Table of Contents

1.	Associating tables on conditions other than equality	1
	Self-Joins	
	Legacy comma inner join	

Many of our joins are joining tables by matching the fk and pk of two tables and doing an equality match. There are a few more join conditions that may be useful.

1. Associating tables on conditions other than equality

Demo 01: This uses a join that involves two attributes to check if any items were sold at more than their list price. This does not use a Where clause- the testing is done in the join.

```
select
   PR.prod_id
, quoted_price
, prod_list_price
, order_id
from oe_orderDetails OD
join prd_products PR On OD.prod_id = PR.prod_id
and quoted price > prod list price;
```

PROD_ID	_	PROD_LIST_PRICE	ORDER_ID
1010	175	150	390
1010	195	150	395
1010	175	150	550
1010	175	150	551
1010	175	150	609
1010	175	150	2120
1010	175	150	2121
1100	205	49.99	301
1150	7.25	4.99	223
1152	55.25	55	540
1152	55.25	55	2508

2. Self-Joins

You can join a table to itself. You need to use a table alias to distinguish the two copies of the table involved in the join. The following is the traditional self-join of employees and their managers

Demo 02: Employees and managers . Note that the first row here has no Manager. Employee 100 is at the top of the chart.

```
select
   M.emp_id || ' ' || M.name_last As "Manager"
, E.emp_id || ' ' || E.name_last As "Supervises"
from emp_employees E
Left Join emp_employees M On m.emp_id = e.emp_mng
order by "Manager", "Supervises";
```

Manager	nager Supervises	
	100 King	
100 King	101 Koch	
100 King	102 D'Haa	
100 King	145 Russ	
100 King	146 Partne	

```
100 King
                           201 Harts
101 Koch
                           108 Green
                           162 Holme
101 Koch
101 Koch
                           200 Whale
101 Koch
                           203 Mays
101 Koch
                           205 Higgs
102 D'Haa
                           103 Hunol
103 Hunol
                           104 Ernst
  . . rows omitted
```

This is another self-join. The following query returns pairs of employees who have the same job id. We are joining on the job id and also on an inequality between the employees' ids. If we do not add that second joining condition then each employee would be paired with themselves (since the job id values would match). The output shows one row if there are two employees with the same job id; and three rows if there are three employees with the same job id due to the pair matching.

Demo 03: Pairing Employees who have the same job id

```
select emp_1.job_id
, emp_1.emp_id, emp_2.emp_id
from emp_employees emp_1
join emp_employees emp_2
   on emp_1.job_id = emp_2. job_id
   and emp_1.emp_id < emp_2.emp_id
order by emp_1.job_id, emp_1.emp_id, emp_2.emp_id;</pre>
```

JOB_ID	EMP_ID	EMP_ID	
8	 150	155	
8	150	207	
8	155	207	
16	101	108	
16	101	161	
16	101	162	
16	101	200	
16	101	203	
16	101	205	
16	108	161	
16	108	162	
16	108	200	
16	108	203	
16	108	205	
16	161	162	
16	161	200	
16	161	203	
16	161	205	
16	162	200	
16	162	203	
16	162	205	
16	200	203	
16	200	205	
16	203	205	
32	104	109	
32	104	110	
32	104	160	
32	104	204	
32	104	206	
32	109	110	
32	109	160	
32	109	204	
32	109	206	
32	110	160	

```
110
                                 204
         32
         32
                                 206
                    110
                                 204
         32
                    160
         32
                    160
                                 206
         32
                    204
                                 206
         64
                    102
                                103
         64
                                146
                    102
         64
                    103
                                146
42 rows selected
```

Demo 04: Finding employees who earn more than other employees. This has a lot of rows of output

```
select
   E1.emp_id, E1.salary ,' earns more than ' as " "
, E2.emp_id ,E2.salary
from emp_employees E1 ,
   emp_employees E2
where E1.salary > E2.salary
order by E1.salary desc, E2.salary desc;
```

The output starts with employee 161 who has the highest salary and is matched with all other employees. The next set of rows starts with employee 100 who has the next highest salary. The last set of rows starts with employee 150 who earns more than only the employee(s) with the lowest salary- in our data set that is employee

201. Note there is no set of rows that start with this employee id.

	EMP_ID	SALARY			EMP_ID	SALARY	
	161	120000	earns more	than	100	100000	
	161	120000	earns more	than	204	99090	
	161	120000	earns more	than	101	98005	
	161	120000	earns more	than	162	98000	
	161	120000	earns more	than	206	88954	
	161	120000	earns more	than	146	88954	
	161	120000	earns more	than	205	75000	
	161	120000	earns more	than	103	69000	
	161	120000	earns more	than	160	65000	
	161	120000	earns more	than	104	65000	
	161	120000	earns more	than	109	65000	
	161	120000	earns more	than	200	65000	
	161	120000	earns more	than	203	64450	
	161	120000	earns more	than	108	62000	
	161	120000	earns more	than	102	60300	
	161	120000	earns more	than	110	60300	
	161	120000	earns more	than	145	59000	
	161	120000	earns more	than	207	30000	
	161	120000	earns more	than	155	29000	
	161	120000	earns more	than	150	20000	
	161	120000	earns more	than	201	15000	
	100	100000	earns more	than	204	99090	
	100	100000	earns more	than	101	98005	
	100	100000	earns more	than	162	98000	
	100	100000	earns more	than	206	88954	
	100	100000	earns more	than	146	88954	
	100	100000	earns more	than	205	75000	
	. rows	omitted fo	r many emplo	yees			
	207	30000	earns more	than	155	29000	
	207	30000	earns more	than	150	20000	
	207	30000	earns more	than	201	15000	
	155	29000	earns more	than	150	20000	
	155	29000	earns more	than	201	15000	
	150	20000	earns more	than	201	15000	
223	rows sel	ected.					
DA 4 E	dros @ 201	6.02.25		4544	07.04 notes M		Dage 2 of 4

3. Legacy comma inner join

There is a traditional, legacy join that does the attribute matching in the Where clause. You will see this join in a lot of older code (and in a lot of code written now).

Logically this syntax does a Cartesian product and adds a filter for the records that match on the joining condition.

This join syntax is not allowed in this class for assignments. I want you to get used to using the more uniform join syntax using the Condition join.

Demo 05: A Column Name style inner join of orders and order details

```
select
  customer_id
, order_id
, prod_id
, quantity_ordered * quoted_price As "ExtCost"
from oe_orderHeaders
join oe_orderDetails Using (order_id)
order by customer id, order id;
```

CUSTOMER_ID	ORDER_ID	PROD_ID	ExtCost
400300	378	1120	2250
400300	378	1125	2250
401250	106	1060	255.95
401250	113	1080	22.5
401250	119	1070	225
401250	301	1100	205
rows	omitted		

Demo 06: Comma join: Using the join of orders and order details in the Where clause

```
select
  oe_orderHeaders.customer_id
, oe_orderHeaders.order_id
, oe_orderDetails.prod_id
, oe_orderDetails.quantity_ordered * oe_orderDetails.quoted_price As "ExtCost"
from oe_orderHeaders
  , oe_orderDetails
where oe_orderHeaders.order_id = oe_orderDetails.order_id
order by oe orderHeaders.customer id, oe orderHeaders.order id;
```

The advantage of doing the join in the From clause is that it isolates the join issues from the Where clause filters. If you do the join in the Where clause then you need to take more care with other filters in the Where clause especially if you have both And and Or operators in the Where clause.

Oracle also supports an older outer join syntax in the Where clause which we do not discuss.