Linear Model Theory (ish)

Evan L. Ray

Population: Every Flight that Departed from NYC in 2013

Population Model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

 $arepsilon_i \sim ext{Normal}(0, \sigma)$

Residuals Distribution in Population:

Not exactly normal, but close enough.

Black: Actual distribution of residuals; Red: The closest normal approximation

The distribution of slope estimates b_1 , across all different samples

Sample Intercept: $b_0 = 18.4205$, Sample Slope: $b_1 = 0.1255$

The distribution of slope estimates b_1 , across all different samples

Population Intercept: β_0 = 18.4666, Population Slope: β_1 = 0.1261

Sample Intercept: $b_0 = 20.6385$, Sample Slope: $b_1 = 0.1250$

The distribution of slope estimates b_1 , across all different samples

Population Intercept: β_0 = 18.4666, Population Slope: β_1 = 0.1261

Sample Intercept: $b_0 = 25.8749$, Sample Slope: $b_1 = 0.1187$

The distribution of slope estimates b_1 , across all different samples

Sample Intercept: $b_0 = 10.5560$, Sample Slope: $b_1 = 0.1374$

The distribution of slope estimates b_1 , across all different samples

Population Intercept: β_0 = 18.4666, Population Slope: β_1 = 0.1261

Sample Intercept: $b_0 = 21.1779$, Sample Slope: $b_1 = 0.1277$

The distribution of slope estimates b_1 , across all different samples

Sample Intercept: $b_0 = 20.9538$, Sample Slope: $b_1 = 0.1238$

The distribution of slope estimates b_1 , across all different samples

Sample Intercept: $b_0 = 20.3975$, Sample Slope: $b_1 = 0.1222$

The distribution of slope estimates b_1 , across all different samples

Sample Intercept: $b_0 = 21.8213$, Sample Slope: $b_1 = 0.1263$

The distribution of slope estimates b_1 , across all different samples

Sample Intercept: $b_0 = 12.5654$, Sample Slope: $b_1 = 0.1323$

The distribution of slope estimates b_1 , across all different samples

Sample Intercept: $b_0 = 13.8388$, Sample Slope: $b_1 = 0.1265$

The distribution of slope estimates b_1 , across all different samples

Population Intercept: β_0 = 18.4666, Population Slope: β_1 = 0.1261

Sample Intercept: $b_0 = 13.6607$, Sample Slope: $b_1 = 0.1333$

The distribution of slope estimates b_1 , across all different samples

Population Intercept: β_0 = 18.4666, Population Slope: β_1 = 0.1261

Sample Intercept: $b_0 = ...$, Sample Slope: $b_1 = ...$

· If all of the conditions for inference are satisfied (R. O'LINE) then

$$b_1 \sim ext{Normal}\,(eta_1, SD(b_1))$$
, where $SD(b_1) = \sqrt{rac{\sigma^2}{\sum_{i=1}^n (x_i - ar{x})^2}}$

- · (This is also still approximately true if most of the assumptions are mostly satisfied.)
- · Recall: Probabilities involving the normal distributions only depend on how many standard deviations away from the mean we are:

$$\frac{b_1 - \beta_1}{SD(b_1)}$$

• **Problem**: This is not useful in practice, because we do not know σ (actual standard deviation of residuals in the population), so can't find $SD(b_1)$

What can we do?

· Estimate $SD(b_1)$. An estimate of a standard deviation is called a standard error.

$$SE(b_1) = \left[rac{\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}{(n-2)\sum_{i=1}^{n}(x_i - ar{x})^2}
ight]^{1/2}$$

$$rac{b_1-eta_1}{SE(b_1)}\sim t_{n-2}$$

How to use this for hypothesis tests?

Null hypothesis: $\beta_1 = 0$

Alternative hypothesis: $\beta_1 \neq 0$

- p-value: Probability of getting a test statistic at least as extreme as what we got based on this sample, assuming the null hypothesis is true.
- ' test statistic: $t=rac{b_1-eta_1}{SE(b_1)}\sim t_{n-2}$
- ' If null hypothesis is true, $t=rac{b_1-eta_1}{SE(b_1)}=rac{b_1-0}{SE(b_1)}$
 - "How many estimated standard deviations away from the hypothesized slope was our sample slope?"
- (Calculation of p-value hand-drawn on board)

How to use this for Conf. Intervals?

- ' For a 95% CI, find the value t^* with $P(-t^* \leq rac{b_1 eta_1}{SE(b_1)} \leq t^*) = 0.95$
- This means that for 95% of samples, $-t^* \leq \frac{b_1 eta_1}{SE(b_1)} \leq t^*$
- ...so for 95% of samples, $-t^*SE(b_1) \le b_1 \beta_1 \le t^*SE(b_1)$
- · ...so for 95% of samples, $-b_1 t^*SE(b_1) \le -\beta_1 \le -b_1 + t^*SE(b_1)$
- · ...so for 95% of samples, $b_1 t^*SE(b_1) \le \beta_1 \le b_1 + t^*SE(b_1)$
- · Confidence interval: $[b_1 t^*SE(b_1), b_1 + t^*SE(b_1)]$
- In R, $t^* = qt(0.975, df = n 2)$ for a 95% CI.