*

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 3月27日

出 願 番 号 Application Number:

特願2003-088519

[ST. 10/C]:

[JP2003-088519]

願 人 pplicant(s):

住友重機械工業株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

特許庁長官 Commissioner, Japan Patent Office 2004年 3月22日

今井康

出証番号 出証特2004-3023451

【書類名】 特許願

【整理番号】 SJ0676

【提出日】 平成15年 3月27日

【あて先】 特許庁長官 殿

【国際特許分類】 H02K 7/116

【発明者】

【住所又は居所】 愛知県大府市朝日町六丁目1番地 住友重機械工業株式

会社 名古屋製造所内

【氏名】 山本 章

【発明者】

【住所又は居所】 愛知県大府市朝日町六丁目1番地 住友重機械工業株式

会社 名古屋製造所内

【氏名】 梅田 和良

【特許出願人】

【識別番号】 000002107

【氏名又は名称】 住友重機械工業株式会社

【代理人】

【識別番号】 100089015

【弁理士】

【氏名又は名称】 牧野 剛博

【選任した代理人】

【識別番号】 100080458

【弁理士】

【氏名又は名称】 高矢 諭

【選任した代理人】

【識別番号】 100076129

【弁理士】

【氏名又は名称】 松山 圭佑

【手数料の表示】

【予納台帳番号】 007489

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9102448

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 モータ内蔵ローラ

【特許請求の範囲】

【請求項1】

ローラ本体内にモータと減速機とを備え、該モータの回転が減速機によって減速されて前記ローラ本体に伝達されるモータ内蔵ローラにおいて、

前記ローラ本体内に、該ローラ本体と連結し、且つ、前記減速機の動力を該ローラ本体に伝達可能な回転体を配置すると共に、

該回転体と前記ローラ本体の動力伝達部において該ローラ本体を分割可能とした

ことを特徴とするモータ内蔵ローラ。

【請求項2】

請求項1において、

前記ローラ本体の内周面と前記回転体の外周面とを連結可能にすると共に、該回転体の外周面上において前記ローラ本体を分割可能とした

ことを特徴とするモータ内蔵ローラ。

【請求項3】

請求項2において、

前記回転体の外周面にリング状の凸部を形成すると共に、該凸部の軸方向両サイドを、前記分割したローラ本体の一端面とそれぞれ当接可能とし、且つ、前記凸部の外周面を、該凸部に当接された前記ローラ本体の外周面と面一にした

ことを特徴とするモータ内蔵ローラ。

【発明の詳細な説明】

$[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、コンベア等に使用されるモータプーリ、モータローラ等のモータ内 蔵ローラに関し、特に、動力伝達部の加工が容易で生産性が高く、同時に、加工 精度の向上を図ることのできるモータ内蔵ローラに関する。

[0002]

【従来の技術】

従来、ローラ本体内にモータと減速機とを備え、該モータの回転が減速機によって減速されてローラ本体に伝達され、外部部材に固定された状態で該ローラ本体を回転可能なモータ内蔵ローラが種々提案されている。この種のモータ内蔵ローラは、例えば図5に示されるように、コンベア2上に配置されて搬送物4を直接移動させるためのモータローラMRとして使用される。あるいは、図6に示されるように、ベルト6を介して搬送物4を移動させるためのモータプーリMPとして使用されることもある。

[0003]

以下、図7を用いて、従来のモータ内蔵ローラ10について詳細に説明する(例えば、特許文献1参照)。なお、図7は、モータ内蔵ローラ10の側断面を示す図である。

$[0\ 0\ 0\ 4\]$

モータ内蔵ローラ10は、ローラ本体12と、モータ30と、減速機40と、から主に構成されている。

$[0\ 0\ 0\ 5]$

前記ローラ本体12は、略円筒形状の部材からなり、該ローラ本体12内には、前記モータ30及び減速機40がそれぞれ収容されている。又、ローラ本体12の両端部には、該両端部を閉塞するためのローラカバー12a、12bを介して軸受18、19が配置され、更に該軸受18、19を介して、一対の第1取付軸14及び第2取付軸16がローラ本体12と相対回転可能に保持されている。従って、ローラ本体12は、固定的に設置される一対の第1、第2取付軸14、16の軸心L1を中心として回転可能な構造となっている。

$[0\ 0\ 0\ 6\]$

前記第1取付軸14は、中空の棒状部材からなり、その中空部には、一端が前記モータ30に接続されているモータ配線23が挿通されている。

[0007]

一方、第2取付軸16は、中実の棒状部材からなり、該第2取付軸16のローラ本体12中心側には、ローラカバー12bに固定され、ばね26を収納可能な

スペースが確保されたばねケース27が設けられている。該ばねケース27の中には、ばね26が内蔵されており、該ばね26の一端は、第2取付軸16に当接している。又、ばね26の他端は、ばねケース27の端に受止められたボール29に当接している。このことによって、第2取付軸16がばね26の伸縮により、ローラ本体12の軸心L1に沿って図中H1方向にスライド自在、且つ復帰自在となっている。

[0008]

前記モータ30は、モータ軸32を備え、該モータ軸32は減速機40の入力 軸41を兼用している。

[0009]

該減速機40は、いわゆる揺動内接噛合式の遊星歯車減速機に属するもので、 モータ30のモータ軸32と一体化された入力軸41、偏心体42、外歯歯車4 3、及び内歯歯車44等を有し、外歯歯車43に該外歯歯車43の偏心揺動成分 を吸収する揺動シャフト45を介して出力軸46が連結されている。又、該出力 軸46はローラ本体12に固定されており、該ローラ本体12を回転駆動可能で ある。

[0010]

次に、このモータ内蔵ローラ10の作用について説明する。

$[0\ 0\ 1\ 1]$

モータ30に通電すると、モータ30のモータ軸32が回転する。該モータ軸32(減速機40の入力軸41)の回転は減速機40によって減速され、その減速出力が出力軸46を介してローラ本体12に伝達され、該ローラ本体12が回転駆動される。

$[0\ 0\ 1\ 2]$

ところで、前記ローラ本体12は、その両端部12a、12bが一対の第1、第2取付軸14、16で相対回転可能に支持され、且つ、その中央部付近が減速機40の出力軸46で一体回転可能に支持されている。従って、ローラ本体12の回転を円滑に行うためには、該ローラ本体12の回転中心となる、減速機40の出力軸46の軸心、第1取付軸14の軸心、第2取付軸16の軸心の3つが略

一致するように、それぞれの部品を加工し、ローラ本体12に取付ける必要がある。

$[0\ 0\ 1\ 3]$

【特許文献1】

特開平11-127556号公報

$[0\ 0\ 1\ 4]$

【発明が解決しようとする課題】

しかしながら、従来のモータ内蔵ローラ10においては、第1、第2取付軸14、16をローラ本体12の端面に取付けると共に、前記減速機40の出力軸46を(略円筒状の部材からなる)ローラ本体12内の中央部付近に取付ける必要があった。従って、高精度の加工が要求される、ローラ本体12と出力軸46の動力伝達部(図7中の2で示した部分)の加工が特に難しく、加工精度が出しにくい上に、生産性が低くなるといった問題があった。

[0015]

特に、近年、搬送物の大型化に伴って、軸方向長の長い(ローラ本体12の長い)モータ内蔵ローラに対するニーズが高まっているが、ローラ本体12の長さが長いほど上述の問題が顕著化してしまうといった問題もあった。

$[0\ 0\ 1\ 6]$

本発明は、このような問題を解決するためになされたものであって、動力伝達部の加工が容易で生産性が高く、同時に、加工精度の向上を図ることのできるモータ内蔵ローラを提供することを目的とする。

$[0\ 0\ 1\ 7]$

【課題を解決するための手段】

本発明は、ローラ本体内にモータと減速機とを備え、該モータの回転が減速機によって減速されて前記ローラ本体に伝達されるモータ内蔵ローラにおいて、前記ローラ本体内に、該ローラ本体と連結し、且つ、前記減速機の動力を該ローラ本体に伝達可能な回転体を配置すると共に、該回転体と前記ローラ本体の動力伝達部において該ローラ本体を分割可能としたことにより、上記課題を解決したものである。

[0018]

本発明によれば、回転体とローラ本体の動力伝達部において該ローラ本体を分割可能としたため、動力伝達部の加工を、ローラ本体内ではなくローラ本体端部においてすることができる。従って、従来困難であった動力伝達部の加工を容易且つ高精度に行うことができ、生産性の向上も実現可能である。

[0019]

なお、分割したローラ本体と回転体との具体的な連結構造については、本発明 では特に限定されない。

[0020]

例えば、前記ローラ本体の内周面と前記回転体の外周面とを連結可能にすると 共に、該回転体の外周面上において前記ローラ本体を分割可能とした場合には、 前記回転体を、分割されたローラ本体端部に取付けることができるため、動力伝 達部の加工を容易且つ高精度に行うことが可能となる。

$[0\ 0\ 2\ 1]$

又、前記回転体の外周面にリング状の凸部を形成すると共に、該凸部の軸方向両サイドを、前記分割したローラ本体の一端面とそれぞれ当接可能とし、且つ、前記凸部の外周面を、該凸部に当接された前記ローラ本体の外周面と面一にすれば、該凸部によって回転体を位置決めすることが可能となり、更に回転体の取り付けを容易且つ高精度に行うことができるようになる。

[0022]

【発明の実施の形態】

以下、本発明の実施形態の例を図面に基づいて説明する。

$[0\ 0\ 2\ 3]$

図1及び図2は、本発明の実施形態の例に係るモータ内蔵ローラ100を示したものであり、図1は、前述の図7に対応する、モータ内蔵ローラ100の側断面図、図2の(A)、(B)はそれぞれ図1中の矢視IIA、IIBから見た側面図である。

[0024]

このモータ内蔵ローラ100は、ローラ本体112内にモータ130と、減速

機140とを備え、該モータ130の回転が減速機140によって減速され、ローラ本体112に伝達される構成とされている。

[0025]

ローラ本体 112 は、略円筒形状の部材からなり、該ローラ本体 112 内には、前記モータ 130 及び減速機 140 がそれぞれ収容されている。又、該ローラ本体 112 は、第1ローラ本体 112 x と第2ローラ本体 112 y 02 の部材で構成されている(後述)。

[0026]

更に、ローラ本体112の両端部112a、112bには、リング状部材122、124を介して軸受118、119が配置され、更に該軸受118、119を介して一対の第1、第2取付ブラケット114、116がローラ本体112と相対回転可能に保持されている。従って、ローラ本体112は、一対の第1、第2取付ブラケット114、116の軸心L2を中心として回転可能な構造となっている。

[0027]

なお、第1、第2取付ブラケット114、116は、ローラ本体112の両端 部112a、112bを閉塞する、従来のローラカバーとしての機能も果たして いる。

[0028]

これら第1取付ブラケット114及び第2取付ブラケット116は、図2の(A)、(B)に示すように、それぞれ略円板状の部材からなり、図中L2を中心としてローラ本体112に対して相対回転可能である。又、該第1、第2取付ブラケット114、116には、自身をコンベアフレーム等の外部部材に固定するための取付穴114a~114d及び116a~116dがそれぞれの軸L2方向に設けられていると共に、ローラ本体112内部と外部との通気を図るための貫通孔114e~114i及び116e~116iが設けられている。

[0029]

図1に戻って、第1取付ブラケット114の一端側(ローラ本体112中央側)には、枠部114;が設けられており、該枠部114;は、軸受118の端面

118aと当接している。また、他端側には止め輪162が嵌合され、軸受118の端面118bと当接している。即ち、第1取付ブラケット114は、軸受118によってその軸線L2方向の移動が規制されている。

[0030]

一方、第2取付ブラケット116の一端側(ローラ本体112中央側)には、枠部116jが設けられており、他端側には止め輪164が嵌合されている。又、枠部116jと軸受119の端面119aとの間、止め輪164と軸受119の端面119bとの間には、それぞれ隙間160a、160bが設けられている。即ち、第2取付ブラケット116は、隙間160a、160bの分だけ、図中H2方向へ移動可能な構造となっている。

$[0\ 0\ 3\ 1\]$

モータ130は、空冷タイプの汎用モータである。このモータ130のケース133は、第1取付ブラケット114と一体化されたエンドカバー136、ファンカバー135及び本体ケース134がボルト150、152によって連結された構成とされ、エンドカバー136が第1取付ブラケット114を介して図示しない外部部材に回転不能に固定されている。モータ130自体の各構成要素はケース133(134、135、136)内に収容されている。モータ130の出力軸であるモータ軸132はケース133に組み込まれた一対の軸受120、126によって両持ち支持されている。モータ軸132は、その一端部132aが軸受126から更に片持ち状態で延在・突出され、そのまま減速機140の入力軸として用いられている。一方、その他端側には空冷用のファン137が連結されており、該ファン137は、モータ軸132の回転によって回転可能である。

[0032]

減速機140は、従来例として説明したモータ内蔵ローラ10において使用されていた減速機40と基本的に同じ構成を有する。即ち、この減速機140は、入力軸(モータ軸132の一端部)132aと、該入力軸132aの外周に偏心体142を介して組み込まれ、入力軸132aに対して偏心揺動回転可能とされた外歯歯車143と、該外歯歯車143と内接噛合する内歯歯車144と、外歯歯車142に該外歯歯車143の偏心揺動成分を吸収可能に連結された揺動シャ

フト145と、を有するいわゆる揺動内接噛合式の遊星歯車減速機であり、全体がケース150内に収容・支持されている。又、揺動シャフト145は、円板状のベース回転体146を介してローラ本体112に動力伝達可能であり、該ローラ本体112を回転駆動可能である。

[0033]

図3に、図1における動力伝達部 X 周辺の部分拡大図(図中の(A))及びその分解図(図中の(B))をそれぞれ示す。

[0034]

図3に示すように、ローラ本体112は、第1ローラ本体112x (図中左側) と第2ローラ本体112y (図中右側) の2つで構成されており、ベース回転体146の外周面146a上 (図中H1) において2つに分割可能である。

[0035]

該第1ローラ本体112xは、図示しないボルトによってリング状部材124に固定されていると共に、その内周端面112x2は、ベース回転体146の外周面146aと連結されている。一方、前記第2ローラ本体112yは、図示しないボルトによってベース回転体146に固定されていると共に、その内周端面112y2は、ベース回転体146の外周面146aと連結されている。即ち、この第1、第2ローラ本体112x、112yの内周端面112x2、112y2はそれぞれベース回転体146の外周面146aと連結されており、ベース回転体146の動力を伝達可能な動力伝達部Xを構成している。

[0036]

図3の(B)に示すように、ローラ本体112を2つに分割することによって、モータ内蔵ローラ100は、第2取付ブラケット116を有する第1ローラ100xと、第1取付ブラケット114及びベース回転体146を両端に有する第2ローラ100yに分割することが可能となっている。なお、分割された第1、第2ローラ100x、100yは、第1ローラ本体112xの一端部112x1と第2ローラ本体112yの一端部112y1を溶接で溶着等することによって容易に連結可能である。

[0037]

次に、本発明の実施形態の例に係るモータ内蔵ローラ100の作用について説明する。

[0038]

モータ130のモータ軸132(=入力軸132a)が1回転すると、偏心体 142を介して外歯歯車143が入力軸132aの周りで1回だけ偏心揺動する 。この偏心揺動により内歯歯車144と外歯歯車143との(内接)噛合位置が 順次ずれて1回転する。ここで、外歯歯車143の歯数は内歯歯車144の歯数 よりN(この例ではN=1)だけ少ないため、外歯歯車143は内歯歯車144 に対しその「歯数差N」の分だけ位相がずれることになる。ところが、この実施 形態の場合、外歯歯車143は揺動シャフト145を介してベース回転体146 に連結されている。そのため、外歯歯車143は、その揺動成分が揺動シャフト 145によって吸収され、この位相差による自転成分のみが減速回転としてベース回転体146に伝達され、これが更にローラ本体112へと伝達される。

[0039]

本発明の実施形態の例に係るモータ内蔵ローラ100によれば、ベース回転体146とローラ本体112の動力伝達部Xにおいて、該ローラ本体112を第1、第2ローラ本体112x、112yの2つに分割可能としたため、該動力伝達部Xの加工を、ローラ本体112pではなく第1、第2ローラ本体112x、112y内周端面112x2、112y2においてすることができる。従って、従来困難であった動力伝達部の加工を高精度且つ容易に行うことができ、生産性の向上が実現可能である。

[0040]

より具体的には、図3の(B)に示すように、ベース回転体146を第2ローラ本体112yの内周端面112y2に取付けることができるため、ベース回転体146と第2ローラ本体112yの動力伝達部X1の加工が容易で、その結果、ローラ本体12の回転中心である、第1取付ブラケット114の軸心とベース回転体146の軸心の調整を容易且つ高精度に行うことができる。更に、第1ローラ本体112x2内周端面112x2において行なうことができ、同様の効果を得る

ことができる。

[0041]

次に、図4を用いて、本発明の実施形態の第2例に係るモータ内蔵ローラ200について説明する。なお、該モータ内蔵ローラ200は、ローラ本体212、ベース回転体246以外は上記図1に示したモータ内蔵ローラ100と同じ構成であるので、図4の(A)には、該モータ内蔵ローラ200の動力伝達部Y周辺の部分拡大図、(B)には、(A)の分解図のみを示す。

[0042]

該ローラ本体212は、前記ベース回転体246の外周面246a上において第1ローラ本体212xと第2ローラ本体212yの2つに分割可能である。従って、モータ内蔵ローラ200は、前記ローラ本体212を第1ローラ本体212xと第2ローラ本体212yの2つに分割することによって、第2取付ブラケット216を有する第1ローラ200xと、図示しない第1取付ブラケット及びベース回転体246を両端に有する第2ローラ200yに分割することが可能となっている。

[0043]

又、前記ベース回転体246の外周246aの軸方向中央部にはリング状の凸部246bが形成されていると共に、この凸部246bの両サイド246b1、246b2には、第1、第2ローラ本体212x、212yの一端面212x1、212y1がそれぞれ当接可能で、且つ、凸部246bの外周面246b3は、当接された第1、第2ローラ本体212x、212yの外周面212x2、212y2と面一とされている。

$[0\ 0\ 4\ 4\]$

なお、分割された第1、第2ローラ200x、200yは、第1ローラ本体212xの一端部212x1とベース回転体246の凸部246b、及び第2ローラ本体212yの一端部212y1とベース回転体246の凸部246bをそれぞれ溶接で溶着等することによって容易に連結可能である。

[0045]

本発明の実施形態の第2例に係るモータ内蔵ローラ200によれば、ベース回

転体 246 の外周 246 a に形成した前記凸部 246 b によって、該ベース回転体 246 を第 1、第 2 ローラ本体 212 x、212 y に対して容易に位置決めすることが可能であるため、ベース回転体の 246 の取り付けを、容易且つ高精度に行うことができる。

[0046]

上記実施形態においては、減速機140として揺動内接噛合式の遊星歯車減速機を適用したが、本発明はこれに限定されるものではない。

[0047]

又、ローラ本体の分割構造は、図中で示したものには限定されず、回転体とローラ本体の動力伝達部において該ローラ本体を分割可能であればよい。

[0048]

【発明の効果】

本発明によれば、動力伝達部の加工が容易で生産性が高く、同時に、加工精度の向上を図ることのできるモータ内蔵ローラを提供可能となる。

【図面の簡単な説明】

【図1】

本発明の実施形態の例に係るモータ内蔵ローラを示す側断面図

【図2】

図1における矢視IIA、IIBから見た側面図

【図3】

図1における動力伝達部X周辺の部分拡大図及びその分解図

【図4】

本発明の実施形態の第2例に係るモータ内蔵ローラの動力伝達部Y周辺の部分拡大図及びその分解図

【図5】

モータ内蔵ローラをモータローラに適用した例を示す概略正面図

【図6】

モータ内蔵ローラをモータプーリに適用した例を示す概略正面図

【図7】

従来のモータ内蔵ローラを示す側断面図

【符号の説明】

- 2…コンベア
- 4 …搬送物
- 6…ベルト
- 10、100…モータ内蔵ローラ
- 12、112…ローラ本体
- 12a、12b…ローラカバー
- 14、16…第1、第2取付軸
- 18、19、118、119、120、126…軸受
- 23、123…モータ配線
- 26…ばね
- 27…ばねケース
- 29…ボール
- 30、130…モータ
- 32…モータ軸
- 40、140…減速機
- 41、132 a…入力軸
- 42、142…偏心体
- 43、143…外歯歯車
- 4 4 、 1 4 4 … 内歯歯車
- 45、145…揺動シャフト
- 4 6 …出力軸
- 100x、200x…第1ローラ
- 100 y、200 y…第2ローラ
- 112x、212x…第1ローラ本体
- 112 v、212 y…第2ローラ本体
- 114、116…第1、第2取付ブラケット
- 133…モータケース

ページ: 13/E

- 150…減速機ケース
- 137…ファン
- 146…ベース回転体
- 162、164…止め輪

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【書類名】 要約書

【要約】

【解決手段】ローラ本体112内にモータ130と減速機140とを備え、該モータ130の回転が減速機140によって減速されて前記ローラ本体112に伝達されるモータ内蔵ローラ100において、前記ローラ本体112内に、該ローラ本体112と連結し、且つ、前記減速機140の動力を該ローラ本体112に伝達可能な回転体146を配置すると共に、該回転体146と前記ローラ本体112の動力伝達部Xにおいて該ローラ本体112を分割可能とした。

【選択図】 図1

特願2003-088519

出願人履歴情報

識別番号

[000002107]

1. 変更年月日

1994年 8月10日

[変更理由] 住 所 住所変更 東京都品川区北品川五丁目 9 番 1 1 号

氏 名

住友重機械工業株式会社