An output-sensitive algorithm for computing projections of resultant polytopes

Vissarion Fisikopoulos

Joint work with I.Z. Emiris, C. Konaxis* and L. Peñaranda

Dept Informatics & Telecoms, University of Athens
* currently with University of Crete

EPFA-GALAAD New Year's meeting, 9.Jan.2012

The setting

Problem

- ▶ given a system of n+1 polynomials on n variables $(A \subset \mathbb{Z}^{2n})$
- ightharpoonup compute the (projection of the) Newton polytope of the resultant or resultant polytope Π (for some orthogonal projection π)

Idea

- lacktriangleright not compute the whole secondary polytope $\Sigma(\mathcal{A})$
- \blacktriangleright incrementally construct \varPi using an oracle that given a direction produces vertices of \varPi

The Oracle

 $Vertex\Pi(A, w)$

Input: $\mathcal{A} \subset \mathbb{Z}^{2n}$, direction $w \in (\mathbb{R}^{|\mathcal{A}|})^{ imes}$

Output: $vertex \in \Pi$, extremal wrt w

1. use w as a lifting to construct regular subdivision $S(\mathcal{A})$

w **v**

face of $\Sigma(A)$

The Oracle

$Vertex\Pi(A, w)$

Input: $\mathcal{A} \subset \mathbb{Z}^{2n}$, direction $w \in (\mathbb{R}^{|\mathcal{A}|})^{\times}$

Output: vertex $\in \Pi$, extremal wrt w

- 1. use w as a lifting to construct regular subdivision $S(\mathcal{A})$
- 2. refine S(A) into triangulation T(A)

The Oracle

$Vertex\Pi(A, w)$

Input: $\mathcal{A} \subset \mathbb{Z}^{2n}$, direction $w \in (\mathbb{R}^{|\mathcal{A}|})^{\times}$

Output: $vertex \in \Pi$, extremal wrt w

- 1. use w as a lifting to construct regular subdivision S(A)
- 2. refine S(A) into triangulation T(A)
- 3. return $\rho_{T(A)} \in \mathbb{N}^{|A|}$

Input: \mathcal{A}

Output: H-rep. Q_H , V-rep. Q_V of $Q=\varPi$

1. initialization step

initialization:

$$\blacktriangleright \ \ Q \subset \varPi$$

 $\blacktriangleright \dim(Q) = \dim(\Pi)$

Input: \mathcal{A}

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal

- 2 kinds of hyperplanes of Q_H :
 - ▶ legal if it supports facet $\subset \Pi$
 - ► illegal otherwise

Input: \mathcal{A}

Output: H-rep. Q_H , V-rep. Q_V of $Q = \Pi$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$

Extending an illegal facet

Input: A

Output: H-rep. Q_H , V-rep. Q_V of $Q = \Pi$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Extending an illegal facet

Input: A

Output: H-rep. Q_H , V-rep. Q_V of $Q = \Pi$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Validating a legal facet

Input: A

Output: H-rep. Q_H , V-rep. Q_V of $Q = \Pi$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Validating a legal facet

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

Output: H-rep. Q_H , V-rep. Q_V of $Q = \Pi$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

At any step, Q is an inner approximation . . .

Input: A

Output: H-rep. Q_H , V-rep. Q_V of $Q = \Pi$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$

At any step, Q is an inner approximation ... from which we can compute an outer approximation Q_{o} .

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w)$, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ compute $v = Vertex\Pi(A, w), Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Complexity

Theorem

We compute the Vertex- and Halfspace-representations of Π , as well as a triangulation T of Π , in

$$O^*(m^5 | vtx(\Pi)| \cdot |T|^2),$$

where $m = \dim \Pi$, and |T| the number of full-dim faces of T.

Elements of proof

- ▶ All computation in dimension $\leq m$.
- ▶ At most $\leq vtx(\Pi) + fct(\Pi)$ oracle calls
- ▶ Beneath-Beyond algorithm for converting V-rep. to H-rep. (bottleneck)

ResPol Implementation

Tools

 $C++, \ CGAL, \ triangulation \ [Boissonnat, Devillers, Hornus], \\ extreme_points_d \ [G\"{a}rtner]$

Hashing of determinantal predicates optimizing sequences of similar determinants

- ► Laplace (cofactor) expansion wrt the last row + Hash minors
- ▶ If all needed minors computed, orientation= $O(n^2)$, volume= O(n)

Output-sensitivity

- ▶ oracle calls $\leq vtx(\Pi) + fct(\Pi)$
- output vertices bound polynomially the output triangulation size
- subexponential runtime wrt to input points (L), output vertices (R)

Hashing and Gfan

- ▶ hashing determinants speeds ≤ 10 -100x when $\dim(\Pi) = 3, 4$
- ▶ faster than Gfan [Yu-Jensen'11] for $dim\Pi \leq 6$, else competitive

Future work

- ▶ approximate resultant polytopes $(dim(\Pi) \ge 7)$
- preliminary results:

input	$ig egin{array}{c} m \ \mathcal{A} \end{array}$	3 200	3 490	4 20	4 30	5 17	5 20
	1. 1						
exact	$\#vtx(\Pi)$	98	133	416	1296	1674	5093
	time	2.03	5.87	3.72	25.97	51.54	239.96
approx.	$\#vtx(Q_{in})$	15	11	63	121	_	_
	$vol(Q_{in})/vol(\Pi)$	0.96	0.95	0.93	0.94	_	_
	$ \operatorname{vol}(Q_{out})/\operatorname{vol}(\Pi) $	1.02	1.03	1.04	1.03	_	_
	time	0.15	0.22	0.37	1.42	$> 10 \mathrm{hr}$	$> 10 \mathrm{hr}$

▶ approximate volume computation [Lovász-Vempala06]

References

The code

▶ http://respol.sourceforge.net

The paper

▶ http://arxiv.org/abs/1108.5985v2

References

The code

▶ http://respol.sourceforge.net

The paper

▶ http://arxiv.org/abs/1108.5985v2

Thank You!

Convex hull implementations

- ▶ From V- to H-rep. of Π .
- triangulation (on/off-line), polymake beneath-beyond, cdd, lrs

 $dim(\Pi) = 4$