2019-10-16

computational Statistics

HW#4

computational Statistics

HW#4

1. Problem

EM 알고리즘은 관측되지 않는 잠재변수(latent variable)에 의존하는 확률 모델에서 반복적인 computation 을 통해 MLE 를 구하는 방법이다. 즉 데이터 X=x 가 주어 졌을 때 대응되는 잠재변수 Z=x 이용해 매개변수인 X=x 이용해 매개변수인 X=x 이용해 매개변수인 X=x 이용하다. 특히 EM 은 incomplete 데이터의 MLE 를 계산하는 데 유용하다. 하지만 Incomplete 데이터의 경우 full loglikelihood 를 계산하는 것이 수리적으로 불가능하다. 따라서 잠재변수의 값을 추정하여 loglikelihood 를 구할 수밖에 없다. EM 은 잠재변수의 값을 추정하기 위해 아래와 같은 conditional expectation of loglikelihood 를 사용한다. 이를 loglikelihood 의 Expectation 을 구하는 E-step 이라 부른다.

$$Q(\theta, \theta_{old}) = E(l(\theta|Y)|x, \theta_{new})$$

where {X:Incomplete data(observed) {Y:Missing data (unobserved)

이렇게 예측된 잠재변수의 기대 값을 이용해 conditional expectation of loglikelihood 를 최대화하는 매개변수 θ 를 구한다. 이를 기대 값을 Maximization 시키는 변수를 구하는 M-step 이라 부른다. EM 은 이러한 E-step 과 M-step 을 반복적으로 수행하여 MLE 를 구한다. EM 알고리즘을 정리하면 아래와 같다.

Initiate parameter θ_{old}

 $E - step : compute Q(\theta, \theta_{old})$

 $M - \text{step: } \theta_{new} = \underset{\theta}{\operatorname{argmax}} Q(\theta, \theta_{old})$

Iterate E-step and M-step until θ converge which means $|\theta_{old} - \theta_{new}| < \varepsilon$

한편 clustering 방법론은 크게 underlying 분포의 존재를 가정하는 것과 분포 가정없이 objective function 을 최적화하는 방법으로 나뉜다. Gaussian Mixture Model(GMM)은 분포 가정을 하는 clustering 방법으로 데이터가 K 개의 정규분포로부터 생성되었다고 가정한다. GMM 에는 두 가지의 모수가 존재한다. 첫번째는 K 개의 클러스터의 크기를 나타내는 Weight 값이고 두 번째는 K 개의 정규분포 각각의 모수인 평균과 분산이다. GMM 에서 Weight 를 잠재변수로 설정하면 EM 을 통해 나머지 모수를 구할 수 있다. 이번 과제를 통해 가장 간단한 1 dimensional 2 cluster GMM 을 통해 구현해볼 것이다. 데이터가 $X_1, ..., X_n \sim \pi \phi_1 + (1-\pi)\phi_2$ 를 따른다고 가정한다. 이때 π 는 첫번째 클러스터의

weight, ϕ_1 는 N(μ_1 , σ_1^2)의 확률 분포 함수, 그리고 ϕ_2 는 N(μ_2 , σ_2^2)의 확률 분포 함수이다. 잠재변수는 $Y_i = \begin{cases} 1 & X_i \ from \ \phi_1 \\ 0 & X_i \ from \ \phi_2 \end{cases}$ 으로 cluster membership 에 대한 dummy variable 이다. 하지만 실제로 관측 불가하기 때문에 EM 알고리즘을 이용하여 Y_i 를 비롯한 나머지 매개변수인 $\theta = (\pi, \mu_1, \mu_2, \sigma_1, \sigma_2)$ 를 구해보자.

$$\begin{split} K^{th} & \ E-step \\ & Y_i = E\big(Y_i \middle| \theta^{(k-1)}, X_i\big) = p\big(Y_i = 1 \middle| \theta^{(k-1)}, X_i\big) \\ & = \frac{p(Y_i = 1)p(X_i | Y_i = 1, \theta^{(k-1)})}{p(Y_i = 1)p(X_i | Y_i = 1, \theta^{(k-1)}) + p(Y_i = 0)p(X_i | Y_i = 0, \theta^{(k-1)})} \\ & = \frac{\pi^{(k-1)}\phi_1(X_i : \mu_1^{(k-1)}, \sigma_1^{(k-1)})}{\pi^{(k-1)}\phi_1\big(X_i : \mu_1^{(k-1)}, \sigma_1^{(k-1)}\big) + \big(1 - \pi^{(k-1)}\big)\phi_2(X_i : \mu_2^{(k-1)}, \sigma_2^{(k-1)})} \\ & K^{th} & M - step \end{split}$$

$$\begin{split} \widehat{\pi^{(k)}} &= \frac{\sum Y_i^{(k)}}{n}, \ \widehat{\mu_1^{(k)}} = \frac{\sum X_i Y_i^{(k)}}{\sum Y_i^{k}}, \ \widehat{\mu_2^{(k)}} = \frac{\sum X_i (1 - Y_i^{(k)})}{\sum (1 - Y_i^{(k)})}, \\ \widehat{\sigma_1^{(k)}} &= \sqrt{\frac{\sum Y_i^{(k)} (X_i - \widehat{\mu_1^{(k)}})^2}{\sum Y_i^{(k)}}}, \ \widehat{\sigma_2^{(k)}} = \sqrt{\frac{\sum (1 - Y_i^{(k)}) (X_i - \widehat{\mu_1^{(k)}})^2}{\sum (1 - Y_i^{(k)})}} \end{split}$$

Iterate until
$$|l(\theta^{(k)}) - l(\theta^{(k-1)})| < \varepsilon$$
 where $\varepsilon = 10^{-6}$

mygmm 은 위와 같은 식을 따라 작성되었고 Result 에서 다양한 예제를 통해 mygmm 의 수렴 양상을 살펴볼 수 있다.

또한 EM 알고리즘은 incomplete data 의 MLE를 구하는 과정에서 unobserved data를 추정하기 때문에 missing data 를 impute 할 수 있다는 장점이 있다. Result 에서 incomplete 한 이변량 정규분포의 imputation 을 실현해볼 것이다. 이에 앞서 이변량 정규 분포의 EM 알고리즘에 대해 알아보자. 우선주어진 데이터는 다음과 같다.

$$\phi(w,\theta) = (2\pi)^{-1} |\Sigma|^{-\frac{1}{2}} \exp(-\frac{1}{2}(w-\mu)^t \Sigma^{-1}(w-\mu))$$
$$\theta = (\mu_1, \mu_2, \sigma_{11}, \sigma_{12}, \sigma_{22})$$

정규분포는 exponential family 중 하나로 충분 통계량(Sufficient Statistics)으로 간편하게 MLE 를 구할 수 있다. 하지만 missing data 에서는 결측치로 인해 충분 통계량 값을 구할 수 없다. 그러므로 EM 알고리즘에서 E-step 에서 conditional expectation of loglikelihood 를 이용해 결측치를 impute 한 후 M-step 에서 충분 통계량을 구해 MLE 를 구해 θ 를 업데이트한다. 이 과정을 수렴할 때까지 반복하면 결측치를 impute 한 값과 θ 의 MLE 값을 동시에 구할 수 있다. 알고리즘의 수식은 아래와 같다.

$$\begin{aligned} & \text{Sufficient Statistics T} = (T_1, T_2, T_{11}, T_{22}, T_{12}) \\ & \text{where } T_i = \sum_{j=1}^n w_{ij} \text{, } i = 1, 2, \ T_{hi} = \sum_{j=1}^n w_{hj} w_{ij} \text{, } h, i = 1, 2 \\ & K^{th} \ E - step \\ & Q \Big(\theta, \theta^{(k-1)} \Big) = E_{\theta^{(k-1)}} [l_c(\theta) | Y] \\ & \left\{ \begin{aligned} & E_{\theta^{(k-1)}} [w_{1j} | w_{2j}] \\ & E_{\theta^{(k-1)}} [w_{1j}^2 | w_{2j}] \end{aligned} \right. & j = m+1, \dots, m+m_1 \\ & \left\{ \begin{aligned} & E_{\theta^{(k-1)}} [w_{2j} | w_{1j}] \\ & E_{\theta^{(k-1)}} [w_{2j}^2 | w_{1j}] \end{aligned} \right. & j = m+m_1+1, \dots, n \end{aligned} \end{aligned}$$

Calculate using conditional distribution of W_1 given $W_2 = w_2$

1)
$$E[w_{1}|w_{2}] = \mu_{1} + \sigma_{12}\sigma_{22}^{-1}(w_{1} - \mu_{1})$$

2) $Var[w_{1}|w_{2}] = \sigma_{11}(1 - \rho^{2})$

$$\Rightarrow E_{\theta^{(k-1)}}[w_{1j}|w_{2j}] = \mu_{1}^{(k-1)} + \sigma_{12}^{(k-1)}\sigma_{22}^{(k-1)^{-1}}(w_{1j} - \mu_{1}^{(k-1)}) = w_{1j}^{(k-1)}$$

$$\Rightarrow E_{\theta^{(k-1)}}[w_{1j}^{2}|w_{2j}] = Var[w_{1}|w_{2}] + [E[w_{1}|w_{2}]]^{2} = \sigma_{11}^{(k-1)}(1 - \rho^{(k-1)^{2}}) + (w_{1j}^{(k-1)})^{2}$$

$$K^{th} M - step$$

$$\widehat{\mu_{l}^{MLE}} = \frac{T_{i}}{n}, i = 1, 2, \quad \widehat{\sigma_{hl}^{MLE}} = \frac{T_{hl} - \frac{1}{n} T_{h} T_{i}}{n} \ h, i = 1, 2, \quad \widehat{\sigma_{ll}^{MLE}} = \frac{T_{il} - \frac{1}{n} T_{i}^{2}}{n} \ i = 1, 2$$

다음으로는 Least Squares with missing response variable 데이터를 Healy-westmacott procedure 을 사용해 imputation 해 볼 것이다. 일반적으로 반응변수(response variable)가 결측치인 경우 해당 관측치를 제거하는 것이 보편적이지만 데이터에 따라서 모델링을 위해 반드시 imputation 이 필요한 경우가 있다. Healy-westmacott procedure 는 EM step 으로 결측치를 추정한다. 우선 초기값을 대입해 모델링 한다. E-step 에서 모델링으로 생성된 \hat{y} 로 결측치를 impute 한 후 M-step 에서 다시 모델링하여 \hat{y} 을 업데이트한다. 수렴할 때까지 E-step 과 M-step 을 반복한다. 본 과제에서는 UCI repository

사이트에서 수집한 1) Energy Efficiency 2) Wine Quality 3) Airfoil 데이터들을 임의로 10% 정도 missing 처리한 후 true y 값과 Healy-westmacott procedure 로 imputed 된 값을 비교한다. 본 과제에서는 Initial value 가 ybar 인 경우와 KNN 의 median 일 때 linear model 을 사용하여 impute 할 것이다. 이를 통해 Healy-westmacott procedure 의 initial value sensitive 여부와 model 에 dependent 여부를 알 수 있다. 한편 KNN 은 지도학습(supervised-learning) 알고리즘으로 새로운 관측치를 분류할 때 기존 관측치들 간의 거리를 측정해 이웃하는 k 개 관측치들의 평균 label 으로 분류한다. 예를 들어 missing 이 있는 관측치를 impute 할 때 가장 그 관측치와 유사한 k 개 관측치의 평균으로 impute 할 때 사용될 수 있다. 이렇듯 KNN 은 관측치들 간의 관계를 고려하기 때문에 imputation 에서 굉장히 빈번히 사용되는 알고리즘이다. 따라서 KNN 과 Healy-westmacott procedure 의 impute 값이 true value 와 얼마나 유사한지 RMSE를 기준으로 비교할 것이다.

2. Result

EM 알고리즘 구현

Example 1) mu1 과 mu2 의 거리가 먼 두 분포의 mixture

위의 예제는 $N(1,(0.5)^2)$ 와 $N(3,(0.5)^2)$ 의 mixture 를 clustering 한 것이다. $N(1,(0.5)^2)$ 는 cluster 1 이고 $N(3,(0.5)^2)$ 는 cluster 2 로 정하였다. n 이 커질수록 MLE 의 consistency 성질에 따라 추정치들이 모수에 근사 한다는 것을 알 수 있다.

Example 2) mu1 과 mu2 의 거리가 가까워 overlap 되는 두 분포의 mixture

Cluster	[1] 1112111221211121122222112111112111111122112211211212
membership(n=100)	[50] 1 1 1 1 2 2 1 1 2 1 2 1 2 1 1 1 1 2 1 2 2 1 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
	$ \begin{array}{c} [50] 111112211212121211112122121122221122122$
	[817] 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2
	[868] 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
	[919] 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2
	[970] 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2

두 번째 예제는 $N(1,(0.5)^2)$ 와 $N(1.5,(0.5)^2)$ 의 mixture 를 clustering 한 것이다. $N(1,(0.5)^2)$ 는 cluster 1 이고 $N(1.5,(0.5)^2)$ 는 cluster 2 로 정하였다. n 이 커질수록 MLE 의 consistency 성질에 따라 추정치들이 모수에 근사 한다는 것을 알 수 있다. 하지만 추정된 π 값의 경우 오차가 크다. 이는 두 분포의 mean 이 가까워 공유하는 면적이 넓기 때문에 clustering 을 정확하게 하기 어렵다는 점을 시사한다.

Example 3) mu1 과 mu2 이 동일한 두 분포의 mixture

Cluster	[1] 1211212221121112212212212211121222111212
membership(n=100)	[50] 212111112112221211211111121221111111211121111
	[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[52] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[103] 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[154] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[205] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[256] 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[307] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[358] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[409]1222222222222222222222222222222222222
Cluster	[460] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
membership(n=1000)	[511] 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[562] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[613] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[664] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	[715] 211222222211122122211212111222221222212222
	$\lfloor 766 \rfloor$ 1221222222222222112122222112122222122222
	[817] 212121222222221212122222222112212222222
	[868] 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2
	[919] 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2
	[970] 2 2 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2

세번째 예제는 $N(1,(0.3)^2)$ 와 $N(1,(0.7)^2)$ 의 mixture 를 clustering 한 것이다. $N(1,(0.3)^2)$ 는 cluster 1 이고 $N(1.5,(0.7)^2)$ 는 cluster 2 로 정하였다. 하지만 실제 알고리즘에서는 mean 값이 작은 분포가 cluster 1 로 설정되었기 때문에 위와 같이 mean 값이 같은 두 분포의 mixture 의 경우 clustering 결과가 일관성이 없다. 위의 표의 추정치를 통해 알 수 있듯이 n=100 일 때 cluster 1 은 $N(1,(0.3)^2)$ 으로 추정되는 반면 n=1000 일 때 cluster 1 은 $N(1,(0.7)^2)$ 으로 추정된다. 두 분포의 cluster membership 의 상호교환(exchangeable)이 가능하다. 또한 n 이 커질수록 MLE의 consistency 성질에 따라 추정치들이 모수에 근사 한다는 것을 알 수 있다.

EM 을 이용한 이변량 정규분포의 imputation

$$W=(w_1,w_2)\sim N(\mu,\Sigma)$$
 where $\mu=(\mu_1,\mu_2), \qquad \Sigma=\begin{pmatrix} \sigma_{11}&\sigma_{12}\\ \sigma_{21}&\sigma_{21} \end{pmatrix}$

W1	8	11	16	18	6	4	20	25	9	13
W2	10	14	16	15	20	4	18	22	NA	NA

$$\widehat{\mu^{MLE}} = \begin{pmatrix} 13 \\ 14.62 \end{pmatrix}$$
 $\widehat{\Sigma^{MLE}} = \begin{pmatrix} 40.2 & 20.89 \\ 20.89 & 23.57 \end{pmatrix}$

W1	8	11	16	18	6	4	20	25	9	13
W2	10	14	16	15	20	4	18	22	12.54	14.62

EM 을 이용해 이변량 정규 분포를 따르는 변수의 결측치 처리를 시행했다. $w_{2,9}$ 와 $w_{2,10}$ 이 결측치들이다. E-step 에서 $E(w_{2,9}|w_{1,9}), E(w_{2,9}^2|w_{1,9}), E(w_{2,10}|w_{1,10}), E(w_{1,10}^2|w_{1,10})$ 을 계산하여

결측치를 impute 하고 M-step 에서 충분통계량을 이용하여 모수들의 MLE 를 구하는 과정을 반복하였다. 그 결과 모수의 MLE 값과 결측치는 위와 같다. Stopping rule 은 max iteration 1000 번, $\left|l(\theta^{(k)})-l(\theta^{(k-1)})\right|<\varepsilon$ where $\varepsilon=10^{-6}$ 을 사용하였다.

impute using Healy-westmacott procedure

		exi En	ergy efficiency		
		CAI, Elik	ergy emerciney		
		데	이터 설명		
			1		
	ζ1	Relative Compactness	X5		Overall Height
	ζ2	Surface Area	X6		Orientation
	ζ3	Wall Area	X7		Glazing Area
	ζ4	Roof Area	X8		ng Area Distribution
	Y	Heating Load		n=768, p=8	,
initial value		<u> </u>		knn imputat	
		d in Energy Efficiency data		iginal vs Imputed in Energy Effi	ciency data(KNN version)
	y = 2.67 + 0.874 x	$R^2 = 0.93$	40	$y = 2.67 + 0.874 \times R^2 = 0.93$,
			/ •		

	30	3	30		.3/
	P	. 10	Pa		1/2
graph	Imputed		Imputed		
	⊑ 20	./	= 20	./	
	- <u>-</u> >	/ ·		••/	
	*	••		* "	
	10		10		
	10	20 30	40	10 20	30 40
		Original		Original	
iteration	11411	6	.	4	:
comparison	initial	imputed	true y	initial	imputed
1		33.67	35.4	35.03	33.67
2		10.08	11.45	11.20	10.08
3		12.98	12.27	12.34	12.98
<u>4</u>		14.69	12.86 29.60	12.96 28.96	14.69
<u>5</u> 6		29.04	•	10.68	29.04
7		10.02 12.21	10.70 15.12		10.02
8			39.86	15.33	12.21
9		32.31 39.83	40.78	39.42 39.58	32.31 39.83
10		12.02	11.38	11.52	12.02
11		31.86	25.17	25.59	31.86
12		14.75	17.35	16.98	14.75
13	22.39	34.14	28.64	29.51	34.14
14	09	33.93	35.67	34.48	33.93
15		9.02	7.18	10.98	9.02
16		26.37	26.48	26.36	26.37
17		32.86	32.31	31.47	32.86
18		30.99	33.13	30.73	30.99
19		33.72	36.45	34.59	33.72
20		15.63	14.66	14.61	15.63
21		13.98	14.54	14.14	13.98
22		14.09	13.18	12.99	14.09
23		17.88	14.96	15.11	17.88
24		13.74	14.61	14.47	13.74
25		14.51	13.01	12.95	14.51

26		28.27	23.67	24.77	28.27
27		32.70	39.83	24.77 38.81	32.70
28		30.61	32.53	32.38	30.61
29		11.64	11.67	12.18	11.64
30		13.69	14.55	14.43	13.69
31		30.32	32.33	32.48	30.32
32		33.28	36.57	35.78	33.28
		8.11	10.42	10.45	8.11
33		8.94	7.10		8.94
34		32.57	32.75	9.53 31.38	32.57
35 36		32.03	31.89	32.23	32.03
37		14.27	12.77	12.96	32.03 14.27
38		27.98	29.02	29.06	27.98
39		27.83	28.05	29.07	27.83
		14.96	16.84	16.81	14.96
40		8.96	7.10		8.96
41			28.15	7.77	
42		28.33		28.55	28.33
43		30.55	32.40	32.39	30.55
44		11.94	11.34	11.52	11.94
45		18.71	16.74	17.04	18.71
46		16.25	13.99	14.47 41.84	16.25
47		35.69	41.30		35.69
48		10.35	8.60	11.77	10.35
49		32.75	38.35	38.94	32.75
50		31.57	23.93	32.26	31.57
51		18.98	16.90	16.71	18.98
<u>52</u>		25.45	24.38	24.49	25.45
53		12.96	12.73	12.62	12.96
54		33.14	39.01	38.75	33.14
<u>55</u>		27.35	27.90	29.38	27.35
<u>56</u>		14.55	14.17	14.25	14.55
<u>57</u>		29.85	29.39	28.73	29.85
58		17.18	15.30	15.07	17.18
<u>59</u> 60		17.21	15.09	15.16 12.66	17.21
		13.43	12.91		13.43
61 62	-	16.28	13.68	14.47	16.28
	-	9.55	10.70	10.95	9.55
63 64	-	29.30	29.34	29.43	29.30
65	-	28.30	24.23 11.16	25.01	28.30 9.79
66		9.79 7.05	6.37	11.23 6.82	9.79 7.05
67		, ,	12.88		, ,
68	-	12.72 26.92	26.45	12.98 26.39	12.72 26.92
69		17.84		17.80	17.84
			19.12		
70	-	30.97	26.19	27.68	30.97
71	1	35.30	41.40	39.97	35.30 15.08
72	1	15.08	14.51	14.56	· ·
73		17.47	15.16	15.29	17.47
<u>74</u>		13.29	12.80	13.00	13.29
<u>75</u>		17.23	15.29	15.26	17.23
<u>76</u>		25.24	24.28	24.49	25.24
77	l	14.78	17.50	15.41	14.78

```
Call:
lm(formula = Y \sim ., data = df)
Residuals:
           1Q Median
                         30
  Min
                               Max
-9.894 -1.179 0.000 1.190
                            7.718
Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
                                   4.625 4.41e-06 ***
(Intercept) 83.965744 18.156330
                                   -6.584 8.53e-11 ***
x1
            -64.624675
                         9.815194
             -0.087315
                                   -5.361 1.10e-07 ***
                         0.016288
x2
                                           < 2e-16 ***
x3
              0.061644
                         0.006342
                                    9.721
X4
                    NA
                               NA
                                       NA
                                                NA
              4.125913
                         0.322412
                                   12.797
                                           < 2e-16 ***
x5
                         0.090340
                                   -0.297
                                           0.76646
x6
             -0.026842
                                           < 2e-16 ***
             19.559102
                         0.776469
                                   25.190
x8
              0.208340
                         0.066695
                                    3.124
                                           0.00185 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.799 on 760 degrees of freedom
                               Adjusted R-squared: 0.9216
Multiple R-squared: 0.9223,
              1289 on 7 and 760 DF, p-value: < 2.2e-16
```

 \bar{y} 와 KNN 을 initial value 로 지정했을 때 Healy-westmacott procedure imputed 값이 거의 동일한 값으로 수렴했다. 따라서 Healy-westmacott procedure 는 Initial value 에 sensitive 하지 않음을 알 수 있다. 위 데이터의 경우 KNN 이 \bar{y} 가 initial value 일 때보다 iteration 횟수가 더 적기 때문에 더 빨리 수렴하는 것을 알 수 있다. 위의 lm output 은 Healy-westmacott procedure 의 impute 값으로 lm 을 fitting 시킨 결과이다. R^2 가 0.92 로 굉장히 linear model 에 잘 fitting 되었음을 알 수 있다. 또한 위의 그래프는 \mathbf{x} 축을 \mathbf{y}^{true} 로 \mathbf{y} 축을 $\mathbf{y}^{imputed}$ 로 그린 것이다. 그래프의 점들이 직선에 모여 있으며 R^2 가 0.93 라는 것으로 보아 $\mathbf{y}^{imputed}$ 가 \mathbf{y}^{true} 에 근사한다는 점을 알 수 있다. 따라서 initial value 에 관계 없이 모델이 같은 경우 impute 값이 같고 그 impute 값이 모델에 잘 피팅 될 때 \mathbf{y}^{true} 와 $\mathbf{y}^{imputed}$ 값이 근사한다는 점으로 보아 Healy-westmacott procedure 은 model 에 dependent 함을 결론 지을 수 있다. 한편 Healy-westmacott procedure 로 impute 한 것과 KNN 으로 impute 한 것의 성능을 비교하기 위해 \mathbf{y}^{true} 에서 $\mathbf{y}^{imputed}$ 와 KNN initial 의 RMSE 를 구해보았다. 아래 결과 값을 비교해 보았을 때 $\mathbf{y}^{imputed}$ 가 KNN initial 보다 \mathbf{y}^{true} 에 가까운 것을 알 수 있다.

$$\frac{1}{n} \sum (y^{true} - y^{knn \text{ initial}})^2 = 0.1554$$

$$\frac{1}{n} \sum (y^{true} - y^{imputed})^2 = 0.0481$$

ex2. Wine Quality

데이터 설명

X1	Fixed Acidity	X7	Total Sulfur Dioxide
X2	Volatile Acidity	X8	Density
X3	Citric Acid	X9	рН
X4	Residual Sugar	X10	sulphates
X5	Chlorides	X11	alcohol
X6	Free Sulfur Dioxide		
		7	

		Residual Sugai	Alo		suipilates			
X5 Chlorides		Chlorides	X11		alcohol			
X6 Free Sulfur Dioxide								
Y Quality (score between		n=1599, p=11						
o and 10)								
initial value	_	\bar{y}		knn imputation				
	Original vs Imp	uted in Wine Quality data	Origi	Original vs Imputed in Wine Quality data(KNN version)				
	y = 3.61 + 0.36	$8 \times R^2 = 0.33$		$= 3.61 + 0.368 \times R^2 = 0.33$				
graph	Imputed 9		6 pathodul					
iteration	4	5 Original	8 4	5 6 Original	7 8			
comparison	initial	imputed	true y	initial	imputed			
1	mittu	6.61	7	7	6.61			
2		5.08	5	5	5.08			
3		5.87	<u>5</u> 7	5	5.87			
		6.50	7	7	6.50			
4			6					
5		5.71		5	5.71			
6		5.98	5	6	5.98			
7		5.25	5	6	5.25			
8		6.23	6	6	6.23			
9		5.56	6	5	5.56			
10		5.15	6	5	5.15			
11		5.62	6	6	5.62			
12		5.92	6	6	5.92			
13		5.86	6	6	5.86			
14		5.60	5	6	5.60			
15		5.62	6	5	5.62			
16		5.60	5	6	5.60			
17		5.38	5	5	5.38			
18		5.89	6	6	5.89			
19		6.65	6	7	6.65			
20		6.27	7	7	6.27			
21		5.89	6	6	5.89			
22		6.42	7	7	6.42			
23		5.04	5	5	5.04			
24		5.43	5	5	5.43			
25		5.51	5	6	5.51			
26		5.51	6	5	5.51			
27		6.29	6	7	6.29			
28		5.08	5	6	5.08			
29		4.91	6	5	4.91			
30			5	5				
		5.59 5.96	<u> </u>	6	5.59			
31				6	5.96			
32		5.77	5		5.77			
33		5.45	6	6	5.45			
34		6.05	5	5	6.05			

35		5.76	6	6	5.76
36		5.70	6	6	5.70
37		5.35	5	5	5.35
38		5.74	5	6	5.74
39		5.74	5	5	5.74
40		5.30	5	5	5.30
41		6.11	6	6	6.11
42		5.04	5	5	5.04
43		6.22	6	6	6.22
44		6.90	7	7	6.90
45	1	4.42	4	5	4.42
46		5.89	6	6	5.89
		5.66	6		5.66
47				5	
48		5.69	5	5	5.69
49		6.09	5	6	6.09
50		5.43	5	5	5.43
51		5.16	5	5	5.16
52		6.43	7	6	6.43
53		5.79	6	6	5.79
<u>54</u>		5.41	5	5	5.41
55		4.96	5	5	4.96
56		5.07	5	5	5.07
57		6.15	8	7	6.15
58		5.65	6	5	5.65
59	1	5.63	5	6	5.63
60		6.59	6	7	6.59
61			6	6	4.85
		4.85		6	4.65
62		5.86	6		5.86
63		5.76	6	6	5.76
64		5.47	6	5	5.47
65		5.19	6	5	5.19
66		4.97	6	6	4.97
67		6.01	7	6	6.01
68				5	5.05
	1	5.05	5		
69		6.19	5	5	6.19
70		5.33	5	5	5.33
71		5.46	6	5	5.46
72		4.93	5	5	4.93
73	1	5.79	5	6	5.79
74		5.73	6	6	5.73
		6.02	6	6	6.02
<u>75</u>	1				
76		5.93	6	6	5.93
77		5.77	5	6	5.77
78		6.26	6	6	6.26
79		5.86	6	6	5.86
80		5.37	5	5	5.37
81	1	6.05	6	6	6.05
82	- (-	5.43	5	5	5.43
	5.63	6.28	<u> </u>	6	6.28
83			7		
84		5.73	5	6	5.73
85		6.14	6	6	6.14
86		6.09	6	6	6.09
87		5.69	5	6	5.69
88	1	6.74	6	6	6.74
89	1	5.90	6	5	5.90
				5	
90	1	4.91	5	5	4.91
91		5.88	6	6	5.88
92		5.55	6	5	5.55
93		5.78	6	5	5.78
94		5.95	6	6	5.95
95	1	5.65	5	5	5.65
96	1	6.14	6	6	6.14
		5.64	7	5	5.64
97		5 0/1	· /	5	5.04

	T	T			
98		5.92	5	5	5.92
99		5.44	5	5	5.44
100		5.46	5	5	5.46
101		4.91	5	5	4.91
102		5.18	6	6	5.18
103		5.69	5	5	5.69
104		5.15	6	5	5.15
105		6.10	6	6	6.10
106		5.11	5	5	5.11
107		5.32	5	6	5.32
108		5.99	6	6	5.99
109		4.79	5	5	4.79
110		5.73	6	6	5.73
111		5.42	4	5	5.42
112		6.38	7	6	6.38
113		5.63	7	6	5.63
114		5.03	5	5	5.03
115		6.15	7	6	6.15
116		5.58	6	6	5.58
117		5.73	6	6	5.73
118		6.03	5	6	6.03
119		5.33	5	5	5.33
120		5.95	6	6	5.95
121		5.47	5	6	5.47
122		6.12	7	6	6.12
123		6.13	6	6	6.13
124		6.00	6	6	6.00
125		5.43	6	5	5.43
126		5.10	5	5	5.10
127		5.64	6	6	5.64
128		5.55	6	6	5.55
129		5.58	6	6	5.58
130		5.04 6.52	5 6	5 6	5.04 6.52
131		5.07		5	
132			<u>5</u> 5	<u> </u>	5.07
133		5.20			5.20
134		5.34	5	5	5.34
135		4.95	6	5	4.95
136		5.91	6	5	5.91
137		5.36	5	5	5.36
138		6.34	6	6	6.34
139		5.93	7	6	5.93
140		6.35	5	6	6.35
141		6.08	6	6	6.08
142		6.14	6	6	6.14
143		5.73	6		5.73
144		5.44	5	5	5.44
145		5.88	7	6	5.88
146		5.96	7	6	5.96
147		5.22 6.18	5	5	5.22 6.18
148			7	7	
149		6.71	6	7	6.71
150		5.66	5	5	5.66
151		6.57	6	6	6.57
152		5.03	4	5	5.03
153		5.83	5	6	5.83
154		5.22	5	5	5.22
155		5.90	6	6	5.90
156		6.13	6	6	6.13
157		5.60	5	5	5.60
158		5.73	6	5	5.73
159		6.08	6	6	6.08
160		6.36	6	6	6.36

```
Call:
lm(formula = Y \sim ., data = df)
Residuals:
     Min
                1Q
                     Median
-2.69724 -0.33135 -0.00003 0.38933 2.03790
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
             1.484e+01
                         2.029e+01
                                       0.732
                         2.484e-02
              2.329e-02
                                       0.938
                                               0.3485
                                              < 2e-16 ***
x2
             -1.136e+00
                         1.159e-01
                                      -9.801
х3
             -2.194e-01
                         1.409e-01
                                      -1.557
                                               0.1196
X4
             8.535e-03
                         1.436e-02
                                      0.594
                                               0.5524
                                      -4.707 2.73e-06 ***
x5
             -1.889e+00
                          4.014e-01
                         2.078e-03
                                      2.220
                                               0.0266 *
x6
              4.613e-03
                                      -4.634 3.88e-06 ***
                          6.976e-04
x7
             -3.232e-03
                          2.071e+01
x8
             -1.063e+01
                                      -0.513
                                               0.6077
                         1.834e-01
                                      -2.446
                                               0.0146 *
x9
             -4.486e-01
              8.909e-01
                         1.094e-01
                                      8.140 7.89e-16 ***
x10
              2.858e-01 2.535e-02 11.274 < 2e-16 ***
x11
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.6203 on 1587 degrees of freedom
Multiple R-squared: 0.3859, Adjusted R-squared: 0.383
F-statistic: 90.67 on 11 and 1587 DF, p-value: < 2.2e-16
```

 \bar{y} 와 KNN 을 initial value 로 지정했을 때 Healy-westmacott procedure imputed 값이 거의 동일한 값으로 수렴했다. 위 데이터의 경우 KNN 이 \bar{y} 가 initial value 일 때보다 iteration 횟수가 더 적기 때문에 더 빨리 수렴하는 것을 알 수 있다. 위의 lm output 에 따르면 R^2 가 o.38 로 linear model 에 부적합한 것으로 보인다. 또한 위의 그래프를 통해 위의 데이터의 Y 값이 $o\sim10$ 사이의 integer value 인데 반해 impute 값은 실수(Real Value)이기 때문에 R^2 가 o.33 으로 그래프의 점들이 직선을 따르지 않는다는 것을 알 수 있다. 한편 Healy-westmacott procedure 로 impute 한 것과 KNN 으로 impute 한 것의 성능을 비교하기 위해 y^{true} 에서 $y^{imputed}$ 와 KNN initial 의 RMSE 를 구해보았다. 아래 결과 값을 비교해 보았을 때 $y^{imputed}$ 가 KNN initial 보다 y^{true} 에 가까운 것을 알 수 있다.

$$\frac{1}{n} \sum_{i} (y^{true} - y^{knn \ initial})^2 = 0.0438$$

$$\frac{1}{n} \sum_{i} (y^{true} - y^{imputed})^2 = 0.0184$$

ex3. Airfoil Self-noise

		데	이터 설명			
Σ	X1 Frequency, in Hertzs				e-stream velocity neters per second	
	ζ2	Angle of attack in degrees	X ₅	X ₅ Suction side displa		
	ζ3	Chord length in meters		tni tni	ckness, in meters	
	Y	Scaled sound pressure level in decibels		n= 1503, p=5		
initial value		<u> </u>		knn imputat	ion	
	Original vs I	mputed in Airfoil data	0	riginal vs Imputed in Airfoil data		
graph	y = 63.8+0	0.49 x R ² = 0.44	paindul 120	$y = 63.8 + 0.49 \times R^2 = 0.44$		
	110	120 130 Original	110	110 120 Original	130 140	
iteration		6		6		
comparison	initial	imputed 116.21	true y	initial	imputed 116.21	
2		122.33	124.21 128.56	125.90 125.79	122.33	
3		123.52	125.47	128.47	123.52	
4		120.23	119.94	123.47	120.23	
5		131.65	126.71	127.84	131.65	
6		118.36	115.14	120.52	118.36	
7		122.49	120.47	122.91	122.49	
8		126.41	115.86	124.93	126.41	
9		121.11	118.09	120.62	121.11	
10		130.07	128.71	131.47	130.07	
11		130.60	132.11	132.13	130.60	
12		117.62	112.52	121.13	117.62	
13		124.22	127.90	125.15	124.22	
14		121.66	120.54	132.43	121.66	
15		135.92	129.68	131.52	135.92	
16		126.17	130.84	128.45	126.17	
17		130.43	119.51	127.85	130.43	
19		127.15 124.33	127.28 125.58	128.45 128.25	127.15 124.33	
20		133.29	130.50	133.59	133.29	
21		132.33	132.09	131.81	132.33	
22		128.84	133.31	130.43	128.84	
23		119.38	118.05	123.47	119.38	
24		123.92	122.39	127.79	123.92	
25		117.90	115.30	119.09	117.90	
26		123.57	116.41	121.69	123.57	
27		121.13	122.20	122.38	121.13	
28		116.89	114.63	115.75	116.89	
29		123.59	135.67	124.68	123.59	
30		127.78	130.05	128.48	127.78	
31		129.49	129.37	127.76	129.49	
32		125.70	125.39	127.71	125.70	
33		119.87	117.65	117.31	119.87	
34		120.31	116.68	117.09	120.31	
35		120.60	123.18	128.44	120.60	

	1	100.00	100.60	100 =0	100.00
36	-	122.92	123.69	123.79	122.92
37 38	-	123.36 115.93	121.50	124.40	123.36
39		129.28	111.35 128.96	115.45 127.58	115.93 129.28
40		121.62	123.92	124.93	121.62
41	1	125.11	131.22	126.37	125.11
42	1	123.44	124.05	123.79	123.44
43	=	119.75	114.31	121.80	119.75
44		131.55	126.15	129.97	131.55
45	-	125.40	140.16	129.26	125.40
46	1	126.51	124.90	129.01	126.51
47		112.30	110.36	117.71	112.30
48		123.43	116.85	122.23	123.43
49		132.49	120.95	131.89	132.49
50		123.74	132.30	124.68	123.74
51		123.88	124.11	126.52	123.88
52		127.40	127.83	126.51	127.40
53		127.35	134.34	131.43	127.35
54		129.63	121.62	127.66	129.63
55		123.87	125.40	132.43	123.87
56	_	130.31	134.57	132.75	130.31
57	-	111.41	121.93	125.39	111.41
58		131.11	127.10	130.43	131.11
59	-	123.88	122.53	125.45	123.88
60	-	133.40	127.95	129.98	133.40
61	-	124.75	127.68	125.60	124.75
62	-	128.40	126.27	130.58	128.40
64	1	128.13 123.98	127.13 128.31	129.30	128.13 123.98
65		123.96		125.94 128.06	123.96
66		127.67	134.27 109.95	124.52	127.67
67	1	127.33	127.01	126.69	127.33
68	1	132.80	134.43	133.74	132.80
69	=	125.47	122.43	123.86	125.47
70	=	126.30	124.88	130.39	126.30
71	-	129.32	131.81	127.76	129.32
72		126.02	123.42	126.24	126.02
73		126.69	130.56	126.42	126.69
74		127.28	119.62	124.52	127.28
75		119.83	117.15	122.31	119.83
76		130.04	127.90	129.23	130.04
77		126.24	122.47	131.17	126.24
78		129.36	135.19	130.43	129.36
<u>79</u>	4	127.74	128.99	130.36	127.74
80	4	125.80	128.34	123.86	125.80
81	4	126.41	126.27	126.23	126.41
82	124.84	127.63	136.83	133.84	127.63
83	-	130.22	133.92	131.88	130.22
84	-	125.55	128.98 109.64	132.43	125.55
85 86	1	103.65 130.93	109.64	113.10 132.23	103.65 130.93
87	1	130.93	118.56	132.23	130.93
88	1	121.40	130.63	131.45	121.40
89	1	125.07	127.81	126.94	125.07
90	1	113.36	106.60	112.72	113.36
91	1	131.33	128.56	129.97	131.33
92	1	120.32	119.17	123.15	120.32
93	1	123.27	121.63	123.71	123.27
94	1	127.52	111.91	124.52	127.52
95		119.18	116.42	119.53	119.18
96		131.97	128.08	131.89	131.97
	I	129.24	129.12	127.66	129.24
97 98		119.89	129.12	121.86	1= 31=7

99		120.12	115.66	125.89	120.12
100		124.66	121.89	125.70	124.66
101		114.47	108.69	115.79	114.47
102		130.61	135.35	133.79	130.61
103		119.36	120.86	124.33	119.36
104		125.01	128.74	130.84	125.01
105		128.80	133.35	130.58	128.80
106		128.29	128.30	130.58	128.29
107		128.10	131.19	132.71	128.10
108		127.24	135.16	130.66	127.24
109		110.90	111.08	115.14	110.90
110		127.36	127.69	125.72	127.36
111		126.67	129.47	126.15	126.67
112		124.92	123.84	129.74	124.92
113		127.45	132.76	127.38	127.45
114		125.67	123.74	130.17	125.67
115		118.82	113.23	119.07	118.82
116		123.49	127.58	124.61	123.49
117		122.82	120.65	126.26	122.82
118		122.93	122.09	127.13	122.93
119		131.07	130.72	129.97	131.07
120		131.71	130.33	131.89	131.71
121		128.39	127.70	130.57	128.39
122		126.61	128.25	130.88	126.61
123		124.16	124.45	125.52	124.16
124		130.76	135.94	132.38	130.76
125		127.17	122.61	131.56	127.17
126		129.54	128.22	127.58	129.54
127		120.20	125.38	128.90	120.20
128		127.48	128.71	126.64	127.48
129		121.96	122.78	124.56	121.96
130		122.74	133.81	123.68	122.74
131		122.89	130.90	123.68	122.89
132		125.22	129.69	126.37	125.22
133		125.28	136.38	129.69	125.28
134		124.42	126.65	129.26	124.42
135		122.29	124.84	125.66	122.29
136		118.04	117.09	119.81	118.04
137		123.39	127.63	128.47	123.39
138	1	130.11	130.37	125.20	130.11
139	1	119.04	115.97	120.38	119.04
140	1	124.68	125.52	127.14	124.68
141	1	129.30	112.51	123.44	129.30
142	1	130.09	124.76	129.75	130.09
143	1	135.09	126.81	131.25	135.09
144	1	124.74	131.82	124.93	124.74
145	1	125.51	126.09	126.98	125.51
146	1	126.84	122.15	125.50	126.84
147	1	122.36	118.99	127.08	122.36
148	1	121.51	117.13	125.46	121.51
149	1	124.90	122.17	130.36	124.90
150	1	121.03	118.62	125.79	121.03
100	<u> </u>	121,00	110.02	120./9	121,00

```
Call:
lm(formula = Y \sim ., data = df)
Residuals:
    Min
             1Q Median
                              3Q
                                     Max
-17.111
        -2.563
                  0.000
                           2.646
                                 15.793
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
            1.329e+02
(Intercept)
                        5.130e-01
                                    258.98
                                             <2e-16 ***
            -1.298e-03
                        3.966e-05
                                    -32.74
x1
                                             <2e-16 ***
X2
            -3.942e-01
                        3.663e-02
                                   -10.76
                                             <2e-16 ***
                                   -22.99
х3
            -3.530e+01
                        1.536e+00
                                             <2e-16 ***
x4
             9.880e-02
                       7.659e-03
                                    12.90
X5
            -1.606e+02 1.414e+01
                                             <2e-16 ***
                                    -11.36
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.529 on 1497 degrees of freedom
Multiple R-squared: 0.551,
                                Adjusted R-squared: 0.5495
F-statistic: 367.4 on 5 and 1497 DF, p-value: < 2.2e-16
```

$$\frac{1}{n} \sum_{i} (y^{true} - y^{knn \ initial})^2 = 1.7811$$

$$\frac{1}{n} \sum_{i} (y^{true} - y^{imputed})^2 = 0.1937$$

3. Discussion

1 dimensional 2 clusters GMM 을 mygmm 함수로 구현해 봄으로써 EM 알고리즘을 깊이 이해할 수 있었다. mygmm 이 가장 성능이 좋을 때는 μ_1 과 μ_2 의 거리가 멀어 mixture 의 density 가 양봉을 이룰 때였다. 반면 μ_1 과 μ_2 의 거리가 가까워 두 분포가 overlap 을 될 때는 mixture 로부터 cluster 하는 성능이 떨어졌다. μ_1 과 μ_2 이 같을 때는 cluster 들의 식별가능성이 사라졌다. 또한 n 의 크기가 커질수록 MLE 의 consistency 성질에 따라 추정치들이 모수로 근사한다는 것을 알 수 있었다. 1 dimensional 2 clusters 에서 p dimensional k clusters 으로 확장하고 싶었지만 코딩의 미숙함으로 인해 구현할 수 없어 아쉬움이 남는다. 하지만 다행히 R 의 mclust 패키지를 이용한다면 직접 코딩하지 않고 간편하게 p dimensional k clusters 를 시행할 수 있다.

한편 EM 은 incomplete 데이터의 unobserved data 의 conditional expectation 을 구해 추정한다는 점에서 결측치를 impute 할 수 있다는 장점을 갖고 있다. Result 의 incomplete 한 이변량 정규분포 예제에 EM 을 이용해 결측치를 impute 하고 나머지 모수들의 MLE 값을 구해볼 수 있었다. 이러한 EM 의 imputation 은 특히 numeric 데이터의 결측치를 해결하기 위한 방법 중 하나로 널리활용되고 있다.

Healy-westmacott procedure 는 반응 변수(response variable)을 impute 시키는 일종의 EM 알고리즘이다. Healy-westmacott procedure 은 initial value 와 model 에 dependent 한 것으로 알려져 있다. 본 과제에서는 initial value 를 \bar{y} 와 KNN 로 두 가지의 경우를 고려했으며 model 은 linear model 을 사용하였다. 그 결과 impute 값은 initial value 에 관계 없이 동일한 값으로 수렴했다. 또한 데이터가 lm 모델에 피팅이 잘 될수록 Impute 값이 true value 에 근사했다. 이를 통해 Healy-westmacott procedure 은 model 에 dependent 하기 때문에 impute 하기 위해 데이터에 적합한 모델을 사용해야 한다는 것을 알았다. 한편 대표적인 imputation 방법 중 하나인 KNN 과 Healy-westmacott procedure 의 impute 값을 RMSE measure 를 이용하여 비교했을 때 후자의 RMSE 값이 더 작아 true value 에 근사 한다는 것을 알 수 있었다.

4. Appendix

```
rm(list=ls())
library(tidyverse); library(mclust)
# hw1 make your own gmm function
mygmm <- function(x){</pre>
  # initial parameter
  x <- as.vector(x)
  pi1 <- pi2 <- 0.5
 mu <- sample(x, 2)
 mu1 \leftarrow mu[which.min(mu)]; mu2 \leftarrow mu[which.max(mu)] \# Assumed that <math>mu1 < mu2
  sigma1 <- sigma2 <- sd(x)
  n <- length(x)
  old.loglik <- sum(log(pi1)+log(dnorm(x,mu1,sigma1)) + log(pi2)+log(dnorm(x,mu2,sigma2)))
  err <- 1
  thr <-10^{(-6)}
  maxiter <- 100
  niter <-0
  while ( niter <= maxiter && err>=thr ) {
    # E -step( calculate yi & unobserved conditional expectation )
    y <- (dnorm(x=x, mean=mu1,
sd=sigma1)*pi1)/(pi1*dnorm(x,mu1,sigma1)+pi2*dnorm(x,mu2,sigma2))
    # M -step
    # update parameter( maximization )
    pi1 <- sum(y)/n; pi2 <- 1-pi1
    mu1 <- sum(x*y)/sum(y); mu2 <- sum(x*(1-y))/sum(1-y);
    \texttt{new.loglik} \leftarrow \texttt{sum} (\texttt{log(pi1)} + \texttt{log(dnorm(x,mu1,sigma1))} + \texttt{log(pi2)} + \texttt{log(dnorm(x,mu2,sigma2)))}
```

```
# update niter and err
    niter <- niter + 1
    err <- abs(new.loglik - old.loglik)
    old.loglik <- new.loglik
  mem <- ifelse(y>0.5, 1, 2) # 1 이 mul 을 가진 cluster
  theta <- data.frame(pi=c(pi1, pi2), mu=c(mu1, mu2), sigma=c(sigma1,sigma2))</pre>
  rownames(theta) <- c("cluster1", "cluster2")</pre>
  return(list(cluster=mem, parameter=theta))
# ex1) mean 차이가 큰 분포
set.seed(1)
comp1.vals <- data.frame(comp="A", vals=rnorm(70, mean=1, sd=0.5))</pre>
comp2.vals <- data.frame(comp="B", vals=rnorm(30, mean=3, sd=0.5))</pre>
vals.df <- rbind(comp1.vals, comp2.vals)</pre>
ex1.s <- mygmm(vals.df[,2])
comp1.vals <- data.frame(comp="A", vals=rnorm(700, mean=1, sd=0.5))</pre>
comp2.vals <- data.frame(comp="B", vals=rnorm(300, mean=3, sd=0.5))</pre>
vals.df <- rbind(comp1.vals, comp2.vals)</pre>
ex1.b <- mygmm(vals.df[,2])</pre>
plot(density(vals.df[,2]),main="Density of example1",ylim=c(0,1))
lines(density(comp1.vals[,2]),lty=2,col='red')
lines(density(comp2.vals[,2]),lty=3,col='blue')
\label{legend} \verb|legend("topright", legend=c("mixture", "N(1, (0.5)^2)", "N(3, (0.5)^2)")|,
       col=c("black", "red", "blue"), lty=c(1,2,3))
# ex2) mean 0 overlapping
set.seed(1)
comp1.vals <- data.frame(comp="A", vals=rnorm(70, mean=1, sd=0.5))</pre>
comp2.vals <- data.frame(comp="B", vals=rnorm(30, mean=1.5, sd=0.5))</pre>
vals.df <- rbind(comp1.vals, comp2.vals)</pre>
ex1.s <- mygmm(vals.df[,2])</pre>
comp1.vals <- data.frame(comp="A", vals=rnorm(700, mean=1, sd=0.5))</pre>
comp2.vals <- data.frame(comp="B", vals=rnorm(300, mean=1.5, sd=0.5))</pre>
vals.df <- rbind(comp1.vals, comp2.vals)</pre>
ex1.b <- mygmm(vals.df[,2])</pre>
plot(density(vals.df[,2]),main="Density of example2",ylim=c(0,1))
lines(density(comp1.vals[,2]),lty=2,col='red')
lines(density(comp2.vals[,2]),lty=3,col='blue')
legend("topright", legend=c("mixture", "N(1, (0.5)^2)", "N(1.5, (0.5)^2)"),
       col=c("black","red","blue"),lty=c(1,2,3))
# ex3) mean 이 같은 분포
set.seed(1)
comp1.vals <- data.frame(comp="A", vals=rnorm(70, mean=1, sd=0.3))</pre>
comp2.vals <- data.frame(comp="B", vals=rnorm(30, mean=1, sd=0.7))</pre>
vals.df <- rbind(comp1.vals, comp2.vals)</pre>
ex1.s <- mygmm(vals.df[,2])
```

```
comp1.vals <- data.frame(comp="A", vals=rnorm(700, mean=1, sd=0.3))</pre>
comp2.vals <- data.frame(comp="B", vals=rnorm(300, mean=1, sd=0.7))</pre>
vals.df <- rbind(comp1.vals, comp2.vals)</pre>
ex1.b <- mygmm(vals.df[,2])
plot(density(vals.df[,2]), main="Density of example3", ylim=c(0,1.5))
lines(density(comp1.vals[,2]),lty=2,col='red')
lines(density(comp2.vals[,2]),lty=3,col='blue')
legend("topright",legend=c("mixture","N(1,(0.3)^2)","N(1,(0.7)^2)"),
       col=c("black","red","blue"),lty=c(1,2,3))
# hw2 Bivariate Normal distribution's imputation using EM
# hw2 Bivariate Normal distribution's imputation using EM
tb <- data.frame(w1=c(8,11,16,18,6,4,20,25,9,13),
                 w2=c(10,14,16,15,20,4,18,22,NA,NA))
myftn <- function(df) {</pre>
  # Initial values
  n <- nrow(df)
  mu1 <- mean(df$w1)
  sig11 <- var(df$w1)*((n-1)/n)
 mu2 <- mean(df$w2,na.rm=T)</pre>
  sig22 \leftarrow var(df$w2, na.rm=T)*((8-1)/8)
  siq12 <- 1
  cor <- sig12/(sqrt(sig11)*sqrt(sig22))</pre>
 niter <- 0; err <- 1
  maxiter <- 1000
  old.likeli <- 0
  while ( niter \leq maxiter && err > 10^(-10)){
    # E-step
    e19 <- mu2 + (sig12/sig11)*(df$w1[9]-mu1)
    e29 <- sig22*(1-cor^2)+ e19^2
   e110 \leftarrow mu2 + (sig12/sig11) * (df$w1[10]-mu1)
   e210 <- sig22*(1-cor^2)+ e110^2
   w2 <- c(df$w2[1:8], e19, e110)
    t1 <- sum(df$w1)
    t2 <- sum(w2)
   t11 <- sum((df$w1)^2)
   t22 < - sum(w2^2)
   t12 <- sum(df$w1*w2)
    # M-step
   mu1 \leftarrow t1/n; mu2 \leftarrow t2/n
    sig11 <- (t11-n*mu1^2)/n
    sig22 <- (t22-n*mu2^2)/n
   sig12 <- (t12-((t1*t2)/n))/n
    cor <- sig12/(sqrt(sig11)*sqrt(sig22))</pre>
   xi <- sig11*sig22-sig12^2
    2*sig12*t12-(1/2)*(t1*(mu1*sig22-mu2*sig12)+t2*(mu2*sig11-mu1*sig12))
+n*((mu1^2)*sig22+(mu2^2)*sig11-2*mu1*mu2*sig12))
```

```
# update niter & err
    niter <- niter + 1
    err <- abs(old.likeli-new.likeli)</pre>
    old.likeli <- new.likeli
  mu \leftarrow matrix(c(mu1, mu2)); rownames(mu) \leftarrow c("mu1", "mu2")
  sig <- \ matrix(c(sig11,\ sig12,\ sig22),ncol=2,nrow=2);\ rownames(sig) <- \ c("w1","w2");
colnames(sig) <- c("w1", "w2")</pre>
  return(list(mu=mu, sig=sig, w2=w2))
myftn(tb)
#hw3 impute using Healy-westmacott procedure
library(ggpmisc); library(class)
setwd('C:/Users/dnskd/Desktop/19-2/계특/과제/hw4')
# 3 example from UCI repository
en <- read.csv('energy efficiency.csv')</pre>
wine <- read.csv('winequality-red.csv', sep=";")</pre>
air <- read.csv('airfoil self noise.csv')</pre>
colnames(wine) <- c(paste0("X",1:11),"Y")</pre>
colnames(air)[6] <- "Y"</pre>
# initial value type: ybar
myimp <- function(df,thr,ind) {</pre>
  # missing data
  missing <- sample(nrow(df), round(nrow(df)*0.1, 0) )</pre>
  true.y <- df[missing, ind]</pre>
  df[missing, ind] <- NA</pre>
  # initial value
  ybar <- mean(df[,ind], na.rm=T)</pre>
  init <- ybar
  df[missing, ind] <- ybar</pre>
  fit <- lm(Y \sim . , data=df)
  yhat <- fit$fitted.values[missing]</pre>
  y.old <- yhat
  maxiter <- 1000; niter <- 0; err <- 1
  while(niter <= maxiter && err >= thr ) {
    # E-step
    df[missing, ind] <- yhat</pre>
    # M-step
    fit <- lm(Y \sim . , data=df)
    yhat <- fit$fitted.values[missing]</pre>
    y.new <- yhat
    # update niter and err
    niter <- niter + 1
    err <- sum((y.old-y.new)^2)
    y.old <- y.new
```

```
return(list(missing=missing, imputed=y.new, true.y=true.y, init=init,
fit=summary(fit),iteration=niter))
# ex1. Energy Efficiency
set.seed(1)
result1 <- myimp(en, 10^{(-6)}, 9)
df <- data.frame(y=result1$imputed, x=result1$true.y)</pre>
my.formula <- y \sim x
ggplot(data=df, aes(x = x, y = y)) +
  geom smooth(method = "lm", se=FALSE, color="black", formula = my.formula) +
  stat poly eq(formula = my.formula,
               aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")),
               parse = TRUE) +geom_point(col='blue')+ggtitle("Original vs Imputed in Energy
Efficiency data") +xlab("Original") +ylab("Imputed") +theme_minimal()
ggsave('energy.png')
# ex2. Wine Quality
set.seed(1)
result2 <- myimp(wine, 10^{(-6)}, 12)
df <- data.frame(y=result2$imputed, x=result2$true.y)</pre>
my.formula <- y \sim x
ggplot(data=df, aes(x = x, y = y)) +
  geom smooth(method = "lm", se=FALSE, color="black", formula = my.formula) +
  stat_poly_eq(formula = my.formula,
               aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")),
               parse = TRUE) +geom point(col='blue')+ggtitle("Original vs Imputed in Wine
Quality data") +xlab("Original") +ylab("Imputed") +theme minimal()
ggsave('wine.png')
# ex3. Airfoil
set.seed(1)
result3 <- myimp(air, 10^{(-6)}, 6)
df <- data.frame(y=result3$imputed, x=result3$true.y)</pre>
my.formula <- y \sim x
ggplot(data=df, aes(x = x, y = y)) +
 geom smooth(method = "lm", se=FALSE, color="black", formula = my.formula) +
  stat_poly_eq(formula = my.formula,
               aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")),
               parse = TRUE) +geom point(col='blue')+ggtitle("Original vs Imputed in Airfoil
data")+xlab("Original")+ylab("Imputed")+theme_minimal()
ggsave('air.png')
# initial value using KNN
library(VIM)
myimp2 <- function(df, ind) {</pre>
  # missing data
 missing <- sample(nrow(df), round(nrow(df)*0.1,0))</pre>
  true.y <- df[missing, ind]</pre>
 df[missing, ind] <- NA</pre>
  # initial value
  knn.imp <- kNN(df, variable=c("Y"), k=10)</pre>
  knn.imp <- knn.imp[,-(ind+1)]
  init <- knn.imp[missing,ind]</pre>
  fit <- lm(Y\sim., knn.imp)
  yhat <- fit$fitted.values[missing]</pre>
```

```
y.old <- yhat
  err <- 1; niter <- 0; maxiter <- 1000; thr <- 10^(-6)
  while(niter <= maxiter && err >= thr){
  # E-step
  knn.imp[missing, ind] <- yhat
  # M-sten
  fit <- lm(Y~., knn.imp)
  yhat <- fit$fitted.values[missing]</pre>
  y.new <- yhat
  # update niter and err
  niter <- niter + 1
  err <- sum((y.old - y.new)^2)
  y.old <- y.new</pre>
  return(list(missing=missing, imputed=y.new, true.y=true.y, init=init,
fit=summary(fit),iteration=niter))
# ex1. Energy Efficiency
set.seed(1)
output1 <- myimp2(en, 9)</pre>
df <- data.frame(y=output1$imputed, x=output1$true.y)</pre>
my.formula <- y \sim x
ggplot(data=df, aes(x = x, y = y)) +
 geom smooth(method = "lm", se=FALSE, color="black", formula = my.formula) +
  stat poly eq(formula = my.formula,
               aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")),
               parse = TRUE) +geom_point(col='olivedrab3')+ggtitle("Original vs Imputed in
Energy Efficiency data(KNN version)")+xlab("Original")+ylab("Imputed")+theme minimal()
ggsave('energyknn.png')
# ex2. Wine Quality
set.seed(1)
output2 <- myimp2(wine, 12)</pre>
df <- data.frame(y=output2$imputed, x=output2$true.y)</pre>
my.formula <- y \sim x
ggplot(data=df, aes(x = x, y = y)) +
  geom_smooth(method = "lm", se=FALSE, color="black", formula = my.formula) +
 stat_poly_eq(formula = my.formula,
               aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")),
               parse = TRUE) +geom_point(col='olivedrab3')+ggtitle("Original vs Imputed in
Wine Quality data(KNN version)")+xlab("Original")+ylab("Imputed")+theme minimal()
ggsave('wineknn.png')
# ex3. Airfoil
set.seed(1)
output3 <- myimp2(air, 6)</pre>
df <- data.frame(y=output3$imputed, x=output3$true.y)</pre>
my.formula <- y \sim x
ggplot(data=df, aes(x = x, y = y)) +
  geom smooth(method = "lm", se=FALSE, color="black", formula = my.formula) +
  stat_poly_eq(formula = my.formula,
               aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")),
               parse = TRUE) +geom point(col='olivedrab3')+ggtitle("Original vs Imputed in
Airfoil data(KNN version)")+xlab("Original")+ylab("Imputed")+theme_minimal()
```

```
ggsave('airknn.png')
# RMSE 비교
sqrt(mean(output1$true.y-output1$init)^2)
sqrt(mean(output1$true.y-output1$imputed)^2)
sqrt(mean(output2$true.y-output2$init)^2)
sqrt(mean(output2$true.y-output2$imputed)^2)
sqrt(mean(output3$true.y-output3$init)^2)
sqrt(mean(output3$true.y-output3$imputed)^2)
```