```
In [6]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

Out[9]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_basement	yr_built
0	2014- 05-02 00:00:00	3.130000e+05	3.0	1.50	1340	7912	1.5	0	0	3	1340	0	1955
1	2014- 05-02 00:00:00	2.384000e+06	5.0	2.50	3650	9050	2.0	0	4	5	3370	280	1921
2	2014- 05-02 00:00:00	3.420000e+05	3.0	2.00	1930	11947	1.0	0	0	4	1930	0	1966
3	2014- 05-02 00:00:00	4.200000e+05	3.0	2.25	2000	8030	1.0	0	0	4	1000	1000	1963
4	2014- 05-02 00:00:00	5.500000e+05	4.0	2.50	1940	10500	1.0	0	0	4	1140	800	1976
4595	2014- 07-09 00:00:00	3.081667e+05	3.0	1.75	1510	6360	1.0	0	0	4	1510	0	1954
4596	2014- 07-09 00:00:00	5.343333e+05	3.0	2.50	1460	7573	2.0	0	0	3	1460	0	1983
4597	2014- 07-09 00:00:00	4.169042e+05	3.0	2.50	3010	7014	2.0	0	0	3	3010	0	2009
4598	2014- 07-10 00:00:00	2.034000e+05	4.0	2.00	2090	6630	1.0	0	0	3	1070	1020	1974
4599	2014- 07-10 00:00:00	2.206000e+05	3.0	2.50	1490	8102	2.0	0	0	4	1490	0	1990

4600 rows × 18 columns

```
In [10]: df=df[['sqft_living','sqft_lot']]
df.columns=['living','lot']
```

In [11]: df.head(10)

Out[11]:

	living	lot
0	1340	7912
1	3650	9050
2	1930	11947
3	2000	8030
4	1940	10500
5	880	6380
6	1350	2560
7	2710	35868
8	2430	88426
9	1520	6200

In [12]: sns.lmplot(x ="living", y= "lot", data = df,order = 2, ci = None)

Out[12]: <seaborn.axisgrid.FacetGrid at 0x24e1fac78b0>


```
In [13]: df.describe()
Out[13]:
                      living
                                     lot
                 4600.000000 4.600000e+03
          count
                 2139.346957 1.485252e+04
           mean
            std
                  963.206916 3.588444e+04
                  370.000000 6.380000e+02
            min
                 1460.000000 5.000750e+03
            25%
                 1980.000000 7.683000e+03
            50%
           75%
                 2620.000000 1.100125e+04
           max 13540.000000 1.074218e+06
         df.info()
In [14]:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 4600 entries, 0 to 4599
          Data columns (total 2 columns):
               Column Non-Null Count Dtype
               living 4600 non-null
                                        int64
               lot
                       4600 non-null
                                        int64
          dtypes: int64(2)
         memory usage: 72.0 KB
In [15]: df.fillna(method = 'ffill',inplace = True)
         C:\Users\yasoda\AppData\Local\Temp\ipykernel 19252\3028625988.py:1: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returnin
          g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versu
          s-a-copy)
            df.fillna(method = 'ffill',inplace = True)
```

```
In [16]: X = np. array(df['living']).reshape(-1, 1)
Y = np.array(df['lot']).reshape(-1, 1)

In [17]: X_train, X_test, Y_train, Y_test=train_test_split(X,Y,test_size=0.25)
    regr = LinearRegression()
    regr.fit(X_train, Y_train)
    print(regr.score(X_test, Y_test))
```

0.034423720666277635

```
In [18]: y_pred=regr.predict(X_test)
    plt.scatter(X_test, Y_test,color='b')
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```



```
In [19]: df500 = df[:][:500]
sns.lmplot(x ="living",y ="lot", data = df500,order = 1,ci = None)
```

Out[19]: <seaborn.axisgrid.FacetGrid at 0x24e537eba60>


```
In [20]: df500.fillna(method = 'ffill',inplace = True)
    X = np. array(df500['lot']).reshape(-1, 1)
    y = np.array(df500['lot']).reshape(-1, 1)
    df500.dropna(inplace = True)
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
    regr = LinearRegression()
    regr.fit(X_train,y_train)
    print("Regression:",regr.score(X_test,y_test))
    y_pred=regr.predict(X_test)
    plt.scatter(X_test,y_test,color = 'b')
    plt.plot(X_test,y_pred,color = 'k')
    plt.show()
```

Regression: 0.06576127402757892


```
In [21]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model = LinearRegression()
    model.fit(X_train,y_train)
    y_pred = model.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.06576127402757892