AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (original): A pyrazole derivative represented by the following general formula ($I\square$):

$$Q^0$$
 T^0 (I α)

wherein

 R^1 represents a hydrogen atom, a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), a C_{2-6} alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B), a C_{2-9} heterocycloalkyl group

which may have the same or different 1 to 3 groups selected from the following substituent group (A), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B);

one of Q⁰ and T⁰ represents a group selected from

and the other represents a group represented by the formula: - $(CH_2)_n$ -Ar wherein Ar represents a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B) or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B); and n represents an integral number from 0 to 2, a C_{1-6} alkoxy group which may have the same or different 1 to 3 groups selected from the following substituent group (A), an optionally mono or di(C_{1-6} alkyl)-substituted amino group wherein the C_{1-6} alkyl group may have the same or different 1 to 3 groups selected from the following substituent group (A), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected

from the following substituent group (A), or a heterocyclefused phenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (B);

R represents a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B); [substituent group (A)]:

a halogen atom, a nitro group, a cyano group, an oxo group, $-G^1$, $-OG^2$, $-SG^2$, $-N(G^2)_2$, $-C(=O)G^2$, $-C(=O)OG^2$, $-C(=O)OG^2$, $-C(=O)N(G^2)_2$, $-S(=O)_2G^2$, $-S(=O)_2OG^2$, $-S(=O)_2N(G^2)_2$, $-S(=O)G^1$, $-OC(=O)G^1$, $-OC(=O)N(G^2)_2$, $-NHC(=O)G^2$, $-OS(=O)_2G^1$, $-NHS(=O)_2G^1$ and $-C(=O)NHS(=O)_2G^1$; [substituent group (B)]:

a halogen atom, a nitro group, a cyano group, $-G^1$, $-OG^2$, $-SG^2$, $-N(G^2)_2$, $-G^3OG^4$, $-G^3N(G^4)_2$, $-C(=O)G^2$, $-C(=O)OG^2$, $-C(=O)OG^2$, $-C(=O)N(G^2)_2$, $-S(=O)_2G^2$, $-S(=O)_2OG^2$, $-S(=O)_2N(G^2)_2$, $-S(=O)G^1$, $-OC(=O)G^1$, $-OC(=O)N(G^2)_2$, $-NHC(=O)G^2$, $-OS(=O)_2G^1$, $-NHS(=O)_2G^1$ and $-C(=O)NHS(=O)_2G^1$;

in the above substituent group (A) and/or (B),

 G^1 represents a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{2-6} alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), or a C_{1-9} heterocaryl

group which may have the same or different 1 to 3 groups selected from the following substituent group (D);

 G^2 represents a hydrogen atom, a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{2-6} alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C₃₋₈ cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D), a C2-9 heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D), and with the proviso that G² may be the same or different when there are 2 or more G² in the substituents;

 G^3 represents a C_{1-6} alkyl group;

 G^4 represents a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), and with the proviso that G^4 may be the same or different when there are 2 or more G^4 in the substituents;

[substituent group (C)]:

a halogen atom, a nitro group, a cyano group, an oxo group, $-G^5$, $-OG^6$, $-SG^6$, $-N(G^6)_2$, $-C(=O)G^6$, $-C(=O)OG^6$, $-C(=O)OG^6$, $-C(=O)O(G^6)_2$, $-S(=O)_2G^6$, $-S(=O)_2OG^6$, $-S(=O)_2O(G^6)_2$, $-S(=O)G^5$, $-OC(=O)G^5$, $-OC(=O)O(G^6)_2$, $-NHC(=O)G^6$, $-OS(=O)_2G^5$, $-NHS(=O)_2G^5$ and $-C(=O)NHS(=O)_2G^5$; and [substituent group (D)]:

a halogen atom, a nitro group, a cyano group, $-G^5$, $-OG^6$, $-SG^6$, $-N(G^6)_2$, $-C(=0)G^6$, $-C(=0)N(G^6)_2$, $-S(=0)_2G^6$, $-S(=0)_2OG^6$, $-S(=0)_2N(G^6)_2$, $-S(=0)G^5$, $-OC(=0)G^5$, $-OC(=0)N(G^6)_2$, $-NHS(=0)_2G^5$ and $-C(=0)NHS(=0)_2G^5$; in the substituent group (C) and/or (D),

 G^5 represents a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl, a C_{3-8} cycloalkyl group, a C_{6-10} aryl group, a C_{2-6} heterocycloalkyl group or a C_{1-9} heteroaryl group; and

 G^6 represents a hydrogen atom, a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl, a C_{3-8} cycloalkyl group, a C_{6-10} aryl group, a C_{2-9} heterocycloalkyl group or a C_{1-9} heteroaryl group, and with the proviso that G^6 may be the same or different when there are 2 or more G^6 in the substituents, or a pharmaceutically acceptable salt thereof or a prodrug thereof.

(original): A pyrazole derivative as claimed in claim 1,
 wherein

 R^1 represents a hydrogen atom, a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the substituent group (A), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the substituent group (A), or a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the substituent group (B); Q^0 represents a C_{6-10} aryl group which may have the

same or different 1 to 3 groups selected from the substituent group (B); T^0 represents a group:

; R represents a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the substituent group (B); substituent group (A) consists of a halogen atom, -OG², - SG^2 , $-N(G^2)_2$, $-C(=0)OG^2$, $-C(=0)N(G^2)_2$, $-S(=0)_2OG^2$ and - $S(=O)_2N(G^2)_2$ in which G^2 represents a hydrogen atom, a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the substituent group (C); or a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the substituent group (D); and substituent group (B) consists of a halogen atom, a nitro group, a cyano group, -G1, $-\text{OG}^2$, $-\text{SG}^2$, $-\text{C(=O)OG}^2$ in which G^1 represents a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the substituent group (C) or a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the substituent group (D); and G² has the same meaning as defined

above, or a pharmaceutically acceptable salt thereof or a prodrug thereof.

3. (original): A pyrazole derivative as claimed in claim 1, wherein one of \mathbf{Q}^0 and \mathbf{T}^0 represents a group selected from

and the other represents a group represented by the formula: - $(CH_2)_n$ -Ar, or a pharmaceutically acceptable salt thereof or a prodrug thereof.

4. (original): A pyrazole derivative as claimed in claim 3, wherein wherein Q^0 represents a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the substituent group (B); T^0 represents a group selected from

and R represents a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the substituent group (B), or a pharmaceutically acceptable salt thereof or a prodrug thereof.

5. (original): A pyrazole derivative as claimed in claim 4, wherein

T represents a group:

; and substituent group (B) consists of a halogen atom, a nitro group, a cyano group, $-G^1$, $-OG^2$, $-SG^2$ and $-C(=O)OG^2$ in which G^1 represents a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the substituent group (C) or a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the substituent group (D); and G^2 represents a hydrogen atom, a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the substituent group (C) or a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the substituent group (D), or a pharmaceutically acceptable salt thereof or a prodrug thereof.

6. (original): A pyrazole derivative as claimed in claim 1, wherein one of \mathbf{Q}^0 and \mathbf{T}^0 represents a group selected from

and the other represents a C_{1-6} alkoxy group which may have the same or different 1 to 3 groups selected from the substituent group (A), an optionally mono or $\operatorname{di}(C_{1-6} \text{ alkyl})$ -substituted amino group in which the C_{1-6} alkyl group may have the same or different 1 to 3 groups selected from the substituent group (A), or a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the substituent group (A), or a pharmaceutically acceptable salt thereof or a prodrug thereof.

7. (original): A pyrazole derivative as claimed in claim 6, wherein Q^0 represents an optionally mono or di(C_{1-6} alkyl)-substituted amino group in which the C_{1-6} alkyl group may have the same or different 1 to 3 groups selected from the substituent group (A), or a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the substituent group (A); and T^0 represents a group selected from

or a pharmaceutically acceptable salt thereof or a prodrug thereof.

8. (original): A pyrazole derivative as claimed in claim 1, wherein one of \mathbf{Q}^0 and \mathbf{T}^0 represents a group selected from

and the other represents a heterocycle-fused phenyl group which may have the same or different 1 to 3 groups selected from the substituent group (B), or a pharmaceutically acceptable salt thereof or a prodrug thereof.

9. (original): A pyrazole derivative as claimed in claim 8, wherein Q^0 represents a heterocycle-fused phenyl group which may have the same or different 1 to 3 groups selected from the substituent group (B); and T^0 represents a group selected from

or a pharmaceutically acceptable salt thereof or a prodrug thereof.

- 10. (currently amended): A pharmaceutical composition comprising as an active ingredient a pyrazole derivative as claimed in any one of claims 1 9claim 1, or a pharmaceutically acceptable salt thereof or a prodrug thereof.
- 11. (original): An inhibitor of 1,5anhydroglucitol/fructose/mannose transporter comprising as an
 active ingredient a pyrazole derivative represented by the
 following general formula (I):

$$Q \xrightarrow{N-N} T \quad (I)$$

wherein

 ${
m R}^1$ represents a hydrogen atom, a ${
m C}_{1-6}$ alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), a ${
m C}_{2-6}$ alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), a ${
m C}_{2-6}$ alkynyl group which may

have the same or different 1 to 3 groups selected from the following substituent group (A), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B);

one of Q and T represents a group selected from

and the other represents a group represented by the formula: - $(CH_2)_n$ -Ar wherein Ar represents a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B) or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B); and n represents an integral number from 0 to 2, a C_{1-6} alkyl group which may have

the same or different 1 to 3 groups selected from the following substituent group (A), a C_{1-6} alkoxy group which may have the same or different 1 to 3 groups selected from the following substituent group (A), an optionally mono or $di(C_{1-6}$ alkyl)-substituted amino group wherein the C_{1-6} alkyl group may have the same or different 1 to 3 groups selected from the following substituent group (A), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), or a heterocyclefused phenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (B);

R represents a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A), or a C_{1-9} heteroaryl group

which may have the same or different 1 to 3 groups selected from the following substituent group (B);

[substituent group (A)]:

a halogen atom, a nitro group, a cyano group, an oxo group, $-G^1$, $-OG^2$, $-SG^2$, $-N(G^2)_2$, $-C(=O)G^2$, $-C(=O)OG^2$, $-C(=O)OG^2$, $-C(=O)N(G^2)_2$, $-S(=O)_2G^2$, $-S(=O)_2OG^2$, $-S(=O)_2N(G^2)_2$, $-S(=O)G^1$, $-OC(=O)G^1$, $-OC(=O)N(G^2)_2$, $-NHC(=O)G^2$, $-OS(=O)_2G^1$, $-NHS(=O)_2G^1$ and $-C(=O)NHS(=O)_2G^1$;

[substituent group (B)]:

a halogen atom, a nitro group, a cyano group, $-G^1$, $-OG^2$, $-SG^2$, $-N(G^2)_2$, $-G^3OG^4$, $-G^3N(G^4)_2$, $-C(=O)G^2$, $-C(=O)OG^2$, $-C(=O)OG^2$, $-C(=O)N(G^2)_2$, $-S(=O)_2G^2$, $-S(=O)_2OG^2$, $-S(=O)_2N(G^2)_2$, $-S(=O)G^1$, $-OC(=O)G^1$, $-OC(=O)N(G^2)_2$, $-NHC(=O)G^2$, $-OS(=O)_2G^1$, $-NHS(=O)_2G^1$ and $-C(=O)NHS(=O)_2G^1$;

in the above substituent group (A) and/or (B),

 G^1 represents a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{2-6} alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{2-6} alkynyl group which may have the

same or different 1 to 3 groups selected from the following substituent group (C), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D);

 G^2 represents a hydrogen atom, a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{2-6} alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the

following substituent group (D), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D), and with the proviso that G^2 may be the same or different when there are 2 or more G^2 in the substituents;

 G^3 represents a C_{1-6} alkyl group;

 G^4 represents a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C), and with the proviso that G^4 may be the same or different when there are 2 or more G^4 in the substituents;

[substituent group (C)]:

[substituent group (D)]:

a halogen atom, a nitro group, a cyano group, an oxo group, $-G^5$, $-OG^6$, $-SG^6$, $-N(G^6)_2$, $-C(=O)G^6$, $-C(=O)OG^6$, $-C(=O)OG^6$, $-C(=O)O(G^6)_2$, $-S(=O)_2G^6$, $-S(=O)_2OG^6$, $-S(=O)_2O(G^6)_2$, $-S(=O)G^5$, $-OC(=O)O(G^6)_2$, and

a halogen atom, a nitro group, a cyano group, $-G^5$, $-OG^6$, $-SG^6$, $-N(G^6)_2$, $-C(=0)G^6$, $-C(=0)OG^6$, $-C(=0)N(G^6)_2$, $-S(=0)_2G^6$, $-S(=0)_2OG^6$, $-S(=0)_2N(G^6)_2$, $-S(=0)G^5$, $-OC(=0)G^5$, $-OC(=0)N(G^6)_2$, in the substituent group (C) and/or (D),

 G^5 represents a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl, a C_{3-8} cycloalkyl group, a C_{6-10} aryl group, a C_{2-6} heterocycloalkyl group or a C_{1-9} heteroaryl group; and

 G^6 represents a hydrogen atom, a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl, a C_{3-8} cycloalkyl group, a C_{6-10} aryl group, a C_{2-9} heterocycloalkyl group or a C_{1-9} heteroaryl group, and with the proviso that G^6 may be the same or different when there are 2 or more G^6 in the substituents, or a pharmaceutically acceptable salt thereof or a prodrug thereof.

12. (currently amended): An inhibitor of 1,5anhydroglucitol/fructose/mannose transporter comprising as an
active ingredient a pyrazole derivative as claimed in any one
of claims 1 9claim 1, or a pharmaceutically acceptable salt
thereof or a prodrug thereof.

- 13. (original): An agent as claimed in claim 11, which is an agent for the prevention, inhibition of progression or treatment of a disease associated with the excess uptake of at least a kind of carbohydrates selected from glucose, fructose and mannose.
- 14. (currently amended): An agent for the prevention, inhibition of progression or treatment of a disease associated with the excess uptake of at least a kind of carbohydrates selected from glucose, fructose and mannose comprising as an active ingredient a pyrazole derivative as claimed in any one of claims 1 9 claim 1, or a pharmaceutically acceptable salt thereof or a prodrug thereof.
- 15. (original): An agent as claimed in claim 13, wherein the disease associated with the excess uptake of at least a kind of carbohydrates selected from glucose, fructose and mannose is diabetic complications.
- 16. (original): An agent as claimed in claim 14, wherein the disease associated with the excess uptake of at least a kind of carbohydrates selected from glucose, fructose and mannose is diabetic complications.
- 17. (original): An agent as claimed in claim 15, wherein the diabetic complications is diabetic nephropathy.
- 18. (original): An agent as claimed in claim 16, wherein the diabetic complications is diabetic nephropathy.

- 19. (original): An agent as claimed in claim 13, wherein the disease associated with the excess uptake of at least a kind of carbohydrates selected from glucose, fructose and mannose is diabetes.
- 20. (original): An agent as claimed in claim 14, wherein the disease associated with the excess uptake of at least a kind of carbohydrates selected from glucose, fructose and mannose is diabetes.
- (currently amended): A pharmaceutical combination which 21. comprises (component a) a pyrazole derivative as claimed in any one of claims 1 9 claim 1, or a pharmaceutically acceptable salt thereof or a prodrug thereof, and (component b) at least one member selected from the group consisting of an insulin sensitivity enhancer, a glucose absorption inhibitor, a biquanide, an insulin secretion enhancer, a SGLT2 inhibitor, an insulin or insulin analogue, a glucagon receptor antagonist, an insulin receptor kinase stimulant, a tripeptidyl peptidase II inhibitor, a dipeptidyl peptidase IV inhibitor, a protein tyrosine phosphatase-1B inhibitor, a glycogen phosphorylase inhibitor, a glucose-6-phosphatase inhibitor, a fructose-bisphosphatase inhibitor, a pyruvate dehydrogenase inhibitor, a hepatic gluconeogenesis inhibitor, D-chiroinsitol, a glycogen synthase kinase-3 inhibitor, glucagon-like peptide-1, a glucagon-like peptide-1 analogue, a

glucagon-like peptide-1 agonist, amylin, an amylin analogue, an amylin agonist, an aldose reductase inhibitor, an advanced glycation endproducts formation inhibitor, a protein kinase C inhibitor, a y-aminobutyric acid receptor antagonist, a sodium channel antagonist, a transcript factor NF-kB inhibitor, a lipid peroxidase inhibitor, an N-acetylated- α -linked-aciddipeptidase inhibitor, insulin-like growth factor-I, plateletderived growth factor, a platelet-derived growth factor analogue, epidermal growth factor, nerve growth factor, a carnitine derivative, uridine, 5-hydroxy-1-methylhidantoin, EGB-761, bimoclomol, sulodexide, Y-128, a hydroxymethylglutaryl coenzyme A reductase inhibitor, a fibric acid derivative, a \$3-adrenoceptor agonist, an acyl-coenzyme A cholesterol acyltransferase inhibitor, probcol, a thyroid hormone receptor agonist, a cholesterol absorption inhibitor, a lipase inhibitor, a microsomal triglyceride transfer protein inhibitor, a lipoxygenase inhibitor, a carnitine palmitoyltransferase inhibitor, a squalene synthase inhibitor, a lowdensity lipoprotein receptor enhancer, a nicotinic acid derivative, a bile acid sequestrant, a sodium/bile acid cotransporter inhibitor, a cholesterol ester transfer protein inhibitor, an appetite suppressant, an angiotensin-

converting enzyme inhibitor, a neutral endopeptidase inhibitor, an angiotensin II receptor antagonist, an endothelin-converting enzyme inhibitor, an endothelin receptor antagonist, a diuretic agent, a calcium antagonist, a vasodilating antihypertensive agent, a sympathetic blocking agent, a centrally acting antihypertensive agent, an α_2 -adrenoceptor agonist, an antiplatelets agent, a uric acid synthesis inhibitor, a uricosuric agent and a urinary alkalinizer.

22. (original): A pyrazole derivative represented by the following general formula (II α):

$$Q^{A0}$$
 $N-N$
 T^{A0} (II α)

wherein

 R^{1A} represents a hydrogen atom, a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{2-6} alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{3-8} cycloalkyl group which

may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1);

one of Q^{A0} and T^{A0} represents a group selected from

ing protective group(s), and the other represents a group represented by the formula: $-(CH_2)_n$ -Ar wherein Ar represents a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1) or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1); and n represents an integral number from 0 to 2, a C_{1-6} alkoxy group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), an

optionally mono or di(C_{1-6} alkyl)-substituted amino group wherein the C_{1-6} alkyl group may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), or a heterocycle-fused phenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1);

 R^{A} represents a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1); [substituent group (A1)]:

a halogen atom, a nitro group, a cyano group, an oxo group, $-G^{1A}$, $-OG^{2B}$, $-SG^{2B}$, $-N(G^{2B})_2$, $-C(=0)G^{2A}$, $-C(=0)OG^{2B}$, $-C(=0)N(G^{2B})_2$, $-S(=0)_2G^{2A}$, $-S(=0)_2OG^{2A}$, $-S(=0)_2N(G^{2B})_2$, $-S(=0)_2OG^{2A}$

 $S(=0)G^{1A}$, $-OC(=0)G^{1A}$, $-OC(=0)N(G^{2B})_2$, $-NHC(=0)G^{2A}$, $-OS(=0)_2G^{1A}$, $-NHS(=0)_2G^{1A}$ and $-C(=0)NHS(=0)_2G^{1A}$; [substituent group (B1)]:

a halogen atom, a nitro group, a cyano group, $-G^{1A}$, $-G^{2B}$, $-SG^{2B}$, $-N(G^{2B})_2$, $-G^3OG^{4A}$, $-G^3N(G^{4A})_2$, $-C(=O)G^{2A}$, $-C(=O)G^{2B}$, $-C(=O)N(G^{2B})_2$, $-S(=O)_2G^{2A}$, $-S(=O)_2OG^{2A}$, $-OC(=O)N(G^{2B})_2$, $-S(=O)_2OG^{2A}$, $-OC(=O)N(G^{2A})_2$, $-OC(=O)N(G^{2A})_2$, and $-C(=O)N(G^{2A})_2$; in the above substituent group (A1) and/or (B1),

 G^{1A} represents a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{2-6} alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the

following substituent group (D1), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D1);

 $\mbox{G}^{2\mbox{\sc A}}$ represents a hydrogen atom, a $C_{1\mbox{-}6}$ alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{2-6} alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D1), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), or a C1-9 heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D1);

represents a protective group, a hydrogen atom, a C₁-6 alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C2-6 alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C3-8 cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D1), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D1), and with the proviso that G^{2B} may be the same or different when there are 2 or more G^{2B} in the substituents;

 G^3 represents a C_{1-6} alkyl group;

 G^{4A} represents a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), and with the proviso that G^{4A} may be the same or different when there are 2 or more G^{4A} in the substituents;

[substituent group (C1)]:

a halogen atom, a nitro group, a cyano group, $-G^5$, $-OG^{6A}$, $-SG^{6A}$, $-N(G^{6A})_2$, $-C(=0)G^6$, $-C(=0)OG^{6A}$, $-C(=0)N(G^{6A})_2$, $-S(=0)_2G^6$, $-S(=0)_2OG^6$, $-S(=0)_2N(G^{6A})_2$, $-S(=0)G^5$, $-OC(=0)G^5$, $-OC(=0)N(G^{6A})_2$, $-NHC(=0)G^6$, $-OS(=0)_2G^5$, $-NHS(=0)_2G^5$ and $-C(=0)NHS(=0)_2G^5$; and [substituent group (D1)]:

a halogen atom, a nitro group, a cyano group, $-G^5$, $-OG^{6A}$, $-SG^{6A}$, $-N(G^{6A})_2$, $-C(=0)G^6$, $-C(=0)OG^{6A}$, $-C(=0)N(G^{6A})_2$, $-S(=0)_2G^6$, $-S(=0)_2OG^6$, $-S(=0)_2N(G^{6A})_2$, $-S(=0)G^5$, $-OC(=0)G^5$, $-OC(=0)N(G^{6A})_2$, $-NHC(=0)G^6$, $-OS(=0)_2G^5$, $-NHS(=0)_2G^5$ and $-C(=0)NHS(=0)_2G^5$; in the substituent group (C1) and/or (D1),

 G^5 represents a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl, a C_{3-8} cycloalkyl group, a C_{6-10} aryl group, a C_{2-6} pheterocycloalkyl group or a C_{1-9} heteroaryl group;

 G^6 represents a hydrogen atom, a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl, a C_{3-8} cycloalkyl group, a C_{6-10} aryl group, a C_{2-9} heterocycloalkyl group or a C_{1-9} heteroaryl group; and

 G^{6A} represents a protective group, a hydrogen atom, a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl, a C_{3-8} cycloalkyl group, a C_{6-10} aryl group, a C_{2-9} heterocycloalkyl group or a C_{1-9} heteroaryl group, and with the proviso that G^{6A} may be the same or different when there are 2 or more G^{6A} in the substituents, or a pharmaceutically acceptable salt thereof.

23. (original): A pyrazole derivative represented by the following general formula (III α):

$$Q^{B0}$$
 $N-N$
 T^{B0} (III α)

wherein

 R^{1A} represents a hydrogen atom, a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{2-6} alkenyl group which

may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1);

one of Q^{B0} and T^{B0} represents a hydroxy group, and the other represents a group represented by the formula: $-(CH_2)_n$ -Ar wherein Ar represents a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1) or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1); and n represents an integral number from 0 to 2, a C_{1-6} alkoxy group which may have the same

or different 1 to 3 groups selected from the following substituent group (A1), an optionally mono or $\operatorname{di}(C_{1-6} \text{ alkyl})$ substituted amino group wherein the C_{1-6} alkyl group may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), or a heterocyclefused phenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1);

 R^{A} represents a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (A1), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (B1); [substituent group (A1)]:

a halogen atom, a nitro group, a cyano group, an oxo group, $-G^{1A}$, $-OG^{2B}$, $-SG^{2B}$, $-N(G^{2B})_2$, $-C(=O)G^{2A}$, $-C(=O)OG^{2B}$

 $C(=O)N(G^{2B})_2$, $-S(=O)_2G^{2A}$, $-S(=O)_2OG^{2A}$, $-S(=O)_2N(G^{2B})_2$, $-S(=O)_2N$

a halogen atom, a nitro group, a cyano group, $-G^{1A}$, $-G^{2B}$, $-SG^{2B}$, $-N(G^{2B})_2$, $-G^3G^{4A}$, $-G^3N(G^{4A})_2$, $-C(=0)G^{2A}$, $-C(=0)G^{2B}$, $-C(=0)N(G^{2B})_2$, $-S(=0)_2G^{2A}$, $-S(=0)_2G^{2A}$, $-S(=0)_2G^{2A}$, $-S(=0)_2N(G^{2B})_2$, $-S(=0)G^{1A}$, $-OC(=0)G^{1A}$, $-OC(=0)N(G^{2B})_2$, $-S(=0)_2G^{1A}$, $-OC(=0)_2G^{1A}$ and $-C(=0)_2G^{1A}$; in the above substituent group (A1) and/or (B1),

 G^{1A} represents a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{2-6} alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{3-8} cycloalkyl group which may have

have the same or different 1 to 3 groups selected from the following substituent group (D1), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D1);

 G^{2A} represents a hydrogen atom, a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{2-6} alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{3-8} cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D1), a C_{2-9} heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D1);

represents a protective group, a hydrogen atom, a C_{1-} 6 alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{2-6} alkenyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{2-6} alkynyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C₃₋₈ cycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), a C_{6-10} aryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D1), a C2-9 heterocycloalkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), or a C_{1-9} heteroaryl group which may have the same or different 1 to 3 groups selected from the following substituent group (D1), and with the proviso that G^{2B} may be the same or different when there are 2 or more G^{2B} in the substituents;

 G^3 represents a C_{1-6} alkyl group;

 G^{4A} represents a C_{1-6} alkyl group which may have the same or different 1 to 3 groups selected from the following substituent group (C1), and with the proviso that G^{4A} may be the same or different when there are 2 or more G^{4A} in the substituents;

[substituent group (C1)]:

a halogen atom, a nitro group, a cyano group, an oxo group, $-G^5$, $-OG^{6A}$, $-SG^{6A}$, $-N(G^{6A})_2$, $-C(=0)G^6$, $-C(=0)OG^{6A}$, $-C(=0)N(G^{6A})_2$, $-S(=0)_2G^6$, $-S(=0)_2OG^6$, $-S(=0)_2N(G^{6A})_2$, $-S(=0)G^5$, $-OC(=0)G^5$, $-OC(=0)N(G^{6A})_2$, $-NHC(=0)G^6$, $-OS(=0)_2G^5$, $-NHS(=0)_2G^5$ and $-C(=0)NHS(=0)_2G^5$; and [substituent group (D1)]:

a halogen atom, a nitro group, a cyano group, $-G^5$, $-OG^{6A}$, $-SG^{6A}$, $-N(G^{6A})_2$, $-C(=0)G^6$, $-C(=0)OG^{6A}$, $-C(=0)N(G^{6A})_2$, $-S(=0)_2G^6$, $-S(=0)_2OG^6$, $-S(=0)_2N(G^{6A})_2$, $-S(=0)G^5$, $-OC(=0)G^5$, $-OC(=0)N(G^{6A})_2$, $-NHC(=0)G^6$, $-OS(=0)_2G^5$, $-NHS(=0)_2G^5$ and $-C(=0)NHS(=0)_2G^5$; in the substituent group (C1) and/or (D1),

 G^5 represents a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl, a C_{3-8} cycloalkyl group, a C_{6-10} aryl group, a C_{2-6} heterocycloalkyl group or a C_{1-9} heteroaryl group;

 G^6 represents a hydrogen atom, a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl, a C_{3-8} cycloalkyl group, a C_{6-10} aryl group, a C_{2-9} heterocycloalkyl group or a C_{1-9} heteroaryl group; and

 G^{6A} represents a protective group, a hydrogen atom, a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl, a C_{3-8} cycloalkyl group, a C_{6-10} aryl group, a C_{2-9} heterocycloalkyl group or a C_{1-9} heteroaryl group, and with the proviso that G^{6A} may be the same or different when there are 2 or more G^{6A} in the substituents, or a pharmaceutically acceptable salt thereof.