

Método Simplex

Como visto anteriormente, a solução gráfica pode ser aplicada para a resolução de problemas de programação linear com duas variáveis de decisão.

Para problemas com mais variáveis, o método Simplex pode ser aplicado para a resolução de qualquer problema de PL.

A origem do método Simplex para resolução de problemas de programação linear deu-se em 1947 com a disseminação da Pesquisa Operacional nos Estados Unidos depois da Segunda Guerra Mundial, por uma equipe liderada por George B. Dantzig.

O algoritmo Simplex é um método algébrico iterativo que parte de uma solução básica factível inicial e busca, a cada iteração, uma nova solução básica factível, chamada solução básica factível adjacente, com melhor valor na função objetivo, até que o valor ótimo seja atingido.

A partir de uma solução básica atual, uma variável não básica entra na base no lugar de outra variável básica que passa a ser não básica, gerando uma nova solução chamada solução básica adjacente.

Se a solução básica adjacente atende as restrições de não negatividade, ela é chamada solução básica factível adjacente (SBF adjacente).

De acordo com o Teorema visto, toda solução básica factível é um ponto extremo (vértice) da região factível.

Dessa forma, dois vértices são adjacentes se estão ligados por um segmento de reta chamado aresta.

O algoritmo pode ser descrito por meio de um fluxograma, conforme mostra a Figura:

Teorema: Se a função objetivo possui um máximo (mínimo) finito, então pelo menos uma solução ótima é um ponto extremo do conjunto das soluções (viáveis).

Examine uma seqüência de soluções básicas viáveis com o aumento dos valores da função objetivo até que uma solução ideal seja atingida ou seja provado que o PL é ilimitado.

(G. Dantzig, 1947).

Algoritmo de solução pelo Simplex:

Passo 0: Achar uma solução factível básica inicial.

Passo 1: Verificar se a solução atual é ótima. Se for, pare.

Passo 2: Determinar a variável não-básica que deve entrar na base.

Passo 3: Determinar a variável básica que deve sair da base.

Passo 4: Achar a nova solução viável básica, e voltar ao Passo 1

Forma Tabular do Simplex para PL na forma padrão:

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
sujeito a:
$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m$$

$$x_i \ge 0, i = 1, 2, \dots, m$$

Modelo geral de programação linear na forma tabular

nº da							
equação	Z	<i>X</i> ₁	X_2	•••	X _n	Constante	
0	1	-C ₁	-C ₂	•••	-C _n	0	
1	0	a ₁₁	a ₁₂	•••	a _{in}	$\boldsymbol{b}_{\scriptscriptstyle 1}$	
2	0	a ₂₁	a ₂₂	•••	a_{2n}	b_2	
:	÷	:	:		:	:	
m	0	a _{m1}	a_{m2}		a _{mn}	b _m	

Exemplo 1: Resolva pelo Simplex:

$$Max z = 3x_1 + 2x_2$$

$$S.a. \begin{cases} x_1 + x_2 \le 6 \\ 5x_1 + 2x_2 \le 20 \\ x_1, x_2 \ge 0 \end{cases}$$

SAFENIA PUC-SP

Colocar o PL na forma padrão acrescentando as variáveis de folga:

$$Max z = 3x_1 + 2x_2$$

$$S.a. \begin{cases} x_1 + x_2 + x_3 = 6 \\ 5x_1 + 2x_2 + x_4 = 20 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

O resultado completo da solução inicial é:

VNB =
$$\{x_1, x_2\}$$
 e VB = $\{x_3, x_4\}$

Solução não básica: $x_1 = 0$ e $x_2 = 0$

Solução básica factível: $x_3 = 6 e x_4 = 20$

Solução: $\{x_1, x_2, x_3, x_4\} = \{0, 0, 6, 20\}$

Função objetivo: z = 0

$$Max z = 3x_1 + 2x_2$$

$$S.a. \begin{cases} x_1 + x_2 + x_3 = 6 \\ 5x_1 + 2x_2 + x_4 = 20 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Forma tabular inicial do Exemplo

Variável básica	nº da	Coeficientes				Constante		
	equação	Z	X ₁	X_2	X ₃	<i>X</i> ₄		
Z	0	1	-3	-2	0	0	0	
X ₃	1	0	1	1	1	0	6	
X ₄	2	0	5	2	0	1	20	

Determinação da variável que entra e sai da base na primeira iteração

Entra

								_
Variável	nº da		▼ Coeficientes					
básica	equação	Z	<i>X</i> ₁	X_2	<i>X</i> ₃	X ₄	Constante	
Z	0	1	-3	-2	0	0	0	
X ₃	1	0	1	1	1	0	6	6/1 = 6
X ₄	2	0	5	2	0	1	20	$6/1 = 6$ $20/5 = 4$ $\Rightarrow Sai$

coluna pivô

Nova linha pivô (Iteração 1)

Variável	nº da		Coeficientes				
básica	equação	Z	X ₁	X ₂	X ₃	<i>X</i> ₄	Constante
Z	0	1	-3	-2	0	0	0
X ₃	1	0	1	1	1	0	6
<i>x</i> ₁	2	0	1	2/5	0	1/5	4

Nova forma tabular após o método de eliminação de Gauss-Jordan (Iteração 1)

Variável	nº da		Coeficientes					
básica	equação	Z	X ₁	X_2	X ₃	X ₄	tante	
Z	0	1	0	-4/5	0	3/5	12	
<i>X</i> ₃	1	0	0	3/5	1	-1/5	2	
X ₁	2	0	1	2/5	0	1/5	4	

Nova solução = $\{x1, x2, x3, x4\} = \{4, 0, 2, 0\}$

Determinação da variável que entra e sai da base na segunda iteração

Entra

Variáve	l nº da		(Canatanta			
básica	equação	Z	X ₁	X_2	X ₃	<i>X</i> ₄	Constante	
Z	0	1	0	-4/5	0	3/5	12	
X ₃	1	0	0	3/5 2/5	1	-1/5	2	2/ _{3/5} =10/3 → Sai
X ₁	2	0	1		0	1/5	4	$4/_{2/5} = 10$

coluna pivô

Nova forma tabular após o método de eliminação de Gauss-Jordan (Iteração 2)

Variável	nº da		Coeficientes					
básica	equação	Z	<i>X</i> ₁	X_2	X ₃	<i>X</i> ₄	Constante	
Z	0	1	0	0	4/3	1/3	44/3	
X_2	1	0	0	1	5/3	-1/3	10/3	
<i>X</i> ₁	2	0	1	0	-2/3	1/3	8/3	

nova SBF é
$$x_1 = \frac{8}{3}$$
 e $x_2 = \frac{10}{3}$, com $z = \frac{44}{3}$

A nova solução é
$$\{x_1, x_2, x_3, x_4\} = \left\{\frac{8}{3}, \frac{10}{3}, 0, 0\right\}$$

Passo 2: Teste de otimalidade: A SBF atual é a ótima, pois os coeficientes das variáveis não básicas x_3 e x_4 na equação 0 da Tabela são positivos.

Exemplo 2: Resolva pelo Simplex:

$$\max Z = 2x_1 + x_2 3x_1 + 4x_2 \le 6$$

S.a.
$$6x_1 + 1x_2 \le 3$$

 $x_1, x_2 \ge 0$

$$\operatorname{Max} z = 2x_1 + x_2$$

$$3x_1 + 4x_2 + x_3 = 6$$
S.a.
$$6x_1 + 1x_2 + x_4 = 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Base	x1	x2	x3	x4	b
Z	-2	-1	0	0	0
x 3	3	4	1	0	6
x4	6	1	0	1	3

Base	x1	x2	x3	x4	b
Z	-2	-1	0	0	0
x 3	3	4	1	0	6
x4	6	1	0	1	3

Escolher:
$$\min\left\{\frac{6}{3}; \frac{3}{6}\right\} = \frac{3}{6} = \frac{1}{2} \implies entra x_1 \ e \ sai \ x_4$$

Base	x1	x2	x3	x4	b
Z	-2	-1	0	0	0
x3	3	4	1	0	6
x1	1	1/6	0	1/6	1/2

SAPTENTIA	
PUC-SP	

Base	x1	x2	x3	x4	b
Z	0	-2/3	0	1/3	1
x3	0	7/2	1	-1/2	9/2
x1	1	1/6	0	1/6	1/2

Como ainda temos coeficiente negativo na linha da função objetivo, então é possível melhorar o valor:

Base	x1	x2	x3	x4	b
Z	0	-2/3	0	1/3	1
x3	0	7/2	1	-1/2	9/2
x1	1	1/6	0	1/6	1/2

Base	x1	x2	x3	x4	b
Z	0	-2/3	0	1/3	1
x 3	0	7/2	1	-1/2	9/2
x1	1	1/6	0	1/6	1/2

Escolher:
$$\min \left\{ \frac{9}{2} \frac{2}{7} = \frac{9}{7} ; \frac{1}{2} \frac{6}{1} = 3 \right\} = \frac{9}{7} \implies entra x_2 \ e \ sai \ x_3$$

Base	x1	x2	x3	x4	b
Z	0	-2/3	0	1/3	1
x2	0	7/2	1	-1/2	9/2
x1	1	1/6	0	1/6	1/2

Base	x1	x2	x3	x4	b
Z	0	-2/3	0	1/3	1
x2	0	1	2/7	-1/7	9/7
x1	1	1/6	0	1/6	1/2

Base	x1	x2	x3	x4	b
Z	0	0	4/21	5/21	13/7
x2	0	1	2/7	-1/7	9/7
x1	1	0	-1/21	4/21	2/7

Como não há valores negativos na linha da função objetivo, atingimos o ótimo, ou seja:

Solução ótima:
$$\left(\frac{2}{7}, \frac{9}{7}, 0, 0\right)$$

Valor ótimo:
$$z = \frac{13}{7}$$

Exemplo 3: Problema de minimização:

$$Min z = x_1 - 2x_2$$

$$2x_1 + x_2 \le 40$$
S.a. $x_1 + 3x_2 \le 60$
 $x_1, x_2 \ge 0$

Base	x1	x2	x3	x4	b
-Z	1	-2	0	0	0
x3	2	1	1	0	40
x4	1	3	0	1	60

SAPTENTIA
PUC-SP

Base	x1	x2	x3	x4	b
-Z	5/3	0	0	2/3	40
X1	5/3	0	1	-1/3	20
x2	1/3	1	0	1/3	20

Solução ótima: $(0, 20) \Rightarrow \text{Valor ótimo: } z = 40$

Exemplo 4: Problema com solução única:

$$\operatorname{Max} z = x_1 + 2x_2$$

$$2x_1 + x_2 \le 40$$
S.a. $x_1 + 3x_2 \le 60$
 $x_1, x_2 \ge 0$

Base	x1	x2	x3	x4	b
z	-1	-2	0	0	0
x 3	2	1	1	0	40
x2	1	3	0	1	60

Base	x1	x2	x3	x4	ь
Z	-1/3	0	0	2/3	40
x1	5/3	0	1	-1/3	20
x2	1/3	1	0	1/3	20

Base	x1	x2	x 3	x4	ь
Z	0	0	1/5	3/5	44
x 3	1	0	3/5	-1/5	12
x4	0	1	-1/5	2/5	16

Solução ótima: $(x_1, x_2) = (12, 16)$

Valor ótimo: z = 44