BIMU3009 Signal Processing Final Exam

Istanbul University - Cerrahpaşa Computer Engineering Department - Fall 2021

January 7^{th} , 2022 14:00-15:10

LÜTFEN OKUYUN:

- Sınava sizin için belirlenen sınıfta giriniz.
- Bu sınavın süresi 70 dakikadır. Süre bittiğinde cevap kağıdını doldurmaya devam edenler kopya çekmiş sayılır.

Bu sınavda sadece hesap makinasına izin vardır. Kendi notlarınızı içeren A4 kağıdı ve fotokopi notlar yasaktır!

Lütfen soruları kurşun kalemle, İNGİLİZCE, kısa ve anlaşılır olarak CEVAP KAĞIDINA cevaplayınız. **Anlaşılmayan, muğlak ifadeler kullanmak**, kötü yazı yazmak notunuza negatif olarak etki edecektir. Çözüm adımlarınız anlaşılır olmalıdır. Soru kağıdına cevaplarınızı yazmayınız, değerlendirmeye alınmayacaktır.

- Sınava 1 adet hesap makinası getirebilirsiniz. Bunların dışında her türlü defter, kitap, notlar, sözlük ve elektronik sözlük yasaktır.
- Materyalin paylaşılması yasaktır. Hesap makinası ve silgi paylaşmak kopya sayılacaktır!
- Bilgisayar, PDA, cep telefonu türünden elektronik cihazlar kullanmak yasaktır.
- Soruları çözmeye başlamadan lütfen okuyun.
- Soru kağıtlarına isim ve numaranızı yazınız.
- Soru kağıtlarınızı çıkarken cevap kağıdınızla beraber teslim ediniz.
- Bu sınavda toplam 100 puanlık soru vardır.
- SINAVDA KOPYA ÇEKENLER, KOPYA VERENLER VE BUNLARA TEŞEBBÜS EDENLER SINAVDAN "0" ALACAKTIR VE DEKANLIĞA ŞİKAYET EDİLECEKLERDİR!.

3		(0)		
Lütfer	n bui	raya '	okud'	um"	yazını	z.:	

Basarılar. (Mustafa Dağtekin)

Some useful equations

$$\cos^{2}(\theta) = \frac{1}{2} \left[1 + \cos(2\theta) \right] \qquad \int \cos(\alpha x) \, dx = \frac{1}{\alpha} \sin(\alpha x) + c$$

QUESTIONS

Q1: The impulse response of a DISCRETE TIME Linear-Time Invariant system \mathcal{H} is given below.

- (a) (10 pts) Is \mathcal{H} stable? Explain.
- (b) (10 pts) Is \mathcal{H} causal and/or memoryless? Explain.
- (c) (10 pts) Calculate and sketch the step response of this system.
- (d) (10 pts) The following input is applied to this system. Calculate and sketch the output.

$$x[n] = 2\delta[n+2] + \delta[n] - 3\delta[n+2]$$

Q2: Evaluate the following Continuous-Time Convolutions.

- (a) (10 pts) $e^t u(-t) * e^{-2t} u(t+1)$
- (b) (10 pts) [u(t+3) 2u(t) + u(t-3)] * u(t-2)

Q3: Consider the following CT signal. Answer the following questions.

$$x(t) = \cos\left(\frac{2\pi t}{5}\right) [u(t+2) - u(t-2)]$$

- (a) (10 pts) Carefully sketch x(t). Show your work.
- (b) (10 pts) Determine the energy and average power of x(t). Is it an energy signal, power signal or neither?

Q4: Consider the following DT signal. Answer the following questions.

$$x[n] = \cos\left(\frac{2\pi n}{5}\right)$$

- (a) (10 pts) Is x[n] periodic? If so, find the period and the frequency.
- (b) (10 pts) If you find that the answer to Q4a is "periodic", then determine the DTFS coefficients of x[n].