

www.didel.com/C/Resume.pdf

Résumé Arduino/C

Vous savez, mais vous n'êtes plus très sûr

Définitions	s, déclarations	#define Led 13 // ! pas de ;	
utiliser des r	nots qui parlent	int Duree = 100 ;	
		const int Led=13; // constante	
variables	char codeA = 'A'; 8 bits signé	byte (non signé 0255)	
	unsigned int nom; 16 bits	int (-32768+32767)	
tableau taVal [5]; taVal []={18,5,3,7,5};			
void set-u	() { configuration, initialisations	pinmode (LedTop, OUTPUT);	
}		DDRC = 0b00000111; // 0 = in 1 = out	
void loop () {		loop() {	
les instructions se terminent par un ;		<pre>digitalWrite (LedTop,LOW ;</pre>	
}		<pre>} ! LOW ne veut pas dire inactif!</pre>	

```
Calcul aa=aa+2; ou aa += 2; + - * / %
                                                        Comparaison
j++; ajoute 1 j--; soustrait 1

bitwise & (and), | (or), ^ (xor), ~ (not)
>>, << décale
                                                          == (égalité), !=(différent), < , >
                                                        boolean &&, ||, ! (not)
                                                        valeur =0 faux ou différent de 0 vrai
```

<pre>if (condition) { bloc d'instructions; }</pre>	if (condition) {	
si vrai on fait	instructions ;	
On teste et on passe plus loin	}	
if (condition) { } else { }	if (condition) uneInstruction;	
si vrai on fait, autrement on fait autre chose	else uneInstruction ;	
while (condition) { }	while (condition) {	
on fait et refait tant que la condition est vraie	<pre>// instructions ; }</pre>	
<pre>while (1) { bloc d'instructions; }</pre>	while (1) { instructions; }	
on fait en boucle les instruction (comme loop),		
while (1) { } on ne fait plus rien		
<pre>do { bloc d'instructions; }</pre>	do { a++ ;} // a déclaré avant	
while (condition);	while $(a < 5)$;	
for (init; condition; modif)	for (byte i; i<5; i++)	
{ bloc d'instructions; }	{ Cligno (); }	
byte etat;	enum { Avance, Recule,} etat;	
switch (etat) {	switch (etat) {	
case 0: instructions; break;	case avance: instructions;	
case 1: instructions; break;	etat = recule; break;	
default: instructions; // optionnel	case recule:	
}	}	
Commentaires	/*	
// commentaire jusqu'à la fin de ligne	Commentaire sur plusieurs lignes	
	*/	

Constantes: HIGH (maj) Variables: temp (minuscules) Fonctions: FaireCeci (maj-min)

Fonctions Arduino

pinMode(pin,b);	boolean		
digitalWrite (pin,b);	boolean	0 = LOW 1 = HIGH	
digitalRead (pin);	boolean		
analogWrite (pin,val)	byte	0255 pins 5,6, 3,11, 9,10	
analogRead (pin);	unsigned int	01023 pins 14,15,16,17,18,19 A0 A5	
delay (ms);	unsigned long	0~10 ¹⁰ millisecondes (~50 jours)	
delayMicroseconds ();	unsigned int	0 65535 us (~0.06 sec)	
millis (temps);	unsigned long	0~10 ¹⁰ millisecondes (~50 jours) depuis reset	
micros(temps);	unsigned long	0 ~10 ¹⁰ us (~60 sec)	
pulseIn (pin,b);	unsigned long	b=HIGH mesure imp à 1 HIGH	
		attend l'impulsion et mesure sa durée	
min(a,b) max(a,b)		choisit le min ou max	

	l		
constrain (x, a, b);		garde la vaeur x entre a et b	
map (value, fromLow, fromHigh, toLow, toHigh);		applique une régle de 3	
bitSet(var,n);	boolean	bits numérotés depuis la gauche.	
bitClear(var,n);	boolean	s'applique aussi aux PORTs, DDRs	
bitRead(var,n);	boolean	if (!bitRead(PORTC,bMousD)) - vrai si MousD pressée	
bitWrite(var,n,b);	boolean	PORTC&(1< <bmousd) préférable<="" td=""></bmousd)>	
lowByte(var);	int, long	prend les 8 bits de poids faible var&0xFF plus rapide	
highByte(var);	int, long	prend les 8 bits de poids fort var&0xFF00	
		var&0xFF000000	
Serial.begin(9600);		setup canal série du terminal	
Serial.end();		désactive, rarement utilisé	
Serial.print ();		(75) → 75 (75,BIN) → 100101 (75,HEX) → 4B	
Serial.println();		("Texte 1""2") → Texte 1"2 '1' code Ascii de 1 =	
		0x31=49	
Serial.write();		(65) → A ("abcd") → abcd	
Serial.available()		if (Serial.available() > 0) {	
Serial.read();		octetRecu = Serial.read(); }	
Serial.flush():		vide le tampon	
tone (pin, fréqHz);		démarre un son	
tone (pin, fréqHz,durée);		démarre un son pour la durée spécifiée en ms	
notone ();		stoppe le son	
shiftOut(D,Ck,dir,val8);		décale 8 bits – très lent	
randomSeed(valeur);	int	randomseed (analogRead(A0);) A0 flottant	
random(max);	long	valeur rendue entre 0 et max-1	
random(min,max);	long	valeur rendue entre min et max-1	
attachInterrupt(pin,fct,m);		Appelle la fonction s'il y a transition selon mode sur la	
detachInterrupt();		pin 2 ou 3	
interrupt();nointerrupt();		active/désactive toutes les interruptions	

Correspondance pins Arduino – bits AVR 168/328 Les pins 0 à 7 vont sur les bits 0 à 7 du portD. Les pins 0 et 1 ne sont pas utilisées pour ne pas interférer avec USB.

Les pins 8 à 13 vont sur les bits 0 à 5 du portB Les pins 14 à 19 vont sur les bits 0 à 5 du portC; elles acceptent l'ordre analogRead (pin); (valeur 10 bits) Les pins 3, 5, 6, 9, 10, and 11 acceptent l'ordre analogWrite (pin,pwm8bits);

Interrupt Timer0 8 bits (delay(), millis(), PWM 5 and 6) coupe 8us toutes les ~700 us
Timer1 16 bits (PWM 9 and 10, servos)
Timer2 8 bits (PWM 3 and 11) xBot Interruption 100us

Pour accéder aux pins, on a le choix entre les fonctions Arduino, ou l'accès direct aux bits des registres

pinMode (2,OUTPUT);	bitSet (DDRD,2);	DDRD = 1<< 2; durée 0.06 µs
<pre>pinMode (2,INPUT) ;</pre>	<pre>bitClear (DDRD,2);</pre>	DDRD = 1<< 2;
durée 3.1 µs	durée 0.13 µs	DDRD &= ~(1<< 2); 0.13 µs
<pre>digitalWrite (2,HIGH);</pre>	<pre>bitSet (DDRD,2);</pre>	DDRD = 1<< 2;
<pre>digitalWrite (2,LOW);</pre>	<pre>bitClear (DDRD,2);</pre>	DDRD &= !(1<< 2);
durée 3.8 /4.0 µs	durée 0.13 µs	durée 0.13 µs
digitalRead (2) 3.7 µs	bitRead (PORTD, 2) 0.13 µs	PIND & (1<<2) durée 0.06 µs
<pre>if (digitalRead(2)){}</pre>	<pre>a= bitRead (PORTD,2);</pre>	$a = PIND & (1 << 2); 0.3 \mu s$
durée 3.7 µs	durée 0.6 µs	if (PIND & (1<<2)){}
	<pre>if (bitRead (PORTD,2)){}</pre>	durée 0.13 µs
	durée 0.13 µs	