Step 2
Classification Results - Protected Class Variables:

• Race: African American, Asian, Indian

• Color: Black, White

• **Sex**: Male, Female, Non-Binary, Transgender, Trans

• Religion: Christian, Muslim, Jewish, Buddhist, Catholic, Protestant, Sikh, Taoist

• **National Origin**: African, Hispanic, Latino, Latina, Latinx, Mexican, Chinese, Japanese, Middle Eastern, European, Canadian, American

• Age: Old, Older, Young, Younger, Teenage, Millennial, Middle Aged, Elderly

• Disability Status: Blind, Deaf, Paralyzed

Step 3

	Age	Color	Disability	National	Race	Religion	Sex
			Status	Origin			
TOXICITY	-0.01	0.02	0.04	-0.10	-0.06	0.02	0.06
CORRELATION	Very weak						
STRENGTH	correlation						

Step 4

Population Mean: 0.0522

Population Standard Deviation: 0.3663

Value Range - 95% of TOXICITY: -0.2109 and 1.2545

Using 10% Sample Data

Mean: 0.5268

Standard Deviation: 0.3673 **Margin of Error:** 0.00914

Using 60% Sample Data

Mean: 0.5209

Standard Deviation: 0.3667 **Margin of Error:** 0.00372

Step 5

Protected Class: Disability Status

Population Mean: 0.5824

Population Standard Deviation: 0.3349

Using 10% Sample Data

Mean: 0.5662

Standard Deviation: 0.3351 **Within Margin of Error:** No

Using 60% Sample Data

Mean: 0.5794

Standard Deviation: 0.3381 **Within Margin of Error:** No

Step 6

Protected Class - Subgroup: Disability Status - Paralyzed

Population Mean: 0.5552

Population Standard Deviation: 0.3444

Using 10% Sample Data

Mean: 0.5820

Standard Deviation: 0.3366 **Within Margin of Error:** No

Using 60% Sample Data

Mean: 0.5480

Standard Deviation: 0.3439 **Within Margin of Error:** No

Protected Class - Subgroup: Disability Status - Blind

Population Mean: 0.6369

Population Standard Deviation: 0.3079

Using 10% Sample Data

Mean: 0.6362

Standard Deviation: 0.3041 **Within Margin of Error:** No

Using 60% Sample Data

Mean: 0.6378

Standard Deviation: 0.3119 **Within Margin of Error:** No

Protected Class - Subgroup: Disability Status - Deaf

Population Mean: 0.5552

Population Standard Deviation: 0.3444

Using 10% Sample Data

Mean: 0.5524

Standard Deviation: 0.3483 **Within Margin of Error:** No

Using 60% Sample Data

Mean: 0.5669

Standard Deviation: 0.3411 **Within Margin of Error:** No

Step 7

Explanation

Using the disability status protected class, the **blind** subgroup has the highest TOXICITY value with a population mean of **0.6369**. As for the lowest TOXICITY valued subgroup, there was a tie between **paralyzed** and **deaf** subgroups which has a population mean of **0.5552**. From this data, the subgroup with the largest difference in TOXICITY when compared to the population mean calculated in Step 4 (**0.0522**) was the **blind** subgroup.

From the calculated data, I believe there's a tad of human bias involved when comparing the population mean of the disability status subgroups with the overall dataset. In particular, the **blind** subgroup seems to be the anomaly seeing that the other subgroups, **paralyzed** and **deaf**, have an equal mean value. My original hypothesis based on my personal experience was that the paralyzed subgroup would garner the highest TOXICITY average, however, the data shows otherwise. I think this is a great example of how personal bias can differ with actual data when it comes to word embedding.