Writing Cache Friendly Code

Tonight: SPIMbot.review session @ 4-5 pm in 1304 SC Will be recorded

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories.

Today

- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using tiling to improve temporal locality

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)
- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Memory Mountain Test Function

```
/* The test function */
void test(int elems, int stride) {
    int i, result = 0;
    volatile int sink;
    for (i = 0; i < elems; i += stride)
        result += data[i];
    sink = result; /* So compiler doesn't optimize away the loop */
/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
    double cycles;
    int elems = size / sizeof(int);
    test(elems, stride);
                                            /* warm up the cache */
    cycles = fcyc2(test, elems, stride, 0); /* call test(elems, stride) */
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
```


Warm-up example

- Description:
 - 1 array of length n
 - Walk array m times

```
double sum = 0.0;
double a[n];
for (i = 0; i < m; i ++) {
  for (j = 0; j < n; j ++) {
    sum += a[j];
```

- Assumptions
 - 32B cache blocks (fit four, 64-bit (8B) doubles)
 - n is large (array much bigger than cache)
 - m is large (approximate 1/m as 0)

A) 0

B) 1/8 C) 1/4 D) 1/2

E) 1

	•••			
M	1+	I	Н	
ACO)		2	3	
N	H	Н	H	
•••				

Loop inversion swaps the indexing variable of the inner loop (indexes the inner loop) i

```
double sum = 0.0;
double a[n];
for ($ = 0; 2 < 10; $ ++)
```

- Same Assumptions
 - 32B cache blocks (fit four, 64-bit (8B) doubles)
 - n is large (array much bigger than cache)
 - m is large (approximate 1/m as 0)
- Average miss rate?
 - **A)** 0

- B) 1/8 C) 1/4 D) 1/2

Loop Fusion joins two loops that traverse the same cache blocks, increasing temporal locality

Loop Fission separates loops that disrupt each other's temporal locality

```
for(int j = 0; j < LARGE; j++) {
    sum += A[j];
    for(int k = 0; k < LARGE; k++) {
        other_sum += B[j][k]; / 8
}</pre>
```


Accessing two arrays in the same inner loop

```
double sum = 0.0;
double a[n], b[m];
for (i = 0; i < m; i ++) {
  for (j = 0; j < n; j ++) {
```

- Assumptions
 - 32B cache blocks (fit four, 64-bit (8B) doubles)
 - n & m are large (arrays much bigger than cache)
- Average misses per inner loop iteration?
 - **A**) 0

M	<i>It</i> • •	• ₄	\mathcal{H}
M d(0)	1	2	3
77	5	9	7
10 H H	11144	de	11
5(0)	1 	11/11/1	19 1+
•••			

Tiling creates a "sliding window" of data, increasing temporal locality


```
double sum = 0.0i
double a[n], b[m];
for (j = 0; j < n; j += TILE_SIZE) {
 for (i = 0; i < m; i ++) {
    for (jj = j; jj < j + TILE_SIZE; jj ++) {
      sum += a[jj] / b[i];
```

Average misses per inner loop iteration?

A) 0 B) 1/8

C) 1/4 D) 1/2

Example: Multiply two NxN matricesMultiply

- Assume:
 - 32B cache blocks (fit four, 64-bit (8B) doubles)
 - Matrix dimension (N) is very large (Approximate 1/N as 0.0)
 - Cache is not even big enough to hold multiple rows


```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
       sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}
```

Matrices are allocated in row-major order in memory (rows are contiguous in memory)

for (i = 0; i < N; i++) //row traversal
 sum += a[0][i];</pre>

- accesses successive elements
- if block size (B) > 4 bytes, exploit spatial locality
 - compulsory miss rate = 8 bytes / B

a[0][0]	a[0][1]	a[0][2]
a[1][0]	a[1][1]	a[1][2]
a[2][0]	a[2][1]	a[2][2]

for (i = 0; i < n; i++) //col traversal
 sum += a[i][0];</pre>

- accesses distant elements
- no spatial locality! had
 - compulsory miss rate = 1 (i.e. 100%)

\mathcal{N}	is	large	1 miss acces
			DICCI

•••	•••
0xC120	a[1][1]
) 0xC118	a[1][0]
0xC110	a[0][2]
0xC108	a[0][1]
M 0xC100	a[0][0]

Matrix Multiplication (ijk)

Misses per inner loop iteration:

$$\frac{A}{0.25} + \frac{B}{1.0} + \frac{C}{0.0} = 1.25 \frac{misses}{ici}$$

Matrix Multiplication (ijk)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

$$\frac{A}{1}$$
 $\frac{B}{1}$ $\frac{C}{1}$ $\frac{B}{1}$ $\frac{C}{1}$ $\frac{A}{1}$ $\frac{B}{1}$ $\frac{C}{1}$ $\frac{A}{1}$ $\frac{A}{1}$ $\frac{B}{1}$ $\frac{C}{1}$ $\frac{A}{1}$ $\frac{A}{1}$ $\frac{B}{1}$ $\frac{C}{1}$ $\frac{A}{1}$ \frac{A}

Matrix Multiplication (kij)

Inner loop:

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u>

Total misses per inner loop iteration a) .25 b) .5 c) .75 d) 1.25 e) 2

Matrix Multiplication (ikj)

```
/* ikj */
for (i=0; i<n; i++) {
                                       Inner loop:
  for (k=0; k<n; k++) {
                                          Α
                                                     В
    r = a[i][k];
                                           (i,k)
                                                               (i,*)
                                                     (k,*)
    for (j=0; j< n; j++)
                                               X
      c[i][j] += r * b[k][j];
                                         Fixed
                                                  Row-wise
                                                              Row-wise
```

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (jki)

Inner loop:

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u>

Total misses per inner loop iteration a) .25 b) .5 c) .75 d) 1.25 e) 2

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = a[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}</pre>
Inner loop:

A
B
(k,*)

Col-wise
Fixed
```

(i,*)

Col-wise

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}
</pre>
```

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
  }
}</pre>
```

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
  }
}</pre>
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = 1.25

kij (& ikj):

- 2 loads, 1 store
- misses/iter = 0.5

jki (& kji):

- 2 loads, 1 store
- misses/iter = 2.0

Core i7 Matrix Multiply Performance

From where comes the performance?

We can using tiling on matrices, just like we did with one-dimensional arrays

```
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
   int i, j, k;
   for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
        for (k = 0; k < n; k++)
            c[i*n+j] += a[i*n + k]*b[k*n + j];
}</pre>
```


Cache Miss Analysis

- Assume:
 - Matrix elements are doubles
 - Cache block = 4 doubles
 - Cache size C << n (much smaller than n)</p>
- First iteration:
 - n/4 + n = 5n/4 misses
 - Afterwards in cache: (schematic)

$$=\frac{1}{4}\frac{\pi}{i}$$

$$=\frac{1}{4}\frac{$$

Cache Miss Analysis

- Assume:
 - Matrix elements are doubles
 - Cache block = 4 doubles
 - Cache size C << n (much smaller than n)</p>
- Second iteration:
 - Again:n/4 + n = 5n/4 misses

- Total misses:
 - $5n/4 * n^2 = (5/4) * n^3$

Create tiles in two dimensions (row & col)

Cache Miss Analysis

- Assume:
 - Cache block = 4 doubles
 - Cache size C << n (much smaller than n)
 - Three tiles fit into cache: 3B² < C
- First (tile) iteration:
 - B²/4 misses for each tile
 - 2n/B* $B^2/4 = nB/2$ (omitting matrix c)
 - Afterwards in cache (schematic)

Cache Miss Analysis

- Assume:
 - Cache block = 4 doubles
 - Cache size C << n (much smaller than n)</p>
 - Three tiles fit into cache: 3B² < C
- Second (tile) iteration:
 - Same as first iteration
 - $2n/B * B^2/4 = nB/2$

- Total misses:
 - $nB/2 * (n/B)^2 = n^3/(2B)$

Summary

• No tiling:
$$(5/4) * n^3$$

- Suggest largest possible tile size B, but limit 3B² < C!</p>
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: 3n², computation 2n³
 - Every array elements used O(n) times!
 - But program has to be written properly

1) dat a struct >> Cache >- multiple iter on data struct

Concluding Observations

- Programmer can optimize for cache performance
 - How data structures are organized
 - How data are accessed
 - Nested loop structure
 - Tiling is a general technique
- All systems favor "cache friendly code"
 - Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
 - Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)