Supplementary information

Data plots & R script

DA McGranahan

School of Natural Resource Sciences, Range Science; North Dakota State University, Fargo, ND

BN Poling

School of Natural Resource Sciences, Range Science; North Dakota State University, Fargo, ND

Annual crops

Raw data

In the following graphs, different colors indicate the mean and standard error of undusted (orange) and dusted plants (blue). Open blue points indicate measurements 1-2 hours prior to dust application; closed points represent measurements taken 1-2 hours after dust application.

Figure 1: **TOP:** Chlorophyll concentration; **BOTTOM:** Photosynthetic yield (synonymous with quantum yield in further analysis and main manuscript).

Figure 2: **TOP:** Stomatal conductance; **BOTTOM:** Specific leaf area.

Figure 3: Immediate changes (after dusting values - pre-dusting values) in three physiological responses among 7 annual crop species over 5 dust application events that occurred 3 days apart. Colors indicate two blocks on different greenhouse benches.

Short-term responses

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
diff0	2	4292.0	4302.8	-2144.0	4288.0			
diff1	6	4228.8	4261.2	-2108.4	4216.8	71.2	4	0.000

Table 1: Immediate physiological responses to dusting vary among response measurements.

Perennial Grasses

Figure 4: Biomass recovery for eight perennial grasses following two rounds of clipping under dusted and undusted conditions.

R script

```
# Annual crops
# Short-term responses
#
#
# Regresion modelling
# Model fitting
# Responses by species
  # Chlorophyll concentration
    conc0 <- lme4::lmer(diff ~ 0 + (1|block:round:pot), REML = F,
                         data = filter(diff_dat, response == "conc"))
    conc1 <- lme4::lmer(diff ~ 0 + spp + (1|block:round:pot), REML = F,</pre>
                        data = filter(diff_dat, response == "conc"))
    conc_diff_CI <- as.data.frame(confint(conc1)) %>%
                      rownames_to_column("term") %>%
                      slice(-(1:2)) %>%
                      bind_cols(tibble(
                        estimate = lme4::fixef(conc1),
                        response = "Chlorophyll\nconcentration") )
  # Stomatal conductance
    cond0 <- lme4::lmer(diff ~ 0 + (1|block:round:pot), REML = F,</pre>
                        data = filter(diff_dat, response == "cond"))
    cond1 <- lme4::lmer(diff ~ 0 + spp + (1|block:round:pot), REML = F,</pre>
                        data = filter(diff_dat, response == "cond"))
    cond_diff_CI <- as.data.frame(confint(cond1)) %>%
                      rownames_to_column("term") %>%
                      slice(-(1:2)) %>%
                      bind_cols(tibble(
                        estimate = lme4::fixef(cond1),
                        response = "Stomatal\nconductance") )
  # Photosynthetic yield
    yield0 <- lme4::lmer(diff ~ 0 + (1|block:round:pot), REML = F,</pre>
                        data = filter(diff_dat, response == "yield"))
   yield1 <- lme4::lmer(diff ~ 0 + spp + (1|block:round:pot), REML = F,</pre>
                        data = filter(diff_dat, response == "yield"))
    yield_diff_CI <- as.data.frame(confint(yield1)) %>%
                      rownames_to_column("term") %>%
                      slice(-(1:2)) %>%
                      bind_cols(tibble(
                         estimate = lme4::fixef(yield1),
```

```
response = "Photosynthetic\nyield") )
  # Leaf temperature
    temp0 <- lme4::lmer(diff ~ 0 + (1|block:round:pot), REML = F,
                         data = filter(diff_dat, response == "temp"))
    temp1 <- lme4::lmer(diff ~ 0 + spp + (1|block:round:pot), REML = F,
                         data = filter(diff_dat, response == "temp"))
    temp_diff_CI <- as.data.frame(confint(temp1)) %>%
      rownames_to_column("term") %>%
      slice(-(1:2)) %>%
      bind_cols(tibble(
        estimate = lme4::fixef(temp1),
        response = "Leaf\ntemperature") )
# Overall responses
    diff0 <- lme4::lmer(diff ~ 0 + (1|block:round:spp:pot),</pre>
                        data= diff_dat, REML = F)
    diff1 <- lme4::lmer(diff ~ 0 + response + (1|block:round:spp:pot),</pre>
                        data= diff_dat, REML = F)
    dmc <- anova(diff0, diff1)</pre>
# Plotting
# Species-level differences
  bind_rows(cond_diff_CI,
            conc_diff_CI,
            yield_diff_CI,
            temp_diff_CI) %>%
    setNames(c("term", "ciL", "ciU",
               "estimate", "response")) %>%
   mutate_at(vars(cil:estimate), ~ round(., 5)) %>%
   mutate(term = factor(term,
                         levels=c("sppBA", "sppDW",
                                   "sppC0", "sppS0",
                                   "sppLE", "sppPB",
                                   "sppSF"),
                         labels=c("Barley (C3)",
                                   "Wheat (C3)",
                                   "Maize (C4)"
                                   "Sorghum (C4)",
                                   "Lentil",
                                   "Pinto bean",
                                   "Sunflower")) ) %>%
  ggplot() +
    coord_flip() + theme_bw(14) +
    geom_hline(yintercept = 0, lty=2) +
        geom_errorbar(aes(x=response,
                           ymin=ciL, ymax=ciU),
                   width=0.25,
                 size=1,
```

```
color=cbPal5[3]) +
     geom_point(aes(x=response, y=estimate),
                size=3,
                pch=21,
                stroke = 1,
                color="black",
                fill = cbPal5[3]) +
     labs(y="Dust effect",
          title = "Responses by species (immediate)") +
    ylim(c(-1.1,1.1)) +
      facet_wrap(~ term, nrow = 2) +
     theme(panel.grid.major.y = element_blank(),
           axis.title.y = element_blank(),
           axis.text.y = element_text(color="black"))
# Overall differences
  as.data.frame(confint(diff1)) %>%
                rownames_to_column("term") %>%
                slice(-(1:2)) %>%
                bind_cols(tibble(
                  estimate = lme4::fixef(diff1)) ) %>%
    setNames(c("term", "ciL", "ciU", "estimate"))%>%
 mutate(term = recode(term,
              responseconc = "Chlorophyll\nconcentration",
              responsecond = 'Stomatal\nconductance',
              responseyield = 'Photosynthetic\nyield',
              responsetemp = 'Leaf\ntemperature')) %>%
   ggplot() +
   coord_flip() + theme_bw(14) +
  geom_hline(yintercept = 0, lty=2) +
      geom_errorbar(aes(x=term,
               ymin=ciL, ymax=ciU),
                 width=0.25,
               size=1.5,
               color=cbPal5[3]) +
   geom_point(aes(x=term, y=estimate),
              size=4,
              pch=21,
              stroke = 1.5,
              color="black",
              fill = cbPal5[3]) +
   labs(y="Dust effect",
        title = "Overall responses") +
   theme(panel.grid.major.y = element_blank(),
         axis.title.y = element_blank(),
         axis.text.y = element_text(color="black"))
# For long-term analysis
  SLA2 <- SLA.dat[(1:672),c(1:3,8)] %>%
             mutate(lsla=log(SLA)) %>%
             filter(lsla>=4.5) %>%
            group_by(block, spp, t_c) %>%
             mutate(pot = seq(1,n(), 1)) \%>\%
```

```
ungroup
  Por <- filter(sc1, response == "cond") %>%
            mutate(lcond=log(value + 1)) %>%
            group_by(block, spp, t_c) %>%
             mutate(pot = seq(1,n(), 1)) \%>\%
            ungroup
  Temp <- filter(sc1, response == "temp") %>%
            rename(temp = value) %>%
            group_by(block, spp, t_c) %>%
             mutate(pot = seq(1,n(), 1)) \%>\%
            ungroup
  CCM <- ccm %>%
           mutate(lconc=log(value + 1)) %>%
           filter(lconc>=4) %>%
            group_by(block, spp, t_c) %>%
             mutate(pot = seq(1,n(), 1)) \%>\%
            ungroup
  OS1 <- filter(os1, value <= 0.999) %>%
            rename(yield = value) %>%
            group_by(block, spp, t_c) %>%
             mutate(pot = seq(1,n(), 1)) \%>\%
            ungroup
# Long-term responses
# Mixed-effect model fitting
  # Specific leaf area
    sla.null <- lme4::lmer(scale(log(SLA)) ~ 1 + (1|block:pot),</pre>
                            data=SLA2, REML=FALSE)
    sla.spp <- lme4::lmer(scale(log(SLA)) ~ spp + (1|block:pot),</pre>
                           data=SLA2, REML=FALSE)
    sla.treat <- lme4::lmer(scale(log(SLA)) ~ t_c + (1|block),</pre>
                             data=SLA2, REML=FALSE)
    sla.add <- lme4::lmer(scale(log(SLA)) ~ 0 + spp + t_c + (1|block:pot),</pre>
                           data=SLA2, REML=FALSE)
    sla.int <- lme4::lmer(scale(log(SLA)) ~ 0 + spp * t_c + (1|block:pot),</pre>
                           data=SLA2, REML=FALSE)
  # Somatal conductance
    conduct.null <- lme4::lmer(scale(lcond) ~ 1 + (1|block:date:pot),</pre>
                                data=Por, REML=FALSE)
    conduct.spp <- lme4::lmer(scale(lcond) ~ spp + (1|block:date:pot),</pre>
                               data=Por, REML=FALSE)
    conduct.treat <- lme4::lmer(scale(lcond) ~ t_c + (1|block:date:pot),</pre>
                                 data=Por, REML=FALSE)
    conduct.add <- lme4::lmer(scale(lcond) ~ 0 + spp + t_c + (1|block:date:pot),</pre>
                               data=Por, REML=FALSE)
    conduct.int <- lme4::lmer(scale(lcond) ~ 0 + spp * t_c + (1|block:date:pot),</pre>
                               data=Por, REML=FALSE)
  # Leaf temperature
    temp.null <- lme4::lmer(scale(temp) ~ 1 + (1|block:date:pot),</pre>
                                data=Temp, REML=FALSE)
```

```
temp.spp <- lme4::lmer(scale(temp) ~ spp + (1|block:date:pot),</pre>
                                data=Temp, REML=FALSE)
    temp.treat <- lme4::lmer(scale(temp) ~ t_c + (1|block:date:pot),</pre>
                                  data=Temp, REML=FALSE)
    temp.add <- lme4::lmer(scale(temp) ~ 0 + spp + t_c + (1|block:date:pot),
                                data=Temp, REML=FALSE)
    temp.int <- lme4::lmer(scale(temp) ~ 0 + spp * t_c + (1|block:date:pot),</pre>
                                data=Temp, REML=FALSE)
  # Chlorophyll content
    conc.null <- lme4::lmer(scale(lconc) ~ 1 + (1|block:date),</pre>
                              data=CCM, REML=FALSE)
    conc.spp <- lme4::lmer(scale(lconc) ~ spp + (1|block:date:pot),</pre>
                             data=CCM, REML=FALSE)
    conc.treat <- lme4::lmer(scale(lconc) ~ t_c + (1|block:date:pot),</pre>
                               data=CCM, REML=FALSE)
    conc.add <- lme4::lmer(scale(lconc) ~ 0 + spp + t_c + (1|block:date:pot),</pre>
                             data=CCM, REML=FALSE)
    conc.int <- lme4::lmer(scale(lconc) ~ 0 + spp*t_c + (1|block:date:pot),</pre>
                             data=CCM, REML=FALSE)
  # Quantum yield
    yield.null <- lme4::lmer(scale(yield)~ 1 + (1|block:date:pot),</pre>
                               data=OS1, REML=FALSE)
    yield.spp <- lme4::lmer(scale(yield)~ spp + (1|block:date:pot),</pre>
                              data=OS1, REML=FALSE)
    yield.treat <- lme4::lmer(scale(yield)~ t_c + (1|block:date:pot),</pre>
                                data=OS1, REML=FALSE)
    yield.add <- lme4::lmer(scale(yield)~ 0 + spp + t_c + (1|block:date:pot),</pre>
                              data=OS1, REML=FALSE)
    yield.int <- lme4::lmer(scale(yield) ~ 0 + spp*t_c + (1|block:date:pot),</pre>
                              data=OS1, REML=FALSE)
# AICc-based model selection
  # Specific leaf area
    sla.mod.names <- c("sla.null", "sla.spp",</pre>
                        "sla.treat", "sla.add",
                        "sla.int")
    sla.mods <- lst( )</pre>
   for(i in 1:length(sla.mod.names)) {
    sla.mods[[i]] <- get(sla.mod.names[i]) }</pre>
  sla_aic_tab <- AICcmodavg::aictab(cand.set = sla.mods,</pre>
                                      modnames = sla.mod.names)
  # Stomatal conductance
    conduct.mod.names <- c("conduct.null", "conduct.spp",</pre>
                             "conduct.treat", "conduct.add",
                             "conduct.int")
    conduct.mods <- lst( )</pre>
     for(i in 1:length(conduct.mod.names)) {
        conduct.mods[[i]] <- get(conduct.mod.names[i]) }</pre>
      cond_aic_tab <- AICcmodavg::aictab(cand.set = conduct.mods,</pre>
                                            modnames = conduct.mod.names)
```

```
# Leaf temeprature
    temp.mod.names <- c("temp.null", "temp.spp",</pre>
                             "temp.treat", "temp.add",
                             "temp.int")
    temp.mods <- lst( )</pre>
     for(i in 1:length(temp.mod.names)) {
        temp.mods[[i]] <- get(temp.mod.names[i]) }</pre>
      temp_aic_tab <- AICcmodavg::aictab(cand.set = temp.mods,</pre>
                                           modnames = temp.mod.names)
  # Chlorophyll
    conc.mod.names <- c("conc.null", "conc.spp",</pre>
                         "conc.treat", "conc.add",
                         "conc.int")
    conc.mods <- lst( )</pre>
     for(i in 1:length(conc.mod.names)) {
      conc.mods[[i]] <- get(conc.mod.names[i]) }</pre>
     conc_aic_tab <- AICcmodavg::aictab(cand.set = conc.mods,</pre>
                                          modnames = conc.mod.names)
  # Photosynthetic yield
    yield.mod.names <- c("yield.null", "yield.spp",</pre>
                          "yield.treat", "yield.add",
                           "yield.int")
    yield.mods <- lst( )</pre>
    for(i in 1:length(yield.mod.names)) {
      yield.mods[[i]] <- get(yield.mod.names[i]) }</pre>
    yld_aic_tab <- AICcmodavg::aictab(cand.set = yield.mods,</pre>
                                        modnames = yield.mod.names)
# Estimating regression coefficients & 95% CIs
# By crop species
  cond_CI <- as.data.frame(confint(conduct.int)) %>%
                       rownames_to_column("term") %>%
                         slice(-(1:9)) %>%
                     bind_cols(tibble(
                                  estimate = lme4::fixef(conduct.int)[8:14],
                                  response = "Stomatal\nconductance") )
  temp_CI <- as.data.frame(confint(temp.int)) %>%
                       rownames_to_column("term") %>%
                         slice(-(1:9)) %>%
                     bind_cols(tibble(
                                  estimate = lme4::fixef(temp.int)[8:14],
                                  response = "Leaf\ntemperature") )
  conc_CI <- as.data.frame(confint(conc.int)) %>%
                       rownames_to_column("term") %>%
                         slice(-(1:9)) %>%
```

```
bind_cols(tibble(estimate = lme4::fixef(conc.int)[8:14],
                                   response = "Chlorophyll\ncontent"))
 yield_CI <- as.data.frame(confint(yield.int)) %>%
                       rownames_to_column("term") %>%
                         slice(-(1:9)) %>%
                 bind_cols(tibble(estimate = lme4::fixef(yield.int)[8:14],
                                   response = "Photosynthetic\nyield"))
  sla_CI <- as.data.frame(confint(sla.int)) %>%
                       rownames_to_column("term") %>%
                         slice(-(1:9)) %>%
                 bind_cols(tibble(estimate = lme4::fixef(sla.int)[8:14],
                                   response = "Specific\nleaf area"))
sppCIs <- bind_rows( cond_CI,</pre>
                       conc_CI,
                       yield_CI,
                       sla_CI,
                       temp_CI) %>%
           setNames(c("term", "ciL", "ciU",
                       "estimate", "response")) %>%
           mutate(term = factor(term,
                 levels=c("t_cT", "sppDW:t_cT",
                           "sppC0:t_cT", "sppS0:t_cT",
                           "sppLE:t_cT", "sppPB:t_cT",
                           "sppSF:t_cT"),
                labels=c("Barley (C3)", "Wheat (C3)",
                          "Maize (C4)", "Sorghum (C4)",
                          "Lentil", "Pinto bean",
                          "Sunflower")) )
# Overall dust effects
 # Specific leaf area (using model averaging)
  sla.mod.names.top <- c("sla.spp", "sla.add")</pre>
  sla.mods.top <- lst( )</pre>
     for(i in 1:length(sla.mod.names.top)) {
    sla.mods.top[[i]] <- get(sla.mod.names.top[i]) }</pre>
   sla.terms <- c("sppBA","sppDW", "sppPB",</pre>
                    "sppSF", "sppCO", "sppLE",
                    "sppSO", "t_cT" )
        sla.av.params <- as_tibble(array(NA,c(length(sla.terms),4)))</pre>
        colnames(sla.av.params)<-c("term","ciL","ciU","estimate")</pre>
       for(i in 1:length(sla.terms)) {
            sla.av <- AICcmodavg::modavg(parm = paste(sla.terms[i]),</pre>
                          cand.set = sla.mods.top,
                          modnames = sla.mod.names.top)
            sla.av.params[i,1] <- sla.terms[i]</pre>
            sla.av.params[i,4] <- round(sla.av$Mod.avg.beta, 2)</pre>
            sla.av.params[i,2] <- round(sla.av$Lower.CL, 3)</pre>
```

```
sla.av.params[i,3] <- round(sla.av$Upper.CL, 3) }</pre>
 conduct.add.CI <- as.data.frame(confint(conduct.add)) %>%
                     rownames_to_column("term") %>%
                       slice(-(1:2)) %>%
                   bind_cols(tibble(
                               estimate = lme4::fixef(conduct.add),
                               response = "Stomatal\nconductance") )
 temp.add.CI <- as.data.frame(confint(temp.add)) %>%
                     rownames_to_column("term") %>%
                       slice(-(1:2)) %>%
                   bind_cols(tibble(
                               estimate = lme4::fixef(temp.add),
                               response = "Leaf\ntemperature") )
 conc.add.CI <- as.data.frame(confint(conc.add)) %>%
                     rownames_to_column("term") %>%
                       slice(-(1:2)) %>%
                bind_cols(tibble(estimate = lme4::fixef(conc.add),
                                 response = "Chlorophyll\ncontent"))
yield.add.CI <- as.data.frame(confint(yield.add)) %>%
                     rownames_to_column("term") %>%
                       slice(-(1:2)) %>%
                bind_cols(tibble(estimate = lme4::fixef(yield.add),
                                 response = "Photosynthetic\nyield"))
cropCIs <- bind_rows(conduct.add.CI,</pre>
                     conc.add.CI,
                     yield.add.CI,
                     temp.add.CI) %>%
             setNames(c("term", "cil", "ciU",
                        "estimate", "response"))
 cropCIs <-
    sla.av.params %>% mutate(response = "Specific\nleaf area") %>%
      bind_rows(cropCIs)
 sppCIs %>%
 ggplot() +
 coord_flip() + theme_bw(14) +
 geom_hline(yintercept = 0, lty=2) +
     geom_errorbar(aes(x=response,
              ymin=ciL, ymax=ciU),
                width=0.25,
              size=1.
              color=cbPal5[3]) +
  geom_point(aes(x=response, y=estimate),
             size=3.
               pch=21.
               stroke = 1,
               color="black",
               fill = cbPal5[3]) +
```

```
labs(y="Dust effect",
        title = "Responses by species (long-term)") +
  ylim(c(-1.6,1.1)) +
    facet_wrap(~ term, nrow = 2) +
   theme(panel.grid.major.y = element_blank(),
         axis.title.y = element_blank(),
         axis.text.y = element_text(color="black"))
  cropCIs %>%
    filter(term == "t_cT") %>%
  ggplot() +
   coord_flip() + theme_bw(14) +
  geom_hline(yintercept = 0, lty=2) +
      geom_errorbar(aes(x=response,
               ymin=ciL, ymax=ciU),
                 width=0.25, size=1.5, color=cbPal5[3]) +
   geom_point(aes(x=response, y=estimate),
              size=4.5, pch=21, stroke = 1.5,
              color="black", fill = cbPal5[3]) +
   labs(y="Dust effect".
        title = "Overall responses") +
   theme(panel.grid.major.y = element_blank(),
         axis.title.y = element_blank(),
         axis.text.y = element_text(color="black"))
# cowplot::plot_grid(spp_gg, ov_gg,
                     nrow = 2,
#
                      rel_heights = c(2/3, 1/3))
# Perennial grasses
# Model fitting
  gr_null <- lme4::lmer(recovery~ 1 + (1|block:event:pot),</pre>
                            data=recovery.dat, REML = F)
  gr_trt <- lme4::lmer(recovery ~ trt + (1|block:event:pot),</pre>
                           data=recovery.dat, REML = F)
  gr_spp <- lme4::lmer(recovery ~ 0 + species*trt + (1|block:event:pot),</pre>
                           data=recovery.dat, REML = F)
  gr_photo <- lme4::lmer(recovery~ 0 + photo*trt + (1|block:event:pot),</pre>
                            data=recovery.dat, REML = F)
# AICc-based model selection
  rcv.mod.names <- c("gr_null", "gr_trt",</pre>
                       "gr_spp", "gr_photo")
  rcv.mods <- lst( )</pre>
   for(i in 1:length(rcv.mod.names)) {
    rcv.mods[[i]] <- get(rcv.mod.names[i]) }</pre>
   grass_aic_tab <- AICcmodavg::aictab(cand.set = rcv.mods,</pre>
                                          modnames = rcv.mod.names)
# Parameter extraction
  gr_params <- bind_cols(</pre>
```

```
confint(gr_spp) %>%
    as.data.frame %>%
    rownames_to_column("term") %>%
    slice(-c(1:2)),
enframe(lme4::fixef(gr_spp)) %>%
    select(value) )
```