Exemplos de uso de busca em profundidade

Karina Valdivia Delgado

kvd@usp.br

Agenda

- Ordenação topológica de um grafo acíclico orientado
- Localização de componentes fortemente conectadas de um grafo orientado

Busca em profundidade (Depth-first-search-DFS)

A ideia é prosseguir a busca sempre a partir do vértice descoberto mais recentemente, até que este não tenha mais vizinhos descobertos. Neste caso, volta-se na busca para o precursor desse vértice.

DFS devolve uma floresta.

Para organizar o processo de busca os vértices são pintados:

- branco: não foram descobertos ainda
- cinza: são a fronteira. O vértice já foi descoberto mas ainda não examinamos os seus vizinhos.
- preto: são os vértices já descobertos e seus vizinhos já foram examinados.

Os vértices recebem 2 rótulos:

- d[.]: o momento em que o vértice foi descoberto (tornou-se cinza).
- f[.]: o momento em que examinamos os seus vizinhos (tornou-se preto).

O vértice é branco até d, cinza entre d e f e preto a partir de f.

5

Não existe. Então, terminei com o vértice (pinta ele de preto)

Volta-se na busca para o precursor desse vértice.

Não existe. Terminei! Volta-se na busca para o precursor desse vértice.

Não existe. Terminei! Volta-se na busca para o precursor desse vértice.

Não existe. Terminei! Volta-se na busca para o precursor desse vértice.

Não existe. Terminei! Volta-se na busca para o precursor desse vértice.

Não existe. Terminei!

Resultado: uma floresta com duas árvores

vértice	π
E	NIL
D	E
F	E

Resultado: uma floresta com duas árvores

Uso de busca em profundidade para:

- Ordenação topológica de um grafo acíclico orientado
- Localização de componentes fortemente conectadas de um grafo orientado

Uma ordenação topológica de um grafo acíclico orientado G(V,A) é uma ordenação linear de todos os seus vértices, tal que:

 se G contém uma aresta (u,v), então u aparece antes de v na ordenação.

Grafos acíclicos orientados são usados para indicar precedência entre eventos ou tarefas. Uma ordenação topológica é uma sequência válida de tarefas.

Exemplo:

- Vértices: disciplinas de um curso
- Arcos: pré-requisitos entre as disciplinas.

Uma ordenação topológica é uma sequência válida para cursar as disciplinas.

F não é prerrequisito de nenhuma outra disciplina, posso deixar F para cursar no final

O único com grau de saída 0 é F

O único com grau de saída 0 é F

O único com grau de saída 0 é F

O único com grau de saída 0 é F

O único com grau de saída 0 é F

Um dos nós que tem grau de saída 0 é E

O único com grau de saída 0 é F

Um dos nós que tem grau de saída 0 é E

O único com grau de saída 0 é F

Um dos nós que tem grau de saída 0 é E

O único com grau de saída 0 é B

O único com grau de saída 0 é F

Um dos nós que tem grau de saída 0 é E

O único com grau de saída 0 é B

O único com grau de saída 0 é F

Um dos nós que tem grau de saída 0 é E

O único com grau de saída 0 é B

O único com grau de saída 0 é F

Um dos nós que tem grau de saída 0 é E

O único com grau de saída 0 é B

Um dos nós que tem grau de saída 0 é C

O único com grau de saída 0 é F

Um dos nós que tem grau de saída 0 é E

O único com grau de saída 0 é B

Um dos nós que tem grau de saída 0 é C

O único com grau de saída 0 é A

Ordenação Topologica (V, A)

- 1. Chamar DFS (V, A), quando o vértice é colorido de preto, inserí-lo à frente de uma lista ligada
- 2. Devolva a lista ligada de vértices

As componentes fortemente conectadas de um grafo direcionado são conjuntos de vértices sob a relação "são mutuamente alcançáveis".

As componentes fortemente conectadas de um grafo direcionado são conjuntos de vértices sob a relação "são mutuamente alcançáveis".

O grafo de componentes é um grafo acíclico orientado

As componentes fortemente conectadas de um grafo direcionado são conjuntos de vértices sob a relação "são mutuamente alcançáveis".

O grafo de componentes é um grafo acíclico orientado

 $G_{SCC} = (V_{SCC}, A_{SCC})$ V tem um vértice para cad

V_{SCC} tem um vértice para cada SCC do grafo G

A_{SCC} contém uma aresta se existe uma aresta correspondente entre os SCC's do grafo G

Algoritmos:

- R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on computing. 1 (2): 146-160, 1972.
- S. R. Kosarayu (não publicado) e M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis. Computers & Mathematics with Applications. 7: 67-72, 1981.
- H. N. Gabow. Path-based depth-first search for strong and biconnected components. Information Processing Letters. 74: 107-114, 2000

- Podemos pensar que cada vez que é executado
 DFS-Visit(u) na linha 7 do algoritmo DFS (V,A) temos um novo componente forte do grafo.
- Infelizmente, isso só é verdade se o vértice inicial u escolhido em cada chamada for escolhido de uma maneira especial.
- Para fazer essa escolha especial, o algoritmo de Kosaraju começa por colocar os vértices numa certa ordem

https://www.ime.usp.br/~pf/algoritmos_para_grafos/aulas/kosaraju.html

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G¹

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G¹

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G¹

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G^T

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G^T

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G^T

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G^T

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G^T

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G^T

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G^T

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G^T

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G^T

$$G^T = (V, A^T)$$

Se escolhemos por exemplo a seguinte ordem: F E D B C A cada vez que é executado DFS-Visit(u)

Como encontramos essa ordem? Criar o grafo G^Te coloco em

ordem decrescente de f[u]

$$G^T = (V, A^T)$$

SCCs (V, A)

- 1. Calcular A^T
- 2. Chamar DFS (V, A^T) para calcular f[u]
- 3. Chamar DFS (V, A) considerando no laço principal os vértices em ordem decrescente de f (calculados na linha 2)
- 4. Devolva os vértices de cada árvore resultante da linha 3 como uma componente fortemente conectada separada

SCCs (V, A)

- 1. Calcular A^T
- 2. Chamar DFS (V, A^T) para calcular f[u]
- 3. Chamar DFS (V, A) considerando no laço principal os vértices em ordem decrescente de f (calculados na linha 2)
- 4. Devolva os vértices de cada árvore resultante da linha 3 como uma componente fortemente conectada separada

E se fazemos o DFS primeiro no grafo original para calcular f e depois processamos o grafo reverso na ordem inversa de f. Será que conseguimos também encontrar as componentes fortemente conectadas?

SCCs (V, A)

- 1. Calcular A^T
- 2. Chamar DFS (V, A^T) para calcular f[u]
- 3. Chamar DFS (V, A) considerando no laço principal os vértices em ordem decrescente de f (calculados na linha 2)
- 4. Devolva os vértices de cada árvore resultante da linha 3 como uma componente fortemente conectada separada

Pode-se mostrar que o grafo das componentes fortes de G é o transposto do grafo das componentes fortes de G^T

Busca em profundidade no grafo original G(V,A)

Busca em profundidade no grafo original G(V,A)

Arestas são invertidas G^T=(V,A^T)

Busca em profundidade no grafo original G(V,A)

Busca em profundidade no grafo original G(V,A)

Busca em profundidade no grafo G^T=(V,A^T) seguindo a ordenação topológica da primeira busca (A B C E F D)

SCCs (V, A)

- 1. Chamar DFS (V, A) para calcular f[u]
- 2. Calcular A^T
- 3. Chamar DFS (V, A^T) considerando no laço principal os vértices em ordem decrescente de f (calculados na linha 1)
- 4. Devolva os vértices de cada árvore resultante da linha 3 como uma componente fortemente conectada separada