DMA Domácí úkol č. 10A

Tento domácí úkol se neodevzdává.

- 1. U následujících zobrazení rozhodněte, zda jsou prostá a zda jsou na. Své odpovědi dokažte.
- a) $T: \mathbb{N} \times \mathbb{Z}, T(n) = 2n;$
- b) $T: \mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}, T(m,n) = m \cdot n;$
- c) $T: \mathbb{Z}^2 \mapsto \mathcal{P}, T(a,b) = ax^2 + b.$

Poznámka: \mathcal{P} značí množinu všech polynomů.

Písemkový speciál: Následují příklady vhodné k nácviku na semestrální písemku.

Nejprve vždy příklad vyřešte samostatně a snažte se o pěkný zápis důkazů, pak se podívejte na další stranu na řešení.

2. Dokažte indukcí, že pro
$$n \in \mathbb{N}$$
 je a) $\frac{12}{13} + \frac{12}{13^2} + \frac{12}{13^3} + \dots + \frac{12}{13^n} = 1 - \frac{1}{13^n}$ neboli $\sum_{k=1}^n \frac{12}{13^k} = 1 - \frac{1}{13^n}$.

b)
$$7 + 13 + 19 + \dots + (6n + 1) = n(3n + 4)$$
 neboli
$$\sum_{k=1}^{n} (6k + 1) = n(3n + 4).$$

c)
$$\sum_{k=1}^{n} (\sin(k) - \sin(k-1)) = \sin(n)$$
.

Poznámka: Zkuste si tu sumu rozepsat dlouhým zápisem, pak uvidíte, co se tam vlastně děje.

3. Dokažte indukcí, že pro $n \in \mathbb{N}$, $n \ge 2$ je

$$\sum_{k=2}^{n} k \cdot 2^k = (n-1)2^{n+1}.$$

4. U následujících tvrzení rozhodněte, zda jsou pravdivá.

Pokud je nějaké tvrzení pravdivé, napište důkaz.

Pokud nějaké tvrzení pravdivé není, tak:

- —napište důkaz (nebo spíš jeho korektní počátek), jak by se psal, kdyby pravdivé bylo, a ukažte, v kterém kroku tento pokus ztroskotá a proč;
- —ukažte protipříklad (ztroskotaný důkaz by měl napovědět).
- A) Nechť \mathcal{R}, \mathcal{S} jsou relace na množině A. Jestliže jsou \mathcal{R}, \mathcal{S} reflexivní, tak je i $\mathcal{R} \cap \mathcal{S}$.
- B) Nechť \mathcal{R}, \mathcal{S} jsou relace na množině A. Jestliže jsou \mathcal{R}, \mathcal{S} symetrické, tak je i $\mathcal{R} \cup \mathcal{S}$.
- C) Nechť \mathcal{R}, \mathcal{S} jsou relace na množině A. Jestliže je \mathcal{R} antisymetrická, tak je i $\mathcal{R} \cap \mathcal{S}$.
- D) Nechť \mathcal{R}, \mathcal{S} jsou relace na množině A. Jestliže jsou \mathcal{R}, \mathcal{S} antisymetrické, tak je i $\mathcal{R} \cup \mathcal{S}$.
- E) Nechť \mathcal{R} je relace na množině A. Jestliže je \mathcal{R}^{-1} reflexivní, tak je i \mathcal{R} .
- F) Nechť \mathcal{R} je relace na množině A. Jestliže je \mathcal{R} symetrická, tak je i \mathcal{R}^{-1} .
- G) Nechť \mathcal{R} je relace na množině A. Jestliže je \mathcal{R}^{-1} symetrická, tak je i \mathcal{R} .
- H) Nechť \mathcal{R} je relace na množině A. Jestliže je \mathcal{R}^{-1} antisymetrická, tak je i \mathcal{R} .
- I) Nechť \mathcal{R} je relace na množině A. Jestliže je \mathcal{R}^{-1} tranzitivní, tak je i \mathcal{R} .
- J) Nechť \mathcal{R}, \mathcal{S} jsou relace na množině A a $\mathcal{R} \subseteq \mathcal{S}$. Jestliže je \mathcal{R} symetrická, tak je i \mathcal{S} .
- K) Nechť \mathcal{R}, \mathcal{S} jsou relace na množině A a $\mathcal{R} \subseteq \mathcal{S}$. Jestliže je \mathcal{S} symetrická, tak je i \mathcal{R} .
- L) Nechť \mathcal{R}, \mathcal{S} jsou relace na množině A a $\mathcal{R} \subseteq \mathcal{S}$. Jestliže je \mathcal{S} antisymetrická, tak je i \mathcal{R} .
- M) Nechť \mathcal{R}, \mathcal{S} jsou relace na množině A. Jestliže jsou \mathcal{R}, \mathcal{S} symetrické, tak je i $\mathcal{S} \circ \mathcal{R}$.

Řešení:

1a. Toto zobrazení je prosté. Dk: $m, n \in \mathbb{N}$ takové, že $\underline{T(m) = T(n)}$. Pak 2m = 2n, odtud $\underline{m = n}$. T není na. Dk: p-p: Zvolme $z = 13 \in \mathbb{Z}$. Pak nelze najít $n \in \mathbb{N}$ splňující T(n) = 13, protože pro takové n by muselo platit 2n = 13, nelze.

Pomůže udělat si náčrtek, jak toto T posílá čísla.

1b. Toto zobrazení není prosté, protože například T(3,2)=6=T(2,3), ale $(3,2)\neq (2,3)$ v $\mathbb{N}\times\mathbb{N}$. Surjektivita: Toto zobrazení je na. Důkaz: Pro dané $y\in\mathbb{N}$ zvolíme $n=1,\ m=y,$ pak $(m,n)\in\mathbb{N}\times\mathbb{N}$ a $T(m,n)=T(y,1)=y\cdot 1=y$.

Rada: Než začnete s matematikou, je dobré si předložený objekt "osahat", v tomto příkladě bych tedy začal tím, že bych si nejprve zkusil dosazovat do T nějaké dvojice čísel a koukal, co to dělá.

1c. $T: \mathbb{Z}^2 \mapsto \mathcal{P}, T(a,b) = ax^2 + b.$

prosté: ano. Dk: Nechť $(a,b),(c,d) \in \mathbb{Z}^2$ takové, že T(a,b) = T(c,d). Pak $ax^2 + b = cx^2 + d$. Polynomy se rovnají pouze tehdy, pokud mají stejné koeficienty, takže a = c a b = d neboli (a,b) = (c,d).

na: ne. Protipříklad: polynom p(x)=x. Neexistuje $a,b\in\mathbb{Z}$ takové, že $x=ax^2+b$, tedy nejde udělat p(x)=T(a,b).

2a. (0)
$$n = 1$$
: $\frac{12}{13} = 1 - \frac{1}{13}$ platí.

(1) $n \in \mathbb{N}$ libovolné, předpoklad: platí $\frac{12}{13} = 1 - \frac{1}{13^1}$.

$$\operatorname{Pak} \sum_{k=1}^{n+1} \frac{12}{13^k} = \sum_{k=1}^{n} \frac{12}{13^k} + \frac{12}{13^{n+1}} \stackrel{\operatorname{IP}}{==} 1 - \frac{1}{13^n} + \frac{12}{13^{n+1}} = 1 - \left(\frac{1}{13^n} - \frac{12}{13^{n+1}}\right) = 1 - \frac{13-12}{13^{n+1}} = 1 - \frac{1}{13^{n+1}}.$$

2b. (0)
$$n = 1$$
: $7 = 1 \cdot (3 \cdot 1 + 4)$ platí.

(1)
$$n \in \mathbb{N}$$
 libovolné, IP: $\sum_{k=1}^{n} (6k+1) = n(3n+4)$.

$$\operatorname{Pak} \sum_{k=1}^{n+1} (6k+1) = \sum_{k=1}^{n} (6k+1) + (6(n+1)+1) \stackrel{\operatorname{IP}}{==} n(3n+4) + (6n+7) = 3n^2 + 10n + 7 = (n+1)(3(n+1)+4).$$

2c. (0)
$$n = 1$$
: $(\sin(1) - \sin(0)) = \sin(1)$ platí.

(1)
$$n \in \mathbb{N}$$
 libovolné, IP:
$$\sum_{k=1}^{n} (\sin(k) - \sin(k-1)) = \sin(n).$$

Pak
$$\sum_{k=1}^{n+1} (\sin(k) - \sin(k-1)) = \sum_{k=1}^{n} (\sin(k) - \sin(k-1)) + (\sin(n+1) - \sin(n))$$

 $\stackrel{\text{IP}}{=} \sin(n) + (\sin(n+1) - \sin(n)) = \sin(n+1).$

Poznámka: Vzorec říká, že

$$(\sin(1) - \sin(0)) + (\sin(2) - \sin(1)) + (\sin(3) - \sin(2)) + \cdots + (\sin(n-1) - \sin(n-2)) + (\sin(n) - \sin(n-1)) = \sin(n) - \sin(0).$$

Celý vnitřek součtu se pokrátí navzájem a zůstane jen začátek a konec. Takovým sumám se někdy říká "teleskopická".

3. (0)
$$n = 2$$
: $\sum_{k=2}^{2} k \cdot 2^k = 2 \cdot 2^2 = 8 = (2-1) \cdot 2^3$ platí.

(1)
$$n \ge 2$$
 libovolné, IP:
$$\sum_{k=2}^{n} k \cdot 2^k = (n-1)2^{n+1}.$$

Pak
$$\sum_{k=2}^{n+1} k \cdot 2^k = \sum_{k=2}^n k \cdot 2^k + (n+1)2^{n+1} \stackrel{\text{IP}}{=} (n-1)2^{n+1} + (n+1)2^{n+1} = (n-1+n+1)2^{n+1}$$

= $2n2^{n+1} = n2^{n+2} = ((n+1)-1)2^{(n+1)+1}$.

4A. Důkaz: Předpoklad: \mathcal{R} , \mathcal{S} isou reflexivní.

Krok stranou: Chceme: $\mathcal{R} \cap \mathcal{S}$ je reflexivní.

Potřebujeme ukázat: $\forall a \in A$: $(a, a) \in \mathcal{R} \cap \mathcal{S}$. Poznámka: Toto není implikace, proto není přirozený začátek důkazu (další předpoklad), musí se vymyslet.

Důkaz (pokračování): $\underline{a \in A}$ lib. \mathcal{R} reflex. proto $(a, a) \in \mathcal{R}$. \mathcal{S} reflex. proto $(a, a) \in \mathcal{S}$. Tedy $(a, a) \in \mathcal{R} \cap \mathcal{S}$.

Platí.

4B. Důkaz: Předpoklad: \mathcal{R} , \mathcal{S} jsou symetrické.

Chceme $\mathcal{R} \cup \mathcal{S}$ je symetrická.

Potřebujeme ukázat: $\forall a, b \in A$: $(a, b) \in \mathcal{R} \cup \mathcal{S} \implies (b, a) \in \mathcal{R} \cup \mathcal{S}$.

Důkaz (pokračování): $a, b \in A$ lib. $(a, b) \in \mathcal{R} \cup \mathcal{S}$. Pak dvě možnosti.

- 1) možnost $(a,b) \in \mathcal{R}$, ze symetrie $\overline{\mathcal{R}}$ pak $(b,a) \in \mathcal{R}$ a proto $(b,a) \in \mathcal{R} \cup \mathcal{S}$.
- 2) možnost $(a, b) \in \mathcal{S}$, ze symetrie \mathcal{S} pak $(b, a) \in \mathcal{S}$ a proto $(b, a) \in \mathcal{R} \cup \mathcal{S}$.

Ve všech případech $(b, a) \in \mathcal{R} \cup \mathcal{S}$.

Platí.

4C. Důkaz: Předpoklad: \mathcal{R} je antisymetrické.

Krok stranou: Chceme: $\mathcal{R} \cap \mathcal{S}$ je antisymetrická.

Potřebujeme ukázat: $\forall a, b \in A$: $[(a, b) \in \mathcal{R} \cap \mathcal{S} \land (b, a) \in \mathcal{R} \cap \mathcal{S}] \implies a = b$.

Předpoklad znamená $[(a,b) \in \mathcal{R} \land (a,b) \in \mathcal{S}] \land [(b,a) \in \mathcal{R} \land (b,a) \in \mathcal{S}].$

Tři konjunkce, závorky lze zrušit, prostě máme čtyři faktíky: $(a,b) \in \mathcal{R} \land (a,b) \in \mathcal{S} \land (b,a) \in \mathcal{R} \land (b,a) \in \mathcal{S}$.

Ale o S nic nevíme, tak ty dva budeme ignorovat.

Důkaz (pokračování): $a, b \in A$ lib. $(a, b) \in \mathcal{R} \cap \mathcal{S} \wedge (b, a) \in \mathcal{R} \cap \mathcal{S}$. Pak tedy

 $(a,b) \in \mathcal{R}$ a $(b,a) \in \mathcal{R}$, proto z antisymetrie \mathcal{R} máme $\underline{a} = \underline{b}$.

Platí.

4D. Důkaz: Předpoklad: \mathcal{R} , \mathcal{S} jsou antisymetrické.

Krok stranou: Chceme: $\mathcal{R} \cup \mathcal{S}$ je antisymetrická.

Potřebujeme ukázat: $\forall a, b \in A$: $[(a, b) \in \mathcal{R} \cup \mathcal{S} \land (b, a) \in \mathcal{R} \cup \mathcal{S}] \implies a = b$.

Důkaz (pokračování): $a, b \in A$ lib. $(a, b) \in \mathcal{R} \cup \mathcal{S} \land (b, a) \in \mathcal{R} \cup \mathcal{S}$. Pak čtyří možnosti.

- 1) možnost $(a,b) \in \mathcal{R}$ a $(b,a) \in \mathcal{R}$, pak z antisymetrie \mathcal{R} máme a=b, zatím dobré.
- 2) možnost $(a, b) \in \mathcal{S}$ a $(b, a) \in \mathcal{S}$, pak z antisymetrie \mathcal{S} máme a = b, zatím dobré.
- 3) možnost $(a, b) \in \mathcal{R}$ a $(b, a) \in \mathcal{S}$, pak máme problém.

Neplatí. Mimochodem, problém nastane i pro čtvrtou možnost $(a, b) \in \mathcal{S}$ a $(b, a) \in \mathcal{R}$.

Protipříklad: $A = \{1, 2\}, \mathcal{R} = \{(1, 2)\}$ antisymetrická, $\mathcal{S} = \{(2, 1)\}$ antisymetrická,

 $\mathcal{R} \cup \mathcal{S} = \{(1,2), (2,1)\}$ není antisymetrická,

4E. Důkaz: Předpoklad: \mathcal{R}^{-1} je reflexivní.

Krok stranou: Chceme: \mathcal{R} je reflexivní.

Potřebujeme ukázat: $\forall a \in A$: $(a, a) \in \mathcal{R}$. Poznámka: Toto není implikace, proto není přirozený začátek důkazu (další předpoklad), musí se vymyslet.

Důkaz (pokračování): $\underline{a \in A}$ lib. \mathcal{R}^{-1} reflex. proto $(a, a) \in \mathcal{R}^{-1}$. Pak (prohozením těch dvou a navzájem) $(a, a) \in \mathcal{R}$.

Platí.

4F. Důkaz: Předpoklad: \mathcal{R} je symetrická.

Krok stranou: Chceme: \mathcal{R}^{-1} je symetrická.

Potřebujeme ukázat: $\forall a \in A: (a,b) \in \mathbb{R}^{-1} \implies (b,a) \in \mathbb{R}^{-1}$.

Důkaz (pokračování): $\underline{a,b \in A}$ lib. $\underline{(a,b) \in \mathcal{R}^{-1}}$ pak $(b,a) \in \mathcal{R}$, dle předpokladu tedy $(a,b) \in \mathcal{R}$ a tudíž $(b,a) \in \mathcal{R}^{-1}$.

Platí.

4G. Důkaz: Předpoklad: \mathcal{R}^{-1} je symetrická.

Chceme: \mathcal{R} je symetrická.

Potvrdíme: $\underline{a,b \in A}$ lib. $\underline{(a,b) \in \mathcal{R}}$ pak $\underline{(b,a)} \in \mathcal{R}^{-1}$, dle předpokladu tedy $\underline{(a,b)} \in \mathcal{R}^{-1}$ a tudíž

 $\frac{(b,a) \in \mathcal{R}}{\text{Platí.}}.$

4H. Důkaz: Předpoklad: \mathcal{R}^{-1} je antisymetrická.

Tvrdíme: \mathcal{R} je antisymetrická.

Potvrzení: $\underline{a,b \in A}$ lib. $(a,b) \in \mathcal{R} \land (b,a) \in \mathcal{R}$ pak $(b,a) \in \mathcal{R}^{-1} \land (a,b) \in \mathcal{R}^{-1}$, dle předpokladu tedy

b = a a tudíž $\underline{a = b}$.

Platí.

4I. Důkaz: Předpoklad: \mathcal{R}^{-1} je tranzitivní.

Chceme: \mathcal{R} je tranzitivní.

Potvrdíme: $a, b, c \in A$ lib. $(a, b) \in \mathcal{R} \land (b, c) \in \mathcal{R}$ pak $(b, a) \in \mathcal{R}^{-1} \land (c, b) \in \mathcal{R}^{-1}$ neboli $(c, b) \in \mathcal{R}^{-1} \land (c, b) \in \mathcal{R}^{-1}$

 $(b,a) \in \mathcal{R}^{-1}$, dle předpokladu tedy $(c,a) \in \mathcal{R}^{-1}$ a tudíž $(a,c) \in \mathcal{R}$.

Platí.

4J. Důkaz: Předpoklad: $\mathcal{R} \subseteq \mathcal{S}$ a \mathcal{R} je symetrická.

Krok stranou: Chceme: S je symetrická.

Potřebujeme ukázat: $\forall a, b \in A$: $(a, b) \in \mathcal{S} \implies (b, a) \in \mathcal{S}$.

Důkaz (pokračování): $\underline{a,b\in A}$ lib. $\underline{(a,b)\in \mathcal{S}}$. Pak ale (a,b) nemusí být v \mathcal{R} a my tak nemáme možnost

využít předpoklad.

Neplatí.

Protipříklad: $A = \{1, 2\}, \mathcal{R} = \{(1, 1)\}$ symetrická, $\mathcal{S} = \{(1, 1), (1, 2)\}$ není symetrická.

Jiný p–p: $A = \{1, 2, 3\}, \mathcal{R} = \{(1, 2), (2, 1)\}$ symetrická, $\mathcal{S} = \{(1, 2), (2, 1), (1, 3)\}$ není symetrická.

4K. Důkaz: Předpoklad: $\mathcal{R} \subseteq \mathcal{S}$ a \mathcal{S} je symetrická.

Krok stranou: Chceme: \mathcal{R} je symetrická.

Potřebujeme ukázat: $\forall a, b \in A$: $(a, b) \in \mathcal{R} \implies (b, a) \in \mathcal{R}$.

Důkaz (pokračování): $\underline{a,b \in A}$ lib. $\underline{(a,b) \in \mathcal{R}}$. Podle $\mathcal{R} \subseteq \mathcal{S}$ také $(a,b) \in \mathcal{S}$, ze symetrie \mathcal{S} pak $(b,a) \in \mathcal{S}$

a máme problém, protože to (b,a) nemusí být zase v $\mathcal{R}.$

Neplatí.

Protipříklad: $A = \{1, 2\}, \mathcal{S} = \{(1, 2), (2, 1)\}$ symetrická, $\mathcal{R} = \{(1, 2)\}$ není symetrická.

4L. Důkaz: Předpoklad: $\mathcal{R} \subseteq \mathcal{S}$ a \mathcal{S} je antisymetrická.

Krok stranou: Chceme: \mathcal{R} je antisymetrická.

Potřebujeme ukázat: $\forall a, b \in A$: $[(a, b) \in \mathcal{R} \land (b, a) \in \mathcal{R}] \implies a = b$.

Důkaz (pokračování): $\underline{a,b \in A}$ lib. $\underline{(a,b) \in \mathcal{R} \land (b,a) \in \mathcal{R}}$. Podle $\mathcal{R} \subseteq \mathcal{S}$ pak máme $(a,b) \in \mathcal{S} \land (b,a) \in \mathcal{S}$

a z antisymetrie S dostaneme $\underline{a} = \overline{b}$.

Platí.

4M. Důkaz: Předpoklad: \mathcal{R} , \mathcal{S} jsou symetrické.

Krok stranou: Chceme: $S \circ \mathcal{R}$ je symetrická.

Potřebujeme ukázat: $\forall a, b \in A$: $(a, b) \in \mathcal{S} \circ \mathcal{R} \implies (b, a) \in \mathcal{S} \circ \mathcal{R}$.

Důkaz (pokračování): $\underline{a,b \in A}$ lib. $\underline{(a,b) \in \mathcal{S} \circ \mathcal{R}}$. Pak musí existovat $x \in A$ takové, že $(a,x) \in \mathcal{R}$ a $(x,b) \in \mathcal{S}$.

Obě jsou symetrické, takže víme i $(x, a) \in \mathcal{R}$ a $(b, x) \in \mathcal{S}$. Prohodíme:

 $(a,x) \in \mathcal{S}$ a $(x,b) \in \mathcal{R}$. Proto $(b,a) \in \mathcal{R} \circ \mathcal{S}$, ale to je jiná relace než $\mathcal{S} \circ \mathcal{R}$ a jsme v háji.

Neplatí.

Protipříklad: $A = \{1, 2, 3\}, \mathcal{R} = \{(1, 2), (2, 1)\}$ symetrická, $\mathcal{S} = \{(2, 3), (3, 2)\}$ symetrická.

Ale jediný navazující dvoukrok je $1\mathcal{R}2\mathcal{S}3$, proto $\mathcal{S}\circ\mathcal{R}=\{(1,3)\}$, tato relace není symetrická.

Poznámka: Protože zde nevyužíváme množinové operace, je stejně praktické psát důkaz alternativním značením: $a(S \circ \mathcal{R})b$ pak $\exists x$ aby $a\mathcal{R}x\mathcal{S}b$. Ze symetrie $x\mathcal{R}a$ a $b\mathcal{S}x$ neboli $b\mathcal{S}x\mathcal{R}a$ a proto ...