### An Introduction to Axel Ljungström's PhD thesis:

Synthetic approaches to cohomology, homology and homotopy

Nicolai Kraus Stockholm, 21 May 2025

## **Analysing the Thesis Title**



Done in a setting where:

Primitive things = Things of interest

(i.e., things of interest are native, not defined)

Synthetic approaches to cohomology, homology and homotopy



Things of interest = Spaces

## **Analysing the Thesis Title**



Done in a setting where:

Primitive things = Things of interest

(i.e., things of interest are native, not defined)

Synthetic approaches to cohomology, homology and homotopy



Things of interest = Spaces

Thesis setting/language: **Homotopy Type Theory** 

# Dependent Type Theory











Rocq /Coq

# Types in Programming

Examples: int, double, bool useful for catching mistakes, partial documentation:

```
int calculatePrime(int n) {
    ...
}
```

# Types in Programming

Examples: int, double, bool useful for catching mistakes, partial documentation:

```
int calculatePrime(int n) {
  return 7;
}
```

## Dependent Types (eg Agda)

```
calculatePrime : (n : \mathbb{N}) \rightarrow \Sigma[p : \mathbb{N}] (isPrime p) × (p > n) calculatePrime = ?
```

## Dependent Types (eg Agda)

```
calculatePrime : (n : \mathbb{N}) \to \Sigma[p : \mathbb{N}] (isPrime p) × (p > n) calculatePrime = ?
```

## Primes and twin primes

Consider two exercises in Agda:

```
calculatePrime : (n : \mathbb{N}) \to \Sigma[p : \mathbb{N}], (isPrime p) × (p > n) calculatePrime = ?  \text{calcTwinPrime : } (n : \mathbb{N}) \to \Sigma[p : \mathbb{N}], \text{ (isPrime p)} \times (p > n) \times \text{ (isPrime (p + 2))}  calcTwinPrime = ?
```

## Primes and twin primes

Consider two exercises in Agda:

```
calculatePrime : (n : \mathbb{N}) \to \Sigma[p : \mathbb{N}], (isPrime p) × (p > n) calculatePrime = ?  \text{calcTwinPrime : } (n : \mathbb{N}) \to \Sigma[p : \mathbb{N}], \text{ (isPrime p)} \times (p > n) \times \text{ (isPrime (p + 2))}  calcTwinPrime = ?
```

Agda type- and termination-checks. **Programming = Proving** 

## What is a type?

We see:

N

p > n

isPrime p

type A

a term x : A

We might think of:

set {0,1,2,...}

a proposition

a proposition

an unspecified set (?)

an element of the set (?)

## What is a type?

Syntax (mostly determined by the type theory)

#### We see:

M

p > n

isPrime p

type A

a term x : A

### We might think of:

set {0,1,2,...}

a proposition

a proposition

an unspecified set (?)

an element of the set (?)

Semantics

(our choice!)

# Interpretations

| Type Theory         | Set Theory                | Logic               |
|---------------------|---------------------------|---------------------|
| $A:\mathcal{U}$     | A is a set                | A is a proposition  |
| x:A                 | $x \in A$                 | x is a proof of $A$ |
| $A \to B$           | A 	o B                    | A  implies  B       |
| $B:A	o \mathcal{U}$ | $B_a$ is a family of sets | B is a predicate    |
| $(a:A) \to B(a)$    | $\prod_{a\in A} B_a$      | $\forall a . B(a)$  |
| $(a:A)\times B(a)$  | $\bigsqcup_{a\in A} B_a$  | $\exists a . B(a)$  |
| x = y               | x = y                     | x = y               |

(table 1 from Axel's thesis)

## HoTT: view types as spaces





## Interpreting types as spaces



|   | Type theory         | Homotopy theory           |
|---|---------------------|---------------------------|
|   | $A:\mathcal{U}$     | A is a space              |
|   | x:A                 | x is a point in $A$       |
| 1 | $A \to B$           | $A \to B \text{ (cont.)}$ |
| / | $B:A	o \mathcal{U}$ | B is a fibration          |
|   | $(a:A) \to B(a)$    | Sections of $B$           |
|   | $(a:A)\times B(a)$  | Total space of $B$        |
|   | x = y               | Path space $P(x,y)$       |

(from Axel's thesis)

## Martin-Löf's Identity Type

Given a type A and two terms x, y: A, there is a type (x = y).

formation rule

We always have refl: x = x.

introduction rule

To define

F: 
$$(x y : A) \rightarrow (p : x = y) \rightarrow C(x,y,p)$$
  
it suffices to define

 $f': (x : A) \rightarrow C(x, x, refl).$ 

elimination rule ("J")

## Examples with =

#### **Exercise:**

```
trans: (x y z : A) \rightarrow (x = y) \rightarrow (y = z) \rightarrow (x = z)
```

#### Solution:

Using the elimination rule for =, we only need trans':  $(x z : A) \rightarrow (x = z) \rightarrow (x = z)$  which is easy.

## Examples with =

#### **Exercise:**

$$K : (x : A) \rightarrow (p : x = x) \rightarrow (p = refl)$$

No solution, as shown by Hofmann and Streicher's *Groupoid Model*.





### Intuition for =



## Application of "Types as Spaces"

We can define so-called *Higher Inductive Types*. Basic example:

data S¹: Type where

base: \$1

loop : base == base



## Why work in HoTT?

- HoTT is elegant; arguments are reduced to their "mathematical core."
- HoTT allows computers to check correctness; Axel's results are mechanized in Cubical Agda.
- Once implemented, results can be calculated by a computer.
- •• Work in HoTT is very general; we have a model in every ∞-topos.
- The language only allows "good" constructions; avoids ill-defined concepts.
- ••• The language only allows "good" constructions; can be very restrictive.

### Axel's PhD Work

I want to emphasize two main points:

- 1. Axel's work contains several highly complex results on (co)homology and homotopy theory in HoTT. This is an excellent contribution to the field.
- 2. Axel's work is mechanized in Cubical Agda. This gives confidence, computations, and important insights into this (fairly new!) variation of Agda.

Thanks for your attention! (We're far from done.)