Fondamenti dell'Informatica

Compito scritto

21 febbraio 2005

Cognome:		
Nome:		
Matricola:		

Note

- 1. Per i quiz a risposta multipla, fare una croce sulla/e lettera/e che identifica/no la/e risposta/e desiderata/e.
- 2. Per i quiz a risposta multipla, c'è sempre almeno una risposta corretta. Talvolta ci sono più risposte corrette. Si richiede che siano marcate *tutte e sole* le risposte corrette. In altre parole, una crocetta in più o in meno invalida l'esercizio.
- 3. Per i quiz descrittivi e gli esercizi, la risposta va data sulla stessa facciata che contiene il testo dell'esercizio. Lo spazio lasciato a questo scopo è sempre sufficiente.
- 4. È possibile usare il retro dei fogli per eventuali calcoli e verifiche.
- 5. L'orario di consegna scritto alla lavagna è tassativo.
- 6. Non è consentita la consultazione di alcunché.
- 7. Gli esercizi verranno corretti solo se il numero di punti conseguiti nei quiz supera una certa soglia. In caso contrario il compito è insufficiente. Le soglie sono:
 - per i matematici, 18 punti riducibili a 16 a patto che le risposte ai quiz 1, 2, 3, 5, 9 e 11 siano corrette.
 - per gli informatici, 23 punti riducibili a 20 a patto che le risposte ai quiz 1, 2, 3, 5, 9, 11 e 15 siano corrette.

Quiz per tutti

- 1. (1 punto) Un linguaggio finito
- (A) è libero dal contesto; (B) è degenere; (C) è regolare;
- (D) $n\acute{e}$ (A) $n\acute{e}$ (B) $n\acute{e}$ (C).
- 2. (1 punto) Qual è la cardinalità dell'insieme dei linguaggi liberi che si possono definire su di un alfabeto Σ di n>0 simboli?
- definire su di un alfabeto Σ di n>0 simboli? (A) 2^n ; (B) 2^{2^n} ; (C) $|\mathbb{N}|$; (D) $|\wp(\mathbb{N})|$;
- (E) né (A) né (B) né (C) né (D).
- 3. (2 punti) I linguaggi regolari sono chiusi rispetto a
- (A) differenza insiemistica; (B) concatenazione;
- (D) stella di Kleene;
- (E) unione;
- (F) nessuna di queste.

(C) intersezione;

4. (3 punti) Si descriva, usando la notazione insiemistica, il linguaggio accettato dall'automa M qui sotto:

L(M) =

5. (2 punti) Si consideri la relazione $R \subset \{a,b,c,d,e\}^2$ data dalla tabella qui sotto, dove 1 o 0 all'incrocio tra la riga x e la colonna y indicano se $(x,y) \in R$ o se $(x,y) \notin R$, rispettivamente:

R	a	b	c	d	e
a	1	0	0	0	1
b	0	1	0	0	1
c	0	0	1	1	0
d	0	0	1	1	0
e	1	1	0	0	1

Le classi di equivalenza di R sono

- (A) (a, c), (c, d), (d, a), (b, e), (e, b);
- (B) $\{a\}, \{b\}, \{c, d\}, \{e\};$
- (C) $\{a\}, \{c, d\}, \{b, e\};$
- (D) nessuna: R non è di equivalenza.

6. (5 punti) Quali dei seguenti linguaggi sull'alfabeto $\Sigma = \{a,b,c\}$ sono regolari?

$$\begin{split} L_1 &= \{\, a^n b^m c^n \in \Sigma^* \mid n \geq 1, m \geq 1 \,\}; \\ L_2 &= \{\, a^n a^m a^{n+m} \in \Sigma^* \mid n \geq 3, m \geq 4 \,\}; \\ L_3 &= \{\, a^n b^m b^n \in \Sigma^* \mid n = 5, m \geq 1 \,\}; \\ L_4 &= \{\, a^n b^m c^n \in \Sigma^* \mid 1 \leq n \leq 9, m \geq 2n + 1 \,\}; \\ L_5 &= \{\, a^n b^m c^n \in \Sigma^* \mid n \geq 1, m = 5 \,\}; \\ L_6 &= \{\, a^n b^{2n} c^{4n} \in \Sigma^* \mid n \in \mathbb{N} \,\}. \end{split}$$

- (A) L_1 ; (B) L_2 ;
- (C) L_3 ; (D) L_4 ; (E) L_5 ; (F) nessuno di essi.
- 7. (2 punti) Si dia un'espressione regolare e_1 per il seguente linguaggio su $\{0,1\}$:

 $L_1 = \{ \text{tutte le stringhe che contengono un numero di '0' divisibile per 3} \}.$

 $e_1 =$

8. (4 punti) Si dia un'espressione regolare e_2 per il seguente linguaggio su $\{0,1\}$:

 $L_2 = \{$ tutte le stringhe che contengono al più una coppia di '1' consecutivi $\}$.

 $e_2 =$

- (2 punti) Si supponga che la formula L(x,y) significhi "x ama y". Per ognuna delle seguenti asserzioni, si scriva la formula logica corrispondente:
 - (a) Tutti amano tutti
 - (b) Ognuno ama qualcuno
 - (c) Qualcuno ama tutti
 - (d) Qualcuno ama sé stesso
 - (e) Non tutti amano sé stessi
 - (a)
 - (b)
 - (c)
- (d)
- (e)
- 10. (2 punti) Si consideri la funzione

$$f(x) = \left\{ \begin{array}{ll} 1, & \text{se almeno } x \text{ `5' consecutivi appaiono nella espansione} \\ & \text{decimale di } \pi; \\ 0, & \text{altrimenti.} \end{array} \right.$$

Si ha che

- (A) f è totale;
- (B) f non è totale;
- (C) f è calcolabile; (D) f non è calcolabile;
- (E) $n\acute{e}$ (A) $n\acute{e}$ (B) $n\acute{e}$ (C) $n\acute{e}$ (D).
- 11. (2 punti) Si consideri una macchina di Turing per la quale siano $a, b, c \in \Sigma$ ed anche $u, v \in \Sigma^*$ e $q_i, q_i \in Q$. Se la funzione di transizione δ è tale che $\delta(q_i, b) = (q_j, c, R)$, allora abbiamo

$$\langle q_i, ua, b, cv \rangle \vdash \alpha,$$

dove α è

- $\begin{array}{lll} \text{(A)} \ \langle q_j, uab, c, v \rangle; & \text{(B)} \ \langle q_j, uac, c, v \rangle; & \text{(C)} \ \langle q_i, uab, c, v \rangle; & \text{(D)} \ \langle q_j, u, a, bcv \rangle; \\ \text{(E)} \ \langle q_j, u, a, ccv \rangle; & \text{(F)} \ n\acute{e} \ (A) \ n\acute{e} \ (B) \ n\acute{e} \ (C) \ n\acute{e} \ (D) \ n\acute{e} \ (E). \end{array}$

Quiz per gli "informatici"

- 12. (2 punti) Se applico con successo il "Pumping Lemma" per linguaggi regolari ad un linguaggio L, oltre a sapere che L non è regolare, so anche che
- (A) che L è libero dal contesto; (B) che L non è libero dal contesto;
- (C) né (A) né (B).
- **13.** (1 punto) Si considerino le seguenti grammatiche espresse in forma concisa e si dica quali di queste sono ambigue:
- (A) $S \to aS \mid a$; (B) $S \to SS \mid a$; (C) $S \to aSa \mid \epsilon$; (D) $S \to SaS \mid \epsilon$;
- (E) $n\acute{e}$ (A) $n\acute{e}$ (B) $n\acute{e}$ (C) $n\acute{e}$ (D) $n\acute{e}$ (E).
- 14. (2 punti) I linguaggi liberi dal contesto sono chiusi rispetto a
- (A) differenza insiemistica; (B) concatenazione; (C) intersezione;
- (D) stella di Kleene;
- (E) unione;
- (F) nessuna di queste.
- 15. (2 punti) Si consideri l'automa a pila

$$M = \langle \{q\}, \{a, b\}, \{a, b, S\}, \delta, q, S, \emptyset \rangle$$

dove

$$\begin{split} &\delta(q,\epsilon,S) = \big\{ (q,bSa), (q,bS), (q,SS), (q,\epsilon) \big\}, \\ &\delta(q,a,a) = \big\{ (q,\epsilon) \big\}, \\ &\delta(q,b,b) = \big\{ (q,\epsilon) \big\}. \end{split}$$

Si mostrino due esecuzioni dell'automa (sequenze di descrizioni istantanee) che mostrino che le seguenti stringhe sono accettate per pila vuota:

- (a) babb
- (b) bbaa
- (a)
- (b)

Esercizio 1 (per tutti)

Si usi il "Pumping Lemma" per linguaggi regolari per dimostrare che il linguaggio $L\subseteq\{a,b,c\}^*$ costituito da tutte e sole le stringhe che contengono più a che b non è regolare.

Esercizio 2 (per tutti)

Halting Problem: lo si enunci nella sua formulazione più generale, dimostrando formalmente ogni affermazione.

Esercizio 3 (solo per gli "informatici")

Si consideri il linguaggio $L = \{ a^n b^m \mid 0 < n < m \}$. Si dia una grammatica che lo generi e si progetti un automa a pila che lo accetti (per stato finale o per pila vuota, a scelta del candidato).