INFORMATIKAI BIZTONSÁG ALAPJAI

Levelező - 1. konzultáció

Göcs László

főiskolai tanársegéd Neumann János Egyetem GAMF Műszaki és Informatikai Kar Informatika Tanszék

Elérhetőség, információ

- Göcs László
- Informatika Tanszék 1. emelet 116-os iroda
- gocs.laszlo@gamf.uni-neumann.hu

www.gocslaszlo.hu/oktatas

Félévi követelmény

1 db zárthelyi dolgozat az utolsó előtti konzultáción (100pont)
 2018. december 1. 11:25-12:10

Pót ZH, az utolsó konzultáción,
2018. december 8. 11:25-12:10

Megajánlott jegy: a ZH-n min. 76 pont elérése (pót ZH-val nincs megajánlott egy)

A vizsgára bocsátás feltétele (aláírás): a zárthelyi dolgozat sikeres megírása (50% - 50 pont).

VIZSGA (írásbeli + szóbeli tétel)

Az informatikai biztonság fogalma

A központban áll egy **érték**, az adatok által hordozott **információ**, amelyet az egyik oldalról **támadnak**, a másik oldalon az információk tulajdonosa pedig **védi** azt.

Mindkét fél egymástól **független**, egymás számára ismeretlen stratégiával igyekszik megvalósítani támadási, illetve védelmi szándékait.

A védő mindig többet veszít, mint amit a támadó nyer.

A kár nem csak anyagi lehet, hanem

- Politikai
- Erkölcsi
- Üzleti stb.

Az adatot, mint a **támadások alapvető célját** a következő rendszerelemek veszik körül:

- az informatikai rendszer fizikai környezete és infrastruktúrája,
- hardver rendszer,
- szoftver rendszer,
- kommunikációs, hálózati rendszerek,
- adathordozók,
- dokumentumok és dokumentáció,
- személyi környezet (külső és belső).

MINDEGYIKRE KÜLÖNBÖZŐ FENYEGETETTSÉGEK HATNAK!

Az **informatikai biztonságot** úgy határozhatjuk meg, hogy az az állapot amikor az informatikai rendszer védelme - a rendszer által kezelt adatok

- bizalmassága,
- hitelessége,
- sértetlensége és
- rendelkezésre állása, illetve a
- rendszerelemek rendelkezésre állása és
- funkcionalitása szempontjából
- zárt, teljes körű, folyamatos és a kockázatokkal arányos.

- Teljes körű védelem alatt azt értjük, hogy a védelmi intézkedések a rendszer összes elemére kiterjednek.
- Zárt védelemről az összes releváns fenyegetést figyelembe vevő védelem esetén beszélünk.
- A folyamatos védelem az időben változó körülmények és viszonyok ellenére is megszakítás nélkül megvalósul.
- A kockázattal arányos védelem esetén egy kellően nagy időintervallumban a védelem költségei arányosak a potenciális kárértékkel.
- A védelem akkor kielégítő erősségű (mértékű), ha a védelemre akkora összeget és olyan módon fordítanak, hogy ezzel egyidejűleg a releváns fenyegetésekből eredő kockázat (kárérték × bekövetkezési gyakoriság) a szervezet számára még elviselhető szintű vagy annál kisebb.

Az informatikai biztonság két alapterületet foglal magába:

- információvédelem, amely az adatok által hordozott információk sértetlenségének, hitelességének és bizalmasságának elvesztését hivatott megakadályozni.
- az informatikai rendszer megbízható működése területét, amely az adatok rendelkezésre állását és a hozzájuk kapcsolódó alkalmazói rendszerek funkcionalitását hivatott biztosítani.

Számítógép biztonság

- Helyi autentikáció (belépési azonosítás, BIOS...)
- Jelszavak fontossága (xX12!3@A5g4%)
- Hardvervédelem (adatmegsemmisítés, adatvisszahozás)

Hálózati biztonság

- Vezetékes hálózati rendszerek (DHCP-MAC)
- Központi menedzselés (AD, Group Policy…)
- Vezeték nélküli hálózatok (WPA2/PSK…)
- Hálózat megosztási jogosultságok (nyomtató, mappa...)

Személyi biztonság

- Beléptető rendszerek (Smart kártya)
- Biometria (ujjlenyomat, retina...)
- Alkalmazottak (Social Engineering)

Adatok biztonsága

- RSA titkosítás
- Digitális aláírás
- Email biztonság

Szerver biztonság

- RAID technológia
- Backup
- Tükrözés

TCSEC

 TCSEC (Trusted Computer System Evaluation Criteria = Biztonságos Számítógépes Rendszerek Értékelési Kritériumai = orange book)

Az USA informatikai biztonsággal kapcsolatos követelményrendszere, kormányzati és katonai rendszerek alkalmazásában kötelező.

ITSEC

 ITSEC (Information Technology Security Evaluation Criteria = Információtechnológia Biztonsági Értékelési Kritériumai)

Az EU országaiban ezt a követelményrendszert fogadják el és használják a **felhasználók és a piaci szektorok**.

ITSEC 10 funkcionalitási osztálya:

- F-C1: korlátozott hozzáférés-védelem
- F-C2: korlátozott és ellenőrzött hozzáférés-védelem, a hozzáférési jogokat csoportoknak vagy egyes személyeknek határozzák meg.
- F-B1: címkézett kötelező hozzáférés-védelem.
- F-B2: strukturált hozzáférés-védelem.
- F-B3: elkülönített védelmi területek.
- F-IN: nagy integritású rendszerek osztálya (azonosítás, hitelesítés, jogkezelés)
- F-AV: magas rendelkezésre állást igénylő rendszerek osztálya.
- F-DI: adatmozgatásnál magas adatintegritást bizt. Rendszerek. oszt.
- F-DC: bizalmas adatokat feldolgozó rendszerek osztálya.
- F-DX: magas adat-integritást és bizalmasságot biztosító osztott rendszerek osztálya.

CC

CC (Common Criteria = Közös Követelmények)

Az EU, az USA és Kanada együttműködésével jött létre azzal a céllal, hogy a korábbi ajánlásokat összhangba hozza a különböző alkalmazási területekre egyedi követelményeket szabjon.

ITIL

 ITIL (BS 15000:2000) Az Informatikai Szolgáltatás Módszertana.

Az ITIL-t jó minőségű, **költséghatékony** informatikai szolgáltatások támogatása céljából fejlesztették ki, mely kiterjed azok teljes életciklusára, így a tervezésre, bevezetésre, működtetésre és újabb szolgáltatások bevezetésére.

COBIT

 COBIT 4.1 Informatikai Irányítási és Ellenőrzési Módszertan.

Nemzetközileg elfogadott keretelv, amely garantálja az informatikai alkalmazásoknak az üzleti célok szolgálatába való állítását, erőforrásaik felelős felhasználását és a kockázatok megfelelő kezelését.

ISO/IEC

• ISO/IEC 27000

Nemzetközi Szabványügyi Szervezet (ISO) által is elfogadott és elismert ISO szabvány gyűjteménye.

INFOSEC

 INFOSEC (Information System Security = Informatikai Rendszerek Biztonsága)

A NATO információvédelmi ajánlása, amely szerint:

"Az információvédelem biztonsági intézkedések alkalmazása annak érdekében, hogy a kommunikációs, információs és más elektronikus rendszerekben tárolt, feldolgozott és átvitt adatok védelme biztosítva legyen a bizalmasság, sértetlenség és rendelkezésre állás elvesztésével szemben, függetlenül az események szándékos vagy véletlen voltától".

INFOSEC két része:

- Communication Security (COMSEC)
 - CRYPTOSEC rejtjelezés
 - TRANSEC átviteli utak védelme
 - EMSEC kompromittáló kisugárzás elleni védelem
- Computer Security (COMPUSEC)
 - Hardverbiztonság
 - Szoftverbiztonság
 - Firm-ware biztonság (csak olvasható memóriában tárolt adatok)

ITB

ITB (Informatikai Tárcaközi bizottság)

A Miniszterelnöki Hivatal Informatikai Tárcaközi bizottsága által kiadott ajánlások az informatikai biztonság megteremtésének legfontosabb tudnivalóiról adnak tájékoztatást.

- ITB 8.: tartalmazza az informatikai biztonság kockázatelemzésének egy jól használható módszertanát.
- **ITB 12.**: az informatikai rendszerek biztonságának követelményeit tartalmazza.
- **ITB 16.**: az informatikai termékek és rendszerek biztonsági értékelésének módszertana.

Nemzetközi információbiztonsági szervezetek:

- ENISA Európai Hálózat- és Informatikai Biztonsági Ügynökség;
- CERT-ek Számítógépes Vészhelyzeti Reagáló Csoportok és
- CSIRT-k Számítógépes Biztonsági Incidens Reagáló Csoportok;
- TF-CSIRT az Európában működő CERT szervezetek közös szervezete;
- FIRST incidenskezelő szervezetek fóruma;
- EGC Európai kormányok CSIRT csoportja.

TEMPEST

A TEMPEST egy vizsgálat fedőneve volt, amely során a különböző elektronikai adatfeldolgozó egységek kisugárzását elemezték. Megállapították, hogy minden egy elektronikai berendezés kibocsát rezgéseket, amelyeket elfogva, és különböző eljárásoknak alávetve, az adatok kinyerhetőek.

A tökéletes információ védelmet csak a fizikai közeg átalakítása, valamint a háttérzaj létrehozásával érhetik el.

A TEMPEST jelzést gyakran használják, illetve említik úgy hogy **Kisugárzás Biztonság vagy Biztonságos Sugárzás** (EMSEC – avagy sugárzás biztonságtechnika).

USA és a NATO TEMPEST szintjei

NATO SDIP-27 A Szint (régebben AMSG 720B) és az USA-ban NSTISSAM Szint I "Egyezményes Laboratóriumi Test Kisugárzási szint"

Ez a "stricteszt" mondhatni rövidtávú szint, azon egységeknek feleltethető meg, ahol az információ elnyelő, nevezzük támadónak, szinte közvetlenül hozzáfér az adatokhoz, azaz a kisugárzást közvetlen közelről rögzíti. (maximum 1méteres távolságig megengedett ezen szintben a támadó) NATO Zóna 1 szint

NATO SDIP-27 B Szint (régebben AMSG 788A) és az USA-ban USA NSTISSAM Szint II "Laboratóriumi Próba Szabvány Gyengén Védett Berendezésekre"

Ez egy némileg lazább szabvány, ami NATO Zóna 1 egységeknél az működik. A szabvány szerint adott egy támadó, aki a kisugárzó berendezéshez maximum 20 méteres távolságba tud csak közel jutni. A szabvány szerint a támadó számára fizikai kontaktus lehetetlen. (a 20 méteres táv mérésében, fizikai közeg nem játszik szerepet, így az építőanyagok, vagy páncélzat sem)

NATO SDIP-27 C Szint (régebben AMSG 784) és az USA-ban NSTISSAM Szint III "Labor Próba Szabvány, Taktikai Mobil Berendezés / Rendszerek "

Ez a szint, még inkább lazább szabvány, amely NATO Zóna 2 egységekben működik. A szabványban a támadó maximum 100 méterre tudja megközelíteni a kisugárzás forrását.

Informatikai Tárcaközi Bizottság ajánlása Informatikai rendszerek biztonsági követelményei

12. sz. ajánlás

A BIZTONSÁGI STRATÉGIA MEGHATÁROZÁSA

Milyen úton érjük el a célt?

Honnan indulunk?

Hova akarunk eljutni?

A BIZTONSÁGI STRATÉGIA MEGHATÁROZÁSA

- meghatározzuk a védelmi célokat,
- kiválasztjuk és elhatároljuk azokat a területeket, amelyeken a biztonsági rendszereket kialakítani és az intézkedéseket érvényesíteni kell,
- meghatározzuk a biztonsági tervezés módszerét,
- körvonalazzuk a minimális követelményeket,
- megtervezzük és ütemezzük az intézményre vonatkozó biztonsági intézkedéseket, beleértve a katasztrófaelhárítást is,
- meghatározzuk a követhetőség és a menedzselhetőség követelményeit, valamint a felügyelet és az ellenőrzés rendszerét.

A BIZTONSÁGI STRATÉGIA MEGHATÁROZÁSA

Az informatikai biztonsági stratégia

- része az intézmény globális biztonsági stratégiájának
- összhangban kell lennie az intézmény működési és informatikai stratégiájával
- ki kell szolgálnia az intézmény célkitűzéseit

Alkalmazások és adatok fenyegetettsége

- bizalmasság elvesztése,
- sértetlenség elvesztése,
- hitelesség elvesztése,
- rendelkezésre állás elvesztése,
- funkcionalitás elvesztése.

alapfenyegetettségeknek

AZ INFORMÁCIÓVÉDELEM A

bizalmasság,

sértetlenség, védelme.

hitelesség,

A MEGBÍZHATÓ MŰKÖDÉS A

rendelkezésre állás,

biztosítását jelenti.

funkcionalitás,

Az informatikai rendszer szakaszai:

- az informatikai rendszer tervezése;
- az informatikai rendszer fejlesztése;
- az informatikai rendszer bevezetése, illetve üzembe helyezése;
- az informatikai rendszer üzemeltetése, fenntartása;
- az informatikai rendszer megszüntetése, felszámolása vagy rekonstrukciója.

A szakaszokban folyamatosan ellenőrizni kell:

a fenyegetettség szintjét,

a biztonság meglétét,

 a biztonsági intézkedések végrehajtását és hatékonyságát.

Tervezési módszerek

a kockázatelemzés,

értékkel arányos védelem megteremtése

 a kritikus működési jellemzők elemzése,

védelmi intézkedések súlya

 az értékek sérülési hatásainak elemzése.

várható károk nagyságrendjére

Minimális biztonsági követelmények

<u>Információvédelem</u>

- az azonosítás és a hitelesítés folyamatának kialakítása,
- a hozzáférés rendszerének felépítése jogosultság kiosztás (alanyok, eszközök meghatározása, attribútumok rögzítése, hozzárendelések - megengedő, illetve tiltó módszer a szigorodó követelményekre),
- a hozzáférés-ellenőrzés rendszerének megvalósítása jogosultság ellenőrzés,
- a hitelesség garantálása
- a sértetlenség garantálásának kiépítése,
- a bizonyítékok rendszerének és folyamatának kialakítása.

Minimális biztonsági követelmények

Megbízható működés

- a hibaáthidalás folyamatának kialakítása,
- az újraindítási képesség megvalósítása,
- a rendszer funkcionalitásának biztosítása.

Biztonsági szabályzat

Az informatikai biztonságpolitika alapján ki kell dolgozni az egységes szerkezetbe foglalt, az

- egész intézményre érvényes és a
- többi szabályzattal összhangban álló

Informatikai Biztonsági Szabályzatot.

Informatikai Biztonsági Szabályzatnak

Tartalmaznia kell

- az általános követelményeket,
- részletes intézkedésrendszert,
- eljárások rendjét,
- a felelősöket,
- az ellenőrzés rendjét,
- a szankcionálás módját.

Informatikai Biztonsági Szabályzat

- Tükröződniük kell a munkaköri leírásokban.
- A felhasználók részére egy Biztonsági Kézikönyv kiadása javasolt.
- Szabályozni kell az Informatikai Biztonsági Felügyelő illetékességét és hatáskörét (feladat-, felelősségi és jogkörét), valamint alá- és fölérendeltségi viszonyait.

- Dologi károk, amelyeknek közvetlen vagy közvetett költségvonzatuk van
- károsodás az infrastruktúrában (épület, vízellátás, áramellátás, klímaberendezés stb.),
- károsodás az informatikai rendszerben (hardver, hálózat sérülése stb.),
- a dologi károk bekövetkezése utáni helyreállítás költségei;

Károk a politika és a társadalom területén

- állam- vagy szolgálati titok megsértése,
- személyiséghez fűződő jogok megsértése, személyek vagy csoportok jó hírének károsodása,
- bizalmas adatok nyilvánosságra hozatala,
- hamis adatok nyilvánosságra hozatala,
- közérdekű adatok titokban tartása,
- bizalomvesztés hatóságokkal, felügyeleti szervekkel szemben;

Gazdasági károk

- pénzügyi károk,
- lopás károk,
- az intézmény vagy cég arculatának (image) romlása,
- rossz üzleti döntések hiányos vagy hamis információk alapján;

Károk a tudomány területén

- kutatások elhalasztódása,
- eredmények idő előtti, illetve hamis név alatti nyilvánosságra kerülése,
- tudományos eredmények meghamisítása.

Egyéb károk

- károk az informatikai személyzet, illetve a felhasználók személyi biztonsága területén, pl.: személyek megsérülése, megrokkanása (pl. áramütés következtében);
- károk a hatályos jogszabályok és utasítások megsértéséből adódóan;

A károk csoportosítása:

- közvetlen anyagi (pl. a mindenkori amortizált értékkel vagy az elmaradt haszonnal arányos),
- közvetett anyagi (pl. a helyreállítási költségekkel, perköltségekkel arányos),
- társadalmi-politikai, humán,
- személyi sérülés, haláleset,
- jogszabály által védett adatokkal történő visszaélés vagy azok sérülése (jogsértés).

"0": jelentéktelen kár

- közvetlen anyagi kár: 10.000,- Ft,
- közvetett anyagi kár 1 embernappal állítható helyre,
- nincs bizalom vesztés, a probléma a szervezeti egységen belül marad,
- testi épség jelentéktelen sérülése egy-két személynél,
- nem védett adat bizalmassága vagy hitelessége sérül.

"1": csekély kár

- közvetlen anyagi kár: 100.000,- Ft-ig,
- közvetett anyagi kár 1 emberhónappal állítható helyre,
- társadalmi-politikai hatás: kínos helyzet a szervezeten belül,
- könnyű személyi sérülés egy-két személynél,
- hivatali, belső (intézményi) szabályozóval védett adat bizalmassága vagy hitelessége sérül.

"2": közepes kár

- közvetlen anyagi kár: 1.000.000,- Ft-ig,
- közvetett anyagi kár 1 emberévvel állítható helyre,
- társadalmi-politikai hatás: bizalomvesztés a tárca középvezetésében, bocsánatkérést és/vagy fegyelmi intézkedést igényel,
- több könnyű vagy egy-két súlyos személyi sérülés,
- személyes adatok bizalmassága vagy hitelessége sérül,
- egyéb jogszabállyal védett (pl. üzleti, orvosi) titok bizalmassága vagy hitelessége sérül.

"3": nagy kár

- közvetlen anyagi kár: 10.000.000,- Ft-ig,
- közvetett anyagi kár 1-10 emberévvel állítható helyre,
- társadalmi-politikai hatás: bizalomvesztés a tárca felső vezetésében, a középvezetésen belül személyi konzekvenciák,
- több súlyos személyi sérülés vagy tömeges könnyű sérülés,
- szolgálati titok bizalmassága vagy hitelessége sérül,
- szenzitív személyes adatok, nagy tömegű személyes adat bizalmassága vagy hitelessége sérül,
- banktitok, közepes értékű üzleti titok bizalmassága vagy hitelessége sérül.

"4": kiemelkedően nagy kár

- katonai szolgálati titok bizalmassága vagy hitelessége sérül,
- közvetlen anyagi kár: 100.000.000,- Ft-ig,
- közvetett anyagi kár 10-100 emberévvel állítható helyre,
- társadalmi-politikai hatás: súlyos bizalomvesztés, a tárca felső vezetésén belül személyi konzekvenciák,
- egy-két személy halála vagy tömeges sérülések,
- államtitok bizalmassága vagy hitelessége sérül.
- nagy tömegű szenzitív személyes adat bizalmassága vagy hitelessége sérül,
- nagy értékű üzleti titok bizalmassága vagy hitelessége sérül.

"4+": katasztrofális kár

- közvetlen anyagi kár: 100.000.000,- Ft felett,
- közvetett anyagi kár több mint 100 emberévvel állítható helyre,
- társadalmi-politikai hatás: súlyos bizalomvesztés, a kormányon belül személyi konzekvenciák,
- tömeges halálesetek,
- különösen fontos (nagy jelentőségű) államtitok bizalmassága vagy hitelessége sérül.

Biztonsági osztályok

- alapbiztonsági követelményeket kielégítő informatikai rendszert kell létrehozni akkor, ha a rendszerben maximum "2", azaz legfeljebb közepes kárértékű esemény bekövetkezése fenyeget;
- fokozott biztonsági követelményeket kielégítő informatikai rendszert kell létrehozni akkor, ha a rendszerben maximum "3", azaz legfeljebb nagy kárértékű esemény bekövetkezése fenyeget;
- kiemelt biztonsági követelményeket kielégítő informatikai rendszert kell létrehozni akkor, ha a rendszerben a "4+", azaz a katasztrofális kárértékig terjedő esemény bekövetkezése fenyeget.

Informatikai kockázatelemzés

Az informatikai biztonság tervezéséhez, a stratégia kialakításához szükséges, hogy ismerjük a rendszer különböző területeinek kockázatát.

Informatikai kockázatelemzés

Nem védelmi intézkedés, elvégzése önmagában **nem erősíti a védelmet**, de **segít** hogy létrejöjjön a biztonságos informatikai rendszer.

Informatikai kockázatelemzés

Eszközgazdálkodási audit eredménye.

Fenyegetések felmérése.

Informatikai sérülékenység felmérése.

Magyar informatikai biztonsági szabványok

A szabványok négy szintjét szokták megkülönböztetni:

- hivatalos (de-jure) szabványok: ide azok a szabványok tartoznak, melyeket a különböző államok által törvényi szinten elismert vagy nemzetközi megállapodás keretében létrejött szervezetek adnak ki. A hivatalos szabványokon belül az alábbi szinteken különböztethetjük meg:
 - nemzetközi szintű szabványok (pl.ISO által kiadott szaványok),
 - regionális szintű szabványok,
 - nemzeti szintű szabványok (pl. a Magyar Szabadalmi Hivatal által meghatározott szabványok).
- ipari (de-facto) szabványok: az ilyen szabványok egy adott iparág konzorciumba tömörült szervezeteinek együttműködése kapcsán jön létre (pl. RFC-k),

Magyar informatikai biztonsági

- szabványok: habár egyik szabványügyi szervezet sem hagyta jóvá, de lényegében szabvánnyá vált. (Általában a de-facto szabványok elődje)
- saját, védett szabványok: pl. egy domináns szoftverfejlesztő cég által kiadott előírások, a tulajdonjog a kibocsájtó kezében marad, licenszdíjat szedhetnek érte.

Az informatikai biztonsági szabványok másik csoportosítása <u>tartalmuk szerint</u> történhet:

- az információbiztonság-irányítási rendszer követelményei,
- műszaki szabványok és leírások,
- folyamatokra vonatkozó szabványok (szolgáltatásmenedzsment),
- ellenintézkedésre vonatkozó szabványok,
- auditálás, tanúsításra vonatkozó szabványok,
- termékek/rendszerek értékelésére vonatkozó szabványok

Hálózatbiztonság – IS 18028

Titkosítás - IS18033

Digitális aláírás - IS 14888

Időbélyegzés – IS 18014

Üzenethitelesítés – IS 9797

Hozzáférés-ell. - IS 15816

Letagadhatatlanság - IS13888

TTP szolgáltatások – IS 15945

Kulcsgondozás - IS 11770

Lenyomatképzés - IS 10118

Folyamat Infokom védelem modelljei – IS 13335-1 Kockázatkezelés – IS 13335-2 BS 15000 (ITIL) ISO 9001 Mérés IS 24742

Ellenintézkedés

Behatolásérzékelés TR 15947 SSE-CMM – IS 21827

Inf.bizt. incidensek kez. – TR 18044

KÖVETELMÉNYEK AZ INFORMÁCIÓVÉDELEM TERÉN

Védendő adatoknak alapvetően négy csoportját különíthetjük el:

- nyílt, szabályozók által nem védett adat,
- · érzékeny (védendő), de nem minősített adat,

- szolgálati titok,
- államtitok.

Érzékeny, de nem minősített adatok

A jogszabályok által védendő adatok:

- személyes, illetve különleges adatok,
- az üzleti titkot,
- a banktitkot képező adatok,
- az orvosi,
- az ügyvédi és
- egyéb szakmai titkok,
- a posta és a távközlési törvény által védett adatok stb.,
 és
- az egyes szervezetek, intézmények illetékesei által, belső szabályozás alapján védendő adatok.

Információbiztonsági osztályozás az információvédelem szempontjából

- információvédelmi alapbiztonsági (IV-A) osztály: Személyes adatok, üzleti titkok, pénzügyi adatok, illetve az intézmény belső szabályozásában hozzáféréskorlátozás alá eső és a nyílt adatok feldolgozására, tárolására alkalmas rendszer biztonsági osztálya.
- információvédelmi fokozott biztonsági (IV-F) osztály:
 A szolgálati titok, valamint a nem minősített adatok közül a különleges személyes adatok, nagy tömegű személyes adatok, banktitkok, közepes értékű üzleti titkok feldolgozására, tárolására is alkalmas rendszer biztonsági osztálya.
- információvédelmi kiemelt biztonsági (IV-K) osztály: Az államtitok, a katonai szolgálati titok, valamint a nem minősített adatok közül a nagy tömegű különleges személyes adatok és nagy értékű üzleti titkok feldolgozására, tárolására alkalmas rendszer biztonsági osztálya.

Az osztályok követelményei:

- Minimális követelmények
- Infrastruktúra
- Hardver, szoftver
- Adathordozók
- Dokumentumok és dokumentációk
- Adatok
- Kommunikáció, osztott rendszerek
- Személyek

IV-A osztály

Az alapbiztonsági osztály az ITSEC F-C2 osztálynak feleltethető meg logikai védelmi szempontból.

Minimális követelmény

- Az azonosítás és hitelesítés keretében a hozzáférést jelszavakkal kell ellenőrizni. A jelszó menedzselést úgy kell biztosítani, hogy a jelszó ne juthasson illetéktelenek tudomására, ne legyen könnyen megfejthető, megkerülhető.
- A rendszer hozzáférés szempontjából érdekes erőforrásaihoz (processzek, fájlok, tároló területek, berendezések) olyan egyedi azonosítót kell rendelni, amely a hozzáférési jogosultság meghatározásának alapjául szolgál.
- On-line adatmozgás (tranzakció) kezdeményezésének jogosultságát minden esetben ellenőrizni kell.
- Ki kell dolgozni az informatikai rendszerhez történő hozzáférések illetékességi, jogosultsági rendszerét.
- A hozzáférés-jogosultság menedzselésénél az ITSEC F-C2 funkcionális követelményszintnek megfelelően kell eljárni.
- A jogosultsági rendszernek támogatnia kell a jogosultságokhoz kapcsolódó adminisztrátori műveleteket (módosítás, törlés, stb.).
- Az elszámoltathatóság és auditálhatóság biztosítása logikai védelmi funkciót az ITSEC F-C2 funkcionális szintnek megfelelően kell biztosítani.
- Intézkedési tervet kell kidolgozni arra vonatkozóan, mi történjék illetéktelen hozzáférések, illetve jogosultságokkal való visszaélések esetén, amely során a lehető legnagyobb mértékben meg kell tudni határozni a felelősséget.
- Egy rendszeren belül a különböző adattípusokat olyan mértékben kell elkülönítetten kezelni, hogy megállapítható legyen a hozzáférések jogossága.
- A hitelesítés és az azonosítás, valamint a hozzáférés szabályozás rendszerét a hálózati alapú osztott rendszerek esetén az ITSEC F-C2 funkcionális szinttel azonos egyenszilárdsággal kell megvalósítani.
- Ki kell alakítani a biztonság belső ellenőrzésének rendszerét, amely során meg kell határozni a felügyeleti és megelőzési tevékenységek eljárásrendjét.
- Az informatikai rendszer üzemeltetéséről nyilvántartást kell vezetni, amelyet az arra illetékes személynek rendszeresen ellenőriznie kell.

Infrastruktúra

- A falazatok, a nyílászárók, a zárak biztonsági kialakításánál a vonatkozó építészeti szabványok, a MABISZ és a Rendőrség ajánlásai szerint kell eljárni.
- Az intézmény őrzés-védelme, az épület zárása, a beléptetés.
- Ahol számítástechnikai eszközökkel történik a munkavégzés, biztonsági zárral kell ellátni és a helyiséget távollét esetén zárva kell tartani.
- A dokumentációk tűz- és vagyonvédett tárolása.

Hardver, szoftver

- A számítástechnikai eszközökre a vagyonvédelem szempontjából a MABISZ ajánlásait kell alkalmazni.
- A felhasználóhoz kötött jelszó használat biztosított legyen.
- A külső eszközről való rendszerindítás megakadályoztatása.
- Vírusvédelem.
- Az operációs rendszer és alkalmazások védelme.
- Össze kell állítani és elérhető helyen kell tartani a számítástechnikai eszközök használatára felhatalmazott személyek névsorát, feladataikat körül kell határolni.
- A programok, alkalmazások és eszközök tervezése, fejlesztése, tesztelése és üzemeltetése során a biztonsági funkciókat kiemelten és elkülönítetten kell kezelni.

Adathordozók

- Az adathordozó eszközök elhelyezésére szolgáló helyiségeket illetéktelen vagy erőszakos behatolás, tűz vagy természeti csapás ellen védeni kell
- Adat-átviel, adathordozók tarolása, mentése, megbízhatóan zárt helyen történhet
- Az adathordozók beszerzését, tárolását, felhasználását és hozzáférését szabályozni, nyilvántartani, rendszeresen és dokumentáltan ellenőrizni kell
- Az adathordozók nyilvántartása
- Leltárba vett adathordozók használata
- Külső adathordozók vírusirtás után használhatóak
- Adatmegsemmisítés

Dokumentumok és dokumentációk

- A nyomtatott anyagok kezelését az iratkezelési szabályzat szerint kell elvégezni.
- Az informatikai rendszer biztonságával kapcsolatos dokumentációt az informatikai rendszer biztonsági fokozatának megfelelően kell kezelni.
- Az informatikai rendszer dokumentációját mindig aktualizálni kell.

Adatok

- Hozzáférési kulcsokat (azonosító kártya, jelszó), a jogosultságokat és más, a biztonsággal kapcsolatos paramétereket titkosítva kell továbbítani.
- A rendszer biztonságát érintő adatok (pl. jelszavak, jogosultságok, naplók) védelméről a hozzáférési jogosultságok kiosztásánál kell gondoskodni.
- Külső személy pl. karbantartás, javítás, fejlesztés céljából a számítástechnikai eszközökhöz úgy férhet hozzá, hogy a kezelt adatokat ne ismerhesse meg.
- Az adatbevitel során a bevitt adatok helyességét az alkalmazási követelményeknek megfelelően ellenőrizni kell.
- Programfejlesztés vagy próba céljára valódi adatok felhasználását el kell kerülni.
- Gondoskodni kell arról, hogy a számítógépen feldolgozott minden adatállomány az adattípust jelölő biztonsági címkével legyen ellátva.

Kommunikáció, osztott rendszerek

- Az elektronikus úton továbbított üzenetek védelme.
- Hitelesítési eljárás.
- Az adott hálózati alrendszer hitelesítési mechanizmusa nem érintheti a hálózat többi alrendszerének hitelesítési rendszerét.
- Alhálózat közötti importált adatok.
- A hálózati erőforrások használata.
- A forgalom monitorozására és rögzítésére alkalmas erőforrást illetéktelenül ne használjanak.
- Egy alhálózatban definiált azonosító hozzáférési joga delegálható egy másik alhálózatba és ez alapján kell érvényesíteni az eredeti azonosítóhoz rendelt jogokat.
- A szabad belátás szerint kialakított hozzáférés-vezérlést (DAC) ki kell terjeszteni a teljes osztott rendszerre.
- Központi hozzáférés-menedzsment .
- A biztonságos adatcsere.
- Az adatvesztés és sérülés elkerülése céljából hibadetektáló és javító eljárásokat kell alkalmazni.
- Az osztott rendszerben a jelszavak, a jogosultságok és a biztonsággal kapcsolatos más paraméterek, adatok csak titkosítva továbbíthatók.

Személyek

- Kitűzők viselete.
- A belépés rendjét a hozzáférési jogosultságokkal összhangban kell szabályozni.
- A magasabb jogosultságú személyeknél el kell kerülni a jogok túlzott koncentrációját.
- Informatikai oktatás továbbképzést a munkaerő számára.
- Az IT biztonságát meghatározó munkakörökben dolgozó munkatársak helyettesítési rendjét ki kell alakítani.
- A fontosabb alkalmazásokhoz rendszergazdákat kell kinevezni, akiknek feladatkörét pontosan meg kell határozni.
- A fejlesztői környezetet el kell választani az alkalmazói környezettől, szét kell választani a fejlesztői, működtetői és adminisztrációs hozzáférési jogköröket.
- Külső partnerekkel kötött fejlesztési, karbantartási szerződések biztonsággal kapcsolatos részeinek kialakítására pontos szabályozást kell adni.

IV-F osztály

A fokozott biztonsági osztály az ITSEC F-B1 osztálynak feleltethető meg.

Minimális követelmény

- Az azonosítás és hitelesítés (ITSEC F-B1)
- A hozzáférés-szabályozás (ITSEC F-B1)
- Az adatok minősítését és a feljogosítás műveletét a vonatkozó és hatályos törvények szerint kell elvégezni, illetve engedélyezni.
- Az elszámoltathatóság és az auditálhatóság (ITSEC F-B1)
- Minősített adatokat kezelő alhálózatok összekapcsolási szabályai.

Infrastruktúra

- 12 órás áthidalást biztosító szünetmentesség az elektronikai jelzőrendszerek számára (biztosítható a teljes felület és a részleges térvédelem)
- A személyzet és a külső személyek belépési és azonosítási rendjét szabályozott formában kell megvalósítani.
- Az őr- és a biztonsági személyzet létszámát úgy kell kialakítani és olyan eszközzel kell ellátni, hogy eseményt esetén az érintett személy jelezni tudjon.

Hardver, szoftver

- A beépített adathordozókon tárolt adatokkal azonos szinten védendő minden számítástechnikai eszköz.
- A minősített adatot előállító, feldolgozó, tároló és lekérdező programok, valamint ezek dokumentációi (adat független elemek) minősítéséről az adatot minősítőnek kell gondoskodnia.

Adathordozók

- Az adathordozók tárolása csak megbízhatóan zárt helyiségben, minimum 30 perces tűz-állóságú tároló szekrényben történhet.
- A fokozott biztonsági osztályba tartozó minősített adatokat tároló adathordozók kezelését törvény írja elő.
- Az adattípus (minősítés) felismerhető jelölését a számítástechnikai berendezéssel előállított adattároló és megjelenítő eszközökön biztosítani kell.
- Az adatok sértetlen és hiteles állapotának megőrzését biztosítani kell.

Dokumentumok és dokumentációk

- A felhasználók részére Biztonsági Kézikönyv biztosítandó.
- Gondoskodni kell a változás-menedzsmentről és a biztonságot érintő változások naplózásáról.
- A rendszerben feldolgozásra kerülő, a fokozott biztonsági osztályba sorolt adatok és a hozzájuk kapcsolódó jogosultságok nyilvántartását elkülönítetten kell kezelni.

Kommunikáció, osztott rendszerek

- A kisugárzással, illetve a zavartatással kapcsolatos EN 55022 és EN 55024 szabványok a mérvadók.
- A kommunikációs csatornákra vonatkozóan az ITSEC F-B1funkcionális osztálynak az egy, illetve többszintű csatornákon átvitt adatok biztonsági kezelésére vonatkozó követelményei mérvadók.
- A kötelező hozzáférés-vezérlést (MAC) ki kell terjeszteni a teljes rendszerre.
- Központi hozzáférés menedzsment esetén az alanyok biztonsági paramétereit biztonságos úton kell az osztott rendszer többi feldolgozó egységéhez eljuttatni.
- A fokozott biztonsági osztályba sorolt adatok forgalmazásával kapcsolatba kerülő valamennyi hálózati elemre ki kell terjeszteni a fokozott biztonsági szintnek megfelelő védelmet.
- A hálózaton megvalósítandó a végpont-végpont szintű jogosultság ellenőrzés, az elszámoltathatóság és auditálhatóság biztosítása védelmi funkciók.
- Központi auditálás esetén védetten kell továbbítani az auditálási információkat a többi alhálózatból.
- A hálózaton történő adatátvitelnél az X/Open ajánlás elosztott rendszerekre vonatkozó ajánlását (X-DIST) kell figyelembe venni a vezérlő és a hasznos adatok, a le nem tagadhatóság, valamint a szolgáltatások rendelkezésre állásának biztosítása szempontjából.
- Az adattovábbításra használt hálózat esetében a biztonsági osztálynak megfelelő szinten biztosítani kell az illegális rácsatlakozás és a lehallgatás akadályozását.
- A minősített adatok rejtjelzése során a 43/1994. (III. 29.) Korm. Rendelet előírásai kötelezőek.

Személyek

- A felhasználók tevékenységének szelektív
 szétválasztását az ellenőrzés céljából biztosítani kell.
- A minősített adatok kezelésében a titokbirtokos és az informatikai rendszert üzemeltető közötti feladat és felelősség megosztást szabályozni kell.

IV-K osztály

A kiemelt biztonsági osztály az ITSEC F-B2 osztálynak feleltethető meg.

Minimális követelmény

- Az azonosítás és hitelesítés logikai védelmi funkció kialakításánál az ITSEC F-B2 funkcionális követelményeknek megfelelően kell eljárni.
- A hozzáférés-szabályozás logikai védelmi funkció kialakításánál az ITSEC F-B2 funkcionális követelményeknek megfelelően kell eljárni.
- Az adatok minősítését és a feljogosítás műveletét a vonatkozó és hatályos a törvények szerint kell elvégezni, illetve engedélyezni.
- A hozzáférési jogok egyedi vagy csoport szinten történő megkülönböztetésénél az ITSEC F-B3 osztály biztonsági követelményeinek a rendszeradminisztrátor, az operátor és a biztonsági felügyelő szerepkörére, valamint a felhasználói jogok odaítélésére, módosítására és visszavonására vonatkozó része veendő figyelembe.
- A biztonsági napló adatait heti rendszerességgel kell ellenőrizni és archiválni.

Infrastruktúra

- A mechanikai védelem közforgalmú területről történő betekintés ellen is védjen.
- Az elektronikai védelem terjedjen ki a számítástechnikai eszközökre, a felügyelet nélküli helyiségekre.
- A személyzet és a külső személyek belépési és azonosítási rendjét szabályozott formában, intelligens beléptető-rendszerrel kell megvalósítani, amely a mindkét irányú áthaladásokat naplózza és biztosítja az azonosító eszköz azonos irányban történő többszöri felhasználásának tilalmát.
- A helyiségbe (épületbe) belépni szándékozókat hitelesíteni és azokról nyilvántartást vezetni kell.

Hardver, szoftver

- Kiemelt biztonsággal védett adathordozókkal azonos szinten védendő fizikailag minden számítástechnikai eszköz, amellyel az ebbe az osztályba tartozó adatokat kezelnek.
- Az informatikai rendszerben moduláris felépítésű, strukturált és védett alrendszerként valósuljon meg a logikai védelem.
- Az azonosítás és hitelesítés logikai védelmi funkció kialakításánál az ITSEC F-B2 funkcionális követelményeknek megfelelően kell eljárni.
- A hozzáférés-szabályozás logikai védelmi funkció kialakításánál az ITSEC F-B2 funkcionális követelményeknek megfelelően kell eljárni. Strukturált adatállományoknál mező szinten kell kialakítani a hozzáférés szabályozást.
- Az indításvédelmet logikai úton csak aránytalanul nagy ráfordítással lehessen megkerülni.
- A biztonságos kezelési funkciókat az X/Open privilegizált jogokat biztosító osztály követelményeinek megfelelően kell kialakítani.
- A biztonságot érintő vagy a fellépési gyakoriságuk miatt biztonsági szempontból kritikus veszélyt jelentő események figyelését az ITSEC F-B3 osztály funkcionális követelményeinek megfelelően kell megvalósítani.

Dokumentumok és dokumentációk

- A referencia hitelesítési mechanizmus dokumentáció struktúrájának és szintjének meg kell felelnie az ITSEC E3 étékelési követelményeknek.
- A változás-menedzsmentet számítástechnikai úton kell megvalósítani.
- Az Informatikai Biztonsági Kézikönyvnek tartalmaznia kell a referencia monitor működésével kapcsolatos ellenőrzési és üzemeltetési eljárások leírását.

Kommunikáció, osztott rendszerek

- Az egy, illetve többszintű kommunikációs csatornák azonosításával kapcsolatos követelményei tekintetében az ITSEC F-B2 osztály funkcionális követelményei a mérvadóak.
- A rejtett kommunikációs csatornák ellenőrzésére és detektálására vonatkozó követelmények tekintetében az ITSEC F-B2 osztály funkcionális követelményeinek A. 52 pontja mérvadó.
- Az adatáramlás bizalmasságának megőrzése céljából ajánlott szelektív útvezérlés (selective routing) alkalmazása.
- A kábelezésre vonatkozóan az EIA/TIA-568 Kereskedelmi Épületkábelezési Szabvány, valamint a kisugárzással, illetve a zavartatással kapcsolatos EN 55022 és EN 55024 szabványok a mérvadók.

Személyek

- Új jogosultság kiosztásával, a jogosultság törlésével, átmeneti felfüggesztésével, valamint az informatikai rendszer használata közben más módon beállt biztonsági szint változásokkal kapcsolatban az ITSEC F-B2 funkcionális követelményei A.50 és A.51 pontjai mérvadók. (ITSEC B3-ból)
- A Biztonsági Kézikönyv felhasználásával rendszeres oktatást és vizsgáztatást kell rendszeresíteni.
- A biztonsági személyzet feladatát "vállalkozás keretében" nem láthatja el.

ITB 15 ajánlás

MEGBÍZHATÓ MŰKÖDÉS RENDELKEZÉSRE ÁLLÁS

Megbízható működés

Az informatikai rendszerek megbízható működését úgy értelmezzük, hogy az **alkalmazói rendszernek** (felhasználói programok és adatok) a tervezés és megvalósítás során kialakított **funkcionalitását** egy megbízható informatikai alaprendszer (hardver és alapszoftver) az adott biztonsági osztálynak megfelelő követelményeknek megfelelő szintű rendelkezésre állással biztosítja a **felhasználó részére**.

Rendelkezésre állás

- Rendelkezésre álláson azt a valószínűséget értjük, amellyel egy definiált időintervallumon belül az alkalmazás a tervezéskor meghatározott funkcionalitási szintnek megfelelően a felhasználó által használható.
- Rendelkezésre áll egy alkalmazás vagy erőforrás, mikor a működésének képes eleget tenni, képes feladatokat fogadni, működni. Értékét százalékban adják meg.
- Szerverek esetén ez az az idő, amikor képesek kiszolgálni a klienseket.

Rendelkezésre állás

$$Rendelkezé sre állás (R) = \frac{T_{\ddot{u}z} - \sum_{\ddot{u}z} T_{ki}}{T_{\ddot{u}z}} \times 100(\%)$$

ahol T_{uz} az üzemidő periódus, amelyre a rendelkezésre állást értelmezzük és T_{ki} a kiesési idő egy alkalomra.

T _{üz} = 1 hónap	Rendelkezésre állás (R)	Megengedett kiesési idő $(\mathbf{S}_{\mathbf{K}\mathbf{i}})$	Megengedett legnagyobb kiesési idő egy alkalomra (<i>max</i> T _{ki})
A megbízható működési alapbiztonsági (MM-A) osztály	95,5 %	23,8 óra	-
A megbízható működési fokozott biztonsági (MM-F) osztály	99,5 %	2,6 óra	30 perc
A megbízható működési kiemelt biztonsági (MM-K) osztály	99,95 %	16 perc	1 perc

A kiesési időt befolyásolják:

- az újraindítási képesség megvalósítása,
- a hibaáthidalás folyamatának kialakítása,
- a rendszerkonfiguráció hatékony menedzselése.

- Megbízhatóság (reliability): egy információtechnológiai összetevő azon képessége, hogy ellásson egy megkívánt funkciót meghatározott körülmények között, egy meghatározott időtartamra.
- Karbantarthatóság (maintainability): egy számítógépes komponens vagy szolgáltatás azon képessége, hogy meg lehet tartani egy olyan állapotban, vagy vissza lehet állítani egy olyan állapotba, amelyben képes ellátni a megkívánt funkciót.
- Szolgáltatási képesség (serviceability): szerződéses kikötés, amely meghatározza az informatikai komponens rendelkezésre-állását az adott összetevőket szolgáltató és karbantartó külső szervezettel való megegyezés szerint.
- Biztonság (security): lehetővé teszi a számítógépes komponensek vagy informatikai szolgáltatások elérését biztonságos körülmények között.

Az informatikai rendszereket és szolgáltatásokat úgy kell tervezni, hogy

- megbízhatóak,
- hibatűrők és
- karbantarthatók

legyenek **teljes életciklusuk** során, a tervezéstől, a megszüntetésükig.

- a kézi rendszerekre való visszaállás gyakorlatilag lehetetlen,
- a felhasználók hatékonysága és eredményessége erősen függ az informatikai szolgáltatások rendelkezésreállásától és megbízhatóságától,
- a szervezeti felhasználók tevékenysége az informatikán alapul, amely nélkül a szervezet működésképtelen.

Az informatikai szolgáltatásokat nyújtó rendszerek megbízhatóságát a következők **befolyásolják**:

- az informatikai infrastruktúra összetevők megbízhatósága és karbantarthatósága, ill. a környezet, amelyen e rendszerek alapulnak,
- a szállítók és külső partnerek, akik a karbantartást végzik,
- az informatikai szolgáltató szervezet által használt eljárások és eszközök,
- az informatikai szolgáltatásokat nyújtó informatikai infrastruktúra konfigurációja.

A hatékony és eredményes rendelkezésre-állás menedzsment a következő hasznokat eredményezi:

- az informatikai szolgáltatások javuló minőségét,
- az új és meglévő informatikai szolgáltatások költséghatékony nyújtását,
- az informatikai infrastruktúra javuló menedzselhetőségét,
- jobb tervezési képességét,
- az informatikai szolgáltatások biztonságosabb nyújtását

A rendelkezésre-állás menedzsment funkciónak két fő felelősségi területe van:

- Tervezési feladatkör; azaz a rendelkezésre-állás fenntartása az informatikai infrastruktúra változásai és a felhasználói követelmények változásai közepette.
- Üzemeltetési feladatkör; azaz valós adatok gyűjtése és a követelményeknek való megfelelés figyelemmel kísérése.

A rendelkezésre-állás javítására két fő lehetőség van:

csökkenteni kell a hibánkénti állásidőt,

 csökkenteni kell az adott időtartamon belüli hibák számát.

Rendszer események közti idő

A következő adatelemeket kell összegyűjteni:

- dátum és idő, amikor a komponens nem működik, pl. egy hiba (bekövetkezési) ideje,
- dátum és idő, amikor a komponens üzemelni kezd, azaz a komponens sikeres helyreállításának ideje.

A külső szervezettel való kapcsolat

- Annak időpontja, amikor a külső szervezetet értesítették (call-out time).
- Annak időpontja, amikor a külső szervezet átadta a komponenst az informatikai szervezet számára üzemi körülmények között (üzemeltethető állapotban).
- Azon időadatok, amelyek egyéb szerződéses
 feltételekhez kötődnek, mint pl. a szolgáltató mérnök a
 helyszínre kell érjen az értesítést követő két órán belül ezeket szintén gyűjteni kell.