FG.

WATER RESOURCES STUDY

Metropolitan Spokane Region

MAR 9 1977

APPENDIX A
Surface Water
JANUARY 1976

COPY AVALABLE TO DOG DOES NOT PERMIT FULLY LEGISLE PRODUCTION

LIST OF REPORTS AND APPENDICES

REPORTS

Summary Report

Technical Report

APPENDIX	TITLE
A	SURFACE WATER
В	Geology and Groundwater
С	Water Use
D	Wastewater Generation and Treatment
E	Environment and Recreation
F	Demographic and Economic Characteristics
G	Planning Criteria
H (Volume 1)	Plan Formulation and Evaluation
H (Volume 2)	Plan Formulation and Evaluation
I	Institutional Analysis
J	Water Quality Simulation Model

METROPOLITAN SPOKANE REGION WATER RESOURCES STUDY.

APPENDIX A. SURFACE WATER.

JANUARY 1976

Department of the Army Corps of Engineers, Seattle District

Kennedy-Tudor Consulting Engineers

K KENNEDY

.410.075

1/3

Best Available Copy

acknowledgements

The Metropolitan Spokane Region Water Resources study was accomplished by the Seartle District, U.S. Army Corps of Engineers assisted by Kennedy-Tudor Consulting Engineers under sponsorship of the Spokane Regional Planning Conference. Technical guidance was provided by the Spokane River Basin Coordinating Committee, with general guidance from the study's citizens committee. Major cooperating agencies include Spokane City and County, and the Washington State Department of Ecology. The study was coordinated with appropriate Federal and State agencies and with the general public within the metropolitan Spokane area.

The summary report was prepared by the Seattle District Corps of Engineers. The technical report and appendices were prepared for the Seattle District, Corps of Engineers by Kennedy-Tudor Consulting Engineers.

PREFACE

With the enactment of the Federal Water Pollution Control Act Amendment of 1972 (Public Law 92-500), new national goals have been established for the elimination of pollution discharges into our streams and lakes. This appendix is a part of the report prepared to assist local government in satisfying State and Federal Requirements relating to Public Law 92-500. The suggestions contained in this report are for implementation by local interests with available assistance from other local, State and Federal agencies. The study suggests a regional wastewater management plan for the metropolitan Spokane urban area and provides major input to Washington State Department of Ecology Section 303e plans for the Spokane River Basin in Washington State. Also included in the study are planning suggestions for urban runoff and flood control, and the protection of the area's water supply resources.

As listed on the inside front cover, documentation for this study consists of a Summary Report and a Technical Report with supporting Appendices A through J.

The Technical Report summarizes Appendices A through J, which contain 58 individual task section reports prepared during the study. These task sections are listed by title in Attachment I of the Technical Report. Generally, the numbering of appendix task sections reflects the following system:

Study Task Sections	Type of Study Activity
300's	Data Collection
400's	Data Evaluation and Projection
500's	Identification of Unmet Needs
600's	Development of Alternative Plans
700's	Evaluation Comparison and Selection of Plans
800's	Institutional Arrangements

Pages within each appendix are numbered by task section, as illustrated below:

APPENDIX A - SURFACE WATER CONTENTS :

TASK SECTION	<u>uru</u>	PAGE
308 C	> Surface Water:	308-1 to 308-77
404	Surface Water Quality Summary and Evaluation	404-1 to 404-52
410.1	Statistical Analysis of Streamflow Records	401.1-1 to 401.1-59
410.2	Flood Plain Delineation; and	410.2-1 to 410.2-68
307	Inventory of Water Quality Data and Identification of Data Gaps	307-1 to 307-104

A detailed index for each task section precedes the respective section text.

SECTION 308

SURFACE WATER

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION

SECTION 308

SURFACE WATER

6 March 1974

DISTT,

Department of the Army, Seattle District Corps of Engineers Kennedy-Tudor Consulting Engineers

INDEX

Subject	Page
Introduction	308- 1
Hydrologic Basin in Idaho	308- 1
Hydrologic Basins of the Study Area	308- 7
Introduction	308- 7
WRIA Number 54, Lower Spokane	308- 7
WRIA Number 55, Little Spokane	308- 8
WRIA Number 56, Hangman Creek	308-10
WRIA 57, Upper Spokane	308-11
Streamflow Data	308-12
Spokane River	308-13
Hangman Creek	308-16
Little Spokane River	308-17
Other Streams	308-18
Comparison of Elements	308-19
Historic Floods	308-20
Spokane River	308-20
Hangman Creek	308-25
Little Spokane River	308-27
Hydroelectric Facilities	308-27
Schematic Flow Diagram and Flow Balance	308-35
Lakes	308-36
INDEX OF TABLES	ъ
INDEX OF FIGURES	c
PLATES	c
List of References	308-62
Appendix I	308-64
Appendix II	308-65
Appendix III	308-66
Appendix IV	308-67
Annendix V	308-68

INDEX OF TABLES

Title	Table Number	Page
	1	308-41
Tributary Areas	_	
River Mile Index	2	308-42
Stream Gages with Available Daily or Monthly Record	3	308-46
Stream Gages with Annual Peak and/or Low Flow Records Only	4	308-48
Annual Mean and Extreme Flows	5	308-50
Maximum, Minimum and Mean Monthly Flows	6	308-51
Historical Floods on the Spokane River	7	308-52
Impoundments	8	308~53
Hydroelectric Installation	9	308-54
Inventory of Lakes	10	308-55
Characteristics of Major Lakes	11	308-56

INDEX OF FIGURES

<u>Title</u>	Figure Number	Page
Maximum, Minimum and Mean Monthly Discharges, Spokane River at		
Spokane Spokane	A	308-57
Maximum, Minimum and Mean Monthly Discharges, Hangman Creek at		
Spokane	В	308-58
Maximum, Minimum and Mean Monthly Discharges, Little Spokane		
River at Dartford	С	308-59
Comparison, Annual Flow Pattern 1972, Spokane River at Spokane, Hangman Creek at Spokane, Little Spokane		
River at Dartford	D	308-60
Schematic Flow Diagram of the Study Area	ĸ	200 (1
•••	Ē.	308-61
DI ATEC *		

PLATES *

Hydrologic Basin of the Spokane River	308-1	
Water Resource Inventory Areas and		
Gaging Station Locations	308-2	

^{*} All plates are large drawings bound at the end of this section.

SURFACE WATER

Introduction

The Study Area represents the downstream portion of the hydrologic basin of the Spokane River and its tributaries. The hydrologic basin covers 6,640 square miles above the mouth of the Spokane River where it empties into the Franklin D. Roosevelt Lake impoundment of the Columbia River. The Study Area, which includes that part of the hydrologic basin that lies in the State of Washington, occupies approximately 2,295 square miles. The remainder of the hydrologic basin, approximately 4,345 square miles in area, is in the State of Idaho. Refer to Plate 308-1. Obviously, the surface water supply of the Study Area is dominated by considerations of the hydrologic basin in Idaho.

Hydrologic Basin in Idaho

The hydrologic basin in Idaho forms three tributary systems which enter the Study Area separately. The first and largest is the river system tributary to Coeur D'Alene Lake which is the source of the Spokane River. Secondly, there is another area topographically tributary to the Spokane River between the outlet of Coeur D'Alene Lake and the Washington border from which only part of the runoff reaches the river as surface supply. This second area lies mostly north of the Spokane River extending up the valley known as Rathdrum Prairie and includes the mountain slopes on

the east and west sides of the valley. The floor of this valley consists of deep deposits of highly permeable glacial outwash gravel which becomes a groundwater repository for most of the runoff from this area. Thirdly, the tributary areas of Hangman Creek and its tributary kock Creek extend into Idaho.

The tributary area of Coeur D'Alene Lake is approximately 3,700 square miles, thus occupying approximately 86 percent of the hydrologic basin in Idaho. This drainage area extends eastward to the crest of the Bitterroot Mountains that form the Montana-Idaho border. Two river systems drain the area. The northern portion is drained by the Coeur D'Alene River, with its tributaries, which enters the Lake near Harrison, Idaho. The southern portion is drained by the St. Joe and St. Maries Rivers which enter the southern end of the lake.

Both the Coeur D'Alene and St. Joe-St. Maries systems drain mountainous, forested country which rises from elevation 2120 feet at Coeur D'Alene Lake to elevation 6500 feet at the crest of the Bitter-root Mountains. The Coeur D'Alene River has a tributary area of 1488 square miles and the St. Joe River and its tributary, the St. Maries River, have a combined tributary area of 1886 square miles. A large proportion of the drainage basin of Coeur D'Alene Lake is in national forest land. To the north of the Coeur D'Alene River, the tributary area of the river is in Coeur D'Alene National Forest. East of Calder, the St. Joe River watershed is in St. Joe National Forest.

As noted in the section on climate, there is a west to east

trend of increasing average annual precipitation caused by the rising terrain facing the predominant eastward moving marine air masses. This pattern gives further importance to the watershed of Coeur D'Alene Lake as the primary source of Spokane River waters. Except for the local condition at Mt. Spokane, the rainfall in the Washington portion of the hydrologic basin ranges from 15 inches in the west to about 25 inches at the Idaho border. From the Idaho border eastward, the annual rainfall increases from 25 inches to 50 inches in the headwaters of the Coeur D'Alene River and 70 inches at the headwaters of the St. Joe.

There are no existing impoundments of any significance on either the Coeur D'Alene system or the St. Joe system above Coeur D'Alene Lake. The rivers are unregulated and free discharging.

Coeur D'Alene Lake is a natural lake that has a natural outlet to the Spokane River. The Post Falls Dam on the Spokane River, nine miles below the outlet from Coeur D'Alene Lake, was constructed by Washington Water Power Company (WWP) to regulate the lake level to optimize water power production. A description of the operating philosophy of WWP for the Post Falls outlet works is given later in this section.

Coeur D'Alene Lake is approximately 24 miles long with widths in the range of 1 to 2 miles. The lake has a general north-south orientation with the major entering rivers at the south end and the Spokane River outlet at the north end. The fact that the lake is long and narrow and that the water has to flow through its

length has important consequences for water quality which are discussed in other sections.

In addition to its physical properties, the flow regulation of Coeur D'Alene Lake is a consequence of the interaction between Idaho law and the requirement for power production in Washington Water Power Company's six installations on the Spokane River. The legally useable storage in Coeur D'Alene Lake is significantly less than what would be required to retain surplus natural flows of the peak runoff season for release during periods of natural low flow. For the same reason, the lake storage effect on flood flows is insufficient to prevent moderately large flows in the Spokane River. In the past, a number of studies have been made by the Corps of Engineers for impoundments on the Coeur D'Alene and St. Joe Rivers to optimize annual flow and reduce flood flows. None of these possibilities are currently being considered for implementation. The possibilities of implementation are presently so remote that the potential for any additional regulation above Coeur D'Alene Lake will not be considered in this study.

The Washington Water Power Company owns certain flowage rights associated with various levels of Coeur D'Alene Lake. Complete flowage rights are owned to elevation 2126.5, partial rights to 2128.0 and a few to 2130.0. Normal regulation of the level of Coeur D'Alene Lake for power production is restricted by Idaho law to the range between elevation 2120.5 and 2126.5. Other considerations governing the control of lake level and flow release to the Spokane

River are the lake level during the recreation season and the drainage of agricultural lands at the southern end of the lake. The
present operating philosophy of Washington Water Power Company, taking
the foregoing into consideration, is as follows*:

The Coeur D'Alene Lake elevation is held nearly full, 2128.0 feet elevation, through the summer recreation season. Initial releases may commence in the latter part of August or first of September when Columbia River flows have receded following the summer runoff and Coeur D'Alene storage releases would be usable through the Columbia River plants downstream from the Spokane River. Draft from Coeur D'Alene normally occurs at the rate of about one to two feet per month during the months of September through January and at rates compatible with the hydraulic capability (turbine capacity) of the Spokane River plants. During this period, inflow to the lake can vary widely due to heavy rainfall and sudden "chinooks," so lowering of the lake level is seldom at a uniform rate.

Minimum 1ake elevation usually occurs in late January or February. At this time, regulation of the outflow normally ceases and the lake is allowed to seek its minimum natural level in the interest of making the maximum amount of storage available for flood control. Minimum lake elevations are normally around the 2122.5 level, but in times of prolonged cold weather with no rainfall or snow melt, the lake level can go down as low as 2120.5.

As the runoff season begins in late winter or spring, no control over the outflow from Coeur D'Alene Lake is exercised. During periods of rapid runoff and/or heavy rainfall, the lake can rise well above the summertime control level. Over a period of nearly 80 years, this spring-time flood elevation is found to average about 2131.7. During the 1948 flood, however, the lake reached 2135.95 on May 30; but during the flood of December, 1933, the lake rose to elevation 2139.05, the highest yet recorded.

Following the spring runoff, the lake level is allowed to drop to elevation 2126.5 feet. At this point, control of the lake is resumed. Most of the spill gates at Post Falls

^{*}Paraphrased from a memorandum prepared by Washington Water Power sent to Kennedy-Tudor with their letter of 15 October 1973.

Dam are closed to hold the lake at this elevation for a short period of time — usually not more than a day or two. The purpose of this operation is to allow water to drain off certain low-lying farm lands bordering on the lake. The farm lands are protected by dikes for water levels to 2128.0. Following the draining operation, the balance of the spill gates are closed to refill the lake to elevation 2128.0 feet and hold the lake near this elevation through the summer recreation season. Closure of the Post Falls gates under this method of operation, depending upon the volume of spring runoff and the timing of this runoff, can vary from late May to early July.

The available volume of storage in Coeur D'Alene Lake above the minimum elevation 2120.5 is shown in Appendix I. Post Falls Dam control devices are capable of regulating flows of up to 15,000 CFS with lake level 2128.0. When the lake level increases beyond 2128.0, control passes from Post Falls Dam to the lake outlet. The free discharge capacity of the lake outlet is shown in Appendix II. The discharge capacity of Post Falls Dam with all sector gates wide open is shown in the table Appendix III.

From the outlet of Coeur D'Alene Lake at river mile 111.1, it is 14.6 miles to the Washington-Idaho state line. Throughout this reach, the Spokane River is perched on the permeable outwash gravels of the Rathdrum Prairie and Spokane Valley. Refer to the section on geology and groundwater. The river channel is sealed by a silt deposit and the river is substantially above the groundwater table. Various estimates have been made of the amount of water percolating from the river into groundwater in this reach. Pluhoski and Thomas (1968) give values of 250 CFS for the nine miles above Post Falls Dam and 120 CFS for the section below Post Falls extending to the vicinity of Otis Orchards, four to five miles into Washington. The

outflow into the gravels is estimated to be especially high during flood flows.

As mentioned above, the watershed in Idaho north of the Spokane River and surrounding the Rathdrum Prairie makes no significant surface water contribution to the Study Area. The water from this tributary area enters the Study Area almost entirely as groundwater, joining the above described groundwater accretion from the Spokane River.

Hydrologic Basins of the Study Area

Introduction. The Study Area, with minor exceptions, is the hydrologic basin of the Spokane River within the State of Washington. The Study Area is subdivided into four Water Resource Inventory Areas as defined by the State Department of Ecology. The Water Resource Inventory Areas (WRIA) are each a natural hydrologic subbasin. The Study Area and its subdivisions are shown in Plate 308-2. The areas of its subdivision are shown in Table 1.

WRIA Number 54, Lower Spokane. This area includes the area tributary to the Spokane River from its mouth at Franklin D. Roosevelt Lake to its confluence with Hangman Creek, excluding the tributary area of the Little Spokane. The hydrologically tributary land area is 1650 square miles.

A small part of the City of Spokane is included on the east bank between the Hangman Creek and Little Spokane confluences.

North of the Spokane River from the mouth of the Little Spokane to

Franklin D. Roosevelt Lake, the area included is almost entirely in Stevens County and is rolling upland with open ponderosa pine forests. The entire west half of the area north of the river is in the Spokane Indian Reservation. The largest tributary from the north is Chamokane Creek with an area of 176 square miles. Other significant streams are the little Chamokane and Sand Creek. The only population center north of the river is Wellpinit.

South of the Spokane River, the area is typically Columbia Plateau table lands cut by steep-sided ravines. The west half is in Lincoln County and the east half is in Spokane County. The area, except for the steep wooded ravines, is largely in wheat or cattle grazing. Tributary streams from the south include Coulee Creek, Deep Creek and Spring Creek. There are several population centers in addition to the suburbs of Spokane including Airway Heights, Spokane International Airport, Fairchild Air Force Base and Medical Lake.

Rainfall in WRIA 54 ranges from 15 to 20 inches per year.

WRIA Number 55, Little Spokane. This area includes the entire tributary area of the Little Spokane River, an area of 700 square miles. The Little Spokane drains a broad valley between the lower uplands to the west and the higher Selkirk Mountains to the east which culminate in Mount Spokane at an elevation of over 5000 feet. The northern part of the basin is mountainous also but has a saddle in the vicinity of Newport that opens into the valley of the Pend Oreille River.

The valley floor is largely open land devoted to agriculture,

while the surrounding uplands are forested. Most of the basin is in Spokane County but a small portion to the west is in Stevens County and most of the northern highlands are in Pend Oreille County.

The valley of the lower reach of the Little Spokane, from Dartford to the mouth, forms the boundary of the present northern suburbs of Spokane. The city limits extend into the southern part of the basin and true urban type development extends north to the river.

The Little Spokane River has a number of significant tributaries. On the east side Peone, Deadman, Deep and Deer Creeks drain the Selkirk Mountains. On the west, Dragoon Creek drains the western part of the valley and extends to the westerly mountains.

Above Milan, the Little Spokane divides into east and west branches. The west branch contains a series of lakes, including Eloika, Fan, Horseshoe, Trout and Sacheen. The east branch extends through a narrow valley that includes Chain Lake and continues almost to the town of Newport.

Centers of population beyond the City of Spokane and the North Spokane suburbs include Mead, Dartford, Colbert, Chatteroy and Deer Park.

Rainfall in WRIA 55 ranges from 18 inches per year near the mouth to over 45 inches per year on the summit of Mount Spokane.

For this reason, the Little Spokane River has the highest yield in the Study Area. Ground water is also significant to surface yield

in WRIA 55. Fart is due to interaction with the groundwater of the Little Spokane Valley which originates within the watershed. In addition, there is a major inflow of groundwater from outside the basin into the reach below Dartford. These groundwaters are from the main Spokane Valley aquifer and originate largely from outside the Study Area. Refer to the section on geology and groundwater.

WRIA Number 56, Hangman Creek.* This area includes that part of the Hangman Creek watershed that lies in the State of Washington. The total hydrologic basin covers 689 square miles of which 486 square miles are in Washington and the remaining 203 square miles are in Idaho.

Except for the ridges that form the basin boundary in the southeast, almost all of the tributary area of Hangman Creek is rolling open country devoted to dry farming. The main stream and its tributaries are in steep-sided narrow canyons. The predominant soil is the Palouse which has high erosion potential. There is little prominent relief to the topography except for the steep canyon sides in the lower (northern) reaches of the river, in the boundary ridges along the northeast and southeast and a small isolated peak near Tekoa.

There are only two significant Libutaries, Rock Creek on the east and Marshall Creek on the west. Rock Creek drains an area similar to the upper reaches of Hangman Creek.

^{*}Formerly called Latab Creek.

Hangman Creek joins the Spokane River in the City of Spokane and there is some urban type development on terraces in the lower creek canyon. Most of the suburban development is adjoining the canyon, however. Beyond the city suburbs, the population centers in the basin include Cheney, Rockford, Fairfield and Tekoa. Tensed is the only significant community in the Idaho portion of the watershed.

Rainfall ranges from 17 inches per year in the northwest to 24 inches per year in the east and southeast.

WRIA 57, Upper Spokane. This area is not a complete hydrologic unit. It is composed of two parts of an area that is topographically tributary directly to the Spokane River within Washington and an area that is tributary to the Rathdrum Prairie in Idaho. The southern part of WRIA 57, south of Shadow Mountain, drains to the Spokane River within the Study Area but includes two areas tributary to lakes that have no surface outlets. The northern part, north of Shadow Mountain, drains to the Rathdrum Prairie east across the state boundary into Idaho.

The southern part includes the floor of the Spokane Valley and the bordering slopes. The valley floor is underlain with a deep deposit of glacial outwash gravels which are a continuation of the same aquifer that underlies the Rathdrum Prairie in Idaho and which continues into WRIA 55 via the Hillyard Trough and, perhaps, into WRIA 54. Again, refer to the section, "Geology and Groundwater." The Spokane River traverses the surface of this aquifer through

WRIA 57 and experiences interchanges with the groundwater. The river loses to the groundwater between the state boundary and Otis Orchards, but gains from the groundwater below Otis Orchards.

Both Newman Lake, on the north side of the valley, and Liberty Lake, on the south side of the valley, have no surface overflow. It is also believed that the fine materials which formed at the outlet plugs of side valleys after the outwash gravels were deposited are so impermeable that there is no underground outlet from these lakes either and that they are in equilibrium with their runoff supplies.

The west portion of the valley floor is largely covered with suburban and industrial development. The eastern portion is largely devoted to irrigated agriculture. The valley area receives from 18 to 22 inches of rainfall per year.

The northern part of WRIA 57 which drains into the Rathdrum Prairie in Idaho consists of the eastern slopes of the Selkirk Mountains. Annual precipitation throughout most of this area is in excess of 40 inches per year. The area includes the headwaters of Blanchard, Brickel and Fish Creeks. All three of these streams disappear into the Rathdrum Prairie aquifer and, presumably, eventually reach the Spokane Valley as groundwater.

Streamflow Data

The available streamflow records for surface waters in the Study Area are shown in Tables 3 and 4. Table 3 shows available records from which daily or monthly flow records are available.

Table 4 shows stations for which there are available records of annual peaks or low flow measurements but no continuous type record.

The locations of stations listed in both tables are shown in Plate

308-2. Refer to Table 2 for an abridged river mile index.

Spokane River. Although there have been eleven stream flow gaging stations on the Spokane River between the mouth and Post Falls, Idaho, only four are currently operating and only five have records of over twenty years length. The remaining six stations have records of 2 to 6 years length, all but one being in the period 1948-1954. The five stations added in 1948 and operated for a short period were initiated for a special study on the exchange of groundwater with the river (Broom, 1951).

The longest record, 81 years, is available from USGS gage 12-4225-00 located upstream from the Hangman Creek confluence at river mile 72.9. The next longest record, 60 years, is available from USGS gage 12-4190-00 at Post Falls, Idaho. Although this gage is not in the Study Area, its record is included herein because its record is significantly longer than that at USGS gage 12-4195-00 near Harvard Road Bridge which has a record of 43 years. The Post Falls gage is at river mile 100.7 and the Harvard Road Bridge gage is at river mile 93.9. This places the Post Falls gage 4.2 miles upstream from the state line (river mile 96.5) and the Harvard Road gage 2.6 miles downstream from the state line. There are no surface water tributary streams in the 28.3 miles between the Hangman Creek

confluence and Post Falls. However, this reach is subject to significant groundwater interchange and storm water overflow from adjoining urban development.

The only significant surface water diversion on the Spokane River at present is the cooling water diversion by the Trent works of Kaiser. There are the following impoundments on the Spokane River between Post Falls and the Hangman Creek confluence:

- 1. Spokane Dam, river mile 80.2,
- 2. Upper Falls Dam, river mile 76.2, and
- Monroe Street Dam, river mile 74.24.

These impoundments are relatively small and the associated hydro-electric works are operated on a run-of-the-river basis. For a more complete description of these structures refer to the paragraphs below on hydroelectric facilities.

There are no Spokane River gages that show the combined flow below the Hangman Creek confluence or the combined flow below the Little Spokane confluence. The next Spokane River gage below number 12-4225-00 is at Long Lake Dam. The record for USGS gage number 12-4330-00 is derived from Washington Water Power Company powerhouse records of turbine operation, periodically checked by USGS stream flow measurements below the powerhouse.

The absence of a gage between the Hangman Creek and Little Spokane confluence does not pose a serious data gap since Hangman Creek is gaged near the confluence. Other inflows in this reach are (1) the discharge of the City of Spokane sewage treatment plant which are metered except during storm water overflow and bypass con-

ditions, (2) a suspected but unevaluated groundwater inflow and (3)

Deep Creek. Nine Mile Reservoir in the lower end of this reach with

a surface area of 440 acres is subject to only minor regulation.

The absence of a gage below the Little Spokane confluence does pose a significant data gap for two reasons. The Little Spokane gage at Dartford, USGS number 12-4310-00, is 10.8 miles upstream from the confluence and there is a known significant groundwater inflow downstream from the gage. The flow record at Long Lake Dam 12-4330-00 can be used with the lake stage record 12-4325-00 and its area capacity characteristics, Appendix IV, to approximate the combined flow below the Little Spokane confluence. As presently operated, the level in Long Lake Reservoir is held as near as possible to elevation 1536 which puts the backwater upstream from the Little Spokane confluence. It was the adoption of this higher control level in 1952 that flooded out USGS gage number 12-4315-00 at river mile 3.9 on the Little Spokane.

The record at USGS gage 12-4335-00, river mile 27.5, below Little Falls would provide an approximate extension of the Long Lake record prior to 1940 and back to 1912 except that Spring Creek enters the Spokane River between these gages. The tributary area of Spring Creek is only 56 square miles out of 6340 tributary at Little Falls. This would give an aggregate record of 81 years, comparable to the gage at Spokane, number 12-4225-00. The Little Falls gage has been flooded out by high water levels in Franklin D. Roosevelt Lake since completion of the Grand Coulee Dam which is the reason

for its discontinuation.

Considering the foregoing facts, the following station records are selected for the purposes indicated in subsequent stages of this study:

- 1. Spokane River at Spokane, USGS #12-4225-00, is selected for flood frequency analysis for determination of the 100 year return period flood because of length of record and because it best represents the flow in the reach from the Hangman Creek confluence to the state line for which the flood profile is to be determined.
- 2. Four gages, #12-4190-00 at Post Falls, #12-4195-00 at Harvard Road Bridge, #12-4225-00 at Spokane and #12-4330-00 at Long Lake are selected for frequency analysis for 7-day low flow with 10-year return frequency. The Post Falls gage is included, although outside the Study Area, for its longer record and what it may demonstrate about the importance of groundwater when compared with downstream gages.

These same four gages are selected as most representative of the entire Spokane River in the Study Area for presentation herein in tabular and graphical form. Refer to Table 5 for a summary tabulation of mean annual and extreme flows and to Table 6 for maximum, minimum and mean monthly discharges. The maximum, minimum and mean monthly discharges for the gage at Spokane is shown in Figure A.

3. The record from the Harvard Road Bridge gage #12-419500 is selected as the source of the hydrologic input
of the Spokane River as it enters the Study Area for
use in the simulation model. Length of record beyond
20 years is not a consideration for this purpose. The
more important consideration is that it includes groundwater effects up to the state line.

Hangman Creek. There is only one gage on Hangman Creek with over twenty years of record, the gage at the mouth, USGS number 12-4240-000. The five other gages on Hangman Creek and its tributaries all apply to very small segments of its watershed. Annual peak data

are available from three of these for period of 10 to 18 years.

For the purpose of this study, there is a data gap in not having any record for Rock Creek where a flood problem exists.

Gage number 12-4240-00 is selected for frequency analysis for flood flows with 100-year return period and for 7-day low flow with 10-year return period. For this same gage, the mean annual and extreme flows are shown in Table 5, the maximum, minimum and mean monthly discharges are shown in Table 6 and Figure B.

Little Spokane River. Two gages on the Little Spokane
River have records over twenty years in length, USGS number 12-427000 at Elk and USGS number 12-4310-00 at Dartford. The gage at Elk
measures flows from 115 square miles on the headwaters of the east
branch, approximately one-sixth of the total watershed. The gage at
Dartford measures the flow from 665 square miles of the total 700
square miles in the watershed.

As mentioned above under the discussion of the Spokane River, the gage at Dartford is 10.8 miles upstream from the mouth and does not measure the known groundwater increment in the downstream reach. The backwater from Long Lake on the Spokane River caused the discontinuation of the downstream gage, USGS number 12-4315-00. The inability to measure the groundwater increment constitutes a data gap.

For the purpose of determination of flood flow in the reach from Chatteroy to the mouth, there is a data gap in the absence of record at Chatteroy or on the intervening tributary streams above

Dartford, namely Deadman and Peone Creeks.

There are a significant number of gages in the Little Spokane watershed devoted to annual peak and low flow measurements.

There are seventeen devoted to low flow and five to peak annual flow.

The gage on Deer Creek records both. Most of these records are from
1954 or 1955 to date. Dragoon Creek is the largest tributary with a
watershed of 177 square miles, more than the gage on the main stream
at Elk. Low flows are available for Dragoon but no peak flows. The
geology and rainfall of the area east of the main stream are significantly different than the main valley and the west half. Lack of a
more complete understanding of the hydrology of these streams is
regarded as a data gap.

The gage at Dartford, number 12-4310-00 is selected for flood flow frequency analysis for 100-year return period. The two gages, at Dartford and at Elk are selected for frequency analysis for 7-day low flow with 10-year return. The annual mean and extreme for both the above gages is shown in Table 5 and the maximum, minimum and mean monthly discharges are shown in Table 5. The monthly data for the Dartford gage are shown graphically in Figure 6.

Other Streams. Only two streams in WRIA 54 other than the Spokane River itself have available flow records. There is a small fragment of record for USGS number 12-4255-00 on the headwaters of Deep Creek (54)*. For USGS gage number 12-4333-00 peak annual flow

^{*}Note that there are two Deep Creeks in the Study Area. To avoid confusion the number of the WRIA in which the creek is located is included after the name.

records from 1954 to date are available for an unnamed tributary of Spring Creek near Reardon.

There were no data at all for the most significant tributary stream in WRIA 54, Chamokane Creek with a drainage area of 180 square miles, until gage number 12-4332-00 was established in February 1971. The only available record is from 1971 to date. There is no available record for Little Chamokane Creek which has a drainage area of 69 square miles.

Comparison of Elements. A graphical presentation comparing the three main hydrological elements of the Study Area is contained in Figure D. The annual flow patterns for the year 1972 are shown for the Spokane River at Spokane, Hangman Creek at Spokane and the Little Spokane River at Dartford.

Note the contrast in size of flows. The Spokane River flows are approximately ten times the flows in Hangman Creek and the Little Spokane River.

Note the contrast in character of flow pattern between Hangman Creek and the Little Spokane River. Hangman Creek exhibits a very flashy response to rainfall events which are plotted in parallel. On the other hand, the Little Spokane exhibits a very stable pattern.

The effect of low flow regulation for power production is evident in the Spokane River.

Historic Floods

Spokane River. Floods on the Spokane River are generated by hydrologic events on the Coeur D'Alene and St. Joe River systems, but are limited by routing through Coeur D'Alene Lake and by the restricted outlet of Coeur D'Alene Lake. The importance of the control imposed by Coeur D'Alene Lake can be demonstrated by consideration of the inflow versus outflow for the December 1933 flood. For this flood, the highest mean daily inflow to Coeur D'Alene Lake was 101,000 CFS and the estimated crest was 130,000 CFS. The peak experienced on the Spokane River in this same flood was 47,800 CFS.

Historic floods of record on the Spokane River are shown in Table 7. The two earliest floods were before the construction of Post Falls Dam. Refer to Appendix II which shows that for lake stages above 2128 and flows of 15,000 CFS, Post Falls Dam is not controlling. Therefore, flood flows are all on the same basis.

In Davenport (1922) there is a discussion of the relation-ship between the control of flow from Coeur D'Alene Lake and lake stage. This water-supply paper was written primarily in response to the problems of adjudicating the differences between WWP and land owners upstream from Coeur D'Alene Lake. Its primary interest today is the demonstration of how the configuration and slope of the Spokane River channel between Coeur D'Alene and Post Falls is the determining factor in volume of flood floor for any given stage of the lake.

Water-supply paper 532 (1924) is of interest for its remarks

about the validity of flow records prior to October 1896 for the Spokane River at Spokane. This paper points out that the records prior to this date are of doubtful accuracy for several reasons. The extreme discharge of May 31, 1894 falls in this period and is given as 49,000 CFS as revised.

The following materials are abstracted from House Document

No. 531 and describe the character and mechanism of floods on the

Spokane River:

Floods in Spokane River Basin usually occur in the spring as a result of the rapid melting of snow following unusual rises in temperature. Occasionally, as in April 1938, heavy rains occur simultaneously with the temperature rise, thereby increasing the flood flow to damaging proportions. Spring floods are normally of short duration. Within the 56-year period of record, the basin has experienced four damaging spring floods; i.e., in May 1893, May 1894, May 1917, and April 1938. (Subsequent to data available for Document No. 531, another spring flood of damaging size occurred in May 1948.) That of May 1894 was the greatest of the spring floods, having had an estimated maximum 24-hour discharge of 49,000 cubic feet per second at Spokane (see paragraph above quoting Water-Supply Paper #532 on accuracy of this figure) and a lake (Coeur d'Alene) elevation of 2,137.6 feet. Two severe winter floods have occurred in the period of record: in January 1918 and December 1933. The frequency of damaging floods is, therefore, about once in 9 years. The 1933 flood attained the highest recorded level, 2,139.05 feet in Coeur D'Alene Lake, but its peak discharge at Spokane was only 47,800 cubic feet per second. Winter floods are caused by unusually heavy rains in coincidence with chinook winds and consequent rapid melting of accumulated snow.

The flood of December 1933 resulted from an unusually long period of excessive precipitation coupled with the rapid melting of accumulated snow by a chinook wind in the latter half of the month. Temperatures exceeded the normal for the month by an average of 7.7°F., the period of highest temperature coinciding with the periods of greatest precipitation. The melting of all snow below the 4,000 foot level and in exposed areas above that level, together with the

heavy rain, created floods in the tributary streams much larger than any previously recorded and raised Coeur D'Alene Lake to its highest known level. Weather conditions were similar throughout the upper drainage area, so that peak discharges in the tributaries occurred almost simultaneously. As a result, the crest inflow to the lake was more than double the crest outflow, the maximum 24-hour inflow being 106,000 cubic feet per second as compared with a maximum 24-hour discharge of 47,100 cubic feet per second at Spokane.

During the flood of May 1894, the rise in lake level was more gradual than that of the 1933 flood. The 1894 flood on the Spokane was part of the prolonged general flood of that year that extended over the entire Columbia River drainage area. This flood produced the highest discharge in the Columbia River that has been recorded in the 69 years of record on the gage at The Dalles, Oreg. The only records of the 1894 flood available for the Spokane River indicate that the peak discharge at Spokane was higher than that of December 1933, although the maximum level of Coeur D'Alene Lake was lower in 1894 than in December 1933.

The floods of greatest volume and highest levels in Coeur D'Alene Lake occur in the winter during short periods of high precipitation and temperature. It reasonably may be expected that, at some future date, there will occur a combination of meteorological, ground, and runoff conditions worse than those prevailing in December 1933, when the most severe flood in the past 55 years of record occurred in the basin. If the maximum probable storm predicted by the Hydrometeorological Section of the Weather Bureau were to occur at the time when the ground was covered with loosely packed snow, and if meteorological conditions were then such that rapid melting of the snow would occur simultaneously with the high rates of rainfall, there would be available for stream runoff not only the actual precipitation, but also the water released by the melting snow. It may be assumed that the increment from the melting snow would exceed water losses from absorption, percolation, evaporation, and transpiration. Then the river system would be called upon to carry all of the precipitation from the maximum 3-day storm, plus some snow melt. The runoff resulting from this maximum probable storm under these assumed conditions is shown in table 8, together with comparable data on the December 1933 flood. (The referenced table 8, not reproduced herein, shows that the maximum probable flood (MPF) would have produced flows into Coeur D'Alene Lake comparable to the December 1933 flood for the first four days, but that on the fifth and sixth day, the MPF inflows would be 320,000 and

172,000 CFS respectively compared with the December 1933 values of 101,400 and 92,300 CFS respectively.) Flood flows for the maximum probable flood have been calculated for a storm centered over the area tributary to Coeur D'Alene Lake.

Assuming an initial lake elevation of 2,126.5, which is the allowable upper limit for regulation of Coeur D'Alene Lake, and using the maximum inflows as shown in table 8, flood-routing computations indicate that the lake level would rise to elevation 2,146.9, and the mean daily discharge of the river at Spokane would be 83,600 cubic feet per second. (In other words, the MPF would produce flows in the Spokane River 70 percent greater than the greatest historical flood or the 100-year flood as shown below.)

Frequency studies were made of maximum annual stages of Coeur D'Alene Lake at Coeur D'Alene, Idaho, and observed peak discharges for the Spokane River at Spokane, Wash. The study for the lake was for the period of recruit 1905 through 1946, and for the river from 1892 through 1946. The results of these studies are as follows:

Average recurrence interval (year)	Maximum river discharge at Syokane	Maximum lake elevation
	Cubic feet per second	
2	24,500	2,130.9
10	37,800	2,135.0
20	41,500	2,136.5
50	46,000	2,138.2
100	49,000	2,139.5

The House Document No. 531 concluded that the resulting benefits, both upstream and downstream from Coeur D'Alene, would be insufficient to justify improvements to the lake outlet and Post Falls Dam that would increase capacity at lower lake levels to prevent the lake from reaching high levels and the peak discharges associated with the high levels.

House Document No. 531 concludes that discharges in the Spokane River in excess of 40,000 CFS result in damage. The only

flood of this magnitude since 1894 was the flood of December 1933. The historical damage from the 1933 flood, below Post Falls, is given as follows:

Kind of Damage	Dollar Value
Agricultural	1,000
Residential	8,100
Industrial	150,800
Utility .	77,000
TOTAL	237,500

The limits of the area flooded and the associated water profile for the December 1933 flood are available in several documents as follows:

- 1. Corps of Engineers Drawing File D-10-6-60.
- 2. U.S. Geological Survey Maps, Plan and Profile of Spokane River, Spokane, Washington to Post Falls, Idaho in 4 sheets.

Reference 1 above shows the outline of the flooded area in plane at a scale of 1" = 1000' from the vicinity of Division Street to City Water Works power house.

Reference 2 includes three sheets of topographic plans at 1" = 1000' from Cochrane St. to Post Falls but does not show flooded areas; only sheet four, a profile at 1" = 2000' shows 1933 water surface from the falls one-third of a mile above Mission Street Bridge.

In addition to the above, there are available seven graphs by Washington Water Power Company showing the day by day water surface elevation from December 8, 1933 to January 13, 1934 at Coeur D'Alene Lake, Post Falls, Upper Falls, Monroe Street, Nine Mile Dam, Long Lake, and Little Falls Dam.

The Corps of Engineers has made a flood level determination for the immediate vicinity of the Spokane Expo 74. The results of this study are shown on a drawing at scale 1" = 80' which delineates the 100-year flood plan from Howard Street to Division Street on both sides of Havermale Island.

A levee project on the right bank of the Spokane River in the vicinity of Trent Avenue was considered in 1938 but was never implemented. Subsequent investigations revealed that foundation conditions were unsatisfactory. Refer to House Document No. 53100.841.

The Spokane River below Spokane Falls (Monroe Street) has not been subject to flood problems. The depth of the canyon and absence of development in the canyon minimize flood potential. A flood level determination was made recently in connection with the proposed enlargement of City of Spokane sewage treatment plant.

Hangman Creek. Flood control problems have been studied by the Corps of Engineers at three locations in the Hangman Creek Watershed. These are: (1) The upper portion of Hangman Creek in the vicinity of Tekoa, Washington and Tensed, Idaho; (2) in the vicinity of the town of Rockford on the Rock Creek tributary; and (3) on the lower Hangman Creek between river mile 12.5 and 15.0.

Upper Hangman Creek. Reconnaissance reports were made, beginning in 1966 on a number of alternatives to the flooding problem in the vicinity of Tensed and Tekoa, all of which have been found to be economically unjustified. These alternatives included the following:

- 1. For the area from the Washington-Idaho border upstream to two miles above Tensed (approximately 9.3 miles) a channel improvement was proposed to protect against 40-year flood recurrence.
- For the area in the vicinity of Tekoa, a combination of channel enlargement and levee construction and alternatively higher levees without channel improvement.
- 3. Upstream storage, alternatively 1 mile upstream from Tekoa and 4.5 miles upstream from Tensed.

The most recent evaluation of average annual damage in the 13.2 mile stretch from Tensed to Tekoa is \$148,000 consisting of 68 percent agricultural, 22 percent roads, bridges, railroads, and streets, 7 percent residential property and 3 percent commercial property.

Vicinity of Rockford on Rock Creek. The most recent studies by the Corps of Engineers of the flood problem at Rockford indicates that floods with recurrence intervals of 20, 50- and 100-years will flood areas of 10, 14, and 18 acres respectively. The area of the 100-year flood plain includes 5 public buildings, 15 commercial and 4 residences in addition to the associated streets and utilities and the fair grounds. The value of \$114,000 at 1970 price levels is estimated for damages associated with a 100-year recurrence flood and an average annual damage rate of \$4.300 from all floods.

Existing flood protection in Rockford consists of a levee on the right bank constructed by WPA after the 1933 flood. This levee protects to level of 20-year recurrence. Rockford was flooded again in 1963 and 1964. The levee was repaired by the

Corps of Engineers in 1965.

Subsequently, a preliminary plan of improvements was developed by the Corps of Engineers and found to have a benefit-cost ratio of 0.9. The plan has not been implemented. The proposed improvement consists of raising the levee 3 feet for a distance of 700 feet and rebuilding the remaining levee for a distance of approximately 1,000 feet, all to provide protection to the 100-year recurrence level.

Little Spokane River. The Little Spokane River from its mouth to the town of Chatteroy meanders through a flat valley floor with considerable potential for going overbank at high flow. The area is also now under development pressure from northward expansion of Spokane's suburbs.

There are no records of flood damages in this reach nor have there been any flood control studies made.

Hydroelectric Facilities.

Washington Water Power Company has six hydroelectric power plants on the Spokane River. All except the Post Falls facility are in the Study Area. The City of Spokane has a single hydroelectric plant on the Spokane River. Each of these seven hydroelectric facilities is associated with a dam. Table 9 lists the hydroelectric power facilities and Table 8 lists the associated dams and their characteristics.

The philosophy and schedule of operation of the Post Falls

Dam has been discussed above in connection with the regulation of the flow from and level in Coeur D'Alene Lake. See Appendix IV for rule curves. This operation essentially sets the pattern for all of the downstream power plants with minor exceptions. The impoundments associated with the city facility, Control Works (Upper Falls), Monroe Street and Nine Mile are so small that these plants are operated as run-of-the-river plants. Long Lake reservoir capacity is utilized to operate both Long Lake and Little Falls power houses to meet both daily and weekly peaking as well as end of season drawdown. These operating possibilities are evident in the flow rating of the installed equipment. The flow capacity of the installations at Monroe Street and above are essentially matched to Post Falls. Nine Mile has peak capability about 60 percent greater than Post Falls, and Long Lake and Little Falls, which also benefits from Long Lake Storage, have capabilities almost double Post Falls.

The present method of operating Long Lake is to maintain the lake at the highest possible level consistent with the limitation imposed by flooding easements which extend to elevation 1536 and the availability of water from Coeur D'Alene. Long Lake is not normally drawn down through the summer recreation season but is drawn down in January and February to utilize the stored waters when the supply is low.

Little Falls. Little Falls Dam is a gravity concrete dam that was built by WWP in 1911. The dam is "L" shaped in plan with an uncontrolled crest on the long leg of the "L" 412 feet long and

another 185 feet of uncontrolled crest on the short leg along with two twenty-foot wide Taintor gates. The elevation of the uncontrolled crest is 1356 and the sill of the Taintor gates is 1341. The dam has a hydraulic height of 39 feet.

Capacity of the two Taintor gates wide open totals 10,000 CFS when the pool surface is 1356, the elevation of the overflow weir. Flash boards are added to the uncontrolled crest to bring the pool level to 1362. Wing wall crest is 1364. The capacity of the uncontrolled weir with flashboards removed is 60,000 CFS when the pool level reaches wing wall crest elevation 1364.

The surface area of the impoundment is 250 acres and extends 4.6 miles upstream to the toe of Long Lake Dam. Normal pool elevation is 1362 and the active storage volume above elevation 1351 is 2220 acre feet. There is no available record of dead storage below elevation 1351 which is estimated to be of the order 2000 acre feet.

The power house is located on the north bank and contains 4 units with a total nameplate rating of 32,000 kilowatts and a name-plate water rate of 6670 CFS. Peak capability is 36,000 kilowatts and 7500 CFS.

Since the available live storage is small compared with turbine capacity, operation is dependent upon releases from Long Lake power house immediately upstream.

Long Lake. Long Lake Dam is a gravity concrete dam built by WWP in 1915. The dam is "L" shaped with the penstocks descending

from the south leg of the "L" to the power house on the south bank and the spillway gates installed in the north leg. There are eight roller gates, each 25 feet wide with sill elevation 1508. The dam has a hydraulic height of 213 feet.

Discharge capacity of each gate at maximum pool elevation 1536 is 14,500 CFS making total discharge capacity 116,000 CFS.

The surface area of the impoundment is 5060 acres at maximum pool elevation 1536. Active storage between maximum pool and sill elevation of gates is 105,080 acre feet. Dead storage below sill elevation is 149,490 acre feet. The lake extends approximately 24 miles upstream to beyond the Little Spokane confluence.

The power house contains four units with a total nameplate capacity of 70,000 kilowatts and water rate of 6180 CFS. Peak capability is 72,500 kilowatts and 6300 CFS.

Nine Mile. Nine Mile Dam and Power House were constructed in 1908. This is a gravity concrete structure with hydraulic height 58 feet. The power house is integral with the south abutment. The overflow crest is without permanent crest control and is 364 feet long at elevation 1596.57. The crest is equipped with two removable sets of flash boards. The first set has a crest elevation of 1601.57 and the second set raises the creat to 1606.57. Normal pool elevation is 1606 with the second set of flash boards in place. When river flow exceeds 5,000 CFS, the peak hydraulic capacity of the turbines, the second set of flash boards must be removed reducing the pool level.

A discharge of 17,000 CFS is the maximum which can be passed

over the crest with the first row of flash boards in place resulting in a pool elevation of 1611. With all flash boards removed approximately 46,000 CFS can be passed at pool elevation 1611.

The impoundment storage between low pool 1590.57 and maximum pool at 1606.6 with both rows of flash board in is 4600 acre feet with a surface area of 440 acres at maximum pool. The storage volume below 1590.57 is estimated at 7,000 acre feet.

Nine Mile Power House contains four units with total nameplate capacity of 12,000 kilowatts at 3,330 CFS. Peak capability is 18,000 kilowatts at 5,000 CFS.

Monroe Street. Monroe Street Dam was the oldest dam on the river, the original structure having been built in 1890. The original structure was replaced by a new concrete structure in 1972. The new structure has the same crest elevation, 1806. There is no crest control, the structure being a simple overflow structure with a crest length of 217 feet and 25 feet hydraulic height. This structure serves both as a diversion structure for the Monroe Street Power House as well as tailwater level control for the Upper Falls Power House.

The impounded volume is negligible, estimated at less than 70 acre feet.

The Monroe Street Power House is located downstream from the dam to take advantage of the natural fall in the river below the dam. The five power units have a total nameplate capacity of 7200 kilowatts at 2,000 CFS. These old units are not given a peak rating

over the nameplate rating.

Control Works (Upper Falls). The Control Works Dam is in the channel that passes north of Havermale Island and provides the overflow structure. A second dam closes the south channel and has no overflow provision but contains the inlets to the penstocks for the Upper Falls Power House which is located on the south bank at the foot of the falls. The complex of two dams and power house was built in 1922.

The Control Works Dam is a gravity concrete structure with control devices along the entire crest. Adjacent to the north bank are two 60-feet wide by 18-feet rolling sector gates with sill elevation 1854.9. The remainder of the crest to the south bank is filled with twenty lift gates each seven feet wide and all with sill elevation 1858.9. Normal operating pool level is 1870.5.

Discharge curves for the crest control devices are not available but there is a record of the upstream level at 1874.1 for the December 1933 flood, presumably with all gates open.

The sill of the sector gates at 1854.9 is essentially at river bottom so there is virtually no dead storage. The active storage between normal pool 1870.5 and low water at 1864.3 is 800 acrefeet. The area of the normal pool is 136 acres.

The Power House is remote from the Control Works Dam being associated with the south channel closure to take advantage of the additional head provided by the natural falls. There is a single power unit with nameplate rating of 10,000 kilowatts at 2450 CFS.

Peak rating is 10,200 kilowatts at 2500 cfs.

Spokane Dam. Spokane Dam and Power House were built in 1937 by the City of Spokane to generate electrical power to drive well pumps of the city water system.

Spokane Dam is a concrete structure with eight Taintor gates filling the 26 foot wide spaces between three feet thick concrete buttresses. The gate sill elevation is 1893.45.* Normal pool elevation is 1910.45, below the top of closed gates. Normal operation calls for holding the pool at 1910.45 and not overtopping the gates; flow in excess of turbine capacity is released by partial opening of one or more gates.

The bottom of the gates when open is at 1917.45 thus leaving a space 24 feet high over the sill for flood flows. Design criteria call for the ability to pass 62,000 cfs at upstream water surface 1911.13, the maximum water surface that was recorded during the 1933 flood when the old dam existed. The old dam had a crest elevation of 1889.45, four feet lower than the crest of the new dam. Stage discharge data for the gates is not available from the City.

The crest of the dam is believed to be about twenty feet above the river bed. Combined with the seventeen feet to normal pool above the sill, this gives a maximum depth of 37 feet. The City has no data on the volume of dead or live storage but the total of these quantities is estimated to be of the order of 1500 acre feet. The area of the impoundment

^{*}USGS datum to correspond with other structures described herein. USGS = City Elevation minus 16.55.

is estimated to be 150 acres.

<u>Post Falls Dam.</u> Post Falls Dam is outside the Study Area but a brief description is necessary to the understanding of its control of Coeur D'Alene Lake.

The river is divided into three channels at Post Falls. The dam on the middle channel contains the power house and has no overflow or level control function. The structure on the north channel has all of the crest control consisting of eight Taintor gates, seven each at 21 feet wide and one at 12 feet wide, and one sector gate 102 feet wide. The sill elevation of the Taintor gates is 2114.0 and of the sector gate is 2116.5. The tops of both gates are at 2128 in the closed position corresponding to the maximum elevation at which the lake is held. The south channel dam is 127 feet wide and contains six lift gates, six feet wide by 13 feet high at sill elevation 2108.62 and an overflow spillway 37 feet long with original crest elevation 2126.52 which has been raised to 2128.0 by crest logs.

As stated above in the description of WWP operating procedure, the Post Falls control structures can control flows up to 15,000 cfs with the Lake at 2128.0. Beyond 15,000 cfs or lake elevation 2125.0, the control shifts to the outlet channel of the lake.

The normal summer pool (take) revel is 2128.0 and the winter minimum is 2120.5. The active storage between these elevations is 217,000 acre feet or 108,500 second foot days. The lake has an area of approximately 42,800 acres at summer pool level and 27,000 acres at minimum pool.

Schematic Flow Diagram and Flow Balance

A schematic diagram of the Spokane River as it passes through the Study Area is shown in Figure E. The river is shown to scale by river mile and includes the successive dams and impoundments through which the river passes, the principal tributaries, the currently active stream gages and the estimates of Broom (1951) for groundwater interchange.

A complete flow balance cannot be achieved with the available surface flow data and the Broom estimates. It must be recognized, as Broom (1951) points out, that these groundwater interchanges are only estimates based on one year of data and that the results are far from conclusive. Also, these mean values represent highly variable conditions throughout the year, the rates and even direction of flow being a function of river stage. Years with different ratios of high flow to low flow could have significantly different mean annual interchange.

Considering the reach between Post Falls gage 4190 and Harvard Road gage 4195, the long term stream flow record indicates a surface flow increment of 63 cfs whereas the Broom estimate indicates that there should be a loss of water of about the same magnitude. Since this difference is of the order of 1 percent of the mean annual stream flow, this disagreement is not surprising.

From Harvard Road gage 4195 to the Cochran Street gage 4225, the measure of mean surface flow increment is 307 cfs. In this same reach, the Broom estimate indicates a total gain of approximately 930

cfs. The 600 cfs difference here is equal to 10 percent of the mean flow and is therefore more difficult to justify.

The next reach for which a balance can be tried is between the Cochran Street gage 4225 and Long Lake gage 4330. The trial balance is as follows:

Long Lake #4330	8381 cfs	Hangman Cr	#4240	264	cfs
Cochran St #4225	6927 cfs	Little Spok	ane #4310	316	cfs
		Groundwater	In	126	cfs
Difference	1454 cfs	11	11	21	cfs
		11	11	157	cfs
		11	11	218	cfs
		TOTAL		1102	cfs

The difference between the surface flow gages of 1454 cfs and the estimated inflows of 1102 cfs leaves 352 cfs to be accounted for by local tributary area and Deep Creek. The unaccounted tributary area, including Deep Creek, is approximately 340 square miles. For this area, the mean annual discharge per square mile is probably similar to Hangman Creek at 0.4 cfs per square mile. This would account for an additional 136 cfs leaving the net unaccounted at 116 cfs or 1.4 percent of the mean annual discharge at Long Lake.

The net Broom groundwater increments total 1341 cfs gain. This is higher by approximately 300 cfs than the estimates of Piper and La Rocque (1944) and Plukowski and Thomas (1968). Refer to the section on geology and groundwater.

Lakes

All of the major lakes (surface area 100 acres or more) within the Study Area can be placed in four general classifications as follows: 1. Mountain lakes that have no significant outlet.

Newman Lake Liberty Lake Diamond Lake

2. Natural lakes that are part of a stream system.

Sacheen Lake Trout Lake Horseshoe Lake Eloika Lake Chain Lake

3. Lakes in Columbia Plateau terrain.

Medical Lake West Medical Lake Silver Lake Clear Lake

4. Man-made lakes (river impoundments).

Long Lake Nine Mile Reservoir Control Works (Upper Falls) Reservoir Spokane Dam

The river impoundments have been discussed above in connection with hydroelectric facilities and will not be repeated here.

Table 10 is an inventory of lakes in the Study Area compiled from the report "Lakes Constituting Shorelines of the State Shorelines Management Act of 1971" by the State Department of Ecology. Table 11 shows the important characteristics of the major lakes from this list including the availability of lake level records. Refer to Plate 308-2 for lake locations.

A brief discussion of the major lakes follows, taken in order of the classification given in the opening above. The primary use of all lakes in the Study Area, except the man-made lakes, is recreation.

The man-made lakes all have hydropower production as their primary use.

Of the man-made lakes, only Long Lake has, at present, significant recreational use.

Newman Lake is the largest lake in the Study Area with a surface area of 1190 acres. It is located north of the Spokane Valley near the Washington-Idaho border and receives the runoff from 28 square miles in the south slopes of the Selkirk Mountains. The lake has a surface overflow that fails to reach the Spokane River and is believed to have no direct underground outlet either, the lake having been formed by a relatively impervious plug deposited in the mouth of the valley against the permeable valley fill. Refer to the Geology section. A level record is available which indicates a maximum variation of 4.24 feet. A bathymetric map of the lake is also available which shows that most of the lake is over 15 feet deep and has a maximum depth of 30 feet.

Liberty Lake is situated south of the Spokane River in a similar manner to Newman Lake and has similar outlet characteristics. Liberty
Lake has an area of 711 acres and receives drainage from only 13 square
miles. Level records indicate maximum variation of 4.94 feet. Bathymetric
map shows most of the lake to be 25 feet deep and flat with a maximum depth
of 26 feet.

Diamond Lake is located in the northern part of the Study Area in a blind watershed between the upper branches of the Little Spokane River. Diamond Take is the second largest in the Study Area with a surface area 754.5 acres. Its surface elevation of 2360 feet makes it the highest lake in the northern area. The tributary area is very small,

being only 6.1 square miles; that is, the lake covers approximately one sixth of the tributary area. A level record is available and shows a small variation of level at 1.99 feet. A bathymetric map is available which indicates that the lake is 50 feet deep throughout most of its area.

Eloika, Horseshoe, Trout and Sacheen Lakes are all part of the West Branch of the Little Spokane River. Sacheen Lake is the source and the river flows from Sacheen successively through Trout, Horseshoe and Eloika. Sacheen and Eloika are of considerable size, having areas of 282 and 659 acres respectively. Level records are available for both of these large lakes. Sacheen at the headwaters with a tributary area of 33.5 square miles, has a small range of level variation at 2.85 feet. Eloika Lake, at the lower end of the chain of lakes and with a tributary area of 101 square miles, has a level variation of 5.45 feet.

Sacheen Lake is relatively deep with a maximum of 40 feet. Eloika is very shallow for its size with a maximum depth of only 15 feet. Bathymetric maps are available for both lakes.

Trout and Horseshoe Lakes have areas of 94.8 acres and 128.0 acres respectively. Level records are not available for these lakes. Both lakes are unusually deep in spots. Trout Lake goes to 170 feet depth in its north end. The west bulb of Horseshoe Lake is 140 feet deep.

Medical Lake, West Medical Lake, Clear Lake and Silver Lake
form a group in the Columbia plateau terrain southwest of the City of

Spokane. The area is one of generally low relief. The tributary areas to these lakes are poorly defined and are small compared with the area of the lakes. Under overflow conditions, these lakes would not drain into the Spokane River but rather into the Palouse watershed. All four of these lakes are long and narrow and trend north-south. All are moderately deep, ranging from 35 feet in West Medical Lake to 110 feet in Clear Lake.

TABLE 1
TRIBUTARY AREAS

<u>Description</u>	Area, Square Miles
Entire Hydrologic Basin of the Spokane River	6640
Hydrologic Basin in Idaho Hydrologic Basin in Washington	4345 2295
Tributary to Coeur D'Alene Lake	3700
Hangman Creek (Total) Hangman Creek in Washington (WRIA #56) Little Spokane River (WRIA #55) Chamokane Creek WAIA #54 Lower Spokane WRIA #57 Upper Spokane	689 486 700 176 1650 315

TAKE 2A

KIVER HILE IMPRY (ABRIDGED)

SPOKAME RIVER

Hwr		Square Miles	e Area Miles	Water	River		Drainage Area Square Miles	. Area	Variation
Mile		Tributary	Metn	Elevation	Mile		Tributary	Meta	Elevation
	morrida years	37.5.5	Street	reet		ревсттрстов	Strem	Stream	Peet
0.0	Mouth of Spokane River at Columbia river mile 643.0		6580a ⁵	12902	33.9	LONG LAKE DAN	•	2920	1536
6.1	Orazada Creek (R)3			1290	0.44	Hendricks Canyon (R)	•		
10.2	Hollites Creek (L)				45.5	Whitney Canyon (R)			
10.3	Sand Creek (R)			1290	50.7	Little Sandy Canyon (R)			
12.6	Blue Creek (R)			1290	56.3	Little Spokane River (R)	701n		1536
12.8	Green Canyon (L)			1290	57.ů	Stream Gage, USGS #4260, below Mine Mile Dam (dis-	,		(
20.4	Harker Canyon (L)			1290		continued)		2505n	153547
20.8	Mill Canyon (L)			1290	58.1	NINE MILE DAN		5204n	1607
27.5	Stream Gape, USGS #4335				59.0	Deep Creek (L)	169n		
<u> </u>	below Little Falls (dis- cor-inued)		6340n	12794	64.2	Stream Cage, USGS #4245 (discontinued)	•	5020n	1630+
28.2	Spring Creek (L.)				66.1	Miverside State Park Bridge			
29.3	LITTLE FALLS DAN		6283n	1362	67.2	City of Spokane Senage			
31.8	Little Chamokane Greek (R)	u69		1362	•	Treatment Flant			
32.5	Chamokane Creek (R)	180			8.69	Fort Wright Bridge			
33.88	Stream Gage, USGS #4330, at Long Lake		6016n	1364	72.4	Hangman Creek (L)	+689		

See Table 2C for Notes.

TABLE 2A	
RIVER MILE INDEX (ABRIDGED) SPOKANE RIVER	
WATER RESOURCES STUDY METROPOLITAN SPOCANE RECION Days of the Army Sente Detrice Cense of Engeners Kennedy - Yudor Consulting Engeners	

							Treatment	477	
		Square Wiles	Hies	Water	Maver		Square Wiles	files	70.40
	Description	Tributary Stream	Mein	Elevation Feet	Mile		Tributary	Main	Elevation
72.9	Stream Gase 11905 #4225					Depart Depart	Street	Streen	Feet
	Spokane River at Spokane		4290n	1717	0.68	Stream Gage, USGS #4205, at Greenacres (discon-			
74.1	SPOKANE FALLS			1806		tinued)		4150n	1954
74.24	MONROE STREET DAM			1806	93.9	Stream Gage, USGS #4195, above Liberty Bridge,			
76.2	CONTROL WORKS DAM					near Otis Orchards		38C0n	2010+
	(UPPER FALLS)			1870	96.45	Canal (Not in use)			-
77.9	Stream Gage, USCS #4220, below Greene Street (dis-				5.96	Washington-Idaho State Line			2-25
	Committee		4220	1872+					:
78.0	Greene Street Bridge				100.7	Stream Gage, USGS #4190, near Post Palls		3840+	2061
79.8	City Hydroelectric Plant			1871	101.7	Post Palls Power Plant		ı	2067
80.2	SPOKANE DAM	•	•	1906	102.1	POST PALLS DAM		0788	2128
% .%	Stream Gage, USGS #4215 (discontinued)		4200a	1913+	102.11	Canal, Spokane Valley Farm Co.		!	
85.3	Trent Road Bridge				106.6	Rathdrum Prairie Canal			
85.5	Stream Gage, USGS #4210, at Trent (discontinued)		4200	1914+	1111	Outlet of Coeur D'Alene Lake		33007	9616
88.7	TOP OF FALLS			1950				!	3

RIVER MILE INDEX (ABRIDGED) HANGMAN CREEK (LATAB CREEK)

7AM.E 2A (Cont.)

TANLE 28

RIVER MILE INDEX (ABRIDCED)

LITTLE SPOKAME RIVER

		Drainage Area	Area				Drainere Area	e Area	
River		Square Miles	files	Water	River		Square Miles	fles	Water
Kile Kile	Description	Tributary Stream	Main Stream	Elevation Feet 1	Mile	Describtion	Tributary	Main	Elevation Feet
0.0	Confluence with Spokane River				23.05	Stream Gage, USGS #4295 near Chattaroy (discon-			
9.0	Stream Gage, USGS #4320,					(timed)		300n	
	near Spokane (discontin-		705n5		27.8	Bear Creek (R)	IIn		
3.9	Stream Gage, USGS #43 ,				31.81	Stream Gage, USGS #4290 at Milan (discontinued)		274n	
	tinued)		869	1554+	32.9	West Branch Little Spo-	į		•
3.91	Rutter Parkvay Bridge					Kane River (R)	10S +		
	Stream Gage, USGS #4312				33.5	Otter Creek (R)			
10.8	Stream Gage, USGS #4310				34.6	Dry Creek (L)	21		
	at Dartford			1593	37.6	Stream Gage, USGS #4270			
10.81	Little Creek (R)3	12				ar Eik		115n	1875
13.1	Deadman Creek (L)	133a			41.0	Chain Lake, Lower End			
14.22	Stream Gage, USGS #4303,				42.2	Chain Lake, Upper End			
	above Deadman Creek (discontinued)		524n		46.71	Stream Gage, USGS #4265, At Scotia (discontinued)		74n	2060+
2:.2	Stream Gage, USGS #4301.5 below Dragoon Greek		512n		-				
21.3	Dragoon Creek (R)	177a							
25.0	Deer Creek (L)	32n							
				-					

See Table 2C for Notes.

Control and Section 19 and 19		
ACCIDED SECONDS ACCIDED		
METROPOLITAN SPOKANE REGION	BIUFP MIT TUNEW (ABSTROOM)	
Dept of the Army, Seattle District	(MINITED WATER COLUMNIA TO THE COLUMNIA THE COLUMNIA TO THE CO	TABLE
Corps of Engineers	LILLE SPOKANE RIVER	28
Kennedy - Tudor Comulting Engineers		

TABLE 20

RIVER HILE INDEX (ABRIDGED)

HANGHAN CREEK (LATAR CREEK)

			-						
		Urainage Area	Area						
100		Square Miles	tiles	Water	River		Urainage Area	Area	;
1		Tributary	Main	Elevation	Mile		Square Alles	17.108	Water
	Description	Stream	Stream	Feet		Description	Stream	Math	Elevation
0.0	Confluence with Spokane River				32.88	Rattler Run Creek (R)			1
80.0	Stream Gage, USGS #4240				47.1	Cove Creek (R)			
	at Spokane		689	1723+	54.3	Little Hangman Creek	4 5n		
4.2	Marshall Creek (L)3		•		54.61	Stream Cape 11505 #220	;		
14.5	Stevens Creek (R)	87n ⁵				at Tekoa (discontinued)		135n	2476±
18.3	California Creek (R)	26n			57.4	Washington-Idaho State Line			
19.2	Spangle Creek (L)				61.4	Lolo Creek (R)			
20.2	Fock Creek (P.)	177n							

hater surface elevations are at mean flow gaging stations, at normal pool for dams and reservoirs and above and below falls.

²Elevation 1290 is normal pool elevation for Franklin D. Ecosevelt Lake created by Grand Coulee Dam.

3. Intering side for tributaries is shown as (R) right or (L) left facing downstream.

*Elevation 1279 at USGS Gage 4335 is mean water surface when not influenced by backwater from FDR Lake.

Drainage areas followed by a small "n" are revised calculated area by USGS Tacoma and may not agree with figure published prior to 1964.

⁶Elevation 1535 at Long Lake reservoir is maximum pool, limit of W.W.P. flood easement.

 $^7 \epsilon$ jevation 1535 \pm at USGS Gage 4260 is mean water surface when not influenced by Long Lake backwater.

Bievation 1554<u>-</u> at USGS Gage 4315 is mean water surface when not influenced by the backwater of Long Lake.

	TABLE 2C	
	RIVER MILE INDEX (ABRIDGED) SPORANE RIVER	
WATER RESOURCES STUDY	METROPOLITAN SPOKANE REGION Days of the Army, Service Cerps of Express Kennedy - Tudor Consulting Engineer	

TABLE 3
STREAM GAGES WITH AVAILABLE DAILY OR MONTHLY RECORD

River Mile	Location	USGS Gage Number		Presently Operating			
Spokane Ri	ver						
100.7	Port Falls Above Roberts Bridge	12-4190-00	1912	Yes			
93.9	near Otis Drive	12-4195-00	1929	Yes			
89.0	at Greenacres	12-4205-00	1948-1952	No			
85.5	at Trent	12-4210-00	1911-1913	No			
84.8	below Trent	12-4215-00	1948-1954	No			
77.9	below Green Street	12-4220-00	1948-1952	No			
72.9	at Spokane	12-4225-00	1891	Yes			
64.2	above 7 Mile Bridge	12-4245-00	1948-1952	No			
57.6	below 9 Mile Dam	12-4260-00	1948-1950	No			
33.88		12-4330-00	1939	Yes			
27.5	below Little Falls	12-4335-00	1912-1940	No			
Little Spo	kane River at Scotia	12-4265-00	1948.	No			
37.6	at Elk	12-4270-00	1948-1971.	Yes			
	at Milan	12-4270-00	1948.	No			
23.05	_	12-4295-00	1948.	No			
10.8	at Dartford	12-4310-00	1929-32,1946				
3.9	near Dartford	12-4315-00	1903-1905,	No			
3.7	Hear Darciord	12-4313-00	1948-1952	МО			
0.6	near Spokane	12-4320-00	1946-1952	No			
Branches o	Branches of the Little Spokane River						
	Wethey Creek near						
	Deer Park	12-4300-00	1948	No			
	Deep Creek at						
	Colbert	12-4305-00	1948	No			
Hangman Cr	reek_						
		10 /000 000	100/ 05	17 -			
54.61	at Tekoa	12-4230-000	1904-05	No			
0.8	at Spokane	12-4240-000	1948	Yes			

TABLE 3 (Continued)

River Mile	Location	USGS Gage Number	Period of Record	Presently Operating
Branches of	Hangman Creek			
	North Fork at Tekoa	12-4235-00	1904-1905	No
Deep Creek				
	near Spokane	12-4255-00	1949-1950	No
Chamokane C	reek			
1	below falls near Long Lake	12-4332-00	1971	Yes

TABLE 4

STREAM GAGES WITH ANNUAL PEAK AND/OR LOW FLOW RECORDS ONLY

River <u>Mile</u>	Location	USGS Gage Number	Period of D Annual Peak	Record Low Flow
Little Spo	okane River			
23.05 21.2	at Chatteroy below Dragoon Creek at Buckeye	12-4295-00 12-4301-50 12-4302-00 12-4302-50		1952: 1955 1952: 1955 1952: 1955 1952: 1955
14.21	near Buckeye above Deadman Creek below Deadman Creek above Wandemere Lake Creek below	12-4303-00 12-4306-00 12-4307-00		1952-1955 1957 1953
3.9	Country Club near Dartford	12-4312-00 12-4315-00		1953 1953: 1956-57; 1961
0.6	near Spokane	12-4320-00		1920-24: 1930-32, 1947-48; 1953
Branches c	of the Little Spokane West Branch near Elk Bear Creek near Milan	12-4285-00 12-4292-00	1962	1962-63
	Deer Creek near Chat- teroy Mud Creek (branch of Dragoon) near Deer	12-4296-00		1948; 1952; 1955
•	Park Dragoon Creek near Chatteroy Deadman Creek near	12-4298-00 12-4301-00 12-4303-50	1954	1948; 1952; 1955 1948; 1952;
	Mead Bigelow Gulch (branch			1955-58; 1960-70
	of Deadman) near Spokane Deadman Creek below 395 Deep Creek at Colbert	12-4303-70 12-4304-00 12-4305-00	1950:1962	1953 1952
	Wandemere Lake Creek near Dartford Little Creek at	12-4308-00		1953
	Dartford	12-4311-00	1963	

TABLE 4 (Continued)

River		USGS Gage	Period of Annual	Low
<u>Mile</u>	Location	Number	Peak	Flow
Branches	of Hangman Creek			
	Unnamed tributary near Lath Unnamed tributary of South Fork of	12-4235-50	1961	
	Rock Creek near Fairfield Unnamed tributary of Stevens Creek	12-4237-00	1962	
	near Moran	12-4239-00	1954	
Branch of	Spring Creek			
	Unnamed tributary near Reardon	12-4333-00	1954	

TABLE 5

ANNUAL MEAN AND EXTREME FLOWS

Gaging Station (Number)	Drainage Area (Sq. Mi.)	Mean Annual Discharge (cfs)	Max Discharge (cfs)	Min Discharge (cfs)	Min Discharge Mean Discharge (cfs) per Sq. Mi. (cfsm)
Spokane River near Post Falls, Idaho (12-4190)	3,840	6,557	49,800	88	1.708
Spokane River at Spokane, Wash. (12-4225)	4,290	6,927	49,000	574	1.615
Spokane River at Long Lake, Wash. (12-4330)	6,020	8,381	47,300	114	1,392
Little Spokane River at Dartford, Wash. (12-4310)	999	316	3,170	63	0.475
Little Spokane River at Elk, Wash. (12-4270)	115	56.4	148	26	0.490
Hangman Creek at Spokane Wash. (12-4240)	689	264	20,690	2.3	0.383
Spokane River above Liberty Bridge, Wash. (12-4195)	3880	6,620	33,200	70	1.706

TABLE 6

MAXIMUM, MINIMUM, AND MEAN MONTHLY FLOWS

Gaging Station (Period of Record)	ITEMS	JAN	FEB	MAR	APR	HAY	JUN	JUL	AUG	SEP	OCT.	MOV	DEC
Spokane River at Spokane Wash. (1892 1972)	Max Min Mean	25,426 1,336 5,497	16,416 1,486 6,082	25,380 2,046 8,072	23,806 4,257 14,747	29,386 6,820 19,069	29,900 3,112 11,743	11,900 1,356 3,653	4,740 908 1,916	· 3,300 1,152 1,767	5,640 1,300 2,150	13,100 1,147 3,374	22,906 1,700 5,110
Little Spokane River at Dartford, Wash. (1929 1972)	Max	616	1,108	1,211	1,301	1,176	710	331	193	175	234	311	353
	Min	99.6	160	167	170	132	98.2	80.3	67.8	80.3	87.9	113	122
	Mean	276	430	577	692	461	272	168	136	143	164	193	230
Little Spokane River at Elk, Wash. (1949 1971)	Max	69.7	107	110	137	98.7	78.6	64.7	54.0	52.2	56.9	61.2	61.3
	Min	38.6	44.6	47.1	47.2	43.4	38.8	35.4	35.5	35.5	37.0	39.2	4.09
	Mean	51.5	60.2	69.8	83.9	72.5	59.7	49.5	44.7	44.3	45.3	47.1	49.2
Hangman Creek a: Spo-	Max	1,574	1,681	1,914	928	1,925	391	37.8	38.1	26.5	32.4	188	1,251
kane, Wash.	Min	33.7	225	132	66.8	32.9	15	3.45	2.81	4.06	7.89	15.9	35.7
(1948 1972)	Mean	494	803	821	401	250	95.3	22	13.4	13.9	18.4	44.7	197
Spokane River near Post	Max	24,930	16,340	17,110	26,050	31,800	25,600	10,700	2,130	1,840	5,460	13,100	23,660
Falls, Idaho	Min	996	1,020	1,750	6,819	6,620	1,580	914	184	188	782	667	784
(1913 1971)	Mean	5,132	5,963	7,430	14,977	22,039	9.829	1,985	931	1,055	1,682	2,927	4,731
Spokane River at Long	Max	16,430	19,500	21,530	29,410	33,520	25,050	7,951	3,178	3,122	4,327	9,065	15,820
Lake, Wash.	Min	2,991	4,664	3,966	5,573	7,049	3,932	1,942	1,424	1,476	1,868	2,059	2,341
(1940 1972)	Mean	7,011	8,934	10,380	16,498	20,887	12,499	4,571	2,661	2,788	3,704	4,264	6,377
Spokane River above	Max	12,590	16,050	24,440	22,540	25,870	21,870	3,351	1,408	1,731	3,281	5,892	14,420
Liberty Bridge, Wash.	Min	2,702	2,251	2,890	7,999	8,197	3,253	913	159	356	748	1,729	1,790
(1958 1972)	Mean	5,355	8,110	8,710	14,645	18,643	11,074	1,685	690	1,070	1,713	3,241	4,760

TABLE 7

HISTORICAL FLOODS ON THE SPOKANE RIVER

	•	Crest Discharge	charge	Runoff for 5 days,
Date	Elevation of Coeur D'Alene Lake	cfs	cfs/sq. mile	inches per square mile on 4350 sq. mi.
* May 20-21, 1893	2,135.1	38,000	9.5	No Record
May 31, 1894	2,137.6	*000*67	11.3	No Record
# May 17, 1917	2,135.9	41,900	9.6	1,69
January 4, 1918	2,136.0	39,600	9.1	1.66
<pre># December 22-26, 1933</pre>	2,139.0	47,800	11.0	1.90
# April 18-22, 1938	2,134.0	32,700	7.5	1.34

*Doubtful accuracy.

Columbia River and Tributaries, Northwestern United #Source, U.S. Army Corps of Engineers. 1950. States, Volume III. House Document No. 531.

TABLE 8

IMPOUNDMENTS

Mile Name 29.30 Little Falls 33.90 Long Lake	Falls	•	TOTTON	י תטיות	TOWNS OF OWNER	1	TOWNS OF TATE		
29.30 Little I 33.90 Long Lah	Falls	Surface Area, Acres	Pool Elev.	Volume	Below Elevation Volume		Between E High	Between Elevations High Low	Total Volume
33.90 Long Lak	Q.	250	1362.00	2,000*	2,000* 1351.00	2,220	2,220 1362.00 1351.00	.1351.00	4,220*
	}	5060	1536.00	149,490 1508.00	1508.00	105,080	105,080 1536.00 1508.00	1508.00	254,570
58.10 Nine Mile	le	440	1606.60	7,000*	7,000* 1590.57	4,600	4,600 1606.60	1590.57	11,600*
74.24 Monroe Street	Street	'n	1806.00	87*	87* 1806.00	None	1	1	87*
76.20 Control Works (Upper Falls)	Works Falls)	136	1870.50	None	1864.30	800	800 1870.5	1864.30	800
80.2 Spokane Dam	Dam	150*	1910.45		1889.45	1	1889.45	1910.45	1,500*

*Data unavailable -- value shown is estimate.

TABLE 9

HYDROELECTRIC INSTALLATION

	Owner-	Dam River Mile	Total Nameplate Ratings	plate	Peak Capability Ratings	oility gs	Ħ	Head
Facility	Operator	Location	Kilowatts	cfs	Kilowatts	cfs	Range	Average
Post Falls	WWP	102.10	11,250	3,100	15,000	4,140	47–58	55
Spokane Dam	City	80.20	3,900		4,500			31
Upper Falls	WWP	76.20	10,000	2,450	10,200	2,500	54-64	61
Monroe Street	WWP	74.24	7,200	2,000	7,200	2,000	71-74	73
Nine Mile	WWP	58.10	12,000	3,330	18,000	5,000	29-95	61
Long Lake	WW	33.90	20,000	6,180	72,500	6,300	154-172	169
Little Falls	WWP	29.30	32,000	6,670	36,000	7,500	66-74	72

TABLE 10
INVENTORY OF LAKES

County	Location Township-Range-Section	Name	Area Acres	Us e *
		**************************************	ACLEO	086
Lincoln Stevens	T27N-R39E 20-B	Little Falls Res.		
			125.0 Stevens Co. 250.0 Total	P,R
Pend Oreille	T30N-R43E 5-K/L	Lost Lk.	22.1	R
	T30N-R43E 8-N	Horseshoe Lk.	128.0	R
	T30N-R43E 9-A	Trout Lk.	94.8	R
	T30N-R43E 32-L	Fan Lk.	72.9	R
	T30N-R44E 3-SE 1/4	Diamond Lk.	754.5	R
	T30N-R44E 35-N 1/2	Chain Lk.	77.6	R
	T30N-R46E 30-M/N	Trask Pond	50.3	R
	T31N-R43E 35-B T31N-R45E 23-S 1/2	Sacheen Lk.	282.2	R
	13111-1436 23-3 1/2	Unnamed Lk.	37.9	R
Spokane	T23N-R42E 5-A/H	Fish Lk.	47.1	R
	T23N-R42E 14-NW 1/4	Unnamed Lk.	20.3	R
	T23N-R42E 22-N	Intermittent Lk.	29.2	R
	T23N-R42E 27-C	Intermittent Lk.	24.0	R
	T24N-R40E 13-W 1/4	West Medical Lk.	234.8	R
	T24N-R40E 21-J/R	Unnamed Lk.	29.5	R
	T24N-R40E 27-NW 1/4	•	22.8	R
	T24N-R41E 17-G/H	Silver Lk.	559.1	R
	T24N-R41E 18-W 1/2	Medical Lk.	148.9	R
	T24N-R41E 19-K/Q	Otter Lk.	26.1	R
	T24N-R41E 19-H	Ring Lake	22.9	R
	T24N-R41E 22-N/P	Granite Lk.	105.8	R
	T24N-R41E 22-P	Willow Lk.	79.7	R
	T24N-R41E 26-B	Meadow Lk.	31.9	R
	T24N-R41E 30-SW 1/4	Clear Lk.	374.8	R,I
	T24N-R42E 28-B	Queen Lucas Lk.	36.8	R
	T25N-R43E 18-J	Upper Falls Res.	146.0	P,R
	T25N-R44E 24-F/G T25N-R45E 22-H	Shelley Lk.	35.6	R
	T26N-R40E 10-SW 1/4	Liberty Lk.	711.4	R
	T26N-R40E 10-SW 1/4 T26N-R40E 10-G/K	Horseshoe Lk.	67.9	R
	T26N-R42E 6-R	Woods Lk. Nine Mile Res.	32.0 440.0	R
	T27N-R41E 7-K/L	Knight Lk.	34.0	P,R R
	T28N-R43E 15-G/K	Bear Lk.	33.8	R
	T29N-R42E 34-K/O	Dragoon Lk.	22.4	R,I
	T29N-R43E 15-L	Eloika Lk.	659.2	R, I
	T29N-R44E 19-J	Reflection Lk.	51.8	R
	T26N-R45E 11-G	Newman Lk.	1190.2	R
	T27N-R39E 13-M	Long Lk. (Res.)	2510.0 Spokane Co.	
		· · · · · · · · · · · · · · · · · · ·	100.0 Lincoln Co.	
			2410.0 Stevens Co.	
			5020.0 Total	P,R

^{*}P=Power, R=Recreation, I=Irrigation

TABLE 11

CHARACTERISTICS OF MAJOR LAKES*

1	Record	1958	1950	1953	1954	1953			0	1933-30.		
	variation ft.	4.24	4.94	1.99	2.85	5.45						
Gage Height Range	Min. (ft.)	7.20	46.34	2.96	3.61	2.32						
Gage Hei	Max.(ft.)	11.4	51.28	4.95	97.9	7.77						
Drainage	Area (sq. mile)	28.6	13.3	6.1	33.5	101.0						
	Max. Depth (ft.)	30 #	7e #	28 #	# 05	15 #	140 #	35	80	09	1	110
	Elevation (ft. msl)	2124	2053	2360	2250	1920	1975	2423	2341	2394	2381	2342
	Lake Area (Acres)	1,190.2	711.4	754.5	282.2	659.2	128.0	234.8	559.1	148.9	105.8	374.8
	Lake Name (Gage No.)	Newman Lake	Liberty Lake (12-4200)	Diamond Lake (12-4275)	Sacheen Lake (12-4280)	Eloika Lake (12-4285)	Horseshoe Lake	West Medical Lake	Silver Lake	Medical Lake (12-4250)	Granite Lake	Clear Lake

*Exclusive of man-made lakes. #Indicates that a bathymetric map is available in Woolcott (1964).

 MAX.
 MONTH
 29,900
 CFS

 MAX.
 YEAR
 10,361
 CFS

 MEAN ANNUAL
 6,927
 CFS

 MIN.
 MONTH
 906
 GFS

 MIN.
 YEAR
 2,974
 CFS

 DRANAGE AREA
 4290
 90.MI.

 MEAN ANNUAL RUNOFF
 21.92
 INCHES

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

MAXIMUM, MINIMUM AND MEAN MONTHLY DISCHARGES
SPOKANE RIVER AT SPOKANE

FIG. A

CFS CFS

432 264

CFS CFS

2.81

00

THE PROPERTY OF THE PROPERTY O

MAX. MONTH = 1,301 CFS
MAX. YEAR = 443 CFS
MEAN ANNUAL = 316 CFS
MIN. MONTH = 678 CFS
MIN. YEAR = 128 CFS

DRAINAGE AREA = 665 SQ.MI MEAN ANNUAL = 6.45 INCHES

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept of the Army, Seatte District
Cords of Engineers
Kennedy - Tudor Condulting Engineers

MAXIMUM, MINIMUM AND MEAN MONTHLY DISCHARGES LITTLE SPOKANE RIVER AT DARTFORD

F16. C

WATER RESOURCES STUDY

WATER RESOURCES STUDY

ANN JAL FLOW PATTERN 1972

AN of the Army, Sente Dainer

Cops of Engineers

R. . 1y-Tuder Consulting Engineers

LITTLE SPOKANE R-VER AT SPOKANE

FIG. D

308-60

LIST OF REFERENCES

- Bodhaine, G.L., and Robinson, W.H. 1952. Floods in western Washington, frequency and magnitude in relation to drainage basin characteristics. U.S. Geological Survey Circular
- Bodhaine, G.L., and Thomas, D.M. 1964. Magnitude and frequency of floods in the United States. Part 12, Pacific Slope Basins in Washington and Upper Columbia River Basin. U.S. Geological Survey Water-Supply Paper 1687.
- Broom, H.C. 1951. Gaging station records in Spokane River Basin,

 Washington from Post Falls, Idaho to Long Lake, Washington including Little Spokane-River, water year 1948

 1950. Wurface Water Branch, U.S. Geological Survey,
 Tacoma, Washington.
- Collings, M.R. 1971. A proposed streamflow-data program for Washington State. Open File Report, U.S. Geological Survey.
- Columbia Basin Inter-Agency Committee. 1964. River mile index,
 Spokane River, Columbia River Basin, Washington Idaho.
 Hydrology Subcommittee.
- Davenport, R.W. 1922. Coeur D'Alene Lake, Idaho, and the overflow lands. U.S. Geological Survey Water-Supply Paper 500.
- Grover, N.C. and Parker, G.L. 1940. Summary of records of surface waters of Washington, 1919 1935. U.S. Geological Survey Water Supply Paper 870.
- Marshall, R.B. 1915. Profile surveys in Spokane River Basin,
 Washington and John Day River Basin, Oregon. U.S. Geological Survey Water Supply Paper 377.
- McDonald, C.C. and Broom, H.C. 1951. Analysis of increments of discharge in Spokane River, Post Falls, Idaho to Long Lake, Washington. U.S. Geological Survey.
- Piper, A.M., and LaRoque, G.A. 1944. Water table fluctuations in the Spokane Valley and contiguous area, Washington-Idaho. U.S. Geological Survey Water Supply Paper 889-B.
- Pluhowski, E.J., and Thomas, C.A. 1968. A water-balance equation for the Rathdrum Prairie groundwater reservoir, near

REFERENCES (Continued)

- Spokane, Washington. U.S. Geological Survey Professional Paper 600-D, Geological Survey Research.
- Rantz, S.E., and Riggs, H.C. 1949. Magnitude and frequency of floods in the Columbia River Basin. U.S. Geological Survey Water Supply Paper 1080.
- Simons, W.D. 1948. Relation of flood frequencies to basin characteristics--Upper Columbia River Basin.
 Unpublished
- U.S. Army Corps of Engineers. 1950. Columbia River and tributaries, northwestern United States. Volume III. House Document No. 531, Washington, D.C.
- U.S. Geological Survey. 1921. Surface water supply of the United States, 1921, Part XII North Pacific Slope Drainage Basins. Water supply paper 532.
- Washington (State) Department of Ecology. 1973. Lakes constituting shorelines of the State Shoreline Management Act of 1971.
- Woolcott, E.E. 1964. Lakes of Washington, Vol. II, Eastern Washington.

 ton. Department of Conservation, Division of Water Pesources, Olympia, Washington.

APPENDIX I STORAGE VOLUME VERSUS STAGE FOR COEUR D'ALENE LAKE

Storage Volume Above Elevation 2120.80 Stage Elevation Acre Feet Second Foot Days Feet 747,100 377,300 2138.00 691,800 349,400 2137.00 636,800 321,600 2136.00 294,000 582,100 2135.00 266,500 527,700 2134.00 239,200 473,600 2133.00 420,000 2132.00 212,100 367,100 2131.00 185,400 159,000 314,800 2130.00 263,900 133,300 2129.00 214,800 108,500 2128.00 172,500 87,100 2127.00 155,200 78,400 2126.50 140,400 70,900 2126.00 112,900 57,000 2125.00 85,700 43,300 2124.00 58,800 29,700 2123.00

16,200

2,700

0

32,100

5,300

0

Data Source: Washington Water Power Company

2122.00

2121.00

2120.80

APPENDIX II

STAGE-DISCHARGE RELATIONSHIP FOR POST FALLS
DAM AND COEUR D'ALENE LAKE OUTLET

Stage	Discharge Capacity of Post Falls Dam with	Discharge Capacity of Coeur D'Alene Lake
Elevation	All Gates Open, cfs	Outlet, cfs
2139.05		47,800*
2138.00		45,400
2136.00		36,500
2134.00		30,900
2132.00		25,500
2130.00		20,200
2129.50	47,800**	
2128.00	34,810***	15,000***
2126.00	27,240	9,500
2124.00	20,090	5,500
2122.00	13,360	2,600
2120.00	7,550	800
2118.00	2,860	0

Notes

- 1. The discharge capacity of Post Falls Dam gates is related to the stage elevation in the Post Falls forebay which can be substantially equal to lake stage only under controlled flow conditions, that is up to elevation 2128.
- 2. For lake stages up to 2128, discharge can be controlled by Post Falls. For lake stages above 2128, the lake outlet controls. Maximum controlled flow is 15,000 cfs.
- 3. Data are from Washington Water Power Company.

^{*}Highest observed lake stage, December 1933.

^{**}Observed stage in Post Falls Forebay, December 1933.

^{***}Top of Post Falls gates in closed position.

APPENDIX III

STORACE VOLUME VERSUS STAGE FOR LONG LAKE RESERVOIR

Stage	Elevatio		
Elevation Feet S	econd Foot Days	Acre Feet	Surface Area Acres
1,536	52,540	104,000	5,010
1,535	50,010	99,000	4,950
1,534	47,510	94,100	4,870
1,533	45,050	89,200	4,810
1,532	42,620	84,400	4,790
1,531	40,200	79,600	4,750
1,530	37,800	74,800	4,750
1,529	35,400	70,100	4,750
1,528	33,000	65,300	4,550
1,527	30,700	60,700	4,550
1,526	28,400	56,200	4,360
1,525	26,200	51,900	4,360
1,524	24,000	47,500	4,360
1,523	21,800	43,164	4,360
1,522	19,600	38,800	4,160
1,521	17,500	34,700	4,160
1,520	15,400	30,500	3,960
1,519	13,400	26,500	3,960
1,518	11,400	22,600	3,960
1,517	9,400	18,600	3,760
1,516	7,500	14,850	3,760
1,515	5,600	11,100	3,760
1,514	3,700	7,300	3,760
1,513	1,800	3,600	3,560
1,512	0	0	3,560

Data Source: Washington Water Power Company

APPENDIX IV

COEUR D'ALENE LAKE AND LONG LAKE RULE CURVES

Elevation -- Feet

Jun	28.0	28.0	
	5 21.	5 21	tion.
Мау	2126.	2128.	estric
Apr	2128.0 2127.5 2126.3 2124.6 2122.8 2122.2 2120.5 2120.5 2120.5 2124.0 2126.5 2128.0	2128.0 2127.5 2126.3 2124.6 2122.8 2122.2 2122.6 2122.9 2125.5 2130.3 2128.5 2128.0	in January under median water conditions is due to channel restriction.
Mar	2120.5	2125.5	due to c
Feb	2120.5	2122.9	ions is
Jan	2120.5	2122.6	conditi
Dec	2122.2	2122.2	lan water
Nov	2122.8	2122.8	nder medi
0ct	2124.6	2124.6	anuary u
Sep	2126.3	2126.3	ing in Ja
Aug	2127.5	2127.5	e beginn
Jul	2128.0	2128.0	D'Alene
Coeur D'Alene Lake	Adverse Water	Median Water	Note: Fill at Coeur D'Alene beginning

Long Lake

1536.0 1536.0 1535.5 1535.5 1535.5 1535.5 1524.7 1512.0 1512.0 1535.5 1536.0 1536.0 Adverse and Median Water

Data Source: Washington Water Power Company.

BATHYMETRIC MAP NEWMAN LAKE APPENDIX

BATHYMETRIC MAP LIBERTY LAKE

APPENDIX X-8

BATHYMETRIC MAP
DIAMOND LAKE

APPENDIX Y-C

BATHYMETRIC MAP SACHEEN LAKE APPENDIX X-D

BATHYMETRIC MAP ELOIKA LAKE

APPENDIX Y-E

BATHYMETRIC MAP HORSESHOE LAKE APPENDIX IZ-F

BATHYMETRIC MAP
CHAIN LAKE

APPENDIX Y-G

BATHYMETRIC MAP CLEAR LAKE APPENDIX X-H

SATHYMETRIC MAP
MEDICAL LAKE

APPENDIX Y-I

BATHYMETRIC MAP SILVER LAKE

APPENDIX X-J

SECTION ADA

SURFACE WATER QUALITY SUMMARY AND EVALUATION

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION

SECTION 404

SURFACE WATER

QUALITY SUMMARY AND EVALUATION

19 May 1975

Department of the Army, Seattle District Corps of Engineers Kennedy-Tudor Consulting Engineers

INDEX

Subject	Page
Scope and Objectives	404- 1
Sources of Data	404- 3
Data Summaries	404 4
Interpretation of Data	404- 4
Spokane River Hangman Creek Little Spokane River Liberty and Newman Lakes	404- 4 404- 8 404- 9 404- 9
Projected Water Quality Table Index	404- 9 b
Figure Index	c
List of References	404–26
Appendix Index	ď

TABLE INDEX

Table No.	Title	Page
	SURFACE WATER QUALITY SUMMARY	
1	Spokane River Below Little Falls Dam, RM 29.0	404-11
2	Spokane River Below Long Lake, RM 33.3	404-11
3	Spokane River In Long Lake, RM	404-12
4	Spokane River At Bowl & Pitcher, RM 66.2	404-13
5	Spokane River At Ft. Wright Br., RM 69.8	404-13
6	Spokane River Above Hangman Creek, RM 72.9	404-14
7	Spokane River At Idaho Boundary RM 96.5	404-14
8	Hangman Creek At Mouth	404-15
9	Little Spokane River Near Mouth RM 1.1	404-16
10	Little Spokane River At Dartford RM 10.6	404-16
11	Liberty Lake	404-17
12	Newman Lake	404-17

FIGURE INDEX

Figure No.	Title	Page
1101	11116	Page
	SPOKANE RIVER QUALITY PROFILES	
A	Temperature	404-18
В	Dissolved Oxygen	404-19
С	BOD	404-20
D	Total Phosphorus	404-21
E	Ammonia	404-22
F	Total Nitrogen	404-23
G	Total Coliform	404-24
H	7ine	404-25

APPENDIX INDEX

Appendix		
No.	Title	Page
I	Spokane River Below Little Falls Dam, RM 29.0	404-2
II	Spokane River Below Long Lake, RM 33.3	404-29
III	Spokane River At Long Lake	404-33
IV	Spokane River At Bowl & Pitcher, RM 66.2	404-38
V	Spokane River At Ft. Wright Br., RM 69.8	404-39
VI	Spokane River Above Hangman Creek, RM 72.9	404-41
VII	Spokane River At Stateline, RM 96.5	404-42
VIII	Hangman Creek At Mouth	404-44
IX	Little Spokane River At Mouth, RM 1.1	404-46
X	Little Spokane River At Dartford, RM 10.6	404-49
XI	Liberty Lake	404-51
XII	Newman Lake	404-52

SECTION 404

SURFACE WATER QUALITY SUMMARY AND EVALUATION

Scope and Objectives

Sources of water quality data for the study area are summarized in Section 307-9. These data are scattered through numerous publications, including the Storet printout, and cover a wide variety of parameters at many locations over a period of years. It is the objective of this section to summarize recent data for a limited number of parameters of primary interest in a logical order to provide a concise overview of surface water quality.

The specific locations selected for surface water quality summary are as follows:

- 1. Spokane River below Little Falls Dam (RM 29)
- 2. Spokane River below Long Lake (RM 33.3)
- 3. Spokane River at Long Lake
- 4. Spokane River at Bowl & Pitcher (RM 66.2)
- 5. Spokane River at Ft. Wright Br. (RM 69.8)
- 6. Spokane River above Hangman Creek Confluence (RM 72.9)
- 7. Spokane River at Idaho state line (RM 96.5)
- 8. Hangman Creek at Mouth
- 9. Little Spokane River at Mouth (RM 1.1)
- 10. Little Spokane River at Dartford (RM 10.6)
- 11. Liberty Lake
- 12. Newman Lake

The water quality parameters selected for summary at each of these locations, where available, are as follows:

- 1. Temperature
- 2. Dissolved oxygen
- 3. BOD
- 4. Total phosphate
- 5. Ammonia
- 6. Total nitrogen
- 7. Total coliform
- 8. Zinc

Most parameters show significant variation in concentration with the seasons of the year. Therefore, summaries are prepared as mean values for three-month periods rather than on an annual basis for river stations and on a monthly basis for the natural lakes.

In general, only data taken 1970 and later are used in computing mean values to produce a picture of current conditions. In the case of the Little Spokane River and Newman Lake where recent data was not available, the data period is extended back to 1968.

It is not the purpose of this section to repeat the wide spectrum parameter data reported in sections 607.1 and 607.2 and covering only two specific dates. The purpose of this section is to show year around data for a limited number of parameters.

Sources of Data

The specific data sources from which the summaries in this section are taken are as follows (refer to List of References for complete identification of publications):

Publications

Bishop and Lee (1972)

Burkhalter et al (1970)

Condit (1972)

Funk (1973)

Lee (1969)

U.S. Geological Survey (1972)

U.S. Geological Survey (1973)

Other Sources

U.S. Environmental Protection Agency; STORET retrieval system.

Washington Water Power Co., unpublished temperature and dissolved oxygen observations on Long Lake, June-Oct. 1973.

Soltero, et al (1973) unpublished data supporting the published document.

Kennedy-Tudor sampling and analysis for this study as reported in Sections 607.1 and 607.2.

Appendices I through XII list the individual observations from the above listed sources which were used to compute the mean values shown in Tables 1 through 12. An exception is that unpublished data from Soltero at Spokane RM 69.8 and Little Spokane RM 1.1 are included in the calculated mean but not shown in the Appendix.

There are extensive data on Long Lake presented graphically in Soltero et al 1973 and Soltero et al 1974 which are not utilized in this summary for two reasons. First, it is judged preferable to refer to the original document for the complex relationships shown in these documents which could be lost or distorted in summary. Secondly, the graphical presentation and absence of original data in tabular form make translation to tabular form difficult and uncertain.

Data Summaries

Mean values for three-month periods for each parameter, where available, are shown for seven Spokane River locations in Tables 1 through 7, one Hangman Creek location in Table 8, and two Little Spokane River locations in Tables 9, 10. For the two natural lakes, Liberty and Newman, mean values by month at various depths are presented in Tables 11 and 12.

For the Spokane River, the tabular data are presented as quality profiles in Figures A through H. One parameter is presented on each figure, with a separate profile for each three-month time period.

Interpretation of Data

Spokane River. The quality of the Spokane River as it enters the study area from Idaho is a product of the quality of the Coeur D'Alene and St. Joe Rivers and their combined passages through Coeur D'Alene Lake. The two most significant quality changes to the incoming waters are pick-up of zinc from mine tailings on the Coeur D'Alene

River and the summer temperature increase due to passage through Coeur D'alene Lake. The entering stream does not meet coliform standards for most of the year, probably due to the treated municipal effluent from the City of Coeur D'Alene. Refer to Table 7. In general, the water is of high quality and meets drinking water standards for all parameters except coliform count.

There are four tributary sources to the Spokane River after it enters the study area which have a significant impact on quality, in addition to the inherent in-stream physical, chemical and biological processes. In the reach from the stateline at RM 96.5 to the Hangman Creek confluence at RM 72.9 there is a groundwater increment estimated at 500 to 600 cfs. This groundwater stream differs in quality from the surface flow in a number of significant ways.

- 1. The temperature is relatively constant at approximately $10\,^{\circ}$ C.
- 2. Higher nitrates at 1.6 mg/l.
- 3. Lower zinc at 26 µg/1.

The effect of the groundwater inflow would be expected to be a maximum when surface flows were at a minimum. The temperature reduction in July-Sept is evident in Figure A and the zinc reduction throughout most of the year as shown in Figure H. There is, however, no evidence in Figure F of an increase in nitrate at the expected time.

In addition to the groundwater inflow between RM 96.5 and 72.9, there are cooling water and industrial waste discharges and intermittant overflows from the Spokene combined sewer system. The seasonal

means tabulated herein show no significant evidence of these flows.

Hangman Creek joins the Spokane River at RM 72.9. The relative volume of this flow is very small at most times. Significant flows from Hangman Creek almost always occur when the Spokane River is also at high stage. The heavy silt load carried by Hangman Creek at flood stage is the most significant quality difference between Hangman Creek and the Spokane River. Other differences are higher ammonia throughout the year ranging from 0.104 to 0.642 mg/1, and higher total nitrogen at 1.38 to 2.61 mg/1. These ammonia and total nitrogen values are up to ten times higher than concentrations in the Spokane River. Phosphorus is also higher, at .085 to .395 mg/l; again the higher values being over ten times those in the Spokane River. As would be expected, the zinc levels are lower in Hangman Creek. The impact of these differences on the Spokane River is small in most cases due to the extreme differences in flow. Only the total nitrogen as shown in Figure F is seen to have an irregularly high impact and ammonia, as shown on Figure E actually decreases beyond the Hangman confluence. Phosphates show a small but consistent increase in Figure D.

The entrance of the existing primary treated sewage effluent from the City of Spokane treatment plant at RM 67.2 has the largest quality impact on the Spokane River. Except during the higher river flow season of April through June ammonia, total nitrogen, phosphorus and BOD show large increases below the City STP. Zinc shows a small increase.

The next stream to join the Spokane River below the City STP

is the Little Spokane River. The Little Spokane River has a stable flow pattern and contributes a significant input at all times of year. Unfortunately, there has been little data collection either of the Little Spokane at its mouth or of the Spokane River in close proximity downstream from the confluence. The Spokane River is actually a lake at the confluence and most data taken downstream from the confluence follow many miles of lake condition and reflect in-stream changes due to lake activity as well as the result of mixing with the Little Spokane. The quality of the Little Spokane River at its mouth is very similar to that of the groundwater of the Spokane Valley aquifer, which is responsible for a large fraction of the Little Spokane flow at all seasons except flood flows. The Little Spokane has relatively low phosphorus, ammonia and zinc but high total nitrogen. Coliform counts are surprisingly high. Refer to Table 9. As indicated above, the impacts of these quality differences are not reported free of lake effects.

As indicated above, it is not intended to treat Long Lake quality in detail herein but rather to report and summarize seasonal means for principle parameters. For all seasons except the winter (Jan-Mar) the lake retention results in a significant increase in temperature as represented by the surface layer. This temperature increase is not reflected to the same degree in outlet temperatures below Long Lake Dam. See Figure A. The temperature stratification of Long Lake in the June-Sept period is evident in the 7°C spread from surface to bottom as shown in Table 3. The temperatures downstream of Long Lake dam reflect release from lower levels in the lake.

major factor for the eutrophication problem in summer and fall is shown in Figure D. The capture of the phosphorus by organisms in the summer and fall is shown by the lower leaving concentrations for July-Sept and Oct-Dec. During the winter and spring there appears to be a reversal with the leaving concentrations higher than the influent. The net effect throughout the year is of phosphorus levels downstream from Long Lake being significantly higher than the Spokane River as it enters the study area and above levels of concern for eutrophic activity.

Within Long Lake the most serious quality deficiency which develops as a consequence of thermal stratification and high nutrient levels is the reduction in dissolved oxygen below the surface layers caused by the demand of dying organisms settling to the bottom. Table 3 shows that both the middle and bottom layers have low dissolved oxygen concentrations during the summer and fall seasons.

Hangman Creek. Two factors must be kept in mind in interpreting quality data for Hangman Creek at its mouth. One is that the flow is extremely variable and the other is that summer flow may be largely Spokane Valley groundwater which enters in the last downstream mile. In the absence of concurrent precipitation or snowmelt, the upstream flow approaches zero. The relatively low summer temperature as compared with the higher spring temperature is probably a measure of the increasing proportion due to low temperature groundwater in the summer. See Table 8. Also note the similarity of summer quality to Spokane Valley aquifer quality.

Little Spokane River. Two locations on the Little Spokane River are selected to show the quality which predominates in the basin upstream from Dartford as compared with the quality at the mouth after the flow increment from the Spokane Valley aquifer below Dartford. Refer to Tables 9 and 10 respectively. The Little Spokane River has unusually sustained year around flow and low peak flows, both the result of a high degree of interchange between the river and the groundwater of the basin. Consequently, the quality above Dartford is affected by the groundwater quality within the basin. Below Dartford, the quality affect is from groundwater outside the basin.

The drop in spring and summer water temperature from Dartford to the mouth clearly shows the effect of the addition of 10° C Spokane Valley groundwater.

High coliform counts at Dartford, with significant attenuation at the mouth, is the primary quality deficiency. The only point source near enough to be considered as the source is the treated sanitary wastes from Kaiser Mead which are discharged into Peone Creek which joins the Little Spokane immediately upstream from Dartford.

Liberty and Newman Lakes. Practically all of the available water quality data on these lakes is from USGS for one period March to September 1971. See USGS (1971). The data are so limited as to preclude any generalized conclusion.

Lee (1969) examined Newman Lake and several other lakes in the study area but did not include Liberty Lake. Based on one observation October 22, 1968 which included a temperature and dissolved oxygen profile, Lee concluded as follows:

Newman Lake was shallow, well-mixed (isothermal), with an orthograde dissolved oxygen profile ... A moderate algal bloom was present, reflected by a low Secchi disc transparency.

Projected Water Quality

The existing quality of the Spokane River as it enters the study area from Idaho is designated as a baseline condition for projection of future water quality in the study area. The primary quality deficiency at the stateline is bacteriological. Refer to Table 7. The other parameter of note is zinc. Although zinc concentration is well below drinking water standards, it is significantly higher than most natural waters. It is probable that the coliform count will be improved in the future by enforcement of effluent standards in Idaho, primarily for Coeur D'Alene. It is unlikely that a major change will be achieved in zinc concentrations which have their origin in leaching from mine tailings on the Coeur D'Alene River.

Baseline conditions on the Spokane River downstream from the stateline are being determined based on the water quality simulation model in a run with all existing point source pollutant loads removed. Projected conditions for surface water discharge of forecast year 2000 municipal flows treated to 1983 standards is the subject of another quality model simulation. Both of these results are reported in the task report on simulation model results.

TABLE 1

SURFACE WATER QUALITY SUMMARY

SPOKANE RIVER BELOW LITTLE FALLS DAM (RM 29.0)

	MEAN VALUES						
Parameter	Units	Jan-Mar	Apr-June	July-Sept	Oct-Dec		
Temperature	°C	-	12.4	18.7	9.6		
Dissolved oxygen	mg/l	-	11.4	6.3	7.2		
B.O.D.	mg/l	-		1.4*	-		
Total phosphorus -P	mg/1	-	0.062	0.066	0.038		
Ammonia -N	mg/l	•••	0.050*	0.082	0.000*		
Total N	mg/l		-	0.342*	-		
Total coliforms	No./100 ml	-	267	317	604		
Zinc	A48/1	-	-	17*	-		

TABLE 2

SURFACE WATER QUALITY SUMMARY
SPOKANE RIVER BELOW LONG LAKE (RM 33.3)

Parameter	Units	Jan-Mar	MEAN VALUES Apr-June	July-Sept	Oct-Dec
Temperature	°C	3.7	11.1	18.2	8.3
Dissolved oxygen	mg/l	12.9	12.3	5.8	7.7
B.O.D.	mg/1	-	-	1.4*	-
Total phosphorus -P	mg/l	0.100	0.083	0.073	0.059
Ammonia -N	mg/1	0.183	0.082	0.124	0.249
Total N	mg/l	0.656	0.416	0.765	0.861
Total coliforms	No./100 ml	418	831	954	488
Zinc	мg/1	243	209	128	70

^{*}Less than 5 data points.

TABLE 3
SURFACE WATER QUALITY SUMMARY
LONG LAKE (RM 37)

SURFACE LAYER (1.0 M DEPTH)

D	Time de m	Tom Vom	Apr-June	July-Sept	Oct-Dec
Parameter	Units	Jan-Mar	Apr-June	July-Sept	OCL-Dec
Temperature	°C	-	17.5	21.2	13.2
Dissolved oxygen	mg/l	-	11.2	10.7	9.4
B.O.D.	mg/l	-	-	1.2*	-
Total phosphorus -P	mg/l	-	-	0.046	_
Ammonia -N	mg/1	_	•	0.019*	-
Total N	mg/l	-	-	0.263*	-
Total coliforms	No./100 ml		-	385	-
Zinc	M8/1	-	-	20*	-

MIDDLE LAYER (15.0 M DEPTH)

Parameter	<u>Units</u>	Jan-Mar	MEAN VALUES Apr-June	July-Sept	Oct-Dec
Temperature	°C		14.6	16.8	6.5
Dissolved oxygen	mg/l	-	12.2	3.0	4.8
B.O.D.	mg/1	-	-	0.5*	-
Total phosphorus -P	mg/l	-	-	0.097	-
Ammonia -N	mg/l		_	0.116*	•••
Total N	mg/1	_		0.28*	-
Total coliforms	No./100 ml	_	-	600*	-
Zinc	Mg/1	-	-	-	-

BOTTOM LAYER (24.0 M DEPTH)

Parameter	Units	Jan-Mar	MEAN VALUES Apr-June	July-Sept	Oct-Dec
Temperature	°c	-	13.2	14.2	11.6
Dissolved oxygen	m^/1	-	4.1	`.2	4.4
B.O.D.	mg/l	_	-	*1.5	-
Total phosphorus -P	mg/1	-		0.378*	-
Ammonia -N	mg/1	-	-	1.130*	-
Total N	mg/1		-	1.30*	-
Total coliforms	Ko./100 ml	••	-	-	-
Zinc	M8/1	**	-	-	-

^{*}Less than 5 data points.

TABLE 4

SURFACE WATER QUALITY SUMMARY
SPOKANE RIVER AT BOWL & PITCHER (RM 66.2)

Parameter	Units	Jan-Mar	MEAN VALUES Apr-June	July-Sept	Oct-Dec
Temperature	°C	4.9	13.8	15.1*	6.9
Dissolved oxygen	mg/1	12.5	10.6	9.9*	11.5
B.O.D.	mg/l	2.3*	0.6*	3.8*	2.6
Total phosphorus -P	mg/l	0.080*	0.027*	0.198*	0.168
Ammonia -N	mg/l	0.230*	0.028*	0.180*	0.447
Total N	mg/1	1.336*	0.195*	-	0.964
Total coliforms	No./100 ml	-	2343*	20*	-
Zinc	M8/1	235* ·	240*	127*	172

TABLE 5

SURFACE WATER QUALITY SUMMARY
SPOKANE RIVER AT FT. WRIGHT BRIDGE (RM 69.8)

Parameter	<u>Units</u>	Jan-Mar	MEAN VALUES Apr-June	July-Sept	Oct-Dec
Temperature	°C	4.2	12.3	16.7	6.7
Dissolved oxygen	mg/l	12.5	11.4	9.6	11.7
B.O.D.	mg/l	1.3*	0.4*	1.6*	1.1
Total phosphorus -P	mg/1	0.079	0.043	0.028	0.036
Ammonia -N	mg/1	0.018	0.009	0.017	0.059
Total N	mg/1	1.314*	0.310	-	0.527
Total coliforms	No./100 m1	***	1644*	1050*	-
Zinc	Mg/1	213*	190	85*	139

*Less than 5 data points.

TABLE 6

SURFACE WATER QUALITY SUMMARY
SPOKANE RIVER ABOVE HANGMAN CREEK (RM 72.9)

			MEAN VALUES		
Parameter	<u>Units</u>	Jan-Mar	Apr-June	July-Sept	Oct-Dec
Temperature	°C	4.2	13.2*	14.2	6.8
Dissolved oxygen	mg/1 ·	13.2	11.7*	9.7	11.4
B.O.D.	mg/l	0.6*	-	1.0	1.2
Total phosphorus -P	mg/1	0.020*	-	0.017	0.026
Ammonia -N	mg/1	0.050*	-	0.044*	0.073
Total N	mg/1	0.335*	-	0.150*	0.449
Total coliforms	No./100 ml		-	1068	-
Zine	ug/1	285*	· -	78*	174

TABLE 7
SURFACE WATER QUALITY SUMMARY
STATELINE RM 96.5

Parameter	Units	Jan-Mar	MEAN VALUES Apr-June	July-Sept	Oct-Dec
Temperature	°C	4.2	9.8	19.4	8.5
Dissolved oxygen	mg/1	12.6	11.1	9.0	10.2
B.O.D.	mg/l	1.4	3.3	1.3	1.0
Total phosphorus -P	mg/l	0.013	0.011	0.008	0.010
Ammonia -N	mg/1	0.066	0.108	0.088	0.029
Total N	mg/1	0.279	0.143	0.326	0.192
Total coliforms	No./100 ml	868	177	2002	986
Zinc	μg/1	241	248	168	261

^{*}Less than 5 data points.

TABLE 8
SURFACE WATER QUALITY SUMMARY
HANGMAN CREEK AT MOUTH

Parameter	Units	Jan-Mar	MEAN VALUES Apr-June	July-Sept	Oct-Dec
Temperature	°C	3.6	17.1	15.2	5.6
Dissolved oxygen	mg/l	12.8	9.7	8.6	12.6
B.O.D.	mg/l	-	-	11.8*	
Total phosphorus -P	mg/1	0.395*		0.085*	0.258
Ammonia -N	mg/l	0.642	0.180*	0.104	0.205
Total N	mg/l	2.61	2.36*	1.96	1.38
Total coliforms	No./100 ml	-	-	323*	-
Zinc	$\mu g/1$	42*	27*	7	9*

^{*}Less than 5 data points.

TABLE 9

SURFACE WATER QUALITY SUMMARY
LITTLE SPOKANE R. NEAR MOUTH (RM 1.1)

			MEAN VALUES		
Parameter	Units	Jan-Mar	Apr-June	July-Sept	Oct-Dec
Temperature	°C	5.2	12.4	13.5	7.0
Dissolved oxygen	mg/1	10.5	8.9	8.8	10.5
B.O.D.	mg/l	1.1*	0.8*	0.5*	-
Total phosphorus -P	mg/1	0.086	0.084	0.039	0.030
Ammonia -N	mg/1	0.077	0.042	0.064	0.042
Total N	mg/l	1.300	1.105	1.530	1.206
Total coliforms	No./100 ml	1802	1012	1776	880*
Zinc	g/l	42	43*	4	15

TABLE 10

SURFACE WATER QUALITY SUMMARY
LITTLE SPOKANE R. AT DARTFORD (RM 10.6)

Dawanahaw	Unita	Jan-Mar	MEAN VALUES	Iulu-Cont	Oot-Boo
Parameter	Units	Jan-Mar	Apr-June	July-Sept	Oct-Dec
Temperature	° C	5.1	15.9	15.8	5.7
Dissolved oxygen	mg/1	11.6	9.0	10.0	-
B.O.D.	mg/l	1.4*	0.7*	0.6*	-
Total phosphorus -P	mg/l	0.038*	0.062	0.103	-
Ammonia -N	mg/1	0.000*	0.014	0.000*	-
Total N	mg/l	••	0.69*	-	-
Total coliforms	No./100 ml	5650*	2044	3867	-
Zinc	g/1	44*	**	18*	28*

^{*} Less than 5 data points.

^{**}Only one observation available in the Apr-June season at 850 mg/1. There is no explanation for this high value.

TABLE 11
SURFACE WATER QUALITY SUMMARY

LIBERTY LAKE

Parameter	Units	Depth-Ft.	March	May	July	Sept
Temperature	*c *c *c	3 20 21	~~ ~~	19.0 - 14.0	24.5 _ 19.0	14.5 14.5
Total phosphorus -P	mg/1 mg/1 mg/1 mg/1	3 13 20 21	0.05 -	0.01 - 0.02	0.01 - 0.03	0.03
Ammonia -N	mg/l mg/l mg/l mg/l	3 13 20 21	0.12	0.02 - 0.07	0.01 - 0.21	0.12 0.13

TABLE 12
SURFACE WATER QUALITY SUMMARY

NEWMAN LAKE

Parameter	Units	Depth-Ft.	March	May	<u>July</u>	Sept	<u>Oct</u>
Temperature	°C	3	-	18.0	24.0	_	_
11	°C	0-15	_		27.0	-	9.1
**	°Č	26	_	_	120	_	7. T
11	°Č	27		11.0	13.0	-	-
11	°č	15-30	-	11.0	-	-	9.2
Dissolved oxygen	mg/1	0-15	_	_		_	9.6
17	mg/l	15-30	-	-	•	-	9.4
Total phosphorus -P	mg/l	3		0.01	0.01	0.02	_
37	mg/l	15	0.05	-	40	-	_
**	mg/1	26	-	•	0.01	0.01	_
"	mg/1	27	-	0.02	-	-	-
Ammonia -N	mg/1	3	-	0.07	0.23	0.12	-
**	mg/l	15	0.02	-	-	_	
11	mg/1	26	-	-	0.02	0.16	-
11	mg/1	27	-	0.03	-	-	-

THE PARTY OF THE P

44,

404-22

404-23

`:}

404-24

404-25

LIST OF REFERENCES

- Bishop, Robert A., and Lee, Ronald A., 1972. Spokane River Cooperative Water Quality Study, Washington State Department of Ecology, K-T #108.
- Burkhalter, Richard A., Cunningham, Richard K., and Tracy, Harry B.,
 1970. A Report on the Water Quality of the Little Spokane
 River, Washington State Water Pollution Control Commission,
 K-T #102.
- Condit, Richard J., 1972. "Phosphorus and Algal Growth in the Spokane River", Northwest Science, Vol. 46, No. 3, K-T #99.
- Funk, William H., Filby, R. H., and Robe, Fred W., 1973. The Biological Impact of Combined Metallic and Organic Pollution of Coeur D'alene Lak Spokane River Drainage System, K-T #133.
- Lee, Ronald A., 1969. Limnological Studies of Selected Washington

 State Lakes, Washington State Water Pollution Control Commission, K-T #90.
- Soltero, Raymond A., Gasparino, Anthony F., and Graham, William C., 1973.

 An Investigation of the Cause and Effect of Eutrophication in

 Long Lake, Washington, Eastern Washington State University,

 K-T #87.
- Soltero, Raymond A., Gasparino, Anthony F., and Graham, William C. 1974.

 Further Investigations as to the Cause and Effect of Entrophication in Long Lake Washington. Eastern Washington State University.
- U.S. Geological Survey, 1971. Water Resources Data for Washington,
 Part 2. Water Quality Records, K-T #236.1.
- U.S. Geological Survey, 1972. Water Resources Data for Washington,
 Part 2. Water Quality Records, K-T #237.1.

		i		:					į	:		;	İ	:	;		ì			·	i				,				:							
				20, M.		- 79	19	- 12)	1) .			:	,			:		: :		: :	:	1			:	•				
		(PM 27.0)		Toj. Codi		148	230:	11		3	- -	,	- - (+		730	380	360	320	2500		210	; ;	ï	94	370		20		\$00.		200	0.6	202	
	1 1	Taris Dam		Top. N		0.4/3	0.315	0.277)							;	.;		.!		:			:	.							~	
~ 1	407	7020		NHS-N		17.	0.123	0.131		000	007	0000	0.0.0	0000	0.000	-			- 4			:					:	-		,	ì	:		·;	1	. : :
N.Y	- 20 mg	BATA ROLDIA	ETERS	Tar. Par-P		0.016	0.037	0.077		0.020	J -	1 1					01.0	0.05	0.0	10.0		20.0	0.01	1	1) /	0,17	200	20:0	\$ 6	3 6	, e	100	7 2 3 1	1	: !
G COMPANY		SPORME AN	1 7				6,3	1.2				f }					١	. : I''	1		3	1	ן ן) ! !		١ .	1:	+ 1]	.)	:) .		
ENGINEERING CO	OCC PER	WATER B		D.0.		ارا ح	F.9	9	7 17	16.0	1			H-1) -	17.3	14.6	14:0	11.7	00/	9.2	0.0	9,00	9.0	6.3	7,3	2	2.0	2.3	ין ני ין ני	7 7	5 0	7:5	7 04	3')	
# }	. SUBJECT	SURFACE		TEMP.		12.1	16.6	76.5	0	7		; } • }	,	+			200	10.0	15.0	16.7	16.7	23.0	4.4		7777	5.3	20.5	20.7	7.61	7		17.2		 	: 1	•
TUDO	PATE			Mostra		Sept	3	*	7.44	T will	2 7	1 UCY	Coor	267.6			47.	778	7000	* :		2 46.4	£	=	¥ .	:	90.		! .		3	: :	=	-	*	ı
9	OND IV			Source	i	K-7	Sept. 1915	7.K MX	Trans.	120016	0/2/	0.12 July		,			Distor	1470-71	RM220						,											

					:	·			: .	١.			:							
•	22.0)		20, Mg.				,						 							
	AM (KM 220)	•	Toj. Coti	2 200	909	وچ	160	1	-	1	-								·. :	
***********	FAUS DAM		Tot. N weld				:				:. !	-			:	:				:
2 0 5	W LITTE		NHS-N					- -		.			 	·		• • • • • • • • • • • • • • • • • • • •	t :::::			
EET 100	8	erers	Ta. Pap	50:05	0.03	0.03	200	10.0					 				-	:		
COMPA Z (ca?)	SPOKAME RIVER	£	80D	1	f	1	1 1	-							-				•	
≣ 8	LOCATION : ST		D.0.	5.5	5.00	7/2	6.7	2-1					 							
DOR ENG	20KFACE 1		TEMP.	13.4	12.9,	10.4		2		-			 	-		•	;· ;			
TUD PATE 12/674			MONTH	orr		=	200				•		, ;		:		٠			
T DP			Source	BISHOP	112-271	RM 220	COWTD.													

>	
-	
45,	
⋖	
•	
-	
<	
0	
ັບ	
U	
Ų	
Z	
=	
-	
4	
W	
=	
_	
-	
U	
Z	
-	
14	
_	
O	
=	
Þ	
-	•

OND. BY DATE 12/5/74 SURFACE WATER QUALITY DATA DATA

LOCATION: SPOKANE RIVER BELDW LONG LAK

		,	- OCH 104 .	PARAM	erers	NOT MOTO	LONG LAKE	(KM 35.5	3)
DATA	s =	TEMP.	D.0.	gog	Tar. Pap	NH2-N	Tot. N	Tar. Cott	20.0ss
Source	MONTH	Ç	MA16	mg/2	216	776-	Mall		1157
			1						
K-1	Sept	17.2	4.5	1.3	0.088	0,135	0.420	h61	26
Sept. 1973		9.9/	4.4	1.5	0.092	0.156	0.368	470	77
KM 33,3	-	9.9/	5.0	\. \.	0.065	990.0	0.253	: 1	0
	;					•	ļ		
0565	NAN.	2.4	6.0	1	0.080	0.25		20	04)
261-161	11 29	-	[3.1	1	0.13	20	27.0	400	230
RM 33.3	=	0 M	14.2	1	÷1.0	0.54	1.85	200	250
nid in	MAK	4.4	16.9	1	0.00	0.11	0.87	0061	380
	= ;	4.0	16.3	1.	0.080	91.0	29.0	909	420
	APA	5.4	14.5	1	22.0	60.0	0.66	1100	330
		7.2	1.6.1	1.	0.10	6.43	0.47	320	260
	MAY	50	3,	1	0 050	0.07	0.46	400	01/
		2.// 	12.4	1	0.050	0.04	0.3	0091	170
	Lune	7.7.	12.4	1	0.050	9.0	0.62	1200	130
	= ; ;	0.9/	9.00	l	0,0.0	90.0	9,50	1	140
	7307		80		0.030	SFO	9.79	30	120
	=	16.5	7.4	•	0.030	0.17	10.1	32	3
	Ave	20.2	7.7	1	0.030	6.10	1.13	١	28
	= ,	18-7	9.0	1	0.00	0.27	5/1	350	8
	3	17.5	1	,	1	0.16	0.46	1	97
	~	3.3	4.6	1	0.070	0.15	91.1	2200	20
	OCT	13.7	4.9	j	0.060	0.03	0.50	800	30
	₹	7.21	2.9	1	0.000	0.37	1	90	70
	202	2.00	2.5	1	0.00	0.27	82.0	001	R
	=	6.7	0	ı	0.00	0.33	1.30	20	1
	770	2.9	1	J	0.080	0.27	7.07	20	150
, evendy									
			1			;			

	16	TUDOR ENGINEERING COMPANY	NINHENIC	C COMPA					
m BP	OUTE 12/5/74		- SUBJECT APPENDIX II (Cait)	II ((m))	SHEET NO.	2 00 4			
CHKD. EY	DATE	SIRFACE	WATER Q	GUALITY DATA	ı	101			
		17	• •	POKANE	River Be	BELOW LONG	LONG LAKE (1	(KM 33.3)	
				PARAM					
DATA		TEMP.	0.0	908		NH2-N	Tot. N	Toj. Coti	20,
Source	MONTH	Ų	W818	malle	2016	126	mall	Ma hop mi	. 45
1X 6S	247	2.3	0.01	l	0.090	0.16	69.0	26	١.
1970-197	=	7.5	0.0	١	0.050	0.0	77.0	1	707
RM 33.3	*	3.4		1	01:0	1	0.33	000	220
1	Feb.	3.0	14.1	,	0.060	0.00	0.23	200	904
	*	3,3	12.9	1	0.030	6.04	0.33	320	400
	MAK	3	12.7	1	0.130	0.23	0.30	1	33
	APK	6.3	7.	1	0110	0.30	1.05	1400	270
;	1	6.6	12-1	1	001.0	51.0	0.30	300	210
	MAY	8.0	12.9		091.0	0.00	12.0	600	280
	:	1.4	5: 3)	071.0	80 8	D.18	0051	707
	June .	12.9	(3.3	; 1 :	0.030	.0.02	0.07	005	267
:	=	7. 5.	12.6	١	0.040	0.02	0.20	250	Ĭ
	Jac.	16.4	٠.٠	١.	0.030	0.16	0.34	909	130
		79.67	8-2	1	0.040	0.0	0.33	00/	20
	700	20.2	1.9	١.	0.040	90.0	0.75	800	100
	=	20.0	3.1	1	0.070	0.05	0.86	500	80
	Sept	7.5	3.7	1	001-0	0.21	1.39	1200	40
	, \$	(6.7	5.9	1	0.070	10.0	0.53	7500	1
	№ .	6.7	Ξ	۱ .	0.030	12.0	.0.53	20.	0
	Dec.	3.7	9.2)	,	ı	1	22	20
				:					,
			•	ı			,	,	
			:	!		:	!	,	
		,							:

TUDOR ENGINEERING COMPANY

DATE SURFACE WATCH GUALITY DATA DATA EY BP CHKO. BY

SURFACE WATER

LOCATION: SPOKANE RIVER BELOW LONG LAKE (RM 32.3)

	****								-			_							Ì									
	₹, \XS.	Hear		1	1	1	ı	I	1.	1	1	(1	1,	1	1	1	1	1	1	1	1	1		1	1	1	
	Toj. Coli	No hoom!	126	089	64	881	3020	7	144	1	35	1	2900).	1	08	2300	1	٥	02 h	000/	2000	3400	1200	220	٥	0/	:
	Toj. N	Mg ld	ì		ı	ł	l	i					,							 							1	!
	NH2-N	17 Cm		1	1	1	1		(:	1		-	1	1		1 :	(,	1		1.	(;	1	1	1	1	1	: 4	
erers	Tar. Poy-P	316	80.0	20.0	0.08	6.03	١	0.S	51.0	1	1	1.	01.0	0.36	0.04	70.0	80.0	0.05	200	0.02	1	١	6.0	0.03	20.0	50.0	0.05	
PARAM	ļ	A) 4m	1:	1	1	1	j	5	ı	J.	1	j ·	,	J		1	j	1)	J	1)	1:)		J	. 1	
	D.0.	118w	12.8	14.2	9711	10.7	9.2	80 0	85	7.4	7.2	6.2	2-8	5.5	55	æ, <u>↑</u>	3.0	3,5	4.5	2.2	2,9	5.4	6.3	5.7	7.3	7.8	٠,	:
	TEMP.	٠,	7.3	9.01	15.0	16.7	17.2	22.9	7.6	0.0	71.17	18.3	20.0	20.0	14.4	19.5	7-11	١	7.8	15.5	7. D	1	/3.0	4.01	13.7	6.9	5,3	
		MONTH	APK	MAY	JUNE	;	2	3004	=	ī	;	:	900	-	:	æ	ides	7	;	=	-		Oct	4	*	M O10	200	
	DATA	SOURCE	BASHOP	1797	RM 33.3																							

فالمقاطعين المراجع والإدباب ومجدوده والمقطولان ومايد المساهد المقاطعة والمقاطعة والماديد ومدرد ومدرد والمالية والمقاطعة

	(RM 33.3)		3 20° E	11 400 11		150	2/	205	•			· - - - -		9/ .	20	99	3 8	2			
			Toj. Coli	- wee from								0/	30	:	-	:					
	6 LAKE		Ta. N	1 mg/k		į			i		,		,	.;		1.034		:		:	-
70 to 4	Been tons		NH2-N			ļ ,			· ·		· · ·					0,240		:	,		
NY SHEET NO.	KIDER B	erers	Tor. POy-P NHS-N	1					l			0.015		-!		. :				fr	
NG COMPANY DIX II (Co. 4) SHEET IN NG NO.	POKANE	PARAMETERS	908	my 14	• • • •			•				:		!	:	:			•		
APPEND	• •		D.0.	2180	•						!	:			:	•		•			
TUE OR ENGINEERING COMPANY ONTE 1215/14 SURECT APPENDIX II (Co. 4) SHET NO. 4 ONTE	L DCATION		TEMP.)		4.8		5.4	7.5	9.2	8-6	18.2		13.2	10.5	8.7	4.7	3.7			
TU				MONTH	SAM.	82	2	MAC	2	¥	2	Sept.	*	oct	=	88	Dec	=			_
M DP OND W			DATA	Source	STORET	(1771-1773															

m BP	2	174 SUBJECT	16/74 SUBSECT APPENDIX THE	G COMP	ANY PRETHO	2			
CHED. PT	DATE	SURFACE WATCH	-	GUNLITY DA	DA74 08 NO.	401			1
		7	• •	DNG LAKE	(Depth	00-100	\(\hat{\sigma}\)		
				PARAMETERS	ereRS	1			
DATA	7	TEMP.	0.0	908	Tar. PO4-P	<	Tot. N	Toj. Ceti	20
SOURCE	E SOE	<u>.</u>		77 Em	376	m311	mall	No.fromi	200
- - - -	Sept	17.5	2	1.3	240.0	0.020	60.303	822	.1
7(6)	:	17.3	8.1	9.0	160.0	10.0	0.245	190	
	=	170	200	1.2	0.048	0.02	0,240	81)	1
(-4			.,				
RISHOF	, Sut.	.25.6	501		0.0	,			
	=	240	11.9		0.03				1
	5	240	11-2	•	0.03	:			
-	>	23.20	771		8				ı
	,,	20.3	و.	,	0		;	1	
	A06.	24.0	94/		20-0				
	-	22.5	8-11		200	-			
	=	26.0	12-2		20.00	ŀ	ļ		
ı	=	24.5	8.6	,	50.0		:	,	
	-	26.0	8.01		90.0				
	2	24.2	10.4		,			,	
	-	27.0	11.2			•			
		213	۵.						
	=	26.0	.0 V						
	Ξ.	230	7.6						
	: (21.0	ا جو		•				
	5	20.0	2.0	:	.0.02		•	008 8.	;
		5 %	50		0.00		,	460	٠
	9	2 4	2,7		100				
•		3 4	0 1	,	50.0	!		٠	
	÷ ;	2 0		-	50-0				
		1.0	· ·		700				
		2%			\$ 6				
- 	,	5.61			75.0				
	z	0.71	2,0,		200	!	ŀ	,	; ,
	c	0.81	0.01						
	t		80)			,			
	,	(6-0	8.0				•••		

SEPT 18.5 7.0 80D Tar. Pay-P NHS-N Tor. N Tor. Call SEPT 18.5 7.6 7.7 0.051 40 2 2 2 6 11.6 10.5 11.7 0.051 40 2 2 2 6 11.7 0.051 11.5 11.7 0.051 11.5 11.7 11.7 11.7 11.7 11.7 11.7 11		SOS	CFACE	• •	Zone LAK	AKE COOM	0.0 - 1.0 m	3		
SEPT 15.5 7.8 SEPT 18.0 8.3 1.7 0.051 JUNE 17.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	DATA	# 1- m. 1	TEMP.	D.0.	800	4	NHS-N	Tot. N matt	1 42	20,766
Sept 18.0 (3 1.7 0.051 52.04 73.05 73.05 73.05 10.80 0.05 13.20 9.40	Віѕнор	Sept	13.5.	7.8						! 4
Aut. 21-6.	stoket 1972	. Logs	18.0	~ =	[7]	750.0			40	20
	1971¢72	والمراجع والمراجع والمراجع والمراجع والمراجع	2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12						
					,		: :			

,		20, bss.	1180		1		:	,	,		* .			•	-		,		:				:	í					,	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TOJ. COL!	No from!	1:1	.				i							,		,	710	570		,		1	;	•				
	(W	Toj. N	mall	000	0.40	i S	1			,				,		-						·	;		*****	- L. J. Juli dace	· ·			•
you s	5	NH3-N	Mem	0.101	20.0	2 3			,				•	,	-					;	:	•	;	:			ļ !			
7 F	Le (Diprh	Tar. Poy-P	M.412	0.066	20.0	20.0	0.08	0.0	0.12	0.0	0-15	0.13						(6	6-0	= 0	2.5	- - - -							
NG COMPA	LONG LAKE	BOD Tar. Po	my 12	0°	, a	ø S	1																٠				i i			
APPENDIX WATER OF	7 : NOLLYON : Y	D.0.	118w	4,4	, v	ý ,	7.5	इ. इ	20	4.4	Q.3	9.7	2.0	م	7	27	2	<u>.</u>	7.0	w N	0.0	o !	0 ~ 0 ~	2 o 2 o 5 o 5 o 5 o 5	4.2	, sc , sc	2.6	25	3	_
TUDOR ENGINEERING COMPANY [2/6/14] Subject APPEADLY III (Cont.) Southface water guality data	7	TEMP.	Ç	9.9/	- - - - -	-	0.8	16.7	(6.0	18.5	20.02	(9.0	0,7°	18.5	16-7	20.0	200	9.	18.5	7.5	2.	7 :	ن مر	20.02	ころで	15.0	0.8)	15.5	2	•
T U DATE /2/6			MONTH	Sept	- =		700	=	11	Ave	*	=	e	=		=	=	æ	Sept	=	= :			. =	-	=	=	=		•
ET BP CHKD. BY		DATA	SOURCE	K-T	2		BiSHOP	197/	,09-06																					_

B P	-	I UDOK ENGINEEKING TOMPAN	DESCHON	G COMP	UR ENGINEERING COMPANY	4	• 000 cmp (•
CHO IV	PATE				98 80	104			
		SURFACE	SURFACE WATER GUALITY DATA	WALITY DA	17.4				
		7	CATION: L	ONG LAKE	LOCATION: LONG LAKE (Depth 15 m-Coit)	m-Coit)			
				PARAMETERS	ereks				
DATA		TEMP.	D.0.	Bob	Tor. Pay-P NHS-N	NH2-N	75r. N	T. C.	20. K
SOURCE	MONTH	٥,	M.8.18	male	m212	778	11800	No form	400
STORET	SEPT	16.0	0.1						
1972		146 170	6.5						
.09-04		16.327	m			:	:		;
		17017	(E)		1	:	; !	:	1
	,	155/	Q,	: . : . :	:		:		
	00	/2.2		-					
il co sale	1				-				i
					-				-
						:			-

* Weighting factors to reflect number of observations

8	1000 PM 12/6/14	TUDOR ENC	OR ENGINEERING COMPANY STREET APPENDIX TO (Con't) BESTER	C COMPA		. 8 	**** *** *** ** *		,	
CHKD. BY	DATE			,	, ,	7				
		7 Tables	7 : NOILEADO 7	LONG CA	LAKE (DEPTH	26 m				
				PARAM	erers					
DATA	Property	TEMP.	D.0.	BOD Tar. PC	Tar. Pay-P	NH2-N	Toj. N	Toj. Coli	2 n, bss.	
SOURCE	FLACE	Ç	M316	male	mg/2	m21.	mg L	1 400 / ON	Man	
ドイ	Sept.	(3.2	0.0	67	0.535	1.227	1.46	1	i	
1973		13.2	0.0	30	0.477	7/12	1.27		1	
فيقونا أوالا مس	=	13.1	0.0	35	0360	1.050	21-1	l	ŧ	
0 12114		4	77.4	•	٠	l				
102014	200	2	1.5		_	.		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	;	;
,5h-5c	AvG	0.9/	9.	,	; ;			,		
17.	<i>-</i> -	0.3)	7		-	 				
	Sept	0.41	5.0	1		l - -	,			
	•					f	,			
STORPT	56.07	15.2	0.0	-	0.05					,
1972						•	,	,		
75-95'					,	•				
	-	-			:	:	:	:		
S W	0350	(3.2	77	-						•
25-26	144	15.0G			,					
	Aug	(D) -1	9,	,	:	•			Marror I	
	ŝ	13.90	00			•				
	Oct	11.6	4.4							i ; I
_						:	•			
		- Our Laboration								
						•				

WT. FACTORS TO REFLECT NUMBER OF DISCRIPTIONS

		(RM4.2)	_	Toy. Cati	Mer toom! west	1	0.20 2343 340				8//:			- Park to a second seco			1.336	330			275						781	20	The state of the s	1.067	1.277	0)0.7	1,278	0,604	
7 00 /	101	AT DOUL & PITCHER		NH2-R	FILE	0.025	0.039	•••	-	1 0.02	61.0		-				0.230	1	- +		-	: +					:	<u>-</u>		0.470	099.0	0.430	009.0	0.30	
HEET NO.		RIVER AT DOW		4:	756	0.0/3	P.014			0.032	3/10			50:0	SOLO	0.32	011.0							:				0.200	0.110	0.320	0.22.0	0.130	0.160	0.084	
CON	12.22	SPOKAME RIV	1	800	W.S.C.	0.0	و.			<u> </u>							2.4	2,2		• • • • • • • • • • • • • • • • • • • •						1	!	4.8	2.9	3.7	3,5	1.7	نى خ	7,7	
SR ENGINEERING	WATCK S	3	-	0.0	12.16	7.4	200			-							 12.6	12.8	125		12.8	12.0	12.4		1771		0	9.9	6.9	10.2	7:11	10.3	.≡.3	13,2	•
TUDOR ENG	SURFACE V	- u I		TEMP.		14.5	14.1									1	3.6	200	5.00	2.0	4.0	5.6	5.4	000	17.4	. 0		13.7	13.6	12.0	8.0	0.		2.0	
TUDO	DATE				MONTH	7.7	 		-	JUNE	406		i ī	MAK.	MAY	75.60	JAN	Feb	= '	7	MAR	2	~	Ark		2 =	Juck	Sept	=======================================	OCT	·	NOO.	~	<u>.</u> ک	
90					·L		June 177	RM . 46.2		CONDIT	!	7		Funk	1172		STORET	1972-73	RM 46.2				uptov		;	í						;			

TUDOR ENGINEERING COMPANY

SURFACE WATER QUALITY DATA 108 NO. 404 SY BP DATE 12/6/14 SUBJECT APPEXALK TO

			י באוומא .	PARAMETERS	RS	T. WRIGHT BRIDGE	- {	(RM 69.8)		
DATA		TER	0.0	ଦିତ୍ସ	Ta. PO4-P	5	Tot. N	Toj. Co11	20.35	
Sovece	TLACE	,,	17. FW	mg 12	m=1.6	Men	7784		Mell	
K-T	JUNE	74.5	9.7	5.0	0.013	0.012	0.163	T T		
744		14.3	10.1	**	60.00	0.019	0.138	1644	190	
KM: (69. 8)		!	7-7			-	:-			
	,	-	!		- - 	-		,	1	
CONDIT	255		,	-	0.025	0.00	!	, ,	;	
261	ک دو			-	90.0	0.000			5.3	1
RM (69.9)	;				-	-	· ·	,		
									•	
FUNK.	AAR.				0.050	 - -	,			
1972	3		-	-	0.050					i
	2 2	-			0500			;	1	
	-	-			0.050					
	z				0.050					
	=	-			250.0					
	MAY			: : !	0.010		ï		1	
			:	:	0.00	-	· !			
	=			· ·	0.010		1			
	ı	;	!		í i					1
2027680	1		7.07			0.0	25.0		350	
(SAFUE)	•	0.57	9.0		-	O.85	2550		00	
7417	1	3.3	(0.5			0.0	0.240	1	160	
K# 67.8	=	3-4/	0.0		,	10.0	0.466		09/	ĺ
STORPT	1		5				1			
1970-1973	£ =	, C	1 5.0	<u> </u>	6.020	00.0	1: 514			
0.75	: ;	6.3			0.100	0.040				
orte my	=	۲: ₋	12.5		0 000	0,000				t
	=	٦.۴	(2,9		6100			,		
	FeB.	3.7	12.5	,	0.070	0.010		:	;	
		2.6	12.4		0.050	0/0.0	:			
	E	4.7	0.5 د	:	!	:		:	:	
	c	٠, ر ا	0.71							
			!	:	;	-tiffichers		~~~	dinden,	
- The state of the			•	•	•	•			•	

			24, MG.	will	260	2	·							-	•			. !	<i>811</i>	- !	.							8/	00/	-	170	125	:	2 2 2 2	
	(RM 49.8)		Tot. Coll.	No.foom		-	- ;			.,				-			.					.	# * * * * * * * * * * * * * * * * * * *	87/	82									:	
,, , , , , , , , , , , , , , ,	DRIBGE		Toj. N	71 Pm			:			-				-									:			***************************************		0.584	9 19 0	· · · · · · · · · · · · · · · · · · ·	26.935	0.24		0.121	0 1
2 0 E	M. WRIGHT		NH2-N	matt	0.000			-	0000	0.010			1000	0.000		0.000	0.000		0.000	0.000	-	0.000	0.000	050.0	0.080	+-		0.030	0.160	- !	0,030	0.020	0.040	0 800	0750
HEET NO.	P RIVER AT T	S	4	775	0.300				0.140	02/120			osa o	0,030	0000	0.00	-	-	0.030	0.020		0.020	0.00.0	0.0.0	0.620	0.020	0.00	0.038	-	-	0.000	10.05	0.036	3 0.0	3.
00 y	SPOKANE R	£		math	-				-						-				. !					2.0	7:7			1.5	1.1	- i	3	1.0			
ENGINEERING O	LOCATION: SE		D.0.	m. 1/2	12.2	12.8	12.5	12.3	:12.7:	6.2	12.5	134	. 12.3	11.8	13.0	12.9	10.4	2.07	1.01	ر م م	1.	8	00	0	70.5	10.5	9.0	8.6	<u>-</u>		. 2	5.11	s: ≃:	0, 5	12.6
OR ENG	SURFACE V		TEMP.	ų	3.0	4:1.	5:0	5.2	5.3	4.9	90	9.8	Ö.Ö	96	0 4	13.1	17.0	0.00	165	22.0	18.4	20.9	80	9-5/	14.0	13.9	7.0	95	12.0	7.5	-31	7.5		r ^	5.4
NT.	PAR S		I	MONTH	MAR	=	=	z ·	APK	= 1		e :	MAY	=	JUNE	=	11	*	Jucy	:	=	A UG.	;	Sept	=	· -	= :	270	=	. =	Nog.	1	=	<u>ک</u> ن	
P.P.	¥0.4		DATA	SOURCE	STORET	1970-73	RM 69.3	(Co. 1. W.)				,										,		,	,										

	-			•	-					-	_										1								 	
~		Zn, bss.	Man	99	99	69		Takes	270			300							120				70	120	176	225	280			
(RM 72.9)		Toj. Coli	No hoom!	811	230					,	,								•	3300	1300	390								
		Tot. N	mg Ll	0.148	0.128	0 173		0 423	0.246		,						-			ļ			0.493	0.675	0.491	0.564	0.345	0.215		
MODUL HANGARN CR.		NH2-A	Mem	0.043	0.036	0.052		0.060	0.04p	•	•	•		•		•		1					0.020	0.22.0	0.040	0.050	0.00	0.020		
	eters	Tar. PO4-P	1180	9000	0.014	0.020	(0.029	0/0.0		·	1			,					0.020	0.020	0.020	0.044	,	8/0-0	0.030	D.017	0.020		
LOCATION: SPOKANE RIVER	PARAMETERS	800	mg 12	00	0.5	9.6	,	0.6		·	47-11-	and the latest terminal to the latest terminal t			***************************************	;		-		۲,	53		.و	الم	17	0.0	0-1	L-a		
S. WOLLADO		0.0	118W	م ه	9.5	8,2		7.	(3.3	13.4	(3.4	13.2	12-9	6-11	0. F	0.0	10.7		8-6	501	10.2	101	9.5	607	10.9	1-1	13.2	12.9		
7		TEMP.	S S	(3.9	13.1	2.8		3.6	1.7	4.2	6.6	4.0	Ŋ	م فو	00	17.0	18.4		(8.2	1.5.1	120	2741	125	0.3	7.8	5.6	1.8	5.4		
			MONTH	Sept.	K	=	Į.				-	MAR	:	APR	-	JUNE	=		Jucy	Sepr	:,	.	F 20	-	202	-	Dec	=		
		DATA	SOURCE	K-1	1473	KM 72.4		STOKET	27-27-61	RM. 754						-				-						- V-T-cal				

		3
	DATE 6-15-7. SUBJECT APPENDIX VIII SHEET NO.	ã
>	뿛	8
7	İ	
Z O	Ħ	
Ŭ	X	
ž	8	1
EER	396	ľ
Z	F	ľ
TUDOR ENGINEERING COMPANY	ECT.	
M C	3	
200	7	
1	57.5	
	XCTE .	MIE
	١	١

FEB 5.0 0.2 0.000 INON. 12.6 12.0 0.013 MAK. 4.0 12.6 1.4 0.006 MAK. 4.0 12.6 0.009 MAK. 4.0 12.6 1.4 0.006 MAK. 4.0 12.6 0.019 MAK. 4.0 12.6 0.019 MAK. 4.0 12.6 0.019 MAK. 4.0 12.0 0.013 MAK. 6.0 12.0 0.013		DATE 6-15	DATE 6-/3-7 SUBJECT			•	¥05	-			
New York Continue	CHICO. EV	DATE	ł	ı	UNLITY DA	- 208 #G-	101		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
Man TEMP D. D. Param streks Man Tem Tem D. D. Param streks Man Tem			17	• •	SPOKANE A. STATELINE	r (RM	96.5)				
New Temp D. D. Bod Tor. Phy-P NNS-N Tor. N. N Tor. Call New New Tor. Call New New Tor. Call New New Tor. Call New New New Tor. Call New New New New Tor. Call New Ne					PARAM	reRS			-		
Man	DATA		TEMP.	D. 0.	Bob	Tar. Pay-P	NH2-N	Tot. N	i	.20, bss.	
NO.	Source	MOSTH	y	PATE	1/2	- W.K	maple	mg ld		Mari	4 .
1.7 0.002 1430	FUNK	OCT.	,		9.0		0.002		09/1	200	
NOM		\$			7.	,	200.0		1430	200	
NOW 1.74 0.003 316.					0,1		0.000	•	83	2,60	
NOM	-	< ·	,					:	35	٠	
	-	ZZ.			1.4		0.003	·		290	;
New 12-6 12-0 0.006 0.007 0.006 0.007	!	: ::			7.1		0.00.0			280	
Net		37 .			0.5		0.000			280	
New Control	→	DEC.	;		4.0		00.00			270	
Tan. Done D. 2006 D. 280 D. 260 170											•
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	STORET	JAN			7.0	9000	0.080	0,260	071		
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	_	<i>z</i>				910.0			340		
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	· · · · · ·				:	200,		!			
4.0 12.6 1.4 0.006 0.040 0.194 200 0.003 0.090 0.237 250 0.0012 0.092 1/900 4.0 12.6 1.4 0.010 0.000 0.292 1/000 3.0 3.0 0.029 0.165 4/00 0.016 0.029 0.165 4/00 0.017 0.006 0.000 0.165 1/00 0.019 0.010 0.020 1100 0.010 0.010 0.020 1100 0.010 0.010 0.020 1100 0.010 0.010 0.020 1100 0.010 0.010 0.020 1100 0.010 0.010 0.020 1100 0.010 0.010 0.020 1100 0.010 0.020 0.020 1100 0.010 0.020 0.020 1100		FEB.	5.0		0.8	0.000	0.000	0.527	3500	25	
4.0 12.6 1.4 0.010 0.040 0.237 250 0.002 0.002 1/900 1/900 1/900 1/900 1/900 0.005 0.005 0.100 1/900 1		=			1.1	900.0	0.040	0.194	200	290	1
4.0 12.6 1.4 0.005 0.000 0.242 1600 1.4 0.010 0.000 0.165 400 0.024 1600 0.014 1600 0.014 1600 0.014 1600 0.014 1600 0.014 1600 0.014 1600 0.014 1600 0.014 1600 0.014 1600 0.015 0.200 1600 0.015 0.200 1600 0.015 0.200 1600 0.015 0.200 1600 0.015 0.200 1600 0.015 0.200 1600 0.015 0.200 1600 0.015 0.200 1600 0.015 0.200 1600 0.0000 0.0000 0.0000 0.0000 1600 0.0000 0.0000 0.0000 0.0000 0.0000 1600 0.0000 0.0	,	٤		;	75	0.013	060.0	0.237	250	300	
4.0 12.6 1.4 0.010 0.040 0.292 (600 1.4 0.010 0.050 0.165 400 0.029 0.165 400 0.029 0.165 120 0.029 0.192 120 0.099 0.000 0.000 0.000 0.192 120 0.000 0.000 0.205 1100 0.000 0.000 0.205 1100 0.000 0.000 0.205 1100 0.000 0.000 0.205 1100 0.000 0.205 1100 0.000 0.205 1100 0.000 0.200 1400 0.200 0.200 1400		3				0.00		:	(400		į
4.0 (2.6 1.4 0.010 0.040 0.292 (400 4.8 4.0 0.010 0.029 0.165 400 0.029 0.029 0.165 400 0.029 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.000 0.000 0.000 12.0 0.000 0.000 0.000 12.0 0.000 0.000 0.200 1100 0.000 10.000 0.000 10.000 0.000 10.000 0.000 0.000 10.000 10.000 0.000 0.000 10.000 0.000 0.000 0.000 0.00	-	=				2/0.0					
4.0 12.6 1.4 0.010 0.000 0.292 1600 4.8 1.1 0.006 0.050 0.165 400 3.0 0.029 0.029 0.065 0.205 8.6 12.0 2.1 0.006 0.000 0.205 1100 7.5 12.0 0.013 0.000 0.205 1100 6.013 0.200 1006 7.5 10.2 0.003 0.200 1066 6.015 0.200 1066	<u>.</u> .	e :				100.0		!		-	
3.0 3.0 3.0 3.0 0.006 0.050 0.100 0.050 0.100 0.011 0.006 0.000 0.012 0.006 0.000 0.000 12.0 0.013 0.000 0.000 12.0 0.013 0.000 0.000 14.0 16.0 17.0 0.0013 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000		1	;			0.005	!			1	. :
3.0 3.0 3.0 3.0 0.076 0.080 0.091 0.091 8.6 12.0 2.1 0.096 0.040 0		, ,	0.7	9.71	<u>.</u> :	0.000	0,00	20.242	009)	350	:
8.6 12.0 2.1 0.006 0.000 0.120 820 820 8.6 12.0 2.1 0.006 0.000 0.132 120 8.033 0.100 0.205 1000 8.033 0.100 0.200 10.2	, .	E =	9 6			200	0.050	0.165	700		Ì
8.6 12.0 2.1 0.006 0.000 0.192 120 7.5 12.0 0.010 0.070 0.205 1100 8.03 0.100 0.075 120 8.0 12.0 0.013 0.200 100 8.1 10.2 0.013 0.200 106 9.013 0.200 106		: 5	> .	•	,	2.5	2:	!	0.0		1
8.6 12.0 2.1 0.006 0.000 0.192 120 7.5 0.000 0.010 0.205 1100 8.0 12.0 0.013 0.100 0.205 10.2 0.013 0.200 106 9.0 10.2 0.013 0.200 106		5				10.0			27		
8.6 12.0 2.1 0.006 0.000 0.192 120 7.5 7.5 0.000 0.000 0.000 1100 8.033 0.100 0.205 1100 8.0 12.0 0.013 0.200 40 8.0 10.2 0.013 0.200 400 8.0 10.2 0.003 0.200 400	 ;	\$	1 :			800.0					
6.0 12.0 2.1 0.006 0.000 0.112 120 7.5 7.5 0.00 0.010 0.205 1100 6.0 12.0 0.013 0.100 5 6.0 12.0 0.013 0.200 106 7.1 10.2 0.013 0.200 106		ا	20							,	
6.0 12.0 0.010 0.025 6.0 12.0 0.013 0.100 6.1 10.2 0.013 0.200 6.100 0.000		₹	9.0	0-21	7.7	0.00	090-0	2.172	20	328	
6.0 12.0 0.013 0.200 1.1 10.2 0.023 0.200 0.013 0.200		ε :	7.5			0,00	0.0.0	0,205	201		
10.2 0.000 0.200 0.200 0.200 0.200 0.200 0.200 0.200		= 7		•	;	0.058	001-0				;
0.005	•	£ :) (F	5. 2.		0.00	200		95		
	~			.		0.013	8,200		977		
	->					900.0) 		

* Discounted in moon

_
=
Z
2
2
-
Ī
Ξ
00
Ö
•
Ç
7
=
Ξ
FR
W
Z
_
Ū
5
ž
₩
-
_
0
ă
\supset

and the second s

DATE SURFACE WATER GUALITY DATA TO HET HO 2 OF 2

DATE SURFACE WATER GUALITY DATA TO NO 404

LOCATION: STATELIME (RM 96.5) DATE er BP

	_		,					!									-					,					i					on the second second	
	20. NSS.	Hen	170			,	:	08/	182	: : : :				,		0,81	ş	! '	146	:			047	220	:	8 /	227	200	36.5	2	:		
•	Toj. Coti	-	410		; ;	;		1300	929	2800						000]	3000	5100	0001	480			550	00%	3 3	sos	2 000	9,7	500	330			
•	75. N	. *	0.103	6.07)			,	0.192	0.286	0.272						,			0.553		:	: (0.222	0.6%		0.172	0.16/	. 0.242	711 0				
	NH2-N	A/6-	0.08	0.05	00.100			0.040	0.070	001.0	0.100	0.050	0.050	0-050		001-0	002.0		0.150		:		0.00	0.030		0.040	0.030	00.00	0.00	0.030	,		
eters	Tar. Poy-P	17/6	0.03	0.003	0.003	0.003		0.003	0.00	0.023	0.003	0.003	600.0	0.010	0.020	0.006	0.003	;	0.003	700.0			0.025	000	C.005	0.026	500.7	0.003	0.003	0.93	10.0	20. 0	
YARAM	800	my 1.6	3.2	4.5	ļ			1.0	1.4							;		,	2.0	-		: 0		9-	, -	ر د د د د		.3	8.0	:			
	0.0	W#16	7.0)		;	:		9.8	9.3				-			0.0	2-0	,	8.3	o .	:	ć			:	;		7.01	,	· - -			1
	TEMP.	ų	17.0			;	·	17.8	2.0.0	-						21.0	7.27		17.3	0.8	•		25	2.5/	15.2	1.7	· >;	5.0	7.0	1			
		MONTH	JUNE	Ē	-	=		2007	= '	-		=	2	=:	=	AU6.	2	= '	SepT.	= '		ŀ		: :		3				= .	E		
	DATA	SOURCE	STORET						,					,									1								>		

,				45. K		24	!		2	20	9 5	S C	0		٥ i	0	97	<u>ه</u>	0,	o. (20	0	20	0/	0	0	92	06	gagen A carbo
				Toj. Coli	× × ×	92	-1			:.	- +	:						;				•	,		;	!	j		
1 mm sign stip site. A				79. N	75.0	3 7	0.73	· •	1 1/20		3. 460	2,930	4.710	1.840	1830	2.290	2.560	1.790	2.150	8		2.00	967	1.35	2.83	3.59	2.68	5.68 2.68	•
1 0 2	101	MOUTH		N-SHN		250.0	0.042		0.44	2)	47	ر در حر	.22	, I	01.	9	80-	-0-	٠.٩	10.	\$ =	91.	80.		80,	22-	40	<i>bs'</i>	
AET RO.	DA7A DB NO.	1	ETERS	Tar. Part	2100	2500	0.211		-					1	: ,			•	•				1			•			
ő.	2	HANG MAN	£	800	1.2	17.9	16.2	•			• • • • • • • • • • • • • • • • • • • •	:		•							,		1	,		:	1		
R ENGINEERING CO	WATER G	OCATION :		D. 6.	0.07	7.6	7.9	, (7 6	2,7	ر ن عر	, S.C.	7,5	1.7	0.	7.6	9.6	0,7	20/		- a	(8,5)	2,0	~°'	2.7	14.4	2-21	gr.]	
DOR ENG	SURFACE	7		TEMP.	14.2	5.2	13.8	ر بر ع	20.2) - v	2 2	2.2	15:2	15.5	7.9	16.9	0.7/	• • · ·	رج د (۲: کا	200	÷	9.9	2.6	4	م. م	<i>ه</i> زن:	2.4	9 .0	
2	- DATE			MTM	Sept		*	> 9	0.4.7) = =	Jucy	=	:	3 *	*	Ave	>	= -	= 5	} =		*	Oct	· 200	2	250	FeB	MAK	
dg s	CHED. BY		,	Cource	K-1	1973		2007.000	1877 7	(4)	(anna)				***************************************														

TUDOR ENGINEERING COMPANY	\sim	CHED. BY DATE DATE WATER GUALITY DATA	LOCATION: HANGMAN CR. AT MOUTH
		# 9¥ 5	

_	T.		Τ-	;	Plant.			1	***	î		1				-	-	N-Cu	:	+	·		احترجا	
PARAMETERS	20.75	Well .		50	:		•	!		;			74	!:	•		ı	3 ;		-		:		
	Toj. Coli	No hoom!			,		,			; ;				Koo				,						
	Tg. ≥	mg l	1.520	2.56			:			!			:		1.089	0.75/	0.9%	2660			:	;	:	
	NH2-N	776	0.40	0.820			ļ.			1	i			!	0.240	0000	07:0	0.00.0	0.720		1	:	:	-
	Tar. Pay-P NHS-N	**************************************	0.230	0.560			•	-	:	•	: •			0500	0.048	0.04	150.0	9,60.0	001.1					
	Bob	my 12								:					1									
	0.0	W311	13.2	13.3	0.0	[3.2	2	10.4	. <u> </u>	7/1	12.2	(2.2	11.7	12.3	<u>=</u>	14.6	(S.04	TE	11.7			,		
	TEMP.	٠	2.0	9.0	2.8	2.0	00	ï	(2.9		•	; N				4-0				:				
		MONTH	•			•	MAR	- 1	APR		JVAR	*	7367	Sept	OCT	•	3	*	P CO					
	DATA	SOURCE	STORP	872-73																				

					;				• • •		.	į	-	. ;										!				:	. 1	1		! -	;			•	' ;
					20, Mg.	1130	١.	1,1	N				-			•									.												
					Tol. Call	No.hooml	.332.	125		-	400	706	200	400	.002		:35;00;	2001	600	009	200	800	. 0 02	2007	25.00	2 200	009	800	000	You		COST	1220	2700	0001	628	2/00
, ,		-	(EM 1.1)		Tot. N	782	0.09 3	0.072	2.677	-	1.250	0.85	Í	160	2.17:		1.23	6.73	15.0	h5-0	0.74	6.74	.88.	1.28	1.37	.7.30	1-31	2.25	2000	20.00			1.			:	
•	104 00 3		ADULT		N.F. V	MA	900.0	700.0	0.011	-	0:02	0:0	4	21-0	20-0	-	0:13	000	90.0	0.03	00.0	la.o.	0.00	0.03	69	40-0	0.03	200	0.0	000		00.0	0.8	C. 60	0.00	0.00	0.0
× ×	SHEET NO. 409 OF 3	DA7A	Spokyne AT	rers	Ta. PaP	276	0.015	510.0	0.02		0.070	050-0	0710	0.090	0.040	ا ادر. ا	0-220	0.120	041.0	0.160	0.113	0.00	010.0	O-030	0.040	9 9 9	0.020	0.0.0	0.030	2 6	2000	. 20	20.0	0.03	0.00	0.20	0.04
COMPA	.	GUALITY DAT	LITTLE SPON	Ę		mg [[2	4	1.2.											:	:	,			:	!		:	,	:		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.7	00	: !	4.0	
TUDOR ENGINEERING COMPANY	SURVECT APPENDIX TA	WATER OF	LOCATION: L		D.0.	m4/8	4-8	بر 90	7:1		. 2.01	25	9.4	6-6	.2.0/		-	9-6	9.6	9.0	8.7	. 0	2.6	4.9	9.8	8.5	9.0	0	5.0.	; b	ا ا	ē.	8.6	<u>.</u>	8-1	<u>8</u>	9 %
DOR ENG		SURFACE V	07		TEMP.	٥	12.3	12.3	13.7		3.6	5.5	ی	-	2.0		5.0	7.8	83	13.3	10.9	12-0	13.9	3.50	15.9	15.8	13-7	12.6	9.76	7.7	o n	V). T.	12.5	17-03	[2.3	12.0
10	DATE 12/97"	DATE				HONTH	Sept	=	•		247	٤,	2.	4	= !		222	ME	2	MAN	=	JUNE	*	300	₹,	→ 0€	=	\$	•	202	3 3	,	NAC.	. 4	357	Aus	8
	T BP	CHKD. BY	•		DATA	Source	K-7	1973	RM 1.1		0565	1976-971	RM 1-1						,					,			,					D. ovue	1962				

DATE 12/9/174 SUBJECT APPENDIX TE (cm.f.) SHET NO. 2 OF 3.

DATE SURFACE WATER QUALITY DATA CHO W

(RMI)	-
MOUTH	•
KANE AT	***
7LE 500	
CLATION: LIN	
)/LV707	_

					ı			İ	;	;	:	!		,		1			ı		•				
	20 NS	1130		20	;		67			! .				. 9	2		:	,	. <i>(</i> 2	55			· ·		;
	Tot. Coll					'! -				-			-			-									
••	Tst. N	mall	* 750.7	1.294							•			 			1.153	1-166	1.440	1.185	7017	177			
	NH2-N	Man	0.140	001-0	 						-						0.0%	0.030	0.030	0.080	0400	0800			
erers .	Tar. Pay-P	m31.6	**	0.055								-		:	0.000	0.020		K0.0	5.02	870.0	0.0/8	0,070			
PARAMETERS	908	mg 12				•	•	- -	; ;	<u>.</u>					i :		ı								
	D.0.	M.818	11.3	0.0	10.4	1.9	12-2	12.0		10.6	9.4	8.8	6,6	4-6	9.5	9.7.	8.7	11.7	2.2	205	6.6				
	TEMP.	Ĵ	9-7	4.7	6.0	2.0	6.2	4.4	6.4	11.5	11-8	h-h1	15.2	97/	13.0	(3.4	7.5	0.0	 	6.0	ю 0	9.9			
		MONTH	247	FCB		*	MAR	-	=	APR	=	SVNC	=,	Sucy	Sept	=	. C. C.	2	765	ε ,	ن کور	=	_		PUID
	DATA	Source	STORET	1970-73	RMI																			****	
													-												-

Discounted in moun

	WIE 12/11/24 SUBJECT APPENDIX TX (Cm'+) SHEET HO. 3 OF 3	SURFACE WATER GUALITY DATA
	ğ	g
_	2	8
TUDOR ENGINEERING COMPANY	4,2	DATA
100	M	75
UN	1 X	a de
ERI	END	8
Z	AP	143
FRG	ECT	la E
X	3	RFA
9	Z	18
-	10	
	DATE.	¥
	Ī	CARD. BY
	ام	
	ā	ž ď
	Ĕ	X

0000 383 000 20 0 2000 00 • į ! 30 No. hoom ١. 5 (KM 1.1) 2.080 1.850 2.032 1.480 1.250 1.370 .750 1.640 2.180 1.720 1190 270 1.870 2 82 79. N ng K ı ٥٠٥٥ الم 0.03 0.05 20.0 0.27 60.0 N-818 0.04 90.0 0.07 21.0 0.08 60.0 0.23 7-0 0.03 Tar. Pay-P PARAMETERS SPOKANE į. Bob : LATE 0.00 7.7 0.000 90) 7.6 7.6 D.0. だ LOCATION 2.0 5.0 5.0 1.25 1.64 14.5 S TEMP. MONTH MAN TORN AND THE PROPERTY OF THE PROPER 3 DATA (UNPOB.) 500,190 1172

>	
Z	
=	
COMPANY	
0	
_	
ž	
=	
<u></u>	
Ī	
ENGINEERING	
Ž	
ш	
TUDOR	
۵	
5	
;	•

DATE 12/6/74 SURFECT APPENDIX X er BP

		¥	_	Γ	_				ı t														_
		20, MSS.	Herr	1	\$30				<u> </u>		1	:			1	ı				-			
DARTFORD (RM 10.6)		Toj. Coti	No from!	3030	3860		13 000	86.00	1000	1000	380		1300	730	5 300	2700	2400	2000				,	
FORD (A		Tot. N	mg 14	0.69	0.69							:					1						
AT DART		NH2-M	Men	0 60 0	1600	•	0000	0.000	0.000	0.000	0.000	D. U00	0.000	0.000	000	0.000	0000	900			i !	-	
SPOKANE A	eteRS	Tar. Pay-P NHS-N	mg12	0.044	0.047		0.02	0.03	900	6.54	200	0.0	. 6/-0	0.10	0.22	6.22	90.0	0.05					
GUNCITY DA	PARAMETERS	800	my 18	2.0	2.		1-1	7-6	1-1	0-3	1-3	0.0	,		•	9.6							
••		D.0.	m#16	8.2	7.0	,	12.2	12-1	[0.7]	10.4	63	6.3	1.4	9.6	6.3	4.4	00. a-	7.6					
SURFACE WATER		TEMP.)	21.3	œ.		1, 0	4.0	6.2	2,	14.0	14.0	16.2	16.6	1 5. c	14.7	15.0	0-51	,				
			MONTH	JUNE	=		Feb	=	MAR			-	June	•	Auc		Sept	2	:				
		DATA	SOURCE	K-T	77.	,	BURK HALTER	8961	Am 10.6	535-KS		•							,			•	

DATA NOWTH	SUBJECT.	APPEN	(X (c. 4)	SHEET NO.	7 00 2	·			
_ 0.1	•				101	_			
		WATER G	GUALITY DATA	1				111111111111111111111111111111111111111	1
	1	• • •	TTLE SPOI		Dietroel	(Rmlab	19		
			PARAMETERS						
	TEMP.	0.0	Q08	4-h	NH2-N	Tot. N	Tor. Call	20. bes.	
-	H .C	118w	mx 12	2760	Men	Mark	We haven	11500	ļ
	.5.1	12-6					_	20	:
Moths	8.0		P				-	22	
12 m 10.6 H	- Patter								:
MAR	4.4					<u> </u> 	-	12	1
-	0.9						-		
_	11.0		-	-	•••				
	N				-				
MAY	18.0	9.6		-	- 1				
STATE .		•				•		81/	
\ \frac{1}{8}	8-41	10.7	† †	0.030	-		70.		
<	14.0	10.2	1 1	0.040			30	-	
=	,	10.4							
= 1	-	9.0/			-		-		<u>.</u> .
150 150	0.01		.!				-		
-	5.0	: ; ;							
200v	9-9			. !		-	-	0/	; ;
· .	<u>' </u>				•			. 5.3	
ن. ۵		; ; ;			-			: 20	
#16.	220	9.5			-				,
		:				•			•
									r
	٠			:					
				:	:	1	-		
_	,	-							

		v ate and the state of		Zu, MS	1180											,		:	:
	•			Tor. Coli	No. 400 m!	,						,							
10 Walls	 ! !			Tot. N	mall							, ,	· ·	:		, i :		!	
	1 so 1			NH2-N	Mem		21.0	0.05	0.67	10.0	12.0	21-0	0.13				: : : : : : : : : : : : : : : : : : : :		
×	SHEET NO. / OF JOH NO. 404	TAKE	LTERS	Tor. POy-P NH3-N	MALL		8	10.0	6.02	0.0	0.03	0.03	0.04	1		;	:	:	
G COMPA	X	GUALITY DATA LIBERTY LAKE	PARAMETERS	Qog	m3/2	-								,		•		,	
INEERIN	SUBJECT APPENDIX XI	• •		D.0.	W816									٠		,	;		
TUDOR ENGINEERING COMPANY	sussect	SURFACE WATCK		TEMP.	Ç		,	_	14.0	24.5	0.6	24	74.5	•				;	
10	DATE 12/9/14				MONTH		MAKITY)	MAY (3.5)	(\rac{1}{12}) ::		(,12)	Sept (3')	(20,1)		ţ				
	or BP			DATA	Source	7565	12-0261												,

		1			え、ファ	11200		,		,		· :		•				•							
					Toj. Coti	No. hoom!			. ,		i		•						,	una e pr					1
** effe					₹. £	mall		Madajan					!			· · · · · · · · · · · · · · · · · · ·		ì							•
	1040				マーアニマ	Mem							0-20	70.0	0.03	0.23	20.0	0-12	97.0		•				
× ×	SHEET NO.	DA7.A	AKE	ETERS	Tar. Pay-P	216		·, ·				:	50-0	0.0	20:0	0.0	6.0	20.02	10-0		!		,		
TUDOR ENGINEERING COMPANY	Ì	GUALITY DA	NEWARN LAKE	PARAM	800	mg 12		•	:			. ;			:								ı	•	,
INEERIN	APPENDIX	1	LOCATION : 1		0,0	W416	:	7%	56				,											•	
DOR ENG	12/9/7: Water APPENDIX XII	SURFACE WATER	17		TEMP.	J.		4.1	9.2		•		•	160	11.0	24.0	13.0					:,			,
10	ONTE 12/1/	- Mile				MONTH	OCT	, 51-0	108-51				mak (151)	MAY (31)	(,62) !!	3ve3 (3)	(29,1)	Sept (3')	" (26')			•			
	P BP	CHEO. ST			DATA	Sovace	8761 3.47				SSSU														

SECTION 210.1

STATISTICAL ANALYSIS OF STREAMFLOW RECORDS

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION

SECTION 410.1

STATISTICAL ANALYSIS
OF STREAMFLOW RECORDS

18 Oct 1974

Department of the Army, Seattle District Corps of Engineers Kennedy-Tudor Consulting Engineers

INDEX

Subject	Page
Purpose and Scope	410.1- 1
Low Flow Analysis	
General	410.1- 2
Elimination of Low Flows Due to Freezing	410.1- 2
Regulation and Diversions	410.1- 2
Computation Procedure	410.1- 5
Results	410.1- 6
Discussion of Low Flow Results	
Spokane River	410.1- 7
Hangman Creek	410.1- 8
Little Spokane River	410.1- 8
Flood Frequency Analysis	
General General	410.1-10
Regulation	410.1-10
Rainfall and Snowmelt	410.1-12
Computation Procedure	410.1-12
Discussion of Flood Flow Results	
Spokane River	410.1-16
Little Spokane River	410.1-16
Hangman Creek	410.1-17
	/10 1 10
Table 1 - Low Flow Analysis	410.1-19
Table 2 - Flood Flow Analysis	410.1-20
Figure Index	b
List of References	410.1-29
Appendices Index	c

FIGURE INDEX

Figure	Subject	Page
A	7-Day Low Flow Spokane River Near Post Fells USGS Gage 4190	410.1-21
B	7-Day Low Flow Spokane River at Spokane USGS Gage 4225	410.1-22
С	7-Day Low Flow Hangman Creek at Spokane USGS Gage 4240	410.1-23
D	7-Day Low Flow Little Spokane R. at Elk USGS Gage 4270	410.1-24
E	7-Day Low Flow Little Spokane R. at Dartford USGS Gage 4310	410.1-25
F	Peak Flow - Combined Events Spokane River at Spokane USGS Gage 4225	410.1-26
G	Peak Flow - Combined Events Little Spokane R. at Dartford USGS Gage 4310	410.1-27
н	Peak Flow - Rainfall Events Hangman Creek at Spokane USGS Gage 4240	410.1-28

APPENDICES INDEX

Appendix No.	Subject	Page
I	7-Day Low Flow Events Spokane R. near Post Falls	410.1-30
II	7-Day Low Flow Events Spokane R. at Spokane	410.1-31
III	7-Day Low Flow Events Hangman Creek at Spokane	410.1-32
IV	7-Day Low Flow Events Little Spokane R. at Elk	410.1-33
v	7-Day Low Flow Events Little Spokane R. at Dartford	410.1-34
VI	Peak Flows, Raw Data, Rainfall Events Spokane R. at Spokane	410.1-35
VII	Peak Flows, Raw Data, Snowmelt Events Spokane R. at Spokane	410.1-36
VIII	Peak Flows, Correlated, Rainfall Events Spokane R. at Spokane	410.1-37
IX	Peak Flows, Correlated, Snowmelt Events Spokane R. at Spokane	410.1-38
x	Ordered Flows and Plotting Positions, Rainfall Events, Spokane R. at Spokane	410.1-39
XI	Ordered Flows and Plotting Positions Snowmelt Events, Spokane R. at Spokane	410.1-40
XII	Computed Peak Flow Curves, Rainfall and Snowmelt Events, Spokane R. at Spokane	410.1-41
XIII	Peak Flow - Rainfall Events Spokane River at Spokane USGS Gage 4225	410.1-42
XIV	Peak Flow - Snowmelt Events Spokane River at Spokane USGS Gage 4225	410.1-43
xv	Peak Flows, Raw Data, Rainfall Events Little Spokane R. at Dartford	410.1-44

APPENDICES INDEX (Continued)

Appendix No.	Subject	Page
XVI	Peak Flows, Raw Data, Snowmelt Events Little Spokane R. at Dartford	410.1-45
XVII	Peak Flows, Correlated, Rainfall Events Little Spokane R. at Dartford	410.1-46
XVIII	Peak Flows, Correlated, Snowmelt Events Little Spokane R. at Dartford	410.1-47
XIX	Peak Flows, Extended, Rainfall Events Little Spokane R. at Dartford	410.1-48
XX	Peak Flows, Extended, Snowmelt Events Little Spokane R. at Dartford	410.1-49
XXI	Ordered Flows and Plotting Positions Rainfall Events, Little Spokane R. at Dartford	410.1-50
XXII	Ordered Flows and Plotting Positions Snowmelt Events, Little Spokane R. at Dartford	410.1-51
XXIII	Computed Peak Flow Curves, Rainfall and Snowmelt Events, Little Spokane R. at Dartford	410.1-52
XXIV	Peak Flow - Rainfall Events Little Spokane R. at Dartford USGS Gage 4310	410.1-53
XXV	Peak Flow - Snowmelt Events Little Spokane R. at Dartford USGS Gage 4310	410.1-54
XXVI	Peak Flows, Raw Data, Rainfall Events, Hargman C a pkane	410.1-55
y avii	Peak Flows, Extended, Rainfall Events, Hangman Cr. at Spokane	410.1-56
XXVIII	Ordered Flows and Plotting Positions Rainfall Events, Hangman Cr. at Spokane	410.1-57
XXIX	Computed Peak Flow Curve Hangman Creek at Spokane	410.1-58

SECTION 410.1

STATISTICAL ANALYSIS OF STREAMFLOW RECORDS

Purpose and Scope

The purpose of this section is to apply standard statistical methods to the available stream flow records of the study area toward determination of the magnitude and recurrence frequency of flood flows and low flows. The flood flows are used in a subsequent section to delineate the flood plain at the following locations:

- Spokane River from the Hangman Creek confluence to the Idaho boundary.
- Little Spokane River from confluence with the Spokane River to the vicinity of Chattaroy.
- 3. Rock Creek in the vicinity of Rockford.
- 4. Hangman Creek in the vicinity of potential urban developement.

The criterion for flood plain delineation is the peak flow with 100 year recurrence interval. Peak flows of lesser return frequency are also determined in the process of analysis, but the peak flows of 100 year return frequency are the critical objectives.

The low flow data are developed for the purpose of providing a basis for evaluation of critical supply for maintenance of natural stream life and for evaluation of critical assimilative and dilution potential for wastewater disposal alternatives. The criterion for low flow evaluations is the 7-day interval of lowest mean flow with recurrence interval of

10 years. As with flood flow analysis, low flows of other return frequencies are developed but primary interest is for short return intervals.

Low Flow Analysis

General. The available stream gages in the study area with periods of record adequate for statistical analysis are listed in Table 1. For reasons discussed below the entire available period for each gage is not used for all gages.

Elimination of Low Flows Due to Freezing. The primary use of the resultant low flow data is to be evaluation of water quality management problems which are most critical during summer when low flows are combined with higher water temperatures. For the Little Spokane River and Hangman Creek there are winter low flow events caused by freezing. To avoid distortion of the summer lows, which are of primary interest, these winter lows are excluded from the statistical analysis by deletion of all events occurring before March 1 or after October 31. Other than the exclusion of freezing season events, the entire period of available record is utilized for the two gages on the Little Spokane River and the one on Hangman Creek. These records are twenty years in length and should give adequate results for determination of return frequencies of 10 years and less.

Regulation and Diversions. Low flow events in the Spokane River as it enters the study area are significantly affected by the controlled releases at Post Falls Dam due to Washington Water Power Companies' (WWP)

hydroelectric operations. There are relatively small interchanges between the Spokane River and groundwater between Post Falls and the study area boundary and practically none between the dam and gage number 4190. There is, however, a major groundwater interchange with the Spokane River between the study area boundary and gage number 4225 located a short distance upstream from the Hangman Creek confluence. Hence, the records for gage number 4190 reflect an almost complete dependence upon Post Falls regulation but those at gage number 4225 are only partially dependent upon regulation.

The regulation exercised by WWP is in accordance with an operating policy that has been in effect and substantially unchanged since 1946. Prior to 1946 operating policy relative to flow regulation was different due to different system capability and power requirements. Therefore, the records prior to 1946 represent a significantly different flow regime. The flow regime from 1946 to present, although fully regulated, approximates natural conditions. The current WWP operating policy is to bring Coeur D'Alene Lake to its summer level as soon as possible after the spring high flows and then to maintain that level constant throughout the summer by regulation of release rates at Post Falls.

There have been two significant irrigation diversions on the Spokane River above the streamgage near Post Falls #4190. These two irrigation diversions and the gages used to record them are:

USGS Gage#
1. Spokane Valley Farm's Company Canal at Post Falls 4185

2. Rathdrun Prairie Canal at Huetter 4180

The Spokane Valley Farms canal began operation in 1913 and continued to supply irrigation water through the 1966 irrigation season. In 1967 the operation of the canal was suspended. Irrigation water is now being supplied from groundwater sources. The Rathdrun Prairie canal began operation in 1947 and is still an active supplier of irrigation water.

The WWP operating policy since 1946 has, in effect, been to release at Post Falls an amount of water which, combined with the irrigation diversions, is equal to the total inflow to Coeur D'Alene Lake less evaporation losses. The primary sources of inflow to Coeur D'Alene Lake are the Coeur D'Alene River and the St. Joe River. It is recognized that, at times, WWP may, for technical operating reasons, release more or less than what the natural outflow from Coeur D'Alene Lake would be, but it is believed that these occurrences are of such rare occurence and short duration as to not affect the statistical analysis.

In order that the low flow analysis best represent natural flows that could be expected to be available for water resources management, the diversions above the Post Falls Dam have been added to the flow released at the dam by Washington Water Power Company before statistical analysis. Both irrigation diversions are added back into the flow, that of the discontinued diversion and that of the continuing diversion.

There are no regulating structures on either the Little Spokane River or Hangman Creek. There are no significant diversions from Hangman Creek. A number of water rights are held for diversions from the Little Spokane River. These rights from DOE records total 111 cfs. There are, however, no records of the amounts actually diverted on seasonal basis,

let alone on a time basis, that could be correlated with stream flow records. Hence, the statistical analysis of the Little Spokane River is done on the basis of measured flow uncorrected for diversions and is, therefore, not necessarily representative of natural streamflow conditions.

In summary, the data subject to statistical analysis for low flow is as follows:

- Spokane River near Post Falls, gage 4190. Total record available 1913 to 1972. Record used 1947 to 1972. Irrigation diversions from gages 4180 and 4185 added in before analysis.
- Spokane River at Spokane, gage 4225. Total record available
 1891 to 1972. Record used 1947 to 1972. Irrigation diversions
 from gages 4180 and 4185 added in before analysis.
- 3. Little Spokane River at Elk, gage 4270. Record available and used 1948 to 1972, except that low flows Nov. 1 to Feb. 28 (or 29) not considered.
- 4. Little Spokane River at Dartford, gage 4310. Record available and used 1929 to 1932 and 1947 to 1973, except that low flows Nov. 1 to Feb. 28 (or 29) are not considered.
- 5. Hangman Creek at Spokane, gage 4240. Record available and used 1949 to 1972, except that low flows Nov. 1 to Feb. 28 (or 29) are not considered.

Computation Procedure. The computation procedure for low flow analysis

using the data described above in annual series is carried out in the following steps.

- Identify the 7-day low flow event for each year included in the analysis.
- 2. Rank the data in terms of increasing discharge.
- Assign plotting positions to each piece of data from Beard,
 Statistical Method in Hydrology.
- 4. Plot the data on probability paper.
- 5. Draw a curve through the data points.
- 6. The magnitude of the 10-year event is the value where the curve intersects the probability of recurrence of 10 percent.

probability paper. Refer to Figures A through E. A break in slope is an expected feature of these low flow curves, connecting two straight line plots. The location of the break in slope is clearly indicated in the plots for the Little Spokane at Dartford and for the Spokane River at Spokane in the vicinity of 25 percent. This insight is used to select the indistinct break exhibited by the data for Hangman Creek at Spokane River near Post Falls. The final fittings are made using the method of least squares. The Little Spokane River at Flk data does not exhibit any break in slope but is rather a single straight line throughout. The plotting positions for the split record on the Little Spokane River are determined by the method of Beard's Exhibit 11 in recognition of the probability that 1930 and 1931 are the lowest years in the last 45 years (and possibly the lowest since 1891).

Results. The determined value of 7-day low flow with recurrence frequency of 10 years for the five gages is summarized in Table 1.

While the Spokane Valley Farms diversion, USGS gage #4185, and Rathdrun Prairie Canal, USGS gage #4180, were both in service from 1947 through 1966, the total of both diversions is in the range 230 to 290 cfs for most years during the critical low flow period. Beginning in 1967, with only the Rathdrun Prairie Canal in operation, the total diversion during critical low flows is approximately 50 cfs. Assuming the Rathdrun Prairie Canal continues in operation, the calculated statistical low flows which do not include these diversions are approximately 50 cfs greater than would be observed.

Discussion of Low Flow Results

Spokane River. The observed flow at Post Falls, as indicated above, is essentially equal to the inflow of the Coeur D'Alene and St. Joe river systems into Coeur D'Alene Lake less evaporation from Coeur D'Alene Lake. Since there are no significant storage structures in these rivers, the observed flow represents natural conditions. If the natural low flow condition occurs concurrently with the irrigation season for the Rathdrun Prairie Canal, the actual flow experienced below Post Falls would be about 50 cfs less than shown in Figure A due to the diversion, making net the 10 year flow approximately 145 cfs.

The tributary area at Post Falls, gage 4190, is 3840 square miles and at Spokane, gage 4225, is 4290 square miles, or 12 percent more. The

7-day low flow at Spokane is 860 compared with 195 at Post Falls or 4.4 times greater. This much larger flow is due to the groundwater increment between Post Falls and Spokane which not only affects the quantity but the quality and temperature. It should be noted that the ultimate source of most of the groundwater increment is outside of the tributary area of the river above Post Falls. The 7-day low flow is 0.05 cfs per square mile at Post Falls and 0.20 cfs per square mile at Spokane.

Hangman Creek. The 7-day low flow at the Hangman Creek gage 4240 is only 3.4 cfs or 0.005 cfs per square mile of tributary area. The entire watershed is essentially in the Columbia Plateau region which consists of Palouse topsoil on a base of basalt interbeded with Latah formation. There is essentially no groundwater body in the area except that which occupies the fractures in the basalt element. The topsoil has good moisture holding qualities for agriculture but stores no free water for subsequent release to groundwater. Therefore, it is to be expected that the streamflow outside the rainfall season would be very small.

The 7-day low flow with 10 year recurrence actually gives an optimistic picture of what can happen, as it actually did in the fall of 1974 when it essentially went dry. This is indicated by the steep slope of the curve to the right of the break.

Little Spokane River. The shape of the curves obtained at the Elk gage, number 4270, and the Dartford gage, number 4310, as well as the

yield per square mile of tributary area indicate different hydrologic regimes. The curve at Elk exhibits no break and shows a yield of 0.31 cfs per square mile at 7-day low flow with 10 year recurrence. The curve for Dartford shows a break and has a corresponding yield of 0.13 cfs per square mile.

As indicated above, there is an unknown effect on the Dartford yield due to the exercise of water rights for diversions of up to 111 cfs. This would tend to decrease the apparent yield at Dartford. The geology, on the other hand, indicates a more favorable groundwater condition for the Dartford gage since it includes the Deer Park basin gravels, whereas the areas above Elk are believed to have small gravel deposits on relatively impermeable base rock.

Flood Frequency Analysis

General. The stream gages subject to analysis and their periods of available record are shown in Table 2. The Spokane River gage with its 83 years of available record is the only gage with a record of adequate length for relatively high confidence determination of the 100 year recurrence event which is of primary interest. The Little Spokane and Hangman Creek records are both less than 30 years length and, for this reason, should be extended by interbasin correlation to increase reliability.

Regulation. There are no regulating structures on either the Little Spokane River or Hangman Creek. The record of flood flows on these streams is a record of natural unregulated flow. The diversions noted above in the Little Spokane basin, allowed by water rights, are negligibly small when compared with flood stage flows.

The Spokane River is subject to a degree of flood flow regulation by the control of the level of Coeur D'Alene Lake by WWP. The rivers tributary to Coeur D'Alene Lake are unregulated. The area tributary to Coeur D'Alene Lake is 3700 square miles. The area tributary to the Spokane River below Coeur D'Alene Lake and upstream from gage 4225 is 4290 square miles but the flow reaching the river from this incremental area is negligible due to the permeable valley floor between the uplands and the river channel which prevent the formation of any significant surface drainage ways.

Post Falls Dam which forms the outlet regulating structure of Coeur D'Alene Lake is capable of regulating flows of up to 15,000 cfs at lake levels up to 2128 feet. Once the lake level reaches elevation 2128 feet and the quantity available for spill exceeds 15,000 cfs, the Post Falls structure no longer exercises control and control passes to the natural outlet of the lake. Refer to Section 308 for stage discharge relations of the lake outlet and the stage capacity of Coeur D'Alene Lake. Post Falls Dam was constructed in 1906.

It is theoretically possible to partially attenuate peak flood flows in the Spokane River by lowering the lake level in anticipation of a large runoff. The storage capacity of Coeur D'Alene Lake between elevation 2120.5, the lowest level, and elevation 2128, the level at vers. control normally passes to the natural outlet is 108,500 second foot days or 217,000 acre feet. This volume of storage is equal to 1.1 inches of runoff from the tributary area or one week's mean daily flow for the April, May, June period. The net effect of the potential Post Falls regulation on flood flow peaks is unknown without analyzing each event by a reversed routing through Coeur D'Alene Lake. Due to the large volume associated with snowmelt events compared with the potential storage, it appears unlikely that snowmelt events could be much attenuated by a planned lowering. On the other hand, rainfall events usually cannot be anticipated sufficiently in advance to make a planned lowering. Planned operations are therefore believed to have small effects on experienced peak flows. The data used herein is as recorded and reflects the net

effect of all conditions including whatever effect planned interventions may be capable of achieving.

Rainfall and Snowmelt. Examination of flood records and the causative meteorological events indicates that for the Spokane River and Little Spokane River, flood flows can result from both rainfall and snowmelt events. For Hangman Creek, significant flood flows are predominantly caused by rainfall events. Since rainfall and snowmelt form separate statistical populations, it is necessary to develop separate analysis of flood flows from these two causes for both the Spokane River and Little Spokane River where both events cause significant floods.

Computation Procedure. The computation procedure for flood flow analysis is as follows:

- 1. Identify the annual flood peak or peaks for the years of available record. For the Spokane River at Spokane, gage 4225, and the Little Spokane River at Dartford, gage 4310, flood peaks are identified with relation to their cause, rainfall or snowmelt, by the examination of concurrent climatological data for weather stations in the watershed. For Hangman Creek at Spokane, gage 4240, one peak per year is identified based on a similar climatological screening which indicates that all significant floods are a consequence of rainfall events.
- 2. Since the available records of peak instantaneous discharge, in general, report only one peak per year, there is a blank in one

or the other rainfall or snowmelt series, after the reported peak is categorized. It is necessary to fill these blanks by correlations between the instantaneous peaks and the corresponding daily flow. Since the entire year record is available as daily flows, the correlation provides a means of converting other identifiable daily discharges to the corresponding instantaneous peak. The method used for correlation is the single linear correlation described by Beard (1962) at paragraph 9-02. As a result of this correlation technique, complete annual series for the period of record of each station are obtained.

- 3. The short record stations, Hangman Creek #4240 and Little

 Spokane #4310, are extended by interbasin correlation with Spokane

 River #4225. The method used is simple linear correlation per

 Beard (1962). This interbasin correlation results in extended

 annual series for the short record stations.
- 4. The annual series for each station as filled in and extended by correlation are subjected to statistical analysis by the logarithmic Pearson Type III method as described in Beard (1962). The results are calculated frequency curves and the statistical coefficients which provide an indication of the degree of reliability of the analysis. Skew coefficients are calculated and compared with the regional minimum value of -0.36. Calculated skews larger than -0.36 are utilized in determination of k factors but the regional minimum is used in lieu of smaller calculated values.

- 5. In addition to the calculated frequency curves, the peak flow data are also plotted on log-probability paper to show the relative response of the calculated frequency curves to length of record and statistical parameters.
- 6. For stations with annual series for both rainfall and snowmelt events, a combined probability curve is developed using the relationship as follows:

$$\frac{P}{\text{average}} = \frac{P}{\text{rain}} + \frac{P}{\text{snow}} - \frac{P_{\text{rain}} \times P_{\text{snow}}}{100}$$

Final results for the three stations are shown graphically in Figures F, G and H which show the full range of exceedence events. The critical values shown to have a probability of exceedence of once in a hundred years are marked on these curves and recorded as figures in Table 2.

Supporting data are shown in the Appendix as follows:

For the Spokane River at Spokane, Gage 4225. Raw data for rainfall and snowmelt peaks flows 1892 to 1974 are shown in Appendix(A) VI and VII. The annual series of peak rainfall and snowmelt events filled in by correlation with one day discharges is shown in A VIII and A IX together with the statistical properties of the results. The ordered peak flows, their logarithims and plotting position are shown in A X and XI and the plotted points in A XIII and XIV. The peak flow flow frequency curve calculation for both rainfall and snowmelt events is shown in A XII together with statistical properties, calculated skew and skew factors

used in calculation. The calculated curves are plo d on A X and A XI for comparison with unadjusted points. The calculated curves are repeated in Figure F where the combined curve is developed.

For the Little Spokane River at Dartford, Gage 4310. Raw data for rainfall and snowmelt events 1930 - 1932 and 1947 - 1974 are shown in A XV and A XVI. Correlation with gage 4225 is shown in A XVIII and A XVIII together with filled in peaks with the period of record from correlation within the basin. The extended record developed from interbasin correlation with gage 4225 is shown in A XIX and A XX. Ordered peak flows, their logarithims and plotting position are recorded in A XXI and A XXIII and points are plotted on A XXIV and A XXV. The peak flow frequency curve calculation for both rainfall and snowmelt events is shown in A XXIII together with statistical properties, calculated skew and skew factors used in calculation. The calculated curves are plotted on A XXIV and A XXV for comparison with unadjusted points. The calculated curves are repeated in Figure G where the combined curve is developed.

For Hangman Creek at Spokane, Gage 4240. Recorded data for events which have all been identified as rainfall events for the period of record, 1949 to 1974, are shown in A XXVI. It is not necessary for this gage to fill any gaps by correlation within its own record. Extension by correlation with the rainfall events of gage 4225 is shown in A XXVII. The ordered peak flows, their logarithms and plotting position are shown in A XXVIII and points are plotted in Figure H. The peak flow

frequency curve and its statistical properties, calculated skew and adopted skew are shown in A XXIX. The calculated curve is plotted in Figure H.

Discussion of Flood Flow Results

Spokane River. The record for this gage is 82 years, which, if complete, would provide a substantial data base for determination of events with one per hundred year exceedence. Since only one peak instantaneous flow was recorded per year without regard to whether it was a rainfall or snowmelt event, the record is not complete for either. Since 87 percent of the recorded peaks are determined to have been snowmelt events, the rainfall data is weakest. This weakness is reflected in the computed value of N at 48.8 years for the series when filled out by correlation, indicating that the reliability of the rainfall event record is equal to 48.8 years rather than 82. For all except very rare events, snowmelt peaks are more critical than rainfall.

The determined "100 year" flood of 52,000 cfs is equal to 12.1 cfs per square mile based on the gross tributary area or 13.5 cfs per square mile if only the area above Coeur D'Alene Lake is considered. The yield is dominated by the high mountain terrain in Idaho on the headwaters of the Coeur D'Alene and St. Joe Rivers.

Little Spokane River. The short record for this station and the fact that it involves both rainfall and snowmalt events requires two stages of correlation for completion of the data series, extended. The

correlations between peak events and 1-day events within the basin are very good. Therefore, the effect on reliability of the second correlation is substantially that due to the second correlation alone. The N values computed are based on that assumption and indicate an extended record equal in quality to 31.1 and 39.0 years respectively for rainfall and snowmelt.

The Little Spokane River exhibits the opposite characteristic of the Spokane River with respect to the significance of snowmelt and rainfall events. For the Little Spokane River rainfall events of the same frequency are larger than snowmelt events over the entire range. For the "100 year" flood, the peak flow of 4700 cfs is almost entirely determined by the rainfall event curve. The flood flow is equal to a runoff of 7.05 cfs per square mile. The forest cover and permeable valley fills tend to attenuate peak flows on this basin as compared with Hangman Creek. The lower overall yield due to the lower precipitation range in the Little Spokane Valley as compared with the watershed of the Spokane River accounts for the difference between these two rivers, which more than makes up for the routing effect of Coeur D'Alene Lake.

Hangman Creek. Flood flows are entirely dominated by rainfall events. The extension by correlation is not as beneficial as for the Little Spokane due to poorer interbasin correlation. The extended data has an N of only 28.8 years.

The "100 year" flood flow at 28,000 cfs is equal to a runoff of

40.6 cfs per square mile. This reflects the absence of significant forest cover and permeable soils in the tributary area. The positive skew of the calculated curve is indicative of the potential for even greater extremes of flood flow for rare events.

TABLE 1

LOW FLOW ANALYSIS

7-day Low Flow with 10 year Recurrence	cts 195	860	3.4	35.5	92
Record Utilized* From To	1972	1972	1972	1972	1932 1973
Record	1947	1947	1949	1948	1929 1947
Available Record From To	1972	1972	1972	1972	1932 1973
Availa From	1913	1891	1949	1948	1929 1947
Мате	Spokane R. near Post Falls	Spokane R. at Spokane	Hangman Cr. at Spokane	Little Spokane R. at Elk	Little Spokane R. at Dartford
USGS Gage Number	4190	4225	4240	4270	4310

* Except that low flows in the freezing season, Nov. 1 to Feb. 28 (29), are excluded from analysis.

TABLE 2

FLOOD FLOW ANALYSIS

Available Record 100 year Flood Flow From To		1891 1974 52,000	49 1974 28,000	30 1932 4,700 17 1974
Tributary Area Avai		4290 189	689 1949	665 1930
N.	14ame	Spokane R. at Spokane	Hangman Cr. at Spokane	Little Spokane R. at Dartford
USGS Gage	Number	4225	4240	4310

7-DAY LOW FLOW SPOKANE RITER AT SPOKANE USGS GAGE 4225

8,000T

7-day Mean Discharge - CFS

i;

O:

Q

Ś,

B,00T

410.1-22

METROPOLITAN SPOKANE REGION
Dept. of the Army, Sextle District
Corps of Engineers
Kenneth - Tudor Consulting Engineers

WATER RESOURCES STUDY

BY BIK	10.5 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Figure D 99 998 909 955 955
WATER RESOURCES STUDY WETROPOLITAN SPOKANE REGIO Dept. of the Army, Seattle District Corps of Engineers Kennedy - Ludor Consulting Engine	Non-Exceedence per		RLOW R. AT ELK 4270 So 70

LIST OF REFERENCES

Beard, Leo R., 1962. Statistical Methods in Hydrology.
U. S. Army Corps of Engineers, Civil Works
Investigations Project CS - 151

KENNEDY-TUDOR CONSULTING ENGINEERS

APPENDIX I 7-day Low Flow Events Spokene R. near Post Falls

water resources study -- Metropolitan spokane region

PHS		74_SUBJECT_7	1-Day Low	Flow	SHEET NO	OF
sk no. 410.1	REV. DATE S			Fails	FILE NO.	
M. I. V	7-day Event	7-day M	Mean Dischar	ges, cfs	USGS GAG	2
Water Year			Total.	Recorded		Plotting
Ending	Ending	at 4190	Diversions			Position
1947	Sept. 1	164	287	451	12	44,3
1948	Sept. 19	560	118	678	21	78.4
1949	Sept. 25	149		150		2.64
1950	Sept. 24	155	46	201	4	14.0
1951	Sept. 23	299	14	313	_6	21.6
1952	Sept 3	147	276	423	11	40.5
1953	Sept. 11	283	250	533	16	59.5
1954	Oct. 1	555	19	574	18	67.1
1955	Sept 3	163	291	454	13	48,1
1956	Sept 9	210	252	462	14	51.9
1957	Aug. 25	139	265	404	9	32.9
1958	0ct.6			400	8	29.6
1959	Aug. 31	312	273	585	19	70.8
1960	Aug. 25	268	282	550	17	63.3
1961	Oct. 24	330	1	331	7	25.4
1962	Sept 9	139	282	421	10	36.7
1963	Oct. 16	243	U	243	5	17.8
1964	Sept 16	648	156	804	24	89.8
1965	Sept 11	409	204	613	20	74.6
1966	Sept 25	148	30	178	3	10.2
1967	Sept 1	110	53	163	2	6.4
1968	Aug 12	462	53	515	15	55.7
1969	Aug 21	718	54	172	23	86.0
1970	Sept. 26	1079	0	1079	26	97.4
1971	Aug 24	853	<i>5</i> 2	905	25	93.6
	Sept 15	638	50	688	22	82.2

APPENDIX II 7-day Low Flow Events Spokane R. at Spokane

KENNEDY TUDOR CONSULTING ENGINEERS

WATER RESOURCES STUDY -- METROPOLITAN SPOKANE REGION

PHS	DATE 15 May	74 SUBJECT 7-	-Day Low Fl	ow	SHEET NO.	OF
	ک _ REV. DATE				FILE NO.	
	17-day	7-day Me	an Discharge	, cfs	USGS GAGE	
Water Year	Event	Recorded	Total	Recorded	Ordered	Plotting
Ending	Ending	at 4225	Diversions	Plus Diversions	Number	Position .
1947	Sept. 2	879	283	1162	9	32.9
1948	3ep+ 19	/323	100	1423	20	74.6
1949	Sept 26	969		970	4	14.0
1950	Sept 24	1045	46	1091	7	25,4
1951	Sept. 24	1109	//	1020	6	21.6
1952	Sept 4	951	275	1226	15	55.7
1953	Sept. 12	916	250	1166	11	40.5
1954	Oct. 2	1354	0	1354	18	67.1
1955	Sept. 15	950	276	1226	14	51.9
1956	Sept 9	1179	252	1431	21	78.4
1957	Aug. 26	1013	268	1281	16	59.5
1958	Aug. 28	877	290	1167	12	44.3
1959	Aug. 19	1149	294	1443	24	89.8
1960	Aug. 25	1159	282	1441	22	82.2
1961	Oct. 24	1094	1	1095	8	29.2
1962	Sept. 10	884	280	1164	10	36.7
1963	Oci 16	881	0	881	3	16.2
1964	Sept 16	1384	156	1540	26	97.4
1965	0st.4	1321	49	1370	19	70.8
1966	Sept. 26	701	26	727	,	2.64
1967	Sept 1	677	53	730	2	6.4
1968	Aug 12	940	53	993	5	17.8
1969	Aug. 20	1153	54	1207	13	48.1
1970	Sept. 1	1454	51	1505	25	13.6
1971	Aug 24	1370	52	1442	23	86.0
1972	S= A 15	1299	50	1349	17	633
			and the second s			
	<u> </u>	·		<u> </u>	, 	

KENNEDY-TUDOR CONSULTING ENGINEERS

WATER RESOURCES STUDY - METROPOLITAN SPOK

7-day Low Flow Events Hangman Creek at Spokane

NO	REV. DATE H	DATE 19 May 74 SUBJECT 7-day Low Flow REV. DATE Hangman Creek at Spokane					
	Water Year		7-day low mean disch. efs		USGS GAG	€ 4240 	
					Position		
	1948	Sept. 16	24.0	26	97.4		
,	1949	Sept. 9	12.14	19	70.8	 	
	1950	Sept. 24	17.71	24	89.8		
	1951	Aug. 23	12.0	18	67.1		
	1952	Oct. 2	15.07	23	86.0		
	1953	Aug. 23	11-71	15	55.7		
	1954	Aug. 15	8.27	13	48.1		
	1955	Sept.9	4.21	3	10.2		
	1956	Aug. 25	18.07	25	93.6		
	1957	Sept. 16	11.86	17	63.3		
	1958	Aug 23	11.71	16	59.5		
	1959	Aug. 19	14.36	21	78.4		
	1960	July 31	5.76	6	21.6		
	1961	Aug 8	7.86	11	40.5	<u> </u>	
	1962		5.91	7		 	
		Aug. 1		8	25.4		
	1963	Sept. 7	7.9		29.2	 	
	1964	Aug.17 July 21	14.43	12	44.3 82.2		
		04.72	,				
	1966	Aug. 2	5,53	5	17.8		
	1967	Sept 7	4.97	4	14.0		
	1968	Aug. 7	2.39	2	6.4		
	1969	Sept 18	12.80	20	74.6		
	1970	Aug. 25	7.5	10	36.7		
-u	1971	Aug 21	10.14	14	51.9		
····	1972	Aug.14	6.6	9	32,9	1	
	1973	Sept 17	1,54		2.64		
		·			-	a promoter that pro-	
			, 1				

APPENDIX IV

KENNE", UDOR 7-day Low Flow Events
CONSULTING ENGINEERS Little Spokane R. at Elk 7-day Low Flow Events

WATER RESOURCES STUDY -- METROPOLITAN SPOKANE REGION

BY PHS TASK NO. 410.1	DATE 19 May	<u> 14</u> subject <u> 7</u>	-day Low F	low	SHEET NO.	OF
TASK NO. 410.1	REV. DATE	tle Spoken	e Ri at Ell	<u> </u>	FILE NO.	
	1,41	7-day Event	Talay low mean disch.	l .	USGS GAGE	4270
	Water Year			Ordered	Plotting	
	Ending	Ending	cfs	Number	Position	
	1948	0 ct. 13	44.71	17	68.4	,
	1949	Sept. 6	45.71	18	72.6	
	1950	Sept. 16	48.14	22	89.0	
***************************************	1951	Sept. 19	47.0	20	80.8	
	1952	Oct.7	50.0	24	97,2	
	1953	Sept. 16	42.0	13	52,0	
	1954		42.3	14	56.2	
	1955	Sept 15	37.71	4	15,2	
9						
	1956	0d.15	46.71	19	76.6	
	1957		39,43	8	31.6	
	1958	0d.31	43,43	15	60.2	· · · · · · · · · · · · · · · · · · ·
	1959	Aug 6	41.0	10	39.8	
	1960	Sept. 21	49.0	23	93.0	
	1961	0ict. 9	47.71	21	84.8	
	1962	Sept.8	42.0	12	48,0	
	1963	Sept. 12	39.0	7	27.4	
	1964	Oct.31	37,86	5	19.2	
	1965	0d.7	43.56	16	64.4	
	1966	Sept 12	34.14	2	7.0	
	1967	Sept. 30	36.43	3	11.0	
	1968	Aug. 1	33.86	1	2.85	······································
	1969		41.43	(1	43.8	
	. 1970	Aug. 31	38.0	6	23.4	
	1971	Aug. 21	40.14	9	35.6	
	 		,		,	
	1					
	l .	e <u>anna disp</u> atricular — des 140 del 22 a. 2. 2 00 del discussión adminis				
	 		herr or consequent and the Assessment			
					<u> </u>	

KENNEDY-TUDOR 7-day Low Flow Events
CONSULTING ENGINEERS Little Spokane R. at Dartford
WATER RESOURCES STUDY — METROPOLITAN SPC......

NO. 410.1	DATE 19 May 1	T SUBJECT !	Re at Dart	ford	_ SHEET NO _ FILE NO	OF
110	I MAY DATE		,	- 	USGS GAG	4310
	Water Year	7-day Event Ending	7-day low mean disch. efs	Ordered	Plotting Position	-
	Ending					
	1929	Sept. 6	96.71	5	10.3	
	1930	July 29	68.14	2	3.7	
	1931	Aug 20	65.27	 	1,53	<u> </u>
	1932	Sept. 18	104.29	6	12.6	
	1947	July 26	105,71	7	16.0	
	19+8	Sept. 19	158	28	87.4	
	1949	Aug 21	130.24	17	50.0	
	1950	Sept 5	151.71	27	84.0	
	1951	Aug. 24	14:-71	25	77.2	
	1952	0ct 2	16643	31	97.64	
	1953	Aug. 23	138.57	23	70.4	
	1934	Aug 15	133.14	19	56.8	
	1955	Sept 7	126:7	1+	39.8	
	1956	Sept 27	158.71	29	90.8	
	1957	A-9.29	122,0	10	26.2	
·	1958	Aug 20	135,71	21	63.6	
	1959	Au; 19	136,86	22	67.0	
	1960	0ct 6	159.86	30	94,2	
	1961	Aug 15	145,37	26	80.6	
	1162	Aug 21	134.43	20	60.2	
	1963	Sept 8	127.8 ,	15	43.2	
	1964	Aug. 17	140.71	. 24	73.8	
مرمان موراق وروز وروز المام المام الموافق المام المام المام المام المام المام المام المام المام المام المام الم	165	A 14 17	1.186	12	33,0	
	1966	Au225	127,14	8	19.4	<u> </u>
	1967	1. Au 27	1	i	22.8	
	1 1968	1. 0'24 52 Aug. 5.	11271	4	8,1	
	19.7		13:126		53,4	
	•	Aug. 22	1230		21.6	**************************************
	. 1,	i ' -	-	- .		t de aller de la companie de la comp
A	- 12 12 m	404.76	, 124,51	13.	36.4	• • • • • •
	1972	Aug 13 Aug 7	. ,3४ ,५ । ५ ५३	16	46.6	1

APPENDIX I

KENNEDY ENGINEERS

11306 Bridgeport Way, S.W., Tacoma

BY EIM DATE 28 Jan 75 SUBJECT WRS - Spokane JOB NO / SHEET OF

7- Day Low Flow - Little Spokane R. at Dartford

	Order		7 day medn	Plot	ting Posi	tions				
	No	Year	medn cfs	N=29	N= 45	Solowled				
•	/	1931	65,29		1.53	1,53		- +		ı
	2	1930	68.14		3.7	3.7	_			
	3	1973	81.43	2,36	5,9	5.9				
	4	1968	93.57	5.8	8.1	8.1		-		-
	5	1929	96,71	9.2	10.3	10.3			ļ -	
	6	1932	104.29	12.6	12.5	12.6	*			
	7	1947	105.71	16.0	14.7	16.0				
	. 8	1966	107.14	19.4	17.0	19.4.				=
-	9	1967	112,71	22.8	19.2	22.8				
	10	1957	122.0	26,2	21.4	26.2	-			
	. //	1970	123.0	29.6	. 23,6	29.6				
	12	1965	123.86	33.0	25,8	33.0		:		-
*	13	1971	124,57	36,4		36.4	-			
	14	1955	126,57	39.8		39.8		-		
•	15	1963	127.86	43.2		43.2	}		-	
	16	1972	130,14	46.6		46.6				
		1949	130,29	50.0		50.0	-			
	18	1969	130.86			53.4	-			
-	19	1954	133,14			56.8				
	20	1962	134,43			60.2				
-	2/	1958	135,71		}	63.6		-		
-	22	1959	136,86			67.0			-	
	23	1953	138.57			70.4		-		
•-	24	1964	140,71			73.8			-	
	25	1951	141,71		,	77.2				~
	26	1961	145.57			80.6		ŀ		-
Jan Tara	27	1950	15171			84.0		-		
	28	1948	158			87.4				
	29	1956	158,71			90.8				
	30	1960	157.86			94,2				
	31	1952	166.43			97.64				
					410.1-	35				
	Ì							1		

APPENDIX VI
Peak Flows, Raw Data, Rainfall Events
Spokane R. at Spokane

YEAR	MAX.PEAK	1 DAY PEAK	YEAF	MAX. FEER	L DAY PEAK
1891	ø	9	1933	9	9700
1892	ø	11200	1934	<u>ង្ខាធ្</u> មើ	47100
1893	คิ	3600	1935	Ø	10900
1894	ġ	10600	1936	Đ	75.70
1895	Ô	9240	1937	Ą	2190
1896	Õ	12600	19 .38	13	1 ពិភ័កមិ
1897	ē	17000	1939	G	43 30
1898	Ū	19000	1940	M	15.00
1899	ē	11000	1941	Ø	ខុតពុម្ព
1900	Ø	15800	1941	ť)	13500
1001	Ō	19000	1940	ମ	11300
1902	Ö	8850	1944	()	3:450
1903	ยิ	13000	1945	্র	45.00
1904	Õ	11500	1946	9	12900
1905	Ō	7510	1947	្រឹង្សិកម្រ	24400
1986	Ū	8250	1940	Ç)	16, 66
1907	ē	12800	1949	ij	141100
1:08	ē	14000	1956		្តាធិការ
1900	Ō	9900	1951	្គ.2014	2 / ମଣ୍ଡ
1910	2810 0	28100	1992	9	វន្តត្រូវ
1911	9	7540	1953		16900
1:412	Ö	9880	1954		11700
1413	Ø	29600	1955		4580
1::14	Ø	13000	1956	: ផ្ទ	22799
1915	Ö	9180	1957	' អូ	11400
1916	Ō	25100	1950		167'00
1417	Ø	3350	1953		<u> ଅଧୂଅତ୍ତ</u>
1918	396.00	39600	1906		17100
1919	ij	13400	1961		27469
1920	9	10500			<u> សព្ទតិមិ</u>
1921	Ø	19300		_	្រុកកិច្ច
19.22	ij	8920			46.0
1923	ß	9680			្លូក កិត្តិកែ ពេលពេ
1924	Ø	12600			្រុក្សា • ស្រាស
1925	Ø	22500			1 1800
1926	<u> </u>	8859			22366
1927	Ø	15800			15448
1928	ម			_	13000
1929	ı g	8130			17000
1936	. ១	1010			រុះដូច្បី ១៩១២
1001	. 0			i ii	សីកូស៊ូម៉ូ របស់ស
1902		1170	j ia.	4 4000	45190

APPENDIX VII
Peak Wlows, Raw Data, Snowmelt Events
Spokane R. at Spokane

	•	•			
YEAR	MAX.PEAK	1 DAY PEAK	YEAR	MAX.PEAK	1 DAY PEAK
1891	12300	12300	1933	00000	
1892	51800	21800		28500	. 28000
1893	37500	37500	1934	. 0	25700
1894	49000	49000	1935	25400	24900
1895	17100	17100	1936	33700	33700
1896	21400	17100	1937	22100	22100
1897	33900	21400	1938	32700	32200.
1898	27200	33900	1939	233Ø Ø	22800
1899		27200	1940	16500	16100
1900	28900	28900	1941	16100	14200
1900	17000	17000	1942	18400	15300
	22200	22200	1943	32400	31900
1902	24800	24800	1944	11400	9370
1903	23900	23900	1945	22800	
1904	27900	27900	1946	28400	22300
1905	9510	9510	1947	2040 0 8	27179
1906	18400	18300	1948		21600
1907	21400	21400	1949	396 00	39500
1908	21700	21700	1950	34200	34200
1909	17700	17700		327 00	32100
1910	ß	26000	1951	0	19600
1911	17200	17200	1952	32100	31900
1912	21200	21200	1953	22400	22200
1913	33600	33500	1954	31000	. 30800
1914	19600	19600	1955	27000	26(.00
1915	11590		1956	378 00	36800
1916	28400	11500	1957	35600	34600
1917	41900	28200	1958	24400	23200
1918		41500	1959	26 500	25200
1919	9 24 <i>6</i> 00	18800	1960	27400	27000
1920		24600	1961	Ø	24000
1921	18200	18200	1962	2760 0	25200
	26200	26200	1963	Ø	14400
1922	26000	25700	1964	31800	31000
1923	22000	21500	1965	332 00	32 6 00
1924	17800	17800	1966	20700	32599 10746
1925	31760	31100	1967	256 00	19700
1926	15800	14700	1968		25400
1927	28266	28200	1969	3040 0	10100
1928	26699	26000	1970	3240 <u>0</u>	29700
1929	14700	14300	1971	236 00	23100
1930	12900	12300		34000	33800
1931	15800	i5800	1972	0	33800
1932	33500	32900	1973	7310	7310
	art out out tart it	44.788	1974	Ø	9

APPENDIX VIII Peak Flows, Correlated, Rainfall Events Spokane R. at Spokane

- '	Y DAY	PEAK			1 DAY	PEAK
1891	0	9	. 1	933	9700 -	-14039
	11200	-15597		934	47100	47800
1893	3600	-6798	1	935		-15290
1894	10600	-14981	1	936		-11710
1895	9240	-13549	1	937	2190	-4725
1896	12600	-17001	1	938		-17978
1897	17000	-21166		939	4230	-7649
1898	19000	-22961		940		-19596
1899	11000	-15393		941		-12856
1900	15800	-20062		942		-17881
1901	19000	-22961		943		-15699
1902	8850	-13128		944	3950	-7276
1903	13000	-17394		945	9500	-13827
1904	11500			946	12900	-17296
1905	7510			947	24400	25000 25000
1906	8250	-12471		1948	16700	-20892 -18363
1907	12800			1949	14000	-183839
1908	14000			1950	20000 27700	-23037 28 2 00
1909	9900			1951	13800	-18171
1910	28100	28100		1952	15000	-21075
1911	7548			1953 1954	11700	-16104
1912	9880			1955	4880	-8493
1913	29600			1956 1956	22730	-26153
1914	13009			1957	11400	-15800
1915	9186			1958	16700	-20892
1916	251 0 0 3 35 0			1959	20200	-24013
1917 1918	396 0 (-		1960	17100	-21257
1919	13400	-		1961	27400	28200
1920	1050			1962	6868	-10896
1921	1930			1963	13609	18990
1922	892			1964	4639	
1923	960			1965	29900	
1924	1260			1966	4790	
1925	2250	-		1967	14800	
1926	885			1968	22300	
1927	1580	0 -20062		1969	15400	
1928	2450	0 -27655		1970		
1929	812	0 -12327		1971	17000	
1930	1010			1972		
1931	1200			1972		
1932	1170	0 -16104		1974	46100) 40100

COEFFICIENT OF CORRELATION = 0.950782304 STANDARD ERROR= 1.193351444 - SIGN INDICATES ESTIMATED FLOWS

EXTENDED STATISTICS M- 4.231513616 S= 0.188608147 N= 48.79783938

APPENDIX IX Peak Flows, Correlated, Snowmelt Events Spokene R. at Spokene

			•		
	1 DAY	PEAK		1 DAY	peak
1891	12300	12800	1933	28000	2 850 0
1892	21800	21800	. 1934	25700	-26145
1893	37500	37500	1935	24900	25400
1894	49000	49000	1936	33700	33700
1895	17100	17100	1937	22100	22100
1896	21400	21400	1938	32200	32700
1897	33900	33900	1939	22800	23300
1898	27200	27200	1940	16100	16500
1399	28900	28900	1941	14200	16100
1900	17000	17000	1942	15300	18400
1901	22200	22200	1943	31900	32400
1902	24800	24800	1944	9370	11400
1903	23900	23900	1945	22300	22800
1904	27900	27900	1946	27100	28400
1905	9510	9510	1947	21600	-22098
1906	18300	18400	1948	39500	39600
1907	21400	21400	1949	34200	34200
ţ9m8	21700	21700	1950	32100	32700
1909	17700	17700	1951	19600	-20114
1910	26000	-26441	1952	31900	32100
1911	17200	17200	1953	22200	22400
1912	21200	21200	1954	30800	31000
1913	33200	33600	1955	26000	27000
1914	19600	19600	1956	36800	37800
1915	11500	11500	1957	34600	35600
1916	28200	28400	1958	23200	24400
1917	41500	41900	1959	25200	26500
1918	18800	-19319	1960	27000	27400
1919	24600	24600	1961	24000	-24470
1920	18200	18200	1962	25200	27600
1921	26200	26200	1963	14400	-14925
1922	25700	26300	1964	31000	31800
1923	21500	22000	1965	32600	33200
1924	17800	17800	1966	19700	20700
1925	31100	31700	1967	25400	25600
1926	14700	15800	1968	10100	-10589
1927	28200	28200	1969	29700	30400
1928	26000	26600	1970	23100	23600
1929	14300	14700	1971	33800	34000
12500	12300	12900	1972	33800	-34083
19.0	15800	15800	1973	7310	7319
1932	32900	33500	, 1974	Ø	0

COEFFICIEN: OF CORPELATION = 0.995289840 STANDARD EPROR= 1.071620255 - SIGN INDICATES ESTIMATED FLOWS

APPENDIX X
Ordered Flows and Plotting Positions,
Rainfall Events, Spokane R. at Spokane

Н	Q	LOG Q	POS	N	Q	LOG Q	POS
1	47800	4.6794	0.84	43	17198	4.2355	51.20
2 3	46100	4.6637	2.04	44	17001	4.2305	52.40
3	39600	4.5977	3,24	45	17001	4.2305	53.60
4 5 6	34400	4.5366	4.44	46	16405	4.2150	54.80
ä	31994	4.5051	5.64	47	16104	4.2069	56.00
р 7	31759	4.5019	6.83	48	16104	4.2069	57.19
ਰੋ	30400	4,4829	ខ្.ពុទ្ធ	49	15902	4.2014	58.39
9	28200 28200	4.4502 4.4502	9.23	50	15800	4.1987	59.59
16	20200 28149	4.4495	10.43 11.63	51	15699	4.1959	60.79
11	28100	4.4487	12.83	52 53	15597 15393	4.1930 4.1873	61.99
12	27655	4.4418	14.03	54	15290	4.1844	63.19 64.39
13	26153	4.4175	15.23	55 55	14981	4.1755	65.59
14	25485	4.4147	15.43	5 6	14878	4.1725	66.79
15	25000	4.3979	17.63	5̃?	14461	4.1602	67.99
16	24013	4.3805	18.82	58	14251	4.1538	69.18
1.7	23839	4.3773	20.02	59	14230	4.1532	70.38
183	23226	4.3660	21.22	60	14039	4.1473	71.58
19	22961	4.3610	22.42	61	13933	4.1441	72.78
20	22961	4.3610	23.62	62	13827	4.1407	73.98
21	21257	4.3275	24.82	63	13549	4.1319	75.18
22	21166	4.3256	26.02	<u>64</u>	13485	4.1298	76.38
23	21166	4.3256	27.22	65	13204	4.1207	77.58
34 25	21075 20892	4.3238	28.42	66	13128	4.1182	78.78
26	20072 20892	4.3200 4.3200	29.62 30.82	6 7 68	13128	4.1182	79.98
100 to 10	20062	4.3024	30.02 32.01	69	12856 12471	4.1091 4.0959	81.18 82.37
33	20062	4.3024	33.21	70	12327	4.0909 4.0909	oz.or 83.57
29	19690	4.2942	34.41	71	11710	4.0686	84.77
50	19596	4.2922	35.61	72	11676	4.0673	85.97
31	19125	4.2816	36.81	73	11642	4.0660	87.17
3.3	18900	4.2765	38.01	74	10896	4.0373	88.37
53	18363	4.2639	39.21	75	10545	4.0231	89.57
34	18363	4.2639	40.41	76	8493	3.9291	90.77
35	18171	4.2594	41.61	77	8378	3.9231	91.97
36	17978	4.2547	42.81	78	8172	3.9123	93.17
37	17881	4.2524	44.00	79 20	7649	3.8836	94.36
38 90	17784	4.2500	45.20	80	7276	3.8619	95.56
39 40	17394 17394	4.2404	46.40 47.60	81	6798 6410	3.8324	96.76
40 41	17394	4.2404 4.2404	47.60 48.80	82 83	6449 4225	3.8095 2.6744	97.96
42	17296	4.2379		00	4725	3.6744	99.16
41.0	17296	4.23/9	50.00				

Our second of the second of th

APPENDIX XI
Ordered Flows and Plotting Positions
Snowmelt Events, Spokene R. at Spokene

X1

И	Q	LOG Q	POS	N .	Q	LOG Q	ខ្មាន
12345678901234567890123456789012 1111111111122222222223333333333444	41900 41900 41900 41900 377500 377500 377500 377500 37700 37	227504405526301155554149988332698649230342859 9227741405526301155554149988332698649230342859 6655775333265301555541499883326986449230342859 444444444444444444444444444444444444	0.84444 0.844444 0.833333333333334 0.863333333334 0.863333333334 0.863333333334 0.8633333334 0.863333334 0.863333334 0.86333334 0.863333334 0.863333334 0.863333334 0.863333334 0.8633333334 0.86333333333333333333333333333333333333	444567890123456789012345678901234567890123 55555555566666666777777777788888	24400 44700 244400 2336000 2336000 2336000 2336000 2336000 2336000 2336000 2336000 23360000 23360000 23360000000000	0.66449 4.86749 4.387849 4.38787 4.38787 4.385644 4.385644 4.38333333333333333333333333333333333	P. 08 200009999999999999999999999999999999

APPENDIX XII Computed Peak Flow Curves, Rainfall and Snowmelt Events, Spokane R. at Spokane

	RAINFALL	EVENTS			SNOWMELT	EVENTS	
P INF	К	FLOWS	P(N)	P INF	K	FLOWS	P(N)
0.01 0.10 1.00 5.00 10.00 30.00	3.15 2.70 2.12 1.56 1.25 0.55	67047 55110 42871 33524 29282 21655	0.04 0.22 1.38 5.69 10.69 30.44	0.01 0.10 1.00 5.00 10.00 30.00	2.99 2.59 2.06 1.53 1.24 0.56	67881 58849 48762 40365 36313 28559	0.03 0.17 1.26 5.48 10.48 30.34
50.00 70.00 90.00 95.00 99.90 99.99	0.05 -0.48 -1.31 -1.71 -2.53	17387 13810 9667 8094 5670 3738 2579	50.00 69.56 89.31 94.31 98.62 99.78 99.96	50.00 70.00 90.00 95.00 99.00 99.99	0.06 -0.47 -1.31 -1.73 -2.59 -3.61 -4.54	23903 19777 14675 12624 9301 6468 4657	50.00 69.66 89.52 94.52 98.74 99.83 99.97

ADJUSTED VALUES:

RAINFALL CALCULATED SKEW FACTOR= -0.278057536 SNOWMELT CALCULATED SKEW FACTOR= -0.785962836

SKEW FACTOR USED IN COMPUTATION: RAINFALL CALCULATED G= -0.278057536 SNOWMELT REGIONAL G= -0.36

APPENDIX XV Peak Flows, Raw Data, Rainfall Events Little Spokane R. at Dartford

YEAR	MAX.PEAK	1 DAY PEA	К	YEAR	MAX.PEAK	1	DAY	PEAK
1929	Ø		0	1 9 52	0			818
1930	730	67		1953				762
1931	, 0	ŽŠ		1954				977
1932	1900	167		1955				1220
1933	Ö		Ò	1956				740
1934	õ		Ö	1957				1680
1935	õ		ē	1958				1870
1936	Õ		Ö	1959	2060			1610
1937	ě		0 0 ·	1960	2460			1900
1 938	ย์		Ö	1961	1870			1700
1939	õ		Ö	1962	1260			1180
1940	ē		0 0	1963				1720
1941	ē		Ø	1964	1 0			525
1942	Õ		Ö	1965	ភ 🧸 💆			980
1943	Õ		0	1966	5 1110			984
1944	ยิ		0 0	1967				1350
1945	Ô		Ø	1969	3 1160			910
1946	Õ		0	1965				356
1947	640	5	96	197	9 3170			2800
1948	Ō	13	80	197				1050
1949	1620	15		197				945
1950	2240	20		197				1480
1951	1560	14	00	197	4 2860			2750

APPENDIX XVI Peak Flows, Raw Data, Snowmelt Events Little Spokene R. at Dartford

YEAR	MAX.PEAK	1 DAY PEAK	YEAR	MAX.PEAK	1 DAY PEAK
1929	9	9	1050	d program	
1930	ã	227	1952	1580	1520
1931	260	260	1953	1950	900
1932	រ. ១៦ ម៉		1954	0	642
1933	e G	រួមរត្	1955	0	564
1934	0 9	õ	1956	1720	1680
	ម្	Q	1957	0	645
1935	Ü	0	1958	Ø	730
1936	ଡ଼	0	1959	Ø	894
1937	9 3	0	1960	Õ	694
1938	ਹ	θ	1961	<u> </u>	1390
1939	0	0	1962	ŏ	80 3
1940	9	Ø	1963	Ö	69 <u>2</u>
1941	Ø	9	1954	940	
1942	Ŋ	Ō	1965	1230	900
1943	છે		1966		1180
1944	Ø	9 9	1967	Ø	583
1945	õ	ĕ		Ø	732
1946	ด	ő	1968	0,	441
1947	0 0		1969	1970	1820
1946	1600	390	1970	Ø	795
1949		1620	1971	0	797
1950	ព្	1120	1972	Ø	517
	ķ1	1030	1973	ดู	350
1951	Ü	1260	1974	0	ଥ

APPENDIX XVII

Peak Flows, Correlated, Rainfall Events
Little Spokane R. at Dartford

kvit !

	1 DAY	PEAK) DAY	PEAK
1391	0	9	1933	I DAY	(0
1892	0	Ø	1934	Ø	Ò
1893	Ø	Ö	1935	Ø	Ø
1894	Ø	Ø	1936	Ø	Ø
1895	Ö	ø	1937	Õ	0
1896	Ø	. 0	1938	0	Ø
1897	0	Ø	1939	ø	Ø
1898	0	Ø	1940	0	Ø
1899	0	១	1940 1941 1942	Ø	0 0 0 0 0
1900	Ø	0 .	1942	Ø	0
1961	0	0	1943	Ø	Ø
1902	Ø	0	1944	0	Ø
1903	0	Ø	1945	Ø	Ø
1904	0.	Ø	1946	Ø	0
1905	Ø	ବର ବର ବର ବର ବର ବର	1947	596	640
1906	Ø	Ø	1948	1380	-1547 1620
1907	0	Ø	1949	1520	1620
1908	9 9	0	1950	2090	2240
1909	Ø	Ü	1951	1400	1560
1910 1911	Ø	Ø	1952	818	-907
1911	Q	<u> </u>	1953	762	-844
1912	9	Ø	1954	977	1110
1913	Ø	Ø	1955	1220 740	1320 -819 2 0 60
1914	ġ	ñ	1956	740	-814
1913 1914 1915 1916 1917 1910 1919	9 9	0 0 0	1957	1680	2060 2040
1310	р С	9	1958	1870 1610	2040 2060
1211	9 9	0 0	1959 1960	1988	2460
1210	G		1961		1870
1217 1000	0 0	0 0	1962	1,00 1180	1260
1765 1991	8	Ø	1963	1720	1950
1921 1922	ŏ	Ø	1964	525	-577
100	Ø	ő	1965	980	-1091
1924	Ö	ğ	1966	984	1110
1975	ŏ	ŏ	1967	1350	1110 1470
1924 1925 1926	ŏ	ñ	1968	910	1160
1927	ĕ	Ö	1969	356	-388 3170 1110
1928	ŏ	ŏ	1969 1970 1971	2800	3170
1928 1929	g	Ö	1971	1050	1110
1930	675	730	1972	945.	970
1931	238	-257	1973	1480	1680
1932	238 1678	1900	1974	2750	2860

COEFFICIENT OF CORRELATION = 0.986753551 STANDARD ERROR= 1.141700976 - SIGN INDICATES ESTIMATED FLONS

APPENDIX XVIII

Peak Flows, Correlated, Snowmelt Events
Little Spokene R. at Dertford

	1 DAY	PEAK		LDAY	PEAK
1891	Ø		1933		Ø
1892	9 9	9 9	1934	0 0	ð
1893	Ø	Ø	1935	ē	Õ
1894	0	Ø	1936	Õ	ดิ
1895		Ö	1937	ย้	9 9
1896	Ø	Õ	1932	ดี	ด
1896 1897	0	8	1939	0 0	ā
1898	Ø	999599999999	1939 1940 1941 1942	ē	9 9 9
1899 1900 1901	Ø	Ø	1941	Ö	Ĝ
1900	0	0	1942	9 9 9	0 0
1901	0	Ø	1943 1944 1945	Ö	Ö
1902	Ø	9	1944	Ü	Ø
1903	0	0	1945	Ø	Ö
1904	Ø	- 0	1946	0	Ø
1904 1905	9 9 9 9 9 9 9 9 9	0	1947	390	-455
1906	Ø		1948	1620	1660
1907	ଡ ଡ ଡ ଡ ଡ	0 9	1949	1120	1660 -1272
1908	9	Ø	1950 1951	1030	~1172
1909	Ø	Ø	1951	1260	-1427
1910 1911 1912 1913	Ø	Ø	1952	1520	1580
1911	0 0	ପ ପ ପ	1953	900	1950
1912	Ø	9	1954	642	-739
1913	9 9 9 9 9	0 0	1955	5£4	-652
1914 1915	Ø	0	1956	1680	1720
1915	Ø	0 0	1957	645	-743
1916	0	0	1958	730	~838
1917 1918 1919	Ø	ଥ ଡ ଡ	1959	894	-1021
1918	0	Ø	1960 1961 1962	694	-798
1919	Ö	Ø	1961	1390	~1570
1 '4' '2' (1.	Ø	ŋ	1962	803	-920
1921 1922 1923	ø	Ø	1963	692	-795
1922	Ø	Ø	1964	900	940
1923	Ø	Ø	1965	1180	1230 -673
1924	Ø	Ø	1966	583	-673
1925 1926	Ø	Ø	1967	732	-840
1926	Õ	0	1968	4 + 1	-513 1970
1927 1928	0 0	Ø	1969	1820	1970
1928	ลั	Ø	1970	795	-911 -913
1929 1930	00 m	9	1971	797	-913
1930	9 227 260	~458 040	1972	517	-599
1932	4040	-268 260 -1150	1973	350	-409
1756	1010	-1120	1974	Ø	Ð

COEFFICIENT OF CORRELATION = 0.908402381 STANDARD ERROR= 1.75803327 - SIGN INDICATES ESTIMATED FLOWS

APPENDIX XIX Peak Flows, Extended, Rainfall Events Little Spokane R. at Dartford

#4225	#4310	*41	
1891 0	0	1933 -140	
1892 -15597	-119Š	1934 478	
1893 -6798	-956	1935 -152	
1894 -14981	-1182	1936 -117	
1895 -13549	-1151	1937 -47	
1896 -17001	-1223	1938 -179	
1897 -21166	-1297	1939 -76	
1898 -22961	-1326	1940 -195	
1899 -1 539 3	-1191	1941 -128	
1900 -20062	-1279	1942 -178	81 -1240
1901 -22961	-1326	1943 -156	
1902 -13128	-1141	1944 -72	
1903 -17394	-1231	1945 -138	
1904 -15902	-1201	1946 -172	
1905 -11642	-1105	1947 250	
1906 -12471	-1126	1948 208	
1907 -17198	-1227	1949 -183	
1908 -18363	-1249	1950 -238	39 2240
1909 -14251	-1167	1951 282	
1910 28100	-1400	1952 -181	
1911 -11676	-1106	1953 -210	
1912 -14230	-1166	1954 -161	
1913 -31759	-1447	1955 -84	
1914 -17394	-1231	1956 -261	
1915 -13485	-1149	1957 -158	
1916 -28149	-1401	1958 -208	
1917 -6449 1918 39600	-943	1959 -240	10 2060
1 1 1 1 1 1 1 1 1	-1535	1960 -212	
1919 -17784 1920 -14878	-1238	1961 282	
1921 -23226	-1180 -1330	1962 -108	
1922 -13204	-1143	1963 189	
1923 -13933	-1143	1964 -81	
1924 -17001	-1223	1965 -319	
1925 -25985	-1371	1966 -83	
1926 -13128	-1141	1967 -191 1968 - 304	
1927 -20062	-1279		
1928 -27655	-1394	1969 -196 1970 -173	
1929 -12327	-1122	1971 -211	
1930 -14461	730	1972 344	
1931 -16405	-257	1970 - 105	
1932 16104	1900	1974 461	
	2700	1514 407	იი ბებს

COEFFICIENT OF CORRELATION = 0.073226849 STANDARD ERROR = 3.104353842 - SIGN INDICATES ESTIMATED FLOWS

APPENDIX XX Peak Flows, Extended, Snowmelt Events Little Spokene R. at Dartford

	#4215	#4310		#4225	# 4310
1891	12800	-512	1933	28500	-932
1892	21800	-795	1934	-26145	-924
1893	37 500	-1245	1935	25400	-902
1894	49000	-1554	1936	33700	-1140
1895	17100	-650	1937	22100	-804
1896	21400	-783	1938	32 70 0	-1112
1897	33 90 0	-1145	1939	23300	-840
1898	272 0 0	-955	1940	16500	-631
1899	28 900	-1004	1941	16100	-619
1900	17000	-647	1942	18400	-691
1901	22200	-807	1943	32400	-1103
1902	248 0 0	-884	1944	11400	-465
1903	23900	-858	1945	22800	-825
1904	27900	-975	1946	28400	-989
1905	9510	-400	1947	-22098	-455
1906	18400	-691	1948	396 00	1660
1967	21400	-783	1949	34200	-1272
1900	21700	-792	1950	32700	-1172
1909	17700	~669	1951	-20114	-1427
1910	-26441	-933	1952	32100	1580
1911	17200	- <u>653</u>	1953	22400	1950
1912	21200	-777	1954	31000	~739
1913	336 0 0	-1137	1955	27000	-652
1914	19600	-728	1956	37800	1720
1915	11500	-468	1957	35600	-743
1910	28400	-989	1958	24400	-833
1917	41900	1365	W No Teach of	26500	-1021
1910	19319	-719	1960	27400	~798
19:9	24600	-879	1961	- 24470	-1570
1920 1931	182 0 0 262 0 0	-685	1962	27600	-920
1932	263 0 0	-926 -929	1963	-14925	-795
1923	24000 24000	-929 -801	1964 1965	31800	940
1924	17800	-672	1965 1966	33 200	1230 -673
19.5	31700	-J084	1967	2070 0 25600	-840
1920	15800	-609	1761 1968	-10589	-513
1975	282 0 0	-984	1760 1969	-10009 50400	19"0
1920	26600	-937	1970	23600	-911
1924	1.4700	-574	1971	34000	913
1930	17,00	-263	1972	- 34083	-599
1931	15800	260 260	1973	7310	-409
1902	33500	-1150	1974	, , , , , g	មិ មិ
1902	3 3588	-1150	1974	មិ	Ø

coefficient of correlation = 0.602309190 $_{\odot}$ 0.602309190 $_{\odot}$ 0.322890631

^{*} STOR THOU WES ESTIMATED From

[.] THE BEED AND TO BE TO 22020150. No. 09.0448,0006

APPENDIX XXI
Ordered Flows and Plotting Positions
Rainfall Events, Little Spokene R. at Dartford

				,,	-		
Ň	lý.	LOG Q	POS	N	Q	LOG 0	PO\$
123456789012345678901234567890123456789012	3170 3170 3170 3170 3170 3170 3170 3170	3.4564 3.4569 3.4569 3.3509 3.3509 3.3509 3.32755 3.22	0.84 4.44 4.63 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.22 8.22 8.22 8.22 8.33 8.41 8.42 8.33 8.42 8.32 8.32 8.33 8.41 8.42 8.33 8.41 8.42 <t< td=""><td>44456789012345678901234567890123 ●</td><td>1195 1197 1198 1188 1188 1188 1188 1188 1188</td><td>3.075917997253333333333333333333333333333333333</td><td>51.400 52.400 52.400 53.800 53.800 53.5799 53.</td></t<>	44456789012345678901234567890123 ●	1195 1197 1198 1188 1188 1188 1188 1188 1188	3.075917997253333333333333333333333333333333333	51.400 52.400 52.400 53.800 53.800 53.5799 53.

APPENDIX XXII
Ordered Flows and Plotting Positions
Snowmelt Events, Little Spokane R. at Dartford

N	Q	LOG Q	POS	N	Q	LOG @	P08
1234567890123456789012345678	1950 1950 1950 1950 1957 1957 1957 1957 1957 1957 1957 1957	3.299551 3.299551 3.299551 3.19593 3.19593 3.195997 3.195997 3.195997 3.195997 3.195997 3.195997 3.195997 3.195997 3.195999 3.195999 3.19599999999999999999999999999999999999	0.2444 0.2444	4456789012345678901234567890 445678901234567890	8438 8438 8438 8438 8438 8438 8438 8438	2.9235 9235 9235 9235 9235 9235 9235 9235	20000999999999999999999999999999999999
27	975	2 .9 890	32.01	69	647	2.8110	82.37

APPENDIX XXIII Computed Peak Flow Curves, Rainfall and Snowmalt Events, Little Spokene R. at Dertford

	RAINFHLL	EVENTS			SHONMELI	EVENTS	
P INF	the same and the same same same same same same same sam	FLOWS	P(N)	P INF	K	FLOWS	P(N)
0.01	3,22	7649	0.07	0.01	3.36	4633	0.08
. 0.10	2.75	5845	0.32	0.10	2.84	3559	0.36
1.00	2.15	4156	1.70	1.00	2,20	2571	1,80
5.00	1.57	2986	6.22	5.00	1.59	1837	6.38
10.00	1.25	2493	11.32	10.00	1.26	1597	11.38
30.00	0.55	1672	31.02	30.00	0.54	1109	31.18
50.0 0	0.04	1250	50.00	50.00	0.03	856	50.00
ំ 76 , ពីម	-0.49	927	68.98 ·	70.00	-0.50	655	68,82
, 90, 20	-1.39	583	88.78	90.00	-1.30	437	93.62
95.00	-1.71	464	93.78	95.00	-1.69	358	93.62
्वव, ३०	-2.51	294	98.30	99.00	-2.46	242	98.20
49, 40		173	79.68	99.90	-3.35	154	99,54
39,93		198	99.93	9 9.99	-4.12	104	99,92

ASJUSTED VAL ES:

/xx

PAINFALL CALCULATED SKEW FACTOR= -0.243985903 \$%JWMELT CALCULATED SKEW FACTOR= -0.178348374

SKEW FACIOR USED IN COMPUTATION: FAINFALL CALCULATED G= -0.243985903 SNOWDELT CALCULATED G= -0.178348374

APPENDIX XXVI Peak Flows, Raw Data, Rainfall Events, Hangman Cr. at Spokans

YEAR	MAX.PEAK	1 DAY	PEAK	YEAR	MAX.PEAK	1	DAY PEAK
1949	6210		4830	1962	4610		4060
1950	9150		6820	1963	20600		10100
1951	6080		4270	1964	3900		3190
1952	4800		3840	1965	14500		9650
1953	3560		3100	1966	4560		3300
1954	6500		3660	1967	5310		4160
1955	4730		3880	1968	4590		3720
1956	11300		9280	1969	6000		5030
1957	9320		6440	1970	8650		7370
1958	6090		4710	1971	5340		3780
1959	16200		9560	1972	11600		11000
1960	2710		2170	1973	11500		4500
1961	6320		5550	1974	18300		14500

APPENDIX XXVII Peak Flows, Extended, Rainfall Events, Hangman Cr. at Spokane

#4225	# 4240		#4225	-4140
189i g	ଡ଼	1933	-14039	-6052
1892 -15597	-6378	1934	47800	-11159
1893 -6798	-4213	1935	-15290	-6315
1894 -14981	-6251	1936	-11710	-5528
1 8 95 -13 5 49	-5945	1937	-4725	-3513
1896 -17001	-6659		-17978	-6847
1897 -21166	-7429	1939	-7649	-4469
1898 -22961	-7737	1940	-19596	-7149
1899 -15393	-6337	1941	-12856	-5792
1900 -20062	33	1942	-17881	-6829
1901 -22961	-7737	1943	-15699	-6399
1902 -13128	-5853	1944	-7276	-4358
1903 -17394	-6735	1945	-13827	-6006
1904 -15902	-6410	1946	-17296	^ -6716
1905 -11642	-5512	1947	25000	-8073
190€ -12471	-5704	1948	-20892	-7381
1907 -17198	-6697	1949	-18363	6210
1900 -18363	-6920	1950	-23839	9150
1909 -14251	-6097	1951	28200	6080
1910 28100	-8559	1952	-18171	4800
1911 -11676	-5520	1953	-21075	3560
1912 -14230 1913 -31759	-6093	1954	16104	6500
	-9098	1955	-8493	4730
1914 -17394 1915 -13485	-6735	1956	-26153	11300
1916 -28149	-5931 -8566	1957	-15800	9320
191, -6449	-4104	1958	-20892	6090
1910 39600	-10158	1959	-24013	16200
1919 -17784	-6810	1960	-21257	2710
1920 -14878	-6230	1961 1962	28200 -10896	6320
1921 -23226	-7782	1963	18900	4 61 0 20600
1928 13204	-5869	1964	-8172	20 0 00
1922 - 13933	-6029	1965	-01994	14500
1924 - 17001	-6659	1966	-8378	4560
1925 -25985	8231	1967	-19125	5310
1926 -13128	-5853	i 968	30400	4590
1937 -20063	-7233	1969	-19690	6999
19.14 -27655	-8491	1976	-17394	8650
19.9 (42.27)	-5671	ight	-21166	5340
1976 -14461	-6142	1972	J4400	11600
1331 -16405	-6541	1973	-10545	11500
1902 16104	-6481	1474	46100	18300

COEFFICIENT OF CORRELATION = 0.376100774 STANDARD EPROG = 2.670390486 - OLGN INDECATED ESTIMATED FLOWS

VIL

APPENDIX XXVIII Ordered Flows and Plotting Positions Rainfall Events, Hangman Cr. at Spokane

Н	Q	LOG Q	POS	н	Q	LOG Q	POS
1	20600	4.3139	0.84	43	6337	3.8019	51.20
2	18300	4.2625	2.04	44	6320	3.8007	52.40
2345678	16200	4.2095	3.24	45	6315	3.8004	53.60
4	14500	4.1614	4.44	46	6251	3.7960	54.80
5	11600	4.0645	5.64	47	6230	3.7945	56.00
5	11500	4.0607	6.83	48	6210	3.7931	57.19
Ľ.	11300	4.0531	8.03	49	6142	3.7883	58.39
ğ	11159	4.0476	9.23	50	6097	3.7851	59.59
9 10	10158	4.0068	10.43	51	609 3	3.7848	60.79
10	9320	3.9694	11.63	52	6090	3.7846	61.99
11 12	9150	3.9614	12.83	53	6080	3.7839	63.19
13	9099 0050	3.9590	14.03	54	6052	3,7819	64,39
14	8650 8566	3.9370	15.23	55	6029	3.7803	65.59
15	იანნ მ 5 54	3.9328	16.43	56	6006	3.7786	55.79
16	8491	3.9324 3.9289	17.63	57	6000	3.7782	67.99
17	8231	3.9154	18.82	5 8	59 45	3.7742	69.18
18	8073	3.9070	20.02 21.22	59	59 31	3.7732	70.38
19	7782	3.8911	22.42	60 61	5869	3.7686	71.58
20	7737	3.8886	23.62	62	5853 5853	3.7673	72.78
21	7737	3.8886	24.82	63	5792	3.7673	73.98
22	7429	3.8709	26.02	64	5704	3.7628 3.7562	75.18
23	7381	3.8681	27.22	65	5671	3.7 5 37	76.38 77.58
24	7233	3.8593	28.42	66	5 5 28	3.7425	78.78
25	7233	3.8593	29.62	67	5520	3.7419	79.98
26	7149	3.8542	30.82	ଚ୍ଚେ ହେ	5512	3.7413	81.18
27	6920	3.8401	32.01	6 9	5340	3.7275	82.37
28	6847	3.8355	33.21	70	5310	3.7251	83.57
29	6829	3.8344	34.41	71	4800	3.6812	84.77
30	6819	3.8332	35.61	. 72	4730	3.6749	85.97
31	6735	3.8284	36.81	73	4610	3.6637	87.17
32	6735	3.8284	38.01	74	4590	3. 6 618	88.37
33	6716	3.8271	39.21	75	4560	3.6590	89.57
34	6697	3.8259	40.41	76	4469	3.6502	90.77
35	6659	3.8234	41.61	77	4358	3.6393	91.97
36	: <u>ხნ</u> ე9	3.8234	42.81	78	4213	3.6246	93.17
37	.541	្វ. 8157	44.00	79	4104	3.6132	94.36
36	6500	3.8129	45.20	80	3900	3.5911	95.56
39	6481	3.8116	46.40	81	3560	3.5514	96.76
40	6440	3.8089	47.60	82	3513	3.5457	97.96
41	6399	3.8061	48.80	83	2710	3.4330	99.16
42	6376	১.8047	50.00				

APPENDIX XXIX Computed Peak Flow Curve Hangman Creek at Spokane

						•	•
	RAINFALL	EVENTS			SHOWMEL1	F EVENTS	
P INF	K	FLOWS	P(N)	P INF	K	FLOWS	P(N)
0.01	4.20	6 077 7	0.07	0.00	0.00	0	0.00
0.10	3.39	39859	0.32	0.00	0.00	0	0.00
1.00	2.48	24684	1.68	0.00	0.00	Ö	0.00
5.00	1.70	16300	6.18	0.00	0.00	9 9	0.00
10.00	1.30	13224	11.18	0.00	0.00	Ö	0.00
30.00	0.49	8645	30.98	0.00	0.00	ä	0.00
50.00	-0.04	6545	50.00	0.00	0.00	Õ	0.00
70.00	-0.54	5005	69.02	0.00	0.00	õ	0.00
90.00	-1.26	3441	88.82	õ. ŏõ	0.00		0.00
95.00	-1.58	2903	93.82	0.00	0.00	0 0	0.00
99.00		2121	98.32	0.00	0.00	ă	0.00
99.90		1530	99.68	0.00	0.00	ō	8.00
99.99	-3.29	1179	99.93	0.00	0.00	ě	0.00
Mark Mark Mark Mark Mark	No. 10 ton of	4412	A A A A	0.00	0.00	-	w. QU

ADJUSTED VALUES:

RAINFALL EVENTS: M= 3.823929406 S= 0.22878466 N= 28.797428 SNOWMELT EVENTS: M= 0 S= 0 N= 0

RAINFALL CALCULATED SKEW FACTOR= 0.210806590

SYFW FACTOR USED IN COMPUTATION: RAINFALL CALCULATED G= 0.210806590 SNOWMELT PERIOD NOT ANALYSED

SECTION DIO. 2

FLOOD PLAIN DELINEATION

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION

SECTION 410.2

FLOOD PLAIN DELINEATION

25 April 1975

Department of the Army, Seattle District Corps of Engineers Kennedy-Tudor Consulting Engineers

INDEX

SUBJEC	<u>r</u>	PAGE
Hangman C	ns iver okane River	410.2- 1 410.2- 2 410.2- 2 410.2- 4 410.2- 6 410.2- 8 410.2-10
Index of I		a b
Appendix :	al photos, Little Spokane River December 1973 flood II	410.2-23
Appendix :	al photos, Hangman Creek December 1973 flood III al photos, Hangman Creek and ttle Spokane River	410.2-44
Appendix Inde	January 1974 flood IV x to aerial photos	410.2-56 410.2-68
	INDEX OF FIGURES	
TITL	<u>B</u>	
Figure A	Rating Curve - Gage #4225 Spokane R. at Spokane	410.2-12
Figure B	Rating Curve - Gage #4220 Spokane R. below Green Street	410.2-13
Figure C	Rating Curve - Gage #4195 Spokane R. above Liberty Bridge	410.2-14
Figure D	Rating Curve - Gage #4215 Spokane R. below Trent Road	410.2-15
Figure E	Rating Curve - Gage #4310 Little Spokene R. at Dartford	410.2-16

INDEX OF FIGURES (Cont.)

TITLE		PAGE
Figure F	Rating Curve - Gage #4240 Hangman Creek at Spokane	410.2-17
Figure G	High Water Profile - 100 Yr. Flood Spokane R., RM 72.4 to RM 79.6	410.2-18
Figure H	High Water Profile - 100 yr. Flood Spokane R., RM 79.6 to RM 96.5	410.2-19
Figure I	High Water Profile - 100 Yr. Flood Little Spokane River RM 0.0 to RM 23.3	410.2-20
Figure J	High Water Profile - 100 Yr. Flood Rock Creek thru Rockford	410.2-21
Figure K	100 Year Flood Plain, Rock Creek at Rockford, RM 13.4 to RM 13.7	410.2-22

INDEX OF PLATES *

T	TLE		PLATE NO.
Flood	Plain	Spokane River & Hangman Creek	41.0-1
11	11	Spokane River	410-2 to 13
11	11	Hangman Creek	410-14 to 16
11	**	Little Spokane River	410-17 to 26
it .	11	Rock Creek	410-27

^{*} Not bound in this report.

SECTION 410.2

FLOOD PLAIN DELINEATION

INTRODUCTION

The flood plain analysis area is composed of four reaches: the Spokene River from the confluence with Hangman Creek, RM 72.4, to the Idaho state line, RM 96.5; the Little Spokane River from the confluence with the Spokane R. er. RM 0.0, to the vicinity of Chattaroy, RM 23.2; Hangman Creek from its confluence with the Spokane River, RM 0.0 to the end of the adjacent residential development, approximate RM 4.0; and Rock Creek in the reach through Rockford. The results of the analysis are presented as follows for each of the respective reaches: for the Spokane River, a profile delineating the 100 yr flood water surface and a plan delineation of the 100 yr flood plain on 1" = 400' orthophoto backgrounds for the entire reach; for the Little Spokene River, a profile delineating the 100 yr flood water surface for the entire reach and a plan delineation of the 100 yr flood plain on 1" = 400' orthophoto and topographic backgrounds for the reaches between RM 0.0 and approximate RM 16 south of the town of Buckeye and on 1" = 2000' USGS maps RM 16 to Chattaroy; for Hangman Creek, a plan delineation of the 100 yr flood plain on 1" = 400' orthophoto backgrounds for RM 0.0 through RM 5.0; for Rock Creek, a profile delineating the 100 yr floodwater surface for the reaches through Rockford and plan at 1" = 400'. Large scale mapping is on plates which are bound at the end of this section.

The flood flows of 100 year return frequency are developed from

statistical analysis of available stream gage records in another section of this study. The results are summarized below:

Gage Number	Description	100 year recurrence
4224	Spokene River at Spokene	52,000
4310	Little Spokane River at Dartford	4,700
4240	Hangman Creek at Spokane	28,000

The Spokane River and Hangman Creek gages are located at the downstream and of the study reaches and the Little Spokane River gage at approximate mid-reach.

There is no stream gage on Rock Creek, a tributary of Hangman Creek, from which the 100 year flood flow can be developed directly by statistical analysis. The 100 year flood flow for Rock Creek at Rockford is developed by area correlation as discussed below.

Limitations

The flood plain delineations made in this study are for the purpose of general planning in water management. The results are not intended for use in establishing legal flood plain boundaries or for other uses with legal implications such as flood insurance. Neither the data base on which the studies are made nor the methodology employed in the analysis meet the requirements of such specialized legal application.

It will be noted on maps delineating the flood plain that the edge of the flood plain is shown in some cases to cross and recross contour lines. This is because greater weight is given to actual observed flooding than contour shape. The contour mapping is accurate to plus or minus 1/2 an interval or 2.5 feet. This, and other considerations, is an example of the limitations cited.

The Spokane River

Development of the profile delineating the 100 yr high water surface, as shown in Figs G & H, is subdivided into three parts.

- 1. Hangman Creek to City Waterworks bridge, RM 72.4 to RM 79.6.

 The City of Spokane invert profile at City datum is adjusted and matched to the Corps of Engineers study of the December 1933 flood profile at USC & GS datum using the datum shift of 16.58'. Since the 1933 flood was caused by discharge of 47,800 cfs whereas the 100 yr discharge is 52,000 cfs an upward adjustment of the 1933 profile is required to describe the 100 yr flood.

 Modifications are made to the 1933 profile in two sections: (a) RM 72.4 to 74.0 is raised 0.6' which reflects the incremental elevation difference between the two floods as indicated by extrapolation of the rating curve of USGS gage #4225 at RM 72.9, see Figure A; (b) The water surface in the vicinity of USGS streamgage #4220 RM 77.9, is raised 1.4 ft. to reflect the elevation difference between 47,800 cfs and 52,000 cfs as determined from the extrapolated rating curve associated with this gage. See Figure B.
- 2. Between Green Street Bridge, RM 78.0, and Argonne Road, RM 82.6 the invert and the 100 yr high water surface are assumed to be represented by linear joining of known conditions at the two endpoints, there being no historical data for either in this subreach.
- 3. Argonne Road bridge, RM 82.6, to Idaho state line, RM 96.5. This is approximately a 13 mile subreach with profile elevations and corresponding cross-section data available at about 2 mile intervals. At each of these intervals a high water measurement has been recorded for the Jan. 1974 flood of 46,100 cfs. The profile for the 1974 flood in this subreach is adjusted upward to represent the 100 yr flood by + 0.75' at RM 84.8 and + 1.5' at RM 93.9 and linearally prorated to adjacent subreaches. These increases are due to the elevation difference between the 100 yr discharge

of 52,000 cfs and the Jan. 1974 discharge of 46,100 cfs as indicated by extrapolation of USGS gages #4195 and #4215 respectively. See Figures C and D. A linear slope for both the invert and high water surface profile is assumed for all subreaches between the observed data at the cross-sections.

The flood plain delineation is produced on Plates 410-1 through 410-13 by plotting the high water line on 1" = 400' orthophoto maps with the basic reference for the extent of flooding being the vertical photos taken by the Corps of Engineers during the 1974 flood. Supplemental data are drawn from field observations, field photos and the water surface profile.

In general the Spokane River is well contained by its banks and control structures. Bridges provide ample clearance to pass large floods and urban development outside the city proper is not threatened by floods. In the city, three areas are subject to partial inundation by large floods. Areas of Pleasant Valley adjacent to the River downstream of Monroe St. bridge were flooded in the Jan. 1974 occurrence and this situation would be repeated for other large magnitude floods. Other urban areas which can be expected to experience moderate inundation by a 100 yr flood are reaches along Upriver Drive and the buildings located in the flats north of the river in the vicinity of East and West Trent bridges.

Little Spokane River

The 100 yr water surface profile as shown in Figure I is developed from a series of field measurements made by K-T. This Data includes high water observations for the Feb. 1970 flood of 3170 cfs, several cross-sections

and both aerial and ground photographs. These measurements were applied to the Corps of Engineers HEC-2 mathematical model and one run was made which yielded an approximate water surface profile. This profile is adjusted to more accurately fit the associated high water marks. The incremental depth from the observed 100 yr flood at the USGS gage #4310 at Dartford RM 10.8 is determined from the extrapolated rating curve shown in Figure E. The difference between the 1970 flood and the 100 yr flood of 4700 cfs is 1.1 ft. This increment is prorated by depth over the entire reach and added to the 1970 profile to yield the 100 yr high water surface profile. The backwater from Long Lake which is assumed to be elevation 1539 at RM 0.0 concurrent with the 100 yr flood on the Little Spokane. The estimated water surface profile of the Little Spokane at 100 year flood is also approximately 1539 at RM 0.0 matching the assumed lake backwater indicating negligible backwater effect extending into the river.

The limits of the 100 yr flood plain are presented on 1" = 400' topographic maps from the confluence of the Little Spokane and the Spokane rivers to Buckeye. Refer to Plates 410-17 through 410-24. The extent of the 100 yr flood plain is estimated by combining the elevations predicted on the 100 yr profile with oblique photos of the Dec. 1973 and Jan. 1974 flooding of the Little Spokane River.

A large magnitude flood on the Little Spokane river can be expected to inundate adjacent residential dwellings in the vicinity of Dartford and Buckey. In the lower reaches, RM 0.0 to RM 10.3, due to the flat nature of the overbank, extensive flooding occurs when the flood stage becomes higher

than the low channel banks. Even moderate occurrences tend to have this effect. These reaches contain several dwellings and a school which have a history of flood threats and damage. The upper reaches, RM 16.3 to 21.0, also have low channel banks with a wide flat overbank which are in-undated with moderate to large floods. However, very few residences are presently located on this flood plain.

Hangman Creek

A flood plain delineation on Hangman Creek is presented on 1" = 400' orthophoto maps from its confluence with the Spokane River to RM 3.0. Refer to Plates 410-1 & Plates 410-14 to 410-16. The basic reference utilized to determine extent of flooding is the photo record of the January 1974 flood made by Kennedy-Tudor. The limits of flooding are adjusted to reflect the 2.6 ft difference in the water surface between the January 1974 flood of 18,300 cfs and the 100 yr flood of 28,000 cfs. This incremental adjustment is obtained by comparison of the flood discharges to the extrapolated rating curve of USGS stream gage #4240, RM 0.8 as shown in Fig. F. The gage is within the reach being analysed.

Both the mapped flood area as shown on referenced plates and the oblique aerial photos of the December 1973 and January 1974 floods indicate flooding potential to several isolated residences in the reach below the railroad bridge at RM 3.1. There is also a strip about 1/2 mile long in the vicinity of RM 2.6 not presently occupied that has flooding potential. During the December '73 and January '74 floods there was some minor flood damage reported in the newspapers in the lower Hangman Creek area.

The news photos show that the primary source of damage was by undercutting of structures built on alluvium deposited by previous floods.

Analysis of oblique aerial photos of the entire length of Hangman Creek made during the Dec. 1973 and Jan. 1974 floods indicates the following locations of other potential flooding problems:

- There is overbank flow in the vicinity of RM 11.0, however, there are no structures involved.
- 2. There is overbank flow in the golf course at RM 14 which encroaches on fairways and comes near the clubhouse. The reach through the present golf course site was the subject of a previous flood profile analysis by the Corps of Engineers, results of which are not reported herein.
- 3. Overbank flow exists between RM 23.9 and ?5.0 but there are no buildings involved.
- 4. There is overbank flow north of Waverly between RM 36 and RM 37 which covered the county road and threatened a bridge during the Jan. 1974 flood. There are no buildings affected.
- 5. Minor road flooding and a threat to isolated farm buildings occurs in the vicinity of RM 41.0.
- 6. At Latah and north of Latah, RM 46.0 to RM 48.0, there is overbank inundation with road flooding. Some farm buildings are also involved at RM 48.0.
- 7. There is extensive overbank flooding in and around Tekoa. Farm land, farm buildings, roads and some residential areas are involved.

 Reconnaissance reports on the flooding problem in the Tekoa area were prepared in 1966 and 1970 by the Corps of Engineers, results of which are not

reported herein.

In general, this survey of aerial photos of recent flood flows indicates that there is essentially no urban development subject to or threatened by flooding of Hangman Creek between RM 4 and Tekoa.

Rock Creek at Rockford

A 100 yr high water surface profile is presented for the reaches of Rock Creek through Rockford in Figure J. Data for this analysis, including five cross-sections, was obtained by a joint field survey by the Corps of Engineers and K-T. The high water surface for the Jan. 1974 flood is plotted relative to the stream bed profile defined by the survey cross sections. The discharge associated with this observed flood of January 1974 is estimated to be 3100 cis based on the area discharge relationship for the Hangman Creek watershed developed from USGS gage #4240. This flow of 3100 cfs when applied to normal depth analysis of the two upstream cross sections gave close agreement with the observed 1974 high water marks and verified the basis for flow correlation. The 100 year discharge on Rock Creek at Rockford is estimated on this same basis to be 4750 cfs. The normal depth analysis for a flow of 4750 cfs yields an incremental surface elevation of 1.0 ft. at the previously analysed cross-sections. This increment is added to the observed 1974 flood profile to yield the 100 yr flood profile as shown in Figure J. The profile shown in Figure J does not include any consideration of backwater potential created by the highway bridge which abuts the downstream end of the levee. The bridge deck is at

the same elevation as the top of the levee. The bridge was close to inundation during the Jan. 1974 flood causing a substantial backwater upstream along the levee. There is a possibility that a larger flood would destroy the bridge.

The January 1974 flood did not cause any significant flood damage.

The flood profile developed in this study for the 100 year recurrence without consideration of backwater from the highway bridge indicates that water surface would be within one foot of the present levee top.

Modifications to the channel downstream from the highway bridge and the end of the levee have been made since the Jan. 1974 flood which will reduce the 100 yr profile somewhat in this part of the reach. Also, a culvert without backflow prevention under the levee allows sections of the town to be flooded at high river stage.

The existing levee was constructed by WPA after the 1933 flood. The alleged protection level of the levee is for 20 year flood recurrence. Rockford was flooded again in 1963 and 1964 and the levee was repaired by the Corps of Engineers in 1965.

Subsequently, a preliminary plan of improvements was developed by the Corps of Engineers and found to have a benefit-cost ratio of 0.9. The plan has not been implemented. The proposed improvement consists of raising the levee 3 feet for a distance of 700 feet and rebuilding the levee for a distance of approximately 1,000 feet, all to provide protection for the 100 year recurrence level.

The approximate limits of the 100 year flood are shown in Figure K.

These limits are from the Corps of Engineers study referred to above and are not derived from the profile in Figure J. The Rockford vicinity and relation to the flood plain are shown in Plate 410-27.

Photographic Record of Flooding

Two opportunities for photographic documentation of flooding problems occurred during the study period, one in December 1973 and another in January 1974. Kennedy-Tudor made photographic records of these two flood events, as follows:

December 1973 Event

- Oblique aerial photos, color, of the Little Spokane River from mouth to vicinity of Chattaroy, 61 photos, 12-18-73.
- Ground level photos, color, of the Little Spokane River from mouth to vicinity of Chatteroy, 77 photos, 12-17-73 to 12-21-73.
- 3. Oblique aerial photos, color, of Hangman Creek, from mouth to Tekoa, 36 photos, 12-18-73.
- 4. Ground level photos, black and white, Spokane River, Hangman

 Creek confluence to State Line, 40 photos, 1-17-74 to 1-20-74.

January 1974 Event

- 1. Oblique aerial photos, black and white, of the Little Spokane
 River from mouth to above Chattaroy, 18 photos, 1-16-74.
- 2. Oblique aerial photos, black and white, of Hangman Creek from .
 mouth to Tekoa, 86 photos, 1-16-74.
- 3. Oblique aerial photos, black and white, Rock Creek from mouth to Idaho boundary, 31 photos, 1-16-74.
- 4. Ground level photos, black and white, Rockford vicinity, 7 photos, 1-15-74.

In addition to the photo record made by Kennedy-Tudor as described above, vertical aerial photography was made for the Corps of Engineers as follows: Spokane River from Hangman Creek confluence to Coeur D'Alene Lake on January 19, 1974, and Hangman Creek from mouth to Tekoa on January 17, 1974.

The oblique aerial photos of the December 1973 events on the Little

Spokane River and Hangman Creek are included herein as Appendices I and II

respectively. Contact prints of the oblique aerial photos of the January

1974 event are included herein as Appendix III. Appendix IV provides a map

index to the photos shown in Appendices I through III. Appendices I and II

are arranged in order from the mouth upstream in each case. Appendix III

photos are in the order indicated on the map, Appendix IV.

Ground level photos and enlargements of the oblique aerial photos shown at contact size in Appendix III are available in project files. Corps of Engineers vertical photos of the Spokane River are returned to Corps files.

The 1974 event on the Spokane River which reached a peak of 46,100 cfs on January 20, 1974 was sustained at substantially peak volume over January 19, 20 and 21 so that the verticals made for the Corps on January 19 are a record of the peak flow flooding. The 1974 event on Hangman Creek peaked at 2200 hours on January 15, 1974 at 18,300 cfs but had dropped to 12,300 cfs by January 16, 1974 between 1100 and 1300 hours when the K-T oblique color photos were made. The verticals flown for the Corps on January 17, 1974 were after the high flow period.

46.4650

	, ::.				, .	į- !	ļ	į ·]."		-	i;		•••• _•			<u>.</u>						[.]	IG	b] !]	<u>.</u>
				!		1::	- 1				-:,					1							- :				23	
	X	1		 !			1		.,,-											+		111 7 111			-++-		7.	
313	-		1	· ·																								
3 680 73		1.			7	· · ·				 				-										· ·			8	
5 6607					FLOOD	5.																			1	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		-
100 YEAR TLOOD					JAN. 1974	46,000 CI		7	X						-	-1:			-							;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	9	FEET
3					NAC	4	-:.	-	: ·:	7		 -	 - 									12 	- 1		- 1 -			•
			5	- - -									1	1		1				111111111111111111111111111111111111111	1	L :						HEIGHT
			Thanh	1	<u> </u>		•			-		-	· ·	7			-:!, -::		; ; ;				.:					GAGE
	CURVE		ו משון ומבייו		##215					: <u>;</u> :	· ·	:	• .			1								-				
		_LO	d Rein		O. GAGE					-			:				<u>\</u>						 				10	
	RATING		r Rive		U365 64						:		•••	·					100			+	- } ;	:!:				-
	- - - - -		SPOK ANE RIVED H									• • • • •							-					-			<u>.e</u>	•
		1::							· · · · · · · · · · · · · · · · · · ·				-					. :					1				**	
		111111111111111111111111111111111111111			- 1	43,000				ODG 07				35.6480				3doop.	* .	•		25.000		-	· ···		*	٠.
	3 	·	<u>;</u>		:		!			-	Ş	ic F	- 3	Э¥	יכרי	sid									· · · · · · · · · · · · · · · · · · ·	· †	_ :	•
1	٠.	1	_			į		1		į		. ;	•				. :					I	ı	i 10.	: -2.	15	1	•

· ·

;. ;

k Kingdi ing pangganan

A. P. A.

10		 	ا د.	···		-,	-		.,, .	****		·		-														
9	-		r' 	100	11:	1::		Ш	##		1	#::	1-1	.↓ ┷┼╌	4.		1,.	+						1		1;+	1	-
8		+ -			111			1111	ŢŢŢ				14		4	#:	+-++						\coprod	1,1		F	6	
7				+ =	##:		+	###	Hiri		111	1		11111	1			# !		# ;;	#							11:4
		- 1	1 1			1	1						115					Ш						117				
b				+ +	###	-				<u> </u>					1							Ш		Ш.,		III.		
E				11#	###	##										##	##			# #								
•					1.1												###										111	###
				 		411				Hiji							##		卌					##				
4	Ш		1														###									+		
	$\parallel \parallel$		+}};;	####																					8			
3	Ψ,								* *							Hit	╟╫			###			###		30.00			
	it;		###	1					10																45		1:::	
	H	<u> </u>		 	1				0		-	##	$\parallel \parallel$	++;!! 	#		###	Щ	Hili				\blacksquare	<u> </u>	III:		Щі	
		!!;;							18.																4		 	
2	-	444	VE FLOOD		1 1 1						###	##										Ш		!	8			$[\Gamma_i]$
	Щ		1	Sport Co			111		4	##+											Η,	#	1111	L.	8			. !!
			1115	ğ				# !		4																1		111
	H		i S			-																###		1111	11::			1,
					1.;	Hij.																						
	1	';'			1.1.							l'iF					4	lili								. ‡	1111	1
1	1.		H			٥		1111			Hill			X,		1									Q R			1
9 _		-				4				1 1 1	 			1		111	1	-		1,,,,					\$			
6.	+	<u>.</u> : -	- 3	}#		4	+				-	717		11.4	K	1	1:::	1			1		Ш,	1:11	1 1 1			+++
	-#	-	-		U	1	LA.									Ĭ,								 	111:		+ +	11
1	#:	Ŀ	1		 	1	8	11.	-	 	1111			 		 		Hill		╀┼┼╀			 - -			4	:::	; ; ;
6.,	-	-	<u>ب</u>	, Ö	2	中女	7				Ħ.		111										11-1-	H		Ú		7,77
	+		1-2		2	1	Ħ.	1:::	 	T		111				$\mu\mu$	144	X		-1:							: :	
5		├	1;	1	3	N	_		-	1::	11:		111	-		├		1 1					11		2000	Δ	-	
		†	BA		3	4	7.		-					-!!!		: :									Ä			++
4	1111	 	-	-	HANGE	uses	ソイケ		<u> </u>		-1	1		1	ļ	<u> </u>		'!		1			<u> </u>			1114		
	,		<u> </u>	1.11					ļ				i 1				ļ.; 	_'				. '					1 1	·
3 _	;; '		:		1111		'		li'	,	,,,	, ;! !	, .		١.,				1.1.	. 11.	1,1	<u> </u>	1			:]	·· i	
	ļ: 11.						,		·		,	,			11.	!		, ,		11.	!	1		7 11		·;-		
	∰. ∏	<u> </u>			ļ		, 11 		,				+	٠. ا		<u>'</u>	, ;				1,						. 1	
	:: :				.	' '	;'					',',	1::			i ·) 	ļ, .	,	.1,1		,		Q:		.,	
ړ. ن	 .	-				-	1	. ,					, ,		 			, ,	1	, ; ;		1 '		.,	2000	', 1	• • • •	
	!	:	=		3	1	ŗ	12	2	1	•	4	=	•	2	۰	-	•	b	ų	*				,	·]		
	,	1	; ·		ľ	, =	7 =	ابدا		1	ئي ہ	. J	3		7	ĘD I	Je			,	. ,	r ~			-	. : :	!	
l		!1 !			-	***	البند ب		:	- - [7	, ,) د	<i>-1.</i>	3	9	75		 .!:						· • †		1::1	
ļ				,							!		,		• • •					, ,		٠		٠.		.,		
		:		. '		ļ			;	1		; !		,					. ;		į		:	.				
		, .	۱.	,.		i	::	•	ļ	!	; f	·¦	;		j								ľ		!			
1.1		بضبيمها						L į				i							5	}					ī	I	- F - F	Ĭ

					····	~~			, , , , , , , , , , , , , , , , , , , 		•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			·			
				<u> </u>														
				<u>[</u>		::.: :::: <u>-</u>								== .	: · · · · ·	-		
			=====	<u> </u>														
				† '							11-	-					1	
	=		100 Y	REAR FL	4000							=- ::-			1	F. :		· -
			t*.	NE RIL							<u> </u>					 	 	:-1
				i.	· .									-	11	: •		
	=== = = =		E	į	1.	-			E	E-111	===	: : -		: .				#
		=:	BEL 28	APR. 1915.	<u> </u>			-	F :		1	<u>- · · · · · · · · · · · · · · · · · · ·</u>		<u> </u>	<u> </u>	 		<u> </u>
				<u> </u>	į.				†		1	-	I i.		:]		į
7 7 2				<u> </u>	† -							-		#III -		† :		į
				!	<u> </u>	12.5			1		<u> </u>	<u> </u>	 	<u>{: -=====</u>	1	 		
7			<u> </u>	ĺ						1	<u>.</u>					1.		
	• • •								= :- :		E . :	1 .	: :	· · · ·		1	:	:
	- : -		<u> </u>	<u>!</u>					ļ	· ·	-	ļ:	<u> </u>	<u> </u>	 	 -	: 	
	-		<u></u>	:	i	i:		:	-	i		1	: _				:	:
	. 1								ľ	ļ '	1	-	i	· .	İ	!	: <i>'</i>	<u>:</u>
	•		<u> </u>	·	<u> </u>				 		ļ	 		<u> </u>		<u></u> -		-
<u>- </u>		:	•	į				ŀ: . °		}: [∓] .	 			Ž	1 1	ì	1	i
		-	F :	İ	1	ļ. · · 1			J	j.	ļ-	1		L	1 1			1
		<u> </u>	 	 	! -		· · · · · ·		1				1-2	ž		5	·	i
	·	: .	 .	İ	! :	ļ: <u>-</u>			1 · .			7	7	E -	! .	à	į	į.
-].	i				· .	j	•	1:	2 2	3	Ē.		ai .	;	1.
				 	 			 	<u> </u>		1	 	-	B		†	<u>.</u>	
			ļ	i	!	1 .		ļ.·.			1-:	River	1 1	Ĭį.	ļ.	3	:	#
			<u> </u>	-	1			1	l		÷,:	4	1×2	Ĕ.	1 6	\$:	1
	1880	:: :=	1]	!		 	l <u>s</u>	 	<u>E</u>	i -	ļ		
	.: :::.	10.7	ļ		i	L		<u> </u>			1	TA IS	a	**************************************			1	1:
			1.	!	1			1.	1.	-	.::-		PASSALD]; `	1	1		:
 -			1	!	}	1		 	i	 	 	13	T/	11	 		<u> </u>	
. 1			ļ.	!	1	;:		į.,	1	1	1	RIVER	1	ļ!	1		<u> </u>	
	10.1-		1	i	!		:::::::::::::::::::::::::::::::::::::::	1.	I	! :	1.	RIVER	1	1.	1.	 	!!!	
8		· · · · · · · · · · · · · · · · · · ·	 	 	'	 			 	 	 	140	1/	 	 	 	; /	- ‡
· • ¥	: ::		 -"	1	1			1-			1	=	1	1.	1		1	非
,			1	•	1 📆	-	:: -		Ì	I	1	Pest.	. //	1	1	1	;	1.
		!	1	:		;	-		1	1.	1	11 7	1		}		1	:
	!		ĺ	I	ž Ž	1		1	1	j:		[1.				
} .	1800	1 2	1						1.	1	<u> </u>	11	-		:	1		
		 F		1	!	<u>:</u>	I		Ė	1	7		1	Ī	<u> </u>	1	1	:
				}	•			1	1	}	1	111	1		1		,	: 1
	<u> </u>			<u>:</u>			<u> </u>	<u> </u>	Ž		1	<u>.:</u>	1	<u> </u>	<u>i</u>	1	<u>!</u>	
	:	i -	4	:		:	į	i	32.	i	P.	:11		1	1	•	1	!
	,		1	;	: 🖠	۱ :	İ	1	*	ļ		X	! -	1		Į.	ļ	i
·	_1760_	<u> </u>		<u></u>	<u>\$</u>	··	i	1	!		<u> \$</u>	<i>II</i>	<u> </u>		<u>:</u>			
1		1] .		. A2	100 Ye 1	Flood E	st	**	ì	Manigor		.i	1	i	i		. <u>i</u> -
	!		3			100 Yr. 1 0.6 Ft. Dec. 193	Higher T	han	MARK	T .		4	1	1	į.			
]		- 	Dec_193	3. RM.72.4	-74.0	<u>, 2</u>			.	!	1	<u> </u>	!	-	<u> </u>
l .	1	į į	4.	:	; =	٠,	·	in the	i-	1		1. :-	į	· . ·		ŀ		···1
ł		. :	1	1	i	-	Dec	1933 H	gh Water	-		A		. :	1			
!	1720	 					 		1	 	 		 	 :	 	 -	ļ	
li .			1	:		1.	1	.	,		1 1/		1		1	1		
			<u> </u>	1	1 1			1	1 :		├ ₽.	1 :] :	-	-		
 		 	 		 	! -		 	-		+ + + + + + + + + + + + + + + + + + + +	 	1	+	 	 	 	-
. ·		1	1	<u> </u>		+	₹.	incam B	ra	.:: :. :				·	1 .	1		:::
Į.			-		1	1		1	1	F	1 1	1 : :				1		
	IARC	17.5	 		'	<u> </u>	 	<u> </u>	 	1	1 - 1	1.	1 -	1	 	1	 	 j:
i.	1 : :	[1	1	1:	1 :		* :	1		1		- T	₹:	194. 1	7	*	
.			1	1		1. : .=		1.	1	1		1.:-	1:	<u></u>	1		1 ::::::::::::::::::::::::::::::::::::	<u> </u>
f			1:1:	-I	Hillian		I			تستنتسند			<u></u>	1	····	1,,,,,,,,,	diiilliilli	Laine
									. 6464648									

AND STREET, SALES

CTREEFING SECTION IN E IN A C W.

														Fi						
				111111111111111111111111111111111111111									==-	=======================================						
										<u> </u>	-1				1:. 1			: -t-:-:		
					 		*****	****								-:		:::::::::::::::::::::::::::::::::::::::		
				- <u>-</u>								7 27 12			<u> </u>					
-	1: 1:	.: - 20	==	. F.	‡ <u>-</u>		. :::::::::					=	F		· i	7.5				
		:-				•		• • •	:	-								1:		
-			: ···.	1			: ' : :			•	: .	‡: . · :-	ŧ	:- i			:: · · · :]	
*	`'		F1.	; :	F::		::-		-			:	i .	: i	-		F:- : : :	- 1		
			.	1 .	J:			ļ	i	-			ī	i]	2		F			F= ::
:: -			<u> </u>	 	 		<u>. </u>						!							
<u>::</u>													F	<u>l:</u> l	i 3		:::· ::	.		=:
			ł:			·]							1		: 4	7777	-	E ***	T- T	==
:	:			 -	<u> </u>	- 1	- '-				- : 1-=] -				· · ·			
			:					·	::						. 5		•		-	1
. :			<u>}</u>		1:55 ::::				1	· · · .		<u>.</u> -	-	i i	4			l		- <u>-</u>
		i	:			!						-	-	· j		ó	ļ ·	i i		
		·		<u> </u>	1	<u> </u>		1 12	1			·						1		
	i .		75.5	1	i .	, ,	:		i	1:	-::::::::::::::::::::::::::::::::::::::	1.	1	į	. 2	1	17:		-	: ==
}		;	: ~	:	i i	! ' !	1				:. · ·	:.:: ·	- 1		-				•	==
	•		; = =	•	€	. ž	1 •		1		!	<u> </u>	1	•	•	· .	ļ::			. :-
-						ž			•		i					-		·		
·			5	ì		. h	i i		! .	-		i	1	,	3	River	i	į į		:::=
į.			. Ž		i ·	χ. γ.	!		i .	1	1		1	•	Ž	.		1		
			: <u> </u>	1	!	. ac			<u>:</u>		·	1 -	<u>i</u>			94	<u> </u>	!	-	<u>:</u>
			Ħ	i	1	<i>3</i> 7		1	:	:	ī		•		ν,		-	100 E		141
Ì				• •	ļ ·	1 🗓		į.	İ	1 ·		1			٧ŋ	Į.	i /	100 yr. Fl Dec 193	DM 77	1.77
ž.		;			i	5			:		: :	 	į .	;		3	٠ \	יכבו זשטי	ייות חים	2 TO
-			-	 	 				: -	}	<u> </u>	 	i				 			
					1	East			:	!		1.	1			; ;	1	1		
			Wes	l		i ii				Dec 193	High W	ater 7	i							
e L			1	:		•	i .	·									ł			
								i	•			: · · ·	1.			. ;	E: .			-
			: I	1.	1.				i -		7	i:	∤ ∙	:	-	· ~	· · ·	1		
<u>:</u> :			: :	l l	1	1 1	ļ	}	•	+		<u> </u>	i	١ !		l +	•	t :		
				1	1	<u> </u>	1	t : .	•	1 :	1.	I .	1	Ī		1 1	1	1		
-		:	• :	<u> </u>]		! 	:- 	:		<u>:</u>	ļ					<u> </u>			
		<u> </u>		<u> </u>	-			i.				· 	1					1		
:: :			<u> </u>		<u> </u>			1.		÷		:					•		-	
								i. :.				:	-				lum Cour	N. 1922	flad on	huene
								:. :.					-			Icolyte	Tiom Core	Dec. 1953.	fised_one	lysus.
						-							-			Profile.	Irom Core	Dec. 1953.	fland_ora	here.
						-							-			Scalule	Iom Corp	Day 1953	fised_ore	vers.
						-							-			Scalike	Juan Coca	Du 1983.	fired_one	vsus.
						-										Scalile	Irom Coce	Du 1983.	flad_ora	hens.
						-								-		Scalile	Irom Coce	Du. 1983.	flad_ora	bens.
						-										Scalile	Irom Coce	Dec 1953.	flad ore	hens.
						-										Scalik	Irom Cock	Dec 1953.	flad ore	hens.
						-								4		teolijk	Irom Corp	Dar. 1983.	Flued_one	bens.
						-										Scolule.	Iron Corp	Dar. 1953.	flad ora	hens.
						-										Peolija	Tion Corp	Der. 1953.	fland one	hene.
						-										Peolija	Tion Corp	Der. 1953.	fland_orm	
						-										Peolija	Som Corp	Der. 1953.		
				i		-			1							Peolija	Jon. Corp.	Dec 1953.		
						1			1 1							Brokske	Iron Corp	Dec. 1983.		
			1			1			1			 	İ.:				Iron Corp	Dar. 1953.		
			1						1			 				Scolute.	Iron Corp	Dar. 1983.		
									1			 					Iron Corp	Dar. 1983.		
							<u>-</u>		1								tion Corp	Dar. 1983.		
							<u>-</u>		1								tion Corp	Dar 1953.		
							<u>-</u>		1									Dec 1953.		
											=									
											=									
											=									
											=									

- Committee of the Comm

			-									<u> </u>	<u> </u>		FIG. 5		h-;	
					. 3							ļ:	1::		: ::::			
=]									ļ					:-:				
								}	<u> </u>				 					
3: 3						-	Ē::			:			.	-			FARE	
		•	ė					<u> </u>	F		: <u>:</u>		† ⁻ :.	1.		-		
												:*:	···	;		•		
=== :		1.5.	: - : :		1	====						:	j	•		=		
	-			<u> </u>							'	::-	<u>-</u>		 			
. :				·_		` [Î			1.	i	: ,	•			
	-	-	-		-		 -		† · · · · · · · · · · · · · · · · · · ·					!				
		·	<u> </u>	· ·		I	ļ	<u> </u>	<u> </u>	ļ		· ·	-	:				
<u>.</u>			\$	- ::: <u>†</u>	<u> </u>			<u> </u>		: .		İ	Į a]				
.: <u>.</u>				2					‡	= -		1	2				:	1.
·			2	5	1	-		<u> </u>	· -			i		•				
· 1			\$	á:			-		ļ:				N N			:		
				<u>.</u>	<u> </u>	1	-	ļ. <u> </u>	<u> </u>		<u> </u>		13		_1720		i	}- <u></u>
1			Ý			100 vc F	lood Est	14 Ft. H	oher Tha	in .		1	XX	•				
			. 9	3	! (Dec 193	lood Est 3 RM 77.	9 to RM	77.9	1	-		걸	ί				
					 	<u> </u>	<u> </u>	-	<u> </u>				3	<u>. </u>				
				!	1	i			<u></u>				=	, 1			,	
7					- 		<u> </u>	:	1	į		i	!	ı				in
	. :			1	<u> </u>	-	-		 			-	 - -	:	1880			1
<u>:</u> ::}			-	1		r.:			-	t :			Ш	:				
	<u>'</u>				<u> </u>	•	!	•	<u> </u>	 								1
	-				1	ĺ	•	i	i	•		i	П					·
-]				1 .	1	3	-		1	-	-	İ		•			:	::: ::-:
	-			. Icolite	lines Core	Dec 1933	fleed ore	prare coo	City of	Section R	vec Profile	<u>'</u>	<u>i</u>		_1 \$ 40 _			†************************
		- j			į	į			j.			İ	;					ļ
1			-	1]-	•	:		•			į	:					1:
	-			 	!				 			1					<u> </u>	1 1
<u>.</u>]	[: i		-	·	<u> </u>		, .	-	1	•		1	1	;				Į <u></u> .
				i		1		1	ł	!		!	1		1800		٠.	
·	·. :			1 -				; 	 	<u>;</u>	.:				_ تنممت"			1
. :	[: '			·-	١.	1	-	i .	į	į - :	,	1	•				ı	::
				·	!	[•	!	!	!	· ·	<u>:</u>	:			! 		
						į		i	•					-				·
<u>-</u> . !					į	, i			ļ			į						
. <u> </u>								· . · · .	:	·		:	· 	.	1760			1: 1:
: .				- :			:		1	!		i	1	: 1				
.]		-		<u> </u>	=				1.		·	•	:	:	i •			- -
					-	3.			 			! -	:				 	 :- -
		<u> </u>							<u>l:</u> .			i	i					
==-	<u> </u>				1 - 1				1:	1 .	:-:-		1		1710			1
	- i						•						i					
	1	. :	- :::.:										<u></u> .	1				
	<u> </u>	_ : :						<u> </u>	<u> </u>				r: i	1		1		1:-:-:
	:			i: : : : :												. :		
	-	.::	<u>:</u> .					•	1	 	:: · ·	I	1		••			
	· · · · · ·			ļ	<u> </u>		ļ	 	 	 		ļ		 			 	
		' : !	• •	, , ,	9 1	*	7		• 1	*	1		* * :.				•	
- 1			,	treek C											i	•	ı	1 - 1.

1	1	100	YEAR	14000		1	: · : · : · :	-						1:::	::: :::		<u> </u>
:	;		ME RI				• •	-							E		
:	i	•	į.		1 . 3.					F.L :					<u> </u>		-
1040	1	PE	L 25 APR. I	713	}			:		. ::	<u> </u>	• 2	0		F : !		1
				<u>:</u>	F					E		. 8	rl	-			i .
1	<u>+</u> 1. − −	7		: .	:]: i- i:			-:	- 1		
· .	<u> </u>	1:		Ł.	<u> </u>						<u>-</u>		ji	ļ	<u> </u>	•	<u>i </u>
; :	1	721		<u>.</u> I.	1			-					<u>.</u>				1-
1	ļ	1		<u> </u>	Ţ: · · · ·					• • • • • • • • • • • • • • • • • • •						•	
7000	1:	1::::: : ::	1	<u>: </u>			T.:. 12	<u> </u>		<u> </u>	-				:i	<u> </u>	<u> </u>
1:	. E. ''	1-1		;				-		: 7			.	i -	!		1
				:									ā	ł	1974 H	igh Wate	1
1 1 2 2	<u> </u>				1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			<u>:</u>		<u> :: </u>	-	1		نىتىتى <u>تەت</u>	ستستست	
1 :	1	111	1	:	- : _=						: !	: 	**********	1	i		•
=		11.	1	ļ		:: · ·		: 		نستتستنيستها			#	1	: 1		<u>.</u>
1960	1.	7	<u> </u>							<u> </u>		-	7				1
					- .		:	-							1		} _
1	+	1	1 .	:	· · ·			! !					f	1] .
	1	F	1	·	1	1			i <u>.</u> :	:	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>		1
-	1		!		i	:			-					1	1		<u> </u>
	1	-		•	1	: '	: - :				• :		-	1	j		1
1930	1	-	<u> </u>		I	-	• •••.•				_: ·:			1:	<u> </u>	<u> </u>	1
:	1	:::	-					· ·			::::::	*	<u> </u>	-	-		
1	ļ. ·		1 -	:		7	::.' ::::	İ	. :			`		:: '			1
: - L		F: .	<u> </u>		i		::			-	l t		•			:	1
87.		±1	AS (<u>.</u>			•	9 9	•	. 9	7	F 9	5 1	. 1	th 01	, ,	.1 ····
:	1 :	12 .	i	t	=	: · ·				. ~.		T: T	i- '	.::	 . :		+
	1	-1	!	!			:			<u>.</u>		- '		1	!		1
-			į.		1							i		-	:		1
<u> </u>	-[1 :- :	Ī	:			- 1	:. I = "		- :					r 1		1
!	<u> </u>	1	ļ. <u> </u>	:	<u> </u>				-	:-					<u> </u>		4
17.7				• - •						•					<u>i</u> - ī		i.
-	1	1	-	·	- 1		:- ' '	}-		•				, -]	•	1
ļ	<u> </u>	 	1			: '2' :		-		-	-: ::			<u> </u>		=	1_
1.	÷	<u> </u>	Ì									7.	:		}	1	
1			<u>]</u>	· t		11		•				-		ì		2	1
1	· ·	1	-	: <u> </u>		<u> </u>	-	<u> </u>		_		· · -		<u> </u>		3	Ι_
;	+1	†: ·	1							:			-	i	i	~	
:		7	1		; -	- :								1	1	ş	1
1940	<u> </u>	1	· -	:	<u> </u>							·				<u> 2</u>	<u> </u>
	1 4	i	ŀ	_	i		: :	::			:		: .	į	! ;	*	1
1			+ -		-	1						-	::-	Ì		į	ţ
-			<u> </u>		ļ	ļ		· 				1	-	<u> </u>	<u>: : </u>	<u> </u>	<u>i_</u>
1	3	£	<u>.</u>	: .	i .		: .				1	1	•	:	·		
i	Z X		ļ. I.	:	}			!			, 			1	;	:	
700	<u> </u>	1	<u> </u>							_	ļ	L	<u> </u>	<u> </u>	1=		1
	++	1			l								i :	i]		ł
	14.0			•											- 1		1_
 												•		-	1		
1			:	:									.	:=:	<u> </u>	٠٠.	1.
 	++	1	1		J	ļ.: <u> </u>	::::: ::::::::::::::::::::::::::::::::	.: :. :						ļ			
. iesa							L				<u> </u>			ļ			- -
			E . :-	1											<u>l.</u>		1
1	1 ::	#===	#	<u> </u>									::::· 1			:	-
· .	1	4::	1	<u> </u>						: :::: :			<u> </u>		-	ļ	<u> </u>
	+															1	1
		<u> </u>	•		K			***					, ,		<u>*</u>		*
				1											*		

HA SHEET STATE OF THE PARTY OF

1

MAAP! SIRT COOSS SECTION IN THE "CLAAPPENIT PAPER CO" WARE IN THE SECTION IN THE * 1 6 at 3470 .403 aldre jmaggerfi3. * 1 6 soult filets amarrerse.

		,	· · · · · · · · · · · · · · · · · · ·		 	,		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	,		,	 				····
									2010					: .: .		C6 3614			
									2040		:	le Ruich	100	ír Flood f	s ‡				. :
	-			: :				-:	1010		;	Jarvar Ra	1.5 FH 1974 :	Higher 7 Flow at R	hbn M 53.9 ~	uses sm			! !
							i 		 		: ======				=====		12.0° -11		
1974	High Wester		نشتت	نشتشت			!				1.		† :		tream Bi			-	-
	<u> </u>	!					i		1960		-					,			
-							· · · · · · · · · · · · · · · · · · ·	<u> </u>	1940								<u> </u>		
		-					i i -	:	1970		-					: .	. ,		
							! ! !												
	99 3				- 10	(3 H	,	M 11	1	1	;	CREEK (Conflu	in the	usand feet	10			-
						:			! . - ·		<u> </u>		- - - - - - - - - - -			1:			
		-			-				1780			i	1			12.0	1		F
	R Mar. Mar.		=					!	!	100 YET	ood Est		1 1 1		1	7	1:7.2		
	Real			-					<u>1949.</u>	075 Hid	gher Thos ow at RM	7	2957			***	1914 . 	High Wal	lu i
	į		<u> </u>				· 	· 		<u> </u>	1	!					-	 	-
						-			1900	(ci_	m Bed			1:: 1::		1			
					11-1 3						-110°	:						3	
	1		7EC 70-	IPR TH	trujt plate	1.5.	1	7-7-1	1940						1	<u> </u>			
							· ·	ļ .		* 1	•	H 1	-		•				
POITS I LIGHT THE	m	·						<u> </u>	Pistance	above	tangmen (reak Le	<u>i</u>	. OD PHIM .	7 P 191646	<u> </u>	:		
.A 8 9 07 19AA	•													•••	m; #4##				

The state of the s

										-						<u> </u>	3 F.G.	
) V . F	ood Est	:.		1										, _		-	Par. No.	• •
F4. Hi 74 Fla	gher Th wat RM	53.9	11565 STU						 	; 	<u></u>						- tota	•
ستعد				u"1 - 17					:: :-::					9		-		-
	₹5h	eam Bea	122			: : :	-		. :					A PROPERTY			Name of the second	-
									-					Trans. But	-		T. Tank	-
· . · .			: ·.			: - : -				:				, -	E shimal ed		940	-
- - - :-			- :			- ,									-		-	
:											-	-	-			:		
. ·	e - thous	1: .		114	X 1			n I	9 17			22 17	1 r		ings i		1 110	
ī													- :- :-	1	!	.	į.	MF NL. qui
1				ŧ											1	Ent to	1980	
10 to 100		3 -	King King	1, 1		<u> </u>		*	i i			:	-		!	To the last	:	
S. British						İ			·	i :	====			: 	·		1990	
\$	 	<u> </u>		 	High Wa	:	ستسنست	•			•	i		•			-	
-					 	-	!						. -					-
 ::::::::::::::::::::::::::::::::	theore is a second of the seco														2 :			
								:						1. :				
																J		
	1	-				 	. ,				Ţ		1	•	•		-	;;;

FIG. J: ROCK CREEK AT ROCKFORD HIGH WATER PROFILE -1974 ESTIMATED HIGH WATER HOD YEAR HIGH WATER-BOUIRS YAWHOIH

100 YEAR FLOOD PLAIN ROCK CREEK AT ROCKFORD, WASHINGTON RM 13 4 TO 13.7

#2-2 R.M. 0.0 L.S.R. 12-18-73

#2-3 R.M. 1.0 L.S.R. 12-18-73

#2-4 R.M. 2.5 L.S.R. 12-18-73

#3-29 R.M. 3.0 L.S.R. 12-18-73

#2-5 R.M. 4.0 L.S.R. 12-18-73

#3-28 R.M. 4.5 L.S.R. 12-18-73

#3-27 R.M. 5 + L.S.R. 12-18-73

#2-6 R.M. 5.8 L.S.R. 12-18-73

#2-8 R.M. 6.7 L.S.R. 12-18-73

#2-7 R.M. 7.3 L.S.R. 12-18-73

#2-9 R.M. 8.0 L.S.R. 12-18-73

9.8 L.S.R.

#3-24 R.M. 12-18-73

#3-23 R.M. 10.1 L.S.R. 12-18-73

#3-21 R.M. 10.4 L.S.R. 12-18-73

#2-10 R.M. 10.9 L.S.R. 12-18-73

#2-11 R.M. 11.5 L.S.R. 12-18-73

#2-12 R.M. 11.7 L.S.R. 12-18-73

#3-20 R.M. 11.8 L.S.R. 12-18-73

#2-13 R.M. 12.6 L.S.R. 12-18-73

#3-19 R.M. 13.2 L.S.R. 12-18-73

#3-18 R.M. 14.2 L.S.R 12-18-73

APPENDIX I

#3-16 R.M. 15.2 L.S.R. 12-18-73

#2-15 R.M. 15.5 L.S.R. 12-18-73

#3-17 R.M. 15.7 L.S.R. 12-18-73

#2-16 R.M. 15.9 L.S.R. 12-18-73

#3-15 R.M. 16.0 L.S.R. 12-18-73

#3-14 R.M. 16.9 L.S.P. 12-18-73

#2-18a R.M. 17.0 L.S.R. 12-18-73

#2-18 R.M. 17.2 L.S.R. 12-18-73

#3-13 R.M. 17.5 L.S.R. 12-18-73

#2-19 R.M. 17.9 L.S.R. 12-18-73

3-12 R.M. 18.1 L.S.R.

#3-11 R.M. 18.4 L.S.R. 12-18-73

#2-21 R.M. 18.5 L.S.R. 12-18-73

#3-10 K.M. 18.6 L.S.R. 12-18-73

#3-9 R.M. 19.0 L.S.R. 12-18-73

#2-20 R.M. 19.1 L.S.R. 12-18-73

L. S. R. #2-23 R.M. 19.4 12-18-73

#3-7 R.M. 20.8 L.S.R. 12-18-73

#2-25 R.M. 21.0 % S.R. 12-18-73

#3-5 R.M. 21.2 L.S.R. 12-18-73

#3-4 R.M. 21.5 L.S.R. 12-18-73

#2-25 R.M. 22.0 L.S.R. 12-18-73

#2-27 R.M. 22.3 L.S.R. 12-18-73

L.S.R. #2-28 R.M. 22.5 12-18-73

L. S. R. #3-3 R.M. 22.5 12-18-73

L. S. R.

#3-2 R.M. 23.2 L.S.R.

#2-31 R.M. 23.1 L.S.R. 12-18-73

#2-30 R.M. 23.2 L.S.R. 12-18-73

#3-1 R.M. 24.2 L.S.R. 12-18-73

#4-1 Spokane River below confluence with Hangman Creek.

#4-2 R.M.O.O Confluence of Spokane River and Hangman Creek.

44-3 A.M.1.3 Union Pacific and I-90 bridges over Hangran Creek.

#4-5 R.M.3.1 Hangman Creek. #4-6 R.M.3.2 Hangman Creek looking north towards Spokane.

#4-4 R.M.2.4 Hangman Creek.

#4-7 R.M.6.2 Hangman Creek

#4-8 R.M.7.8 Hangman Creek High Drive Parkway Bridge.

Hangman Creek.

#4-11 R.M.16.6 Hangman Creek.

#4-10 R.M.14.4 Hangman Creek.

#4-12 %.M.18.4 Kangman Creek above confluence with California Creek.

#4-14 R.M. 19.9 Hangman Creek Duncan-Mt. Hope road bridge.

#4-13 R.M.19.2 Confluence of Spangle Creek with Hangman Creek.

#4-15 R.M.20.2 Confluence of Rock Creek with Hangman Creek.

The second second second with the second sec

#4-16 R.M.20.7 Hangman Creek.

#4-17 R.M.21.3 Hangman Creek looking upstream.

#4-19 R.M.23.9 Hangman Creek.

#4-20 R.M.25.0 Hangman Creek looking upstream.

#4-21 R.M. 27.9 Hangman Creek looking upstream.

مد تاه معجودة بالعديدة بالمعروض والمقاود ياصد بالمهود يأولون يوافون والمهاود والمعروض والمعرو

#4-22 R.M.31.1 Hangman Creek. West Bradshaw road bridge.

#4-23 R.M.31.1 Hangman Creek. West Bradshaw road bridge.

#4-24 R.Y.32.9 Hangman Creek. West Bradshaw road bridge.

#4-26 R.M.37.4 Hangman Creek Bridge near Wavely.

#4-27 R.M.39.0 Hangman Creek. Palouse Highway Bridge.

#4-29 R.M.41.1 Hangman Creek.

#4-30 R.M.43.3 Hangman Creek.

#4-31 R.M.45.0 Hangman Creek below Latah.

#4-32 R.M.45.6 Hangman Creek.

#4-33 R.M.46.6 Hangman Creek. Bridge at Larah

#4-34 R.M. 47.2 Hangman Creek looking upstream.

#4-35 R.M.47.6 Hangman Creek looking downstream towards Latah.

:4-35 R.M.48.2 Hangman Creek above Latah.

APPENDIX 111

APPENDIX III

APPENDIX III

410.25

AND TO THE STATE OF THE STATE O

4.10 . 60

THE THE TAKE AND THE PROPERTY OF THE STATE OF THE PROPERTY OF

410.2-6

610.

SECTION 307

INVENTORY OF WATER
QUALITY DATA AND
IDENTIFICATION OF DATA GAPS

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION

SECTION 307

INVENTORY OF WATER QUALITY DATA AND IDENTIFICATION OF DATA GAPS

18 March 1974

Department of the Army, Seattle District Corps of Engineers Kennedy-Tudor Consulting Engineers

INDEX - TASK 307

INVENTORY OF WATER QUALITY DATA AND IDENTIFICATION OF DATA GAPS

Subject	Page
Scope and Objectives	307- 1
Overview	307- 1
Surface Water Data Groundwater Data	307- 1 307- 3
The STORET System	307- 3
General The STORET Data Source Surface Water Data from STORET Groundwater Data from STORET STORET Printouts	307- 3 307- 4 307- 6 307- 6 307- 7
Data from Published Reports	307- 7
Data from State Department of Social and Health Services (DHSH)	307- 8
Data from Washington Water Power (WWP)	307-11
Data from USGS	307-12
Data from Inland Empire Paper Company	307-13
Data from City of Spokane on Sewage Treatment Plant	307-13
Summarization of Available Surface Water Quality Data	307-14
Surface Water Quality Data Needs	307-19
Surface Water Quality Data Gaps	307-21
Waste Sources	307-23
Summarization of Groundwater Quality Data	307-26
Divisions of the Study Area Availability from STORET	307-26 307-27

INDEX (continued)

Subject	Page
Sources of Data in STORET	307-28
Availability of Data from Published	
Sources	307-28
Unpublished Sources of Data	307-30
Study Area Summary	307-31
Available Data in the Primary Aquifer	307-32
Data Gaps for the Primary Aquifer	307-33
Available Data in the Basalt Aquifer	307-40
Date Gaps for the Basalt Aquifer	307-41
Available Data for Other Aquifers	307-41
Data Gaps for Other Aquifers	307-42
Tables - See Table Index	
Figures - See Figure Index	C
Plates - See Plate Index	ď
Table Hides	d
List of References	307-92
Appendix - See Appendix Index	e
	_

TABLE INDEX

Table No.	<u>Title</u>	Page
1	Surface Water Parameters Ordered from STORET	307-43
2	Other Surface Water Parameters Availa- ble from STORET	307-45
3A	Surface Water Quality Station Available from STORET Spokane River	307-48
3B	Surface Water Quality Stations Available from STORET Little Spokane River	307-51
3C	Surface Water Quality Stations Available from STORET Hangman and Chamokane Creeks	307-52
3D	Surface Water Quality Stations Available from STORET Waste Sources and Lakes	. 307-53
4	Groundwater Quality Parameters Ordered from STORET	307-54
5	Published Reports Searched for Surface Water Quality Data	307-55
6	Published Reports Searched for Groundwater Quality Data	307-57
7	Grouping of Water Quality Parameters into Categories	307–58
8	Inventory of Surface Water Quality Data	307~59
9	Inventory of Groundwater Quality Data	307-64
10	Groundwater Quality Data from the USGS- EPA Ongoing Program	307-72
11	Group I Water Quality Locations in the Primary Spokane Valley Aquifer	307-75
12	Group II water quality locations in the Primary Spokane Valley Aquifer	307-77
13	Water Quality Wells in the Basalt Aquifer	307-79

TABLE INDEX (continued)

Table No.	<u>Title</u>	Page
14	Water Quality Data in Other Aquifers	307-80
15	Inventory of Major Producing Wells in the Primary Spokane Valley Aquifer	307-81
16	Inventory of Major Producing Wells in the Basalt Aquifer	307-86
17	Inventory of Major Producing Wells in Other Aquifers	307-88
18	Major Water Producing Wells in the Primary Aquifer Not Represented by Water	
	Quality Data	307-89

FIGURE INDEX

Figure No.	<u>Title</u>	
A	Groundwater Quality Stations by Geo- graphical Grouping from STORET	307-91

PLATE INDEX

<u>Title</u>	Number
Surface Water Quality Stations	307-1
Groundwater Quality Stations North Portion of Study Area	309-1
Groundwater Quality Stations South Portion of Study Area	309-2
Groundwater Quality Stations Primary Spokane Valley Aquifer	309-3

APPENDIX INDEX

Number	<u>Title</u>	<u>Page</u>
I	Sample Page of STCRET Inventory Data	307 -9 5
II	Sample Page of STORET Raw Data	307-96
III	Sample of DSHS Form for Chemical Analysis	307-97
IA	Sample of DSHS Form for Bacterio- logical Analysis	307-98
v	Bacteriological Record of Water Samples1972	307-99
VI	Bacteriological Record of Water Samples1973	307-102

Scope and Objectives

The objectives of Tasks 3070 and 3090 are to inventory all available surface water and groundwater quality data within the Study Area and to analyze the inventory for data gaps. Data analysis and interpretation are not within the scope of this section.

Surface water data are to be inventoried for streams, man made on-stream impoundments and natural lakes. Groundwater data are to be inventoried for all groundwater bodies within the study area including the primary aquifer of the Spokane Valley, other alluvial aquifers and the basalt aquifers.

All kinds of water quality data are to be indentified. In addition to water temperature and the traditional chemical constituents, particular attention is directed toward inventory of data which includes parameters significant to oxygen balance, nutrients, aquatic growths, heavy metals toxicity, organic toxicity, bacterial contamination, oil contamination and evidence of detergents.

The sources of data to be explored are correspondingly broad. In addition to the basic Water Quality Papers of the U.S. Geological Survey, the canvas of data includes published reports, the Storet system, and unpublished sources.

Overview

Surface Water Data. There have been a succession of varied interests in surface water quality in the Study Area. The

earliest cause for concern and consequent monitoring of quality was the increase in heavy metal ions, particularly zinc, which entered the basin from Idaho due to the leaching of mine waste on the Coeur D'Alene River. Next came the concern from gross untreated sewage pollution caused by the City of Spokane sewer system. After the completion of the City primary treatment plant, the focus of interest has been on eutrophication of Long Lake. This latter interest, which remains the primary focus to this day, was first documented in a data collection effort directed at coordination of quality parameters significant to eutrophication by Cunningham and Pine in 1966 and reported in Cunningham and Pins (1969). Since 1966, there has been an increasing concentration of investigations leading to Bishop and Lee (1972) and, finally, Soltero (1973). The Soltero investigation is ongoing and is scheduled to report again in 1974. In addition to individual investigations, the Department of Ecology is maintaining five monitoring stations on the Spokane River and one on the Little Spokane River which are normally sampled twice a month.

The concern for water quality in natural lakes is increasing as the few lakes within commuting distance of Spokane are subjected to residential development. There was little data prior to the Department of Ecology efforts which began in 1968. There are unpublished data on identification of lake biota from the 1930's that may prove useful for estimating water quality prior to lakeside development.

The fundamental basic source of water quality data since

1941 has been the annual publication of the U.S. Geological Survey. For the Study Area, the available USGS records for three stations go back to 1959.

Groundwater Data. There has not been the impetus for intensive new quality studies of groundwater in the Study Area similar to those for surface water. Recognition of the fact that there could be a potential for pollution from surface waste disposal in the highly permeable primary aquifer lead to the report by Crosby (1971). However, this report does not contain additional groundwater quality data since the investigation employed another approach to the problem. There is currently under way a study of the potential for contamination of groundwater in the basalt aquifer by Ernest Gilmore of Eastern Washington State.

Consequently, the available groundwater data are largely of the routine type which report the chemical constituents normally associated with a public health evaluation of drinking water. There has not been specific wide ranging programs for parameters which might be indicative of pollution from senitary, industrial or agricultural waste sources. Bacteriological data have been gathered routinely under the requirements of state law for sampling public water systems. Unfortunately, these data are not summarized or published.

The STORET System

General. In an effort to make all water quality data readily available, the Environmental Protection Agency has established

the STORET data storage and retrieval system. When fully implemented this system is proposed to be the repository of all significant water quality data, continuously kept up-to-date. At present, the system is too new to be fully implemented and its utility must be supplemented by additional data searches. The system is, however, a major repository of data organized for retrieval and is selected as the basic source for this search.

Two printouts from STORET have been obtained. The first printout is the inventory of stations and parameters. The second printout is of selected raw data based on the indicated availability in the inventory.

Other sources of data canvassed to supplement and check the STORET data are:

- 1. Published Reports.
- Request to Department of Social and Health Services for unpublished data.
- Request to Washington Water Power for unpublished data.
- Request to USGS for data not yet put in STORET.
- Request to DOE for data from their ongoing monitoring program.
- 6. Request to Inland Empire Paper for records of their effluent quality and quantity.
- 7. Request to City of Spokane for records of sewage treatment plant effluent quality and quantity.

The STORET Data Source. The Station Inventory Printout lists the points at which water quality data are available, the parameters measured and the period of record. In addition to listing the parameters measured, the inventory also gives the number of observations, their mean, variance, standard deviation, coefficient of variability, standard error, and the maximum and minimum value. See

sample page, Appendix I.

The location is identified in several ways:

- There are station numbers assigned by the agencies which entered the data. There appear to be only three agencies which have inserted data, namely USGS, DOE and EPA. Each has its own numbering system.
- 2. The latitude and longitude are given.
- 3. There is a word description.
- 4. And for stations on rivers and streams, the river mile is generally given.

More than one agency can and does put in the same data as another agency. The printout is categorized by originating agency and there is one page or group of pages per station per agency which has put in data. There has been no attempt to eliminate duplicate data. And, in spite of all the alternative station identifiers used, it is frequently very difficult to identify duplications by inspection of the inventory. Except where the identifying numbers of both agencies are given and are identical, it may not be possible to identify a duplication because the word descriptions, latitude and longitude and river mile identifications used by the various agencies may not be identical. Only a line by line comparison of the analytical data will confirm the identity in some cases.

There is no sorting program available that will give the consolidation of data from all agencies for any particular point and eliminate duplications. The data is available only as input by each agency.

The primary source of duplications appears to be between

USGS and DOE. USGS policy is to put in only data that they have analyzed including joint operations with other agencies like DOE. DOE also puts in data from their joint operations with USGS, usually at a much earlier date than USGS. The Corps of Engineers apparently has made no input to STORET in Washington or Idaho. There are a very few special inputs.

After examination of the Storet inventory printout, it is possible to make a selective order of raw data.

One of the physical limitations of the raw data printout is that it is arranged to print on each page not more than 10 columns across, one per parameter, with the date of observation and parameter values vertically. See sample page, Appendix II. This limitation of 10 parameters per sheet requires either a bulky printout or a limited selection of parameters. There are large numbers of parameters because of the variations in methods of reporting some parameters in addition to the fact that a very broad spectrum of constituents have been sampled.

Surface Water Data from STORET. A faw data printout in river mile order was obtained for the parameters listed in Table 1. Table 2 lists the other available parameters that were not ordered. Table 3 lists the surface water stations for which water quality is available in STORET and the period of record. Table 3 includes identification of common stations from various input agencies.

Groundwater Data from STORET. For groundwater quality, a raw data printout was ordered organized by the geographical areas shown in Figure A. The purpose of this arrangement is to collect those wells

in the Study Area which are in the primary Spokane Valley aquifer within the designated areas 2, 3 and 4 and to collect all other wells in the Study Area in designated area 1. Similarly, designated area 5 is to collectuall the wells in the extension of the primary aquifer into Idaho's Rathdrum Prairie and other Idaho wells in area 6. The data received indicates that no groundwater quality data for areas 1, 5, and 6 has been placed into the STORET data files. The parameters requested for groundwater are shown in Table 4.

STORET Printouts. The above described water quality data from STORET is available as computer printout and is made a part of this report by reference. The documents are as follows:

Kennedy-Tudor File Number	Description
D-367-15	STORET DATA, Inventory
D-307-16	STORET DATA, Ground Water Quality Data, Springs and Wells
D-307-17	STORET DATA, Spokane River from Mouth to Post Falls, Idaho
D-307-18	STORET DATA, Surface Waters above Post Falls Dam
D-307-19	STORET DATA, Surface Waters within Washington other than Spokane River.

Data from Published Reports

Tables 5 and 6 list published reports studied to see if the water quality data contained therein was already in STORET or whether it was supplemental to STORET. Table 5 concerns surface water data

and Table 6 covers groundwater data. Where supplemental data are indicated in Tables 5 and 6, this data is incorporated into the summary Tables 8 and 9 and the stations are mapped on Plate 307-1 except where otherwise noted.

Since certain of these published reports contain, in addition to the referenced water quality data, interpretive data of significance, abstracts for selected reports have been prepared for reference.

All published USGS data is in STORET.

Data from State Department of Social and Health Services (DHSH)

The request to DSHS revealed that they have two primary sources of unpublished data. One is a file of chemical quality data and the other is a file of bacteriological test data. Neither of these files has been summarized for the Spokane study area. The data are in a completely raw state.

The chemical quality data for Spokane County consists of approximately 500 laboratory report sheets, each for a single sample. The sheets are unorganized as to location or date. The locations or systems to which the sample applies are difficult to identify in many cases. The paramete s tested for typically are as follows:

- a. Silica
- b. Iron
- c. Manganese
- d. Calcium
- e. Magnesium
- f. Sodium
- q. Potassium
- h. pH
- i. Conductance
- j. Color
- k. Odor
- 1. Taste
- m. Free CO
- n. Bicarboñate

o. Carbonate

t. Nitrite
u. Phosphate

p. Sulfate

v. Total Solids

q. Chlorider. Fluoride

w. Total Hardness

s. Nitrate

x. Alkalinity

Copies of the DSHS chemical analysis reports for the years 1970, 1971 and 1972 for Spokene County have been obtained by making copies of the unsorted file in the Seattle Office of DSHS. These data are available in Kennedy-Tudor files. None of these data are in STORET. No attempt has been made at this time to classify or analyze this mass of data. The locations of the wells for which the data exists are not included in the plot on Plate 307-1.

A sample of the chemical analysis report sheet is included as Appendix III.

Similar chemical water quality data are available, sorted by counties, for Whitman, Lincoln, Stevens and Pend Oreille Counties.

There are a total of about 400 sheets for these four counties together, only part of which would be in the Study Area.

Since the sources of these samples taken by DSHS are the public water systems, and since practically all public water supply systems in the area are from wells, these data are all essentially of groundwater quality.

The DSHS file of bacteriological tests are likewise from public water systems and, as stated above, are essentially groundwater samples. The samples may be taken from any location in the public water system and may or may not be indicative of the bacteriological quality of the groundwater source. Only samples taken at or in the

immediate vicinity of the well head prior to chlorination, if any, could be considered as exclusively representative of groundwater quality.

The bacteriological tests are made in numbers and frequencies called for in WAC 248-54-430 which range from 2 per month for systems serving less than 2400 persons to 150 per month for systems serving 200,000 persons. Since there are 84 water systems in Spokane County listed in the DSHS Water Facilities Inventory, these bacteriological tests are extremely numerous.

The results are reported as "satisfactory" or "unsatisfactory." Unsatisfactory is broken down into the levels represented by the five test dilutions and are given as 2.2, 4.4, 8.8 or 16. A positive indicator for dilutions beyond 2.2 is classified as unsatisfactory. Refer to sample analysis report sheet included as Appendix IV.

Neither a record nor a summary of results of bacteriological tests is maintained at State level. The tests are all run at the State laboratory in Seattle. It is our understanding that there is no record of these results except in the form of the individual slips of paper reporting each test result. There is no register or file of letters notifying the operating agency of an unsatisfactory test. There are three copies of the test result, one is returned to the area DSHS office, one is returned to the system operator and one is sent to the County or District Health Department. The DSHS laboratory keeps a record only of the test number and result without regard to system

identification or location. The file is by test number only.

The only level at which a summary or analysis can be made is at the local level DSHS office or the County Health District, each of which receives a copy. A copy of such a tabulation has been obtained from Spokane County Health District for the year 1972. A copy of this table is included as Appendix V. Those systems that provide chlorination have been marked. Where the systems are not chlorinated, a lack of "unsatisfactory" results may be interpreted as satisfactory with regard to source. Where there are "unsatisfactory" results, there is no way of knowing whether this was due to source contamination, system contamination or sample contamination.

None of this bacteriological data is in STORET and none is plotted in Plate 307-1.

Note that the definition of a "public water system" apparamently does not include schools with an individual well supply system since no bacteriological tests are routinely taken of these systems of which there are a significant number. Refer to the section reporting existing water systems.

Data from Washington Water Power (WWP)

At an interview with WWP employees on September 10, 1972, a request was made for water quality data held by WWP and not available elsewhere. The request was answered as follows.

- 1. WWP has some data for 1972 on Long Lake that is available. WWP is continuing the monitoring in 1973.
- 2. WWP has some bottom sediment samples from spring of

1973 for Nine Mile Reservoir.

3. The power house log at Long Lake Dam records water temperature each day. These temperature data are not summarized anywhere. To get them would mean recording each day from a separate log sheet.

The 1972 data on Long Lake have been received and consist of dissolved oxygen and temperature data at six locations and at 5 foot depth increments at 16 different dates between June 13 and October 16. (File D-307-2)

It is not proposed to abstract the daily temperature records from the Long Lake power plant records except to the extent that it is necessary for calibration of the simulation model.

Data from USGS

A request was made to USGS for groundwater quality data that was neither on STORET nor published in a water supply paper. Three groups of data were received. The first group consists of groundwater quality analysis for 18 stations that are being monitored in an ongoing study. This data will eventually be entered into STORET. The second group of data is 1970 chemical analysis of 2 wells, numbers 24/41-23K1 and 27/41-26Q2. The two wells lie, respectively, south and north of the main aquifer.

In addition, USGS has supplied a partially completed inventory of wells located within the main aquifer. USGS is updating their inventory at wells as a part of their ongoing project with DOE to hydraulically model the Spokane Valley Aquifer.

Data from Inland Empire Paper Company

Inland Empire Paper Company monitors their effluent waste flow daily. In addition to the average daily flow, the following water quality parameters are reported:

<u>Parameter</u>	<u>Units</u>
Biochemical Oxygen Demand	Pounds Per Day
Suspended Combustible Solids	Pounds Per Day
На	Maximum, Minimum and Average
Temperature	Degrees F, Maximum, Minimum and Average

Files of these data have been obtained for the period

January 1972 to June 1973. Subsequent to April 1972, periodic tests

were made for zinc content of the plant raw water supply, plant effluent and the Spokane River.

Data from City of Spokane on Sewage Treatment Plant

As part of the normal operation of the City of Spokane

Sewage Treatment Plant, certain water quality parameters of the plant

effluent are monitored. The parameters monitored are as follows:

<u>Parameter</u>	Frequency of Observation
Dissolved Oxygen	5-10 Day Intervals
Biochemical Oxygen Demand	2-5 Day Intervals
рH	Daily
Suspended Solids	Work Days
Chlorine Residual	Daily
Total Coliform	4 Per Month, Average
Fecal Coliform	4 Per Month, Average

Also available is the total daily discharge in millions of gallons per day.

These flow and quality data for the period April 1972 to April 1973 are shown in the section of this report on waste source. The data for other time periods are available in the treatment plant records.

The City does not make any observation of receiving water quality either upstream or downstream from the sewage treatment plant outfall.

None of the City data are in STORET.

Summarization of Available Surface Water Quality Data

All locations for which surface water quality data are available are listed in Table 8 and shown in Plate 307-1. This listing includes all sources found and assigns to each location a number, described in Table 8 as the K-T number, which is used as the identifier in Plate 307-1.

The kind of data and the span of time represented by these data are shown for each location in Table 8. Rather than identify each individual quality parameter, these numerous parameters and their variation have been grouped into seven categories as shown in Table 7. If a minimum number of parameters from a category as shown in Table 7 are available for a location, that category is listed as covered for that location in Table 8. Coverage is indicated by listing two dates covering the span of time from the earliest to latest reporting of

the covered parameters. Note that the two dates do not imply a continuous record between the dates indicated, or that all parameters are available over the indicated span.

The order of location listing in Table 8 is by river mile, first for the Spokane River, followed by the Little Spokane River, .

Hangman Creek and Chamokane Creek. Lakes and waste sources are shown last.

The sources of water quality data are shown in Table 8 in several ways. In the first column after the description, there is a numerical reference to the list of sources included at the end of Table 8. The column to the right of the quality categories headed "Total Indicated Record in STORET" provides a quick indication of whether all the data indicated for a particular location is in the STORET source or whether supplemental sources must be consulted. Where there is a "NO" in this column, the space to the right headed "Source of Elements Not in STORET" indicates the source that should be consulted for the elements not in STORET. For example, at K-T 24, the time span dates are 12-16-65 to 9-13-72 for three categories and 3-26-66 to 9-13-72 for another; followed by the indication that all data are not in STORET and the note "Soltero 5-6-72/3-15-73." This means that the older deta are on STORET but that the data between 5-6-72 and 3-15-73 must be sought from the Soltero reference.

The most important published sources not represented in STORET are Bishop and Lee (1972), Condit (1972), Cunningham and Pine (1969), Funk (1973) and Soltero (1973). Cunningham and Rothwell (1971)

and Todhunter and Cunningham (1972) are all in STORET.

Under remarks, the most common information shown is a cross reference of the location and description shown in Table 8 to the identification used in the applicable reference. Using the same example above of K-T 24, the note "Soltero # Seven Mile" means that the station identified as K-T 24 on Seven Mile Bridge is the same location as Soltero's "Seven Mile" or S.M. as he abbreviates in his tables.

Also under "Remarks," locations corresponding to the sampling and analysis program for simulation model calibration are shown by the station number with the identifier K-T S&M. The data being produced by this, program are not indicated in Table 8.

Refer to the section of this report devoted to reporting the results of this sampling and analysis program.

The deta availability indicated by reference to Soltero (1973) require special explanation. The published report, Soltero (1973), contains a Table V on pages 17 and 18 that lists the range and mean values for 24 parameters at six river locations for the period May 6, 1972 to March 15, 1973. The referenced report does not contain the individual observations on which Table V is based, these data being unpublished to date. Table 8 herein indicates Soltero (1973) as the source of this data whereas the raw data is actually unpublished. It is our understanding that specific requests for the raw data may be addressed to Dr. Soltero at Eastern Washington State University.

From a geographic standpoint, there is intensive coverage of the Spokane River from Long Lake Dam to Post Falls, Idaho. Gaps between sampling points are three miles or less. From Long Lake Dam to the Columbia River confluence, the spacing is 4 to 10 miles.

The Little Spokane River is well covered from the confluence with the Spokane upstream to Mead. Above Mead there are only four sampling points. Hangman Creek is devoid of water quality sampling except for two stations near the mouth. There are no sampling points on any other branch of the three main streams except for one on Chamokane Creek near Ford, Washington.

Only three natural lakes are significantly sampled, Newman Lake, Liberty Lake and Diamond Lake. Minor data for one date are available on Medical and Silver Lakes. There are no data for other lakes, the most significant of which are the chain of lakes on the west branch of the Little Spokane River.

Considering the water quality categories in combination with geographical location, the availability of data are summarized as follows:

On the Spokane River:

いからいというかは大きないというというできない

Standard Tests: None available below Long Lake Dam. Well covered from Long Lake to Post Falls.

Nutrients: Well covered with 1971 and 1972 data for full length.

Oxygen Balance: Well covered for full length.

Heavy Metals: None available below Long Lake Dam.
Light recent coverage from Long Lake Dam to
Spokane Dam. Good recent coverage from Spokane
Dam to Post Falls.

Bacteriological: Thin coverage for entire length.
None below City STP until Nine Mile Dam.

Biological: Only one location covered below Long Lake Dam. Long Lake well covered primarily by Soltero. Sparse in both location and intensity from Long Lake to Post Falls.

Pollutants: Only one location below Long Lake and none in Long Lake. Sparse coverage from Nine Mile Dam to Post Falls. About half the available data is from 1966.

On the Little Spokane River:

Practically all available data on the Little Spokane River is from Burkhalter, Cunningham and Tracy (1970) which reports analyses made in 1968. This report provides Standard Tests, Nutrients, Oxygen Balance and Bacteriological data for each of the Little Spokane locations and provides Biological data for all but three locations. Heavy metal data are available from other sources for three locations at and below Dartford. There are no Pollutants data.

On Hangman Creek:

There are only two locations on Hangman Creek for which water quality data are available, one at the mouth and one five miles upstream. The station at the mouth has 1972-73 data for all categories except Biological. The upstream station has Standard Test data only for a period in 1968.

On Chamokane Creek:

There is only one location with Standard Test data only for a period in 1968.

Liberty and Newman Lakes:

Only Standard Tests and Nutrient data are available for a period in 1971. There are no Oxygen Balance, Heavy Metals, Bacteriological, Biological or Pollutant data.

Diamond Lake:

There are Standard Tests, Nutrients, Oxygen Balance,

and Biological data primarily from Bishop (1973). There are no Heavy Metals, Bacteriological or Pollutants data.

West Medical and Silver Lakes:

Bishop (1969) provides only temperature, pH, conductivity and Dissolved Oxygen for a single date in 1968.

Surface Water Quality Data Needs

In order to evaluate data gaps, it is necessary to establish the quality data needs with respect to:

- 1. Parameters.
- 2. Geological Locations.
- 3. Distribution in Time.

First, considering parameters, the needs for this specific water management study give highest priority to the following:

- 1. Temperature.
- 2. Elements of the oxygen balance, DO, BOD, COD.
- 3. Total dissolved solids.
- 4. Nutrients, primarily NO₃, NH₃, and Ortho-P.
- 5. Total and Fecal coliforms.
- 6. Heavy metals, primarily zinc.
- 7. pH.
- 8. Chlorides.
- 9. Surfactants.
- 10. Oil and grease.

In addition to the above, chlorophyll A and Zooplankton data are needed for major man-made impoundments and natural lakes. Next, considering geographic location, the minimum needs are to define present quality at the following locations:

On the Spokane River:

Upon entering the Study Area and representative of the river downstream to where the first major point source

enters, in this case, upstream from Inland Paper.

Upstream from where city storm drains and sewer outflows begin; that is, approximately at the east city limits.

Immediately upstream from the confluence of Hangman Creek.

Below Hangman Creek confluence but upstream from the City of Spokane sewage treatment plant outfall.

Below the STP outfall but above the Little Spokene confluence.

In Nine Mile Reservoir.
Below Nine Mile Reservoir.

In Long Lake.

Immediately below the Little Spokane Confluence. Selected locations throughout the length of the lake and at various depths.

Below Long Lake Dam.

In Little Falls Reservoir.

Below Little Falls Reservoir at entrance to the backwater formed by FDR Lake.

Cn Hangman Creek.

Immediately above the mouth.

At least one upstream location beyond the urban development area.

On the Little Spokane River.

Immediately above the mouth.

Upstream from the groundwater inflow from the primary aquifer, around Dartford.

One tributary from the Selkirk mountains.

One tributary from the West, Dragoon Creek.

On the major natural lakes.

Newman Liberty Diamond Eloika Sacheen Medical West Medical Silver

Finally, considering distribution in time, the primary need is for representation over a full year cycle under the most current conditions. It is also desirable to have concurrent observations of conditions throughout the basin to obtain data on the interrelation—ships from point to point. For lakes which have considerable pollutional inertia, it would be desirable to have long term, year long, records of such key parameters as nutrients and dissolved oxygen.

Surface Water Quality Data Gaps

Comparing the foregoing needs with the availability, the most important data gaps are as follows:

Spokane River

The presence of heavy metals, particularly zinc, is well established as the Spokane River enters the Study Area. More recent data at representative locations from Spokane Dam downriver to Long Lake Dam is needed to determine if the metal levels persist through this reach year round.

Bacteriological data at regular time intervals is needed throughout the reach from the State line to Long Lake Dam to permit a statistical evaluation of the time-duration of excessive levels. This is particularly applicable to the reach from Trent to Nine Mile Dam. Note the absence of data below the City STP to Nine Mile Dam.

Year round recent data for pollutants such as surfactant, oil and grease, pesticides is needed from Trent to Nine Mile Dam.

Little Spokane River

The primary need is for more recent data for all parameters that have been measured plus pollutants that have not been measured. An updating program could use a year round program of the parameters listed under needs above at the following locations:

- 1. Near mouth.
- 2. At Dartford.
- 3. On the Deadman Creek tributary.
- 4. On the Dragoon Creek tributary.
- 5. One each on the east and west branches near where they join.

Hangman Creek

The primary need is for data upstream from the urban development area to evaluate the impact of that development. A location at or above the California or Rock Creek confluence would be appropriate.

Chamokane Creek

Although this stream drains an area with a low level of development, there is a need for at least one series of tests for a broader spectrum of pollution parameters than presently available to evaluate the stream.

Deep Creek

There are no data at all for this tributary which enters the Spokane River above Nine Mile Dam. It drains an area for which there are no representative data. A minimum program analysis for one location near the mouth would fill this gap.

Liberty and Newman Lakes

These two lakes are the two most subject to developmental pressures. The presently available data stops far short of that needed to evaluate the present condition of these lakes. The data needs to be expanded to include oxygen balance and biological parameters at various depths and locations and to include bacteriological and pollutant categories.

Medical, West Medical and Silver Lakes

West Medical and Silver Lakes are described by Lee (1969) as being alkaline and eutrophic. Presumably Medical Lake is similar. These conditions require documentation beyond the minimal data shown in Lee (1969) and USGS (1971).

Diamond, Eloika and Sasheen Lakes

These lakes are less subject to developmental pressure. Only Diamond Lake has been studied significantly, Bishop (1973). Corresponding studies of Eloika and Sasheen are needed as a minimum.

Waste Sources

Spokane STP. The STORET data covers the period from 9-12-72 to 9/20/72 only. The specific parameters covered are:

Parameter	Number of Observations
Temperature	17
BOD	4
Conductivity	2
DO	17
рН	14
Total Hardness	2
Nitrate	1
Kjeldahl N	1
Total P	1
Ortho P	1
Residue, Diss 105	4
Fecal Coliforms	17
Lead	1
Mercury	1
Cadmium	1
COD	5
Residue Total NFLT	5
Residue Settleable	4
Total Coliforms	17

These data from STORET are so meagre and for such a limited time period that they provide little to supplement the City records which are far more extensive and complete for the fundamental para-

meters of BOD, DO, Temperature, Suspended Solids and Coliforms. The STORET data does not fill the gaps in city data which are the nutrients, heavy metals, oils, surfactants, and pesticides.

The Soltero (1973) data which covers a period from 5-6-72 to 3-15-73 has excellent coverage of all the parameters of interest except oils, surfactants and pesticides. Soltero (1973) does not duplicate the parameters that are routinely well covered by the City's monitoring. Therefore, between Soltero (1973) and the City there is adequate coverage for the 1972-73 period excepting oils, surfactants and pesticides.

<u>Inland Empire Paper Company</u>. The STORET data is limited to the period from 9-11-72 to 9-14-72 and covers the following parameters:

Parameter	Number of Observations
Temperature	3
BOD	3
Conductivity	3
DO	3
Total Hardness	2
Ammonia	ī
Nitrate	3
Kjeldahl N	3
Phosphate	3
Fecal Coliform	3
Lead	3
Mercury	3
Cadmium	3

The only other data except the Company's own monitoring is from Cunningham (1968) which does not reflect current operations.

The Company's daily monitoring gives complete coverage for BOD and suspended combustible solids. The primary data gaps for this waste source are COD and nutrients over an extended period. In addition,

a full broad spectrum analysis should be made to be sure there are no pollutants being overlooked. This broad spectrum should include sulfite, all of the metals, surfactants, oils and pesticides.

<u>Kaiser #1, Kaises #2, Spokane Industrial Park and Hillyard</u>

<u>Processing.</u> These four major dischargers to the Spokane River are represented only by the data for 9-11-72 to 9-20-72 contained in STORET. The parameters covered are as follows:

Number of Observations

Parameter	Kaiser #1	Kaiser #2		Hillyard Processing
Temperature	3	3	4	3
BOD	2	2	4	3
Conductivity	2	2	3	3
DO	3	3	16	3
pH	-	-	13	-
Total Hardness	4	2	2	2
Chloride	1	-	-	1
Total Nitrate	3	2	2	3
Ammonia	-	-	1	1
Kjeldahl Nitrate	2	1	2	3
Total Phosphorus	3	2	2	3
Fecal Coliform	3	3	16	3
Ortho Phosphate	1	_	••	-
Lead	5	2	2	3
Mercury	4	2	2	3
Aluminum	4	2	-	2
Cadmium	5	2	2	3
COD	3	2	5	3
Residue Total NFLT	3	2	6	3
Total Coliform	3	3	16	3
Residue Diss 105	***	-	4	-
Residue Settleable	-	-	4	-

There are no other data available for these waste sources.

In addition to the gap inherent in the short period of time represented by the above listed test, there is a gap in parameters for oils, surfactants and pesticides.

Summarization of Groundwater Quality Data

Divisions of the Study Area. The study area has two aquifers of major interest to present water supply, namely the primary Spokane Valley aquifer (hereafter referred to as the "primary aquifer") and the "basalt aquifer." There are a number of other aquifers of lesser importance which, for the purpose of water quality summarization are herein referred to as "other aquifers." Refer to the section Geology and Groundwater for detailed descriptions of these aquifers. A grossly simplified summary description follows.

The outline of the primary aquifer is shown on Plate 309-3. It consists of the gravel filled valley through which the Spokane River flows from the Washington-Id ho boundary to the confluence of the Little Spokane River. The flow of the groundwater through this aquifer is from east to west and the primary source of water is in Idaho. There is interchange of surface and groundwater as the Spokane River flows through the aquifer. In general, at average flow and less, the river looses to the aquifer between the Idaho border and Greenacres and gains from the aquifer throughout the remainder. At higher river stages, the section which looses to the aquifer increases in length and quantity.

The basalt aquifer covers the study area south and southwest of the Spokane River below the Hangman Creek confluence and includes much of the Hangman Creek tributary area. This area is delineated on Plates 309-1, 2 and 3. The basalt aquifer consists of horizontally bedded layers of basalt (ancient lava flows) interlayer with relatively impervious siltstone known as the Latah formation.

The major elements of the other aquifer category are the gravel deposits in the valley of the Little Spokane River and its tributaries and the Chamokane Creek. There are also isolated wells in rock formation which predominate in the highlands of the northeast parts of the study area.

The availability of groundwater quality data is discussed in terms of its availability within each of these three main aquifer classifications.

Before making the breakdown summaries by aquifer, the groundwater quality data sources for the entire study area are discussed and a total inventory of quality data for the study area is developed and presented in Table 9.

Columns indicating the location of each well relative to these three aquifer classifications are shown on the total quality inventory of Table 9. Tables separating the wells by aquifer are discussed after the description of study area sources.

STORET contains groundwater quality data for 4 springs in the area. One of these is the Fish Hatchery Springs which is included in the USGS-EPA ongoing study. STORET is the only source of data for the other three springs. These springs were all sampled once by EPA for a wide spectrum of parameters and should be classified as Group II data sources.

Availability from STORET. STORET contains groundwater quality data on 41 wells in the study area. Of these 41 wells, the data for 21 are significant with respect to the breadth of coverage of parameters reported and that data are available for more than one time. The remaining 20 wells

have data for only one time, with minor exception, and for a list of parameters usually limited to the "standards" list as shown in Table 7.

All of the groundwater quality data in STORET is for the primary Spokane Valley aquifer, with the exception of one well in the Little Spokane Valley aquifer near Mead. There are no data in STORET for the basalt aquifer. See discussion below on the aquifers in the study area.

Sources of Data in STORET. All data in STORET appear to be from published USGS sources, except that there are a few recent entries for which a published source has not been identified. The three published sources which provide practically all of the data in STORET are Weigle and Mundorf (1952), Van Denburgh and Santos (1965), and Cline (1969). Discussions below will show that not all the data available in these publications has been transferred to STORET. There are some entries that do not have the USGS well identifier number.

Availability of Data from Published Sources. The publications listed in Table 6 were canvased for groundwater quality data. Only the three publications referred to above as sources for STORET were found to contain data. These three published sources contain water quality data for 226 wells in the study area, including wells that are inside the primary aquifer and wells in basalt and other aquifers. These 226 wells and the available data and source are listed in Table 9 in order of the USGS identification number which, inherently, also gives location.

The availability of water quality data is shown in terms of the parameter categories defined in Table 7 except that the inapplicable categories are omitted and a new category is added to describe a special limited group of parameters as discussed below.

Earlier investigations such as Weigle and Mundorf (1952) and Van Denburgh and Santos (1965) usually included nitrates in their analyses but rarely included phosphates. The category "nutrients" being used herein for these two parameters is a misnomer as far as these early investigations are concerned since they were not looking for "nutrients" but were interested in nitrate (and/or nitrite) as related to the public health concern for methemogobinemia (blue baby).

Weigle and Mundorf (1952) is the source of data on 140 wells listed in Table 9. Of these, all but 22 have water quality data limited to the following four parameters: chlorides, total hardness, conductivity and alkalinity. Furthermore, these parameters were sampled and tested only once and all were in the period May - June 1951. This limited group of parameters is placed in a special category on Table 9. For 22 wells a wider spectrum of parameters is reported, being essentially the full set of the "standard" parameters listed in Table 7 plus nitrate for most.

Also the dates of analysis for these 22 are not restricted to May - June 1951. In general the wells with limited parameters are not in STORET whereas the wells with a wider spectrum of data are included.

Van Denburgh and Santos (1965) is statewide in scope. Within the study area, data are included for wells in both the primary Spokane Valley aquifer and in the basalt and other areas. Thirty-seven wells from this source are in Table 9. Twelve of these wells are the same wells covered by Weigle and Mundorf. The spectrum of parameters reported in Van Denburgh is a complete set of "standard" tests per Table 7 plus nitrates and orthophosphates. Only part of the Van Denburgh and Santos (1965) data appears to be in STORET.

Cline (1969) covers north central Spokane County and southeastern Stevens County, the coverage being entirely with the study area. Cline (1969) reports on 41 wells both inside the primary Spokane Valley aquifer and those outside in basalt or other aquifers. Twenty-three analyses are for a single date of sample collection and the parameters reported are the "standard" list per Table 7 plus nitrates and phosphates in many cases. The analyses of the remaining 18 wells are of the very limited type reporting only hardness and specific conductance. STORET appears to contain most of the Cline (1969) data for wells within the primary aquifer but none of those outside.

Unpublished Sources of Data. There are two sources of unpublished groundwater quality data. The first is USGS who were able to provide chemical data on a total of 16 wells and 4 springs. The data for all except two miscellaneous wells are the result of the ongoing USGS-EPA program.

The USGS-EPA ongoing groundwater monitoring program is being carried out by USGS in conformance with criteria established by EFA.

The program will run from June 1973 to June 1974 and will consist of 4 samples taken at 18 locations. The samples are being analyzed for the parameters listed in Table 10. Three sampling cycles have been completed. The wells and springs to be sampled are also listed in Table 10 and are plotted on Plate 309-3.

The locations were selected to meet the goals as indicated by the categories below:

Group	Purpose	Sample	Points
A	To sample aquifer quality as it discharges from springs along the Little Spokane River	26/42 26/42 26/43 26/43	11J1 (s) 12A1 (s) 7B1 (s) 5L1 (s)
В	To sample the aquifer dis- charge to the Spokane River in the gap between the falls and Shadle Park	25/42	13B1
С	To sample a cross section of the aquifer in the vicinity of Park Rd. in East Spokane	25/44 25/44 25/43 25/44	19D1 18D2 13A1 7C1
D	To sample a cross section of the aquifer as it enters Washington	26/45 26/45 26/45	35F1 36N1 36Q1
E	To sample the possible effect of the Indian Trails (City) sanitary land fill	26/42	27N1
F	To sample the demolition waste disposal sites in East Spokane	25/43	14K1
G	To sample wells in a heavy industrial area, Trentwood	25/44 25/44	1J¹ 2Q.
H & I	To sample the possible effect of the County land disposal site at Greenacres (recently made inactive)	25/45 25/45	16K1 15D1

Both the USGS-EPA ongoing locations and the two miscallaneous locations are included in the total groundwater quality inventory of Table 9.

The second unpublished data source is the DSHS chemical and bacteriological files described previously. Neither of these files is in STORET and the data availability is not inventoried herein in Table 9.

Study Area Summary. As described above, the available groundwater

quality data are summarized for the entire study area in Table 9, arranged in order of USGS number. In addition to showing the data availability by category per Table 7, Table 9 indicates the following:

- 1. Whether the data is available on STORET
- 2. If data is not on STORET, the other data source
- 3. The location of the well by aquifer
- 4. The geographical location of the well, inherent in the USGS number
- 5. An indication of the importance of the well as a water producer by symbol identifying those producing more than 5 million gallons per year.

The locations of the wells listed in Table 9 are shown on Plates 309-1, 309-2 and 309-3.

Available Data in the Primary Aquifer. The wells within this aquifer for which significant water quality data are available are listed in Table 11 and 12 and are located on Plate 309-3. Tables 11 and 12 do not list all wells for which water quality data are available, only those regarded as significant. For example none of the wells with "limited" data are listed.

Tables 11 and 12 categorize the significant source further into Group I data and Group II data respectively. Group I data is defined as at least standard tests plus nutrients and more than one test. All of the USGS-EPA ongoing series fall in this category since they include standard, nutrient, metal and pollutant parameters. Group II is defined as having at least one parameter category other than "limited" for a single date.

Of the 37 wells and springs listed in Table 11 having Group I data,

only 12 have data prior to 1970. Wide spectrum analysis in general is represented predominantly by the more recent studies. By comparison, of the 29 wells listed in Table 12 having Group II data, 26 are prior to 1970.

The USGS-EPA ongoing program consisting of 14 wells and 4 springs provides 15 listings in Table 11 that are entirely dependent upon that source and only 3 that are represented by another data source. Therefore, approximately 40 percent of the presently available wide spectrum analysis data are dependent upon this ongoing program.

<u>Data Gaps for the Primary Aquifer</u>. The following factors are considered in evaluation of data gaps for the primary aquifer:

- 1. Parameters reported
- 2. Time period of record
- 3. Geographical location
 - a. Relative to total area of the aquifer
 - b. Relation to flow direction of the groundwater body
 - c. Relation to the interchange with surface waters
 - d. Relation to location of surface disposal of pollutants
- 4. Coverage of major water producing wells
- 5. Possible affect of rate of withdrawal on quality samples
 Parameters Reported

The USGS-EPA ongoing program provides the widest available spectrum of parameters. The coverage in the standard, nutrient and metals categories is adequate. Only phenols and detergents are reported in the pollutants category and no bacteriological tests are made. Since none of the other sources report pesticides from the pollutant category, this absence constitutes a data gap. Due to the unsummarized condition of bacterial testing by DSHS, bacterial testing is also a data gap.

Bring while the to be and they be they will be the second

Time Period Reported

The primary interest is in existing conditions as far as absolute values are concerned but there is also an interest in trends which the present absolute values may not indicate. Twenty-eight of the 37 Group I sources are recent data representative of current conditions. Only 11 of the Group I sources go back 10 years or more but 25 of the Group II sources are 10 years old or more. Therefore, there is good recent coverage of a broad spectrum of parameters but there is good historical coverage only of the standard tests which dominate Group I.

The high rate of flushing of this aquifer indicated in the section on Geology and Groundwater probably reduces the potential for accumulation of pollutants. Hence, the difference, if any, between historical and current observations would be a measure of transient change rather then permanent long term accumulations.

From a time standpoint the data gap is for historical data on phosphates, metals and MBAS substances.

Geographical Location

Refer to Plate 309-3 on which groundwater quality locations are plotted for the primary aquifer. Four symbols are used to indicate class of data available at the locations:

- 1. Group I data from studies other than USGS-EPA ongoing program
- 2. USGS-EPA ongoing station (some of this also has data from previous studies, see Table 11)
- 3. Group II data
- 4. Limited chemical data

Considering the aquifer as a whole, the coverage of Group I data `
(which includes USGS-EPA ongoing) is absent or thin in the following
locations:

- 1. North of the river from the Industrial Park to Otis Orchards
- 2. South of the river in the Dishman Opportunity area
- 3. Throughout the service area of the City of Spokane water system and north of the City to the Little Spokane

The direction of aquifer flow, the location of surface water interchange and relation to potential percolation of pollutants are considered together. Refer to the following plates in other sections of the report for delineation of these factors.

- Plates 303-28 to 35 from the section on Geology and Groundwater for groundwater surface contours indicating direction of flow.
- Figure E of the section on Surface Waters showing the location of groundwater and surface water interchanges and direction of flow under mean annual conditions.
- 3. Plates 311-1 from the section on Waste Water Sources and Systems for the location of areas presently served by septic tank and drain field disposal systems.

There are four Group I sources which span the aquifer in the vicinity of the Washington-Idaho line to measure the quality as the primary groundwater flow enters the study area. Three of these, however, are close to the river in a section where there is surface water discharge from the river into the aquifer. Comparison of the analytical data for 26/45-36N1 (Siverson) and 26/45-36Q1 (Borden) indicate that the Siverson well may be heavily influenced by the river as indicated by 560 mg/l concentration of zinc. It would appear that one or two more wells farther

from the river are needed to reinforce the data on the groundwater before it is subject to the surface water inflow.

The surface water exchange to groundwater extends approximately to Greenacres. There are no sample stations near the river in this stretch to detect the extent of this influence.

The heavy concentration of septic tanks and drainfields begins near Trentwood, speaking in terms of the direction of groundwater flow. There are no Group I wells to adequately span the cross section of the aquifer prior to entering the area of drainfields.

There is a good concentration of Group I sources spanning the aquifer in two bands just east of the City limit which should adequately represent the groundwater flow through this narrows of the aquifer. These wells are under and downstream in terms of aquifer flow from the drainfield area.

There are no Group I observations in the City area as the primary aquifer flow turns north away from the river toward the Hillyard Trough and continues through the trough to the springs along the Little Spokane, except for one Kaiser well. There is another drainfeild area beginning north of the City and extending to the Little Spokane River. All of the Group I samples as the aquifer reaches the Little Spokane River are springs. These springs probably do not fully represent the deep flow entering the Little Spokane. Lack of sampling points within the City, at the Hillyard Trough and well samples at the Little Spokane constitute data gaps.

Coverage of Major Water Producing Wells

Table 15 lists the major water producing wells in the primary aquifer abstracted from the section Water Systems and Useage. This list is marked to indicate which are represented by Group I and Group II data.

Of the 37 Group I sources, 24 correspond to major water users and 13 are not listed in Table 15. The significance of a well not being in Table 15 is that it is not part of a municipal or industrial system. Of the 13 not listed, four are private domestic wells, three are commercial/industrial wells serving small businesses, one serves the Holiday Hills recreation area, one is owned by the Federal government and four are springs. Significantly, eleven of the unlisted wells are part of the USGS-EPA ongoing program.

Of the 24 Group I sources that are also major municipal or industrial wells, 18 have data from previous studies and 6 have the USGS-EPA ongoing program as their source.

Comparing the 29 Group II sources with Table 15 indicates that 18 coincide with listed major water users and that 11 are not in Table 15. The unlisted wells consist of 8 private, 2 Washington Water Power, and one Union Sand and Gravel. The 2 Washington Water Power wells are not in the inventory of active wells furnished to the consultant for this study. The Union Sand and Gravel well is reported as having been destroyed.

Considering the data gap in representation of major producers together with the geographical gaps discussed above, Table 18 is presented listing major users that are not represented by quality data in three geographical areas where there is weak representation.

Possible Affect of Rate of Withdrawal

The primary aquifer is unique in the volume of water flowing through its cross section. Refer to the section Geology and Groundwater. If pollution is reaching the surface of this large flow volume it probably would remain on the surface without significant vertical mixing in the aquifer. Large volume wells undoubtedly draw from lower layers as well as the surface of the aquifer as evidenced by the extremely small drawdowns observed. Therefore it is possible that large volume wells represent a smaple of the aquifer that contains proportionately less of the surface layer than might a very small volume well essentially skimming from the surface.

The fact that there are few broad spectrum samples from very small wells may constitute a data gap.

Possible Affect of Season

The availability of moisture in sufficient volume to possibly carry ground surface pollution down through the unsaturated zone of the aquifer is dependent upon the time of year. The maximum volume per unit of time would be available either at the thaw or at a heavy precipitation period following a thaw. Concentrations of surface water occurring at dry well disposal sites for streets and highways might be particularly critical.

Most of the wide spectrum data presently available is the USGS-EPA ongoing program which is for June, September and December.

The lack of data at and following the spring thaw may constitute a data gap.

Consistency in Available Data

Reference to Table 10 containing the USGS-EPA ongoing analytical results locations shown for these analyses on Plate 309-3 indicates the following with reference to consistency of key parameters throughout the aquifer.

- 1. The Ruth Jeffers well shows such radically different quality combined with its location at the approximate contact line of the aquifer indicate that it probably is not a primary aquifer well. The following statements are with reference to the remainder of the Table 10 list without the Ruth Jeffers well.
- 2. Conductivity, total hardness and pH show great consistency from where the aquifer enters the study area from Idaho to where it discharges into the Spokane and Little Spokane River. pH is almost constant, varying from 7.4 to 7.8. Conductivity and hardness show a slight trend of increase as the water travels through the aquifer but there are individual exceptional cases. Conductivity and hardness ranges from approximately 275 and 140 respectively to 300 plus and 150.
- 3. Except for the Borden, Siverson and Kaiser wells the zinc content is in the range 10 to 50 mg/l. These three exceptional cases show values of 120, 560 and 360 respectively. Since the river water zinc concentration ranges between 10 and 730 mg/l with an average of 290 mg/l and these three wells are near the river and in a reach where surface water transfer to the aquifer is suspected, these analytical results appear to confirm the interchanges.
- 4. There is a slight trend toward increased chloride content as the water progresses through the aquifer. The CID #10 well which appears to be uninfluenced by the river, shows 0.8 mg/l chloride. All other wells are higher, ranging up to 8.6 mg/l, but two major springs at the aquifer discharge are 2.3 mg/l.
- 5. MBAS was detected at 0.03 mg/l in only one well, Kaiser. MBAS was undetected at all others.

The foregoing indicates that there is a high degree of consistency throughout the aquifer and that for the standard chemical tests, little additional information will be obtained from additional locations. A search could be made through the uncatalogued files of DSHS chemical tests for the

standard tests made on the particular wells listed in Table 18 to confirm the consistency of these parameters.

Summary of Primary Aquifer Gaps

Summarizing from the foregoing paragraphs, the data gaps for groundwater quality in the primary aquifer are as follows:

- 1. Pesticide analyses for the entire area
- 2. Bacterial testing or a major cateloguing and summarization effort for existing DSHS data
- 3. Geographical areas and major users as listed in Table 18
- 4. Sampling at time of year where there is maximum percolation from the aquifer surface combined with low rate withdrawal from the surface of the aquifer.

Available Data in the Basalt Aquifer. The wells within the basalt aquifer for which significant quality data are available are listed in Table 13 and locations are shown on Plates 309-1 and 2. All except one well listed in Table 13 has Van Denburgh and Santos (1965) as its source. Therefore these data consist of standard tests plus nitrate and are for the years 1960 and earlier.

Table 16 lists the major water users of the basalt aquifer. Only four wells in Table 16 coincide with those for which data are available. The municipal wells for Tekoa, Latah, Fairfield, Cheney, Rockford, Spangle and Airway Heights are not represented by water quality data.

Since the available data spectrum is no better than the DSHS routine chemical tests, all the wells listed on Table 16 could presumably be brought up to the same data availability level as those on Table 13 by a search of the uncatalogued files of DSHS.

There are no data for this aquifer in the metals, bacteriological and

pollutant categories of Table 7.

Data Gaps for the Basalt Aquifer. This aquifer is entirely different in character than the primary aquifer which is essentially one larger continuous underground body of water. This aquifer is believed to be essentially discontinuous vertically; that is, between horizontal layers of water bearing basalt and the extent of lateral movement in each layer is unknown. Therefore, coverage must be considered on an individual well basis rather than by area. The scatter of wells for which data are available would not necessarily be a measure of the quality of relatively nearby major producers not sampled.

For the wells which produce most of the water in the area, this aquifer can be said to be without water quality data for the entire broad spectrum of parameters.

Available Data in Other Aquifers. The wells in other aquifers for which significant quality data are available are listed in Table 14 and locations are shown on Plate 309-1. There are only 14 wells for which standard tests or better are available. Of these only Liberty Lake Utilities and Spokane County Golf Course wells have Group I data.

Table 17 lists the major water users in the other aquifers. The Little Spokane Valley is the largest single unit in the "other aquifers" category with 15 municipal service wells. The next largest group are those bordering the Spokane River in the vicinity of Long Lake with 7 wells. The remainder are the two Bureau of Indian Affairs wells at Wellpinit and the two wells in the Liberty Lake area. Refer to Plate 314-10 for the location of these wells. Of the wells listed in Table 17, only the following four have water quality data as listed in Table 14:

Washington Water Power Riverview Hills in Little Spokane area Lakeridge Water Co. in the Long Lake area

Liberty Lake Utilities and Spokane County Golf Course, both in Liberty Lake area

Data Gaps for the Other Aquifer

There are no wells in the Little Spokane Valley area, the Wellpinit area and the Long Lake area for which there are broad spectrum analyses.

A data gap exists for these three areas essentially for all parameters.

There are two wells in the Liberty Lake area with Group I data.

The data gap for this area consists of bacteriological data.

TABLE 1
SURFACE WATER PARAMETERS ORDERED FROM STORET

Storet Code #	Parameter	Units
00010	Water Temperature	°C
00060	Stream Flow	CFS
00070	Turbidity	JTU
00310	BOD ₅	mg/l
00095	Conductivity @ 25°C	micromhos
00300	DO	mg/l
00400	рН	SU
00500	Residue, Total	mg/l
00900	Total Hardness-CaCO ₂	mg/l
00940	Chloride	mg/l
00610	NH ₃ -N, Total	mg/1
00615	NO2-N, Total	mg/l
00620	NO3-N, Total	mg/l
00625	Total Kjeldahl-N	mg/l
00665	Phosphorus, Total	mg/l
00671	Dissolved Orthophosphate-P	mg/1
00515	Residue, Dissolved, 105°C	mg/l
70300	Residue, Dissolved, 180°C	mg/1
31504	Total Coliform, MFIMLES	No/100ml
31616	Fecal Coliform	No/100m1
00915	Calcium, Dissolved	mg/l
00925	Magnesium, Dissolved	mg/l
00930	Sodium, Dissolved	mg/1
00935	Potassium, Dissolved	mg/l
00945	Sulfate-SO ₄	mg/l
00950	Fluoride, Dissolved	mg/1
01040	Copper, Dissolved	ug/1
01045	Iron, Total	ug/1
01055	Manganese	ug/1
00760	Sulfite Waste Liquor-PBI	mg/l
01090	Zinc, Dissolved	ug/1
01051	Lead, Total	ug/1
71900	Mercury, Total	ug/1
01020	Boron, Dissolved	ug/l
01025	Cadmium, Dissolved	ug/l

WATER RI COURCES STUDY
METROPOLITAN SPOKANE REGION
Dept of the Army, Seettle District
Corps of Engineers
Kennedy - Tido: Consulting Engineers

SURFACE WATER PARAMETERS ORDERED FROM STOUT

TABLE 1

A STATE OF THE STA

TABLE 1 (Continued)

<u>s</u>
00ml 1 1 iter

For complete description of parameters, see referenced code number in Storet Training Course (1972), Vol. I.

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

SURFACE WATER PARAMETERS ORDERED FROM STOUT

TABLE 1 (cont.)

TABLE 2

PARTIAL LIST OF OTHER SURFACE WATER PARAMETERS
AVAILABLE FROM STORET

Storet Code #	Parameter	Units
00077	Transparency	Secchi inches
00080	Color	PT-CO
00301	DO Saturation	x
00311	Dissolved BOD5	mg/1
00322	BOD ₁₀	mg/1
00323	BOD ₁₅	mg/1
00324	BOD ₂₀	mg/1
00335	COD, Low Level	mg/l
00341	Dissolved COD	mg/l
00410	Total Alkalinity-CaCO ₃	mg/1
00425	HCO ₃ Alkalinity-CaCO ₃	mg/1
00440	HCO ₃ Ion	mg/1
00445	HCO ₃ Ion CO ₃ Ion	mg/1
00505	Residue, Total Volatile	mg/1
00520	Residue, Volatile Filterable	mg/1
00535	Residue, Volatile Nonfilterable	mg/1
00600	Total Nitrogen	mg/1
00605	Organic-N	mg/1
00608	NH ₃ -N, Dissolved	mg/1
00613	NO2-N, Dissolved	mg/l
00618	NO ₃ -N, Dissolved	mg/1
00630	NO ₂ and NO ₃ , Total NH ₃ and Organic-N, Total	mg/1
00635	NH3 and Organic-N, Total	mg/1
00653	Soluble PO ₄ , Total	mg/1
00660	Ortho PO ₄	mg/1
00666	Phosphorus, Dissolved	mg/1
00680	Total Organic Carbon	mg/1
00691	Dissolved Organic Carbon	mg/1
00685	Total Inorganic Carbon	mg/1
00690	Total Carbon	mg/1
00720	Cyanide	mg/1
00902	Hardness-Noncarbonate	mg/1
00910	Calcium, CaCO ₃	mg/1
00916	Calcium, Total	mg/l
00927	Magnesium, Total	mg/l

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers.

PARTIAL LIST OF OTHER SURFACE WATER PARAMETERS AVAILABLE FROM STORET

TABLE 2

TABLE 2 (Continued)

Storet		
Code #	Parameter	Units
00929	Sodium, Total	mg/1
00931	Sodium Absorption	ratio
00932	Sodium	percent
00937	Potassium, Total	mg/l
00951	Fluoride, Total	mg/l
00955	Silica, Dissolved	mg/1
00956	Silica-SiO ₂	mg/1
01001	Arsenic, Suspended	ug/1
01002	Arsenic, Total	ug/1
01005	Barium, Dissolved	ug/1
01010	Beryllium, Dissolved	ug/l
01016	Bismuth, Suspended	ug/1 ug/1
01022	Boron, Total	
01032	Chromium, Hex-valent	ug/1 ug/1
01034	Chromium, Total	•
01035	Cobalt, Dissolved	ug/1
01037	Cobalt, Total	ug/1
01042	Copper, Total	ug/1
01042	Iron, Dissolved	ug/1
01049	Lead, Dissolved	ug/1
01049	neau, Dissolveu	ug/1
01056	Manganese, Dissolved	ug/l
01057	Thallium, Dissolved	ug/1
01059	Thallium, Total	ug/1
01060	Molybdenum, Dissolved	ug/1
01062	Molybdenum, Total	ug/1
01065	Nickel, Dissolved	ug/1
01067	Nickel, Total	ug/1
01077	Silver, Total	ug/1
01080	Strontium, Dissolved	ug/l
01082	Strontium, Total	ug/1
01092	Zinc, Total	ug/1
01095	Antimony, Dissolved	ug/1 ug/1
01097	Antimony, Total	ug/1 ug/1
01106	Aluminum, Dissolved	ug/1 ug/1
01130	Lithium, Dissolved	•
01130	prentant, presonated	ug/1

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

PARTIAL LIST OF OTHER SURFACE WATER PARAMETERS AVAILABLE FROM STORET

TABLE 2 (cont.)

TABLE 2 (Continued)

Storet Code #	Parameter	IIni ta
oode #	Tarameter	Units
01132	Lithium, Total	ug/l
01145	Selenium, Dissolved	ug/1
01147	Selenium, Total	ug/l
01501	Alpha, Total	pc/1
01503	Alpha, Dissolved	pc/1
01505	Alpha, Suspended	pc/1
03501	Beta, Total	pc/1
03503	Beta, Dissolved	pc/1
03505	Beta, Suspended	pc/l
31503	Total Coliform, MFDLENDO	No/100ml
31506	Total Coliform, MPN Conf	No/100ml
31507	Total Coliform, MPN Comp	No/100ml
31615	Fecal Coliform, MPNECMED	No/100ml
32730	Pheno1s	ug/l
38260	MBAS	mg/1
70507	Phos-T, Ortho	mg/1
70301	Dissolved Solids	mg/l
70303	Dissolved Solids	tons/acre-feet
39330	Aldrin	ug/1
39340	внс	ug/l
39350	Chlordane	ug/l
39360	DDD	ug/1
39365	DDE	ug/1
39370	DDT	ug/1
39380	Dieldrin	ug/1
39390	Endrin	ug/1
39400	Toxphene	ug/1
39410	Heptachlor	ug/l
39420	Heptachlor Epoxide	ug/1
39782	Lindane	ug/1
60100	Algae, COC BG	No/ml
60200	Algae, COC Grn	No/ml
60150	Algae, Fil BG	No/ml
60250	Algae, Fil Grn	No/ml
60300	Algae, Flag-Grn	No/m1
60350	Algae, Flag-other	No/ml
60390	Diatoms, dom spec.	% of total

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army, Scattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

PARTIAL LIST OF OTHER SURFACE WATER PARAMETERS AVAILABLE FROM STORET

TABLE 2 (cont.)

SURFACE WATER QUALITY STATION AVAILABLE FROM STORET SPORANE RIVER

Remarks	of the second to Sta. 3-11 in	Sta. 1-9 Collespond to come Bishop & Lee report		STORET Contains the 1970 data from	Bishop & Lee study but does not contain	1971 data contained in the Spokane Kiver	Cooperative Water Quality Study	EPA Data	DOE Data Same Station	USGS Data EPA - vertical H ₂ 0 Quality Profile		DOE # 54A071 DOE # 54A075 DOE # 54A079	EPA Data	DOE # 54A083 DOE # 54A087	
Period of Record		11-24-70	=	Ξ	=	=	=	6-12-73	6-26-73	3-28-73		Entered as stations in STORET but without data. Appears to be an abortive attempt to enter Cunning-	data.	Entered as stations in strong his room to be without data.	Appears to be an abortive attempt to enter Cumingham & Pine data.
Period From		5-6-70	=	:	: :	=	=	11 10 71	10-24-62	10-1-59	3-T2-K	Entered as STORET but Appears to	ham & Pine data. 9-15-72	Entered as	Appears to be an attempt to enter ham & Pine data.
	Description	Below Little Falls Dam	: =		= :	z :	= =		Below Long Lake Dam	At Long Lake Dam At LONG Lake Dam	Lower Long Lake	.5 Miles above Long Lake Dam Above Long Lake Dam 1 Mile below Tumtum	Long Lake near Tumtum	4 Miles above Tumtum	8 Miles above Tumrum
River	Mile	2.0	5.7	10.3	12.8	17.1	20.8 29.0		33.3	33.3	34.0		5 67	1	
K-T	Number		. 7	ო	7	r tr	9 ~		∞ 7-1		ာတ	•	ŭ	7	
							J	·	,	40					

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army. Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

SURFACE WATER QUALITY STATION AVAILABLE FROM STORET SPOKANE RIVER

TABLE 3A

TABLE 3A(cont.)

Remarks	$ \begin{array}{ll} \mathtt{EPA} & - \ \mathtt{vertical} \ \ \mathrm{H_2O} \ \ \mathtt{Quality} \ \ \mathtt{Profile} \\ \mathtt{EPA} \\ \mathtt{USGS} \\ \end{array} \end{array} \right\} \\ \mathtt{Same} \ \ \mathtt{Station} \\ \mathtt{DOE} $	\mathtt{EPA} - 7 samples \mathtt{EPA} - 2 samples \mathtt{Same} Same Station USGS \mathtt{EPA} \mathtt{Same} Same Station	$egin{array}{ll} ext{DOE} & igg \} \ ext{Same Station} \ ext{USGS} & igg \} \end{array}$	$ \begin{array}{c} \mathtt{EPA} \\ \mathtt{DOE} \\ \mathtt{USGS} \\ \mathtt{EPA} - 3 \ \mathtt{samples} \end{array} $	$ ext{EPA} - 3 ext{ samples}$ $ ext{EPA}$ $ ext{DOE}$ $ ext{USGS}$	EPA - 2 samples EPA - 7 samples EPA - 6 samples EPA - 3 samples
		·				
Record	6-12-73 4-24-73 7-11-73	9-13-72 9-13-72 4-24-72 6-12-73	6-26-73 6-12-73 7-11-73 4-24-73	6-12-73 7-11-73 4-24-73 9-14-72	9-14-72 6-12-73 7-11-73 4-24-73	9-13-72 9-15-72 9-13-72 9-15-72
Period of Record From	9-14-72 3-14-68 11-30-70 11-30-70	9-12-72 9-12-72 10-10-72 9-12-72	10-10-72 9-12-72 11-30-70 10-10-72	9-12-72 10-10-72 10-10-72 9-12-72	9-12-72 9-12-72 11-30-70 10-10-72	9-12-72 9-12-72 9-12-72 9-12-72
Description	At Upper Long Lake Below 9 Mile Dam Below 9 Mile Dam At 9 Mile Bridge	—	At Riverside State Park At Fort Wright Bridge At Fort Wright Bridge At Fort Wright Bridge	At Cochran St. Gage At Spokane At Cochran St. Gage At Monroe St. Bridge	At Washington St. Bridge At Mission St. Bridge At Mission St. Bridge At Mission St. Bridge	Below Spokane City Dam Above Spokane City Dam Near Sekani At Argonne Road Bridge
River Mile	51.0 56.7 56.7	58.1 61.9 61.9 66.0	66.0 69.8 69.8 69.8	73.4 73.4 73.4 74.0	74.5 76.8 76.8 76.8	79.5 80.5 81.7 82.6
K-T Number	20 22 22 22	23 24 25 25	20 6 6 6 7 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	31 31 32 32	35 38 38 38	41 42 44 45

307-49

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army. Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

المحتمد شيفه يعطي بيطيع ويوزوز ويواز بموجوده والإيال بمخمحه والأطاء وماهم مياها المديد والمستيد المستيداء فيدها ومواجعة والمؤوث والمرافعة المستيدات

SURFACE WATER QUALITY STATION AVAILABLE FROM STORET SPOKANE RIVER

TABLE

Remarks	EPA)	DOE Same Station	USGS) RPA - 3 samples		EPA - 2 samples	USGS	DOE		uses		EPA \Same Station	Idaho St.)	1	EPAth	FWFUR - 4 samptes/more:
Period of Record	6-12-73	7-11-73	4-24-73	7/6	9-13-72	9-13-72	10-29-63	7-11-73		3-27-73	7-11-73	8-17-72	; ;	8-25-71	3-9-11
Period o	.0-10-7	10-10-72	10-10-72	9-12-72	9-12-72	9-12-72	7-29-59	£ 11-30-70		9-12-72	10-10-72	09-8-7	601014	8-20-69	5-14-62
Description		At Trent Road Bridge	At Trent Road Bridge	At Sullivan Road Bridge	Ar. Barker Road Bridge	At Harvard Road Bridge	Above Liberty Bridge	Near Otis Orchards				At Statemine bridge	At Stateline	Relow Post Falls Dam	WPSS Post Falls Dam
River	Mile	85.3	85.3 85.3	87.8	-9.06		93.9	93.9		96.3	96.5	96.3	96.3	7 80	101.8
K-T	Number	97	97 7	47	87	67	20	20	30.		50 50		51	c i	54

SURFACE WATER QUALITY STATION AVAILABLE FROM STORET SPOKANE RIVER WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

والمهاوليون المهودات الموسود والمسود والمواجع مادموا والمواجعة مادمون والمراجعة والمراجعة والمسا

TABLE 3A

TABLE 3B

SURFACE WATER QUALITY STATION AVAILABLE FROM STORET LITTLE SPOKANE RIVER

Remarks		~	Same Station	ſ				Same Station	-
		EPA	DOE	nses	EPA	nsgs	EPA	JOE	0565
Period of Record		6-12-73	7-11-73	4-24-73	9-14-72	9-20-70	6-12-73	4-24-66	
Period o		9-13-72	11-30-70	11-30-70	9-13-72	7-28-60	9-13-72	7-28-60	
\$ \$	Describeron	Near Fort Spokane near mouth	Near mouth	Near Fort Spokane near mouth	At Dartford	At Dartford	Near Dartford	Above Wandermere	Near Dartford at Gage
River	мтте	1.1		·	10.2		10.8		10.75
K-T	Number	ን) V) U	ን የ የ	28	S.	59	59	59

WATER OFCOURT CTUDY	
יישרים המטרטטנים המילאי	CINTER OF TANKE OF ATTACK OF ANATTARIE FROM STORET
METROPOLITAN SPOKANE REGION	SUKFACE WAIER COALLII SIRIION PARALIMONE INCH
Dept. of the Army, Seattle District	LITILE SPOKANE RIVER
Corps of Engineers	
Kennedy - Tudor Consulting Engineers	

TABLE 3B

TABLE 3C

SURFACE WATER QUALITY STATION AVAILABLE FROM STORET HANGMAN AND CHAMOKANE CREEKS

Remarks	$igg\}$ Same Station	
	EPA DOE USGS USGS	SSSU
Period of Record	6-12-73 7-11-73 4-24-73 6-28-68	6-29-68
Period o From	9-12-72 10-10-72 10-10-72 2-2-68	2-21-68
Description	HANGMAN CREEK At mouth at Spokane At mouth at Spokane At mouth at Spokane Near Spokane	CHAMOKANE CREEK At Ford Washington
River Mile	9.0	
K-T Number	9 9 9 5	∞ -5 2

SURFACE WATER QUALITY STATION AVAILABLE FROM STORET HANGMAN AND CHAMOKANE CREEKS

METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

WATER RESOURCES STUDY

TABLE

32

TABLE 3D

SURFACE WATER QUALITY STATION AVAILABLE FROM STORET WASTE SOURCES AND LAKES

	Remarks	EPA - 31 samples	EPA - 20 samples (discharge to Oregon Cr.	EPA - 9 samples EPA - 7 samples	EPA - 9 samples	ErA - 24 Samples	pro 7 samptes	nsgs	nsgs
E Record	To	9-20-72	9-20-72	9-14-72 9-14-72	9-14-72	9-20-12	7/-+1-6	9-27-71	9-29-71
Period of Record	From	9-12-72	9-19-72	effluent 9-11-72 9-12-72	9-12-72	9-12-12	7/-11-6	3-30-71	3-29-71
	Description	WASTE SOURCES Spokane STP effluent	Deer Park STP effluent	Inland Empire Paper effluen Kaiser #2 effluent	Kaiser #1 effluent	Spokane Industrial Park STP - Effluent	Hillyard Frocessing Effluent	LAKES Liberty Lake at Liberty	Newman Lake near Newman Lake
River	Mile	67.2	56.3/21.3/15.3	82.6 86.0	86.8	87.0	8/.5	N.A.	N.A.
K-T	Number	1-W	2-W	3-W 4-W	M-5	≱ ; 1-9 i	M-/	1-r	2-L

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dopt. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

marin delet was a mention of the second of t

SURFACE WATER QUALITY STATION AVAILABLE FROM STORET WASTE SOURCES AND LAKES

TABLE 3D

TABLE 4

GROUNDWATER QUALITY PARAMETERS ORDERED FROM STORET

	Units	Parameter	Units	
Parameter Water Temperautre Conductivity Dissolved Oxygen BOD5 COD pH Residue - total Total Hardness - CaCO3 Chloride Silica - d	°C Micromhos mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Residue - d 180°C Sodium - d Potassium - d Sulfate - d. Fluoride - d Iron - total Manganese Calcium - d Nitrate - total NO ₃	mg/1 mg/1 mg/1 mg/1 mg/1 ug/1 ug/1 mg/1	
Aluminum - total Mercury - total Copper - d Zinc - d Boron - d Arsenic - d Cadmium - d Chromium - d Silver - d	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1			

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

GROUNDWATER QUALITY PARAMETERS ORDERED FROM STORET

TABLE 4

TABLE 5

FURLISHED REPORTS SEARCHED FOR SURFACE MATER QUALITY DATA

Publication	Data Already In STORET	Data Surplemental To STORET	Remerks
Mishop, Robert A. Loon, Deer and Dismond Lakes Water Quality Study, State of Washington Department of Ecology, 1973.	Q.	Beslins physical, chemical and biological data for these lakes.	
Mishop, hourt A. and Ronald A. Lee. Spokane River cooperative water quality study. Mashington (State) Department of Ecology, 1972.	9	For year 1971	1970 Data in STORET but 1971 not
Burkhelter, Richard A., Richard K. Cunningham and Harry B. Tracy. A report on the water quality of the Little Spokane River. Washington (State) Water Pollution Control Commission, 1970.	%	10 stations on the Little Spokane 1968	None of the available data is in STOREI
Condit, Richard J. "Phosphorus and Algal Grouth in the Spokane River" in Northwest Science Vol. 46 No. 3, 1972.	*		Contains water quality data but no dates. Not added to summary
Cun'ingham, Richard K. Effluent study; Inland Empire Paper Company-Millwood, Washington. Washington (State) Pollution Control Commission, 1968.	Q.	Data from Sept. 23 & 24 1968	None of the data in this report is available from STORET
Cunningham, Richard K. and Roland E. Pine. Preliminary investigations of the low dissolved oxygen concentrations that exist in Long Lake. located near Spokane, Washington. Washington (State) Water Pollution Control Commission, 1969.	2		Stations 1, 5, 7, 11, 12 and 14 corresponds to Stations 11, 13, 15, 17, 18, and 19 respectively in the Bishop and Lee report
Cumningham, Richard K. and Gary Rothwell, Water quality report of the Spokane and Little Spokane Rivers, December, 1970 - March, 1971. Washington (State) Department of Ecology. Also same title for periods 4/71 to 6/71 and 7/71 to 9/71.	SET.		Data for all 3 time periods is on STORET
Haggarty, Thomas G. Water pollution in the Spokane River. Status report, Mashington (State) Department of Ecology, 1970.	•	i •	No original data as such. This report cites DO and Bacterio-logical data but without ref- erence to soutce and gives a general outline of the major W.Q. problem areas.

WATER RESOUNCES STUDY
METROPOLITAN SPOKANE REGION
Dept of the Army, Seetle District
Corp of February
Kennedy - Tidox Consulting Engineers

FUBLISHED REPORTS SEARCHED FOR SURFACE WATER QUALITY DATA in in the control of the second second second in the second secon

TABLE 5

TABLE 5 (cont.)

(CODE:)				
Publication	All Available Data Already In STORET	Data Supplemental To STORET		
Lee, Ronald A. Limnological studies of selected Washington State Lakes. Washington (State) Water Pollution Control Commission, 1969.	N.	Data on Mewman, Diamond, West Medical, and Silver Lake	DO & Temperature profiles for 10-22-68	•
Soltero, Raymond A. An investigation of the cause and affect of eutrophication in Long Lake, Washington. Data of publication - August, 1973.	2	Monthly data for 6 river Stations and 5 Stations in Long Lake 1972-73	Continuing program into 1973-74	
Todhunter, R. A. and R. K. Cunningham. Water quality report on the Spokane and Little Spokane Rivers, April, 1971 - June, 1971. Washington (State) Department of Ecology, 1972.	YES			
Washington (State) Pollution Control Commission. Preliminary report - Spokane River water quality below Long Lake Reservoir. Published jointly with Lincoln County Health Department and U.S. National Park Service, 1971.				
U.S. Public Health Service, Pacific Northwest Drainage Beain Office. Report on water pollution control, Spokene River Besin, 1972	g	Heavy metal data from 1930's and some DO & BOD data from 1950's		•

METHOPOLITIES SECURITIES FOR PUBLISHED REPORTS SEARCHED FOR COMMISSION OF A CO

TABLE 5 (cont.)

TABLE 6

PUBLISHED REPORTS SEARCHED FOR CHOUNDWATER QUALITY DATA

All Available

Publication	Deta Already In STORET	Deta Supplemental To STORET	Reserve
Clise, D.R., Groundwater resources and related geology, north-central Spokane and southeastern Stevens counties, of Washington (State) Department of Water Resources, Water Supply Bulletin No. 27, 1969.	OM	29 well samples 5-7-42/ 1-29-65	12 velis are listed that are on STORET. For all vells standard paramaters vere analyzed.
Croaby, J.W. and Others, Final report: investigation of techniques to provide advance warning of groundwater pollution bazards with special references to aquifers in glacial outwash. August, 1971.	l	No chemical data	No analyses of groundwater were made as pert of this study. The ap- proach used concentrated on measure- ments in the unsaturated some.
Esvelt and Saxton Consulting Engineer, public health relationship of the Minnihana Sever District to the greater Spokane community. 1965.	i	No chemical data	Two case histories of groundwater contamination in Spokane,
Foedick, E.R. A study of groundwater in the Spokane and Rathdrum Valleys. Washington Water Power Company. 1931.	ı	No chemical date	General discussion of the Spokane Valley Aquifer.
Johnson, Walter E., Spokane groundwater, mimeographed report, Washing- ton State University. 1971.	\$	No chemical data	Discussion of the quantity of groundwater flowing into Wash-ington.
Mace, R.L., and Fader, S.W., Record of wells on Rathdrum Frairie. Bonner and Kootenal Counties, Northern Idaho, Geological Survey, Boise. 1950	1	No chemical data	Report states that chemical data will be released in subsequent report. Not found.
Phillips, R.A. and Others, Spokans Valley groundwater poilution study. Washington State University. 1962	g	Becteriological and ABS	Bacteriological data for 17 wells and ABS data for 2 wells. Also reports bacteriological & ABS test results for soil sample from special borings.
Van Denbrugh, A.S., and J.F. Santoe, Groundwater in Washington - its chemical and physical quality. Water Supply Bulletin #24, Washington (State) Department of Natural Resources. 1965	g	An additional 80 samples representing approximately 20 wells	Wells grouped by countles in report Many wells are located on Fort Wright or Fairchild AFB
Weigle, J.M. and M.J. Mundorff, Record of wells, water levels and quality of groundwater in Spokane Valley, Spokane County, Washington. U.S. Geological Survey, Groundwater Report No. 2, Tacoma. 1952	Q Ž	Alkalinity, total hard- ness, chloride and conduc- tivity readings for many additional wells	Well locations & drill logs. Single sample analysis of 22 wells. Alkalinity, hardness, Cl, & conductivity analysis for all wells mentioned.
Moodward, Walter, Consulting Engineers, ? report of an inventory and study; water resources and utilities; Spokane tribe of Indiana, Spokane reservation. 1971	9	Qualitative chemical data for 2 wells on reser, tion.	Very little chemical data (2 vells) Good inventory of vells on Spokane Indian Reservation as vell as their approximate yield. Data not quanti- tative.

PUBLISHED REPORTS SEARCHED FOR GROUNDWATER QUALITY DATA WATEN, JOURCES STUDY
METHOPOLITAN SOCKANE REGION
Den of the Army, Sente Detrict
Corp. of Express
Kennely - Tudor Consulting Engineer

TABLE 6

THE THE PERSON OF THE SAME STREET, AND STREET, SAME SERVICE AND SE

A CONTRACTOR OF THE CONTRACTOR OF A CONTRACTOR OF THE CONTRACTOR O

TABLE 7

GROUPING OF WATER QUALITY PARAMETERS INTO CATEGORIES

Category	Parameter in Category	Minimum Number of Parameters to Qualify for Category Coverage
Standard Test	S ₁ O ₂ , Fe, Mn, Ca, Mg, Na, K, HCO ₃ , SO ₄ , Cl, F, Settleable Solids, Dissolved Solids, Total Dissolved Solids, Hardness, Conductivity, Alkalinity, Color, pH, Turbidity, Temperature	5
Nutrients	NH ₃ , NO ₃ , NO ₂ , Total N, Total Kjel N, Total P, Ortho P	2
Oxygen Balance	BOD, COD, DO	1
Metals	Zinc, Lead, Mercury, Cadmium, Chromium, Silver, Copper, Arsenic, Boron	1
Bacteriological	Total Coli, Fecal Coli	1
Biological	Algae, Protozoa, Zooplankton	1
Pollutants	Oil & Grease, Pesticides, Surfactants, Sulfite Waste Liguor, Phenols	1

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

GROUPING OF WATER QUALITY - PARAMETERS INTO CATEGORIES

· TABLE 7

TABLE 8

INVENTORY OF SURFACE WATER QUALITY DATA

						CO	VERAGE BY	PA	
K-T Number	(1) Location	River Mile	Description	Standar	d Test	Nutri	ents	3	
				From	To	From	To		
1	s	·. 2	Below Little Falls Dam			5-6-70	9-14-71		
2	S	5.7	Below Little Falls Dam			5-6-70	9-14-71		
3	S	10.3	Below Little Falls Dam			5-6-70	9-14-71		
4	S	12.8	Below Little Falls Dam			6-22-70	9-14-71		
5	S	17.1	Below Little Falls Dam			6-22-70	9-14-71		
6	S	20.8	Below Little Falls Dam			6-22-70	9-14-71		
7	S	29.0	Below Little Falls Dam			6-22-70	12-8-71		
8	S	33.3	Below Long Lake Dam	9-12-66	3-15-73	9-12-66	3-15-73		
		•							
9	S	34.0	Lower Long Lake Near Dam	7-27-71	9-15-72	7-27-71	9-15-72		
10	S	35.0	Long Lake	9- 14-66	91566	9-16-66	9-16-66		
11	S	36.5	Long Lake	9-14-66	9-14-66				
12	s	39.0	Long Lake			7-21-71	9-15-71		
13	S	40.5	Long Lake			9-16-66	9-16-66		
14	S	41.5	Long Lake	5-6-72	3-15-73	7-21-71	3-15-73		
15	c	42 5	Tone Take Non-Mushus			0 10 66	0 16 22		
16	S	42.5 44.0	Long Lake Near Tumtum			9-12-66 9-14-66	9-15-72 9-16-66		
17	S	44.0 45.0	Long Lake		2 15 72	•			
18	S S	43.0 47.0	Long Lake Long Lake	5-6-72 · 7-26-71	3-15-73 9-22-71	5-6-72 7-21-71	3-15-73 9-15-71		
19	S	49.0	Long Lake	5-6-72	3-15-73	5-6-72	3-15-73		
47	<i>3</i>	47.0	Long Leke	J#0-/2	3-13-/3	3-0-12	3-13-73		
20	S	51.0	Upper Long Lake	9-14-66	9-16-66	9-14-66	9-14-72		

See Sheet 63 for Notes

TO BELLEVIEW OF THE STATE OF TH

COVERAGE BY PARAMETER CATEGORIES

Nutrients		Oxygen Balance		Metals		Bacteriological		Biological		ۇ يۇ
rom	To	From	To	From	To	From	To	From	To	P
44										25
-6_70	9-14-71	5-6-70	9-14-71			5-6-70	9-14-71			1
-6-70 -6-70	9-14-71	5-6-70	9-14-71			5 -6- 70	9-14-71			• 4
=6−70	9-14-71	5-6-70	9-14-71			5-6-70	9-14-71			-3
-22-70	9-14-71	6-23-70	9-14-71			6-23-70	9-14-71	6-15-71	8-17-71	3
-22-70 -22-70	9-14-71	6-23-70	9-14-71			6-23-70	9-14-71			i,
=22-70 :	3-14-11	0-43-70	J- 44-74)
22-70	9-14-71	6-23-70	9-14-71			6-23-70	12-8-71			Ž
22-70	12-8-71	6-23-70	12-8-71			6-23-70	12-8-71			
12-66	3-15-73	9-12-66	3-15-73	9-14-72	6-26-73	9-13-66	9-15-72			9-1
	3-13-73	J-12-00	3 43 73	, _ ,	0 20 .0					4
				•				•		S.
			·							- 2
27-71	9-15-72	7-27-71	9-15-72	9-15-72 [.]	9-15-72	7-27-71	9-21-71	7-27-71	9-21-71	
ਕ੍ਰ ਨ/ −/1 ਪ	3-13-12	1-61-76	, 25 ,-	, 15 .	,					*
16-66	9-16-66	9-14-66	9-15-66							À
- 10-00 -	3 -10-00	, 14 00	, 15 00							. 70
K.								5-6-72	3-15-73	447
						•				nd.
										1,00
-21-71	9-15-71	7-27-71	9-21-71			9-1-71	9-1-71			Š
16-66	9-16-66		•				•			2
21-71	3-15-73	7-27-71	9-21-71			9-1-71	9-1-71	6-21-71	3-15-73	di.
	0 20 10	, _, , ,	•							777
8					•					}
12-66	9-15-72	9-12-66	9-15-72	9-12-66	9-15-72					ў. У
-14-66	9-16-66	•								***
-6-72	3-15-73	5-6-72	3-15-73			•		5-6-72	3-15-73	, 2
21-71	9-15-71	7-26-71	9-22-71			9-1-71	9-1-71	7-21-71	7-21-71	3
6-72	3-15-73	5-6-72	3-15-73			5-6-72	3-15-73	5-6-72	3-15-73	3,
	J 25 . J	3 0 , 3	2 22 .							3
Š.						9- 1-71	9- 1-71			i.
14-66	9-14-72	9-14-66	9-14-72	9-14-72	9-14-73					3
										20

Biological		Pollutants		(2)				
From	To	From	To	References	(3)	Remarks		
					Mo	(5)		
				1,3	NO			
		•		1,3	Ю	(5)		
4 4 5 5 5	0 12 11			1,3	МО	(5)		
6-15-71	8-17-71			1,3	NO	(5)		
				1,3	МО	(5)		
				1,3	NO	(5)		
				1,3	NO	(5)		
		9-16-66	9-16-66		NO	KT-8 equal No. 8 in Ref. 2, Dam in Ref. 4		
		3-10-00	3-10-0 0	1,2,3,4,3	,	& DOE 54A070 and No. 10 of KT S&A. See Ref.2 for 1966, Ref. 3 for 1970-71,		
			•			Ref.4 for 1972-73 and STORET for metals. (5		
7-27-71	9-21-71	•		1,2,3,4,7	NO	KT-9 equal No. 0 in Ref. 4. See Ref. 7 for 1971 bio a: d Ref. 4 for 1972-73 bio. (5		
				2	NO	KT-10 equal No. 2 in Ref. 2		
5-6-72	3-15-73		`	2,4	МО	KT-11 equal No. 3 in Ref. 2 and No. 1 in Ref.4 and No. 9 of KT S&A. See Ref.4 for 1966 and Ref. 4 for 1972-73		
				3	NO	Equal No. 12 in Ref. 3		
				3 2	NO	Equal No. 4 in Ref. 2		
6-21-71	3-15-73	•		2,3,4		Equal No. 5 in Ref. 2 and No. 2 in Ref. 4 Biological in Ref. 4		
				1,2	NO	Equal No. 5.5 in Ref. 2		
					NO	Equal No. 6 in Ref. 2		
5-6-72	3-15-73			2 4	NO	Equal No. 3 in Ref. 4		
7-21-71	7-21-71			3	NO	Equal No. 14 in Ref. 3		
5-6-72	3-15-73			ž	NO	Equal No. 4 in Ref. 4		
J-0-12	3-13-13			₹	MO	ndmar and a vir peri a		
				1,2,3	NO	Equal No. 15 in Ref. 3 and No. 7 in Ref. 2 1966 in Ref. 2, 1971 in Ref. 3, 1972 in Ref. 1		

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION Dept. of the Army, Seattle District Carps of Engineers Kennedy – Tudor Consulting Engineers	INVENTORY OF SURFACE WATER QUALITY DATA	.TABLE 8
---	---	----------

TABLE 8 (cont.)

INVENTORY OF SURFACE WATER QUALITY DATA

	***					cov	erage by PAS
K-T Number	(1) Location	River Mile	Description	Standard		Nutrie	
	. 			From	To	From	To
21	c	56.5	Long Lake Above Little Spokane	•		8-23-71	9-15-71
21 22	S S	56.7	Below 9 Mile Dam at Bridge	3-14-68	7-11-73	3-14-68	2-6-73
23	Š	58.1	Above 9 Mile Dam	9-12-72	9-13-72	9-12-72	9-13-72
24	Š	61.9	At 7 Mile Bridge	12-16-65	9-13-72	12-16-65	9-13-72
25	s	66.0	Bowl/Pritcher State Park	9-14-66	7-11-73	9-14-66	1-18-73
26	s		Below STP	3-31-72	3-31-72		
27	S		Above STP	3-12-72	3-31-72		
28	S		Adjacent to Rivercrest	3-31-72	3-31-72		
29	S	69.8	Fort Wright Bridge	9-12-66	3-20-73	9-12-66	1-18-73
30	S		Above Fort Wright	•		3-12-72	3-31-72
31	s	73.4	At Cochran St. Gage	10-10-72	6-12-73	10-10-72	4-24-73
32	Š	74.0	At Monroe St. Bridge	9-12-66	9-14-72	9-12-66	9-14-72
33	s		Black Angus			3-12-72	3-31-72
34	Š		Spokane Linen			3-12-72	3-31-72
35	S	74.5	At Washington St. Bridge			9-12-72	9-13-72
36	S		Below Gonzaga Univ.			3-12-72	3-31-72
30 37	Š		Gonzaga Univ.			6-15-72	7-25-72
38	Š	96.8	At Mission St. Bridge	11-30-70	6-26-73	11-30-70	4-24-73
39	Š	78.0	At Greene St. Bridge	9-12-66	9-16-66	9-12-66	9-16-66
	•			, ,		,	
40	S		Above Greene St.			3-12-72	3-31-72
41	s	79.5	Below Spokane Dam			3-12-72	9-13-72
42	S	80.5	Above Spokane Dam			9-12-72	9-15-72
43	S		Upriver Drive (Felts)	1-10-72	9-14-72	1-10-72	9-14-72
44	S	81.7	Near Sekani			9-12-72	9-15-72
45	S	82.6	At Argonne Rd. Bridge	9-12-66	9-15-72	9 -12-66	9-15-72

See Sheet 63 for Notes

TETER CATEGORIES

the state of the s

					Biolog	rical	Polluta	(2 Refer		
Oxygen Ba	lance	Metals		Bacteriological From To		From	To	From	To	Refer
From	To	From	To	From	10	FLOM				1,473
7-26-71 3-14-68 9-12-72	9-22-71 7-11-73 9-13-72	4-17-68 9-12-72	11-22-72 9-13-72	11-30-70 9-12-72	7-11-73 9-13-72			11-30-70	9 -19- 71 .	1
12-16-65 9-14-66	9-13-72 7-11-73	3-26-66	9-13-72			6-15-71	6-15-71	9-14-66	9-16-66	1,2
9-12-66	6-26-73	11-19-71	7-11-73	11-30-70	6–26–73	6-15 - 71	8-17-71	9-14-66	9-19-72	1,2
10-10-72 9-12-66	4-10-73 9-14-72	11-19-71	7-11-73	10-10-72 9-12-72	7-11-73 9-14-72			9–12–66	9-14-72	lister of the second second second second second second second second second second second second second second
9–12–72	9-14-72	9-12-72	9-13-72	9-12-72 ¹	9-13-72					ئ كينافر مكاريونية بالمديد
6-15-72 10-10-72 9-12-66	6-15-72 4-24-73 9-16-66	10-10-72	3-27-73	10-10-72	3-13-73	6-15-71	8-17-71	11-30-70 9-16-66	9-19-71 9-16-66	I,
9-12-72 9-12-72	9-13-72 9-15-72	9-12-72 9-12-72 1-10-72	9-13-72 9-15-72 4-1-72	9-12-72 9-12-72 3-1-71	9-13-72 9-13-72 11-19-72	10-1-72	9-14-72	9-15-72	9-15-72	9,000
1-10-72 9-12-72 9-12-66	9-14-72 9-15-72 9-15-72	9-12-72 9-12-72	9-15-72 9-15-72	9-12-72 9-12-72	9-15-72 9-15-72	•		9-13-72 9-12-66	9-13-72 9-13-72	g

WATER RESOURCES STU METROPOLITAN SPOKANE B Dopt. of the Army, Seettle Di Corps of Engineers Kennedy - Tudor Connutting Ed

describes and described as the second of th

	Biological		Pollutants		(2)		
	From	To	From	To	References	(3)	Remarks
			11-30-70	0_10_71	3 1,2,5	NO NO	Equal No. 16 of Ref. 3 Equal No. 10 of Ref. 2
73 72			11-30-70	J-13-11 .	1	YES	Equal No. 7 of KT S&A
					1,4	NO	Equal "Seven Mile" of Ref. 4. See Ref. 4 for 1972-73.
73 -72	6-15-71	6-15-71	9- 14-66	9-16-66	1,2,3,6,7	NO	Equal No. 11 of Ref. 2 and No. 17 of Ref. 3. See Ref. 6 for 1972 nutrient and oxygen balance.
					6	МО	
					6	NO	•
Ŷ.		•			6	NO	
73	6-15-71	8-17-71	9-14-66	9-19-72	1,2,3,4,5,7	NO	Equal "Fort Wright" in Ref. 4,6 & 7, No.12 in Ref. 2 and No. 18 in Ref. 3
ĝ. G					6	NO	
73					1	YES	·
72			9-12-66	9-14-72	1,2	МО	Equal No. 13 in Ref. 2. See Ref. 1 for 1972 and Ref. 2 for 1966.
					6	NO	
e E					6	NO	
72					1	YES	
Ž.					6	NO	
8 8.					6	NO	
73			11-30-70		1,5	NO	
72 72	6-15-71	8-17-71	9-16-66	9-16-66	1,2,3,7	МО	Equal No. 14 of Ref. 2, No. 9 of Ref. 3 and No. 4 of KT S&A. Ref. 3 contains
					6	NO	data from Ref. 7.
72					1,6	МО	
72			9-15-72	9-15-72	1	YES	
9-72	10-1-72	9-14-72			6	NO	
			9-13-72	9-13-72	1	YES	
72 72	•		9-12-66	9-13-72	1,2	NO	Equal No. 15 of Ref. 2. See Ref. 2 for 1966 and Ref. 1 for 1972

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION Dept. of the Army, Scattle District Corps of Engineers Kennedy - Tudor Consulting Engineers	INVENTORY OF SURFACE WATER QUALITY DATA	TABLE 8 (cont.)
---	--	-----------------

1ABLE 8 (cont.) INVENTORY OF SURFACE WATER QUALITY DATA

			lable 8 (cont.)					
		IN	VENTORY OF SURFACE WATER QUALITY	DAT A				
			,			CO	VERAGE BY	PAR.
K-T umber	(1) Location	River Mile	Description	Standard From	Test To	Nutri From		
46	s	85.3	At Trent Rd. Bridge	9-12-66	7-11-73	9-12-66	1-18-73	
47	s	87.8	At Sullivan Rd. Bridge			9-12-72	9-15-72	
48 49 50	s · S S	90.4 92.7 93.9	At Barker Rd. Bridge At Harvard Rd. Bridge Above Liberty Bridge	9-12-72 10-10-71 11-4-59	9-13-72 9-15-72 7-11-73	10-10-71 11-4-59	9-14-72 9-23-71	
51	S	96.3	At Stateline Bridge	4-8-69	10-18-72		9-13-72	
52 53	s s	97.0 98.7	Corbin Pack Below Post Falls Dam	10-10-71 8-20-69	12-2-71 8-25-71	10-10-71 8-20-69	12-2-71 8-25-71	
54	S	101.8	WPSS Post Falls Dam	5-14-62	3-9-71	12-7-64	3-9-71	
55	LS	1.1	Near Mouth	2-13-68	6-26-73	2-13-68	6-2-73	
56 57	LS LS	3.9 7.9	At Rutter Parkway At Waikiki Rd.	2-13-68 2-13-68	9-10-68 9-10-68		9-10-68 9-10-68	
58 59	LS LS	10.2 10.8	River at Dartford River near Dartford	2-13-68 7-28-60	9-10-68 7-11-73		9-10-68 7-11-73	
60 61	LS LS	13.1/1.0 13.8	Little Deep Creek @ Confluence At Little Spokane Rd.	2-13-68 2-13-68	9-10-68 9-10-68	2-13-68 2-13-68	9-10-68 9-10-68	
62	LS	21.3	Dragoon Creek @ Confluence	2-13-68	9-10-68	2-13-68	9-10-68	
63 64	LS LS	31.8 33.0	At Milan E. Little Spokane above	2-13-68 2-13-68	9-10-68 9-10-68	2-13-68 2-13-68	9-10-68 9-10-68	
65	LS	32.9/1.0	W. Little Spokane W. Little Spokane near E. Little Spokane	2-13-68	9-10-68	2-13-68	9-10-68	
See She	et G3 for No	tes						
<u> </u>								

COVERAGE BY PARAMETER CATEGORIES

utrients		Oxygen Balance		Metals		Bacteriological		Biological		P	
<u>).</u>	То	From	To	From	To	From	То	From	То	Froi	
6	1-18-73	9-12-66	7-11-73	9-12-72	7-11-73	10-10-72	7 -11-7 .			9-12-	
12	9-15-72	9-12-72	9-15-72	9-12-72	9-15-72	9-12-72	9-12-72	6-15-71	8-17-71		
		9-12-72	9-13-72			9-12-72	9-13-72			Š	
71	9-14-72	10-10-71	9-14-72	10-10-71	5-12-72	10-10-71	11-9-72	10-1-71	9-14-72	. F	
9	9-23-71	11-4-59	7-11-73	12-3-59	9-23-71	11-30-70	7-11-73			11 - 3Q	
6	9-13-72	9-12-66	9-13-72	7-13-71	7-11-73					ž.	
71	12-2-71	10-10-71	12-2-71	10-10-71	12-2-71	10-21-71	11-18-71			į	
9	8-25-71	8-20-69	8-25-71	12-15-70	8-25-71	10-21-69	8-25-71			.}	
Ž	3-9-71	12-5-68	1-9-71	10-1-62	1-1-68	12-5-68	3-9-71	5-14-62	4-15-63	9-23	
71 71 71 9											
8 8 8	6-2-73	2-13-68	6-26-73	11-19-71	7-11-73	2-13-68	6-26-73	2-13-68	9-10-68	, S	
8	9-10-68	2-13-68	9-10-68			2-13-68	9-10-68	2-13-68	9-10-68	9	
8	9-10-68	2-13-68	9-10-68			2-13-68	9-10-68	2-13-68	9-10-68		
8	9-10-68	2-13-68	9-10-68	9-14-72	9-14-72	2-13-68	9-10-68	2-13-68	9- 10-68		
0	7-11-73	7-28-60	7-11-73	4-25-60	7-11-73	2-13-68	7-11-73				
8	9-10-68	2-13-68	9-10-68			2-13-68	9-10-68			Š	
8	9-10-68	2-13-68	9-10-68			2-13-68	9-10-68	2-13-68	9-10-68		
8	9-10-68	2-13-68	9-10-68			2-13-68	9-10-68			and the second	
8	9-10-68	2-13-68	9-10-68			2-13-68	9-10-68	2-13-68	9-10-68		
8	9-10-68	2-13-68	9-10-68			2-13-68	9-10-68	2-13-68	9-10-68		
8	9-10-68	2-13-68	9-10-68			2-13-68	9-10-68	2-13-68	9-10-68		

METI Du

f
om Ref.7
ine"
(b.e. 1) (6)
(Ref.1) (6)

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION Dept. of the Army, Seattle District Corps of Engineers Kennedy - Tudor Consulting Engineers	INVENTORY OF SURFACE WATER QUALITY DATA	TABLE 8 (cont.)

TAbLE & (cont.) INVENTORY OF SURFACE WATER QUALITY DATA

							استانين بمنتفاؤو						
			TABLE & (cont.)				માના તેવા તાલી કેટી કર્યા છે.						
		INVE	ENTORY OF SURFACE WATER QUALITY	DATA			Se 25						
K-T Number	(1) Location	River Mile	Description	Standard	Test	COVERAGE BY PA							
	Locacion	MITE	Description	From	To	From	To						
66 67	HC HC	72.4/0.6 72.4/5.0	At Mouth at Spokane Near Spokane	10-10-72 2-20-68	3-13-73 6-28-68	10-10-72	4-24-73						
68	сс	32.5/6.9	Near Ford	2-21-68	6-29-68		حاصين والمتمالية						
1 2 3	W W	67.2 21.3/15.3	Spokane STP eff. Deer Park STP eff.	5-6-72	3-15-73	5-6-72	3-15-73						
3 4 5	พ พ พ	82.6 86.0 86.8	Inland Empire Paper eff. Kaiser #2 Kaiser #1	9-23-66 9-13-72 9-13-72	9-14-72 9-14-72 9-14-72	9-12-72 9-13-72 9-13-72	9-14-72 9-14-72 9-14-72						
6 7	W W	87.0 87.5	Spokane Industrial Park Hillyard Processing	9-12-72 9-12-72	9-14-72 9-14-72	9-12-72 9-12-72	9-14-72 9-14-72						
1 2 3 4	LK LK LK LK	N.A. N.A. N.A. N.A.	Liberty Lake @ Liberty Lake Newman Lake nr. Newman Lake Diamond Lake West Medical Lake	3-29-71 10-22-68	9-27-71 9-29-71 9-16-71 , pH, & Cond	3-30-71 3-29-71 4-14-71 luctivity,	9-27-71 9-29-71 10-16-71 10/21/68						
5	LK	N.A.	Silver Lake	19 19	11	11	#						
							4 - x a z x x z z z z z z z z z z z z z z z						
							7						
							يمتؤناه وبيهد المحاكظة برحامه بدران						
							لاستانات ميدم تيراجي دياء والماد يمادن						
							وقد (۱۳۵۶ فيمارميا						
							ي د کر الالماط						
l						S. AND SERVICE SERVICES							

COVERAGE BY PARAMETER CATEGORIES

To	Oxygen B From		Met. From	als To	Bacteriol From	ogical To	Biolo From	gical To
-24-73	10-10-72	4-10-73	11-19-71	6-12-73	10-10-72	6-26-73	Prom	
-15-73 -14-72 -14-72 -14-72	5-6-72 9-19-72 9-23-66 9-13-72 9-13-72	3-15-73 9-20-72 9-14-72 9-14-72 9-14-72	5-6-72 9-12-72 9-13-72 9-13-72	3-15-73 9-14-72 9-14-72 9-14-72	9-12-72 9-19-72 9-12-72 9-13-72 9-13-72	9-20-72 9-20-72 9-14-72 9-14-72 9-14-72		
-14-72 -14-72	9-12-72 9-12-72	9-14-72 9-14-72	9-12-72 9-12-72	9-14-72 9-14-72	9-12-72 9-12-72	9-14-72 9-14-72		
0-27-71 0-29-71 0-16-71 0/21/68	4-14-71	8-31-72					4-14-71	8-31-72

WAT METRO! Dopt

Biological From To	Pollut From	ants To	(2) References	(3)		Remarks	
	10–10–72	10-31-72	1,4	NO YES	Equal "HC	" Station of Re	£. 4
			•				
				YES			
			1,4 1	NO YES			
			1,8 1 1	NO YES YES			
			1	YES YES			
			1,12 1,11,12	NO NO			
4-14-71 8-31-	-72		10,11,13 11 11	NO NO			
	METROPOLITA Dept. of the	SOURCES STUD MN SPOKANE RE Army, Seattle Dist I of Engineers	GION triet	1	INVENTORY O WATER QUAL	OF SURFACE JITY DATA	TAE (co

Notes for Table 8:

- (1) S = Spokane River, LS = Little Spokane River, HC = Hangman Creek, CC = Chamokane Creek, W = Waste Source, LK = Lake
- (2) References for Table 8

Re ^c rence	Source of Data
1	STORET
2	Cunningham and Pine (1969)
3	Bishop and Lee (1972)
4	Soltero (1973)
	Cunningham and Rothwell (1971)
5	Todhunter and Cunningham (Nov. 1972)
	Todhunter and Cunnin ham (Aug. 1972)
6	Funk (1973)
7	Condit (1972)
8	Cunningham (1968)
9	Burkhalter, Cunningham and Tracy (1970)
10	Bishop (1973)
11	Lee (1969)
12	US Geological Survey (1971)
13	US Geological Survey (1971)

- (3) Total indicated record on STORET, yes or no
- (4) KT S&A indicates sampling and analysis station for simulation model calibration.
- (5) Refer to Ref. 3 for 1971 data Refer to Ref. 3 for biological data reprinted from Ref. 7 KT identification number 1-9 correspond to Sta. 3-11 in Ref. 3 KT-7 approx. same location as No. 11 of KT S&A (4)
- (6) KT Station 55-65 correspond to Stations 1-11 in Ref. 9.

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army, Seettle District
Corps of Engineers
Kennedy – Tudor Consulting Engineers

INVENTORY OF SURFACE WATER QUALITY DATA

TABLE 8

ACCOUNTS OF THE PROPERTY OF THE STREET OF THE STREET

TABLE 9

	•
	∑ 15 15 15 15 15 15 15 15 15 15 15 15 15
TANENTORY OF GROUNDHATER QUALITY DATA	COVERAGE BY PARAMETER CATEGORIES
•	•

		ACTION		Nineteen samples							Group I Part is composite with			Group I Seven samples			Group I		TO SUCKE AND DESCRIPTION OF THE PROPERTY OF TH		•	
3	Dete	Sources			~	4 ~	-4 -	٦,٦	-	, m :	2 3 6 S		v v.	<u>-</u>	n n	•	1,3,4	าค	н •	, ,	າຕໍ່	1,2,3,\$
•	COVERAGE BY PARAMETER CATEGORIES	Nutrients Matals Bacteriological Pollutants		. *	××	× .		· × ×	٠.	ĸ×	< ×	×		**	•		*		×	××	•	< ×
INVENTORY OF GROUNDWAIER GUALLIE	~	Standard Limited Test Nutri	**		××	×	× ×	. × :	*	* >	× ×	×	×	×:	×	×	, K	; ×	×	ĸ×	; ××	< ×
INVENTORY OF G		USGS Well Number (1) Li		724N, R40E-3NI >	724N. R41E-3N	23K-1	T24N. P45E-4(B)	T25N. R 40E-14K1 34NE 1/4	tżsn. Raie-iri	-1001	-28	-34C T25N, R42E-3H1 5			11972 1181	12E1	1231	1381 2381	24A1 255W 1/4	29R1 5 3LJ1		481 5 482 5
		Aquifer Rasalt Other	×		K	,	*	××		*	« ×		∢	M I	K K 1	* *	×	»: »	* < *	; ×>		4 M K

(1) (2) See Sheer 7) For Notes

INVENTORY OF CROUNDWATER QUALITY DATA

IABLE 9

307-64

TABLE 9 (cont.)

_		
4		
TTT TO		
INVENTURE OF GROUNDWALER COALLES DATE		
5		
INVESTIGA		

Peast Y.				Spring	Group I Part is composite with 1163	Group I	Group I
(2) Data	1,3,4 1,3,4	н 8,000	<i>.</i> ოოოოო	иппп .	1,3,\$	1,3,5	નજજન્
Pollutente				•			
COVERAGE BY PARAMETER CATEGORIES Standard Tean Munclants Matal Batterfolosical Pollutants				×	H		
MATANETER (•	×	×	H	××
VERAGI' BY 1	×	н .		×	×	×	ĸ
CO Standard	1	×	,	ĸ	×	H	H
3	*** *	н ннн	****	××××	×	** *	××
3	3 ~	•		•	•	'n	~~~
0568	8 2	941 941 942	9H3 10H1 10J1 10H1 10H1	11A1(6) 11B1 11C1 11C2 11C2	1911	1162 1163 1164 1165	1111 1112 1114 1114 1117 11113
Aquifer	I MARY MASAIK OFFER X X X X X X X X X X X X X X X X X X X	ниник	кккик	кинии;	кн	нккк	ннкни
ĕ]	<u>ب</u> ا						

(1) (2) See Sheet 7! For Motes

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION	INVENTORY OF CROUNDIATER	TABLE 9
Dees of the Aumy, Seattle Ostiset Corps of Engineers Konnedy Tudor Consulting Engineers	QUALITY DATA	(cont.)

TABLE 9 (cont.)

INVENTORY OF GROUNDHAIER QUALITY DAIA

	Reserve	Group I						•		•	Croup I		•									Composite with 22 F2	I dno	Group I	. I dna	I dno		
		ž								(Š											2	Š	Š	Š	Š		
(2)	Sources	м м	4 m m	, ,	M M	m	m (m	٣	.	4	m	m	٣	m	m ·	m	m	e	e	m	m	w	s	S	3,4	3 6	****
	Pollutants	:	4							į	×			•									•			ĸ		
CATECORIES	Nutrients Metale Bacteriological Pollutants		•													•												
AMETER	Metala	× :	×							ı	H												×	×	×	×		
COVERAGE BY PARAMETER CATEGORIES Standard	Nutrients	×	×				•			1	×											×	×	×	×	×		
CO Fendard	Test	×	×								×											×	×	×	×	×	× ×	ŧ
•	(1) Limited	×	××	. 1	××	×	×	×	×	×		×	×	×	×	×	×	×	×	×	×							
	3	so o	^												'n							ν.	'n		S	v		,
Ş	Well Number	T25N. R43E-11R1	13K1 13K1		1301	1451	1482	. 1461	1462	1431	14K1	120	1561	1562	1631	1701	1702	1801	1811	1901	2181	22F1	23A1	23.42	1977	T25M. R44E-131	IMI Rac	
	Other	н																н	ĸ									
	Basalt																											
•	Primary	**	н кэ	•	*	· ×	×	×	×	×	ĸ	×	×	×	×	×	×			×	×	×	×	×	H	×	× >	<

METHODOLITAN SOCIAME REGION

Desir of the Anny, Section Delivet

Committee of the Anny, Section Delivet

Kennedy - Tadeo Chaptering Chapters

(1) (2) See Sheet ?! For Notes

TABLE 9 (cont.) and the second second second second second second second second second second second second second second second

IABLE 9 (cont.)

		3							•		
		Bearies	Group I		Group I				Group I	Group I	Group I
	8	Sources	ቀ ጠጠ	s.4	2, S	พศ	m 60 km	3,5,5,1	ພູພູ ພູພູພູພູພຸພຸ	8 4 E 4 E 8	พ.พ.พ.พ. พ.พ.
		Pollutents	×		×			-		нн	
•	COVERAGE BY PARAMETER CATEGORIES	Nutrients Metals Bacteriological Pollutants				H	* *	< ⊭	****		инни
	ARAMETER	Metals	×	×	×		×		×	* *	×
TY DATA	PERACE BY PA	Nutrients	×	×	××		×	, H	ĸ	KKK	Ħ
TER QUAL	8	Standard	×	×	**		×	×	×	***	×
INVENTORY OF GROUNDHAITR QUALITY DAIA		Limited	××	: ×	>	: ×	Ħ	×	×	××	* *
2		3		•	w w		2	N N	N N	n n	in in
DIVENTO		USCS Well Number		44 44 483	641 701	8N1 9J1	. 9J2	1342	15E2 15J1 16E1 17A1 17A1	1802 1841 1901 2011 2012	20K1 21J1 22N1 27R1 26D1
		Aquifer Primary Basalt Other	**								
		Aquifer	**	< × ×	**i	< × ×	ĸĸ	×××	****	****	жккик

INVENTORY OF CHOUNDRATER QUALITY DATA	
WATER RESOURCES STUDY BRETROCKLITAN STOCKANE BOOKEN Dag of the Army, Seeith Detrict Capp of Egyment Known - Turin Complises Enween	

(1) (2) See Sheet 7/ For Notes

TABLE 9 (cont.)

307-67

Control of

THE WAS TO SERVICE AND THE WAS THE WAS TO SERVICE TO SERVICE TO SERVICE THE SERVICE SE

TABLE 9 (cont.)

INVENTORY OF GROUNDWATER QUALITY DATA

	Renarks												•											/1 110,	•		
	•	- and:-	4	1 dnos9							Group I		Group I	•										Shown 32 mg/1 NO.	,		
3	Sources	3,5	, m	m vs	m	· M	e .	1,5	s	4.	, 4 (1,3,\$	w	м	m m	s en	. 60	•	m	m	m	r	6	1,3	•	m	n
•	Pollutanta									H I	×			•								•					
COVERAGE BY PARAMETER CATEGORIES	Nutrients Metals Bacteriological Pollutants	×											•			•											
ARANETER	Metale		•	H					×	× ;	×	•	×														
FRAGE BY P	Nutrients	×	!	×			•	• ×	×	×ı	×	×	×											×			
3	Standard	*	3	×			,	4 ×	×	×	×	×	×											×			
	Limited	×	×	×	×	×	×				,	≺		×	××	×	×	×	×	×	×	×	×		×	×	×
	3	S) C	,	v					9			v	S														
	USGS Well Number	T25N. R44E-26L1	28E1	28H1 29A1	2981	2901	2902	1750. K43E-4A1	, 14M2	1051	1361 1361	1/41 1841	1881	20P2	20R1 T26W R62E-3E1	477	\$C1	571	27.7	6K1	741	7A2	7A3	107	762	æ	6W1
	Other	H						×	×	,	×			×						•							
	Basalt Other																										
	Aquifer	ĸ×	×	* *	×	×	× •	4		Ħ	,	4 14	×		>	ĸ	×	H	×	×	×	×	×	×	×	×	×

(1) (2) See Sheet 7/ For Notes

WATER RESOURCES STUDY		
METHOPOLITAN SPOKANE REGION	INVENTORY OF CHOUNDHATER	IABLE
Dept. of the Army, Seattle Datrice	CHAIN THE NAME	,,,,,
Cerps of Engineers	WINT I THAN	(cont.
Kennedy - Tudor Consulting Engineers		

TABLE 9 (cont.)
INVENTORY OF GROUDDAAIER QUALITY DAIA

				2			
	Resarks	Spr in g		Eight samples		Spring	Spring.
		Group I	Group I	. Group I		Group I Spring Group I	Group I
8	Sources	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4.50 EE	ก๋กกก	ოოოოო	00 00 00 00 00	2 4 4 4 8 8 8 8 8
	Pollutants	×	×	,		н 'н	×
COVERAGE BY PARAMETER CATEGORIES Standard	Nutrients Matals Bacteriological Pollutants	×		•		H	
ARAMETER	Watals	×	×			ж ж ж	×
VERAGE BY P	Nutrients	×	**	×		HHH H	****
C. Standard	Test	×	××	×		жин н	****
	Limited	***	×××	××××	****	×	
	3						•
SSG	pper	T26N. R42E-8F1 8R1 10F1 10L1 11J1(e)	12A1(e) 12L1 15B1 15E1 15E1	17A1 17A2 20A1 20A2 20A2	2101 2102 2103 2153 2151 2161	27N1 27N2 28(s) 34N1 T26N. R43E-511(e)	661 /B1(e) 8B4 10K1 11F2
	Other	T26	×			126	×
	Basalt Ot						•
Annifor	Primary	ннн н ,	нн нн	нныкн	нянки	нннк	нннн

_	Ccont.)	1
	INVESTORY OF CHOUNDHAIER QUALITY DATA	
WALLER MESOURCES STUDY	METROPOLITAN SPOKANE REGION Des of the Aury, Seatile Desiret Cara of Engineer Kennedy - Tuder Consulting Engineers	

(1) (2) See Sheet 7! For Notes

TABLE 9 (cont.)

INVENTORY OF GROUNDHATER QUALITY DATA

	l	•																•										•					
Reserks							H																							٠	H		н.
				,			Group I																								Group I		Group I
(2) Data Sources		7	m	· ~	m	m	1,2,5	<u></u>	1,2,3	'n	m	en	, en	,		- ۱	,	7	7	n	1,2,3,\$	m	e	٣	2,5	•	m		7	~	∢ ;	r,1	4
Pollutants																		•		٠						•		•			×	;	×
ERACE BY PARAMETER CATEGORIES Mutrients Hetals Sacterfological Pollutants																		•															
COVERAGE BY PARABLIER CAIBCORIES Standard Test Mutrients Metals Bacteriolo		•	•																												×	,	×
WERAGE BY Mutrient							×		×			:									×				×					×	×	κ;	×
CO Standard Test			×	×		×	×		×												×				×				i	×	× ;	≺ >	×
Limited		×			×			×		×	×	×	×	: >	< ×	: >	•	×	×	×		×	×	×		×	×		×				
3	1								~												S				~						n		
USGS Well Mumber		726N. R43E-12Cl	1901	1602	1603	1491	16F2	1761	1941	1961	19H2	1971	1975	1901	2012	ואככ		2412	24N).	27A1	27E1	. 27.1	27R1	3001	30R2	34E1	34P1		T26N. R44E-30D2	32R1	126N. R4SE-35F1	3651	TNOS
Bealt Other		×																×	×	×				×					×		•		
Lasalt																																	
Aquifer			×	×		×	×	×	×	H	×	×	H		4 14	; >	•				×	×	×	•	×	×	×			×	H 1	H I	×

(1) (2) See Sheet 7} For Notes

WATER RESOURCES STORY METROPOSLITAN SPOKANE REGION DEPARTMENT SERVING SERVING CALLO OF SERVING KANNEY - TAGE CHANNING SERVES (CORE KANNEY - TAGE CHANNING SERVES
--

INVENTORY OF GROUNDHATER QUALITY DATA TABLE 9 (cont.)

新教育的,这种特别的,是一种的特别的,但是一种的特别的特别的特别的特别的,但是一种的特别的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的,但是一种的特别的

	Remarks	Group T	•																						
		2 2																							
8	Sources	4 W	•	~	7	. 2	· vs	~	7	٠	8	7	~	~	7	7	~	7	~	7	7	~	7	1,2	
	Follutants	×																							
CATECORIES	Nutrients Metals Bacteriological Follutants																		•						
ARANGTER	Metals	××																							
COVERAGE BY PARANGIER CAIBCORIES	Mutrients	××				×	×	×						×					ĸ			×	×	×	
CC	Test	××	×			×	×	×						×					×			×	×	×	
	(1) Limited			×	×				×	×	×	×	×		×	×	×	×		×	×				
	3	S				5														S					
DSGS	per	T26N. R45E-36Q1 T26N. R46E-31M1	7N. R41E-2602	7N. R43E-17H1	181	22M1	26M1	3N. R39E-25H	T28N. R41E-11P1	BN. R42E-3A1	3481	BN. R43E-6N1	6N2	2201	T26N. R44E-19P1	T29N. R42E-14M1	1861	2011	2317	35P2	T29N. R43E-14D1	29N1	29N2	T29N. R44E-6H2	
		12,	12	T2				128	12	12		12			17	12					120			17	
	Other		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
	Besalt																								
Annifer	Primary	××		,																					

Notes for Table 9

S - Entire indicated record in STORET \$ - Portion of record in STORET 5 - Phillips (1962) (1) A 5 in this column indicates that the well produces 5 million gallons per year or more.

(2) Data sources are identified as follows:

1 - Van Denburgh and Santos (1965)

2 - Cline (1969)

3 - Weigle and Mundorf (1952)

4 - USGS - EPA ongoing study, unpublished

	TABLE 9 (cont.)
	INVENTORY OF GNOUNDWATER QUALITY DATA
WATER RESCURCES STUDY	METROPOLITAN SPOKANE REGION Days of the Aunit, Sentia Desiret Carps of Engeneral Kennedy - Yuder Consulting Engenera

to the first of the principal designation of the principal property of the principal principal property of the principal princ

usgs	S Well Number			2 1381				13A1 #1-3 12-17-73
	Owner Tour Date	4 20 72		old Storage		TA	W.W.P.	#1-3
PARAMETER	Test Date UNITS	6-28-73	9-26-73	12-17-73	3-20-74	6-29-73	9-25-73	12-17-73
Ammonia	mg/1	0.010	0.010	0.010	0.02	0.020	0.020	0.010
Alkalinity Total (as CaCo		138.000	135.000	135.000	140	126.000	119.000	119.000
Arsenic	ug/]	0.000	6.000	2.000	. 1.	29.000	5.000	2.000
Bicarbonate	mg/1	168.000	165.000	165.000	171	153.000	145.000	145.000
Cadmium	ug/l	1.000	0.000	0.000	٥	1.000	0.000	0.000
Calcium	mg/1	39.000	40.000	43.000	47	32.000	32.000	30.000
Carbon Dioxide	mg/l			3.300	8-7			1.500
Carbonate	mg/1	0.000	0.000	0.000	0	0.000	0.000	0.000
Chloride	mg/1	8.600	12.000	24.000	24	1.700	2.100	1.400
Chromium	u ₂ /1	0.000	0.000	0.000	0	0.000	0.000	0.000
Conductivity	umhos/cm	336.000	335.000	388.000,	410	270.000	265.000	261.000
Copper	ug/1	2.000	4.000	3.000	8	20.000	30.000	50.000
Detergents MBAS	mg/1	0.000	0.030	0.020	0.03	0.000	0.100	0.000
Fluoride	mg/l	0.100	0.000	0.200	.0.1	0.100	0.000	0.200
Hardness, Noncarbonate	mg/l	17.000	18.000	34.000	43	12.000	15.000	10.000
Hardness, Total	mg/1	160.000	150.00C	170.000	180	140.000	130.000	130.000
Iron	ug/1	30.000	110.000	30.000	10	130.000	10.000	150.000
Lead	ug/1	0.000	4.000	0.000	į.	3.000	3.000	4.000
Magnesium	mg/1	14.000	13.000	15.000	16	14.000	13.000	13.000
Manganese	ug/l	0.000	0.000	0.000	140	0.000	10.000	30.000
Mercury, Total	ug/l	0.000	0.000	0.000	0	0.100	0.000	0.000
Nitrate	mg/l	1.700	1.400	1.300	1.6	.840	1.000	1.000
Nitrite	mg/1	0.002	0.001	0.002	0.003	0.000	0.003	0.003
Nitrogen, Kjeldahl	mg/l	0.120	0.160	0.070	0.25	0.050	0.040	0.030
рH		7.4	7.7	7.9	7.5	7.7	8.2	8.2
Phenols	ug/1	0.000	1.000	0.000	Ø	0.000	0.000	0.000
Phosphate, Ortho, ASP	mg/1	0.005	0.006	0.009	0006	0.007	0.005	0.025
Phosphate, Total, ASP	mg/1	0.006	0.006	0.010	0.007	0.011	0.006	0.031
Potassium	mg/1	2.300	2.500	2.800	2.8	1.800	1.900	
Residue	ton/AFT	0.240	0.260	0.290	0.3	0.210	0.230	2.000 0.190
Residue 180C	mg/1	179.000	188.000	210.000	231	154.000	170.000	140.000
SAR	_	0.200	0.200	0.400	0-3	0.100	0.100	0.100
Sodium	mg/1	6.600	7.000	11.000	9.5	3.000	2.700	3.200
Sodium	percent	8.000	9.000	12.000	/0	4.000	4.000	5.00 0
Sulfate	mg/l	16.000	16.000	17.000	21	13.000	12.000	12.000
Water Temperature	•c	12.400	12.000	12.000	12.0	10.000	17.000	18.500
Zinc	ug/1	10.000	20.000	30.000	30	50.000	20.000	90.000

TABLE 10

GROUNDWATER QUALITY DATA FROM
THE ONCOING US GS-EPA PROGRAM

	13A1				3 14K1				1J-1			944 A
W.P.	#1-3				crete Co.				ial Parl No	o. 2	Kaiser	
73	12-17-73	3-22-74	6-27-73	9-25-73	12-17-73	3-20-74	6-27-73	9-25-73	12-17-73	3-20-74	6-27-73	9-25
												3
20	0.010	0 03	0.010	0.010	0.010	0.02	0.010	0.010	0.010	0.03	0.010	0:
00 0	119.000	121	107.000	107.000	107.000	100	136.000	143.000	148.000	135	146.000	145
Ö0	2.000	2	0.000	0.000	0.000	(3.000	4.000	4.000	3	4.000	6.
ĬÓO	145.000	147	131.000	131.000	130.000	122	166.000	174.000	181.000	164	178.000	177
00 00 00	0.000	Ð	1.000	0.000	U.000	0	0.000	0.000	0.000	o'	1.000	0
00	30.000	32	29.000	30.000	30.000	30	35.000	37.000	41.000	35	39.000	40.
į. ·	1.500	3			1.700	3.1	33.000	37.000	3.600	6.6	37.000	~ 4
Ô0	0.000	0	0.000	0.000	0.000	0	0.000	0.000	0.000	0	0.000	0. 3.
0 0	1.400	22	1.500	2.100	1.800	2.3	1.500	1.100	1.400	0.9	4.400	3 2
0 0 0 0	0.000	0	0.000	0.000	0.000	0	0.000	0.000	0.000	0	0.000	0
00 00 00 00 00	261.000	268	235.000	236.000	238.000	235	284.000	297.000	325.000	293	336.000	320
00	50.000	50	6.000	4.000	3.000	4	10.000	16.000	2.000	5	9.000	320.
00	0.000	0	0.000	0.000	0.030	7	0.000	0.060	0.010	0.1	0.030	O.
ÔÓ	0.200	o	0.000	0.000	0.200	0.1	0.100	0.000	0.200	0.2	0.100	0.
00	10.000	17	6.000	8.000	9.000	16	5.000	3.000	16.000	6	5.000	4.
<u>*</u>					,,,,,	10	2.000	3.000	20.000	Ø	2.000	7.4
00 00 00 00 00	130.000	140	110.000	120.000	120.000	120	140.000	150.000	160.000	140	150.000	150
ĎO	150.000	60	50.000	30.000	0.000	20	60.000	20.000	0.000	10	40.000	20
DO .	4.000	17	4.000	3.000	1.000		2.000	3.000	0.000	ľ	3.000	5.
DO O	13.000	14	10.000	9.900	10.000	9.9	13.000	13.000	15.000	13	13 000	12.
0 0	30.000	20	0.000	0.000	0.000	14	0.000	0.000	0.000	50	0.000	0
00	0.000	0	0.100	0.000						•		4
		0.9		0.000	0.000	0.0	0.200	0.000	0.000	0 0.82	0.000	0
	1.000	•	1.100	1.100	0.900	1.1	0.810	0.710	2.100		2.000	1
15 15	0.003 0.030	0.001	0.001	0.002	0.002	0.002	0.001	0.003	0.002	0 001	0.000	0
زو		0.84	0.050	0.040	0.020	0.12	0.050	0.030	0.080	0.4	0.080	0
	8.2	7-9	7.6	8.0	8.100	7.8	7.700	7.900	7.900	7.6	7.600	7
ĎÓ	0.000	0 _	2.000	0.000	0.000	0	0.000	0.000	0.000	0	7.000	οį
25	0.025	0005	0.003	0.005	0.004	0.003	0.002	0.007	0.008	0.003	0.003	O)
<u>96</u>	0.031	0.007	0.012	0.008	0.010	0.005	0.010	0.008	0.008	0 005	0.008	0
30	2.000	2.2	2.000	1.600	1.700	1.6	1.700	1.900	2.000	1-9	7.500	67
904 93 90 95 96 90	0.190	0-50	0.170	0.210	. 0.190	0.18	0.220	ა.220	0.240	0.22	0.240	0
	140.000	149	126.000	152.000	136.000	130	160.000	160.000	177.000	160	175.000	174
00	0.100	0-1	0.100	0.100	0.100	0.1	0.100	0.100	0.100	0.1	0.200	0
00	3.200	2.9	3.100	2.400	3.100	3.1	3.600	3.000	3.900	3.3	5.800	4
DO	5.000	4	6.000	4.000	5.000	5	5.000	4.000	5.000	5.3 5	7.000	6
00	12.000	13	12.000	11.000	12.000	12	11.000	9.900	11.000	5 	12.000	11
	18.500	10.2	11.600	11.500	11.000	10.2	10 (00					
50	90.000		10.000	40.000	0.000		10.600	10.500	10.000	9.6	10.200	9
8,	70.000	70	10,000	40.000	0.000	20	30.000	20.000	0.000	20	360,000	60

WATER RESOURGE METROPOLITAN SPON Dept. of the Army, Se Corps of Engli Kennedy – Tudor Consy

(1)

	4 1J-1	- 2		25/44	4 20-1				44 7C1	
9- 25-73	rial Park N 12-17-73	3-20.74	Kaise 6-27-73	r Aluminum 9-25-73	(Eastgate	Well)	Orchard	Ave. Irriga		
	22 27 73		0-21-13	3-23-73	12-18-73	3-20-74	6-27-73	9-25-73	12-18-73	3-19-74
0.010	0.010	0.03								
	0.010		0.010	0.010	0.020	0.69	0.020	0.020	0.010	0.01
143.000	148.000	135	146.000	145.000	147.000	160	144.000	139.000	146.000	144
4.000	4.000	3	4.000	6.000	3.000	12.	6.000	1.000	6.000	3
174.000	181.000	164	178.000	177.000	179.000	195	176.000	170.000	178.000	176
0.000	0.000	0	1.000	0.000	0.000	O	1.000	0.000	1.000	0
37.000	41.000	35	39.000	40.000	43.000	49	38.000	35.000	36.000	36
Ř.	3.600	6.6		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.600	9.9	30.000	33.000	2.800	5.6
0.000	0.000	0	0.000	0.000	0.000	6	0.000	0.000	0.000	0
1.100	1.400	0.9	4.400	3.000	7.300	60	1.700	2.100	1.900	₹.Z
0.000	0.000	0	0.000	0.000	0.000	3D	0.000	0.000		0
			0.000	0.000	0.000	30	0.000	0.000	0.000	O
297.000	325.000	293	336.000	320.000	357.000	590	309.000	306.000	315.000	37/
16.000	2.000	5	9.000	3.000	4.000	4	5.000	2.000	3.000	3
0.060	0.010	0.1	0.030	0.050	0.020	0.1	0.000	0.000	0.030	00
0.000	0.200	0.2	0.100	0.000	0.100	0-1	0.100	0.000	0.200	OZ
0.000 3.000	16.000	6	5.000	4.000	18.000	28	21.000	14.000	10.000	16
150.000	160.000	140	150.000	150.000	170.000	190	160.000	150.000	160.000	160
20.000	0.000	10	40.000	20.000	60.000	10	30.000	10.000	30.000	760 20
3.000	0.000	ï	3.000	5.000	0.000	1	0.000	1.000	0.000	1.0
13.000	15.000	13	13.000	12.000	14.000	16	17.000	16.000		
0.000	0.000	50	0.000	0.000	0.000	o	0.000	10.000	16.000 0.000	17 14
0.000		•				0				• 7
	0.000	0 0.82	0.000	0.100	0.000	0	0.100	0.000	0.000	00
0.710	2.100		2.000	1.400	3.100	5.4	0.840	0.760	1.000	1.2
0.003 0.030 7.900	0.002	0 001	0.000	0.002	0.003	0.013	0.000	0.002	0.003	0001
0.030	0.080	0.4	0.080	0.050	0.060	. 0.91	0.040	0.020	0.100	0.04
7.900	7.900	7-6	7.600	7.900	7.900	7.5	7.600	8.100	8.000	7.7
0.000	0.000	0	7.000	0.000	0.000	0	0.000	2.000	0.000	Ø
0.007	0.008	0.003	0.003	0.004	0.018	0.003	0.007	0.011	0.012	800 C
0.008	0.008	0 005	0.008	0.004	0.020	0.004	0.009	0.011	0.016	0 014
1.900	2.000	1.9	7.500	6.900	7.100	15	1.900	2.000	2.100	3.
0.220	0.240	0.22	0.240	0.240	0.270	0.45	0.230	0.280	0.240	0.53
60.000	192 222			1	100 000	_ ^				
	177.000	160	175.000	174.000	197.000	329	169.000	206.000	175.000	172
0.100	0.100	0.1	0.200	0.200	0.200	101	. 0.100	0.100	0.100	0-1
3.000	3.900	3.3	5,800	4.500	5.400	34	3.300	2.800	4.100	3.7
4.000	5.000	5	7.000	6.000	6.000	27	4.000	4.000	5.000	5
9.900	11.000	11	12.000	11.000	11.000	16	16.000	15.000	15.000	16
10.500	10.000	9.6	10.200	9.500	9.500	9.5	9.600	9.000	8.000	9.6
20.000	0.000	20	360,000	60.000	80.000	90	10.000	20.000	0.000	
		20	200,000			. •		=0.000	0.000	30

WATER RESOURCES STUDY

METROPOLITAN SPOKANE REGION Dept. of the Army, Seattle District Corps of Engineers Kennedy – Tudor Consulting Engineers

307-72

TABLE 10

GROUNDWATER QUALITY DATA FROM THE ONGOING USGS-EPA PROGRAM

USGS W	ell Number Owner Test Date	6-27-73	25/44 W.W.P. 9-25-73	18D2 #1-4 12-18-73	6-27-73		19D1 Sanatorium 12-18-73
PARAMETER	UNITS	0-21-13	J-2J-1J	12-10-75	0-27-73	7-20-73	** 10 / 3
Ammonia -N	mg/1	0.010	0.010	0.010	0.040	0.010	0.010
Allestantes Total (on CaCO)	mg/1 mg/1	129.000	124.000	123.000	161.000	169.000	163.000
Alkalinity Total (as CaCO ₃) Arsenic	ug/1	2.000	2.000	4.000	4.000	6.000	6.000
Bicarbonate	mg/1	157.000	151.000	150.000	196.000	206.000	199.000
Cadmium	ug/1	1.000	1.000	0.000	1.000	0.000	0.000
Calcium - '''	mg/1	32.000	33.000	32.000	48.000	49.000	48.000
Carbon Dioxide	mg/1			2.400			5.000
Carbonate	mg/1	0.000	0.000	0.000	0.000	0.000	0.000
Chloride -p & C	mg/1	2.000	2.500	1.800	6.000	11.000	6.000
Chromium	ug/1	0.000	0.000	0.000	0.000	0.000	0.000
Conductivity	umhos/cm	282.000	278.000	270.000	369.000	390.000	373.000
Copper	ug/ 1	6.000	4.000	3.000	8.000	2.000	5.000
Detergents MBAS	mg/1	0.000	0.080	0.060	0.000	0.040	0.040
Fluoride	mg/1	0.000	0.000	0.200	0.100	0.000	0.200
Hardness, Noncarbonate	mg/l	9.000	12.000	10.000	25.000	15.000	18.000
Hardness, Total	mg/1	140.000	140.000	130.000	190.000	180.000	190.000
Iron	ug/1	40.000	20.000	10,000	10.000	30.000	10.000
Lead	ug/1	0.000	1.000	0.000	0.000	4.000	0.000
Magnesium	mg/1	14.000	13.000	13.000	16.000	15.000	15.000
Manganese	ug/ 1	10.000	0.000	0.000	0.000	0.000	10.000
Mercury, Total	ug/1	0.000	0.000	0.000	0.100	0.000	0.000
Nitrate- N	mg/l	1.200	1.100	1.100	2.800	3.000	2.600
Nitrite - N	mg/1	0.000	0.002	0.003	0.000	0.001	0.002
Nitrogen, Kjeldahl - N pH	mg/1	0.030 7.6	0.070 8.1	0.060 8. 0	0.070 7.5	0.230 7.7	0.070 7.8
•					0.000	2.000	0.000
Phenols Phosphate, Ortho AS P	ug/1 mg/1	2.000 0.005	0.000 0.006	0.000 0.007	0.021	0.009	0.003
		0.003	0.008	0.007	0.023	0.009	0.025
Phosphate, Total, AS	mg/1	1.800	1.900	1.900	2.400	2.700	2.700 :
Potassium Residue	mg/l ton/AFT	0.200	0.260	0.200	0.290	0.280	0.280
					A4 A65	204 224	007 000
Residue 180C	mg/l	150.000	193.000		. 211.000	206.000	207.000
SAR	1.	0.100	0.100	0.100	0.200	0.200	0.200 :
Sodium	mg/1	3.400	3.200	3.900	5.700	7.000	6.200
Sodium	percent	5.000	5.000	6.000	6.000	8.000	7.000
Sulfate	mg/1	14.000	13.000	12.000	14.000	13.000	12.000
Water Temperature	•c	10.600	10.500	11.000	11.900	11.500	11.500
Zinc _ D155	ug/1	10.000	40.000	0.000	20.000	10,000	10.000

TABLE 10 (Continued)

25/44 ecliff	19D1 Sanatorium			25/45 Holid a y				25/45 Ruth J	16Kl effers		0.020 157,000 1.000 192,000
6 -73	12-18-73	5-20-74	6-28-73	9-25-73	12-18-73	3-20-74	6-28-73	9-25-73	12-18-73	3-20-74	6-27-73
010	0.010	0.01	0.030	0.010	0.010	0.03	0.020	0.020	0.010	0.01	0.020
.000	163.000	170	116.000	111.000	107.000	102	386.000				157,000 🦠
000	6.000	4	5.000	6.000	5.000	2	0.000	0.00	0.000	0	1.000
.000	199.000	207	141.000	135.000	131.000	124	471.000	500.00	514.000	523	192,000
000	0.000	O	1.000	0.000	0.000	0	1.000	0.00	0.000	0	1.000
.000	48.000 5.000	49 . 6.6	32.000	35.000	35.000 1.700	33 3.1	110.000	120.00	0 120.000 52.000		∙ 39.000 ૅ
.000	0.000	Ö	0.000	0.000	0.000	0	0.000	0.00		6	0.000 🗟
.000	6.000	7.1	2.300	2.300	2.500	2-6	17.000				5.800
000	0.000	0	0.000	0.000	0.000	0	0.000				0.000
.000	373.000	394	266.000	259.000	263.000	242	780.000	811.00	0 837.000		367.000 §
.000	5.000	8	3.000	6.000	3.000	5	13.000	9.00	7.000	10	0.000 🖇
040	0.040	0.08	0.000	0.040	0.020	-	0.000	0.05	0.040	0.1	0.000 €
000	0.200	0-1	0.100	0.100	0.200	0-1	0.500			0.5	0.000
.000	18.000	18	1.000	12.000	16.000	14	24.000		0 22.000	15	22.000
000	180.000	190	120.000	120.000	120.000	120	410.000	440.00	0 440.000		180.000
000	10.000	10	10.000	10.000	0.000	20	10.000				10.000
.000	0.000	.!	1.000	2.000	0.000	ł	1.000	6.00	0 1.000	O	0.000
000	15.000	16	8.900	8.700	8.800	8.2	33.000				20.000
000	10.000	36	10.000	0.000	0.000	7	0.000	10.00	0.000	0	0,000
.000	0.000	0	0.100	0.000	0.000	0-1	0.200				0.100
000	2.600	2.2	2.800	1.500	2.000	1.3	1.200				2.500
.001	0.002	0.001	0.000	0.002	0.002	0.00					
230	0.070	0.13	0.060	0.050	0.040	0.56	0.120				0.050
7	7.8	7.7	7.6	8.1	8.100	7:8	6.900	7.10	0 7.200	6.9	7.600
000	0.000	0	0.000	4.000	0.000	0	1.000				3.000
009	0.023	0.018	0.021	0.022	0.073	0021	0.097				
025	0.026	0.026	0.021	0.023	0.073	0.023					
700	2.700	2-8	1.800	1.900	2.000	1.8	3.100				2.400
280	0.280	0.31	0.210	0.210	0.210	0.19	0.610	0.65	0 0.610	0.66	0.270
000	207.000	226	158.000	157.000	154.000	143	445.000	480.00	0 452.000		200.000
200	0.200	0-2	0.200	0.200	0.200	0.2	0.200	0.20		0.2	200.000 0.200
.0 00	6.200	6.3	4.400	3.900	4.400	4.5	9.700				4.700
000	7.000	7	7.000	6.000	7.000	8	5.000				5.000
000	12.000	14	12.000	11.000	11.000	8	12.000	11.00	0 11.000	15	20.000
500	11.500	11.2	12.000	12.000	12.000	11-8	14.100				
.000	10.000	20	10.000	50.000	0.000	20	90.000	200.00	0 170.000	140	10.000

WATER METROPOU Dopt. of it Cd Kennedy - T

		Zana stational destates	· Sint Price	्र सरस्य सम्बद्धाः स्थापन्ति । स्थापन्ति । स्थापन्ति । स्थापन्ति । स्थापन्ति । स्थापन्ति । स्थापन्ति । स्थापन्	and the same of the same of the same of the same of the same of the same of the same of the same of the same of	grander och	** .) +	Preceivani segie s	and the second	Martin Shakering Control	
25/45						•				- > = / .	
	ه د سیدست د د سیده سید	and and		-	* *	g ogstrag street, system	. make what is a set	to be advantaged from Secure As-		*	
28/45	1471			26/42 113	T1(=)			26/42 1	2A1(a)		
Buth Je	effers			Hatchery S			:	Spokane Cou			
	12-18-73	3-20-74	6-27-73		L2-17-73	3-19-74 6.	-29-73	9-26-73	12-17-73	3-19-74	
					•						
0.020	0.010	0.01	0.020	0.020	0.010	0.010	0.020	0.010	0.010	0.01	
10.000	422,000	429	157.000	157.000	151.000	149	137.000	135.000	128.000	127	
0.000	0.000	0	1.000	9.000	4.000	3	1.000			2	
0.000 500.000 0.000	514,000 0.000	523 O	192.000 1.000	191.000	184.000 0. 0 00	182	167.000			155 0	
0.000	0.000	O	1.000	0.000	0.000		2.000		3.000		
120.000	120.000	120	. 39.000	39.000	39.000	37.0	31.000	31.000		28	
	52.000	105	0 000	0.000	2.900 0.000	5.8	0.000	0.000	1.600	2.5 O	
0.000 16.000	0.000 17.000	16	0.000 5.800		5.600	5.8	2.300			2.2	
0.000	0.000	0	0.000		0.000	0	0.000			0	
	00- 00-	017	0/2 444	0/0 000	05/ 000	358	201 000	107 000	201 000	z87	
9.000	837.000 7.000	832 10	367.000 0.000		354.000 1.000	220	301.000			7	
0.050			0.000		0.020	0.08	0.000			0.05	
0.400	0.600	0.5	0.000	0.000	0.200	0.10	0.100			0,1	
34.000	22.000	15	22.000	19.000	25.000	25	10.000	13.000	10.000	9	
40.000	440.000	440	180.000	180.000	180.000	170	150.000	150.000	140.000	140	
10.000			10.000	50.000	0.000	20	30.000	10.000	10.000	10	
6.000	1.000	0	0.000	3.000	0.000	2	1.000			2 16	
35.000 10.000		35 0	20.000 0.000		19.000 40.000	20 36	17.000			14	
70.000	0.000	U	0.000	0.000	40,000	20	0.000	, 5.000			
0.200			0.100		0.000	0.0	0.000			0	
1.600			2.500		2.300	2.0	1.300			1.1	
0.002 0.130			0.002 0.050		0.004 0.040	0.001	0.000			0.12	
0.200 1.600 0.002 0.130 7.100			7.600		8.000	7.7				80	
G.					•					0	
3.000			3.000		0.000	0	3.000			€०० ७	
0.010 0.095					0.010 0.012	0.007 0.013	0.002			0 013	
3.400			2.400		2.600	2.5	2.100	2.300	2.400	2-1	
0.650			0.270		0.270	0.27	0.230	0.220	0.210	0.21	
		41.04				•		_		رسس	
480.000			200.000		198.000	195	166.000			156	
0.200 10.000			0.200 4.700		0.200 5.300	0.2 48	0.100 3.300			0.1	
5.000	5.000		5.000		6.000	76°	5.000			5	
11.000	11.000		20.000		18.000	20	16.000			15	
12 000	12 000	12.9	10 900	11 000	11 000	10 ·3	11 00	n 10 50	10.000	9.5	
200.000			10.800 10.000		11.000	10.3 20	11.800 30.000			1.5	
		, , , ,				~~					
2000											

WATER RESOURCES STUDY

METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

TABLE 10

(cont.)

GROUNDWATER QUALITY DATA FROM THE ONGOING USGS-EPA PROGRAM

and the same of the same of the same of the same of the same of the same of the same of the same of the same of

usgs v	Vell Number Owner			2 27N1 ivengood			26/43 Wandern
	Test Date	6-29-73	9-26-73	12-17-73	3-19-74	6-29-73	9-26-73
PARAMETER	UNITS				• • •		
Ammonia	mg/1	0.030	0.010	0.010	0.01	0.000	0.010
Alkalinity Total (as CaCO ₃)	mg/1	130.000	129.000	126.000	125	140.000	135.000
Arsenic	ug/1	5.000	7.000	4.000	2	10,000	3.000 i
Bicarbonate	mg/1	159.000	157.000	154.000	152	171.000	165.000
Cadmium	ug/1	1.000	0.000	0.000	0	1.000	0.000
Calcium	mg/1	36.000	34.000	36.000	35	44.000	38.000
Carbon Dioxide	mg/l			1.200	3.1		<u> </u>
Carbonate	mg/1	0.000	0.000	0.000	0	0.000	0.000
Chloride	mg/1	4.000	. 3.500	3.700	4	15.000	14.000
Chromium	ug/1	0.000	0.000	0.000	0	0.000	0.000
Conductivity	umhos/cm	293.000	290.000	292.000	291	393.000	387.000
Copper	ug/l	2.000	0.000	2.000	4	0.000	0.000
Detergents MBAS	mg/1	0.000	0.040	0.020	0	0.000	0.000
Fluoride	mg/1	0.100	0.000	0.200	0.1	0.200	0.000
Hardness, Noncarbonate	mg/1	13.000	10.000	17.000	16	48.000	38.000
Hardness, Total	mg/1	140.000	140.000	140.000	140	190.000	170.000
Iron	ug/1	10,000	20.000	20.000	50	40.000	30.000
Lead	ug/l	0.000	3.000	0.000	1	0.000	3.000
Magnesium	mg/1	13.000	13.000	13.000	13	19.000	19.000
Manganese	ug/1	0.000	0.000	0.000	43	0.000	0.000
Mercury, Total	ug/1	0.100	0.000	0.000	0	0.100	0.000
Nitrate	mg/1	1.200	1.100	0.970	1.3	1.300	1.100
Nitrite	mg/l	0.000	0.006	0.003	100-0	0.000	0.002
Nitrogen, Kjeldahl	mg/1	0.030	0.120	0.030	0.22	0.050	0.110
pH	O.	7.6	8.1	8.3	7.9	7.6	8.0
Phenols	ug/1	12.000	1.000	0.000	O	2.000	0.000
Phosphate, Ortho, ASP	mg/1	0.007	0.001	0.013	0.006	0.002	0.004
Phosphate, Total, ASP	mg/1	0.008	0.022	0.014	0.022	0.006	0.005
Potassium	me/l	1.900	2.200	2.200	2-1	3.000	3.400
Residue	ton/AFT	0.210	0.220	0.220	0.22	0.300	0.290
Residue 180C	mg/1	157.000	164.000	159.000	162	221.000	214.000
SAR	•	0.100	0.200	0.200	0.2	0.300	0.400
Sodium	mg/1	4.000	4.300	4.600	4.2	10.000	11.000
Sodium	percent	6.000	6.000	6.000	6	10.000	12.000
Sulfate	mg/1	16.000	14.000	14.000	15	38.000	40.000
_	_			•			,
Water Temperature	*c	11.800	12.000	11.000	8.01	11.600	12.000
Zinc	ug/1	40.000	90.000	130.000	160	10.000	20.000

**

TABLE 10 (Continued)

\ * \$		5L1(s) ere Inc.				3 7Bl(s) of Game			26/45 35F1 solidated I.D. Well #10	6-28
3	9-26-73	12-17-73	3-19-74	6-29-73	9-26-73	12-17-73	3-19-74	6-28-73	9-25-73	6-28
<u>.</u>	0.010	0.020	Ø.0]	0.020	0.020	0.020	0.01	0.010	0.010	0.0
ň	135.000	134.000	131	137.000	140.000	130.000	135	132.000	127.000	141.0
0.00	3.000	1.000	2	4.000	64.000	3.000	2	1.000	2.000	o.á
Ď.	165.000	163.000	160	167.000	171.000	159.000	165	161.000	155.000	172.0
Ó	0.000	0.000	0	1.000	0.000	0.000	0	1.000	0.000	3. <u>Q</u>
	38.000	39.000	38	31.000	32.000	32.000	32	31.000	33.000	33.0
		2.100	5-1			1.600	2.6			
0	0.000	0.000	0	0.000	0.000	0.000	Ο.	0.000	0.000	0.0
D:	14.000	14.000	14	2.300	2.300	2.300	2.4	0.800	1.000	1.3
D	0.000	0.000	0	0.000	0.000	0.000	0	0.000	0.000	0.0
n.	387.000	394.000	391	305.000	304.000	294.000	311	276.000	277.000	296.4
5	0.000	0.000	2	0.000	0.000	1.000	6	3.000	5.000	70 . 9
	0.000	0.050	0.08	0.000	•	0.020	ŏ	0.000	0.040	0.0
5	0.000	0.200	0-1	0.100	0.000	0.200	0.1	0.100	0.100	0.1
Ó	38.000	42.000	42	15.000	14.000	19.000	19	3.000	13.000	7.9
0	170.000	180.000	170	150.000	150.000	150.000	150	140.000	140.000	150.0
D	30.000	10.000	90.	10.000	10.000	10.000	10	110.000	30.000	2400.0
0	3.000	0.000	19	0.000	1.000	0.000	1	0.000	11.000	45.0
D.	19.000	19.000	19	18.000	18.000	17.000	18	14.000	14.000	16.0
Q	0.000	0.000	29	0.000	0.000	0.000	36	0.000	10,000	30.9
	0.000	0.000	0	0.000	0.100	0.000	0.1	0.100	0.000	0.1 0.4
Ď	1.100	0.950	1.1	1.300	1.100 ·	0.850	14	0.470	0.430	0.4
D	0.002	0.007	0-001	0.001	0.002	0.005	0.002	0.000	0.001	0.0
	0.110	0.090	0.05	0.050	0.150	0.060	0.04	0.050	0.040	0.0 7.4
take gr	8.0	8.1	7.7	7.6	8.0	8.200	8.0	7.600	8.000	7 6 9
	0.000	0.000	0	4.000	1.000	0.000	0	4.000	0.000	1.0 0.0
45	0.004	0.005	0.003	0.001	0.003	0.005	0.003	0.002	0.006	0.0
, .	0.005	0.006	0.010	0.004	0.003	0.008	0.007	0.003	0.006	0.0
5	3.400	3.300	3.3	2.000	2.300	2.200	2-2	1.700	1.800	1.1
Ď	0.290	0.300	0.3	0.230	0.230	Ω.210	0.22	0.200	0.210	0.1
	214.000	222.000	217	168.000	166.000	155.000	162	149.000	151.000	139.
Ď	0.400	0.400	0.3	0.100	0.100	0.100	0-1	0.100	0.100	0.1 2.1
Ď	11.000	11.000	10	3.200	3.400	3.300	3-1	2.900	2.400	2,1
D	12.00Ö	12.000	il	4.000	5.000	5.000	4	4.000	4.000	4.1
Ď.	40.000	42.000	39	16.000	15.000	15.000	1b	14.000	13.000	13.(
b	12.000	11.500	8.01	11.200	11.000	10.000	9.6	8.600	8.500	94
	20.000	0.000	20	10.000	10.000	0.000	20	30.000	30.000	560.

MÊ

	26/45 35F1		26/45			26/45 Borden	
	solidated I.D. Well #10		G.N. S1	12-18-73	6-27-73	9-26-73	12-18-73
<u>2</u> 73	9-25-73	6-28-73	9-26-73	12-10-73	0-21-73	, ,,	
	0.010	0.090	0.030	0.060	0.040	0.020	0.010
010	127.000	141.000	144.000	142.000	129.000	130.000	129.000
000 000 000 000	2.000	0.000	5.000	7.000	4.000	31.000	6.000
		172.000	176.000	173.000	157.000	159.000	157.000
DOO	155.000 0.000	3.000	0.000		0.000	0.000	0.000
90 0	0.000	3.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•	
200	33.000	33.000	34.000	36.000	32.000	32.000	33.000
000	33.000	331033	•	1.700			2.500
00 0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
900 900	1.000	1.300	1.000	1.200	1.500	1.800	1.600
9 00	0.000	0.000	0.000	0.000	9.000	0.000	0.000
D OO	0.000	••••					
000	277.000	296.000	301.000	305.000	274.000	274.000	279.000
000	5.000	70.000	29.000	•	9.000	1.000	4.000
	0.040	0.000	0.000	0.000	0.000	0.030	0.000
000	0.100	0.100	0.000	0.200	0.100	0.000	0.200
100	13.000	7.000	6.000	14.000	9.000	7.000	11.000
00 0	13.000	,,,,,,					
	140,000	150.000	150.000	160.000	140.000	140.000	140.000
000	140.000 30.000	2400.000	550.000	1500.000	50.000	60.000	60.000
000	11.000	45.000	11.000		2.000	4.000	0.000
000	14.000	16.000	16.000	16.000	14.000	14.000	14.000
000	10.000	30.000	0.000	30.000	0.000	0.000	0.000
000	10.000	301000	• • • • • • • • • • • • • • • • • • • •	-			
	0.000	0.100	0.000	0.000	0.000	0.000	0.000
100	0,000	0.620	0.870	0.770	1.000	1.000	0.940
470	0.430	0.001	0.001	0.006	0.000	0.004	0.002
000	0.001	0.090	0.090	0.040	0.050	0.060	0.030
050	0.040	7.400	7.900	8.200	7.800	7.900	8.000
600	8.000	*****	•			. •	
-	0.000	1.000	1.000	1.000	0.000	2.000	0.000
000	0.000	0.001	0.004	0.006	0.002	0.005	0.009
002	0.006 0.006	0.014	0.005	0.023	0.004	0.008	0.009
003	1.800	1.900	2.000	2.100	1.900	2.000	2.200
700		0.190	0.210	0.230	0.200	0.210	0.240
200	0.210	,					
2000	151 000	139.000	158.000	168.000	148.000	155.000	176.000
.000	151.000	0.100	0.100	0.100	0.100	. 0.100	0.100
100	0.100	2.800	2.900	2.800	2.700	3.000	3.000
900	2.400	4.000	4.000	4.000	4.000	4.000	4.000
.000	4.000	13.000	14.000	13.000	13.000	12.000	11.000
.000	13.000	13.000	24.000	23,023			
	0.500	9.600	9.000	9.000	11.000	11.000	11.000
600	8.500	560.000	250.000	460.000	120.000	120.000	160.000
000	30.000	200.000	250,000	.001000			
Z							

WATER RESOURCES STUDY

METROPOLITAN SPOKANE REGION ,
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

GROUNDWATER QUALITY DATA FROM THE ONGOING USGS-EPA PROGRAM

TABLE 10 (cont.)

TABLE 11
GROUP I WATER GOALITY
LOCATIONS IN THE PRIMARY SPONDAR VALLEY ADUITY

8	i	CTI	115	115	715	115	•	115	115	166	71	115		TIS	TIS	115	115	115		115	115	115	115			CI.	G :	CII			er tis	1			Tes (1e11)		
	At dots from source 2	7 ADDRESS TIME BOOKER 7	Serves Pairchild AFB	Serves Patrchild AFB	Serves Patrchild APB	5/42 date in Sources 1 & 3	•	'71 data only in STORET	'73 data only in STORET		15) data only (Course 1	7 23 200 H. Fried Land L.				٠.			•							C action out a source of	•	111 (12 4-2-4 42 2222)	101016 HT WITH 7//1/		Carine 6/77 £ 1/73 date de Crosser	ore at man Colt B 7000 Survice	Spring		'62 date in Cline & STORET (McCres Well)	Spring	Spring
Spen	10/72		00/	11/60	11/60	41/9		9/72	1/73	19/2	1/73	6/74	,	4//0	70//2	10/72	10/72	4//9	,	*//0	6/74	7//01	9//9	41/9	22/01	10/72	10/72	7//9	4//9	. 66/01	7/107		7//9	11/60	71/9	71/9	74/7
Record Span	144411/70	27/6	/#/7	1/48	10/54	4266/73		12/38	19/2	10/59	12/6915.	6/73		2/0	2/6	1//	12/70	6/73	(1)	7/0	6//9	0//0	6//3	6/73	141411/60	2/20	57.79	1777	6/73	967.9	9/72		6/73	12/53	.6266/73	6/73	6/73
Data (1) Source	2.5		•	7.7	~	1,3,4,\$	•	\$1E'T.	1,5	~	3,6	•	٧	• 6	o (n (· n	•	7	, .	+ (o -	•	•	• en	·	· vi	S-7	.,		\$° 7		<2 :		2,5,4	*	4
Agency (or Owner)	City of Spokene, Baxter	U.S. Fort Wright #5	D.S. Fort Drieht &6	3 C Worth Details 20		Spokane Cold Storage	City of Spokens 91	Color of Colors at	Catal of Spokane #4	City of Spokane Parkwater #5	Orchard Ave. Irr. Dist. #1	Wash. Water 'Power #1-3	Ache Concrete Co.	Wash, Warer Power 81-54	Mach Union Donner All Co	Fact Chotten Its Note By		74 Mills Through an and the	Kaiser Trentwood - East Gara	Orchard ave Tvr Dies 40	Modern Flectuals #1	Useh Deter Bound Alak	Education Contended	ragectiti Sanitorium	Vers Irr. Dist.	Modern Electric #9	Wash. Water Power #2-4	Holiday Hills	Ruth Jeffers	Consolidated Irr. Dist. #2A	Matchery Springs		Spokene Country Club		s.W. Livengood	wandermere inc.	Wash. State Dept. of Came
USGS Well Number	1-45 74/67	=	747	118-2		1-901	25/43 110-1		1 2 2 2	T-CIT	124-1	1.44-1	14K-1	234-1	23A-2	246~1	25/44 11-1		20-1	70-1	15E-2	180-2	196	7-057	260-1	27E-1		25/45 150-1	16K-1	18R-1	26/42 113-1(0)	•	12A-1(a)		T-0/7	(8)7-70 (4/8)	(8)7_0,

	TABLE	
	LOCATIONS IN THE PRIMARY SPOKANE VALLEY AQUIFER	
MAYER RESOURCES STUDY	METROPOLITAN SPOKANE REGION Days, of the American Section Detrict Calse of Enganeers Kennely - Turker Constitute Enganeers	

TABLE 11 (CORE.) . GROUP \$\pi\$ WATER RUBER LOCATIONS IN THE PRIMAR SPOKANE VALLET AQUIPER

USCS Vell Number	Agency (or Owner)	Data (1) Source	Record Span From	Span To	Rearks	8
. 26/43 16F-2 26/45 35F-1 36C-1 26/46 31M-1	Kaiser Mead #5 Compolidated Irr. Dist. #10A G.M. Siverson Carl Borden Consolidated Irr. Dist. #11A	ં ખ્યત્વ જ	10/59 6/73 6/73 6/73 5/70	5/60 6/74 6/74 6/74 10/72		211 211 213

Motes For Table 11

Weigle and Mundorf (1952) USGS - DOE ongoing, unpublished Entire Indicated record in STORET Part of record in STORET Van Denburgh and Santos (1965) Cline (1969) 3

(2) T15 indicates well is listed as major producer in Table 15

WATEN NESONNESS STUDY
METHOPOLITAN SHYNAME LICEGOM
Logic of the Annue, shire Entered
Corps of Corps of Superson
Kennetty - Turbe Campillant Engages

LOCATIONS IN THE PRIMARY SPOKANE VALLEY AQUIFER

TABLE 11 (cont.)

TAELE 12

GROUP II WATER QUALITY LOCATIONS IN THE PRIMARY SPOKANE VALLEY AQUIPER

(2)	1115 1115	115 115 115 115 115	115. 115 115 115		7 MS10 T15 T15 T15	######################################
Reserve	Composite with 48-2 Source 3 has 'S1 data Source 3 has 'S1 data Destroyed Source 3 has 'S1 data On North just downstream from dam	Includes heavy metal data Includes heavy metal data	On Morth aide of river below Sullives Bridge	Not active	Located approximately lai. above 7 Hile Bridge Not active	Vas Country Heme Estates
tecord Date	9/44 4/18/52 5/7/42 6/6/51 9/12/72	1/15/73 1/15/73 10/45 No Date 1/3/55	11/10/70 1/3/55 9/12/72 5/7/42 6/6/51	6/6/51 5/7/42 6/6/51 5/12/64 2/9/62	9/13/72 5/12/64 5/12/64 5/12/64 8/15/42	6/8/42 8/3/42 5/7/42 6/6/51 5/12/64
Data (1) Source	3,2,3,4 1,3 1,3 S	ა ბ ლ ო <mark>გ</mark>	2,5 2,5 1,3,5 5,5,5	2,11,1,00 2,1,1,00 2,00 1,00 1,00 1,00 1	ง 444 พัพัพ	3 1,2,3 1,2,3,8 2,5,5
Agency (or Owner)	City of Spokane, Moffman #1 City of Spokane, Hoffman #2 Union San and Gravel Charles Perry Spring near Spokane City Dem	City of Spokane, Parkwater 82. City of Spokane, Parkwater 84 City of Spokane, Ray St. 81 Spokane Industrial Park 81 Trentwood Irr. Dist. 81	. Irvin Water Dist. #3 Pasadena.Park Itr. Dist. #1 Sullivan Springs Modern Elect. #5 F.C. Lawhead	Hagan Milson E.M. Covington Vash. Water Pover, Kingswood R. Costello	Spring below Spokane STF Klyilla Water Co. #1 Wash. Water Power, Mead #2 Wash. Water Power, Mead #3-4 Kaiser	Kaiser Kaiwer Whitworth W.D. #2 N. Spokane Irr. Dist. #3 Wash. Water Power #3-1
USCS Well Number	48-1 48-2 80-1 96-1 11A1(0)	113-2 113-4 227-1 114-1 28-1	4R-3 6A-1 11R1(s) 15E-1 18H	4A-1 19A-1 7G-1 17L-1 27H-2	28 (s) 66-1 88-4 10K-1 166-1	160-2 16F-1 19A-1 27E-1 30R-2
Well	25/43	25/44	25/44	25/45	28/42	

METROPOLITA SPOCKARE EL SANDET

Digit of the Annu, Scribe Dennet

Digit of the Annu, Scribe Dennet

Capa to Lagrant

Kennedy - Tudor Curulum femants

TABLE 12

307-77

TABLE 12

GROUP II HATER QUALITY LOCATIONS IN THE PRIMARY SPOKANE VALLET AQUIPER

Reserves (2)		,
Record	1/3/55 5/7/42	
Date (1) Source	2 1,3 - 5	
Agency (or Owner)	Mutton Settlement J.T. Simpson	
Uses 11 Kumber	32 k-1 36 k-1	
2	26/44	

Notes For Table 12

(1) 1 Van Denburgh and Santow (1965)
2 Cline (1969)
3 Weigle and Mundorf (1952)
4 USGS - DOE ongoing, unpublished
5 Entire indicated record in STORET
\$ Part of record in STORET

(2) IIS indicates well is listed as najor producer in Table 15

TANDOLLAN SPOKANE REGION
CONUE II
DOL OF THE ACTUAL SECUNDARIES
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
THE PERM
TH

CHOUF II WATER QUALITY LOCATIONS IN TABLE 12 THE PRIMARY SPOKANE VALLEY AQUIETR (CONE.)

TABLE 13

WATER QUALITY WELLS IN THE BASALT AQUIPER

8		116	. 911	ì	f
Reserto			Source USGS Unpublished	•	Was Geiger Field
Data (1) Source			H-H (<u>.</u> ค.ค.ค
Member of Samples		H 49 VS	13 7 T	বৰ্গৰ্গৰ	1 17
lecord Te		5/16/60	10/10/61	11/8/60 11/8/60 11/8/60 11/8/60	19/5/01
Span of Record		5/2/61 12/1/59 11/6/57	2/26/47 11/5/57 11/10/70	11/6/57 11/5/57 7/23/58 11/6/57 12/16/53	2/14/52 5/6/42 9/59
Chambo and account	ALERY TO TOTAL	W. Mendrixson Eastern State Boepital	U.S. GOV'T. U.S. GOV'T. U.S. GOV'T. U.S. GOV'T. Fairchild AFB #2 U.S. GOV'T. Four Lakes Water Dist. #1	U.S. Gov't. #87L U.S. Gov't. #87C #2 U.S. Gov't. #07G #2 U.S. Gov't. #07L U.S. Gov't. Fairchild AFB #3	Spokane Int'i. Airport Geiger Field U.S. Gov't.
USCS	Well Mumber		22L-1 3M 11M-1 23K-1	14R-1 34NE 1/4 1R-1 10G-1 28 34	298-1 31J-1 255W 1/4
,	3	22/43	24/41	25/40	25/42

Notes For Table 13

(1) Data Source Identification 1. Van Denburgh and Santos (1965) 3 Weigle and Mundorf (1952) (2) . T16 in this column indicates listing in Table 16 as major water source

WATER QUALITY WELLS
TOPOGRAPH WORKAME REGION
TO THE BASALT AQUIFER
Out of time Army Senite Delect
Carp of Emperors

Carp of Committee frames

TABLE 13

TABLE 14

WAIES OUALITY DATA IN OTHER ADDIFES

11 11 12 Mathlem & Ethlym DeCamp Source From To Remarks (4) (2)		WATER QUALITY DATA IN OTHER AQUIPERS				•	
11P-2 Kathleen 6 Ethlyn DeCamp 2 2/59 224-1 Wash, Water Fover Averyor Hills 2 10/6/71 224-1 Wash, Water Fover Averyor 2 10/6/71 224-1 Wash Shool Dist. 354 2 10/6/71 2 10/6/71 2 2 2 2 2 2 2 2 2	(3) Ganeral USGS Location Well Number	Agency (or Omer)	Data (1) Source	Record	Span To	Reparks (4)	(2)
### School Dist. 354 10/6/71	26/43	Kathleen 6 Ethlyn DeCamp	n	\$/29			
### Spile Subdiviolen	() () () () () () () () () ()	Men. Macer rower Alverviow Mills Mend School Dist. 354	rı w	10/6/71			117
2 5/59 2 10/9/61 4/29/64 2 0/9/61 4/29/64 2 10/9/61 4/29/64 2 10/9/61 4/29/64 3.2 5/2/61 4/29/64 3.4 1/1/71 9/1/72 301	W	Chatteroy Hills Subdivicton	2	8/14/64	. 49/1/6		
2 10/9/61 4/29/64 2 10/9/61 4/29/64 2 10/9/61 4/29/64 1,2 5/2/61 4/29/64 2 10/9/61 4/29/64 2 10/9/61 4/29/64 2 10/9/61 4/29/64 2 10/9/61 4/29/64 2 10/9/61 4/29/64 2 10/9/61 4/29/64 2 10/9/61 4/29/64 2 10/9/61 4/29/64 2 11/10/70 2 11/10/70	23/62	Series Walter	۲,	5/59			
111ftleb 1,2 10/9/61 4/29/64 1,12 15/2/61 20/16 2 5/2/61 20/16 2 5/2/61 20/16 2 5/2/61 20/16 2 5/2/60 20/16 2 5/2/60 20/16 2 5/2/60 20/16 2 5/2/60 20/16 2 5/2/60 20/16 2 5/2/60 20/16 2 2 2 2/2/60 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		State Force	7	19/6/01	4/29/64		
1.11ftden 1.2 5/2/61 5/1/72 5/1/71 9/1/72 5/1/72 5/1/72 5/1/72 5/1/76 5/1/72 5/1/76 5/1/72 5/1/76 5/1/72 5/1/76 5/		W.S. Air Force	2	19/6/01	4/29/64		
s 4/1/71 9/1/72 1,5 10/22/59 5/17/60 1 11/5/57 10/10/59 2 12/1/59 5/17/60 - 31/10/70		S. A. bacher	1,2	5/2/61			
1,5 10/22/59 5/17/60 1 11/5/57 10/10/59 1 12/1/59 5/17/60 - 31/10/70		Liberty Lakes Utilities	v	4/1/71	21/1/6	Group I data	111
1 11/5/57 10/10/59 1 12/1/59 5/17/60 - 11/10/70		Spokane County Golf Course	3,5	10/22/59	2/17/60	Group II	T17
1 12/1/59 5/17/50 11/10/70 - 11/10/70		U.S. Alt Force	7	11/5/57	10/10/59	Spring	
		Porter Carrer	ri	12/1/28	5/11/50	In Spokane Indian	
·						Reservation	
Long Lake vicinity				\$1/10/10		Source USGS unpubli	shed T17
				•		Long Lake vicinit	۳,
		The state of the s					

VATER QUALITY DATA IN OTHER AQUIPERS	
METROPOLITAN SPOKKANE REGION Dept. of the Arm. Sentia Datret Cozt of Engmen Kennedy - Tudor Containing Engmens	

TABLE 15

INVENTORY OF MAJOR PRODUCING WELLS

IN THE PRIMARY SPOKANE VALLEY AQUIFER

				(2)	_
*****			(1)	Availabil	
USGS		Agency	Produc-	Quality	
Well Number	Agency	Well No.	tion	Group I	Group II
25/42'-``03H1	Spokane	Baxter #1	5	x	
25/42 - 03H	Spokane	Baxter #2	5		
25/42 - 11-M01	Fairchild AFB	5	5	X	
25/42 - 11-M02	Fairchild AFB	6	5	X	
25/42 - 11	Fairchild AFB	7	5	X	
25/42 - 13-B1	Spokane Cold Storage				
25/42 - 14-C01	Central Pre-Mix Concrete	Ft. Wright	5		
25/42 - 23-M	Spokane	Indian Canyon	5		
25/43 - 03-C01	Hillyard Pro-	Wellesley	5		
•	cessing Co.	•	•		
25/43 - 04-B01	Spokane	Hoffman #1	5		X
25/43 - 04-B02	Spokane	Hoffman #2	5		X
25/43 - 08-A01	Spokane	Grace	5		
25/43 - 08-A02	Spokane	Nevada	5		
25/43 - 11-G	Crystal Linen	1	5		
25/43 - 11-G	Spokane	Well Elec. #1	5	X	
25/43 - 11-G	Spokane	Well Elec. #2	5	x	
25/43 - 11-J01	Spokane	Parkwater #1	5	X	
25/43 - 11 - J02	Spokane	Parkwater #2	5		X
25/43 - 11-J03	Spokane	Parkwater #3	5		
25/43 - 11-J04	Spokane	Parkwater #4	5		X
25/43 - 11	Spokane Render-	1	5		
25/43 - 11	Burlington North	- Parkwater #1	5		
25/43 - 11	Burlington North	- Parkwater #2	5		
25/43 - 12-н	Orchard Ave.	1	5	x	
25/43 - 12-M	American Sign & Indicator	1			
25/43 - 13-A01	W.W.P.	1-3	5	X	
25/43 - 14	Central Pre-Mix Concrete	Yardley	5		

See Sheet 85 for Notes

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION Dept. of the Army, Seattle District Corps of Engineers Kennedy - Tudor Consulting Engineers	INVENTORY OF MAJOR PRODUCING WELLS IN THE PRIMARY SPOKANE VALLEY AQUIFER	TABLE 15

TABLE 15 (cont.)

	TABLE 15 (cont.	.)			
USGS .		A	(1) Produc-	(2) Availabi	
	A	Agency		•	•
Well Number	Agency	Well No.	tion	Group 1	Group II
25/43 - 16-J 25/43 - 16-K	Hygrade Foods Centennial Mills	1 Trent St.	5		
25/43 - 10-k 25/43 - 17-J	ALSCO Linen	1	5		
		-	5		
25/43 - 17-R	Centennial Mills	Sprague St.	5		
25/43 - 21-B	Troy Laundry	1	3		
25/43 - 22-F01	Spokane	Ray St. #1	5		x
25/43 - 22-F	Spokane	Ray St. #2	5		
25/43 - 23-A01	W.W.P.	1-5 (5A)	5	x	
25/43 - 23-A02	W.W.P.	1-5A (5B)	5	x	
25/43 - 23-C	Carnhope I.D. #7	1	5	••	
23,43 - 23-0	Carmope 1.D. #7	-	3		
25/43 - 24-G	E. Spokane W.D. #1	1	5	x	
25/43 - 24-J	E. Spokane W.D. #1	3	5		
25/43 - 24-L	E. Spokane W.D. #1	2	5		
25/44 - Q1-D	Trentwood I.D. #3	5	5 5		
25/44 01-J01	Spokane Industrial	2	5	x	
25/44 (72 002	Park	-		••	
	- uan				
25/44 - 01-M01	Spokane Industrial	1	5		x
·	Park				
25/44 - 02-B01	Trentwood I.D. #3	1	5		X
25/44 - 02-001	Kaiser (Trentwood)	1		X	
25/44 - 03-A01	Trentwood I.D. #3	2	5		
25/44 - 03-B01	Trentwood I.D. #3	4	5		
20,		•	•		
25/44 - 04-R03	Irvin W.D. #6	3	5		X
25/44 - 05-K01	Pasadena Pk. I.D. #17	2	5		
25/44 - 05-R	Millwood	3	5		
25/44 - 05	Inland Empire Paper Co.		5 5		
25/44 05	Inland Empire Paper Co.		5		
	•				
25/44 - 05	Inland Empire Paper Co.	. 3	5		
25/44 05	Inland Empire Paper Co.		5 5 5		
25/44 - 06-A01	Pasadena Pk. I.D. #17	1	5		X
25/44 - 06-E	Pasadena Pk. I.D. #17	3			
25/44 - 07-B01	Millwood	1	5		
		_	_		
25/44 - 07-C01	Orchard Ave. L.D. #6	2	5	X	
25/44 - 07-J02	W.W.P.	1-2	5		
25/44 - 08-D	Millwood	2	5		
25/44 - 08-N01	Modern Elec. Water Co.	6	5		
25/44 - 09-C01	Irvin W.D. #6	1	5		
		_	_		
25/44 - 09-F02	Irvin W.D. #6	2	5		
25/44 - 11-J02	Hillyard Processing Co.	. Sullivan St	. 5		
. .					

See Sheet 85 for Notes

WATER RESOURCES STUDY
METROPCE (1997), SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy -- Tudor Consulting Engineers

INVENTORY OF MAJOR PRODUCING WELLS
IN THE PRIMARY SPOKANE VALLEY
AQUIFER

TABLE 15 (cont.)

			(1)		2) bility of
USGS		Agency			ity Data
Well Number	Agency	Well No.			Group II
7772 37000					
25/44 - 12	Spokane Industrial Park	3	5		
25/44 - 13-M		2	5		
25/44 - 14-D01	Consolidated I.D. #19	1A	5		
-	Consolidated I.D. #19	1B	5		
25/44 - 14-D03	Consolidated I.D. #19	1C	5		
25/44 - 15-E01	Modern Elec. Water Co.	5	5	**	X
25/44 - 15-E02	Modern Elec. Water Co.	1	5	X	
25/44 - 15-J01	Vera I.D. #15	1	5 5		
	Modern Elec. Water Co.	2 8	5 5		
25/44 - 17 ·A01	Modern Elec. Water Co.	ð	3		
	Modern Elec. Water Co.	4	5	v	
	W.W.P.	1-4	5	X	
25/44 - 18-F01	W.W.P. Hutchinson I.D. #16	1-1 1	5 5		
		2	5		
25/44 - 18-J	Hutchinson I.D. #16	2	J		
25/44 - 19-B	Dishman Water Co.	1	5		
25/44 - 20-J01	W.W.P.	2-7	5		
25/44 - 21-J01	Modern Elec. Water Co.	3	5		
25/44 - 21-L01		4	5		
25/44 - 21-N01	Model I.D. #18	1	5		
25/44 - 22-H02		6	5		
25/44 - 22-N01	Modern Elec. Water Co.	7	5		
25/44 - 22-R01	Vera I.D. #15	3	5		
25/44 - 23-C01		7	5 5	v	
25/44 - 26-D01	Vera I.D. #15	5	3	X	
25/44 - 26-L01		4	5		
25/44 - 27-E01	Modern Elec. Water Co.	9_	5	X	
25/44 - 27-L01	W.W.P.	2-5	5		
25/44 - 28-L01	Model I.D. #18	2	5		
25/44 - 28-P01	Model I.D. #18	3	5		
25/44 - 28-R01	W.W.P.	2-2	5	••	
25/44 - 29-A01	W.W.P.	2-4	5	X	
25/44 - 29-H01	W.W.P.	2-1	5		
25/45 - 02-G02	Consolidated I.D. #19	9A	5		
25/45 - 02-G03	Consolidated I.D. #19	9в	5		
25/45 - 02-G04	Consolidated I.D. #19	9C	5 5		
25/45 - 03-F01	Consolidated I.D. #19	8A	5		
25/45 - 03-F02	Consolidated I.D. #19	8B	5		
25/45 - 03-F03	Consolidated I.D. #19	8C	5		
See Sheet 85 for	Notes				
	7				

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers INVENTORY OF MAJOR PRODUCING WELLS | TABLE 15 IN THE PRIMARY SPOKANE VALLEY AQUIFER

TABLE 15 (cont.)

USGS		Agency	(1) Produc-) bility of ity Data
Well Number	Agency	Well No.	tion	Group I	Group II
25/45 - 04-C03	Consolidated I.D. #19	6A	5		
25/45 - 04-C04	Consolidated I.D. #19	6B	5		
25/45 - 04-C05	Consolidated I.D. #19	6C	5		
25/45 - 07-A01	Consolidated I.D. #19	5A	5		
25/45 - 07-A02	Consolidated I.D. #19	5B	5		
25/45 07-A03	Consolidated L.D. #19	5C	5		
25/45 - 17-D01	Consolidated I.D. #19	4A	5		
25/45 - 17-D02	Consolidated I.D. #19	4B	5		
25/45 - 17-D03	Consolidated I.D. #19	4C	5		
25/45 - 17-D04	Consolidated I.D. #19	4D	5		
25/45 - 17-P01	Consolidated I.D. #19	3 A	5		
25/45 - 17-P02	Consolidated I.D. #19	3B	5		
25/45 - 17-P03	Consolidated I.D. #19	3C	5		
25/45 - 18-A01	Greenacres Water Works	1 (Nilson Well)	5		X
25/45 - 18-R01	Consolidated I.D. #19	2A	5	x	
25/45 -: 18-R02	Consolidated I.D. #19	2B	5		
25/45 - 18-R03	Consolidated I.D. $\#19$	2C	5		
26/42 - 06	W.W.P. (Nine Mile)	1			
26/42 - 12-K	Whitworth W.D. #2	4	5		
26/43 - 03-P	W.W.P.	3-7	5		
26/43 - 03-Q	W.W.P.	3∹6	5		
26/43 - 05-Q	W.W.P.	3-5	5		
26/43 - 06-G01	Rivilla Water Corp.	1	5		X
26/43 - 07-K	Whitworth W.D. #2	3A	5		
26/43 - 07-P	Whitworth W.D. #2	3	5		
26/43 - 10-K01	W.W.P.	3-4 & 3-4A	. 5		X
26/43 - 16-C1	Kaiser				
26/43 - 16-D2	Kaiser				
26/43 - 16-F1	Kaiser				
26/43 - 16-F02	Kaiser (Mead)	1	5	x	
26/43 - 19-A	Whitworth W.D. #2	2	5		
26/43 - 19-P	Whitworth W.D. #2	1A	5		
26/43 - 20-D	Whitworth W.D. #2	2A	5		
26/43 - 20-N	W.W.P.	3-2	5		
26/43 - 21	Kaiser (So. Mead)	1	5		
26/43 - 27-E01	N. Spokane I.D. #8	3	5		X
See Sheet 85 for	Notes			····	·
WATEODE	SOLIBORS STLIDY				1

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION Dept. of the Army, Seattle District Corps of Engineers Kennedy - Tudor Consulting Engineers

INVENTORY OF MAJOR PRODUCING WELLS | TABLE 15 IN THE PRIMARY SPOKANE VALLEY AQUIFER

USGS Well Number	Agency	Agency Well No.	(1) Production	Quali	oility of ty Data Group II
26/43 - 27-E02	N. Spokane I.D. #8	4	5		
26/43 - 28-H	N. Spokane I.D. #8	i	5		
26/43 - 28-H	N. Spokane I.D. #8	2	5		
26/43 - 30-F	Whitworth W.D. #2	ī	5 5 5 5		
26/43 - 30-R02	W.W.P.	3-1	5		x
25, 15 55 102	***************************************	0 -	J		
26/43 - 31-A	Spokane	Central #1	5		
26/43 - 31-A	Spokane	Central #2	5		
26/43 - 34	Burlington Northern	Hillyard	5 5 5 5		
26/44 - 32-P	Pleasant Prairie	1	5		
	Water Co.	-	3		
26/44 - 35-R01	Trentwood I.D. #3	3	5		
mo/ 11	12011011000 2.2. 113	•	,		
26/45 - 24-P	Moab I.D. #20	1	5		
26/45 - 34-L01	Consolidated I.D. #19	7A	5 5		
26/45 - 34-L02	Consolidated I.D. #19	7B	5		
26/45 - 34-L03		7C	5 5		
26/45 - 35-F01	Consolidated I.D. #19	10A	5	x	
20/45 35 102	0050216dfcd 1.D. #17	2011	•	44	
26/45 - 35-F02	Consolidated I.D. #19	10B	5.		
26/45 - 35-F03	Consolidated I.D. #19	10C			
26/46 - 31-M01	Consolidated I.D. #19	11A	5 5 5 5	x	
26/46 - 31-M02	Consolidated I.D. #19	11B	5		
26/46 - 31-M03	Consolidated I.D. #19	11C	5		
, ,		++0	_		

- (1) A 5 in this column indicates annual production of 5 million gallons or more
- (2) An X in these columns indicates the class of data available. Blank indicate unavailable.

WATER RESOURCES STUDY METPOPOLITAN SPOKANE REGION Dept. of the Army, Seattle District Corps of Engineers Kennedy - Tudor Consulting Engineers	INVENTORY OF MAJOR PRODUCING WELLS IN THE PRIMARY SPOKANE VALLEY AQUIFER	TABLE 15
---	--	----------

TABLE 16

INVENTORY OF MAJOR PRODUCING

WELLS IN THE BASALT AQUIFER

			(1)	(2)	
11000		A	(1)		oility of
USGS	A	Agency	Produc-	-	lty Data
Well Number	Agency	Well No.	tion	Group I	Group II
20/45 - 13-M	Tekoa	3	5		
20 / 45 - 13-Q	Tekoa	i	5		
20/45 - 13-Q	Tekoa	2	5		
21/44 - 03-C	Waverly Hts. Water	1	J		
21/44 - 03-0	Assoc.	*			
21/45 - 30-B	Latah	1	5		
21/43 - 30-2	nacan	-	J		
22/43 - 04-B	Spangle	1	5		
22/43 - 04-F	Spangle	2	5		
22/45 - 19-C	Fairfield	2	5		
22/45 - 19-D	Fairfield	1	5		
22/45 - 19-E	Fairfield	3			
,		_			
23/41 - 12-N	Cheney	3	5		
23/41 - 13-C	Eastern Wash.State	1	5		
	College				
23/41 - 13-C	Eastern Wash. State	2	5		
	College				
23/41 - 13-D	Cheney	1	5		
23/41 - 13-D	Cheney	2	5		
			_		
23/41 - 13-E	Cheney	4	5		
23/45 - 2 8-N	Rockford	1	5		
24/40 - 03-N01	Eastern State Hospital		5		X
24/40 - 03-NO2	Eastern State Hospital	2	5		
24/41 - 03-N	Fairchild AFB	2	5	X	
		_			
24/41 - 23-K01	Four Lakes W.D. #10	1			X
24/41 - 23	Four Lakes W.D. #10	2			
24/42 - 12	Cedar Knolls Water Ass	oc. 1			
24/42 - 21-A	Marshall Comm. Water	1			
	Assoc.				
01/10 00	01	1			
24/43 - 02	Glenrose Water Assoc.	1			
25/41 - 25-E	Airway Heights	2	-		
25/41 - 26-H	Airway Heights	3	5		
25/41 - 26-J	Airway Heights	1	5		
25/41 - 26-J	Airway Heights	4	5		

See Sheet %7 ion Notes

WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION Dept. of the Army, Seattle District Corps of Engineers Kennedy - Tudor Consulting Engineers	INVENTORY OF MAJOR PRODUCING WELLS IN THE BASALT AQUIFER	TABLE 16
--	--	----------

TABLE 16 (cont.)

USGS		Agency	(1) Produc-) bility of ity Data
Well Number	Agency	Well No.	<u>tion</u>	Group I	Group 1I
25/42 - 18-E	Balmer's Garden	2			
25/42 - 18-F	Balmer's Garden	1			
25/42 - 29-RO1	Spokane Int. Airport	1	5		x
25/42 - 32-J	Spokane Int. Airport	2	5		
27/41 - 27-G	West Shore Water Co.	1			

- (1) A 5 in this column indicates annual production of 5 million gallons or more.
- (2) An X in these columns indicates the class of data available. Blank indicates unavailable.

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

INVENTORY OF MAJOR PRODUCING WELLS IN THE BASALT AQUIFER

TABLE 17

INVENTORY OF MAJOR PRODUCING

WELLS IN OTHER AQUIFERS

	APPER IN ACTION W	do II nuo			
USGS W≩11 Number	Agency	Agency Well No.	Produc- tion (1)		llity of Data (2) Group II
LIBERTY LAKE				•	
25/45 - 23-D01	Liberty Lake Impvt	1	5		
25/45 - 23-DO2	Liberty Lake Impvt	2	5		
25/45 - 14-12	Liberty Lake Utilitie		5	X	
25/45 - 15-R01	Liberty Lake Utilitie		5		
WELLPINIT					
27/38 - 10-A	B.I.A. Wellpinit	1			
27/38 - 15	B.I.A. Wellpinit	2			
LONG LAKE	•				
27/39 - 14(enring) W.W.P. (Long Lake)	1			
	W.W.P. (Little Falls)	i			
27/41 - 05-D	W.W.P.	6-1			
27/41 - 26-001	Lakeridge Water Co.	1			
27/41 - 26-Q02	Lakeridge Water Co.	2			X
17771		•			41
LITTLE SPOKANE VA	LLEY				
27/43 - 19-J	N. Mt. View Water Co.	1			
27/43 - 22-M01	W.W.P.	3-9	5		X
27/43 - 22-M	W.W.P.	3-9A	5		
27/43 - 32-K	Whitworth W.D. #2	9			
27/43 - 33-B	Whitworth W.D. #2	8			
27/43 - 33-N	W.W.P.	3-8	5		
27/43 - 33-N	W.W.P.	3-8A	5		
27/43-34-H	Colbert W.D. #9	1	5		
28/42 - 02-M	Deer Park	3	5		
28/42 - 03-H	Deer Park	1	5		
28/42 - 03-H	Deer Park	2	5 5 5		
28/43 - 23-M	W.W.P.	3 = 10	5		
20/43 - 25-11	M+M+1 +	3-10	J		
29/42 - 35-7	Deer Park	4	5		
29/43 - 35	Milan Water Co.	1			
29/43 - 35	Milan Water Co.	2			
29/44 - 17-D	Elk Water Assoc.	ī			
•					

- .(1) A 5 in this column indicates annual production of 5 million gallons or more.
- (2) An X in these columns indicates the class of data available. Blank indicates unavailable.

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Army, Seattle District
Corp. of Lagineers
Kennetiy - Tudor Consulting Engineers

INVENTORY OF MAJOR PRODUCING WELLS IN OTHER AQUIFERS

TABLE 18

MAJOR WATER PRODUCING WELLS IN THE PRIMARY AQUIFER

NOT REPRESENTED BY QUALITY DATA

General (1)	Map (2) Locator	USGS Well Number	Owner Identification	Annual Production Millions of Gallons
A	33	25/45 04 C÷03 C−04 C−05	Consolidated I.D #6A " 6B " 6C	553
A	34	26/45 34 L- ``. 02 03	Consolidated I.D #7A " 7B " 7C	514
A	35	25/45 03 F-01 02 03	Consolidated I.D #8A " 8B " 8C	651
A	36	25/45 02 G-02 03 04	Consolidated I.D #9A " 9B " 9C	611
A	40	26/45 24 P	Moab #1	474
В	28	25/44 14 D-01 02 03	Consolidated I.D #1A " 1B " 1C	232
В	46	25/44 05 K-01	Pasadena #2	180
В	50	25/44 15 J-01 22 H-02 23 C-01	Vera #1 " #6 " #7	856
В	51	25/44 13 M	" #2	479
В	84	25/44 16 E-01 17 A-01	Modern #2 " #8	134
В	85	25/44 21 J-01	Modern #3	92
В	86	25/44 17 M-01	Modern #4	125
В	87	25/44 08 N-01	Modern #6	109
В	125	25/44 05	Inland Empire Paper #1 3, & 4	,2, 1,244

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept. of the Arrny, Seattle District
Corps of Engineers
Kennedy - Turlor Consulting Engineers

MAJOR WATER PRODUCING WELLS IN THE PRIMARY AQUIFER NOT REPRESENTED BY QUALITY DATA

TABLE 18 (cont.)

General (1) Location	Map (2) Locator	USGS Well Number	Owner Identification	Annual Production Millions of Gallons
С	12	26/43 31 A-01 A-02	Spokane, Central #1	1,771
C ·	13	25/43 08 A-01 A-02	Spokane, Grace " Nevada	4,920
С	22	26/43 30 F 19 P	Whitworth W.D. #1	14 84
С	23	20 D	" #2A	18
C .	24	26/43 07 P 07 K	"	182 37
С	25	26/42 12 K	11 11 #4	23
С	100	26/43 20 N	W.W.P. Well #3-2	139
С	102	26/43 05 Q	W.W.P. Well #3-5	13
С	127	26/43 21	Kaiser South Mead	2,299

Notes:

- (1) A = East end of the valley, north of the Spokane River
 - B = Dishman Opportunity area
 - C = In the City of Spokane and north through the Hillyard Trough
- (2) Refers to Location Numbers used on Plate 314-10

WATER RESOURCES STUDY
METROPOLITAN SPOKANE REGION
Dept, of the Army, Seattle District
Corps of Engineers
Kennedy - Tudor Consulting Engineers

MAJOR WATER PRODUCING WELLS IN THE PRIMARY AQUIFER NOT REPRESENTED BY QUALITY DATA

List of References

- Bishop, Robert A.. 1973. Loon, Deer, and Diamond Lakes Water Quality Study.
 State of Washington Department of Ecology.
- Bishop, Robert A. and Ronald A. Lee. 1972. Spokane River Cooperative Water Quality Study. Washington State Department of Ecology.
- Buice, W. A.. 1937. Studies on Sewage Pollution of the Spokane River and an Estimation of the Degree of Hazard to Health. Northwest Science.
- Burkhalter, Richard A., Richard K. Cunningham and Harry B. Tracy. 1970. A Report on the Water Quality of the Little Spokane River. Washington State Water Pollution Control Commission.
- Condit, Richard J. 1972. <u>Phosphorus and Algal Growth in the Spokane River</u>. Northwest Science Vol. 46, No. 3.
- Cline, D. R.. 1969. Groundwater Resources and Related Geology, North-Central Spokane and Southeastern Stevens Counties, of Washington. Washington State Department of Water Resources, Water Supply Bulletin No. 27.
- Crosby, James W. III and others. 1971. <u>Final Report: Investigations of Techniques</u>
 to Provide Advance Warning of Groundwater Pollution Hazards with Special
 Reference to Aquifers in Glacial Outwash. Washington State University, Pullman.
- Cunningham, Richard K.. 1968. Effluent Study: Inland Empire Paper Company-Millwood, Washington. Washington State Water Pollution Control Commission.
- Cunningham, Richard K. and Roland E. Pine. 1969. <u>Preliminary Investigations of the Low Dissolved Oxygen Concentrations that Exist in Long Lake Located Near Spokane, Washington</u>. Washington State Water Pollution Control Commission.
- Cunningham, Richard K. and Gary Rothwell. Dec. 1971. Water Quality Report of the Spokane and Little Spokane Rivers, December, 1970 March, 1971. Washington State Department of Ecology
- Esvelt and Saxton Consulting Engineers. Jan. 1965. <u>Fublic Health Relationship of the Minnihaha Sewer District to the Greater Spokane Community.</u>
- Fosdick, E. R.. 1931. A Study of Groundwater in the Spokane and Rathdrum Valleys
 Washington Water Power Company
- Funk, William H., Filby, R. H. and Fred W. Rabe. 1973. The Biological Impact of Combined Metallic and Organic Pollution of Coeur d'Alene Lake-Spokane River Drainage System.

List of References

- Gilmour, Ernest H. and Marion Bacon. 1974. Groundwater Resources and Potential Sewage Pollution of Basalt Aquifers in the South Part of Spokane County, Washington.
- Haggarty, Thomas G.. 1970. Water Pollution in the Spokane River. Status report. Washington State Department of Ecology.
- Johnson, Walter E. 1971. Spokane Groundwater, mimeographed report, Washington State University.
- Lee, Ronald A.. 1969. Limnological Studies of Selected Washington State Lakes. Washington State Water Pollution Control Commission.
- Nace, R. L., and Fader, S.W.. 1950. Record of Wells on Rathdrum Prairie,
 Bonner and Kootenai Counties, Northern Idaho, Geological Survey, Boise.
- Phillips, R. A. and Others, 1962. Spokane Valley Groundwater Pollution Study. Washington State University.
- Soltero, Raymond A. (Co-investigators Anthony F. Gasparino and William C. Graham).

 1973. An Investigation of the Cause and Effect of Eutrophication in Long
 Lake, Washington Eastern Washington State University.
- Spokane River Drainage Basin Policy Committee. 1972. Plan of Action: Spokane River Basin.
- Spokane River Drainage Basin Policy Committee. October 1972. Plan of Action: Spokane River Basin. Appendix.
- Stude, Carl Ted. 1971. An Analysis of Water Quality in the Spokane River. Thesis for Master of Science, University of Washington.
- Todhunter, R. A. and R. K. Cunningham. November 1972. Water Quality Report on the Spokane and Little Spokane Rivers, April, 1971 June, 1971. Washington State Department of Ecology.
- Todhunter, Richard and Cunningham, R. 1972. Water Quality Report, Spottine and Little Spokane Rivers, July 1971-September 1971. State of Washing con Department of Ecology.
- U.S. Environmental Protection Agency. 1972. STORET Training Course. Manual, Volume I.
- U.S. Geological Survey. 1971 and 1972. Water Resources Data for Washington. Part 2. Water Quality Records.

List of References

- U.S. Geological Survey 1972. Water Resources Data for Washington. Part22.
 Water Quality Records.
- U.S. Public Health Service, Pacific Northwest Drainage Basin Office. 1972.

 Report on Water Pollution Control; Spokane River Basin.
- Van Denburgh, A.S. and J. F. Santos, 1965. <u>Groundwater in Washington its</u>
 Chemical and Physical Quality. Water <u>Supply Bulletin # 24</u>, Washington
 State Department of Natural Resources.
- Van Winkle, Walton. 1914. Quality of the Surface Waters of Washington. USGS Water Supply Paper 339.
- Washington State Pollution Control Commission. 1971. Preliminary Report Spokane River Water Quality Below Long Lake Reservoir. Published jointly with Loncoln County Health Department and U.S. National Park Service.
- Weigle, J. M. and M. J. Mundorff, 1952. Record of Wells, Water Levels and Quality of Groundwater in Spokane Valley, Spokane County, Washington U.S. Geological Survey, Groundwater Report No. 2, Tacoma.
- Woodward, Walter, Consulting Engineers. 1971. A Report of an Inventory and Study; Water Resources and Utilities; Spokane Tribe of Indians, Spokane Reservation.

		FAD DATE	73/06/12	706/12	10/10/10	13/10/54	72/09/13	27/04/13	72/09/13	72, 99/13	/09/13	12/00/13	72/09/13	61/60	71/06/08	77/09/13	75/03/57	13/03/21	73/06/12	73/06/12	13/00/12	73/06/12	73/06/12	73/06/12	73/06/12	73/04/12	73/06/12	21/43	71/90/6/	01/40/6/	74/04/10	73/04/12	72/09/13	73/02/27	73/03/27	12/09/13	72/09/13
					_		77/09/17		17/10/117 77/	12/09/12 72	^	~	۸.								61 (11/01/2)	•	•	•	•				72/10/10 /3/	Ľ	•	•	•	•	•	•	72/09/13 72
		-			-					•	•	•	•								•	•	-			•	•	•	•	•	٠	•	•	12/1	01/01/21 000	12/09/14	
·		HILLIE	0 1805.00	•			000-102 0			0.00007 0	_						_	•			2.00000			•		•	-	-	2000000								0 10.0000
57A105 ##		MAXIMUM	24306.0	.13.700	1640.00	7740.00	206.000	00000	4.80000	7.50006	85.0000	•490000	.1.00000	.200000	000020	4.00000	2.00000	8.50000	4.00000	2.00000	10.000	14.0000	14.0000	19500.0	540.000	15.0000	20.000	256.000	25.0000	25.0000	000.004		11.0000	4.00000	4.00000	20.0000	10.0000
12424200 44.0 2 PITCHFR/RIV 1N 02111204		STAMO ER	1457.36	1.17140	1	564-779	13/6.6/	010335	*66676*	876670	2.00000	•040000	.245001	•045000		200000	.147859	.5 AH 1 84	.795979	5319105	. 14035	072570	.913015	1735.77	50.6295	1.02045	. 1.16483	20.2.420	4.77002	7177407	42.9210	30 5057	000000	.250000	.200001		
		CHEF VAR	.747747	.522449		2110270	.017374	001476	.344960	287.00	.034677	.125708	.543709	.410578		.202030	668505.	.71417H	01001.4	.617537)	707751°	761.67	7.00683	1.59347	.456418	463446	109401	1.50910	1001610	420947	477302	.314270	.314270	.287482		
54310H 47 41 44-0, 117 29 4 SPURANE WE PROCED! PACIFIC PURTHUES! SPURANE KIVEN HASIN 1119CUSO		STAP DEV	5450.45	4.05784		1 800 B	7354.40	014616	1.34349	.070637	2.H2H43	*056568	.4030%	.063640	1	. 707107	.377969	2.02753	, uni 657	1.26447	Thouse ?	3.23616	3.41619	5756.H9	160.104	3.38446	4.51136	HC. H.D. O.	14.1670	67666.54	121,300	414 011	2.82843	.707107	.637460		
. Ayregut.		VARIANCE	.339E+0A	16.4661		3496312	12,5000	.000214	1.4046.4	066500	1.00000	•003500	147411	040400	,	.500000	.142.60	4,15152	. 463641	1.6000	60.700	10.4728	11.6704	.331±+0A	22633.4	11.4546	20,3574	20.5104	\$90°00%	2000,40	7.7.2.71	204161	00000	000004	400000		
		HEAR	7795.81	7.76666	1640.00	4450.18	3026.67	0000H-0	3.45000	7.45000	A3.000F	450000	.715000	.155000	• 020000	3.50010	1.85714	2,42333	7.7.7.	2.63.45	3.63636	2/41/4	6-1-1714	2744.55	110.400	7.36366	6.75333	51.7500	10.4182	751 20 74	104 400	7.6	00000	2.25000	7. 200Fi	2000°32	10.000
		KIN KIN	16	12	-	ני ו	M V	. ~	~	~	~	^	^	~	-	~	^	2	=	7.	- ;	1:	: 2	~	10		\$1	~	~ ;	c	€. a	ָרָ יַּ		. æ	C	~	
·	•	•		CENT	AB MSL	CFS	INST-CFS LICECHIO	CHANGE TO ME	¥6/L	Sty	7/9×	HG/L	H67L	HG/L	MG/L P	#G/L	1/yn	UG/L	1/90	7/91	7/ yn	7,7	1/30	7/90	1/yn	7/90	7/9n	7/5/1	7/5/L	7,51	7/10	1 :	7.50	1/90	1/90	/100H	/IUUHL
			IDENT.	TEMP	FEET	FLOW	FLOW.	3	5 DAY	i	CACO3	TOTAL	2	13H-d	CKTHO	U	AS,DISS	AS, TOT	5510,03	CD. TuT	CK 10155	CK 101	50.00	TOTAL	FE , D I S S	P6.01SS	P6.10T	Z	MN.O.ISS	SK+0155	37. 01.05	2011111	101.82	SF . 0 155	SETOT	#FIKENDO	NFM-FCBR
		ю 0	LAB	WATER	ALTITUDE	STREAM	STREAM	1000	00	I	T ALK	NG3-N	TOT KJEL	PH05-1	9-10S-0	ש האט ב	ARSENIC	ARSENIC	CAPHIUM	CADP 112P	CHROMICH		COPPER	1811	IRON	LFAN	LEAD	KAMARA	MANGRESE	STRUNGS	SIRCHION		6 1 M. A MT 1 H (10 V	AF1 FN TOM	SELFATOR	TOT COLT	FEC COLI
	INDEX I	MILES 064	00000			09000	00061		00310	00400	00410	00620									_	01034 0	_		01046	01044				•			7 25010				

APPENDIX I

SAMPLE PACE OF STORET INVENTORY DATA

307-95

SANTLE PAGE OF STORET RAW DATA	
WATER RESOURCES STUDY METROPOLITAN SPOKANE REGION Dapa of the Array, Senie Datuct Caposti Frequent Kennedy - Tudor Constrine & Repressi	

APPENDIX II

SPOKANE RIVER BASIN BY RIVER RATE SET 2	7	AS IN	# #3> IK >4	י אורפ			STALOS 47 41 48 SPOKANE 53 MASHI PACIFIC SPUKANE 215400U0	57A105 . 17 29 SPUKANE R. AT KIV 53 MASHINGTÜN PACIFIC NURTHWEST SPUKANE SUBKEGIÜN 21540040	2	1108 6357AL (110E STATE PK 2111204 U000 FEET DEPTH	8	12 44 200	•
PACT TO TO	TINE OAY	DEPTH FEET	00610 NH3-N TOTAL #G/L	00615 ND2-N TUTAL HG/L	00620 ND3-4 TOTAL .	00625 TOT KJEL N MG/L	00665 PHUS-T P-NET NG/L	00671 PMUS-D UKTHO MG/L P	00515 RESTOUE UISS-105 C MG/L	70300 RESIDUE 0155-180 C MG/L	31504 TUT COLI MFIM LES /100ML	31614 FEC QUL! MFM-FCBR /100ML	
72/10/10	11 15	•	0.490	0.007	0.360	0.700	0.320	0.144			40X	\$	
72/10/31	27	01 0	0.660	0.000	0.390	0.99.0 0.00	0.220	0.083			. 20K		
72/11/29	~	~	0.600	0.008	0.420	0.850	0.160	0.061			120		
72/12/12	2		0.310	00.00	0.170	0.430	0.084	0.045			404 XO4		•
72/12/27	-	·	08	0.013	0.200	0.330	0.093	0.026			008		
73/01/18	13	0	0.230	900.0	067.0	0.840	0.110	0.035			1000		
73/02/06	*	s								•	200		
13/05/22	23	0	•								2 00K		
73/02/27	13	S.									400		
73/03/13	=	~									280		
73/03/19	12 15	•									100K		
73/03/27	2	0						٠			07		
73/04/10	75	0	•								40¥		
13/04/24	12 12	0	ı					•			404 XQ4		
73/06/12	~	0									200		
73/06/26	0	•									250		
73/07/11	÷	•									140		

WATER SAMPLE INFORMATION FOR CHEMICAL ANALYSES SYSTEM I.D. NUMBER (Fill out completely -Use P Rff nly please--ink will run) COUNTY NO COLLECTED BY SYSTEM NAME COUNTY DA COLLECTED TIME COLLECTED DATE LAST SAMPLE OTHER (Specify) TAKEN PIMP PAUCET FROM NYDRANT STORAGE TANK SAMPLE COLLECTED FROM PUBLIC WATER SYSTEM AT SOURCE (Name) LAKE WELL OTHER (Specify SPRENC STREAM PIELD THIS WATER IS TEMPERATURE ALKALINITY REMARKS FILTERED TESTS UNI REATED OTHER TREATMENT SEND REPORT TO: State of Washington Department of Social and Health Services HEALTH SERVICES DIVISION Smith Tower Seattle, Washington 98104 Washington (21p)
DO NOT WRITE BELOW THIS LINE - LABORATORY USE ONLY (City) ++_{we}/1 ++_{me/1} Tmg/1 +mg/1 Bilice (\$10:) Bicarbonate (HCOs) (A1) Aluminum Carbonate (303) Iron (Fe) Manganese (Mn) Sulfate (50A) Sulfite (801) (C1) Chloride : Lum (Ca) Fluoride (1) Magnesium (Mg) Nitrate (NO3) as Nitrogen (N) Sodium (Na) Nitrite (NO2) as Nitrogen (N) Potassium (K) (PO4) Phosphate TOTAL. TOTAL mg/1pH, Lab Suspended Solids Specific conductance Dissolved Solids (Micromhos/cm, 25°C) Total Solids Turbidity (JTV) **Total Solids Color (units) Total Hardness (Ca(O)) Odor (threshold dilution factor) Alkalinity (CaOD) Taste (threshold dilution factor) **Noncarbonate hardness (Ca(O)) ##Free CO: (mg/1) **Calcium hardness (Ca(O3) **Magnesium hardness (Ca(O)) **Calculated hardness (Ca001) WATER RESOURCES STUDY SAMPLE OF DSHS FORM APPENDIX METROPOLITAN SPOKANE REGION FOR CHEMICAL ANALYSIS III Dept. of the Army, Seattle District Corps of Engineers

307-97

Kennedy - Tudor Consulting Engineers

WATER	Smith Tower, Seattle			FOR DRIE	NKING WATER	
BACTERIOLOGICAL		_	i	hama i		
ANAYLSIS	. See back of this form fo	- sameline instructions.	Ì	MPN:		
N 2.	. Print on a HARD SURF Treated paper will make	ACE, clearly and heavily	. N	If the multiple tube technique	•	•
′ ° 3.	, Return ALL copies of th	his form with your sample et be examined if ever 3	<u>.</u> 🛕 0	ments apply: A standard samp		
τ Ψ ∿	hours old upon receipt in All information must be	n the laboratory.	 ▼ 1	If no tube (0/5) shows present	ce of coliform organi	sms (MPN), the
	be analyzed		not E	results are SATISFACTORY.	4!£	• ••
FOR LAB USE ONLY LAB. NO. (1-7)	COCITY	Y (8-10) (11-14)	!	If one or more tubes shows p		•
		l		result is UNSATISFACTORY	-	IMMEDIATE.
DATE COLLECTED 119-2	201 DATE ANA	LYZED (21-26)	27 (26-30)	LY. SUBMIT ADDITIONAL	SAMPLES.	
Month / Day /	Year			7		
	1			To meet State Board of	_	
TIME OF DAY I.D.	CHBER (Public System	me) COUNT	Y NAME	public water supply must conf	orm to the following	j :
□A.M. ["]	" " " " " " " " " "	*	1	07 19 40 (44)		
P.M. NAME OF WATER SYST	EM			Of all the standard 10		
				not more than 10 percent sh		
SYSTEM ADDRESS				organisms. In addition, the		
LOCATION WHERE SAM	APLE WAS COLLECT	ED (fire station, scho	ol. 5th st., etc.)	three or more 10 ml portions	of a standard samp	le shalf not be
				allowable if this occurs		
COLLECTED BY: (Name	ē)		,	455 4 2 2		
TYPE OF (M)	44	t-duction	- Bringe	(1) In two consecutive s	•	
SYSTEM 1	Municipal or Community	2 Ondustrial Commercia	or 3 Private	(2) In more than one s		hen less than
SEND REPORT TO:				twenty are examined	•	
WE1144 1.2. 2	11 *****	i nomen.		(3) In more than five po	•	s when twenty
			İ	or more are examine	d per month.	
			1	- A - A-		
			1	MF:	· -· .	
	, 			IF the membrane filter techn		
		WASHING	TON	mean coliform density of all		
				month shall not exceed one		m colonies per
SOURCE TYPE (3))				standard sample shall not exce		
1 Surface; 2 O		g; 4 O Purchase	ed; 9 Combination or Other	(1) In two consecutive sa	• •	
TYPE OF SAMPLE	(36)			(2) In more than one s	·	hen less than
AASter		_	Main 4C Pool	twenty are examined		
5 Swimming 6		eawater 9 Othe		(3) In more than five pe		s when twenty
IS THIS SAMPLE A	FOLLOW-UP TO	A 1391		or more are examine	ed per month.	
REVIOUS, NON C	ONFORMING SA	MPLE? 1	IYes 0 ○ No		_	
SYSTEM TREATME	FNT (Check only	for Drinking Wate	er Samples)	The examination of this		
	Chlorination;	Filtration;	Fluoridation;	ance with the latest edition of S		
Other (Specify)				For additional informat		
REMARKS: (Special		c.)		Social and Health Services, Hea	Ith Services Division,	, Water Supply
				and Waste Unit.		
SEE REV	LABORATORY ERSE SIDE FOR		IONS			
		RAW WATER, SAN	IITARY SURVEY.	1309 SMITH TOWER	P. O. BOX	
DRINKING WATER, NEV	W MAINS,	MPN]	SEATTLE 98104 (206) 464-7670	OLYMPIA (
MPN(40) POS PORTIONS/TOTAL	PORTIONS			\2001 404-7070	(206) 753–	-3400
POS FORTIONS, TOTAL	, 1011,10115	143-44, =	EE	WEST 9	24 SINTO	
0/5 SATISFACTORY	< 22Q	TOTAL PLATE CO)UNT/ml		NE 99201	
1/5 UNSATISFACTOR	RY 22Ç	(53-56)		(509) 4	456-3115	
2/5 UNSATISFACTOR		FECAL COLIFORM	ч			
3/5 UNSATISFACTOR	RY 92()	MPN	_ MF			
4/5 UNSATISFACTOR	, 4					
5/5 L'NSATISFACTOR	5	12/- 901	_ (91"94",			
#/# t +#**********************************	7,000	NITRATES (85-67)	mg/L as N			
201 04155/100-1	dispussion subtles publicably dispussion is represented	DATE RECEIVED	DATE COMPLETED			
COLONIES/100mt_	Satisfactory ()	İ	Month (75 76)			
(41 44)E	Unsatisfactory []		l			
HEA 176(12-71)			<u> </u>	T		r
MEA 170112777		VATER RESOUR		CAMBLE OF Dene	PODM	A DEPENDITY
ŀ	Me ir	ROPOLITAN SP(pt. of the Army, !	OKANE REGION	SAMPLE OF DSHS		APPENDIX
4		Corps of En	aineers	FOR BACTERIOLOGICAL		IV
	Kenn	edy - Tudor Con	sulting Engineers	307-9	8	

APPEDIOUX V

SPORANE COUNTY MEALTH DISTRICT - BACTERIOLOGICAL RECORD OF WATER SAMPLES - 197

1	SH.Su		•	ř	tel Na	ber of	T T	Total Mumber of Samples Taken and		r of Po	Mamber of Positive Tubes	Tubes (() Pound	_	
Mumber	Number	Agency	Jen	Yeb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	
A1.01	009900	Town of Airway Heights	~	7	7	7	7	7	2(5)	~		7		7	
.03	12400	ä	€0	••	•0	œ	•0	77	•	€0		€0		••	
ន់ខ	18500	₩,	~	7	7	7	7	7	7	~		7		2(4)	
\$	24450	ä	7	~	7	7	7	7	7	7		~		7	
.03	46150	Torn of Latah	7	7	7	~	7	7	5(5)	7		7		7	
90.	23400	Town of Medical Lake	(1)	4(1)	*	4	(1)	(1)	(1)	4	4	4	•	•	
.0	54850	ij	~	~	7	~	~	~	7	~~		~~		. 7	
8	73550		7	7	7	~	5(4)	2(3)	7(5)	7		9(14)		(*)8	
6	52870	"	7	~	~	7	8	~	7	~		7		2	
.10	23 100	City of Spokene	174.	174	185	172(5)	195(3)	165	138	991		133	~	671	
A2.01		Colbert Water District No. 9	0	0	0	0	0	o	0	c		o			
.02A	21650	East Spokane Water District No. 1 (Basic)	m	m	m	•	· ~	, EJ	· ~	· vn		4		• •	
.028	06265	Ditto (Beverly Hills Zone)	7	7	~	7	~	7		~		7		~	
.03	26 200	Four Lakes Water District No. 10	~	0	~	~	2(5)	2(2)	7	2(5)		7		2(1)	
કુ	36050	Irvin Water District No. 6	7	m	•	~	7	~	2(2)	~		7		2(2)	
.05A	00996	Whitworth Water District No. 2 (Zone 1)	7	7	2(1)	7	-	74	7	7		7		2(5)	
.058	96601	Ditto (Zone 2)	•	m	•	(2)	4	4(3)	4	4		•		4	
.05060		auoz)	. 2(2)	2(1)	7	7	2(2)	~	7	7		7		m	
350.	96603		5 (E)	7	₹	~	~	7	~	7		7		-	
.05	96607	(Zone	64 (7 4	~ (7	~	~	~	~		2(2)		7	
¥0.	00087	Ditto (Gleneden, Fart of Zone 8)	7	N	7	7	m	7	7	7		7		~	
A3.01	11250	Carnhope Irr. District No. 7	~	7	м	2(1)	8	7	7	~		2(2)		~	
.02A	10220	lidated Irr. District No.	7	7	~	7	m	~	~	7		7		2(1)	
. 0. 10.	10223	Ditto (Corbin)	~	~	~	~	7	~	~	n'		m		m	
20.0	10232	Ditto (Creenscree)	~ C	~ C		4 °	m •	7 6	~ C	n c		7 6		7 (
}			>	>		•	1	4	>	•		4		4	
.02E	10236	Ditto (Otis Orchards)	~	7	7	7	m	~	7	7		7		~	
3 8	0701	,	9 (0 (- 1 (~ .	0 1	m ·	~	N (~ •		•	
કે ક	55440	MUCHINGON IXT. DISCRICE NO. 10 MOAS IXX. Discrice No. 20	n 6	c	3	• •	m r	• •	<u> </u>			% (33	
8	\$5550	Model Irr. District No. 18	Ę,	ın) E	• •	7(5)	٠,٠	(<u>)</u> E	5 (3)		1 72		1 2	

. WATER RESOURCES STUDY	
METHOPOLITAN SPOKANE PEGIDN	BACTERIOLOGICAL RECORD
Certal of Economy	OF WATER SAMPLES, 1972
Homsely - Tuder Consultury Engrapes	

	١							,
1	ğ	กรากฎ	9,,,,,	2 2 3 3 3 3	4444	2 2(2) 0	1 2 2 3	nnnn
() Found	AG.	กัจกกฎ	~~~ <u>\$</u> ~	~~ ~	3,442	30,770	1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	4444
Tubes (SEE	2 2 17(E)	nnn2n	225°44	uuuu u	07707	13 13 13 13 13	пппп
estrive	Ses	นอนผมี	2 2 19(5) 2	NN N O 4	2 2 3 6 6	4440 4	напап	пппп
K of Positive	##	1500 1500 1500 1500	. n n n g	2 2 2 3	4444	30 77	1 2 2 3 3 3 3	
Many Po	alut	24(1)	2 2 29(5)	2 7 7 7 7 7	£333,	20 20 20 20 20 20 20 20 20 20 20 20 20 2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	444
Taken e	June	2 2 3 3 16	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	44404	наная	3(1) 2 2
Lamp les	Xex	หอนพมี	เกษายน	UU444	u u,uan	2(I) 2000 2000 2000	2262	2(6) 2
ber of	Ä	. 7 9 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ผนพฐณ	000v4		0000	.00000	7 2 2 2 2 2 2 2 2 2 2
iotal Mumi	Yer	26 22 22 23	22 (2) 2 (2) 2 (3) 2 (4) 4 (4)	4444	nnnn	04404	, 66 , 66 , 76 , 76 , 76 , 76 , 76 , 76	nnn n
£	49.		~	4444				
	del	0 2 3 11(2)	2 13(1)		13. 13. 13.	00000	7,77	2 2 2(2)
	Àreacy	Morth Spokane Irr. District Mo. 8 Orchard Ave. Irr. District Mo. 6 Pasadena Park Irr. District Mo. 17 Trentwood Irr. District MO. 3 Vera Irr. District No. 15	Dishman Water Company Greenacres Waterworks Liberty Lake Utilities Company Modern Electric Water Company North Mountain Velw Water Company, Inc.	Pleasant Prairie Water Company Rivilla Water Corp. Washington Water Power Company (Zone 1) Ditto (Zone 2) Ditto	Ditto (Zone 3B) Ditto (Zone 3BP) Ditto (Zone 3C) Ditto (Zone 3D) Ditto (Zone 3D)	Ditto Ditto Ditto West Shore Water Company, Inc. Milan Water Company Balmers Gardens Comm. Water Asst.	Cedar Knolls Water Assn. Elk Community Water Assn. Glenrose Water Assn. Liberty Lake Improvement Club Marshall Community Water Assn.	Waverly Heights Water Assn. Halfmoon Ranchos North Glen Estates Panorama Acres
7686	Number	61300 64000 66300 89250 91450	19450 29650 47150 55600 60780	67880 73050 93350 93351 93351	93354 93355 93356 93357 93358	93360 59550 95450 04179	11935 22915 28125 47145 51845	93820 30420 60520 65910
	Mumber	A3.04 .03 .09 .09	24. 29. 29. 29. 29. 29.	0.00 00 01 11	ដូដូដូដូដ	11. 81. 92. 10. 24.		.07 .02 .03

APPENDIX V (cont.)	
BACTERIOLOGICAL RECORD OF WATER SAIPLES, 1972	
METHOPOLITAN SPOKANE REGION Dest. of the Anny Sentile Danies Cara of Engines Kennety - Tuder Cenating Enginees	

Total Number of Samples Taken and Number of Positive Tubes (·) Found

APPENDIX V (cont.)

SACTERIOLOGICAL MECORD OF WATER SAUTES, 1972

Mt. Spokane Hotel (Colbert Area) Kaiser - Mead Works Taiser - South Mead Works Kaiser - Irentwood Works Spokane Industrial Park

\$6610 37420

Eastern State Hospital Eastern Washington State College Mr. Spokane State Park Riverside State Park spokane International Airport

21850 21900 56620 72840

Rivervale Spokane Lake Park Velview Estates Fairchild Air Force Base

69165 72962 83034 91445 24350

Positive Tubes () Found 159(73) Total Number of Samples Taken and Number 2(3) \, 2 SPOKANE COUNTY NEALTH DISTRICT - BACTERIOLOCICAL RECORD OF WATER SAMPLES - 1973 (Otis Orchards) (West Farms) Carnhope Irr. District No. 7
Consolidated Irr. District No. 19 (Carder)
Ditto
Ditto (East Farms)
Ditto (Greenacres) (Zone 2) (Zone 3) (Zone 4) (Gleneden, Part of Zone 8) Whitworth Water District No. 2 (Zone 1). Irvin Water District No. Colbert Water District East Spokane Water D. Town of Airway Heig City of Cheney City of Deer Park Town of Fairfield Town of Latah Town of Medical I Town of Millwood Town of Rockford Town of Spangle City of Spokane Four 1 21650 06265 26200 36050 96600 96601 96602 96603 96607 28000 11250 10220 10223 10228 10232 42.01 420. 420. 620. 63.

APPEMBEX TE	
BACTERIOLOGICAL RECORD OF WATER SAFFLES, 1973	
WATER RESOUNCES STUDY - METROPOLITAN SPOKANE RESIGN DARLAS PARTICION CORRA SE ESPORTOR KONNEST - Tuber Constitut Senson	

Orchard Ave. Irr. District No. 6
Pasadena Park Irr. District No. 17
Irentwood Irr. Dist. No. 3
Vera Irr. District No. 15

61300 64000 66300 39250 91450

North Spokane Irr. District No. 6

Total Masher of Samples Taken and Husber of Positive Tubes () Found

North Mountain View Water Co., Inc. Pleasant Prairie Water Company Mivilla Water Corp.

lashington Kater Power Company

60780 67.80 73050 93350

80885

Greenacres Waterworks Liberty Lake Utilities Company Milan Water Company

Dishman Water Company

19450 29650 47150 Modern Electric Water Company

55600

(Zone 3A) (Zone 3B) (Zone 3B) (Zone 3C) (Zone 3D)

93353 93354 93355 93356 93357 (Zone 4) (Zone 6) (Mine Hile Power Station)

Salmers Gardens Comm. Water Assn.

West Shore Water Company

93358 93360 54550 95450 04179 Cedar Knolls Water Assn. Elk Community Water Assn.

encose Water Assn.

22915 22915 28125 47145

Liberty Lake Improvement Club Marshall Community Water Asso. Waverly Heights Water Asso.

1	DSRS		•	•) } }								!	
Manhor	Masber	Agency	Jee	reb	Mar	Jan Feb Mar Apr	Hey	June	July	Aug	July Aug Sep	Oct	Mov	Dec	
			•	,	,	,	,	,		,	,				
A6.01	30420	Halfmoon Hanchos	7	N	~	~	0	Þ	~	0	0				
.02	60520	North Glen Estates	~	~	7	N	0	0	+	0	0				
8	65910	Panorama Acres	7	~	~	-	0	•	-	0	+				
ş	69165	Prairie Pines	0	0	~	-	-	a	0	0	-				
8	72962	Mivervale	-	-	8	2(1)	-	-	1(2)	-	13				
90	#303¢	Snokane Lake Park	c	c	~	9	-	c	•		c				
6	91445	Velview Estates		. ~	1 7		. 0		•	ı ~	• •				
11.01	24350	Pairchild Air Force Base	~		~	~	7	~	7	~	~				
12.01	21850	Eastern State Hospital	~	7	~	•	4	•	12(29)	•	•				
.02	21900	Eastern Washington State College	7	7	~	~	7	7	'n	7	~				
.03		Mt. Spokane State Park	•												
3	72840	Riverside State Park											•	•	
13.01		Spokane International Airport	~	7	-	~	~	~	7	7	7				
C4.10	56610	Mt. Spokane Motel (Colbert Area)	~	~	~	~	0	0	-1	0					
C2.13	37420	Kaiser - Mead Works	•	0	0	~	Ņ	~	~	2(3)	~				
14		Kaiser - South Mead Works	0		0	7	~	~	~	2(1)	~				
ä	37450	Kaiser - Trentwood Works	0	0	0	• •	74	~	N	7	7				
-119	83027	Spokene Industrial Park	eri	e	4	en	•	•	67	•1	•				

APPENDIX YI (cont.)

BACTERIOLOGICAL RECORD OF MATER SAPPLES, 1973

