

Prática de Circuitos Eletrônicos 1

Tutorial 14

INTEGRADOR E DIFERENCIADOR COM AMPLIFICADOR OPERACIONAL

> Professor: Marcus Vinícius Chaffim Costa Tutora: Camila Ferrer

Simulação: Diferenciador Senoidal

Simule o circuito da Figura 1 para $R_{\rm C}$ =0 e para $R_{\rm C}$ =100 Ω . Utilize R=1 $k\Omega$ e C=1 μ F. Verifique a saída $V_{\rm out}$ (t) para $V_{\rm in}$ (t) ajustado em 2 $V_{\rm pp}$ e 100 Hz nos seguintes formatos: senoidal, quadrada e triangular.

Universidade de Brasília

 Na aba Componentes, vá em componentes nãolineares e coloque um Amplificador Operacional. Vá em componentes agrupados e coloque dois resistores e um capacitor. Vá em Fontes e coloque uma fonte de tensão AC. Vá em Ponteiras e coloque uma ponteira de tensão.

Universidade de Brasília

 Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício. Nomeie o nó de saída.

Universidade de Brasília

 Será utilizada a simulação transiente para se observar o comportamento do circuito ao longo do tempo. O período da onda é de 10ms.

 Vá em Diagramas e insira uma tabela. Coloque o valor da tensão V_o.v.

Assim, verifica-se que os valores pedidos no exercício.

• Para $R_{C} \! = \! 100\Omega,$ ajuste o valor do resistor, salve e simule.

Simulação: Diferenciador Quadrado

 Vá em Arquivo > Salvar como... e mude o nome do arquivo para utilizar o esquemático para o próximo circuito. Na aba Componentes, vá em Fontes e coloque uma fonte de tensão retangular e uma fonte DC. Delete a fonte de tensão AC.

Universidade de Brasília

 Para deslocar a onda na metade da amplitude e colocar para ela variar entre +1V e -1V, será utilizada uma fonte DC de -1V. Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício. Nomeie o nó de saída.

 Salve e simule. Vá em Diagramas e insira um plano cartesiano. Coloque o valor das tensões V_o.Vt e V_{in}.Vt. Para visualizar a amplitude de V_o.Vt, coloque seu eixo y à direita.

Queremos uma onda quadrada, logo U deve ser 2V.
 Como a frequência é de 100 Hz, TH e TL devem ser 5 ms. T_r e T_f devem ser igual a zero, pois a mudança de nível é instantânea.

 Como o período da onda é de 10ms, coloque tempo suficiente para visualizar o comportamento da onda e resolução grande o suficiente para gerar a onda.

• Assim, verifica-se que os valores pedidos no exercício.

• Para $R_{\rm C} \! = \! 100\Omega,$ ajuste o valor do resistor, salve e simule.

Simulação: Diferenciador Triangular

 Vá em Arquivo > Salvar como... e mude o nome do arquivo para utilizar o esquemático para o próximo circuito. Queremos uma onda triangular, logo U deve ser 2V. Como a frequência é de 100 Hz, encontra-se o valor do período de aproximadamente 10 ms, logo o valor do TH, TL, T_r e T_f devem ser 5 ms.

Universidade de Brasília

 Como o período da onda é de 10ms, coloque tempo suficiente para visualizar o comportamento da onda e resolução grande o suficiente para gerar a onda.

Universidade de Brasília

Assim, verifica-se que os valores pedidos no exercício.

 Para deslocar a onda na metade da amplitude e colocar para ela variar entre +1V e -1V, será utilizada uma fonte DC de -1V. Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício. Nomeie o nó de saída.

 Salve e simule. Vá em Diagramas e insira um plano cartesiano. Coloque o valor das tensões V_o.Vt e V_{in}.Vt. Para visualizar a amplitude de V_o.Vt, coloque seu eixo y à direita.

• Para R_C =100 Ω , ajuste o valor do resistor, salve e simule.

Universidade de Brasília

• Simule o circuito da Figura 2 para $R_o \rightarrow \infty$ e para $R_o = 100\Omega$. Utilize $R = 1k\Omega$ e $C = 1\mu F$. Verifique a saída $V_{out}(t)$ para $V_{in}(t)$ ajustado em 2 V_{pp} e 1 kHz nos seguintes formatos: senoidal, quadrada e triangular.

Simulação: Integrador Senoidal

Universidade de Brasília

 Vá em Arquivo > Salvar como... e mude o nome do arquivo da onda senoidal para utilizar o esquemático para o próximo circuito. Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício. Desative a resistência R_o para que ela fique como um circuito aberto, ou seja, tendendo ao infinito.

Universidade de Brasília

 Vá em Diagramas e insira um plano cartesiano. Coloque o valor das tensões V_o.Vt e V_{in}.Vt. Para visualizar a amplitude de V_o.Vt, coloque seu eixo y à direita.

Universidade de Brasília

• Para $R_0 = 100\Omega$, reative o resistor, salve e simule.

Universidade de Brasília

 Como o período da onda é de 1ms, coloque tempo suficiente para visualizar o comportamento da onda e resolução grande o suficiente para gerar a onda.

• Assim, verifica-se que os valores pedidos no exercício.

Simulação: Integrador Quadrado

 Vá em Arquivo > Salvar como... e mude o nome do arquivo para utilizar o esquemático da onda quadrada para o próximo circuito. Queremos uma onda quadrada, logo U deve ser 2V. TH e TL são 1 ms. T_r e T_f devem ser igual a zero, pois a mudança de nível é instantânea.

 Como o período da onda é de 1ms, coloque tempo suficiente para visualizar o comportamento da onda e resolução grande o suficiente para gerar a onda.

• Assim, verifica-se que os valores pedidos no exercício.

Simulação: Integrador Triangular

 Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício. Desative a resistência R_o para que ela fique como um circuito aberto, ou seja, tendendo ao infinito.

Vá em Diagramas e insira um plano cartesiano.
 Coloque o valor das tensões V_o.Vt e V_{in}.Vt. Para visualizar a amplitude de V_o.Vt, coloque seu eixo y à direita.

• Para $R_0 = 100\Omega$, reative o resistor, salve e simule.

 Vá em Arquivo > Salvar como... e mude o nome do arquivo para utilizar o esquemático da onda triangular para o próximo circuito. Queremos uma onda triangular, logo U deve ser 2V. Como a frequência é de 1 kHz, o valor do TH, TL, T_r e T_f devem ser 0,5 ms.

 Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício. Desative a resistência R_o para que ela fique como um circuito aberto, ou seja, tendendo ao infinito.

• Assim, verifica-se que os valores pedidos no exercício.

Universidade de Brasília

SIMULAÇÃO: EDO

 Salve e simule. Vá em Diagramas e insira um plano cartesiano. Coloque o valor das tensões V_o.Vt e V_{in}.Vt. Para visualizar a amplitude de V_o.Vt, coloque seu eixo y à direita.

Universidade de Brasília

• Para $R_0 = 100\Omega$, reative o resistor, salve e simule.

Universidade de Brasília

B1: 5x'

B3: 1

 Divida-se a equação em pequenos blocos para facilitar a resolução:

B2: 2x

Universidade de Brasília

 O Bloco B1 está derivando o sinal de entrada x(t), logo precisaremos utilizar um AmpOp Diferenciador configurando-o para ter um ganho de 5 que é o valor multiplicando x' nesse bloco. Porém devido aos valores comerciais de um capacitor, ajustou-se para um ganho de 500 que será diminuído mais para frente. Utilizando um R=500Ω e C=1F, tem-se:

$$V_{outB1} = -RC \frac{dx}{dt}$$

$$V_{outB1} = -500 \times 1 \times \frac{dx}{dt}$$

$$V_{outB1} = -500x'$$

Universidade de Brasília

• No Bloco B2 podemos utilizar um AmpOp Inversor configurando-o para ter um ganho de 2 que é o valor multiplicando x nesse bloco. Utilizando um $R_1=20k\Omega$ e $R_2=10k\Omega$, tem-se:

$$V_{outB2} = -\frac{R_2}{R_1}x$$

$$V_{outB2} = -\frac{20k}{10k}x$$

$$V_{outB2} = -2x$$

• O Bloco B3 é o mais simples de se implementar. Como todos os meus blocos até agora deram valores negativos e na equação todos são positivos, iremos colocar uma fonte DC de -1V para B3. Dessa forma, podemos utilizar um AmpOp Somador Inversor para gerar a equação que queremos. Utilizando um $R_1 = 10k\Omega$, $R_2 = R_3 = R_4 = 100\Omega$, tem-se:

$$\begin{split} y(t) &= - \left(\frac{V_{outB1}}{R_1} + \frac{V_{outB2}}{R_3} + \frac{V_{outB3}}{R_4} \right) R_2 \\ y(t) &= - \left(\frac{-500x'}{R_1} + \frac{-2x}{R_3} + \frac{-1}{R_4} \right) R_2 \\ y(t) &= \left(\frac{500x'}{10k} + \frac{2x}{100} + \frac{1}{100} \right) 100 \\ y(t) &= 5x' + 2x + 1 \end{split}$$

- Com isso conseguimos montar o diagrama de blocos que gera nossa equação inicial. Agora vamos montar a simulação desse circuito no QUCS.
- · Abra um novo esquemático.

Universidade de Brasília

• Na aba Componentes, vá em componentes nãolineares e coloque três Amplificadores Operacionais. Vá em componentes agrupados e coloque sete resistores e um capacitor.

• Monte o AmpOp Diferenciador. Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício.

Universidade de Brasília

 Monte o AmpOp Inversor. Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício.

Universidade de Brasília

 Monte o AmpOp Somador Inversor. Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício. Nomeie a saída.

Universidade de Brasília

 Vá em Fontes e coloque uma fonte de tensão retangular e duas fontes DC. Vá em Ponteiras e coloque uma ponteira de tensão.

 Queremos uma onda quadrada com V_{pp}=2V, logo U deve ser 2V. TH e TL devem ser metade do período, $logo 0,5. T_r e T_f devem zero.$

 Para deslocar a onda na metade da amplitude e colocar para ela variar entre +1V e -1V, será utilizada uma fonte DC de -1V. Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício.

 Como o período da onda é de 1ms, coloque tempo suficiente para visualizar o comportamento da onda e resolução grande o suficiente para gerar a onda.

 Será utilizada a simulação transiente para se observar o comportamento do circuito ao longo do tempo. E a simulação DC para as fontes DC.

Vá em Diagramas e insira um plano cartesiano.
 Coloque o valor das tensões x_t.Vt e y_t.Vt. Coloque y_t no o eixo da direita.

