Datenbanken

Datenbankdesign/Datenbanktheorie:
Datenbanktypen/Datenbanken/Tabellen/Datentypen
Beziehungen/Schlüssel/Fremdschlüssel
Entwurf von Datenbanken ERM (Entity Relationship Model)
ERM -> Relationalen Datenbank Modell
Normalisierung

SQL:

Daten-Manipulation: Daten lesen, schreiben, ändern, löschen

Daten-Definition: Datenbanken, Tabellen erstellen, ändern, löschen

IHK und Datenbanken (Prüfungsaufgaben) Kleines Projekt

unterschiedliche Benutzergruppen greifen zentral auf die selben Daten zu

Einzatzzwecke in Unternehmens-Software

Beispiele:

Rechnungswesen & Contolling

Enterprise Resource Planning (ERP)
Personal, Betriebsmittel, Material, ...

Content Management Systeme (CMS)
Inhalte verwalten

Customer Relationship Management (CRM) Kundenverwaltung

Was ist eine Datenbank?

allg. Definition:		
Strukturierte, dauerhafte Speicherung von Daten in ele	ktronische	r Form.
Problem:	Kunden	
- Dokumente öffnen - keine Zuordnung Kunde/Rechnung - keine Sortierung (zB. nach Nachname) - keine Übersichten (zB. alle Kunden mit Rechnung) - keine Automation - Mehrfachspeicherung der selben Daten (zB. Name, Vorname) - überflüssige Daten (Redundanzen) durch Mehrfachspeicherung- fehlende Zugriffsberechtigungen- keine		Kunde01.doc Kunde02.doc Kunde03.doc
Datenenunabhängigkeit	Rechnung	en
Definition zu allgemein		Rechnung01.doc
		Rechnung02.doc
		Rechnung03.doc

Anforderungen an Datenbanken

Datensicherheit

Daten dürfen nicht verloren gehen (zB. Stromausfall, Systemfehler, Anwendungsfehler), Mechanismen zum Backup/Wiederherstellen/Reparaturen von Daten

Datenschutz / Zugriffsrechte (BDSG)

Daten sind zu schützen, Benutzer/Passwort, wer darf welche Daten sehen, ändern, löschen

Datenunabhängigkeit

Verarbeitung der Daten unanhängig von der tatsächlichen physischen Speicherung. Medium und Format spielt für Entwickler/Anwender keine Rolle. (pysikalische Ebene/Schicht siehe 3-Ebenen-Modell später)

Datenkonsistenz/Datenintegrität

Konsistenz: Daten dürfen sich nicht Widersprechen (zB durch Mehrfachspeicherung), Möglichkeit zur Vermeidung.

Integrität: logische Fehler vermeiden (zB. negativer Preis), Datentypen

Mehrbenutzerfähigkeit/Zugriffssynchronisation

Zugriff mehrerer Benutzer auf die selben Daten (Server)

Begrifflichkeiten

DBS = DB + DBMS

Datenbank System = Datenbank(en) + Datenbank Management System

Strukturen und Daten

gewährleistet Datenunabhängigkeitstellt SQL zur VerfügungZugriff auf die physisch gespeicherten DatenBenutzerberechtigungenBackup/Wiederherstellung

Client/Server

Datenbank-Typen (Modelle)

Struktur-Arten

hierarchische Datenbanken

Beispiel für hierachische Strukturen: Ordner-Struktur HTML XML

Netzwerk Datenbanken

relationale Datenbanken

Abfragesprache SQL

tabellarisch

objektorientierte Datenbanken

Methoden (Funktionen) zur Datenverarbeitung

Eigenschaften (Daten)

Bild- und Multimedia Datenbanken

Speicherung in Verzeichnissen mit festgelegten Metadaten

NoSQL Datenbanken

Speicherung in Verzeichnissen mit beliebigen Metadaten

Relationale Datenbank-Arten

Desktop-Datenbanken (Access, LibreBase, Filemaker)

Nachteil: nicht mehrbenutzerfähig

komerzielle Datenbank-Server (Oracle, Microsoft SQL-Server, IBM DB2, ..) Server mit Lizensen

freie Datenbank-Server (MySQL, MariaDB, Postgre, ...) freie Lizensen

Tabellen

Spalten, Attribute, Felder

Zeilen, Datensätze, Tupel

KundenNr	Name	Vorname	Geburtsdatum
00008	Gaukel	Gundula	10.05.1978
01234	Hirsch	Harry	15.11.2004
54321	Blubber	Bodo	29.02.2000
80808	Tranig	Tino	23.12.1988
05243	Gospel	Gabi	05.05.1955
00110	Trost	Tanja	01.01.2000

Relations-Schema

Δ
Tabelle, Relation

KundenNr	Name	Vorname	Geburtsdatum
08015	Paulus	Petra	10.05.1978
08015	Paulus	Petra	10.05.1978

ungültiger Datensatz

vom Schlüsselkandidaten zum Primärschlüssel

KundenNr	Name	Vorname	Geburtsdatum
00008	Gaukel	Gundula	10.05.1978
01234	Hirsch	Harry	15.11.2004
54321	Blubber	Bodo	29.02.2000
80808	Tranig	Tino	23.12.1988
05243	Gospel	Gabi	05.05.1955
00110	Trost	Tanja	01.01.2000

Die Menge aller Attribute macht Datensätze in einer Tabelle eindeutig Schlüsselkandidaten { KundenNr, Name, Vorname, Geburtsdatum } { KundenNr, Name, Vorname } { KundenNr, Name, Geburtsdatum } - { Name, Vorname, Geburtsdatum } { KundenNr, Geburtsdatum } { KundenNr, Vorname} kleinste Menge an Attributen als Schlüsselkandidat { KundenNr}

Primärschlüssel

Hersteller	Modell	LeistungInPS	Listenpreis
Audi	e-tron	320	67.300
VW	ID.3	204	37.000
Tesla	Modell 3	325	49.990

```
Schlüsselkandidaten
 { Hersteller, Modell, LeistungInPS, Listenpreis }
  die Menge der Attribute lässt sich nicht reduzieren
  { Hersteller, Modell, LeistungInPS }
 { Hersteller, Modell, Listenpreis }
{ Hersteller, LeistungInPS, Listenpreis }
{ Modell, LeistungInPS, Listenpreis }
                       zusätzliches Attribut
künstlicher Primärschlüssel
               { id }
```

Beziehung von Tabellen

kunden

Fremdschlüssel-Spalte

KundenNr	Name	Vorname	Geburtsdatum	Automodelle_id
00008	Gaukel	Gundula	10.05.1978	1
01234	Hirsch	Harry	15.11.2004	2
54321	Blubber	Bodo	29.02.2000	3
80808	Tranig	Tino	23.12.1988	11
05243	Gospel	Gabi	05.05.1955	1
00110	Trost	Tanja	01.01.2000	2

automodelle

id	Hersteller	Modell	LeistungInPS	Listenpreis
1	Audi	e-tron	320	67.300
2	VW	ID.3	204	37.000
3	Tesla	Modell 3	325	49.990

darf nicht sein
11 kommt in der
Tabelle automodelle
nicht vor

Voraussetzung für Fremdschlüssel:

- der selbe Datentyp wie der Primärschlüssel in der fremden Tabelle
- Vorzeichenlos übernehmen, wie beim Primärschlüssel der fremden Tabelle
- wenn schon Daten vorhanden sind, dürfen sie sich nicht widersprechen
- NULL-Werte sind erlaubt

Beziehung von Tabellen

kunden

Fremdschlüssel-Spalte

<u>KundenNr</u>	Name	Vorname	Geburtsdatum	Automodelle_id
00008	Gaukel	Gundula	10.05.1978	1
01234	Hirsch	Harry	15.11.2004	2
54321	Blubber	Bodo	29.02.2000	3
80808	Tranig	Tino	23.12.1988	11
05243	Gospel	Gabi	05.05.1955	1
00110	Trost	Tanja	01.01.2000	2

darf nicht sein11 kommt in derTabelle automodellenicht vor

automodelle

id	Hersteller	Modell	LeistungInPS	Listenpreis
1	Audi	e-tron	320	67.300
2	VW	ID.3	204	37.000
3	Tesla	Modell 3	325	49.990

Beziehungen von Tabellen 1:n

Relationales Datenbank Modell (RDM)

bei Beziehungen von Tabellen stellt sich eine Häufigkeit (Kardinalität) ein

Ein Kunde kann wieviele Automodelle leihen?

Ein Automodell kann von wievielen Kunden ausgeliehen werden?

n steht für 0, eins oder viele

	kunden	,	automodelle	
PK	KundenNr INT(5)	1	PK	<u>id INT(10)</u>
	Name VARCHAR(50)			Hersteller VARCHAR(50)
	Vorname VARCHAR(50)	n		Modell VARCHAR(50)
	Geburtsdatum DATE			LeistungInPS INT(5)
FK	Automodell_ID INT(10)			Listenpreis INT(10)

Beziehungen von Tabellen n:m

Bei einer Häufigkeit wie n:m wird eine zusätzliche Tabelle gebraucht (Beziehungstabelle)

Ein Kunde kann wieviele Automodelle leihen?

m (m steht für 0, eins oder viele)

Ein Automodell kann von wievielen Kunden ausgeliehen werden?

(n steht für 0, eins oder viele) n

Datensätze der Tabelle kunden automodelle

<u>Verleih_id</u>	KundenNr	Automodelle_id	Verleihdatum
1	00008	1	2025-04-29
2	00008	2	2025-04-30
3	12345	2	2025-04-29

Entity Relationship Model (ERM)

Entity Objekte (Entitäten) die in der Datenbank abzubilden sind

Beziehung zw. Entitäten, Häufigkeit (Kardinalität) 1:n n:m 1:1

Attribute Eigenschaften von Entitäten

Relationship

Beispiel 1: n

Schreibweisen der Häufigkeit:

n

*

[0,*] [minimal,maximal]

(0..*) (minimal..maximal)

Beispiel n:m

Folgendes Pflichtenheft für eine Firma sei gegeben:

Zur Projektkontrolle sind pro Abteilung Mitarbeiter, Aufwände und Projektzeiten periodisch zu verwalten.

Es sollen verwaltet werden:

- Mitarbeiter sind Abteilungen unterstellt, wobei keine mehrfachen Zuordnungen vorkommen. Jeder Mitarbeiter wird durch Mitarbeiternummer, Name, Straße und Ort beschrieben.
- Die Abteilungen werden nur durch Abteilungsnummer und Bezeichnung beschrieben.
- Jedem Projekt wird zentral eine eindeutige Projektnummer und Inhaltsbeschreibung zugeteilt.
- Mitarbeiter können gleichzeitig an mehreren Projekten arbeiten, wobei die jeweiligen Prozentanteile erfasst werden

zusammengesetzter Primärschlüssel

arbeitet_an				
PK, FK	MNr			
PK, FK	<u>ProjektNr</u>			
	Stunden			

Datensätze der Tabelle arbeitet_an

<u>MNr</u>	<u>ProjektNr</u>	Stunden
1	1	12
1	2	8
2	1	4
,	,	_
1	· [

Kombination aus MNr und ProjektNr ist eindeutig

arbeitet_an				
PK, FK	<u>MNr</u>			
PK, FK	K <u>ProjektNr</u>			
PK	<u>Datum</u>			
	Stunden			

Datensätze der Tabelle arbeitet_an mit Datum

MNr	<u>ProjektNr</u>	<u>Datum</u>	Stunden
1	1	2022-05-19	5
1	2	2022-05-19	8
2	1	2022-05-19	4
1	1	2022-05-20	7
4	1	2022-05-20	6
	I	2022-05-20	U

Kombination aus MNr, ProjektNr und Datum ist eindeutig