Image Enhancement (Spatial Filtering)

Image Enhancement Revisited

- Spatial domain methods:
 - Operate directly on pixels
- Frequency domain methods:
 - Operate on the transform of an image

Neighbourhood Operations

 Operate on a neighbourhood of pixels

Processing of pixels at the edges

Approaches to process pixels at the edges

- Add pixels at corners with either all white or all black pixels
- Replicate border pixels
- > Truncate the image
- > Allow pixels wrap around the image

Examples: modified image at the edges

Neighbourhood Operations Example

2-D Convolution

a	b	С
d	e	e
f	g	h

Original Image Pixels

r	S	t
и	v	W
X	у	Z

Filter

\mathcal{Z}	У	X
W	v	и
t	S	r

Swapped Filter

a	b	\boldsymbol{c}
d	e	e
f	8	h

Original Image Pixels

Swapped Filter

$$e_{convolution}$$
= $v \times e + z \times a + y \times b + x \times c + w \times d + u \times e + t \times f + s \times g + r \times h$

The Spatial Filtering Process

Procedure is repeated for every pixel in the original image to generate the filtered image

- ➤ Averages all of the pixels in a neighbourhood around a central value
- Useful in reducing noise from images and for highlighting gross detail

Averaging filter

A=(1/9)

1	1	1
1	1	1
1	1	1

54	100	208		
49	106	198	*	1/9
45	90	185		

	1	1	1
9	1	1	1
	1	1	1

Original Image Pixels

Filter 3*3 Smoothing Filter

$$e = \frac{1}{9}[106 + 54 + 100 + 208 + 49 + 198 + 45 + 90 + 185]$$

= 115

54	100	208	
49	106	198	*
45	90	185	

	1	1	1
/9	1	1	1
	1	1	1

Original Image Pixels

Filter

3*3 Smoothing Filter

$$e = \frac{1}{9}*106 + \frac{1}{9}*54 + \frac{1}{9}*100 + \frac{1}{9}*208 + \frac{1}{9}*49 + \frac{1}{9}*198 + \frac{1}{9}*45 + \frac{1}{9}*90 + \frac{1}{9}*185$$

$$= 115$$

23	42	86		1/9	1/9	1/9
54	100	208	*	1/9	1/9	1/9
49	106	185		1/9	1/9	1/9

3*3 Smoothing Filter

$$e = 94.77 \rightarrow 95$$

23	42	86		1/9	1/9	1/9
54	100	208	*	1/9	1/9	1/9
49	106	185		1/9	1/9	1/9

3*3 Smoothing Filter

$$e = 94.77 \rightarrow 95$$

Original Image

3x3 mask

5x5 mask

9x9 mask

15x15 mask

35x35 mask

Image Smoothing Example

Limitations of averaging filter

- Leads to blurring of image
- Attenuates impulse noise
- Does not remove impulse noise

Weighted Smoothing Filters

A = (1/16)

- Elements of mask have different weights.
- Provides more effective smoothing
- Pixels closer to the central pixel are more important
- Often referred to as a weighted averaging

1	2	1
2	4	2
1	2	1

Weighted averaging filter

Application of average filter (smoothening & thresholding)

Original Image

Application of average filter (smoothening & thresholding)

Original Image

Smoothed Image

Application of average filter (smoothening & thresholding)

Original Image

Smoothed Image 5 × 5 mask

Thresholded Image G(x,y) = 255, if f(x,y)>120=0, otherwise

- Removes finer details
- Thresholding separates gross details

Simple Neighbourhood Operations

- Min: minimum in the neighbourhood
- Max: maximum in the neighbourhood
- Median: midpoint value of the set

Minimum and Maximum Filter

2	3	6
1	2	8
7	4	5

Image Before filter

2	3	6
1	1	8
7	4	5

Image after minimum filter

2	3	6
1	8	8
7	4	5

Image after Maximum filter

Median filter

2	3	6
1	2	8
7	4	5

Image Before filter

 \rightarrow [2 3 6 1 2 8 7 4 5] \rightarrow sort in ascending [1 2 2 3 4 5 6 7 8]

2	3	6
1	4	8
7	4	5

After filter

Image with salt and pepper /impulse noise

After Averaging Filter (blurs)

After Median Filter

Averaging Filter Vs. Median Filter

Original Image With Noise

Image After Averaging Filter

Image After Median Filter

Median filter works better than an averaging filter for salt and pepper noise

Example: Spatial filters

Image matrix is given below. Determine the effect of

- 1. 3x3 and 5x5 averaging filters
- 2. 3x3 weighted averaging filter
- 3. 3x3 Minimum, maximum and median filters

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

Example: Spatial filters

Image matrix is given below. Determine the effect of

- 1. 3x3 and 5x5 averaging filters
- 2. 3x3 weighted averaging filter
- 3. 3x3 Minimum, maximum and median filters

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

First location of filter for 3x3 filter

Next location of mask for 3x3 filter

Example: Spatial filters

Image matrix is given below. Determine the effect of 1. 3x3 and 5x5 averaging filters and minimum filter

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

	1	1	1	
* (1/9)	1	1	1	=
	1	1	1	

45	56	42	63	54
20	46	46	45	53
63	44	41	42	47
67	44	42	43	51
43	36	42	65	43

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

.	1	1	1	1	1
* (1/25)	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1

45	56	42	63	54
20	47	56	28	53
63	59	46	38	47
67	36	27	48	51
43	36	42	65	43

Example: Spatial filters

Image matrix is given below. Determine the effect of

1. 3x3 weighted averaging filters

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

	1	2	1
* (1/16)	2	4	2
, ,	1	2	1

45	56	42	63	54
20	47	45	44	53
63	47	39	40	47
67	43	38	44	51
43	36	42	65	43

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

45	56	42	63	54
20	20	26	26	53
63	20	26	26	47
67	26	26	26	51
43	36	42	65	43

Example: Spatial filters

Image matrix is given below. Determine the effect of

1. 3x3 weighted averaging filters

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

$$\rightarrow$$
max(3x3)

45	56	42	63	54
20	63	63	63	53
63	67	59	56	47
67	67	65	65	51
43	36	42	65	43

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

$$\rightarrow$$
median(3x3) =

45	56	42	63	54
20	47	47	47	53
63	47	38	47	47
67	42	38	43	51
43	36	42	65	43

Sharpening Spatial Filters

- > Remove blurring in images
- Highlight transition in intensity (edges)
- Used in electronic printing, medical imaging, industrial inspection etc.
- > Uses spatial differentiation
- ➤ Differentiation measures the rate of change of a function

Spatial Differentiation

Spatial Differentiation

Spatial Differentiation

1st Derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

- f(x) is pixel value at location, x
- Difference between consecutive values
- Measures the rate of change of the function

1st Derivative (cont...)

- Non zero at the start and during ramp
- Non zero at the start and zero during the step

2nd Derivative

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1) + f(x-1) - 2f(x)$$

Considers values both before and after the current value

2nd Derivative (cont...)

Sign changes at onset of step

Non zero at the onset and end of ramp and step Zero in the middle

1st and 2nd Derivative

better than first derivative

-10

-15

Example derivatives

- Intensity of pixels along a line in an image is
 f(x)=[1 4 1 0 0 7 7 7 7 0 0 0 1 2 3 4 5 4 3 2 1]
 Compute first order derivative
- f'(x) = f(x+1)-f(x)
- f'(x) = [3,-3,-1,0,7,0,0,0,-7,0,0,1,1,1,1,1,-1,-1,-1]
- Compute second order derivative
- f''(x) = f(x+1)+f(x-1)-2f(x)
- f''(x) = [2,-6,2,1,7,-7,0,0,-7,7,0,1,0,0,0,-2,0,0,0,0]

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

where the partial 2^{nd} order derivative in the x and y direction is defined as

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial^2 y} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

$$abla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$
Called positive operator

or

$$\nabla^2 f = [-f(x+1,y) - f(x-1,y) - f(x,y+1) - f(x,y-1) + 4f(x,y)]$$
 Called negative operator

- If we apply positive Laplacian operator on the image then we subtract the resultant image from the original image to get the sharpened image
- Similarly if we apply negative Laplacian operator then we have to add the resultant image onto original image to get the sharpened image

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

or

$$\nabla^2 f = -[f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

Filter based on Laplacian operator is

image

а	b	d
е	f	g
h	-	j

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

or

$$\nabla^2 f = -[f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

Filter/mask based on Laplacian operator is

image

а	b	d
е	f	g
h	i	j

positive Laplacian filter

0	1	0
1	-4	1
0	1	0

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

$$\nabla^2 f = \left[-f(x+1,y) - f(x-1,y) - f(x,y+1) - f(x,y-1) + 4f(x,y) \right]$$

Filter based on Laplacian operator is

•				
1	m	1	$\boldsymbol{\sigma}$	\cap
ı		a	2	C
•		• •	$\boldsymbol{\cap}$	_

а	b	d
Ф	f	g
h	i	j

Positive Laplacian

0	1	0
1	-4	1
0	1	0

Negative Laplacian

	0	-1	0
r	-1	4	-1
	0	-1	0

The Laplacian

Highlights edges and other discontinuities

Original Image

The Laplacian

Highlights edges and other discontinuities

The Laplacian

Highlights edges and other discontinuities

Image Enhancement using Laplacian

Sharpened image has enhanced edges and fine detail

Image Enhancement using Laplacian

Simplified Image Enhancement

The entire enhancement can be combined into a single filtering operation

$$g(x,y) = f(x,y) - \nabla^2 f$$

$$= f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

$$= 5f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)]$$

Image Enhancement using the Lapacian

$$g(x,y) = 5f(x,y) - f(x+1,y) - f(x-1,y) - f(x,y-1) - f(x,y+1)$$

Simplified Image Enhancement

original enhanced

Variants of Laplacian

0	1	0
1	-4	1
0	1	0

Simple Laplacian

1	1	1
1	-8	1
1	1	1

Variant of Laplacian

Example Variant of Laplacian

1	4	5	2	7
0	4	0	6	2
3	2	1	0	2
7	5	2	3	1
4	3	2	5	1

-1	-1	-1
-1	8	-1
-1	-1	-1

Unsharp (smoothed) Masking and Highboost Filtering

- Apply averaging mask to blur the original image
- Subtract the blurred image from the original image
- Difference is called the mask
- Add weighted mask to the original

Steps for image sharpening

- $g_{\text{mask}}(x,y) = f(x,y) f_b(x,y)$ f_b represents blurring
- g(x,y) = f(x,y) + k*g_{mask}(x,y), where, k ≥ 0
 k=1, unsharp masking
 k>1, highboost filtering
 k<1, reduces effect of unsharp mask
- g(x,y) can be <0 or >255
- Scale it accordingly

Gradient of image

- Gradient is first order derivative
- Gradient of f(x,y)

$$abla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Gradient

Magnitude of gradient (gradient image)

$$M(x,y) = mag(\nabla f)$$

$$= \left[G_x^2 + G_y^2\right]^{1/2}$$

$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$$

• Size of M(x,y) is same as image.

$$M(x,y) \approx |G_x| + |G_y|$$

Gradient using 3 × 3 filter

Z ₁	Z ₂	z_3
Z ₄	Z ₅	z_6
Z ₇	Z ₈	Z ₉

$$G_x$$

$$M(x,y) \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)|$$

$$+|(z_3+2z_6+z_9)-(z_1+2z_4+z_7)|$$

Sobel Operators

$$M(x,y) \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)|$$

 $+|(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$

Sobel Example

Sobel filters are typically used for edge detection

An image of a contact lens which is enhanced in order to make defects more obvious