Permutative Functions

by Sven Nilsen, 2020

A permutative function is a function where any permutation of arguments commutes. This property generalizes the commutative property^[1] of functions to any number of arguments.

For example, a commutative function of 2 arguments has the following property:

$$f(a, b) = f(b, a)$$

Since `f` is commutative, it is also permutative.

A permutative function of 3 arguments has the following property:

$$f(a, b, c) = f(a, c, b) = f(b, a, c) = f(b, c, a) = f(c, a, b) = f(c, b, a)$$

All functions returning a single value for all arguments are permutative, for example a proof in propositional logic must return `true` for all inputs:

This means that the arguments can be applied in any order while preserving the proof.

For example, modus ponens^[2] can be constructed in 2 ways using 2 arguments:

$$(a \land (a => b)) => b$$

 $(b \land (b => a)) => a$

Although proofs are interesting, they are trivial permutative functions, because arguments are ignored.

Here are the truth tables of two non-trivial permutative functions of 3 arguments:

	$\mathbf{f_0}$	$\mathbf{f_1}$
000	1	1
001	1	0
010	1	0
011	0	1
100	1	0
101	0	1
110	0	0
111	1	1

All non-trivial permutative functions depend on all arguments.

References:

- [1] "Commutative property"
 Wikipedia
 https://en.wikipedia.org/wiki/Commutative property
- [2] "Modus ponens"
 Wikipedia
 https://en.wikipedia.org/wiki/Modus_ponens