Computational Biophysics: Algorithms to Applications (CS61060)

Instructor: Pralay Mitra

Email: pralay@cse.iitkgp.ac.in

Course Details

TA

- Purnima Gautam (purnimagautam94[at]gmail[dot]com)
- Shruti Agrawal (shrutiag23@kgpian.iitkgp.ac.in)
- Suman Kumar Bera (skbera4@kgpian.iitkgp.ac.in)

Lecture Hours

— Mon (12:00 -12:55); Tue (10:00-11:55); Thu (08:00-08:55)

Evaluation

- TA Evaluation 30
- Mid Semester 30
- End Semester 40

Lecture notes and materials

Will be uploaded at

https://moodlecse.iitkgp.ac.in/moodle/

Login to CSE Moodle. Join to the course CBP_2024S as Student with enrolment key CBP2024S

Course Coverage

Bioinformatics Topics:

- 1. Sequence alignment and comparison
- 2. Secondary structure prediction
- 3. Structure alignment
- 4. Protein folding
- 5. Protein docking
- 6. Protein Design

PCB Topics:

1. Protein and DNA structure

CS Topics:

- 1. Dynamic programming
- 2. Sequencing and Strings
- 3. Molecular surface
- 4. Simulation techniques
- 5. Relevant topics from ML and DL

Tutorials:

- 1. Databases and their usages
- 2. PDB file format
- 3. Rasmol, Pymol;
- 4. NW, SW, BLAST
- 5. PSIPred/PSSPred, DSSP, STRIDE
- 6. NACCESS
- 7. TM-align, TM-Score
- 8. Folding and Docking software

References

• Text Book:

- 1. Neil C. Jones and Pavel A. Pevzner. An Introduction to Bioinformatics Algorithms.
- 2. Gary D. Stormo. Introduction to Protein-DNA Interactions: Structure, Thermodynamics, and Bioinformatics.
- 3. Bruce R. Donald. Algorithms in Structural Molecular Biology (Computational Molecular Biology).
- 4. Dan Gusfield. Algorithms on Strings, Trees and Sequences

• Literature:

- 1. Christopher M. Dobson, Andrej Sali, Martin Karplus. (1998) Protein Folding: A Perspective from Theory and Experiment. *Angewandte Chemie International Edition* 37(7):868-893.
- 2. Inbal Halperin, Buyong Ma, Haim Wolfson, Ruth Nussinov. (2002) Principles of docking: An overview of search algorithms and a guide to scoring functions. *Proteins: Structure, Function, and Bioinformatics* 47(4):409-443.
- 3. Joan-Emma Shea and Charles L Brooks III. (2001). From Folding Theories To Folding Proteins: A Review and Assessment of Simulation Studies of Protein Folding and Unfolding. *Annual Review of Physical Chemistry* **52**:499-535.
- 4. Literature will be provided from time to time.

Prokaryotic Cell

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Generalized structure of a prokaryote

Source: http://classes.midlandstech.edu/carterp/Courses/bio101/labquiz2/prokaryote.jpg

Eukaryotic Cell

Source: http://waynesword.palomar.edu/images/animal4.gif

Central Dogma of Molecular Biology

General transfers of biological sequential information

General	Special	Unknown	
$DNA \rightarrow DNA$	RNA → DNA	protein → DNA	
DNA → RNA	$RNA \rightarrow RNA$	protein → RNA	
RNA → protein	DNA → protein	protein → protein	

General transfers of biological sequential information

General	Special	Unknown
DNA → DNA (DNA replication)	RNA → DNA (reverse transcription)	protein → DNA
$DNA \rightarrow RNA$ (transcription)	RNA → RNA (RNA replication)	protein → RNA
RNA → protein (translation)	DNA → protein (direct translation)	protein → protein

Central Dogma with Enzymes

DNA Structure

DNA Structure

Source: http://karimedalla.files.wordpress.com/2012/11/dna-structure.jpg

DNA Structure

Central Dogma of Molecular Biology: Eukaryotic Model

Source: http://en.wikipedia.org/wiki/File:Cdmb.svg

Transcription

Source: http://www.phschool.com/science/biology_place/biocoach/images/transcription/startrans.gif

DNA vs RNA

Base Pairs

DNA

RNA

Source: http://andromeda.rutgers.edu/~huskey/images/base_pairs1_w.png

Ribosome

Translation

Source: http://hyperphysics.phy-astr.gsu.edu/hbase/organic/imgorg/translation2.gif

Translation

Source: http://hyperphysics.phy-astr.gsu.edu/hbase/organic/imgorg/translation2.gif

CODON WHEEL

Amino Acids

Amino Acid	3-Letter	1-Letter
	Code	Code
Alanine	Ala	A
Cysteine	Cys	C
Aspartic acid or aspartate	Asp	D
Glutamic acid or glutamate	Glu	Е
Phenylalanine	Phe	F
Glycine	Gly	G
Histidine	His	H
Isoleucine	Ile	I
Lysine	Lys	K
Leucine	Leu	L
Methionine	Met	M
Asparagine	Asn	N
Proline	Pro	P
Glutamine	Gln	Q
Arginine	Arg	R
Serine	Ser	S
Threonine	Thr	T
Valine	Val	V
Tryptophan	Trp	W
Tyrosine	Tyr	Y

Protein Sequence

