كد فرم : FR/FY/11

ويرايش : صفر

(فرم طرح سئوالات امتحانات پایان ترم) دانشکده ریاضی

گروه آموزشی : **ریاضی** امتحان درس : **معادلات دیفرانسیل (۱۱ گروه هماهنگ**) نیمسال (اول/**دوم**) ۹۳–۱۳۹۲ نام مدرس : نام و نام خانوادگی : شماره دانشجویی : تاریخ : ۱۳۹۳/۳/۱۸ وقت : ۱۳۵ دقیقه

توجه:

مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید. در طول برگزاری امتحان به هیچ سوالی پاسخ داده نمی شود

	در طول برگزاری امتحان به هیچ سوالی پاسخ داده نمی شود.
۱۵ نمر	تابع $y_1=x$ یک جواب معادله مرتبه دوم زیر است. جواب عمومی آن را بیابید. $(1-x^{T})y''-T xy'+T y=T$
۱۵ نمر	جواب عمومی معادله اویلر $x^{T}y'' - Ty = \ln x$ را بیابید.
۱۵ نمر	. معادله مرتبه دوم $y'' + y' + \Delta y = \frac{e^{-x}}{\cos x}$ معادله مرتبه دوم
۲۰ نم	یک جواب معادله دیفرانسیل $y = v - y'' - xy''$ را به صورت سری حول نقطه صفر و به ازای ریشه بزرگتر معادله مشخصه بیابید.
۲۰ نمر	دستگاه معادلات زیر را حل کنید : $\begin{cases} x'' + y' = -r \sin t \\ x' - y' - y = \sin t \end{cases}$
۲۰ نم	$L^{-1}\{rac{e^{-\pi s}s}{s^{^{1}}+7s+7s}\}$ $L\{rac{\sin t}{t}\}$
<u></u> ۱۵ نم	معادله انتگرالی $x(t)+\int_{\cdot}^{t}e^{u-t}x(u)du=$ ۲ $t-$ ۳ معادله انتگرالی

موفق باشيد

پاسخ سوالات امتحان پایان ترم درس معادلات دیفرانسیل (۱۱ گروه هماهنگ) نیمسال دوم ۹۳-۱۳۹۲

سوال 1 – برای استفاده از روش کاهش مرتبه ، جواب دوم معادله را به صورت $v_{\tau} = y_{\tau}v = xv$ حدس زده و در معادله قرار می دهیم. $(1-x^{\tau})xv'' + (\tau - \tau x^{\tau})v' = \cdot$ داریم $(1-x^{\tau})xv'' + (\tau - \tau x^{\tau})v' = \cdot$ داریم $(1-x^{\tau})xv'' + (\tau - \tau x^{\tau})u = \cdot$ اکنون با فرض $(1-x^{\tau})xv'' + (\tau - \tau x^{\tau})u = \cdot$ می رسیم.

$$\frac{du}{u} = \frac{(\Upsilon - \Upsilon x^{\Upsilon})dx}{x(x^{\Upsilon} - 1)} = (\frac{-\Upsilon}{x} - \frac{1}{x - 1} - \frac{1}{x + 1})dx$$

 $\to \ln u = -7 \ln x - \ln(x - 1) - \ln(x + 1) \to u = v' = \frac{1}{x^{7}(x^{7} - 1)} = -\frac{1}{x^{7}} + \frac{1}{7} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right)$

$$\rightarrow v = \frac{1}{x} + \frac{1}{y} \ln \frac{x-1}{x+1} \rightarrow y_{y} = 1 + \frac{x}{y} \ln \frac{x-1}{x+1}$$

 $y = ax + b(\Upsilon + x \ln \frac{x-1}{x+1})$: الاخره جواب معادله خطى همگن داده شده برابر است با

 $xy' = \frac{dy}{dt}$, $x^{\mathsf{T}}y'' = \frac{d^{\mathsf{T}}y}{dt^{\mathsf{T}}} - \frac{dy}{dt}$: معادله اویلر داده شده تغییر متغیر متغیر $x = e^t$ را اعمال می کنیم. یعنی قرار می دهیم :

$$x^{\mathsf{T}}y'' - \mathsf{T}y = \ln x \rightarrow \frac{d^{\mathsf{T}}y}{dt^{\mathsf{T}}} - \frac{dy}{dt} - \mathsf{T}y = t \rightarrow y'' - y' - \mathsf{T}y = t$$

این یک معادله غیر همگن با ضرایب ثابت است. معادله مشخصه معادله همگن نظیر آن عبارت است از $m^{\mathsf{Y}}-m-\mathsf{Y}=\mathsf{V}$ که دو ریشه $y_h=ae^{-t}+be^{\mathsf{Y}t}$ که دو ریشه $m_{\mathsf{Y}}=\mathsf{Y}$ دارد. جواب معادله همگن عبارت است از

جواب خصوصی آن را به صورت $y_p = At + B$ حدس زده و در معادله قرار میدهیم . داریم $y_p = At + B$ که نتیجه می دهد

$$y_p = \frac{-1}{2}t + \frac{1}{2}$$
 يعنى $B = \frac{1}{2}$ $A = \frac{-1}{2}$

 $x=e^{t}$ وچون جواب معادله با ضرایب ثابت به صورت $y=ae^{-t}+be^{rt}-rac{1}{r}t+rac{1}{r}$ تابت به صورت و چون

 $y = \frac{a}{x} + bx^{'} - \frac{1}{7} \ln x + \frac{1}{4}$: است از عبارت است از عبارت است

 $y'' + 7y' + \Delta y = 0$ ابتدا معادله همگن نظیر معادله اصلی را حل می کنیم. یعنی

معادله مشخصه عبارت است از $a=-1\pm 7i$ که دو ریشه مختلط $m=-1\pm 7i$ دارد یعنی

$$y_1 = e^{-x} \sin x$$
, $y_2 = e^{-x} \cos x$

برای پیدا کردن جواب خصوصی از روش تغییر پارامتر استفاده می کنیم.

 $w(y_1, y_2) = e^{-x} \sin 2x (-e^{-x} \cos 2x - 2e^{-x} \sin 2x) - e^{-x} \cos 2x (-e^{-x} \sin 2x + 2e^{-x} \cos 2x) = -2e^{-x}$

$$y_{p} = -y_{1} \int \frac{y_{1}h}{w} dx + y_{2} \int \frac{e^{-x} \cos 7xh}{w} dx = -e^{-x} \sin 7x \int \frac{e^{-x} \cos 7x}{-7e^{-7x}} \frac{e^{-x}}{\cos 7x} dx + e^{-x} \cos 7x \int \frac{e^{-x} \sin 7x}{-7e^{-7x}} \frac{e^{-x}}{\cos 7x} dx$$

$$=e^{-x}\sin 7x \int \frac{dx}{7} - e^{-x}\cos 7x \int \frac{\sin 7x}{7\cos 7x} dx = \frac{1}{7}xe^{-x}\sin 7x + \frac{1}{7}e^{-x}\cos 7x \ln \cos 7x$$

. به دست آمده است. $y = e^{-x} (A \sin 7x + B \cos 7x + \frac{1}{7} x \sin 7x + \frac{1}{7} \cos 7x \ln \cos 7x)$ اکنون جواب عمومی معادله به صورت

سوال $x=\cdot$ یک نقطه غیر عادی منظم معادله است زیرا اگر معادله را به صورت $y''-\frac{r}{x}y=\cdot$ یک نقطه $x=\cdot$ یک نقطه

غیر عادی است. اما چون حدهای $r_{r} = r_{r} = r_{r}$ وجود دارند پس $r_{r} = r_{r} = r_{r}$ یک نقطه غیر عادی منظم معادله است. معادله معادله است. معادله را جواب معادله را $r_{r} = r_{r} = r_{r}$ دارد. به ازای ریشه بزرگتر، جواب معادله را محاسله می کنیم.

: داریم. داریم و در معادله قرار می دهیم. داریم $y=x^{\scriptscriptstyle 1}\sum_{n=\cdot}^\infty a_nx^n=\sum_{n=\cdot}^\infty a_nx^{n+\imath}$, $a_\cdot\neq \cdot$ جواب را به صورت $a_\cdot\neq \cdot$ عادله قرار می دهیم. داریم

پاسخ سوالات امتحان پایان ترم درس معادلات دیفرانسیل (۱۱ گروه هماهنگ) نیمسال دوم ۹۳-۱۳۹۲

$$x \sum_{n=1}^{\infty} (n+\gamma) n a_n x^{n-\gamma} - \gamma \sum_{n=1}^{\infty} a_n x^{n+\gamma} = \cdot \rightarrow \sum_{n=1}^{\infty} (n+\gamma) n a_n x^{n-\gamma} - \gamma \sum_{n=1}^{\infty} a_n x^{n+\gamma} = \cdot \rightarrow \sum_{n=1}^{\infty} (n+\gamma) (n+\gamma) a_{n+\gamma} - \gamma \sum_{n=1}^{\infty} a_n x^{n+\gamma} = \cdot \rightarrow \sum_{n=1}^{\infty} (n+\gamma) (n+\gamma) a_{n+\gamma} - \gamma a_n | x^{n+\gamma} = \cdot \rightarrow \sum_{n=1}^{\infty} (n+\gamma) (n+\gamma) a_{n+\gamma} - \gamma a_n | x^{n+\gamma} = \cdot \rightarrow \sum_{n=1}^{\infty} (n+\gamma) (n+\gamma) a_{n+\gamma} - \gamma a_n | x^{n+\gamma} = \cdot \rightarrow \sum_{n=1}^{\infty} (n+\gamma) (n+\gamma) a_n + n = \cdot \cdot \cdot \cdot \cdot \gamma + n = \cdot \gamma + n = \cdot \cdot \gamma +$$

پاسخ سوالات امتحان پایان ترم درس معادلات دیفرانسیل (۱۱ گروه هماهنگ) نیمسال دوم ۹۳–۱۳۹۲

$$L\{\frac{\sin t}{t}\} = \int_{s}^{\infty} L\{\sin t\} ds = \int_{s}^{\infty} \frac{1}{s^{\tau} + 1} ds = \arctan s \mid_{s}^{\infty} = \frac{\pi}{\tau} - \arctan s = \arctan \frac{1}{s}$$

$$L^{-1}\{\frac{s}{s^{\tau} + \tau s + \tau s}\} = L^{-1}\{\frac{s + 1 - 1}{(s + 1)^{\tau} + \Delta^{\tau}}\} = L^{-1}\{\frac{s + 1}{(s + 1)^{\tau} + \Delta^{\tau}} - \frac{1}{(s + 1)^{\tau} + \Delta^{\tau}}\} = e^{-t}[\cos \Delta t - \frac{1}{\Delta}\sin \Delta t]$$

$$L^{-1}\{\frac{e^{-\pi s}s}{s^{\tau} + \tau s + \tau s}\} = u_{\pi}(t)e^{-(t - \pi)}[\cos \Delta(t - \pi) - \frac{1}{\Delta}\sin \Delta(t - \pi)] = u_{\pi}(t)e^{\pi - t}[-\cos \Delta t + \frac{1}{\Delta}\sin \Delta t]$$

$$L\{x\} + L\{\int_{\cdot}^{t} e^{u-t}x(u)du\} = L\{\forall t - \tau\}.$$

$$L\{x\} + L\{e^{-t}\}L\{x\} = \frac{\tau}{s^{\tau}} - \frac{\tau}{s} \rightarrow (1 + \frac{1}{s+1})L\{x\} = \frac{\tau - \tau s}{s^{\tau}} \rightarrow L\{x\} = \frac{\tau - \tau s}{s^{\tau}} \times \frac{s+1}{s+\tau}$$

$$\to L\{x\} = \frac{\tau - s - \tau s^{\tau}}{s^{\tau}(s+\tau)} = \frac{-\tau}{s+\tau} + \frac{1}{s^{\tau}} - \frac{1}{s} \rightarrow x(t) = -\tau e^{-\tau t} + t - 1$$

1898/8/11