STOCHASTIC PROCESS

1 Preliminaries

Definition 1.1 (stochastic process) For a given probability space (Ω, \mathcal{F}, P) and a measurable space (S, \mathcal{E}) , a *stochastic process* is a collection of S-valued random variables on (Ω, \mathcal{F}, P) indexed by some set T, which can be written as $X = \{X(t) : t \in T\}$ or $X = (X_t)_{t \in T}$ or $X : \Omega \times T \to S$. This mathematical space S is called its state space.

For convenience, we always assume T is a totally ordered set and denote the collection of all finite subsets of T by \mathcal{I}_T , namely

$$\mathcal{I}_T = \{\{t_1, t_2, \cdots, t_n\} : t_1, \cdots, t_n \in T, n \ge 1\}.$$

Definition 1.2 Let X, Y be stochastic processes from $\Omega \times T$ to S. X is a modification of Y iff

$$\forall t \in T, \ P(X_t = Y_t) = 1$$

and X is indistinguishable from Y iff

$$P(X = Y) = P(\forall t \in T, X_t = Y_t) = 1.$$

If X and Y are indistinguishable, they are modifications of each other.

Definition 1.3 (strictly stationary process) Let $(X_t)_{t\in T}$ be a stochastic process and let $F_X(x_{t_1+\tau},\ldots,x_{t_k+\tau})$ represent the distribution function of the joint distribution of $(X_t)_{t\in T}$ at times $t_1+\tau,\ldots,t_k+\tau$. Then, $(X_t)_{t\in T}$ is said to be strictly stationary if, for all k, for all t, and for all t_1,\ldots,t_k ,

$$F_X(x_{t_1+\tau},\ldots,x_{t_k+\tau}) = F_X(x_{t_1},\ldots,x_{t_k}).$$

Definition 1.4 (independent increments) A stochastic process $(X_t)_{t \in T}$ has independent increments if for every $n \in \mathbb{N}_+$ and any $t_1 \leq t_2 \leq \cdots \leq t_n$, the increments $X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \cdots, X_{t_n} - X_{t_{n-1}}$ are independent.

Definition 1.5 (stationary increments) A stochastic process $(X_t)_{t \in T}$ has stationary increments if for all s < t, the probability distribution of the increments $X_t - X_s$ depends only on t - s.

2 Poisson Process

Definition 2.1 (Poisson process (I)) A stochastic process $(N_t)_{t\geq 0}$ defined on a probability space (Ω, \mathcal{F}, P) is said to be a *Poisson process* with rate $\lambda > 0$ if

- (i) $N_0 = 0$;
- (ii) $(N_t)_{t\geq 0}$ has independent increments: for any $n\in\mathbb{N}_+$ and any $0\leq t_1\leq t_2\leq\cdots\leq t_n$, the increment $N_{t_2}-N_{t_1},N_{t_3}-N_{t_2},\cdots,N_{t_n}-N_{t_{n-1}}$ are independent;
- (iii) for any $0 \le s < t$, $N_t N_s \sim Pois(\lambda(t-s))$, that is

$$P(N_t - N_s = k) = e^{-\lambda(t-s)} \frac{\lambda(t-s)^k}{k!} \quad (k = 0, 1, 2, \cdots).$$

Definition 2.2 (counting process) A counting process is a stochastic process $(N_t)_{t\geq 0}$ with values that are non-negative, integer, and non-decreasing:

- (i) $N_t \geq 0$;
- (ii) N_t is an integer;
- (iii) If $0 \le s \le t$, then $N_s \le N_t$.

For any $0 \le s < t$, the counting process $N_t - N_s$ represents the number of events that occurred on (s,t].

Definition 2.3 (Poisson process (II)) A counting process $(N_t)_{t\geq 0}$ defined on a probability space (Ω, \mathcal{F}, P) is said to be a *Poisson process* with rate $\lambda > 0$ if

- (i) $N_0 = 0$;
- (ii) $(N_t)_{t>0}$ has independent increments;
- (iii) For all $t \geq 0$, $P(N_{t+h} N_t = 1) = \lambda h + o(h)$ when $h \rightarrow 0$;
- (iv) For all $t \geq 0$, $P(N_{t+h} N_t \geq 2) = o(h)$ when $h \rightarrow 0$;

Definition 2.4 (Poisson process (III)) A stochastic process $(N_t)_{t\geq 0}$ defined on a probability space (Ω, \mathcal{F}, P) is said to be a *Poisson process* with rate $\lambda > 0$ if

$$N_t = \sum_{n=1}^{\infty} nI_{[T_n, T_{n+1})}(t),$$

where $T_n = X_1 + X_2 + \cdots + X_n$ and X_i i.i.d $\sim Exp(\lambda)$ (Here the pdf of $Exp(\lambda)$ is taken as $\lambda e^{-\lambda x} I_{(0,+\infty)}(x)$).

Proposition 2.1 Definition 2.1, 2.3, 2.4 are equivalent definitions of Poisson process.

Proof.

• Definition $2.1 \implies \text{Definition } 2.3$

Here we are only to show the implication of Definition 2.3(iii) and Definition 2.3(iv). Since $N_{t+h} - N_t \sim Pois(\lambda h)$, when $h \to 0$ we have

$$P(N_{t+h} - N_t = 1) = e^{-\lambda h} \lambda h = (1 - \lambda h + o(h)) \lambda h = \lambda h + o(h),$$

$$P(N_{t+h} - N_t \ge 2) = 1 - P(N_{t+h} - N_t = 0) - P(N_{t+h} - N_t = 1)$$

$$= 1 - e^{-\lambda h} - e^{-\lambda h} \lambda h$$

$$= 1 - (1 - \lambda h + o(h)) - (\lambda h + o(h))$$

$$= o(h).$$

• Definition $2.3 \implies \text{Definition } 2.1$

Only Definition 2.1(iii) needs to be derived. Given the Laplace transform of the nonnegative random variables N_t and N_{t+h}

$$L_{N_t}(u) = E[e^{-uN_t}], \quad L_{N_{t+h}}(u) = E[e^{-uN_{t+h}}], \quad u \ge 0,$$

according to Definition 2.3(ii) we can obtain

$$L_{N_{t+h}}(u) = E[e^{-uN_{t+h}}]$$

$$= E[e^{-uN_t}e^{-u(N_{t+h}-N_t)}]$$

$$= E[e^{-uN_t}]E[e^{-u(N_{t+h}-N_t)}]$$

$$= L_{N_t}(u)E[e^{-u(N_{t+h}-N_t)}].$$

Note that

$$E[e^{-u(N_{t+h}-N_t)}]$$

$$= e^{0}P(N_{t+h}-N_t=0) + e^{-u}P(N_{t+h}-N_t=1) + \sum_{j=2}^{\infty} e^{-un}P(N_{t+h}-N_t=j)$$

$$= 1 - \lambda h + o(h) + e^{-u}(\lambda h + o(h)) + o(h)$$

$$= 1 - \lambda h + e^{-u}\lambda h + o(h) \quad (h \to 0).$$

Denote $g(t+h) = L_{N_{t+h}}(u)$ and $g(t) = L_{N_t}(u)$ for some fixed u and then we get

$$\frac{g(t+h) - g(t)}{h} = \frac{g(t)(1 - \lambda h + e^{-u}\lambda h + o(h)) - g(t)}{h} = g(t)\lambda(e^{-u} - 1) + \frac{o(h)}{h}.$$

Letting $h \to 0$ yields the differential equation

$$g'(t) = g(t)\lambda(e^{-u} - 1).$$

The initial condition $g(0) = E[e^{-uN_0}] = 1$ determines a special solution of the equation

$$g(t) = L_{N_t}(u) = e^{\lambda t(e^{-u} - 1)},$$

which coincides with the Laplace transform of Poisson distribution $Pois(\lambda t)$. Since Laplace transform uniquely determines the distribution, we can thus conclude $N_t \sim Pois(\lambda t)$. Given any $r \geq 0$, define a stochastic process $N'_t = N_{r+t} - N_r$ and we can check that $(N'_t)_{t\geq 0}$ is also a counting process satisfying all the contitions in Definition 2.3. Hence by repeating the proof above we can show $N'_t \sim Pois(\lambda t)$, which is equivalent to Definition 2.1(iii).

• Definition 2.1 \Longrightarrow Definition 2.4

Let $T_n = \inf\{t \geq 0 : N_t = n\}$ for $n \in \mathbb{N}_+$. Note that given any $t \geq 0$, $\{N_t = n\} = \{T_n \leq t < T_{n+1}\}$. Thus we have

$$N_t = \sum_{n=1}^{\infty} nI_{N_t=n} = \sum_{n=1}^{\infty} nI_{[T_n, T_{n+1})}(t).$$

Let $X_1 = T_1, X_n = T_n - T_{n-1} (n \ge 2)$. Since $P(X_1 > t) = P(N_t = 0) = e^{-\lambda t}$, we see $X_1 \sim Exp(\lambda)$. Since

$$P(X_2 > t | X_1 = t_1) = P(X_2 > t | X_1 = t_1)$$

When $n \geq 2$, since

$$\begin{split} & P(X_n > t | X_{n-1} = t_{n-1}, \cdots, X_1 = t_1) \\ & = P(T_n - T_{n-1} > t | T_{n-1} - T_{n-2} = t_{n-1}, \cdots, T_1 = t_1) \qquad (\text{let } s_n = t_n + \cdots + t_1) \\ & = P(T_n > s_{n-1} + t | T_{n-1} = s_{n-1}, \cdots, T_1 = s_1) \\ & = P(N_{s_{n-1}+t} = n - 1 | N_{s_{n-1}} = n - 1) \qquad (\text{memoryless property of } (N_t)) \\ & = P(N_{s_{n-1}+t} - N_{s_{n-1}} = 0 | N_s = n - 1) \\ & = P(N_{s_{n-1}+t} - N_{s_{n-1}} = 0) \\ & = e^{-\lambda t}. \end{split}$$

it is plain to show that $\{X_i\}$ is sequence of independent random variable. Furthermore, we have

$$P(X_n > t) = E[P(X_n > t | X_{n-1}, \dots, X_1)] = e^{-\lambda t},$$

which implies X_i i.i.d $\sim Exp(\lambda)$,

• Definition 2.4 \implies Definition 2.1

Clearly $N_0 = 0$ holds. Since $T_n = X_1 + X_2 + \cdots + X_n$ and X_i i.i.d $\sim Exp(\lambda)$, we can deduce the jointly probability density function of (T_1, T_2, \cdots, T_m)

$$f_S(y_1, y_2, \dots, y_m) = f_X(y_1, y_2 - y_1, \dots, y_m - y_{m-1}) \left| \frac{\partial (x_1, \dots, x_m)}{\partial (y_1, \dots, y_m)} \right|$$
$$= \lambda^m e^{-\lambda y_m} I_{\{0 < y_1 < \dots < y_m\}}.$$

Thus for any $1 \le j_1 < j_2 < \cdots < j_n$, the jointly probability density function of $(T_{j_1}, T_{j_2}, \cdots, T_{j_n})$ is

$$\frac{y_1^{j_1-1}}{(j_1-1)!} \frac{(y_2-y_1)^{j_2-j_1-1}}{(j_2-j_1-1)!} \cdots \frac{(y_n-y_{n-1})^{j_n-j_{n-1}-1}}{(j_n-j_{n-1}-1)!} \lambda^{j_n} e^{-\lambda y_n} I_{\{0 \le y_1 < \dots < y_n\}}$$

Note

$$N_t = \sum_{n=1}^{\infty} nI_{[T_n, T_{n+1})}(t)$$

implies $\{N_t = n\} = \{T_n \le t < T_{n+1}\}$. For any $n \in \mathbb{N}_+$ and any $0 \le t_1 < t_2 < \dots < t_n$, we have

$$\begin{split} & P(N_{t_1} = j_1, N_{t_1} - N_{t_2} = j_2, \cdots, N_{t_n} - N_{t_{n-1}} = j_n) \\ & = P(N_{t_1} = j_1, N_{t_1} = j_1 + j_2, \cdots, N_{t_n} = j_1 + \cdots + j_n) \quad (\text{let } k_n = j_1 + \cdots j_n) \\ & = P(T_{k_1} \leq t_1, T_{k_1 + 1} > t_1, T_{k_2} \leq t_2, T_{k_2 + 1} > t_2, \cdots, T_{k_n} \leq t_n, T_{k_n + 1} > t_n) \\ & = \int_{y_{k_1} \leq t_1 < y_{k_1 + 1} < \cdots < y_{k_n} \leq t_n < y_{k_n + 1}} \frac{y_{k_1}^{k_1 - 1}}{(k_1 - 1)!} \cdots \frac{(y_{k_n} - y_{k_{n-1} + 1})^{k_n - k_{n-1} - 2}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n + 1} e^{-\lambda y_{k_n + 1}} dy_1 \cdots dy_{k_n + 1} \\ & = \int_{y_{k_1} \leq t_1 < y_{k_1 + 1} < \cdots < y_{k_n} \leq t_n} \frac{y_{k_1}^{k_1 - 1}}{(k_1 - 1)!} \cdots \frac{(y_{k_n} - y_{k_{n-1} + 1})^{k_n - k_{n-1} - 2}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n} dy_{k_1} \cdots dy_{k_n} \int_{t_n}^{\infty} -de^{-\lambda y_{k_n + 1}} \\ & = \int_{y_{k_1} \leq t_1 < y_{k_1 + 1} < \cdots < t_{n-1} < y_{k_{n-1} + 1} < t_n} \frac{y_{k_1}^{k_1 - 1}}{(k_1 - 1)!} \cdots \frac{(y_{k_n - 1} - k_{k_n - 2} - 2)!}{(k_n - k_{n-1} - 2)!} \lambda^{k_n} e^{-\lambda t_n} dy_1 \cdots dy_{k_{n-1} + 1} \int_{y_{k_{n-1} + 1}}^{t_n} d\frac{(y_{k_n} - y_{k_{n-1} + 1})^{k_n - k_{n-1} - 1}}{(k_n - k_{n-1} - 1)!} \\ & = \int_{y_{k_1} \leq t_1 < y_{k_1 + 1} < \cdots < t_{n-1} < y_{k_{n-1} + 1} < t_n} \frac{y_{k_1}^{k_1 - 1}}{(k_1 - 1)!} \cdots \frac{(y_{k_{n-1} - 1} - y_{k_{n-2} + 1})^{k_{n-1} - k_{n-2} - 2}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n} e^{-\lambda t_n} dy_1 \cdots dy_{k_{n-1}} \int_{t_{n-1}}^{t_n} -d\frac{(t_n - y_{k_{n-1} + 1})^{k_n - k_{n-1}}}{(k_n - k_{n-1})!} \\ & = \int_{y_{k_1} \leq t_1 < y_{k_1 + 1} < \cdots < t_{n-1} < y_{k_{n-1} + 1} < t_n} \lambda^{k_n} e^{-\lambda t_n} dy_1 \cdots dy_{k_{n-1}} \int_{t_{n-1}}^{t_n} -d\frac{(t_n - y_{k_{n-1}})^{k_n - k_{n-1}}}{(k_n - k_{n-1})!} \\ & = \cdots \\ & = \lambda^{k_n} e^{-\lambda t_n} \frac{t_1^{k_1}}{(t_1 < t_1)^{k_2} - t_1}}{(t_2 < t_1)!} \cdots \frac{(t_n - t_{n-1})^{k_n - k_{n-1}}}{(k_n - k_{n-1})!} \\ & = e^{-\lambda t_1} \frac{(\lambda t_1)^{j_1}}{j_1} e^{-\lambda (t_1 - t_1)} \frac{(\lambda (t_2 - t_1))^{j_2}}{j_2} \cdots e^{-\lambda (t_n - t_{n-1})} \frac{(\lambda (t_n - t_{n-1}))^{j_n}}{j_n!} \end{aligned}$$

Therefore, we conclude $N_{t_2} - N_{t_1}, N_{t_3} - N_{t_2}, \dots, N_{t_n} - N_{t_{n-1}}$ are independent and for any $0 \le s < t, N_t - N_s \sim Pois(\lambda(t-s))$.

Proposition 2.2 Let $(N_t)_{t\geq 0}$ be a Poisson process.

- 1. $N_t \sim Pois(\lambda t)$, $E[N_t] = Var(N_t) = \lambda t$.
- 2. For $0 \le s \le t$, $E[N_t N_s] = \lambda^2 t s + \lambda s$, $Cov(E_t, E_s) = \lambda s$.
- 3. For $0 \le s \le t$, $E[N_t|N_s] = N_s + \lambda(t-s)$. So Poisson process is a submartingale.
- 4. Poisson process is a Markov process. For $0 \le t_1 < t_2 < \cdots < t_n$ and $0 \le k_1 \le k_2 \le \cdots \le k_n$,

$$\begin{split} & \mathbf{P}(N_{t_n} = k_n | N_{t_{n-1}} = k_{n-1}, \cdots, N_{t_1} = k_1) \\ & = \mathbf{P}(N_{t_n} = k_n | N_{t_{n-1}} = k_{n-1}) \\ & = \mathbf{P}(N_{t_n} - N_{t_{n-1}} = k_n - k_{n-1}) \\ & = e^{-\lambda(t_n - t_{n-1})} \frac{(\lambda(t_n - t_{n-1}))^{k_n - k_{n-1}}}{(k_n - k_{n-1})!}. \end{split}$$

Proof. Apply Definition 2.1(ii) and it is straightforward to show the properties.

3 Compound Poisson Process

Definition 3.1 (compound Poisson distribution) Suppose that $N \sim Pois(\lambda)$ and that Z_1, Z_2, Z_3, \cdots are i.i.d. random variables independent of N with a probability measure v(dy) on \mathbb{R} . Then the probability distribution of the sum of N i.i.d. random variables

$$Y = \sum_{n=1}^{N} Z_n$$

is a compound Poisson distribution.

Definition 3.2 (compound Poisson process) A compound Poisson process, parameterised by a rate $\lambda > 0$ and jump size distribution v(dy), is a process $(Y_t)_{t>0}$ given by

$$Y_t = \sum_{n=1}^{N_t} Z_n,$$

where $(N_t)_{t\geq 0}$ is a Poisson process with rate λ , and $(Z_n)_{n\in\mathbb{N}_+}$ are independent and identically distributed random variables with distribution v(dy), which are also independent of $(N_t)_{t\geq 0}$.

Proposition 3.1 Let $(Y_t)_{t\geq 0}$ be a compound Poisson process with a rate λ and jump $(Z_n)_{n\in\mathbb{N}_+}$. For convenience, assume $Z_n \stackrel{d}{=} Z$ and $\mathrm{E}[Z^2] < +\infty$.

- 1. $E[Y_t] = \lambda t E[Z]$.
- 2. $Var(Y_t) = \lambda t E[Z^2]$.
- 3. The moment generating function $M_{Y_t}(a) = \mathbb{E}[e^{aY_t}] = e^{\lambda t(\mathbb{E}[e^{aZ}]-1)} = e^{\lambda t(M_Z(a)-1)}$

Proof.

1. Since Z_n is independent of N_t , we have

$$\mathrm{E}[Y_t] = \mathrm{E}[\mathrm{E}[Y_t|N_t]] = \mathrm{E}\left[\mathrm{E}\left[\sum_{n=1}^{N_t} Z_n \middle| N_t\right]\right] = \mathrm{E}\left[\sum_{n=1}^{N_t} \mathrm{E}\left[Z_n \middle| N_t\right]\right] = \mathrm{E}[N_t Z] = \mathrm{E}[N_t] = \lambda t \mathrm{E}[Z].$$

2. Since Z_n is independent of N_t , by the law of total variance $Var(Y_t)$ can be calculated as

$$Var(Y_t) = E[Var(Y_t|N_t)] + Var(E[Y_t|N_t])$$

$$= E[N_tVar(Z)] + Var(N_tE[Z])$$

$$= Var(Z)E[N_t] + E[Z]^2Var(N_t)$$

$$= \lambda t Var(Z) + \lambda t E[Z]^2$$

$$= \lambda t E[Z^2].$$

3. Make similar use of the dependence of $(Z_n)_{n\in\mathbb{N}_+}$ and N_t to get

$$\begin{split} &\mathbf{E}\left[e^{aY_t}\right] = \mathbf{E}\left[e^{a\left(Z_1 + Z_2 + \dots + Z_{N_t}\right)}\right] \\ &= \mathbf{E}\left[\mathbf{E}\left[e^{a\left(Z_1 + Z_2 + \dots + Z_{N_t}\right)}\right| N_t\right]\right] \\ &= \sum_{n=0}^{\infty} \mathbf{E}\left[e^{a\left(Z_1 + Z_2 + \dots + Z_{N_t}\right)}\right| N_t = n\right] \mathbf{P}\left(N_t = n\right) \\ &= \sum_{n=0}^{\infty} \mathbf{E}\left[e^{a\left(Z_1 + Z_2 + \dots + Z_{N_t}\right)}\right| N_t = n\right] e^{-\lambda t} \frac{\left(\lambda t\right)^n}{n!} \\ &= \sum_{n=0}^{\infty} \mathbf{E}\left[e^{aZ_1}e^{aZ_2} \cdots e^{aZ_n}\right] e^{-\lambda t} \frac{\left(\lambda t\right)^n}{n!} \\ &= \sum_{n=0}^{\infty} \mathbf{E}\left[e^{aZ}\right]^n e^{-\lambda t} \frac{\left(\lambda t\right)^n}{n!} \\ &= e^{-\lambda t} \sum_{n=0}^{\infty} \frac{\left(\lambda t \mathbf{E}\left[e^{aZ}\right]\right)^n}{n!} \\ &= e^{\lambda t} (\mathbf{E}\left[e^{aZ}\right] - 1). \end{split}$$

Let $Y = (Y_t)_{t \geq 0}$ be a compound Poisson process with a rate λ and jump $(Z_n)_{n \in \mathbb{N}_+}$. Let $T_n = \inf\{t \geq 0 : N_t = n\}$ be the time when the *n*th event happens. Then the Itô integral of a stochastic process K with respect to Y is

$$\int_0^t KdY = \sum_{n=0}^{N_t} K_{T_n} (Y_{T_n} - Y_{T_{n-1}}) = \sum_{n=0}^{N_t} K_{T_n} Z_n.$$

4 Markov Chain

4.1 Discrete-time Markov Chain

Definition 4.1 (discrete-time Markov chain) A discrete-time Markov chain on a countable state space S is a sequence of random variables X_0, X_1, X_2, \cdots with the Markov property, namely that $\forall n \geq 0, \ \forall j, i_0, i_1, \cdots, i_n \in S$,

$$P(X_{n+1} = j | X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = P(X_{n+1} = j | X_n = i_n),$$

if both conditional probabilities are well defined, i.e., if $P(X_0 = i_0, \dots, X_n = i_n) > 0$.

Markov property may be interpreted as stating that the probability of moving to the next state depends only on the present state and not on the previous states.

A discrete-time Markov chain $(X_n)_{n>0}$ is time-homogeneous if

$$P(X_{n+2} = j | X_{n+1} = i) = P(X_{n+1} = j | X_n = i)$$

for all $n \ge 0$ and all $i, j \in S$. We only focus on the discrete-time time-homogeneous Markov chain on a countable space if nothing is specified.

One can consider the (possibly infinite-dimensional) transition matrix $P = (p_{ij})_{i,j \in S}$, where

$$p_{ij} = P(X_{n+1} = j | X_n = i)$$

is called one-step transition probability. By the law of total probability it is clear to see

$$\sum_{j \in S} p_{ij} = 1, \quad \forall i \in S.$$

Similarly we can define *n*-step transition matrix $P^{(n)} = \left(p_{ij}^{(n)}\right)_{i,j \in S}$, where *n*-step transition probabilities $p_{ij}^{(n)}$ is the probability that a process in state *i* will be in state *j* after *n* additional transitions. That is,

$$p_{ij}^{(n)} = P(X_{k+n} = j | X_k = i).$$

As is shown below, the Chapman–Kolmogorov equation enables us to calculate n-step transition matrix readily.

Proposition 4.1 (Chapman–Kolmogorov equation) Let $(X_n)_{n\geq 0}$ be a discrete-time Markov chain on a countable state space S. The Chapman–Kolmogorov equation states that

$$p_{ij}^{(n+m)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)}, \quad \forall i, j \in S,$$

or alternatively in matrix form

$$P^{(n+m)} = P^{(n)}P^{(m)}.$$

Proof.

$$\begin{split} p_{ij}^{(n+m)} &= \mathrm{P}(X_{n+m} = j | X_0 = i) \\ &= \sum_{k \in S} \mathrm{P}(X_{n+m} = j, X_n = k | X_0 = i) \\ &= \sum_{k \in S} \mathrm{P}(X_n = k | X_0 = i) \mathrm{P}(X_{n+m} = j | X_0 = i, X_n = k) \\ &= \sum_{k \in S} \mathrm{P}(X_n = k | X_0 = i) \mathrm{P}(X_{n+m} = j | X_n = k) \\ &= \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)} \end{split}$$

Of course $P^{(1)} = P$. Thus by iteration we show $P^{(n)}$ coincides with P^n .

Let $\pi(n) = \left(p_i^{(n)}\right)_{i \in S}$ denote the probability distribution of X_n , where $p_i^{(n)} = P(X_n = i)$. Then we have

$$\pi(n) = \pi(0)P^n.$$

4.2 Continuous-time Markov Chain

Definition 4.2 (continuous-time Markov chain) A continuous-time Markov chain on a countable state space S is a stochastic $(X_t)_{t\geq 0}$ with the Markov property: for all $n\geq 0$, all $0\leq t_0\leq t_1\leq \cdots\leq t_n$, and all $j,i_0,\cdots,i_n\in S$,

$$P(X_{t_{n+1}} = j | X_{t_0} = i_1, X_{t_1} = i_2, \dots, X_{t_n} = i_n) = P(X_{t_{n+1}} = j | X_{t_n} = i_n),$$

if both conditional probabilities are well defined, i.e., if $P(X_1 = i_1, \dots, X_n = i_n) > 0$.

A continuous-time Markov chain $(X_t)_{t>0}$ is time-homogeneous if

$$P(X_{s+t} = j | X_s = i) = P(X_t = j | X_0 = i) = p_{ij}(t)$$

for all $s, t \geq 0$ and all $i, j \in S$.

Example 4.1 Poisson progress $(N_t)_{t\geq 0}$ is continuous-time time-homogeneous Markov chain.

We only focus on the continuous-time time-homogeneous Markov chain on a countable space if nothing is specified. In this case, transition probability $p_{ij}(t)$ depends on the interarrival t from state i to state j. One can define the transition matrix $P(t) = (p_{ij}(t))_{i,j \in S}$ and we have the similar properties of $p_{ij}(t)$ like the concrete-time case.

Proposition 4.2 Let $(X_t)_{t\geq 0}$ be a continuous-time Markov chain on a countable state space S.

1. For all $t \geq 0$ and all $j \in S$,

$$\sum_{i \in S} p_{ij}(t) = 1.$$

2. The Chapman-Kolmogorov equation states that

$$p_{ij}(t+s) = \sum_{k \in S} p_{ik}(t) p_{kj}(s), \quad \forall i, j \in S,$$

or alternatively in matrix form

$$P(t+s) = P(t)P(s).$$

Proof.

- 1. It follows by the law of total probability.
- 2. Imitate the proof in Proposition 4.1 and the result is straightforward.

Definition 4.3 A continuous-time Markov chain is regular if it satisfy the following condition

$$\lim_{t \to 0} p_{ij}(t) = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Since $p_{ij}(0) = P(X_t = j | X_0 = i) = \delta_{ij}$, regularity implies $p_{ij}(t)$ is continuous at t = 0. Furthermore, we have the following stronger results. We always assume continuous-time Markov chain is regular afterwards.

Lemma 4.1 If a continuous-time Markov chain is regular, for any fixed $i, j \in S$, $p_{ij}(t)$ is uniformly continuous with respect to t.

Proof. Since when h > 0

$$\begin{split} p_{ij}(t+h) - p_{ij}(t) &= \sum_{k \in S} p_{ik}(h) p_{kj}(t) - p_{ij}(t) \\ &= p_{ii}(h) p_{ij}(t) - p_{ij}(t) + \sum_{k \in S \setminus \{i\}} p_{ik}(h) p_{kj}(t) \\ &= -(1 - p_{ii}(h)) p_{ij}(t) + \sum_{k \in S \setminus \{i\}} p_{ik}(h) p_{kj}(t), \end{split}$$

we have

$$\begin{aligned} p_{ij}(t+h) - p_{ij}(t) &\geq -(1 - p_{ii}(h))p_{ij}(t) \geq -(1 - p_{ii}(h)), \\ p_{ij}(t+h) - p_{ij}(t) &\leq \sum_{k \in S \setminus \{i\}} p_{ik}(h)p_{kj}(t) \leq \sum_{k \in S \setminus \{i\}} p_{ik}(h) = 1 - p_{ii}(h), \end{aligned}$$

which implies

$$|p_{ij}(t+h) - p_{ij}(t)| \le 1 - p_{ii}(h).$$

When h < 0 in a similar way we can get

$$|p_{ij}(t) - p_{ij}(t+h)| \le 1 - p_{ii}(-h).$$

In general

$$|p_{ij}(t+h) - p_{ij}(t)| \le 1 - p_{ii}(|h|).$$

According to regular condition we conclude for any $t \geq 0$,

$$\lim_{h \to 0} |p_{ij}(t+h) - p_{ij}(t)| = 0,$$

that is, $p_{ij}(t)$ is uniformly continuous with respect to t on $[0, \infty)$.

If $p_{ij}(t)$ is differentiable, define the transition rate

$$q_{ij} = \frac{dp_{ij}(t)}{dt}\Big|_{t=0} = \lim_{h\to 0} \frac{p_{ij}(h) - p_{ij}(0)}{h}.$$

The q_{ij} can be seen as measuring how quickly the transition from i to j happens. Then define the transition rate matrix $Q = (q_{ij})_{i,j \in S}$ with dimensions equal to that of the state space. Since P(0) = I, it can be shown that

$$P(X_{t+h} = j | X_t = i) = p_{ij}(h) = \delta_{ij} + q_{ij}h + o(h).$$

As an intermediate consequence, if the state space S is finite, we have

$$\sum_{i \in S} q_{ij} = 0,$$

which follows by

$$1 = \sum_{i \in S} p_{ij}(h) = \sum_{i \in S} [\delta_{ij} + q_{ij}h + o(h)] = 1 + \sum_{i \in S} q_{ij}h + o(h).$$

Theorem 4.1 Let $(X_t)_{t\geq 0}$ be a continuous-time Markov chain on a countable state space S.

1. Kolmogorov forward equation:

$$p'_{ij}(t) = \sum_{k \in S} p_{ik}(t) q_{kj}$$

or alternatively

$$P'(t) = P(t)Q(t).$$

2. Kolmogorov backward equation:

$$p'_{ij}(t) = \sum_{k \in S} q_{ik} p_{kj}(t)$$

or alternatively

$$P'(t) = Q(t)P(t).$$

5 Brownian Motion

Definition 5.1 (Brownian motion) A stochastic process $(B_t)_{t\geq 0}$ is called a *Brownian motion* if

- 1. $B_0 = 0$ a.s.
- 2. $(B_t)_{t\geq 0}$ has continuous path, that is $t\mapsto B_t$ is almost surely continuous.
- 3. $(B_t)_{t\geq 0}$ has independent and stationary increments.
- 4. For t > 0, $B_t \sim N(0, t)$.

Definition 5.2 (Gaussian process) A stochastic process $(X_t)_{t\in T}$ is a *Gaussian process* if and only if for every finite set of indices t_1, \ldots, t_n in the index set $T, (X_{t_1}, X_{t_2}, \cdots, X_{t_n})$ follows multivariate normal distribution $N(\mu, \Sigma)$.

Theorem 5.1 $B = (B_t)_{t \ge 0}$ is a Brownian motion if and only if B is a Gaussian process satisfying

- 1. $B_0 = 0$,
- 2. B has continuous paths,
- 3. For all t > 0, $E[B_t] = 0$.
- 4. For all $s, t \geq 0$, $E[B_s B_t] = s \wedge t$.

Proposition 5.1 Let $B = (B_t)_{t>0}$ be a Brownian motion.

- 1. For $k \ge 1$, $\mathbf{E}[B_t^{2k-1}] = 0$, $\mathbf{E}[B_t^{2k}] = t^k (2k-1)!!$.
- 2. B is a Markov process.
- 3. B is a martingale.

Theorem 5.2 The quadratic variation of a Brownian motion B exists, and is given by $\langle B \rangle_t = t$.

Proof. Given a partition P of the interval [0,t], we have

$$E\left[\sum_{k=1}^{n} (B_{t_k} - B_{t_{k-1}})^2\right] = \sum_{k=1}^{n} E\left[(B_{t_k} - B_{t_{k-1}})^2\right]$$
$$= \sum_{k=1}^{n} (t_k - t_{k-1})$$
$$= t$$

and

$$\operatorname{Var}\left(\sum_{k=1}^{n}(B_{t_{k}}-B_{t_{k-1}})^{2}\right) = \sum_{k=1}^{n}\operatorname{Var}\left((B_{t_{k}}-B_{t_{k-1}})^{2}\right)$$

$$= \sum_{k=1}^{n}\operatorname{E}\left[(B_{t_{k}}-B_{t_{k-1}})^{4}\right] - \sum_{k=1}^{n}\left(\operatorname{E}\left[(B_{t_{k}}-B_{t_{k-1}})^{2}\right]\right)^{2}$$

$$= \sum_{k=1}^{n}3(t_{k}-t_{k-1})^{2} - \sum_{k=1}^{n}(t_{k}-t_{k-1})^{2}$$

$$= 2\sum_{k=1}^{n}(t_{k}-t_{k-1})^{2}$$

$$\leq 2\|P\|\sum_{k=1}^{n}(t_{k}-t_{k-1})$$

$$= 2\|P\|t.$$

Since

$$\lim_{\|P\|\to 0} \mathbf{E}\left[\left(\sum_{k=1}^{n} (B_{t_k} - B_{t_{k-1}})^2 - t\right)^2\right] = \lim_{\|P\|\to 0} \operatorname{Var}\left(\sum_{k=1}^{n} (B_{t_k} - B_{t_{k-1}})^2\right) \le \lim_{\|P\|\to 0} 2\|P\|t = 0,$$

we conclude

$$[B]_t = \lim_{\|P\| \to 0} \sum_{k=1}^n (B_{t_k} - B_{t_{k-1}})^2 = t$$
 a.s.

6 Martingale

6.1 Basic Notion

Definition 6.1 (conditional expectation) Let X be a \mathcal{F} -measurable random variable on a probability space (Ω, \mathcal{F}, P) such that $E[|X|] < \infty$. Given a σ -algebra $\mathcal{G} \subset \mathcal{F}$, a random variable Z that is \mathcal{G} -measurable and satisfies

$$E[XI_A] = E[ZI_A]$$
 for all $A \in \mathcal{G}$

is called the *conditional expectation* of Y given \mathcal{G} and is written as $E(X|\mathcal{G})$.

In probability theory, we show that conditional expectation exists and is unique up to absolutely surely equality. If not pointed out explicitly, all equalities and inequalities involving conditional expectation are considered to hold absolutely surely.

Proposition 6.1 (projection in $L^2(\Omega, \mathcal{F}, \mathbf{P})$) Assume $X \in L^2(\Omega, \mathcal{F}, \mathbf{P})$ and \mathcal{G} is a sub- σ -algebra of \mathcal{F} . The set

$$S_{\mathcal{G}} = \{ Y \in L^2(\Omega, \mathcal{F}, P) : \sigma(Y) \in \mathcal{G} \}$$

is a closed subspace of $L^2(\Omega, \mathcal{F}, P)$. The conditional expectation mapping

$$E(\cdot|\mathcal{G}): L^2(\Omega, \mathcal{F}, P) \longrightarrow S_{\mathcal{G}}$$

 $X \longmapsto E(X|\mathcal{G})$

is a projection to $S_{\mathcal{G}}$.

Proposition 6.2 Let X, Y, X_n be integrable \mathcal{F} -measurable random variables on a probability space (Ω, \mathcal{F}, P) and $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra.

- 1. If a, b are constants, then $E[aX + bY | \mathcal{F}] = aE[X | \mathcal{F}] + bE[Y | \mathcal{F}].$
- 2. If X equals a constant a, then $E[X|\mathcal{F}] = a$.
- 3. If $X \geq Y$, then $E[X|\mathcal{F}] \geq E[Y|\mathcal{F}]$.
- 4. $|E[X|\mathcal{F}]| \leq E[|X||\mathcal{F}].$
- 5. If ϕ is a convex function on \mathbb{R} and $\phi(X)$ is integrable, then $\phi(E[X|\mathcal{F}]) \leq E[\phi(X)|\mathcal{F}]$
- 6. If $\lim_{n\to\infty} X_n = X$ and $|X_n| \leq X$, then $\lim_{n\to\infty} \mathbb{E}[X_n|\mathcal{F}] = \mathbb{E}[X|\mathcal{F}]$.
- 7. $E[E[X|\mathcal{F}]] = E[X]$.
- 8. $E[E[X|\mathcal{G}]|\mathcal{F}] = E[E[X|\mathcal{F}]|\mathcal{G}] = E[X|\mathcal{G}]$
- 9. If X and \mathcal{F} are independent, that is, whenever $A \in \sigma(X)$ and $B \in \mathcal{F}$, $P(A \cap B) = P(A)P(B)$, then $E[X|\mathcal{F}] = X$.
- 10. If Z is \mathcal{F} -measurable and ZX is integrable, then $E[ZX|\mathcal{F}] = ZE[X|\mathcal{F}]$

Definition 6.2 (filtration) Suppose (Ω, \mathcal{F}, P) be a probability space and let T be a linearly ordered index set such as \mathbb{N} or $\mathbb{R}_{\geq 0}$. For every $t \in T$ let \mathcal{F}_t be a sub- σ -algebra of \mathcal{F} . Then

$$\mathbb{F} = (\mathcal{F}_t)_{t \in T}$$

is called a *filtration* on the probability space (Ω, \mathcal{F}, P) if $\mathcal{F}_k \subset \mathcal{F}_\ell$ for all $k \leq \ell$.

Definition 6.3 (filtered probability space) If (Ω, \mathcal{F}, P) is a probability space and $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ is a filtration on the probability space (Ω, \mathcal{F}, P) , then $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in T}, P)$ is called a *filtered probability space*.

Definition 6.4 (adapted process) A stochastic process $X = (X_t)_{t \in T}$ is called *adapted* (to the filtration $(\mathcal{F}_t)_{t \in T}$) if for any $t \in T, X_t$ is \mathcal{F}_t -measurable, that is, $\sigma(X_t) \subset \mathcal{F}_t$ for all $t \in T$.

A stochastic process $(X_t)_{t\in T}$ is said to be defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\in T}, P)$ if $(X_n)_{t\in T}$ is defined on (Ω, \mathcal{F}, P) and adapted to the filtration $\mathbb{F} = (\mathcal{F}_t)_{t\in T}$.

If $T = [0, \infty]$, the definition of \mathcal{F}_{∞} is usually specified as

$$\mathcal{F}_{\infty} = \sigma \left(\bigcup_{t \geq 0} \mathcal{F}_t \right)$$

Definition 6.5 (right-continuous filtration) Given a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$, define

$$\mathcal{F}_{t+} := \bigcap_{s>t} \mathcal{F}_s \quad , \forall t \in T.$$

Then $\mathbb{F}^+ := (\mathcal{F}_{t+})_{t \in T}$ is a filtration. The filtration \mathbb{F} is called *right-continuous* if and only if $\mathbb{F}^+ = \mathbb{F}$.

Definition 6.6 (complete filtration) Let

$$\mathcal{N}_P := \{ A \subset 2^{\Omega} | A \subset B \text{ for a } B \text{ with } P(B) = 0 \}$$

be the set of all sets that are contained within a P-null set. A filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ is called a *complete filtration*, if every \mathcal{F}_t contains \mathcal{N}_P . This is equivalent to $(\Omega, \mathcal{F}_t, P)$ being a complete measure space for every $t \in T$.

Definition 6.7 (natural filtration) Let $X = (X_t)_{t \geq 0}$ be a stochastic process on the probability space (Ω, \mathcal{F}, P) . Then

$$\mathcal{F}_t^X = \sigma(\{X_s : 0 \le s \le t\})$$

is a σ -algebra and $(\mathcal{F}^X_t)_{t\geq 0}$ is a filtration that X is adapted to. We call $(\mathcal{F}^X_t)_{t\geq 0}$ the natural filtration induced by the stochastic process X. $(\mathcal{F}^X_t)_{t\geq 0}$ is the minimum filtration which X is adapted to.

Definition 6.8 (stopping time) Let τ be a random variable defined on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in T}, P)$ with values in T. Then τ is called a *stopping time* (with respect to the filtration $(\mathcal{F}_t)_{t \in T}$), if the following condition holds:

$$\forall t \in T, \{\tau \leq t\} \in \mathcal{F}_t$$

or equivalently

$$X_t := 1_{\tau \le t} = \left\{ \begin{array}{ll} 1 & \text{if } \tau \le t \\ 0 & \text{if } \tau > t \end{array} \right.$$

is adapted to $(\mathcal{F}_t)_{t\in T}$.

Definition 6.9 (stopped process) Let $X = (X_t)_{t \geq 0}$ be a stochastic process defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in T}, P)$ and τ be a stopping time with respect to the filtration $(\mathcal{F}_t)_{t \in T}$. The stopping process X^{τ} is defined as $(X_{\tau \wedge t})_{t \in T}$, where

$$X_{\tau \wedge t} : \Omega \longrightarrow S$$

 $\omega \longmapsto X_{\tau(\omega) \wedge t}(\omega).$

It is useful to observe that, if μ is another stopping time, then

$$(X^{\tau})^{\mu} = (X^{\mu})^{\tau} = X^{\mu \wedge \tau}.$$

6.2 Discrete-time Martingale

Definition 6.10 (discrete-time martingale) A discrete-time stochastic process $M = (M_n)_{n\geq 0}$ defined on filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n>0}, P)$ is a martingale if it satisfies

- 1. For $n \ge 0$, $E[|M_n|] < +\infty$;
- 2. For $n \ge 0$, $E[M_{n+1}|\mathcal{F}_n] = M_n$.

Definition 6.11 (discrete-time submartingale) A discrete-time submartingale is a stochastic process $M = (M_n)_{n \ge 0}$ consisting of integrable random variables satisfying for $n \ge 0$

$$E[M_{n+1}|\mathcal{F}_n] \ge M_n.$$

Definition 6.12 (discrete-time supermartingale) A discrete-time supermartingale is a stochastic process $M = (M_n)_{n \ge 0}$ consisting of integrable random variables satisfying for $n \ge 0$

$$\mathrm{E}[M_{n+1}|\mathcal{F}_n] \le M_n.$$

Example 6.1 Suppose $(M_n)_{n\geq 0}$ is a martingale defined on filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, P)$ and that $\phi: \mathbb{R} \to \mathbb{R}$ is convex. If $\phi(M_n)$ is integrable for $n \geq 0$, then $(\phi(M_n))_{n\geq 0}$ is a submartingale.

Definition 6.13 (stopping time in discrete-time case) Let τ be a random variable defined on the probability space (Ω, \mathcal{F}, P) with values in $\mathbb{N} \cup \{+\infty\}$. Then τ is called a stopping time (with respect to the filtration $(\mathcal{F}_n)_{n>0}$), if the following condition holds:

$$\forall n \in \mathbb{N}, \ \{\tau = n\} \in \mathcal{F}_n.$$

Example 6.2 Given a discrete-time stochastic process $(X_n)_{n\geq 0}$ defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, P)$ and a Borel set B,

$$\tau = \inf\{n \ge 0 : X_n \in B\}$$

is a stopping time, called the first hitting time. (inf $\emptyset = \infty$)

Definition 6.14 (martingale transform) The process $\widetilde{M} = (\widetilde{M}_n)_{n \geq 0}$ defined by setting $\widetilde{M}_0 = M_0$ and by setting

$$\widetilde{M}_n = M_0 + A_1 (M_1 - M_0) + A_2 (M_2 - M_1) + \dots + A_n (M_n - M_{n-1})$$

for $n \geq 1$ is called the martingale transform of M by A.

Theorem 6.1 (martingale transform theorem) If $M = (M_n)_{n\geq 0}$ is a martingale defined on filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, P)$ and if $A = (A_n)_{n\geq 0}$ is predicted process with respect to $(\mathcal{F}_n)_{n\geq 0}$, then the martingale transform \widetilde{M} of M by A is itself a martingale with respect to $(\mathcal{F}_n)_{n\geq 0}$.

Theorem 6.2 (stopping time theorem) If $M = (M_n)_{n\geq 0}$ is a martingale defined on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, P)$ and τ is a stopping time with respect to the filtration $(\mathcal{F}_n)_{n\geq 0}$, then the stopped process $M^{\tau} = (M_{\tau \wedge n})_{n\geq 0}$ is also a martingale defined on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, P)$ and $E[M_{\tau \wedge n}] = E[M_0]$ for $n \geq 0$.

Theorem 6.3 (Doob's optional sampling theorem) Let $M = (M_n)_{n\geq 0}$ be a martingale defined on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, P)$ and τ be a stopping time with respect to the filtration $(\mathcal{F}_n)_{n\geq 0}$. Suppose $P(\tau < \infty) = 1$ and M^{τ} is L^1 -bounded, then $E[M_{\tau}] = E[M_0]$.

Proof. Since $P(\tau < \infty) = 1$, $X_{\tau \wedge n} \xrightarrow{a.s.} X_{\tau}$ and $|X_{\tau}| \leq K < \infty$ and hence $E[|X_{\tau}|] < \infty$. Thus, $E[|X_{\tau} - X_{\tau \wedge n}|] \leq 2KP(\tau > n) \to 0$.

6.3 Continuous-time Martingale

Definition 6.15 (continuous-time martingale) A continuous-time stochastic process $M = (M_t)_{t \geq 0}$ defined on filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$ is a martingale if it satisfies

- 1. For $t \geq 0$, $E[|M_t|] < +\infty$, that is, M_t is L^1 -bounded;
- 2. For $0 \le t \le s < +\infty$, $E[M_s | \mathcal{F}_t] = M_t$.

Definition 6.16 (continuous martingale) A continuous-time martingale $M = (M_t)_{t\geq 0}$ defined on filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$ is continuous if the paths of M are almost surely continuous. That is, there exists an $\Omega_0 \subset \Omega$ with $P(\Omega_0) = 1$ such that for all $\omega \in \Omega_0$ the function

$$\gamma_{\omega}: [0, \infty) \longrightarrow \mathbb{R}$$

$$t \longmapsto X_t(\omega)$$

is continuous.

Definition 6.17 (uniform integrability) A class C of random variables is called *uniformly integrable* if given $\varepsilon > 0$, there exists $K \in [0, \infty)$ such that

$$\mathrm{E}\left(|X|1_{|X|>K}\right) \leq \varepsilon \text{ for all } X \in \mathcal{C}.$$

Theorem 6.4 (Doob's maximal inequalities in continuous time) If $M = (M_t)_{t\geq 0}$ is a continuous nonnegative submartingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$ and $\lambda > 0$, then for all $p \geq 1$ we have

$$\lambda^p P\left(\sup_{0 \le t \le T} M_t > \lambda\right) \le E\left[M_T^p\right]$$

and, if $M_T \in L^p(\Omega, \mathcal{F}, P)$ for some p > 1, then we also have

$$\left\| \sup_{0 \le t \le T} M_t \right\|_p \le \frac{p}{p-1} \left\| M_T \right\|_p.$$

Definition 6.18 (L^p -bounded martingale) A martingale $M = (M_t)_{t \geq 0}$ is said to be L^p -bounded if

$$\sup_{t\geq 0} \mathrm{E}\left[|M_t|^p\right] < \infty.$$

Theorem 6.5 (martingale convergence theorems in continuous time) Let $M = (M_t)_{t\geq 0}$ be a continuous martingale on filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$. If M satisfies $E[|M_t|^p] \leq B < \infty$ for some p > 1 and all $t \geq 0$, then there exists a random variable $M_\infty \in L^p(\Omega, \mathcal{F}, P)$ with $E[|M_\infty|^p] \leq B$ such that

$$P\left(\lim_{t\to\infty}M_t=M_\infty\right)=1 \text{ and } \lim_{t\to\infty}\|M_t-M_\infty\|_p=0.$$

Also, if M satisfies $E[|M_t|] \leq B < \infty$ for all $t \geq 0$, then there exists a random variable $M_{\infty} \in L^1(\Omega, \mathcal{F}, P)$ with $E[|M_{\infty}|] \leq B$ such that

$$P\left(\lim_{t\to\infty} M_t = M_\infty\right) = 1.$$

According to the theorem 6.5, M_{∞} is well defined for any L^p -bounded martingale M.

Proposition 6.3 (Hilbert spaces \mathcal{M}_0^2 and $\mathcal{M}_{0,c}^2$) Let \mathcal{M}_0 denote the collection of all the martingales M defined on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$ with initial value $M_0 = 0$ a.s.. All the L^2 -bounded martingales $M \in \mathcal{M}_0$ constitute a Hilbert space, which is denoted by \mathcal{M}_0^2 , with the inner product defined as

$$(M, N)_{\mathcal{M}_{\infty}^2} := (M_{\infty}, N_{\infty})_{L^2} = \mathrm{E}[M_{\infty} N_{\infty}].$$

All the L^2 -bounded continuous martingales $M \in \mathcal{M}_0$ constitute a Hilbert space $\mathcal{M}_{0,c}^2$, which is a closed subspace of \mathcal{M}_0^2 . It follows that $\mathcal{M}_{0,c}^2 \subset \mathcal{M}_0^2 \subset \mathcal{M}_0$.

Definition 6.19 (quadratic variation) Suppose that $X = (X_t)_{t \geq 0}$ is a real-valued stochastic process defined on filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$. The *quadratic variation* of X (if exists) is defined as the stochastic process $\langle X \rangle = (\langle X \rangle_t)_{t \geq 0}$ satisfying that for all $t \geq 0$, for all $\epsilon > 0$,

$$\lim_{\|P_{[0,t]}\|\to 0} P\left(\left|\sum_{k=1}^n (X_{t_k} - X_{t_{k-1}})^2 - \langle X \rangle_t\right| > \varepsilon\right) = 0$$

where $P_{[0,t]} = \{(t_0, \dots, t_n) : 0 = t_0 < t_1 < \dots < t_n = t\}$ ranges over partitions of the interval [0,t] and the norm of the partition $P_{[0,t]}$ is the length of the longest of these subintervals, namely

$$||P_{[0,t]}|| = \max_{1 \le k \le n} |t_k - t_{k-1}|.$$

A càdlàg (French: "continue à droite, limite à gauche"), RCLL ("right continuous with left limits"), or corlol ("continuous on (the) right, limit on (the) left") function is a function defined on the real numbers (or a subset of them) that is everywhere right-continuous and has left limits everywhere.

Theorem 6.6 (Doob–Meyer decomposition theorem) Let Z be a càdlàg supermartingale satisfying

- 1. $Z_0 = 0$ a.s;
- 2. The collection $\{Z_T|T \text{ a finite-valued stopping time}\}$ is is uniformly integrable.

Then there exists a unique, increasing, predictable process A with $A_0 = 0$ such that M = Z - A is a uniformly integrable martingale.

Definition 6.20 (finite variation) A process X is said to have *finite variation* if it has bounded variation over every finite time interval with probability 1.

The quadratic variation exists for all continuous finite variation processes, and is zero.

Proposition 6.4 If $M \in \mathcal{M}_{0,c}^2$, then its quadratic variation $\langle M \rangle$ exists and has finite variation. The almost sure limit of $\langle M \rangle_t$ as $t \to \infty$ exists and is denoted by

$$\langle M \rangle_{\infty} = \lim_{t \to \infty} \langle M \rangle_t$$
 a.s.

Moreover, $\langle M \rangle_{\infty}$ is integrable, and satisfies

$$\mathrm{E}\left[\langle M\rangle_{\infty}\right] = \mathrm{E}\left[M_{\infty}^{2}\right].$$

Definition 6.21 (bracket process) The bracket process of two processes X and Y is

$$\langle X, Y \rangle := \frac{1}{4} \left(\langle X + Y \rangle - \langle X - Y \rangle \right)$$

if both $\langle X + Y \rangle$ and $\langle X - Y \rangle$ exist.

Proposition 6.5 If $M, N \in \mathcal{M}_{0,c}^2$, then $\langle M, N \rangle$ exists and $MN - \langle M, N \rangle$ is a uniformly integrable martingale. Consequently, the almost sure limit of $\langle M, N \rangle_t$ as $t \to \infty$ exists and is denoted by

$$\langle M, N \rangle_{\infty} = \lim_{t \to \infty} \langle M, N \rangle_t$$
 a.s.

Moreover, $\langle M, N \rangle_{\infty}$ is integrable, and satisfies

$$E[\langle M, N \rangle_{\infty}] = E[M_{\infty}N_{\infty}].$$

Proposition 6.6 For all $\alpha, \beta \in \mathbb{R}$, $M, M', N \in \mathcal{M}_{0,c}^2$,

- 1. $\langle \alpha M + \beta M', N \rangle = \alpha \langle M, N \rangle + \beta \langle M', N \rangle$
- 2. $\langle M, N \rangle = \langle N, M \rangle$
- 3. $\langle M, M \rangle = \langle M \rangle \ge 0$ and $\langle M \rangle = 0 \iff M = 0$

Proposition 6.7

$$\int_0^t |X_s| |Y_s| d\langle M, N \rangle_s \le \left(\int_0^t X_s^2 d\langle M \rangle_s \right)^{\frac{1}{2}} \left(\int_0^t Y_s^2 d\langle N \rangle_s \right)^{\frac{1}{2}}.$$

Proposition 6.8

$$\langle M^{\tau}, N^{\tau} \rangle = \langle M^{\tau}, N \rangle = \langle M, N \rangle^{\tau}.$$

6.4 Local Martingale

Definition 6.22 (continuous local martingale) An adapted process $M=(M_t)_{t\geq 0}$ with continuous sample paths is called a *continuous local martingale* if there exists a nondecreasing sequence $(\tau_n)_{n\geq 0}$ of stopping times such that $\tau_n \uparrow \infty$ and, for every n, the stopped process M^{τ_n} is a martingale. The sequence of stopping times $(\tau_n)_{n\geq 0}$ is called the *localizing sequence* for (or is said to reduce) M if $\tau_n \uparrow \infty$ and, for every n, the stopped process M^{τ_n} is a martingale.

Proposition 6.9 (linear space $\mathcal{M}_{0,c}^{\text{loc}}$) Let $\mathcal{M}_0^{\text{loc}}$ denote the collection of all the local martingales M defined on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$ with initial value $M_0 = 0$ a.s.. All the continuous local martingales $M \in \mathcal{M}_0^{\text{loc}}$ constitute a vector space, which is denoted by $\mathcal{M}_{0,c}^{\text{loc}}$.

Proposition 6.10

- 1. $\mathcal{M}_{0,c} \subset \mathcal{M}_{0,c}^{loc}$, and for any $M \in \mathcal{M}_{0,c}$ the sequence $\tau_n = n \ (n \ge 0)$ reduces M.
- 2. A nonnegative continuous local martingale M such that $M_0 \in L^1(\Omega, \mathcal{F}_0, P)$ is a supermartingale.
- 3. A continuous local martingale M such that there exists a random variable $Z \in L^1(\Omega, \mathcal{F}, P)$ with $|M_t| \leq Z$ for every $t \geq 0$ (in particular a bounded continuous local martingale) is a uniformly integrable martingale.
- 4. For $M \in \mathcal{M}_{0,c}^{loc}$ and a stopping time τ , we have $M^{\tau} \in \mathcal{M}_{0,c}^{loc}$.
- 5. For $M \in \mathcal{M}_{0,c}^{loc}$, the sequence $\tau_n = \inf\{t \geq 0 : |M_t| \geq n\} \ (n \geq 0)$ reduces M.
- 6. If $(\tau_n)_{n\geq 0}$ reduces M and $(v_n)_{n\geq 0}$ is a sequence of stopping times such that $v_n\uparrow\infty$, then the sequence $(\tau_n\wedge v_n)_{n\geq 0}$ also reduces M.

Proposition 6.11 (existence of quadratic variation) Let $M = (M_t)_{t \geq 0}$ be a continuous local martingale. There exists an increasing process $Q = (Q)_{t \geq 0}$, which is unique up to indistinguishability, such that $(M_t^2 - Q_t)_{t \geq 0}$ is a continuous local martingale. Furthermore, Q is exactly the quadratic variation of M.

Proposition 6.12 If $M, N \in \mathcal{M}_{0,c}^{loc}$, the bracket process of M and N is well defined as

$$\langle M, N \rangle_t := \frac{1}{4} \left(\langle M + N \rangle_t - \langle M - N \rangle_t \right).$$

Furthermore, for all $t \geq 0$,

$$\langle M, N \rangle_t = \underset{\|P_{[0,t]}\| \to 0}{\text{plim}} \sum_{k=1}^n (M_{t_k} - M_{t_{k-1}}) (N_{t_k} - N_{t_{k-1}}),$$

where $P_{[0,t]} = \{(t_0, \dots, t_n) : 0 = t_0 < t_1 < \dots < t_n = t\}$ ranges over partitions of the interval [0,t] and

$$||P_{[0,t]}|| = \max_{1 \le k \le n} |t_k - t_{k-1}|.$$

7 Itô Integral

If not specified explicitly, the stochastic processes and random variables are always assumed to be defined on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$.

7.1 Stochastic Integrals for L^2 -Bounded Martingales

Definition 7.1 (progressively measurable) Let $\Phi = (\Phi_t)_{t\geq 0}$ be a stochastic process defined on filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$. If for all $T\geq 0$, the mapping

$$\Phi^{(T)}: \Omega \times [0,T] \longrightarrow S$$
$$(\omega,t) \longmapsto \Phi_t(\omega)$$

is $\mathcal{F}_T \otimes \mathcal{B}([0,T])$ -measurable, we say Φ is progressively measurable.

Proposition 7.1 (Hilbert space $\mathcal{L}^2(M)$) Suppose $M \in \mathcal{M}_{0,c}^2$. Define

$$P_M: \mathcal{F} \otimes \mathcal{B}([0,\infty)) \longrightarrow S$$

$$A \longmapsto \mathbb{E} \left[\int_0^\infty \mathbf{1}_A(\omega,s) d\langle M \rangle_s \right] = \int_{\Omega} \left[\int_0^\infty \mathbf{1}_A(\omega,s) d\langle M \rangle_s(\omega) \right] dP$$

Then $(\Omega \times [0, \infty), \mathcal{F} \otimes \mathcal{B}([0, \infty)), P_M)$ is a measure space. Let

$$\mathscr{L}^2(M) = \{\Phi \in L^2\left(\Omega \times [0,\infty), \mathcal{F} \otimes \mathcal{B}([0,\infty)), P_M\right) : \Phi \text{ is progressively measurable}\}.$$

 $\mathscr{L}^2(M)$ is a closed subspace of $L^2(\Omega \times [0,\infty), \mathcal{F} \otimes \mathcal{B}([0,\infty)), P_M)$ and also a Hilbert space, with the inner product written as

$$(\Phi, \Psi)_{\mathscr{L}^2(M)} = \mathbf{E} \left[\int_0^\infty \Phi_s \Psi_s d\langle M \rangle_s \right].$$

The associated norm is

$$\|\Phi\|_{\mathscr{L}^2(M)} = \left(\mathbb{E} \left[\int_0^\infty \Phi_s^2 d\langle M \rangle_s \right] \right)^{\frac{1}{2}}.$$

Therefore, $\mathcal{L}^2(M)$ consists of all the progressive processes Φ such that

$$\mathrm{E}\left[\int_0^\infty \Phi_s^2 d\langle M \rangle_s\right] < \infty$$

with the identifications for all processes that only differ on P_M -null sets.

Definition 7.2 (elementary process) An elementary process is a progressive process of the form

$$\Phi_t(\omega) = \sum_{i=0}^{p-1} \Phi_{(i)}(\omega) \mathbf{1}_{(t_i, t_{i+1}]}(t)$$

where $0 = t_0 < t_1 < t_2 < \dots < t_p$ and for every $i \in \{0, 1, \dots, p-1\}, \Phi_{(i)}$ is a bounded \mathscr{F}_{t_i} -measurable random variable.

The set $\mathscr E$ of all elementary processes forms a linear subspace of $L^2(M)$. To be precise, we should here say "equivalence classes of elementary processes" "(recall that Φ and Φ' are identified in $\mathscr L^2(M)$ if $\|\Phi - \Phi'\|_{\mathscr L^2(M)} = 0$).

Proposition 7.2 For every $M \in \mathcal{M}_{0,c}^2, \mathcal{E}$ is dense in $\mathcal{L}^2(M)$.

Theorem 7.1 Let $M \in \mathcal{M}_{0,c}^2$. For every $\Phi \in \mathcal{E}$ of the form

$$\Phi_t(\omega) = \sum_{i=0}^{p-1} \Phi_{(i)}(\omega) \mathbf{1}_{(t_i, t_{i+1}]}(t)$$

the formula

$$(\Phi \cdot M)_t = \int_0^t \Phi_s dM_s := \sum_{i=0}^{p-1} \Phi_{(i)} \left(M_{t_{i+1} \wedge t} - M_{t_i \wedge t} \right)$$

defines a process $\Phi \cdot M \in \mathscr{M}^2_{0,c}$. The mapping $I_M^* : \mathscr{E} \to \mathscr{M}^2_{0,c}, \ \Phi \mapsto \Phi \cdot M$ can extend to a linear isometry

$$I_M: \mathscr{L}^2(M) \longrightarrow \mathscr{M}^2_{0,c}$$

 $\Phi \longmapsto \Phi \cdot M.$

which means

$$\|\Phi \cdot M\|_{\mathcal{M}_c^2} = \left(\mathbb{E}\left[\left(\int_0^\infty \Phi_s dM_s \right)^2 \right] \right)^{\frac{1}{2}} = \|\Phi\|_{\mathcal{L}^2(M)} = \left(\mathbb{E}\left[\int_0^\infty \Phi_s^2 d\langle M \rangle_s \right] \right)^{\frac{1}{2}}.$$

Furthermore, $\Phi \cdot M$ is the unique martingale in $\mathcal{M}_{0,c}^2$ that satisfies the property

$$\begin{split} \langle \Phi \cdot M, N \rangle &= \Phi \cdot \langle M, N \rangle, \quad \forall N \in \mathcal{M}_{0,c}^2, \\ \left\langle \int_0^{\cdot} \Phi_s dM_s, N \right\rangle_t &= \int_0^t \Phi_s d\left\langle M, N \right\rangle_s, \quad \forall N \in \mathcal{M}_{0,c}^2, \ t \in [0, \infty). \end{split}$$

We call $H \cdot M$ the stochastic integral of H with respect to M.

Proposition 7.3 Assume that $M, N \in \mathcal{M}_{0,c}^2$, $\Phi \in \mathcal{L}^2(M)$, $\Psi \in \mathcal{L}^2(N)$. Then

$$\left\langle \int_0^{\cdot} \Phi_s dM_s, \int_0^{\cdot} \Psi_s dN_s \right\rangle_t = \int_0^t \Phi_s \Psi_s d\langle M, N \rangle_s, \quad \forall t \in [0, \infty].$$

Proposition 7.4 If τ is a stopping time with respect to $(\mathcal{F}_t)_{t\geq 0}$, we have

7.2 Stochastic Integrals for Local Martingales

We will now use the identities (5.3) to extend the definition of $\Phi \cdot M$ to an arbitrary continuous local martingale. If $M \in \mathscr{M}^{loc}_{0,c}$, we write $\mathscr{L}^2_{loc}(M)$ for the set of all progressive processes Φ such that for all $t \geq 0$,

$$\int_0^t \Phi_s^2 \mathrm{d}\langle M, M \rangle_s < \infty.$$

For future reference, we note that $\mathscr{L}^2_{\mathrm{loc}}(M)$ can again be viewed as an "ordinary" L^2 -space and thus has a Hilbert space structure. Clearly we see $\mathscr{L}^2(M) \subset \mathscr{L}^2_{\mathrm{loc}}(M)$.

Appendix

1. Properties of Common Distributions

Distribution	pmf P(X = k)	Support	Mean	Variance
Bernoulli $B(1,p)$	$p^k(1-p)^{1-k}$	{0,1}	p	p(1-p)
Binomial $B(n, p)$	$\binom{n}{k} p^k (1-p)^{n-k}$	$\{0,\cdots,n\}$	np	np(1-p)
Negative Binomial $NB(r, p)$	$\binom{k+r-1}{k}(1-p)^r p^k$	N	$\frac{pr}{1-p}$	$\frac{pr}{(1-p)^2}$
Poisson $Pois(\lambda)$	$\frac{\lambda^k e^{-\lambda}}{k!}$	N	λ	λ
Geometric $Geo(p)$	$(1-p)^{k-1}p$	\mathbb{N}_+	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Hypergeometric $H(N, K, n)$	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$	$\{0,\cdots,\min\left(n,K\right)\}$	$n\frac{K}{N}$	$n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$
Uniform (discrete) $DU(a, b)$	$\frac{1}{n}$	$\{a, a+1, \ldots, b\}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2 - 1}{12}$

Distribution	pdf	Mean	Variance
Degenerate δ_a	$I_{\{a\}}(x)$	a	0
Uniform (continuous) $U(a,b)$	$\frac{1}{b-a}I_{[a,b]}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential $Exp(\lambda) = \Gamma(1, \lambda)$	$\lambda e^{-\lambda x} I_{[0,+\infty)}(x)$	λ^{-1}	λ^{-2}
Normal $N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Log-normal $LogN(\mu, \sigma^2)$	$\frac{1}{x\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$	$e^{\gamma + \frac{\sigma^2}{2}}$	$e^{2(\gamma+\sigma^2)} - e^{2\gamma+\sigma^2}$
Gamma $\Gamma(\alpha, \beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} I_{(0,+\infty)}(x)$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
Beta $B(\alpha, \beta)$	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}I_{(0,1)}(x)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Chi-squared $\chi_k^2 = \Gamma(\frac{k}{2}, \frac{1}{2})$	$\frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2} I_{(0,+\infty)}(x)$	k	2k
Student's t t_{ν}	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$	0	$\frac{\nu}{\nu - 2} \text{ for } \nu > 2$

2. Generating Function & Characteristic Function

Distribution	Moment-generating function	Characteristic function	
Degenerate δ_a	e^{ta}	e^{ita}	
Bernoulli $B(1,p)$	$1 - p + pe^t$	$1 - p + pe^{it}$	
Geometric $Geo(p)$	$\frac{pe^t}{1 - (1 - p)e^t},$ $t < -\ln(1 - p)$	$\frac{pe^{it}}{1 - (1 - p)e^{it}}$	
Binomial $B(n,p)$	$(1 - p + pe^t)^n$	$(1 - p + pe^{it})^n$	
Negative Binomial $NB(r, p)$	$\frac{(1-p)^r}{(1-pe^t)^r}$	$\frac{(1-p)^r}{(1-pe^{it})^r}$	
Poisson $Pois(\lambda)$	$e^{\lambda(e^t-1)}$	$e^{\lambda \left(e^{it}-1 ight)}$	
Uniform (continuous) $U(a, b)$	$\begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & \text{for } t \neq 0\\ 1 & \text{for } t = 0 \end{cases}$	$\begin{cases} \frac{e^{itb} - e^{ita}}{it(b-a)} & \text{for } t \neq 0\\ 1 & \text{for } t = 0 \end{cases}$	
Uniform (discrete) $DU(a, b)$	$\frac{e^{at} - e^{(b+1)t}}{(b-a+1)(1-e^t)}$	$\frac{e^{it\mu}}{\left(b-a+1\right)\left(1-e^{it}\right)}$	
Laplace $L(\mu, b)$	$\frac{e^{t\mu}}{1 - b^2 t^2}, \ t < 1/b$	$\frac{e^{it\mu}}{1 + b^2 t^2}$ $e^{it\mu - \frac{1}{2}\sigma^2 t^2}$	
Normal $N(\mu, \sigma^2)$	$e^{t\mu + \frac{1}{2}\sigma^2 t^2}$	$e^{it\mu - \frac{1}{2}\sigma^2 t^2}$	
Chi-squared χ_k^2	$(1-2t)^{-\frac{k}{2}}$	$(1-2it)^{-\frac{k}{2}}$	
Noncentral chi-squared $\chi_k^2(\lambda)$	$e^{\lambda t/(1-2t)}(1-2t)^{-\frac{k}{2}}$	$e^{i\lambda t/(1-2it)}(1-2it)^{-\frac{k}{2}}$	
Gamma $\Gamma(\alpha, \beta)$	$\left(1 - \frac{t}{\beta}\right)^{-\alpha}, \ t < \beta$	$\left(1 - \frac{it}{\beta}\right)^{-\alpha}$	
Beta $B(\alpha, \beta)$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}$	$_{1}F_{1}(\alpha;\alpha+\beta;it)$	
Exponential $Exp(\lambda)$	$\frac{\lambda}{\lambda - t}, t < \lambda$	$\frac{\lambda}{\lambda - it}$	
Multivariate normal $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	$\left \begin{array}{l} e^{\mathbf{t}^T \left(oldsymbol{\mu} + rac{1}{2} oldsymbol{\Sigma} \mathbf{t} ight)} \end{array} ight.$	$e^{\mathbf{t}^T\left(i\boldsymbol{\mu}-\frac{1}{2}\mathbf{\Sigma}\mathbf{t}\right)}$	
Cauchy $Cauchy(\mu, \theta)$	Does not exist	$e^{it\mu-\theta t }$	
Multivariate Cauchy $MultiCauchy(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	Does not exist	$e^{i\mathbf{t}^{\mathrm{T}}\boldsymbol{\mu} - \sqrt{\mathbf{t}^{\mathrm{T}}\boldsymbol{\Sigma}\mathbf{t}}}$	