Tecnologia microelettronica

Corso di Architettura degli elaboratori e laboratorio – Modulo Laboratorio

Gabriella Verga

Rappresentazione variabili binarie

Nei circuiti elettronici, per rappresentare i valori 0 e 1 delle variabili binarie, normalmente si usano valori di tensione elettrica (voltaggio)

Per discretizzare il valore della tensione (grandezza continua), si usa la **soglia di separazione**

Tutti i valori di tensione superiori alla tensione di soglia rappresentano il valore 1 mentre quelli inferiori il valore 0

I valori vicini alla soglia sono imprevedibili e dunque ambigui. Per evitare l'incertezza data dal rumore del circuito, tutti i valori prossimi alla tensione di soglia non vengo presi in considerazione (banda vietata).

Transistori

- I transistori sono delle componenti elettroniche che possono svolgere la funzione di interruttori.
- A seconda della tensione ricevuta in ingresso possono trovarsi in stato di conduzione o interdizione.
- La tecnologia più comunemente usata è il transistore a metallo-ossidosemiconduttore (MOS).
- Valori tipici di tensione per tecnologia **MOS**:
 - $V_{cc} = 5 \text{ Volt}$
 - **V**_{1.min} = 3.8 Volt
 - **Soglia** = 2.5 Volt
 - $V_{0,max} = 1.3 \text{ Volt}$
 - $V_{massa} = 0 \text{ Volt}$

Transistori MOS

- I transistori MOS hanno 3 collegamenti: **Base (Porta), Pozzo e Sorgente**
- A seconda della tensione in ingresso nella Base (Vb) il transistore collegherà o meno la Sorgente al Pozzo
- Se il transistore è in **stato di conduzione** la tensione nel Pozzo diventerà uguale alla tensione nella Sorgente

Esistono 2 tipi di transistori MOS: **NMOS – PMOS**

 Entrambi funzionano come interruttori, ma sono controllati in ingresso da valori di tensione in opposizione e dunque da valori logici complementari.

Transistori NMOS

- Se Vb = Vcc → il transistore è in conduzione ON
 - Interruttore chiuso
- Se Vb = 0 → il transistore è in interdizione OFF
 - Interruttore aperto

Transistori PMOS

- Se Vb = Vcc → il transistore è in interdizione OFF
 - Interruttore aperto
- Se Vb = 0 → il transistore è in conduzione ON
 - Interruttore chiuso

Circuiti NOT

- Si ottiene una **porta NOT** con un transistore NMOS collegando:
 - Sorgente alla massa
 - Pozzo all'alimentazione tramite una resistenza
- I chiuso → Vuscita = Vm = 0
- I aperto → Vuscita = Vcc = 1
- Se Vingresso = $0 \rightarrow$
 - Interdizione (OFF) e Vuscita = Vcc
- Se Vingresso = Vcc →
 - Conduzione (ON) e Vuscita = 0
- Per una tensione di ingresso alla base a "1" si
 ottiene una tensione di uscita nel pozzo a "0" e viceversa

Circuiti NOR

- Collegando due transistori NMOS in parallelo si ottiene una porta NOR
- Ambedue aperti: Vuscita = Vcc = 1
- Solo se entrambi i transistori sono in interdizione la tensione in uscita sarà "1" altrimenti è pari a "0"

Circuiti NAND

- Collegando due transistori NMOS in serie si ottiene una porta NAND
- Solo se entrambi i transistori sono in conduzione (Va = Vb = "1") la tensione in uscita sarà "0"

Circuiti AND e OR

•AND

• collegando in serie i circuiti di porta NAND e NOT.

•OR

• collegando in serie i circuiti di porta NOR e NOT.

Tecnologia CMOS

- Il grande svantaggio della tecnologia NMOS e nei circuiti di porta che ne derivano sta nell'elevato consumo di energia che essi esibiscono. Infatti i transistori NMOS consumano molta energia in stato di conduzione dovuto alla resistenza.
- Il problema si risolve con la tecnologia MOS Complementare (CMOS).
- La tecnologia CMOS consiste in un circuito composto da un ramo di transistor NMOS collegato in serie ad uno di PMOS.
- Il comportamento dei due rami è complementare e in stato stabile non c'è mai continuità tra massa e alimentazione.

Vantaggi Tecnologia CMOS

- Consumo di potenza ridotto (consumo solo in fase di commutazione).
- Potenza elettrica dissipata proporzionale alla frequenza di commutazione.
- Transistori MOS hanno dimensioni molto ridotte (componenti con miliardi di transistori integrati).
- Piccole dimensioni = alta frequenza massima di commutazione (nell'ordine dei GigaHertz).

Ritardi in un circuito

- Il **tempo di transizione** è il tempo impiegato da un segnale per transitare di livello.
- Il **ritardo di propagazione** è il tempo che impiega l'uscita di un circuito ad adattarsi ai nuovi valori di input.
- Il ritardo di propagazione del percorso più lento che collega ingresso e uscita si dice critico.
- La **frequenza di lavoro** di un circuito sono le volte che esso commuta in un determinato tempo.

Vincoli Fan-in e fan-out

- Il numero di ingressi di una porta logica è chiamato fan-in
- Il numero di ingressi paralleli a cui può essere collegata l'uscita di una porta logica è chiamato fan-out
- Fan-in e fan-out elevati incidono negativamente sul ritardo di propagazione e sul margine di rumore
- Tipicamente si limitano il fan-in e fan-out a meno di 10 per porta

Circuiti Integrati

Corso di Architettura degli elaboratori e laboratorio – Modulo Laboratorio

Gabriella Verga

Decodificatore (decoder)

- Il decodificatore è un blocco funzionale combinatorio in grado di decodificare un codice binario in ingresso
- Il decodificatore possiede n ingressi e 2ⁿ uscite e attiva la linea di uscita corrispondente al numero binario in ingresso
- In Figura il decodificatore binario a n = 2 bit

Multiplatore (multiplexer)

- Il multiplatore è un blocco funzionale combinatorio dotato di n ≥ 1 ingressi di selezione, di 2ⁿ ingressi di dato e di 1 uscita di dato.
- E' un circuito logico in grado di selezionare uno dei suoi "ingressi dato" da convogliare nella sua uscita
- L'ingresso dato è selezionato dalla configurazione degli *n* bit di selezione
- In Figura il multiplatore a n = 2 ingressi di selezione e 4 ingressi di dato.

