Problem Set 7

Warren Kim

 $March\ 1,\ 2023$

Let V be a finite-dimensional vector space, and let $T: V \to V$ be linear.

- (a) If $rank(T) = rank(T^2)$, prove that $R(T) \cap N(T) = \{0\}$. Deduce that $V = R(T) \oplus N(T)$ (see the exercises of Section 1.3).
- (b) Prove that $V = R(T^k) \oplus N(T^k)$ for some positive integer k.

Response

(a) Proof. We want to prove that if $rank(T) = rank(T^2)$, then $R(T) \cap N(T) = \{0\}$. Let some $x \in N(T)$. Then, it follows that T(x) = 0 by the definition of the null space. Applying the T again, we get that T(T(x)) = T(0) = 0. Thus, $N(T) \in N(T^2)$. Now, using the dimension theorem, we have that

$$nullity(T) + rank(T) = dim(V)$$

Note that since $rank(T) = rank(T^2)$, we can rewrite this as

$$nullity(T^2) + rank(T^2) = dim(V)$$

Setting the two equations equal, we get

$$\begin{split} nullity(T) + rank(T) &= nullity(T^2) + rank(T^2) \\ nullity(T) &= nullity(T^2) + (rank(T^2) - rank(T)) \\ nullity(T) &= nullity(T^2) \end{split}$$

Therefore, we have that $N(T) = N(T^2)$.

Now, let some $y \in R(T) \cap N(T)$; that is, $y \in R(T)$ and $y \in N(T)$. By the definition of R(T), if $y \in R(T)$, then there exists an $x \in V$ such that T(x) = y. By the definition of N(T), if $y \in N(T)$, we have

$$T(y) = 0$$

$$T(T(x)) = 0$$

$$T(x) = 0$$

Therefore, since y=0 for an arbitrary y, we have that $R(T) \cap N(T)=\{0\}$. To show that $V=R(T) \oplus N(T)$, recall that the rank-nullity theorem can be rewritten as

$$\begin{aligned} nullity(T) + rank(T) &= dim(V) \\ dim(N(T) + R(T)) &= dim(V) \\ &= dim(R(T) + N(T) - (R(T) \cap N(T))) \\ &= dim(R(T) + N(T) - 0) \\ dim(N(T) + R(T)) &= dim(R(T) \oplus N(T)) \end{aligned}$$

Since we proved that $R(T) \cap NT(T) = \{0\}$, we deduced that $V = R(T) \oplus N(T)$.

(b) Proof. We want to prove that $V = R(T^k) \oplus N(T^k)$ for some positive integer k. From part (a), we have that $R(T) = R(T^2)$ and $V = R(T) \oplus N(T)$ where k = 1. Let this be true for some arbitrary k. We need to prove that this holds true when k = k + 1. Note that $\forall y \in R(T^{k+1}), \exists x \in V$ such that

$$\begin{split} T^{k+1}(x) &= y \\ T^k(T(x)) &= y \\ R(T^{k+1}) &\subset R(T^k) \\ \dim(R(T^{k+1})) &\leq \dim(R(T^k)) \\ \operatorname{rank}(T^{k+1}) &\leq \operatorname{rank}(T^k) \end{split}$$

So we have that $rank(T^{k+a}) \leq rank(T^k)$, where $a \geq 0$. Now, we want to prove that $rank(T^{k+1}) = rank(T^k)$. Note that at most, rank(T) = n. So, the samllest possible rank, denoted by $rank(T^j)$, is $rank(T^j) \geq 0$. Now, consider when k = j

$$\begin{aligned} rank(T^{k+a}) &= rank(T^k) \\ &\leq rank(T^k) \end{aligned} \qquad \text{but } rank(T^k) \text{ is the smallest possible rank} \\ rank(T^{k+a}) &\geq rank(T^k) \end{aligned}$$

Therefore, since we have that both $rank(T^{k+a}) \leq rank(T^k)$ and $rank(T^{k+a}) \geq rank(T^k)$, it must be true that $rank(T^k) = rank(T^{k+a})$. Now, let a = k. We have that $rank(T^k) = rank(T^{2k})$, and from part (a), we have that $V = R(T) \oplus N(T)$.

Let β be an ordered basis for a finite-dimensional vector space V, and let $T: V \to V$ be linear. Prove that, for any nonnegative integer k, $[T^k]_{\beta} = ([T]_{\beta})^k$.

Response

Proof. Let $\beta = \{b_1, b_2, \dots, b_n\}$ be the ordered basis for V. By definition of a linear transformation, for some arbitrary vector $b_i \in \beta$, we have

$$T(b_j) = \sum_{i=1}^{n} a_{j,i} b_j, \ 1 \le j \le n$$

Now, consider $T^2(b_j)$

$$T^{2}(b_{j}) = T(T(b_{j}))$$

$$= T\left(\sum_{i=1}^{n} a_{j,i}b_{j}\right)$$

$$= \sum_{i=1}^{n} a_{j,i}T(b_{j})$$

$$= \sum_{i=1}^{n} a_{j,i}\sum_{k=1}^{n} a_{i,k}b_{j}$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} a_{j,i}a_{i,k}b_{j}$$

$$1 \le k \le n$$

So,

$$[T]_{\beta} = \begin{pmatrix} \sum_{i=1}^{n} a_{j,i} a_{i,1} \\ \sum_{i=1}^{n} a_{j,i} a_{i,2} \\ \vdots \\ \sum_{i=1}^{n} a_{j,i} a_{i,n} \end{pmatrix}$$

Let k = 1. Then we have

$$[T]_{\beta}^{2} = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{i=1}^{n} a_{1,i}a_{i,1} & \dots & a_{1,i}a_{i,1} \\ \vdots & ddots & \vdots \\ \sum_{i=1}^{n} a_{n,i}a_{i,n} & \dots & a_{n,i}a_{i,n} \end{pmatrix}$$

$$= ([T]_{\beta})^{2}$$

Now, we want to prove this holds true when k = k + 1. Consider

$$([T]_{\beta})^{k+1} = ([T]_{\beta})^k ([T]_{\beta})$$
$$= [T^k]_{\beta} [T]_{\beta}$$
$$= [T^k T]_{\beta}$$
$$= [T^{k+1}]_{\beta}$$

Since we have shown the general case holds when k = k + 1, this concludes the induction. Thus, we have proved tha $[T^k]_{\beta} = ([T]_{\beta})^k$ for any nonnegative integer k.

Section 2.4 Question 1 part (a) - (e)

Label the following statements as true or false. In each part, V and W are vector spaces with ordered (finite) bases α and β respectively, $T:V\to W$ is linear, and A and B are matrices.

- (a) $([T]_{\alpha}^{\beta})^{-1} = [T^{-1}]_{\alpha}^{\beta}$.
- (b) T is invertible if and only if T is one-to-one and onto.
- (c) $T = L_A$, where $A = [T]^{\beta}_{\alpha}$.
- (d) $\mathcal{M}_{2\times 3}(F)$ is isomorphic to F^5 .
- (e) $P_n(F)$ is isomorphic to $P_m(F)$ if and only if n=m.

Response

- (a) False
- (b) True
- (c) False
- (d) False
- (e) True

Which of the following pairs of vector spaces are isomorphic? Justify your answers.

- (a) F^3 and $P_3(F)$.
- (b) F^4 and $P_3(F)$.
- (c) $\mathcal{M}_{2\times 2}(\mathbb{R})$ and $P_3(\mathbb{R})$.
- (d) $V = \{A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) : tr(A) = 0\}$ and \mathbb{R}^4 .

Response

- (a) This pair of vector spaces is **not** isomorphic, since $dim(F^3) \neq dim(P_3(F))$, or $3 \neq 4$.
- (b) This pair of vector spaces is isomorphic, since $dim(F^4) = dim(P_3(F))$, or 4 = 4.
- (c) This pair of vector spaces is isomorphic, since $dim(\mathcal{M}_{2\times 2}(\mathbb{R})) = dim(P_3(\mathbb{R}))$, or 4 = 4.
- (d) This pair of vector spaces is **not** isomorphic, since $dim(V) \neq dim(\mathbb{R}^4)$, or $3 \neq 4$.

Prove that if A is invertile and AB = O, then B = O.

Response

 ${\it Proof.}$ Let A be invertible defined by the problem statement. Then we have

$$AB = O$$

 $A^{-1}AB = AO$
 $IB = O$
 $B = O$
 $A^{-1}A = I \text{ and } AO = O$
 $IB = B$

Let A be an $n \times n$ matrix.

- (a) Suppose that $A^2 = O$. Prove that A is not invertible.
- (b) Suppose that AB = O for some nonzero $n \times n$ matrix B. Could A be invertible? Explain.

Response

(a) *Proof.* We want to prove that if $A^2 = O$, A is not invertible. Assume by contradiction that A is invertible. Then, we have

$$A^{2} = O$$
 $A^{-1}AA = A^{-1}O$
 $IAA^{-1} = OA^{-1}$
 $II = O$
 $I = O$
 $A^{2} = AA$
 $A^{-1}A = I \text{ and } A^{-1}O = O$
 $AA^{-1} = I \text{ and } OA^{-1} = O$
 $AA^{-1} = I \text{ and } OA^{-1} = O$
 $AA^{-1} = I \text{ and } OA^{-1} = O$

which is a contradiction, since I cannot be the zero matrix O. Therefore, A is not invertible. \square

(b) Proof. Let AB = O for some nonzero $n \times n$ matrix B defined by the problem statement. A cannot be invertible. Assume by contradiction that A is invertible. Then, we have

$$AB = O$$

 $A^{-1}AB = AO$
 $IB = O$
 $B = O$
 $A^{-1}A = I \text{ and } AO = O$
 $IB = B$

but B must be nonzero by our earlier definition, which is a contradiction. Therefore, A cannot be invertible if B is nonzero.

Let

$$V = \left\{ \begin{pmatrix} a & a+b \\ 0 & c \end{pmatrix} : a, b, c \in F \right\}.$$

Construct an isomorphism from V to F^3 .

Response

Let $A \in V$ and $T: V \to F^3$ defined by

$$T\begin{pmatrix} a & a+b \\ 0 & c \end{pmatrix} = (a,b,c)$$

To prove that T is linear, let $A, B \in V$ and $d \in F$. Then, we have

$$T(dA + B) = (da_1 + a_2, db_1 + b_2, dc_1 + c_2)$$

Therefore, T is linear. Now, its null space is

$$T(A) = 0$$

$$T\begin{pmatrix} a & a+b \\ 0 & c \end{pmatrix} = (0,0,0)$$

$$a = 0$$

$$a+b=0$$

$$b=0$$

$$c=0$$
substitute $a=0$

Therefore, $N(T) = \{0\}$. By observation, we have that β is a basis for V, where $\beta = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$, so we have that $\dim(V) = 3$. So by the rank-nullity theorem, we have that

$$nullity(T) + rank(T) = dim(V)$$

 $0 + rank(T) = 3$
 $rank(T) = 3$

Clearly, we have that $N(T) = \{0\}$ and rank(T) = dim(V); that is, R(T) = V. So T is both one-to-one and onto, and by definition, this means that T is invertible and is an isomorphism.

Let B be an $n \times n$ matrix. Define $\Phi : \mathcal{M}_{n \times n}(F) \to \mathcal{M}_{n \times n}(F)$ by $\Phi(A) = B^{-1}AB$. Prove that Φ is an isomorphism.

Response

Proof. To prove that Φ is an isomorphism, we must show that it is linear and invertible. Let $A, C \in \mathcal{M}_{2\times 2}$ and $d \in F$. Then, we have

$$\Phi(dA+C) = B^{-1}(dA+C)B$$
$$= dB^{-1}AB + B^{-1}CB$$
$$\Phi(dA+C) = d\Phi(A) + \Phi(B)$$

Therefore, Φ is linear. To show that Φ is invertible, let $\Phi^{-1}: \mathcal{M}_{n \times n}(F) \to \mathcal{M}_{n \times n}(F)$ be defined by

$$\Phi^{-1} = BAB^{-1}$$

Then, we have that

$$\Phi^{-1}(\Phi(A)) = B(B^{-1}AB)B^{-1}$$

$$= BB^{-1}ABB^{-1}$$

$$= IAI \qquad B^{-1}B = I = BB^{-1}$$

$$= A \qquad IA = A \text{ and } AI = A$$

Note that $\Phi^{-1}(\Phi(A)) = A$; therefore, Φ^{-1} is the inverse of Φ . Since we have shown that Φ is both linear and invertible, we can say that it is an isomorphism.

Label the following statements as true or false.

- (a) Suppose that $\beta = \{x_1, x_2, \dots, x_n\}$ and $\beta' = \{x_1', x_2', \dots, x_n'\}$ are ordered bases for a vector space and Q is the change of coordinate matrix that changes β' -coordinates into β -coordinates. Then the jth column of Q is $[x_j]_{\beta'}$.
- (b) Every change of coordinate matrix is invertible.
- (c) Let T be a linear operator on a finite-dimensional vector space V, let β and β' be ordered bases for V, and let Q be the change of coordinate matrix that changes β' -coordinates into β -coordinates. Then $[T]_{\beta} = Q[T]_{\beta'}Q^{-1}$.
- (d) The matrices $A, B \in \mathcal{M}_{n \times n}(F)$ are called similar if $B = Q^t A Q$ for some $Q \in \mathcal{M}_{n \times n}(F)$.
- (e) Let T be a linear operator on a finite-dimensional vector space V. Then for any ordered bases β and γ for V, $[T]_{\beta}$ is similar to $[T]_{\gamma}$.

Response

- (a) False
- (b) True
- (c) True
- (d) False
- (e) True

Section 2.5 Question 2 part (a) and (c)

For each of the following pairs of ordered bases β and β' for \mathbb{R}^2 , find the change of coordinate matrix that changes β' -coordinates into β -coordinates.

(a)
$$\beta = \{e_1, e_2\}$$
 and $\beta' = \{(a_1, a_2), (b_1, b_2)\}$

(c)
$$\beta = \{(2,5), (-1,-3)\}$$
 and $\beta' = \{e_1, e_2\}$

Response

(a)

$$(a_1, a_2) = a_1(1, 0) + a_2(0, 1)$$

 $(b_1, b_2) = b_1(1, 0) + b_2(0, 1)$

So
$$[x_1']_{\beta} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
, $[x_2']_{\beta} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, where $x_1' = (a_1, a_2), x_2' = (b_1, b_2)$ Then, we have

$$Q = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$$

(b)

$$(1,0) = 3(2,5) + 5(-1,-3)$$
 LCM of 5 and 3 is 15
= $(6,15) + (-5,15)$
= $(1,0)$
$$(0,1) = -1(2,5) + -2(-1,-3)$$
 LCM of 1 and 2 is 2
= $(-2,-5) + (2,6)$
= $(0,1)$

So
$$[x'_1]_{\beta} = {3 \choose 5}$$
, $[x'_2]_{\beta} = {-1 \choose -2}$, where $x'_1 = (1,0), x'_2 = (0,1)$ Then, we have

$$Q = \begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix}$$

Let T be the linear operator on \mathbb{R}^2 , and let

$$T\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2a+b \\ a-3b \end{pmatrix},$$

let β be the standard ordered basis for \mathbb{R}^2 , and let

$$\beta' = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}.$$

Use Theorem 2.23 and the fact that

$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

to find $[T]_{\beta'}$.

Response

Note that $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$. To find $[T]_{\beta}$, we do

$$2a + b = 2(1,0) + 1(0,1)$$
$$a - 3b = 1(1,0) + -3(0,1)$$

So $[T]_{\beta} = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}$. Now, we calculate $[T]_{\beta'}$ by applying the equation defined earlier.

$$\begin{split} [T]_{\beta'} &= Q^{-1}T]_{\beta}Q^{-1} \\ &= \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \\ &= \begin{pmatrix} 4+-1 & 2+3 \\ -2+1 & -1+-3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \\ &= \begin{pmatrix} 3 & 5 \\ -1 & -4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \\ &= \begin{pmatrix} 3+5 & 3+10 \\ -1+-4 & -3+-6 \end{pmatrix} \\ [T]_{\beta'} &= \begin{pmatrix} 8 & 13 \\ -5 & -9 \end{pmatrix} \end{split}$$

Let T be the linear operator on $P_1(\mathbb{R})$ defined by T(p(x)) = p'(x), the derivative of p(x). Let $\beta = \{1, x\}$ and $\beta' = \{1 + x, 1 - x\}$. Use Theorem 2.23 and the fact that

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

to find $[T]_{\beta'}$.

Response

Note that $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$. To find $[T]_{\beta}$, we do

$$p(1) = 0 = 0(1) + 0(x)$$
$$p(x) = 1 = 1(1) + 0(x)$$

So $[T]_{\beta} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Now, we calculate $[T]_{\beta'}$ by applying the equation defined earlier.

$$\begin{split} [T]_{\beta'} &= Q^{-1}T]_{\beta}Q^{-1} \\ &= \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} 0+0 & \frac{1}{2}+0 \\ 0+0 & \frac{1}{2}+0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} 0+\frac{1}{2} & 0+-\frac{1}{2} \\ 0+\frac{1}{2} & 0+-\frac{1}{2} \end{pmatrix} \\ [T]_{\beta'} &= \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \end{split}$$