Сверточные нейронные сети в задачах компьютерного зрения

Классификация

Решается задача принадлежности изображения одному из классов

Сегментация

Решается задача классификации, но попиксельной

Детекция

Решается задача распознавания - найти и классифицировать

Трекинг и видео-аналитика

Распознавание объектов в видеопотоке

Оценка позы и взгляда человека

Решается задача распознавания ключевых точек, которые описывают позы человека, его положение, ориентацию в пространстве

Биометрия

Решается задача классификации на изображении или видеопотоке: фейк или нет

Построение карты глубины

Решается задача построения карты расстояний до наблюдаемых объектов

Улучшение и восстановление изображений

Поиск дефектов и коррекция изображения, преобразование стилей

Генерация изображений

Синтез новых изображений

Рендеринг

VR и нейро рендеринг

Построение 3D Объектов

Решается задача построения объемного объекта (obj-файл) по двумерному изображению

Задача верификации

Постановка задачи – на заданных двух изображениях один и тот же объект?

- Алгоритм должен иметь класс «unseen»
- Нерепрезентативная выборка (мало данных, дисбаланс классов)

Face recognition dataset (MSRA-CF)

Re-identification dataset (ViPER)

Open world dataset

Задача верификации как embedding learning

Задача верификации как embedding learning

- Обучение на задаче классификации
- Чем больше данных, тем лучше результат
- Классы во время обучения могут быть в виде прототипов классов на тестировании

Верификация: «DeepFace»

Classification network обучена на 4030 человек (класс) ~

1000 изображений

• Постановка задачи: один vs другие

Идея нормализация и отступа

Loss Functions	LFW	CFP-FP	AgeDB-30
ArcFace (0.4)	99.53	95.41	94.98
ArcFace (0.45)	99.46	95.47	94.93
ArcFace (0.5)	99.53	95.56	95.15
ArcFace (0.55)	99.41	95.32	95.05
SphereFace [18]	99.42	-	-
SphereFace (1.35)	99.11	94.38	91.70
CosFace [37]	99.33	-	-
CosFace (0.35)	99.51	95.44	94.56
CM1 (1, 0.3, 0.2)	99.48	95.12	94.38
CM2 (0.9, 0.4, 0.15)	99.50	95.24	94.86
Softmax	99.08	94.39	92.33
Norm-Softmax (NS)	98.56	89.79	88.72

ArcFace loss:
$$L_3 = -rac{1}{N}\sum_{i=1}^N \lograc{e^{s(\cos(heta_{y_i}+m))}}{e^{s(\cos(heta_{y_i}+m))} + \sum_{j=1,j
eq y_i}^n e^{s\cos heta_{j}}}$$

(a) Softmax

(b) ArcFace

Pair-based learning (contrastive)

Функции расстояний:

- 1 cos
- L2 (batch norm)
- Separate network

FaceNet

Примитивный **triplet loss**:
$$\sum_{i}^{N} \left[\left\| f(x_{i}^{a}) - f(x_{i}^{p}) \right\|_{2}^{2} - \left\| f(x_{i}^{a}) - f(x_{i}^{n}) \right\|_{2}^{2} + \alpha \right]_{+}$$

- Использовать большие партии (mini-batches) 1800, 40 изображений для разных классов + рандом
- Взять все positives для всей партии (batch)
- Взять *«semi-hard»* negatives:

$$||f(x_i^a) - f(x_i^p)||_2^2 < ||f(x_i^a) - f(x_i^n)||_2^2$$

FaceNet: результаты

• Результаты 99.63% на LFW (точность человека ~97%)

Точность и размер выборка

#training images	VAL
2,600,000	76.3%
26,000,000	85.1%
52,000,000	85.1%
260,000,000	86.2%

Self-supervised feature learning

Общий подход:

- Взять модель, предобученную на текущих неразмеченных данных
- Дообучение (fine-tune) на новую задачу на размеченных данных

Альтернатива – взять предобученную модель на ImageNet

SimCLR

- Каждый batch содержит пары изображений
- Каждая пара является измененными версиями исходного изображения из выборки с изменениями типа crop, Gaussian blur, color distortion
- Цель обучить модель сопоставлять пары, классифицировать как один объект (класс)
- Требуется большой размер пакета (batch)
- Loss:

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

Bootstrap Your Own Latent (BYOL)

- Расширение работы contrastive learning MoCo [He et al. CVPR 2020]
- Обучение без negatives
- SoTA для unsupervised pretraining

Transfer results

Классификация

Method	Food101	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft
Linear evaluation:							
BYOL (ours)	75.3	91.3	78.4	57.2	62.2	67.8	60.6
SimCLR (repro)	72.8	90.5	74.4	42.4	60.6	49.3	49.8
SimCLR [8]	68.4	90.6	71.6	37.4	58.8	50.3	50.3
Supervised-IN [8]	72.3	93.6	78.3	53.7	61.9	66.7	61.0
Fine-tuned:							
BYOL (ours)	88.5	97.8	86.1	76.3	63.7	91.6	88.1
SimCLR (repro)	87.5	97.4	85.3	75.0	63.9	91.4	87.6
SimCLR [8]	88.2	97.7	85.9	75.9	63.5	91.3	88.1
Supervised-IN [8]	88.3	97.5	86.4	75.8	64.3	92.1	86.0
Random init [8]	86.9	95.9	80.2	76.1	53.6	91.4	85.9

Распознавание и сегментация

Method	AP_{50}	mIoU
Supervised-IN [9]	74.4	74.4
MoCo [9] SimCLR (repro) BYOL (ours)	74.9 75.2 77.5	72.5 75.2 76.3

Применение

(1) Self-supervised learning on unlabeled natural images

(2) Self-supervised learning on unlabeled medical images and Multi-Instance Contrastive Learning (MICLe) if multiple images of each medical condition are available

(3) Supervised fine-tuning on labeled medical images

15 000 обучающих примеров, 454 000 неразмеченных, 27 классов

Синее – предобучено на ImageNet Красное – unsupervised ImageNet + Target domain