Universidade da Amazônia

Curso: Análise e Des. De Sistemas

Disciplina: Teste de Software

Professor: Alan Souza

LISTA DE EXERCÍCIO 2

1) Sape-s	se uue	existem	varios	แมงร ง	ie iesie	. Abaixo,	dualio	Sao	iistados.
------------	--------	---------	--------	--------	----------	-----------	--------	-----	-----------

- i) Teste de unidade
- ii) Teste de aceitação
- iii) Teste de estresse
- iv) Teste de integração

Relacionando esses tipos de teste com as abordagens caixa branca e caixa preta, marque a alternativa correta:

- a) Os tipos (i) e (ii) são caixa branca e (iii) e (iv) são caixa preta.
- b) Os tipos (ii) e (iii) são caixa branca e (i) e (iv) são caixa preta.
- c) Os tipos (i) e (iv) são caixa branca e (ii) e (iii) são caixa preta.
- d) Os tipos (iii) e (iv) são caixa branca e (i) e (ii) são caixa preta.
- e) Os tipos (i) e (iii) são caixa branca e (ii) e (iv) são caixa preta.
- 2) Sobre os testes de software, analise os itens a seguir:
- i) O processo de teste de software é definido como um processo separado, mas intimamente ligado, ao processo de desenvolvimento do sistema. Porém, eles têm metas e medidas de sucesso diferentes.
- ii) A taxa de defeitos de um software é calculada como sendo a divisão entre o número de casos de teste que falham e o total de casos de teste executados.
- iii) Quanto maior a taxa de defeitos de um software, menos sucedido é o processo de teste do respectivo software.
- iv) O documento de requisitos e os modelos de casos de uso servem de entradas para o processo de reportar o resultado de testes.

Quais alternativas são verdadeiras?

adio diterrativae ode verdadende.
) Apenas I e II.
) Apenas III e IV.
Apenas I e III.
) Apenas II e IV.
) Apenas I, II e III.
) Entende-se como sendo do sistema quando ele O programador pode cometer que eram no sistema.
Qual das alternativas abaixo preenche correta e respectivamente as lacunas?

- a) bug; gera saídas incoerentes com as entradas; bug; falha.
- b) erro; trava; engano; entradas erradas.
- c) falha; erra; defeito; erro.
- d) bug; gera bug; falha; erro.
- e) erro; falha; engano; defeito.

- 4) O ciclo de vida de um defeito envolve os seguintes stakeholders:
- a) Líder da equipe de desenvolvimento do sistema, Testador, Grupo de usuários finais, Gerente de Projeto.
- b) Desenvolvedor, Testador, Analista de Requisitos, Cliente.
- c) Usuário final, Testador, Desenvolvedor, Líder de Projeto.
- d) Testador, Desenvolvedor, Analista de Teste, Gerente de Projeto.
- e) Gerente de Projeto, Desenvolvedor, Testador, Patrocinador do Projeto.
- 5) Leia o requisito de um sistema de e-commerce abaixo:

"Ao inserir um código de desconto, o sistema deve verificar se ele é válido e conceder no mínimo 5% e no máximo 20% de desconto no produto".

Marque a opção que descreve os melhores valores de desconto (em percentagem) para criação de casos de testes capazes de cobrir a maioria dos cenários possíveis do referido requisito:

```
a) 1, 2, 3, 4 e 5.
b) 5 e 20.
c) 4, 5, 10, 20 e 21.
d) 19, 20 e 21.
e) -1, 0, 5, 10 e 20.
```

Baseado nos códigos-fonte a seguir, responda as questões 6, 7 e 8:

```
Classe Equacao2Grau:
                                                                    Classe de teste da classe Equação2Grau:
package projetoteste;
                                                             import org.junit.After;
                                                             import org.junit.Before;
                                                             import org.junit.Test;
public class Equacao2Grau {
  private double a, b, c;
                                                             import static org.junit.Assert.*;
                                                             import projetoteste. Equação 2 Grau;
  public void setA(double a) { this.a = a; }
                                                             public class Equacao2GrauTeste {
  public void setB(double b) { this.b = b; }
                                                                Equacao2Grau eq1 = new Equacao2Grau();
  public void setC(double c) { this.c = c; }
                                                                public Equacao2GrauTeste() { }
                                                                @Before
  public double[] calcRaizes() {
                                                                public void setUp() {
     double raizes[] = new double[2];
                                                                   eq1.setA(1);
     raizes[0] = ( -b + Math.sqrt(this.calcDelta()) ) / 2 * a;
                                                                   eq1.setB(12);
     raizes[1] = ( -b - Math.sqrt(this.calcDelta()) ) / 2 * a;
                                                                   eq1.setC(-13);
     return raizes:
                                                                }
                                                                @After
  }
                                                                public void tearDown() { }
  public double calcDelta() {
                                                                 @Test
     return b*b - (4 * a * c);
                                                                 public void testeDelta() {
                                                                   assertEquals(196.0, eq1.calcDelta(), 0.00001);
  }
}
                                                                 @Test
                                                                 public void testeRaizes() {
                                                                   double raizesCalculadas[] = eq1.calcRaizes();
                                                                   assertEquals(1.0, raizesCalculadas[0], 0.00001);
                                                                   assertEquals(-13.0, raizesCalculadas[1], 0.00001);
                                                                 }
                                                             }
```

- 6) Sobre a classe de teste Equacao2GrauTeste, julgue os itens a seguir: i) Possui dois casos de testes diferentes. ii) O método assertEquals serve para verificar se o valor calculado pela classe é igual ao valor esperado no caso de teste. Se forem iguais, o teste é aprovado (verde); senão, o teste falha (vermelho). iii) Utiliza o framework de teste gratuito do Java conhecido como JUnit e é um exemplo de teste unitário automatizado. É correto o que se afirma nos itens: a) I apenas. b) III apenas. c) III apenas. d) I e III apenas. e) I, II e III. 7) Quando a classe _____ for executada, o caso de teste testeDelta vai _____ e o testeRaizes vai _____. Marque a alternativa que preenche as lacunas acima de maneira correta e em ordem. a) Equacao2GrauTeste, passar, passar. b) Equacao2GrauTeste, falhar, passar. c) Equacao2Grau, falhar, falhar. d) Equacao2Grau, passar, passar. e) Equacao2Grau, falhar, passar. 8) Sobre as duas classes, julgue os itens abaixo como verdadeiro ou falso: (V) O comando return b*b - (4 * a * c); pode ser substituído por return Math.pow(b,2) - (4 * a * c); (F) O método assertEquals(196.0, eq1.calcDelta(), 0.00001); pode ser substituído por assertEquals (196.0, eq1.calcDelta()); (V) Os métodos setA, setB e setC não precisam ser testados, porque, no contexto da matemática, podem receber qualquer valor real (negativo, positivo ou zero). Qual alternativa representa a sequência correta de V para verdadeiro e F para falso? a) V-V-F. b) V-F-V. c) F-V-F. d) V-V-V. e) F-F-F. 9) Existem vários tipos de testes de software, um deles é o unitário. Quando eles são automatizados é possível
- a) testar mais lentamente o sistema.
- b) verificar o software como um todo.
- c) estimar se os requisitos não funcionais serão atendidos.
- d) garantir a alta qualidade do sistema.
- e) mostrar o código dos testes para o usuário com o objetivo de explicar os casos de teste.

10) Associe a ferramenta da esquerda com a descrição na direita tendo em vista o processo de teste de software.

Ferramentas:	Descrição:
I. JMeter	(V) Permite reduzir artificialmente as configurações do computador para
	testar o sistema em ambiente com recursos reduzidos.
II. JUnit	(III) Armazena o código-fonte do projeto, sendo possível controlar as
III. Github	versões e a relação de bugs do mesmo.
III. Gilliub	(II) Largamente utilizado para testes unitários de métodos das classes
IV. Excel	programadas na linguagem Java.
	(I) Software que serve para realizar testes de performance em aplicações
V. WinStress	web.
	(IV) Ferramenta muito usada para projetar e controlar os casos de testes
	em nível de projeto.

A ordem da associação correta é

- a) III, I, II, V, IV.
- b) V, III, II, IV, I.
- c) I, III, II, V, IV.
- d) I, II, III, IV, V.
- e) V, III, II, I, IV.
- 11) Explique como o processo de gerenciamento de erros pode ser realizado em um software de grande porte e complexo.
- R: O processo de gerenciamento de erros começa quando o testador realiza testes no sistema, identificando e reportando um erro. Esse erro será reconhecido pelo líder de desenvolvimento que irá priorizar e agendar a correção do mesmo. Em seguida, o desenvolvedor irá corrigir o erro e notificar o gerente projeto sobre a correção e este, por sua vez, irá emitir relatórios de gestão considerando a correção do bug.
- 12) Analise as telas do software https://stopots.com.br/, que é uma versão digital do "Jogo da Adedonha", jogado, antigamente, com papel e caneta. Em seguida, cite e descreva:
- a) três casos de testes unitários que podem ser realizados no software;
- R: Os seguintes casos de testes unitários no software podem ser executados: verificar se o jogador colocou um valor no campo, verificar se a sala atingiu o limite de participantes, gerar o ranking de ganhadores (1o, 2o e 3o lugares).
- b) dois testes de performance;
- R: Os seguintes testes de performance podem ser feitos nesse sistema: simular a criação de mil salas simultaneas com 10 jogadores em cada sala; simular a entrada de 1000 usuários ao mesmo tempo no sistema.
- c) dois testes de integridade de dados.
- R: Em relação a integridade de dados, é possível: verificar se o banco de dados armazena corretamente a pontuação de cada usuário no final de cada rodada; garantir que a letra sorteada esteja de acordo com a lista de configuração da sala.

Tela inicial:

Tela de login:

Tela do jogo:

Tela de ranking:

Tela de criação de sala:

