

מבוא למערכות לומדות (236756) סמסטר חורף תשע"ט

מכחן מסכם מועד ב', 6 במרץ 2019

מספר סטודנט:

משך המבחן: 2.5 שעות. (150 דקות)

הומר עזר: אין להשתמש בכל חומר עזר. בעמוד הבא לרשותכם דף נוסחאות והגדרות.

הנחיות כלליות:

- המבחן כתוב בלשון זכר ומיועד לנשים ולגברים כאחד.
- מלאו את הפרטים בראש דף זה ובדף השער המצורף, בעט בלבד.
- במבחן 16 עמודים ממוספרים סהכ, כולל עמוד זה שמספרו 1. ודאו שיש לכם כל הדפים.
 - במבחן 4 חלקים. יש לענות על כל השאלות.
 - כל התשובות יכתבו על טופס הבחינה, ויש להחזירו בתום הבחינה.
 - אנא כתבו בכתב יד קריא וברור. תשובה בכתב יד שאינו קריא לא תיבדק.
 - נא לא לתלוש עמודים ממחברת הבחינה.
- נא לכתוב רק את מה שהתבקשתם ולצרף הסברים קצרים רק כפי שמבוקש בשאלה—אין צורך בהסברים או פרטים נוספים על אלו שהתבקשתם במפורש.

Less is More

בהצלחה!

דף נוסחאות

$$\binom{n}{k} \le n^k$$
 .1

- L_D^{01} = true error = טגיאת הכללה.
- ממוצע (ממוצע = training error = empirical error = שגיאה אמפירית שגיאה אמפירית אימון אימון אימון אימון אמפירית פרית מדגם) .3 השגיאות על מדגם
 - $L_D^{01} L_S^{01} = \text{estimation error}$.4
 - $e \approx 2.72$.5
 - p התפלגות גאומטרית עם פרמטר 6.

$$P(x = n) = p (1 - p)^{n-1}$$

נסמן שנבחרת אימון שנבחרת באקראי. נסמן למידה למידה בעיית בעיית באקראי. נסמן S -ו. למידה בעיית של היפוטזות למידה \mathcal{S}

$$\hat{h} = argmin_{h \in H} L_D^{01}(h)$$

: מתקיים: $1-\delta$ מתקיים: אזי, לכל $\delta>0$ בהסתברות של הפחות $\delta>0$ מתקיים: $h=argmin_{h\in H}L^{01}_S(h)$

$$L_D^{01}(\hbar) \le L_D^{01}(h^-) + O\left(\sqrt{\frac{VCDIM(H) + \frac{1}{\log(\delta)}}{|S|}}\right)$$

- feature = מאפיין.8
 - label = 9.9
 - $[x]_{+=max(x,0)}$.10
- מדרגה d מדרגה $x[1]\dots x[k]$ מדרגה (monomial) מונום .11 מונום ($x[i_1]\dots x[i_d]$ כאשר כאשר $x[i_1]\dots x[i_d]$
 - .0 אחרת מתקיים, מתגדר כI מוגדר מתקיים, מוגדר מוגדר מוגדר תנאי
- תלתת היפותזות הכוללת אוא x[1]..x[k] הוא מאפיינים על ייצוג מאפיינים על חוא הוא הוא חוא חוא חוא בול מאפיינים על ייצוג מאפיינים לשהו וi=1..k עבור $h_{i,a}=[\![x[i]\geq a]\!]$ הוא פונקציות מהצורה

חלק א: שאלות קצרות (30 נק')

עבור Surrogate מהווה פונק שגיאה בריבועית ארוה בו $L(\hat{y},y)=(\hat{y}-y)^2$ עבור	פונקצייו	.1
0-1 7	שגיאת ז	
אמת		/
שקר		
ילידציה נמוכה מעידה תמיד על כך שהמודל יבצע באופן דומה על קבוצת המבחן	שגיאת ו	.2
אמת		
שקר	*Z	
ם של n פונקציות קמורות (ב R^d היא פונקציה קמורה	מקסימוו	.3
אמת	X	
שקר דוגמא נגדית (חובה לספק במקרה שסימנתם "שקר"):		
$1 \lambda L_S^{hinge}(w) + \ w\ _2^2$ היא Soft-SVM ת המטרה של	פונקצייו	.4
:(יש לסמן אפשרות אחת): גדילים את λ , כך צפוי ששגיאת האימון	ככל שמ	
תרד	\square	
תעלה		
תישאר ללא שינוי		
צים אלגוריתם Halving (חצייה) במודל המקוון (on-line) על מחלקת היפותזה סופית,	אם מרי:	.5/
ה Realizable, אז מספר השגיאות שנעשה הוא סופי	במקרה	
אמת		
שקר		

wrapper מסוג Feature Selection זו	הסבירו מז	.6
MAP קבוע על מרחב פרמטרים, ככל שמספר הדוגמאות גדל משערך (prior) ר	עבור פריו	χ.
MLE נכנס למשערך	בהכרח מו	
ומת	₹ □	
שקר	7 🗆	
		0
ר מספיק של איטרציות אלגוריתם AdaBoost יגיע לשגיאה 0 על קבוצת האימון ממת	,	.8
יבות מקר	,	
שקו		

חלק ב: סיבוכיות של מחלקות היפותזה

 $h\in$ לכל $\mathcal X$ מחלקת קבוצה סופית תהי $\mathcal X$ מרחב מדגם מרחב מדגם אנאריות, מעל מרחב בינאריות, מעל מרחב מדגם $\mathcal X$ נסמן ב $h_{\mathcal C}$ את פונקציית ההגבלה (restriction) לקבוצה לקבוצה את פונקציה המוגדרת על התחום $\mathcal K$ ומזדהה עם הפונקציה h על תחום זה.

(growth function) את פונקציית את פונקביית בצורה בצורה .1 ... הגדירו הגדירו $\tau_H:\{0,1,2\dots\}\mapsto\{0,1,2\dots\}$

 $\tau_H(m) =$

.2 של קבוצה. של ניתוץ (shattering) של קבוצה.

VC dimension גדירו.3

 $\sqrt{g(n)}$ בס ש כך ש כך d המספר המספר הוא ההיפותזות (VC dimension) אל ממד ה ממד ה

הטכניון, מכון טכנולוגי לישראל מבוא למערכות לומדות

הפקולטה למדעי המחשב סמסטר חורף תשע"ט 2018/19

_			
_			
_			

Sauer-Shelah שפט. 4

$_{}$ אז אז עמחלקה ${\mathcal H}$ יש מימד VC אם למחלקה

חלק ג: מודלים הסתברותיים (27 נקודות)

: מודקים הסתברותיים (21 נקודות)	1271
הוא N הגרלות בת"ל הוא אחידה אחידה מהתפלגות הנדגמים $x_1 \dots x_m$ כאשר הגרלות הגרלות בהינתן הנדגמים הנדגמים הנדגמים הנדגמים ה	1
$: \widehat{N}$ (MLE) פרמטר של ההתפלגות, מספר טבעי), חשבו את אומד הנראות המקסימלי	
	_
על הפרמטר $p(N)$ פונקציה מונוטונית יורדת ממש כפונקציה של $p(N)$ גתון פריור על הפרמטר א פונקציה של	2
	_
N. מהו משערך ה MAP ?	

linear regression ו Stochastic Gradient Descent הלק ד:

:Stochastic Gradient Descent של בהקשר של הטיעון הבא הטיעון הבא .1

stochastic מעל פונקציה f גזירה, פרוצדורת מינימיזציה רב-מימדית $\min_{w \in R^d} f(w)$ מעל פונקציה אזירה, פרוצדורת ה

מעדכנת איטרציה על איטראיה הפיתרון את את איטרציה מדכנת מעדכנת gradient descent

:מקיימת שמקיימת, כאשר המוגרל משתנה משתנה v_t הווקטור כאשר אות , $w_{t+1} \leftarrow w_t + v_t$

$$E[v_t] = \underline{\hspace{1cm}}$$

Linear עבור Stochastic Gradient Descent עבור קוד שמממש אליכם להשלים עבור בשאלה או עליכם בשאלה או עליכם להשלים (w בעיית המינימיזציה (ביחס למקדמים של Regression).

$$f(w) = \frac{1}{m} \sum_{i=1}^{m} (\langle x_i, w \rangle - y_i)^2$$

import numpy as np

- # A function for running stochastic gradient descent
- # on a linear regression problem
- # x: Sample data of size [m,d], where m is the number
- # of samples and d is the dimension. The i'th data point
- # equals x[i,:]
- # y: labels (real numbers). The i'th label is y[i]
- # num iter: Number of iterations to run
- # step size: Step size of gradient updates

#


```
def stochastic gradient descent linear regression(
    x, y, num_iters, step_size):
    # find the number of samples and the dimension
    m,d = np.size(x)
    # initialize w as zero weight vector
    w = np.zeros(d)
    for iter in range(_____):
         # np.random.randint(N) returns a random
         # number in the range \{0,1,...,N-1\}
         i = np.random.randint(______)
         for j in range(_____):
             w[j] = w[j] + ______
    return w
```


Linear עבור Stochastic Gradient Descent עבור את קוד שמממש Stochastic Gradient Descent עבור או עליכם להשלים את עבור פיחס . רגרסיה לינארית עם רגולריזציה היא בעיית המינימיזציה (ביחס Regression של (שקדמים ש) של

$$f(w) = \frac{1}{m} \sum_{i=1}^{m} (\langle x_i, w \rangle - y_i)^2 + \lambda ||w||_2^2$$

כאשר λ הוא פרמטר חיובי.

```
import numpy as np
# A function for running stochastic gradient descent
# on a regularized linear regression problem.
# x: Sample data of size [m,d], where m is the number
# of samples and d is the dimension. The i'th data point
# equals x[i,:]
# y: labels (real numbers). The i'th label is y[i]
# num iter: Number of iterations to run
# step size: Step size of gradient updates
# lambda: The lambda parameter from the problem
         definition
def stochastic gradient descent linear regression(
     x, y, num iters, step size, lambda):
     # find the number of samples and the dimension
    m,d = np.size(x)
     # initialize w as zero weight vector
    w =np.zeros(d)
     for iter in range(_____):
```


	<pre># np.random.randint(N) returns a random</pre>
	# number in the range $\{0,1,,N-1\}$
	<pre>i = np.random.randint()</pre>
	for j in range():
	
	w[j] = w[j] +
	
returi	a w
10011	1 VV

- 4. בסוף המבחן מצורף קוד של תכנית פייתון פשוטה. התוכנית מבצעת את הפעולות הבאות:
- ם. מגרילה מטריצת נתונים X של 1000 שורות (דגימות) ו 10 עמודות (מימדים). מכל קואורדינטה מוגרלת באופן בת"ל, מהתפלגות אחידה על הקטע [-0.5, 0.5]. נסמן ב x_i את הדגימה ה x_i ב מטריצה).
- המרחב עבאופן כאשר כל קואורדינטה ממרחב ש w_- ממרחב האופן מגרילה מגרילה שניה שניה של .b בת"ל מהתפלגות אחידה על [-0.5,0.5].
 - הוא: x_i הנימר הסיווג של הדגימות, כאשר הדגימות בינאריים בינאריים. כ $y_i = sign(\langle w_-, x_i \rangle)$
 - m בין הערכים 10 ל 499 (כולל). עבור כל m מונה על גודל קבוצת אימון m

- .i מפצלת את הדגימות (m הדגימות לקבוצת אימון (m הדגימות לקבוצת מבחן .i
 .i הדגימות האחרונות)
 - ii. פותרת בעיית linear regression (כפי שהוגדר בשאלה 1, כלומר ללא רגולריזציה) ביחס לקבוצת האימון
 - ועל קבוצת האימון ועל קבוצת linear regression מחשבת את שגיאת.iii המבחן
- .iv מחשבת את שגיאת אימון על פוצת על 0/1 loss מחשבת האימון..iv מחשבת איז על קבוצת קבוצת נתונים ((x_1,y_1) ... (x_m,y_m) מוגדרת כ $\frac{1}{m}\sum_{i=1}^m \llbracket y_i \neq sign(\langle w,x_i \rangle) \rrbracket$
- פ משרטטת גרף של שגיאת האימון ושגיאת המבחן ביחס לפונקציית הרגרסיה הלינארית, e משרטטת ארף של שגיאת האימון ושגיאת המבחן כפונקציה של ש
 - ,0/1 loss משרטטת ביחס לפונקצית ושגיאת האימון שגיאת משרטטת הלפונקצית משרטטת ה $\,$.f

0/1 והשני ל regression loss להלן השירטוטים אחד התכנית. אחד התכנית. להלן והשרטוטים שפלטה התכנית. אחד השירטוטים יוסאכו:

: A שירטוט

:B שירטוט

סמנו את התשובה הנכונה: שירטוט A מתאים ל

Regression loss \Box

0/1 loss \square

בכל אחד מהשירטוטים, ישנו עקום אחד הבנוי מסימני '+' (markers) , והשני מנקודות '.'. אחד העקומים מייצג את שגיאת האימון, והשני את שגיאת המבחן.

סמנו את התשובה הנכונה: העקומים המשורטטים ב '+' מייצגים את

שגיאת האימון 🗌

שגיאת המבחן

לנוחיותכם, אנו מצרפים את הקוד שייצר את השירטוטים, כפי שתואר באופן מילולי לעיל:


```
import numpy as np
import matplotlib.pyplot as plt
from my_ML_library import my_linear_regression_optimizer
# Generate random sample points: 1000 points of 10 dimensions
# Each coordinate uniform in range [-0.5,0.5]
X = np.random.random(size=(1000,10))-0.5
# Generate random weight vector: 10 coordinates uniform in range
# [-0.5,0.5]
w = np.random.random(size=(10,1))-0.5
# Generate labels y i = sign(dot(x[i,:], w ))
y = np.sign(np.matmul(X, w))
# Prepare vectors for saving error calculations for plot
train_errs_for_plot = []
test_errs_for_plot = []
train errs 01 for plot = []
test errs 01 for plot = []
# Enumerate over number of training points from 10 to 499
for m in range (10,500):
 # Slice data to train and test
 Xtrain = X[:m,:]
 Xtest = X[m:, :]
 ytrain = y[:m]
 ytest = y[m:]
 # Get optimal (column) coefficient vector
 w = my linear regression optimizer(Xtrain, ytrain)
 w = w.reshape((10,1))
  # Compute training and test error (with respect to linear
```



```
# regression cost)
 train err = np.mean(np.square(np.matmul(Xtrain, w)-ytrain))
 test err = np.mean(np.square(np.matmul(Xtest, w)-ytest))
  # compute training and test error (with respect to 0/1 loss)
  train err 01 = \
   np.mean(np.sign(np.matmul(Xtrain, w)*ytrain) - 1.0) * (-0.5)
 test err 01 = \
    np.mean(np.sign(np.matmul(Xtest, w)*ytest) - 1.0) * (-0.5)
 # Save error calculations for plot below
 train errs for plot.append(train err)
 test_errs_for_plot.append(test_err)
 train errs 01 for plot.append(train err 01)
 test errs 01 for plot.append(test err 01)
# Plot linear regression train and test errors, as a function
# of training set size m
plt.figure()
plt.xlabel('m')
plt.plot(range(10,500), test errs for plot,
plt.plot(range(10,500), train errs for plot,
# Plot 0/1 train and test errors, as a function of training
# set size m
plt.figure()
plt.xlabel('m')
plt.plot(range(10,500), test errs 01 for plot,
plt.plot(range(10,500), train_errs_01_for plot,
plt.show()
```