Utilizing Word Embeddings and Gradient Boosting to identify, analyze, prevent and predict machine errors in the Computer Aided Manufacturing Industry

Aadit Kapoor

Index

- What are we trying to solve?
- About the Computer Aided Manufacturing Industry
- M.L Algorithms: Word Embeddings and Gradient Boosting
- Real world Impact

This is a Dental Milling Machine.

Dental mills are designed to cut crowns, bridges, copings, frameworks, implant abutments and more from materials such as ceramics, zirconia, alloys, resins or wax.

What are we trying to solve?

- For a dental milling machine, Can we achieve the following:
 - Prognosis: Identify/Analyze machine errors
 - Prevent: Prevent machine errors
 - Predict: Predict future error probability

About the Computer Aided Manufacturing Industry

The Computer-Aided Manufacturing market size to grow from USD
2.3 billion in 2018 to USD 3.4 billion by 2023

- Problem Statement: Can we use A.I/Data Science to supercharge the industry?
 - Better Customer Retention/User Experience
 - Faster Support Resolution
 - Design better machines (Eventually)

M.L Algorithms: Word Embeddings and Gradient Boosting

- Available Data: Sensor and Log Data
- Outcome: To predict future errors and build explainable models
- Dimensionality: 23 sensors. Typical case of class imbalance (0 denotes no error and 1 denotes error). Each sensor contributes to the functioning of the machine
- Data consolidation: Sensor Data and Log Data are separate data repositories.
- Things to consider:
 - Two variants of machines
 - Single Model for all machines
 - Separate Models
 - Compute Availability

M.L Algorithms: Word Embeddings

- Word Embeddings
 - Convert Text log data into vectors to compute similar errors.
 - Advantages
 - Identify errors in unstructured data. Find frequency of errors
 - Map similar "days" for errors
 - Identify time of errors
 - And a lot more...

M.L Algorithms: Word Embeddings and Gradient Boosting

- Gradient Boosting
 - Utilize structured data and preprocessed text log data to perform gradient boosting to predict error prone sensors.
- Advantages
 - Combining word embeddings for sensors as features with sensor values
 - An end-to-end M.L training pipeline

Working of gradient boosted trees

Real world Impact

- What have we achieved?
 - An intuitive way to combine text data and structured data (tabular data) to predict error prone regions of a machine.
 - Utilizing word embeddings as a feature for gradient boosting increases performance by 10x
 - Show how A.I and data science can augment the Computer Aided Manufacturing industry by predicting errors beforehand

Thank you!

