Алгебра и геометрия

Лисид Лаконский

October 2022

Содержание

1	Алі	гебра и геометрия - 21.10.2022
	1.1	Скалярное произведение
		1.1.1 Примеры
	1.2	Скалярная проекция
		1.2.1 Примеры
	1.3	Векторное произведение
		1.3.1 Основные задачи на векторное произведение
		1.3.2 Свойства векторного произведения
		1.3.3 Примеры
	1.4	Смешанное произведение
		1.4.1 Примеры

Алгебра и геометрия - 21.10.2022 1

Скалярное произведение

$$\overrightarrow{a} * \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \cos(\overrightarrow{a}; \overrightarrow{b})$$

 $\overrightarrow{a}*\overrightarrow{b}=|\overrightarrow{a}|*|\overrightarrow{b}|*\cos(\overrightarrow{a};\overrightarrow{b})$ Если или $\overrightarrow{a}=\overrightarrow{0}$ или $\overrightarrow{b}=\overrightarrow{0}$, то скалярное произведение будет равно

Два ненулевых вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю. $\overrightarrow{a} \perp \overrightarrow{b} \iff \overrightarrow{a} * \overrightarrow{b} = 0 (\overrightarrow{a} \neq 0, \overrightarrow{b} \neq 0)$

$$\overrightarrow{a} \perp \overrightarrow{b} \iff \overrightarrow{a} * \overrightarrow{b} = 0 (\overrightarrow{a} \neq 0, \overrightarrow{b} \neq 0)$$

1.1.1 Примеры

Пример 1.

Найти
$$\cos \angle NMP$$
, если $M(1;2;-4), N(4;2;0), P(-3;2;-1)$ $\overrightarrow{MN} = \{3;0;4\}, \overrightarrow{MP} = \{-4;0;3\}$ $\cos \angle NMP = \frac{\overrightarrow{MN}*\overrightarrow{MP}}{|\overrightarrow{MN}|*|\overrightarrow{MP}|} = 0, \cos \angle NMP = 90^\circ$

1.2 Скалярная проекция

Скалярная проекция: $\Pi P_{\overrightarrow{b}} \overrightarrow{a} = \frac{\overrightarrow{a} * \overrightarrow{b}}{|\overrightarrow{b}|}$

Векторая проекция: $\overrightarrow{\Pi P}_{\overrightarrow{b}}\overrightarrow{a}=\Pi \overrightarrow{P}_{\overrightarrow{b}}\overrightarrow{a}*\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$

1.2.1 Примеры

Пример 1.

$$\Pi P_{\overrightarrow{b}} \overrightarrow{a} -?, \overrightarrow{\Pi P}_{\overrightarrow{b}} \overrightarrow{a} -?$$

$$\overrightarrow{a} = 2\overrightarrow{AB} - \overrightarrow{CD}, \overrightarrow{b} = \\ \overrightarrow{OC} \times \overrightarrow{AD}, A(1;0;-1), B(1;-1;-2), C(4;1;0), D(0;4;3), O(0;0;0)$$

$$\overrightarrow{AB} = \{0; -1; -1\}, 2\overrightarrow{AB} = \{0; -2; -2\}, \overrightarrow{CD} = \{-4; 3; 3\}, \overrightarrow{OC} = \{4; 1; 0\}, \overrightarrow{AD} = \{0; -2; -2\}, \overrightarrow{CD} = \{$$

$$AB = \{0; -1; -1\}, 2AB = \{0; -2; -2\}, CD = \{-4; 3; 3\}, OC = \{4; 1; 0\}, AD = \{-1; 4; 4\}$$

$$\overrightarrow{a} = 4; -5; -5, \overrightarrow{b} = \overrightarrow{OC} \times \overrightarrow{AD} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & 1 & 0 \\ -1 & 4 & 4 \end{vmatrix} = 4 \overrightarrow{i} - 16 \overrightarrow{j} + 17 \overrightarrow{k}$$

$$\PiP_{\overrightarrow{b}} \overrightarrow{a} = \frac{\overrightarrow{a} * \overrightarrow{b}}{|\overrightarrow{b}|} = \frac{4*4 + (-5)*(-16) + (-5)*17}{\sqrt{4^2 + (-16)^2 + 17^2}} = \frac{11}{\sqrt{561}}$$

$$\overrightarrow{\PiP}_{\overrightarrow{b}} \overrightarrow{a} = \PiP_{\overrightarrow{b}} \overrightarrow{a} * \frac{\overrightarrow{b}}{|\overrightarrow{b}|} = \frac{11}{\sqrt{561}} * \frac{\overrightarrow{b}}{\sqrt{561}} = \frac{11}{561} \{4; -16; 16\} = \{\frac{4}{51}; -\frac{16}{51}; \frac{1}{3}\}$$

$$\Pi P_{\overrightarrow{b}} \overrightarrow{a} = \frac{\overrightarrow{a} * \overrightarrow{b}}{|\overrightarrow{b}|} = \frac{4*4+(-5)*(-16)+(-5)*17}{\sqrt{4^2+(-16)^2+17^2}} = \frac{11}{\sqrt{561}}$$

$$\overrightarrow{\PiP}_{\overrightarrow{b}} \overrightarrow{a} = \PiP_{\overrightarrow{b}} \overrightarrow{a} * \frac{\overrightarrow{b}}{|\overrightarrow{b}|} = \frac{11}{\sqrt{561}} * \frac{\overrightarrow{b}}{\sqrt{561}} = \frac{11}{561} \{4; -16; 16\} = \{\frac{4}{51}; -\frac{16}{51}; \frac{1}{3}; -\frac{1}{3}; \frac{1}{3}; \frac{1}{3$$

Векторное произведение

Вектороное прозведение $\overrightarrow{a} \times \overrightarrow{b} = c$

 \overrightarrow{c} должен соответствовать следующим требованиям:

1.
$$|\overrightarrow{c}| = |\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| * |\overrightarrow{b}| * \sin(\overrightarrow{a} \overrightarrow{b})$$

2.
$$\overrightarrow{c} \perp \overrightarrow{a}, \overrightarrow{c} \perp \overrightarrow{b}$$

3. Тройка векторов
$$(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$$
 правая

1.3.1 Основные задачи на векторное произведение

1) Нахождение площади параллелограмма или треугольника, построенного на плоскости.

$$S_{\text{nap}} = 2S_{\triangle} = |\overrightarrow{a} \times \overrightarrow{b}|$$

2) Нахождение \overrightarrow{N} , перпендикулярного двум неколлинеарным векторам: $\overrightarrow{a} || \overrightarrow{b}, \text{ TO } \overrightarrow{N} = \lambda (\overrightarrow{a} \times \overrightarrow{b}), \lambda \in R, \lambda \neq 0$

1.3.2 Свойства векторного произведения

1.
$$\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$$

2.
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0} \iff \lambda \overrightarrow{a} = \overrightarrow{b} \vee \overrightarrow{a} = \overrightarrow{0}, \overrightarrow{b} = \overrightarrow{0}$$

3.
$$\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$$

4.
$$\lambda \overrightarrow{a} \times \overrightarrow{b} = \lambda (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{a} \times (\lambda \overrightarrow{b})$$

$$\overrightarrow{a} = \{x_1; y_1; z_1\}, \overrightarrow{b} = \{x_2; y_2; z_2\}, \overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \overrightarrow{i} (y_1 z_1 - z_1 y_2) - \overrightarrow{j} (z_2 z_2 - z_1 x_2) + \overrightarrow{k} (x_1 y_2 - x_2 y_1)$$

1.3.3 Примеры

Пример 1.

$$S_{\wedge}-?, \overrightarrow{a}=5\overrightarrow{m}-8\overrightarrow{n}, \overrightarrow{b}=-\overrightarrow{m}+2\overrightarrow{n}, |\overrightarrow{m}|=1, |\overrightarrow{n}|=2, \angle(\overrightarrow{m}; \overrightarrow{n})=\frac{3}{4}\pi$$

$$S_{\triangle} = \frac{1}{2}S_{\text{nap}} = \frac{1}{2}|\overrightarrow{a} \times \overrightarrow{b}|$$
 $\overrightarrow{a} \times \overrightarrow{b} = (5\overrightarrow{m} - 8\overrightarrow{n}) \times (-\overrightarrow{m} + 2\overrightarrow{n}) = 5\overrightarrow{m} \times (-\overrightarrow{m} + 2\overrightarrow{m}) = 5\overrightarrow{m} \times (-\overrightarrow{m} + 2\overrightarrow$

$$\begin{split} S_{\triangle} &= \tfrac{1}{2} S_{\text{nap}} = \tfrac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}| \\ \overrightarrow{a} \times \overrightarrow{b} &= (5\overrightarrow{m} - 8\overrightarrow{n}) \times (-\overrightarrow{m} + 2\overrightarrow{n}) = 5\overrightarrow{m} \times (-\overrightarrow{m}) + 5\overrightarrow{m} \times 2\overrightarrow{n} + (-8\overrightarrow{n}) \times \\ (-\overrightarrow{m}) + (-8\overrightarrow{n}) \times 2\overrightarrow{n} &= 10\overrightarrow{m} \times \overrightarrow{n} + 8\overrightarrow{n} \times \overrightarrow{m} = 10\overrightarrow{m} \times \overrightarrow{n} - 8\overrightarrow{n} \times \overrightarrow{n} = 2\overrightarrow{m} \times \overrightarrow{n} \end{split}$$

$$|\overrightarrow{a}\times\overrightarrow{b}|=|2\overrightarrow{m}\times\overrightarrow{n}|=2*|\overrightarrow{m}|*|\overrightarrow{n}|*\sin\angle(\overrightarrow{m};\overrightarrow{n})=2*1*2*\frac{\sqrt{2}}{2}=2\sqrt{2}$$

$$S_{\triangle} = \frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{2} * 2 * \sqrt{2} = \sqrt{2}$$

Пример 2.

$$S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{BA} \times \overrightarrow{BC}|$$

$$S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{BA} \times \overrightarrow{BC}|$$

$$\overrightarrow{BA} = \{1; 4; 8\}, \overrightarrow{BC} = \{4; 3; 0\}$$

$$\overrightarrow{BA} \times \overrightarrow{BC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 4 & 8 \\ 4 & 3 & 0 \end{vmatrix} = -24\overrightarrow{i} + 32\overrightarrow{j} - 13\overrightarrow{k} =$$

$$\{-24; 32; -13\}, |\overrightarrow{BA} \times \overrightarrow{BC}| = \sqrt{(-24)^2 + 32^2 + (-13)^2} = \sqrt{1769}$$

$$S_{\triangle ABC} = \frac{1}{2} * \sqrt{1769} \approx 21.03$$

$$S_{\triangle ABC} = \frac{1}{2} * h * BC, |\overrightarrow{BC}| = 5, h = \frac{21*2}{5} \approx 8.4$$

Пример 3.

$$\overrightarrow{N} \perp M_1 M_2 M_3, M_1(1;3;0), M_2(-2;1;-1), M_3(0;1;-1), \overrightarrow{N} - ?$$

$$\overrightarrow{N} \perp \overrightarrow{M_1 M_2}, \overrightarrow{N} \perp \overrightarrow{M_1 M_3}$$

$$\overrightarrow{N} = \lambda (\overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3}), \overrightarrow{M_1 M_2} = \{-3; -2; -1\}, \overrightarrow{M_1 M_3} = \{-1; -2; -1\}, \overrightarrow{M_1 M_2} \text{ not parallel to } \overrightarrow{M_1 M_3}$$

$$\overrightarrow{N} = \lambda \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & -2 & -1 \\ -1 & -2 & -1 \end{vmatrix} = \lambda (0 \overrightarrow{i} - 2 \overrightarrow{j} + 4 \overrightarrow{k}) = \frac{1}{2} \{0; -2; 4\} = \{0; -1; 2\}$$

1.4 Смешанное произведение

Смешанным произведением трех векторов $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ называют число:

$$(\overrightarrow{a} \times \overrightarrow{b}) * \overrightarrow{c} = \begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix}$$

$$V_{\text{параллелепипеда}} = |(\overrightarrow{a} \times \overrightarrow{b}) * \overrightarrow{c}|, V_{\text{тр. пир.}} = \frac{1}{6} V_{\text{ПАРАЛ}} = \frac{1}{6} |(\overrightarrow{a} \times \overrightarrow{b}) * \overrightarrow{c}|$$

1.4.1 Примеры

Пример 1.

$$\begin{array}{l} V_{ABCD}-?,AH-?,A(2;-4;5),B(-1;-3;4),C(5;5;-1),D(1;-2;2)\\ \overrightarrow{BA}=\{3;-1;1\},\overrightarrow{BC}=\{6;8;-5\},\overrightarrow{BD}=\{2;1;-2\} \end{array}$$

$$\begin{split} (\overrightarrow{a} \times b) * \overrightarrow{C} &= \begin{vmatrix} 3 & -1 & 1 \\ 6 & 8 & -5 \\ 2 & 1 & -2 \end{vmatrix} = -48 + 6 + 10 - 16 + 15 - 12 = -45 \\ V_{\text{TP. IIUP}} &= \frac{1}{3} S_{\text{OCH}} * h = \frac{1}{6} |(\overrightarrow{BA} \times \overrightarrow{BC}) * \overrightarrow{BD}| = \frac{45}{6} \\ S_{\triangle} &= \frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{2} |\overrightarrow{BC} \times \overrightarrow{BD}| = \frac{1}{2} \begin{vmatrix} \overrightarrow{a} & \overrightarrow{BD} & \overrightarrow{BD} \\ 6 & 8 & -5 \\ 2 & 1 & -2 \end{vmatrix} = \frac{1}{2} * |\{-11; 2; -16\}| = \frac{1}{2} \sqrt{(-11)^2 + 2^2 + (-10)^2} = \frac{15}{2} \\ h &= \frac{3V_{\text{TP. IIUP.}}}{S_{\text{OCH.}}} = \frac{45}{15} = 3 \end{split}$$