

Semester: October 2022 – January 2023					
Maximum Marks: 100 E	xamination: ESE Ex	xan	nination	Duration:3 Hrs.	
Programme code: 06		C	logg EV	Samastan I (SVII 2020)	
Programme: B. Tech		Class: FY		Semester: I (SVU 2020)	
Name of the Constituent College:			Name of the department:		
K. J. Somaiya College of Engineering			COMP/IT/I	EXCP/EXTC/MECH	
Course Code: 116U06C101 Name of the Course: Applied Mathematics-I			hematics-I		
Instructions: 1) Draw neat diagrams 2) All questions are compulsory					
3) Assume suitable data wherever necessary					

Que. No.	Question	Max. Marks
Q1	Solve any Four of the following	20
i)	If α , β are the roots of the equation $x^2 - 2x + 2 = 0$, prove that $\alpha^n + \beta^n = 2.2^{n/2} \cos n \pi/4$, Hence, deduce that $\alpha^8 + \beta^8 = 32$ Solution: The given equation is $x^2 - 2x + 2 = 0$ $\therefore x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(2)}}{2(1)} = \frac{2 \pm \sqrt{-4}}{2} = 1 \pm i$ $\therefore \alpha = 1 + i = \sqrt{2} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$ $\beta = 1 - i = \sqrt{2} \left(\frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$ $\therefore \alpha^n + \beta^n = \left[\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right]^n + \left[\sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right) \right]^n$	2
	$ \begin{array}{ll} \therefore \alpha^{n} + \beta^{n} & = \left[\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right] + \left[\sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right) \right] \\ & = 2^{n/2} \left(\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right) + 2^{n/2} \left(\cos \frac{n\pi}{4} - i \sin \frac{n\pi}{4} \right) \\ & = 2^{n/2} \left(\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} + \cos \frac{n\pi}{4} - i \sin \frac{n\pi}{4} \right) \\ & = \left(\sqrt{2} \right)^{n} \left(2\cos \frac{n\pi}{4} \right) = 2 \cdot 2^{n/2} \cos \frac{n\pi}{4} \\ & \text{Putting } n = 8 \alpha^{8} + \beta^{8} = 2 \cdot 2^{4} \cos 2\pi = 2^{5} = 32 \end{array} $	5
ii)	Is the matrix $A = \begin{bmatrix} \sqrt{2} & 1 & \sqrt{3} \\ \sqrt{2} & -2 & 0 \\ \sqrt{2} & 1 & -\sqrt{3} \end{bmatrix}$ orthogonal? If not, can it be converted into orthogonal matrix? Solution: For orthogonality $AA' = I$	
	Now, $AA' = \begin{bmatrix} \sqrt{2} & 1 & \sqrt{3} \\ \sqrt{2} & -2 & 0 \\ \sqrt{2} & 1 & -\sqrt{3} \end{bmatrix} \begin{bmatrix} \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 1 & -2 & 1 \\ \sqrt{3} & 0 & -\sqrt{3} \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Since $AA' \neq I$ but 6 I, A is not orthogonal But the matrix A can be converted into an orthogonal matrix.	3
	Since, $AA' = 6I$, $\frac{1}{6}AA' = I$ $\therefore \frac{1}{\sqrt{6}}A \cdot \frac{1}{\sqrt{6}}A' = I$	

	$ \therefore \frac{1}{\sqrt{6}}A = \begin{bmatrix} \sqrt{2} & 1 & \sqrt{3} \\ \sqrt{2} & -2 & 0 \\ \sqrt{2} & 1 & -\sqrt{3} \end{bmatrix} $ is the required orthogonal matrix.	5
iii)	Check whether the vectors $X_1 = [1 \ 1 \ 1]$, $X_2 = [1 \ 2 \ 4]$, $X_3 = [-2 \ 3 \ 8]$ are linearly dependent or independent. Solution: Consider $k_1X_1 + k_2X_2 + k_3X_3 = 0$ $\therefore k_1[1 \ 1] + k_2[1 \ 2 \ 4] + k_3[-2 \ 3 \ 8] = 0$	
	$k_1 + 4k_2 + 8k_3 = 0$ (iii)	
	This is a homogeneous system of equations $\begin{bmatrix} 1 & 1 & -2 \\ 1 & 2 & 3 \\ 1 & 4 & 8 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	2
	By $R_2 - R_1$, $R_3 - R_1$, we get $ \begin{bmatrix} 1 & 1 & -2 \\ 0 & 1 & 5 \\ 0 & 3 & 10 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $	
	By $R_3 - 3R_2$, we get $ \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -5 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $	
	Here Rank of A (r) = $3 = n$ Hence System has unique solution.	
	Hence trivial solution By solving, $k_1=k_2=k_3=0$	_
	Therefore the vectors X_1, X_2, X_3 are linearly independent.	5
iv)	Find Eigen values of $A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$ and hence find Eigen values of A^{10}	
	Solution: By solving characteristic equation $ A - \lambda I = 0$, i.e. $\lambda^3 - 6\lambda^2 = 0$	
	Eigenvalues will be 6, 0, 0	3
	Hence By properties of eigenvalues, we get eigenvalues of A^{10} to be 6^{10} , 0 , 0	5
v)	If $u = f(x^2 - y^2, y^2 - z^2, z^2 - x^2)$, prove that $\frac{1}{x} \frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial y} + \frac{1}{z} \frac{\partial u}{\partial z} = 0$. Solution: Let $l = x^2 - y^2, m = y^2 - z^2, n = z^2 - x^2$	
	$\frac{\partial l}{\partial x} = 2x, \frac{\partial m}{\partial x} = 0, \frac{\partial n}{\partial x} = -2x \qquad \frac{\partial l}{\partial y} = -2y, \frac{\partial m}{\partial y} = 2y, \frac{\partial n}{\partial y} = 0$	
	$\frac{\partial l}{\partial z} = 0, \qquad \frac{\partial m}{\partial z} = -2z, \frac{\partial n}{\partial z} = 2z$	
	$u = f(x^2 - y^2, y^2 - z^2, z^2 - x^2) = f(l, m, n)$	2
	$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial l} \cdot \frac{\partial l}{\partial x} + \frac{\partial u}{\partial m} \cdot \frac{\partial m}{\partial x} + \frac{\partial u}{\partial n} \cdot \frac{\partial n}{\partial x} = \frac{\partial u}{\partial l} \cdot 2x + \frac{\partial u}{\partial m} \cdot 0 + \frac{\partial u}{\partial n} \cdot (-2x)$	
	$\frac{1}{r}\frac{\partial u}{\partial r} = 2\frac{\partial u}{\partial t} - 2\frac{\partial u}{\partial n} \qquad \dots $	
	Also, $\frac{\partial u}{\partial y} = \frac{\partial u}{\partial l} \cdot \frac{\partial l}{\partial y} + \frac{\partial u}{\partial m} \cdot \frac{\partial m}{\partial y} + \frac{\partial u}{\partial n} \cdot \frac{\partial n}{\partial y} = \frac{\partial u}{\partial l} (-2y) + \frac{\partial u}{\partial m} (2y) + \frac{\partial u}{\partial n} (0)$	
	$\frac{1}{v}\frac{\partial u}{\partial v} = -2\frac{\partial u}{\partial l} + 2\frac{\partial u}{\partial m} \qquad \dots $	
	and $\frac{\partial u}{\partial z} = \frac{\partial u}{\partial l} \cdot \frac{\partial l}{\partial z} + \frac{\partial u}{\partial m} \cdot \frac{\partial m}{\partial z} + \frac{\partial u}{\partial n} \cdot \frac{\partial n}{\partial z} = \frac{\partial u}{\partial l} \cdot 0 + \frac{\partial u}{\partial m} (-2z) + \frac{\partial u}{\partial n} (2z)$	
	$\frac{1}{z}\frac{\partial u}{\partial z} = -2\frac{\partial u}{\partial m} + 2\frac{\partial u}{\partial n} \qquad \dots $	

	Adding Eqs (1), (2) and (3), $\frac{1}{x}\frac{\partial u}{\partial x} + \frac{1}{y}\frac{\partial u}{\partial y} + \frac{1}{z}\frac{\partial u}{\partial z} = 0$	5
vi)	If $u = x^2 tan^{-1} \frac{y}{x} + y^2 sin^{-1} \frac{x}{y}$, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2u$	
	Solution: Putting $X = xt, Y = yt$, we get,	
	$f(X,Y) = x^{2}t^{2}tan^{-1}\left(\frac{yt}{xt}\right) + y^{2}t^{2}sin^{-1}\left(\frac{xt}{yt}\right) = t^{2}\left[x^{2}tan^{-1}\frac{y}{x} + y^{2}sin^{-1}\frac{x}{y}\right]$	
	$=t^2\cdot f(x,y)$	3
	Thus, u is a homogeneous function of degree $n=2$	3
	Hence, by the corollary-1, we get,	
	$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n(n-1)u = 2 \cdot 1 \cdot u = 2u$	5
Q2 A	Solve the following	10
i)	Solve the equation $7 \cosh x + 8 \sinh x = 1$ for real values of x	
	Solution: $7 \cosh x + 8 \sinh x = 1$	
	Putting the values of $coshx$ and $sin hx$, we get	
	$\therefore 7\left(\frac{e^x + e^{-x}}{2}\right) + 8\left(\frac{e^x - e^{-x}}{2}\right) = 1$	
	$\therefore 7e^x + 7e^{-x} + 8e^x - 8e^{-x} = 2$	
	$\therefore 15e^x - e^{-x} = 2$	3
	$ \therefore 15e^{2x} - 2e^x - 1 = 0 $ Solving it as a quadratic equation in e^x ,	
	$e^x = \frac{2\pm\sqrt{4-4(15)(-1)}}{2(15)} = \frac{2\pm8}{30} = \frac{1}{3} or -\frac{1}{5}$	
	$\therefore x = \log\left(\frac{1}{3}\right) \text{ or } x = \log\left(-\frac{1}{5}\right)$	
	Since x is real, $x = log\left(\frac{1}{3}\right) = -\log 3$	5
ii)	If $x = e^u \tan v$, $y = e^u \sec v$, prove that $\left(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}\right) \left(x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y}\right) = 0$	
	Solution: $x = e^u \tan v$, $y = e^u \sec v$,	
	$y^2 - x^2 = e^{2u}(\sec^2 v - \tan^2 v) = e^{2u}$ and $\frac{x}{y} = \sin v$	
	$v = \sin^{-1}\left(\frac{x}{y}\right)$	3
	v is a homogenous function of degree 0	
	By Euler's theorem, $x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} = 0$	
	Hence, $\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right)\left(x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y}\right) = 0$	5
	OR	<u>. </u>
Q2 A	Find the Eigenvalues and Eigenvectors of matrix $A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$	
	Solution: The characteristic equation is $\begin{vmatrix} -9 - \lambda & 4 & 4 \\ -8 & 3 - \lambda & 4 \\ -16 & 8 & 7 - \lambda \end{vmatrix} = 0$	

	$\therefore (1+\lambda)(1+\lambda)(3-\lambda) = 0$	
	$\therefore (1+\lambda)(1+\lambda)(3-\lambda) = 0$ $\therefore \lambda = -1, -1, 3$	4
	(i) For $\lambda = -1$, $[A - \lambda_1 I]X = 0$ gives	7
	$\begin{bmatrix} -8 & 4 & 4 \\ -8 & 4 & 4 \\ -16 & 8 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
	$ By \ \begin{matrix} R_2 - R_1 \\ R_3 - 2R_1 \\ -(1/4)R_1 \end{matrix} \begin{bmatrix} 2 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $	
	$\therefore 2x_1 - x_2 - x_3 = 0$	
	The rank of coefficient of matrix is 1. The number of unknowns is 3. Hence, there are	
	3-1=2 linealry independent solutions	
	Putting $x_2=0$ and $x_1=1$, we get $x_3=2$	
	Putting $x_3=0$ and $x_1=1$, we get $x_2=2$	
	\therefore Corresponding to the eigen values -1 , we get the following two linearly independent	
	eigen vectors $X_1 = [1, 0, 2]'$ and $X_2 = [1, 2, 0]'$	
	(ii) For $\lambda=3$, $[A-\lambda_2I]X=0$ gives	
	$\begin{bmatrix} -12 & 4 & 4 \\ -8 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 0 & 4 \\ -16 & 8 & 4 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
	Using Crammer's rule on 1 st and 2 nd row we get the values as $\begin{bmatrix} x_1 \\ x_2 \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$	
	Osing Crammer's rule on 1 and 2 row we get the values as $\begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	
	\therefore Corresponding to Eigen value 3, we get the Eigen vector $X = [1, 1, 2]'$	10
Q 2 B	Solve any One of the following	10
i)	Find the value of k (unknown) such that following homogeneous system of	
,	equations will have non-trivial solutions and find solution for each such value of k.	
	3x + y - kz = 0, $4x - 2y - 3z = 0$, $2kx + 4y + kz = 0$	
	Solution: The system can be written as $\begin{bmatrix} 3 & 1 & -k \\ 4 & -2 & -3 \\ 2k & 4 & k \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
	Solution: The system can be written as $\begin{bmatrix} 4 & -2 & -3 \\ 2k & 4 & k \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
	System will possess non trivial solution if rank of coefficient matrix is less than number of	
	variables i.e., $r < 3$ if $ A = 0$	
	$\begin{bmatrix} 3 & 1 & -k \\ 4 & -2 & -3 \\ 2k & 4 & k \end{bmatrix} = 0$	
	$\begin{bmatrix} & \ddots & 4 & -2 & -3 \\ 2k & 4 & k \end{bmatrix} = 0$	
	$\therefore 3(-2k+12) - (4k+6k) - k(16+4k) = 0$	
	$\therefore k = -9 \ and \ k = 1$ for which the system possesses a non – trivial solution.	3
	$\begin{bmatrix} 3 & 1 & 9 \end{bmatrix} \begin{bmatrix} x \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 & 3 & 3 \end{bmatrix}$	
	For $k = -9$ the system can be written as $\begin{bmatrix} 3 & 1 & 9 \\ 4 & -2 & -3 \\ -18 & 4 & -9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
	$\begin{bmatrix} 3 & 1 & 9 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	
	Applying $R_2 - \frac{4}{3}R_1$, $R_3 + 6R_1$, we have $\begin{bmatrix} 3 & 1 & 9 \\ 0 & -10/3 & -15 \\ 0 & 10 & 45 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	

	r2 1 0 1 v r01	1
	Applying $R_3 + 3R_2$, we have $ \begin{bmatrix} 3 & 1 & 9 \\ 0 & -10/3 & -15 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $	
	∴ The reduced form of system of equations can be written as	
	$3x + y + 9z = 0$ and $-\left(\frac{10}{3}\right)y - 15z = 0$	
	$\therefore y = -(9/2)z$	
	$3x + y + 9z = 0 \Rightarrow 3x = (9/2)z - 9z = -(9/2)z \qquad x = -(3/2)z$	
	Let $z=a$ (arbitrary)	
	Hence $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -(3/2)a \\ -(9/2)a \\ a \end{bmatrix}$ has infinite solutions as 'a' varies	7
	For $k = 1$ the system can be written as $\begin{bmatrix} 3 & 1 & -1 \\ 4 & -2 & -3 \\ 2 & 4 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
	Applying $R_1 - R_2$, we have $ \begin{bmatrix} 1 & -3 & -2 \\ 4 & -2 & -3 \\ 2 & 4 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $	
	Applying $R_2 - 4R_1$, $R_3 - 2R_1$, we have $\begin{bmatrix} 1 & -3 & -2 \\ 0 & 10 & 5 \\ 0 & 10 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
	Applying $R_3 - R_2$, we have $ \begin{bmatrix} 1 & -3 & -2 \\ 0 & 10 & 5 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $	
	$\dot{\cdot}$ The reduced form of system of equations can be written as	
	$x - 3y - 2z = 0, \ 10y + 5z = 0,$	
	$\therefore y = -(1/2)z$	
	$\therefore x - 3y - 2z = 0 \Rightarrow x = -(3/2)z + 2z = (1/2)z \qquad \therefore x = (1/2)z$	
	Let $z=b$ (arbitrary)	
	Hence $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} (1/2)b \\ -(1/2)b \\ b \end{bmatrix}$ has infinite solutions as 'b' varies.	10
ii)	If $u = f(r)$, $r^2 = x^2 + y^2 + z^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f''(r) + \frac{2}{r}f'(r)$.	
	Solution: $u = f(r)$	
	Differentiating u partially w.r.t. x ,	
	$\frac{\partial u}{\partial r} = \frac{\partial}{\partial r} f(r) = \frac{\partial}{\partial r} f(r) \cdot \frac{\partial r}{\partial r} = f'(r) \cdot \frac{\partial r}{\partial r} \qquad \dots $	
	But $r^2 = x^2 + y^2 + z^2$	
	Differentiating r^2 partially w.r.t. x ,	
	$2r\frac{\partial r}{\partial x} = 2x$ $\frac{\partial r}{\partial x} = \frac{x}{r}$	
	Substituting in Eq. (1), $\frac{\partial u}{\partial x} = f'(r) \cdot \frac{x}{r}$	3
	Differentiating $\frac{\partial u}{\partial x}$ partially w.r.t. x ,	
	$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left[f'(r) \cdot \frac{x}{r} \right]$	
	$= f''(r)\frac{\partial r}{\partial x} \cdot \frac{x}{r} + \frac{f'(r)}{r} + xf'(r)\left(-\frac{1}{r^2}\right) \cdot \frac{\partial r}{\partial x}$	

	$=f''(r)\frac{x}{r}\frac{x}{r} + \frac{f'(r)}{r} - \frac{x}{r^2}f'(r) \cdot \frac{x}{r}$	
	$= f''(r)\frac{x^2}{r^2} + \frac{f'(r)}{r} - \frac{x^2}{r^3}f'(r) \qquad \dots $	7
	Similarly, $\frac{\partial^2 u}{\partial y^2} = f''(r)\frac{y^2}{r^2} + \frac{f'(r)}{r} - \frac{y^2}{r^3}f'(r)$ (3)	
	and $\frac{\partial^2 u}{\partial z^2} = f''(r)\frac{z^2}{r^2} + \frac{f'(r)}{r} - \frac{z^2}{r^3}f'(r) \qquad(4)$	
	Adding Eqs (2), (3) and (4),	
	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{f''(r)}{r^2} (x^2 + y^2 + z^2) + \frac{3f'(r)}{r} - \frac{(x^2 + y^2 + z^2)}{r^3} f'(r)$	
	$= \frac{f''(r)}{r^2} \cdot r^2 + \frac{3f'(r)}{r} - \frac{r^2}{r^3} f'(r)$	
	$=f''(r)+\frac{2f'(r)}{r}$	10
Q3	Solve any Two of the following	20
i)	A) Find the values of p for which the following matrix A will have (i) rank 1, (ii)	
	rank 2, (iii) rank 3, where $A = \begin{bmatrix} p & 2 & p \\ p & p & 2 \\ 2 & p & p \end{bmatrix}$	
	Solution: Let us first find the determinant of A.	
	$ A = \begin{vmatrix} p & 2 & p \\ p & p & 2 \\ 2 & p & p \end{vmatrix} = P(P^2 - 2P) - 2(P^2 - 4) - P(P^2 - 2P)$	
	$ \begin{vmatrix} 2 & p & p \\ = 2P^3 - 6P^2 + 8 \end{vmatrix} $	
	$= 2(P+1)(P-2)^{2}$	
	If $ A = 0$, i.e if $P = -1$ or 2, then the rank of A is either 1 or 2	3
	Consider, if $P = 2$, then $A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$ all minors of order 2 are zero.	
	Hence rank of A is 1, when $P = 2$,(i)	
	- 4 - 9 - 4-	
	If $P = -1$, then $A = \begin{bmatrix} -1 & 2 & -1 \\ -1 & -1 & 2 \\ 2 & -1 & -1 \end{bmatrix}$	
	Consider the minor of order of 2, $\begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 4 - 1 = 3 \neq 0$	
	Hence rank of A is 2, when $P = -1$ (ii)	
	For rank 3, $ A $ should not be equal to zero.	
	Hence rank of A is 3, when P can take any value other than 3 $or-1$ (iii)	5
	Thus (i), (ii) and (iii) determine the required result.	J
	B) If $u = \sinh^{-1}\left(\frac{x^3 + y^3}{x^2 + y^2}\right)$, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\tanh^3 u$	
	Solution: $u = \sinh^{-1}\left(\frac{x^3 + y^3}{x^2 + y^2}\right)$	
	Replacing x by xt and y by yt , $u=\sinh^{-1}\left[t\left(\frac{x^3+y^3}{x^2+y^2}\right)\right]$	
	u is a nonhomogenous function.	

	But $\sinh u = \frac{x^3 + y^3}{x^2 + y^2}$ is a homogeneous function of degree 1	
	Let $f(u) = \sinh u$	
	By Cor. 3, $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = g(u)[g'(u) - 1]$	3
	where, $g(u) = n \frac{f(u)}{f'(u)} = 1 \cdot \frac{\sinh u}{\cosh u} = \tanh u$	
	$g'(u) = \operatorname{sech}^2 u$	
	Hence,	
	$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \tanh u \left(\operatorname{sech}^{2} u - 1 \right) = \tanh u \left(-\tanh^{2} u \right) = -\tanh^{3} u$	5
ii)	If $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$ then prove that $3 \tan A = A \tan 3$	
	Solution: The characteristic equation of A is $\begin{vmatrix} -1 - \lambda & 4 \\ 2 & 1 - \lambda \end{vmatrix} = 0$	
	$\therefore -(1+\lambda)(1-\lambda) - 8 = 0 \qquad \therefore \lambda^2 - 9 = 0$	
	$\therefore \lambda = 3, -3$	
	(i) For $\lambda = 3$, $[A - \lambda I]X = 0$ gives	
	$\begin{bmatrix} -4 & 4 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
	By $R_2 + \frac{1}{2}R_1 \begin{bmatrix} -4 & 4\\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$	
	2 0 03 2-23 203	
	$\therefore -4x_1 + 4x_2 = 0 \qquad \qquad \therefore x_1 - x_2 = 0$	
	If $x_1 = 1$, we get $x_2 = 1$	
	∴ The eigen vector is [1, 1]'	
	(ii) For $\lambda = -3$, $[A - \lambda I]X = 0$ gives	
	$\begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
	By $R_2 - R_1 \begin{bmatrix} 2 & 4 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
	$2x_1 + 4x_2 = 0 \text{ i.e. } x_1 + 2x_2 = 0$	
	Putting $x_2 = -1$, we get $x_1 = 2$	
	∴ The eigen vector is $[2,-1]'$	
	$\therefore M = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \text{ and } M = -3$	
	$M^{-1} = \frac{\text{adj.}M}{ M } = -\frac{1}{3} \begin{bmatrix} -1 & -2\\ -1 & 1 \end{bmatrix}$	
	$\operatorname{Now} D = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$	7
	If $f(A) = \tan A$, $f(D) = \begin{bmatrix} \tan 3 & 0 \\ 0 & \tan(-3) \end{bmatrix} = \begin{bmatrix} \tan 3 & 0 \\ 0 & -\tan 3 \end{bmatrix}$	
	$\therefore \tan A = Mf(D)M^{-1}$	
	$= \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \tan 3 & 0 \\ 0 & \tan(-3) \end{bmatrix} \left(-\frac{1}{3} \right) \begin{bmatrix} -1 & -2 \\ -1 & 1 \end{bmatrix}$	
	$= -\frac{1}{3} \begin{bmatrix} \tan 3 & -2 \tan 3 \\ -\tan 3 & -\tan 3 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ -1 & 1 \end{bmatrix}$	
	$= \frac{-1}{3} \begin{bmatrix} \tan 3 & -4 \tan 3 \\ -2 \tan 3 & -\tan 3 \end{bmatrix}$	

	$\therefore 3 \tan A = \begin{bmatrix} -\tan 3 & 4\tan 3 \\ 2\tan 3 & \tan 3 \end{bmatrix}$	
	$= \tan 3 \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix} = \tan 3 \cdot A$	
	$= A \tan 3$	10
iii)	If $\tan z = \frac{i}{2}(1-i)$, prove that $z = \frac{1}{2}tan^{-1}2 + \frac{i}{4}log(\frac{1}{5})$	
	Solution: $\tan z = \frac{i}{2}(1-i)$ $\tan z = \frac{1}{2}(i-i^2) = \frac{1}{2}i + \frac{1}{2}$	
	Let $z = x + iy$: $\tan(x + iy) = \frac{1}{2} + \frac{i}{2}$, $\tan(x - iy) = \frac{1}{2} - \frac{i}{2}$	
	$\therefore \tan(2x) = [(x+iy) + (x-iy)]$	
	$= \frac{\tan(x+iy)+\tan(x-iy)}{1-\tan(x+iy)\tan(x-iy)} = \frac{\left[\left(\frac{1}{2}\right)+\left(\frac{i}{2}\right)\right]+\left[\left(\frac{1}{2}\right)-\left(\frac{i}{2}\right)\right]}{1-\left[\left(\frac{1}{2}\right)+\left(\frac{i}{2}\right)\right]\left[\left(\frac{1}{2}\right)-\left(\frac{i}{2}\right)\right]} = \frac{1}{1-\left[\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)\right]} = \frac{1}{1/2} = 2$	
	$\therefore 2x = \tan^{-1}2 \qquad \therefore x = \frac{1}{2}\tan^{-1}2$	5
	Now, $tan(2iy) = tan[(x+iy)-(x-iy)]$	
	$= \frac{\tan(x+iy) - \tan(x-iy)}{1 + \tan(x+iy)\tan(x-iy)} = \frac{\left[\left(\frac{1}{2}\right) + \left(\frac{i}{2}\right)\right] - \left[\left(\frac{1}{2}\right) - \left(\frac{i}{2}\right)\right]}{1 + \left[\left(\frac{1}{2}\right) + \left(\frac{i}{2}\right)\right] \left[\left(\frac{1}{2}\right) - \left(\frac{i}{2}\right)\right]} = \frac{i}{1 + \left[\left(\frac{1}{4}\right) + \left(\frac{1}{4}\right)\right]} = \frac{i}{1 + (1/2)} = \frac{2}{3}i$	
	$\therefore 2y = \tanh^{-1}\left(\frac{2}{3}\right) = \frac{1}{2}\log\left[\frac{1+(2/3)}{1-(2/3)}\right] = \frac{1}{2}\log 5 \qquad \therefore y = \frac{1}{4}\log 5$	
	$\therefore z = x + iy = \frac{1}{2}tan^{-1}2 + \frac{i}{4}\log 5$	10
Q4	Solve any Two of the following	20
Q4 i)	Solve any Two of the following Reduce the following matrix to the Normal form and find it's rank	20
		5

Check whether the matrix
$$A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$$
 is diagonalisable or not. If Yes then find the transforming matrix M and the diagonal matrix D

Solution: The characteristic equation of *A* is $\begin{vmatrix} 1 - \lambda & -6 & -4 \\ 0 & 4 - \lambda & 2 \\ 0 & -6 & -3 - \lambda \end{vmatrix} = 0$

$$\therefore (1-\lambda)[(4-\lambda)(-3-\lambda)+12]=0$$

$$\therefore (1 - \lambda)(\lambda^2 - \lambda) = 0$$

$$\therefore (\lambda - 1)^2(\lambda) = 0$$

$$\lambda = 0.1.1$$

For $\lambda = 0$, $[A - \lambda I]X = 0$ gives

$$\begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\operatorname{By} \frac{R_2/2}{R_3/(-3)} \begin{bmatrix} 1 & -6 & -4 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

By
$$R_3 - R_2 \begin{bmatrix} 1 & -6 & -4 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\therefore x_1 - 6x_2 - 4x_3 = 0 \qquad 2x_2 + x_3 = 0$$

Putting $x_2 = -1$, we get $x_3 = 2$ and then we get $x_1 = 2$

Hence, corresponding $\lambda = 0$, we get the Eigen vector X = [2, -1, 2]'

(ii) For
$$\lambda = 1$$
, $[A - \lambda I]X = 0$ gives

$$\begin{bmatrix} 1 & -6 & -4 \\ 0 & 3 & 2 \\ 0 & -6 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\operatorname{By} \frac{R_1/(-2)}{R_3/(-2)} \begin{bmatrix} 0 & 3 & 2 \\ 0 & 3 & 2 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\operatorname{By} \begin{matrix} R_2 - R_1 \\ R_3 - R_2 \end{matrix} \begin{bmatrix} 0 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Since, the rank of the coefficient matrix is 1 and the number of variables is 3, there are

3-1=2 independent solutions

$$0x_1 + 3x_2 + 2x_3 = 0$$

Putting $x_2 = -2$, $x_3 = 3$ and $x_1 = 1$, (Say) we get one solution

Putting $x_2 = -2$, $x_3 = 3$ and $x_1 = 2$, (Say) we get another solution

Hence, corresponding to $\lambda = 1$, we get the following two linearly independent solutions

$$X_1 = [1, -2, 3]'$$
 and $X_2 = [2, -2, 3]'$

Although the Eigen values of A are not distinct, the geometric multiplicity of each eigen

value is equal to its algebraic multiplicity, A is diagonalisable

Since
$$M^{-1}AM = D$$
, the given matrix $A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$ will be diagonalised to

3

8

	$D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ by transforming matrix } M = \begin{bmatrix} 2 & 1 & 2 \\ -1 & -2 & -2 \\ 2 & 3 & 3 \end{bmatrix}$	10
iii)	A rectangular box open at the top is to have a volume of 108 cubic meters. Find the dimensions of the box if its total surface area is minimum. Solution: Let x, y and z be the dimensions of the box. Let V and S be its volume and surface area respectively. $108 = xyz$ $S = xy + 2xz + 2yz$ Substituting $z = \frac{108}{xy}$, $S = xy + 2x \cdot \frac{108}{xy} + 2y \cdot \frac{108}{xy} = xy + \frac{216}{y} + \frac{216}{x}$ Step I: For extreme values, $\frac{\partial S}{\partial x} = 0$, $y - \frac{216}{x^2} = 0 \qquad$	3
	Hence, dimension of the box which make its total surface area S minimum are $x = 6, y = 6, z = 3$	10
Q5	Solve any Four of the following	20
i)	Solve $x^7 + x^4 + x^3 + 1 = 0$ Solution: $x^7 + x^4 + x^3 + 1 = 0$ $\therefore x^4(x^3 + 1) + (x^3 + 1) = 0$ $\therefore (x^3 + 1)(x^4 + 1) = 0$ $\therefore x^3 = -1, x^4 = -1$ Consider $x^3 = -1$ $\therefore x = (-1 + i0)^{1/3} = (\cos \pi + i \sin \pi)^{1/3}$	
	$= [\cos(2k+1)\pi - i\sin(2k+1)\pi]^{1/3} = \cos(2k+1)\frac{\pi}{3} + i\sin(2k+1)\frac{\pi}{3}$ Putting $k = 0, 1, 2$ we get the three roots	3

	Similarly from $x^4 = -1$ we get the remaining four roots as	
	$x = \cos(2k+1)\frac{\pi}{4} + i\sin(2k+1)\frac{\pi}{4}$ where $k = 0, 1, 2, 3$	5
ii)	Find the principal value of $(1+i)^{1-i}$	
	Solution: $z = (1+i)^{1-i}$	
	$\therefore \log z = (1-i)\log(1+i)$	
	$\therefore \log z = (1 - i) \left[\log \sqrt{1 + 1} + i \tan^{-1} 1 \right] = (1 - i) \left[\frac{1}{2} \log 2 + i \cdot \frac{\pi}{4} \right]$	
	$= \left(\frac{1}{2}\log 2 + \frac{\pi}{4}\right) + i\left(\frac{\pi}{4} - \frac{1}{2}\log 2\right) = x + iy say$	3
	$\therefore z = e^{x+iy} = e^x \cdot e^{iy} = e^x (\cos y + i \sin y)$	
	$=e^{\left(\frac{1}{2}\log 2+\frac{\pi}{4}\right)}\left[\cos\left(\frac{\pi}{4}-\frac{1}{2}\log 2\right)+i\sin\left(\frac{\pi}{4}-\frac{1}{2}\log 2\right)\right]$	
	$= \sqrt{2}e^{\pi/4} \left[\cos\left(\frac{\pi}{4} - \frac{1}{2}\log 2\right) + i \sin\left(\frac{\pi}{4} - \frac{1}{2}\log 2\right) \right] \qquad \because e^{\frac{1}{2}\log 2} = e^{\log\sqrt{2}} = \sqrt{2}$	5
iii)	Solve the following equations by Gauss – Seidel method (2 iterations)	
	20x + y - 2z = 17, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$	
	Solution: We first write the equations as	
	$x = \frac{1}{20}[17 - y + 2z] \qquad \dots (1)$	
	$y = \frac{1}{20} [-18 - 3x + z] \qquad \dots (2)$	
	$z = \frac{1}{20} [25 - 2x + 3y] \qquad \dots (3)$	
	(i) First Iteration: We start with the approximation $y=0, z=0$ and then get from (1),	
	$\therefore x_1 = \frac{17}{20} = 0.85$	
	We use this approximation to find y i.e., we put $x=0.85, z=0$ in (2)	
	$\therefore y_1 = \frac{1}{20} [-18 - 3(0.85) - 0] = -1.0275$	
	We use these values of x_1 and y_1 to find z_1 i.e., we put $x=0.85, y=-1.0275$ in (3)	
	$\therefore z_1 = \frac{1}{20} [25 - 2(0.85) + 3(-1.0275)] = 1.0109$	3
	(ii)Second Iteration: We use latest values of y and z to find x i.e., we put $y=-1.0275$,	
	z = 1.0109 in (1)	
	$\therefore x_2 = \frac{1}{20} [17 - (-1.0275) + 2(1.0109)] = 1.0025$	
	We put $x = 1.0025$, $z = 1.0109$ in (2)	
	$\therefore y_2 = \frac{1}{20} [-18 - 3(1.0025) + 1.0109] = -0.9998$	
	We put $x = 1.0025$, $y = -0.9998$ in (3)	
	$\therefore z_2 = \frac{1}{20} [25 - 2(1.0025) + 3(-0.9998)] = 0.9998$	5
	20	Ü

iv)	Find the minimal polynomial of the matrix $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$. Comment	
	whether A is derogatory or not?	
	Solution: The characteristic equation of A is $\begin{vmatrix} 5 - \lambda & -6 & -6 \\ -1 & 4 - \lambda & 2 \\ 3 & -6 & -4 - \lambda \end{vmatrix} = 0$	
	$\therefore (5 - \lambda)[-(16 - \lambda^2) + 12] + 6[4 + \lambda - 6] - 6[6 - 3(4 - \lambda)] = 0$	
	$\therefore (5 - \lambda)[-4 + \lambda^2] + 6[-2 + \lambda] - 6[-6 + 3\lambda] = 0$	
	Hence, the roots of $ A - \lambda I = 0$ are 2, 2, 1	2
	Let us now find the minimal polynomial of A . We know that each characteristic root of A	
	is also a root of the minimal polynomial of A . So if $f(x)$ is the minimal polynomial of A	
	then $x-1$ and $x-2$ are the factors of $f(x)$.	
	Let us see whether the polynomial $(x-2)(x-1)=x^2-3x+2$ annihilates A .	
	Now, $A^2 = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}^2 = \begin{bmatrix} 13 & -18 & -18 \\ -3 & 10 & 6 \\ 9 & -18 & -14 \end{bmatrix}$	
	$f(x) = x^2 - 3x + 2 \text{ annihilates } A$	
	Thus, $f(x)$ is the monic polynomial of lowest degree that annihilates A . Hence, $f(x)$ is	
	the minimal polynomial of A . Since its degree is less than the order of A , A is derogatory	5
v)	If $u = xyz$, $v = x^2 + y^2 + z^2$, $w = x + y + z$, then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ and hence using	
	property find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$	
	Solution: If $J = \frac{\partial(u,v,w)}{\partial(x,y,z)}$ and $J' = \frac{\partial(x,y,z)}{\partial(u,v,w)}$ then $JJ' = 1$	
	Now,	
	$J = \begin{vmatrix} \partial u/\partial x & \partial u/\partial y & \partial u/\partial z \\ \partial v/\partial x & \partial v/\partial y & \partial v/\partial z \\ \partial w/\partial x & \partial w/\partial y & \partial w/\partial z \end{vmatrix} = \begin{vmatrix} yz & zx & xy \\ 2x & 2y & 2z \\ 1 & 1 & 1 \end{vmatrix}$	2
	= 2[yz(y-z) - xz(x-z) + xy(x-y)]	
	$= 2[v^2z - vz^2 - zx^2 + z^2x + xy(x - y)]$	
	$= 2[z^{2}(x-y) - z(x^{2}-y^{2}) + xy(x-y)]$	
	$= 2(x - y)[z^2 - z(x + y) + xy]$	
	$=2(x-y)[z^2-zx-zy+xy]$	
	= 2(x - y)[z(z - x) - y(z - x)]	
	= 2(x - y)(z - y)(z - x) = -2(x - y)(y - z)(z - x)	
	$\therefore J' = \frac{\partial(x, y, z)}{\partial(y, y, w)} = -\frac{1}{2(x - y)(y - z)(z - x)}$	
	$\partial(u,v,w) \qquad 2(x-y)(y-z)(z-x)$	5

vi)	Verify Euler's Theorem for $u = ax^2 + 2hxy + by^2$		
	Solution:	$u = ax^2 + 2hxy + by^2$	
		Replacing x by xt and y by yt , $u = t^2(ax^2 + 2hxy + by^2)$	
		Hence, u is homogeneous function of degree 2	
		By Euler's theorem, $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$ (1)	2
		Differentiating u partially w.r.t. x and y ,	
		$\frac{\partial u}{\partial x} = 2ax + 2hy \qquad \frac{\partial u}{\partial y} = 2hx + 2by$	
	$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$	$\frac{d}{dy} = 2ax^2 + 2hxy + 2hxy + 2by^2 = 2(ax^2 + by^2 + 2hxy) = 2u \qquad \dots \dots \dots (2)$	
		Hence, from Eqs. (1) and (2), theorem is verified	5