© Patrick Hall*

 $H_2O.ai$

July 25, 2019

^{*}This material is shared under a CC By 4.0 license which allows for editing and redistribution, even for commercial purposes. However, any derivative work should attribute the author and H2O.ai.

Contents

```
Why?
   Inaccuracy
   Sociological Biases
   Security Vulnerabilities
How?
   Holistic, Low-Risk Approach
   Sensitivity Analysis
   Residual Analysis
   Benchmark Models
   Remediation
```

What?

What is Model Debugging?

- Model debugging is an emergent discipline focused on discovering and remediating errors in the internal mechanisms and outputs of machine learning models.[†]
- Model debugging attempts to test machine learning models like code (because the models are code).
- Model debugging promotes trust directly and enhances interpretability as a side-effect.

 $^{^\}dagger See\ https://debug-ml-iclr2019.github.io/$ for numerous model debugging approaches.

Machine learning models can be inaccurate.

This probability of default classifier, g_{mono}, over-emphasizes the most important feature, a customer's most recent repayment status, PAY 0.

 $g_{\mathbf{mono}}$ also struggles to predict default for favorable statuses, $-2 \leq \text{PAY}_0 < 2$, and often cannot predict on-time payment when recent payments are late, PAY 0 > 2.

H₂O.ai

Why Bother With Model Debugging?

Machine learning models can perpetuate sociological biases [1].

	Adverse	Accuracy	TPR	TNR	FPR	FNR
	Impact	Disparity	Disparity	Disparity	Disparity	Disparity
	Ratio					
single	0.89	1.03	0.99	1.03	0.85	1.01
divorced	1.01	0.93	0.81	0.96	1.25	1.22
other	0.26	1.12	0.62	1.17	0	1.44

Group disparity metrics are out-of-range for g_{mono} across different marital statuses.

Why Bother With Model Debugging?

Machine learning models can have security vulnerabilities [2], [3], [4].

Hackers, competitors, or malicious or extorted insiders can manipulate model outcomes, steal models, and steal data!

How to Debug Models?

As part of a holistic, low-risk approach to machine learning.[‡]

Sensitivity Analysis: Search for Adversarial Examples

Sensitivity Analysis: Search for Adversarial Examples

Sensitivity Analysis: Partial Dependence and Individual Conditional Expectation (ICE)

Sensitivity Analysis: Random Attacks

Residual Analysis: Disparate Errors

PAY_0	Prevalence	Accuracy	True Positive Rate	Precision	Specificity	Negative Predicted Value	False Positive Rate	False Discovery Rate	False Negative Rate	False Omissions Rate
-2	0.049	0.857	0.3	0.119	0.885	0.961	0.115	0.881	0.7	0.039
-1	0.117	0.805	0.383	0.267	0.861	0.913	0.139	0.733	0.617	0.087
0	0.05	0.864	0.345	0.143	0.891	0.963	0.109	0.857	0.655	0.037
1	0.822	0.457	0.368	0.93	0.871	0.229	0.129	0.07	0.632	0.771
2	1	0.709	0.709	1	0.5	0	0.5	0	0.291	1
3	1	0.748	0.748	1	0.5	0	0.5	0	0.252	1
4	1	0.571	0.571	1	0.5	0	0.5	0	0.429	1
5	1	0.444	0.444	1	0.5	0	0.5	0	0.556	1
6	1	0.25	0.25	1	0.5	0	0.5	0	0.75	1
7	1	0.5	0.5	1	0.5	0	0.5	0	0.5	1
8	1	0.75	0.75	1	0.5	0	0.5	0	0.25	1
SEX	Prevalence	Accuracy	True Positive Rate	Precision	Specificity	Negative Predicted Value	False Positive Rate	False Discovery Rate	False Negative Rate	False Omissions Rate
Male	0.3	0.773	0.513	0.655	0.884	0.809	0.116	0.345	0.487	0.191
Female	0.242	0.788	0.495	0.573	0.882	0.845	0.118	0.427	0.505	0.155

Residual Analysis: Mean Local Feature Contributions

Residual Analysis: Global Importance for Predictions and Logloss

Residual Analysis: Local Feature Contributions to Logloss

Residual Analysis: Surrogate Decision Trees

Benchmark Models

References

References

This presentation:

References

- [1] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. URL: http://www.fairmlbook.org. fairmlbook.org, 2018.
- [2] Marco Barreno et al. "The Security of Machine Learning." In: Machine Learning 81.2 (2010). URL: https://people.eecs.berkeley.edu/~adj/publications/paperfiles/SecML-MLJ2010.pdf, pp. 121-148.
- [3] Reza Shokri et al. "Membership Inference Attacks Against Machine Learning Models." In: 2017 IEEE Symposium on Security and Privacy (SP). URL: https://arxiv.org/pdf/1610.05820.pdf. IEEE. 2017, pp. 3–18.
- [4] Florian Tramèr et al. "Stealing Machine Learning Models via Prediction APIs." In: 25th {USENIX} Security Symposium ({USENIX} Security 16). URL: https://www.usenix.org/system/files/conference/usenixsecurity16/ sec16_paper_tramer.pdf. 2016, pp. 601-618.

