Solutions Exercises: Binary world

1) Create a 8-bit binary representation of the decimal number 23

2) Create a decimal representation of the binary number 10111111

,			ı					
	2^7	2^{6}	2^5	2^4	2^3	2^2	2^1	2^{0}
	= 128	= 64	= 32	= 16	= 8	= 4	= 2	= 1
	1	0	1	1	1	1	1	1

$$=> 1*2^{7} + 1*2^{5} + 1*2^{4} + 1*2^{3} + 1*2^{2} + 1*2^{1} + 1*2^{0} = 128 + 32 + 16 + 8 + 4 + 2 + 1 = 191$$

3) What is the difference between the representation 0011 0111 and 0000 0111 of the number 7?

00110111 is the ASCII character representation 00000111 is the binary integer representation

4) How can you easily get the binary representation of an ASCII-number representation?

e.g. character '9'

'9' - '0' (use the binary operation – to subtract the ASCII representations like they would be binary representations)

 $00111001_{ASCII} - 00110000_{ASCII} = 00001001_{BIN} = 9_{DEC}$

5) Which text is coded in the following advertisement poster and which code is used?

Code in decimal notation:

83	105	101
32	107	246
110	110	101
110	32	109
101	104	114
46		

=> Sie können mehr.

=> ANSI ISO 8859 Part1 (Latin-1 Western European) - code

Check it with Matlab-program:

a = [83 105 101 32 107 246 110 110 101 110 32 109 101 104 114 46]; char(a)