Homework 2 - Logic (Spring 2021)

Ryan, Soeyadi

rs4163

January 31, 2021

Question 1

 $\neg p \lor (q \land (r \lor p))$

p	q	r	$r \lor p$	$q \wedge (r \vee p)$	$\neg p$	$\neg p \lor (q \land (r \lor p))$
T	T	T	T	T	F	T
T	T	F	T	T	F	T
T	F	T	T	F	F	F
T	F	F	T	F	F	F
F	T	T	T	T	T	T
F	T	F	F	F	T	T
F	F	T	T	F	T	T
F	F	F	F	F	T	T

This proposition is True since the antecedent is False; there are no two integers that fit the criteria to make it True. Therefore, it does not matter if the right side, the consequence, is True or not.

- $1. \ E \implies Q$
- $2. \ E \vee B$
- 3. $\neg Q$
- $4. \ \neg (E \lor Q)$
- 5. $E \wedge \neg B$
- $6. \ \neg B \implies E$
- 7. $Q \implies \neg B$

- $\begin{aligned} 1. & E &\Longrightarrow Q \equiv \neg E \vee Q \\ \neg E \vee Q \\ \neg (\neg E \vee Q) \\ E \wedge \neg Q \end{aligned}$
- $2. \ E \vee B \\ \neg (E \vee B) \\ \neg E \wedge \neg B$
- $\begin{array}{ccc} 3. & \neg Q \\ & \neg (\neg Q) \\ & Q \end{array}$
- 4. $\neg (E \lor Q) \equiv \neg E \land \neg Q$ $\neg (\neg E \land \neg Q)$ $E \lor Q$
- 5. $E \land \neg B$ $\neg (E \land \neg B)$ $\neg E \lor B$
- 6. $\neg B \Longrightarrow E \equiv \neg(\neg B) \lor E$ $B \lor E$ $\neg(B \lor E)$ $\neg B \land \neg E$
- 7. $Q \Longrightarrow \neg B \equiv \neg Q \lor \neg B$ $\neg (\neg Q \lor \neg B)$ $Q \land B$

```
\begin{array}{l} \neg p \wedge (p \vee q) \implies q \\ \neg p \wedge (p \vee q) \implies q \equiv \neg (\neg p \wedge (p \vee q)) \vee q \\ \neg p \wedge (p \vee q) \implies q \equiv p \vee \neg (p \vee q) \vee q \\ \neg p \wedge (p \vee q) \implies q \equiv p \vee (\neg p \wedge \neg q) \vee q \\ \neg p \wedge (p \vee q) \implies q \equiv (p \vee \neg p) \wedge (p \vee \neg q) \vee q \\ \neg p \wedge (p \vee q) \implies q \equiv True \wedge (p \vee \neg q) \vee q \\ \neg p \wedge (p \vee q) \implies q \equiv True \wedge q \vee (p \vee \neg q) \\ \neg p \wedge (p \vee q) \implies q \equiv True \wedge (q \vee p) \vee (q \vee \neg q) \\ \neg p \wedge (p \vee q) \implies q \equiv True \wedge (q \vee p) \vee True \\ \neg p \wedge (p \vee q) \implies q \equiv True \wedge True \\ \neg p \wedge (p \vee q) \implies q \equiv True \\ Therefore, \neg p \wedge (p \vee q) \implies q \text{ is a Tautology} \end{array}
```

```
\begin{array}{l} \textbf{if not} \; ((a < b) \; \textbf{or} \; \text{even(a)}) \; \textbf{or} \; (\textbf{not}(a < b) \; \textbf{and} \; \text{even(a)}) \\ c = a - b \\ \textbf{else:} \\ c = b - a \\ \\ \text{Let} \; p = (a < b) \\ \text{Let} \; q = \text{even(a)} \\ \\ \neg (p \lor q) \lor (\neg p \land q) \\ (\neg p \land \neg q) \lor (\neg p \land q) \\ \neg p \land (\neg q \lor q) \\ \neg p \land True \\ \neg p \\ \end{array}
```