Automatic Differentiation Methods for Analyzing Wealth-Consumption Ratios and Stochastic Discount Factors

March 2, 2022

ABSTRACT. To be written

JEL Classifications: D81, G11

Keywords: Asset pricing, wealth-consumption ratio, automatic differentiation

1. Introduction

To be added. Background on Newton's algorithm in \mathbb{R}^N .

Let f be a smooth map from \mathbb{R}^N to itself. We want to find the $x \in \mathbb{R}^N$ that solves f(x) = x. Ordinary successive approximation uses

$$x_{k+1} = f(x_k) \tag{1}$$

Newton's method first sets g(x) = f(x) - x, so that we are seeking a root x satisfying g(x) = 0, and then iterates on

$$x_{k+1} = g(x_k) + J(x_k)^{-1}g(x_k)$$
(2)

where J(x) is the Jacobian of g at x.

2. A LONG RUN RISK MODEL

Roadmap to be added.

To be added

Consumption growth and the growth rate of the preference shock are given by the generic formulas

$$g_{c,t+1} = g_c(X_t, X_{t+1}, \xi_{t+1})$$
 and $g_{\lambda,t+1} = g_{\lambda}(X_t, X_{t+1}, \xi_{t+1}),$ (3)

where $\{X_t\}_{t\geqslant 0}$ is a discrete time Markov process on $X\subset \mathbb{R}^d$, $\{\xi_t\}_{t\geqslant 1}$ is an IID process supported on $\mathbb{Y}\subset \mathbb{R}^k$, and $g_i\colon X\times X\times \mathbb{Y}\to \mathbb{R}$ is continuous for each $i\in\{c,\lambda\}$. The processes $\{X_t\}$ and $\{\xi_t\}$ are assumed to be independent.

2.1. **The SSY Model.** In the long run risk model of Schorfheide et al. (2018), the state process takes the form

$$X_t := (h_{\lambda,t}, h_{c,t}, h_{z,t}, z_t)$$

where, for $i \in \{z, c, \lambda\}$,

$$h_{i,t+1} = \rho_i h_{i,t} + s_i \eta_{i,t+1}$$
 $\sigma_{i,t} = \varphi_i \bar{\sigma} \exp(h_{i,t}),$
 $z_{t+1} = \rho z_t + (1 - \rho^2)^{1/2} \sigma_{z,t} \varepsilon_{t+1}$

Consumption growth is given by

$$g_{c,t+1} = \ln \frac{C_{t+1}}{C_t} = \mu_c + z_t + \sigma_{c,t} \, \xi_{c,t+1}. \tag{4}$$

The preference shock λ_t grows as

$$g_{\lambda,t+1} = \ln \frac{\lambda_{t+1}}{\lambda_t} = h_{\lambda,t+1}.$$

The innovations

$$\xi_{c,t}$$
, ε_t , and $(\eta_{i,t})_{i\in\{z,c,\lambda\}}$

are all independent and standard normal.

Let \mathbb{H} be the linear operator defined by

$$(\mathbb{H}g)(x) = \mathbb{E}_x g(X_{t+1}) \exp \left[\theta g_{\lambda,t+1} + (1 - \gamma)g_{c,t+1}\right]$$
 (5)

at each $x \in X$, where \mathbb{E}_x conditions on $X_t = x$.

From Schorfheide et al. (2018), the stochatic discount factor process (M_t) takes the form

$$M_{t+1} = \beta^{\theta} \left(\frac{\lambda_{t+1}}{\lambda_t}\right)^{\theta} \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} \left(\frac{w(X_{t+1})}{w(X_t) - 1}\right)^{\theta - 1},\tag{6}$$

where $w(X_t)$ is the aggregate wealth-consumption ratio $w(X_t) := W_t/C_t$.

In the model, the this ratio obeys

$$\beta^{\theta} \mathbb{E}_t \left[\left(\frac{\lambda_{t+1}}{\lambda_t} \right)^{\theta} \left(\frac{C_{t+1}}{C_t} \right)^{1-\gamma} \left(\frac{w(X_{t+1})}{w(X_t) - 1} \right)^{\theta} \right] = 1$$

Rearranging the previous expression gives

$$(w(X_t) - 1)^{\theta} = \beta^{\theta} \mathbb{E}_t \left[\left(\frac{\lambda_{t+1}}{\lambda_t} \right)^{\theta} \left(\frac{C_{t+1}}{C_t} \right)^{1-\gamma} w(X_{t+1})^{\theta} \right].$$

Conditioning on $X_t = x$, writing pointwise on X and using the definition of \mathbb{H} yields $w = 1 + \beta (\mathbb{H} w^{\theta})^{1/\theta}$. A function w solves this equation if and only if w is a fixed point of the operator \mathbb{T} defined by

$$(\mathbb{T}w) = 1 + \beta (\mathbb{H}w^{\theta})^{1/\theta}. \tag{7}$$

For computation, the state process is distcretized onto a state space $S = \{x_1, \dots, x_N\}$ of size $N \in \mathbb{N}$ and the operator \mathbb{H} is represented by a matrix \mathbf{H} , with

$$\mathbf{H}(n,n') = \sum_{n'=1}^{N} \exp \left\{ \theta g_{\lambda}(x_n, x_{n'}, \xi) + (1 - \gamma) g_c(x_n, x_{n'}, \xi) \right\} \mathbf{P}(n,n'), \tag{8}$$

where **P** is an $N \times N$ matrix with **P**(n, n') representing the probability that the discretized state process transitions from state x_n to state $x_{n'}$ in one unit of time.

The discretization of \mathbb{T} is written as **T** and the problem is to find the fixed point of

$$(\mathbf{T}w) = 1 + \beta \left(\mathbf{H}w^{\theta}\right)^{1/\theta} \tag{9}$$

in the set of strictly positive vectors in \mathbb{R}^N .

REFERENCES

SCHORFHEIDE, F., D. SONG, AND A. YARON (2018): "Identifying long-run risks: A Bayesian mixed-frequency approach," *Econometrica*, 86, 617–654.