Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = 2x - 5$$

- **1.** Etudier le signe de f(a)-f(b) pour a et b appartenant à $]-\infty;+\infty[$ avec a < b ; en déduire le sens de variation de f sur cet intervalle.
- 2. Dresser le tableau de variation de f.

EXERCICE 10.2

Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = -4x+1$$

- **1.** Etudier le signe de f(a)-f(b) pour a et b appartenant à $]-\infty;+\infty[$ avec a < b ; en déduire le sens de variation de f sur cet intervalle.
- **2.** Dresser le tableau de variation de *f*.

EXERCICE 10.3

Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = x^2 - 3$$

- **1. a.** Etudier le signe de f(a)-f(b) pour a et b appartenant à $[0;+\infty[$, avec a < b; en déduire le sens de variation de f sur cet intervalle.
 - **b.** Même consigne sur $]-\infty;0]$.
- **2.** Dresser le tableau de variation de *f*.

EXERCICE 10.4

Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = (x+2)^2 - 6$$

- **1. a.** Etudier le signe de f(a)-f(b) pour a et b appartenant à $[-2;+\infty[$, avec a < b; en déduire le sens de variation de f sur cet intervalle.
 - **b.** Même consigne sur $]-\infty;-2]$.
- **2.** Dresser le tableau de variation de f.

EXERCICE 10.5

Soit la fonction définie sur $]-\infty;1[\,\cup\,]1;+\infty[\,$ par :

$$f(x) = \frac{1}{x-1}$$

- **1. a.** Etudier le signe de f(a)-f(b) pour a et b appartenant à $]1;+\infty[$, avec a < b; en déduire le sens de variation de f sur cet intervalle.
 - **b.** Même consigne sur $]-\infty;1[$.
- **2.** Dresser le tableau de variation de *f*.

EXERCICE 10.6

Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = x^2 - 8x + 3$$

1. Soit a et b deux réels. Montrer que:

$$f(a)-f(b)=(a-b)(a+b-8)$$

- **2. a.** Etudier le signe de f(a)-f(b) pour a et b appartenant à $[4;+\infty[$, avec a < b; en déduire le sens de variation de f sur cet intervalle.
 - **b.** Même consigne sur $]-\infty;4]$.
- **3.** Dresser le tableau de variation de *f*.

EXERCICE 10.7

Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = -2x^2 + 4x + 1$$

1. Soit a et b deux réels. Montrer que:

$$f(a)-f(b)=2(b-a)(a+b-2)$$

- **2. a.** Etudier le signe de f(a)-f(b) pour a et b appartenant à $[1;+\infty[$, avec a < b; en déduire le sens de variation de f sur cet intervalle.
 - **b.** Même consigne sur $]-\infty;1]$.
- **3.** Dresser le tableau de variation de *f*.

EXERCICE 10.8

Soit la fonction définie sur $]-\infty;3[\,\cup\,]3;+\infty[$ par :

$$f\left(x\right) = 4 + \frac{2}{x - 3}$$

1. Soit a et b deux réels. Montrer que :

$$f(a)-f(b) = \frac{2(b-a)}{(a-3)(b-3)}$$

- **2. a.** Etudier le signe de f(a)-f(b) pour a et b appartenant à $]3;+\infty[$, avec a < b; en déduire le sens de variation de f sur cet intervalle.
 - **b.** Même consigne sur $]-\infty;3[$.
- **3.** Dresser le tableau de variation de *f*.

EXERCICE 10.9

Soit la fonction définie sur $]-\infty;-5[\,\cup\,]-5;+\infty[\,$ par :

$$f(x) = 2 - \frac{3}{x+5}$$

1. Soit a et b deux réels. Montrer que :

$$f(a)-f(b) = \frac{3(a-b)}{(a+5)(b+5)}$$

- **2. a.** Etudier le signe de f(a)-f(b) pour a et b appartenant à $]-5;+\infty[$, avec a < b; en déduire le sens de variation de f sur cet intervalle.
 - **b.** Même consigne sur $]-\infty;-5[$.
- **3.** Dresser le tableau de variation de *f*.

Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = \frac{3}{x^2 + 1}$$

1. Soit a et b deux réels. Montrer que :

$$f(a) - f(b) = \frac{3(b+a)(b-a)}{(a^2+1)(b^2+1)}$$

- **2. a.** Etudier le signe de f(a)-f(b) pour a et b appartenant à $[0;+\infty[$, avec a < b ; en déduire le sens de variation de f sur cet intervalle.
 - **b.** Même consigne sur $]-\infty;0]$.
- **3.** Dresser le tableau de variation de *f*.

EXERCICE 10.11

Soit la fonction définie sur $]-\infty; +\infty[$ par : $f(x) = x^3 - 3x$.

- 1. Soit a et b deux réels. Montrer que $f(a)-f(b)=(a-b)(a^2+ab+b^2-3)$
- 2. A l'aide des propriétés des inégalités, déterminer le signe de $(a^2 + ab + b^2 3)$ dans les cas suivants :
- **a.** a > 1 et b > 1
- **b.** $0 \le a \le 1$ et $0 \le b \le 1$ **c.** $-1 \le a \le 0$ et $-1 \le b \le 0$
- **d.** a < -1 et b < -1

3. Compléter le tableau suivant :

a et b	a < b < -1	$-1 \le a < b \le 0$	$0 \le a < b \le 1$	1 < a < b
a-b				
$a^2 + ab + b^2 - 3$				
f(a)-f(b)				

4. Récapituler ces résultats dans un tableau de variation.

CORRIGE – NOTRE DAME LA MERCI - Montpellier EXERCICE 10.1

Soit la fonction définie sur $]-\infty;+\infty[$ par f(x)=2x-5

1. Etude du signe de f(a)-f(b):

Soient $a,b \in]-\infty;+\infty[$ tels que a < b:

$$f(a)-f(b) = (2a-5)-(2b-5)$$

= 2a-5-2b-5=2a-2b=2(a-b)

On sait que a < b donc a-b < b-b soit a-b < 0 \Rightarrow AINSI f(a)-f(b) < 0 soit f(a) < f(b)

Si a < b implique f(a) < f(b), alors la fonction f est croissante sur $]-\infty;+\infty[$.

2. Tableau de variation de f:

EXERCICE 10.2

Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = -4x + 1$$

1. Etude du signe de f(a)-f(b):

Soient $a,b \in]-\infty;+\infty[$ tels que a < b:

$$f(a)-f(b) = (-4a+1)-(-4b+1)$$

= -4a+1+4b-1=4b-4a=4(b-a)

On sait que a < b donc a-a < b-a soit 0 < b-a \Rightarrow AINSI f(a)-f(b)>0 soit f(a)>f(b)

Si a < b implique f(a) > f(b), alors la fonction f est décroissante sur $]-\infty; +\infty[$.

2. Tableau de variation de f:

EXERCICE 10.3

Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = x^2 - 3$$

1. a. Soient $a,b \in [0;+\infty[$ tels que a < b:

$$f(a)-f(b) = (a^2-3)-(b^2-3) = a^2-3-b^2+3$$
$$= a^2-b^2 = (a+b)(a-b)$$

On sait que a < b donc a-b < b-b soit a-b < 0On sait que a > 0 et b > 0 donc a+b > 0

- \rightarrow AINSI (a+b)(a-b)<0
- \rightarrow AINSI f(a)-f(b)<0 soit f(a)< f(b)

Si a < b implique f(a) < f(b), alors la fonction f est croissante sur $[0; +\infty[$.

b. Soient $a,b \in]-\infty;0]$ tels que a < b:

$$f(a)-f(b)=(a+b)(a-b)$$

On sait que a < b donc a-b < b-b soit a-b < 0On sait que a < 0 et b < 0 donc a+b < 0

- \rightarrow AINSI (a+b)(a-b)>0
- \rightarrow AINSI f(a)-f(b)>0 soit f(a)>f(b)

Si a < b implique f(a) > f(b), alors la fonction f est décroissante sur $]-\infty;0]$.

2. Tableau de variation de f:

EXERCICE 10.4

Soit la fonction définie sur $]-\infty; +\infty[$ par :

$$f(x) = (x+2)^2 - 6$$

1. a. Soient $a,b \in [-2;+\infty[$ tels que a < b:

$$f(a)-f(b) = \left[(a+2)^2 - 6 \right] - \left[(b+2)^2 - 6 \right]$$

$$= (a+2)^2 - 6 - (b+2)^2 + 6 = (a+2)^2 - (b+2)^2$$

$$= \left[(a+2) + (b+2) \right] \left[(a+2) - (b+2) \right]$$

$$= \left[a+2+b+2 \right] \left[a+2-b-2 \right]$$

$$= (a+b+4)(a-b)$$

On sait que a < b donc a-b < b-b soit a-b < 0On sait que a > -2 et b > -2 donc a+b > -4et a+b+4>0

- \rightarrow AINSI (a+b+4)(a-b)<0
- \rightarrow AINSI f(a)-f(b)<0 soit f(a)< f(b)

Si a < b implique f(a) < f(b), alors la fonction f est croissante sur $[-2; +\infty[$.

b. Soient $a,b \in]-\infty;-2]$ tels que a < b:

$$f(a)-f(b)=(a+b+4)(a-b)$$

On sait que a < b donc a-b < b-b soit a-b < 0On sait que a < -2 et b < -2 donc a+b < -4et a+b+4 < 0

- \rightarrow AINSI (a+b+4)(a-b)>0
- \rightarrow AINSI f(a)-f(b)>0 soit f(a)>f(b)

Si a < b implique f(a) > f(b), alors la fonction f est décroissante sur $]-\infty;-2]$.

2. Tableau de variation de f:

EXERCICE 10.5

Soit la fonction définie sur $]-\infty;1[\,\cup\,]1;+\infty[\,$ par :

$$f(x) = \frac{1}{x-1}$$

1. a. Soient $a,b \in]1;+\infty[$ tels que a < b:

$$f(a)-f(b) = \frac{1}{a-1} - \frac{1}{b-1}$$

$$= \frac{1 \times (b-1)}{(a-1) \times (b-1)} - \frac{1 \times (a-1)}{(b-1) \times (a-1)}$$

$$= \frac{(b-1)-(a-1)}{(a-1)(b-1)} = \frac{b-1-a+1}{(a-1)(b-1)}$$

$$= \frac{b-a}{(a-1)(b-1)}$$

On sait que a < b donc a-a < b-a soit 0 < b-aOn sait que a > 1 et b > 1

donc a-1>0 et b-1>0

- \Rightarrow AINSI $\frac{b-a}{(a-1)(b-1)} > 0 \qquad \Rightarrow \frac{(+)}{(+)\times(+)} = (+)$
- \rightarrow AINSI f(a)-f(b)>0 soit f(a)>f(b)

Si a < b implique f(a) > f(b), alors la fonction f est décroissante sur $]1; +\infty[$.

b. Soient $a,b \in]-\infty;1[$ tels que a < b:

$$f(a)-f(b) = \frac{b-a}{(a-1)(b-1)}$$

On sait que a < b donc a-a < b-a soit 0 < b-aOn sait que a < 1 et b < 1

donc a-1<0 et b-1<0

- \rightarrow AINSI $\frac{b-a}{(a-1)(b-1)} > 0 \rightarrow \frac{(+)}{(-)\times(-)} = (+)$
- \rightarrow AINSI f(a)-f(b)>0 soit f(a)>f(b)
- Si a < b implique f(a) > f(b), alors la fonction f est décroissante sur $]-\infty;1[$.

2. Tableau de variation de f:

EXERCICE 10.6

Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = x^2 - 8x + 3$$

1. Soit a et b deux réels.

$$f(a)-f(b) = (a^2 - 8a + 3) - (b^2 - 8b + 3)$$

$$= a^2 - 8a + 3 - b^2 + 8b - 3$$

$$= a^2 - b^2 + 8b - 8a$$

$$= (a+b)(a-b) + 8(b-a)$$

$$= (a+b)(a-b) - 8(a-b)$$

$$= (a-b)(a+b-8)$$

2. a. Soient $a,b \in [4;+\infty[$ tels que a < b:

$$f(a)-f(b)=(a-b)(a+b-8)$$

On sait que a < b donc a-b < b-b soit a-b < 0On sait que a > 4 et b > 4

donc a+b>8 et a+b-8>0

- \rightarrow AINSI $(a-b)(a+b-8)<0 \rightarrow (-)\times(+)=(-)$
- \rightarrow AINSI f(a)-f(b)<0 soit f(a)< f(b)

Si a < b implique f(a) < f(b), alors la fonction f est croissante sur $[4; +\infty[$.

b. Soient $a,b \in]-\infty;4]$ tels que a < b:

$$f(a)-f(b)=(a-b)(a+b-8)$$

On sait que a < b donc a-b < b-b soit a-b < 0On sait que a < 4 et b < 4

donc a+b < 8 et a+b-8 < 0

- \rightarrow AINSI $(a-b)(a+b-8)>0 \rightarrow (-)\times(-)=(+)$
- \rightarrow AINSI f(a)-f(b)>0 soit f(a)>f(b)

Si a < b implique f(a) > f(b), alors la fonction f est décroissante sur $]-\infty;4]$.

3. Tableau de variation de f:

Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = -2x^2 + 4x + 1$$

1. Soit a et b deux réels.

$$f(a)-f(b) = (-2a^2 + 4a + 1) - (-2b^2 + 4b + 1)$$

$$= -2a^2 + 4a + 1 + 2b^2 - 4b - 1$$

$$= 2(b^2 - a^2) + 4(a - b)$$

$$= 2(b+a)(b-a) - 4(b-a)$$

$$= 2(b-a) \times (b+a) - 2(b-a) \times 2$$

$$= 2(b-a) \times (b+a-2)$$

2. a. Soient $a,b \in [1;+\infty[$ tels que a < b:

$$f(a)-f(b)=2(b-a)\times(b+a-2)$$

On sait que a < b donc a-a < b-a soit 0 < b-aOn sait que a > 1 et b > 1

donc a+b>2 et a+b-2>0

$$\rightarrow$$
 AINSI $2(b-a)\times(b+a-2)>0 \rightarrow (+)\times(+)=(+)$

$$\rightarrow$$
 AINSI $f(a)-f(b)>0$ soit $f(a)>f(b)$

Si a < b implique f(a) > f(b), alors la fonction f est décroissante sur $[1; +\infty[$.

b. Soient $a,b \in]-\infty;1]$ tels que a < b:

$$f(a)-f(b)=2(b-a)\times(b+a-2)$$

On sait que a < b donc a-a < b-a soit 0 < b-aOn sait que a < 1 et b < 1

donc a+b<2 et a+b-2<0

$$\rightarrow$$
 AINSI $2(b-a)\times(b+a-2)<0 \rightarrow (+)\times(-)=(-)$

$$\rightarrow$$
 AINSI $f(a)-f(b)<0$ soit $f(a)< f(b)$

Si a < b implique f(a) < f(b), alors la fonction f est croissante sur $]-\infty;1]$.

3. Dresser le <u>tableau de variation</u> de f:

EXERCICE 10.8

Soit la fonction définie sur $]-\infty;3[\cup]3;+\infty[$ par :

$$f(x) = 4 + \frac{2}{x-3}$$

1. Soit a et b deux réels.

$$f(a)-f(b) = \left(4 + \frac{2}{a-3}\right) - \left(4 + \frac{2}{b-3}\right)$$

$$= 4 + \frac{2}{a-3} - 4 - \frac{2}{b-3}$$

$$= \frac{2 \times (b-3)}{(a-3) \times (b-3)} - \frac{2 \times (a-3)}{(b-3) \times (a-3)}$$

$$= \frac{2(b-3) - 2(a-3)}{(a-3)(b-3)}$$

$$= \frac{2b-6-2a+6}{(a-3)(b-3)} = \frac{2(b-a)}{(a-3)(b-3)}$$

2. a. Soient $a,b \in]3;+\infty[$ tels que a < b:

$$f(a)-f(b) = \frac{2(b-a)}{(a-3)(b-3)}$$

On sait que a < b donc a-a < b-a soit 0 < b-aOn sait que a > 3 et b > 3

donc a-3>0 et b-3>0

$$\rightarrow$$
 AINSI $\frac{2(b-a)}{(a-3)(b-3)} > 0 \Rightarrow \frac{(+)}{(+)\times(+)} = (+)$

$$\rightarrow$$
 AINSI $f(a)-f(b)>0$ soit $f(a)>f(b)$

Si a < b implique f(a) > f(b), alors la fonction f est décroissante sur $[3; +\infty[$.

b. Soient $a,b \in]-\infty;3[$ tels que a < b:

$$f(a)-f(b) = \frac{2(b-a)}{(a-3)(b-3)}$$

On sait que a < b donc a-a < b-a soit 0 < b-aOn sait que a < 3 et b < 3

donc a-3<0 et b-3<0

⇒ AINSI
$$\frac{2(b-a)}{(a-3)(b-3)} > 0$$
 ⇒ $\frac{(+)}{(-)\times(-)} = (+)$

$$\rightarrow$$
 AINSI $f(a)-f(b)>0$ soit $f(a)>f(b)$

Si a < b implique f(a) > f(b), alors la fonction f est décroissante sur $]-\infty;3[$.

3. Dresser le <u>tableau de variation</u> de f:

Soit la fonction définie sur $]-\infty;-5[\cup]-5;+\infty[$ par :

$$f(x) = 2 - \frac{3}{x+5}$$

1. Soit a et b deux réels.

$$f(a)-f(b) = \left(2 - \frac{3}{a+5}\right) - \left(2 - \frac{3}{b+5}\right)$$

$$= 2 - \frac{3}{a+5} - 2 + \frac{3}{b+5} = \frac{3}{b+5} - \frac{3}{a+5}$$

$$= \frac{3 \times (a+5)}{(b+5) \times (a+5)} - \frac{3 \times (b+5)}{(a+5) \times (b+5)}$$

$$= \frac{3(a+5) - 3(b+5)}{(b+5)(a+5)}$$

$$= \frac{3a+15-3b-15}{(b+5)(a+5)} = \frac{3(a-b)}{(b+5)(a+5)}$$

2. a. Soient $a,b \in]-5;+\infty[$ tels que a < b:

$$f(a)-f(b) = \frac{3(a-b)}{(b+5)(a+5)}$$

On sait que a < b donc a-b < b-b soit a-b < 0On sait que a > -5 et b > -5

donc
$$a+5>0$$
 et $b+5>0$

$$\Rightarrow$$
 AINSI $\frac{3(a-b)}{(b+5)(a+5)} < 0 \Rightarrow \frac{(-)}{(+)\times(+)} = (-)$

$$\rightarrow$$
 AINSI $f(a)-f(b)<0$ soit $f(a)< f(b)$

Si a < b implique f(a) < f(b), alors la fonction f est croissante sur $]-5;+\infty[$.

b. Soient $a,b \in]-\infty;-5[$ tels que a < b:

$$f(a)-f(b) = \frac{3(a-b)}{(b+5)(a+5)}$$

On sait que a < b donc a-b < b-b soit a-b < 0On sait que a < -5 et b < -5

donc
$$a+5<0$$
 et $b+5<0$

$$\rightarrow$$
 AINSI $\frac{3(a-b)}{(b+5)(a+5)} < 0 \rightarrow \frac{(-)}{(-)\times(-)} = (-)$

$$\rightarrow$$
 AINSI $f(a) - f(b) < 0$ soit $f(a) < f(b)$

Si a < b implique f(a) < f(b), alors la fonction f est croissante sur $]-\infty;-5[$.

3. Dresser le tableau de variation de *f* :

$$x - \infty$$
 -5 $+\infty$

EXERCICE 10.10

Soit la fonction définie sur $]-\infty;+\infty[$ par :

$$f(x) = \frac{3}{x^2 + 1}$$

1. Soit a et b deux réels.

$$f(a)-f(b) = \frac{3}{a^2+1} - \frac{3}{b^2+1}$$

$$= \frac{3 \times (b^2+1)}{(a^2+1) \times (b^2+1)} - \frac{3 \times (a^2+1)}{(b^2+1) \times (a^2+1)}$$

$$= \frac{3(b^2+1) - 3(a^2+1)}{(a^2+1)(b^2+1)}$$

$$= \frac{3b^2+3-3a^2-3}{(a^2+1)(b^2+1)} = \frac{3(b^2-a^2)}{(a^2+1)(b^2+1)}$$

$$= \frac{3(b+a)(b-a)}{(a^2+1)(b^2+1)}$$

2. a. Soient $a,b \in [0;+\infty[$ tels que a < b:

$$f(a)-f(b) = \frac{3(b+a)(b-a)}{(a^2+1)(b^2+1)}$$

On sait que a < b donc a-a < b-a soit 0 < b-aOn sait que a > 0 et b > 0 donc a+b > 0

On sait que $a^2 > 0$ et $b^2 > 0$

donc
$$a^2 + 1 > 0$$
 et $b^2 + 1 > 0$

⇒ AINSI
$$\frac{3(b+a)(b-a)}{(a^2+1)(b^2+1)} > 0$$
 ⇒ $\frac{(+)\times(+)}{(+)\times(+)} = (+)$

$$\rightarrow$$
 AINSI $f(a)-f(b)>0$ soit $f(a)>f(b)$

Si a < b implique f(a) > f(b), alors la fonction f est décroissante sur $[0; +\infty[$.

b. Soient $a,b \in]-\infty;0]$ tels que a < b:

$$f(a)-f(b) = \frac{3(b+a)(b-a)}{(a^2+1)(b^2+1)}$$

On sait que a < b donc a-a < b-a soit 0 < b-aOn sait que a < 0 et b < 0 donc a+b < 0

On sait que
$$a^2 > 0$$
 et $b^2 > 0$

donc
$$a^2 + 1 > 0$$
 et $b^2 + 1 > 0$

⇒ AINSI
$$\frac{3(b+a)(b-a)}{(a^2+1)(b^2+1)} < 0$$
 ⇒ $\frac{(-)\times(+)}{(+)\times(+)} = (-)$

N

 \rightarrow AINSI f(a)-f(b)<0 soit f(a)-f(b)<0

Si a < b implique f(a) - f(b) < 0, alors la fonction f est croissante sur $]-\infty;0]$.

3. Tableau de variation de f:

EXERCICE 10.11

Soit la fonction définie sur $]-\infty; +\infty[$ par : $f(x) = x^3 - 3x$.

1. Soit a et b deux réels tels que a < b:

$$f(a)-f(b)=(a^3-3a)-(b^3-3b)=a^3-3a-b^3+3b=a^3-b^3-3a+3b$$

Or si l'on développe la factorisation proposée, on obtient :

$$(a-b)(a^2+ab+b^2-3) = a^3 + a^2b + ab^2 - 3a - ba^2 - ab^2 - b^3 + 3b = a^3 - 3a - b^3 + 3b$$

AINSI $f(a)-f(b)=(a-b)(a^2+ab+b^2-3)$

2. A l'aide des propriétés des inégalités, déterminer le signe de $(a^2 + ab + b^2 - 3)$ dans les cas suivants :

			· · · · · · · · · · · · · · · · · · ·
a. $a > 1$ et $b > 1$	b. $0 \le a \le 1$ et 0	$0 \le b \le 1$ c. $-1 \le a \le 0$ et	$-1 \le b \le 0$ d. $a < -1$ et $b < -1$
$a^2 > 1$; $b^2 > 1$; $a^2 > 1$;	$ab > 1$ $a^2 < 1$; $b^2 < 1$;	; $ab < 1 \mid a^2 < 1$; $b^2 < 1$;	$ab < 1$ $a^2 > 1$; $b^2 > 1$; $ab > 1$
d'où $a^2 + ab + b^2$	$d > 3$ d'où $a^2 + ab + b^2$	$a^2 < 3$ d'où $a^2 + ab + b^2$	$a^2 < 3$ d'où $a^2 + ab + b^2 > 3$
et $a^2 + ab + b^2 - 3$	$6 > 0$ et $a^2 + ab + b^2 - 3$	$3 < 0$ et $a^2 + ab + b^2 - 3$	$a < 0$ et $a^2 + ab + b^2 - 3 > 0$

3. Compléter le tableau suivant : a < b donc a - b < 0

a et b	a < b < -1	$-1 \le a < b \le 0$	$0 \le a < b \le 1$	1 < a < b
a-b	_	_	_	_
$a^2 + ab + b^2 - 3$	+	_	_	+
f(a)-f(b)	_	+	+	_

Bilan:

Soient $a,b \in]-\infty;-1]$ tels que a < b : f(a)-f(b) < 0 : la fonction <math>f est croissante sur $]-\infty;-1]$.

Soient $a,b \in [-1;1]$ tels que a < b: f(a) - f(b) > 0: la fonction f est décroissante sur $]-\infty;-1]$.

Soient $a,b \in [1;+\infty[$ tels que a < b : f(a) - f(b) < 0 : la fonction <math>f est croissante sur $[1;+\infty[$.

4. Tableau de variation de f :

