P425/2 APPLIED MATHEMATICS Paper 2 July/Aug, 2023 3 hours

PROVINCIAL - NAMIREMBE DIOCESE COUHEIA SECONDARY MOCK EXAMINATIONS 2023

Uganda Advanced Certificate of education APPLIED MATHEMATICS Paper 2 3 hours

INSTRUCTIONS TO CANDIDATES

- Answer all the eight(8) questions in Section A and any five(5) questions from Section B.
- ➤ Any additional question(s) answered will **not** be marked.
- > *All* working **must** be shown clearly.
- ➤ Mathematical table with a list of formulae and squared paper are provided.
- ➤ Silent, non programmable scientific calculators and mathematical tables with a list of formulae may be used.
- ➤ For numerical work, take acceleration due to gravity
 - $g = 9.8 \text{ ms}^{-2}$ unless otherwise.

SECTION A (40 MARKS)

Attempt all questions in this section.

- 1. The system of Forces of (2i+bj) N and (bi-aj) N acting through points with position vectors (-2i-2j) m and (3i-cj) m respectively is in equilibrium. Find the values of constants a, b and c. (05 marks)
- 2. The table below shows prices of items B, C, and D in 2018 and 2020 and the price indices for 2020 with 2018=100.

Item	Price in 2018	Price in 2020	Price index
В	150	285	190
С	y	330	200
D	170	Z	250

Find the

(i) values of y and z.

(03 marks)

(ii) simple price index.

(02 marks)

3. The table below shows how force, *F*, in newtons varies with extension, *e*, in metres for an elastic string.

F(N)	2	3	4
e (m)	38	68	108

Use linear interpolation or extrapolation to estimate,

(i) extension when the force applied is 5 N.

(02 marks)

(ii) force when extension is 47.5m.

(03 marks)

- 4. Three particles of masses 2 kg, 6 kg and 10 kg are placed at points with coordinates (2,4), (-5,1) and (3,-4) respectively. Determine the; (i) coordinates of the centre of mass of the system of particles
 - (ii) distance of the centre of mass from the origin (05 marks)
- 5. Independent events A and B are such that $P(A \cap B) = 0.15$, P(A) = m and P(B) = m + 0.2. Determine the value of m and hence $P(AUB^I)$.

(05 marks)

- 6. The numbers x = 2.5 and y = 20 are rounded off with a relative error of 0.004 and a percentage error of 1 respectively. Given that z = 2.0 with an absolute error of 0.02; find the maximum value of $\frac{x-y}{z}$. (05marks)
- 7. Particles P and Q are in space at the same horizontal level and 60 m apart. P was projected vertically upwards with a speed of 40 ms⁻¹. Seven second later, Q was also projected vertically upwards with a speed of 30 ms⁻¹. Find the distance between the particles after 2 seconds of Q's motion.

 (Take g=10ms⁻²)

 (05 marks)
- 8. IF $X \sim B(20,P)$ and E(X)=3, find the;
 - (i) Var(X). (04 marks)
 - (ii) P(X=9). (01 mark)

SECTION B (60 MARKS)

Attempt any five questions from this section.

9. A uniform beam CD of weight 100 N and length 12 m is freely hinged to a vertical wall at point C. A load of mass 5 kg is hang from the beam at end D. The beam rests in equilibrium inclined at 60° to the downward vertical by means of a light inelastic string attached to end D and point E, which is 12 m vertically above C as shown below.

(a) Find the tension in the string.

(04 marks)

(b) Determine the reaction at the hinge C.

(08 marks)

10. The table shows the marks on a scale of 80; obtained by students of a certain school in a certain class.

marks	40-	45-	50-	55-	60-	70-	80-
Number of students	4	13	17	44	59	7	0

- (a) Construct a histogram and use it to estimate the modal mark.
- (b) Calculate the
 - (i) standard deviation.
 - (ii) highest percentage mark exceeded by the best 15 students.

(12 marks)

11. (a) A wooden block of mass 112 kg is dragged across a rough horizontal floor by a force F N inclined at 30^{0} above the floor at a uniform speed. If the coefficient of friction between block and floor is $\frac{2}{7}$,

Find the;

(i) value of F.

(03 marks)

- (ii) work done by the dragging force in moving the block through5.5 m under the above conditions. (02 marks)
- (b) A vehicle of mass 1200 kg tows a trailer of mass 250 kg up along an incline of inclination $\arcsin\left(\frac{1}{49}\right)$ above the horizontal. If the engine of the car is working at a constant rate of 4.2 kw and that the resistance to motion of the car is four times that of the trailer, find the;
 - (i) resistance to motion of the car when it is moving with a steady speed of 12 ms⁻¹. (05 marks)
 - (ii) tension in the tow bar.

(02 marks)

(a) Show that the Newton-Raphson's iterative formula for finding the 12. fourth root of the reciprocal of a number N is given by;

$$x_{r+1} = \frac{1}{4} (5x_r - Nx_r^5)_{; r = 0, 1, 2, 3, ...}$$

- Draw a flow chart that; (b)
 - (i) Reads the initial approximation x_0 and N.
 - (ii) Computes and prints N and the fourth root of its reciprocal correct to 2 decimal places.
 - **(12 marks)** (iii) Perform a dry run for N = 10.0 and $x_0 = 0.6$
- 13. Two ships A and B had the following displacements and velocities at given times as shown in the table below.

Ship	Velocity(v)	displacement (r)	Time
A	(i +2 j) kmh ⁻¹	(i +3 j) km	1200 hrs
В	(5 i +6 j) kmh ⁻¹	(i +2 j) km	1300 hrs

Assuming that ships maintained their velocities,

- (a) At what time were the ships closest to each other?
- Calculate the minimum distance separation of the ships during their (b) ensuing motion.
 - (ii) If the passengers in the ships could see each other at a ships' separation not exceeding 2.5 km, find the length of time for which the passengers of ships A and B were within the sight of each other.

(12 marks)

The probability density function of a continuous random variable X is 14. given by;

$$f(x) = \begin{cases} kx(a-x) & ; & 0 < x < 2 \\ 0 & ; elsewhere \end{cases}$$
 where a and k are constants.
Show that $k = \frac{3}{2(3a-4)}$

- (a)
- Given that E(X) = 1, find the values of a and k (b)
- (c) Find the mode **(12 marks)**

15. The table below shows the marks scored by 10 A-level students in Mathematics paper 1 and Paper 2 in an examination.

Students	A	В	С	D	Е	F	G	Н	I	J
Paper 1	35	26	33	20	40	35	24	23	26	30
Paper 2	23	25	24	28	23	27	21	33	24	26

(a) (i) Draw a scatter diagram to represent the above information.

(03 marks)

- (ii) Draw a line of best fit and use it to estimate the marks scored by a student in paper 2 if he scored 21 in paper 1. (03 marks)
- (b) Calculate the rank correlation coefficient between paper 1 and 2 and hence comment on your answer at 1% level of significance.

(06 marks)

16. (a) Draw a graph of $y=tanx - \log_2(e^{0.2x})$ from x=2 to x=4.

(03 marks)

(b) Using trapezium rule with 5 ordinates estimate the area enclosed between the curve $y=tanx - \log_2(e^{0.2x})$, x-axis and the lines x=2 and x=4, correct to 1 decimal places. (05 marks)

4

(c) (i) Find the exact value of $\log_2(e_{0.2}^x)$ | dx, and

 $\int [tanx -$

2 hence calculate the percentage error in your estimation in (b) above correct to 1 decimal place.

(04 marks)

(ii) Suggest how the error in your estimation in (b) above can be minimized. (01 mark)