(FLUAN Q. RUI)

Contour Integrals

9/25/2019

Consider the complex plane 2 = x + iy

y = Z=X+iy

Can integrate function f(z) along clisch Contour curves in the complex plane

 $\int_{c} f(z) dz$

positive sense 13 counta-

Cauchy Integral Formula

=> states that for any analytic f(z) that it Zo is interior to the contour C Then

$$f(z_0) = \frac{1}{2\pi i} \int_c \frac{f(z) dz}{z - z_0}$$

-> says the values of finisher determined by the the value of for C.

Can also un this h do integrals.

e.g. $\int_{C} \frac{z dz}{(9 \cdot z^{2})(z+i)}$

with C > set |2|=2

 $= \int \frac{f(z) dz}{z+i} \qquad f(z) = \frac{z}{q-z^2} \to analytic for$ |z| = 2

 $=2\pi i f(-i)=2\pi i \frac{-i}{9+1}=\frac{\pi}{5}$

Complex functions can have Taylor Strike or Laurent suier can include movine powery

Laurant suies

Let C1 and C2 be concentric circles centured on 20 with redii r, and r2 with r2 < 0,

Theorem: If f is analytic on C, and Cz and between them, then of each pt. 2 in-between or on C, + Cz

$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_n)^n}$$

When
$$a_n = \frac{1}{2\pi i} \int_{C_1} \frac{f(s) ds}{(s-z_0)^{n+1}} n = 0, 1, 2, ...$$

$$b_n = \frac{1}{2\pi i} \int_{C_2} \frac{f(s) ds}{(s-z_0)^{n+1}} n = 1, 2, 3, ...$$

This suite is called a Laurent serie

Can shrink 12-0, 50 domain become Oc12-20/-r.

The f B analytic at all pts. inside of on C, New (2-3) not B analytic since -n+1 = 0 and bn = 0 + the series reduces to a Taylor sure A singular point of a function f(z) is a pt. So where f is not analytic at 20 but is analytic at every pt. in some neighborhood of 30

Prg.
$$f(Z) = \frac{1}{2}$$
 is analytic at every pt. except $Z=0$, so $Z=0$ is a singular pt.

> isolated singularities have neighborhoods around them where of its analytic.

When f has an Isolated singular point 20, the residue of f at 20 is the coeff. b, in its Laurent surer

$$b_i = \frac{1}{2\pi i} \int_C f(z) dz$$

$$f(s) = \frac{s^{-s}}{s} + \cdots$$

Residue thum: Let f be analytic in + m a closed confour c except when it has singular pts. Zi, Zz, ... with residue bi, bz, ... Then

Note: if
$$f(z) = \frac{g_1(z)}{z-z_1} = \frac{g_2(z)}{z-z_2} = \dots$$
has pole z_1, z_2, \dots Inside a contour C ,
then the residue z_1

$$b_1 = g_1(z_1)$$
, $b_2 = g_2(z_2)$, ... etc.
and $\int_{c} ((z)dz = 2\pi i (b_1 + b_2 + \cdots)$

This is the result we will mactly us.

e.g., evaluate
$$\int_{c} \frac{52-2}{2(2-1)} dz \qquad \text{for} \qquad \frac{C}{2(2-1)} dz$$

$$\frac{52-2}{2(24)} = \frac{1}{2} \left(\frac{52-2}{2-1} \right) = \frac{1}{2-1} \left(\frac{52-2}{2} \right)$$

$$\frac{1}{2} \frac{52-2}{2(24)} = \frac{1}{2} \frac{52-2}{2-1} = \frac{1}{2} \frac{52-2}{2}$$

$$\frac{1}{2} \frac{52-2}{2-1} = \frac{1}{2} \frac{52-2}{2-1} = \frac{1}{2}$$

$$\frac{1}{2} \frac{52-2}{2-1} = \frac{1}{2} \frac{52-2}{2-1} = \frac{1}{2}$$

$$\frac{1}{2} \frac{52-2}{2-1} = \frac{1}{2} \frac{52-2}{2-1} = \frac{1}{2}$$

$$\frac{1}{2} \frac{52-2}{2-1} = \frac{1}{2} \frac{52-2}{2-1} = \frac{1}{2} = \frac{1}{2}$$

$$\int_{c}^{\infty} \frac{5z-2}{z(z-1)} dz = 2\pi i (z+3) = 10\pi i$$

e.g., evaluate
$$\int_{c}^{2^{2}} \frac{Z^{2}}{1+Z} dz$$
 for $\int_{c}^{2^{2}} \frac{Z^{2}}{1+Z} dz$ for pulse at $Z_{0} = -1$

has residue $b_{1} = 5(Z_{0}) = (-1)^{2} = 1$
 $\int_{c}^{2^{2}} \frac{Z^{2}}{1+Z} dz = 2\pi i (1) = 2\pi i$

There are techniques for more complicated types of poles, but we wan't wary about those.

Evaluating real improper integal,

Consider $\int_{N^2}^{\infty} f(x) dx$

If we extend four the complex plane and f(z) has a pole at 20 with positive imaginary part, then consider the contour with 1201 < R.

Then if $f(z) = \frac{g(z)}{z-z}$

 $\oint_{\mathcal{E}} f(z) dz = 2\pi i g(z_0)$

and $\int_{C} f(z) dz = \lim_{R \to \infty} \left[\int_{R}^{R} f(x) dx + \int_{R} f(z) dz \right]$

Now on C_R , $f(z) = |f(z)|e^{i\phi}$ $f_{-0\rightarrow T}$ If we can argue that $|f(z)| \rightarrow 0$ as $R \rightarrow \omega$ then we get that $\lim_{R \rightarrow \infty} \int_{C_R} f(z) dz = 0$, and

 $\int_{-\infty}^{\infty} f(x) dx = 2\pi i g(z_0)$

e.g.,
$$\operatorname{Sinh} \int_{-\infty}^{\infty} \frac{2x^2-1}{x^4+5x^2+4} dx$$

Considu
$$f(z) = \frac{z^4 + 5z^2 + 4}{z^2 - 1} = \frac{2z^2 - 1}{2z^2 + 4}$$

Note that In large 131, f(2) ~ 121 ~ 0 so when we pick a closed combour in the upper half glave we get

$$\int_{c} f(z) dz = \int_{c}^{\infty} f(x) dx + \lim_{R \to \infty} \int_{c_{R}}^{c_{R}} f(z) dz$$

Then
$$f(z) = \frac{1}{z - i} \frac{zz^2 - 1}{(z + i)(z^2 + 4)} = \frac{1}{z - 2i} \frac{zz^2 - 1}{(z^2 + 1)(z + 2i)}$$

residue at Z=1
$$\frac{7}{(2i)(3)} = \frac{2}{5}$$

residue at
$$z=i$$
 residue at $z=zi$
 $\frac{7}{(2i)(3)} = \frac{i}{2}$ $\frac{7}{(-3)(4i)} = -\frac{3}{4i}$

$$\Rightarrow \int_{0}^{\infty} f(x) dx = 2\pi i \left[\frac{1}{2} - \frac{3}{4} i \right] = \frac{\pi}{2}$$

$$\int_{0}^{6} \frac{2x^{2}-1}{x^{4}+5x^{2}+4} dx = \frac{\pi}{2}$$

But suppose we want to evaluate

$$\int_{-\infty}^{\infty} \frac{dk}{k^2 - m^2} = -m \int_{-m}^{\infty} \frac{dk}{m}$$

Which has poles on the real K-axis at K= ± m

What we do is a trick, letting m2 - m2-ix

$$K^{2}-M^{2} \rightarrow K^{2}-(m^{2}-i\epsilon)$$

$$= K^{2}-(\sqrt{m^{2}-i\epsilon})^{2}$$

$$= (K-\sqrt{m^{2}-i\epsilon})(K+\sqrt{m^{2}-i\epsilon})$$

$$\sqrt{m^2-i\epsilon} = m\sqrt{1-i\epsilon} \simeq m - \frac{i\epsilon}{2m}$$

$$\simeq m - i\epsilon' \qquad (at \epsilon' \rightarrow \epsilon)$$

$$\simeq m - i\epsilon$$

$$K^{2}-(m^{2}-i\varepsilon)=(K-(m-i\varepsilon))(K+(m-i\varepsilon))$$

Now have 2 pobr at K= m-ie, K=-m+ie

We have much the poles of the real K axis.

We can make a closed contour using either The upper half plane or the lower half plane. Each encloses a different pole.

1 en closed pole 13

$$\frac{1}{\kappa^2 - m^2 + i\epsilon} = \frac{1}{\kappa - (m - i\epsilon)} \left(\frac{1}{\kappa + (m - i\epsilon)} \right) \qquad \frac{1}{\kappa^2 - m^2 + i\epsilon} = \frac{1}{\kappa + (m - i\epsilon)} \left(\frac{1}{\kappa - (m - i\epsilon)} \right)$$

residue is zun.

1 Mis me har Sake = - Sake

1 enclosed pale Z= -m+12

$$\frac{1}{k^2 m^2 + i\epsilon} = \frac{1}{k + (m - i\epsilon)} \left(\frac{1}{k - (m - i\epsilon)} \right)$$

In both case (x2m2+ix > 1/k/2 > 0 as 1k/2 so on CR

So in both case, we get

$$\int_{-\infty}^{\infty} \frac{dk}{k^2 - m^2 + ik} = 2\pi i \left(-\frac{L}{2m}\right) = -\frac{i\pi}{m}$$

Suppose instead we want to integrate $\int_{-\infty}^{\infty} \frac{dk e^{ik(x-y)}}{k^2 - m^2 + ik}$

This cak, with contour don't always work + which you are depends on whether (x-y) B positive or negative

Suppose (x-4) >0

Then on CR

lethy K>Z Znik alms

while for the love contour

e iz(x-y) ~ e i(-iR)(x-y) ~ e R(x-y) ~ 0

$$S_0 \qquad \int_{-\infty}^{\infty} \frac{dk \, e^{ik(x-y)}}{k^2 - m^2 + ik} = \int_{e}^{\infty} \frac{dz \, e^{iz(x-y)}}{z^2 - m^2 + ik} \, f_{xx}(x-y) > 0$$

only it we are the upper contour.

But if (x-y) <0, we use the your argument.

So depending on the sign at (x-y)/ we get contributions to the residues $e^{i(\frac{1}{2m})(x-y)}$ or $e^{i(\frac{1}{2m})(x-y)}$

In QFT, the propagator is
$$D(x-y) = \int \frac{d^4x}{(2\pi)^4} \frac{e^{ik\cdot(x-y)}}{k^2 - m^2 + iq}$$

M ~ ('-1-1)

Here

$$K^{2} = K_{0}^{2} - \vec{K}^{2}$$

$$d^{4}K = dK_{0} d^{2}\vec{K}$$

4- vector (Ko=Ko)

$$D(x-y) = \frac{1}{(2\pi)^4} \int_{-\infty}^{\infty} dk_0 \int_{-\infty}^{\infty} dk_0 \int_{-\infty}^{\infty} \frac{e^{ik_0(x-y^0)} - ik_0(x-y^0)}{(k_0^2 - (k_0^2 + m^2) + i\xi)}$$

call $w_k^2 = \vec{k}^2 + m^2$

 $\leftarrow re-lly = E^2$ $(E^2 = C^2 \vec{p}^2 + m^2 c^4)$

$$D/x-y) = \frac{1}{(2\pi)^{4}} \int_{-\infty}^{\infty} dk_{0} \int_{-\infty}^{\infty} dk_{0} \int_{-\infty}^{\infty} \frac{e^{ik_{0}(x^{2}-y^{0})} e^{-ik_{0}(x-y^{0})}}{k_{0}^{2} - \omega_{k}^{2} + i\epsilon}$$

For the Ko integration:

$$K_0^2 - \omega_k^2 + i = (K_0 - (\omega_k - i \epsilon))(K_0 + (\omega_k - i \epsilon))$$

+ We have poles at Ko = WK-iE and -WK+iE

which half plane we are to close the contrar depends on the sign of (xo-yo), which is the time ordering.

So in MB case, Repole 1 at Ko = - We tie

$$\int \frac{d^{3}\vec{k}}{(2\pi)^{4}} \frac{e^{iK_{0}(x^{2}y^{0})} - i\vec{k}\cdot(\vec{x}\cdot\vec{y})}{e^{iK_{0}}(x^{2}y^{0})} = \int \frac{1}{K_{0}^{+}(u_{k}-i\epsilon)} \frac{d^{3}\vec{k}}{(2\pi)^{4}} \frac{e^{iK_{0}(x^{0}y^{0})} - i\vec{k}\cdot(\vec{k}\cdot\vec{y})}{e^{iK_{0}}(u_{k}-i\epsilon)}$$

residue at $K_0 = -(\omega_k \hat{c} \hat{\epsilon})$ is $\begin{cases}
\frac{d^3 \hat{k}}{(2\pi)^4} & e^{-\hat{c}} \omega_k (x^e - y^o) - \hat{c} \hat{k} \cdot (\bar{x} \cdot \bar{y}) \\
e^{-2\pi i} \omega_k (x^e - y^o) - \hat{c} \hat{k} \cdot (\bar{x} \cdot \bar{y})
\end{cases}$

(271)3

 $D(x-y) = 2\pi i \left[-\frac{d^3\vec{k}}{(2\pi)^3} \frac{1}{2\omega_k} e^{-i\omega_k(x^2-y^2)} - i\vec{k} \cdot (\vec{k}-\vec{q}) \right]$

= (- i d'k e - i (WK (K=y0) + K. 1x-g))

(x-y)>0

Then for $(x^{\circ}-y^{\circ}) < 0$ we'll use the other mu + close in the upper plane , get $i(\omega_{\mathbb{Z}}(x^{\circ}-y^{\circ})-\tilde{\mathbb{Z}}\cdot(\tilde{x}-\tilde{y}))$

 $D(x-y) = \int \frac{-i}{2w_{\kappa}} d^{3}\kappa e^{i(w_{\kappa}(x^{o}-y^{o}) - \vec{k} \cdot (\vec{x}-\vec{y}))}$ $(x^{o}-y^{o}) < 0$

This agrees with Zee's Eq. (23) on p. 24, except for the sign of the R: (x-g) term in the 1st integral.

Here $\theta(x^{\circ}g^{\circ}) = \begin{cases} 1 & (x^{\circ}g^{\circ}) > 0 \\ 0 & (x^{\circ}g^{\circ}) < 0 \end{cases}$

13 the sky function.

I get

 $D(x-y) = -i \int \frac{d^{3}\vec{k}}{(2\pi)^{3}} \frac{e^{-i(w_{k}(x^{0},y^{0}) + \vec{k} \cdot (\vec{x} \cdot \vec{y}))}}{\Theta(x^{0}-y^{0})}$ $+ e^{-i(w_{k}(x^{0}-y^{0}) - \vec{k} \cdot (\vec{k} - \vec{y}))} O(-ix^{0}-y^{0})$

Zee has e i/we(xe-yo)-k.(x-g) neik.(x-g)

but I think that's wring since

 $K \cdot X = K_{\mu} X^{\mu} = K_{0} X^{0} + K_{i} X^{i} = K_{0} X^{0} - \hat{K} \cdot \hat{X}$ So both terms should $\sim e^{-\hat{c}\hat{K} \cdot (\hat{x} - \hat{y})}$

Which I have, but Zee doesn't-

-> Oh, but I see Zee sexy on the top of p. 24 that the sign of R can be flipped.