$$g(x) = af(x - c) + d$$

Note: the transformations caused by parameters d, a, and c are as follows:

Parameter d causes a vertical shift. If d > 0, then there is a shift up. If d < 0 then there is a shift down.

Parameter a causes a vertical stretch or compression. If |a| > 0, then there is a vertical stretch. If 0 < |a| < 1, then there is a vertical compression.

Parameter *a* causes a vertical reflection if *a* is negative.

Parameter c causes a horizontal shift. If c > 0, then the shift is to the right. If c < 0, then the shift is to the left.

Vertical shift

The blue function is the original function.

$$f(x) = x^2$$

The red function is the result of vertically shifting the blue function down by 2.

$$g(x) = f(x) - 2$$
 or $g(x) = x^2 - 2$

X	f(x)	f(x)-2	g(x)
-2	4	4 - 2	2
-1	1	1 - 2	-1
0	0	0 - 2	-2
1	1	1 - 2	-1
2	4	4 - 2	2

Vertical compression

The blue function is the original function.

$$f(x) = x^2$$

The red function is the result of vertically compressing the blue function by a factor of 1/4.

$$g(x) = \frac{1}{4}(f(x)) \text{ or } g(x) = \frac{1}{4}x^2$$

X	f(x)	1/4 f(x)	g(x)
-2	4	¹ / ₄ f(x) ¹ / ₄ *4	1
-1	1	¹ / ₄ *1	1/4
0	0	1/4 *0 1/4 *1	0
1	1	1/4 *1	1/4
2	4	1/4 *4	1

Vertical stretch

The blue function is the original function.

$$f(x) = x^2$$

The red function is the result of vertically stretching the blue function by a factor of 2.

$$g(x) = 2(f(x)) \text{ or } g(x) = 2x^2$$

X	f(x)	2f(x) 2*4	g(x)
-2	4	2*4	8
-1	1	2*1	2
0	0	2*0	0
1	1	2*1	2
2	4	2*4	8

Horizontal shift

The blue function is the original function.

$$f(x) = x^2$$

The red function is the result of horizontally shifting the blue function right by 3.

$$g(x) = f(x-3)$$
 or $g(x) = (x-3)^2$

X	x^2	f(x)	x - 3	$(x-3)^2$	g(x)
-2	$(-2)^2$	4	-2 – 3	$(-5)^2$	25
-1	$(-1)^2$	1	-1 – 3	$(-4)^2$	16
0	$(0)^2$	0	0 - 3	$(-3)^2$	9
1	$(1)^2$	1	1 - 3	$(-2)^2$	4
2	$(2)^2$	4	2 - 3	$(-1)^2$	1
3	$(3)^2$	9	3 – 3	$(0)^2$	0
4	$(4)^2$	16	4 – 3	$(1)^2$	1