数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn

目录

■布尔代数的应用

■最大项、最小项表达式

■ 不完全给定函数

组合逻辑电路的设计方法

己知 —— 设计要求

待求 —— 逻辑图

- 步骤:
- 1.根据设计要求确定 —— 真值表
- 2.根据真值表 ——卡诺图(表达式)
- 3.化简
- 4.按设计要求,变换逻辑表达式
- 5.画出逻辑图

组合逻辑电路的设计方法——续

- •逻辑设计目标
 - 实现逻辑功能
 - 满足性能指标
 - 综合考虑各项因素:

规模、功耗、价格、可靠性、 速度、易实现、易维修、美观等

设计不唯一,最佳设计方案随新技术的不断推出而变化

怎样设计组合逻辑电路?

- ■方法1: 直接转换(简单情况下)
- ●将文字描述的功能直接转换为真值表或表达式
- ■方法2: 真值表转换
- ●由真值表可直接写出标准形式的逻辑表达式
 - 标准与或式(最小项表达式: and-or)
 - 标准或与式(最大项表达式: or-and)

方法1. 将文字描述的功能直接转换为表达式

逻辑关系

Mary watches TV if it is Monday night and she has finished her homework

Define:

F = 1: 看电视

F=0: 没看电视

A=1: 周一晚上 A=0: 不是周一晚上

 $F = A \cdot B$

B = 1: 完成作业

B=0: 没完成作业

方法1. 将文字描述的功能直接转换为表达式

The alarm will ring if the alarm switch is turned on and the door is not closed, or it is after 6 P.M. and the window is not closed.

$$Z = AB' + CD'$$

the window is not closed

怎样设计组合逻辑电路?

- ■方法1: 直接转换(简单情况下)
 - 将文字描述的功能直接转换为真值表或表达式
- ■方法2: 真值表转换
 - 由真值表可以直接写出两种标准形式的逻辑表 达式
 - 标准与或式(最小项表达式: and-or)
 - 标准或与式(最大项表达式: or-and)

逻辑函数的表示方法

逻辑函数

输入逻辑变量A1, A2, A3, …, An; 输出逻辑变量F; 记为F = f(A1, A2, A3, …, An), 关系如下图所示:

输入变量(自变量)取值:0、1;

输出变量(逻辑函数值)取值:0、1。

使用真值表设计组合逻辑电路

Truth table

AB C	F
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

真值表 —— 表达式

① 写出标准与或式(乘积之和) 关注表中输出值为1的所有输入取值组合

使用真值表设计组合逻辑电路

Truth table

AB C	F
000	0
001	0
010	0
011	1 🏑
100	0
101	1./
110	1 🇸
111	1√

真值表 — 表达式

① 写出标准与或式(乘积之和) 关注表中输出值为1的所有输入取值组合

F=ABC+ABC+ABC+ABC

输入取值组合中

1——原变量

0——反变量

使用真值表设计组合逻辑电路

真值表 — 表达式

②写出标准或与式(和之积)

关注表中输出值为0的所有输入取值组合

输入取值组合中

0——原变量

1——反变量

Truth table

AB C	F
000	0 🗸
001	0 🏑
010	0 🗸
011	1
100	0 √
101	1
110	1
111	1

$$F = (A+B+C) \cdot (A+B+\overline{C}) \cdot (A+\overline{B}+C) \cdot (\overline{A}+B+C)$$

Example. 某电路有三个输入端A, B, C, 当ABC ≥ 011时,输出 <math>f = 1,否则 f = 0.

- 步骤:
- 1. 根据设计要求确定 —— 真值表
- 2. 根据真值表 —— 卡诺图(表达式)
- 3. 化简
- 4. 按设计要求, 变换逻辑表达式
- 5. 画出逻辑图

Example. 某电路有三个输入端A, B, C, 当ABC ≥ 011时,输出 f = 1,否则 f = 0.

穷举法

1 True Table

ABC	f
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	1
1 0 0	1
1 0 1	1
1 1 0	1
1 1 1	1

A	В	C	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

2 Algebraic Expression

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

3 Simplification

$$f = A'BC + AB'C' + AB'C + ABC' + ABC$$

$$= A'BC + AB' + AB$$

$$= A'BC + A = BC + A$$

4 Logic Circuit

设计一个比赛需要用到的三人投票器,如果有两人或者三人投赞成票,则显示通过;否则不通过。请设计逻辑电路。

目录

■ 布尔代数的应用

■最大项、最小项表达式

■ 不完全给定函数

最大项Maxterm、最小项Minterm的定义

Row No.	ABC	Minterms	Maxterms
0	0 0 0	$A'B'C'=m_0$	$A + B + C = M_0$
1	0 0 1	$A'B'C = m_1$	$A + B + C' = M_1$
2	0 1 0	$A'BC' = m_2$	$A + B' + C = M_2$
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$
4	1 0 0	$AB'C' = m_4$	$A' + B + C = M_4$
5	1 0 1	$AB'C = m_5$	$A' + B + C' = M_5$
6	1 1 0	$ABC' = m_6$	$A' + B' + C = M_6$
7	1 1 1	$ABC = m_7$	$A' + B' + C' = M_7$

- n个变量组成的最小项:是一个与项(包含n个变量) 最小项: *m_i*
- n个变量组成的最大项:是一个或项(包含n个变量) 最大项: M_i
- 每个变量或者以原变量的形式、或者以反变量的形式 出现,并且只出现一次。
- n个变量能组成的最小(大)项的个数是2ⁿ

最大项和最小项表达式的性质

$$\prod_{i=0}^{2^{n}-1} M_{i} = 0$$

$$\mathbf{M_i} + \mathbf{M_j} = 1$$

For any input combinations, there is only one minterm will be $1 (m_i = 1)$;

For any input combinations, there is only one maxterm will be $0 \, (M_i = 0)$

最小项表达式

		ĀBC	ABC	ĀBC	ABC	ĀBC	ABC	ABC	ABC
i=0	000	1	0	0	0	0	0	0	0
	001	0	1	0	0	0	0	0	0
		0	0	1	0	0	0	0	0
3	011	0	0	0	1	0	0	0	0
For any input	100	0	0	0	0	1	0	0	0
combinations, there is		0	0	0	0	0	1	0	0
only one minterm will	110	0	0	0	0	0	0	1	0
be 1 $(m_i = 1)$;		0	0	0	0	0	0	0	1

最大项表达式

	A+B+C	–– A+B+C	– – A+B+C	- A+B+C	A+B+C	A+B+C	- A+B+C	A+B+C	$\prod_{i=1}^{2^{n}-1} M_{i} = 0$
000	1	1	1	1	1	1	1	0	i=0
001	1	1	1	1	1	1	0	1	
010	1	1	1	1	1	0	1	1	$\mathbf{M_i} + \mathbf{M_j} = 1$
011	1	1	1	1	0	1	1	1	
100	1	1	1	0	1	1	1	1	For any input
101	1	1	0	1	1	1	1	1	combinations, there is
110	1	0	1	1	1	1	1	1	only one maxterm will be $0 (M_i = 0)$
111	0	1	1	1	1	1	1	1	

最小项和最大项的性质

1. 最小项的反是最大项, 最大项的反是最小项;

$$\overline{\overline{A}\overline{B}\overline{C}} = \overline{m_0} = A + B + C = M_0$$

$$\overline{A + \overline{B} + \overline{C}} = \overline{M_3} = \overline{A}BC = m_3$$

2. 全部最小项之和恒等于"1";

$$m_0+m_1+m_2+m_3=1$$

3.全部最大项之积恒等于"0";

$$M_0 M_1 M_2 M_3 = 0$$

4. 一部分 最小项之和的反等于其余所有最小项之和

$$\overline{m_1 + m_2} = m_0 + m_3$$
 $\overline{m_0} = m_1 + m_2 + m_3$

最小项和最大项的性质——续

5. 两个不同的最小项之积恒等于"0";

例如: $ABC \cdot AB\overline{C} = 0$

6. 两个不同的最大项之和恒等于"1";

例如:
$$(A+B+C)+(A+B+\overline{C})=1$$

7. 与或标准型

$$Y=\Sigma m_1 = \Sigma m(0,1,4,6,7) = m_0 + m_1 + m_4 + m_6 + m_7$$

8. 或与标准型

$$Y = \prod M_i = \prod M(0,1,4,6,7) = M_0 M_1 M_4 M_6 M_7$$

最小项表达式

- •标准与或式
- list of "1"

011 101 110 111
$$F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

$$= m_3 + m_5 + m_6 + m_7$$

$$= \Sigma m (3, 5, 6, 7)$$

最大项表达式

- •标准或与式
- list of 0

000 001 010 100
$$F = (A+B+C) \cdot (A+B+\overline{C}) \cdot (A+\overline{B}+C) \cdot (\overline{A}+B+C)$$

$$= M_0 \cdot M_1 \cdot M_2 \cdot M_4$$

$$= \Pi M(0, 1, 2, 4)$$

最大项、最小项表达式

练习:

	Minterm Expansion of <i>f</i>	Maxterm Expansion of <i>f</i>	Minterm Expansion of f'	Maxterm Expansion of f'
f =				
Σ m(3, 4, 5, 6, 7)				
f =				
$\Pi M(0, 1, 2)$				

逻辑函数的标准形式

- 1、积之和的标准形式, 即最小项之和的形式
- 是哪些最小项之和呢? 函数输出为1的行对应的最小项 $F = \sum x, y, z(0,3,4,6,7)$

$$F = \sum x,y,z(0,3,4,6,7)$$

$$=X'.Y'.Z'+X'.Y.Z+X.Y'.Z'+X.Y.Z'+X.Y.Z'$$

•利用互补律X+X'=1可以把任何一个逻辑函数化为最小项之和的标准形式

例:给定逻辑函数的积之和形式为 F=A+B'C 化为积之和的标准形式

逻辑函数的标准形式

- 2、和之积的标准形式 即最大项之积的形式
- 函数输出为0的行对应的最大项之积 符号 $\Pi A, B, C(1,2,4,5)$ 是最大项列表.

•利用互补律X: X'=0,在缺少某一变量的和项中加上该变量,然后利用分配律A=A+X: X'=(A+X)(A+X')展开,就可以把任何一个逻辑函数化为最大项之积的标准形式

写出 F=A+B'C 的最大项表达式

最小项和最大项之间的转换关系

A B C	F	$G = \prod_{A,B,C}(3,5,6) = F'$
0 0 0 0 0 1 0 1 0	0 0 0	$F=\Sigma_{A,B,C}(oldsymbol{3,5,6})$ 标号互补 $\mathbf{F}=\Pi_{A,B,C}(oldsymbol{0,1,2,4,7})$
0 1 1 1 0 0	1 0	$(A' \cdot B \cdot C)' = A + B' + C'$ $M_i = m_i'$
1 0 1 1 1 0 1 1 1	1 1 0	$(A \cdot B' \cdot C)' = A' + B + C'$ $(A \cdot B \cdot C')' = A' + B' + C$ $m_i = M_i'$

最大项、最小项表达式

最小项之和

最大项之积

一个逻辑函数的最小项表达式和最大项表达式是否是唯一的?

- A 是
- B 不是
- 不知道

目 录

■布尔代数的应用

■最大项、最小项表达式

■不完全给定函数

无关项 (Don't care terms)

1) 不可能存在的输入取值组合

ABC	F
000	1
0 0 1	X
0 1 0	0
0 1 1	1
100	0
101	0
110	X
111	1

无关项 (Don't care terms)

■ 半加器 (Half-adder)

逻辑表达式: $S = A \oplus B$; $C = A \cdot B$ 。

半加器的逻辑实现

无关项 (Don't care terms)

- 1) 不可能存在的输入取值组合
- 2)所有的输入取值组合都存在,但是对于某些输入取值,我们并不关心它们导致的输出结果是0还是1,因为没有意义。

ABC	F
000	1
0 0 1	X
0 1 0	0
0 1 1	1
100	0
101	0
110	X
111	1

例: 8421BCD转余三码

将输入的 8421BCD码转 换为余3码

Decimal	8421 BCD	Excess-3
0	0000	₁ 0011
1	0001	0100
2	0010	0101
3	0011	0110
••••	•••••	•••••
9	1001	1100
	1010	XXXX
	••••••	•••••
	1110	XXXX
	1111	XXXX

不完全给定函数

$$F = \sum m(0, 3, 7) + \sum d(1, 6)$$

$$F = \prod M(2, 4, 5) \cdot \prod D(1, 6)$$

ABC	F
000	1
0 0 1	Χ
0 1 0	0
0 1 1	1
100	0
101	0
1 1 0	Χ
111	1

例: 8421BCD转余三码

将输入的 8421BCD码转 换为余3码

 $A=\sum m(5,6,7,8,9) + \sum d(10, 11,12,13,14,15)$

 $D=\sum m(0,2,4,6,8) + \sum d(10, 11,12,13,14,15)$

Decimal	8421 BCD	Excess-3
0	0000	₁ 0011
1	0001	0100
2	0010	0101
3	0011	0110
••••	•••••	•••••
9	1001	1100
	1010	XXXX
	•••••	•••••
	1110	XXXX
	1111	XXXX

余3码

Decimal	8421BCD	Excess-3
0	0000	J 0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

- 无权码
- 自补性:对9的自补码
- 8421BCD码+ "0011"

目 录

■ 布尔代数的应用

■最大项、最小项表达式

■ 不完全给定函数

以下哪些内容有不明白的,需要再讲解一下:

- A 最大项
- B 最小项
- 不完全给定函数
- D 其他