

Kourosh Davoudi kourosh@ontariotechu.ca

Lecture 1: Introduction

CSCI 3070U: Analysis and Design of Algorithms

Welcome to 3070U!

In today's class:

- We get to know each other
- We learn about:
 - Course Objectives
 - Course Structure
 - Course Content
- Warm up!
 - Basic Concepts
 - Case Study: Insertion sort

Kourosh Davoudi

- Assistant Professor in Computer Science (Ontario Tech University)
- Postdoctoral: Computer and Management Science (University of Waterloo)
- PhD: Computer Science (York University)
- Previous/current industry partners:

Kourosh Davoudi

Areas of interest:

How about you?

- How do you like your major?
- What is your favorite course?
- Which jobs in computer science are you interested in?
- What do you expect from this course?
- Which programming languages have you work with?

•

Course Content

What is this course about?

Divide & conquer Dynamics Programming Greedy Algorithms

. . .

Topics in a big picture (tentative)

CSCI 3070U Outline: Course Outline and Lectures (Fall 2022)

Week	Торіс	Details	Deadline	Tutorial	
1	Algorithm Time Complexity Analysis	Introduction Case Study: Insertion Sort Case Study: Fibonacci Series Asymptotic Notations			
2	Divide and Conquer	Binary Search Merge Sort Recurrence Substitution Recursion Tree Master Theorem		Tutorial-1: (Sep-19) Running times, induction, asymptotic notation	
3		Heaps Heap Sort Priority Queue		Tutorial-2: (Sep-26) Complexity Bubble Sort, Binary Search	
4	Sort Algorithms	 Quick Sort Linear Time Sorts Radix Sort Bucket Sort Review + Midterm 	Midterm Oct-6 A2-Due Oct-09	Tutorial-3: (Oct-03) Solving Recurrence	
		(Oct 10 -Oct 16)			
5	Dynamic Programming	Fibonacci (revisit) Matrix Chain Multiplication		Tutorial-4: (Oct-17) Divide & Conquer/Heap	
6	Dynamic Programming	Longest Common Subsequence 0/1 Knapsack		Tutorial-5: (Oct-24) Review	
7	Greedy Algorithms	Counting Coins Fractional Knapsack Huffman Code		Tutorial-6: (Oct-31) Dynamic Programming, LCS	
8	Branch and Bound	Project Management 0/1 Knapsack Problem		Tutorial-7: (Nov-07) Activity Selection	
9		Graph Representation Graph Search (BFS, DFS)	A2-Release Nov-14	Tutorial-8: (Nov-14) TSP	
10		Topological Sort Minimum Spanning Tree (MSP)	A2-Due Nov-24	Tutorial-9: (Nov-21) Graph Search	
11	Graph Algorithms	Shortest Path Maximum Flow		Tutorial-10: (Nov-28) Minimum Spanning Tree	
12		Theory of Computation Review			

Evaluation

Component	Due Date	Weight
Class Participation and Activities		10 %
Assignment 1	October 9, 2022, before 11:59 PM	20 %
Assignment 2	November 24, 2022, before 11:59 PM	20 %
Midterm Exam	October 6, 2022 @ 2:10 PM (Location: TBA)	20 %
Final Exam	ТВА	30 %

How to participate?

- Attending the lectures
- Participating in in-class/out-of-class Activities
- Participating in class discussion
- Posting questions/answers to piazza
- Presenting an interesting topic in class
 - You can coordinate with me!

Tutorials

- Schedule:
 - Friday: 12:40-14:00 (40267)
 - Thursday: 11:10-12:30 PM (44493):
 - Wednesday: 12:40-14:00 (44764) :
 - Thursday: 11:10-12:30 (44937):
 - Wednesday: 12:40-14:00 (45080):
 - Monday: 12:40-14:00 (45082):
- TAs:
 - Hooria Hajiyan (hooria.hajiyan@ontariotechu.net)
 - Tamilselvan Balasuntharam (tamilselvan.Balasuntharam@ontariotechu.ca)
 - Riley Weagant (<u>riley.weagant@ontariotechu.net</u>)

Textbook

Introduction to Algorithms, Third Edition

By: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein

CLRS!

Course Repository:

All materials will be posted on Canvas

(https://learn.ontariotechu.ca/)

Communication

piazza

 Please note that questions about lectures/assignments/exams should be posted to piazza.

Sign in instruction is available in Canvas

Activities

We will use mentimeter for our class activities.

https://www.mentimeter.com/

Go to menti.com

Office Hours and Contacts

Course Instructor:

Dr. Kourosh Davoudi

- Email: kourosh@ontariotechu.ca

- Office Location: UA 4013

- Office Hours: Online by appointment

- **Phone:** (905) 721-8668 x 2779

- Webpage: http://dmlab.science.uoit.ca/hdavoudi/

How to approach this course?

Technical Outcomes for week 1:

- What is an algorithm?
- How to analysis computational time of an algorithm?
- Asymptotic notation: why do we need them?
- Examine two algorithms:
 - insertion sort and
 - Fibonacci Series

What is algorithm?

- An algorithm is any well-defined computational procedure that
 - Takes some value, or set of values, as input
 - Produces some value, or set of values, as output
- Example: Cooking a food!
- Example: Sorting algorithms:

Input: A sequence of *n* numbers $\langle a_1, a_2, \dots, a_n \rangle$.

Output: A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$.

Design and Analysis of algorithm

- Design: Method for developing algorithm
- Analysis: Abstract mathematical comparison of algorithms

- Two important aspects of an algorithm:
 - Correctness
 - Efficiency

Who needs algorithms?

- Google
 - Needs it to rank the webpages!
- Amazon
 - Needs it to find the best products!
- Facebook
 - Needs it to recommend the friendship!
- The Globe and Mail
 - Needs it to predict good users!
- A salesman
 - Needs it to save time when selling his products in different cities!

Is algorithm efficiency important?

- Generally, depends on the size of problem
 - For small inputs, the algorithm efficiency matters less
 - There are some exceptions!

- Algorithms are usually evaluated by their input size
 - But what is the input size?
 - Number of elements in input array
 - Number of line in the input file
 - ...

Algorithm Analysis?

- What kinds of analysis?
 - Time Complexity (CPU)
 - Spatial Complexity (Disk & Memory)
 - Correctness
 - Termination
 - •
- We usually consider Time Complexity!
 - Challenge: One algorithm may be faster on a fast machine!
 - Challenge: Time complexity depends on input

Algorithm Time/Spatial Complexity

- We'll examine temporal and spatial complexity:
 - Average case complexity
 - Worst case complexity (far easier)
 - Best case complexity (far easier)

- Random-Access Machine (RAM)
 - Help us avoid very specific machine
 - There is no concurrency
 - Each simple instruction such as +, -, *, /, =, >, ... takes constant amount of time

Insertion Sort in Action

https://visualgo.net/en/sorting

Try couple of inputs!


```
INSERTION-SORT (A)

1 for j = 2 to A. length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1 ... j - 1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i + 1] = A[i]

7 i = i - 1

8 A[i + 1] = key
```



```
INSERTION-SORT (A)
                                                     times
                                            cost
   for j = 2 to A. length
                                            c_1
                                                    n
      key = A[j]
                                            c_2 \qquad n-1
      // Insert A[j] into the sorted
                                                    n-1
                                            0
           sequence A[1..j-1].
                                                    n-1
                                            c_4
      i = j - 1
                                               \sum_{i=2}^{n} t_{i}
                                            C_5
      while i > 0 and A[i] > key
                                            c_6 \qquad \sum_{j=2}^{n} (t_j - 1)
          A[i+1] = A[i]
                                            c_7 \qquad \sum_{j=2}^{n} (t_j - 1)
          i = i - 1
     A[i+1] = kev
                                                    n-1
                                            C_8
```


INSERTION-SORT (A) cost			times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

 t_{j} : The number of times the while loop test in line 5 is executed for that value of j

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

INSERTION-SORT (A)		cost	times		Doct Coco
1 for $j =$	$= 2 \mathbf{to} A.length$	c_1	n	•	Best Case:
2 key	=A[j]	c_2	n-1		$t_i =$
3 // In	nsert $A[j]$ into the sorted				$\sigma_{\mathcal{J}}$
	sequence $A[1 j-1]$.	0	n-1	•	Worst Case
$4 \qquad i =$	j-1	c_4	n-1		+
5 whil	le $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$		$t_j =$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$		
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$		
8 $A[i]$	+1] = key	c_8	n-1		

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

• Best Case $t_j=1$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

• A linear function of n an + b

Worst Case

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8) .$$

Quadratic function of n

$$an^2 + bn + c$$

- Correctness
 - We often use a loop invariant to help us understand why an algorithm gives the correct answer.
 - A loop invariant is a formal statement about the relationship between variables which is true

Loop Invariant: The sub A[1...j-1] array consists of the elements originally in A[1...j-1], but in sorted order.

Loop Invariant: The sub A[1..j-1] array consists of the elements originally in A[1..j-1], but in sorted order.

```
INSERTION-SORT (A) 1. Initialization: (j = 2)

1 for j = 2 to A. length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1 ... j - 1].

4 \downarrow i = j - 1

5 while i > 0 and A[i] > key

6 A[i + 1] = A[i]

7 \downarrow i = i - 1

8 A[i + 1] = key

2. Invariant Maintenance (\bigstar)
```


Case Study: Fibonacci Series

• We define the **Fibonacci numbers** by the following recurrence:

$$F_0 = 1$$
,
 $F_1 = 1$,
 $F_i = F_{i-1} + F_{i-2}$ for $i \ge 2$.

Case Study: Fibonacci Series

```
Fig(n)
  if n == 0 or n == 1
        return 1
  \mathbf{else}
        return Fib(n-1) + Fib(n-2)
                   T(0) = c_1
                   T(1) = c_2
                   T(n) = T(n-1) + T(n-2) + c_3
```


- Why asymptotic notations?
 - Remember Insertion sort time complexity:

$$an^2 + bn + c$$

- They
 - Drop lower-order terms
 - Ignore the constant coefficient in the leading term
 - Provide another abstraction to ease analysis and focus on the important features

• O - notation

$$f(n) \in O(g(n))$$

or

$$f(n) = O(g(n))$$

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

• O - notation

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$$
.

Example:
$$2n^2 = O(n^3)$$
, with $c = 1$ and $n_0 = 2$

Examples of functions in $O(n^2)$:

$$n^2$$
 n
 $n^2 + n$ $n/1000$
 $n^2 + 1000n$ $n^{1.99999}$
 $1000n^2 + 1000n$ $n^2/\lg\lg\lg n$

• Ω - notation

$$f(n) \in \Omega(g(n))$$

$$f(n) = \Omega(g(n))$$

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

ullet Ω - notation

$$\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } c \in G(n) \text{ for all } n \geq n_0 \}$$

 $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

Example:
$$\sqrt{n} = \Omega(\lg n)$$
, with $c = 1$ and $n_0 = 16$.

Examples of functions in $\Omega(n^2)$:

$$n^{2}$$
 $n^{2} + n$
 $n^{2} - n$
 $1000n^{2} + 1000n$
 $1000n^{2} - 1000n$

$$n^{3}$$

$$n^{2.00001}$$

$$n^{2} \lg \lg \lg n$$

$$2^{2^{n}}$$

• \bigcirc - notation

• (- notation

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$
.

Example:
$$n^2/2 - 2n = \Theta(n^2)$$
, with $c_1 = 1/4$, $c_2 = 1/2$, and $n_0 = 8$.

Theorem

$$f(n) = \Theta(g(n))$$
 if and only if $f = O(g(n))$ and $f = \Omega(g(n))$

$$f(n) = \Theta(g(n))$$

Examples

(1)
$$3n^2 - 100n + 6 = O(n^2)$$

 $3n^2 > 3n^2 - 100n + 6$

(2)
$$3n^2 - 100n + 6 = \Omega(n^2)$$

 $2.99n^2 < 3n^2 - 100n + 6$

(3)
$$3n^2 - 100n + 6 \neq O(n)$$
 $cn \geq 3n^2 - 100n + 6$ You cannot find c!

(4)
$$3n^2 - 100n + 6 = \Theta(n^2)$$

because O and Ω

(5)
$$3n^2 - 100n + 6 \neq \Theta(n)$$

because Ω only

Examples

(2) Is
$$2^{2n} \neq O(2^n)$$
, $2^{2n} \leq c \cdot 2^n$ for all $n \geq n_0$? $2^{2n} = 2^n \cdot 2^n \leq c \cdot 2^n$ $2^n \leq c$ But no constant is greater than all 2^n YES, it is correct!

Theorems:

• For polynomial degree d $p(n) = \sum_{i=1}^{a} a_i \ n^i \quad (a_d > 0)$

$$p(n) \in \Theta(n^d)$$

Example: $n^3/1000 - 100n^2 - 100n + 3 \in \Theta(n^3)$

Wrap-up

- We leaned
 - Algorithm basics
 - How to analyze an algorithm:
 - Time complexity
 - Correctness
 - Asymptotic notations as a mathematical model of comparing time complexity
 - Recursive algorithms time complexity analysis needs solving recurrent equations!

