Modèle pour alpha

1 Introduction

On se concentre ici sur la modélisation du coefficient alpha, témoin de l'effet de serre. En obtenant cette valeur nous pourrons modéliser la puissance émise par l'atmosphère et reçue par la Terre.

2 Modélisation de α constante

On utilise le schéma de la NASA ci-dessous pour trouver alpha. Les valeurs du schéma sont issues de données moyennes sur 10 ans donc elles semblent fiables.

D'après le schéma, $\alpha=\frac{\text{puissance absorbée par l'atmosphère}}{\text{puissance émise par la surface terrestre}}$. On en déduit que :

$$\alpha=\frac{358,2}{398,2}\approx 0,\!90$$

La puissance renvoyée par l'atmosphère vers la Terre est donc $\alpha \sigma T^4$.

Figure 1: Schéma Earth's energy budget

3 Modélisation de α dépendant de la concentration de CO_2

Nous avons chercher l'évolution de la concentration de CO_2 en fonction des années : plus de descriptions sur le document Taux_de_concentration_de_CO2_en_fct_année.pdf.

On souhaite obtenir α selon l'année choisie par l'utilisateur. Il faut alors :

- Récupérer la valeur du taux de CO₂ en ppm selon l'année choisie grâce à la fonction concentration_CO₂.
- Utiliser la puissance émise par la Terre, qui est en paramètre de la fonction calcul_alpha().
- Appeller la fonction simulate_radiative_transfer(), présente dans le code Code-atmo-couche-backup.py.

Cette fonction permet de modéliser le transfert du rayonnement infrarouge émis par la Terre vers le sommet de l'atmosphère. En effet, l'atmosphère est découpé en plusieurs couches et pour chacune sont modélisées une absorption, une émission, et une transmission du rayonnement infrarouge émis par la surface de la Terre, modélisé par upward_flux[i, :].

Figure 2: Flux dans une couche d'atmosphère

Deux fonctions peuvent être réglées afin de complexifier le modèle :

- Modélisation de l'évolution de la température en fonction de l'altitude : (nécessaire puisque l'absorption par le CO2 dépend de la température de chaque couche) on choisit une modélisation simple via la fonction temperature_simple où la température décroît linéairement jusqu'à la tropopause (11 km), puis reste constante.
- Modélisation de l'absorption du CO_2 : utilisation de la fonction cross_section_CO2 où l'on considère, dans le spectre d'absorption du CO_2 , uniquement la bande d'absorption principale du CO_2 centrée sur 15 µm.

Limites et améliorations à apporter au modèle : ajouter plusieurs bandes d'absorption du CO_2 et d'autres gaz à effet de serre ainsi qu'un modèle d'évolution de la température plus complexe à travers les différentes couches de l'atmosphère.

Ainsi, en faisant le quotient de mean_flux_top sur flux_emis_terre qui correspondent respectivement à la puissance absorbée par l'atmosphère et la puissance émise par la surface terrestre, on obtient ainsi la valeur de α . Résultat obtenu ici

P_em_atm_thermal_down du modèle 5 dépend désormais de α intervenant dans le bilan de puissance surfacique suivant sur l'atmosphère :

Figure 3: Bilan de puissance surfacique sur l'atmosphère

Avec $\frac{P_{\rm abs}}{2} = P_{\rm em_atm_thermal_down} = P_{\rm em_atm_thermal_up}$

Dans la librairie des puissances, il faut donc déterminer cette puissance en fonction de α . Pour cela, on importe fonction_calcul_alpha et on complète la fonction P_em_atm_thermal_down qui renvoie

$$\frac{P_{\rm abs}}{2} = \alpha \cdot \frac{P_{\rm \acute{e}mis}}{2}$$

Remarque : on a alors aussi la valeur de P_em_atm_thermal_up puisqu'elles sont égales.

En exécutant ce code, l'utilisateur doit juste renseigner la latitude, longitude et désormais l'année de son choix, pour afficher la courbe de l'évolution de la température sur cette année en ce point.