SYDNEY TECHNICAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 1

MARCH 2012

Mathematics Extension 2

General Instuctions

- Working time 70 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- · Start each question on a new page

Total marks - 52

- Attempt Questions 1 4
- · All questions are of equal value

Name	:				
	-				
k	_				

Question 1	Question 2	Question 3	Question 4	Total

Question 1 (13 marks)

- a) For the ellipse with equation $x^2 + 4y^2 = 16$ find
 - the eccentricity 2
 - ii) the coordinates of the foci
 - iii) the equation of the directrices
 - iv) the length of the chord of the ellipse which passes through the focus and is

 perpendicular to the major axis of the ellipse
- b) Factorise $x^2 + 6x + 25$ over the complex field 2
- c) i) Express $1 + i\sqrt{3}$ in modulus argument form.
 - ii) Find the smallest positive integer value of n such that

$$Im\left(\frac{-1+i}{1+i\sqrt{3}}\right)^n=0$$

Question 2 (13 marks) - Start a new page

- a) If z = 2 + i and w = 3 2i find simplified expressions for
 - i) $z + \overline{w}$
 - ii) $\frac{z}{w}$
- b) Sketch the locus of z described by the following
 - i) $0 \le Arg(z 2i) \le \frac{\pi}{6}$
 - ii) $Im(z^2) = |z \bar{z}|$ 3
- c) Solve $z^2 = 7 + i\sqrt{72}$ over the complex field, 2 giving your answer in the form x + iy where x and y are real.
- d) Given $\cos(x y) = y \cos x$ show that $\frac{dy}{dx} = \frac{\sin(x - y) - y \sin x}{\sin(x - y) - \cos x}$

Question 3 (13 marks) - Start a new page

show that SG = eSP

- a) $P(a\cos\theta, b\sin\theta)$ is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b.
 - i) Show that the equation of the normal to the above ellipse at the point P 3 is given by the equation $\frac{ax}{\cos\theta} \frac{by}{\sin\theta} = a^2 b^2$
 - ii) The normal found in part i) meets the major axis of the ellipse at the point G.If S is a focus of the ellipse and e its eccentricity,
- b) Find all the solutions of $z^6 = -1$
- c) Simplify $\frac{\left(\sin\frac{\pi}{5} + i\cos\frac{\pi}{5}\right)^2}{\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}}$ 3

Question 4 (13 marks) - Start a new page

a) i) Draw a neat sketch of the locus represented by

2

$$\left|z + \sqrt{2} - i\sqrt{2}\right| = 1$$

- ii) For z on the locus in part i) find
 - α) the minimum value of |z|

1

 β) the minimum value of Arg(z)

1

b) z is a complex number such that $Arg(z) = \theta$ where $\frac{\pi}{4} < \theta < \frac{\pi}{2}$.

Find expressions for the following in terms of θ ,

i)
$$Arg(iz + z)$$

2

ii)
$$Arg(iz-z)$$

2

- c) For the general ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b describe the effect on the ellipse as $e \to 0$ (e is the eccentricity)
- d) Show by Mathematical Induction that

4

1

$$(1-a_1)(1-a_2)\dots\dots(1-a_n) > 1-(a_1+a_2+\dots\dots+a_n)$$

for all positive integers n where n > 1, if a_k satisfies $0 < a_k < 1$ for $1 \le k \le n$.

: '

SOLUTIONS					
a) 1) $x^2 + 4y^2 = 16$					
$\frac{3c}{16} + \frac{y^2}{4} = 1$					
b = a (1-e)					
4 = 16 (1-e2)					
<u> </u>					
e 2 3 4					
. e = 55					
11) S (+ a e, 0)					
5 (± 213,0)					
(11) $x = \pm \frac{q}{\varphi}$					
$\alpha = \pm \frac{\varepsilon}{\sqrt{3}}$					
V3					
1v) when on = 253					
12+4y2=16					
4 4 2 4					
9 7					
$y = \pm 1$,				
:- length = 2 viils					

c) $3^2 = 7 + i \sqrt{72}$ (27iy) 2 7+ i 572 x-g+2iny=7+iJ72 2-g=7 2xy= J72 .'. x=3 , y=√2 ·. 3=3+i5,-3-i5 (os (>c-y) = y (os >c - Sin (x-y) (1-dy) = dy (wx + y Sin x - Sin(x-y) + Sin(x-y) dy = dy (os x - y Sin x y Sinz - Sin(x-y) = dy (Cosx - Sin(x-y)) y Sin x - Su (2-4) Cosx - Sin(2-4)

b)
$$3^{\frac{1}{2}} = -1$$
 $3_{1} = (a_{1}) \frac{\pi}{1} + i \cdot S_{1} \cdot \frac{\pi}{6}$
 $3_{2} = i \cdot \frac{\pi}{1} + i \cdot S_{1} \cdot \frac{\pi}{6}$
 $3_{3} = (a_{1}) \frac{\pi}{1} + i \cdot S_{1} \cdot \frac{\pi}{6}$
 $3_{5} = (a_{1}) \frac{\pi}{1} + i \cdot S_{1} \cdot \frac{\pi}{6}$
 $3_{5} = (a_{1}) \frac{\pi}{1} + i \cdot S_{1} \cdot \frac{\pi}{6}$
 $3_{5} = (a_{1}) \frac{\pi}{1} + i \cdot S_{1} \cdot \frac{\pi}{6}$

$$(S_{1} + i \cdot S_{1} + i \cdot S_{1} \cdot \frac{\pi}{6})$$

$$(S_{2} + i \cdot S_{1} \cdot \frac{\pi}{6})$$

$$(S_{3} + i \cdot S_{1} \cdot \frac{\pi}{6})$$

$$(S_{3} + i \cdot S_{1} \cdot \frac{\pi}{6})$$

$$(S_{4} + i \cdot S_{1} \cdot \frac{\pi}{6})$$

$$(S_{5} + i \cdot S_{1} \cdot \frac{\pi}{6})$$

$$(S_{7} + i \cdot S_{1} \cdot \frac{\pi}{6})$$

$$(S_$$

(3) min Arg (3) =
$$\frac{\pi}{2} + \frac{\pi}{12}$$
 $\Theta = \frac{\pi}{6}$
= $\frac{7\pi}{12}$ $\frac{\pi}{2} - \frac{\pi}{4} - \frac{\pi}{6} = \frac{\pi}{12}$

11)
$$Arg(\lambda_3-3) = -\left(\frac{3\pi}{4} + \frac{\pi}{2} - \Theta\right)$$

$$= \Theta - \frac{5\pi}{4}$$

c) the ellipse tends towards a circle d) Stepl test n=2. RNS= 1- (a+92) LW = (1-a,)(1-9-) = 1-9-92+992 :. true for n=2. Step2 assume true for n=k 1.e. (1-a,) (1-a2) --- (1-ak) > 1-(a,+a2+---+ak) show true for nek+1 (1-a,) (1-a,) ---- (1-ak) (1-ak+1) $> [1 - (a_1 + a_2 + --- + a_k)] (1 - a_{k+1})$ from cssumption $= 1 - (a_1 + a_2 + --- + a_k) - a_{k+1} + (a_1 + a_2 + --- + a_k) a_{k+1}$ > 1- (a, + a_+ --- + a_k) - a_k+1 = 1-(q1+q2+----++ qk++ qk+)
which is the required result i true for n=k+1 if true for n=k. As fine for n=2, also five for n=2+1, ie n=3 As the for nzz, also the for nzzzi, ie nz4 and so on for all positive integers n, n > 1.