Visão Computacional Aula 06

Geometria para Múltiplas Vistas Visão Estéreo

Objetivo Principal ... 3D!

Reconstrução Estéreo

- Problemas da reconstrução estéreo:
 - Reconstrução por duas (ou mais) imagens
 - Motivação biológica

known

camera

Por quê temos dois olhos?

Cyclope

VS.

Odysseus

Dois é melhor que um!

"Just checking."

Profundidade a partir da convergência

$$d = \frac{c}{2tan(a/2)}$$

Desempenho humano: em torno 3 metros!

Profundidade a partir da disparidade monocular

P: ponto de convergência

C: projeção do objeto mais próximo a P, disparidade = +

F: objeto mais afastado/interior de P, disparidade = -

Disparidade tem sinal e magnitude!

Assume-se que se conhece a correspondência entre P_L e P_R A partir da projeção de perspectiva:

$$\frac{x_L}{f} = \frac{X + \frac{b}{2}}{Z} \qquad \frac{x_R}{f} = \frac{X - \frac{b}{2}}{Z} \qquad \frac{y_L}{f} = \frac{y_R}{f} = \frac{Y}{Z}$$

 $d = x_L - x_R$ é a disparidade entre os pontos na imagem direita e esquerda

- é inversamente proporcional à profundidade
- a disparidade aumenta com a baseline **b**

Convergência visual ("Vergence")

- Campo visual diminui com o aumenta da baseline e convergência visual
- Acurácia aumenta com a linha de base e aumento da convergência visual

Estéreo

Estéreo

Princípio Básico: Triangulação

- A reconstrução é feita pela interseção de dois segmentos de reta a partir do centro da câmera;
- Requer:
 - Calibração (Quais parâmetros são necessários?)
 - Correspondência entre os pontos.

Correspondência Estéreo

- Determinar a correspondência dos pixels:
 - Encontrar o par de pontos que pertencem à mesma cena;

Correspondência Estéreo

- Determinar a correspondência dos pixels:
 - Encontrar o par de pontos que pertencem à mesma cena;

Correspondência Estéreo

- Determinar a correspondência dos pixels:
 - Encontrar o par de pontos que pertencem à mesma cena;

Restrição da Epipolar

 Reduz o problema da correspondência para uma busca unidimensional ao longo da linha epipolar;

• Baseline – linha conectando os centros das duas câmeras

- Baseline linha conectando os centros das duas câmeras
- Epipolar Plane plano contendo a linha de base (1D family)

- Baseline linha conectando os centros das duas câmeras
- **Epipolar Plane** plano contendo a linha de base (1D family)
- Epipólos
- = Intersecção da linha de base com o plano da imagem
- = projeção do centro da outra câmera
- = pontos "desaparecidos" na direção do movimento da câmera

- Baseline linha conectando os centros das duas câmeras
- **Epipolar Plane** plano contendo a linha de base (1D family)
- Epipólos
- = Intersecção da linha de base com o plano da imagem
- = projeção do centro da outra câmera
- = pontos "desaparecidos" na direção do movimento da câmera
- Epipolar Lines intersecção do plano epipolar com o plano da imagem

Retificação de lmagens Estéreo

Reprojeção de Imagem

 Plano da imagem é reprojetado sobre o plano comum paralelo às linhas entre os eixos ópticos;

 a homografia (matriz de transformação 3x3)
aplicado a ambas imagens de entrada;

 Deslocamento do pixel é horizontal após a transformação;

C. Loop and Z. Zhang. <u>Computing Rectifying Homographies for Stereo Vision</u>. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Retificação Estéreo

Para cada linha epipolar faça:

Para cada linha epipolar faça:

Para cada pixel na imagem da esquerda faça:

Para cada linha epipolar faça:

Para cada pixel na imagem da esquerda faça:

compare com cada pixel na mesma linha epipolar na imagem direita

Para cada linha epipolar faça:

Para cada pixel na imagem da esquerda faça:

- compare com cada pixel na mesma linha epipolar na imagem direita
- Escolha o pixel com mínimo custo de matching;

Para cada linha epipolar faça:

Para cada pixel na imagem da esquerda faça:

- compare com cada pixel na mesma linha epipolar na imagem direita
- Escolha o pixel com mínimo custo de matching;

Melhoria: window matching (Template Matching)

Tamanho da Janela

W = 3

W = 20

Efeitos do tamanho da janela:

- Pequenas janelas
 - + detalhes e + ruído
- Grandes janelas
 - detalhes e ruído

Resultados "Estéreo"

- Dados da University of Tsukuba
- Resultados similares em outras imagens sem ground truth

Scene Ground truth

Resultados com window search

Window-based matching (best window size)

Ground truth

Existem métodos melhores...

State of the art method

Ground truth

Boykov et al., <u>Fast Approximate Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999.

Profundidade a partir da Disparidade

input image (1 of 2)

depth map [Szeliski & Kang '95]

3D rendering

Estágios para a reconstrução estéreo

Passos:

- Calibrar as câmeras
- Retificar as imagens
- Computar a Disparidade
- Estimar a Profundidade

Causadores de Erros:

- Erros de calibração
- Imagens em baixa resolução
- Oclusões
- Variações "bruscas" na itensidade de brilho
- "Grande" movimento
- Regiões com baixo contraste

Matching Estéreo

Necessário textura para o "matching

Julesz-style Random Dot Stereogram

Estéreo Ativo

Li Zhang's one-shot stereo

- Projeta-se padrões de Luz "estruturada" sobre o objeto
 - Simplifica o problema da correspondência

Estéreo Ativo com Iluminação Estruturada

Escaneamento a Laser

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

- Triangulação Óptica
 - Projete uma faixa de luz (laser)
 - Escaneie a superfície do objeto
 - Sistema com luz estruturada muito preciso

Portable 3D laser scanner (Minolta)

Estéreo em Tempo Real

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

- Usado para navegação robótica
 - Diversos softwares tem sido desenvolvidos atualmente

Tempo + Precisão

- Point Grey
 - Bumblebee XB3

Próxima aula...

• Cores...