Zadanie 1.

Załóżmy, że X_1,X_2,X_3,X_4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć $\nu=\mathrm{var}(X_3+X_4\mid X_1+X_2+X_3=9)$.

- (A) v = 10
- (B) v = 20
- (C) v = 12
- (D) v = 13
- (E) v = 15

Zadanie 2.

Niech *X* i *Y* będą niezależnymi zmiennymi losowymi każda z rozkładu wykładniczego o wartości oczekiwanej 2.

Niech
$$U = X + Y$$
 i $V = X - Y$.

Wtedy prawdziwe jest następujące zdanie.

(A)
$$P(U \in (0,2) \land V < 0) = 1 - 2e^{-1}$$

(B)
$$P(U \in (0,2) \land V > 0) = \frac{1}{2} - e^{-1}$$

(C)
$$P(U \in (0,2) \land V \in (0,2)) = 1 - e^{-1}$$

(D)
$$P(U \in (0,2) \land V > 0) = \frac{1}{2} - e^{-1} - \frac{1}{2}e^{-2}$$

(E)
$$P(V \in (0,2)) = 1 - e^{-1}$$

Zadanie 3.

Rozważamy łańcuch Markowa X_1, X_2, \dots na przestrzeni stanów $\{1,2,3\}$ o macierzy przejścia

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{4} & 0 & \frac{3}{4}\\ 0 & 1 & 0 \end{bmatrix},$$

(gdzie $P_{ij} = \Pr(X_{n+1} = j \mid X_n = i)$ dla i, j = 1,2,3). Załóżmy, że rozkład początkowy łańcucha jest wektorem

$$\pi = \left\lceil \frac{2}{9}, \frac{4}{9}, \frac{1}{3} \right\rceil,$$

(gdzie $\pi_i = \Pr(X_1 = i) \text{ dla } i = 1,2,3$). Oblicz $p = \Pr(X_1 = 1 | X_2 \neq 1 \land X_3 \neq 1)$.

- (A) $p = \frac{1}{7}$
- (B) $p = \frac{1}{8}$
- (C) $p = \frac{1}{4}$
- (D) $p = \frac{1}{9}$
- (E) $p = \frac{1}{12}$

Zadanie 4.

W urnie znajduje się 16 kul, z których 8 jest białych i 8 czarnych. Losujemy bez zwracania 6 kul, a następnie z pozostałych 5 kul. Niech S_2 oznacza liczbę kul białych uzyskaną w drugim losowaniu. Oblicz $VarS_2$

- (A) 1
- (B) $\frac{11}{12}$
- (C) $\frac{6}{12}$
- (D) $\frac{7}{12}$
- (E) $\frac{8}{12}$

Zadanie 5.

Zmienna losowa X ma rozkład Weibulla o gęstości

$$p_{\theta}(x) = \begin{cases} 2\theta x \exp(-\theta x^{2}) & gdy \ x > 0 \\ 0 & gdy \ x \le 0 \end{cases}$$

gdzie $\theta>0$ jest nieznanym parametrem. Statystyk nie obserwuje zmiennej X, uzyskuje tylko informację, gdy zmienna X przekroczy wartość 1, a mianowicie obserwuje zmienną Y równą X-1, gdy zmienna X jest większa niż 1. W wyniku takiej obserwacji uzyskuje prostą próbę losową $Y_1,Y_2,...,Y_{10}$. Na podstawie tych danych weryfikuje hipotezę $H_0:\theta\leq 3$ przy alternatywie $H_1:\theta>3$. Test jednostajnie najmocniejszy na poziomie istotności 0,05 odrzuca hipotezę H_0 , gdy spełniona jest nierówność

(A)
$$\sum_{i=1}^{10} (Y_i + 1)^2 > 5,2351$$

(B)
$$\sum_{i=1}^{10} (Y_i + 1)^2 > 15,2351$$

(C)
$$\sum_{i=1}^{10} (Y_i + 1)^2 < 1,8085$$

(D)
$$\sum_{i=1}^{10} (Y_i + 1)^2 < 11,8085$$

(E)
$$\sum_{i=1}^{10} (Y_i + 1)^2 < 10,6567$$

Zadanie 6.

Niech $X_1, X_2, \dots, X_n, \dots$ będą niezależnymi zmiennymi losowymi o identycznym rozkładzie o gęstości

$$f(x) = \begin{cases} \frac{1}{2\sqrt{x}} & \text{gdy } x \in (0,1) \\ 0 & \text{gdy } x \notin (0,1) \end{cases},$$

Niech $U_n = (X_1 \cdot X_2 \cdot ... \cdot X_n)^{\frac{1}{n}}$. Wtedy

(A)
$$\lim_{n \to +\infty} P(U_n \le e^{-2}) = 1$$

(B)
$$\lim_{n \to +\infty} P((U_n - e^{-2})\sqrt{n} < 4e^{-2}) = 0.977$$

(C)
$$\lim_{n \to +\infty} P((U_n - e^2) \sqrt{n} < 4e^2) = 0.977$$

(D)
$$\lim_{n \to +\infty} P((U_n - e^{-2})\sqrt{n} > 8e^{-4}) = 0.023$$

(E)
$$\lim_{n \to +\infty} P(U_n \ge e^{-2}) = 1$$

Zadanie 7.

Niech $X_1, X_2, ..., X_n, ...$ będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie wykładniczym o gęstości

$$f(x) = \begin{cases} 2e^{-2x} & \text{gdy} & x > 0\\ 0 & \text{gdy} & x \le 0. \end{cases}$$

Niech N będzie zmienną losową, niezależną od $X_1, X_2, ..., X_n, ...$, o rozkładzie ujemnym dwumianowym $P(N=n) = \frac{\Gamma(r+n)}{\Gamma(r)n!} p^r (1-p)^n$ dla n=0,1,2,..., gdzie r>0 i $p \in (0;1)$ są ustalonymi parametrami. Niech

$$Z_N = \begin{cases} \min(X_1, X_2, \dots, X_N) & gdy \ N > 0 \\ 0 & gdy \ N = 0. \end{cases}$$

Oblicz $E(NZ_N)$ i $Var(NZ_N)$.

(A)
$$E(NZ_N) = \frac{1}{2} \text{ i } Var(NZ_N) = \frac{1}{4}$$

(B)
$$E(NZ_N) = \frac{1 - p^r}{2} \text{ i } Var(NZ_N) = \frac{1 - p^r}{4}$$

(C)
$$E(NZ_N) = \frac{1 - p^r}{2}$$
 i $Var(NZ_N) = \frac{1 - p^{2r}}{4}$

(D)
$$E(NZ_N) = \frac{r(1-p)}{2p} \text{ i } Var(NZ_N) = \frac{r(1-p)}{4p^2}$$

(E)
$$E(NZ_N) = \frac{1-p^r}{2} \text{ i } Var(NZ_N) = \frac{1-p^{2r}}{2}.$$

Zadanie 8.

Każda ze zmiennych losowych X_1, X_2, \ldots, X_{20} ma rozkład normalny z nieznaną wartością oczekiwaną m_1 i wariancją 1, a każda ze zmiennych losowych Y_1, Y_2, \ldots, Y_{20} rozkład normalny z nieznaną wartością oczekiwaną m_2 i wariancją 9. Założono, że wszystkie zmienne losowe są niezależne i wyznaczono, przy tych założeniach, test oparty na ilorazie wiarogodności dla testowania hipotezy $H_0: m_1 = m_2$ przy alternatywie $H_1: m_1 > m_2$ na poziomie istotności 0,1.

W rzeczywistości założenie to nie jest spełnione:

- co prawda pary zmiennych $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ są niezależne, ale
- X_i, Y_i są zależne i współczynnik korelacji $Corr(X_i, Y_i) = \frac{1}{2}$ dla i = 1, 2, ..., 20.

Najmniejsza wartość różnicy m_1-m_2 przy której faktyczna moc testu wynosi co najmniej 0,9 jest równa

- (A) 1,66
- (B) 1,76
- (C) 2,04
- (D) 2,14
- (E) 2,57

Zadanie 9.

Zmienne losowe $X_1, X_2, ..., X_n$, n > 2, są niezależne i $EX_i = m$ oraz $VarX_i = \frac{m^2}{i}$, i = 1, 2, ..., n, gdzie m jest nieznanym parametrem rzeczywistym. Niech \widetilde{m} będzie estymatorem parametru m minimalizującym błąd średniokwadratowy w klasie estymatorów postaci

$$\hat{m} = \sum_{i=1}^{n} a_i X_i ,$$

gdzie a_i , $i=1,2,\ldots,n$, są liczbami rzeczywistymi. Wtedy współczynniki a_i są równe

A)
$$a_i = \frac{1}{n}, i = 1, 2, ..., n$$

(B)
$$a_i = \frac{1}{n+1}$$
, $i = 1, 2, ..., n$

(C)
$$a_i = \frac{2i}{n(n+1)}$$
, $i = 1, 2, ..., n$

(D)
$$a_i = \frac{2i}{n^2 + n + 2}$$
, $i = 1, 2, ..., n$

(E)
$$a_i = \frac{2i}{n^2 + n - 2}$$
, $i = 1, 2, ..., n$

Zadanie 10.

Niech $X_1, X_2, ..., X_n$, n > 5, będą niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na przedziale $(0,\theta)$, gdzie $\theta > 0$ jest nieznanym parametrem. Wyznaczamy przedział ufności dla parametru θ postaci

$$[2X_{3:n}, 2X_{n-2:n}],$$

gdzie $X_{k:n}$ oznacza k-tą statystykę pozycyjną z próby $X_1,X_2,...,X_n$. Dla jakiej najmniejszej liczebności próby losowej n zachodzi

$$P_{\theta}(\theta \in [2X_{3:n}, 2X_{n-2:n}]) \ge 0.9$$

- (A) 8
- (B) 9
- (C) 10
- (D) 11
- (E) 12

Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Imię i nazwisko :	
Pesel	

Zadanie nr	Odpowiedź	Punktacja*
1	С	
2	В	
3	В	
4	В	
5	D	
6	В	
7	C	
8	A	
9	D	
10	D	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.
* Wypełnia Komisja Egzaminacyjna.