UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ÁLGEBRA Y ÁLGEBRA LINEAL 520142

Listado 23. Complemento ortogonal. Proyección.

Problema 1. Determine el complemento ortogonal de los siguientes subespacios:

1.1.
$$W_1 = \langle \{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \} \rangle$$
 con el producto usual de las matrices.

- **1.2.** $W_2 = \langle \{\mathbf{u}, \mathbf{v}\} \rangle$ con el producto usual de \mathbb{R}^3 .
- **1.3.** $W_3 = \langle \{(2, 1, -1)\} \rangle$ con el producto usual de \mathbb{R}^3 .
- **1.4.** $W_4 = \langle \{(1, 0, -1, 6), (2, 4, -1, 1)\} \rangle$ con el producto usual de \mathbb{R}^4 .
- **1.5.** $W_5 = \mathcal{P}_2(\mathbb{R})$ como subespacio de $\mathcal{P}_5(\mathbb{R})$, con el producto definido en el Problema 5 del Listado 22.
- **1.6.** $W_6 = \{A \in \mathcal{M}_2(\mathbb{R}) : tr(A) = 0\}$ con el producto usual de las matrices.
- 1.7. $W_7 = \{x \in \mathbb{C}^4 : \langle x; v \rangle = 0\}$ con el producto usual de \mathbb{C}^4 . En práctica 1.3 y 1.5.

Problema 2. Para los subespacios anteriores encuentre la proyección ortogonal (o mejor aproximación) de los siguientes vectores:

2.1.
$$\begin{pmatrix} 3 & 0 \\ -3 & 1 \end{pmatrix}$$
. **2.2. w**, donde **w** es un vector dado cualquiera.

2.5.
$$3x^5 - 5x^4 - 3$$
. **2.6.** $\begin{pmatrix} 2 & 4 \\ -1 & 0 \end{pmatrix}$.

2.7.
$$(i, 1, -i, -1)$$
, para el caso en que $v = (i, i, i, i)$. En práctica **2.3** y **2.5**.

Problema 3. Sea S un subespacio vectorial de dimensión r de un espacio vectorial V de dimensión n. Demuestre que la dimensión de su complemento ortogonal S^{\perp} es n-r.

Problema 4. Aplique el método de Gram-Schmidt para encontrar una base ortogonal de los siguientes espacios:

- **4.1.** $\langle \{(2,0,1), (3,-1,5), (0,4,2)\} \rangle$ con el producto usual de \mathbb{R}^3 .
- **4.2.** $\langle \{(1,2,3),(3,1,3),(1,-3,-3)\} \rangle$ con el producto usual de \mathbb{R}^3 . ¿Por qué el tercer vector resulta igual a 0? ¿puede usar este método para identificar vectores l.d.?
- **4.3.** $\langle \{1, x, x^2\} \rangle$ con el producto de funciones: $\langle p; q \rangle = \int_0^1 p(x)q(x)dx$.
- **4.4.** $\langle \{1, x, x^2, x^3\} \rangle$ con el producto definido en el Problema 4 del Listado 22, para los puntos dados en la parte 4.2.1 del mismo listado.
- **4.5.** $\langle \{3x+1, x^3-1, x^2+x-2, 4x\} \rangle$ con el producto definido en el Problema 5 del Listado 22.
- **4.6.** $\langle \{(1,0,i), (i+1,2,0), (1-i,-i,3)\} \rangle$ con el producto usual en \mathbb{C}^3 .

4.7.
$$\langle \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \right\} \rangle$$
 con el producto usual de las matrices. **En práctica 4.1, 4.4 y 4.7.**

Problema 5. Sea $\{x_1, x_2, ..., x_n\}$ un conjunto de vectores cuaquiera. Demuestre que si $(\forall i \in \{1, ..., n\})u \perp x_i$ entonces $u \perp \langle \{x_1, x_2, ..., x_n\} \rangle$.

Problema 6. Muestre que si U y W son subespacios de V y $U \perp W$ entonces $U \cap V = \{0\}$ (En práctica).

Problema 7. Sea $\{u_1, u_2, u_3, u_4\}$ un conjunto de vectores de un espacio vectorial con producto interior. Considere los siguientes vectores de \mathbb{R}^4 :

$$x_1 = (\langle u_1; u_1 \rangle, \langle u_1; u_2 \rangle, \langle u_1; u_3 \rangle, \langle u_1; u_4 \rangle)$$

$$x_2 = (\langle u_2; u_1 \rangle, \langle u_2; u_2 \rangle, \langle u_2; u_3 \rangle, \langle u_2; u_4 \rangle)$$

$$x_3 = (\langle u_3; u_1 \rangle, \langle u_3; u_2 \rangle, \langle u_3; u_3 \rangle, \langle u_3; u_4 \rangle)$$

$$x_4 = (\langle u_4; u_1 \rangle, \langle u_4; u_2 \rangle, \langle u_4; u_3 \rangle, \langle u_4; u_4 \rangle)$$

Suponga que u_1 es combinación lineal de u_2 , u_3 y u_4 y demuestre que entonces x_1 es combinación lineal de x_2 , x_3 y x_4 . **En práctica**.