Langages réguliers et automates finis

Université Libre de Bruxelles 2008 - 2009

Denis BOIGELOT Sébastien COLLETTE Gilles GEERAERTS

Langage régulier

Soit un alphabet Σ (fini)

Cas de base:

- Ø est un langage régulier
- {ε} est un langage régulier
- $\forall a \in \Sigma$, $\{a\}$ est un langage régulier

Coordonnées

- Denis Boigelot
- dboigelo@ulb.ac.be
- 2N8.211
- http://www.ulb.ac.be/di/ssd/tmassart/Compil
- http://student.ulb.ac.be/~dboigelo/

Langage régulier

Soient L et K des langages réguliers

Inductions:

- $L \cdot K := \{ 1 \cdot k \mid 1 \in L \land k \in K \}$ est régulier
- $L \cup K$ est régulier
- $L^* := \{\epsilon\} \cup \{www...w \mid w \in L\}$ est régulier

Automate fini

 $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ où

- Q est un ensemble fini des états;
- Σ est l'alphabet des symboles à l'entrée;
- δ est la relation de transition: $Q \times \Sigma \times Q$;
- q₀ est l'état initial;
- $F \subseteq Q$ ensemble des états accepteurs.

Exercice I

Démontrez, à l'aide de la définition inductive des langages réguliers, que les deux langages suivants sont réguliers (l'alphabet considéré est $\Sigma = \{0, 1\}$):

- 1. L'ensemble des mots composés d'un nombre arbitraire de 1, suivis de 01, suivis d'un nombre arbitraire de 0.
- 2. L'ensemble des nombres binaires impairs.

Propriété importante

Si R est un langage régulier, alors il existe un automate fini M tel que L(M) = R.

Solution I.I

- $1 \in \Sigma$ et $0 \in \Sigma$. Donc $\{1\}$ et $\{0\}$ sont des langages réguliers.
- La fermeture de Kleene d'un langage régulier est un langage régulier. Donc {1}* et {0}* sont des langages réguliers.
- La concaténation de langages réguliers est un langage régulier. Donc $\{1\}^* \cdot \{0\} \cdot \{1\} \cdot \{0\}^*$ est un langage régulier.

Solution 1.2

Remarque: un nombre binaire impair se termine nécessairement par 1.

- {1} et {0} sont des langages réguliers.
- $\{1\} \cup \{0\}$ est régulier.
- $(\{1\} \cup \{0\})^*$ est régulier.
- $(\{1\} \cup \{0\})^* \cdot \{1\}$ est régulier.

Solution 2.1

- Soit $L = \{w_1, w_2, ..., w_n\}$ un langage fini.
- Comme chaque mot w_i est une concaténation finie de caractères de Σ , il est clair que $\{w_i\}$ est régulier pour tout $1 \le i \le n$.
- Donc, $\{w_1\} \cup \{w_2\} \cup ... \cup \{w_n\} = L$ est régulier.

Exercice 2

- 1. Démontrez que tout langage fini est régulier.
- 2. Le langage $L = \{0^n1^n \mid n = 0, 1, 2, ...\}$ est-il régulier ? Expliquez.

Solution 2.2

Réponse: Non!

- Preuve par contradiction. Supposons que L est régulier.
- Donc, il existe un automate fini $A = \langle Q, \Sigma, \delta, q_0, F \rangle$.
- Intuitivement: comme Q est fini, il existe un mot de L qui est accepté en passant deux fois par le même état q. Par exemple: $w = 0^{2|Q|}1^{2|Q|}$.

Solution 2.2

- Donc, il existe un chemin de q_0 à q labellé par 0^{k1} , une boucle allant de q à q labellée par 0^{k2} et un chemin allant de q à $q' \in F$, labellé par par $0^{k3}1^{2|Q|}$, avec k1 + k2 + k3 = 2|Q|.
- Mais alors, on peut aussi accepter, par exemple le mot $0^{k_1}0^{k_3}1^{2|Q|}$, qui n'est pas dans L.
- Contradiction: A ne peut pas exister et donc L n'est pas régulier.

Exercice 3

Donnez un automate non déterministe qui accepte chacun des langages suivants (définis sur l'alphabet $\Sigma = \{0, 1\}$):

- 1. Toutes les chaînes qui se terminent par 00.
- 2. Toutes les chaînes dont le 10ème symbole, compté à partir de la fin de la chaîne, est un 1.
- 3. Ensemble de toutes les chaînes dans lesquelles chaque paire de 0 apparaît devant une paire de 1.
- 4. Ensemble de toutes les chaînes ne contenant pas 101.
- 5. Tous les nombres binaires divisibles par 4.

Automate fini

• DFA (deterministic finite automata)

• NFA (nondeterministic finite automata)

• ε-NFA (epsilon-transitions NFA)

Solution 3.1

Solution 3.2

Solution 3.3

Solution 3.4

Solution 3.5

Liens entre automates

Supprimer les E-transitions

 $\epsilon\text{-NFA } E = \langle Q, \Sigma, \delta_E, q_0, F \rangle \to \text{NFA } N = \langle Q, \Sigma, \delta_N, q_0, F \rangle$ tel que:

soit
$$\alpha \in \Sigma$$
, si $q' \in \hat{\delta}_E(q, \alpha)$, alors $(q, \alpha, q') \in \delta_N$

c'est-à-dire: s'il existe un chemin de q à q' passant par un et un seul α (plus éventuellement des ϵ) dans le ϵ -NFA, alors on inclut la transition (q,α,q') au NFA

Déterminiser un automate

Technique: subset construction

NFA $N = \langle Q_N, \Sigma, \delta_N, q_0, F_N \rangle \rightarrow DFA$ $D = \langle Q_D, \Sigma, \delta_D, \{q_0\}, F_D \rangle$ où

- $Q_D = \mathcal{P}(Q_N)$
- $F_D = \{S \mid S \subseteq Q_N \text{ tel que } S \cap F_N \neq \emptyset\}$
- $\bullet \ \ \forall \ S\subseteq Q_N, \ \forall a\in \Sigma, \ \delta_D(S,a)=\bigcup_{p\in S}\delta_N(p,a)$

Exercice 4.1

Déterminisez:

Exercice 4.2

Déterminisez:

Exercice 4.3

Déterminisez:

Solution 4.1

δ	I	0
$\rightarrow \{p\}$	{p}	{p,q}
{p,q}	{p,t}	${p,q,r,s}$
* {p,t}	{p,s}	{p,q}
* {p,q,r,s}	{p,t}	${p,q,r,s}$
* {p,s}	{p}	{p,q}

Solution 4.1

So	lution	4.2
	IGGOII	• • •

δ	Ι	0	
→ {p}	{q}	{a,p}	
* {q}	{q,r}	{r}	
{r}	{p}	{z}	
* {s}	{p}	Ø	
* {q,s}	${p,q,r}$	{r}	
* {q,r}	${p,q,r}$	$\{r,s\}$	
* {r,s}	{p}	{s}	
* {p,q,r}	${p,q,r}$	$\{q,r,s\}$	
* {q,r,s}	${p,q,r}$	{r,s}	
Ø	Ø Ø		

Solution 4.2

Solution 4.3

Suppression des ε -transitions:

	a	b	С
Р	{p}	${p,q}$	${p,q,r}$
q	{p,q}	${p,q,r}$	${p,q,r}$
r	{p,q,r}	${p,q,r}$	${p,q,r}$

Solution 4.3

Solution 4.3

δ	a	b	С
$\longrightarrow \{p\}$	{p}	${p,q}$	${p,q,r}$
{p,q}	{p,q}	${p,q,r}$	${p,q,r}$
* {p,q,r}	{p,q,r}	${p,q,r}$	${p,q,r}$

Exercice 5

Écrivez une fonction C qui implémente cet automate et renvoie le numéro d'état accepteur.

Solution 4.3

Solution 5

Solution 5

```
int automate() {
int state = 8;
char c;
while (true) {
    switch state {
        case 8:
            if (next_char() == 'W') state = 4;
            else if (next_char() == 'l') state = 9;
            else if (alpha(c)) state = 3;
            else state = 8;
            read_next();
            break;
```

Solution 5