Гипотезы компактности и непрерывности

Гипотеза непрерывности (для регрессии): близким объектам соответствуют близкие ответы.

Гипотеза компактности (для классификации): близкие объекты, как правило, лежат в одном классе.

Формализация понятия «близости»: задана функция расстояния $\rho \colon X \times X \to [0, \infty)$.

Пример. Евклидово расстояние и его обобщение:

$$\rho(x,x_i) = \left(\sum_{j=1}^n |x^j - x_i^j|^2\right)^{1/2} \quad \rho(x,x_i) = \left(\sum_{j=1}^n w_j |x^j - x_i^j|^p\right)^{1/p}$$

 $x = (x^1, ..., x^n)$ — вектор признаков объекта x, $x_i = (x_i^1, ..., x_i^n)$ — вектор признаков объекта x_i .

Ещё примеры расстояний:

— между текстами (редакторское расстояние Левенштейна): CTGGGCTAAAAGGTCCCTTAGCC..TTTAGAAAAA.GGGCCATTAGGAAATTGC CTGGGACTAAA....CCTTAGCCTATTTACAAAAATGGGCCATTAGG...TTGC

между сигналами (энергия сжатий и растяжений):

Обобщённый метрический классификатор

Для произвольного $x \in X$ отранжируем объекты x_1, \dots, x_ℓ :

$$\rho(x,x^{(1)}) \leqslant \rho(x,x^{(2)}) \leqslant \cdots \leqslant \rho(x,x^{(\ell)}),$$

 $x^{(i)}$ — i-й сосед объекта x среди x_1, \ldots, x_ℓ ; $y^{(i)}$ — ответ на i-м соседе объекта x.

Метрический алгоритм классификации:

$$a(x; X^{\ell}) = \arg \max_{y \in Y} \underbrace{\sum_{i=1}^{\ell} \left[y^{(i)} = y \right] w(i, x)}_{\Gamma_{V}(x)},$$

w(i,x) — вес, оценка сходства объекта x с его i-м соседом, неотрицательная, не возрастающая по i.

 $\Gamma_{y}(x)$ — оценка близости объекта x к классу y.

Метод k ближайших соседей (k nearest neighbors, kNN)

$$w(i,x)=[i\leqslant k].$$
 $w(i,x)=[i\leqslant 1]$ — метод ближайшего соседа.

Преимущества:

- простота реализации (lazy learning);
- параметр k можно оптимизировать по критерию скользящего контроля (leave-one-out):

$$\mathsf{LOO}(k, X^{\ell}) = \sum_{i=1}^{\ell} \left[a(x_i; X^{\ell} \setminus \{x_i\}, k) \neq y_i \right] \to \min_{k}.$$

Проблемы:

- возможны ситуации, когда классификация не однозначна: $\Gamma_y(x) = \Gamma_s(x)$ для пары классов $y \neq s$
- учитываются не значения расстояний, а только их ранги

Пример зависимости LOO от числа соседей

Пример. Задача Iris.

- смещённое число ошибок, когда объект учитывается как сосед самого себя несмещённое число ошибок LOO
- В реальных задачах минимум редко бывает при k=1.