# Hidden liquidity

Balakaeva Maria, Gnetov Fedor, Lyappieva Anastasia

Lomonosov Moscow State University

May 7, 2024

#### Introduction

A growing proportion of traders on financial markets perceive a tangible benefit in concealing their trading intentions from public view. To address the rising demand, exchange operators and markets have introduced a range of order types that allow traders to hide the full extent of their standing limit orders (such as Iceberg orders or hidden orders). As a result, the proliferation of hidden liquidity has grown significantly over the past decade and nowadays accounts for a sizable proportion of overall liquidity supply in electronic equity markets.



#### Our model

Our model allows us to draw conclusions about the driving forces affecting hidden liquidity.

The project used linear regression for panel data using dummy variables:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + \hat{\beta}_3 x_{3i} + \sum_{j=0}^8 \hat{\beta}_{4j} d_{4i} + \sum_{j=0}^2 \hat{\beta}_{5j} d_{5j}$$

Level 1 data includes basic information about a transaction, such as the amount, card number, and expiration date.





Level 2 data includes additional information, such as the tax amount, merchant's postal code, and customer code. Level 3 data includes even more information, such as line-item details of the transaction, including product descriptions, quantities, and prices. I3 data was used in the project.

Data taken from the Moscow Exchange.

- 1) time (trading day from 10 to 19)
- 2) depth of the glass
- 3) spread
- 4) volatility
- 5) sector (IT, banks and primary sector)





#### More details about each sector

In the IT sector, Yandex (YNDX), Ozone (OZON), MTS (MTSS) were selected.







In banking: VTB (VTBR), rosbank (ROSB), Tinkoff (TCSG).







In the commodity sector: Gazprom (RTGZ), Lukoil (LKOH), Rosneft (ROSN).







|   | HOUR | propotion_of_iceberg | spred   | depth_sum | volatitlity | sector |
|---|------|----------------------|---------|-----------|-------------|--------|
|   | 10   | 0.108403             | 1.06000 | 1948.0    | 0.380783    |        |
|   | 11   | 0.031758             | 0.35000 | 1983.0    | 0.270379    |        |
|   | 12   | 0.02704              | 0.19002 | 2029.0    | 0.266016    |        |
|   | 13   | 0.020092             | 0.20098 | 2078.0    | 0.237938    |        |
| 4 | 14   | 0.001263             | 0.24100 | 2126.0    | 0.333178    |        |
|   |      | 0.029275             | 0.24000 | 2141.0    | 0.267890    |        |
|   | 16   | 0.114517             | 0.22900 | 2393.0    | 1.097435    |        |
|   | 17   | 0.037328             | 0.22000 | 2213.0    | 0.335445    |        |
| 8 | 18   | 0.006329             | 0.24098 | 2176.0    | 0.180515    |        |

Using dummy variables transformed into the following convenient form:

| propotion_of_iceberg | spred   | depth_sum | volatitlity | HOUR_10 | HOUR_11 | HOUR_12 | HOUR_13 | HOUR_14 | HOUR_15 | HOUR_16 | HOUR_17 | HOUR_18 | sector_1 |
|----------------------|---------|-----------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| 0.108403             |         | 1948.0    | 0.380783    |         | False   | False   |         | False   | False   | False   | False   | False   | True     |
|                      | 0.35000 |           | 0.270379    |         |         |         |         |         |         |         |         |         |          |
|                      | 0.19002 |           | 0.266016    |         |         |         |         |         |         | False   | False   |         |          |
|                      | 0.20098 |           | 0.237938    |         |         |         |         |         |         |         |         |         |          |
| 0.001263             | 0.24100 |           |             |         | False   | False   | False   |         |         | False   | False   | False   |          |
|                      | 0.24000 |           | 0.267890    |         |         |         |         |         |         | False   |         | False   |          |
|                      | 0.22900 |           | 1.097435    | False   | False   | False   | False   | False   | False   |         | False   | False   | True     |
|                      | 0.22000 |           | 0.335445    |         |         |         | False   |         |         | False   |         | False   |          |
|                      | 0.24098 |           | 0.180515    | False   | False   | False   |         | False   | False   | False   | False   |         |          |

#### About the code

#### посмотрим как выглядят depth sum

```
import matplotlib.pyplot as plt
big_df['depth_sum'] /= 10000
big_df['depth_sum'].hist()
plt.show()
```



### Data processing

The peculiarity of the two variables Spread and Volatility needs to be normalized, because some companies have shares worth thousands, while others have pennies, this does not indicate the importance of the company, just someone divided everything into 10 shares, and someone into 100,000 Therefore, we initially normalized them and only then calculated spread and volatility: (x-min)/(max-min) Then everything will lie in the interval [0,1]

### Combating multicollinearity and heteroscedasticity

When working with the data, heteroscedasticity (White's test) and multicollinearity were discovered. The first problem was solved by introducing robust errors. To combat multicolinearity, was removed 1 hour and one of the sectors: banking (with which a dependence was found).

```
('Test Statistic': 38.6532233095303), 'Test Statistic p-value': 0.034239120022004555, 'F-Statistic': 1.607715020207116, 'F-Test p-value': 0.032000772502292)
```

'Test Statistic': 38.05332338905303, 'Test Statistic p-value': 0.034239120022604555, 'F-Statistic': 1.6077156826287116, 'F-Test p-value': 0.03263007725862992

## Results

|               | Robust line | or Model               | Dogracai | on Docult              | .0     |        |
|---------------|-------------|------------------------|----------|------------------------|--------|--------|
| Dep. Variable |             | ear Model<br>ion_of_ic |          | on Result<br>Io. Obser |        |        |
| Mode          |             |                        | RLM      | Df Re                  |        |        |
| Method        |             |                        | IRLS     |                        | Model: |        |
|               |             |                        | uberT    |                        |        |        |
| Scale Est     |             |                        | mad      |                        |        |        |
| Cov Type      |             |                        |          |                        |        |        |
| Date          | e: Mor      | , 06 May               | 2024     |                        |        |        |
|               |             |                        |          |                        |        |        |
|               |             |                        |          |                        |        |        |
|               | coef        | std err                |          | P> z                   | [0.025 | 0.975] |
|               | 0.0343      | 0.007                  | 5.160    | 0.000                  |        | 0.047  |
| spred         |             | 0.033                  | -0.917   | 0.359                  | -0.095 | 0.034  |
| depth_sum     | 0.4884      | 0.217                  | 2.252    |                        |        |        |
| volatitlity   |             | 0.024                  | 0.700    | 0.484                  | -0.030 | 0.064  |
|               | -0.0342     |                        | -2.211   |                        | -0.064 |        |
|               | -0.0150     | 0.014                  | -1.106   | 0.269                  | -0.041 |        |
| time_11       | 0.0045      | 0.007                  | 0.650    | 0.516                  |        |        |
| time_12       | -0.0143     | 0.007                  | -2.040   | 0.041                  | -0.028 | -0.001 |
| time_13       |             | 0.007                  | -1.757   |                        | -0.026 |        |
| time_14       |             | 0.007                  | -1.571   | 0.116                  | -0.025 | 0.003  |
| time_15       | -0.0164     | 0.007                  | -2.276   |                        | -0.031 | -0.002 |
| time_16       | -0.0131     | 0.007                  | -1.790   | 0.073                  | -0.027 | 0.001  |
| time_17       | -0.0040     | 0.007                  |          | 0.593                  | -0.019 |        |
| time_18       | -0.0010     | 0.007                  | -0.140   | 0.889                  | -0.015 | 0.013  |

# Results

|               |            |           |         | _         |          |       |
|---------------|------------|-----------|---------|-----------|----------|-------|
|               | Robust lin | ear Mode  | Regress | ion Resul | ts       |       |
| Dep. Variable | e: propot  | ion_of_ic | eberg N | lo. Obser |          |       |
| Mode          |            | RLM       |         | Df Re     |          |       |
| Metho         |            |           | IRLS    | D         | f Model: |       |
|               |            |           | uberT   |           |          |       |
| Scale Est     |            |           | mad     |           |          |       |
|               |            |           |         |           |          |       |
| Dat           | e: Mor     | n, 06 May | 2024    |           |          |       |
|               |            |           | 09:42   |           |          |       |
| No. Iteration |            |           |         |           |          |       |
|               | coef       | std err   |         |           | [0.025   | 0.975 |
|               |            |           | -0.762  | 0.446     | -0.058   |       |
| spred         | -0.0303    |           | -0.917  | 0.359     | -0.095   | 0.034 |
|               | 0.4884     | 0.217     | 2.252   |           |          |       |
| volatitlity   | 0.0167     | 0.024     | 0.700   | 0.484     | -0.030   | 0.064 |
| sector_0      |            |           | 2.211   |           |          | 0.064 |
| sector_2      | 0.0192     | 0.008     | 2.387   | 0.017     | 0.003    | 0.035 |
| time_10       |            |           | 2.276   |           |          |       |
| time_11       | 0.0209     | 0.007     |         | 0.003     | 0.007    | 0.034 |
| time_12       |            |           | 0.311   | 0.756     |          |       |
| time_13       | 0.0040     | 0.007     | 0.580   | 0.562     | -0.009   | 0.017 |
| time_14       |            |           | 0.762   | 0.446     |          |       |
| time_16       | 0.0033     | 0.007     | 0.481   | 0.630     | -0.010   | 0.017 |
| time_17       |            |           | 1.820   |           |          |       |
| time_18       | 0.0154     | 0.007     | 2.233   | 0.026     |          | 0.029 |

#### Results

The results turned out to be quite unobvious at first glance: volatility and spread turned out to be insignificant. But time (10,11 and 18), depth of the glass, banking and oil sectors turned out to be very influential on hidden liquidity.

