

Introduction to Robotics

Chapter 5. Forward Kinematics

Dr. Tran Minh Thien

HCMUTE, Faculty of Mechanical Engineering
Department of Mechatronics

Forward and inverse kinematics

HCMUTE, Faculty of Mechanical Engineering, Dept. of Mechatronics

© Dr. Tran Minh Thien

- Forward kinematics means having the joint variables of a robot, we are able to determine the position and orientation of every link of the robot, including the end-effector.
- The analysis of determination of position and orientation of all links of a robot relative to each other is called forward kinematics.

- A serial robot with n joints will have n + 1 links.
- Numbering of links starts from link (0) for the immobile grounded base link and increases sequentially up to link (n) for the endeffector.
- Numbering of joints starts from 1, and increases sequentially up to joint n.
- The link (i) is connected to its lower link (i 1) at its proximal end by joint i and is connected to its upper link (i + 1) at its distal end by joint i + 1.

Link (i)

Joint axis

Proximal end

Distal end

- Figure illustrates links (i-1), (i), and (i+1) of a serial robot, along with joints i-1, i, and i+1.
- Numbering of links starts from link (0) for the immobile grounded base link and increases sequentially up to link (n) for the endeffector. Every joint is indicated by a joint axis, which will be either translational or rotational.

• We rigidly attach a local coordinate frame B_i to every link (i) at joint i + 1 based on the following standard method, known as **Denavit**—**Hartenberg (DH) method**.

5.1. Denavit—Hartenberg Notation Denavit—Hartenberg (DH) principles

- The z_i -axis is aligned with the i+1 joint axis.
- The x_i -axis is defined along the common normal between the z_i -1 and z_i axes, pointing from the z_i -1 to the z_i -axis.
- The y_i -axis is determined by the right-hand rule, $y_i = z_i \times x_i$.
- \Rightarrow By applying the **DH method**, the origin o_i of the frame $\mathbf{B_i}(o_i, x_i, y_i, z_i)$, **attached to the link** (*i*), is placed at the intersection of the joint axis i+1 with the common normal between the z_i-1 and z_i axes.

C5. Forward Kinematics

Denavit-Hartenberg (DH) principles

• A **DH coordinate frame** is identified by four parameters: a_{i} , α_{i} , θ_{i} , and d_{i} .

Denavit-Hartenberg's (DH) rules

- 1. Link length \mathbf{a}_i is the distance between z_{i-1} and x_i axes along the x_i -axis. \mathbf{a}_i is the kinematic length of the link (i). \Rightarrow \mathbf{a}_i is along the x_i -axis, from z_{i-1} to z_i axes.
- 2. Link twist α_i (alpha) is the required rotation of the z_{i-1} -axis about the x_i -axis to become parallel to the z_i -axis. $\Rightarrow \alpha_i$ is about the x_i -axis, from z_{i-1} to z_i axes.
- 3. Joint distance d_i is the distance between x_{i-1} and x_i axes along the z_{i-1} -axis. Joint distance is also called link offset. $\Rightarrow d_i$ is along the z_{i-1} -axis, from x_{i-1} to x_i axes.
- **4. Joint angle** θ_i is the required rotation of x_{i-1} -axis about the z_{i-1} -axis to become parallel to the x_i -axis. $\Rightarrow \theta_i$ is about the z_{i-1} -axis, from x_{i-1} to x_i axes.

Denavit-Hartenberg's (DH) rules

- The parameters θ_i and d_i are called **joint parameters**, defining the relative position of two adjacent links connected at joint i.
 - \Rightarrow For **a revolute joint** (**R**) at joint *i*, the θ_i is the unique joint variable, and the value of d_i is fixed.
 - \Rightarrow For a prismatic joint (P), the d_i is the only joint variable, while the value of θ_i is fixed.
- The joint parameters θ_i and d_i define **a screw motion** because θ_i is a rotation about the z_{i-1} -axis and d_i is a translation along the z_{i-1} -axis.

Denavit-Hartenberg's (DH) rules

- The parameters α_i and a_i are called **link parameters**, because they define relative positions of joints i and i + 1 at two ends of link (i).
- The link twist α_i is the angle of rotation z_{i-1} -axis about x_i to become parallel with the z_i -axis.
- The other link kinematic length parameter, a_i , is the translation along the x_i -axis to bring the z_{i-1} -axis on the z_i -axis.
- The link parameters α_i and a_i define **a screw motion** because α_i is a rotation about the x_i -axis and a_i is a translation along the x_i -axis.

Example 1: DH table and coordinate frames for 3R planar manipulator.

An R||R||R manipulator is a planar robot with three parallel revolute joints. Figure illustrates a 3R planar manipulator robot.

Example 1: DH table and coordinate frames for 3R planar manipulator.

The DH table can be filled

Frame no.	a_i	α_i	d_i	θ_i	
1	a_1	α_1	d_1	θ_1	
2	a_2	α_2	d_2	θ_2	
• • • • • • • • • • • • • • • • • • • •			• • • • •		
j	a_j	α_j	d_{j}	θ_j	λx_3
•••••			• • • • • • • • • • • • • • • • • • • •		y_3 x_2 y_3
n	a_n	α_n	d_n	θ_n	y_2
Frame no.		α.	d.	Δ.	y_1
riame no.	a_i	α_i	d_i	θ_i	$ \uparrow$ \downarrow
1	$ l_1 $	0	0	θ_1	
2	l_2	0	0	θ_2	x_1
3	<i>l</i> ₃	0	0	θ_3	x_0
				·	z_1

Example 2: Coordinate frames for a 3R PUMA robot.

It has $\mathbf{R} \vdash \mathbf{R} || \mathbf{R}$ main structure.

Frame no.	a_{i}	$\alpha_{\rm i}$	$d_{ m i}$	$ heta_{ m i}$
1	0	90deg	0	$ heta_1$
2	l_2	0	-1 ₁	θ_2
3	1 ₃	0	0	θ_3

Example 3: Stanford arm.

A schematic illustration of the Stanford arm is a spherical robot

 $R \vdash R \vdash P$ attached to a spherical wrist $R \vdash R \vdash R$.

Frame no.	a_i	α_i	d_i	θ_i
1	0	-90 deg	l_1	θ_1
2	0	90 deg	l_2	θ_2
3	0	0	d_3	0

- The coordinate frame B_i is fixed to the link (i) and the coordinate frame B_{i-1} is fixed to the link (i-1).
- The following prescribed set of **two rotations** and **two translations** is also a straightforward method to move the frame B_{i-1} to coincide with the frame B_i . This is a method to make a transformation matrix ${}^{i}T_{i}-1$:
 - 1. **Translate** frame B_{i-1} along the z_{i-1} -axis by distance d_i .
 - 2. **Rotate** frame B_{i-1} through θ_i around the z_{i-1} -axis.
 - 3. **Translate** frame B_{i-1} along the x_i -axis by distance a_i .
 - 4. **Rotate** frame B_{i-1} through α_i about the x_i -axis.

5.2. Transformation Between Adjacent Coordinate Frames

• The transformation matrix $^{i-1}T_i$ to transform coordinate frames B_i into B_{i-1} is represented as a product of four basic transformations using the parameters of link (i) and joint i.

$$= \begin{bmatrix} \cos \theta_{i} - \sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\ \sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & -\cos \alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{x_{i-1},\alpha_i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 \cos \alpha_i & -\sin \alpha_i & 0 \\ 0 & \sin \alpha_i & \cos \alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad D_{x_{i-1},a_i} = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5.2. Transformation Between Adjacent Coordinate Frames

$$R_{z_{i-1},\theta_i} = \begin{bmatrix} \cos \theta_i - \sin \theta_i & 0 & 0 \\ \sin \theta_i & \cos \theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D_{z_{i-1},d_i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Therefore, the transformation equation from coordinate frame $B_i(x_i,$ y_i , z_i), to its previous coordinate frame $B_{i-1}(x_{i-1}, y_{i-1}, z_{i-1})$, is

$$\begin{bmatrix} x_{i-1} \\ y_{i-1} \\ z_{i-1} \\ 1 \end{bmatrix} = {}^{i-1}T_i \begin{bmatrix} x_i \\ y_i \\ z_i \\ 1 \end{bmatrix}$$

5.2. Transformation Between Adjacent Coordinate Frames

• The inverse of the homogenous transformation matrix is

$${}^{i}T_{i-1} = {}^{i-1}T_{i}^{-1}$$

$$= \begin{bmatrix} \cos\theta_{i} & \sin\theta_{i} & 0 & -a_{i} \\ -\sin\theta_{i}\cos\alpha_{i} & \cos\theta_{i}\cos\alpha_{i} & \sin\alpha_{i} & -d_{i}\sin\alpha_{i} \\ \sin\theta_{i}\sin\alpha_{i} & -\cos\theta_{i}\sin\alpha_{i} & \cos\alpha_{i} & -d_{i}\cos\alpha_{i} \end{bmatrix}$$

5.2. Transformation Between Adjacent Coordinate Frames Example 4: DH transformation matrices for a 2R planar manipulator.

Figure illustrates an R||R planar manipulator and its DH link coordinate frames.

5.2. Transformation Between Adjacent Coordinate Frames Example 5: DH application for spherical robot. !?

22

Figure illustrates a spherical manipulator equipped with a spherical wrist. A spherical manipulator is an $R\vdash R\vdash P$ arm.

5.2. Transformation Between Adjacent Coordinate Frames

Example 5: DH application for spherical robot. !?

The homogenous transformation matrices are

$${}^{0}T_{1} = \begin{bmatrix} \cos\theta_{1} & 0 & -\sin\theta_{1} & 0 \\ \sin\theta_{1} & 0 & \cos\theta_{1} & 0 \\ 0 & -1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{1}T_{2} = \begin{bmatrix} \cos\theta_{2} & 0 & \sin\theta_{2} & 0 \\ \sin\theta_{2} & 0 - \cos\theta_{2} & 0 \\ 0 & 1 & 0 & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}T_{2} = \begin{bmatrix} \cos\theta_{2} & 0 & \sin\theta_{2} & 0 \\ \sin\theta_{2} & 0 - \cos\theta_{2} & 0 \\ 0 & 1 & 0 & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}T_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}T_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{3}T_{4} = \begin{bmatrix} \cos\theta_{4} & 0 & -\sin\theta_{4} & 0 \\ \sin\theta_{4} & 0 & \cos\theta_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

C5. Forward Kinematics

5.2. Transformation Between Adjacent Coordinate Frames

A closed-loop robot provides a constraint on transformation matrices,

$$[T] = {}^{1}T_{2} {}^{2}T_{3} {}^{3}T_{4} {}^{4}T_{1} = \mathbf{I}_{4}$$

where, the transformation matrix [T] contains elements that are functions of a_2 , d, a_3 , θ_3 , a_4 , θ_4 , θ_1 . The parameters a_2 , a_3 , and a_4 are constant, while d, θ_3 , θ_4 , θ_1 are variables.

Assuming θ_I is input and specified, we may solve for other unknown variables θ_3 , θ_4 , d by equating the corresponding elements of [T] and **I**.

- The forward or direct kinematics is the transformation of kinematic information from the robot joint variable space to the Cartesian coordinate space.
 - ⇒ Determining the end-effector position and orientation for a given set of joint variables is the main problem in forward kinematics.
 - \Rightarrow Determining transformation matrices ${}^{0}T_{i}$ to express the kinematic information of link (i) in the base link coordinate frame.
- The traditional way of producing forward kinematic equations for robotic manipulators is to proceed link by link using the Denavit–Hartenberg transformation matrices.

- For an *n*-**DOF** robot, at least *n* transformation matrices, one for every link, are required to determine the global coordinate of any point in any frame.
- The configuration of the multibody when all the joint variables are zero is called the *rest position*.

5.3. Forward Position Kinematics of Robots

• If the links of a robot are arranged such that every link (i) has only one coordinate frame B_i and the frames are arranged sequentially, then:

$${}^{0}T_{i} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3} {}^{3}T_{4} \cdots {}^{i-1}T_{i} \qquad i = 1, 2, 3, \cdots, n$$

• Determine the coordinates of any point P of link (i) in the base frame

$${}^{0}\mathbf{r}_{P} = {}^{0}T_{i}{}^{i}\mathbf{r}_{P} \qquad i = 1, 2, 3, \cdots, n$$

Example 7: A 2R planar manipulator. !?

Figure illustrates a 2R or R||R planar manipulator with two parallel revolute joints. Find, the transformation matrices ${}^{0}T_{1}$, ${}^{1}T_{2}$, ${}^{0}T_{2}$

C5. Forward Kinematics

Example 9: R||R||R, planar manipulator forward kinematics.

Application of DH matrices in forward kinematic analysis of a planar 3 DOF robot.

Example 9: R||R||R, planar manipulator forward kinematics.

The transformation matrices $i^{-1}T_i$ for i = 3, 2, 1 can be found

$${}^{2}T_{3} = \begin{bmatrix} \cos\theta_{3} - \sin\theta_{3} & 0 & l_{3}\cos\theta_{3} \\ \sin\theta_{3} & \cos\theta_{3} & 0 & l_{3}\sin\theta_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{1}T_{2} = \begin{bmatrix} \cos\theta_{2} - \sin\theta_{2} & 0 & l_{2}\cos\theta_{2} \\ \sin\theta_{2} & \cos\theta_{2} & 0 & l_{2}\sin\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}T_{1} = \begin{bmatrix} \cos\theta_{1} - \sin\theta_{1} & 0 & l_{1}\cos\theta_{1} \\ \sin\theta_{1} & \cos\theta_{1} & 0 & l_{1}\sin\theta_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

HCMUTE, Faculty of Mechanical Engineering, Dept. of Mechatronics

© Dr. Tran Minh Thien

Example 9: R||R||R, planar manipulator forward kinematics.

The transformation matrices $^{i-1}T_i$ for i = 3, 2, 1 can be found

$${}^{0}T_{3} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3}$$

$$= \begin{bmatrix} \cos(\theta_{1} + \theta_{2} + \theta_{3}) - \sin(\theta_{1} + \theta_{2} + \theta_{3}) & 0 & r_{14} \\ \sin(\theta_{1} + \theta_{2} + \theta_{3}) & \cos(\theta_{1} + \theta_{2} + \theta_{3}) & 0 & r_{24} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$r_{14} = l_1 \cos \theta_1 + l_2 \cos (\theta_1 + \theta_2) + l_3 \cos (\theta_1 + \theta_2 + \theta_3)$$

$$r_{24} = l_1 \sin \theta_1 + l_2 \sin (\theta_1 + \theta_2) + l_3 \sin (\theta_1 + \theta_2 + \theta_3)$$

Example 9: R||R||R, planar manipulator forward kinematics.

The origin of the frame B_3 is the tip point of the robot. Its position is at

$${}^{0}T_{3}\begin{bmatrix}0\\0\\0\\1\end{bmatrix} = \begin{bmatrix}l_{1}c\theta_{1} + l_{2}c(\theta_{1} + \theta_{2}) + l_{3}c(\theta_{1} + \theta_{2} + \theta_{3})\\l_{1}s\theta_{1} + l_{2}s(\theta_{1} + \theta_{2}) + l_{3}s(\theta_{1} + \theta_{2} + \theta_{3})\\0\\1\end{bmatrix}$$

It means we can find the coordinate of the tip point in the base Cartesian coordinate frame

$$X = l_1 \cos \theta_1 + l_2 \cos (\theta_1 + \theta_2) + l_3 \cos (\theta_1 + \theta_2 + \theta_3)$$
$$Y = l_1 \sin \theta_1 + l_2 \sin (\theta_1 + \theta_2) + l_3 \sin (\theta_1 + \theta_2 + \theta_3)$$

Example 9: R||R||R, planar manipulator forward kinematics.

The rest position of the manipulator is lying on the x_0 -axis where $\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = 0$ because θ_1 becomes

$${}^{0}T_{3} = \begin{bmatrix} 1 & 0 & 0 & l_{1} + l_{2} + l_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 10: 3R, R⊢R||R, articulated arm forward kinematics.

How to determine forward kinematics of the robot?

Example 10: 3R, R⊢R||**R.**

Example 10: 3R, R⊢R||R.

The successive transformation matrices have the following expressions:

$${}^{0}T_{1} = \begin{bmatrix} \cos\theta_{1} & 0 & -\sin\theta_{1} & 0 \\ \sin\theta_{1} & 0 & \cos\theta_{1} & 0 \\ 0 & -1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}T_{2} = \begin{bmatrix} \cos\theta_{2} - \sin\theta_{2} & 0 & l_{2}\cos\theta_{2} \\ \sin\theta_{2} & \cos\theta_{2} & 0 & l_{2}\sin\theta_{2} \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}T_{3} = \begin{bmatrix} \cos\theta_{3} & 0 & \sin\theta_{3} & 0\\ \sin\theta_{3} & 0 - \cos\theta_{3} & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

To express the complete forward kinematics transformation:

$${}^{0}T_{3} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} \\ r_{21} & r_{22} & r_{23} & r_{24} \\ r_{31} & r_{32} & r_{33} & r_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$r_{11} = \cos \theta_1 \cos(\theta_2 + \theta_3)$$

$$r_{21} = \sin \theta_1 \cos(\theta_2 + \theta_3)$$

 $r_{31} = -\sin(\theta_2 + \theta_3)$

 $r_{33} = \cos(\theta_2 + \theta_3)$

$$r_{12} = -\sin\theta_1$$
 $r_{22} = \cos\theta_1$ $r_{32} = 0$

$$r_{32} = 0$$

$$r_{21} = \sin \theta_1 \cos(\theta_2 + \theta_3)$$

$$+\theta_3$$
)

$$\theta_1$$

$$r_{22} =$$

$$r_{32}$$

$$r_{13} = \cos \theta_1 \sin(\theta_2 + \theta_3)$$

$$r_{13} = \cos \theta_1 \sin(\theta_2 + \theta_3)$$

 $r_{23} = \sin \theta_1 \sin(\theta_2 + \theta_3)$

$$r_{14} = l_2 \cos \theta_1 \cos \theta_2 - d_2 \sin \theta_1$$

$$r_{24} = l_2 \cos \theta_2 \sin \theta_1 + d_2 \cos \theta_1$$

$$r_{24} = l_2 \cos l_2 \sin l_1$$
$$r_{34} = d_1 - l_2 \sin \theta_2$$

© Dr. Tran Minh Thien

Example 10: 3R, R⊢R||R.

The tip point P of the third arm is at ${}^{3}\mathbf{r}_{P} = [0 \ 0 \ l_{3}]^{T}$ in \mathbf{B}_{3}

$${}^0\mathbf{r}_P = {}^0T_3\,{}^3\mathbf{r}_P$$

$$= {}^{0}T_{3} \begin{bmatrix} 0 \\ 0 \\ l_{3} \\ 1 \end{bmatrix} = \begin{bmatrix} -d_{2}s\theta_{1} + l_{2}c\theta_{1}c\theta_{2} + l_{3}c\theta_{1}s (\theta_{2} + \theta_{3}) \\ d_{2}c\theta_{1} + l_{2}c\theta_{2}s\theta_{1} + l_{3}s\theta_{1}s (\theta_{2} + \theta_{3}) \\ d_{1} - l_{2}s\theta_{2} + l_{3}c (\theta_{2} + \theta_{3}) \\ 1 \end{bmatrix}$$

The transformation matrix at rest position, where $\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = 0$, is

$${}^{0}T_{3} = \begin{bmatrix} 1 & 0 & 0 & l_{2} \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

C5. Forward Kinematics

Example 10: 3R, $R \vdash R \parallel R$.

The tip point P of the third arm is at in B_3

 $l_2 = 0.75 \,\mathrm{m}$ $l_3 = 0.65 \,\mathrm{m}$ $d_1 = 0.48 \,\mathrm{m}$ $d_2 = 0.174 \,\mathrm{m}$

 ${}^{0}T_{3} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3}$

 $= \begin{bmatrix} c\theta_1 c (\theta_2 + \theta_3) & -s\theta_1 c\theta_1 s (\theta_2 + \theta_3) r_{11} \\ s\theta_1 c (\theta_2 + \theta_3) & c\theta_1 s\theta_1 s (\theta_2 + \theta_3) r_{12} \\ -s (\theta_2 + \theta_3) & 0 c (\theta_2 + \theta_3) r_{13} \\ 0 & 0 & 0 \end{bmatrix}$

 $r_{11} = 0.75\cos\theta_1\cos\theta_2 - 0.174\sin\theta_1$

 $r_{12} = 0.174 \cos \theta_1 + 0.75 \cos \theta_2 \sin \theta_1$ ${}^{0}\mathbf{r}_{P} = {}^{0}T_{3} {}^{3}\mathbf{r}_{P} = {}^{0}T_{3} \begin{vmatrix} 0 \\ 0 \\ 0.65 \end{vmatrix} = \begin{vmatrix} 0.75 \\ 0.174 \\ 1.13 \end{vmatrix}$ $r_{13} = 0.48 - 0.75 \sin \theta_2$

© Dr. Tran Minh Thien

44

5.3. Forward Position Kinematics of Robots

Example 11: SCARA robot (R||R||R||P).

Consider the R||R||P robot shown in Figure.

5.3. Forward Position Kinematics of Robots

Example 11: SCARA robot (R||R||P).

The first link is an R||R(0), which has the following transformation matrix:

45

$${}^{0}T_{1} = \begin{bmatrix} \cos\theta_{1} - \sin\theta_{1} & 0 & l_{1}\cos\theta_{1} \\ \sin\theta_{1} & \cos\theta_{1} & 0 & l_{1}\sin\theta_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The second link is also an R||R(0)

$${}^{1}T_{2} = \begin{bmatrix} \cos\theta_{2} - \sin\theta_{2} & 0 & l_{2}\cos\theta_{2} \\ \sin\theta_{2} & \cos\theta_{2} & 0 & l_{2}\sin\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5.3. Forward Position Kinematics of Robots

Example 11: SCARA robot (R||R||R||P).

The third link is an R||R(0) with zero length,

$${}^{2}T_{3} = \begin{bmatrix} \cos\theta_{3} - \sin\theta_{3} & 0 & 0\\ \sin\theta_{3} & \cos\theta_{3} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The fourth link is an R||P(180)

$${}^{3}T_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 \cos \pi & -\sin \pi & 0 \\ 0 & \sin \pi & \cos \pi & -d \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

C5. Forward Kinematics

5.3. Forward Position Kinematics of Robots

Example 11: SCARA robot (R||R||R||P).

The configuration of the end-effector in the base coordinate frame is

47

$${}^{0}T_{4} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3} {}^{3}T_{4}$$

$$= \begin{bmatrix} c(\theta_{1} + \theta_{2} + \theta_{3}) & s(\theta_{1} + \theta_{2} + \theta_{3}) & 0 & l_{1}c\theta_{1} + l_{2}c(\theta_{1} + \theta_{2}) \\ s(\theta_{1} + \theta_{2} + \theta_{3}) & -c(\theta_{1} + \theta_{2} + \theta_{3}) & 0 & l_{1}s\theta_{1} + l_{2}s(\theta_{1} + \theta_{2}) \\ 0 & 0 & -1 & -d \\ 0 & 0 & 1 \end{bmatrix}$$

It shows the rest position of the robot $\theta_1 = \theta_2 = \theta_3 = d = 0$ is at

$${}^{0}T_{4} = \begin{bmatrix} 1 & 0 & 0 & l_{1} + l_{2} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

C5. Forward Kinematics

5.4. Spherical Wrist

- The **spherical joint** connects two links: **the forearm link** and **hand link**.
- The axis of **the forearm and hand** are colinear at the rest position of the hand.
- An industrial spherical wrist is to simulate a spherical joint and provide 3 rotational DOF for the gripper link.

5.4. Spherical Wrist

• To classify spherical wrists, let us decompose the rotations of the spherical wrist into three rotations about three orthogonal axes, calling the rotations, **Roll**, **Pitch**, and **Yaw**.

Type	Rotation order
1	Roll-Pitch-Roll
2	Roll-Pitch-Yaw
3	Pitch-Yaw-Roll

50

C5. Forward Kinematics

5.4. Spherical Wrist

• A Roll-Pitch-Roll spherical wrist with the following transformation matrix are illustrated

$${}^{3}T_{6} = {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6}$$

$$= \begin{bmatrix} c\theta_{4}c\theta_{5}c\theta_{6} - s\theta_{4}s\theta_{6} - c\theta_{6}s\theta_{4} - c\theta_{4}c\theta_{5}s\theta_{6} c\theta_{4}s\theta_{5} 0\\ c\theta_{4}s\theta_{6} + c\theta_{5}c\theta_{6}s\theta_{4} c\theta_{4}c\theta_{6} - c\theta_{5}s\theta_{4}s\theta_{6} s\theta_{4}s\theta_{5} 0\\ -c\theta_{6}s\theta_{5} s\theta_{5} s\theta_{5}s\theta_{6} c\theta_{5} 0\\ 0 0 1 \end{bmatrix}$$

• The following transformation matrix provides the configuration of the tool frame B_7 in the forearm coordinate frame B_3 ${}^{3}T_{7} = {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6} {}^{6}T_{7}$

$$=\begin{bmatrix} c\theta_{4}c\theta_{5}c\theta_{6} - s\theta_{4}s\theta_{6} - c\theta_{6}s\theta_{4} - c\theta_{4}c\theta_{5}s\theta_{6} & c\theta_{4}s\theta_{5} & d_{7}c\theta_{4}s\theta_{5} \\ c\theta_{4}s\theta_{6} + c\theta_{5}c\theta_{6}s\theta_{4} & c\theta_{4}c\theta_{6} - c\theta_{5}s\theta_{4}s\theta_{6} & s\theta_{4}s\theta_{5} & d_{7}s\theta_{4}s\theta_{5} \\ -c\theta_{6}s\theta_{5} & s\theta_{5}s\theta_{6} & c\theta_{5} & d_{7}c\theta_{5} \\ 0 & 0 & 1 \end{bmatrix}$$

5.4. Spherical Wrist

• The transformation matrix at rest position, where $\theta_4 = 0$, $\theta_5 = 0$, $\theta_6 = 0$, is

5.5. Assembling Kinematics

• Most modern industrial robots have a main manipulator and a series of changeable *wrists*. The manipulator is multibody so that holds the main power units and provides a powerful motion for the wrist point.

An articulator manipulator with 3 DOFs

A spherical wrist and its kinematics

5.5. Assembling Kinematics

• The articulated robot that is made by assembling the spherical wrist and articulated manipulator.

An articulated robot that is made by assembling a spherical wrist to an articulated manipulator

Introduction to Robotics

C5. Forward Kinematics

54