

回顾: K_N的构成与简单性质

- ❖ K_N的构成:语言、公理模式、推理规则、公设、形式证明/推理、定义。
- ❖ K_N 的标准模型N 预期 K_N 是初等数论一个片段的形式化,使得该片段是一个正规 K_N 模型N=(N, F, P),称为 K_N 的标准模型,其中N是自然数集,F包含自然数集上的后继函数+1、加法函数+和乘法函数×,P包含自然数集上的相等关系=,满足:

0^N是0; '^N是+1; **+**^N是+; **x**^N是×; **=**^N是=。

❖定理1 N是K_N的一个正规模型。

回顾: K_N的构成与简单性质

- ❖ 定理2 $\vdash_{K_N} \underline{\mathbf{n}} + \underline{\mathbf{m}} = \underline{\mathbf{n}} + \underline{\mathbf{m}}$ 。
- ❖ 定理3 $\vdash_{K_N} \underline{\mathbf{n}} \times \underline{\mathbf{m}} = \underline{\mathbf{n}} \times \underline{\mathbf{m}}$ 。
- ❖定理6 如果m=n, 则 $\vdash_{K_N} \underline{m} = \underline{n}$; 如果 $m \neq n$, 则 $\vdash_{K_N} \neg (\underline{m} = \underline{n})$ 。
- ❖性质 自然数加法和乘法运算的主要性质(交换律、结合律、分配律、消去率...) 在K_N中全部满足。
- ❖观察 以上结果都是关于K_N(Y)中的函数和关系的。但是,在K_N 试图形式化的初等数论片段中,是否只有这些函数和关系?

- ❖术语 一个k元数论函数 $g: \mathbb{N}^k \to \mathbb{N}$ 简称为一个k元函数,一个k元数论关系 $\mathbb{R}_{\subseteq}\mathbb{N}^k$ 简称为一个k元关系,其中 \mathbb{N} 是自然数集。
- ◆注释 数论函数和数论关系的定义不限定采用什么运算,更不限于 $K_N(Y)$ 中的函数和关系。
- ❖观察 K_N 相对于初等数论片段的表示能力如何?即问:对哪些数论函数 $g(x_1, ..., x_k)$,存在表示 $g(x_1, ..., x_n)$ 的 K_N 公式p,使得 $g(x_1, ..., x_k)$ =n成立或不成立当且仅当 $|_{K_N} p$ 或 $|_{K_N} \neg p$ 。对于数论关系也存在同样的问题。

- **◇定义**1(K_N 可表示函数) 一个k元函数g是 K_N 可表示的,如果存在一个含k+1个自由变元的 K_N 公式 $p(x_1, ..., x_{k+1})$,使得对任意对 $p(x_1, ..., x_{k+1})$ 中 x_{k+1} 自由的项u及 $n_1, ..., n_k, n_{k+1} \in \mathbb{N}$ 有
 - 1. 如果 $g(\mathbf{n}_1, ..., \mathbf{n}_k) = \mathbf{n}_{k+1}$ 则 $\vdash_{\mathbf{K}_{\mathbf{N}}} p(\underline{\mathbf{n}}_{\underline{1}}, ..., \underline{\mathbf{n}}_{\underline{k}}, \underline{\mathbf{n}}_{\underline{k+1}})$;
 - 2. 如果 $g(\mathbf{n}_1, ..., \mathbf{n}_k) \neq \mathbf{n}_{k+1}$ 则 $\vdash_{\mathbf{K}_{\mathbf{N}}} \neg p(\underline{\mathbf{n}}_{\underline{1}}, ..., \underline{\mathbf{n}}_{\underline{k}}, \underline{\mathbf{n}}_{\underline{k+1}})$;
 - 3. $\vdash_{K_N} p(\underline{n}_1, ..., \underline{n}_k, u) \rightarrow u = \underline{g(\underline{n}_1, ..., \underline{n}_k)}$.
- ◆注释 公式p称为数论函数g的 K_N 表示。

- ◆注释 如果k元函数g是 K_N 可表示的,则数论函数g的计算可以通过 K_N 对公式p的推理实现;也就是说,任何 K_N 可表示函数的计算可归结为 K_N 中的形式推理。
- **◇问题1** 是否每一个 K_N 公式都表示一个数论函数?即:是否对于每一个k+1元 K_N 公式 $p(x_1, ..., x_{k+1})$,存在一个k元函数 $g(n_1, ..., n_k)$,使得 $p(x_1, ..., x_{k+1})$ 是 $g(n_1, ..., n_k)$ 的 K_N 表示?
- ◆答 否。

- ❖例1 K_N 公式 $x_1 = x_1 \land \neg (x_2 = x_2)$ 不表示任何数论函数。
- ◆反证: 假设存在1元数论函数 $g(n_1) = n_2$,使得 $x_1 = x_1 \land \neg(x_2 = x_2)$ 是数论函数 $g(n_1) = n_2$ 的 K_N 表示。则根据定义1条件1,对任何 n_1 , $n_2 \in \mathbb{N}$,有 $\vdash_{K_N} \underline{n_1} = \underline{n_1} \land \neg(\underline{n_2} = \underline{n_2})$ 。于是,由3.3节定理1,有 $\mathbb{N} \models \underline{n_1} = \underline{n_1} \land \neg(\underline{n_2} = \underline{n_2})$,其中 $\mathbb{N} \in \mathbb{N}$ 从是不可能的。故 $x_1 = x_1 \land \neg(x_2 = x_2)$ 不表示任何数论函数。

- ❖问题2 同一个 K_N 公式 $p(x_1, ..., x_{k+1})$ 是否可以用来表示两个不同的数论函数?
- ◆答 否。
- ◆证明 反证: 设 g_1 和 g_2 是两个不同的k元函数,则存在自然数 n_1 , ..., n_k 使得 g_1 (n_1 , ..., n_k) ≠ g_2 (n_1 , ..., n_k)。设公式 $p(x_1$, ..., x_{k+1})是 g_1 和 g_2 的 K_N 表示,依定义1条件1有 $_{K_N}$ $p(\underline{n_1}$, ..., $\underline{n_k}$, g_1 ($\underline{n_1}$, ..., $\underline{n_k}$)),依定义1条件2有 $_{K_N}$ $_{K$

- ❖问题3 是否每一个数论函数都是KN可表示的?
- ◆答 否。
- ◆证明 所有数论函数的集合是不可数的; 所有 K_N 公式的集合是可数的, 并且每一个 K_N 公式只能表示一个数论函数。因此, 必然存在不是 K_N 可表示的数论函数。
- **冷注释** "大部分"数论函数不是 K_N 可表示的。但是,可计算的数论函数都是 K_N 可表示的。
- ❖什么是"可计算函数"?

- ❖例2 自然数上的和函数+是KN可表示的。
- ◆解 可验证 $x_1 + x_2 = x_3$ 是自然数和函数的 K_N 表示。
- ❖例3 自然数上的积函数×是KN可表示的。
- ◆解 可验证 $x_1 \times x_2 = x_3$ 是自然数积函数的 K_N 表示。
- ❖例4 自然数上的投影函数是K_N可表示的。
- ◆解 投影函数定义为 $p_i^k(n_1, ..., n_k) = n_i$, i=1, ..., k。 可验证 $x_1 = x_1 \land ... \land x_k = x_k \land x_{k+1} = x_i$ 是投影函数的 K_N 表示。

- **◇定义2**(K_N 可表示关系)一个k元关系R是 K_N 可表示的,如果存在含k个自由变元的 K_N 公式 $p(x_1, ..., x_k)$,使得对任意 $n_1, ..., n_k \in \mathbb{N}$ 有
 - 1. 如果 $(\mathbf{n}_1, ..., \mathbf{n}_k) \in \mathbb{R}$ 则 $\vdash_{\mathbf{K}_{\mathbf{N}}} p(\underline{\mathbf{n}}_{\underline{1}}, ..., \underline{\mathbf{n}}_{\underline{k}});$
 - 2. 如果 $(\mathbf{n}_1, ..., \mathbf{n}_k) \notin \mathbf{R}$ 则 $|_{\mathbf{K}_N} \neg p(\underline{\mathbf{n}}_{\underline{\mathbf{1}}}, ..., \underline{\mathbf{n}}_{\underline{\mathbf{k}}})$ 。
- ◆注释 公式p称为关系R的 K_N 表示。

❖定义3(关系的特征函数) 一个k元关系R的特征函数C_R定义为

$$C_R(n_1, ..., n_k) = \begin{cases} 1, & (n_1, ..., n_k) \in R; \\ 0, & (n_1, ..., n_k) \notin R. \end{cases}$$

其中 $n_1, ..., n_k \in \mathbb{N}$ 。

- ❖定理 k元关系R是 K_N 可表示的当且仅当它的特征函数 C_R 是 K_N 可表示的。
- ◆证明 自修。