This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (currently amended) A method for measuring angular speed of an object, the method comprising:

providing a micromechanical filter apparatus including one or more intercoupled micromechanical elements including a first resonator having a first resonance frequency formed on a substrate, a second resonator and means for coupling the resonators so that the filter apparatus has a filter response in a sense mode with a substantially constant amplitude region for a passband of frequencies and the filter apparatus having a dive mode response in a drive mode;

coupling the substrate to the object so that the filter apparatus rotates with the object about a first axis;

driving the first resonator in the drive mode so that the first resonator vibrates along a second axis at a reference vibration and generates a Coriolis force which causes one of the other elements of the filter apparatus the second resonator to vibrate along a third axis at an induced vibration; and

sensing the induced vibration in the sense mode to obtain a corresponding output signal which represents the angular speed of the object about the first axis wherein the passband of frequencies includes the first resonance frequency in the sense mode.

- 2. (currently amended) The method as claimed in claim 1 wherein the timeromechanical elements include a second resonator has a second resonance frequency and wherein the resonance frequencies are substantially the same in the drive and sense modes.
- 3. (currently amended) The method as claimed in claim 2 wherein the filter response in the sense mode has a substantially constant amplitude region for a the passband of frequencies including includes the resonance frequencies and wherein the filter

A ! consider

S/N: 10/055,210 Reply to Office Action of May 22, 2003 Atty Dkt No. UOM 0205 PUSP

response of the filter apparatus in the sense mode is substantially constant about the resonance frequencies.

4. (canceled)

- 5. (currently amended) The method as claimed in claim [[4]] 1 wherein the resonators are platform resonators.
- 6. (original) The method as claimed in claim 1 wherein the first resonator is comb-driven.
- 7. (original) The method as claimed in claim 1 wherein the step of sensing is performed capacitively.
- 8. (original) The method as claimed in claim 1 wherein Q-multiplication is attained in both the drive and sense modes.
- 9. (currently amended) The method as claimed in claim [[4]] 1 wherein the resonators are polysilicon resonators.
- 10. (currently amended) The method as claimed in claim [[4]] 1 wherein the micromechanical elements include means for coupling includes a mechanical spring for coupling the resonators together.
- 11. (original) The method as claimed in claim 1 wherein the filter apparatus is a wide passband filter apparatus and wherein the filter response is a wide passband filter response.
- 12. (currently amended) A system for measuring angular speed of an object, the system comprising:

Atty Dkt No. UOM 0205 PUSP

S/N: 10/055,210 Reply to Office Action of May 22, 2003

a substrate;

a micromechanical filter apparatus including one or more intercoupled micromechanical elements including a first resonator having a first resonance frequency formed on the substrate, a second resonator and means for coupling the resonators so that the filter apparatus has a filter response in a sense mode with a substantially constant amplitude region for a passband of frequencies and having a drive mode response in a drive mode wherein the filter apparatus has a filter response in a sense mode and wherein the filter apparatus rotates with the object about a first axis when the substrate is coupled to the object and the object is rotated;

means for driving the first resonator in the drive mode so that the first resonator vibrates along a second axis at a reference vibration and generates a Coriolis force which causes one of the other elements of the filter apparatus the second resonator to vibrate along a third axis at an induced vibration; and

means for sensing the induced vibration in the sense mode to obtain a corresponding output signal which represents the angular speed of the object about the first axis wherein the passband of frequencies includes the first resonance frequency in the sense mode.

- 13. (currently amended) The system as claimed in claim 12 wherein the micromechanical elements include a second resonator has a second resonance frequency and wherein the resonance frequencies are substantially the same in the drive and sense modes.
- 14. (currently amended) The system as claimed in claim 13 wherein the filter response in the sense mode has a substantially constant amplitude region for a the passband of frequencies including includes the resonance frequencies and wherein the filter response of the filter apparatus in the sense mode is substantially constant about the resonance frequencies.

15. (canceled)

CONSIDER

Atty Dkt No. UOM 0205 PUSP

S/N: 10/055,210 Reply to Office Action of May 22, 2003

16. (currently amended) The system as claimed in claim [[15]] 12 wherein the resonators are platform resonators.

17. (original) The system as claimed in claim 12 wherein the first resonator is comb-driven.

18. (original) The system as claimed in claim 12 wherein the means for sensing includes a capacitor for capacitively sensing the induced vibration.

19. (original) The system as claimed in claim 12 wherein Q-multiplication is attained in both the drive and sense modes.

20. (currently amended) The system as claimed in claim [[15]] <u>12</u> wherein the resonators are polysilicon resonators.

21. (currently amended) The system as claimed in claim [[15]] <u>12</u> wherein the micromechanical elements means for coupling include a mechanical spring for coupling the resonators together.

22. (original) The system as claimed in claim 12 wherein the filter apparatus is a wide passband filter apparatus and wherein the filter response is a wide passband filter response.

23. (canceled)

24. (canceled)

25. (canceled)

26. (canceled)

Atty Dkt No. UOM 0205 PUSP

S/N: 10/055,210 Reply to Office Action of May 22, 2003

27. (new) The method of claim 1, wherein the passband of frequencies is substantially larger than a bandwidth of the first resonator so that frequency shifts in the first resonance frequency stay within the passband of frequencies.

- 28. (new) The method of claim 1, wherein the filter apparatus includes a resistor coupled to the second resonator to obtain a desired filter response.
- 29. (new) The system of claim 12, wherein the passband of frequencies is substantially larger than the bandwidth of the first resonator so that frequency shifts in the first resonance frequency stay within the passband of frequencies.
- 30. (new) The system of claim 12, wherein the filter apparatus includes a resistor coupled to the second resonator to obtain a desired frequency response.