

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Układ graficzny © CKE 2010

WPISUJE ZDAJĄCY

KOD				Pl	ESE	CL			

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

MAJ 2010

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 20 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1_1P-102

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. *(1 pkt)*

Wskaż rysunek, na którym jest przedstawiony zbiór rozwiązań nierówności |x+7| > 5.

C.
$$\begin{array}{c|c} & & & \\ \hline & & \\ -12 & & -2 & \\ \end{array}$$

$$\mathbf{D.} \qquad \qquad \underbrace{\qquad \qquad \qquad \qquad \qquad }_{-2} \qquad \qquad \underbrace{\qquad \qquad }_{12} \qquad \mathbf{r}$$

Zadanie 2. *(1 pkt)*

Spodnie po obniżce ceny o 30% kosztują 126 zł. Ile kosztowały spodnie przed obniżką?

A. 163,80 zł

B. 180 zł

C. 294 zł

D. 420 zł

Zadanie 3. (1 pkt)

Liczba $\left(\frac{2^{-2} \cdot 3^{-1}}{2^{-1} \cdot 3^{-2}}\right)^0$ jest równa

A. 1

B. 4

C. 9

D. 36

Zadanie 4. (1 pkt)

Liczba $\log_4 8 + \log_4 2$ jest równa

A. 1

B. 2

C. $\log_4 6$

D. $\log_4 10$

Zadanie 5. *(1 pkt)*

Dane są wielomiany $W(x) = -2x^3 + 5x^2 - 3$ oraz $P(x) = 2x^3 + 12x$. Wielomian W(x) + P(x) jest równy

A.
$$5x^2 + 12x - 3$$

B.
$$4x^3 + 5x^2 + 12x - 3$$

C.
$$4x^6 + 5x^2 + 12x - 3$$

D.
$$4x^3 + 12x^2 - 3$$

Zadanie 6. (1 pkt)

Rozwiązaniem równania $\frac{3x-1}{7x+1} = \frac{2}{5}$ jest

A. 1

B. $\frac{7}{3}$

C. $\frac{4}{7}$

D. 7

Zadanie 7. *(1 pkt)*

Do zbioru rozwiązań nierówności (x-2)(x+3) < 0 należy liczba

A. 9

B. 7

C. 4

D. 1

Zadanie 8. *(1 pkt)*

Wykresem funkcji kwadratowej $f(x) = -3x^2 + 3$ jest parabola o wierzchołku w punkcie

A. (3,0)

B. (0,3)

 $\mathbf{C}. \ \ (-3,0)$

D. (0,-3)

Zadanie 9. *(1 pkt)*

Prosta o równaniu y = -2x + (3m + 3) przecina w układzie współrzędnych oś Oy w punkcie (0,2). Wtedy

A. $m = -\frac{2}{3}$ **B.** $m = -\frac{1}{3}$ **C.** $m = \frac{1}{3}$ **D.** $m = \frac{5}{3}$

Zadanie 10. *(1 pkt)*

Na rysunku jest przedstawiony wykres funkcji y = f(x).

Które równanie ma dokładnie trzy rozwiązania?

 $\mathbf{A.} \quad f(x) = 0$

B. f(x) = 1

C. f(x) = 2 D. f(x) = 3

Zadanie 11. *(1 pkt)*

W ciągu arytmetycznym (a_n) dane są: $a_3 = 13$ i $a_5 = 39$. Wtedy wyraz a_1 jest równy

A. 13

B. 0

C. -13

D. −26

Zadanie 12. *(1 pkt)*

W ciągu geometrycznym (a_n) dane są: $a_1 = 3$ i $a_4 = 24$. Iloraz tego ciągu jest równy

A. 8

B. 2

C. $\frac{1}{8}$

D. $-\frac{1}{2}$

Zadanie 13. (1 pkt)

Liczba przekątnych siedmiokąta foremnego jest równa

A. 7

B. 14

C. 21

D. 28

Zadanie 14. (1 pkt)

Kąt α jest ostry i $\sin \alpha = \frac{3}{4}$. Wartość wyrażenia $2 - \cos^2 \alpha$ jest równa

A. $\frac{25}{16}$

B. $\frac{3}{2}$

C. $\frac{17}{16}$

D. $\frac{31}{16}$

Zadanie 15. *(1 pkt)*

Okrąg opisany na kwadracie ma promień 4. Długość boku tego kwadratu jest równa

A. $4\sqrt{2}$

B. $2\sqrt{2}$

C. 8

D. 4

Zadanie 16. (1 pkt)

Podstawa trójkąta równoramiennego ma długość 6, a ramię ma długość 5. Wysokość opuszczona na podstawę ma długość

A. 3

B. 4

C. $\sqrt{34}$

D. $\sqrt{61}$

Zadanie 17. (1 pkt)

Odcinki AB i DE są równoległe. Długości odcinków CD, DE i AB są odpowiednio równe 1, 3 i 9. Długość odcinka AD jest równa

A. 2

B. 3

C. 5

D. 6

Zadanie 18. (1 pkt)

Punkty A, B, C leżące na okręgu o środku S są wierzchołkami trójkąta równobocznego. Miara zaznaczonego na rysunku kąta środkowego ASB jest równa

A. 120°

B. 90°

C. 60°

D. 30°

Zadanie 19. (1 pkt)

Latawiec ma wymiary podane na rysunku. Powierzchnia zacieniowanego trójkąta jest równa

- **A.** 3200 cm^2
- **B.** 6400 cm^2
- $C. 1600 \text{ cm}^2$
- **D.** 800 cm^2

Zadanie 20. *(1 pkt)*

Współczynnik kierunkowy prostej równolegiej do prostej o równaniu y = -3x + 5 jest równy:

A.
$$-\frac{1}{3}$$

C.
$$\frac{1}{3}$$

Zadanie 21. (1 pkt)

Wskaż równanie okręgu o promieniu 6.

A.
$$x^2 + y^2 = 3$$

B.
$$x^2 + y^2 = 6$$

$$C. \quad x^2 + y^2 = 12$$

B.
$$x^2 + y^2 = 6$$
 C. $x^2 + y^2 = 12$ **D.** $x^2 + y^2 = 36$

Zadanie 22. (1 pkt)

Punkty A = (-5,2) i B = (3,-2) są wierzchołkami trójkąta równobocznego ABC. Obwód tego trójkata jest równy

B.
$$4\sqrt{5}$$

B.
$$4\sqrt{5}$$
 C. $12\sqrt{5}$

Zadanie 23. (1 pkt)

Pole powierzchni całkowitej prostopadłościanu o wymiarach 5×3×4 jest równe

Zadanie 24. *(1 pkt)*

Ostrosłup ma 18 wierzchołków. Liczba wszystkich krawędzi tego ostrosłupa jest równa

Zadanie 25. (1 pkt)

Średnia arytmetyczna dziesięciu liczb x, 3, 1, 4, 1, 5, 1, 4, 1, 5 jest równa 3. Wtedy

$$\mathbf{A.} \quad x=2$$

B.
$$x = 3$$

C.
$$x = 4$$

D.
$$x = 5$$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 pkt)

Rozwiąż nierówność $x^2 - x - 2 \le 0$.

Odpowiedź:

Zadanie 27. (2 pkt)

Rozwiąż równanie $x^3 - 7x^2 - 4x + 28 = 0$.

Odpowiedź:

Zadanie 28. *(2 pkt)*

Trójkąty prostokątne równoramienne ABC i CDE są położone tak, jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku C jest prosty). Wykaż, że |AD| = |BE|.

	Nr zadania	26.	27.	28.
 Wypełnia	Maks. liczba pkt	2	2	2
egzaminator	Uzyskana liczba pkt			

Zadanie 29. *(2 pkt)*

Kat α jest ostry i $tg\alpha = \frac{5}{12}$. Oblicz $\cos \alpha$.

Odpowiedź:

Zadanie 30. *(2 pkt)*

Wykaż, że jeśli
$$a > 0$$
, to $\frac{a^2 + 1}{a + 1} \ge \frac{a + 1}{2}$.

Zadanie 31. *(2 pkt)*

W trapezie prostokątnym krótsza przekątna dzieli go na trójkąt prostokątny i trójkąt równoboczny. Dłuższa podstawa trapezu jest równa 6. Oblicz obwód tego trapezu.

Odpowiedź:

	Nr zadania	29.	30.	31.
Wypełnia	Maks. liczba pkt	2	2	2
egzaminator	Uzyskana liczba pkt			

Zadanie 32. (4 pkt)

Podstawą ostrosłupa \overrightarrow{ABCD} jest trójkąt \overrightarrow{ABC} . Krawędź \overrightarrow{AD} jest wysokością ostrosłupa (zobacz rysunek). Oblicz objętość ostrosłupa \overrightarrow{ABCD} , jeśli wiadomo, że |AD|=12, |BC|=6, |BD|=|CD|=13.

Odpowiedź:

	Nr zadania	32.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 33. (4 pkt)

Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia *A* polegającego na tym, że w pierwszym rzucie otrzymamy parzystą liczbę oczek i iloczyn liczb oczek w obu rzutach będzie podzielny przez 12. Wynik przedstaw w postaci ułamka zwykłego nieskracalnego.

Odpowiedź:

	Nr zadania	33.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 34. *(5 pkt)*

W dwóch hotelach wybudowano prostokątne baseny. Basen w pierwszym hotelu ma powierzchnię 240 m². Basen w drugim hotelu ma powierzchnię 350 m² oraz jest o 5 m dłuższy i 2 m szerszy niż w pierwszym hotelu. Oblicz, jakie wymiary mogą mieć baseny w obu hotelach. Podaj wszystkie możliwe odpowiedzi.

Odpowiedź:

	Nr zadania	34.
Wypełnia egzaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	