0.1 过渡矩阵的求法

0.1.1 方法 1: 计算特征矩阵之间的相抵变换

推论 0.1

设 A 是 n 阶数字矩阵, $P(\lambda)$ 及 $Q(\lambda)$ 是同阶可逆 λ -矩阵, 且

$$Q(\lambda)(\lambda I_n - A)P(\lambda) = \lambda I_n - J,$$

其中 J 是 A 的 Jordan 标准型. 又由引理??可知, 存在 λ 矩阵 $T(\lambda)$ 和数字矩阵 P, 使得

$$P(\lambda) = T(\lambda)(\lambda I_n - J) + P$$
,

其中 P 是数字矩阵, 求证: $P^{-1}AP = J$.

注 这个结论就是定理**??**的推论. 因此我们可以先计算出特征矩阵之间的相抵变换的过渡矩阵, 再由引理**??**算出我们需要的数字矩阵的相似变换的过渡矩阵.

证明 由已知可得 $(\lambda I_n - A)P(\lambda) = Q(\lambda)^{-1}(\lambda I_n - J)$. 代入 $P(\lambda)$, 可得

$$(\lambda I_n - A)(T(\lambda)(\lambda I_n - J) + P) = Q(\lambda)^{-1}(\lambda I_n - J).$$

整理可得

$$(\lambda I_n - A)P = (Q(\lambda)^{-1} - (\lambda I_n - A)T(\lambda))(\lambda I_n - J).$$

比较 λ 的次数可知, $Q(\lambda)^{-1} - (\lambda I_n - A)T(\lambda)$ 必须是数字矩阵, 记之为 R, 于是

$$(\lambda I_n - A)P = R(\lambda I_n - J).$$

去括号再次比较次数可得 P=R, AP=RJ. 若可证明 P 是可逆矩阵, 即有 $P^{-1}AP=J$. 由 $Q(\lambda)^{-1}-(\lambda I_n-A)T(\lambda)=R$ 可得

$$I_n = Q(\lambda)(\lambda I_n - A)T(\lambda) + Q(\lambda)R.$$

注意到 $Q(\lambda)(\lambda I_n - A) = (\lambda I_n - J)P(\lambda)^{-1}$, 故

$$I_n = (\lambda I_n - J)P(\lambda)^{-1}T(\lambda) + Q(\lambda)R.$$

由引理??可知, 存在 λ 矩阵 $M(\lambda)$ 和数字矩阵 N, 使得

$$Q(\lambda) = (\lambda I_n - J)M(\lambda) + N,$$

于是

$$I_n = (\lambda I_n - J) \left(P(\lambda)^{-1} T(\lambda) + M(\lambda) R \right) + NR.$$

比较次数可得 $NR = I_n$, 即 R 可逆, 也即 P 可逆.

0.1.2 方法 2: 计算特征向量和广义特征向量

在例题 0.1中,任取 (A-I)x=0 的两个线性无关的解作为特征向量 α_1,α_3 ,都可以解出对应的广义特征向量 α_2,α_4 ,即线性方程组 $(A-I)x=\alpha_1$ 和 $(A-I)x=\alpha_3$ 的可解性不依赖于 α_1,α_3 的选取(请读者自行思考其中的原因),但这并非是普遍的情形.一般来说,我们总可以取到 $(A-\lambda_0I)x=0$ 的一个非零解 α_1 (即特征值 λ_0 的特征向量),但若 α_1 选取不当,线性方程组 $(A-\lambda_0I)x=\alpha_1$ 有可能是无解的(即求不出对应的广义特征向量).因此在 选取特征向量时,需要我们仔细观察或设立参数,这样才能保证最终得到正确的结果.让我们来看下面两个例题中的具体分析.

例题 0.1 设复四维空间上的线性变换 φ 在基 $\{e_1, e_2, e_3, e_4\}$ 下的表示矩阵为

$$A = \begin{pmatrix} 4 & -1 & 1 & -7 \\ 9 & -2 & -7 & -1 \\ 0 & 0 & 5 & -8 \\ 0 & 0 & 2 & -3 \end{pmatrix}$$

求一组新基, 使 φ 在这组新基下的表示矩阵是 A 的 Jordan 标准型, 并求过渡矩阵.

解 解法一: 通过计算可知 $\lambda I_4 - A$ 的法式为 diag $\{1, 1, (\lambda - 1)^2, (\lambda - 1)^2\}$, 故 A 的初等因子组为 $(\lambda - 1)^2, (\lambda - 1)^2$, 从 而 A 的 Jordan 标准型为

$$J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

设过渡矩阵为 $P = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, 则 $P^{-1}AP = J$, 即

$$AP = (A\alpha_1, A\alpha_2, A\alpha_3, A\alpha_4) = PJ = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)J$$

从而得到线性方程组:

$$(A - I)\alpha_1 = 0$$
, $(A - I)\alpha_2 = \alpha_1$, $(A - I)\alpha_3 = 0$, $(A - I)\alpha_4 = \alpha_3$

求解 (A-I)x=0 得到两个线性无关的解, 将它们分别作为 α_1 和 α_3 :

$$\alpha_1 = (1, 3, 0, 0)', \ \alpha_3 = (5, 0, 6, 3)'$$

再求解方程组 $(A-I)x = \alpha_1, (A-I)x = \alpha_3$, 得到

$$\alpha_2=(\frac{1}{3},0,0,0)',\ \alpha_4=(\frac{7}{6},0,\frac{3}{2},0)'$$

因此过渡矩阵

$$P = \begin{pmatrix} 1 & \frac{1}{3} & 5 & \frac{7}{6} \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 6 & \frac{3}{2} \\ 0 & 0 & 3 & 0 \end{pmatrix}$$

新基为 $(f_1, f_2, f_3, f_4) = (e_1, e_2, e_3, e_4)P$, 即

$$f_1 = e_1 + 3e_2$$
, $f_2 = \frac{1}{3}e_1$, $f_3 = 5e_1 + 6e_3 + 3e_4$, $f_4 = \frac{7}{6}e_1 + \frac{3}{2}e_3$

解法二: A 的初等因子组的计算同解法一,可得 A 的 Jordan 标准型 J = diag $\{J_2(1),J_2(1)\}$. 注意到 $(A-I_4)^2=O$ 且 $\mathbf{r}(A-I_4)=2$,故可取 $A-I_4$ 的第 1 列和第 3 列作为其列向量的极大无关组. 因此 $e_1=(1,0,0,0)',e_3=(0,0,1,0)'$ 为广义特征向量,使得 $(A-I_4)e_1=(3,9,0,0)',(A-I_4)e_3=(1,-7,4,2)'$ 为线性无关的特征向量,则过渡矩阵 $P=((A-I_4)e_1,e_1,(A-I_4)e_3,e_3)$ 满足 $P^{-1}AP=J$.

例题 0.2 设

$$A = \begin{pmatrix} 2 & 6 & -15 \\ 1 & 1 & -5 \\ 1 & 2 & -6 \end{pmatrix}$$

求非异阵 P, 使 $P^{-1}AP$ 为 Jordan 标准型.

解 解法一: 通过计算可知 $\lambda I_3 - A$ 的法式为 diag $\{1, \lambda + 1, (\lambda + 1)^2\}$, 故 A 的初等因子组为 $\lambda + 1, (\lambda + 1)^2$, 从而 A 的

Jordan 标准型为

$$J = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

设非异阵 $P=(\alpha_1,\alpha_2,\alpha_3)$, 使 $P^{-1}AP=J$, 则 $AP=(A\alpha_1,A\alpha_2,A\alpha_3)=PJ=(\alpha_1,\alpha_2,\alpha_3)J$, 从而得到线性方程组:

$$(A + I_3)\alpha_1 = 0$$
, $(A + I_3)\alpha_2 = 0$, $(A + I_3)\alpha_3 = \alpha_2$

求解 $(A+I_3)x=0$ 得到两个线性无关的解 $\beta_1=(-2,1,0)'$ 和 $\beta_2=(5,0,1)'$. 注意到 $(A+I_3)x=\beta_i$ (i=1,2) 都是无解的,故不能将 β_1 或 β_2 直接作为 α_2 来求广义特征向量 α_3 . 一般地,可设 $\alpha_2=k_1\beta_1+k_2\beta_2=(-2k_1+5k_2,k_1,k_2)'$,代入 $(A+I_3)x=\alpha_2$ 中,利用 $\mathbf{r}(A+I_3,\alpha_2)=\mathbf{r}(A+I_3)$ 可得 $k_1=k_2$. 因此,可取 $\alpha_1=\beta_1=(-2,1,0)',\alpha_2=\beta_1+\beta_2=(3,1,1)'$,此时可解出 $\alpha_3=(1,0,0)'$,于是

$$P = \begin{pmatrix} -2 & 3 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

解法二:A 的初等因子组的计算同解法一, 可得 A 的 Jordan 标准型 $J=\mathrm{diag}\{-1,J_2(-1)\}$. 注意到 $(A+I_3)^2=O$ 且 $\mathbf{r}(A+I_3)=1$,故可取 $A+I_3$ 的第 1 列作为其列向量的极大无关组. 因此 $e_1=(1,0,0)'$ 为循环向量(即广义特征向量),使得 $e_1,(A+I_3)e_1=(3,1,1)'$ 构成了 $J_2(-1)$ 的循环轨道. 再取线性无关的特征向量 $\xi_1=(-2,1,0)'$,则过渡矩阵 $P=(\xi_1,(A+I_3)e_1,e_1)$ 满足 $P^{-1}AP=J$.

例题 0.3 设

$$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

求非异阵 P, 使 $P^{-1}AP$ 为 Jordan 标准型.

解 解法一: 通过计算可知 $\lambda I_4 - A$ 的法式为 diag $\{1, 1, \lambda - 1, (\lambda - 1)^3\}$, 故 A 的初等因子组为 $\lambda - 1, (\lambda - 1)^3$, 从而 A 的 Jordan 标准型为 $J = \text{diag}\{1, J_3(1)\}$. 设非异阵 $P = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, 使 $P^{-1}AP = J$, 则 $AP = (A\alpha_1, A\alpha_2, A\alpha_3, A\alpha_4) = PJ = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)J$, 从而得到线性方程组:

$$(A - I_4)\alpha_1 = 0$$
, $(A - I_4)\alpha_2 = 0$, $(A - I_4)\alpha_3 = \alpha_2$, $(A - I_4)\alpha_4 = \alpha_3$.

求解 $(A-I_4)x=0$ 得到两个线性无关的解 $\beta_1=(-1,0,1,0)'$ 和 $\beta_2=(0,1,0,1)'$. 设 $\alpha_2=k_1\beta_1+k_2\beta_2$,代入 $(A-I_4)x=\alpha_2$ 中,利用 $\mathbf{r}(A-I_4,\alpha_2)=\mathbf{r}(A-I_4)$ 可得 $k_1=0$. 于是可取 $\alpha_2=k_2\beta_2$,解出 $\alpha_3=k_2e_1+k_3\beta_1+k_4\beta_2$,其中 $e_1=(1,0,0,0)'$. 再代入 $(A-I_4)x=\alpha_3$ 中,利用 $\mathbf{r}(A-I_4,\alpha_3)=\mathbf{r}(A-I_4)$ 可得 $k_2=2k_3$. 于是可取 $k_2=2,k_3=1,k_4=0$,最终得到特征向量 $\alpha_1=\beta_1=(-1,0,1,0)',\alpha_2=2\beta_2=(0,2,0,2)',1$ 级广义特征向量 $\alpha_3=2e_1+\beta_1=(1,0,1,0)',2$ 级广义特征向量 $\alpha_4=(0,0,0,1)'$,从而

$$P = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$

解法二:A 的初等因子组的计算同解法一, 可得 A 的 Jordan 标准型 $J = \text{diag}\{1, J_3(1)\}$. 注意到 $(A - I_4)^3 = O$ 且 $\mathbf{r}((A - I_4)^2) = 1$,故可取 $(A - I_4)^2$ 的第 4 列作为其列向量的极大无关组. 因此 $e_4 = (0, 0, 0, 1)'$ 为循环向量(即 2 级广义特征向量),使得 e_4 , $(A - I_4)e_4 = (1, 0, 1, 0)'$, $(A - I_4)^2e_4 = (0, 2, 0, 2)'$ 构成了 $J_3(1)$ 的循环轨道. 再取线性无关的特征向量 $\mathcal{E}_1 = (-1, 0, 1, 0)'$,则过渡矩阵 $P = (\mathcal{E}_1, (A - I_4)^2e_4, (A - I_4)e_4, e_4)$ 满足 $P^{-1}AP = J$.

0.1.3 计算循环子空间的循环向量

根据 Jordan 标准型的几何意义, 全空间可分解为不同特征值的根子空间的直和, 每个根子空间可分解为若干个循环子空间的直和, 每个循环子空间对应于一条循环轨道, 这条轨道由循环向量(即最高级的广义特征向量)生成. 下面以幂零根子空间为例, 说明如何确定所有的循环向量, 从而确定所有的基向量(等价于求过渡矩阵 P).

例题 0.4 设 9 阶幂零矩阵 A 的 Jordan 标准型 $J = \text{diag}\{0, J_2(0), J_3(0), J_3(0)\}$, 求非异阵 P, 使 $P^{-1}AP = J$.

 \mathbf{i} 这个例题采用的方法可以推广到一般的情形, 其原理是: 设 n 阶幂零矩阵 A 的极小多项式为 λ^k , 则依次选取第 i 级广义特征向量 ξ_i ($i = k - 1, \dots, 0$), 使得所有的 $A^i \xi_i$ ($i = k - 1, \dots, 0$) 在 Ker A 中线性无关即可.

解 由已知条件 $A^3 = O$, $\mathbf{r}(A^2) = 2$ 且 $\mathbf{r}(A) = 5$, 可设 $A^2x = 0$ 的基础解系为 $\{\eta_i, 1 \le i \le 7\}$. 由于 A^2 的列秩为 2, 故不妨设 A^2 的第 1 列和第 2 列是 A^2 列向量的极大无关组,即 A^2e_1, A^2e_2 线性无关,其中 e_1, e_2 是 9 维标准单位列向量的前两个. 考虑限制映射 $A|_{\mathrm{Ker}A^2}$: $\mathrm{Ker}A^2 \to \mathrm{Ker}A$, 容易验证 $\mathrm{Ker}(A|_{\mathrm{Ker}A^2}) = \mathrm{Ker}A$, $\mathrm{Im}(A|_{\mathrm{Ker}A^2}) = \mathrm{Ker}A \cap \mathrm{Im}A$. 由 dim $\mathrm{Ker}A^2 = 7$, dim $\mathrm{Ker}A = 4$ 及线性映射的维数公式可知 dim($\mathrm{Ker}A \cap \mathrm{Im}A$) = 3, 且 $\mathrm{Ker}A \cap \mathrm{Im}A = L(A\eta_i, 1 \le i \le 7)$. 注意到 A^2e_1, A^2e_2 是 $\mathrm{Ker}A \cap \mathrm{Im}A$ 中两个线性无关的向量,故可从其生成元中取出一个向量,不妨设为 $A\eta_1$,使得 $A^2e_1, A^2e_2, A\eta_1$ 线性无关.再次注意到 dim $\mathrm{Ker}A = 4$,且 $A^2e_1, A^2e_2, A\eta_1$ 是 $\mathrm{Ker}A$ 中 3 个线性无关的向量,故可从 其一组基(即 Ax = 0 的基础解系)中取出一个向量 \mathcal{E}_1 ,使得 $A^2e_1, A^2e_2, A\eta_1, \mathcal{E}_1$ 线性无关.

下面证明: $\{e_1, Ae_1, A^2e_1, e_2, Ae_2, A^2e_2, \eta_1, A\eta_1, \xi_1\}$ 构成 \mathbb{C}^9 的一组基. 只要证明它们线性无关即可. 设 c_1, \dots, c_9 $\in \mathbb{C}$. 使得

$$c_1 e_1 + c_2 A e_1 + c_3 A^2 e_1 + c_4 e_2 + c_5 A e_2 + c_6 A^2 e_2 + c_7 \eta_1 + c_8 A \eta_1 + c_9 \xi_1 = 0$$
 (1)

将(1)式作用 A^2 可得

$$c_1 A^2 e_1 + c_4 A^2 e_2 = 0$$

由 A^2e_1 , A^2e_2 线性无关可知 $c_1 = c_4 = 0$. 将(1)式作用 A 可得

$$c_2A^2e_1 + c_5A^2e_2 + c_7A\eta_1 = 0$$

由 A^2e_1 , A^2e_2 , $A\eta_1$ 线性无关可知 $c_2 = c_5 = c_7 = 0.(1)$ 式最后变成

$$c_3A^2e_1 + c_6A^2e_2 + c_8A\eta_1 + c_9\xi_1 = 0$$

由 A^2e_1 , A^2e_2 , $A\eta_1$, ξ_1 线性无关可知 $c_3=c_6=c_8=c_9=0$. 有了上面这组基, 我们可以把 4 个循环子空间的循环轨道全部确定如下:

最后, 令 $P = (\xi_1, A\eta_1, \eta_1, A^2e_1, Ae_1, e_1, A^2e_2, Ae_2, e_2)$ 即为所求.

例题 0.5 设

$$A = \begin{pmatrix} 3 & -4 & 0 & 2 \\ 4 & -5 & -2 & 4 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 2 & -1 \end{pmatrix}$$

求非异阵 P, 使 $P^{-1}AP$ 为 Jordan 标准型.

注 下面的例题也与过渡矩阵有关, 它告诉我们: 满足基础矩阵乘法性质的矩阵类与基础矩阵类之间存在着一个相

似变换. 利用这一结论可以证明:n 阶矩阵环 $M_n(\mathbb{K})$ 的任一自同构都是内自同构.

解 经计算可知 A 的初等因子组为 $(\lambda+1)^2,(\lambda-1)^2,$ 于是 A 的 Jordan 标准型为 $J=\mathrm{diag}\{J_2(-1),J_2(1)\}$. 由命题??可知, $\mathbb{C}^4=\mathrm{Ker}(A+I_4)^2\oplus\mathrm{Ker}(A-I_4)^2$, 且 $\mathrm{Ker}(A+I_4)^2=\mathrm{Im}(A-I_4)^2,$ Ker $(A-I_4)^2=\mathrm{Im}(A+I_4)^2=\mathrm{Im}(A+I_4)^2$ 的第二列 $\alpha=(A-I_4)^2e_2=(16,20,0,0)'$ 作为根子空间 $\mathrm{Ker}(A+I_4)^2$ 中的循环向量(即广义特征向量),于是 $\alpha,(A+I_4)\alpha=(-16,-16,0,0)'$ 构成根子空间 $\mathrm{Ker}(A+I_4)^2$ 中的循环轨道. 经计算可取 $(A+I_4)^2$ 的第三列 $\beta=(A+I_4)^2e_3=(12,8,12,8)'$ 作为根子空间 $\mathrm{Ker}(A-I_4)^2$ 中的循环向量(即广义特征向量),于是 $\beta,(A-I_4)\beta=(8,8,8,8)'$ 构成根子空间 $\mathrm{Ker}(A-I_4)^2$ 中的循环轨道. 因此,过渡矩阵 $P=((A+I_4)\alpha,\alpha,(A-I_4)\beta,\beta)$ 满足 $P^{-1}AP=J$.

定理 0.1

设有 $n^2 \wedge n$ 阶非零矩阵 A_{ij} ($1 \leq i, j \leq n$), 适合

$$A_{ij}A_{jk} = A_{ik}, \ A_{ij}A_{lk} = O \ (j \neq l).$$

求证: 存在可逆矩阵 P, 使得对任意的 i, j, $P^{-1}A_{ij}P = E_{ij}$, 其中 E_{ij} 是基础矩阵.

证明 因为 $A_{11} \neq O$, 故存在 α , 使得 $A_{11}\alpha \neq 0$. 令 $\alpha_1 = A_{11}\alpha$, 由 $A_{11}A_{11} = A_{11}$ 可得 $A_{11}\alpha_1 = \alpha_1$. 再令 $\alpha_i = A_{i1}\alpha_1$, 由 $A_{i1}A_{i1} = A_{11}$ 可知 $\alpha_i \neq 0$. 我们得到了 n 个非零向量 $\alpha_1, \alpha_2, \dots, \alpha_n$, 由已知条件容易验证这 n 个向量适合下列性质:

$$A_{ij}\alpha_j = \alpha_i, \ A_{ij}\alpha_k = 0 \ (j \neq k)$$

由此不难证明这n个向量线性无关.令 $P = (\alpha_1, \alpha_2, \cdots, \alpha_n)$,则P是可逆矩阵,且

$$A_{ij}P = (A_{ij}\alpha_1, A_{ij}\alpha_2, \cdots, A_{ij}\alpha_n) = (0, \cdots, 0, \alpha_i, 0, \cdots, 0).$$

其中上式中的 α_i 在第 i 列. 另一方面, 有

$$PE_{ij} = (\alpha_1, \alpha_2, \cdots, \alpha_n)E_{ij} = (0, \cdots, 0, \alpha_i, 0, \cdots, 0).$$

因此, 对任意的 $i, j, A_{ii}P = PE_{ii}$, 即 $P^{-1}A_{ii}P = E_{ii}$.