- A. A uniform external electric field $E_0\hat{z}$ is applied to a conducting sphere of radius R. What is the resulting electric dipole moment of the sphere?
- B. A second, identical sphere is now introduced at a distance $d \gg R$. Show that the field due to the first sphere evaluated at the second sphere is much less than E_0 . Thus, the polarization of the two spheres is practically independent.
- C. A dielectric solid is approximated by a lattice of conducting spheres, radius R, with number density n (m⁻³). Assuming $nR^3 \ll 1$, what is the electric susceptibility χ_e of the material?