3450:223 Calculus III, Final Sample Problems

These problems provide a sample of typical problems you are expected to be able to solve.

- 1. Vector Operations. Let $\mathbf{u} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{v} = -2\mathbf{i} + \mathbf{j} + \mathbf{k}$. Find
 - (a) $\mathbf{u} \cdot \mathbf{v}$
 - (b) $\mathbf{u} \times \mathbf{v}$
 - (c) $3\mathbf{u} \cdot \mathbf{v} (2\mathbf{u} + 3\mathbf{v}) \times \mathbf{v}$
 - (d) the angle between \mathbf{u} and \mathbf{v}
 - (e) $\operatorname{proj}_{\mathbf{v}}\mathbf{u}$
 - $(f) \operatorname{proj}_{\mathbf{u}} \mathbf{v}$
- 2. Lines, Planes and Quadric Surfaces
 - (a) Find the equation of the line going through the points (1,2,0) and (4,5,6).
 - (b) Find the equation of the plane going through the points (2, 0, -1), (0, 4, 1) and (-1, -1, 0).
 - (c) Find the point of intersection of the line $\mathbf{r}(t) = \langle 2t+1, 3t-2, t+1 \rangle$ and the plane x-3y+2z=7.
 - (d) Find the angle between the line $\mathbf{r}(t) = \langle 2t+1, 3t-2, t+1 \rangle$ and the plane x-3y+2z=7.
 - (e) Find the distance between the point P = (3, -2, 6) and the plane -2x + y 3z = 4.
 - (f) Use intercepts to sketch the plane 2x + 4y + 8z = 16.
 - (g) Sketch the surface $z = 5 (x^2 + y^2)$. What type of quadric surface is this?
 - (h) Sketch the surface $z = -3 + \sqrt{x^2 + y^2}$. What type of quadric surface is this?
 - (i) Sketch the surface $x^2 + 4y^2 + 9z^2 = 36$. What type of quadric surface is this?
 - (j) What is the difference between $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 \le 1$?
- 3. Motion along a 1D curve in R^3 . Let an object follow the path $\mathbf{r}(t) = \langle 2\cos 4t, 6t 2, 2\sin 4t \rangle$. Find
 - (a) the velocity, speed and acceleration
 - (b) the unit tangent and normal vectors
 - (c) the curvature
 - (d) the tangential and normal components of acceleration
- 4. Partial derivatives
 - (a) For the functions below, evaluate all first and second derivatives, and simplify as much as possible.

1

i.
$$f(x,y) = \ln\left(\frac{x}{y^2} + 1\right)$$

ii.
$$f(x, y, z) = e^{xy^2/z}$$

iii.
$$f(x, y, z) = \frac{(z + y \sin x)^{4/9}}{(x^2 + y^3 + z^4)^{1/3}}$$

- (b) Let $f(x,y) = x^2y$. Use the chain rule to find the polar derivatives $\frac{\partial f}{\partial r}$ and $\frac{\partial^2 f}{\partial r \partial \theta}$.
- (c) Show that $u(x,t) = e^{-D\pi^2 t} \sin(\pi x)$ satisfies the diffusion equation $u_t = Du_{xx}$, where D is a constant.
- (d) Find the tangent plane to $f(x,y) = \ln(x^2/y)$ at the point (3,4).
- (e) Use a linear approximation to estimate $Q = \frac{2.02^4}{1.97^3 + 4}$.
- (f) Find the rate of change of the function $f(x, y, z) = x^2y + z^3$ at the point (1, 2, 3) in the direction given by $\mathbf{v} = \langle -1, 4, 5 \rangle$.
- (g) Find the upward pointing normal vector to the curve $y = e^x$ in \mathbb{R}^2 .
- (h) Find the downward pointing normal vector to the surface $z = x^2 + y^2$.
- (i) Find and classify the critical points of $f(x,y) = x^3 3x^2y + y^2$.
- (j) Find the extreme values of $f(x,y) = x^2 + 2xy^2$ on the domain $x^2 + y^2 \le 2$.
- (k) Find the maximum and minimum values of $f(x,y) = ye^x$ along the constraint curve $x^2 + 2y^2 = 4$.
- (l) Find the maximum value of $f(x,y) = x^2 6y^2 + 2$ along the constraint curve 2x + 3y = 5.

5. Integrals

- (a) Evaluate $\iint_D (y(x-3)^3 + 1) dA$, where $D = \{(x,y) | 1 \le x \le 4, x-3 \le y \le 1\}$
- (b) Consider $\int_0^2 \int_{\sqrt[3]{y}}^8 e^{x^4} dx dy$. Change the order of integration then evaluate the integral.
- (c) Evaluate $\iint_D (1+x^2+y^2) dA$, where D is the circle of radius 2 centered at the origin.
- (d) Find the surface area of the portion of the surface $z = 10 2x^2 2y^2$ that lies above the xy-plane.
- (e) Evaluate $\iiint_D xy \, dV$, where D is the region in the first octant bounded by the coordinate planes and x + 2y + 3z = 6.
- (f) Evaluate $\iiint_D (x^2 + y^2)^2 dV$, where D is the region bounded above by $z = 10 x^2 y^2$ and below by z = 8.
- (g) Modify the standard cylindrical coordinates to evaluate $\iiint_D (x^2 + z^2) dV$, where D is the cylinder of radius 1 with axis centered along the y-axis, with $1 \le y \le 3$.
- (h) Use spherical coordinates to evaluate $\iiint_D (x^2 + y^2 + z^2) dV$, where D is the region bounded above by $x^2 + y^2 + z^2 = 25$ and below by $z = \sqrt{x^2 + y^2}$.

(i) Use a change of variables to evaluate $\iint_D xy \, dA$, where D is the diamond-shaped domain bounded by y = x + 1, y = 1 - x, y = x - 1 and y = -1 - x.

6. Vector Calculus

- (a) Evaluate $I = \int_C (x+2y+3z) \, ds$, where $C = C_1 + C_2$. The first segment of the path, C_1 , is the arc of the circle $x^2 + y^2 = 1$ lying in the xy-plane, beginning at the point (1,0,0) and ending at the point (0,1,0). The second segment of the path, C_2 , is the arc of the circle $y^2 + z^2 = 1$ lying in the yz-plane, beginning at the point (0,1,0) and ending at the point (0,0,1).
- (b) Find the work done (the vector line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$) by a particle moving through the vector field $\mathbf{F} = y\mathbf{i} + z^2\mathbf{j} x\mathbf{k}$ along the path $C = C_1 + C_2$, where C_1 is the straight line segment from (1, 1, 1) to (2, 3, 4) and C_2 is the straight line segment from (2, 3, 4) to (0, -1, 5).
- (c) Show that the vector field $\mathbf{F} = \langle e^y + \sec x \tan x \tan y + y \cos(xy) + 2x, xe^y + \sec x \sec^2 y + x \cos(xy) 3y^2 \rangle$ is conservative, and find a potential for it.
- (d) The vector field $\mathbf{F} = \left\langle y^2 z^4 + \frac{1}{x} + \frac{z}{y} e^{xz}, 2xyz^4 + \frac{1}{y} \frac{1}{y^2} e^{xz}, 4xy^2 z^3 \frac{1}{z} + \frac{x}{y} e^{xz} \right\rangle$ is conservative (you don't need to verify it). Find a potential for \mathbf{F} .
- (e) Use Green's Theorem to evaluate the vector line integral of $\mathbf{F} = \left\langle \frac{y^2}{2} + \tan(e^{x^2}), \ln(y^4) \frac{x^2}{2} \right\rangle$ over the closed curve C, which is the circle of radius 2 centered at the origin oriented in the counterclockwise direction.
- (f) Find the divergence and curl of $\mathbf{F} = \sin(x^2 + y)\mathbf{i} e^{xz}\mathbf{j} + \ln(x + 2y + 3z)\mathbf{k}$.
- (g) Find the flux, $\iint_S \mathbf{F} \cdot \hat{\mathbf{n}} d\mathbf{S}$, of the vector field $\mathbf{F} = \mathbf{i} z\mathbf{j} + x\mathbf{k}$ across the surface S, where S is the portion of the plane x + 2y + z = 2 that lies in the first octant, with upward pointing normal.
- (h) Use Stokes' Theorem to compute $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = \langle xy, xz, yz \rangle$ and S is the part of the sphere $x^2 + y^2 + z^2 = 9$ that lies inside the cylinder $x^2 + y^2 = 1$ and is above the xy-plane.
- (i) Use the Divergence Theorem to find the net flux of $\mathbf{F} = \langle x, 2y, 4z \rangle$ out of the sphere of radius 3 centered at the origin.