Мини-задача **#28** (2 балла)

Реализовать фильтр Блума для IP-адресов (через битсет).

Для конфигурации структуры данных на вход подается прогнозируемое общее количество запросов и желаемая вероятность ошибки.

В качестве хеш-функций использовать случайные функции из универсального семейства хеш-функций, описанного в главе об универсальном хешировании.

*понятно, что гарантии на их свойства слабые, но для примера будем использовать их.

Алгоритмы и структуры данных

Фильтр Блума, алгоритм Каргера поиска наименьшего разреза в графе

Хеш-множества

Операции:

1. find(value) $\rightarrow 0(1)$

- 7. insert(value) -> 0(1)
- 8. remove(value) $\rightarrow 0(1)$

Спойлер: хеш-таблицы лучше здесь (при правильной реализации дадут O(1))

Операции:

1. find(value) $\rightarrow 0(1)$

- 7. insert(value) -> 0(1)
 8. remove(value) -> 0(1)

Спойлер: хеш-таблицы лучше здесь (при правильной реализации дадут O(1))

Хеш-множества

Можем ли мы лучше?

Операции:

В каком-то смысле да.

1. find(value) $\rightarrow 0(1)$

- -----
- 7. insert(value) -> 0(1)
- 8. remove(value) \rightarrow 0(1)

Спойлер: хеш-таблицы лучше здесь (при правильной реализации дадут O(1))

Множества

Операции:

```
    lookup(value): V -> {True, False}: -> 0(1)
    insert(value): -> 0(1)
```

Операции:

```
1. lookup(value): V -> {True, False}: -> 0(1)
```

2. insert(value): -> 0(1)

При этом:

1. Структура данных будет намного эффективнее по памяти, чем хеш-таблица/хеш-множество

Операции:

- 1. lookup(value): V -> {True, False}: -> 0(1)
- 2. insert(value): -> 0(1)

При этом:

- 1. Структура данных будет намного эффективнее по памяти, чем хеш-таблица/хеш-множество
- 2. Но функции lookup может давать ложноположительный ответ.

Операции:

- 1. lookup(value): V -> {True, False}: -> 0(1)
- 2. insert(value): -> 0(1)

При этом:

- 1. Структура данных будет намного эффективнее по памяти, чем хеш-таблица/хеш-множество
- 2. Но функции lookup может давать ложноположительный ответ. T.e. вы никогда не звали insert от некоторого значения, a lookup от него при этом возвращает True.

Применения:

- 1. Исторически использовали для проверки орфографии.
 - Правильные слова добавлялись в фильтр Блума
 - Редактор текста проверял каждое слово: есть оно в фильтре или нет.

Применения:

- 1. Исторически использовали для проверки орфографии.
 - Правильные слова добавлялись в фильтр Блума
 - Редактор текста проверял каждое слово: есть оно в фильтре или нет.

Сильная экономия памяти и времени (важно для старых машин)

Применения:

- 1. Исторически использовали для проверки орфографии.
 - Правильные слова добавлялись в фильтр Блума
 - Редактор текста проверял каждое слово: есть оно в фильтре или нет.

Сильная экономия памяти и времени (важно для старых машин)

Ложноположительное срабатывание? Ну что ж, это не самый надежный spellchecker.

Применения:

- 1. Исторически использовали для проверки орфографии,
- 2. Проверка надежности пароля

Применения:

- 1. Исторически использовали для проверки орфографии,
- 2. Проверка надежности пароля,
- 3. Первый этап реализации кэшей, особенно в сетевых приложениях, особенно на железе;

http://wiki.squid-cache.org/SquidFaq/CacheDigests

Применения:

- 1. Исторически использовали для проверки орфографии,
- 2. Проверка надежности пароля,
- 3. Первый этап реализации кэшей, особенно в сетевых приложениях, особенно на железе;

```
http://wiki.squid-cache.org/SquidFaq/CacheDigests
```

4. Первая проверка перед долго операцией доступа к диску в базе данных

												Массив
--	--	--	--	--	--	--	--	--	--	--	--	--------

1	0	0	1	0	0	0	0	1	1	1	0	1	0	0	1
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Массив битов!

1	0	0	1	0	0	0	0	1	1	1	0	1	0	0	1
			1			l		l		l					1

Массив битов!

Массив битов!

При этом говорят, что если в фильтре блума S всего |S| объектов, то мы используем n / |S| битов на каждый объект.

Массив битов!

При этом говорят, что если в фильтре блума S всего |S| объектов, то мы используем n / |S| битов на каждый объект.

Что обычно НАМНОГО меньше, чем если бы мы хранили сами объекты или указатели на них.

Массив битов!

При этом говорят, что если в фильтре блума S всего |S| объектов, то мы используем n / |S| битов на каждый объект.

Что обычно НАМНОГО меньше, чем если бы мы хранили сами объекты или указатели на них.

Пример: фильтр для IP адресов. Если бы хранили их плоско, то каждая запись - 4 байта.

В фильтре блума часто хватает 8 бит.

Массив битов!

При этом говорят, что если в фильтре блума S всего |S| объектов, то мы используем n / |S| битов на каждый объект.

Массив битов!

BitSet, обычно реализуется как массив из int-ов, в каждом из которых используются биты.

И при этом есть набор хеш-функций $h_1,h_2,\ldots,h_k:values o\{0,\ldots,n-1\}$

При этом говорят, что если в фильтре блума S всего |S| объектов, то мы используем n / |S| битов на каждый объект.

Массив битов!

BitSet, обычно реализуется как массив из int-ов, в каждом из которых используются биты.

И при этом есть набор хеш-функций $h_1,h_2,\ldots,h_k:values o\{0,\ldots,n-1\}$

1) insert(v): безусловно ставим k единиц: $A[h_1(v)] = 1, A[h_2(v)] = 1, \ldots, A[h_k(v)] = 1.$

При этом говорят, что если в фильтре блума S всего |S| объектов, то мы используем n / |S| битов на каждый объект.

Массив битов!

BitSet, обычно реализуется как массив из int-ов, в каждом из которых используются биты.

И при этом есть набор хеш-функций $h_1,h_2,\ldots,h_k:values o\{0,\ldots,n-1\}$

- 1) insert(v): безусловно ставим k единиц: $A[h_1(v)] = 1, A[h_2(v)] = 1, \ldots, A[h_k(v)] = 1.$
- 2) lookup(v)?

При этом говорят, что если в фильтре блума S всего |S| объектов, то мы используем n / |S| битов на каждый объект.

Массив битов!

BitSet, обычно реализуется как массив из int-ов, в каждом из которых используются биты.

И при этом есть набор хеш-функций $h_1,h_2,\ldots,h_k:values o\{0,\ldots,n-1\}$

- 1) insert(v): безусловно ставим k единиц: $A[h_1(v)] = 1, A[h_2(v)] = 1, \ldots, A[h_k(v)] = 1.$
- 2) lookup(v): бездумно проверяем k бит на единички: $if\ A[h_1(v)] == 1,\ \dots,\ A[h_k(v)] == 1 \Rightarrow v \in S$

Пусть есть три хеш-функции h1, h2, h3.

insert(13)

Массив битов!

Пусть есть три хеш-функции h1, h2, h3.

$$insert(13) \Rightarrow h1(13) = 5, h2(13) = 0, h3(13) = 13$$

Массив битов!

Массив битов!

BitSet, обычно реализуется как массив из int-ов, в каждом из которых используются биты.

Пусть есть три хеш-функции h1, h2, h3.

```
insert(13) => h1(13) = 5, h2(13) = 0, h3(13) = 13
insert(127) => h1(127) = 3, h2(127) = 6, h3(127) = 13
```


Массив битов!

BitSet, обычно реализуется как массив из int-ов, в каждом из которых используются биты.

Пусть есть три хеш-функции h1, h2, h3.

insert(13) =>
$$h1(13)$$
 = 5, $h2(13)$ = 0, $h3(13)$ = 13
insert(127) => $h1(127)$ = 3, $h2(127)$ = 6, $h3(127)$ = 13
lookup(44) => $h1(44)$ = 0, $h2(44)$ = 13, $h3(44)$ = 3

Массив битов!

BitSet, обычно реализуется как массив из int-ов, в каждом из которых используются биты.

Пусть есть три хеш-функции h1, h2, h3.

insert(13) =>
$$h1(13)$$
 = 5, $h2(13)$ = 0, $h3(13)$ = 13
insert(127) => $h1(127)$ = 3, $h2(127)$ = 6, $h3(127)$ = 13
lookup(44) => $h1(44)$ = 0, $h2(44)$ = 13, $h3(44)$ = 3

Это и есть пример false positive. Не добавляли 44, но фильтр думает иначе.

Массив битов!

BitSet, обычно реализуется как массив из int-ов, в каждом из которых используются биты.

Пусть есть три хеш-функции h1, h2, h3.

insert(13) =>
$$h1(13)$$
 = 5, $h2(13)$ = 0, $h3(13)$ = 13
insert(127) => $h1(127)$ = 3, $h2(127)$ = 6, $h3(127)$ = 13
lookup(44) => $h1(44)$ = 0, $h2(44)$ = 13, $h3(44)$ = 3

Это и есть пример false positive. Не добавляли 44, но фильтр думает иначе.

Массив битов!

BitSet, обычно реализуется как массив из int-ов, в каждом из которых используются биты.

Пусть есть три хеш-функции h1, h2, h3.

insert(13) =>
$$h1(13)$$
 = 5, $h2(13)$ = 0, $h3(13)$ = 13
insert(127) => $h1(127)$ = 3, $h2(127)$ = 6, $h3(127)$ = 13

0(1)

Это и есть пример false positive. Не добавляли 44, но фильтр думает иначе.

 $lookup(44) \Rightarrow h1(44) = 0, h2(44) = 13, h3(44) = 3$

Насколько часто такое бывает?

Немного теории вероятностей #1

 Ω — множество элементарных событий (все, что может произойти)

 $p:\Omega o [0,1]$ — отображает элементарные события $\sum_{i\in\Omega}p(i)=1$

Немного теории вероятностей #2

Событие – подмножество $S \subseteq \Omega$

Вероятность события S:
$$Pr[S] = \sum_{i \in S} p(i)$$

Немного теории вероятностей #2

Cобытие – подмножество $S \subseteq \Omega$

Вероятность события S:
$$Pr[S] = \sum\limits_{i \in S} p(i)$$

Пример #4: Событие — при броске двух игральных костей выпала сумма 7

Назовите вероятность такого события?

$$S = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

$$Pr[S] = \sum\limits_{i \in S} p(i) = rac{1}{6}$$

Пусть есть два события $X,Y\subseteq \Omega$

Пусть есть два события $X,Y\subseteq \Omega$

Тогда условная вероятность срабатывания X при условии события осуществления Y:

Пусть есть два события $X,Y\subseteq\Omega$

Тогда условная вероятность срабатывания X при условии события осуществления Y:

$$Pr[X|Y] = rac{Pr[X \cap Y]}{Pr[Y]}$$

Cобытие – подмножество $S \subseteq \Omega$

Вероятность события S:
$$Pr[S] = \sum\limits_{i \in S} p(i)$$

Пример #4: Событие — при броске двух игральных костей выпала сумма 7

Назовите вероятность такого события?

$$S = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

$$Pr[S] = \sum\limits_{i \in S} p(i) = rac{1}{6}$$

Пример #13: Чему равна вероятность того, что вам выпала хотя бы одна единица, если вы бросили две игральные кости на сумму 7?

$$Pr[X|Y] = rac{Pr[X \cap Y]}{Pr[Y]}$$

$$Pr[X|Y] = rac{Pr[X \cap Y]}{Pr[Y]}$$

$$egin{align} Pr[X|Y] &= rac{Pr[X\cap Y]}{Pr[Y]_{ inysq}} \ Y &= \{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\} \ Pr[Y] &= \sum p(i) = rac{6}{36} = rac{1}{6} \ \end{array}$$

$$egin{align} Pr[X|Y] &= rac{Pr[X\cap Y]}{Pr[Y]_{rac{a}{2}}} \ Y &= \{ igl(1,6igr), (2,5), (3,4), (4,3), (5,2), igl(6,1) \} \ Pr[Y] &= \sum_{r} p(i) = rac{6}{36} = rac{1}{6} \ \end{array}$$

$$egin{aligned} & Pr[X|Y] = rac{Pr[X\cap Y]}{Pr[Y]_{st}} \ & Y = \{ igl(1,6igr), (2,5), (3,4), (4,3), (5,2), igl(6,1) \} \ & Pr[X\cap Y] = rac{2}{36} \ & Pr[Y] = \sum p(i) = rac{6}{36} = rac{1}{6} \end{aligned}$$

$$Pr[X|Y] = rac{Pr[X \cap Y]}{Pr[Y]_{*}} = rac{12}{36} = rac{1}{3}$$

$$Y = \{ (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) \} \qquad Pr[X \cap Y] = rac{2}{36}$$

$$Pr[Y] = \sum\limits_{i \in S} p(i) = rac{6}{36} = rac{1}{6}$$

Пусть есть два события $X,Y\subseteq \Omega$

Такие события называются независимыми, если:

$$Pr[X \cap Y] = Pr[X] * Pr[Y]$$

Пусть есть два события $X,Y\subseteq \Omega$

Такие события называются независимыми, если:

$$Pr[X\cap Y]=Pr[X]*Pr[Y]$$

Тогда: Pr[X|Y] = Pr[X] и Pr[Y|X] = Pr[Y] (по определению условной вероятности)

Пусть есть два события $X,Y\subseteq \Omega$

Такие события называются независимыми, если:

$$Pr[X\cap Y]=Pr[X]*Pr[Y]$$

Тогда: Pr[X|Y] = Pr[X] и Pr[Y|X] = Pr[Y] (по определению условной вероятности)

И тогда если X и Y независимые случайные величины, то: $\mathbb{E}[X*Y] = \mathbb{E}[X]*\mathbb{E}[Y]$ (док-во - упражнение).

Вот и все, что нам нужно для анализа вероятности ложноположительного срабатывания фильтра Блума!

(и этой лекции в целом)

Фильтр Блума: реализация

Массив битов!

BitSet, обычно реализуется как массив из int-ов, в каждом из которых используются биты.

Пусть есть три хеш-функции h1, h2, h3.

insert(13) =>
$$h1(13)$$
 = 5, $h2(13)$ = 0, $h3(13)$ = 13
insert(127) => $h1(127)$ = 3, $h2(127)$ = 6, $h3(127)$ = 13

0(1)

lookup(44) => h1(44) = 0, h2(44) = 13, h3(44) = 3

0(1)

Это и есть приме false positive. Не добавляли 44, но фильтр думает иначе.

Насколько часто такое бывает?

```
Пусть: h_1,h_2,\ldots,h_k:values 
ightarrow \{0,\ldots,n-1\}
```

1. Равномерно распределяют любые ключи по элементам нашего битсета (т. е. вероятность попасть в любой бит - 1/n)


```
Пусть: h_1,h_2,\ldots,h_k:values 
ightarrow \{0,\ldots,n-1\}
```

- 1. Равномерно распределяют любые ключи по элементам нашего битсета (т. е. вероятность попасть в любой бит 1/n)
- 2. Независимы (как друг от друга, так и для вызова разных ключей).

Пусть:
$$h_1,h_2,\ldots,h_k:values
ightarrow \{0,\ldots,n-1\}$$

- 1. Равномерно распределяют любые ключи по элементам нашего битсета (т. е. вероятность попасть в любой бит 1/n)
- 2. Независимы (как друг от друга, так и для вызова разных ключей).

Тогда чему равна вероятность того, что в i-ый бит не будет поставлена 1 при вызове некоторой хеш-функции h от некоторого значения v?

Пусть:
$$h_1,h_2,\ldots,h_k:values
ightarrow \{0,\ldots,n-1\}$$

- 1. Равномерно распределяют любые ключи по элементам нашего битсета (т. е. вероятность попасть в любой бит 1/n)
- 2. Независимы (как друг от друга, так и для вызова разных ключей).

Тогда чему равна вероятность того, что в i-ый бит не будет поставлена 1 при вызове некоторой хеш-функции h от некоторого значения v? $1-\frac{1}{n}$

Пусть:
$$h_1,h_2,\ldots,h_k:values
ightarrow \{0,\ldots,n-1\}$$

- 1. Равномерно распределяют любые ключи по элементам нашего битсета (т. е. вероятность попасть в любой бит 1/n)
- 2. Независимы (как друг от друга, так и для вызова разных ключей).

Тогда чему равна вероятность того, что в і-ый бит не будет поставлена 1 при вызове некоторой хеш-функции h от некоторого значения v? $1-\frac{1}{n}$

Тогда чему равна вероятность того, что после работы всех k хеш-функций v в i-ый бит не будет поставлена 1?

Пусть: $h_1,h_2,\ldots,h_k:values
ightarrow \{0,\ldots,n-1\}$

- 1. Равномерно распределяют любые ключи по элементам нашего битсета (т. е. вероятность попасть в любой бит 1/n)
- 2. Независимы (как друг от друга, так и для вызова разных ключей).

Тогда чему равна вероятность того, что в і-ый бит не будет поставлена 1 при вызове некоторой хеш-функции h от некоторого значения v? $1-\frac{1}{n}$

Тогда чему равна вероятность того, что после работы всех $(1-\frac{1}{n})^k$ k хеш-функций v в i-ый бит не будет поставлена 1?

Пусть: $h_1,h_2,\ldots,h_k:values
ightarrow \{0,\ldots,n-1\}$

- 1. Равномерно распределяют любые ключи по элементам нашего битсета (т. е. вероятность попасть в любой бит 1/n)
- 2. Независимы (как друг от друга, так и для вызова разных ключей).

Тогда чему равна вероятность того, что в і-ый бит не будет поставлена 1 при вызове некоторой хеш-функции h от некоторого значения v? $1-\frac{1}{n}$

Тогда чему равна вероятность того, что после работы всех $(1-\frac{1}{n})^k$ k хеш-функций v в i-ый бит не будет поставлена 1?

Теперь пусть мы вставили уже |S| значений в фильтр Блума. Какова вероятность того, что і-ый бит при это остался равен 0?

Пусть: $h_1,h_2,\ldots,h_k:values
ightarrow \{0,\ldots,n-1\}$

- 1. Равномерно распределяют любые ключи по элементам нашего битсета (т. е. вероятность попасть в любой бит 1/n)
- 2. Независимы (как друг от друга, так и для вызова разных ключей).

Тогда чему равна вероятность того, что в і-ый бит не будет поставлена 1 при вызове некоторой хеш-функции h от некоторого значения v? $1-\frac{1}{n}$

Тогда чему равна вероятность того, что после работы всех $(1-\frac{1}{n})^k$ k хеш-функций v в i-ый бит не будет поставлена 1?

Теперь пусть мы вставили уже |S| значений в фильтр Блума. Какова вероятность того, что і-ый бит при это остался равен 0? $(1-\frac{1}{n})^{k|S|}$

Пусть: $h_1,h_2,\ldots,h_k:values
ightarrow \{0,\ldots,n-1\}$

- 1. Равномерно распределяют любые ключи по элементам нашего битсета (т. е. вероятность попасть в любой бит 1/n)
- 2. Независимы (как друг от друга, так и для вызова разных ключей).

Тогда чему равна вероятность того, что в і-ый бит не будет поставлена 1 при вызове некоторой хеш-функции h от некоторого значения v? $1-\frac{1}{n}$

Тогда чему равна вероятность того, что после работы всех $(1-\frac{1}{n})^k$ k хеш-функций v в i-ый бит не будет поставлена 1?

Теперь пусть мы вставили уже |S| значений в фильтр Блума. Какова вероятность того, что і-ый бит при это остался равен 0? $(1-\frac{1}{n})^{k|S|}$

Инвертируем: вероятность того, что после вставки |S| элементов і-ый бит стал 1-ой?

Пусть: $h_1,h_2,\ldots,h_k:values
ightarrow \{0,\ldots,n-1\}$

- 1. Равномерно распределяют любые ключи по элементам нашего битсета (т. е. вероятность попасть в любой бит 1/n)
- 2. Независимы (как друг от друга, так и для вызова разных ключей).

Тогда чему равна вероятность того, что в і-ый бит не будет поставлена 1 при вызове некоторой хеш-функции h от некоторого значения v? $1-\frac{1}{n}$

Тогда чему равна вероятность того, что после работы всех $(1-\frac{1}{n})^k$ k хеш-функций v в i-ый бит не будет поставлена 1?

Теперь пусть мы вставили уже |S| значений в фильтр Блума. Какова вероятность того, что і-ый бит при это остался равен 0? $(1-\frac{1}{n})^{k|S|}$

Инвертируем: вероятность того, что после вставки |S| элементов і-ый бит стал 1-ой? $1-(1-\frac{1}{n})^{k|S|}$

Поисследуем выражение $(1-rac{1}{n})^{k|S|}$

Поисследуем выражение $(1-rac{1}{n})^{k|S|}$

$$(1-rac{1}{n})^{k|S|}=((1-rac{1}{n})^n)^{rac{k|S|}{n}}$$

Поисследуем выражение $(1-rac{1}{n})^{k|S|}$

$$(1-rac{1}{n})^{k|S|}=((1-rac{1}{n})^n)^{rac{k|S|}{n}}$$

$$\lim_{x o \infty} (1 - rac{1}{x})^x = e^{-1}$$
 — следствие из второго замечательного предела

Поисследуем выражение $(1-rac{1}{n})^{k|S|}$

$$(1-rac{1}{n})^{k|S|}=((1-rac{1}{n})^n)^{rac{k|S|}{n}}pprox (e^{-1})^{rac{k|S|}{n}}$$

при достаточно больших п

$$\lim_{x o \infty} (1 - rac{1}{x})^x = e^{-1}$$
 — следствие из второго замечательного предела

Поисследуем выражение $(1-rac{1}{n})^{k|S|}$

$$(1-rac{1}{n})^{k|S|}=((1-rac{1}{n})^n)^{rac{k|S|}{n}}pprox (e^{-1})^{rac{k|S|}{n}}=e^{-rac{k|S|}{n}}$$

при достаточно больших п

$$\lim_{x o \infty} (1 - rac{1}{x})^x = e^{-1}$$
 — следствие из второго замечательного предела

Пусть теперь $x \notin S$

Что значит, что произошло ложноположительное срабатывание фильтра Блума для элемента х?

Пусть теперь $x \not\in S$

Что значит, что произошло ложноположительное срабатывание фильтра Блума для элемента х? Нужно, чтобы все k битов, в которые его отображают хеш-функции уже были заняты.

Пусть теперь $x \notin S$

Что значит, что произошло ложноположительное срабатывание фильтра Блума для элемента х? Нужно, чтобы все k битов, в которые его отображают хеш-функции уже были заняты.

Шанс того, что 1 бит выставлен (после вставки
$$|S|$$
 элементов) $pprox 1 - e^{-\frac{k|S|}{n}}$

Шанс того, что все k битов выставлены?

Пусть теперь $x \notin S$

Что значит, что произошло ложноположительное срабатывание фильтра Блума для элемента х? Нужно, чтобы все k битов, в которые его отображают хеш-функции уже были заняты.

Шанс того, что 1 бит выставлен (после вставки
$$|S|$$
 элементов) $pprox 1 - e^{-\frac{k|S|}{n}}$

Шанс того, что все k битов выставлены? $pprox (1 - e^{-rac{k|S|}{n}})^k$

Пусть теперь $x \not\in S$

Что значит, что произошло ложноположительное срабатывание фильтра Блума для элемента х? Нужно, чтобы все k битов, в которые его отображают хеш-функции уже были заняты.

Шанс того, что 1 бит выставлен (после вставки
$$|S|$$
 элементов) $pprox 1 - e^{-\frac{k|S|}{n}}$

Шанс того, что все k битов выставлены? $pprox (1-e^{-rac{k|S|}{n}})^k$

Теперь пусть $b=rac{n}{|S|}$ фиксированная величина (кол-во битов на объект)

Пусть теперь $x \notin S$

Что значит, что произошло ложноположительное срабатывание фильтра Блума для элемента х? Нужно, чтобы все k битов, в которые его отображают хеш-функции уже были заняты.

Шанс того, что 1 бит выставлен (после вставки |S| элементов) $pprox 1 - e^{-\frac{k|S|}{n}}$

Шанс того, что все k битов выставлены? $pprox (1 - e^{-rac{k|S|}{n}})^k$

Теперь пусть $b=rac{n}{|S|}$ фиксированная величина (кол-во битов на объект)

Тогда $(1-e^{-rac{k}{b}})^k$ достигает минимума в точке k=ln(2)*b

А вероятность ошибки будет: $\epsilon = (\frac{1}{2})^{ln(2)*b}$

Теперь пусть $b=rac{n}{|S|}$ фиксированная величина (кол-во битов на объект)

Тогда $(1-e^{-rac{k}{b}})^k$ достигает минимума в точке k=ln(2)*b

А вероятность ошибки будет: $\epsilon = (rac{1}{2})^{ln(2)*b}$

Вспоминаем: n - сколько битов используем, |S| - сколько объектов добавляли, k - сколько хеш-функций взяли.

Теперь пусть $b=rac{n}{|S|}$ фиксированная величина (кол-во битов на объект)

Тогда $(1-e^{-rac{k}{b}})^k$ достигает минимума в точке k=ln(2)*b

А вероятность ошибки будет: $\epsilon = (\frac{1}{2})^{ln(2)*b}$

Вспоминаем: n - сколько битов используем, |S| - сколько объектов добавляли, k - сколько хеш-функций взяли.

Допустим: поддерживаем b равное 8, т.е. используем на каждый объект всего 8 битов.

Теперь пусть $b=rac{n}{|S|}$ фиксированная величина (кол-во битов на объект)

Тогда $(1-e^{-rac{k}{b}})^k$ достигает минимума в точке k=ln(2)*b

А вероятность ошибки будет: $\epsilon = (\frac{1}{2})^{ln(2)*b}$

Вспоминаем: n - сколько битов используем, |S| - сколько объектов добавляли, k - сколько хеш-функций взяли.

Допустим: поддерживаем b равное 8, т.е. используем на каждый объект всего 8 битов.

Тогда
$$k=ln(2)*b pprox 0.69*8 < 6$$

И
$$\epsilon pprox (rac{1}{2})^{0.69*8} pprox 0.02$$

Теперь пусть $b=rac{n}{|S|}$ фиксированная величина (кол-во битов на объект)

Тогда $(1-e^{-rac{k}{b}})^k$ достигает минимума в точке k=ln(2)*b

А вероятность ошибки будет: $\epsilon = (\frac{1}{2})^{ln(2)*b}$

Вспоминаем: n - сколько битов используем, |S| - сколько объектов добавляли, k - сколько хеш-функций взяли.

Допустим: поддерживаем b равное 8, т.е. используем на каждый объект всего 8 битов.

Тогда
$$k=ln(2)*bpprox 0.69*8<6$$
 И $\epsilonpprox (rac{1}{2})^{0.69*8}pprox 0.02$

Т.е. при 8 битах на объект и 6 хеш-функциях получаем ошибку всего 2%!

Фильтр Блума: выводы

Как обычно работают с фильтром Блума:

- 1. Оцениваете, сколько элементов максимально будет в фильтре
- 2. Решаете, какая вероятность ошибки вас устроит

Фильтр Блума: выводы

Как обычно работают с фильтром Блума:

- 1. Оцениваете, сколько элементов максимально будет в фильтре
- 2. Решаете, какая вероятность ошибки вас устроит
- 3. Используя эти две величины получаете размер битсета и количество хеш-функций

Фильтр Блума: выводы

Как обычно работают с фильтром Блума:

- 1. Оцениваете, сколько элементов максимально будет в фильтре
- 2. Решаете, какая вероятность ошибки вас устроит
- 3. Используя эти две величины получаете размер битсета и количество хеш-функций
- 4. Получаете структуру данных с гарантированными свойствами

Мини-задача **#28** (2 балла)

Реализовать фильтр Блума для IP-адресов (через битсет).

Для конфигурации структуры данных на вход подается прогнозируемое общее количество запросов и желаемая вероятность ошибки.

В качестве хеш-функций использовать случайные функции из универсального семейства хеш-функций, описанного в главе об универсальном хешировании.

Мини-задача **#28** (2 балла)

Реализовать фильтр Блума для IP-адресов (через битсет).

Для конфигурации структуры данных на вход подается прогнозируемое общее количество запросов и желаемая вероятность ошибки.

В качестве хеш-функций использовать случайные функции из универсального семейства хеш-функций, описанного в главе об универсальном хешировании.

*понятно, что гарантии на их свойства слабые, но для примера будем использовать их.

Что еще можно решить, применив рандомизированный алгоритм?

Что еще можно решить, применив рандомизированный алгоритм?

Много чего! Например, задачи на графы.

Пусть есть неориентированный граф $\,G=(V,E)\,$

Пусть есть неориентированный граф $\,G=(V,E)\,$

Разрез графа - разбиение V на два непересекающихся непустых множества A и B.

Пусть есть неориентированный граф $\,G=(V,E)\,$

Разрез графа - разбиение V на два непересекающихся непустых множества A и B.

Пересекающие ребра разреза (A,B) - ребра, начинающиеся в A и заканчивающиеся в B.

Пусть есть неориентированный граф $\,G=(V,E)\,$

Разрез графа - разбиение V на два непересекающихся непустых множества A и B.

Пересекающие ребра разреза (A,B) - ребра, начинающиеся в A и заканчивающиеся в B.

Минимальный разрез в графе - разрез с минимальным количеством пересекающих ребер.

Пусть есть неориентированный граф G=(V,E)

Разрез графа - разбиение V на два непересекающихся непустых множества A и B.

Пересекающие ребра разреза (A,B) - ребра, начинающиеся в A и заканчивающиеся в B.

Минимальный разрез в графе - разрез с минимальным количеством пересекающих ребер.

Это минимальный разрез?

Пусть есть неориентированный граф $\,G=(V,E)\,$

Разрез графа - разбиение V на два непересекающихся непустых множества A и B.

Пересекающие ребра разреза (A,B) - ребра, начинающиеся в A и заканчивающиеся в B.

Минимальный разрез в графе - разрез с минимальным количеством пересекающих ребер.

Это минимальный разрез?

Нет, а вот один из минимальных.

Пусть есть неориентированный граф $\,G=(V,E)\,$

Разрез графа - разбиение V на два непересекающихся непустых множества A и B.

Пересекающие ребра разреза (A,B) - ребра, начинающиеся в A и заканчивающиеся в B.

Минимальный разрез в графе - разрез с минимальным количеством пересекающих ребер.

Задача о минимальном разрезе: по заданному неориентированному графу (возможно с кратными ребрами) найти его минимальный разрез.

Задача о минимальном разрезе: по заданному неориентированному графу (возможно с кратными ребрами) найти его минимальный разрез.

А зачем?

Задача о минимальном разрезе: по заданному неориентированному графу (возможно с кратными ребрами) найти его минимальный разрез.

А зачем?

1. Искать слабые места в транспортной инфраструктуре (Бердское шоссе, например)

Задача о минимальном разрезе: по заданному неориентированному графу (возможно с кратными ребрами) найти его минимальный разрез.

А зачем?

- 1. Искать слабые места в транспортной инфраструктуре (Бердское шоссе, например)
- 2. Искать кластеры в социальных сетях

Задача о минимальном разрезе: по заданному неориентированному графу (возможно с кратными ребрами) найти его минимальный разрез.

А зачем?

- 1. Искать слабые места в транспортной инфраструктуре (Бердское шоссе, например)
- 2. Искать кластеры в социальных сетях
- 3. Искать одинаковые объекты на изображениях

Задача о минимальном разрезе: по заданному неориентированному графу (возможно с кратными ребрами) найти его минимальный разрез.

А сколько таких разрезов вообще существует?

Задача о минимальном разрезе: по заданному неориентированному графу (возможно с кратными ребрами) найти его минимальный разрез.

А сколько таких разрезов вообще существует?

 $2^{|V|}-2$ т.к. это просто множество всех подмножеств вершин (кроме пустого и самого множества вершин)

Так что брут-форс - не вариант в достаточно больших графах.

"Новый" алгоритм: опубликован в 1993 году!

"Новый" алгоритм: опубликован в 1993 году!

Алгоритм:

"Новый" алгоритм: опубликован в 1993 году!

Алгоритм:

Пока в графе больше двух вершин:

1. Выбираем случайное ребро (u,v) из оставшихся,

"Новый" алгоритм: опубликован в 1993 году!

Алгоритм:

- 1. Выбираем случайное ребро (u,v) из оставшихся,
- 2. Удаляем (стягиваем) это ребро, сливая и и v в одну вершину

"Новый" алгоритм: опубликован в 1993 году!

Алгоритм:

- 1. Выбираем случайное ребро (u,v) из оставшихся,
- 2. Удаляем (стягиваем) это ребро, сливая и и v в одну вершину,
- 3. Если получились петли (ребра из вершины в себя) удаляем.

"Новый" алгоритм: опубликован в 1993 году!

Алгоритм:

Да, это все*.

- 1. Выбираем случайное ребро (u,v) из оставшихся,
- 2. Удаляем (стягиваем) это ребро, сливая и и v в одну вершину,
- 3. Если получились петли (ребра из вершины в себя) удаляем.

"Новый" алгоритм: опубликован в 1993 году!

Алгоритм:

Да, это все*.

- 1. Выбираем случайное ребро (u,v) из оставшихся,
- 2. Удаляем (стягиваем) это ребро, сливая и и v в одну вершину,
- 3. Если получились петли (ребра из вершины в себя) удаляем.

^{*}Каждый раз при слиянии и и v запоминали, из каких старых новая получившаяся вершина состоит. Ответ - множества, из которых состоят последние две вершины.

Попробуем еще раз!

выбор ребра - случайный

Что здесь вообще происходит?

Действительно, алгоритм Каргера может находить минимальные разрезы в графе.

Действительно, алгоритм Каргера может находить минимальные разрезы в графе. А может и не находить.

Действительно, алгоритм Каргера может находить минимальные разрезы в графе. А может и не находить.

И весь вопрос в том, с какой вероятностью он найдет правильный ответ?

Действительно, алгоритм Каргера может находить минимальные разрезы в графе. А может и не находить.

И весь вопрос в том, с какой вероятностью он найдет правильный ответ? Зафиксируем граф G=(V,E) и его минимальный разрез (A,B)

Действительно, алгоритм Каргера может находить минимальные разрезы в графе. А может и не находить.

И весь вопрос в том, с какой вероятностью он найдет правильный ответ?

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Действительно, алгоритм Каргера может находить минимальные разрезы в графе. А может и не находить.

И весь вопрос в том, с какой вероятностью он найдет правильный ответ?

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Наблюдения:

1. Если мы хоть на одном шаге алгоритма взяли ребро из F - мы ошиблись, в ответе не получится (A,B).

Действительно, алгоритм Каргера может находить минимальные разрезы в графе. А может и не находить.

И весь вопрос в том, с какой вероятностью он найдет правильный ответ?

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Наблюдения:

- 1. Если мы хоть на одном шаге алгоритма взяли ребро из F мы ошиблись, в ответе не получится (A,B).
- 2. И наоборот: если на каждом шаге мы брали ребра из подграфа А или В => в ответе получим (A,B)

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Наблюдения:

- 1. Если мы хоть на одном шаге алгоритма взяли ребро из F мы ошиблись, в ответе не получится (A,B).
- 2. И наоборот: если на каждом шаге мы брали ребра из подграфа А или В => в ответе получим (A,B)

Тогда Pr[ycnex] = Pr[никогда не брали ребро из <math>F]

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Наблюдения:

- 1. Если мы хоть на одном шаге алгоритма взяли ребро из F мы ошиблись, в ответе не получится (A,B).
- 2. И наоборот: если на каждом шаге мы брали ребра из подграфа А или В => в ответе получим (A,B)

Тогда $Pr[ext{ycnex}] = Pr[ext{никогда}$ не брали ребро из F] Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Наблюдения:

- 1. Если мы хоть на одном шаге алгоритма взяли ребро из F мы ошиблись, в ответе не получится (A,B).
- 2. И наоборот: если на каждом шаге мы брали ребра из подграфа А или В => в ответе получим (A,B)

Тогда $Pr[ext{ycnex}] = Pr[ext{никогда}$ не брали ребро из F] Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[\lnot S_1 \cap \lnot S_2 \cap \ldots \cap \lnot S_{n-2}]$, где n = |V|

Начнем с простого, чем равно $Pr[S_1]$?

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[\lnot S_1 \cap \lnot S_2 \cap \ldots \cap \lnot S_{n-2}]$, где n = |V|

Начнем с простого, чем равно $Pr[S_1]$?

Пусть
$$|F|=k, |E|=m$$

Тогда $Pr[S_1] = rac{k}{m}$

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[\lnot S_1 \cap \lnot S_2 \cap \ldots \cap \lnot S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m,\; Pr[S_1]=rac{k}{m}$$

Заметим, что для любой вершины в графе количество смежных вершин (степень) > k

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[\lnot S_1 \cap \lnot S_2 \cap \ldots \cap \lnot S_{n-2}]$, где n = |V|

Пусть |F|=k, |E|=m, $Pr[S_1]=rac{k}{m}$

Заметим, что для любой вершины в графе количество смежных вершин (степень) > k

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$

Заметим, что для любой вершины в графе количество смежных вершин (степень) > k

А еще заметим, что сумма степеней всех вершин $\sum degree(v) = 2m$

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[\neg S_1 \cap \neg S_2 \cap \ldots \cap \neg S_{n-2}]$, где n = |V|

Пусть |F|=k, |E|=m, $Pr[S_1]=rac{k}{m}$

Заметим, что для любой вершины в графе количество смежных вершин (степень) > k

А еще заметим, что сумма степеней всех вершин

$$\sum_{v \in V} degree(v) = 2m$$

 $\sum_{v \in V} degree(v) \geq k*n$

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[\neg S_1 \cap \neg S_2 \cap \ldots \cap \neg S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$

Заметим, что для любой вершины в графе количество смежных вершин (степень) > k

А еще заметим, что сумма степеней всех вершин

$$\left\{egin{array}{l} \sum\limits_{v\in V} degree(v) = 2m \ \sum\limits_{v\in V} degree(v) \geq k*n \end{array}
ight\} \Rightarrow m \geq rac{k*n}{2}$$

Зафиксируем граф G=(V,E) и его минимальный разрез (A,B) F - множество пересекающих ребер.

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[\neg S_1 \cap \neg S_2 \cap \ldots \cap \neg S_{n-2}]$, где n = |V|

Пусть |F|=k, |E|=m, $Pr[S_1]=rac{k}{m}$

Заметим, что для любой вершины в графе количество смежных вершин (степень) > k

А еще заметим, что сумма степеней всех вершин

$$egin{aligned} rac{\sum\limits_{v \in V} degree(v) = 2m}{\sum\limits_{v \in V} degree(v) \geq k*n} \end{aligned}
ightarrow m \geq rac{k*n}{2} \, \Rightarrow Pr[S_1] \leq rac{2}{n} .$$

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Пусть |F|=k, |E|=m, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[\neg S_1 \cap \neg S_2] = ?$

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Пусть |F|=k, |E|=m, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[\neg S_1 \cap \neg S_2] = Pr[\neg S_2 | \neg S_1] * Pr[\neg S_1]$

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[
eg S_1 \cap
eg S_2] = Pr[
eg S_2 |
eg S_1] * Pr[
eg S_1]$

При этом: $Pr[\neg S_1] \geq (1-rac{2}{n})$

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[
eg S_1 \cap
eg S_2] = Pr[
eg S_2 |
eg S_1] * Pr[
eg S_1]$

При этом:
$$Pr[\lnot S_1] \geq (1-rac{2}{n}),$$
 $Pr[\lnot S_2|\lnot S_1] = 1-rac{k}{\#(ext{octabilitees pe6pa})}$

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[
eg S_1 \cap
eg S_2] = Pr[
eg S_2 |
eg S_1] * Pr[
eg S_1]$

При этом:
$$Pr[
eg S_1] \geq (1-rac{2}{n}),$$
 $Pr[
eg S_2|
eg S_1] = 1-rac{k}{\#(ext{octabilited pe6pa})}$

Повторим трюк с первой итерации: в получившемся графе (в котором уже n-1 вершин) тоже верно:

в разрез 141

 $\#(ext{octab}$ шиеся ребра $) \geq rac{k(n-1)}{2}$ т.к. каждая вершина задает разрез

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[
eg S_1 \cap
eg S_2] = Pr[
eg S_2 |
eg S_1] * Pr[
eg S_1]$

При этом:
$$Pr[
eg S_1] \geq (1-rac{2}{n}),$$
 $Pr[
eg S_2|
eg S_1] \geq (1-rac{2}{n-1})$

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[
eg S_1 \cap
eg S_2] = Pr[
eg S_2 |
eg S_1] * Pr[
eg S_1]$

При этом:
$$Pr[\lnot S_1] \geq (1-rac{2}{n}),$$
 $Pr[\lnot S_2|\lnot S_1] \geq (1-rac{2}{n-1})$ $\Rightarrow Pr[\lnot S_1 \cap \lnot S_2] \geq (1-rac{2}{n})(1-rac{2}{n-1})$

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[\lnot S_1 \cap \lnot S_2] = Pr[\lnot S_2 | \lnot S_1] * Pr[\lnot S_1]$

При этом:
$$Pr[\lnot S_1] \geq (1-rac{2}{n}), \ Pr[\lnot S_2|\lnot S_1] \geq (1-rac{2}{n-1})$$
 $\Rightarrow Pr[\lnot S_1 \cap \lnot S_2] \geq (1-rac{2}{n})(1-rac{2}{n-1})$

Продолжая рассуждения, получим: $Pr[\neg S_1 \cap \neg S_2 \cap \ldots \cap \neg S_{n-2}] =$

$$= Pr[\neg S_1]Pr[\neg S_2|\neg S_1]Pr[\neg S_3|\neg S_2 \cap \neg S_1]\dots Pr[\neg S_{n-2}|\neg S_{n-3}\cap\dots\cap\neg S_1] \geq$$

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[\lnot S_1 \cap \lnot S_2 \cap \ldots \cap \lnot S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[\lnot S_1 \cap \lnot S_2] = Pr[\lnot S_2 | \lnot S_1] * Pr[\lnot S_1]$

При этом:
$$Pr[\lnot S_1] \geq (1-rac{2}{n}),$$
 $Pr[\lnot S_2|\lnot S_1] \geq (1-rac{2}{n-1})$ $\Rightarrow Pr[\lnot S_1 \cap \lnot S_2] \geq (1-rac{2}{n})(1-rac{2}{n-1})$

Продолжая рассуждения, получим: $Pr[\neg S_1 \cap \neg S_2 \cap \ldots \cap \neg S_{n-2}] =$ $= Pr[\neg S_1]Pr[\neg S_2 | \neg S_1]Pr[\neg S_3 | \neg S_2 \cap \neg S_1] \ldots Pr[\neg S_{n-2} | \neg S_{n-3} \cap \ldots \cap \neg S_1] \geq$

$$egin{align} &= Pr[\lnot S_1] Pr[\lnot S_2 | \lnot S_1] Pr[\lnot S_3 | \lnot S_2 \cap \lnot S_1] \dots Pr[\lnot S_{n-2} | \lnot S_{n-3} \cap \ldots \cap \lnot S_1] \geq \ &\geq (1-rac{2}{n})(1-rac{2}{n-1})\dots(1-rac{2}{n-(n-4)})(1-rac{2}{n-(n-3)}) \end{aligned}$$

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти:
$$Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$$
 , где $n = |V|$

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация:
$$Pr[
eg S_1 \cap
eg S_2] = Pr[
eg S_2 |
eg S_1] * Pr[
eg S_1]$$

Продолжая рассуждения, получим: $Pr[\neg S_1 \cap \neg S_2 \cap \ldots \cap \neg S_{n-2}] =$

$$= Pr[\neg S_1]Pr[\neg S_2|\neg S_1]Pr[\neg S_3|\neg S_2 \cap \neg S_1]\dots Pr[\neg S_{n-2}|\neg S_{n-3}\cap\dots\cap\neg S_1] \geq$$

$$0 \geq (1 - \frac{2}{n})(1 - \frac{2}{n-1})\dots(1 - \frac{2}{n-(n-4)})(1 - \frac{2}{n-(n-3)}) = 0$$

$$\frac{n-2}{n} * \frac{n-3}{n-1} * \frac{n-4}{n-2} * \dots * \frac{2}{4} * \frac{1}{3} =$$

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[\neg S_1 \cap \neg S_2] = Pr[\neg S_2 | \neg S_1] * Pr[\neg S_1]$

Продолжая рассуждения, получим:
$$Pr[\neg S_1 \cap \neg S_2 \cap \ldots \cap \neg S_{n-2}] =$$

$$= Pr[\neg S_1]Pr[\neg S_2|\neg S_1]Pr[\neg S_3|\neg S_2 \cap \neg S_1]\dots Pr[\neg S_{n-2}|\neg S_{n-3}\cap\dots\cap\neg S_1] \geq$$

$$0 \geq (1 - \frac{2}{n})(1 - \frac{2}{n-1})\dots(1 - \frac{2}{n-(n-4)})(1 - \frac{2}{n-(n-3)}) = 0$$

$$\frac{n-2}{n} * \frac{n-3}{n-1} * \frac{n-4}{n-2} * \dots * \frac{2}{4} * \frac{1}{3} = \frac{2}{n(n-1)} \ge \frac{1}{n^2}$$

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[\lnot S_1 \cap \lnot S_2 \cap \ldots \cap \lnot S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[\lnot S_1 \cap \lnot S_2] = Pr[\lnot S_2 | \lnot S_1] * Pr[\lnot S_1]$

Продолжая рассуждения, получим:
$$Pr[\neg S_1 \cap \neg S_2 \cap \ldots \cap \neg S_{n-2}] =$$

$$= Pr[\neg S_1] Pr[\neg S_2 | \neg S_1] Pr[\neg S_3 | \neg S_2 \cap \neg S_1] \dots Pr[\neg S_{n-2} | \neg S_{n-3} \cap \dots \cap \neg S_1] \geq$$

$$\geq (1-\frac{2}{n})(1-\frac{2}{n-1})\dots(1-\frac{2}{n-(n-4)})(1-\frac{2}{n-(n-3)})=$$

$$\frac{n-2}{n}*\frac{n-3}{n-1}*\frac{n-4}{n-2}*\dots*\frac{2}{4}*\frac{1}{3}=\frac{2}{n(n-1)}\geq \frac{1}{n^2}$$
 т.е. в самом худшем случае алгоритм найдет мин. разрез с вероятностью всего то

Пусть S_i - событие, что мы взяли ребро из F на i-ой итерации алгоритма.

Тогда нужно найти: $Pr[
eg S_1 \cap
eg S_2 \cap \ldots \cap
eg S_{n-2}]$, где n = |V|

Пусть
$$|F|=k, |E|=m$$
, $Pr[S_1]=rac{k}{m}$, $Pr[S_1]\leq rac{2}{n}$

Теперь вторая итерация: $Pr[\lnot S_1 \cap \lnot S_2] = Pr[\lnot S_2 | \lnot S_1] * Pr[\lnot S_1]$

Продолжая рассуждения, получим: $Pr[\neg S_1 \cap \neg S_2 \cap \ldots \cap \neg S_{n-2}] =$

$$= Pr[\neg S_1] Pr[\neg S_2| \neg S_1] Pr[\neg S_3| \neg S_2 \cap \neg S_1] \dots Pr[\neg S_{n-2}| \neg S_{n-3} \cap \dots \cap \neg S_1] \geq$$

$$\geq (1-rac{2}{n})(1-rac{2}{n-1})\dots(1-rac{2}{n-(n-4)})(1-rac{2}{n-(n-3)})=$$

$$\frac{n-2}{n}*\frac{n-3}{n-1}*\frac{n-4}{n-2}*\dots*\frac{2}{4}*\frac{1}{3}=\frac{2}{n(n-1)}\geq \frac{1}{n^2}$$
 т.е. в самом худшем случае алгоритм найдет мин. разрез с вероятностью всего то

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$.

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$. Но не будем отчаиваться!

А что, если позапускать алгоритм несколько раз?

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$. Но не будем отчаиваться!

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$.

Но не будем отчаиваться! А что, если позапускать алгоритм несколько раз?

Пусть запускаем наш алгоритм N раз.

Введем T_i - событие, что мы нашли минимальный разрез на i-ом шаге.

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$.

Но не будем отчаиваться! А что, если позапускать алгоритм несколько раз?

Пусть запускаем наш алгоритм N раз.

Введем T_i - событие, что мы нашли минимальный разрез на i-ом шаге. Все T_i независимы друг от друга по построению.

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$.

Но не будем отчаиваться! А что, если позапускать алгоритм несколько раз?

Пусть запускаем наш алгоритм N раз.

Введем T_i - событие, что мы нашли минимальный разрез на i-ом шаге. Все T_i независимы друг от друга по построению.

Pr[за N запусков не нашли] =

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$.

Но не будем отчаиваться! А что, если позапускать алгоритм несколько раз?

Пусть запускаем наш алгоритм N раз.

Введем T_i - событие, что мы нашли минимальный разрез на i-ом шаге. Все T_i независимы друг от друга по построению.

Pr[за N запусков не нашли] $= Pr[\neg T_1 \cap \neg T_2 \cap \ldots \cap \neg T_N]$

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$.

Но не будем отчаиваться! А что, если позапускать алгоритм несколько раз?

Пусть запускаем наш алгоритм N раз.

Введем T_i - событие, что мы нашли минимальный разрез на i-ом шаге. Все T_i независимы друг от друга по построению.

$$Pr$$
[за N запусков не нашли $]=Pr[\lnot T_1\cap\lnot T_2\cap\ldots\cap\lnot T_N]=\prod\limits_{i=1}^N Pr[\lnot T_i]\leq (1-rac{1}{n^2})^N$

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$.

Но не будем отчаиваться! А что, если позапускать алгоритм несколько раз?

Пусть запускаем наш алгоритм N раз.

Введем T_i - событие, что мы нашли минимальный разрез на i-ом шаге. Все T_i независимы друг от друга по построению.

$$Pr[$$
за N запусков не нашли $]=Pr[
eg T_1 \cap
eg T_2 \cap \ldots \cap
eg T_N]=\prod_{i=1}^N Pr[
eg T_i] \leq (1-rac{1}{n^2})^N$

Теперь можем поподбирать N! Например, возьмем $N=n^2$

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$.

Но не будем отчаиваться! А что, если позапускать алгоритм несколько раз?

Пусть запускаем наш алгоритм N раз.

Введем T_i - событие, что мы нашли минимальный разрез на i-ом шаге. Все T_i независимы друг от друга по построению.

$$Pr[$$
за N запусков не нашли $]=Pr[
eg T_1 \cap
eg T_2 \cap \ldots \cap
eg T_N]=\prod_{i=1}^N Pr[
eg T_i] \leq (1-rac{1}{n^2})^N$

Теперь можем поподбирать N! Например, возьмем $N=n^2$ Снова вспоминаем про замечательный предел, получаем

$$Pr[$$
не нашли за n^2 запусков $] \leq (e^{-rac{1}{n^2}})^{n^2} = rac{1}{e}$

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$.

Но не будем отчаиваться! А что, если позапускать алгоритм несколько раз?

Пусть запускаем наш алгоритм N раз.

Введем T_i - событие, что мы нашли минимальный разрез на i-ом шаге. Все T_i независимы друг от друга по построению.

$$Pr[$$
за N запусков не нашли $]=Pr[
eg T_1 \cap
eg T_2 \cap \ldots \cap
eg T_N]=\prod_{i=1}^N Pr[
eg T_i] \leq (1-rac{1}{n^2})^N$

Теперь можем поподбирать N! Например, возьмем $N=n^2$ Снова вспоминаем про замечательный предел, получаем

$$Pr[$$
не нашли за n^2 запусков $] \leq (e^{-rac{1}{n^2}})^{n^2} = rac{1}{e} pprox 37\%!$

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$.

Но не будем отчаиваться! А что, если позапускать алгоритм несколько раз?

Пусть запускаем наш алгоритм N раз.

Введем T_i - событие, что мы нашли минимальный разрез на i-ом шаге. Все T_i независимы друг от друга по построению.

$$Pr[$$
за N запусков не нашли $]=Pr[
eg T_1 \cap
eg T_2 \cap \ldots \cap
eg T_N]=\prod_{i=1}^N Pr[
eg T_i] \leq (1-rac{1}{n^2})^N$

Теперь можем поподбирать N! Например, возьмем $N=n^2$ Снова вспоминаем про замечательный предел, получаем

$$Pr[$$
не нашли за n^2 запусков $] \leq (e^{-rac{1}{n^2}})^{n^2} = rac{1}{e} pprox 37\%!$ Сложность при этом $\Omega(n^2*m)$

В самом худшем случае алгоритм найдет мин. разрез с вероятностью $\frac{1}{n^2}$.

Но не будем отчаиваться! А что, если позапускать алгоритм несколько раз?

Пусть запускаем наш алгоритм N раз.

Введем T_i - событие, что мы нашли минимальный разрез на i-ом шаге. Все T_i независимы друг от друга по построению.

$$Pr[$$
за N запусков не нашли $]=Pr[
eg T_1 \cap
eg T_2 \cap \ldots \cap
eg T_N]=\prod_{i=1}^N Pr[
eg T_i] \leq (1-rac{1}{n^2})^N$

Теперь можем поподбирать N! Например, возьмем $N=n^2*ln(n)$ Снова вспоминаем про замечательный предел, получаем

$$Pr[$$
не нашли за $n^2 * log(n)$ запусков $] \le (\frac{1}{e})^{ln(n)} = \frac{1}{n};$ Сложность: $\Omega(n^2 * m * ln(n))$

Алгоритм Каргера: выводы

о Алгоритм Каргера позволяет находить минимальный разрез с заданной точностью (варьируется количеством запусков).

Алгоритм Каргера: выводы

- о Алгоритм Каргера позволяет находить минимальный разрез с заданной точностью (варьируется количеством запусков).
- При этом в угоду точности приходится жертвовать производительностью

Алгоритм Каргера: выводы

- Алгоритм Каргера позволяет находить минимальный разрез с заданной точностью (варьируется количеством запусков).
- о При этом в угоду точности приходится жертвовать производительностью
- \circ Есть улучшения, например, алгоритм Каргера-Штайна, который дает производительность $O(n^2*ln(n))$, при вероятности ошибки $\Omega(rac{1}{ln(n)})$

Takeaways

 Рандомизированные алгоритмы зачастую контринтуитивны, но дают потрясающее преимущество на практике.

Takeaways

- Рандомизированные алгоритмы зачастую контринтуитивны, но дают потрясающее преимущество на практике.
- Фильтр Блума и алгоритм Каргена стоит использовать там, где ошибки не являются фатальными.