

Data Sheet

VT6212 / VT6212L PCI USB 2.0 Controller

Revision 1.10 March 16, 2007

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2002-2007 VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

is a registered trademark of VIA Technologies, Incorporated.

VT6202, VT6212 and VT6212L may only be used to identify products of VIA Technologies, Incorporated. Windows XP™, Windows 2000™, Windows ME™ and Windows 98SE™ are registered trademarks of Microsoft Corporation. PCI™ is a registered trademark of the PCI Special Interest Group. All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated Taiwan Office: 1st Floor, No. 531 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC Tel: (886-2) 2218-5452

Fax: (886-2) 2218-5453

Home page: http://www.via.com.tw

VIA Technologies Incorporated USA Office: 940 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300

Fax: (510) 683-3301 or (510) 687-4654 Home Page: http://www.viatech.com

REVISION HISTORY

Document Release	Date	Revision	Initials
1.0	6/5/03	Initial external release	EY
1.01	2/27/04	Updated cover page	JW
		Updated copyright page	
		Changed pins 104, 103, 57, 58, 59, 97 to NC	
		Updated pin-out diagram	
		Updated pin list	
		Updated pin descriptions	
1.02	10/21/04	Added figure 4, lead-free mechanical specification diagram	JW
1.03	12/21/04	Specified PCI 2.2 bus support	JW
1.04	4/19/05	Registers updated	JW
		f0rx41[4], f0rx42[1-0], f0rx48[5], f0rx4B[0], f2rx41[4], f2rx48[5], f2rx49[7-5],	
		f2rx4A, f2rx4B[5, 3-0], f2rx51	
1.05	11/16/05	Modified legal page	SV
		Changed pins 60, 63, 64 and 102 to NC	
		Updated pin-out diagram	
		Updated pin list	
		Updated pin descriptions	
1.06	12/7/05	Updated pin information	SV
1.07	8/18/06	Updated Figure 3, Figure 4, Figure 5 and Figure 6 in package mechanical	TL
		specifications	
		Updated legal page	
1.08	9/21/06	Updated Revision ID Code	TL
1.09	11/17/06	Updated Revision ID Code	TL
		Modified power specifications in Table 5	
1.10	3/16/07	Updated mechanical specification diagram	JY

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS	II
LIST OF FIGURES	III
LIST OF TABLES	IV
PRODUCT FEATURES	1
OVERVIEW	2
PINOUTS	3
PIN DIAGRAM	3
PIN LIST	4
PIN DESCRIPTIONS.	5
REGISTERS	8
REGISTER OVERVIEW	8
REGISTER SUMMARY TABLES	
Function 0-1 UHCI Universal Host Controller Interface	
Function 0-1 UHCI PCI Configuration Header	
Function 0-1 UHCI Device Specific Registers.	
Function 0-1 USB UHCI I/O Registers	8
Function 2 EHCI Enhanced Host Controller Interface	
Function 2 EHCI PCI Configuration Header	
Function 2 USB EHCI Memory-Mapped I/O Registers	
EHCI Memory Mapped I/O Capability Registers	
EHCI Memory Mapped I/O Operational Registers	
REGISTER DESCRIPTIONS	
Function 0-1 UHCI Universal Host Controller Interface	
Function 0-1 ChCl Universal Host Controller Interface Function 0-1 Configuration Space Header	
Function 0-1 Configuration Space Header Function 0-1 Device Specific Registers	
Function 2 EHCI Enhanced Host Controller Interface	
Function 2 Configuration Space Header	
Function 2 Device-Specific Registers	
Function 2 EHCI Compliant USB Memory-Mapped I/O Registers	
EHCI Capability Registers	
EHCI Operational Registers	16
ELECTRICAL SPECIFICATIONS	17
DACKACE MECHANICAL SPECIFICATIONS	10

LIST OF FIGURES

FIGURE 1.	VT6212 / VT6212L CHIP BLOCK DIAGRAM	2
	VT6212 (PQFP) / VT6212L (LQFP) PIN DIAGRAM (TOP VIEW)	
	VT6212 MECHANICAL SPECIFICATIONS – 128 PIN PQFP PACKAGE	
	VT6212 LEAD-FREE MECHANICAL SPECIFICATIONS – 128 PIN PQFP PACKAGE	
	VT6212L MECHANICAL SPECIFICATIONS – 128 PIN LQFP PACKAGE	
	VT6212L LEAD-FREE MECHANICAL SPECIFICATIONS - 128 PIN LOFP PACKAGE	

LIST OF TABLES

TABLE 1.	VT6212 / VT6212L PIN LIST (ALPHABETICAL ORDER)	4
	VT6212 / VT6212L PIN DESCRIPTIONS	
	ABSOLUTE MAXIMUM RATINGS	
	DC CHARACTERISTICS	
	POWER SPECIFICATIONS	

VT6212 / VT6212L

PCI USB 2.0 4-Port Host Controller

USB 2.0 UHCI / EHCI Host Controller for the PCI 2.2 Bus

PRODUCT FEATURES

- USB 2.0
 - Compliant with Universal Serial Bus Specification Revision 2.0
 - Compliant with Enhanced Host Controller Interface Specification Revision 1.0
 - Compliant with Universal Host Controller Interface Specification Revision 1.1
 - PCI multi-function device consists of two UHCI Host Controllers for full/low-speed signaling and one EHCI Host Controller core for high-speed signaling
 - 4 downstream facing ports in the root hub with integrated physical layer transceivers shared by UHCI and EHCI Host Controllers
 - Supports PCI-Bus Power Management Interface Specification release 1.1
 - Legacy support for all downstream facing ports
 - 4 DMA engines with pipelined control for USB data transfer bandwidth improvement
 - Dynamic clock stop control for power consumption reduction
- Serial EEPROM Support for Boot Register Update
- Cardbus Mode Support
- 2.5V Power Supply with 5V Tolerant Inputs
- 0.22μm, Low Power CMOS Process
- 128-Pin PQFP (VT6212) and 128-Pin LQFP (VT6212L) Packages Available
- Schematics and PCB Reference Designs Available
- System Clock Using 24 MHz Crystal
- Support for PCI Mobile Design Guide

OVERVIEW

The VT6212 / VT6212L USB 2.0 UHCI and EHCI Host Controller for the PCI 2.2 Bus provides higher bandwidth (480 Mbps) and is backward compatible with USB 1.1. It implements Universal Serial Bus Specification Revision 2.0 and is compliant with UHCI 1.1 and EHCI 1.0 with a 32-bit PCI host bus interface. The VT6212 / VT6212L adopts 4 DMA engines with pipelined control for USB data transfer bandwidth improvement and dynamic clock stop control for power consumption reduction.

The VT6212 / VT6212L supports 4 downstream facing ports with 1.5 (low-speed), 12 (full-speed) and 480 (high-speed) Mbps transaction capability. The Root Hub is integrated with physical-layer transceivers shared by UHCI (for full/low-speed) and EHCI (for high-speed) Host Controllers. The VT6212 / VT6212L also supports PCI-Bus Power Management Interface Specification 1.1 and has legacy support for all downstream facing ports.

The VT6212 / VT6212L is ready to provide a PCI 4-port USB2.0 peripheral-interface to satisfy the needs of desktops, mobile systems, and other host platforms. Support for the VT6212 / VT6212L is built into Microsoft Windows XP and Windows 2000. Win98SE and WinME drivers are provided by VIA.

Figure 1. VT6212 / VT6212L Chip Block Diagram

PINOUTS

Pin Diagram

Figure 2. VT6212 (PQFP) / VT6212L (LQFP) Pin Diagram (Top View)

Pin List

Table 1. VT6212 / VT6212L Pin List (Alphabetical Order)

Pin	Тур	PU	Pin Name	Pin	Тур	PU	Pin Name	Pin	Typ	PU	Pin Name	Pin	Typ PU	Pin Name
48	IO		AD0	63	I	PD	ATPG_EN	93	P		GNDOSC	86	IO	USBP1+
47	IO		AD1	41	IO		CBE0#	92	P		GNDPLL	81	IO	USBP2-
46	IO		AD2	28	Ю		CBE1#	90	P		GNDPLLA	82	IO	USBP2+
45	IO		AD3	19	Ю		CBE2#	69	P		GNDSUS	77	IO	USBP3-
42	IO		AD4	3	Ю		CBE3#	87	P		GNDUSB1	78	IO	USBP3+
40	IO		AD5	23	IO		DEVSEL#	83	P		GNDUSB2	73	IO	USBP4–
39	IO		AD6	55	О	PD	EECK	79	P		GNDUSB3	74	IO	USBP4+
38	IO		AD7	56	О		EECS	75	P		GNDUSB4	4	P	VCC25
37	IO		AD8	50	О		EEDI	112	I		GNT#	35	P	VCC25
32	IO		AD9	49	I	PU	EEDO	6	I		IDSEL	53	P	VCC25
31	IO		AD10	104	-		NC	105	О		INTA#	115	P	VCC25
30	IO		AD11	103	-		NC	106	O		INTB#	10	P	VCC33
29	IO		AD12	58	-		NC	107	О		INTC#	18	P	VCC33
16	IO		AD13	97	-		NC	21	Ю		IRDY#	26	P	VCC33
15	IO		AD14	57	-		NC	27	Ю		PAR	34	P	VCC33
14	IO		AD15	59	-		NC	109	P		PCICLK	44	P	VCC33
13	IO		AD16	20	IO		FRAME#	111	I		PCIRST#	52	P	VCC33
12	IO		AD17	5	P		GND	67	O		PME#	62	P	VCC33
11	IO		AD18	9	P		GND	113	O		REQ#	101	P	VCC33
8	IO		AD19	17	P		GND	88	A		REXT	110	P	VCC33
7 2	IO IO		AD20	25 33	P P		GND GND	60 24	O IO		SMI#	120 128	P P	VCC33
$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	IO		AD21 AD22	36	P P		GND	102	IO		STOP# TEST2	96	P	VCC33
II	IO			43	P P		GND	99	IO			90	P	VCCOSC VCCPLL
126 125	IO		AD23 AD24	51	P P		GND GND	99	IO		TEST3 WAKEUP_EN	89	P	VCCPLLA VCCPLLA
123	IO		AD25	54	P		GND	64	I	PD	TESTMODE	70	P	VCCSUS
123	IO		AD26	61	P		GND	22	IO	וו	TRDY#	84	P	VCCUSB1
123	IO		AD27	100	P		GND	71	I	PΠ	USBOC1#	80	P	VCCUSB1
121	IO		AD28	108	P		GND	68	I		USBOC1#	76	P	VCCUSB2
118			AD29	114	P		GND	66	Ī		USBOC3#	72	P	VCCUSB4
117	Ю		AD30	119	P		GND	65	I		USBOC4#	94	I	XIN
116	Ю		AD31	127	P		GND	85	Ю		USBP1-	95	О	XOUT

Pin Descriptions

Table 2. VT6212 / VT6212L Pin Descriptions

	PCI Interface							
Signal Name	Pin#	I/O	Power	Signal Description				
AD[31:0]	(see pin list)	IO	VCC33	Address and Data. Addresses are passed during the first clock cycle. Data is passed in subsequent cycles.				
CBE[3:0]#	3, 19, 28, 41	IO	VCC33	Command / Byte Enables. The command for the current cycle is driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are then driven on following clocks.				
PAR	27	IO	VCC33	Parity. A single parity bit is provided over AD[31:0] and CBE[3:0]# to check that the data has been transferred accurately				
IDSEL	6	I	VCC33	Initialization Device Select. Used as a chip select during configuration read and write cycles.				
DEVSEL#	23	IO	VCC33	Device Select. As an output, this signal is asserted to claim PCI transactions through positive or subtractive decoding. As an input, DEVSEL# indicates the response to a VT6212-initiated transaction and is also sampled when decoding whether to subtractively decode the cycle.				
FRAME#	20	Ю	VCC33	Cycle Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.				
STOP#	24	Ю	VCC33	PCI Stop. Asserted by the target (the VT6212 / VT6212L chip) to request the master (PCI device) to stop the current transaction.				
IRDY#	21	IO	VCC33	Initiator Ready. Asserted when the initiator is ready for data transfer.				
TRDY#	22	IO	VCC33	Target Ready. Asserted when the target is ready for data transfer.				
PCIRST#	111	I	VCC33	PCI Reset. When detected low, an internal hardware reset is performed. PCIRST# assertion or deassertion may be asynchronous to PCICLK, however, it is recommended that deassertion be synchronous to guarantee a clean and bounce free edge.				
PCICLK	109	I	VCC33	PCI Clock. 33 MHz. Used to clock all PCI bus transactions.				
INTA#	105	О	VCC33	PCI Interrupt A. Asynchronous signal used to request an interrupt.				
INTB#	106	О	VCC33	PCI Interrupt B. Asynchronous signal used to request an interrupt.				
INTC#	107	О	VCC33	PCI Interrupt C. Asynchronous signal used to request an interrupt.				
REQ#	113	О	VCC33	PCI Bus Request. Asserted by the VT6212 / VT6212L to request bus use.				
GNT#	112	I	VCC33	PCI Bus Grant. Asserted by the bus arbiter to grant permission to the VT6212 / VT6212L for access to the PCI bus for bus master operations.				

	Serial EEPROM Interface							
Signal Name Pin # I/O Power Signal Description								
EECS	56	О	VCC33	EEPROM Chip Select. Connect to EEPROM EECS pin.				
EECK	55	О	VCC33	EEPROM Clock. Connect to EEPROM EECK pin.				
EEDI	50	О	VCC33	EEPROM Data In. Connect to EEPROM EEDI pin.				
EEDO	49	I	VCC33	EEPROM Data Output. Connect to EEPROM EEDO pin.				

Chipset South Bridge Interface							
Signal Name Pin # I/O Power Signal Description				Signal Description			
SMI#	60	О	VCC33	System Management Interrupt.			
PME#	67	О	VCCSUS	Power Management Event Interrupt.			

	No Connection									
Signal Name	Pin #	I/O	Power	Signal Description						
NC	57-59, 97, 103-104	-		No connection.						

	USB Ports								
Signal Name	Pin#	I/O	Power	Signal Description					
USBP1+	86	IO	VCCUSB1	USB Port 1 Differential Data Plus. Asserted high (> 2.8V) †					
USBP1-	85	IO	VCCUSB1	USB Port 1 Differential Data Minus. Asserted low (< 0.3V) †					
USBP2+	82	IO	VCCUSB2	USB Port 2 Differential Data Plus. Asserted high (> 2.8V) †					
USBP2-	81	IO	VCCUSB2	USB Port 2 Differential Data Minus. Asserted low (< 0.3V) †					
USBP3+	78	IO	VCCUSB3	USB Port 3 Differential Data Plus. Asserted high (> 2.8V) †					
USBP3-	77	IO	VCCUSB3	USB Port 3 Differential Data Minus. Asserted low (< 0.3V) †					
USBP4+	74	IO	VCCUSB4	USB Port 4 Differential Data Plus. Asserted high (> 2.8V) †					
USBP4-	73	IO	VCCUSB4	USB Port 4 Differential Data Minus. Asserted low (< 0.3V) †					
USBOC1#	71	I	VCCSUS	USB Over-Current Input Port 1. When the supplied current exceeds 500 mA					
				on a USB port, USBOC# should be asserted. If this input is asserted low, the					
				host controller will disable USB port 1. The port will remain disabled as long					
				as the condition persists. See Design Guide and evaluation board schematics					
				for overcurrent detection scheme.					
USBOC2#	68	I	VCCSUS	USB Over-Current Input Port 2. Same as above but for port 2.					
USBOC3#	66	I	VCCSUS	USB Over-Current Input Port 3. Same as above but for port 2.					
USBOC4#	65	I	VCCSUS	USB Over-Current Input Port 4. Same as above but for port 2.					
XIN	94	I	VCCOSC	Crystal Input. May be connected to a 24 MHz parallel resonant fundamental					
				mode crystal (see Design Guide for specific connection details).					
XOUT	95	О	VCCOSC	Crystal Output. Must be connected to a 24 MHz parallel resonant					
				fundamental mode crystal (see Design Guide for specific connection details).					
REXT	88	A	VCCPLL	External Resistor. Typical $6.12k\Omega$ 1% pull down to analog ground (see Design Guide for specific connection details).					

[†] Data encoding is NRZI (Non Return to Zero Inverted) so at times the reverse may be true (i.e., the plus pin may be asserted low and the minus pin asserted high.)

	Test Pins and Reserved Pins								
Signal Name Pin # I/O Power Signal Description									
ATPG_EN	63	I	VCC25	Automatic Test Program Generator Enable. Do not connect for normal operation. Internal pulldown.					
TESTMODE	64	I	VCC25	Test Mode Enable. Do not connect for normal operation. Internal pulldown.					
TEST2	102	IO	VCC25	Test Signal 2. Leave unconnected for normal operation.					
TEST3	99	IO	VCC25	Test Signal 3. Pull down 4.7K-ohm for normal operation.					
WAKEUP_EN	98	IO	VCC25	WAKEUP_EN. Enable wakeup function					

	Power and Ground									
Signal Name	Pin #	Power	Signal Description							
VCC33	10, 18, 26, 34, 44, 52, 62, 101, 110, 120, 128	Digital I/O	Digital I/O Power. 3.3V ±100mV							
VCC25	4, 35, 53, 115	Internal	Internal Logic Power. 2.5V ±5%							
GND	5, 9, 17, 25, 33, 36, 43, 51, 54, 61, 100, 108, 114, 119, 127	Ground	Ground. Connect to primary PCB ground plane.							
VCCSUS	70	Suspend	Suspend I/O Power. Connect to system 3.3V ±5% suspend power for support of wakeup on USB incoming port activity.							
GNDSUS	69	Suspend	Suspend I/O Ground. Connect to analog ground plane (connected to primary PCB ground plane through ferrite beads for isolation from digital switching noise). See Design Guide for details.							
VCCUSB[4-1]	72, 76, 80, 84	USB Ports	USB Port Power. Connect to system 3.3V ±5% suspend power for support of wakeup on USB incoming port activity.							
GNDUSB[4-1]	75, 79, 83, 87	USB Ports	USB Port 1-4 Analog Ground . Connect to analog ground plane (connected to primary PCB ground plane through ferrite beads for isolation from digital switching noise). See Design Guide for details.							
VCCPLL	91	PLL	PLL Digital Power. Connect to quiet 2.5V ±5% power source.							
GNDPLL	92	PLL	PLL Digital Ground. Connect to analog ground plane (connected to primary PCB ground plane through ferrite beads for isolation from digital switching noise). See Design Guide for details.							
VCCPLLA	89	PLL	PLL Analog Power. Connect to quiet 2.5V ±5% power source.							
GNDPLLA	90	PLL	PLL Analog Ground. Connect to analog ground plane (connected to primary PCB ground plane through ferrite beads for isolation from digital switching noise). See Design Guide for details.							
VCCOSC	96	OSC	Oscillator Power. Connect to quiet 2.5V ±5% power source.							
GNDOSC	93	OSC	Oscillator Analog Ground. Connect to analog ground plane (connected to primary PCB ground plane through ferrite beads for isolation from digital switching noise). See Design Guide for details.							

ELECTRICAL SPECIFICATIONS

Table 3. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Comment
T_{STG}	Storage temperature	-55	125	°C	
T _C	Case operating temperature	0	85	°C	
V_{CC}	Power supply voltages	-0.5	4.0	V	
V _I	Input voltage	-0.5	5.5	V	
Vo	Output voltage at any output	-0.5	$V_{CC} + 0.5$	V	
V_{ESD}	Electrostatic discharge		2	kV	Human Body Model

Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

Table 4. DC Characteristics

 $T_{C} = 0\text{-}55^{O}C, \ V_{CCPCI} = V_{CCSUS} = V_{CCUSBN} = 3.3V + /-5\%, \ V_{CC25} = V_{CCOSC} = V_{CCPLL} = V_{CCPLLA} = 2.5V + /-5\%, \ GND = 0V_{CCPLLA} = 2.5V + /-5\%$

Symbol	Parameter	Min	Max	Unit	Condition
V_{IL}	Input Low Voltage	-0.50	0.8	V	
V _{IH}	Input High Voltage	2.0	V _{CC} +0.5	V	
V_{OL}	Output Low Voltage	-	0.45	V	I _{OL} =4.0mA
V _{OH}	Output High Voltage	2.4	-	V	I _{OH} =-1.0mA
I_{IL}	Input Leakage Current	-	+/-10	μΑ	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate Leakage Current	-	+/-20	μΑ	0.45 <v<sub>OUT<v<sub>CC</v<sub></v<sub>

Table 5. Power Specifications

 $T_{C} = 0\text{-}55^{O}C,\ V_{CC33} = V_{CCSUS} = V_{CCSUS} = 3.3V + /-5\%,\ V_{CC25} = V_{CCOSC} = V_{CCPLL} = V_{CCPLLA} = 2.5V + /-5\%,\ GND = 0V_{CCSUS} = 0.55^{O}C$

Symbol	Parameter	Тур	Max	Unit	Condition
I _{CC25-PD}	Power Supply Current – 2.5V	0	-	mA	Power down or suspend
I _{CC33-PD}	Power Supply Current – 3.3V	0	-	mA	Power down or suspend
I_{CC25}	Power Supply Current – VCC25 (2.5V)	14.5	-	mA	Idle with no port activity
I_{CC33}	Power Supply Current – VCC33 (3.3V)	0.05	-	mA	Idle with no port activity
I _{CC25A}	Power Supply Current – Analog (2.5V)†	61.5	-	mA	Idle with no port activity
I _{CCOUSB}	Power Supply Current – USB (3.3V)‡	32.9	-	mA	Idle with no port activity
I _{CC1USB}	Power Supply Current – USB (3.3V)‡	71	-	mA	One port transmitting
I _{CC2USB}	Power Supply Current – USB (3.3V)‡	108.9	-	mA	Two ports transmitting
I _{CC3USB}	Power Supply Current – USB (3.3V)‡	159	-	mA	Three ports transmitting
I _{CC4USB}	Power Supply Current – USB (3.3V)‡	200	-	mA	Four ports transmitting
P _{D-PD}	Overall Chip Power Dissipation	3.35	-	mW	Power down or suspend
P _{D-IDLE}	Overall Chip Power Dissipation	298	-	mW	Idle with no port activity
P _{D-4USB}	Overall Chip Power Dissipation	943	-	mW	Four ports transmitting

^{†&}quot;Analog 2.5V" power includes VCCPLL, VCCPLLA, and VCCOSC

^{‡ &}quot;USB 3.3V" power includes VCCUSB and VCCSUS

PACKAGE MECHANICAL SPECIFICATIONS

NOTES:

- DIMENSIONS DI AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS0.25 mm PER SIDE. D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH
- 2. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM 6 DIMENSION BY MORE THANO.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD ISO.07mm.

CONTROL DIMENSIONS ARE IN MILLIMETERS

SYMBOL	MII	LLIMET	ER	INCH			
STIVIDOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	_	_	3.40	_	_	0.134	
A1	0.25	_	_	0.010	_	_	
A2	2.50	2.72	2.90	0.098	0.107	0.114	
D	23	.20 BAS	SIC	0.913 BASIC			
Е	17	.20 BAS	SIC	0.6	377 BAS	SIC	
D1	20	.00 BAS	SIC	0.7	787 BAS	SIC	
E1	14	.00 BAS	SIC	0.5	551 BAS	SIC	
D2	18	.50 BAS	SIC	0.7	728 BAS	SIC	
E2	12	.50 BAS	SIC	0.4	192 BAS	SIC	
R1	0.13	_	0.30	0.005	_	0.012	
R2	0.13	_	_	0.005	_	_	
Θ	0	_	7	0	_	7	
θ1	0	_	_	0	_	_	
θ2		15 REF			15 REF	•	
θз		15 REF	•	15 REF			
C L	0.11	0.15	0.23	0.004			
L	0.73	0.88	1.03	0.029			
L1	1	.60 RE	F		.063 RE	F	
S b	0.20	_	_	0.008	_	_	
b	0.17	0.20	0.27		0.008		
e 0.50 BASIC		0.020 BASIC					
TOLERANCES OF FORM			FORM	AND POSITION			
aaa	0.20		0.008				
bbb	0.20		0.008				
CCC	0.08			0.003			
ddd		0.08		0.003			

Figure 3. VT6212 Mechanical Specifications – 128 Pin PQFP Package

NOTES:

- DIMENSIONS DI AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS0.25 mm PER SIDE. D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- 2. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM 6 DIMENSION BY MORE THANO.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD ISO.07mm.

CONTROL DIMENSIONS ARE IN MILLIMETERS

SYMBOL	MII	LIMET	ER	INCH		
STIVIBUL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	_	_	3.40	_	_	0.134
A1	0.25	_	_	0.010	_	_
A2	2.50	2.72	2.90	0.098	0.107	0.114
D	23	.20 BAS	SIC	0.9	913 BAS	SIC
Е	17	.20 BAS	SIC	0.6	377 BAS	SIC
D1	20	.00 BAS	SIC	0.7	787 BAS	SIC
E1	14	.00 BAS	SIC	0.5	551 BAS	SIC
D2	18	.50 BAS	SIC	0.7	728 BAS	SIC
E2	12	.50 BAS	SIC	0.4	192 BAS	SIC
R1	0.13	_	0.30	0.005	_	0.012
R2	0.13	_	_	0.005	_	_
Θ	0	_	7	0	_	7
θ1	0	_	_	0	_	_
θ2		15 REF		15 REF		
0 3		15 REF			15 REF	
С	0.11	0.15	0.23	0.004	0.006	0.009
L	0.73	0.88	1.03	0.029	0.035	0.041
L1	1	.60 RE	F	0	.063 RE	F
S	0.20	_	_	0.008	_	
b	0.17	0.20	0.27	0.007	0.008	
е	0.	50 BAS	IC	0.0)20 BAS	SIC
TOLERANCES OF FORM AND POSITION					N	
aaa	0.20		0.008			
bbb	0.20			0.008		
CCC	0.08			0.003		
ddd		0.08		0.003		

Figure 4. VT6212 Lead-free Mechanical Specifications – 128 Pin PQFP Package

NOTES:

- DIMENSIONS DI AND E1 DO NOT INCLUDE
 MOLD PROTRUSION. ALLOWABLE
 PROTRUSION IS0.25 mm PER SIDE. D1 AND
 E1 ARE MAXIMUM PLASTIC BODY SIZE
 DIMENSIONS INCLUDING MOLD MISMATCH
- 2. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM 6 DIMENSION BY MORE THAN0.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD IS0.07mm.

CONTROL DIMENSIONS ARE IN MILLIMETERS

SYMBOL	MIL	MILLIMETER			INCH		
STIVIBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	_	_	1.60	_	_	0.063	
A1	0.05	_	0.15	0.002	_	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
D	22	.00 BAS	SIC	3.0	366 BAS	SIC	
Е	16.	.00 BAS	SIC	0.6	30 BAS	SIC	
D1	20.	.00 BAS	SIC	0.7	787 BAS	SIC	
E1	14.	.00 BAS	SIC	0.5	551 BAS	SIC	
D2		.50 BAS		0.7	728 BAS	SIC	
E2	12	.50 BAS	SIC	0.4	192 BAS	SIC	
R1	0.08	_	_	0.003	_	_	
R2	0.08	_	0.20	0.003	_	0.008	
Θ	0	3.5	7	0	3.5	7	
θ1	0	1	_	0	1	_	
θ2	11	12	13	11	12	13	
θз	11	12	13	11	12	13	
C L	0.09		0.20	0.004		0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1	1	.00 RE	F		.039 RE	F	
S	0.20		_	0.008		_	
b	0.17	0.20	0.27	0.007	0.008	0.011	
е		50 BAS		0.020 BASIC			
TOLERANCES OF FORM AND POSITION					N		
aaa	0.20			0.008			
bbb		0.20		0.008			
CCC		0.08			0.003		
ddd		0.08		0.003			

Figure 5. VT6212L Mechanical Specifications – 128 Pin LQFP Package

NOTES:

- DIMENSIONS D1 AND E1 DO NOT INCLUDE
 MOLD PROTRUSION. ALLOWABLE
 PROTRUSION IS 0.25 mm PER SIDE. D1 AND
 E1 ARE MAXIMUM PLASTIC BODY SIZE
 DIMENSIONS INCLUDING MOLD MISMATCH.
- 2. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM 6 DIMENSION BY MORE THAN 0.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07mm.

CONTROL DIMENSIONS ARE IN MILLIMETERS.

SYMBOL	MII	MILLIMETER			INCH		
STIVIBUL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	_	_	1.60	_	_	0.063	
A1	0.05	_	0.15	0.002	_	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
D	22	.00 BAS	SIC	3.0	866 BAS	SIC	
Е	16	.00 BAS	SIC	0.6	30 BAS	SIC	
D1		.00 BAS		0.7	'87 BAS	SIC	
E1	14	.00 BAS	SIC	0.5	51 BAS	SIC	
D2	18	.50 BAS	SIC	0.7	'28 BAS	SIC	
E2	12	.50 BAS	SIC	0.4	92 BAS	SIC	
R1	0.08	_	1	0.003	_	-	
R2	0.08	_	0.20	0.003	_	0.008	
θ	0	3.5	7	0	3.5	7	
θ1	0	_	_	0	_	_	
0 2	11	12	13	11	12	13	
Ө з	11	12	13	11	12	13	
С	0.09	_	0.20	0.004	_	0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1	1	.00 REI	F	0.	.039 RE	F	
S	0.20	_	_	0.008	_		
b	0.17	0.20	0.27	0.007	0.008	0.011	
е		50 BAS		0.020 BASIC			
TOLERANCES OF FORM AND POSITION					1		
aaa	0.20		0.008				
bbb		0.20			800.0		
CCC		0.08			0.003		
ddd		0.08			0.003		

Figure 6. VT6212L Lead-free Mechanical Specifications – 128 Pin LQFP Package