Introduction

- Algorithms for analysing itemsets for association rules
- Identifies frequent individual items and aggregates them to larger itemsets
- Assumptions
 - All subsets of frequent item sets are also frequent.
 - For an infrequent item set, all supersets are infrequent.

Example: Itemset

- Itemset:
 - Banana (B)
 - Tomato (T)
 - Orange (O)
 - Apple (A)

Apriori Example: Transactions

Transaction Number	Items Bought
1	В
2	T, A, B
3	O, A
4	T, A
5	O, T, A

Example: Support

- Minimum Support = 2
- Candidate List

Itemset	Items Bought
Α	4
В	1
0	2
Т	3

All infrequent candidates removed (B)

Example: Support

Generating Frequent Itemset

■ B is infrequent → All supersets are infrequent

Example: Support

2-Items Itemset created

2-Items Itemset	Items Bought
A, O	2
A, T	3
O, T	1

Removed because Min Support not fulfilled

Example: Support

3-Items Itemset created

3-Items Itemset	Items Bought
A, O, T	1

Removed because Min Support not fulfilled

Example: Confidence

Generate Rules

Itemset	Items Bought
Α	4
0	2
Т	3
A, O	2
Α, Τ	3

Rule	Confidence
$\{A\} \rightarrow \{O\}$	2 / 4 = 50 %
$\{O\} \rightarrow \{A\}$	2 / 2 = 100 %
$\{A\} \rightarrow \{T\}$	3 / 4 = 75 %
$\{T\} \rightarrow \{A\}$	3 / 3 = 100 %

$$Confidence(X \to Y) = \frac{Support(X,Y)}{Support(X)}$$

Remove Rules with Confidence < Minimum Confidence</p>

Example: Lift

Itemset	Items Bought	Р
А	4	80%
0	2	40%
Т	3	60%
A, O	2	40%
A, T	3	60%

Rule	P(LHS, RHS) (Denominator)	Lift
$\{O\} \rightarrow \{A\}$	=0.4*0.8=0.32	0.4/0.32=1.25
$\{A\} \rightarrow \{T\}$	=0.8*0.6=0.48	0.6/0.48=1.25
$\{T\} \rightarrow \{A\}$	=0.6*0.8=0.48	0.6/0.48=1.25

Total Nr. Transactions: 5

$$Lift(X \to Y) = \frac{Support(X, Y)}{Support(X) * Support(Y)}$$

P(T) P(A) Actual probality of A and T occuring together

Advantages / Disadvantages

- Simple to understand
- Simple to implement
- Finds all rules
- Intuitive results

High computational effort