

# Monitoring Vegetation Health and Water Availability in Bryce Canyon National Park for Drought Stress Mitigation Planning

Aaron Carr, Melanie Frost, Ashley Grinstead, Alissa Stark, & Carli Merrick



# Partners & Objectives

#### Partner: National Park Service, Bryce Canyon

Tyra Olstad, Physical Scientist

#### **Objectives:**

- Apply sophisticated remote sensing techniques to:
  - **Detect** springs, seeps, and groundwaterdependent ecosystems
  - **Examine** changes in surface water presence and vegetation health
  - Report changes in climate
- Create a framework for future applications



Image Credits: NPS & Tyra Olstad



# **Study Area & Period**

Study Period: 2013–2022

Study Area: 35,835 acres



Yellow Creek spring in front of hoodoos Image Credit: Tyra Olstad





## **Background Information**



Image Credit: Barton Davis Smith

#### **Park Tourism**

- Visitors increased from 890,676 in 2006 to 2,679,478 in 2018
- Highest concentration of Hoodoos in the world
- Designated Dark Sky Park in 2019

#### **Groundwater Dependent Ecosystems**

- Unique species
- Sensitive to changing climate



# Methodology: NDVI & NDWI Analysis



#### NDVI as Measure of Vegetation Health, Landsat 8 OLI (30m)

#### Mann-Kendall NDVI Trend Test

Landsat 8 OLI, 2013-2022



Where is there positive, negative, and zero trend in vegetation health?

#### Significant NDVI Change

Landsat 8 OLI, 2013-2022



Where is there significant positive and negative trend?

#### **NDVI Change Hot Spot Analysis**

Landsat 8 OLI, 2013-2022



Where does significant positive and negative trend cluster?
(Note: Hot Spots (red) are increasing NDVI)

## Results: Detection with NDVI

#### **Bryce Canyon NDVI Histogram**

Planet, 05/14/2022



NDVI

#### Bryce Canyon NDVI Table

6 Annual April/May Images, 2017–2022

| Overall<br>Mean | Springs<br>& Seeps<br>Mean | Z-Score | P-Value |
|-----------------|----------------------------|---------|---------|
| 0.322           | 0.287                      | -0.271  | 0.787   |

Two-Tailed Z-Test

$$H_o$$
:  $\mu = \mu_o$ 

$$H_1$$
:  $\mu \neq \mu_0$ 



## Results: NDWI Surface Water & Change





|        | Spring/See<br>p Mean | Z-Score | P-Value |
|--------|----------------------|---------|---------|
| -0.215 | -0.239               | -0.151  | 0.880   |

|        | Spring/Seep<br>Mean | Z-Score | P-Value |
|--------|---------------------|---------|---------|
| -0.465 | -0.504              | -0.404  | 0.686   |

# Methodology: Predictive Modeling





## Results: Random Forest Model





| Validation Classification   |                           |                               |  |  |
|-----------------------------|---------------------------|-------------------------------|--|--|
|                             | Seep/Spring<br>(observed) | Not Seep/Spring<br>(observed) |  |  |
| Seep/Spring<br>(predicted)  | 56%                       | 92%                           |  |  |
| Not Seep/Spring (predicted) | 44%                       | 8%                            |  |  |



## Results: Maximum Entropy Model





## Results: Maximum Entropy Model



# Results: Precipitation Time Series





## Results: Climatic Time Series





### Conclusions

- NDVI and NDWI alone are not a reliable indicator of spring and seep presence
- Maximum Entropy model predicted the probability of where springs and seeps were located
- Snowfall and snow sublimation has decreased since 1979, but rainfall has remained relatively consistent



A slope in Bryce Canyon covered in autumn foliage.

Image Credit: Tyra Olstad



## **Future Work**

- Request and collect aerial thermal imagery
  - Groundwater discharge may have a distinguishable temperature in thermal imagery
- Utilize park stratigraphy
  - Geologic factors may be a reliable indicator of spring and seep occurrence
- Use different machine learning/statistical approaches
- Utilize high evapotranspiration importance through OpenET









## Acknowledgements

#### **Advising**

- Tyra Olstad (National Park Service, Bryce Canyon)
- Sean McCartney (NASA Goddard Space Flight Center, Science Systems & Applications, Inc.)
- Nicole Ramberg-Pihl (NASA Goddard Space Flight Center, Science Systems & Applications, Inc.)

#### **Additional Support**

Dr. Jessica Erlingis (NASA Goddard Space Flight Center & University of Maryland)