Анализ данных с использованием языка программирования R

Тема 4 Основы машинного обучения. Регрессионный анализ данных

Минюкович Екатерина Александровна к.э.н., доцент

miniukovich@bsu.by

Reference

An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, <a href="http://www-

bcf.usc.edu/~gareth/ISL/
(available online for free)

Introduction to Machine Learning with R by Dr. Dimitrios Gouliermis

http://www.mpia.de/homes/dgoulier/MLClasses/Course%20-%20Introduction%20to%20Machine%20Learning%20for%20Scientists% 20with%20R.html

Hands-On Machine Learning with R Bradley Boehmke & Brandon Greenwell

https://bradleyboehmke.github.io/HOML/index.html

Reference

H2O documentation

http://docs.h2o.ai/h2o/latest-stable/h2odocs/index.html

Supervised vs. Unsupervised Learning

Supervised

Data:

- 1) n observations;
- 2) p variables X1, X2, . . .,Xp, measured on each observation;
- 3) response Y measured on same n observations

Unsupervised

Data:

- 1) n observations;
- 2) p variables X1, X2, . . .,Xp, measured on each observation

Clustering...

Continuous Regression

Discrete Classification

Steps to solve

Working with data

Modeling

Modeling

- Choose a class of model
- Fit the model to data
- Validate the model and optimize hyperparameters
- Predict for unknown data

9

Mathematical model

$$Y = f(X) + \epsilon$$

f is some fixed but unknown function of $X1, \ldots, Xp$, and e is a random $error\ term$, which is independent of X and has mean zero. In this formulation, f represents the systematic information that X provides about Y.

We can predict Y using our estimate for f

$$\hat{Y} = \hat{f}(X)$$

Bias-Variance Trade-Off

Underfitting (high bias) - algorithm is missing the relevant relations between features and target outputs

Overfitting (high variance) - modeling the random noise in the training data, rather than the intended outputs.

Model validation

Data

- train + test (e.g. 75% + 25%)
- train + valid + test (e.g. 60% + 20% + 20%)
- train with cross-validation + test (e.g. 80% + 20%)

Metrics

Regression: R², MSE, MAE,...

Model validation via cross-validation

Some models for Regression in h2o

Generalized Linear Model (GLM)
 examples in regression_1.R, regression_2.R

- Ensemble methods
 - Distributed Random Forest (DRF)
 - Gradient Boosting Machine (GBM)
 - Stacked Ensembles

Linear Regression with one variable

 (x_i, y_i) , i=1, n - number of observations (red points)

$$\hat{y} = ax + b$$

$$\hat{y} = \theta_0 + \theta_1 x_1 = \theta_0 x_0 + \theta_1 x_1, \quad x_0 = 1$$

 θ_0 - intercept, θ_1 - slope

The method of least squares

$$Cost = J(\theta_0, \theta_1) = \sum_{i=1}^{n} (\widehat{y^i} - y^i)^2 = \sum_{i=1}^{n} (\theta_0 x_0^i + \theta_1 x_1^i - y^i)^2$$

Our aim -
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Gradient descent to find $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Need to choose

 α – learning rate (step size) (θ_0, θ_1) - start point

Repeat until convergence

$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \theta_0 - 2\alpha \sum_{i=1}^n \left(\theta_0 x_0^i + \theta_1 x_1^i - y^i \right) x_0^i$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \theta_1 - 2\alpha \sum_{i=1}^n \left(\theta_0 x_0^i + \theta_1 x_1^i - y^i \right) x_1^i$$

Gradient descent (example)

Gradient descent (example)

Linear Regression with multiple variables

m variables, **n** observations

$$\hat{y} = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_m x_m, \qquad x_0 = 1$$

$$X = [1, x_1, \dots, x_m] \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_m \end{bmatrix} \qquad \hat{y} = \mathbf{h}_{\theta}(X) = X\mathbf{\theta}$$

Dataset for training:
$$X^{(i)} = [1, x_1^{(i)}, ..., x_m^{(i)}], y^{(i)}, i = 1, ..., n$$

$$Cost = J(\theta) = \sum_{i=1}^{n} (h_{\theta}(X^{(i)}) - y^{(i)})^{2}$$
 Our aim - $\min_{\theta} J(\theta)$

Repeat until convergence:

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) = \theta_j - 2\alpha \sum_{i=1}^n (h_\theta(X^{(i)}) - y^{(i)}) x_j^{(i)}$$

Cost functions

m variables, **n** observations

$$\hat{y} = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_m x_m, \qquad x_0 = 1$$

$$X = [1, x_1, \dots, x_m] \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_{01} \\ \dots \\ \theta_m \end{bmatrix} \qquad \hat{\mathbf{y}} = \mathbf{h}_{\theta}(\mathbf{X}) = \mathbf{X}\mathbf{\theta}$$

GLM (Gaussian regression)
$$Cost = J(\theta) = \sum_{i=1}^{n} (X^{(i)}\theta - y^{(i)})^2$$

Regularization:
$$Cost = Cost + Penalty$$

Ridge (regularization **I2**) Penalty =
$$\sum_{j=0}^{m} \theta_j^2$$

Lasso (regularization **I1**) Penalty =
$$\sum_{j=0}^{m} |\theta_j|$$

Elastic net (combines **I1** and **I2**) Penalty =
$$\lambda * ((1-\alpha)* I2 + \alpha * I1)$$

Regression metrics

R² score, the coefficient of determination

$$R^{2}(y,\hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i=1}^{n} (y^{(i)} - \bar{y})^{2}}, \quad where \quad \bar{y} = \frac{\sum_{i=1}^{n} y^{(i)}}{n}$$

Mean squared error

$$MSE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$

Mean absolute error

$$MAE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$$

Bias-Variance Trade-Off

- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set (but the performance is worse than for appropriate fitting).
- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.

What to do in case of high-bias or high variance?

Change

- Model complexity (e.g. via regularization)
- Quantity of training samples
- Set of features

Reading

Andrew Ng ML: Advice for Applying Machine Learning

High bias (underfitting)	High variance (overfitting)	
Add more features	More training examples	
Add polynomial features	Smaller set of features	
	Use regularization	
	 Increase regularization strength (coefficient) 	

Practise

regression_1.R regression_2.R

Managed Independent Work pr_regression.R

Choose the best GLM model for Boston ds

Models	R^2	
	train	test
Without regularization		
for all predictors		
 for predictors with p value <= 0.05 		
With regularization (best alpha from grid)		
Polynomial features of degree 2		
without regularization		
with regularization (default)		
with regularization		
(best alpha and lambda from grid)		