Contents

Ca	lculo vectorial 4
	Propiedades producto escalar
	Conmutatividad
	Distributividad
	Multiplicación por escalar
	Producto escalar nulo
	Norma
	Definicion
	Distancia
	Propiedades Norma
	Norma nula
	Multiplicacion por escalar
	Designaldad triangular
	Producto escalar y norma
	Designaldad Cauchy-Schwarz
	Ortogonalidad
	Paralelismo
	Rectas en R2 y R3
	Rectas paralelas
	Rectas ortogonales
	Ecuacion vectorial de la recta en R2
	Ecuacion de la recta en R3
	Planos en R3
	Plano normal
	Ecuaciones del plano
	Ecuacion normal
	Ecuacion cartesiana
	Producto vectorial
	Definicion
	Computar producto vectorial
	Propiedad producto vectorial
	Vectores nulos o paralelos
	Angulo entre dos planos
	Funciones vectoriales
	Definicion
	Dominio
	Imagen
	Limite
	Continuidad
	Derivada
	Reglas de derivacion para funciones vectoriales
	Suma y resta
	Multiplicacion por una constante
	Multiplicacion por una funcion real
	1 P :

Derivada del producto escalar		 			8
Regla de la cadena					
Funciones de varias variables					8
Definicion					8
Dominio					9
Imagen					9
Grafico					9
Bola					9
Limite		 			9
Continuidad					9
Derivadas parciales					9
Derivadas parciales: Generalizacion					10
Definicion		 			10
Observaciones		 			10
Continuidad y derivada parcial		 			10
Plano tangente					10
Definicion					10
Ecuacion vectorial					10
Ecuacion normal					10
Regla de la cadena					11
Caso 1					11
Caso 2					11
Vector unitario					11
Derivada direccional					12
Definicion					12
Consideración para vectores no unitarios					12
Derivada direccional y derivada parcial					12
Gradiente					12
Definicion					12
Gradiente y Derivada direccional					12
Direccion de crecimiento					12
Curva de nivel					13
Definicion					13
Recta tangente					13
Superficie de nivel					13
Definicion					13
Plano tangente					13
Derivadas de orden 2					13
Ejemplo					13
Criterio para conocer la cantidad de derivadas					14
n=3					14
Teorema	 -	 	-		14
Maximos y minimos					14
Maximo local		 			14
Minimo local					1.4

	Maximo o minimo absoluto	1
	Extremo local	1
	Extremo local y derivadas parciales	1
	Puntos criticos y singulares	15
Test	de la derivada segunda	15

Calculo vectorial

Propiedades producto escalar

Conmutatividad

$$\langle A, B \rangle = \langle B, A \rangle$$

Distributividad

$$\langle A, B + C \rangle = \langle A, B \rangle + \langle A, C \rangle$$
 y viceversa

Multiplicacion por escalar

$$r\langle A, B \rangle = \langle rA, B \rangle = \langle A, rB \rangle$$

Producto escalar nulo

$$\langle A, A \rangle = 0 \Leftrightarrow A = 0$$

Norma

Definicion

$$A \in \mathbb{R}^n$$
,

$$||A|| = \sqrt{\langle A, A \rangle}$$

Es la longitud del vector

Distancia

$$A, B \in \mathbb{R}^n$$
,

$$d(A, B) = ||A - B||$$
 (Distancia entre dos puntos)

$$d(A,0) = ||A||$$
 (distancia al origen)

Propiedades Norma

Norma nula

$$||A|| = 0 \Leftrightarrow A = 0$$

Multiplicacion por escalar

$$||rA|| = |r|||A||$$

Desigualdad triangular

$$||A + B|| \le ||A|| + ||B||$$

Producto escalar y norma

 $\langle A,B\rangle = ||A|| \; ||B|| \; cos\theta$ donde $0 \leq \theta \leq \pi$ es el angulo (radianes) entre A y B

Desigualdad Cauchy-Schwarz

$$|\langle A, B \rangle| \le ||A|| \ ||B||$$

Ortogonalidad

 $A, B \in \mathbb{R}^n$ no nulos,

 $\langle A, B \rangle = 0 \Rightarrow$ Son ortogonales (o perpendiculares)

Paralelismo

 $A, B \in \mathbb{R}^n$ no nulos $r \in \mathbb{R}$

 $A = rB \Rightarrow \text{Son paralelos}$

Rectas en R2 y R3

la recta ℓ que pasa por el punto P_0 y tiene dirección V es:

$$\ell = \{X \in \mathbb{R}^n : X = P_0 + tV, \text{ con } t \in \mathbb{R}\} \text{ con n=2 o n=3}$$

Rectas paralelas

Dos rectas son paralelas si sus vectores direccion son paralelos

Rectas ortogonales

Dos rectas son ortogonales (perpendiculares) si sus vectores direccion son ortogonales

Ecuacion vectorial de la recta en R2

 $P_0,P_1\in\mathbb{R}^2(o~\mathbb{R}^3),$ la ecuación vectorial de la recta que pasa por P0 y P1 es

$$X = P_0 + t(P_1 - P_0), \text{ con } t \in \mathbb{R}$$

Ecuacion de la recta en R3

$$P_0 = (x, y, z), V = (v_1, v_2, v_3)$$

Ecuacion vectorial: $X = P_0 + tV$ con $t \in \mathbb{R}$

Ecuacion parametrica:

$$x = x_0 + tv_1$$

$$y = y_0 + tv_2$$

$$z = z_0 + tv_3$$

No hay ecuacion explicita e implicita

Planos en R3

 $V,W\in\mathbb{R}^3,$ no nulos ni paralelos, y $P\in\mathbb{R}^3$

La ecuacion vectorial del plano generado por V y W que pasa por P es:

$$X = P + tV + rW$$
, con $t, r \in \mathbb{R}$

Plano normal

El plano normal a N y que pasa por P0 es el conjunto de puntos $\bar{X} \in \mathbb{R}^3$ tq $\bar{X}-P_0$ es perpendicular a N, es decir

$$\langle \bar{X} - P_0, N \rangle = 0 \rightarrow \text{Ecuacion normal de plano}$$

Ecuaciones del plano

Ecuacion normal

$$\langle X-P_0,N\rangle=0 \quad o ext{Ecuacion normal de plano}$$

Ecuacion cartesiana

$$X = (x, y, z), P_0 = (x_0, y_0, z_0), N = (a, b, c),$$

$$d = ax_0 + by_0 + cz_0$$

$$\Rightarrow ax + by + cz = d$$
 \rightarrow ecuacion cartesiana del plano

Producto vectorial

Definicion

$$V = (v_1, v_2, v_3), W = (w_1, w_2, w_3)$$

Definimos el producto vectorial $V \times W$ como:

$$V \times W = (v_2w_3 - w_2v_3, w_1v_3 - v_1w_3, v_1w_2 - w_1v_2)$$

Computar producto vectorial

$$V = (v_1, v_2, v_3), W = (w_1, w_2, w_3)$$

Otra forma de computarlo

$$\begin{pmatrix} v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix}$$

Ir tachando columnas y calcular el determinante de las columnas restantes El determinante del medio es negativo

Propiedad producto vectorial

El vector $V \times W$ es perpendicular a V y W y al plano generado por V y W (Siempre y cuando V y W sean no nulos y no paralelos)

Vectores nulos o paralelos

$$V = 0 \lor W = 0$$
 o V y W paralelos $\Rightarrow V \times W = (0, 0, 0)$

Angulo entre dos planos

 α es el angulo entre dos planos si α es el angulo correspondiente a sus vectores normales (o perpendiculares)

Funciones vectoriales

Definicion

$$f_i: \mathbb{R} \to \mathbb{R}, \text{ con } i = 1, \dots, n$$

Llamamos funcion vectorial a la funcion

$$f: \mathbb{R} \to \mathbb{R}^n$$
 dada por $f(t) = (f_1(t), \dots, f_n(t))$

Los fi se llaman funciones coordenadas de f

Dominio

$$Dom(f) = \bigcap_{i=1}^{n} Dom(f_i)$$

Imagen

$$f: \mathbb{R} \to \mathbb{R}^n$$

la imagen de f es el conjunto de \mathbb{R}^n

definido por
$$Im(f) = \{(y_1, \dots, y_n) \in \mathbb{R}^n : \exists t \in Dom(f) \text{ con } f(t) = (y_1, \dots, y_n)\}$$

Cuando n=2 la imagen es una curva en el plano

Cuando n=3 la imagen es una curva en el espacio

Limite

Sea f
 una funcion vectorial, definimos el limite de f
 cuando $t \to a$ como

$$\lim_{t\to a} f(t) = (\lim_{t\to a} f_1(t), \dots, \lim_{t\to a} f_n(t))$$

Siempre y cuando existan los limites para $f_i, \forall i = 1, \dots, n$

Continuidad

$$a \in Dom(f)$$

f es continua en a $\Leftrightarrow f_i$ es continua en a $\forall i = 1, \dots, n$

Derivada

$$f'(a) = (f'_1(a), \dots, f'_n(a))$$

(derivo coordenada a coordenada)

Reglas de derivacion para funciones vectoriales

Suma y resta

f y g funciones vectoriales, $\varphi : \mathbb{R} \to \mathbb{R}, k \in \mathbb{R}$

$$(f(t) \pm g(t))' = f'(t) \pm g'(t)$$

Multiplicacion por una constante

f y g funciones vectoriales, $\varphi:\mathbb{R}\to\mathbb{R}, k\in\mathbb{R}$

$$(kf(t))' = kf'(t)$$

Multiplicacion por una funcion real

f y g funciones vectoriales, $\varphi: \mathbb{R} \to \mathbb{R}, k \in \mathbb{R}$

$$(\varphi(t) \cdot f(t))' = \varphi'(t)f(t) + \varphi(t)f'(t)$$

Derivada del producto escalar

f y g funciones vectoriales, $\varphi : \mathbb{R} \to \mathbb{R}, k \in \mathbb{R}$

$$\langle f(t), g(t) \rangle' = \langle f'(t), g(t) \rangle + \langle f(t), g'(t) \rangle$$

Regla de la cadena

f y g funciones vectoriales, $\varphi : \mathbb{R} \to \mathbb{R}, k \in \mathbb{R}$

$$f(\varphi(t))' = f'(\varphi(t)) \cdot \varphi'(t)$$

Funciones de varias variables

Definicion

una funcion f de n
 variables es una regla que asigna a cada n-tupla $\bar{x}=(x_1,...,x_n)$ un unico numero real:

$$f(\bar{x}) = f(x_1, ..., x_n)$$

Dominio

 $Dom(f) = \{\bar{x} \in \mathbb{R}^n : f(\bar{x}) \text{ Está bien definida } \}$

Imagen

$$Im(f) = \{ y \in \mathbb{R} : \exists \bar{x} \in Dom(f) \text{ con } y = f(\bar{x}) \}$$

Grafico

$$G(f) = \{(\bar{x}, f(\bar{x})) \in \mathbb{R}^{n+1} : \bar{x} \in Dom(f)\}$$

Bola

Sea r > 0 y $\bar{a} \in \mathbb{R}^n$

llamamos bola (abierta) de centro \bar{a} y radio r al conjunto

$$B(\bar{a}, r) = \{ \bar{x} \in \mathbb{R}^n : ||\bar{x} - \bar{a}|| < r \}$$

Limite

 $\bar{a} \in \mathbb{R}^n, y \ f: Dom(f) \subset \mathbb{R}^n \to \mathbb{R}$ definida en un dominio Dom(f) que incluye puntos arbitrariamente cercanos a \bar{a} decimos que

$$\lim_{\bar{x}\to\bar{a}} f(\bar{x}) = L$$

Si
$$\forall \epsilon > 0, \exists \delta > 0 \text{ tq } \bar{x} \in Dom(f) \cap B(\bar{a}, \delta) \Rightarrow |f(\bar{x}) - L| < \epsilon$$

$$\bar{x} \in Dom(f) \Rightarrow \|\bar{x} - \bar{a}\| < \delta \Rightarrow |f(\bar{x}) - L| < \epsilon$$

Si existen limites distintos para aproximarse a \bar{a} . Entonces el limite no existe

Continuidad

$$f: Dom(f) \subseteq \mathbb{R}^n \to \mathbb{R} \ \mathrm{y} \ \bar{a} \in \mathbb{R}^n$$

decimos que f es continua en \bar{a} si $\bar{a} \in Dom(f)$ y $\lim_{\bar{x} \to \bar{a}} f(\bar{x}) = f(\bar{a})$

Decimos que f es continua si f es continua $\forall \bar{x} \in Dom(f)$

Valen propiedades similares para las funciones continuas de $\mathbb{R} \to \mathbb{R}$

Derivadas parciales

$$f: \mathbb{R}^2 \to \mathbb{R}, \ (a,b) \in \mathbb{R}^2$$

Definimos la derivada parcial de f con respecto a x en el punto (x,y) como

$$\frac{\delta f}{\delta x}(x,y) = f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

Fijamos una de las variables y la pensamos como una constante

Derivadas parciales: Generalizacion

Definicion

Sean $f: \mathbb{R}^n \to \mathbb{R}$, $\bar{a} \in \mathbb{R}^n$, sup. $B(\bar{a}, r) \subset Dom(f)$ para algun r > 0Definimos la derivada parcial de f respecto a x_j en el punto \bar{a} como $\frac{\partial f}{\partial x_j}(a_1, \dots, a_n) = f_{x_j}(a_1, \dots, a_n)$ $= \lim_{h \to 0} \frac{f(a_1, \dots, a_{j-1}, a_j + h, a_{j+1}, \dots, a_n) - f(a_1, \dots, a_n)}{h}$

Observaciones

Para calcular la derivada parcial de f
 tomar un argumento como variable y todo el resto como constantes

 $f:\mathbb{R}^n\to\mathbb{R}$ con $n\geq 2\Rightarrow$ no se puede afirmar que f
 es continua en cierto punto si f
 es derivable en dicho punto

Continuidad y derivada parcial

 $f: Dom(f) \subseteq \mathbb{R}^n \to \mathbb{R}, \bar{a} \in Dom(f)$ y $B(\bar{a}, r) \subset Dom(f)$ para algun r > a f_{x_1}, \ldots, f_{x_n} existen y son continuas para todo $\bar{x} \in B(\bar{a}, r) \Rightarrow f$ es continua $\forall \bar{x} \in B(\bar{a}, r)$

(En particular para $\bar{x} = \bar{a}$)

Plano tangente

Definicion

Sea $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ y $(a,b) \in Dom(f)$ El plano que pasa por (a,b,f(a,b))y es generado por los vectores $(1,0,f_x(a,b))$ y $(0,1,f_y(a,b))$ se llama plano tangente al grafico de f en el punto (a,b,f(a,b))

Ecuacion vectorial

La ecuacion vectorial del plano tangente del grafico de f en (a, b, f(a, b)) es $(x, y, z) = (a, b, f(a, b)) + t(1, 0, f_x(a, b)) + r(0, 1, f_y(a, b)), \text{ con } t, r \in \mathbb{R}$

Ecuacion normal

La ecuacion normal del plano tangente al grafico de f en (a, b, f(a, b)) es $z = (x - a)f_x(a, b) + (y - b)f_y(a, b) + f(a, b)$

Regla de la cadena

Caso 1

Sea $f: Dom(f) \subseteq \mathbb{R}^n \to \mathbb{R}, \bar{a} \in Dom(f)$ tal que

$$\frac{\partial f}{\partial x_1},\dots,\frac{\partial f}{\partial x_n}$$
existen y son continuas en $B(\bar a,r)$ para algun $r>0$

Sean $x_i: I \to \mathbb{R}$ funciones derivables $\forall t \in I$, con $1 \le i \le n$ y $I \subseteq \mathbb{R}$ y tal que $(x_1(t), \dots, x_n(t)) \in B(\bar{a}, r) \forall t \in I$

Entonces la funcion

$$g(t) = f(x_1(t), \dots, x_n(t))$$
 es derivable $\forall t \in I$

v ademas

$$\frac{dg}{dt} = g'(t) = \frac{\partial f}{\partial x_1}(x_1(t), \dots, x_n(t)) \cdot x_1'(t) + \dots + \frac{\partial f}{\partial x_n}(x_1(t), \dots, x_n(t)) \cdot x_n'(t)$$

Caso 2

Sea $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}, \bar{a}_1 \in Dom(f)$ tal que

$$\frac{\partial f}{\partial x_1}$$
 y $\frac{\partial f}{\partial x_2}$ existen y son continuas en $B(\bar{a}_1,r_1)$ para algun $r_1>0$

Sean

$$x: Dom(x) \subseteq \mathbb{R}^2 \to \mathbb{R}$$
 y

$$y: Dom(y) \subset \mathbb{R}^2 \to \mathbb{R}$$

dos funciones con sus derivadas parciales continuas en $B(\bar{a}_0,r_0)$ para algun $r_0>0$

y tal que

$$(x(s,t),y(s,t)) \in B(\bar{a}_1,r_1) \forall (s,t) \in B(\bar{a}_0,r_0)$$

Entonces la funcion definida por

$$g(s,t) = f(x(s,t), y(s,t)) \forall (s,t) \in B(\bar{a}_0, r_0)$$

Tiene derivadas parciales dadas por

$$\frac{\partial g}{\partial s}(s,t) = \frac{\partial f}{\partial x}(x(s,t),y(s,t)) \cdot \frac{\partial x}{\partial s}(s,t) + \frac{\partial f}{\partial y}(x(s,t),y(s,t)) \cdot \frac{\partial g}{\partial s}(s,t)$$

$$\frac{\partial g}{\partial t}(s,t) = \frac{\partial f}{\partial x}(x(s,t),y(s,t)) \cdot \frac{\partial x}{\partial t}(s,t) + \frac{\partial f}{\partial y}(x(s,t),y(s,t)) \cdot \frac{\partial g}{\partial t}(s,t)$$

Vector unitario

Decimos que $\bar{u} = (u_1, \dots, u_n) \in \mathbb{R}^n$ es un vector unitario si ||u|| = 1

Derivada direccional

Definicion

Sean $f: Dom(f) \subseteq \mathbb{R}^n \to \mathbb{R}$, $\bar{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$ tq $B(\bar{a}, r) \subseteq Dom(f)$ para algun r > 0 y \bar{u} un vector unitario

Definimos la derivada direccional de f
 en la direccion de \bar{u} en el punto \bar{a} como:

$$D_{\bar{u}}f(\bar{a}) = \lim_{h \to 0} \frac{f(a_1 + hu_1, \dots, a_n + hu_n) - f(a_1, \dots, a_n)}{h}$$

(si este limite existe)

Consideracion para vectores no unitarios

Si el vector \bar{u} no es unitario, entonces consideramos

$$\bar{v} = \frac{\bar{u}}{\|u\|}$$
 (unitario y misma direccion que u)

Derivada direccional y derivada parcial

$$\bar{u}=e_i=(0,\ldots,1,\ldots,0)$$

$$\Rightarrow D_{e_i} f(\bar{a}) = \frac{\partial f}{\partial x_1}(\bar{a})$$

osea, las derivadas parciales son un caso particular de la derivada direccional

Gradiente

Definicion

Sea $f: Dom(f) \subseteq \mathbb{R}^n \to \mathbb{R}$ y $\bar{a} \in Dom(f)$ tq existen $\frac{\partial f}{\partial x_i}(\bar{a}) \forall i = 1, \dots, n$

Llamamos gradiente de f
 en \bar{a} al vector:

$$\nabla f(\bar{a}) = \left(\frac{\partial f}{\partial x_1}(\bar{a}), \dots, \frac{\partial f}{\partial x_n}(\bar{a})\right)$$

Gradiente y Derivada direccional

Sea $f:Dom(f)\subseteq\mathbb{R}^n\to\mathbb{R}$ tal que $\frac{\partial f}{\partial x_i}(\bar{x})$ existen y son continuas $\forall x\in B(\bar{a},r)\subseteq Dom(f)$ y $\forall i=1,\ldots,n$

y $\bar{u} = (u_1, \dots, (u_n))$ un vector unitario

Entonces vale que:

$$D_{\bar{u}}f(\bar{a}) = \langle \nabla f(\bar{a}), \bar{u} \rangle = \frac{\partial f}{\partial x_1} u_1 + \dots + \frac{\partial f}{\partial x_n} (\bar{a}) u_n$$

Direccion de crecimiento

Sean $f: Dom(f) \subseteq \mathbb{R}^n \to \mathbb{R}$ y

 $\bar{a}\in Dom(f)$ tq $\frac{\partial f}{\partial x_i}(\bar{x})$ existen y son continuas $\forall x\in B(\bar{a},r)$ y para $1\leq i\leq n$

Si $\nabla f(\bar{a}) \neq (0, \dots, 0) \Rightarrow$

- (i) El vector $\bar{u}=\frac{\nabla f(\bar{a})}{\|\nabla f(\bar{a})\|}$ da la direccion de maximo crecimiento de f en \bar{a}
- (ii) El vector $\bar{v} = -\frac{\nabla f(\bar{a})}{\|\nabla f(\bar{a})\|}$ da la direccion de minimo crecimiento de f en \bar{a}

Curva de nivel

Definicion

Sea $K \in \mathbb{R}$ y $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$

LLamamos curva de nivel K de f al subconjunto de Dom(f) definido por

$$C_k = \{(x, y) \in Dom(f) : f(x, y) = k\}$$

 $(C_k \text{ puede ser } \emptyset, \text{ puntos aislados, o una curva})$

Recta tangente

La recta tangente a la curva de nivel de f qu epasa por (x_0, y_0) esta definida como:

$$(x,y) = (x_0,y_0) + t\left(-\tfrac{\partial f}{\partial y}(x_0,y_0), \tfrac{\partial f}{\partial x}(x_0,y_0)\right) \text{ con } t \in \mathbb{R}$$

Superficie de nivel

Definicion

Sea $K \in \mathbb{R}$ y $f: Dom(f) \subseteq \mathbb{R}^3 \to \mathbb{R}$

Llamamos superficie de nivel K de f al subconjunto de Dom(f) definido por

$$S_k = \{(x, y, z) \in Dom(f) : f(x, y, z) = k\}$$

Plano tangente

La ecuación del plano tangente a la superficie de nivel que pasa por es: (x_0, y_0, z_0)

$$\langle (x, y, z) - (x_0, y_0, z_0), \nabla f(x_0, y_0, z_0) \rangle = 0$$

es el vector normal del plano (x_0, y_0, z_0)

Derivadas de orden 2

Ejemplo

Si n=2 hay 4 derivadas parciales de orden 2:

$$(f_x)_x = f_{xx} = \frac{\partial f}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$$

$$(f_x)_y = f_{xy} = \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$$

$$(f_y)_x = f_{yx} = \frac{\partial f}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

$$(f_y)_y = f_{yy} = \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}$$

Criterio para conocer la cantidad de derivadas

Por lo general, si f
 tiene n variables, entonces hay n^2 derivadas parciales de orden
 $2\,$

n=3

Si n=3, hay 9 derivadas parciales de orden 2:

$$f_{xx}, f_{xy}, f_{xz}, f_{yx}, f_{yy}$$
, etc

Teorema

Sea

$$f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R} \text{ y } \bar{a} \in Dom(f)$$

Si las funciones f_{xy} y f_{yx} son ambas continuas en $B(\bar{a},r)\subseteq Dom(f)$ para algun r>0

$$\Rightarrow$$
 $f_{xy}(\bar{x}) = f_{yx}(\bar{x}), \quad \forall \bar{x} \in B(\bar{a}, r)$

Maximos y minimos

Maximo local

Sea $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ y $(x_0, y_0) \in Dom(f)$ decimos que:

f tiene un maximo local en (x_0,y_0) si existe una bola (disco) B centrada en (x_0,y_0) , con $B\subset Dom(f)$

y tal que
$$f(x_0, y_0) \ge f(x, y) \ \forall (x, y) \in B$$

El numero $f(x_0, y_0)$ se llama valor maximo local de f

Minimo local

Sea $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ y $(x_0, y_0) \in Dom(f)$ decimos que:

f tiene un minimo local en (x_0,y_0) si existe una bola (disco) B centrada en (x_0,y_0) , con $B\subset Dom(f)$

y tal que
$$f(x_0, y_0) \le f(x, y) \ \forall (x, y) \in B$$

El numero $f(x_0, y_0)$ se llama valor minimo local de f

Maximo o minimo absoluto

Si las desigualdades se cumplen $\forall (x,y) \in Dom(f)$ entonces decimos que f tiene un maximo (o minimo, segun corresponda) absoluto en (x_0, y_0)

Extremo local

Decimos que f tiene un extremo local en (x_0, y_0) si f tiene un maximo local o un minimo local en (x_0, y_0)

Extremo local y derivadas parciales

Si $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ tiene un extremo local en (x_0, y_0) y existen las derivadas parciales de f en (x_0, y_0) entonces:

$$f_x(x_0, y_0) = f_y(x_0, y_0) = 0$$

Puntos criticos y singulares

Si $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ tiene un extremo local en (x_0, y_0) entonces:

- o bien (x_0, y_0) es punto critico de f (y por lo tanto $\nabla f(x_0, y_0) = 0$)
- o bien (x_0, y_0) es punto singular de f (y por lo tanto $\nexists \nabla f(x_0, y_0)$)

Test de la derivada segunda

Sean $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ y $(x_0, y_0) \in Dom(f)$

Supongamos que las derivadas parciales de 1er y 2do orden de f
 son continuas en una bola $B \subset Dom(f)$ de centro (x_0, y_0)

y supongamos ademas que $\nabla f(x_0, y_0) = (0, 0)$

Sea
$$D = D(x_0, y_0) = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2$$

entonces:

- (1) D > 0 y $f_{xx}(x_0, y_0) > 0(of_{yy}(x_0, y_0) > 0) \Rightarrow$ f tiene minimo local en (x_0, y_0)
- (2) D>0 y $f_{xx}(x_0,y_0)<0(of_{yy}(x_0,y_0)<0)\Rightarrow$ f tiene maximo local en (x_0,y_0)
- (3) $D < 0 \Rightarrow$ f no tiene ni maximo ni minimo local en (x_0, y_0) En este caso decimos que f tiene un punto silla en (x_0, y_0)
- (4) $D=0 \Rightarrow$ no se puede asegurar nada