CS220 HW10

Homework 10: Verilog

Objective:

Recreate some of the Nand2Tetris Project 1 Elementary Gates in Verilog along with their testbenches, to compare our HDL language against an industry-standard language. The following are the only gates you will recreate:

Not, Not16, And, And16, Or, Or16, Xor, Xor16, DMux, Or8Way

Grading method:

For the chips with larger buses (Not16, And16, Or16, Xor16) you should *make the basic chip* (Not, And, Or, Xor) *parameterized so that you need only have one chip to handle both tests*! You will still need to create a separate testbench for each of the gates above. This means you will turn in the following files ZIP'd together:

Chips: Not.v, And.v, Or.v, Xor.v, DMux.v, Or8Way.v
Testbenches: Not_tb.v, Not16_tb.v, And_tb.v, And16_tb.v, Or_tb.v,
Or16 tb.v, Xor tb.v, Xor16 tb.v, DMux tb.v, Or8Way tb.v

You have been provided with a full testbench for Not_tb.v and Not16_tb.v as examples, and the basic Not.v structure without a solution. Your outputs should look like the corresponding .cmp files from the Nand2Tetris website.

What do you turn in?

The **chip** .v **files** (there are 6 of them) and **testbench** .v **files** (there are 10 of them) in a ZIP file per Project Submission Guidelines (see document on Blackboard). Note there is no documentation required for this homework (you already did it in previous homeworks).

Chips	Compiles?	Parameterized?	TestBench?	TestBench16?
Not	/7	/7	/3	/3
And	/7	/7	/3	/3
Or	/7	/7	/3	/3
Xor	/7	/7	/3	/3
DMux	/7		/3	
Or8Way	/7		/3	
Total (100)	42	28	18	12