If φ is symmetric, then the group $\mathbf{Isom}(\varphi)$ is denoted $\mathbf{O}(\varphi)$ and called the *orthogonal* group of φ . If φ is alternating, then the group $\mathbf{Isom}(\varphi)$ is denoted $\mathbf{Sp}(\varphi)$ and called the symplectic group of φ . If φ is ϵ -Hermitian, then the group $\mathbf{Isom}(\varphi)$ is denoted $\mathbf{U}_{\epsilon}(\varphi)$ and called the ϵ -unitary group of φ . When $\epsilon = 1$, we drop ϵ and just say unitary group.

If (e_1, \ldots, e_n) is a basis of E, φ is the represented by the $n \times n$ matrix M, and f is represented by the $n \times n$ matrix A, since $A^{-1} = A^{*_l} = A^{*_r} = M^{-1}A^*M$, then we find that $f \in \mathbf{Isom}(\varphi)$ iff

$$A^*MA = M$$
,

and A^{-1} is given by $A^{-1} = M^{-1}A^*M$.

More specifically, we define the following groups, using the matrices $I_{p,q}$, $J_{m,m}$ and $A_{m,m}$ defined at the end of Section 29.1.

(1) $K = \mathbb{R}$. We have

$$\mathbf{O}(n) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^{\top} A = I_n \}$$

$$\mathbf{O}(p,q) = \{ A \in \mathcal{M}_{p+q}(\mathbb{R}) \mid A^{\top} I_{p,q} A = I_{p,q} \}$$

$$\mathbf{Sp}(2n,\mathbb{R}) = \{ A \in \mathcal{M}_{2n}(\mathbb{R}) \mid A^{\top} J_{n,n} A = J_{n,n} \}$$

$$\mathbf{SO}(n) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^{\top} A = I_n, \det(A) = 1 \}$$

$$\mathbf{SO}(p,q) = \{ A \in \mathcal{M}_{p+q}(\mathbb{R}) \mid A^{\top} I_{p,q} A = I_{p,q}, \det(A) = 1 \}.$$

The group $\mathbf{O}(n)$ is the *orthogonal group*, $\mathbf{Sp}(2n,\mathbb{R})$ is the *real symplectic group*, and $\mathbf{SO}(n)$ is the *special orthogonal group*. We can define the group

$$\{A \in \mathcal{M}_{2n}(\mathbb{R}) \mid A^{\top} A_{n,n} A = A_{n,n} \},$$

but it is isomorphic to O(n, n).

(2) $K = \mathbb{C}$. We have

$$\mathbf{U}(n) = \{ A \in \mathbf{M}_{n}(\mathbb{C}) \mid A^{*}A = I_{n} \}$$

$$\mathbf{U}(p,q) = \{ A \in \mathbf{M}_{p+q}(\mathbb{C}) \mid A^{*}I_{p,q}A = I_{p,q} \}$$

$$\mathbf{Sp}(2n,\mathbb{C}) = \{ A \in \mathbf{M}_{2n}(\mathbb{C}) \mid A^{\top}J_{n,n}A = J_{n,n} \}$$

$$\mathbf{SU}(n) = \{ A \in \mathbf{M}_{n}(\mathbb{C}) \mid A^{*}A = I_{n}, \det(A) = 1 \}$$

$$\mathbf{SU}(p,q) = \{ A \in \mathbf{M}_{p+q}(\mathbb{C}) \mid A^{*}I_{p,q}A = I_{p,q}, \det(A) = 1 \}.$$

The group $\mathbf{U}(n)$ is the unitary group, $\mathbf{Sp}(2n, \mathbb{C})$ is the complex symplectic group, and $\mathbf{SU}(n)$ is the special unitary group.

It can be shown that if $A \in \mathbf{Sp}(2n, \mathbb{R})$ or if $A \in \mathbf{Sp}(2n, \mathbb{C})$, then $\det(A) = 1$.