STAT 2011 Workshop on Data Exploration and Technical Writing

Section 1: Introduction to Excel VBA Programming

Dr. OUYANG Ming 2023/2024 Term 2

Lecture Notes 2 Frequency Distributions, descriptive statistics and Graphs

Histograms

Histograms use class boundaries and frequencies of the classes.

Ogives

Use the upper class boundaries and the cumulative relative frequencies.

Introduction to Excel VBA Programming

Frequency Table:

FREQUENCY

Students	Systolic blood pressure	ABO Blood Type
1	93.73	Α
2	94.33	Α
3	94.73	В
4	93.36	AB
5	92.63	В
6	90.87	0
7	94.35	0
8	94.15	Α
9	92.72	AB
10	92.58	В
11	90.76	Α
12	91.59	0
13	93.74	0
14	93.23	0
15	90.97	AB

Systolic Blood pressure		Frequency	Proportion	
	<92		4	26.67%
	92 to 93		3	20%
	93 to 94		4	26.67%
	>94		4	26.66%
TOTAL		15	100%	

Need bins to group ranges of data.

Statistical Formulas

• Mean (or Sample mean): Average value of the n observations:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

AVERAGEIF

AVERAGEIFS

• Mean (or Sample mean): Average value of the n observations:

AVEDEV AVERAGE AVERAGEA

Working with formulas	
R1C1 reference style	
✓ <u>Formula AutoComplete</u>	
✓ Use <u>t</u> able names in formulas	
✓ Use Get <u>P</u> ivotData functions for PivotTable refe	
✓ Formula AutoComplete ✓ Use table names in formulas	

		1	2	3
	1			
	2			
	3			
	4			
	5			
fe	6			
le	7			

Function Library					
×	~	fx =AV	ERAGE(R10	C4:R2C5)	
	3	4	5	6	

• Mean (or Sample mean): Average value of the n observations:

F4

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

✓ fx =AVERAGE(\$D\$1:\$E\$2)
 C D E F G H

• Mean (or Sample mean): Average value of the n observations:

8:00 AM

.....

Time

Date/Time

Arguments

 $\cdots \cdots -2$ -1 0 1 2 $\cdots \cdots$ A B $\cdots \cdots$ Z \cdots FALSE TRUE

1900/01/01

Dates are stored as the number of days that have elapsed since 1900/01/01

One hour: 1/24 = 0.04167

One minute: 1/(24*60) = 1/1440 = 0.00069

TEXT

NAME	AMY	ID	A00202
SEX	MALE	Telephone	2851327

Number

Integer	1,2,3,	Logic	TRUE	0
Percentage	0.85%,1%,	value	FALSE	1

Date/Time

Birth date	2000/10	
Time	8:00 AM	

Operator	Example	Result	Example	Result
=	=5=3	FALSE	=8=2+6	TRUE
<>	=5<>3	TRUE	=5<>5	FALSE
>	=-5>2	FALSE	=8>1	TRUE
<	=8<2	FALSE	=0<7	TRUE
>=	=9>=7	TRUE	=5>=5	TRUE
<=	=5<=2	FALSE	=6<=6	TRUE

• Mean (or Sample mean): Average value of the n observations:

=AVERAGEIF(A2:A5,"?????1",B2:B5)					
	А	В	С		
1	Year	Score			
2	Year1	11	12		
3	Year2	1			
4	Year3	23			
5	Year11	12			

		,	, ,
	Α	В	С
1	Year	Score	
2	Year1	11	11.5
3	Year2	1	
4	Year3	23	
5	Year11	12	

=AVERAGEIF(A2:A5,"*1",B2:B5)

Count

COUNT COUNTA COUNTBLANK COUNTIF COUNTIFS

=0	=COUNTIFS(A2:A12,"=100",B2:B12,"=NUMBER")					
	А	В	С	D		
1	數據	數據説明				
2	10000	TEXT (number)	4	COUNT		
3		TRUE EMPTY	8	COUNTA		
4		FAKE EMPLTY(="")	5	COUNTBLANK		
5	excel	TEXT	3	COUNTIF(A2:A12,"*")		
6	100	NUMBER	8	COUNTIF(A2:A12,"<>")		
7		TRUE EMPTY	1			
8		TRUE EMPTY				
9	0.5	NUMBER				
10		FAKE EMPLTY(="")				
11	20-Feb	DATE				
12	#DIV/0!	FALSE				

• Mean (or Sample mean): Average value of the n observations:

1	Α	В	C	D	Ε	F	G	Н	1	J	K	L	М	N	0	Р	Q
1	School	SID	Class	Chinese	Math	English	Physics	Total			Summary M	EAN					
2	Band1	123	Α	76	20	60	60	216			School	Class	Chinese	Math	English	Physics	Total
3	Band1	421	В	95	78	31	52	256			Band1	А	\$L\$3)	4	45 79.5	60.5	249
4	Band1	252	С	52	0	54	100	206									
5	Band1	213	В	77	68	75	66	286									
6	Band1	577	Α	52	70	99	61	282									
7	Band2	568	Α	65	44	16	86	211									
8	Band2	234	В	23	83	88	3 23	217									
9	Band2	164	В	49	46	50	33	178									
10	Band2	265	Α	86	30	60	52	228									
11	Band2	123	С	97	71	41	35	244									
12	1———																

• Mean (or Sample mean): Average value of the n observations:

AVEDEV

AVERAGE

AVERAGEA

AVERAGEIF

AVERAGEIFS

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

Returns the average of the absolute deviations of data points from their mean. Arguments can be numbers or names, arrays, or references that contain numbers.

$$d = \frac{\sum_{i=1}^{n} |x_i - \bar{x}|}{n}$$

Mean absolute deviation

Special MEAN

GEOMEAN

HARMEAN

TRIMMEAN

Geometric Mean: Used to measure the rate of change of a variable over time

$$\bar{x}_G = (x_1 \times x_2 \times \dots \times x_n)^{1/n}$$

Geometric Mean rate of return: Measures the status of an investment over time Where r_i is the rate of return in time period i

$$\bar{r}_G = ((1 + r_1) \times (1 + r_2) \times \dots \times (1 + r_n))^{1/n} - 1$$

Harmonic mean: it is appropriate for situations when the average rate is desired

$$\bar{x}_{H} = \frac{n}{\frac{1}{x_{1}} + \frac{1}{x_{2}} + \dots + \frac{1}{x_{n}}} = \left(\frac{\sum_{i=1}^{n} x_{i}^{-1}}{n}\right)^{-1}$$

Mode

MODE.MULT MODE.SNGL

- Advantage: Easy to compute and interpret (most frequently)
- Disadvantage:
- (1) Non-unique centering if more than one mode (Unimodal, Bimodal, Trimodal...)
- (2) Sometimes unable to describe the majority of the data points

DEVSQ / VARIANCE / Standard Deviation

Sample variance

 $DEVSQ = \sum_{i=1}^{n} (x_i - \bar{x})^2$

 $s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$

Population variance

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

Arguments can be the following: numbers; names, arrays, or references that contain numbers; text representations of numbers; or logical values, such as TRUE and FALSE.

Percentile/Quartile

Returns the k^{th} smallest/largest value in a data set

Definition: The p^{th} percentile of a data set ($0 \le p \le 100$), denoted by $V_{p/100}$, is a value such that p percent of the data are less than or equal to $V_{p/100}$.

SMALL

LARGE

MAX

MAXA

MEDIAN

MIN

MINA

PERCENTILE.EXC

PERCENTILE.INC

QUARTILE.EXC QUARTILE.INC Percentiles for Median, Minimum and Maximum (p = 50,100,0):

- 50^{th} Percentile ($V_{0.5}$): Median, 50% of the data points are smaller than or equal to $V_{0.5}$.
- 100^{th} Percentile (V_1): Maximum = largest observation
- 0^{th} Percentile (V_0): Minimum = smallest observation

Percentile/Quartile

Definition: The p^{th} percentile of a data set ($0 \le p \le 100$), denoted by $V_{p/100}$, is a value such that p percent of the data are less than or equal to $V_{p/100}$.

If more than one value has the same rank, the <u>average</u> rank is returned.

RANK.AVG Returns the rank of a number in a list of numbers:

RANK.EQ its size relative to other values in the list.

If more than one value has the same rank, the top rank is returned.

PERCENTRANK.EXC

PERCENTRANK.INC

Returns the rank of a value in a data set as a

percentage (0-1, exclusive/inclusive) of the data set.

Skew / Kurtosis

SKEW SKEW.P

The skewness of a random variable X is the third standardized moment

$$ilde{\mu}_3 = \mathrm{E} \Bigg[igg(rac{X - \mu}{\sigma} igg)^3 \Bigg] = rac{\mu_3}{\sigma^3} = rac{\mathrm{E} ig[(X - \mu)^3 ig]}{(\mathrm{E} [(X - \mu)^2])^{3/2}}$$

Standardized moment

$$\hat{\mu}_k = rac{\mu_k}{\sigma^k} = rac{\mathrm{E}ig[(X-\mu)^kig]}{(\mathrm{E}[(X-\mu)^2])^{k/2}}$$

Skew / Kurtosis

KURT

The kurtosis is the fourth standardized moment, defined as

$$\operatorname{Kurt}[X] = \operatorname{E}\left[\left(rac{X-\mu}{\sigma}
ight)^4
ight] = rac{\operatorname{E}\left[(X-\mu)^4
ight]}{\left(\operatorname{E}[(X-\mu)^2]
ight)^2} = rac{\mu_4}{\sigma^4}$$

Standardized moment

$$\hat{\mu}_k = rac{\mu_k}{\sigma^k} = rac{\mathrm{E}ig[(X-\mu)^kig]}{(\mathrm{E}[(X-\mu)^2])^{k/2}}$$

Probability density functions for selected distributions with mean 0, variance 1 and different excess kurtosis

Lecture 3: Probability

Counting Rules

■ Factorial is the product of all the positive numbers from 1 to a number.

$$n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$$
$$0! = 1$$

■ Permutation is an arrangement of objects in a specific order. Order matters.

$$_{n}P_{r} = \frac{n!}{(n-r)!} = \underbrace{n(n-1)(n-2)\cdots(n-r+1)}_{r \text{ items}}$$

■Combination is a grouping of objects.

Order does not matter.

$${}_{n}C_{r} = \frac{n!}{(n-r)!r!}$$

$$= \frac{{}_{n}P_{r}}{r!}$$

- Factorial
- Permutations
- Combination

Key Question: Select k objects be selected out of n objects ($0 \le k \le n$). How many ways can we select, if the selections are made <u>replacement</u>? Placing k markers on n numbers

k identical balls into n distinct boxes \rightarrow Using n-1 walls to separate k balls

Lecture 4: Discrete Random Variables

- Probability Distributions, mean and variance
- **Binomial Distribution**
- **Multinomial Distribution**
- **Poisson Distribution**
- Hypergeometric Distribution

Probability Mass Function

PROB

$$Pr(a \le X \le b)$$

$$\begin{cases} \Pr(X = 0) = \Pr(\{TT\}) = \frac{1}{4} \\ \Pr(X = 1) = \Pr(\{TH, HT\}) = \frac{2}{4} = \frac{1}{2} \\ \Pr(X = 2) = \Pr(\{HH\}) = \frac{1}{4} \end{cases}$$

• Binomial distribution: Probability distribution on the number of successes in n independent experiments, each experiment has a probability of success p

BINOM.DIST.RANGE BINOM.INV

=BINOM.DIST(
BINOM.DIST(number_s, trials, probability_s, cumulative)

$$Pr(X = x)$$
 or $Pr(X \le x)$

=BINOM.DIST.RANGE(

BINOM.DIST.RANGE(trials, probability_s, number_s, [number_s2])

 $\Pr(x_1 \le X \le x_2)$

=BINOM.INV(

BINOM.INV(trials, probability_s, alpha)

$$\Pr(X \le x) \ge \alpha$$

$$X \sim Binomial(n, p)$$

$$Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n - x},$$

$$for x = 0, 1, 2, \dots, n$$

Probability	Successes/Failures
$p^x(1-p)^{n-x}$	S S S S S F F F F
$p^x(1-p)^{n-x}$	S S S S F S F F F
••••••	••••••
$p^x(1-p)^{n-x}$	FFFFFFFSS

Poisson distribution

POISSON.DIST

Poisson Distribution is usually associated with rare events.

Independent events occur over a period of time or space

[The second most frequently used discrete distribution.]

The probability of k events occurring for a Poisson random variable with parameter μ is

$$Pr(X = k) = \frac{e^{-\mu}\mu^k}{k!}, k = 0,1,2,\dots,$$

Where e is the Euler's constant, and μ is expected number of events to occur.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2.718$$

 $X \sim Poisson(\mu)$

Negative Binomial Distribution

=NEGBINOM.DIST(

NEGBINOM.DIST

NEGBINOM.DIST(**number_f**, number_s, probability_s, cumulative)

<u>Probability distribution</u> on the <u>number of times</u> when the <u>r success occurs</u> [a fixed integer], each experiment has a probability of success p.

Let X is the number of failure times, then

 $X \sim Negative\ Binomial\ (r,p)$

X follows Negative Binomial Distribution with parameters r and p.

The probability of k times when the r success occurs is

$$\Pr(X=k) = \binom{k+r-1}{r-1} (1-p)^k p^r, \qquad k=0,1,2\cdots,$$
 Mean:
$$E(X) = \frac{r}{n} \qquad \text{Variance:} \qquad \sigma^2 = \frac{r(1-p)}{n^2}$$

Negative Binomial distribution reduces to Geometric distribution when r=1.

Hypergeometric Distribution

HYPGEOM.DIST

=HYPGEOM.DIST(HYPGEOM.DIST(sample s, number sample, population s, number pop, cumulative)

Suppose we have a box containing N_1 white balls and N_2 black balls. We randomly select n balls $(n < N_1 + N_2 = N)$ without replacement.

Let X be the number of balls being white The probability of x white balls in n balls is $X \sim Hypergeometric(N_1, N_2, n)$

$$\Pr(X = x) = \frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{n}} \qquad k being nonnegative integer: \\ x \le n, x \le N_1, n-x \le N_2$$

$$Mean: E(X) = n(\frac{N_1}{N})$$

Variance:
$$\sigma^2 = n(\frac{N_1}{N})(\frac{N_2}{N})(\frac{N-n}{N-1})$$

NORM.DIST

NORM.INV

NORM.S.DIST

NORM.S.INV

LOGNORM.DIST

LOGNORM.INV

PHI

STANDARDIZE

GAUSS

Lecture 5 Normal Distributions

 $X \sim Normal(\mu, \sigma^2)$

 μ (population mean)

 σ^2 (population variance)

Probability Density Function (pdf):

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

NORM.DIST

NORM.INV

NORM.S.DIST

NORM.S.INV

LOGNORM.DIST

LOGNORM.INV

PHI

STANDARDIZE

GAUSS

$$\Pr(a \le X \le b) = \Pr\left(\frac{a - \mu}{\sigma} \le Z \le \frac{b - \mu}{\sigma}\right)$$

$$Z = \frac{X - \mu}{\sigma} \quad Z \sim N(0,1)$$
Centralize

Shape of normal distribution preserves after translation (by $-\mu$) and rescaling (by $1/\sigma$)

NORM.DIST

NORM.INV

NORM.S.DIST

NORM.S.INV

LOGNORM.DIST

LOGNORM.INV

PHI

STANDARDIZE

GAUSS

The standard normal distribution N(0,1) is a normal probability distribution with $\mu=0$ and $\sigma^2=1$, [Special Case]

Probability density function (pdf) of N(0,1): $-\infty < z < \infty$

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

f(x) = f(-x): The distribution is symmetric about 0

Mean = Median = Mode = 0

Unable to compute the exact value of $\Phi(z)$ by hand

NORM.DIST

NORM.INV

NORM.S.DIST

NORM.S.INV

LOGNORM.DIST

LOGNORM.INV

PHI

STANDARDIZE

GAUSS

$$X \sim Normal(\mu, \sigma^2)$$

 μ (population mean) σ^2 (population variance)

Probability Density Function (pdf):

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

$$Y = \exp(X) \sim Log - Normal(\mu, \sigma^2)$$

A log-normal process is the statistical realization of the multiplicative product of many independent random variables, each of which is positive. This is justified by considering the central limit theorem in the log domain

$$f(y) = \frac{1}{y\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(\ln(y) - \mu)^2}$$

only positive real values

Exponential Distribution: Used to model the <u>length of time</u> between two occurrences of an event

Let *X* is the length of time, then

X follows **Exponential Distribution** with parameters λ .

$$f(x) = \lambda e^{-\lambda x}$$

for
$$0 < x < \infty$$

$$E(X) = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

The probability that an arrival time is less than some specified time *t*

$$\Pr(arrival\ time < t) = \Pr(X < t) = \int_0^t \lambda e^{-\lambda x} \, dt = -e^{-\lambda x} \Big|_0^{\overline{t}} = 1 - e^{-\lambda t}$$

$$x \Big|_{0}^{t} = 1 - e^{-\lambda t}$$

Exponential Distribution: Used to model the <u>length of time</u> between two occurrences of an event **Exponential-Poisson relationship**

When events happen over time independently and at a constant rate:

- The <u>number of events</u> in any fixed time period is **Poisson distribution**.
- The waiting time between events is Exponential distribution.

Example: Suppose customers arrive independently at a constant mean rate of **40 Per Hour**. What's the probability that at least one customer arrives in the next five Minutes?

Let *Y* is the **number of events**

$$Y \sim Poisson(\frac{40}{60} * 5)$$

$$Y \sim Poisson(\frac{40}{60} * 5)$$

 $Pr(Y \ge 1) = 1 - Pr(Y = 0) = 1 - \frac{e^{-10/3}\mu^0}{0!}$

Let *X* is the <u>arrival time for the first customers</u>

 $X\sim$ exponential(40)

$$\Pr\left(X < \frac{5}{60}\right) = 1 - e^{-40*5/60}$$

Gamma Distribution / Function

GAMMA GAMMA.DIST **GAMMA.INV GAMMALN GAMMALN.PRECISE**

Gamma distribution is frequently used to model waiting times. For instance, in life testing, the waiting time until death is a random variable that is frequently modeled with a gamma distribution.

$$X \sim \Gamma(k, heta) \equiv \mathrm{Gamma}(k, heta)$$

$$f(x;k, heta)=rac{x^{k-1}e^{-rac{x}{ heta}}}{ heta^k\Gamma(k)} \quad ext{ for } x>0 ext{ and } k, heta>0.$$

$$E(X) = k\theta$$
 $Var(X) = k\theta^2$

$$\alpha = 1$$
 $\lambda = \frac{1}{\beta} = \frac{1}{\theta}$ $X \sim \text{exponential}(\lambda)$

Gamma Distribution / Function

GAMMA

GAMMA.DIST

GAMMA.INV

GAMMALN

GAMMALN.PRECISE

 $Log(\Gamma(X))$

$$f(x;k, heta)=rac{x^{k-1}e^{-rac{x}{ heta}}}{ heta^k\Gamma(k)} \quad ext{ for } x>0 ext{ and } k, heta>0.$$

$$\Gamma(x)=\int_0^\infty t^x e^{-t}dt$$

$$\Gamma(n) = (n-1)!$$

n is positive integer

$$\Gamma(x+1) = x\Gamma(x)$$

$$\Gamma(0.5) = \sqrt{\pi}$$

$$\Gamma(-0.5) = -2\sqrt{\pi}$$

Beta distribution: a family of continuous distributions defined on the interval [0, 1] parameterized by two positive shape parameters by α and β

BETA.DIST BETA.INV

$$egin{aligned} f(x;lpha,eta) &= ext{constant} \cdot x^{lpha-1} (1-x)^{eta-1} \ &= rac{x^{lpha-1} (1-x)^{eta-1}}{\displaystyle\int_0^1 u^{lpha-1} (1-u)^{eta-1} \, du} \ &= rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} \, x^{lpha-1} (1-x)^{eta-1} \ &= rac{1}{\mathrm{B}(lpha,eta)} x^{lpha-1} (1-x)^{eta-1} \end{aligned}$$

Weibull distribution

If the quantity X is a "time-to-failure", the Weibull distribution gives a distribution for which the failure rate is proportional to a power of time.

$$E=\lambda\Gamma\left(1+rac{1}{k}
ight)$$

$$Var = \lambda^2 \left \lceil \Gamma \left(1 + rac{2}{k}
ight) - \Gamma igg(1 + rac{1}{k} igg)^2
ight
ceil$$

Confidence Interval for Mean

Lecture 6 Confidence Intervals and Sample Size

CONFIDENCE.NORM CONFIDENCE.T

A 100(1- α)% Confidence Interval for μ when σ is known

$$(\bar{x}-\frac{\overline{z_{1-\alpha/2}\sigma}}{\sqrt{n}},\bar{x}+\frac{\overline{z_{1-\alpha/2}\sigma}}{\sqrt{n}})$$

A 100(1- α)% Confidence Interval for μ when σ is Unknown

$$(\bar{x} - \frac{t_{n-1,1-\alpha/2}s}{\sqrt{n}}), \bar{x} + \frac{t_{n-1,1-\alpha/2}s}{\sqrt{n}})$$

Student t-distribution

T.DIST
T.DIST.2T
T.DIST.RT
T.INV
T.INV.2T

Parameters: Degrees of freedom (df)

- Bell-shaped symmetric pdf
 (Similar to N(0,1)) but heavier
 densities at both tails
- As degree of freedom (d.f.) d increases, density of the (1) tails decrease, but (2) middle increases

If W is Normal(0,1), V is $\chi^2(r)$ and W and V are independent

$$T = \frac{W}{\sqrt{V/r}}$$

 $T \sim t_r \quad t - distribution (r)$

Chi-square distribution

Distribution can only be obtained when X_i follows Normal distribution

$$Pr(X < x) \text{ or } f(x)$$

$$Pr(X > x)$$

$$Pr(X < x) = \alpha$$

$$Pr(X > x) = \alpha$$

$$\Pr(X < x) \text{ or } f(x) \ \Pr(X > x) \ f_k(x) = rac{1}{2^{rac{k}{2}} \Gamma(rac{k}{2})} x^{rac{k}{2}-1} e^{rac{-x}{2}} \ \Pr(X < x) = lpha \ \Pr(X > x) = lpha$$

[One sample]

[Two sample]

Objective: Compare population mean μ with some value μ_0

Assumption: A random sample $X_1, X_2, ... X_n$ with unknown μ but known σ , with either of the following condition:

- 1. X_i are normally distributed, or
- 2. n is large (n > 30)

$\bar{X} \sim Normal(\mu, \frac{\sigma^2}{n})$

Possible Hypotheses:

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

$$H_0: \mu = \mu_0$$

$$H_1: \mu > \mu_0$$

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases} \quad \text{or} \quad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \quad \text{or} \quad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases}$$

Test Statistic and its Distribution:

Under H_0 (i.e. Assume that H_0 is true), $z_0 = \frac{x - \mu_0}{\sigma / \sqrt{n}}$

[One sample]

Objective: Compare population mean μ with some value μ_0

Assumption: A random sample $X_1, X_2, ... X_n$ with unknown μ but known σ , Unknown with either of the following condition:

- 1. X_i are normally distributed, or
- 2. n is large (n > 30)

Possible Hypotheses:

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases}$$

$$p - value = Pr(Z > z_0)$$

 $\bar{X} \sim Normal(\mu, \frac{\sigma^2}{\sigma^2})$

Test Statistic and its Distribution:

Under
$$H_0$$
 (i.e. Assume that H_0 is true), $z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$

[One sample]

Objective: Compare population mean μ with some value μ_0

Assumption: A random sample $X_1, X_2, ... X_n$ with unknown μ but known σ , Unknown with either of the following condition:

- 1. X_i are normally distributed, or
- 2. $n ext{ is large } (n > 30)$

Possible Hypotheses:

$$\begin{cases} H_0: \mu = \mu_0 & \text{p-value} = \\ H_1: \mu \neq \mu_0 & 2 * \min(\Pr(Z > z_0), \Pr(Z < z_0)) \end{cases}$$

Test Statistic and its Distribution:

Under
$$H_0$$
 (i.e. Assume that H_0 is true), $z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases}$$
 More extreme

$$p - value = Pr(Z < z_0)$$

[One sample]

A more frequently encountered situation is the two-sample hypothesis testing problem. Compare the underlying parameters of two different populations, neither of whose values is assumed known, are compared. $H_0: \mu_1 = \mu_2$

Compare two sample (Unknown value)

Compare

T.TEST [Two sample]

Longitudinal Study (縱向研究) vs Cross-sectional study (橫斷面研究)

Same group of subjects are followed over time/condition (Repeated observations)

Interested in the <u>difference</u> in measurements <u>over time/condition</u>.

Multiple groups of subjects are seen at one time point.

Interested in the <u>difference</u> in measurements <u>over</u> groups.

Two observations (different time) from a single subject

[Two observations are Dependent]

[Two sample] TYPE I

Objective: Compare the population means for paired data

Example:
$$X_1 \sim Normal(\mu_1, \sigma_1^2)$$

$$Y_1 \sim Normal(\mu_1 + \Delta, \sigma_2^2)$$

$$D_1 \sim Normal(\Delta, \sigma_3^2)$$

$$X_2 \sim Normal(\mu_2, \sigma_1^2)$$
 ...

$$X_2 \sim Normal(\mu_2, \sigma_1^2)$$

 $Y_2 \sim Normal(\mu_2 + \Delta, \sigma_2^2)$

$$D_2 \sim Normal(\Delta, \sigma_3^2)$$

Minus

 $D_2 \sim Normal(\Delta, \sigma_3^2)$

Reduce to one sample case

$$D_1, D_2, \cdots, D_n \sim Normal(\Delta, \sigma_3^2)$$

The difference in the two measurements for the i^{th} subject

Possible Hypotheses:

$$\begin{cases} H_0: \Delta = 0 \\ H_1: \Delta \neq 0 \end{cases} \begin{cases} H_0: \Delta = 0 \\ H_1: \Delta > 0 \end{cases} \begin{cases} H_0: \Delta = 0 \\ H_1: \Delta < 0 \end{cases}$$

Two-tailed

one-tailed

P-value

$$t_0 = \frac{d-0}{s/\sqrt{n}}$$
 Test statistic

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (d_{i} - \bar{d})^{2}$$

[Two sample] TYPE II

Objective: Compare the population means for two independent samples [Cross Sectional]

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2)/n + (\sigma_2^2)/m}} \sim Normal(0,1)$$

Estimate population variance by sample variance

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{(S_1^2)/n + (S_2^2)/m}}$$

Assumptions:

• When n and m are small $n, m \leq 30$, assumption on Normal distribution is required (Linear combination):

$$X_1, \dots, X_n \sim Normal(\mu_1, \sigma_1^2)$$

 $Y_1, \dots, Y_m \sim Normal(\mu_2, \sigma_2^2)$

• If σ_1^2 , σ_2^2 are Unknown but **equal to** each other: $\sigma_1^2 = \sigma_2^2 = \sigma^2$

Define the **pooled estimate of variance** as:

$$S_p^2 = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}$$

which is a weighted average of two sample variances.

$$E(S_p^2) = \sigma^2 = \sigma_1^2 = \sigma_2^2$$

[Two sample] TYPE II

Objective: Compare the population means for two independent samples [Cross Sectional]

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2)/n + (\sigma_2^2)/m}} \sim Normal(0,1)$$

Estimate population variance by sample variance

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{(S_1^2)/n + (S_2^2)/m}}$$

Assumptions:

When n and m are small $n, m \leq 30$, assumption on Normal distribution is required (Linear combination):

$$X_1, \dots, X_n \sim Normal(\mu_1, \sigma_1^2)$$

 $Y_1, \dots, Y_m \sim Normal(\mu_2, \sigma_2^2)$

• If σ_1^2 , σ_2^2 are Unknown but **equal to** each other: $\sigma_1^2 = \sigma_2^2 = \sigma^2$

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S_p \sqrt{1/n + 1/m}} \qquad t - distribution (n + m - 2)$$

$$= \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sigma \sqrt{1/n + 1/m}} \div \sqrt{\left[\frac{(n-1)S_1^2}{\sigma^2} + \frac{(m-1)S_2^2}{\sigma^2}\right] / (n + m - 2)}$$

F-test

[Two sample] TYPE II

Objective: Compare the population means for two independent samples [Cross Sectional]

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2)/n + (\sigma_2^2)/m}} \sim Normal(0,1)$$

Estimate population

Estimate population variance by sample variance
$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{(S_1^2)/n + (S_2^2)/m}}$$

$$\begin{cases} H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 \neq 0 \end{cases}$$

$$\begin{cases} H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 > 0 \end{cases}$$

$$\begin{cases} H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 < 0 \end{cases}$$

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S_p \sqrt{1/n + 1/m}} \qquad t - distribution (n + m - 2)$$

$$= \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sigma \sqrt{1/n + 1/m}} \div \sqrt{\left[\frac{(n-1)S_1^2}{\sigma^2} + \frac{(m-1)S_2^2}{\sigma^2}\right] / (n + m - 2)}$$

$$t_0 = \frac{\bar{x} - \bar{y}}{s_p \sqrt{1/n + 1/m}}$$
 Test statistic

T.TEST [Two sample] TYPE III

Objective: Compare the population means for two independent samples [Cross Sectional]

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2)/n + (\sigma_2^2)/m}} \sim Normal(0,1)$$

Estimate population variance by sample variance

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{(S_1^2)/n + (S_2^2)/m}}$$

Assumptions:

• When n and m are small $n, m \le 30$, assumption on Normal distribution is required (Linear combination):

$$X_1, \dots, X_n \sim Normal(\mu_1, \sigma_1^2)$$

 $Y_1, \dots, Y_m \sim Normal(\mu_2, \sigma_2^2)$

• If σ_1^2 are Halmour but all to no RELATIONSHIP ASSUMPTION each entire $v_1 - v_2 - v$

Difficult to find the appropriate t-distribution

Satterthwaite's Method

Approximately to t-distribution:

$$d' = \frac{(s_1^2/n + s_2^2/m)^2}{(s_1^2/n)^2/(n-1) + (s_2^2/m)^2/(m-1)}$$

• F - Distribution:

F.DIST F.DIST.RT F.INV F.INV.RT

$$egin{split} f(x;d_1,d_2) &= rac{\sqrt{rac{(d_1x)^{d_1}}{(d_1x+d_2)^{d_1+d_2}}}}{x\,\mathrm{B}\Big(rac{d_1}{2},rac{d_2}{2}\Big)} \ &= rac{1}{\mathrm{B}\Big(rac{d_1}{2},rac{d_2}{2}\Big)}\Big(rac{d_1}{d_2}\Big)^{rac{d_1}{2}}\,x^{rac{d_1}{2}-1}\Big(1+rac{d_1}{d_2}\,x\Big)^{-rac{d_1+d_2}{2}} \end{split}$$

If $X \sim \chi_{d_1}^2$ and $Y \sim \chi_{d_2}^2$ are independent, then:

$$\frac{X/d_1}{Y/d_2} \sim F(d_1, d_2)$$

-11.11-						11.1		,				
<i>df</i> for denominat	or –					dt tor	numerator	r, d ₁				
denominal d ₂	oi, p	1	2	3	4	5	6	7	8	12	24	00
1	.90 .95 .975 .99 .995	39.86 161.4 647.8 4052. 16211. 405280.	199.5 799.5 5000. 20000.	215.7 864.2 5403. 21615.	224.6 899.6 5625. 22500.	230.2 921.8 5764. 23056.	234.0 937.1 5859. 23437.	236.8 948.2 5928. 23715.	238.9 956.7 5981. 23925.	243.9 976.7 6106. 24426.	249.1 997.2 6235. 24940.	254.3 1018. 6366. 25464.
2	.90 .95 .975 .99 .995	8.53 18.51 38.51 98.50 198.5 998.5	19.00 39.00	19.16 39.17	19.25 39.25	i 19.30 i 39.30	0 19.33 0 39.33 0 99.33 199.3	3 19.35 3 39.36	19.37 39.37	19.41 39.42	19.45 39.46	19.50 39.50
3	.90 .95 .975 .99 .995	5.54 10.13 17.44 34.12 55.55 167.00	9.55 16.04 2 30.82 49.80	9.28 15.44 29.46	9.12 15.10 28.71	9.0° 14.80 28.24	1 8.94 3 14.74 4 27.91 9 44.84	8.89 1 14.62 1 27.67	8.85 14.54 27.49	8.74 14.34 27.05	8.64 14.12 26.60	8.53 13.90 26.13
4	.90 .95 .975 .99 .995	4.54 7.71 12.22 21.20 31.33 74.14	6.94 2 10.65 3 18.00 3 26.28	6.59 9.98 16.69 24.26	6.39 9.60 15.98 23.16	6.20 9.30 15.53 22.40	6 6.16 6 9.20 2 15.21 6 21.98	6.09 9.07 1 14.98 3 21.62	6.04 8.98 14.80 21.35	5.91 8.75 14.37 20.70	5.77 8.51 13.93 20.03	5.63 8.26 13.46 19.32
5	.90 .95 .975 .99 .995	4.06 6.61 10.01 16.26 22.78 47.18	5.79 8.43 3 13.27 3 18.31	5.41 7.76 12.06 16.53	5.19 7.39 11.39 15.56	5.05 7.15 10.95 14.94	5 4.95 5 6.98 7 10.67 4 14.51	5 4.88 3 6.85 7 10.46 1 14.20	4.82 6.76 10.29 13.96	4.68 6.52 9.89 13.38	4.53 6.28 9.47 12.78	4.36 6.02 9.02 12.14
6	.90 .95 .975 .99 .995	3.78 5.99 8.81 13.75 18.64 35.51	7.26 7.26 10.92 14.54	4.76 6.60 9.78 12.92	4.53 6.23 9.15 12.03	4.39 5.99 6 8.79 11.40	9 4.28 9 5.82 5 8.47 6 11.07	3 4.21 2 5.70 7 8.26 7 10.79	4.15 5.60 8.10 10.57	4.00 5.37 7.72 10.03	3.84 5.12 7.31 9.47	3.67 4.85 6.88 8.88
7	.90 .95 .975 .99 .995	3.59 5.59 8.07 12.25 16.24 29.25	4.74 6.54 9.55 12.40	4.35 5.89 8.45 10.88	4.12 5.52 7.85 10.05	3.9° 5.2° 7.4° 9.5°	7 3.87 9 5.12 6 7.19 2 9.16	7 3.79 2 4.99 9 6.99 8 8.89	3.73 4.90 6.84 8.68	3.57 4.67 6.47 8.18	3.41 4.42 6.07 7.65	3.23 4.14 5.65 7.08

F - TEST:

Objective: Compare the population variance for two **Normal distribution**

Assumptions

F.TEST

$$X_1, \dots, X_n \sim Normal(\mu_1, \sigma_1^2)$$
 $Y_1, \dots, Y_m \sim Normal(\mu_2, \sigma_2^2)$

$$Y_1, \dots, Y_m \sim Normal(\mu_2, \sigma_2^2)$$

$$\begin{cases} H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 \neq \sigma_2^2 \end{cases}$$

$$\begin{cases} H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 \neq \sigma_2^2 \end{cases}$$
 Reject H_0 if $f_0 > F_{n-1,m-1,1-\alpha/2}$ or $f_0 < F_{n-1,m-1,\alpha/2}$ then H_1 is accept

$$\frac{(n-1)S_1^2}{\sigma_1^2} \sim \chi_{n-1}^2 \Rightarrow \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n-1, m-1)$$

$$\frac{(m-1)S_2^2}{\sigma_2^2} \sim \chi_{m-1}^2$$

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n-1, m-1)$$

Assuming the null hypothesis is true, we have $\sigma_1^2 = \sigma_2^2$

Test statistics:
$$f_0 = \frac{S_1^2}{S_2^2}$$

P-VALUE

F - TEST:

Objective: Compare the population variance for two **Normal distribution** independent samples

Assumptions

$$X_1, \dots, X_n \sim Normal(\mu_1, \sigma_1^2)$$
 $Y_1, \dots, Y_m \sim Normal(\mu_2, \sigma_2^2)$

$$Y_1, \dots, Y_m \sim Normal(\mu_2, \sigma_2^2)$$

$$\begin{cases} H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 > \sigma_2^2 \end{cases}$$

Reject
$$H_0$$
 if $f_0 > F_{n-1,m-1,1-\alpha}$, then H_1 is accept

$$\begin{cases} H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 < \sigma_2^2 \end{cases}$$

Reject
$$H_0$$
 if $f_0 < F_{n-1,m-1,\alpha}$ then H_1 is accept

Assuming the null hypothesis is true, we have $\sigma_1^2 = \sigma_2^2$

Test statistics:
$$f_0 = \frac{S_1^2}{S_2^2}$$

- Chi-square test Contingency Tables
- =CHISQ.TEST(

 CHISQ.TEST(actual_range, expected_range)
- Useful in situations involving multiple population proportions
- Used to classify sample observations according to two or more characteristics

Sample results organized in a contingency table:

	Gen		
Hand Preference	Female	Male	
Left	12	24	36
Right	108	156	264
	120	180	300

Hand Preference vs. Gender

Dominant Hand: Left vs. Right

Gender: Male vs. Female

2 categories for each variable, so the

table is called a 2 x 2 table

300 college students, sample size = n = 300

180 Males, 24 were left handed

◆□▶ ◆□▶ ◆□▶ ◆□▶ □

=CHISQ.TEST(CHISQ.TEST(actual_range, expected_range)

$$H_0: p_{ij} = p_{i\cdot}p_{\cdot j}$$

$$for \ all \ i, j$$

 H_1 : Exist $p_{ij} \neq p_{i.}p_{.j}$

Under H_0 : Hand preference is independent of gender/ Gender will not affect the Hand Preference (Not relevant)

Under H_1 : Hand preference and gender are dependent

Pr(Left preference in Female) $\leftarrow - - \rightarrow p_{11}/p_{\cdot 1}$

= Pr(Left preference in Male) $\leftarrow - \rightarrow = p_{12}/p_{.2}$

= Pr(Left preference in Human) $\leftarrow - - \rightarrow = p_1$.

$$H_0: p_{ij} = p_i.p_{.j}$$

$$for \ all \ i, j$$
 $H_1: Exist \ p_{ij} \neq p_i.p_{.j}$

Under H_0 : Hand preference is independent of gender/ Gender will not affect the Hand Preference (Not relevant)

Under H_1 : Hand preference and gender are dependent

	Gender		The expect proportion Under $m{H}_{m{0}}$					
Hand Preference	Female	Male		$\widehat{p_{1.}} = \frac{36}{300} \ \widehat{p_{2.}} = \frac{264}{300} \ \widehat{p_{.1}} = \frac{120}{300} \ \widehat{p_{.2}} = \frac{120}{300} $				
Left	12, <i>p</i> ₁₁	24, <i>p</i> ₁₂	36, <i>p</i> ₁ .	$\widehat{p_{11}} = \widehat{p_1}.\widehat{p_{\cdot 1}} \qquad \widehat{p_{12}} = \widehat{p_1}.\widehat{p_{\cdot 2}}$				
Right	108,p ₂₁	156,p ₂₂		$\widehat{p_{21}} = \widehat{p_2}.\widehat{p_{\cdot 1}}$ $\widehat{p_{12}} = \widehat{p_2}.\widehat{p_{\cdot 2}}$				
	120, <i>p</i> . ₁	180, <i>p</i> . ₂	300	$P21 - P2 \cdot P \cdot 1$ $P22 - P2 \cdot P \cdot 2$				

300

$$H_0: p_{ij} = p_i.p_{.j}$$

$$for \ all \ i, j$$
 $H_1: Exist \ p_{ij} \neq p_i.p_{.j}$

Under H_0 : Hand preference is independent of gender/ Gender will not affect the Hand Preference (Not relevant)

Under H_1 : Hand preference and gender are dependent

Under H.

	,	maer n ₀		
	Gen	der	The expect	
Hand Preference	Female	Male		requency
Left	12, <i>p</i> ₁₁	24, <i>p</i> ₁₂	36, <i>p</i>	1.
Right	108,p ₂₁	156,p ₂₂	264, <i>γ</i>	9 ₂ .
	120, <i>p</i> . ₁	180, <i>p</i> . ₂	300	

	Gen		
Hand Preference	Female	Male	
Left	12 vs 14.4	24 vs 21.6	$36,\widehat{p_1}$
Right	108 vs 105.6	156 vs 158.4	$264,\widehat{p_2}$
	120, $\widehat{p_{\cdot 1}}$	$180,\widehat{p_{\cdot 2}}$	300

=CHISQ.TEST(

CHISQ.TEST(actual_range, expected_range)

$$H_0: p_{ij} = p_{i\cdot}p_{\cdot j}$$

 $for \ all \ i, j$
 $H_1: Exist \ p_{ij} \neq p_{i\cdot}p_{\cdot j}$

Under H_0 : Hand preference is independent of gender/ Gender will not affect the Hand Preference (Not relevant)

Under H_1 : Hand preference and gender are dependent

Test statistics:

The expect
$$q = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(x_{ji} - n\widehat{p_{i}}.\widehat{p_{\cdot j}}\right)^{2}}{n\widehat{p_{i}}.\widehat{p_{\cdot j}}}$$

(q is large if there is a big different between observed data and the expected frequency) [H_0 is wrong]

	0011		
Hand Preference	Female	Male	
Left	12 vs 14.4	24 vs 21.6	$36,\widehat{p_1}$.
Right	108 vs 105.6	156 vs 158.4	$264,\widehat{p_2}$.
	120, $\widehat{p_{\cdot 1}}$	$180,\widehat{p_{\cdot 2}}$	300

Gender

$$H_0: p_{ij} = p_{i\cdot}p_{\cdot j}$$
for all i, j

 H_1 : Exist $p_{ij} \neq p_{i.}p_{.j}$

Under H_0 : Hand preference is independent of gender/ Gender will not affect the Hand Preference (Not relevant)

Under H_1 : Hand preference and gender are dependent

$$Q = \sum_{j=1}^{2} \sum_{i=1}^{2} \frac{\left(X_{ij} - n\widehat{P_i}.\widehat{P_{\cdot j}}\right)^2}{n\widehat{P_i}.\widehat{P_{\cdot j}}}$$

$$2 \text{ Estimated parameter:}$$

$$\min \text{ minus 2 degree of freedom}$$

$$\widehat{P_{1}}. = \frac{X_{11} + X_{12}}{n}$$

$$\widehat{P_{\cdot 1}} = \frac{X_{11} + X_{21}}{n}$$

Three parameters need to be estimated p_{11} , p_{12} , p_{21}

Reject H_0 if test statistic $q > \chi^2_{1,1-\alpha}$ then H_1 is accept

Degree of freedom U = (2 * 2 - 1) - 1 - 1 = (2 - 1)(2 - 1) = 1

$$\widehat{P_{2\cdot}} = \frac{X_{21} + X_{22}}{n} = 1 - \widehat{P_{1\cdot}}$$

$$\widehat{P_{\cdot 2}} = \frac{X_{12} + X_{22}}{n} = 1 - \widehat{P_{\cdot 1}}$$

Lecture 9: Regression

Correlation is a statistical method used to determine whether a linear relationship between variables exists.

Regression is a statistical method used to describe the nature of the relationship between variables—that is, positive or negative, linear or nonlinear.

Covariance

COVARIANCE.P COVARIANCE.S

$$Cov(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Sample Covariance

$$Cov(x,y) = \frac{1}{N} \sum_{i=1}^{n} (x_i - \mu_x) (y_i - \mu_y)$$

Population Covariance

Cov(x, y) > 0 X and Y tend to move in the same direction

Cov(x,y) < 0 X and Y tend to move in the opposite direction

Cov(x, y) = 0 X and Y have NO linear relationship

Coefficient of Correlation

To measures the relative strength of the linear relationship between two variables

$$r = \frac{Cov(x,y)}{s_x s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

✓ Unit free

- ✓ Ranges between <u>-1 and 1</u>
- ✓ The closer to -1, the stronger the *negative linear relationship*
- ✓ The closer to **1**, the stronger the **positive linear relationship**
- ✓ The closer to 0, the weaker any positive linear relationship

Regression

$$Y = a + bX$$

STEYX Residual standard error:

Standard error of the predicted yvalue for each x in the regression

$$\frac{\sum_{i=1}^{N} (\widehat{Y}_i - Y_i)^2}{N - 2}$$

Simple Regression

LINEST

$$Y = b + m_1 X_1 + m_2 X_2 + \dots + m_n X_n$$

	A	В	С	D	Е	F
1	mn	m _{n-1}		m ₂	m ₁	b
2	sen	se _{n-1}		se ₂	se ₁	seb
3	r ₂	se _V				
4	F	df				
5	ssreg	ssresid				

Regression

An F-test in regression compares the fits of different linear models.

$e_i = Y_i - \hat{Y}_i = Y_i - (b_0 + b_1 X_{i1} + \dots + b_{p-1} X_{i,p-1}), i = 1,\dots, n,$		Degrees of	Sum of	Mean	
$e_i - I_i$ $I_i - I_i$ $(o_0 + o_1 A_{i1} + o_{p-1} A_{i,p-1}), i = 1,,n,$	Source	Freedom	Squares	Squares	F-statistic
$s^{2} = \frac{1}{n-p} \sum_{i=1}^{n} e_{i}^{2} = \frac{1}{n-p} \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} = \frac{SSE}{n-p} = MSE.$	Regression	p-1	SSR	MSR	MSR/MSE
	Error	n-p	SSE	MSE	
H_0 : $\beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$, versus	Total	<i>n</i> − 1	SSTO		
H_A : At least one $\beta_j \neq 0$, for $j = 1,,p-1$.					

LINEST

$$Y = b + m_1 X_1 + m_2 X_2 + \dots + m_n X_n$$

	А	В	С	D	Е	F
1	mn	m _{n-1}		m ₂	m ₁	b
2	sen	se _{n-1}		se ₂	se ₁	seb
3	r ₂	se _V				
4	F	df				
5	ssreg	ssresid				

Exponential Regression/Linear exponential forecasting

GROWTH

FORECAST.LINEAR

TREND

$$\widehat{Y}_i$$

$$Y = b * m^X$$

$$\log(Y) = \log(b) + \log(m) X$$

$$Y' = b' + m'X$$

	А	В	С	D	Е	F
1	mn	m _{n-1}		m ₂	m ₁	b
2	sen	se _{n-1}		se ₂	se ₁	seb
3	r ₂	se _V				
4	F	df				
5	ssreg	ssresid				

• Fisher transformation: Used to model the length of time between two occurrences of an event

FISHER FISHERINV

$$z=rac{1}{2}\lnigg(rac{1+r}{1-r}igg) \hspace{1cm} r=rac{\exp(2z)-1}{\exp(2z)+1}= anh(z)$$

If (X, Y) has a bivariate normal distribution with correlation ρ and the pairs (X_i, Y_i) are independent and identically distributed.

$$z=rac{1}{2}\ln\!\left(rac{1+r}{1-r}
ight)$$
 follows $N\left(\;rac{1}{2}\ln\!\left(rac{1+
ho}{1-
ho}
ight) \;\;rac{1}{\sqrt{N-3}}\;\;
ight)$

It can be used to construct a large-sample confidence interval for r using standard normal theory and derivations.

Exponential Triple Smoothing (ETS)

FORECAST.ETS

FORECAST.ETS.CONFINT

FORECAST.ETS.SEASONALITY

FORECAST.ETS.STAT

Moving Average

$$\widehat{y_{t+1}} = \frac{1}{k} (y_t + y_{t-1} + \dots + y_{t-k-1})$$

$$\widehat{y_{t+1}} = \frac{1}{t}(y_t + y_{t-1} + \dots + y_1)$$

Exponential Smoothing

data smoothing factor

$$\widehat{y_{t+1}} = \alpha y_t + (1 - \alpha)\widehat{y_t}$$

$$= \alpha y_t + \alpha (1 - \alpha) y_{t-1} + \cdots$$

$$= \alpha [y_t + (1 - \alpha)y_{t-1} + (1 - \alpha)^2 y_{t-2} + \cdots$$

Forecasting Section

Time series

Exponential Smoothing DOUBLE

$$s_t = \alpha y_t + (1 - \alpha)(s_{t-1} + b_{t-1})$$

$$b_t = \beta(s_t - s_{t-1}) + (1 - \beta)b_{t-1}$$

trend smoothing factor

$$\widehat{y_{t+1}} = s_t + b_t$$

Exponential Smoothing TRIPLE

$$s_t = \alpha(y_t - c_{t-L}) + (1 - \alpha)(s_{t-1} + b_{t-1})$$

a cycle of seasonal change of length

$$c_t = \gamma (y_t - s_{t-1} - b_{t-1}) + (1 - \gamma)c_{t-L}$$

seasonal change smoothing factor

$$\widehat{y_{t+1}} = s_t + b_t + c_{t-L+1}$$

Visual Basic for Applications [VBA]

Excel Options

Add-in Macros

Add-in Macros

	Α	В	C	
1		Column 1	Column 2	
2	Column 1	366.1224		
3	Column 2	201.4286	364.5714	

C4	9 🗸	$\mathbb{I}[\times \checkmark]$	f_x =COVAF	RIANCE.P(\$	SA\$49:\$A\$5	55,\$B\$49:\$	B\$55)
	А	В	С	D	Е	F	
49	134	70	201.4285714				
50	146	118					
51	104	101					
52	119	85					
53	124	107					
54	161	132					
55	107	94					

Introduction to Excel VBA Programming

Summer Workshop

Add-in Macros

	А	В	C	D
1	Students ID	Course	Code	Final Grade
2	1155159540	STAT	5101	Α
3	1155159540	STAT	5101	Α
4	1155160008	STAT	5101	Α
5	1155157370	STAT	5101	Α
6	1155158100	STAT	5101	Α
7	1155159534	STAT	5101	Α
8	1155157369	STAT	5101	A-
9	1155159305	STAT	5102	A-
10	1155159305	STAT	5101	A-
11	1155159305	STAT	5101	A-
12	1155158619	STAT	5101	A-
13	1155159994	STAT	5101	A-
14	1155159290	STAT	5101	A-

	Α	В	C	D
1	Students ID	Course	Code	Final Grade
2	1155159540	STAT	5101	Α
3				
4	Students ID	Course	Code	Final Grade
5	1155159540	STAT	5101	Α
6				
7	Students ID	Course	Code	Final Grade
8	1155160008	STAT	5101	Α
9				
10	Students ID	Course	Code	Final Grade
11	1155157370	STAT	5101	Α
12				
13	Students ID	Course	Code	Final Grade
14	1155158100	STAT	5101	Α

Macro

X

Introduction to Excel VBA Programming

Summer Workshop


```
Part 1 VBA.xlsm - Module1 (Code)
(General)
                                                                          Macro1
   Sub Macrol()
   ' Macrol Macro
       Dim i As Long
       For i = 2 To 13
       ActiveCell.Offset(2, 0).Rows("1:1").EntireRow.Select
       Selection.Insert Shift:=xlDown, CopyOrigin:=xlFormatFromLeftOrAbove
       Selection.Insert Shift:=xlDown, CopyOrigin:=xlFormatFromLeftOrAbove
       ActiveCell.Offset(-2, 0).Rows("1:1").EntireRow.Select
       Selection.Copy
       ActiveCell.Offset(3, 0).Rows("1:1").EntireRow.Select
       ActiveSheet.Paste
       Next i
   End Sub
```

Macros

4 日) 4 間) 4 意) 4 意) 意

Macros—control Workbook and worksheet

```
👱 🕨 🛮 🕒 🧐 🖫 🖫 🐷 🚜 😣 🛼 🍃
Part 1 VBA.xlsm - Module2 (Code)
(General)
   Sub Macro2()
   Application.ActiveWorkbook.Worksheets("Sheet4").Rows("3:3").Select
   Worksheets ("Sheet4") . Range ("A1") . Value = 100
   Worksheets.Add(after:=Worksheets(4)).Name = "1"
   Range("A2"). Value = 200
   ActiveSheet.Name = "2"
   Worksheets ("2"). Delete
   Worksheets ("Sheet4").Copy before:=Worksheets ("Sheet1")
   Worksheets(1).Move after:=Worksheets("Sheet4")
   Worksheets ("Sheet4") . Activate
   MsqBox "Hello"
   MsqBox "Worksheet number " & Worksheets.Count
   Workbooks.Open ("D:\Book1.xlsx")
   'Workbooks.Open Filename:="D:\Book1.xlsx"
   Workbooks ("Book1").Close SaveChanges:=False
   End Sub
```

Macros—control range and cells in worksheet

```
Sub ran()
  Worksheets("Sheet4").Activate
  Range ("A2:A10"). Value = 200
  Dim n As String
  n = "B1:B10"
  Range(n). Value = 20
  Range("C1:C4 C3:D5").Value = 11
                                         Different meaning
  Range("C1:C4,C3:D5").Value = 12
  Range("C1:C4", "C3:D5").Value = 15
  Range ("D7:F8").Offset (-5, -2).Value = 1
\Leftrightarrow Cells(2, 5). Value = 20
  Cells(2, "F"). Value = 25
  Cells(2, 3).Select
  Rows ("3:5") . Select
  Rows ("3"). Select
  Columns ("D") . Select
  Columns (6) . Select
```

Macros—control range and cells in worksheet

```
Rows("3").End(xlToRight).Select
MsgBox ActiveCell.Address
Columns(1).End(xlDown).Value = 5
ActiveSheet.UsedRange.Select
MsgBox ActiveSheet.UsedRange.Address
Range("A2").CurrentRegion.Select
```

Crtl + A

Rows three End $+ \rightarrow$

Last one of the Colum

Microsoft Excel X

\$A\$1:\$F\$10

Macros—control range and cells in worksheet

Different Properties

			perties			
_						Rows three
	9:36:00 AM	0.4 -> time	Range ("H5")	.Value	=	"=0.1+0.3" 'TIME
	9:36:00 am	Only text	Range ("H6")	.Value	=	Range("H5").Text
	0.4	Formula	Range ("H7")	.Value	=	Range("H5").Formula
	0.4	Value	Range ("H8")	.Value	=	Range("H5").Value

Macros—copy and paste

```
Range("A1") Copy Destination:=Range("B11")
Range("A1:C11").Copy Range("A12")
Range("C1:D5").Copy
Range("I1") PasteSpecial Paste:=xlPasteValues
Range("K1").PasteSpecial
Range("A10").Cut Range("B10")
Range("A12").Delete
Range("A11").Value = Application.WorksheetFunction.Sum(Range("A1:A10"))
```


Applied Build in function in Macros

Visual Basic for Applications functions | Microsoft Docs

Macros

Dim arry(1 To 100) As Double
arry(1) = 0.01
MsgBox arry(1)


```
Dim arrd(1 To 3, 1 To 5) As Integer
arrd(1, 1) = Range("A2").Value
Range("A3").Value = arrd(1, 1)
```

```
Dim AR() As Integer
Dim num As Integer
Dim i As Integer
num = Range("B1").CurrentRegion.Rows.Count
'Dim AR(1 To num) As Integer 'Constant Required
ReDim AR(1 To num)
For i = 1 To num
AR(i) = Cells(i, "B").Value
Next i
ReDim Preserve AR(1 To num + 1)
AR(num + 1) = 588
Dim stn As String
stn = "M1:M" & (num + 1)
Range(stn).Value = WorksheetFunction.Transpose(AR)
```

Macros

Watches		
Expression	Value	Туре
6ರ ⊞ AR		Integer (1 to 23)
<mark>હતું</mark> ak	986	Variant/Integer
8-S num	22	Integer
ಕಿರ stn	"M1:M23"	String

Macros——Iteration

Macros—Judgment