Задание

- 1) Ознакомиться с основными возможностями библиотеки NetworkX для Python.
- 2) Выяснить особенности загрузки данных и формирования графа на основе файла или потока данных одного из поддерживаемых в библиотеке NetworkX форматов:
 - Матрица смежности;
 - Матрица инцидентности;
 - GEXF;
 - GML;
 - Pickle;
 - GraphML;
 - LEDA;
 - YAML;
 - SparseGraph6;
 - Pajek;
 - GIS Shapefile.
- 3) Изучить возможности библиотеки NetworkX по генерации случайных графов различной структуры:
 - полные графы различных уровней;
 - сбалансированные деревья;
 - циклические графы;
 - графы Дороговцева Гольтцева Мендеса;
 - случайные биномиальные и т.д.
- 4) Изучить возможности библиотеки NetworkX по визуализации графов.
- 5) Изучить методы библиотеки NetworkX, позволяющие узнавать какую-либо информацию, свойства или характеристики графов.

- 6) С использованием NetworkX разработать приложение с графическим интерфейсом для работы с *ориентированными* графами (DiGraph), которое позволит пользователю:
 - а) выбирать способ создания графа:
 - случайным образом (с указанием вида графа);
 - указанием файла с исходной информацией о графе:
 - одному узлу соответствует один объект предметной области, который может характеризоваться несколькими показателями;
 - ребро графа отображает связь между объектами по одному из показателей;
 - помимо отображения наличия/отсутствия связи ребру может быть сопоставлено числовое значение;
 - б) осуществлять визуализацию графа по указанному показателю;
 - в) выбирать разные цвета для отобранных вершин графа;
- г) осуществлять фильтрацию вершин по указанному условию при визуализации графа;
- д) осуществлять обход вершин графа в ширину и в глубину (необходимо реализовать свои алгоритмы и сравнить их результат с результатом работы встроенных методов);
- е) осуществлять поиск кратчайших путей между вершинами с помощью алгоритмов Дейкстры и Флойда (необходимо реализовать свои алгоритмы и сравнить их результат с результатом работы встроенных методов).

Примечание.

В качестве тестовых данных можно взять информацию о людях или компаниях, чтобы при помощи графа отслеживать различные связи между ними.

Для того, чтобы не возникало проблем с визуализацией графа при изменении в нем вершин, все вершины можно располагать на окружности.