Contents

P	rei	fa	ce	 v
Г		a	LE	 v

Pretace	v
	E. Gasda, Elsa du Plessis, and Helge K. Dahle $oxed{ed}$ models for CO $_2$ injection and migration in geological systems —— 1
1	Introduction — 1
2	Background — 3
3	Model description — 8
3.1	Key assumptions and dimensionless groupings — 9
3.2	Vertical fluid and pressure distribution — 12
3.3	Model derivation —— 14
3.4	Upscaling and subscale processes — 17
4	Model application — 24
5	Summary — 32
Multipo	Wolff, Yufei Cao, Bernd Flemisch, Rainer Helmig, and Barbara Wohlmutloint flux approximation L-method in 3D: numerical convergence and
applica	tion to two-phase flow through porous media —— 39
1	Introduction —— 40
2	The MPFA L-method in 3D —— 41
2.1	Details of the scheme —— 42
2.2	Criterion for choosing the proper L-stencil —— 46
2.3	Boundary handling — 47
3	Numerical convergence — 48
3.1	Benchmark test 1 — 50
3.2	Benchmark test 3 — 56
4	Grid adaptivity — 60
4.1	Boundary handling — 62
5	Two-phase flow applications — 63
5.1	Two-phase model description — 64
5.2	Buckley-Leverett-type problem — 66
5.3	McWhorter-type problem — 67
5.4	DNAPL infiltration problem — 68
5.5	Refinement and coarsening indicator — 73
6	Summary and conclusions — 74
Alain P.	Bourgeat, Sylvie Granet, and Farid Smaï
Compos	sitional two-phase flow in saturated—unsaturated porous media:
benchn	narks for phase appearance/disappearance — 81
1	Introduction — 82
2	Definition and basic assumptions — 83

3	Equations — 84
3.1	Mass conservation of each component — 84
4	Choice of the primary variables — 85
5	Presentation of the two test cases — 88
5.1	First test case: gas phase appearing/disappearing by gas injection in
	a water-saturated rock core sample — 88
5.2	Second test case: evolution from an initial out of equilibrium state to
	a stabilized stationary one, in a sealed porous core sample — 93
6	Conclusions and perspectives — 104
Marco Disca	acciati
	ee and porous-media flows: models and numerical
	ion — 107
1	Introduction — 107
2	Setting of the problem — 108
2.1	The surface-groundwater flow problem — 109
2.2	Interface conditions to couple surface and groundwater flows —— 111
3	Weak formulation and analysis — 113
3.1	Mixed formulation of Darcy's equation —— 116
3.2	Time-dependent Stokes/Darcy model — 117
4	Multidomain formulation of the coupled problem — 118
4.1	The Stokes/Darcy problem —— 119
4.2	The Navier-Stokes/Darcy problem — 122
4.3	Well-posedness of the interface problems — 123
5	Finite element approximation of free and porous-media flows — 124
5.1	Galerkin finite-element approximation of the Stokes/Darcy
	problem — 126
6	Algebraic formulation of the linear interface problem and solution
	techniques — 127
6.1	Numerical results — 129
6.2	Other preconditioning methods — 130
7	Iterative methods for the Navier-Stokes/Darcy problem —— 131
8	Subdomain iterative methods for the time-dependent
	(Navier–)Stokes/Darcy problem —— 134
Jürgen Fuhr	mann
Mathematic	cal and numerical modeling of flow, transport, and reactions in porous
	of electrochemical devices — 139
1	Introduction — 139
1.1	Model scales — 140
1.2	The direct methanol fuel cell – an example of an electrochemical device
	with a porous electrode — 140

2	Electrolytes and interfaces — 141			
2.1	Dilute electrolytes — 141			
2.2	Bulk electroneutrality — 143			
2.3	Double layer — 146			
2.4	Interface between electrode and electrolyte — 148			
2.5	Faradaic reactions — 148			
3	Porous electrodes — 149			
3.1	Ideally polarizable porous matrix —— 149			
3.2	Species transport — 150			
3.3	Darcy flow — 151			
3.4	Further effects — 151			
3.5	Coupling between porous electrodes and free flow — 152			
4	Numerical approximation by Voronoi finite volumes — 153			
4.1	Description of the method — 154			
4.2	Flux expressions for scalar convection diffusion — 156			
4.3	Coupling to flow problems — 157			
4.4	Software — 158			
5	Conclusions — 159			
Benjamin G	anis, Ruijie Liu, Bin Wang, Mary F. Wheeler, and Ivan Yotov			
Multiscale	modeling of flow and geomechanics — 165			
1	Introduction — 165			
2	Background — 167			
2.1	Multidomain methodology — 167			
2.2	Discretization methods — 169			
2.3	Coupled flow and geomechanics — 172			
3	Multiscale multiphysics discretizations for flow and			
	geomechanics — 175			
4	Multiscale domain decomposition solvers and preconditioners — 177			
5	A posteriori error estimation and time-stepping — 181			
6	Uncertainty quantification, verification, and validation — 183			
7	Applications — 186			
7.1	Compositional modeling of multiphase flow — 186			
7.2	Fixed stress iterative coupling scheme — 188			
7.3	Plasticity modeling — 191			
8	Summary and conclusions — 195			
liet of same	ibutore 207			
List of contributors —— 207 Index —— 209				
IIIUEA -	_U 7			