

MissDeepCausal

Causal inference from incomplete data using deep latent variable models

JULIE JOSSE^(1,2), IMKE MAYER^(1,3), JEAN-PHILIPPE VERT⁽⁴⁾

(1)École Polytechnique, (2)Inria XPOP, (3)École des Hautes Études en Sciences Sociales, (4)Google Brain

MOTIVATIONS

"One of the big ironies of Big Data is that missing data play an even more important role."

-R. Samworth (2019)

- Goal: Infer causal effects of a treatment from almost inevitably incomplete observational data.
- Issue: Available methods [?] rely on the difficult *Unconfoundness with missing values* hypothesis or parametrics models.
- Assumption: Covariates are noisy proxies of true latent confounders, relationships can be nonlinear.
- Strategy: Couple VAE with missing values and double robust estimation.

FRAMEWORK

Neyman-Rubin potential outcomes [?]

- $\to W$ binary treatment, $(Y_i(w))_{w \in \{0,1\}}$ potential outcomes.
- → Average treatment effect (ATE):

$$\tau = \mathbb{E}[Y_i(1) - Y_i(0)]$$

- o $\mathbf{X} \in \mathbb{R}^{n \times p}$ covariates, $e(x) = \mathbb{P}(W = 1 | X = x)$ propensity score, $\mu_w(x) = \mathbb{E}[Y(w)|X = x]$ conditional response surface.
- \rightarrow Classical assumptions: SUTVA, overlap.
- → AIPW doubly robust estimator [?]:

$$\hat{\tau}_{DR} = \frac{1}{n} \sum_{i=1}^{n} \mu_1(X_i) - \mu_0(X_i) + W_i \frac{Y_i - \mu_1(X_i)}{e(X_i)} - (1 - W_i) \frac{Y_i - \mu_0(X_i)}{1 - e(X_i)}$$
(1)

Missing values and latent confounders:

- \rightarrow $\mathbf{M} \in \{0,1\}^{n \times p}$ mask, missing at random [?, MAR], $\mathbf{X}^* = \mathbf{X} \odot (1 \mathbf{M}) + \text{NA} \odot \mathbf{M} \in \mathcal{X}^*$ observed covariates, $\mathcal{X}^* = (\mathbb{R} \cup \text{NA})^{n \times p}$.
- \rightarrow Unconfoundedness w.r.t. latent variables: $\mathbf{Z} \in \mathbb{R}^{n \times d}$ latent confounders.

 $\to \mathbb{E}[Y(1) - Y(0) \,|\, X^*] = \mathbb{E}[\mathbb{E}[Y(1) - Y(0) \,|\, Z] \,|\, X^*]$

CAUSAL INFERENCE WITH MISSING VALUES IN THE COVARIATES

Assume an unbiased estimator $\hat{f}(Z)$ of $\mathbb{E}[Y(1) - Y(0)|Z]$ and access to the distribution $P(Z|X^*)$

Latent variables estimation as a pre-processing step (MDC-process)

- → Heuristic nonlinear extension of [?]
- \rightarrow Regression model: $Y = \tau W + Z\beta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$.

MDC-process

- 1. Estimate latent confounders with $\hat{Z}(x^*) = \mathbb{E}[Z|X^* = x^*].$
- 2. Plug these $\hat{Z}(x^*)$ into regression model or define $\hat{\tau}_{process} = \mathbb{E}[f(\mathbb{E}[Z|X^*])].$

Multiple imputation strategy

ightarrow Monte-Carlo approximation using posterior distribution $P(Z|X^*)$.

MDC-MI

- 1. Sample $(Z^{(j)})_{1 < j < B}$ from $\hat{P}(Z|X^*)$.
- 2. For each sample j, compute estimate $\hat{\tau}^{(j)} = f(Z^{(j)})$.
- 3. Aggregate into final estimate: $\hat{\tau}_{MI} = \frac{1}{B} \sum_{i=1}^{B} \hat{\tau}^{(j)} \approx \mathbb{E}[\mathbb{E}[f(Z|X^*)]].$

Estimation of and sampling from $P(Z|X^*)$:

- 1) Use missing data importance weight autoencoder [?, MIWAE]: imputation by a constant maximizes the ELBO.
- 2) Approximate with self-normalized importance sampling on variational distribution $Q(Z|X^*)$:

$$\mathbb{E}[s(Z)|X^*] \approx \sum_{l=1}^L w_l s(Z^{(l)})$$
, where $w_l = \frac{r_l}{r_1 + \dots + r_L}$ and $r_l = \frac{p(X^*|Z^{(l)})p(Z^{(l)})}{q(Z^{(l)}|X^*)}$ for any measurable function s .

IHDP DATA [?]

% NA	Method	Δ	
		OLS	$ DR_{rf} $
0	X (complete data)	0.72 ± 0.02	0.20 ± 0.01
	$\bar{M}F$	0.56 ± 0.03	0.16 ± 0.01
	MDC.process	0.51 ± 0.03	0.19 ± 0.03
	MDC.mi	0.47 ± 0.03	0.14 ± 0.02
	CEVAE(X)	0.34 ± 0.02	
10	MICE	0.85 ± 0.02	0.24 ± 0.01
	MIA.GRF	_	0.23 ± 0.01
	MF	0.50 ± 0.03	0.15 ± 0.01
	MDC.process	0.42 ± 0.02	0.16 ± 0.02
	MDC.mi	0.35 ± 0.02	0.13 ± 0.02
	$CEVAE(X_{imp})$	0.31 ± 0.01	
30	MICE	1.20 ± 0.02	0.32 ± 0.01
	MIA.GRF	_	0.17 ± 0.01
	MF	0.39 ± 0.02	0.17 ± 0.01
	MDC.process	0.37 ± 0.02	0.15 ± 0.02
	MDC.mi	0.30 ± 0.02	0.13 ± 0.01
	$CEVAE(X_{imp})$	0.38 ± 0.02	
50	MICE	1.54 ± 0.03	0.42 ± 0.01
	MIA.GRF	_	0.19 ± 0.01
	MF	0.28 ± 0.01	0.21 ± 0.02
	MDC.process	0.24 ± 0.01	0.21 ± 0.02
	MDC.mi	0.18 ± 0.01	0.22 ± 0.03
	$CEVAE(X_{imp})$	0.38 ± 0.02	

Mean absolute error Δ (with standard error) across 1000 simulations. OLS: estimator obtained by regression, DR: doubly robust estimator. X_{imp} : mean imputed X^* . MIA.GRF: causal forest extension handling incomplete covariates [?].

SIMULATIONS

- \rightarrow Varying number of covariates (p), fixed small number of latent variables (d = 3) and n=10000.
- → Deep latent variable data generating model [?].
- \rightarrow Choice for f: doubly robust estimator (??).
- \rightarrow Comparison methods: f on estimated linear latent factors [?, MF], f on multiply imputed X^* (MICE).

REFERENCES

- [1] Y. Dewan, E. O. Komolafe, J. H. Mejía-Mantilla, P. Perel, I. Roberts, and H. Shakur. Crash-3-tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. *Trials*, 13(1):87, 2012.
- [2] J. L. Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational and Graphical Statistics*, 20(1):217–240, 2011.
- [3] W. Jiang, J. Josse, and M. Lavielle. Logistic regression with missing covariates–parameter estimation, model selection and prediction. *arXiv preprint*, 2018.
- [4] J. Josse, N. Prost, E. Scornet, and G. Varoquaux. On the consistency of supervised learning with missing values. arXiv preprint,
- [5] N. Kallus, X. Mao, and M. Udell. Causal inference with noisy and missing covariats via matrix factorization. arXiv preprint,
- [6] J. M. Robins, A. Rotnitzky, and L. P. Zhao. Estimation of regression coefficients when some regressors are not always observed. *Journal of the American Statistical Association*, 89(427):846–866, 1994.
- [7] P. R. Rosenbaum and D. B. Rubin. Reducing bias in observational studies using subclassification on the propensity score. *Journal of the American Statistical Association*, 79(387):516–524, 1984.

and results of **MissDeep- Causal**, read our full paper:

For more details

See also **R-miss-tastic**, a platform for missing values methods and workflows:

FUTURE RESEARCH

- Handling missing not at random type data (MNAR).
- Heterogeneous treatment effect estimation.