Linear Algebra II

Felix Chen

Contents

1 Jordan canonical form

1

§1 Jordan canonical form

It turns out that not all linear operators can be expressed as diagonal matrix. In this section we proceed in another direction: to find the "simpliest" matrix expression for a general operator.

Definition 1.1 (Irreducible maps). Let T be a linear operator on V. We say T is **reducible** if V can be decompose to a direct sum of two T-invariant subspaces $W_1 \oplus W_2$. Otherwise we say T is **irreducible**.

In order to study T, we only need to study the "smaller" maps $T\big|_{W_1}$ and $T\big|_{W_2}$. In this case we denote $T = T\big|_{W_1} \oplus T\big|_{W_2}$. By decompose these smaller maps, we'll eventually get a decomposition of T consisting of irreducible maps:

$$T = \bigoplus_{i=1}^{r} T_{W_i}.$$

Then by taking a basis of each W_i , and they form a basis \mathcal{B} of V. It's easy to observe that $[T]_{\mathcal{B}}$ is a block diagonal matrix.

In the special case when the W_i 's are all 1-dimensional subspaces, the map T is diagonalizable. The eigenvectors are the elements in the W_i 's and the eigenvalues are actually the map T_{W_i} .

Definition 1.2 (Annihilating polynomial). Let $M_T = \{f \in F[x] \mid f(T) = 0\}$, we say the polynomial in M_T are the **annihilating polynomials** of T.

Note that M_T is an nonzero ideal of F[x]. This is because $\{id, T, \dots, T^{n^2}\} \subset \operatorname{Mat}_{n \times n}(F)$ must be linealy dependent.

Proposition 1.3

T is diagonalizable $\iff \exists f \in M_T \text{ s.t. } f \text{ is the product of different polynomials of degree 1.}$

Before we prove this proposition, let us take a look at the properties of annihilating polynomials. Since F[x] is a PID, M_T must be generated by one element, namely p_T , the minimal polynomial of T. Thus we can WLOG assume $f = p_T$ in the above proposition.

Speaking of polynomials and linear maps, one thing that pops into our mind is the characteristic polynomial f_T . In fact there is strong relations between p_T and f_T :

Theorem 1.4 (Cayley-Hamilton)

The characteristic polynomial of a linear operator T is its annihilating polynomial, i.e. $f_T(T) = 0$.

This theorem is also true when T is a matrix on a module. To prove it more generally, we introduce the concept of modules.

Definition 1.5 (Modules over commutative rings). Let R be a commutative ring. A set M is called a **module** over R or an R-**module** if:

- There is a binary operation (addition) $M \times M \to M : (\alpha, \beta) \mapsto \alpha + \beta$ such that M becomes a commutative group under this operation.
- There is an operation (scaling) $R \times M \to M : (r, \alpha) \mapsto r\alpha$ with assosiativity and distribution over addition (both left and right). We also require $1_R\alpha = \alpha$ for all $\alpha \in M$.

Example 1.6

A commutative group automatically has a structure of \mathbb{Z} -module. (view the group operation as addition in definition of modules)

Example 1.7

Let R = F[x], T a linear operator on V. Define $R \times V \to V : (f, \alpha) \mapsto f\alpha := f(T)\alpha$. We can check V becomes a module over R.

We can also define matrices on a commutative ring R, with addition and multiplication identical to the usual matrices. So the determinant and characteristic polynomial make sense as well.

Note that each $m \times n$ matrix represents a homomorphism $\mathbb{R}^m \to \mathbb{R}^n$.

Proof of Theorem 1.4. Take a basis $\mathcal{B} = \{\alpha_1, \ldots, \alpha_n\}$ of V. Let $A = [T]_{\mathcal{B}}$. If we view V as a R-module (R = F[x]),

$$(\alpha_1, \dots, \alpha_n)A = (T\alpha_1, \dots, T\alpha_n) = (x\alpha_1, \dots, x\alpha_n) = (\alpha_1, \dots, \alpha_n) \cdot xI_n.$$

This implies $(\alpha_1, \ldots, \alpha_n)(xI_n - A) = (0, \ldots, 0)$.

Claim 1.8. If
$$f \in F[x]$$
 s.t. $\exists B \in R^{n \times n}$ s.t. $(xI_n - A)B = fI_n$, then $f(T) = 0$.

Proof of the claim.

$$0 = (\alpha_1, \dots, \alpha_n)(xI_n - A)B = (\alpha_1, \dots, \alpha_n) \cdot fI_n = (f(T)\alpha_1, \dots, f(T)\alpha_n).$$

Since $\alpha_1, \ldots, \alpha_n$ is a basis, f(T) must equal to 0.

Now it's sufficient to prove f_T satisfies the condition in the claim. This follows from letting $B = A^{\text{adj}}$, the adjoint matrix of A.

Remark 1.9 — In fact this proof is derived from the proof of Nakayama's lemma, which is an important result in commutative algebra.

As a corollary, $p_T \mid f_T$.