지하역사 미세먼지와 외부 환경의 상관관계 탐색

Contents

- 1 분석 개요
- 2 데이터 구축 및 분석 방법
- 3 분석 결과 및 시각화
- **4** 결론

Part 1 분석개요

EDA를 통한 외부 미세먼지, 지하철 유동인 구와 지하역사 미세먼지 상관관계 탐색

분석대상	시간	공간	분석1 (외부미세먼지)	분석2 (유동인구)
서울 자치구별 미세먼지		서울 지하철 1~9호선	독립변수	통제변수
지하철 유동인구	2022년 8월 ~ 2023년 8월		통제변수	독립변수
지하역사 미세먼지			종속변수	종속변수

Part 2 데이터 구축 및 분석

통제요인 • 지하철 유동인구

데이터 수집

지하역사미세먼지

환경부 InAir

- 전국 지하철 역사 PM2.5
- 24시간 측정치 월별 파일데이터

환경부 AirKorea

- 서울시 자치구별 PM2.5
- 24시간 측정치 월별 파일데이터

서울시 미세먼지

지하철 유동인구

서울시 열린데이터광장

- 하루 역별 승하차 인원수
- 월별 파일데이터

데이터 구축

데이터 전처리

01 결측치,이상치

지하역사 미세먼지 데이터에서 38개 행의 결측치 존재 -> 총 126,228개 데이터 중 38개 제거해도 큰 영향 없을 것이라 생각하여 제거

02 파생변수

외부미세먼지 데이터 는 시간당 측정치이기 때문에 일별평균 파생 변수 생성 03 형식변환 및 통일

```
# 날짜 변환 함수 정의

def convert_date_string(date_str):
# 마지막 두 글자가 '24'일 경우에만 처리
```

날짜 형식으로 변환하고 지하역사 이름 통일시키기 04 데이터 병합

- 전처리 데이터 병합
- 1) 서울지역 외부미세 먼지
- 2) 서울 지하역사 미세 먼지
- 3) 서울 지하철 유동인 구

데이터 구축

기초통계량

외부 미세먼지

지하역사 미세먼지

지하철 이용객수

	일별평균
count	10149.000000
mean	18.869839
std	12.815298
min	1.000000
25%	10.000000
50%	16.000000
75%	24.000000
max	102.000000

	일평균
count	126228.000000
mean	35.704089
std	21.300820
min	0.000000
25%	21.400000
50%	31.200000
75%	44.600000
max	386.500000

	사용일자변경	하차총승객수
count	298	298.000000
mean	2023-01-07 00:00:00	11528.895973
min	2023-01-07 00:00:00	0.000000
25%	2023-01-07 00:00:00	4965.750000
50%	2023-01-07 00:00:00	8529.000000
75%	2023-01-07 00:00:00	13989.750000
max	2023-01-07 00:00:00	85772.000000
std	NaN	10666.613846

Part 3 분석 결과 및 시각화

<22년 8월 ~23년 8월 서울 초미세먼지 농도>

<22년 8월 ~23년 8월 서울 초미세먼지 농도 상자그림과 히스토그램>

<22년 12월 ~23년 3월 서울 초미세먼지 농도 lineplot>

분석 기준을 잡기 위해 미세먼지 농도가연중 가장 높은 12월 ~3월을 시간기준으로 잡음

데이터 시각화

<22년 12월 ~23년 3월 서울 초미세먼지 평균농도의 2배 초과한 자치구들의 날짜 빈도

분석 기준 날짜 23년 1월 7일

날짜를 고정해서 외부변수 고정

서울 외부와 지하역사 미세먼지 비교

외부 연평균 18 μg/m³ 지하역사 연평균 44 μg/m³ 대기환경 기준 연평균 15 μg/m³

<23년 1월 7일 서울 지하철역사 유동인구 상자그림과 히스토그램_하차인원>

이상치가 높게 나 와 평균과 중간값 차이가 많이 나서 기준점을 중간값 ±5% 잡음

역명	호선	측정일자	일평균	월평균	12~3월평균대비%
남구로	7호선	2023-01-07	162	44	268.863636
공덕	5호선	2023-01-07	97	44	121.136364
마포구청	6호선	2023-01-07	161	44	267.727273
공릉	7호선	2023-01-07	119	44	172.045455
약수	3호선	2023-01-07	75	44	71.136364
석계	6호선	2023-01-07	116	44	164.772727
대림	7호선	2023-01-07	89	44	103.636364
마들	7호선	2023-01-07	102	44	132.954545
공덕	6호선	2023-01-07	71	44	62.727273
중계	7호선	2023-01-07	102	44	131.818182
녹번	3호선	2023-01-07	108	44	145.681818
숭실대입구	7호선	2023-01-07	151	44	243.409091
신사	3호선	2023-01-07	108	44	147.272727
군자	7호선	2023-01-07	108	44	147.045455
마포	5호선	2023-01-07	97	44	121.363636

1월 7일 유동인구 중간값 8500 명 ±5% 범위의 지하철역 추출 후 지하역사의 12~3월 평균 대비 오른 % 계산

외부 미세먼지와 비교하기 위해서 역사가 위치한 자치구로 변환 필요

<23년 1월 7일 유동인구가 유사한 지하역사 미세먼지와 외부 미세먼지 측정치>

지하역사가 속한 자치구로 변환 자치구의 외부와 지하역사 비교

<23년 1월 7일 유동인구 유사한 지하역사 미세먼지와 와부 미세먼지 측정치>

1월 7일(날씨 고정) 지하철역 유동인구 고정

초미세먼지 12~3월 평균 대비 증 가율

외부 : 268%

지하역사: 157%

1월 7일(외부대기 고정)

초미세먼지 수치 상위 10개 구의 역사 선정(±5%범위)

Part 3 데이터 시각화

<23년 1월 7일 유동인구 유사한 지하역사 미세먼지와 와부 미세먼지 측정치>

1월 7일(날씨 고정) 지하철역 유동인구 고정

초미세먼지 12~3월 평균 대비 증

가율

외부 : 268%

지하역사: 157%

Part 4 결론 및 인사이트

인사이트와 한계점

외부 미세먼지와 지하역사 미세먼지의 상관관계 외부가 268% 오를 때 지하역사는 157% 오름

지하철 유동인구와 지하역사 미세먼의 상관관계

외부 미세먼지와 지하역사 미세먼 지는 양의 상관관계가 있고 유동 인구와는 상관관계가 적음

표본이 적고 오염배출원, 실내공 기정화장치 등 많은 변수 미고려 한 한계점

감사합니다