"GO KART"

A Major Project Report

Submitted in Partial Fulfillment of requirements for the Award of Degree of Bachelor of Engineering in Mechanical Engineering Submitted to

RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL (M.P)

Submitted By

Himanshu Morya (Enrollment No – 0808ME171029)

Under the guidance of **Prof.Arham JavedAs per Allotted by College.**

DEPARTMENT OF MECHANICAL ENGINEERING RADHA RAMAN INSTITUTE OF TECHNOLOGY & SCIENCE, BHOPAL (M.P.)

Session: 2017-2021

RADHARAMAN INSTITUTE OF TECHNOLOGY & SCIENCE BHOPAL (M.P.)

Department of Mechanical Engineering

APPROVAL CERTIFICATE

This Major project work entitled **Go Kart** being submitted by "**Himanshu Morya**" (Roll No.:0808ME171029.) is/are approved for the award of degree of **Bachelor of Engineering** in **Mechanical Engineering**.

Internal Examiner	External Examiner	
Date:	Date:	

TEAM MEMBERS

- AMIT KUMAR (0132ME171003)
- KUNDAN KUMAR (0132ME171021)
- AYAZ ANSARI (0132ME171014)
- AMIT KUMAR (0132ME171004)
- MOHAMMAD OSAMA AZMI (0132ME171039)
- RAJA SEN (0132ME171055)
- AMIT RAJ (0132ME171006)
- PRASHANT KUMAR (0132ME171048)
- VICKY KUMAR GUPTA (0132ME171075)
- **SANDEEP VERMA** (0132ME171058)
- MD KHALID ANWAR (0132ME171031)
- RAJAT KUMAR (0132ME171056)
- SATYA PRAKASH SINGH (0132ME171059)
- ARNAV DEB (0132ME171010)
- PALASH MALVIYA (0132ME171045)
- SUBHENDU KUMAR (0132ME171067)
- ADIL AHMAD (0132ME171002)
- PHAKHRE ALAM (0132ME171047)
- ARSHAD ALI (0132ME171025)

RADHARAMAN INSTITUTE OF TECHNOLOGY & SCIENCE BHOPAL (M.P.)

Department of Mechanical Engineering

CANDIDATE DECLARATION

We/I Himanshu Morya (Roll No.:0808ME171029) students of Bachelor of Engineering in Mechanical Engineering, Radharaman Institute Of Technology & Science, Bhopal (M.P.), hereby declare that the work presented in this Major project Go-Kart is the outcome of our own work, is bonafide and correct to the best of our knowledge and this work has been carried out taking care of Engineering Ethics. The work presented does not infringe any patented work and has not been submitted to any other university or anywhere else for the award of any degree or any professional diploma.

Date:

"Team Member I" (Enrollment No)

"Team Member II" (Enrollment No)

"Team Member III" (Enrollment No)

"Team Member IV" (Enrollment No)

ACKNOWLEDGEMENT

This project work is the result of guidance and support of various people at RITS without whom all our effort would have been directionless and fruitless. We sincerely thank all of them, for assisting us in completing the dissertation.

We express our ardent and earnest gratitude to our guide, **Prof.Arham Javed** Department of Mechanical Engineering, RITS Bhopal and **Dr.Ajay Singh**,

HOD, Department of Mechanical Engineering, RITS Bhopal for their help and
encouragement at all the stages of our Work. Their guidance and motivation
helped us to be fruitful in our effort.

We also express my heartfelt and profound gratitude to our Director **Dr. R. K. Pandey** for his valuable suggestion and ample resources at all stages of the research work.

Finally, we would like to say that we are indebted to my parents for everything that they have done for us. All of this would have been impossible without their constant support. And we also thanks to God for being kind to me and driving me through this journey.

"Team Member I" (Enrollment No)

"Team Member II" (Enrollment No)

"Team Member III" (Enrollment No)

"Team Member IV" (Enrollment No)

INDEX

Chapter 1 Introduction

Overview Problem Statement Objective Applications

Chapter 2 Designing & Methodology

Overview of methodology Detail methods Algorithm

Project module

Architecture Diagram

Diagrams (Flow Charts: Use Case, Class Diagram, Sequence Diagram, DFD with

explanation

Database Designing (if Any)

Data Dictionary E-R Diagrams

Chapter 3 Conclusion & Future Scope

Conclusion Future Scope

References User Manual

LIST OF FIGURE

S No	Figure No	Figure Name	Page No
1	Figure 1.1		
2	Figure 1.2		
3	Figure 1.3		
4	Figure 1.4		
5	Figure 3.1		
6	Figure 3.2		
7	Figure 3.3		
8	Figure 3.4		
9	Figure 3.5		
10	Figure 3.6		

SNo	Table No	Table Name	Page No
1	Table 3.1		
2	Table 6.1		

ABSTRACT

The report as presented by the team Elites documents the process and methodology of producing a go-kart which can be operated on petrol by the modelling it with CAD software with the material, AISI 1080 steel. The feasibility of the go-kart design was examined by CATIA or ANSYS software. The basic characteristic of go-kart is discussed by composite materials by FMEA package in design has also been look into. Some fundamental of FMEA is also briefly discussed and its application on the analysis of go-kart chassis, especially bending deflection is also been discussed. Analytical evaluations of different preliminary go-kart designs were then performed by FMEA package in effort to determine the best possible design. After the best possible design, is determined, the chassis is been built and an experimental testing is conducting to validate the numerical analysis. The behaviour of bending deflection has also been looked of in the go-kart chassis and is calculated from the data obtained from FEA package

After making of the design and implementing it in manufacturing our go - kart we did testing in our college RITS, Bhopal. It was done to test what things worked in our favour.

Chapter 1

Introduction

OVERVIEW

Go-kart is a four-wheeled, small engine, single sealed racing car used mainly in United States, India. They were initially created in the 1950s. Sir Art Ingles is considered as the the father of karting. He built the first go-kart in Southern California in 1956.

A go-kart, is a type of open wheeled car or racing quadracycle. Go-karts can be of various shapes and forms, from less power models to high powered racing models. Some Super karts, are able to beat racing cars or motorcycles on long circuits. These also contain same engine as that of a bike.

Many recreational karts can be powered by four stroke engines or electric motors while racing go karts may use a two stroke and also, higher powered four-stroke engines. Most of the go karts are single seater but some recreational models can accommodate even a passenger.

There are several countries where, go-karts can be licensed for use in public roads. Typically, there are some restrictions, in the European Union, a go-kart should change for use on the road must be outfitted with luminating headlights (high/low beam), tail lights, a horn, even indicators, and an engine not exceeding 20 hp.

Here we are first making a normal a go kart which is having a chassis which is design in such a manner that it will have a impact force distribution in order to make sure that the minimum amount of impact force is transfer to driver on which the seat of driver is place during head on collision, sideways collision or rear collision.

For the beginning we started our design by considering all possible alternatives for a system and modeling them in CAD software CATIA V5 and analyzing using ANSYS FEA. Based on the analysis result, model was modified and finalized and retested and a final design was fixed. The designing of the vehicle is done by considering these aspects.

Safety and ergonomics
Cost
Market availability
Safe Engineering practices
Strength of the chassis
Aesthetics

Our Team Elites design objectives was to be achieved in three simple goals applied to every component of the go-kart: durable, light weight and high performance, to optimize the design in reducing the cost and the well uniform impact force distribution throughout the chassis.

By keeping these aspects, we categorized our team Elites Into following groups.

Design & simulation Steering

Engine and transmission Brakes and wheel Manufacturing

We already set a budget for the project. Throughout the design process we distributed the budget in such a way that if we assign more money to one system, we reduce that amount from some other system. Like we could never compromise with safety.

* OBJECTIVE

The main objective of making the vehicle is to participate in major go-kart events and also to drive which is having more power, efficiency, better handling, good dynamic than a traditional or a regular go kart.

DESIGN, ANALYSIS AND FABRICATION OF GO-KART

Abstract

Team Elites Go-kart is a simple looking but powerful four wheeled kart. Go-kart, by definition, has no suspension and no differential. They are usually raced on scaled down tracks, but are sometimes driven as entertainment or as a hobby by non-professionals. Kart racing is generally accepted as the most economic form of motor sport available. As a free-time activity, it can be performed by almost anybody and permitting licensed racing for anyone from the age above 8 onwards. Kart racing is usually used as a low-cost and relatively safe way to introduce drivers to motor racing. Their is no limit of who should or can drive a go-kart, from a kid to an young to an adult anyone can drive it. Go-Karting is considered as the first step in any serious racer's career. It can prepare the driver for highs-speed wheel-to-wheel racing by helping develop guide reflexes, Precision car control and decision- making skills. It is also useful when someone is tensed and for a recreation go kart can be used. Also, it brings an awareness of the various parameters that can be altered to try to improve the competitiveness of the kart that also exist in other forms of racing.

Index Terms

Go-kart

Racing

Design

Frame

Analysis

Steering System

Braking System
Engine
Transmission and Innovation.

Chapter 2

INTRODUCTION

Go-kart is a four-wheeled, small engine, single sealed racing car used mainly in United States, India. They were initially created in the 1950s. Sir Art Ingles is considered as the the father of karting. He built the first go-kart in Southern California in 1956.

A go-kart, is a type of open wheeled car or racing quadracycle. Go-karts can be of various shapes and forms, from less power models to high powered racing models. Some Super karts, are able to beat racing cars or motorcycles on long circuits. These also contain same engine as that of a bike.

Many recreational karts can be powered by four stroke engines or electric motors while racing go karts may use a two stroke and also, higher powered four-stroke engines. Most of the go karts are single seater but some recreational models can accommodate even a passenger.

There are several countries where, go-karts can be licensed for use in public roads. Typically, there are some restrictions, in the European Union, a go-kart should change for use on the road must be outfitted with luminating headlights (high/low beam), tail lights, a horn, even indicators, and an engine not exceeding 20 hp.

Here we are first making a normal a go kart which is having a chassis which is design in such a manner that it will have a impact force distribution in order to make sure that the minimum amount of impact force is transfer to driver on which the seat of driver is place during head on collision, sideways collision or rear collision.

2 FRAME DESIGN

Frame Material

The material which we used for the frame is AISI 1080 LOW CARBON STEEL as it has reasonable price and provide enough safety to the driver which we ordered from a reputed firm in Mumbai. The pipe is of 1 inch diameter having 1mm thickness. The physical properties of the pipe are as follows.

The chemical composition of the our ordered frame pipe is as follows.

S.no	PROPERTIES	VALUES AS PROVIDED BY FIRM
1.	Tensile strength of pipe	440 MPa
2.	Yield strength of pipe	379 MPa
3.	Bulk Modulus of pipe	141 GPa
4.	Shear modulus of pipe	79 GPa
5.	Young's Modulus of pipe	205 GPa
6.	Poisson's ratio of pipe	0.291

MATERIALS	PERCENTAGE OF EACH ELEMENT %
Low grade Carbon	0.140.25
Manganese	0.60-0.92
Phosphorous	≤ 0.040
Sulphur	≤ 0.050
Iron	98.8 - 99.26

3. STEERING SYSTEM

Team <u>Elites</u> Used Ackermann steering system and steering in common is the key interface between the driver and the vehicle. The main objective of our steering system is to provide directional control to the vehicle. It will be smooth, compact and light. it must also be precise and must also provide the driver a perfect control of the vehicle. We will make such a steering system such that the driver can take a quick turn or curve with minimum discomfort.

Our steering system is designed to provide easy turning with quick response and it follows Ackermann Design.

Where,

 α = Ackermann angle

```
TT - (2 \times AAAAAAAAAAAA) = \sin \beta
 AAAAAAAAAAAAAAAA = 494.8363 AA
```

The value of turning radius of our kart is assumed to be 2.6m.

```
AAa \ A \ \alpha 1 = 39.047^{\circ}
```

AiAAA Consider a \triangle ABP, $\cot \theta = BP/IP$ = 1667/1020 $\boldsymbol{\theta} = 35.42^{\circ}$ Consider \triangle IAP, $\cot \emptyset - \cot \boldsymbol{\theta} = c/b$ $\cot \emptyset = 2.86y$ $\emptyset = 25.61^{\circ}$

```
Inner turning radius Ri = (b/\sin \theta)/((a-c)/2)
= (1778/\sin 35.2)/((1666.78-694)/2)
= Ackermann angle = \tan \alpha = (c/2)/b
= (1778/2)/694
\alpha = 18.7^{\circ}
```

The turning radius and turning angles are calculated graphically. We calculated that the Graphical values and arithmetical values of our team are approximately equal.

4. BRAKING SYSTEM

For Our kart, team Elites used disc brake. Disc brake is a wheel brake which helps to slow down the speed of the vehicle by the friction caused by pushing brake pad is against the disc with a set of calliper. Discs are mostly made from cast iron. They are fixed on the axle. When brake calliper is forced mechanically, pneumatically or hydraulically against the both sides of the disc, friction occurs and thus the vehicle can be stopped.

The main objective of the brakes is to stop the car safely and At the time of braking, kinetic energy is converted into heat energy due to the friction between calliper pad and rotor disc.

```
Kinetic Energy = \frac{1}{2} Mv2
Where M is mass
v is velocity
```

```
2
= 180 x 11.112 /2
= 11108.889
```

Deceleration of the vehicle should not exceed 1.3G. $\mu=0.6$ Stopping distance of the vehicle is calculated by Newton Law's of motion.

v2 = u2 + 2aS

where,

v is the final velocity of the vehicle u is the initial velocity of the vehicle S is the stopping distance

S = v2-u2/2a

= 11.112/2x1.3x9.8

= 4.84 m

Breaking force = K.E/S

= 10491.73/4.84

= 2295.225 N

5. Overview

CHASSIS	Seamless tube (AISI 1080)	
WHEELBASE	738.6 mm	
OVERALL LENGTH OF VEHICLE	1778 mm	
TRACK WIDTH	1666.76 mm	
TYPE OF ENGINE	Apache 160	
STEERING	Mechanical linkage	
WHEELS AND TYRES		
BRAKES	Hydraulic disc brake	
TRANSMISSION	Manual 5 speed gear transmission	
MASS OF THE CHASSIS	11.416kg	
GROUND CLEARANCE	2 inch	from bottom most part

6. CAD Model

7. Engines

Displacement:	160
Engine:	Oil cooled , OHC , 4 Valve
Maximum Power:	15.53 bhp@8400 rpm
Maximum Torque:	13.9 Nm @ 7000 rpm
Gears:	5 Speed
Clutch:	Wet Multiplate Clutch
Bore:	58mm
Stroke:	47.2mm
No. of Cylinders:	1

For our go-kart we used apache rtr 160 engine. The reason for using this engine is that is it is powerful in this segment and has a good initial pickup and also it fits in our budget. This engine uses 4 valves, two for inlet and two for outlet. Also it uses overhead camshaft.

8. Transmission system

We used the same transmission system as that of apache rtr 160 engine. Similar to any other transmission systems, by using gear ratios, it is important in order the conversion

of power from engine to prop shaft. The reason for using this is that it is convenient and also it fits with our design .It also consists of drive train, prop shaft, final drive shafts and with or without gearbox and clutch . The clutch which we press with our hand its wire goes down to this part where the pressure plates press against each other to free the gears and drive shaft and we can easily change the gears .

9. Tyres

The tyres of a go kart differ from that of a commercial or passianger car. These are small thick. For go-kart Team Elites used BKT tyres. Unlike normal vehicles tyres use on normal road to cater for different road conditions, go-kart has very specific type of tyres for two major purposes i.e. dry or wet track so that drivers can have maximum performances and grips from the tyres. Dry and wet tyres are two main types of tyre used in karting. A dry tyre does not have grooves on the tyre, but our BKT tyres had grooves for better gripping. These tyres had a longer life as compared to other.

On the other hand, wet tyres which are grooved are used in order to have more grips when the track is slippery. Hence, for track conditions that are in wet conditions, wet tyre. We used the wet tyre i.e BKT tyres.

10. KILL SWITCH

Kill Switch is one of the major component of a go-kart. In our kart we used 3 Kill switch are provided so to provide safety to the driver. In case of any emergency the driver can push the kill switch so that the engine would stop functioning. The kill switch and its related electronics and wiring are designed such that when the kill switch is pressed, power is stopped on primary ignition coil of the engine. Hence making the kart stop.

11. BODY WORKS AND SEAT

We used Bucket seat in order to provide comfort and also it is very strong and rigid. Go kart seats are adjusted to give extra safety and comfort to the driver as per the heights and position of the driver when compared to the normal seats. We used the seat such that it was partially heat resistant . We used side bumpers in order to provide safety to the driver in case of collision . We also used front bumper for the same safety reason in case if the vehicle gets front collision .

12. Frame FEA Safety Analysis

When we design a kart we need to check whether the chassis design we made is strong or not. Also it assures us that a type of engine and driver can be mounted on it. For our kart we used CATIA software to design the frame. We then used this design in ANSYS for analysis in static structural to find out front and rear impact. It took several attempt for us to reach the final design.

12.1 Front Impact Analysis

The front impact test is carried out as Mass of the vehicle (Driver + vehicle estimated) M = 160 Kg From mass moment of inertia equation, Frontal impact Force $F = P \times \Delta T$

Where,

P = momentum ΔT = duration of time = 1.1 seconds P = M x V = 160 x 17.8 = 2848 Kg m/s F = P x ΔT = 2848 x 1.1 = 3132.8.4 N

For our front impact analysis we imported the design from CATIA to ANSYS in static structural .Then we did the meshing . Then we fixed All four points and apply load from frontwards . We will then determine total deformation and Factor of safety .

Fig. Deformation

From the design and its analysis we found that The maximum deformation is found to be 0.104 mm which is very small and it is safer to use

12.2 Side Impact Analysis Side

```
impact Force F = P \times \Delta T where P = M \times V M = 160 \text{ Kg} V = 48 \text{ kmph} = 13.3 \text{ m/s} P = M \times V = 160 \times 13.3 = 2128 \text{ Kg m/s} F = P \times \Delta T = 2128 \times 1.1 = 2340.8 \text{ N}
```

For our front impact analysis we imported the design from CATIA to ANSYS in static structural .Then we did the meshing . Then we fixed All four points and apply load from sidewards . We will then determine total deformation and Factor of safety .

12.1.1 Side Impact Analysis : (1000N)

Project

Contents

1 Units

1 Model (A4)

Geometry

n Part

- n Parts
- <u>Materials</u>
- n_Structural Steel 3 n

Structural Steel 2 n

Structural Steel

- n Structural Steel 4
- Coordinate Systems
- Connections
- Mesh
- **Static Structural**

(A5) n Analysis

Settings n Loads

- n Solution (A6)
- n_Solution Information
- n Results
- n Stress Tool
- n Safety Factor
- 1 Material Data
- Structural Steel

Units

TABLE 1

	TADLL I
Unit System	Metric (mm, kg, N, s, mV, mA)
	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
	Degrees
Rotational	rad/s
Velocity	
Temperature	Celsius

Model (A4)

Geometry

TABLE 2 Model (A4) > Geometry

Wodel (A4) > Geometry
Object Name Geometry
State Fully Defined
Definition
Source E:\ansys analysis practice\Go kart design rear engine side impact.JPG_files\dp0\SYS\DM\SYS.agdb
Type DesignModeler
Length Unit Meters
Element Control Program Controlled
Display Style Body Color
Bounding Box
Length X 872. mm
Length Y I /04.9 mm

Length Z	25.4 mm
Properties	
	4.4502e+006 mm³
Mass	34.934 kg
Scale Factor Value	I.
Statistics	
Bodies	
Active Bodies	13
Nodes	
Elements	46173
Mesh Metric	None
Update Options	
Assign Default Material Basic Geometry Options	No
Basic Geometry Options	

Parameters	Independent
Parameter Key	
Attributes	Yes
Attribute Key	
Named Selections	Yes
Named Selection Key	
Material Properties	
Advanced Geometry Opt	
Use Associativity	
Coordinate Systems	Yes
Coordinate System Key	
Reader Mode Sayes Updated File	
Use Instances	
Smart CAD Update	Yes
Compare Parts On Update	
Analysis Type	3-D
Clean Bodies On Import	No
Stitch Surfaces On Import	No
Decompose Disjoint	Yes
Geometry	
Enclosure and Symmetry Processing	Yes

TABLE 3
Model (A4) > Geometry > Body Groups
Object Name | Part

out (A4) / Otollichy / Dody Oloup
Object Name <i>Part</i>
State Meshed
Graphics Properties
V1s1ble Yes
Definition
Suppressed No
Assignment Structural Steel
Coordinate Default Coordinate
Assignment Structural Steel Coordinate Default Coordinate System System
Bounding Box
Length X 872, mm
Length Y 1 / 04.9 mm
Length Z 25.4 mm
Properties
Volume 4.4502e+006 mm ³
Mass 34.934 kg
Centroid X -0.95554 mm
Controld V 577 66 mm
Centroid 1 533.00 film Centroid Z 2.3787e-002 mm Moment of 8.5531e+006 Inertia Ip1 kg·mm² Moment of 2.3863e+006 Inertia Ip2 kg·mm² Moment of 1.0937e+007 Inertia Ip3 kg·mm²
Moment of 8.5531e+006
Inertia Ip1 kg·mm ²
Moment of 2.3863e+006
Moment of LOUT/e+OU/
Inertia In3 kg·mm ²
Statistics Statistics
Nodes /2846
Elements 461/3
Mesh Metric None
CAD Attributes
Color:143.143.
175
Color:143.159.
1/5 Color:143.I/5,
143
Color:143.1/5.
159
Color: 143. 1/2
1/3
Color:159.143.
175
Color:159.1/5
Color:1/5.143.
143
Color:175.143.
159
Color:175.143.
175
Color:175.159 143
143
Color:175.175.
143

			Model	TA (A4) > Geo	BLE 4	Part > Parts	2			
	Compone	e Compon	e Compon	e Compone nt4	e Compon	e Compon	s e Compon	e Compon	e Compon	ie 🕝
01.	nt1	$nt2^{-1}$	nt3	nt4	nt5	nt6	$nt7^{-1}$	nt8	$nt9^{-1}$	
Objec	et <i>Brep</i> With	Brep With Voids	Brep With Voids	\Brep With	\Brep With	Brep With	\Brep With	Brep With	Brep With Voids	
INaiii	Voids	Voids	Voids	Voids	Voids	Voids	Voids	Voids	Voids	
Stat	Meshed		1				1			
Graphic	s Properti le Y es	ies								
V1S1bl	le Yes									
Transpare	1									
Definition	1									
Suppress	No									
Stiffness	l 									
Behavior	Flexible									
Coordinat			~ ·							
Cyvatam	Default C	oordinate S	System							
System Reference	v I									
Temperat	By Enviro	onment								
ure -	1									
Behavior	None									
Material	Ctmvotvmol	Ctaal								
	Structural	Steel								
Nonlinear										
Nonlinear Effects	Yes									
Thermal										
Strain	Yes									
Effects Bounding	Roy									
	8/2. mm	783.4	21.4 mm		748.32	214.92 m	m			\top
		mm			mm					
Length Y	1/04.9 mm	1559.1 mm	963.32 m	m	21.4 mm					
Length Z	25.4 mm	21.4 mm								
Unonoutro	<u> </u>									
77.1	1.5204e+	1.4981e+	2 4170	005 3	2.6479e+ 005 ₂	72717	72715	72717	70704	
volume	006 mm ³	006 mm ³	3.4179e+0	oos mm	005 mm ³	73717	73715	73717	73724	
	111111	111111				mm³		mm³	mm³	\perp
Mass	11.935 kg				l kg	0.57868 kg		0.57868 kg	0.57873 kg	\prod
Centroid	2 799	-5.4498e- 005	-152.4	152.4 mm	-2.018e- 005	-266.7	266.7 mm	-266.7	266.7	L
		Mm		1.52.7 IIIIII	mm		200.7 111111			Γ
Control	mm		mm	<u> </u>	167 mm	mm	 m	mm	mm	+
Centroid	1399.76 mm	498.7 mm	273.5 mm		762. mm	118.24 m	111	437.39 m	111	
	1/ 0435e-	-1.3564e-	4.1606e-	1.0456e-	-6. <u>1</u> 554e-	1.3686e-	1.4647e-	2.0075e-	1.338e- 003	-4
Centroid	1002	003	004 mm	1.0456e- 003 Mm	005 mm	1003	003	003 mm	003	-4
Z	/ l	mm		IVIIII	111111	mm	mm	111111	mm	
Moment	3,1545e+	3.3576e+ 006	2.025	· -	118.65	33.142	33.141	33.143	33.148	+
of Inertia	006	006		05	kg∙mm²	kg∙mm²	kg∙mm²	kg∙mm²	kg∙mm²	
Ip1		kg∙mm²	kg∙mm²							
Moment	8.231e+0	1.1156e+		2	94724	2050.51			2059.6	\top
of Inertia Ip2	05 kg∙mm²	006 kg·mm²	153.11 kg	g∙mm²	kg·mm²	2059.5 kg	;∙mm²		kg·mm²	
102	سح سس	₁₁₁₁₁	1		1					

Moment of Inertia Ip3	3.9761e+ 006 kg·mm²	4.4725e+ 006 kg·mm²	2.037e+00kg·mm²	05	94724 kg·mm²	2059.2 kg	g∙mm²		2059.3 kg·mm²
Statistics									
Nodes	60976	15243	2566	2232	3548	762	857	860	347
Elements	31176	7487	1202	1006	1791	356	396	407	120
Mesh Metric	None	•	•	•	•	•	•	•	•

Transparency I Definition Suppressed No Stiffness Flexible Behavior Coordinate Default Coordinate System
System Reference By Environment Temperature Behavior None Material Assignment Structural Steel Nonlinear Yes Effects Thermal Strain Yes Effects Bounding Box Length X 144.58 mm Length Y 23.4 mm Length Z 21.4 mm **Properties** Volume 48065 mm³

Mass 0.37/31 kg

Centroid X -253.53 mm

Centroid Y 1212.6 mm

Centroid Z -1.3836e-003 mm

Moment of 21.654 kg·mm²

Inertia In1 48074 mm³ U.37738 kg 253.53 mm -3.8252e-004 mm 21.662 kg·mm²

Nodes 482	379
Elements 192	138
Mesh Metric None	·

5/9.09 kg·mm²

5/8./8 kg·mm²

Inertia Ip1

Statistics

Moment of 5/9.05 kg·mm² Inertia Ip2

Moment of 5/8./4 kg·mm² Inertia Ip3

1

Coordinate Systems

TABLE 6 Model (A4) > Coordinate Systems > Coordinate System

Coordinate System	
Object Name Global Coordina System State Fully Defined	te
System	
State Fully Defined	
Definition	
Type Cartesian	
Coordinate 0.	
Coordinate 0. System ID	
Origin	
Origin X 0. mm	
Origin Y O. mm	
Origin Z 0. mm	
Directional Vectors	
X Axis Data [1. 0. 0.]	
Y Axis Data [U. I. U.]	
Z Axis Data [0. 0. 1.]	

Connections

TABLE 7
Model (A4) > Connections
Object Name Connections
State Fully Defined Auto Detection
Generate Automatic Yes
Connection On Refresh
Transparency

Enabled Yes

Mesh

TABLE 8

Model (A4) > Mesh Object Name Mesh	
Object Name Mesh	
State Solved	
Display	
Display Style Use Geometry Setting	
Defaults	
Physics Preference Mechanical	
Element Order Program Controlled	
Element Size Default	
Sizing	
Use Adaptive Sizing Yes	
Resolution Default (2)	
Mesh Defeaturing Yes Defeature Size Default	
Transition Fast	
Span Angle Center Coarse Initial Size Seed Assembly	
Initial Size Seed Assembly	
Bounding Box Diagonal 1915.1 mm Average Surface Area 6203.5 mm ² Minimum Edge Length 1.3851e-003 mi	
Average Surface Area 6203.5 mm ²	
Minimum Edge Length 1.3851e-003 mi	m
Quality	
Check Mesh Quality Yes, Errors	
Error Limits Standard Mechanical	

Target Quality	Default (0.050000)
Smoothing Mesh Metric	Medium
Inflation	<u> попе</u>
Use Automatic Inflation	None
Inflation Option	
Transition Ratio	0.272
Maximum Layers	
Growth Rate Inflation Algorithm	

View Advanced Options No
Advanced
Number of CPUs for Parallel Program Part Meshing Controlled
Part Meshing Controlled
Straight Sided Elements No
Number of Retries Default (4)
Rigid Body Behavior Dimensionally Reduced
Reduced
Triangle Surface Mesher Program Controlled
Controlled
Topology Checking Yes
Pinch Tolerance Please Define
Generate Pinch on Refresh No
Statistics
Nodes /2846
Elements 46173

TABLE 9
Model (A4) > Analysis
Object Name Static
Structural
(A5)
State Solved

Definition
Physics Type Structural
Analysis Type Static
Structural
Solver Target Mechanical
APDL

Options
Environment
Temperature
Generate Input No
Only

TABLE 10 Model (A4) > Static Structural (A5) > Analysis Settings

Model	(A4) > Static Structural (A5) > Analysis Settings
Object Name	Ànalysis Settings
	Fully Defined Total Control of the Fully Defined To
Step Controls	
Number Of Steps	1.
Current Step Number	1.
Step End Time	1. s
Auto Time Stepping	Program Controlled
Solver Controls	
Solver Type	Program Controlled
Weak Springs	Off
Checking	Program Controlled
Large Deflection	
Inertia Relief	
Rotordynamics Con	
Coriolis Effect	Off
Restart Controls	Program Controlled
Points	Program Controlled
Retain Files After	No
Full Solve	
Combine Restart Files	Program Controlled
Nonlinear Controls	
Newton-Raphson	Program Controlled
Óption	
Force Convergence	Program Controlled
Moment Convergence	Program Controlled
	Program Controlled
Convergence	1 Togrum Controlled
Rotation	Program Controlled
Convergence	
	Program Controlled
Stabilization	Ott
Output Controls	Vac
Stress	
Strain	
Nodal Forces	
Contact Miscellaneous	INU
General	No
Miscellaneous	INU
Store Results At	All Time Points
Analysis Data Mana	
rimiyoib Dum Mana	Scinority .

Solver Files	E:\ansys analysis practice\Go kart design rear engine side impact.JPG_files\dp0\SYS\MECH\
Directory	mpact.JPG_files\dpU\SYS\MECH\
Future Analysis	None
cratch Solver Files	
Directory	
Save MAPDL db	No

Contact Summary	Program Controlled
Delete Unnegged	Yes
Files	
Nonlinear Solution	
	Active System
Solver Unit System	Nmm

Model (A4) > Static Structural (A5) > Loads

Object Force Fixed
Name Support

State Fully Defined

Scope
Scoping Geometry Selection
Method
Geometry 12 Faces 2 Faces

Definition

Type Force Fixed
Support

Define By Vector

Magnitude 1000. N
(ramped)
Direction Defined

Suppressed No

 $\begin{array}{c} FIGURE\ 1\\ Model\ (A4) > Static\ Structural\ (A5) > Force \end{array}$

Solution (A6)

Model (A4) > Static Structural (A5) > Solution
Object Name Solution
(A6)

	(710)
State	Solved
Adaptive Mesh Refinement	
Kennement	
Max Refinement	1.
Loops	
Refinement Depth Information	2.
Information	
Status	
MAPDL Elapsed	20. s
Time	
MAPDL Memory	1,0137
Used	GB
MAPDL Result File Size	33,438
File Size	MB
Post Processing	
Beam Section Results	No
Results	
On Demand Stress/Strain	No
Suess/Strain	

TABLE 13
Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

	anon (Ao) > 50
Object Name	Solution .
J.	Information
State	Sólved
Solution Information	
Solution Output	
Newton-Raphson	0
Residuals	
Identify Element Violations	0
Violations	
Update Interval	
Display Points	All
FE Connection Visibi	lity
Activate Visibility	
Display	All FE
1 7	Connectors
Draw Connections Attached To	All Nodes
Attached To	
Line Color	Connection
	Type
Visible on Results	
Line Thickness	Single
Display Type	Lines

Model (A4) > Static Structural (A5) > Solution (A6) > Results

del (A4) > Static S	Structural (A5	> Solution (A6) $>$ Res
Object Name	Total Deformation) > Solution (A6) > Res Maximum Principal Elastic Strain
State	Solved	Eiasiic Sirain
	Dorved	
Scope	Coomotury Col	lastion
Scoping Method Geometry	All Bodies	iection
Definition	All boules	
	DT (1	h.
1 ype	Total	Maximum Principal Elastic Strain
Dvv		Elastic Strain
	Time	
Display Time	Last	
Calculate Time		
History		
Identifier		
Suppressed	No	
Results	•	
Mınımum	0. mm	-8.2212e-00/ mm/mm
Maximum	4.7906e-002	2.6839e-004 mm/mm
	mm	
Average	3.9724e-002	1.7913e-006 mm/mm
	mm	
Occurs On		Brep With Voids
Maximum	Component1\	Brep With Voids
Occurs On		_
Information		
Time	1. s	
Load Step	1	
Substep	1	
Iteration Number	I	
Number	4 D 14	
Integration Poin	t Kesults	IA yyana aa d
Display Option		Averaged
Average Across Bodies		No
Bodies		

TABLE 15
Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation

Time [s]	Minimum [mm]	Maximum [mm]	Average [mm]
1.	0.		3.9724e- 002
		002	002

Model (A4) > Static Structural (A5) > Solution (A6) > Maximum Principal Elastic Strain

Model (A4) > Static Structural (A5) > Solution (A6) > Maximum Principal Elastic Strain

Time		Maximum	Average
[s]		[mm/mm]	[mm/mm]
	-8.2212e-007	2.6839e-004	1.7913e-006

TABLE 17
Model (A4) > Static Structural (A5) > Solution (A6) > Stress Safety Tools

Name	Stress 100l
	Solved
Definition	
Theory	Max Equivalent
-	Stress
Stress Limit	Tensile Yield Per Material
Туре	Materiai

TABLE 18 Model (A4) > Static Structural (A5) > Solution (A6) > Stress Tool > Results

c Structural (A5) > Solution (A6) > Stre
Object Name Safety Factor
c Structural (A5) > Solution (A6) > Stre Object Name Safety Factor State Solved
Scope
Scoping Method Geometry Selection
Geometry All Bodies
Definition
Type Safety Factor
By I ime
Display Time Last
Calculate Time Yes History
Identifier
identifier
Suppressed No
Integration Point Results
Display Ontion Averaged
Average Across No Bodies
Boales
Results
Minimum 4.1236
Minimum Component1\Brep Occurs On With Voids
Information
Time 1. s
Load Step I
Substep I
Iteration 1
Number
TAUTHOCI

TABLE 19 Model (A4) > Static Structural (A5) > Solution (A6) > Stress Tool > Safety Factor Time Minim Maxim Avera | S | um | um | ge | I. | 4.1236 | I5. | 14.99 |

Material Data Structural Steel

TABLE 20
Structural Steel > Constants

Density

Isotropic Secant Coefficient of Thermal 1.2e-005 C^-1

Specific Heat Constant Pressure 4.34e+005 mJ kg^-1

C^-1

Isotropic Thermal Conductivity 6.05e-002 W mm^-1

C^-1

Isotropic Resistivity 1.7e-004 onm mm

TABLE 21 Structural Steel > Color

Ķе	Gree	Blu
d	n	e
Ţ 3	139	17
2		9

TABLE 22 Structural Steel > Compressive Ultimate Strength

Compressive Ultimate Strength MPa
0

Structural Steel > Compressive Yield Strength

Compressive Yield Strength MPa 250

> TABLE 24 Structural Steel > Tensile Yield Strength

Tensile Yield Strength

TABLE 25 Structural Steel > Tensile Ultimate Strength

Tensile Ultimate Strength 460

TABLE 28 Structural Steel > Strain-Life Parameters

Structural Steel > Strain-Life Parameters						
Strength Coefficient	Strength	Ductility Coefficient	Ductility	Cyclic Strength Coefficient		Cyclic Strain
Coefficient	Exponent	Coefficient	Exponent	Coefficient		Hardening
	MPa		r		MPa	Exponent
920	-0.106	0.213	-0.47	1000	0.2	

TABLE 29

Structural Steel > Isotropic Elasticity					
Young's Modulus MPa	Poisson's Ratio	Bulk	Shear Modulus MPa	Temperatu	
Moduĭus MPa	Ratio	Modulus	lModulus MPa	re C ¹	
		Bulk Modulus MPa			
2.e+005	0.3	1.666/e+005	76923		
	0.0	1.000,0.00	1, 0, 20		

 $\begin{array}{c} \text{TABLE 30} \\ \text{Structural Steel} > \text{Isotropic Relative Permeability} \end{array}$

Relative 10000 Projec Page 2 of

Projec Page 3 of

Projec Page 4 of

12.2.1 Front Impact Analysis: (1000N)

Project

First Saved	Sunday, July 19, 2020
Last Saved	Sunday, July 19, 2020
Product Version	19.2 Release
Save Project Before Solution	No
Save Project After Solution	No

Projec Page 5 of

Projec Page 6 of

Contents

1 Units

1 Model (A4)

Geometry

n Part

n Parts

: Materials

 $n\underline{\ Structural\ Steel3}\ n\underline{\ Structural\ Steel2}\ n$

Structural Steel

n Structural Steel 4

: Coordinate Systems

<u>Connections</u>

: Mesh

; Static Structural (A5) n Analysis

Settings n_Loads

n Solution (A6)

 $\underline{n\ Solution\ Information}$

n Results

n Stress Tool

n Safety Factor

1 Material Data

: Structural Steel

Units

TABLE 1

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (A4)

Geometry

TABLE 2 Model (A4) > Geometry

	Model (A4) > Geometry					
Object Name	Geometry					
State	Fully Defined					
Definition						
Source	E:\ansys analysis practice\Go kart design rear engine_files\dp0\SYS\DM\SYS.agdb					
Туре	DesignModeler					
Length Unit	Meters					
Element Control	Program Controlled					
Display Style	Body Color					
Bound	ing Box					
Length X	872. mm					
Length Y	1704.9 mm					
Length Z	25.4 mm					
Prop	erties					
Volume	4.4502e+006 mm ³					
Mass	34.934 kg					
Scale Factor Value	1.					
Stati	stics					
Bodies	13					
Active Bodies	13					
Nodes	72846					
Elements	46173					
Mesh Metric	None					
Update	Options					
Assign Default Material	No					
Basic Geom	etry Options					
Parameters	Independent					
Parameter Key						
Attributes	Yes					
Attribute Key						
Named Selections	Yes					
Named Selection Key						
Material Properties	Yes					
Advanced Geo	ometry Options					
Use Associativity	Yes					
Coordinate Systems	Yes					
Coordinate System Key						
Reader Mode Saves Updated File	No					
Use Instances	Yes					
Smart CAD Update	Yes					

Compare Parts On Update	No
Analysis Type	3-D
Clean Bodies On Import	No
Stitch Surfaces On Import	No
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

TABLE 3

	MBLE 3 metry > Body Groups
Object Name	Part
State	Meshed
Graphics Properties	
Visible	Yes
Definition	
Suppressed	No
Assignment	Structural Steel
Coordinate System	Default Coordinate System
Bounding Bo	
Length X	872. mm
Length Y	1704.9 mm
Length Z	25.4 mm
Properties	
Volume	4.4502e+006 mm ³
Mass	34.934 kg
Centroid X	-0.95554 mm
Centroid Y	533.66 mm
Centroid Z	2.3787e-002 mm
Moment of Inertia Ip1	8.5531e+006 kg·mm²
Moment of Inertia Ip2	2.3863e+006 kg·mm²
Moment of Inertia Ip3	1.0937e+007 kg·mm²
Statistics	
Nodes	72846
Elements	46173
Mesh Metric	None
CAD Attribut	es
Color:143.143.175	
Color:143.159.175	
Color:143.175.143	
Color:143.175.159	
Color:143.175.175	
Color:159.143.175	
Color:159.175.143	
Color:175.143.143	
Color:175.143.159	
Color:175.143.175	
Color:175.159.143	
Color:175.175.143	

TABLE 4 Model (A4) > Geometry > Part > Parts

				IVIOC	ei (A4) > Geoi	metry > Part >	Parts				
Object Name		Component2 \Brep With Voids	Component3 \Brep With Voids	Component4 \Brep With Voids	Component5 \Brep With Voids	Component6 \Brep With Voids	Component7 \Brep With Voids	Component8 \Brep With Voids	Component9 \Brep With Voids	Component10 \Brep With Voids	Component11 \Brep With Voids
State			•	Meshed	•	•		•		•	
		Gra	phics Properti	es							
Visible				Yes							
Transparency						1					
			Definition								
Suppressed				No							
Stiffness Behavior				Flexible							
Coordinate System			Default C	Coordinate Syste	m						
Reference Temperature			Ву І	Environment							
Behavior				None							
			Material								
Assignment			Str	uctural Steel							
Nonlinear Effects				Yes							
Thermal Strain Effects				Yes							
		В	Sounding Box								
Length X	872. mm	783.4 mm	21.4 mm		748.32 mm	214.92 mm				71.495 mm	
Length Y	1704.9 mm	1559.1 mm	963.32 mm		21.4 mm	•				128.14 mm	
Length Z	25.4 mm	21.4 mm	•		•					•	
		_	Properties	_				_		•	
Volume	1.5204e+006 mm³	1.4981e+006 mm ³	3.4179e+005 m	m³	2.6479e+005 mm ³	73717 mm³	73715 mm³	73717 mm³	73724 mm³	46176 mm³	
Mass	11.935 kg	11.76 kg	2.683 kg		2.0786 kg	0.57868 kg	0.57867 kg	0.57868 kg	0.57873 kg	0.36248 kg	
Centroid X	-2.799 mm	-5.4498e-005 mm	-152.4 mm	152.4 mm	-2.018e-005 mm	-266.7 mm	266.7 mm	-266.7 mm	266.7 mm	-84.433 mm	84.433 mm
Centroid Y	599.76 mm	498.7 mm	273.5 mm	•	762. mm	118.24 mm	•	437.39 mm	•	1393.6 mm	•
Centroid Z	7.0435e-002 mm	-1.3564e-003 mm	4.1606e-004 mm	1.0456e-003 mm	-6.1554e-005 mm	1.3686e-003 mm	1.4647e-003 mm	2.0075e-003 mm	1.338e-003 mm	-4.7668e-004 mm	-6.5638e-004 mm

Projec Page 8 of

Moment of Inertia Ip1	3.1545e+006 kg·mm²	kg·mm-	2.037e+005 kg·n		118.65 kg·mm²	33.142 kg·mm²	33.141 kg·mm²	33.143 kg·mm²	33.148 kg·mm²	514.61 kg·mm²	514.59 kg·mm²
Moment of Inertia Ip2	8.231e+005 kg·mm²	1.1156e+006 kg·mm²	153.11 kg·mm²		94724 kg·mm²	2059.5 kg·mm²			2059.6 kg·mm²	20.804 kg·mm²	20.803 kg·mm²
Moment of Inertia Ip3	3.9761e+006 kg·mm²	4.4725e+006 kg·mm²	2.037e+005 kg·n	nm²	94724 kg·mm²	2059.2 kg·mm²	:		2059.3 kg·mm²	514.28 kg·mm²	514.26 kg·mm²
			Statistics								
Nodes	60976	15243	2566	2232	3548	762	857	860	347	2619	1141
Elements	31176	7487	1202	1006	1791	356	396	407	120	1330	572
Mesh Metric	Mesh Metric None										

TABLE 5

	TABLE 5	
	Geometry > Part > Parts	
		Component13\Brep With Voids
State	Meshed	
	cs Properties	
Visible	Yes	
Transparency		1
	efinition	
Suppressed	No	
Stiffness Behavior	Flexible	
	Default Coordinate System	
Reference Temperature	By Environment	
Behavior	None	
N	Material Page 1	
Assignment	Structural Steel	
Nonlinear Effects	Yes	
Thermal Strain Effects	Yes	
Bou	nding Box	
Length X	144.58 mm	
Length Y	23.4 mm	
Length Z	21.4 mm	
Pr	operties	
Volume	48065 mm³	48074 mm³
Mass	0.37731 kg	0.37738 kg
Centroid X	-253.53 mm	253.53 mm
Centroid Y	1212.6 mm	
Centroid Z	-1.3836e-003 mm	-3.8252e-004 mm
Moment of Inertia Ip1	21.654 kg·mm²	21.662 kg·mm²
Moment of Inertia Ip2	579.05 kg·mm²	579.09 kg·mm²
Moment of Inertia Ip3	578.74 kg·mm²	578.78 kg·mm²
S	atistics	•
Nodes	482	379
Elements	192	138
Mesh Metric	None	

Coordinate Systems

TABLE 6
Model (A4) > Coordinate Systems > Coordinate System

Object Name	Global Coordinate System
State	Fully Defined
Definition	
Туре	Cartesian
Coordinate System ID	0.
Origin	
Origin X	0. mm
Origin Y	0. mm
Origin Z	0. mm
Directional Vectors	
X Axis Data	[1. 0. 0.]
Y Axis Data	[0. 1. 0.]
Z Axis Data	[0. 0. 1.]

Connections

TABLE 7
Model (A4) > Connections

Model (A4) > Connections	
Object Name	Connections
State	Fully Defined
Auto Detection	
Generate Automatic Connection On Refresh	Yes
Transparency	
Enabled	Yes

Mesh

TABLE 8

	IVIOC	iei (A4) > Niesn	
		Object Name	Mesh
		State	Solved
	Display		
		Display Style	Use Geometry Setting
Defaults		•	

Physics Preference	Mechanical
Element Order	Program Controlled
Element Size	Default
Sizing	
Use Adaptive Sizing	Yes
Resolution	Default (2)
Mesh Defeaturing	Yes
Defeature Size	Default
Transition	Fast
Span Angle Center	Coarse
Initial Size Seed	Assembly
Bounding Box Diagonal	1915.1 mm
Average Surface Area	6203.5 mm ²
Minimum Edge Length	1.3851e-003 mm
Quality	
Check Mesh Quality	Yes, Errors
Error Limits	Standard Mechanical
Target Quality	Default (0.050000)
Smoothing	Medium
Mesh Metric	None
Inflation	
Use Automatic Inflation	None
Inflation Option	Smooth Transition
Transition Ratio	0.272
Maximum Layers	5
Growth Rate	1.2
Inflation Algorithm	Pre
View Advanced Options	No
Advanced	
Number of CPUs for Parallel Part Meshing	Program Controlled
Straight Sided Elements	No
Number of Retries	Default (4)
Rigid Body Behavior	Dimensionally Reduced
Triangle Surface Mesher	Program Controlled
Topology Checking	Yes
Pinch Tolerance	Please Define
Generate Pinch on Refresh	No
Statistics	
Nodes	72846
Elements	46173

Static Structural (A5)

TABLE 9 Model (A4) > Analysis

Model (A4) > Analysis		
Object Name Static Structural (A		
State Solved		
Definition		
Physics Type Structural		
Analysis Type Static Structural		
Solver Target Mechanical APDL		
Options		
Environment Temperature 22. °C		
Generate Input Only	No	

TABLE 10

Model (A4) > Static	Structural (A5) > Analysis Settings	
Object Name	Analysis Settings	
State	Fully Defined	
Step Controls		
Number Of Steps	1.	
Current Step Number	1.	
Step End Time 1. s		
Auto Time Stepping	Program Controlled	
Solver Controls		
Solver Type	Program Controlled	
Weak Springs	Off	
Solver Pivot Checking	Program Controlled	
Large Deflection	Off	
Inertia Relief	Off	
Rotordynamics Contro	ols	
Coriolis Effect	Off	
Restart Controls		
Generate Restart Points	Program Controlled	
Retain Files After Full Solve	No	
Combine Restart Files	Program Controlled	
Nonlinear Controls		
Newton-Raphson Option	Program Controlled	
Force Convergence	Program Controlled	
Moment Convergence	Program Controlled	
Displacement Convergence	Program Controlled	
Rotation Convergence	Program Controlled	
Line Search	Program Controlled	

Stabilization	Off
Outpu	t Controls
Stress	Yes
Strain	Yes
Nodal Forces	No
Contact Miscellaneous	No
General Miscellaneous	No
Store Results At	All Time Points
Analysis Da	ata Management
Solver Files Directory	E:\ansys analysis practice\Go kart design rear engine_files\dp0\SYS\MECH\
Future Analysis	None
Scratch Solver Files Directory	
Save MAPDL db	No
Contact Summary	Program Controlled
Delete Unneeded Files	Yes
Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	nmm

TABLE 11 Model (A4) > Static Structural (A5) > Loads

Object Name	Force	Fixed Support
State	State Fully Defined	
Scope		
Scoping Method	Geometry Selection	
Geometry	12 Faces	2 Faces
Definit	ion	
Type	Force	Fixed Support
Define By	Vector	
Magnitude	1000. N (ramped)	
Direction	Defined	
Suppressed	No	

FIGURE 1 Model (A4) > Static Structural (A5) > Force

Solution (A6)

TABLE 12
Model (A4) > Static Structural (A5) > Solution
Object Name | Solution (A6)

State Solved	
Max Refinement Loops	1.
Refinement Depth 2.	
Information	
Status	Done
MAPDL Elapsed Time	20. s
MAPDL Memory Used	1.0137 GB
MAPDL Result File Size 35.438 M	
Post Processing	
Beam Section Results	No
On Demand Stress/Strain	No

TABLE 13
Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

,	> Static Structural (AS) > Solution (A6) > Solution i			
	Object Name	Solution Information		
	State	Solved		
	Solution Information			
	Solution Output	Solver Output		

Projec Page 11 of

0
0
2.5 s
All
Yes
All FE Connectors
All Nodes
Connection Type
No
Single
Lines

TABLE 14

Model (A4) > Static Structural (A5) > Solution (A6) > Results

Object Name | Total Deformation | Maximum Principal Elastic Strain State Solved Scope Scoping Method Geometry Selection Geometry All Bodies Definition Type | Total Deformation | Maximum Principal Elastic Strain Ву Display Time Last Calculate Time History Yes Identifier Suppressed No Results Minimum 0. mm -8.2212e-007 mm/mm Maximum 4.7906e-002 mm 2.6839e-004 mm/mm Average 3.9724e-002 mm 1.7913e-006 mm/mm Minimum Occurs On Component1\Brep With Voids Maximum Occurs On Component1\Brep With Voids Information Time 1. s Load Step Substep

FIGURE 2
Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation

Averaged

No

Iteration Number
Integration Point Results
Display Option

Average Across Bodies

TABLE 15
Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation

`	Time [s]	Minimum [mm]	Maximum [mm]	Average [mm]
	1.	0.	4.7906e-002	3.9724e-002

FIGURE 3
Model (A4) > Static Structural (A5) > Solution (A6) > Maximum Principal Elastic Strain

Projec Page 12 of

TABLE 17

Model (A4) > Static Structural (A5) > Solution (A6) > Stress Safety Tools

Object Name Stress Tool

Object Name			
		Stress Limit Type Tensile Yield Per Mater	

TABLE 18
Model (A4) > Static Structural (A5) > Solution (A6) > Stress Tool > Results

2 001411011 (A0) 2 011633 1001
Safety Factor
Solved
Geometry Selection
All Bodies
Safety Factor
Time
Last
Yes
No
ts
Averaged
No
4.1236
Component1\Brep With Voids
1. s
1
1
1

FIGURE 4
Model (A4) > Static Structural (A5) > Solution (A6) > Stress Tool > Safety Factor

Projec Page 13 of

TABLE 19
Model (A4) > Static Structural (A5) > Solution (A6) > Stress Tool > Safety Factor

•	turur (AO) > Ociution (AO) > Otress roc		1000 1001	•	
	Time [s]	Minimum	Maximum	Average	
	1.	4.1236	15.	14.999	

Material Data

Structural Steel

TABLE 20
ructural Steel > Constants

Structural Steel > Collistants		
Density	7.85e-006 kg mm^-3	
Isotropic Secant Coefficient of Thermal Expansion	1.2e-005 C^-1	
Specific Heat Constant Pressure	4.34e+005 mJ kg^-1 C^-1	
Isotropic Thermal Conductivity	6.05e-002 W mm^-1 C^-1	
Isotropic Resistivity	1.7e-004 ohm mm	

 TABLE 21

 Structural Steel > Color

 Red
 Green
 Blue

 132
 139
 179

TABLE 22 Structural Steel > Compressive Ultimate Strength

Compressive Ultimate Strength

Compressive Yield Strength 250

Tensile Yield Strength 250

Tensile Ultimate Strength 460

Zero-Thermal-Strain Reference Temperature

TABLE 23 Structural Steel > Compressive Yield Strength

TABLE 24 Structural Steel > Tensile Yield Strength

TABLE 25 Structural Steel > Tensile Ultimate Strength

TABLE 26 Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

> TABLE 27 Structural Steel > S-N Curve

Structural Steel > S-N Curve					
Alternating Stress MPa	Cycles	Mean Stress MPa			
3999	10	0			
2827	20	0			
1896	50	0			
1413	100	0			
1069	200	0			
441	2000	0			
262	10000	0			
214	20000	0			
138	1.e+005	0			

Projec Page 1 of

114	2.e+005	0
86.2	1.e+006	0

TABLE 28

Structural	Steel >	Strain-Life	Parameters

Strength Coefficient MPa	Strength Exponent	Ductility Coefficient	Ductility Exponent	Cyclic Strength Coefficient MPa	Cyclic Strain Hardening Exponent
920	-0.106	0.213	-0.47	1000	0.2

TABLE 29 Structural Steel > Isotropic Elasticity

Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
2.e+005	0.3	1.6667e+005	76923	

TABLE 30 Structural Steel > Isotropic Relative Permeability

Relative 10000

Projec Page 2 of

Projec Page 3 of

Chapter 3

2.2 CONCLUSION ON LITERATURE REVIEW

- From our design we found that mass of the chassis is 11.416kg and also our front impact analysis and rear impact analysis also shows us that at 1000N force and 4.2 FOS our vehicle can withstand collision from front and side.
- For the braking part we had used Apache rtr160 disc brake from the calculations of total weight and maximum speed at 48km/h.

Projec Page 4 of

> REFERENCES

➤ [1] Anbuselvi S., Chellaram C., Jonesh S., Jayanthi L., Edward J.K.P., "Bioactive potential of coral associated gastropod, Trochus tentorium of Gulfof Mannar, Southeastern India", Journal of Medical Sciences, ISSN: 1682-4474, 9(5) (2009) pp. 240-244.

- ➤ [2] Caroline, M.L., Vasudevan, S., "Growth and characterization of an oganic nonlinear optical material: 1-alanine alaninium ni- trate", Materials Letters, ISSN: 0167-577X, 62(15) (2008) pp.2245-2248.
- ➤ [3] Parvez Hussain S. D, C. N. Veeramani, B.Amala Priya Shalini, R. Karthika, "An Innovative Energy Efficient Automobile Design, "International Journal of Innovative Science and Modern Engineering (IJISME).ISSN: 2319-6386, Volume-2 Issue-10, September 2014.
- ➤ [4] Arumugam, S., Ramareddy, S., "Simulation comparison of class D/Class E inverter fed induction heating", Journal of Electrical Engi- neeing, ISSN: 1335-3632, 12(2) (2012) pp. 71-76.
- ➤ [5] Simon McBeath, Gordon Murray, "Competition Car Down force -A Practical Handbook"
- [6] Mes Paolino, Alexander Jadczak, Eric Leknes and Tarek Tantawy, "The S-90 Go-Kart-Optimal Design Report, NSF Projects. Ashford.