Young People Survey

Explore the preferences, interests, habits, opinions, and fears of young people

Data Introduction

In 2013, students of the Statistics class at FSEV UK were asked to invite their friends to participate in this survey.

- Music preferences (19 items)
- Movie preferences (12 items)
- Hobbies & interests (32 items)
- Phobias (10 items)

- Health habits (3 items)
- Personality traits (57 items)
- Spending habits (7 items)
- Demographics (10 items)

Outline

1 Clustering

Describe the composition of the participants

2 Classification

Use Xgboost to classifiy someone whether have alcohol addiction with other features.

3 Relationship

Use factor analysis to find out the relationship among the features that be selected in former.

4 GMM

Weighted the answer and classification by GMM

Missing Value Imputation

Use CART (Classification And Regression Tree) to imputate the missing value

Hierarchical Clustering

Describe the composition of the participants

Ward's minimum variance method :

$$Total \ ESS = ESS_1 + ESS_2 + \dots + ESS_k$$
$$ESS_k = \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^T (x_{ij} - \bar{x}_i)$$

- $x_{ij}: j^{th}$ number of component in i^{th} cluster
- \bar{x}_i : Mean of the i^{th} cluster

Describe the composition of the participants

Cluster Dendrogram

Describe the composition of the participants

Hobbies

Describe the composition of the participants

Hobbies

Describe the composition of the participants

PERSONALITY_TRAITS 3.64 2.89 2.73 3.35 3.06 3.38 2.73 3.89 4.00 3.94 2.37 3.28 3.36 2.56 3.09 3.16 3.13 3.89 2.19 2.60 3.20 3.45 3.65 2.58 2.98 3.46 2.66 3.92 2.74 3.77 3.30 3.21 2.64 2.94 3.39 2.52 3.79 4.06 2.84 2.24 2.92 3.08 3.44 3.42 3 2.67 3.59 3.56 Writing.notes Reliability Self.criticism Daily.events Prioritising.workload Workaholism Final.judgement Keeping.promises Criminal.damage Decision.making Thinking.ahead Loss.of.interest Friends.versus.money

Describe the composition of the participants

PERSONALITY_TRAITS 2.26 2.61 3.41 3.52 3.62 3.10 2.88 3.10 3.87 3.44 3.14 3.37 3.67 3.61 3.67 3.61 2.20 2.68 3.48 3.24 3.75 3.16 3.01 3.05 3.58 3.57 3.01 3.57 3.57 3.45 3.08 3.73 2.74 3.52 3.77 3 2.26 3.56 2.95 3.38 3.21 3.01 3.06 3.36 3.55 2.85 3.26 3.27 2.17 Socializing Lying Waiting Mood.swings Achievements Responding.to.a.serious.letter Public.speaking Appearence.and.gestures Assertiveness Getting.angry Knowing.the.right.people Unpopularity Life.struggles Happiness.in.life

Describe the composition of the participants

Predict

Predict someone have alcohol addiction with their other features

XGBoost

假設其分配為 Bernouli 分配 如下,其Logistic的損失函數:

$$\prod_{1}^{n} \pi(x_i)^{y_i} [1 - \pi(x_i)]^{1-y_i}, \pi(x) = \frac{exp(\beta_i X_i)}{1 + exp(\beta_i X_i)}$$

Boosting 中, $h_m(x_i)$ 代表經過m棵樹迭代後的估計值, 同Logistic裡的 $\Sigma_{i=1}^n \beta_i Xi$

$$\hat{f}(x_i) = \sum_{m=1}^{M} h_m(x_i) = \sum_{i=1}^{n} \beta_i X_i$$

將其帶入上述損失函數後,可得下式:

$$L(y_i, f(x)) = y \ln(1 + e^{-f(x)}) + (1 - y) \ln(1 + e^{f(x)})$$

Rebalance

ROC / Recall

IMPORTANCE PLOT

Relationship

Find out the relationship among the features that be selected.

Factor Analysis:

$$x = \mu + Fz + \epsilon$$

- x: Random Variables
- μ : Expection of x
- F: Factor Loading
- z: Hidden Facotr
- ϵ : Idiosyncratic factor

Factor Analysis

Factor Analysis

Visualization

Music preferences **Positive** Question Movie preferences Selected top 40 variable **Hobbies & interests** and weighted by **Phobias** importance value Health habits calculated by Xgboost **Negative** Personality traits Question Spending habits

True Value Scattor Plot

Classification

