Hamiltonian simulation

Mária Kieferová

April 30, 2021

University of Technology Sydney

Overviews

- · The Schrödinger equation
- · How is Hamiltonian simulation used
- Product formulas
- Linear combination of unitaries
- · Relationship to quantum walks and quantum signal processing

Physics background

Some math that you should know

Differential equation

$$\frac{dx(t)}{dt} = k \cdot x(t), \quad k \in \mathbb{R}$$

$$\int \frac{dx}{x} = \int \mathcal{R} dt$$
(1)

Some math that you should know

Differential equation

$$\frac{dx(t)}{dt} = k \cdot x(t), \quad k \in \mathbb{R}$$
 (1)

solution
$$\underline{x(t)} = \underline{e^{kt}}x(0)$$

Some math that you should know

Differential equation

$$\frac{dx(t)}{dt} = k \cdot x(t), \quad k \in \mathbb{R}$$
 (1)

solution
$$x(t) = e^{kt}x(0)$$

Eigenvectors and eigenvalues

$$\mathbf{Matrix}$$

$$A\vec{\mathbf{v}} = \mathbf{a}\vec{\mathbf{v}}$$

It is always possible to find eigenvectors
$$\vec{v}$$
 that for a complete, orthonormal set.

2

(2)

Evolution of a physical system

The Schrödinger equation

ation
$$\int c(\cos t + depond) = i\hbar \frac{d}{dt} |\psi(t)\rangle = H |\psi(t)\rangle \qquad (3)$$
 amiltonian, an operator corresponding to the

Take $\hbar=1$. H is the Hamiltonian, an operator corresponding to the total energy of a system.

Decomposition into eigenvectors and eigenvalues

$$H\left|\phi_{j}(t)\right\rangle = E_{j}\left|\phi_{j}(t)\right\rangle \tag{4}$$

The eigenvalues of of the Hamiltonians correspond allowed energy levels.

Frame Title

During this lectures I will be interchangeably using

eigenvectors = eigenstates

eigenvalues = eigenenergies

Time evolution - special case

What is the solution of the Schrödinger equation if the state is an

eigenvector of H?

the Schrödinger equation if the state is an
$$\lim_{t \to 0} \frac{d}{dt} |\phi_j(t)\rangle = \frac{H}{|\phi_j(t)\rangle}$$

Time evolution - special case

What is the solution of the Schrödinger equation if the state is an eigenvector of *H*?

$$i\hbar \frac{d}{dt} |\phi_j(t)\rangle = \boxed{H |\phi_j(t)\rangle}$$
 (5)

Eigenvectors will be only gaining a phase

$$i\hbar \frac{d}{dt} |\phi_j(t)\rangle = E_j |\phi_j(t)\rangle$$

$$|\phi_j(T)\rangle = e^{-iE_jT} |\phi_j(0)\rangle$$
(6)

Time evolution

What is the solution of the Schrödinger equation for an arbitrary

Decomposition into eigenvectors

Look for a solution that is a linear combination of eigenvectors

$$|\psi(t)\rangle = \sum_{j} a_{j} e^{-iE_{j}t} |\Phi_{j}\rangle \tag{9}$$

This solution satisfies the Schrödinger equation.

How do we find a_i -s?

$$\langle \Phi_{\mathbf{i}} \rangle$$

$$\langle \Phi_{\mathbf{j}} | \psi(0) \rangle = \sum_{j} a_{j} | \Phi_{j} \rangle$$

$$\langle \Phi_{j} | \psi(0) \rangle = a_{j} \langle \Phi_{j} | \Phi_{j} \rangle$$

$$\langle a_{j} = \langle \Phi_{j} | \psi(0) \rangle$$

$$(10)$$

$$(11)$$

$$(12)$$

$$\langle \Phi_j | \psi(0) \rangle = a_j \langle \Phi_j | \Phi_j \rangle$$
 (11)

$$a_j = \langle \Phi_j | \psi(0) \rangle \tag{12}$$

"Overlaps" of the initial state and eigenstates.

Example: Spin in a magnetic field

Hamiltonian
$$H = \left(\mu B \sigma_X\right)$$

initial state
$$|\psi(0)\rangle = |0\rangle$$

How will the state $|\psi(t)\rangle$ evolve?

$$e^{-Ht} = isin() \times + cos() 1$$

$$\sqrt{\frac{1}{x^2}}$$

Hamiltonian simulation

Why is computing time evolution hard?

Why is computing time evolution hard?

A Hamiltonian on n particles is a $2^n \times 2^n$ matrix. Using eigen-decomposition method that we described would take exponentially (in n) long time.

Every quantum computation can be described as an evolution of a quantum system. Thus, simulating Hamiltonian evolution is **BQP**-hard.

Why is computing time evolution hard?

A Hamiltonian on n particles is a $2^n \times 2^n$ matrix. Using eigen-decomposition method that we described would take exponentially (in n) long time. \bigcirc

Every quantum computation can be described as an evolution of a quantum system. Thus, simulating Hamiltonian evolution is **BQP**-hard.

For a range of Hamiltonians, there is an efficient quantum algorithm.

The Hamiltonian evolution for these Hamiltonians is thus

BQP-complete.

Simulating quantum dynamics is a natural application of quantum computing

Product formulae: [Lloyd 1996, Aharonov & Ta-Shma 2003, Berry et al. 2007, Wiebe 2010, Campbell 2018, ...]

LCU: [Childs & Wiebe 2012, Berry et al. 2013, Berry et al. 2014, Berry et al. 2015, Berry et al. 2017, ...]

Other: [Childs 2010, Berry & Childs 2009, Low & Chuang 2016, Low & Chuang 2017, Low & Wiebe 2018, Gilyén 2019, ...]

Phase estimation

What is the output if $U|\psi\rangle = e^{-i\theta}|\psi\rangle$?

Phase estimation

Eigenenergy Estimation

Goal: compute the ground state energy of a molecule

[Abrams, Lloyd PRL (1997), Aspuru-Guzik et al. Science (2005)]

The Hamiltonian simulation problem

Design a (logical) circuit U consisting of gates and Hamiltonian oracles that approximates the time evolution up to an error ϵ such

that

$$\left\|e^{-iHt}-U\right\|_{2}<\epsilon.$$

The Hamiltonian oracle can represent

- Terms e^{-iH_lt} where $H = \sum_l \alpha_l H_l$ and each H_l is hermitian
- Access to matrix elements (H is sparse)
- Terms V_i where $H = \sum_l \alpha_l V_l$ and each V_l is unitary

Local Hamiltonians

Infinitesimal evolution

Hamiltonian H = A + B. A and B don't commute, but:

$$\lim_{r \to \infty} \left(\underbrace{e^{A/r} e^{B/r}} \right)^r = \lim_{r \to \infty} \left((1 + \frac{A}{r})(1 + \frac{B}{r}) \right)^r$$

$$= \lim_{r \to \infty} \left(1 + \frac{A + B}{r} + \frac{A}{r} \right)^r$$

$$= \lim_{r \to \infty} \left(1 + \frac{A + B}{r} + \frac{A}{r} \right)^r$$

$$= \lim_{r \to \infty} \left(1 + \frac{A + B}{r} \right)^r$$

$$= e^{A+B}$$

Lie-Trotter formula

Product formulae simulation

For a finite t/r:

$$\left\| e^{(A+B)t/r} - \left(e^{At/r} e^{Bt/r} \right) \right\|$$

$$\left\| \left((A+B)t \cdot ((A+B)t)^2 \right) \left(At \cdot (At)^2 \right) \left(Bt \cdot (Bt)^2 \right) \right\|$$
(13)

$$= \left\| \left(1 + \frac{(A+B)t}{r} + \frac{((A+B)t)^2}{2r^2} + \dots \right) - \left(1 + \frac{At}{r} + \frac{(At)^2}{2r^2} + \dots \right) \left(1 + \frac{Bt}{r} + \frac{(Bt)^2}{2r^2} + \dots \right) \right\|$$
(14)

$$= \left\| \left(1 + \frac{(A+B)t}{r} + \frac{((A+B)t)^2}{2r^2} + \dots \right) - \left(1 + \frac{(A+B)t}{r} + \frac{(At)^2}{2r^2} + \frac{(Bt)^2}{2r^2} + \frac{ABt^2}{r^2} + \dots \right) \right\|$$
 (15)

$$\in O\left(\frac{t^2}{r^2}\right)$$
 (16)

After r steps, the error is at most $O\left(\frac{t^2}{r}\right)$.

Product formulae simulation

For a finite
$$t/r$$
: $\left\|e^{(A+B)t} - \left(e^{At/r}e^{Bt/r}\right)^r\right\| \in \mathcal{O}\left(\frac{t^2}{r}\right)$

For a Hamiltonian $H = \sum_{j=1}^{m} H_j$, one can decompose the evolution with respect to H into the evolution with respect to each H_i as

$$\widetilde{U} = \left(e^{-iH_1t/r}e^{-iH_2t/r}\dots e^{-iH_mt/r}\right)^r + \mathcal{O}(\|H\|^2t^2/r).$$

Simulating Pauli Hamiltonians

Pauli Z

$$e^{-itZ} = e^{-it} |0\rangle \langle 0| + e^{it} |1\rangle \langle 1|$$

Tensor product of Zs

Other Paulis

Pauli X and Y

Putting it all together

Hamiltonian $H = \sum_{l=1}^{L} P_l$ where P_l are Paulis on at most n qubits

Each $e^{-i\alpha_l P_l t}$ can be simulated with $\mathcal{O}(n)$ gates for any α_l and t.

Using the lowest order product formula we get algorithm with complexity

$$\mathcal{O}\left(L^2 t^2 n \epsilon^{-1}\right). \tag{17}$$

Trotter-Suzuki formulate

Can we find a better approximation of an exponential of a sum?

$$U_2 = \left(\prod_{j=1}^m e^{-iH_j \frac{t}{2r}} \prod_{j=m}^1 e^{-iH_j \frac{t}{2r}}\right)^r \tag{18}$$

Exercise:

Better Scaling t1 E

What is the error for H = A + B and

$$U_{2} = \left(e^{-A\frac{t}{2r}}e^{-B\frac{t}{r}}e^{-A\frac{t}{2r}}\right)^{r} \tag{19}$$

$$e^{-At}re^{-Bt/r}$$

Trotter-Suzuki formulate

Can we find a better approximation of an exponential of a sum?

$$e^{A_{1}B_{2}C_{2}} = e^{A_{2}B_{2}C_{2}} = \left(\prod_{j=1}^{m} e^{-iH_{j}\frac{t}{2r}} \prod_{j=m}^{1} e^{-iH_{j}\frac{t}{2r}} \right)^{r} \tag{18}$$

Exercise:

What is the error for H = A + B and

Break! Class continues

$$U_{2} = \left(e^{-A\frac{t}{2r}}e^{-B\frac{t}{r}}e^{-A\frac{t}{2r}}\right)^{r} \qquad (19)$$

Error $O\left(\frac{t^3}{r^2}\right)$. For $H = \sum_{l=1}^{L} H_l$, we get $O\left(\frac{2^{3/2}m^{3/2}}{\sqrt{\epsilon}}\right)$.

Sparse Hamiltonians

Sparse Hamiltonians

We can implement time evolution for *d*-sparse Hamiltonians. The Hamiltonian is given to us through oracles:

ous through oracles:

you shough oracles:

$$O_{loc}|r,k\rangle = |r,k\oplus\underline{l}\rangle$$
 $O_{val}|r,l,z\rangle = |r,l,z\oplus H_{r,l}\rangle$.

A d-sparse Hamiltonian can be decomposed into d^2 1-sparse Hamiltonians.

Diagonal Hamiltonians

Computational states $|a\rangle$ are the eigenstates of the Hamiltonian. Let d(a) be the ath diagonal element expressed in binary.

We have an oracle $d: |a, 0\rangle \rightarrow |a, d\rangle$.

Convince yourself that the circuit works!

Simulating physical systems

1 particle Hamiltonian $H = \frac{p^2}{2m} + V(x)$.

Choose the computational basis as (discretized) x-eigenstates.

Simulating physical systems

1 particle Hamiltonian $H = \frac{p^2}{2m} + V(x)$.

Choose the computational basis as (discretized) x-eigenstates.

How does V(x) look as a matrix in this basis?

Simulating physical systems

1 particle Hamiltonian $H = \frac{p^2}{2m} + V(x)$.

Choose the computational basis as (discretized) x-eigenstates.

How does V(x) look as a matrix in this basis?

How can we diagonalize the kinetic term?

Simulating physical systems

1 particle Hamiltonian
$$H = \frac{p^2}{2m} + V(x)$$
.

Choose the computational basis as (discretized) x-eigenstates.

How does V(x) look as a matrix in this basis?

How can we diagonalize the kinetic term?

Trotterization:
$$e^{-V(x)\frac{t}{r}}QFT^{-1}e^{-i\frac{p^2t}{2mr}}QFT...$$

Simulating sparse Hamiltonians

Higher-order formulae can be obtained using the recursion relation

$$S_{2k}(\delta) = [S_{2k-2}(p_k\delta)]^2 S_{2k-2}((1-4p_k)\delta) [S_{2k-2}(p_k\delta)]^2, \qquad (20)$$

where

$$S_2(\delta) = \prod_{j=1}^m e^{H_j \delta/2} \prod_{j'=m}^1 e^{H'_j \delta/2}.$$
 (21)

The number N_{exp} of exponentials of the form e^{-iH_jt} for the k-th order Trotterization algorithm is then bounded by

$$N_{exp} \le \frac{2m5^{2k}(m\tau)^{1+1/2k}}{\epsilon^{1/2k}},\tag{22}$$

for $\epsilon < 2mr^{k-1}$ and $\tau = ||H|| t$.

Linear Combination of Unitaries

Linear Combination of Unitaries (LCU)

Can we implement a sum of unitaries?

Exercise:

If we measure 0 on the first qubit, what operation do we implement on the data $|\psi\rangle$?

Truncated Taylor series

The Hamiltonian $H = \sum_{l=1}^{L} \alpha_l H_l$ where $\alpha_l \in \mathbb{R}$ and H_l s are unitaries.

The Hamiltonian evolution

eries
$$H = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$Volution$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

$$E = \sum_{l=1}^{L} \alpha_l H_l \text{ where } \alpha_l \in \mathbb{R} \text{ and } H_l \text{s are unitaries.}$$

Truncate at an order K

$$\tilde{U} = \sum_{k=0}^{K} \frac{(-it/r)^k}{k!} \sum_{l_1} \sum_{l_2} \cdots \sum_{l_k} \alpha_{l_1} \alpha_{l_2} \dots \alpha_{l_k} H_{l_1} H_{l_2} \dots H_{l_k}, \quad (24)$$

$$\tilde{U} = \sum_{j} \beta_{j} V_{j} \mathcal{U} \tag{25}$$

The evolution can be written as an LCU.

Linear combination of unitaries

Prepare an ancillary state $B|0\rangle = \sum_{j} \beta_{j} |j\rangle$ where $s = \sum_{j=0}^{m-1} \beta_{j}$

Oracle select(V) $|j\rangle$ $|\psi\rangle = |j\rangle V_j |\psi\rangle$ Can we implement $\sum_{j}^{j} V_j$?

$$W = (B^{\dagger} \otimes \mathbb{I}) \operatorname{select}(V) (B \otimes \mathbb{I}). \tag{26}$$

Prepare-select

W applies the \widetilde{U} if the ancilla is in the correct state (in this case it is $|0\rangle$) and prepares some garbage state if that ancilla is not zero.

$$W = (B^{\dagger} \otimes \mathbb{I}) \operatorname{select}(V) (B \otimes \mathbb{I}). \tag{27}$$

Successful application

$$(|0\rangle\langle 0|\otimes \mathbb{I}) W |\psi\rangle |0\dots 0\rangle = \frac{1}{S} |0\rangle \widetilde{\underline{\mathcal{U}}} |\psi\rangle$$
 (28)

What is probability of success (000 on ancilla)?

Oblivious amplitude amplification

$$W|0\rangle_{\text{flag}}|\psi\rangle_{\text{data}} = \sin\theta|0\rangle_{\text{flag}}U|\psi\rangle_{\text{data}} + \cos\theta|\text{bad}\rangle,$$
 (29)

where
$$\left(|0\rangle\langle 0|_{\text{flag}}\otimes\mathbb{I}_{\text{data}}\right)|\text{bad}\rangle=0.$$

WRW†R acts as a rotation

$$(WRW^{\dagger}R)^{k}W|0\rangle|\psi\rangle = \sin((2k+1)\theta)|0\rangle U|\psi\rangle + \cos((2k+1)\theta)|bad\rangle,$$
(30)

where R is the reflection around all zero in the flag register

$$R = 2|0\rangle\langle 0| \otimes \mathbb{I} - \mathbb{I}.$$

R is not a reflection around the initial state.

LCU

 $(|0\rangle\langle 0|\otimes \mathbb{I})W|\psi\rangle|0\ldots 0\rangle = \frac{1}{s}|0\rangle \widetilde{U}|\psi\rangle$. If s is close to 2, we can use W to implement oblivious amplitude amplification.

Applying $-WRW^{\dagger}RW$ where $R = \mathbb{I} - (|0\rangle\langle 0| \otimes \mathbb{I})$ results in the state $|0\rangle \widetilde{U} |\psi\rangle$ with high accuracy.

Complexity is

$$\mathcal{O}\left(\tau \frac{\log(\tau/\epsilon)}{\log\log(\tau/\epsilon)}\right),\tag{31}$$

where $\tau = L \|H\|_{\text{max}} t$ for \sqrt{L} -sparse matrices.

signal processing

Quantum walk and quantum

Alternative random walk

One step of a random walk

$$\vec{p}(t+1) = A\vec{p}(t).$$

where A is a stochastic matrix.

Continuous version

$$\frac{d}{dt}\vec{p}(t) = A\vec{p}(t) \tag{33}$$

is a diffusion process/stochastic equation. The solution is

Alternative random walk

One step of a random walk

$$\vec{p}(t+1) = A\vec{p}(t). \tag{32}$$

where A is a stochastic matrix.

Continuous version

$$\frac{d}{dt}\vec{p}(t) = A\vec{p}(t) \tag{33}$$

is a diffusion process/stochastic equation. The solution is

$$p(t) = e^{At}p(0). \tag{34}$$

Continuous-time quantum walk

Replace $A \rightarrow -iH$.

Continuous-time quantum walk

Replace $A \rightarrow -iH$.

We recover the Schrödinger equation. How do CTQW walks compare with quantum walks from the last lecture?

Quantum walks (review)

Last week Troy defined discrete time quantum walks on a larger Hilbert space $|j, k\rangle$.

Quantum walks (review)

Last week Troy defined discrete time quantum walks on a larger Hilbert space $|j,k\rangle$.

Walk operator W has eigenvalues $\pm e^{\pm i \cos^{-1} E}$ where -1 < E < 1 are eigenvalues of H.

We can use a quantum walk on the graph corresponding to the Hamiltonian for time evolution.

Quantum walks for Hamiltonian simulation

We can use W directly to compute energies using phase estimation

For evolution, we need to transform the eigenvalue spectrum

$$\pm e^{\pm i\cos^{-1}E_{j}t} \rightarrow e^{-iE_{j}t} \tag{35}$$

A "quantum signal processing algorithm achieves the optimal complexity

$$O\left(\tau + \frac{\log(1/\epsilon)}{\log\log(1/\epsilon)}\right),\tag{36}$$

where $\tau = d ||H||_{max} t$.

Phase kickback

Let $\mathcal U$ be a unitary with eigenvalues $e^{i\phi_m}$ and $|\psi_m\rangle$ its eigenvector

$$|+\rangle \longrightarrow \frac{1}{\sqrt{2}} (|0\rangle + e^{i\phi_m} |1\rangle)$$

$$|\psi_m\rangle \longrightarrow U \longrightarrow |\psi_m\rangle$$

Now take a superposition of eigenstates

Phase kickback

$$|+\rangle$$
 $R_z(2\theta)$ $\sum_m |\psi_m\rangle$ U

$$\sum_{m} \frac{1}{\sqrt{2}} (|0\rangle + e^{i\theta + \phi_m} |1\rangle) \otimes |\psi_m\rangle$$

Z measurement:

0:
$$\sum_{m} |\psi_{m}\rangle$$

1:
$$e^{i\theta}U\sum_{m}|\psi_{m}\rangle$$

X measurement (=apply Hadamard at the end)

+:
$$\propto \sum_{m} \left(1 + e^{i(\theta + \phi_m)}\right) |\psi_m\rangle$$

$$-: \propto \sum_{m} \left(1 - e^{i(\theta + \phi_m)}\right) |\psi_m\rangle$$

modifying the ancilla applies a modified operation f(0) ψ

Goal

Given a unitary U with eigenstates $|\psi_m\rangle$ and corresponding eigenvalues $e^{i\phi_m}$

$$U
ightarrow V = \sum_{m} e^{ih(\phi_m)} |\psi_m\rangle\langle\psi_m|$$

note: the spectrum of // doesn't need to be known

Quantum signal processing

1. Signal transduction

2. Signal transformation

Repeatedly apply control and rotations to modify the

spectrum of 40

3. Signal projection

Measure the ancilla in the X basis and post-select on + outcome

Other resources

Q# documentation Simulating Hamiltonian dynamics

Andrew Child's PhD thesis

My PhD thesis