과학화 경계시스템

2022. 7.20

<u>순</u> 서

- I. 과학화경계시스템
- II. GOP 과학화경계시스템
- Ⅱ. 현 시스템
- Ⅲ. AI 과학화경계시스템
 - 1. 감지체계
 - 2. 감시체계
 - 3. 통제체계
- Ⅳ. 향후 발전과제

│. 과학화경계시스템

1 Is

Issue

□ Illustration: 0000 PKO 부대

동명부대 현황

- 규모: 300 명
- 구성: 특전사 1개 대대 공병, 통신, 의무 헌병, 수송, 정비
- Hammadiye, South, Lebanon

☐ Current Status

울타리 현황

길이 1.6km, 높이: 2.4m

감시카메라 현황

- 카메라 Type
- 설치간격
- Pole 및 Rack

침입탐지 현황

- 침입탐지 Type
- 운영현황: 오경보 현황
- 전원/통신 인프라 현황

□ Option

구분	Proposal A	Proposal B
개념	Radar 센서를 통한 초기탐지 및 광망센서를 통한 최종침입 탐지	원거리 감시 카메라를 통한 주변감시 광망센서를 통한 최종침입탐지
초기탐지	Radar	*
원거리 감시	원거리 감시카메라	원거리 감시카메라
침입탐지	광망 감지시스템	광망 감지시스템
침입탐지 식별	근거리 감시카메라	근거리 감시카메라

□ Option A

■ 초기탐지

- Radar Detection
 - 감시범위 : 360도
 - 감지거리 : 6Km Human Detection
- · Long Range Surveillance Camera
 - PTZ Type
 - 야간 감시범위: 800m
- 침입탐지
 - 광망 감지기
 - 50m x 32 Zone
- 감시카메라
 - CCD type 카메라
 - 100m x 16 set

☐ Option B

- 원거리 감시
 - · Long Range Surveillance Camera
 - PTZ Type
 - 야간 감시범위: 800m
- 침입탐지
 - 광망감지기
 - 50m x 32Zone
- 감시 카메라
 - CCD type 카메라
 - 100m x 16 set

■ | Pattern

□. GOP 과학화경계시스템

1 개요

□ 배경

- GOP과학화경계시스템은 OO~OO년에 전력화되어 5~6년 동안 운용 중이나, 언론 및 국회 국방위원회에서는 GOP 과학화 경계시스템의 잦은 오류 및 고 장과 운영유지 문제로 인한 최전방 대북 경계작전태세 유지에 큰 우려 제기 - 강원 고성 지역 최전방 경계부대(GOP)의 북한 남성 '월책 귀순' 등
- GOP과학화경계시스템의 오류, 고장, 오경보 및 정비 미 원할
 - OO년 부터 OO년 까지 이 시스템의 작동 오류 및 고장은 OOOO건 으로 이 중 동물과 강풍에 의한 것이 주로 차지
- GOP 과학화경계시스템의 유지보수 체계 및 사용시설에 대한 성능개량 필요

□ 필요성

- 향후 병력감축 대응 과학화장비 확대 및 과학화경계시스템 의존도 증가
 - 국방개혁 2.0으로 인해 OO개 사단이 지키던 전방지역 000km 철책을 OO개 사단이 지켜야 하는 상황
- 우리 군의 전방 과학화 경계 역량에 대한 의심 및 우려 종식 요구
- GOP과학화경계시스템의 수명주기 도래로 오류 및 낙후는 군의 전방 경계 실패로 직결되어 치명적(Fatal)인 결과를 자초하는 악순환 초래
- 기술발전에 따른 중장기적으로 GOP과학화경계시스템 보완 및 미래형 과학화 경계시스템 구축 요구
- 전방 지역 부대 재배치 등에 맞추어 후속 성능개량 사업 추진이 필수적임
 - 철책센서의 탐지율 증대, 지형 장애물 영향 최소화, 동작감시 센서에 열 감 지 기능 추가, 레이더 도입 등
- GOP과학화경계시스템의 유지·보수 등 관리 대책 요구

□ 운용 개념

- GOP과학화경계시스템 구성
 - 감시시스템 : 철책 및 기타 지역에 근거리 및 중거리 카메라를 설치해 북한 군의 예상 침투로와 철책 취약지역을 감시
 - 감지시스템 : 철조망에 부착된 센서 등으로 적의 절단이나 월책 등을 감시
 - 통제시스템 : 소초, 지휘통제실 등과 연동되어 있어 실시간으로 모니터링

○ GOP과학화경계감시시스템은 철책이나 철조망 상단에 일정 간격으로 센서가 달린 광망(케이블) 또는 광그물망을 설치하고, CCTV 감시카메라를 다는 방식 으로 철조망 주변에서 움직이는 물체를 자동으로 감지해 부대 내 지휘통제실 모니터로 신호 송신

감시카메라가 움직이는 물체를 포착하거나 물체가 철책 또는 철조망에 부착 된 센서에 접촉되면 지휘통제실 모니터에 팝업창 형태로 뜨고 즉각 경보음이 울리고, 모니터 앞에는 24시간 교대로 화면을 지켜보는 감시병 배치

- 광망 또는 광그물이 설치된 철책을 동물이 건드려도 경보음이 울림
- 민간인 거주지역 근처에는 접촉 횟수가 많아 경보음은 더 자주 울림
- ※ 중요시설 과학화경계시스템

□ 현실태 및 문제점

- 과학화경계시스템은 안정성에 의구심을 낳을 정도로 고장이 잦았던 것으로 나타남
 - GOP 철책 지역에서 총 000건의 장비고장 발생, 철책에 설치된 감지센서 관련 고장이 000건으로 가장 많았고, 경계장비 통제시스템이 고장 난 경우도 있음
 - 사단별 '00~' 00년 장비 작동 오류 등 과학화 경계시스템 고장이 0000건 으로 집계

- GOP과학화경계시스템의 오경보 및 시스템 오류로 인한 오작동
 - 철책에 설치된 동작 감지센서가 과민하게 작동
 - 강풍, 태풍, 동물이 철책을 살짝 건드려도 경보음이 울리는 경우가 대다수임
 - 이런 과민 작동 때문에 장병들은 실제 상황이 발생해도 무감각하게 대응하는 경향이 있음
 - 센서가 작동해 00000차례 경보음이 울렸는데 이 중 다수가 시스템 오류에 따른 오작동
- GOP과학화경계시스템 수명주기 도래로 노후화
 - GOP과학화경계 장비의 수명은 통상 5~7년으로 이미 노후화
 - 근거리 카메라의 경우 '노크 귀순' 사건 직후인 00년에 처음으로 실전 배치돼 노후화 현상이 심각
 - 특히, 카메라 등 감시장비 부품은 50% 이상이 단종(斷種)된 상태임.

- GOP과학화경계시스템 유지.보수 예산 급증
 - 2018 유지보수비 00억원 ⇒ 2019년 00억원()배)
 - 태풍·수해 등 자연 재해에 매우 취약

III. 현 System

□ 운용 개념/용도

- 운용부대
 - 최전방 GOP 경계부대
- 운용인원
 - 현재 00개 사단이 전방지역 000km 철책 경계
 - 향후 00년 00개 사단으로 감소

□ 구성 및 특성

○ 시스템 구성요소

- 감시시스템, 감지시스템, 통제시스템으로 구성되고, 각각의 구성요소들은 무선 및 광케이블 네트워크로 연결되어 데이터를 주고 받음
- 감시시스템은 주·야간 임무수행이 가능한 고성능 CCTV 카메라로, GOP 철책 전역에 걸쳐 설치되어 전방에서 접근하는 사람 크기의 이동물체를 탐지하여 해당 데이터를 통제시스템으로 전송

- 감지시스템은 철책에 부착되어 철책의 절단 및 훼손 등 이상 현상을 감지하는 광망과 가까이 접근하는 물체를 인식하는 광망 감지센서로 구성되어 있으며, 탐지된 데이터를 감시시스템 및 통제시스템으로 전송
 - * 철책 전체를 감싸고 있는 감지센서(광망)와 Y자 철책 기둥 상단에 위치한 상단감지브래킷, 기둥 맨 꼭대기에 달려 있는 상단감지유발기로 구성
- 통제시스템은 소초 및 중대본부와 대대본부 상황실에 설치되어 감시시스템 과 감지시스템으로부터 획득된 탐지데이터를 융합, 처리하여 의사결정을 위한 정보로 재생산
 - * 상황병은 통제시스템의 모니터에 자동으로 팝업된 이상 현상을 판단하여 침입자로 판단되면 지휘관에게 보고 및 기동타격대를 출동시키고, 동물 의 이동과 같은 일상적 상황으로 판단되면 경보를 해제

○ 현 시스템 사업추진

- 최초 00년 시범사업을 거쳐 00년까지 0000억원을 투자해 병력 위주의 GOP 경계체제를 편제장비와 과학화경계시스템 위주의 경계체제로 전환하기 위해 국내구매로 시스템을 확보
- 00년 1차 사업 착수 : 삼성에스원과 SK C&C가 구매시험평가에 참여했으나 00년 10월 모두 '전투용 부적합' 판정

- 서부 및 중부전선 : 00~00년까지 광망 감지 방식으로 구축(삼성에스원)
- 동부전선은 00~00년까지 삼성에스원과는 조금 다른 광망 감지 방식으로 구축(SK텔레콤)

○ 현 시스템 특성

- 센서가 가동하여 물체가 움직이면 그 방향으로 CCTV가 회전하는 방식으로 감지시스템이 주 감시장비이고 감시시스템은 보조수단
- 서부 및 중부전선(삼성에스원) 광망감지방식
- 한 가닥의 광케이블로 그물망을 만들어 철책을 덮는 형태
- 이 방식은 강풍과 혹한에 취약하고 동물들에 의해 훼손되는 등 설치 후 2년 정도 지나면 대부분 손상돼 기능이 발휘 미흡
- 철책 상단을 넘거나 하단을 들추고 들어오면 경보가 울리지 않고, 그물코 에 달린 클립을 제거하고 통과 가능
 - 동부전선(SK텔레콤) 광망감지방식
- SK텔레콤은 클립을 제거해 통과하는 것을 막으려고 광케이블을 중간에 꼬아 매듭을 만드는 조금 다른 광망감지방식
- 경보가 울리지 않는 상황은 삼성에스원과 동일
- 삼성에스원보다 굵기가 가는 광케이블을 사용해 강풍과 혹한에 더 취약

III. AI 과학화경계시스템

1 감지체계

□ 감지체계 종류

	구 분	감지기술	감지율	오경보 (500m)	환경영향
직접	광망	광신호의 변화감지			안정
방식	장력	철선의 장력변화 감지			온도영향
간접 방식	진동방식 (지진동방식)	압전소자 (피에조저항/ 자장변화)	00%이상	월0회 이하	전자파 영향
	복합방식	적외선 / 압전소자			
사전	레이더/적외선	전파	00%이상	월 ()회 이하	
감지	라이다	레이저	00%이상 (예측)	월 0회 이하 (예측)	폭우·농무 시 감지거리 감소

※ 피에조 저항: 고체에 압력이 가해지면 표면에 전기적 분극이 일어나는 현상

- 광망방식
 - 광망센서는 철책에 부착된 광섬유의 DB값 변화로 감지
 - 강풍/강우 등 환경변화에 대해 비교적 안정적
 - 낙뢰, 전기, 전자파 등 외부환경 영향이 적음
 - 온도, 습도, 굴곡 경사지형 등에 설치 가능
 - 침투 위치 및 다중(2인 동시)침투 감지 가능

- 광망센서 시스템은 펜스의 진동과는 무관하고, 하단 광망을 제거할 목적으로 절곡(벌림 또는 풀어헤침)을 하게 되면 감지신호가 발생하며, 약 40kg 이상 하중을 감지함
- 펜스를 월장하기 위해 상단을 넘게되면, 상단(어퍼)브라켓은 광망센서에 연결된 리턴 케이블이 삽입되어 있어 침투에 의해 하중이 가해지면 상단브라켓 감지로드에 인입된 리턴케이블이 절단 및 절곡되어 경보 발생
- 펜스를 월장하는 것을 감지하기 위해서 상단 브라켓(상단감지브래킷, 철책기둥 연장선상 Y자로 뻗은 150cm정도)와 상단감지유발기(철책상단 24cm가량의 직사각형 모양)를 이용
- 브라켓과 감지유발기에도 일정 정도의 힘이 가해지면 경보음이 울림
- 단, 모든 철책 기둥에 브라켓과 감지 유발기가 설치돼 있지는 않음
- 감지유발기는 군이 내부를 뜯어보지 못하는 형태로 운용되어, 그간 설치업체만 정비할 수있도록 되어 있음
- 운영부대는 정상적인 범위 내에서 센서의 감도를 조정가능하도록 되어 있음

* 연합뉴스 2020.11.26

○ 장력방식

- 장력에 의한 전압차 감지, 스트레인 게이지(Strain gauge) 소자 방식으로 장력 감도 조정
- 개별 연결방식으로 유지 보수시 개별 분리, 점검 및 교체 가능
- 재질의 특성으로 환경(온도) 등 기후변화에 민감
- 낙뢰, 전기, 전자파 등 외부환경 영향이 적음
- 평지에 설치, 굴곡 경사 및 산악 지형 등에 설치 제한
- 오경보율이 높음
- 초기 구축비용이 많이 들고, 유지보수 취약

○ 진동방식

- 진동센서는 철책에 3m 간격으로 설치, 펜스를 흔들거나 타고 올라가거나 절 단할 때 발생하는 진동으로 침입 감지
- 표면 또는 내부 구성품이 압력이나 진동이 발생할 경우 스위치와 같이 전원(또는 배터리) 공급이 필요하며 낙뢰/Surge에 취약
- 센서 모듈이 펜스에 밀착 설치되어야 성능 보장 가능

○ 복합방식(진동방식 & 적외선센서)

- 기본적인 감지방식은 진동방식과 동일하나 오경보를 줄이기 위해 적외선 (PIR, Passive Infrared Sensor) 센서와 연동하여 운용
- 적외선센서는 수광부와 투광부가 서로 마주 보거나 일체형으로 설치하여 접근시 침입자의 몸에서 발생하는 원적외선(약 8~14,µm의 파장)을 감지하는

적외선 센서의 특성 변화로 감지

- 1차로 적외선 센서에 의해 물체(사람) 사전감지 후 2차로 감지된 신호 구간의 진동 만을 이상신호로 경보하기 때문에 바람 등 환경적인 요인에 의한 오경보 감소

○ 레이더(적외선)

- 전자기파 송수신을 통한 주변 사물, 상황인식
- 눈, 비, 안개 등 환경에 대한 감지영향이 거의 없음
- RCS의 크기를 조정하여 사람, 차량 등 식별 가능
 - * RCS(radar cross section) : 레이더 반사면적
- 비슷한 면적의 RCS를 갖는 동물(고라니 등)에 의한 오경보 발생 가능
- 경계 펜스 외곽설치로 피탈 방지 등의 대책 필요/극저속 이동물체 감지제한

○ 라이다(LiDAR)

- 레이더 감지장비와 특징은 유사함(전파 대신 레이저 사용)
- 거리 및 위치 파악, 3D 영상획득이 가능하여 시인성 우수, 원근 구별, 주야 식별 가능
- 반사되는 현상을 알고리즘을 통하여 사람, 차량 등 인지 가능
- 레이저 특성상 폭우, 눈, 농무 시 감지성능 저하
- 굴곡이나 경사가 심한 지형에서는 사용 제한
- 아직까지는 경계시스템용으로 검증이 충분히 이루어지지 않는 상태이고 고가임

□ 국내외 기술개발

○ 감지방식별 비교

	직접	방식	간접방식			
구분	광망	장력	케이블 감지 센서	복합감지센서	진동감지센서	
제조(공급)사	에스원	세렉스(마갈)	다인에스엔티	센서웨이	KMT	
원산지	국산	국산+외산	이스라엘	국산	프랑스	
감지 센서	광케이블 망	압전소자	전자감응식	열영상+진동	압전가속도	
감지율	99%	99%	99%	99%	99%	
오경보	좋음	좋음	보통	아주 좋음	보통	
구축사례	GOP	공항/항만	발전소, 항만	중요2차	프랑스 국경	
감지범위	50m 이내	50m 이내	1m	20m 이내	3m	
내염/내후	충족	충족	충족	충족	충족	
우회통신	가능	가능	불가능	가능	불가능	
신뢰성 검증 (OO시험평가)	기준충족 (3회)	없음	없음	기준충족 (1회)	없음	

○ 국외 감지체계

	감지방식							
구분	광망형	전자감웅식	자기유도식	장력케이블	적외선 감지기			
감지기술	광 db값 변화	전자파 변동	유도전기력 변화 감지	외력에 의한 장력변화	적외선 신호 단절 탐지			
감지매체	광그물망	_	전기 케이블	케이블	적외선			
Zone 구성	임의크기	200m	100~300m	약 50m	30~200m			
감지율	0	0	0	0	0			
계절변화	적음	_	적음	적음	적음			
국가	이스라엘	미국	영국	이스라엘	일본			

□ 감시체계 Component

○ EO카메라

구분	HD	Full HD	WQ HD	UHD	UHD plus	QUHD
상용화	'02년	'10년	'12년	'14년	'15년	'18년
해상도	1,280×720	1,920×1,080	2,560×1,440	3,840×2,160	7,680×2,880	7,680×4,320
화소	92만	207만	369만	829만(4K)	1,475(5K)	3,318(8K)

○ 열상카메라

- 열상카메라 센서의 픽셀피치는 현재 20µm, 17µm, 15µm의 크기로 상용화되어 있으 며, 원거리 감시성능의 요구에 따라 12μm, 10μm의 픽셀크기를 가진 열상센서가 상용화되고 있는 추세임
- 냉각식과 비냉각식으로 구분

225mm 줌 열상카메리(flir irk 640-225Z)

- 해상도 640X512
- 디텍터 ; 비냉각 vox 마이크로볼로메터

○ IR 조사기

- 열영상 소자를 작용한 열상카메라의 고가의 단점을 극복하기 위해 CCD소 자를 사용하여 CCD소자만 감지하는 적외선 영역의 조명을 비추어 야간 감 지성능을 향상시키는 야간감시장비가 일반화 추세

O SWIR카메라

SWIR 카메라

○ 안개개선기능

- LRF(레이저거리측정기)
 - □ 감시체계

- 근거리카메라
- 중거리카메라

통제체계

□ 일반 기술

3

○ 영상추적기술

- 카메라가 고정형과 회전형이 연동되어 자동추적 가능하나, 100m거리에서 5m/sec 범위 내에서 추적 가능
- 추적기반 PTZ카메라 연동제어를 통한 지능형 감지시스템 등 효용성 발전 추세

○ 영상개선기술

- 레이저조사기나 전조등과 같이 물체로부터 반사되는 빛을 조사하여 사물을 관측하는 방식
 - * 안개개선기능 일부 보유(S/W, H/W)

○ VMS(통합영상관제)기술

- '21년 기준 224개의 지방자치단체 통합관제센터 구축으로 네트워크 전환속도 및 고화질의 CCTV 증가(공공기관 CCTV 약 180만대)로 딥러닝 기반의 관제와 탐색의 효율성 증대 추세
- 클라우드 기반, 현장 및 애플리케이션 기반으로 세분화되고 온 사이트 프레 미스가 배포 세그먼트를 주도
- AI, 딥러닝 및 영상데이터 저장단계에서 암호화 적용으로 원본 데이터의 외부 유출 및 보안 강화
- 저장분배 서버 1대에 Full HD 카메라 기준 1,000채널 또는 IP카메라 기준 8,500대의 채널 운용, 서버방식에서 클라우드 방식으로 전환 중
- 영상처리와 관련된 높은 수준의 시스템 신뢰성으로, 차세대(4K) 이상의 고 해상도 영상표출 및 저장, 연동에 높은 기술 수준 보유
- 국내 VMS 전문기업 다수
 - * 네이즈, 다누시스, 마일스톤 시스템즈, 아이다스, 이노뎁, 제네텍 등 다수

□ 지능형 영상분석기술

- 지능형 영상분석 기술 동향
- 1세대 모션탐지, 2세대 영상분석, 3세대 크라우드 소싱(Crowd Sourcing) 체계로 발전
- 모션탐지(Motion detection)
- CCTV 영상에서 이동물체의 픽셀 변화를 감지해 탐지하는 초기기술

• 탐지객체를 분석하여 검출하는 방법이 아니고, 단순히 CCTV 영상에서 픽셀의 움직임만 검출하는 것으로 나뭇가지의 흔들림 또는 시간대별 조도 변화에 따라 미탐지 및 오경보가 많음

비, 눈이 오는 환경에서 잦은 오람 발생

흔들리는 나무에 의한 잦은 모탐

다양한 동물에 의한 잦은 말람

- 객체 오검출 및 오분류 문제
- 환경적인 요인에 의해 발생하는 노이즈 모션으로 인한 객체 오검출
- 객체 종류 인식 오류 문제
- 객체 인식이 근본적으로 어렵기 때문에 동물과 같은 움직이는 비 관심 물 체에 의한 오탐발생 빈번
- 객체 간의 겹침이 발생하는 복잡한 환경에서 개별 객체 영역 분리 탐지 곤란

- 영상분석(Video analysis)
- (인공지능 기반 객체탐지) 학습데이터를 학습하여 사람 등 객체를 검출하는 방법 * 장점: 객체 인식에 탁월하고 주변 환경에 의한 오경보 적음
 - * 단점 : 학습DB 확보가 어렵고 주기적으로 학습으로 성능 향상 필요
- 인공지능을 활용하여 배경과 객체분리 및 객체 추적기술을 사용하여 배경영역 신호변화에 성능증가로 미탐지 및 오경보 감소
- 객체분석을 통한 다양한 영상 내 이벤트 검출이 가능하여 월책, 침입, 유기 등 영 상보안, 비즈니스 인텔리전스 등에 활용
- 현재 기술단계의 유형은 영상분석솔루션(서버형, On Promise 프로세스), 엣지형 CCTV + 영상분석솔루션, 엣지형 방식 등이 있음

- 크라우드 소싱(Crowd Sourcing)
- 분산 이기종/다중기기 간 정보를 공유하여 이를 복합적으로 분석하여 복잡한 상황을 효과적으로 이해하고 대응 가능
- 현재 상황의 실시간 분석결과를 과거 상황들과 연관성을 분석하여 현재의 위험 상황을 조기 해결
- 기존 감시장비 인프라를 이용하여 별도 물리적 증설없이 서버를 통한 탐지 운영 가능
- 인공지능 기반 영상분석 국내업체의 기술 동향

제품 유형	현 황	주요 기능 <i>/</i> 특징
영상 분석 솔루션	선별관제, 프레임 내 관심 객체탐지, 유사 물체 판별, GIS기반의 관심지역 내 영역관제 등 관제 정확도 향상을 위한 기술 제공 15개 이상의 지자체에 구축(제주도 포함)	• 선별관제, 집중관제, 관심객 체탐지, 유사물체 판별, GIS기반 추적관제
엣지형CCTV	• 지능형 기술 업체 영국 VCA와 기술협약 • 지능형 CCTV 영상분석 솔루션	• 출입, 나타남/ 사라짐, 정 지, 방향, 객체 분류, 사람

제품 유형	현 황	주요기능 <i>/</i> 특징
	• 씨프로 생산 IP 카메라에 VA(Video Analytic) 적용 하여 엣지단에서 지능형 영상분석 제공	추적, 사람 계수 • 머무름/속도, 유기 /제거, 컬러 등 분류
영상 분석 솔루션	 영상분석이 가능한 카메라와 이상음원 및 음성인 식이 가능한 음원 수집장치가 하나로 결합된 일 체형 모델 CCTV를 이용해 비명, 차량충돌음 등 이상음원과 욕 설, 구조요청 등의 음성 인식 	• 영상/음원/음성 동시 분석, • 구조요청 등 음성인식 지 원
엣지형CCTV	• CCTV 카메라 기반의 지능형 감시기능과 객체구분· 인식, LPR(차번인식), 얼굴인식, 쓰러짐, 불꽃감지 분석	• 침입/존재유무 / 배회 / 출 입/경계선/멈춤/방향 등의 행위분석
엣지형CCTV + 영상 분석 솔루션	• 이상 행동이 영상 내 나타날 경우 자동으로 판단 해 관제 관심 대상인 사람 또는 차량이 나타난 CCTV 채널 자동 선별	 객체분류, 얼굴분석, PTZ 객체추적, 객체 행위분 석
엣지형CCTV	• 2020년 하반기 CCTV에 움직임, 침입, 탬퍼링, 가상선 감지, 얼굴 감지, 영상 자가 진단, 객체 인식, 객체 분석, 차량번호 인식(ANPR) 등의 기능 탑재예정	객체감지, 선별관제 차량번 호인식, 집중감시, 위치자막기능
엣지형CCTV + 영상 분석 솔루션	• 4K 지능형 CCTV로 객체 분석을 통해 객체별 속성값(Attribute)을 부여해 메타데이터를 생성하고 1 차로 카메라 단에서 분석을 완료한 메타데이터는 서버로 전송	객체감지 및 분류, 객체 속성값/베스트샷 지원
영상 분석 솔루션	• 사전학습 및 전이학습을 통한 객체탐지.추적, 이 상 상황인식	DL 기반 객체탐지추적 (사람, 차량, 선박, 동물) 침투/배회/유기/화재의 상 황인식
영상 분석 솔루션	• 실시간위험.경계 객체를 감지하고 경보를 전송하는 딥러닝 기반의 AI 영상분석 솔루션	• TOD AI 경고기능 신기술 참여
엣지디바이 스+ 영상분 석	• AI 영상 경계사스템으로 학습데이터를 기반으로 객체 식별	• 엣지컴퓨팅 사용
영상 분석 솔루션	• 딥러닝 기반기술을 적용하여 객체 및 다 속성을 검출 빛 선별하여 정확한 움직임이 발생한 카메 라만 표출, 관제의 효율 극대화 솔루션	
영상 분석 솔루션	• AI 딥러닝 기반 SW를 통해 군내 위험요인 탐지 솔루션	• TOD AI 경고기능 신기술 참여
영상 분석 솔루션	• 영상분석을 통한 딥러닝 기반의 객체 실시간 위 치 추적 및 스마트 영상 관제 시스템	• 위험관리, 안전 특화
영상분석 솔루션	• 딥러닝 기반기술을 적용하여 객체 인식을 통한 영상분석 • 중/장거리 영상분석 통한 인원, 선박 식별 가능	• 보안, 국방, 안전에 특화 • TOD 기반 영상분석 개발 중

- 엣지(edge)형 AI 솔루션의 카메라가 등장하였으나 대부분 민간분야에 적용 가능한 영상분석기술임
- 도시에서의 20~30m 이내의 차량인식
- 건물 및 도로 주변의 20~30m 이내의 사람 인식에 관한 기술
- IT 기술발전에 따라 엣지형+ 서버형의 복합형 영상분석 솔루션으로 요구 증대 예상
- 지능형 영상분석 성능 기준 설정
- 한국인터넷진흥원(KISA) 인증 기준
 - ① 검출율(탐지율)(%) = $\frac{ 정상경보}{ 정상경보 + 미경보} \times 100$
 - * 이벤트 발생 건 중 정상적으로 검출한 비율 ② 정확도(%)= 정상경보 정상경보 + 오경보
 - * 시스템이 경보한 전체 건수 중 정상적 검출한 비율
 - ③ (인증기준) 각 이벤트 발생 건에 대한 검출율과 정확도의 조화평균을 적용하 여 점수화 후, 인증기준 점수(90점) 이상일 경우 인증서 발급
 - * 배회, 침투, 유기, 이상징후 감지, 싸움, 방화/폭발

<인증 분야 및 기준>

구분	배호	침투	유기	싸움	방화/폭발	이상 징후	
정의	일정구역 내 10초 이상 머무름	펜스, 금지지역 등을 침입	쓰레기, 가방을 버림	두사람의 팔/다리가 5초 이상 겹침	사람이 불을 내거나, 폭발물이 폭발됨	CCTV가 회전 후 전 장면에서 없던 사람이 나타남, 철조망 구멍이 생김 및 가방이 생김 등	
인증 점수 (100점 만점)		각각 90점 이상					
정상 검출 시간		행위 발생 이전 2초, 이후 10초 이내					
필수/선택	필수 2개 이상 선택						
유효기간	3년						
비용	무료						

□ 인공지능 시스템 사례

1. CCTV의 AI 경고 시스템 구축 전략

가. 기술 요구사항의 이해

- 1) 경계 객체(50~500m 이내의 사람·차량·동물 등)의 실시간 탐지 및 경고 알람 기능
- 2) 수풀과 해안을 포함한 군사 경계 지역의 특수한 환경적 조건에서도 우수한 성능 보장
- 3) 수풀·수목의 흔들림과 파도·물결 같은 비관심 객체와 계절·날씨 변화에 대한 강인성 확보
- 4) 회전식 CCTV 적용 시 화면이 이동하는 동안에도 일관된 기능과 성능을 유지
- 5) 주야간 카메라 적용 시 야간에도 일관된 기능과 성능을 유지
- 6) 기타 군 적용 가능 기술 자유

나. 기술 전략

1) 성능향상 및 오탐지 방지를 위한 데이터 구축·학습

- 다수의 다양한 학습 DB 구축: 딥러닝 특성상 학습 데이터의 양과 질이 학습 결과를 좌우
- 추가 DB 구축 및 학습: 양질의 데이터를 계속 공급하여 현장 최적화 및 모델 적합성 향상
- 오탐지 소지가 큰 객체들을 별도 분류·라벨링·재학습하여 강인성 확보 및 성능 저하 방지

2) 군 적용 상황의 특성을 고려한 최적의 모델 선택 및 고도화

- 주야간의 작은 객체 및 움직임 객체를 탐지하기 위한 알고리즘
- 탐지의 신뢰성과 비관심 객체에 대한 강인성을 확보하기 위한 알고리즘
- 회전식 CCTV의 화면이 이동하는 동안에도 일관성을 유지하기 위한 알고리즘
- 안개, 분진/먼지 등 입자 기반의 환경변화에 대한 강인성을 확보하기 위한 알고리즘

3) 기타 군 적용 가능 기술 자유 제안

- 철조망 영역 탐지를 통한 침입 여부 분석 기술
- 객체 속성 분석 기술(총기 소지 여부, 군복 착용 여부 등)
- 영상 내 등장한 객체들의 이동 경로 추적 기술

2. 인공지능 학습용 데이터 구축 방안

가. 공개·수집된 데이터 수집

1) 야생 동물 데이터셋: Snapshot Serengeti, CaltechCamera Traps 등

2) CCTV 오픈 데이터셋: AI Hub CCTV 데이터, Crowd Human 데이터 등(사람·자동차 객체 중심)

나. 데이터 증강(Data Augmentation)

- 1) 데이터 부족 시 기존 이미지를 증강하는 알고리즘 적용
- 실화상 영상을 활용한 저조도 야간 영상 데이터 증강 생성
- 이미지 합성, 회전·자르기, 스케일·명암·밝기·채널값 변환 등
- 2) 모델 성능향상에 도움이 되는 경우에만 학습에 사용

다. 시나리오별 영상 촬영

- 1) 드론을 활용한 다양한 환경에서의 영상 촬영
- 2) 야간 카메라 성능 보장을 위한 IR 영상 수집 및 학습
- 3) 수풀·수목 등 장애물에 의한 가려짐 영상 수집 및 학습

3. 데이터 전처리 및 주석 처리 방안

- 가. 영상 전처리 알고리즘 적용
- 1) 눈·안개·분진 제거 알고리즘
- 선명도와 색상 대비 정도를 높여 입자(Particle) 기반 환경변화 시에도 일정 성능 보장

2)초해상화(Super-Resolution) 알고리즘

■ 저화질의 작은 객체를 인식하기 위해 저해상도 영상을 고해상도 영상으로 변환

3) 카메라 움직임 추적 알고리즘

- 특징점(Key-Point) 기반의 파노라마 스티칭 및 화면 매칭
- 카메라 회전 중에서도 배경-전경 분리 및 객체 움직임 감지 가능

나. 주요 경계 객체에 대한 주석 처리(annotation,labeling)

- 1) 영상에 나타난 사람, 차량, 동물 등에 대한 레이블 생성
- 2) 이동 객체의 자동 탐지 및 주석 처리를 위한 비지도 학습 기술 활용

- 주석 처리 순서
- ① 미디어 정보 입력
- ② 링크 생성 및 객체 추가
- ③ 추가한 대상 객체의 정보 입력
- ④ 테두리 상자(bounding box) 안에 객체가 위치하도록 테두리 상자의 크기·위치 조정

4. 경계 객체 탐지를 위한 알고리즘

가. 기본 객체 및 소형 객체를 탐지하기 위한 알고리즘

- 1) 딥러닝 기반의 객체 탐지(Object Detection) 알고리즘
- 객체 단위 감지: 테두리 상자(bounding box)를 기준으로 객체 위치·크기 파악
- 이미지를 격자셀(grid cell)로 분할하여 하나의 셀에서 하나의 객체를 예측하도록 함
- 테두리 상자의 조정과 분류를 동시에 실행하는 통일 신경망 구조로 H/W 리소스 관리에 효과적

Object Detection을 통한 실화상(위)·IR(아래) 객체 탐지(예)

- * 딥러닝 기반 영상 분석의 한계 딥러닝 방식의 검출이 도입되었어도 알고리즘적인 한계를 인식하고 있는 단계 이며 이를 극복하기 위한 기술개발을 시도
- 1) 정지된 물체를 지속적으로 검출하는 문제
 - 현재의 딥러닝 객체 검출 기술은 움직임을 판별하지 않는 단계임.

- 2) 사람과 유사한 물체를 지속적으로 검출하는 문제
 - 학습이 충분하지 않는 경우 발생되며 해당 경우를 학습을 충분히 하여도 개선되지 않는 경우도 많음.
- 3) 학습이 충분하지 않는 경우 포복, 앉은 걸음의 형태를 검출하지 못하는 문제
 - 낮은 성능의 검출기이거나 학습이 불충분한 경우 발생

정지된 치량을 지속적으로 검출하여 말람 받 생 및 불필요한 이벤트 녹화 발생

바퀴를 사람으로 오검출

기어가는 사람을 미검출

2) 소형 객체 탐지 알고리즘

■ 다중 스케일 학습 및 스케일 변환 학습을 통한 대표성 있는 특징 추출·탐지

실화상(왼쪽)·IR(오른쪽) 영상에서의 작은 객체 탐지(예)

나. 움직이는 객체를 탐지하기 위한 알고리즘

1) 광류(Optical Flow) 추정 알고리즘

■ 이동 객체의 탐지·추적 (테두리 상자 처리 및 ID 부여로 특정 객체만 추적)

특징점만 포착하는 방안(왼쪽)과 모든 픽셀을 촘촘히 포착하는 방안(오른쪽)

- 2) 전경 객체 분리 추정 알고리즘
- 과거 축적된 배경 데이터를 통해 전경과 배경을 분리
- 배경에 포함되지 않는 전경 객체의 광류만 추정하여 탐지·추적

전경과 배경의 분리 전(왼쪽)·후(오른쪽)

- 3) 비디오 기반의 객체 탐지(Video Object Detection) 알고리즘
- 관심 프레임 전후의 특징 정보들을 모두 추출하여 종합
- CCTV 회전에 따른 흔들림과 객체의 움직임에 강인한 성능 보장

FGFA를 통한 강인성 확보: 모든 프레임에서 이동 객체를 정확하게 탐지

다. 오탐지 감소 및 신뢰성 증진을 위한 알고리즘

1) 전경 객체 분리 추정과 딥러닝 기반 객체 탐지의 통합분석

■ 전경과 배경을 분리하여 객체만을 광류 추정하는 알고리즘의 분석 결과와 딥러닝을 통해 객체를 탐지하는 알고리즘의 분석 결과를 통합분석하여 최종 결과 도출

원본 동영상

전경 분리 감지

객체 당지

최종 결과

2) 오탐과 유사한 패턴의 객체 탐지 시 알람 대상에서 자동 제외

- 알람 유발 객체의 시각적 특징, 위치 정보 등을 분석하여 알람 간의 유사성 판단
- 알람 후보 객체의 탐지 이력을 분석하여 오탐 판정된 패턴과 유사한 경우 알람 처리에서 제외

5. 경계용 CCTV 운용에 적합한 추가 기능

가. 배경 영역 추출을 통한 철조망 침입 여부 분석

- 1) 적용 알고리즘: 배경 영역 추출 알고리즘(Segmentation)
- 모든 픽셀을 클래스별로 구분하여 픽셀 단위의 정밀한 분리 탐지 가능
- 2) 군 적용방안: 철조망 영역의 자동 탐지 및 침입 여부 분석

객체 탐지 알고리즘과 배경 영역 추출 알고리즘의 차이

나. 객체 속성 인식을 통한 위험 객체 판단 및 객체 행위 인지

- 1) 적용 알고리즘: 객체 속성 인식 알고리즘(Attribute Recognition)
- 딥러닝 알고리즘을 통해 객체의 속성들을 인식하여 탐지 결과에 부여
- 사람 객체 경우: 걷기, 서있음, 쓰러짐, 기어감 등의 행위 인지적 속성 포함
- 2) 적용방안: 군복 착용 여부, 총기 휴대 여부, 위험물질 소지 여부 등의 객체 속성 분

객체 속성 인식 알고리즘(예)

다. 객체의 이동 경로 추적

- 1) 적용 알고리즘: 객체 추적 알고리즘(Object Tracking)
- 화면 전환 시에도 객체에 부여한 고유 ID를 유지하면서 경로를 추적
- 2) 군 적용방안: 경계 객체의 이동 경로 추적

프레임 변화와 무관한 객체별 ID(상자색) 유지·추적(예)

라. 복합 검출기를 이용한 검출 성능 향상 기술

1) 근거리 및 원거리 검출을 위한 DNN 검출기 설계

- 검출 DNN은 처리 속도가 빠르면서도 검출 성능이 뛰어난 YOLOv4 사용
- 서로 다른 scale을 예측하는 3개의 yolo 레이어로부터 근거리/중거리/원거리 객체 검출 모두 대응 가능
- 원거리 객체 특화를 위한 자체 모델 layer 설계 및 수정 기술

YOLOv4 구조

YOLOv4와 다른 DNN 검출기의 성능 비교

IV. 향후 발전과제

□ 감시/감지체계

- 감시 사각지역이 많은 취약지역에 고성능 감시장비 및 감지체계를 구축하여 전방위 경계·감시가 가능하도록 보강이 필요함
- 각종 장비들의 감시거리에 따라 상호 중첩되게 운용, 표적 포착 시 이벤트 및 인공지능에 의한 분석 및 감시시스템 통합 운용
- 사전감지 성능강화
- 드론감시정찰 운영

□ 통합통제체계

- 인공지능을 활용한 지능형 통합통제체계
 - 지능형 영상감시
 - 지능형 영상분석, 인공지능 학습시스템
 - 빅데이터 등의 기술을 융합하여 통제체계에 적용
- 민통선 출입통제시스템 통합운영
 - 약 00여개(00개 사단) 민통선 출입초소를 하나 또는 수개의 시스템으로 통합관리/운영
 - 출입현황 실시간 관리 및 원격 모니터링
 - 즉각적 이슈 대응
- 통합서버실 구축
 - 사단 단위 통합운영 중심의 클라우드 개념의 서버실 구축

□ 유지통합체계

- GOP과학화경계시스템 PBL(Performance Based Logistics) 도입
 - 군직+민간 합동정비체계
 - 안정적 목표시스템 성능유지
 - 주요장비 수명주기별 교체 및 Upgrade로 시스템 성능유지 필수

□ 기반체계

O UPS

- 리튬이온 전지는 납축전지에 비해 수명이 길고 공간을 절약을 할 수있어 지속적인 확대가 예상됨
- 특히 최근 지구 온난화로 인한 기상이변으로 인한 피해가 심각해짐에 따라 탄소 배출량 규제 등 유해물질이 없어 친환경적인 전지임.

○ 통신망

- 기반통신망은 궁극적으로 광랜이 바림직하나 전방지역에 광랜의 설치비용, 기간 및 여건을 고려시 무선인터넷을 적용하며 기술발전 트랜드를 고려한 진화적인 발전방안 추구

□ 백도어 문제

- 통신장비, CCTV, IP카메라 및 IP 보드 등 백도어 증가
- 감시체계(카메라) 및 네트워크 장비에 대한 HW, SW, 제조 및 인증분야에 걸 쳐 대응 필요

□ 인공지능기반 영상분석

- AI, AR(증강현실) 및 AVM(Around View Monitoring) 기반의 지능형 상황인 식 플랫폼 확대
 - GOP과학화경계시스템 영상감시장비에서 수집된 영상과 AVM기술, GPS에 증강현실(AR)을 적용하여 GOP책임 주변상황을 종합적으로 전시
 - EO/IR 및 고정형카메라, 감지체계을 적용하여 원거리 표적 식별
 - 영상스티칭, AVM카메라 영상/조정, 멀티밴드 브랜드 적용, 파노라마 영상 기반 학습데이터 수집 및 AI 학습결과 영상 내 식별 및 정보생성, AR 기반 의 지능형 상황인식 플랫폼 적용