The result of t-SNE is quite remarkable. All the classes are quite clearly separated. The ones and nines are somewhat split up, but most of the classes form a single dense group. Keep in mind that this method has no knowledge of the class labels: it is completely unsupervised. Still, it can find a representation of the data in two dimensions that clearly separates the classes, based solely on how close points are in the original space.

The t-SNE algorithm has some tuning parameters, though it often works well with the default settings. You can try playing with perplexity and early_exaggeration, but the effects are usually minor.

Clustering

As we described earlier, *clustering* is the task of partitioning the dataset into groups, called clusters. The goal is to split up the data in such a way that points within a single cluster are very similar and points in different clusters are different. Similarly to classification algorithms, clustering algorithms assign (or predict) a number to each data point, indicating which cluster a particular point belongs to.

k-Means Clustering

k-means clustering is one of the simplest and most commonly used clustering algorithms. It tries to find *cluster centers* that are representative of certain regions of the data. The algorithm alternates between two steps: assigning each data point to the closest cluster center, and then setting each cluster center as the mean of the data points that are assigned to it. The algorithm is finished when the assignment of instances to clusters no longer changes. The following example (Figure 3-23) illustrates the algorithm on a synthetic dataset:

In[47]:

mglearn.plots.plot_kmeans_algorithm()

Figure 3-23. Input data and three steps of the k-means algorithm

Cluster centers are shown as triangles, while data points are shown as circles. Colors indicate cluster membership. We specified that we are looking for three clusters, so the algorithm was initialized by declaring three data points randomly as cluster centers (see "Initialization"). Then the iterative algorithm starts. First, each data point is assigned to the cluster center it is closest to (see "Assign Points (1)"). Next, the cluster centers are updated to be the mean of the assigned points (see "Recompute Centers (1)"). Then the process is repeated two more times. After the third iteration, the assignment of points to cluster centers remained unchanged, so the algorithm stops.

Given new data points, k-means will assign each to the closest cluster center. The next example (Figure 3-24) shows the boundaries of the cluster centers that were learned in Figure 3-23:

In[48]:

mglearn.plots.plot kmeans boundaries()

Figure 3-24. Cluster centers and cluster boundaries found by the k-means algorithm

Applying k-means with scikit-learn is quite straightforward. Here, we apply it to the synthetic data that we used for the preceding plots. We instantiate the KMeans class, and set the number of clusters we are looking for.³ Then we call the fit method with the data:

In[49]:

```
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans

# generate synthetic two-dimensional data
X, y = make_blobs(random_state=1)

# build the clustering model
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)
```

During the algorithm, each training data point in X is assigned a cluster label. You can find these labels in the kmeans.labels_attribute:

³ If you don't provide n_clusters, it is set to 8 by default. There is no particular reason why you should use this value.

```
In[50]:
```

```
print("Cluster memberships:\n{}".format(kmeans.labels ))
Out[50]:
   Cluster memberships:
    \begin{smallmatrix} 2 & 2 & 0 & 0 & 2 & 1 & 2 & 2 & 0 & 1 & 1 & 1 & 1 & 1 & 2 & 0 & 0 & 0 & 1 & 0 & 2 & 2 & 1 & 1 & 2 & 0 & 0 & 2 & 2 & 0 & 1 & 0 & 1 & 2 & 2 & 2 & 0 & 1 \end{smallmatrix}
```

As we asked for three clusters, the clusters are numbered 0 to 2.

You can also assign cluster labels to new points, using the predict method. Each new point is assigned to the closest cluster center when predicting, but the existing model is not changed. Running predict on the training set returns the same result as labels :

In[51]:

```
print(kmeans.predict(X))
```

Out[51]:

You can see that clustering is somewhat similar to classification, in that each item gets a label. However, there is no ground truth, and consequently the labels themselves have no a priori meaning. Let's go back to the example of clustering face images that we discussed before. It might be that the cluster 3 found by the algorithm contains only faces of your friend Bela. You can only know that after you look at the pictures, though, and the number 3 is arbitrary. The only information the algorithm gives you is that all faces labeled as 3 are similar.

For the clustering we just computed on the two-dimensional toy dataset, that means that we should not assign any significance to the fact that one group was labeled 0 and another one was labeled 1. Running the algorithm again might result in a different numbering of clusters because of the random nature of the initialization.

Here is a plot of this data again (Figure 3-25). The cluster centers are stored in the cluster centers attribute, and we plot them as triangles:

In[52]:

```
mglearn.discrete_scatter(X[:, 0], X[:, 1], kmeans.labels_, markers='o')
mglearn.discrete scatter(
    kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], [0, 1, 2],
    markers='^', markeredgewidth=2)
```


Figure 3-25. Cluster assignments and cluster centers found by k-means with three clusters

We can also use more or fewer cluster centers (Figure 3-26):

In[53]:

```
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
# using two cluster centers:
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)
assignments = kmeans.labels_
mglearn.discrete_scatter(X[:, 0], X[:, 1], assignments, ax=axes[0])
# using five cluster centers:
kmeans = KMeans(n_clusters=5)
kmeans.fit(X)
assignments = kmeans.labels_
mglearn.discrete_scatter(X[:, 0], X[:, 1], assignments, ax=axes[1])
```


Figure 3-26. Cluster assignments found by k-means using two clusters (left) and five clusters (right)

Failure cases of k-means

Even if you know the "right" number of clusters for a given dataset, k-means might not always be able to recover them. Each cluster is defined solely by its center, which means that each cluster is a convex shape. As a result of this, k-means can only capture relatively simple shapes. k-means also assumes that all clusters have the same "diameter" in some sense; it always draws the boundary between clusters to be exactly in the middle between the cluster centers. That can sometimes lead to surprising results, as shown in Figure 3-27:

In[54]:

```
X varied, y varied = make blobs(n samples=200,
                                cluster_std=[1.0, 2.5, 0.5],
                                random state=170)
y_pred = KMeans(n_clusters=3, random_state=0).fit_predict(X_varied)
mglearn.discrete_scatter(X_varied[:, 0], X_varied[:, 1], y_pred)
plt.legend(["cluster 0", "cluster 1", "cluster 2"], loc='best')
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
```


Figure 3-27. Cluster assignments found by k-means when clusters have different densities

One might have expected the dense region in the lower left to be the first cluster, the dense region in the upper right to be the second, and the less dense region in the center to be the third. Instead, both cluster 0 and cluster 1 have some points that are far away from all the other points in these clusters that "reach" toward the center.

k-means also assumes that all directions are equally important for each cluster. The following plot (Figure 3-28) shows a two-dimensional dataset where there are three clearly separated parts in the data. However, these groups are stretched toward the diagonal. As k-means only considers the distance to the nearest cluster center, it can't handle this kind of data:

In[55]:

```
# generate some random cluster data
X, y = make_blobs(random_state=170, n_samples=600)
rng = np.random.RandomState(74)
# transform the data to be stretched
transformation = rng.normal(size=(2, 2))
X = np.dot(X, transformation)
```

```
# cluster the data into three clusters
  kmeans = KMeans(n clusters=3)
  kmeans.fit(X)
  y_pred = kmeans.predict(X)
  # plot the cluster assignments and cluster centers
  plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap=mglearn.cm3)
  plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
               marker='^{\prime}, c=[0, 1, 2], s=100, linewidth=2, cmap=mglearn.cm3)
  plt.xlabel("Feature 0")
  plt.ylabel("Feature 1")
     6
     4
     2
Feature 1
     0
   -2
                                        -2
                                                         0
                                                                         2
                                        Feature 0
```

Figure 3-28. k-means fails to identify nonspherical clusters

k-means also performs poorly if the clusters have more complex shapes, like the two_moons data we encountered in Chapter 2 (see Figure 3-29):

In[56]:

```
# generate synthetic two moons data (with less noise this time)
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=200, noise=0.05, random_state=0)
# cluster the data into two clusters
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)
y pred = kmeans.predict(X)
```


Figure 3-29. k-means fails to identify clusters with complex shapes

Here, we would hope that the clustering algorithm can discover the two half-moon shapes. However, this is not possible using the k-means algorithm.

Vector quantization, or seeing k-means as decomposition

Even though k-means is a clustering algorithm, there are interesting parallels between k-means and the decomposition methods like PCA and NMF that we discussed earlier. You might remember that PCA tries to find directions of maximum variance in the data, while NMF tries to find additive components, which often correspond to "extremes" or "parts" of the data (see Figure 3-13). Both methods tried to express the data points as a sum over some components. k-means, on the other hand, tries to represent each data point using a cluster center. You can think of that as each point being represented using only a single component, which is given by the cluster center. This view of k-means as a decomposition method, where each point is represented using a single component, is called *vector quantization*.

Let's do a side-by-side comparison of PCA, NMF, and k-means, showing the components extracted (Figure 3-30), as well as reconstructions of faces from the test set using 100 components (Figure 3-31). For k-means, the reconstruction is the closest cluster center found on the training set:

In[57]:

```
X_train, X_test, y_train, y_test = train_test_split(
        X people, y people, stratify=y people, random state=0)
    nmf = NMF(n_components=100, random_state=0)
    nmf.fit(X train)
    pca = PCA(n_components=100, random_state=0)
    pca.fit(X train)
    kmeans = KMeans(n clusters=100, random state=0)
    kmeans.fit(X_train)
    X_reconstructed_pca = pca.inverse_transform(pca.transform(X_test))
    X_reconstructed_kmeans = kmeans.cluster_centers_[kmeans.predict(X_test)]
    X reconstructed nmf = np.dot(nmf.transform(X test), nmf.components )
In[58]:
    fig, axes = plt.subplots(3, 5, figsize=(8, 8),
                             subplot_kw={'xticks': (), 'yticks': ()})
    fig.suptitle("Extracted Components")
    for ax, comp kmeans, comp pca, comp nmf in zip(
            axes.T, kmeans.cluster_centers_, pca.components_, nmf.components_):
        ax[0].imshow(comp kmeans.reshape(image shape))
        ax[1].imshow(comp_pca.reshape(image_shape), cmap='viridis')
        ax[2].imshow(comp_nmf.reshape(image_shape))
    axes[0, 0].set_ylabel("kmeans")
    axes[1, 0].set_ylabel("pca")
    axes[2, 0].set_ylabel("nmf")
    fig, axes = plt.subplots(4, 5, subplot_kw={'xticks': (), 'yticks': ()},
                             fiqsize=(8, 8))
    fig.suptitle("Reconstructions")
    for ax, orig, rec_kmeans, rec_pca, rec_nmf in zip(
            axes.T, X test, X reconstructed kmeans, X reconstructed pca.
            X reconstructed nmf):
        ax[0].imshow(orig.reshape(image shape))
        ax[1].imshow(rec_kmeans.reshape(image_shape))
        ax[2].imshow(rec pca.reshape(image shape))
        ax[3].imshow(rec nmf.reshape(image shape))
    axes[0, 0].set ylabel("original")
    axes[1, 0].set_ylabel("kmeans")
    axes[2, 0].set vlabel("pca")
    axes[3, 0].set ylabel("nmf")
```

Extracted Components

Figure 3-30. Comparing k-means cluster centers to components found by PCA and NMF

Figure 3-31. Comparing image reconstructions using k-means, PCA, and NMF with 100 components (or cluster centers)—k-means uses only a single cluster center per image

An interesting aspect of vector quantization using k-means is that we can use many more clusters than input dimensions to encode our data. Let's go back to the two_moons data. Using PCA or NMF, there is nothing much we can do to this data, as it lives in only two dimensions. Reducing it to one dimension with PCA or NMF would completely destroy the structure of the data. But we can find a more expressive representation with k-means, by using more cluster centers (see Figure 3-32):

In[59]:

```
X, y = make_moons(n_samples=200, noise=0.05, random_state=0)
    kmeans = KMeans(n_clusters=10, random_state=0)
    kmeans.fit(X)
    y_pred = kmeans.predict(X)
    plt.scatter(X[:, 0], X[:, 1], c=y_pred, s=60, cmap='Paired')
    plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=60,
                 marker='^', c=range(kmeans.n_clusters), linewidth=2, cmap='Paired')
    plt.xlabel("Feature 0")
    plt.ylabel("Feature 1")
    print("Cluster memberships:\n{}".format(y_pred))
Out[59]:
    Cluster memberships:
    [9 2 5 4 2 7 9 6 9 6 1 0 2 6 1 9 3 0 3 1 7 6 8 6 8 5 2 7 5 8 9 8 6 5 3 7 0
     9 4 5 0 1 3 5 2 8 9 1 5 6 1 0 7 4 6 3 3 6 3 8 0 4 2 9 6 4 8 2 8 4 0 4 0 5
     6\; 4\; 5\; 9\; 3\; 0\; 7\; 8\; 0\; 7\; 5\; 8\; 9\; 8\; 0\; 7\; 3\; 9\; 7\; 1\; 7\; 2\; 2\; 0\; 4\; 5\; 6\; 7\; 8\; 9\; 4\; 5\; 4\; 1\; 2\; 3\; 1
     8 8 4 9 2 3 7 0 9 9 1 5 8 5 1 9 5 6 7 9 1 4 0 6 2 6 4 7 9 5 5 3 8 1 9 5 6
     3 5 0 2 9 3 0 8 6 0 3 3 5 6 3 2 0 2 3 0 2 6 3 4 4 1 5 6 7 1 1 3 2 4 7 2 7
     3 8 6 4 1 4 3 9 9 5 1 7 5 8 2]
        1.5
        1.0
        0.5
   Feature 1
        0.0
       -0.5
       -1.0
          -1.5
                    -1.0
                             -0.5
                                       0.0
                                                0.5
                                                          1.0
                                                                   1.5
                                                                            2.0
                                                                                      2.5
```

Figure 3-32. Using many k-means clusters to cover the variation in a complex dataset

Feature 0

We used 10 cluster centers, which means each point is now assigned a number between 0 and 9. We can see this as the data being represented using 10 components (that is, we have 10 new features), with all features being 0, apart from the one that represents the cluster center the point is assigned to. Using this 10-dimensional representation, it would now be possible to separate the two half-moon shapes using a linear model, which would not have been possible using the original two features. It is also possible to get an even more expressive representation of the data by using the distances to each of the cluster centers as features. This can be accomplished using the transform method of kmeans:

In[60]:

```
distance features = kmeans.transform(X)
    print("Distance feature shape: {}".format(distance_features.shape))
   print("Distance features:\n{}".format(distance_features))
Out[60]:
   Distance feature shape: (200, 10)
   Distance features:
    [[ 0.922 1.466 1.14 ..., 1.166 1.039 0.233]
    [ 1.142 2.517 0.12 ..., 0.707 2.204 0.983]
    [ 0.788  0.774  1.749 ..., 1.971  0.716  0.944]
    [ 0.446 1.106 1.49 ..., 1.791 1.032 0.812]
    [ 1.39  0.798  1.981 ..., 1.978  0.239  1.058]
    [ 1.149 2.454 0.045 ..., 0.572 2.113 0.882]]
```

k-means is a very popular algorithm for clustering, not only because it is relatively easy to understand and implement, but also because it runs relatively quickly. kmeans scales easily to large datasets, and scikit-learn even includes a more scalable variant in the MiniBatchKMeans class, which can handle very large datasets.

One of the drawbacks of k-means is that it relies on a random initialization, which means the outcome of the algorithm depends on a random seed. By default, scikitlearn runs the algorithm 10 times with 10 different random initializations, and returns the best result.4 Further downsides of k-means are the relatively restrictive assumptions made on the shape of clusters, and the requirement to specify the number of clusters you are looking for (which might not be known in a real-world application).

Next, we will look at two more clustering algorithms that improve upon these properties in some ways.

⁴ In this case, "best" means that the sum of variances of the clusters is small.

Agglomerative Clustering

Agglomerative clustering refers to a collection of clustering algorithms that all build upon the same principles: the algorithm starts by declaring each point its own cluster, and then merges the two most similar clusters until some stopping criterion is satisfied. The stopping criterion implemented in scikit-learn is the number of clusters, so similar clusters are merged until only the specified number of clusters are left. There are several *linkage* criteria that specify how exactly the "most similar cluster" is measured. This measure is always defined between two existing clusters.

The following three choices are implemented in scikit-learn:

ward

The default choice, ward picks the two clusters to merge such that the variance within all clusters increases the least. This often leads to clusters that are relatively equally sized.

average

average linkage merges the two clusters that have the smallest average distance between all their points.

complete

complete linkage (also known as maximum linkage) merges the two clusters that have the smallest maximum distance between their points.

ward works on most datasets, and we will use it in our examples. If the clusters have very dissimilar numbers of members (if one is much bigger than all the others, for example), average or complete might work better.

The following plot (Figure 3-33) illustrates the progression of agglomerative clustering on a two-dimensional dataset, looking for three clusters:

In[61]:

```
mglearn.plots.plot_agglomerative_algorithm()
```