# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский технологический университет «МИСиС»

ИНСТИТУТ ЭКОТЕХНОЛОГИЙ И ИНЖИНИРИНГА

КАФЕДРА МЕТАЛЛОВЕДЕНИЕ ЦВЕТНЫХ МЕТАЛЛОВ

НАПРАВЛЕНИЕ 15.04.02 Технологические машины и оборудование

### Практика цифрового производства

на тему: "Органайзер для сверл"

Студент: Ледяйкин М.Е.

Группа: МТМО-23-2

Проверил: Тавитов А.Г.

### Описание

Создание органайзера для сверл, описан процесс производства.

#### Исследование

Дано: Сверла различных диаметров от 1.5 до 10 мм, общее количество превышает 40 штук.

Исследование началось с просмотра различных вариантов органайзеров в интернета (маркетплейсы, подделки от любителей) посредством ввода в поисковике "органайзер для сверл". Анализ результатов вывел типичную структуру для любого найденого органайзера - создание отдельного отверстия для каждого сверла. Рассмотрим несколько типичных органайзера, отличающихся друг от друга, разве что формой.

| Существующие решения | Достоинства                                                    | Недостатки                                                |  |
|----------------------|----------------------------------------------------------------|-----------------------------------------------------------|--|
|                      | Много отверстий, занимает меньше места чем прямоугольная форма | Долгое время печати, нет возможности использования фанеры |  |
|                      | Простота, защита от пыли                                       | Не хватает отсеков                                        |  |
|                      | Минимализм и простота                                          | Используемый вариант, неудобный захват сверл              |  |

Вывод: Так как количество сверл в будущем изменится и заранее узнать их диаметр невозможно, то было решено доработать дизайн из "Органайзер из фанеры с гравировкой для диаметров" с удобным захватом и регулируемым размером отверстий

## Доска вдохновения



Рисунок 1 – Вдохновение для наклона сверл

#### Скетчинг



Рисунок 1 - Наброски вида органайзера и его сборочных деталей

Решение задачи: Каркас из фанеры, мелкие (внутренние) детали из пластика, соединение будут осуществляться через саморезы.

# Моделирование и подготовка к печати

Программное обеспечение: SolidWorks, CorelDraw, Prusia Slicer



Рисунок 2 - Трехмерная модель передней крышки с пластиковыми деталями



Рисунок 3 - Трехмерная модель внешнего корпуса



Рисунок 4 - Чертеж каркаса из фанеры

Все модели для корпуса и деталей сделаны в программе Solidworks, модели корпуса экспортированы в формат DWG для последующего открытия в CorelDraw и отправки на печать. Модели деталей экспортированы в формат STL для последующего слайсинга в программе Prusa Slicer.



Рисунок 5 - Создание G-кода для принтера

## Изготовление и сборка

| Материалы           | Применение          | Стоимость* | Оборудование                            | Время изготовления |
|---------------------|---------------------|------------|-----------------------------------------|--------------------|
| Лист фанеры 3<br>мм | Каркас              | 330 руб    | Лазерный<br>станок GCC<br>Spirit GLS100 | 6 минут            |
| Filament PLA        | Внутрение<br>детали | 145 руб    | 3D-принтер<br>Prusa i3 MK3              | 6:20 часов         |

<sup>\*</sup>рассчитано, исходя из указанной в интернете стоимости материала



Рис.6 - Полученный элемент органайзера с помощью 3D-принтера

![image](Images/Корпус.jpg)

Рис.7 - Полученные элементы органайзера с помощью лазерного станка

# Результат

![image](Images/Модельсверху.jpg)

Рис. 9 - Органайзер (вид сверху)

![image](Images/Модельсбоку.jpg)

Рис. 10 - Органайзер (вид сбоку)