



01 【背景介绍】

02 【研究方向】

03 【开源研究成果】

04 【研究难度汇总】

05 【研究计划】

## 背景介绍

## AI在工业应用中的问题:

- 1. 训练样本中缺少缺陷/负样本。在实际问题中,训练样本中的缺陷图像总是较少,因为事先很难收集大量的缺陷样本。因此,训练过程中的正样本和负样本的数量极不平衡,因此生成的模型可能不稳定甚至无效。在缺陷外观多变且不可预测的场景中,监督学习的检测方法通常无法达到所需的精度。
- **2. 手动标注代价高。**在实际的缺陷检测应用中,通常存在许多不同的缺陷,检测标准和质量指标往往不同。这需要手动标记大量训练样本以满足特定需求,这需要大量人力资源。

## 研究方向

异常检测模型: (Anomaly Detection, Novelty Detection, Outlier Detection, Forgery Detection, Out-of-distribution Detection)

- ●无监督学习、AutoEncoder、GAN、矩阵因子分解
- ●半监督学习、强化学习

## GAN方向研究方向投稿占比



| 任务        | 文件  | 分享     |
|-----------|-----|--------|
| ● 影像产生    | 137 | 14.54% |
| ● 图像到图像翻译 | 48  | 5.10%  |
| ● 超分辨率    | 31  | 3.29%  |
| ● 语义分割    | 30  | 3.18%  |
| ● 异常检测    | 20  | 2.12%  |
| ● 文字产生    | 19  | 2.02%  |
| ● 条件图像生成  | 17  | 1.80%  |
| ● 人脸产生    | 17  | 1.80%  |
| ● 时间序列    | 16  | 1.70%  |

# 近年来异常点检测模型的投稿占比

## 随时间使用





- 1. MVTEC ANOMALY DETECTION DATASET 已开源工业标准数据集(具一定的代表性)
- 2. GAN 和AutoEncoder开源代码



best auc 97.9% for Model PaDiM



# ● 开源研究成果



# ● 开源研究成果

## 4. 近年来异常检测(AD)方向主要文章(2018年-2020年)

- [1] . Pidhorskyi S , Almohsen R , Adjeroh D A , et al. Generative Probabilistic Novelty Detection with Adversarial Autoencoders[J]. 2018.
- [2]. Abati D, Porrello A, Calderara S, et al. Latent Space Autoregression for Novelty Detection[J]. 2018.
- [3]. Mirrored Autoencoders with Simplex Interpolation for Unsupervised Anomaly Detection.pdf
- [4]. Yang J, Shi Y, Qi Z. DFR: Deep Feature Reconstruction for Unsupervised Anomaly Segmentation[J]. 2020.
- [5]. Yi J , Yoon S . Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation[J]. 2020.
- [6]. MVTec AD ComprehensiveReal World Dataset for Unsupervised Anomaly.pdf



# ● 研究难度汇总

| Abnormaly Detection Issue |                                             |  |
|---------------------------|---------------------------------------------|--|
| ●完备的数据集建立                 | 从业务的角度建立完备的数据集供模型训练和验证使用                    |  |
| ●最优的检测阈值确定                | Normal Abnormal 0.0 0.2 0.4 0.6 0.8 1.0 (a) |  |
| ●小缺陷检测问题                  | 检测目标太小时可能会出现normal和anormal 数据无法区分           |  |
| ●训练时间/检测时间/模型<br>显存占用大小   | 边缘计算: AI 工业生产部署                             |  |



# 研究计划

### 1.数据制作

- 1. 官方工业开源数据
- 2. 公司FPC数据:包括 ACF/COVERLAY /SHIELD/SUS等重要部位数 据制作



#### 2.合作开发

- 1. 顶级期刊算法复现-pytorch/else.etc
- 2. 定期会议讨论技术难点, 确定技术下一步方向和可 行性解决方案



### 3.线下测试

- 1. 收集客户现场新数据
- 2. 制作新的标注测试数据集
- 3. 测试本地开发的模型

### 6.软件功能开发



- 1. UI原型设计评审方案确 定功能需求文档
- 2. 界面功能开发: 面向 FAE和客户使用



### 5.线上测试



- 1. 将模型部署到客户现场。
- 2. 观察模型可靠性并收集问题



### 4.代码移植

- 1. 将开发好的算法移植到 C++平台。
- 2. 小工具开发:满足基本使用

