaceutiquement acceptables.

Parmi les acides, on peut citer les acides halogénhydriques, nitrique, sulfurique, phosphorique ou les acides carboxyliques tels que l'acide acétique, formique, succinique, tartrique, oxalique et asparti-que ou les acides sulfoniques tels que l'acide métha-nesulfonique ou benzénesulfonique; les sels avec les bases peuvent être des sels alcalins, alcalino-terreux ou des sels avec des amines telles que la lysine, la piperazine ou l'éthanolamine.

Les groupes alkyles peuvent être linéaires, ramifiés ou cycliques.

Les groupes phényles ou benzyles peuvent être substitués par les halogènes, les groupes alkoxy, alkyles ou thioalkyles en C_1 à C_3 , les groupes nitro, trifluorométhyle ou hydroxyle.

Lorsqu'il existe un carbone assymétrique, les racémiques et les stéréoisomères sont objets de l'invention.

Parmi les produits préférés objets de l'in-vention, on peut citer les esters de quinoléine ou de naphtyridine-1,5 de formule I dans laquelle $R_1 \, \Box$ est H, $R \Box$ représente un groupe alkyle en C_1 à C_3 et plus particulièrement éthyle, R_3 représente un alkyle en C_1 à C_3 et plus particulièrement le groupe méthyle, n est 0 et R_4 représente H et mieux ceux où le symbole C est substitué par un atome différent de H, ainsi que les composés pour lesquels Z représente un groupe aromati-que ou hétéroaromatique, n est 0 et R_4 représente H et plus particulièrement parmi ceux-ci, ceux dans lesquels R_1 représente un radical alkyle en C_1 à C_4 et R_2 représente un noyau phényle substitué ou non.

Un autre objet de l'invention est le procédé de préparation des composés de formule I qui consiste à faire réagir sur l'amine de formule II : le dérivé de formule III dans lesquelles R_1 , R_2 , R_3 , R_4 , R_{\square} , R_{\square} , R_1 , R_1 , R_2 , R_3 , R_4 , R_3 , R_4 , R_3 , R_4 , R_4 , R_5 , $R_$

La substitution de l'amine II peut être ef-fectuée dans des conditions classiques, à une tempé-rature comprise entre 80°C et 180°C, et de préférence pour fixer l'acide formé en présence d'une base organique ou minérale telle qu'une amine tertiaire ou un carbonate alcalin ; on opère en général dans un sol-vant organique, tel qu'un hydrocarbure comme le toluè-ne, tel qu'un alcool comme l'éthanol ou l'isopropanol, tel qu'un éther comme le dioxanne, ou tel qu'un sol-vant aprotique polaire, comme le diméthylformamide ; la réaction peut aussi être effectuée à une pression supérieure à la pression atmosphérique, comprise entre 5 et 70 x 10 □ Pa, dans une enceinte close; on peut aussi effectuer la réaction en milieu diphasique, en présence d'un catalyseur de transfert de phase.

Certains dérivés de formule II ont déjà été décrits, tel que l'amino-2 N-N-diéthylpropanamide dans J. Chem. Soc. p. 2972-2980 (1952). Les autres peuvent être préparés à partir de produits connus en appli-quant des méthodes classiques et par example :-à partir des dérivés d'aminoacides IV, dont la fonc-tion amine est protégée sous forme de carbamate labile et la fonction acide est activée par un groupe succi-nimidoyle ou p-nitrophénylcarboxy comme décrit par G.W. Anderson dans J.A. C.S. 86 p. 1839-1842 (1964) : dans laquelle Z_1 représente succinimidyl ou p-nitro-phényl, R_3 , R_4 , et n ont les mêmes significations que dans la formule I et R représente un groupe alkyle en C_1 à C_4 , sur lesquels on fait réagir l'amine HN R_1 R_2 , pour donner le composé de formule V : (dans laquelle R_1 , R_2 , R_3 , R_4 , et n ont la même signi-fication que dans la formule I et R est un alkyle), avant d'éliminer le groupement carboxylique protégeant l'amine terminale par action d'un acide tel que les acides trifluoroacétique, sulfurique ou chlorhydrique;-à partir d'amides de formule VI (dans laquelle X représente Cl ou Br, et R_1 , R_2 , R_3 et n ont les mêmes significations qu'à la formule I) qui peuvent être préparés selon le procédé décrit dans Synthetic Organic Chemistry-chap.

19; R.B. Wagner et H.D. Zook (1953), publié par J. Wiley et Sons et pour n=O et $R_3=H$ par action de HNR₁ R₂ sur ClCH₂ COCl, sur lesquels on fait réagir l'amine R₄ -N H₂, à une température comprise entre 60° C et 130° C, en solution dans un alcool ou un éther, à pression atmosphérique ou entre 5 et $40 \times 10 \square$ Pa, éventuellement en présence d'une base minérale ou organique; le mode opératoire peut être celui décrit par J.B.M. Bettolo et J.F. Cavalla dans Gazz. Chim. Ital. p. 896-907 (1954)-par l'intermédiaire d'un phtalimide de formule VII lorsque R₄ = H, selon une méthode analogue à celle décrite par R.D. Haworth et coll. dans J. Chem. Soc. p. 2972-2980 (1952).

Certaines quinoléines de départ ou les dérivés hydroxylés en 4 correspondants (formule III : A = B = C = D = CH; X = OH ou Cl) sont des composés connus décrits notamment dans J. Med. Chem $\underline{22}$, 7 p. 816-823 (1979) ou dans FR-A-2 581 382, précédemment cité; et celles dans lesquelles R_1 \square est différent de H, peuvent être préparées par la méthode décrite par R.P. Staiger et E. B. Miller dans J. Org. Chem. $\underline{24}$, p. 1214 (1959).

Les naphtyridines de formule III, dans les-quelles X = OH et Z représente $OR \square$ peuvent être préparées par des méthodes classiques, précédemment décrites, par example, dans Heterocyclic compounds-vol. 7 (1961) : naphtyridines (Chap. 2) Ed. J. Wiley.

Les nouveaux composés de formule III dans lesquels X = OH et Z représente un groupe alkyle ou aryle peuvent être obtenus par cyclisation de composés de formule VIII : dans laquelle $R \square$, $R \square$ et A, B, C, D ont les mêmes si-gnifications que dans la formule I, et Z représente un groupe alkyle en C_1 à C_2 du aryle en C_3 à C_4 ou aryle en C_4 à C_4 du phényle, furyle, thiényle, pyridyle, imidazolyle ou pyrolyle.

On peut effectuer cette cyclisation par chauffage du composé VIII, à une température comprise entre 180°C et 310°C, dans un solvant de point d'ébul-lition élevé, tel que le diphényle ou le diphényléther ou leur mélange.

La cyclisation peut aussi être réalisée par action de l'acide sulfurique et de l'anhydride acéti-que selon un procédé décrit par R.K. MAPARA, dans J. Indian Chem. Soc., 1954, 31, 951, ou par action d'un ester polyphosphorique (PPE) comme décrit par H. AGUI, dans J. Heterocyclic. Chem. 1975, 557.

Les composés de formule VIII peuvent être obtenus par réaction d'un mélange équimoléculaire d'orthoformiate d'éthyle, d'amine aromatique et de dérivé d'acétate d'éthyle selon le schéma réactionnel: dans ces formules $R\Box$, $R\Box$, Z et A, B, C, D ont les mêmes significations que dans la formule VIII.

La réaction s'effectue en général à une tem-pérature de 80 à 160°C, de préférence dans un solvant, en éliminant l'éthanol au fur et à mesure de sa formation.

Les composés de formule VIII peuvent aussi être préparés à partir de l'amine aromatique du schéma ci-dessus, sur laquelle on fait réagir l'orthoformiate d'éthyle pour donner, de façon connue, une formamidine de formule : dans laquelle $R \square$, $R \square$ et A, B, C, D ont la même signi-fication que dans la formule I et qui donne le produit de formule VIII par réaction avec le dérivé d'acétate d'éthyle du schéma précédent en présence d'un excès d'orthoformiate d'éthyle.

Les composés de formule III dans lesquels X représente un halogène sont préparés, de façon classique par réaction des dérivés hydroxylés correspon-dants, avec SOCl₂, POCl₃ ou PCl□ lorsque X = Cl ou avec PBr₃ ou POBr₃ lorsque X = Br, de préférence en excès, à une température comprise entre 60°C et 190°C, éventuellement dans un solvant tel que le dichloroé-thane, le toluène ou le chlorobenzène.

Les composés de formule I qui sont des N-oxydes peuvent être préparés à partir des N-oxydes des composés de formule III dans laquelle X représente un halogène; ceux-ci résultent de l'action d'un péra-cide sur l'amine, selon un procédé classique par ex-emple par action de l'acide m-chloroperbenzoïque sur la quinoléine ou la naphtyridine en solution dans l'acide acétique.

Les composés de formule I dans lesquels Z = OH sont obtenus par action d'une base, par exemple d'un carbonate alcalin en milieu hydroalcoolique sur l'ester correspondant, suivie de la libération de l'acide de son sel.

Les composés de formule I dans lesquels $Z = NR \square R\square$ sont obtenus par action de l'amine $HNR\square R\square$ sur le composé de formule I dans lequel $Z = OR\square$, et de pré-férence $OC_2 \quad H\square$, à une température comprise entre 60°C et 120°C sans solvant ou dans un solvant tel que le diméthylformamide. Ils peuvent être obtenus aussi à partir des composés de formule III dans laquelle X est un halogène et Z est Cl, que l'on fait réagir sur NH_3 ou l'amine de formule $HNR\square R\square$ pour obtenir le composé de formule III dans lequel Z est $HNR\square R\square$, les composés de formule I étant ensuite préparés de façon classi-que; certains des chlorures d'acide de départ ont été décrits dans FR-A-2 581 382.

Les énantiomères des composés de formule I peuvent être préparés soit à partir des amines de formule II optiquement actives, notamment lorsque les amino-acides de formule sont com-merciaux, soit par recristallisation d'un sel de l'a-mine de formule I racémique avec un acide optiquement actif tel que les acides camphosulfoniques lévogyre ou dextrogyre, selon une technique connue.

Les sels d'addition des fonctions amines des composés de formule I sont préparés par action d'un acide minéral ou organique sur l'amine en solution et le sel est isolé soit par évaporation du solvant soit par addition d'un non solvant dans le milieu.

Les sels d'acide carboxylique sont préparés par action d'une base minérale telle que NaOH ou d'une base organique sur l'acide en solution.

L'invention concerne aussi les médicaments comprenant au moins un composé de formule I ou l'un de ses sels pharmaceutiquement acceptables.

Ces composés ont, en effet, une affinité, in vitro et in vivo, pour les récepteurs des benzodiazé-pines de type périphérique sans présenter d'affinité spécifique pour les récepteurs centraux des benzodiazépines.

On sait que les ligands de ces récepteurs périphériques ont une action sur le système cardiovasculaire, comme vasodilatateurs périphériques qui augmentent le flux sanguin coronaire, qu'ils sont immunomodulateurs ou qu'ils peuvent modifier le com-portement en étant anxiolytiques.

Les composés selon l'invention pourront être, selon les cas, utilisés chez l'homme pour la prévention et le traitement des maladies cardiovas-culaires ou encore comme antiallergiques et dans la prévention et le traitement des états infectieux ou encore pour le traitement des états anxieux. Chez les animaux et notamment les bovins, les porcins, les ovins et les caprins, les composés selon l'invention seront utilisés pour la prévention et le traitement des états infectieux, notamment en renforçant leurs défenses immunitaires.

Les médicaments de l'invention seront admi-nistrés chez l'homme par exemple par voie orale, sous forme de comprimés, gélules ou granulés, ou par voie rectale sous forme de suppositoires ou par voie parentérale sous forme de soluté injectable, à raison de 1 mg à 400 mg par jour, en une ou plusieurs prises selon la structure du composé, l'âge du malade et la nature et la gravité de la maladie.

Ils pourront aussi être administrés aux ani-maux, incorporés à l'alimentation ou par injection, à des

doses comprises entre 0,01 mg/jour et 100 mg/kg/-jour.

Les composés de formule I, ou leurs sels, seront associés aux excipients usuels compatibles avec leur réactivité chimique, pour donner des formes phar-maceutiques à libération immédiate ou prolongée.

Les exemples suivants illustrent l'inven-tion. Les analyses élémentaires des produits isolés répondent aux normes habituelles. Les produits sont caractérisés par leurs points de fusion instantanés éventuellement par leur spectre RMN (m signifie massif, d doublet, s singulet, t triplet et (x H) que la bande correspond à x protons) la référence interne est $Si(CH_3)_4$); les spectres infra rouge présentent les bandes caractéristiques des structures attendues. Sauf mention contraire, p=0 dans les exemples.

1. Préparation des amines de formule II :a) N,N-dipropyl (amino-2) propanamide (formule II : $R_1 = R_2 = C_3 H \square$, $R_3 = CH_3$, $R_4 = H$, n = 1)

58g de N-(terbutoxycarbonyl) alanine, prépa-réE à partir d'alanine racémique, 33g de N-hydroxysuccinimide et 59g de dicyclohexylcarbodiimide, en solu-tion dans 1400 ml de dioxanne, sont maintenus sous agitation pendant 6 heures. On sépare alors le préci-pité et évapore le solvant sous pression réduite. Le résidue est lavé par une solution aqueuse de Na₂ CO₃ à 5%.

Après séchage, on isole 81g de composé de formule IV : $(R_3 = CH_3, R_4 = H, R = C_2, H\Box, n = 1)$ qui fond à 143°C. (A partir de L-alanine, on obtient dans les mêmes con-ditions un produit fondant à 168°C).

On dissout 80g de ce produit dans 700 ml de tétrahydrofuranne contenant 140 ml de dipropylamine et on laisse 48 heures sous agitation. On évapore alors le solvant sous pression réduite et on obtient après lavage à l'eau et séchage 80g de composé de formule V dans laquelle $R_1 = R_2 = C_3$ $H\square$, $R_3 = CH_3$, $R_4 = H$, $R = C_2$ $H\square$, n = 1, qui fond à 92°C. (Le produit préparé à partir du produit IV dérivé de L-alanine ne cristallise pas).

Ce composé est dissous dans 400ml de chloro-forme; on y ajoute, à 5°C, 160ml d'acide trifluoracétique en solution dans 200ml de chloroforme et après 3 heures d'agitation, on évapore le solvant sous pres-sion réduite. On verse de l'eau sur le résidu et neu-tralise par addition de NaOH avant d'extraire le pro-duit attendu dans le dichlorométhane. On obtient ainsi 29g d'huile jaune. Spectre (H-RMN: 60 MHz, DMSOd6) δ (ppm): 0,6-1,2 (m, 9H); 1,2-1,8 (m,4H); 2,2-2, 6 (s,2H échangeables); 3-3,4 (m,5H). (On isole de la même façon l'amine dérivée de la L--alanine ou son trifluoroacétate après évaporation du chloroforme).

b) N,N-dibutyl (amino-2) propanamide:

7 g du composé de formule IV, préparé en a) sont dissous dans 100 ml de tétrahydrofuranne contenant 30 ml de N,N-dibutylamine; après 30 heures sous agitation, le solvant est éliminé par distillation et le résidu est lavé à l'eau pour donner 7,5g de produit de formule V, dans laquelle $R_1 = R_2 = C_4 H \square$, $R_3 = CH_3$, $R_4 = H$, $R = C_2 H \square$ et n = 1, qui fond à 80°C.

Ce produit est dissous dans 100 ml de CHCl₃ contenant 28 ml de CF₃ -COOH à 0°C; et traité comme son analogue.

c) N-méthyl N-(chloro-4)phényl (amino-2)pro-panamide :

On introduit lentement, à 5°C, 17,6ml de chlorure de chloro-2propionyle dans une solution, dans 50ml d'éther éthylique, de 24, 2ml de N-méthyl (chlo-ro-4)phénylamine et 30ml de triéthylamine; on laisse le mélange revenir à température ambiante, sous agita-tion; 5 heures après la fin de l'addition

le précipité est séparé, le solvant est évaporé sous pression réduite et le résidu est dissous dans l'éther éthyli-que; la solution organique est lavée par une solution aqueuse de HCl (0,5 N) puis à l'eau avant élimination du solvant pour donner, avec 55% de rendement, le pro-duit de formule VI, dans laquelle $R_1 = CH_3$ $R_2 = (Cl-4)$ $C \square H_4$, $R_3 = CH_3$, n = 0, X = Cl.

5g de ce composé sont maintenus à 100°C, pendant 3 heures, dans un autoclave de 100ml contenant 60 ml d'ammoniac liquide. Après 12 heures, au cours desquelles le milieu revient à température ambiante, on élimine l'ammoniac et on extrait l'amine cherchée dans l'éther éthylique.

On obtient ainsi 2,5 g d'huile.

¹H RMN (60 mHz, CDCl₃)δ: 1,1-1,2 (d,6H); 2-2,3 (m,2H échangeables); 3,2 (s,3H); 3,3-3,6 (m,1H); 6,9-7,5 (m,4H).

d) N,N-dipropyl (amino-2)-phényl-3 propana-mide (formule II : $R_1 = R_2 = C_3$ H \square , $R_3 = CH_2$ C \square H \square , $R_4 = H$, n = 0)

26,5g de N-(tert-butoxycarbonyl) phényl alanine (F = 110°C), préparée par action du ditert-butyldicarbonate sur la phényl alanine racémique, 11,5g de N-hydroxysuccinimide, 20,6g de dicyclohexylcarbo-diimide sont introduits dans 500ml de dioxanne; après 4 heures d'agitation, l'insoluble est séparé et le solvant évaporé sous pression réduite. On obtient le produit de formule IV correspondant, fondant à 138°C.

Après réaction avec 12g de dipropylamine on obtient le produit de formule V correspondant, fondant à 94°C, qui par action de l'acide trifluoracétique dans le chloroforme, donne le trifluoroacétate de l'amide de formule II recherché, fondant à 108°C, avec un rendement global de 40%.

e) amino-2 N-méthyl N-(chloro-4 phényl) acé-tamide (formule II : R $_1$ = CH $_3$, R $_2$ = 4-ClC \Box H $_4$, R $_3$ = R $_4$ = H, n = O)

Dans une solution dans la tétrachlorure de carbone, de 111,5g de chlorure d'acide de N-phtaloylglycine, on introduit simultanément goutte à goutte entre 0° et 5° C, 70,8g de N-méthyl (chloro-4) aniline et 101g de triéthylamine. On élimine le chlorhydrate de triéthylamine précipité en fin de réaction, après lavage 2 fois avec 100 ml de CCl_4 . Après séchage des solutions organiques et élimination du solvant, on obtient avec 95% de rendement le phtalimide de formule VII de $F = 180^{\circ}$ C (isopropanol).

79,5g de ce composé est mis en suspension dans 1500 ml d'une solution 0,16 M de N_2 H_4 , H_2 O dans C_2 $H \square OH$ et le milieu est maintenu 3 heures au reflux avant distillation du solvant. Le résidu es repris dans 500 ml de HCl aqueux 2N et l'ensemble est main-tenu 2 heures à 50°C. Après filtration, le filtrat est amené à sec et le résidu est recristallisé dans l'iso-propanol (rdt 75%) F = 186° C.

2. Préparation des quinoléines de formule III1) Benzoyl-3 dichloro-4,6 quinoléine.a) Préparation du benzoyl-3 chloro-6 hydro-xy-4 quinoléine, (III : $R \square = 6$ -Cl; $R \square = H$; $R_1 \square = H$; $Z = C \square H \square$; A = B = C = D = CH; X = OH)

Un mélange de chloro-4 aniline (25,5g), d'orthoformiate d'éthyle (33,3 ml) et de benzoylacé-tate d'éthyle (34,6 ml) est chauffé à 165°C jusqu'à ce que l'alcool formé soit entièrement distillé. Par addition d'éther de pétrole, l'intermédiaire (chloro-4 anilino)-3 benzoyl-2 acrylate d'éthyle cristallise. Il est recristallisé dans le cyclohexane, F = 111°C (Rdt 45%) puis ajouté à 150 ml d'oxyde de diphényle porté à une température de 200°C.

L'ensemble est chauffé à 240°C pendant 5 heures tout en effectuant une distillation lente. Après addition d'éther de pétrole les cristaux obtenus sont filtrés et séchés sous vide F>260°C (Rdt 86%).

- b) Préparation du benzoyl-3 dichloro-4,6 quinoléine (III : X = Cl; R \square = 6-Cl; R \square = H; R₁ \square = H; Z = C \square H \square ; A = B = C = D = CH)
- 2 g de benzoyl-3 chloro-6 hydroxy-4 quino-léine sont ajoutés par petites quantités sous azote à 10 ml de chlorure de phosphoryle. La solution est portée 3 heures au reflux. Après évaporation du sol-vant, le résidu est versé sur de la glace et le mé-lange neutralisé par addition de carbonate de sodium. Le produit attendu est extrait au dichlorométhane : cristaux (éther isopropylique) F = 148°C (Rdt 48%).

Les quinoléines de formule III, dans la-quelle X = Cl, $R \square = H$ mentionnées dans le tableau I suivant ont été préparées en appliquant le même mode opératoire que ci-dessus. $ZR \square F^{\circ}CC \square H \square 7$ - $F95C \square H \square 7$ - $Cl148C \square H \square 7$ - $Cl121C \square H \square 8$ - $Cl171C \square H \square 5$ - $Cl135C \square H \square H130C \square H \square 6$ - $Cl148C \square H \square 4$ N-47- $Cl132C \square H \square 4$ N-37- $Cl134C \square H \square 7$ - $Cl134C \square H \square 6$ -Cl134C

- 2) Benzoyl-3 chloro-4 méthoxy-6 quinoléine (III : X = Cl, $R \square = 6$ -OCH₃ , $R \square = H$; $R_1 \square = H$; $Z = C \square H \square$, A = B = C = D = CH).a) bis(méthoxy-4 phényl) formamidine
- 20 g de méthoxy-4 aniline et 166 ml d'ortho-formiate d'éthyle sont chauffés 2 heures à 150°C. L'alcool formé est distillé simultanément. On préci-pite la formamidine par addition d'éther de pétrole dans le milieu refroidi. F = 114°C (Rdt 40%).
- b) benzoyl-2 (méthoxy-4 anilino)-3 acrylate d'éthyle (VIII : $R\Box = 4$ -OCH₃ ; $R\Box = H$; $Z = C\Box H\Box$; A = B = C = D = CH)

Un mélange de bis(méthoxy-4 phényl)formami-dine (8 g), d'orthoformiate d'éthyle (6,2 ml) et de benzoylacétate d'éthyle (5,4 ml) est chauffé 2 heures à 170°C en distillant l'alcool formé. On poursuit le chauffage après une nouvelle addition de benzoylacé-tate d'éthyle (5,4 ml) pendant 2 heures.

Le produit attendu est purifié par chromato-graphie sur colonne en éluant avec un mélange de cyclohexane + d'acétate d'éthyle (6/4) pour donner une huile claire (Rdt 60%).

- c) benzoyl-3 hydroxy-4 méthoxy-6 quinoléine, (III : $R \square = 6\text{-OCH}_3$; $R \square = H$; $R_1 \square = H$; $Z = C \square H \square$; A = B = C = D = CH; X = OH)
- 10 g de benzoyl-2 (méthoxy-4 anilino)-3 acrylate d'éthyle sont ajoutés à 155 ml d'oxyde de diphényle à 220°C. L'ensemble est maintenu 20 mn à 245°C pendant que l'éthanol formé est distillé. Par addition d'éther de pétrole à la solution refroidie, le produit attendu cristallise. F = 260°C (Rdt 50%).
- d) 2 g de benzoyl-3 hydroxy-4 méthoxy-6 quinoléine sont ajoutés à 40 ml de chlorure de phosphoryle et la solution est portée 3 heures au reflux. Après concentration le résidu est versé sur de la glace. La solution est neutralisée par addition de carbonate de sodium, le dérivé chloré est extrait dans le dichlorométhane. Cristaux $F = 147^{\circ}$ C (Rdt 85%).
- 3) Dichloro-4,6 (chloro-4 benzoyl)-3 quino-léine (III : $R \square = 6$ -Cl; $R \square = H$; $Z = (Cl-4)C \square H_4$; A = B = C = D = CH; X = Cl)
 - a) 2 g de chloro-4 aniline, 2,27 g d'ortho-formiate d'éthyle, 3,47 g de chloro-4 benzoyl acétate d'éthyle (préparé selon Burton, J. Chem. Soc. 1928, 904), sont chauffés 4 heures, en distillant l'éthanol. Le (chloro-4 anilino)-3 chloro-4 benzoyl-2 acrylate d'éthyle brut obtenu est ajouté

ensuite à 76 ml de diphényl éther, le mélange est chauffé à 250°C pendant 30 minutes. La (chloro-4 benzoyl)-3 chloro-6 hydroxy-4 quinoléine est obtenue avec un rendement de 53%. F> 260°C.

• b) 2,5 g du produit précédent sont ajoutés à 25 ml de chlorure de phosphoryle.

On chauffe 3 heures au reflux. Après traite-ment la dichloro-4,6 (chloro-4 benzoyl)-3 quinoléine est obtenue, F = 170°C (Rdt 90%).

4) Dichloro-4,7 isonicotinoyl-3 quinoléine (III : X = Cl; $R \square = 7 - Cl$; $R \square = H$; $R_1 \square = H$; $Z = C \square H_4 \ N--2$; A = B = C = D = CH)a) isonicotinoyl-acétate d'éthyle :

l'isonicotinate d'éthyle (20g 0,132 mole) est introduit dans une suspension dans le tétrahydro-furanne (120 ml) d'hydrure de sodium (0,185 mole) et le mélange st porté au reflux. Après addition d'acé-tate d'éthyle (19,4 ml 0,198 mole) le reflux est main-tenu une nuit. Après hydrolyse et évaporation du sol-vant organique, la phase aqueuse est lavée à l'acétate d'éthyle et elle est acidifiée par addition d'acide acétique. Après extraction par le dichlorométhane, et évaporation du solvant organique, les cristaux obtenus sont séchés sous vide. F = 70°C (Rdt 86%).

b) (chloro-3 anilino)-3 isonicotinoyl-2 acrylate d'éthyle, (VIII : $R \square = 3$ -Cl; $R \square = H$; $Z = C \square H_4$ N-3; A = B = C = D = CH)

Un mélange de bis(chloro-3 phényl) formami-dine (5g), d'isonicotinoyl acétate d'éthyle (3,64g) et d'orthoformiate d'éthyle (3,74 ml) est chauffé 45 minutes à 140°C, avant une nouvelle addition d'isoni-cotinoyl acétate d'éthyle (3,64 g); le milieu réac-tionnel est alors encore chauffé 2 heures à 150°C.

Le produit attendu est purifié par chromato-graphie sur colonne de silice, en éluant avec un mé-lange cyclohexane/acétate d'éthyle (1/1) puis recris-tallisé dans un mélange d'éther isopropylique/acétate d'éthyle (8/2) F = 93°C (Rdt 87%).

¹H RMN (80 MHZ, CDCl₃) 0,8-1,2 (t, 3H) 3,8-4,2 (q, 2H) 7-7,5 (m, 6H) 8,4-8,8 (m, 3H) 12-12,5 (d, 1H échangeable).

c) chloro-7 hydroxy-4 isonicotinoyl-3 qui-noléine, (III : $R \square = 7$ -Cl; $R \square = H$; $R_1 \square = H$; $Z = C \square H_4 \ N$ --2; A = B = C = D = CH; X = OH)

5,3 g de (chloro-3 anilino)-3 isonicotinoyl-2 acrylate d'éthyle sont chauffés 20 minutes à 250°C dans 85 ml de diphényléther. Les cristaux obtenus par refroidis-sement sont lavés à l'éther de pétrole puis recris-tallisés dans diméthylacétamide. F > 260°C (Rdt 60%).

- d) dichloro-4,7 isonicotinoyl-3 quinoléine
- 2,7 g de chloro-7 hydroxy-4 isonicotinoyl-3 quinoléine sont ajoutés sous azote à 60 ml de $POCl_3$ et portés 5 heures au reflux. Après filtration le préci-pité est versé dans la glace. La solution aqueuse est basifiée par le carbonate de sodium avant d'en extrai-re dans le dichlorométhane, le dérivé chloré : cris-taux (éther isopropylique) F = 132°C (Rdt 53%).
- 3. Préparation des naphtyridines de formule III1) benzoyl-3 chloro-4 naphtyridine-1,5 (III: X = Cl; $R \square = R \square = H$; $Z = C \square H \square$; A = N; B = C = D = CH)a) (pyridyl-3)amino-3 benzoyl-2 acrylate d'éthyle, (VIII : $R \square = R \square = H$; $Z = C \square H \square$; A = N; B = C = D = CH)

Un mélange équimoléculaire d'amino-3 pyri-dine, d'orthoformiate d'éthyle et de benzoylacétate d'éthyle est chauffé 3 heures à 125-130°C, sous un léger courant d'azote. La réaction terminée, le

pro-duit est purifié par chromatographie sur colonne de silice (toluène-éthanol, 95-5). F = 115°C (éther isopropylique) Rdt 60%.

- 1H RMN (60 MHz CDCl₃ + acide trifluoroacé-tique): 0, 7-1,2 (m,3H) 3,8-4,2 (q,2H) 7,1-7,9 (m,7H) 8,3-8,8 (m,3H).
- b) benzoyl-3 hydroxy-4-naphtyridine-1,5 (III : $R \square = R \square = H$; $R_1 \square = H$; $Z = C \square H \square$; A = N; $B = C \square = D \square = CH$; X = OH)
- 120 g de (pyridyl-3) amino-3 benzoyl-2 acry-late d'éthyle sont cyclisés dans le Dowtherm A (mélange de 816 ml de diphényloxyde et 318 g de biphényle) par chauffage à 245-250°C, pendant 30 minutes. Le com-posé qui précipite dans le milieu après refroidisse-ment à température ambiante, est filtré et lavé à l'éther de pétrole Rdt 40%; F>260°C.
- c) benzoyl-3 chloro-4 naphtyridene-1,5 (III : X = Cl; $R \square = R \square = H$; $R_1 \square = H$; $Z = C \square H \square$; A = N; B = C = D = CH)
- 19,5 g de benzoyl-3 hydroxy-4 naphtyridine-1,5 sont ajoutés à 200 ml d'oxychlorure de phosphore au reflux. Le reflux est maintenu 0,5 heure. La réac-tion terminée, l'excès d'oxychlorure de phospore est éliminé sous pression réduite et le résidu huileux est neutralisé par addition de NaOH aqueux concentré. Après extraction par du dichlorométhane, la phase or-ganique est lavée à l'eau puis séchée sur sulfate de magnésium. Le produit est recristallisé dans cyclo-hexane. F = 119°C (Rdt 60%).
- 2)[(bromo-7-chloro-4 naphtyridine-1,5)yl-3] carboxylate d'éthyle

obtenu en applicant le mode opératoire pré-cédent, au dérivé hydroxylé; ce produit fond à 130°C.

- 3) benzoyl-3 chloro-4 méthyl-2 naphtyridi-ne-1,5 (formule II : X = Cl; $R \square = R \square = H$; $R_1 \square = CH_3$; $Z = C \square H \square$: A = N; B = C = D = CH; p = O)a) benzoyl-3 hydroxy-4 méthyl-2 naphtyridi-ne-1.5.
- Le benzoyl-2(amino-3 pyridinyl)-3 crotonate d'éthyle, préparé par condensation de benzoyl-2 étho-xy-3 crotonate d'éthyle et d'amino-3 pyridine, est cyclisé avec 55% de rendement par chauffage dans le Dowtherm selon le procédé décrit précédemment. F > 260°C.
- ¹HRMN (80MHz, DMSOd \Box) δ : 2,4 (s,3H); 7,4-8,2 (m, 7H); 8,7-8,9 (d,1H); 12,1-12,4(m,1H).
- b) 7g du dérivé précédent sont dissous dans 50 ml de toluène et on ajoute, à la température de reflux du solvant, 10 ml de POCl₃, goutte à goutte. Le reflux est maintenu pendant 30 minutes après la fin de l'addition et les solvants sont évaporés. Après neu-tralisation et séchage, le résidu fond à 120°C. Rendement 40%.
- 4) benzoyl-3 chloro-4 naphtyridine-1,6 (III : X = Cl; $R \square = R \square = H$; $R_1 \square = H$; $Z = C \square H \square$, A = C = D = CH, B = N)
- 28 g de benzoyl-3 hydroxy-4 naphtyridine--1,6, F > 260°C, préparé à partir de l'amino-4 pyridine en appliquant le procédé décrit précédemment pour la préparation de la benzoyl-3 chloro-4 naphttyridine-1,5 sont additionnés à 300 ml d'oxychlorure de phosphore et le mélange est maintenu une heure au reflux. Après traitement, le composé attendu est recristallisé dans l'acétate d'éthyle. Rdt 80%
- ¹H RMN (60 MHz, CDCl₃) 7,4-8 (m,6H) 8,8-9 (m,2H) 9, 75 (s,1H).

5) benzoyl-3 dichloro-4,7 naphtyridene-1,8 (III : X = Cl; $R \square = 7$ -Cl; $R_1 \square = R \square = H$; $Z = C \square H \square$, A = B = C = CH, D = N)a) benzoyl-3 chloro-7 hydroxy-4 naphtyridi-ne-1,8 (III : $R \square = 7$ -Cl; $R \square = R_1 \square = H$; $Z = C \square H \square$; A = B = C = CH, D = N; X = OH)

Au mélange, porté à 210°C, de 185 ml de di-phényloxyde et 65 g de biphényle est ajouté 27,5 g de (chloro-6 pyridyl-2) amino-3 acrylate d'éthyle. L'ad-dition terminée, on élève la température jusqu'à 240--245°C et maintenant cette température pendant 2 heures. Après refroidissement le composé qui précipite est filtré et est lavé à l'éther de pétrole. (F => 260°C).

¹H RMN (80MHz, DMSO-d \square)7,4-8 (m,6H) 8,3-8,7 (m,2H) 13-13,5 (m,1H)

b) benzoyl-3 dichloro-4,7 naphtyridine-1,8:

9g de benzoyl-3-chloro-7 hydroxy-4 naphtyri-dine-1,8 et 30 ml d'oxychlorure de phosphore sont portés au reflux pendant une heure. L'oxychlorure de phosphore en excès est éliminé par distillation sous pression réduite et le résidu est dissous dans le dichlorométhane. Cette phase organique est lavée jusqu'à neutralité par une solution aqueuse de NaOH. Après décantation et lavage à l'eau, la solution de dichlorométhane est séché sur sulfate de sodium puis concentrée. Le produit est recristallisé dans le cyclohexane. F = 160°C (Rdt 66%)

¹H-RMN (60 MHz, CDCl₃) 7,4-7,9 (m,6H) 8,5-8,7 (d, 1H) 9 (s,1H).

6) [(dichloro-4,7 naphtyridine-1,8)yl-3] carboxylate d'éthyle

10 g de [(chloro-7 hydroxy-4 naphtyridine--1,8-yl-3] carboxylate d'éthyle et 100 ml de POCl₃ sont portés au reflux, durant 1 heure, puis l'excés de POCl₃ est éliminé par distillation et le résidu, repris avec du chlorure de méthylène est neutralisé par addition d'une solution aqueuse concentrée de NaOH. Après séchage et évaporation du solvant le résidu est purifié par chromatographie sur colonne de silice en éluant avec un mélange de toluène et d'éthanol (98/2-v/v). Après recristallisation dans le cyclohexane, la naphyridine fond à 134-136°C.

7) benzoyl-3 chloro-4 naphtyridine-1,7 (for-mule III : X = Cl; $R \square = R \square = R_1 \square = H$; $Z : C \square H \square$; A = B = D = CH; C = N; C =

a) 7-oxyde de benzoyl-3 hydroxy-4 naphtyri-dine-1,7 préparé à partir d'amino-3 pyridine 1-oxyde, décrit par J.C. Murray et C. R. Hauser dans J. Org. Chem. p. 2008-14 (1954), et de benzoylacétate d'éthyle et d'orthoformiate d'éthyle selon le procédé décrit pour la benzoyl-3 hydroxy-4 naphtyridine-1,5; on ob-tient ce produit avec 70% de rendement F > 260°C.

b) benzoyl-3 hydroxy-4-naphtyridine-1,7

6.5~g du N-oxyde précédemment préparé sont introduits dans 240 ml d'acide acétique concentré, avec 12,7 ml d'anhydride acétique et 2g de charbon palladié à 10% et le mélange est agité à température ambiante sous atmosphère d'hydrogène, jusqu'à fin d'absorption de H_2 . Après filtration, le filtrat est amené à sec et le résidu repris dans 300 ml d'eau est neutralisé par addition de NaOH; le précipité formé est isolé; on obtient ainsi avec 85% de rendement le produit attendu qui fond à 228°C.

c) 2g du dérivé hydroxyle précédent sont chlorés par chauffage dans 20 ml de POCl₃ au reflux, pendant 45 minutes; le produit isolé après évaporation de l'excès de POCl₃ et neutralisation est purifié par chromatographie sur colonne de silice, en éluant par un mélange de toluène et d'éthanol (99/1); la naphty-ridine obtenue avec 60% de rendement fond à 123°C.

¹HRMN (80MHz, CDCl₃) δ : 7,4-7,9 (m,5H); 8-8, 2(d,1H); 8,7-8,9 (d,1H); 9 (s,1H); 10,6 (s,1H).

8) benzoyl-3 chloro-4 naphtyridine-1,5 oxy-de-1 (formule III : X = Cl; $R \square = R \square = R_1 \square = H$; $Z = C \square H \square$; A = N; B = C = D = CH; p = 1)

On agite 4 jours à température ambiante 5,37g de benzoyl-3 chloro-4 naphtyridine-1,5 et 3,8g d'acide de m-chloroperbenzoïque dans 200 ml d'acide acétique pur. L'acide acétique est alors évaporé et le résidu repris dans 500 ml de chlorure de méthylène; la phase organique est lavée par une solution saturée de bicarbonate de sodium puis à l'eau; après séchage, le solvent est éliminé et le résidu purifié par chromato-graphie et recristallisé dans le toluène. F = 135°C.

¹HRMN (80 MHz,CDCl₃) δ: 7,6-8,3 (m,6H); 9-9,2 (m,2H); 9,3-9,5 (m,1H).

EXEMPLE 1 : [(N,N-dipropylcarbamoyl-1 éthylamino)-4 trifluoromé-thyl-7 quinoléinyl]-3 carboxylate d'éthyle (formule I : $R_1 = R_2 = C_3 H \Box$; $R_3 = CH_3$, $R_4 = H$, p = o, $R \Box = H$, $R \Box = 7$ -CF₃, $R_1 \Box = H$, $Z = OC_2 H \Box$, A = B = C = D = CH) numéro de référence : SR 26241.

On chauffe 6 heures à sa température de reflux, une solution dans 100ml d'éthanol, de 2,6g de N,N-dipropyl(amino-2) propanamide, 3g de (chloro-4 trifluorométhyl-7 quinoléinyl-3)carboxylate d'éthyle (F = 60°C) et 2 ml de triéthylamine.

Après élimination du solvant le résidu est repris dans l'eau et le dichlorométhane. La phase organique est décantée, le solvant évaporé et le résidu purifié par chromatographie sur une colonne de silice en éluant à l'éther isopropylique. Après recristalli-sation dans l'hexane, on obtient avec 32% de rendement le produit recherché; F = 100 °C.

¹H RMN (80 mHz, CDCl₃) δ ; 0,6-1 (m,6H); 1,3--1, 8 (m,10H); 2,9-3,8 (m,4H); 4,3-4,7 (1,2H); 4,9-5,3 (m,1H); 7,5-8,35 (m,3H); 9,2 (s,1H); 9,5-9,7 (d,1H échangeable).

EXEMPLES 2 à 30 : esters dérivés de quinoléine

Ces exemples de composés de formule I dans laquelle A = B = C = D = CH, et n = p = 0 figurent dans le tableau II; les produits ont été préparés en appliquant le méthode décrite à l'exemple 1.

EXEMPLE 31 :{[Chloro-6 (N,N-dipropylcarbamoyl)-1 éthylamino)-4 naphtyridine-1,5]yl-3} carboxylate d'éthyle. (formule I : $R_1 = R_2 = C_3 H \square$, $R_3 = CH_3$, $R_4 = R \square = H$, $R \square = 6$ -Cl, $R_1 \square = H$, $Z = OC_2 H \square$; A = N, B = C = D = CH n = p = o) Référence : SR 26293

On maintient 1 heure, à sa température de relfux, une solution dans 30 ml d'éthanol de 2,7 g de [(dichloro-4,6 naphtyridine-1,5) yl-3] carboxylate d'éthyle F = 114°C, 2,2 g d'hémisulfate de N,N-dipro-pyl(amino-2)propanamide et 3,1 ml de triéthylamine.

Le solvant est alors éliminé sous pression réduite et le résidu est dissous dans 50ml de dichlorométhane; la solution organique est lavée par 2 fois 10ml d'eau, puis le solvant est éliminé, après sécha-ge.

Le résidu est purifié par chromatographie sur colonne de silice en éluant avec un mélange de toluène et d'éthanol (99/1).

Après recristallisation dans le cyclohexane, le produit attendu fond à 133°C. ¹H RMN (60MH, CDCl₃)δ: 0,6-1 (t,6H); 1,1-1,8 (m,10H); 2,8-3,8 (m,4H); 4,1-4,6 (q,2H); 6,1-6,5 (m,1H); 7,2--7,5 (d, 1H); 7,7-8 (s,1H); 8,95 (s,1H); 10,4-10,7 (d,1H échangeable).

http://www.micropat.com/get-file/82216187755168154403496179792119/EP346208A... 1/19/2007

EXEMPLE 32 :{[chloro-6(N,N-dipropylcarbamoylméthyl)-1 éthylamino)--4 naphtyridine-1,5]-yl-3} carboxylate d'éthyle (formule I : $R_1 = R_2 = C_3 \ H\Box$, $R_3 = CH_3$; $R_4 = R\Box = H$; $R\Box = 6$ -Cl; $R_1 \Box = H$; $Z = OC_2 \ H\Box$; A = N, B = C = D = CH; n = 1; p = 0. Référence : SR 26331.

En appliquant le mode opératoire décrit à l'exemple 31, on obtient avec 37% de rendement, le produit recherché qui fond à 102°C après recristalli-sation dans l'acétate d'éthyle. ¹H RMN (80 MHz, CDCl₃) 8: 0,55-1,00 (t,6H); 1,15-1,80 (m,10H);2,50-2,95 (m,2H); 3,00-3,50 (m,4H); 4,10-4,50 (q,2H); 5,40-5,80 (m,1H); 7,30-7,50 (d,1H); 7, 90-8,10 (d,1H); 9,01 (s,1H); 9,40-9,60 (d,1H).

EXEMPLE 33:{[bromo-7(N,N-dipropylcarbamoyl-1 éthylamino)-4 naph-tyridine-1,5]yl-3} carboxylate d'éthyle (formule I : $R_1 = R_2 = C_3 H\Box$, $R_3 = CH_3$, $R_4 = R\Box = R_1\Box = H$, $R\Box = 7-Br$, $Z=OC_2$ $H\Box$, n=p=O, A=N, B=C=D=CH). Référence : SR 26579.

3,01g de [(bromo-7 chloro-4 naphtyridine--1,5)yl-3] carboxylate d'éthyle, 2,86g de trifluoracé-tate de N,N-dipropylamino-2 propanamide et 2,7 ml de triéthylamine sont dissous dans 50ml d'éthanol et la solution est portée une heure au reflux. Le solvant est évaporé; une solution du résidu dans le chlorure de méthylène est lavée à l'eau et le solvant évaporé.

Le produit attendue, après recristallisation dans le cyclohexane fond à 96°C.

EXEMPLE 34:{[chloro-7 N-N dipropylcarbamoylméthyl)-1 éthylamino)--4 naphtyridine-1,5]-yl-3} carboxylate d'éthyle (for-mule I : $R_1 = R_2 = C_3$ H \Box ; $R_3 = CH_3$; $R_4 = R_{\Box} = R_1$ $\Box = H$; $R_{\Box} = 7$ -Cl: Z-OC₂ H \Box ; A = N, B = C = D = CH; n = 1; p = O). Référence SR 26869.

En appliquant le mode opératoire décrit à l'exemple 31, on obtient avec 40% de rendement, cet ester qui fond à 88°C après recristallisaion dans le pentane.

EXEMPLE 35: {[chloro-7(N,N-dipropylcarbamoyl-1 éthylamino)-4 naphtyridine-1,8]-yl-3} carboxylate d'éthyle (for-mule I : $R_1 = R_2 = C_3$ H \square , $R_3 = CH_3$, $R_4 = R \square = R_1$ $\square = H$, $R \square = 7$ -Cl, Z-OC₂ H \square , A = B = C = CH, D = N, n = p = O). Référence : SR 26493.

3g de [(dichloro-4,7 naphtyridine-1,8)-yl-3] carboxylate d'éthyle, 2,5g d'hémisulfate de N,N-dipropyl (amino-2)propanamide et 3, 6ml de triéthylamine sont introduits dans 30ml d'isopropanol et le mélange est maintenu 3h au reflux. Le solvant est évaporé; le résidu, en solution dans le chlorure de méthylène, est lavé à l'eau puis chromatographié sur colonne de sili-ce en éluant avec un mélange de cyclohexane et d'acé-tate d'éthyle (80/20). Après recristallisation dans l'éther éthylique, il fond à 93°C.

EXEMPLE 36: {[chloro-7 (N-méthyl N-(chloro-4 phényl)carbamoylmé-thylamino)-4 naphtyridine-1,8]-yl-3} carboxylate d'é-thyle (formule I: $R_1 = CH_3$; $R_2 = 4-ClC\Box H_4$; $R_3 = CH_3$; $R_4 = R\Box = R_1 \Box = H$; $R\Box = 7-Cl$, $Z = OC_2 H\Box$; A = B : C = CH, D = N; n = p = o). Référence SR 26555.

Préparé avec un rendement de 10% environ, en appliquant le mode opératoire décrit à l'exemple 35, ce produit après recristalisation dans l'éthanol fond à 206-208°C.

EXEMPLE 37:N,N-dipropyl[(benzoyl-3 chloro-6)quinolyl-4]aminoacé-tamide (formule I: $R_1 = R_2 = C_3 H \Box$; $R_3 = R_4 = R_1 \Box = H$; $R \Box = 6$ -Cl; $Z = C \Box H \Box$; n = p = o; A = B = C = D = CH). Référence SR 26199.

2 g de benzoyl-3 dichloro-4,6 quinoléine et 1,55 g de chlorhydrate d'amino-2 N,N-dipropyl acétamide, préparé selon Haworth et al., J. Chem. Soc., 1952, 2972, sont chauffés au reflux 4 heures en pré-sence de 2,2 ml de triéthylamine dans 50 ml d'isopro-panol. Après concentration à sec, l'huile

http://www.micropat.com/get-file/82216187755168154403496179792119/EP346208A... 1/19/2007

résiduelle est dissoute dans le dichlorméthane, et la phase orga-nique est lavée à l'eau.

Le produit attendu peut être purifié par chromatographie sur gel de silice (éluant : cyclohe-xane-acétate d'éthyle (1/1) : on obtient des cristaux jaune clair. F = 109°C-110°C (Rdt 46%).

¹H RMN (80 MHz Me₂ SO-d \square) (p.p.m.) : 0,6-0,8 (t, 6H) 1,3-1,7 (m,4H) 2,9-3,3 (m,4H) 4,1-4,3 (d,2H) 7,4-7,9 (m,8H) 8,4 (s,1H) 8,5 (t, 1H, échangeable D₂ 0).

EXEMPLES 38 à 73

Les composés préparés à partir des quinoléi-nes de formule III dans lesquelles Z représente un groupe aryle et $R \square = R_1 \square = H$, n = p = O, en appliquant le procédé décrit à l'exemple 37, sont indiqués dans le tableau III suivant:

EXEMPLE 74: [(N,N-dipropylcarbamoyl-1 éthylamino)-4 chloro-6 quinoléinyl]-3 carboxamide (Formule I: $R_1 = R_2 = C_3$ H \square ; $R_3 = CH_3$; $R_4 = R \square = H$; n = p = O; $R \square = 6$ -Cl, $R_1 \square = H$, $Z = NH_2$, A = B = C = D = CH) numéro de référence 27277 (hydrate)a) (dichloro-4,6 quinoléinyl)-3 carboxamide

3g de chlorure d'acide (dichloro-4,6 quino-léinyl)-3 carboxylique préparé selon la méthode dé-crite dans J. Med. Chem. 14 (1), p. 17-23, (1971) sont mis en solution dans 80 ml de dioxanne dans lequel on fait barboter pendant 2 h. un courant d'ammoniac ga-zeux à la température du laboratoire. On filtre le précipitéde chlorure d'ammonium puis on évapore le solvant. Le résidu est dissous dans du chlorure de mé-thylène et la phase organique est lavée à l'eau jus-qu'à neutralité puis séchée. Le cristaux obtenus après évaporation du solvant sont lavés avec de l'é-ther isopropylique. F = 209°C Rdt = 65%.

b) On porte au reflux pendant 3 h 2g de l'amide précédent, 3,4g d'amino-2 N,N-dipropylpropanamide et 3,5 ml de triéthylamine dans 50 ml d'iso-propanol. On évapore le solvant, dissout le résidu dans le chlorure de méthylène et lave la phase orga-nique dans l'eau. Après séchage et élimination de CH_2 Cl_2 , le résidu est recristallisé deux fois dans l'acétate d'éthyle. $F=184^{\circ}C$ (monohydrate) Rdt = 40%.

EXEMPLE 75: N,N-dipropyl {[(benzoyl-3) naphtyridine-1,-5]yl-4} aminoacétamide (Formule I: $R_1 = R_2 = C_3 \ H\Box$; $R_3 = R_4 = R\Box = R\Box = R_1 \ \Box = H$; n = p = o; $Z = C\Box H\Box$; A = N; B = C = D = CH). Référence SR 26278 (hydrate)

Une solution, dans 30 ml d'éthanol, de 1,075 g de benzoyl-3 chloro-4 naphtyridine-1,5 et 0,86 g de chlorhydrate de l'amino-2 N,N-dipropyl-acétamide et 1,23 ml de triéthylamine est portée au reflux pendant 1,5 heures. Après concentration à sec, le résidu est dissous dans le dichlorométhane et la phase organique est lavée à l'eau avant d'être décantée et séchée sur sulfate de magnésium.

Le composé recherché est purifié par chroma-tographie sur colonne de silice en éluant avec un mélange toluène/éthanol (99-1). F = 108°C (éther diiso-propylique) (Rdt 45%).

 1 H RMN (60 MHz Me $_{2}$ SO-d $_{2}$) 0,5-0,9 (m,6H) 1,1-1, 7 (m,4H) 2,8-3,3 (q,4H) 3,6 (s,1H (hydrate) 4,2--4,3 (d,2H) 7,4-7,9 (m,6H) 8,1-8,5 (m,2H) 8,7-8,9 (d,-1H) 9,3-9,8 (m,1H échangeable).

EXEMPLE 76: N-méthyl N-(chloro-4 phényl) (benzoyl-3 naphtyridine--1,5) yl-4 aminoacétamide loxyde (formule $I: R_1 = CH_3$; $R_2 = Cl-4$ $C\Box H_4$; $R_3 = R_4 = R\Box = R\Box = R_1$ $\Box = H$; n = 0; p = 1; $Z = C\Box H\Box$; A = N; B = C = D = CH). Référence SR 26838.

Un mélange dans 60 ml d'éthanol de 1g de benzoyl-3 chloro-4 naphtyridine-1,5 1-oxyde, 0,9 g de

http://www.micropat.com/get-file/82216187755168154403496179792119/EP346208A... 1/19/2007

chlorhydrate d'amino-2 N-méthyl N-(chloro-4 phényl) acétamide et de 0,54 ml de triéthylamine est maintenu sous agitation 15 heures à température ambiante; le milieu est concentré à sec puis repris dans le chlo-rure de méthylène. Le produit final est purifié par chromatographie sur colonne de silice en éluant par un mélange de toluène et éthanol (90/10 v/v) et recristallisé dans le toluène. F = 243°C. Rendement 40%.

EXEMPLES 77 à 117 :

Les naphtyridines figurant dans le tableau IV pour lesquelles $R \square = R_1 \square = H$, p = 0 suivant ont été préparées en appliquant le procédé décrit dans l'exem-ple 75.

Les composés des exemples précédents sont peu toxiques, et chez la souris leur DL50 par voie orale est en général supérieure à 1000 mg/kg; ainsi celle du composé de l'exemple 1 est de 1100 mg/kg et celle de l'exemple 84 est supérieure à 1800 mg/kg. Les produits des exemples 3, 67, 90, 107, 114 sont atoxi-ques à la dose de 500 mg/kg p.o. chez la souris.

On a aussi étudié leur affinité in vitro, pour les récepteurs centraux des benzodiazépines et ceux de type périphérique selon les méthodes décrites dans ce qui suit : on a déterminé in vitro la CI50, c'està-dire la concentration du produit étudié dans le milieu qui inhibe 50% de la fixation sur les récepteurs des benzodiazépines présents, d'un ligand connu comme spécifique de ces récepteurs. Les résultats obtenus montrent que les produits de l'invention ont une affinité spécifique pour les récepteurs de type périphérique mais ne se fixent pas sur les récepteurs centraux.

Les méthodes mises en oeuvre ont été les suivantes : a) détermination de la concentration du produit étudié inhibant 50% de la fixation spécifique sur les récepteurs de type périphérique du (chloro-2 phényl)-1N-méthyl N-(méthylpropyl)isoquinolyl-3 car-boxamide (ou PK 11195), ligand connu de ces récep-teurs.

La technique est analogue à celle décrite par J. Benavides et Coll. dans Brain Res. Bull. 13 p. 69-77 (1984) et références citées.

Les suspensions de protéines membranaires de cerveau de chat ont été préparées comme décrit par J. Benavides.

Les essais d'inhibition de la fixation du [³H]PK11195 sur les récepteurs par les produits à tes-ter ont été effectués à 4°C, sur 2ml de suspension contenant 0,05mg de protéines et 0,5nM de[³H]PK11195; les incubations ont duré 2h 30.

La fixation non spécifique a été définie comme la quantité de [³H] PK 11195 déplacé du récep-teur par 10 μM de chloro-7 dihydro-1,3 méthyl-1 (chlo-ro-4 phényl)-5 2H-benzodiazépine-1,4 one-2 ou RO 5-48--64 autre ligand connu.

Les concentrations de produit à tester inhibant 50% de la fixation spécifique de PK11195 au récepteur (CI50), ont été calculées en appliquant la méthode logit-log décrite par Finney dans Probit ana-lysis-Cambridge University Press. 1979.

b) détermination de la concentration du produit à étudier inhibant 50% de la fixation spéci-fique du flunitrazépam sur les récepteurs centraux.

Les cerveaux de rats, prélevés après décapi-tation, sont broyés puis mis en suspension dans une solution aqueuse de saccharose (0, 32 M). Le mélange est centrifugé et le culot remis en suspension homo-gène dans une solution tamponnée par TRIS-HCl (50mM; PH = 7,4). Des parties aliquotes de cette suspension sont incubées à 4°C après introduction de [³H]flunitrazepam, seul ou avec des

quantités croissantes du composé à tester. On détermine par scintillation liquide, la quantité de produit marqué fixé sur les membranes après leur séparation du milieu d'incubation par fixation sur filtre de fibres de verre et on calcule par la méthode logit-log la CI50; la fixation non spécifique du flunitrazépam est déterminée en introduisant 2 µM de clonazépam.

Les résultats de ces essais pour des com-posés représentatifs de l'invention figurent dans le tableau V.

On a aussi étudié l'affinité in vivo pour les récepteurs de type périphérique de certains com-posés de l'invention. Les essais ont été effectués chez la souris, en utilisant le ligand [³H] PK11195.

Les produits à tester, en suspension dans une solution aqueuse de carboxyméthylcellulose (1% p/v) sont administrés, par voie orale à des groupes de 4 souris, 25 mn avant l'injection intra-veineuse de [3 H] PK11195, à raison de 200 μ Ci/kg (activité spéci-fique 66 Ci/mmole) . 5 mn après l'injection, les ani-maux sont sacrifiés par décapitation et les différents organes sont prélevés et broyés dans 10 ml de tampon à base de Tris-HCl (50mM; pH = 7,4) pour donner des homogénats.

Les groupes témoins reçoivent uniquement la solution de carboxyméthylcellulose et l'injection de [³H]PK11195.

On détermine pour chaque organe par scinti-graphie :

• 1-la quantité de ligand radioactif présen-te dans un organe en mesurant la radioactivité d'une partie aliquote de l'homogénat.

• 2-la quantité de ligand radioactif fixée sur les tissus membranaires d'un organe en mesurant la radioactivité fixée sur un filtre de fibres de verre par filtration d'une autre partie aliquote de l'homo-génat.

• 3.-la quantité de ligand radioactif fixée non spécifiquement sur les tissus membranaires en incubant un homogénat témoin avec un excès de RO5-4864, ligand connu, suivi de la fixation des membranes sur filtre et de la mesure de la radioactivité restant sur les membranes.

L'inhibition de la fixation spécifique, notée FS, est égale à la différence des radioactivités mesurées en 2 et 3 divisée par la mesure en 1.

Les pourcentages d'inhibition de la fixation dans différents organes déterminés pour des composés de l'invention et les produits de référence figurent dans le tableau VI; ils sont donnés par la formule : SRDose (mg/kg)%

inhibitioncerveauratethymusreincoeur262768783734693026830256426ndndnd26412257962ndndnd211195157129305427RO5-4864157411287327nd = non déterminé

CLAIMS (FRENCH)

1. Composés de formule I dans laquelle R_1 et R_2 identiques ou différents, re-présentent chacun l'atome d'hydrogène, un groupe alkyle en C_1 à $C\square$ ou alkényle en C_2 à $C\square$, un groupe phényle ou benzyle, ou R_1 et R_2 forment avec l'atome d'azote auquel ils sont rattachés un hétérocycle saturé en C_4 à $C\square$, R_3 représente l'atome d'hydrogène, un groupe alkyle en C_1 à $C\square$, phénylalkyle en $C\square$ à $C\square$, ou phényle R_4 représente l'atome d'hydrogène ou un groupe alkyle en C_1 à C_4 , $R\square$ et $R\square$, identiques ou différents représentent chacun un atome d'hydrogène ou d'halogène, un groupe alkyle ou alkoxy en C_1 à C_3 , un groupe nitro, trifluorométhy-le, ou ensemble forment un groupe méthylènedioxy, Z représente $OR\square$ dans lequel $R\square$ représente l'atome d'hydrogène ou un groupe alkyle en C_1 à $C\square$; $OR\square$ dans lequel $OR\square$ et $OR\square$ représentent chacun l'atome d'hydro-gène, un groupe alkyle en $OR\square$ à $OR\square$ que phényle ou benzyle; un groupe alkyle en $OR\square$ à $OR\square$ que que que le $OR\square$ avec ou sans hété-roatome, $OR\square$ représente l'atome

d'hydrogène, un groupe alkyle en C_1 à C_4 ou un groupe phényle, étant entendu que lorsque Z n'est pas un groupe ben-zyle ou aryle, R_3 , ne représente pas H, les groupes phényle et benzyle pouvant être substitués par les atomes d'halogène, les groupes alkoxy, alkyles et thioalkyles en C_1 à C_3 , les groupes nitro, trifluo-rométhyle et hydroxy, les groupes alkyle et alkoxy pouvant être linéaires, ramifiés ou cycliques n représente 0, 1 ou 0, p représente 0 ou 0 et l'un des symboles 0, 0, 00 représente 01 et les autres 01 ou 03, 04, 05, 05 représentent chacun 05. Sous forme d'un racémique ou des énantiomères, ainsi que leurs sels d'addition avec les acides ou les bases pharmaceutiquement acceptables.

- 2. Composés selon la revendication 1, répon-dant à la formule I dans laquelle Z est un groupe phényle substitué ou non.
- 3. Composés selon la revendication 2, dans laquelle Z est un groupe phényle non substitué.
- 4. Composés selon la revendication 1, répon-dant à la formule I dans laquelle Z est un groupe pyridyle, pyrrolyle, furyle, thiényle ou imidazolyle.
- 5. Composés selon la revendication 1, répon-dant à la formule I dans laquelle Z est un groupe OR [].
- 6. Composés selon la revendication 5, dans laquelle R□ représente un groupe alkyle.
- 7. Composés selon la revendication 5, dans laquelle Z représente un groupe alkyle en C₁ à C₃.
- 8. Composés selon l'une des revendications 1 à 7 de formule I dans laquelle A, B, C et D représentent chacun CH.
- 9. Composés selon l'une des revendications 1 à 7 de formule I dans laquelle l'un des symboles A, B, C ou D représente N.
- 10. Composés selon la revendication 9 dans laquelle A représente N.
- 11. Composés selon la revendication 1 de formule I dans laquelle R_1 et R_2 représentent chacun un groupe alkyle en C_1 à $C\square$, R_3 représente un groupe alkyle en C_1 à C_3 , R_1 \square représente l'hydrogène et Z représente $OR\square$ avec $R\square$ représentant un groupe alkyle en C_1 à $C\square$.
- 12. Composés selon la revendication 11 dans lesquels R₄ représente l'hydrogène.
- 13. Composés selon la revendication 11 dans lesquels R₄ représente l'hydrogène et le symbole C est substitué.
- 14. Composés selon la revendication 1 de formule I dans laquelle R₁ représente un groupe alkyle, R₂ et Z représentent chacun un groupe phényle pouvant être substitué.
- 15. Composés selon la revendication 1 de formule I dans laquelle R_1 représente un groupe alkyle R_2 et Z représentent un groupe phényle pouvant être substitué, R_3 et R_1 \square représentent chacun l'atome d'hydrogène.
- 16. Composés selon l'une des revendications 14 et 15 pour lesquels les symboles A, B, C et D représentent chacun CH.
- 17. Composés selon l'une des revendications 14 et 15 pour lesquels le symbole A représente N et B, C et D représentent CH.

- 18. [chloro-7(N,N-dipropylcarbamoyl-1) éthyl-amino-4 quinoléinyl]-3 carboxylate d'éthyle et ses sels d'addition avec les acides phrmacologiquement acceptables.
- 19. N-méthyl N-(chloro-4)phényl [benzoyl-3 chloro-7 quinoléinyl]-4 aminoacétamide et ses sels d'addition avec les acides pharmacologiquement accep-tables.
- 20. N-méthyl N-(chloro-4)phényl (benzoyl-3 naphtyridine-1,5)yl-4 aminoacétamide et ses sels d'addition avec les acides pharmacologiquement accep-tables.
- 21. Procédé de préparation des composés de formule I, caractérisé en ce que l'on fait réagir l'amine de formule II : avec un composé de formule III : dans lequelles R_1 , R_2 , R_3 , R_4 , $R\square$, $R\square$, R_1 , \square , R_1 , \square , R_2 , R_3 , R_4 , $R\square$, $R\square$, R_1 , R_2 , R_3 , R_4 , $R\square$, $R\square$, R_1 , R_2 , R_3 , R_4 , $R\square$, $R\square$, R_1 , R_2 , R_3 , R_4 , $R\square$, R_3 , R_4 , R_3 , R_4 , R_5 , R
- 22. Composition pharmaceutique comprenant comme principe actif un composé selon l'une quelconque des revendications 1 à 20 ainsi qu'un excipient compa-tible.

CLAIMS (FRENCH)

Revendications pour les Etats contractants suivants: ES,GR

- 1. Procédé de préparation de composés de formule I dans laquelle R₁ et R₂ identiques ou différents, re-présentent chacun l'atome d'hydrogène, un groupe alkyle en C₁ à C□ ou alkényle en C₂ à C₁, un groupe phényle ou benzyle, ou R₁ et R₂ forment avec l'atome d'azote auquel ils sont rattachés un hétérocycle saturé en C₄ à C□, R₃ représente l'atome d'hydrogène, un groupe alkyle en C₁ à C□, phénylalkyle en C□ à C□, ou phényle R4 représente l'atome d'hydrogène ou un groupe alkyle en C₁ à C₄, R□ et R□, identiques ou différents représentent chacun un atome d'hydrogène ou d'halogène, un groupe alkyle ou alkoxy en C_1 à C_3 , un groupe nitro, trifluorométhy-le, ou ensemble forment un groupe méthylènedioxy, Z représente $OR \square$ dans lequel $R\square$ représente l'atome d'hydrogène ou un groupe alkyle en C_1 à $C\square$; $NR\square$ $R\square$ dans lequel $R\square$ et R□ représentent chacun l'atome d'hydro-gène, un groupe alkyle en C₁ à C₄, un groupe phényle ou benzyle; un groupe alkyle en C_1 à C_4 ; un groupe benzyle; un groupe aryle en C_4 à C_4 avec ou sans hété-roatome, R₁ \square représente l'atome d'hydrogène, un groupe alkyle en C₁ à C₄ ou un groupe phényle, étant entendu que lorsque Z n'est pas un groupe ben-zyle ou aryle, R3 , ne représente pas H, les groupes phényle et benzyle pouvant être substitués par les atomes d'halogène, les groupes alkoxy, alkyles et thioalkyles en C₁ à C₃, les groupes nitro, trifluo-rométhyle et hydroxy, les groupes alkyle et alkoxy pouvant être linéaires, ramifiés ou cycliques n représente 0,1 ou 2, p représente 0 ou 1 et l'un des symboles A,B,C,D représente N et les autres CH ou A,B,C,D représentent chacun CH, sous forme d'un racémique ou des énantiomères, ainsi que leurs sels d'addition avec les acides ou les bases pharmaceutiquement acceptables, caractérisé en ce que l'on fait réagir l'amine de formule II : avec un composé de formule III : dans lequelles R₁ , R₂ , R₃ R_4 , $R \square$, $R \square$, R_1 , R_1 , R_2 , R_3 , R_4 , R_5 , représente un atome d'halogène ou un groupe sulfonate.
- 2. Procédé selon la revendication 1, carac-térise en ce que l'on prépare les composés répondant à la formule I dans laquelle Z est un groupe phényle substitué ou non.
- 3. Pocédé selon la revendication 2, carac-térisé en ce que l'on prépare les composés dans la-quelle Z est un groupe phényle non substitué.
- 4. Procédé selon la revendication 1, carac-térisé en ce que l'on prépare les composés répondant à la formule I dans laquelle Z est un groupe pyridyle, pyrrolyle, furyle, thiényle ou imidazolyle.

- 5. Procédé selon la revendication 1, carac-térisé en ce que l'on prépare les composés répondant à la formule I dans laquelle Z est un groupe OR□.
- 6. Procédé selon la revendication 5, carac-térisé en ce que l'on prépare les composés de formule I dans laquelle R□ représente un groupe alkyle.
- 7. Procédé selon la revendication 5, carac-térisé en ce que l'on prépare les composés de formule I dans laquelle Z représente un groupe alkyle en C_1 à C_3 .
- 8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'on prépare les composés de formule I dans laquelle A, B, C et D représentent chacun CH.
- 9. Procédé selon l'une des revendications 1 à 7 de formule I dans laquelle l'un des symboles A, B, C ou D représente N.
- 10. Procédé selon la revendication 9, carac-térisé en ce que l'on prépare les composés de formule I dans laquelle A représente N.
- 11. Procédé selon la revendication 1, carac-térisé en ce que l'on prépare les composés de formule I dans laquelle R_1 et R_2 représentent chacun un groupe alkyle en C_1 à C_3 , R_1 \square représente l'hydrogène et Z représente OR_1 avec R_2 représentant un groupe alkyle en C_1 à C_3 .
- 12. Procédé selon la revendication 11, ca-ractérisé en ce que l'on prépare les composés dans lesquels R₄ représente l'hydrogène.
- 13. Procédé selon la revendication 11 dans lesquels R₄ représente l'hydrogène et le symbole C est substitué.
- 14. Procédé selon la revendication 1, carac-térisé en ce que l'on prépare les composés de formule I dans laquelle R_1 représente un groupe alkyle, R_2 et Z représentent chacun un groupe phényle pouvant être substitué.
- 15. Procédé selon la revendication 1, carac-térisé en ce que l'on prépare les composés de formule I dans laquelle R_1 représente un groupe alkyle R_2 et Z représentent un groupe phényle pouvant être substitué, R_3 et R_1 \square représentent chacun l'atome d'hydrogène.
- 16. Procédé selon l'une des revendications 14 et 15, caractérisé en ce que l'on prépare les com-posés pour lesquels les symboles A, B, C et D représentent chacun CH.
- 17. Procédé selon l'une des revendications 14 et 15 pour lesquels le symbole A représente N et B, C et D représentent CH.
- 18. Procédé selon la revendication 1, carac-térisé en ce que l'on prépare le [chloro-7(N,N-dipropylcarbamoyl-1)éthylamino-4 quinoléinyl]-3 carboxylate d'éthyle et ses sels d'addition avec les acides phar-macologiquement acceptables.
- 19. Procédé selon la revendication 1, carac-térisé en ce que l'on prépare N-méthyl N-(chloro-4)-phényl [benzoyl-3 chloro-7 quinoléinyl]-4 aminoacéta-mide et ses sels d'addition avec les acides pharmaco-logiquement acceptables.
- 20. Procédé selon la revendication 1, carac-térisé en ce que l'on prépare N-méthyl N-(chloro-4)-phényl (benzoyl-3 naphtyridine-1,5)yl-4 aminoacétamide et ses sels d'addition avec les acides

Page	20	of 20)
LUEV	20	01 20	

MicroPatent HTML record

pharmacologi-quement acceptables.

* * * * *