

Fall detection system based on incremental development model

exposition

Lukasz Marcul

Supervisor: Ph.D. Miroslaw Zoladz

AGH University of Science and Technology Department of Measurement and Electronics

Cracow, 19th January 2018

,

- Introduction.
- Selected components.
- System overview.
- Fall detection background.
- Outcome.

Introduction - Abstract

Goal

Design a Fall Detector which should:

- signalize a fall using a sound,
- fit in a pocket,
- have its own supply source.

Additional functions

- motion parameters recording,
- auxiliary application for analysis and processing.

Introduction - Development method

Milestones

- prepare the measurement system (device and auxiliary application),
- analyze typical ADL scenarios,
- develop and implement fall detection algorithm,
- deploy an alarm feature.

Incremental model

- the product was designed, implemented and tested incrementally:
 12 weeks, every week with a new important feature added,
- chosen because of low cost and highly effective delivery.

- Introduction.
- Selected components.
- System overview.
- Fall detection background.
- Outcome.

Selected components - Detector

Figure. Hardware components of the detector.

Selected components - Mbed

10%

Chosen because of:

- lightweight driver abstraction layer,
- good C/C++ compiler,
- access to the standard library,
- revision system availability,
- large set of examples,
- clear documentation.

Figures based on ARM mbed Technical Overview [2].

- Introduction.
- Selected components.
- System overview.
- Fall detection background.
- Outcome.

System overview

Figure. Distributed system overview.

System overview - Interfaces

Created interfaces:

- serial command interface (communicate the device and auxiliary application),
- sensor configuration interface (formatted JSON[3]),
- data transfer interface (sensor configuration and measurement packet) via serial port.

- Introduction.
- Selected components.
- System overview.
- Fall detection background.
- Outcome.

Fall detection background - Device location I

Device in the pocket = impact too small to distinguish fall from walk.

Figure. Fall down after a walk - device in the pocket.

Fall detection background - Device location II

Device beside hand = better exposition on impact.

Figure. Fall down after a walk - device hold in hand.

Fall detection background - Activities of daily living I

Figure. Walking upstairs - record.

Fall detection background - Activities of daily living II

Figure. Running upstairs - record.

Fall detection background - Activities of daily living III

Fall detection background - Falls

Figure. Light fall (after walk) - record.

Figure. Severe fall (after walk) - record.

Fall detection background - Algorithm

Algorithm

Let:

- V_{pp} peak-to-peak amplitude of discrete signal V within the selected time window w,
- AX, AY, AZ, GX, GY, GZ parts (within the selected time window w) of measured axes of acceleration and angular velocity,
- time window is 50 ms and shifts while data update (every 10 ms).

Then:

fall detected
$$\Leftrightarrow \exists w : max(AX_{pp}, AY_{pp}, AZ_{pp}) > 8g \lor (max(AX_{pp}, AY_{pp}, AZ_{pp}) > 4.5g ∧ max(GX_{pp}, GY_{pp}, GZ_{pp}) > 150dps).$$

- Introduction.
- Selected components.
- System overview.
- Fall detection background.
- Outcome.

Outcome - Test results I

Fall detected: second condition met at 4.76 s (first met at 4.80 s).

Figure. Fall - event analysis.

Outcome - Test results II

Fall not detected. Acceleration threshold not exceeded.

Figure. Sprint - event analysis.

Outcome - Test results III

TN - true negatives

FP - false positives

TP - true positives

FN - false negatives

Test case	TN	FP	TP	FN	True	All	Efficiency
Jumping	9	1	-	-	9	10	90 %
Sprint	8	2	-	-	8	10	80 %
Fall from standing	-	-	10	5	10	15	67 %
Fall from walking	-	-	12	3	12	15	80 %
Sum	17	3	22	8	39	50	78 %

Outcome - Advantages

Advantages:

- motion parameters analysis,
- easily-reconfigurable device,
- storage and export system,
- alarm while falling (78 % of the efficiency),
- long battery life,
- full project history.

Outcome - Critical reflection

Shortcomings:

- 78 % is still below 100 % (limited algorithm),
- performance tested only by the author (human parameters not taken into consideration),
- dimensions.

Outcome - Development prospects

Possibilities:

- implement more professional algorithm (increasing efficiency),
- miniaturize and prepare the device for a mass production,
- deliver automatic ambulance notification,
- integrate application in sport and smart watches.

Let's examine the device in the action!

References and images

- [1] FreePik. Paratrooper falling silhouette: https://www.flaticon.com/free-icon/paratrooper-falling-silhouette_38661.
- [2] ARM Ltd. Arm mbed technical overview: https://www.arm.com/files/event/20170628_atf_korea_b2.pdf.
- [3] Douglas Crockford. Json: http://json.org/.