欧氏空间上的光滑函数

解析函数

作为微分几何中的约定俗成,我们将坐标记为上标,而非下标.

定义. 对于非负整数 k, 我们称一个函数 $f: U \longrightarrow \mathbb{R}$ 是 C^k 的, 如果其满足对于任意的 j < k, $\frac{\partial^j f}{\partial x^{i_1} \cdots x^{i_j}}$ 都在 p 点存在并且连续.

称函数 $f:U \longrightarrow \mathbb{R}$ 在点 $p \in C^{\infty}$ 的,如果对于所有的 $k \ge 0$ 都满足其是 C^k 的话.

另外, 称一个函数 $f \in C^k$ 的, 如果它在 U 上每个点都是 C^k 的话. 同时, C^{∞} 的同义词是"光滑的"

我们称一个函数 $f:U \longrightarrow \mathbb{R}$ 是**实解析**的, 如果对于 U 中任意一个点 p, 都存在一些邻域, 使得其满足

$$f\left(x\right) = f\left(p\right) + \sum_{i} \frac{\partial f}{\partial x^{i}}\left(p\right)\left(x^{i} - p^{i}\right) + \frac{1}{2!} \sum_{i,j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}\left(p\right)\left(x^{i} - p^{i}\right)\left(x^{j} - p^{j}\right) + \cdots$$

引理. 实解析函数一定是 C^{∞} 的,因为上面的式子可以在其收敛区域内逐项微分. 但 C^{∞} 函数则不一定是实解析的.

例. 考虑函数
$$f(x) = \begin{cases} e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0 \end{cases}$$

由于原点处的任意阶导数 $f^{(k)}(0)$ 都是 0, f 在原点处的任意邻域都是 0, 因此 f(x) 不等于其泰勒级数且 f(x) 在原点处不是实解析的.

含余项的泰勒定理

虽然 C^{∞} 的函数不一定等价泰勒定理,但可以通过添加余项来使其满足目的.

定义. (星型)

对于 \mathbb{R}^n 的子集 S, 称 S 是相对于 p 星型的, 如果 S 中的任意一点 x 都满足 p 到 x 的线段被包含在 S 里.

引理. (含余项的 Taylor 定理)

令 f 是一个定义在 $U \subset \mathbb{R}$ 的 C^{∞} 函数,满足其关于 $p := (p^1, \dots, p^n) \in U$. 那么存在一些定义在 U 上的 C^{∞} 函数 $q_1(x), \dots, q_n(x)$,使得

$$f(x) = f(p) + \sum_{i=1}^{n} (x^{i} - p^{i}) g_{i}(x), g_{i}(p) = \frac{\partial f}{\partial x^{i}}(p)$$

Proof. 由于 U 是关于 p 星型的,所以对于 $\forall x \in U$,线段 p + t(x - p), $0 \le t \le 1$ 在 U 内部. 那么考虑 f(p + t(x - p)), $t \in (0, 1)$

那么考虑
$$f(p+t(x-p))$$
, $t \in (0,1)$ 由链式法则可知, $\frac{\mathrm{d}}{\mathrm{d}t}f(p+t(x-p)) = \sum (x^i-p^i)\frac{\partial f}{\partial x^i}(p+t(x-p))$

接着两边同时对 t 从 0 到 1 积分, $f(p+t(x-p))|_0^1 = \sum_{i=1}^{n} (x^i-p^i) \int_0^1 \frac{\partial f}{\partial x^i} (p+t(x-p)) dt$

在这里我们令
$$g_i(x) = \int_0^1 \frac{\partial f}{\partial x^i} (p + t(x - p)) dt$$
,于是 $g_i(x)$ 是 C^{∞}

且原式变为 $f(x) - f(p) = \sum (x^i - p^i) g_i(x)$

另一方面,
$$g_i(p) = \int_0^1 \frac{\partial f}{\partial x^i}(p) dt = \frac{\partial f}{\partial x^i}(p)$$

注意. 事实上,星型并非是限制条件,考虑任意一个开球 $B(p,\epsilon):=\{x\in\mathbb{R}^n:\|x-p\|<\epsilon\}$ 是关于 p 的星型. 如果 f 是定义在包含点 p 的开集 U 上的 C^∞ 函数,那么存在一个 $\epsilon>0$,使得 $p\in B(p,\epsilon)\subset U$. 于是 f 定义在一个 p 的星型邻域上,并且适用含有余项的泰勒定理.

欧氏空间中作为导数的切向量

为了区分点和向量, 我们将定义在 \mathbb{R}^n 的点记作 $p = (p^1, \dots, p^n)$

切空间中的向量
$$v \in T_p(\mathbb{R}^n)$$
 记作 $v = \begin{pmatrix} v^1 \\ \vdots \\ v^n \end{pmatrix}$ or $\langle v^1, \cdots, v^n \rangle$.

我们通常用 $\{e_1, \dots, e_n\}$ 来表示 \mathbb{R}^n 或 $T_p\mathbb{R}^n$ 的标准基,于是 $v = \sum v^i e_i$. 过点 $p = (p^1, \dots, p^n)$ 的具有方向 $v = \langle v_1, \dots, v_n \rangle \in \mathbb{R}^n$ 的直线具有参数化 $c(t) = (p^1 + tv^1, \dots, p^n + tv^n)$.

方向导数

f在p上v方向的方向导数定义为

$$\begin{split} \mathbf{D}_{v}f &= \lim_{t \to 0} \frac{f\left(c\left(t\right)\right) - f\left(p\right)}{t} \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} f\left(c\left(t\right)\right) \\ &= \sum_{i=1}^{n} \frac{\mathrm{d}c^{i}}{\mathrm{d}t} \left(0\right) \frac{\partial f}{\partial x^{i}} \left(p\right) \\ &= \sum_{i=1}^{n} v^{i} \frac{\partial f}{\partial x^{i}} \left(p\right) \end{split}$$

显然可以看出, $D_v f$ 是一个数字.

芽

定义在集合 S 上的关系 R 是 $S \times S$ 的子集. 我们称这个关系是一个等价关系如果它同时满足以下条件:

- (1) 自反性: $x \sim x$ 对于任意的 $x \in S$
- (2) 对称性: $x \sim y \Rightarrow y \sim x$
- (3) 传递性: $x \sim y, y \sim z \Rightarrow x \sim z$

考虑所有 (f,U) 对所组成的集合,这里 $U \neq p$ 的一个邻域并且 $f:U \to \mathbb{R}$ 是 C^{∞} 的. 我们称 (f,U) 等价于 (g,V) 如果存在一个包含 p 的开集 $W \subset U \cap V$ 使得 f=g 当其关于 W 的时候.

定义. 称 (f,U) 的等价类为 f 在 p 的芽 (germ).

某一点的导数

一个域 K 上定义在向量空间之间的映射 $L:V \longrightarrow W$ 称作线性映射或线性算子,如果对于所有的 $r \in K, u, v \in V$ 有:

- (1) L(u + v) = L(u) + L(v)
- (2) L (rv) = rL (v)

对于每个 $p \in \mathbb{R}^n$ 的切向量, p 的方向导数给出了一个实向量空间的映射 $D_v : C_p^\infty \longrightarrow \mathbb{R}$.

于是 D_v 是一个 \mathbb{R} -线性的, 并且满足 $D_v(fg) = (D_v f) g(p) + f(p) D_v g$.

将 p 的所有导数所构成的集合记作 $\mathcal{D}_p(\mathbb{R}^n)$. 显然这个集合是一个实向量空间.

由于 p 的所有方向导数都是在这点的导数, 因此存在一个映射

$$\phi: T_{p}\left(\mathbb{R}^{n}\right) \longrightarrow \mathcal{D}_{p}\left(\mathbb{R}^{n}\right)$$

$$v \longmapsto \mathbf{D}_{v} = \sum v^{i} \frac{\partial}{\partial x^{i}} \Big|_{p}$$

由于 D_v 是线性的,因此映射 ϕ 是一个向量空间的线性算子.

引理. 如果 D 是 C_p^{∞} 的某一点的导数,那么对于所有的常函数 c,有 D (c)=0

Proof. 由于 \mathbb{R} — 线性,我们有 $\mathbb{D}(c)=c\mathbb{D}(1)$. 于是考虑 Leibniz, $\mathbb{D}(1)=\mathbb{D}(1\times 1)=\mathbb{D}(1)\times 1+1\times \mathbb{D}(1)=2\mathbb{D}(1)$ 因此 $\mathbb{D}(1)=0$

定理. 线性映射 $\phi: T_p(\mathbb{R}^n) \longrightarrow \mathcal{D}_p(\mathbb{R}^n)$ 是向量空间的一个同构.

Proof. 单射性方面,对于 $v \in T_p(\mathbb{R}^n)$,令 $D_v = 0$.将 D_v 作用于坐标函数 x^j ,得到

$$0 = \mathbf{D}_v \left(x^j \right) = \sum_i v^i \frac{\partial}{\partial x^i} \bigg|_p x^j = \sum_i v^i \delta_i^j = v^j$$

因此, v = 0且 ϕ 是单射.

满射性方面,令 D 是点 p 处的导数,令 (f,V) 的等价类为 C_p^{∞} 上的芽. 不妨假设 V 是一个开球,于是其为星型.

由带余项的泰勒定理,存在一些 C^{∞} 的函数 $g_i(x)$ 在 p 的邻域上,使得

$$f(x) = f(p) + \sum (x^{i} - p^{i}) g_{i}(x), g_{i}(x) = \frac{\partial f}{\partial x^{i}}(p)$$

将 D 作用在两边, 记 D (f(p)) = 0, D $(p^i) = 0$

$$Df(x) = \sum (Dx^{i}) g_{i}(p) + \sum (p^{i} - p^{i}) Dg_{i}(x)$$
$$= \sum (Dx^{i}) \frac{\partial f}{\partial x^{i}}(p)$$

这就证明了对于 $v = \langle Dx^1, \dots, Dx^n \rangle, D = D_v$

换句话说,这个定理证明了我们可以通过 p 点处的导数来识别其切向量。在 $T_p(\mathbb{R}^n) \simeq \mathcal{D}_p(\mathbb{R}^n)$ 下, $T_p(\mathbb{R}^n)$ 的基 $\{e_1, \cdots, e_n\}$ 对应到偏导的集合 $\left\{\frac{\partial}{\partial x^1}\Big|_p, \cdots, \frac{\partial}{\partial x^n}\Big|_p\right\}$ 因此我们可以将 $v = \langle v^1, \cdots, v^n \rangle = \sum v^i e_i$ 写作 $v = \sum v^i \frac{\partial}{\partial x^i}\Big|_p$

向量场

一个定义在开集 $U\subset\mathbb{R}^n$ 的向量场 X 是一个分配给 U 中所有点 p 的切空间 $T_p(\mathbb{R}^n)$ 的切向量 X_p . 由于切空间 $T_p(\mathbb{R}^n)$ 有基底 $\left\{\frac{\partial}{\partial x^i}\Big|_p\right\}$,于是向量 X_p 是一个线性结合 $X_p=\sum a^i(p)\left.\frac{\partial}{\partial x^i}\Big|_p, p\in U$ 向量场 X 是 U 上 C^∞ 的,如果其系数 a^i 全都是 U 上 C^∞ 的

例. 显然, 在 $\mathbb{R}^2 \setminus \{0\}$ 上, p := (x, y) 的一个向量场如图

一个 U 上的 C^{∞} 函数的环通常被记作 C^{∞} (U) 或者 \mathcal{F} (U). 由于可以将 C^{∞} 向量场作用在 C^{∞} 函数上从而得到一个新的 C^{∞} 向量场,将 U 上所有的 C^{∞} 向量场记作 \mathfrak{X} (U). \mathfrak{X} 不仅是 \mathbb{R} 上的一个向量空间,同时也是 C^{∞} 环上的一个模.

定义. 如果 R 是一个有单位元的交换环, 那么 R— 模是一个具有加法和标量乘法的操作的集合 A, 使得:

- (1) 在加法下, A是一个阿贝尔群 (可交换)
- (2) 对于 $r, s \in R$ 和 $a, b \in A$,
- (i) (封闭性) $ra \in A$
- (ii) (单位元) 如果 1 是 R 的乘法单位元的话, 1a = a
- (iii) (结合律) (rs)a = r(sa)
- (iv) (分配律) (r+s)a = ra + sa, r(a+b) = ra + rb

向量场作为导数

A 的所有导数关于加法和乘法是封闭的,并且形成一个向量空间,记作 Der(A),于是我们有一个映射

$$\phi: \mathfrak{X}(U) \longrightarrow \operatorname{Der}\left(C^{\infty}\left(U\right)\right)$$
$$X \longmapsto (f \mapsto Xf)$$

交错 k- 线性函数

对偶空间

如果 V, W 是实向量空间,我们记 $\operatorname{Hom}(V, W)$ 为所有线性映射 $f: V \longrightarrow W$. 我们称 V 上所有实值线性函数所构成的向量空间为对偶空间 V^* . 换言之, $V^* = \operatorname{Hom}(V, \mathbb{R})$

猫

 V^* 的元素称之为 V 上的共向量/余向量

假设 V 是一个有限维的向量空间,令 $\{e_1,\cdots,e_n\}$ 是 V 的基底. 于是每个 $v\in V$ 都有唯一的线性结合 $v=\sum v^ie_i,v^i\in\mathbb{R}$. 令 $\alpha^i:V\longrightarrow\mathbb{R}$ 是一个选取第 i 个坐标的线性函数, $\alpha^i(v)=v^i$. 注意到

$$\alpha^{i}\left(e_{j}\right) = \delta^{i}_{j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

命题. 函数 $\alpha^1, \dots, \alpha^n$ 构成了 V^* 的一组基底

推论. 有限维向量空间 V 的对偶空间 V^* 与 V 拥有相同维度

多重线性函数

函数 $f: V^k \longrightarrow \mathbb{R}$ 是一个 k- 线性,如果其中每个参数都有

$$f(\cdots, av + bw, \cdots) = af(\cdots, v, \cdots) + bf(\cdots, w, \cdots)$$

而一个 V 上的 k- 线性函数同时也被叫做 V 上的k- 张量

定义. 一个 k- 线性函数 $f: V^k \longrightarrow \mathbb{R}$ 是对称的,如果

$$f(v_{\sigma(1)}, \cdots, v_{\sigma(k)}) = f(v_1, \cdots, v_k)$$

称其为交替的,如果

$$f(v_{\sigma(1)}, \cdots, v_{\sigma(k)}) = (\operatorname{sgn} \sigma) f(v_1, \cdots, v_k)$$

k-线性函数的置换操作

引理. 如果 $\sigma, \tau \in S_k$ 的排列, $f \in V$ 上的一个 k— 线性函数, 那么 $\tau(\sigma f) = (\tau \sigma) f$

注意. 只需要考虑 $w_i = v_{\tau(i)}$

定义. 对于一个群 G 和一个集合 X, 考虑映射

$$G \times X \longrightarrow X$$

 $(\sigma, x) \longmapsto \sigma \cdot x$

我们称这个映射是群G在集合X上的左作用,如果

- (i) $1 \cdot x = x$, 这里 $1 \in G$ 的单位元, $x \in X$ 的任意一个元
- (ii) $\tau \cdot (\sigma \cdot x) = (\tau \sigma) \cdot x$

那么类似的, 我们称其为右作用, 如果满足

- (i) $x \cdot 1 = x$
- (ii) $(x \cdot \sigma) \cdot \tau = x \cdot (\sigma \tau)$

对称算子和交错算子

定义. 对称算子:

$$(Sf)(v_1, \dots, v_k) = \sum_{\sigma \in S_k} f(v_{\sigma(1)}, \dots, v_{\sigma(k)})$$
$$Sf = \sum_{\sigma \in S_k} \sigma f$$

交错算子:

$$Af = \sum_{\sigma \in S_k} (\operatorname{sgn}\sigma) \, \sigma f$$

张量积

定义. 向量空间 V 上的 (k,l) 型张量是一个多重线性映射 $T:V_1^*\times\cdots\times V_k^*\times V_1\times\cdots\times V_l\to\mathbb{R}$

定义. 令 f 和 g 分别是向量空间 V 上的 k- 线性函数和 l- 线性函数. 那么他们的张量积 $f\otimes g$ 是一个 (k+l)- 线性函数, 定义为

$$(f \otimes g)(v_1, \cdots, v_{k+l}) = f(v_1, \cdots, v_k) g(v_{k+1}, \cdots, v_{k+l})$$

例.

$$\langle v, w \rangle = \sum_{i} v^{i} w^{i}$$

$$= \sum_{i} \alpha^{i} (v) \alpha^{i} (w)$$

$$= \sum_{i} (\alpha^{i} \otimes \alpha^{i}) (v, w)$$

例.

$$\left[\begin{array}{c} b_1 \\ b_2 \\ b_3 \\ b_4 \end{array}\right] \otimes \left[\begin{array}{cccc} a_1 & a_2 & a_3 \end{array}\right] = \left[\begin{array}{cccc} a_1b_1 & a_2b_1 & a_3b_1 \\ a_1b_2 & a_2b_2 & a_3b_2 \\ a_1b_3 & a_2b_3 & a_3b_3 \\ a_1b_4 & a_2b_4 & a_3b_4 \end{array}\right]$$

例. 克罗内克积

$$U \otimes V = \left[\begin{array}{ccc} u_{11}V & u_{12}V & \cdots \\ u_{21}V & u_{22}V & \cdots \\ \vdots & \ddots & \vdots \end{array} \right]$$

命题. $(f \otimes g) \otimes h = f \otimes (g \otimes h)$

楔积

定义. 对于 $f \in A_k(V)$, $g \in A_l(V)$

$$f \wedge g = \frac{1}{k!l!} A \left(f \otimes g \right)$$

$$\left(f \wedge g \right) \left(v_1, \dots, v_{k+l} \right) = \frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} \left(\operatorname{sgn}\sigma \right) f \left(v_{\sigma(1)}, \dots, v_{\sigma(k)} \right) g \left(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)} \right)$$

楔积的反交换性

命题. 对于 $f \in A_k(V)$, $g \in A_l(V)$

が
$$f \wedge g = (-1)^{kl} g \wedge f$$
 Proof. 记变换 $\tau \in S_{k+l}$ 为变换 $\tau = \begin{bmatrix} 1 & \cdots & l & l+1 & \cdots & l+k \\ k+1 & \cdots & k+l & 1 & \cdots & k \end{bmatrix}$ 换言之, $\tau(1) = k+1, \cdots, \tau(l) = k+l, \tau(l+1) = 1, \cdots, \tau(l+k) = k$ 于是

$$\sigma(1) = \sigma\tau(l+1), \dots, \sigma(k) = \sigma\tau(l+k)$$

$$\sigma(k+1) = \sigma\tau(1), \dots, \sigma(k+l) = \sigma\tau(l)$$

那么对于 $v_1, \dots, v_{k+l} \in V$

$$\begin{split} A\left(f\otimes g\right)\left(v_{1},\cdots,v_{k+l}\right) &= \sum_{\sigma\in S_{k+l}}\left(\operatorname{sgn}\sigma\right)f\left(v_{\sigma(1)},\cdots,v_{\sigma(k)}\right)g\left(v_{\sigma(k+1)},\cdots,v_{\sigma(k+l)}\right) \\ &= \sum_{\sigma\in S_{k+l}}\left(\operatorname{sgn}\sigma\right)f\left(v_{\sigma\tau(l+1)},\cdots,v_{\sigma\tau(l+k)}\right)g\left(v_{\sigma\tau(1)},\cdots,v_{\sigma\tau(l)}\right) \\ &= \left(\operatorname{sgn}\tau\right)\sum_{\sigma\in S_{k+l}}\left(\operatorname{sgn}\sigma\tau\right)g\left(v_{\sigma\tau(1)},\cdots,v_{\sigma\tau(l)}\right)f\left(v_{\sigma\tau(l+1)},\cdots,v_{\sigma\tau(l+k)}\right) \\ &= \left(\operatorname{sgn}\tau\right)A\left(q\otimes f\right)\left(v_{1},\cdots,v_{k+l}\right) \end{split}$$

于是在两边同时除以 k!l! 就得到了 $f \wedge g = (sgn\tau) g \wedge f$

推论. 如果 $f \in V$ 上的一个 k- 共向量,且 k 是奇数,那么 $f \land f = 0$

楔积的结合律

- (i) $A(A(f) \otimes g) = k!A(f \otimes g)$
- (ii) $A(f \otimes A(g)) = l!A(f \otimes g)$

命题. $(f \wedge g) \wedge h = f \wedge (g \wedge h)$

Proof.

$$(f \wedge g) \wedge h = \frac{1}{(k+l)!m!} A ((f \wedge g) \otimes h)$$

$$= \frac{1}{(k+l)!m!} \frac{1}{k!l!} A (A (f \otimes g) \otimes h)$$

$$= \frac{(k+l)!}{(k+l)!m!k!l!} A ((f \otimes g) \otimes h)$$

$$= \frac{1}{k!l!m!} A ((f \otimes g) \otimes h)$$

$$= \frac{1}{k!l!m!} A (f \otimes (g \otimes h))$$

$$= \frac{1}{k!(l+m)!} A \left(f \otimes \frac{1}{l!m!} A (g \otimes h)\right)$$

$$= f \wedge (g \wedge h)$$

推论. $f \wedge g \wedge h = \frac{1}{k! l! m!} A (f \otimes g \otimes h)$

推论. $f_i \in A_{d_i}(V)$

$$f_1 \wedge \cdots \wedge f_r = \frac{1}{d_1! \cdots d_r!} A(f_1 \otimes \cdots \otimes f_r)$$

\mathbb{R}^n 上的微分形式

微分 1- 形式

p 点在 \mathbb{R}^n 上的余切空间 $T_p^*(\mathbb{R}^n)$ 被定义为切空间 $T_p(\mathbb{R}^n)$ 的对偶空间 $(T_p\mathbb{R}^n)^*$. 类似于向量场的定义,一个开集 $U\subset \mathbb{R}^n$ 余向量场或微分 1— 形式 ω 是一个给每个 $p\in U$ 分配一个余向量 $\omega_p\in T_p^*(\mathbb{R}^n)$ 的函数.

命题. 如果 x^1, \cdots, x^n 是 \mathbb{R}^n 的一组标准基底,那么对于每个 $p \in \mathbb{R}^n$, $\left\{ \left(dx^1 \right)_p, \cdots, \left(dx^n \right)_p \right\}$ 都是对偶于以 $\left\{ \frac{\partial}{\partial x^1} \Big|_p, \cdots, \frac{\partial}{\partial x^n} \Big|_p \right\}$ 为基底的切空间 $T_p\left(\mathbb{R}^n\right)$ 的余切空间 $T_p^*\left(\mathbb{R}^n\right)$ 的基底

Proof.

$$(dx^i)_p \left(\frac{\partial}{\partial x^j} \Big|_p \right) = \frac{\partial}{\partial x^j} \Big|_p x^i$$

$$= \delta^i_i$$

微分 k-形式

更一般的,考虑在 $U \subset \mathbb{R}^n$ 上的一个 k 阶的微分形式 ω 或一个 k— 形式,这是一个分配给每个 $p \in U$ 一个切空间 $T_p(\mathbb{R}^n)$ 上交错 k— 线性函数的函数. 换言之, $\omega_p \in A_k(T_p\mathbb{R}^n)$.

而 $A_k(T_p\mathbb{R}^n)$ 的基底是 $dx_p^I = dx_p^{i_1} \wedge \cdots \wedge dx_p^{i_k}, 1 \leq i_1 \leq \cdots \leq i_k \leq n$

因此,对于每个 $p \in U$, ω_p 都是线性结合 $\sum a_I(p) dx_p^I$

而一个 k- 形式 ω 是线性结合 $\omega=\sum a_Idx^I$ 记 U 上的 C^∞ 的 k- 形式构成的向量空间为 Ω^k (U)

一个 0- 形式分配给了每个 $p \in U$ 一个 $A_0(T_p\mathbb{R}^n) = \mathbb{R}$ 的元素

因此 0- 形式是 U 上的一个单纯的函数, 并且 $\Omega^0(U) = C^\infty(U)$

由于可以将 C^{∞} 函数乘在 C^{∞} 的 k- 形式上,因此集合 Ω^k (U) 既是一个 $\mathbb R$ 上的向量空间,也是一个 C^{∞} (U) 上的模

将楔积作为乘法的话,直和 $\Omega^*(U)=\oplus_{k=0}^n\Omega^k(U)$ 既是一个 $\mathbb R$ 上的代数,也是 C^∞ 上的一个模. 另外作为一个代数,它实际上是反对称的和满足结合律的.

向量场上作为多线性函数的微分形式

对于 $U \subset \mathbb{R}^n$ 上的 C^{∞} 的 1- 形式 ω 和 C^{∞} 向量场 X, 按如下方式定义一个 U 上的函数

$$\omega\left(X\right)_{p} = \omega_{p}\left(X_{p}\right)$$

如果用坐标写的话

$$\omega = \sum a_i dx^i \qquad X = \sum b^j \frac{\partial}{\partial x^j}$$

因此

$$\omega\left(X\right) = \left(\sum a_i dx^i\right) \left(\sum b^j \frac{\partial}{\partial x^j}\right) = \sum a_i b_i$$

U 上的 C^{∞} 的 1- 形式给出了一个映射: $\mathfrak{X}(U) \longrightarrow C^{\infty}(U)$. 由于 $f \in C^{\infty}(U) \Rightarrow \omega(fX) = f\omega(X)$, 这个映射实际上是环 $C^{\infty}(U)$ 上的线性.

而在这种方式下, U 上的 1- 形式给出了一个 $\mathcal{F}(U)$ - 映射: $\mathfrak{X}(U) \longrightarrow \mathcal{F}(U)$

类似的,一个 U 上的 k- 形式给出了一个 $\mathcal{F}(U)$ 上的 k- 线性映射: $\mathfrak{X}(U) \times \cdots \times \mathfrak{X}(U)$ $(k \cap Y) \longrightarrow \mathcal{F}(U)$

外导数

定义. 如果
$$\omega = \sum_{I} a_{I} \mathrm{d}x^{I} \in \Omega^{k}\left(U\right), \,\, 那么$$

$$\mathrm{d}\omega = \sum_{I} \mathrm{d}a_{I} \wedge \mathrm{d}x^{I}$$

$$= \sum_{I} \left(\sum_{j} \frac{\partial a_{I}}{\partial x^{j}} \mathrm{d}x^{j} \right) \wedge \mathrm{d}x^{I}$$

$$\in \Omega^{k+1} (U)$$

例. 令 ω 是 \mathbb{R}^2 的一个 1- 形式 $f \mathrm{d} x + g \mathrm{d} y$,同时 f,g 是 \mathbb{R}^2 的 C^∞ 函数. 另一方面,为了方便,记 $f_x = \frac{\partial f}{\partial x}, f_y = \frac{\partial f}{\partial y}$. 于是

$$d\omega = df \wedge dx + dg \wedge dy$$

$$= (f_x dx + f_y dy) \wedge dx + (g_x dx + g_y dy) \wedge dy$$

$$= (g_x - f_x) dx \wedge dy$$

域 K 上的一个代数 A 是已分次的 (be graded), 如果其可以写成 K 上的向量空间的直和 $A=\oplus_{k=0}^\infty A^k$ 定义. 令 $A=\oplus_{k=0}^\infty A^k$ 是域 K 上的已分次的代数,那么分次代数 A 的反微分是一个 K— 线性映射 $D:A\longrightarrow A$ 使得对于 $\omega\in A^k, \tau\in A^l$

$$D(\omega\tau) = (D\omega)\tau + (-1)^k \omega D\tau$$

如果反微分从 A^k 映射到 A^{k+m} 的话, 我们称这是个 m 阶的反微分

命题. (i) 外导数 $d: \Omega^*(U) \longrightarrow \Omega^*(U)$ 是一个 1 阶的反微分:

$$d(\omega \wedge \tau) = (d\omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge d\tau$$

 $(ii) d^2 = 0$

(iii) 如果 $f \in C^{\infty}(U)$, $X \in \mathfrak{X}(U)$, 那么 (df)(X) = Xf

命题. 外微分的特征

由于上面的命题可以知道,如果 D: $\Omega^*(U) \longrightarrow \Omega^*(U)$ 是一个一阶的外微分,满足 $D^2 = 0$,对于 $f \in C^{\infty}(U), X \in \mathfrak{X}(U)$,有 (Df)(X) = Xf,那么 D = d

闭形式和恰当形式

定义. U 上的一个 k- 形式 ω 是闭的,如果它满足 $d\omega = 0$ 称其是恰当的,如果存在一个 k-1 形式 τ 满使得 $\omega = d\tau$

由于 $d^2 = 0$, 每个恰当形式都是闭的

一点例子

$$\mathrm{d}f = \frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y + \frac{\partial f}{\partial z} \mathrm{d}z$$

→ 于是 0- 形式
$$f$$
 的外微分 $\operatorname{grad} f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial x} \end{bmatrix}$

1-形式的外微分

$$d(Pdx + Qdy + Rdz) = (R_y - Q_z) dy \wedge dz - (R_x - P_z) dz \wedge dx + (Q_x - P_y) dx \wedge dy$$

$$\longrightarrow \operatorname{curl} \left[\begin{array}{c} P \\ Q \\ R \end{array} \right] = \left[\begin{array}{c} R_y - Q_z \\ -(R_x - P_z) \\ Q_x - P_y \end{array} \right]$$

2- 形式的外微分

$$d(Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy) = (P_x + Q_y + R_z) dx \wedge dy \wedge dz$$

$$\longrightarrow \operatorname{div} \left[egin{array}{c} P \\ Q \\ R \end{array} \right] = P_x + Q_y + R_z$$

由于是否为保守场仅和拓扑性质有关,那么我们可以用向量空间的商来定义闭形式的"失败程度"

$$H^{k}(U) := \frac{U \perp \text{的 } k -$$
 闭形式}{U \perp \text{to } k - 恰当形式}

我们将这个称作 U 的 k 阶 De Rham 上同调

关于上标下标的一些约定

对于向量场,通常用下标如 e_1,\cdots,c_n 对于微分形式,通常采用上标如 ω^1,\cdots,ω^n 对于 0- 形式,坐标函数用上标如 x^1,\cdots,x^n 他们的微分 1- 形式也是上标,如 dx^1,\cdots,dx^n 而坐标向量场 $\frac{\partial}{\partial x^1},\cdots,\frac{\partial}{\partial x^n}$ 则一般用下标,因为其存在于分母 而对于系数部分的上下标,通常取决于其为向量场的系数还是微分形式的系数 如 $X=\sum a^ie_i,\;\omega=\sum b_j\mathrm{d}x^j$ 比如,对于 $e_i=\frac{\partial}{\partial x^i}$

$$\omega(X) = \left(\sum b_j dx^j\right) \left(\sum a^i \frac{\partial}{\partial x^i}\right)$$
$$= \sum b_i a^i$$

或者
$$X = \sum a^i \frac{\partial}{\partial x^i}$$

$$a^i = \left(\mathrm{d} x^i \right) (X)$$

注意到等号两边的净指标相等,净指标为0是"守恒的".

流形

拓扑流形

定义. 一个拓扑空间 M 是 n 维局部欧几里得的,如果 M 的每个点 p 都有一个邻域 U 满足 U 有一个映射到 \mathbb{R}^n 的开子集的同胚 ϕ . 我们称 $(U,\phi:U\to\mathbb{R}^n)$ 为一个图表,称 U 为一个坐标邻域或者坐标开集,称 ϕ 为 U 的一个坐标映射或者坐标系. 我们称一个图表 (U,ϕ) 是以 $p\in U$ 为中心的,如果 $\phi(p)=0$.

定义. 一个n 维的拓扑流形是一个 Hausdorff, 第二可数 (A2), 局部欧几里得的 n 维空间

相容图表

定义. 一个拓扑流形的两个图表 $(U,\phi:U\to\mathbb{R}^n)$, $(V,\psi:V\to\mathbb{R}^n)$ 是 $C^\infty-$ 相容的,如果两个映射 $\phi\circ\psi^{-1}:\psi(U\cap V)\to\phi(U\cap V)$, $\psi\circ\phi^{-1}:\phi(U\cap V)\to\psi(U\cap V)$ 是 C^∞ 的. 这两个映射是过渡映射.

定义. 一个局部欧几里得空间 M 的 C^{∞} 图册是一组覆盖了 M 的 C^{∞} 相容图表的集合. 换句话说, $M=\bigcup U_{\alpha}$.

虽然 C^{∞} 相容图是自反和对称的,但是却不一定是传递的。

考虑 (U_1,ϕ_1) , (U_2,ϕ_2) 是 C^{∞} — 相容的, (U_2,ϕ_2) , (U_3,ϕ_3) 也是 C^{∞} — 相容的.那么由于三个都包含的坐标映射只在 U_{123} 被定义,因此 $\phi_3\circ\phi_1^{-1}=\left(\phi_3\circ\phi_2^{-1}\right)\circ\left(\phi_2\circ\phi_1^{-1}\right)$ 仅在 $\phi_1\left(U_{123}\right)$ 是 C^{∞} — 相容的

光滑流形

一个局部欧几里得空间上的图册 $\mathfrak U$ 称作最大的,如果不存在一个更大的图册包含它. 换言之,如果 $\mathfrak M$ 是另外一个包含 $\mathfrak U$ 的图册的话, $\mathfrak M=\mathfrak U$.

定义. 光滑流形或 C^{∞} 流形是一个具有最大图册的拓扑流形 M. 这个最大图册也叫 M 的微分结构. 一个微分流形的维度是 n, 如果其所有的连通分支都具有维度 n

命题. 局部欧几里得空间上任意的图册 $\mathfrak{U} = \{(U_{\alpha}, \phi_{\alpha})\}$ 都被包含在唯一的最大图册里.

综上所述,我们验证一个拓扑空间 M 是否是一个 C^{∞} 流形,只需要确认:

- (i) M 是 Hausdorff, A2的
- (ii)M 有一个 C^{∞} 图册 (无须是最大的)

流形上的光滑映射

定义. 令 M 是一个 n 维的光滑流形. 称一个函数 $f: M \to \mathbb{R}$ 在 M 上的点 $p \in C^{\infty}$ 的或者光滑的,如果存在一个在 M 的图册里的包含 p 的图 (U, ϕ) ,使得 $f \circ \phi^{-1}$ 在 $\phi(p) \in C^{\infty}$ 的.

定义. 令 $F:N\to M$ 的一个映射而 h 是 M 上的一个函数. 那么 h 由 F 的拉回记作 F^*h ,定义为 $F^*h:=h\circ F$

定义. 令 N,M 分别是 n,m 维的流形,我们称一个映射 $F:N\to M$ 在 N 的点 p 是 C^∞ 的,如果存在包含 F(p) 的 M 的图 (V,ψ) 和包含 p 的 N 的图 (U,ϕ) ,满足一个 \mathbb{R}^n 到 \mathbb{R}^m 的复合映射 $\psi\circ F\circ \phi^{-1}$ 在 $\phi(p)$ 是 C^∞ 的.

定义. 如果 F 是一个双射, 且 F, F^{-1} 都是 C^{∞} 的话, 我们称 F 为一个微分同胚.

命题. 令 U 是流形 M 的一个开集,如果映射 $F:U\to\mathbb{R}^n$ 是其像上的一个微分同胚,那么 (U,F) 是 M 的图册中的一个图

定义. 一个李群是指一个拥有群结构的光滑流形 G,满足以下映射都是 C^{∞} 的:

1. $\mu: G \times G \to G$

2. $\iota: G \to G, \iota(x) = x^{-1}$

商

我们可以通过粘合一个正方形来得到一个环面,这个过程被称为等化,或商构造

商空间上映射的连续性

令 ~ 是拓扑空间 S 上的一个等价关系,S/ ~ 是商拓扑. 假设函数 $f:S\to Y$ 在各等价类上都是常值的,于是引导了映射 $\bar{f}([p])=f(p)$.换言之,

命题. 诱导映射 $\bar{f}: S/\sim Y$ 是连续的, 当且仅当 $f:S\to Y$ 是连续的

同化为一个点

我们可以通过如下方式将拓扑空间 S 的子空间 A 等化到一个点:

定义一个S上的关系 \sim :

(i) $x \sim x$, 对于所有的 $x \in S$

(ii) $x \sim y$, 对于所有的 $x, y \in S$

显然这是 S 上的一个等价关系 (第一条给出了自反性)

例. 令 I := [0,1]. I/\sim 是通过将 $\{0,1\}$ 同化为一个点之后得到的商空间. 令 S^1 为复平面上的单位圆. 那么

$$f: I \to S^1$$
$$x \mapsto \exp\left(2\pi i x\right)$$

由于 f(0) = f(1), 我们可以导出一个函数 $\bar{f}: I/\sim S^1$

命题. 如果商空间 S/\sim 是 Hausdorff 的,那么 S 的任意一点 p 的等价类 [p] 在 S 上是闭的.

开等价关系

定义. 一个拓扑空间 S 上的等价关系称为开的,如果投影映射 $\pi: S \to S/\sim$ 是开的

换言之,当且仅当 $\forall U \subset S, \pi^{-1}\left(\pi\left(U\right)\right) = \bigcup_{u \in S} [x]$ 是 S 中的开集的时候,等价关系 \sim 才是开的.

令 \sim 为 S 上的等价关系,我们可以用 $R \subset S \times S$ 来表示定义该关系的集合: $R := \{(x,y) \in S \times S | x \sim y\}$. 我们称这个 R 为等价关系的图.

定理. 令 \sim 是 S 的一个开等价关系. 那么商空间 S/\sim 是 Hausdorff 的,当且仅当等价关系的图 R 在 $S\times S$ 上是闭的.

定理. 令~是有投影映射 $\pi:S\to S/\sim$ 的空间 S 的一个开等价关系. 如果 $\mathcal{B}=\{B_{\alpha}\}$ 是 S 的基,那么它在 π 下的像 $\{\pi(B_{\alpha})\}$ 是 S/\sim 的基.

推论. 如果 \sim 是第二可数空间 S 的一个开等价关系,那么商空间 S/\sim 也是第二可数的.

实投影空间

按如下方式定义 \mathbb{R}^{n+1} – $\{0\}$ 上的一个等价关系:

$$x \sim y \iff y = tx \, (\forall t \in \mathbb{R} - \{0\})$$

这里 $x, y \in \mathbb{R}^{n+1} - \{0\}$. 而实投影空间 $\mathbb{R}P^n$ 则是由这个等价关系构成的 $\mathbb{R}^{n+1} - \{0\}$ 的商空间. 我们将点 $(a_0, \cdots, a_n) \in \mathbb{R}^{n+1} - \{0\}$ 的等价类记作 $[a_0, \cdots, a_n]$ 并令 $\pi : \mathbb{R}^{n+1} - \{0\} \to \mathbb{R}P^n$ 为投影. 我们称这个 $[a_0, \cdots, a_n]$ 为 $\mathbb{R}P^n$ 的齐次坐标.

由上图可知,虽然 $\mathbb{R}P^2$ 虽然不能嵌入为 \mathbb{R}^3 的子流形,但是如果允许自相交的话就可以形成下面这样的 图案(但这并非双射).

命题. $\mathbb{R}^{n+1} - \{0\}$ 上的等价关系 \sim 在 $\mathbb{R}P^n$ 定义里是开等价关系.

推论. 实投影空间 $\mathbb{R}P^n$ 是第二可数的.

命题. 实投影空间 $\mathbb{R}P^n$ 是 Hausdorff 的.

实投影空间上的标准 C^{∞} 图册

令 $[a_0, \dots, a_n]$ 是投影空间 $\mathbb{R}P^n$ 的齐次坐标. a_0 虽然不是一个 $\mathbb{R}P^n$ 上 well-defined 的函数,但是 $a_0 \neq 0$ 是独立于 $[a_0, \cdots, a_n]$ 代表元的选择的. 因此 $a_0 \neq 0$ 在 $\mathbb{R}P^n$ 上是有意义的. 我们可以归纳地定义 $\forall i \in \mathbb{N}, U_i := \{[a_0, \cdots, a_n] \in \mathbb{R}P^n | a_i \neq 0\}. \ \text{\mathfrak{A}}:$

$$\phi_i: U_i \to \mathbb{R}^n$$

$$[a_0, \cdots, a_n] \mapsto \left(\frac{a_0}{a_i}, \cdots, \frac{\hat{a_i}}{a_i}, \cdots, \frac{a_n}{a_i}\right)$$

这里[^]是指省略该项. 这证明了 $\mathbb{R}P^n$ 是以 (U_i, ϕ_i) 为图表的局部欧几里得的. 在交集 $U_0 \cap U_1$ 里, $a_0 \neq 0, a_1 \neq 0$, 于是就有两套坐标系:

在 U_0 上,坐标函数为 x_1, \cdots, x_n . 在 U_1 上,坐标函数是 y_1, \cdots, y_n . 在 U_0 , $\forall i \in \mathbb{N}, x_i = \frac{a_i}{a_0}$. 在 U_1 , $y_1 = \frac{a_0}{a_1}, y_2 = \frac{a_2}{a_1}, \cdots, y_n = \frac{a_n}{a_1}$ 因此 $\phi_1 \circ \phi_0^{-1}(x) = \left(\frac{1}{x}, \frac{x_2}{x_1}, \frac{x_3}{x_1}, \cdots, \frac{x_n}{x_1}\right)$ 由于在 $\phi_0\left(U_0\cap U_1\right)$ 上 $x_1\neq 0$,因此这是个光滑函数. 在其他 $U_i\cap U_j$ 上也可以得到类似式子,因此 $\{(U_i,\phi_i)\}_{i=0,\cdots,n}$ 是 $\mathbb{R}P^n$ 的 C^∞ 图册,称为标准图册. 这就包含了 $\mathbb{R}P^n$ 是光滑流形的证明.

切空间

定义. 流形 M 中点 p 的切向量为其在 p 的方向

定理. 链式法则

如果 $F: N \to M, G: M \to P$ 是流形的光滑映射且 $p \in N$ 的话,有 $(G \circ F)_{*p} = G_{*,F(p)} \circ F_{*,p}$

推论. 如果 $F: N \to M$ 是流形的一个微分同胚且 $p \in N$, 那么 $F_*: T_pN \to T_pM$ 是向量空间的同构

推论. 维数不变性

如果开集 $U \subset \mathbb{R}^n$ 微分同胚于开集 $V \subset \mathbb{R}^m$, 那么 n = m.

命题. 令 $(U,\phi)=\left(U,x^1,\cdots,x^n\right)$ 是一个关于流形 M 中的点 p 的图表,那么 $\phi_*\left(\frac{\partial}{\partial x^i}\Big|_{p}\right)=\frac{\partial}{\partial r^i}\Big|_{\phi(p)}$

命题. 如果 $(U,\phi) = (U,x^1,\cdots,x^n)$ 是一个包含点 p 的图表,那么切空间 T_pM 有基 $\frac{\partial}{\partial x^1}\Big|_{x_1},\cdots,\frac{\partial}{\partial x^n}\Big|_{x_n}$

命题. 坐标向量变换矩阵

令 (U, x^1, \dots, x^n) 和 (V, y^1, \dots, y^n) 是流形 M 的两个坐标图表,那么在 $U \cap V$ 上 $\frac{\partial}{\partial x^j} = \sum_i \frac{\partial y^i}{\partial x^j} \frac{\partial}{\partial y^i}$

命题. $F: N \to M$ 是流形间的光滑映射, $p \in N$,令 $\left(U, x^1, \cdots, x^n\right)$ 和 $\left(V, y^1, \cdots, y^n\right)$ 是关于 $p \in N$ 和 $F(p) \in M$ 的坐标图表. 关于 T_pN 的基 $\left\{\frac{\partial}{\partial x^j}\Big|_p\right\}$ 以及 T_pM 的基 $\left\{\frac{\partial}{\partial y^i}\Big|_{F(p)}\right\}$,微分映射 $F_{*,p}: T_p \to T_pM$ 由矩阵 $\left[\frac{\partial F^i}{\partial x^j\left(p\right)}\right]$ 表示. 这里 $F^i = y^i \circ F$,是第 i 个分量.

命题. 对于流形 M 上所有的点 p,以及所有的切向量 $X_p \in T_p M$,对于 $\epsilon > 0$ 存在一个光滑曲线 $c: (-\epsilon, \epsilon) \to M$ 使得 c(0) = p 且 $c'(0) = X_p$

命题. 令 $F:N\to M$ 是一个流形间的光滑映射, $p\in N$,并且 $X_p\in T_pN$. 如果 c 是一个开始于 $p\in N$ 的,p 点速度 X_p 的曲线,那么有 $F_{*,p}(X_p)=\frac{\mathrm{d}}{\mathrm{d}t}\Big|_0F\circ c(t)$.

定义. $p \in N$ 是 f 的临界点,如果其微分 $f_{*,p}: T_pN \to T_{f(p)}M$ 不是满射. 反之,如果这是满射,那么该点为常规点. M 的一个点是临界值,如果其像是临界点,否则其为常规点.

命题. 对于实值函数 $f:M\to\mathbb{R}$,点 $p\in M$ 是临界点,当且仅当关于包含 p 的图表 $\left(U,x^1,\cdots,x^n\right)$, $\forall j\in\mathbb{N},\frac{\partial f}{\partial x^j}\left(p\right)=0$

子流形

子流形

定义. 一个 n 维的流形 N 的开子集 S 是 k 维正则子流形,如果 $\forall p \in S$,N 的图册中存在一个 p 的坐标 邻域 $(U,\phi)=(U,x^1,\cdots,x^n)$,使得 $U\cap S$ 可以由 n-k 个坐标函数的消失来定义.

我们称 N 的这样一个图表 (U, ϕ) 是相对于 S 的适配图.

定义. 如果 $S \neq n$ 维流形 N 的一个 k 维正则子流形, 那么我们称 n-k 为 S 在 N 的余维.

函数的零集

一个映射 $f: N \to M$ 的水平集定义为 $f^{-1}(\{c\}) = \{p \in N | f(p) = c\}$ 对于 $c \in M$.

定理. 令 $f: N \to \mathbb{R}$ 是流形 N 的一个 C^{∞} 函数. 那么非空正则水平集 $S = f^{-1}(c)$ 是 N 的一个余维为 1 的正则子流形

正则水平集定理

定理. 令 $f: N \to \mathbb{R}^m$ 是 n 维流形 N 上的一个 C^{∞} 映射. 那么一个非空正则水平集 $S = f^{-1}(c)$ 是 N 的一个 n-m 维的正则子流形.

定理. 正则水平集定理

令 $f: N \to M$ 是流形间的 C^{∞} 映射,并且 $\dim N = n$, $\dim M = m$,那么一个非空正则水平集 $f^{-1}(c)$ 是维度 n-m 的流形 N 的正则子流形.

范畴与函子

光滑流形的秩

常秩定理

定理. 常秩定理

令 N, M 分别是维度为 n, m 的流形. 设 $f: N \to M$ 在 $p \in N$ 的邻域有常秩 k, 那么存在以 $p \in N$ 为中心的图表 (U, ϕ) 和以 $f(p) \in M$ 为中心的 (V, ψ) ,使得在 $\phi(p)$ 的邻域, $\psi \circ \phi^{-1}(r^1, \dots, r^n) = (r^1, \dots, r^n, 0, \dots, 0)$

定理. 常值水平集定理

令 $f: N \to M$ 是流形间的光滑映射, $c \in M$. 如果 f 在水平集 $f^{-1}(c) \in N$ 的邻域有常秩 k,那么 $f^{-1}(c)$ 是 N 的一个余维 k 的正则子流形.

浸入与浸没

定义. 一个流形间的光滑映射 $f: N \to M$ 是浸入,如果对于 $\forall p \in N$ 的微分 $f_{*,p}: T_pN \to T_{f(p)}M$ 都是单射. 如果是满射那么被称为浸没.

例. 显然,浸入的一个经典例子是 $\iota(x^1,\dots,x^n)=(x^1,\dots,x^n,0,\dots,0)$ 这样的向更高维的拓展. 而浸没的例子则是 $\pi(x^1,\dots,x^m,x^{m+1},\dots,x^n)=(x^1,\dots,x^m)$ 这样向更低维的投影.

命题. 令流形 N,M 的维度分别为 n,m. 如果一个光滑映射 $f:N\to M$ 是 $p\in N$ 的一个浸入,那么其在 p 的邻域上有常秩 n. 如果一个光滑映射 $f:N\to M$ 是 $p\in N$ 的一个浸没,那么其在 p 的邻域上有常秩 m.

定理. 令流形 N, M 的维度分别为 n, m.

(i)浸入定理令 $f:N\to M$ 是 $p\in N$ 的一个浸入,那么存在一个以 $p\in N$ 为中心的图表 (U,ϕ) 和以 $f(p)\in M$ 为中心的图表 (V,ψ) 使得在 $\phi(p)$ 的邻域,有

$$\psi \circ f \circ \phi^{-1}(r^1, \dots, r^n) = (r^1, \dots, r^n, 0, \dots, 0)$$

(ii) 浸没定理令 $f:N\to M$ 是 $p\in N$ 的一个浸入,那么存在一个以 $p\in N$ 为中心的图表 (U,ϕ) 和以 $f(p)\in M$ 为中心的图表 (V,ψ) 使得在 $\phi(p)$ 的邻域,有

$$\psi \circ f \circ \phi^{-1}(r^1, \dots, r^m, r^{m+1}, \dots, r^n) = (r^1, \dots, r^m)$$

推论. 一个流形间的浸没 $f: N \to M$ 是一个开映射

光滑映射的像

定理. 如果 $f: N \to M$ 是一个嵌入, 那么其像 f(N) 是 M 的一个正则子流形.

定理. 如果 $N \in M$ 的一个正则子流形,那么包含映射 $\iota: N \to M, \iota(p) = p$ 是一个嵌入

光滑映射到子流形

定理. 令 $F: N \to M$ 是 C^{∞} 的,F 的像在 $S \subset M$ 中. 如果 S 是 M 的一个正则子流形,那么诱导映射 $F: N \to S$ 是 C^{∞} 的.

切从

切从的拓扑

$$\diamondsuit TU = \bigsqcup_{p \in U} T_p U = \bigsqcup_{p \in U} T_p M$$

引理. 令 U,V 是 M 上的一个坐标开集. 如果 A 在 TU 上是开的,B 在 TV 上是开的,那么 $A \cap B$ 在 $T(U \cap V)$ 上是开的.

引理. 流形 M 包含由坐标开集构成的可数基.

命题. 流形 M 的切丛 TM 是第二可数的.

命题. 流形 M 的切丛 TM 是 Hausdorff 的.

切从上的流形结构

如果 $\{(U_{\alpha}, \phi_{\alpha})\}$ 是 M 的一个 C^{∞} 图册,那么 $\{(TU_{\alpha}, \phi_{\alpha})\}$ 是 TM 的 C^{∞} 图册

向量从

定义. 给定 $\pi: E \to M$, 我们称对于 $\forall p \in M$, 逆像 $\pi^{-1} := \pi^{-1}(\{p\})$ 为在p点的纤维,记作 E_p .

一个满射的流形间的光滑映射 $\pi: E \to M$ 是 r 阶局部平凡的,如果:

- (i) 每个纤维 $\pi^{-1}(p)$ 都是 r 维的向量空间
- (ii) 对于每个 $p \in M$,存在 p 的一个开邻域 U 和纤维保持微分同胚 $\phi: \pi^{-1}(U) \to U \times \mathbb{R}^r$,使得对于 $\forall q \in U$,该映射将纤维 $\pi^{-1}(p)$ 映射为相应的纤维 $q \times \mathbb{R}^r$ 作为向量空间同构.
- $\{U\}$ 作为 M 的一个开覆盖,集合 $\{(U,\phi)\}$ 是 E 的一个局部平凡化,同时 $\{U\}$ 称为对于 E , M 的一个平凡化开集.
- 一个 C^{∞} 的秩 r 的向量丛是 (E, M, π) ,包含流形 E, M,和一个 r 阶局部平凡的光滑满射 $\pi: E \to M$, E 是总空间,M 是基空间.我们也可以称 E 为 M 的向量丛.

截面

定义. 流形 M 上的一个向量场 X 是分配切向量 $X_p \in T_p M$ 到每个 $p \in M$ 的函数. 对于切丛而言,M 上的向量场是切丛 $\pi: TM \to M$ 的一个截面向量场是光滑的,如果 M 到 TM 的映射是光滑的

凸函数与单位分解

C^{∞} 凸函数

定义. 流形 M 上, C^{∞} 函数 f 的支集定义为 $\mathrm{supp} f = \overline{\{p \in M | f(p) \neq 0\}}$ $q \in M$ 且 U 为 q 的一个邻域的话,在 p 的凸函数指的是任何一个连续函数 f,它在 q 的邻域里恒为 1,且 $\mathrm{supp} f \subset U$

命题. C^{∞} 函数的延拓

假设 f 是一个定义在 $q \in M$ 的邻域 U 的光滑函数,那么存在一个 M 上的光滑函数 \widetilde{f} 使得在 q 的更小的 邻域内与 f 一致.

单位分解

定义. 如果 $\{U_i\}_{i\in I}$ 是 M 的一个有限开覆盖,那么从属于 $\{U_i\}$ 的 C^∞ 单位分解是一组非负的 C^∞ 函数 $\{\rho_i\}_{i\in I}$,满足:

- $(i)\sum \rho_i = 1$
- (ii) supp $\rho_i \subset U_i$

定义. 一个流形上的 C^{∞} 单位分解是指一组 C^{∞} 函数 $\{\rho_{\alpha}\}_{\alpha\in A}$ 使得:

- $(i)\{\operatorname{supp}_{\alpha}\}_{\alpha\in A}$ 是局部有限的
- (ii) $\sum \rho_{\alpha} = 1$

单位分解的存在性

引理. 如果 ρ_1, \dots, ρ_m 是流形 M 上的实值函数,那么 $\operatorname{supp}\left(\sum \rho_i\right) \subset \bigcup \operatorname{supp} \rho_i$

命题. 设 M 是一个紧流形, $\{U_{\alpha}\}_{\alpha\in A}$ 是 M 的一个开覆盖,那么存在一个从属于 $\{U_{\alpha}\}_{\alpha\in A}$ 的 C^{∞} 单位 分解 $\{\rho_{\alpha}\}_{\alpha\in A}$

定理. C^{∞} 单位分解的存在性

令 $\{U_{\alpha}\}_{\alpha\in A}$ 是流形 M 的一个开覆盖

- (i) 存在一个带有紧支集的 C^{∞} 单位分解 $\{\phi_k\}_{k=1}^{\infty}$,使得 $\forall k$, $\operatorname{supp} \phi_k \subset U_{\alpha}$ 对某些 $\alpha \in A$ 成立
- (ii) 若对紧支集无要求,那么存在从属于 $\{U_{\alpha}\}$ 的 C^{∞} 单位分解 $\{\rho_{\alpha}\}$

向量场

向量场的光滑性

命题. 一个 M 上的向量场 X 是光滑的,当且仅当对于 M 上任意的光滑函数 f,函数 Xf 在 M 上是光滑的

积分曲线

定义. 令 X 是一个流形 M 上的一个光滑向量场, $p \in M$. 开始于 p 的 X 的积分曲线是一个曲线 $c:(a,b)\to M$,定义在开区间 (a,b) 上,满足 $c(0)=p,c'(t)=X_{c(t)}$

定义. 我们称一个积分曲线是极大的,如果其定义域不能扩展到更大的区间

局部流

定理. 令 V 是一个 \mathbb{R}^n 的开集, $p_0 \in V$, $f: V \to \mathbb{R}^n$ 是 C^{∞} 函数. 那么微分方程 $\frac{\mathrm{d}y}{\mathrm{d}t} = f(y)$, $y(0) = p_0$ 有唯一的光滑解 $y: (a(p_0), b(p_0)) \to V$,其中 $(a(p_0), b(p_0))$ 是包含 0 的极大区间

定理. 令 V 是 \mathbb{R}^n 的一个开集, $f:V\to\mathbb{R}^n$ 是 V 上一个光滑函数. 对于每个 $p_0\in V$,存在 $p_0\in V$ 的一个邻域 W , $\epsilon>0$,和一个光滑函数 $y:(-\epsilon,\epsilon)\times W\to V$,使得对于 $\forall (t,q)\in(-\epsilon,\epsilon)\times W$, $\frac{\partial y}{\partial t}(t,q)=f(y(t,q))$,y(0,q)=q

定义. 一个关于光滑流形上的开集 U 中的点 p 的局部流是一个光滑函数 $F: (-\epsilon, \epsilon) \times W \to U$,这里 ϵ 是 正实数,W 是 $p \in U$ 的一个邻域,使得 $F_t(q) = F(t,q)$ 的话,有:

- (i) $F_0(q) = q$, $\forall q \in W$
- (ii) $F_t(F_s(q)) = F_{t+s}(q)$ 如果两边都被定义的话

李括号

假设 X,Y 是定义在流形 M 的开子集 U 上的两个光滑向量场,将其视为作用在 $C^{\infty}(U)$ 的导子. 对于 $C^{\infty}(U)$ 中的函数 f , Yf 是 U 上的 C^{∞} 函数,定义为 (XY) f:=X (Yf) 的函数同样是 U 上的 C^{∞} 函

猫

数.

对于 $f, g \in C^{\infty}(U)$,有

$$XY (fg) = X ((Yf) g + fYg)$$

= $(XYf) g + (Yf) (Xg) + (Xf) (Yg) + f (XYg)$

使 XY 不为导子的 (Yf)(Xg),(Xf)(Yg) 是对称的. 于是我们只需要对 XY(fg) 和 YX(fg) 作差即可消掉,从而得到 XY-YX 是 $C^{\infty}(U)$ 的导子.

给定两个定义在 U 上的光滑向量场 $X,Y,p\in U$,定义它们之间的李括号为

$$[X,Y]_p f = (X_p Y - Y_p X) f$$

这里 $f \in p$ 点任意 C^{∞} 函数的芽.

命题. 如果 $X,Y \in M$ 上光滑的向量场的话, [X,y] 在 M 上也是光滑的

例. Jacobi 恒等式

$$\sum_{CUC} [X, [Y, Z]] = 0$$

定义. 李代数是一个实向量空间 V, 配有括积计算 $[,]: V \times V \to V$, 对于 $\forall a,b \in \mathbb{R}^n, X,Y,Z \in V$, 满足以下性质:

(i) 双线性:

$$[aX + bY, Z] = a[X, Z] + b[Y, Z]$$

 $[Z, aX + bY] = a[Z, X] + b[Z, Y]$

(ii) 反交换性:

$$[Y, X] = -[X, Y]$$

(iii) Jacobi 恒等式:

$$\sum_{X \in \mathcal{X}} [X, [Y, Z]] = 0$$

定义. 一个李代数 V 的导子是一个线性映射 $D: V \to V$ 满足:

$$D[Y, Z] = [DY, Z] + [Y, DZ]$$

相关向量场

定义. 令 $F:N\to M$ 是流形间的光滑映射,一个 N 上的向量场 X 是 F- 相关于 M 上的向量场 \widetilde{X} ,如果对 $\forall p\in N, F_{*,p}\left(X_p\right)=\widetilde{X}_{F(p)}$

命题. N 上的向量场 X 和 M 上的向量场 \tilde{X} 是 F- 相关的,当且仅当

$$\forall g \in C^{\infty}\left(M\right), X\left(g \circ F\right) = \left(\widetilde{X}g\right) \circ F$$

命题. 令 $F:N\to M$ 是流形间的光滑映射. 如果 N 上的光滑向量场 X,Y 是 F- 相关于 M 上的光滑向量场 $\widetilde{X},\widetilde{Y}$. 那么 [X,Y] 是 F- 相关于 $\left[\widetilde{X},\widetilde{Y}\right]$ 的

李群

李群的例子

定义. 李群是指一个 C^{∞} 流形 G 在是一个群的同时,满足以下运算是 C^{∞} 的:

$$\mu: G \times G \to G, \mu(a,b) = ab$$

 $\iota: G \to G, \iota(a) = a^{-1}$

子李群

定义. 李群G的子李群是满足以下条件的抽象子群H:

(i) H 是一个抽象子群

(ii) H 是通过包含映射定义的浸入子流形

(iii) H 上的群运算是 C^{∞} 的

命题. 如果 H 是一个抽象子群和一个李群 G 的正则子流形, 那么它是 G 的子李群

定理. 闭子群定理

一个闭的李群的子群是一个嵌入的子李群

矩阵的迹

定义
$$n \times n$$
 矩阵 X 的迹为 $tr(X) = \sum_{i=1}^{n} x_{ii}$

引理. (i) $\forall A, B \in \mathbb{R}^{n \times n}, tr\left(AB\right) = tr\left(BA\right)$ (ii) $X \in \mathbb{R}^{n \times n}, A \in GL\left(n, \mathbb{R}\right), tr\left(AXA^{-1}\right) = tr\left(X\right)$

命题. 矩阵的迹等于其特征值的总和

命题. $\forall X \in \mathbb{R}^{n \times n}, \det(e^X) = e^{trX}$

行列式微分

命题. $\forall X \in \mathbb{R}^{n \times n}, \det_{*,I}(X) = trX$

李代数

命题. 切空间 $T_I(SL(n,\mathbb{R}))$ 是包含所有迹 0 的矩阵的 $\mathbb{R}^{n\times n}$ 的子空间

命题. 一个李群 G 上左不变的向量空间 X 是光滑的

命题. 如果 X,Y 是 G 上的左不变向量场,那么 [X,Y] 也是

命题. 如果 $A,B\in T_eG$ 且 $\widetilde{A},\widetilde{B}$ 是他们生成的左不变向量场,那么 $\left[\widetilde{A},\widetilde{B}\right]=\left[A,B\right]^\sim$

命題.
$$A = \sum a_{ij} \frac{\partial}{\partial x_{ij}} \Big|_{I}, B = \sum b_{ij} \frac{\partial}{\partial x_{ij}} \Big|_{I} \in T_{I} (GL (n, \mathbb{R}))$$

如果 $[A, B] = \left[\widetilde{A}, \widetilde{B} \right]_{I} = \sum c_{ij} \frac{\partial}{\partial x_{ij}} \Big|_{I}, \quad \text{那 2 } c_{ij} = \sum_{L} a_{ik} b_{kj} - b_{ik} a_{kj}$

定义. 令 $F: H \to G$ 是李群间的一个光滑映射. 定义 $F_*: L(H) \to L(G)$ 为 $F_*\left(\widetilde{A}\right) = (F_*A)^{\sim}$, $\forall A \in T_eH$

定义. 李群 H,G 的映射 $F:H\to G$ 是李群同态,如果这是个光滑映射且这是个群同态

命题. 如果 $F: H \to G$ 是李群同态, $A \in T_e J$ 是在 H 的单位 e 处的切向量,那么 G 上的左不变向量场 $F_* \tilde{A}$ 是 F- 相关于 H 上的左不变向量场 \tilde{A}

微分 1- 形式

函数的微分

定义. 如果 f 是一个在流形 M 上的光滑的函数,其微分定义为 M 上的 1- 形式使得 $\forall p \in M$ 且 $X_p \in T_p M$ 的话 $(\mathrm{d} f)_p(X_p) = X_p f$

命题. 如果 $f: M \to \mathbb{R}$ 是光滑的,那么 $\forall p \in M, X_p \in T_p M$,有 $f_*(X_p) = (\mathrm{d}f)_p(X_p) \frac{\partial}{\partial x}\Big|_{f(p)}$

微分 1- 形式的局部表示

 $\Rightarrow (U, \phi) = (U, x^1, \dots, x^n)$ 是流形 M 上的坐标图,那么微分 dx^1, \dots, dx^n 是 U 上的 1- 形式

命题. 对于每个 $p \in U$,余向量 $\left(dx^1\right)_p, \cdots, \left(dx^n\right)_p$ 构成了对偶于以 $\left(\frac{\partial}{\partial x^1}\right)_p, \cdots, \left(\frac{\partial}{\partial x^n}\right)_p$ 为基的切空间 T_pM 的余切空间 T_p^*M 的基

外微分

定义. 流形 M 上的外微分/外导数是一个 \mathbb{R} — 线性映射 $D: \Omega^*(M) : \to \Omega^*(M)$ 满足:

- (i) D 是 1 阶反导数
- $(ii) D \circ D = 0$
- (iii) 如果 f 是光滑函数, X 是流形 M 上的光滑向量场, 那么 (Df)(X) = Xf

局部算子

定义. 算子 $D: \Omega^*(M) \to \Omega^*(M)$ 被称为是局部的,如果对于 $\forall k \geq 0$,k- 形式 $\omega \in \Omega^k(M)$ 在开集 U 上限制为 0,那么在 U 上有 $D\omega \equiv 0$

命题. 任意 $\Omega^*(M)$ 上的反微分 D 都是局部算子

从局部形式拓展到全局形式

命题. $\Diamond \tau \in M$ 的一个开集 U 上的光滑微分形式. 对于 $\forall p \in U$, M 上存在一个光滑全局形式 $\widetilde{\tau}$ 在 $p \in U$ 的邻域上与 τ 一致

外导数的存在性和唯一性

定向

定向和 n- 余向量

引理. u_1, \dots, u_n 和 v_1, \dots, v_n 是向量空间 V 的向量,令 $u_j = \sum_{i=1}^n a_{ij} v_i, j = 1, \dots, n$,对于实矩阵 $A = [a_{ij}]$. 如果 ω 是一个 V 上的 n— 余向量,那么 $\omega(u_1, \dots, u_n) = (\det A) \omega(v_1, \dots, v_n)$

流形上的定向

定义. n 维流形 M 是可定向的,如果其有一个光滑的无处消失 (Nowhere-Vanishing) 的 n- 形式

命题. U,V 是 \mathbb{R}^n 的开子集,一个光滑映射 $F:U\to V$ 是保向的,当且仅当 Jacobi 行列式 $\left[\frac{\partial F^i}{\partial x^j}\right]$ 在 U 上每处都是正的

定向与图册

定义. M 上的图册被称作定向的,如果对于图册上任意的两个重叠图 $\left(U,x^1,\cdots,x^n\right)$ 和 $\left(V,y^1,\cdots,y^n\right)$, Jacobi 行列式 $\left[\frac{\partial y^i}{\partial x^j}\right]$ 在 $U\cap V$ 上任意位置都是正的

命题. n 维流形 M 有一个光滑的无处消失的 n— 形式 ω , 当且仅当其拥有可定向图册

定义. 流形 M 的两个定向图册 $\{(U_{\alpha},\phi_{\alpha})\}$ 和 $\{(V_{\beta},\psi_{\beta})\}$ 是等价的,如果变换函数

$$\phi_{\alpha} \circ \psi_{\beta}^{-1} : \psi_{\beta} \left(U_{\alpha} \cap V_{\beta} \right) \to \phi_{\alpha} \left(U_{\alpha} \cap V_{\beta} \right)$$

对于所有的 α, β , Jacobi 行列式都是正的

有界流形

区域不变

定义. $S \subset \mathbb{R}^n$ 是一个任意子集,函数 $f: S \to \mathbb{R}^m$ 在 $p \in S$ 是光滑的,如果存在 $p \in \mathbb{R}^n$ 的邻域 U 和光滑函数 $f: U \to \mathbb{R}^m$ 使得在 $U \cap S$ 上 f = f. 这个函数在 S 上是光滑的如果其在 S 的每个点上都是光滑的

定理. C^{∞} 局域不变

令 $U \subset \mathbb{R}^n$ 是开子集, $S \subset \mathbb{R}^n$ 是任意子集, $f: U \to S$ 是微分同胚. 那么 S 在 \mathbb{R}^n 是开的

有界流形

定义. 一个拓扑有界 n- 流形是一个局部 \mathbb{H}^n 的第二可数的 Hausdorff 拓扑空间

维数大于1的流形的边界定向

引理. 假设 $n\geq 2$. 令 (U,ϕ) 和 (V,ψ) 是可定向流形 M 的定向图册里的两个图. 假设 $U,V,\partial M$ 有非空交叉,那么过度函数对边界的限制 $B:=\phi(U\cap V)\cap\partial\mathbb{H}^n$

$$\psi \circ \phi^{-1}\Big|_{B} : \phi(U \cap V) \cap \partial \mathbb{H}^{n} \to \psi(U \cap V) \cap \partial \mathbb{H}^{n}$$

有正的 Jacobi 行列式

De Rham 上同调

De Rham 上同调

令 $Z^k(M)$ 为流形 M 上所有闭的 k- 形式的向量空间, $B^k(M)$ 为所有恰当的 k- 形式的向量空间. 因为所有的恰当形式都是闭的,于是 $B^k(M)$ 是 $Z^k(M)$ 的子空间

广相

度规张量场

定义. 向量空间 V 上的一个度规 g 是 V 上一个对称、非退化的 (0,2) 型张量. 对称指 $g(v,u)=g(u,v), \forall v,u\in V$,非退化是指 $g(v,u)=0, \forall u\in V \Rightarrow v=0\in V$

定义. 向量 $u,v \in V$ 是相互正交的,如果 g(v,u) = 0. V 的基底是正交归一的,如果其满足

$$g_{\mu\nu} = \begin{cases} 0 & \mu \neq \nu \\ \pm 1 & \mu = \nu \end{cases}$$

因此度规在正交归一基底的分量排成的矩阵是对角矩阵,且对角元史+1或-1.

定义. 用正交归一基底写成对角矩阵后,对角元全是 +1 的度规是正定的或是黎曼的,对角元全为 -1 的 度规叫负定的,其余度规称为不定的. 只有一个对角元为 -1 的不定度规称为洛伦兹的. 对角线之和称为 度规的号差

注意. 关于洛伦兹度规,在一种习惯中,四维洛伦兹度规的对角元是(-1,1,1,1),号差是+2,而在另外一种习惯中,采用的是(1,-1,-1,-1),号差是-2. 为了方便采用前者

定义. 带洛伦兹度规g的向量空间V的元素有三种

$$\begin{cases} g(v,v) > 0 & 类空向量 \\ g(v,v) = 0 & 类光向量 \\ g(v,v) < 0 & 类时向量 \end{cases}$$

而这在号差为 -2 的度规下则是相反的

定义. 流形 M 上对称的、处处非退化的 (0,2) 型张量场称之为度规张量场

而度规场最大的作用就是定义曲线长度. 不妨先考虑最简单的二维欧氏空间,假设曲线 C(t) 在自然 坐标系 $\{x,y\}$ 的参数式为 x=x(t), y=y(t), 那么曲线的线元长的平方 dl^2 为

$$dl^{2} = dx^{2} - dy^{2}$$

$$= \left[\left(\frac{dx}{dt} \right)^{2} + \left(\frac{dy}{dt} \right)^{2} \right] dt^{2}$$

$$= \left[\left(T^{1} \right)^{2} + \left(T^{2} \right)^{2} \right] dt^{2}$$

$$= \left| T \right|^{2} dt^{2}$$

这里 T 是 C(t) 的切向量,由上可知,dl = |T| dt,那么 C(t) 的线长为 $l = \int |T| dt$.

上述过程可推导到带有正定度规场 g 的任意流形 M 上. 设 C(t) 是 M 上任意 C^1 曲线,T 是其切向量,那么 $|T|=\sqrt{g\left(T,T\right)}$,线长自然定义为 $l:=\int\sqrt{g\left(T,T\right)}\mathrm{d}t$.

对于有洛伦兹度规场 g 的流形 M,如果该曲线所有的切向量都类空的话,该曲线为类空曲线,类似地,我们可以定义类时曲线和类光曲线. 而由于类时曲线 g(T,T)<0,因此流形 M 上洛伦兹度规场 g 的线长的定义为 $l:=\int \sqrt{|g(T,T)|}\mathrm{d}t, T\equiv \frac{\partial}{\partial t}$

由于线长与其参数化无关,那么当然也和坐标系无关. 但如果其位于坐标系 $\{x^{\mu}\}$ 的坐标域内的话,线长也可以借助坐标系来计算

$$g(T,T) = g\left(T^{\mu}\frac{\partial}{\partial x^{\mu}}, T^{\nu}\frac{\partial}{\partial x^{\nu}}\right)$$
$$= T^{\mu}T^{\nu}g\left(\frac{\partial}{\partial x^{\mu}}, \frac{\partial}{\partial x^{\nu}}\right)$$
$$= \left(\frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}\right)\left(\frac{\mathrm{d}x^{\nu}}{\mathrm{d}t}\right)g_{\mu\nu}$$

由于 $ds^2 = g_{\mu\nu} dx^\mu dx^\nu$ 含有度规 g 在所涉及的坐标系的全部分量 $g_{\mu\nu}$,因此可以直接读出度规的全部坐标分量

例如,设二维流形上的度规 g 在坐标系 $\{t,x\}$ 的线元表示为 $ds^2 = -xdt^2 + dx^2 + 4dtdx$,那么可以读出, $g_{tt} = -x, g_{xx} = 1, g_{tx} = g_{xt} = 2$,因此给定线元表达式就等价于给出度规场

定义. 设流形 M 上的度规场是 g, 那么 (M,g) 称为广义黎曼空间. 这里 g 正定,称为黎曼空间. 若 g 是洛伦兹,那么叫伪黎曼空间.

下面给两个比较经典的例子, 欧氏空间和闵氏空间

定义. 令 $\{x^{\mu}\}$ 是 \mathbb{R}^n 的自然坐标,在 \mathbb{R}^n 上定义的度规张量场 δ 为 $\delta := \delta_{\mu\nu} \mathrm{d} x^{\mu} \otimes \mathrm{d} x^{\nu}$,那么称 (\mathbb{R}^n, δ) 是 欧氏空间, δ 为欧氏度规.

于是我们注意到 δ 在自然坐标系下的对偶坐标基底 $\{dx^{\mu}\otimes dx^{\nu}\}$ 的分量是 $\delta\equiv\begin{cases} 0 & \mu\neq\nu\\ +1 & \mu=\nu\end{cases}$ 因此欧氏度规下的线元表达式是 $ds^2=\delta_{\mu\nu}dx^{\mu}dx^{\nu}$. 若 n=2,那么显然 $ds^2=(dx^1)^2+(dx^2)^2$. 而由于

$$\delta\left(\frac{\partial}{\partial x^{\alpha}}, \frac{\partial}{\partial x^{\beta}}\right) = \delta_{\mu\nu} dx^{\mu} \otimes dx^{\nu} \left(\frac{\partial}{\partial x^{\alpha}}, \frac{\partial}{\partial x^{\beta}}\right)$$
$$= \delta_{\mu\nu} dx^{\mu} \left(\frac{\partial}{\partial x^{\alpha}}\right) dx^{\nu} \left(\frac{\partial}{\partial x^{\beta}}\right)$$

因此 $\delta\left(\frac{\partial}{\partial x^{\alpha}}, \frac{\partial}{\partial x^{\beta}}\right) = \delta_{\alpha\beta}$. 事实上不止是自然坐标系满足

$$x' = x + a \quad y' = y + b$$

$$x' = x \cos \alpha + y \sin \alpha \quad y' = -x \sin \alpha + y \cos \alpha$$

$$x' = -x \quad y' = y$$

$$x' = x \quad y' = -y$$

上面的四种方式定义的坐标系也满足,其中前两个分别是平移和旋转,后两种则是反射. 另一方面, $\delta_{\mu\nu}$ 是 δ 在笛卡尔系的分量,其在非笛卡尔系的分量则不是 $\delta_{\mu\nu}$.

欧氏空间是最简单的黎曼空间,而与之相对的最简单的伪黎曼空间闵氏时空里,为了突出四维洛伦兹度规对角化后对角元的-1,将其所在的行和列记作0行0列。对角线的元素记作 $\eta_{\mu\nu}$,即 $\eta_{00}\equiv -1,\eta_{11}\equiv -1$

规对用化后对用元的
$$-1$$
,将具所在的行和列记作 0 行 0 列. 对用线的元素 $\eta_{22} \equiv \eta_{33} \equiv 1$,若是推广到 n 维的话, $\eta_{\mu\nu} \equiv \begin{cases} 0 & \mu \neq \nu \\ -1 & \mu = \nu = 0 \\ +1 & \mu = \nu = 1, \cdots, n-1 \end{cases}$

定义. 设 $\{x^{\mu}\}$ 是 \mathbb{R}^n 的自然坐标,定义在 \mathbb{R}^n 的度规张量场 η 为 $\eta:=\eta_{\mu\nu}dx^{\mu}\otimes dx^{\nu}$,则 $\left(\mathbb{R}^4,\eta\right)$ 是 n 维闵氏空间, η 是闵氏度规

和欧氏空间类似,容易证明 $\eta\left(\frac{\partial}{\partial x^{\alpha}}, \frac{\partial}{\partial x^{\beta}}\right) = \eta_{\alpha\beta}$. 同样的,除了自然坐标系外,我们也注意到

$$t' = t + a \quad x' = x + b$$

$$t' = t \cosh \lambda + x \sinh \lambda \quad x' = t \sinh \lambda + x \cosh \lambda$$

$$t' = -t \quad x' = x$$

$$t' = t \quad x' = -x$$

类似的,第一种是平移,第二种是伪转动,后两种是反射. 且 η 在非洛伦兹坐标基底的分量不等于 $\eta_{\mu\nu}$

抽象指标记号

 $1. v^a$ 是向量,上标 a 等价于 \vec{v} 的 \rightarrow ,因此不会谈及 a=1 之类的问题. ω_a 是对偶向量, T_c^{ab} 代表 (2,1) 型 张量. 虽然 v^a 和 v^b 代表相同向量,但在写等式时要注意指标平衡,不能出现 $\alpha u^a + v^b = w^a$ 的情况.

2. 重复上下抽象指标表示对这两个指标求缩并. 如:

 $T_a^a = T(e^{\mu^*}; e_\mu) = T_\mu^\mu, T_a^{ab} = T(e^{\mu^*}, \cdot; e_\mu), T_b^{ab} = T(\cdot, e^{\mu^*}; e_\mu)$

3. 张量积记号省略. 例如 $T \in \mathcal{I}_V(2,1), S \in \mathcal{I}_V(1,1), 那么 T \otimes S$ 记作 $T_c^{ab}S_e^d \cdot \omega \otimes \mu(v,u)$ 既可以写成 $\omega_a \mu_b v^a u^b$ 也可以写成 $\mu_b \omega_a v^a u^b$,由于 $\omega_a \mu_b$ 和 $\mu_b \omega_a$ 的作用对象都是 $v^a u^b$,因此 $\omega_p \mu_b = \mu_b \omega_a$. 换言之代 表张量的字母带着自己的抽象指标可以交换,而张量积的不可交换性体现在 $\omega_a \mu_b \neq \omega_b \mu_a$.

4. 在涉及张量的分量时,相应的指标(具体指标)类似于 μ, ν, α, β 则可以被问及 $\mu = 1$ 还是 $\mu = 2$ 这样的问题. 张量在基矢上的展开式 $T = T_{\sigma}^{\mu\nu} e_{\mu} \otimes e_{\nu} \otimes e^{\sigma*}$ 写作 $T_{c}^{ab} = T_{\sigma}^{\mu\nu} (e_{\mu})^{a} (e_{\nu})^{b} (e^{\sigma})_{c}$. 5. $\nu_{a} = g_{ab}\nu^{b}, \omega^{a} = g^{ab}\omega_{b}$ 表明,可以用 g_{ab}, g^{ab} 对上下指标做下降,上升处理.

 \mathbf{M} . 四维闵氏度规 η_{ab} 的抽象指标表达式

按照定义, $\eta_{ab} := \eta_{\mu\nu} (dx^{\mu})_a (dx^{\nu})_b$, 这里 $\{(dx^{\mu})_a\}$ 是洛伦兹坐标系的对偶基底,于是

$$\eta_{ab} = -(dt)_a (dt)_b + (dx)_a (dx)_b + (dy)_a (dy)_b + (dz)_a (dz)_b$$

这与线元表达式 $ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$ 相对应, 采用球坐标系 $\{t, r, \theta, \phi\}$ 的话, 可以得到

$$\eta_{ab} = -\left(dt\right)_a \left(dt\right)_b + \left(dr\right)_a \left(dr\right)_b + r^2 \left(d\theta\right)_a \left(d\theta\right)_b + r^2 \sin^2\theta \left(d\phi\right)_a \left(d\phi\right)_b$$

这和线元表达式 $ds^2 = -dt^2 + dr^2 + r^2 \left(d\theta^2 + \sin^2\theta d\phi\right)^2$ 相对应.

在抽象指标记号中,坐标基矢记作 $\left(\frac{\partial}{\partial x^{\mu}}\right)^{a}$,对偶坐标基矢记作 $\left(dx^{\mu}\right)_{a}$,用度规 g_{ab} 和 g^{ab} 分别进行 降,升指标,得对偶向量 $g_{ab}\left(\frac{\partial}{\partial x^{\mu}}\right)^{b}$ 和向量 $g^{ab}\left(dx^{\mu}\right)_{b}$. 用 ω_{a} 简记 $g_{ab}\left(\frac{\partial}{\partial x^{\mu}}\right)^{b}$ 并用对偶向量基矢展 开为 $g_{ab}\left(\frac{\partial}{\partial x^{\mu}}\right)^{b} = \omega_{\nu} (dx^{\nu})_{a}$,两边作用于 $\left(\frac{\partial}{\partial x^{\sigma}}\right)^{a}$ 后得到 $g_{\sigma\mu} = \omega_{\sigma}$. 因此 $g_{ab}\left(\frac{\partial}{\partial x^{\mu}}\right)^{b} = g_{\mu\nu} (dx^{\nu})_{a}$, 类似可得 $g^{ab}\left(dx^{\mu}\right)_{b}=g^{\mu\nu}\left(\frac{\partial}{\partial x^{\nu}}\right)^{\alpha}$ 当 $g_{ab} = \delta_{ab}$ 且 $\{x^{\mu}\}$ 为笛卡尔系的话,有

$$\delta_{ab} \left(\frac{\partial}{\partial x^{\mu}} \right)^b = (dx^{\mu})_a \ \delta^{ab} (dx^{\mu})_b = \left(\frac{\partial}{\partial x^{\mu}} \right)^a$$

当 $g_{ab} = \eta_{ab}$ 且 $\{x^{\mu}\}$ 为洛伦兹系的话,

$$\eta_{ab} \left(\frac{\partial}{\partial x^0} \right)^b = -\left(dx^0 \right)_a \ \eta_{ab} \left(\frac{\partial}{\partial x^i} \right)^b = \left(dx^i \right)_a$$
$$\eta^{ab} \left(dx^0 \right)_b = -\left(\frac{\partial}{\partial x^0} \right)^a \ \eta^{ab} \left(dx^i \right)_b = \left(\frac{\partial}{\partial x^i} \right)^a$$

此时的 i 不是抽象指标而是具体的 i = 1, 2, 3

张量的上指标和下指标通常被称作逆变指标和协变指标,相应的,向量 ν^a 和对偶向量 ω_a 分别称为逆变 矢量和协变矢量.

定义. (0,2) 型张量 T_{ab} 的对称部分 $T_{(ab)}$ 和反称部分 $T_{[ab]}$ 分别定义为

$$T_{(ab)} := \frac{1}{2} (T_{ab} + T_{ba})$$

 $T_{[ab]} := \frac{1}{2} (T_{ab} - T_{ba})$

一般地, (0,l) 型张量 $T_{a_1...a_l}$ 的对称和反称部分定义为

$$\begin{split} T_{(a_1 \cdots a_l)} &:= \frac{1}{l!} \sum_{\pi} T_{a_{\pi(1)} \cdots a_{\pi(l)}} \\ T_{[a_1 \cdots a_l]} &:= \frac{1}{l!} \sum_{\pi} \delta_{\pi} T_{a_{\pi(1)} \cdots a_{\pi(l)}} \end{split}$$

这里π是指排列

导数算符

定义. 令 $\mathscr{F}_M(k,l)$ 代表流形 M 上全体 C^∞ 的 (k,l) 型张量场的集合. (函数可以看作 (0,0) 型张量场 (标量场),因此 $\mathscr{F}_M(0,0) \equiv \mathscr{F}_M$).映射 $\nabla : \mathscr{F}_M(k,l) \to \mathscr{F}_M(k,l+1)$ 称为M上的无挠导数算符,如

$$1. \nabla_{a} \left(\alpha T_{c_{1} \cdots c_{l}}^{b_{1} \cdots b_{k}} + \beta S_{c_{1} \cdots c_{l}}^{b_{1} \cdots b_{k}} \right) = \alpha \nabla_{a} T_{c_{1} \cdots c_{l}}^{b_{1} \cdots b_{k}} + \beta \nabla_{a} S_{c_{1} \cdots c_{l}}^{b_{1} \cdots b_{k}}, \forall T_{c_{1} \cdots c_{l}}^{b_{1} \cdots b_{k}}, S_{c_{1} \cdots c_{l}}^{b_{1} \cdots b_{k}} \in \mathscr{F}_{M} \left(k, l \right), \alpha, \beta \in \mathbb{R}$$

$$2. \nabla_{a} \left(T_{c_{1} \cdots c_{l}}^{b_{1} \cdots b_{k}} S_{e_{1} \cdots e_{l'}}^{d_{1} \cdots d_{k'}} \right) = T_{c_{1} \cdots c_{l}}^{b_{1} \cdots b_{k}} \nabla_{a} S_{e_{1} \cdots e_{l'}}^{d_{1} \cdots d_{k'}} + S_{e_{1} \cdots e_{l'}}^{d_{1} \cdots d_{k'}} \nabla_{a} T_{c_{1} \cdots c_{l}}^{b_{1} \cdots b_{k}},$$

 $\forall T_{c_{1}\cdots c_{l}}^{b_{1}\cdots b_{k}}\in\mathscr{F}_{M}\left(k,l\right),S_{e_{1}\cdots e_{l'}}^{d_{1}\cdots d_{k'}}\in\mathscr{F}_{M}\left(k',l'\right)$

3. 与缩并可交换顺序

4. $\nu\left(f\right) = \nu^{a} \nabla_{a} f, \forall f \in \mathscr{F}_{M}, \nu \in \mathscr{F}_{M}\left(1,0\right)$

5. $\nabla_a \nabla_b f = \nabla_b \nabla_a f, \forall f \in \mathscr{F}_M$

定理. $C_{ab}^c = C_{ba}^c$

我们将与坐标系无关的那些 ∇_a 称为协变导数算符

定义. 设 ∂_a 是 (M, ∇_a) 是任给的坐标系的普通导数算符,那么体现 ∇_a 和 ∂_a 的差别的张量场 C_{ab}^c 称为 ∇_a 在该坐标系的克里斯托费尔符号,记作 Γ_{ab}^c

定理. 流形 M 上选定度规场 g_{ab} 后,存在唯一的 ∇_a 使得 $\nabla_a g_{bc} = 0$

满足 $\nabla_a g_{bc} = 0$ 的 ∇_a 称为与 g_{bc} 适配的导数算符. 那么不难注意到

$$\Gamma^{\sigma}_{\mu\nu} = \Gamma^{c}_{ab} (dx^{\sigma})_{c} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} \left(\frac{\partial}{\partial x^{\nu}}\right)^{b}$$

$$= \frac{1}{2} (dx^{\sigma})_{c} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} \left(\frac{\partial}{\partial x^{\nu}}\right)^{b} g^{cd} (\partial_{a}g_{bd} + \partial_{b}g_{ad} - \partial_{d}g_{ab})$$

$$= \frac{1}{2} g^{\sigma\rho} (\partial_{\mu}g_{\nu\rho} + \partial_{\nu}g_{\mu\rho} - \partial_{\rho}g_{\mu\nu})$$

$$= \frac{1}{2} g^{\sigma\rho} (g_{\nu\rho,\mu} + g_{\mu\rho,\nu} - g_{\mu\nu,\rho})$$

不妨试着计算克里斯托费尔符号的具体例子.

例. 考虑二维极坐标的线元 $ds^2 = dr^2 + r^2 d\theta^2$

那么对应的度规张量
$$g_{\mu\nu}$$
 和逆 $g^{\mu\nu}$ 分别为 $g_{\mu\nu}=\left(\begin{array}{cc} 1 & 0 \\ 0 & r^2 \end{array}\right)$ 和 $g^{\mu\nu}=\left(\begin{array}{cc} 1 & 0 \\ 0 & \frac{1}{r^2} \end{array}\right)$. 这里 μ,ν 为 r,θ

接着考虑克里斯托费尔符号为 $\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\sigma} \left(\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\sigma\mu} - \partial_{\sigma} g_{\mu\nu} \right)$

由于 $\Gamma^{\lambda}_{\mu\nu}=\Gamma^{\lambda}_{\nu\mu}$ 的话,需要实际计算的 $\Gamma^{\lambda}_{\mu\nu}$ 并不很多 1. 对于 $\lambda=r$

 $\Gamma^r_{\mu\nu} = \frac{1}{2} g^{r\sigma} \left(\partial_\mu g_{\nu\sigma} + \partial_\nu g_{\sigma\mu} - \partial_\sigma g_{\mu\nu} \right) = \frac{1}{2} \cdot 1 \cdot \left(\partial_\mu g_{\nu r} + \partial_\nu g_{r\mu} - \partial_r g_{\mu\nu} \right) \ (\text{if} \ g \in \mathcal{F} \ \text{if} \ g \in$ 候非零)

$$\Gamma_{rr}^{r} = \frac{1}{2} \left(\partial_{r} g_{rr} + \partial_{r} g_{rr} - \partial_{r} g_{rr} \right) = \frac{1}{2} \partial_{r} \left(1 \right) = 0$$

$$\Gamma_{r\theta}^{r} = \frac{1}{2} \left(\partial_{r} g_{\theta r} + \partial_{\theta} g_{rr} - \partial_{r} g_{r\theta} \right) = \frac{1}{2} \left(0 + 0 - 0 \right) = 0$$

$$\Gamma_{\theta\theta}^{r} = \frac{1}{2} \left(\partial_{\theta} g_{\theta r} + \partial_{\theta} g_{r\theta} - \partial_{r} g_{\theta\theta} \right) = \frac{1}{2} \left(-2r \right) = -r$$

$$2.$$
 对于 $\lambda = \theta$

$$\Gamma^{\theta}_{\mu\nu} = \frac{1}{2}g^{\theta\sigma} \left(\partial_{\mu}g_{\nu\sigma} + \partial_{\nu}g_{\sigma\mu} - \partial_{\sigma}g_{\mu\nu}\right) = \frac{1}{2} \cdot \frac{1}{r^{2}} \cdot \left(\partial_{\mu}g_{\nu r} + \partial_{\nu}g_{r\mu} - \partial_{r}g_{\mu\nu}\right)$$

$$\Gamma^{\theta}_{rr} = \frac{1}{2r^{2}} \left(\partial_{r}g_{r\theta} + \partial_{r}g_{\theta t} - \partial_{\theta}g_{rr}\right) = 0$$

$$\Gamma^{\theta}_{r\theta} = \frac{1}{2r^{2}} \left(\partial_{r}g_{\theta\theta} + \partial_{\theta}g_{\theta r} - \partial_{\theta}g_{r\theta}\right) = \frac{1}{2r^{2}} \partial_{\theta} \left(r^{2}\right) = 0$$

$$\Gamma^{\theta}_{\theta\theta} = \frac{1}{2r^{2}} \left(\partial_{\theta}g_{\theta\theta} + \partial_{\theta}g_{\theta\theta} - \partial_{\theta}g_{\theta\theta}\right) = \frac{1}{2r^{2}} \partial_{\theta} \left(r^{2}\right) = 0$$

接着我们考虑一个稍微复杂的情况,比如史瓦西度规首先考虑史瓦西度规的线元表示,即 $ds^2 = -\left(c^2 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{rc^2}\right)^{-1}dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)$ 接着我们用 x^0 来表示时间坐标 t, $\left(x^1, x^2, x^3\right)$ 分别代表 $\left(r, \theta, \phi\right)$ 接着度规分量 $g_{\mu\nu}$ 和逆 $g^{\mu\nu}$ 分别是

$$g_{\mu\nu} = \begin{pmatrix} -\left(c^2 - \frac{2GM}{r}\right) & 0 & 0 & 0\\ 0 & \left(1 - \frac{2GM}{rc^2}\right)^{-1} & 0 & 0\\ 0 & 0 & r^2 & 0\\ 0 & 0 & 0 & r^2 \sin^2\theta \end{pmatrix}$$
$$g^{\mu\nu} = \begin{pmatrix} -\left(c^2 - \frac{2GM}{r}\right)^{-1} & 0 & 0 & 0\\ 0 & \left(1 - \frac{2GM}{rc^2}\right) & 0 & 0\\ 0 & 0 & \frac{1}{r^2} & 0\\ 0 & 0 & 0 & \frac{1}{r^2\sin^2\theta} \end{pmatrix}$$

同时我们使用自然单位制,即 G = c = 1

$$\begin{split} \Gamma^{0}_{01} &= \frac{M}{r} \left(1 - \frac{2M}{r} \right)^{-1} \\ \Gamma^{0}_{10} &= \frac{M}{r} \left(1 - \frac{2M}{r} \right)^{-1} \\ \Gamma^{1}_{10} &= \frac{M}{r^{2}} \left(1 - \frac{2M}{r} \right) \\ \Gamma^{1}_{11} &= -\frac{M}{r^{2}} \left(1 - \frac{2M}{r} \right)^{-1} \\ \Gamma^{1}_{22} &= -r \left(1 - \frac{2M}{r} \right) \\ \Gamma^{1}_{33} &= -r \left(1 - \frac{2M}{r} \right) \sin^{2} \theta \\ \Gamma^{2}_{12} &= \frac{1}{r} \\ \Gamma^{2}_{21} &= \frac{1}{r} \\ \Gamma^{2}_{33} &= -\sin \theta \cos \theta \\ \Gamma^{3}_{13} &= \frac{1}{r} \\ \Gamma^{3}_{31} &= \frac{1}{r} \\ \Gamma^{3}_{23} &= \cot \theta \\ \Gamma^{3}_{32} &= \cot \theta \end{split}$$

定义. (M, ∇_a) 上的曲线 $\gamma(t)$ 是测地线,如果其切向量 T^a 满足 $T^b \nabla_b T^a = 0$

参考文献