

ORIGINATED, PATENTED AND CONSTRUCTED BY

THE NEW YORK CONTINENTAL JEWELL FILTRATION COMPANY

GENERAL CONTRACTORS

UNDER THE NEW YORK, CONTINENTAL, JEWELL, WARREN, HYATT, BLESSING AND AMERICAN PATENTS

FOR RESIDENCES, PUBLIC INSTITUTIONS, CLUBS, BATHS, BREWERIES, DIS-TILLERIES, OFFICE BUILDINGS, AND FILTRATION OF PUBLIC WATER SUPPLIES. OVER 300 MUNICIPAL PLANTS IN SUCCESSFUL OPERATION

> GENERAL OFFICES: MILLS BUILDING, 15 BROAD STREET, NEW YORK FACTORY: HUDSON AND SUSSEX STREETS, JERSEY CITY, N. J.

313 East Tenth Street BOSTON, MASS., The Dyar Supply Co., 66 Broadway, Cambridge KANSAS CITY, MO. SAN FRANCISCO, The California Jewell Filter Co.,

alifornia Jewell Filter Co., CHICAGO, ILL., - 111 Monroe St., Room 422
- The Merchants Exchange YORK, ENGLAND - Jewell Export Filter Co., 8 Lendal

MONTREAL, P. Q.

- - 619 New Birks Building

General Notes

Manufacturing

UR factory is the largest if not the only one in the world exclusively devoted to the manufacture of filters. It is equipped with all the latest improved machinery and with many special machines designed especially for our work. None but skilled workmen are employed, many of whom have been in our employ for several years.

Drafting

The drafting and designing department is most complete. Drawings and preliminary sketches showing the general arrangement will be made to accompany propositions when desired, provided we receive the necessary data concerning the proposed location, etc.

Complete working plans of large gravity and pressure filter plants are made after acceptance of proposition and submitted for approval. For this purpose our engineers generally visit the works to obtain measurements and full information in detail.

Laboratory

We have a skilled chemist in charge of our laboratory, where all of our own chemical, microscopic and bacteriological tests of waters are made. It has been our custom for years to make complete analyses and practical tests of all waters, unless we are perfectly familiar with them, to determine the best and most economical methods of

purification. Parties wishing complete reports on the purification of their water supplies should write for instruction pamphlet before sending sample.

Patent Protection

The New York Continental Jewell Filters and anxiliary appliances are the result of over thirty years' experience and practical work in the purification of waters, during which time nearly 400 patents have been issued thereon, in this and foreign countries, and our customers are amply protected in their use of any apparatus or appliance purchased of us.

Prices

Owing to the various conditions attending the location and erection of our filters, especially for city water works, paper mills, sugar refineries and other large industries, where generally two or more of them are connected in a battery, the arrangement of each plant must be separately designed. We are, therefore, prepared to make an estimate of cost only when we have become fully conversant with the circumstances bearing directly on each individual case and we have, therefore, omitted all figures of cost in this issue. Our prices are most reasonable, and unquestionably the lowest for the highest possible standard of workmanship, efficiency and durability.

We guarantee to replace at our own expense any parts proving defective due to inferior workmanship or material, if called to our attention within one year from date of installation.

The Following Information Is Requested When Inquiring About Filters

- 1. What is the source of supply—lake, stream, deep or shallow well?
- 2. Is the water turbid, and to what extent?
- 3. If you have analyses, send copies. Information as to alkalinity especially desired.
- 4. To what use is the filtered water to be put?
- 5. Do you desire gravity or pressure filters?
- 6. What available horse power have you? Water power? Steam? Electricity?
- 7. State number and capacities of pumping machinery, and if electrical state phase and character.
- 8. What is the maximum pressure on present pipe system?

- 9. Do you pump direct, or to standpipe or reservoir? Give elevations, in feet.
- 10. State maximum amount of water used per hour.
- 11. What working pressure would filter shell be required to stand?
- 12. Give dimensions and sketch of available space for proposed filters.
- 13. What is the relative elevation of high-water and pump-room floor and proposed site of filters?
- 14. Give character and bearing value of soil if excavation is necessary.
- 15. Send data covering sewer conditions; elevation of present sewer, if any.

Gravity Filters

The following brief description of the several TYPES of GRAVITY FILTERS explains the particular usefulness of the machine to comply with certain local conditions, and also accounts for the difference in the cost of the several types of filters having the same diameter.

Any Gravity Filter is an open tank in which the sand bed is contained arranged above a strainer system and the water to be purified passes through the sand bed by gravity, usually after preliminary sedimentation, into a clear water well frequently located beneath the filter. These filters may be constructed of concrete, steel or wood and it can be said that the use of concrete is increasing in this connection. There is, however, a considerable difference in the equipment of the filter according to the type.

THE NEW YORK SECTIONAL WASH GRAVITY FILTER. This filter has as its distinguishing feature the "Sectional" arrangement of the strainer system whereby the water used in washing is diverted through one of the valves into one of the several sections of the strainer system so that the incoming wash water may act upon one section at a time with greater velocity than would be the case where the entire strainer system was affected by the same amount of water. Experience has shown that with many waters this method of washing is as satisfactory as the more direct attrition furnished by the use of rakes or air, and the construction being simpler is less costly and is especially adapted to locations where no power is available except the water under pressure.

THE CONTINENTAL GRAVITY FILTER. This filter has the strainer system of the well-known Little Falls or "Williamson" type, trapped so as to admit of air under pressure within the header and manifold pipes during washing. The air being furnished through a blower or compressor is forced upward through the strainer system and perforates the filter bed equidistantly and under equal pressure, affording openings through the bed into which the reversed stream of

wash water follows, reaching all portions of the filter bed evenly, removing the impurities lodged upon the bed and within it, flushing the impurities to the sewer opening and leaving the filter bed clean again for the purpose of purifying water.

The necessity of a blower or compressor in connection with this method limits its use, so far as economy is concerned, to cases where a number of units are necessary, as the first cost of the blower increases the cost of one unit out of proportion.

No method of air or water distribution in filtration has given the perfect distribution so essential to the washing of the filter, as the Williamson patented trapped air wash method employed in this filter.

THE MODIFIED JEWELL FILTER. This filter is constructed with a single tank and wash water gutters are attached to the side of the tank, doing away with the necessity of having two tanks, one within the other, as in the Jewell Filter. It is provided with the iron rakes to assist in the breaking up of the sand bed during the washing operation. This filter can be furnished at a less cost than the Jewell Gravity Filter hereinafter described and in many cases can be used to do the same work.

THE JEWELL GRAVITY FILTER. This filter is equipped with the agitator or reversible rake used in "breaking" up the bed during the washing period. While the reversed stream of water is forced upward through the strainer system, lifting and permeating the filter bed of sand and gravel, the rakes are revolved through the sand bed at the same time, thus subjecting the bed to the double action of the agitator and the wash water, thoroughly cleansing the bed and flushing out the impurities to the sewer. In the Jewell Gravity Filter the double tank construction is adhered to, the space between the outer and inner tank being utilized as an annular trough to carry away the wash water in the manner of a weir. While filtering, this same space is employed to distribute the influent water evenly over the filter bed with the least disturbance possible.

THE HIGH-TYPE JEWELL GRAVITY FILTER. This filter is superimposed above a settling tank upon the same floor space and is very convenient and efficient for moderately turbid waters at low cost of installation.

THE LOW-TYPE JEWELL FILTER. This filter is arranged generally in conjunction with independent sedimentation tanks.

All of the above described types of filters are controlled by controllers of either the "Weston" or "Venturi" type, as may be selected, arranged with the "down-draft" extension into the clear well, enabling the plant to increase its capacity automatically during any abnormal condition such as would be caused by a fire of unusual size and duration.

All of the above described filters are operated by "Negative Head" and are fully covered by patents No. 11,672, June 28, 1898; 546,738, September 24, 1895, and 644,137, February 27, 1900, describing the down-draft principle now employed in practically all modern filtration work.

THE WARREN GRAVITY FILTER. This filter is especially adapted to conditions where very little head is obtainable for operation. In connection with a weir tank it operates under a head as low as 20", the weir tank furnishing the wash water for the cleansing of the filter.

"Pressure Filters"

These are described and shown in separate catalog

Send for our "Pressure Filter" catalog

Coagulation

Clear Water

Showing Coagulation

During Subsidence

Coagulation, Sedimentation and Filtration

Coagulation is so essentially a feature of mechanical filtration that a thorough understanding of the process is important. In fact, it is a distinctive part of mechanical filtration. It may be said where sedimentation is accomplished upon a muddy water by four days' settlement, that the same result can be accomplished by coagulation in four hours. Roughly considered, coagulation is produced by the introduction into the raw water of a soluble chemical salt, capable of decomposing and becoming insoluble when brought into contact with certain constituents of the water itself. *The result is the formation of an insoluble gelatinous coagulum of great bulk and relatively greater specific gravity than is possessed by the impurities contained in the water. This coagulum, gradually aggregating together, precipitates or subsides throughout the water, enveloping and dragging down such suspended matter and color as it comes into contact with, and after depositing the heaviest portion in the sedimentation tanks, finally in a greater or lesser percentage amount rests upon the filter bed which is interposed between the treated water and the outlet. This coagulum, with its entangled suspended matter resting upon the filter bed, offers to the flowing treated water a closer and more compact surface than would be offered by the sand grains of which the filter bed is composed.

One of the most important differences existing between the mechanical or American filter and its rival or forerunner, the "slow sand" or European filter, consists in the fact that the latter depends upon a natural formation of coagulum by the bacteria themselves; this is called by the Germans "Schmutzdecke." Mechanical filtration provides for the manufacture of its own coagulum through mechanical and chemical processes. Coagulation in this country gradually resolved itself into the employment of the double salt of alumina and potash, commonly called alum, and latterly for commercial reasons has been succeeded by the simple sulphate of alumina. A very common example of the work accomplished by a coagulum is that furnished by the practice of clarifying coffee by means of the white of egg.

The sedimentation tanks are often concreted at the bottom, and the concrete slopes from a foot at the periphery of the tank to practically nothing at the sewer outlet in the center. This is done to facilitate the discharge of the accumulated, coagulated refuse to the sewer during washing. The necessity of washing the settling tank and filters varies as to the water applied.

A complete gravity plant of the mechanical type is arranged as follows: The raw, unfiltered water is lifted by means of low-service pumps to settling tanks constructed of wood, steel or masonry. The supply from the pumps, entering at about eighteen juches from the bottom of the settling tanks, has injected into it a measured quantity of solution of sulphate of alumina or sulphate of iron. This coagulant, because of the presence in the water of the carbonates of lime, etc., or, failing that, because of a measured quantity of clear lime-water added thereto, decomposes into the insoluble coagulum, in one case hydrate of alumina being formed, in the other case hydrate of iron. The coagulated water, after entering the settling tanks, gradually rises to the level of the overflow dams, which are placed near the top of the subsiding tanks. The coagulated water in rising to that height gradually leaves behind it in the settling tank the coagulated, suspended impurities to a greater or lesser degree, and these impurities accumulate upon the bottom of the settling tank, while the water, divested to a greater or lesser degree of these impurities, spills or overflows to and upon the filter beds, which are situated exterior to and lower than the settling tanks. The filter tanks consist of certain units constructed of wood, steel, concrete or masoury, very often circular in form, in some cases rectangular. Within these filter tanks, superimposed upon a manifold system of piping connected to a screen system, are the sand beds. The sand employed is sharp river sand, running between twenty and forty mesh, and the average depth in use is about four feet. These filters must be elevated to a height to allow for sufficient head above the clear well, that a requisite amount of water may pass through them, the rate of flow as best practiced being two gallons per minute per square foot of area. On the other hand, the filters must not be elevated beyond a point below the overflow dam of the subsidence basin or settling tank in order to give the necessary head required to carry the subsided water upon the filter bed. The filters are directly connected to the overflow dam of the settling tank,

^{*}The following equations explain the chemical reactions technically:

⁽¹⁾ Where alum is used:

 $K_2Al_2(SO_4)_4+3CaCO_3+3H_2O=3CaSO_4+K_2SO_4+3Co_2+Al_2(OH)_0$ (2) Where sulphate of alumina is used:

 $Al_2(SO_4)_3+3CaCo_3+3H_2O=3CaSO_4+3CO_2+Al_2(OH)_6$

The Air Wash in Mechanical Filtration

During the process of washing a filter a reverse stream of water is forced, under pressure, upward through the filtering material to flush off the impurities collected during the time the filter is in operation. In accordance with the Law of Areas this reverse stream of wash water is restricted within a limited space, outside of which the congested filter bed tends to "break" or "channel." It is necessary, therefore, in order to properly wash filter beds beyond a certain area, to assist this reverse current with mechanical force; it is also economical to do so. The mechanical agitator or rake is designed for that purpose, and within the limit of circular construction answers the purpose perfectly. The "Sectional Wash" strainer system also has its place. The "Air Wash," however, has the advantage of being applicable to any form of construction, and experiment and use demonstrate that it is equally efficient. The Continental "Trapped Screen" Single Air Wash system, as employed at Little Falls, N.J.; Middletown and Ithaca, N.Y.; Moline, Danville, Cairo, Ill.; Vincennes, Ind.; Bristol-Warren, R.I.; Scranton, Pa.; Newport, R.I., etc., is the highest development and best mechanical method of washing a filter bed with air. At the Little Falls plant a duration of only nine minutes is necessary to completely wash a million-gallon filter unit.

The trapped air under pressure perforates the packed filtering material equidistantly and under equal pressure and permits the incoming reverse stream of wash water to reach all portions of the filter bed evenly and remove by flushing to the sewer opening, the impurities collected during filtration, leaving the filter bed clean and again ready for its purpose of purifying water.

Prior to the invention of the Williamson Trapped Air Wash it was the practice to provide separate air pipes paralleling the water distribution system. This is still resorted to by engineers and manufacturers anxious to avoid patented features necessarily covering the more improved trapped system. We claim for the Williamson Air Trapped system greater economy in cost and distribution.

Improved "New York" Sectional Wash Gravity Filter

of sizes,

capacities

Constructed

of Steel or

Wood and

delivered

"knocked

down"

Embodying the "Sectional Wash" feature as described on page 4

"Continental" Air Wash Gravity Filter

For schedule of sizes, weights and capacities, see page 15

Constructed of Steel or Wood, and delivered "knocked down"

For description of the "Air Wash" see pages 4 and 8

"Modified Jewell" Gravity Filter

Constructed of Steel or Wood and delivered "knocked down"

For schedule of sizes, weights and capacities see page 15

See description on page 4

"Jewell" High Type Gravity Filter

For schedule

and capacities

see page 15

of sizes, weights

Constructed of Steel or Wood and delivered "knocked down"

See description on page 5

"Jewell" Low Type Gravity Filter

Constructed of Steel or Wood, and delivered "knocked, down"

For schedule of sizes, weights and capacities, see page 15

See description on page 5

"Warren" Gravity Filter

Constructed of

Steel or Wood,

"knocked down"

and delivered

For schedule of sizes, weights and capacities, see page 15

For description see page 5

Schedule of Sizes, Capacities, and Weights - Gravity Filters

Capacities shown are the minimum rate for muddy and contaminated waters

(D)	Dimenton	Height of	Inlet and	W Di-	Capae	ity in U.S. C	lallons	Approximate	Shipping V	Veights—Lbs.
Type	Diameter	Filter Tank	Inlet and Outlet Pipes	Waste Pipes -	Minute	Hour	24 Hours	Tank	Parts	Filter Beds
New York	$ \begin{cases} 8' \\ 10' \\ 13' \\ 15' \\ 17' \end{cases} $	7' 7' 7' 7' 7'	4" 5" 6" 6" 8"	5" 6" 8" 8" 10"	100 157 265 353 454	$\begin{array}{c} 6,000 \\ 9,420 \\ 15,900 \\ 21,180 \\ 27,240 \end{array}$	144,000 226,080 381,600 508,320 653,760	2,800 3,700 5,200 6,200 7,000	3,300 $4,400$ $6,050$ $7,050$ $10,050$	19,000 29,500 50,000 60,800 86,000
Continental	$ \begin{cases} 8' \\ 10' \\ 13' \\ 15' \\ 17' \end{cases} $	7' 7' 7' 7' 7'	4" 5" 6" 6" 8"	5" 6" 8" 8" 10"	100 157 265 353 454	6,000 9,420 15,900 21,180 27,240	144,000 226,080 381,600 508,320 653,760	2,800 3,700 5,200 6,200 7,000	3,300 $4,400$ $6,050$ $7,050$ $10,050$	19,000 29,500 50,000 66,800 86,000
Jewell High Type	$\begin{pmatrix} 6' \\ 8' \\ 10' \\ 12' \\ 14' \\ 15' \\ 17' \\ 24' \end{pmatrix}$	16' 16' 16' 16' 16' 16' 16' 16'	3" 4" 4" 6" 6" 6" 8" 10"	6" 6" 8" 8" 8" 8" 8"	57 100 157 226 308 353 454 905	3,420 6,000 9,420 13,560 18,480 21,180 27,240 54,300	82,080 144,000 226,080 325,440 443,520 508,320 653,760 1,303,200	8,300 11,700 14,700 18,500 22,600 25,500 29,700 32,000	2,000 3,000 4,000 7,000 8,000 10,000 17,000 18,000	$\begin{array}{c} 12,000 \\ 20,000 \\ 32,000 \\ 46,000 \\ 62,000 \\ 71,000 \\ 91,000 \\ 160,000 \end{array}$
Jewell Low Type and Modified Jewell	$\begin{pmatrix} 6' \\ 8' \\ 10' \\ 12' \\ 14' \\ 15' \\ 17' \\ 24' \end{pmatrix}$	7' 7' 7' 7' 7' 7' 7'	3" 4" 4" 6" 6" 6" 8" 10"	6" 6" 8" 8" 8" 8" 10"	57 100 157 226 308 353 454 905	3,420 6,000 9,420 13,560 18,480 21,180 27,240 54,300	82,080 144,000 226,080 325,440 443,520 508,320 653,760 1,303,200	5,000 5,800 7,000 9,000 11,000 12,000 15,000 20,000	1,500 2,500 3,500 6,000 7,000 9,000 15,000 16,500	12,000 20,000 32,000 46,000 62,000 71,000 91,000
Warren	$\left\{\begin{array}{c} 8'\ 8''\\ 10'\ 6''\\ 12'\ 6''\\ 13' \end{array}\right.$	8' 5" 8' 5" 9' 11" 9' 11"	8" 8" 8" 8"	6" 6" 6" 6"	118 173 245 265	7,080 10,380 14,700 15,900	169,920 249,120 352,800 381,600	3,600 4,400 5,500 6,400	8,430 9,040 10,210 10,250	12,500 18,000 26,000 28,000

CAPACITIES given are based upon a rate of 2 gallons per square foot of filtering area per minute, at which rate they will deliver a bacterially pure as well as a perfectly clear water. It is advisable to refer the question of capacity to us, as a much greater capacity than shown is ofttimes obtainable.

Typical Wooden Construction Gravity Plant

General Plan and Section of a 2,000,000-Gallon Gravity Filter Plant. Wood Tank Construction

Typical Concrete Construction Gravity Plant

General Plan and Section of a 3,000,000-Gallon Gravity Filter Plant. Concrete Construction

Chemical and Bacteriological Results

East Jersey Water Co., Little Falls, N. J.

Averages — (For Fiscal Years Beginning September 1st)

YEAR AND MONTH	Average		l Water als, a Day	Per Cent.		nate of mina		Pa	arts per l	Millio	n			Bacteria per Cubic			
	Period of Service	Total	Net	of Wash Water	Pounds per	Grains per	er llen		olor								
					Day	Gallon	River	Fil.	Riyer	Fil.	River	Fil.	River 1 3,500 2,600 1,500 2,500 2,900 1,300 2,900 5,300 4,500 3,100 750 1,100 2,000 1,800 1,300 1,000 1,500 800 1,200 600	Fil.			
1902-1903	9.55	12.8	12.4	3.5	2,330	1.28	28	19	11	1	35	6	3 500	70			
1903-1904	10.55	17.2	16.7	2.8	3,060	1.26	29	21	18	Ô	34	6		5			
1904-1905	10.89	23.0	22.4	2.6	4,150	1.28	33	24	12	ő	29	5		50			
1905-1906	10.52	22.1	21.4	3.2	4,720	1.49	27	16	8	ŏ	$\frac{1}{32}$	4		110			
1906-1907	9.29	24.5	23.6	3.8	4,340	1.24	30	22	9	Õ	25	3		6			
<u> 1907-1908</u>	10.23	24.7	23.8	3.6	4,940	1.41	24	14	9	ŏ	31	3		3			
1908-1909	10.38	24.2	23.4	3.5	4,930	1.44	32	22	9	0	28	3		48			
1909-1910	10.41	26.8	26.0	3.7	7,740	2.05	32	21	10	ő	40	5		100			
910-1911	11.36	28.4	27.3	3.9	4,530	1.12	31	-24	11	0	45	8		16			
911-1912	12.73	30.8	29.9	2.8	5,450	1.25	26	18	11	Ō	48	8					
September, 1912	10.80	30.8	29.9	3.1	6,450	1.47	41	30	7	0	41	8					
October	10.63	30.7	29.8	3.1	8,790	1.93	35	23	10	0	56	7		-			
November	11.00	29.4	28.5	3.0	13,320	3.16	22	7	10	0	61	14		4			
December	15.14	30.3	29.6	2.3	7,790	1.86	23	12	8	0	40	11					
January, 1913	15.29	28.9	28.3	2.2	4,370	1.06	14	7	8	0	39	7		5			
February	17.72	31.8	31.2	1.9	6,120	1.36	23	14	8	0	31	9	1,000	1			
March	13.45	29.1	28.4	2.5	3,470	.84	15	10	12	0	43	8		1			
April	13.19	28.1	27.4	2.5	4,410	1.10	18	11	7	0	40	8		1			
May	11.15	28.7	27.8	3.0	6,070	1.48	27	16	8	0	44	7	1,200	(
June	10.67	30.7	29.8	3.1	7,060	1.61	36	24	8	0	49	10		1			
Average	11.90	26.7	25.9	3.0	6,702	1.48	27	18	10	0	40	7	2,063	29			

FRANK W. GREEN, Superintendent Filtration Works

Little Falls, N. J.

Operated by the East Jersey Water Co. Planned and equipped by The New York Continental Jewell Filtration Co.

The Original Reinforced Concrete Filter Plant. A departure from previous type.

View of one of the Filter Galleries. The openings into the filters are shown on both sides of the floor. The iron plates between the operating tables are covers for the openings into the pipe gallery below

Installed in 1902. Daily capacity 32,000,000 gallons; filtering Passaic River water

General View of Filter Gallery

Installed in 1912. Daily capacity 30,000,000 gallons; filtering Ottawa and St. Lawrence Rivers water

Operating Table

Wash Pumps

Raw Water Pumps and Flume

Sulphate of Alumina Orifice Tanks

Scranton, Pa.

Installed in 1909. Daily capacity 6,000,000 gallons; filtering an impounded water

Bristol-Warren, R. I.

Installed in 1908. Daily capacity 3,000,000 gallons; filtering Kickemuit River water

Bangor, Maine, Filtration Plant

Daily Report of Operation — General Average 1911-1912

	Coag	ulant	Bact		Efficiency	, p	Coli		City To			T	1.114			Color		
	Alumina	umina Lime		C. C.	Limetency	Б.	B. Con		City Tap			T (IF)	oidity		Color			
DATE	Grains per Gal.	Grains per Gal.	Raw	Filtered	Total	Raw	Filtered	Bacteria per C. C.	B. Coli.	Turbidity	Color	Raw	Filtered	Per Cent Removed	Raw	Filtered	Per Cent Removed	
1911 March. April. May. June. July. August. September. October. November. December. 1912 January. February.	2.12 2.00 2.00 2.06 2.00 2.00 2.00 2.11 2.04 2.06 2.00 2.00	0.49 0.19 0.27 0.24 0.15 0.10 0.11 0.15 0.11 0.10	3,906 7,231 2,607 2,606 2,201 2,133 3,210 2,490 3,023 4,084 3,358 2,578	194 117 54 61 43 40 46 34 48 72 45	95.04 98.39 97.93 97.66 98.05 98.13 98.57 98.63 98.42 98.24	76-93 63-87 74-90 78-81 76-78 87-91 78-90 85-93 86-90 63-72 84-93 71-87	3-93 2-87 1-90 2-84 0-78 1-91 1-90 3-93 2-90 3-75 2-93 2-87	205 53 37 53 39 42 41 27 36 55	2-93 0-87 0-90 0-81 0-78 0-91 0-93 2-90 1-75 0-93 0-87	0 0 0 0 0 0 0 0 0 0	11.5 6.1 8.1 7.5 4.0 4.6 6.5 7.8 9.0 13.0 9.5 7.3	1.20 3.80 .80 .30 .00 .00 .16 .00 1.00 .90	.4 0 0 0 0 0 0 0 0 0 0 0 0 0		47.6 49.0 59.0 64.3 51.0 51.8 54.4 58.4 61.0 69.0 56.5 50.3	10.5 5.7 8.0 7.8 4.0 5.2 6.5 7.5 8.0 10.0 8.0 6.3	77.85 88.37 86.45 87.87 92.16 89.97 88.06 87.16 86.89 85.50 85.84 87.48	
Total	2.03	0.17	3,286	67	97.97	921-1045 88.13%	22-1051 2.09%	54	5-1048 .47%	0	7.9	.68	.03	95.59	56.0	7.3	86.97	

JAMES M. CAIRD, Chemist and Bacteriologist, Troy, N. Y.

Bangor, Maine

Installed in 1911. Daily capacity 8,000,000 gallons; filtering Penobscot River water

Clarksburg, W. Va., Filtration Plant

Annual Laboratory Report of the Chemist-in-Charge

1912-1913

MONTH	TURBIDITY			ALKALINITY			BACTERIA Per_C.C.			B. COLI Per cent of times present in these quantitie of water						
										RAW	FILTERED					
	Raw	Coag'd	Filtered	Raw	Lime Treated	Filtered	Raw	Cong'd	Filtered	0.1 C.C.	1.0 C.C.	10 C.C.	1.0 C.C.	10 C.C.		
January February March April May	67 110 189 143 50	11 21 26 20 13	0 0 0 0 0	14 13 10 15 24	24 27 30 23	12 12 13 14 19	950 800 1,350 1,450 2,000	110 190	7 11 11 8 14	45 24 64 20 61	65 45 81 57 84	90 86 100 97 97	0 0 0 0 0	- 0 0 0 0 0		
uneuly	84 208 44 104	15 16 15 19 10	0 0 0 0	29 29 35 30		23 19 29 19	1,100 2,900 1,000 1,900 400		$ \begin{array}{c} 11 \\ 6 \\ 2 \\ 3 \end{array} $	67 35 7 17	98 71 60 63	100 100 100 97	0 0 0 0	0 0 0 0		
October. Vovember. Occomber. anuary.	30 42 78 145	15 18 40	0 0 0	27 30 28 10	29	23 21 19 29	850 1,200 400		$\begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \end{array}$	3 0 19 55	42 27 55 84	100 83 90 90	0 0 0 0	0 0 0		
Averages for 13 months	99	19	0	23		19	1,300		6							

Averages for bacteria are recorded to the nearest two significant figures as adopted by the "Standard Methods."

The highest number of bacteria in the river water was 15,000. The highest number of bacteria in the treated water was 50. The counts for bacteria were made on nutrient agar at 40 deg. C. The tests for Bacillus Coli were made in Neutral Red at 40 deg. C. Average bacterial removal for the year, 99.9 per cent.

Respectfully submitted,

PERKINS BOYNTON, Chemist-in-Charge

Clarksburg, W. Va.

Filter Building

Operating Floor

Installed in 1911. Daily capacity 3,000,000 gallons; filtering Monongahela River water

Springfield, Mo.

Filter Building

Installed in 1910. Daily capacity 6,000,000 gallons; filtering water from Fullbright Spring

Operating Floor

Cohoes, N. Y.

Installed in 1911. Daily capacity 8,000,000 gallons; filtering Mohawk River water

Newport, R. 1.

Installed in 1909. Daily capacity 6,000,000 gallons; filtering an impounded supply

Albany, Oregon

View Showing Sedimentation Basin

Pipe Gallery

Operating Floor

Installed in 1911. Daily capacity 2,000,000 gallons

Clear Water Basin

Ottumwa, Iowa

Filter Building

Operating Floor ines River water

Cherryvale, Kansas

Filter Building

Operating Floor

Installed in 1911. Daily capacity 1,400,000 gallons; filtering Verdegris River water

Longue Pointe, Canada

Installed in 1912. Daily capacity 750,000 gallons; filtering St. Lawrence River water 38

Biddeford-Saco, Maine

Installed in 1896. Daily capacity 5,500,000 gallons; filtering Saco River water

Test of Elmira Water, Light and Railroad Co.'s Plant

	Bacteria		TURBIDITY		Color		ALKALINITY		Alumina L1ME		B, Coli Comm,		of				
DATE	Raw Water	Filtered	Per Cent. Removed	Raw Water	Filtered Water	Per Cent. Removed	Raw Water	Filtered Water	Per Cent. Removed	Raw Water	Filtered Water	Parts Used	Grains per Gallon	Grains per Gallon	Raw	Filtered	Per Cent. of Wash Water
1898 Average	27,747 10,489 38,400 7,716 3,150 3,146 4,155 609 726 3,166 7,112 4,919	121 17 17 402 230 50 831 429 51 208 147 40 19 21 16 10 7 36 40 23	96.67 97.99 96.90 98.71 96.32 97.00 97.17 98.98 99.43 99.62 99.48 99.34 99.34 99.34 99.53 99.94 99.40 99.40	 60.0 67.0 62.0 62.0 72.2 73.0 14.5 61.5 92.1 22.2 31.8 45.0 12.1 12.0 21.9 20.8 34.9	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1	28.1 30.9 23.0 24.6 18.8 23.8 26.0 6.6 24.0 26.4 23.5 21.1 23.7 10.8 12.0 17.8 21.3 21.3 19.5	0.0 1.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		94.4 101.1 53.4 60.2 42.5 65.4 55.1 23.2 70.4 45.3 30.1 39.6 62.0 62.0 60.5 43.0 35.9 951.5	83.8 83.5 36.2	10.6 17.6 17.2 14.5 11.0 12.4 11.7 11.6 13.7 12.3 11.5 10.9 11.2 11.0 11.2 11.0	1.54 1.71 1.61 1.52 1.45 1.55 1.52 1.51 1.52	.50 .25 .10 .059 .33	83-193 433-535 14-24 34-39 20-36 19-30 18-24 14-24 23-33 17-33 12-36 23-38 21-42 15-48 230-407	1-5	2.1 2.2 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8

JAMES M. CAIRD, Chemist and Bacteriologist, Troy, N. Y.

"Jewell" Gravity Filter Plant as Installed at Elmira, N. Y., and Elsewhere Wooden Construction

The plant at Elmira has been in successful operation since 1897; daily capacity 7,000,000 gallons; filtering Chemung River water
41

Continental Strainer System

Constructed with or without air washing arrangement

Concreted in place, affords perfect distribution

Strainer system with header and manifolds; arranged for air wash

Patented Strainers

Operating Table

Operating Table

Dial of Loss of Head Gauge shown at left of operating table

For recording "loss of head." When "loss of head" reaches a given number of feet, as indicated, the filter should be washed.

Operating Table

Constructed

with Oak Doors

of Marble

or Slate,

Fittings Brass or Nickel Plated

Operating Table with Recording Loss of Head Gauge and Sample Tap

LIST OF MUNICIPAL FILTER PLANTS

OF THE

NEW YORK, CONTINENTAL, JEWELL, HYATT, WARREN, AMERICAN, NATIONAL AND BLESSING TYPES

Adopted by 325 City and Town Water Works. Total Daily Capacity August 1st, 1913, 800,000,000 Gallons. Seventy-nine of These Cities and Towns Have Increased Their Plants.

*These plants have been increased, the number of stars showing the number of times increased.

These plants have been increased, the humber of state showing the number of times increased.								
	Capacity,		Daily Capacity,	Daily	Capacity,			
Alabama G	allons.	Georgia	Gallons.	G	allons.			
Eufaula	500,000	***Atlanta	21,000,000	*Rogers Park	900,000			
*Gadsden	1,325,000	**Athens		Streator	1,500,000			
Tuscaloosa	500,000	*Augusta						
		Columbus		Indiana				
Arkansas		Eatonton		*Anderson	5,000,000			
**Little Rock	5,500,000	Gainesville	1,000,000	Aurora	1,000,000			
"Little Rock	3,300,000	***Macon	4,000,000	Muncie	4,000,000			
$C_{i}R_{i}$		Milledgeville	500,000	Seymour	2,000,000			
California		*Rome West Point	2,000,000 500,000	***Terra Haute	9,000,000			
Black Diamond	750,000	West Tollit	500,000	Vincennes	2,000,000			
Ft, Baker	115,000			,				
Hillsboro	175,000	Illinois		Iowa				
Merced Falls	72,000		3.000.000	Cedar Rapids	2,500,000			
Oakland	7,000,000 150.000	Alton *Cairo		Clinton	1,000,000			
Porterville	367,000	Carlinville		*Creston	1,000,000			
San Diego	5,000,000	Danville	3.000,000	*Davenport	9,000,000			
San Francisco (Spring Val-	3,000,000	**Decatur		Iowa City	2,000,000			
ley)	2,500,000	East St. Louis	10.000.000	Keokuk	3,500,000			
Scotia	667,000	**Elgin	3,500,000	**Oscaloosa	1,250,000			
*United States Government,	,,	*Freeport	2,000,000	*Ottumwa ***Waterloo	4,000,000 2,500,000			
Presidio, San Francisco	1,000,000	*Kenilworth	600,000	waterioo	2,300,000			
Watsonville	667,000	Lake Forest	1,000,000	Kansas				
		Lawrenceville	325,000		1 000 000			
Connecticut		*Moline	5,000,000	Burlingame				
**Greenwich	5,000,000	Murphysboro	250,000	Caldwell	500,000			
New Canaan	1.000.000	*Pontiac	1,500,000 4,000,000	Cherryvale	1,400,000 4,000,000			
New Canadi	1,000,000	**Quincy	4,000,000	Coffeyville	4,000,000			

	Capacity, allons.	Daily C <mark>apacity,</mark> <i>Mississippi</i> Gallons.	Daily Capacity, New York Gallons,
Council Grove Kansas City Oswego Paola Winfield	250,000 6,000,000 500,000 250,000 1,200,000	Columbus 500,000 Vicksburg 3,000,000	Attica 400,000 *Bainbridge 300,000 Brockport 1,500,000 East Worcester 250,000 *Elmira 7,000,000
Kentucky	2,500,000	<i>Missouri</i> Holden	Green Island 1,000,000 *Hornell 3,000,000 Ithaca 3,000,000
**Danville Hopkinsville *Lexington Believel	500,000 3,500,000	Mexico 800,000 Rich Hill 200,000 *St. Joseph 11,000,000	*Kingston 6,000,000 Cohoes 8,000,000 *Middletown 5,000,000
Paducah*Winchester	6,000,000 2,250,000	Trenton 400,000 Washington 200,000 Springfield 6,000,000	*Niagara Falls 10,000,000 *Norwich 3,000,000 Oneonta 3,000,000
Louisiana Shreveport	1,000,000		*Owego
Maine		Nebraska 100 000	*Rensselaer 4,000,000 Richfield Springs 350,000
Bangor *Biddeford and Saco Mechanics Falls North Berwick	8,000,000 5,500,000 750,000 300,000	Nebraska City	Stamford 200,000 Valatie 150,000 *Watervliet Arsenal 420,000
Rumford Falls Veazie	500,000 1,000,000	*Exeter	North Carolina - Biltmore 500,000
Maryland			Charlotte
Cantonsville	250,000 300,000	New Jersey Allentown 144,000 Allenhurst 500,000	*Durham 2,000,000 Gastonia 350,000 Goldsboro 500,000
Massachusetts		Atlantic Highlands 500,000	Henderson 350,000 **Raleigh 2,000,000
Athol	1,500,000 1,000,000	Asbury Park	*Rocky Mount
Michigan Adrian	1,750,000	Keyport 500,000 Lakewood 500,000 Little Falls 32,000,000	Salisbury 500,000 Shelby 1,000,000 Wilson 1,000,000
Minnesota	500,000	*Long Branch 3,000,000 Mt. Holly 1,500,000	**Winston-Salem 2,200,000 Ohio
Brainerd Breckenridge *Ely McKinley	500,000 1,000,000 1,000,000 28,000	**Rahway 4,000,000 Red Bank 12,000,000 ***Somerville 3,000,000 South Plainfield 350,000	Bucyrus 500,000 Conneaut 1,000,000 Dennison 2,000,000

	Capacity, allons.		Capacity, allons.		Capacity,
Elyria	2,000,000	Tunkhannock	100,000	Huntington	2,000,000
Geneva	750,000	**Vandergrift	600,000	Morgantown	1,000,000
Newark	2,000,000 8,000,000	West Reading	250,000	Wisconsin :	"
Portsmouth Sandusky	4.000.000	Wilkes-Barre* *York	6,000,000	Merrill	1,000,000
Warren	1,500,000		0,000,000	Marinette**()shkosh	2.860.000
Oregon	,	Rhode Island *Bristol-Warren	3.000,000	Stevens Point	500,000
Arlington	200,000	East Greenwich	1.000.000	Alberta, Canada	,
Albany	2,000,000	**East Providence	2,000,000	*Medicine Hat	6,000,000
Eugene	3,000,000	Jamestown	500,000	Edmonton	6,000,000
Hood River	. 108,000	Newport	6,000,000	Manitoba	
McMinnville	500,000	Westerly	1,500,000	Brandon	1,000,000
**Oregon City Wanna	1,500,000 60,000	South Carolina		Ontario	
	00,000	Camden	350,000	Arnprior	500,000
Oklahoma-	1.000.000	*Charleston	6,000,000	Chatham	1,000,000
Bartlesville	1,000,000 500,000	Chester	300,000 2,000,000	Deseronto Dunville	500,000 500,000
Shawnee	1.500,000	Union	500,000	Renfrew	300,000
	1,000,000		000,	Smith's Falls	500,000
Pennsylvania Arnot	125,000	***Chattanooga	9,000,000	*St. Thomas	2,000,000
Berwyn	750,000	Clarksville	2,000,000	Thurso	100,000
**Beaver Falls	3,000,000	*Knoxville	5,000,000	Quebec	#00.000
Bristol	2,000,000	Texas		Ahuntsic	500,000
*Carlisle	1,825,000	Beaumont	3,000,000	Bordeaux	750,000 1,500,000
Clarica	500,000 500,000	Graham	150,000	Fraserville	250,000
Clarion	1,500,000	Greenville	500,000	Longue Pointe	750,000
*Danville	1,000,000	La Grange	150,000	*Longueuil	1,750,000
East Greenville	342,000	Virginia		Montreal	30,000,000
*Gettysburg	1,000,000	*Fort Myer	250,000	St. Hyacinthe Verdun	1,000,000 1,000,000
**Holmesburg	2,000,000 100,000	*Norfolk Petersburg	8,000,000 1,500,000		1,000,000
New Bethlehem New Brighton	500,000	Virginia Beach	100,000	New Brunswick *Fredericton	2,000,000
New Castle	4.000,000	G .	100,000		2,000,000
*Norristown	4,500,000	Washington Waitsburg	500,000	Mexico Chihuahua	1,750,000
Overbrook	250,000	6	300,000	San Luis Potosi	500,000
Pickering Creek	750,000	West Virginia	500,000	Isthmus of Panama	200,000
Pottstown	4,000,000 700,000	Beuwood	3,000,000	Panama	1.500,000
Scranton	6,000,000	Elm Grove	1,000,000	*Colon	2,600,000
*Sharon	2,000,000	Fairmont	1,000,000	Corozal	1,000,000

