

DrugLogics project: causality, modelling, drug predictions

PhD project and research stay at ENS

Towards the development of precision and personalised medicine

Towards the development of precision and personalised medicine

Crossover Research

Structured Knowledge Commons resource DbTF curation Scicura

Towards the development of precision and personalised medicine

Crossover Research

Structured Knowledge Commons resource DbTF curation Scicura **DrugLogics**

Drug development of anti-cancer combinations

Towards the development of precision and personalised medicine

Crossover Research

Structured Knowledge
Commons resource
DbTF curation
Scicura

DrugLogics

Drug development of anti-cancer combinations

COLOSYS

Drug resistance prediction in colon cancer via computer models

Overview of the PhD project

Overview of the PhD project

How to encode meaningful causal statements?

What is FOXO3's state?

When and where does this interaction occurs?

Which molecular function is down-regulated?

What is the regulation type?

Is it a direct or indirect Interaction?

Representation of causality: current state

	Entities Identifiers	Directed	Causality annotation	Evidence	Format
MITAB2.7	Entrez gene/Ensembl embl/ddbj/genbank UniProtKB/RefSeq ChEBI	no	Free text: "causality statement:"	PUBMED	tabular
Causaltab	Embl/ddbj/genbank UniprotKB/RefSeq ChEBI/PubChem ComplexPortal Signor_ID	yes	MI – causal interaction	PUBMED	tabular
GO-CAM	Gene symbols UniprotKB ChEBI	yes	Relation Ontology	PUBMED ECO	OWL
BEL	Mainly HGNC but flexible	yes	Own representation	Text with ontologies	BEL script, JSON

Representation of causality: what is missing?

1) Multi-regulated causal interaction

→ introduce logics in formats

Representation of causality: what is missing?

1) Multi-regulated causal interaction

→ introduce logics in formats

- 2) Common structure for representing causality
 - → Guideline for representing causality (MICAST)
 Frame for defining context
 Ontologies recommendation

Extraction from prior knowledge

Aggregation of causal data from several existing resources

Pathways, reactions

Pathways of cancer related signaling networks

DB of causal interactions

DB of molecular interactions

~ 6 000 interactions

~ 2 500 interactions

~ 20 000 interactions

~ 800 interactions

Exclude trivial molecules

Exclude trivial molecules

Missing information

ex: IDs for the modified mechanism type

Transfers
Transfora

Translocates from ... to

Transports

Exchanges ... for ...

Cotransports

Regulates

Exclude trivial molecules

Missing information

ex: IDs for the modified mechanism type

Transfers

Translocates from ... to

Transports

Exchanges ... for ...

Cotransports

Regulates

Inference of causal interactions from reaction networks

Overview of the PhD project

The DrugLogics' modelling pipeline

Stable states identification

- BNReduction algorithm (Veliz-cuba)
- Combination of network reduction and computational algebra
- Works fine up to 1000 nodes

Trap space identification

- "Symbolic steady states"
- Highlight potential existence of complex attractors

Use of bioLQM library

Scripting with GINsim and bioLQM

Compute trap spaces

Scripting with GINsim and bioLQM

- Compute stable states for multiple combinations of perturbation
 - → automation

- Export into SBMLqual, ginml, bnet
 - → standardardisation

Model Checking: validating our models

- NuSMV + temporal logic formulas
- Trap space reachability
- Findings on drug synergies?

Case study: gastric adenocarcinoma cells

- 77 nodes & 149 interactions
- 7 drugs
- 2 outputs: Prosurvival & Antisurvival

Thank you for your attention!

The DrugLogics team

Dept of Biology

Martin Kuiper Steven Vercruysse Wim De Mulder Vladimir Mironov Vasundra Touré Stian Holmås Rafel Riudavets

Dept of Clinical and Molecular Medicine

Astrid Lægreid
Liv Thommesen
Åsmund Flobak
Miguel Vazquez
Marcio Acencio
Barbara Niederdorfer
Evelina Folkesson
Kathleen Heck

Dept of Philosophy and Religious Studies

Rune Nydal Ane Møller Gabrielsen Anamika Chatterjee

Norwegian University of Science and Technology

Acknowledgments

Andrei Zinovyev Inna Kuperstein Emmanuel Barillot Antonio Fabregat Steve Jupe Noemi Del Toro Sandra Orchard Henning Hermjakob Aurélien Naldi Denis Thieffry

Funding:

