Computer Aided Geometric Design Compendium WS2023

Ida Hönigmann

October 13, 2023

Orginazation

Lecture each Thursday 12:00 to 14:00 (full 2 hours).

Oral exam. Write email to fix date and time.

Problem session each Thursday 14:00 to 16:00. Mandatory attendance! Kreuzerlübung.

1 Bezier curves

Example 1. Linear combination $\lambda a + \mu b$

TODO image

Affine combination $\lambda a + \mu b$ and $\lambda + \mu = 1$

TODO image

What is μ so that $\lambda a + \mu B$ is on the line?

$$\lambda a + \mu b = a + t(b - a) \implies a(\underbrace{\lambda - 1 + t}_{=0}) + b(\underbrace{\mu - t}_{=0}) = 0$$

If a, b are linearly independent $\implies \mu = t \land \lambda + \mu = 1$

Convex combination $\lambda a + \mu b$ and $\lambda + \mu = 1$ and $\lambda, \mu \geq 0$

TODO image

Line is a + t(b - a) with $t \in [0, 1] \implies \mu, \lambda \in [0, 1]$

Definition 1 (combinations). linear combination $\sum_{i=1}^{n} \lambda_i v_i$ with $v_1, ..., v_n \in \mathbb{R}^d, \lambda_1, ..., \lambda_n \in \mathbb{R}$ affine combination $\sum_{i=1}^{n} \lambda_i v_i$ with $\sum_{i=1}^{n} \lambda_i = 1$ convex combination $\sum_{i=1}^{n} \lambda_i v_i$ with $\sum_{i=1}^{n} \lambda_i = 1$ and $\forall i : \lambda_i \geq 0$

Algorithm 1 (of de Casteljou, Bezier curve). Given: $b_0,...,b_n \in \mathbb{R}^d$ (called control points / Kon $trollpunkte), t \in \mathbb{R}$

Recursion: $b_i^0(t) := b_i$

 $b_i^j(t) := (1-t)b_i^{j-1}(t) + tb_{i+1}^{j-1}(t)$ for j=1,...,n and i=0,...,n-j Result: $b(t) := b_0^n(t)$ (called Bezier curve)

Remark 1. In the algorithm above often we choose $t \in [0,1]$.

Example 2. TODO images

Remark 2. In this course $\mathbb{N} = \{1, 2, 3, ...\}$ and $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$

Recap 1. $0! := 1, n! := n(n-1)(n-2) \cdots 1$ for $n \ge 1$.

Definition 2 (Bernstein polynomials). For $n, i \in \mathbb{N}_0$ we define $B_i^n(t) := \binom{n}{i} t^i (1-t)^{n-i} \in \mathbb{R}[t]$

Remark 3. Special cases of Bernstein polynomials

$$i > n \implies B_i^n(t) = 0$$

$$B_i^n(0) = \begin{cases} 0, i \neq 0 \\ 1, i = 0 \end{cases}$$

$$B_i^n(0) = \begin{cases} 0, i \neq 0 \\ 1, i = 0 \end{cases}$$

$$B_0^0(t) = 1$$

Theorem 1. $b_i^j(t) = \sum_{l=0}^j B_l^j(t) b_{i+l}$