10

15

WHAT IS CLAIMED IS:

1. A compound having a general structure represented by formula:

$$Q_1$$
 Q_2
 Q_3
 Q_3
 Q_3

wherein:

n is 0 or a positive integer;

 Q_1 is $N(R)_3$ +, $N(R)_2$, O(R), or $O(R)_2$ + wherein each R substituent is independently selected from the group consisting of H, a straight chain or branched alkyl or alkenyl, a straight chain or branched alkyl or alkenyl ether, a straight chain or branched alkyl or alkenyl ester and a straight chain or branched alkyl or alkenyl carbonyldioxide with the proviso that at least one R substituent on the O or N atom of Q_1 is not H;

 Q_3 , and each Q_2 are independently selected from the group consisting of H, $O(R^3)$, $N(R^3)$, $NH(R^3)$, and $S(R^3)$; and

Q4 is selected from the group consisting of N(R')2, and NH(R"); wherein:

R' is H or one the following moieties:

10

15

20

and wherein each of Q_5 , Q_6 , Q_7 and Q_8 are independently selected from the group consisting of $N(R)_5$ +, $N(R)_2$, OR, $O(R)_2$ +, O(R'), $N(R')_2$, NH(R''), S(R), $S(R)_2$ + and S(R'); wherein each R substituent on Q_5 , Q_6 , Q_7 or Q_8 is independently selected from H or a methyl group;

each R' substituent on Q_5 , Q_6 , Q_7 or Q_8 is as defined above for Q_4 ; and each R'' substituent on Q_2 , Q_3 , Q_4 , Q_5 , Q_6 , Q_7 or Q_8 is independently hydrogen or comprises a moiety selected from the group consisting of amino acid residues, polypeptide residues, protein residues, carbohydrate residues and combinations thereof.

- $\label{eq:compound} 2. \mbox{ The compound of Claim 1, wherein Q_4 is $N(R')_2$ and both R'}$ substituents on the \$Q_4\$ nitrogen atom are represented by formula II or formula III.
 - The compound of Claim 2, wherein Q₃ is H or OH.
- 4. The compound of Claim 1, wherein Q₁ is N(R)₂ and wherein both R substitents on the Q₁ nitrogen atom are straight chain alkyl or alkenyl groups having from 8 to 27 carbon atoms.
 - 5. The compound of Claim 4, wherein Q3 is H or OH.
- The compound of Claim5, wherein Q₄ is N(R')₂ wherein both R' substituents on the Q₄ nitrogen atom are represented by formula II wherein Q₅ is OH.
- The compound of Claim 6, wherein Q₆ is NHR" and wherein the R" substituent on the Q₆ nitrogen atom comprises:
 - a peptide residue;
 - a spermine residue represented by the formula

10

15

or a moiety represented by the formula:

- 8. The compound of Claim 7, wherein the R" substituent on the Q_6 nitrogen atom comprises a peptide-protein residue.
 - 9. The compound of Claim 1, wherein Q_1 is $N(R)_3+$, Q_3 is OH, and Q_4 is $N(R^*)_2$ wherein both R^* substituents on the Q_4 nitrogen atom are moieties represented by formula II wherein Q_5 is OH and Q_6 is $N(CH_3)_3+$.
 - 10. The compound of Claim 9, wherein two of the R substituents on the Q_1 nitrogen atom are straight chain alkyl groups having from 8 to 27 carbon atoms and wherein the third R substituent on the Q_1 nitrogen atom is a methyl group.
 - 11. The compound of Claim 4, wherein Q_4 is NHR" and Q_3 is OR' wherein the R' substituent on the Q_3 oxygen atom is represented by formula II wherein Q_5 is OH and Q_6 is NHR'.
 - 12. The compound of Claim 11, wherein the R' substituent on the Q₆ nitrogen atom comprises:
 - a spermine residue represented by the formula

10

15

20

or a moiety represented by the formula:

- 13. The compound of Claim 3, wherein Q_4 is $N(R')_2$ wherein both R' substituents on the Q_4 nitrogen atom are moieties represented by formula II wherein Q_5 is OH and Q_6 is NHR".
- 14. The compound of Claim 4, wherein: Q₃ is OH; Q₄ is NHR"; n = 2; and each Q₂ is OR' wherein the R' substituent on each Q₂ oxygen atom is a moiety as represented by formula II wherein Q₃ is OH and Q₆ is NHR".
- 15. The compound of Claim 4, wherein: n=0; Q_3 is OH; Q_4 is N(R')₂ wherein both R' substituents on the Q_4 nitrogen atom are moieties as represented by formula II wherein Q_5 is OR' and Q_6 is NHR"; and wherein the R' substituent on each Q_5 oxygen atom is a moiety represented by formula II wherein Q_5 is OH and Q_6 is NHR".
- 16. The compound of Claim 1, wherein Q_3 is OR', NHR' or SR' and Q_4 is $N(R')_2$ wherein one R' moiety on the Q_4 nitrogen atom is a moiety of formula II wherein Q_6 is OR' and the remaining R' moiety on the Q_4 nitrogen atom is represented by the moiety of formula III wherein Q_8 is OR'.

10

15

- 17. The compound of Claim 16, wherein n = 0, Q₁ is -N(R)₂ and Q₃ is OR'.
- 18. The compound of Claim 1, wherein Q_3 is -OR', NH(R') or S(R') and Q_4 is N(R')₂ wherein both R' substituents on Q_4 are represented by the moiety of formula II wherein Q_5 is OR'.
- 19. The compound of Claim 18, wherein Q_3 is OR' and wherein Q_2 is OR', SR', or N(R')₂.
- 20. The compound of Claim 1, wherein: Q_3 is OR', NHR' or SR'; and wherein Q_4 is $N(R')_2$ wherein one of the R' substituents on the Q_4 nitrogen atom is represented by the moiety of formula II wherein Q_5 is OR', and the remaining R' substituent on the Q_4 nitrogen atom is represented by the moiety of formula III wherein Q_5 is OR'.
 - 21. The compound of Claim 20, wherein Q2 and Q3 are OR'.
- 22. The compound of Claim 20, wherein the R' substituent on the Q_2 oxygen atom is represented by formula II wherein Q_5 is OH and Q_6 is $N(R')_2$ and wherein both R' substituents on the Q_6 nitrogen atom are represented by formula II wherein Q_4 is OR'.
- 23. A lipid aggregate comprising one or more molecules of a compound as set forth in Claim 1.
- The lipid aggregate of Claim 23, further comprising at least one lipid
 aggregate forming compound.
 - 25. A kit comprising a compound as set forth in Claim 1 and at least one additional component selected from the group consisting of one or more cells, a

10

15

cell culture media, a nucleic acid, a transfection enhancer and combinations thereof

- 26. The kit of Claim 25, wherein the kit comprises a transfection enhancer selected from the group consisting biodegradable polymers, cell membrane disruption peptides, cell surface receptor ligands, and DNA condensing proteins.
- 27. The kit of Claim 26, wherein the transfection enhancer is a biodegradable polymer selected from the group consisting of natural polymers, modified natural polymers, synthetic polymers, carbohydrates, and polysaccharides.
- 28. The kit of Claim 27, wherein the transfection enhancer is a polysaccharide selected from the group consisting of amylopectin, hemi-cellulose, hyaluronic acid, amylose, dextran, chitin, cellulose, heparin and keratan sulfate.
- 29. The kit of Claim 26, wherein the transfection enhancer is a DNA condensing protein selected from the group consisting of histones and protamines.
- 30. The kit of Claim 25, wherein the kit comprises:
 a cell comprising one or more enzymes involved in DNA expression; and
 an inhibitor which inhibits at least one of the one or more enzymes
 involved in DNA expression.
 - 31. The kit of Claim 25, wherein the kit comprises:
- 20 a cell comprising one or more surface receptors; and
 - a ligand which interacts with at least one of the one or more surface receptors.

10

- 32. The kit of Claim 31, wherein the ligand is a polypeptide or a carbohydrate.
 - 33. A method for introducing a substance into cells comprising:

forming a liposome from a compound as set forth in Claim 1;

contacting the liposome with the substance to form a complex between the liposome and the substance; and

incubating the complex with one or more cells.

- 34. The method of Claim 33, wherein the substance is selected from the group consisting of a nucleic acid, an oligonucleotide and a carbohydrate.
- 35. The method of Claim 33, wherein the substance is a polypeptide or a protein.
- 36. The method of Claim 33, wherein the substance is a biologically active substance.