CS 450

Assignment 3

Howard Yang

Nov. 4, 2023

Question-1: Given the linear system

$$2x_1 - 6\alpha x_2 = 3,$$

 $3\alpha x_1 - x_2 = \frac{3}{2}.$

- (a) Find value(s) of α for which the system has no solutions.
- (b) Find value(s) of α for which the system has an infinite number of solutions.
 - (c) Assuming a unique solution exists for a given α , find the solution.

Question-2: Use Gaussian elimination and three-digit chopping arithmetic to solve the following linear systems, and compare the approximations to the actual solution.

(a)
$$0.03x_1 + 58.9x_2 = 59.2$$
$$5.31x_1 - 6.10x_2 = 47.0$$

Actual solution [10, 1].

(b)

$$3.03x_1 - 12.1x_2 + 14x_3 = -119$$

 $-3.03x_1 + 12.1x_2 - 7x_3 = 120$
 $6.11x_1 - 14.2x_2 + 21x_3 = -139$

Actual solution $[0, 10, \frac{1}{7}]$.

Question-3: Let x be the solution to the linear least squares problem $Ax \cong b$, where

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{array} \right]$$

Let r = b - Ax be the corresponding residual vector. Which of the following three vectors is a possible value for r? Why?

$$(a) \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} (b) \begin{bmatrix} -1\\-1\\1\\1 \end{bmatrix} (c) \begin{bmatrix} -1\\1\\1\\-1 \end{bmatrix}$$

Question-4: Let \boldsymbol{a} be any nonzero vector. If $\boldsymbol{v} = \boldsymbol{a} - \alpha \boldsymbol{e}_1$, where $\alpha = \pm \|\boldsymbol{a}\|_2$, and

$$oldsymbol{H} = oldsymbol{I} - 2 rac{oldsymbol{v} oldsymbol{v}^T}{oldsymbol{v}^T oldsymbol{v}}$$

show that $\mathbf{H}\mathbf{a} = \alpha \mathbf{e}_1$.

Question-5: Determine the Householder transformation that annihilates all but the first entry of the vector $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$. Specifically, if

$$\left(m{I} - 2rac{m{v}m{v}^T}{m{v}^Tm{v}}
ight) \left[egin{array}{c} 1 \ 1 \ 1 \ 1 \end{array}
ight] = \left[egin{array}{c} lpha \ 0 \ 0 \ 0 \end{array}
ight],$$

what are the values of α and \boldsymbol{v} ?

Question-6: Suppose that you are computing the QR factorization of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix}$$

by Householder transformations. (a) How many Householder transformations are required? (b) What does the first column of \boldsymbol{A} become as a result of applying the first Householder transformation? (c) What does the first column then become as a result of applying the second Householder transformation? (d) How many Givens rotations would be required to compute the QR factorization of \boldsymbol{A} ?

Question-7: we observed that the cross-product matrix A^TA is exactly singular in floating-point arithmetic if

$$m{A} = \left[egin{array}{cc} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{array}
ight],$$

where ϵ is a positive number smaller than $\sqrt{\epsilon_{\text{mach}}}$ in a given floating-point system. Show that if A = QR is the reduced QR factorization for this matrix A,

then R is not singular, even in floating point arithmetic.

Question-8: Let $c = \cos(\theta)$ and $s = \sin(\theta)$ for some angle θ . Give a detailed geometric description of the effects on vectors in the Euclidean plane \mathbb{R}^2 of each the following 2×2 orthogonal matrices.

the following
$$2 \times 2$$
 orthogonal matrices.

(a) $G = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$ (b) $H = \begin{bmatrix} -c & s \\ s & c \end{bmatrix}$

Question-9: Find a rotation matrix P with the property that PA has a zero entry in the second row and first column, where

$$A = \left[\begin{array}{rrr} 3 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 3 \end{array} \right]$$

Question-10: Given a vector $\boldsymbol{a} = [2, 3, 4]^T$

- 1. Specify an elementary elimination matrix that annihilates the third component of \boldsymbol{a}
- 2. Specify a Householder transformation that annihilates the third component of \boldsymbol{a}
 - 3. Specify the Givens rotation that annihilates the third component of a