Teorija brojeva i šifriranje

Andrej Dujella

PMF-MO, Sveučilište u Zagrebu

e-mail: duje@math.hr

URL: http://web.math.hr/~duje/

Teorija brojeva

Teorija brojeva je grana matematike koja se ponajprije bavi proučavanjem svojstava cijelih brojeva. Navedimo neke teme i primjere problema iz teorije brojeva.

Djeljivost:

- Je li broj 123456789 djeljiv s 9?
- Naći ostatak pri dijeljenju broja 2¹⁰⁰ sa 101.

Prosti brojevi:

- Koliko ima prostih brojeva?
- Je li broj $2^{31} 1$ prost?

Faktorizacija:

- Rastaviti na faktore polinom $x^4 + 4$.
- Rastaviti na proste faktore broj $2^{32} + 1$.

Najveći zajednički djelitelj:

- Odrediti nzd(101, 1001) (bez faktorizacije Euklidov algoritam).
- Naći cijele brojeve x i y takve da je 101x 1001y = nzd(101, 1001).

Diofantske jednadžbe:

$$3x + 5y = 28$$

 $x^2 - 2y^2 = 1$
 $y^2 = x^3 + 17$

Diofantske aproksimacije:

Nejednadžba $\left|\sqrt{2}-\frac{a}{b}\right|<\frac{1}{2b^2}$ ima beskonačno mnogo rješenja: $\frac{a}{b}=1,\frac{3}{2},\frac{7}{5},\frac{17}{12},\frac{41}{29},\frac{99}{70},\ldots$, a nejednadžba $\left|\sqrt{2}-\frac{a}{b}\right|<\frac{1}{4b^2}$ niti jedno.

Kriptografija

Šifriranje ili kriptografija (tajnopis) je znanstvena disciplina koja se bavi proučavanjem metoda za slanje poruka u takvom obliku da ih samo onaj kome su namijenjene može pročitati.

Glavne metode klasične kriptografije:

- ◆ transpozicija (premještanje)
 TAJNA → JANAT
- supstitucija (zamjena)
 TAJNA → UBKOB

Transpozicijske šifre

Skital (Sparta, 5. st. pr. Kr.)

Stupčana transpozicija

Poruka se piše po redcima, a čita po stupcima, ali s promijenjenim poretkom stupaca

TTZASJURINPAČNISAOPAC

Supstitucijske šifre

Cezarova šifra (1. st. pr. Kr.)

- svako slovo se pomakne za k mjesta u alfabetu,
- Cezar je koristio šifru s k = 3

Vigenèreova šifra (16. st. − 19. st.)

- ključna riječ (k_1, k_2, \ldots, k_m) ,
- slova se pomiču redom za $k_1, k_2, \ldots, k_m, k_1, k_2, \ldots$ mjesta

ENIGMA (1920. – 2. svjetski rat)

- najpoznatija naprava za šifriranje
- Vigenèreova šifra s ogromnom ključnom riječi
- Kriptoanaliza: Marian Rejewski i Alan Turing

DES – Data Encryption Standard (1976. – 1998.)

- kombinira se supstitucija i transpozicija,
- ključna riječ ima 56 bitova,
- 16 rundi šifriranja

AES – Advanced Encryption Standard (2000. –)

- koristi operacije u polju $GF(2^8)$,
- elementi polja su polinomi stupnja ≤ 7 s koeficijentima iz $\{0,1\}$,
- operacije su zbrajanje polinoma u $\mathbb{Z}_2[X]$ (1+1=0) i množenje polinoma modulo fiksni polinom osmog stupnja: $x^8+x^4+x^3+x+1$

Kriptosustavi s javnim ključem

Sigurnost svih do sada navedenih kriptosustava leži u tajnosti ključa.

Problem: Kako sigurno razmijeniti ključ?

Ideja: javni ključ e_K za šifriranje, tajni (osobni) ključ d_K za dešifriranje.

Ovdje e_K mora biti tzv. jednosmjerna funkcija, tj. nju se računa lako, a njezin inverz jako teško.

Kriptosustavi s javnim ključem su puno sporiji od modernih simetričnih kriptosustava (npr. AES-a). Zato se u praksi ne koriste za šifriranje poruka, već za:

- razmjenu ključeva,
- digitalni potpis.

Osnova za kriptosustave s javnim ključem su "teški" matematički problemi:

- faktorizacija velikih složenih brojeva
- problem diskretnog logaritma (DLP)

$$a^x \equiv b \pmod{p}$$

• eliptički diskretni logaritam (ECDPL)

Eliptička krivulja: $y^2 = x^3 + ax^2 + bx + c$

ECDLP: [x]P = Q (nad \mathbb{Z}_p ili $GF(2^n)$)

ECDLP je teži od DLP \Rightarrow ista sigurnost uz kraći ključ (1024 \longleftrightarrow 160)

Diffie-Hellmanov protokol za razmjenu ključeva

G je konačna ciklička grupa s generatorom g, tj. $G = \{g, g^2, \dots, g^{|G|}\}$

Alica i Bob žele se dogovoriti o jednom tajnom elementu grupe G, preko nesigurnog komunikacijskog kanala kojeg prisluškuje Eva.

Eva: G, g, g^a , g^b

Alica:
$$(g^b)^a = g^{ab}$$
 razmijenili su ključ Bob: $(g^a)^b = g^{ab}$

Bob:
$$(g^a)^b = g^{ab}$$

Eva:
$$g^a$$
, g^b ? g^{ab}

Da bi protokol funkcionirao, grupa G treba biti takva da je u njoj potenciranje lako, a logaritmiranje teško.

Primjer: Grupa $\mathbb{Z}_{11}^* = \{1, 2, ..., 10\}$ (operacija je množenje modulo 11) je ciklička grupa s generatorom 2.

RSA kriptosustav

(Rivest, Shamir, Adleman (1977))

- ullet izaberemo tajno dva velika prosta broja p i q,
- izračunamo $n=p\cdot q$ i $\varphi(n)=(p-1)(q-1)=n+1-p-q$ (Eulerova funkcija),
- izaberemo e tako da je $e < \varphi(n)$ i $nzd(e, \varphi(n)) = 1$,
- izračunamo tajno d takav da je $d \cdot e \equiv 1 \pmod{\varphi(n)}$ (linearna diofantska jednadžba $d \cdot e t \cdot \varphi(n) = 1$ prošireni Euklidov algoritam.

$$(n,e)$$
 – javni ključ

$$(p,q,d)$$
 – tajni (osobni) ključ

šifriranje: $e_K(x) = x^e \mod n$

dešifriranje: $d_K(y) = y^d \mod n$

Provjera:
$$d_K(e_K(x)) \equiv d_K(x^d) \equiv x^{de} \equiv x^{t\varphi(n)+1} \equiv (x^{\varphi(n)})^t \cdot x \equiv x \bmod n$$
 (Eulerov teorem)

- sigurnost leži u teškoći faktorizacije velikih brojeva

ullet Teško je faktorizirati veliki prirodan broj n.

• Možda i nije; npr.
$$n = 10^{200} = 2^{200} \cdot 5^{200}$$
, $n = 9999 \cdot \cdot \cdot 9919 = x^2 - 9^2 = (x - 9)(x + 9)$

- ullet Teško je faktorizirati n koji je produkt dva velika pažljivo odabrana prosta broja p i q (sa stotinjak znamenaka)
- Kako naći (tajno) veliki prosti broj?
 Čini se ("školskim" načinom) da je to podjednako teško kao faktorizirati veliki broj slične veličine.

- Testiranje prostosti može se puno brže nego "školski". Postoje polinomijalni ("efikasni") algoritmi koji ne koriste definiciju prostih brojeva, već neka njihova svojstva koja su jednostavna za provjeru. Mali Fermatov teorem: $a^{p-1} \equiv 1 \pmod p$, $x^2 \equiv 1 \pmod p \implies x \equiv \pm 1 \pmod p$.
- Faktorizacija: ne može puno brže nego "školski" (po onome što je danas poznato). Najbolji poznati algoritmi su subeksponencijalni. Osnovna ideja je izračunati nzd(n,y) za prikladno odabrani y (tako da rezultat bude $\neq 1, n$).

