

Year 12 Specialist TEST 1

Friday 9 February 2018
TIME: 5 mins reading 40 minutes working

Classpads **allowed!**37 marks 7 Questions

Name:		
Teacher [.]		

Note: All part questions worth more than 2 marks require working to obtain full marks.

Some useful Formulae

Cartesian form				
z = a + bi	$\overline{z} = a - bi$			
$\operatorname{Mod}(z) = z = \sqrt{a^2 + b^2} = r$	$\operatorname{Arg}(z) = \theta$, $\tan \theta = \frac{b}{a}$, $-\pi < \theta \le \pi$			
$ z_1 z_2 = z_1 z_2 $	$\left \frac{z_1}{\overline{z_2}}\right = \frac{ z_1 }{\overline{z_2}}$			
$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$	$\arg\left(\frac{z_1}{\overline{z_2}}\right) = \arg(z_1) - \arg(z_2)$			
$z\bar{z}= z ^2$	$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$			
$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$			
Polar form				
$z = a + bi = r(\cos\theta + i\sin\theta) = r\cos\theta$	$\overline{z} = r \operatorname{cis}(-\theta)$			
$z_1 z_2 = r_1 r_2 \operatorname{cis} (\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 - \theta_2)$			
$\operatorname{cis}(\theta_1 + \theta_2) = \operatorname{cis} \theta_1 \operatorname{cis} \theta_2$	$\operatorname{cis}(-\theta) = \frac{1}{\operatorname{cis}\theta}$			
De Moivres theorem				
$z^n = z ^n \operatorname{cis}(n\theta)$	$(\operatorname{cis} \theta)^n = \operatorname{cos} n\theta + i \operatorname{sin} n\theta$			
$z^{rac{1}{q}} = r^{rac{1}{q}} \left(\cos rac{ heta + 2\pi k}{q} + i \sin rac{ heta + 2\pi k}{q} ight), ext{ for } k ext{ an integer}$				

$\cos^2 x + \sin^2 x = 1$	$1 + \tan^2 x = \sec^2 x$	
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\cos 2x = \cos^2 x - \sin^2 x$ $= 2\cos^2 x - 1$ $= 1 - 2\sin^2 x$	
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$	$\sin 2x = 2\sin x \cos x$	
$\tan (x + y) = \frac{\tan x + \tan y}{1 + \tan x \tan y}$	$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	
$\cos A \cos B = \frac{1}{2} (\cos(A - B) + \cos(A + B))$	$\sin A \cos B = \frac{1}{2} \left(\sin(A+B) + \sin(A-B) \right)$	
$\sin A \sin B = \frac{1}{2} \left(\cos(A - B) - \cos(A + B) \right)$	$\cos A \sin B = \frac{1}{2} \left(\sin(A+B) - \sin(A-B) \right)$	

Note: All part questions worth more than 2 marks require working to obtain full marks.

Q1) (2, 2, 2, 2 & 1 = 9 marks)

If w = 2 - 2i and z = 9 - 5i determine exactly:

- a) W
- b) $\frac{w}{z}$
- c) $Z\overline{W}$
- d) $W^{\overline{Z}}$
- e) What do you notice about (c) and (d)?

Q2 (2 & 2 = 4 marks)

Express each of the following into Cartesian form, a + bi

a)
$$7cis\left(-\frac{2\pi}{3}\right)$$

Q4 (3 marks)

Determine z in polar form given that w and zw have been drawn below.

Q5 (5, 3 & 3 = 11 marks)

a) Determine all the roots of the equation $z^5=1$ - i , expressing them all in polar form with $r \ge 0$ and $-\pi < Argz \le \pi$

b) Plot the roots on the diagram below. (Note: each minor angle is $\ ^{20}$ radians.)

c) The roots form the vertices of a pentagon. Determine the value for the perimeter of the pentagon to two decimal places.

Q6 (5 marks)

Determine, using de Moivre's theorem, an expression for $\sin 3\theta$ in terms of $\sin \theta$ only.

{Hint: start with $(\cos\theta + i\sin\theta)^3$ }

Q7 (5 marks)

Consider the points A and B in the complex plane. The perpendicular bisector of the line AB is represented by ${\rm Im}(z)=3{\rm Re}(z)$ - 1

If point A is 5 + ci and point B is d - 7i in the complex plane, determine the values of the constants c and d.