Week 2 – Lecture 2

Estimation of Parameters and

Fitting of Probability Distributions (cont.)

Objectives

- Methods of Moments
- Method of Maximum Likelihood
- Properties of MLEs
- ➤ Confidence Intervals from MLEs
- Properties of MLEs

Method of Moments

Definition:

Let X be a random sample from a pmf or pdf f(x). For k = 1, 2, 3,..., the k^{th} population moment, or k^{th} moment of the distribution f(x), or k^{th} moment of the probability, is $E(X^k)$.

Let $X_1, ..., X_n$ be a random sample from a pmf or pdf f(x). The k^{th} sample moment is $\frac{1}{n} \sum_{i=1}^n X_i^k$.

Method of Moments (cont.)

Definition: Let $X_1, ..., X_n$ be a random sample from a pmf or pdf $f(x; \theta_1, \theta_2, ..., \theta_m)$, where $\theta_1, ..., \theta_m$ are parameters whose values are unknown.

The method of moments estimators (MME) $\hat{\theta}_1, ..., \hat{\theta}_m$ are obtained by equating the first m sample moments to the corresponding first m population moments and solving for $\theta_1, \dots, \theta_m$.

$$E(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$E(X^2) = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

$$E(X^3) = \frac{1}{n} \sum_{i=1}^{n} X_i^3$$

$$E(X^m) = \frac{1}{n} \sum_{i=1}^n X_i^m$$

Method of Moments (cont.)

Example 1: Find MME for the Poisson distribution with parameter λ .

Example 2: Find MME for the binomial distribution with parameter p.

Example 3: Find MME for the normal distribution with parameters μ and σ .

Practice Problems:

- 1) Find MME for the exponential distribution with parameter λ .
- 2) Find MME for the Gamma distribution with parameters α and β .

Method of Maximum Likelihood

 The method of maximum likelihood was first introduced by R. A. Fisher, a geneticist and statistician, in the 1920s. Most statisticians recommend this method, at least when the sample size is large, since the resulting estimators have certain desirable efficiency properties.

Definition: Let $X_1, X_2, ..., X_n$ have joint pmf or pdf $f(x_1, x_2, ..., x_n; \theta_1, \theta_2, ..., \theta_m)$, where the parameters $\theta_1, ..., \theta_m$ have unknown values. When $x_1, ..., x_n$ are the observed sample values and f is regarded as a function of $\theta_1, ..., \theta_m$, it is called the likelihood function.

The maximum likelihood estimates (mle) $\hat{\theta}_1$, ..., $\hat{\theta}_m$ are those values of the θ_i that maximize the likelihood function, i.e.

$$f(x_1, \dots, x_n; \hat{\theta}_1, \dots, \hat{\theta}_m) \ge f(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m)$$

for all $\theta_1, \dots, \theta_m$.

When the X_i are substituted in place of the x_i , the maximum likelihood estimators (MLEs) result.

Method of Maximum Likelihood (cont.)

Steps of Method of Maximum Likelihood:

- 1) Write out the likelihood function.
- 2) Maximize the likelihood function (using Calculus or other techniques).
- 3) The solution of the above maximization problem is MLE.

Likelihood Function of a Random Sample:

Let $X_1, X_2, ..., X_n$ be a random sample from a pmf or pdf $f(x; \theta_1, \theta_2, ..., \theta_m)$, where $\theta_1, ..., \theta_m$ are parameters whose values are unknown. Then the likelihood function

$$L(\theta_1, ..., \theta_m) = f(x_1, ..., x_n; \theta_1, ..., \theta_m)$$

= $f(x_1; \theta_1, \theta_2, ..., \theta_m) \cdot f(x_2; \theta_1, \theta_2, ..., \theta_m) ... f(x_n; \theta_1, \theta_2, ..., \theta_m)$

$$= \prod_{i=1}^{n} f(x_i; \theta_1, \theta_2, \dots, \theta_m)$$

Method of Maximum Likelihood (cont.)

Note:

 We can maximize the log-likelihood function to avoid complicated calculations in the maximization problem of the likelihood function.

Log-Likelihood Function of a Random Sample:

Let $X_1, X_2, ..., X_n$ be a random sample from a pmf or pdf $f(x; \theta_1, \theta_2, ..., \theta_m)$, where $\theta_1, ..., \theta_m$ are parameters whose values are unknown. Then the likelihood function

$$l(\theta_1, ..., \theta_m) = \log L(\theta_1, ..., \theta_m)$$

= log[f(x₁; \theta_1, \theta_2, ..., \theta_m) \cdot f(x₂; \theta_1, \theta_2, ..., \theta_m) ... f(x_n; \theta_1, \theta_2, ..., \theta_m)]

$$= \sum_{i=1}^{n} \log f(x_i; \theta_1, \theta_2, \dots, \theta_m)$$

Method of Maximum Likelihood (cont.) - Examples

- 1) Find MLE for the Poisson distribution with parameter λ .
- 2) Find MLE for the exponential distribution with parameter λ .
- 3) Find MLE for the normal distribution with parameters μ and σ .

Properties of MLEs

Properties:

- 1) Let $\hat{\theta}_1, ..., \hat{\theta}_m$ be the MLEs of the parameters $\theta_1, ..., \theta_m$. Then the MLE of any function $h(\theta_1, ..., \theta_m)$ of these parameters is the function $h(\hat{\theta}_1, ..., \hat{\theta}_m)$ of the MLEs.
- 2) Under very general conditions on the joint distribution of the sample, when the sample size n is large, the maximum likelihood estimator of any parameter θ is at least approximately unbiased ($E(\hat{\theta}) \approx \theta$) and has variance that is either as small as or nearly as small as can be achieved by any estimator. Stated another way, the MLE $\hat{\theta}$ is either exactly or at least approximately the MVUE of θ .

Confidence Intervals from MLEs

Definition: Fisher information for θ contained in a random sample $X_1, ..., X_n$ is defined as

$$I_n(\theta) = -E\left(\frac{\partial^2}{\partial \theta^2}l(\theta)\right)$$

Fisher information provides a way to measure the amount of information that random variables contain about some parameter θ of the assumed probability distribution. If it is small, the random variables provide much information about θ .

Confidence Intervals from MLEs

> MLEs can be used to find a confidence interval for the parameter θ . The $(1-\alpha)100\%$ confidence interval is given by

$$\hat{ heta}_{MLE} \pm rac{Z_{lpha/2}}{\sqrt{I_n(\hat{ heta}_{MLE})}}$$

Example:

- 1) Find a confidence interval for the parameter λ of the Poisson distribution.
- 2) Given a random sample $X_1, ..., X_{36}$ with sample mean of 10. Assume they follow the exponential distribution with parameter λ . Construct a 95% confidence interval for the true value of the parameter λ .

Mean Square Error for MLEs

> The mean square error for MLEs are given by

$$MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^{2}) = Var(\hat{\theta}) + (E(\hat{\theta}) - \theta)^{2}$$
$$= Variance + (Bias)^{2}$$

> Better estimators have lower MSE.

Compare The Efficiency of Two Estimators

 \succ The efficiency of two estimators $\widehat{ heta}_A$ and $\widehat{ heta}_B$ is given by

$$eff(\hat{\theta}_A, \hat{\theta}_B) = \frac{MSE(\hat{\theta}_A)}{MSE(\hat{\theta}_B)}$$

- > Using the efficiency of two estimators, we can compare them.
 - If $eff(\hat{\theta}_A, \hat{\theta}_B) < 1$, estimator $\hat{\theta}_A$ is better than estimator $\hat{\theta}_B$.
 - If $eff(\hat{\theta}_A, \hat{\theta}_B) > 1$, estimator $\hat{\theta}_B$ is better than estimator $\hat{\theta}_A$.
 - If $eff(\hat{\theta}_A, \hat{\theta}_B) = 1$, estimator $\hat{\theta}_A$ is as efficient as estimator $\hat{\theta}_B$.

Cramér-Rao Lower Bound

 \triangleright If $\hat{\theta}$ is an unbiased estimator, then

$$Var(\hat{\theta}) \ge \frac{1}{I_n(\theta)}$$

 \triangleright If the equality is achieved, $\hat{\theta}$ is said to be efficient.

Practice Problem:

Show that $\hat{\mu}_{MLE}$ for the normal distribution with mean μ and standard deviation σ is efficient.

Consistency of MLEs

Definition: Let $\{X_1, X_2, ..., X_n\}$ be a sequence of observations. Let $\hat{\theta}_n$ be the estimator using $\{X_1, X_2, ..., X_n\}$. We say that $\hat{\theta}_n$ is consistent if $\hat{\theta}_n \stackrel{p}{\to} \theta$, i.e.,

$$P(|\hat{\theta}_n - \theta| > \varepsilon) \to 0 \text{ as } n \to \infty$$

 \triangleright Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with a parameter θ . Then MLE of θ is consistent.

Asymptotic Normality of MLEs

 \triangleright Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with a parameter θ . If $\hat{\theta}$ is the MLE of θ , then

$$(\hat{\theta} - \theta) \stackrel{d}{\to} N\left(0, \frac{1}{\sqrt{I_n(\theta)}}\right)$$