Math 3500 Assignment #6 University of Lethbridge, Fall 2014

Sean Fitzpatrick

October 29, 2014

- 1. (**Do not submit**) Let $f: D \to \mathbb{R}$ be continuous. For each of the following, prove the result, or give a counterexample.
 - (a) If D is open, then f(D) is open.
 - (b) If D is closed, then f(D) is closed.
 - (c) If D is not open, then f(D) is not open.
 - (d) If D is not closed, then f(D) is not closed.
 - (e) If D is not compact, then f(D) is not compact.
 - (f) If D is unbounded, then f(D) is unbounded.
 - (g) If D is finite, then f(D) is finite.
 - (h) If D is infinite, then f(D) is infinite.
 - (i) If D is an interval, then f(D) is an interval.
 - (j) If D is an interval that is not open, then f(D) is an interval that is not open.

(Note: this is problem 5.3.3 in the text, and there's a hint in the back.)

- 2. (a) Let $a \in \mathbb{R}$ and define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = |x a|. Prove that f is continuous.
 - (b) Let K be a nonempty compact subset of \mathbb{R} and let $a \in \mathbb{R}$. We define the distance from a to K by

$$d(a,K) = \inf\{|x-a| : x \in K\}.$$

(The infimum exists since $\{|x-a|:x\in K\}$ is bounded below by zero.) Prove that there exists a point $b\in K$ that is *closest* to a, in the sense that |b-a|=d(a,K).

- 3. Prove that if $f:[a,b]\to\mathbb{R}$ is continuous and $f(x)\in\mathbb{Q}$ for all $x\in[a,b]$, then f is constant.
- 4. Suppose f is continuous on [0,2], and f(0)=f(2). Prove that there exist $x,y\in[0,2]$ with |y-x|=1 and f(x)=f(y).

Hint: Consider g(x) = f(x+1) - f(x) on [0,1].

5. Prove that each of the following functions is uniformly continuous on the specified set using the ϵ - δ definition of uniform continuity:

(a)
$$f(x) = x^2$$
 on $[0, 3]$

(b)
$$g(x) = \frac{1}{x} \text{ on } [\frac{1}{2}, \infty)$$

6. (**Do not submit**) Prove that if f is uniformly continuous on a bounded set $D \subseteq \mathbb{R}$, then f is bounded on D.

Hint: If f is not bounded on D, you can find some sequence (a_n) in D with $|f(a_n)| \ge n$ for all $n \in \mathbb{N}$. But since D is bounded, (a_n) is a bounded sequence and therefore has a convergent subsequence. We also know that if f is uniformly continuous and (x_n) is a Cauchy sequence, then $(f(x_n))$ is also a Cauchy sequence.

7. Prove that $f(x) = \sin x$ is uniformly continuous on \mathbb{R} .

Hint: First use the Mean Value Theorem to prove that $|\sin x - \sin y| \le |x - y|$ for all $x, y \in \mathbb{R}$.