- W)
- 1 22. (New) The apparatus of claim 21 wherein the signal processor
- 2 computes common mode and differential mode current and voltage
- 3 components of the subscriber loop.
- 1 23. (New) The apparatus of claim 21 further comprising:
- a linefeed driver for controlling the subscriber loop in response to the
- 3 linefeed driver control signals, wherein the linefeed driver does not reside
- 4 within a same integrated circuit as the signal processor.
- 1 24. (New) The apparatus of claim 23 wherein the linefeed driver does not
- 2 compute any common mode subscriber loop voltages or currents, wherein
- 3 the linefeed driver does not compute any differential mode voltages or
- 4 currents of the subscriber loop.
- 1 25. (New) The apparatus of claim 21 wherein the signal processor is a
- 2 complementary metal oxide semiconductor (CMOS) integrated circuit.
- 1 26. (New) The apparatus of claim 21 wherein the signal processor operates
- 2 in a positive voltage range with respect to ground to generate the linefeed
- 3 driver control signals for controlling a linefeed driver operating at a negative
- 4 d.c. voltage offset relative to the signal processor, wherein the offset is at least
- 5 approximately 40 VDC.
- 1 27. (New) The apparatus of claim 21 wherein the sensed tip signal includes
- 2 first and second sampled tip voltages, wherein a difference between the first
- and second sampled tip voltages is proportional to a subscriber loop tip
- 4 current, wherein the sensed ring signal includes first and second sampled

5	ring voltages, wherein a difference between the first and second sampled ring
6	voltages is proportional to a subscriber loop ring current.
1	28. (New) The apparatus of claim 23 wherein the linefeed driver further
2	comprises:
3	a tip control circuit; and
4	a ring control circuit, wherein the tip and ring control circuits vary tip
5	and ring node voltages of the subscriber loop in response to the linefeed
6	driver control signals.
U	diver control signals.
_	
1	29. (New) The apparatus of claim 28 wherein the tip and ring control
2	circuits provide d.c. isolation between the signal processor and the subscriber
3	loop.
1	30. (New) The apparatus of claim 28 wherein the tip control circuit further
2	comprises:
3	a first transistor of a first type having an emitter coupled to receive a
4	first tip control signal of the linefeed driver control signals;
5	a second transistor of a first type having an emitter coupled to receive a
6	second tip control signal of the linefeed control signals, wherein a base of the
7	first and second transistors is coupled to a common signal ground node;
8	a third transistor of a second type having a collector coupled to a
9	collector of the first transistor and a tip line of the subscriber loop;
10	a resistor having a first end coupled to the emitter of the third
11	transistor to form a battery feed node, wherein a second end of the resistor
12	coupled to a base of the third transistor and a collector of the second

13

transistor.

- 1 31. (New) The apparatus of claim 30 wherein the first type is a PNP bipolar
- 2 junction transistor, wherein the second type is an NPN bipolar junction
- 3 transistor.
- 1 32. (New) The apparatus of claim 21 wherein the signal processor performs
- 2 at least one of the subscriber loop supervisory functions of ring trip, ground
- 3 key, and off-hook detection.
- 1 33. (New) The apparatus of claim 21 wherein the signal processor performs
- 2 subscriber loop ring control, supervision, codec, and hybrid functions.
- 1 34. (New) The apparatus of claim 21 wherein the signal processor further
- 2 comprises a programming interface to enable programmatic control of at least
- 3 one of the following parameters: battery control, battery feed state control,
- 4 voiceband data amplification, voiceband data level shifting, longitudinal
- 5 balance, ringing current, ring trip detection threshold, off-hook detection
- 6 threshold, and audio output signal termination impedance for voiceband
- 7 communication signals superimposed on the linefeed driver control signals.
- 1 35. (New) The apparatus of claim 21 wherein the signal processor
- 2 superimposes outgoing analog voiceband communications on the linefeed
- 3 driver control signals.
- 1 \$6. (New) The apparatus of claim 21 wherein the linefeed driver control
- 2 /signals include separate tip control signals and ring control signals.