$12n_{0442} \ (K12n_{0442})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 191026393u^{16} - 1652039068u^{15} + \dots + 64719689b + 1958494945, \\ &- 1223765713u^{16} + 10597268099u^{15} + \dots + 1553272536a - 9878621497, \\ &u^{17} - 11u^{16} + \dots + 25u - 24 \rangle \\ I_2^u &= \langle -u^9 - 5u^8 - 6u^7 + 8u^6 + 25u^5 + 16u^4 - 11u^3 - 14u^2 + b + u + 7, \\ &- 7u^9 - 51u^8 - 149u^7 - 213u^6 - 119u^5 + 61u^4 + 107u^3 + 8u^2 + 5a - 56u - 27, \\ &u^{10} + 8u^9 + 27u^8 + 49u^7 + 47u^6 + 12u^5 - 21u^4 - 19u^3 + 3u^2 + 11u + 5 \rangle \\ I_3^u &= \langle -u^8a + 2u^8 + \dots - a - 4, \ -u^8a - u^8 + \dots + a^2 + 4, \ u^9 + 4u^8 + u^7 - 9u^6 + 12u^4 + 2u^3 + 4u^2 + 1 \rangle \\ I_5^u &= \langle b^4 - 2b^3 + 3b^2 - 2b + 3, \ a + 1, \ u - 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 51 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.

 $\begin{matrix} I_1^u = \langle 1.91 \times 10^8 u^{16} - 1.65 \times 10^9 u^{15} + \dots + 6.47 \times 10^7 b + 1.96 \times 10^9, \ -1.22 \times 10^9 u^{16} + 1.06 \times 10^{10} u^{15} + \dots + 1.55 \times 10^9 a - 9.88 \times 10^9, \ u^{17} - 11 u^{16} + \dots + 25 u - 24 \rangle \end{matrix}$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.787863u^{16} - 6.82254u^{15} + \cdots - 4.19484u + 6.35988 \\ -2.95160u^{16} + 25.5261u^{15} + \cdots + 20.2471u - 30.2612 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.502780u^{16} + 4.36822u^{15} + \cdots + 2.45724u - 4.87506 \\ 1.68304u^{16} - 14.9279u^{15} + \cdots - 10.7408u + 18.8611 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.787863u^{16} - 6.82254u^{15} + \cdots - 4.19484u + 6.35988 \\ 1.37093u^{16} - 11.8653u^{15} + \cdots - 6.94294u + 13.9936 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.583066u^{16} + 5.04279u^{15} + \cdots + 2.74810u - 7.63370 \\ 1.37093u^{16} - 11.8653u^{15} + \cdots - 6.94294u + 13.9936 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.149136u^{16} + 1.25050u^{15} + \cdots + 3.19107u - 2.49878 \\ -0.717661u^{16} + 6.21375u^{15} + \cdots + 5.68076u - 7.77323 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.785878u^{16} + 6.96162u^{15} + \cdots + 3.90013u - 8.90611 \\ -0.0529908u^{16} + 0.408128u^{15} + \cdots + 0.448137u - 0.173332 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.659584u^{16} - 5.85549u^{15} + \cdots - 6.23720u + 8.19166 \\ 1.16236u^{16} - 10.2237u^{15} + \cdots - 7.69444u + 12.0667 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{258679440}{64719689}u^{16} - \frac{2255352174}{64719689}u^{15} + \dots - \frac{1298645313}{64719689}u + \frac{2660816310}{64719689}u^{16} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$u^{17} + 33u^{16} + \dots - 5039u + 576$
c_{2}, c_{5}	$u^{17} + 11u^{16} + \dots + 25u + 24$
c_{3}, c_{6}	$u^{17} - u^{16} + \dots + 4u + 1$
c_4, c_8	$u^{17} + 14u^{15} + \dots - 6u^2 + 1$
c_7, c_{10}, c_{11}	$u^{17} - 6u^{16} + \dots + 19u - 2$
c_9, c_{12}	$u^{17} + u^{16} + \dots + 33u + 3$

Crossings	Riley Polynomials at each crossing
c_1	$y^{17} - 117y^{16} + \dots + 20649889y - 331776$
c_{2}, c_{5}	$y^{17} - 33y^{16} + \dots - 5039y - 576$
c_{3}, c_{6}	$y^{17} + 13y^{16} + \dots - 22y - 1$
c_4, c_8	$y^{17} + 28y^{16} + \dots + 12y - 1$
c_7, c_{10}, c_{11}	$y^{17} + 14y^{16} + \dots + 93y - 4$
c_{9}, c_{12}	$y^{17} + 35y^{16} + \dots + 1875y - 9$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.942057 + 0.494267I		
a = -0.753350 - 0.421156I	1.96186 + 2.24541I	1.44074 - 2.23530I
b = 0.435867 - 0.555452I		
u = -0.942057 - 0.494267I		
a = -0.753350 + 0.421156I	1.96186 - 2.24541I	1.44074 + 2.23530I
b = 0.435867 + 0.555452I		
u = 1.095620 + 0.300147I		
a = 0.131673 - 0.311290I	2.79366 + 0.08444I	-4.63288 + 0.68709I
b = -1.033950 - 0.750497I		
u = 1.095620 - 0.300147I		
a = 0.131673 + 0.311290I	2.79366 - 0.08444I	-4.63288 - 0.68709I
b = -1.033950 + 0.750497I		
u = 0.836685		
a = -0.0818231	-1.37068	-8.35980
b = 0.476471		
u = -0.320479 + 0.572318I		
a = 0.08297 + 1.68332I	7.44498 + 0.11919I	3.63980 - 1.93920I
b = -0.103629 + 0.996127I		
u = -0.320479 - 0.572318I		
a = 0.08297 - 1.68332I	7.44498 - 0.11919I	3.63980 + 1.93920I
b = -0.103629 - 0.996127I		
u = -1.25347 + 0.91415I		
a = 0.916560 - 0.265291I	5.01538 + 5.62718I	-1.75252 - 3.01899I
b = 0.46012 + 1.98973I		
u = -1.25347 - 0.91415I		
a = 0.916560 + 0.265291I	5.01538 - 5.62718I	-1.75252 + 3.01899I
b = 0.46012 - 1.98973I		
u = -0.032060 + 0.412278I		
a = -1.57998 - 0.21566I	0.026615 - 1.286250I	0.68462 + 4.17584I
b = -0.592975 + 0.413733I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.032060 - 0.412278I		
a = -1.57998 + 0.21566I	0.026615 + 1.286250I	0.68462 - 4.17584I
b = -0.592975 - 0.413733I		
u = 2.13442 + 0.33433I		
a = -0.041538 + 1.111040I	-10.20570 - 0.23808I	-2.00230 - 0.80635I
b = 1.96060 - 2.85602I		
u = 2.13442 - 0.33433I		
a = -0.041538 - 1.111040I	-10.20570 + 0.23808I	-2.00230 + 0.80635I
b = 1.96060 + 2.85602I		
u = 2.15252 + 0.26857I		
a = 0.260975 - 1.202630I	-7.3294 - 12.2045I	-2.87951 + 5.29191I
b = -2.33574 + 2.94126I		
u = 2.15252 - 0.26857I		
a = 0.260975 + 1.202630I	-7.3294 + 12.2045I	-2.87951 - 5.29191I
b = -2.33574 - 2.94126I		
u = 2.24717 + 0.01207I		
a = -0.122236 + 1.201380I	-13.0039 - 6.5145I	-5.31806 + 4.17343I
b = 0.47148 - 3.89441I		
u = 2.24717 - 0.01207I		
a = -0.122236 - 1.201380I	-13.0039 + 6.5145I	-5.31806 - 4.17343I
b = 0.47148 + 3.89441I		

II.
$$I_2^u = \langle -u^9 - 5u^8 + \dots + b + 7, -7u^9 - 51u^8 + \dots + 5a - 27, u^{10} + 8u^9 + \dots + 11u + 5 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9} + 5u^{8} + 6u^{7} - 8u^{6} - 25u^{5} - 16u^{4} + 11u^{3} + 14u^{2} - u - 7 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{9} + 8u^{8} - 26u^{7} - 43u^{6} - 33u^{5} + 3u^{4} + 24u^{3} + 10u^{2} - 9u - 9 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{7}{5}u^{9} + \frac{51}{5}u^{8} + \dots + \frac{36}{5}u + \frac{27}{5} \\ u^{9} + 6u^{8} + 13u^{7} + 10u^{6} - 5u^{5} - 12u^{4} - u^{3} + 7u^{2} + 3u - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{9} + 6u^{8} + 13u^{7} + 10u^{6} - 5u^{5} - 12u^{4} - u^{3} + 7u^{2} + 3u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{9} + 6u^{8} + 13u^{7} + 10u^{6} - 5u^{5} - 12u^{4} - u^{3} + 7u^{2} + 3u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{15}{5}u^{9} + \frac{27}{5}u^{8} + \dots + \frac{41}{5}u + \frac{37}{5} \\ u^{9} + 6u^{8} + 13u^{7} + 10u^{6} - 5u^{5} - 12u^{4} - u^{3} + 7u^{2} + 3u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{9} + 9u^{8} - 33u^{7} - 61u^{6} - 52u^{5} + 2u^{4} + 38u^{3} + 16u^{2} - 15u - 13 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{9}{5}u^{9} - \frac{67}{5}u^{8} + \dots + \frac{84}{5}u + \frac{23}{5} \\ -2u^{9} - 13u^{8} - 33u^{7} - 39u^{6} - 12u^{5} + 21u^{4} + 18u^{3} - 4u^{2} - 11u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{9} + 7u^{8} + 20u^{7} + 29u^{6} + 18u^{5} - 6u^{4} - 15u^{3} - 4u^{2} + 7u + 4 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes
$$= -8u^9 - 57u^8 - 163u^7 - 230u^6 - 130u^5 + 61u^4 + 115u^3 + 15u^2 - 61u - 34$$

Crossings	u-Polynomials at each crossing
c_1	$u^{10} - 10u^9 + \dots - 91u + 25$
c_2	$u^{10} + 8u^9 + \dots + 11u + 5$
c_3, c_6	$u^{10} + u^9 + 3u^8 + u^6 - 3u^5 - 2u^4 - u^3 + 2u + 1$
c_4, c_8	$u^{10} + 6u^8 + 7u^6 - 2u^5 + 5u^4 + 2u^3 + 5u^2 + 2u + 1$
<i>C</i> 5	$u^{10} - 8u^9 + \dots - 11u + 5$
<i>C</i> ₇	$u^{10} - 3u^9 + \dots - 10u + 3$
c_9, c_{12}	$u^{10} - u^9 + 6u^8 - 10u^7 + 10u^6 - 6u^5 + 2u^4 - u^3 + 2u^2 - u + 1$
c_{10}, c_{11}	$u^{10} + 3u^9 + \dots + 10u + 3$

Crossings	Riley Polynomials at each crossing
c_1	$y^{10} - 22y^9 + \dots + 2569y + 625$
c_{2}, c_{5}	$y^{10} - 10y^9 + \dots - 91y + 25$
c_3, c_6	$y^{10} + 5y^9 + 11y^8 + 8y^7 - 9y^6 - 15y^5 + 4y^4 + 13y^3 - 4y + 1$
c_4, c_8	$y^{10} + 12y^9 + \dots + 6y + 1$
c_7, c_{10}, c_{11}	$y^{10} + 9y^9 + \dots + 20y + 9$
c_9, c_{12}	$y^{10} + 11y^9 + 36y^8 + 12y^7 + 6y^6 + 8y^5 + 24y^4 + 15y^3 + 6y^2 + 3y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.698244 + 0.611679I		
a = -0.594983 + 0.452728I	6.61177 + 7.24611I	1.48024 - 6.55546I
b = -1.12357 - 1.18282I		
u = -0.698244 - 0.611679I		
a = -0.594983 - 0.452728I	6.61177 - 7.24611I	1.48024 + 6.55546I
b = -1.12357 + 1.18282I		
u = -0.765895 + 0.862612I		
a = 0.577252 + 0.100829I	1.12408 + 3.31101I	-1.94210 - 5.90631I
b = 0.25692 + 1.47319I		
u = -0.765895 - 0.862612I		
a = 0.577252 - 0.100829I	1.12408 - 3.31101I	-1.94210 + 5.90631I
b = 0.25692 - 1.47319I		
u = 0.649524 + 0.270637I		
a = 0.986717 + 0.863844I	-0.88058 + 1.43796I	-7.95798 - 4.23415I
b = 0.280240 - 0.198619I		
u = 0.649524 - 0.270637I		
a = 0.986717 - 0.863844I	-0.88058 - 1.43796I	-7.95798 + 4.23415I
b = 0.280240 + 0.198619I		
u = -1.11228 + 0.88745I		
a = -0.346880 - 0.585052I	5.04002 - 1.56785I	-0.680979 + 1.239329I
b = 1.56427 - 1.47362I		
u = -1.11228 - 0.88745I		
a = -0.346880 + 0.585052I	5.04002 + 1.56785I	-0.680979 - 1.239329I
b = 1.56427 + 1.47362I		
u = -2.07310 + 0.22780I		
a = 0.077895 + 1.141750I	-11.89530 + 1.62532I	-4.89918 - 0.65986I
b = -1.47786 - 2.59954I		
u = -2.07310 - 0.22780I		
a = 0.077895 - 1.141750I	-11.89530 - 1.62532I	-4.89918 + 0.65986I
b = -1.47786 + 2.59954I		

III.
$$I_3^u = \langle -u^8a + 2u^8 + \dots - a - 4, -u^8a - u^8 + \dots + a^2 + 4, u^9 + 4u^8 + u^7 - 9u^6 + 12u^4 + 2u^3 + 4u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{8}u^{8}a - \frac{1}{4}u^{8} + \dots + \frac{1}{8}a + \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{4}u^{8}a + \frac{7}{8}u^{8} + \dots + \frac{1}{2}a + \frac{15}{8} \\ \frac{1}{4}u^{8}a + \frac{3}{8}u^{8} + \dots + \frac{1}{2}a - \frac{5}{8} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{8}u^{8}a - \frac{1}{4}u^{8} + \dots + \frac{1}{8}a + \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{8}u^{8}a + \frac{1}{4}u^{8} + \dots + \frac{1}{8}a + \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{4}u^{8}a + \frac{1}{4}u^{8} + \dots + \frac{1}{8}a + \frac{1}{2} \\ \frac{1}{8}u^{8}a - \frac{3}{4}u^{8} + \dots + \frac{1}{2}a + \frac{5}{4} \\ \frac{1}{8}u^{8}a - \frac{3}{4}u^{8} + \dots + \frac{3}{8}a - \frac{3}{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{8}a - \frac{7}{8}u^{8} + \dots + \frac{1}{4}a - \frac{7}{8} \\ \frac{1}{4}u^{8}a + \frac{3}{8}u^{8} + \dots + \frac{3}{4}a - \frac{3}{8} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{8} - 4u^{7} - u^{6} + 9u^{5} - 12u^{3} - 2u^{2} - 4u \\ \frac{1}{2}u^{8}a + \frac{1}{8}u^{8} + \dots + \frac{1}{4}a - \frac{7}{8} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{5}{4}u^8 + \frac{25}{4}u^7 + \frac{7}{2}u^6 - \frac{63}{4}u^5 - \frac{15}{4}u^4 + \frac{93}{4}u^3 + \frac{7}{4}u^2 + \frac{27}{4}u - \frac{13}{4}u^4 + \frac{15}{4}u^4 + \frac{13}{4}u^4 +$$

Crossings	u-Polynomials at each crossing
c_1	$ (u^9 + 14u^8 + 73u^7 + 173u^6 + 188u^5 + 80u^4 - 74u^3 + 40u^2 - 8u + 1)^2 $
c_2, c_5	$(u^9 - 4u^8 + u^7 + 9u^6 - 12u^4 + 2u^3 - 4u^2 - 1)^2$
c_3, c_6	$u^{18} - 4u^{17} + \dots - 19u + 7$
c_4, c_8	$u^{18} + 17u^{16} + \dots - 33u + 61$
c_7, c_{10}, c_{11}	$(u^9 + u^8 + 5u^7 + 4u^6 + 8u^5 + 5u^4 + 3u^3 - 2u - 2)^2$
c_9, c_{12}	$u^{18} - 3u^{17} + \dots - 38u + 787$

Crossings	Riley Polynomials at each crossing
c_1	$(y^9 - 50y^8 + \dots - 16y - 1)^2$
c_2, c_5	$(y^9 - 14y^8 + 73y^7 - 173y^6 + 188y^5 - 80y^4 - 74y^3 - 40y^2 - 8y - 1)^2$
c_3, c_6	$y^{18} + 2y^{17} + \dots + 451y + 49$
c_4, c_8	$y^{18} + 34y^{17} + \dots + 4279y + 3721$
c_7, c_{10}, c_{11}	$(y^9 + 9y^8 + 33y^7 + 60y^6 + 50y^5 + 7y^4 - 7y^3 + 8y^2 + 4y - 4)^2$
c_9, c_{12}	$y^{18} + 29y^{17} + \dots + 1731530y + 619369$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.149930 + 0.591217I		
a = -0.601255 - 0.402054I	1.86176 + 1.02570I	-2.63382 - 1.45009I
b = -0.395481 + 0.118419I		
u = 1.149930 + 0.591217I		
a = 1.283380 - 0.095795I	1.86176 + 1.02570I	-2.63382 - 1.45009I
b = -0.77918 - 2.34414I		
u = 1.149930 - 0.591217I		
a = -0.601255 + 0.402054I	1.86176 - 1.02570I	-2.63382 + 1.45009I
b = -0.395481 - 0.118419I		
u = 1.149930 - 0.591217I		
a = 1.283380 + 0.095795I	1.86176 - 1.02570I	-2.63382 + 1.45009I
b = -0.77918 + 2.34414I		
u = -0.256958 + 0.481474I		
a = 2.09172 + 0.18082I	5.86635 - 5.34937I	-0.84423 + 2.78056I
b = -0.347105 + 0.467672I		
u = -0.256958 + 0.481474I		
a = 0.39890 - 2.37095I	5.86635 - 5.34937I	-0.84423 + 2.78056I
b = 1.48260 - 1.54705I		
u = -0.256958 - 0.481474I		
a = 2.09172 - 0.18082I	5.86635 + 5.34937I	-0.84423 - 2.78056I
b = -0.347105 - 0.467672I		
u = -0.256958 - 0.481474I		
a = 0.39890 + 2.37095I	5.86635 + 5.34937I	-0.84423 - 2.78056I
b = 1.48260 + 1.54705I		
u = 0.202323 + 0.429977I		
a = -1.06958 - 1.32915I	-0.08117 - 1.83340I	-4.79553 + 3.05314I
b = -0.028684 + 0.501202I		
u = 0.202323 + 0.429977I		
a = -1.78447 + 1.20971I	-0.08117 - 1.83340I	-4.79553 + 3.05314I
b = -0.54712 + 1.46919I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.202323 - 0.429977I		
a = -1.06958 + 1.32915I	-0.08117 + 1.83340I	-4.79553 - 3.05314I
b = -0.028684 - 0.501202I		
u = 0.202323 - 0.429977I		
a = -1.78447 - 1.20971I	-0.08117 + 1.83340I	-4.79553 - 3.05314I
b = -0.54712 - 1.46919I		
u = -2.04009 + 0.22792I		
a = -0.374086 - 0.921422I	-10.25890 + 3.35426I	-1.96692 - 2.76177I
b = 2.26253 + 1.38756I		
u = -2.04009 + 0.22792I		
a = -0.189467 + 1.360530I	-10.25890 + 3.35426I	-1.96692 - 2.76177I
b = -0.72311 - 3.40708I		
u = -2.04009 - 0.22792I		
a = -0.374086 + 0.921422I	-10.25890 - 3.35426I	-1.96692 + 2.76177I
b = 2.26253 - 1.38756I		
u = -2.04009 - 0.22792I		
a = -0.189467 - 1.360530I	-10.25890 - 3.35426I	-1.96692 + 2.76177I
b = -0.72311 + 3.40708I		
u = -2.11041		
a = 0.244866 + 1.162790I	-14.5153	-7.51900
b = -0.92445 - 2.96892I		
u = -2.11041		
a = 0.244866 - 1.162790I	-14.5153	-7.51900
b = -0.92445 + 2.96892I		

IV.
$$I_4^u = \langle b^4 - 2b^3 + 3b^2 - 2b + 3, \ a+1, \ u-1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -b + 1 \\ b^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ b - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -b \\ b - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -b^{3} + b^{2} - b - 1 \\ b^{3} - 2b^{2} + 3b - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -b^{2} + 2b - 1 \\ b^{3} - b^{2} + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_6	$u^4 + 2u^3 + 3u^2 + 2u + 3$
c_4,c_8	$u^4 - 2u^3 + 3u^2 - 2u + 3$
c_5, c_9, c_{12}	$(u+1)^4$
c_7, c_{10}, c_{11}	$(u^2+2)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_9, c_{12}	$(y-1)^4$
c_3, c_4, c_6 c_8	$y^4 + 2y^3 + 7y^2 + 14y + 9$
c_7, c_{10}, c_{11}	$(y+2)^4$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	4.93480	0
b = -0.152220 + 1.084150I		
u = 1.00000		
a = -1.00000	4.93480	0
b = -0.152220 - 1.084150I		
u = 1.00000		
a = -1.00000	4.93480	0
b = 1.15222 + 1.08415I		
u = 1.00000		
a = -1.00000	4.93480	0
b = 1.15222 - 1.08415I		

V.
$$I_5^u = \langle b^2 + b + 1, \ a - 1, \ u - 1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ b \end{pmatrix}$$

$$a_4 = \begin{pmatrix} b+1\\-b-1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ b+1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -b \\ b+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ b \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -b \\ b+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_2, c_9 c_{12}	$(u-1)^2$
c_3, c_4, c_6 c_8	$u^2 + u + 1$
<i>C</i> ₅	$(u+1)^2$
c_7, c_{10}, c_{11}	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_9, c_{12}	$(y-1)^2$
c_3, c_4, c_6 c_8	$y^2 + y + 1$
c_7, c_{10}, c_{11}	y^2

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	0	-6.00000
b = -0.500000 + 0.866025I		
u = 1.00000		
a = 1.00000	0	-6.00000
b = -0.500000 - 0.866025I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{6}$ $\cdot (u^{9} + 14u^{8} + 73u^{7} + 173u^{6} + 188u^{5} + 80u^{4} - 74u^{3} + 40u^{2} - 8u + 1)^{2}$ $\cdot (u^{10} - 10u^{9} + \dots - 91u + 25)(u^{17} + 33u^{16} + \dots - 5039u + 576)$
c_2	$(u-1)^{6}(u^{9} - 4u^{8} + u^{7} + 9u^{6} - 12u^{4} + 2u^{3} - 4u^{2} - 1)^{2}$ $\cdot (u^{10} + 8u^{9} + \dots + 11u + 5)(u^{17} + 11u^{16} + \dots + 25u + 24)$
c_3, c_6	$(u^{2} + u + 1)(u^{4} + 2u^{3} + 3u^{2} + 2u + 3)$ $\cdot (u^{10} + u^{9} + \dots + 2u + 1)(u^{17} - u^{16} + \dots + 4u + 1)$ $\cdot (u^{18} - 4u^{17} + \dots - 19u + 7)$
c_4, c_8	$(u^{2} + u + 1)(u^{4} - 2u^{3} + 3u^{2} - 2u + 3)$ $\cdot (u^{10} + 6u^{8} + 7u^{6} - 2u^{5} + 5u^{4} + 2u^{3} + 5u^{2} + 2u + 1)$ $\cdot (u^{17} + 14u^{15} + \dots - 6u^{2} + 1)(u^{18} + 17u^{16} + \dots - 33u + 61)$
<i>C</i> ₅	$(u+1)^{6}(u^{9}-4u^{8}+u^{7}+9u^{6}-12u^{4}+2u^{3}-4u^{2}-1)^{2}$ $\cdot (u^{10}-8u^{9}+\cdots-11u+5)(u^{17}+11u^{16}+\cdots+25u+24)$
<i>c</i> ₇	$u^{2}(u^{2}+2)^{2}(u^{9}+u^{8}+5u^{7}+4u^{6}+8u^{5}+5u^{4}+3u^{3}-2u-2)^{2}$ $\cdot (u^{10}-3u^{9}+\cdots-10u+3)(u^{17}-6u^{16}+\cdots+19u-2)$
c_9, c_{12}	$(u-1)^{2}(u+1)^{4}$ $\cdot (u^{10} - u^{9} + 6u^{8} - 10u^{7} + 10u^{6} - 6u^{5} + 2u^{4} - u^{3} + 2u^{2} - u + 1)$ $\cdot (u^{17} + u^{16} + \dots + 33u + 3)(u^{18} - 3u^{17} + \dots - 38u + 787)$
c_{10}, c_{11}	$u^{2}(u^{2}+2)^{2}(u^{9}+u^{8}+5u^{7}+4u^{6}+8u^{5}+5u^{4}+3u^{3}-2u-2)^{2}$ $\cdot (u^{10}+3u^{9}+\cdots+10u+3)(u^{17}-6u^{16}+\cdots+19u-2)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^9 - 50y^8 + \dots - 16y - 1)^2$ $\cdot (y^{10} - 22y^9 + \dots + 2569y + 625)$ $\cdot (y^{17} - 117y^{16} + \dots + 20649889y - 331776)$
c_2, c_5	$(y-1)^{6}$ $(y^{9}-14y^{8}+73y^{7}-173y^{6}+188y^{5}-80y^{4}-74y^{3}-40y^{2}-8y-1)^{2}$ $(y^{10}-10y^{9}+\cdots-91y+25)(y^{17}-33y^{16}+\cdots-5039y-576)$
c_3, c_6	$(y^{2} + y + 1)(y^{4} + 2y^{3} + 7y^{2} + 14y + 9)$ $\cdot (y^{10} + 5y^{9} + 11y^{8} + 8y^{7} - 9y^{6} - 15y^{5} + 4y^{4} + 13y^{3} - 4y + 1)$ $\cdot (y^{17} + 13y^{16} + \dots - 22y - 1)(y^{18} + 2y^{17} + \dots + 451y + 49)$
c_4, c_8	$(y^{2} + y + 1)(y^{4} + 2y^{3} + \dots + 14y + 9)(y^{10} + 12y^{9} + \dots + 6y + 1)$ $\cdot (y^{17} + 28y^{16} + \dots + 12y - 1)(y^{18} + 34y^{17} + \dots + 4279y + 3721)$
c_7, c_{10}, c_{11}	$y^{2}(y+2)^{4}$ $\cdot (y^{9} + 9y^{8} + 33y^{7} + 60y^{6} + 50y^{5} + 7y^{4} - 7y^{3} + 8y^{2} + 4y - 4)^{2}$ $\cdot (y^{10} + 9y^{9} + \dots + 20y + 9)(y^{17} + 14y^{16} + \dots + 93y - 4)$
c_{9}, c_{12}	$(y-1)^{6} \cdot (y^{10} + 11y^{9} + 36y^{8} + 12y^{7} + 6y^{6} + 8y^{5} + 24y^{4} + 15y^{3} + 6y^{2} + 3y + 1) \cdot (y^{17} + 35y^{16} + \dots + 1875y - 9) \cdot (y^{18} + 29y^{17} + \dots + 1731530y + 619369)$