MÁSTER UNIVERSITARIO EN INTELIGENCIA ARTIFICIAL, RECONOCIMIENTO DE FORMAS E IMAGEN DIGITAL

Interacción mediante gestos con Leap Motion

Autor: Giovanny J. Tipantuña Toapanta

Directora: M. Carmen Juan Lizandra

Co-directora: Inmaculada García García

Índice

- Introducción
- Herramientas utilizadas
- Aplicación desarrollada
- Validaciones
- Conclusiones

Introducción (1) – Realidad virtual

- "Es el producto de la simulación de un mundo físico creado a partir de programas informáticos, sistemas computacionales, motores gráficos, que otorga la posibilidad de interacción con el ser humano a través de diferentes sensores" (Sherman & Craig, 2003)
- Casco de realidad virtual
- Estereoscopía con Gafas Activas

Introducción (2) – Interacción con las manos

- Utilizar las manos como Interfaz natural para interactuar con los objetos virtuales eleva el grado de inmersión
- Los usuarios intentan tocar los objetos virtuales
- Teclado o ratón: dificultad de manejo, reduce el nivel de inmersión

Introducción (3) – Estado del arte

- Interacción con las manos y pantalla:
 - Muchas maneras de completar el juego (Christian et al., 2011)
 - Evitar brazos estirados mucho tiempo (Schlattmann et al., 2011)

- Interacción con las manos y casco de realidad virtual:
 - Agarrar piezas requiere un algoritmo complejo (Lee et al., 2015)
 - Mayor nivel de inmersión (Lee et al., 2015)

Christian S, Alves J, Ferreira A, Jesus D, Freitas R, and Vieira N. 2014. *Volcano Salvation: interaction though gesture and head tracking*. In Proceedings of CHI International Conference on Human Factors in Computing Systems, pp. 297-300.

Schlattmann M, Zheng T, Broekelschen J, and Klein R. 2011. *An investigation of bare-hands-ineraction in traditional 3D game genres*. In IADIS International Journal on WWW/Internet 8, No.2, pp.1-16.

Lee P, Wang H, Tung Y, Lin J, Valstar A. 2015. *TranSection: Hand-Based Interaction for Playing a Game within a Virtual Reality Game*. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pp. 73-76.

Introducción (4) - Objetivos

- 1. Estudiar el potencial de Leap Motion para el tracking de las manos
- 2. Desarrollar una aplicación que combine la visualización estereoscópica y la interacción con las manos
- 3. Validar la aplicación con participantes

Herramientas utilizadas (1)

• La aplicación desarrollada contiene 3 juegos en los que se utiliza la interacción con las manos y la visualización 3D.

Juego Museo

Juego Fútbol

Juego Torre

Herramientas utilizadas (2) - Unity

- Multiplataforma, abundante información, gratuito v. personal
- Canvas (botones, sliders, etc.)
- Pre-visualización de escena vista desde casco RV
- Importar modelos 3D

Herramientas utilizadas (3) – Leap Motion

- 3 LED infrarrojos, 2 cámaras
- Leap Motion Core Assets:
 - Parte gráfica y parte física
 - Jerarquía padre-hijo
 - Evitar colisiones entre huesos
 - Fotograma: estructura de datos que contiene información geométrica sobre las manos.

Herramientas utilizadas (4) – Oculus Rift

- OVRCameraRig
 - LeftEyeAnchor
 - RightEyeAnchor
 - CenterAnchor
 - HandController

- HandController
 - Sistema de coordenadas ajustado para su posición en la cabeza

Herramientas utilizadas (5) – Nvidia 3D vision

- Tarjeta gráfica que soporte DirectX 11
- Cable DVI de doble enlace
- Cámara principal:
 - Estática (no tracking posicional)
 - Campo de visión acorde a la distancia de los objetos
 - Separación estéreo
 - Distancia de convergencia

Herramientas utilizadas (6) – Blender, Gimp, Reaper

- Unión, intersección, diferencia
- Biselado en las aristas
- Sistema de coordenadas FBX se ajusta automáticamente en Unity

- Histogramas por canales
- Tijeras inteligentes
- Pinceles, cubos de pintura
- Brillo y contraste

- Cortar fragmentos de audio
- Grabar instrucciones
- Eliminar ruido de fondo
- Ecualizador (realzar la voz)
- Compresor (evita saturación en las grabaciones)

Aplicación desarrollada (1)

- Gestor de la Base de Datos
- Gestor de la Aplicación completa
- Gestor de la *Interfaz Gráfica de Usuario*
- Gestor del Juego Museo
- Gestor del Juego Fútbol
- Gestor del *Juego Torre*

Aplicación desarrollada (2) — Gestor de la base de datos

 Listas dinámicas para evitar retardos temporales al actualizar la BD mientras se juega

Aplicación desarrollada (3) — Gestor de la aplicación

- Información sobre la sesión de juego actual:
 - Persona actual
 - Tipo de 3D
 - Fecha
 - Etc.

- Funcionalidades comunes a varios módulos:
 - Configurar:
 - Cámaras dependiendo del tipo de 3D
 - Velocidad de las manos en las demostraciones
 - Aparición de las instrucciones en texto

Aplicación desarrollada (4) — Interfaz gráfica de usuario

Aplicación desarrollada (5) – Juego Museo

Aplicación desarrollada (6) – Juego Fútbol

Aplicación desarrollada (7) – Juego Torre

Validaciones (1) - Participantes

Grupo	1º	2º	3º	4 º	5º	6º
А	Test de	Juego con	Cuestionario	Juego con	Cuestionario	Cuestionario
	Lang	Oculus	1	Gafas Activas	2	3
	MAJ					
В	Test de	Juego con	Cuestionario	Juego con	Cuestionario	Cuestionario
	Lang	Gafas Activas	1	Oculus	2	3

Validaciones (2) – Tiempo utilizado

- Existen diferencias estadísticamente significativas
 - t de Student: p-valor < 0.05
 - C_Oculus: mediana de 80 (y rango intercuartílico de 30)
 - C_Gafas: mediana de 115 (y rango intercuartílico de 26)

Validaciones (3) – Interacción, Ergonomía y calidad del 3D, 1º vez

- Oculus obtiene una valoración superior (cercana a 7
 - "Totalmente de acuerdo")

Validaciones (4) – Comparativa - Interacción

• El Grupo A valora similarmente ambos dispositivos

Validaciones (5) – Comparativa – Calidad del 3D

- No existen diferencias estadísticamente significativas
- El orden de uso de los dispositivos no ha influido en la valoración de la calidad del 3D

Validaciones (6) – Comparativa – Preferencias

 La diferencia en cuanto a comodidad no es tan grande como en las otras preguntas

Validaciones (7) – Comparativa – Preferencias (género, profesión, edad)

 Ni el género, ni la profesión, ni la edad, influyen en la preferencia final de los participantes

Conclusiones

- Hemos desarrollado una aplicación de RV que permite la interacción con las manos y que incluye 2 tipos de 3D
- Hemos realizado un estudio en el que se hemos determinado que uno de los dispositivos favorece una mejor interacción
- La retroalimentación al usuario mediante instrucciones, efectos sonoros, cambios de color de los objetos, etc., ha evitado que se éste se vea perdido

Trabajos futuros

- Validar la aplicación con un mayor número de participantes
- Posibilidad de mover la cámara en función del movimiento de las manos
- Posibilidad de incorporar machine learning para detectar gestos complejos como dibujar letras en el aire
- Escribir un artículo para su publicación en una revista indexada en JCR o congreso que figure en el listado CORE 2014