LOCOGO OSMIT DETECTING THE HUMAN An Introduction to User-Interaction Detection in Malware Kyle Cucci, Malware Researcher

ABOUT ME

- A human.
- ► For Fun -> Malware Researcher
- ► For Profit -> Cyber security @ Bank

Twitter: @d4rksystem

LinkedIn: https://www.linkedin.com/in/kylecucci

DETECTING HUMANS – WAIT, BUT WHY?

Why would malware want to detect human interaction?

- To sense if the target system is actively being used by a real person.
- To determine if the target system is a malware sandbox or analysis lab.
- To gather information and identify human behavior patterns.

TIP: This type of technique is sometimes called a "Reverse-Turing Test"!

TECHNIQUE 1: DETECT MOUSE AND KEYBOARD INTERACTION

Objective:

Sense device interaction and test if the victim system is "real".

Example Methods:

- GetCursorPos Returns the current mouse cursor coordinates.
- ► GetAsyncKeyState Checks on the state of mouse/keyboard buttons. →

Example Malware:

"UpClicker"

TECHNIQUE 1: DETECT MOUSE AND KEYBOARD INTERACTION

Objective:

Sense device interaction and test if the victim system is "real".

Example Methods:

- ► GetCursorPos Returns the current mouse cursor coordinates. →
- GetAsyncKeyState Checks on the state of mouse/keyboard buttons.

Example Malware:

"UpClicker"

```
GetCursorPos(&CursorPos1)
Sleep(5)
GetCursorPos(&CursorPos2)

if (CursorPos1 == CursorPos2)
    TerminateProcess()
```

TECHNIQUE 2: CHECK OPEN WINDOWS

Objective:

Detect or locate open Windows.

Example Methods:

- GetForegroundWindow Returns a handle to the foreground window.
- FindWindow Locates a specific window via its name. →
- EnumWindow Enumerates open windows.

Example Malware:

- Satan (Ransomware)
- GuLoader (Loader)

EXAMPLE: GETFOREGROUNDWINDOW

	00458958	V 0E83 CB000000	ise evil ACRADO
	0045B95E	E8 A5B3FAFF	call <jmp.&getforegroundwindow></jmp.&getforegroundwindow>
	0045B963	8BD 8	mov ebx,eax
r>•	0045B965	6A 64	push 64
	0045B967	E8 D8F6FAFF	call <jmp.&sleep></jmp.&sleep>
•	0045B96C	E8 97B3FAFF	call <jmp.&getforegroundwindow></jmp.&getforegroundwindow>
	00458974	0050	mov esi.eax
	0045B973	8BC3	mov eax,ebx
	0045B975	33D2	xor edx,edx
	0045B977	52	push edx
	0045B978	50	push eax
	0045B979	8D45 FC	lea eax,dword ptr ss:[ebp-4]
	0045B97C	E8 3BCBFAFF	call evil.4084BC
	0045B981	8B45 FC	mov eax,dword ptr ss:[ebp-4]
	0045B984	E8 5B8DFAFF	call evil.4046E4
	0045B989	50	push eax
	0045B98A	E8 29AFFAFF	<pre>call <jmp.&outputdebugstringa></jmp.&outputdebugstringa></pre>
	0045B98F	3BF3	cmp esi,ebx
i	0045B991	^ 74 D2	je evil.45B965

TECHNIQUE 3: COLLECT BROWSER DATA

Objective:

Enumerate browser data (humans use browsers! Sandboxes don't..)

Example Methods:

- Enumerate and verify cookies.
- Enumerate and verify cache data.
- Enumerate and verify browsing history

TECHNIQUE 4: SENSING USAGE OF MS OFFICE

Objective:

Sense active usage of MS Office applications (real humans interact with MS Office!)

Example Methods:

- Check if user is scrolling the document.
- Execute malicious code only on a certain action. →

Example Malware:

Various stage 1 droppers/downloaders.

Macro name	When it runs		
AutoExec	When you start Word or load a global template		
AutoNew	Each time you create a new document		
AutoOpen	Each time you open an existing document		
AutoClose	Each time you close a document		
AutoExit	When you exit Word or unload a global template		

Source: MSDN

OTHER INTERESTING TECHNIQUES

- Check if default wallpaper has been changed.
- ightharpoonup Query the system's uptime \rightarrow
- Check Office recent files
 - "C:\Documents and Settings\<user>\Application Data\Microsoft\Office\Recent "

 $0x10D1A = \sim 1 \text{ minute}$

	76562A3F	CC	int3	EAX	00010014	
•	76562A40	51	push ecx		00010D1A	
	76562A41	FF15 <u>84185C76</u>	<pre>call dword ptr ds:[<&GetTickCount>]</pre>	EBX	04FEF000	Uhal wast
	76562A47	59	pop ecx	ECX	00C0FB20	"èS\x07"
) •	76562A48	C3	<mark>ret</mark>	EDX	000005A0	L
	76562A49	CC	int3	EBP	008FFE34	&" þt"

SIMPLE WAYS TO BE A HUMAN

Move the mouse and click all the buttons.

Open, change, and use applications.

Populate the browser cache and history.

Create fake files in Desktop, Documents, etc.

"Fake" system uptime.

REFERENCES AND FURTHER READING

- UpClicker Malware https://threatpost.com/upclicker-trojan-evades-sandbox-detection-hiding-mouse-click-121412/77320/
- ▶ **GuLoader Malware -** https://www.crowdstrike.com/blog/guloader-dissection-reveals-new-anti-analysis-techniques-and-code-injection-redundancy/
- ► The UnProtect Project https://unprotect.it/
- My Book "Evasive Malware: Understanding Deceptive and Self-Defending Threats" from No Starch Press. Release early 2024 ©

BONUS: HOW WOULD CHAT-GPT DETECT A HUMAN?

- The malware spawns a chat interface and tells funny jokes. If the malware receives an "LOL" in the chat, the malware assumes the victim is a real person and not a sandbox.
- ▶ The malware generates a virtual crossword puzzle, with the answers being malware analysis terms. If the malware receives the right answers, it assumes the system is owned by a malware analyst.
- ▶ The malware spawns a virtual pet that requires constant attention and care. If it notices that the pet's happiness level remains consistently high, it is not in a sandbox.