Brilliant: Vector Calculus

Dave Fetterman

6/21/22

Note: Latex reference: http://tug.ctan.org/info/undergradmath/undergradmath.pdf

1 Chapter 1.2: Calculus of Motion

Consider vectors of motion against t of the form $\overrightarrow{x}(t) = \langle x(t), y(t), \ldots \rangle$.

- A line through p = (a, b, c) parallel to $\overrightarrow{v} = \langle v_x, v_y, v_z \rangle$ is $\overrightarrow{x}(t) = \overrightarrow{p} + t \overrightarrow{v}$
- **velocity** is characterized completely by $\overrightarrow{v}(t) = \overrightarrow{x}'(t) = \langle x'(t), y'(t), z'(t) \rangle$.
- The **speed** of an object along that line versus t is the length of v(||v||)
- Therefore, the speed of an object along line

$$\langle x(t), y(t), z(t) \rangle = \langle 0, 2, -3 \rangle + t \langle 1, -2, 2 \rangle$$

is

$$\sqrt{1^2 + (-2)^2 + 2^2} = 3$$

• Note that \overrightarrow{v} need not be constant. The speed of

$$\overrightarrow{x}(t) = \overrightarrow{p} + 3\sin(2\pi t)\hat{u}, ||\hat{u}|| = 1$$

would then be

$$||6\pi\cos(2\pi t)\hat{u}|| = |6\pi\cos(2\pi t)|$$

• Acceleration a(t) = v'(t) = x''(t) is straightforward. Acceleration of

$$x(t) = \langle -1 + \cos(t), 1, \cos(t) \rangle = \langle -\cos(t), 0, -\cos(t) \rangle$$

- An example position vector for a planet of distance r from the sun could be $\langle r\cos(t), r\sin(t)\rangle$. The acceleration vector points in the opposite direction: $\langle -r\cos(t), -r\sin(t)\rangle$. In addition to being the analytical second derivative, consider that the *force* of gravity, (which, by F=ma is proportional to acceleration) points towards the sun.
- A helix could be a 3D extension like $\langle r\cos(t), r\sin(t), b\cdot t\rangle$.