$12n_{0268} \ (K12n_{0268})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -3.29204 \times 10^{20} u^{19} + 9.27352 \times 10^{20} u^{18} + \dots + 2.43864 \times 10^{22} b - 1.34033 \times 10^{22}, \\ &- 4.39429 \times 10^{21} u^{19} + 1.24794 \times 10^{22} u^{18} + \dots + 9.75456 \times 10^{22} a - 4.90353 \times 10^{23}, \\ &u^{20} - 3 u^{19} + \dots + 109 u + 34 \rangle \\ I_2^u &= \langle -u^2 a - u^2 + b - a - 1, \ 2u^3 a - 4u^2 a - u^3 + 4a^2 + 6au - 2u^2 + 2a - u + 3, \ u^4 - u^3 + 3u^2 - 2u + 1 \rangle \\ I_3^u &= \langle 16a^3 u + 7a^3 - 67a^2 u + 5a^2 + 153au + 61b - 36a - 158u + 91, \\ &a^4 - 3a^3 u - 5a^3 + 14a^2 u + 9a^2 - 26au - 5a + 18u - 5, \ u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 36 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3.29 \times 10^{20} u^{19} + 9.27 \times 10^{20} u^{18} + \dots + 2.44 \times 10^{22} b - 1.34 \times 10^{22}, -4.39 \times 10^{21} u^{19} + 1.25 \times 10^{22} u^{18} + \dots + 9.75 \times 10^{22} a - 4.90 \times 10^{23}, \ u^{20} - 3u^{19} + \dots + 109u + 34 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0450486u^{19} - 0.127934u^{18} + \dots + 22.3785u + 5.02691 \\ 0.0134995u^{19} - 0.0380274u^{18} + \dots + 4.80738u + 0.549621 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.00528585u^{19} - 0.0271975u^{18} + \dots + 10.3946u - 0.455911 \\ 0.00385593u^{19} - 0.00521186u^{18} + \dots + 2.81112u - 0.156325 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0193868u^{19} - 0.0630592u^{18} + \dots + 16.0098u + 1.70343 \\ 0.00436855u^{19} - 0.00558340u^{18} + \dots + 4.17123u + 0.514711 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0197609u^{19} - 0.0588829u^{18} + \dots + 10.4067u + 2.39866 \\ 0.00436280u^{19} - 0.0129388u^{18} + \dots + 2.70245u + 0.389051 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.00914178u^{19} - 0.0324093u^{18} + \dots + 13.2058u - 0.612236 \\ 0.00385593u^{19} - 0.00521186u^{18} + \dots + 2.81112u - 0.156325 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0119922u^{19} - 0.0407718u^{18} + \dots + 4.81606u - 2.27540 \\ 0.000306872u^{19} - 0.00141344u^{18} + \dots + 0.273172u - 0.657170 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0193285u^{19} - 0.0576787u^{18} + \dots + 9.52664u + 2.37998 \\ 0.00479521u^{19} - 0.0141430u^{18} + \dots + 3.58255u + 0.407734 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{18686925740007476253183}{195091181117356896960512}u^{19} + \frac{11735621234030037886189}{48772795279339224240128}u^{18} + \cdots - \frac{9107616583783871001778045}{195091181117356896960512}u^{-\frac{82148572343333635819015}{5737975915216379322368}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{20} + 15u^{19} + \dots - 353u + 16$
c_2, c_5	$u^{20} + 7u^{19} + \dots + 35u + 4$
c_{3}, c_{8}	$u^{20} - u^{19} + \dots + 2560u + 2048$
c_6, c_9, c_{10}	$u^{20} - 3u^{19} + \dots + 109u + 34$
c_7, c_{11}	$u^{20} - 3u^{19} + \dots - 33u + 34$
c_{12}	$u^{20} + 31u^{19} + \dots + 32843u + 1156$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{20} - 13y^{19} + \dots - 93409y + 256$
c_2, c_5	$y^{20} + 15y^{19} + \dots - 353y + 16$
c_{3}, c_{8}	$y^{20} + 71y^{19} + \dots + 13893632y + 4194304$
c_6, c_9, c_{10}	$y^{20} + 3y^{19} + \dots + 30619y + 1156$
c_7, c_{11}	$y^{20} + 31y^{19} + \dots + 32843y + 1156$
c_{12}	$y^{20} - 73y^{19} + \dots - 208085985y + 1336336$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.016951 + 0.789231I		
a = -0.147460 - 1.134770I	1.11325 + 1.38275I	7.09119 - 4.02054I
b = 0.508184 + 0.603985I		
u = -0.016951 - 0.789231I		
a = -0.147460 + 1.134770I	1.11325 - 1.38275I	7.09119 + 4.02054I
b = 0.508184 - 0.603985I		
u = -0.409805 + 0.654210I		
a = 0.913159 - 0.159905I	0.11722 + 1.46637I	1.49691 - 4.73539I
b = -0.266779 + 0.021705I		
u = -0.409805 - 0.654210I		
a = 0.913159 + 0.159905I	0.11722 - 1.46637I	1.49691 + 4.73539I
b = -0.266779 - 0.021705I		
u = 0.154412 + 0.621344I		
a = -1.91384 - 1.58582I	0.12177 - 2.86051I	4.18275 - 0.60909I
b = 0.530147 - 0.944937I		
u = 0.154412 - 0.621344I		
a = -1.91384 + 1.58582I	0.12177 + 2.86051I	4.18275 + 0.60909I
b = 0.530147 + 0.944937I		
u = -0.18250 + 1.41448I		
a = 1.66337 + 0.44996I	7.73611 + 5.17350I	7.90966 - 4.84500I
b = -0.729471 - 0.781970I		
u = -0.18250 - 1.41448I		
a = 1.66337 - 0.44996I	7.73611 - 5.17350I	7.90966 + 4.84500I
b = -0.729471 + 0.781970I		
u = -0.120113 + 0.255851I		
a = 2.56623 + 3.01463I	-1.66738 + 1.58596I	-6.75642 - 4.62170I
b = 0.203906 + 0.753665I		
u = -0.120113 - 0.255851I		
a = 2.56623 - 3.01463I	-1.66738 - 1.58596I	-6.75642 + 4.62170I
b = 0.203906 - 0.753665I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.57886 + 1.65257I		
a = 1.15768 - 1.00754I	6.46005 - 0.37754I	1.69270 + 0.75958I
b = -0.73327 + 1.21762I		
u = -0.57886 - 1.65257I		
a = 1.15768 + 1.00754I	6.46005 + 0.37754I	1.69270 - 0.75958I
b = -0.73327 - 1.21762I		
u = 0.83952 + 1.68636I		
a = 1.91623 - 0.59074I	-13.2323 - 12.8519I	1.25558 + 5.23566I
b = -0.80508 + 1.30894I		
u = 0.83952 - 1.68636I		
a = 1.91623 + 0.59074I	-13.2323 + 12.8519I	1.25558 - 5.23566I
b = -0.80508 - 1.30894I		
u = 1.22594 + 1.55065I		
a = 1.69696 + 0.72298I	-10.36440 - 5.35439I	2.02942 + 1.66531I
b = -1.37246 - 0.39498I		
u = 1.22594 - 1.55065I		
a = 1.69696 - 0.72298I	-10.36440 + 5.35439I	2.02942 - 1.66531I
b = -1.37246 + 0.39498I		
u = -1.85145 + 1.14515I		
a = 0.648918 + 0.734717I	-5.65348 + 3.36046I	0.05819 - 1.65611I
b = -0.25500 - 1.69562I		
u = -1.85145 - 1.14515I		
a = 0.648918 - 0.734717I	-5.65348 - 3.36046I	0.05819 + 1.65611I
b = -0.25500 + 1.69562I		
u = 2.43981 + 0.93238I		
a = 0.616388 + 1.146420I	-17.5295 + 2.0815I	-60.10 - 0.732251I
b = -0.58018 - 1.86831I		
u = 2.43981 - 0.93238I		
a = 0.616388 - 1.146420I	-17.5295 - 2.0815I	-60.10 + 0.732251I
b = -0.58018 + 1.86831I		

$$I_2^u = \langle -u^2a - u^2 + b - a - 1, \ 2u^3a - u^3 + \dots + 2a + 3, \ u^4 - u^3 + 3u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a\\u^{2}a + u^{2} + a + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2}a + \frac{1}{2}u^{3} - 2u^{2} + \frac{3}{2}u - \frac{1}{2}\\u^{2}a + u^{2} + a \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} + a + \frac{3}{2}u - \frac{1}{2}\\u^{2}a + u^{2} + a \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} + a + \frac{3}{2}u - \frac{1}{2}\\u^{2}a + u^{2} + a \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} - 1\\u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{7}{2}u^3a u^2a \frac{1}{2}u^3 \frac{11}{2}au 3u^2 \frac{7}{2}a + \frac{11}{2}u \frac{11}{2}au \frac{11}{2}a$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5	$(u^2 - u + 1)^4$
c_2	$(u^2+u+1)^4$
c_3, c_8	u^8
<i>c</i> ₆	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$
	$(u^4 - u^3 + u^2 + 1)^2$
c_9, c_{10}, c_{12}	$(u^4 + u^3 + 3u^2 + 2u + 1)^2$
c_{11}	$(u^4 + u^3 + u^2 + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$(y^2 + y + 1)^4$
c_3,c_8	y^8
c_6, c_9, c_{10} c_{12}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$
c_7, c_{11}	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.395123 + 0.506844I		
a = -0.893973 - 1.010300I	-0.21101 - 3.44499I	-2.28131 + 9.48913I
b = 0.500000 - 0.866025I		
u = 0.395123 + 0.506844I		
a = -0.178069 + 0.596972I	-0.211005 + 0.614778I	0.065036 - 0.652246I
b = 0.500000 + 0.866025I		
u = 0.395123 - 0.506844I		
a = -0.893973 + 1.010300I	-0.21101 + 3.44499I	-2.28131 - 9.48913I
b = 0.500000 + 0.866025I		
u = 0.395123 - 0.506844I		
a = -0.178069 - 0.596972I	-0.211005 - 0.614778I	0.065036 + 0.652246I
b = 0.500000 - 0.866025I		
u = 0.10488 + 1.55249I		
a = -1.202340 - 0.666019I	6.79074 - 1.13408I	4.18309 + 3.88645I
b = 0.500000 + 0.866025I		
u = 0.10488 + 1.55249I		
a = -1.47562 + 0.50824I	6.79074 - 5.19385I	-0.84181 + 3.92087I
b = 0.500000 - 0.866025I		
u = 0.10488 - 1.55249I		
a = -1.202340 + 0.666019I	6.79074 + 1.13408I	4.18309 - 3.88645I
b = 0.500000 - 0.866025I		
u = 0.10488 - 1.55249I		
a = -1.47562 - 0.50824I	6.79074 + 5.19385I	-0.84181 - 3.92087I
b = 0.500000 + 0.866025I		

$$I_3^u = \langle 16a^3u - 67a^2u + \cdots - 36a + 91, \ -3a^3u + 14a^2u + \cdots - 5a - 5, \ u^2 + 1
angle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.262295a^{3}u + 1.09836a^{2}u + \dots + 0.590164a - 1.49180 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.557377a^{3}u + 1.45902a^{2}u + \dots + 4.75410a - 4.29508 \\ 0.0983607a^{3}u + 0.213115a^{2}u + \dots - 0.721311a - 0.0655738 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.196721a^{3}u + 0.426230a^{2}u + \dots + 1.44262a - 0.131148 \\ -0.475410a^{3}u + 0.803279a^{2}u + \dots + 3.81967a - 3.01639 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.114754a^{3}u + 0.0819672a^{2}u + \dots + 2.50820a + 0.590164 \\ -0.114754a^{3}u - 0.0819672a^{2}u + \dots + 2.50820a - 0.590164 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.459016a^{3}u + 1.67213a^{2}u + \dots + 4.03279a - 4.36066 \\ 0.0983607a^{3}u + 0.213115a^{2}u + \dots + 0.721311a - 0.0655738 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.262295a^{3}u - 1.09836a^{2}u + \dots - 1.59016a + 3.49180 \\ -0.262295a^{3}u + 1.09836a^{2}u + \dots + 1.59016a - 2.49180 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.114754a^{3}u + 0.0819672a^{2}u + \dots + 2.50820a + 0.590164 \\ -0.114754a^{3}u - 0.0819672a^{2}u + \dots + 2.50820a - 0.590164 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{40}{61}a^3u + \frac{48}{61}a^3 - \frac{320}{61}a^2u - \frac{140}{61}a^2 + \frac{840}{61}au + \frac{32}{61}a - \frac{944}{61}u + \frac{380}{61}au + \frac{320}{61}au + \frac{320}{61}au$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$
c_2	$(u^4 - u^3 + u^2 + 1)^2$
c_3,c_8	$u^8 - 5u^6 + 7u^4 - 2u^2 + 1$
<i>C</i> ₅	$(u^4 + u^3 + u^2 + 1)^2$
$c_6, c_7, c_9 \\ c_{10}, c_{11}$	$(u^2+1)^4$
c_{12}	$(u+1)^8$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$
c_2, c_5	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$
c_3, c_8	$(y^4 - 5y^3 + 7y^2 - 2y + 1)^2$
c_6, c_7, c_9 c_{10}, c_{11}	$(y+1)^8$
c_{12}	$(y-1)^8$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = 1.04872 + 1.17889I	-0.21101 + 1.41510I	0.17326 - 4.90874I
b = 0.351808 + 0.720342I		
u = 1.000000I		
a = 1.52617 - 1.31052I	6.79074 - 3.16396I	3.82674 + 2.56480I
b = -0.851808 + 0.911292I		
u = 1.000000I		
a = 2.17745 + 0.51206I	6.79074 + 3.16396I	3.82674 - 2.56480I
b = -0.851808 - 0.911292I		
u = 1.000000I		
a = 0.24766 + 2.61957I	-0.21101 - 1.41510I	0.17326 + 4.90874I
b = 0.351808 - 0.720342I		
u = -1.000000I		
a = 1.04872 - 1.17889I	-0.21101 - 1.41510I	0.17326 + 4.90874I
b = 0.351808 - 0.720342I		
u = -1.000000I		
a = 1.52617 + 1.31052I	6.79074 + 3.16396I	3.82674 - 2.56480I
b = -0.851808 - 0.911292I		
u = -1.000000I		
a = 2.17745 - 0.51206I	6.79074 - 3.16396I	3.82674 + 2.56480I
b = -0.851808 + 0.911292I	•	
u = -1.000000I		
a = 0.24766 - 2.61957I	-0.21101 + 1.41510I	0.17326 - 4.90874I
b = 0.351808 + 0.720342I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^{2} - u + 1)^{4}(u^{4} - u^{3} + 3u^{2} - 2u + 1)^{2}$ $\cdot (u^{20} + 15u^{19} + \dots - 353u + 16)$
c_2	$((u^{2} + u + 1)^{4})(u^{4} - u^{3} + u^{2} + 1)^{2}(u^{20} + 7u^{19} + \dots + 35u + 4)$
c_3, c_8	$u^{8}(u^{8} - 5u^{6} + \dots - 2u^{2} + 1)(u^{20} - u^{19} + \dots + 2560u + 2048)$
c_5	$((u^{2}-u+1)^{4})(u^{4}+u^{3}+u^{2}+1)^{2}(u^{20}+7u^{19}+\cdots+35u+4)$
c_6	$((u^{2}+1)^{4})(u^{4}-u^{3}+3u^{2}-2u+1)^{2}(u^{20}-3u^{19}+\cdots+109u+34)$
c_7	$((u^2+1)^4)(u^4-u^3+u^2+1)^2(u^{20}-3u^{19}+\cdots-33u+34)$
c_{9}, c_{10}	$((u^{2}+1)^{4})(u^{4}+u^{3}+3u^{2}+2u+1)^{2}(u^{20}-3u^{19}+\cdots+109u+34)$
c_{11}	$((u^{2}+1)^{4})(u^{4}+u^{3}+u^{2}+1)^{2}(u^{20}-3u^{19}+\cdots-33u+34)$
c_{12}	$(u+1)^8(u^4+u^3+3u^2+2u+1)^2$ $\cdot (u^{20}+31u^{19}+\cdots+32843u+1156)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^{2} + y + 1)^{4}(y^{4} + 5y^{3} + 7y^{2} + 2y + 1)^{2}$ $\cdot (y^{20} - 13y^{19} + \dots - 93409y + 256)$
c_2, c_5	$(y^{2} + y + 1)^{4}(y^{4} + y^{3} + 3y^{2} + 2y + 1)^{2}$ $\cdot (y^{20} + 15y^{19} + \dots - 353y + 16)$
c_3, c_8	$y^{8}(y^{4} - 5y^{3} + 7y^{2} - 2y + 1)^{2}$ $\cdot (y^{20} + 71y^{19} + \dots + 13893632y + 4194304)$
c_6, c_9, c_{10}	$(y+1)^8(y^4+5y^3+7y^2+2y+1)^2$ $\cdot (y^{20}+3y^{19}+\dots+30619y+1156)$
c_7, c_{11}	$(y+1)^8(y^4+y^3+3y^2+2y+1)^2$ $\cdot (y^{20}+31y^{19}+\dots+32843y+1156)$
c_{12}	$(y-1)^8(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$ $\cdot (y^{20} - 73y^{19} + \dots - 208085985y + 1336336)$