CS&IT ENGNEERNG

Computer Network

Error Control

By - Abhishek Sir

Lecture No. - 03

Recap of Previous Lecture

ABOUT ME

Hello, I'm Abhishek

- GATE CS AIR 96
- M.Tech (CS) IIT Kharagpur
- 12 years of GATE CS teaching experience

Telegram Link: https://t.me/abhisheksirCS_PW

Topic: Generator Polynomial

G(X): Generator Polynomial function

- \rightarrow (n+1) terms [Xⁿ to X⁰]
- \rightarrow Degree[G(X)] = n
- → Coefficient of term X⁰ should be "one"
 [G(X) shuold not be divisible by X]
- → Both transmitter and receiver must agree on same G(X)

$$G(X) = X^n + \ldots + 1$$

$$G(X) = X^n + \ldots + 1$$

Divisor: binary string, (n+1) bits [1...1]

Example:

$$G(X) = X^3 + X^2 + 1$$
$$= 1*X^3 + 1*X^2 + 0*X^1 + 1*X^0$$

Divisor
$$= 1101$$

Topic: Message Polynomial

M(X): Message Polynomial function

- \rightarrow m terms, [$X^{(m-1)}$ to X^0]
- → coefficients are either zero or one

DATA (Message) : binary string (m - bits)

Topic: Message Polynomial

DATA (Message) : binary string (m - bits)

Example :-

$$M(X) = X^{7} + X^{4} + X^{3} + X$$

$$= 1*X^{7} + 0*X^{6} + 0*X^{5} + 1*X^{4} + 1*X^{3} + 0*X^{2} + 1*X^{1} + 0*X^{0}$$

DATA =
$$10011010$$

Transmitter protocol:

[M(X) * Xⁿ] [Modulo-2 Division] [G(X)]

n: degree of [G(x)]

moduloz Arithmatic

$$M(X) = X^7 + X^4 + X^3 + X$$

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^4$$
 Divident (ATMb)

$$X^7 + X^6 + X^5 + X^4 + X^3 + 1$$

$$X^3 + X^2 + 1$$
 $X^{10} + X^7 + X^6 + X^4$ $X^{10} + X^9 + X^7$

Modulo 2 division [bit-wise X-OR]

$$X^{9} + X^{6} + X^{4}$$
 $X^{9} + X^{8} + X^{6}$

$$X^{8} + X^{4}$$

$$X^{8} + X^{7} + X^{5}$$

$$X^7 + X^5 + X^4$$

 $X^7 + X^6 + X^4$
 $X^6 + X^5$
 $X^6 + X^5 + X^3$

$$X^3$$
 $X^3 + X^2 + 1$

$$X^2 + 1$$

Topic: Remainder Polynomial

- R(X): Remainder Polynomial function
 - \rightarrow n terms, [X⁽ⁿ⁻¹⁾ to X⁰]
 - → coefficients are either zero or one

CRC (Remainder) : binary string (n - bits)

Pw

Example 1:

$$G(X) = X^3 + X^2 + 1$$

$$M(X) = X^7 + X^4 + X^3 + X$$

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^4$$

[M(X) * X³] [Modulo-2 Division] [G(X)]

$$R(X) = 1*X^2 + 0*X^1 + 1*X^0$$

Transmitter protocol:

```
[M(X) * X<sup>n</sup>] [Modulo-2 Division] [G(X)]
```

R(X): Remainder Polynomial function (of above equation)

Transmitter transmit:

Example 1:

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^4$$

$$R(X) = X^2 + 1$$
 Remainder

Transmitter transmit:

$$X^{10} + X^7 + X^6 + X^4 + X^2 + 1$$

Example 1:

$$G(X) = X^3 + X^2 + 1$$

$$= X^7 + X^4 + X^3 + X$$

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^4$$

M(X)

[M(X) * X³] [Modulo-2 Division] [G(X)]

DATA

11111001 1 1 0 1 0 0 0 0 1101 0

Modulo 2 division [bit-wise X-OR]

1001100000 1101

Modulo 2 division [bit-wise X-OR]

PW

Example 1:

$$G(X) = X^3 + X^2 + 1$$

DIVISOR =
$$1101$$

$$M(X) = X^7 + X^4 + X^3 + X$$

$$DATA = 10011010$$

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^4$$

1001100000

$$R(X) = 1*X^2 + 0*X^1 + 1*X^0$$

$$CRC = 101$$

Pw

Example 1:

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^4$$

$$R(X) = 1*X^2 + 0*X^1 + 1*X^0$$

Transmitter transmit:

$$\frac{X^{10} + X^7 + X^6 + X^4 + X^2 + 1}{\langle}$$

Consider the message M = 1010001101. The cyclic redundancy check (CRC) #Q. for this message using the divisor polynomial $x^5 + x^4 + x^2 + 1$ is

[GATE 2005]

- (A) 01110
- (B) 01011
- (C) 10101
- (D) 10110

#Q. The message 11001001 is to be transmitted using the CRC polynomial $x^3 + 1$ to protect it from errors. The message that should be transmitted is:

(A) 11001001000

(B) 11001001011

(C) 11001010

(D) 110010010011

[GATE 2007]

(A) 01011011010

(B) 01011011011

(C) 01011011101

(D) 01011011100

[GATE 2017]

#Q. Consider the cyclic redundancy check (CRC) based error detecting scheme having the generator polynomial X^3+X+1 . Suppose the message $m_4m_3m_2m_1m_0=11000$ is to be transmitted. Check bits $c_2c_1c_0$ are appended at the end of the message by the transmitter using the above CRC scheme. The transmitted bit string is denoted by $m_4m_3m_2m_1m_0c_2c_1c_0$. The value of the checkbit sequence $c_2c_1c_0$ is:

[GATE 2021, Set-2, 2-Mark]

H.W.

- (A) 101
- (B) 110
- (C) 100
- (D) 111

Example 2: FI.W.

$$G(X) = X^3 + X + 1$$
 wivison

$$M(X)$$
 = $X^7 + X^4 + X^3 + X^2 + 1$

$$M(X) * X^3 = X^{10} + X^7 + X^6 + X^5 + X^3$$

[M(X) * X³] [Modulo-2 Division] [G(X)]

THANK - YOU