Problem 1.

Rozwiąż $e^x + x + 1 = 0$ metodą iteracji prostej (rozwiązanie analityczne tego równania nie jest znane).

Przekształcamy do postaci: $x = -e^x - 1$. Równanie iteracji: $x_{n+1} = -e^{x_n} - 1$. Wybieramy punkt startowy: $x_0 = -2$:

n	Xn	X ₂₃ -X _n	$(X_{23}-X_{n-1})/(X_{23}-X_n)$
0	-2	0,721535	
1	-1,135335283	-0,14313	-0,198367604
2	-1,321314372	0,04285	-0,299378543
3	-1,266784417	-0,01168	-0,272582774
4	-1,281736112	0,003272	-0,280097143
5	-1,277555015	-0,00091	-0,278009531
6	-1,278717929	0,000253	-0,278591217
7	-1,278393993	-7,1E-05	-0,278429266
8	-1,278484189	1,96E-05	-0,278474368
9	-1,278459072	-5,5E-06	-0,278461801
10	-1,278466066	1,52E-06	-0,278465326
11	-1,278464119	-4,2E-07	-0,278464253
12	-1,278464661	1,18E-07	-0,27846488
13	-1,27846451	-3,3E-08	-0,278463527
14	-1,278464552	9,16E-09	-0,27846813
15	-1,27846454	-2,6E-09	-0,278451656
16	-1,278464543	7,1E-10	-0,278510827
17	-1,278464543	-2E-10	-0,278298655
18	-1,278464543	5,52E-11	-0,279061775

19	-1,278464543	-1,5E-11	-0,276327546
20	-1,278464543	4,36E-12	-0,286201171
21	-1,278464543	-1,1E-12	-0,251450382
22	-1,278464543	4,23E-13	-0,38595426
23	-1,278464543		

Metodą Newtona Raphsona

n	xn	X23-Xn	(X23-Xn-1)^2
0	-2	0,7215355	
1	-1,238405844	-0,0400587	0,520613416
2	-1,278286627	-0,0001779	0,001604699
3	-1,278464539	-3,447E-09	3,16538E-08
4	-1,278464543	9,237E-14	1,18851E-17
5	-1,278464543	9,215E-14	8,53232E-27
6	-1,278464543	9,237E-14	8,49135E-27
7	-1,278464543	9,215E-14	8,53232E-27
8	-1,278464543	9,237E-14	8,49135E-27
9	-1,278464543	9,215E-14	8,53232E-27
10	-1,278464543	9,237E-14	8,49135E-27
11	-1,278464543	9,215E-14	8,53232E-27
12	-1,278464543	9,237E-14	8,49135E-27
13	-1,278464543	9,215E-14	8,53232E-27
14	-1,278464543	9,237E-14	8,49135E-27
15	-1,278464543	9,215E-14	8,53232E-27
16	-1,278464543	9,237E-14	8,49135E-27

<u>Instytut Automatyki Politechniki Łódzkiej - Metody Numeryczne przykłady</u>

17	-1,278464543	9,215E-14	8,53232E-27
18	-1,278464543	9,237E-14	8,49135E-27
19	-1,278464543	9,215E-14	8,53232E-27
20	-1,278464543	9,237E-14	8,49135E-27
21	-1,278464543	9,215E-14	8,53232E-27
22	-1,278464543	9,237E-14	8,49135E-27
23	-1,278464543	9,215E-14	8,53232E-27

Zalecenia wyboru punktu startowego:

Jeżeli funkcja f(x) jest dwukrotnie różniczkowalna i jej pochodne są ciągłe, jest rosnąca wypukła i ma pierwiastek, to ten pierwiastek jest jedyny i metoda Newtona-Raphsona generuje ciąg zbieżny do tego pierwiastka dla dowolnego punktu początkowego.

1 W punkcie startowym zaleca się f(x)f''(x) > 0.

2. Twierdzenie

Jeśli:

sign(f(a)) = -sign(f(b)) oraz f''(x) jest ciągła i zachowuje znak w [a,b], styczne do wykresu funkcji w punktach o wartości argumentu a i b przecinają przedział [a,b] to równanie f(x)=0 ma dokładnie jedno rozwiązanie w [a,b] i metoda Newtona-Raphsona jest zbieżna dla dowolnego punktu startowego w [a,b].

Problem 2.

Znajdź pierwiastek $x^3 - 2x^2 - x + 1 = 0$ w [2,3].

$$x_{n+1} = x_n - \frac{x_n^3 - 2x_n^2 - x_n + 1}{3x_n^2 - 4x_n - 1}$$

n	x(n)	x(n+1)	x(7)-x(n)
0	3,0000000000	2,5000000000	-0,7530203963
1	2,5000000000	2,2903225806	-0,2530203963
2	2,2903225806	2,2486062445	-0,0433429769
3	2,2486062445	2,2469820298	-0,0016266408

4	2,24698202982,2469796037-0,0000024	1260
5	2,2469796037 2,2469796037 0,0000000	0000
6	2,2469796037 2,2469796037 0,0000000	0000
7	7 2,2469796037 2,2469796037 0,0000000	0000

Zbieżność metody Newtona-Raphsona: Pierwiaskami wielomianu $z^5 + 1 = 0$ są liczby: $\cos(2*pi*k/5)+i*\sin(2*pi*k/5)$ for k=0,1,..,4

Dla różnych punktów startowych otrzymujemy zbieżność do różnych pierwiastków:

Przykład 6.4

1. Rozważmy funkcję

$$f(x) = sign(x-2)\sqrt{|x-2|}.$$
(6.24)

Cechą charakterystyczną funkcji (6.24) jest nieskończona wartość pierwszej pochodnej w wyznaczanym pierwiastku x = 2. Na rysunku 6.7 i w tabeli 6.5 zostały przedstawione wyniki kolejnych iteracji. Tabela 6.5 Wyniki iteracji dla różnych warunków początkowych

i	$x_i \text{ dla } x_0 = 1,95$	$x_i \text{ dla } x_0 = 1,5$	$x_i dla x_0 = 3$
1	2,05	2,5	1
2	1,95	1,5	3
3	2,05	2,5	1
4	1,95	1,5	3

Rys 6.7 Graficzne przedstawienie kolejnych iteracji: linia ciągła – funkcja f(x), linia kreska-kropka – styczne

2. Rozważamy funkcję

$$f(x) = \arctan(40x). \tag{6.25}$$

Pochodna funkcji (6.25) dąży do zera przy oddalaniu się od pierwiastka i to jest przyczyną rozbieżności procesu iteracyjnego, jeśli punkt startowy zostanie wybrany daleko od wyznaczanego pierwiastka. W tabeli 6.6 i na rysunku 6.8 przedstawiono wyniki iteracji dla dwóch warunków początkowych.

Tabela 6.6 Wyniki iteracji dla różnych warunków początkowych

i	$x_i dla x_0 = -0, 2$	$x_i dla x_0 = -0, 1$
1	0,35357435890	0,057079632679490
2	1,39509590869	-
		0,011685990399891
3	27,93440665336	0.000106102211704
4	-	-
	1220,169989179	0.000000000079631

Rys 6.8 Graficzne przedstawienie kolejnych iteracji dla procesu rozbieżnego (a) i zbieżnego (b): linia ciągła – funkcja f(x), linia kropka-kreska – styczne.

3. Rozważmy funkcję

$$f(x) = x^{10} - 1. ag{6.26}$$

Funkcję (6.26) cechują dwie właściwości: bardzo płaskie minimum dla x = 0 (dziewięć pierwszych pochodnych tej funkcji zeruje się w tym punkcie) oraz szybki wzrost wartości funkcji dla x > 1. W tabeli 6.7 przedstawiono wyniki iteracji dla punktu startowego $x_0 = 0.5$.

Tabela 6.7 Wyniki kolejnych iteracji dla funkcji (6.25)

i	x_i	$f(x_{i-1})$	$f'(x_{i-1})$	$e=1-x_i$
1	51,6500	0,9990	0,0195	0,5
2	46,4850	$1,3511\cdot10^{17}$	$0,2616\cdot10^{17}$	-45,4850
3	41,8365	$4,7112\cdot10^{16}$	$1,0135\cdot10^{16}$	-40,8365
4	37,6529	$1,6427\cdot10^{16}$	$3,9264 \cdot 10^{16}$	-36,6529
20	6,9771	$7,8407\cdot10^8$	$1,0114\cdot10^9$	5,9771
30	2,4328	$2,0826\cdot10^4$	$7,7047\cdot10^4$	1,4328
33	1,7738	$8,8243\cdot10^2$	$4,4829\cdot10^3$	0,7738
34	1,5970	$3,0742\cdot10^2$	$1,7387\cdot10^3$	0,5970
35	1,4388	$1,0693\cdot10^2$	$6,7580\cdot10^2$	0,4388
36	1,2987	$3,7021\cdot10^{1}$	$2,6426\cdot10^2$	0,2987
37	1,1784	$1,2650\cdot10^{1}$	$1,0510\cdot10^2$	0,1784
38	1,0835	4,1613	$4,3801\cdot10^{1}$	0,0835
39	1,0237	1,2268	$2,0555\cdot10^{1}$	0,0237
40	1,0023	0,2635	$1,0210\cdot10^{1}$	0,0023
41	1,0000	0,0234	$1,0002\cdot10^{1}$	0,0000

Wyniki zamieszczone w tabeli 6.7 pokazują bardzo wolną początkową zbieżność. Spowodowana jest ona przez dwie właściwości podane wcześniej. Mała wartość pochodnej w punkcie startowym powoduje przeskok do obszaru gdzie pochodna funkcji jest bardzo duża. Skutkuje to wolną zbieżnością procesu iteracyjnego.

4. Rozważmy funkcję

$$f(x) = (e^{-0.1x} + 1)\cos(3x). \tag{6.27}$$

Celem jest znalezienie pierwiastka równania f(x) = 0, którym jest $x \approx 0,5236$. Na rysunku 6.9 przedstawiono wyniki iteracji dla punktu startowego $x_0 = 0,1$.

Rys. 6.9 Wyniki procesu iteracji dla funkcji (6.27): linia ciągła – funkcja f(x), linia kropka-kreska – styczne. Jak widać na wykresie iteracje rozpoczynające się w pobliżu pierwiastka, który chcemy znaleźć doprowadzają do innego pierwiastka.

5. Rozważmy funkcję

$$f(x) = x^5 - x + 1. ag{6.28}$$

Miejscem zerowym funkcji jest $x \approx -1,1673$. Punktem startowym będzie $x_0 = 0$. Wyniki zostały przedstawione na rysunku 6.10.

Rys. 6.10 Wyniki procesu iteracji dla funkcji (6.28): linia ciągła – funkcja f(x), linia kropka-kreska – styczne. Otrzymany wykres pokazuje, że proces iteracji utyka w sąsiedztwie lokalnego minimum funkcji.

6. Jako ostatnią rozważmy funkcję

$$f(x) = \frac{x^3}{3} - x + 1. \tag{6.29}$$

Punktem startowym będzie $x_0 = 0$. Wyniki zostały przedstawione na rysunku 6.11.

Rys. 6.11 Wyniki procesu iteracji dla funkcji (6.29): linia ciągła – funkcja f(x), linia kropka-kreska – styczne. Wyniki przedstawione na rysunku 6.11 obrazują przypadek kiedy po kolejnej iteracji trafiamy w punkt, w którym pochodna się zeruje i proces iteracji musi zostać przerwany.

Przypadki 1-6 obrazują najczęstsze problemy z jakie można napotkać w trakcie zastosowań metod Newton Raphsona.