COVID in MA analyzer

Introduction and citations

Data sources

I'm using the wiki compilation at https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Massachusetts which gives confirmed cases of COVID-19 in Masachusetts, acording ultimately to the daily updates from the MA Dept of Public Health, such as https://www.mass.gov/doc/covid-19-cases-in-massachusetts-as-of-march-28-2020/download.

Subsidiary factoids:

Population of Boston:

```
pop_yr=[2010, 2017];
pop_pp=[620702,685094];
pop_2020_bos=diff(pop_pp)/diff(pop_yr)*3+pop_pp(2)

pop_2020_bos = 7.1269e+05
```

Population of Massachusetts:

```
pop_yr=[2005, 2018];
pop_pp=[6.454e6,6.902e6];
pop_2020_ma=diff(pop_pp)/diff(pop_yr)*2+pop_pp(2)
```

```
pop_2020_ma = 6.9709e+06
```

Intent

Just to have an idea of when we should see a peak.

Data sets and structure

Data are given in the table Cov_Ma.

```
Cov_Ma.Properties.VariableNames

ans = 1×12 cell array
{'Days_since_Mar_10'} {'Cases'} {'Date'} {'Cases_change'} {'Cases_growth'} {'Tests'} {'Tests'}
```

Just the facts, ma'am

```
figure
scatter(Cov_Ma.Date, log10(Cov_Ma.Cases))
ylabel('Cases [log10]')
xlabel('Date')
```


Fitting the data to a logistic curve

The logistic curve is given by

$$m_i = \frac{k_i}{1 + e^{-(t - t_0) \cdot \gamma}}$$

where m_i is a measure of COVID (I use identified cases and identified deaths), t is the number of days since March 10 (a reasonble measure of when community spreading started), t_0 is the midpoint of the growth (measured in days since March 10), and γ is a constant related to growth rate.

One must initialize the vector of constants with initial conditions to begin the minimization that finds the bestfitting array of constants. These are determined by trial and error. Good practice is to use a variety of IC to make sure the solution i srobust. The ICs are in array $beta0_i$. MATLAB makes fitting the model pretty easy.

FIts

Cases

```
modelfun_c = @(b,x)b(1)./(1+exp(-(x-b(2))*b(3)))
modelfun_c = function\_handle with value:
```

@(b,x)b(1)./(1+exp(-(x-b(2))*b(3)))

mdl_c = fitnlm(Cov_Ma.Days_since_Mar_10,Cov_Ma.Cases,modelfun_c,beta0_c)

mdl_c =
Nonlinear regression model:
 y ~ F(b,x)

Estimated Coefficients:

	Estimate	SE	tStat	pValue
b1	24497	1276.5	19.19	1.1959e-17
b2	25.471	0.51847	49.127	1.0229e-28
b3	0.22924	0.0099776	22.976	1.036e-19

Number of observations: 31, Error degrees of freedom: 28

Root Mean Squared Error: 342

R-Squared: 0.997, Adjusted R-Squared 0.997

F-statistic vs. zero model: 4.98e+03, p-value = 2.8e-38

Deaths

```
modelfun_d = @(b,x)b(1)./(1+exp(-(x-b(2))*b(3)))
```

modelfun_d = $function_handle with value:$ @(b,x)b(1)./(1+exp(-(x-b(2))*b(3)))

```
beta0_d = [10000 20 0.1];
mdl_d = fitnlm(Cov_Ma.Days_since_Mar_10,Cov_Ma.Deaths,modelfun_d,beta0_d)
```

mdl_d =
Nonlinear regression model:
 y ~ F(b,x)

Estimated Coefficients:

	Estimate	SE	tStat	pValue
b1	1601.3	591.04	2.7092	0.011376
b2	33.458	2.5116	13.321	1.2194e-13
b3	0.22896	0.017314	13.224	1.4574e-13

Number of observations: 31, Error degrees of freedom: 28

Root Mean Squared Error: 11.8

R-Squared: 0.993, Adjusted R-Squared 0.993

F-statistic vs. zero model: 1.97e+03, p-value = 1.2e-32

Predictions

```
Pred_window=16;
Pred_days=0:max(Cov_Ma.Days_since_Mar_10)+Pred_window;
Pred_dates=(min(Cov_Ma.Date):days(1):max(Cov_Ma.Date)+days(Pred_window))';
[Cov_Ma_Pred.cases, Cov_Ma_Pred.casesci]=predict(mdl_c,Pred_days','Prediction','observation');
[Cov_Ma_Pred.deaths, Cov_Ma_Pred.deathsci]=predict(mdl_d,Pred_days','Prediction','observation')
```

Graph the data and the models up

Cases

```
figure
plot(Pred_dates,Cov_Ma_Pred.cases,'--bs')
hold
```

Current plot held

```
plot(Pred_dates,Cov_Ma_Pred.casesci(:,1),':b')
plot(Pred_dates,Cov_Ma_Pred.casesci(:,2),':b')
plot(Cov_Ma.Date,Cov_Ma.Cases, '-ko')
ylabel('Cases')
xlabel('Date')
ylim([0,30000])
title('Identified Cases in Masachusetts')
legend('Model','95% ci','95% ci','Observations', 'location', 'best')
```


Deaths

```
figure
plot(Pred_dates,Cov_Ma_Pred.deaths,'--ms')
hold
```

Current plot held

```
plot(Pred_dates,Cov_Ma_Pred.deathsci(:,1),':m')
plot(Pred_dates,Cov_Ma_Pred.deathsci(:,2),':m')
plot(Cov_Ma.Date,Cov_Ma.Deaths,'-ko')
ylabel('Cumulative Deaths')
xlabel('Date')
ylim([0,2000])
title('Identified Deaths in Masachusetts')
legend('Model','95% ci','95% ci','Observations', 'location', 'best')
```


When are the peaks?

Take the differences in the cumulative graphs and plot them up to see the peaks.

```
figure
yyaxis right
plot(Pred_dates(2:end),diff(Cov_Ma_Pred.deaths),'Color', [.94 .5 .5], 'LineStyle','-', 'Marker
hold
```

Current plot held

```
grid
plot(Pred_dates(2:end),diff(Cov_Ma_Pred.deathsci(:,1)),'Color', [.94 .5 .5], 'LineStyle',':')
plot(Pred_dates(2:end),diff(Cov_Ma_Pred.deathsci(:,2)),'Color', [.94 .5 .5], 'LineStyle',':')
plot(Cov_Ma.Date(2:end),diff(Cov_Ma.Deaths),'Color', [.98 .88 .88], 'MarkerFaceColor',[.98 .88
ylabel('Daily Deaths')
xlabel('Date')
```

```
ylim([0,150])
title('Identified Daily Incidences in Masachusetts')
%legend('Model','95% ci','95% ci','Observations', 'location', 'best')
yyaxis left
plot(Pred_dates(2:end),diff(Cov_Ma_Pred.cases),'--bs')
plot(Pred_dates(2:end),diff(Cov_Ma_Pred.casesci(:,1)),':b')
plot(Pred_dates(2:end),diff(Cov_Ma_Pred.casesci(:,2)),':b')
plot(Cov_Ma.Date(2:end),diff(Cov_Ma.Cases),'Color', [.68 .85 1], 'MarkerFaceColor', [.84 .92 1
ylabel('Daily Cases')
```



```
%xlabel('Date')
%ylim([0,50])
%title('Identified Daily Incidences in Masachusetts')
%legend('Model','95% ci','95% ci','Observations', 'location', 'best')
```