

 M_1 -Probabilités : Série 1

Exercice 1. Deux amis se trouvent dans la file à l'entrée d'un cinéma (sans être forcément l'un derrière l'autre.) On suppose que la file comporte 100 personnes alignées et que seuls les deux amis sont discernables.

- a- Combien y a-t-il de cas possibles?
- b- Combien y a-t-il de cas où les deux amis sont séparés par 19 personnes exactement?

Exercice 2. Un réseau téléphonique comporte des numéros à 6 chiffres.

- a- Quelle est la capacité théorique de ce réseau?
- b- Quelle est le nombre de numéros comprenant
 - b1- Six chiffres différents?
- b2- Un chiffre apparaissant 2 fois et les autres 1 seule fois?
- b3- Deux chiffres apparaissant 2 fois et les autres 1 seule fois?

Exercice 3. Dix lapins indiscernables sont à répartir dans trois cages. Dans chacun des cas suivants, calculer le nombre de répartitions possibles :

1- Aucune restriction n'est faite.

- 2- Aucune cage ne doit rester vide.
- 3- Aucune cage ne doit rester vide et aucun lapin n'est isolé.

Exercice 4. Dans un jeu de 52 cartes bien mélangées, une main est formée de 5 cartes choisies au hasard. Calculer la probabilité que la main contienne

- (a) 5 cartes différentes. (b) Exactement 4 cartes d'un même couleur (pique, trèfle, cœur, ou carreau).
- (c) Exactement 3 cartes d'une même valeur (1, 2, 3 ... etc.)

Exercice 5. On dispose de 2 boîtes, l'une contenant 5 vis et l'autre contenant 5 écrous. On suppose que chacune des 5 vis va avec un écrou et un seul. On prend au hasard 3 vis et 3 écrous, calculer la probabilité que parmi les vis et les écrous choisis :

(a) Deux vis vont avec deux écrous.

(b) Aucune vis ne va avec aucun écrou.

Exercice 6. Les employés d'une entreprise sont répartis de la manière suivante :

	Ouvriers	Superviseurs	Cadres
Femmes	120	40	40
Hommes	380	160	60

- 1- Quelle est la probabilité qu'un ouvrier pris au hasard soit de sexe féminin?
- 2- Pour régler les affaires syndicales, une commission est formée d'un ouvrier, d'un superviseur et d'un cadre. On suppose que le choix des membres de la commission se fait au hasard.
 - a- De combien de façons est t-il possible de former une commission?
 - b- Calculer la probabilité qu'une commission ne contiennent aucune femme?
 - c- Sachant qu'une femme est membre de la commission, quelle est la probabilité qu'elle soit un cadre?

Exercice 7. On dispose de deux sacs S_1 et S_2 contenant chacun 3 boules rouges et 7 noires. On tire au hasard une boule de S_1 et on la met dans S_2 . Après avoir bien mélanger les boules dans S_2 , on en tire une au hasard. Quelle est la probabilité qu'elle soit rouges?

Exercice 8. Dans une usine les ouvriers forment trois groupes de relais : Le groupe G_1 travaille de 08 :00 à 16 :00, le groupe G_2 travaille de 16 :00 à 24 :00 et le groupe G_3 de 00 :00 à 08 :00. Chaque jour il y a 1% des articles produits par G_1 , 2% des articles produits par G_2 , et 5% des articles produits par G_3 qui sont défectueux. Supposons que tous les groupes produisent le même nombre d'articles.

- 1) Quel est le taux d'articles défectueux produits chaque jour?
- 2) Un article, choisi au hasard dans la production du jour, est défectueux. Quelle est la probabilité qu'il ait été produit par G_3 ?

Exercice 9. Le prince de Toscane demande un jour à Galilée "pourquoi lorsqu'on jette 2 dès obtient-on plus souvent la somme 7 que la somme 6?" Que pouvait répondre Galilée?

Exercice 10. On admet qu'avec un jeu de 52 cartes bien mélangées, les C_{52}^5 mains possibles sont équiprobables. Quelle est la probabilité de recevoir :

- 1- une couleur? (une main est appelée couleur lorsque les 5 cartes sont des piques seulement, ou des trèfles, ou des cœurs, ou des carreaux),
- 2- une paire? (c'est le cas lorsqu'on reçoit a, a, b, c, d où a, b, c et d sont de différentes i valeurs),
- 3- deux paires (i.e. : a, a, b, b, c), 4- un brelan (a, a, a, b, c), 5- un carré (a, a, a, a, b).

Exercice 11. On jette deux dés jusqu'à ce qu'une somme de 5 ou 7 apparaisse. On cherche à trouver la probabilité qu'on s'arrête sur une somme de 5. Pour cela on désignera par E_n l'événement "une somme de 5 apparaît au $n^{\text{ème}}$ double jet et sur les n-1 premiers jets ni la somme de 5 ni celle de 7 n'apparaît". Calculer $\mathbb{P}\{E_n\}$ et montrer que $\sum_n \mathbb{P}\{E_n\}$ est la probabilité cherchée.

Exercice 12. On suppose que *n* personnes sont réunies. Quelle est la probabilité que au moins deux d'Sentre elles aient leurs anniversaires le même jour? (on suppose que personne n'est né le 29 février, et que tous les jours de l'année sont équiprobables).