Status of Lingcod (*Ophiodon elongatus*) Along the U.S. Pacific Coast in 2017

Melissa A. Haltuch¹
Josh Nowlis¹
Tien-Shui Tsou²
ODFW??³

¹Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112

10

12

13

14

15

16

17

¹¹ Washington Department of Fish and Wildlife, 600 Capitol Way North, Olympia, Washington 98501

³Oregon Department of Fish and Wildlife, 2040 SE Marine Science Drive, Newport, OR 97365

DRAFT SAFE

Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

Status of Lingcod (*Ophiodon elongatus*) Along the U.S. Pacific Coast in 2017

o Contents

21	Ex	xecutive Summary	1
22		Stock	-
23		Catches	1
24		Data and Assessment	6
25		Stock Biomass	8
26		Recruitment	12
27		Exploitation status	14
28		Ecosystem Considerations	17
29		Reference Points	17
30		Management Performance	18
31		Unresolved Problems And Major Uncertainties	18
32		$\label{eq:Decision Table} Decision \ Table(s) \ (ground fish \ only) \ \ \dots \ \ \dots$	19
33		Research And Data Needs	24
34		Rebuilding Projections	24
35	1	Introduction	25
36		1.1 Basic Information	25
37		1.2 Map	25
38		1.3 Life History	25
39		1.4 Ecosystem Considerations	25
40		1.5 Fishery Information	25
41		1.6 Summary of Management History	26
42		1.7 Management Performance	26
43		1.8 Fisheries off Canada, Alaska, and/or Mexico	26

44	2	Asse	essmen	ıt	26
45		2.1	Data		26
46			2.1.1	Commercial Fishery Landings	26
47			2.1.2	Sport Fishery Removals	27
48			2.1.3	Estimated Discards	27
49			2.1.4	Abundance Indices	27
50			2.1.5	Fishery-Independent Data: possible sources	27
51			2.1.6	Biological Parameters and Data	28
52			2.1.7	Environmental Or Ecosystem Data Included In The Assessment \dots	31
53		2.2	History	y Of Modeling Approaches Used For This Stock	31
54			2.2.1	Previous Assessments	31
55			2.2.2	Previous Assessment Recommendations	31
56		2.3	Model	Description	31
57			2.3.1	Transition To The Current Stock Assessment	31
58			2.3.2	Definition of Fleets and Areas	32
59			2.3.3	Summary of Data for Fleets and Areas	32
60			2.3.4	Modeling Software	32
61			2.3.5	Data Weighting	32
62			2.3.6	Priors	32
63			2.3.7	General Model Specifications	32
64			2.3.8	Estimated And Fixed Parameters	32
65		2.4	Model	Selection and Evaluation	33
66			2.4.1	Key Assumptions and Structural Choices	33
67			2.4.2	Alternate Models Considered	33
68			2.4.3	Convergence	33
69		2.5	Respon	nse To The Current STAR Panel Requests	33
70		2.6	Model	1	34
71			2.6.1	Model 1 Base Case Results	34
72			2.6.2	Model 1 Uncertainty and Sensitivity Analyses	34
73			2.6.3	Model 1 Retrospective Analysis	34
74			2.6.4	Model 1 Likelihood Profiles	34
75			265	Model 1 Harvest Control Rules (CPS only)	34

76			2.6.6	Model 1 Reference Points (groundfish only)	34
77		2.7	Model	2	35
78			2.7.1	Model 2 Base Case Results	35
79			2.7.2	Model 2 Uncertainty and Sensitivity Analyses	35
80			2.7.3	Model 2 Retrospective Analysis	35
81			2.7.4	Model 2 Likelihood Profiles	35
82			2.7.5	Model 2 Harvest Control Rules (CPS only)	35
83			2.7.6	Model 2 Reference Points (groundfish only)	35
84		2.8	Model	3	35
85			2.8.1	Model 3 Base Case Results	35
86			2.8.2	Model 3 Uncertainty and Sensitivity Analyses	35
87			2.8.3	Model 3 Retrospective Analysis	35
88			2.8.4	Model 3 Likelihood profiles	35
89			2.8.5	Model 3 Harvest Control Rules (CPS only)	35
90			2.8.6	Model 3 Reference Points (groundfish only)	35
91	3	Har	vest P	rojections and Decision Tables	35
92	4	Reg	ional N	Management Considerations	36
93	5	Rese	earch I	Needs	36
94	6	Ack	nowled	lgments	36
95	7	Tab	les		37
96	8	Figu	ıres		5 9
97	Re	eferer	nces		

Executive Summary

executive-summary

99 Stock

stock

Include: species/area, including an evaluation of any potential biological basis for regional management.

This assessment reports the status of the Lingcod (*Ophiodon elongatus*) resource in U.S. waters off the coast of the California, Oregon, and Washington using data through 2013. Etc...

105 Catches

catches

Include: trends and current levels-include table for last ten years and graph with long term data

 $_{\tt 108}$ Catch figure(s) with fleets: (Figures a-c)

109 Catch table: (Table a)

Table a: Recent Lingcod landings (mt) by fleet.

					tab:Exec_c	catch
Year	Landings 1	Landings 2	Landings 3	Landings 4	Landings 5	Total
2005	-	-	-	-	-	-
2006	-	-	-	-	=	-
2007	-	-	-	-	-	-
2008	-	-	-	-	-	-
2009	-	-	-	-	-	-
2010	-	-	-	-	-	-
2011	-	-	-	-	-	-
2012	-	-	-	-	-	-
2013	-	-	-	-	-	-
2014	-	-	-	-	=	

Figure a: Lingcod landings in fig:Exec_catch1

Figure d: Landings history of Lingcod. fig:r4ss_catches

Data and Assessment

data-and-assessment

- Include: date of last assessment, type of assessment model, data available, new information, and information lacking.
- Lingcod was assessed.... This assessment uses the newest version of Stock Synthesis (3.24u).
- The model begins in 1876, and assumes the stock was at an unfished equilibrium that year.
- 115 Map of assessment region: (Figure e).

Figure e: Map depicting the boundaries for the base-case model. fig:assess_region_map

Stock Biomass stock-biomass

```
Include: trends and current levels relative to virgin or historic levels, description of uncer-
117
    tainty-include table for last 10 years and graph with long term estimates.
118
    Spawning output Figure: Figure f
119
    Spawning output Table(s): Table b
120
    Relative depletion Figure: Figure g
121
    Example text (remove Models 2 and 3 if not needed - if using, remove the # in-line comments!!!)
122
    The estimated relative depletion level (spawning output relative to unfished spawning output)
    of the base-case model in 2014 is 27.3\% (~95% asymptotic interval: \pm 19.9\%-34.8%)
124
   (Figure g).
125
    The estimated relative depletion level of model 2 in 2014 is (^{\sim}95\% asymptotic interval: \pm)
   (Figure g).
127
    The estimated relative depletion level of model 3 in 2014 is (^{\sim}95\% asymptotic interval: \pm)
   (Figure g).
129
```

Table b: Recent trend in beginning of the year spawning output and depletion for the base model for Lingcod.

Year	Spawning Output	~ 95% confidence	Estimated	$\frac{\text{b:SpawningDeplete_m}}{95\%}$ confidence
	(billion eggs)	interval	depletion	interval
2005	4251.380	(3877.19-	0.123	(0.093 - 0.152)
		4625.57)		
2006	4028.730	(3645.6-4411.86)	0.116	(0.088 - 0.145)
2007	3952.010	(3558.37 -	0.114	(0.086 - 0.142)
		4345.65)		
2008	3654.820	(3241.54-4068.1)	0.106	(0.079 - 0.132)
2009	3465.390	(3008.41-	0.100	(0.074 - 0.127)
		3922.37)		
2010	3310.760	(2770.45-	0.096	(0.068 - 0.123)
		3851.07)		
2011	4198.090	(3514.81-	0.121	(0.087 - 0.156)
		4881.37)		
2012	5712.870	(4803.76-	0.165	(0.119 - 0.211)
		6621.98)		,
2013	7691.440	(6465.54-	0.222	(0.161 - 0.283)
		8917.34)		,
2014	9466.580	(7890.42-	0.273	(0.199 - 0.348)
		11042.74)		()

Spawning biomass (mt) with ~95% asymptotic intervals

Figure f: Time series of spawning output trajectory (circles and line; median; light broken lines: 95% credibility intervals) for the base case assessment model. fig:Spawnbio_all

Spawning depletion with ~95% asymptotic intervals

Figure g: Estimated relative depletion with approximate 95% asymptotic confidnce intervals (dashed lines) for the base case assessment model. \lceil fig:RelDeplete_all

Recruitment recruitment

Include: trends and current levels relative to virgin or historic levels-include table for last 10 years and graph with long term estimates.

Recruitment Figure: (Figure h)

Recruitment Tables: (Tables c, ?? and ??)

Table c: Recent recruitment for the base model.

tab:Recruit_mod1

Year	Estimated Recruitment (1,000s)	~ 95% confidence interval
2005	9501.26	(6008.78 - 12993.74)
2006	16408.30	(10661.04 - 22155.56)
2007	22866.50	(14879.47 - 30853.53)
2008	31400.20	(20649.99 - 42150.41)
2009	13034.00	(7530.52 - 18537.48)
2010	10207.10	(5442.37 - 14971.83)
2011	10285.90	(4750.84 - 15820.96)
2012	14683.10	(5478.95 - 23887.25)
2013	12421.30	(2404.51 - 22438.09)
2014	13495.70	(1954.82 - 25036.58)

Age-0 recruits (1,000s) with ~95% asymptotic intervals

Figure h: Time series of estimated Lingcod recruitments for the base-case model with 95% confidence or credibility intervals.

55 Exploitation status

exploitation-status

- Include: exploitation rates (i.e., total catch divided by exploitable biomass, or the annual SPR harvest rate) include a table with the last 10 years of data and a graph showing the trend in fishing mortality relative to the target (y-axis) plotted against the trend in biomass relative to the target (x-axis).
- Exploitation Tables: Table d, Table ??, Table ?? Exploitation Figure: Figure i).
- A summary of Lingcod exploitation histories for base model is provided as Figure j.

Table d: Recent trend in spawning potential ratio and exploitation for Lingcod in the base model. Fishing intensity is (1-SPR) divided by 50% (the SPR target) and exploitation is F divided by F_{SPR} .

				tab:SPR_Exploit_mod1
Year	Fishing	~ 95% confidence	Exploitation	$\sim 95\%$ confidence
	intensity	interval	rate	interval
2004	0.84	(0.79 - 0.89)	0.25	(0.23-0.27)
2005	0.87	(0.82 - 0.91)	0.33	(0.3-0.36)
2006	0.84	(0.78 - 0.89)	0.26	(0.24-0.29)
2007	0.85	(0.8-0.9)	0.29	(0.26-0.33)
2008	0.84	(0.79 - 0.9)	0.28	(0.24-0.31)
2009	0.86	(0.81 - 0.91)	0.29	(0.24-0.33)
2010	0.69	(0.6-0.78)	0.10	(0.08-0.12)
2011	0.60	(0.5-0.69)	0.06	(0.05-0.08)
2012	0.61	(0.52-0.7)	0.07	(0.06-0.09)
2013	0.67	(0.59 - 0.75)	0.11	(0.09-0.13)

Figure i: Estimated spawning potential ratio (SPR) for the base-case model. One minus SPR is plotted so that higher exploitation rates occur on the upper portion of the y-axis. The management target is plotted as a red horizontal line and values above this reflect harvests in excess of the overfishing proxy based on the SPR $_{50\%}$ harvest rate. The last year in the time series is 2014.

Figure j: Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the base case model. The relative (1-SPR) is (1-SPR) divided by 50% (the SPR target). Relative depletion is the annual spawning biomass divided by the unfished spawning biomass.

142 Ecosystem Considerations

ecosystem-considerations

In this assessment, ecosystem considerations were.....

144 Reference Points

reference-points

Include: management targets and definition of overfishing, including the harvest rate that brings the stock to equilibrium at $B_{40\%}$ (the B_{MSY} proxy) and the equilibrium stock size that results from fishing at the default harvest rate (the F_{MSY} proxy). Include a summary table that compares estimated reference points for SSB, SPR, Exploitation Rate and Yield based on SSBproxy for MSY, SPRproxy for MSY, and estimated MSY values

Write intro paragraph....and remove text for Models 2 and 3 if not needed

This stock assessment estimates that Lingcod in the base model are below the biomass target, 151 but above the minimum stock size threshold. Add sentence about spawning output trend. 152 The estimated relative depletion level for Model 1 in 2014 is 27.3% ($^{\circ}95\%$ asymptotic interval: 153 \pm 19.9%-34.8%, corresponding to an unfished spawning output of 9466.58 billion eggs ($^{\circ}$ 95% 154 asymptotic interval: 7890.42-11042.74 billion eggs) of spawning output in the base model 155 (Table e). Unfished age 1+ biomass was estimated to be 53804.3 mt in the base case model. 156 The target spawning output based on the biomass target $(SB_{40\%})$ is 8659.2 billion eggs, which 157 gives a catch of 2780.5 mt. Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 2748.3 mt. 159

160 This stock assessment estimates that Lingcod in the are

the biomass target, but the minimum stock size threshold. Add sentence about spawning output trend. The estimated relative depletion level for Model 2 in 2014 is (~95% asymptotic interval: \pm), corresponding to an unfished spawning output of (~95% asymptotic interval:) of spawning output in the base model (Table ??). Unfished age 1+ biomass was estimated to be mt in the base case model. The target spawning output based on the biomass target ($SB_{40\%}$) is , which gives a catch of mt. Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is mt.

169 This stock assessment estimates that Lingcod in the are

the biomass target, but
the minimum stock size threshold. Add sentence about spawning output trend. The estimated
relative depletion level or Model 3 in 2014 is (~95% asymptotic interval: ±), corresponding
to an unfished spawning output of (~95% asymptotic interval:) of spawning output in the
base model (Table ??). Unfished age 1+ biomass was estimated to be mt in the base case

model. The target spawning output based on the biomass target $(SB_{40\%})$ is , which gives a catch of mt. Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is mt.

Table e: Summary of reference points and management quantities for the base case base model.

Quantity	Estimate	tab:Ref_pts_mod1 95% Confidence
Quality	Listinate	Interval
Unfished spawning output (billion eggs)	34637	(28339-40935)
Unfished age 1+ biomass (mt)	53804.3	(45613-61995.6)
Unfished recruitment (R0, thousands)	14619	(8827-20411)
Spawning output (2014 billion eggs)	9466.6	(7890.4-11042.7)
Depletion (2014)	0.2733	(0.1989 - 0.3477)
Reference points based on $\mathrm{SB}_{40\%}$		
Proxy spawning output $(B_{40\%})$	8659.2	(7084.8 - 10233.7)
SPR resulting in $B_{40\%}$ ($SPR_{B40\%}$)	0.2735	(0.2504 - 0.2966)
Exploitation rate resulting in $B_{40\%}$	0.1673	(0.1503 - 0.1843)
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	2780.5	(2558.3-3002.8)
Reference points based on SPR proxy for MSY		,
Spawning output	9607.6	(7519.2 - 11695.9)
SPR_{proxy}	0.5	,
Exploitation rate corresponding to SPR_{proxy}	0.1522	(0.1273 - 0.177)
Yield with SPR_{proxy} at SB_{SPR} (mt)	2748.3	(2487.6-3009)
Reference points based on estimated MSY values		,
Spawning output at MSY (SB_{MSY})	7291.5	(5492-9091.1)
SPR_{MSY}	0.2352	(0.172 - 0.2985)
Exploitation rate at MSY	0.193	(0.1637 - 0.2222)
MSY (mt)	2799.7	(2603.5-2996)

178 Management Performance

management-performance

182 Management performance table: Table f

Unresolved Problems And Major Uncertainties

unresolved-problems-and-major-uncertainties

184 TBD after STAR panel

Include: catches in comparison to OFL, ABC and OY/ACL values for the most recent 10 years (when available), overfishing levels, actual catch and discard. Include OFL(encountered), OFL(retained) and OFL(dead) if different due to discard and discard mortality.

Table f: Recent trend in total catch and commercial landings (mt) relative to the management guidelines. Estimated total catch reflect the commercial landings plus the model estimated discarded biomass.

				<u>tab:mnmgt_perform</u>
Year	OFL (mt;	ABC (mt)	ACL (mt; OY	Estimated
	ABC prior to		prior to 2011)	total catch
	2011)			(mt)
2007	-	-	-	-
2008	-	-	-	-
2009	-	-	-	-
2010	-	-	-	-
2011	-	-	-	-
$\boldsymbol{2012}$	-	-	-	-
2013	-	-	-	-
2014	-	-	-	-
2015	-	-	-	-
2016	-	-	-	<u>-</u>

Decision Table(s) (groundfish only)

decision-tables-groundfish-only

Include: projected yields (OFL, ABC and ACL), spawning biomass, and stock depletion levels for each year. Not required in draft assessments undergoing review.

 188 OFL projection table: Table g

Decision table(s) Table h, Table ??, Table ??

190 Yield curve: Figure \ref{fig:Yield_all}

Figure k: Equilibrium yield curve for the base case model. Values are based on the 2014 fishery selectivity and with steepness fixed at... fig:Yield_all

Table g: Projections of potential OFL (mt) for each model, using the base model forecast.

tab:OFL_projection

Year	OFL
2015	3072.90
2016	3207.71
2017	3219.65
2018	3138.42
2019	3050.82
2020	2981.68
2021	2935.68
2022	2908.07
2023	2892.39
2024	2883.38
2025	2877.63
2026	2873.28

Table h: Summary of 10-year projections beginning in 2016 for alternate states of nature based on an axis of uncertainty for the base model. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. An entry of "—" indicates that the stock is driven to very low abundance under the particular scenario.

 ${\tt tab:Decision_table_mod1}$ States of nature

			Low N	M = 0.05		M 0.07	High I	M 0.09
	Year	Catch	Spawning	Depletion	Spawning	Depletion	Spawning	Depletion
			Output		Output		Output	
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule,	2022	-	-	-	-	-	-	-
Low M	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule	2022	-	-	-	-	-	-	-
	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule,	2022	-	-	-	-	-	-	-
High M	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
Average	2022	-	-	-	-	-	_	-
Catch	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	_	-
	2025	-	-	-	-	-	_	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	_	-
	2028	_	_	_	_	_	_	-

Table i: Base case results summary.

									tab:	tab:base_summary
Quantity	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Landings (mt)										
Potal Est. Catch (mt)										
OFL (mt)										
ACL (mt)										
$1-SPR)(1-SPR_{50\%})$		0.84	0.87	0.84	0.85	0.84	98.0	69.0	09.0	0.61
Exploitation rate		0.25	0.33	0.26	0.29	0.28	0.29	0.10	90.0	0.07
Age 1+ biomass (mt)	19086.90	9063.19	8271.63	8091.58	7714.19	7975.75	8843.39	12052.40	15084.80	17610.00
Spawning Output	9466.6	4251.4	4028.7	3952.0	3654.8	3465.4	3310.8	4198.1	5712.9	7691.4
95% CI	(7890.42-	(3877.19-	(3645.6-	(3558.37-	(3241.54-	(3008.41-	(2770.45-	(3514.81-	(4803.76-	(6465.54
	11042.74)	4625.57)	4411.86)	4345.65)	4068.1)	3922.37)	3851.07)	4881.37)	6621.98)	8917.34)
Depletion	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2
95% CI	95% CI (0.199-0.348)	(0.093-0.152)	(0.088-0.145)	(0.086-0.142)	(0.079-0.132)	(0.074-0.127)	(0.068-0.123)	(0.087 - 0.156)	(0.119-0.211)	(0.161-0.283)
Recruits	13495.70	9501.26	16408.30	22866.50	31400.20	13034.00	10207.10	10285.90	14683.10	12421.30
95% CI	(1954.82 -	- 82.8009)	(10661.04 -	(14879.47 -	(20649.99 -	(7530.52 -	(5442.37 -	(4750.84 -	(5478.95 -	(2404.51 -
	25036 58)	12993.74)	22155.56)	30853.53)	42150 41)	18537 48)	14971 83)	15820 96)	23887 25)	22438 (19)

191 Research And Data Needs

research-and-data-needs

- Include: identify information gaps that seriously impede the stock assessment.
- 193 We recommend the following research be conducted before the next assessment:
- 1. List item No. 1 in the list

195

2. List item No. 2 in the list, etc.

196 Rebuilding Projections

rebuilding-projections

Include: reference to the principal results from rebuilding analysis if the stock is overfished.
This section should be included in the Final/SAFE version assessment document but is not
required for draft assessments undergoing review. See Rebuilding Analysis terms of reference
for detailed information on rebuilding analysis requirements.

201 1 Introduction

introduction

1.1 Basic Information

basic-information

Include: Scientific name, distribution, the basis of the choice of stock structure, including regional differences in life history or other biological characteristics that should form the basis of management units.

206 **1.2** Map

map

A map showing the scope of the assessment and depicting boundaries for fisheries or data collection strata is provided in Figure 1.

209 1.3 Life History

life-history

Include: Important features of life history that affect management (e.g., migration, sexual dimorphism, bathymetric demography).

1.4 Ecosystem Considerations

ecosystem-considerations-1

Include: Ecosystem considerations (e.g., ecosystem role and trophic relationships of the species, habitat requirements/preferences, relevant data on ecosystem processes that may affect stock or parameters used in the stock assessment, and/or cross-FMP interactions with other fisheries). This section should note if environmental correlations or food web interactions were incorporated into the assessment model. The length and depth of this section would depend on availability of data and reports from the IEA, expertise of the STAT, and whether ecosystem factors are informational to contribute quantitative information to the assessment.

1.5 Fishery Information

fishery-information

Include: Important features of current fishery and relevant history of fishery.

Rockfish example: The rockfish fishery off the U.S. Pacific coast first developed off California in the late 19th century as a hook-and-line fishery (Love et al. 2002).

The rockfish trawl fishery was established in the early 1940s, when the United States became involved in World War II and wartime shortage of red meat created an increased demand for other sources of protein (Harry and Morgan 1961, Alverson et al. 1964). Etc....

227 1.6 Summary of Management History

summary-of-management-history

Include: Summary of management history (e.g., changes in mesh sizes, trip limits, or other management actions that may have significantly altered selection, catch rates, or discards).

30 1.7 Management Performance

management-performance-1

- Include: Management performance, including a table or tables comparing Overfishing Limit (OFL), Annual Catch Limit (ACL), Harvest Guideline (HG) [CPS only], landings, and catch (i.e., landings plus discard) for each area and year.
- Management performance table: (Table f)
- A summary of these values as well as other base case summary results can be found in Table i.

237 1.8 Fisheries off Canada, Alaska, and/or Mexico

fisheries-off-canada-alaska-andor-mexico

238 Include if necessary.

239 2 Assessment

assessment

240 2.1 Data

- Data used in the Lingcod assessment are summarized in Figure 2.
- A description of each data source is below.

243 2.1.1 Commercial Fishery Landings

commercial-fishery-landings

- Sub-heading 1
- Sub-heading 2
- Sub-heading 3

2.1.2 Sport Fishery Removals

sport-fishery-removals

- Sub-heading 1
- Sub-heading 2
- Sub-heading 3

2.1.3 Estimated Discards

estimated-discards

- Sub-heading 1
- Sub-heading 2
- Sub-heading 3

2.1.4 Abundance Indices

abundance-indices

- Sub-heading 1
- Sub-heading 2

258 2.1.5 Fishery-Independent Data: possible sources

fishery-independent-data-possible-sources

- Northwest Fisheries Science Center (NWFSC) slope survey
- The NWFSC slope survey was conducted annually from 1999 to 2002.
- The depth range of this survey is 100-700 fm.
- Northwest Fisheries Science Center (NWFSC) shelf-slope survey
- This survey is referred to as the "combo," conducted annually since 2003.
- The survey consistently covered depths between 30 and 700 fm.
- 265 Alaska Fisheries Science Center (AFSC) shelf survey
- The survey, often referred to as the "triennial" survey was conducted every third year between
- ²⁶⁷ 1977 and (and conducted in 2004 by the NWFSC using the same protocols). The triennial
- survey trawls in depths of 30 to 275 fm.
- 269 Pikitch Study
- The Pikitch study was conducted between 1985 and 1987 (Pikitch et al. 1988). The northern

- and southern boundaries of the study were 48°42′ N latitude and 42°60′ N. latitude respectively, which is primarily within the Columbia INPFC area (Pikitch et al. 1988, Rogers and Pikitch 1992). Participation in the study was voluntary and included vessels using bottom, midwater, and shrimp trawl gears.
- Observers of normal fishing operations on commercial vessels collected the data, estimated the total weight of the catch by tow and recorded the weight of species retained and discarded in the sample.
- 278 Enhanced Data Collection Project (EDCP)
- The EDCP was conducted by ODFW to collect information on bycatch and discard groundfish
- species off the coast of Oregon from late 1995 to early 1999.
- 281 EDCP had limited spatial coverage in Oregon waters only.
- Partnership For Interdisciplinary Studies of Coastal Oceans (PISCO)
- 283 Blurb on species presence in PISCO surveys

284 2.1.6 Biological Parameters and Data

biological-parameters-and-data

285 Length And Age Compositions

- Include: Sample size information for length and age composition data by area, year, gear, market category, etc., including both the number of trips and fish sampled.
- Length compositions were provided from the following sources, by region, with brief descriptions below:

290 Model 1

293

294

295

296

297

298

299

300

301

- Source No. 1 (ex. research, commerical dead fish, live fish, etc, date range (ex. 2010-2011)
 - Source No. 2 (ex. research, commercial dead fish, live fish, etc, date range (ex. 2010-2011)
 - etc...
 - Begin sublist if desired
 - Sublist source No. 1
 - Sublist source No. 2
 - etc...
 - Back to main list, next Source
 - Last Source
- ³⁰² Can duplicate this list if you have more than one assessment model
- Possible sources of age and length data:

- Recreational: Washington (WDFW)
- Recreational: California MRFSS And CRFS Length Composition Data Individual fish lengths
- recorded by MRFSS (1980-2003) and CRFS (2004-2011) samplers were downloaded from the
- RecFIN website (www.recfin.org). CRFS data from 2012-2014 were obtained directly from
- 308 CDFW.
- Recreational: Oregon Recreational Boat Survey (ORBS) Biological data from the ORBS
- program were provided by ODFW. The ORBS is a dockside sampling program for the
- both the recreational CPFV and private modes. Length composition samples from north of
- Florence for the CPFV and private fleets were provided from 1980-2014. Samples from south
- of Florence spanned 1984-2014
- 314 Recreational: Miller and Gotshall (1965)
- The Northern California Marine Sport Fish Survey conducted an assessment survey with
- goals that included estimation of annual fishing effort by all recreational fishing modes, catch
- by weight, CPUE, and collection of data to analyze length compositions
- 318 Commercial: PacFIN (Oregon and California)
- 319 Research: NMFS Groundfish Ecology Survey
- From 2001-2005, the SWFSC Fisheries Ecology Division conducted longline surveys aboard a
- chartered commercial longline vessel at various stations between Monterey and Davenport,
- ³²² CA (36° N. latitude to 37.5° N. latitude) (pers. comm. Don Pearson, SWFSC). Longline gear
- was set in various depths from 10 meters to 700 meters, parallel to the depth contour. Each
- longline set consisted of 3-5 skates, each with about 250 2/0 circle hooks baited with squid.
- In nearshore habitats, the gear soaked for roughly 30 minutes.
- 326 Research: California Collaborative Fisheries Research Program (CCFRP)
- 327 Research: NWFSC shelf-slope survey
- 328 Research: NWFSC slope survey
- 329 Research: Abrams Thesis

330 Age Structures

- Age structure data were available from the following sources:
- 332 Model Region 1
- Source No. 1 (ex. research, commericla dead fish, live fish, etc, date range (ex. 2010-2011)

- Source No. 2 (ex. research, commericla dead fish, live fish, etc, date range (ex. 2010-2011)
- etc...

338

339

340

342

343

- Begin sublist if desired
 - Sublist source No. 1
 - Sublist source No. 2
- etc...
 - Back to main list, next Source
 - Last Source
- Can duplicate this list if you have more than one assessment model
- Length-at-age was initially estimated external to the population dynamics models using the von Bertalanffy growth curve (Bertalanffy 1938), $L_i = L_{\infty}e^{(-k[t-t_0])}$, where L_i is the length (cm) at age i, t is age in years, k is rate of increase in growth, t_0 is the intercept, and L_{∞} is the asymptotic length.

Aging Precision And Bias

350 Weight-Length

- The weight-length relationship is based on the standard power function: $W = \alpha(L^{\beta})$ where W is individual weight (kg), U is length (cm), and U are coefficients used as constants.
- 353 Maturity And Fecundity

354 Natural Mortality

Natural mortality for wild fish populations is extremely difficult to estimate.

356 Sex ratios

2.1.7 Environmental Or Ecosystem Data Included In The Assessment environmental-or-ecosystem-data-included-in-the-assessment

³⁵⁸ 2.2 History Of Modeling Approaches Used For This Stock

history-of-modeling-approaches-used-for-this-stock

2.2.1 Previous Assessments

previous-assessments

360 2.2.2 Previous Assessment Recommendations

previous-assessment-recommendations

- Include: Response to STAR panel recommendations from the most recent previous assessment.
- Recommendation 1: blah blah blah.

STAT response: blah blah blah....

363

366

Recommendation 2: blah blah blah.

STAT response: blah blah blah....

Recommendation 3: blah blah blah., etc.

STAT response: Continue recommendations as needed

371 2.3 Model Description

model-description

2.3.1 Transition To The Current Stock Assessment transition-to-the-current-stock-assessment

- Include: Complete description of any new modeling approaches
- Below, we describe the most important changes made since the last full assessment and explain rationale for each change.:
- 1. Change No. 1. Rationale: blah blah blah.
- 2. Change No. 2. Rationale: blah blah blah.
- 3. Change No. 3. Rationale: Continue list as needed.

2.3.2 Definition of Fleets and Areas

definition-of-fleets-and-areas

We generated data sources for each of the models. Fleets by model include:

Model Region 1 or remove this line if only one model

- 382 Commercial: The commercial fleets include...
- 383 Recreational: The recreational fleets include...
- 384 Research: Research derived-data include...

2.3.3 Summary of Data for Fleets and Areas

summary-of-data-for-fleets-and-areas

386 2.3.4 Modeling Software

modeling-software

- The STAT team used Stock Synthesis 3 version 3.24u by Dr. Richard Methot at the NWFSC.
- This most recent version (SS-V3.24u) was used, since it included improvements and corrections
- to older versions.

390 2.3.5 Data Weighting

data-weighting

- ³⁹¹ Citation for Francis method (Francis 2011)
- ³⁹² Citation for Ianelli-McAllister harmonic mean method (McAllister and Ianelli 1997)

 $_{
m 393}$ 2.3.6 $_{
m Priors}$ $_{
m priors}$

³⁹⁴ Citation for Hamel prior on natural mortality (Hamel 2015)

395 2.3.7 General Model Specifications

general-model-specifications

- ³⁹⁶ Citation for posterior predictive fecundity relationship from Dick (2009)
- Model data, control, starter, and forecast files can be found in Appendices A-D.

398 2.3.8 Estimated And Fixed Parameters

estimated-and-fixed-parameters

A full list of all estimated and fixed parameters is provided in Tables.... Estimated and fixed parameters tables currently read in from .csv file, EXAMPLE: Table ??

101 2.4 Model Selection and Evaluation

model-selection-and-evaluation

402 2.4.1 Key Assumptions and Structural Choices

key-assumptions-and-structural-choices

- Include: Evidence of search for balance between model realism and parsimony.
- Comparison of key model assumptions, include comparisons based on nested models (e.g.,
- asymptotic vs. domed selectivities, constant vs. time-varying selectivities).

406 2.4.2 Alternate Models Considered

alternate-models-considered

Include: Summary of alternate model configurations that were tried but rejected.

$_{408}$ 2.4.3 Convergence

410

421

425

convergence

- Include: Randomization run results or other evidence of search for global best estimates.
- actually explore new areas of the multivariate likelihood surface. Jitter is a SS option that

Convergence testing through use of dispersed starting values often requires extreme values to

- generates random starting values from a normal distribution logistically transformed into
- each parameter's range (Methot 2015). Table 3 shows the results of running 100 jitters for
- each pre-STAR base model....

2.5 Response To The Current STAR Panel Requests

response-to-the-current-star-panel-requests

- Request No. 1: Add after STAR panel.
- Rationale: Add after STAR panel.
- STAT Response: Add after STAR panel.
- Request No. 2: Add after STAR panel.
- Rationale: Add after STAR panel.
- STAT Response: Add after STAR panel.
- Request No. 3: Add after STAR panel.
- Rationale: Add after STAR panel.
- STAT Response: Add after STAR panel.

Request No. 4: Example of a request that may have a list: 429 • Item No. 1 430 • Item No. 2 431 • Item No. 3, etc. 432 Rationale: Add after STAR panel. 433 **STAT Response:** Continue requests as needed. Model 1 2.6 model-1 Model 1 Base Case Results 2.6.1model-1-base-case-results Table ?? Model 1 Uncertainty and Sensitivity Analyses model-1-uncertainty-and-sensitivity-analyses Table 4 Model 1 Retrospective Analysis 2.6.3model-1-retrospective-analysis 2.6.4 Model 1 Likelihood Profiles model-1-likelihood-profiles Model 1 Harvest Control Rules (CPS only) 2.6.5model-1-harvest-control-rules-cps-only 2.6.6 Model 1 Reference Points (groundfish only) model-1-reference-points-groundfish-only Intro sentence or two....(Table 5). Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 2748.3 mt. Table e shows the full suite of estimated reference points for the northern area model and Figure k shows the equilibrium yield curve.

448	2.7	Model 2	model-2
449	2.7.1	Model 2 Base Case Results	model-2-base-case-results
450	2.7.2	Model 2 Uncertainty and Sensitiv	ity Analyses 1-2-uncertainty-and-sensitivity-analyses
451	2.7.3	Model 2 Retrospective Analysis	model-2-retrospective-analysis
452	2.7.4	Model 2 Likelihood Profiles	model-2-likelihood-profiles
453	2.7.5	Model 2 Harvest Control Rules (C	CPS only) model-2-harvest-control-rules-cps-only
454	2.7.6	Model 2 Reference Points (ground	lfish only) model-2-reference-points-groundfish-only
455	2.8	Model 3	model-3
456	2.8.1	Model 3 Base Case Results	model-3-base-case-results
457	2.8.2	Model 3 Uncertainty and Sensitiv	ity Analyses 1-3-uncertainty-and-sensitivity-analyses
458	2.8.3	Model 3 Retrospective Analysis	model-3-retrospective-analysis
459	2.8.4	Model 3 Likelihood profiles	model-3-likelihood-profiles
460	2.8.5	Model 3 Harvest Control Rules (C	CPS only) model-3-harvest-control-rules-cps-only
461	2.8.6	Model 3 Reference Points (ground	lfish only) model-3-reference-points-groundfish-only
462	3]	Harvest Projections and	Decision Tables harvest-projections-and-decision-tables
463	Table	f	
464	Mode	el 1 Projections and Decision Table	(groundfish only) (Table 6
465	Table	h	

- 466 Model 2 Projections and Decision Table (groundfish only)
- 467 Model 3 Projections and Decision Table (groundfish only)

4 Regional Management Considerations

regional-management-considerations

- 1. For stocks where current practice is to allocate harvests by management area, a recommended method of allocating harvests based on the distribution of biomass should be provided. The MT advisor should be consulted on the appropriate management areas for each stock.
 - 2. Discuss whether a regional management approach makes sense for the species from a biological perspective.
 - 3. If there are insufficient data to analyze a regional management approach, what are the research and data needs to answer this question?

5 Research Needs

research-needs

- 1. Research need No. 1
- 2. Research need No. 2
- 3. Research need No. 3
- 481 4. etc.

473

474

475

476

acknowledgments

Include: STAR panel members and affiliations as well as names and affiliations of persons who contributed data, advice or information but were not part of the assessment team. Not required in draft assessment undergoing review.

Tables

tables

Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No. Parameter	Value	SD	Bounds	Phase	Status	Prior
1 NatM_p_1_Fem_GP_1	0.14	0.03	(0.005, 0.5)	9	OK	Log_Norm (-1.888, 0.333)
2 L-at_Amin_Fem_GP_1	15.66	0.45	(10, 45)	2	OK	None
3 L_at_Amax_Fem_GP_1	54.45	0.41	(35, 80)	33	OK	None
4 VonBert_K_Fem_GP_1	0.13	0.01	(0.04, 0.5)	2	OK	None
5 CV_young_Fem_GP_1	0.19	0.01	(0.01, 1)	က	OK	None
6 CV_old_Fem_GP_1	0.03	0.01	(0.01, 1)	4	OK	None
$7 \text{ NatM}_{-p-1-Mal-GP-1}$	0.15	0.02	(0.005, 0.6)	9	OK	Log_Norm (-1.58, 0.333)
8 L-at_Amin_Mal_GP_1	16.33	0.33	(10, 45)	2	OK	None
9 L-at_Amax_Mal_GP_1	43.26	0.41	(35, 80)	က	OK	None
10 VonBert_K-Mal_GP_1	0.20	0.01	(0.04, 0.5)	2	OK	None
11 CV_young_Mal_GP_1	0.14	0.01	(0.01, 1)	3	OK	None
12 CV_old_Mal_GP_1	0.05	0.01	(0.01, 1)	4	OK	None
13 Wtlen_1_Fem	0.00		(-3, 3)	ن -		Normal $(0, 0.8)$
14 Wtlen_2_Fem	3.47		(1, 5)	ن		Normal (3.474, 0.8)
15 Mat50%_Fem	33.10		(10, 50)	. ن		Normal $(33.1, 0.8)$
16 Mat_slope_Fem	-0.74		(-3, 3)	ငှ		Normal (-0.743, 0.8)
17 Eggs/kg_inter_Fem	1.00		(-3, 3)	÷-		Normal $(1, 1)$
$18 Eggs/kg_slope_wt_Fem$	0.00		(-3, 3)	. -		Normal $(0, 1)$
19 Wtlen_1_Mal	0.00		(-3, 3)	. ن		Normal $(0, 0.8)$
	3.36		(-3, 5)	. -		Normal (3.361, 0.8)
24 CohortGrowDev	1.00		(0, 1)	-4		None
$25 ext{ SR-LN(R0)}$	9.59	0.20	(5, 20)	$\overline{}$	OK	None
26 SR_BH_steep	0.89	0.05	(0.2, 1)	က	OK	Normal $(0.8, 0.09)$
27 SR_sigmaR	0.40		(0, 2)	66-		Normal $(0.9, 5)$
28 SR_envlink	0.00		(-5, 5)	66-		Normal $(0, 1)$
29 SR_R1_offset	0.00		(-5, 5)	-2		Normal $(0, 0.2)$
Continued on worth wow						

Continued on next page

Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No.	Parameter	Value	SD	Bounds	Phase	Status	Prior
30	SR_autocorr	0.00		(0,0)	66-		None
31	Early_InitAge_31	0.00	0.40	(NA, NA)		act	dev(NA, NA)
32	Early_InitAge_30	0.00	0.40			act	(NA,
33	Early_InitAge_29	0.00	0.40			act	(NA,
34	Early_InitAge_28	0.00	0.40			act	(NA,
35	Early_InitAge_27	0.00	0.40			act	(NA,
36	Early_InitAge_26	0.00	0.40			act	(NA,
37	Early_InitAge_25	0.00	0.40	(NA, NA)		act	dev(NA, NA)
38	Early_InitAge_24	0.00	0.40			act	(NA,
39	Early_InitAge_23	0.00	0.40			act	(NA,
40	Early_InitAge_22	0.00	0.40			act	(NA,
41	Early_InitAge_21	0.00	0.40			act	(NA,
42	Early_InitAge_20	0.00	0.40			act	(NA,
43	Early_InitAge_19	0.00	0.40			act	(NA,
44	Early_InitAge_18	0.00	0.40			act	(NA,
45	Early_InitAge_17	0.00	0.40			act	(NA,
46	Early_InitAge_16	0.00	0.40			act	(NA,
47	Early_InitAge_15	0.00	0.40			act	(NA,
48	Early_InitAge_14	0.00	0.40			act	(NA,
49	Early_InitAge_13	0.00	0.40			act	
20	Early_InitAge_12	0.00	0.40			act	(NA,
51	Early_InitAge_11	0.00	0.40			act	
55	Early_InitAge_10	0.00	0.40			act	dev(NA, NA)
53	Early_InitAge_9	0.00	0.40			act	
54	Early_InitAge_8	0.00	0.40			act	dev (NA, NA)
55	Early_InitAge_7	0.00	0.40			act	
26	Early_InitAge_6	0.00	0.40			act	dev(NA, NA)

Continued on next page

and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum prior type information (mean, SD).

Early Init Age_5 0.00 0.40 (NA, NA) act Early Init Age_4 0.00 0.40 (NA, NA) act Early Init Age_2 0.00 0.40 (NA, NA) act Early Init Age_1 0.00 0.40 (NA, NA) act Early Init Age_1 0.00 0.40 (NA, NA) act Init E_2 SummerN 0.00 0.40 (NA, NA) act Init E_2 SummerN 0.00 0.40 1.1 -1 Init E_2 SummerN 0.00 0.01 -1 1.1 Init E_2 SummerS 0.00 0.01 1.1 -1 Init E_2 SummerS 0.00 0.01 1.1 -1 Q-power_1 WinterS 0.00 0.01 0.1 -1 -1 Q-power_1 WinterS 0.18 0.11 0.00 -20, 5 0.1 Q-walk_1 y_1990 0.00 0.20 0.20, 5 -1 Q-walk_1 y_1992 0.00 0.20, 5 -1 Q-walk_1 y_1994	No.	Parameter	Value	SD	Bounds	Phase	Status	Prior
Early Init Age 4 0.00 0.40 (NA, NA) act Early Init Age 2 0.00 0.40 (NA, NA) act Early Init Age 2 0.00 0.40 (NA, NA) act Early Init Age 1 0.00 0.40 (NA, NA) act Init F 2SummerN 0.00 0.01 1 -1 Init F 3WinterS 0.00 (0, 1) -1 1 Init F 4SummerN 0.00 (0, 1) -1 0 Q-power 1-WinterN -0.14 0.35 (-5, 5) 3 OK Q-extra SD 5-TriEarly 0.13 (-5, 5) 3 OK Q-extra SD 5-TriEarly 0.19 0.12 (0.001, 2) 0K Q-extra SD 5-TriEarly 0.19 0.12 (0.001, 2) 0K Q-walk Ly 1989 0.00 (-20, 5) -1 OK Q-walk Ly 1991 0.00 (-20, 5) -1 OK Q-walk Ly 1995 0.00 (-20, 5) -1 OK OK OK	57	Early_InitAge_5	0.00	0.40			act	dev (NA, NA)
Early Init Age. 3 0.00 0.40 (NA, NA) act Early Init Age. 2 0.00 0.40 (NA, NA) act Early Init Age. 1 0.00 0.40 (NA, NA) act Init F. 1 Winter N 0.00 (0, 1) -1 Init F. 2 Summer N 0.00 (0, 1) -1 Init F. 3 Winter S 0.00 (0, 1) -1 Init F. 4 Summer S 0.00 (0, 1) -1 Q-power J. Winter N -0.14 0.35 (-5, 5) 3 OK Q-extra SD. 5. TriEarly 0.18 0.11 (0.001, 2) 4 OK Lo Q-base. I. Winter N -7.07 2.75 (-20, 5) -1 Q-walk. 1y. 1989 0.00 (-20, 5) -1 Q-walk. 1y. 1991 0.00 (-20, 5) -1 Q-walk. 1y. 1994 0.00 (-20, 5) -1 Q-walk. 1y. 1995 0.00 (-20, 5) -1 Q-walk. 1y. 1996 0.00 (-20, 5) -1 Q-walk. 1y. 1999 0.00	58	Early_InitAge_4	0.00	0.40			act	dev (NA, NA)
Early-InitAge_2 0.00 0.40 (NA, NA) act Early-InitAge_1 0.00 0.40 (NA, NA) act InitF_1WinterN 0.00 (0, 1) -1 InitF_2SummerN 0.00 (0, 1) -1 InitF_3WinterS 0.00 (0, 1) -1 Q-power_1_WinterN -0.14 0.35 (-5, 5) 3 OK Q-werraSD_5_TriEarly 0.18 0.11 (0.001, 2) A OK Q-waraSD_5_TriEarly 0.18 0.11 (0.001, 2) A OK Q-walk_1y_1988 0.00 (-20, 5) -1 OK Q-walk_1y_1980 0.00 (-20, 5) -1 OK Q-walk_1y_1990 0.00 (-20, 5) -1 OK -20, 5) -1 Q-walk_1y_1994 0.00 (-20, 5) -1 OK -20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 OK -20, 5) -1 Q-walk_1y_1996 0.00 (-20	59	Early_InitAge_3	0.00	0.40	(NA, NA)		act	dev (NA, NA)
Early-InitAge_1 0.00 0.40 (NA, NA) act InitF_1WinterN 0.00 (0, 1) -1 InitF_2SummerN 0.00 (0, 1) -1 InitF_3WinterS 0.00 (0, 1) -1 Q-power_1_WinterN -0.14 0.35 (-5, 5) 3 OK Q-power_1_WinterN -0.14 0.35 (-5, 5) 3 OK Q-extraSD_5_TriEarly 0.18 0.11 (0.001, 2) 5 OK Q-extraSD_5_TriEarly 0.18 0.11 (0.001, 2) 3 OK Q-extraSD_5_TriEarly 0.18 0.11 (0.001, 2) 4 OK Q-extraSD_6_TriLate -7.07 2.75 (-20, 5) 1 OK Q-walk_1y_1988 0.00 (-20, 5) -1 OK -20, 5) -1 Q-walk_1y_1992 0.00 (-20, 5) -1 OK -20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 OK -20, 5) -1	09	Early_InitAge_2	0.00	0.40	(NA, NA)		act	dev (NA, NA)
InitF_IWinterN 0.00 (0,1) -1 InitF_SummerN 0.00 (0,1) -1 InitF_SummerS 0.00 (0,1) -1 InitF_ASummerS 0.00 (0,1) -1 Q-power_I_WinterN -0.14 0.35 (-5, 5) 3 OK Q-extraSD_5_TriEarly 0.18 0.11 (0.001, 2) 5 OK Q-extraSD_6_TriLate 0.18 0.11 (0.001, 2) 4 OK Q-extraSD_6_TriLate 0.19 0.12 (0.001, 2) 4 OK Q-walk_1y_1988 0.00 (-20, 5) 1 OK Q-walk_1y_1990 0.00 (-20, 5) -1 Q-walk_1y_1992 0.00 (-20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00	61	Early_InitAge_1	0.00	0.40	(NA, NA)		act	dev(NA, NA)
InitF_2SummerN 0.00 (0,1) -1 InitF_3WinterS 0.00 (0,1) -1 InitF_4SummerS 0.00 (0,1) -1 Q-power_1_WinterN -0.14 0.35 (-5, 5) 3 OK Q-extraSD_5_TriEarly 0.18 0.11 (0.001, 2) 5 OK Q-extraSD_6_TriEarly 0.19 0.12 (0.001, 2) 5 OK Q-extraSD_6_TriEarly 0.19 0.12 (0.001, 2) 4 OK Q-extraSD_6_TriEarly 0.19 0.12 (0.001, 2) 4 OK Q-walk_1y_1998 0.00 (-20, 5) -1 OK	225	InitF_1WinterN	0.00		(0, 1)	-		Normal $(0, 99)$
InitF_3WinterS 0.00 (0,1) -1 InitF_4SummerS 0.00 (0,1) -1 Q_power_1_WinterN -0.14 0.35 (-5,5) 3 OK Q_power_3_WinterS -1.00 0.31 (-5,5) 3 OK Q_extraSD_5_TriEarly 0.18 0.11 (0.001, 2) 5 OK Q_extraSD_6_TriEarly 0.18 0.11 (0.001, 2) 4 OK Q_extraSD_6_TriEarly 0.19 0.12 (0.001, 2) 4 OK Q_extraSD_6_TriEarly 0.00 -7.07 2.75 (-20, 5) 1 OK Q_walk_1y_1988 0.00 (-20, 5) -1 OK 0.20, 5) -1 OK 0.20, 5) -1 OK 0.20, 5) -1 OK 0.00 (-20, 5) -1 OK 0.00 0.20, 5) -1 OK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	226	InitF_2SummerN	0.00		(0, 1)	-		Normal $(0, 99)$
InitF-4SummerS Q-power_1_WinterN Q-power_1_WinterN Q-power_3_WinterS Q-power_3_WinterS Q-power_3_WinterS Q-extraSD_5_TriEarly Q-extraSD_6_TriEarly Q-extraSD_6_TriEarly Q-extraSD_6_TriEarly Q-walk_1y_1988 Q-walk_1y_1989 Q-walk_1y_1991 Q-walk_1y_1995 Q-walk_1y_1995 Q-walk_1y_1996 Q-walk_1y_1996 Q-walk_1y_1996 Q-walk_1y_1997 Q-walk_1y_1998 Q-walk_1y_1998 Q-walk_1y_1998 Q-walk_1y_1999 Q-walk_1y_1998 Q-walk_1y_1999	227	InitF_3WinterS	0.00		(0, 1)	-		Normal $(0, 99)$
Q-power_1_WinterN -0.14 0.35 (-5,5) 3 OK Q-power_3_WinterS -1.00 0.31 (-5,5) 3 OK Q-extraSD_5_TriEarly 0.18 0.11 (0.001,2) 5 OK Q-extraSD_6_TriLate 0.19 0.12 (0.001,2) 4 OK LnQ_base_1_WinterN -7.07 2.75 (-20,5) 1 OK Q-walk_1y_1989 0.00 (-20,5) -1 OK Q-walk_1y_1991 0.00 (-20,5) -1 OK Q-walk_1y_1992 0.00 (-20,5) -1 OK Q-walk_1y_1993 0.00 (-20,5) -1 OK OK <td>228</td> <td>InitF_4SummerS</td> <td>0.00</td> <td></td> <td>(0, 1)</td> <td>_</td> <td></td> <td>Normal $(0, 99)$</td>	228	InitF_4SummerS	0.00		(0, 1)	_		Normal $(0, 99)$
Q-power_3-WinterS -1.00 0.31 (-5, 5) 3 OK Q-extraSD_5-TriEarly 0.18 0.11 (0.001, 2) 5 OK Q-extraSD_6-TriLate 0.19 0.12 (0.001, 2) 4 OK LnQ-base_1-WinterN -7.07 2.75 (-20, 5) 1 OK Q-walk_1y-1989 0.00 (-20, 5) -1 OK Q-walk_1y-1991 0.00 (-20, 5) -1 OK Q-walk_1y-1992 0.00 (-20, 5) -1 OK Q-walk_1y-1993 0.00 (-20, 5) -1 OK Q-walk_1y-1994 0.00 (-20, 5) -1 OK Q-walk_1y-1995 0.00 (-20, 5) -1 OK Q-walk_1y-1995 0.00 (-20, 5) -1 OK Q-walk_1y-1998 0.00 (-20, 5) -1 OK Q-walk_1y-1998 0.00 (-20, 5) -1 OK OK <td>229</td> <td>$Q_{-power-1}$-WinterN</td> <td>-0.14</td> <td>0.35</td> <td>(-5, 5)</td> <td>3</td> <td>OK</td> <td>None</td>	229	$Q_{-power-1}$ -WinterN	-0.14	0.35	(-5, 5)	3	OK	None
Q-extraSD_5-TriEarly 0.18 0.11 (0.001, 2) 5 OK Q-extraSD_6-TriLate 0.19 0.12 (0.001, 2) 4 OK LnQ_base_1_WinterN -7.07 2.75 (-20, 5) 1 OK Q-walk_1y_1988 0.00 (-20, 5) -1 OK Q-walk_1y_1980 0.00 (-20, 5) -1 Q-walk_1y_1991 0.00 (-20, 5) -1 Q-walk_1y_1993 0.00 (-20, 5) -1 Q-walk_1y_1994 0.00 (-20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 Q-walk_1y_1996 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1 Q-walk_1y_2999 0.00 (-20, 5) -1 <td>230</td> <td>Q_power_3_WinterS</td> <td>-1.00</td> <td>0.31</td> <td>(-5, 5)</td> <td>3</td> <td>OK</td> <td>None</td>	230	Q_power_3_WinterS	-1.00	0.31	(-5, 5)	3	OK	None
Q-extraSD-6-TriLate 0.19 0.12 (0.001, 2) 4 OK LnQ-base-1-WinterN -7.07 2.75 (-20, 5) 1 OK Q-walk-1y-1988 0.00 (-20, 5) -1 OK Q-walk-1y-1989 0.00 (-20, 5) -1 Q-walk-1y-1991 0.00 (-20, 5) -1 Q-walk-1y-1992 0.00 (-20, 5) -1 Q-walk-1y-1994 0.00 (-20, 5) -1 Q-walk-1y-1995 0.00 (-20, 5) -1 Q-walk-1y-1996 0.00 (-20, 5) -1 Q-walk-1y-1996 0.00 (-20, 5) -1 Q-walk-1y-1996 0.00 (-20, 5) -1 Q-walk-1y-1997 0.00 (-20, 5) -1 Q-walk-1y-1998 0.00 (-20, 5) -1 Q-walk-1y-1998 0.00 (-20, 5) -1 Q-walk-1y-1998 0.00 (-20, 5) -1 Q-walk-1y-1999 0.00 (-20, 5) -1 Q-walk-1y-1999 0.00 (-20, 5) -1 Q-walk-1y-1998	231	Q_extraSD_5_TriEarly	0.18	0.11	(0.001, 2)	ರ	OK	None
LnQ-base_1_WinterN -7.07 2.75 (-20, 5) 1 OK Q-walk_1y_1988 0.00 (-20, 5) -1 Q-walk_1y_1989 0.00 (-20, 5) -1 Q-walk_1y_1991 0.00 (-20, 5) -1 Q-walk_1y_1992 0.00 (-20, 5) -1 Q-walk_1y_1994 0.00 (-20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 Q-walk_1y_1996 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1 Q-walk_1y_2000 0.00 (-20, 5) -1 Q-walk_1y_2000 0.00 0.00 0.00 0.00 Q-walk_1y_2000 0.00 0.00 <t< td=""><td>232</td><td>Q_extraSD_6_TriLate</td><td>0.19</td><td>0.12</td><td>(0.001, 2)</td><td>4</td><td>OK</td><td>None</td></t<>	232	Q_extraSD_6_TriLate	0.19	0.12	(0.001, 2)	4	OK	None
Q-walk_1y_1988 0.00 (-20, 5) -1 Q-walk_1y_1989 0.00 (-20, 5) -1 Q-walk_1y_1991 0.00 (-20, 5) -1 Q-walk_1y_1992 0.00 (-20, 5) -1 Q-walk_1y_1993 0.00 (-20, 5) -1 Q-walk_1y_1994 0.00 (-20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 Q-walk_1y_1996 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1 Q-walk_1y_2090 0.00 (-20, 5) -1 Q-walk_1y_2090 0.00 (-20, 5) -1 Q-walk_1y_2000 0.00 (-20, 5) -1 Q-walk_1y_2000 <td>233</td> <td>LnQ_base_1_WinterN</td> <td>-7.07</td> <td>2.75</td> <td>(-20, 5)</td> <td>\vdash</td> <td>OK</td> <td>None</td>	233	LnQ_base_1_WinterN	-7.07	2.75	(-20, 5)	\vdash	OK	None
Q-walk_1y_1989 0.00 (-20, 5) -1 Q-walk_1y_1990 0.00 (-20, 5) -1 Q-walk_1y_1991 0.00 (-20, 5) -1 Q-walk_1y_1993 0.00 (-20, 5) -1 Q-walk_1y_1994 0.00 (-20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 Q-walk_1y_1996 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1	234	Q-walk_1y_1988	0.00		(-20, 5)	-		None
Q-walk_1y_1990 0.00 (-20, 5) -1 Q-walk_1y_1991 0.00 (-20, 5) -1 Q-walk_1y_1992 0.00 (-20, 5) -1 Q-walk_1y_1994 0.00 (-20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 Q-walk_1y_1996 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1	235	Q-walk_1y_1989	0.00		(-20, 5)	-		None
Q-walk_1y_1991 0.00 (-20, 5) -1 Q-walk_1y_1992 0.00 (-20, 5) -1 Q-walk_1y_1993 0.00 (-20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 Q-walk_1y_1996 0.00 (-20, 5) -1 Q-walk_1y_1997 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1	236	Q-walk_1y_1990	0.00		(-20, 5)	-		None
Q-walk_1y_1992 0.00 (-20, 5) -1 Q-walk_1y_1993 0.00 (-20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 Q-walk_1y_1996 0.00 (-20, 5) -1 Q-walk_1y_1997 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1 Q-walk_1y_2090 0.00 (-20, 5) -1	237	Q_walk_1y_1991	0.00		(-20, 5)			None
Q-walk_1y_1993 0.00 (-20, 5) -1 Q-walk_1y_1994 0.00 (-20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 Q-walk_1y_1997 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1 Q-walk_1y_2000 (-20, 5) -1	238	Q-walk_1y_1992	0.00		(-20, 5)	-		None
Q-walk_1y_1994 0.00 (-20, 5) -1 Q-walk_1y_1995 0.00 (-20, 5) -1 Q-walk_1y_1997 0.00 (-20, 5) -1 Q-walk_1y_1998 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1 Q-walk_1y_2090 0.00 (-20, 5) -1 Q-walk_1y_2000 0.00 (-20, 5) -1	239	Q-walk_1y_1993	0.00		(-20, 5)			None
Q-walk-1y-1995 0.00 (-20, 5) -1 Q-walk-1y-1996 0.00 (-20, 5) -1 Q-walk-1y-1998 0.00 (-20, 5) -1 Q-walk-1y-1998 0.00 (-20, 5) -1 Q-walk-1y-1999 0.00 (-20, 5) -1 Q-walk-1y-2000 0.00 (-20, 5) -1	240	$Q_{\text{-walk-1y-1994}}$	0.00		(-20, 5)	-		None
Q-walk_1y_1996 0.00 (-20, 5) -1 Q-walk_1y_1997 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1 Q-walk_1y_1999 0.00 (-20, 5) -1 Q walk_1y_2000 0.00 (-20, 5) -1	241	Q-walk_1y_1995	0.00		(-20, 5)	-		None
Q-walk_1y_1997 0.00 $(-20, 5)$ -1 Q-walk_1y_1998 0.00 $(-20, 5)$ -1 Q-walk_1y_1999 0.00 $(-20, 5)$ -1 Q-walk_1y_2000 0.00 $(-20, 5)$ -1	242	Q-walk_1y_1996	0.00		(-20, 5)	-		None
Q-walk-1y-1998 0.00 $(-20, 5)$ -1 Q-walk-1y-1999 0.00 $(-20, 5)$ -1 Q walk 1v 2000 0.00 $(-20, 5)$ -1	243	Q_walk_1y_1997	0.00		(-20, 5)			None
Q-walk_1y_1999 0.00 $(-20, 5)$ -1 0.00 0.00 $(-20, 5)$ -1 0.00	244	Q-walk_1y_1998	0.00		(-20, 5)	-		None
O walk 1v 2000 (-20, 5) -1	245	Q_walk_1y_1999	0.00		(-20, 5)	-		None
	246	$Q_{\rm -walk-1y-2000}$	0.00		(-20, 5)	-		None

Continued on next page

Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

			į	,		i		
No.	Parameter	Value	SD	Bounds	\mathbf{Phase}	Status	Prior	
247	Q-walk_1y_2001	0.00		(-20, 5)	-		None	
248	$Q_{-walk_1y_2002}$	0.00		(-20, 5)			None	
249	$Q_{-walk_1y_2003}$	0.00		(-20, 5)	-		None	
250	Q-walk_1y_2004	0.59	0.18	(-20, 5)	_	OK	None	
251	$Q_{-walk_1y_2005}$	0.00		(-20, 5)	2-		None	
252	$Q_{-walk_1y_2006}$	0.00		(-20, 5)	2-		None	
253	$Q_{-walk_1y_2007}$	0.00		(-20, 5)	2-		None	
254	Q-walk_1y_2008	0.00		(-20, 5)	2-		None	
255	Q_walk_1y_2009	0.00		(-20, 5)	2-		None	
256	LnQ_base_3_WinterS	-0.20	2.53	(-20, 5)	Π	OK	None	
257	Q_walk_3y_1988	0.00		(-20, 5)	-		None	
258	Q_walk_3y_1989	0.00		(-20, 5)	-1		None	
259	Q_walk_3y_1990	0.00		(-20, 5)	-		None	
260	Q_walk_3y_1991	0.00		(-20, 5)			None	
261	Q_walk_3y_1992	0.00		(-20, 5)	-		None	
262	Q_walk_3y_1993	0.00		(-20, 5)	7		None	
263	Q_walk_3y_1994	0.00		(-20, 5)	-		None	
264	Q_walk_3y_1995	0.00		(-20, 5)	7		None	
265	Q_walk_3y_1996	0.00		(-20, 5)	-		None	
266	Q_walk_3y_1997	0.00		(-20, 5)	-		None	
267	Q_walk_3y_1998	0.00		(-20, 5)	-		None	
268	Q_walk_3y_1999	0.00		(-20, 5)	-		None	
269	Q_walk_3y_2000	0.00		(-20, 5)			None	
270	Q_walk_3y_2001	0.00		(-20, 5)	-		None	
271	Q_walk_3y_2002	0.00		(-20, 5)	-		None	
272	Q_walk_3y_2003	0.00		(-20, 5)	-		None	
273	$Q_{-walk-3y-2004}$	0.77	0.24	(-20, 5)	7	OK	None	
Cont	Continued on next page							

Continued on next page

and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum prior type information (mean, SD).

No.	Parameter	Value	SD	Bounds	Phase	Status	Prior	
274	Q_walk_3y_2005	0.00		(-20, 5)	2-		None	
275	Q-walk-3y-2006	0.00		(-20, 5)	2-		None	
276	Q_walk_3y_2007	0.00		(-20, 5)	2-		None	
277	Q-walk-3y-2008	0.00		(-20, 5)	2-		None	
278	Q_walk_3y_2009	0.00		(-20, 5)	2-		None	
279	SizeSel_1P_1_WinterN	47.08	0.87	(15, 75)	\vdash	OK	None	
280	SizeSel_1P_2_WinterN	3.00		(-5, 3)	ن		None	
281	SizeSel_1P_3_WinterN	3.98	0.14	(-4, 12)	2	OK	None	
282	SizeSel_1P_4_WinterN	14.00		(-2, 15)	ن		None	
283	SizeSel_1P_5_WinterN	-999.00		(-15, 5)	-4		None	
284	SizeSel_1P_6_WinterN	-999.00		(-5, 5)	-4		None	
285	Retain_1P_1_WinterN	27.48	2.66	(10, 40)	\vdash	OK	None	
286	Retain_1P_2_WinterN	2.53	1.12	(0.1, 10)	2	OK	None	
287	Retain_1P_3_WinterN	1.00	0.00	(0.001, 1)	4	HI	None	
288	Retain_1P_4_WinterN	0.00		(-10, 10)	-2		None	
289	SzSel_1Male_Peak_WinterN	-9.40	0.74	(-15, 15)	က	OK	None	
290	SzSel_1Male_Ascend_WinterN	-1.22	0.21	(-15, 15)	4	OK	None	
291	$SzSel_1Male_Descend_WinterN$	0.00		(-15, 15)	-4		None	
292	SzSel_1Male_Final_WinterN	0.00		(-15, 15)	-4		None	
293	SzSel_1Male_Scale_WinterN	1.00		(-15, 15)	-4		None	
294	SizeSel_2P_1_SummerN	51.67	1.13	(15, 75)	\vdash	OK	None	
295	SizeSel_2P_2_SummerN	3.00		(-5, 3)	<u>-</u> 3		None	
296	SizeSel_2P_3_SummerN	5.10	0.10	(-4, 12)	2	OK	None	
297	$SizeSel_2P_4SummerN$	14.00		(-2, 15)	-3		None	
298	$SizeSel_2P_5SummerN$	-999.00		(-15, 5)	-4		None	
299	SizeSel_2P_6_SummerN	-999.00		(-5, 5)	-4		None	
300	Retain_2P_1_SummerN	30.77	0.51	(10, 40)	\vdash	OK	None	
7								

Continued on next page

and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum prior type information (mean, SD).

No.	Parameter	Value	SD	Bounds	Phase	Status	Prior	
301	Retain_2P_2_SummerN	1.64	0.38	(0.1, 10)	2	OK	None	
302	Retain_2P_3_SummerN	1.00	0.00	(0.001, 1)	4	HI	None	
303	Retain_2P_4_SummerN	0.00		(-10, 10)	-2		None	
304	SzSel_2Male_Peak_SummerN	-12.23	0.91	(-20, 15)	3	OK	None	
305	SzSel_2Male_Ascend_SummerN	-1.82	0.17	(-15, 15)	4	OK	None	
306	SzSel_2Male_Descend_SummerN	0.00		(-15, 15)	-4		None	
307	SzSel_2Male_Final_SummerN	0.00		(-15, 15)	-4		None	
308	SzSel_2Male_Scale_SummerN	1.00		(-15, 15)	-4		None	
309	SizeSel_3P_1_WinterS	41.53	1.65	(15, 75)	\vdash	OK	None	
310	SizeSel_3P_2_WinterS	3.00		(-5, 3)	د ٠		None	
311	SizeSel_3P_3_WinterS	4.53	0.24	(-4, 12)	2	OK	None	
312	SizeSel_3P_4_WinterS	14.00		(-2, 15)	د ٠		None	
313	SizeSel_3P_5_WinterS	-999.00		(-15, 5)	-4		None	
314	SizeSel_3P_6_WinterS	-999.00		(-5, 5)	-4		None	
315	Retain_3P_1_WinterS	29.46	0.52	(10, 40)	\vdash	OK	None	
316	Retain_3P_2_WinterS	1.20	0.36	(0.1, 10)	2	OK	None	
317	Retain_3P_3_WinterS	0.98	0.04	(0.001, 1)	4	OK	None	
318	Retain_3P_4_WinterS	0.00		(-10, 10)	-2		None	
319	SzSel_3Male_Peak_WinterS	-13.92	1.62	(-15, 15)	က	OK	None	
320	SzSel_3Male_Ascend_WinterS	-2.58	0.47	(-15, 15)	4	OK	None	
321	SzSel_3Male_Descend_WinterS	0.00		(-15, 15)	-4		None	
322	SzSel_3Male_Final_WinterS	0.00		(-15, 15)	-4		None	
323	SzSel_3Male_Scale_WinterS	1.00		(-15, 15)	-4		None	
324	SizeSel_4P_1_SummerS	41.20	1.34	(15, 75)	\vdash	OK	None	
325	SizeSel_4P_2_SummerS	3.00		(-5, 3)	-3		None	
326	SizeSel_4P_3_SummerS	4.38	0.24	(-4, 12)	2	OK	None	
327	SizeSel_4P_4_SummerS	14.00		(-2, 15)	-3		None	
2	- T							

Continued on next page

Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No.	Parameter	Value	SD	Bounds	Phase	Status	Prior	
328	SizeSel_4P_5_SummerS	00.666-		(-15, 5)	-4		None	
329	SizeSel_4P_6_SummerS	-999.00		(-5, 5)	-4		None	
330	Retain_4P_1_SummerS	28.99	0.42			OK	None	
331	Retain_4P_2_SummerS	1.21	0.25	(0.1, 10)	2	OK	None	
332	Retain_4P_3_SummerS	1.00	0.00	(0.001, 1)	4	HI	None	
333	Retain_4P_4_SummerS	0.00		(-10, 10)	-2		None	
334	SzSel_4Male_Peak_SummerS	-8.24	1.19	(-15, 15)	က	OK	None	
335	SzSel_4Male_Ascend_SummerS	-1.37	0.31	(-15, 15)	4	OK	None	
336	SzSel_4Male_Descend_SummerS	0.00		, ,	-4		None	
337	SzSel_4Male_Final_SummerS	0.00		(-15, 15)	-4		None	
338	$SzSel_4Male_Scale_SummerS$	1.00		(-15, 15)	-4		None	
339	SizeSel_5P_1_TriEarly	35.85	1.23	(15, 61)	\vdash	OK	None	
340	SizeSel_5P_2_TriEarly	3.00		(-5, 3)	-2		None	
341	SizeSel_5P_3_TriEarly	4.30	0.19	(-4, 12)	\vdash	OK	None	
342	SizeSel_5P_4_TriEarly	14.00		(-2, 15)	-2		None	
343	SizeSel_5P_5_TriEarly	-999.00		(-15, 5)	-4		None	
344	SizeSel_5P_6_TriEarly	-999.00		(-5, 5)	-4		None	
345	SzSel_5Male_Peak_TriEarly	-3.87	1.11	(-15, 15)	2	OK	None	
346	SzSel_5Male_Ascend_TriEarly	-0.54	0.22	(-15, 15)	2	OK	None	
347	SzSel_5Male_Descend_TriEarly	0.00		(-15, 15)	. -		None	
348	SzSel_5Male_Final_TriEarly	0.00		(-15, 15)	÷-		None	
349	SzSel_5Male_Scale_TriEarly	1.00		(-15, 15)	-4		None	
350	SizeSel_6P_1_TriLate	36.99	0.88	(15, 61)	\vdash	OK	None	
351	SizeSel_6P_2_TriLate	3.00		(-5, 3)	-2		None	
352	SizeSel_6P_3_TriLate	4.68	0.11	(-4, 12)	\vdash	OK	None	
353	SizeSel_6P_4_TriLate	14.00		(-2, 15)	-2		None	
354	SizeSel_6P_5_TriLate	-999.00		(-15, 5)	-4		None	

Continued on next page

and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum prior type information (mean, SD).

No.	Parameter	Value	SD	Bounds	Phase	Status	Prior	
355	SizeSel_6P_6_TriLate	-999.00		(-5, 5)	-4		None	
356	SzSel_6Male_Peak_TriLate	-3.05	0.92	(-15, 15)	2	OK	None	
357	SzSel_6Male_Ascend_TriLate	-0.15	0.14	(-15, 15)	2	OK	None	
358	SzSel_6Male_Descend_TriLate	0.00		(-15, 15)	-3		None	
359	SzSel_6Male_Final_TriLate	0.00		(-15, 15)	-3		None	
360	SzSel_6Male_Scale_TriLate	1.00		(-15, 15)	-4		None	
361	SizeSel_7P_1_NWFSC	43.84	0.93	(15, 61)		OK	None	
362	SizeSel_7P_2_NWFSC	3.00		(-5, 3)	-2		None	
363	SizeSel_7P_3_NWFSC	5.21	0.08	(-4, 12)	\vdash	OK	None	
364	SizeSel_7P_4_NWFSC	14.00		(-2, 15)	-2		None	
365	SizeSel_7P_5_NWFSC	-999.00		(-15, 5)	-4		None	
366	SizeSel_7P_6_NWFSC	-999.00		(-5, 5)	-4		None	
367	SzSel_7Male_Peak_NWFSC	-6.14	0.78	(-15, 15)	2	OK	None	
368	SzSel_7Male_Ascend_NWFSC	-0.50	0.09	(-15, 15)	2	OK	None	
369	SzSel_7Male_Descend_NWFSC	0.00		(-15, 15)	-3		None	
370	SzSel_7Male_Final_NWFSC	0.00		(-15, 15)	-3		None	
371	SzSel_7Male_Scale_NWFSC	1.00		(-15, 15)	-4		None	
372	SizeSel_1P_1_WinterN_BLK1add_1973	-0.03	0.03	(-3, 2)	4	OK	None	
373	$SizeSel_1P_1_WinterN_BLK1add_1983$	-0.08	0.02	(-3, 2)	4	OK	None	
374	SizeSel_1P_1_WinterN_BLK1add_1993	-0.07	0.02	(-3, 2)	4	OK	None	
375	$SizeSel_1P_1_WinterN_BLK1add_2003$	-0.02	0.02	(-3, 2)	4	OK	None	
376	$SizeSel_1P_1_WinterN_BLK1add_2011$	-0.03	0.02	(-3, 2)	4	OK	None	
377	Retain_1P_1_WinterN_BLK2add_2003	99.0-	1.88	(-3, 2)	4	OK	None	
378	Retain_1P_1_WinterN_BLK2add_2010	0.33	0.42	(-3, 2)	4	OK	None	
379	Retain_1P_1_WinterN_BLK2add_2011	-0.10	0.20	(-3, 2)	4	OK	None	
380	Retain_1P_2_WinterN_BLK2add_2003	-0.15	0.33	(-3, 2)	4	OK	None	
381	Retain_1P_2_WinterN_BLK2add_2010	0.95	0.72	(-3, 2)	4	OK	None	
7								

Continued on next page

and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum prior type information (mean, SD).

No.	Parameter	Value	SD	Bounds	Phase	Status	Prior	
382	Retain_1P_2_WinterN_BLK2add_2011	-0.68	0.32	(-3, 2)	4	OK	None	
383	Retain_1P_3_WinterN_BLK2add_2003	-1.09	21.54	(-3, 2)	4	OK	None	
384	Retain_1P_3_WinterN_BLK2add_2010	-0.29	47.07	(-3, 2)	4	OK	None	
385	Retain_1P_3_WinterN_BLK2add_2011	-1.61	21.11	(-3, 2)	4	OK	None	
386	SizeSel_2P_1_SummerN_BLK1add_1973	-0.06	0.02	(-3, 2)	4	OK	None	
387	SizeSel_2P_1_SummerN_BLK1add_1983	-0.16	0.03	(-3, 2)	4	OK	None	
388	SizeSel_2P_1_SummerN_BLK1add_1993	-0.15	0.03	(-3, 2)	4	OK	None	
389	SizeSel_2P_1_SummerN_BLK1add_2003	-0.10	0.02	(-3, 2)	4	OK	None	
390	SizeSel_2P_1_SummerN_BLK1add_2011	-0.06	0.02	(-3, 2)	4	OK	None	
391	Retain_2P_1_SummerN_BLK3add_2003	-0.05	90.0	(-3, 2)	4	OK	None	
392	Retain_2P_1_SummerN_BLK3add_2009	0.02	0.07	(-3, 2)	4	OK	None	
393	Retain_2P_1_SummerN_BLK3add_2011	-0.23	90.0	(-3, 2)	4	OK	None	
394	Retain_2P_2_SummerN_BLK3add_2003	-0.13	0.17	(-3, 2)	4	OK	None	
395	Retain_2P_2_SummerN_BLK3add_2009	0.00	0.17	(-3, 2)	4	OK	None	
396	Retain_2P_2_SummerN_BLK3add_2011	0.01	0.16	(-3, 2)	4	OK	None	
397	Retain_2P_3_SummerN_BLK3add_2003	-2.06	12.67	(-3, 2)	4	OK	None	
398	Retain_2P_3_SummerN_BLK3add_2009	-1.94	12.69	(-3, 2)	4	OK	None	
399	Retain_2P_3_SummerN_BLK3add_2011	-0.48	12.78	(-3, 2)	4	OK	None	
400	SizeSel_3P_1_WinterS_BLK1add_1973	-0.05	0.06	(-3, 2)	4	OK	None	
401	SizeSel_3P_1_WinterS_BLK1add_1983	0.07	0.05	(-3, 2)	4	OK	None	
402	SizeSel_3P_1_WinterS_BLK1add_1993	0.20	0.06	(-3, 2)	4	OK	None	
403	SizeSel_3P_1_WinterS_BLK1add_2003	0.12	0.05	(-3, 2)	4	OK	None	
404	SizeSel_3P_1_WinterS_BLK1add_2011	0.15	0.05	(-3, 2)	4	OK	None	
405	Retain_3P_1_WinterS_BLK2add_2003	-0.40	0.19	(-3, 2)	4	OK	None	
406	Retain_3P_1_WinterS_BLK2add_2010	0.31	0.18	(-3, 2)	4	OK	None	
407	Retain_3P_1_WinterS_BLK2add_2011	-0.22	0.16	(-3, 2)	4	OK	None	
408	Retain_3P_2_WinterS_BLK2add_2003	0.44	0.24	(-3, 2)	4	OK	None	
(

Continued on next page

Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No.	Parameter	Value	SD	Bounds	Phase	Status	Prior
409	Retain_3P_2_WinterS_BLK2add_2010	0.38	0.46	(-3, 2)	4	OK	None
410	Retain_3P_2_WinterS_BLK2add_2011	-0.51	0.84	(-3, 2)	4	OK	None
411	Retain_3P_3_WinterS_BLK2add_2003	3.44	11.91	(-3, 4)	4	OK	None
412	Retain_3P_3_WinterS_BLK2add_2010	-0.57	1.44	(-3, 2)	4	OK	None
413	Retain_3P_3_WinterS_BLK2add_2011	0.93	1.15	(-3, 2)	4	OK	None
414	SizeSel_4P_1_SummerS_BLK1add_1973	-0.08	0.03	(-3, 2)	4	OK	None
415	SizeSel_4P_1_SummerS_BLK1add_1983	-0.14	0.04	(-3, 2)	4	OK	None
416	SizeSel_4P_1_SummerS_BLK1add_1993	-0.04	0.05	(-3, 2)	4	OK	None
417	SizeSel_4P_1_SummerS_BLK1add_2003	0.07	0.03	(-3, 2)	4	OK	None
418	SizeSel_4P_1_SummerS_BLK1add_2011	0.03	0.03	(-3, 2)	4	OK	None
419	Retain_4P_1_SummerS_BLK3add_2003	-0.23	0.13	(-3, 2)	4	OK	None
420	Retain_4P_1_SummerS_BLK3add_2009	-0.25	0.18	(-3, 2)	4	OK	None
421	Retain_4P_1_SummerS_BLK3add_2011	-0.09	0.10	(-3, 2)	4	OK	None
422	Retain_4P_2_SummerS_BLK3add_2003	0.27	0.15	(-3, 2)	4	OK	None
423	Retain_4P_2_SummerS_BLK3add_2009	0.21	0.17	(-3, 2)	4	OK	None
424	Retain_4P_2_SummerS_BLK3add_2011	0.16	0.16	(-3, 2)	4	OK	None
425	Retain_4P_3_SummerS_BLK3add_2003	-0.22	44.04	(-3, 2)	4	OK	None
426	Retain_4P_3_SummerS_BLK3add_2009	-0.38	49.86	(-3, 2)	4	OK	None
427	427 Retain_4P_3_SummerS_BLK3add_2011	-0.31	47.32	(-3, 2)	4	OK	None
 -	tab:model_params						

47

Table 2: Summary of the biomass/abundance time series used in the stock assessment.

							tal	o:Inde	x_summary
Region	ID	Fleet	Years	Name	Fishery	Filtering	Method	Rank	Endorsed
					ind.				
WA	1	4	1981- 2014	Dockside CPUE	No	trip, area, month, Stephens- MacCall	delta-GLM (bin- gamma)	1	SSC
-	-	-	-	-	-	_	-	-	-
-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-

Table 3: Results from 100 jitters from each of the three models.

tab:jitter

Status	Model.1	Model.2	Model.3
Returned to base case	=	=	=
Found local minimum	-	-	-
Found better solution	-	-	-
Error in likelihood	-	-	-
Total	100	100	100

Table 5: Time-series of population estimates from the base-case model.

Year	Total biomass (mt)	Spawning biomass (mt)	Depletion	Age-0 recruits	Total catch (mt)	Relative exploitation rate	SPR
1876	53794.2	3.46e + 04	0	14619.6	1.0091	0	1
1877	53794.2	3.46e + 04	1	14619.7	1.0091	0	1
1878	53794.2	3.46e + 04	1	14619.8	1.0091	0	1
1879	53794.2	3.46e + 04	1	14619.9	1.0091	0	1
1880	53687.9	3.46e + 04	1	14620	11.6551	0	1
1881	53581.9	3.46e + 04	1	14620	22.3011	0	1
1882	53476.2	3.46e + 04	1	14620	32.9473	0	0.99
1883	53370.7	3.46e + 04	1	14619.9	43.5935	0	0.99
1884	53265.3	3.46e + 04	1	14619.8	54.24	0	0.99
1885	53160	3.45e + 04	1	14619.6	64.8866	0	0.99
1886	53054.8	3.45e + 04	1	14619.3	75.5335	0	0.98
1887	52949.7	3.45e + 04	0.99	14619	86.1808	0	0.98
1888	52844.5	3.44e+04	0.99	14618.7	96.8283	0	0.98
1889	52739.3	3.44e+04	0.99	14618.4	107.476	0	0.98
1890	52634.1	3.43e+04	0.99	14618.1	118.124	0	0.97
1891	52528.8	3.42e+04	0.99	14617.8	128.773	0	0.97
1892	52423.5	3.42e+04	0.99	14617.5	139.422	0	0.97
1893	52318	3.41e+04	0.99	14617.2	150.081	0	0.97
1894	52212.5	3.41e+04	0.98	14617	160.731	0	0.97
1895	52107	3.40e+04	0.98	14616.9	171.381	0	0.96

Table 5: Time-series of population estimates from the base-case model.

Year	Total biomass	Spawning biomass	Depletion	Age-0 recruits	Total catch (mt)	Relative exploitation	SPR
1896	$\frac{\text{(mt)}}{51999.2}$	$\frac{\text{(mt)}}{3.39e+04}$	0.98	14616.7	182.275	rate 0	0.96
1090	51999.2	J.J96+04	0.90	14010.7	102.210	U	0.90
1897	51893.8	3.39e+04	0.98	14616.7	192.882	0	0.96
1898	51788.4	3.38e + 04	0.98	14616.8	203.489	0	0.96
1899	51682.4	3.37e + 04	0.97	14616.9	214.137	0	0.95
1900	51576.4	3.36e + 04	0.97	14617.2	224.785	0	0.95
1901	51470.3	3.36e + 04	0.97	14617.6	235.434	0	0.95
1902	51364.1	3.35e+04	0.97	14618.2	246.083	0	0.95
1903	51257.7	3.34e+04	0.97	14619	256.732	0	0.95
1904	51151.3	3.33e+04	0.96	14620	267.382	0.01	0.94
1905	51044.8	3.33e+04	0.96	14621.3	278.033	0.01	0.94
1906	50938.2	3.32e+04	0.96	14622.8	288.684	0.01	0.94
1907	50831.5	3.31e+04	0.96	14624.7	299.335	0.01	0.94
1908	50724.7	3.30e+04	0.95	14626.8	309.987	0.01	0.93
1909	50617.8	3.30e+04	0.95	14629.4	320.639	0.01	0.93
1910	50510.8	3.29e+04	0.95	14632.4	331.292	0.01	0.93
1911	50403.8	3.28e + 04	0.95	14635.9	341.946	0.01	0.93
1912	50296.7	3.27e + 04	0.94	14639.9	352.6	0.01	0.93
1913	50189.5	3.27e + 04	0.94	14644.5	363.255	0.01	0.92
1914	50082.3	3.26e + 04	0.94	14649.7	373.91	0.01	0.92
1915	49975	3.25e + 04	0.94	14655.5	384.565	0.01	0.92

Table 5: Time-series of population estimates from the base-case model.

Year	Total biomass	Spawning biomass	Depletion	Age-0 recruits	Total catch (mt)	Relative exploitation	SPR
	(mt)	(mt)			, ,	rate	
1916	49914.3	3.24e + 04	0.94	14662	390.234	0.01	0.92
1917	48612.5	3.23e+04	0.93	14669.2	531.588	0.01	0.89
1918	49536.5	3.22e+04	0.93	14675.9	428.045	0.01	0.91
1919	50390	3.21e+04	0.93	14684.6	336.759	0.01	0.93
1920	51403.4	3.21e+04	0.93	14695.2	232.803	0	0.95
1921	50782.5	3.22e+04	0.93	14707.8	296.684	0.01	0.94
1922	49530.5	3.22e+04	0.93	14720.7	428.979	0.01	0.91
1923	49499.3	3.21e+04	0.93	14733	431.586	0.01	0.91
1924	48518.4	3.21e+04	0.93	14746.3	538.126	0.01	0.89
1925	48540.6	3.19e+04	0.92	14759.4	533.708	0.01	0.89
1926	48586.9	3.18e+04	0.92	14773.6	526.856	0.01	0.89
1927	47577.3	3.17e + 04	0.92	14789	638.339	0.01	0.87
1928	47656.9	3.16e+04	0.91	14804.6	626.266	0.01	0.87
1929	46861.8	3.14e+04	0.91	14822.2	714.661	0.01	0.85
1930	47246.1	3.12e+04	0.9	14842	666.697	0.01	0.86
1931	47122.7	3.11e+04	0.9	14868.6	684.609	0.01	0.86
1932	46106.5	3.09e+04	0.89	14905.2	817.803	0.02	0.84
1933	45903.6	3.07e + 04	0.89	14956.2	853.545	0.02	0.83
1934	40127.9	3.05e + 04	0.88	15046.2	1633.3	0.03	0.71
1935	40073.6	2.98e + 04	0.86	15196.6	1616.59	0.03	0.71

Table 5: Time-series of population estimates from the base-case model.

Year	Total biomass (mt)	Spawning biomass (mt)	Depletion	Age-0 recruits	Total catch (mt)	Relative exploitation rate	SPR
1936	42039.9	2.92e + 04	0.84	15431.6	1327.27	0.03	0.75
1937	38151.7	2.88e + 04	0.83	15755.5	1905.95	0.04	0.67
1938	36334.5	2.80e + 04	0.81	16110.2	2173.3	0.05	0.63
1939	33513	2.72e + 04	0.78	16325.4	2664.84	0.06	0.57
1940	33666.9	2.60e + 04	0.75	16137	2563.76	0.06	0.57
1941	34710.1	2.51e+04	0.72	15494.8	2311.13	0.06	0.59
1942	30442.4	2.44e+04	0.71	14682.4	3234.43	0.08	0.5
1943	29140.7	2.33e+04	0.67	14086.1	3369.66	0.09	0.48
1944	31331.8	2.22e+04	0.64	13949.8	2666.16	0.07	0.52
1945	31821.8	2.17e+04	0.63	13949.6	2498	0.07	0.53
1946	25979.6	2.13e+04	0.61	13276	3789.81	0.11	0.41
1947	27517.7	2.01e+04	0.58	11954.9	3136.71	0.09	0.45
1948	22075.3	1.94e + 04	0.56	10832.2	4506.31	0.14	0.34
1949	20892	1.77e + 04	0.51	10184.2	4401.04	0.15	0.32
1950	19506.3	1.62e+04	0.47	10125.9	4622.33	0.17	0.29
1951	23556.9	1.45e + 04	0.42	10638.7	3035.25	0.12	0.37
1952	23887.1	1.38e + 04	0.4	11508.1	2782.03	0.12	0.37
1953	24979.9	1.32e + 04	0.38	12115.7	2356.17	0.11	0.4
1954	21743	1.28e + 04	0.37	12385.5	2883.06	0.13	0.34
1955	22642.4	1.20e+04	0.35	12311	2561.16	0.13	0.35

Table 5: Time-series of population estimates from the base-case model.

Year	Total biomass	biomass	Depletion	Age-0 recruits	Total catch (mt)	Relative exploitation	SPR
1956	$\frac{(\text{mt})}{23712.9}$	$\frac{\text{(mt)}}{1.14a + 04}$	0.33	12100.6	2267.69	0.12	0.37
1950	23/12.9	1.14e + 04	0.33	12100.0	2207.09	0.12	0.57
1957	20192.5	1.10e+04	0.32	12040.9	2906.64	0.15	0.3
1958	19596.6	1.03e+04	0.3	11989.1	2862.58	0.16	0.29
1959	21117.2	9.72e + 03	0.28	11925.6	2448.1	0.14	0.32
1960	18967.4	9.48e+03	0.27	15801.3	2864.23	0.17	0.28
1961	16285.4	9.05e + 03	0.26	15477.3	3438.48	0.21	0.23
1962	16000.8	8.32e+03	0.24	10247.6	3284.74	0.21	0.22
1963	15074.7	7.70e + 03	0.22	10871.9	3328.04	0.22	0.2
1964	16153.8	7.12e + 03	0.21	16095.1	2782.78	0.19	0.22
1965	16544.5	6.98e + 03	0.2	14608.1	2649.77	0.19	0.23
1966	16486.7	7.06e + 03	0.2	28734.1	2679.65	0.19	0.23
1967	16244.1	7.12e+03	0.21	12701.5	2716.07	0.19	0.23
1968	17536.5	7.08e + 03	0.2	12796.3	2421.5	0.17	0.25
1969	17700.2	7.21e+03	0.21	11761.9	2464.66	0.16	0.25
1970	15614.8	7.54e + 03	0.22	12071.1	3189.59	0.19	0.21
1971	15543.3	7.81e+03	0.23	11465.8	3323.2	0.2	0.21
1972	14957.7	8.18e+03	0.24	9848.12	3590.89	0.22	0.2
1973	16143.2	8.22e+03	0.24	8348.23	3066.02	0.19	0.23
1974	13497.4	8.23e+03	0.24	10593.9	3863.97	0.25	0.18
1975	12976.2	7.53e + 03	0.22	10808.6	3727.16	0.26	0.17

Table 5: Time-series of population estimates from the base-case model.

Year	Total biomass	Spawning biomass	Depletion	Age-0 recruits	Total catch (mt)	Relative exploitation	SPR
	(mt)	(mt)		recruits	(1116)	rate	
1976	13504	6.71e + 03	0.19	13497.5	3061.68	0.24	0.18
1977	14904	6.16e+03	0.18	11556.4	2519.07	0.22	0.21
1978	11980.9	5.80e + 03	0.17	9010.88	3216.99	0.29	0.15
1979	10595.3	4.99e + 03	0.14	9297.14	3305.3	0.33	0.12
1980	10676.7	4.20e+03	0.12	10483.9	2771.44	0.3	0.13
1981	10445.3	3.85e + 03	0.11	9141.87	2670.92	0.31	0.12
1982	10265	3.63e + 03	0.1	7726.22	2730.6	0.34	0.12
1983	9969.04	3.34e + 03	0.1	8950.99	2461.01	0.33	0.11
1984	11395.6	3.14e+03	0.09	13862.3	1908.04	0.27	0.14
1985	11651.2	3.18e + 03	0.09	8384.3	1845.18	0.27	0.15
1986	10674.8	3.23e+03	0.09	4859.73	2114.93	0.3	0.13
1987	9128.47	3.09e+03	0.09	6378.76	2497.91	0.36	0.1
1988	9024.12	2.72e + 03	0.08	9991.92	2331.07	0.36	0.1
1989	8671.37	2.53e+03	0.07	12805.1	2291.18	0.39	0.09
1990	9109.31	2.39e+03	0.07	12899.5	1941.89	0.37	0.1
1991	8099.78	2.24e+03	0.06	9064.76	2116.22	0.43	0.08
1992	8304.53	1.85e + 03	0.05	5096.46	1777.38	0.37	0.09
1993	8931.68	1.70e + 03	0.05	9782.47	1696.15	0.33	0.09
1994	10106.8	1.83e + 03	0.05	12013.4	1559.87	0.28	0.12
1995	10790.1	2.27e + 03	0.07	7312.89	1695.98	0.29	0.13

Table 5: Time-series of population estimates from the base-case model.

Year	Total biomass (mt)	Spawning biomass (mt)	Depletion	Age-0 recruits	Total catch (mt)	Relative exploitation rate	SPR
1996	10590.6	2.67e + 03	0.08	8885.02	1945.14	0.32	0.12
1997	10241.4	2.76e + 03	0.08	8375.1	2059.99	0.32	0.12
1998	11252.9	2.64e + 03	0.08	19640.6	1742.13	0.28	0.14
1999	12200.6	2.72e + 03	0.08	12993.3	1627.28	0.25	0.15
2000	11450.8	2.94e + 03	0.08	9440.98	1924.76	0.29	0.14
2001	11330.8	2.98e + 03	0.09	7963.34	1982.13	0.27	0.14
2002	11348.3	3.01e+03	0.09	9028.43	2068.53	0.26	0.14
2003	13461.3	3.24e + 03	0.09	7705.18	1754.24	0.21	0.17
2004	12835.1	3.87e + 03	0.11	9219.13	2254.33	0.25	0.16
2005	11228.4	4.25e + 03	0.12	9501.26	2964.19	0.33	0.13
2006	12995.9	4.03e+03	0.12	16408.3	2178.84	0.26	0.16
2007	12305.4	3.95e + 03	0.11	22866.5	2378.12	0.29	0.15
2008	12488.8	3.65e + 03	0.11	31400.2	2156.58	0.28	0.16
2009	11738.8	3.47e + 03	0.1	13034	2274.03	0.29	0.14
2010	20576.3	3.31e+03	0.1	10207.1	884.326	0.1	0.31
2011	25253.6	4.20e+03	0.12	10285.9	774.815	0.06	0.4
2012	24637.6	5.71e+03	0.16	14683.1	1129.34	0.07	0.39
2013	21618.1	7.69e + 03	0.22	12421.3	1945.94	0.11	0.33
2014	21762.8	9.47e + 03	0.27	13495.7			
tab	:Timeseri	es_mod1					

Table 4: Sensitivity of the base model to dropping or down-weighting data sources and alternative assumptions about growth.

Label	Base	Harmonic	Drop	Drop	Down-	Free size	Free CV	External
	(Francis weights)	mean weights	index	ages	$\begin{array}{c} \text{weight} \\ \text{lengths} \end{array}$	Age0	Amin	growth
TOTAL_like	1	ı	1		1	1		ı
Catch_like	ı	ı	ı	1	ı	ı	1	ı
Equil_catch_like	1	1	1	1	ı	,	1	1
Survey_like	1	ı	1	1	ı	1	1	1
Length_comp_like	1	ı	1	1	ı	1	1	ı
Age_comp_like	1	ı	ı	1	ı	,	1	ı
Parm_priors_like	1	1	1	1	1	1	1	ı
SSB_Unfished_thousand_mt	ı	ı	1	1	ı	1	1	ı
TotBio_Unfished	ı	ı	ı	1	ı	1	1	ı
SmryBio_Unfished	1	ı	1	1	1	1	1	ı
Recr_Unfished_billions	1	ı	1	1	1	1	1	ı
SSB_Btgt_thousand_mt	ı	ı	ı	1	ı	1	1	ı
${ m SPR_Btgt}$	1	ı	ı	1	1	1	1	ı
Fstd_Btgt	1	ı	ı	1	1	1	1	ı
TotYield_Btgt_thousand_mt	ı	ı	ı	ı	ı	1	ı	ı
SSB_SPRtgt_thousand_mt	1	ı	1	1	ı	1	1	ı
Fstd_SPRtgt	1	ı	ı	1	ı	1	1	1
TotYield_SPRtgt_thousand_mt	1	ı	ı	1	ı	ı	1	ı
SSB_MSY_thousand_mt	1	1	1	1	1	1	1	ı
SPR_MSY	1	ı	1	1	1	1	1	1
Fstd_MSY	ı	ı	1	ı	ı	ı	ı	ı
TotYield_MSY_thousand_mt	ı	ı	1	ı	ı	ı	ı	ı
RetYield_MSY	1	1	1	1	1	1	1	1
Bratio_2015	1	ı	ı	1	ı	1	1	ı
$F_{-}2015$	1	ı	ı	1	1	1	1	1
SPRratio_2015	1	1	1	1	1	1	1	ı
Recr_2015	1	1	ı	ı	ı	1	ı	ı
Recr_Virgin_billions	1	ı	,	,	ı	1	,	1
L_at_Amin_Fem_GP_1	1	1	1	1	1	1	1	1
L_at_Amax_Fem_GP_1	1	ı	ı	1	ı	1	1	1
VonBert_K_Fem_GP_1	,	ı	1		1			ı
CV_young_Fem_GP_1	ı	ı	ı	1	ı	1	1	1

Table 6: Projection of potential OFL, spawning biomass, and depletion for the base case model.

Year	OFL	ACL landings	Age 5+	Spawning	tab:Forecast_mod1 Depletion
	contriubtion	(mt)	biomass (mt)	Biomass (mt)	_ ·P - · · · ·
	(mt)	()	()	()	
2015	3072.90	2800.78	20046.80	10669.20	0.31
2016	3207.71	2895.41	20214.50	11076.70	0.32
2017	3219.65	3076.71	20119.00	11074.80	0.32
2018	3138.42	2998.73	19749.60	10821.80	0.31
2019	3050.82	2914.44	19417.60	10571.10	0.31
2020	2981.68	2847.86	19168.80	10373.40	0.30
2021	2935.68	2803.56	19000.20	10239.00	0.30
2022	2908.07	2777.00	18891.60	10156.00	0.29
2023	2892.39	2761.92	18821.40	10106.30	0.29
2024	2883.38	2753.28	18773.80	10075.50	0.29
2025	2877.63	2747.78	18738.80	10054.40	0.29
2026	2873.28	2743.61	18710.90	10038.00	0.29

8 Figures

figures

Figure 1: Map showing the state boundary lines for management of the recreational fishing fleets. CRFS Districts 1-6 in California are presented as well as the WDFW Recreational Management Areas in Washington. Florence, OR is shown as a potential location of model stratification.

Data by type and year

Figure 2: Summary of data sources used in the northern assessment. $f^{ig:data_plot}$

length comps, retained, WinterN

Figure 3: length comps, retained, WinterN (plot 1 of 2) fig:mod1_1_comp_lenfit_flt1m

length comps, retained, WinterN

488

489

Figure continued from previous page

Pearson residuals, retained, WinterN (max=4.01)

490

491

Figure continued from previous page

N-EffN comparison, length comps, retained, WinterN

Figure 4: N_EffN comparison, length comps, retained, WinterN | fig:mod1_4_comp_lenfit_sa

Figure 5: Francis data weighting method TA1.8 WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN: 0.5881 (0.4129_0.9119) | fig:mod1_5_comp_lenfit_data_weighting method TA1.8 WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN: 0.5881 (0.4129_0.9119) |

length comps, discard, WinterN

Length (cm)

Figure 6: length comps, discard, WinterN | fig:mod1_6_comp_lenfit_flt1mkt1

Pearson residuals, discard, WinterN (max=5.43)

Figure 7: Pearson residuals, discard, WinterN (max=5.43)
Closed bubbles are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected). fig:mod1_7_comp_lenfit_residsflt1mkt1

N-EffN comparison, length comps, discard, WinterN

Figure 8: N_EffN comparison, length comps, discard, WinterN fig:mod1_8_comp_lenfit_sa

Figure 9: Francis data weighting method TA1.8 WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN: 0.5881 (0.4122_0.9265) | fig:mod1_9_comp_lenfit_data_weighting method TA1.8 WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN: 0.5881 (0.4122_0.9265) | fig:mod1_9_comp_lenfit_data_weighting method TA1.8 WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN: 0.5881 (0.4122_0.9265) | fig:mod1_9_comp_lenfit_data_weighting method TA1.8 WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN: 0.5881 (0.4122_0.9265) | fig:mod1_9_comp_lenfit_data_weighting method TA1.8 WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN: 0.5881 (0.4122_0.9265) | fig:mod1_9_comp_lenfit_data_weighting method TA1.8 WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN: 0.5881 (0.4122_0.9265) | fig:mod1_9_comp_lenfit_data_weighting method TA1.8 WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len data from WinterN Suggested sample size adjustment (with 95% interval) for len

length comps, retained, SummerN

Figure 10: length comps, retained, SummerN (plot 1 of 2) fig:mod1_10_comp_lenfit_flt

references

- Alverson, D.L., Pruter, a T., and Ronholt, L.L. 1964. A Study of Demersal Fishes and
- Fisheries of the Northeastern Pacific Ocean. Institute of Fisheries, University of British Columbia.
- Bertalanffy, L. von. 1938. A quantitative theory of organic growth. Human Biology 10: 181–213.
- Dick, E. 2009. Modeling the reproductive potential of rockfishes (*Sebastes* spp.). PhD Dissertation, University of California Santa Cruz.
- Francis, R. 2011. Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciencies **68**: 1124–1138.
- Hamel, O. 2015. A method for calculating a meta-analytical prior for the natural mortality rate using multiple life history correlates. ICES Journal of Marine Science **72**: 62–69.
- Harry, G., and Morgan, A. 1961. History of the trawl fishery, 1884-1961. Oregon Fish Commission Research Briefs 19: 5–26.
- Love, M., Yoklavich, M., and Thorsteinson, L. 2002. The rockfishes of the northeast Pacific.
 University of California Press, Berkeley, CA, USA.
- McAllister, M.K., and Ianelli, J.N. 1997. Bayesian stock assessment using catch-age data and the sampling importance resampling algorithm. Canadian Journal of Fisheries and Aquatic Sciences **54**(2): 284–300.
- Methot, R.D. 2015. User manual for Stock Synthesis model version 3.24s. NOAA Fisheries, US Department of Commerce.
- Miller, D., and Gotshall, D. 1965. Ocean sportfish catch and effort from Oregon to Point Arguello, California July 1, 1957-June 30, 1961. State of California, The Resources Agency Department of Fish and Game, Fish Bulletin **130**.
- Pikitch, E., Erickson, D., and Wallace, J. 1988. An evaluation of the effectiveness of trip limits
 as a management tool. Northwest and Alaska Fisheries Center, National Marine Fisheries
 Service, US Department of Commerce.
- Rogers, J., and Pikitch, E. 1992. Numerical definition of groundfish assemblages caught off the coasts of Oregon and Washington using commercial fishing strategies. Canadian Journal of Fisheries and and Aquatic Sciences 49: 2648–2656.