

MCL using ML Maps

OUTDOOR LOCALIZATION

Matheus Anselmo <matheus.anselmo@fbter.org.br>

Orientador: Marco A. dos Reis

Robótica e Sistemas Autônomos, Senai Cimatec

Sistema FIEB

SENAI
CIMATEC

PELO FUTURO DA INOVAÇÃO

Localização em ambientes externos

Em ambientes externos, a localização por GPS nem sempre oferece resultados adequados devido a obstáculos.

E Agora?

A aplicação de **modelos probabilístico** com auxílio de **mapas** pode ser um caminho para vencer o problema de localização na robótica móvel.

Um pouco de Monte Carlo Localization

O Monte Carlo Localization é a aplicação de **Filtros de partículas** para Localização usando **Inferência Bayesiana**.

Um pouco mais de Monte Carlo Localization

No **conhecimento a priori** é considerado a **modelagem** do sistema e **conhecimento** atual.

Um pouco mais de Monte Carlo Localization

No **conhecimento a posteriori** é considerado os **dados dos sensores** do sistema e o**conhecimento a priori**.

Ai vem as partículas

As partículas representam os dados que serão tratados.

Em resumo...

Multi Layers Maps

Multi Layers Maps podem representar elevações diferentes niveis

Multi Layers Maps versus Elevation maps

Elevation Maps representam as elevações usando a média destas.

Elevation Maps Versus Multi Layers Maps

Mais detalhes do Multi Layers Maps

- São dívidas em células quadráticas.
- Cada célula possui um vetor normal com a superfície
- É capaz de detectar pontes e passagens elevadas.
- Os dados **verticais** podem ser usados para **estimar a posição** do robô.
- O custo computacional é de apenas 10% maior.

Monte Carlo com Multi Layers Maps

Predição

Predição

O Modelo Probabilístico trata os vetores de movimentos em 2D, mas o MLS é necessário uma transformação em 3D.

Predição com auxilio do Mapa

Considerando a existência de **vetores normais** a superfície para célula, é possivél tranformar um **vetor de movimento 2D** em **3D**.

Monte Carlo com Multi Layers Maps

Modelo Sensorial para MLS

Resultados

Elevation Maps Vs Multi Layers Superficies

Mapa Conceitual

Conclusão

Questions?

marco.a.reis@google.com