TD7: Diode: la jonction PN

Voici la représentation d'une jonction en court-circuit :

1. Jonction PN : calcul du potentiel de diffusion V_{Φ}

1.1 Conduction

On sait que la vitesse des porteurs de charge est $\vec{v}_n = -\mu_n \vec{E}$ et $\vec{v}_p = +\mu_p \vec{E}$

- 1.1.1 Retrouver l'expression de la densité de courant de conduction j_n en fonction de e, μ_n , du champ E et de la concentration en électrons n.
- 1.1.2 Idem pour jp

1.2 Diffusion

- 1.2.1 Écrire l'expression de j_{p_diff} , la densité de courant de diffusion des trous, en fonction de e, p et D_p
- 1.2.2 Déduire de 1.2.1 et de 1.1.2 l'expression de la densité totale de courant de trous J_p
- 1.2.3 Quelle relation lie le champ électrique et le potentiel ? En déduire l'expression de $V\phi$ en fonction de E(x)
- 1.2.4 A partir de l'expression du 1.2.2 établir la relation entre E(x) et k, T, e et p(x) à l'équilibre (courant nul)
- 1.2.5 A partir de 1.2.3 et 1.2.4 déduire l'expression de $V\phi$ en fonction de k, T, e, N_a , N_d et n_i
- 1.2.6 Application numérique : calculer $V\phi$. On prend $N_a = 10^{18} \text{ cm}^{-3}$, $N_d = 10^{15} \text{ cm}^{-3}$ et $n_i = 1,45.10^{10} \text{ cm}^{-3}$.

1.3 Calcul simplifié du champ électrique interne de la jonction

1.3.1 Calculer le champ électrique "moyen" dans la jonction, à partir de la valeur de $V\phi$ trouvée en 2.f., et de la largeur de la ZCE W_0 = 0,96 μ m.

2. Caractéristique courant tension I = f(V) d'une diode

- 2.1.1 Rappeler l'expression du courant
- 1. De génération thermique (courant de saturation)
- 2. Dû aux porteurs minoritaires
- 3. Direct
- 2.1.2 Représenter la caractéristique de la diode, en sachant qu' à 25 ℃, kT = 25 meV, et que I _{Set} = 10⁻¹² A
- 1. En échelle classique
- 2. En échelle logarithmique
- 2.1.3 Calculer V (tension directe) pour I=10 mA, avec $k=1,38.10^{23}$ J.K¹ et e=0,16 a C, sachant que le coefficient d'émission est égal à 1, pour 3 températures : 0 °C, 25 °C et 50 °C