Glossario di SWE

M9k

October 26, 2017

1 Glossario

Progetto

Insieme di attività e compiti

- -per raggiungere obbiettivi con specifiche fissate
- -data di inizio e di fine fissate
- -risorse limitate (es: persone, tempo, fondi, strumenti)
- -consuma risorse svolgendosi

Processo

Insieme di attività correlate e coese che trasformano ingressi (bisogni) in uscite (prodotti) secondo regole date, consumando risorse nel farlo

Correlate: hanno un motivo/una capacità per stare assieme

Coese: utili al medesimo obiettivo

Attività

Cosa da fare, che voglio fare, per il raggiungimento degli obbiettivi, composta da più compiti

Compito

Cosa che una persona deve fare, che va fatta

Fasi principali:

- -Pianificazione (gestione risorse e responsabilità)
- -Analisi dei requisiti (cosa devo fare)
- -Progettazione (come farlo)
- -Realizzazione (con una qualità, verificando la correttezza, validando i risultati)

Efficienza

Produttività, metrica del grado di riduzione degli sprechi

Quantità prodotto realizzato/risorse utilizzate

Efficacia

Qualità, metrica del grado di raggiungimento degli obbiettivi interni (del fornitore) o esterni (gradimento del cliente)

Iterazione

Può essere anche un incremento, procedere per raffinamento o rivisitazioni (pittura)

Non so se sto migliorando o meno, non quantificabile, non efficiente, rifinisco gli aspetti senza magari avanzare, non so a che punto sono

Incremento

Procedere per aggiunta a un impianto base (scultura)

Si progredisce a punti, a baseline, quantificabile

Prototipo

Per provare e capire meglio, usa e getta (bozza), oppure per avere avanzamento incrementale (baseline)

Baseline

Prodotto prototipale, è il risultato di avanzamenti misurabili

Milestone

Concretizzata da almeno una baseline, punto nel tempo strategico e di riferimento, meta da raggiungere con dei risultati certi/solidi che non deve essere ritoccata (incrementali)

Prodotto SW

È un insieme di parti, che stanno assieme secondo la loro configurazione. Ogni sistema fatto di parti va gestito con il controllo di configurazione.

Configurazione

Modo nel quale si assemblano i pezzi di un software (ordine, parti, librerie, impostazioni, etc) Usato per il build, si gestisce con il controllo di configurazione

Metrica

Metodo di misurazione, l'unità di misura da sola è insignificante

Requisiti

- 1 Condizione (capability) da chi la offre capacità di risolvere un problema o raggiungere un obbiettivo
- 2 Condizione (capability) da chi la richiede che deve essere soddisfatta o posseduta da un sistema per aderire a un obbligo (contratto, standard, specifica, documento formale)
- 3 Descrizione documentata di una condizione come in 1 o 2

Qualifica

Verifica + Validazione

Verifica: processo di supporto, accertamento che l'esecuzione delle attività non abbia introdotto errori, rivolto ai processi, da fare per OGNI componente

Per la verifica serve piano di verifica che si basa sul way of working

Validazione: controllo rivolto SOLO al prodotto finale, lungo e costoso, accertarsi che il prodotto realizzato corrisponda alle attese

2 Ingegneria

Ingegneria

Applicazioni principi matematici e scientifici a scopo pratico, NON per esplorare nuove possibilità o espandere la scienza Mai inventare, utilizzare sempre metodi testati e funzionanti

Best practice

Miglior modo (way of working) per raggiungere uno scopo, secondo applicazioni passate che hanno dimostrato i risultati

Pratical ends

Avere un fine civile e sociale oltre che economico

2.1 Ingegneria del software

Ingegneria del software

Disciplina per la realizzazione di prodotti software impegnativo e che richiede collaborazione

- -in grande e in piccolo (tanto in quantità o poco e specializzato)
- -con qualità = efficacia = grado di conformità, capacità di raggiungere gli obiettivi
- -con costi e tempi contenuti = efficienza = capacità di ridurre le risorse e gli sprechi, seguendo la best practice
- -tutto lungo il ciclo di vita

Ingegneria del software

Raccogliere, organizzare e consolidare conoscenza (body of knowledge) necessarie a realizzare progetti SW con massima efficacia e efficenza.

Acquisire, utilizzare e mantenere i best practice.

Ingegneria del software

Secondo IEEE: Approccio sistematico, disciplinato e quantificato allo sviluppo, uso, manutenzione e ritiro del SW.

Sistematico: metodico e rigoroso, usando una metodologia precisa, per studiare ed evolvere best practice

Disciplinato: regole fissate

Quantificabile: efficienza ed efficacia misurabili.

Tipologie di prodotti software

- -Commessa: forma, contenuto e funzioni definiti dal committente
- -Pacchetto: forma, contenuto e funzioni idonei alla replicazione
- -Componente: forma, contenuto e funzioni idonei alla composizione
- -Servizio: forma, contenuto e funzioni definiti dal problema

Le 4 P di SWE

- -People (stakeholder e team di sviluppo)
- -Product (SW e documentazione)
- -Project (Insieme di attività di produzione)
- -Process (way of working)

Ciclo di vita

Insieme di stati di avanzamento del software fino al ritiro Un ciclo di vita lungo porta a elevati costi di manutenzione

Manutenzione

- -correttiva: fix dei bug
- -adattiva: rifinisco i requisiti
- -evolutiva: evoluzione del software secondo i nuovi usi

Utilità

Metrica riguardante gli utilizzi/utenti di un prodotto nel tempo

3 Processi SW

Ciclo di vita

Gli stati che il prodotto assume dal concepimento al ritiro Serve per valutare costi, tempi, obblighi e rischi PRIMA di svolgere il progetto Scelta tra più possibili cicli di vita, ognuno con vantaggi e limiti

Processi di ciclo di vita

Specificano le attività da svolgere per abilitare corrette transizioni di stato nel ciclo di vita

Modelli di ciclo di vita

Descrivono come i processi di ciclo di vita si relazionano tra di loro rispetto agli stati Aiutano a pianificare, organizzare ed eseguire lo svolgimento delle attività Svariati, scelgo in base alla situazione, ognuno con pregi e limiti

Ciclo di sviluppo

Ciclo di vita fino alla consegna, senza utilizzo, manutenzione e ritiro

Visione a grafi

Gli stati sono i nodi (concezione, sviluppo, utilizzo, ritiro, etc), gli archi le attività svolte sul prodotto necessarie per farlo avanzare.

Natura degli stati e pre- e post- condizione determinate da obblighi (vincoli contrattuali), regole (standard di processo) e strategie

Modelli più significativi

- -Sequenziale o a cascata (waterfall)
- -Incrementale
- -A evoluzioni successive
- -A spirale
- -Per componenti
- -Agile

Riuso

- -Occasionale: copia-incolla, basso costo, scarso impatto, da evitare
- -Sistematico: per progetto/prodotto/azienda, maggior costo, maggior impatto

Malleabilità

Un buon software non è statico, ma si modifica e si addatta in quanto usandolo si scoprono migliorie e/o cambiano gli usi

Processo

Insieme di attività correlate e coese che trasformano ingressi (bisogni) in uscite (prodotti) secondo regole date, consumando risorse nel farlo

Correlate: sono collegate, hanno la capacità di stare assieme

Coese: hanno un motivo di stare assieme

Risorse: efficienza = produttività, cosa ho fatto/quante risorse ho utilizzato

Misurazione: efficacia, raggiungimento di obbiettivi interni (del fornitore, cioè di chi crea il software) o esterni (gradimento da parte del cliente)

Economicità

Insieme di efficienza ed efficacia, da controllare DURANTE lo sviluppo usando:

- -dati tempestivi (non si può attendere la fine, sarebbe troppo tardi)
- -dati accurati (niente opinioni personali ma numeri)
- -non intrusività (non bloccare il lavoro per controllare il progresso)

Standard di processo

Voluti dai committenti per vincolare il fornitore

Per facilitare controllo, collaudo e accettazione

Settoriali o generali/trasversali

Vincolo (imposto) o riferimento (non imposto, come modello)

Standard come modello di azione

Sono una serie di passaggi da compiere, guida passo a passo, come una ricetta Definizione e imposizione di procedure, definizione e proposizione di processi da specializzare

Standard come modello di valutazione

Servono per avere una valutazione sul comportamento del progetto Modelli più generali, copre più contesti, per identificare best practice

ISO/IEC 12207:1995

Letta come 12 207

Più diffuso, ad alto livello, molto astratto, preso spunto dagli standard militari del dipartimento di difesa Identifica i processi di ciclo di vita del SW

Struttura modulare che richiede specializzazione

Specifica le responsabilità sui processi e i prodotti

Tre parti principali: processi primari, di supporto e organizzativi

Processi primari

Necessari per l'esistenza di un progetto

ES:

- -Fornitura (gestione rapporti con il cliente, primo passo di un progetto)
- -Acquisizione (gestione dei sotto-fornitori)
- -Sviluppo
- -Gestione operativa (utilizzo, erogazione, installazione)
- -Manutenzione (correzione, adattamento, evoluzione)

Processi di supporto

ES:

- -Documentazione
- -Accertamento qualità
- -Gestione delle versioni e delle configurazioni
- -Qualifica: verifica + validazione
- -Revisioni congiunte con il cliente
- -Verifiche ispettive interne
- -Risoluzione dei problemi (gestione dei cambiamenti)

Processi organizzativi

ES:

- -Gestione dei processi
- -Gestione delle infrastrutture
- -Miglioramento del processo
- -Formazione personale

Tecniche

Ricette per svolgere determinati compiti

Vincoli o strategie restringono il grado di libertà

Buona organizzazione

Si basa sul riconoscere i processi, adottarli consapevolmente ed efficacemente e supportarli in modo efficiente

Organizzazione interna - Verifica

Ciclo PDCA:

- -Plan: definire attività, scadenze, responsabilità, risorse per raggiungere obbiettivi
- -Do: eseguire secondo i piani
- -Check: verificare l'esito delle azioni rispetto le attese
- -Act: applicare soluzioni correttive alle carenze

Processi e modelli di ciclo di vita

- -La specifica dei processi non determina il modello di ciclo di vita
- -Il livello di coinvolgimento del cliente determina natura, funzione e sequenza dei processi di revisione
- -Quando il SW è parte di un sistema complesso il modello di ciclo di vita a livello di sistema è spesso sequenziale.

Influenze sul modello di ciclo di vita

- -Politiche di acquisizione e di sviluppo (versione unica o multipla, dipendenza da/verso altre componenti)
- -Natura, funzione e sequenza dei processi di revisione (interne, esterne, non bloccanti)
- -Necessità/utilità di fornire evidenze preliminari di fattibilità (prototipi bozza o baseline, studi e analisi preliminari)
- -Esigenza di iterazioni o di configurazioni (build, deployment)

4 Ciclo di vita

Stati principali

- -Concezione
- -Sviluppo
- -Utilizzo
- -Ritiro

Organizzare le attività di processo

Si devono identificare dipendenze tra ingressi ed uscite, poi fissarle nel tempo assieme ai criteri di attivazione (pre-condizioni) e di completamento (post-condizioni)

Fase

Stazionamento in uno stato del ciclo di vita o in una transizione tra stati

Sistema di qualità

Associato al modello per assicurare conformità e maturità

Modello a cascata o sequenziale

Fasi:

- -Analisi (requisiti di sistema e software, etc)
- -Progettazione (Design, etc)
- -Realizzazione (Codifica, integrazione, collaudo, etc)
- -Manutenzione

Eseguite in modo rigidamente sequenziale, no parallelismo, guidato da documentazione, codice solo alla fine, con pre-condizioni e post-condizioni per ogni fase

Eccessiva rigidità, non permette modifiche ai requisiti, necessita di molta manutenzione, molto burocratico e poco realistico Big-gan integration: si integra tutto alla fine in un solo colpo, se non funziona difficile isolare e correggere il problema

Correzioni

- -Prototipazione: usa e getta, scrivendo la documentazione si fanno delle prove
- -Cascata con ritorni: torno indietro per correggere/rifare una parte, rompendo il modello, iterazioni! Modello iterativo

Modello iterativo

Applicabile a qualsiasi altro modello, consente l'adattamento (a evoluzione dei problemi, requisiti, soluzioni e tecnologie) Si ritorna indietro rispetto l'asse temporale

Modello incrementale

Fasi:

- -Define outline requiments
- -Assign requiments to increments (essenziale per poter procedere a incrementi)
- -Design system architecture (come le parti si compongono, essenziale per il parallelismo)

finchè non ho il sistema finale:

- —-Develop system increment
- —-Validate increment
- ---Integrate increment
- —-Validate system

Possibile svolgere gli incrementi in parallelo

Riassumibile in : "Analisi e progettazione", poi ciclo su "Progettazione di dettaglio" e "Implementazione dettaglio"

Modello evolutivo

Per uno scenario che varia (es Browser), molteplici versioni intermedie, ogni fase ammette iterazioni multiple e parallele Si basa su una analisi iniziale, poi cicla su analisi e progettazione ed sviluppo e validazione

Modello a componenti

Si basa sul riutilizzo di componenti

Fasi:

- -Analisi requisiti
- -Analisi componenti
- -Adattamento dei requisiti (controllo cosa fa al caso mio e come dovrò modificarlo per soddisfare i requisiti)
- -Progettazione con riuso

- -Sviluppo e integrazione
- -Validazione di sistema

Modelli agili

- -Niente regole rigide
- -Il software funzionante è più importante di una buona documentazione
- -Collaborare con il cliente, non negoziare
- -Essere reattivi, non mirare alla pianificazione

Ma:

- -Adattare le regole è ok, ma bisogna mantenere un occhio su costi/benefici
- -La mancanza della documentazione fa lievitare il costo di manutenzione
- -Non pianificare significa non sapere se si sta avanzando e i rischi che si corrono

User story

Minuta, resoconto con il cliente, dialogando specifica i problemi e i requisiti, pezzo per pezzo

Sarà una lista di cose che vuole, che preferirebbe e che non vuole, da usare per controllare l'avanzamento e l'efficacia

3 forme principali

La maggiore: SCRUMB

Iterazione controllata, c'è un backlog di cose da svolgere, si sceglie quali fare (sprint) prendendo le più utili/necessarie/importanti, le faccio, le unisco in un incremento e itero nuovamente

Sprint usualmente di circa 2 settimane, con misurazioni giornaliere brevi di tipo stand-up, intrusive!

Il ciclo di vita secondo SEMAT

Sequenza di punti/indicazioni suddivisi per categoria per aiutare a organizzare/misurare/controllare l'avanzamento e l'aver completato le principali problematiche durante tutto il ciclo di vita

5 Gestione di progetto

Fondamenti

Gestione di progetto - è un processo organizzativo per gestire altre attività

- -Processi di progetto istanziati da processi aziendali, a loro volta istanziati da standard di processo
- -Per stimare costi e le risorse necessarie
- -Per pianificare attività ed assegnarle alle persone, in modo sistematico, disciplinato e quantificabile usando best practice
- -Controllare le attività e verificare i risultati per prendere provvedimenti

Funzione

Funzione aziendale, fissa, tra sviluppo, direzione (decisioni), amministrazione (gestione del supporto ai progetti), qualità (economicità)

Ruolo

Ruolo in un progetto, assegnato in base alla propria funzione

Ruolo: analista

Devono capire il problema e i requisiti/ $\cos a$ fare, pochi, competenze sul dominio del problema, grande influenza, presenti solo all'inizio

Ruolo: progettista

Deve capire come risolvere il problema, attraverso la soluzione migliore come economicità, pochi, competenze sulle tecnologie, influenza sulle scelte tecniche e tecnologiche, a volte seguono il progetto fino alla manutenzione Devono anche fare l'analisi di fattibilità

Ruolo: programmatore

Molti, competenze tecniche, visione e responsabilità circoscritte, realizzano e mantengono il prodotto deciso dal progettista

Ruolo: responsabile

Aggrega i ruoli e li fa cooperare

Responsabilità su pianificazione, gestione delle risorse umane, controllo e relazioni esterne

Capacità tecniche necessarie per valutare rischi, scelte ed alternative

Ruolo: amministratore

Controllo ambiente di lavoro, amministrazione delle infrastrutture di supporto, risoluzione problemi riguardanti la gestione dei processi, gestione della documentazione, controllo di versioni e configurazione

Funzione o ruolo nel progetto, dipende dalla organizzazione aziendale

Ruolo: verificatore

Gestiscono le verifiche, capacità di giudizio e relazione, competenze tecniche, esperienza professionale e conoscenza delle norme, sempre presenti

Ruolo: gestione qualità

Funzione aziendale, non ruolo, gestisce way of working aziendale Richiede applicazione rigorosa dei processi adottati, mantiene il ciclo PDCA

5.1 Responsabile

Pianificazione di progetto

Con l'aiuto di strumenti, definizione delle attività per:

- -Pianificare lo svolgimento e controllarne l'attuazione
- -Avere una base per gestire l'allocazione delle risorse
- -Stimare e controllare scadenze e costi

Svolgimento:

- -Identificazione della lista delle attività
- -Disposizione in ordine delle attività secondo le dipendenze
- -Stima delle risorse per attività
- -Allocazione del personale rispettando i vincoli (ore giornaliere, competenze, etc)

-Creazione dei diagrammi del progetto, se qualcosa non va bene torno alla stima

Realizzato con:

- -Diagrammi di Gantt
- -PERT
- -WBS

Gantt

Dislocazione temporale delle attività pianificate e eseguite, per controllare le stime con i progressi Utilizzabile anche con le persone per controllare sovrapposizioni o lavori in gruppo

PERT

Sottolinea dipendenze temporali tra le attività, per ragionare sulle scadenze, evidenzia il cammino critico (quello con slack minore o = 0) e i vari slack (margine)

WBS

Struttura gerarchica delle attività, evidenzia le sotto-attività univocamente identificate, anche non sequenziali

Allocazione su più progetti

Risorse allocate in più processi per evitare sotto-utilizzo e richieste dei clienti, producono cammini critici

Stima costi di progetto

Definire durata in ore di lavoro e costo stimandolo secondo esperienza, analogia, competizione o algoritmo predittivo (non preciso), poi rapportandolo alle ore di calendario

Piano di progetto

Va documentato, si indica anche come si è giunti alla stima delle risorse necessarie Scritto dal responsabile, letto da verificatore e stakeholders, poi passato al team

Contenuti:

- -risorse disponibili e le loro assegnazione alle attività
- -scansione delle attività nel tempo

Obiettivi:

- -Organizzare le attività con efficienza
- -Facilitare la misurazione di avanzamento fissando milestone

Struttura tipica:

- -Introduzione (scopo e struttura)
- -Organizzazione del progetto
- -Analisi dei rischi qualsiasi evento imprevisto fa modificare il piano di progetto, meglio prevedere
- -Risorse disponibili
- -Suddivisione del lavoro
- -Calendario delle attività
- -Meccanismi di controllo e rendicontazione

Rischi

- -Sforare i tempi/budget
- -Risultati insoddisfacenti

Motivi:

- -Tecnologie di lavoro
- -Rapporti interpersonali
- -Organizzazione del lavoro
- -Requisiti e rapporti con gli stakeholder
- -Tempi e costi

Gestione dei rischi

Durante la pianificazione, sempre sotto gestione del progetto

- -Identificazione (in qualsiasi ambito, di qualsiasi tipo)
- -Analisi (probabilità che accadano e il livello di impatto)
- -Pianificazione (come mitigare o evitare)
- -Controllo (durante tutto lo svolgimento, con misurazioni, per raffinare le strategie e modificare la lista dei rischi identificati) Pianificando su vincoli lunghi ma in periodi brevi ho errori minori

Baseline

Prodotto prototipale, è il risultato di avanzamenti misurabili

Milestone

Concretizzata da almeno una baseline, punto nel tempo strategico e di riferimento, meta da raggiungere con dei risultati certi/solidi che non deve essere ritoccata (incrementali)

Requisiti per buoni milestone: -specifiche per obbiettivi

- -delimitate per ampiezza ed ambizioni, raggiungibili
- -incrementali e misurabili come impegno necessario
- -coerenti con la strategia di progetto
- -traducibili in compiti assegnabili
- -puntuali
- -dimostrabili agli stakeholder

Tempo persona

Diverso dal tempo di calendario, influenzato da efficacia ed efficenza, difficile da valutare

6 Amministrazione

Amministrazione di sistema

Equipaggiare, organizzare e gestire l'ambiente di lavoro e di produzione, a supporto dei processi istanziati dai processi, scelte tecnologiche concordate, no scelte gestionali

- -Reperimento, gestione, organizzazione e manutenzione di risorse informatiche e di servizi
- -Gestione del controllo di versione
- -Gestione della configurazione, del build e dei test e validazioni automatici
- -Gestione dei documenti
- -Gestione dell'ambiente di lavoro
- -Redazione e manutenzione di regole e procedure di lavoro norme

Issues o ticket

Idea, questione, problema, attività, etc, considerabile in due modi:

- -in avanti: compito, c'è una attività da fare, che posso scegliere e svolgerla, oppure che qualcuno sceglie per me pianificando, in base a un ordine di priorità
- -all'indietro: cosa da fare o considerare, qualcuno deve gestirlo

7 Analisi dei requisiti

Requisiti secondo IEEE

- 1 Condizione (capability) da chi la offre capacità di risolvere un problema o raggiungere un obbiettivo
- 2 Condizione (capability) da chi la richiede che deve essere soddisfatta o posseduta da un sistema per aderire a un obbligo (contratto, standard, specifica, documento formale)
- 3 Descrizione documentata di una condizione come in 1 o 2

Qualifica

Verifica + Validazione

Verifica: processo di supporto, accertamento che l'esecuzione delle attività non abbia introdotto errori, rivolto ai processi, da fare per OGNI componente

Per la verifica serve piano di verifica che si basa sul way of working

Validazione: controllo rivolto SOLO al prodotto finale, lungo e costoso, accertarsi che il prodotto realizzato corrisponda alle attese

Analisi

- -Studio dei bisogni e delle fonti del dominio applicativo
- -Prima classificazione dei requisiti
- -Modellazione concettuale del sistema secondo gli use case
- -Assegnazione dei requisiti a parti distinte del sistema secondo gli use case
- -Negoziazione con il committente, consolidamento della classificazione dei requisiti (l'ordine di importanza)

Piano di qualifica

- -Definizione delle strategie di verifica
- -Metodi, tecniche e procedure da usare per la validazione

Attività di analisi

- -Studiare e definire il problema
- —-Identificare il prodotto da commissionare (compito del cliente)
- —-Capire cosa realizzare (cliente + fornitore)
- —-Definire gli accordi contrattuali (cliente + fornitore)
- -Verificare le implicazioni di costo e di qualità
- —-Requisiti espliciti o impliciti, diretti o derivati per la soddisfazione del cliente
- -Studio dei bisogni e delle fonti (*identificare*, *specificare* e *classificare* i requisiti dal punto di vista committente e conoscendo l'ambito)
- —-identificare: precisamente, che requisito serve
- —-specificare: secondo quali limitazioni/regole
- —-classificare: capirne l'importanza o la negoziabilità
- -Modellazione concettuale del sistema
- —-Partizionamento in componenti per l'allocazione dei requisiti, con diagramma dei casi d'uso (analisi cosa, non il come)
- -Ripartizione dei requisiti a parti del sistema
- -Accertarsi della soddisfacibilità dei requisiti
- -Assicurarsi che i requisiti concordati siano solo e tutti quelli necessari e sufficienti
- -Determinare con il cliente l'utilità strategica

Documentazione - processo di supporto

-Definizione dei bisogni (utente - contrattuali, il cosa e SW - il come)

Analisi di fattibilità - del fornitore, riservato

Analisi dei requisiti - documento contrattuale

Gestione del prodotto - processo di supporto

- -Tracciamento requisiti (sapere da che esigenza arrivano)
- -Impostazione e configurazione della configurazione con versioning, automatizzata
- -Gestione dei cambiamenti (discuterli, capirli e motivarli, sempre con delle regole)

Approccio funzionale

- -Studio di fattibilità porta ad analisi dei requisiti in linguaggio naturale + supporto di linguaggi formali o semi-formali (diagramma dei casi d'uso)
- -Specifica tecnica in linguaggi formali, definizione di funzione e profilo operazionale
- -Top-down programmazione procedurale

Approccio object-oriented

- -Studio di fattibilità porta ad analisi dei requisiti in formalismi grafici (diagramma dei casi d'uso)
- -Continuità logica con la progettazione mediante le classi
- -Bottom-up, aggregazione di parti, design pattern e riutilizzo, programmazione ad oggetti

Studio di fattibilità

- -Valutare rischi, costi e benefici dal punto di vista di fornitore e cliente
- -Decidere se procedere o meno con le conoscenze disponibili o con un piano di formazione sostenibile

Fattibilità tecnico-organizzativa

Disponibilità di tecnologie, soluzioni algoritmiche e architetturali possibili, piattaforme idonee per l'esecuzione

- -Rapporto costi benefici:
- Confrontare il mercato attuale e quello futuro, valutare costo e redditività
- -Individuare rischi (complessità e incertezze)
- -Valutazione delle scadenze temporali disponibilità delle risorse necessarie
- -Valutare alternative:
- —-Scelte architetturali come sistema decentralizzato, client-server, etc)
- —-Strategie realizzative: riuso o sviluppo da zero
- ---Strategie operative: Avvio, esercizio, manutenzione del sistema e formazione utenti

Classificazione dei requisiti

Mettere ordine nei requisiti facilita la comprensione, manutenzione e tracciamento

Attributi del prodotto:

- -Caratteristiche richieste al sistema, cosa devo fare? requisiti funzionali, prestazionali e di qualità
- -Vincoli sui processi impiegati, come defo farlo? requisiti di vincolo realizzativo, normativo o contrattuale

I requisiti devono essere verificabili:

- -requisiti funzionali: test, dimostrazione formale o revisione
- -requisiti prestazionali: misurazione

-requisiti qualitativi: verifica ad hoc -requisiti dichiarativi (vincoli): revisione

Utilità strategica dei requisiti

-Obbligatori: irrinunciabili

-Desiderabili: con valore aggiuntivo riconoscibile

-Opzionali: relativamente utili o contrattabili più avanti

Specifica del progetto - secondo IEEE 830-1998

Deve essere:

- -Priva di ambiguità
- -Corretta
- -Completa
- -Verificabile
- -Consistente
- -Modificabile
- -Tracciabile
- -Ordinata per rilevanza

Parti:

- -Introduzione (scopo documento e del progetto, glossario, riferimenti normativi e non, struttura del documento)
- -Descrizione generale (prospettive, funzioni del prodotto, caratteristiche degli utenti, vincoli, assunzioni e dipendenze)
- -Specifica requisiti (definizione requisiti utente e di sistema, prima composizione del sistema, evoluzione attesa del sistema)
- -Eventuali appendici

Verifica dei requisiti

Eseguita su un documento organizzato, tramite:

- -Walkthrought: lettura a largo spettro
- -Ispezione: lettura mirata e strutturata

Matrice delle dipendente (necessità e sufficienze) per tracciare

Ricercando chiarezza espressiva, strutturale (separare requisiti funzionali e non) ed atomicità e aggregazione (requisiti elementari, correlazioni chiare)

Identificazione e classificazione, con ID, numerazione di sequenza o coppie ¡categoria, numero;

Gestire i cambiamenti valutandone l'impatto e la fattibilità tecnica

Necessità di tracciare

Riuso

Progettazione influenzabile da esigenza o opportunità di riuso di:

- -componenti aziendali preesistenti
- -componenti commerciali
- .componenti imposte dal cliente

Stati di progresso per SEMAT -Conceived: il committente è identificato e gli stakeholder vedono una opportunità per il progetto

- -Bounded: I bisogni macro sono chiari, meccanismi di gestione dei requisiti fissati (configurazione e cambiamento)
- -Coherent: I requisiti sono classificati, quelli essenziali sono chiari e ben definiti
- -Acceptable: I requisiti fissati definiscono un sistema soddisfacente per gli stakeholder
- -Addressed: Il prodotto soddisfa i principali requisiti, possibile il rilascio e l'uso
- -Fulfilled: Il prodotto soddisfa abbastanza requisiti da avere la piena approvazione degli stakeholder