Data and Computer Communications

Tenth Edition by William Stallings

CHAPTER 8

Multiplexing

"It was impossible to get a conversation going, everybody was talking too much."

- Yogi Berra

Figure 8.1 Multiplexing

(a) Frequency division multiplexing

(b) Time division multiplexing

Figure 8.2 FDM and TDM

(a) Transmitter

(b) Spectrum of composite baseband modulating signal

Figure 8.3 FDM System

(b) Spectrum of voice signal modulated on 64 kHz frequency

(c) Spectrum of composite signal using subcarriers at 64 kHz, 68 kHz, and 72 kHz

Figure 8.4 FDM of Three Voiceband Signals

Analog Carrier Systems

- Long-distance links use an FDM hierarchy
- AT&T (USA) and ITU-T (International) variants

Group

- 12 voice channels (4kHz each) = 48kHz
- Range 60kHz to 108kHz

Supergroup

- FDM of 5 group signals supports 60 channels
- Carriers between
 420kHz and 612 kHz

Mastergroup

FDM of 10
 supergroups supports
 600 channels

Original signal can be modulated many times

Table 8.1 North American and International FDM Carrier Standards

Number of Voice Channels	Bandwidth	Spectrum	AT&T	ITU-T
12	48 kHz	60–108 kHz	Group	Group
60	240 kHz	312–552 kHz	Supergroup	Supergroup
300	1.232 MHz	812–2044 kHz		Mastergroup
600	2.52 MHz	564–3084 kHz	Mastergroup	
900	3.872 MHz	8.516–12.388 MHz		Supermaster group
N 600			Mastergroup multiplex	
3,600	16.984 MHz	0.564–17.548 MHz	Jumbogroup	
10,800	57.442 MHz	3.124–60.566 MHz	Jumbogroup multiplex	

Wavelength Division Multiplexing (WDM)

Multiple beams of light at different frequencies

Carried over optical fiber links

- Commercial systems with 160 channels of 10 Gbps
- Lab demo of 256 channels 39.8 Gbps

Architecture similar to other FDM systems

- Multiplexer consolidates laser sources (1550nm) for transmission over single fiber
- Optical amplifiers amplify all wavelengths
- Demultiplexer separates channels at destination

Dense Wavelength Division Multiplexing (DWDM)

Use of more channels more closely spaced

Figure 8.5 Wavelength Division Multiplexing

Table 8.2 ITU WDM Channel Spacing (G.692)

Frequency (THz)	Wavelength in Vacuum (nm)	50 GHz	100 GHz	200 GHz
196.10	1528.77	X	Х	Х
196.05	1529.16	X		
196.00	1529.55	X	Х	
195.95	1529.94	X		
195.90	1530.33	X	Х	Х
195.85	1530.72	X		
195.80	1531,12	X	Х	
195.75	1531.51	X		
195.70	1531.90	X	Х	Х
195.65	1532.29	X		
195.60	1532.68	X	Х	
192.10	1560.61	Х	Х	Х

Figure 8.6 Synchronous TDM System

TDM Link Control

- No headers and trailers
- Data link control protocols not needed
- Flow control
 - Data rate of multiplexed line is fixed
 - If one channel receiver can not receive data, the others must carry on
 - Corresponding source must be quenched
 - Leaving empty slots
- Error control
 - Errors detected and handled on individual channel

(b) Input data streams

 $\cdots \ f_2 \ F_1 \ d_2 \ f_1 \ d_2 \ d_1 \ d_2 \ d_1 \ C_2 \ d_1 \ A_2 \ C_1 \ F_2 \ A_1 \ f_2 \ F_1 \ f_2 \ f_1 \ d_2 \ f_1 \ d_2 \ d_1 \ d_2 \ d_1 \ d_2 \ d_1 \ C_2 \ C_1 \ A_2 \ A_1 \ F_2 \ F_1$

(c) Multiplexed data stream

Legend: F = flag field d = one octet of data field

A = address field f = one octet of FCS field

C = control field

Figure 8.7 Use of Data Link Control on TDM Channels

Framing

- No flag or SYNC characters bracketing TDM frames
- Must still
 provide
 synchronizing
 mechanism
 between
 source and
 destination
 clocks

Pulse Stuffing is a common solution

Have outgoing data rate (excluding framing bits) higher than sum of incoming rates

Stuff extra dummy bits or pulses into each incoming signal until it matches local clock Stuffed pulses inserted at fixed locations in frame and removed at demultiplexer

- Problem of synchronizing various data sources
- Variation among clocks could cause loss of synchronization
- ➤ Issue of data rates from different sources not related by a simple rational number

Figure 8.8 TDM of Analog and Digital Sources

Table 8.3

North American and International TDM Carrier Standards

North American			International (ITU-T)		
Designation	Number of Voice Channels	Data Rate (Mbps)	Level	Number of Voice Channels	Data Rate (M bps)
DS-1	24	1.544	1	30	2.048
DS-1C	48	3.152	2	120	8.448
DS-2	96	6.312	3	480	34.368
DS-3	672	44.736	4	1920	139.264
DS-4	4032	274.176	5	7680	565.148

Notes:

- 1. The first bit is a framing bit, used for synchronization.
- 2. Voice channels:
 - •8-bit PCM used on five of six frames.
 - •7-bit PCM used on every sixth frame; bit 8 of each channel is a signaling bit.
- 3. Data channels:
 - •Channel 24 is used for signaling only in some schemes.
 - •Bits 1-7 used for 56 kbps service
 - •Bits 2-7 used for 9.6, 4.8, and 2.4 kbps service.

Figure 8.9 DS-1 Transmission Format

SONET/SDH

- Synchronous Optical Network (ANSI)
- Synchronous Digital Hierarchy (ITU-T)
- High speed capability of optical fiber
- Defines hierarchy of signal rates
 - Synchronous Transport Signal level 1 (STS-1) or Optical Carrier level 1 (OC-1) is 51.84Mbps
 - Carries one DS-3 or multiple (DS1 DS1C DS2) plus ITU-T rates (e.g., 2.048Mbps)
 - Multiple STS-1 combine into STS-N signal
 - ITU-T lowest rate is 155.52Mbps (STM-1)

Table 8.4 SONET/SDH Signal Hierarchy

SONET Designation	ITU-T Designation	Data Rate	Payload Rate (M bps)
STS-1/OC-1		51.84 Mbps	50.112 Mbps
STS-3/OC-3	STM-1	155.52 Mbps	150.336 Mbps
STS-12/OC-12	STM-4	622.08 Mbps	601.344 Mbps
STS-48/OC-48	STM-16	2.48832 Gbps	2.405376 Gbps
STS-192/OC-192	STM-64	9.95328 Gbps	9.621504 Gbps
STS-768	STM-256	39.81312 Gbps	38.486016 Gbps
STS-3072		159.25248 Gbps	153.944064 Gbps

Figure 8.10 SONET/SDH Frame Formats

_
Trace
J1
BIP-8
2 0
B3
Signal
Label C2
Path
Status G1
User
F2
M ultiframe
H4
Growth
Z 3
Growth
Z 4
Growth
Z 5

(a) Transport Overhead

(b) Path Overhead

Figure 8.11 SONET STS-1 Overhead Octets

Section Overhead

- Allows two connected sections to verify the connections between them by transmitting a sixteen-byte message. This message is transmitted in sixteen consecutive frames with first byte (J0) carried in first
- frame, second byte in second frame and so on (Z0). Bit-interleaved parity byte providing even parity over previous STS-N frame after scrambling; the ith
- bit of this octet contains the even parity value calculated from the *i*th bit position of all octets in the previous frame. Section level 64-kbps PCM orderwire; optional 64-kbps voice channel to be used between section
- terminating equipment, hubs, and remote terminals. 64-kbps channel set aside for user purposes.
- 192-kbps data communications channel for alarms, maintenance, control, and administration between D1-D3: sections.

Framing bytes = F6,28 hex; used to indicate the beginning of the frame.

- Line Overhead
- Pointer bytes used in frame alignment and frequency adjustment of payload data. H1-H3:

A1, A2: J0/Z0:

B1:

E1:

F1:

D4-D12:

- Bit-interleaved parity for line level error monitoring. B2:
- K1, K2: Two bytes allocated for signaling between line level automatic protection switching equipment; uses a
- bit-oriented protocol that provides for error protection and management of the SONET optical link.
- 576-kbps data communications channel for alarms, maintenance, control, monitoring, and administration at the line level.
- In the first STS-1 of an STS-N signal, used for transporting syncrhonization message (S1). Undefined S1/Z1: in the second through Nth STS-1 (Z1)
- M0/M1: Remote error indication in first STS-1 (M0) and third frames
- E2: 64-kbps PCM voice channel for line level orderwire.

Path Overhead

- J1: 64-kbps channel used to send repetitively a 64-octet fixed-length string so a receiving terminal can
 - continuously verify the integrity of a path; the contents of the message are user programmable.
 - Bit-interleaved parity at the path level, calculated over all bits of the previous SPE. B3:
 - C2: STS path signal label to designate equipped versus unequipped STS signals. *Unequipped* means the the line connection is complete but there is no path data to send. For equipped signals, the label can
 - indicate the specific STS payload mapping that might be needed in receiving terminals to interpret the Status byte sent from path terminating equipment back to path originating equipment to convey status
 - of terminating equipment and path error performance. 64-kbps channel for path user.

payloads.

Reserved for future use.

G1:

F2:

H4:

Z3-Z5:

Multiframe indicator for payloads needing frames that are longer than a single STS frame; multiframe indicators are used when packing lower rate channels (virtual tributaries) into the SPE.

Bits

Table 8.5

STS-1

Overhead

(Table can be found on page 277 in textbook)

Cable Modems

Downstream

- Cable scheduler delivers data in small packets
- Active subscribers share downstream capacity
- Also allocates upstream time slots to subscribers

Upstream

- User requests timeslots on shared upstream channel
- Headend scheduler notifies subscriber of slots to use
 - -Dedicate two cable TV channels to data transfer
 - -Each channel shared by number of subscribers using statistical TDM

Figure 8.12 Cable Modem Scheme

Cable Spectrum Division

- To support both cable television programming and data channels, the cable spectrum is divided in to three ranges:
 - User-to-network data (upstream): 5 40 MHz
 - Television delivery (downstream): 50 550 MHz
 - Network to user data (downstream): 550 750 MHz

Figure 8.13 Cable Modem Configuration

Asymmetrical Digital Subscriber Line (ADSL)

- Link between subscriber and network
- Uses currently installed twisted pair cable
- Is Asymmetric bigger downstream than up
- Uses Frequency Division Multiplexing
 - Reserve lowest 25kHz for voice (POTS)
 - Uses echo cancellation or FDM to give two bands
- Has a range of up to 5.5km

(a) Frequency-division multiplexing

Figure 8.14 ADSL Channel Configuration

Discrete Multitone (DMT)

- Multiple carrier signals at different frequencies
- Divide into 4kHz subchannels
- Test and use subchannels with better SNR
- 256 downstream subchannels at 4kHz (60kbps)
 - In theory 15.36Mbps, in practice 1.5-9Mbps

Figure 8.16 DMT Transmitter

ATM = Asynchronous Transfer Mode
DSLAM = Digital Subscriber Line Access Multiplexer
PSTN = Public Switched Telephone Network
G.DMT = G.992.1 Discrete Multitone

Figure 8.17 DSL Broadband Access

Table 8.6 Comparison of xDSL Alternatives

	ADSL	HDSL	SDSL	VDSL
Data rate	1.5 to 9 Mbps downstream 16 to 640 kbps upstream	1.544 or 2.048 Mbps	1.544 or 2.048 Mbps	13 to 52 Mbps downstream 1.5 to 2.3 Mbps upstream
M ode	Asymmetric	Symmetric	Symmetric	Asymmetric
Copper pairs	1	2	1	1
Range (24- gauge UTP)	3.7 to 5.5 km	3.7 km	3.0 km	1.4 km
Signaling	Analog	Digital	Digital	Analog
Line code	CAP/DMT	2B1Q	2B1Q	DMT
Frequency	1 to 5 MHz	196 kHz	196 kHz	≥ 10 MHz
Bits/cycle	Varies	4	4	Varies

xDSL

- High data rate DSL (HDSL)
 - 2B1Q coding on dual twisted pairs
 - Up to 2Mbps over 3.7km
- Single line DSL
 - 2B1Q coding on single twisted pair (residential) with echo cancelling
 - Up to 2Mbps over 3.7km
- Very high data rate DSL
 - DMT/QAM for very high data rates
 - Separate bands for separate services

(a) Frequency-division duplex (FDD)

 T_p = Propagation delay

 T_b = Burst transmission time

 T_g = Guard time

(b) Time-division duplex (TDD)

Figure 8.18 Duplex Access Techniques

(a) Frequency-division multiple access (FDMA)

Figure 8.19 Multiple Channel Access Techniques

FDMA

- Frequency-Division Multiple Access
 - Technique used to share the spectrum among multiple stations
 - Base station assigns bandwidths to stations within the overall bandwidth available
 - Key features:

Each subchannel is dedicated to a single station

If a subchannel is not in use, it is idle; the capacity is wasted

Requires
fewer
overhead bits
because each
subchannel is
dedicated

Individual subchannels must be separated by guard bands to minimize interference

TDMA

- Time-Division Multiple Access
 - There is a single, relatively large, uplink frequency band that is used to transmit a sequence of time slots
 - Repetitive time slots are assigned to an individual subscriber station to form a logical subchannel
 - Key features:

Each subchannel is dedicated to a single station

For an individual station data transmission occurs in bursts rather than continuously

Guard times are needed between time slots, to account for lack of perfect synchronization among the subscriber station

Downlink channel may be on a separate frequency band The uplink and downlink transmission may be on the same frequency band

Summary

- Frequency-division multiplexing
 - Characteristics
 - Analog carrier systems
 - Wavelength division multiplexing
- Synchronous time-division multiplexing
 - Characteristics
 - TDM link control
 - Digital carrier systems
 - SONET/SDH
- Cable modems
- Asymmetric digital subscriber line
 - ADSL design
 - Discrete multitone
 - Broadband access configuration

> xDSL

- High data rate digital subscriber line
- Single-line digital subscriber line
- Very high data rate digital subscriber line
- Multiple channel access
 - Frequency-division duplex (FDD)
 - Time-division duplex (TDD)
 - Frequency-division multiple access (FDMA)
 - Time-division multiple access (TDMA)