Computability Theory

Fall 2020

Lecture 9: Recursive Enumerable Sets(Unfinished)

Lecturer: Renjie Yang

9.1 Semicomputable Predicates

Definition 9.1 A predicate $P(x^{(n)})$ is called **semicomputable** if there exists a partially computable function whose domain is the set $\{x^{(n)}|P(x^{(n)})\}$

Theorem 9.2 Every computable predicate is semicomputable.

Proof: Let $R(x^{(n)})$ be computable. Then, $\{x^{(n)}|\ R(x^{(n)})\}$ is the domain of the partial computable function $min_y[C_R(x^{(n)})+y=0]$

Theorem 9.3 Let $R(x^{(n)}) \leftrightarrow \exists y P(y, x^{(n)})$, where $P(y, x^{(n)})$ is computable. Then $R(y, x^{(n)})$ is semicomputable.

Proof: $\{x^{(n)}|\ R(x^{(n)})\}$ is the domain of the partial computable function $min_y[C_P(x^{(n)})=0]$

Theorem 9.4 Let $R(x^{(n)})$ be a semicomputable predicate. Then there exists a computable predicate $P(y, x^{(n)})$ such that $R(x^{(n)}) \leftrightarrow \exists y P(y, x^{(n)})$.

9.2 Recursive Enumerable Sets