<u>강의계획서</u>

1. 과목 기본 정보(Basic Course Information)

교과목명	Compiler Theory		코드	IT	P40004
개설년도	2025		개설학기	1	
개설학부			이수구분/영역	/	
대상학년	4		분반	01	
인정전공	컴퓨터공학(33),/Information Technology(33),/컴퓨터공학(40),/컴퓨터공학(45),/AI·				
학점구성	총학점	이론	실험/실습	설계	기타()
7010	3	3	0	0	0

수업주유형	강의				
선수과목	필수 Java, C, DS, Programming Languages Theory		gramming Languages	병수과목	
	권장				
주관교수성명				주관교수 Email	
담당교수 성명	담	담당교수 Email 담당교수 전화		Office 위치	Office Hour
성금영	kysung@handong.edu 1371		1371	NTH 308	Tue. and Thurs. 4:~ 5:
TA성명				TA email	
강의실				강의시간	

2. 학습목표 및 개요(Course Objectives)

● 학습목표(Course Objective)

번호	학습목표
1 1	Senior-level and graduate students learn the theories and techniques for designing and implementing high-level programming language translators.
2	Students are supposed to understand formal language and automata theory.
3	Students learn how to use lex and yacc for implementing scanners and parsers.

● 연관 학습성과(Related Learning Outcomes)

역량	학습성과
	조회된 데이터가 없습니다.

● 강의개요(Course Description)

Students learn automata theory and formal language, and the techniques for implementing front-end compiler techniques
which deal with scanner, parser, semantic analyzer, and syntax directed translation. Emphasis will be given to the theoretical
understanding and implementation of scanner and a variety of parsers LL(1), LR(0), SLR(1), LR(1), and LALR(1). Most
projects are about implementing manual front-end compiler. Some projects will be given for exercising automatic scanner and
parser generating tools such as Lex and Yacc, which are flex and bison in Linux. The tool, WINFLEXBISON, the Lex and Yacc in
Windows will also be introduced.

3. 과목 운영 및 과제물

● 교재

주교재	서명	Compilers - Principles, Techniques, & Tools	저자	Aho, Lam, Sethi, and Ullman
	출판사	Pearson Addison Wesleyny	출판년도	2007
부교재	서명	An Introduction to Formal Languages and Automata	저자	Peter Linz
	출판사	Jones & Bartlett Learning	출판년도	2017
부교재	서명	Compiler Construction, Principles and Practice	저자	Kenneth C. Louden
	출판사	PWS Publishing Company	출판년도	1997

기자재

● 평가

출석관리	Four absences will result in the failure in this course. Attend every class to understand and follow the class material.							
학점산출 평가 도구	출석	중간시험	기말시험	퀴즈	팀프로젝트	개인과제	기타1(기타 1)	기타2(기타 2)
및 비중(%)	0	25	25	25		25		
Honor Code 준수 및 평가방법 추가설명	Honest working is emphasized! Grading criteria and portion may be changed depending on the status of progress and understanding the material.							

● 수업 활동유형

강의	90%	실험	%	실습	10%
팀프로젝트	%	발표	%	토론	%
기타1()	%	기타2()	%	기타3()	%
총계	100 %				

● 과제 및 프로젝트(Assignments and Projects)

번호	내용
1	top down parser
2	scanner construction
3	recursive descent parser
1 4	bottom up parser the use of Flex and Bison

4. 강의 일정 계획(Weekly Schedule)

주차	날짜	강의주제 및 범위	과제 결과물 및 평가
1	2025-03-04 2025-03-07	Syllabus Overview Introduction (1st and 2nd week) Overview of Compiler; Introduction to Front-end / Back-end, Analysis / Synthesis	
2	2025-03-11 2025-03-14	Introduction (1st and 2nd week) Phases of Compiler; Definition on Front-end / Back-end, Analysis / Synthesis	
3	2025-03-18 2025-03-21	Scanning Regular Expression Automata Theory - DFA, NFA, Lex	a quiz on automata theory

주차	날짜	강의주제 및 범위	과제 결과물 및 평가
4	2025-03-25 2025-03-28	Scanning Regular Expression Automata Theory - DFA, NFA, Lex	
5	2025-04-01 2025-04-04	Scanning Regular Expression Automata Theory - DFA, NFA, Pumping Lemma	scanner construction - project date may be changed
6	2025-04-08 2025-04-11	Scanning Regular Expression Automata Theory - DFA, NFA, Pumping Lemma	
7	2025-04-15 2025-04-18	Introduction to Context-Free Grammars and Parsing Left/Right Associativity, Ambiguity, Top-Down/Bottm-Up Parsing Concepts	top down parser- project date may be changed
8	2025-04-22 2025-04-25	(MId-Term Exam by Programming Assignment) Context-Free Grammars and Parsing syntax tree, parse tree, annotated parse tree, BNF, EBNF;	
9	2025-04-29 2025-05-02	Context-Free Grammars and Parsing syntax tree, parse tree, annotated parse tree, BNF, EBNF;	
10	2025-05-06 2025-05-09	Top Down Parsing Recursive-Descent, LL(1), First and Follow Sets;	top down parser- project date may be changed
11	2025-05-13 2025-05-16	Top Down Parsing Recursive-Descent, LL(1), First and Follow Sets;	
12	2025-05-20 2025-05-23	Top Down Parsing Recursive-Descent, LL(1), First and Follow Sets;	
13	2025-05-27 2025-05-30	Bottom-Up Parsing LR(0), SLR(1), LR(1), LALR(1),	
14	2025-06-03 2025-06-06	Bottom-Up Parsing LR(0), SLR(1), LR(1), LALR(1), Syntax Directed Translation	bottom up parser- project date may be changed
15	2025-06-10 2025-06-13	Bottom-Up Parsing LR(0), SLR(1), LR(1), LALR(1), Syntax Directed Translation	
16	2025-06-17 2025-06-20	Project Week	

5. 공지사항/부가정보

● 본 과목의 수강신청을 위한 주요 공지사항(Notice)

Lecture schedule is somewhat flexible depending on the material-understanding and progress of students.

Only computer science/engineering major students are recommended to take this course.

● 전공별 부가 정보(Additional Information)

번호	내용

6. 과목 세부 정보

문제해결력 프로젝트 수업 여부
현장과 연계한 과목여부 - 코너스톤
현장과 연계한 과목여부 - 키스톤
현장과 연계한 과목여부 - 캡스톤
창업관련 교과목 여부
온라인 콘텐츠 강의활용 수업여부 - 온라인 콘텐츠 강의활용 비율 %

- 온라인 콘텐츠 활용 콘텐츠 선택 (복수개 선택 가능함)

Hudcc(우리대학 강의녹화 서비스)
타대학 및 타기관 협력하여 개발된 온라인 강좌 활용
MOOC 활용
OCW 활용
그 외 온라인콘텐츠 활용

7. 장애학생을 위한 강의 및 평가 안내

● 장애학생의 장애유형과 정도를 고려하여 강의, 과제 및 평가를 실시

예)강의 :

- 강의파일 제공, 강의대필도우미 제공.
- 치료 및 입원 등으로 출석이 어려운 경우 증명서류 제출 시 출석으로 간주.

과제 및 평가

- 시험대필도우미, 필요 시 수화 설명 등