

RECEIVED

DEC 06 2000

TECH CENTER 1600/2900

Patent Office
Canberra

I, LISA TREVERROW, TEAM LEADER EXAMINATION SUPPORT AND SALES hereby certify that annexed is a true copy of the Provisional specification in connection with Application No. PO 2208 for a patent by THE WALTER AND ELIZA HALL INSTITUTE OF MEDICAL RESEARCH filed on 09 September 1996.

WITNESS my hand this
Thirteenth day of November 2000

LISA TREVERROW
TEAM LEADER EXAMINATION
SUPPORT AND SALES

THIS PAGE BLANK (USPTO)

THE WALTER AND ELIZA HALL
INSTITUTE OF MEDICAL RESEARCH

A U S T R A L I A
Patents Act 1990

PROVISIONAL SPECIFICATION

for the invention entitled:

**"A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES
ENCODING SAME - III"**

The invention is described in the following statement:

- 1A-

A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME - III

5 The present invention relates generally to a novel haemopoietin receptor or components or parts thereof and to genetic sequences encoding same. The receptor molecules and their components and/or parts and the genetic sequences encoding same of the present invention are useful in the development of a wide range of agonists, antagonists, therapeutics and diagnostic reagents based on ligand interaction with its receptor.

10

Bibliographic details of the publications numerically referred to in this specification are collected at the end of the description. Sequence Identity Numbers (SEQ ID NOS.) for the nucleotide and amino acid sequences referred to in the specification are defined following the bibliography.

15

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

20

The rapidly increasing sophistication of recombinant DNA techniques is greatly facilitating research into the medical and allied health fields. Cytokine research is of particular importance, especially as these molecules regulate the proliferation, differentiation and function of a wide variety of cells. Administration of recombinant cytokines or regulating cytokine function
25 and/or synthesis is becoming increasingly the focus of medical research into the treatment of a range of disease conditions.

Despite the discovery of a range of cytokines and other secreted regulators of cell function, comparatively few cytokines are directly used or targeted in therapeutic regimens. One reason
30 for this is the pleiotropic nature of many cytokines. For example, interleukin (IL)-11 is a

- 2 -

functionally pleiotropic molecule (1,2), initially characterized by its ability to stimulate proliferation of the IL-6-dependent plasmacytoma cell line, T11 65 (3). Other biological actions of IL-11 include induction of multipotential haemopoietin progenitor cell proliferation (4,5,6), enhancement of megakaryocyte and platelet formation (7,8,9,10), stimulation of acute 5 phase protein synthesis (11) and inhibition of adipocyte lipoprotein lipase activity (12, 13).

Interleukin-13 (IL-13) is another important cytokine which shares a number of structural characteristics with interleukin-4 (IL-4) [reviewed in 14 and 15]. The genes for IL-4 and IL-13 have a related intron/exon structure and are located close together on chromosome 5 in the 10 human and the syntonic region of chromosome 11 in the mouse (14, 15). At the protein level, IL-4 and IL-13 share approximately 30% amino acid identity, including four cysteine residues. Biologically, IL-13 and IL-4 are also similar, being produced by activated T-cells and acting upon macrophages to induce differentiation and suppress the production of inflammatory cytokines. Additionally, human IL-13 may act as a co-stimulatory signal for B-cell 15 proliferation and affect immunoglobulin isotype switching (14, 15). The diverse and pleiotropic function of IL-13 and other haemopoietic cytokine makes this molecule an important group to study, especially at the level of interaction of the cytokine with its receptors. Manipulation and control of cytokine receptors and of cytokine-receptor interaction is potentially very important in many therapeutic situations, especially where the target cytokine 20 is functionally pleiotropic and it is desired to block certain functions of a target cytokine but not all functions.

Research into IL-13 and its receptor has been hampered due to the inability to clone genetic sequences encoding all or part of the IL-13 receptor. In accordance with the present invention, 25 genetic sequences have now been cloned encoding the IL-13 receptor α -chain. The availability of these genetic sequences permits the development of a range of therapeutic and diagnostic agents capable of modulating IL-13 activity as well as the activity of cytokines related at the level of IL-13 receptor structure.

Accordingly, one aspect of the present invention is directed to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an haemopoietin receptor α -chain from an animal or a component, fragment, part, derivative, homologue or analogue thereof.

5

More particularly, the present invention is directed to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding the IL-13 receptor α -chain from an animal or a component, fragment, part, derivative, homologue or analogue thereof.

10

In a related embodiment, the present invention contemplates a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding the IL-4 receptor α -chain from an animal or a component, fragment, part, derivative, homologue or analogue thereof.

15

Preferably, the animal is a mammal or a species of bird. Particularly, preferred mammals include humans, laboratory test animals (e.g. mice, rabbits, guinea pigs), livestock animals (e.g. sheep, horse, pigs, cows), companion animals (e.g. dogs, cats) or captive wild animals (e.g. kangaroos). Although the present invention is exemplified with respect to mice and humans, 20 the scope of the subject invention extends to all animals and birds.

The present invention is predicated in part on an ability to identify members of the haemopoietin receptor family on the basis of sequence similarity. Based on this approach, a genetic sequence was identified in accordance with the present invention which encodes the IL-25 13 α -chain. The expressed genetic sequence is referred to herein as "NR4". NR4 has an apparent molecular weight when synthesised by transfected COS cells of from about 50,000 to about 70,000 daltons, and more preferably from about 55,000 to about 65,000 daltons. NR4 binds to IL-13 with low affinity and is considered, therefore, to be IL-13 receptor α -chain. Accordingly, the terms "NR4" and "IL-13 receptor α -chain" (or "IL-13 R α ") are used 30 interchangeably throughout the subject specification. Furthermore, in accordance with the

- 4 -

present invention, IL-13 binding to its receptor has been found to be competitively inhibited by IL-4 or a component thereof which may provide a method for controlling IL-13-receptor interaction and which may also provide a basis for the preparation and construction of mimetics.

5

Another aspect of the present invention provides a nucleic acid molecule comprising a sequence of nucleotides encoding IL-13 receptor α -chain having an amino acid sequence as set forth in SEQ ID NO:2 or having at least about 50% similarity to all or part thereof. Preferably, the percentage similarity is at least about 60%, more preferably at least about 70%, even more 10 preferably at least about 80-85% and still even more preferably at least about 90-95% or greater.

A further embodiment of the present invention contemplates a nucleic acid molecule comprising a sequence of nucleotides encoding the IL-13 receptor α -chain and having a 15 nucleotide sequence substantially as set forth in SEQ ID NO:1 or having at least about 50% similarity to all or part thereof. Preferably, the percentage similarity is at least about 60%, more preferably at least about 70%, even more preferably at least about 80-85% and still even more preferably at least about 90-95% or greater.

20 Still another aspect of the present invention provides a nucleic acid molecule comprising a sequence of nucleotides encoding IL-13 receptor α -chain having an amino acid sequence as set forth in SEQ ID NO:4 or having at least about 50% similarity to all or part thereof. Preferably, the percentage similarity is at least about 60%, more preferably at least about 70%, even more 25 preferably at least about 80-85% and still even more preferably at least about 90-95% or greater.

Yet still a further embodiment of the present invention contemplates a nucleic acid molecule comprising a sequence of nucleotides encoding the IL-13 receptor α -chain and having a nucleotide sequence substantially as set forth in SEQ ID NO:3 or having at least about 50% 30 similarity to all or part thereof. Preferably, the percentage similarity is at least about 60%,

- 5 -

more preferably at least about 70%, even more preferably at least about 80-85% and still even more preferably at least about 90-95% or greater.

Accordingly, the present invention extends to the sequence of nucleotides set forth in SEQ ID NO:1 or 3 or the sequence of amino acids set forth in SEQ ID NO:2 or 4 or single or multiple nucleotide or amino acid substitutions, deletions and/or additions thereto.

The present invention further extends to nucleic acid molecules capable of hybridising under low stringency conditions to the nucleotide sequence set forth in SEQ ID NO:1 or 3 or a complementary form thereof.

For the purposes of defining the level of stringency, reference can conveniently be made to Maniatis *et al* (1982) at pages 387-389 which are incorporated herein by reference where the washing step at paragraph 11 is considered herein to be high stringency. A low stringency wash is defined herein to be 0.1-0.2xSSC, 0.1% w/v SDS at 55-65°C for 20 minutes and a medium level of stringency is considered herein to be 2xSSC, 0.1% w/v SSC at ≥ 45°C for 20 minutes. The alternative conditions are applicable depending on concentration, purity and source of nucleic acid molecules.

Yet another aspect of the present invention provides a nucleic acid molecule comprising a sequence of nucleotides which encodes or is complementary to a sequence which encodes an IL-13 receptor α -chain, said nucleic acid molecule having a nucleotide sequence substantially as set forth in SEQ ID NO:1 or 3 or a nucleic acid molecule which encodes a structurally similar IL-13 receptor α -chain or a derivative thereof and which is capable of hybridising to the nucleotide sequence substantially as set forth in SEQ ID NO:1 or 3 or a complementary form thereof under low stringency conditions.

Still yet another aspect of the present invention is directed to a nucleic acid molecule comprising a sequence of nucleotides which encodes or is complementary to a sequence which encodes the IL-13 receptor α -chain having an amino acid sequence substantially as set forth in

SEQ ID NO:2 or 4 or comprises a nucleotide sequence coding for an amino acid sequence having at least about 50% similarity to the sequence set forth in SEQ ID NO:2 or 4 and is capable of hybridising to the sequence set forth in SEQ ID NO:1 or 3 under low stringency conditions.

5

The nucleic acid molecules contemplated by the present invention are generally in isolated form and are preferably cDNA or genomic DNA molecules. In a particularly preferred embodiment, the nucleic acid molecules are in vectors and most preferably expression vectors to enable expression in a suitable host cell. Particularly useful host cells include prokaryotic cells, 10 mammalian cells, yeast cells and insect cells. The cells may also be in the form of a cell line.

According to this aspect of the present invention there is provided an expression vector comprising a nucleic acid molecule encoding the IL-13 receptor α -chain as hereinbefore described, said expression vector capable of expression in a particularly host cell.

15

Another aspect of the present invention contemplates a recombinant polypeptide comprising a sequence of amino acids substantially as set forth in SEQ ID NO:2 or 4 or having at least about 50% similarity to all or part thereof. Preferably, the percentage similarity is at least about 60%, more preferably at least about 70%, even more preferably at least about 80-85% and still 20 even more preferably at least about 90-95% or greater.

The recombinant polypeptide contemplated by the present invention includes, therefore, components, parts, fragments, derivatives, homologues or analogues of the IL-13 receptor α -chain and is preferably encoded by a nucleotide sequence substantially set forth in SEQ ID 25 NO:1 or 3 or a molecule having at least about 50% similarity to all or part thereof or a molecule capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:1 or 3 or a complementary form thereof. The recombinant molecule may be glycosylated or non-glycosylated. When in glycosylated form, the glycosylation may be substantially the same as naturally occurring IL-13 receptor α -chain or may be a modified form of glycosylation. 30 Altered or differential glycosylation states may or may not affect binding activity of the IL-13

receptor α -chain.

The recombinant IL-13 receptor α -chain may be in soluble form or may be expressed on a cell surface or conjugated or fused to a solid support or another molecule.

5

The present invention extends to chemical analogues of the recombinant IL-13 receptor α -chain.

Chemical analogues of the recombinant IL-13 receptor α -chain contemplated herein include,
10 but are not limited to, modifications to side chains, incorporation of unnatural amino acids and/or their derivatives during peptide synthesis and the use of crosslinkers and other methods which impose conformational constraints on the peptides or their analogues.

Examples of side chain modifications contemplated by the present invention include
15 modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH₄; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylolation of amino groups with 2, 4, 6, trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5'-
20 phosphate followed by reduction with NaBH₄.

The guanidine group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.

25 The carboxyl group may be modified by carbodiimide activation via O-acylisourea formation followed by subsequent derivitisation, for example, to a corresponding amide.

Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed
30 disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other

substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and other mercurials; carbamoylation with cyanate at alkaline pH.

- 5 Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tyrosine residues on the other hand, may be altered by nitration with tetrinitromethane to form a 3-nitrotyrosine derivative.
- 10 Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carbethoxylation with diethylpyrocarbonate.

Examples of incorporating unnatural amino acids and derivatives during peptide synthesis include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-hydroxy-5-

- 15 phenylpentanoic acid, 6-aminohexanoic acid, t-butylglycine, norvaline, phenylglycine, ornithine, sarcosine, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-thienyl alanine and/or D-isomers of amino acids.

Crosslinkers can be used, for example, to stabilise 3D conformations, using homo-bifunctional

- 20 crosslinkers such as the bifunctional imido esters having $(CH_2)_n$ spacer groups with n=1 to n=6, glutaraldehyde, N-hydroxysuccinimide esters and hetero-bifunctional reagents which usually contain an amino-reactive moiety such as N-hydroxysuccinimide and another group specific-reactive moiety such as maleimido or dithio moiety (SH) or carbodiimide (COOH). In addition, peptides can be conformationally constrained by, for example, incorporation of C_α
- 25 and N_α-methylamino acids, introduction of double bonds between C_α and C_β atoms of amino acids and the formation of cyclic peptides or analogues by introducing covalent bonds such as forming an amide bond between the N and C termini, between two side chains or between a side chain and the N or C terminus.

Chemical modification of the recombinant IL-13 receptor α -chain may be important, for example, to increase serum half-life, to protect the molecule from enzymatic degradation and/or for diagnostic purposes.

- 5 The recombinant IL-13 receptor α -chain contemplated by the present invention is useful in the development of a range of agonists and antagonists of IL-13-receptor interaction. The recombinant molecule may also be used in the development of diagnostic agents.

Particularly useful agents encompassed by this aspect of the present invention are antibodies 10 to the recombinant IL-13 receptor α -chain. The antibodies may be monoclonal or polyclonal and are particularly useful as antagonists of IL-13-receptor binding or as diagnostic agents to qualitate or quantitate the presence of the IL-13 receptor α -chain. These antibodies may also be useful in the screening of similar components in other receptors such as IL-4 receptors.

- 15 Other agonists and antagonists include chemical molecules which, for example, structurally, functionally or electrochemically mimic or have similarities to IL-13 receptor α -chain or which comprise a solubilised form of the IL-13 receptor α -chain.

Such agents are useful in modulating IL-13-receptor interaction and these are useful in 20 enhancing or diminishing IL-13 related activities. This may be particularly important for cancers or tumours involving or resulting from excess IL-13 or from aberrant IL-13 molecules or to promote IL-13 function in the treatment of a range of conditions such as, but not limited to, immune deficiency.

- 25 The present invention further contemplates ribozyme and antisense molecules useful in reducing IL-13 receptor α -chain expression.

The present invention encompasses, therefore, pharmaceutical and diagnostic compositions comprising recombinant IL-13 receptor α -chain or parts thereof, antibodies thereto, agonists 30 or antagonists thereof or genetic molecules such as ribozymes, antisense molecules and

- 10 -

constructs useful in co-suppression.

The present invention is further described by the following non-limiting Figures and Examples.

5 In the Figures:

Figure 1 is a representation of the nucleotide [SEQ ID NO:1] and predicted amino acid [SEQ ID NO:2] sequence of murine NR4. The untranslated region is shown in lower case and the translated region in upper case. The conventional one-letter code for amino acids is employed, 10 potential asparagine linked glycosylation sites are underlined and the conserved cysteine residues and WSXWS motif of haemopoietin receptor family members are shown in bold. The predicted signal sequence is underlined in bold while the transmembrane domain is underlined with dashes. The sequence shown is a composite derived from the analysis of 8 cDNA clones derived from 3 libraries. The 5'-end of the sequence (nucleotides -60 to 351) is derived from 15 a single cDNA clone but is also present in genomic DNA clones that have been isolated.

Figure 2 is a photographic representation showing northern analysis of murine NR4 mRNA expression in selected tissues and organs.

20 **Figure 3** is a graphical representation depicting saturation isotherms of ^{125}I -IL-13 and ^{125}I -IL-4 binding; saturation isotherms depicted as Scatchard plots of IL-4 (\circ) and IL-13 (\bullet) binding to (A) COS cells expressing the IL-13R α (NR4), (B) CTLL cells and (C) CTLL cells expressing the IL-13R α (NR4). Data have been normalised to 1×10^4 COS cells and 1×10^6 CTLL cells and binding was carried out on ice for 2 to 4 hours.

25

Figure 4 is a graphical representation showing specificity of IL-4 and IL-13 binding; the ability of IL-4 (\circ) and IL-13 (\bullet) to compete for ^{125}I - ^{125}I -IL-13 binding to (A) COS cells expressing the IL-13R α (NR4) and (C) CTLL cells expressing the IL-13R α (NR4) or to compete for IL-4 binding to (B) CTLL cells and (D). CTLL cells expressing the IL-13R α 30 (NR4) binding was carried out on ice for 2 to 4 hours and the data have been expressed as a

- 11 -

percentage of the specific binding observed in the absence of a competitor (■).

Figure 5 is a graphical representation showing factor dependent proliferation of cells expressing NR4. Two hundred (A) CTLL cells or (B) CTLL cells expressing the IL-13R α 5 (NR4) were incubated in the absence of cytokine (■) or with various concentrations of IL-2 (□), IL-4 (○) or IL-13 (●). After 48 hours viable cells were counted and data was expressed as a percentage of the number of viable cells observed with a maximal concentration of IL-2.

Figure 6 is a photographic representation showing cross-species conservation of NR4 (IL-10 13R α) gene.

Figure 7 is a representation of the nucleotide and corresponding amino acid sequence of murine and human NR4 (IL-13R α) genes. The nucleotide and predicted amino acid sequence of human (H) and murine (M) IL-13R α (NR4) were aligned by eye, with gaps (-) inserted to optimise the 15 alignment. The numbering is for the murine clone, nucleotides that form part of the coding region are shown in upper case, whilst those of the untranslated regions are shown in lower case. Amino acids identical between the predicted murine and human proteins are indicated by (*). DNA encoding the murine signal sequence is underlined, with A26 or T27 being the predicted first amino acid of the mature protein.

20

Figure 8 is a photographic representation showing NR4 expression in mouse tissues.

Figure 9 is a photographic representation showing ^{125}I -IL-13 cross-linking to soluble NR4. Lane: ^{125}I -IL-13 (100,000 cpm) + 2 $\mu\text{g}/\text{ml}$ soluble NR4; Lane 2: ^{125}I -IL-13 (100,000 cpm) + 25 2 $\mu\text{g}/\text{ml}$ soluble NR4 in the presence of excess unlabelled IL-13; Lane 3: ^{125}I -IL-13 (100,000 cpm) + 2 $\mu\text{g}/\text{ml}$ soluble NR4 in the presence of excess unlabelled IL-4.

Figure 10 is a photographic representation of immunoprecipitation by anti-NR4 polyclonal antisera of cross-linked ^{125}I -IL-13 with IL-13R α (NR4). Lanes 9-11: soluble IL-13R α (30 30 μl of 3 $\mu\text{g}/\text{ml}$) cross-linked to ^{125}I -IL-13 (750,000 cpm) and immunoprecipitated with control

- 12 -

rabbit serum, or with anti-NR4 polyclonal antiserum in the presence or absence of 100 μ g/ml FLAG peptide, respectively; Lanes 12-14: soluble IL-13R α (NR4) (30 μ l of 3 μ g/ml) cross-linked to 125 I-IL-13 (750,000 cpm) in the presence of 0.5 μ g/ml unlabelled IL-13 and immunoprecipitated with an anti-IL-13R α (NR4) polyclonal antiserum in the presence or 5 absence of 100 μ g/ml FLAG peptide, respectively.

- 13 -

The following single and three letter abbreviations for amino acid residues are used in the specification:

5 Amino Acid	Three-letter	One-letter
	Abbreviation	Symbol
Alanine	Ala	A
Arginine	Arg	R
10 Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	C
Glutamine	Gln	Q
Glutamic acid	Glu	E
15 Glycine	Gly	G
Histidine	His	H
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
20 Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
25 Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V
Any residue	Xaa	X

- 14 -

EXAMPLE 1

Isolation of genomic and cDNAs encoding NR4

ApoI digested genomic DNA, extracted from an embryonal stem cell line, was cloned into the λZAPII bacteriophage (Stratagene, LaJolla, CA). Approximately 10⁶ plaques from this library were screened with a ³²P-labelled oligonucleotide corresponding to the sequence Trp-Ser-Asp-Trp-Ser [SEQ ID NO:3] (16). Positively hybridising clones were sequenced using an automated DNA sequencer according to the manufacturer's instructions (Applied Biosystems, Foster City, CA). One clone appeared to encode for part of a new member of the haemopoietin receptor family. Oligonucleotides were designed on the basis of this genomic DNA sequence and were used in the conventional manner to isolate clones from mouse peritoneal macrophage (Clontech Laboratories, Palo Alto, CA), mouse skin, mouse lung, mouse kidney, and WEHI-3B (Stratagene, LaJolla, CA) λ-bacteriophage cDNA libraries.

15

EXAMPLE 2

Construction of expression vectors and transfection of cells

Using PCR, a derivative of the NR4 cDNA was generated which encoded for the IL-3 signal sequence and an N-terminal FLAG epitope-tag preceding the mature coding region of NR4 (Thr27 to Pro424; Figure 1). The PCR product was cloned into the mammalian expression vector pEF-BOS (17). Constructs were sequenced in their entirety prior to use. Cells were transfected and selected as previously described (16, 18).

EXAMPLE 3

Northern blots

25 Northern blots were performed as previously described (16). The source of hybridisation probes was as follows: NR4 - a PCR product from nucleotide 32 to 984 (Figure 1) and GAPDH - a cDNA fragment spanning nucleotides (19) [REF REQUIRED].

- 15 -

EXAMPLE 4

Cytokines and experiments using radioiodinated cytokines

IL-2, IL-4, IL-7, IL-9, IL-13 and IL-15 were obtained commercially (R & D Systems, 5 Minneapolis MN). For radioiodination, cytokines were dissolved at a concentration of 100 µg/ml in 10 mM sodium phosphate, 150 mM NaCl (PBS), 0.02% v/v Tween 20 and 0.02% w/v sodium azide at pH 7.4. An amount of 2µg of IL-13 was radioiodinated using the iodine monochloride method (20, 21), while 2µg of IL-4 was radiolabelled using dioiodo-Bolton-Hunter reagent (16). Binding studies and determination of the specific radioactivity and 10 bindability of labelled cytokines were performed as previously described (2).

For cross-linking experiments, recombinant murine IL-13 was produced as a FLAG-tagged protein in *Pichia pastoris*.

15 For cross-linking assays, aliquots of purified soluble IL-13R α (NR4) were incubated with ^{125}I -IL-13 in the presence or absence of a competitor in a final volume of 20 µl for at least 30 min at 40°C. Then 5 µl of a 12 mM solution of BS³ (Bis (Sulfosuccimidyl) suberate) in PBS containing 0.02% v/v Tween-20 was added and the mixtures were incubated for 30 min at 4°C. Samples were mixed with 8 µl of 4XSDS sample buffer and analysed by 13% w/v SDS-PAGE 20 under non-reducing conditions. Gels were dried and visualised by either autoradiography or with a PhosphoImager.

EXAMPLE 5

Proliferation Assays

25 The proliferation of Ba/F3 and CTLL cells in response to cytokines was measured in Lux 60 microwell HL-A plates (Nunc Inc. IL, USA). Cells were washed three times in DME containing 20% v/v new born calf serum and resuspended at a concentration of 2×10^4 cells per ml in the same medium. Aliquots of 10µl of the cell suspension were placed in the culture wells with 5µl of various concentrations of purified recombinant cytokines. After 2 days of 30 incubation at 37°C in a fully humidified incubator containing 10% v/v CO₂ in air, viable cells

- 16 -

were counted using an inverted microscope.

EXAMPLE 6

Cloning and Characterisation of Murine NR4

5 A library was constructed in λ ZAPII using *ApoI* digested genomic DNA from embryonal stem cells and screened with a pool of 32 P-labelled oligonucleotides encoding the amino acid sequence Trp-Ser-Asp-Trp-Ser [SEQ ID NO:3] found in many members of the haemopoietin receptor family. One hybridising bacteriophage was found to contain a genomic clone that appeared to encode part of a novel member of the haemopoietin receptor family. This receptor
10 was given the operational name NR4. The sequence of the genomic clone was used to isolate cDNAs encoding NR4 from WEHI-3B cell, peritoneal macrophage, bone marrow, skin and kidney libraries. A composite of the nucleotide sequence [SEQ ID NO:1] and predicted amino acid sequence [SEQ ID NO:2] of these cDNAs is shown in Figure 1. The NR4 cDNA is predicted to encode for a protein of 424 amino acid residues, containing a putative signal
15 sequence and transmembrane domain. The extracellular region of the protein containing a putative signal sequence and transmembrane domain. The extracellular region of the protein contained an immunoglobulin-like domain (amino acids 27-117), in addition to a typical haemopoietin receptor domain (amino acids 118-340) which includes four conserved cysteine residues and the characteristic Trp-Ser-Asp-Trp-Ser [SEQ ID NO:3] motif (Figure 1). The
20 cytoplasmic tail of the new receptor was 60 amino acids in length.

EXAMPLE 7

Expression pattern of NR4 cDNA

The pattern of NR4 mRNA expression was examined by Northern analyses. Two hybridising species of 5.2 and 2.2 kb in length were detected in mRNA from most tissues (Figure 2). NR4 mRNA was not detectable in skeletal muscle (Figure 2). Figure 8 shows expression of NR4 in mouse tissues.

- 17 -

EXAMPLE 8

NR4 encodes the IL-13 receptor α -chain (IL-13R α) - a specific binding subunit of the IL-13 receptor

The apparent molecular weight is from about 50,000 to about 70,000 daltons and more
5 particularly about 55,000 to about 65,000 daltons for NR4 expressed in COS cells estimated from Western blots using an anti-FLAG antibody, suggested that NR4 might encode the binding subunit of the IL-13 receptor. In order to test this possibility NR4 was expressed in COS cells. Untransfected COS cells expressed relatively low levels of IL-4 and IL-13 receptors. Upon transfection with a plasmid containing the NR4 cDNA, the number of IL-13 receptors but not
10 IL-4 receptors expressed by COS cells was dramatically increased (Figure 3A; 100,000 to 500,000 receptors per cell). The affinity of IL-13 for NR4 expressed by COS cells was low ($K_D \sim 2-10$ nM) and binding was specific since it was in competition with unlabelled IL-13 but not other cytokines including IL-2, IL-4, IL-7, IL-9 or IL-15 (Figure 4A). These results suggest that NR4 is the IL-13 receptor α -chain (IL-13R α).

15

EXAMPLE 9

The IL-13R α (NR4) and the IL-4R α are shared components of the IL-4 and IL-3 receptors

In order to investigate the relationship between IL-4 and IL-13 receptors, the IL-4 responsive
20 cell line CTLL was examined. Parental CTLL cells expressed a single class of IL-4 receptor ($K_D \sim 660$ pM; ~3600 receptors per cell) but no detectable IL-13 receptors (Figure 3B). The IL-4 receptors expressed by CTLL cells appeared to be specific since binding of 125 I-IL-4 was in competition with unlabelled IL-4 but not IL-13 (Figure 4B). Upon expression of the IL-13R α (NR4) in CTLL cells no change was observed in the number or affinity of IL-4 receptors,
25 while a single class of high affinity IL-13 receptors was detected (Figure 3C; $K_D \sim 75$ pM; 1350 receptors per cell). The affinity of IL-13 for the IL-13R α (NR4) expressed in CTLL cells was higher than in COS cells, suggesting that the former expressed a protein capable of interacting with the IL-13R α (NR4) to increase the affinity for IL-13. A likely candidate based on previous studies is the IL-4R α . In order to explore this possibility the ability of IL-4 to
30 compete with 125 I-IL-13 for binding to CTLL cells expressing the IL-13R α (NR4) was assessed.

- 18 -

Figure 4B shows that IL-4 and IL-13 were equally effective in competing for ^{125}I -IL-13 binding ($\text{IC}_{50} \sim 300\text{pM}$; Figure 4C) and, in addition, were able to compete with ^{125}I -IL-4 for binding ($\text{IC}_{50} \sim 300\text{ pm}$; Figure 4D).

5

EXAMPLE 10

Expression of the IL-13R α (NR4) is necessary for transduction of a proliferative signal by IL-13

CTLL cells require the addition of exogenous cytokines for survival and proliferation. IL-2 was found to be a potent proliferative stimulus for CTLL cells ($\text{EC}_{50} \sim 100\text{-}200\text{ pM}$), while IL-10 4 was relatively weak ($\text{EC}_{50} 2\text{-}7\text{ nM}$) and IL-13 was inactive (Figure 5A). Expression of the IL-13R α (NR4) in CTLL cells resulted in the ability to survive and proliferate weakly in response to IL-13 ($\text{EC}_{50} \sim 700\text{ pM}$) and to proliferate somewhat more strongly than parental cells in response to IL-4 ($\text{EC}_{50} \sim 700\text{ pM}$; Figure 5B).

15

EXAMPLE 11

Cloning of Human IL-13R α (NR4)

In order to determine whether genes homologous to murine IL-13R α (NR4) exist in other vertebrate species, a probe encompassing nucleotides 840 to 1270 of murine IL-13R α (NR4) was hybridised to *Eco*RI digested genomic DNA from various species. Hybridisation was 20 carried out in 500 mM Na₂HPO₄ (~5xSSC) at 50°C overnight. The filter was washed in 40 mM Na₂HPO₄ (~0.2xSSC) at 50°C for 2 hours and exposed to autoradiographic film for 48 hours. Figure 6 illustrates that relatively few (1 to 5) hybridising bands are observed in genomic DNA from various species, including human. This suggests that it is feasible to clone human IL-13R α (NR4) using a murine cDNA probe. A human bone marrow cDNA library clones in the 25 λ ZAPII bacteriophage was therefore screened with two probes (nucleotides 82-840 and 840 to 1270) from the murine IL-13R α (NR4) cDNA. Hybridisation was carried out overnight in 6xSSC, 0.1% w/v SDS at 42°C. Filters were washed at 2xSSC, 0.1% w/v SDS at 50°C for 2 hours and exposed for 48 hours to autoradiographic film. Plaques that hybridised to both murine IL-13R α (NR4) probes were picked and purified in the conventional manner. The 30 cDNA inserts from the hybridising bacteriophage were excised into the pBluescript plasmid and

- 19 -

sequenced in their entirety using an ABI automated sequencer. Figure 7 shows a composite of the sequence of the clones isolated and reveals that the clones encode a protein that shares a high degree of sequence similarity with murine IL-13R α (NR4). The clones encode for the entire mature coding region of the protein, but lack the initiation methionine and the signal sequence; the high degree of sequence similarity (311/401 amino acids ~ 78%) predicates that this cDNA is the human homologue of the murine IL-13R α (NR4).

EXAMPLE 12

Soluble Murine IL-13R α (NR4)

10 Constructs were engineered to express soluble versions of NR4 with an N-terminal "FLAG" epitope (International Biotechnologies/Eastman Kodak, New Haven CT). First, a derivative of the mammalian expression vector pEF-BOS was generated so that it contained DNA encoding the signal sequence of murine IL-3 (MVLASSTTSIHTMLLLLLMLFHLGLQASIS [SEQ ID NO:5]) and the FLAG epitope (DYKDDDDK [SEQ ID NO:6]), followed by a unique 15 XbaI cloning site. This vector was named pEF/IL3SIG/FLAG. The mature extracellular part of the NR4 coding region (Thr27 to Thr344) was generated by PCR using primers 1478 and 1480. The resulting product was digested with XbaI and was cloned into the XbaI site of pEF/IL3SIG/FLAG to give pEF/IL3SIG/FLAG/sol NR4. The identity of the construct was confirmed by dideoxy sequencing. OLIGO 1478 5'

20 AGCTTCTAGAACAGAACGTTCACCTGTG 3' [SEQ ID NO:7]; OLIGO 1480 5' AACTCCACCTTCTACACCACCTGATCTAGA 3' [SEQ ID NO:8].

After transfection into CHO cells, expressed, soluble NR4 was purified from CHO cell-conditioned medium on an anti-FLAG antibody (M2) affinity column by elution with free 25 FLAG peptide (Science Imaging Systems).

Consistent with the low affinity of IL-13 for NR4 expressed by COS cells, purified soluble NR4 appeared unable to bind IL-13 as assessed by gel filtration chromatography. However, using sensitive cross-linking assays, the ability of soluble IL-13R α (NR4) to bind IL-13 was 30 demonstrated (Figure 9, lane 1). This interaction was competed for by unlabelled IL-13 but not

- 20 -

by unlabelled IL-4 (Figure 9, lanes 2 and 3).

EXAMPLE 13

A Polyclonal Antisera to Soluble IL-13R α (NR4)

5 A polyclonal antiserum to NR4 was prepared by injecting purified soluble NR4 into rabbits which were bled after 3 months. This antisera immunoprecipitated the cross-linked product of ^{125}I -IL-13 with soluble NR4 (Figure 10, lane 11) while no immunoprecipitation was observed with pre-immune serum (Figure 10, lane 9). Immunoprecipitation of the complex was not inhibited by the FLAG peptide (Figure 10, lane 10).

10

The immunoprecipitation assay was conducted as follows:

The cross-linking reactions were terminated by the addition of Tris-HCl, pH 7.5, to a final concentration of 40 mM. The samples were then mixed with 1:50 diluted control rabbit serum
15 or anti-NR4 serum which had been pre-incubated with or without FLAG peptide. After incubation for 30 min at 4°C, the mixtures were added to 40 μl of 50% v/v protein G-Sepharose gel slurry (Pharmacia) and incubated for 30 min at 4°C. The samples were centrifuged and the protein G beads were washed 3 x 0.5 ml PBS, mixed with 40 μl of 2X concentrated SDS-PAGE sample buffer and heated for 2 min at 95°C. The supernatants were
20 analysed by 13% w/v SDS-PAGE under non-reducing conditions.

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of
25 the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

REFERENCES:

1. Du, X.X. and Williams, D.A. (1994) *Blood* 83: 2023-2030.
2. Yang, Y.C. and Yin, T. (1992) *Biofactors* 4: 15-21.
3. Paul, S.R., Bennett, F., Calvetti, J.A., Kelleher, K., Wood, C.R., O'Hara, R.J.J., Leary, A.C., Sibley, B., Clark, S.C., Williams, D.A. and Yang, Y.-C. (1990) *Proc. Natl. Acad. Sci. USA* 87: 7512.
4. Musashi, M., Clark, S.C., Sudo, T., Urdal, D.L., and Ogawa, M. (1991) *Blood* 78: 1448-1451.
5. Schibler, K.R., Yang, Y.C. and Christensen, R.D. (1992) *Blood* 80: 900-3.
6. Tsuji, K., Lyman, S.D., Sudo, T., Clark, S.C., and Ogawa, M. (1992) *Blood* 79: 2855-60.
7. Burstein, S.A., Mei, R.L., Henthorn, J., Friese, P. and turner, K. (1992) *J. Cell. Physiol.* 153: 305-12.
8. Hangoc, G., Yin, T., Cooper, S., Schendel, P., Yang, Y.C. and Broxmeyer, H.E. (1993) *Blood* 81: 965-72.
9. Teramura, M., Kobayashi, S., Hoshino, S., Oshimi, K. and Mizoguchi, H. (1992) *Blood* 79: 327-31.
10. Yonemura, Y., Kawakita, M., Masuda, T., Fujimoto, K., Kato, K. and Takatsuki, K. (1992) *Exp. Hematol.* 20: 1011-6.
11. Baumann, H. and Schendel, P. (1991) *J. Biol. Chem.* 266: 20424-7.
12. Kawashima, I., Ohsumi, J., Mita-Honjo, K., Shimoda-Takano, K., Ishikawa, H., Sakakibara, S., Miyadai, K. and Takiguchi, Y. (1991) *Febs. Lett.* 283: 199-202.
13. Keller, D.C., Du, X.X., Srour, E.f., Hoffman, R. and Williams, D.A. (1993) *Blood* 82: 1428-35.
14. McKenzie, A.N.J. and Zurawski, G. (1994) *Guidebood to cytokines and their receptors*, Oxford University Press. Oxford.
15. Zurawski, G. and de Vries, J.E. (1994) *Immunol. Today* 15: 19-26.

- 22 -

16. Hilton, D.J., Hilton, A.A., Raicevic, A., Rakar, S., Harrison-Smith, M., Gough, N.M., Begley, C.G., Metcalf, D., Nicola, N.A. and Wilson, T.A. (1994) *EMBO J.* 13: 4765-4775.
17. Mizushima, S. and Nagata, S. (1990) *Nucleic Acids Res.* 18: 5322.
18. Lock, P., Metcalf, D. and Nicola, N.A. (1994) *Proc. Natl. Acad. Sci. USA* 91: 252-256.
19. GAPDH REF
20. Contreras, M.A., Bale, W.F. and Spar, I.L. (1983) *Methods in Enzymol.* 92: 277-292.
21. Hilton, D.J. and Nicola, N.A. (1992) *J. Biol. Chem.* 267: 10238-10247.
22. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) *Molecular cloning: A Laboratory Manual* Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: THE WALTER AND ELIZA HALL INSTITUTE OF MEDICAL RESEARCH

(ii) TITLE OF INVENTION: A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME - III

(iii) NUMBER OF SEQUENCES: 8

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: DAVIES COLLISON CAVE
- (B) STREET: 1 LITTLE COLLINS STREET
- (C) CITY: MELBOURNE
- (D) STATE: VICTORIA
- (E) COUNTRY: AUSTRALIA
- (F) ZIP: 3000

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER: AU PROVISIONAL
- (B) FILING DATE: 09-SEP-1996

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: PN6135/95
- (B) FILING DATE: 23-OCT-1995
- (A) APPLICATION NUMBER: PN7276/95
- (B) FILING DATE: 22-DEC-1995

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: HUGHES DR, E JOHN L
- (C) REFERENCE/DOCKET NUMBER: EJH/EK

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: +61 3 9254 2777
- (B) TELEFAX: +61 3 9254 2770

- 24 -

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1680 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..1272

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGAAAAGATA GAATAAAATGG CCTCGTGCCG AATTGGCAC GAGCCGAGGC GAGGGCCTGC	-1
ATG GCG CGG CCA GCG CTG CTG GGC GAG CTG TTG GTG CTG CTA CTG TGG	48
Met Ala Arg Pro Ala Leu Leu Gly Glu Leu Leu Val Leu Leu Leu Trp	
1 5 10 15	
ACC GCC ACC GTG GGC CAA GTT GCC GCG GCC ACA GAA GTT CAG CCA CCT	96
Thr Ala Thr Val Gly Gln Val Ala Ala Thr Glu Val Gln Pro Pro	
20 25 30	
GTG ACG AAT TTG AGC GTC TCT GTC GAA AAT CTC TGC ACG ATA ATA TGG	144
Val Thr Asn Leu Ser Val Ser Val Glu Asn Leu Cys Thr Ile Ile Trp	
35 40 45	
ACG TGG AGT CCT CCT GAA GGA GCC AGT CCA AAT TGC ACT CTC AGA TAT	192
Thr Trp Ser Pro Pro Glu Gly Ala Ser Pro Asn Cys Thr Leu Arg Tyr	
50 55 60	
TTT AGT CAC TTT GAT GAC CAA CAG GAT AAG AAA ATT GCT CCA GAA ACT	240
Phe Ser His Phe Asp Asp Gln Gln Asp Lys Lys Ile Ala Pro Glu Thr	
65 70 75 80	
CAT CGT AAA GAG GAA TTA CCC CTG GAT GAG AAA ATC TGT CTG CAG GTG	288
His Arg Lys Glu Glu Leu Pro Leu Asp Glu Lys Ile Cys Leu Gln Val	
85 90 95	
GGC TCT CAG TGT AGT GCC AAT GAA AGT GAG AAG CCT AGC CCT TTG GTG	336
Gly Ser Gln Cys Ser Ala Asn Glu Ser Glu Lys Pro Ser Pro Leu Val	
100 105 110	
AAA AAG TGC ATC TCA CCC CCT GAA GGT GAT CCT GAG TCC GCT GTG ACT	384
Lys Lys Cys Ile Ser Pro Pro Glu Gly Asp Pro Glu Ser Ala Val Thr	
115 120 125	
GAG CTC AAG TGC ATT TGG CAT AAC CTG AGC TAT ATG AAG TGT TCC TGG	432
Glu Leu Lys Cys Ile Trp His Asn Leu Ser Tyr Met Lys Cys Ser Trp	
130 135 140	

- 25 -

CTC CCT GGA AGG AAT ACA AGC CCT GAC ACA CAC TAT ACT CTG TAC TAT Leu Pro Gly Arg Asn Thr Ser Pro Asp Thr His Tyr Thr Leu Tyr Tyr 145 150 155 160	480
TGG TAC AGC AGC CTG GAG AAA AGT CGT CAA TGT GAA AAC ATC TAT AGA Trp Tyr Ser Ser Leu Glu Lys Ser Arg Gln Cys Glu Asn Ile Tyr Arg 165 170 175	528
GAA GGT CAA CAC ATT GCT TGT TCC TTT AAA TTG ACT AAA GTG GAA CCT Glu Gly Gln His Ile Ala Cys Ser Phe Lys Leu Thr Lys Val Glu Pro 180 185 190	576
AGT TTT GAA CAT CAG AAC GTT CAA ATA ATG GTC AAG GAT AAT GCT GGG Ser Phe Glu His Gln Asn Val Gln Ile Met Val Lys Asp Asn Ala Gly 195 200 205	624
AAA ATT AGG CCA TCC TGC AAA ATA GTG TCT TTA ACT TCC TAT GTG AAA Lys Ile Arg Pro Ser Cys Lys Ile Val Ser Leu Thr Ser Tyr Val Lys 210 215 220	672
CCT GAT CCT CCA CAT ATT AAA CAT CTT CTC CTC AAA AAT GGT GCC TTA Pro Asp Pro Pro His Ile Lys His Leu Leu Leu Lys Asn Gly Ala Leu 225 230 235 240	720
TTA GTG CAG TGG AAG AAT CCA CAA AAT TTT AGA AGC AGA TGC TTA ACT Leu Val Gln Trp Lys Asn Pro Gln Asn Phe Arg Ser Arg Cys Leu Thr 245 250 255	768
TAT GAA GTG GAG GTC AAT AAT ACT CAA ACC GAC CGA CAT AAT ATT TTA Tyr Glu Val Glu Val Asn Asn Thr Gln Thr Asp Arg His Asn Ile Leu 260 265 270	816
GAG GTT GAA GAG GAC AAA TGC CAG AAT TCC GAA TCT GAT AGA AAC ATG Glu Val Glu Glu Asp Lys Cys Gln Asn Ser Glu Ser Asp Arg Asn Met 275 280 285	864
GAG GGT ACA AGT TGT TTC CAA CTC CCT GGT GTT CTT GCC GAC GCT GTC Glu Gly Thr Ser Cys Phe Gln Leu Pro Gly Val Leu Ala Asp Ala Val 290 295 300	912
TAC ACA GTC AGA GTA AGA GTC AAA ACA AAC AAG TTA TGC TTT GAT GAC Tyr Thr Val Arg Val Lys Thr Asn Lys Leu Cys Phe Asp Asp 305 310 315 320	960
AAC AAA CTG TGG AGT GAT TGG AGT GAA GCA CAG AGT ATA GGT AAG GAG Asn Lys Leu Trp Ser Asp Trp Ser Glu Ala Gln Ser Ile Gly Lys Glu 325 330 335	1008
CAA AAC TCC ACC TTC TAC ACC ACC ATG TTA CTC ACC ATT CCA GTC TTT Gln Asn Ser Thr Phe Tyr Thr Thr Met Leu Leu Thr Ile Pro Val Phe 340 345 350	1056
GTC GCA GTG GCA GTC ATA ATC CTC CTT TTT TAC CTG AAA AGG CTT AAG Val Ala Val Ala Val Ile Ile Leu Leu Phe Tyr Leu Lys Arg Leu Lys 355 360 365	1104

- 26 -

ATC ATT ATA TTT CCT CCA ATT CCT GAT CCT GGC AAG ATT TTT AAA GAA Ile Ile Ile Phe Pro Pro Ile Pro Asp Pro Gly Lys Ile Phe Lys Glu 370 375 380	1152
ATG TTT GGA GAC CAG AAT GAT GAT ACC CTG CAC TGG AAG AAG TAT GAC Met Phe Gly Asp Gln Asn Asp Asp Thr Leu His Trp Lys Lys Tyr Asp 385 390 395 400	1200
ATC TAT GAG AAA CAA TCC AAA GAA GAA ACG GAT TCT GTA GTG CTG ATA Ile Tyr Glu Lys Gln Ser Lys Glu Thr Asp Ser Val Val Leu Ile 405 410 415	1248
GAA AAC CTG AAG AAA GCA GCT CCT TGATGGGGAG AAGTGATTTC TTTCTTGCCT Glu Asn Leu Lys Lys Ala Ala Pro 420	1302
TCAATGTGAC CCTGTGAAGA TTTATTGCAT TCTCCATTG TTATCTGGGG GACTTGTAA	1362
ATAGAAAATG AAACTACTCT TGAAAAACAG GCAGCTCCTA AGAGCCACAG GTCTTGATGT	1422
GACTTTGCA TTGAAAACCC AAACCCAAAG GAGCTCCTTC CAAGAAAAGC AAGAGTTCTT	1482
CTCGTTCCCTT GTTCCAATCC CTAAAAGCAG ATGTTTGCC AAATCCCCAA ACTAGAGGAC	1542
AAAGACAAGG GGACAATGAC CATCAATTCA TCTAACAGG AATTGTGATG GCTTCCTAAG	1602
GAATCTCTGC TTGCTCTG	1620

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 424 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ala Arg Pro Ala Leu Leu Gly Glu Leu Leu Val Leu Leu Leu Trp 1 5 10 15
--

Thr Ala Thr Val Gly Gln Val Ala Ala Ala Thr Glu Val Gln Pro Pro 20 25 30

Val Thr Asn Leu Ser Val Ser Val Glu Asn Leu Cys Thr Ile Ile Trp 35 40 45

Thr Trp Ser Pro Pro Glu Gly Ala Ser Pro Asn Cys Thr Leu Arg Tyr 50 55 60

- 27 -

Phe	Ser	His	Phe	Asp	Asp	Gln	Gln	Asp	Lys	Lys	Ile	Ala	Pro	Glu	Thr
65						70					75				80
His Arg Lys Glu Glu Leu Pro Leu Asp Glu Lys Ile Cys Leu Gln Val															
						85				90				95	
Gly	Ser	Gln	Cys	Ser	Ala	Asn	Glu	Ser	Glu	Lys	Pro	Ser	Pro	Leu	Val
						100				105				110	
Lys	Lys	Cys	Ile	Ser	Pro	Pro	Glu	Gly	Asp	Pro	Glu	Ser	Ala	Val	Thr
						115				120				125	
Glu	Leu	Lys	Cys	Ile	Trp	His	Asn	Leu	Ser	Tyr	Met	Lys	Cys	Ser	Trp
						130				135				140	
Leu	Pro	Gly	Arg	Asn	Thr	Ser	Pro	Asp	Thr	His	Tyr	Thr	Leu	Tyr	Tyr
						145				150				160	
Trp	Tyr	Ser	Ser	Leu	Glu	Lys	Ser	Arg	Gln	Cys	Glu	Asn	Ile	Tyr	Arg
						165				170				175	
Glu	Gly	Gln	His	Ile	Ala	Cys	Ser	Phe	Lys	Leu	Thr	Lys	Val	Glu	Pro
						180				185				190	
Ser	Phe	Glu	His	Gln	Asn	Val	Gln	Ile	Met	Val	Lys	Asp	Asn	Ala	Gly
						195				200				205	
Lys	Ile	Arg	Pro	Ser	Cys	Lys	Ile	Val	Ser	Leu	Thr	Ser	Tyr	Val	Lys
						210				215				220	
Pro	Asp	Pro	Pro	His	Ile	Lys	His	Leu	Leu	Leu	Lys	Asn	Gly	Ala	Leu
						225				230				240	
Leu	Val	Gln	Trp	Lys	Asn	Pro	Gln	Asn	Phe	Arg	Ser	Arg	Cys	Leu	Thr
						245				250				255	
Tyr	Glu	Val	Glu	Val	Asn	Asn	Thr	Gln	Thr	Asp	Arg	His	Asn	Ile	Leu
						260				265				270	
Glu	Val	Glu	Glu	Asp	Lys	Cys	Gln	Asn	Ser	Glu	Ser	Asp	Arg	Asn	Met
						275				280				285	
Glu	Gly	Thr	Ser	Cys	Phe	Gln	Leu	Pro	Gly	Val	Leu	Ala	Asp	Ala	Val
						290				295				300	
Tyr	Thr	Val	Arg	Val	Arg	Val	Lys	Thr	Asn	Lys	Leu	Cys	Phe	Asp	Asp
						305				310				320	
Asn	Lys	Leu	Trp	Ser	Asp	Trp	Ser	Glu	Ala	Gln	Ser	Ile	Gly	Lys	Glu
						325				330				335	
Gln	Asn	Ser	Thr	Phe	Tyr	Thr	Thr	Met	Leu	Leu	Thr	Ile	Pro	Val	Phe
						340				345				350	

- 28 -

Val	Ala	Val	Ala	Val	Ile	Ile	Leu	Leu	Phe	Tyr	Leu	Lys	Arg	Leu	Lys
							355	360				365			
Ile	Ile	Ile	Phe	Pro	Pro	Ile	Pro	Asp	Pro	Gly	Lys	Ile	Phe	Lys	Glu
							370	375			380				
Met	Phe	Gly	Asp	Gln	Asn	Asp	Asp	Thr	Leu	His	Trp	Lys	Lys	Tyr	Asp
							385	390			395			400	
Ile	Tyr	Glu	Lys	Gln	Ser	Lys	Glu	Glu	Thr	Asp	Ser	Val	Val	Leu	Ile
							405		410					415	
Glu	Asn	Leu	Lys	Lys	Ala	Ala	Pro								
					420										

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1248 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..1203

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGC	CCT	ACG	GAA	ACT	CAG	CCA	CCT	GTG	ACA	AAT	TTG	AGT	GTC	TCT	GTT	48
Ala	Pro	Thr	Glu	Thr	Gln	Pro	Pro	Val	Thr	Asn	Leu	Ser	Val	Ser	Val	
1						5				10					15	
GAA	AAC	CTC	TGC	ACA	GTA	ATA	TGG	ACA	TGG	AAT	CCA	CCC	GAG	GGA	GCC	96
Glu	Asn	Leu	Cys	Thr	Val	Ile	Trp	Thr	Trp	Asn	Pro	Pro	Glu	Gly	Ala	
						20			25				30			
AGC	TCA	AAT	TGT	AGT	CTA	TGG	TAT	TTT	AGT	CAT	TTT	GGC	GAC	AAA	CAA	144
Ser	Ser	Cys	Ser	Leu	Trp	Tyr	Ser	His	Phe	Ser	Phe	Gly	Asp	Lys	Gln	
						35			40				45			
GAT	AAG	AAA	ATA	GCT	CCG	GAA	ACT	CGT	CGT	TCA	ATA	GAA	GTA	CCC	CTG	192
Asp	Lys	Ile	Ala	Pro	Glu	Thr	Arg	Arg	Ser	Ile	Glu	Val	Pro	Leu		
						50			55			60				
AAT	GAG	AGG	ATT	TGT	CTG	CAA	GTG	GGG	TCC	CAG	TGT	AGC	ACC	AAT	GAG	240
Asn	Glu	Arg	Ile	Cys	Leu	Gln	Val	Gly	Ser	Gln	Cys	Ser	Thr	Asn	Glu	
						65			70			75		80		

- 29 -

AGT GAG AAG CCT AGC ATT TTG GTT GAA AAA TGC ATC TCA CCC CCA GAA Ser Glu Lys Pro Ser Ile Leu Val Glu Lys Cys Ile Ser Pro Pro Glu 85 90 95	288
GGT GAT CCT GAG TCT GCT GTG ACT GAA CTT CAA TGC ATT TGG CAC AAC Gly Asp Pro Glu Ser Ala Val Thr Glu Leu Gln Cys Ile Trp His Asn 100 105 110	336
CTG AGC TAC ATG AAG TGT TCT TGG CTC CCT GGA AGG AAT ACC AGT CCC Leu Ser Tyr Met Lys Cys Ser Trp Leu Pro Gly Arg Asn Thr Ser Pro 115 120 125	384
GAC ACT AAC TAT ACT CTC TAC TAT TGG CAC AGA AGC CTG GAA AAA ATT Asp Thr Asn Tyr Thr Leu Tyr Trp His Arg Ser Leu Glu Lys Ile 130 135 140	432
CAT CAA TGT GAA AAC ATC TTT AGA GAA GGC CAA TAC TTT GGT TGT TCC His Gln Cys Glu Asn Ile Phe Arg Glu Gly Gln Tyr Phe Gly Cys Ser 145 150 155 160	480
TTT GAT CTG ACC AAA GTG AAG GAT TCC AGT TTT GAA CAA CAC AGT GTC Phe Asp Leu Thr Lys Val Lys Asp Ser Ser Phe Glu Gln His Ser Val 165 170 175	528
CAA ATA ATG GTC AAG GAT AAT GCA GGA AAA ATT AAA CCA TCC TTC AAT Gln Ile Met Val Lys Asp Asn Ala Gly Lys Ile Lys Pro Ser Phe Asn 180 185 190	576
ATA GTG CCT TTA ACT TCC CGT GTG AAA CCT GAT CCT CCA CAT ATT AAA Ile Val Pro Leu Thr Ser Arg Val Lys Pro Asp Pro His Ile Lys 195 200 205	624
AAC CTC TCC TTC CAC AAT GAT GAC CTA TAT GTG CAA TGG GAG AAT CCA Asn Leu Ser Phe His Asn Asp Asp Leu Tyr Val Gln Trp Glu Asn Pro 210 215 220	672
CAG AAT TTT ATT AGC AGA TGC CTA TTT TAT GAA GTA GAA GTC AAT AAC Gln Asn Phe Ile Ser Arg Cys Leu Phe Tyr Glu Val Glu Val Asn Asn 225 230 235 240	720
AGC CAA ACT GAG ACA CAT AAT GTT TTC TAC GTC CAA GAG GCT AAA TGT Ser Gln Thr Glu Thr His Asn Val Phe Tyr Val Gln Glu Ala Lys Cys 245 250 255	768
GAG AAT CCA GAA TTT GAG AGA AAT GTG GAG AAT ACA TCT TGT TTC ATG Glu Asn Pro Glu Phe Glu Arg Asn Val Glu Asn Thr Ser Cys Phe Met 260 265 270	816
GTC CCT GGT GTT CTT CCT GAT ACT TTG AAC ACA GTC AGA ATA AGA GTC Val Pro Gly Val Leu Pro Asp Thr Leu Asn Thr Val Arg Ile Arg Val 275 280 285	864
AAA ACA AAT AAG TTA TGC TAT GAG GAT GAC AAA CTC TGG AGT AAT TGG Lys Thr Asn Lys Leu Cys Tyr Glu Asp Asp Lys Leu Trp Ser Asn Trp 290 295 300	912

- 30 -

AGC CAA GAA ATG AGT ATA GGT AAG AAG CGC AAT TCC ACA CTC TAC ATA Ser Gln Glu Met Ser Ile Gly Lys Lys Arg Asn Ser Thr Leu Tyr Ile 305 310 315 320	960
ACC ATG TTA CTC ATT GTT CCA GTC ATC GTC GCA GGT GCA ATC ATA GTA Thr Met Leu Leu Ile Val Pro Val Ile Val Ala Gly Ala Ile Ile Val 325 330 335	1008
CTC CTG CTT TAC CTA AAA AGG CTC AAG ATT ATT ATA TTC CCT CCA ATT Leu Leu Leu Tyr Leu Lys Arg Leu Lys Ile Ile Ile Phe Pro Pro Ile 340 345 350	1056
CCT GAT CCT GGC AAG ATT TTT AAA GAA ATG TTT GGA GAC CAG AAT GAT Pro Asp Pro Gly Lys Ile Phe Lys Glu Met Phe Gly Asp Gln Asn Asp 355 360 365	1104
GAT ACT CTG CAC TGG AAG AAG TAC GAC ATC TAT GAG AAG CAA ACC AAG Asp Thr Leu His Trp Lys Lys Tyr Asp Ile Tyr Glu Lys Gln Thr Lys 370 375 380	1152
GAG GAA ACC GAC TCT GTA GTG CTG ATA GAA AAC CTG AAG AAA GCC TCT Glu Glu Thr Asp Ser Val Val Leu Ile Glu Asn Leu Lys Lys Ala Ser 385 390 395 400	1200
CAG TGA TGG AGA TAA TTT ATT TTT ACC TTC ACT GTG ACC TTG AGA AGA Gln	1248

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 401 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ala Pro Thr Glu Thr Gln Pro Pro Val Thr Asn Leu Ser Val Ser Val 1 5 10 15
Glu Asn Leu Cys Thr Val Ile Trp Thr Trp Asn Pro Pro Glu Gly Ala 20 25 30
Ser Ser Asn Cys Ser Leu Trp Tyr Phe Ser His Phe Gly Asp Lys Gln 35 40 45
Asp Lys Lys Ile Ala Pro Glu Thr Arg Arg Ser Ile Glu Val Pro Leu 50 55 60
Asn Glu Arg Ile Cys Leu Gln Val Gly Ser Gln Cys Ser Thr Asn Glu 65 70 75 80

- 31 -

Ser	Glu	Lys	Pro	Ser	Ile	Leu	Val	Glu	Lys	Cys	Ile	Ser	Pro	Pro	Glu
					85				90					95	
Gly	Asp	Pro	Glu	Ser	Ala	Val	Thr	Glu	Leu	Gln	Cys	Ile	Trp	His	Asn
					100				105				110		
Leu	Ser	Tyr	Met	Lys	Cys	Ser	Trp	Leu	Pro	Gly	Arg	Asn	Thr	Ser	Pro
					115			120				125			
Asp	Thr	Asn	Tyr	Thr	Leu	Tyr	Tyr	Trp	His	Arg	Ser	Leu	Glu	Lys	Ile
					130		135				140				
His	Gln	Cys	Glu	Asn	Ile	Phe	Arg	Glu	Gly	Gln	Tyr	Phe	Gly	Cys	Ser
					145		150			155				160	
Phe	Asp	Leu	Thr	Lys	Val	Lys	Asp	Ser	Ser	Phe	Glu	Gln	His	Ser	Val
					165			170				175			
Gln	Ile	Met	Val	Lys	Asp	Asn	Ala	Gly	Lys	Ile	Lys	Pro	Ser	Phe	Asn
					180			185				190			
Ile	Val	Pro	Leu	Thr	Ser	Arg	Val	Lys	Pro	Asp	Pro	Pro	His	Ile	Lys
					195			200				205			
Asn	Leu	Ser	Phe	His	Asn	Asp	Asp	Leu	Tyr	Val	Gln	Trp	Glu	Asn	Pro
					210		215				220				
Gln	Asn	Phe	Ile	Ser	Arg	Cys	Leu	Phe	Tyr	Glu	Val	Glu	Val	Asn	Asn
					225		230			235				240	
Ser	Gln	Thr	Glu	Thr	His	Asn	Val	Phe	Tyr	Val	Gln	Glu	Ala	Lys	Cys
					245			250				255			
Glu	Asn	Pro	Glu	Phe	Glu	Arg	Asn	Val	Glu	Asn	Thr	Ser	Cys	Phe	Met
					260			265				270			
Val	Pro	Gly	Val	Leu	Pro	Asp	Thr	Leu	Asn	Thr	Val	Arg	Ile	Arg	Val
					275			280				285			
Lys	Thr	Asn	Lys	Leu	Cys	Tyr	Glu	Asp	Asp	Lys	Leu	Trp	Ser	Asn	Trp
					290		295				300				
Ser	Gln	Glu	Met	Ser	Ile	Gly	Lys	Lys	Arg	Asn	Ser	Thr	Leu	Tyr	Ile
					305		310			315				320	
Thr	Met	Leu	Leu	Ile	Val	Pro	Val	Ile	Val	Ala	Gly	Ala	Ile	Ile	Val
					325			330				335			
Leu	Leu	Leu	Tyr	Leu	Lys	Arg	Leu	Lys	Ile	Ile	Ile	Phe	Pro	Pro	Ile
					340			345				350			
Pro	Asp	Pro	Gly	Lys	Ile	Phe	Lys	Glu	Met	Phe	Gly	Asp	Gln	Asn	Asp
					355			360				365			

- 32 -

Asp Thr Leu His Trp Lys Lys Tyr Asp Ile Tyr Glu Lys Gln Thr Lys
370 375 380

Glu Glu Thr Asp Ser Val Val Leu Ile Glu Asn Leu Lys Lys Ala Ser
385 390 395 400

Gln

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Val Leu Ala Ser Ser Thr Thr Ser Ile His Thr Met Leu Leu Leu
5 10 15

Leu Leu Met Leu Phe His Leu Gly Leu Gln Ala Ser Ile Ser
20 25 30

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 8 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Asp Tyr Lys Asp Asp Asp Asp Lys
5

- 33 -

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

AGCTTCTAGA ACAGAACGTT AGCCACCTGT G

31

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

AACTCCACCT TCTACACCAC CTGATCTAGA

30

DATED this 9th day of September, 1996

THE WALTER AND ELIZA HALL INSTITUTE
OF MEDICAL RESEARCH
By Its Patent Attorneys
DAVIES COLLISON CAVE

1 M A R P A L E G E L I V S D L W T A T V
 61 G C C G A G I K W Q Q G G I A C A G A A S T T C A G G C A C C I S T G C A G G A A T T S A C C C C T T S T G C
 21 S Q V A A A T E V Q R P V T N L D 3 7 3 V
 121 G A A A A C T C T G C A C C G A T A T A T S C A C C T G G A G T C E C C T C A A D G A G C C A C T C C A A A T T C C
 41 E N L C T I I W T W E P R E G A S F N C
 161 A C T C T C A G A T A T T T T A G T C A C T T T G A C C A C A C A G G A T A A G A A A T T G C T C C A C A A A C T
 51 T L R Y ? S H F D D Q Q D K R I A E S T
 241 C A T C G T A A A C A C G G A A T T A C C C T G G A T G A G A A A A T C T G T C G C A C G T G G G C T T C A G T G T
 81 H R K E S L P L D E K I C L Q V G S Q C
 331 A G T G C C A A T G A A A G T G A G A A G C C T A G G C C T T T G G T G A A A A A G T G C A T C T C A C C C C C T G A A
 101 S A N B S E K P S P L V R K X C I S P E S
 361 O C T G A T C C T G A G T C C G C T G T G A C T G A G G C T C A A C T G C A T T T G C A T A A C C T G A C T T A T A T G
 121 G D O P E S A V T E L K C I W H H N L S Y X
 421 A A G T T T C C T G G C T C C C T G G A A G G A A T A C A A C C C T G A C R A C A C A C T A T A C T C T G T A C T A T
 141 K C S W L P G R H T S P D T H Y T L Y Y
 481 T O C T A C A C C A C C T C C G A G A A A A G T C G T C A A T G T C A A A A C T C T A T A G A A A G G T C A A C A C
 161 W Y T S S L E K S R Q C E N T Y R E G Q H
 541 A T T C C T T O T T C C T T A A T T G A C T A A A G T G C A A C C T A G T T T G C A A C T C A T C A G A A C G T T C A A
 181 T A C S F K L T K V E P S F S K H Q N V Q
 501 A T A A T G T C A A G G A T A A T G C T G G G A A A A T T A G G C C A T C C T G C A A A A T A G T C T C T T A R C T
 201 I M V U K D N A G K I R P S C K I V S L T
 561 T C T A T G T G A A A C C T G A T C C T C C A C A T A T T A A M C T C T C T C T C A A A A A T O G T C C C T T A
 231 S Y V K P D P E R H I K H L L K N C A L
 721 T T A G T G C A G T G G A A G A A T C C A C A A A A T T T A G A A G C A G A T G C T T A A C T T A T G A A G T G G G A G
 241 L V Q W K N P Q N F R S R C L T Y E V E
 781 G T C A A T A A T C T C A A A C C G A C C O A C A T A A T A T T T A G G G T T G A A G A C C A C A A A T O C C A G
 251 V M N T Q T D R H N I L E V E S D K C Q
 841 A A T T C C G A A T C T G A T G A A A C A T O C G A G G G T C A A C T G T G T T C C A A C T C C T G G T T C T T
 281 N S E G D R N M E G T S C F Q L P G V L
 901 G C C G A C C T G T C T A C R C A G T C A G A G T A A G A G T C A A A A C A A C A A C T T A T O C T T T G A T G A C
 301 A D A V Y T V R V R V K T N K L C F D D
 961 A A C A A R C T G T G G A G T C A T T G A C T G A C A G C C A C A G A G T T A G T G A A G G A C C A A A C T C C A C C
 321 N K L W S O W S E A O S T G K E O N S T
 1021 T T T A C A C C A C C A T G T A C T C A C C A T T C G T C T C C G C C G C T G G C A C I C A T A A T C C C
 341 F Y T T M L L T I P U F V A V A V I I L
 1081 C T T T M P I A C C G A A A A A G G C T A A G C A T C A T T A T T T C C T C C A A T T C O C T G A T C C T G C C A A C
 361 L F Y L K R L K I I I F P P I P D P G K
 1141 A T T T T T A A G G A A T G T T G G A G C C A G A A T G A T C A T A C C C T G C A C T G G R A G A G T A T G C A C
 381 I F K E M F G D Q N D D T L H W K K Y D
 1201 A T C T A T G A G A A A C A A T C C A A A G A A A A C C G G A T T C T G T A G T G C C T C A T A G A A A A C C T G A A G
 401 I Y E K Q S K E E T D S V V L I E N L K
 1261 A A A C C A C C T C C T T C A T g g g g a g t g a t t c t t c t t g e c t t c a a t g t g a c c c t g t g a a
 421 K A A P *
 1321 g a t t t a t t g c a t t c t c a t t g t t a t t c t g g g g e c t t g t t a a t a g a a a c t g a a a c t a c t
 1381 c t t g a a a a a c a g g e a g t t c t t a a g g e g c c a c a g g t t t g a t g t g a c t t t g c a t t g a a a a c
 1441 c e e a a c c c c a a a l a a g g e a g g t c t c c a a g g a a a g c o a a g g t t t t e t t g t t t t g t t o c a t
 1501 c c c t t a a a g g e a g g t t t g c e s a a t t c c c c c a a a c t t a g g g a c a a a g g a c a a g g g y a c a t g
 1561 a c c a t c a a t c a a t c a g g a a t t g t g a t g g t t t c t a a g g a a t c t c t g e t t g e t t g e t t g

FIGURE 1

NEW ENGLAND NURSES JOURNAL

FIGURE 2

FIGURE 3

FIGURE 4

% Maximum Number of Viable Cells.

FIGURE 5

FIGURE 6

Cross-species conservation of the NR-4 (IL-13R α) gene

FIGURE 7

```

M -60 tgaaaagatagaataaatggcctcggtccgaattcggcacgagccgaggcgagggcctgc

M 1 ATGGCGCGGCCAGCGCTGCTGGCGAGCTGTTGGTGTACTGTGGACCGCCACCGTG
M 1 M A R P A L L G E L L V L L W T A T V

H A P T E T Q P P V T N L S V S V
H GCGCCTACGGAAACTCAGCCACCTGTGACAAATTGAGTGTCTCTGTT
H * * * * * * * * * * * * * * * * *
M 61 GGCCAAGTTGCCGCGGCCACAGAAGTTCAGCCACCTGTGACGAATTGAGCGTCTCTGTC
M 21 G Q V A A A T E V Q P P V T N L S V S V

H E N L C T V I W T W N P P E G A S S N C
H GAAAACCTCTGCACAGTAATATGGACATGGATCCACCGAGGGAGCCAGCTCAAATTGT
H * * * * * * * * * * * * * * * * * * * * *
M 121 GAAAATCTCTGCACGATAATATGGACGTGGAGTCCTCTGAAGGAGCCAGTCCAAATTGC
M 41 E N L C T I I W T W S P P E G A S P N C

H S L W Y F S H F G D K Q D K K I A P E T
H AGTCTATGGTATTTAGTCATTTGGCGACAAACAAGATAAGAAAATAGCTCCGGAAACT
H * * * * * * * * * * * * * * * * * * *
M 181 ACTCTCAGATATTTAGTCACTTGATGACCAACAGGATAAGAAAATTGCTCCAGAAACT
M 61 T L R Y F S H F D D Q Q D K K I A P E T

H R R S I E V P L N E R I C L Q V G S Q C
H CGTCGTTCAATAGAAGTACCCCTGAATGAGAGGATTGTCTGCAAGTGGGTCCCCAGTGT
H * * * * * * * * * * * * * * * * * * *
M 241 CATCGTAAAGAGGAATTACCCCTGGATGAGAAAATCTGCTGCAAGGTGGCTCTCAGTGT
M 81 H R K E E L P L D E K I C L Q V G S Q C

H S T N E S E K P S I L V E K C I S P P E
H AGCACCAATGAGAGTGAGAACGCCTAGCATTTGGTTGAAAATGCATCTCACCCCCAGAA
H * * * * * * * * * * * * * * * * * * *
M 301 AGTGCCTAATGAAAGTGAGAACGCCTAGCCCTTGGTGGAAAAAGTGCATCTCACCCCCAGAA
M 101 S A N E S E K P S P L V K K C I S P P E

H G D P E S A V T E L Q C I W H N L S Y M
H GGTGATCCTGAGTCTGCTGTGACTGAACTTCAATGCATTGGCACAACCTGAGCTACATG
H * * * * * * * * * * * * * * * * * * *
M 361 GGTGATCCTGAGTCCGCTGTGACTGAGCTCAAGTGCATTGGCATAACCTGAGCTATATG
M 121 G D P E S A V T E L K C I W H N L S Y M

H K C S W L P G R N T S P D T N Y T L Y Y
H AAGTGTCTGGCTCCCTGGAAGGAATACCAAGTCCGACACTAACTATACTCTCTACTAT
H * * * * * * * * * * * * * * * * * * *
M 421 AAGTGTCTGGCTCCCTGGAAGGAATACAAGCCCTGACACACACTATACTCTGTACTAT
M 141 K C S W L P G R N T S P D T H Y T L Y Y

```

FIGURE 7 (continued...)

H	W H R S L E K I H Q C E N I F R E G Q Y
H	TGGCACAGAAGCCTGGAAAAATTCAATCAATGTGAAAACATCTTAGAGAAGGCCAATAC
*	*
M 481	TGGTACAGCAGCCTGGAGAAAAGTCGTCAATGTGAAAACATCTATAGAGAAGGTCAACAC
M 161	W Y S S L E K S R Q C E N I Y R E G Q H
H	F G C S F D L T K V K D S S F E Q H S V
H	TTTGGTTGTTCCCTTAAATTGACTAAAGTGGAACCT---AGTTTGAAACATCAGAACCGTT
*	*
M 541	ATTGCTTGTCCCTTAAATTGACTAAAGTGGAACCT---AGTTTGAAACATCAGAACCGTT
M 181	I A C S F K L T K V E P - S F E H Q N V
H	Q I M V K D N A G K I K P S F N I V P L
H	CAAATAATGGTCAAGGATAATGCTGGAAAATTAGGCCATCCTGCAAAATAGTGTCTTA
*	*
M 601	CAAATAATGGTCAAGGATAATGCTGGAAAATTAGGCCATCCTGCAAAATAGTGTCTTA
M 201	Q I M V K D N A G K I R P S C K I V S L
H	T S R V K P D P P H I K N L S F H N D D
H	ACTTCCCCTGTGAAACCTGATCCTCACATATTAAACATCTTCTCCTCACATGATGAC
*	*
M 661	ACTTCCCCTATGTGAAACCTGATCCTCACATATTAAACATCTTCTCCTCACATGGTGCC
M 221	T S Y V K P D P P H I K H L L L K N G A
H	L Y V Q W E N P Q N F I S R C L F Y E V
H	CTATATGTGCAATGGGAGAATCCACAGAATTATTAGCAGATGCCTATTATGAAGTA
*	*
M 721	TTATTAGTGCAGTGGAGAACATCCACAAAATTAGAAGCAGATGCTTAACCTTATGAAGTG
M 241	L L V Q W K N P Q N F R S R C L T Y E V
H	E V N N S Q T E T H N V F Y V Q E A K C
H	GAAGTCAATAACAGCCAAACTGAGACACATAATGTTCTACGTCCAAGAGGCTAAATGT
*	*
M 781	GAGGTCAATAACTCAACCCGACCGACATAATTTAGAGGTTGAAGAGGACAAATGC
M 261	E V N N T Q T D R H N I L E V E E D K C
H	E N P E F E R N V E N T S C F M V P G V
H	GAGAATCCAGAATTGAGAGAAATGTGGAGAATACATCTTGTTCATGGCCCTGGTGT
*	*
M 841	CAGAATTCCGAATCTGATAGAACATGGAGGGTACAAGTTGTTCCAACCTCCCTGGTGT
M 281	Q N S E S D R N M E G T S C F Q L P G V
H	L P D T L N T V R I R V K T N K L C Y E
H	CTTCCTGATACTTTGAACACAGTCAGAATAAGAGTCAAAACAAATAAGTTATGCTATGAG
*	*
M 901	CTTGCGCAGCCTGCTACACAGTCAGAGTAAGAGTCAAAACAAAGTTATGCTTGT
M 301	L A D A V Y T V R V R V K T N K L C F D
H	D D K L W S N W S Q E M S I G K K R N S
H	GATGACAAACTCTGGAGTAATTGGAGCCAAGAACATGGTAAAGAGTATAGGTAAGAGCGCAATTCC
*	*
M 961	GACAACAAACTGTGGAGTGATTGGAGTAAGAGTCAGAGTATAGGTAAGGAGCAGAACACTCC
M 321	D N K L W S D W S E A Q S I G K E Q N S

FIGURE 7 (continued...)

H	T L Y I T M L L I V P V I V A G A I I V
H	ACACTCTACATAACCATGTTACTCATTGTTCCAGTCATCGTCGCAGGTGCAATCATAGTA
	* * * * *
M 1021	ACCTTCTACACCACCATGTTACTCACCATTCCAGTCTTGTCGCAGTGGCAGTCATAATC
M 341	T F Y T T M L L T I P V F V A V A V I I
H	L L L Y L K R L K I I I F P P I P D P G
H	CTCCTGCTTACCTAAAAAGGCTCAAGATTATTATATTCCCTCCAATTCTGATCCTGGC
	* * * * *
M 1081	CTCCTTTTACCTGAAAAGGCTTAAGATCATTATATTCCCTCCAATTCTGATCCTGGC
M 361	L L F Y L K R L K I I I F P P P I P D P G
H	K I F K E M F G D Q N D D T L H W K K Y
H	AAGATTTAAAGAAATGTTGGAGACCAGAATGATGATACTCTGCACTGGAAGAAGTAC
	* * * * *
M 1141	AAGATTTAAAGAAATGTTGGAGACCAGAATGATGATGACCTGCAC TGGAAGAAGTAT
M 381	K I F K E M F G D Q N D D T L H W K K Y
H	D I Y E K Q T K E E T D S V V L I E N L
H	GACATCTATGAGAACAAACCAAGGAGGAAACCGACTCTGTAGTGCTGATAGAAAACCTG
	* * * * *
M 1201	GACATCTATGAGAACAAATCCAAGAAGAACGGATTCTGTAGTGCTGATAGAAAACCTG
M 401	D I Y E K Q S K E E T D S V V L I E N L
H	K K A S Q *
H	AAGAAAGCCTCTCAGTGAtggagataatttacccactgtgacccgtgagaaga
	* *
M 1261	AAGAAAGCAGCTCCTTGAtggggagaagtgatcccttgccttcaatgtgaccctgt
M 421	K K A A P *

NR4 expression in mouse tissues

FIGURE 8

FIGURE 9

FIGURE 10

