Coding Theory

Alec Zabel-Mena

February 27, 2022

Contents

1	Linear Codes.	5
	1.1 Definitions, Generator, and Check Matrices	5

4 CONTENTS

Chapter 1

Linear Codes.

1.1 Definitions, Generator, and Check Matrices.

Definition. Wed define an (n, k)-linear code) over a field F to be a k-dimensional subspace C of the n-dimensional vector space F^n over F.

Remark. We shall be focusing exclusively on the finit fields \mathbb{F}_p where p=2,3. Then in this case, we can consider the vector spaces to be extension fields of \mathbb{F}_p . We shall prove theorems and lemmas however, for general fields, unless specified.

Definition. Let \mathcal{C} be an (n, k)-linear codeover a field F. We we call a $k \times n$ matrix G a **generator matrix** for \mathcal{C} if its row space is \mathcal{C} .

Example 1.1. [1]

(1) A (5,1)-linear code, C_1 , over \mathbb{F}_2 with generator matrix:

$$G_1 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

It contains the codewords 00000 and (11111); and has rate $\frac{1}{5}$. We call C_1 the binary repitition code.

(2) The (5,3)-code \mathcal{C}_2 with generator matrix:

$$G_2 = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

 C_2 has rate $\frac{3}{5}$.

(3) The (7,4)-Hamming Code, \mathcal{C}_3 over \mathbb{F}_2 with generator matrix:

$$G_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

The (7,4)-Hamming code has rate $\frac{4}{7}$.

Lemma 1.1.1. If C is an (n,k)-code over a field F, and if G is a generator matrix for C, then so is any matrix row-equivalent to G.

Proof. Let A be an $k \times n$ matrix row-equivalent to G. Then, take $A \to G$ via the sequence of elementary matrices $\{E_i\}_{i=1}^m$. That is, $G = E_m \dots E_2 E_2 A$. Then for any $v \in F^n$, we can take $Av \to Gv$ via this same sequence; that is $Gv = E_m \dots E_2 E_1 Av$. Thus, A generates the same set of vectors as G, and hence has the same row space.

Remark. Thus, using this lemma, one would ideally like to find a generator matrix in Row-Reduced-Echelon form, for ease of computation.

Definition. If \mathcal{C} is an (n,k)-code over a field F, we define a **check** for \mathcal{C} to be the equation:

$$a_1 x_1 + \dots + a_n x_n = 0 \tag{1.1}$$

satisfied for all $x \in \mathcal{C}$. We define the **dual code** of \mathcal{C} to be the orthogonal complement

$$\mathcal{C}^{\perp} = \{ a \in F^n : \langle a, x \rangle = 0 \}$$
 (1.2)

Where $\langle a, x \rangle$ is the inner product of a and x.

Proof. If \mathcal{C} is an (n,k)-code, then \mathcal{C}^{\perp} is an (n,n-k)-linear code.

Proof. We have by a result from [2] (theorem 4.*I*), that $F^n = \mathcal{C} \oplus \mathcal{C}^{\perp}$, (\oplus the direct sum). Then dim $F^n = \dim \mathcal{C} + \dim \mathcal{C}^{\perp}$. Therefore, dim $\mathcal{C}^{\perp} = n - k$.

Definition. Let \mathcal{C} be an (n, k)-linear code over a field F. We define a **check** matrix for \mathcal{C} the be an $n \times (n - k)$ matrix H such that $Hx^T = 0$.

Lemma 1.1.2. If H is a check matrix for the (n,k)-code C, then H is a generator matrix for the dual code C^{\perp} .

Proof. For any $x = (x_1, \ldots, x_n) \in \mathcal{C}$, we have that $Hx^T = 0$, by definition. Thus, for any row $a = (a_1, \ldots, a_n)$ of H. That is, $a_1x_1 + \cdots + a_nx_n = \langle a, x \rangle = 0$, making $a \in \mathcal{C}^{\perp}$. Since a is an arbitrary row of H, this holds for every row of H. Thus the row space of H is equal to \mathcal{C}^{\perp} .

Lemma 1.1.3. Let C be an (n,k)-code over a field F, and let G be a generator matrix for the code. If G has the form $G = (I_{k \times k}|A)$, then the check matrix for C, corresponding to G has the form

$$H = (-A^{T}|I_{(n-k)\times(n-k)})$$
(1.3)

Example 1.2. [1] Consider the generator matrices for the codes in example 1.1, then:

$$(1) \ H_1 = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(2)
$$H_2 = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

(3)
$$H_3 = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Theorem 1.1.4. Let C be an (n,k)-code over a field F. Then there is a unique $k \times n$ Row-Reduced-Echelon matrix G such that $x \in C$ if, and only if x is in the row space of G. Likewise, there exists an $(n-k) \times n$ matrix H such that $x \in C$ if, and only if $Hx^T = 0$.

Corollary. If C is used on a memoryless channel, then $G = (I_{k \times k}|A)$ and $H = (-A^T|I_{(n-k)\times(n-k)})$.

1.2 Syndrome Decoding.

Bibliography

- [1] R. McEliece, *The theory of information and coding*. Cambridge: Cambridge University Press, 2001.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.
- [3] D. J. Welsh, *Codes and cryptography*. Oxford Oxfordshire New York: Clarendon Press Oxford University Press, 1988.
- [4] K. Hoffman and R. Kunze, *Linear algebra*. Englewood Cliffs, NJ: Prentice-Hall, 1971.
- [5] J. Lint, Introduction to coding theory. Berlin New York: Springer, 1999.
- [6] J. Justesen and T. Høholdt, A course in error-correcting codes. Zurich, Switzerland: European Mathematical Society, 2017.