Adaboost

In Adaboost, assign weights to the weak learners

f= 0, M, + 0 = M = + 03 M 3 + + 0, Mn.

.: My ... Mn: zere decision tree stumps

: or ... or weights

Decision Tree Stumps

Decision Free slumps mean max depth = 1

L's weak learner

Ly Underfitting

L) Train Accuracy & 40%. 3 High Bias L) Test Accuracy &45% Low Variance

By combining multiple weak learners L) Low Bias, High Variance

-> Mathematical Intuition

Salary	Credit	Approvel
<=50K	B	. No
<=50K	G	Yes
<=50K	G	Yes
>50K	B	No
> 5015	G	Yes
> 50 K	N	Yes
<= 50K	N	No

which decision tree stump needs to be selected as the first stump, we will use entropy or gini index

Gini (Salary
$$\leq 50$$
 and Yes) = $1 - (\frac{2}{4})^2 - (\frac{2}{4})^2 = 0.5$
Gini (Salary ≤ 50 and No) = $1 - (\frac{2}{3})^2 - (\frac{1}{3})^2 = 0.44$
Gini (Salary ≤ 50) = $\frac{4}{7}(0.5) + \frac{2}{7}(0.44)$
= 0.46

Gini (Credit=G and Yes) =
$$1-(\frac{3}{3})^2-(\frac{3}{3})^2=0$$

Gini (Credit=G and No) = $1-(\frac{1}{4})^2-(\frac{3}{4})^2=0.375$
Gini (Credit) = $\frac{3}{7}(0)+\frac{4}{7}(0.375)$
= 0.16

Step 2: Sum of the Total Errors and Performance of the Stumps

		•	
Salary	Gredit	Approval	Sample weights
SOK	B	No	1/4
<= 50K	G	Yes	1/7
<=50K	G	Yes	1/4
>50K	В	No	1/4
>5015	G	Ves	V ₄
>50K	N	Yes	4 CError
<=50K	N	No	1/7

Performance of

$$\begin{aligned}
&= \frac{1}{2} \ln \left[\frac{1 - \frac{1}{4}}{\frac{1}{4}} \right] \\
&= \frac{1}{2} \ln \left[6 \right] \\
&= \frac{1}{2} \ln \left[6 \right] \\
&= 0.896
\end{aligned}$$

Step 3: Update the weights for correctly and incorrectly classified points

Salary	Cred H	Approval	Sample We	o.058
<=50K	B		1/4	0.058
<=50K	G.	Yes	4.1	
<=5015	G	Yes	1/4	0.058
>504	B ·	No	1/4	0.058
>504	G.	Yes	1/4	0.53
1>50K.	N	Yes	1/4	0.349
<=5015	N	No	14	0.058

The decrease the weights for correct classified points

$$= \text{weight } \times e^{-\text{performance of stump}}$$

$$= \frac{1}{7} \times e^{-0.896}$$

$$= 0.058$$

Update the weight for incorrect classified points
= weight x e reformance of stump
= \frac{1}{7} \times e^{0.058}

Salary	Credit	Approval	Updated Weights	Normalized Weight
<=50K	B	No	0.058	5.08
<=50K	G	Yes	0.053	0.08
<=5015	G	Yes	0.058	0.08
> 50K	В	No	0.053	0.08
> 50K	G	Yes	820.0	০ ০ ৪
>5015	N	Yes	0.349	0.50
<=50K	N	No	0.058	0.08.
			0.697	

- 1) divide all weights by 0.697
 - @ Model 1 sends only incorrectly classified records to Model 2, will be assigning some bins

Salary	Credit	Approval	Updated Weights	Normalized Weighte	Bins
<=50K	В	No	0.058	0.08	0.0 80-008
<=50K	G	Yes	0.058	0.୦୪	0.03-0.16
<=50K	G	Yes	0.058	0.08	0.16-0.24
>5014	В	No	0.058	0.08	0.24-0.32
> 5015	G	Yes	0.058	80.0	0.32-0.40
>5015	И	Yes	0.349	0.50	0.40 - 0.90
<=5015	N	No	0.058	0.08	0.90 -0.98

~	Salary	CredH	Approval	Bins
	<= SOK	В	No	80.00
	<=50K	G	Yes	0.08-0.16
	<=50K	G	Yes	0.16-0.24
	> sok	В	No	0.24-0.32
	>5015	G	Yes	0.32-0.40
1	>5015	N	Yes	0.40-0.90
	Z=50K	N	No	0.90-0.98

1) Herate process by salecting random valves between o and I and check where they fall in the bins

Salary	Credit	Credit Approval		Random Number	
>504	N	Yes	0.50	2	
Z=50K	G	Yes	ol⋅a		
>50K	N	Yes	0.60	<u></u>	
> 5015	SB	No	0.32		
<u> </u>					

Step: 6 These records will be

sent to next decision

tree stump

Step 2-step 6 will be repeated

Test data (\le sok, G)

$$f = 4. M_1 + 42 M_2 + ... + 4m M_n$$

$$= (0.896)(Yes) + (0.650)(No) - 0.30(No)$$

$$= (0.896)(Yes) + (0.350)(No)$$

$$= (0.896)(Yes) + (0.350)(No)$$

$$= (0.896)(Yes) + (0.350)(No)$$

Final output: Yes