DATA ACQUISITION

UNDERSTANDING STORAGE FORMATS FOR DIGITAL EVIDENCE

- Data in a forensics acquisition tool is stored as an image file
- Three formats
 - Raw format
 - Proprietary formats
 - Advanced Forensics Format (AFF)

RAW FORMAT

- Makes it possible to write bit-stream data to files
- Advantages
 - Fast data transfers
 - Ignores minor data read errors on source drive
 - Most computer forensics tools can read raw format
- Disadvantages
 - Requires as much storage as original disk or data
 - Tools might not collect marginal (bad) sectors

PROPRIETARY FORMATS

- Most forensics tools have their own formats
- Features offered
 - Option to compress or not compress image files
 - Can split an image into smaller segmented files
 - Can integrate metadata into the image file
- Disadvantages
 - Inability to share an image between different tools
 - File size limitation for each segmented volume
- The Expert Witness format is unofficial standard
- FTK uses and Encases USES

ADVANCED FORENSICS FORMAT

- Developed by Dr. Simson L. Garfinkel as an open-source acquisition format
- Design goals
 - Provide compressed or uncompressed image files
 - No size restriction for disk-to-image files
 - Provide space in the image file or segmented files for metadata
 - Simple design with extensibility
 - Open source for multiple platforms and Os's
 - Internal consistency checks for self-authentication
- File extensions include:
 - .aff variation that stores all data and metadata in a single file
 - afm variation stores all the data and metadata in separate files
 - .afd variation stores all the data and metadata in multiple small files.
 - AFF is open source

PROCESS FOR ACQUIRING DATA

- Step 1: Choose Acquisition Method
- Step 2: Snapshot the System
- Step 3: Acquire Volatile System Data
- Step 4: Securing and Transporting the System
- Step 5: Prepare Drive
- Step 6: Perform Acquisition
- Step 7: Validate
- Step 8: Contingency Planning

DETERMINING THE BEST ACQUISITION METHOD

- Types of acquisitions
 - Static acquisitions and live acquisitions
- Four methods of data collection
 - Creating a disk-to-image file
 - Creating a disk-to-disk
 - Creating a logical disk-to-disk or disk-to-data file
 - Creating a sparse data copy of a file or folder
- Determining the best method depends on the circumstances of the investigation
 - Size of the source disk
 - Time
 - Whether you can retain the disk

DETERMINING THE BEST ACQUISITION METHOD

- Creating a disk-to-image file
 - Most common method and offers most flexibility
 - Can make more than one copy
 - Copies are bit-for-bit replications of the original drive
 - ProDiscover, EnCase, FTK, SMART, Sleuth Kit, X-Ways, iLookIX

- Creating a disk-to-disk
 - When disk-to-image copy is not possible
 - Tools can adjust disk's geometry configuration
 - EnCase, SafeBack, SnapCopy

DETERMINING THE BEST ACQUISITION METHOD

Logical acquisition or sparse acquisition

- Use when your time is limited
- Logical acquisition captures only specific files of interest to the case
- Sparse acquisition collects fragments of unallocated (deleted) data
- For large disks
- PST or OST mail files, RAID servers

SNAPSHOT THE SYSTEM

- Before shutting down a system an analyst must create a snapshot of the current run state.
 - Additionally, this must be done by minimizing your fingerprint.
- Snapshot a list of running processes
 - Task Manager, ps –efl
 - Need to check for possible malware that could execute on shutdown, process start ups, etc.
 - Question: How can we snapshot the current run state without altering the disk?
- Snapshot the network connection status
 - Netstat
 - Need to check if there are any live connections to the system.

ACQUIRE VOLATILE SYSTEM DATA

- Before the machine can be shutdown to snapshot the physical equipment, any volatile data must be recovered.
 - Cache Memory
 - Main Memory
- We will focus more on main memory recovery next week.
 - Ex. Recovering user account and password information from RAM.

SECURING AND TRANSPORTING THE

SYSTEM

Seized devices must be inventoried.

- Document hardware configuration
 - BIOS
- Snapshot physical devices and then separate and document and disassemb' evidence.

ACQUIRING DATA WITH A LINUX BOOT CD

- Linux can access a drive that isn't mounted
- Windows OSs and newer Linux automatically mount and access a drive
- Forensic Linux Live CDs don't access media automatically
 - Which eliminates the need for a write-blocker
- Using Linux Live CD Distributions
 - Forensic Linux Live CDs
 - Contain additionally utilities

- Forensic Linux Live CDs (cont'd)
 - Configured not to mount, or to mount as read-only, any connected storage media
 - Well-designed Linux Live CDs for computer forensics
 - Penguin Sleuth
 - F.I.R.E
 - CAINE
 - Deft
 - Kali Linux
 - Knoppix
 - SANS Investigative Toolkit

PREPARING A TARGET DRIVE FOR ACQUISITION IN LINUX

- Current Linux distributions can create Microsoft FAT and NTFS partition tables
- fdisk command lists, creates, deletes, and verifies partitions in Linux
- mkfs.msdos command formats a FAT file system from Linux

ACQUIRING DATA WITH A LINUX BOOT CD

- Acquiring data with dd in Linux Acquiring data with dcfldd in Linux (cont'd)
 - dd ("data dump") command
 - Can read and write from media device and data file
 - Creates raw format file that most computer forensics analysis tools can read
 - Shortcomings of dd command
 - Requires more advanced skills than average user
 - Does not compress data
 - dd command combined with the split command
 - Segments output into separate volumes
 Follow the step starting on page 104 in the text to make an image of an NTFS disk on a FAT32 disk
- Acquiring data with dcfldd in Linux
 - The dd command is intended as a data management tool
 - Not designed for forensics acquisitions

- dcfldd additional functions
 - Specify hex patterns or text for clearing disk space
 - Log errors to an output file for analysis and review
 - Use several hashing options
 - Refer to a status display indicating the progress of the acquisition in bytes
 - Split data acquisitions into segmented volumes with numeric extensions
 - Verify acquired data with original disk or media data
- Acquiring data with dc3dd in Linux
 - Patch applied to the GNU dd

VALIDATING DATA ACQUISITIONS

- Validating evidence may be the most critical aspect of computer forensics
- Requires using a hashing algorithm utility
- Validation techniques
 - MD5 and SHA-1 to SHA-5

CONTINGENCY PLANNING FOR IMAGE ACQUISITIONS

- Create a duplicate copy of your evidence image file
- Make at least two images of digital evidence
 - Use different tools or techniques
- Copy host protected area of a disk drive as well
 - Consider using a hardware acquisition tool that can access the drive at the BIOS level
- Be prepared to deal with encrypted drives
 - Whole disk encryption feature in Windows called BitLocker makes
 - static acquisitions more difficult
 - May require user to provide decryption key

PERFORMING RAID DATA ACQUISITIONS

- Acquisition of RAID drives can be challenging and frustrating because of how RAID systems are
 - Designed
 - Configured
 - Sized
- Size is the biggest concern
 - Many RAID systems now have terabytes of data

UNDERSTANDING RAID

Redundant array of independent (formerly "inexpensive")
 disks (RAID)

- Computer configuration involving two or more disks
- Originally developed as a data-redundancy measure
- RAID 0 (Fake RAID)
 - Provides rapid access and increased storage
 - Biggest disadvantage is lack of redundancy
- RAID 1
 - Designed for data recovery
 - More expensive than RAID 0
 - AQD NOTES ABOUT UP TO 10!!!!

ACQUIRING RAID DISKS

- Address the following concerns
 - How much data storage is needed?
 - What type of RAID is used?
 - Do you have the right acquisition tool?
 - Can the tool read a forensically copied RAID image?
 - Can the tool read split data saves of each RAID disk?
- Copying small RAID systems to one large disk is possible
- Occasionally, a RAID system is too large for a static acquisition
 - Retrieve only the data relevant to the investigation with the sparse or logical acquisition method

Vendors offering RAID acquisition functions

- Technology Pathways ProDiscover
- Guidance Software EnCase
- X-Ways Forensics
- AccessData FTK
- Runtime Software
- R-Tools Technologies

USING REMOTE NETWORK ACQUISITION TOOLS

- You can remotely connect to a suspect computer via a network connection and copy data from it
- Remote acquisition tools vary in configurations and capabilities

Drawbacks

- Antivirus, antispyware, and firewall tools can be configured to ignore remote access programs
- Suspects could easily install their own security tools that trigger an alarm to notify them of remote access intrusions
- Question: What is our ISY "Swiss army knife tool" to perform this type of live acquisition?

SUMMARY

Forensics data acquisitions are stored

in three different formats:

- Raw, proprietary, and AFF
- Data acquisition methods
 - Disk-to-image file
 - Disk-to-disk copy
 - Logical disk-to-disk or disk-to-data file
 - Sparse data copy
- Plan your digital evidence contingencies
 - Make a copy of each acquisition
 - Write-blocking devices or utilities must be used with GUI acquisition tools

- Always validate acquisition
- A Linux Live CD, such as SIFT, Kali Linux, or Deft, provides many useful tools for digital forensics acquisitions
- Preferred Linux acquisition tool is dcfldd (not dd)
- Use a physical write-blocker device for acquisitions
- To acquire RAID disks, determine the type of RAID
 - And then which acquisition tool to use
- Remote network acquisition tools require installing a remote agent on the suspect computer