

CA1 EP 41 -73R15 Digitized by the Internet Archive in 2022 with funding from University of Toronto

73 R 15

DEPARTMENT OF THE ENVIRONMENT

INLAND WATERS DIRECTORATE
WATER QUALITY BRANCH

INDUSTRIAL WATER RESOURCES OF CANADA

WATER SURVEY REPORT NO. 15

THE HUDSON BAY, LABRADOR AND ARCTIC DRAINAGE BASINS, 1959-1965

BY J. F. J. THOMAS AND R. M. GALE

CAIEP 41 73 RIS

CANADA DEPARTMENT OF THE ENVIRONMENT

INLAND WATERS DIRECTORATE WATER QUALITY BRANCH

INDUSTRIAL WATER RESOURCES OF CANADA

WATER SURVEY REPORT NO. 15

THE HUDSON BAY, LABRADOR AND ARCTIC DRAINAGE BASINS, 1959-1965

BY
J. F. J. THOMAS AND R. M. GALE

© Information Canada Ottawa, 1973

Cat. No.: En 36-422/15

CONTRACT #02KXKL327-3-8061 THORN PRESS LIMITED

CONTENTS

Pag	e
Abstract	5
Résumé	5
Introduction	9
The drainage basins	4
Survey procedure	5
Analytical procedure	5
Description of municipal water systems A - Hudson Bay drainage basin B - Labrador drainage basin C - Arctic drainage basin 9 Discussion 13 Summary 13 Appendix A - Surface water sampling locations B - Index to data and analyses, by municipality C - Index to data and analyses, by small municipality 14	2 2 3 2 9 5
TABLES	
I. Area and population in the drainage basins of Central Canada in 1961	1
II. Chemical analyses of surface waters in: Hudson Bay drainage basin	2
III. Chemical analyses of municipal water supplies: A – Hudson Bay drainage basin 9 B – Labrador drainage basin 12	
IV. Some small community systems: A - Hudson Bay drainage basin 12 C - Arctic drainage basin 12	
V. Municipal systems, treatment and population served, 1961	5
VI. Municipal water hardness in Hudson Bay, Labrador and Arctic drainage basins, 1961	5

FIGURES

Page

1.	Reference map of drainage basins in Western Canada			6
2	Reference map of drainage basins in Eastern Canada			7
3.	Map: Location of surface water sampling stations and			
	municipal water supplies in the Hudson Bay drainage			
	basin	ick	CO	ver)
3A.	Map: Location of surface water sampling stations and			
	municipal water supplies in the Hudson Bay, Labrador			
	and Arctic drainage basins(inside basins	ick	CO	ver)

Water Survey Report 15 was prepared by the Water Quality Branch of Environment Canada, formerly the Industrial Water Section, Mines Branch, Department of Energy, Mines and Resources.

ABSTRACT

This, the final part of the series of Water Survey Reports of the industrial water resources of Canada, deals with the Hudson's Bay, Labrador, and Arctic drainage basins. Chemical analyses of waters from 216 stations are recorded, with descriptions of 49 municipal and 17 other water supplies. Records between 1947 and 1961 are included. The geology of the drainage basins, the procedures used and the analytical techniques employed are summarized briefly. Two maps of the areas dealt with are supplied.

The waters vary widely in hardness; mineral content is mainly alkaline earth bicarbonates; alkalies, sulphates and chlorides are for the most part low.

RÉSUMÉ

Ce rapport, la dernière partie dans la série des rapports émanant des Relevés hydrologiques concernant les ressources en eau au point de vue industriel, traite des bassins de drainage de la Baie d'Hudson, du Labrador et de l'Arctique. Des analyses chimiques de l'eau à 216 stations sont enregistrées, avec descriptions à 49 sources d'approvisionnement municipales ou autres. La géologie des bassins de drainage, les procédés et analyses techniques utilisés sont résumés brièvement. Deux cartes des régions étudiées apparaissent dans le rapport.

Les eaux varient grandement en crudité; la teneur en minéraux consiste principalement en bicarbonates de terre alcalins; la teneur en alcalis, sulfates et chlorures est basse dans la plupart des cas.

FIGURE 1. REFERENCE MAP OF DRAINAGE BASINS IN WESTERN CANADA

FIGURE 2. REFERENCE MAP OF DRAINAGE BASINS IN EASTERN CANADA

Chemical Quality of Surface and Municipal Water Supplies in the Hudson Bay, Labrador and Arctic drainage basins of Canada, 1959 - 1965

INTRODUCTION

This is the fifteenth and final report of the current Water Survey series, which presents data on the chemical quality of surface and municipal water supplies available for industrial and domestic use in Canada.

Water Survey Report 1¹ introduces the series and outlines the aim, scope and general procedure of the country-wide survey. It also provides general information, tables and graphs for use in interpreting the analytical results of subsequent reports. The studies on specific areas or drainage basins (see Figures 1 and 2) are reported in detail in Reports 2 to 11 and 13 to 15. Report 12² and its supplement³ show tabulated information on water quality at army installations in Canada.

Since these studies commenced in 1947-48, coverage of the chemical quality of major Canadian surface and municipal waters, coverage of areas, and the amount of information on the chemical quality of individual waters, have been broadened in response to the increasing demands of industry and the growing appreciation of water's importance to the Canadian economy. Water quality studies are continuing with increased scope and intensity. Surveys designed to obtain long-term (5-10 years) or continuing information on major surface waters are under way, and data from these and other specific areas surveys will be published.

The present report, No. 15, which completes the initial coverage of Canadian drainage basins, gives the results of studies begun in 1947 in relatively inaccessible areas, namely:

 drainage into Hudson Bay, excluding the Nelson, Saskatchewan and Churchill River systems, which are covered in Reports 8 and 10;

- ii) drainage into the Atlantic Ocean from Labrador and Northern Quebec – the Labrador drainage basin;
- iii) drainage into the Arctic Ocean, excluding the Mackenzie River system, which appears in Report 8, but including some data for water quality on the Arctic Islands

The method of presentation in this report is essentially the same as in the previous studies. No attempt is made to discuss in detail all of the information obtained during the survey, but some statistics on water quality and use are presented and briefly discussed. As before, the data are reported in sufficient detail for the user to interpret and analyse them for his particular purpose.

Table I shows the relationship of area and population (1961) for the basins covered by this report and for other basins or areas studied.

Table II provides detailed analytical results obtained on surface waters during 1947-65. Most of these are for 1959-65, but occasional samples have come from various areas since 1947, usually through special studies, such as the data on Ellesmere Island waters.

Table III reports the chemical quality of most waters, including groundwater, as supplied by organized municipal systems within the basins during 1961. Some data obtained at later dates are also included. The municipalities are listed alphabetically in Appendix B, and their locations are shown in Figures 3 and 3A (jacket maps), where they are classified as to water hardness. The systems or plants and their operations in the years pertinent to the study are also described.

Table IV reports on the operations and the quality of waters supplied by private systems in a number of small townsites and communities, particularly in the Hudson Bay drainage area. These small communities are listed in Appendix C, but only a few are shown on the maps inside the back cover.

Table V summarizes the information available on the number of water systems, the character of water sources,

¹Dept. of Energy, Mines and Resources, Mines Branch. Scope, procedure, and interpretation of survey studies. Water Survey Report No. 1, Mines Branch Report No. 833, Ottawa, 1953, 69pp.

²Dept. of Energy, Mines and Resources, Mines Branch. Water quality at some Canadian military establishments, 1956-57. Water Survey Report No. 12, Mines Branch Report No. 865, Ottawa, 1959. 125pp.

³Dept. of Energy, Mines and Resources, Mines Branch. Water quality at some Canadian military establishments, 1959-62. Supplement to Water Survey Report No. 12. Mines Branch Report No. 872, Ottawa, 1963. 56pp.

the type of water treatment, if any, and the population served by these systems in 1961. Additional statistics, especially on the hardness of municipal waters, are presented in Table VI.

Many people co-operated in the preparation of this report. Grateful acknowledgement is extended to them, and particularly for help in northern areas that were not accessible by road.

TABLE I AREA AND POPULATION DISTRIBUTION

TABLE 1 Area and Population in the Drainage Basins of Central Canada in 1961

1-, 1	. 51			A		ea drained, square t of area drained in			
		Larrett	Qu'e	Ottos:	M - · · · a	1.0 k to 1.0 m s 1.1 i	S I I I I	Y	I mil
Hudson	Bay	-	2-20-	211 80 ZI	19119	100	00184	2.0	11:441
This re	port)		(14.8)	(51.8)	30210	(1) 81	115.53		
abrad:	nr	1 1 6 26	154 18	11	u u	r	j.	-	356 106
This re	port)	(10.2)	(26.5)						
Aretic		F	n.	100	7	1.6	4 5 7417	3.246	813.227
This ro	port)						(61.5)	(3.5)	
S T.	Lower St. Lawrence								
1 \ \ \	(W.S. Report No. 13)	(9.8)	(31.9)	-	,	(14)	ii .	10	200,800
R	Upper St. Lawrence River- Central Great Lakes	to to	σ	88.200	· O	· ·	0	Œ	\$ 200
R	(W,S, Report No. 3)			(13.4)					
1 \ T	Ottawa River	(1	38,560	20,675	0	* *	ři	-0	59.235
R S	(W.S. Report No. 2)		(6.5)	(5.0)					
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Upper Great Lakes	i)	0	67,80m²	U	ш	1,	D	67,8(m) ^a (
1 M	(W.S. Report No. 14)			(16.4)					
Velson	R _{iver} c	0	0	47,045	124,355	47,900	it	u	219,300
W.S. R	eport No. 10)	-	-	(11.4)	(50.4)	(19.0)			
hurch	il River ^d	0	0	0	34,680	66,535			
W.S. R	eport No. 9)	-		-	(14.1)	(26.5)			
otal p	rovince or territory	112,826	594,860	412,582	246,515	251,700	1,304,903	207,076	
Pet cen	of Canada	2.92	15.44	10.71	6.4	6.6	33.9	5.4	

a - Areas and populations adjusted to place Long Lake and Ogoki Diversions in the Hudson Bay drainage basin. b - 541,083 square miles in Arctic Archipelago. c - Does not include Saskatchewan River drainage basin - see W.S. Report No, 10, d - Churchull River drainage basin not included in Hudson Bay basin - see W.S. Report No, 9,

TABLE 1
Area and Population in the Drainage Basins of Central Canada in 1961

									circiai cuin						
		Estimat (Per cent	ted population	on in basin area ir vince population	1961 in basin)						Percentag	e of basin ar	ea population in		
abrador	Quebec	Ontario	Manitoba	Saskatchewan	Northwest Territories	Yukon Territory	Total		Labrador	Quebec	Ontario	Manitoba	Saskatchewan	Northwest Territories	Yukon Territory
0	102,702	119,114 ^a	3,693	0	1,979	0	227,488		0	45.1	52.4	1.6	0	0.9	0
11,727 (86.7)	5,040	0 -	0	0 -	0 -	0 -	16,767	251,173	70.0	30.0	0	0	0	0	0
0 -	0	0	0	0	6,918	0 -	6,918		0	0	0	0	0	100	0
1,807	4,464,750 (84.9)	0	0	0	0	0 –	4,466,557		0.04	99.96	-	-	-	-	
0 -	0 -	5,001,103	0 -	0	0	0 –	5,001,103	11,095,846	0	0	200	0	0	0	0
0	585,800 (11.1)	654,229 (10.5)	0	0	0	0	1,240,029	0,11		47.1	52.9	0	0	0	0
0 -	0	388,157 ^a (6.2)	0 -	0	0	0	388,157		-	-	100	-	-	-	-
0 –	0 -	73,489	-	-	0 -	0	73,489		- -	-		-	-	-	-
-		-				-	~								
13,527 otal Cana	5,229,211 da – 18,238,2	6,236,092	921,686	925,181	22,998	14,628									

THE DRAINAGE BASINS

This survey covers an area of 1,800,000 square miles, most of which lies in the Canadian Shield. A large part of it is subject to permafrost. It is often treeless and vegetation is sparse.

A low relief, generally less than 2,000 feet above sea level, is the norm, with few hills or ridges more than 100 to 200 feet above surface level. There are places, however, with a more rugged topography. In Labrador, the Torngat Mountains rise as high as 3,500 to 5,000 feet above the sea, and the Mountains of Baffin Island reach 6,000 to 7,000 feet.

Glaciation has produced rounded rock outcrops and rocky ridges separated by areas of glacially-deposited sand and gravel. Countless lakes of all sizes and outlines show how glaciation disorganizes the drainage.

The Shield consists of a wide variety of volcanic, sedimentary, and granitic rocks commonly metamorphosed to gneiss and magmatite. There are extensive areas of unaltered sedimentary rocks in northern Baffin Island, the Thelon Plain, south of Lake Athabasca, and east of Great Bear Lake. In many places masses of granite intrude through the older metamorphic complexes.

HUDSON BAY DRAINAGE BASIN

This basin includes sections of the Northwest Territories, Manitoba, Ontario and Quebec, with a total area of approximately 680,000 square miles. The Churchill and Nelson River systems are excluded, but are covered in Water Survey Reports 9 and 10 respectively.

The Hudson Bay Lowlands are a low swampy plain sloping gently from the shores of Hudson and James Bays. They are underlain mainly by sedimentary strata ranging in age from Ordovician to Mesozoic, although an outlier of the Shield forms the Sutton Ridge which rises 500 feet above the general surface. The lignite deposits of the area are being considered as a source of fuel for power generation.

The basin is drained by the following major rivers, which are given here with their approximate lengths: Quebec — Broadback (220 miles), Eastmain (375), Fort George (520), Harricanaw (250), Nottaway (400), and Rupert (380); Ontario — Albany (610 miles), Attawapiskat (465), Moose (340) (and its tributaries Abitibi (340), Mattagami (275), and Missinaibi (270)), Severn (420), and Winisk (400); Manitoba — Hayes (300 miles); Northwest Territories — Dubawnt (580 miles), Kazan (450), Seal (240), Thelon (350), and Thlewiaza (180).

Population is sparse in the northern areas, except for centres such as Moosonee. The southern section of the basin is more heavily populated largely because of the mining towns in the Timmins area.

Natural vegetation in the basin varies from Alpine Tundra in the north, to Subarctic Forest in the central area, to a Boreal Forest region south of James Bay.

LABRADOR DRAINAGE BASIN

The basin drains an area of 105,000 square miles in Labrador and 155,000 square miles in northeast Quebec, for a total of 260,000 square miles.

The Ungava region is underlain by granite gneiss, granite and allied rocks of Precambrian age. Labrador and the Labrador Trough contain altered rock of the same age. The Trough, which is about 60 miles wide, is composed of Late Precambrian sedimentary and volcanic strata, and sills and dykes of gabbro. Included in the area are the important Quebec-Labrador iron ore deposits. The rocks within this belt are folded and faulted.

Notable rivers draining the basin, and their approximate lengths, are: George (365 miles), Hamilton (210), Larch (300), and Leaf (295).

Population is sparse and scattered in this basin, with minor concentrations along the coast of Labrador and in the mining centres. These small, non-dominant communities rely mainly on fishing and trapping for their livelihood, while towns like Wabush, Labrador City and Schefferville are iron ore centres.

The natural vegetation varies from Alpine Tundra in northern parts, to Subarctic Forest in the central region and to Boreal Forest in the south.

ARCTIC DRAINAGE BASIN

The land area of this huge region is estimated at 820,000 square miles. The Arctic Islands stretch from Hudson Bay to the northern tip of Ellesmere Island, a distance of some 1,500 miles. Their greatest extent from east to west is approximately 1,000 miles.

The exposed formations of the Arctic Archipelago are successively younger from southeast to northwest. In the southeast, rocks of the Precambrian Age rise to a height of 6,000-7,000 feet. On Baffin Island, the largest in the Archipelago, a high mountain range extends along the east coast. The east and south coasts, the lowlands north of Fury and Hecla Strait, and probably much of the interior of Baffin Island, are underlain by crystalline rocks of Precambrian Age. Granite intrusions, gneiss and schist make up the greater part of the east coast. The rocks of the south coast include abundant crystalline limestone.

Along the northwest border of the main Precambrian area, the older rocks are overlain first by isolated remnants of lower Paleozoic strata and, farther north in the Queen Elizabeth Islands, by an almost continuous succession ranging in age from Cambrian to Cretaceous. The Arctic Coastal Plain, extending from Mackenzie Delta to Meighen Island, is composed of Tertiary sedimentary rocks.

The shorelines of Devon and Parry Islands rise in cliffs of 400 to 700 feet. An ice-capped tableland in eastern Devon Island rises abruptly from the sea to an average height of about 3,000 feet, and a very large iron deposit occurs at Mary River, northern Baffin Island.

Major lead-zinc deposits occur on Little Cornwallis Island and northern Baffin Island. Oil and gas discoveries have resulted from massive exploration program by industry since 1969.

The major rivers on the mainland, and their approximate lengths, are: Anderson (430 miles), Bache (605), Coppermine (525), and Horton (275).

Population is sparse throughout the Arctic drainage basin. There are many small settlements on the Arctic Islands and the mainland coast.

SURVEY PROCEDURE

The sampling methods and survey procedure, which are essentially the same throughout the Water Survey series, are described in detail in Report 1 (Mines Branch Report 833).

Regular sampling stations were established and operated during 1958 and 1959 in the Hudson Bay drainage basin. The stations were chosen, where possible, to give representative samples of the larger river and lake waters. They are listed in Appendix A and are shown in Figure 3. In addition to the monthly and quarterly sampling, attempts were made to obtain samples at annual periods of high and low water.

A similar procedure was followed in the Labrador basin. Because of the twin factors of inaccessibility and lack of population, regular sampling was not possible in the most northerly areas, including the Arctic Islands, Many random samples were collected at key locations by survey parties and other research groups working in these areas during the survey period.

In the south and east of the Hudson Bay drainage basin, field work was undertaken between 1947 and 1960 for the collection of samples of municipal and surface waters. Sometimes the samples were partially analysed in the field. Spot samples were collected at many of the stations for comparison with the regular ones.

The survey also covered municipal water supply systems and small, organized systems supplying small communities and townsites in the basins during 1947-65.

Chemical analyses of samples from surface water stations (Figures 3 and 3A) are tabulated in Table II. The stations are numbered as follows: Hudson Bay drainage basin, 1 to 142; Arctic drainage basin, 1A to 54A; Labrador drainage basin, 1B to 20B.

Chemical analyses of municipal water supplies are shown in Table III, and chemical analyses and plant data for small communities and townsites in Table IV. Results of field tests appear in parentheses beside the laboratory analyses in Tables II and III. A comparison of these results indicates certain qualities *in situ* and any significant changes in chemical quality which may have occurred during storage or shipment, or both.

ANALYTICAL PROCEDURE

The analytical methods and techniques used in this study are similar to those applied in Water Survey Reports 11 and 13. The basic analytical techniques and interpretation of data are discussed in Report 1. Standard procedures for water analysis published by the American Public Health Association and by the American Society for Testing and Materials were used in most cases, but close co-operation with committees of those societies and with the Mineral Processing Division, Mines Branch, sometimes led to the use of newer techniques and procedures.

The analytical work was carried out mostly from 1957 to 1959, although a number of municipal water samples were collected and analysed in later years. The methods used during the period of this report are briefly as follows.

Usually within four to seven days of collection, water samples were analysed in the laboratory for those constituents that could significantly change in storage. Longer storage sometimes resulted from unforeseen circumstances, such as a delay in shipping. In Tables II, III, and IV, the first figure listed under the storage period is the number of days from sampling until the immediate tests were begun, and the second figure is the number of days from sampling until the remaining tests were started.

IMMEDIATE TESTS

pH – measured by pH meter.

Specific Conductance — measured with a Wheatstone bridge, and a pipette-type conductivity cell.

Colour- by visual comparison of the supernatant or filtered water against Hazen colour standards in a commercial comparator.

Turbidity – the Jackson candle turbidimeter was used for high turbidity waters, the Hellige turbidimenter for low to medium turbidity.

Total Hardness – by titration with a standard solution of sodium ethylenediaminetetraacetic acid (EDTA), using Erichrome Black T as visual endpoint indicator.

Calcium – by titration with standard EDTA, using murexide or, after February 13, 1959, calcon as visual endpoint indicator.

Magnesium – calculated from the values found by titration for total hardness and for calcium.

Alkalinity — by titration with standard (0.02N) sulphuric acid, employing a potentiometric endpoint, After February 11, 1959, alkalinity was determined by a technique developed in the Branch's laboratories, which eliminates errors caused by variations in the titre with total alkalinity concentrations.

Oxygen consumed by Permanganate $(KMnO_4)$ — by measurement of the amount of a standard potassium permanganate solution reduced by a known amount of water at boiling temperature $(100^{\circ}C)$ in one hour. The test is, to some degree, a measure of the organic matter in the water sample.

Copper and Zinc — by periodic spot tests on the supernatant water with dithizone.

Ammonia — by direct Nesslerization of the supernatant water with visual comparison against prepared standards.

TESTS USUALLY MADE AT A LATER DATE

Aluminum – determined spectrophotometrically by the aluminon method until about August, 1957; since then by a mixed ferron-orthophenathroline procedure.

Total Iron and Total Manganese — after July 28, 1959, separate samples of all groundwaters were collected to determine total iron and total manganese; these separate samples, assumed clear when drawn, were acidified in the sample container and the total iron determined by the a.a. dipyridyl procedure; the total manganese was determined by the periodate method or, after November 26, 1958, by the persulphate method or both.

Dissolved Iron and Dissolved Manganese — determined on the supernatant or filtered portions of all waters by the same procedures as used for total iron and total manganese.

Copper and Zinc - when shown to be present in significant amounts by the above spot test, were deter-

mined until September, 1959 by the dihydroxyethyidithiocarbamate and dithizone procedures, respectively. The neocuproine procedure was used to determine copper from May 1963 to October 1963; since then a zinc dibenzyldithiocarbamate procedure has been used. The zincon method was employed for zinc until June 1963; since then the dithizone procedure employing photometric colour detection was used.

Sulphates— since March 1956, by titration with barium chloride, using thorin as a visual endpoint detector.

Chloride – by titration with a standard mercuric nitrate solution, using microburettes and visual endpoint detection. Since May 6, 1963, most samples have been potentiometrically titrated with standard silver nitrate solution using a silver-potassium sulphate electrode system as indicator. The mercuric nitrate method is still used for very low chloride content waters and periodically as a check on the potentiometric method. From August, 1964, chlorides have been determined using an automated ferric thiocyanate method.

Fluoride — by the standard zirconium-alizarin procedure until December 12, 1960, distillation being employed only when interferences were present. Since then fluoride has been determined by the SPADNS procedure, with distillation to isolate fluoride whenever interference is evident.

Nitrate — until about August 13, 1961, nitrate ion was determined by the standard phenoldisulphonic-acid method with visual comparison against standards in Nessler tubes. High nitrate waters were checked by the brucine method with comparison being made in a spectrophotometer. Since November, 1965, nitrate ion has been determined by a Technicon Auto Analyzer, using nitrate reduction technique. Between August 13, 1961 and November 4, 1963, the brucine method was routinely used on most waters, but since November, 1963, a modification of the ultra-violet absorption procedure for nitrates has been used. The ultra-violet absorption method is rapid and sensitive if proper attention is given to interference by organic matter in the water.

Phosphate — determination of total and/or dissolved phosphate was begun routinely on selected waters in late 1960, with the standard procedure employing stannous chloride as reductant. Since July 11, 1963 a modification of this method has employed bismuth nitrate to increase the sensitivity of the test, with amino naphthol sulphonic acid as the reductant. From May, 1965, a Technicon Auto Analyzer has been used with amino naphthol sulphuric acid as the reductant.

Silica – the standard spectrophotometric procedure for silica employing reduction with stannous chloride was used.

no attempt being made to solubilize any silica present in a form not measured by this procedure. After May, 1965, silica was determined with a Technicon Auto Analyzer using amino naphthol sulphuric acid.

Boron — was determined only on major surface-water supplies once or twice yearly, usually at or near times of high and low flow; the standard titration procedure with added mannitol was employed.¹

Suspended Matter and Residue on Evaporation — To permit increase coverage on waters, the determination of suspended matter and residue on evaporation, as well as tests for copper, zinc, iron, aluminum and manganese, were omitted on two out of three samples received from the monthly sampling stations. Suspended matter was determined only when the turbidity was 3 units or over. It is considered that sufficient information is still obtained from this abbreviated analysis to show if significant seasonal variation is occurring.

Calculated *averages* for water quality at monthly sampling stations are omitted from this report. Such averages mean little if the water quality varies widely or if adequate discharge records are not available. Averages should be determined from numerous samples weighted as to discharge.

Saturation Index, Stability Index and Per Cent Sodium are reported for all waters. Interpretation of these calculated values has already been discussed in Water Survey Reports Nos. 1, 10 and 12. In brief, per cent sodium when correlated with total mineralization and boron content indicates the suitability of a water for irrigation.

Since June 6, 1962 a Sodium Adsorption Ratio (SAR) has also been calculated. This ratio,

$$\frac{\text{Na (epm)}}{\sqrt{\text{Ca} + \text{Mg (epm)}}}$$

the result of work by the U.S. Dept. of Agriculture, is a revised form of the above sodium-percentage concept and is related to the experimentally determined adsorption of sodium by soils. It is considered to be more directly significant than the per cent sodium value for estimating the results of using a water for irrigation. However, its use is limited to considering base-exchange reactions in soils and evaluation of irrigation waters whereas the per cent sodium is useful also in plotting quality data and direct comparison of analytical data. Both values are reported in this report,

the per cent sodium partly to maintain continuity throughout the series², ³, ⁴.

The Saturation and Stability Indices are useful for assessing the corrosive tendency of a water. Care, however must be exercised in interpreting these indices since many other factors are important to the rate and extent of corrosion in aqueous solution. For example, when calcium hardness is less than 10 ppm as CaCo₃, and the alkalinity correspondingly low, there is no pH at which calcium carbonate can precipitate and the indices-which are based on the carbon dioxide-pH-calcium carbonate equilibriumthen have little significance. This is the case with many of the very soft and low-mineralized waters of the Upper Great Lakes basin. These indices and the free carbondioxide contents are calculated and reported for each water at the temperature of analyses. They change significantly with changing temperature. The carbon-dioxide content of a cold, deep well water may be markedly different from the content of the same water at laboratory temperature.

Dissolved Oxygen was not determined on surface waters at sampling because it varies so widely with location, depth and temperature; in most rivers the dissolved oxygen content, unless depleted by algae growth or pollution, is always near saturation. A survey of the dissolved oxygen content or B.O.D. (Biochemical Oxygen Demand) of a river requires a detailed and specially designed survey of the river.

Elements other than those reported in this survey are in solution in trace amounts in surface and groundwaters. Some of these have greatly increased in importance, but lack of personnel and laboratory facilities did not permit their routine determination in this study. Separate samples, filtered and acidified at the time of collection, are required if an accurate figure is to be obtained for trace elements, such as barium, silver, cobalt and nickel. These requirements limit the location of sampling stations and raise difficulties in obtaining sample collectors; spectrographic analyses of residues for these and other trace elements are done from time to time for special studies.

Modifications in techniques and new equipment are continually being tested in the laboratory; in some cases to increase the speed of analysis without loss of accuracy or precision, and in other cases to improve the sensitivity and precision of a method.

¹Warren N.V., Delavault, R.E. and Irish, Ruth I, *Acetonic dithizone in geochemistry*. Econ. Geol., Ser. V. 48, No. 4, 1953, p. 306-311.

²Wilcox, L.V. *The quality of water for irrigation use*, U.S. Dept. Agric. Tech. Bull. 962, 1948,

³U.S. Salinity Laboratory Staff. *Diagnosis and improvement of saline and alkali soils*. U.S. Dept. Agric, Handbook No. 60, 1954.

⁴Study and interpretation of the chemical characteristics of natural waters. U.S. Geol. Surv. Water Supply Paper 1473, U.S. Govt. Print, Off. 1959, p. 148-9.

TABLE II CHEMICAL ANALYSES OF SURFACE WATERS

TABLEI

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

	Po	Stream {Secon	discharge nd-(cet)		pauni	mide d)					ended tter	dried	e on evap lat 105°d lved soli		loss	Specific	
No. of	Storage period	sampling data	Montniy	temp-		Carbon d zs (calculared)	pH	Coloug	Turbidsty	at 1000C	at 950°C.	P.P.M.	per acre- foot	per day	1H 350°C.	at 25°C.	Calcs
	(Days)			(°F.)	1	(CO3)		(Hazen (Units)	(Units)		1						(Ca)
														١ ٠,			-
1		14		1 4"			1.2	8									
The e														1461-0-3	w(bear		
J we 18 4	0 1	tte je	Ī	1 11				8							1	SII	
* 7 11 12	1.00 500	×-	1	1	نسا	1			!		_						
,				T	,				1		,	,	6	A HON S	1 - 1 TT	m 8 (0) ()	
3 1 me 18	11.10	Me at		48			10.0	24	2,8								
*Teri ise	VA 10.						,			1		1	*6	A HIDS N	41000	AT PUBL	
1 'ann 11'		1 30,000 e	ļ	48	1	2	6.7	25	2		Ī	Ī		İ	Ĭ		-
5 'alv 4 x 14	1 45 10	mple taken	<u></u>	51	6.4	4	6,3	36	0.4							. 13	14
*Total and	dissolved																
						7					ī	T .	ST	ATION NO	D. 5 - GRE	AT WHAL	E RIVER
† At gauge			42, 'W'*	55	6.4	3 ac mil	5.5	١	4.8		1					The	
			, , diam			sq. mii	ies							STA	TION NO.	6 - DENY	SRIVER
S Aug. Is a	85 111	1,450		55	0.8	3	6.3	30	0.8							1	1-
											9	TATION NO), " = FI	in the city		EANTE S	in the
1 Super 19 %	25:29	85,176 53,175	1	54		2 7	6.7	25	0.4		Ţ				,	ca T	3.0
11 Aug. 12 Sept. 24	No sam	ple taken		49	6.4		6.4	25	0.8			1 1					. 4
* Namples			Sakami Riv		1]		0. [0.4		1	1	1				4
											×.	TATION N	0 3 - 10	CAP TO SEE	0 1 1 4	0.45	1000
13 Aug. 24 %				50	6.4	3	6.3	35	1	_						13,5	1712
* Drainage .	irea at Lat	. 530 451 20)", long, "	80 341 2	0", 32,50	00 s 3. m	iles					1	- '		-		
14 Sept. 24 50	1 4: -11	5 175		<1 ·	9.3		6.4	45	0.8			т	- 1	STATION !	111: 1 - 21	AMI PIV	-
* Total and						-	1		0.5			1		-		2	
													STATIC	V. V.O. 10	- 1.41.441	PS(112 R)	, 1 52 *
I's July 24/60 Io Aug. 24		15,200† 21,000		61			6.5	35	2			[1 1	. 5
* Sampled at	bove juncti						0.1	40	1							10.	
**Total and	dissolved																
:" June 19/60	25:29	50† L		52	1	- 1	, T	70 1			1	(STATION	N >, 11 =	ARIHE I	4), F E
- tlam mates	1	201		-74		10	6.6	70	30						- 1	40.2	4

^{*} Total and dissolved

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

											lin po	irts p	er mii	lion)											
	Iro (F						All	calis											Hardn as Ca	ess CO ₃	tuents	En a	lex	н	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphare	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
(Mg)	,		(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)		(CI)		(NO ₃)		(PO ₄)	1 1				-	0,	0,	
at 56°4	3' N -	750 22	* W - (1				1			1						- 47								
0.2	0.16	0.00	0.00*	0.04	0.0	0.0	0.8	0.2	0.0	0.0	6.6	1.3	0.5	0.0	0.1	1,3	0.04		0.0	5.4	9.6	22	-3.5	14	1
at 56º 1	2' N	75014	' W - (QUEBI	EC .					,															
0.1	0.03	0.00	Trace	* 0.02	0.0	0.0	1.0	0.2	0.0	0.0	7.3	0.7	0.9	0.0	0.1	1.2	0.02		0.3	6.3	10.1	25	-3.3	14	2
at 55° 5	8' N -	76º 35	' W - (QUEBI	EC					ł	L	1			<u> </u>	ı		!							
0.2	0.13	0.02	0,00*	0.0	0.0	0.0	1.0	0.3	0.1	0.0	7.3	1.1	1,1	0.0	0.1	2.5	0.04		0.9	6,9	12.3	23	-3.3	14	3
above	unctio	n of DE	ENYS R	IVER	at 550	09' N -	77º 20¹	W - Q	UEBEC																
0.2	0.19	0.02	0.00*	0.0	0.0	0.0	0.8	0.3	0.1	0.0	6,2	1.2	0.7	0.0	0.1	1.9	0.01		0.0	4.9	10.0	24	-3.7	14	4
0.1	0.13	0.04	0.01*	0.05	0.0	0.0	0.5	0.3		0.0	4.3	2.7	0.5	0.0	0.0	1.5	0.0		1.1	4.6	9.4	17	-4.3	15	6
near Gl	REAT	WHALE	ERIVE	R MIS	SION a	t 55° 16'	30" N	- 77º 3	4° W - 0	QUEBE	ct	,			,						,				_
0.3	0.14	0.04	0.00*	0.03	0.0	0.0	0.6	0.3		0.0	1.6	2.2	2.2	0.0	0.0	1.6	0.0		3.7	5.0	9.5	19	-5.2	16	7
at 54°5	9' 36"	N - 77	70031 3	0"₩ —	QUEB	EC																			
0.4	0.12	0.0	0.00*	0.02	0,0	0.0	0.8	0.4		0.0	3.9	4.2	0.9	0.0	0.1	2.0	0.0		2.7	5.9	12.4	21	-4.3	15	8
at 53°4	0' 42"	N - 76	5°47° 2	4" W -	QUEB	EC																			
0.3	0.11	0.00	0.0	0.02	Trace	e 0.0 0.0	0.7	0.3	0.2	0.0	4.3 3.4	0.4		0.0	0.1	2.5	0.05			3.8	5.9	26 24	-4.1 -4.4	15	9
0.3	0.12	0.00	0.0	0.03	Trac	e 0.0	0.9	0.3		0.0	4.6	2.9	0.6	0.0	0.1	2,6	0.0		0.9	4.7	11.4	27	-3.9	15	11
		1			1	78º 31'			T			ı ———		1						ı			1	1	
0.3	0.18	0.06	0.0	0.0	0.0	0.0	0,6	0.3		0.0	3.7	1.7	0.5	0.0	Trace	2.4	0.00	• • • • • • •	2.0	5.0	9.2	19	-4.4	15	13
near mo	outh at	53° 39	N - 7	'6° 39'	₩ - Q1	UEBEC				,				,		,						,		,	
0.9	0.16	0.00	0.0*	Trac	0.0	0.0	1.2	0.5		0.0	6.5	2.7	1.1	0.0	0.1	2.1	0.00		0.4	5.7	12.6	28	-3.8	14	14
at 53° 4	5' N -	76° 59	" W − (QUFBI	FC																				
0.3	0.16	0.04 0.08	0.0**		0.0	0.0	0.9	0.3	0.0	0.0	4.9 5.1	1.6	0.6	0.0	1.2	2.8	0.03		1.8	5.8 5.1	12.0 11.6	24 20	-4.0 -4.1	15 15	15
near me	outh at	530 44	N - 7	60 571	₩ – QU	JEBEC		1		,	,														
1.8	2.4	0.30	Trace	10.0	Trace	0.0	4.0	1.2	ļ	0.0	17.2	3.3	3.8	0.0	0.2	5.9			1.4	14.9	31.6	34	-3.1	13	17

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

																	_
	Sr (trenm disc (Second-fe	harge et)		umed	٠				antte.		, dried	on evapo i at 105° (lved solid				
No of collection	e san	mpling h	Monthly	iemp-	KMnO4	Carbon dioxide (calculated)	9			=	M-1	100	2				-
	J.				Oxyg	(CO)			d.						200		2
														(A) DE		CIMAN	
	49:95 l No sample t 13:38 j	taken		35		18	5									-	lie
	2 20 1. 1/		l	37						0 1	0.11	practice.		-11510		CHA	100
4 1 20 red	15:27 (3)		201										-		90-11-10		
4 June 30/59 5 July 15 6 July 30 7 Aug, 15	9:14 3: 19:27 3:	5,946 (J 3,400 (J	une 26) uly 18) uly 29) lug, 22)	60 66 67 65	6.8 8.0 7.9 9.9	11 2 3 2	6.1 6.3 6.3	40 40 40 50	4 2 2 0.8	8,5	4.6	16.8 22.0 27.2 31.2	0 CM 0 AAT	7.145 7.430 7.430 7.307	144	LIA TIA	
8 Aug. 31 9 Sept. 14 10 Sept. 30	19:32 18 29:47 14	8,678 (S 4,423 (S	Sept. 1) Sept. 13) Sept. 25)	60 52 50	9.1 9.0 8.6	2 3 2	6.4	35 40 40	0.4 2 1			28.8 16.0 17.6	0.00 0.10 0.10 0.04	Ear E	電量	18.4 18.1 13.4	13
11 Oct. 12	24:37 25 flow junction records at 520	5,065 (0	Oct. 9)	44	9.8	3	6.3	40	8	12,2	5.0	27.2	0.483	LST	WE .	15.0	Ξ.
! Discharge	records at 52°	112" N 1	76°00' W	on date	s show	n in br	ackets							TATION 1	NO II - E	A-TMAIN	
1 (a.v ') 1 (ac. 8 () 4 Sept. 14	.7.23 63		5,1.00± 58,300.6	13	8.1 9.8 8.5	3	0.1	50	5	11.2	7.1	14.2	3.23.2 1.038	4,31.	TH.H. 27.6	12.3	
K Fet. 1	1114 8	7.4.K 8.850	25,4 4 6 2,000 3,000	41	11,	2 4	1.3	40 45 35	2	14.7	2.3	25.£ 44.0	3.045 3.045	4,148	25.2	15 a 15 a 19.3	1.4
* lasctarge :	records at 520	14' 20" \	. 780051	1													
* Mar.	No sample t								1					LATIUN	O. 15 - E	ASIMAIN A	11.14
* Trischarge	12:37 6		80 05. 1	3.5		5	6.1	30	40						-	ile.	1,5
a 1011 . (1)	13.22 2												STAT	ION VO.	10 - 7184	ARTATER	PINE
O Aug. '				65	~.: 8.1	2	6.3	4 c .	0.5				STAI	TON NO.	10 - CLE	18.5	Ï
0 Aug. 1 1 Sept. 1	1 30 1	,580			*.: 8.1								STAT	HON NO.	10 - CLE	13.7	PILE:
0 Aug. 1 1 Sept. 1 2 Fet. 18,60 3 Apr. 18	1 30 1	486		68 61 32 32	8.1	4 5	6.5	4 ⁴ 25	0.5				STAT	ION NO.	.o = Cl#.	18.5 18.5	. 4
0 Aug. 1 1 Sept. 1 2 Feb. 18,60 3 Apr. 18	1°30 i 49.102 10-41	486		68 61 32 32	8.1	4 5	6.1	4° 2° 40	0.4						NO. 11 - 1	18.5 18.5 14.4 23.5 23.7	1.8
0 Asp. 1 1 Sept. 1 2 Fet. 18,60 3 Apr. 18 † Discharge	1°30 i 40.102 10.41 ccco.ds I male	486 342 146	eam from	61 61 32 32 42 43 50	8.1ag point	4	6.1	4° 25 40 30	0.4							18.7 18.5 14.4 23.5 23.7 24.7	1.8
1 Aug. 1 2 Feb. 18,669 2 Apr. 18 1 Discharge 4 June 30/59 5 Aug. 8 6 Aug. 31	1° 30 i 40° 102 10-41 ecced 1 mile 15:27 20:24 18:31	146 146	cam from	65 61 32 4 52 4 50 56 57 56 57	8.1	4 4	6.1 6.1 6.3 5.8 6.6	4% 25 40 30 100 1	0.5							14.7 18.5 14.4 23.5 23.7	1.8
10 Aug. 1 11 Sept. 1 12 Feb. 15,60 13 Apr. 18 1 Uns. harge 4 June 30/59 5 Aug. 8	1 30 i 40.102 10.41 teccotds 1 mile 15:27 20:34 18:31 48:101 5	146 146 147 148 149 140	cam from	65 61 32 32 4 samplar	8.1 ag point	4	6.1	4° 25 40 30 100 1	0.4							18.7 18.5 18.6 18.5 28.7 28.7 28.7	. 1 :.s :
10 Aug. 1 Sept. 1 1 Sept. 1 1 Sept. 1 1 Sept. 1 1 1 Sept. 1 1 1 Sept. 1 Sept. 1 Sept. 1 Sept. 1 Sept. 1 1	1 30 i 40:102 10:41 teccords 1 mile 15:27 20:25 18:31 48:101 5 No sample to	146 (23.2 L 146	cam from	68 61 32 4 4 50 56 57 32 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8.1 ag point 18.7 26.2 18.8	4 5	6.1 6.1 6.1 5.8 6.6 6.4	4% 25 40 30 100 1 200 120 55	0.8					STATI X		18.5 (8.4) (3.8) (3.8) (3.7) (3.6) (1.2) (1.2) (1.2) (1.2) (1.3) (1.4)	. 4 1.8 1.6 1.7 2.4 2.8
10 Aug. 1 Sept. 1 1 Sept. 1 1 Sept. 1 1 Sept. 1 1 1 Sept. 1 1 1 Sept. 1 Sept. 1 Sept. 1 Sept. 1 Sept. 1 1	15:27 20:25 18:31 18:25	146 14 23.2 5-10 48.0° 10	can from Aug. 107	61 32 1 samplar 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57	8.1 ag point 18.7 26.2 18.8	4 5	6.1 6.1 6.1 5.8 6.6 6.4	4% 25 40 30 100 1 200 120 55	0.8	T, 4	3.7	11.8 56.8 28.4	W.200	STATI X	No. 11 - 1	18.5 (8.4) (3.8) (3.8) (3.7) (3.6) (1.2) (1.2) (1.2) (1.2) (1.3) (1.4)	. 3 1.8 1.1 (VER 1.2 2.3

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

											(In pa	irts pe	r mill:	on)											
	Iro (F	on e)					Alk	alis											Harda as Ca	iess iCO ₃	constituents	mn	lex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of const	Per cent sodium	Saturation index	Stability index	No.
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)			<u></u>				L
at 52º 1	9' 24" !	V - 77	006' 42	2" ₩ -	QUEBE	C											1					,			
0.3	0.13		<0.0	0.01	Trace	0.0	0.7	0.5	0.5	0.0	4.5	3.5	0.6	0.0	0.4	4.4			1.0	4.7	14.1	22	-4.0	15	1 2 3
0.3	0.21	0.07	<0.0	0.0	Trace	0.0	1.1	1.0	0.4	0.0	5.7	2.3	1.2	0.0	0.4	5.4			1,2	5.9	16.4	25	-4.1	14	1 1
at 52º 1	8' N -	77º 13	, <u>M</u> − (UEBE	ic .																				
0.2 0.2	0.67	0.09	0.0	0.11	0.0 Trace	0.0	0.7	0.5	0.2	0.0	2.6	2.8	0.6	0.0	0.4	2.1			1.7	3.8 3.8	11.1	23 22 22	-4.8 -4.5	16	5
0.3	0.14	0.00	0.0	0.0	0.0 Trace		0.6	0.2	0.3 0.2 0.1	0.0	3.8 2.7 3.2	1.9 2.9 1.8	0.4	0.0	0.1	2.1 2.2 2.6	0.02		1.4 2.0 1.4	4.5 4.2 4.0	9.5	22 23	-4.2 -4.5 -4.4	15 15	7 8
0.1	0.23	0.05	0.0	Trace 0.01	0.0	0.0	0.6	0.3		0.0	3.7 4.0	2.7	0.5	0.0	0.1	2.8 3.0			1.7	4.7	10.6	24	-4.1	15	9
0.3	0.55	0.16	0.0	0.0	0.0	10.0	0.7	0.2	0.1	0,0	3.8	3.1	0.5	0.0	0.4	3.2	0.03		1.6	4.7	11.8	22	-4.3	15	1.11
below I	0.3 0.22 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.																								
0.3	0.43	0.08	0.0	0.05	0.0 Trace	0.0	0.7	0.3	0.1	0.0	2.7 2.6	2.2	0.7	0.0	0.3	2.1			1.9	4.1	9,8	24	-4.5 -4.7	15 16	1 2 1 3
0.4	0.27	0.05	0.0 0.0 Trace	0.0	0.0	0.0	0.7 0.7 0.9	0.3	0.1	0.0	4.1 2.9	3.4 3.1 2.7	0.6	0.0	0.1	2.6 3.1	0.06		1.5 2.3 1.2	4.9	11.5 11.3 13.4	24 23 22 23 25	-4.7 -4.2 -4.5 -4.1	15 15 15	14 15 16
0.5 below I	0.22	0.05	,,,,,,,,,	0.0	78º 13'			QUEB	0,2 EC	0.0	5.2	247	0.0	0.0	0.0	4.3			4.2	5.5	1344	1 27	***	.,,	1.0
0.4	2.6	0.15	0,00	0.0	Trace	0.0	1.0	0.5	0.1	0.0	3.8	2.9	1.0	0.0	0.4	4.1			2.2	5.3	13.8	26	-4.5	15	17 18
near mo					.v		EC																		
	0.14	0.04		0.04	Trace	0.0	0.7 0.6	0.3	0.0	0.0	2.9 3.5	3.0 3.0	0.3	0.0	0.0	1.8			2.4	4.8 5.1		22 19	-4.4 -4.3	15	19
0.3	0.13	Trace	Trace	0,0	Trace	0.0	1.0	0.3	0.1	0.0	4.1	2,8	0.5	0.0	0.0	2.1			1.1	4.5	9.8	18	-4.1	15	21
0.4	0.15	0.02	0.0	0.0	Trace		0.7	0.5		0.0	4.0 3.7	5.1	0.4	0.0	0.4	3.7		• • • •	2.9	6.2 5.7	15.3	19	-4.4	15	23
near mo				21' N	-				EBEC				1									Lui			1.11
		0.76	0.0	0.0		0.0	2.3	1.4		0.0	5.1	2.2	1.5	0.0	0.2	6,8			3.2	7.4		32	-4.0	14	24
1.0	2.2	0.63	0.0	0.0	0.0 Trace	0.0	1.1	0.6	0.1	0.0	2.1	1.0	1.2	0.0	1.2	3.9 9.0			5.2 0.4	6.9 7.9	24.0	21 36	-5.2 -3.6	16	25 26
0.9	0.45	0.13	0.0	0.0	Trace		3.2	0.6	0.3	0.0	13.9	2,6	1.6	0.0	0.0	12			0.0	9.6	29.9	40	-3.5	13	27
0.9	0.53	0.22	0.01	0.0	Trace	0.0	3.7	1.0		0.0	14.9	2.9	2.7	0.0	0.4	12			0.0	10.7	33.8	39	-3.8	14	28
at 520 2	4" N -	770 14	w - c	UEBE	c																				
	0.33 0.23 0.20 0.25	0.06 0.04 0.04 0.03	0.0 0.0 0.0 0.0	0.05 0.05 0.03 0.0	0.0 0.0 Trace 0.0	0.0	0.6	0.3 0.4 0.3 0.2	0.1 0.3 0.2 0.2	0.0 0.0 0.0 0.0	2.1 3.4 2.7 2.1	2.8 2.5 2.0 3.1	0.6 1.0 0.9 0.8	0.0 0.0 0.0 0.0	0.2 0.4 0.0 0.1	2.2 1.9 1.7 2.2			2.1 1.8 2.2 2.4	3.8 4.6 4.2 4.1	10.5 8.4 9.6	25 28 21 26	-4.8 -4.7 -4.8 -4.9	16 15 16 16	30 31 32 33

TABLE II - (Continued) of Surface Waters in the Hu (In parts per million

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

								4 - 1				_					
		Stream d	ncharge d-teet)		Poe					Suspe		Residue dried (Diaso)	at 105°C	oration (a)	Year		
of of	1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sampling	Monthly	Turer temp-	Oxygen consus by KMnO ₄	Carbon drom de (calculated)	рН	olour	whidity	Dried at 105°C.	Ignited at 550°C.	* 4 <u>V</u>	1 max	100			3
														15 K. S.	N	- NA-A	AREA
	201		· · · ·	4.	100+	† 1		4. 44.	4	4.	=	. 1 = 1	204 2017 704	\$0.00	112	TV.A	30
† Discharge	records at	52014115	"N - 78°0	2° W or	n date sl	JOWE II	n brack	ets									
[Eab 20/60	1 47-100	2,200	T	3.2		1 1	14.1	1 46	0.8	1	7			SIMINA	· · · ·	LINE TO SERVICE	41111
Feb. 20/60 Mar. Apr. 16	No sam 13:38	ple taken	,	3.2		. 1	1	1 45	10							-	
e estimate																	
Tuis 1 50	14.26	1 645		47	0.2		-	1	I	i	I	1	1	AHIA I	\ \ . ^ =	MIN THE	els s
Tuls 1 50 Tuls 28 Sept. 2	14:26 21:29 7:28	1,545 1,665 968			10.7	3	6.1	45 50 40	0.8				-		1000	11. 11.	-
Feb. 20 60		251 ple taken	}· · · ·	3.2		4	6.9	50	0					,		21.3	
Apr. 30 * At autiet a	9:34	240	<u></u>	32	h -==::	4 -	(.)	45	2	· · · · ·		· · · · · · · · · · · · · · · · · · ·			-	25.3	. 1.
		-															
Ta.v 1.50		3,931†		50	1 6.8	2 2	6.1	35				1		.14	1 to 2 201	21 - FILE 11.5	
July 28 Aug. Sept. 2	21:29 No sam	3,240 ole taken 2,946		68	8.5	2	6.4	30	0.8					,		.*.7	
* Sampled at † Discharge	outlet of	Ell Lake	stream from						1				4				
	we posset,			Jamp	and poss									STAT	108 80, 3	22 - F11 R	(1. F. P.
Feb. 21 60		719	1	12] 3	6.1	30	0.4							14.0	
† Discharge	at point,	mile down	istream froi	n samp	ling poir	it, Stai	ton No	. 21									
1 21/60	80:102	41,000†	40,700†	61		-	1.0	20	1 0	1	\$	T	1			FMINEA" :	AA I
Aug. 21/59 Sept. 4 Sept. 17	66:76	35,400 31,600	33,100 33,100	61	6.4	2	6.8	20 20	0 0			30.4 27.6	0.037	3,00° 2,002 2,352	20.0	36.3 36.3	3.4
	records at	21010, 32	"N - 760 54	, 30 #	. Iraina	ke area	15,90	O sq. mili	es				1		,		
† Discharge																	
† Discharge											,	STATION	NO. 24 -	BRU ADB	ACK BIVE	RHANE	111
		22,900† 13,092	(June 22) (July 25)	67	9.1	3 2	6.4	40 45	3			34.8	0.047 0.048	2,149 1,243	ACK FIVE 1 18.4 1 19.6	25.2 10.	-
July 3/59	56:60 29:33	13,092	(July 25)	69	8.7	2	6.7	45	3 1			34.8	0.047	2,149	18.4	25.2	2.6
July 3/59 July 30	56:60 29:33	13,092	(July 25)	69	8.7	2	6.7	45	3 1			34.8	0.047	2,149 1,243	15.4 1 19.6	25.2	2.0
July 3/59 July 30 † Discharge	56:60 29:33 records a	13,092 51°11' N	(July 25) (July 25) (Seg (, 20)	69 on dat	9.7 8.4	2 n in br	6.7 ackets	45	3 1			34.8	0.047	2,149 1,243	15.4 1 19.6	25.2 10.	2.0
July 3/59 July 30 † Discharge	56:60 29:33 records a	13,092 51°11' N	(July 25) (July 25) (Seg (, 20)	69 on dat	9.7 8.4	2 n in br	6.7 ackets	45	1			34.8 35.2	0.047 0.048	2,149 1,243	1 25.4 1 19.6 - 19.6 - 19.6	25.2 19. 2040846 k	2.6 1.7
July 3/59 July 30 † Discharge	56:60 29:33 records a	13,092 51°11' N	(July 25) (July 25) (Seg (, 20)	69 on dat	9.7 8.4	2 n in br	6.7 ackets	45	1		4,4	34.8 35.2 43.6 46.0	0.047 0.048	2,149 1,243 ATTON NO.	1 25.4 1 19.6 0. 25 - 165 7 20.1 9.	25.2 19. 2040846 k	2.6 1.7 2.4 2.4

^{*} Sampled from highway No. 58 bridge

Chemical Analyses of Surface Waters in the Pudson Bay Drainage Basin

							Chemi	icai A	пацуя	es or s	(In p	water arts pe			idson	вау 1)raina	ge B	asın						
	Ir (F	on e)					All	calis								c)			Hard as C		constituents	sodium	ındex	index	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphare	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of cons	Per cent so	Saturation	Stability in	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(Cl)	(F)	(NO ₃)		(PO ₄)	(B)							
at 520	24' N	- 77º 1	4° ₩ -	QUE	BEC (co	onclude	d)																		
0.4 0.4 0.3	0.27 0.51 0.40	0.05 0.06 0.11	0.0 0.02 0.0	0.02 0.06 0.02	0.0	0.0	0.8 0.7 0.7	0.3 0.2 0.2	0.3 0.4 0.2	0.0 0.0 0.0	2.9 2.6 2.9	2.8 3.9 3.1	0.7 0.9 1.1	0.0	0.1 0.2 0.0	2.3 2.4 2.4	0.06		2.0 2.0 2.3	4.4 4.1 4.7	10.0 11.1 10.8	26 24 22	-4.9 -4.8 -4.6	16 16 15	1 2 3
at 52°	23' N -	– 77 ⁰ 18	3' W −	QUEB	EC																				
0.5	0.13	0.03	0.0	0.0	0.0	0.0	1.1	0.3		0.0	4.6	4.0	0,6	0.0	0.0	3,6			1.2	5.0	13.6	30	-4.4	15	4 5
0.8	1.1	0.06	<0.0	0.0	Trace	0.0	3.6	0.9		0,0	6.6	3,6	3.8	0.0	0.4	3.3			1.6	7.0	21.2	49	-4.0	14	6
at 52°	0.8 1.1 0.06 0.0 0.0 Trace 0.0 3.6 0.9 0.0 6.6 3.6 3.8 0.0 0.4 3.3 1.6 7.0 21.2 49 -4.0 14 6 at 52° 46′ 30″ N - 76° 10′ W - QUEBEC 0.08 0.07 0.0 0.07 0.0 0.6 0.4 0.3 0.0 0.0 1.8 2.4 0.0 0.2 1.8 3.1 3.1 24 -6.6 18 7																								
0.3	0.08 0.11 0.32	0.07 0.02 0.00	0.0	0.07 0.0 0.0	0.0 Trace	0.0 0.0 0.0	0.6 0.7 0.5	0.4 0.3 0.3	0.3 0.3 0.1	0.0 0.0 0.0	0.0 1.5 2.6	1.8 3.0 2.4	2.4 0.8 0.9	0.0	0.2 0.0 0.0	1.8 1.7 1.9			3.1 2.3 1.1	3.1 3.5 3.2	8.4	24 28 23	-6.6 -4.8 -4.7	18 16 16	7 8 9
0.4	0.15	0.02	0,0	0,0	Trace	0.0	1.1	0.5	0.2	0.0	2.2	4.6	1.0	0.0	0.0	4.1			2,8	4,6	13.9	32	-5.0	16	10
0.5	0.19	0.07	Trace	0.0	Trace	0.0	1.3	0.6	J	0.0	3.7	2,3	1.4	0.0	0.4	3.6	l	1	1.8	4,8	13.1	33	-4.5	15	12
at 52°	39' 30	" N – 7	76° 09 ''	₩ - 0	UEBEC		,						,												
	0.11	0,04 J.00	0.0	0.05	0.0	0.0	0.5	0.3	0.1	0.0	1.8	2.8 2.8	0.4	0.0	0.0 0.6	1.7			2.4	3.9 4.3		19 21	-4.8 -4.3	16 17	13
0.3	0,11	0.03	0.0	0.0	0.0	0.0	0.5	0.3	0.1	0.0	3.0	2.3	0.7	0.0	0.0	2.1			1.0	3.5	8.6	22	-4.5	15	15
at 52°	40' N	– 76° 1	4' W −	QUEE	BEC																				
0.3	0.10	0.03	0.0	0.0	Trace	0.0	0.6	0.3	ļ	0.0	2.2	3.4	0.2	0.0	0.0	3.3			2.0	3.8	10.2	24	-5.0	16	17
at 51°	241 431	"N - 7	'6 ⁰ 44'	10" W	- QUEI	BEC																			
0.9	0.15	0.05	0.01 Trace	0.0	0.0	0.0	0.6	0.2	0.0	0.0	9.9	4.0	0.5	0.0	0.2	2.2	0.01		2.3	10.4	16.2	11 13	-3.2 -3.0	13 13	18 19 20
1.1	0.14	0.03	0.01	0.0	0.0	0.0	0.7	0.3	0.0	0.0	10.6	4.1	0.6	0.0	0.2	2.6	0.04	1	2.6	11.3	17.6	11.5	-2.8	13	20
at 50°	49' N	- 77°0	1' ₩ -	QUE	BEC	1									,	1							-		
0.6	0.16	0.03	0.0	0.01	Trace Trace	0.0	0.8	0.4	0.1	0.0	4.8	4.9	0.7	0.0	0.2	3.0			3,6	7.5 7.6	15.0 13.5	18 16	-3.9 -3.6	14 14	21 22
below	LAKE	EVAN	S 51°	05' 42	"N - 70	6 ⁰ 47' 2:	2"₩ →	QUEBE	С																
0.6	0.40	0.04	0.0	0.0	Trace 0.0	0.0	1.1	0.4	0.2	0.0	7.1 9.0	3.7	0.7	0.0	0.2	3.4			5.8	8.5 8.2	16.0 18.3	21 25	-3.4 -3.6	14	23 24

6.0 1.2 0.0 0.0

4.3

10.9

19.7 15

-4.0 14 25

1.2 0.79 0.20 0.0 0.0

0.0

0.1 1.0

0.5 0.2 0.0 5.6

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

		P		n discharge ond-feet)	•	n ed	de					ended tter	drie	e on eva ed at 105	C.			
		period	On		Water	890	Carbon dioxide	P						See.	100			
0.	of	60	samplin	& Monthly mean	temp	- aw	do 1	9				(grown)	2 4 50	1.53	P .	40	100	
	ollection	Storage	date		eratur	y K	Carbon	BIC		14		** * .		Auto.	14	1100	60 t 125	
		S				1 000	133			-						100	165	1
		(Cont.)			linu		((0)		11.		,							
															<14.1 W	v . 21 =	I AKE III I	
	ane 11/59	1		-	72	12.3	0.9	7.1	80 (130)	0	13.3	7	12				* 1, %	1
,	ug. 21./47	1	J		75		. 2	7.1	1 55				1 80.	2.042	IADA		(°F11 A	TIT R
			Senneterre		1	1	(3)	(7.1)	(95)	1		,	14.19		1	la,s	JH. 5	
i i	». · ·	1 1 1 1 1	1	1 4 4		16.5	2 2	1	Tre at	2 0.9			48.8	0.066	96.9	30,4	32.0 32.6	3 3
Ay Ma	·.	15 31	42 41 2,33 pc	1 340		13.8	0	1.8 1.5 1.6	80 70 65	3 1 2			40.8	0.055	44.2	24.0	33.9 34.2	3.
100	f ×	.4 1	2/12/0	, Se	- 2		-4	6.3	60	5							31.8	3 2
1		1	11	5%	-	1116	3	6.6	70	5	7.4	2.1	41.6	0.057	136	31.6	28.5	3
10.	, 1. 5			1,.40			. 3	1.7	70									3.
			1 5 170	1 8 1		1												
1	1.	18.1	1,800	1: 446	45	14.8	2	1.5	60	5 4	3.7			0.070		28.4	30.8	3.
1112	N	14 4	1,830	11,12	49		1 1	6.5	60 80	5 4 2	3.7	2.7	51.6	0.070	77.2	28.4		3.
†D	rainage s	tation 3½ n	1,830	11,12	49		age ba	6.5	60 80	5 4 2	3.7					-	30.8 31.8 31.5	3.
1 1.32 1.40 10																		
†D Jun	trainage s	15.7 tation 3½ n	niles upstr	11,12	Senneter	re, drain		6.5 6.5 6.5	square	5 4 2 miles.	3.7	-		0.000	STATIC	ON NO. 30	30.8 31.8 31.5	3.3.3.
†D Ju *S:	rainage s ne 12/59 ampled fr	15.7 tation 3½ n	niles upstr	11,12	Senneter	re, drain		6.5 6.5 6.5	square	5 4 2 miles.	3.7	-		0.000	STATIC	ON NO. 30	30.8 31.8 31.5 - BELL R	3.3.3.
†D Jun *S L'es Apr May Jun Apr	e. 1 58 a. 31 co. tr. 13 y 4 are 15	24 31 24 31 32 42:51 15:32	2,930et 1,890 2,930et 1,890e 3,160e 10,300	3,500et 2,060e 3,860e 12,200 9,160	Senneter '8	11.0	3 4	6.4 6.2 6.2 6.1	80 square	5 4 2 miles.	3.7	6.8	48.5	0.006 ST.	STATION NO.	ON NO. 30 25.0 31 - MEC	30.8 31.8 31.5 - BELL R 28.1 SISCANE R 29.6 25.2 38.5 23.4	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
*S. Perlan	ampled from 12/59 ampled from 31 co. 1 ss. 31 co. 31 co. 1 ss. 31 co. 31	23 L3 (24:69 42:51 15:32 7:24	2,930et 1,890 2,930et 1,890c 3,160e 10,300 10,400 4,170	3,500et 2,060e 3,860e 12,200 9,160 4,190	39 35 34 40 58 68	11.0 12.1	3 4	6.4 6.2 6.2 6.4 6.5 6.4	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	5 4 2 miles.	3.7	6.5	48.8 35.2 47.2	0.006 ST.	STATION NO.	ON NO. 30 26.8 31 - MEC 22.4	30.8 31.8 31.5 - BELL R 28.1 DISCANE R 29.6 25.2	3.3 3.3 3.4 3.4 2.4 2.4 2.4 2.4
†D Jun *S: I'er Apri May Jun Jul	ampled from 12/59 ampled from 13/59 c. 1 58 a. 31 60 r. 13 y 4 ae 15 y 13	23 13 4 22 15 15 15 15 15 15 15 15 15 15 15 15 15	2,930et 1,890e 3,160e 10,300 10,400 4,170 6,670 8,150*	3,500et 2,000e 3,860e 12,200 9,160 4,190 7,400	39 35 34 40 58 45 39	11.0 12.1 10.5	3 4	6.4 6.2 6.2 6.1 6.5	80 80 80 80 80 80 80 80 80 80	5 4 2 miles.	3.7	6.5	48.5 35.2 47.2	ST. 0.048	STATION NO.	ON NO. 30 26.0 31 - MEC 22.4	30.8 31.8 31.5 - BELL R 28.1 SISCANE R 29.6 25.2 38.5 23.4	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
†D Jun *S: Per Int Apr May Jun Jul Ver Non *St	ampled from 12/59 ampled from 12/59 ampled from 13/50 ampled 15/50 amp	24:51 15:32 7:24 20:168 10:03 14:30 24:51 15:32 7:24	2,930 et 1,890 e 3,160 e 10,300 10,400 4,170 6,670	3,500et 2,060e 3,860e 12,200 9,160 4,190 7,400 8,740	39 35 34 40 58 68 45 39 of rails	11.0 12.1 10.5	3 4	6.4 6.2 6.2 6.1 6.5 6.4 6.3	80 80 80 80 80 80 80 80 70 60 70	miles.	3.7	6.5	48.5 35.2 47.2	ST. 0.048	STATION NO. 218 402	25.8 25.8 26.0	30.8 31.8 31.5 - BELL R 28.1 SISCANE R 29.6 25.2 38.5 23.4 24.1 19.7	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
*S: Per lar Apply Jun Jul Ser Ar Ar An An An An An An An A	ampled from 12/59 ampled from 12/59 ampled from 13/50 ampled 15/50 amp	24:51 15:32 7:24 20:168 10:03 14:30 24:51 15:32 7:24	2,930e† 1,890e 3,160e 10,300 10,400 4,170 6,6750 ow wester	3,500et 2,060e 3,860e 12,200 9,160 4,190 7,400 8,740	39 35 34 40 58 68 45 39 of rails	11.0 12.1 10.5	3 4 110 6 3 2 2 4 4 ee	6.5 6.5 6.5 6.5 6.5 6.4 6.2 6.2 6.2 6.1 6.3 6.2 6.3 6.2	\$0 \$0 \$0 \$0 \$0 \$0 \$5 \$10 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	miles.	3.7	6.5	48.5 35.2 47.2	ST. 0.048 0.064 0.051	STATION NO. 218 402	25.8 25.8 26.0	30.8 31.8 31.5 - BELL R 28.1 28.1 29.6 22.4 23.1 23.1 23.1 24.1 24.1 25.2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
*S. The lar May Jun Jul Voi Sr † Al	rainage s ne 12/59 ampled fr c. 1 S8 a. 31 50 t. 13 y. 4 are 15 y. 4 are 15 t. 24 ampled B t. gauge at	23 130 24:69 42:51 15:32 7:24 20-148 14:49 23 13:44 miles belant. 48°2	2,930e† 1,890e 3,160e 10,300 10,400 4,170 6,6750 ow wester	3,500et 2,060e 3,860e 12,200 9,160 4,190 7,400 n. crossing, 77°05'	39 35 34 40 58 68 45 39 of rails 26"	11.0 12.1 10.5 15.2	3 4 110 6 3 2 2 4 4 ee	6.4 6.2 6.2 6.1 6.3 6.2	\$0 \$0 \$0 \$0 \$0 \$0 \$5 \$10 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	5 d 2 miles.	3.7	6-8	48:8 35,2 47,2	ST. 0.048 0.064 0.051	STATION NO. 278 402 418	25.0 25.0 31 - MEC 22.4 12.8 26.0	30.8 31.8 31.5 - BELL R 28.1 SISCANE R 29.6 23.4 23.1 19.7 20.4 21.5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Per Jun School Jun Serial Ju	rainage s ne 12/59 ampled fr c. 1 S8 a. 31 50 t. 13 y. 4 are 15 y. 4 are 15 t. 24 ampled B t. gauge at	23 L3	2,930et 1,890e 3,160e 10,300 4,170 6,670 8,150°	3,500et 2,060e 3,860e 12,200 9,160 4,190 7,400 n. crossing, 77°05'	39 35 34 40 58 68 45 39 of rails 26"	11.0 12.1 10.5 15.2	3 4 10 6 3 2 2 4	6.5 6.5 6.5 6.5 6.5 6.4 6.2 6.2 6.2 6.1 6.3 6.2 6.3 6.2	80 80 80 80 80 88 10 70 60 80 80 80 80 80 80 80 80 80 80 80 80 80	5 d 2 miles.	3.7	6-8	48:8 35,2 47,2	ST. 0.048 0.064 0.064 0.065	STATIO ATION NO. 278 402 418	25.0 25.0 25.0 25.0 25.0	30.8 31.8 31.5 - BELL R 28.1 SISCANE R 29.6 23.4 23.1 19.7 20.4 21.5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

											(In p	arts pe	er mill	ion)											
	Iroi (Fe						Alka	lis			4.					()			Hardr as C		constituents	dium	index	index	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Bofon	Non- car- bonate	Total	Sum of cons	Per cent sodium	Saturation	Stability inc	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(CI)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)							
at OB A	SKA,	QUE	BEC																						
0,6	0.72	0.08	0.0	0.0	0.0	0.0	1.8	1.1	0.2	0.0	7.3	5.4	1.7	0.0	1.5	3.3			4.2	10.2	24.5	21	-2.9	13	1
near TI	BLEMO	ONT, C	UEBE	С		1																		h	
1.0	Dissolved oxygen - 7,3 ppm																								
below S	below SENNETERRE, QUEBEC - Drainage area - 770 square miles 1.1 0.06 0.0 0.0 0.0 0.0 0.0 0.9 0.5 0.1 0.0 5.0 6.3 0.5 0.0 0.3 4.4 0.0 8.7 12.8 19.8 13 -3.5 14 3 1.2 1.0 0.5 0.3 0.0 5.7 5.7 0.8 0.2 4.7 8.2 12.9 20.1 14 -3.5 14 4																								
1.1 1.2 1.3 1.0 0.6 1.1 0.7 0.7 0.9 0.8 0.8	0.09 0.41 0.19 0.41 0.46 0.46	0.07 0.09 0.04 0.07 0.11	0.0	0.0 0.01 0.0 0.0	0.0 Trace			0.5 0.5 0.4 0.6 0.6 0.6 0.5 0.6 0.8 0.6 0.5									0.0 0.1 0.0 0.1 0.1 0.0		8.2 9.2 9.7						
at SEN	NETER	RRE, Ç	UEBE	C																					
0.8	0.68	0.11	0.0	0.0	Trace	0.02	1.0	0.5		0.0	6,6 (7,3)	6.2	1.2	0.0	0.4	3.5			5.6	11.0	20.1	16	-3.6	14	15
near ME	GISCA	INE, Q	UEBE	C – Di	ainage	area le	ess Még	iscane	-Susie	diversio	on - 3,15	57 squa	are mil	es											
0.8	0,34	0,02	0.0	0.07	0.0	0.0	1.4	0.5	0.1	0.0	5.1 4.5	5.0 4.4	1.1	0.0	0.8	5.8	0.1	0.00	4.1	8.3 9.0	20.1	25 19	-4.1 -4.3	15 15	16 17
0.7 0.5 0.8 0.6	0.20	0.03	0.01	0.0	Trace		2.0 0.8 0.7 0.7	0.6 0.3 0.4 0.3	0.0 0.2 0.3 0.3	0.0 0.0 0.0	9.9 4.5 5.6 3.7	5.7 4.5 3.7 4.2	0.6 0.5 1.0 0.9	0.0	0.6 0.2 0.2 0.2	13 4.7 3.7 3.0	0.0	0,00	3.3 4.1 3.7 4.2	11.4 7.8 8.3 7.2	31.9 16.0 15.4 13.7	26 18 15 16	-3.7 -4.4 -3.8 -4.1	14 15 14 15	18 19 20 21
0.5 0.6	0.37	0.06	0.0	0.0	0.0	0.0	0.7 0.7	0.3	0.4	0.0	2.7	5.0 5.6	0.8	0.0	Trace 0.2	4.4	0.0		5.1	7.3 7.5	15.2 16.6	16 16	-4.3 -4.3	15	22 23
near SE	ENNET	ERRE	, QUEI	BEC																					
1.8	1.2	0.39	0.0	0.0	0.0	0.05	1.0	0.4	0.2	0.0 (0)	10.8 (18.3)	5.3	1.6	0.0	0.4	3.0			7.5	16.4	22.9	11	-3.5	13	24
near BE	1.9	RT, QI 0.34	O.O	0.0	Trace	0.03	0.9	0.5	0.3	0.0	8.3	5.3	1.3	0.0	0.3	2.8			7.3	14.1	20.4	11	-3.6	14	25
							L		1	(0)	(9.7)				1									ì	

Chemical Analyses of Surface Waters in the Budson Bay Drainage Basin

Stream discharge

* 11/2 miles below Amos, Que.

(In parts per million)

Residue o evap eat. o denet at 1 " -(Jussouvet si ...ts

		56.4	nd feet i		200	1 de				man	er	. ([1100		A COUNTY	1	Spe f -	
Date of collection	7	che;og	M nrt.s	Baser reng ersture	Oxygen cons	Carbon dioxide (calculated)	; H	Ч :: Hazen	Turnism	fine:	(gotted a' 15 yo	P.P.M.	Time per acre fort	Tinns per fay	.gn	an e k r 1 d ar 2577	611000
-	Davs	_		" F		(CO3)	ш	"Laits	Louis	1	-	_			_		Ca
													-1	1:: 15 5	. 44 - +20	MAN CER	E E
1000	2 4			1 L		4	1.5	,`<		1		1 14.5	h n		. 2	11.0	0.4
															-1 4 11 - N 1	NE. 45 . 30	ar i
'ane '	2.44				1.2	<	1.5	150)	1			14.5		,	. н. н	20.3	1 :
\c,'.)	, ,		-		12.5	6	c.:	10				34		1	14.4	47.1	1
* 4 < 1 %	mure, j	uc.															
														STA	TION NO.	36 - LOR	TIE
lune 12 5	.431				9.4	8	:	3,	1,200	7.JK-	1<	Lashaum	(Li) = 0.1			. 160	1 4
• Process	l water for th	i he Mine's i	m: 11			1	- 1		-	-		Latinous	(2.1) - 0.1	. ppm	1	_	-
													ST	ATION NO	o. 37 = H	ARRICANA	W R
June 14/59	25:45	ļ		. 65	16.6	4	6.5	110	15	16	13	70.8	1		28.5	59.*	1
1	I		1	1			(6.5)	in .					1				
														STATIO	N NO. 38	- LAKE L	MO
Aug. 19/47	:307			. 74		2	7.4	55	(7)			52.2	2,27;		17.0	54.	11
						e i exv	en = 7	.1 ppm	ì								
June 13/59		1	h	105	11.5	6	6.6	80	11	21.4	14.5	65.2	0.(80		35.2	58.8	
* Sampled f	tom Highwa	ay No. 59 1	bridge														
1. 10.7	1		1	ł		T 1	- 1					1		STATIO	N NO. 39	- LAKE LA	_
Aug. 18 4"	505		1	76		2 (1.7)	7.4 (7.8)	40 (260)	1(15)			70.6	0.096		23.2	44.2	
* Sampled f	rom shore															1	
		,											SI	ATION NO	. 40 - HA	RRICANAW	RIV
May 21/47 June 28	:2	10,2001	7,676† 8,494			14		110 135	2 13			58.1	0.079	1,606	27.	-	, 4
July 22 Aug. 22	:28	2,670	3,570 1,705	74		24 2	6.3	120	16			80,4	0.109	1,405	27.4 31.0 31.4		4
Aug. 23	:16	1,360	1,705			(4)	6.5	260) 110	(25)			82.4	0,112	304	33.2		6
Sept. 19†† Sept. 23	:26	820 1,400	1,084			6	6.8	220 140	25			133	0.181	294	\$3.6 \$1.6	1 (1.2	-
Oct. 31 Nov. 19	:21	960 750	1,328 828			2 4		95 100	15 30			88.0 84.8	0.120	228	26.4	54.3	~
Dec. 17 Jan. 20/48	:42	466	648 483			3 23	7.5	165	30 11			83.0 97.2	0,113	152	31.8	85,0	7
Feb. 18 Apr. 18	:9	382 2,320	391 2,620			37	6.6	130 110	20 7			98.2	0.134	101	32.6	99.4 99.9 53.6	10
June 12/59	24:31	3,730	3,530	68	11.9	3.5	6.8	80	22	18.4	16.4	73.6	0.100	140	30.4	18.2	1 6
† Discharg †† Low wat * Field sar	er sample		No. 41														
													677	ATTOM NO) 41 144	DDIC AN AS	
'ar. 9 57	11123	1,000	944	[40]	6.7	2	8.2	50	2	1				. 1		RRICANA	T
* 114 miles l						1		,0	-			227	7.4(10	913	69,2	366	45

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

	(F	e)					All	alis								(c)			as C	aCO ₃	constituents	sodium	index	dex	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride) Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of con:	Per cent so	Saturation	Stability index	
(g)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(C1)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)			-	1			_
CH	IBOUG.	AMAU,	QUEBI	1		1					ſ		,										1	,	
.0		0.02	0.0	0.0	Trace	0.20	0,6	0.2	0.0	0.0	51.8	5.6	1.5	0.0	0.1	3.8			6.8	49.3	55.3	2.6	-1.3	9.9	1
ar C	UEBE	CLITH	IIUM (M	line) T	OWNS	TE*, (UEBE	C			,					,		, ,					,	,	
.6	0.47	0.16	0.0	0.0	0.0	0.05	1.4	0.6		0.0	4.4	7,0	0.9	0.0	0.4	1.7			5.1	8.7	17.5	24	-4.3		1
.7	0.14	0.04	0.0	0.0	Trace	0.0	2.8	1.3		0.0	5.5	9.6	2.3	0.0	0.7	0.6			4.9	9.4	23.3	35	-4.1	14	
ear C)UEBE	C LITH	IIUM (M	line) T	OWNS:	ITE, QI	JEBEC																		
.1	4.3	2.1	0.08	0.70		Trace	13.5	6.4		0.0	66.2	13.9	7.1		0.6	13			0.0	44.1	106	34	-1.4	9.9	I
ar V	ARSAN	N, QUE	BEC		-	·		1		<u></u>							-								,
1.8	1.4	0.46	0.01	0.0	Trace	0,5	1.8	0,8		0.0	9.0	15.7	1.7	0.0	0.4	4.6			15.2	22.6	38.3	14	-3.1	13	1
							L	·		1 (0)	(11)		1	1	1		l	l		L	1		L	L	1
	VECOL:		BEC	1				T		1			1		T	1									1
9		0.18								(0)	24.4 (22)	6.5	0 (0)		4.4	6.6			11.3	31.3					-
.4	1.7	0.09	0.0	0.02	0.0	0.0	1.3	1.1		0.0	17.1	10.7	1.0	0.0	0.1	4.6	0.06		10.0	24.0	35.1	10.5	-2.7	12	-
			1																						
LA	MOTT	E, QUE	BEC																						
.0		. 1.2								0.0	26.8	7.4	0 (0,4)		1.7	6.4			3.7	25.7	38.9		-1.7	11	
	1	1	L	1			!	1	L	1 (0)	1(22)		(0.4)		1	1		L				L	1		1
t AM	os, qu	EBEC	- Drai	nage s	urea, a	bout 1,	400 squ	are mil	es																
2.0		0.04					as 2	Na .9		0.0	16.8	6.1	0.0		. 5.8	4.7			6.4	20.2	34.6		-3.2	13	1
.4		1.38 0.87 1.04			.			.4 .6		0.0	21.2 29.8 17.1	8.1 4.6 6.7	1.5		3.5 1.8 4.3	3.6 1.4 5.6			7.3 0.8 9.2	24.7 24.8 23.2	38.7 33.2 34.6		-2.8 -2.9 -2.3	12	
3.1	1	.24					3	.6		0.0	(18) 26.4	7.4	0.05		3.5	3.6			10.6	32.2	42.0		-2.6	12	
.9	1	.54 .04					5	.5 .1 .7		0.0	24.4 23.4 27.1	8.4 10.5 7.6	0.0		1.0 0.8 1.4	5.7 10 4.6			12.3 11.6 9.8	32.3 30.8 31.8	48.3		-1.6 -2.4 -1.8	11 12 11	
.4	1	•5 •5					5	.2		0.0	26.4	9.4	0.0		1.3	3.8			6.0	27.6 37.8	42.2		-2.1	11 10	
.5	5	.3					5.0	1.0		0.0	72.2 71.0	3.3	0.0		0.2	15 15			0.0	42.6 47.7	78.4 75.5		-2.0 -2.0	11	
		0.22	0.00		1	0.07	1.6	1.5		0.0	11.7	8.4	0,0	0.0	0.8	5.0			7.8	53.6 19.2	1	11.8	-3.3	13	i
	1.0	0,22	0.00	0.0	1 0.0	10.07	1.0	1.0	}	10.0	13+7	111.)	1,4	10.0	10.0	4.5	h	1	7.60	17.2	30.3	11.0	1 2,0	1 12	
elow	AMOS	, QUEB	EC - I	Oraina	ge are:	a, 1,400) squar	e miles																	
		1		_			_				1			1	-									8.9	T

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

		F01		dincharge ad-feet)		ame d	- W				Sus; e	er (ed	Renidus deses (Disse	d at 105°	C- ids)			
	Onte of Hection	Storage period	On sangling sate	Month v mean	Water temp- erature	Oxygen consumed by KMnO ₄	Carbon dioxide (calculated)	н	(Hazen (La,ts)	(Unite)	Dive!	Ignited	P.P.M.	Tine per a re- tue s	Tons per day	1 (e e 0 #1 1 0 #1 e e c qP _e	50 0 20 0 10 1 A 1 1 A 1 C	E-1.40
														T.	offine se	1 14	RED ANAE	BIRE
I Feb. I Feb. Mas Apr. Mas I Just Mas I Just Mas I Just Mas	. (4 - 4 - 3 - 4 - 4 - 4 - 20	5 1 42 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43	\$1 54 32 22 54 81 2,196 1,670 2,646 1,68	547 781 1,67 1,67 1,4 \tag{2,66} 1,660 1,660 1,740	1.3 40 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	12.4 20.4	1000	8.3 8.4 8.5 8.5 6.7 7.5	\$0 \$0 \$0 \$0 1 80 80 70 \$0	11 11 11 11 11 11 11 11 11 11 11 11 11	45 16,4 1	15.5	.8.8 /C.	0.390 0.094 0.122 0.169	W 15 15 15 15 15 15 15 15 15 15 15 15 15	47.4 21.5 4.2 4.2 7.7	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
* 11:	, miles s	ca w Asia	or, Querec															
3 Aug.	10/59	11:16	Ī	1	7-0	9.1	;	6.4	35	5	24	26	44.0		SIAI	18.4	1.7 = Fr. 14 14.1	50.
					-lan			L		1				1	. * 1 **	1	3 - 30	
A Aug.	. 20 47	315			72.5	Dissols	ra.co	7.5 (7.3) gen =	100 (150)	(*)		F	57.2	1,318	V. 1		\$4. ·	
1																		
1.							-					STA	ATION NO	. 14 = W	AL ARTIC	R:\1 R*	L STATES	E As
Aug	. 19/47	324			6-		0.8	7.2 (5.9)	75 (125)	(- 7)		STA	ATION NO	. 44 = M	ALARTIC	RIV1 R*	MINAL	
6 Nov.	. 18/58	1 15				20.0	0.8 (8)	(5.9)	75	()	12.0	ST/	1	0,095	ALARTIC		1	. 2.
6 Nov.	18/58	23:30			6-		0.8 (8)	5.9	75 (125) 140 120	5	12.0		32.8	(,645	ALARTIC	11.=	40.5	. 2.
Nov.	. 18/58	1 15				20.0	0.8 (8)	(5.9)	75 (125) 140	5			32.8	0,095	ALARTIC	11.1	1 48.5	2.
6 Nov. June 8 Apr. 9 Sept	18/58 13/59 2° 60 . 28 60	3.15 23:30 5.5 5:5	al water w	orks plant	. 5^	20.0	0.8 (8)	5.9	75 (125) 140 120 200	4 0.8			32.8	0.994		11.± 49.2 39.4	40.5	2.
6 Nov. June 8 Apr. 9 Sept	18/58 13/59 2° 60 . 28 60	3.15 23:30 5.5 5:5	al water we 3-5 ppm t	orks plant	. 5^	20.0	0.8 (8) ; 8 10	(5.9) 5.9 5.7 5.6 5.4	75 (125) 140 120 200	5 4 0.8			32.8	0.994		11.± 49.2 39.4	46.5	2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 Nov. June 8 Apr. 9 Sept. At † Cl.	18/58 13/59 2 60 . 28 60 intake to ear on sa	3 15 23:30 5.5 5:5 5:5 0 municipmpling;	3-5 ppm t	orks plant urbidity af	ter 2 day	20.0 17.6 30.4	0.8 (8) ; 8 10	(5.9) 5.9 5.6 5.6	75 (125) 140 120 200 180	5 4 0.8	7,5	1,0	69.6	0,005 0,005	ATION NO	10,2 30,4 45 - PE	TER BROW	2 3
6 Nov. June 8 Apr. 9 Sept. • At † Cl. 1 lune • San † Dr. 1 vept. 2 vept. 3 vept.	18/58 13/59 2 60 28 60 intake to ear on sm	3 15 23:30 5.5 5:5 0 municipmpling; 24:31 highway pstream c	3-5 ppm t	orks plant urbidity af	ter 2 day	20.0 17.6 30.4	0.8 (8) ; 8 10	(5.9) 5.9 5.7 5.6 5.4	75 (125) 140 120 200 180	5 4 0.8	7,5	1,0	69.6	(.645 0.305 0.073) ST/ 0.115	ATION NO	11. 12.2 33.4 . 45 - PE 40.3 ION NO. 4	140.5 150.3 150.3 150.3 160.6 160.6 160.6 160.6 160.6	2. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Nov. Junes 8 Apr. Junes 8 Apr. Apr. Apr. Apr. Apr. Apr. Apr. Apr.	18/58 13/59 2 60 28 60 intake trear on sa it was a sampled at edging up	3 15 23:30 5.5 5:5 0 municip mpling; 24:31 highway pstream of	No. 45 bride f bridge	orks plant urbidity af	ter 2 day	20.0 17.6 30.4	0.8 (8) 3 8 10	(5.9) 5.9 5.6 5.6 5.4	75 (125) 140 120 200 180	5 4 0.8 1.	7,5	1.0	69.6 58.0 58.4	(.648 0.805 0.079 5.079	STAT	39,2 32,4 45 - PE 40,3 40,5 61,5 81,6 64,6	46.6 MOOSE	28. 28. 28.
Salar	18/58 13/59 2 60 28 60 intake trear on sa it was a sampled at edging up	23:30 5.5 5:5 0 municip mpling; 24:31 highway pstream of 19:19:19:19:19:19:19:19:19:19:19:19:19:1	No. 45 bride f bridge	orks plant urbidity af	ter 2 day	20.0 17.6 30.4	0.8 (8) 3 8 10	(5.9) 5.9 5.6 5.6 5.4	75 (125) 140 120 200 180	5 4 0.8 1.	7.5	1.0	69.6 58.0 58.4	(.645 0.305 0.073) ST/ 0.115	STAT	39,2 32,4 45 - PE 40,3 40,5 61,5 81,6 64,6	140.5 150.3 150.3 150.3 160.6 160.6 160.6 160.6 160.6	2 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.

Chemical Analyses of Surface Waters in the Budson Bay Drainage Basin

																								-	-
	Iro (F						Alk	alis											Hardr as C	iess aCO ₃	uents	m,	M		
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	пс	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	m of constituents	r cent sodium	Saturation index	Stability index	No.
	To	Di				Zinc					1										Sum	Per	Sa	Sta	
(Mg)			(Mn)	(Ai)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)							_
	AMOS,	QUEB	EC - D	rainag	e area,	1,400		1	(conclu			1	1		1						,				
11.8 12.3 12.5 11.4 9.7 1.9 1.8 1.9	2.2	0.32	0.02	0.07	0.0 0.0 0.0	0.5 0.0 0.1	12.6 12.0 14.0 17.0 10.5 1.4 1.7 1.8	11.0 11.2 12.6 16.8 8.7 0.9 1.1 1.3	0.0 0.0 0.1 0.0 0.1 0.2 0.3 0.2	0.0 4.4 10.2 0.0 0.0 0.0 0.0	225 216 215 250 183 12.4 14.8 17.8	14.6 14.6 15.5 16.2 14.4 11.5 12.4 15.1	2.9 2.5 2.6 2.4 2.2 1.7 1.6 0.9	0.0	0.4 0.4 0.4 1.0 0.0 0.6 0.4 1.0	11 11 11 11 12 3.9 3.6 2.1	Trace 0.0 0.08	0.00	0.0 0.0 0.0 0.0 0.0 12.3 12.8 12.7	164 167 172 172 140 22.5 24.9 27.3	221 222 234 238 188 34.4 36.9 40.9	13 14 16 13 11 12 12	+0.8 +0.8 +1.1 +1.1 +0.7 -2.8 -2.4 -2.2	6.7 6.8 6.4 6.3 6.9 12 12 11.5	1 2 3 4 5 6 7
2.3 2.3 2.1	1.6	0.17 0.18	0.0	0.0	Trace	0.0	2.1 2.0 1.6	1.3 1.6 1.0	0.2	0.0 0.0 0.0	21.6 20.1 17.2	13.5 14.6 16.5	1.6 1.5	0.0	1.0 0.8 0.1	4.8 4.2 3.4			13.5 13.7 14.2	31.2 30.2 28.3	46.1 45.4 42.6	12 12 11	-2.3 -2.2 -2.1	11 11.5 11.	9 10 11
4.6	0.02	0.0 dissol	0.04* ved	0.0	0,0	2.0	6.6	7.3	0.0	0.0	122	13.9	1.7	0.0	1.5	8,6	0,02		0.0	97.0	138	12	-0.4	8.3	12
			SITE, Q	UEBE	С																				
1.2	0.69	0.02	0.0	0.0	0.0	0.05	0.9	0.7	0,1	0.0	4.3	11.0	0.8	0.0	0.0	4.0	0.01		8.7	12.2	23.7	13	-3.9	14	13
at BO	URLAN	AQUE,	QUEB	EC																					
2.3		0.14								0,0	29.3 (22)	8.5	0 (0,8)		6.2	5.8			4.4	28.4			-1.6	11	14
				1		<u> </u>	<u> </u>	l			1	!	1	1		l				1			l		
		C, QU	EBEC	-		1	1	1	1		1	Г	4	1		-	1			1	ı				r
1,5	0.46							_		0.0	7.8 (7.2)	5.9	0 (0.8)	1	3.5	2.8			5.8	12,2			-3.0	13	15
1.3	0.00	0.61	0.02	0,0	0.0	0.10		0.7		0.0	1.2	13.8	1.4	0.0	0.2	6.3			13.3	14.3	29.3	9.4	-4.9	16	16
1.6	0.98	0.37	0.00	0.0	0.0 Trace	0.2	0.9	0.6	0.5	0.0	2.4	11.1	2.3	0.0	0.2	3.7		0.00	13.3	15.3	37.5	10	-4.8 -4.8	15	17
	0,01	0.85	0.02			0.2	1.,,								0.2								4.0		19
												-					1	1	1	1		1			
near L	ANDR	IENNE.	, QUEB	EC																					
1.7		0.48	0.0	0.0	0.0	0,0	1.3	1.0		0.0	19.3	5.1	2.1	0.0	0.3	4.4			8.4	24.2	32.8	9.7	-2,2	11.5	20
ar MO	OSE F	ACTOR	Y, ONT	CARIO	'	-	L,,	1		1	<u> </u>	1			1	.1	1		1			1			
5.7			[1		1,7	0,8	T	0.0	86,6	9.9	1,4	1		5.0			19.4	90,4	93.9	3.8	-0.8	8.8	21
5.7 5.5 5.9							1.7 1.7 1.7	0.8		0.0	89.1 89.1 89.8	9.9 10.7 9.5	1.0						20.9 20.0 20.6	93.9 93.0 94.2	96.1 97.1 99.7	3.8 3.7 3.7 3.7	-0.5 -0.3 -0.7	8,6	22 23 24
									,	,				h	+						,				
near I	LE NE	EPAWA	, QUEI	BEC																					
2.9										0.0	39.8 (41.5)	6.7	0 (0)		3.1	6,6			9.3	41.9			-1.0	9.8	25
	1	1	1	L	1	1		1	ł	1		1			t .	1		1	1	1	-		1		1

Chemical Analyses of Surface Baters in the Budson Bay Drainage Basin

				Stream di (Second-	scharge feet)		[pa	1				Dia.	tter	Residue dries (Diss	dat 1050 olved sol				
0,	Da		Storage period	On sampling	Monthly	Water temp-	Oxyg- consum by K'' Oa	Carbo dioxide	Hq	(Hazen)	(Units)	Dried at	Ignited at	P.P.M.	Tons	Fons per	1gal- 1gal- 150°C.	Specific conducts and the specific conducts are specific conducts and the specific conducts and the specific conducts and the specific conducts and the specific conducts and	
																HEATS	month a	- 100	
							11		1 4								40	0	311
																	5 NO, 1	- 507110	
3456789012	June June July Aug. Oct. Nov. Dec. Jan. Mar. Apr. Apr. May	4/58 30 2 6 1 6 3 7/59 4 2 25 21	21:34 16:42 26:40 27:30 15:114 13:176 12:64 13:33 9:34 25:43 52:61 26:34	4,990 980 6,180 5,620 8,530 7,530 8,210 7,680 8,100 8,540 17,000 5,040	4,250 4,250 4,180 3,860 8,170 6,970 6,300 6,240 J 6,680 J 9,910 J 9,910 G 4,480	51 60 60 66 55 41 33 33 33 33 44 46	18.0	4 2 3 3 3 2 2 4 1 2 1 3 1 6 1 1 1 1 1 1 1 1 1 1	7.4 7.8 7.5 7.5 7.5 7.7 7.7 7.4 1 7.8 1 7.5 1 7.5	180 140 225 30 80	40 25 30 25 52 48	11 15 15 7,7	8.7 12 13 7.0	142	0,193	1,911	46.4	118 124 124 110 115	18. 18. 19. 16. 16.
								.1 2			-	1	LU			STAIL	N NO	ce)1.	
	١.,	:, <-	50	4,400	<, 4r*	100	-	1 7	124	1/0	<->		1	1				THE T	
	Sam	pled at ords at	ferry Abitibi (Canyon, Lat	. 49 ⁰ 53°00	", Long.	. 81 ⁰ 34	00"; D:		e area 8,4	40 squar	e miles				SIAII		- 1 11 1	
< 6 80 1 1 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	*Sam †Reco	pled at ords at	25:53 15:42 10:13* 12:179 15:93 12:64 9:126 16:43 6:15 25:55 41:50	14,700† 7,760 17,760 18,400 8,840 9,760 8,460 8,980 10,500 30,200	8,530 6,670 6,670 13,800 11,500 8,080 7,930 8,170 8,620 13,800 19,600	58 68 55 42 34 33 38 36	18.7 22.5 21.1	5 5 4 2 2 2 2 2 4 3	7.3 7.4 1 7.6 7.7 7.7 7.7 7.5 7.7	157 40 120 100 100 50 40 40 50 100	14 20 10 16 50 52 45 45 40 30	2.1	24	lia lia		1, 1.4	41.1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	SUBINGUIDUS
< n - 80 : \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	*Sam †Reconstruction Aux. Sept. Sept. Lan. Fel. Mar. Apr. May Lan.	2 55 4 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25:53 15:42 10:18 12:179 15:93 12:64 9:126 16:43 6:55 41:50 27:35	14,700† 7,760 1,600 8,840 9,760 8,460 8,980 10,500	8,530 6,670 6,470 13,800 11,500 8,080 7,930 8,170 8,620 13,800 19,600 7,800	58 68 55 42 34 33 38 36 35 50	22.5	5 5 4 2 2 2 2 4 3 3 5 5	7.3 7.4 -1 7.6 7.7 7.7 7.7 7.5 7.7 7.5 7.7	1 57 40 1.37 120 100 40 40 40 50 100 120	14 20 10 16 50 52 35 45 40 1 30 1 4	2.1	24	119	0,212	4 1 1 1 1	3.5	118	SUBINGUIDUS
< n = 80 : \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	*Sam †Reconstruction Aux. Sept. Sept. Lan. Fel. Mar. Apr. May Lan.	2 55 4 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25:53 15:42 10:18 12:179 15:93 12:64 9:126 16:43 6:55 41:50 27:35	14,700† 7,760 14,600 8,840 9,760 8,900 8,900 8,900 30,200 8,140	8,530 6,670 6,470 13,800 11,500 8,080 7,930 8,170 8,620 13,800 19,600 7,800	58 68 55 42 34 33 38 36 35 50	22.5	5 5 4 2 2 2 2 4 3 3 5 5	7.3 7.4 -1 7.6 7.7 7.7 7.7 7.5 7.7 7.5 7.7	1 57 40 1.37 120 100 40 40 40 50 100 120	14 20 10 16 50 52 35 45 40 1 30 1 4	2.1	24	114	0.232	3,255	25.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2210000000000
< 6. 80 ak	*Sam † Reconstruction of the construction of t	2 55 4 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25:53 15:42 19:18 12:179 15:93 12:64 9:126 16:43 6:15 27:35 41:50 27:35 Attribut (14,700† 7,760 1,300 14,600 8,840 9,760 8,900 10,500 30,200 8,140	8,530 6,670 6,470 13,800 11,500 8,080 7,930 8,170 8,620 13,800 19,600 7,800	58 68 55 42 34 33 38 36 35 50	22.5	5 5 4 2 2 2 2 4 3 5 5	7.3 7.4 -1 7.6 7.7 7.7 7.7 7.5 7.7 7.5 7.7	156 40 120 120 100 40 50 100 120 atea 5.1	14 20 10 16 50 52 35 45 40 1 30 1 4	2.1	24	1111	-:: X M210	3,255	01.3 	ID ID ID ID ID ID ID ID ID ID ID ID ID I	17111601DA45
15 19 19 19 19 19 19 19 19 19 19 19 19 19	*Sam † Rec. 1 u.v. 1 u	26/47° 15/59° ampled a mpled a	25:53 15:42 10:18 12:179 15:93 12:64 9:126 16:43 6:15 25:55 41:50 27:35 A.:archi (:309	14,700† 7,760 14,600 8,840 9,760 8,900 10,500 10,500 8,140 ansean, La	8,530 6,670 6,470 13,800 11,500 8,080 7,930 8,170 8,620 13,800 19,600 7,800	58 68 68 68 68 68 68 68	22.5	5 5 5 4 2 2 2 2 2 2 3 3 5 3 3 3	7.3 7.4 7.4 7.7 7.7 7.7 7.7 7.5 7.5 7.5 7.5 7.5 7.5	156 40 120 120 100 	1a 20 1.2 1.5	2.1	24	118 126 27.1 7.8	6:232 8: 6:232 8: 6:038	4, 325 4, 315 4, 315 4, 315 4, 315	(1.3) 	IDS IDS IDS IDS IDS IDS IDS IDS IDS IDS	Standard Process
< 6 - 80 11-2 15 - 1 - 8	*Sam trec. 1 and Aux. Nov. 1 bes. 1 bes. Nov. 1 bes. 4 pel. Mar. 1 and 4 res. Aug. Salina *Salina	26/47* 15/59*	25:53 15:42 10:18 12:193 12:64 9:1264 9:1264 9:1265 16:43 6:15 25:55 41:50 27:35 A.:	14,700† 7,760 14,600 8,840 9,760 8,900 10,500 10,500 8,140 an sen, La	8,530 6,670 6,470 13,800 11,500 8,080 7,930 8,170 8,620 13,800 19,600 7,800	58 68 68 68 68 68 68 68	22.5	5 5 5 4 2 2 2 2 2 2 3 3 5 3 3 3	7.3 7.4 .1 7.6 7.7 7.7 7.7 7.5 7.5 7.5 7.5 7.5	157 40 120 100 100 40 40 50 100 120 - atea 5.4	10 20 10 16 50 52 38 55 45 40 30 14	2.1	24	1111	6.0% G.0%	4, 325 4, 315 4, 315 4, 315 4, 315	(1.3) 	ID CONCORT	TARREST OF THE PARTY OF THE PAR
< 6. 80 : 2.2.3 < 8	*Sam trec. 1 and Aux. Nov. 1 bes. 1 bes. Nov. 1 bes. 4 pel. Mar. 1 and 4 res. Aug. Salina *Salina	26/47* 15/59*	25:53 15:42 10:18 12:179 15:93 12:64 9:126 16:43 6:15 25:55 41:50 27:35 A.:archi (:309	14,700† 7,760 14,600 8,840 9,760 8,900 10,500 10,500 8,140 an sen, La	8,530 6,670 6,470 13,800 11,500 8,080 7,930 8,170 8,620 13,800 19,600 7,800	58 68 68 68 68 68 68 68	22.5	5 5 5 4 2 2 2 2 2 2 3 3 5 3 3 3	7.3 7.4 7.4 7.7 7.7 7.7 7.7 7.5 7.5 7.5 7.5 7.5 7.5	156 40 120 120 100 	1a 20 1.2 1.5	2.1	24	118 126 27.1 7.8	G.098	ATION NO	15.1 15.1 18.1 18.1	GENAIS RIV	THE RESERVEN

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

	Iro (F					Alka	lis											Hardt as Ca		constituents	an ma	ındex	×	
Magnesium	Total	1	Manganese		Zinc	Sodium	Potassium	Атпопіа	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of const	Per cent sodium	Saturation inc	Stability index	No
(Mg)				1) (Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(C1)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)							,
3.7	LERVA 2.3	0.68	0.0 0.	9 Trace	0.0	1.2	1.5	0.1	0.0	105	9.6	1.5	0.0	0.2	4.2	0,2		13.3	99.0	108	2.5	-0.2	8.7	1
				O – Draii												1				1				
3.6 4.1 4.1 3.9 3.9 3.9 4.3 4.5 4.8 4.7 3.7 3.9	1.2 1.4 1.6 0.92 2.7	0.19	0.0 0.	0.0	0.1	1.6 1.6 1.5 1.4 1.3 1.6 1.4 1.8 1.8 2.0 1.4	1.2 1.0 0.9 1.1 1.2 1.0 1.3 1.8 1.7 1.8 0.5 0.9	0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	64.1 69.0 67.8 56.0 53.6 56.1 58.3 63.3 67.9 68.1 54.9 60.5	8.9 7.9 7.4 8.9 11.4 9.3 10.0 12.2 11.5 7.9 8.5	1.3 1.3 1.2 1.1 2.8 0.9 0.7 0.9 0.9 1.6 1.2 1.3	0.0	0.7 0.5 0.5 0.6 0.1 0.4 0.6 1.0 0.4 0.8 1.5	4.3 4.0 3.8 4.2 3.9 4.5 3.7 3.7 3.7 3.9 5.2 3.5	0.05	0.0	7.9 5.4 8.7 11.8 14.2 12.0 13.5 14.3 14.9 15.6 9.6 11.3	60.5 62.0 64.3 57.7 58.2 58.0 61.3 66.2 70.6 71.5 54.6 60.9	71.8 72.5 74.1 65.7 67.9 66.2 67.5 73.9 79.5 82.0 62.9 69.5		-1.0 -0.5 -0.8 -1.0 -1.0 -0.8 -0.8 -1.0 -0.6 -0.8 -1.4 -1.0	9.4 8.8 9.1 9.5 9.5 9.3 9.3 9.4 9.0 9.1	2 3 4 5 6 7 8 9 10 11 12 13
ast of	COCH	0.25	ONTARIO	1	1	2.1	1.5	0.0	0.0		11.7	1.5	0,0	0.4	4.4				58.6	1	7.0	-0,9	9.4	
																*****		13.2						
at ISL/	AND FA	LLS, O	NTARIO																					
3.9 4.3 4.2 4.2 4.5	0,26		0.0 0.		0.0	1.5 1.4 1.2 1.6	0.8 0.9 0.6 0.8	0.3	0.0	65.3 69.8	8.4	1.8	0.0	0,6	4.1			11.6	(6.2	1 5			0.3	15
4.6 4.7 5.0 5.1 4.9 3.5 3.6	1.3		0.0 0.	0,0	0.0	1.5 1.5 2.1 1.9 1.5 1.9 1.0 1.2	1.0 1.2 1.0 1.3 1.6 1.6 1.0 0.8	0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	63.1 60.3 73.0 68.1 73.9 73.3 75-5 77.8 50.3 59.7	9.8 7.7 7.8 8.4 11.4 11.4 11.2 13.8 6.9 7.6	1.1 1.2 1.2 1.0 1.0 1.1 1.7 0.9 0.8 1.1 2.0	0.0	0.8 0.5 0.1 0.8 0.4 0.4 0.2 0.3 0.3 1.0 0.6	3.7 4.0 4.7 4.0 3.7 7.1 4.1 5.8 5.8 3.9 2.6	0.00	0.00	11.0 12.4 15.2 12.5 14.2 14.1 15.9 16.0 15.5 9.8 9.7	65.2 70.3 64.2 64.7 72.4 70.1 74.7 76.0 77.9 79.3 51.1 58.7	73.1 77.0 71.4 69.1 78.1 74.8 86.6 83.9 86.3 91.4 57.9 65.5	4.8	-1.0 -0.9 -1.0 -0.8 -0.6 -0.6 -0.6 -0.9 -0.6 -0.7 -1.2 -1.1	9.3 9.2 9.4 9.2 8.9 8.9 9.3 8.9 9.9 9.5	16 17 18 19 20 21 22 23 24 25 26
4.7 5.0 5.1 4.9 3.5 3.6		0,29	0.0 0.	0,0	0,0	1.5 2.1 1.9 1.5 1.9	1.0 1.2 1.0 1.3 1.6 1.6	0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	63.1 60.3 73.0 68.1 73.9 73.3 75-5 77.8 50.3	9.8 7.7 7.8 8.4 11.4 11.2 13.8 6.9	1.2 1.2 1.0 1.0 1.1 1.7 0.9 0.8 1.1	0.0	0.5 0.1 0.8 0.4 0.4 0.2 0.3 0.3	4.0 4.7 4.0 3.7 7.1 4.1 5.8 5.8 3.9	0.00	0.00	11.0 12.4 15.2 12.5 14.2 14.1 15.9 16.0 15.5 9.8	70.3 64.2 64.7 72.4 70.1 74.7 76.0 77.9 79.3 51.1	77.0 71.4 69.1 78.1 74.8 86.6 83.9 86.3 91.4 57.9	4.1 3.9 5.0 4.2 4.4 5.6 5.1 3.9 4.8 4.0	-0.9 -1.0 -0.8 -0.6 -0.6 -0.6 -0.9 -0.6 -0.7 -1.2	9.2 9.4 9.2 8.9 8.9 9.3 8.9 9.3	16 17 18 19 20 21 22 23 24 25
4.7 5.0 5.1 4.9 3.5 3.6		0.29 ET, QUE	0.0 0.	0,0	0,0	1.5 2.1 1.9 1.5 1.9	1.0 1.2 1.0 1.3 1.6 1.6	0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	63.1 60.3 73.0 68.1 73.9 73.3 75-5 77.8 50.3	9.8 7.7 7.8 8.4 11.4 11.2 13.8 6.9	1.2 1.2 1.0 1.0 1.1 1.7 0.9 0.8 1.1	0.0	0.5 0.1 0.8 0.4 0.4 0.2 0.3 0.3	4.0 4.7 4.0 3.7 7.1 4.1 5.8 5.8 3.9	0.00	0.00	11.0 12.4 15.2 12.5 14.2 14.1 15.9 16.0 15.5 9.8	70.3 64.2 64.7 72.4 70.1 74.7 76.0 77.9 79.3 51.1	77.0 71.4 69.1 78.1 74.8 86.6 83.9 86.3 91.4 57.9	4.1 3.9 5.0 4.2 4.4 5.6 5.1 3.9 4.8 4.0	-0.9 -1.0 -0.8 -0.6 -0.6 -0.6 -0.9 -0.6 -0.7 -1.2	9.2 9.4 9.2 8.9 8.9 9.3 8.9 9.9 9.5	16 17 18 19 20 21 22 23 24 25
4.7 5.0 5.1 4.9 3.5 3.6 at DUP 4.4 2.7	0.32	0.29 0.01 0.01 0.04	0.0 0.	0.0	0.0	1.5 2.1 1.9 1.5 1.9 1.0 1.2	1.0 1.2 1.0 1.3 1.6 1.6 1.0 0.8	0.0 0.0 0.0 0.2 0.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	63.1 60.3 73.0 68.1 73.9 73.3 75-5 77.8 50.3 59.7	9.8 7.7 7.8 8.4 11.4 11.2 13.8 6.9 7.6	1.2 1.2 1.0 1.0 1.1 1.7 0.9 0.8 1.1 2.0	0.0	0.5 0.1 0.8 0.4 0.2 0.3 0.3 1.0 0.6	4.0 4.7 4.0 3.7 7.1 4.1 5.8 5.8 3.9 2.6	0.00 0.08 0.02 0.06	0.00	11.0 12.4 15.2 12.5 14.2 14.1 15.9 16.0 15.5 9.8 9.7	70.3 64.2 64.7 72.4 70.1 74.7 76.0 77.9 79.3 51.1 58.7	77.0 71.4 69.1 78.1 74.8 86.6 83.9 86.3 91.4 57.9 65.5	4.1 3.9 5.0 4.2 4.4 5.6 5.1 3.9 4.8 4.0 4.2	-0.9 -1.0 -0.8 -0.6 -0.6 -0.9 -0.6 -0.7 -1.2 -1.1	9.2 9.4 9.2 8.9 8.9 9.3 8.9 9.9 9.5	16 17 18 19 20 21 22 23 24 25 26
4.7 5.0 5.1 4.9 3.5 3.6	0.32	0,29 ET, QUE 0.01 0.04	0.0 0.	0.0	0.0	1.5 2.1 1.9 1.5 1.9 1.0 1.2	1.0 1.2 1.0 1.3 1.6 1.6 1.0 0.8	0.0 0.0 0.0 0.2 0.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	63.1 60.3 73.0 68.1 73.9 73.3 75-5 77.8 50.3 59.7	9.8 7.7 7.8 8.4 11.4 11.2 13.8 6.9 7.6	1.2 1.2 1.0 1.0 1.1 1.7 0.9 0.8 1.1 2.0	0.0	0.5 0.1 0.8 0.4 0.2 0.3 0.3 1.0 0.6	4.0 4.7 4.0 3.7 7.1 4.1 5.8 5.8 3.9 2.6	0.00 0.08 0.02 0.06	0.00	11.0 12.4 15.2 12.5 14.2 14.1 15.9 16.0 15.5 9.8 9.7	70.3 64.2 64.7 72.4 70.1 74.7 76.0 77.9 79.3 51.1 58.7	77.0 71.4 69.1 78.1 74.8 86.6 83.9 86.3 91.4 57.9 65.5	4.1 3.9 5.0 4.2 4.4 5.6 5.1 3.9 4.8 4.0 4.2	-0.9 -1.0 -0.8 -0.6 -0.6 -0.9 -0.6 -1.2 -1.1	9.2 9.4 9.2 8.9 8.9 9.3 8.9 9.9 9.5	16 17 18 19 20 21 22 23 24 25 26
4.7 5.0 5.1 4.9 3.5 3.6 at DUP 4.4 2.7	0.32 ALMAR	0,29 ET, QUE 0.01 0.04	0.0 0. QUEBEC 0.0 0.	0.0	0.0	1.5 2.1 1.9 1.5 1.9 1.0 1.2	1.0 1.2 1.0 1.3 1.6 1.6 1.0 0.8	0.0 0.0 0.2 0.2 0.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	63.1 60.3 73.0 68.1 73.9 73.3 75.5 77.8 50.3 59.7	9.8 7.7 7.8 8.4 11.4 11.2 13.8 6.9 7.6	1.2 1.2 1.0 1.0 1.1 1.7 0.9 0.8 1.1 2.0	0.0	0.5 0.1 0.8 0.4 0.4 0.2 0.3 0.3 1.0 0.6	4.0 4.7 4.0 3.7 7.1 4.1 5.8 5.8 3.9 2.6	0.00	0.00	11.0 12.4 15.2 12.5 14.2 14.1 15.9 16.0 15.5 9.8 9.7	70.3 64.2 64.7 72.4 70.1 74.7 76.0 77.9 79.3 51.1 58.7	77.0 71.4 69.1 78.1 74.8 86.6 83.9 86.3 91.4 57.9 65.5	4.1 3.9 5.0 4.2 4.4 5.6 5.1 3.9 4.8 4.0 4.2	-0.9 -1.0 -0.8 -0.6 -0.6 -0.9 -0.6 -1.2 -1.1	9.2 9.4 9.2 8.9 8.9 9.3 8.9 9.3 8.9 9.5	16 17 18 19 20 21 22 23 24 25 26

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

				lischarge id-fest)		7		1			Suspe	nded er	Residue dried (Disso	on evapo at 105 (lved noli	oration C.			
Date of collec	tion	Scorage period	On sampling date	Monthly mean	Vater temp- erature	Owy	Carbon droxide	; hi	Hazeal	T order	Date:	Ignited at \$50°C.	Р.Р.М.	Tes ger a re- fuit	T no.e per day		spe uf	10 a
	-	7.007 4.0		-						la constitution of				-				
June 1	15/59	24:44			63	14.6	6	6.8	120	20t	261	17†	77,6	0,106	STAT	44.8	70.9	IVE 9
* At m	unicipa	l tap			1	1	1	1								1		1 '
† Preci	ipitate	d during	storage															
.1.	1	_			1 .	1					-	_			STATIO	1	- MACAMIO	I
2 lune :	(-0)	1.48	j	1	67	13.6	1	1 6.8	100	5)	-9	(6)	84.8	1.5		25.2		1
			î	ī	т	T	T	T		,			, ,	=	ATT AN N	17 -1	A ARRE R	17.1
lune 1	< <-	51 58				19.4	1	1.2	180	< < +	64	60	133	.15.		15	8.6	1
† Some * Samp	turbid led at	ity due t highway	No. 45 bri	ited oxides dge, west	of La S	arre, Qu	e.											
			ī	7		,		,		,					×1.1 %	11. 4	_ 1 sv * ₁	,
4 Fet. 5 Mar.	3	16-3.7					4	7.4					\$14 498	1 . 4"	-	-		7 7
6 Mar. 1	-	11.30					1	7.6		L			512		}	1	-	1 "
																STATION	NO. 1 1	ri
- Feb.	1 4	10.32	ļ		1		2	6.5					62.0			[.]		1:
	18	14.23					4	6.5 7.3 7.2					66.5		-			111
.1.																		
	5/47	206			7,		Τ, ~~	170	75	1					FION NO.	1	TEFISH R!	Ī
O Aug. 2	25/47	306			73	Dissolv		7.8		(110)			112	0.125	HON NO.	. 60 = WHI	78-FISH R! 73.5	Ī
O Aug. 2		306			73	Dissolv	red oxy	(7.5)	(140) 6.5 ppm	(110)			112		L.	1	I	[1
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48	:15			73	Dissolv	red oxy	(7.5) ygen -	(140) 6.5 ppm		84	27		0,153	L.	26.6	>3.5	2:
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48	:15			73	Dissolv	red oxy	7.2	(140) 6.5 ppm	60			187	0,152	LION NO.	\$8.4	23.5	2:
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48	:15	120		73	Dissol	red oxy	7.2	(140) 6.5 ppm	60			187	0,254		26.6 \$8.4 \$4.0	23.5	2:
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48 25 led at	:15	am.		. 79	Dissolv	yed oxy	7.2 7.1	(140) 6.5 ppm 240	60 200			187	0,254		26.6 \$8.4 \$4.0	93.5 157 97.7 A REINE R	12
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48 25 led at	:15 :26 power da :319		1		Dissolv	red oxy	7.2 7.1 8.1	(140) 6.5 ppm 240 	60	84		187	0,150 0,254 0,254 0,204		26.6 \$8.4 \$4.0	93.5 157 97.7	122
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48 25 led at	:15 :26_ power da		1			red oxy	7.2 7.1 8.1	(140) 6.5 ppm 240 	60 200	84		187	0,150 0,254 0,254 0,204		26.6 \$8.4 \$4.0	93.5 157 97.7 A REINE R	122
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48 25 led at	:15 :26 power da :319		1			red oxy	7.2 7.1 8.1	(140) 6.5 ppm 240 	60 200	84		187	0,153 0,254 0,224 ST 0,154	ATION N	26.6 \$8.4 \$4.0 0.61 - 13	93.5 157 97.7 A REINE R	13 23 12 12
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48 25 led at 24 4?	:15 :26 power da :319		1			red oxy	(7.5) // (7.2) // (7.2) // (7.1) 8.1 (7.6) gen - 6	80 (340) 240 80 (340) 2 ppm	(46)	84		187	0,153 0,254 0,224 ST 0,154	ATION N	26.6 \$8.4 \$4.0 0.61 - 13	93.5 167 97.7 A REINE R	13 21 12 12 12 12 12 12
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48 25 26 at 24 4?	:15 :26 power da :319			. 79	Dissola	s loop s	(7.5) // (7.2) // (7.2) // (7.1) 8.1 (7.6) gen - 6	(140) 6.5 ppm 240 80 (340) 2 ppm	60 200	84	27	187	0.152 0.254 0.254 ST 0.154	ATION N	26.6 58.4 54.0 10. 61 – 12 25.0 2. 62 – TH	93.5 165 97.7 A REINE R (137)	13 23 12 12
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48 25 26 at 24 4?	:15 :26 power da :319	bridge		. 79	Dissola	s loop s	(7.5) // (7.2) // (7.2) // (7.1) 8.1 (7.6) gen - 6	80 (340) 240 80 (340) 2 ppm	(46)	84	27	187	0.152 0.254 0.254 ST 0.154	ATION NO	26.6 55.4 54.0 10. 61 – L2 25.0 26.2 – WH	28.5 157 97.7 A REINE R (137) UTECLAY (137)	11 21 12 12 12 13 14 14 14 14 14 14 14
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48 25 led at led at	:15 :26 power da :319 railway l	bridge		. 63	Dissola 12.0	s l (3,5)	(7.5) 7.2 7.1 8.1 (7.6) 8en - 6	80 (340) .2 ppm	(46)	5,3	1.3	187 165	0.183 0.284 0.284 STA 0.184	ATION NO	26.6 58.4 54.0 10. 61 – L2 25.0 2. 62 – WH1 36.4	28.5 167 97.7 A REINE R (137) ITECL AY I 80.5	13 21 12 12 12 12 13 14 15 15 15 15 15 15 15
0 Aug. 2 1 Feb. 2 2 Aug. 2	24/48 led at 24/47 led at 18/8/59 le	:15 :26 power da :319 railway l	bridge	ize.	. 63	Dissolv	1 (3.5)	(7.5) 7.2 7.1 8.1 (7.6) 8.0 7.1 (7.0)	80 (340) 22 ppm 30 (120)	(4C) (4C)	5.3	1.3	187 165	0.153 0.154 STA 0.154	ATION NO	26.6 58.4 54.0 10. 61 – 12 25.0 2. 62 – WH 30.4	28.5 167 97.7 A REINE R (137) 17FC1 AY 1 80.5 - BLACK 1	14 21 12 12 12 13 14 15 15 15 15 15 15 15
0 Aug. 2 1 Feb. 2 2 Aug. 2	224/48 225 led at 1 24 47 led at 1 3 57 3 58 3	:15 :26 power da :319 railway l	bridge		63	Dissola 12.0	s l (3,5)	(7.5) 7.2 7.1 8.1 (7.6) 8en - 6	80 (340) .2 ppm	(46)	5,3	1.3	187 165	0.183 0.284 0.284 STA 0.184	ATION NO	26.6 58.4 54.0 10. 61 – L2 25.0 2. 62 – WH1 36.4	28.5 167 97.7 A REINE R (137) ITECL AY I 80.5	11 21 12 12 12 12 12 12

Chemical Analyses of Surface Waters in the Rudson Bay Drainage Basin

											(In part	s per	millio	n)										
Wagnesium (Mg)	Total (Fe	Dissolved	(uw) Manganese	(Y) Aluminum	Copper (Cn)	(BZ)	Sodium	alis botassium (K)	("H Ammonia	O Carbonate	*OOH)	S Sulphate	Chloride	Fluoride	Nitrate (*)	Silica Colorimetric)	Dhosphate	(8) Boron	Hard as C Non- car- bonate	ness aCO ₃ Total	Sum of constituents	Per ceat sodium	Saturation index	Stability index	No.
					1 1 7	1			103			1 (4)	,	, ,	13/	1 (2)	1,4/	(-/_							
near M.		0.23	0.0	0.0	Trace	0.05	1.2	0.8		0.0	26,2	9.7	1.9	0.0	0.0	2.6	1		12,2	33.7	41.5	6.0	-2.2	1,1	1
2.2	1.01	10.25	0.0	0.0	Trace	10.03	1.2	0.0		0.0	20,2	9.7	1.9	0.0	0.0	2.0	<u> </u>		12.2	33.7	41.5	0.9	-2.2	11	1
at MAC	T						1					F	1	1	1	1									_
2.2	1.2	0,21	0.0	0.0	Trace	0.05	1.2	0.7	0.2	0.0	30.2	11.2	1.9	0.0	0.0	2.7	0.05		11.2	36.0	45.9	6.5	-2.1	11	2
near L.	A SARI	RE, QU	EBEC								,			1	,										_
3.2	1.9†	0.62	0.0	0.0	Trace	0.05	2.0	1.8	0.1	0,0	40.1	12.2	2.4	0.0	0.3	4.5	0.06		14.7	47.6	60.7	7.8	-1.5	10	3
at NOI	1	L, QU	EBEC			l	a	s Na -						T	1 .	F	T				1				_
23.1 23.6 24.0	0.45 0.38 0.30			0.1		15.0 14.8 16.0	36	5.3		0.0	110 114 109	256 250 267	6.0 7.5 6.0		5.2 5.2 7.0	9.0 11	0.0		236 235 236	326 329 325	460 471		-0.2 0.0		5 6
		-	1			10.0	1		,,,,,,		100	201	1 0.0]	1	1	1	1	1 250	1 327	1				L
near N		TAL, Ç	UEBE	C 			T a	s Na		1		1	T	Τ	1	1	1			1				1	7
2.7 3.1 3.5	0.05					0.0	8 2	.4 .1		0.0	36.6 40.7 43.9	5.4 5.8 8.6	0.3		3.5	6,4 5,0 7,0	0.00		6.1 4.4 6.8	36.1 37.8 42.8	50.6		-2.4 -1.6	11 10.5	8 9
					1	1	1	.0		1.0.0	45.5	1 0.0	1:	4	4 14.00	7.0		P	0.0	42.0	1	·····			1 2
at LA		, QUE	BEC		1	i			1			1		1	1		1	1	r	1	1			1	
3.9	2.0									0.0	48.8 (45)	8.1	(0)		.3.5	7.3			10.0	50.0			-0.9	9.6	10
7.5	3.6						3.5	2.0		0.0	88.8	11.1	0		0.4	4.4 (39)†			11.6	84.0	94.2	8.5	-1.1		11
8.3 † Gra	5.7 vemetr	ic silic	a				3.0	3.0		0.0	55.2	14.8	2.5		7.5	(50)†		1	18.8	64.0	88.2	8.7	-1.8	10.5	12
at LA 5.3	0.39	,. QUE	DEC	<u> </u>	1		1	1		0.0	86.4	3.9	0	Ī	1.7	10	1	1	0.9	71.7	1		-0.2	8.5	13
2+3	0.37									0.0	30.4),,			1 **/	10			.,	/1./			0.2		
			h								,				-										
near R	AMOR E	E, QUE	BEC																						
2.7	0.25	0.04	0.0	0.0		ļ	1.3	0.4	0.1	0.0	39.1 (37)	7,1	0.7	0.0	0.4	3.4			7.7	39.8	46.8	6.5	-1.7	10.5	14
	L	1			1	1		J		(0)	1 (3//	1	1	1	1		J	1		1	1			1	1
at MAT	HESO	N, ONT	ARIO																						
5.3		0.06	0.0	0.0	0.0	0.0	2.2	0.8	0.0	0.0	90.7	7.8	1.5		0.6	5.1			4.0	78.4	90.7	5.6	-0.2	8.4	15
3.3 3.9 4.5	0.92	0.10	0.0	0.0	0.0	0.0	1.3	0.5	0.1	0.0	48.3 58.6	9.0 6.7	0.6	0.0	0.4	3.3			8.4	48.0 57.0	56.1 63.1	5.5	-1.3 -1.2	9.9	16
4.5 3.9	0.39	0.15	0.0	0.0	0.0	0.05	1.6	0.6	0.1	0.0	68.3 54.5	6.1	2.1	0.0	1.6	4.9 5.5	0.00	0.00	9.2	65.2	73.7	4.3 5.0 5.2	-1.2 -1.0 -1.1	9.4	18
3.9					J		1.4	0.5		0.0	48.9	5.7	1.3		0.4	5,1	L		13.1	53.2	57.3	5.4	-1.2	9,9	20

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

								1 in p	ourts per	r million	1)							
				lischarge nisteei]		pag					Suspe	en ie i		an I				
et.	Date / · Hectivo	Tava:	On Samp. Op Same	M. nrb. v mean	Water tem, erature	Oxyges consumed by KMnO ₄	Carbon dioxide (calculated)		Hazen	i area	(35.es) A1 175°C.	Ignited at \$5.09(P.P.M.	Tos per ante feet	per per tay	6 60 00 00 00 00 00 00 00 00 00 00 00 00	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
				•												, , ,	- 4: 4: 4	
:	Max 1 -	18.5			43	15,5	1	1.0	100	10	42	44	**,4	0.111				10
1	lune !	28.0	\ \ - a	-	102		14	1,1) M	Lu			1	1		1	T.mr	111
-1			i.		1			ł		1	ī			1 1	TON NO	4	ra-L.	Į.
	A oc. 11/59	2 24			<u> </u>	5.8	12	18.0	14	1-10	8.1	2.1	104	100		18-8	1160	
	· which	, ' u :	. 🔨 - : 111	r. pr														
	,		1		[1	i	ī	I	ī			-	,	/ N N N N	1 _ 1411	12 × + 1)	
1	Aug. 11 5)	2. 24		1	<0	14.4	3	7.9	55	13	12.6	9.5	1 4	3.254		· · ·	711	115
	* Sangle? e	* &** W. 4.	. N . 14 l s	*****									-	51 \			ective t	
5 1	Aug. 11 St	2 2 +		[.	85	12.2	T 3		60	47	21.5	16.1	172	-254	1	11.2	I was	1.
2	* Simple to				1		1	(2.6)	(40)	(100)	1						"	
	* Sampled as				<u></u>	<u> </u>		7.5	120	62		[.			}		10	1.0
	,	*	level (feet	<u>)</u>	T	F	,		Ţ		т.	-	ST	ATION N	O. 48 – F	PEDERIC	A HOLSE	PINE
1	Aug. 11 58 Sept. 10 Oct. 10	14.126 6.109	906.15 901.12 901.23		45		4	7.7	60	50 42 75	11	11	160	. : : 6	-	15.2	164	2
11	Nov. 14 Dec. 10	5.136	902.43		39	18.2	. 3	8.0	70° 100°	60	3.3	24	164	77.223		C	176	2%
	'an, 0 50 Fet. 10 Mar, 13	6 31 9:56 10 25	900,13 5 8.84 896,05		34	21,1	. 4	8.1 7.9 7.4 7.8 7.5	100° 50° 40°	40	3.4	29	169	1,330		4.5		156
5	Apr. 10 May 25	27-35	883.57		35	14,5	. 2	7.8	100*	30	22	i	170	231		30.	178	18
3 .	June 12 Juny 1	18-35	902.04	ŀ. ·	71		3 1	7.5	120 80	33							131 137 152	1.4
	• Colloids p	resent														•	•	
1	Aug. 10/57	87:21			71.		1 -		1				1	1	O. 4x = F	t	K 1621 ST	1
1	Aug. 10/5/	87:21			1.			7.4	120	27			147	1,146		\$7.5	180	.18.
	• From shore	at high	way No. 11	crossing										C.A.	I FLOX No.	77 11.3	RCI PINE	
T	Aug. 11/59	21:24			0.	12.6	-	8.1	35	(3)			340	U.402	1 ,		ACT PINE	LAK
	• Sampled at	airbase	from shore									_		L	1,			
7															STATI	ON NO. 7	I = BOB's	LAA
1	Aug. 11/59	21:24			59	12.6	(7.4	30 (30)	1 (5)			13"	0.186		61.6	, ,	31.
1	Aug. 15/63	49.0	1		.,		13		3(-			134			4.		

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

											(In pari	ts per	milli	on)										
	Iro (F	on e)					Alka	lis								0			Hardn as Ca	ess CO ₃	ituents	sodium	dex	H	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of constituents	Per cent sod	Saturation index	Stability index	No.
(Mg)			(Mn)	(AI)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(CI)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)]	
at MA	THESC	N, ON	TARIO	(concl	luded)																				
2.3	0.80	0.11	0.0	0.0	Trace	0.0	0.9	0.8	0.1	0.0	28.3 52.9	6.3	0.5	0.0	0.6	4.8	0.02	0.00	9.2 7.9	32.4	39.5	5.5	-1.4	10	1 2
3.5							1.0	0.0	0.1	0.0	32.9	0.0	2.0		0.2	3.6	0.00	0.00	7.9	51.3	58.4	0.3	-0.9	9.4	
west o	f MAT	HE SON			1			ſ	,					1						,	1	1			_
6.7	0.13	0.07	0.0	0.14	Trace	0.0	1.7	0.6	0.0	0.0	114 (116)	6.2	1.5	0.0	0.0	6.7			7.3	100 (110)	109	3.5	-0.1	8.1	3
near S	HILLI	NGTON	, ONT	ARIO																					
7.5	0.32	0.07	0.0	0.0	0.05	0.0	1.8	0.8	0.1	0.0	126	4.5	1.3	0.0	0.8	4.4			7.0	110	115	3.4	0.0	7.9	4
	1	L						L		,			L			L				1	1				
east o	f HOY	LE, ON	TARIO																						
4.8	1.2	0.11	0.0	0.0	0.01	0.0	1.4	0,9	0.0	0.0	91.3	8.0	1.4	0.0	0.2	2.3			10.7	85.6	90.5	3.4	-0.4	8,5	5
		1			1	1		<u> </u>		(0)	(92)			<u> </u>	l	1	1	1	(15)	(90)					
60	ATAT A TIV	GHT, O	NFT A DI	0																					
4.5	NIVAU	0.34	NIARI			1	1.5	1,2	0.0	0.0	85.2	10.0	1.7	0.0	0.6	4.7			12,2	82.1	92,0	3.8	-0.6	8.7	6
417	1,,,,,,	10154				111111		L.**	1 0.0		1 0,12	1.000	1	1 0.0	1	1111				1 02.1	1 /2:0	310	0.0	017	_
at dan	belov	FRED	ERICK	HOUS	SE LAK	E, ON	TARIO																		
	1.2	0.23	0.0	0.0	0.0	0.0	1.8	1.4		0.0	88.0	10.4	1.9	0.0	0.8	2.2			13.4	85.6	93.3	4.3	-0.4	8.5	7
4.8 4.6 4,7 5.0 5.8 5.9 6.3 6.3 7.1	0.46	0.22		0.0	0.0	0.0	1.4 2.0 2.1	0.8 1.1 1.1		0.0 0.0 0.0	80.5 99.2 87.2	10.1 9.2 9.3 8.4	1.0	0.0	2.0	3.4 3.3 4.3 4.6		0.1	13.3 9.5 14.2	79.3 90.9 85.7	85.6 101 93.5 93.1	3.6 4.5	0.0	8.9 8.0 8.4	8 9 10
5.8 5.9	0.46	0.23	0.0		0.0		1.9	1,2	0.05	0.0	87.0 91.2	1 13.4	2.3 1.5 2.1 1.7		0.2 1.0 0.8	4.6			20.1	88.5 94.9	103	5.0 4.4 4.7 3.8	~0.2 ~0.5 0.0	8.7	11
6.3 6.3		0,20	0,0	0.0	Trace	0.0	1.8	0.9	0.1	0.0	93.6 97.4	11.0	1.6	0,0	0.3	4.3 5.3 5.8 7.3 2.4 2.1 2.2	0.06		20.2 18.4	97.0 98.3	102 104	3,0	_0 2 i	8.5	12 13 14 15 16
7.1 3.8 4.0	1.7	0.06	0.0	0.05	0.0	0.0	1.8	1.5	0.2 0.2 0.3	0.0	57.0 65.8	12.4 10.4 11.1	3.8	0.0	1.0 3.0 0.4	7.3	0.00 0.09 0.07		17.1 14.0 13.8	113 60.8 67.8	74.2 76.4	3.3	-0.6 -0.1 -1.0	9.5	16
4.0						1	2.0	1.4	0.1	0.0	79.4	10.0			0.8	2.2			13.0	78.1	85.8	5.9	-0.8 -0.1	9.1	17 18
west o	of COC	HRANE			1	1		1	1	1	1			1		1					1				
5.1		0.10	0.0	0.0	Truce	0.05	2.8	1.6	0.0	0.0	99.1	11.2	2.8	0.0	1.5	5.3			10.0	91.3 (91.5)	107	6.1	-0.7	8.8	19
at SOU	JTH P	ORCUP	INE, O	NTAR	IO																				
18.3	0.26	0.01	0.0	0.04	0,02	0.0	23.0	3.8	0.2	0.0	132	116	18.9	0.0	1.0	3.5			98.3	207 (210)	302	19	+0.4	7.0	20
						1			1			' '		1						(210)					
near F	ORCI	PINE,	ONTAR	10																					
7.1	0.12	0.01	0.0	0,0	Trace	0.0	5.0	1.5	0.3	0.0	104	6.6	11.1	0.0	0.4	1.7			11.6	96.6	87.1	9.9	-0.5	8.5	21
7.2	0.08	0.01	0.0	0.01			5.9	0.6	0.0	0.0	85.3	7.7	9.5	1	0.7	0.3	0.01		10.9	(98) 80.9	94.7	14	-0.5	8.7	22

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

				, ,			(In p	arts per	million	,							
			discharge id-feet)		une d	de				Nuspe		Residence desce (Diss	e nevag tar 2 ti	82' C			
n. Tane 1 Historia	200	ita Marji ng Mare	M och.v	Water temp- crature	Oxygen consu	Carbon dioxide (calculated)	şΗ	Hazes	Tarbatan.	Direct at losi (Ignited at \$500	Р.Р.М.	Per per A re- for t	Tinne per tay	1 10 6 (80) (80) (10) 87 (50)	Spe uf on an e K + 1 4 250 250	
	Days			50 F T		(CO3		"I nits	(Lnira)								(Ca
													TIE .	ATT N. N.	72 - 0	. , N. E.	
1 Aug. 11/59	20:24	11		70	21.1	2	8.	171	1	7.6	1.	Tim	v		47.0	-	11
* Sampled	t highway	No. 101 b	ridge.								1	1		1 1			1
														STAIL	N No. 31	_1 = No .	ARE
2 Aug. 12/59	20:23		0.0	0.4.5	27.2	4	7.3	14 (240)	(1-2)			:21			4.8	124	0
-		1	-	1		i		24(0)	(11-2)				1				-
.1.		1				1	t		1	1	1		1	. 71 \ 1	e tos fue to	77 (x 1 8)	1 8 8
1 Aux. 1 C	88 122			-4	28.	2	2.6 (°.6)	200 (350)	1.4		-	111	0,15.	-	47.7	111	1"
4 Aug. 12/59	22:29			~ \	33.8	1)	1.5	240 (400)	1.5		-	122	7.14		78.5	1 ×	11
.1	1	T	1	1			ī		I .		ST	ATION N	s. "< = 9	ONISINAKI	FA MATI	AGAMO RI	NE
1 Aug. 11/55	7.14				-			I	1		ST	ATION NO	S. "< = 9	ONISINAKI	FA MATT		NE
Se,	118			50		2 2 1	7.6	35 45	0.8					-		55.1 85.4	
8 Nov. 24 0 Orc. 4 3 Jan. 50	10.41	le taken		45	13.4	2	7.6 7.7 7.4	80 55	0.8			78.0	0,166		52.4	82.4 84.9	11
1 Feb. 2 50 2 Mar. 4	17 44			32 40		5 2	7.1 7.3 7.3 7.0 7.4	45 40	0 0.7				- 1			77.2	11
4 May 3	7.40 13.40			35		4	7.3	50 55 50	0.7							51.5	
(L'un 1"	1 30			60	9.8	2 2	7.4	50	0.8			65.2	0.080	- 1	34.4	77.0	10
	T												STA	ATION NO.	. 76 - MA	TAGAMI	RIV
7 Nov. 26 54 8 Nov.	No samp	le taken			12.8	3	7.3	55	4							85.4	: :
9 Dec. 21 0 Jan. 18/55 1 Feb. 22	7:20 10:17	Normal Normal		34	11.6	3	7.4 7.4	80 70	6	3.5	0.0	73.6 76.4	0,100		26.4 40.8	89.2 88.7	13
Jan. 18/55 Feb. 22 Mar. 23 Apr. 18 May 24 June 21	7:12 3:15 7:10	Normal Normal		32 32 38	9.8	3	7.4 7.5 7.4 7.1	70 50 65	0.3			73.6	0,100		26.0	95.6 91.1	13
May 24 June 21	6:16	46" < N		53 78	10.8	2	7.6	50 45	3 0	9.1	3.2	82.4	0.112		44.4	68.7	14
5 July 21 7 Aug. 25	4:40 5:19	46" < N 48" < N		78 .			7.4	45 40	3 0	7.3	3.7	74.8	0.102		28.8	90.5	12
Sept. 21	2:27	50" < N		60	17.0		7.6	48	0.3			89.6	0,122		48.0	89.4	14
9 Aug. 13/57	86:118			67	9.1	1	7.8	50	1			66.4	0.090		11.2	97.5	13
* Sampled a		de insete		65	10.4	4	7.2	4.0	2			80,4	7,100		26.4	92.4	1.2
Swarpied a	. waterwor	AS IIIIERC															
1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Gauge leve	1 (ft)	+									ST.	ATION NO	. 77 – MA	TTAGAMI	RIV
1 Aug. 11/58 2 Sept. 10 3 Oct. 10 Nov. 10	22:25 14:126 6:109	844.0 843.9 844.0		57	8.9	5	7.3 7.3 7.5 7.5 7.5	45 110	1 2			70.4	0.096		21.2	101	14
Nov. 10 Dec. 10	9:140 9:61	844.0 844.6 844.4			15.7	3 2	7.5	80 70	1 1			84.4	0.115		40.0	114	16
Jan. 13/59	7.01			33		3 5	7.5	50 50	0							104	15
Feb. 10	17:57	845.0		33	12 6	0	9.0										
7 Feb. 10 8 Mar. 10 Apr. 10	9:56 13:28 27:35	844.7 844.2	• • • • • • • • • •	33 33 35	11.5	2 4 3	7.2 7.6 7.3 7.3	50 50 45 40	0 2			82.8 92.4	0,113	210	28.0	106 108 104	15.

^{*}Sampled at powerhouse dam

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

												(In pa	ris pe	r mii	11011)		,								
	Iron (Fe))					Alka	alis								(3)				ness CaCO ₃	constituents	sodium	ndex	dex	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum on cons	Per cent so	Saturation index	Stability index	No.
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)							
at HOY	TE O	NTAR	10																						
11.2	0.14	1	0.0	0.0	0.08	0.0	8.5	2.4	0.2	0.0	146	29.8	7.9	0.0	0.4	3.4			29.4	149	177	11	+0.3	7.4	1
	L	L		l	l								l		-		1				l	L			
near Bl	ERYLV	VALE,	ONTA	RIO																					
3.9	0.12	0.11	0,0	0,0	0.0	0.0	3.5	0,8	0.5	0.0	53.4	7,7	8.3	0.0	0.3	1.2			14.4	58,2	69.0	11	-1.2	9.7	2
near Di	D TETW	000	ONTE A D	10					1				1	1	ł	1	·			(00)		1			
4.9		0.14	0.0	0.0	Trace	0.05	1.3	0.3	0.0	0.0	68.0	1.6	2.5	0.0	0.3	3.0			9.0	64.8	65.5	4.1	-0.8	9.2	3
4.1	0.35	0.16	0.0	0.0	Trace	0.0	1.1	0.4	0.8	0.0	50.3	2.3	1.6	0.0	0.4	3.5			14.0	(64)	53.7	4.1	-1.4	9.9	4
		<u></u>		ļ		1					1			<u> </u>	ļ						L	<u> </u>			L_
at GOG	AMA,	ONTA	RIO																						
2.5			0.0				1.4	0.4		0.0	33.9 41.2	8.9	1.8			2.7		0.00	5.0 8.4	32.8 42.2	52.6	4.8	-1.3	10	15
2.8 3.2		0.08	0.0	0.0	0.0	0.0	0.9	0.4	0,1	0.0	40.1 37.8	7.9	0.5	0.0	0.6	3.9	0.01		9.3	42.2	49.0 48.6	5.2	-1.2 -1.2	10 10	6 7 8
3.0							0.9	0.4	0.1	0.0	36.6	7.9	0.7		0.0	3.9 4.9			11.5	41.5	47.8	4.9	-1.4	10	10
2.8 2.9 2.5							0.9	0.4	0.2	0.0	34.7 32.4	9.0	0.6		0.2	4.5	0.05		11.1	39.6	46.7	6.4	-1.6 -1.6	10.5	12
1,9 2,6 2,3	0.44	0.04	0,0	0.09	0.0	0.0	0.9	0.4 0.4 0.4	0.1 0.2 0.1	0.0	24.7 32.7 35.8	8.0 7.1 7.4	0.5 1.3 1.0	0.0	0.6	3.5	0.06	0.00	10.9 8.5 8.8 7.8	28.8 35.6 37.2	37.4 42.0 44.0	6.3 4.5 5.5	-2.2 -1.4 -1.3	11 10 10	13 14 15 16
at TIM	MINIS (ONTA	PIO		1		1 210	0.4	1 0	1 0.0		1.7.2	1 210		1 000	1 312	1	1	- 110	1	7410	1 2.2	1	10	120
2.6	MIIVO, V	ONTA	1	[1	1	1.6	0.5		0.0	39.2	4.9	2.8	1	0.4	5.3	Ţ		7.4	39.6	49.0	8.0	-1.5	10	117
		0,1	0.0	0.0	0.0		0.8	0.4		0.0	46.7	6.6	0.3	0.0	0.4	4.1			5.9	44.2	51.6	3.7	-1.2	9.8	18 8 19
2.8 2.7 2.9 3.0 2.1		0.08	0.0	0.0	0.0		0.8	0.4 0.4 0.5	0.2	0.0	45.2 45.2 44.9	6.9 8.3 6.0	0.2 0.9 0.6	0.1	0.6	4.3 4.0 4.5			5.7 8.8 7.7	42.8 45.9 44.5	51.1 53.9 51.2	3.9 4.0 4.1	-1.4 -0.5 -1.4	9.3	20 3 21
2.1		0.04	0.0	0.0	0.0		0.6	0.7	0,3	0.0	29.4 45.6 41.1	8.0	0.4	0.0	0.4	3.0			8.5 7.1	32.6	40.7	3.8 3.3 4.5	-1.9	11 9.6	3 21 22 23 24
2.2 2.1 2.1		0.03	0.0	0.03	0.0		0.9	0.7	0.0	0.0	39.0	7.1	0.4	0.0	0.8	4.4			6.6	40.3 38.1	49.1 46.6	4.8	-1.1 -1.3	9.8	8 25
1.5 2.6		0.05	0.0	0,0	Trace	0.0	0.9	0.5	0.15	0.0	44.6 57.9	5.6	0.5	0.0	0.8	4.2			5.8 6.1	42.4 53.6	50.5	4.3 3.5	-1.1 -0.9	9.2	4 28
2.9		0.06	Trace	0.0	Trace	0.05	1.3	0.7	0.0	0,0	42.2	8.4	4.4	0.0	0.2	4.6			11.5	46.1	57.1	4.8	0.9		6 29
3.1	0.13	0.04	0.01	0.01	0.10	0.05	1.0	0.6	0.3	0.0	38.3	6.9	4.1	0.0	0.1	3.9			11.8	43.2	51.0	4.7	-1.6	10	30
at SAN	DY FA	ALLS,	near Tì	MMIN	s, ont	ARIO																			
3.3 4.1		0.03	0.0	0.0	0.0	0.0	0.9	0.5	0.2	0.0	50.5	8.0 9.5	1.0	0.0	0.3	5.1			8.6 12.2	50.0 60.5	58.6 67.7	3.7 4.1	-1.3 -1.2	9.9	31 7 32 5 33 9 34 7 35 8 36
4.1 4.2 3.6 3.8 3.9		0.05	0.0	0.0	0.0	0.0	1.3	0.4	0.2	0.0	53.1 48.2	8.5	1.6	0.0	0.5	3.8 4.2	0.03	0.05	14.3	57.9 49.7	63.3	4.6	-1.0 -1.2	9.5	33 34
3.8 3.9 4.0		0.04		0.0	0.0	0.0	1.0	0.4 0.3 0.3	0.0 0.1 0.1	0.0	51.7	9.3 8.5	0.8 1.3 0.8	0.0	0.8	4.5 4.5 6.3	0.06		11.9 11.1 12.2	54.3 57.5	60.1 65.1 63.5	3.4	-1.1 -1.3 -1.1	9.7	7 35 3 36 3 37
4.0 4.1 3.8		0.04	0.0	0.0	0.0	0.0	1.1	0.4	0.1	0.0	53.3 52.3 52.8	10.1	0.9	0,0	0.4	4.1	0.16		12.9	55.9 55.8 54.5	62.4	3.7 4.1 4.5	-1.3 -1.0	9.9	38

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

ı				discharge no toet!		. 20.	2				Suspe		trie	dar i	C.			
0.	Date of collection	Storage period	ing samp ing samp	M orbiv mean	Water tempt erature	Mn I	Carbon dioxide	рΗ	Hazen	(Units)	Phie 1 at 1040 (Ignite:	Р.Р.М.	I ma per arre- foot	I os per dav		20 c	11 14 A
			Gauge	level (ft)			*								-47 V V			C ATV
0 11 11	May 12/59	23:43	541.1 844. 843.8		54 68	14.3	3	7.1	80 80 40	4 2 ,	.1.2	1.1	54.4	(E.10.)		0.0	73.2 11.6 21.1	1
	* Sampled a														TAIL 5	41 18 A	EATTA AL	
1	Aug. 1 474	90:107	1,810	1, 40	(*.5	10.6	3	1.7	(80)	0.4			125	9,150		14,4		1
	July 23/58 Aug. 22	27:44 28:122	11,550	2.690 1,820	63	17.7	4	7.3	130	2 0.9			×(.(112	į	2	**	12
	Sept. Uct. 25	No samp	14.750 13.770	4.21	45	24.2	1.5	7.4	120	3,0,9			98.4	0,134	.,٠.,	11.1	100	15
	Feb. 23/59 Mar. 30		1,989 2,350 2,480	2.160	34	12.2	2 2	7.6	65 40 50	0.7			86.5	0,16	512	43.2	115	15
	Apr. May 22	No samp 25:33 No samp	le taken 15,970	8,410	46		2	7.6	100	4							21	17
	July 30 Aug. 12	22:27	1,740	1,770	73	12.2	4	(6.9)	(65)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			88.6	1,126	12 5=1	44.4	111.1	17.
	* Sampled at † Sampled at	powerho t highway	use dam No. 11 be	idge							1			- 1	TATION N	20. 70. 4		
	July 2/58 July 9		19,400	12,500	62	22.2	3 6	7.5	140	1			106	0,144	5,546	(O. 79 = M	119	18.
	July 28 Aug. 25 Sept. 24	23:39 24:196 12:121	6,320 7,960 7,020	12,500 7,330	72 58	27.4	2 9	7.8	160 150 140	0.8			124	0.169	2,662	59.2	115 124 116	18. 20. 18.
	Oct. 20 Nov. 24	14:105 14:128	16,400 19,700	15,000 15,400 17,300	56 41 33	26.7	2	7.3 7.4 7.6	170 175 140	2 2 .			140	0,190	7,438	97.6	125 113 105	19. 18. 16.
	Dec. 29 Jan. 19/59 Feb. 16	17:42 10:51 14:50	6,000 5,300 4,840	7,650 5,240 4,780	33 33 33	31.3	7 6 5	7.2 7.2 7.4	100 80 60	0 .			130		1 697		145 146	21.

18 19	July 2/58 July 9		19,400	12,500	62	22.2	3	7.5	140	1		106	1 0,144	5,546	46.8	119	18.4
20	July 28	23:39	6,320	12,500	63			7.2	160	0.8						115	18.6
21	Aug. 25	24:196	7,960	7,330	58	27.4	9	7.8	140	0.9						124	20.3
22	Sept. 24	12:121	7,020	15,000	56	2/.3	5	7.3	170	2			l 0.169	2,662	59.2	116	18.3
23	Oct. 20	14:105	16,400	15,400	41		á	7.4	175	2						125	19.4
24	Nov. 24		19,700	17,300	33	26.7	2	7.6	140	2			0.190	7,438 .	97.6	113	18.3
25	Dec. 29	17:42	6,000	7,650	33		7	7.2	100	0						145	16.6
26	Jan. 19/59	10:51	5,300	5,240	33		6	7.2	80	0						146	22.0
27	Feb. 16	14:50	4,840	4,780	33	31.3	5	7.4	60	2		130	0.177	1,697	58.4	147	22.5
28 29	Mar. 16	7:22	5,070	5,080	33		9	7.1	50	2						147	22.4
30	May 11	24:32 36:44	4,870	10,100	33		10	7.1	60	2		145			57.2	153	23.3
31	June 8	22:39	73,900 20,100	46,900 15,200	45	19.0	9	6.9	100	11	26 20	82.	8 0,113	16,503	47.2	81.5	12.3
32	July 13	7:24	5,040	4.890	66		6	7.1	100	2						101	15.3
33	Aug. 10	11:16	5.170	6.020	67	37.0	6	7.3	140	0.8						128	19.9
34	Sept. 14	9:42	5,990	7,900	57			7.3	140	1		130	0.177	1,813	72.8	142	22.1
35	Oct. 19	9:14	11,100	14,400	46		-	7.2	140	2						121	20.4
36	Nov. 9	14:115	16,700	13,700	33	34.0	5	7.2	120	2						121	63.41
37	Dec. 7	36:87	7,260	6,650	33		6	7.2	80	0.8						106	20,8
38	Jan. 4/60	14:122	5,610	5,510	33		9	7.1	65	2						137	3 .3
39	Feb. 8	14:98	4,910	5,150	33		11	7.0	55	2						142	21.1
40	Mar. 28	4:50	5,590	5,520	33		11	7.0	45	2						135	21.2
42	Apr. 5 .	No sampl		19,300			4	7.2	110	15						80.	12.4
43	June 6		30,700	101,000	59	1	,										
44	July 4		10,000	22,000 8,020	61			7.1	100	6						48.4	14.4
45	Aug. 22	44:227	7,880	9,040	70	35.2	6	7.2	180	4						1 80	17.3
46		148:192	5,830	5,900	56	33.2		7.5	80	1				2,465	55.2	118	18.5
47	Oct. 24	92:140	6,140	7,330	36			7.0	140	0.4			- 1			14	22.1
48	Nov. 28		11,300	12,000	33		3	7.5	180	0.8		116	0.158	1 < 2 <		181	20,3
-									100	0.0		110	1 0.00	1,111	lu.	11."	17.4

Sampled at pumphouse dam

			1		· · · ·			-				\.	TATION N), SC = 61	ROUNDHO	K. RIVER
49 50 51	June 24 58 July 24 Aug. 25	10:24 22:31 25:133	2,710 1,690 1,550	7,400 3,450 1,720	64 74 60	15,2	4	7.6	80 105 130	3 3	102	0,13		45.2	11 120 128	18.5 20.2 20.0

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

												(In p	arts p	er mi	llion)										
	Iron (Fe						Alk	alis			ie.					ric)			as	rdness CaCO ₃	constituents	sodium	index	ındex	
Magnesium	Total	Dissolved	Мапдапе se	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbona	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Вогоп	Non- car- bonate	Total	Sum of cor	Per cent s	Saturation	Stability 1	No.
(Mg)	,		(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO3)	(HCO ₃)	(SO ₄)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)		{					
at SAN				1		T							\$				1								
2.7 3.2 2.9	0.29	80,0	0,0	0.0	0.0	0.0	0.9 1.5 1.5	0.5 0.7 0.7	0.1 0.4 0.3	0.0 0.0 0.0	35.1 42.4 43.6	7.0 6.9 7.3	1.1 1.8 1.7	0.0	0.6 2.0 1.5	3.2 3.5 3.9	0.02	0.00	9.5 9.6 7.8	38.3 44.4 43.6	44.3 53.1 53.7	4.8 6.7 6.8	-1.8 -1.0 -1.3	9.7 10	1 2 3
at SMO	OTH RO	OCK F.	ALLS,	ONTA	RIO –	Draina	ge area	3,860	square	miles															
5.5 3.3 4.1		0.02	0.0	0.0	0.0	0.05	0.9 1.0 1.1	0.4	0.0	0.0	101 53.9 63.1	4.8 6.3 7.2	0.8 0.8	0.0	0.3	3.3 3.9 4.1			3.5 8.8 8.2	86.0 (89.6) 53.0 60.0	91.4 58.4 66.4	2.2 3.9 3.8	-0.4 -1.3 -1.1	9.9 9.6	5 6
4.0 3.7 4.4 4.4 4.0		0.11	0.0	0.0	0.0	0.05	1.2 0.9 1.1 1.1 1.2	0.1 0.5 0.4 0.3	0.2 0.0 0.1 0.05	0.0 0.0 0.0 0.0	52.3 43.4 60.2 57.8 58.4	6.3 6.4 7.5 8.5 9.2	0.7 1.0 0.6 1.3 1.0	0.0	0.5 0.8 0.6 0.2 0.8	4.4 3.7 4.4 6.1 5.1	0.04	0,00		55.1 50.6 61.5 60.0 59.6	58.5 52.6 66.0 67.2 67.8	4.5 3.7 3.1 3.8 4.2	-1.2 -1.1 -0.8 -1.0 -0.8	9.8 0.0 9.3 9.6 9.2	7 3 9 10 11 12
2.8 4.0 3.9	0.11	0.01	0.0	0.0	Trace		1.0	0.5	0,2 0.1 0.3	0.0	50.5 57.9 56.7	5.4 8.9 7.6	1.0	0.0	0.6	4.3 2.8 2.9	0.00	0.00	9.5	50.9 57.6 58.7	56,2 63.8 68.1	4.0 3.6 3.2	-1.0 -1.1 -1.4	9.6 9.5 9.9	13 14 15 16 17
4.2 3.7 4.3		0.08	0.0	0.0	0.0	0.0	1.0	0.4 0.3 0.5	0.5	0.0	62.9 61.8 67.7	8.0 7.1 6.6	1.9	0.0	0.2	3.0 2.6 3.5			11.6 10.9 12.8	63.2 61.6 68.3	68.1 65.3 71.4	3.3 3.1 2.8	-0.9 -1.2 -0.5	9.3 9.6 8.8	18 19 20
4.4 5.0 4.6		0.10	0.0	0.0	0.0	0.05	1.0 0.9 1.1 1.0 1.1	0.5 0.3 0.4 0.3 0.5 0.4	0.0 0.1 0.1 0.2	0.0 0.0 0.0 0.0 0.0	60.2 61.4 59.0 52.9 71.8 72.0	4.8 9.3 6.9 5.0 8.9 10.9	1.2 2.4 1.7 1.6 1.1 1.8	0.0	0.3 0.1 0.3 0.2 0.3	3.8 3.4 4.3 4.4 4.6 4.7	0.03	0,00	14.4 18.6 16.2 14.5 17.6 18.8	63.8 69.0 64.6 57.9 76.5 77.9	64.1 71.0 66.6 59.3 78.9 82.3	3.3 2.7 3.5 3.6 3.0 3.2	-1.5 -1.2 -1.1 -1.0 -1.1 -1.1	9.7 9.6 9.6 9.2 9.4	21 22 23 24 25 26
4.0 5.5 5.6 5.4 5.6 5.3 3.0 3.7 4.8 5.2 4.9 4.9 4.9 4.9	0.52	0.08	0.0	0.0	0.0		1.2 1.1 1.3 0.6 0.9 1.2	0.5 0.5 0.7 0.6 0.6 0.6	0.5 0.1 0.3 0.2 0.6 0.3	0.0 0.0 0.0 0.0 0.0	74.6 73.0 78.4 41.4 51.9 69.7	11.9 13.9 13.5 5.7 6.8 7.6	1.6 1.5 1.2 1.0 1.8 1.7	0.0	0.2 0.2 0.6 0.0	4.7 5.0 5.3 2.4 2.8 3.0	0.07 0.07 0.00 0.05 0.05	0.00	17.1 19.0 15.6 9.0 10.8 12.2	78.3 78.9 79.9 43.0 53.4 69.4	84.6 86.1 89.4 46.7 57.6 73.3	3.2 2.9 3.4 2.9 3.5 3.6	-0.8 -1.2 -1.1 -1.9 -1.4 -1.0	9.0 9.5 9.3 11 9.9 9.3	27 28 29 30 31 31
5.2 4.9 4.9 4.4 4.9 4.7	0.30 0.25 0.31 0.34	0.03 0.17 0.17 0.13	0.0	0.0	O.0	0.0	1.2 1.0 1.1 1.2 1.2	0.7 0.6 0.8 0.5 0.6 0.6	0.4 0.2 0.2 0.5 0.3 0.2	0.0 0.0 0.0 0.0 0.0	72.2 68.9 64.1 53.0 64.9 72.3	10.3 2.8 5.3 8.0 9.6 9.2	1.9 1.6 1.6 1.7 1.5	0.0	0.0 0.0 0.1 0.3 0.2	3.0 4.2 4.3 4.2 4.8 5.4	0.03		17.3 14.6 17.7 16.5 15.9 12.2	76.5 71.1 70.3 60.0 69.1 71.5	80.0 69.6 69.9 63.3 74.6 78.9	3.3 2.9 3.3 4.1 3.6 3.5	-0.9 -1.0 -1.2 -1.3 -1.2 -1.2	9.1 9.3 9.6 9.8 9.6 9.5	33 34 35 36 37 38
4.8 4.5 3.1	0.13	0.04	0.00		0.0	0.05	1.0 1.3 0.8	0.6 0.6 0.7	0.0 0.2 0.3	0.0	72.3 71.8 70.9 40.8	10.1 10.8 8.0	1.0	0.0	0.1 0.1 0.4	4.8 5.7 3.9	Trace		13.2 13.9 10.7	71.5 72.1 72.1 44.2	79.0 80.5 50.6	3.5 2.9 3.8 3.7	-1.2 -1.3 -1.3 -1.6	9.6 9.6 10	38 39 40 41 42
3.2 3.8 4.2 5.4 5.1 4.8	0.39	0.10	0.0	0.0	0.0	0.0	0.8 0.8 1.3 1.4 1.2	0.6 0.5 0.6 0.7 0.6 0.6	0.3 0.2 0.3 0.1 0.2	0.0 0.0 0.0 0.0 0.0	46.2 57.8 64.4 78.0 67.9 59.2	5.6 7.6 9.0 10.2 13.5 7.2	1.6 1.4 1.9 1.5 1.6 2.0	0.23	0.1 0.1 0.8 0.4 0.4 0.2	3.2 3.3 4.7 5.3 4.0 4.4	0.06 0.02		10.8 10.8 10.7 13.6 15.8 14.8	48.7 58.2 63.5 77.6 71.5 63.4	52.3 63.5 73.0 85.4 80.1 67.3	3.4 2.8 4.2 3.7 3.5 3.6	-1.6 -1.3 -0.8 -0.8 -1.4 -1.0	9.8 9.2 9.1 9.8 9.5	43 44 45 46 47 48
at FAU	QUIER	, ONT	ARIO -	- Drain	age are	a 4,61	0 squar	e miles																	
3.7 4.3 4.6		0.07	0.0	0.0	Trace	0.0	1.0 0.8 1.1	0.4 0.4 0.4	0.1	0.0	68.8 74.5 72.9	7.4 5.9 6.1	0.5 1.3 1.5	0.0	0.2	3.5 3.4 4.0			5.0 7 2 9.0	61.4 68.3 68.8	69.1 73.7 73.9	3.4 2.5 3.3	-0.7 -0.9 -0.8	9.0 9.2 9.1	49 50 51

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

								(In p	arts per	million								
			Stream d	lincharge id-feet)		E d	t _e				Zaste		Residu drie (Disse	e on evan d at 105° olved sol	oration C., ids)			
No.	Date	· Part Care	On to 1 - 8	Terr	Water 'emp env' we	Oxygen consu by KM2O.	(arbon dioxide (calculated)	;H	Colour	Carbidan	105°C.	Ignires 31 550°C.	P.P.M.	I no.s per ecre- foot	T ins per day	es en es es ston es 550°C.	25°C.	Calesan
		linas s					r.n,		Hazer ''nats	(loses)								(Ca)
															* (*		u in Name of	
	Sept. 24/58	14:173	1,840	3,510	61	20.8	1 3	7.6	120	4	16.4	9.5	104	0.141	1 516	30.4	127	20.3
2	Oct. 24 Nov. 26	10:101	4,120	4,990 5,710	48	20.0	3	7.6	100	2 2	10.4		104			30.4	127	19.7
4	Dec. 27	12:123	1,970	2,630	35	14.4	3	7.6 7.8 7.7	80	5	11.3	2.4	126	0,171	669	48.0	1 145	22.1
6 7	Feb. 23 Mar.	14:23 No samp	1.660 le taken	1,710	33		4	7.5	45	2							1 133	1 21.0
8	Apr. 24	23:80	1,510	3,070	33 33	10.3	2 4	7.8	50	2 2			114	0.155	464	31.6	I 155	22.9
10	May 25	25:43	9,930	17,10σ	55		5	7.2	90	5			ļ		J	l	95.0	14.3
	* Sampled fi	om highw.	ay No. 11	bridge														
			Ī	, 1			1	ı	I	,		1	ī	STA	TION NO.	81 - KAP	USKASING	RIVER *
	Aug. 9/57	88:101	1,910	710	70		4	7,5	70 (165)	3							137	20.7
12	Nov. 11 Feb. 25/58	10:21	2,110	3,630	32	21.2	3	7.8	110 70	0.4	8,2	4.4	134	0.182	763 214	64.0	134 182	21.5
14 15 16	Mar. Apr. May 13	No samp No samp	le taken le taken 2,550	600 4,380 3,850	12	16.2		1 7 4	1.00									
17	June 24	22:30 No samp.	2,110	4,460	61.5	15.2	3	7.5	95	7 2			92.8 98.4	0,126	964 560	51.6 41.6	103 118	16.4
19	Aug. 11 Aug. 26	28:44 23:195	753	1,440	72 61.5	16.1	4	7.5	90	5	10.2	6,6	118	0,160	240 1,035	43.2	137	21.1
21	Sept. 26 Oct. 28	19:171 7:156	1,630	3,190	58	25.6	2 2	7.4 7.6 7.7	125	2	14.3	5.9	113	0,154	1,411	64.0	145 126 120	22.3 20.3 18,9
23	Nov. 25 Dec. 19	13:127	3,540 1,140	3,940 1,510	32 32	21.9	2 3	7.8	120	2 0,8			104	0.141	993	52.8	107	17.0
25 26	Tae. 23/59 Feb.	6:109 No samp	644 le taken	702 513	32	13.6	2	7.9	80	0.8			118	0.147	332 205	40.0	155	23.1
27 28 29	Mar. 7 Apr.	No samp		577 2,060	32	11.3	4	7.6	60	3			124	0.169	217	32.0	167	25.1
30 31	May 25 June 30	30:53 7:37	6,010	2,830	53 67	16.6 12.7	3	7.4	100	5 4	11.7	6,8	82.4	0.112	1,335	39.2	90.6	13.8
32	July 29 Aug. 13	23:28 22:28	928 65	910	74 68	13.2	7	7.4	65	1	,		110	0.150 0.162	275 20.9	50.0 38.8	146 160	23.0
	* Sampled a	l plant int	ake				l	1()	[(01	(8)						1		-
2.1	1 Aug. 5 55	90:18	-		70			1	1			1		STA	TION NO.	T	I THE EXACE	1
,					(1)	6,2	0.9	8.0	(40)	0.8			77.(10.2	89.0	12.5
	* Sampled o	ne mile fro	om Chaples	ıu													•	
															STATIO	ON NO. 83	- LOST R	IVER *
3.4	Aug. 11 50	55.72			04.5	34.8	6	7.3	240	10	13	10	143	0,194		77.2	121.4	20.2
	Sampled fr	om hishwa	v No. 11 l	ridee						(30)		-		_		1		
	, , , , , , , , , , , , , , , , , , , ,		-,															
34	Aug 0/07	20.104					1	T: =		1 1	- 7	-		SIA	TION NO.	84 - WISS	INAIBI RIV	FR *
31.	Aug. 8/57	89:106	680	803	70	12.0	3	(8.0)	60 (125)	1			123	0.167	226	42.8	152	22.9
37	July 25 Aug.	16:23 25:39 No sample	3,140 2,230 e taken	7,280	60 72	16.0	2 3	7.8	80 70	2.5			101	0.137	855	39,4	128 128	20.0
40	Sept. 25 Oct. 27	13:172 7:98	1,960	2,010 5,240 3,710	59 43	19.1	2 2	8.0 7.8	90 120	1				0.173	671	53.3	148	24.2
41	Nov. 23 Dec. 28	15:74	6,440 1,250	3,710 4,890 1,770	32 34	11.9	3	7.8 7.7 7.7	90 55	2.5 0 0.9			122	0.162			138 125	21.7
	00 11/		, ,,,,,	1,770	34	4447	12	1.07	1 22	0.9			123	0.167	415	43.6	151	23.1

^{*} Sampled from highway No. 11 bridge

Chemical Analyses of Surface Waters in the Rudson Bay Drainage Basin

						t=						(In pa	rts pe	er mill	ion)										
	Iro (Fe						Alk	alıs								(2)				ness CaCO ₃	constituents	sodium	ndex	dex	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of cons	Per cent so	Saturation index	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)							
at FAU	QUIER	, ONT	ARIO -	- Drain	nage are	a 4,61	lO squa	re mile:	s (conc	luded)															
5.0 4.6 4.4 5.0 4.9 5.3	1.0	0.14	0.0	0.0	0.0	0.0	0.9 1.2 0.9 1.3 1.6 1.2	0.4 0.5 0.5 0.6 0.5 0.6	0.1 0.1 0.1 0.05 0.2 0.1	0.0 0.0 0.0 0.0 0.0	74.5 70.0 60.7 78.9 75.5 75.0	5.1 4.3 6.5 7.1 6.2 6.5	0.7 1.4 0.8 1.1 2.0 0.9	0.0	0.3 0.8 0.6 1.0 0.3 0.3	4.6 5.0 3.7 6.2 5.7 5.5	0.00	0.00	10.1 10.7 12.2 11.0 11.4 12.7	71.2 68.1 62.0 75.7 73.3 74.2	74.1 71.9 64.9 83.7 79.6 78.2	2.6 3.7 3.0 3.5 4.5 3.4	-0.7 -0.8 -0.9 -0.5 -0.6 -0.8	9.0 9.2 9.4 8.8 8.9 9.1	1 2 3 4 5 6
4.9 5.0 3.3		0.07	0.0	0.0	0.0	0.2	1.6 1.0 0.9	0.6 0.8 0.5	0.0 0.1 0.1	0.0 0.0 0.0	80.9 79.8 49.2	8.5 6.8 5.7	1.8 0.4 1.4	0.0	0.8 1.5 0.6	6.1 5.7 3.4	0.06 0.04 0.04	0,00	10.9 9.7 8.9	77.3 75.2 49.3	87.0 82.4 54.3	4.2 2.8 3.8	-0.4 -0.7 -1.4	8.6 9.0 10	8 9 10
at KAP	TICK AC	ING C	NTAP	10 - F)eaina	2500	2 607 -	anara s	ilae																
4.6		1110, 0	MIME	10 - 1	// armage	alea	1.1	0.8	0.1	0.0	76.9	6.8	1.5		0.3	4.3			7,5	70.6	78.1	3.2	-0.8	9.1	11
4.4		0.15	0.0	0.0	0.0	0.0	1.1	0.6	0.0	0.0	79.2 94.4	6.3	2.1	0.0	0.1	4.5			(13.1) 6.7 7.0	(75.6) 71.7 84.4	79.6 95.3	3.2 3.4	-0.5 -0.5	8.8	
3.1 4.4		0.07	0,0	0.0			1.1	0.4	0,1	0.0	57.9 68.3	5.2	1.1	0.0	0.3	3.3			6.2 5.3	53.7 61.3	59.1 67.7	4.2	-1.1 -0.7	9.7 9.0	15 16 17
4.9 5.2 4.9 4.9 4.4 4.8 5.9	0.26	0.13 0.12 0.17 0.11 0.16 0.09 0.06	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.05 0.1 0.0 0.0	1.1 1.3 1.3 1.7 1.2 1.1 1.3	0.7 0.7 0.5 0.5 0.4 0.5 0.9	0.1 0.1 0.2 0.0 0.1	0.0 0.0 0.0 0.0 0.0 0.0	80.3 85.2 71.3 66.3 58.3 70.6 87.5	4.7 3.5 5.3 4.2 4.8 5.8 7.3	1.2 0.6 1.0 1.3 1.5 1.2	0.0 0.0 0.0 0.0 0.0 0.0	0.8 0.4 0.3 0.2 0.2 0.2 0.2	4.4 5.1 5.7 6.3 4.3 5.1 5.8	0.04 Trace 0.01 Trace 0.18	0,1	6.9 7.1 12.3 12.9 12.7 12.0 10.1	72.8 77.0 70.8 67.3 60.5 69.9 81.9	78.6 81.2 74.5 70.7 62.8 73.6 89.4	3.1 3.5 3.8 5.1 4.1 3.3 3.3	-0.8 -0.8 -0.7 -0.7 -0.8 -0.8 -0.3	9.1 9.0 9.0 9.1 9.4 9.2 8.5	21 22 23 24
6.6		0.11	0.0	0.0	0.0	0.0	1.3	0.9	0.1	0.0	96.4	7.1	1.0	0.0	0.4	6.0	Trace		10.7	89,8	96.0	3.0	-0.5	8.6	27
3.3 4.6 5.3 5.4	0.99 0.18 0.12 0.12	0.05 0.11 0.02 0.04	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 Trace	0.0 0.0 0.0 0.1	0.7 1.0 1.2 1.1	0.7 0.9 1.1 1.1	0.2 0.2 0.4 0.2	0.0 0.0 0.0	46.8 72.8 86.8 93.4	6.3 5.8 7.1 5.5	1.5 1.5 1.1 0.2	0.0 0.0 0.0 0.0	0.2 0.2 0.0 3.0	3.0 4.2 4.2 3.4	0.06 0.06 0.00	0.0	9.6 7.6 8.0 6.2	48.0 67.3 79.2 82.8	52.7 73.5 85.7 90.1	3.0 3.1 3.1 2.8	-1.3 -0.8 -0.7 -0.8	10 9.2 8.8 8.9	31
near Cl	JADI C	AU O	AIT A D I	0	1	1	J	1	1		1	t	L	ł		I	1	1	I	-	I	L	L		
2.8	INFLE	Trace	1	0.03	0,0	0.1	1.1	0.7	0.05	0.0	44.6	4.0	0.5	0.0	1.5	1.0		T	6.1	42.7	46.2	5.2	-0.7	9.4	33
		11400		0.05	0,0	0.1			0.07	0.0	14.0	4.0		0.0	L.,	1.0				(43.9)	1012	1	L		
near Ll	EPAGE	, ONT	ARIO																						
4.4	0.83	0.27	0.0	0.0	0.0	0.0	1.5	0.7	0.4	0.0	63.0	2.9	2.1	0.0	0.2	4.4			16.8	68.5	67.7	4.5	-1.2	9,6	34
at MAT	TICE.	ONTA	RIO -	Draina	ge area	3,450	square	miles																	
5.6		0.04	0.0	0.0	Trace		1.3	0.5	0.0	0.0	92.9	5.4	1.1	0.0	0.2	4.0			4.0	80,2	86.8	3.4	-0.5	8.7	35
4.4 4.3		0.06	0.0	0.0	0.0	0.0	0.9	0.5	0.1	0.0	76.3 77.8	5.3	0.4	0.0	0.2	3.0 4.0			5.4	(82) 68.0 68.3	72.3 74.5	2.8	-0.5	8.8	36
	,	0.08	0.0	0.0	0.0	0.0	1.0	0.4	0.1	0.0	91.5	4.7	0.8	0.0	0.2	5.3		0.05	9,5	84.6	87,6	2.5	-0.1	8.2	38
5.9 5.5 5.1 5.7		0.03	0.0	0.04	0.0	0.0	1.0 0.9 1.1	0.4 0.4 0.5	0.1 0.1 0.05	0.0	80.1 72.5 84.8	3.4 4.7 8.2	1.2 0.8 1.1	0.0	0.5	5.0 4.6 6.5	0,00		11.1 11.9 11.5	76.8 71.4 81.1	78.1 72.8 89.5	2.7 2.6 2.8	-0.5 -0.7 -0.6	9.1	40 41 42

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

								1111	pens p	er millio								
				lincharge id-feet)		ime d	de				Suspe							
	Date / Leinin	Cay C	Чг 58-3-1-0g 747-е	M arbus messa	Taker temps or the temps of temps of the temps of te	Oxyg	Carb n 1. mde		(Hazer	B E-	Omet In c.	fanises at at 50	P.P.M	I ne per a re foot	T ns per day	8t 550°C.	at at 25° C.	11 m
															TATEL	5 ~1 Y	· · · · · · · · · · · · · · · · · · ·	. Treat
1 1 1 1	er Vege Vege		10, 118	(4) (4) (4) (4) (1) (4)	12 12 13	sa.			1 1 °	:			14.	416			i i	1
	•		11 No. 12	1 1K1														
-	1		ļ				1	3.1	1	1					. 11.	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
1	Aug. 13/59				. 59	8.2	2	8.0 (7,7)	20 (40)	.8			Hā	0.155			ter	14 "
3	• Analyses	by Ontario	Water Re	sources C	ommissi	on	Ł	1	,,	1			1	1 1		1	-	l.
		,	ĭ		I	T			T	γ .		,		>1 A 11/	N NI. W	SEATTA	Alamain.	L(, F)
	Fine No. 56 State 18 August 18	14 1 1 2	11		58	24.0	4	7.1 7 7.4	300	12	14.5	11.3	1.1	.: 1			121	
	100. 27 No. 37	8 155 13 H	t skep		- S1	31.	4	7.4	160				73.2	(30.1	:	21.
4 < (Jan. 26/59 Feb. 26	1 42 22 24 11 20	41 3 - 4 31		33	6.0	4 3	1.5	120	12			l Iso			10.8	181	9.
11 11	Mar. 31 Apr. 27	1 41	4'		33	16,4	3	7.5	100 35 100	1 2		-	86,8	.:		\$20.00	18'	8. 8.
	• Sampled a	t plant int	ake	}	150	1	1 4	1	110		1	<u> </u>	1	-		}	74.7	11.
	† Working a	long river	above sam	pling poin	it; sampl	e taken	from hi	ghway	No. 11	bridge								
0	Aug. 12 50	22:28	8'		6.	36.8	1.	7.4	275	4	10.0	7.7	136	0.185	110N N	75	105	18.
1	* Sampled to	on, buch as	I No. 11 3	l .			L	(7,1)	(200)	(5)				1		.,	10)	10.
													c	TATION	NO 00	71027 1	AKE (CAT I	0.11100
:	July 11 60	49:148			. 0		4	6.9	80	0,8						Zionz, Li	46,5	RIVER
													^ _		ST	ATION NO). 89 ~ CA	rpiv
2	Jun 18 60	42 141			10	[5	7.0	80	[0							4.4	1,8
													STATION	VO. 90 .	- MIMINIS	KALAKI	ALBANY	****
2	Saturet to				Ī	8.0	2	7,-	25	ļ <u></u>		[.]					W-, 3	
1														ST	ATION NO	0. 91 = NA	GAGAMI RI	7: p •
	Aug. 13/59	26:41	405	413	64.5	14.1	2	7,8 (8.1)	60	0.8			118	0,160	158	41.6	154	24.1
6	Sept. 24 Oct. 29 Nov. 28	7 3.2 11 26 9 114	366 824 648	381 655 749		12.8	3	7.9	40	0.8			116	0,158	114	29.6	163 146	26.8
80	Dec. 28 Jan. 28 60	151. 32.109 14.77	424 1	488 331				7.3	30	0 0	• • • • • • • • • • • • • • • • • • •						174 190 189	29.4 30.0 30.0
- 1	* Sampled fr		200	229			5 3	7.8	25	0							198	31.1

^{*} Sampled from highway No. 11 bridge

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

												in pai	20 PC		,										
-	Iro (Fe						All	alis											Hard as (Iness CaCO ₃	ituents	ium	ndex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boroa	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)							
	TICE,	ONTA		Draina	ge area	3,450	squar	e miles	(conclu								1								
5.9 6.1 5.7 4.0 4.1		0.07	0.0	0.0	0.0	0.0	1.1 0.9 1.1 1.8 0.8	0.7 0.6 0.7 0.8 0.5	0.3 0.2 0.1 0.15 0.2	0.0 0.0 0.0 0.0 0.0	86.7 93.5 92.0 53.6 56.3	4.4 5.6 7.0 4.4 4.2	1.3 1.0 0.9 0.9 1.6	0.0	0.5 0.4 1.0 1.5 0.4	4.6 5.8 7.5 3.8 3.1	0.15	0,00	9.8 11.5 10.3 9.0 9.8	80.9 88.2 85.8 53.1 56.0	83.9 91.7 94.4 58.3 58.2	2.8 2.2 2.7 6.7 3.0	-0.5 -0.4 -0.2 -0.9 -0.9	8.7 8.6 8.3 9.4 9.4	1 2 3 4 5
near H	EARST	, ONT	ARIO																						
	ļ	0.00	ļ			T				0.0	102	3.6	0.0		Ī	[14	98					T ₆
5.9	0.07	0.02	0.0	0.03	Trace	0.0	1.4	1.1	0.1	0.0	102	3.9	0.9	0.0	0.8	4.3			2.7	86.1	93.3	3.4	-0.1	8.2	7
near HI	FARST	ONT	ARIO		·												,	1							
3.9 3.9 4.4	1.3	0,11	0.0	0.0	0.0	0.0	0.7	0.5	0.3	0.0	56.8 61.3	4.9 3.5 3.0	1.7	0.0	0.4	2.1			7.9	54.5 60.7	57.7 61.8	2.7	-1,2 -0,8	9.7	9
		0.13	0.0	0.0	0.0	0.0	1.1	0.7	.,,	0.0	75.7		1.8	0.0	0.2	3.9	0,00	0.00	9,4	71.5	73.9	3.4	-0.8	9.1	11
3.6 5.7 6.7	5.0	0.12	0.0	0.0	0,0	0.0	0.7 0.9 5.2	0.4 0.2 1.1	0.2	0.0	40.5 80.7 107	3.1 3.2 3.4 1.8	1.2 1.2 7.4 1.4	0.0	0.6 0.7 6.0	3.7 4.2 6.3 5.5	0.03		13.8 10.9 15.4	47.0 77.1 103	46.2 77.5 118	3.4 3.1 2.5 9.7	-1.3 -0.8 -0.2	9.1 8.2	13
4.5 3.6 5.7 6.7 7.7 2.2 3.2 3.0	0.58	0.07	0.0	0.0	0.0	0.0	5.2 1.3 0.5 0.8 0.9	0.7 0.3 0.8 0.4	0.2 0.5 0.1 0.1	0.0	114 25.1 49.5 39.7	4.4 5.1 1.4 2.9	1.4 1.6 1.1 1.8	0,0	0.5 2.0 2.0 0.4	5.5 0.9 4.2 1.4	0.00	0.00	13.0 9.2 5.2 8.2	107 29.8 45.8 40.8	108 33.1 51.1 41.8	2.6 3.5 3.6 4.5	-0.5 -2.0 -1.4 -1.8	8.5 11 10 11	16 17 18 19
	1			1	*****		007			1 010	1 37.		1		1002	1	1 0.04			-1010	4210	4+7	1 2.0		127
at OPA	SATIK	A, ON	TARIO						,					,	,			,					r 1		
4.3	0.59	0.25	0.0	0.0	0.0	0.0	1.2	0.5		0,0	59.1	2.3	1.7	0,0	0.2	3.8			14.8	63.3	61.7	3.9	-1.0	9.4	20
at 51º2	!5" N -	91° 52	· w .	- ONT.	ARIO																				
1.4	0.21	0,0	0.0	0.0	0.0	0.0	0.8	0.5		1.0	22.8	3.2	1.0	0.0	0.2	2.8			2.9	21.6	27.4	7.2	-2.4	12	21
at 51º1	9' N –	91° 37'	₩ -	ONTA	RIO																				
1.7	0.11	0.0	0.0	0.0	0.0	0.0	0.7	0.5		0.0	28.0	3.6	1.3	0.0	0.1	1.8		0.00	3.6	26.6	31.4	5.3	-2.1	11	22
at 51°3	3' N -	88° 38	w -	ONTA	RIO	1		1		1	, ,						1				1		1 1		1
	ļ	0.02	0.0	ļ		ļ	1.5	0.5		0,0	61.8	2,4	0.7	0.11	0.7	4.8			2.4	52.1		5.8	l]		. 23
forty m	iles we	st of F	HEARS	T, ON	ARIO	- Drai	nage s	rea, 930	square	miles				ſ									1		
5.2	0.12	0.04	0.0	0.0	Trace	0.0	1.0	0.5	0.1	(0)	90.9 (95.5) 102	5.6	0.9	0.0	0.1	7.1			6.9	81.5 (80) 89.5	89.3	2.6	-0.3	8.4	
5.5 4.9 5.6 6.6	0.10	0.01			. 0.0	0.0	0.6	0.4 0.3 0.6 0.6	0.2 0.1 0.1	0.0	87.2 111	5.2 4.4 3.6 4.5 3.5	1.1	0.0	0.4	5.0 4.0 6.0			9.0 5.7 7.0 5.9	80.5 96.4	82.8 102	1.4	-0.2 -0.1 -0.2 -0.2	8.3 8.7 8.1	26
6,6 6,5 6,7	0.49	0.00	0.0	0.0	0.0	0.0	0.8	0.6	0.3 0.0 0.2	0.0	116 117 116	4.5 3.5 3.5	0.8 0.7 0.5	0,0	0.3	5.5 5.8 4.2	0.04		7.0 5.9 9.3	102 101 105	106 105 105	1.7 1.7 1.2	-0.2 -0.2 -0.1	8.1 8.2 8.0	

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

(In parts per million)

				ar III			Nucre mari				ė.	smed		discharge ad-feet)		490		
1 m	60' u ** 80' ** 8 1 4	1 - e e e e e e e e e e e e e e e e e e	Tons per tay	T na	P.P.M.	Ignited at 550° €.	Direct ar 195°C.	Contract of the state of the st	Hazen (Hazen		Carbon dioxide	Oxygen o	Water ten; erature	Miner s mero	ste sampling nate	Storage period	Date of collection	lo.
, j p *	A AMI P	NA	ATRIN NO	1														
11.8	50 J 155							0	30	7.0	1 :			153	125	11 10	r,, 1414 opt. 28	
.4. 14.2 74.1	15 a 10 k		-					0.8	86 45 45	5.0 8.0	. 2	_	and have	1 1,500 2,110 182 522	7,5 " 5,5 " 8,5	4.27 13 4.124	finance I and I and S	4 < 4
						1 1		1.	1	1	1	1	1	1	ay No. 11 b	1	_	
45.0	29.7	41.6	STATE	1.29	192			0.8	35 (50)	8.2	1 2	8.1	. 65		-	26:41	iug. 13/59	
	-	NO. 93 =	1			Гі	1	T	1 50	T _{8.0}	1 2	12.0	1 65	324	y No. 11 b	26 11	ug, 13 5)	8
39.9	248	35.2	739	0,223	158			0.7	(90)	(8.0) (8.2) 7.8	4	. 11.2	. 65	134	1,670	7 3 2	e;r. 24	
37.0	238							0.8	40	7.7				1,200	1,520 1,010 le taken	11 26 1:114 No sampl	ov. 28 Dec.	2]
44.8	789							3 2	20	7.8	1 0			494 394 309	le taken 275	22:109 No sampl 15:49	an. 28/60 eb. lar. 28	3 4 5
27.0	171							3	80	7.9	. 2			1,220	l 2,280 le taken	No sampl	pr. une 10 uly	6 7 8
36.7	220							1.5	40 241 241	00g. 8		1, 498 451]	645 so, 11 to de	highway \	30:125]	Sampled a	9
30./																		
,,,,,	IKAGAMI I	- KABINA	ON NO. 94	STATI														
IVER	IKAGAMI E	- KABINA	ON NO. 94	STATIO U.163	120	ļ		0.4	35	7.7	3	9.7	69	781	875	90:107	ug. 7/57	
1VFR 22.2 20.7 22.2	150	- 1			120 127 102	11	16	6 0.9	(°0) 110 50	7.8	2 5	9.7	46	3,490 3,110	5,490 2,000	19:52 25:37	une 27/58 uly 25	1
22.2 20.7 22.2 23.6 23.0	150 137 135 166 162	34.4 35.6 23.6	244	0,163	127		16	6 0.9 0.9 0.8	(70) 110 50 70 45	7.8 7.5 7.5	2 5 4 2	22.0	46 71 60	3,490 3,110 1,390 2,160	5,490 2,000 1,860 1,520	19:52 25:37 23:131 12:171	une 27/58 uly 25 ug. 27 ept. 26	1 2 3 4
22.2 20.7 22.2 23.6 23.0 23.2 25.4	150 137 135 155 152 14 161	35.6 23.6	284 1,486 550	0.163 0.133 0.137	12" 102	11	16	6 0.9 0.9 0.8 0	(70) 110 50 70 45 70 55	7.8 7.5 7.5 7.9 7.8 8.0	2 5 4 2 2 2	22.0	46 71 60 43 33	3,490 3,110 1,390 2,160 1,550 2,270	5,490 2,000 1,860 1,520 1,650 2,170	19:52 25:37 23:131 12:171 8:107 10:59	une 27/58 uly 25 ug. 27 ept. 26 let. 27 lov. 28	1 2 3 4 5 6
22.2 20.7 22.2 23.6 23.6 23.2 25.4 21.5	150 137 135 165 152 14	34.4 35.6 23.6	254	0.153 0.173 0.137	127	11	16	6 0.9 0.9 0.8 0	(70) 110 50 70 45 70	7.8 7.5 7.5 7.9 7.8	2 5 4 2 2 2 2 2	22.0	46 71 60 43	3,490 3,110 1,390 2,160 1,550 2,270 1,410 773	5,490 2,000 1,860 1,520 1,650 2,170 1,140 640	19:52 25:37 23:131 12:171 8:107 10:59 12:123 10:44	une 27/58 uly 25 ug. 27 ept. 26 oct. 27 lov. 28 ecc. 27 an, 26/59	1 1 2 3 4 5 6 7 8
22.2 20.7 22.2 23.0 23.2 25.4 21.5 30.8	150 187 135 155 152 14 161 23 231	\$4.4 \$5.6 23.6 43.6	244 1,486 44 427	0.153 0.173 0.187 0.141	127 102 	11	16	6 0.9 0.9 0.8 0 18 12 4	(70) 110 50 70 45 70 55 40 45	7.8 7.5 7.5 7.9 7.8 8.0 7.8 8.1	2 5 4 2 2 2 1 2	22.0	46 71 60 43 33 35 32	3,490 3,110 1,390 2,160 1,550 2,270 1,410 773 614 607	5,490 2,000 1,860 1,520 1,650 2,170 1,140 640 le taken	19:52 25:37 23:131 12:171 8:107 10:59 12:123 10:44 No sampl 8:33	une 27/58 uly 25 uly 25 ept. 26 oct. 27 dov. 28 ecc. 27 an, 26/59 eb.	8 9
22.2 20.7 22.2 23.6 23.6 23.6 23.6 21.5 30.8 28.1 28.6	150 147 135 166 161 23 23 ;	\$4.4 \$5.6 23.6 	284	0.153 0.133 0.187 0.187	127 102 104	0.4	8.6	6 0.9 0.9 0.8 0 18 12 4	(***) 110 50 70 45 70 55 40 45 35 40 50	7.8 7.5 7.5 7.9 7.8 8.0 7.8 8.1 8.1	2 5 4 2 2 2 1 2 2 3	22.0	46 71 60 43 33 35 32 33 35 32	3,490 3,110 1,390 2,160 1,550 2,270 1,410 773 614 607 607 816	5,490 2,000 1,860 1,520 1,650 2,170 1,140 640 le taken 604 609 1,240	19:52 25:37 23:131 12:171 8:107 10:59 12:123 10:44 No sampl 8:33 14:60 16:31	une 27/58 uly 25 ug. 27 ept. 26 oct. 27 iov. 28 ecc. 27 an. 26/59 eb. lar. 5 lar. 26 pr. 27	1 1 2 3 4 5 5 6 7 7 8 9 0 1 2
22.2 20.7 22.2 23.6 23.0 23.2 25.4 21.5 30.8 28.1 28.6 22.2	150 187 135 155 152 14 161 23 231	\$4.4 \$5.6 23.6 43.6	244 1,486 44 427	0.163 0.173 0.189 0.141	127 102 104 165	0.4	8.6	6 0.9 0.9 0.8 0 18 12 4	(***) 110 50 70 45 70 55 40 45	7.8 7.5 7.5 7.9 7.8 8.0 7.8 8.1 8.1	2 5 4 2 2 2 1 1 2 2	22.0 11.4 11.3	46 71 60 43 33 35 32 33 35	3,490 3,110 1,390 2,160 1,550 2,270 1,410 773 614 607 607 816 4,770	5,490 2,000 1,860 1,520 1,650 2,170 1,140 640 le taken 609 1,240 3,950	19:52 25:37 23:131 12:171 8:107 10:59 12:123 10:44 No sampl 8:33 14:60 16:31 33:41	une 27/58 uly 25 ug. 27 ept. 26 ct. 27 ov. 28 ec. 27 an. 26/59 eb. lar. 5 lar. 26 pr. 27 ay 27	1 2 3 4 5 6 7 8 9 0 1 2 3
22.2 20.7 22.2 23.6 23.6 23.2 25.4 24.5 30.8 28.1 28.6 22.2 20.9	150 147 135 155 152 14 161 23 233 189 201 147 139	\$4.4 \$5.6 23.6 43.6 43.6	283 1,886 550 425 1,000 228 1,144	0.163 0.173 0.189 0.141	127 102 104 165	0.4	8.6	6 0.9 0.9 0.8 0 18 12 4	(***) 110 50 70 45 70 55 40 45 35 40 50	7.8 7.5 7.5 7.9 7.8 8.0 7.8 8.1 8.1	2 5 4 2 2 2 1 2 2 3	22.0 11.4 11.3	46 71 60 43 33 35 32 33 35 32	3,490 3,110 1,390 2,160 1,550 2,270 1,410 773 614 607 607 816 4,770	5,490 2,000 1,860 1,520 1,650 2,170 1,140 640 le taken 604 609 1,240	19:52 25:37 23:131 12:171 8:107 10:59 12:123 10:44 No sampl 8:33 14:60 16:31 33:41	une 27/58 uly 25 ug. 27 ept. 26 ct. 27 ov. 28 ec. 27 an. 26/59 eb. lar. 5 lar. 26 pr. 27 ay 27	1 2 3 4 5 6 7 8 9 0 1 2 3
22.2 20.7 22.2 23.6 23.0 23.0 23.2 25.4 24.5 30.8 28.1 28.6 22.2 20.9	150 147 135 155 152 14 161 23 233 189 201 147 139	\$4.4 \$5.6 23.6 	283 1,886 550 425 1,000 228 1,144	0.163 0.173 0.189 0.141	127 102 104 165	0.4	8.6	6 0.9 0.9 0.8 0 18 12 4	(***) 110 50 70 45 70 55 40 45 35 40 50	7.8 7.5 7.5 7.9 7.8 8.0 7.8 8.1 8.1	2 5 4 2 2 2 2 1 2 2 2 3 5	22.0 11.4 11.3	46 71 60 43 33 35 32 33 35 32	3,490 3,110 1,390 2,160 1,550 2,270 1,410 773 614 607 607 816 4,770	5,490 2,000 1,860 1,520 1,650 2,170 1,140 640 le taken 609 1,240 3,950	19:52 25:37 23:131 12:171 8:107 10:59 12:123 10:44 No sampl 8:33 14:60 16:31 33:41	une 27/58 uly 25 ug. 27 ept. 26 ct. 27 ov. 28 ec. 27 an. 26/59 eb. lar. 5 lar. 26 pr. 27 ay 27	22 23 34 45 66 77 88 99 10 11 12 13
22.2 20.7 22.2 23.6 23.0 23.2 25.4 30.8 28.1 28.6 22.2 20.9	150 187 135 155 152 14 161 23 231 189 201 147 139	44.4 45.6 23.6 43.6 43.6 40.5 28.4	2984 1,886 555 4,29 1,200 1,130 5TATIO	0.163 0.173 0.137 0.141	127 102 104 165 139 107	0.4	8.6	6 0.9 0.9 0.8 0 18 12 4 0.7 1 2	(**) 110 50 70 45 70 55 40 45 35 40 50 45	7.8 7.5 7.5 7.9 7.8 8.0 7.8 8.1 8.1 8.0 7.7 7.4	2 5 4 2 2 2 2 2 1 2 2 3 5 5	11.4	46 71 60 43 33 35 32 33 35 36 60	3,490 3,110 1,390 2,150 1,550 2,270 1,410 773 614 607 607 607 816 4,770	5,490 2,000 1,860 1,520 1,650 2,170 1,140 640 le taken 609 1,240 3,950	19:52 25:37 23:131 12:171 8:107 10:59 12:123 10:44 No sampl 8:33 14:60 16:31 33:41	une 27/58 uly 25 us. 27 ept. 26 ect. 27 evc. 28 evc. 27 sevc. 27 s	1 2 3 4 5 6 7 8 9 0 1 2 3
22.2 22.2 23.6 23.0 23.2 25.4 21.5 30.8 28.1 28.6 22.0 9	150 147 155 155 161 23 14 161 23 231 149 201 147 1199	44.4 45.6 23.6 43.6 43.6 40.5 28.4	284 1,886 551 3,27 1,000 1,133 1,133 1,133	0.163 0.173 0.137 0.141	127 102 104 165 139 107	0.4	8.6	6 0.9 0.9 0.8 0 18 12 4 0.7 1 2	(**) 110 50 70 45 70 55 40 45 35 40 50 45	7.8 7.5 7.5 7.9 7.8 8.0 7.8 8.1 8.1 8.0 7.7 7.4	2 5 4 2 2 2 2 2 1 2 2 3 5 5	11.4	46 71 60 43 33 35 32 33 35 36 60	3,490 3,110 1,390 2,150 1,550 2,270 1,410 773 614 607 607 607 816 4,770	5,490 2,000 1,820 1,520 1,650 2,170 1,140 604 1,240 3,240 3,70 1,240 3,70 1,240 3,70 1,240 3,70 1,240 3,70 1,240 3,70 1,240 3,70 1,240 1,2	19:52 25:37 23:131 12:171 8:107 10:59 12:123 10:44 No sampl 8:33 14:60 16:31 33:41	une 27/58 uly 25 us. 27 ept. 26 ect. 27 evc. 28 evc. 27 sevc. 27 s	1 2 3 4 5 6 7 8 9 0 1 2 3

^{*} Sampled from highway No. 11 bridge

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

(In parts per million)

											-	(In pa	ris pe	7 mill	10n)		¥								
	Iro (Fe						Alk	alis											Hard as C		ituents	ium	index	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chl oride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of constituent	Per cent sodi	Saturation in	Stability index	No.
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(C1)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)							
forty m	iles we	st of	HEARS	T, ON	TARIO	- Dra	inage a	rea,930	square	miles	(conclud	ed)													
7.5 4.1	0.03	0.0	0.05	0.0	0.0	0,0	0,8 0,8	0.7	0.3	0.0	126 71.9	3.4	0.7	0,0	0.2	4.5			5.8 7.3	109 66.3	112 69.4	1.5	0.0	7.9 9.2	1 2
5.5 5.6 5.4	0.08	0.0	0.0	0,0	0.0	0,0	0.9 0.7 1.0	0.5 0.5 0.6	0.2	0.0 0.0 0.0	93.7 98.7 100	3.8 2.4 5.0	1.8 1.2 0.7	0.0	0.2 0.15 0.3	4.6 4.4 6.9	0.06		4.8 4.1 2.8	81.7 85.1 85.1	87.5 85.0 94.4	2.3 1.7 2.5	-0.3 -0.1 -0.1	8.5 8.1 8.2	3 4 5 6
12.1	0.18	0.02		0.01	Trace	0,0	1.4	1.3	0.0	0.0	188	3.1	0.5	0.0	0.8	10		ļ	7.7	162	167	1.8	+0.7	6.8	7
	l				1	L							1	1	1	1	1	l	1	1					
thirty-t	wo mile	ės wes	t of H	EARST;	ONTA	RIO -	Draina	age area	1,270	square	miles														
8,7	0.19	0.03	0.0	0.0	0.0	0.0	1.1	0.8	0.0	0.0	147 (152)	2.1	0.8	0.0	0.3	7.4		ļ	6.7	127 (130)	130	1.8	+0.2	7,6	8
8.8 6.9 8.6	0.13	0,02	0.0	0.06	0.0	0.0	1.1 0.9 1.8	0.7 0.4 1.4	0.2	0.0	159 117 148	4.8 5.0 3.9	0.9 1.3 2.2	0.0	0.0	6.7 6.2 6.3			5.2 9.6 6.6	136 106 128	141 110 137	1.7 1.8 2.9	+0.5 -0.2 -0.1	7.2 8.2 7.9	9 10 11
11.0	0.25	0.0	0.0	Trace	Trace	0.0		1.0	0.0	0.0	172	9.9		0.05	0.3	7.8	0.00		14.8	156	405	56	+0.1	7.6	12
10.3	0.10	0.0	0.02	0.01	0.0	0.0	1.1	0.9	0.3	0.0	182	4.0	0.9	0.0	0.3	6.5	0.00		4.4	154	159	1.5	+0.4	7.2	14
5.6	0.13	0.0	0.0	0.03	0.0	0.0	0.9	0.7	0.2	0.0	102	4.2	1.1	0.0	0.3	5.6	0.03		6.3	89.8	95.7	2.1	-0.1	8.1	16
7.7	0.09	0.0	0.0	0.0	0.0	0.0	1.2	1.0	0.1	0.0	150	5.9	0.8	0.0	0.5	6.7	0.0		0.3	124	134	2.1	+0.4	7.4	18 19
twenty	miles	west c	f HEA	RST, O	NTARI	O - D	rainage	area, 1	,460 sq1	are mil	les														
5.5		0.02	0.0	0.0	0.0	0.0	0.9	0.5	0.0	0.0	89.8	5.7	1.0	0.0	0.4	3.5			5.7	78.0	83,1	2.4	-0.5	8.7	20
5.3	1.3	0.05	0,0	0.0	0.0	0,0	0,8	0.4	0.2	0.0	80.7	4.1	1.6	0.0	0.7	4.2			7.2	(80) 73.4	77.6	2.3	-0.4	8.6	
5.2 5.9 5.9 5.7 6.0		0.02	0.0	0.0	0.0	0.0	0.7	0.5	0.25 0.1 0.1	0.0 0.0 0.0	88.5 93.5 87.9	3.5 5.7 4.7	0.9	0.0	0.5 0.3 0.3	4.5		0.00		76.8 83.1 81.5	81.0 88.0 83.6	1.9 2.0 2.1	-0.7 -0.7	8.9	22 23 24
5.7		0.03	0.0		0.0		0.7	0.5 0.3 0.5	0.05	0.0	89.2 93.7	4.9	1.0	0.0	0.2	4.5 5.2 4.6		0.00	8.1	81.3	85.1 91.3	1.8	-0.3 -0.4 -0.2	8.6	25 26
5.7	0.87	0.16	0.0	0.0	0.0	0,1	11.5	1.1	0.3	0.0	77.0	6.4	18.4	0.0	4.0	5.1	0.00		13.9	77.1	112	24	-0.6	9.0	27
7.2 7.4 7.5							6.1	1.9	0.1	0.0	116 110	4.4	13.2		0.3	4.5 4.4	0.04		11.7	107	125 103	11 2.7	+0.1	7.9	129
7.5 5.4		0.04	0.0	0.02	Trace	0.0	0.8	1.3	0.1	0.0	112 86.2	6.8	4.0	0.0	2.0	4.9 6.1	0.00		10.5	102 77.6	113 81.7	5.7 2.2	0.0	8.0	30 31 32 33
5.4	1						0.9	0.4	0.2	0.0	81.2	2.3	1.5		0.3	5.5	0.04		7.8	74.4	77.2	2.5	-0.8	9.0	33
near h	EARST	, ONT	ARIO																						
6.7	0,12	0.0	0.0	0.0	0.0	0.0	1.7	0.9	0.1	0.0	127	5.6	3.3	0.0	0.4	6.4	ļ	1	9.3	113	122	3.1	+0.1	7.8	34
				-	1				1					1			1							L	-
	HEARS'	1			1	1	1	1			1	I	1				γ			1	1		,		T -
4.5	0.09	0.05	0.0	0.0	Trace	0.3	1.1	0.6	0.1	0.0	79.6	1.7	1.3	0.0	1.2	4.3			. 9.1	74.4	76.3	3.1	-0.6	8.8	35

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Hasin (In parts per million)

			Strenm d	lincharge Marcharge		amed	e P				marr	o fe f	Hee. 1.1	3013	ran n			
	Onte of collection	i.	13g Salan 1 G Salan 1 G	Most s	Turer temp er ar ar e	Oxygen consu by KMnO ₄	Carbon douide (calculated)	; 14	Hazer (Hazer	(Costa)	(or est at 10% C.	ignores at ssno ₍	РРМ.	Dies per aire foot	(ens per fav	#0 #0 1 0 #1 44 90	20 '	Garage Ca
													SIALL	N N			N. 4. 100°	TOTAL STREET
:	1	а; :		. 4	10		11	7.9	1	1		,					1 500	100
		No samp	le taken	1.1.	48	11.1	,	7.8	(21)	1			. 4					34.0
4		9:15		1.84	#.1 1 <	9,4	1	7.	4	0.4								
	11	23:35 22:39		1.4 6	11			1 8 ! 7. K	4.	1 2						-		25
20	Mar. 2T Apr. 2	52:19 16:22		1,1%	14		8	7.	3.4	0.9			. 14	I H		100	. 1.	134
	Mas 2	14:23		2,470	· .	10.1	ì	7.	4.9	0	3.5	.3	1 1 9	. 1		1	1.	19.7
	Aug. Yo	No samp 23:124	le taken	3,74 1,3 x	101		3	1.7	4.	0. 1							. 15	4.1
1	Negt. N Aug. 13/59	5:122		1,170	S .	1	1.	8.0	51.	4		•			}			200
	Aug. 15/39	2 - 41		1	100	11.4	4	7.6	(75)	3 2)			1.24	0.17		15.5	1	1
																	1	-
. 1				-			1						ī		ATION NO	1 1. 20 - 1. 1 1	N KAMISI T	.: 0
ı	Aug. 7/57				70	11.3		8.0 (8.6)	50 (75)	0.4		-	114	\$1 1.154	ATION NO	1. ×. ×. 1.1	1	.: 0
ı	Aug. 7/57 Aug. 13/59	30 IFT			70	11.3	,	8.0 (8.6) 7.7 (7.5)	50 (75) 30 (45)	0.4			115		ATTON NO		ī	.: ,
ı		27 41	No. 11 t	pridge			,	(8.6)	30					.147	ATION NO	No.T	152	.: ,
3	Aug, 13/59 * Sampled fr	27 41 om highwa	ay No. 11 t	oridge	74	11.2	,	(8.6) 7.7 (7.5)	30 (45)	, c,			124	0,367		Vs. 36,8		25.0
	Aug. 13/59 * Sampled fr	27 41	ay No. 11 t	pridge			2	(8.6)	30					.147		34.8	15.1	25.0
3	Aug. 13/59 Sampled fr	27 41 om highwa	y No. 11 t	pridge	74	11.2	2	(8.6) 7.7 (7.5)	30 (45)	, c,			124	1.35	STAIL	36.8 ON NO. 1		25.0 25.0
8	Aug, 13/59 * Sampled fr	27 41 om highwa	No. 11 t	pridge	74	11.2	2	(8.6) 7.7 (7.5)	30 (45)	, c,			124	1.35	STAIL	36.8 ON NO. 1		25.0 25.0
	Aug. 13/59 Sampled fr	27 41 om highwa 26 41	ty No. 11 t	ridge	68	10.7		(8.6) 7.7 (7.5) 8.0 (8.1)	30 (45) 35 ((60) 40 (40)	2 (c)			124	1.327 1.37 ×	STAIL	V4.8 ON NO. 1 38.4	150 150 150 150	25.0
	Aug. 13/59 * Sampled fr Aug. :1 <0	2° 41 2° 41 2° 41 2° 41			68	10.7	2	(8.6) 7.7 (7.5) 8.0 (8.1) 8.6 (7.5)	30 (45) 36 (60)	2 (2)			127	0.32 ° C.32 ° C.32 ° C.313 ° C	STAIL	36,8 36,8 38,4 101 PA	W - KLIII	25.0 25.0 25.0 25.1 25.1
,,,	Aug. 13/59 * Sampled fr Aug. 13 <0 Aug. 13 <0 * Sampled tr	27.41 26.42 26.41 26.41		euge	68	10.7	2	(8.6) 7.7 (7.5) 8.0 (8.1) 8.6 (7.5)	30 (45) 30 (45) 36 (60) 40 (80) 80 (90)	2 (2)			174 158 158	STA	STATE TION NO.	101 - PA	IVI W - KLWI INT GWACHUAN 2N 2N 2N A C B: AN	25.0 25.0 25.1 25.1 25.1 25.1 46.0 48.4
, , ,	Aug. 13/59 * Sampled fr Aug. 13/50 Aug. 13/50 * Nampled fr Jan. 10/57	26-41 26-41 26-41 26-41 26-41		enige	68	11.2	2 ,	(8.6) 7.7 (7.5) 8.0 (8.1) 8.6 (7.5) 7.0 (8.0)	30 (45) 30 (45) 35 (60) 40 (80) 80 (90)	2 (7)	2.8	0	174	5.12 ° STA' S.115 ° STA' S.115 ° STA' S.150	STATE TION NO.	101 - PA 102 - PA 102 - PA 102 - PA	154 154 154 154 155 155	25.0 25.0 25.0 25.0 S.4 4.0 S.4 4.0 S.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5
0 1	Aug. 13/59 * Sampled fr Aug. 13/50 Aug. 13/50 * Nampled fr Jan. 10/57 Nov. 1	26-41 26-41 26-41 26-41 26-41 21-28 12-21		euge	68	9.6 14.7 23.0	2	(8.6) 7.7 (7.5) 8.0 (8.1) 1.0 (7.5) 2.0 (8.0)	30 (45) 30 (45) 36 (60) 36 (60) 80 (80) 80 (90)	3 0.8	2.8	0	174 127 158 158	STA: \$215 \$1.215 \$1.359 \$1.234	STATE TION NO.	101 - PA 102 - PA 102 - PA 103 - PA	154 159 159 287 287 280 280 280	25.0 25.0 25.0 25.0 1 2
8	Aug. 13/59 * Sampled fr Aug. 13/50 Aug. 13/50 * Nampled fr Jan. 10/57	26-41 26-41 26-41 26-41 26-41		enige	68	9.6 14.7 9.6 14.7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(8.6) 7.7 (7.5) 8.0 (8.1) 1.0 (8.0) 8.3 8.2 8.2	30 (45) 30 (45) 36 (60) 36 (60) 80 (90) 70 40 100 85	2 (7) 3 0.8 (7)	2.8	0	174	5.12 ° STA' S.115 ° STA' S.115 ° STA' S.150	STATE TION NO.	101 - PA 102 - PA 102 - PA 102 - PA	154 154 154 285 285 285 286 286 286 286	25.0 25.0 7. AN 28.4 28.4 40.0 53.5 8 RIVE
0 0 1 1 2 2 2 3 3 3 4 4 4 4 4 8 8 8 9 9	Aug. 13/59 Sampled fr Aug. 13/50 Aug. 13/50 Sampled tr Sampled tr Jan. 10/57 Nov. 1 June 8/58 June 8/58	27 41 26 41 26 41 26 41 26 41 26 41 26 41 27 26 41 28 12 21 4 17 24 48	e taken	enige	68	10.7 9.6 14.7 23.0 .0.4	2 2 2 2 2 3	(8.6) 7.7 (7.5) 8.0 (8.1) 7.9 (8.0) 8.3 8.2 8.0	30 (45) 30 (45) 36 (60) 40 (80) 80 (90)	2 (7) 3 0.8 (7)	2.8	0	174 156 158 158 264 172 127	STA A A A A A A A A A A A A A A A A A A	STATE TION NO.	101 - PA 102 - PA 102 - PA 103 - 444 484	154 154 154 155 156	25.0 25.0 25.0 N RIVE 30.0 CO. N RIVE 44.0 CO.

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

												(In pa	710 PE	., ,,,,,,,											
	Ire (F						Alk	alis											Hardi as Ci		constituents	ium	dex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of const	Per cent sodium	Saturation index	Stability index	No.
(Mg)		_	(Mn)	(Al)	(Cu)	(Za)	(Na)	(K)			(HCO ₃)	(SO ₄)		(F)	(NO ₃)	1	(PO ₄)								
	NGLAC	, ONT	ARIO -	Drain	age are	a at da	m 1,63	0 squa	re miles							-	1	1				,			
4.4							1.3	0.7	0.0	0.0	86.7	5.3	1.5		0.7	3,1			5.9	77.0 (77.6)	83.3	3.5	-0.3	8.5	1
4.6 5.4 5.3 5.7 6.1 6.1 4.6 3.9 4.0	0.51	0.04 0.03	0.0	0.0	0.0 Trace 0.0	0.0	0.8 1.2 0.9 1.1 1.1 1.0 0.9 0.8 0.9	0.7 0.7 0.7 1.0 0.7 0.8 0.6 0.6	0.05 0.05 0.05 0.05 0.1 0.15 0.15 0.15	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	92.6 95.4 102 106 114 119 85.1 73.0 79.0	2.9 5.5 3.9 6.4 5.0 4.3 4.1 3.9 3.9	1.2 1.6 1.4 1.7 1.6 1.4 1.2 2.6 1.1	0.4	0.1 0.2 0.2 0.7 1.0 0.5 1.5 0.2 0.3	3.4 3.4 4.0 4.9 5.5 6.4 4.1 5.0 3.4			4.8 6.0 5.0 9.2 7.3 7.2 4.5 6.8 4.5	80.8 84.3 88.4 96.3 101 105 74.3 66.7 69.3	84.6 89.9 93.2 103 108 111 81.1 73.2 74.3	2.1 3.0 2.1 2.4 2.3 2.0 2.5 2.5 2.7	-0.3 -0.3 -0.3 -0.1 -0.2 -0.1 -0.6 -0.8 -0.7	8.4 8.5 8.4 8.2 8.2 8.1 8.8 9.2	2 3 4 5 6 7 8 9 10
5.0 5.1							0.8	0.6	0.05	0.0	88.1 92.9	6.7 4.8	1.0		1.0	5.0		0,00	8.4	80.7 84.1	87.6 89.6	2.1	-0.5 -0.1	8.7 8.2	12 13 14
5.0	0.02		0.0	0.0	Trace	0.0	1.2	0.8	0.1	0.0	95.4	4.8	1.0	0.0	0.2	5.9			6.6	84.9	91.7	2.9	-0.5	8.6	15
6.3	0.07		0.01	0.02 RIO		0.1	0.9	0.5	0.1	0.0	132	9.9	1,2	0.0	0.4	3.4			12.1	121	126	1.6	+0.1	7.7	16
4.8		0.02	0.0	0.0	Trace	0.0	1.3	0.8	0.0	0.0	91.5 (88)	5.8	1.6	0.0	0.2	5,2			3.3 (6.5)	78.4 (78.6)	88,3	3.4	-0.2	8,4	
5.2	0.20	0.02	0.0	0.0	0,0	0.0	1.0	0.8	0.2	0.0	93.3	4.6	1.0	0,0	0.3	6.3		····	7.3	83.8	90.1	2.5	-0.4	8.5	18
east of	0.20	0.03	0.0	Trace	Trace	0.0	0.8	0,5	0.1	0.0	109 (110)	3.3	1.1	0.0	0.1	5.7	1		7,8 (5)	96.8 (95.0)	99.6	1.8	0.0	8,0	19
7.8		0.05	0.0	0.0	Trace	0.1	1.5	0.7	0.0	0.0	149	4.8	1.4	0.0	0.1	5.6			1.2	123	132	2.6	+0.2	7.6	20
7.5	0.11	0.03	0.0	0.0	Trace	0.0	1.0	0.6	0,2	0.0	129	5.7	0.9	0.0	0,2	4.9			8.8	(125)	118	1.9	+0.6	6.7	21
near P	AG₩A	RIVER	, ONT	ARIO						(0)	(134)				1			ł	(10)	(120)					
14.4		0.03	0.0	Trace			1.9	1.2		0.0	259	6.0	2,2		1.6	9.7			6.1	219	229	1,8	+1.3	6.3	22
8.3		0.05			0.0	0.02	1.6	1.1	0.0	0,0	160	4.9	2.0	0.1	0.1	4,8			1.6	133	141	2.5	+0.5	7.2	23
5.2 6.5 6.2		0.06	0.0	0.21	0.0	0.0	0.8 0.9 0.7	0.5 0.6 0.4	0.1 0.15 0.1	0.0	88.9 127 98.5	3.6 3.7 2.2	1.3 1.8 0.8	0.0	0.1 0.2 0.2	3.3 8.2 5.1		0.00	7.9 2.9 9.1	80.8 107 89.9	82.6 115 89.9	2.1 1.8 1.6	-0.2 0.0 -0.5	8.4 7.9 8.6	24 25 26 27 28 29
6.4							1.0	0.5		0.0	118	3.9	3.3		0.1	4.9			12.3	109	111	2.0	-0.0	7.9	27 28 29 30

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

				discharge ad-feet)		p eq	ė.				Suspe	n fed et	Residue dries (Disse	d at 105° olved sol	(. ida)			
4	Date of collection	Storage period	sampling tate	Must be v	Water temp enature	Oxygen consume by KMaO ₆	Carbon dioxide	2.33	(Hazen (Lave)	(Luite)	Omed at 195° ⊂.	Ignited at 55.00 C.	Р.Р.М.	Tuos per acte four	Tions peri	1 ee 	pris protect and Rria and 253	Grand A
						•								SIAIA			A BULAN S	
. 0	Mar. 16/59 A.r. 16 Vay 2 May 13 Mc 24	24:73 27:42 24:31 34:42 16:23	Ice † Ice 3'> N		50	11.3 11.0	1 2	7,9 7,8 1,8 1,4	45 30 20 80 80 86	3	9.4 34	1 16	114			114		28
	Aug 18 sept.	No samp	le taken		1 *	18.4	2	8.0 7.8	ж ж	2			158	9,211		51	101	11.0
	No. 1 Nac. 21 /a Lett. Mac. Apr.	No sample	4 ¹ e taken le taken		32		5	7.0	35	6							111	12
	Max 12 Aug. 15 Sept. 12 (shat. 19 Nov. 15 Lieu.	No sampl No sampl 15:21 \$111 162:204 100:198 59:125 2 102 No sampl	Low Low Low Medium		35 50 . 50 . 30	17.2	6	8.0 8.2 6.1 1.8 1.5	20 140 25 .20 141 120	s 2 1.4 3.8			150	5.2 S		43.2		4 . 33. 33.
	to anector's	esticate	of river le	ve:	***			1		- :		1_	STATE	18 80 3	03 = Mo.*	I SAIT LAS I	T CROKEP	I CANE D
	July 17 59 Aug. 24 Sept. Oct. 5	13.25 10.11 No sampl 18:140	c taken	9,700 6,740 5,120 4,110	\$0 62 \$0	9,5	2 2 3	7.3	40 45	0.8			\$6.4	1.07	-	31.2	\$2.4 \$1.8	1
	* At the con	trol dam a	t Waboose		miles	1	st of Nal				ong. 870	59' 56"		L				٥.
	June 30 61	18:28	Low		64	8.8	[2]	7.8	20	2					STATION	NO. 104 -	KEEZHIK	LAK 1
	* North of A	mstrong,	Ont.								•				STATION	NO 105 -	TROUTFL	VIA
T	lune 30 (1	18:28	Low		60	3.3	,	8.1	0	0							20	1 11.
															STATI	ON NO. 10	6 - AZURI	E LAI
	Aug. 18 (40 1960 June 30/61 June 30	20:25 18:28 18:28	l' sprin	g high	64	3.6 2.8 3.1 2.2	1 2	8. 2 8. 3 8. 1 8. 1	15 0 0	0 0							24° 248 22° 22°	32. 32. 31.
	~ ~ ~														STATIC	ON NO. 10	" - SMALL	LAK
1	1960(8 Aug. 1" (c) Aug. 1" (c) Aug. 18 (d)	21.26 21.26 20:25	1º < sprin	g high g high	70 70 72 72 72	4.0 5.3 5.9 5.5 5.6	5	8.1 7.0 6.5 7.5 6.6	0 15 15 15	0 0.4 0.8 0.4 2							91.5 20.1	12.0

⁽a) near Azuse Lake 51939' N - 88° (b) at 519 40' N - 89°00' W (c) at 519 39' N - 89°01' W (d) at 519 38' 30' N - 88°59' 30' W (e) at 519 38' 30' N - 88°59' 20' W (f) at 519 39' N - 88° 57' W (g) at 519 31' N - 88° 44' W

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

					-						_			_				-			-	~			
	Iro (Fe						All	kalis											Hard as C		lents	E	н		
ium		ed	ese	u u				um	œ	ate	nate	U	e	e e		Detric)	ate		Non- car-	Total	constituents	ıt sodium	ion index	Stability index	No.
Magnesium	Total	Dissolved	Mangane	Aluminum	Copper	Zinc	Sodium	Potassiv	Ammon	Carbonat	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	bonate		Sum of	Per cent	Saturation	Stabilit	
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)							
near P	AGWA	RIVE	R, ONT	ARIO	(conclu	ded)																			
11.4	1.0	0.03	0.00	0.0	0.0	0.0	1.5	0,8	0.1	0.0	191	5.7	1.3	0.0	0.8	9.0	0,02		11.6	168	173	1.9	+0.4	7.1	1
8.0 4.9	0.81	0.05	0.00	0.0	Trace	0.0	0.8	0.7	0.1	0.0	145 87.5	3.3 5.2	1.0	0.0	0.2	6.9	0.00		5.8 8.2	125 80.0	129	1.9	0.0	7.9	3
5.0	0.07	0,40	0.00	0,0	0.0	0.0	0.5	0.5	0.2	0.0	72.2	1.2	1.0		0.8	2.8		0.00	7.8 10.2	67.0	66.3	1.6	-1.0 -0.9	9.4	1 4
7.0		0.06	0.00	0.0	Trace	0.0	1.6	0.7	0.6	0.0	125	5.4	2.2	0.0	0.2	5.4				110	117	3.0	+0.1	7.8	6 7 8
6.0		0.08	0.00	0.0	0,0	0.0	1.9	0.7	0.2	0.0	96.8	2.1	2.0	0.0	1.0	8.0	0.02		8.9	88.3	95.0	4.4	-0.8	9.4	9
9.6					""		1.2	0.8	0.1	0.0	146	3.2	1.1		0.7	5.8			8,1	128	130	2.0	-0.2	8.0	11
9.4	0.20	0.04	0.04	0.08	Trace	0.05		0.9	0.2	0.0	163	10.0	11.7	0.1	0.8	5.0	0.02		18.1	152	167	4.7	+0.1	7.5	13 14 15 16
12.7	0.19	0.04	0.00	0.0	Trace	0.0	0.9	0.6	0.2	0.0	121	2.6	1.2	0.0	0.5	4.0	0.06		5.5	104	103	1.8	-0.1	8.2	17 18
6.8							1.5	0.6	0.2	0.0	137	2.2	1.4		0.6	7.0			0.2	112	121	2.8	+0.3	7.6	19
7.4	0.17	0.04	0.0	0.0	0.0	0.0	1.7	0.6	0,2	0.0	125	3.9	1.4	0.55	0.8	7.9	0.0			110	118	3.2	-0.2 -0.7	8.2	21 22
8.2		1					1.1	0.6	0.1	0.0	130	5.3	1.0		0.6	5.2			8,6	11.4	116	2.0	-0.3	8.2	23
	L	1		L	L	L	ł		l		1		L	<u></u>		L				1	1		1		24
at WAI	BOOSE	DAM,	ONTA	RIO		ı		1	1	(T		ŋ 					1					
1.6 1.6	0.16	0,09	0.0	0,04	0.0	0,0	0.9	0.4	0.1	0.0	27.3 28.0	2.1	1.5	0.0	0.2	3.3	0.04		3.1 2.3	25.5 25.3	31.2 29.2	6.8 4.8	-1.7 -1.6	11 11	25 26 27
1.9	0.33	0.03	0.0	0.0	0.0	0.0	0.8	0.5	0.1	0.0	33.5	2.2	0.6	0.0	0.4	4.0	0.03		4.8	32.3	36.7	5.8	-1.7	11	28
north o	of ARM	ISTRO	NG, ON	TARIO	O at 51°	45° N	- 88°3	8° W																	
5.6		ļ	0.0	0.0	Trace	0.0	1.0	0.8	0.1	0.0	76.9	2.2	0.8	ļ	0.8	2.8			6.3	65.8	70.2	3.2	-0.5	8.8	29
at 51°	42' N	~ 88° 5	541 W -	– ONT	ARIO																				
7.8		0.02	0.00	0.0	Trace	0.0	0.9	1.0	0.05	0.0	132	1.4	0.3	0.07	1.5	3.9			0.8	109	1 13	1.7	+0.2	7.7	30
at 51°	38' 30'	" N -	88° 58'	30 " W	_ ONT	rario																			
8.3		1			1		0.7	0.9	0.0	0.0	137	4.1	0.8		0.0	5.1	ļ		2.2	115	120	1.6	+0.3	7.6	31
9.3		Trace	0.0	0.02	Trace	0.0	2.0	1.1	0.0	0.0	147	1.8	0.2	0.09		9.2 5.1			0.0 1.6	117	123	3.5 1.8	+0.3	7.5	33
9.7	l	0.0	0.0	0.01	0.0	0.0	1.0	1.1	0.0	0,0	143	2.5	0.3	0.05	0.4	5.1	<u> </u>		2.2	119	122	1.8	+0.3	7.5	34
near A	ZURE	LAKE	E - 01	TARI	0							1						1				1			
2,1		0.01					1.5	0.7	0.0	0.0	80.8 46.6	0.7	0.1	0.03	1.2	3.9			0.0	64.4	42,6	4.8	-1,7	10	35
0.6							0.2	0.5	0.1	0.0	9.9	1.5	1.0		0.0	0.3			0.4	8.5	11.4	5.5	-3.6 -0.9	14 9.3	37 38
0.3							Trace	0.6	0.0	0.0	3.8	3.3 0.4 3.3	0.7		0.0	0.2			0.8	3.9	5.0	11 1.8	-4.2 -0.8	15 9.1	39
9.8	0.02	ļ	. 0.0				1.4	1.6	0.0	0.0	142	2.3	0.6	0.09	0.8	6.6			0.0	116	123	2.5	+0.1	7.8	41

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

	~	Keream	diecharge nd feet		p au	2				Suspe		Res. fu. dried	t of evap	rar o			
N. Date d collection	(Days)	obs samp, og fate	M. arb.y	to b.	Oxygen ns.c	Carbon s. zi te	; H	Hazeo	(Vious)	105°C.	1gouted a' 550° €.	Р.Р.М.	I na per Actr foot	T ns per dny	1 ex .40- 1	25°C.	Green and a
												STATION	NO. 108	- LAKE,	SOUTH o	f MIMINISK	A LAKI
. Aug. 1- 6.	In da	11.85		-:	٠.٥	3		14									100
: 11/4	I					1	T -1		, 1		, ,			STATI	ON NO. 10	9 - SMALI	LAKE
2 174	L - =		1	1	1.0	15	4.	15		-					L		
1 1000						Ι.)]		ī				-,	FLAI	MN NE	MA)	1 1 43,5
	1		1		3,4	1 -	8.0	10]		_		_		-	2007	
4 1960					<.4	: 1	8.2	16 J						* NIII /	illi = s	HAB + %	A _ Az
			1 1			1			1	1	1		:		-	180	-
5 1960	Ī.				4.8	13	7.4	:0			[1	SIAI	ION NO. I	12 = 5M41 241	I I AN
										1				STATION		- OTOSKW	1
July 23 60	32434			70		4	7.1	125	0.8	. [-		STATION	NO. 113	- OTOSKW	IN RIVI
													STA	TION NO.	114 - AT	TAWAPISK	
1 July 23 57	<u></u>		<u> </u>]		3	7.5	60			j	86.0	6.117		38.(3,8	12.8
														STAI	10N No. 1	1 < = G11 _	ME RIV
3 July 17 49	5:10			68	16.5	2	7.3	80	0.4			56.4	(.0"		14.2	0,0	9,1
Tauly 24 601	26 116			T	1		-				r		Si	TATION N	D. 116 - 1	KAWINOGA	NS LAN
July 24.60	36.135			62		5	7,1	75	0].	- : I			ST	FATION N	0.116 - 1	KAWINOGA	NS LA
		low							0].	_ : I		J					12.)
		Low			11.8		7.1	75	0].			T				`4.4	12.)
July 24.60	17-21	Low			11.8	7	7.3					I		TATION N	iO. 117 –	'4.4 BADESDA1	(22.) VA RIVI
July 31 61	17-21			68		7		80	0			I		STAT	FION NO.	14.4 BADESDA1 13 118 - SMA1	12.5) VA RIV 122.5 LE LAN 23.3
July 31 61	17:21			68	11.8	7	7.3	80						STAT	FION NO.	118 - SMA 115 - SKA	IZ.) WA RIVI PRESENTED LE LAK PRESENTED LAK
July 31 61	17:21	High		68	5.4	7	7.8	80		[STAT	FION NO.	118 - SMA 115 - SMA	12.0 VA RIV: 22.0 LL LAN 28.3 UA LAN 28.3
July 31 61	15:25	High		62	5.4	7 2.5	7.8	80						STAT	FION NO.	14.4 BADESDA1 118 - SMA1 155 119 - \$K	IZED WA RIVI ZZE LE LAK ZZEZ UA LAK ZZEZ AR LAK
July 31 61 July 3 61 July 31/61	15:25	High		62	5.4	7 2.5	7.8	80	0.4					STATION N	FION NO.	14.4 BADESDA1 118 - SMA1 155 119 - \$K	VA RIVI 222 LL LAN 23.3 UA LAN 28.3 AR LAN

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

											(in par	is per	milli	on)										
		on (e)					Alk	alis												dness CaCO ₃	constituents	ium	dex	M	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of const	Per cent sodi	Saturation index	Stability index	No.
≥ (Mg)	H	Ω	(Mn)	(A1)	(Cu)	(Zn)		Д (K)	(NH ₃)		(HCO ₃)	(SO ₄)				(SiO ₂)	(PO ₄)				S	Д	S	W	
(rag)		1	(1411)	(232)	(Cu)	1(211)	(144)	(1.)	(14113)	(CO3)	(11003)	(304,	1 (C1)	(F)	(1403)	(3102)	(F O ₄)	(B)			1				mmmm
at 51°3	1' N -	- 88° 44	4' W -	ONTA	RIO																				
8.1							1.2	0,7	0.0	0.0	144	4.3	0.9		0.0	6.9			2,3	121	128	2,6	0,0	7.9	1
at 51°09	91 45"	N - 88	8° 59° 3	0" W _	ONTA	RIO																			
			0.01	1	ļ	1	1.0	0.4		0.0	11.0	0.3	0.8	0.02	0.2	0.3			1.7	10.7		15.5			2
								0.11 ==			1		1		,				L	·		1			
south o		т-		KE abo	T -	13' 30"			- ONT		1	T	Τ	T		1					T				Γ.
		0.12	0.0	1		4	3.1	1.8		0,0	128	1.5	3.9	0.08	0.3	5.7			0.0	104		6.0			3
at 51° 1	4'N-	- 89° 01	1' W, C	NTAR!	IO								,		,	,		,			,	,	,		
·····		0.11	0.0				1.4	0.4		0.0	86.4	0,9	0.4	0.09	1.9	6.6			2.0	70.5		4.1			4
east of	SHABI	USK W I	A LAK	E, abo	ut 51°1	7° N –	88° 59 °	W - C	NTARIC)															
		0.10	0.0	ļ		ļ	1.4	1.1		0.0	185	1.7	0.5	0,09	0.4	8.7			1,1	153		1.9			5
at 51°3;	8' N	90°43	' W _ (ONTAR	OI																				
1,7	0.19	1	0.0	0.0	0.0	0.0	0.5	0.3	0.4	0.0	31.1	3.8	1.0	0.0	0.1	2.4	0.00	Ī	4.6	30.1	34.2	3.4	-1.9	11	6
		1						l	.)	,	1 -	-		J	1	1	-	1			1			1	_
		1	Т	RIVE	R at 5	T-	1	_	- ONT AF		T		Ĺ.,				1				1		1	1	Τ
2.8	0.09		0.0		• • • • • •	.	0.6	0,4		0.0	56.3	0.7	1.2	····	0.0		0.00		4.7	50.9		2.5	-1.0	9.5	7
at 510	35' N -	- 91°2	0° ₩	- ONT	ARIO		,				,	,							,				,	,	-
1.7	0.14	0.07	0.0	0.0	Trace	0.0	0.5	0.4	0.3	0.0	28,2	3.0	1.0	0.0	0.3	1.8	ļ		5.1	28.2	31.1	3.6	-1.7	11	8
north of	LAKE	E ST.	JOSEP:	H, at 5	1º 20' N	T – 90°	42° ₩ -	- ONT	ARIO																
2.0	0.14	0.0	0.0	0.0	0,0	0.0	0.5	0.5	0.4	0.0	42.2	4.4	1.0	0,0	0.1	2.1	0.00		3.5	38.1	43.4	2.7	-1.7	11	9
at mout	h at 51	10 48+ N	1 _ 800	381 W	- ONT	ARIO														,					
3.9			0.041	-	1	I	0.7	0.4	0.3	0.0	80.1	2.4	1,2	0.16	0.9	3.5	1	1	6.7	72.4	75.2	2.0	-1.0	0.3	10
† Tota	al		·	-	1	1	-			1 0.0	1 00.1	1 2	1.2	10,10	1 0.7	1 3.5		1	1 0.7	72.4	1 /3.2	2.0	1 1.0	1 /	110
north of	F	1	1	1	1		T	Ţ	1				1	,	1	1	1	1		1	-	1			
5.6		.0.01	0.0	0,01	0.01	0.0	0.7	0.7	0.1	0.0	97.2	0.7	0,3	0.05	1.1	2.0	·····		1.6	81.3	82,3	1.8	-0.3	8.4	111
at 51°4	5' N	89º 24	* W -	ONTAR	OIs																				
8.0	0.05		0.0 †				1.0	1.0	0.0	0.0	125	0.6	0.9	0,06	0.6	4.2			2.3	105	106	2.0	-0.2	8,2	12
Total		89° 22	: ₩ _	ONTAR	RIO																				
		1	0.0		0.01	0.0	0.5	0.5	0.3	0.0	52.9	0.7	0.4	0.10	0.5	0.9			4.6	48.0	46.7	2.2	-1.1	9.7	13
at 52°0	QI N	2002	4° W	ONTA	210	-	-														•				
2.7		0.10	0.0		Trace	100	0.7	0,3	0.2	0.0	49.9	2.5	1.5	1	0.3	2.5			6.2	46.3	40.2	2 7	-1.1	1 0 7	14
2./	0.33	0.10	10.0	1 0.0	Trace	0.0	0.7	U.3	10.2	0.0	49.9	2.0	1.5	1	0.3	2,5			4 0.2	40.3	49.2	3.1	-1.1	1 9.7	14

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

			C										2.00	-				
			(Secon	discharge id-feet)		-									2011			
-		12	-		1	1.					-	-	1		-	- Lines	Ter 1	
Dat	e	18	On	Manchin	Water	1 8 3	I MA	2		-	(not	1 general		Vinna	2004	10		
colle	C2100	62	date	and only	eratur		Carboa :	72.25	1 27	larbid.co	105°C	350°C	F,F M,	per 1 acre-	pot	tion	[K × 10°	1 0
Conte	(1100	60 80 81	Cate		S. W. C.	NOW NOW	Poop		Cistour	2	1050	350°C		foot	day	10	38.	10
		1.				20	is o	1		TH	1				1	550°C.	1 45°C.	1 3
		(Days)			(°F.)	150			Mages	A	1		1	1	1		1	
		(Lymy B)		-	[(1./	!	(CO	1	[[IIImits		diam'r		i					15(4)
															STATI	ON NO. 12:	2 - SMALI	LAKE.
1 A.K.	٠.	21.1			70	- 5	-	6,5	26				17.				14.3	9.3
o In A	Harran	sekat Rew	er drainage	a hassa	-	_		-	-	*	1	6	4.1		,			100
			cr ca armag.															
															STATION	NO. 123 -	MISSISA 1	LAKE .
11 July	: 41	17 37	1 12		. 49	6.6	4	7.6	15	20							041	a.i
° In A	ttawar	ıskat Riv	er drainag	e basin		*				_		•		4				
			er oranna6															
															STATION	NO. 124 -	- DRUMII	NIAKE*
3 Aug. 2	20.761	28:34			1	,			·	1	T			7	1	1	-	-
	-		Low		- 70	9.0	8	6.8	35		1			1			61.3	1 8 -
* in 1	Kwan !	(Iver spar	nuge basic	3														
													STAIL	N NO. 12	S - HAWI	EY LAKE	2, 11177	RIVER
4 '	< <7	32.32			. 45		. 2	8.0	10		,	7		T 0 122	T		-	
					-		1		***			4	145	1		34.0	2.5.	1 32.1
-	-	_				,		-			+		· · · · · ·	21	VIION AC), 126 = P1	PESTONE	RIVER
S Was 1	- 40	5 10			1 69	16.4	3	7.4	80	0		1	, 80,0	0,109		36.8	72.6	11.5
							*	-	4							1		
														STA	TION NO	. 12" - KA	NECHT AN	1 AKE
6 Sept.	2	24-30					1		·	r	1	7	1					-
	wer k		Medium		. 70	2.6	1 3	7.8	<					(176	27,3
* In W	inisk B	iver drain	nage basin													*		
															STA	TION NO. 1	28 - TIN.	's LAKE"
Sept.	2 61	24.30	Very low		. ~0	4.4	4	. 7.3	15					1			122	17.
· In W	nesk R		nage basin		-	+		1	-		1	4	1	1	-		1	17.5
	LII JA	THE GIBTI	inge trasiti															
															STATIO	N NO. 129	DADTM	AN LANES
					_		-				1		1	-		1	- 11/10/1 1 31	146166
8 July 1	8/59	4:9	12-10		. 73	8.2	1 0.5	8.4	25	0.8			83.2	0.113		23,2	134	21.6
* In Wi	nisk R	iver drain	age basin															
- 4															STATI	ON NO. 130	- SMALI	LAKE .
0 10	960					5,1	3.5	7.8	10			1					-	
0 1 . 6						1 /**	1 2.2	1 .0	10			1		1			208	
In Se	vern K	iver drain	age basin															
															Om s and o			
												· · · · · · · · · · · · · · · · · · ·			STATIC	ON NO. 131	- ISLAND	LAKE*
10 lune 1.	2 53	7:33 ,	,		58		1	7.9	30	2			81.8	0.111		32.4	:04	13.5
* In Go	ds Riv	er Iraina	ee basin			-	-	-									104	4.5
													S	TATION	NO. 132 -	GODS LA	KE at GOE	STAKE
11 June 1	2 53	7.22					1	1	1					1				-
							2	7.8	10	2			87.4	0.119		34.0	122	19.4
° In Go	ds Riv	er draina,	ge basın a	t Gods La	ke, Cns	itio.												
														5	TATION !	NO. 133 - 1	ENNADAL	LAKE*
12 July 1	3/52	201:281,					. 2	7.3	Slight	Slight							42.0	
		ver drains							or Bat	- San Brit							43.9	5.0
		urmilu	-o- vesti															
																STATION	NO 114	LAKEA
12 4 14			T													JINII ON	.70, 139 -	LAKE
13 Aug. 18		- 2					3	7.1	Slight	Slight							63.7	6.5
0 Campl	ad 3 6	from abo	an an 21/ f-		2007 T					_		-						

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

Iron (Fe) Alkalis Iron (Fe) Alkalis Iron (Fe) Non- Total
Manganessium Aluminum Al
(Mg) (Mn) (Al) (Cu) (Zn) (N) (K) (NH ₃) (CO ₃) (HCO ₃ (SO ₄) (Cl) (F) (NO ₃) (SiO ₃) (PO ₄) (B)
at 52° 45' N - 86° 03' W - ONTARIO
2.5 0.14 0.03 0.0 0.6 0.5 0.3 0.0 36.6 1.9 1.0 0.07 0.0 0.2 2.7 32.7 34.1 3.8 -2.1 11 1
at 52°16' N – 85°07' W – ONTARIO
4.1 0.03 0.0 0.0 Trace 0.0 0.9 0.2 0.05 0.0 85.2 1.0 0.4 0.04 1.3 0.5 2.0 71.9 72.4 2.6 -0.6 8.8 2
71. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
at 52° 35' N - 87° 02' W - ONTARIO
2.3 0,09 0.02† 0.0 0.8 0.8 0.3 0.0 32.2 2.3 1.3 0.12 0.0 1.2 4.7 31.1 33.4 5.1 -2.2 11 3
† Total
at 54°34' N – 84°38' W – ONTARIO
6.8 0.02 0.0 0.0 0.0 0.0 131 4.5 5.9 0.0 0.0 0.0 1.0 108 0.0 9.5 +0.1 7.8 4
at 52° 13° N - 90° 47° W - ONTARIO
2,3 0,16 0,07 0,0 0,0 Trace 0,0 0,5 0,3 0,2 0,0 41,6 3,0 0,7 0,0 0,6 2,6 6,1 40,2 42,8 2,6 -1,3 10 5
at 52°55' N - 87°41' W - ONTARIO
5.6 0.03 0.02 0.0 1.0 0.6 0.0 0.0 109 1.5 1.1 0.10 0.0 4.4 1.7 91.4 95.4 2.3 -0.2 8.2 6
at 52° 52' N - 87° 22' W - ONTARIO
4.2 0.04 0.02 0.0 0.0 0.0 0.0 0.0 0.0
at 52°30' N - 87°37' W - ONTARIO
4.3 0.06 0.03 0.0 0.06 Trace 0.0 0.9 0.8 0.1 1.3 81.6 1.1 0.6 0.0 0.3 4.2 2.5 71.6 75.4 2.6 +0.2 8.0 8
at 52°32' N - 91°23' W - ONTARIO
near MISSION at 53° 52' N - 94° 42' W - MANITOBA
3,4 0.11 2.4 1.3 0.0 58.6 2.1 1.3 0.0 1.2 4.2 0.00 0.0 47.6 58.4 9.6 -0.7 9.3 10
at 54° 41' N - 94°09' W - MANITOBA
3,6
3.0 0.10 0.10 00.0 2.10 0.0 00.0 2.10 0.10 0
KEEWATIN DISTRICT, N.W.T.
1.4
at 62°19' N - 93°30' W, KEEWATIN DISTRICT, N.W.T.
0.9

Chemical Analyses of Surface Waters in the Hudson Bay Brainage Basin

		,		discharge ''teri		NO. S. B. S.	de				Dist.	rate)	den	e on eval ed at 105 solved so	°C.	Las		П
	Date of collection		im sampling hate	W nets	Variet ferr je erat u	1 3	Carbon dioxide (calculated)		Hizerl	3	THICK TO	lested at sore;	F.3-M	Det Auge Long	Times par day	PA STATE	L TIP	1
- 1		1-45.4	1		19 F.	1	(CO ₃)		0.75	Inus								P. In al.
															STATI	I IN NAT 1	11 = 5 AX 5	O 1 44 F
:	1964		. At 30 me	ter lepth	į.			6,8	10	J							1,1	
					*		. ,				1	1 .				!	-	
.,					1	_		_			,				=1A10	DN ND. 13	TAAR = NA	P CAPE
,	1964			sampled urface	,	1.0	3	, "	5									
3 4 5 6 7 8	. 76,249		. 10 m	etets attace		1	2	7.0	< <	0	· · · ·	· · · · ·		:			1 1 1	1.7
5			, 30 m	eters	i	i	1	6.0	5	0							114	1.4
7			50 m	eters		4	2	5.9	5	0							ж.	4.1
8	-		, 60 m	etets	p	<u> </u>	2	6.8	10	0						i.	1,184	5,0
															STATION	NO. 131 -	NIFLTIN	1 4 % F
9	1964					2.9	4	6.9	15	0			1				41,0	1,4
	Sampled a	surface			-	-						-	i			I		-
															STA	TION NO	138 - NAT	01111
0	Oct. 14 63	16.24			. 50	ļ	3	7.5	70	0		Ī	1		9111	1		\sim
-	Sampled at					,						וריייו		: . · <u> </u>		[125	18,1
														STA	TION NO	, 139 – GI	ROUNDHOO	RIVE
1 (let. 14 63	14:21 ,			54		3	7.4	45	0.3		,					94.6	13.3
4	Sampled fr	om highwa	y No. 101	bridge ner	ar Timmi	ins, Ont.												
															STATION	NO. 140	- SMALL (CREEK
2 ()ct. 14, 63	16:24		,	50		5	7.1	135	0								11,9
					-	1											the said	146.0
-					,	,								S	TATION !	NO. 141 -	OPISHING	RIVER
3 (Oct. 14/63	16:29			54		2	7.4	55	0.1							83.4	11,1
	Sampled at	highway l	No. 101 bri	dge.														
-	Oct. 14, 63	11:15			54		-								STATION	NO. 142 -	- SCORCH	RIVER
4 1							4	7.3	70	0.1							89.2	12.5

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

		on Fe)				}	All	calis											Hardn as Ca		constituents	mu m	lex	и	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of consti	Per cent sodium	Saturation index	Stability index	No.
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(N)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(CI)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)							
at 64° 17	24" N	I - 95º	'55' W	- KEE	WATIN	DIST	RICT,	N.W.T.																	
										0.0	8.9		4.6]		3.4	10.7	,				1
at 64º 7°	24" N	- 94° 4	6' 24"	w - K	EEWA'	IN DI	STRIC	T, N.W.	т.						,						t ,				
1.8 1.8 2.0 7.8 14.9 20.6 25.9		0,00	0.00 0.00 0.00 0.00 0.00 0.00				2.7 3.8 5.7 47.3 96.0 141 185	0.8 0.5 0.5 2.2 4.1 6.2 7.3		0.0 0.0 0.0 0.0 0.0 0.0	10.0 9.3 8.4 8.5 9.8 11.0 8.8		7,6 11,3 88,8 183 268		0.0 0.0 0.0 0.0 0.0 0.0	0.2 0.0 0.2 0.1 0.1 0.1	0.0		3.4 3.3 5.0 29.8 58.7 86.0	11.6 10.9 11.9 36.8 66.7 95.0	19.6 21.4 29.4 166 331 485 617	32 42 50 72 74 75 76	-3.5 -3.3 -3.4 -3.3 -3.3 -2.9 -3.1	14 14 14 14 14 13 13	2 3 4 5 6 7 8
at 60°0'	N - 9	9° 55' 1	v – Ki	EEWAT	'IN DIS'	TRICT	, N.W.	т.						r							1				
1.5		0.01	0,00	0.0			1.0	0.8		0.0	17.6	2.6	0.8	0.08	0.0	1.6	0.0		0,6	15.0	19.0	12	-2.8	13	9
near FO	LEYE	T, ON	TARIC)	Т	γ								Paris	1						1 1		1		
4,8	0.20		0.00				0,8	0.4	l	0.0	67.5	5.9	0.2	0.15	0.0	5.9			9.6	65.0	69.5	2.6	-0.9	9.3	10
near FO	LFYE	T, ON	TARIC	1					1														-	1	
3.6	0.14		0.00				0.7	0.3		0.0	47.8	7.0	0.2	0.12	0.4	3.4			8.8	48.0	52.3	3.0	-1.3	10	11
near TIM	MINS,	ONTA	RIO	,	,	·						r													-
4.1							0.6	0.2		0.0	38.2	7,8	0.1		0.0	5.0			15.3	46.6	48.5	2.7	-1.7	11	12
near FC	LEYE	T, ON	TARIC)							+	,		,		ı							,		
3.4	0.26		0.00		ļ		0.7	0.3		0.0	41.1	6.2	0.1	0.11	0.3	4.2			7.9	41.6	46.6	3.5	-1.4	10	13
near FC	LEYE	T, ON	TARIC)									,												
3.8	0.08		0.00			ļļ	0.6	0.4		0.0	43.5	6,5	0.3	0.15	0.5	3.7			4.1	46.8	49.9	2.7	-1.4	10	14

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

(In parts per million)

13 Jan. 5/55 7,32 500 22 36 8,9 598 17 4 4,0 3 3 4 15 Mar. 3 7,23 435 38 43 118 70 118,5 4 5 2 3 16 Apr. 6 7,39 175 31 34 108 80 18 5,5 5,5 2 2 3 19 19 19 19 19 19 19							Dissolve	d solids					1		
	`I			Colonz	Turbidu	nolida	mineral		NaC1	micrombos	alcın			enth	odites and tandes
1 1 1 2 6 6 4 7 7 8 4 6 5 2 4 30 106 7 7 10 10 4 4 3 4 3 3 4 4 12 7 7 10 10 3 6 6 4 4 3 3 4 4 12 7 7 10 10 3 5 5 5 5 5 5 5 5 5				-		-	-	-		-	100	-			
Sept. 10	1 Jan. 6			465	24	30	106	i	1 74	_	10			1	- ABITIBI RIV
A	2 Feb. 10				28	41	122	1	62		18		6.4°		
\$\frac{5}{\text{Max}} & \frac{5}{2} & \frac{7.92}{2.25} & \frac{2.9}{2.9} & \frac{37}{37} & \frac{90.8}{9.8} & \frac{68}{68} & \frac{16}{16} & \frac{7.7}{2.7} & \frac{2.2}{2.0} & \frac{3}{2.0} & \frac{3.2}{2.0}					53		124					5.5		9	
9 man	5 May 5		7.92	235	29							7 7		3	
6 Aug. 11 7.55 375 29 44 89 3 38 16 3 2.5 3 2.5 3 1.0 0 1.1 1 7.55 375 29 44 89 3 38 16 3 2.5 3 3.0 4 1 1.0 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0									58						
9 Septi 23 7,15 36*** 21 26 99 60 114 4 4 30 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												3		3	
10 Oct. 16	9 Sept. 23		7.35	36000	21	26						L A		1	
12 Dec. 9 7,42 510 50 36 91 55 53 16 4 5,5 2											18	3.5		5.4	
13 Jan. 5/55 7,32 500 22 36 8.9 58 17 4 4.0 3 4 4.5 3 4.4 95.5 7.4 17 4 5 2 3 4.5 4.5 5 5 7.1 4 4.0 3 3 4.5 5 5 7.5												3		3	[· · · · · · · · · · · · · · · · · · ·
14 Feb. 3	2 1		7 00						//		10	1 4	5.3	2	
15 Mar. 3 7,23 435 58 43 118 70 18,5 4 3 5 2 3 7 May 6 7,34 100 13 18 82 62 18 5,5 5,5 3 3 3 3 3 3 3 3 3							8.9	1			17		4.0	3	
6 Apr. 6 7,39 175 31 34 108 80 18 5,5 5,5 2 2 3 3 4 108 8 8 1 8 5 5,5 5 2 2 3 3 3 3 3 3 3 3	5 Mar. 3		7.23	435	38							1 4	5	2	
8 May 6 7-34 100 13 18 82 73 60 117 4 3 9 9 9 9 9 10 9 10 9 10 13 18 82 73 60 118 2.5 2 2 17 4 9 10 10 10 10 10 10 10 10 10 10 10 10 10			7.39									5,5		2	
9 July 6 7,18 90 10,5 13 80 56 17 3 3.0 3 1 Sept. 13 7,07 125 20 22 66 7 188 5 3.0 3 3 1 Sept. 13 7,07 125 20 22 67 188 5 3.0 3 3 1 Sept. 13 7,07 125 20 32 48 6 67 188 5 3.5 1 3 Nov. 15 7,60 270 32 43 75 188 6 4.4 5.0 2 4 Dec. 8 7,61 175 25 36 6 65 18 4.4 4.5 2 5 Jan. 4/56 7,42 190 22 28 6 67 20 3.5 3.0 3 5 Jan. 4/56 7,42 190 22 28 6 67 20 3.5 3.0 3 6 Feb. 8 7,27 165 27 29 72 17 4.3 4.2 4 4.5 2 7 Mat. 3 7,31 122 27 32 8 Apr. 11 7,444 105 19.2 23.5 79 24 4.4 2.3 3 8 Apr. 11 7,444 105 19.2 23.5 79 24 4.4 2.3 2.5 1 8 Apr. 11 7,444 105 19.2 23.5 79 24 4.4 2.3 2.5 1 1 July 4 7,21 198 15 18.5 45 112 3.2 1.5 2 1 July 4 7,72 198 15 18.5 45 112 3.2 1.5 2 1 July 4 7,73 133 17 1.5 15 1.5 2 1 July 4 7,73 133 17 17 1.4 1.5 5 1 July 5 7,78 145 25.9 28.9 73 60 14 5 1 July 6 7,7 7,2 125 22.9 24.8 68 57 18.0 3.2 2.2 4 4 Oct. 17 7,7 2 125 22.9 24.8 68 57 18.0 3.2 2.5 2.4 4 4 Oct. 17 7,7 2 152 22.9 24.8 68 57 18.0 3.2 2.5 2.4 4 1 July 6 7,7 7,3 145 25.9 28.9 73 60 14 5 2.8 9 1 July 6 7,7 7,3 145 25.9 28.9 73 60 14 5 2.8 9 1 July 7 7,4 103 28 34.0 70.0 16 5 3.8 2.3 1 July 8 7,5 7,5 12.2 16.0 133 31.5 1 July 8 7,4 103 28 34.0 70.0 16 6 5 3.8 2.3 1 July 8 7,5 7,5 12.2 16.0 133 38 14 5 2 June 5 7,2 67 12.5 14.0 18.5 11 17 7 4 4.8 3 2 July 2 7,3 133 105 28.5 31.5 3 July 2 7,3 105 28.5 31.5 3 July 2 7,3 105 28.5 31.5 3 July 2 7,4 103 32 8 34.0 70.0 123 18 18 3 3.0 0.0 7.0 1.0 18 21.8 25.0 1 2 July 2 7,4 103 32 8.5 34.0 70.0 123 18 18 3 3.0 0.0 7.0 1 2 July 2 7,4 103 32 8.5 34.0 70.0 123 18 18 3 3.0 0.0 7.0 1 2 July 2 7,4 103 32 8.5 34.0 70.0 123 18 18 3 3.0 0.0 7.0 1 2 July 2 7,4 103 32 8.5 34.0 70.0 123 18 18 3 3.0 0.0 1 2 July 2 7,4 103 32 8.5 34.0 70.0 123 18 18 3 3.0 0.0 1 2 July 2 7,4 103 32 8.5 34.0 70.0 123 18 4 5 5 3 July 3 7,3 7,4 14 16 18 1.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1			7.54					70				4	3		
No. report 125 20 22 28 67 188 5 3.5 1 2 2 2 2 2 2 2 2 2	9 July 6												2 2 0	2	
2 Oct. 5 7,444 280 322 488 677 188 3 3.5 1 2 3.6 4 48 5.0 2 3.7 4 4 280 37 5 7.6 1 18 5 7.6 27 27 32 43 5 7.6 1 18 5 7.6 27 29 7 75 18 5 7.6 1 18 7.6 1 175 25 36 6 65 18 18 4.4 4.4 4.5 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			No report	125	1 20					1	. /	1 2	1 2.0	1 2	1
3 Nov. 15	2 Oct. 5		7.44									5		1	1
Sept. Sept	3 Nov. 15		7.60	270	32									2	
6 Feb. 8 7,27 165 27 29 72 17 4.0 3.0 3.0 3 4.2 4 8.2 4 17 4.3 4.2 4 1.7 14.4 10.5 19.2 27 32 2 7.4 18.6 6.2 8.3 3 3 3.9 May 2 7.33 13.5 16 19.5 8.6 14 19.5 19.2 21.5 2 1.5 2 1.5 2 1.5 1.5 2 1.5	4 Dec. 8		7.61	175	25	36								2	
6 Feb. 8 7,27 165 27 29 72 17 17 17 17 17 18 17 17 17 18 17 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18			7.42	190	22	28			67	i i	20	1 20	1 20	i .	
Mar. 3					27	29									
9 May 2 7,33 135 16 19 66 19 4 4.4 2.3 2.5 10 1 July 4 7,26 95 8.6 14 15 15 15 12 3.2 1.5 2 2 2 2 Aug. 15 7,18 104 15 16,5 5 11 12 4 1.7 1.4 1.8 1.9 3 5.9 1.2 1.5 7.18 104 15 16,5 5 11 12 4 1.7 1.4 1.4 1.9 3.5 11 1.7 1.4 1.4 1.5 3.5 11 1.7 1.4 1.5 3.5 11 1.7 1.4 1.5 3.5 11 1.7 1.7 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5											18			3	***************************************
0 June 7 7,12 118 15 18.5 18.5 14 45 12 3.2 1.5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 May 2		7.33											2.5	
1			7.12			18.5								3	
Sept. 26											12	4		1.4	
Oct. 17 7,2 152 22.9 24.8 73 60 14 5 2.8 9					17			69	54	1					
Dec. 5 7.69 218 34.6 36.0 133 67 17.6 5.4 3.0 0.7 Jan /57 No sample sent out Feb. 10 7.2 103 28 34.0 70.0 16 4 3.1 1 135 18 4 5.2 3.9 3 3 3 3 3 3 3 3 3	Oct. 17		7.2	152	22.9	24.8		73							
Jan												5		3	
Feb. 20 7.4 103 28 34.0 70.0 16 4 3.1 1 3.1 1 3.3 3.3 105 28.5 31.5 65.0 16 5 3.8 2.3 3.8 3.5 3.5 4 3.5 3.5 4 3.5 3.5 4 3.5 3.5 4 3.5 3.5 4 3.5 3.5 4 3.5 3.5 4 3.5 3.5 4 3.5 3.5 4 3.5 3.5 3 3.5 3 3 3 3 3 3 3 3 3	Dec.		7.09	210	24.0	30.0		133	67		17.6	5.4		0.7	
Mar. 13		57	No sample	sent out	20	1 2/4						,			
Apr. 10	Mar. 13														
May 8 7.5 7.5 12.2 16.0 138 18 3 5.0 2 June 5 7.2 67 12.5 14.0 123 16 5 1.7 3 July 26 7.1 60 30.5 32.5 111 17 4 3.5 3 Aug. 28 7.4 110 32 38.5 107 17 4 4.8 3 Cet. 30 7.4 60 26 34.5 107 17 4 4.8 3 Cet. 30 7.4 60 35 49 130 19 4 3.2 Dec. 11 7.7 90 37.0 48.0 83 130 19 4 3.2 Jan. 9/58 7.2 50 37 54 111 135 18 4 5.0 Feb. 10 7.3 60 30 33.5 33.5 Mar. 5 7.1 80 19.1 32.5 128 140 20 4.5 5.4 Apr. 3 7.6 35 48 63 1327 155 21 5.5 5.6 May 7 7.2 50 26 35 108 130 17 6 3.0 June 4 7.0 60 19 25 101 127 16 6 3.5 Aug. 14 7.1 75 15 16 95 113 15.2 4 2.8 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 7.0 7.0 7.0 Sept. 10 7.3 7.0 7.0 7.0 7.0 Sept. 10 7.3 7.0 7.0 7.0 7.0 Sept. 10 127 130 18 5.5 1.8 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 18.4 8 7.0 Sept. 10 7.3 105 13 14 104.6 121 121 120 120 120 120 120 120 120 120 120 120 120 120	Apr. 10		7.0	108	21.8							1 / 1			
July 26															
Aug. 28			7.1								16				
Sept. Report lost Coct. 30 7.4 60 26 34.5 121 17 5 5.0 3 17.0 130 19 4 3.2 3 17.0 18 14 17.7 19.0 37.0 48.0 83 130 19 4 3.2 3 19.0 18 19.0 18 19.0	Aug. 28		7.4	110											
Nov. 20	Oct. 30	1			26	24 6						,			
3 Dec. 11 7.7 90 37.0 48.0 83 130 18 4 5.0 4 2 Jan. 9/58 7.2 50 37 54 111 135 18 4 5.3 . 3 Dec. 11 0 7.3 60 30 33.5 111 135 18 4 5.3 . 3 Mar. 5 7.1 80 19.1 32.5 128 140 20 4.5 5.4 0.4 . 4 Apr. 3 7.6 35 48 63 132.7 155 21 5.5 5.6 5.4 . 4 June 4 7.0 60 19 25 1087 130 17 6 3.0 1.3 . June 4 7.0 60 19 25 101 127 16 6 3.5 121 127 16 6 3.5 121 127 16 6 3.5 121 127 127 127 127 127 127 127 127 127	Nov. 20		7,3	60	35									3	
Jan. 9/58 7.2 50 37 54 111 135 18 4 5.3 5 5 5 5 5 5 5 5 5	Dec. 11		7,7	90											
Feb. 10 7.3 60 30 33.5 140 20 4.5 5.4 0.4 Mar. 5 7.1 80 19.1 32.5 128 140 20 5 5.5 1.0 Apr. 3 7.6 35 48 63 1327 155 21 5.5 5.6 5.4 May 7 7.2 50 26 35 1087 130 17 6 3.0 1.5 June 4 7.0 60 19 25 101 127 16 6 3.5 July 3 7.3 70 14 16 1127 130 18 5.5 1.8 Aug. 14 7.1 75 15 16 95 113 15.2 4 2.8 1.8 Sept. 10 7.3 105 13 14 104.67 121 18.4 3.8 2.0 3.3 Sept. 10 7.3 105 13 14 104.67 121 18.4 3.8 2.0 3.3 The second contact of the second		58		50	37	54		111		135	10	4 1		,	
Mar. 2 Ar. 30 19,1 32,5 128 145 20 5 5,5 1.0 Apr. 3 7,6 35 48 63 1327 155 21 5,5 5,6 5,8 May 7 7,2 50 26 35 1087 130 17 6 3,0 3,5 June 4 7,0 60 19 25 101 127 16 6 3,5 July 3 7,3 70 14 16 1127 130 18 5,5 1,8 Aug. 14 7,1 75 15 16 95 113 15,2 4 2,8 3,8 Sept. 10 7,3 105 13 14 104,67 121 18,4 3,8 2,0 3,8 Sept. 10 7,3 105 13 14 104,67 121 18,4 3,8 2,0 3,8 Aug. 14 7,1 7,5 15 16 104,67 121 18,4 3,8 2,0 3,8 Sept. 10 7,3 105 13 14 104,67 121 18,4 3,8 2,0 3,8 Sept. 10 7,3 105 13 14 104,67 121 18,4 3,8 2,0 3,8 Sept. 10 7,3 105 13 14 104,67 121 18,4 3,8 2,0 3,8 Sept. 10 7,3 7,5 7,5 7,5 7,5 7,5 7,5 Sept. 10 7,3 7,5 7,5 7,5 7,5 7,5 Sept. 10 7,5 7,5 7,5 7,5 7,5 Sept. 10 7,5 Sept.			7,3		30	33.5								0.4	
May 7 7,2 30 40 60 63 64 64 64 64 64 64 64								1226		145	20	5	5.5		
July 3 7.3 70 14 16 1127 130 18 5.5 1.8 July 3 7.3 70 14 16 1127 130 18 5.5 1.8 Aug. 14 7.1 75 15 16 95 113 15.2 4 2.8 2.8 Sept. 10 7.3 105 13 14 104.6f 121 18.4 3.8 2.9 2.3	May 7							1004						3.3	
July 3 7.3 70 14 16 1127 130 18 5.5 1.8 2 Aug. 14 7.1 75 15 16 95 113 15.2 4 2.8 2.8 Sept. 10 7.3 105 13 14 104.67 121 18.4 3.8 2.9 2.3	June 4		7.0	60	19	25		101		127				2.3.	
Sept. 10 7.3 105 13 14			7.3					112†		130	18		1.8	2	
104,01 121 18,4 3,8 7,0 14			7.3					201 60							
Oct. 1 7.3 58 60ff 94.7 120 15.6 4.4 3.7	Oct. 1		7.3	58	60ft ,			94.7					2.9	1,1	1.0
								97.6		120	16.8				4.0

¹³ 13 14 60†† 82 92††

^{*} Analyses by Dearborn Chemical Co. Ltd. and supplied by the Abitibi Paper Company Ltd.

** Iron and Aluminum as R₂O₃

*** Mix-upin samples suspected here. This analysis could be for raw water after filtering using diatomaceous earth.

†* Calculated

†* Jackson Candle Units

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

A	Alkalinity					Chl	oride	Sil	lica			Hardness			T
"p"	"'M''	''ОН''	Carbonate	Bicarbonate	Sulphate	as	as	Total	Reactive	Non permanent	Permanent	Magnesium	Calcium,	Total	No.
(CaCO ₃)	(CaCO ₃)	(CaCO ₃)	(CO3)	(HCO ₃)	(SO ₄)	(NaCl)	(CI)	(SiO ₂)	(SiO ₂)	(CaCO ₃)	(CaCO ₃)	(CaCO ₃)	(CaCO ₃)	(CaCO ₃)	
at IROQUO	IS FALLS,	ONTARIO	(See also	o page 32)										
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	57 53 58 55 48 47 46 45 40 55 46 41	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	68 64 70 66 57 56 55 54 48 66 55 49	12 13 15 12 10 12 9 15 12 12 12 10.4		2 5 2 3 2 2 1 1 1 2 3 4	32 44 42 48 22 24 25 14 35 48 40 24		57 53 58 55 48 47 46 45 40 55 46 41	6 7 8 10 0 10 4 7 12 3 9	16 15 19 16 9 9 10 10 17 14 12 15	47 45 47 49 39 48 40 42 35 44 43 40	63 60 66 65 48 57 50 52 52 52 58 55	1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0	51 52 48 55 50 48 47	0 0 0 0 0	0 0 0 0 0 0 0 0	61 62 58 66 60 58 56	9 10.5 12.5 13 0 8.5 9	16	2 2 4 4 4	20 23 38 26 2.7 9		51 52 48 55 50 48 47	6 8 13 13 4 6	14 17 15 22 11 10	43 43 46 46 43 44 42	57 60 61 68 50 54 55	13 14 15 16 17 18 19 20
0 0 0	51 56 53 49	0 0 0	0 0 0 0	61 67 64 59	13 11 13.6 13.6		1 2 2 4	17 38 46 42		51 56 53 49	14 9 14 15	21 19 22 18	44 46 45 46	65 65 67 64	21 22 23 24
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 53 53 66 52 34 43 50 50 50	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 64 64 79 62 40 41 52 60 60 56	13.6 10.4 12 12.6 14 11 10 14.8 11.8 13 8 12.3	6 8 5 5 6 3 1 4 12 5		21 36 26 21 21 15.2 13.6 16.8 22.8 24 30 29.3		50 53 53 66 13 34 43 46 50 47 54	13 8 11 12 52 10 10 8 11 6	14 18 18 18 17 13 15 16 13 21 21	49 43 46 60 48 31 29 35 44 35 35 44	63 61 64 78 65 44 44 51 57 56 56	25 26 27 28 29 30 31 32 33 34 35 36
0 0 0 0 0	48 48 55 43 47 45 45	0 0 0 0 0	0 0 0 0 0	58 58 66 52 56 54 54	10 12.2 12.7 9 12 12 13	1 5 6 5 6 6 8		16.4 15.0 12.8 22.9 15.2 18.4 19.4	5.0	48 48 55 43 47 45		9 12 9 17 12 11 15	40 39 40 45 41 38 42	57 60 64 57 59 56	37 38 39 40 41 42 43 44 45
0 0 0	47 51 49	0 0	0 0 0	56 61 59	14 12 12	6 10 9		34.0 17.3 40.8	4.3 5.4 4.7	47 51 49		14 12 12	43 47 46	61 63 61	46 47 48
0 0 0 0 0 0 0	51 55 60 62 54 51 58 48 52 46 46 51	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	61 66 72 74 65 61 70 57.5 62.4 55.9 56	15 11.4 15.6 14.3 11 9.1 9 8.1 10.5 14.1 11.6		1 0.6 1.8 3 0.6 1.2 1.8 1.2 0.6 0.6 3.5	38.2 42.0 40.0 39.6 26.0 23 17.0 19 18.5 4.8 3.4 16.6	5.0 5.1 4.9 5.6 4.7 4.4 4.1 4.7 1.1 1.9	51 55 60 62 54 51 58 48 52 46 46 51	11 12 10 12 12 12 12 12 19 6 9 11 13	16 18 20 22 24 24 22 16 15 18 17	46 49 50 52 42 39 44 38 46 39 42 44	62 67 70 74 66 63 66 54 61 57 59 62	49 50 51 52 53 54 55 56 57 58 59 60

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

				7	el essen	0-6					4 1
	231	1	Takens	= -ca 	Total	Nac	2.57.2	1	Ask Comment	()-m(
July 1997	7.4	N.	w11		LI2			-	1 A 1 1 - N -	su _a syl 1 ₂	 S
Te. a	7.4	Second	Su		118.1					90, 190 Î 1	
Terror t	7.4	\$r \$r	S ₁		118,1		4	1 4 4 1 2 2 3	0 A 0 0 - N - 1 k 4	90, 190 Î 1	
1 m . 1 Nor. 1 Apr. 2	7.4 7.9 7.4	11 11	st. e be		118.1 111 a 121 9		182		0 A 0 0 - N - 1 A A A	su _a syl 1 ₂	
1 e . 1 Nor. 1 Apr. 2 Mar. 18	7.4 7.9 7.4 7.0	\$1" %"5	Seg. Sel. C. Seg. C. Seg.		138,1 111 - 121 - 121 -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 4 2 3 2 4 1 4 7	0 A 0 0 - N - 1 A A A	1 11 11 11 11 11 11 11 11 11 11 11 11 1	
1 m . 3 Note . 3 Apr 2 Mar 18	7.4 7.9 7.4 7.0 7.1	47 55	they or the or the or the		138,1 111 a 128 a 87., 1 3,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 4 1 4 4 1 4 4 1	1 A 2 E - N 1 4 3 - 1 5 A 1	1	
1 e	7.4 7.9 7.4 7.0 7.1 6.9	47 85 74	May or May of May of May of May		108,1 111 a 122 a 27 a 1 a 1		. 1 A	18 8 18 1 20 1 18 1 18 1 18 1	1 A 2 E - N 1 4 3 - 1 5 A 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 e	7.4 7.9 7.4 7.0 7.1 6.9	47 85 74	ta, or ta f ta, f ta		118,7 611 a 124 4 64 1 3, 14.5		. 1 A	18 8 18 1 20 1 18 1 18 1 18 1	1 A 1 D - N - 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1		
1 c	7.4 7.9 7.4 7.0 7.1 6.9	54 47 55 74 74 34 74	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		138.* 111 121 - 6 - - - - - - - - - - - - - - - -			18.9	1 A 2 1 - N - 1 4		
1 m . 1 Vitt. 1 Apr. 2 Mar. 18 In m . 1 Apr. 2	7.4 7.9 7.4 7.0 7.1 6.9	47 85 74	ta, or ta f ta, f ta		118,7 611 a 124 4 64 1 3, 14.5		. 1 A	18 8 18 1 20 1 18 1 18 1 18 1	1 A 1 D - N - 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Analyses by Dearbom Chemical Co. Ltd. and supplied by the Abitibi Paper Company Ltd.
 Jackson Candle Units

TABLE II - (Continued)

Chemical Analyses of Surface Waters in the Hudson Bay Drainage Basin

	Alkalinity					Chle	oride	Si.	lica			Hardness			
пр"	''M''	"ОН"	Carbonate	Bicarbonate	Sulphate	as	as	Total	Reactive	Non permanent	Permanent	Magnesium	Calcium	Total	No.
(CaCO ₃)	(CaCO ₃)	(CaCO ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(NaCl)	(CI)	(SiO ₂)	(SiO ₂)	(CaCO ₃)	(CaCO ₃)	(CaCO ₃)	(CaCO ₃)	(CaCO ₃)	
ID ()()()	NC CALLC	ONTARIO	/01-		, \										
at IROQUO	58 54	ONTARIO 0 0	(See also	71 65,5	13.2		3 4	15.7 17,3	3.5 3.7	58 54	8 13	19	47 48	66 67	1 2
	58 54 76		0.1 0.1 0.4	71 65.5 92	13.2 14.7 13.5		3 4 5.0 4.0	17.3 22.0	3.7 4.5	54 76	13 9		48	67 85	1 2 3 4
	58 54 76 56 39	0 0 0	0.1 0.1 0.4 0.2 0	71 65.5 92 68 47.5	13.2 14.7 13.5 16.6 6.1		4.0 5.5	17.3 22.0 23.8 18.4	3.7 4.5 5.4 3.9	54 76 56 39	13	19 19 21 14	48 66 49 35	67 85 70 49	1 2 3 4 5 6
	58 54 76 56 39 51 46	0 0 0 0 0	0.1 0.1 0.4 0.2 0	71 65.5 92 68 47.5 62.2 56.0	13.2 14.7 13.5 16.6 6.1 10.3 7.9		4.0 5.5 4.5 4.0	17.3 22.0 23.8 18.4 18.2 42.0	3.7 4.5 5.4 3.9 4.3 3.3	54 76 56 39 51 46	13 9 14	19 19 21 14 16	48 66 49 35 44 38	67 85 70 49 60 53	1 2 3 4 5 6 7 9
	58 54 76 56 39 51	0 0 0	0.1 0.1 0.4 0.2 0	71 65.5 92 68 47.5 62.2	13.2 14.7 13.5 16.6 6.1 10.3		4.0 5.5 4.5	17.3 22.0 23.8 18.4 18.2	3.7 4.5 5.4 3.9 4.3	54 76 56 39 51	13 9 14	19 19 21 14 16	48 66 49 35 44	67 85 70 49 60	1 2 3 4 5 6 7 8 9

Chemical Analyses of Surface Waters in the Labrador Drainage Basin

		Stream d (Second	lischarge l-feet)	j	P 1	de				Suspend	ed		olved sol		Loss	Specific	
Date of collection	(Days)	On sampling date	Monthly mean	Water temp- erature	Oxygen consume by KMnO ₄	Carbon doxid		(Hazen)	(Units)	Dried 1gc 105° C. 55	at 50°C.	P,P,M,	Tons per ocre- foot	Tons per day	on tgnt- tion at 550°C.	conduct- nace K × 10 ⁶ nt 25 ⁶ C.	Calrium
-	(178937	!		17 117			I	I (OBIES)	[Calla)	I I		1		STATI	ON NO. 18	- PAYNE	-
I leave the	mun	71,000		SU	4.0	1	4.5	2=	-							la.	-
														STAT	ION NO. 2	B - LEAF	RIVE
2 May 31/6	35:38	110,000	p -	3.4	h-	2	6,5	; \$	1							12.00	L
3 Sept. 15	91:116	36,600	1	41	4.4	_1	4.7	20	^				11)		_	11.2	l a
,							,		T	r				STATIO	N. N 418	- K 'K + A)	813
4 A.e. 15 6 A.e. 15 6 A.e. 15 6 A.e. 15 7 Sept. 2 8 A.e. 15 7 A.e. 15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Law to te High to te Law to te Law to te then to te Law to te		43 42 24	4.7		6.8 6.9 7.1 5.0 6.2 6.7 6.9	15 15 15 10 10	0.4 3 0.4 0.8 0.8			23.0 27.0 27.0 30.5			17.2 17.3 11.6	27	2 3 3,
* Sampled a	t wharf																
1	(_	T	-		_					STATE	N NC. 48	- [AB - H	-
1 May 2 3 2 Sept. 11	111	000,00		43		1 2	(.0	35	0.4						,	15	
						1		L		`					1		
1 Aux. 20/60	142,142		****		. 5,8	1,	6.3	25					STA	HON NO.	· B - k1	VIAPINKA" T	911
1 80 20 10	96 121	-<.000	· · · · · ·		1 0.1	1 1	0.8	35	0.4						1	18.	Į i
												STATION	NO. 68	- STAMP	Y BAY PI	IR LA	1 E Mr
5 Sept. 12 a	14.111	13,200	ļ	50	۲.۶	5	6.0	25	0							11.	
														STAI	tox se.	'is — SQLA'	T ; A
		<u> </u>	1			. 3	4									98.	В.
* Sample (r south n	n.I															
-1	I	1-		·,				1	Y	11				STATE	N NO. 88	= WHALE	
7 June 3 60	31,34	85,000		. 41	ļ	. 4	6.5	25	2							1 7.8	1.
F	,			,										STATIO	N NO. 9B	- GEORGE	RIV
8 Sept. 13/59	53:64	l ow tide		. 46		. 8	7.2	5	0							29,582	229
												5	TATION	NO, 10B	- KAPITO	UKTALL II	CRI
9 Aug. 31/60	28:29				5.3	2	6.6	15	0.4							27.2	1.
										STATION	NO. I	1B - IGL	DUTALL	K CREE!	(GEORGI	E RIVER D	ELT

Chemical Analyses of Surface Waters in the Labrador Drainage Basin

(In parts per million)

(ii) part pc.																									
	Iton (Fe)					t	Alk	alis											Hard as C	ness aCO ₃	tuents	nm	lex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability inde	No.
(Mg)			(Mn)	(AI)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(C1)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)							
near ISLAND RAPIDS, at 60°03' 15" N - 71°13' 30" W - QUEBEC																									
0.4	0.03	0.0	0.0	0.13	0.0		0.5	0.3	0.0	0.0	2.3	2.0	1.3	0.0	0.0	0.6			0.9	2.8	6.8	21	-4.5	16	1
at 58°38' N - 70°25' W - QUEBEC																									
0.2	0.27	0.0	0.0	0.0	0.0	0.0	0,6	0.3	0.0	0,0	4.6	0.7	1.0	0.0	0.1	1.7	0.03		0.0	3.6	8.0	25	-4.2		2
0.7	0.06	0.01	0.0	0.10	0.0	0.0	0.8	0.3	0.0	0.0	3.9	2.2	1.5	0.0	0.0	1.6	0.00		1.4	4.6	9.8	24	-4.2	15	3
at FORT CHIMO at \$8009' N - 680 19' W - QUEBEC																									
0.9	0.05	0.01	0.0	0.05	0.0	0.0	0.7	0.4	0.0	0.0	9.8 10.1	2.0 1.2	0.7	0.0	0.2	1.4			1.7	9.7 9.5	13.6	13 13 16	-3.1 -3.0 -2.7	13	5
1.0 0.9 1.3	0.12 0.04 0.07	0.02 0.02 0.00	0.0	0.0	0.0	0.0	1.0 1.0 0.9	0.1 0.4 0.5	0.3	0.0	12.7 10.5 12.9	2.8 2.5 4.0	0.9 1.1 1.6	0.0	0.2 0.4 0.1	2.0 2.1 2.5			1.6	11.3 10.2 13.3	17.2 16.2 20.5	16 17 12 19	-2.7 -3.1 -3.2 -3.1	13	6 7 8
1.5	0.06	0,02	0.0	Trace		0.0	1.6	0.5	0.0	0.0	15.0	4.3	1.7	0.0	0.1	2.3	0.01		2.7 1.6 3.4	13.9	22.5	15	-3.1 -2.8	13	9
	1.4 0.07 0.00 0.0 0.0 0.0 0.0 0.0 1.5 0.5 0.0 0.0 14.7 4.5 1.6 0.0 0.3 3.0 0.00 3.4 15.5 24.0 17 -2.8 13 10																								
at GOS				1	1	1			7	1			1		ı							,,,,,			
3.8	1.1	0.00	0.0	0.06	0.0	0.0	1.4	1.0	0.0	0.0	22.4	0.9	1.8	0.0	0.4	2.6	0,01		0.0	16.3	23.5	14	-3.2	13	11
1.1 at 55° 4	0.09	0.00 68º 15'	₩ - O	UEBE	0.0	0.0	0.7	0.2	0.3	0.0	6.3	2.3	0.6	0.0	0.1	Z.,/	0.00		1.0	6.5	11.0	10	-3.9	15	
0.5	0.10	0,00	Trace	i	0.0	0,0	0,6	0.3	0.3	0.0	2.3	2,1	0.5	0.0	0.1	1.6	0.06		1,6	3,5	7,4	26	-4.6	16	13
0,8	0.13	Trace	0.0	0.06	0.0	0.0	1.2	0.3	0.1	0.0	4.8	2.7	0.5	0.0	0.0	3.3	0.00		0.8	4.7	11.7	33	-3.9	15	14
at FOR	T McK	ENZIE	at 56°	50' N -	- 68° 57	7' ₩ — (QUEBE	С																	
2.9	0.03	0.00	0.0	0.08	0.0	0.0	0.6	0.4	0.0	0.0	25.6	5.4	0.5	0.0	0.0	2.0	0.0		5.3	26.3	30.2	4.6	-2.4	12	15
at 54°50' N - 66°47' W - near SCHEFFERVILLE, QUEBEC																									
5.4	0.03	0.00	0.0		0.0	0.0	0.9	0.9		0.0	46.3	11.2	0.5	0.0	0.0	3.5			6.7	44.7	54.1	4.1	-1.5	10	16
at 57°4				JEBEC 10.02		0.0	0.5	0.5	0.1	0.0	7 1	0.9	0.6	0.0	0.1	2.4	0.02	1	0,8	6.6	10.7	13	-3.0	14	17
	0.7 0.28 0.02 0.0 0.02 0.0 0.0 0.5 0.5 0.1 0.0 7.1 0.9 0.6 0.0 0.1 2.4 0.02 0.8 6.6 10.7 13 -3.9 14 17 at KAGNERLOUALOUDJOUARK MOUTH, QUEBEC																								
733		1	0.01	ARK	0.0	0.0		210	T	0.0	70.9	1,520	10,600	1.4	0,0	0.8	Trace		3,518	3,583	19,083	76	-0.1	7.5	10
(GEOR				OUEBI	1	0.0	1,7,0	210		1.0.0	79.0	1,020	10,000	1 1.4	0,0	0,8	Trace		5,510	5,705	12,005	10	-0.1	(+)	10
0.5		Trace		Ţ	0.0	0.0	2.1	0.4		0.0	5.1	3,6	4.2	0,0	0,0	1.6		1	1.7	5.9	16.7	36	-4.1	15	19
QUEBE	C			-												**********									
0.3	0.01	Trace	0.011	0.08	0.0	0.0	0.9	0.2		0.0	2.0	1.7	2.2	0.0	0.0	1.3		Ī	2.1	3.7	8.2	31	-4.8	16	20
44	1 1					-																			

63

†† Dissolved

Chemical Analyses of Surface Waters in the Labrador Drainage Basin

		Stream d (Second			7				Target state	-Ujours)	100	Berlins on components that we come (Dispersed smalls)				1
No. Of collection	James C.	LL I = 6	No.	Grane. 1673: 6193-46	Oxygen consumed by KMnO.	Carbon doxide (calculated)				Hand Hand	, 30 mg	Laws Jest Julya- Smit	10.0			
														MI ITEL	1100	
-1	007					100	11	T vá			1				10.0	
† Dischar	e records a	t outlet of	Flour Lake						e area 13	,000 square mil	es.	*************				
STATION NO. 13B - UNKNOWN RIVER (BAIKIE LAKE)																
A 100 110	10.00	1,410.0				1 ;		, r								-
† Dischar	ge records a	at 35°26' 48'	"N - 64°4"	51 36" W -	- draini	age ate	7,70	0 square n	nles.		7				.048	14
												STATIO	N NO TAI	B = FLOD	0 01110	(1 AS C)
A Dyna Ki						1.2.1		1	1		1	311110		D = P.C.N		
-							-				1				-51	3.5
-					-	1 1							STATION	NO, 15B	- GABBR	OLAKE
1 Tour S						11.0	*, A	1 15							20.1	
													STATI	ON NO. 16	D Clus	Diver
5 June 8/6	ردد ۱۰ ا] ₁ '		T	,]			1	011111			_
						-					1	1 !	- !		20.4	
-	· · · · · · · · · · · · · · · · · · ·		-	-	_	ī					1	τ ,	1411	N No. 11		ARR'
A .rue o	to rich a reco				·		7,4	1			_				w ₁	3.4
Na - ; . e 1		10.														
.1.						Т					SEATION NO	1. 188 - 9	IRE AM o	ions B. AN	E . E ! *-	11451
7 Auruna or	spn cata.	0				2	1.3				1				17.3	-Cox
110405 0.0	Transfer	and bbu														
-	I =	I				, ,	-			3	TATION NO		sac in 2	2-2-	211 V	1 Ax 1
Aurumn d						2	7.8								1.4	14.8
Nickel O.C	PPT, er bal	. C the														
-r	r											1:101 1	1, 115 =	117711 2	4 6 61 1	15.7
1 Aug. 30 1	2 2 34			<>	7	<	6.5	35	<				1		1 -	

Chemical Analyses of Surface Waters in the Labrador Drainage Basin

(In parts per million)

		-	~									in par	to per	7732 1 1 2	.0117										
Magnesium	Total (F		Manganese	Aluminum	Copper	Zinc	Sodium	alis botassium	(FH Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron		lness aCO ₃ Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
(Mg)		ł	(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO3)	(HCO ₃)	(SO ₄)	(C1)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)		L	1				_
at GR	ND FA	LLS, I	ABRA	DOR							,														
	0.09	0.02	0.01	0,0	0.0	0.0	0.5	0.3	0,0	0.0	11.1	1.0	0.5	0.0	0.2	2.3			1,6	10.7		9.0			1
†† Diss	olved																								
at THO	MAS F	ALLS,	LABR	ADOR													ŗ	,			,				
1.5		Trace	0.01	0,01	0.0	0.03	1.0	0.7	0.1	0.0	12.4	2.1	1.0	0.05	0.1	3.1	0.00		0.8	11.0	17.8	15	-3.3	13	2
††Diss																									
		N - 64																		т—					
0.6	0.22	0.05	0.01	0.0	0,0	0.0	0.4	0.4	0.0	0.0	7.4	0.8	0.4	0.0	0.2	2.7			0.8	6,9	11.1	10	-3.1	13	3
		30" N -	- 65º 12	' W -	LABRA	ADOR																			
0.9	0.05	0.0	0.0	0.0	0.0	0.0	0.5	0.3	0.0	0.0	14.7	1.4	0.6	0.0	0.2	2.0			0.0	11,6	16.3	8,4	-2.4	12	4
about '	30 481	N - 65'	33' W	- LAI	BRADO	R																			
0.8	0.04	Trace	0.011	0.0	0.0	0.0	0.5	0.2	0.0	0.0	13.3	1.2	0.4	0.0	0.2	2.3			0.0	10.9	15.2	9.0	-2.7	13	
ttDiss	olved			1																					
						1	30" ₩ -		EC .				!								l		1		_
5.0 ††Diss	0.11	0,0	0.01	ţ	0.0	0.0	0.4	3.0		0.0	49.5	4.0	0.8	0.0	0.0	3.7			0.0	39.7	48.8	2.0	-1.5	10	6
		N - 66) 401 m	OU	EDEC																				
3.1	0.02	0.0	0.0†	T .	0.0	0.0	0.2	0.3		0.0	26.2	3.7	0.3	0.0	0.1	4.8	0.03		2.5	24.0	29.8	1 0	-2.1	12	_
††Diss		0.0	0.01	h · · · · ·	1 0.0	0.0	0.2	0.5		0.0	20.2	3.1	0.5	0.0	0.1	4.0	0.05		2.0	24.0	29,61	1.0	2,1	12	
about 4	10° 42'	N - 66	045' W	- OUI	EBEC																				
8.8	0.04	0.0	0.011		0.0	0.0	0.2	0.2	ļ	0.0	85.5	3.1	0.2	0.0	0,0	3.5	0.02		2.0	72.1	72.6	0.3	-0.6	9.0	8
††Diss	olved						·			·															
at 520	66° N –	66º 54	W - I	ABRA	ADOR																				
1.3	0.18	0.04	0.011	0.03	0.0	0,0	0,8	0.9		0.0	21.2	1.4	1.0	0.0	0.2	2.8			0.0	12.5	23.3	8.9	-2.7	12	9

††Dissolved

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

		,						(In p	arts per	mellion)						
		Stream (Secon	discharge d-feet)		l m						ended	Resids drag	e on evaluation of the contract of the contrac	C.			Ì
Date of collection	(Days)	On sampling date	Monthly mean	Water temp eratur	Oxygen co	Carbon dioxide (calculated)		Hazer	i Lauri	Street Later.	25 (10) 26 1000c	F.F.M.	7963	2 000	100 m		
														. A*	NALD	-1191	
Superglacial	water at	Glacier So	out	1	;		1	1			!	1	1 1	-	1		
July 23/64 July 23 June 26/65 Lewis North	156:158					2 2	5.5 6.4 5.2	5 25 0								4.4 12.9 15.2	0.4
	120:173			33 34 33		2 2 3	6.1	5 80 0		• • • • • • • •						16.4 34.0 23.4	0.7
Lewis Glacu June 20/64 June 24/64 June 28 July 2 July 6 July 10 July 14 July 19 July 27 July 27 Aug. 1 Aug. 4 Aug. 8 Aug. 12		,		33 33 33 33 34 37 33 32 34 34 34 33 34 36 37 33		3 3 2 2 3 3 4 2 2 1 3 5 2 3	6,6 6,5 6,7 6,4 6,2 5,8 5,3 6,1 5,7 5,7 5,9 5,7 5,8 6,7 6,4	10 15 10 10 10 10 10 10 10 10 10 10 10 10 10								195 145 100 45.8 25.3 12.9 9.0 27.7 9.1 9.9 17.5 68.3 64.5 26.6	12.9 9.4 6,6 3.2 1.3 0.7 0.5 1.2 0.6 0.7 4.1 2.5 1.2
* Sample filt	ered when	taken															
1:				1)			1						STATI	ON NO. 2A	- LEWIS (of Ac
June 27 (5a June 27b	155:157			40 36		3 7	6.7	0								79.8	5.1
Sampled at					16		7.4	10	0,5				<u>1</u>	TATION	NO. 3A - 1	COUNDIL A	K RIV
					1 1					r					STATIO	ON NO.4A	- CRE
Sept. 23 57	112-116 1,				3	1	7.6	15	1 .			50.4			25.2	51.8	7.3
															STATI	ON NO. 5A	- LA
	10 14 .					1	5.8	15	1 .							45.7	4.4
a small unn.		about 10	niles north	of Lak	ce Harbou	ir.									STATI	ON NO. 6A	- LA
Aug. 15 64				3"		10	4.8	5	0.5							160	17.9
* a small unn	wwed iske																
Aug. 14 65	60 62				1.4	3	7,3	15				·		STA	TION NO.	7A - TREE	RIVI

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

								Cito	illicai	/Alkeal J	'Ses 01	(In pa				71104	C Drain		2,40,711						
	Iro (F	n e)					Alka	lis											Hard as C	ness aCO ₃	constituents	mn.	index	H	
(gM)	Total	Dissolved	Manganese	Aluminum	Copper	(uZ)	(Na)	(X) Potassium	Ammonia	Carbonate	(*OOH)	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	O Phosphate	Boron (8)	Non- car- bonate	Total	Sum of consti	Per cent sodium	Saturation inc	Stability index	No.
at 70°2	6° N - 7	740451				,		(4)	[(3)]		1(1.003)	1 (004)	(01)	1 (4)	1(1103)	(0103)	1 (1 04)	(2)							
0.0 0.2 0.2					!		0.1 1.0 0.9	0.0 0.6 0.1		0.0 0.0 0.0	0.5 2.4 0.1	0.7 3.1 1.7	0.3 1.9 2.7	0.01	0.1	0.1 0.6 0.1			0,6 2,0 4,4	1,0 4,0 4.5	1.9 11 7.5	17 32 30	-5.8 -4.5	17 15	1 2 3
0.2 0.1 0.4							1.8 3.8 2.9	0.2 0.7 0.4		0.0 0.0 0.0	1.6 8.3 3.0	2.4 3.8 1.0	2.8 3.2 4.8	0.04	0.1 0.6 0.3	0.2 1.0 0.2			1.3 0.0 1.0	2.6 6.7 3.5	9.2 20 12.3	58 52 61	-5.1 -3.5	16 14	5 6
3.7 2.6 1.8 0.8 0.4 0.2 0.04 0.1 0.2 0.3 1.2							13.5 10.8 8.1 3.6 2.3 1.1 0.6 2.8 0.9 1.7 5.7 7.5 3.0	1.3 1.0 0.9 0.6 0.5 0.3 0.2 0.4 0.2 0.2 0.2 0.8 0.8		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	7,2 5,4 5,7 3,4 2,9 1,1 0,0 1,6 0,6 0,5 1,0 2,1 6,9	7.0 5.0 4.0 2.4 3.5 1.7 0.7 2.1 0.8 1.6 2.6 3.6 4.4 2.9	45.8 34.0 22.7 8.8 4.1 1.7 1.0 4.9 1.3 1.5 2.6 16.2 11.2		0.4 0.3 0.3 0.3 0.2 0.5 0.3 0.0 1.3 0.0 0.0 0.1 0.0 0.4	1.6 1.2 1.2 0.9 0.6 0.2 0.1 0.3 0.2 0.2 0.3 0.7 1.0			41.4 29.9 19.0 8.3 2.5 1.6 1.4 3.5 1.5 1.8 2.1 13.4 4.7 0.4	47.3 34.3 23.7 11.1 4.9 2.5 1.4 4.8 2.0 2.2 2.9 15.1 10.4 4.1	89.7 66.9 48.4 22.3 14.3 6.9 3.4 12.9 5.6 5.4 8.9 33.4 31.8 14.1	38 40 41 40 47 45 44 54 44 54 44 59 59	-2.9 -3.2 -4.0 -4.6 -5.5 -6.0 -5.6 -5.4 -5.6 -4.3	12 13 13 14 15 17 17 16 17 17 17 17 17 15 14 15	7 8 9 10 11 12 13 14 15 16 17 18 19 20
at 70°2	5' N -	74º48'	W, BA	FFIN	ISL AND), N.W.	5.8	0.8		0.0	7.8	4.2	16 22	0.04		1.1			11.5	17.9 22.1	41.0	40 46	-3.3 -3.3	13	21 22
	6' N – (0.01		0,005	1	FFIN IS	SLAND	0.7	0.3	2.5	0.0	22.3	1.6	1.3	0.00	0.5	0.1	<u> </u>	<u> </u>	10.9	29.2	26.8	4.8	-1.7	111	23
near F1		IER B	1	1	ISLAN	D, N.W	T.	0.3	0.0	0.0	22,7	4.9	1.7	0.0	0.0	3.3	ļ		4.6	23.2	30.7	6.8	-1.6	11	24
north o	f LAK		BOUR 0.01	, BAFI	FIN ISL	AND, N	1.W.T.	0.2		1 0.0	0.1	15.0	0,8	0.04	0.0	3.8	1	1	16,2	16.3	26.8	13	-4.9	16	25
at 67º0		84°421	₩, nor	1	YON II	1	MELVIL	LE PE	ENINSU	LA, N.	W.T.	64.4	1.4		. 0.2	3.9	ļ	<u>J</u>	61.9	61.9	94.6	4,1	8 -5.4	16	26
at 67°4		111º55 <0.01	· ·		CTIC C		DISTRIC	0.3	MACKE 0.1	0.0	36.3	1.9	1.4	0.02	0.1	1.0	<0.1	ļ	3.0	32.8	34.0	4.	3 -1.7	11	27

Chemical Analyses of Surface Waters in the Arctic Urainage Stasia

·	. 1	6- 71	Suspended matter	Residue on evapors - dried at 105°C. (Dissolved solids)	
collection the second section to the second	status ((calculated)	Dried at 105°C. 550°C.	1 4 9 2 2 2	3 1,
Ilmani wat I		Tiled of	. []	1 1	er some distan
	1 33 1 22 40	1 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1 14 14	14.4	
6 Sept. 10 66 16 .33	. 42	\$ 7.6 75 2 7.6 25	0.5	1	STATION NO. 9A - CREEK 209 22.5
	[· ······]	2 7.6 28	0.5	A T Z	84.0 9.5 TION NO. 10A – ZETA LAKE*
* Name not official	1	2 7.9 10	6	158	sea m 184
Aug. 21/62 196:205 *Name officially approved January 6, 1966		2 8.0 10	2 1	38.8 F STATE & V	4/ 5 147 14
10 Sept. 4.62 182 191		1 8.2 10	0 []	STATION S	O A - TASHR 28 (AN)
			<u> </u>		ON NO. 13A - SURREY LAKE®
Name officially approved January 6, 1966		2 8.0 5	3	100	48.6 120 14.1
12 Aug. 21 62 199 208		1 8.1 10	0.6	94.4	NO. 14A = EXALL' & LAKE* 42.8 142 14.4
13 Aug. 5/63 84:91	41	4 7.6 0		NEAFION	NO. 354 = 15863 NON : 488
14 Sept. 4	41	3 7.7		STATION	NO. 16A - KEYHOLE LANE
15 July 8/63 112:119 16 July 31 89:96 17 Sept. 11 47:54 89:96 8 Name officially approved January 6, 1966,		3 7.5 5			204 (in 1 249 (in), 249 (in), 11,4

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

											(In pari	s per	milli	(on)										
	Iro (F	on e)					Alk	alis											Hard as C	ness aCO ₃	ents	d	ы		
Magnesium	Total	Dissolved	() Manganese	Y Aluminum	(Copper	(Zn)	wnipoS (Na)	(X) Potassium	(NH3)	(Corbonate	(*OOH)	Sulphate	Chloride	Fluoride	(°CON) Nitrate	Silica C (colorimetric)	Od Phosphate	(g) Boron	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
near Co	OPPER	MINE	SETTL	EMEN	IT, DIS	TRICT	OF MAG	CKENZ	IE, N.V	7.Т.															
2.1 2.7 3.4 4.0 4.0	0.52	0.03 0.18 0.18 0.06 0.00	0.00	0.03	0.03	0.00	3.5 2.0 2.0 2.7 0.7	0.5 1.4 1.4 0.9 0.4	0.4	0.0 0.00 0.0 0.0	29.3 22.2 19.3 45.1 47.2	4.0 4.3 7.4 5.3 2.7	6.2 2.9 1.4 1.3 0.7	0.0	0.1	2.2 3.1 6.9 3.0 1.4			1.8 9.6 11.6 0.0 0.3	25.9 24.7 27.4 35.8 39.0	40.0 33.6 37.0 47.4 42.1	14 13 14	-1.5 -2.1 -2.3 -1.3 -1.5	11 12 12 10 10	1 2 3 4 5
near C	OPPER	MINE	SETTI	EMEN	VT, DIS	TRICT	OF MA	CKENZ	CIE, N.V	7.T.															
10.2	0.28 0.11	0.00	0.00	Trace	0.01	0.00	5.5 0.5	0.6	0.5	0.0	115 51.6	5.9	8.2	0.0	0.0	4.7			4.2 0.1	98.2 42.4	114 45.7	11 2.5	-0.5 -1.2	8.6 10	6 7
at 71°0	0' 05" 1	N - 100	5°38' 05	5" ₩, V	TCTOR	IA ISL	AND, N.	W.T.	·		y														
0.00	0.00	0.00	0.00	0.00		1	0.9	0.3	1	0.0	86.3	1.0	2.7	0.03	0.3	0.5			2.1	72.9	71.3	2.6	-0.5	8.9	8
at 70°4	5'06"1	۱ - 108	° 33' 05	" ₩, V	ICTOR	IA ISLA	AND, N.	V.T.																	
9.5	0.08	0.00	0.00	0.00	ļ	<u> </u>	0.6	0.3		0.0	86.3	1.4	1.7	0.01	0.3	0.3			2.3	73.1	70.2	1.7	-0.4	8.8	9
700021	N - 107	7015" W	, VICT	ORIA	ISL AN	D, N.W.	T.																		
13.2	Trace	0.00	0.00	0.00		<u> </u>	1.9	0.6	ļ	0.0	118	1,5	4.7	0.03	0.2	1.2			2.7	99.8	99.8	3.9	0.0	8.2	10
at 69°4		107º17	r	CTORI	IA ISLA	AND, N.	W.T.	0.5	I	0.0	98.4	3.4	1 4 5	0.01	0.4	0.4		1	4.2	84.9	86.0	4.8	-0.3	9.6	111
11.7	0.20	0.01	10.00	10.00	1	1	1 2.0	0.5	1	0.0	70.4	1 2.4	4.)	0.01	0.4	1 0.4			4.2	04.7	B0.0	1 %.0	1-0.5	0.0	111
at 69°4	8' N - 1		W, VI	CTORI	A ISLA	IND, N.	W.T.	0.4	1	0.0	90.6	1.3	1 40	0.03	0.3	1.0	0.00	1	4.2	78,5	77.8	1 40	-0.3	1 8 7	12
10.4	10.04	0.00	0.00	10.00	· · · · · ·		1.7	0.4	h		20.0	1 2.0	4.0	[0.03	(0.)	1	0.00	1	4.2	7017	1 77.0	1 4.0	1 0.5	1 0.7	1
	0' 45" 1	1	1	" w, v	ICTOR	IA ISLA	AND, N.		1	0.0	109	2.6	11.0	0.09	0.3	1.1	7	ŀ	6.8	1 06 4	104	12	-1.0	0.6	112
18.1			0.00	ļ <u>.</u>	1	1	5.0	0.8		0.0	92,3	3.6	9.7		0.3		<0.1		5.5	81.2		12	-0.7	9.1	13
at 69°2	I		0.00	"₩	T	1	12.0	1.0	1	0.0	69.0	3.1	26.3	0.08	0.3	0.5			11.6	68.2	97.7	27	1-1.1	1 9.7	15
11.4		0.01	0.00			1	12.5	1.0		0.0	74.2	3.7	26.3 27.7 31.5	0.08 0.07 0.09	0.3	0.3			13.3	74.2	105	26 27	-1.1 -1.2 -1.3	9.7 9.8 9.9	15 16 17

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

		79	Stream d (Secon	ischerge d-feet)		l ped	2				Jung Mi	ended htter	Renidu dese (Dinn	on eva i at 105 ^d olved so	C. (Isds)			
No	collection	Storage pr. col	anmpling date	Monthly mean	Tate: temp- erature	Oxygen conumed by KMn 1,	Carbon di side (calculate	giê û	Colour	Turbidus	105°C.	550°C.	F.F.M.	ncre- foot	Per day	tion at 550°C,	K × 10° at 25° C.	Calctum
-		(Days)			- 4 .		(CO ³)		(Units)	(Unita)				ш	ш			1
7		121:127				-			,		,	-			1	NIL 115		
2	June 28 June 28	119:122			32		3	6.8									67.5	7.9
3 4	July 3 July 8	114:117 106:112			33 33		2 4	7.1									27.5	0.5
5 6 7	July 8 July 13	109:112			33 33		3 2	6.5									14.1	0.8
7 8	July 13 Aug. 22	104:107			33 48		2 2	6.8 7.6									18.5	2.0
9	Aug. 29	57:60 52:55			48		3 2	7.5									159	9.9
	Sept. 3		ove i lanua	rv 6 1966			4 4	7.0		· · · · · · ·						1	162	10.0
		,,,,		., .,	*													
																-1411-5	N . 144	-1 4KF*
11	Sept. 4 65	<1 54			41		7	1.9			1						449	28.4
	* A 15 acr	e unnamed	lake locat	ed approxi	mately !	4 mile s	outh of	Keyh	ole Lake,	into whi	ich it dra	ins during	spring ru	off.				
12	Sept. 4/65				41		5	7.5		L		Ī			H NORTH	EAST OF	763 KEAHOLE	LAKE**
	* A 30 acre ** Name off	icially app	proved Janu	ary 6, 196	mately 2	mile N.	.N.E. 0	î Keyi	ole Lake	with wh	iich it ha	s no drain	age conne	ction.				
																STATION	NO, 20A	- LAKE*
13	Aug. 11 62	206 215					2	7.6	15	0.7			62.8			33.2	80.8	7,1
-	* a small un	named lak	e	-				-		1	1					1	00,10	
															STA	TION NO. 2	IA - FIO	NATAKE*
14	Aug. 5/62	212:221					1	6.6	10	0	ļ		22.0			17.8	18.8	0.3
-	* Name offic		oved Janua	ry 6, 1966				0.0)				1	10.0	0.1
															STAT	ION NO. 22	A - SUNE	DAY I AKE
15	Aug. 2/62	215:224					1	8.3	10	0.5			167			64.4	303	20.0
-	* Name offic	cially appr	oved Janua	ry 6, 1966														1
Н												,	~~~			STATIO	N NO. 23 A	- LAKE*
16	Aug. 6/53						2	7.9	5	0							362	32.4
	* A small un	named lai	ce.															
													STA	TION N	O. 24A -	LAKE 1 (PI	ROVISION	POND)*
17	May 5/62	255:257			32	3.6	4	7.9									341	31.8
18	Sept. 13	125:127			32	3.1	6	7.4									209	17.7

^{*} name not official

								Chen	nical A	Analys	es of S	urface In part				Arctic	Drain	age l	Basin						
	Iron (Fe)					-	Alk	alis											Hards as C	iess aCO ₃	vents	E	М		
(%) Magnesium	Total	Dissolved	Wanganese	(Y) Aluminum	Copper	(aZ)	(Na) Sodium	(X) Potassium	(NH3) Ammonia	(CO3)	(COOH)	(SO Sulphate	Chloride	Fluoride	(SON) Nitrate	Silica (colorimetric)	Phosphate	B)	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	
at 69°2	2' 45" N	- 106°	215' 00'	"W, V	CTORI	A ISLA	ND, N.W	7.T.																	
3.1 5.0 1.4 0.2 0.9 0.5 0.8 7.2 7.3 7.4							3.0 6.2 2.1 0.2 1.4 0.4 1.7 9.3 9.7 9.6	0.8 1.1 0.3 0.1 0.2 0.2 0.2 1.3 1.3		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	27.1 42.4 11.5 1.6 5.5 3.0 8.7 56.2 57.0 57.9		6.3 10.7 1.8 0.4 0.7 1.1 1.3 19.5 20		0.0 0.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		4.1 5.7 0.7 0.9 0.7 1.6 1.0 8.0 8.1 8.1	26.3 40.5 10.1 2.2 5.2 4.1 8.1 54.1 54.9 55.6	33.6 54.9 14.6 3.3 9.5 5.5 12.4 77.9 78.9 80.7	16 31 27 27	-2.5 -1.6 -3.1 -5.6 -4.2 -4.6 -3.4 -1.2 -1.3 -1.2	11 13 17 15 16 14 10	1 2 3 4 5 6 7 8 9
at 69°2	3'18"N	- 106º	P14" 30"	"W, VI	CTORI	A ISLA	ND, N.V	7.T.				T		T			,	,			1				
54.2	<u> </u>			ļ <u>, .</u>			23.0	4.2		0.0	311	2.9	66		. 2,5		<0.1		39	294	334	14	+0.3	7.3	11
at 69°2	3' 06" N	- 106°	215' 30'	"W, V]	ICTORI	A ISLA	ND, N.V	7.T.																	
11.9					l		16.5	1.7	ļ	0.0	93.5	3.8	38		0.4		<0,1		16.8	93.5	136	27	-0.8	9.1	12
at 74°0	9' N - 1	19048'	W. BA	NKS I	SLAND	. N.W.T	4																		
4,4	0.04		0.00		1		0.9	0.7		0.0	35.0	7.5	2.2	0.04	0.5	1.7	0.00		7.2	35.9	42.3	5	-1.5	11	13
at 73°0	0.04		_	OMER 0.00	1	LAND,	N.W.T.	0.1		0.0	3.2	1.5	1.4	0.00	0.3	0.3	0.00	<u> </u>	1.2	3.8	6.9	28	-4.8	16	14
at 72°4	3'N - 94	011'3	0" w, s	SOME	RSET IS	SLAND,	N.W.T.	,		1				1		1		ī						1	_
15.0	0.03	<0.01	0.00	0.00	J		13.3	0.9	ļ	0.0	118	9.1	25.7	0.03	0.4	0.7	0.00		15.0	112	143	20	+0.1	8.1	15
near R	ESOLUT	E, CO	OR NWA	LLIS	ISLANI), N.W.	г.																		
10.7	0.03		1	+				1.5	1	0.00	102	39.1	33.3	0.13	Trace	0.5	ļ		41.1	125	187	25	-0.1	8.1	16

3.9 18.8 0.06 0.9 5.5 13.0 0.03 0.7

158 88.0

171 11 105 13

+0.1 7.7 17 -0.9 9.2 18

8.6 | 1.0 | | 0.0 | 6.1 | 1.2 | | 0.0

at 75°40' N - 84°33' W, DEVON ISLAND, N.W.T.

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

1 9	Stream disch (Second-fe	harge er)		5			1600	atter	dried (Dian	d at 105° olved so	(. lide)			
Face 1		TOUR COLUMN	Trigotti orași	(calculated)	ings.	in the second	Drug A	Danier at	s y M.	i os	Fines per tax		***	(alkium
									57.A7	11 1 10	25A = 1 A	RESENS	*	. A1.
: { April 178.2 2 { Sept. 11 62 1.2° 12	7	12	3.1	4 7.				1		-	E		18	::=
* name not official * Aug. 4 on 100 (2) * name not official		[[· i	1 10.	8	<u> </u>			,	STATIO	ON NO. 26.	A – DECC	A MASTER	LAKE*
The same laws or			T i		· · ·			1	STA	TION NO), 27A – G	EOMORPH	OLOGIST I	SIVER.
a name not official	1	32	<u> </u>	3 5	4 1	<u> </u>				!		1	12.4	
7 - 1		~								ST	ATION NO.	. 28A - B	DUQUER RI	IVFR°
* name not official		32		4.									18.1	
7						.,			pro- 20 A	· ·	TATION N	(O, 29A =	BRANT RD	. FR *
6 June 28 59 284 328	-	32		5 5.5	1					·	}-		40.	
* Name officialls ap	1	10, 1965.						S	AATION S	VO. 30A	- STREAM	NORTH (DE CAMP (· 11 (VF *
June 26 59 286-330	4	32		0.5 8.0									319	
e name not official											STA	HON NO.	31A = M17)	LAKE*
8 July 27/59 255:302	1 1.	4.2		5 6.6									159	
* name not official 9 July 2" 59 255.302	1	55		9 6.3	1		- Common			ST	ATION NO	3, 32A = D	RIFTTOK (
* name not official					1					F:		1	244	
	1											TATION	(O, 334 S	FREAM
10 Dec. 13 60				3 6.8 4 6.7 2 7.2 2 7.1	20 10 15 15								172 146 158 305 403	9.7 9.5 14.6 23.8 31.4
a email unnamed as	TA A III											-		

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

											(In part	s per	milli	on)										
	Iro: (Fe	n)					Alka	ilis											Hardn as Ca		tuents	mn	M	ж	
Magnesium	Total	Dissolved	(a Manganese	(Y) Aluminum	Copper	(Zinc	(Na)	(X) Potassium	(FHW)	(c) Carbonate	(CO3H)	Sulphate	Chloride	Fluoride	(NO2) Nitrate	Silica Colorimetric)	O Phosphate	(g) Boron	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
at 75°4	0° N - 8	34°33'	W, DEV	ON IS	LAND	N.W.T																			
20.6		0.00	0.00	0.05	0.00	0.00	9.0 4.7	1.2		0.0	191 100	3.8 3.5	21 11	0.03	1.1				10.4	167 87.2	183 97.3	10 10	+0.2	7.5 9.0	1 2
at 79º1	7' N - 1	05° 22	'₩, EL	LEF!	RINGN	ES ISL	AND,, N	.₩.T.																	
119]						1,100	21,0		0.0	14.5	410	1,892		0.0	0.1			573	585	3,588	80	-2,1	11	3
at 79°11	N - 1	03°08'	W, EL	LEF F	RINGNE	ES ISL/	6.9	W.T.	ļ	0.0	0.2	8.1	14		0.4	1.1			11.6	11.8		54			4
								<u>-</u>																	
at 79º08	B'N - 1	03°05'	W - EL	LEF	RINGNI	ES ISL	AND, N.	₩.T.				1 -			1		,	,							_
							4.7	0.6	1	0.0	0.0	8.8	9.9		0.4	0.8]		10.6	10.6		47			5
at 79º00)' N - 1	.02º50'	W, EL	LEF F	UNGNE	ES ISL /	1	Т	1	1		1	1 -		1	1	1						T -		
				1			44.5	4.0		0.0	2,4	100	64.5		0.4	5.8	ļ		101	103		47	1		6
at 78º58	B' N - 1	02º50¹	₩, EL	LEF F	UNGNE	ES ISLA	IND, N.	W.T.																	
							24.0	2.5		0.0	30,0	71-7	29,6		0.4	22			64.9	89.5		36			7
at 78°5	4' N - 1	103°50	'₩, EL	LEF	RINGNI	ES ISL	AND, N.	W.T.																	
							18.5	2,4		0,0	11.8	16.3	26,7		0.4	8.5			15.9	25.6	<u> </u>	58			8
at 78°53	3' N - I	03°49°	W, EL	LEF F	RINGNE	ES ISLA	ND, N.	W.T.		0,0	11,3	84.2	6.6	1	0,4	5.4		_	73.2	82,5		22			9
									,							1						1			
at 78°18		030431	W, EL	LEF F	RINGNE	ES ISLA	ND, N.	W.T.																	
6.1 5.9 8.4 13.9 18.3	0.55 0,20 0.21 0.00 0.10	0.04 0.03 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00				12.0 5.5 7.5 11.0 16.0	2,6 1,2 1,0 1,2 1,5	0,0 0,0 0,0 0,2 0,2	0.0 0.0 0.0 0.0 0.0	10.6 12.3 17.2 18.8 16.7	50.8 47.7 69.9 120 164	9.1 2.1 2.4 3.4 5.1	0.0 0.0 0.0 0.0 0.0	0.4 0.2 0.2 0.2 0.2	4.9 5.8 11 12 5.3			38.3 38.1 57.3 101 140	47.0 48.2 71.4 117 154	99.8 84.0 123 194 250	34 19 18 17 18	-2.8 -2.7 -1.9 -1.7 -1.8	12 12 11 11	10 11 12 13 14

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

(la parts per million) 1000000 Stream discharge (Second-feet) #1 25°C. Water Storage Calcar STATES NO. SAA - SEASAN MELTER DAY * Sampled 160 meters east of meteorological camp, Isachsen. STATION NO. 35A - AGATE RIVER* 1 1500 8 110140 76.1 5.5 STATION NO. 36A - STREAM 5 June 2 N 152 180 STATION NO. 374 - STREAM \ 'ane 27 6\ 154 158 STATION NO. 384 - STREAM " June 2" +1 | 154.158 1,316 285 STATION NO. 39A - STREAM 8 June 25 30 155 160 108 10.9 STATION NO. 40A - STREAM June 10 60 140 144 32 24.6 STATION NO. 41A - STREAM 10 June 10/60 140 144 . 4.6 184 * Name not official

		31A110N NO. 42A -	DECCA KIVER
* Name not official	 6.3 25		28,0 0.6

		STATION NO. 43A - KIYER
12/11/12/12/22/22		- T
12 1 July 10 50 272 318	1 6.3	104

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

					,						(.	n part	s per	milli	on)										
	Iro (Fe	e)					Alka	lis											Hardr as Ca	ness aCO ₃	tuents	1m	e w	н	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphare	Вогоп	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO ₃)	(SO ₄)	(C1)	(F)	(NO ₃)	(SiO ₂)	(PO ₄)	(B)			}	L			
at 78°1	8: N - 10)3°28°	W, ELI	EF R	INGNE	S ISLA	ND, N.W	т.							,	,-									
2.2 2.2 2.5							13.5 13.7 14.0	1.6 2.1 3.2					13.7 14.3 15.3							14.3 18.2 19.3					1 2 3
700s	70 Nr. 14	0.10401	W EII	EE D	INCNE	C TOT A	ND, N.W	r op																	
4.0	1		w, ELI	LEFK	INGINE	1 ISL A	1.8	0.5	ļ	0.0	15.5	18.4	2.3	ļ	Ī	0.8	1		17,2	29.9	40.9	11	-2.6	12	4
		1	<u> </u>	1	1	1	1	1	h	1.0.0	1 20.0	10.4	1 2.5	1	1	1 0.0		1	1	27.7	40.7	11	2.0	12	
	ACHSE	N DOM	E, ELI	EF R	INGNE	S ISLA	ND, N.V	-	1	1				1		1	T	1			1				
4.6							0.5	0.3	<u> </u>	0.0	56.1	361	0.8			1.1			374	420	556	0.3	-0.1	1./	3
at entr	ance to	DUMB	BELLS	DOM	E, ELL	EF RIN	NGNES I	SLANI	D, N.W.	Γ.															
7.9]	1		0.5	0.3		0.0	33.0	184	2.2		0.0	1.2]		201	228	290	0.5	-0.9	9.1	6
					-			-							,										
crossic	g DUM	BBELL	S DOM	E, EL	LEFR	INGNE	S ISLAN	ID, N.W	V.T.																
26,6							3.0	0.5		0.0	40.0	756	3.9]	0.0	1.0			790	822	1,096	0.8	-0.1	7.7	7
7001		0					n Diesii																		
at /8°1	8' N - 1	1009051	W, EA	21 CC	AST, E	LLEF	2.9	0.6	AND, N.	0.0	11.2	32.4	1.7	T	0.0	1.6	Τ	1	31.6	40.8	59.0	12	-2.4	11	18
2,4			1	1		4	1 217	1 0.0	1	. 0.0	11.2	32,4	1.7	· · · · ·	0.0	1.0	1	1	1 32.0	40.0	1 22.0	15	2.14		
at 78°0	1' N - 9	99°32' T	, EAS	T COA	AST, E	LLEF F	RINGNE	SISLA	ND, N.W	7.T.															
0.3							10.5	0.5		0.0	0.0	206	6.7		0.0	2.9]		67.4	67.4	254	22			. 9
at 7705	5' N - 9	990251 7	V, near	CAMI	ALP	10,* E1	LEF R	INGNE:	S ISL AN	D, N.W	т.			1	+	7	,				1			,	
5.3					ļ		6.0	0.4		0.0	0.0	58.6	8,6		. 0.0	1.1	<u> </u>		. 54.9	54.9	93	19			. 10
at 80°0	3' N - 1	100°15'	₩, ME	GHE	ISLA	ND, N.V	V.T.																		
0.7	0,66	0.30	0.00			0,00	1.6	0.8	0.0	0.0	3.8	1.9	2.6		. 0.4	1.0			1.3	4.4	13.3	37	-4.7	16	11
at 79°5	6' N - 9	9905' 1	V, WES	T CO	AST, M	EIGHEN	N ISLAN	D, N.W	7.T.																
	ļ		ļ		ļ		1,5	0.7		0.0	1.7	1.8	3.4		. 0,4	0.8	1	1	2.6	4.0	ļ	40	-4.8	16	12

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

						(In p	arts per	million)						
	Stream discharge (Second-Leet)	Para .		(calculated)		1	1	10.					* * * * * * * * * * * * * * * * * * * *	
(Jan 10 ty)	Tarr .		Ī[\ \sigma_{\text{\tin}\text{\tex{\tex		1					- N N =		
* name not offic		12			4.4	<	ļ	:	STATE	ON NO. 4	5A - BR(OK near	COLOUP	LAKE *
3 Aug. 18/62 207		44	<u> </u>	3	1 ".2	,				ATS	TION NO.		LPHUR S	PRINGS*
5 (Sept. 13 12 20 20 20 20 20 20 20 20 20 20 20 20 20	23 1 1 1 1 1 1 1 1 1	40 42 38 37 38	1,3	2 2 2 2 3 3	8.0 8.0 8.0 8.1	10	4.% 1		111	NIATION	NO. 124	FFFR	218 218 223 219	3 0 A A S
Pond 1 9 June 26/63 14:	.70	50	1,00	_							STATION	NO. 48A	- MALL	
10 Aug. 21 14		43 63	10,2 13,6 13,7	3 7 7	7.8 7.4 7.5	15			 				746 925 852	117 153 138
12 June27/63 13: Pond 10		46	14,6	8	7,5				 				1,506	279
13 Aug.12/63 17: Pond 12 14 Aug.12 17:		45	13.6	2	8.4	10			 				1,056	41,1
Pond 17 15 July 14 33:		61	21,9	4 8	7.4	25			 				243 896	35.4
Pond 19 16 June26 14:	29	50	18.2	3	8.1				 				632	71.8
Pond 23 17 June26 16: Pond 28	29	50		5	7.5				 				192	317
18 July 13 37:	40	63	16.1	6	7.8				 				488	61.0
19 July 14 36:		61	13.3	2	8,2				 252			163	313	23.3
20 Aug. 12 18: Pond 37 21 June 27 15:		50 46	19.9	3	7.8	10			 				435	69.8
Pond 42 22 July 14 36:		64	21.2	7	7.6								581	88,4
									 				204	79.4

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

-									*															1	
(Magnesium	Total Ito	Dissolved	Manganese	Aluminum	(a) Copper	(bZ Zinc	Alka unipos (Na)	lis Motassium (K)	(NH) Ammonia	Carbonate	(*OOH) Bicarbonate	Sulphare	Chloride	Hluoride	(°ON) Nitrate	Silica (colorimetric)	Phosphate	(a) Boron		Total	Sun of constituents	Per cent sodium	Saturation index	Stability index	No.
	N - 98°	43' W. s					IGHEN I	-	11		(11003)	(304)	(CI)	(17)	(1403)	(3102)	(1 04)	(8)						,	
				Ī			0,1	0.1		0.0	0.9	0.5	0.4		0.4	0.2			0.1	0.8	T	19	-5.7	17	1
		L	-			L		L			1	1				,	1			1					
at 79°25	5° N - 9	00°40' 1	W, AXI	EL HE	IBERG	ISLAN	ND, N.W.	Т.																	
212	0.04		7,2	28.8	0,00	0.90	12,0	3.5		0.0	0.0	1,870	1.7		0,5	18		J	1,732	1,732	2,492	1.4			2
at 79°25	5 ° N - 9	90°30' 1	W, AXE	EL HEI	BERG	ISLAN	D, N.W.	r.																	
223	0.07		0.00				26,700	26,0		0.0	31.8	3,868	42,440	1	0.7	17			5,797	5,823	75,254	91	+0,2	6,8	3
near AL	ERT,	ELLES	SMERE	ISLAI	VD, N.	V.T.			, ,		1			ł				1							_
5.9 6.0 6.1 5.9	0.07	<0.01	0.00 0.10 0.00 0.00	<0.01	0,000	0,02	4.4 4.4 4.2 4.3 4.4	0.9 0.5 0.4 0.5 0.5	0,1	0.0 0.0 0.0 0.0	128 126 113 119 118	2.7 3.2 3.3 2.8 2.8	9.8 7.3 6.1 6.4 6.8	0,0 0,06 0,21 0,0	0.6 0.0 <0.01 0.0 0.0	1.2 1.4 1.0 0.4 0.8	<0,1		0.6 2.8 3.6 3.9 3.0	106 107 96.2 101 99.7	118 105 110 109	8.2 8.1 8.7 8.4 8.7	+0,1 -0,1 +0,2 -0,1	8,2	4 5 6 7 8
near LA	KE H	AZEN,	ELLE	SMERI	EISLAN	ND, N.	W.T.				1														
27.1 44.7 33.5	0.11 0.27 0.42		0.04 0.00 0.00		<0.01 <0.01 0.012	0,00	2.7 4.8 3.7	5.0 7.3 6.2		0.0	112 110 131	298 463 373	2.5 4.7 3.3	0.59 0.85 0.69	0.1	4.1 14 4.2	<0.1 <0.1 <0.1		311 476 375	403 566 483	513 747 628	1.4 1.8 1.6	+0.4 0.0 +0.2	7.0 7.4 7.1	9 10 11
57,4	0.35		0.14		0,00	0.00	5.2	11.7		0,0	168	784	6,8	0.52	0.5	6,8	<0.1		796	934	1,235	1,1	+0.5	6.5	12
67.9	0.05		0.00		10,0>	0,00	76,0	15,9		3,4	234	328	26.5	0,55	0.1	0,6	<0,1		184	382	674	29	+0.8	6,8	13
6,1	0,05		0,00		<0.01	0.00	1,9	0,7		0,0	65,5	60,1	0.4	0,17	0,1	2.7	<0,1		59.6	113	140	3.5	-0,8	9.0	14
61,7	0. 53				0,008	0.00	20.0	20,0		0,0	241	273	16,2	0,68	0.3	4,1	<0,1		236	433	586	8,7	+0,3	7,1	15
31,6	0.13		0,00		0,00	0,01	9,0	6,5		0.0	232	145	5,1	0,60	0,7	7.8	<0,1		138	328	400	5,5	+ Q8	7.5	16
82,3	0,10		0,00		0,00	0,00	43.0	13,5		0,0	105	1,080	24,8	0.54	0.8	5,6	<0,1		1,044	1,130	1,619	7.5	+0.4	6.7	17
21.0	0.19			ļ	0.006	0,00	10.0	3,8		0.0	233	62,1	3.6	0.44	0,2	3,8	<0.1		47.1	239	281	8,2	+0.4	7.0	18
25,3	0,10		0.00		0.004	0,00	3.3	2,2		0,0	172	19,1	4.9	0,34	0.1	0.7	<0.1		21.4	162	164	4,2	+0.3	7,6	19
11,4	0,07		0,00				2.8	0.9		0,0	106	134	1.0	0,22	Trace	3.7			134	221	276	2.7	+0.1	7.6	20
19,8	0,27		0,00		0,00	0.00	1,6	5,2		0.0	108	208	1.6	0.07	0.4	5,1	<0,1		214	302	384	1,1	0.0	7,6	21
18,7	0,06		0,00		0,004	0,00	1.9	2.8		0.0	258	54.9	2,2	0,43	0,3	16	<0,1		64.0	275	303	1,5	+0,6	6,6	22

TABLE II - (Concluded)

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

			Stream d (Second	incharge l-feet)		ne .					Sun je nas			40 - 1				
	Le con	Storage period	cam; mg	M nihiy mean	Tates temp eratture	Orygen and	Carbon hornde	9.50	Hazes (Units)	(Units)	See 1	resulted results	P.F.M.	Totals Section Action Totals	i ca ,er a,	#* *** **	111-	10 (12)
															ST	ATION NO.	49A - ST	REAM*
1 1	une 24/63	56:60			36	4,5	2	8.0								ļ	358	40,1
-	Located	1,25 miles	above Cha	ndler F101	d													
														ST	ATION N	O. 50A - R	UGGLES F	IVER
2 1	nne 24/63	56:60			36	1,2	1	7.9			Ţ						148	22,5
			į.				1		1				1		ST	ATION NO.	-	-
1	Aug. 2 = 2		unry Fiord			L	1_2_	8.0	10	0			ļ-		1	:	J.C.R	i.s.
	Sampled	neat I and	unty riota	Camp										ST	ATION N	O. 52A - T	UBORG L	AKE *
4 1	une 2/65	103:107			37		8	7.6	15		ļ						40,660	360
	name not	official																
															ST	ATION NO.	, 53A – ST	REAM*
5 /	Aug. 2 63	13.18	1				3	7.8	10	1	1					1	556	53.6
٠	Sampled :	iear Eurel	a Camp,											STA	ATION N	O, 54 A - R	COMULUS	LAKE*
6	Aug. 10/62	207:216					7	7.6	15	4	14.4	6.4	6,246			1,614	9,860)",3

Sampled at head of Slidre Fiord..

TABLE II - (Concluded)

Chemical Analyses of Surface Waters in the Arctic Drainage Basin

				,							(In part	s per	millio	011)									
	Iror (Fe						Alka	lis											Hard as C	ness CaCO ₃	uents	E	H	
Magnesium	Total	Dissolved	Manganese	Alaminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₁)	(HCO ₃)	(SO ₄)	(C1)		(NO ₃)	(SiO ₂)	(PO ₄)	1 1			00	114	0)	00
at 81°40)' N - 6	69°20'	W, TRI	BUTA	RY TO	RUGGI	LES PIV	ER, E	LLESM:	ERE IS:	LAND, N	.₩.T.	,											
17,3	0.00		0.0			0.00	3.9	1.6		0.0	148	41.8	11.2	0.14	Trace	2.4	<0.1		50.5	172	191	4.7	+0.3	7.4 1
at 81º43	' N - 6	9°25'	W, ELL	ESME	RE ISL			0.5		0.0	72.0	1,,,	1	1001	T _m				12.2	72.0	0,0		- 0.4	8.7 2
3.8						0,00	0,6	0.5		0.0	72.8	11.7	0.9	0.04	Trace	8,1			12.3	72.0	84,0	1.8	-0,4	8,7 2
81º25' N		5' W,	r	MERE	ISLAN		1				1		1		1		7			1				
7.6	0.05		0,00			0,00	4.3	0,8		0.0	126	21.4	6.5	0,09	Trace	1.6			22,8	126	143	6,8	+0.2	7,6 3
at 80°57	7' N - 7		W, ELL	ESME	I	AND, N	8,200	240	ļ	0.0	203	2,000	14,50	0		4.9			4,784	4,950	26,390	77		4
at 80°02	* N - 8	50451	W, ELL	ESME	RE ISL.	AND, N	.w.T.																	
24.1	0.32	0,01	0,00	ļ	1	0,00	20.7	2,5	Ī	0.0	114	148	24.4	0.26	0.5	1.9	Ī		139	233	332	16	0.0	7.8 5
ELLESM	(EDF	ICI ANI	D NIW	T																				
		1							1	i .			1		1	1						1 1		
216	0.20	0.00	0.00	0.27			1,710	65.5		0,0	163	403	3,065	0.66	1.2	0.4			998	1,132	5,640	75	+0.1	7.4 6

,	(21.1)1.1			
Municipality		BOURL 1947	AMAQUE - a To	wn 1961 - 62
Population served:		-	-//0	1701-02
In municipality		b) 2,000 (2,460c	0 3,040 (3,018a)	- (3,344
Total	4,500 5,600° 6,100	2,000	3,040	3,200*
Date(s) of survey		August 20, 19	947; November 10	, 1958
Ownership	In 1947, municipally owned and operated, in 1958, owned and operated by a Public Utilities Commission.	Gold Mines	Ltd.; in 1958 the municipally owne	y lamaque distribution
Source of supply	in 1958, 41/2 miles distant near La Ferms	Lake Blouin		
Treatment	In 1947 wells near the river are pumped to reservoir and system. River water just above town is pumped direct to system with chlorination (85 lb/mg), bypassing the old small filters. In 1958, springs pumped with no treatment to reservoir and system.	system, from	need to the elevate none well at a tir chlorination.	d tank and ne with
Storage capacity (thousand gallons)		Elevated tank	c (at Lamaque Mir	ne) 110
Consumption (average in mgd)	1947 1958	1947	1958	
	0.162 River water 0.4 0.162 Well water 0.324	0.48*		
Industrial use	Major users are a woollen mill and a dairy	tively; in 19	Mine and Lamaq mgd and 0.108 mg 58 Sigma Mine wa major industrial u	d, respec-
Remarks	*Presumably includes some services in Amos East and Amos West, population of 816 and 915 respectively. *In 1947, as the well yield was poor, an emergency supply, about 50 per cent river water was being used.	System instal *Wells are s and not lake **Includes m	aid to be on differ water. ine consumption.	
Municipality	FORT GEORGE a Settlement	0	GREAT WHALE	
Year(s)	1961 - 62		1961-62	
Population served: In municipality	- (763a) (1.974b)			
Outside municipality	- (/0)-)(1,7/40)		- (695ª) -	(718 ^D)
Total	800 estd*		210 estd	
Date(s) of survey	November 29, 1962 Owned and operated by the Department of Citizenship and Immigration.	November 30, Department of	1962; March 1963 National Defence	
Source of supply	Fort George (La Grande) River	Great Whale F	River	
Treatment	River water is pumped with chlorination (sodium hypochlorite) to reservoir and system. *		s pumped with chl	
Storage capacity (thousand gallons).	One underground reservoir 30	No data		
Storage capacity (thousand gallons). Consumption (average in mgd)	One underground reservoir			
Consumption (average in mgd)	No data	No data	ied to main site o	

a Population according to the Tenth Census of Canada, 1956. b Population according to the Eleventh Census of Canada, 1961. c Population according to the Ninth Census of Canada, 1951.

	a Town	1047	1050	•	ET - a Town	1062
1958	1961	1947	1958		1961	1963
3,000* (1,262a) 0	- (4,765b)	2,000 (1,485°)	1,000		- (1,144a) -	- (978 ^b)
3,000	4,500 estd	2,000	1,000		1,000 estd	1,200
November 15, 1958		August 26 1947: Ia	nuary 12 19	58: October 1	6, 1963	
Municipally owned and ope		In 1947, owned and	operated by	Beattie Mines	s Ltd.; in 1958 and 19 Beattie Mines Ltd.	
Lake Gilman, nearby Water is pumped with chlo reservoir and system.		lake water as a sta In 1947 lake water i a wooden cylindric wooden settling ta with chlorination to system.* In 1947,	indby supply s pumped to al mixing ta nk (10,000 g o reservoirs, 1958 and 190	plant at mine nk (2,400 gal) al), is sand-fi lime-treated well water	in 1958 and 1963 well where alum (143 lb/s); water, then flows to litered in 3 wooden cy to pH 7.6—8.2, and the is pumped without tre or town supply it is co	mg) is added in o a cylindrical ylindrical filters nem pumped to eatment to reser-
	ach of two ents)250	Two tanks in 1947. Two ground reservo	irs in 1958 a	1963 1958		17 and 3 50 and 5 1963
	.65	0.036 Well was 0.036 Lake w		0.087 (Ma	ax, - 0,10)	No record
None					ent for processing in	the Beattie Mine
*Total population 3,200		crease to pH 6.3, s	soda ash is a	also added.	and May, when raw v	
		being used as an e	mergency su	oly was low, a	about 50 per cent lake	water was
HALET TOWNSITE () A company townsite	within	being used as an e	RRE - a To	ipply.	MACAMI -	
	within	being used as an e	mergency su	ipply.		
A company townsite Malartic municipal bo	within	LA SAF 1947 3,000 (2,744c) 3,45	RRE - a To	upply.	MACAMI -	- a Town
A company townsite Malartic municipal be 1959 - 63 150	within	LA SAF 1947 3,000 (2,744c) 3,45	RRE - a To 1959 0 (3,155a) 0	1961	MACAMI - 1958-59 1,450 (1,388a) 20*	- a Town
A company townsite Malartic municipal be 1959 - 63 150 0 150 June 13, 1959 Owned and operated by M	within oundaries	LA SAF 1947 3,000 (2,744°) 3,45	RRE - a To 1959 0 (3,155a) 0 100 1101 1101 1101 1101 1101 1101 1	1961 - (3,944b) - 3,900 estd	MACAMI - 1958-59 1,450 (1,388a)	- a Town 1961 - (1,614) - 1,500 estd
A company townsite Malartic municipal be 1959 - 63 150 0 150 150 June 13, 1959	within undaries	LA SAF 1947 3,000 (2,744°) 3,45 0 3,000 3,000 August 25, 1947; J. Municipally owned	RRE - a To 1959 0 (3,155a) 0 0 0 0 une 15, 1959 and operated	1961 - (3,944b) - 3,000 estd	MACAMI - 1958-59 1,450 (1,388a) 20* 1,470 June 15, 1959	- a Town 1961 - (1,614) - 1,500 estd
A company townsite Malartic municipal be 1959 - 63 150 0 150 June 13, 1959 Owned and operated by M fields, Ltd. Piche River River water is pumped wit tion, coagulated with alu and sodium aluminate (1' wooden tank (10,000 gal) treated to pH 9.5 fluoridity, and pressure-fi	within pundaries alartic Gold- th pre-chlorina- im (550 lb/mg) 50 lb/mg) in a), soda-ash 1, soda-ash 2 ated (sodium-	LA SAN 1947 3,000 (2,744°) 3,45 0 3,000 August 25, 1947; Ju	RRE - a To 1959 0 (3,155a) 0 0 0 une 15, 1959 and operated Lac de l'Ace water is pum	1961 - (3,944b) - 3,900 estd	MACAMI - 1958-59 1,450 (1,388a) 20* 1,470 June 15, 1959 Municipally owned a	- a Town 1961 - (1,614) - 1,500 estd
A company townsite Malartic municipal be 1959 - 63 150 0 150 June 13, 1959 Owned and operated by M fields, Ltd. Piche River River water is pumped wit tion, coagulated with alu and sodium aluminate (1' wooden tank (10,000 gal) treated to pH 9.5 fluorid fluoride), and pressure-fisystem. Pressure tank Elev. tank (raw water only	within pundaries alartic Gold- th pre-chlorina- m (550 lb/mg) 50 lb/mg) in a 1, soda-ash ated (sodium- iltered (2) to	LA SAF 1947 3,000 (2,744c) 3,45 0 3,000 3,45 August 25, 1947; J. Municipally owned One deep well near Lac de !'Aqueduc. No treatment; well reservoir and system	RRE - a To 1959 0 (3,155a) 0 0 0 une 15, 1959 and operated tac de l'Ace, water is pumem.	1961 - (3,944b) - 3,900 estd - 1,000 estd -	MACAMI - 1958-59 1,450 (1,388a) 20* 1,470 June 15, 1959 Municipally owned a Lois River (Riviere Water enters undergris pumped with chl system.	- a Town - (1,614) - (1,614) - 1,500 estd
A company townsite Malartic municipal be 1959 - 63 150 0 150 150 Unne 13, 1959 Owned and operated by M fields, Ltd. Piche River River water is pumped wit tion, coagulated with alu and sodium aluminate (1' wooden tank (10,000 gal) treated to pH 9.5 fluorid fluoride), and pressure-fisystem. Pressure tank Elev. tank (raw water only 1958	within undaries alartic Gold- th pre-chlorina- m (550 lb/mg) 50 lb/mg in a), soda-ash ated (sodium- iltered (2) to	LA SAF 1947 3,000 (2,744c) 3,45 0 3,000 3,45 August 25, 1947; J. Municipally owned One deep well near Lac de !'Aqueduc. No treatment; well reservoir and system One reservoir (fire page 1947)	RRE - a To 1959 0 (3,155a) 0 100 une 15, 1959 and operated water is pumem.	1961 - (3,944b) - 3,900 estd - 1	MACAMI - 1958-59 1,450 (1,388a) 20* 1,470 June 15, 1959 Municipally owned a Lois River (Riviere Water enters undergies pumped with chlosystem.	- a Town 1961 - (1,614) - 1,500 estd Lois) round reservoir an orination to the
A company townsite Malartic municipal be 1959 - 63 150 0 150 June 13, 1959 Owned and operated by M fields, Ltd. Piche River River water is pumped wit tion, coagulated with alu and sodium aluminate (1' wooden tank (10,000 gail treated to pH 9.5 fluorid fluoride), and pressure-fisystem. Pressure tank Pressure tank 1958 Domestic - 0.027 (M Industrial - 1.4	within undaries alartic Gold- th pre-chlorina- m (550 lb/mg) 50 lb/mg in a), soda-ash ated (sodium- iltered (2) to	LA SAF 1947 3,000 (2,744c) 3,45 0 3,000 3,45 August 25, 1947; J. Municipally owned One deep well near Lac de !'Aqueduc. No treatment; well reservoir and system	RRE - a To 1959 0 (3,155a) 0 0 0 une 15, 1959 and operated tac de l'Ace, water is pumem.	1961 - (3,944b) - 3,900 estd - 1	MACAMI - 1958-59 1,450 (1,388a) 20* 1,470 June 15, 1959 Municipally owned a Lois River (Riviere Water enters undergris pumped with chl system.	- a Town 1961 - (1,614) - 1,500 estd Lois) round reservoir an orination to the
A company townsite Malartic municipal be 1959 - 63 150 0 150 June 13, 1959 Owned and operated by M fields, Ltd. Piche River River water is pumped wit tion, coagulated with alu and sodium aluminate (1') wooden tank (10,000 gal) treated to pH 9.5 fluoride fluoride), and pressure-fisystem. Pressure tank Pressure tank (raw water only 1958 Domestic - 0.027 (M	within undaries alartic Gold- th pre-chlorina- m (550 lb/mg) 50 lb/mg) 50 lb/mg) in a 0, soda-ash ated (sodium- iltered (2) to 0.6 y)	LA SAF 1947 3,000 (2,744c) 3,45 0 3,000 3,45 August 25, 1947; J. Municipally owned One deep well near Lac de !'Aqueduc. No treatment; well reservoir and system One reservoir (fire page 1947)	RRE - a To 1959 0 (3,155a) 0 10 10 10 10 10 10 10 10 10 10 10 10 1	1961 - (3,944b) - 3,900 estd - 1	MACAMI - 1958-59 1,450 (1,388a) 20* 1,470 June 15, 1959 Municipally owned a Lois River (Riviere Water enters undergies pumped with chlosystem.	- a Town 1961 - (1,614) - 1,500 estd Lois)

Municipality		MAL	ARTIC - a Town	
Year(s)	1947	1958 - 59	1960 - 61	1963
Population served: In municipality Outside municipality		6,350 (6,8184)	6,850 (6,998b)	e
Total	7	6.350°	6,850	7.050*
Date(s) of survey	1	- 12		-
Ownership				
Source of supply	well, 5 miles distar	nt. **		
Treatment	a circular coagulati aluminate, and sodi to pH 8, post-chlori Activated silica an	on-settling tank (Precum carbonate, then rap nated 17-9 lb mg), and	ipitator) with addition of oid sand-filtered, stabil repumped to reservoirs added, at certain times	of alum, sodium ized with soda ash and system.
Storage capacity (thousand gallons)	In 1947, one reservo	ir		
Consumption (average in mgd)	1n 1958-65, two rese	1958		35 & 300 1959-60
	0.40	Well water 0.08 River water 0.42		0.05 0.47
		Total 0.50		0,52 (Max 0.7
Industrial use	process water supp 26 per cent of the t	lies but use the town votal pumpage.	water for domestic purp	nes have their own oses, using about
Remarks	*Includes Canadian	Malartic, East Malart	ic, Barnet Mines towns	ite.
		n Malartic, East Malart N - a Townsite*	ic, Barnet Mines towns	
Municipality	SULLIVA			a Town
Municipality Year(s) Population served: In municipality	SULLIVA 1959 1,148a	N - a Townsite* 1961 - (1,146b)	VAL d'OR - 1947 1958-59 7,000 (8,685°) 9,950 (9	a Town
Municipality Year(s) Population served:	SULLIVA 1959 1,148a	N - a Townsite*	VAL d'OR -	a Town
Municipality Year(s) Population served: In municipality	SULLIVA 1959 1,148a 0	N - a Townsite* 1961 - (1,146b)	VAL d'OR - 1947 1958-59 7,000 (8,685°) 9,950 (9	a Town) 1961-62 ,878a) 10,500 (10,983
Municipality Year(s) Population served: In municipality Outside municipality Total Date(s) of survey	SULLIVAI 1959 1,148a 0 1,148 August 20, 1947; Jun	N - a Townsite* 1961 - (1,146b) 0 1,145 estd e 14 and Sept. 16, 1959.	VAL d'OR - 1947 1958-59 7,000 (8,685c) 9,950 (9 0 7,000 9,950	a Town 1961-62 1,878a) 10,500 (10,983 0 10,500 ember 16, 1959;
Municipality Year(s). Population served: In municipality. Outside municipality. Total Date(s) of survey.	SULLIV Al 1959 1,148a 0 1,148 August 20, 1947; Jun	N - a Townsite* 1961 - (1,146b) 0 1,145 estd e 14 and Sept. 16, 1959.	VAL d'OR - 1947 1958-59 7,000 (8,685c) 9,950 (9 0 7,000 9,950 August 20, 1947; Sept	a Town 1961-62 10,500 (10,983 0 10,500 ember 16, 1959; I operated
Municipality Year(s) Population served: In municipality Outside municipality Total Date(s) of survey Ownership Source of supply.	SULLIVAI 1959 1,148a 0 1,148 August 20, 1947; Jun Purchased from Val	N - a Townsite* 1961 - (1,146b) 0 1,145 estd e 14 and Sept. 16,1959.	VAL d'OR - 1947 1958-59 7,000 (8,685c) 9,950 (9 0 7,000 9,950 August 20, 1947; Sept Municipally owned and	a Town 1961-62 10,500 (10,983 0 10,500 ember 16, 1959; l operated
Municipality Year(s) Population served: In municipality Outside municipality Total Date(s) of survey Ownership Fource of supply. Treatment Storage capacity (thousand gallons)	SULLIVAI 1959 1,148a 0 1,148 August 20, 1947; Jun Purchased from Val	N - a Townsite* 1961 - (1,146b) 0 1,145 estd e 14 and Sept. 16, 1959.	VAL d'OR - 1947 1958-59 7,000 (8,685c) 9,950 (9 0 0 7,000 9,950 August 20, 1947; Sept Municipally owned and Three springs near La Spring water is pumpe- pond with chlorinatio tank and system. Elev. tank	a Town 1961-62 1978 10,500 (10,983 0 10,500 ember 16, 1959; I operated
Municipality Year(s) Population served: In municipality Outside municipality Total Date(s) of survey Ownership Fource of supply. Treatment Storage capacity (thousand gallons)	SULLIVAI 1959 1,148a 0 1,148 August 20, 1947; Jun Purchased from Val a See Val d'Or	N - a Townsite* 1961 - (1,146b) 0 1,145 estd e 14 and Sept. 16, 1959.	VAL d'OR - 1947 1958-59 7,000 (8,685c) 9,950 (9 0 0 7,000 9,950 August 20, 1947; Sept Municipally owned and Three springs near La Spring water is pumpe pond with chlorinatio tank and system. Elev. tank	a Town 1961-62 10,500 (10,983 0 10,500 ember 16, 1959; I operated
Municipality Year(s) Population served: In municipality Outside municipality Total Date(s) of survey Ownership Source of supply. Treatment Storage capacity (thousand gallons) Consumption (average in mgd)	SULLIVAI 1959 1,148a 0 1,148 August 20, 1947; Jun Purchased from Val of See Val d'Or	N - a Townsite* 1961 - (1,146b) 0 1,145 estd e 14 and Sept. 16, 1959. d'Or	VAL d'OR - 1947 1958-59 7,000 (8,685c) 9,950 (9 0 0 7,000 9,950 August 20, 1947; Sept Municipally owned and Three springs near La Spring water is pumpe- pond with chlorinatio tank and system. Elev. tank	a Town 1961-62 1978 10,500 (10,983 0 10,500 ember 16, 1959; I operated
Municipality Year(s) Population served: In municipality Outside municipality	SULLIVAI 1959 1,148a 0 1,148 August 20, 1947; Jun Purchased from Val See Val d'Or	N - a Townsite* 1961 - (1,146b) 0 1,145 estd e 14 and Sept. 16, 1959. d'Or	VAL d'OR - 1947 1958-59 7,000 (8,685c) 9,950 (9 0 0 7,000 9,950 August 20, 1947; Sept Municipally owned and Three springs near La Spring water is pumpe- pond with chlorination tank and system. Elev. tank	a Town) 1961-62 ,878a) 10,500 (10,983 0 10,500 ember 16, 1959; l operated

a Population according to the Tenth Census of Canada, 1956. bPopulation according to the Eleventh Census of Canada, 1961. cPopulation according to the Ninth Census of Canada, 1951.

			QUEBEC				
NORMETAI 1961	L - a rural mun	icipality	QUEBEC LITHIU	JM TOWNSITE*	SENI 1959	NETERRE -	a Town 1963
	192a) (2,284b)		110	- (104b)	400 (2,1972)		600 (4,500)
-		0	0	-	0	0	0
1,800 e	std	1,800 estd	110	100 estd	400 estd	500 estd	600
ted by the Rus	63etal Mining Co ral Municipalit , nearby*	у.	June 12, 1959 Privately owned and of Quebec Lithium Corp Roy Lake	operated by the poration, Ltd.	Municipally o	9; October 17, owned and ope	rated
	d with chloring		Lake water is pumped voir with pressure, s chlorination (sodium system.	l from a pond-reser- sand-filtration and	Water flows b	by gravity with s and system.	n chlorination
One		50	Pond-reservoir	370	Concrete res	ervoir	250
No data			1958		1958-59		1963
			0.14 (Max	r 0.2)	0.20		0.3 (Max)
Water is used b Co. Ltd.	y the Normeta	l Mining	The treated water is the mill and mine as At times, untreated used as additional Lottie Lake water, twater.	domestic supply. Roy Lake water is process water to		the C.N. Rys.	
An auxiliary s	supply is avail	able.	* A company townsite Que.	near Barraute,	† Total popu	lation.	
			ONTARIO				
	ONVILLE orated communi	*	BLACK RIVER	TOWNSHIP	CAL	VERT TOWN	SHIP
1958	1961	1963	1958 - 59	1961	1958-59	1	961
2,800 (2,883a) 0	- (3,080b)	4,035† 84*	350 (2,881a)† 0	350 (3,091 ^b)†	3,500(3,9	193a)†	- (5,233b)†
2,800 estd	3,000 estd	4,119†	350	350 estd	3,500*	3	,800 estd*
Distribution sy and operated water purchas Abitibi River to	9; 1961; Octob stem, municipa by Calvert Tow led from Iroquo reated; supplie	ally owned vnship; is Falls.	August 11, 1959 See Matheson, Ont. Supplied from Mathes	on, Ont.	August 12,	See	
Iroquois Falls See Iroquois F			See Matheson		An	sonville and l	Montrock
None in Anson 1958-59	ville	61	None in Black River Included in Matheson				
0.275†	0.	35†					
None			None				
*In Calvert To †Includes Mont		ion	†Total township popu	lation		es of Ansonvil ship populatio	le and Montröo n

A - In the Hudson Bay Drainage Basin ONTARIO

Municipality	CHAPLEA	NU .	coc	BRANE -	a Town
	an unincorporated	l community*	1957		
Year(s)	1970	1901	1957	1959	1961
Population served: In municipality Outside municipality	3,400 (3,407ª) 0	3,700 (3,785b) 0	- (3,695*)	4,000 300°	4,500 (4,52 300°
Total	3,400	3,700	3,700	4,300	4,800
Date(s) of survey	August 8, 1958		August 11, 1957;	August 12.	1959: 1961
Ownership			Owned and opera Utilities Commi	ted in 1959	
Source of supply	Kebsquasheshing Lake		Two wells, 160 f supply from 4 si		
Treatment	Water is pumped with chlo feet out in lake to stands	ipe and system.	In 1959, water is precipitation ba (150 lb/mg) and remove iron and water; it then fl underground res pumped with chi to standpipe and	sin, treated lime (2,795) partially sows by gravervoir from orination (6	with alum lb/mg) to often the tity to the which it is
Storage capacity (thousand gallons)	(C.P. Ry. also has reserve		Standpipe Underground rese	rvoir	300
Consumption (average in mgd)	1958		1957	1959	1961
	0.30 Plant capacity	0.90	0.30	0.37	0.4
Industrial use	C.P. Ry. uses about 30 per pumpage.		The C.N. Rys. as Railway use abo total pumpage.	nd Ontario N out 30 per c	lorthland ent of
Remarks	*In Chapleau Township		*In Glackmeyer 7	Township	
Municipality		HEAR	ST - a Town		
Year(s)	1957		1959	1961	
Population served:					
In municipality Outside municipality	- (2	,2142)	2,487 150	- (2	2,3736)
Total	2,400 e	std	2,637	2 640	estd
Date(s) of survey Ownership	August 8, 1957; August 13 In 1957 municipally owned Utilities Commission.				
Source of supply	Up to 1957 and since 1961 with the river as a stand	, Mattawishkwia	River; from 1959 t	o 1961 John	ison Lake
Treatment	In 1957, Mattawishkwia Ri new plant pumps Johnson 1961 use of Johnson Lak chlorination.	Lake with chlor	ination to the elev	ated tank as	nd system. In
Storage capacity (thousand gallons)	Elev. tank				250
Consumption (average in mgd)		1957	1959		
		0.2	0.3 estd		
Industrial use	Main users are C.N. Rys. * In St. Pius in Kendall, a	and a lumber con n unorganized ter	npany. ritory.		

a Population according to the Tenth Census of Canada, 1956.
b Population according to the Eleventh Census of Canada, 1961.
c Population according to the Ninth Census of Canada, 1951.

A - In the Hudson Bay Drainage Basin ONTARIO

	ONTARIO	
FOLEYET an unincorporated community	GERALDTON - a Town	GLACKMEYER TOWNSHIP
1961 1963	1957 1959 196	1959-61
- (504b) 400 (550a)	- (3,263ª) 3,269 (3,375b) - 0	300 (1,108a)†(1,172b)† 0
450 estd 400 estd	3,250 estd 3,269 3,300 esta	300_
October 14, 1963	August 7, 1957; August 14, 1959 Municipally owned and operated	
vanhoe River, nearby	Lake Reesor	Wells, treated; supplied from Cochrane
Water is pumped with chlorination (liquid-hypochlorite) to C.N. Rys. reservoir and system.	Water is pumped with chlorination (8 lb/mg) to elevated tank and system.	See Cochrane
Elev. tank	Elev. tank	
1963	1957 1958-59	
No record†	0.4 0.445 (Max0.50)	
Only C.N. Rys.	Only large users are a soft-drink bottling plant and a dairy.	
†Pumped steadily to waste in winter to prevent freezing in elevated tank.		†Total township population
	IROQUOIS FALLS - a Town	
1957	1959	1961
1,350 (1,478a) -	1,400 3,500*	1,500 (1,681 ^b) 3,800*
1,350	4,900	5,300 estd
August 12, 1957; August 12, 1959		
Plant is privately owned and operated by and operated.	the Abitibi Power and Paper Co., Ltd.; dis	tribution system is municipally owned
tomaceous filters, with lime-treatment to	with coagulation using alum and activated si p.H. 7.0-7.3. In 1959 river water is pre-chlored (72 lb/mg) and chlorine (2.7 lb/mg) adde	rinated, coagulated (alum-248 lb/mg
Elev. tank		
1957	1959	
0.55 (estd) Capacity of system - 0.72	0.656**	
The pulp and paper plant uses about 10 p *Ansonville and Montrock in Calvert Tov **Includes Ansonville and Montrock	er cent of the treated water and also raw riv wnship	er water, chlorinated only.

** Includes Ansonville and Montrock.

A - In the Hudson Bay Drainage Basin ONTARIO

Municipality	1	KAPUSKAS	ANG - a Town	
Year(s)	1957	1959	1961	1963
Population served:				
In municipality		6,000 (6,870	b) -	•
Outside municipality	0	0	-	
Total	5,200	6,000	6,600 es	td 7,187 estd
Date(s) of survey Ownership		nd operated by th	e Spruce Falls Pow	ver and Paper Co. Ltd.;
Source of supply	Kapuskasing River			
Freathern	In 17% river water enters mg) and activated silica lime (280 lb/mg) through	(100 lb/mg); it is pressure filters (2	then pumped with c 2) to elev. tank and	chlorine (12 lb/mg) and system.
Storage capacity (thousand gallons) Consumption (average in mgd)	Elev. tank	1957	1959	104
		1.0	0.65	
Industrial com	Capaci	ty of system (195	9) - 0.90	- All 10 10 10 10 10 10 10 10 10 10 10 10 10
Industrial use	uses about 28-30 mgd riv	e linishe i water er water after pre	is used in the page essure filtration (22	filters) only.
Remarks	In 1957 whenever the raw lime at the coagulation b	water alkalinity	was low, soda ash	was added with the
Municipality		munity*	MATHESO	N - a Town
	an unorganized con	munity*	MATHESO 1959	N - a Town 1961
Year(s)	an unorganized con			
Year(s)Population served: In municipality	an unorganized con 1959 1961 415 (865a)* - (1,	1963		
Year(s)Population served:	an unorganized con 1959 1961 415 (865a)* - (1,	1963	1959	1961
Year(s) Population served: In municipality	an unorganized con 1959 1961 415 (865a)* - (1, 0 0	1963 144b)* 700 0	1959 859 (758a)	1961 900 estd (853b)
Year(s) Population served: In municipality Outside municipality Total	an unorganized con 1959 1961 415 (865a)* - (1, 0 0 415** 575 est	1963 144b)* 700 0 d 700	1959 859 (758a) 350° 1,209	900 estd (853b) 350° 1,250 estd
Year(s) Population served: In municipality Outside municipality Total Date(s) of survey.	an unorganized con 1959 1961 415 (865a)* - (1, 0 0 415** 575 est August 16 and November 2 11, 1963,	1963 144b)° 700 0 0 1 1 1 1 1 1 1	1959 859 (758a) 350° 1,209 August 11, 1959	900 estd (853b) 350° 1,250 estd
Outside municipality	an unorganized con 1959 1961 415 (865a)* - (1, 0 0 415** 575 est August 16 and November 2 11, 1963. Owned and operated by Im District of Longlac. Long Lake, nearby	1963 700 0 0 0 0 0 0 0 0	1959 859 (758a) 350° 1,209 August 11, 1959 Municipally owned	900 estd (853b) 350° 1,250 estd
Year(s) Population served: In municipality Outside municipality Total Date(s) of survey. Ownership	an unorganized con 1959 1961 415 (865a)* - (1, 0 0 415** 575 est August 16 and November 2 11, 1963. Owned and operated by Im District of Longlac. Long Lake, nearby Lake water is pumped with tion, alum and micromet a pressure-filtered to elev. system.	1963 1963 144b)* 700 0 0 0 0 0 0 0 0 0	859 (758a) 350° 1,209 August 11, 1959 Municipally owned Spring-fed lake, ner Lake water is pump system.	900 estd (853b) 350° 1,250 estd and operated
Year(s) Population served: In municipality. Outside municipality Total. Oute(s) of survey. Ownership Ource of supply. Greatment Storage capacity (thousand gallons)	an unorganized con 1959 1961 415 (865a)* - (1, 0 0 0 415** 575 est 11, 1963. Owned and operated by Im District of Longlac. Long Lake, nearby Lake water is pumped with tion, alum and micromet a pressure-filtered to elev. system.	1963 1963 144b)* 700 0 0 0 0 0 0 0 0 0	859 (758a) 350° 1,209 August 11, 1959 Municipally owned Spring-fed lake, ner Lake water is pump system.	900 estd (853b) 350° 1,250 estd and operated
Year(s) Population served: In municipality Outside municipality Total Date(s) of survey Ownership Greatment Storage capacity (thousand gallons)	an unorganized con 1959 1961 415 (865a)* - (1, 0 0 0 415** 575 est August 16 and November 2 11, 1963. Owned and operated by Im District of Longlac. Long Lake, nearby Lake water is pumped with tion, alum and micromet a pressure-filtered to elev. system. Elev. tank	1963 19	1959 859 (758a) 350* 1,209 August 11, 1959 Municipally owned Spring-fed lake, ner Lake water is pump system. None, except lake 195 0.085 (900 estd (853b) 350° 1,250 estd and operated
Year(s) Population served: In municipality Outside municipality Total. Date(s) of survey. Ownership Source of supply Treatment Consumption (average in mgd)	an unorganized con 1959 1961 415 (865a)* - (1, 0 0 415** 575 est August 16 and November 2 11, 1963. Owned and operated by Im District of Longlac. Long Lake, nearby Lake water is pumped with tion, alum and micromet a pressure-filtered to elev. system. Elev. tank 1959 0.07 (Max 0.075) Capacity of system	1963 1963 1963 1963 1963 1963 1963 1964 19	1959 859 (758a) 350° 1,209 August 11, 1959 Municipally owned Spring-fed lake, ner Lake water is pump system. None, except lake 1959 0.085 (Capacity of system	1961 900 estd (853b) 350° 1,250 estd and operated
Year(s) Population served: In municipality Outside municipality Total Date(s) of survey. Ownership	an unorganized con 1959 1961 415 (865a)* - (1, 0 0 415** 575 est August 16 and November 2 11, 1963. Owned and operated by Im District of Longlac. Long Lake, nearby Lake water is pumped with tion, alum and micromet a pressure-filtered to elev. system. Elev. tank 1959 0.07 (Max 0.075) Capacity of system	1963 1963 1963 1963 1963 1963 1963 1964 19	1959 859 (758a) 350° 1,209 August 11, 1959 Municipally owned Spring-fed lake, ner Lake water is pump system. None, except lake 1959 0.085 (Capacity of system	and operated

a Population according to the Tenth Census of Canada, 1956.
b Population according to the Eleventh Census of Canada, 1961.
c Population according to the Ninth Census of Canada, 1951.

A - In the Hudson Bay Drainage Basin ONTARIO

	ONTAINIO			
KENDALL - an unorganized territory	KENDREY TOWN	SHIP	LAKEV	
	1959-61		Whitney T	
	800 (1,061ª)	† (1,067 ^b)†	-	
	800 estd**		40	
	August 12 and September	1 1050, 1063	40	
	Distribution system owne Township			
	Mattagami River purchase Rock Falls	d from Smooth		
See Herast, Ont.	See Smooth Rock I	Falls	See Porcupine South Porc	
	None *An Improvement District 1960. Total township populati *Area served known as 1963.	until Jan.1,		
MATTAGAMI HEIGHTS	MONTROCK		MOOSE FA	CTORV
an unorganized community*	an unincorporated co		an unincorporat	ed community
1959 1961 1963	1959	1961	1961	1962-65
- (1,132a)† - (1,423b)† -	700 (799a)	- (893 ^b)	- (477a)(689b) -
900 estd 1,050 estd 1,200 estd	700	800 estd	1,200*	1.500
900 estd 1,050 estd 1,200 estd August 17, 1959; October 15, 1963	August 12, 1959		December 1962 and Jul	1,500 estd
Privately owned and operated	See Iroquois Falls and A	Ansonville, Ont.	In 1962 owned and ope of National Health an by Northern Canada F	d Welfare and in 190
	Abitibi River, treated; s Iroquois Falls, Ont.	upplied from	Moose River, 1 mile ab	
See Mountjoy Township	See Iroquois Fall	s, Ont	In 1962-1965 clarifica and chlorination (alum	n and soda ash). In
	and Ansonville	Ont.	1965 lime used to adj silica as a coagulation	
		,	In 1965, two concrete 1 1962	
			No data	0.080
	None		Capacity of system	
*In Mountjoy Township	*In Calvert Township		*Includes hospital **System installed in	

A - In the Hudson Bay Drainage Basin ONTARIO

Municipality	an unincorporated cor		MOUNT JOY TOWNSHIP			
Year(s)	I 1961	1965	1959-60	1961	1963	
Population served:			.///-00	*/01	1707	
In municipality	- (214a) (975b)	- (500c)	- (1,920=)†	- (2,437b)†		
Outside municipality				- (-,-)		
Total	600 estd	400 estd	900 estd	1,050 estd	1,200 est	
Date(s) of survey	November 29, 1962; July 13	3, 1965	August 13, 1957 15, 1963,	; August 17, 19	59; Octobe	
Ownership	Owned and operated by Ont Transportation Commissio	ario Northland	Privately owned Construction C		y Vallée	
Source of supply	Store Creek		Well, 90 ft deep, River.		Mattagami	
Freatment	elev. tank and system.	River water is c water (usually is pumped with hypochlorite) d	less than 1/2 riv	er water)		
Storage capacity (thousand gallons)	Elevated tank	50	None			
Consumption (average in mgd)	1965		1959	1963		
	0.080		0.1	0.09		
ndustrial use	Capacity of syste					
	None, except railway use.		None			
Remarks	RCAF station has a new sy nearby creek.	† Total township population • Communityserved known as Mattagami Heights.				
Municipality		an unincorpo	PORCUPINE rated community is	n	-	
		an unincorpo			1963	
Municipality Year(s) Population served:		an unincorpo Tisdale	rated community is Township*		1963	
Year(s)	1957	an unincorpo Tisdale	rated community is Township*	61		
Year(s)	1957	an unincorpo Tisdale 1959	rated community is Township*		1963	
Year(s) Population served: In municipality	1957 4,660 (4,017a)	an unincorpo Tisdal 1959 4,862 0	rated community in Township*	(5,144b)	4,646	
Year(s) Population served: In municipality. Outside municipality. Total	1957 4,660 (4,017a) 0 4,660	an unincorpo Tisdale 1959 4,862 0 4,862	rated community in e Township* 190 -	(5,144b) 0 50 estd	4,646 0 4,646	
Year(s) Population served: In municipality. Outside municipality. Total Date(s) of survey	1957 4,660 (4,017a) 0 4,660 August 13, 1957; August 11	an unincorpo Tisdale 1959 4,862 0 4,862 , 1959; October	190 - 4,7	(5,144b) 0 50 estd	4,646 0 4,646	
Year(s) Population served: In municipality. Outside municipality. Total	1957 4,660 (4,017a) 0 4,660 August 13, 1957; August 11	an unincorpo Tisdale 1959 4,862 0 4,862 , 1959; October	190 - 4,7	(5,144b) 0 50 estd	4,646 0 4,646	
Year(s) Population served: In municipality. Outside municipality. Total Date(s) of survey	1957 4,660 (4,017a) 0 4,660 August 13, 1957; August 11 Owned and operated by Tiso	4,862 0 4,862 , 1959; October dale Township.	rated community in Township * 190 -	(5,144 ^b) 0 50 estd	4,646 0 4,646	
Year(s) Population served: In municipality. Outside municipality. Total Date(s) of survey Ownership	4,660 (4,017a) 4,660 4,660 August 13, 1957; August 11 Owned and operated by Tise Two wells, 48 and 52 ft dee	4,862 0 4,862 1959; October dale Township.	rated community in Township * 190 4,7 15, 1963	(5,144b) 0 50 estd	4,646	
Year(s) Population served: In municipality. Outside municipality. Total Date(s) of survey Ownership Cource of supply	4,660 (4,017a) 0 4,660 August 13, 1957; August 11 Owned and operated by Tise Two wells, 48 and 52 ft dee Two wells are pumped alter NaF/mg) to reservoir from	4,862 4,862 0 4,862 , 1959; October dale Township.	rated community is Township 190 190 4,7 15, 1963 ant in Shaw Townshilorination (8 lb/mer flows by gravity	(5,144b) 0 50 estd 	4,646 0 4,646	
Year(s) Population served: In municipality. Outside municipality. Total Date(s) of survey Ownership Source of supply	4,660 (4,017a) 0 4,660 August 13, 1957; August 11 Owned and operated by Tise Two wells, 48 and 52 ft dee Two wells are pumped alter NaF/mg) to reservoir from	4,862 4,862 0 4,862 , 1959; October dale Township.	rated community is Township 190 190 4,7 15, 1963 ant in Shaw Townshilorination (8 lb/mer flows by gravity	(5,144b) 0 50 estd ship	4,646 0 4,646	
Year(s) Population served: In municipality. Outside municipality. Total Date(s) of survey Downership Source of supply. Freatment. Storage capacity (thousand gallons). Consumption (average in mgd)	4,660 (4,017a) 0 4,660 August 13, 1957; August 11 Owned and operated by Tise Two wells, 48 and 52 ft dee Two wells are pumped alter NaF/mg) to reservoir from Covered ground reservoir	4,862 4,862 4,862 1959; October dale Township. 2p, 3 miles dist which the water water and the wa	ant in Shaw Township for flows by gravity 1959 0,46	(5,144b) 0 50 estd 	4,646 0 4,646 	
Year(s) Population served: In municipality Outside municipality Date(s) of survey Ownership Source of supply Freatment Storage capacity (thousand gallons) Consumption (average in mgd) ndustrial use	4,660 (4,017a) 0 4,660 August 13, 1957; August 11 Owned and operated by Tise Two wells, 48 and 52 ft dee Two wells are pumped alter NaF/mg) to reservoir from Covered ground reservoir None, but, after September company and its townsite.	4,862 4,862 0 4,862 , 1959; October dale Township. ep, 3 miles dist which the water w	ant in Shaw Township for flows by gravity 1959 0,46	(5,144b) 0 50 estd 	4,646 0 4,646 	
Year(s) Population served: In municipality Outside municipality Date(s) of survey Ownership Source of supply Freatment Storage capacity (thousand gallons) Consumption (average in mgd) ndustrial use	4,660 (4,017a) 0 4,660 August 13, 1957; August 11 Owned and operated by Tise Two wells, 48 and 52 ft dee Two wells are pumped alter NaF/mg) to reservoir from Covered ground reservoir None, but, after September company and its townsite.	4,862 4,862 0 4,862 , 1959; October dale Township. ep, 3 miles dist which the water w	ant in Shaw Township for flows by gravity 1959 0,46	(5,144b) 0 50 estd 	4,646 0 4,646 	
Year(s) Population served: In municipality. Outside municipality. Total Date(s) of survey Downership Source of supply. Freatment. Storage capacity (thousand gallons). Consumption (average in mgd)	4,660 (4,017a) 0 4,660 August 13, 1957; August 11 Owned and operated by Tise Two wells, 48 and 52 ft dee Two wells are pumped alter NaF/mg) to reservoir from Covered ground reservoir None, but, after September company and its townsite.	4,862 4,862 0 4,862 , 1959; October dale Township. ep, 3 miles dist which the water w	ant in Shaw Township for flows by gravity 1959 0,46	(5,144b) 0 50 estd 	4,646 0 4,646 	

a Population according to the Tenth Census of Canada, 1956. b Population according to the Eleventh Census of Canada, 1961. c Population according to the Ninth Census of Canada, 1951.

A - In the Hudson Bay Drainage Basin ONTARIO

		ONIA	1(10				
PORCUPINE an unincorporated commu in Whitney Townsh	nity (Townsite) an unincorp	UMACHER orated commu	nity in	SMOOTH	ROCK FALLS -	a Town
1959 1961	1963	1957	1959	1961-63	1959	9 - 61	
1,419 (668a)† - (1,213b)† 1,350 (1,848)†		- (3,017a)	•	- (3,071		45 (1,104a) (1,13	1b)
	1 250	2.500#	3.546*	3,322*		945	
7	1,350	3,500*	-7	- ,-			•
August 11, 1959; October	15, 1963	August 11, 195	9		August 12 and	l September 1, 195	9
Owned and operated by Wiship	,	Owned and ope	rated by Tisc	lale Township		ed and operated ber and Paper Co. I	
Well, 42 ft deep, fed by s distant: In 1963 Bob's L being used to recharge a		Mattagami Rive from the Holli Mines Ltd., T	nger Consolie		Mattagami Riv	ef	
No treatment; water is pur voir and system.		The purchased lb/mg) and purchased township.	water is fluo		River water is pumped with chlorinate (54 lb/mg) to system.		
Underground concrete rese	ervoir 200	None			Elev. tank (fi	re storage only)	1
1958			1959			1959	
0.05 (Max 0 Capacity of system		Capaci	0.30 ty of system	- 0.8	Capacity	0.65 (Max 1.15 of system - 2.0	5)
None		None			The paper cor drinking purp	npany uses the wa	ater for
Total township population See Lakeview and White ships.	on ney Town-	* Includes som	e in Tisdale	Township.	* In Kindrey T	ownship, including	ng Union-
	TIMMI	NS a Town			TISDA	LE TOWNSHIP	
1957	1959	1961		1963	1959	1961	1963
27,500 (27,557a) 0	28,000	- 0	(29,270 ^b)	29,000 0	- (8,092a)	1,100 (8,650b)† 8,072**	1,101* 7,968*
27,500	28,000	28,500	estd	29,000	8,408	9,172	9,069
August 13, 1957; August Plant owned and operated tion system municipally	d by Hollinger (Consolidated Go			August 11, 19	759	
Mattagami River, 11/2 mile	s distant				South Porcup	See ine and Schumach	er, Ont.
In 1957 and 1959 water is	s pumped with	chlorination (24	lb/mg) to sy	stem.			,
None							
1957	1959		1963				
2.0	2,1 (Max	c 2.77)	2.03				
Mines in the area have th	eir own supply	; the brewery us	ses this wate	r.			
					Whitney Tow ** Schumache	es and Lakeview a rnships. er and South Porcu ship population	

A - In the Hudson Bay Drainage Basin ONTAPIO

Municipality	UNIONVILLE an unorganized community*	1/1 }	HINEY TOWNSHI	h.
Year(s)	an unorganized community	1959	1961	1963
Population served:				
In municipality			689a) 400estd* (1,8	
Outside municipality		1,419**	1,375**	1,350°
Total		1,619	1,775 estd	1,850
Date(s) of survey			, 1959; October 15, d operated by Whitn	
Source of supply		Well, 42 f Porcupin	t deep, fed by sprin	gs in
Treatment	See Smooth Rock Falls and Kendrey Township	No treatm and syst Porcupin	ent; water is pumpe em. See Porcupine i e.	d to reservoi and South
Storage capacity (thousand gallons)		Undergrou	and concrete reservo	ir - No data
Consumption (average in mgd)		1	1959	
		Capacity	0.05 (Max 0.0 of system - 0.1	75)
Industrial use		None		
Remarks	Kendrey Township	Township	in Lakeview area b p (South Purcupine) nity of Porcupine. ownship	y Tisdale

B - In the Labrador Drainage Basin QUEBEC

Municipality	FORT CH	IMO*- a settlement			ERVILLE*
Year(s)	1959	1963	1959		1961
Population served: In municipality Outside municipality	100 (225a) 0	225 (480)† (468b)	4,100	(1,632a)	- (3,178 ^b)
Total	100	225	4,100		3,400 estd
Date(s) of survey	December 15, 1959 February, 1963	; April 4, 1961;	March 7, 19	59	• • • • • • • • • • • • • • • • • • • •
Ownership	Owned and operate of Northern Affair Resources.	d by the Department s and National			fron Ore Co. of Canada; d by the municipality.
Source of supply	In 1959 a small por Lake, 5 miles dis settlement is auxi	tant: a creek in	Knob Lake		* * * * * * * * * * * * * * * * * * * *
Treatment	In 1963 water is putank on truck, chl hypochlorite) and voirs and systems and locations (No port, Dept. of Nor	amped into 1,000 gal orinated (sodium hauled daily to reser- in various buildings rdair, Dept. of Trans-	Lake water chlorination	is filtere on to the	d and pumped with system.
Storage capacity (thousand gallons) Consumption (average in mgd)	None, except the in		None, excep		ake
Consumption (average in mgd)				1959	
	Capacity - 7,000 to	(Max 4,000 gpd) 8,000 gpd	Domestic Industrial	0.30	Plant capacity- 2.0 mgd
Industrial use			Total Mining uses pumpage.	0.55 about 45	per cent of the total
Remarks	* No truly organized supply started in † Total population summer.	1959.	*Previously	known a	s Knob Lake

a Population according to the Tenth Census of Canada, 1956. b Population according to the Eleventh Census of Canada, 1961. c Population according to the Ninth Census of Canada, 1951

A - In the Hudson Bay Drainage Basin NORTHWEST TERRITORIES

RA				

a settlement 1961-62 1965

- (529b) 387 (387c)
- 0
700 387

1962-1963; July 26, 1965

Owned and operated by the Department of Northern Affairs and National Resources.

In 1962 and 1965 Lake Nipissar, $1\frac{1}{2}$ miles distant, with Loon Lake as an auxiliary supply; in 1966 Williamson's Lake, will replace Lake Nipissar as the main source.

In 1962-1965 Lake Nipissar water is pumped with chlorination to system.

1962-63	1965
Approx. 0.315	0,025

C - In the Arctic Drainage Basin

	NORTHWEST TERRIROTIES					
ALERT (ELLESMERE ISLAND)	CAMBRIDGE BAY					
1961	1961	1963	1965			
- (9a) (31b)	- (798a) (531b)	140 (250°)	- (500c)			
No data		<u>0</u> 140	300			
1959, 1960 and 1963	January 14, 1963 and July 29, 1965					
Department of National Defence	Department of Northern Affairs and	National Resources				
Upper Dumbell Lake and well*	In 1963 small unnamed lake on Dew River.	line site; in 1965 Wa	ter Supply Lake and Grenier			
Filtration and chlorination**	In 1965 water is chlorinated (calciu settlement buildings.*	m hypochlorite) in tar	nks and hauled by truck to			
No data No data			1965 3,000 gpd			
* Supplies the Wireless Station. ** A new treatment plant was installed in 1965.	None					

C - In the Arctic Drainage Basin NORTHWEST TERRITORIES

Municipality	FROBISHER BAY (Baffin Island)
Year(s)	1961-63	1965
Population served:		
In municipality		500 (1,500c)
Outside municipality	-	0
Total	1,750	500
Date(s) of survey	November, 1962; 1963 and July 16, 1965	
Ownership	In 1963 Dept. of Transport; In 1965 Dept. of N owned, operated by Northern Canada Power C	orthern Affairs and National Resources
	In 1961 a small pond 2 miles from settlement; Lake Geraldine. Sylvia Grennel River is an a	uxiliary supply.
Treatment	In 1962 pond water hauled to consumer reservo water hauled to system with chlorination; in the state of the system with chlorination; in and sodium silicate. Fluoridation is being co- and sodium silicate.	1965 Lake Geraldine water is congulated
Storage capacity (thousand gallons)	One concrete reservoir	
Consumption (average in mgd)	1963	1965
	38,000 gpd	65,000 gpd
	Capacity - 38,000 gpd A hospital and power plant use the treated wat	250,000 gpd
Remarks	No organized system until May 4, 1964.	
Municipality		
Population served:	Andrews .	
In municipality	- (75a) (153b)	
Outside municipality		
Total	100 estd	
Date(s) of survey		
Ownership	Department of National Defence	
Source of supply	, A small lake	
Treatment	Ion exchange softening and chlorination	
Storage capacity (thousand gallons)	No data	
Consumption (average in mgd)	None	
Industrial use		
Remarks	A Dept. of Transport base is located 3 miles distant and an Eskimo village 4 miles distant.	

a Population according to the Tenth Census of Canada, 1956.
b Population according to the Eleventh Census of Canada, 1961.
c Population according to the Ninth Census of Canada, 1951.

TABLE III

CHEMICAL ANALYSES OF MUNICIPAL WATER SUPPLIES

TABLE HI

Chemical Analyses of Municipal Water Supplies

A - Hudson Bay Drainage Basin - Quebec

Date of sampling				Wells, springs and Harricanaw River					
Date of sampling Aug. 22/47 Nov. 25/58 Oct. 17/63 Aug. 23/47 Sampling Aug. 22/47 Nov. 25/58 Oct. 17/63 Aug. 23/47			Wells	Sp	rings	Harricanaw River			
Date of sampling Aug. 22/47 Nov. 25/58 Oct. 17/63 Aug. 23/47 Sampling temperature, %C 4:8 9:20 53:102 16 Test temperature, %C 5:6.6 9:7 Test temperature, %C 5:6 Test temperature, %C 5:6 Test temperature, %C 7:7 6:5 Test temperature, %C 7:7	-			Raw and fins	shed water				
Storage period (days) 4.8 5.6 5.1 5.6 5.10 16	Sin ; I ja	r ç sınt	At reservoir	At town	tap	At sump well			
Stability index at test temperature 6.7 9.2 9.7 12	Storage: Storage: Sampling: Test tem Carbon of PH Carbon of Suspende Suspende Suspende Suspende Suspende Residue Ignition Specific Calcium Magnesit Iron (Fe) Manganes Aluminum Copper (C Alum (M Potassiu Ammoniu Carbonate Bicarbon Sulphate Chloride Fluoride Fluoride Fluoride Fluoride Fluoride Sulphate Chloride Fluoride Flu	period (days) temperature, °C. perature, description of the descript	4:8 8 21.2 1.2 (8) 8.5 (7.4) 3 (45) 5 8.2 4.4 224 29.6 354 47.3 14.3 0.13 0.09 2.4 11.5 (0.0) 193 (215) 28.8 3.3 (3.3) 0.15	9:20 5.6 23.4 0.5 8.2 0 0 65.2 1.6 94.2 12.2 3.0 0.01 0.00 0.07 0.0 0.0 1.7 0.6 0.05 0.0 50.5 4.2 0.5 0.0 0.1 10 41.4 1.4 42.8 49.1	91.8 11.6 2.9 0.1 91.8 11.6 2.9 0.20 0.00 48.4 7.2 <0.1 0.04	16 14 6.5 110 20 82.4 33.2 7.8 3.1 1.2 3.6 as Na 0.0 26.4 7.4 0 3.5 3.6 21.6 10.6 32.2 42.0			
	Redox por	ndex at test temperature	6.7	9.2	9.7 -462	-2.6 12			
* See also Table II , Station No. 40	Remarks				0.116				

Chemical Analyses of Municipal Water Supplies

A - Hudson Bay Drainage Basin - Quebec (cont'd)

A	MOS		BOURLAMAQUE		CHIBOUGAMAU	
Harricanaw River*		Wells	and springs	Springs	Gilman (Dore) Lake Lac Gilman	
Raw and	finished water	Ra	w and finished water		Raw and finished water	
At s	ump well	At sump v	vell at plant	At town tap	At tap	
Apr. 6/59	Nov. 4/59	Aug. 20/47	Nov. 17/58	Oct. 18/63	Nov. 25/58	
21:39	19:27	:420	14:17	12:20	20:41	
9.4	17.0	5.8		8.2	5.0	
26.3	27.4	21.1	21.1	24.0	24.2	
			1.2		4.3	
1	2	0.9 (5)	1	4	4	
8.5	7.1	8.4 (7.7)	8.2	7.7	7.3	
45	70	0 (5)	0	0	25	
2	55	3	0	0	0	
		3.4				
		0.2				
		150	143		64.8	
		50.0	16.4		20.0	
412	67.1	222	198	232	97.1	
50.0	7.9	38.3	32.7	36.9	14.8	
11.4	2.1	3.3	4.6	5.2	3.0	
	1.8	0.02		0.09		
		0.02	0.01		0.02	
			0.03	0.00	0.00	
			0.01		0.00	
0.0			0.03		Trace	
0.0			0.05		0.02	
17.0	1.6	3.5	2.4	2.8	0.6	
16.8	1.0	1.5	1.0	1.1	0.2	
0.0	0.1	•	0.05		0.0	
0.0	0.0	5.5 (0.0)	0.0	0.0	0.0	
250	17.2	126 (142)	115	130	51.8	
16.2	16.5	8.2	9.3	11.4	5.6	
2.4	1.5	0	0.7	0.4	1.5	
		0.1	0.0	0.1	0.0	
0.0				,		
				,		
1.0	0.1	0.4	0.1	0.2	0.1	
11	3.4	17	15	16	3.8	
172	14.1	109	94.6	107	42.5	
0.0	14.2	0.0	5.9	7.0	6.8	
172	28.3	109	101	114	49.3	
238	42.6	140	123	138	55.3	
16	11	6.4	4.9	5.0	2.6	
+1.1	-2.1	+0.5	+0.2	-0.1	-1.3	
6.3	11	7.4	7.8	7.9	9.9	
				-466		
				0.112		
		4	1	1		

Chemical Analyses of Municipal Water Supplies

A - Hudson Bay Drainage Basin - Quebec (cont'd)

(In parts per million)

	Municipality	CHIBOUGAMAU		DUPARQUET			
	Source(s)	Gı	lman Lake	Lake D	uparquet		
-		Raw water	Finished water	Raw water	Finishe-twater		
	Sampling point		At City Hall	Ar mull intake	Ar mill ray		
1	Date of sampling	Aug. 9/65	Aug. 9/65	Aug. 26/47	Aug. 26/47		
١	Storage period (days)	23:29	18:29	309	420		
ı	Storage period (days)	23.27	10.27	22.8	23.0		
1	Sampling temperature, °C	23.3	23.3	22.0	19.1		
١	l'est tempearture, C	5.6	5.5		*/**		
	Oxygen consumed by KMnO ₄	2	2	1 (2.5)	0.7 (3.0		
1		7.6	7,6	7.8 (7.5)	8.0 (7.1)		
	pH	75	75	40 (70)	0 (10)		
	Colour	0	70	15 (15)	3 (<5)		
	Turbidity	V		1) (1)	3 (<)/		
1	Suspended matter, dried at 105 C						
1	Residue on evaporation, dried at 105°C	67.2	65.2	67.6	93.0		
	Ignition loss at 550°C.	34.8	28.0	14.4	16.8		
	Specific conductance, micromhos at 25°C	95.4	95.6	94.1	141		
1		15.1	15.2	12.8	18.0		
	Calcium (Ca)	2.7	2.6	4.4	3.4		
١	Magnesium (Mg)	2./	2.0	414	7.4		
d	Iron (Fe) Total	0.02	0.02	0.01	0.01		
1		0.00	0.00	0.01			
ı	Manganese (Mn) Total	0.00	0.00				
		0.00	0.00	I			
١	Aluminum (Al)		1 0.01				
ı	(opper (Cu)						
	Zinc (Zn)	0.7	0.7				
1	Sodium (Na) Potassium (K)	0.3	0.2				
1			0.2				
1	Ammonium (NH ₄)	0.0	0.0	0.0 (0.0)	0.0		
	Carbonate (CO ₃)	48.9	48.8	41.5 (39.0)	37.8		
1	Bicarbonate (HCO ₃)	7.2	6.8	11.8	36,7		
1	Sulphate (SO ₄)	1.0	1.0	0	1.0		
١	Chloride (Cl)	0.08	0.08	0	0.05		
1	Fluoride (F)	<0.1	<0.1				
1	Phosphate (PO ₄) Total		0.1				
1	Dissolved	0.0	0.0	3,5	0.0		
ı	Nitrate (NO ₃)	2.8	2.9	5.2	3.0		
	Silica (SiO ₂), colorimetric	48.6	48.8	34.0	31.0		
	Carbonate hardness as CaCO ₃	48.5 8.5	8.8	16.0	27.8		
	Non-carbonate hardness as CaCO ₃	48,6	48.8	50.0	58.8		
1	Total hardness as CaCO ₃			50.0	84.5		
	Sum of constituents	53.9	53.5	******			
١	Per cent sodium	3.0	3.0	1.0	7.6 -0.8		
	Saturation index at test temperature	-1.0	-1.0	1.0			
1	Stability index at test temperature	9.6	9.6	9.8	9.6		
1	Redox potential (mv)						
Н	Sodium absorption ratio	0.04	0.04				

Remarks

Chemical Analyses of Municipal Water Supplies

A - Hudson Bay Drainage Basin - Quebec (cont'd)

	ARQUET	FORT GEORGE	GREAT WHALE		T TOWNSITE (MAL	
Well		Fort George River	Great Whale River		Piche River	
Raw and fi	nished water	Raw and finished water	Raw and finished water	Raw water	Finis	ned water
At tap	At town tap	Direct from river	Direct from river	At plant intake	At plant tap	At pressure tank
June 15/59 51:58 27.1 1.9 0.8 8.3 5	Oct, 16/63 56:103 9.4 23.1 4 8.0 0	Aug, 24/60 33:40 15:0 22:3 6:4 3 6:3 35	Aug. 24/60 33:40 12.2 22.5 6.4 3 5.9 30 0.8	Aug. 10/59 11:16 21.1 27.4 9.1 2.5 6.4 35 5 29.2	June 13/59 25:34 25.2 1.0 0 9.6 25 2	Aug. 10/59 11:16 21.1 27.4 5.2 0 9.1 15 0.8
				25.8 44.0 18.4	244 25.6	236 21.6
557 83.9 29.3 0.09 0.09	518 51.2 31.3 0.02	13.8 1.5 0.3 0.18 0.06 0.00	19.7 1.5 0.3 0.14 0.04 0.00	34.1 2.9 1.2 0.69 0.02 0.00	380 2.8 0.6 0.41 0.19 0.00	385 2.5 1.0 0.09 0.06 0.00
0.17 0.0 0.5 12.0 1.6 0.0	10.0	0.0 0.0 0.00 0.6 0.3	0.03 0.00 0.00 0.6 0.3	0.0 0.00 0.05 0.9 0.7 0.1	4.0 0.00 0.00 80.8 0.7 0.0	2.5 Trace 0.00 79.7 0.8 0.0
0.0 384 35.5 4.8 0.00 0.01	0.0 257 59.4 4.1 0.09 3.4	0.0 3.7 1.7 0.5 0.0	0.0 1.6 2.2 2.2 0.0	0.0 4.3 11.0 0.8 0.0 0.01	38.6 96.1 42.5 2.4 1.0	23 128 39.0 1.8 1.1 0.01
3.0 12 315 15.0 300 372 7.3 +1.3 5.7	3.4 14 211 45.5 257 302 7.8 +0.6 6.8	Trace 2.4 3.0 2.0 5.0 9.2 19 -4.4	0.0 1.6 1.3 3.7 5.0 9.5 19 -5.2	0.0 4.0 3.5 8.7 12.2 23.7 13 -3.9	0.0 4.3 9.5 0.0 9.5 227 88 +0.8 8.0	0.1 4.5 10.4 0.0 10.4 219 88 +0.3 8.5
	0.27	*				
		See Table II, Station No. 8	See Table II Station No. 5			

Chemical Analyses of Municipal Water Supplies

A - Hudson Bay Drainage Basin - Quebec (cont'd)

	Magazipalits	LA SAR Deep well Raw and finished water			Loss River Raw and finished water
	Scatonsi				
-	Sampling point	At hotel tap	At	town tag	At tap
	Date of sampling	Aug. 25/47	June 15/59	Oct, 17/63	Tune 15/59
	Storage period (daye)	:330	55:58	13-31	24:44
ı	Sampling temperature of	8.0		10.2	17.0
п	lest temperature, "(27.0	24.1	27.4
1	Oxygen consumed by KMnO4		2.3	L	, 15
ĺ	Carbon dioxide (CO2), (calculated)	6 (12)	3,<	5	4,
â	pH	8.0 (7.6)	8.;	9	15.4
1	Colour	20 (15)	5	0	1.20*
	Turbidity	Clear	Ó	0	304
1	Turbidity. Suspen led matter, dried at 1050(q	26+
1	Suspended matter, ignited at 550°C				1.79
1	Residue on evaporation, dried at 105°C.		260		
п	Ignition loss at \$50°(36.2	30.0		44.8
1	Specific conductance, micrombos at 25°C.	564	429	422.3	70.9
	(alexum ((a)	64.8	62.4	58.9	9, 7
	Magnestar. (Mg)	25.8	16.0	16.7	2.2
	Iron (Fe) Total		0.09	0.11	1.8
	Dissolved	0.04	0.04		0.23
п	Manganese (Mn) Total	,	0.00	0.03	0.00
Т	Dissolved				
í	Aluminum (A!)		0.2		0.00
1	(opper (Cu)		Trace		Trace
1	Zinc (Zn)		0.3	7.1	0.05
п	Sodium (Na)		7.5	1.9	1.2
п	Potassium(K)	3.5	1.7		0.8
5	Ammonium (NH ₄)		0.0	0.0	
1	(arbonate (('() ₃)		0.0	0.0	0.0
1	Bicarbonate (HCO ₃)	364	273	262	26.2
	Sulphate (SO ₄)		10.6	11.3	9.7
	Chloride (C1)	0.6	2.4	2.1	1.9
}	Fluoride (F)		0.0	0.11	0.0
	Phosphate (PO4) Total		0.07	,	
1	Dissolved				
	Nitrate (NO ₃)	7.9	1.0	1.0	0.0
Т	Silica (SiO ₂), colorimetric	25	14	16	2.6
	Carbonate hardness as CaCO ₃		222	215	21.5
	Non-carbonate hardness as CaCO ₃	0.0	0.0	1.3	12.2
	Total hardness as CaCO ₃	268	222	216	33.7
1	Per cent sodium	332	250	243	41.5
1	Saturation index at test temperature	+0.8	6.7 +0.8	6.6	6.9
1	Stability index at test temperature	6.4	+0.8	. +0.6 6.7	-2.2
	Redox potential (mv)		0.)	1 -472	11
	Sodium absorption ratio			0.210	
				0.210	
1	Remarks				† precipitated iron

Chemical Analyses of Municipal Water Supplies

A - Hudson Bay Drainage Basin - Quebec (cont'd)

(In parts per million)

MACAMI (concl'd)			MALARTIC			
Lois River		Ма	alartic River (Milhaut	Lake)		N
Raw and finished water		Raw water		Finished	d water	
At town tap		At plant intake		At water	plant tap	
Oct. 17/63 25:102 13-3 23.1	Aug. 19/47 :324 19.2	Nov. 18/58 3:15 24.3 20.0	June 13/59 23:30 15.0 25.0 17.6	Aug. 19/47 :336 22.8	Nov. 18/58 3:15 24.4	1
2 7.4 70 25	0.8 (8) 7.2 (5.9) 75 (125)	2.5 5.9 140 5 12.0 7.6	8 5.7 120 4 7.5 1,0	1.5 (7) 7.2 (7.1) 8 (<5) Clear	1 7.7 35	
94.8 11.9 3.1 1.7	32.8 11.0 29.9 2.4 1.5 0.46	69.6 39.2 46.9 3.6 1.4	58.0 30.4 39.2 3.5 1.6 0.98	111 13.8 170 20.0 3.1	124 23.6 156 3.5 1.3	
0.00		0.61 0.02	0.37 0.00	0.03	0.17 0.05	
1.4 0.7		0.0 0.00 0.10 0.8 0.7	0.0 0.00 0.2 0.9 0.6	6.0 1.5	0.94 (0.2)† 0.00 0.00 25.0 0.7 0.25	
0.0 31.2 15.2 1.8 0.13	0.0 (0) 7.8 (7.2) 5.9	0.0 1.2 13.8 1.3 0.0	0.0 2.4 11.1 1.8 0.0	0.0 (0) 14.6 (17.1) 58.9 0.1	0.0 38.8 36.3 2.1 0.0	
0.1 3.7 25.6 16.9 42.5 53.4 6.6 -1.5 10	3.5 2.8 6.4 (6.0) 5.8 12.2	0.2 6.3 1.0 13.3 14.3 29.3 9.4 -4.9	0.2 3.7 2.0 13.3 15.3 25.2 10 -4.8	3.5 2.4 12.0 50.7 62.7 102 17 -1.8	0.2 4.8 14.1 0.0 14.1 93.4 77 -1.7	

†after filtration

Chemical Analyses of Municipal Water Supplies

A - Hudson Bay Drainage Basin - Quebec (cont'd)

(In parts per million)

	Man, apatiers		MALARTIC (concl'd) İ	NORMETAL
Loi	s at e(e)		Calamite River		
		Malartic Riv	er (Milhaut Lake)	Well	Raw and
		Finishe	1 water	Raw & finished water	finished water
	sampling point	At water plant tap	At town tap	At pump	Attap
I	Date of sampling	June 13/59	Oct. 17/63	June 13/59	Oct. 16/63
	Storage period (days)	23:30	53:102	23:30	14:19
	Storage period (days)	15.0	13.9	10.0	11.1
L	Test temperature, °C.	24.8	23.5	25.0	
1	Oxygen consumed by KMnO ₄	4.9		0.8	23.9
ŀ	Carbon dioxide (CO2), (calculated)	2	1		1111111
	pH	7.3	7.2	3	3
	Colour	15		7.7	6.9
	Turkidity	15	10	5	7.5
	Turbidity	U	1	0	1
	Suspended matter, fried at 105°C				
	Suspended matter, ignited at 550°C.				
	Residue on evaporation, dried at 105 C	/8.0		125	88.0
	Ignition loss at 550°C	4.8		19.6	41.6
	Specific conductance, micromhos at 25°C	114	121	180	86.7
	Calcium (Ca)	5.6	4.5	24.8	10.4
	Magnesium (Mg)	1.1	2.0	5.6	2,6
	Iron (Fe) Total	0.17	0.08	0.19	0.87
	Dissolved	0.05		0.00	0.40
	Manganese (Mn) Total	0.02	0.04	0.00	0.00
	Dissolved		0.04		
	Aluminum (Al)				0.00
1	Copper (Cu)	0.0			0.0
	Zine (Zn)	0.0		0.0	0.01
1	Sodium (Na)	15.0		0.0	0.19
	Potassium (K)		14.2	3,4	1.6
1	Ammenium (All)	0.7	0.5	1.8	0.5
	Ammonium (NH ₄)	0.2		0.0	0.2
3	Carbonate (CO ₃)	0.0	0.0	0.0	0.0
	Bicarbonate (HCO ₃)	25.1	15.1	95.6	23.2
	Sulphate (SO ₄)	27.5	36.9	13.6	14.7
	Chloride (Cl)	1.9	1.5	1.0	2.4
1	Fluoride (F)	0.0	0.12	0.0	0.17
1	Phosphate (PO4) Total			0.05	
	Dissolved				
1:	Nitrate (NO ₃)	0.1	0.1	0.2	0.1
1 3	Silica (SiO,), colorimetric	3.9	5.8	15	3.9
1	Carbonate hardness as CaCO,	18.5	12.4	78.4	19.0
1	Non-carbonate hardness as CaCO ₃	0.0	7.0	6.5	
1	Total hardness as CaCO,	18:5	19.4		17.7
1 5	Sum of constituents	68.6	73.1	84.9	36.7
	Per cent sodium			11.3	47.4
1	Saturation index at test temperature	60	6.1	7.8	8.5
1	Stability index at test temperature	-2.0	-2.4	-0.5	-2.1
1	Dada- patential ()	11	11	8.7	11
	Redox potential (mv)		-506		-486
			1.40		

Remarks

Chemical Analyses of Municipal Water Supplies

A - Hudson Bay Drainage Basin - Quebec (cont'd)

(In parts per million)

QUEBEC LITHIUM TOWNSITE		SENI	VETERRE	SULLIVAN	VAL d'OR
Roy Lake		Sį	orings		Springs
Raw water	Finished water	Raw and fin	ished water		Raw and finished water
At intake	At townsite tap	At to	own tap		At pump
Sept. 9/59 6:35 21.0 20.3 12.5 6 6.2 50 1 1	Sept. 9/59 6:35 20.4 11.7 3.5 6.4 60 0.8 37.6 16.4 36.8 2.5 0.8 0.41 0.11 0.00	June 12/59 21:31 12.0 25.6 616 3 7.1 50 2 51.2 28.0 49.0 5.8 1.3 0.49 0.21 0.01	Oct. 17/63 53:102 11.1 23.5 1 7.6 5 0	<i>See</i> Val d'Or	Aug. 20/47 :412 7.0 21.9 0.7 (1) 8.3 (8.1) 1 (<5) 95.0 20.8 138 22.4 2.0
0.0 Trace 0.0 2.8 1.3 0.5 0.0 5.5 9.8 2.3 0.0	0.0 Trace 0.5 2.6 0.6 0.3 0.0 5.1 9.8 1.8	0.0 0.14 0.3 1.7 0.7 0.0 0.0 25.5 3.8 1.6 0.0	1.7 1.0 0.0 27.1 4.2 <0.1 0.08		3.7 1.3 0.0 78.0 7.6 1.0 0.21
0.7 0.6 4.5 4.9 9.4 23.3 35 -4.1	0.1 0.7 4.2 5.3 9.5 22.0 35 -4.0	0.0 9.8 19.8 0.0 19.8 37.9 14 -2.1	0.1 15 20.3 0 0 20.3 42.2 15 -1.6 11 -492		0.9 14 64.0 0.0 64.0 91.2 11 0.0 8.3

* A mine townsite

Dissolved oxygen 9.9 ppm

Chemical Analyses of Municipal Water Supplies

A - Hudson Bay Drainage Basin - Quebec (concl'd)

(In parts per million)

	Municipality		VAL	d'OR				
	Sources)	Springs						
		Raw and finished water						
	Sampling pelot	At rown tap	At town tap	At tap at Sullivan (Mines) Townsite	At tap in former Signa townsire are			
1	Date of sampling	June 13/59	Oct. 17/63	June 14/59	Oct. 17/63			
2	Storage period (days)	25:34	25:102	25:45	13:21			
3	Sampling temperature, °C	12.0	8.1		13.3			
4	Test temperature, °C	25.2	23.2	26.9	23.8			
5	Oxygen consumed by KMnO.	9.8		1.3	43.0			
6	Carbon dioxide (CO2), (calculated)	6	2	2.5	1.5			
7	рН	7.3	7.8	7.7	7.9			
8	Colour	5	0	5	0			
0	Turbidity	0.7	0	0.7	0			
10	Suspende ! matter, dried at 1050(0.7	0			
1	Suspended matter, ignited at 550°C							
2	Residue on evaporation deied at 1050C	97.6		99,6				
3	Ignition loss at \$50°C.	20.0		12.8				
4	Specific conductance, micromhos at 25°C.	143	156	141	155			
5	Calcium (Ca)	22.2	23.0	22.2				
6	Magnesium (Mg)	2.7	3.1	2.7	22.9			
7	Iron (Fe) Total	0.18	0.05		2.9			
8	Dissolved	0.00		0.34	0.02			
9 1	Manganese (Mn) Total	0.00	0.00	0.05				
0	Dissolved		0.00	0.00	0.00			
1	Aluminum (Al)	0.11	1					
2	Copper ((u)	0.0		0.14				
23	Zinc (Zn)	0.0		0.0				
4	Sodium (Na)	2.3	2.7	0.05				
5	Potassium (K)	1.0	1.0	2.5	2.6			
6	Ammonium (NH ₄)		1.0	1.0	1.0			
7	Carbonate (CO ₃)	0.0	1	0.0				
8	Bicarbonate (HCO ₃)	73.7	0.0	0.0	0.0			
9	Sulphate (SO ₄)	8.0	75.2	74.8	75.1			
0	Chloride (Cl)	2.1	9.0	8.1	11.1			
1	Fluoride (F)	0.0	3.8	2.3	3.2			
2	Phosphate (PO ₄) Total	0.05	0.07	0.0	0.05			
3	Dissolved							
4	Nitrate (NO ₂)	0.3	0.6	0.4				
5	Silica (SiO ₂), colorimetric	11	14	0.4	1.6			
6	Carbonate hardness as CaCO ₃	60.5	61.7	12	13			
7	Non-carbonate hardness as CaCO ₃	6.0	8.1	61.4	61.6			
8	Total hardness as CaCO ₃	66.5	69.8	5.1	7.6			
9	Sum of constituents	86.7	94.7		69.2			
0	Per cent sodium	6.7		88.2	95.3			
1	Saturation index at test temperature	-1.0	7,6	7.3	7.4			
2	Stability index at test temperature		-0.5	-0.5	-0.4			
3	Redox potential (mv)	9.3	8.8	8.7	8.7			
4	Sodium absorption ratio		-462		-452			
18	Sourem susorption ratio		0.140		0.136			

Remarks

Chemical Analyses of Municipal Water Supplies

A - Hudson Bay Drainage Basin - Ontario

ANSONVILLE	BLACK RIVER TOWNSHIP	CALVERT TOWNSHIP	CHAPLEAU	COC	CHRANE
			Kebsquasheshing Lake		Wells
			Raw and finished water		ell No. 3
			At town tap		well pump
See Iroquois Falls, Ont.	See Matheson, Ont.	See Iroquois Falls, Ont.	Aug. 8/58 90:187 18:9 25:8 (19:2) 11:5 1 7.7 (7.4) 60 (100) 1 91:2 32:8 84:4 11:6 2.5 0.04 0.00 Trace 0.2 2:1 0.6 0.1 0.0 37:1 5:9 2:0 0.0	Dec. 16/57 21:28 4.4 24.6 3.7 4 8.2 5 7 6.7 4.9 347 52.0 569 95.3 21.3 1.7 0.16 0.01 0.11 0.0 8.3 2.6 0.0 0.0 404 3.1 9.4 0.1	Mar. 14/58 4:10 6.0 21.6 3.2 9 7.9 35 15 7.4 1.8 370 36.8 617 98.0 20.0 1.6 0.36 0.07
			0.7 4.9 30.4 8.8 39.2 (42.8) 48.8 10 -1.1 9.9	0.4 14 325 0.0 325 353 5.2 +1.2 5.8	0.6 15 327 0.0 327 360 5.0 +0.9 6.1
			1	Static level, -12'	

Chemical Analyses of Municipal Water Supplies

A- Hudson Bay Drainage Basin - Ontario (cont'd)

	N & + N	Wells					
			Well	No. 3			
			Raw	water			
	Sampling point		At w	ell pump	1		
1	Date of sampling	May 14/58	Sept. 22/58	Dec. 16/58	0 11/00		
2			8:24	14:27	Oct. 13/59 8:30		
1	Storage period (days) Sampling temperature, °C.	4.4	6.1	4-4	5.6		
	Test temperature, °C. Oxygen consumed by KMnO ₄	21.6	23.6	23.0	25.4		
	Oxygen consumed by KMnO4	4.0					
7	Carbon dioxide (CO ₃), (calculated)	8	10	12	5		
. [pH	7.9	7.8	7.7	8.1		
9 1	Turbidity	9	7	9	20		
5	Suspended matter, dried at 105°C	7		y	8 17		
	Suspended matter, ignited at 550°C.				3 11		
2	Suspended matter, ignited at 550°C Residue on evaporation, dried at 105°C	392	361	366	357		
3	Ignitionlloss at 550°C	46.4	58.8	42.8	45.6		
4	Specific conductance, micrombos at 25°C	613	620	621	622		
5	Calcium (Ca)	97.9	96.9	96.1	99.3		
7	Magnesium (Mg) Lron (Fe) Total	21.2	21.5	22.7	21.5		
8	Dissolved	1.6	0.49 0.21	2.9	1.6		
5	Manganese (Mn) Total	0.01	0.02	0.17	0.04		
	Dissolved		0.02	0.01	0.00		
.	Aluminum (Al)	0.06	0.05	0.06	0.17		
2	Copper (Cu)	0.0	0.0	0.0	0.0		
3	Zinc (Zn)	0.0	0.05	0.0	0.0		
5	Sodium (Na)	8.1	7.9	7.3	7.5		
3	Potassium (K)	2.5	2.5	2.3	2.4		
7	Ammonium (NH ₄) Carbonate (CO ₃)	0.0	0.15	0.0	0.1		
3	Bicarbonate (HCO ₃)	406	0.0 399	0.0 403	0.0		
9	Sulphate (SO ₄)	4.6	4.6	6.7	402		
0	Chloride (Cl)	8,3	9.7	9.9	9.8		
	Fluoride (F)	0.0	0.0	0.0	0.0		
2	Phosphate (PO ₄) Total				0.08		
	Dissolved						
	Nitrate (NO ₃) Silica (SiO ₂), colorimetric	0.3	0.1	0.1	0.0		
	Carbonate hardness as CaCO ₃	15	14	14	15		
	Non-carbonate hardness as CaCO ₃	331	327 2.6	331	330		
3	Total hardness as CaCO3	331	330	2.4	6.4		
	Sum of constituents	359	355	333 358	336 360		
1	Per cent sodium	5.0	4.9	4.5	300		
1	Naturation index at test temperature	+0.9	+0.8	+0.8	+1.1		
	Stability index at test temperature	6.1	6.2	6.1	5.9		
1	Redox potential (mv)		-531				
1	description ratio				• • • • • • • • • • • • • • • • • • • •		
-	Remarks	Static level -20'			Static level -18'		

Chemical Analyses of Municipal Water Supplies

A - Hudson Bay Drainage Basin - Ontario (cont'd)

		₩el	ls		
	Well No. 4			Mixed wells	
	Raw water			Finished water	
	At well pump			At well reservoir	
Mar. 10/59 3:21 5.6 25.4 3.0	July 20/59 4:9 4.4 28.7 4.3 6	Dec. 12/59 22:30 4.4 23.7	Aug. 11/57 88:120 18.2 25.0 2.7 0.6	Dec. 16/57 21:28 7.2 24.8 3.4 0.5	Mar. 14/58 4:10 6.8 21.8 2.3 0.3
8.0 30 9 5.5 * 0.4	8.0 15 4 5.0*	7.8 20 0.8	8.6 (8.7) 5 0	8.6 5 0	8.7 5 0
368 35.6 627 99.3 24.8 1.7	374 26.0 632 99.8 24.6	647 102 22.9 2.1	137 11.2 253 16.0 19.0	147 28.8 266 17.8 18.3	145 39.2 246 15.0 17.3
0.07 0.02	0.07 0.01	0.01	Trace Trace	0.01 0.00	0.02 0.00
0.04 0.0 0.0 6.4 2.5 0.2 0.0 410 8.0 7.1 0.1	0.19 Trace 0.0 0.0 6.2 2.7 0.0 0.0 411 8.1 8.5 0.0	0.05 0.0 0.0 6.5 2.4 0.1 0.0 423 6.5 8.9 0.0	0.08 0.0 0.0 7.2 2.6 0.0 4.0 136 9.0 7.8 0'0	0.17 0.0 0.0 8.2 2.6 0.0 3.4 141 8.3 9.4 0.1	0.10 0.0 0.0 7.8 2.5 6.8 119 9.6 8.2 0.10
0.0 12 326 14.0 350 362 3.8 +1.0 6.0	0.2 14 337 13.0 350 366 3.7 +1.1 5.8	0.0 17 347 1.6 348 374 3.9 -0.1 8.0	0.2 13 118 (104) 0.3 (13.9) 118 (118) 146 11 +0.5 7.6	0.2 12 120 0.0 120 149 13 +0.5 7.6	0.3 13 109 0.0 109 139 13 +0.4 7.9
Iron oxide precipita					

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (cont'd)

	Municipality		COC	HRANE (cost'd)			
٠.	S 60-0 5	Mixed wells					
			Fin	shed water			
	Sampling peint		At w	rell reservoir			
1	Date of sampling	May 14/58 9:14	Sept. 22/58 8:24	Dec. 16/58 14:27	Mar. 10/59 3:21		
3	Storage period (days)	5.6 21.6	23.4	4.4 27.8	6.1 25.2		
5 6 7	Oxygen consumed by KMnO ₄	3.2 0.4 8.7	0.5	0	2.4		
8 91	pH	10	8.6	8.5	8.4		
10	Suspended matter, dried at 105° C						
12 13 14 15	Residue on evaporation, dried at 105°C Ignition loss at 550°C Specific conductance, micromhos at 25°C Calcium (Ca)	154 49.2 249 15.4	155 42.8 254 16.9	174 39.6 296 22.9	175 36.8 286 24.5		
16	Magnesiun (Mg)	18.4 Trace	0.02	19.8	21.		
19	Manganese (Mn) Total	0.00	0.02	0.00	Trace 0.00		
21 22 23 24 25 26	Aluminum (Al) Copper (Cu) Zinc (Zn) Sodium (Na) Potassium (K) Ammonium (NH ₄)	0.06 0.0 0.0 7.3 2.5	0.10 0.0 0.05 7.9 2.5 0.2	0.08 0.0 0.0 7.3 2.3	0.11 0.0 0.0 6.4 2.5 0.2		
27 28 29 30 31 32	Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl) Fluoride (F) Phosphate (PO ₄) Total	5.0 124 11.6 7.8 0.0	5.8 126 8.2 10.2 0.1	4.9 153 11.3 9.8 0.0	2.4 166 12.6 6.9 0.1		
33	Nitrate (NO ₂)	0.3	0.1	0.1	Trace		
35 36 37 38	Silica (SiO ₂), colorimetric	13 110 4.0 114	13 113 3.7 117	11 134 4.9 139	11 140 10.2		
39 40 41	Sum of constituents	142 12	145 13	165 10	157 8.3		
42	Saturation index at test temperature Stability index at test temperature Redox potential (mv)	+0.4 7.9	+0.4 7.8 -483	+0.6 7.3	+0.5		
44	Sodium absorption ratio				1		
-	Remarks	Static level -8"					

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (cont'd)

		COCHRANE (conci'd)			FOLEYET	
		Mixed wells			Ivanhoe River	
		Finished water			Raw and finished water	
	At well reservoir		At t	town tap	At town tap	
July 20/59 4:9 4.4 28.8 3.7 1 8.3 5	Oct. 13/59 8:30 5.6 25.2 4:5 0.5 8.6 5	Dec. 21/59 22:30 4.4 23.7 2.5 8.0 0	Aug. 12/59 20:23 12:0 26:7 3.9 1 8.3 5	Oct. 13/63 55:106 9.1 23.2 1 8.3 0	Oct. 14/63 11:21 12.6 24·9 3 7.6 50 0.5	
181 42.0 301 24.2 19.9 0.06 0.06 0.00	156 42.4 256 15.9 18.9 0.09 0.00	302 26.5 18.7 0.0 0.00	174 33.6 296 23.3 19.3 0.02 0.02 0.00	278 18.5 19.4 0.02	118 44.8 158 21.8 6.0 0.28 0.16 0.00	
0.24 0.0 0.0 6.7 2.8 0.1 0.0 163 14·6 8.0	0.15 0.0 0.0 7.5 2.4 0.2 5.0 129 8.7 9.2 0.1	0.19 0.0 0.0 7.4 2.4 0.2 0.0 170 10.4 9.2 0.0 Trace	0.23 Trace 0.0 7.1 2.7 0.1 0.0 162 11.1 9.7 0.0	7.7 2.6 0.0 0.0 0.0 147 11.1 10.1 0.14	0.01 0.002 0.41 2.5 0.6 0.0 84.2 7.2 2.1 0.17	
0.2 12 134 8.3 142 169 9.0 +0.5 7.3	0.0 14 114.5 2.9 117 145 12 +0.4 7.8	0.0 13 139 3.9 143 171 9.9 +0.1 7.8	0.0 12 133 4.4 137 165 9.8 +0.4 7.5	0.3 14 121 5.6 127 156 11.5 +0.2 7.9 -497 0.298	0.6 4.7 69.1 9.9 79.0 87.3 6.4 -0.6 8.8 -490	

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Cntario (cont'd)

(In parts per million)

	Municipality		GERALDTON		GLACKMEYEI TOWNSHIP		
Veli.	Source(s)		Reesor Lake				
		Rawa	nd finished water				
	Sampling point		At town tag				
: 3 45 62 8 9 00 1 2 3 45 6 T 8 9 00 1 2 3 45 6 7 8 9 0 1	Date of sampling Storage period (days) Sampling temperature, °C. Test temperature, °C. Oxygen consumed by KMnO4 Carbon dioxide (CO2), (calculated) PH Colour Turbidity Suspended matter, dried at 105°C. Suspended matter, ignited at 550°C. Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance, micromhos at 25°C. Calcium (Ca) Magnesium (Mg) Ilron (Fe) Total Dissolved Manganese (Mn) Total Dissolved Aluminum (Al) Copper (Cu) Zinc (Zn) Sodium (Na) Potassium (K) Ammonia (Nh4) Carbonate (CO3) Sulphate (SO4) Chloride (CI) Fluoride (F)	2 8.0 (7.8) 10 (35) 1 142 35.6 219.9 37.0 5.2	22 9.0 37.9 6.3 0.07 0.01 0.01 0.02 0.34	Oct. 16/63 15:14 11.7 25:0 3 7.9 15 0 241.5 41*0 5.9 0.11 0.00 141 5.4 3.0 0.08	See Cochrane		
6 7 8 9 0 1 2	Phosphate (PO ₄) Total Dissolved Nitrate (NO ₃) Silica (SiO ₃), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature Redor potential (mv) Sodium absorption ratio	0.3 2.1 106 7.5 114 121 2.0 +0.1 7.8	0.4 3.4 108 12.1 121 126 1.6 +0.1 7.7	0.3 2.1 115 12 127 129 1.0 +0.2 7.5 -491			

Remarks

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (cont'd)

	HEARST			IROQUOIS FALLS			
Mattawishk	Mattawishkwia River Johnson Lake		Abitibi River				
Raw and fini	shed water	Raw and finished water	Raw	water*	Finished water	No.	
	At town tap		At in	take	At tap in Ansonville		
Aug. 8/57 89:106 17.6	Oct. 12/63 60:107 11.1	Aug. 13/59 22:41 15.0	Aug. 6/58 27:30 18.9	May 21/59 26:34 7.8	Aug. 12/57 87:11	1 2 3	
23.4 21.9 4 7.4 (7.2)	24.0 3 7.4	24.6 8.2 2 8.0 (7.1)	24.5 3 7.5	22.8 3 7.5	25.0 2.6 2 7.7	5 6 7	
140 (235) 10	100	20 (40) 0.8 (<1)	225 25 7.7 7.0	80 20	5 2	9 10	
146 68.0 137 20.5 5.1	102 15·7 5·0	114 31.2 169 24.8 5.9	122 46.4 110 16.7 3.9	116 18.0 3.9	120 2.0 193 28.3 3.6	12 13 14 15 16	
0.24 Trace	0.63	0.07 0.02 0.00	0.92 0.19 0.00	7.7	Trace 0.02	17	
0.0 Trace 0.2 1.2	0.7	0.03 Trace 0.0	0.0 0.0 0.1 1.4	1.2	0.2 0.0 0.6 2.1	21 22 22 22	
0.4 0.0 0.0	0.3	1.4 1.1 0.1 0.0	0.0	0.9 0.2 0.0	0.7 0.0 0.0	2 2 2	
66.6 4.6 10.0 0.0	48.5 4.5 6.8 0.28	3.9 0.9 0.0	56.0 8.9 1.1 0.0	60.5 8.5 1.3	50.0 46.2 3.2 0.0	31	
0.2 3.5 54.6	0.8 3.0 34.8	0.8 4.3 83.4	0.6 4.2 45.9	0.8 5.1 49.6	0.5 4.0 41.0	3 3 3	
17.5 72.1 78.7	20.1 59.9 61.0	2.7 86.1 93.3	11.8 57.7 65.7	11.3 60.9 69.5	44.4 85.4 114	3 3	
3.4 -1.0 9.4	2.4 -1.2 9.8 -538	3.4 -0.1 8.2	4.9 -1.0 9.5 -414	4.0 -1.0 9.5	4.9 -0.7 9.1	41 41	
• • • • • • • • • • • • • • • • • • • •	0.39					4.	

^{*} See also Table II, Station No. 49

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (cont'd)

	Municipality	IROQUOIS	FALLS (concl'd)	KAP	USKASING	
lo.	Source(s)	Abitil	bi River	Kapuskasing River		
		Finis'	el water	Raw	water*	
	Sampling point	At tap in	Ansonville	At intake to plant	At intake to plan	
1 (Date of sampling	Aug. 12/59	Oct. 16/63	1 4 0.00		
2	Storage period (days)	20:32	56:103	Aug. 9/57	Aug. 13/59	
3	Sampling temperature oc	14.0		88:101	22:28	
	Test temperature, °C		12.7	21.8	20-0	
	Oxygen consumed by KMnO4	26.6	23.3	25.6	24.8	
5	Cashon diamida (CO) (ashulana)	3.6			14.3	
7	Carbon dioxide (CO ₃), (calculated)	1.5	1	4	7	
3	pH	7.7 (7.4)	7.8	7.5 (7.1)	7.3 (7.3)	
	Colour	5 (5)	5	70 (165)	65 (70)	
) ;	Turbidity	3 (<1)	2	3	1 (7)	
)	Suspended matter, dried at 105°C.		1		. (/)	
	Suspended matter, ignited at 550°C					
	Residue on evaporation, dried at 105°C	154				
	Ignition loss at 550°C.	37.6				
	Specific conductance, micrombos at 25°C	203	226	137	38.8	
	Calcium (Ca)	29.6	30.6		160	
	Magnesium (Mg)	4.4	6.2	20.7	24.3	
	Iron (Fe) Total	0.27		4.6	5.4	
	Dissolved	0.12	0.14		0.12	
	Manganese (Mn) Total				0.04	
	Dissolved	0.02	0.00		0.00	
	Aluminum (Al)	0.24			0.0	
	Copper (Cu)	0.01				
	Zinc (Zn)	0.05			0.1	
1	Sodium (Na)	1.4	2.7	1.1	1.1	
	Potassium (K)	0.9	0.8	0.8	1.1	
	Ammonium (NH ₄)	0.4		0.1		
- (Carbonate (CO ₃)	0.0	0.0	0.0 (0)	0.2	
٠, ١	Bicarbonate (HCO ₃)	50.0	54.7		0.0	
	Sulphate (SO ₄)	45.4	59.3	76.9 (76)	93.4	
10	Chloride (Cl)	3.2		6.8	5.5	
	Fluoride (F)	0.0	2.4	1.5	0.2	
1	Phosphate (PO ₄) Total		0.10		0.0	
	Dissolved					
, 1	Vitrate (NO ₃)					
	Silica (SiO ₂), colorimetric	0.3	0.9	0.3	3.0	
-	Carbonate hardness as CaCO ₃	2,2	4.8	4.3	3-4	
1 3	Von-cashonese hasdance on CoCO	41.0	44.9	63.1	76.6	
1	Von-carbonate hardness as CaCO3	50.9	57.2	7.5	6.2	
5	Total hardness as CaCO ₃	91.9	102	70.6 (75.6)	82.8	
2	um of constituents	112	135	78.1	90.1	
1	Per cent sodium	3.2	5.4	3.2	2.8	
5	aturation index at test temperature	-0.6	-0.5	-0.8	-0.8	
3	tability index at test temperature	8.9	8.8	9.1	8.9	
-	ledox potential (mv)		100	7**		
3	odium absorption ratio		0.116			
mp 14.				1		
F	emarks:			* See also Table II, S	reside No. 01	
				Jee and lable II, S	retton No. 81	

$\begin{array}{l} \textbf{Chemical Analyses of Municipal Water Systems} \\ \textbf{A} - \textbf{Hudson Bay Drainage Basin} - \textbf{Ontario (cont'd)} \end{array}$

(In parts per million)

Raw and finished water Raw and finished water Raw water Ra	KAPUSKA	ASING (concl'	d)	KENDALL	KENDREY TOWNSHIP	LAKEVIEW	LONGLAC
At plant tap At lown tap Aug, 9/57 88:122 21.2 13.3 4.1 23.3 7.6 (7.4) 10 10 10 10 10 10 0 0 0 0 0	Kapusl	kasing River					Long Lake
Aug. 9/57 Aug. 13/59 Oct. 12/63 88:122 22:28 13:17 21,2 13:3 24.7 24.8 4.1 5.5 24.7 24.8 4.1 5.5 3 7.8 7.6 (7.4) 7.5 7.7 10 10 10 45 0 0 0 45 37.9 36.0 35.1 32.0 5.4 6.3 6.3 6.3 0.00 0.00 0.00 6.1 0.09 0.07 Hearst See Smooth Rock Falls Porcupine and 0.00 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.1 0.8	Finished water	r					Raw water *
88:122	At plant tap		At town tap				Direct from lake
0.1 0.0 0.3 4.2 3.2 3.4 60.6 71.0 55.6 56.2 44.7 58.0 117 116 114 115 105	88:122 21.2 21.2 23.3 4.1 3 7.6 (7.4) 10 0	22:28 24.7 5.5 4 7.5 10 0 158 43.2 256 36.0 6.3 0.00 0.01 0.07 Trace 0.0 1.8 1.1 0.1 0.0 86.5 43.2 0.8 0.0 0.00 0.01	13:17 13:3 24:8 2 7.7 10 0 241 35.1 6.3 0.06 0.00 1.7 0.8 0.0 67.8 55.0 1.7 0.10		Smooth Rock	Porcupine and	52:19 1,1 24.7 10.2 3 7.8 45 0,9 144 29.2 198 32.0 6,1 0.03 0.00 0.00 0.0 0.0 1.0 0.8 0.1 0.0 119 4.3 1.4 0.0 0.5 6.4 97.7 7.2

*See also Table II , Station No. 97

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (cont'd)

	Source(s)	-	Long Lake	Spring-fed lake	Mattagami River		
Vo.		Raw water Finished water			Raw and finished water	Raw and finished water	
Î	Sampling peace	Direct from lake	At town	twp	At fewn tap	At gasage 'as	
1	Date of sampling	Aug. 13/59	Aug 16/59	Oct, 11/63	Ana 11/50	Oct. 15/63	
2	Storage period (days)	26:41	Aug. 16/59 33:66	59:108	Aug. 11/59 20:24	55:90	
3	Sampling temperature, °C	21,1	18	10.8	12	11,4	
6	Test temperature, °C	26,8	26.6	24.1	27,4	23.4	
5	Oxygen consumed by KMnO4	11.6	11.4		2,9		
5	Carbon dioxide (CO2), (calculated)	4	1.5	4	2	2	
	pH		8.0 (6.8)	7.5	8.1 (7.5)	7.8	
	Colour	35 (75)	25 (50)	25	0 (<5)	50	
) [Turbidity	3 (2)	0,5 (3)	0.1	1	0.9	
	Succeeded marrey dried as 1050C			}		0.7	
	Suspended matter, ignited at 550°C]			
	Residue on evaporation, dried at 105°C	124	108	1	147		
	Ignition loss at 550°C.	38.4	22.0	1	9.2		
	Specific conductance, micromhos at 25°C.	164	164	164	242	148	
	Calcium (Ca)	25.8	26,3	28.6	37.5	18.4	
	Magnesium (Mg)	5.0	5.6	5.7	8.2	5.4	
	Iron (Fe) Total	0.02	0.13	0.13	0.03	0.19	
	Dissolved	0.02	0.04	0,29	0.03	0.05	
	Manganese (Mn) Total	0.00	0.00	0.00	0.00	0.03	
	Dissolved	0.00	0.00	0.00	0.00	0.00	
	Aluminum (Al)	0.0	0.0		0.23	0.00	
	Copper (Cu)	Trace	0.2		Trace	0.02	
	Zinc (Zn)	0.0	0.0		0.05		
	Sodium (Na)	1.2	0.9	0.8	1.7	2.9	
	Potassium (K)	0.8	0.4	0.5	0.8	0.4	
	Potassium (K) Ammonium (NH ₄)	0.1	0.1		0.0	0.0	
	Carbonate (CO ₃)	0.0	0.0 (0)	0.0	0,0 (0)	0.0	
	Bicarbonate (HCO ₂)	95.4	91.5 (91.5)	92.8	151 (153)	62.4	
	Sulphate (SO ₄)	4.8	4.7	10.0	6.9	8.7	
	Chloride (Cl)	1.0	2.0	4.8	1.1	7.7	
	Fluoride (F)	0.0	0.0	0.11	0.0	0.17	
	Phosphate (PO ₄) Total				-10		
1	Dissolved						
	Nitrate (NO ₃)	0.2	3.0	1.0	0.3	0.9	
	Silica (SiO ₂), colorimetric	5.9	4.4	3.1	9.7	3.4	
	Carbonate hardness as CaCO,	78.3	75.1	76.1	124	51.2	
	Non-carbonate hardness as CaCO3	6.6	13.5	18,8	3.8	17.0	
	Total hardness as CaCO ₃	84.9	88.6	94.9	128 (130)	68.2	
	Sum of constituents	91,7	92.6	100	141	78.8	
ł	Per cent sodium	2.9	2.1	1.8	2.8	8.4	
	Saturation index at test temperature	-0.5	-0.1	-0.6	+0.3	-0.6	
	Stability index at test temperature	8,6	8.2	8.7	7,5	9.4	
n	Redox potential (mv)			-494		-483	
ľ	Sodium absorption ratio			0.036		0.153	
t	Remarks:	See also Table II	, Station No. 97				

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (cont'd)

MONTROCK		MOOSE	FACTORY		M	OOSONEE
		Moose	River		St	ore Creek
	Raw water		Finished water		Raw water	Finished water
	l.	at discharge from fi	lter	At tap	Above dam	At tap
	July 27/65 36:42	Nov. 14/50*	Nov. 15/50*	July 27/65 38:42	July 29/65 29:31	July 29/65 29:31
	19.4 23.3	19.7	19.7	20.0	11.1 23.6 23.4	7.2 23.6 21.7
	14.3 2 7.8	20	15 7.0	2 6.2	7 7.5	6 7.5
	135 11	45 150	180 20	15 0.8	165	165
	7.5 5.9 118				4.9 2.5 304	3.2 0.7 321
	47.6 161	200	171	212	102 455	103 478
	23.4	27.3 6.6	22.0 7.5	26.4 5.1	19.6 18.5 0.65	31.0 11.1 0.68
See	3.6 0.15 0.04				0.06	0.08
oquois Falls	0.00 0.07	0.6	0.4		0.00 0.05	0.00 0.07
	2,6				50.0	51.5
	0.6				3.4	3.3
	0.0 72.2	0,0 54,2	0.0 75.9	0.0 2.3	0.0 127 11.5	0.0 118 11.5
	15.6 3.8 0.20	9.0	7.7		82.0 0.37	87.9 0.37
	<0.1				<0.1	<0.1
	0.0 2.5	3.9 44.4	7.1 62.2	1.9	1.6 3.6 104	0.8 3.7 96.4
	59.2 17.9 77.1	50.9	23.6 85.8	84.9 86.8	21 125	26.6 123
	88.7 6.8 -0.5	-1.8	-1.4	-3.5	253 46 -0.7	260 47 -0.5
	8.8	10	9.7	13	8.9	8.5
	0.13				1.95	2.02

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (cont'd)

	MOUNTJOY TOWNSHIP	PORCUPINE	SCH	LMACHER
Source(s)			Mart	agami River
				Finishe (water
Sampling point				At municipal tap
Date of sampling Storage period (days) Sampling temperature, °C. Test temperature, °C. Test temperature, °C. Oxygen consumed by KMnO4 Carbon dioxide (CO2), (calculated). pH Colour Turbudity Suspended matter, dried at 105°C. Suspended matter, ignited at 550°C. Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance, micromhos at 25°C. Calcium (Ca) Magnesium (Mg) Illion (Fe) Total Dissolved Manganese (Mn) Total. Aluminum (Al) Copper (Cu) Zinc (Zn) Sodium (Na) Porassium (K) Ammonia (NH3) Carbonate (CO2) Bicarbonate (HCO2) Sulphate (SO4) Chloride (Cl) Fluoride (F) Phosphate (PO4) Silica (SiO3), colorimetric Carbonate hardness as CaCO3 Non-carbonate hardness as CaCO3 Total hardness as CaCO3 Sum of constituents. Per cent sodium. Saturation index at test temperature Stability index at test temperature Reico potential (mw)	See Mattagami Heights	See Whitney Township	See also Timmins and Table II, Station No. 76	74.4 39.2 100 12.7 3.1 0.16 0.08 0.02 0.0 0.3 0.1 1.7 0.6 0.2 0.0 0.3 0.1 1.7 0.6 0.2 0.0 0.3 0.1 1.7 0.6 0.2 0.0 0.3 0.1 1.7 0.6 0.2 0.0 0.3 0.1 1.7 0.6 0.2 0.0 0.3 0.1 1.7 0.6 0.2 0.0 0.3 0.1 1.7 0.6 0.2 0.0 0.3 0.1 1.7 0.6 0.2 0.0 0.3 0.1 1.7 0.6 0.2 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (cont'd)

S	MOOTH ROCK FALLS			SOUTH PORCUPINE		
	Mattagami River			Two wells		
Raw and	finished water	Finished water	Well No. 1	Well No. 2	Mixed wells	
***************************************	I THE STATE OF THE	2 MASSACCI WATER		Finished water		
At plant intake	At town tap	At town tap	At pump	At pump	At town tap	
Oct. 25/58 10:80 7.2 23:2 24 4.3 7.4 120 3	Aug. 12/59 23:29 19 24.6 12.0 7 7.1 (6.9) 55 (65) 2 (5)	Oct. 12/63 13:17 13:1 13:1 24:9 9 6.9 90 2	Sept. 16/59 7:35 7:2 26.3 2.5 3 7.9 5 3	Sept. 15/59 8:36 7.2 26.3 2.7 3.5 7.9 5	Aug. 13/57 86:118 10.0 25.0 2.0 0.8 8.5 (7.7) 5	
98.8 45.2 100 15.5 4.0	97.2 44.4 117 17.1 3.9 0.15 0.04	115 15.5 4.6 0.37	164 16.8 271 41.6 8.2 0.16 0.04	156 51.2 269 41.1 9.3 0.01 0.01 Trace	155 5.6 263 41.5 8.6 0.00 Trace	
0.0 0.0 0.05 1.2 0.1 0.0 52.3 6.3 0.7 0.0	0.0 0.07 0.0 0.9 0.6 0.0 (0) 56,7 (58.6) 7.6 6.9 0.0	0.1 0.4 0.0 45.1 8.2 5.9 0.20	0.06 0.0 0.0 3.4 0.6 0.0 0.0 158 9.0 2.5 1.2	0.06 0.0 0.0 1.9 0.6 0.0 0.0 160 8.8 2.3	0.04 Trace 0.1 3.3 0.5 0.0 3.6 (0) 158 (150) 6.8 2.4 1.0	
0.5 4.4 42.9 12.2 55.1 58.5 4.5 -1.2 9.8	0,2 2,9 46.5 (48) 12.2 (12) 58.7 (60) 68.1 3.2 -1.4 9.9	0.7 3.9 37.0 20.6 57.6 62.5 3.3 -1.7 10	0.5 9.5 130 7.8 138 154 5.1 +0.2 7.5	0.5 10 131 9.9 141 153 2.8 +0.3 7.3	0.3 10 136 3.2 139 (135) 156 4.9 +0.8 6.9	

^{*} See also Table II , Station No. 78

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (cont'd)
(In parts per million)

	Municipality		SOUTI	H PORCUPINE			
0.	Source(s)	Two wells					
			VI.	xed wells			
				ished water			
	Sampling point		At	reservoir			
1	Date of sampling	Nov. 13/57	Feb. 13/58	May 13/58	Sept. 12/58		
	Storage period (days)	8:19	11:18	2:15	6:12		
	Sampling temperature, °C	8,3	4.4		10.0		
4	Test temperature, °C	25.2	24.9	26.7	23.7		
	Oxygen consumed by KMnO4	2.4	3.4	2.4			
	Carbon dioxide (CO ₂), (calculated)	2	2	2	11		
		8.1	8.2	8.1	7.4		
	pH	10	0,5	5	15		
	Colour	0.4	0.5	0.4	1		
	Turbidity		1	0.4			
	Suspended matter, dried at 1050 C						
	Suspended matter, ignited at 550°C						
	Residue on evaporation, dried at 105°C	174	160	168	174		
	Ignition loss at 550°C	33.6	24.0	20.4	29.6		
٤.	Specific conductance, micromhos at 25°C	276	280	272	282		
5	Calcium (Ca)	42.2	43.7	42.3	45.0		
	Magnesium (Mg)	9.3	8.0	8.9	8.6		
	Iron (Fe) Total						
8	Dissolved	0.00	0.00	0.04	0.01		
	Manganese (Mn) Total	Trace	0.00	0.00	0.00		
0	Dissolved		1	1	3,00		
	Aluminum (Al)	0.0	0.08	0.0	0.0		
		0.0	0.0	0.0	0.0		
	Copper (Cu)	0.0	0.0	0.0	0.05		
	Zinc (Zn)		2.7	2.8			
	Sodium (Na)	3.0			2.3		
	Potassium (K)	0.6	0.6	0.6	0.6		
	Ammonia (NH ₃)	0.0	0.0	0.05			
	Carbonate (CO ₃)	0.0	0.0	0.0	0.0		
	Bicarbonate (HCO ₃)	170	165	166	174		
	Sulphate (SO4)	6.9	5.6	6.7	5.5		
0	Chloride (Cl)	2.9	3.9	2.1	3.2		
1	Fluoride (F)	1.0	1.1		1.0		
	Phosphate (PO4) Total						
3	Dissolved						
	Nitrate (NO ₃)	0,2	0.2	0.3	0.1		
	Silica (SiO ₂), colorimetric	10	8.0	8.6	9.7		
	Carbonate hardness as CaCO	140	135	136	143		
	Non-carbonate hardness as CaCO ₂	3.5	6.8	6.0	5.0		
		143	142	142	148		
	Total hardness as CaCO ₃						
	Sum of constituents	160	155	154	162		
	Per cent sodium	4.3	3.9	4.1	3.3		
	Saturation index at test temperature	+0.5	+0.5	+0.4	-0.2		
2	Stability index at test temperature	7.1	7.2	7.3	7.8		
	B 1 1/ \			1	-563		
3	Redox potential (mv)				101		

Remarks

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (cont'd)

(In parts per million)

SOUTH PORCUPINE (concl'd)

		SOUTH PORCU	PINE (concl'd)						
		Two w	ells			l No.			
	Mixed wells Finished water								
	Finished water								
	At reservoir								
Dec. 15/58 15:28 7.8 21.0	Mar. 10/59 3:21 5.0 25.5	June 11/59 5:13 7.2 22.8	July 20/59 4:9 7.8 28.2	Sept. 15/59 7:36 26.3	Oct. 15/63 57:111 11.0 23.1	1 2 3 4			
4 7.8 5 0	2.3 1.5 8.2 5	1.7 2 8.1 10	2.4 2.5 8.0 0	2.8 3 7.9 0	1.5 8.2 5	5 6 7 8 9			
171 30.8 273 42.1 9.5	173 28.0 289 44.7 9.9	146 27.6 246 37.7 8.2	167 24.0 266 40.6 9.4 0.05	158 66.0 270 41.2 9.1 0.01	271 39.6 9.9 0.02	11 12 13 14 15 16 17			
0.00 0.02	0.11 0.05	0.00 0.03	0.05	0.01	0.00	18			
0.06 0.0 0.0 2.3 0.5 0.0 0.0 163 7.5 3.3	0.0 0.0 0.0 2.7 0.6 0.0 0.0 170 6.4 3.3 1.0	0.01 Trace 0.0 2.4 0.5 0.0 0.0 149 6.1 1.6 1.0	0,12 Trace 0.0 2.5 0.6 0.0 0.0 159 7.1 2.2 0.9	0.05 0.0 0.0 2.7 0.6 0.0 0.0 160 8.5 2.2 0.6	2.6 0.7 0.0 0.0 159 8.5 1.5	20 21 22 23 24 25 26 27 28 29 30 31 32 33			
0.3 8.1 133 10.6 144 156 4.7 0.0 7.8	0.1 9,9 139 13.0 152 162 3.7 +0.5 7.2	0.3 2.1 122 6.0 128 133 3.9 +0.3 7.5	0.2 9.5 130 10.0 140 151 3.7 +0.4 7.2	0.4 10 131 9.0 140 154 4.0 +0.3 7.3	0.2 9,2 131 8.8 140 152 3.9 +0.5 7.2 -480 0,096	334 35 36 37 38 39 40 41 42 43 44			

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (cont'd)

(In parts per million)

	Munn sparsty		TIMMINS		TISDALE TOWNSHIP
Va.	Soutce(s)		Mattagami River		
		R	aw and finished water		
Î	Sampling point		At town tap		
1	Date of sampling	Aug. 13/57	Aug. 11/59	Oct. 14/63	
2	Storage period (days)	86:118	21:24	56:105	
3	Sampling temperature, °C.	19.2	18	11.0	
4	Test temperature, C	25.0	26.7	23.9	
5	Oxygen consumed by KMnO4	9.1	10.4		
6	Carbon dioxide (CO ₂) (calculated)	1	3.5	3	
7	pH	7.8	7.2	7.4	
8	Colour	50	40	45	
9	Turbidity	1] 2	1 4	
0	Suspended matter, dried at 105° C				
1					
2	Residue on evaporation, dried at 105°C	66.4	80.4		
3	Ignition loss at 550°C	11.2	26.4		
6	Specific conductance, micrombos at 25°C.	97.5	92.4	96.9	
5	Calcium (Ca)	13.7	12.2	12.7	
6	Magnesium (Mg)	2.9	3.1	3.8	
7	Iron (Fe) Total		0.13	0.28	
8	Dissolved	0.06	0.04	1	
9	Manganese (Mn) Total	Trace	0.01	0.00	See
0	Dissolved			0.00	South Porcupi
1	Aluminum (Al)	0.0	0.01		and
2	Copper (Cu)	Trace	0.10		Schumacher
3	Zinc (Zn)	0.05	0.05		
4	Sodium (Na)	1.3	1.0	0.8	
5	Potassium (K)	0.7	0.6	0.3	
6	Ammonia (NH ₃)	0.0		0.1	
7	Carbonate (CO ₃)	0.0	0.0	0.0	
3	Bicarbonate (HCO ₃)	42.2	38.3	41.0	
(Sulphate (SO ₄)	8.4	6.9	7.0	
30	Chloride (Cl)	4.4	4.1	3.3	
1	Fluoride (F)	0.0	0.0	0.14	
2	Phosphate (PO4) Total				
3	Dissolved				
4	Nitrate (NO ₃)	0.2	0.1	0.4	
5	Silica (SiO ₂), colorimetric	4.6	3.9	3,3	
6	Carbonate hardness as CaCO	34.6	31.4	33.6	
7	Non-carbonate hardness as CaCO ₃	11.5	11.8	13.9	
8	Total hardness as CaCO3	46.1	43,2	47,5	
9	Sum of constituents	57.1	51.0	51.9	
0	Per cent sodium	4.8	4.7	3,5	
1	Saturation index at test temperature	-0.9	-1.6	-1.4	
2	Stability index at test temperature	9.6	10	10	
3	Redox potential (mv)			-491	
	Menor botential (may)			0.051	

Remarks

^{*}See Table II, Station No. 76

Chemical Analyses of Municipal Water Systems

A - Hudson Bay Drainage Basin - Ontario (concl'd)

UNIONVILLE		WHITNEY TOWNSHI	P	
	W	ell :	Bob's Lake	N
	Raw and	finished water	Raw water	
	At tap in	Porcupine	Direct from lake	
	Aug. 11/59 8:24 18.0 26.6 2:8 3 8.1 0	Oct. 15/63 57:111 9.4 23.1 8.3 5	Oct. 15/63 53:90 13.4 23.1 3 8.7 30 0	1 2 3 4 5 6 7 8 9
See Kendrey Township and mooth Rock Falls	255 23.6 416 64.9 15.1 0.04 0.01 0.00 0.18 0.9 0.1 3.2 1.2 0.0 0.0 271 9.3 0.6 0.0	3.2 1.2 0.00 283 11.6 0.5 0.10	130 45.6 185 20.6 7.2 0.08 0.01 0.00 0.03 5.9 0.6 0.0 0.0 85.3 7.7 9.5 0.12 0.01	111 122 133 144 155 166 177 188 199 200 222 222 222 222 223 363 333 333
	0.2 14 222 1.8 224 243 3.0 +0.8 6.5	0.6 13 232 10.7 243 255 2.8 +1.0 6.3 -459 0.089	0.7 0.3 70.0 10.9 80.9 94.7 14 -0.5 8.7 -480 0.286	3 3 3 3 3 3 4 4 4 4 4 4

Chemical Analyses of Municipal Water Supplies

B - Labrador Drainage Basin - Quebec

	M ' , «,,.". ««««««««««««««««««««««««««««««	FORT CHI	MO
	(* *)	Small pond (Stewart Lake)	Stewart Lake
		Raw and finishe	d water
	sa ; ng p ant		
I	Date of sampling	Dec. 15/59	
S	torage period (days)	2.1 740	
2	ampling temperature, °C	1.1	
	Test temperature, C.	?5.0	
6	Carbon dioxide (CO ₂), (calculated)		
-	the contract (CO3), (contracted)	5.9 7.1	
		10	
Ţ	with the	3	
S	uspended matter, dried at 105°C		
S	uspended matter, ignited at 550°C	*****************************	
K	enition loss at \$500 C	10 3	
S	pecific conductance micrombos as 250 C	117	
C	alcium (Ca)	10.0	
M	lagnesium (Mg)	4.4	
Is	on (Fe) Total	0.52	
	I I SSUIVED	0.05	
73	langanese (Mn) Total	0.00	
A	luminum (Al)	0.00	
0	opper ((u)	0.0	
Z	inc (Zn)	0.0	
S	odium (Na)	4.7	
P	otassium (K)	1.8	
A	mmonium (NH ₄)	0.1	No data
C	arbonate (CO ₃)	0.0	140 deta
SI	icarbonate (HCO ₃)	45.1	
0	hioride (Cl)	10.2 6-1	
		0.0	
P.	nosphate (PO ₄) Total	0.02	
	Dissolved	********************************	
Si	lica (SiO ₃), colorimetric	1.0	
	arbonate hardness as (a(),	8.1	
N	on-carbonate hardness as CaCO.	37.0 6.0	
11.0	Of All hardness as CoCO	43.0	
SU	in of constituents	68.6	
Y. 1	Cent Sourani	19	
St	ability index at test temperature	1.7	
Κ¢	edox potential (my)	10.5	
So	dium absorption ratio		
2 6	emarks		

Chemical Analyses of Municipal Water Supplies

B- Labrador Drainage Basin - Quebec

	Knob Lake		
Raw w	Finished water		
		At tap	
Jan. 24/62 9:12 1.1 22.2 1.9 6 7.0 0	May 23/62 5:8 3.3 22.1 0 4 7.1 5	Jan. 24/62 9:12 3.9 22.1 1.4 5 7.0 0	
34.4 17.2 71.1 6.2 4.4 0.04 Trace 0.00 0.00 Trace Trace 0.00 0.4 0.3 0.1 0.0 32.8 7.6 0.4 0.05 < 0.1 < 0.1 < 0.1 0.0 1.4 26.9 6.7 33.6 36.9 2.5 -2.2	38.4 9.6 63.4 5.5 4.3 0.05 0.01 0.00 0.00 0.00 Trace 0.3 0.2 0.2 0.2 0.0 29.3 6.8 0.9 0.12 0.03 0.03 0.22 1.6 24.0 7.5 31.5 30.0 3.0 -2.2 21.5	40.4 8.4 70.5 5.6 4.7 0.02 Trace Trace Trace Trace 0.04 <0.05 0.4 0.3 0.0 0.0 32.4 7.2 1.0 0.06 <0.1 <0.1 <0.1 0.1 0.1 0.1 0.2 1.4 26.6 6.7 33.3 36.7 2.5 -2.2	

TABLE IV SMALL COMMUNITY SUPPLIES

 $\label{eq:table_interpolation} TABLE\ IV$ Some Small Community Systems in the Hudson Bay, Labrador and Arctic Drainage Basins

			A - Hudsen Day Quebec 1	Drainage Basin Or	itario
ĺ	WONEY		- BARVUE MINES*	AUNOR MINES Townsite	BROUL AN REEF MINES Townsite
	[stal population served	1	965	1963	1965
	1 da. population serves	20 6	estd (20°)	40 estd	10
(Numerably	Manttou - Barvue Mines Ltd.		Broulan Reef Mines Lt	
	saurec	Sabou	rin Creek	Reid Lake water pur- chased from Delnite Mines Ltd.	Porcupine Creek**
-	Treatment	Congulation, filtra sodium silicate an	tion, (alum, soda ash, d polyphosphate).		None
1	Storage capacity (thousand gal)	Clear well	6.5		One tank6.0
ì	Industrial use			Mine and mill	Gold mine
	Sampling point	Raw water	Finished water		Raw and finished water
					At mine tap
	Date of sampling Storage period (days) Sampling temperature, C. Oxygen consumed by KMnO4 Carbon dioxide (CO2) calculated pH (clour Turbidity Suspended matter, dried at 105°C. Suspended matter, ignited at 550°C. Residue on evaporation dried at 105°C. Ignition loss at 550°C. Specific conductance micromhos at 25°C. Calcium (Ca) Magnesium (Mg) Iron (Fe) total dissolved Manganese (Mn) total dissolved Aluminum (Al) Copper (Cu) Zinc (Zn) Sodium (Na) Potassium (K) Ammonium (NH) Carbonate (CO3) Sulphate (SO4) Chloride (Cl) Fluoride (Cl) Fluoride (F) Phosphate (PO4) total Nitrate (NO3) Silica (SiO2) colorimetric Carbonate hardness as CaCO3 Non-carbonate hardness as CaCO3 Total hardness as CaCO3 Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature Stability index at test temperature Sodium absorption ratio (SAR)	Oct. 12/65 20:28 8.3 23.0 30.2 6 6.3 175 <5 70.8 42.0 38.3 6.5 1.5 0.50 0.24 0.00 0.8 0.3 0.0 7.4 10.9 1.3 0.29 0.1 0.8 4.8 6.1 16.2 22.3 31.2 7.2 -3.5 13 0.07	Oct. 12/65 20:20 8.3 22.1 4 6.9 125 208 7.1 0.8 0.06 35.2 0.0 19.6 2.8 1.1 7.3 <0.1 6.8 16.1 4.8 20.9 125 -2.6 12 3.35	See Delnite Mines	Sept. 17/65 12:17 25.0 11.0 10 7.3 110 2 400 91 570 72.0 17.8 0.20 0.04 0.01 0.00 0.14 18.7 5.0 18.7 5.0 17.8 0.32 0.1 1.4 3.1 101 152 253 362 14 -0.3 7.9 0.51
	Remarks	*Formerly Golden Townsite	Manitou Mines Ltd.		* Industrial water

		A - Hudson	Bay Drainage Ba Ontario	asin	
BROUL AN REEF MINES (concl'd) Townsite	BUFFALO ANKERITE MINES Townsite	DELNITE MINES Townsite	HALI	LNOR MINES Townsite	LITTLE LONGLAC GOLD MINES Townsite
1965	1963 280 estd (136b)	1963 220* (162b)	1963 110* (91 ^b)	1965 85°	1963 100 estd
Broulan Reef Mines	Buffalo Ankerite Gold Mines Ltd.*	Delnite Mines Ltd.	Halln (no organized d	Privately owned and operated cooperatively	
lallnor Mine under- round water.*	McDonald Lake	Reid Lake, 2½ miles distant.		600 feet below surface, considered in 1965.	Barron Bay on Lake Kenogamisis
Vone	Pumped with chlorina- tion	Pumped with chlorina-	Ch	lorinated	Pumped with chlo- rination,
One tank6.0	None	Elevation tank100	Elevation tank	1.0	None
None	None	Used in mine and mill			None
Raw and finished water		At townsite tap	Raw water	Finished water	At lake
Sept. 17/65 12:17 24.8 2.0 17 7.7 25 15 990 271 1,350 170 83.7 3.0 0.03 0.70 <0.02 0.19 18.0 2.4	See Paymaster Consolidated Mines Townsite	0ct, 16/63 56:103 22.9 2 7.7 45 0 106 14.6 4.1 0.16 0.00 0.00 0.00	Aug. 6/65 4:14 3.3 24.2 1.8 30 7.4 25 4 2.4 2.0 1,066 308 1,396 177 89.2 0.09 0.01 0.98 0.43 0.24	Aug. 6/65 4:14 13.19 24.4 1.1 20 7.6 15 3	Oct, 11/63 14:34 11,1 24:9 1,5 8.0 50 4 178 26.0 6.3
0.0 499 353 32.5 0.42 <0.1 0.5 16 409 360 769 920 4.8 +1.0 5.7 0.28		0.0 55.5 4.9 1.3 0.13 0.6 2.6 45.5 7.7 53.2 56.4 2.7 -0.9 9.5 0.04	0.0 416 370 31.8 0.31 0.1 1.4 13 423 386 809 962 4.9 +0.7 6.0 0.30	0.0 505 370 31.6 0.31 0.1 0.4 15 414 392 806 952 4.8 +0.9 5.8 0.29	0.0 97.5 7.7 1.2 1.1 5.1 80.0 11.0 91.0 97.4 3.2 -0.1 8.2 0.06
*Domestic water oth than drinking water; drinking water hauld by truck from Porcupine, Ont.	operating	*Includes 40 served in Aunor Mines Town- site	•Includes 10 serve Ltd. System installed	d at Broulan Reef Mines in 1939,	

	A - Hudson Bay Drainage Basin Ontario						
COMMUNITY		RCAF STATION	PAMOUR GOLD MINES	PAYMASTER CON- SOLIDATED MINES Townsite			
Total population served	19	065	1963	1963			
	50	00	124 estd (137b)	270°° (60b)			
Ownership	Department of Natio	nal Defence	Pamour Gold Mines Ltd.	Paymaster Consoli- dated Mines Ltd.			
Source	Butle	r Creek	Three Nations Lake	McDonald Lake			
Treatment	Congulation, filtrati and activated silica	on (alum, bicarbonate	Pumped with chlo- rination	Pumped with chlo- rination (sodium hypochlorite)			
Storage capacity (thousand gal)	2 reservoirs	each 100	Elev. tank103	None			
Industrial use	. N	one	Used in mill and mine for domestic purposes.	Used in mine, mill and domestic purposes.			
Sampling point	Raw water	Finished water	At townsite tap	At townsite tap			
		After filters					
Date of sampling	June 27/65 27:28 13.3 24.6 20.0	June 27/65 36:42 13.3 24.7 4.2	Oct. 16/63 54:89 16,1 23.2	Oct. 15/63 55:90 11.1 23.2			
Oxygen consumed by KMnO ₄ Catbon dioxide (CO ₂) calculated pH Colour Turbidity Suspended matter, dried at 105°C.	12 7.5 135 3 2.6	7.0 15	2 7.8 50 2	7.9 15 0			
Suspended matter, ignited at 550°C. Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance, micromhos at 25°C. Calcium (Ca) Magnesium (Mg) Iron (Fe) total dissolved Manganese (Mn) total dissolved Aluminum (Al) Copper (Cu)	2.2 246 90.0 342 26.4 8.5 0.53 0.08 0.03 0.00	258 86.8 387 26.4 8.0 0.45 0.01 0.03 0.02 0.13	156 18.3 6.3 0).24 0.01 0.01 0.00 0.03	184 26.0 6.3 0.22 0.02 0.0 0.00 0.00			
Zinc (Zn)	29.5	32.1	2.7	2.0			
Sodium (Na) Potassium (K)	1.8	1.8	0.7	0.3			
Ammonium (NH ₃) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (CI) Fluoride (F) Phosphate (PO ₄) total Nitrate (NO ₃) Silica (SiO ₃) colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Total hardness Per cent sodium Saturation index at test temperature Stability index at test temperature Sodium absorption ration (SAR)	0.1 0.0 80.9 14.1 60.0 0.26 <0.2 0.0 3.1 66.4 34.6 101 184 38 -0.7 8.9 1.27	0.1 0.0 27.5 62.9 58.8 0.09 <0.1 0)2 3.9 22.6 76.3 98.9 208 41 -1).7 10.4 1,40	0.0 55.7 20.2 4.9 0.20 0.14 1.0 2.4 45.7 25.9 71.6 84.2 7.5 -0.7 9.2 0.14	0.0 94.8 8.8 4.2 0.11 0.0 1.0 3.0 77.8 13.2 91.0 98.5 4.5 -0.2 8.3 0.09			
Remarks				°In 1964, name chang to Porcupine Paymasi Ltd. °° 20 people near min shaft use undergrous- water rather than Mc Donald Lake			

a Population according to the Tenth Census of Canada, 1956.
b Population according to the Eleventh Census of Canada, 1961.
C Total population reported by the community for the year as shown.

	Ontario	ige Basin	C - Arctic Drainage Basin Northwest Territories				
	PRESTON MINES Townsite		ALERT	, ELLESMERE ISLAN	D		
	1963			1961			
	105 estd* (55b)			(9a) (31b)			
Р	reston Mines Ltd.		Departm	ent of National Defend	e*		
mpson Lake and artes	sian well, 90 ft deep.		Up	per Dumbell Lake			
impson Lake water pu	mped with chlorinatio	n,	Filtration	n and chlorination			
lev. tank (well water) lev. tank (lake water)				No data			
ell water used in mine	:			None			
Simps	on Lake	Well		Raw water			
At lake	At tap	At tap					
Oct. 15/63 15:23 12.2 24.0	Oct. 15/63 15:23 10.1 23.8	Oct, 15/63 57:90 16.7 23.0	July 27/60 15:23 4.4 24.0	Sept. 13/60 17:22 5.6 22.2	Aug. 28/63 15:21 3.3 23.4		
5	4	5	2 8.1	2 8.0	3 7.9		
7.5 15 5	7.6 15 2	8.0 5 0.9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	45	0		
					120		
					50.8		
537	544 49.2	634 77.4	213	224 33.4	216 30.2		
49.8 22.3	21.9	28,8	0,00	5.9 0.44	5.9 0.01		
0,45	0.15	0.88 0.00			Trace		
0.14	0.06	0.13 0.00	0.00	0.10 Trace	0.00		
		0.10			0.02		
	0.04 0.16			0.02	0.00		
23.5	23.5	16.5 3.0	4.4 0.9	4.4 0)5 0.1	4.4 0.5 0.0		
0.0	0.0	0.0	0.0	0.0 126	0.0 118		
107 16.1	107 159	298 91.4	128	3.2	2.8		
11.5	11.6 0.16	6.1 0.20	9,8	7.3 0.0	6.8 0.0		
2.5		0.47	0.6	0.0	0.0		
0.4	0.9 0.4	16	1.2	1,4	0.8 96.7		
87.9 128	88.1 125	245 67	105 0,6	104	3.0		
216	213	312 386	106	107 118	99.7 109		
327 18	323 19	10	8,2	8,1	8.7 -0.1		
-0.3 8.1	-0.2 8.0	-0.3 8.1		+0.1 7.8	8.1		
0.70	0.48	0.70			0.19		
	water; 55 with well	motos!	*Treatment plant was	s installed in 1965.			

, ALANIA IN C	1		est Territories	Learning	
COMMUNITY	AI	ERT, ELLESMERE	ISLAND (concl'd)	[CAMBRIDGE BAY	
Tota, population served		1961-63			
		- (9a) (31b)		140 estd (798*)(531b)(2	
Ownership	, De	Department of Northern Affairs and National Resources*.			
Source	1	Upper Dumbell Lake		Grenier River and Wate Supply Lake.	
Treatment	Filt	ration and chlorination	oa	Chlorinated in trucks a hauled to buildings.°	
Storage capacity (thousand gal)	4	No data	******	Small tanks in building	
Industrial use	1	None		None	
Sampling point	1	Finished water		Grenier River	
	Wireless Station At building taps				
Date of sampling	Mar. 14/59 26:33	July 27/60 15:23	Sept. 13/60 17:22	Sept. 13/65 30:32	
Storage period (days) Sampling temperature Test temperature Coxygen consumed by KMnO4		15.6	23.9	0,0	
Test temperature, C	25.6	23.8	22.3	23.8	
Carbon dioxide (CO ₂) calculated	***************	. 3	2	2.3	
pH	8.3	7.8	7.9	7.4	
Colons	0	8	2.0	1 4 #	
Turbidity Suspended matter, dried at 105°C. Suspended matter, ignited at 550°C. Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance, micromhos at 25°C Calcium (Ca).	Clear	3	5	0,5	
Suspended matter, ignited at 550°C.				• • • • • • • • • • • • • • • • • • • •	
Residue on evaporation, dried at 105°C				81,6	
Ignition loss at 550°C.			******	. 43.2	
Specific conductance, micromhos at 25°C Calcium (Ca)	253 38,5	163	186	142	
Magnesium (Mg)	7.5		27.1 5.7	9.8	
Iron (Fe) total		0.01	0.81	0,27	
dissolved	0.02			<0.01	
Manganese (Mn) total	0.01	0.05	0.10	0,00	
Aluminum (Al)	0.01	0,05	0.05	0.00	
(opper (Cu)		0.02		0.0)	
Zinc (Zn)		0.05	0.05		
Sodium (Na)	5.7 0.7	3.7	4.1	4.7	
Porassium (K) Ammonium (NH ₃) Carbonate (CO ₃)	0.05	0.6	0.5 0.05	0.8	
Carbonate (CO ₃)	0.0	0.0	0.0	0.0	
	148	88.7	104	66.2	
Sulphate (SO ₄)	4.0 9.1	3.4 6.9	3.5 7.7	3.0	
Fluoride (F)	0.0	0.9	0.0	9.6 0.06	
Phosphate (PU ₄) total				<0.1	
Nitrate (NO ₃)	0.0	0.4	0.0	1.0	
Silica (SiO ₂) colorimetric	4.4 121	0.7 72.8	1.0 85.3	0.4	
Non-carbonate hardness as CaCO ₃	5.8	4.7	5.3	54.3	
Total hardness as CaCO ₃	127	77.5	90.6	59.6	
Sum of constituents	143		101	70.5	
Per cent sodium	8.8 +0.5	9\2	8.8 -0.2	14	
Stability index at test temperature Sodium absorption radio (SAR)	8.8		8.3	-1.3 10 0.26	
Remarks					
				The water hauling and treating equipment owned and operated by F.H. Ross and Associates.	

aPopulation according to the Tenth Census of Canada, 1956.
bPopulation according to the Eleventh Census of Canada, 1961.
cTotal population reported by the community for the hear as shown.

			Drainage Basin st Territories			
CAMBRIDGE BAY (concl'd)	FROBI	SHER BAY (BAFFIN	RESOLUTE (C	ORNWALLIS ISLAND)		
1965	1961-63		1965	1963		
300 (500°)	1750° (351ª) 51:	2 ^b)(1900 ^c)	500* (1,500°)	100 estd (75a) (153b)		
Department of Northern Affairs and National Resources*.	Department of Tra ns - port	Department of North National Resources.	ern Affairs and	Department of National Defence*		
Grenier River and Water Supply Lake	In 1961, small pond 2 miles from settle- ment, In 1962-63 Lake Catherine: Sylvia Grennel River is an auxiliary source	Lake Geraldine		Lake (½ mile long and ¼ mile wide)		
Chlorinated in trucks and hauled to build- ings.*	None; hauled by tank truck to settlement.		on, sterilization (alum activated silica, lime	Ion exchange softe	ning and chlorination	
Small tanks in build- ings.	Small tanks in building.	Concrete tank	124	No data		
None	None	Power plant, hospit	al and laundry.	No data		
Water Supply Lake	Raw and finished water, at pond	Raw water	Finished water	At lake	At tap	
	Intake line Laboratory tap					
Sept. 13/65 30:32	Sept. 23/57 112:116	July 28/65 29:34	July 28/65 30:34	about Sept. /54	Aug. 6/63 9:14	
1.7 23.9	23.7 23.6		11.1 16.5 23.6 23.6		24.2	
3.5	3.3 0.9	1.7	0.6		2.2	
7.6	7.6	6.9	7.1		7.9	
25 1	14 0.7	15 2	15 1		5 0	
176 64	50.4 25.2	15.2	39.2 15.2			
295	51.8	25.8	74.4		362	
20.9 15.5	7.3	3.6 0.6	8.2 0.7		32.4 10.7	
0.06		0.52 0.07			0.03	
<0.01 0.02	Trace	<0.01 0.02	0.00		0.00	
0.00	0.00 0.06	0.00	0.00		/	
0.05	Trace	0.08 0.06				
14.5	0.0 0.8	0.6	4.2	8.4	0.0 19.5	
2.3	0.3	0.1	0.3	1.6	1.5	
0.0	0.0	0.2	0.4		0.0	
120	22.7	10.0	15.8	5.5	102 39	
6.2 34.0	4.9 1.7	2.1	16.4 1.7	55 11	33	
0.12 <0.1	0.0	0.01	0.03		0.13	
0.4	0.0	0.0	0.6		Trace	
1.8 98.7	3.3 18.6	0.6 8.2	1.0 13.0		0.5	
17.3	4.6	3.4	10.3		41.1	
116 155	23.2	11.6 13.3	23.3 41.0		125 187	
21	6.8	10	28 -2.2		25 -0.1	
-0.5 8.6 0.59	-1.6 11	-3.0 13 0.08	12 0.38		8.1 0.76	
* The water hauling and treating equip- ment owned and operated by F,H, Ross and Associates	Lake Catherine replaced the small pond source about 1962, No pumping system, hauled by truck.	*Served by new sys 1964. **System operated b Power Commission.			Transport base is located d an Eskimo village 4	

The drainage basins covered by this report represent about 46 per cent of the total area of Canada, but they contained little more than one per cent of Canada's population in 1961. They extend over 1,780,047 square miles, with 46 per cent in the Arctic drainage basin, 40 per cent in the Hudson Bay basin and 14 per cent in the Labrador basin. Of the 251,173 inhabitants in 1961, some three per cent were in the Arctic basin, 90 per cent in the Hudson Bay basin and about seven per cent in the Labrador basin.

These drainage basins cross several provincial and territorial boundaries: 57 per cent of the area is in the Northwest Territories, 20 per cent in Quebec, 12.4 per cent in Ontario, 5.7 per cent in Labrador, 4.4 per cent in Manitoba, 0.4 per cent in the Yukon and 0.1 per cent in Saskatchewan. The distribution of population in 1961 was Labrador 5 per cent, Quebec 43 per cent, Ontario 47 per cent, Manitoba 1.5 per cent and Northwest Territories 3.5 per cent. Saskatchewan and the Yukon were not represented in the population chart for 1961.

More than one physiographic region is considered. The Hudson Bay basin is mainly on the Canadian Shield, with part in the Hudson Bay lowlands of Northern Ontario. The Labrador drainage basin is completely in the Canadian Shield. The southern area of the Arctic drainage basin lies on the Canadian Shield, with a minor part in the Grenville region. Geological and climatic conditions are much the same in each of these physiographic regions.

It is believed that most of the surface waters which were not studied are generally similar in quality to the nearby waters reported in Table II. Some differences in the chemical quality of surface waters in some watersheds are shown in the table, but in most cases these are readily attributable to local geological and climatic conditions, or to human activities such as industrial contamination, agriculture or municipal discharges. However, the differences are minor as far as overall quality and water use are concerned.

No attempt is made in this report to discuss in detail the data of Table II. A statistical study of at least some of the data might be useful, not only in determining the mean or median quality, but possibly in extrapolating quality to other periods of time and season. This type of study was hindered by a lack of discharge records at many sampling points and the influence of regulating dams at other points, coupled with the fact that a survey such as this had to be carried out over several years and was not designed for statistical evaluation.

Table II shows that the major surface waters in the Hudson Bay drainage basin range from very soft to medium

	Total Hardness as CaCO ₃
Classification	(parts per million)
Very Soft	Up to and including 30
Soft	31 to 60
Medium Hard	61 to 120
Hard	121 to 180
Very Hard	greater than 180

The surface waters in the Hudson Bay basin are typical of the Canadian Shield; they are seldom high in mineral content or harder than 120 p.p.m. of CaCO₃. The waters in the northern forested areas are for the most part very soft, while those in the southern areas are usually medium hard, due principally to the clay belt areas of Northern Ontario and Northern Quebec.

The mineral content of surface waters of the basin is mostly carbonate hardness, i.e., the bicarbonates of calcium and magnesium. These waters are low in alkalis, sulphates and chlorides; they have markedly negative saturation indices, and are corrosive through being usually saturated with oxygen. The total mineral content of uncontaminated waters is seldom above 100 p.p.m., and is generally in the range of 50-75 p.p.m., or even lower. Their quality is characteristic of waters of the Canadian Shield, where between 80 and 98 per cent of the dissolved mineral content (as equivalents per million) is alkaline earth salts. Surface waters rising and flowing through the Canadian Shield are seldom turbid, but are often highly coloured.

Table II shows that surface waters in the Arctic drainage basin range from very soft to very hard, depending upon the districts in which the survey parties were working. Because of the remoteness of the area and the sparsity of settlements, a planned water quality network in the far north was impossible. Most of the data resulted from samples collected by government agencies working on special research projects, and the type of sample reflected the scope and type of the study. For example, water samples were obtained from research groups studying the Arctic.

Although water quality data are limited because samples were obtained from only a few of the Arctic islands, those that were received indicated a high content of alkaline earth bicarbonates. The influence of sea water was shown by the high sodium chloride content of some ponds and streams. The high sulphate waters on some islands in the north are due essentially to calcium sulphate, and not to alkali (sodium) sulphate waters like those of the lowland regions of southern Canada. This is the result of glaciers and snowmelts dissolving gypsum outcrops, and is particularly noticeable in Ellef Ringnes Island, where gypsum domes occur.

SUMMARY

Surface waters in the Hudson Bay drainage basin are typical of the Canadian Shield. They vary from very soft water occurring mainly in the northern forested areas to medium hard water, which is usually found in southern areas. These waters seldom have a high mineral content and are seldom harder than 100 p.p.m. of CaCO₃.

In the northern Quebec region of the Labrador drainage basin, waters are rated as soft. Municipal water supplies averaged slightly over 30 p.p.m. of CaCO₃. The samples from Labrador itself are in the very soft range.

Surface waters in the Arctic drainage basin vary from very soft to very hard. The collection of samples depended on government agencies working on special projects confined to a few Arctic islands.

The mineral content of surface waters in the Hudson Bay basin consists mainly of calcium and magnesium bicarbonates. The waters are correspondingly low in alkalis, sulphates and chlorides. Samples from the Arctic islands show a high content of alkaline earth bicarbonates. Some ponds and streams indicate the influence of sea water in their high sodium chloride content.

The greater part of the data collected in this study came from sampling stations and municipal water supplies in the Hudson Bay drainage basin. This reflects the concentration of 47 per cent of the study area's population in Ontario and 43 per cent in Quebec, which make up a large part of the basin. Data were inevitably more difficult to gather in the remoter and more sparsely populated regions.

Colour is high in many of the far northern waters, especially in the Arctic coastal plains. Many ponds on Ellesmere Island have very high sodium and potassium contents. These ponds vary markedly in quality over a period of three to four months. Lakes and ponds in the far north are usually shallow and freeze solid in winter. Where this is not the case, water quality deteriorates considerably. A very high proportion of silt and turbidity is noted beneath the icecap, which varies in thickness from seven to eight feet. As the small glacier-fed streams run for just a short period or periods of the year, the proportion can only be gauged in the large rivers, where the water flow continues over an appreciable part of the year.

TABLE V

MUNICIPAL SYSTEMS, TREATMENT AND POPULATION SERVED

TABLE VI

MUNICIPAL WATER HARDNESS

TABLEV Municipal Systems, Treatment and Population Served in 1961

			r	an oystens,	Treatment and	- Operation	MITTE	N 1301				_	
		. ,			2 14 2 4 2 93								
			1 24 1 4A.1	*, * ***	1 NO. 01 NO. 20 04 0	-	* main	416 gs.	() 4 (***	 * . 1 1 4 7 4		-	
	U _b · · · »	١	-6	111	1	-		-			1		
13.4.5			68, 24	111	Ġ	ı	40.14	11 95	-54				
		119,114	5 11 484	n ev	12 25,175	£ 14.	. 44.4	21 st	e ne		-		
	Northwest Territories		1	3		*	'x			11			
. 25421.0	. atra ir	1. 'W'					1 8			-			
	ucir	< *4°	- -	0 -	3,000		2 600	n		1		1 40	
Acus	Northwest Territories	, 20H		٠ ٥	5.030		4 2 000	2	1	4 2.5	٠		
[Main		nun	R* 435	8,300	25 25,705	0 1,360	53 127 440	21/2/c	42.28	(F_2*		C LI NO	

TABLE VI Municipal Water Hardness in Hudson Bay, Labrador and Arctic Drainage Basins in 1961

Drainage Basin	Province or Territory	Number of community systems and estimated population served with water					Number of systems (sources) and estimated population served with water classed as			
1		Cities, Towns and Villages	Township, Improvement Districts	Unincorporated Communities	Townsites, etc.	Tetais	Soft 3 No ppm as Cac (1)	Metro Mart 1, 120	Har:	Territigas Hyan
+	Unehe	9	0	٥	1	14	10	1	9	1
		18,050		4,210	50	42,260	22,510	(4,850)	-	f 200
		8	,	,	8	20		8	4	2
is in Plan	Ontar. v	40,735	950	15,175	1,340	**,860	18,520	20,065	1.400	3.875
	Northwest Territories	0	0	: *************************************	0	1 700	0	: '%'	,	3
	labraisir	0	0	0	9	n	υ		0	,
at ca for	Juene	0		3 3,000	0	3,000	2 3,000	٠	+	
	Northwest Territories		1	4 2,020	¢	4	; **0	: 10	1100	
1				20	0	42	10	14	,	4
1112		8	. 640	20 25,705		. 3.0				

Not included in ntatistics of this table
 (a) included privately-owned sources from which municipality purchases water.

TABLE V

Municipal Systems, Freatment and Population Served in 1961

Water sources and estimated population served by			populs	No, of water systems and estimated population served with water treated as follows			Percentage of population served, using		Per cent of total basin population served by system	
Ground water	Surface water	Mixed water	No treatment	Chlorination	Additional treatment	Surface and Mixed water	Untreated waters	Surface and Mixed waters	Ground waters	Total
**	! -	-	-	-	-	-	-	0	0	0
7 26,350	9,060	6,850	3 11,000	4 24,160	3 7,100	38	26	34	6,7	41
4 2,425	15 59,385	1 1,050	1,100	13 53,285	6 18,475	83	1.5	51	10	61
0	1 700	0 -	0 -	1 700	0	100	0	35	0	35
0	0	0	0	0	0	0	0	0	0	0
0 -	2 3,600	0	1 400	0	3,200	100	11	! 71	0	71
0	4 2,020	0 -	1 1,750	I 140	2 130	100	87	29	0	1 29
11 8,775	29 74,765	7,900	6	24 78,285	12 28,905	68	1 12	1 33	15	48

 $TABLE\ VI$ Nunicipal Water Bardness in Hudson Bay, Labrador and Arctic Drainage Sasins in 1961

Percentage population served with water classed as				Weighted hardness, as ppm CaCO ₃ , of municipal water							
Soft	Medium Hard	Hard	Very Hard	Cities, Towns, and Villages	Townships, Improvement Districts	Townsites and Unincorporated Communities	Small Mine Townsites	Ground water	Surface water	Mixed water	Total basins
53.3	35.1	0	11.6	79	-	37	21	100	39	25	75
52,9	27.5	15.7	3.9	75	104	95	96	157	68	57	82
-	100	-	-	-	-	90	_	-	90	-	90
-	-	-	-		-			-	-		_
100	-			-	34	34	-	-	34	-	34
86,6	8.4	4.9	0	-	-	37	-	-	37	-	37
54.7	29.5	9.4	6.4	77	104	72	95	118	67	29	78

STATION		PAGE
	HUDSON BAY DRAINAGE BASIN	
50	Abitibi River east of Cochrane, Ontario	32
49	Abitibi River at Iroquois Falls, Ontario	32,58
51	Abitibi River at Island Falls, Ontario	32
114	Attawapiskat River above Junction of Muketei River at 53°08'N - 85°20'W -	
	Oprario	52
106	Azure Lake at 51°31'30" N - 88°58'30" W - Ontario	50
117	Badesdawa River at mouth at 51°48' N - 89°38' W - Ontario	52
135	Baker Lake at 67°17'24" N - 95°55' W-Keewatin District, N.W.T	56
136	Baker Lake at 67°7'24" N - 94°46'24" W - Keewatin District, N.W.T.	56
129	Bartman Lake at 50°30' N - 87°37' W - Ontario	54
54	Bellefeuville River west of Authier, Quebec	32
30	Bell River at Senneterre, Ouebec	26
29	Bell River below Senneterre, Quebec	26
28	Bell River near Tiblemont, Quebec	26
63	Black River at Matheson, Ontario	34
43	Blouin Lake at Bourlamaque, Quebec	30
71	Bob's Lake near Porcupine, Ontario	36
24	Broadback River (Lake Evans) at 50°49' N - 77°01' W - Quebec	24
25	Broadback River below Evans Lake 51°05' 42" N - 76°47' 22" W - Quebec	24
95	Carey Lake near Hearst, Ontario	46
11	Cartier River near mouth at 53°44' N-76°57' W-Quebec	20
89	Cat River at 51°19' N - 91°37' W - Ontario	44
2	Clearwater River at 56°12' N - 75°14' W - Quebec	20
16	Clearwater River near mouth at 51°12' 48" N - 75°53' W - Quebec	22
59	Creek near Normetal, Quebec	34
53	Dagenais River near Palmarolle, Quebec	32
6	Denys River at 54°59' 36" N - 77°03' 30" W - Quebec	20
65	Driftwood River near Shillington, Ontario	36
124	Drumlin Lake at 52°35' N - 87°02' W - Ontario	54
52	Duparquet Lake at Duparquet, Quebec	32
72		
12	Eastmain River at 52°19' 24" N - 77°06' 42" W - Quebec	22
13	Eastmain River at 52°18' N - 77°13' W - Quebec	22
14	Fastmain River below Basil Gorge at 52°14' N - 78°09' W - Quebec	22
15	Eastmain River below Basil Gorge at 52°14' N-78°13' to 70°14' W-Quebec	22
21	Ell River at 52°39'30" N - 76°09" W - Quebec	24
22	Ell River at 52°40' N - 76°14' W - Quebec	24
133	Emadai Lake, Keewatin District, N.W.T.	54
67	Frederick House River at Connaught, Ontario	26
68	Frederick House River at dam below Frederick House Lake, Ontario	36
66	Frederick House River east of Hoyle, Ontario	36
69	Frederick House River west of Cochrane, Ontario	36
8	Fort George (La Grande) River near Fort George at 53°43' 20" N - 78°31' W - Quebec	20
7	Fort George (La Grande) River at 53°40' 42" N - 76°47' 24" W - Quebec	20
34	Gilman (Dore) Lake at Chibougamau, Quebec	28
115	Gitche River at 51°35' N -91°20' W - Ontario	52

STATION		PAGE
132	Gods Lake at Gods Lake at 54°41' N-94°09' W-Manitoba	54
4	Great Whale River above junction of Denys River at 55°09' N - 77°20' W - Quebec	20
5	Great Whale River near Great Whale River Mission at 55° 16' 30" N - 77° 34' W-	
	Quebec	20
80	Groundhog River at Fauquier, Ontario	40
139	Groundhog River near Foleyet, Ontario	56
40	Harricanaw River at Amos, Quebec	28
41	Harricanaw River below Amos, Quebec	28
37	Harricanaw River near Varsan, Quebec	28
125	Hawley Lake (Sutton River) at 54°34' N-84°38' W-Ontario	54
131	Island Lake near Mission at 53°52' N-94°42' W - Manitoba	54
85	Johnson Lake near Hearst, Ontario	44
94	Kabinakagami River twenty miles west of Hearst, Ontario	46
10	Kanaaupscow River at 53°45' N-76°59' W-Quebec	20
127	Kanuchuan Lake at 55°55' N-87°41' W-Ontario	54
81	Kapuskasing River at Kapuskasing, Ontario	42
116	Kawinogans Lake north of Lake St. Joseph at 51°21' N -90°42' W - Ontario	52
99	Kenogamisis Lake near Geraldton, Ontario	48
104	Keezhik Lake north of Armstrong, Ontario at 51°45' N - 88°38' W	50
100	Klotz Lake east of Longlac, Ontario	48
134	Lake at 62°19' N-93°30' W, Keewatin District, N.W.T.	54
108	Lake, south of Miminiska Lake at 51°31'N-88°44' W-Ontario	52
48	Lake Abitibi near Clerval, Quebec	32
47	Lake Abitibi near Ile Neepawa, Quebec	30
39	Lake la Motte at La Motte, Quebec	28
38	Lake Lemoine at Minecole, Quebec	28
27	Lake Tiblemont at Okaska, Quebec	26
61	La Reine River at La Reine, Quebec	34
57	La Sarre River neat La Sarre, Quebec	34
3	Little Whale River at 55°58' N-76°35' W-Quebec	20
55	Lois River near Macamic, Quebec	34
97	Long Lake (Kenogami River) at Longlac, Ontario	48
36	Lortie Lake near Quebec Lithium (Mine) Townsite	28
83	Lost River near Lepage, Ontario	42
26	Louvicourt River (Sleepy Lake) near Louvicourt, Quebec	24
56	Macamic Lake at Macamic, Quebec	34
44	Malartic River (Milhaut Lake) at Malartic, Quebec	30
77	Mattagami River at Sandy Falls, near Timmins, Ontario	38
79	Mattagami River at Smoky Falls, Ontario	40
78	Mattagami River at Smooth Rock Falls, Ontario	40
76	Mattagami River at Timmins, Ontario	38
86	Mattawishkwia River near Hearst, Ontario	44
31	Megiscane River near Megiscane, Ouebec	26
20	Menouow River at 52°46' 30" N - 76°10' W - Quebec	24
17	Michel River near mouth at 52°20' to 52°21' N-77°05' to 77°06' W-Quebec	22
90	Miminiska Lake (Albany River) at 51°33' N - 88° 38' W - Ontario	44
75	Minisinakwa (Mattagami) River at Gogama, Ontario	38

Missinsibi River at Mattice, Ontario	STATION		PAGE
123 Missisa Lake (3 52° 16' N - 85°07' W - Ontario			
103 Mojikit Lake (Ogoki River) at Waboose Dam, Ontario 50 46 Moose River at Moose Factory, Ontario 30 91 Nagagami River forty miles west of Hearst, Ontario 44 1 Nastopoka River at 50°43'N - 75°22' W - Quebec 20 138 Nat River near Foleyet, Ontario 56 28 Nebskwashi River near Chapleau, Ontario 56 38 North Diffwood River near Diffwood, Ontario 33 37 Nucltin Lake at 60°0'N - 99°55' W - Keewatin District, N.W.T. 56 48 Opasatika River at Opasatika, Ontario 44 49 Opinaca River at 52°24'N - 77°14' W - Quebec 22 19 Opinaca River at 52°24'N - 77°14' W - Quebec 24 10 Opinaca River at 52°24'N - 77°14' W - Quebec 24 10 Opinaca River at 52°23'N - 77°18' W - Quebec 25 10 Opinaca River at 51°38'N - 90°43' W - Ontario 46 10 Otasawian River near Hearts, Ontario 46 10 Otasawian River near Fagwa River, Ontario 47 10 Pagwachuan River ear Pagwa River, Ontario 48 10 Pagwachuan River near Pagwa River, Ontario 48 10 Peter Brown River near Heart Chromsite, Quebec 30 20 Peter Brown River near Heart Chromsite, Quebec 30 21 Pineimota River at 52°03'N - 80°34'W - Ontario 52 22 Pineimota River at 52°03'N - 80°34'W - Ontario 54 23 Porcupine Luke at South Porcupine, Ontario 54 24 Piche River near Healt Tomosite, Quebec 30 25 Roy Lake near Quebe Lithium (Mine) Townsite, Quebec 30 26 Ressor Lake at Geraldton, Ontario 52 27 Sakami River near Boleyet, Ontario 52 28 Rupert River (Nemiscaw Lake) at 51°24' 43" N - 76°44' 10" W - Quebec 56 50 Sakami River near Hearts, Ontario 52 51 Small Lake at 57°44'N - 89°01' W - Ontario 52 52 Small Lake at 57°45' N - 88°39' N - 76°39' W - Quebec 56 53 Suba Lake at 15°45' N - 88°39' N - 70°41' 10" W - Quebec 56 54 Small Lake at 50°45' N - 88°39' N - 70°41' 10" W - Quebec 56 55 Small Lake at 57°45' N - 88°30' N - 70°41' 10" W - Quebec 57 56 Smal	84	Missinaibi River at Mattice, Ontario	42
91 Nagagami River forty miles west of Hearst, Ontario	123		54
91 Nagagami River forty miles west of Hearst, Ontario	103	Mojikit Lake (Ogoki River) at Waboose Dam, Ontario	50
1 Nagagami River at 56°43°N - 75°22°N - V-Quebec	46		30
1 Nastopoka River at 56°43°N - 75°22' W - Quebec	01	Nanami Diver forty miles west of Heart Ontario	44
Nat River near Foleyet, Ontario. 30	-	Nagagami River forty miles west of fleatist, Ontario	20
82 Nebskwashi River near Chapleau, Ontario. 42 74 North Driftwood River near Driftwood, Ontario. 38 137 Nueltin Lake at 60°0° N - 99°55° W - Keewatin District, N.W.T. 56 87 Opasatika River at 52°24° N - 77°14° W - Quebec 22 18 Opinaca River at 52°24° N - 77°14° W - Quebec 24 19 Opinaca River at 52°23° N - 77°18° W - Quebec 24 141 Opishing River near Feleyet, Ontario. 56 96 Otasawian River near Hearst, Ontario. 46 113 Otoskwin River at 51°38° N - 90°43° W - Ontario 52 101 Pagwachuan River near Elandicon, Ontario. 48 102 Pagwachuan River near Baywa River, Ontario 48 45 Peter Brown River near Landrienne, Quebec 30 32 Peupliers River at 52°08° N - 88°34′ W - Ontario 52 42 Piche River near Haler Townsite, Quebec 30 121 Pine-mota River at 52°13′ N - 90°47′ W - Ontario 54 70 Porcupine Lake at South Porcupine, Ontario 36 72 Porcupine River at Hoyle, Ontario 38 8 Ressor Lake at Geraldton, Ontario		Nastopoka River at 30 45 N - 7) 22 w - Quebec	56
North Driftwood River near Driftwood, Ontario 38		Nat River hear Foleyet, Ontario	42
137 Nueltin Lake at 60°0' N-99°55' W-Keewatin District, N.W.T. 56			38
87			56
87 Opasatika River at Opasatika, Ontario 18 Opinaca River at 52°24'N - 77°18' W - Quebec 22 19 Opinaca River at 52°23'N - 77°18' W - Quebec 24 141 Opishing River near Foleyet, Ontario 25 16 Otasawain River near Hearst, Ontario 26 Otasawain River near Hearst, Ontario 27 101 Pagwachuan River east of Longlac, Ontario 30 102 Pagwachuan River near Pagwa River, Ontario 48 102 Pagwachuan River near Pagwa River, Ontario 48 102 Pagwachuan River near Landrienne, Quebec 40 Peter Brown River near Landrienne, Quebec 41 Piche River near Halet Townsite, Quebec 42 Piche River near Halet Townsite, Quebec 43 Piche River near Halet Townsite, Quebec 44 Piche River near Halet Townsite, Quebec 45 Pipestone River at 52°13'N - 90°47' W - Ontario 46 Porcupine Lake at South Porcupine, Ontario 47 Porcupine Lake at South Porcupine, Ontario 48 Porcupine River at Hoyle, Ontario 49 Ressor Lake at Geraldton, Ontario 40 Porcupine River at 51°21'N - 90°47' W - Ontario 40 Porcupine River at 51°41'N - 81°41'N - 76°44' 10" W - Quebec 41 Porcupine River near mouth at 53°39' N - 76°39' W - Quebec 42 Piche River near Hearst, Ontario 43 Skelak River hear Hearst, Ontario 44 Scorch River near Hearst, Ontario 45 Order River near Hearst, Ontario 46 Order Porcupine Skula Lake at 51°41'N - 89°01' W - Ontario 47 Order Porcupine Skula Lake at 51°41'N - 89°01' W - Ontario 48 Order River near Hearst, Ontario 49 Order Porcupine Skula Lake at 51°41'N - 89°01' W - Ontario 50 Order Porcupine Small Lake at 51°41'N - 89°31' W - Ontario 51 Order Porcupine Small Lake at 51°41'N - 88°59' W - Ontario 52 Order River near Hearst of Shabuskwia Lake about 51°17'N - 88°59' W - Ontario 53 Order River near Hearst Lake Sulut 51°13' 30"N - 89°01' W - Ontario 54 Order River near Acure Lake, Ontario 55 Order River near Acure Lake, Ontario 56 Order River near Acure Lake, Ontario 57 Order River near River Near Porcupine Score River Near Porcupine Score River Near Porcupine Score River Near Porcupine Score River Near Porcupine Score River Near Porcupine Score River Near Porcupine Scor	15/	Nueltin Lake at ou U.N99 33. W. Reewatin District, N.W.I.	
19	87	Opasatika River at Opasatika, Ontario	
19 Opinaca River at 52°25'N. '7°18' w. 'Quebec	18	Opinaca River at 52°24' N - 77°14' W - Quebec	
141	19		
96 Otasawian River near Hearst, Ontario 52 113 Otoskwin River at 51°38'N-90°43' W-Ontario 52 101 Pagwachuan River near of Longlac, Ontario 48 102 Pagwachuan River near Pagwa River, Ontario 48 45 Peter Brown River near Landrienne, Quebec 30 32 Peupliers River near Senneterre, Quebec 30 42 Piche River near Halet Townsite, Quebec 30 121 Pineimota River at 52°08'N-88°34'W-Ontario 52 126 Pipestone River at 52°13'N-90°47'W-Ontario 54 70 Porcupine River at Hoyle, Ontario 36 72 Porcupine River at Hoyle, Ontario 38 98 Ressor Lake at Geraldton, Ontario 48 35 Roy Lake near Quebec Lithium (Mine) Townsite, Quebec 28 23 Rupert River (Nemiscaw Lake) at 51°24' 43"N-76°44'10"W-Quebec 24 9 Sakami River near mouth at 53°39'N-76°39'W-Quebec 20 142 Scorch River near Foleyet, Ontario 52 131 Shabuskwia Lake at 51°4'N-89°01'W-Ontario 52 140	141	Opishing River near Foleyet, Ontario	
101 Pagwachuan River east of Longlac, Ontario	96		
101	113	Otoskwin River at 51°38' N - 90°43' W - Ontario	32
102	101	Pagwachuan River east of Longlac, Ontario	48
45 Peter Brown River near Landrienne, Quebec		Pagwachuan River near Pagwa River, Ontario	48
32 Peupliers River near Senneterre, Quebec 26 42 Piche River near Halet Townsite, Quebec 30 121 Pineimota River at 52°08'N -88°34'W-Ontario 52 126 Pipestone River at 52°13'N -90°47'W-Ontario 54 70 Porcupine Lake at South Porcupine, Ontario 36 72 Porcupine River at Hoyle, Ontario 38 98 Ressor Lake at Geraldton, Ontario 48 35 Roy Lake near Quebec Lithium (Mine) Townsite, Quebec 28 23 Rupert River (Nemiscaw Lake) at 51°24'43"N-76°44'10"W-Quebec 24 9 Sakami River near mouth at 53°39'N-76°39'W-Quebec 20 142 Scorch River near Foleyet, Ontario 56 111 Shabuskwia Lake at 51°14'N-89°01'W-Ontario 52 12 Skekak River thirty two miles west of Hearst, Ontario 52 13 Skekak River thirty two miles west of Hearst, Ontario 52 140 Small Lake at 51°45'N-89°24'W-Ontario 56 120 Skunk River near Hearst, Ontario 56 120 Small Lake at 51°09'45'N-89°59'30"W-Ontario 52 121 Small Lake at 51°09'45'N-89°59'30"W-Ontario <		Peter Brown River near Landrienne, Ouebec	30
42 Piche River near Halet Townsite, Quebec 30 121 Pineimota River at 52°08'N-88°34'W-Ontario 52 126 Pipestone River at 52°13'N-90°47'W-Ontario 54 70 Porcupine Lake at South Porcupine, Ontario 36 72 Porcupine River at Hoyle, Ontario 38 98 Ressor Lake at Geraldton, Ontario 48 35 Roy Lake near Quebec Lithium (Mine) Townsite, Quebec 28 23 Rupert River (Nemiscaw Lake) at 51°24'43"N-76°44'10"W-Quebec 24 9 Sakami River near mouth at 53°39'N-76°39'W-Quebec 20 142 Scorch River near Foleyet, Ontario 56 111 Shabuskwia Lake at 51°14'N-89°01'W-Ontario 52 129 Skekak River thirty two miles west of Hearst, Ontario 52 130 Skeua Lake at 51°45'N-89°24'W-Ontario 52 140 Small Creek near Timmins, Ontario 56 140 Small Creek near Timmins, Ontario 52 120 Small Lake at 51°09'45'N-88°59'30'W-Ontario 52 121 Small Lake east of Shabuskwia Lake about 51°17'N-88°59'W-Ontario 52 121 Small Lake at 52°45'N-80°03'W-Ontario		Peupliers River near Senneterre, Ouebec	26
121	_	Piche River near Halet Townsite. Ouebec	30
126		Pineimota River at 52°08'N -88°34'W - Ontario	52
70 Porcupine Lake at South Porcupine, Ontario 36 72 Porcupine River at Hoyle, Ontario 38 98 Ressor Lake at Geraldton, Ontario 48 35 Roy Lake near Quebec Lithium (Mine) Townsite, Quebec 28 23 Rupert River (Nemiscaw Lake) at 51°24' 43" N - 76° 44' 10" W - Quebec 24 9 Sakami River near mouth at 53° 39' N - 76° 39' W - Quebec 20 142 Scorch River near Foleyet, Ontario 56 111 Shabuskwia Lake at 51° 14' N - 89° 01' W - Ontario 52 93 Skekak River thirty two miles west of Hearst, Ontario 46 119 Skua Lake at 51° 45' N - 89° 24' W - Ontario 52 120 Skunk River near Hearst, Ontario 56 140 Small Creek near Timmins, Ontario 56 140 Small Lake at 51° 45' N - 88° 59' 30" W - Ontario 52 112 Small Lake ast of Shabuskwia Lake about 51° 17' N - 88° 59' W - Ontario 52 110 Small Lake north of Margaree Lake 51° 48' N - 89° 30' W - Ontario 52 120 Small Lake at 52° 45' N - 86° 03' W - Ontario 54 120		Pipestone River at 52°13'N - 90°47' W - Ontario	54
72 Porcupine River at Hoyle, Ontario 38 98 Ressor Lake at Geraldton, Ontario 48 35 Roy Lake near Quebec Lithium (Mine) Townsite, Quebec 28 23 Rupert River (Nemiscaw Lake) at 51°24' 43" N - 76° 44' 10" W - Quebec 24 9 Sakami River near mouth at 53°39' N - 76°39' W - Quebec 20 142 Scorch River near Foleyet, Ontario 56 111 Shabuskwia Lake at 51°14' N - 89°01' W - Ontario 52 93 Skekak River thirty two miles west of Hearst, Ontario 52 119 Skua Lake at 51°45' N - 89°24' W - Ontario 46 92 Skunk River near Hearst, Ontario 56 140 Small Creek near Timmins, Ontario 56 109 Small Lake at 51°09' 45"N - 88°59' 30" W - Ontario 52 112 Small Lake at 51°09' 45"N - 88°59' 30" W - Ontario 52 118 Small Lake as of Shabuskwia Lake about 51°17'N - 88°59' W - Ontario 52 110 Small Lake south of Shabuskwia Lake about 51°13' 30"N - 89°01' W - Ontario 52 120 Small Lake at 52°45' N - 86°03' W - Ontario 54 120 Tar Lake at 51°43'N - 89°22' W - Ontario 52		Parcupine I ske at South Parcupine, Ontario	36
98 Ressor Lake at Geraldton, Ohtario 28 23 Roy Lake near Quebec Lithium (Mine) Townsite, Quebec 24 23 Rupert River (Nemiscaw Lake) at 51°24' 43" N - 76°44' 10" W - Quebec 24 9 Sakami River near mouth at 53°39' N - 76°39' W - Quebec 20 142 Scorch River near Foleyet, Ontario 56 111 Shabuskwia Lake at 51°14' N - 89°01' W - Ontario 52 93 Skekak River thirty two miles west of Hearst, Ontario 46 119 Skua Lake at 51°45' N - 89°24' W - Ontario 52 92 Skunk River near Hearst, Ontario 56 140 Small Creek near Timmins, Ontario 56 109 Small Lake at 51°09' 45"N - 88°59' 30" W - Ontario 52 112 Small Lake east of Shabuskwia Lake about 51°17' N - 88°59' W - Ontario 52 110 Small Lake north of Margaree Lake 51°48' N - 89°30' W - Ontario 52 130 Small Lake at 52°32' N - 91°23' W - Ontario 54 122 Small Lake at 52°45' N - 86°03' W - Ontario 54 107 Small Lake at 51°43' N - 89°22' W - Ontario 52 120 Tar Lake at 51°43' N - 89°22' W - Ontario 52		Porcupine River at Hoyle, Ontario	38
Roy Lake near Quebec Lithium (Mine) Townsite, Quebec 28 23 Rupert River (Nemiscaw Lake) at 51°24' 43" N - 76° 44' 10" W - Quebec 24 24 25 25 25 25 25 25		The Continue Orașie	48
Roy Lake near Quebec Lithium (Mine) Townsite, Quebec 24	-	Ressor Lake at Geraldton, Untario	28
23 Rupert River (Nemiscaw Lake) at 31°24°43°N-76° 44°10° w - Quebec 20 9 Sakami River near mouth at 53°39' N - 76°39' W - Quebec 20 142 Scorch River near Foleyet, Ontario 56 111 Shabuskwia Lake at 51°14' N - 89°01' W - Ontario 52 93 Skekak River thirty two miles west of Hearst, Ontario 46 91 Skua Lake at 51°45' N - 89°24' W - Ontario 52 92 Skunk River near Hearst, Ontario 46 92 Skunk River near Hearst, Ontario 56 140 Small Creek near Timmins, Ontario 56 109 Small Lake at 51°09' 45"N - 88°59' 30" W - Ontario 52 112 Small Lake east of Shabuskwia Lake about 51°17'N - 88°59' W - Ontario 52 118 Small Lake north of Margaree Lake 51°48'N - 89°30' W - Ontario 52 110 Small Lake south of Shabuskwia Lake about 51°13' 30"N - 89°01' W - Ontario 54 120 Small Lake at 52°45' N - 86°03' W - Ontario 54 107 Small Lake at 51°43' N - 89°22' W - Ontario 52 120 Tar Lake at 51°43' N - 89°22' W - Ontario 52 120 Tar Lake at 51°43' N - 89°22' W - Ontario 52		Roy Lake near Quebec Lithium (Mine) Townsite, Quebec	
9 Sakami River near mouth at 53° 39' N - 76° 39' W - Quebec 142 Scorch River near Foleyet, Ontario 56 111 Shabuskwia Lake at 51° 14' N - 89° 01' W - Ontario 52 93 Skekak River thirty two miles west of Hearst, Ontario 46 119 Skua Lake at 51° 45' N - 89° 24' W - Ontario 52 120 Skunk River near Hearst, Ontario 52 130 Small Creek near Timmins, Ontario 56 140 Small Lake at 51°09' 45"N - 88°59' 30" W - Ontario 52 121 Small Lake ast of Shabuskwia Lake about 51°17' N - 88°59' W - Ontario 52 121 Small Lake north of Margaree Lake 51°48' N - 89°30' W - Ontario 52 130 Small Lake south of Shabuskwia Lake about 51°13' 30"N - 89°01' W - Ontario 52 130 Small Lake at 52°32' N - 91°23' W - Ontario 54 122 Small Lake at 52°45' N - 86°03' W - Ontario 54 107 Small Lakes near Azure Lake, Ontario 52 120 Tar Lake at 51°43' N - 89°22' W - Ontario 52 130 Taschereau River near Belcourt, Quebec 26	23	Rupert River (Nemiscaw Lake) at 51°24' 45" N - 70°44' 10" w - Quebec	
142 Scorch River near Foleyet, Ontario. 111 Shabuskwia Lake at 51°14' N - 89°01' W - Ontario. 46 93 Skekak River thirty two miles west of Hearst, Ontario. 46 119 Skua Lake at 51°45' N - 89°24' W - Ontario. 52 92 Skunk River near Hearst, Ontario. 46 93 Small Creek near Timmins, Ontario. 56 140 Small Creek near Timmins, Ontario. 56 140 Small Lake at 51°09' 45"N - 88°59' 30" W - Ontario. 52 112 Small Lake east of Shabuskwia Lake about 51°17' N - 88°59' W - Ontario. 52 118 Small Lake north of Margaree Lake 51°48' N - 89°30' W - Ontario. 52 110 Small Lake south of Shabuskwia Lake about 51°13' 30"N - 89°01' W - Ontario. 52 130 Small Lake at 52°32' N - 91°23' W - Ontario. 54 122 Small Lake at 52°45' N - 86°03' W - Ontario. 54 107 Small Lake at 51°43' N - 86°03' W - Ontario. 50 120 Tar Lake at 51°43' N - 89°22' W - Ontario. 52 130 Tar Lake at 51°43' N - 89°22' W - Ontario. 52 130 Tar Lake at 51°43' N - 89°22' W - Ontario. 52 131 Tar Lake at 51°43' N - 89°22' W - Ontario. 52 132 Tar Lake at 51°43' N - 89°22' W - Ontario. 52 133 Tarschereau River near Belcourt, Quebec. 26	9	Sakami River near mouth at 53°39' N - 76°39' W - Quebec	
111 Shabuskwia Lake at 51°14° N-89°01° W-Ontario 46 119 Skua Lake at 51°45° N-89°24° W-Ontario 52 120 Skunk River near Hearst, Ontario 56 140 Small Creek near Timmins, Ontario 56 140 Small Creek near Timmins, Ontario 56 109 Small Lake at 51°09° 45° N-88°59° 30° W-Ontario 52 112 Small Lake east of Shabuskwia Lake about 51°17′ N-88°59′ W-Ontario 52 118 Small Lake north of Margaree Lake 51°48′ N-89°30′ W-Ontario 52 110 Small Lake south of Shabuskwia Lake about 51°13′ 30° N-89°01′ W-Ontario 52 130 Small Lake at 52°32′ N-91°23′ W-Ontario 54 122 Small Lake at 52°45′ N-86°03′ W-Ontario 54 123 Small Lake at 52°45′ N-86°03′ W-Ontario 54 124 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 125 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 126 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 127 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 128 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 129 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 120 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 121 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 122 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 123 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 124 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 125 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 126 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 127 Tar Lake at 51°43′ N-89°22′ W-Ontario 52 128 Tar Lake at 51°45′ N-80°42′ N-	142	Scorch River near Foleyet, Ontario	
93 Skekak River thirty two miles west of Hearst, Ontario 119 Skua Lake at 51°45' N - 89°24' W - Ontario 92 Skunk River near Hearst, Ontario 140 Small Creek near Timmins, Ontario 150 Small Lake at 51°09' 45"N - 88°59' 30" W - Ontario 112 Small Lake east of Shabuskwia Lake about 51°17' N - 88°59' W - Ontario 113 Small Lake north of Margaree Lake 51°48' N - 89°30' W - Ontario 110 Small Lake south of Shabuskwia Lake about 51°13' 30"N - 89°01' W - Ontario 121 Small Lake at 52°32' N - 91°23' W - Ontario 122 Small Lake at 52°45' N - 86°03' W - Ontario 123 Small Lake at 52°45' N - 86°03' W - Ontario 124 Tar Lake at 51°43' N - 89°22' W - Ontario 125 Tar Lake at 51°43' N - 89°22' W - Ontario 126 Tar Lake at 51°43' N - 89°22' W - Ontario 127 Tar Lake at 51°43' N - 89°22' W - Ontario 128 Tarschereau River near Belcourt, Ouebec	111	Shabuskwia Lake at 51°14' N-89°01' W-Ontario	
119 Skua Lake at 51°45' N - 89°24' W - Ontario 92 Skunk River near Hearst, Ontario 140 Small Creek near Timmins, Ontario 109 Small Lake at 51°09' 45"N - 88°59' 30" W - Ontario 112 Small Lake east of Shabuskwia Lake about 51°17' N - 88°59' W - Ontario 118 Small Lake north of Margaree Lake 51°48' N - 89°30' W - Ontario 110 Small Lake south of Margaree Lake about 51°13' 30"N - 89°01' W - Ontario 121 Small Lake at 52°32' N - 91°23' W - Ontario 122 Small Lake at 52°45' N - 86°03' W - Ontario 123 Small Lake at 52°45' N - 86°03' W - Ontario 124 Tar Lake at 51°43' N - 89°22' W - Ontario 125 Tar Lake at 51°43' N - 89°22' W - Ontario 126 Tar Lake at 51°43' N - 89°22' W - Ontario 127 Tar Lake at 51°43' N - 89°22' W - Ontario 128 Tarschereau River near Belcourt, Quebec	93	Skekak River thirty two miles west of Hearst, Ontario	
92 Skunk River near Hearst, Ontario 56 140 Small Creek near Timmins, Ontario 56 109 Small Lake at 51°09' 45"N - 88°59' 30" W - Ontario 52 112 Small Lake east of Shabuskwia Lake about 51°17'N - 88°59' W - Ontario 52 118 Small Lake north of Margaree Lake 51°48'N - 89°30' W - Ontario 52 110 Small Lake south of Margaree Lake 51°48'N - 89°30' W - Ontario 52 130 Small Lake at 52°32' N - 91°23' W - Ontario 54 122 Small Lake at 52°45' N - 86°03' W - Ontario 54 107 Small Lake ar Azure Lake, Ontario 50 120 Tar Lake at 51°43' N - 89°22' W - Ontario 52 33 Taschereau River near Belcourt, Quebec 26	119	Skua Lake at 51°45' N-89°24' W-Ontario	
140 Small Creek near Timmins, Ontario. 52 109 Small Lake at 51°09' 45"N - 88°59' 30" W - Ontario 52 112 Small Lake east of Shabuskwia Lake about 51°17'N - 88°59' W - Ontario 52 118 Small Lake north of Margaree Lake 51°48'N - 89°30' W - Ontario 52 110 Small Lake south of Shabuskwia Lake about 51°13' 30"N - 89°01' W - Ontario 52 130 Small Lake at 52°32' N - 91°23' W - Ontario 54 122 Small Lake at 52°45' N - 86°03' W - Ontario 54 107 Small Lakes near Azure Lake, Ontario 50 120 Tar Lake at 51°43' N - 89°22' W - Ontario 52 33 Taschereau River near Belcourt, Quebec 26	92	Skunk River near Hearst, Ontario	
109 Small Lake at 51°09' 45"N - 88°59' 30" W - Ontario 52 112 Small Lake east of Shabuskwia Lake about 51°17' N - 88°59' W - Ontario 52 118 Small Lake north of Margaree Lake 51°48' N - 89°30' W - Ontario 52 110 Small Lake south of Margaree Lake about 51°13' 30"N - 89°01' W - Ontario 52 130 Small Lake at 52°32' N - 91°23' W - Ontario 54 122 Small Lake at 52°45' N - 86°03' W - Ontario 54 107 Small Lake at 51°43' N - 89°22' W - Ontario 50 120 Tar Lake at 51°43' N - 89°22' W - Ontario 52 130 Tarschereau River near Belcourt, Quebec 526	140	Small Creek near Timmins, Ontario	
112 Small Lake east of Shabuskwia Lake about 51 17 1-83 59 w - Ontario	109	Small Lake at 51°09' 45"N -88°59' 30" W - Ontario	
110 Small Lake south of Shabuskwia Lake about 51°13'30"N-89°01'W-Ontario 52 130 Small Lake at 52°32' N-91°23'W-Ontario 54 122 Small Lake at 52°45' N-86°03'W-Ontario 54 107 Small Lakes near Azure Lake, Ontario 50 120 Tar Lake at 51°43'N-89°22' W-Ontario 52 33 Taschereau River near Belcourt, Quebec 26	112	Small Lake east of Shabuskwia Lake about 51°17'N-88°59' W-Ontario	
110 Small Lake south of Shabuskwia Lake about 31 13 90 N - 39 of w - Ontario 54 130 Small Lake at 52°32' N - 91°23' W - Ontario 54 122 Small Lake at 52°45' N - 86°03' W - Ontario 54 107 Small Lakes near Azure Lake, Ontario 50 120 Tar Lake at 51°43' N - 89°22' W - Ontario 52 133 Taschereau River near Belcourt, Ouebec 26	118	Small Lake north of Margaree Lake 51°48' N - 89°30' W - Ontario	
130 Small Lake at 52°32' N - 91°23' W - Ontario 54 122 Small Lake at 52°45' N - 86°03' W - Ontario 54 107 Small Lakes near Azure Lake, Ontario 50 120 Tar Lake at 51°43' N - 89°22' W - Ontario 52 33 Taschereau River near Belcourt, Quebec 26	110	Small Lake south of Shabuskwia Lake about 51°13'30"N-89°01'W-Ontario	
122 Small Lake at 52°45' N - 86°05' W - Ontario	130	Small Lake at 52°32' N-91°23' W-Ontario	
120 Tar Lake at 51°43' N -89°22' W - Ontario	122	Small Lake at 52°45' N-86°03' W-Ontario	
Taschereau River near Belcourt, Quebec	107	Small Lakes near Azure Lake, Ontario	30
Taschereau River near Belcourt, Quebec	120	Tar Lake at 51°43' N - 89°22' W - Ontario	52
105 Troutfly Lake at 51°42' N - 88°54' W - Ontario		Taschereau River near Belcourt, Quebec	
		Troutfly Lake at 51°42' N - 88°54' W - Ontario	50

STATION		PAGE
64	Watabeag River west of Matheson, Ontario	30
62	Whiteclay River near Ramore, Quebec	3.4
60	Whitefish River at La Sarre, Quebec	34
58	Whytes Lake at Normetal, Quebec	34
128	Winisk Lake at 52°52' N - 87°22' W - Ontario	54
88	Zionz Lake (Cat River) at 51°19' N - 91°37' W - Ontario	4.4
	ARCTIC DRAINAGE BASIN	
35 A	Agate River at 78°57' N - 101°40' W, Ellef Ringnes Island, N.W.T	74
28A	Davidure Diverse 70000th 10200st W Elles Diverse Lebel M W T	7.3
29A	Bourquer River at 79°08' N - 103°05' W, Ellef Ringnes Island, N.W.T.	72
45 A	Brant River at 79°00'N-102°50'W, Ellef Ringnes Island, N.W.T. Brook near Colour Lake at 79°25'N-98°43'W, south end of Ice Cap, Meighen	72
	Island, N.W.T.	76
84	Coppermine River near Coppermine Settlement, District of Mackenzie, N.W.T	68
9A	Creek near Coppermine Settlement, District of Mackenzie, N.W.T.	68
4A	Creek, near Frobisher Bay, Baffin Island, N.W.T.	66
-242	Citch, hear Fronting Day, Danin Island, 11, w. 1	
26A	Decca Master Lake at 79°17' N - 105°22' W, Ellef Ringnes Island, N.W.T	72
42A	Decca River at 80°03' N - 100°15' W, Meighen Island, N.W.T	74
32A	Driftwood River at 78°53'N-103°49'W, Ellef Ringnes Island, N.W.T	72
14A	Ekalluk Lake at 69°48' N - 104°35' W, Victoria Island, N.W.T	68
15A	Ferguson Lake at 69°20' 45"N-106°15'00 "W, Victoria Island, N.W.T	68
21A	Fiona Lake at 73°05' 20"N - 95°06' W, Somerset Island, N.W.T.	70
	, , , , , , , , , , , , , , , , , , , ,	
27A	Geomorphologist River at 79°11'N-103°08'W, Ellef Ringnes Island, N.W.T	72
34A	Glacial Melted Ice at 78°18' N - 103°28' W, Ellef Ringnes Island, N.W.T	74
16A	Keyhole Lake at 69°22' 30"N - 106°15' 15"W.	68
17A	Keyhole Lake at 69°22' 45"N - 106°15' 00"W, Victoria Island, N.W.T	70
3A	Koukdjuak River at 66° 46' N - 72°W (approx), Baffin Island, N.W.T	66
6A	Lake at 67°05' N -84°42' W, north of Lyon Inlet, Melville Peninsula, N.W.T.	66
18A	Lake at 69°23' 18"N - 106° 14' 30" W	70
20A	Lake at 74°09' N - 119°48' W, Banks Island, N.W.T.	70
23A	Lake near Resolute, Cornwallis Island, N.W.T	70
24A	Lake I (Provision Pond) at 75°40' N-84°33' W, Devon Island, N.W.T.	70
25 A	Lake II (Nic's Fishing Lake) at 75°40' N - 84°33' W, Devon Island, N.W.T	72
5A	Lake north of Lake Harbour, Baffin Island, N.W.T.	66
191	Lake north northeast of Keyhole Lake at 69°23'06"N-106°15'30" W, Victoria	
	Island, N.W.T.	70
1.4	Lewis Glacier at 70°26' N - 74°45' W, Baffin Island, N.W.T	66
2A	Lewis Glacier at 70°25' N -74°48' W, Baffin Island, N.W.T.	66
31A	Mud Lake at 78°54'N-103°50'W, Ellef Ringnes Island, N.W.T.	72

STATION		PAGE
11A	Namaycush Lake at 70°45'06"N-108°33'05"W, Victoria Island, N.W.T	68
43A	River at 79°56'N-99°05'W, West coast Meighen Island, N.W.T.	74
54A	Romulus Lake - Ellesmere Island, N.W.T.	78
50A	Ruggles River at 81°43' N -69°25' W, Ellesmere Island, N.W.T.	78
48A	Small Ponds near Lake Hazen, Ellesmere Island, N.W.T.	74
33A	Stream at 78°18' N - 103°43' W, Ellef Ringnes Island, N.W.T	72
39A	Stream at 78°18' N - 100°05' W, east coast, Ellef Ringnes Island, N.W.T	74
40A	Stream at 78°01'N-99°32'W, east coast, Ellef Ringnes Island, N.W.T	74
41A	Stream at 77°55' N-99°25' W, near Camp Alpho, Ellef Ringnes Island, N.W.T	74
49A	Stream at 81°40' N - 69°20' W, Tributary to Ruggles River, Ellesmere Island, N.W.T.	78
53A	Stream at 80°02' N - 85°45' W, Ellesmere Island, N.W.T	78
44A	Stream 79° 52' N - 98° 43' W, south end of Ice Cap, Meighen Island, N.W.T	76
51A	Stream 81°25'N-76°45'W, Ellesmere Island, N.W.T	78
37A	Stream ar entrance to Dumbbells Dome, Ellef Ringnes Island, N.W.T.	74
38A	Stream crossing Dumbbells Dome, Ellef Ringnes Island, N.W.T	74
36A	Stream from Isachsen Dome, Ellef Ringnes Island, N.W.T.	74
30A	Stream north of Camp Louise at 78°58' N - 102°50' W, Ellef Ringnes Island, N.W.T	72
46A	Sulphur Springs at 79°25' N - 90°30' W, Axel Heiberg Island, N.W.T	76
22A	Sunday Lake at 72°43' N - 94°11' 30" W, Somerset Island, N.W.T	70
13A	Surrey Lake at 69°42' N - 107°17' W, Victoria Island, N.W.T	68
7A	Tree River at 67°43' N - 111°55' W, near Arctic Coast, District of Mackenzie, N.W.T	66
52A	Tuborg Lake at 80°57'N-75°50'W, Ellesmere Island, N.W.T.	78
47A	Upper Dumbell Lake near Alert, Eliesmere Island, N.W.T.	76
12A	Washbum Lake 70°02'N-107°15'W, Victoria Island, N.W.T	68
10A	Zeta Lake at 71°00'05"N-106°38'05"W, Victoria Island, N.W.T	68
	LABRADOR DRAINAGE BASIN	
17B	Bean Lake near Schefferville at 54°45'N-66°45'30"W-Quebec	64
14B	Flour River (Lake) at 53°40' N - 64°45' W	64
15B	Gabbro Lake about 53°44' 30"N - 65°12' W - Labrador	64
9В	George River at Kagnerloualoridjouark Mouth, Quebec	62
12B	Hamilton River at Grand Falls, Labrador	64
11B	Igloutallik Creek (George River Delta), Quebec	62
5B	Kanispiskau River at 55°45' N-68°15' W-Quebec	62
10B	Kapitouktallik Creek (George River Delta) Quebec	62
3B	Kaksoak River at Fort Chimo at 58°09' N - 65°19' W - Quebec	62
4B	Larch River at Gossen Hill at 57°33'N-70°08'₩-Quebec	62
2B	Leaf River at 58°38' N - 70°25' W - Quebec	62
20B	Little Wabush Lake at 52°56' N -66°54' W - Labrador	64

STATION		PAGE
4B	Larch River at Gossen Hill at 57°33°N-70°08°W- Quebec	62
2B	Leaf River at 58°38' N - 70°25' W - Quebec	62 64
20B	Little Wabush Lake at 52°56' N - 66°54' W - Labrador	0-+
1B	Payne River near Island Rapids at 60°03'15"N-71°13'30"W-Quebec	62
16B	Sims River about 53°48'N-65°33'W-Labrador	64
7B	Squaw Lake at 54°50' N - 66°47' W - near Schefferville, Quebec	62
18B	Stream near Bean and Ruth Lakes about 54 46' N - 66 49' W - Quebec	64
19B	Stream southeast of Wishart Lake about 40° 42' N - 66° 45' W - Quebec	64
6B	Swampy Bay River (Lac Lemoyne) at Fort McKenzie at 56°50' N - 68°57' W - Quebec .	62
13B	Unknown River (Baikie Lake) at Thomas Falls, Labrador	64
8B	Whale River at 57°47' N - 67° 30' W - Quebe c	62

APPENDIX B

Index to Data and Analyses - by Municipality

	DATA	Analysis
HUDSON BAY DRAINAGE BASIN		
Quebec		
Amos	82	96
Bourlamaque	82	97
Chibougamau	83	97
Duparquet	83	98
Fort George	82	99
Great Whale	82	99
Halet Townsite (Malartic)	83	99
La Sarre	83	100
Macami	83	100
Malartic	84	101
Normetal	85	102
Quebec Lithium Townsite	85	103
Senneterre	85	103
Sullivan - see Val d'Or	84	103
Val d'Or	84	103
Ontario		
Ansonville - see Iroquois Falls	85	105
Black River Township - see Matheson	85	105
Calvert Township - see Iroquois Falls	85	105
Chapleau	86	105
Cochrane	86	105
Foleyet	87	109
Geraldton	87	110
Glackmeyer Township - see Iroquois Falls	87	110
Hearst	86	111
Iroquois Falls	87	111

APPENDIX B

Index to Data and Analyses - by Municipality

	DATA	ANALYSIS
	60	112
Kapuskasing	88	113
Vandall con Hearst	89	113
Kendrey Township - see Smooth Rock Falls	89	113
Lakeview - see Porcupine and South Porcupine	89	113
Longlac	88	113
Matheson	88	114
Matheson	89	114
Mattagami Heights	89	115
Montrock - see Iroquois Falls	89	115
Moose Factory	90	115
Moo sonee	90	116
Mountjoy Township - see Mattagami Heights'	90	110
Porcupine - see Whitney Township	91	116
		116
Schumacher - see Timmins	91	116
Creath Book Falls	91	117
South Porcupine	90	117
	91	120
Timmins	91	120
Tisdale Township - see South Porcupine and Schumacher	91	120
The state of the s	92	121
Unionville - see Kendrey Township and Smooth Rock Falls		
Whitney Township	92	121
withing founding forms		
North West Territories		
	93	
Rankin Inlet		
LABRADOR DRAINAGE BASIN		
Quebec		
Fort Chimo	92	122
	0.2	123
Schefferville	92	123
ARCTIC DRAINAGE BASIN		
ARCHE BRAINED BIOLE		
Northwest Territories		
Alert (Ellesmere Island)	. 93	
Cambridge Bay	. 93	
Frobisher Bay	. 94	
Paralute	. 74	

APPENDIX C

Index to Data and Analyses - by Small Communities and Townsites

	PAGE
HUDSON BAY DRAINAGE BASIN	
Quebec	
Manitou - Barvue Mines	126
Ontario	
Aunor Mines	126
Broulan Reef Mines	126 127
Delnite Mines	127
Hallnor Mines	127
Little Longlac Gold Mines	127
Moosonee RCAF Station	128
Pamour Gold Mines Paymaster Consolidated Mines Preston Mines	128 128 129
ARCTIC DRAINAGE BASIN	
Northwest Territories	
Alert, Fllesmere Island	129
Cambridge Bay	130
Frobisher Bay (Baffin Island)	131
Resolute (Cornwallis Island)	131

Placeholder for foldout insert to be shot at a later date.

Placeholder for foldout insert to be shot at a later date.

Placeholder for foldout insert to be shot at a later date.

Placeholder for foldout insert to be shot at a later date.

