இ குடை சில்ல දෙපාර්තයම්ත්තුව ලී ලංකා විභාග දෙපාර්තිම් අත්ත **Penigo ලෙපාර්තමේන්තුව** එනාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව இனங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரின்ற திலைக்களம் இலங்கைப் பரிட்சைத் திலைக்களம் இலங்கைப் பரிட்சைத் திலைக்களம் Department of Examinations, Sri Lanka Department **இலங்கைய்: Stiffயலே சிதாழிலைக்குளம்**ல, Sri Lanka Department of Examinations, Sri Lanka இ ஒடை විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கை**ப் செலியிலார்களுக்கா**ம் இலங்கைப் பரிட்சைத் திணைக்களம்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2016

රසායන විදහාව இரசாயனவியல் Chemistry

පැය දෙකයි இரண்டு மணித்தியாலம் Two hours

கவனிக்க :

- * ஆவர்த்தன அட்டவணை வழங்கப்பட்டுள்ளது.
- 🛠 இவ்வினாத்தாள் 08 பக்கங்களைக் கொண்டுள்ளது.
- 🛠 எல்லா வினாக்களுக்கும் விடை எழுதுக,
- * கணிப்பானைப் பயன்படுத்தக்கூடாது.
- * விடைத்தாளில் தரப்பட்டுள்ள இடத்தில் உமது கட்டெண்ணை எழுதுக.
- 🛠 விடைத்தாளின் பிற்பக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களைக் கவனமாகப் பின்பற்றுக.
- 🔻 1 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (1),(2),(3),(4),(5) என இலக்கமிடப்பட்ட விடைகளில் சரியான அல்லது **மிகப் பொருத்தமான** விடையைத் தெரிந்தெடுத்து, **அதனைக் குறித்து நிற்கும் இலக்கத்தில்** தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு அமைய விடைத்தாளில் புள்ளடி (x) இடுக.

அகில வாயு மாறிலி $R=8.314~\mathrm{J~K^{-1}\,mol^{-1}}$ அவகாதரோ மாறிலி $N_A=6.022\times10^{23}~\mathrm{mol^{-1}}$ பிளாங்கின் மாறிலி $h=6.626\times10^{-34}~\mathrm{J~s}$ ஒளியின் வேகம் $c=3\times10^8~\mathrm{m~s^{-1}}$

- $oxed{1.}$ ஐதரசன் காலல் நிறமாலையில் பச்சை ஒளியின் அலைநீளம் $4.42 imes 10^{-7}~\mathrm{m}$ என அவதானிக்கப்பட்டது. இப்பச்சைநிற ஒளியில் ஒரு போட்டோனின் சக்தி
 - (1) $4.5 \times 10^{-19} \text{ kJ}$

(3) $1.5 \times 10^{-19} \text{ kJ}$

(4) 4.5×10^{-22} kJ

- (2) $2 \times 10^{-19} \text{ kJ}$ (5) $19.9 \times 10^{-26} \text{ kJ}$
- 2. பின்வருவனவற்றுள் எவ்வணு அதன் வாயுநிலையில் இலத்திரன் ஒன்றைப் பெற்றுக்கொள்ளும்போது அதிக அளவு சக்தியை விடுவிக்கும் ?
 - (1) S

3. சேர்வை X இன் IUPAC பெயர் யாது ?

- (1) ethyl 2-formyl-2-nitrile-4-pentynoate
- (3) 2-ethoxycarbonyl-2-nitrile-4-pentynal
- (5) ethyl 2-cyano-2-formyl-4-pentynoate

- (2) 2-cyano-2-ethoxycarbonyl-4-pentynal
- (4) ethyl-2-cyano-2-formyl-4-pentynoate
- 4. s, p தொகுப்பு மூலகங்கள் உருவாக்கும் அயன்களின் பருமன்கள் தொடர்பான பின்வரும் கூற்றுகளில் **தவறானது** எது ?
 - (1) கற்றயன்கள் அவற்றின் நடுநிலை அணுக்களை விட எப்போதும் சிறியனவாகும்.
 - (2) அனயன்கள் அவற்றின் நடுநிலை அணுக்களை விட எப்போதும் பெரியனவாகும்.
 - (3) ஆவர்த்தனத்தின் வழியே இடமிருந்து வலமாகக் கற்றயன்களின் பருமன் குறைவடையும்.
 - (4) ஆவர்த்தனத்தின் வழியே இடமிருந்து வலமாக அயைன்களின் பருமன் அதிகரிக்கும்.
 - (5) இரண்டாம் ஆவர்த்தன மூலகங்கள் உருவாக்கும் அனயன்கள், மூன்றாம் ஆவர்த்தன மூலகங்கள் உருவாக்கும் கற்றயன்களை விடப் பருமனில் பெரியவையாகும்.
- 5. ஒரு மூலகத்தின் அணுவொன்றின் கடைசி இரு இலத்திரன்களுடன் தொடர்பான சக்திச் சொட்டெண் தொகுதிகள் (3,0,0,+½) உம் (3,0,0,-½) உம் ஆகும். அம்முலகம்
 - (1) Li
- (2) Na
- (3) Mg
- (4) Al
- (5) K
- 6. $0.60~{
 m g~KIO}_3$ மாதிரியொன்று நீரில் கரைக்கப்பட்டு அதனுள் மிகை ${
 m KI~G}_3$ கூப் பூரணமாக ${
 m I}_3^-$ ஆக மாற்றுவதற்குத் தேவையான $3.0~{
 m mol~dm}^{-3}~{
 m HCl}$ இன் குறைந்த அளவு ${
 m (O=16, K=39, I=127)}$
 - (1) 1.0 cm^3
- $(2) 4.7 \text{ cm}^3$
- (3) 5.6 cm^3
- (4) 10.2 cm^3
- (5) 33.6 cm³

7.	$25~^{\circ}$ C இல் MnS(s) இன் கரைதிறன் பெருக்கம், $K_{\rm sp}$ ஆனது $5.0\times 10^{-15}~{ m mol}^2~{ m dm}^{-6}$ ஆகும். $H_2^{}$ S(aq) இன் அமிலக் கூட்டப் பிரிகை மாறிலிகள் $K_1^{}$, $K_2^{}$ என்பன முறையே $1.0\times 10^{-7}~{ m mol}~{ m dm}^{-3}$ உம் $1.0\times 10^{-13}~{ m mol}~{ m dm}^{-3}$ உம் ஆகும்.
	$\operatorname{MnS}(s) + 2\operatorname{H}^+(\operatorname{aq}) \rightleftharpoons \operatorname{Mn}^{2+}(\operatorname{aq}) + \operatorname{H}_2\operatorname{S}(\operatorname{aq})$ என்னும் தாக்கத்தின் சமநிலை மாநிலி, K_{c} ஆனது
	(1) 2.0×10^{-16} (2) 5.0×10^{-8} (3) 20 (4) 5.0×10^{5} (5) 2.0×10^{7}
8.	A என்னும் சேதனச் சேர்வையில் நிறைக்கேற்ப 39.97% C உம் 6.73% H உம் 53.30% O உம் அடங்கியுள்ளன. A இன் அனுபவச் சூத்திரம் யாது ? (H = 1, C = 12, O = 16) (1) $C_6H_8O_2$ (2) $C_2H_4O_2$ (3) $C_3H_7O_3$ (4) $C_3H_6O_3$ (5) CH_2O
9.	 லிதியம் ஆனது ஒட்சிசன் வாயுவுடன் தாக்கம்புரிந்து Li₂O ஐத் தரும். I ஆம் கூட்ட உலோகங்களுள் உயர் உருகுநிலையைக் கொண்டது லிதியம் ஆகும். LiOH இன் மூலத்தன்மை NaOH இன் மூலத்தன்மையை விடக் குறைந்ததாகும். I ஆம் கூட்டக் காபனேற்றுகளுள் மிகக் குறைந்த வெப்பவுறுதித் தன்மையைக் கொண்டது Li₂CO₃ ஆகும். LiCl சுவாலைச் சோதனைக்கு உட்படுத்தப்படும்போது நீலநிறத்தைத் தரும்.
10.	மூலக்கூறு F_2 NNO இன் மிகவும் உறுதியான லூயி கட்டமைப்பில் N^0,N^3 ஆகிய அணுக்களின் ஒட்சியேற்ற நிலைகள் முறையே
	(அடிப்படைக் கட்டமைப்பு, F—N [®] —O)
	(Applicate & Selembig, $F = N^{\circ} - N^{\circ} = 0$)
	(1) $+2, +2$ (2) $+1, +3$ (3) $+2, +3$ (4) $+1, +2$ (5) $+3, +1$
11.	$\mathrm{CH}_4(\mathrm{g}) + \mathrm{CO}_2(\mathrm{g}) \rightleftharpoons 2\mathrm{CO}(\mathrm{g}) + 2\mathrm{H}_2(\mathrm{g})$ என்னும் தாக்கத்தைக் கருதுக.
	25 °C இல் 0.60 mol CH ₄ (g) உம் 1.00 mol CO ₂ (g) உம் 1.00 dm ³ கனவளவைக் கொண்ட மூடிய விறைத்த
	கொள்கலத்தில் உட்புகுத்தப்பட்டு தொகுதி சமநிலையை அடைவதற்கு விடப்பட்டபோது $0.40\ \mathrm{mol}\ \mathrm{CO}(\mathrm{g})$ உருவாகியது. இத்தாக்கத்தின் சமநிலை மாறிலி $K_{\mathrm{g}}\ (\mathrm{mol}^2\ \mathrm{dm}^{-6})$ இன் பெறுமானம்
	(1) 0.04 (2) 0.08 (3) 0.67 (4) 1.20 (5) 8.00
	(1)
12.	(1) $[Co(CO)_2BrH(NH_3)_2]CI$ (2) $[CoBr(CO)_2(NH_3)_2H]CI$
	(3) $[Co(NH_3)_2Br(CO)_2H]Cl$ (4) $[CoBr(CO)_2H(NH_3)_2]Cl$
	(5) [CoHBr(CO) ₂ (NH ₃) ₂]Cl
13.	நிலக்கரி மாதிரியொன்றில் கந்தகத்தின் அளவைத் துணிவதற்குப் பின்வரும் நடைமுறை பயன்படுத்தப்பட்டது. $1.60~{\rm g}$ திணிவைக் கொண்ட நிலக்கரி மாதிரியொன்று ஒட்சிசன் வாயுவில் எரிக்கப்பட்டது. உருவாகிய ${ m SO}_2$ வாயு ${ m gij}~{ m H}_2{ m O}_2$ கரைசலில் சேர்க்கப்பட்டது. இக்கரைசல் $0.10~{ m mol}~{ m dm}^{-3}~{ m NaOH}$ உடன் நியமிக்கப்பட்டது. முடிவுப் புள்ளியை அடைவதற்குத் தேவைப்பட்ட NaOH இன் கனவளவு $20.0~{ m cm}^3$ ஆகும். நிலக்கரி மாதிரியில் கந்தகத்தின் சதவீதம் (${ m S}=32$)
	(1) 1.0 (2) 2.0 (3) 4.0 (4) 6.0 (5) 8.0
14.	எதிலீன் $\mathrm{C_2H_4}(\mathrm{g})$ இன் தகனம் பின்வரும் தாக்கத்தினால் காட்டப்பட்டுள்ளது.
	$C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(g)$ $\Delta H = -1323 \text{ kJ mol}^{-1}$
	இத்தகனத்தின்போது நீர் ஆனது வாயுநிலையில், $oldsymbol{H_2O(g)}$ ஆக அல்லாமல் திரவ நிலையில், $oldsymbol{H_2O(l)}$ ஆக
	உருவாகுமாயின் ΔH இன் பெறுமானம் $(kJ \ mol^{-1} \ ghi)$ யாது $? (H_2^{}O(g) \longrightarrow H_2^{}O(l) \ ghi$ கான $\Delta H = -44 \ kJ \ mol^{-1})$
	(1) -1235 (2) -1279 (3) -1323 (4) -1367 (5) -1411
15.	பதார்த்தமொன்றை $100\mathrm{cm}^3$ பென்சீனில் கரைத்தபோது கரைசலின் ஆவியமுக்கம் $11.25\mathrm{kPa}$ எனக் கண்டறியப்பட்டது. இக்கரைசலில் அறியப்படாத அப்பதார்த்தத்தின் மூல் பின்னம் (1) 0.05 (2) 0.10 (3) 0.50 (4) 0.90 (5) 0.95
16.	மென்னமிலமொன்றை ($K_a=4.0\times 10^{-7} { m mol~dm}^{-3}$) வலிமையான மூலமொன்றுடன் கலந்து தாங்கற் கரைசலொன்றைத் தயாரித்துக்கொள்ள முடியும். $pH=6$ ஆன தாங்கற் கரைசலொன்றைத் தயாரித்துக்கொள்வதற்குத் தேவையான அமில, மூலச் செறிவுகளுக்கிடையிலான விகிதம் (அமிலம் : மூலம்)
	(1) 1:1 (2) 2:1 (3) 2:5 (4) 5:1 (5) 5:2

17.

More Past Papers at tamilguru.lk

மேலே தரப்பட்ட தாக்கத்தின் பிரதான விளைபொருள் ${f A}$ ஆனது

- $18. \ \mathrm{NO}_{2}(\mathrm{g}) + \mathrm{CO}(\mathrm{g}) \longrightarrow \mathrm{NO}(\mathrm{g}) + \mathrm{CO}_{2}(\mathrm{g})$ தாக்கத்திற்கான வீத விதி ஆனது, வீதம் $= k[\mathrm{NO}_{2}]^{2}$ ஆகும். தரப்பட்ட வெப்பநிலையில் இத்தாக்கம் நடைபெறும் மூடிய விறைத்த கொள்கலத்தினுள் மேலதிக CO(g) இற் சிநிதளவைச் சேர்த்தபோது நடைபெறக்கூடிய மாற்றங்கள் தொடர்பாகப் பின்வரும் கூற்றுகளில் **உண்மையானது** எது ?
 - (1) k, தாக்க வீதம் ஆகிய இரண்டும் அதிகரிக்கும்.
 - (2) k, தாக்க வீதம் ஆகிய இரண்டும் மாற்றமடையாது.
 - (3) k, தாக்க வீதம் ஆகிய இரண்டும் குறைவடையும்.
 - (4) k அதிகரிப்பதோடு தாக்க வீதம் மாற்றமடையாது.
 - (5) k மாற்றமடையாதிருப்பதோடு தாக்க வீதம் அதிகரிக்கும்.
- 19. 25 °C இல்

$$M(s) + 3Ag^{+}(aq) \longrightarrow 3Ag(s) + M^{3+}(aq)$$
 $E_{cell}^{\circ} = 2.46 \text{ V}$ $Ag^{+}(aq) + e \longrightarrow Ag(s)$ $E^{\circ} = 0.80 \text{ V}$ எனத் தரப்பட்டுள்ளன.

 $25~^{\circ}\mathrm{C}$ இல் $\mathrm{M}^{3+}(\mathrm{aq}) + 3\mathrm{e} \longrightarrow \mathrm{M}(\mathrm{s})$ என்னும் அரைத்தாக்கத்தின் நியமத் தாழ்த்தல் அழுத்தம்

(1) -1.66 V

- (2) -0.06 V
- (3) 0.06 V
- (4) 1.66 V
- (5) 3.26 V
- **20.** மூலக்கூறு $N_2^{}O_3^{}$ இற்கு எத்தனை பரிவுக் கட்டமைப்புகளை வரையலாம் ? (அடிப்படைக் கட்டமைப்பு, $O-\stackrel{!}{N}-N-O$)
- (3) 4
- (4) 5
- 21. தாண்டல் உலோகங்கள் மற்றும் அவற்றின் சேர்வைகள் என்பன தொடர்பாகப் பின்வரும் கூற்றுகளில் **உண்மையானது**
 - (1) செம்பின் இலத்திரன் நிலையமைப்பு $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$ ஆகும்.
 - (2) d இல் இலத்திரன்களைக் கொண்ட எல்லா மூலகங்களும் 'தாண்டல் மூலகங்கள்' ஆகும்.
 - (3) ${
 m TiO}_2$ இலுள்ள ${
 m Ti}$ இன் இலத்திரன் நிலையமைப்பும் ${
 m ScCl}_3$ இலுள்ள ${
 m Sc}$ இன் இலத்திரன் நிலையமைப்பும் சமன் ஆகும்.
 - (4) தரப்படும் தாண்டல் உலோகமொன்றின் ஒட்சைட்டுகளின் அமிலத்தன்மை, உலோக அயனின் ஒட்சியேற்ற நிலைகள் அதிகரிக்கும்போது குறைவடையும்.
 - (5) $3 ext{d}$ தொடரில் உள்ள தாண்டல் உலோகங்கள் சக்திச் சொட்டெண் $m_{_{I}} = \pm 3$ ஐக் கொண்டிருக்கும்.
- 22. மாறா வெப்பநிலையிலுள்ள ஒரு மூடிய கொள்கலத்தில் $PCl_3(g) + 3NH_3(g) \rightleftharpoons P(NH_2)_3(g) + 3HCl(g)$ என்னும் சமநிலை காணப்படுகிறது. வெப்பநிலையை மாநிலியாக வைத்துக்கொண்டு இக்கொள்கலத்தின் கனவளவு அதிகரிக்கப்படுமாயின், முற்தாக்க, பிற்தாக்க வீதங்களில் ஏற்படக்கூடிய மாற்றங்கள் தொடர்பாகப் பின்வருவனவற்றுள் எது உண்மையானது ?

முற்தாக்கம்

பிற்தாக்கம்

- (1) அதிகரிக்கும்
- (2) குறைவடையும்
- (3) குறைவடையும்
- (4) அதிகரிக்கும்
- (5) மாற்றமடையாது

- குளைவடையும்
- அதிகரிக்கும்
- குறைவடையும்
- அதிகரிக்கும்
- மாற்றமடையாது

23. 25 °C இல் நீரில் திண்ம அமோனியம் குளோரைட்டு NH Cl (s) ஐக் கரைக்கும்போது கரைசலின் வெப்பநிலை குறைவடையும். இச்செயன்முறையில் ΔH° , ΔS° என்பவற்றுக்காகப் பின்வருவனவற்றுள் எது உண்மையானது ?

	ΔH°	ΔS°
(1)	நேர்	நேர்
(2)	நேர்	மறை
(3)	நேர்	பூச்சியம்
(4)	നജ്യ	நேர்
(5)	ഥക്കന്ദ	மனை

- 24. 3*d* தாண்டல் உலோகங்கள் மற்றும் அவற்றின் சேர்வைகள் பற்றிய பின்வரும் கூற்றுகளில் **தவறானது** எது ?
 - (1) சில உலோகங்களின் ஒட்சைட்டுகள் ஈரியல்பு உடையன.
 - (2) சில உலோகங்கள், உலோக ஒட்சைட்டுகள் ஆகியன ஊக்கிகளாகக் கைத்தொழில்களில் பயன்படுத்தப்படுகின்றன.
 - (3) 3d தாண்டல் உலோகங்களின் மின்னெதிர்த்தன்மை 4s உலோகங்களின் மின்னெதிர்த்தன்மையை விட உயர்வானதாகும்.
 - (4) +7 ஒட்சியேற்ற நிலையை ஒரு மூலகம் மாத்திரமே காட்டுகின்றது.
 - (5) MnO_A^- , $Cr_2O_7^{2-}$ போன்ற ஒட்சோ அயன்கள் தாழ்த்தலுக்குத் தடைபுரியும்.

25.

மேலே தரப்பட்ட சேர்வை மிகையான $\mathrm{CH_4MgBr}$ உடன் தாக்கம்புரியச் செய்யப்பட்டு பின்னர் நீர்ப்பகுப்புச் செய்யப்படும்போது கிடைக்கும் பிரதான விளைபொருள்

(3)
$$HOCH_2CH_2$$
— \bigcirc — C — CH_3 (4) CH_3 — C — CH_2 — \bigcirc — C — CC_2H_5

(5)
$$CH_3$$
 CH_2 CH_3 CH_3

More Past Papers at tamilguru.lk

26. $CH_3COCH_2CONH_2$ $(1) LiAlH_4 > X$ $CH_3COCH_3 > X$

மேலே தரப்பட்ட தாக்கத் திட்டத்தில் \mathbf{X},\mathbf{Y} ஆகிய கட்டமைப்புகள் முறையே

- 27. NH₂ பற்றிய பின்வரும் கூற்றுகளில் **தவறானது** எது ?
 - (1) NH இந்கு மூலமாக மாத்திரமே தொழிற்பட முடியும்.
 - (2) $NH_{_{3}}$ ஒட்சிசனில் தகனமடைந்து $N_{_{2}}$ வாயுவைத் தரும்.
 - (3) ${
 m NH_3}$ நெஸ்லரின் சோதனைப்பொருளுடன் கபிலநிநத்தைத் தரும்.
 - (4) NH_3 ஆனது Li உடன் தாக்கம்புரிந்து Li_3N ஐயும் H_2 வாயுவையும் தரும்.
 - (5) NH $_3$ இன் பிணைப்புக் கோணம் $109^\circ~28'$ இலும் குறைவாகவுள்ள போதிலும் NF $_3$ இன் பிணைப்புக் கோணத்திலும் அதிகமாகும்.

28. Zn²⁺(aq)/Zn(s), Sn²⁺(aq)/Sn(s) ஆகிய மின்வாய்களைப் பயன்படுத்தி மின்னிரசாயனக் கலமொன்று தயார்செய்யப்பட்டது. பின்வரும் கூற்றுகளில் எது இக்கலத்தின் தொழிற்பாட்டைச் சரியாக விவரிக்கின்றது ?

$$E_{\text{Zn}^{2+}(\text{aq})/\text{Zn}(s)}^{\circ} = -0.76 \,\text{V}, \qquad E_{\text{Sn}^{2+}(\text{aq})/\text{Sn}(s)}^{\circ} = -0.14 \,\text{V}$$

- (1) Zn மின்வாய் கதோட்டு ஆகும்; Zn ஒட்சியேற்றப்படுகிறது; இலத்திரன்கள் Sn இலிருந்து Zn இற்குப் பாயும்.
- (2) Zn மின்வாய் கதோட்டு ஆகும்; Sn ஓட்சியேற்றப்படுகிறது; இலத்திரன்கள் Sn இலிருந்து Zn இற்குப் பாயும்.
- (3) Sn மின்வாய் அனோட்டு ஆகும்; Zn²⁺(aq) தாழ்த்தப்படுகிறது; இலத்திரன்கள் Zn இலிருந்து Sn இற்குப் பாயும்.
- (4) Zn மின்வாய் அனோட்டு ஆகும்; Zn ஒட்சியேற்றப்படுகிறது; இலத்திரன்கள் Zn இலிருந்து Sn இற்குப் பாயும்.
- (5) Zn மின்வாய் அனோட்டு ஆகும்; Sn²⁺(aq) தாழ்த்தப்படுகிறது; இலத்திரன்கள் Sn இலிருந்து Zn இந்குப் பாயும்.
- **29.** $C_6H_5NH_2$ பற்றிய பின்வரும் கூற்றுகளுள் **தவறானது** எது ?
 - (1) CH₃COCI உடன் தாக்கம்புரிந்து ஓர் ஏமட்டை உருவாக்கும்.
 - (2) நீர் NaOH உடன் வெப்பமாக்கும்போது அமோனியா வாயுவை வெளிவிடும்.
 - (3) புரோமீன் நீருடன் தாக்கம்புரிந்து வெண்ணிற வீழ்படிவொன்றைத் தரும்.
 - (4) நைத்திரஸ் அமிலத்துடன் தாக்கம்புரியும்போது ஒரு பீனோலைத் தரும்.
 - (5) C₂H₂CH₃NH₂ இலும் பார்க்க மூலத்தன்மை குறைந்தது.
- 30. CH₃COOAg(s) உடன் தொடுகையில் காணப்படும் நான்கு நிரம்பிய வெள்ளி அசற்றேற் கரைசல்களை நான்கு முகவைகள் கொண்டுள்ளன. பின்வரும் கரைசல்களை ஒவ்வொரு முகவையிலும் வெவ்வேறாகச் சேர்க்கும்போது வெள்ளி அசற்றேற்றின் கரைதிறன் எவ்வாறு மாற்றமடையும் ?

CH₃COONa, ஐதான HNO₃, NH₄OH, AgNO₃

	CH ₃ COONa	ஐதான HNO ₃	NH ₄ OH	AgNO ₃
(1)	அதிகரிக்கும்	அதிகரிக்கும்	அதிகரிக்கும்	அதிகரிக்கும்
(2)	குறைவடையும்	குறைவடையும்	குறைவடையும்	குறைவடையும்
(3)	குறைவடையும்	அதிகரிக்கும்	அதிகரிக்கும்	குறைவடையும்
(4)	குறைவடையும்	அதிகரிக்கும்	குறைவடையும்	குறைவடையும்
(5)	குறைவடையும்	குறைவடையும்	அதிகரிக்கும்	குறைவடையும்

- 31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (a),(b),(c),(d) என்னும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை/தெரிவுகளைத் தேர்ந்தெடுக்க.
 - (a), (b) ஆகியன மாத்திரம் திருத்தமானவையெனில் (1) இன் மீதும்
 - (b), (c) ஆகியன மாத்திரம் திருத்தமானவையெனில் (2) இன் மீதும்
 - $(c),\;(d)$ ஆகியன மாத்திரம் திருத்தமானவையெனில் (3) இன் மீதும்
 - $(d),\;(a)$ ஆகியன மாத்திரம் திருத்தமானவையெனில் (4) இன் மீதும்

வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவையெனில் (5) இன் மீதும் உமது விடைத்தாளில் கொடுக்கப்பட்ட அறிவுறுத்தல்களுக்கமைய விடையைக் குறிப்பிடுக.

மேற்கூறிய அறிவுறுத்தற் சுருக்கம்

(1)	(2)	(3)	(4)	(5)
(<i>a</i>), (<i>b</i>) ஆகியன மாத்திரம்	(<i>b</i>), (<i>c</i>) ஆகியன மாத்திரம்	(c), (d) ஆகியன மாத்திரம்	(d), (a) ஆகியன மாத்திரம்	வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ
திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை

31. பின்வரும் தாக்கத்தைக் கருதுக.

$$2HI(g) \rightleftharpoons I_2(s) + H_2(g)$$
 $\Delta H^0 = -52.96 \text{ kJ mol}^{-1}$

இத்தாக்கம் ஒரு மூடிய கொள்கலத்தில் நடைபெறும்போது பின்வரும் கூற்றுகளில் எது/எவை **சரியானது/சரியானவை** ?

- (a) வெப்பநிலையைக் கூட்டும்போதும் அமுக்கத்தைக் குறைக்கும்போதும் சமநிலை வலப்பக்கமாக நகரும்.
- (b) வெப்பநிலையைக் கூட்டும்போதும் அமுக்கத்தைக் குறைக்கும்போதும் சமநிலை இடப்பக்கமாக நகரும்.
- (c) வெப்பநிலையைக் குறைக்கும்போதும் அமுக்கத்தைக் கூட்டும்போதும் சமநிலை வலப்பக்கமாக நகரும்.
- (d) வெப்பநிலையைக் குறைக்கும்போதும் அமுக்கத்தைக் கூட்டும்போதும் சமநிலை இடப்பக்கமாக நகரும்.
- 32. மூலக்கூறு CH_a =CHCHO பற்றிய பின்வரும் கூற்றுகளில் எது/எவை உண்மையானது/உண்மையானவை ?
 - (a) எல்லா மூன்று காபன் அணுக்களும் sp^2 கலப்பாக்கத்துக்குரியவை.
 - (b) எல்லா மூன்று காபன் அணுக்களும் ஒரு நேர்கோட்டில் காணப்படும்.
 - (c) எல்லா மூன்று காபன் அணுக்களும் ஒரே தளத்தில் காணப்படமாட்டா.
 - (d) எல்லா மூன்று காபன் அணுக்களும் ஒரு தளத்தில் காணப்படும்.

- 33. சோல்வே செயன்முறையுடன் தொடர்புபட்ட சில தாக்கங்கள் ஆவன
 - (a) $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$
 - (b) NaCl + NH₃ + H₂O + CO₂ \longrightarrow NaHCO₃ + NH₄Cl (c) Na₂CO₃ + CO₂ + H₂O \longrightarrow 2NaHCO₃

 - (d) $Ca(OH)_2 + 2NH_4CI \longrightarrow CaCl_2 + 2NH_4OH$
- 34. முதன்மைத் தாக்கமொன்றின் வீதம் தொடர்பான பின்வரும் கூற்றுகளில் எது/எவை எப்போதும் உண்மையானது/ உண்மையானவை ?
 - (a) வெப்பநிலையைக் கூட்டுவதன் மூலம் வீதத்தைக் கூட்டலாம்.
 - (b) விளைபொருள்களைத் தாக்க ஊடகத்திலிருந்து அகற்றுவதன் மூலம் வீதத்தைக் கூட்டலாம்.
 - (c) தாக்கத்தின் வீதம் மிகவும் மெதுவாக நடைபெறும் படிமுறையின் வீதத்தில் தங்கியிருக்கும்.
 - (d) $\Delta G < 0$ என ஆக்குவதன் மூலம் தாக்கத்தின் வீதத்தைக் கூட்டலாம்.
- 35. முலக்கூறு 4-pentenal தொடர்பாகப் பின்வரும் கூற்றுகளில் எது/எவை உண்மையானது/உண்மையானவை ?
 - (a) கேத்திரகணிதச் சமபகுதிச்சேர்வைக் காட்டும்.
 - (b) HBr உடன் தாக்கம்புரிகையில் கிடைக்கும் சேர்வை ஒளியியல் சமபகுதிச்சேர்வைக் காட்டாது.
 - (c) HBr உடன் தாக்கம்புரிகையில் கிடைக்கும் சேர்வை ஒளியியல் சமபகுதிச்சேர்வைக் காட்டும்.
 - (d) CH₂MgBr உடன் தாக்கம்புரிகையில் கிடைக்கும் சேர்வை ஒளியியல் சமபகுதிச்சேர்வைக் காட்டும்.
- **36.** நைத்திரிக்கமிலம் பற்றிய பின்வரும் கூற்றுகளில் எது/எவை **தவறானது/தவறானவை** ?
 - (a) தூப நைத்திரிக்கமிலம் இளமஞ்சள் திரவமாகும்.
 - (b) நைத்திரிக்கமிலத்தின் எல்லா N—O பிணைப்புகளினதும் நீளம் சமனாகும்.
 - (c) நைத்திரிக்கமிலம் தாழ்த்தியாகத் தொழிற்பட முடியாது.
 - (d) அது முக்கிய பசளையொன்றான அமோனியம் நைத்திரேற்று உற்பத்தியின்போது பயன்படுத்தப்படும்.
- C(s) ஆனது $O_2(g)$ உடன் தாக்கம்புரிந்து $0.40~{
 m mol}~CO_2(g)$ ஐ உருவாக்குகையில் $40~{
 m kJ}$ வெப்பம் வெளிவிடப்படும். இத்தொகுதி தொடர்பாகப் பின்வரும் கூற்றுகளில் எது/எவை **உண்மையானது/உண்மையானவை** ? (C = 12, O = 16)
 - (a) ஒரு மூல் $\mathrm{CO_2}(\mathsf{g})$ இனை $\mathrm{C}(\mathsf{s}),\mathrm{O_2}(\mathsf{g})$ ஆகப் பீரிகையடையச் செய்வதற்கு $100~\mathrm{kJ}$ வெப்பம் தேவைப்படுகிறது.
 - (b) 11 g $\mathrm{CO}_2(\mathrm{g})$ இனை உருவாக்குவதற்கு $25~\mathrm{kJ}$ வெப்பம் தேவைப்படுகிறது.
 - (c) விளைபொருள்களின் வெப்பவுள்ளுறைப் பெறுமானங்களின் கூட்டுத்தொகை தாக்கிகளின் வெப்பவுள்ளுறைப் பெறுமானங்களின் கூட்டுத்தொகையை விடக் குறைவானதாகும்.
 - (d) விளைபொருள்களின் வெப்பவுள்ளுறைப் பெறுமானங்களின் கூட்டுத்தொகை தாக்கிகளின் வெப்பவுள்ளுறைப் பெறுமானங்களின் கூட்டுத்தொகையை விட உயர்வானதாகும்.
- முதன்மைத் தாக்கமொன்றின் சமப்படுத்திய இரசாயனச் சமன்பாட்டிற்கான பின்வரும் கூற்றுகளில் எது/எவை ഉ ൽഡെവ്നങ്ങളു/ഉ ൽഡെവ്നങ്ങവെ ?
 - (a) தாக்கத்தின் வரிசையும் மூலக்கூற்றுத்திறனும் சமமாகும்.
 - (b) தாக்கத்தின் வரிசை மூலக்கூற்றுத்திறனிலும் பார்க்கக் குறைவானதாகும்.
 - (c) தாக்கத்தின் வரிசை மூலக்கூற்றுத்திறனிலும் பார்க்கக் கூடியதாகும்.
 - (d) மூலக்கூற்றுத்திறன் பூச்சியமாகாது.
- **39.** கீழே தரப்பட்டுள்ள மூலக்கூறு பற்றிய பின்வரும் கூற்றுகளில் எது/எவை **உண்மையானது/உண்மையானவை** ?

$$\label{eq:ch2} \begin{array}{c} & \bigcirc \\ & \bigcirc \\ \text{CH}_2 = \text{CH(CH}_2)_3 - \text{C--NH}_2 \end{array}$$

- (a) புரோமீன் நீரை நிறமகற்றும்.
- (b) நீர் NaOH கரைசலுடன் சூடாக்கும்போது அமோனியாவை வெளிவிடும்.
- (c) 2,4–DNP சோதனைப்பொருளுடன் செம்மஞ்சள் நிற வீழ்படிவைத் தரும்.
- (d) NaBH $_4$ உடன் பரிகரிக்கும்போது ஒரு முதல் அமீனைத் தரும்.
- 40. பின்வரும் சேர்வைகளைக் கருதுக.
 - (A) HCHO

(B) NH₂CONH₂

(C) C_6H_5OH

- (\mathbf{D}) $HO_2C(CH_2)_4CO_2H$
- (E) $H_2N(CH_2)_cNH_2$

பொருத்தமான நிலைமைகளின் கீழ் தாக்கம்புரியும்போது கிழே தரப்பட்டுள்ள எச்சோடி/எச்சோடிகள் வெப்பமிறுக்கும் பல்பகுதியத்தைக் கொடுக்கும் ?

- (a) A, B
- (b) A, C
- (c) C, D
- (d) **D**, **E**

41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுகள் தரப்பட்டுள்ளன. அட்டவணையில் உள்ள (1),(2),(3),(4),(5) ஆகிய தெரிவுகளிலிருந்து ஒவ்வொரு வினாவுக்கும் தரப்பட்டுள்ள இரு கூற்றுகளுக்கும் மிகவும் சிறப்பாகப் பொருந்தும் தெரிவைத் தெரிந்து பொருத்தமாக விடைத்தாளிற் குறிப்பிடுக.

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று					
(1)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத் திருத்தமான விளக்கத்தைத் தருவது.					
(2)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத் திருத்தமான விளக்கத்தைத் தராதது .					
(3)	உண்மை	போய்					
(4)	பொய்	உண்மை					
(5)	பொய்	பொய்					

	முதலாம் கூற்று	இரண்டாம் கூற்று
41.	சுக்குரோசு ஆனது செறிந்த H ₂ SO ₄ உடன் பரிகரிக்கப்படும்போது கருநிறத் திணிவைத் தரும்.	செறிந்த $ m H_2SO_4$ ஆனது வலிமையான ஒட்சியேற்றும் கருவியாகும்.
42.	CH ₃ CH≕CH ₂ இந்கும் HX இந்கும் இடையிலான கூட்டல் தாக்கத்தில் இடைநிலை விளைபொருளொன்றாக CH ₃ CH ₂ CH [⊕] காபோகந்நயன் இலகுவில் உருவாகின்றது.	நேரேற்றக் காபன் அணுவொன்றுடன் இணைக்கப்பட்டுள்ள அற்கைல் கூட்டங்கள் C—C, σ-பிணைப்புகள் ஊடாக நேரேற்றப்பட்ட காபனை நோக்கி இலத்திரன்களை விடுவித்து, காபோகற்றயன்களின் உறுதிநிலையை அதிகரிக்கச் செய்யும்.
43.	$80~^{\circ}\mathrm{C}$ இல் $\mathrm{H_{2}(g)}$ இன் சராசரி மூலக்கூற்றுக் கதியானது $40~^{\circ}\mathrm{C}$ இல் $\mathrm{N_{2}(g)}$ இன் சராசரி மூலக்கூற்றுக் கதியை விடக் குறைவானதாகும்.	சராசரி மூலக்கூற்றுக் கதியானது வெப்பநிலையின் வர்க்கமூலத்திற்கு நேர்விகிதசமமாகும் அதேவேளை மூலர் த் திணிவின் வர்க்கமூலத் திற்கு நேர் மாறு விகிதசமமாகும்.
44.	கூட்டத்தில் கீழ்நோக்கிச் செல்லும்போது நீருடன் கார உலோகங்களின் தாக்குதிறன் அதிகரிக்கும்.	உலோக அணுக்களின் பருமன் அதிகரிக்கும்போது வலிமையான உலோகப் பிணைப்புகள் உருவாகின்றன.
45.	CH ₃ C≡CH ஆனது அமோனியாசேர் Cu ₂ Cl ₂ உடன் பரிகரிக்கப்படுகையில் சிவப்பு வீழ்படிவொன்றைத் தரும்.	அற்கைன்களில் முடிவிடங்களிலுள்ள அமில ஐதரசன் ஆனது உலோகங்கள் மூலம் இடம்பெயர்க்கப்படலாம்.
46.	எல்லாச் சுயமான தாக்கங்களும் புறவெப்பத்துக்குரியன.	எந்தவொரு தாக்கத்திற்காகவும் $\Delta G = \Delta H + T \Delta S$ ஆகும்.
47.	$\mathrm{NH_3}(\mathrm{g})$ ஐ உற்பத்தி செய்வதற்கான $\mathrm{N_2}(\mathrm{g})$ இற்கும் $\mathrm{H_2}(\mathrm{g})$ இற்கும் இடையிலான தாக்கம் அகவெப்பத்துக்குரியதாகும்.	நைத்திரிக்கமிலம், யூரியா என்பவற்றின் தொகுப்பில் NH ₃ (g) பயன்படுத்தப்படும்.
48.	புரோமோகுளோரோமெதேனின் ஆடி விம்பங்கள் எதிருருக்கள் ஆகும்.	எதிருருக்கள் ஒன்றின் மீது ஒன்று மேற்பொருந்தாத ஆடி விம்பங்களாகும்.
49.	பேரியம் ஒட்சலேற்று BaC ₂ O ₄ (s) இன் கரைதிறன் நீரிலும் பார்க்க அமில நீர் ஊடகம் ஒன்றில் குறைவாகும்.	${ m C_2O_4^{2-}}$ இன் இணை அமிலமானது ${ m H_2C_2O_4}$ மென்னமிலம் ஆகும்.
50.	சில தாவரங்களின் வேர்க்கணுக்களில் இருக்கும் நொதியங்கள் N ₂ ஐப் பதிக்கும் ஆற்றலைக் கொண்டிருக்கும்.	N ₂ மூலக்கூறு தாக்குதிறனற்றதாக இருப்பதற்கு முக்கிய காரணம் அதில் அடங்கும் N – N மும்மைப் பிணைப்பாகும்.

ஆவர்த்தன அட்டவணை

	Γ	1																
	1																	2
1	H		,															He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
•	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	•••				

Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Ho	Er	Tm	Yb	Lu
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

More Past Papers at tamilguru.lk

இ ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තම්වල් මුල් ලිපාන් වේදා ල්ලාන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව ල්ලාන්තන්ත්ව ල

අධානයන පොදු සහනික පසු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2016

රසායන විදහාව II **இரசாயனவியல் II** Chemistry II

පැය තුනයි மூன்று மணித்தியாலம் Three hours

சுட்டெண்	:	

- 🛠 ஆவர்த்தன அட்டவணை பக்கம் 15 இல் வழங்கப்பட்டுள்ளது.
- * கணிப்பானைப் பயன்படுத்தக்கூடாது.

* அகில வாயு மாரிலி, $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

st அவகாதரோ மாறிலி, $N_A = 6.022 imes 10^{23} \ \mathrm{mol}^{-1}$

More Past Papers at

tamilguru.lk

🔆 இவ்வினாத்தாளுக்கு விடை எழுதும்போது அற்கைற் கூட்டங்களைச் சுருக்கமான விதத்தில் காட்டலாம்.

பகுதி A - அமைப்புக் கட்டுரை (பக்கங்கள் 2 - 8)

- 🔆 எல்லா வினாக்களுக்கும் இத்தாளிலேயே விடை எழுதுக,
- ஒவ்வொரு வினாவுக்குக் கீழும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக. கொடுக்கப்பட்டுள்ள இடம் விடைகளை எழுதுவதற்குப் போதுமானது என்பதையும் விரிவான விடைகள் எதிர்பார்க்கப்படவில்லை என்பதையும் கவனிக்க.

ப பகுதி B யும் பகுதி C யும் - கட்டுரை (பக்கங்கள் 9 - 14)

- ஒவ்வொரு பகுதியிலிருந்தும் இரண்டு வினாக்களைத் தெரிவுசெய்து எல்லாமாக நான்கு வினாக்களுக்கு விடை எழுதுக. உமக்கு வழங்கப்படும் எழுதும் தாள்களை இதற்குப் பயன்படுத்துக.
- st இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேர முடிவிலே பகுதி f A மேலே இருக்கும்படியாக f A, B, C ஆகிய மூன்று பகுதிகளின் விடைத்தாள்களையும் ஒன்றாகச் சேர்த்துக் கட்டியபின் பரீட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- st வினாத்தாளின் ${f B},\ {f C}$ ஆகிய பகுதிகளை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

பரீட்சகர்களின் உபயோகத்திற்கு மட்டும்

பகுதி	ഖിങ്ങ இல.	புள்ளிகள
	1	
A	2	
	3	
W	4	
	5	and the state of t
В	6	
***	7	
	8	
C	9	
	10	
மொத்த	5LD	
<i>ទ</i> គ្គលឺ <i>ត្</i>	ìÒ	

	இறுதிப்	पुनानी
இலக்கத்தில்		
எழுத்தில்		

குறியீட்டெண்கள்

r	
வினாத்தாள் பரீட்சகர் 1	
வினாத்தாள் பரீட்சகர் 2	
புள்ளிகளைப் பரீட்சித்தவர்:	
மேற்பார்வை செய்தவர் :	

பகுதி A - அமைப்புக் கட்டுரை

நான்கு வினாக்களுக்கும் விடைகளை இத்தாளிலேயே எழுதுக.

(ஒவ்வொரு விடைக்கும் 10 புள்ளிகள் வழங்கப்படும்.)

இப்பகுதியில் எதனையும் எழுதுதல் ஆகர்து

	தரப்பட்டுள்ளது	В	C	N	o	F	Ne		
		Al	Si	P	S	Cl	Ar		
	இப்பட்டியலில்,								
	(i) உயர் வ உருவாக்	ுன்மையைக் கும் அல்லு		-		பங்கீட்டு	வலுச் சாலகத்	தை	
	(ii) ஒட்சியே இனங்கா		களின் மிக	வும் ப ரு	ந்த வீச்ன	சக் காட	டும் மூலகத்	<u>.</u>	
	(iii) அதி உய	பர்ந்த முதலா	ாம் அயனாக்	கற் சக்தில	மயக் கொன	ாட மூலக	ந்தை இனங்காக	ண்க	
	(iv) ஈரியல்புa	ளைக் காட்	டும் மூலகத்	தை இனந்	ப்காண்க.				
	(v) வாயுநின இனங்கா		இரண்டு பி	றதிருப்பங்	களைக் ()காண்டிரு	க்கும் மூலகத்	<u>.</u>	• • • • • • • • • • • • • • • • • • • •
	(vi) ഖலിതഥധ	பான ஒட்சிடே	பற்றும் கரு	வியாகக் க	்ருதப்படும்	மூலகத்ை	த இனங்காண்க	ъ. (2.4 L	नोक्षी&नो
(b)	கீழே தரப்பட்டு அதன் அடிப்பட	ள்ள (i) தெ டைக் கட்டல	ாடக்கம் (v) අ மப்பு கீழே	வரையான தரப்பட்டு	பகுதிகள் ர்ளது.	CN₄ ∰NE	கூறினை அடிப்	ப்படையாகக் கெ	ாண்டன.
				NC	NNN				
	(ii) இம்மூலத் தவிர).	க்கூறுக்கு மூ	ன்று பரிவுக்	கட்டமைப்(புகளை ഖഒ	ரக (மேலே	സ (i) இல் ഖഞ	ரயப்பட்ட கட்டை	மப்பைத்
	C, N ஆ I. அஓ	(i) இல் வ கிய அணுக் னுவைச் சூழ	களின்					ட்டுள்ள அட்டவ	ത്തധിல്
	என்பவற்	னுவைச் சூழ றைக் குறிப் ன் நைதரசன்	பிடுக.	டிவம் டபின்வரும	IV	கேத்தி அணுவி கமிடப்பட்(ரகணிதம் ன் கலப்பாக்க	ள இலத்திரன் 6	சாடிக்
	என்பவற்	_ றைக் குறிப்	பிடுக.	டிவம் டபின்வரும	IV எறு இலக்	கேத்தி அணுவி கமிடப்பட்(7 ⁴	ரகணிதம் ன் கலப்பாக்க		
	என்பவற் CN ₄ இ	றைக் குறிப் ன் நைதரசன்	பிடுக. 1 அணுக்கஎ்	டிவம் டபின்வரும	IV எறு இலக் N ² —N ³ —	கேத்தி அணுவி கமிடப்பட்(7 ⁴	rகணிதம் ன் கலப்பாக்க }ள்ளன:	Ď	
	என்பவற் CN ₄ இச I. VS	றைக் குறிப் ன் நைதரசன் EPR சோடிக	பிடுக. அணுக்கஎ் எள்	ர பின்வரும N ^L —C—	IV எறு இலக் N ² —N ³ —	கேத்தி அணுவி கமிடப்பட்(7 ⁴	rகணிதம் ன் கலப்பாக்க }ள்ளன:	Ď	
	என்பவற் CN ₄ இச I. VS II. இச	றைக் குறிப் ன் நைதரசன் EPR சோடிக லத்திரன் சோ	பிடுக. அணுக்கஎ் எள்	ர பின்வரும N ^L —C—	IV எறு இலக் N ² —N ³ —	கேத்தி அணுவி கமிடப்பட்(7 ⁴	rகணிதம் ன் கலப்பாக்க }ள்ளன:	Ď	
	என்பவற் CN ₄ இச I. VS	றைக் குறிப் ன் நைதரசன் EPR சோடிக லத்திரன் சோ	பிடுக. அணுக்கஎ் எள்	ர பின்வரும N ^L —C—	IV எறு இலக் N ² —N ³ —	கேத்தி அணுவி கமிடப்பட்(7 ⁴	rகணிதம் ன் கலப்பாக்க }ள்ளன:	Ď	

	(iv)	மேலே பகுதி (i) இல் வரைந்த லூயி கட்டமைப்பில் N^2 , N^3 என்பவற்றில் கூடிய மின்னெதிர்த்தன்மையைக் கொண்டது எதுவெனக் குறிப்பிடுக. உமது தெரிவுக்கான காரணங்களைத் தருக. [பகுதி (iii) இல் உள்ளவாறு அணுக்கள் இலக்கமிடப்பட்டுள்ளன.]	ன்னன் சும்சுதல் எத்தையும்
	(v)	மேலே பகுதி (i) இல் வரைந்த லூயி கட்டமைப்பில் பின்வரும் σ பிணைப்புகளின் உருவாக்கத்துடன் சம்பந்தப்பட்ட அணு/கலப்பின ஒபிற்றல்களை இனங்காண்க. [பகுதி (iii) இல் உள்ளவாறு அணுக்கள் இலக்கமிடப்பட்டுள்ளன.]	
		I. N¹—C N¹, C	
		II. C—N ² C, N ²	
		III. N ² —N ³ N ² , N ³	
		IV. N ³ —N ⁴ N ³ , N ⁴	
		(5.6 புள்ளிகள்)	
(c)		ரும் கூற்றுகள் உண்மையானவையா, பொய்யானவையா எனக் குறிப்பிடுக. (காரணங்கள் அவசியமன்று)	
		SF ₆ , OF ₆ ஆகிய இரண்டும் உறுதியான மூலக்கூறுகளாகும்.	
	(11)	SiCl ₄ , NCl ₃ , SCl ₂ ஆகிய மூலக்கூறுகளின் இலத்திரன் சோடிக் கேத்திரகணிதம் நான்முகியாக இருப்பினும் அவற்றின் பிணைப்புக் கோணங்கள் வேறுபட்டவை.	
	(iii)	Kr இன் கொதிநிலை Xe இன் கொதிநிலையை விட அதிகமாகும்.	
		கூட்டம் II சல்பேற்றுகளின் கரைதிறன் கூட்டம் வழியே கீழ்நோக்கிச் செல்லும்போது குறைவடைவது, கற்றயன்களின் நீரேற்ற வெப்பவுள்ளுறை	
		குறைவடைவதன் அடிப்படையிலாகும்	\100 /
(a)	தாக்க பார்க் பயன்	ஆகியன ஆவர்த்தன அட்டவணையில் s-தொகுப்பைச் சேர்ந்த மூலகங்களாகும். அவை நீருடன் கும்புரிந்து ஐதரொட்சைட்டுகளை உருவாக்கும். X இன் ஐதரொட்சைட்டு ஆனது Y இன் ஐதரொட்சைட்டிலும் க அதிக மூலத்தன்மையானது. X இன் ஐதரொட்சைட்டு குழந்தைகளுக்கான சவர்க்கார உற்பத்தியில் படுத்தப்படுகிறது. Y இன் ஐதரொட்சைட்டு ஆனது பூகோள வெப்பமுறலுக்குப் பொறுப்பாக அமையும் ன வாயுக்களில் ஒன்றான Z வாயுவை இனங்காணப் பொதுவாகப் பயன்படுத்தப்படும்.	
	(i)	X, Y ஆகியவற்றை இனங்காண்க.	
		X Y	
	(ii)	X, Y ஆகியவற்றின் இலத்திரன் நிலையமைப்புகளை எழுதுக.	:
		X =	
		V	
	/*** >		
	(111)	சுவாலைச் சோதனையின்போது X, Y ஆகியவ <u>ற்றின் உப்புகள் தரு</u> ம் சுவாலையின் நிறங்களை எழுதுக.	
		X = Y =	
	(iv)	பின்வருவனவற்றுக்கான X, Y ஆகியவற்றின் சார் பருமன்களைக் குறிப்பிடுக.	
		I. அணுவின் பருமன் >	
		II. அடர்த்தி	
		III. உருகுநிலை >	
		IV. முதலாம் அயனாக்கற் சக்தி 🦳 > 🦳	
	(v)	Z ஐ இனங்காண்க. :	
			J

- 3 -

AL/2016/02-T-II(A)

சுட்டெண்:....

தப்பகுதயில
தெணையும்
எழுதுதல்
<i>ቀ</i> አውን <i>ታኔ</i> .

(vi)		• -	இன் ஐதரொட்சைட்டினை எவ்வாறு பயன்படுத்தலாம் என்பதைச் சமன்படுத்திய எழு மா த்திரம் பயன்படுத்திக் காட்டுக.
		பு: வீழ்படிவுகள் காணப்ப களையும் குறிப்பிடுக.	டின் "↓" எனவும், இனங்காணலுக்கு உதவும் வீழ்படிவுகளின்/கரைசல்களின்

(vii)		னேற்று ஒன்றாகக் காணப் பபொருள் ஒன்றாகப் பயம	ப்படும் Y இன் ஓர் இயற்கை மூலம் தொற்றுநீக்கியொன்றின் உற்பத்தியில் ன்படுத்தப்படுகிறது.
	I.	இயந்கை மூலத்தைப் (பெயரிடுக.
	II.	தொற்றுநீக்கியை இனங்	aகாண்க
	III.	,	நபத்திச் செயன்முறையின் படிமுறைகளைச் சமன்படுத்திய இரசாயனச் ரம் பயன்படுத்தி எழுதுக.

		3****************	
			(5.0 புள்ளிகள்)
(b) (i)	தரப்ப	பட்டுள்ள பட்டியலிலிருந்த பட்டுள்ள தாக்கங்களைப் சல்களின் பட்டியல் (ஒழு	து பொருத்தமான கரைசலைத் தெரிவுசெய்து பெட்டியினுள் எழுதி, கீழே பூரணப்படுத்துக
		$Na_2S_2O_3(aq)$, A	agNO ₃ (aq), K ₂ SO ₄ (aq), (NH ₄) ₂ CO ₃ (aq), BaCl ₂ (aq), KI (aq)
	குறிப்	பு:ஒரு கரைசலை ஒரு	தடவை மாத்திரம் பயன்படுத்த வேண்டும்.
	I.	BaCl ₂ (aq) +	——> A (ஐதான HCl இல் கரைந்து தெளிந்த கரைசலைப் பெற்றுத் தரும் வெண்ணிற வீழ்படிவு)
	· II.	Pb(NO ₃) ₂ (aq)+	> B (வெந்நீரில் கரையும் மஞ்சள் நிற வீழ்படிவு)
	III.	AgNO ₃ (aq) +	——> C (தாமதிக்கும்போது கருநிறமாக மாறும் வெண்ணிற வீழ்படிவு)
	IV.	K ₂ SO ₃ (aq) +	——> D (ஐதான HCl இல் கரையும் வெண்ணிற வீழ்படிவு)
	V.	NaBr(aq) +	——> E (செறிந்த அமோனியாவில் முற்றாகக் கரையும் இளமஞ்சள் நிற வீழ்படிவு)
	VI.	Ba(NO ₃) ₂ (aq)+	—— » F (ஐதான HCl இல் கரையாத வெண்ணிற வீழ்படிவு)
(ii)	A தெ	ாடக்கம் F வரையுள்ள எ	பீழ்படிவுகளின் இரசாயனச் சூத்திரங்களை எழுதுக.
	A		В
	C		D
	E		F
(iii)		பாடுகளை எழுதுக.	பட்ட ${f A},{f D},{f E}$ ஆகிய வீழ்படிவுகள் கரைவதற்கான சமன்படுத்திய இரசாயனச்
			$\left \sqrt{16} \right $
	••••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(50 புள்ளிகள்)

3.	(a)	227 கேஸ் வாயு A இன் 0.010 முல்களை வேறுட்டாக்கப்பட்ட 1.0 பா மூடிய விறைத்த கொள்கல்மொன்றல	இப்பகுதியில் தேனையும் எழுதுதல் ஆனது,
		A (g) இன் செறிவு நேரத்துடன் அளவிடப்பட்டது. பெறுபேறுகள் பின்வரும் வரைபில் காட்டப்பட்டுள்ளன.	
		[A]/mol dm ⁻³	
		0.010 0.008 0.006 0.004 0.002 0 500 1000 1500 2000 Gpytis/s	
		(i) தாக்கத்தின் வரிசை, வீத மாறிலி ஆகியவற்றை முறையே a,k எனக் கொண்டு மேற்படி தாக்கத்திற்கான வீதக் கோவையை எழுதுக.	
		(ii) காரணங்களைத் தந்து a இன் பெறுமானத்தைத் துணிக.	
		(iii) $227^{\circ}\mathrm{C}$ இல் வீத மாறிலி k ஐக் கணிக்க.	
		(iv) A (g) இன் தொடக்க அளவின் அரைவாசி பிரிகைக்கு உட்பட்டிருப்பின் கொள்கலத்தினுள் உள்ள அமுக்கத்தைக் கணிக்க. ஊக்கியின் கனவளவைப் புறக்கணிக்கலாம் எனக் கொள்க.	
		(6.0 புள்ளிகள்)	J

இப்பகுதியில் எதனையும் எழுதுதல் அகாது.

(b)	திண்ம	ஊக்கி	ஒன்றின்	முன்னிலையில்	வாயு	🗶 பின்வரும்	இரசாயனச்	சமன்பாட்டிற்கேற்பப்	பிரிகையடையும்.

- 6 -

$$X(g) \xrightarrow{\text{ended}} 2Y(g) + Z(g)$$

(i) $\mathbf{b}, k_1, \mathbf{V}_0$ ஆகிய பதங்களைப் பயன்படுத்தி \mathbf{R}_0 இற்கான ஒரு கோவையை எழுதுக.

வெற்றிடமாக்கப்பட்ட கொள்கலத்தினுள் வாயு ${f X}$ இன் 1.0 மூல் செலுத்தப்பட்டது. வாயுவின் தொடக்கக் கனவளவு ${f V}_0$ என அளவிடப்பட்டது. சிறிதளவு ஊக்கியைச் (கனவளவு புறக்கணிக்கத்தக்கது) செலுத்தி தூக்கம் தொடங்கப்பட்டது. ஊக்கிய தூக்கத்தின் வீத மாறிலி ${f k}_1$ உம் ${f X}$ இற்குச் சார்பாக தூக்கத்தின் விறசை ${f b}$ உம் ஆகும். தூக்கத்தின் தொடக்க வீதம் ${f R}_0$ என அளவிடப்பட்டது. கொள்கலம் விரிவடைவதற்கு இடமளிக்கப்பட்டதன் மூலம் தொகுதியின் அமுக்கம் ஒரு மாறாப் பெறுமானமாகப் பேணப்பட்டது. தொகுதியின் வெப்பநிலையும் ஒரு மாறாப் பெறுமானமாகப் பேணப்பட்டது.

<i>(</i> 11)	Y/ \ O \ TO TI
(11)	${f X}({f g})$ இன் 50 % ஆன அளவு நுகரப்பட்டபோது தாக்கம் நடைபெறும் கொள்கலத்தின் கனவளவு இரு மடங்காகவும் தாக்கத்தின் வீதம் $0.25{f R}_0$ ஆகவும் இருந்தமை அவதானிக்கப்பட்டது. தாக்கத்தின் வரிசை ${f b}$ ஐக் கணிக்க.

100

(4.0 புள்ளிகள்)

More Past Papers at tamilguru.lk

இப்பகுதியில் இப்பகுதியில்
கத்கையும்
எழுதுதல்
ஆகாது.

1. (a)		சமபகுதியங்க சமபகுதியங்க ZnCl ₂ அடங்கி கலங்கல்தன்ன என்பவற்றைச் என்பன மூலக் இரண்டிலும் ஒ உடன் பரிகரித் காட்டியது. A	D என்பன மூலக்கள் நான்கும் உள் நான்கிலும் Aமாய செறிந்த HCl இமை ஏற்பட்டது. C செறிந்த H ₂ SO ₄ உகற்றுச் சூத்திரம் கேத்திர கேத்திரம் கேத்திர கேத்திரம் கேத்திரம் கேத்திர குக்கிரதும் கேத்திர முறையே ,B, C, D, E, F, G	லோகச் சே த்திரம் ஒ ந்கு வெவ்டி , D என்பச உடன் வெ ட ₄ H ₈ இன் கணிதச் G , H ஆகிய	சோடியத்துட ளியியல் சம வேறாகச் சே வற்றில் கல பப்பமாக்கிய(கட்டமைப்ட சமபகுதிச்சே பென பெறப்(வற்றின் கட்	ன் த பகுதி ந்த்த போது பாது புச் சப பட்டன டமை	ாக்கம்புரிந்து ச்சேர்வைக் கா போது B அடங்கு தன்மை மிக முறையே E, பகுதியங்களா க் காட்டமாட்ட ம்புகளைக் கீ பேபுகளைக் கீ	H ₂ வாயுவை ட்டியது. B, C, D 5ம் கலவையில் மெதுவாக ஏற் F என்பன பெறு கும். E, F ஆகி ஏளியியல் சமபடு ஓ தரப்பட்டுள்ள	வெளிவிட்டன. ஆகியவற்றை உடனடியாகக் பட்டது. C, D ப்பட்டன. E, F ப சேர்வைகள் யவற்றை HBr குதிச்சேர்வைக் ப பெட்டிகளில்	இப்பத தேசை எழுத ஆக
			A		В			C		
			D		E			F		
•	(ii)		G PCC உடன் தாக் எாக் கீழே தரப்பட்டு					ிடைத்தன. I,		
			I		J				(1.0 புள்ளிகள்)	
(b)	_	•	தாக்கங்களின் பி மைப்புகளை 8 ஆ		•		_		P, Q, R, S, T	
	(i)	CH ₃ CH=CH ₂	HBr பேரோட்சைட்டு	K		(ii)	C ₆ H ₅ CHO	① 2, 4 – DNI ② நீரகற்றல்	L	
	(iii)	$C_6H_5N_2^{\dagger}Cl^{-}$	NaOH 0-5°C	M	((iv)	C ₆ H ₅ COCI	$\xrightarrow{\text{NH}_3}$	N	
	(v)	$C_6H_5CO_2H$	செறிந்த HNO ₃ செறிந்த H ₂ SO ₄	o	((vi)	CH ₃ COC ₂ H ₅	Zn Hg Geßßg HCl	P	
	(vii)	CH ₃ CHO	$\underbrace{\frac{\text{Ag(NH}_3)_2^+\text{OH}^-}{\text{Ag(NH}_3)_2^+\text{OH}^-}}$	Q	((viii)	$CH_3C \equiv CH$	NaNH ₂	R	
	(ix)	CH ₃ C≡CCH ₃	$H_2 \mid Pd$	S		(x)	C ₆ H ₅ OH	$\xrightarrow{\operatorname{Br}_2}$	T	

* *

៥៤៤ ២ ស៊ី២២២ ជុស្មីប័ណី (ហូណូរ បន្ទាប់បុព្រាយបុរាជាមួយ All Rights Reserved]

இ ஒன்ற இல்ல අදහර්තමේන්තුව ලී ලංකා විභාග දෙහර්ත<mark> අවස්තු වෙන්න දෙහැරන දින්න ල</mark>බාග අදහර්තමේන්තුව ලී ලංකා විභාග අදහර්තමේන්තුව இலங்கைப் பர்ட்சைத் தினைக்களம் இலங்கைப் பர்ட்சைத் தினைக்களம் இலங்கைப் பர்ட்சைத் தினைக்களம் இலங்கைப் பர்ட்சைத் தினைக்களம் Department of Examinations, Sri Lanka Department o**இலங்கைப் Stuffelion சத்**ருதி**கைக்களம்**. Sri Lanka Department of Examinations, Sri Lanka Q ලංකා විභාග අදහර්තමේන්තුව ලී ලේකා විභාග අදහර්තමේන්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තම්න්තමේන්තුව ලී ලේකා විභාග අදහර්තමේන්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තම්න්තමේන්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තම්න්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තමේන්ත් ලේකා අදහර්තමේන්තුව ලේකා අදහර්තමේන්තුව ලේකා අදහර්තමේන්ත් ලේකා අදහර්තමේන්ත් ලේකා අදහර්තමේන්තුව ලේකා අදහර්තමේන්ත් ලේ

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016

රසායන විදාහච II **இ**ரசாயனவியல் II Chemistry II

* அகில வாயு மாறிலி $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ * அவகாதரோ மாறிலி $N_A = 6.022 \times 10^{23} \,\mathrm{mol^{-1}}$

பகுதி B — கட்டுரை

இரு வினாக்களுக்கு மாத்திரம் விடை எழுதுக. (ஒவ்வொரு வினாவின் விடைக்கும் 15 புள்ளிகள் வழங்கப்படும்).

5. (a) 25 °C இல் ஈதர், நீர் ஆகியவற்றுக்கிடையே பியூற்றேன்டைஓயிக் அமிலத்தின் (BDA, HOOCCH $_2$ CH $_2$ COOH) பங்கீட்டுக் குணகம் K_{D} ஐத் துணிவதற்காகப் பின்வரும் நடைமுறை பின்பற்றப்பட்டது.

முதலில் $20~{
m g}$ திண்ம BDA ஆனது $100~{
m cm}^3$ ஈதர், $100~{
m cm}^3$ நீர் என்பவற்றின் அண்ணளவான கனவளவுகளைக் கொண்ட கலவையுடன் சோதனைப்பொருள் போத்தலினுள் நன்கு குலுக்கப்பட்டு படைகள் வேறாவதற்கு விடப்படுகின்றன. இச்சந்தர்ப்பத்தில் கரையாத BDA இன் சிறிதளவு சோதனைப்பொருள் போத்தலின் அடியில் காணப்பட்டது. பின்னர் ஈதர் படையின் ஓர் $50.00~{
m cm}^3$ கனவளவும் நீர்ப்படையின் ஓர் $25.00~{
m cm}^3$ கனவளவும் $0.05~{
m mol}~{
m dm}^{-3}~{
m NaOH}$ கரைசலுடன் நியமிக்கப்பட்டன. ஈதர், நீர் படைகளிலிருந்து பெறப்பட்ட கனவளவுகளுக்காக முறையே $4.80~{
m cm}^3$, $16.00~{
m cm}^3~{
m NaOH}$ கரைசல்கள் தேவைப்பட்டன.

- (i) $25\ ^{\circ}\mathrm{C}$ இல் ஈதர், நீர் ஆகியவற்றுக்கிடையில் பியூற்றேன்டைஓயிக் அமிலத்தின் பரம்பலுக்கான பங்கீட்டுக் குணகம் K_{D} ஐக் கணிக்க.
- (ii) நீரில் பியூந்நேன்டைஓயிக் அமிலத்தின் கரைதிறன் 8.0 g dm⁻³ எனத் தரப்படின் ஈதரில் இவ்வமிலத்தின் கரைதிறனைக் கணிக்க. (4.0 புள்ளிகள்)
- (b) பின்வரும் தாக்கங்களைக் கருதுக. தரப்பட்டுள்ள வெப்பவியக்கத் தரவுகள் நியம நிலைக்குரியன **அல்ல**.

- (i) $2{
 m CO}({
 m g}) o {
 m C(s)} + {
 m CO}_2({
 m g})$ என்னும் தாக்கத்துக்கான $\Delta {
 m H}, \, \Delta {
 m S}$ என்பவற்றைக் கணிக்குக. $\Delta {
 m S}$ இன் குறி ஆனது நடைபெறும் தாக்கத்துடன் இணங்குகின்றதா என்பதைக் காரணங்கள் தந்து கூறுக.
- (ii) மேலே பகுதி (i) இல் குறிப்பிட்ட தாக்கம் 27 °C இல் சுயமாக நிகழுமாவெனப் பொருத்தமான கணிப்பைப் பயன்படுத்தி எதிர்வுகூறுக. (4.0 புள்ளிகள்)
- (c) மிகையளவு C(s) உம் $0.15 \text{ mol } CO_2(g)$ உம் மூடிய விறைத்த 2.0 dm^3 கொள்கலத்தில் இடப்பட்டு $689 \, ^{\circ}C$ வெப்பநிலையில் தொகுதி சமநிலையை அடைவதற்கு விடப்பட்டது. சமநிலையை அடைந்ததும் கொள்கலத்தில் உள்ள அமுக்கம் $8.0 \times 10^5 \, \text{Pa}$ என அறியப்பட்டது. $(689 \, ^{\circ}C)$ இல் $RT = 8000 \, \text{J} \, \text{mol}^{-1}$ எனக் கொள்க.)
 - (i) $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$ என்னும் தாக்கத்தில் சமநிலை மாறிலி K_p இற்கான கோவையொன்றை எழுதுக.
 - (ii) $689\ ^{\circ}{\rm C}$ இல் $K_{\rm p},\,K_{\rm c}$ ஆகியவற்றைக் கணிக்குக.
 - (iii) மற்றொரு பரிசோதனையில் மேலே விவரித்த கொள்கலத்தில் $689\,^{\circ}\mathrm{C}$ இல் மிகை $\mathrm{C(s)}$ உடன் $\mathrm{CO(g)}$, $\mathrm{CO_2(g)}$ என்பன உள்ளன. ஒவ்வொரு வாயுவினதும் தொடக்கப் பகுதியமுக்கம் $2.0\times10^5\,\mathrm{Pa}$ ஆகும். தொகுதி சமநிலையை அடையும்போது $\mathrm{CO_2(g)}$ இன் பகுதியமுக்க மாற்றத்தைக் கணிப்பொன்றின் உதவியுடன் விளக்குக.

- 6. (a) 25 °C இல் கனமானக் குடுவையொன்றில் தூய மென்னமிலமொன்றின் ஒரு பொருத்தமான அளவு காய்ச்சி வடித்த நீரினால் $25.00\,\mathrm{cm^3}$ வரை ஐதாக்கப்படுவதன் மூலம் $0.10\,\mathrm{mol}\;\mathrm{dm^{-3}}$ மென்னமிலக் கரைசல் \mathbf{HA} தயாரிக்கப்பட்டது. இக்கரைசலின் pH பெறுமானம் 3.0 ஆகும்.
 - (i) $\mathbf{H}\mathbf{A}(\mathbf{aq}) + \mathbf{H}_2\mathbf{O}(\mathbf{l}) \rightleftharpoons \mathbf{H}_3\mathbf{O}^+(\mathbf{aq}) + \mathbf{A}^-(\mathbf{aq})$ என்னும் சமன்பாட்டினைக் கருத்திற்கொண்டு இம்மென்னமிலத்தின் கூட்டப்பிரிகை மாறிலி $K_{\mathfrak{q}}$ ஐக் கணிக்க.
 - (ii) இம்மென்னமிலம் **HA** இன் ஓர் ஐதான கரைசல் ஒரு வலிமையான மூலம் **BOH** உடன் நியமிப்புச் செய்யப்பட்டது. சமவலுப் புள்ளியை அடைந்த பின்னர் நியமிப்புக் கலவையின் pH ஆனது $9.0\,$ ஆக இருக்கக் காணப்பட்டது. நியமிப்புக் கலவையிலுள்ள உப்பு ${f AB}$ இன் செறிவைக் கணிக்க. $(25 \, ^{\circ}\text{C})$ இல் $K_{\text{w}} = 1.0 \times 10^{-14} \, \text{mol}^2 \, \text{dm}^{-6}$
 - (iii) காய்ச்சி வடித்த நீரைச் சேர்ப்பதன் மூலம் மேற்குறித்த நியமிப்புக் கலவை நூறு மடங்கு ஐதாக்கப்பட்டது. (5.0 புள்ளிகள்) ஐதாக்கிய நியமிப்புக் கலவையின் pH ஐக் கணிக்க.
 - (b) AgBr(s) நீரில் அரிதிற் கரையும் ஓர் இளமஞ்சள் நிற உப்பாகும். $25\,^{\circ}\mathrm{C}$ இல் அதன் கரைதிறன் பெருக்கம், K_{so} ஆனது $5.0 \times 10^{-13} \text{ mol}^2 \text{ dm}^{-6}$ ஆகும்.
 - (i) $25\,^{\circ}\mathrm{C}$ இல் திண்ம $\mathrm{AgBr}\,$ உடன் சமநிலையில் காணப்படும் ஒரு நிரம்பிய $\mathrm{AgBr}\,$ கரைசலிலுள்ள $\mathrm{Ag^{+}}(\mathrm{aq})$ இன் செநிவைக் கணிக்க.
 - (ii) மேலே பகுதி (i) இல் விவரிக்கப்பட்ட கரைசலின் 100.0 cm³ ஆனது திண்ம AgBr உடன் ஒரு முகவையில் வைக்கப்பட்டுள்ளது. இம்முகவைக்கு ஒரு $100.0\,\mathrm{cm}^3$ கனவளவு காய்ச்சி வடித்த நீர சேர்க்கப்பட்டு, சமநிலைக்கு வரும்வரை கலவை நன்கு கலக்கப்பட்டது. இச்சந்தர்ப்பத்தில் சிறிதளவு திண்ம AgBr ஆனது முகவையின் அடியில் இன்னும் எஞ்சியிருந்தது. இக்கரைசலில் $Ag^{\dagger}(aq)$ இன் செறிவு யாதாக இருக்கக்கூடும் ? உமது விடையை விளக்குக.
 - (iii) 25 °C இல் $1.5 \times 10^{-4} \, \mathrm{mol} \, \mathrm{dm}^{-3} \, \mathrm{AgNO}_3$ கரைசலின் $10.0 \, \mathrm{cm}^3 \, \mathrm{2}$ ம் $6.0 \times 10^{-4} \, \mathrm{mol} \, \mathrm{dm}^{-3} \, \mathrm{NaBr}$ கரைசலின் $5.0~{
 m cm}^3$ உம் கலக்கப்படும்போது எதிர்பார்க்கப்படும் அவதானிப்பை ஒரு பொருத்தமான கணிப்பைப் பயன்படுத்தி எதிர்வுகூறுக.
 - (i) ஓர் இலட்சியத் துவிதக் கரைசலுடன் சமநிலையிலுள்ள ஆவி அவத்தையின் அமுக்கம் P ஆகும். திரவ அவத்தையில் அக்கூறுகள் இரண்டினதும் மூல் பின்னங்கள் $X_1,\,X_2$ ஆகும் அதேவேளை அவற்றின் நிரம்பல் ஆவியமுக்கங்கள் முறையே P_1^0 உம் P_2^0 உம் ஆகும்.

$$X_1 = \frac{P - P_2^0}{P_1^0 - P_2^0}$$
 statis antiga.

- (ii) 50 °C இல் மெதனோல், எதனோல் ஆகியன அடங்கும் துவிதக் கரைசலுடன் சமநிலையிலுள்ள ஆவி அவத்தையின் அமுக்கம் $4.5 imes 10^4~\mathrm{Pa}$ ஆகும். இவ்வெப்பநிலையில் மெதனோல், எதனோல் ஆகியவற்றின் நிரம்பல் ஆவியமுக்கங்கள் முறையே $5.5 \times 10^4~{
 m Pa}$ உம் $3.0 \times 10^4~{
 m Pa}$ உம் ஆகும். கரைசல்கள் இலட்சிய நடத்தையைக் காட்டுகின்றன எனக் கருதுக.
 - I. திரவ அவத்தையில் மெதனோல், எதனோல் ஆகியவற்றின் மூல் பின்னங்களைக் கணிக்க.
 - II. ஆவி அவத்தையில் மெதனோல், எதனோல் ஆகியவற்றின் மூல் பின்னங்களைக் கணிக்க.
- (iii) மேற்படி கணிப்புகளையும் தரப்பட்டுள்ள தகவல்களையும் அடிப்படையாகக் கொண்டு 50 °C இல் மெதனோல், எதனோல் கலவையின் ஆவியமுக்க—அமைப்பு வரிப்படத்தினை வரைக. கரைசல்கள் இலட்சிய (5.0 புள்ளிகள்) நடத்தையைக் காட்டுகின்றன எனக் கருதுக.
- 7. (a) பட்டியலில் தரப்பட்டுள்ள இரசாயனப் பொருள்களை **மாத்திரம்** பயன்படுத்தி, பின்வரும் மாற்றலை எங்ஙனம் செய்வீரெனக் காட்டுக.

இரசாயனப் பொருள்களின் பட்டியல்

 H_2O , அற்ககோல்சேர் KOH, Br_2 , செறிந்த H_2SO_4 ,

(6.0 புள்ளிகள்)

உமது மாற்றல் 9 படிமுறைகளிற்கு மேற்படலாகாது.

(b) பின்வரும் தாக்கத் திட்டத்தைப் பூரணப்படுத்துவதற்காக ${f R}_1$ - ${f R}_6$, ${f X}_1$ - ${f X}_5$ ஆகியவற்றை இனங்காண்க.

(7.0 புள்ளிகள்)

(c) (i) பின்வரும் தாக்கத்திற்கான பொறிமுறையைத் தருக.

(ii) NaOH உடனான **A** இன் தாக்கத்தில் **B** இற்கு மேலதிகமாக **C** என்னும் மற்றொரு விளைபொருள் கிடைக்கின்றது. **C** இன் கட்டமைப்பைத் தருக. (2.0 புள்ளிகள்)

பகுதி C — கட்டுரை

இரு வினாக்களுக்கு மாத்திரம் விடை எழுதுக (ஒவ்வொரு வினாவின் விடைக்கும் 15 புள்ளிகள் வழங்கப்படும்).

- 8. (a) சேர்வை A (A = MX_n; M = 3d தொகுப்பைச் சேர்ந்த ஒரு தாண்டல் மூலகம், X = ஒரே வகையைச் சேர்ந்த இணையிகள்) மிகை ஐதான NaOH உடனும் பின்னர் H₂O₂ உடனும் பரிகரிக்கப்படும்போது B என்னும் சேர்வையைத் தருகின்றது. B இன் ஒரு நீர்க்கரைசலை ஐதான H₂SO₄ இனால் அமிலமாக்கும்போது சேர்வை C ஐத் தருகின்றது. சேர்வை C ஆனது NH₄Cl உடன் தாக்கம்புரிந்து விளைபொருள்களில் ஒன்றாகச் சேர்வை D ஐத் தருகின்றது. திண்ம D ஐ வெப்பமாக்கும்போது நீலநிறச் சேர்வை E, நீராவி, சடத்துவ ஈரணு வாயு F என்பனவற்றைத் தருகின்றது. Ca உலோகத்தினை F வாயுவில் எரிக்கும்போது வெண்ணிறத் திண்மம் G ஐத் தருகின்றது. G இன் நீருடனான தாக்கத்தின்போது வாயு H வெளிவிடப்படுகின்றது. இவ்வாயு HCl வாயுவுடன் வெண் தூமத்தை உருவாக்குகின்றது. திரவ H உடன் உலோகம் Na தாக்கம்புரிந்து விளைபொருள்களில் ஒன்றாக ஒரு நிறமற்ற ஈரணு வாயு I ஐத் தருகின்றது. A இன் நீர்க்கரைசலொன்று மிகை Na₂CO₃ உடன் பரிகரிக்கப்படும்போது நிறமுள்ள வீழ்படிவொன்றைத் தருகின்றது. இவ்வீழ்படிவு வடிகட்டப்பட்டு, வடிதிரவம் ஐதான HNO₃ இனால் அமிலமாக்கப்பட்டது. இக்கரைசலுக்கு AgNO₃(aq) சேர்க்கப்படும்போது ஐதான NH₄OH இல் கரையும் ஒரு வெண் வீழ்படிவைத் தருகின்றது.
 - (i) A, B, C, D, E, F, G, H, I ஆகியவற்றை இனங்காண்க.
 - (ii) C அடங்கும் கரைசலொன்றை ஐதான NaOH இனால் பரிகரிக்கும்போது உங்களுக்கு எதனை அவதானிக்க இயலுமாயிருக்கும் ? இவ்வதானிப்புக்குப் பொருத்தமான சமன்படுத்திய இரசாயனச் சமன்பாட்டைத் தருக.

(5.0 புள்ளிகள்)

(b) **T** என்னும் நீரக்கரைசலொன்றில் **மூன்று** உலோக அயன்கள் உள்ளன. இவ்வுலோக அயன்களை இனங்காண்பதற்குப் பின்வரும் பரிசோதனைகள் நடத்தப்பட்டன.

	பரிசோதனை	அவதானிப்பு				
1.	ஐதான HCl இனால் T அமிலமாக்கப்பட்டு, பெறப்பட்ட தெளிவான கரைசலூடாக $\mathrm{H_2S}$ அனுப்பப்பட்டது.	ஒரு கருநிற வீழ்படிவு Q ₁ உருவாகியது.				
2.	வடிகட்டலினால் Q_1 அகற்றப்பட்டது. H_2S முழுவதும் அகற்றப்படும்வரை வடிதிரவம் கொதிக்கவைக்கப்பட்டது. கரைசல் குளிர்த்தப்பட்டு NH_4CI , NH_4OH ஆகியன சேர்க்கப்பட்டன.	ஒரு தெளிவான கரைசல் கிடைத்தது.				
	$\mathrm{H_2S}$ ஆனது கரைசலூடாக அனுப்பப்பட்டது.	👀 சுழிம் ஆர்புன் $oldsymbol{G}^2$ உருவாதுபது				
3.	வடிகட்டல் மூலம் ${f Q}_2$ அகற்றப்பட்டது. ${f H}_2{f S}$ முழுவதும் அகற்றப்படும்வரை வடிதிரவம் கொதிக்கவைக்கப்பட்டு, ${f (NH_4)}_2{f CO}_3$ கரைசல் சேர்க்கப்பட்டது.	ஒரு வெண்ணிற வீழ்படிவு ${f Q}_3$ உருவாகியது.				

$\mathbf{Q}_1,\mathbf{Q}_2,\mathbf{Q}_3$ ஆகிய வீழ்படிவுகளுக்கான பரிசோதனை :

	பரிசோதனை	அவதானிப்பு				
1.	சூடான, ஐதான HNO_3 இல் \mathbf{Q}_1 கரைக்கப்பட்டது. குளிராக்கப்பட்ட பின்னர் கரைசல் நடுநிலையாக்கப்பட்டு KI சேர்க்கப்பட்டது.	ஒரு வீழ்படிவும் கபிலநிறக் கரைசலும் உருவாகின.				
2.	சூடான, ஐதான HCl இல் \mathbf{Q}_2 கரைக்கப்பட்டது. கரைசல் குளிராக்கப்பட்டு ஐதான $\operatorname{NH}_4\operatorname{OH}$ சேர்க்கப்பட்டது. இக்கலவைக்கு மேலும் ஐதான $\operatorname{NH}_4\operatorname{OH}$ சேர்க்கப்பட்டது.	ஒரு பச்சைநிற வீழ்படிவு உருவாகியது. பச்சைநிற வீழ்படிவு கரைந்து கடும் நீலநிறக் கரைசலொன்றைத் தந்தது.				
3.	செறிந்த HCl இல் \mathbf{Q}_3 கரைக்கப்பட்டு, கரைசல் சுவாலைச் சோதனைக்கு உட்படுத்தப்பட்டது.	ஒரு பச்சைநிறச் சுவாலை கிடைத்தது.				

- (i) கரைசல் T இலுள்ள உலோக அயன்கள் **முன்றையும்** இனங்காண்க. (**காரணங்கள் அவசியமன்று**)
- (ii) ${f Q}_1$, ${f Q}_2$ ஆகிய வீழ்படிவுகளின் இரசாயனச் சூத்திரங்களை எழுதுக.

(5.0 புள்ளிகள்)

(c) கரைசல் U இல் உள்ள Al^{3+} அயன்களின் செறிவைத் துணிவதற்குப் பின்வரும் நடைமுறை பயன்படுத்தப்பட்டது. pH=5 ஆக உள்ளபோது Al^{3+} அயன்களை அலுமினியம் ஒக்சினேற்று, $Al(C_9H_6ON)_3$ என்றவாறு வீழ்படியச்செய்வதற்காக கரைசல் U இன் $25.0~{\rm cm}^3$ இற்கு மிகை 8-ஐதரொட்சிகுயினொலின் (ஒக்சின் எனப் பொதுவாக இனங்காணப்படும். $O(C_9H_7ON)$ சேர்க்கப்பட்டது. வீழ்படிவு வடிகட்டப்பட்டு, காய்ச்சி வடித்த நீரினால் கழுவப்பட்டு, மிகை $KBr_0 = 0$ 0 தடங்கிய சூடான, ஐதான $C(C_9H_7ON)$ சேர்க்கப்பட்டது. பின்னர் இக்கரைசலுக்கு $C(C_9H_7ON)$ இன் $C(C_9H_7ON)$ சேர்க்கப்பட்டது. மேலே காட்டப்பட்ட நடைமுறையின்போது நிகழும் தாக்கங்கள் பின்வருமாறு:

$$Al^{3+}(aq) + 3 \bigcirc \bigcirc \bigcirc \bigcirc$$
 \longrightarrow $Al(C_9H_6ON)_3 \downarrow + 3H^+(aq)$

$$Al(C_9H_6ON)_3(s) \xrightarrow{gg.gr.fost} HCl \longrightarrow Al^{3+}(aq) + 3 \bigcirc Q$$

அமில ஊடகத்தில் Br, ஐப் பிறப்பிப்பதற்கான முதன்மை நியமம் KBrO, ஆகும்.

$$BrO_3^-(aq) + 5Br^-(aq) + 6H^+(aq) \longrightarrow 3Br_2(aq) + 3H_2O(l)$$

$$OH \longrightarrow Br \longrightarrow Br \longrightarrow Br \longrightarrow H$$

$$OH \longrightarrow Br \longrightarrow H$$

$$OH \longrightarrow Br \longrightarrow H$$

மிகை Br_2 ஆனது KI உடன் தாக்கம்புரிந்து I_3^- ஐத் தரும். அதன் பின்னர் I_3^- ஆனது $0.05\,\mathrm{mol\,dm^{-3}\,Na_2S_2O_3}$ உடன் மாப்பொருளைக் காட்டியாகப் பயன்படுத்தி நியமிக்கப்பட்டது. முடிவுப் புள்ளியை அடைவதற்குத் தேவைப்பட்ட $\mathrm{Na_2S_2O_3}$ இன் கனவளவு $15.00\,\mathrm{cm^3}$ ஆகும். U கரைசலிலுள்ள $\mathrm{Al^{3+}}$ இன் செறிவை $\mathrm{mg\,dm^{-3}}$ இல் கணிக்க (AI = 27).

9. (a) எதிர்காலத்தில் இலங்கையில் ஓர் இரசாயனக் கைத்தொழிலை அமைப்பது பற்றிப் பல்கலைக்கழக இறுதி ஆண்டு மாணவன் ஒருவனால் வரையப்பட்ட ஒரு பாய்ச்சற் கோட்டுப்படம் கீழே தரப்பட்டுள்ளது. இயற்கை மூலப்பொருள்கள், உற்பத்திச் செயன்முறைகள், விளைபொருள்கள் ஆகியவற்றை வகைகுறிப்பதற்குப்

- (i) ${\bf R}_1, {\bf R}_2$ ஆகிய இயற்கை மூலப்பொருள்கள் **இரண்டையும்** இனங்காண்க.
- (ii) \mathbf{M}_1 , \mathbf{M}_2 , \mathbf{M}_3 , \mathbf{M}_4 ஆகிய உற்பத்திச் செயன்முறைகள் **நான்கையும்** இனங்காண்க. $[2\pm 0.00]$ அமோனியா உற்பத்தி அல்லது ஏபர் செயன்முறை].
- (iii) $\mathbf{P}_{\mathbf{i}}$ தொடக்கம் $\mathbf{P}_{\mathbf{o}}$ வரையிலான விளைபொருள்களை இனங்காண்க.
- $({
 m iv})$ ${
 m M}_1, {
 m M}_3$ ஆகிய செயன்முறைகளுடன் சம்பந்தப்பட்ட படிமுறைகளைச் சுருக்கமாக விபரிக்குக (உபகரணங்களின் வரிப்படங்கள் அவசியமன்று).
- (v) M₂ செயன்முறையில் பயன்படுத்தப்படும் உபகரணத்தினை வரைந்து பெயரிடுக.
- (vi) M_{γ} செயன்முறையில் பயன்படுத்தப்படும் உப்பை இனங்காண்க.
- $({
 m vii})$ ${f P}_{{
 m s}}, {f P}_{{
 m g}}, {f P}_{{
 m g}}$ ஆகிய ஒவ்வொன்றினதும் **ஒவ்வொரு** பயன்பாட்டைத் தருக.

(7.5 புள்ளிகள்)

- (b) கீழே தரப்பட்டுள்ள பட்டியலைப் பயன்படுத்தி இவ்வினாக்களுக்கு விடை எழுதுக.
 - CO_2 , CH_4 , ஆவிப்பறப்புள்ள ஐதரோக்காபன்கள், NO, NO $_2$, N $_2$ O, NO $_3$, SO $_2$, H $_2$ S, CFC, CaCO $_3$, திரவப் பெற்றோலியம், நிலக்கரி
 - (i) அமில மழைக்குக் காரணமான வாயுநிலையிலுள்ள **இரு** இனங்களை இனங்கண்டு இவ்வினங்கள் மூலம் அமிலமழை எவ்வாறு ஏற்படுகின்றது என்பதைச் சமன்படுத்திய இரசாயனச் சமன்பாடுகளின் உதவியுடன் சுருக்கமாக விளக்குக.
 - (ii) அமில மழை சூழலில் பாதகமான தாக்கங்களை ஏற்படுத்துகின்றது. இக்கூற்றைச் சுருக்கமாக ஆராய்க.
 - (iii) உயிர்ச்சுவட்டு எரிபொருள்களின் தகனம் காரணமாகச் சூழலுக்குக் காலப்படும் மூன்று இனங்களை அவை ஒவ்வொன்றின் மூலமும் ஏற்படுத்தப்படும் ஒரு பாதகமான சூழல் பிரச்சினையுடன் இனங்காண்க.
 - (iv) "கைத்தொழில் தொகுப்பு இனங்கள் வளிமண்டலத்தில் மிகக் குறைந்த அளவில் காணப்படல் பாதகமான சூழல் பிரச்சினைகளை ஏற்படுத்தும். CFC ஐ ஓர் உதாரணமாகக் கொண்டு இக்கூற்றை விளக்குக.
 - (v) цѣюваі́டі(j) வாயுக்கள் ஒவ்வொன்றும் ஐந்தை இனங்கண்டு அவ்வாயுக்கள் வளிமண்டலத்தில் புகுவதற்குக் கூரணமான மனிதச் செயற்பாடுகள் ஒன்று வீதம் குறிப்பிடுக.
 - (vi) உயிர்ச்சுவட்டு எரிபொருள்களின் தகனத்தின்போது காலப்படும் அமில வாயுக்களை அகற்றுவதற்கு, ஓர் இயற்கைப் பொருளை (பட்டியலிலிருந்து தெரிவுசெய்க) எவ்வாறு பயன்படுத்தலாம் என்பதனைச் சமன்படுத்திய இரசாயனச் சமன்பாடுகளைப் பயன்படுத்திச் சுருக்கமாக விளக்குக. (7.5 புள்ளிகள்)

10. (a) X, Y, Z ஆகியன இணைப்புச் சேர்வைகள் ஆகும். அவை எண்கோணக் கேத்திரகணிதத்தைக் கொண்டிருக்கும். X, Y, Z ஆகியவற்றின் இணைப்புக் கோளத்திலுள்ள இனங்களின் (அ-து. உலோக அயனும் அதனுடன் இணைந்துள்ள இணையிகளும்) அணுவுக்குரிய அமைப்புகள் முறையே FeH₁₀CNO₅S, FeH₈C₂N₂O₄S₂, FeH₆C₃N₃O₃S₃ ஆகும். மூன்று சேர்வைகளிலும் உலோக அயன் ஒரே ஒட்சியேற்ற நிலையைக் கொண்டிருக்கும். ஒவ்வொரு சேர்வையிலும் இரண்டு வகையான இணையிகள் உலோக அயனுடன் இணைந்திருக்கும். இச்சேர்வைகளில் இணைப்பில் அல்லாத அனயன்கள் இருப்பின் அவை ஒரே வகையைச் சார்ந்தனவாகும்.

நீர்க்கரைசல் S ஆனது 1:1:1 என்ற மூலர் விகிதத்தில் X,Y,Z ஆகியவற்றைக் கொண்டிருக்கும். கரைசல் S இலுள்ள ஒவ்வொரு கூறினதும் செறிவு $0.10\,\mathrm{mol}\ \mathrm{dm}^{-3}$ ஆகும். S இன் $100.0\,\mathrm{cm}^3$ இந்கு மிகை AgNO_3 கரைசலைச் சேர்த்தபோது மஞ்சள் நிற வீழ்படிவொன்று உருவாகியது. வீழ்படிவு நீரினால் கழுவப்பட்டு, மாறாத் திணிவு பெறப்படும் வரை கனலடுப்பில் உலர்த்தப்பட்டது. வீழ்படிவின் திணிவு $7.05\,\mathrm{g}$ ஆகவிருந்தது. இவ்வீழ்படிவு செறிந்த $\mathrm{NH}_4\mathrm{OH}$ இல் கரையமாட்டாது.

(மஞ்சள் வீழ்படிவில் அடங்கும் இரசாயனச் சேர்வையின் சார் மூலக்கூற்றுத் திணிவு = 235)

- (i) X, Y, Z ஆகியவற்றின் உலோக அயன்களுடன் இணைந்துள்ள இணையிகளை இனங்காண்க.
- (ii) மஞ்சள் நிற வீழ்படிவின் இரசாயனச் சூத்திரத்தைத் தருக.
- (iii) காரணங்களைத் தந்து X, Y, Z ஆகியவற்றின் கட்டமைப்புகளைத் துணிக.
- (iv) எதிலீனீரமைன் (en) இன் கட்டமைப்பு கீழே தரப்பட்டுள்ளது.

$$H_2\ddot{N}-CH_2-CH_2-\ddot{N}H_2$$

எதிலீனீரமைன் இரண்டு நைதரசன் அணுக்களினூடாக உலோக அயன் \mathbf{M}^{3+} உடன் இணைந்து சிக்கல் அயன் \mathbf{Q} இனை (அ-து. உலோக அயனும் அதனுடன் இணைந்துள்ள இணையிகளும்) உருவாக்குகின்றது. \mathbf{Q} எண்கோணக் கேத்திரகணிதத்தைக் கொண்டது. \mathbf{Q} இன் கட்டமைப்புச் சூத்திரத்தை எழுதி அதன் கட்டமைப்பை வரைக.

குறிப்பு : எதிலீனீரமைன் உலோக அயனுடன் மாத்திரம் இணைந்திருக்கும் எனக் கருதுக. உங்களது கட்டமைப்புச் சூத்திரத்தில் எதிலீனீரமைனுக்காக 'en' என்னும் சுருக்கத்தைப் பயன்படுத்துக.

(७.५ प्रवांशीळवा)

- (b) பின்வருவன உமக்குத் தரப்பட்டுள்ளன.
 - ullet Al $(NO_3)_3$, Cu $(NO_3)_2$, Fe $(NO_3)_2$ ஆகியவற்றின் $1.0~{
 m mol~dm^{-3}}$ நீர்க்கரைசல்கள்
 - Al, Cu, Fe ஆகிய உலோகக் கோல்கள்
 - 🛮 உப்புப் பாலங்களில் பயன்படுத்துவதற்குத் தேவையான இரசாயனப்பொருள்கள்
 - கடத்தும் கம்பிகள் (conducting wires), முகவைகள்
 இவற்றுக்கு மேலதிகமாகப் பின்வரும் தரவுகளும் வழங்கப்பட்டுள்ளன.

$$E_{\text{Fe}^{2+}/\text{Fe}}^{\text{o}} = -0.44 \text{ V}, \qquad E_{\text{Al}^{3+}/\text{Al}}^{\text{o}} = -1.66 \text{ V}, \qquad E_{\text{Cu}^{2+}/\text{Cu}}^{\text{o}} = +0.34 \text{ V},$$

(i) மேலே தரப்பட்ட பொருள்களைப் பயன்படுத்தி உருவாக்கக்கூடிய **மூன்று** மின்னிரசாயனக் கலங்களையும் வரிப்படமாக்குக.

ஒவ்வொரு கலத்தினதும் அனோட்டு, கதோட்டு என்பவற்றை அவற்றின் குறிகளுடன் காட்டுக.

- (ii) மேலே பகுதி (i) இல் வரையப்பட்ட ஒவ்வொரு மின்னிரசாயனக் கலத்தினதும்
 - I. கலக் குறியீட்டைத் தருக.
 - II. $E_{\rm cell}^{\rm o}$ ஐத் துணிக.
 - III. பௌதிக நிலைகளுடன் மின்வாய்த் தாக்கங்களுக்கான சமன்படுத்திய இரசாயனச் சமன்பாடுகளைத் தருக.
- (iii) கீழே தரப்பட்டுள்ள எச்சேர்வை/சேர்வைகள் உப்புப் பாலங்களில் பயன்படுத்துவதற்கு உகந்தது/உகந்தவை என்பதைக் காரணங்களுடன் விளக்குக.

(iv) தொடக்கத்தில் உயர் E_{cell}^0 இனைக் காட்டும் மின்னிரசாயனக் கலத்தைக் கருதுக. இம்மின்னிரசாயனக் கலம் ஒவ்வோர் அறையிலும் பொருத்தமான கரைசல்களின் சம கனவளவுகளைப் பயன்படுத்தி அமைக்கப்பட்டுள்ளது எனவும் அவற்றின் கனவளவுகள் பரிசோதனையின்போது மாறுபடாது எனவும் கொள்க.

இக்கலத்தின் இரு மின்வாய்களும் ஒரு கடத்தும் கம்பியைப் பயன்படுத்தித் தொடுக்கப்பட்டு சிறிது நேரத்தின் பின்னர் அனோட்டு அறையிலுள்ள உலோக அயன்களின் செறிவு **C** mol dm⁻³ என அறியப்பட்டது. கதோட்டு அறையிலுள்ள உலோக அயன்களின் செறிவை **C** சார்பாக எடுத்துரைக்க. (7.5 **புள்ளிகள்**)

ஆவர்த்தன அட்டவணை

	1																	2
1	H																	He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113				, ,	
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

57	58 -	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

More Past Papers at tamilguru.lk