Algoritmos: Análisis de Algoritmos

Alberto Valderruten

Dept. de Ciencias de la Computación y Tecnologías de la Información, Universidade da Coruña

alberto.valderruten@udc.es

Contenido

- Análisis de la eficiencia de los algoritmos
- 2 Notaciones asintóticas
- 3 Cálculo de los tiempos de ejecución

Índice

- 1 Análisis de la eficiencia de los algoritmos
- 2 Notaciones asintóticas
- 3 Cálculo de los tiempos de ejecución

Análisis de la eficiencia de los algoritmos (1)

- Objetivo: Predecir el comportamiento del algoritmo
 - ⇒ aspectos cuantitativos:

tiempo de ejecución, cantidad de memoria

- Disponer de una medida de su eficiencia:
 - "teórica"
 - no exacta: aproximación suficiente para comparar, clasificar
 - \Rightarrow acotar T(n): tiempo de ejecución,

n = tamaño del problema (a veces, de la entrada)

 $n \rightarrow \infty$: comportamiento asintótico

$$\Rightarrow T(n) = O(f(n))$$

f(n): una **cota superior** de T(n) suficientemente ajustada f(n) crece más deprisa que T(n)

Análisis de la eficiencia de los algoritmos (2)

Aproximación?

- 1. Ignorar factores constantes:
- 20 multiplicaciones por iteración o 1 **operación** por iteración *¿cuántas iteraciones?* o iteraciones en función de n
- 2. Ignorar términos de orden inferior. $n + cte \rightarrow n$

• Ejemplo 1:

2 algoritmos (A1 y A2) para un mismo problema A

- algoritmo A1: $\frac{100}{n}$ pasos \rightarrow un recorrido de la entrada T(n) = O(n) : algoritmo *lineal*
- algoritmo A2: $2n^2 + \frac{50}{9}$ pasos $\rightarrow \frac{n \text{ recorridos de la entrada}}{T(n) = O(n^2)}$: algoritmo *cuadrático*

Análisis de la eficiencia de los algoritmos (3)

- Ejemplo 1 (Cont.):
 - ⇒ A1 lineal y A2 cuadrático:
 - Comparar: A2 "más lento" que A1,
 aunque con n ≤ 49 sea más rápido
 ⇒ A1 es mejor
 - Clasificar: lineales, cuadráticos...

Tasas de crecimiento características:

$$O(1), O(logn), O(n), O(nlogn), O(n^2), O(n^3), ... O(2^n), ...$$

- Ejemplo 2: (aproximación ⇒ limitaciones)
 - 2 algoritmos (B1 y B2) para un mismo problema B:
 - algoritmo B1: $2n^2 + 50$ pasos $\rightarrow O(n^2)$
 - algoritmo B2: $100n^{1,8}$ pasos $\rightarrow O(n^{1,8})$ \Rightarrow B2 es "mejor"...

pero a partir de algún valor de n entre 310 y 320 * 10⁶

Índice

- Análisis de la eficiencia de los algoritmos
- 2 Notaciones asintóticas
- 3 Cálculo de los tiempos de ejecución

Notaciones asintóticas

- Objetivo: Establecer un orden relativo entre las funciones, comparando sus tasas de crecimiento
- La notación O:

$$T(n), f(n): Z^+ \to R^+$$
Definición: $T(n) = O(f(n))$
si \exists constantes $c > 0$ y $n_0 > 0$: $T(n) \le c * f(n) \ \forall n \ge n_0$
 n_0 : umbral

T(n) es O(f(n)), $T(n) \in O(f(n))$

"la tasa de crecimiento de $T(n) \le que$ la de f(n)" $\rightarrow f(n)$ es una cota superior de T(n)

• **Ejemplo**: $\[\vdots 5n^2 + 15 = O(n^2) ? \]$ $\[< c, n_0 > = < 6, 4 > \text{en la definición: } 5n^2 + 15 \le 6n^2 \ \forall n \ge 4 ; \]$ $\[\exists \text{ infinitos } < c, n_0 > \text{que satisfacen la designaldad} \]$

La notación O (1)

Observación:

Según la definición, T(n) podría estar muy por debajo:

 $< c, n_0 > = < 1,6 >$ en la definición: $5n^2 + 15 \le 1n^3 \ \forall n \ge 6$ pero es más preciso decir $= O(n^2) \equiv$ ajustar cotas

⇒ Para el análisis de algoritmos, usar las aproximaciones:

$$5n^2 + 4n \rightarrow O(n^2)$$
$$log_2n \rightarrow O(logn)$$
$$13 \rightarrow O(1)$$

Observación:

La notación O también se usa en expresiones como $3n^2 + O(n)$

Ejemplo 3:

¿Cómo se consigue una mejora más drástica,

- mejorando la eficiencia del algoritmo, o
- mejorando el ordenador?

La notación O (2)

• Ejemplo 3 (cont.):

	tiempo₁	tiempo ₂	tiempo ₃	tiempo ₄
T ()				-
T(n)	1000 pasos/s	2000 pasos/s	4000 pasos/s	8000 pasos/s
log_2n	0,010	0,005	0,003	0,001
n	1	0,5	0,25	0,125
$nlog_2n$	10	5	2,5	1,25
$n^{1,5}$	32	16	8	4
n^2	1.000	500	250	125
n^3	1.000.000	500.000	250.000	125.000
1,1 ⁿ	10 ³⁹	10 ³⁹	10 ³⁸	10 ³⁸

Tabla: Tiempos de ejecución (en s) para 7 algoritmos de distinta complejidad (n=1000).

- Ejemplo 4: Ordenar 100.000 enteros aleatorios:
 - * 17 s en un 386 + Quicksort
 - * 17 min en un procesador 100 veces más rápido + Burbuja

La notación O (3)

Reglas prácticas para trabajar con la O:

Definición: f(n) es monótona creciente si $n_1 > n_2 \Rightarrow f(n_1) \ge f(n_2)$

$$\sin n_1 \geq n_2 \Rightarrow f(n_1) \geq f(n_2)$$

• **Teorema**: $\forall c > 0, a > 1, f(n)$ monótona creciente:

$$(f(n))^c = O(a^{f(n)})$$

 \equiv "Una función exponencial (ej: 2^n) crece más rápido que una función polinómica (ej: n^2)"

$$ightarrow egin{cases} n^c = O(a^n) \ (log_a n)^c = O(a^{log_a n}) = O(n) \
ightarrow (log n)^k = O(n) \ orall k ext{ cte.} \end{cases}$$

- ≡ "n crece más rápido que cualquier potencia de logaritmo"
- ≡ "los logaritmos crecen muy lentamente"

La notación O (4)

Reglas prácticas para trabajar con la *O* (Cont.):

Suma y multiplicación:

$$T_{1}(n) = O(f(n)) \land T_{2}(n) = O(g(n)) \Rightarrow$$

$$\begin{cases}
(1) & T_{1}(n) + T_{2}(n) = O(f(n) + g(n)) = max(O(f(n)), O(g(n))) \\
(2) & T_{1}(n) * T_{2}(n) = O(f(n) * g(n))
\end{cases}$$

Aplicación:
$$\begin{cases} (1) \text{ Secuencia:} & 2n^2 = O(n^2) \land 10n = O(n) \\ & \Rightarrow 2n^2 + 10n = O(n^2) \end{cases}$$
 (2) Bucles

Observación: No extender la regla: ni resta, ni división

← relación < en la definición de la O

... suficientes para ordenar la mayoría de las funciones.

Otras notaciones asintóticas (1)

```
T(n), f(n): Z^+ \to R^+, Definición: O
2 Definición: T(n) = \Omega(f(n))
    ssi \exists constantes c y n_0: T(n) > cf(n) \forall n > n_0
    f(n): cota inferior de T(n) \equiv trabajo mínimo del algoritmo
    Ejemplo: 3n^2 = \Omega(n^2): cota inferior más ajustada...
              pero 3n^2 = O(n^2) también! (O \wedge \Omega)
3 Definición: T(n) = \Theta(f(n))
    ssi \exists constantes c_1, c_2 y n_0: c_1 f(n) \leq T(n) \leq c_2 f(n) \forall n \geq n_0
    f(n): cota exacta de T(n), del orden exacto
    Eiemplo: 5nlog_2n - 10 = \Theta(nlog_n):
                                         \begin{cases} (1) \text{ demostrar } O \rightarrow < c, n_0 > \\ (2) \text{ demostrar } \Omega \rightarrow < c', n'_0 > \end{cases}
```

Otras notaciones asintóticas (2)

- 4. **Definición**: T(n) = o(f(n))ssi \forall constante C > 0, $\exists n_0 > 0$: $T(n) < Cf(n) \forall n \ge n_0$ $\equiv O \land \neg \Theta \equiv O \land \neg \Omega$ f(n): cota estrictamente superior de T(n): $\lim_{n\to\infty} \frac{T(n)}{f(n)} = 0$ **Ejemplos**: $\frac{n}{\log_2 n} = o(n)$ $\frac{n}{10} \neq o(n)$ 5. Definición: $T(n) = \omega(f(n))$ ssi \forall constante C > 0, $\exists n_0 > 0$: $T(n) > Cf(n) \forall n \geq n_0$ $\leftrightarrow f(n) = o(T(n))$ $\rightarrow f(n)$: cota estrictamente inferior de T(n)
- 6. **Notación OO** [Manber]: T(n) = OO(f(n)) si es O(f(n)) pero con constantes demasiado grandes para casos prácticos Ref: Ejemplo 2 (p. 4): $B1 = O(n^2)$, $B2 = OO(n^{1.8})$

Otras notaciones asintóticas (3)

Reglas prácticas (Cont.):

- $T(n) = a_0 + a_1 n + a_2 n^2 + ... + a_k n^k \Rightarrow T(n) = \Theta(n^k)$ (polinomio de grado k)
- **Teorema**: $\forall c > 0, a > 1, f(n)$ monótona creciente:

$$(f(n))^c = o(a^{f(n)})$$

- ≡ "Una función exponencial **crece más rápido** que una función polinómica"
- ightarrow no llegan a igualarse

Índice

- Análisis de la eficiencia de los algoritmos
- Notaciones asintóticas
- 3 Cálculo de los tiempos de ejecución

Modelo de computación (1)

- Calcular O para $T(n) \equiv$ número de "pasos" $\rightarrow f(n)$? ¿paso?
- Modelo de computación:
 - ordenador secuencial
 - instrucción ↔ paso (no hay instrucciones complejas)
 - entradas: tipo único ("entero") → sec(n)
 - memoria infinita + "todo está en memoria"
- Alternativas: Un paso es...
 - Operación elemental:

Operación cuyo tiempo de ejecución está acotado superiormente por una constante que sólo depende de la implementación $\rightarrow = O(1)$

Operación principal [Manber]:

Operación representativa del trabajo del algoritmo:

El número de operaciones principales que se ejecutan debe ser *proporcional* al número total de operaciones (verificarlo!).

Ejemplo: la comparación en un algoritmo de ordenación

Modelo de computación (2)

- La hipótesis de la op. principal supone una aproximación mayor!
- En general, usaremos la hipótesis de la operación elemental.
- En cualquier caso, se ignora: lenguaje de programación, procesador, sistema operativo, carga...
 - ⇒ Sólo se considera el algoritmo, el tamaño del problema, ...

Debilidades:

- operaciones de coste diferente
 ("todo en memoria" ⇒ lectura en disco = asignación)
 → contar separadamente según tipo de instrucción y luego
 ponderar ≡ factores ≡ dependiente de la implementación
 ⇒ costoso y generalmente inútil
- faltas de página ignoradas
- etc.
- → Aproximación

Análisis de casos

Análisis de casos:

Consideramos distintas funciones para T(n):

$$\begin{cases} T_{mejor}(n) \\ T_{medio}(n) & \leftarrow \text{representativa, más complicada de obtener} \\ T_{peor}(n) & \leftarrow \text{en general, la más utilizada} \end{cases}$$

$$T_{mejor}(n) \le T_{medio}(n) \le T_{peor}(n)$$

• ¿El tiempo de respuesta es crítico?

→ Sistemas de Tiempo Real

Ordenación por Inserción (1)

Ordenación por Inserción (2)

3	1	4	1	2	9	5	6	5	3
1	3	4	1	2	9	5	6	5	3
1	3	4	1	2	9	5	6	5	3
1	1	3	4	2	9	5	6	5	3
1	1	2	3	4	9	5	6	5	3
1	1	2	3	4	9	5	6	5	3
1	1	2	3	4	5	9	6	5	3
1	1	2	3	4	5	6	9	5	3
1	1	2	3	4	5	5	6	9	3
1	1	2	3	3	4	5	5	6	9

Análisis de casos: Ordenación por Inserción

- Peor caso → "insertar siempre en la primera posición"
 - ≡ entrada en orden inverso
 - ⇒ el bucle interno se ejecuta 1 vez en la primera iteración,

2 veces en la segunda, ..., n-1 veces en la última:

$$\Rightarrow \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$
 iteraciones del bucle interno

$$\sum_{i=1}^n i = \frac{n(n+1)}{2}$$

$$\Rightarrow T(n) = \frac{n(n-1)}{2}c_1 + (n-1)c_2 + c_3 : \text{polinomio de grado 2}$$
$$\Rightarrow T(n) = \Theta(n^2)$$

- ullet Mejor caso o "no insertar nunca" \equiv entrada ordenada
 - \Rightarrow el bucle interno no se ejecuta
 - $\Rightarrow T(n) = (n-1)c_1 + c_2$: polinomio de grado 1

$$\Rightarrow \mid T(n) = \Theta(n)$$

 $\Rightarrow T(n)$ depende también del estado inicial de la entrada

Ordenación por Selección (1)

```
procedimiento Ordenación por Selección (var T[1..n])
   para i:=1 hasta n-1 hacer
       minj:=i;
       minx:=T[i];
       para j:=i+1 hasta n hacer
           si T[j] < minx entonces
               minj:=j;
               minx:=T[i]
           fin si
       fin para;
       T[mini]:=T[i];
       T[i]:=minx
    fin para
fin procedimiento
```

Ordenación por Selección (2)

3	1	4	1	2	9	5	6	5	3
1	3	4	1	2	9	5	6	5	3
1	1	4	3	2	9	5	6	5	3
1	1	2	3	4	9	5	6	5	3
1	1	2	3	4	9	5	6	5	3
1	1	2	3	3	9	5	6	5	4
1	1	2	3	3	4	5	6	5	9
1	1	2	3	3	4	5	6	5	9
1	1	2	3	3	4	5	5	6	9
1	1	2	3	3	4	5	5	6	9

Análisis de casos: Ordenación por Selección

• $T(n) = \Theta(n^2)$ sea cual sea el orden inicial (ejercicio) \leftrightarrow la comparación interna se ejecuta las mismas veces Empíricamente: T(n) no fluctúa más del 15%

algoritmo	mínimo	máximo
Inserción	0,004	5,461
Selección	4,717	5,174

Tabla: Tiempos (en segundos) obtenidos para n = 4000

Comparación:

algoritmo	peor caso	caso medio	mejor caso	
Inserción	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$	
Selección	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	
Quicksort	$O(n^2)$	O(nlogn)	O(nlogn)	

Análisis de casos: exponenciación (1)

- Potencia1: xⁿ = x * x * ... * x (bucle, n veces x)
 Operación principal: multiplicación
 ¿Número de multiplicaciones? f₁(n) = n − 1 ⇒ T(n) = Θ(n)
- Potencia2 (recursivo):

$$x^{n} = \begin{cases} x^{\lfloor n/2 \rfloor} * x^{\lfloor n/2 \rfloor} & \text{si n par} \\ x^{\lfloor n/2 \rfloor} * x^{\lfloor n/2 \rfloor} * x & \text{si n impar} \end{cases}$$

¿Número de multiplicaciones? ¿ $f_{2}(n)$?

Análisis de casos: exponenciación (2)

 Potencia2 (recursivo) (Cont.) Cálculo de $f_2(n)$:

 $\begin{cases} \text{mín: n par en cada llamada} & \rightarrow n = 2^k, k \in Z^+ \leftrightarrow \text{mejor caso} \\ \text{máx: n impar en cada llamada} & \rightarrow n = 2^k - 1, k \in Z^+ \leftrightarrow \text{peor caso} \end{cases}$

• Mejor caso:
$$f_2(2^k) = \begin{cases} 0 & \text{si } k = 0 \\ f_2(2^{k-1}) + 1 & \text{si } k > 0 \end{cases}$$

• Mejor caso:
$$f_2(2^k) = \begin{cases} 0 & \text{si } k = 0 \\ f_2(2^{k-1}) + 1 & \text{si } k > 0 \end{cases}$$

• Peor caso: $f_2(2^k - 1) = \begin{cases} 0 & \text{si } k = 1 \\ f_2(2^{k-1} - 1) + 2 & \text{si } k > 1 \end{cases}$

→ relaciones de recurrencia

Análisis de casos: exponenciación (3)

• Mejor caso:
$$f_2(2^k) = \begin{cases} 0 & \text{si } k = 0 \\ f_2(2^{k-1}) + 1 & \text{si } k > 0 \end{cases}$$

$$k = 0 \rightarrow f_2(1) = 0$$

$$1 \qquad 2 \qquad 1$$

$$2 \qquad 4 \qquad 2$$

$$3 \qquad 8 \qquad 3$$
...

 \Rightarrow Hipótesis de inducción: $f_2(2^{\alpha}) = \alpha$: $0 \le \alpha \le k-1$ Paso inductivo:

$$(1) \rightarrow f_2(2^k) = f_2(2^{k-1}) + 1$$

= $(k-1) + 1$
= k

forma explícita correcta de la relación de recurrencia

Análisis de casos: exponenciación (4)

• Peor caso:
$$f_2(2^k - 1) = \begin{cases} 0 & \text{si } k = 1 \\ f_2(2^{k-1} - 1) + 2 & \text{si } k > 1 \end{cases}$$

$$k = 1 \rightarrow f_2(1) = 0$$

$$2 \qquad 3 \qquad 2$$

$$3 \qquad 7 \qquad 4$$

$$4 \qquad 15 \qquad 6$$

$$5 \qquad 31 \qquad 8$$

$$6 \qquad 63 \qquad 10$$
...

 \Rightarrow Hipótesis de inducción: $f_2(2^{\alpha}-1)=2(\alpha-1)$: $1 \le \alpha \le k-1$ Paso inductivo: $(2) \rightarrow f_2(2^k-1)=f_2(2^{k-1}-1)+2=2(k-1-1)+2=2(k-1)$

Análisis de casos: exponenciación (5)

- $n=2^k$ (mejor caso): $f_2(2^k)=k$ para $k\geq 0$ $\to f_2(n)=\log_2 n$ para $n=2^k$ y $k\geq 0$ (ya que $\log_2 2^k=k$) $\Rightarrow \boxed{f_2(n)=\Omega(\log n)}$
- $n = 2^k 1$ (peor caso): $f_2(2^k - 1) = 2(k - 1)$ para $k \ge 1$ $f_2(n) = 2[log_2(n + 1) - 1]$ para $n = 2^k - 1$ y $k \ge 1$ $f_2(n) = O(log_n)$
- $\Rightarrow f_2(n) = \Theta(logn)$ Modelo de computación: operación principal = multiplicación $\Rightarrow T(n) = \Theta(logn)$

mejor caso
$$\leftrightarrow \Omega$$

peor caso $\leftrightarrow O$

Reglas para calcular O (1)

1. operación elemental = $1 \leftrightarrow Modelo de Computación$

Reglas para calcular O (2)

2. **secuencia**:
$$S_1 = O(f_1(n)) \land S_2 = O(f_2(n))$$

 $\Rightarrow S_1; S_2 = O(f_1(n) + f_2(n)) = O(max(f_1(n), f_2(n)))$

También con Θ

Reglas para calcular O(3)

3. condición:
$$B = O(f_B(n)) \wedge S_1 = O(f_1(n)) \wedge S_2 = O(f_2(n))$$

 $\Rightarrow \begin{bmatrix} \mathbf{si} \ B \ \text{entonces} \ S_1 \ \mathbf{sino} \ S_2 \end{bmatrix} = O(\max(f_B(n), f_1(n), f_2(n)))$

- Si $f_1(n) \neq f_2(n)$ y $max(f_1(n), f_2(n)) > f_B(n) \leftrightarrow \textbf{Peor caso}$
- ¿Caso medio?
 - \rightarrow f(n): promedio de f_1 y f_2 ponderado con las frecuencias de cada rama
 - $\rightarrow O(max(f_B(n), f(n)))$

Reglas para calcular O (4)

4. **iteración**: B; $S = O(f_{B,S}(n)) \wedge n^o$ iter= $O(f_{iter}(n))$

$$\Rightarrow$$
 mientras B hacer $S = O(f_{B,S}(n) * f_{iter}(n))$

ssi el coste de las iteraciones no varía, sino: \sum costes indiv.

$$\Rightarrow$$
 para $i \leftarrow x$ hasta y hacer $S = O(f_S(n)*n^0$ iter)

ssi el coste de las iteraciones no varía, sino: ∑ costes indiv.

• B es comparar 2 enteros = O(1); nº iter = y - x + 1

Reglas para calcular O (5)

- $lue{lue}$ operación elemental = 1 \leftrightarrow Modelo de Computación
- **2 secuencia**: $S_1 = O(f_1(n)) \land S_2 = O(f_2(n))$ $\Rightarrow \boxed{S_1; S_2} = O(f_1(n) + f_2(n)) = O(\max(f_1(n), f_2(n)))$ • También con Θ
- **3** condición: $B = O(f_B(n)) \land S_1 = O(f_1(n)) \land S_2 = O(f_2(n))$
 - \Rightarrow si B entonces S_1 sino S_2 $= O(max(f_B(n), f_1(n), f_2(n)))$
 - Si $f_1(n) \neq f_2(n)$ y $max(f_1(n), f_2(n)) > f_B(n) \leftrightarrow \textbf{Peor caso}$
 - ¿Caso medio? \rightarrow f(n): promedio de f_1 y f_2 ponderado con las frecuencias de cada rama \rightarrow $O(max(f_B(n), f(n)))$
- iteración: $B; S = O(f_{B,S}(n)) \wedge n^{\circ}$ iter= $O(f_{iter}(n))$
 - \Rightarrow mientras B hacer $S = O(f_{B,S}(n) * f_{iter}(n))$
 - **ssi** el coste de las iteraciones no varía, sino: \sum costes indiv.
 - \Rightarrow **para** $i \leftarrow x$ **hasta** y **hacer** $S = O(f_S(n) * n^o)$ iter)
 - ssi el coste de las iteraciones no varía, sino: ∑ costes indiv.
 - B es comparar 2 enteros = O(1); n^0 iter = y x + 1

Reglas para calcular O (6)

- Uso de las reglas:
 - análisis "de adentro hacia afuera"
 - analizar primero los subprogramas
 - recursividad: intentar tratarla como un ciclo, sino resolver relación de recurrencia
- Ejemplo: $\sum_{i=1}^{n} i^3$

```
función suma (n:entero) : entero
{1}    s:=0;
{2}    para i:=1 hasta n hacer
{3}        s:=s+i*i*i;
{4}    devolver s
    fin función
```

$$\Theta(1)$$
 en $\{3\}$ y no hay variaciones
 $\Rightarrow \Theta(n)$ en $\{2\}$ (regla 4)
 $\Rightarrow T(n) = \Theta(n)$ (regla 2)

El razonamiento ya incluye las aproximaciones

Ordenación por Selección (3)

```
procedimiento Ordenación por Selección (var T[1..n])
{1}
    para i:=1 hasta n-1 hacer
{2}
        minj:=i; minx:=T[i];
{3}
        para j:=i+1 hasta n hacer
{4}
        si T[j]<minx entonces
{5}
        minj:=j; minx:=T[j]
        fin si
        fin para;
{6}
        T[minj]:=T[i]; T[i]:=minx
        fin para
        fin para
        fin procedimiento</pre>
```

Ordenación por Selección (4)

- $\Theta(1)$ en $\{5\}$ (regla 2) $\Rightarrow O(max(\Theta(1),\Theta(1),0)) = \Theta(1)$ en $\{4\}$ (regla 3: **no estamos en peor caso**)
- $S = \Theta(1)$; n^0 iter= $n i \Rightarrow \Theta(n i)$ en $\{3\}$ (regla 4)
- $\Theta(1)$ en $\{2\}$ y en $\{6\}$ (regla 2) $\Rightarrow \Theta(n-i)$ en $\{2-6\}$ (regla 2)

•
$$S = \Theta(n-i)$$
 varía:
$$\begin{cases} i = 1 & \to \Theta(n) \\ i = n-1 & \to \Theta(1) \end{cases}$$

$$\Rightarrow \sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i \text{ en } \{1\}$$
 (regla 4)
= $(n-1)n - \frac{n(n-1)}{2}$: polinomio de grado 2

$$\Rightarrow T(n) = \Theta(n^2)$$
 en cualquier caso

