

reescale Semiconductor

Technical Data

RF Power LDMOS Transistors

High Ruggedness N-Channel Enhancement-Mode Lateral MOSFETs

Designed for mobile two-way radio applications with frequencies from 136 to 520 MHz. The high gain, ruggedness and broadband performance of these devices make them ideal for large-signal, common source amplifier applications in mobile radio equipment.

Typical Performance: 12.5 V, T_A = 25°C, CW

Frequency	G _{ps} (dB)	η _D (%)	P _{out} (W)
136 MHz	21.0	68.0	76
450-520 MHz ⁽¹⁾	14.6	65.8	75
520 MHz (2)	18.5	68.5	70

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
520 (2)	CW	> 65:1 at all Phase Angles	2 (3 dB Overdrive)	17	No Device Degradation

- 1. Measured in 450-520 MHz UHF broadband reference circuit.
- 2. Measured in 520 MHz narrowband test circuit.

Features

- Characterized for Operation from 136 to 520 MHz
- Unmatched Input and Output Allowing Wide Frequency Range Utilization
- · Integrated ESD Protection
- Integrated Stability Enhancements
- Wideband Full Power Across the Band
- · Exceptional Thermal Performance
- Extreme Ruggedness
- · High Linearity for: TETRA, SSB, LTE
- In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13-inch Reel.

Typical Applications

- · Output Stage VHF Band Mobile Radio
- · Output Stage UHF Band Mobile Radio

Document Number: AFT05MP075N Rev. 1, 8/2014

√RoHS

AFT05MP075NR1 AFT05MP075GNR1

136–520 MHz, 70 W, 12.5 V BROADBAND RF POWER LDMOS TRANSISTORS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +40	Vdc
Gate-Source Voltage	V_{GS}	-6.0, +12	Vdc
Operating Voltage	V_{DD}	17, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	690 3.45	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 80°C, 70 W CW, 12.5 Vdc, I _{DQ(A+B)} = 400 mA, 520 MHz	$R_{ heta JC}$	0.29	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2, passes 2500 V
Machine Model (per EIA/JESD22-A115)	A, passes 250 V
Charge Device Model (per JESD22-C101)	IV, passes 2000 V

Table 4. Moisture Sensitivity Level

	Test Methodology	Rating	Package Peak Temperature	Unit
Ī	Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit		
Off Characteristics							
Zero Gate Voltage Drain Leakage Current (V _{DS} = 40 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	3	μAdc		
Zero Gate Voltage Drain Leakage Current (V _{DS} = 12.5 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	2	μAdc		
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	600	nAdc		
On Characteristics							
Gate Threshold Voltage	V _{GS} (th)	1.7	2.1	2.5	Vdc		

Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 295 μ Adc)	V _{GS(th)}	1.7	2.1	2.5	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3.0 Adc)	V _{DS(on)}	_	0.14		Vdc
Forward Transconductance (4) (V _{GS} = 10 Vdc, I _D = 8 Adc)	9 _{fs}	_	7.3	_	S

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.
- 4. Each side of device measured separately.

(continued)

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit		
Oynamic Characteristics (1)							
Reverse Transfer Capacitance (V _{DS} = 12.5 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	2.3	_	pF		
Output Capacitance (V _{DS} = 12.5 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)		_	64	_	pF		
Input Capacitance (V _{DS} = 12.5 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	148	_	pF		

Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) $V_{DD} = 12.5 \text{ Vdc}$, $I_{DQ(A+B)} = 400 \text{ mA}$, $P_{in} = 1 \text{ W}$, f = 520 MHz

Common-Source Amplifier Output Power	P _{out}	_	70	_	W
Drain Efficiency	η_{D}	_	68.5	_	%

Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) $I_{DQ(A+B)} = 400 \text{ mA}$

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
520	CW	> 65:1 at all Phase Angles	2 (3 dB Overdrive)	17	No Device Degradation

^{1.} Each side of device measured separately.

^{2.} Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

TYPICAL CHARACTERISTICS

Note: Each side of device measured separately.

11 V_{GS} = 3.75 Vdc $T_A = 25^{\circ}C$ 10 9 I_{DS}, DRAIN CURRENT (AMPS) 8 3.5 Vdc 6 5 4 3.25 Vdc 3 2 2.5 Vdc 3 Vdc 0 6 10 8 12 14 16 18 20 0 V_{DS}, DRAIN-SOURCE VOLTAGE (VOLTS)

Note: Measured with both sides of the transistor tied together.

Figure 2. Capacitance versus Drain-Source Voltage

Figure 3. Drain Current versus Drain-Source Voltage

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 4. MTTF versus Junction Temperature - CW

520 MHz NARROWBAND PRODUCTION TEST FIXTURE

^{*}C8 and C23 are mounted vertically.

Figure 5. AFT05MP075NR1 Narrowband Test Circuit Component Layout — 520 MHz

Table 6. AFT05MP075NR1 Narrowband Test Circuit Component Designations and Values — 520 MHz

Part	Description	Part Number	Manufacturer
B1, B2	Ferrite Beads	2743019447	Fair-Rite
C1, C11	22 μF, 35 V, Tantalum Capacitors	T491X226K035AT	Kemet
C2, C12, C18, C28	0.1 μF Chip Capacitors	CDR33BX104AKWS	AVX
C3, C13	220 nF Chip Capacitors	C1812C224K5RAC-TU	Kemet
C4, C14	2.2 μF Chip Capacitors	C1825C225J5RAC-TU	Kemet
C5	5.1 pF Chip Capacitor	ATC100B5R1CT500XT	ATC
C6, C7	20 pF Chip Capacitors	ATC100B200JT500XT	ATC
C8	16 pF Chip Capacitor	ATC100B160JT500XT	ATC
C9	36 pF Chip Capacitor	ATC100B360JT500XT	ATC
C10	2.7 pF Chip Capacitor	ATC100B2R7BT500XT	ATC
C15, C25	240 pF Chip Capacitors	ATC100B241JT200XT	ATC
C16, C26	2.2 μF Chip Capacitors	G2225X7R225KT3AB	ATC
C17, C27	0.1 μF Chip Capacitors	C1812F104K1RAC-TU	Kemet
C19, C20, C29, C30	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
C21	51 pF Chip Capacitor	ATC100B510GT500XT	ATC
C22, C24	100 pF Chip Capacitors	ATC100B101JT500XT	ATC
C23	24 pF Chip Capacitor	ATC100B240JT500XT	ATC
L1, L2	5.0 nH Inductors	A02TKLC	Coilcraft
L3, L4	17.5 nH Inductors	GA3095-ALC	Coilcraft
Coax1, 2, 3, 4	25 Ω Semi Rigid Coax, 2.4" Shield Length	UT-141C-25	Micro-Coax
PCB	0.030", ε _r = 2.55	AD255A	Arlon

Figure 6. AFT05MP075NR1 Narrowband Test Circuit Schematic — 520 MHz

Table 7. AFT05MP075NR1 Narrowband Test Circuit Microstrips — 520 MHz

Microstrip	Description	Microstrip	Description
Z1	0.366" × 0.082" Microstrip	Z8*, Z21*	0.672" × 0.150" Microstrip
Z2, Z15	0.010" × 0.125" Microstrip	Z9, Z22	0.290" × 0.522" Microstrip
Z3, Z16	0.018" × 0.125" Microstrip	Z10, Z23	0.590" × 0.230" Microstrip
Z4, Z17	0.135" × 0.125" Microstrip	Z11, Z24	0.030" × 0.230" Microstrip
Z5, Z18	0.100" × 0.125" Microstrip	Z12, Z25	0.010" × 0.230" Microstrip
Z6, Z19	0.430" × 0.740" Microstrip	Z13	0.154" × 0.082" Microstrip
Z7*, Z20*	0.726" × 0.058" Microstrip	Z14	0.100" × 0.082" Microstrip
thought 4	* I ing langth includes microstrip bands		

TYPICAL CHARACTERISTICS — 520 MHz

Figure 7. Output Power versus Gate-Source Voltage

Figure 8. Power Gain, Output Power and Drain Efficiency versus Input Power

$V_{DD} =$	12.5 Vdc, $I_{DQ(A+B)} = 400$	$mA, P_{out} = 70 W$
f MHz	$Z_{source} \ \Omega$	Z _{load} Ω
520	0.91 + j2.37	2.56 + j0.27

Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

Figure 9. Narrowband Series Equivalent Source and Load Impedance — 520 MHz

AFT05MP075NR1 AFT05MP075GNR1

450-520 MHz UHF BROADBAND REFERENCE CIRCUIT

Table 8. 450-520 MHz UHF Broadband Performance (In Freescale Reference Circuit, 50 ohm system) V_{DD} = 12.5 Volts, $I_{DQ(A+B)}$ = 500 mA, T_A = 25°C, CW

Frequency (MHz)	G _{ps} (dB)	η _D (%)	P _{out} (W)
450	15.9	65.8	75
485	14.6	72.9	75
520	15.1	71.1	75

Table 9. Load Mismatch/Ruggedness (In Freescale Reference Circuit)

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
485	CW	> 65:1 at all Phase Angles	6 (3 dB Overdrive)	17	No Device Degradation

450-520 MHz UHF BROADBAND REFERENCE CIRCUIT

^{*}C14 is mounted vertically.

Figure 10. AFT05MP075NR1 UHF Broadband Reference Circuit Component Layout — 450-520 MHz

Table 10. AFT05MP075NR1 UHF Broadband Reference Circuit Component Designations and Values — 450-520 MHz

Part	Description	Part Number	Manufacturer
B1	Ferrite Bead	2661000101	Fair-Rite
C1, C3, C4	10 pF Chip Capacitors	ATC600F100JT250XT	ATC
C2	15 pF Chip Capacitor	ATC600F150JT250XT	ATC
C5, C6	56 pF Chip Capacitors	ATC600F560JT250XT	ATC
C7, C8	33 pF Chip Capacitors	ATC800B330JT500XT	ATC
C9, C10	30 pF Chip Capacitors	ATC800B300JT500XT	ATC
C11, C12	5.6 pF Chip Capacitors	ATC800B5R6CT500XT	ATC
C13	16 pF Chip Capacitor	ATC800B160JT500XT	ATC
C14	100 pF Chip Capacitor	ATC800B101JT500XT	ATC
C15	47 μF, 16 V Tantalum Capacitor	T491D476K016AT	Kemet
C16, C21	1000 pF Chip Capacitors	ATC100B102JT50XT	ATC
C17, C20	200 pF Chip Capacitors	ATC100B201JT300XT	ATC
C18, C19	100 pF Chip Capacitors	ATC100B101JT500XT	ATC
C22	10 μF Chip Capacitor	GRM55DR61H106KA88L	Murata
C23	330 μF, 35 V Electrolytic Capacitor	MCGPR35V337M10X16-RH	Multicomp
C24	1.5 pF Chip Capacitor	ATC800B1R5CT500XT	ATC
L1	120 nH Chip Inductor	0805CS-121X-LB	CoilCraft
L2	2.55 nH, 3 Turn Inductor	0906-3JLC	CoilCraft
L3	6 Turns, #22 AWG, 0.125" ID	8075 Copper Magnetic Wire	Beldon
Q1	RF Power LDMOS Transistor	AFT05MP075NR1	Freescale
R1	180 Ω, 1/10 W Chip Resistor	RR1220P-181-B-T5	Vishay
R2, R3	10 Ω, 3/4 W Chip Resistors	CRCW201010R0FKEF	Vishay
PCB	$0.030''$, $\epsilon_{\Gamma} = 4.8$	S1000-2, FR4	Shengyi

Figure 11. AFT05MP075NR1 UHF Broadband Reference Circuit Schematic — 450-520 MHz

Table 11. AFT05MP075NR1 UHF Broadband Reference Circuit Microstrips — 450-520 MHz

Microstrip	Description	Microstrip	Description	Microstrip	Description
Z1	0.250" × 0.052" Microstrip	Z12, Z13	Z12, Z13 0.015" × 0.083" Microstrip	Z28, Z29	Z28, Z29 0.075" × 0.083" Microstrip
Z2	0.059" × 0.064" Microstrip	Z14, Z15	Z14, Z15 0.065" × 0.093" Microstrip	Z30, Z31	230, Z31 0.030" × 0.083" Microstrip
Z3	0.060" × 0.050" Microstrip	Z16, Z17	Z16, Z17 0.050" × 0.093" Microstrip	Z32*, Z33*	Z32*, Z33* 0.108" × 0.073" Microstrip
Z4	0.054" × 0.064" Microstrip	Z18, Z19	Z18, Z19 0.110" × 0.170" Microstrip	Z34*, Z35*	Z34*, Z35* 0.109" × 0.073" Microstrip
Z5	0.200" × 0.054" Microstrip	Z20, Z21	Z20, Z21 0.110" × 0.170" Microstrip	Z36	0.177" × 0.054" Microstrip
Z6*, Z7*	0.195" × 0.073" Microstrip	Z22, Z23	Z22, Z23 0.050" × 0.093" Microstrip	Z37	0.470" × 0.054" Microstrip
Z8, Z9	0.035" × 0.083" Microstrip	Z24, Z25	Z24, Z25 0.017" × 0.093" Microstrip	Z38	0.130" × 0.054" Microstrip
Z10, Z11	0.055" × 0.083" Microstrip	Z26, Z27	Z26, Z27 0.048" × 0.093" Microstrip	S39	0.200" × 0.054" Microstrip

^{*} Line length includes microstrip bends

TYPICAL CHARACTERISTICS — 450-520 MHz UHF BROADBAND REFERENCE CIRCUIT

Figure 12. Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power — 13.6 V

Figure 13. Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power — 12.5 V

TYPICAL CHARACTERISTICS — 450-520 MHz UHF BROADBAND REFERENCE CIRCUIT

Figure 14. Output Power versus Gate-Source Voltage

Figure 15. Power Gain, Output Power and Drain Efficiency versus Input Power and Frequency

450-520 MHz UHF BROADBAND REFERENCE CIRCUIT

 V_{DD} = 12.5 Vdc, $I_{DQ(A+B)}$ = 500 mA, P_{out} = 75 W

f MHz	Z _{source} Ω	Z _{load} Ω
450	0.55 + j0.59	0.75 + j0.30
460	0.72 + j0.81	0.82 + j0.39
470	0.79 + j0.93	0.90 + j0.42
480	0.71 + j0.86	0.92 + j0.44
490	0.62 + j0.78	0.93 + j0.41
500	0.60 + j0.74	0.89 + j0.39
510	0.64 + j0.72	0.85 + j0.39
520	0.69 + j0.78	0.79 + j0.39
530	0.70 + j1.03	0.74 + j0.43

 $Z_{source} = \mbox{Test circuit impedance as measured from} \\ \mbox{gate to ground}.$

 $Z_{load} \quad = \mbox{ Test circuit impedance as measured from} \\ \quad drain to ground.$

Figure 16. UHF Broadband Series Equivalent Source and Load Impedance — 450-520 MHz

AFT05MP075NR1 AFT05MP075GNR1

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCAL	E.
TITLE:		DOCUME	NT NO: 98ASA10577D REV:	Е
TO-270WB-4		STANDAF	RD: NON-JEDEC	
			27 AUG 2	013

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE
TITLE:		DOCUME	NT NO: 98ASA10577D REV: E
TO-270WB-4		STANDAF	RD: NON-JEDEC
			27 AUG 2013

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- DIMENSIONS D1 AND E1 D0 NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15MM) PER SIDE. DIMENSIONS D1 AND E1 D0 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- DIMENSIONS 61 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13MM) TOTAL IN EXCESS OF THE 61 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.
- riangle dimension a2 applies within zone j only.
- A HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. DIMENSIONS D3 AND D4 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.
- DIMPLED HOLE REPRESENTS INPUT SIDE.
- 10 THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.

	1								
	l IN	CH	MIL	LIMETER.			INCH	MILL	IMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.100	.104	2.54	2.64	F	.0	25 BSC	0.64	4 BSC
A1	.039	.043	0.99	1.09	b1	.164	.170	4.17	4.32
A2	.040	.042	1.02	1.07	c1	.007	.011	0.18	0.28
D	.712	.720	18.08	18.29	е	.1	06 BSC	2.69	9 BSC
D1	.688	.692	17.48	17.58	e1	.239	.239 INFO ONLY		IFO ONLY
D2	.011	.019	0.28	0.48	aaa	.004		c).10
D3	.600		15.24		bbb	.008		0	.20
Е	.551	.559	14.00	14.20					
E1	.353	.357	8.97	9.07					
E2	.132	.140	3.35	3.56					
E3	.124	.132	3.15	3.35					
E4	.270		6.86						
E5	.346	.350	8.79	8.89					
©	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MEC			MECHANICA	L OU	ΓLINE	PRINT VERS	SION NOT	TO SCALE
TITLE:	TITLE:					DOCUME	NT NO: 98ASA1	0577D	REV: E
	٦	ΓO-270W	/B-4			STANDA	RD: NON-JEDEC		
					•			27	AUG 2013

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-270	DOCUMENT NO): 98ASA10578D	REV: D	
4 LEAD, WIDE BOI	YC	CASE NUMBER: 1487-05 03 AUG 2007		
GULL WING		STANDARD: JE	DEC TO-270 BB	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-270	DOCUMENT NO): 98ASA10578D	REV: D	
4 LEAD, WIDE BOD)Y	CASE NUMBER: 1487-05 03 AUG 2007		
GULL WING		STANDARD: JE	DEC TO-270 BB	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

STYLE 1:

PIN 1 - DRAIN PIN 2 - DRAIN

PIN 3 — GATE PIN 4 — GATE

PIN 5 - SOURCE

	INCH		MILLIMETER			INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
A	.100	.104	2.54	2.64	L	.018	.024	0.46	0.61	
A1	.001	.004	0.02	0.10	L1	.01 BSC		0.25 BSC		
A2	.101	.108	2.56	2.74	b1	.164	.170	4.17	4.32	
D	.712	.720	18.08	18.29	c1	.007	.011	.18	.28	
D1	.688	.692	17.48	17.58	е	.106 BSC		2.69 BSC		
D2	.011	.019	0.28	0.48	t	2.	8.	2.	8.	
D3	.600		15.24		aaa		.004		0.1	
E	.429	.437	10.90	11.10						
E1	.353	.357	8.97	9.07						
E2	.132	.140	3.35	3.56						
E3	.124	.132	3.15	3.35						
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
0	© FREESCALE SEMICONDUCTOR, INC. MECHANIC					L OUTLINE PRINT VERSION NO			T TO SCALE	
TITLE	TITLE: TO-270					JMENT NO	REV: D			
4 LEAD, WIDE BODY					CASE NUMBER: 1487-05				03 AUG 2007	
GULL WING						STANDARD: JEDEC TO-270 BB				

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- · AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- · AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

· EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- · Electromigration MTTF Calculator
- · RF High Power Model
- · .s2p File

Development Tools

· Printed Circuit Boards

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Feb. 2013	Initial Release of Data Sheet
1	Aug. 2014	Tape and Reel information: corrected tape width information from 32-inch reel to 44-inch reel to reflect actual reel size, p. 1
		Replaced case outline TO-270WB-4, Issue D with Issue E, pp. 14–16. Added notes 9 and 10, four exposed source tabs, and a feature control frame to E and E5 on p. 14. Removed style and pin information from notes section on p. 16.

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2013–2014 Freescale Semiconductor, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

AFT05MP075GNR1 AFT05MP075NR1 AFT05MP075N-54M