CSE 417T Introduction to Machine Learning

Lecture 9

Instructor: Chien-Ju (CJ) Ho

Logistics

- Homework 2 is due on October 7 (Friday)
- Return of homework
 - We plan to return each homework within 1.5~2 weeks after the deadline
 - Regrade requests
 - You will have up to 7 days to submit regrade requests
 - the regrade period might be shortened if there are schedule constraints
 - We might check the entire homework for each request, so the grades might go down as well if we find new mistakes
- Exam 1: October 27 (Thursday)
 - Content: LFD Chap 1 to 5 (The entire hardcopy of the textbook)
 - Timed exam: 75 minutes during lecture time
 - Location: TBD
 - Closed-book exam with 2 letter-size cheat sheets (4 pages in total)
 - No format limitations (it can be typed, written, or a combination)

Recap

Linear Models

This is why it's called linear models

• *H* contains hypothesis $h(\vec{x})$ as some function of $\vec{w}^T\vec{x}$

	Domain	Model	Credit Card Example
Linear Classification	$y \in \{-1, +1\}$	$H = \{h(\vec{x}) = sign(\vec{w}^T \vec{x})\}\$	Approve or not
Linear Regression	$y \in \mathbb{R}$	$H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$	Credit line
Logistic Regression	$y \in [0,1]$	$H = \{h(\vec{x}) = \theta(\vec{w}^T \vec{x})\}$	Prob. of default
		$\theta(s)$	$e^s = \frac{e^s}{s}$

- Algorithm:
 - Focus on $g = argmin_{h \in H} E_{in}(h)$
 - Gradient descent is one of the common optimization algorithms

Logistic Regression

- Predict a probability
 - Interpreting $h(\vec{x}) \in [0,1]$ as the prob for y = +1 given \vec{x}
- Hypothesis set $H = \{h(\vec{x}) = \theta(\vec{w}^T\vec{x})\}$

•
$$\theta(s) = \frac{e^s}{1+e^s} = \frac{1}{1+e^{-s}}$$

- Algorithm
 - Find $g = argmin_{h \in H} E_{in}(h)$

- Two key questions
 - How to define $E_{in}(h)$?
 - How to perform the optimization (minimizing E_{in})?

Define $E_{in}(\vec{w})$: Cross-Entropy Error

$$E_{in}(\overrightarrow{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n})$$

- Minimizing cross entropy error is the same as maximizing likelihood
- Likelihood: $Pr(D|\vec{w})$

```
• \vec{w}^* = argmax_{\vec{w}} \Pr(D|\vec{w}) (maximizing likelihood)
= argmin_{\vec{w}} E_{in}(\vec{w}) (minimizing cross-entropy error)
```

Optimizing $E_{in}(\vec{w})$: Gradient Descent

- Gradient descent algorithm
 - Initialize $\vec{w}(0)$
 - For t = 0, ...
 - $\vec{w}(t+1) \leftarrow \vec{w}(t) \eta \nabla_{\vec{w}} E_{in}(\vec{w}(t))$
 - Terminate if the stop conditions are met
 - Return the final weights

Works for functions where gradient exists everywhere

- Stochastic gradient decent
 - Replace the update step:
 - Randomly choose n from $\{1, ..., N\}$
 - $\vec{w}(t+1) \leftarrow \vec{w}(t) \eta \nabla_{\vec{w}} e_n(\vec{w}(t))$

Notes for homework 2:

- Please use "non-stochastic" gradient descent
- Check vectorization to speed up your implementation

Today's Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Limitations of Linear Models

Non-Linear Transformation

Using Non-Linear Transformations

• Find a feature transform Φ that maps data from \vec{x} space to \vec{z} space

Using Non-Linear Transformations

• Learn a linear classifier in \vec{z} space: $g^{(z)}(\vec{z}) = sign(\vec{w}^{(z)}\vec{z})$

$$\vec{x} = (1, x_1, x_2)$$

$$\vec{z} = (1, x_1^2, x_2^2)$$

$$g^{(z)}(\vec{z}) = sign(-0.6 + z_1 + z_2)$$

Using Non-Linear Transformations

• Transform the learned hypothesis back to \vec{x} space

•
$$g(\vec{x}) = g^{(z)}(\Phi(\vec{x})) = sign(\vec{w}^{(z)}\Phi(\vec{x}))$$

$$\vec{x} = (1, x_1, x_2)$$

$$g(\vec{x}) = sign(-0.6 + x_1^2 + x_2^2)$$

$$\vec{z} = (1, x_1^2, x_2^2)$$

$$g^{(z)}(\vec{z}) = sign(-0.6 + z_1 + z_2)$$

Nonlinear Transformation

Generalization of Nonlinear Transformation

- Fact (We'll prove this later)
 - The VC Dimension of d-dim perceptron is d+1
- VC dimension of perceptron on input space $\vec{x} = (x_0, ..., x_d)$
 - d+1
- VC dimension of perceptron on input space $\vec{z} = (z_0, ..., z_{d'})$
 - $\leq d' + 1$ (usually treated as $\approx d' + 1$)
- Careful: Non-linear transform might lead to "nonsense" behavior

How to Choose Feature Transform Φ

How to Choose Feature Transform Φ

Must choose Φ BEFORE looking at the data

Otherwise, you are doing "data snooping"

The hypothesis set H is as large as anything your brain can think of

Choose Φ Before Seeing Data

- Rely on domain knowledge (feature engineering)
 - Handwriting digit recognition example

- Use common sets of feature transformation
 - Polynomial transformation
 - 2nd order Polynomial transformation
 - $\vec{x} = (1, x_1, x_2)$
 - $\Phi_2(\vec{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$
 - Pros: more powerful (contains circle, ellipse, hyperbola, etc)
 - Cons: 2-d => 5-d
 - More computation/storage
 - Worse generalization error

The VC dimension of d-dim perceptron is d+1

Q-th Order Polynomial Transform

•
$$\vec{x} = (1, x_1, ..., x_d)$$

• From 1-st order to Q-th order polynomial transform:

- $\Phi_1(\vec{x}) = \vec{x}$
- $\Phi_2(\vec{x}) = (\Phi_1(\vec{x}), x_1^2, x_1 x_2, x_1 x_3, \dots, x_d^2)$
- •
- $\Phi_Q(\vec{x}) = (\Phi_{Q-1}(\vec{x}), x_1^Q, x_1^{Q-1}, x_2, \dots, x_d^Q)$

• Number of elements in $\Phi_Q(\vec{x})$

Q-th Order Polynomial Transform

•
$$\vec{x} = (1, x_1, ..., x_d)$$

- From 1-st order to Q-th order polynomial transform:
 - $\Phi_1(\vec{x}) = \vec{x}$
 - $\Phi_2(\vec{x}) = (\Phi_1(\vec{x}), x_1^2, x_1 x_2, x_1 x_3, \dots, x_d^2)$
 - •
 - $\Phi_Q(\vec{x}) = (\Phi_{Q-1}(\vec{x}), x_1^Q, x_1^{Q-1}, x_2, \dots, x_d^Q)$
- Number of elements in $\Phi_O(\vec{x})$
 - $\binom{Q+d}{Q}$

Structural Hypothesis Sets

• Let H_Q be the linear model for the $\Phi_Q(\vec{x})$ space

- Let $g_Q = argmin_{h \in H_Q} E_{in}(h)$
 - H_0 H_1 H_2 ...
 - $d_{vc}(H_0)$ $d_{vc}(H_1)$ $d_{vc}(H_2)$...
 - $E_{in}(g_0)$ $E_{in}(g_1)$ $E_{in}(g_2)$...

Structural Hypothesis Sets

• Let H_Q be the linear model for the $\Phi_Q(\vec{x})$ space

- Let $g_Q = argmin_{h \in H_O} E_{in}(h)$
 - $H_0 \subset H_1 \subset H_2 \dots$
 - $d_{vc}(H_0) \le d_{vc}(H_1) \le d_{vc}(H_2) \dots$
 - $E_{in}(g_0) \ge E_{in}(g_1) \ge E_{in}(g_2) \dots$

Overfitting

[Adapted from the slides by Malik Magdon-Ismail]

Setup of the Discussion

- Regression with polynomial transform
 - Input: 1-dimensional x
 - $\Phi_O(x) = (1, x, x^2, x^3, ..., x^Q)$
 - $H_Q = \{h(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_Q x^Q\}$

- Qth-order polynomial fit
 - Solve linear regression on the $\Phi_0(\vec{x})$ space using H_0
 - Looking to minimize E_{in} : $g_Q = argmin_{h \in H_Q} E_{in}(h)$

A Simple Example

- Target f: 4th order function
- # data points: N = 5
- Small noise:
 - $y = f(x) + \epsilon$ with small ϵ
- 4th order polynomial fit
 - $h(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$
 - Find $g_4 = argmin_h E_{in}(h)$

A Simple Example

- Target f: 4th order function
- # data points: N = 5
- Small noise:
 - $y = f(x) + \epsilon$ with small ϵ
- 4th order polynomial fit
 - $h(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$
 - Find $g_4 = argmin_h E_{in}(h)$

Classical overfitting: $E_{in}=0$, but lead to a large E_{out} Fitting the **noise** instead of the target What is Overfitting?

Fitting the data more than is warranted

Overfitting is Not Just Bad Generalization

Overfitting is Not Just Bad Generalization

Overfitting Going for lower and lower E_{in} results in higher and higher E_{out}

Case Study: 2nd vs 10th Order Polynomial Fit

 H_2 : 2nd order polynomial fit

 H_{10} : 10th order polynomial fit

Which model would you choose for the left problem and why?

Target Function: 10^{th} Order f with Noise

simple noisy target

	2nd Order	10th Order
$E_{ m in}$	0.050	0.034
$E_{ m out}$	0.127	9.00

Irony of two learners Red and Green

Both know the target is 10th order

- Red chooses H_{10}
- Green chooses H₂

Green outperforms Red

Why is H_2 Better than H_{10} ?

Learning curve for H_2

Learning curve for H_{10}

When N is small, $E_{out}(g_{10}) \ge E_{out}(g_2)$

 H_2 : 2nd order polynomial fit

 H_{10} : 10th order polynomial fit

Which model do you choose for the right problem and why?

Simpler H is better even for complex target with no noise

complex noiseless target

	2nd Order	10th Order
E_{in}	0.029	10^{-5}
$E_{ m out}$	0.120	7680

Is There Really "No Noise"?

Simple f with noise.

Complex f with no noise.

Is There Really "No Noise"?

Why is H_2 Better than H_{10} ?

Learning curve for H_2

Learning curve for H_{10}

When N is small, $E_{out}(g_{10}) \ge E_{out}(g_2)$

A Detailed Experiment

Study the level of noise and target complexity, and # data points N

$$y = f(x) + \epsilon(x) = \sum_{q=0}^{Q_f} \alpha_q x^q + \epsilon(x)$$

Noise level: variance σ^2 of $\epsilon(x)$

Target complexity: Q_f

Data set size: N

The Overfit Measure

- Fit the data set using H_2 and H_{10}
 - Let g_2 and g_{10} be the learned hypothesis
- Overfit measure
 - $E_{out}(g_{10}) E_{out}(g_2)$
 - This value is large is overfitting happens

Overfit Measure: $E_{out}(g_{10}) - E_{out}(g_2)$


```
Number of data points ↑ Overfitting ↓
Noise ↑ Overfitting ↑
Target complexity ↑ Overfitting ↑
```

Noise:

The part of y we cannot model

Stochastic Noise

We would like to learn from \bigcirc :

$$y_n = f(x_n)$$

Unfortunately, we only observe **O**:

$$y_n = f(x_n) + \text{`stochastic noise'}$$

Stochastic Noise: fluctuations/measurement errors we cannot model.

Stochastic Noise

We would like to learn from \bigcirc :

$$y_n = f(x_n)$$

Unfortunately, we only observe **O**:

$$y_n = f(x_n) + \text{`stochastic noise'}$$

Stochastic Noise: fluctuations/measurement errors we cannot model.

Deterministic Noise

We would like to learn from **O**:

$$y_n = h^*(x_n)$$

Unfortunately, we only observe \bigcirc :

$$y_n = f(x_n)$$
 $= h^*(x_n) + \text{`deterministic noise'}$
 $\stackrel{\mathcal{H}}{\uparrow}$ cannot model this

Deterministic Noise: the part of f we cannot model.

Deterministic Noise

We would like to learn from **O**:

$$y_n = h^*(x_n)$$

Unfortunately, we only observe \bigcirc :

$$y_n = f(x_n)$$
 $= h^*(x_n) + \text{`deterministic noise'}$
 $\stackrel{\mathcal{H} \text{ cannot model this}}{}$

Deterministic Noise: the part of f we cannot model.

Both sources of noises hurt learning

Stochastic Noise

source: random measurement errors

re-measure y_n stochastic noise changes.

change \mathcal{H} stochastic noise the same.

Deterministic Noise

source: learner's \mathcal{H} cannot model f

re-measure y_n deterministic noise the same.

change \mathcal{H} deterministic noise changes.

We have single \mathcal{D} and fixed \mathcal{H} so we cannot distinguish

Noise and Bias-Variance Decomposition

$$y = f(\vec{x}) + \epsilon$$

$$\mathbb{E}[E_{out}(\vec{x})] = \sigma^2 + \text{bias} + \text{variance}$$

Stochastic Noise Deterministic noise

How to Fight Overfitting

VC Bound

$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

- Fighting overfitting
 - Regularization
 - Validation
 - (The focus of the next two lectures)

VC dimension, $d_{\rm VC}$

VC Dimension of d-dim Perceptron

Recall the Definitions

• Shatter

- *H* shatters $(\vec{x}_1, ..., \vec{x}_N)$ if $|H(\vec{x}_1, ..., \vec{x}_N)| = 2^N$
- *H* can induce all label combinations for $(\vec{x}_1, ..., \vec{x}_N)$

Break point

- k is a break point for H if no data set of size k can be shattered by H
- k is a break point for $H \leftrightarrow m_H(k) < 2^k$
- VC Dimension: $d_{vc}(H)$ or d_{vc}
 - The VC dimension of H is the largest N such that $m_H(N) = 2^N$
 - Equivalently, if k^* is the smallest break point for H, $d_{vc}(H) = k^* 1$

VC Dimension of d-dimension Perceptron

- Claim:
 - The VC Dimension of d-dim perceptron is d+1
- How to prove it?
 - 1. Show that the VC dimension of d-dim perceptron $\geq d+1$
 - 2. Show that the VC dimension of d-dim perceptron $\leq d+1$

- To prove $d_{vc}(H) \ge d + 1$, what do we need to prove?
 - A. There is a set of d+1 points that can be shattered by H
 - B. There is a set of d+1 points that cannot be shattered by H
 - C. Every set of d + 1 points can be shattered by H
 - D. Every set of d + 1 points cannot be shattered by H

- To prove $d_{vc}(H) \ge d + 1$, what do we need to prove?
 - A. There is a set of d+1 points that can be shattered by H
 - B. There is a set of d+1 points that cannot be shattered by H
 - C. Every set of d + 1 points can be shattered by H
 - D. Every set of d + 1 points cannot be shattered by H

- To prove $d_{vc}(H) \ge d + 1$, what do we need to prove?
 - A. There is a set of d + 1 points that can be shattered by H
 - B. There is a set of d+1 points that cannot be shattered by H
 - C. Every set of d+1 points can be shattered by H
 - D. Every set of d + 1 points cannot be shattered by H
- To prove $d_{vc}(H) \leq d+1$, what do we need to prove?
 - A. There is a set of d+1 points that can be shattered by H
 - B. There is a set of d + 2 points that cannot be shattered by H
 - C. Every set of d + 2 points can be shattered by H
 - D. Every set of d + 1 points cannot be shattered by H
 - E. Every set of d + 2 points cannot be shattered by H

- To prove $d_{vc}(H) \ge d + 1$, what do we need to prove?
 - A. There is a set of d+1 points that can be shattered by H
 - B. There is a set of d+1 points that cannot be shattered by H
 - C. Every set of d+1 points can be shattered by H
 - D. Every set of d+1 points cannot be shattered by H
- To prove $d_{vc}(H) \leq d+1$, what do we need to prove?
 - A. There is a set of d+1 points that can be shattered by H
 - B. There is a set of d + 2 points that cannot be shattered by H
 - C. Every set of d + 2 points can be shattered by H
 - D. Every set of d + 1 points cannot be shattered by H
 - E. Every set of d + 2 points cannot be shattered by H

• To prove $d_{vc}(H) \ge d+1$, what do we need to prove? There is a set of d+1 points that can be shattered by H

• To prove $d_{vc}(H) \le d+1$, what do we need to prove? Every set of d+2 points cannot be shattered by H

• To prove $d_{vc}(H) \ge d+1$, what do we need to prove? There is a set of d+1 points that can be shattered by H

Proof Sketch:

1. Let's construct a dataset of
$$d+1$$
 points: $X = \begin{bmatrix} \vec{x}_1^T \\ \vdots \\ \vec{x}_{d+1}^T \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 0 & \dots & 0 & 0 \end{bmatrix}$; It's easy to check that X^{-1} exist

- 2. For any possible dichotomy \vec{y} , there exists a \vec{w} such that $X\vec{w} = \vec{y}$, i.e., $\vec{w} = X^{-1}\vec{y}$
- 3. Therefore, d-dim perceptron can shatter X
- To prove $d_{vc}(H) \le d+1$, what do we need to prove? Every set of d+2 points cannot be shattered by H

Proof Sketch:

- 1. For every set of d+2 points (in d+1 dimensions), there exists a point that can be written as linear combinations of the others.
- 2. Denote the point \vec{x}_{d+2} , we have $\vec{x}_{d+2} = \sum_{i=1}^{d+1} a_i \vec{x}_i$
- 3. Consider the dichotomy $(y_1, ..., y_{d+2}) = (\text{sign}(a_1), ..., \text{sign}(a_{d+1}), -1)$, we can show that no linear separator can generate this dichotomy (think about why).
- 4. Therefore, for every set of d + 2 points, there exist at least one dichotomy that H cannot induce.