GeometronLib

1.00

Generated by Doxygen 1.8.11

Contents

1	Geo	metron	Lib 1.00 A	Ilpha Documentation	1			
2	Tode	o List			3			
3	8 Namespace Index							
	3.1	Names	space List		5			
4	Hier	archica	l Index		7			
	4.1	Class	Hierarchy		7			
5	Clas	s Index	Ĭ.		9			
	5.1	Class	List		9			
6	Nam	nespace	Docume	ntation	13			
	6.1	Gm::M	leshGener	rator Namespace Reference	13			
		6.1.1	Detailed	Description	15			
		6.1.2	Typedef	Documentation	15			
			6.1.2.1	CurveFunction	15			
			6.1.2.2	VertexModifier	15			
	6.2	Gm::M	leshModifi	er Namespace Reference	15			
		6.2.1	Detailed	Description	16			
		6.2.2	Function	Documentation	16			
			6.2.2.1	ClipMesh(const TriangleMesh &mesh, const Plane &clipPlane, TriangleMesh &front, TriangleMesh &back)	16			
			6.2.2.2	GetDefaultVertexDesc()	16			
			6.2.2.3	InterpolateBarycentric(const VertexDescriptor &vertexDesc, void *outputVertex⇔ Buffer, const void *inputVertexBuffer, std::size_t v0, std::size_t v1, std::size_t v2, const Gs::Vector3 &barycentricCoords)	16			

iv CONTENTS

7	Clas	Class Documentation				
	7.1	Gm::A	AABB< Vec, T > Class Template Reference	19		
		7.1.1 Detailed Description				
		7.1.2	Constructor & Destructor Documentation	20		
			7.1.2.1 AABB()	20		
	7.2	Gm::B	BezierCurve < P, T > Class Template Reference	20		
		7.2.1	Detailed Description	20		
	7.3	Gm::B	BezierPatch < P, T > Class Template Reference	21		
		7.3.1	Detailed Description	21		
		7.3.2	Member Function Documentation	21		
			7.3.2.1 Evaluate(const T &u, const T &v) const	21		
			7.3.2.2 GetControlPoint(unsigned int u, unsigned int v) const	22		
			7.3.2.3 SetControlPoint(unsigned int u, unsigned int v, const P &point)	22		
	7.4	Gm::M	MeshGenerator::BezierPatchDescriptor Struct Reference	22		
		7.4.1	Detailed Description	23		
		7.4.2	Member Data Documentation	23		
			7.4.2.1 segments	23		
	7.5	Gm::B	BezierTriangle < P, T > Class Template Reference	23		
		7.5.1	Detailed Description	23		
		7.5.2	Member Function Documentation	24		
			7.5.2.1 GetControlPoint(std::size_t i, std::size_t j) const	24		
			7.5.2.2 SetControlPoint(std::size_t i, std::size_t j, const P &point)	24		
	7.6	Gm::M	MeshGenerator::CapsuleDescriptor Struct Reference	24		
		7.6.1	Detailed Description	25		
		7.6.2	Member Data Documentation	25		
			7.6.2.1 ellipsoidSegments	25		
	7.7	Gm::C	ClippedPolygon< T > Struct Template Reference	25		
	7.8	Gm::M	MeshGenerator::ConeDescriptor Struct Reference	26		
		7.8.1	Detailed Description	26		
	7.9	Gm::S	Spline < P, T >::ControlPoint Struct Reference	26		

CONTENTS

7.10	Gm::Co	onvexHullT< T, PlaneEq > Class Template Reference	26
	7.10.1	Detailed Description	27
	7.10.2	Member Function Documentation	27
		7.10.2.1 Normalize()	27
	7.10.3	Member Data Documentation	27
		7.10.3.1 planes	27
7.11	Gm::Me	eshGenerator::CuboidDescriptor Struct Reference	27
	7.11.1	Detailed Description	28
7.12	Gm::Me	eshGenerator::CurveDescriptor Struct Reference	28
	7.12.1	Detailed Description	28
	7.12.2	Member Data Documentation	29
		7.12.2.1 segments	29
7.13	Gm::Me	eshGenerator::CylinderDescriptor Struct Reference	29
	7.13.1	Detailed Description	29
7.14	Gm::Me	eshGenerator::EllipsoidDescriptor Struct Reference	30
	7.14.1	Detailed Description	30
	7.14.2	Member Data Documentation	30
		7.14.2.1 segments	30
7.15	Gm::Pla	ayback::EventListener Class Reference	30
	7.15.1	Detailed Description	31
	7.15.2	Member Function Documentation	31
		7.15.2.1 OnNextFrame(Playback &sender)	31
		7.15.2.2 OnPause(Playback &sender)	31
		7.15.2.3 OnPlay(Playback &sender)	31
		7.15.2.4 OnStop(Playback &sender)	32
7.16	Gm::Fr	ustumT< T, PlaneEq > Class Template Reference	32
	7.16.1	Detailed Description	32
7.17	Gm::Ke	eyframe < T > Struct Template Reference	32
	7.17.1	Detailed Description	33
7.18	Gm::Ke	eyframeSequence Class Reference	33

vi

7.	.18.1	Detailed D	Description	34
7.	.18.2	Member F	function Documentation	34
			BuildKeys(std::vector< PositionKeyframe > positionKeyframes, std::vector< RotationKeyframe > rotationKeyframes, std::vector< ScaleKeyframe > scale Keyframes)	34
			Interpolate(Gs::Vector3 &position, Gs::Quaternion &rotation, Gs::Vector3 &scale, std::size_t from, std::size_t to, Gs::Real interpolator)	34
			Interpolate(Gs::AffineMatrix4 &matrix, std::size_t from, std::size_t to, Gs::Real interpolator)	34
		7.18.2.4	Interpolate(Gs::AffineMatrix4 &matrix, const Playback &playback)	35
7.19 G	im::Lin	ne <t>C</t>	lass Template Reference	35
7.	.19.1	Detailed D	Description	35
7.20 G	im::Lin	ne< Gs::Ve	ector2T< T >> Class Template Reference	35
7.	.20.1	Detailed D	Description	36
7.21 G	im::Lin	ne< Gs::Ve	ector3T< T > > Class Template Reference	36
7.	.21.1	Detailed D	Description	37
7.22 G	im::Pla	ayback::Lis	tLoop Class Reference	37
7.	.22.1	Detailed D	Description	37
7.	.22.2	Member F	function Documentation	38
		7.22.2.1	OnNextFrame(Playback &sender) override	38
		7.22.2.2	OnStop(Playback &sender) override	38
7.23 G	im::Pla	ayback::Loc	op Class Reference	38
7.	.23.1	Detailed D	Description	39
7.	.23.2	Member F	unction Documentation	39
		7.23.2.1	OnNextFrame(Playback &sender) override	39
7.24 G	im::OE	BB< Vec, T	> Class Template Reference	39
7.	.24.1	Detailed D	Description	40
			eShot Class Reference	40
			Description	40
			function Documentation	41
			OnNextFrame(Playback &sender) override	41
726 G	im··Pla		ngPongLoop Class Reference	41
, . <u>_</u> 0 u		a, buoiti	g. ong-cop diago frontino	71

CONTENTS vii

	7.26.1	Detailed I	Description	41
	7.26.2	Member I	Function Documentation	42
		7.26.2.1	OnNextFrame(Playback &sender) override	42
7.27	Gm::M	eshGenera	tor::PipeDescriptor Struct Reference	42
	7.27.1	Detailed I	Description	43
7.28	Gm::Pl	aneEquatio	on_NX_eq_D< T > Struct Template Reference	43
7.29	Gm::Pl	aneEquatio	on_NXD_eq_Zero< T > Struct Template Reference	43
7.30	Gm::Pl	aneT< T, I	PlaneEq > Class Template Reference	43
	7.30.1	Detailed I	Description	44
	7.30.2	Construct	or & Destructor Documentation	45
		7.30.2.1	PlaneT(const T &x, const T &y, const T &z, const T &d)	45
	7.30.3	Member F	Function Documentation	45
		7.30.3.1	MemberPoint() const	45
7.31	Gm::Pl	ayback Cla	ss Reference	45
	7.31.1	Detailed I	Description	47
	7.31.2	Member E	Enumeration Documentation	47
		7.31.2.1	State	47
	7.31.3	Member F	Function Documentation	47
		7.31.3.1	AreFramesChrono() const	47
		7.31.3.2	HasEndReached() const	47
		7.31.3.3	IsForward() const	48
		7.31.3.4	Pause(bool paused=true)	48
		7.31.3.5	Play(FrameIndex firstFrameIndex, FrameIndex lastFrameIndex, Gs::Real playbackSpeed, const std::shared_ptr< EventListener > &eventListener=nullptr)	48
		7.31.3.6	Play(FrameIndex firstFrameIndex, FrameIndex lastFrameIndex, const std↔ ::shared_ptr< EventListener > &eventListener=nullptr)	49
		7.31.3.7	Play(const std::shared_ptr< EventListener > &eventListener=nullptr)	49
		7.31.3.8	SetNextFrame(FrameIndex nextFrameIndex)	49
		7.31.3.9	SetNextFrame()	49
		7.31.3.10	Stop()	50
		7.31.3.11	Update(Gs::Real deltaTime)	50

viii CONTENTS

7.32	Gm::U	niformSplin	ne < P, T >::Polynomial Struct Reference	50
	7.32.1	Detailed	Description	51
7.33	Gm::Pr	rojectionT<	< T > Class Template Reference	51
	7.33.1	Detailed	Description	52
	7.33.2	Member	Function Documentation	52
		7.33.2.1	GetFlags() const	52
		7.33.2.2	GetMatrix(MatrixType &matrix, int flags) const	52
		7.33.2.3	SetFlags(int flags)	53
7.34	Gm::Ra	ay < T > C	Class Template Reference	53
	7.34.1	Detailed	Description	53
7.35	Gm::Sl	keleton Cla	ass Reference	54
	7.35.1	Member	Function Documentation	54
		7.35.1.1	AddRootJoint(SkeletonJointPtr &&joint)	54
		7.35.1.2	BuildJointSpace()	54
		7.35.1.3	CopyFrom(const Skeleton &skeletonModel, MakeSkeletonJointFunction make ← SkeletonJoint=nullptr)	55
		7.35.1.4	FillGlobalTransformBuffer(float *buffer, std::size_t bufferSize, bool relative ← Transform=true) const	55
		7.35.1.5	FillLocalTransformBuffer(float *buffer, std::size_t bufferSize) const	56
		7.35.1.6	RebuildPoseTransforms()	56
		7.35.1.7	RemoveRootJoint(SkeletonJoint &joint)	56
7.36	Gm::Sl	keletonJoir	nt Class Reference	57
	7.36.1	Member	Function Documentation	58
		7.36.1.1	AddSubJoint(SkeletonJointPtr &&joint)	58
		7.36.1.2	GlobalTransform(TransformMatrix &matrix) const	58
		7.36.1.3	GlobalTransform() const	58
		7.36.1.4	RemoveSubJoint(SkeletonJoint &joint)	58
	7.36.2	Member	Data Documentation	59
		7.36.2.1	jointSpaceTransform	59
		7.36.2.2	poseTransform	59
		7.36.2.3	transform	59

CONTENTS

7.37	Gm::Sp	phereT < T > Class Template Reference	59
	7.37.1	Detailed Description	60
7.38	Gm::M	eshGenerator::SpiralDescriptor Struct Reference	60
	7.38.1	Detailed Description	61
	7.38.2	Member Data Documentation	61
		7.38.2.1 mantleSegments	61
7.39	Gm::Sp	pline < P, T > Class Template Reference	61
	7.39.1	Detailed Description	61
	7.39.2	Member Function Documentation	62
		7.39.2.1 AddPoint(const P &point, const T &t)	62
7.40	Gm::M	eshGenerator::TorusDescriptor Struct Reference	62
	7.40.1	Detailed Description	62
	7.40.2	Member Data Documentation	63
		7.40.2.1 segments	63
7.41	Gm::M	eshGenerator::TorusKnotDescriptor Struct Reference	63
	7.41.1	Detailed Description	63
	7.41.2	Member Data Documentation	63
		7.41.2.1 loops	63
		7.41.2.2 segments	64
		7.41.2.3 turns	64
7.42	Gm::Tr	ansform2T < T > Class Template Reference	64
	7.42.1	Detailed Description	65
7.43	Gm::Tr	ansform3T < T > Class Template Reference	65
	7.43.1	Detailed Description	66
7.44	Gm::Tr	iangle < T > Class Template Reference	66
	7.44.1	Detailed Description	66
7.45	Gm::Tr	iangle < Gs::Vector2T < T > > Class Template Reference	67
	7.45.1	Detailed Description	67
	7.45.2	Member Function Documentation	67
		7.45.2.1 BarycentricToCartesian(const Gs::Vector3T< T > &barycentricCoord) const	67

CONTENTS

		7.45.2.2	$\label{eq:barycentricToCartesian} Barycentric To Cartesian (const Triangle < Gs:: Vector 3T < T >> \& barycentric \leftarrow Triangle) const$	68
		7.45.2.3	$\label{eq:cartesianToBarycentric} \textbf{CartesianToBarycentric} (\textbf{const Gs::Vector2T} < \textbf{T} > \textbf{\&cartesianCoord}) \ \textbf{const} . . .$	68
		7.45.2.4	Normal() const	68
7.46	Gm::Tri	iangle< G	s::Vector3T< T > > Class Template Reference	69
	7.46.1	Detailed	Description	69
	7.46.2	Member	Function Documentation	69
		7.46.2.1	$\label{eq:const} Barycentric To Cartesian (const~Gs:: Vector 3T < T > \& barycentric Coord)~const~~.$	69
		7.46.2.2	$\label{eq:barycentricToCartesian} Barycentric To Cartesian (const Triangle < Gs:: Vector 3T < T >> \& barycentric \leftarrow Triangle) const$	70
		7.46.2.3	$\label{eq:cartesianToBarycentric} Cartesian To Barycentric (const~Gs:: Vector 3T < T > \& cartesian Coord)~const~~.~.$	70
		7.46.2.4	Normal() const	70
7.47	Gm::Tri	iangleMes	h Class Reference	71
	7.47.1	Detailed	Description	72
	7.47.2	Member	Function Documentation	72
		7.47.2.1	SilhouetteEdges(Gs::Real toleranceAngle=Gs::Real(0)) const	72
		7.47.2.2	$\label{triangleNeighbors} TriangleIndex > triangleIndices, std::size_t search \hookleftarrow Depth=1, bool edgeBondOnly=false, bool searchViaPosition=false) const$	72
7.48	Gm::Ur	niformSplir	ne < P, T > Class Template Reference	73
	7.48.1	Detailed	Description	73
	7.48.2	Member	Function Documentation	73
		7.48.2.1	$\label{eq:build} \text{Build}(\text{const std::vector} < P > \text{\&points, const T \&expansion} = T(1)) \ . \ . \ . \ . \ . \ .$	73
7.49	Gm::Tri	iangleMes	h::Vertex Struct Reference	74
	7.49.1	Detailed	Description	74
7.50	Gm::M	eshModifie	er::VertexAttributeDescriptor Struct Reference	74
	7.50.1	Detailed	Description	75
7.51	Gm::M	eshModifie	er::VertexDescriptor Struct Reference	75
	7.51.1	Detailed	Description	75
	7.51.2	Member	Data Documentation	76
		7.51.2.1	stride	76
7.52	Gm::Sk	keletonJoir	nt::VertexWeight Struct Reference	76
	7.52.1	Detailed	Description	76

Index

77

GeometronLib 1.00 Alpha Documentation

The GeometronLib provides basic functionality for 2D and 3D geometrical objects, such as mesh generation, basic collision detection, and respective data structures for lines, rays, spheres etc.

Prerequisites:

• GaussianLib header files

Features:

- AABB (Axis-Aligned Bounding-Box)
- OBB (Oriented Bounding-Box)
- Line
- Ray
- Transform2 (3x3 Matrix Manager for 2D Transformations)
- Transform3 (4x4 Matrix Manager for 3D Transformations)
- Frustum (Frustum of Pyramid)
- Projection (4x4 Projection Matrix Manager)
- Sphere
- Spline
- TriangleMesh
- MeshGenerator
- BezierCurve
- BezierTriangle

Todo List

```
Class Gm::BezierTriangle < P, T >
This is incomplete!!!

Class Gm::Spline < P, T >
!!!OPTIMIZE THIS!!!
```

4 Todo List

Namespace Index

3.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

Gm::MeshGenerator	
Namespace with all mesh generation functions	. 13
Gm::MeshModifier	
Namespace with all mesh modifier functions	. 15

6 Namespace Index

Hierarchical Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Gm::AABB< Vec, T >	19
$Gm :: BezierCurve < P, T > \dots $	20
$Gm :: BezierPatch < P, T > \dots $	
Gm::BezierPatch< Gs::Real >	
Gm::MeshGenerator::BezierPatchDescriptor	
$\label{eq:margine} \text{Gm::BezierTriangle} < P, T > \dots \dots$	
Gm::MeshGenerator::CapsuleDescriptor	
Gm::ClippedPolygon< T >	
Gm::MeshGenerator::ConeDescriptor	
Gm::Spline < P, T >::ControlPoint	
Gm::ConvexHullT< T, PlaneEq >	26
$\label{eq:Gm::FrustumT} \textit{Gm::FrustumT} < \textit{T, PlaneEq} > \ \ldots \$. 32
Gm::MeshGenerator::CuboidDescriptor	27
Gm::MeshGenerator::CurveDescriptor	28
Gm::MeshGenerator::CylinderDescriptor	
Gm::MeshGenerator::EllipsoidDescriptor	30
Gm::Playback::EventListener	30
Gm::Playback::ListLoop	. 37
Gm::Playback::Loop	. 38
Gm::Playback::OneShot	
Gm::Playback::PingPongLoop	. 41
Gm::Keyframe < T >	32
Gm::KeyframeSequence	
Gm::Line< T >	
Gm::Line < Gs::Vector2T < T > >	
Gm::Line < Gs::Vector3T < T > >	
Gm::OBB< Vec, T >	39
Gm::MeshGenerator::PipeDescriptor	42
Gm::PlaneEquation_NX_eq_D <t></t>	43
Gm::PlaneEquation_NXD_eq_Zero < T >	43
$Gm::PlaneT\dots$	43
Gm::Playback	45
Gm::UniformSpline < P, T >::Polynomial	50
Gm::ProjectionT< T >	51
Gm::Rav< T >	53

8 Hierarchical Index

4
7
9
0
1
2
3
4
5
6
7
9
1
3
4
4
5
6

Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Gm::AABB< Vec, T >	
Base AABB (Axis-Aligned Bounding-Box) class	19
Gm::BezierCurve < P, T >	
Curve in BB-Form (Bernstein Bezier)	20
Gm::BezierPatch< P, T >	
Curved patch in BB-Form (Bernstein Bezier)	21
Gm::MeshGenerator::BezierPatchDescriptor	
Descriptor structure for a Bezier patch mesh	22
Gm::BezierTriangle < P, T >	
Curved triangle patch in BB-Form (Bernstein Bezier)	23
Gm::MeshGenerator::CapsuleDescriptor	
Descriptor structure for a capsule mesh (i.e. cylinder with a half-sphere at top and bottom)	24
$Gm \text{::} ClippedPolygon < T > \dots $	25
Gm::MeshGenerator::ConeDescriptor	
Descriptor structure for a cone mesh	26
Gm::Spline < P, T >::ControlPoint	26
$\label{eq:convexHullT} \textit{Gm::} \textit{ConvexHullT} < \textit{T, PlaneEq} > \dots $	26
Gm::MeshGenerator::CuboidDescriptor	
Descriptor structure for a cuboid (also cube) mesh	27
Gm::MeshGenerator::CurveDescriptor	
Descriptor structure for a curve mesh (as a rope along a given curve function)	28
Gm::MeshGenerator::CylinderDescriptor	
Descriptor structure for a cylinder mesh	29
Gm::MeshGenerator::EllipsoidDescriptor	
Descriptor structure for an ellispoid (also sphere) mesh	30
Gm::Playback::EventListener	
Playback event listener interface	30
Gm::FrustumT< T, PlaneEq >	
Base frustum class	32
Gm::Keyframe < T >	
Keyframe template structure	32
Gm::KeyframeSequence	
Animation keyframe sequence class. This class is used to build the transformations for an ani-	
mation	33
Gm::Line< T >	
Base line class	35

10 Class Index

Gm::Line < Gs::Vector2T < T > >	
Specialized line class with 2D vectors	35
Gm::Line < Gs::Vector3T < T > >	
Specialized line class with 3D vectors	36
Gm::Playback::ListLoop	
List loop playback event listener	37
Gm::Playback::Loop	
Loop playback event listener	38
Gm::OBB< Vec, T >	
Base OBB (Oriented Bounding-Box) class	39
Gm::Playback::OneShot	
One shot playback event listener	40
Gm::Playback::PingPongLoop	
Ping-pong loop playback event listener	41
Gm::MeshGenerator::PipeDescriptor	
Descriptor structure for a pipe mesh (i.e. cylinder with a hole)	42
Gm::PlaneEquation_NX_eq_D< T >	43
Gm::PlaneEquation_NXD_eq_Zero <t></t>	43
Gm::PlaneT< T, PlaneEq >	
Plane base class with components: 'normal' and 'distance'	43
Gm::Playback	
Animation playback class	45
Gm::UniformSpline < P, T >::Polynomial	
Polynomial structure with four coefficients	50
Gm::ProjectionT< T >	
Projection class	51
Gm:Ray < T >	
Ray base class. It's direction must always be normalized!	53
Gm::Skeleton	54
Gm::SkeletonJoint	57
Gm::SphereT< T >	
Base sphere class	59
Gm::MeshGenerator::SpiralDescriptor	
Descriptor structure for a spiral mesh	60
Gm::Spline < P, T >	
Spline base class	61
Gm::MeshGenerator::TorusDescriptor	
Descriptor structure for a torus mesh	62
Gm::MeshGenerator::TorusKnotDescriptor	
Descriptor structure for a torus-knot mesh (uses the curve generator)	63
Gm::Transform2T < T >	
2D transformation class	64
Gm::Transform3T< T >	
3D transformation class	65
Gm::Triangle < T >	
Triangle base class	66
Gm::Triangle < Gs::Vector2T < T > >	
Template specializationn for 2D triangles	67
Gm::Triangle < Gs::Vector3T < T > >	
Template specializationn for 3D triangles	69
Gm::TriangleMesh	
Triangle mesh base class	71
Gm::UniformSpline < P, T >	
Spline class with uniform weights	73
Gm::TriangleMesh::Vertex	
Base vertex structure. Contains the members: position, normal, and texCoord	74
Gm::MeshModifier::VertexAttributeDescriptor	
Vertex attribute descriptor structure	74

11

76

5.1 Class List

12 Class Index

Namespace Documentation

6.1 Gm::MeshGenerator Namespace Reference

Namespace with all mesh generation functions.

Classes

· struct BezierPatchDescriptor

Descriptor structure for a Bezier patch mesh.

struct CapsuleDescriptor

Descriptor structure for a capsule mesh (i.e. cylinder with a half-sphere at top and bottom).

struct ConeDescriptor

Descriptor structure for a cone mesh.

struct CuboidDescriptor

Descriptor structure for a cuboid (also cube) mesh.

struct CurveDescriptor

Descriptor structure for a curve mesh (as a rope along a given curve function).

• struct CylinderDescriptor

Descriptor structure for a cylinder mesh.

struct EllipsoidDescriptor

Descriptor structure for an ellispoid (also sphere) mesh.

struct PipeDescriptor

Descriptor structure for a pipe mesh (i.e. cylinder with a hole).

· struct SpiralDescriptor

Descriptor structure for a spiral mesh.

struct TorusDescriptor

Descriptor structure for a torus mesh.

• struct TorusKnotDescriptor

Descriptor structure for a torus-knot mesh (uses the curve generator).

Typedefs

```
• using VertexModifier = std::function < Gs::Real (Gs::Real u, Gs::Real v)>
```

Vertex modifier function interface.

• using CurveFunction = std::function < Gs::Vector3(Gs::Real t)>

Function interface for an arbitrary $R ext{-}> R^{\wedge}3$ transformation.

Functions

void GenerateCuboid (const CuboidDescriptor &desc, TriangleMesh &mesh)

Generates a cuboid (also cube) mesh with the specified descriptor and appends the result to the specified output mesh.

TriangleMesh GenerateCuboid (const CuboidDescriptor &desc)

Generates and returns a new cuboid (also cube) mesh with the specified descriptor.

• void GenerateEllipsoid (const EllipsoidDescriptor &desc, TriangleMesh &mesh)

Generates an ellipsoid (also sphere) mesh with the specified descriptor and appends the result to the specified output mesh

TriangleMesh GenerateEllipsoid (const EllipsoidDescriptor &desc)

Generates and returns a new ellipsoid (also sphere) mesh with the specified descriptor.

· void GenerateCone (const ConeDescriptor &desc, TriangleMesh &mesh)

Generates a cone mesh with the specified descriptor and appends the result to the specified output mesh.

TriangleMesh GenerateCone (const ConeDescriptor &desc)

Generates and returns a new cone mesh with the specified descriptor.

void GenerateCylinder (const CylinderDescriptor &desc, TriangleMesh &mesh)

Generates a cylinder mesh with the specified descriptor and appends the result to the specified output mesh.

TriangleMesh GenerateCylinder (const CylinderDescriptor &desc)

Generates and returns a new cylinder mesh with the specified descriptor.

void GeneratePipe (const PipeDescriptor &desc, TriangleMesh &mesh)

Generates a pipe mesh (i.e. cylinder with a hole) with the specified descriptor and appends the result to the specified output mesh.

TriangleMesh GeneratePipe (const PipeDescriptor &desc)

Generates and returns a new pipe (i.e. cylinder with a hole) mesh with the specified descriptor.

void GenerateCapsule (const CapsuleDescriptor &desc, TriangleMesh &mesh)

Generates a capsule mesh (i.e. cylinder with a half-sphere at top and bottom) with the specified descriptor and appends the result to the specified output mesh.

• TriangleMesh GenerateCapsule (const CapsuleDescriptor &desc)

Generates and returns a new capsule mesh (i.e. cylinder with a half-sphere at top and bottom) with the specified descriptor.

void GenerateTorus (const TorusDescriptor &desc, TriangleMesh &mesh)

Generates a torus mesh with the specified descriptor and appends the result to the specified output mesh.

• TriangleMesh GenerateTorus (const TorusDescriptor &desc)

Generates and returns a new torus mesh with the specified descriptor.

void GenerateTorusKnot (const TorusKnotDescriptor &desc, TriangleMesh &mesh)

Generates a torus-knot mesh with the specified descriptor and appends the result to the specified output mesh.

TriangleMesh GenerateTorusKnot (const TorusKnotDescriptor &desc)

Generates and returns a new torus-knot mesh with the specified descriptor.

· void GenerateSpiral (const SpiralDescriptor &desc, TriangleMesh &mesh)

Generates a spiral mesh with the specified descriptor and appends the result to the specified output mesh.

TriangleMesh GenerateSpiral (const SpiralDescriptor &desc)

Generates and returns a new spiral mesh with the specified descriptor.

void GenerateCurve (const CurveDescriptor &desc, TriangleMesh &mesh)

Generates a curve mesh (as a rope along a given curve function) with the specified descriptor and appends the result to the specified output mesh.

TriangleMesh GenerateCurve (const CurveDescriptor &desc)

Generates and returns a new curve mesh (as a rope along a given curve function) with the specified descriptor.

void GenerateBezierPatch (const BezierPatchDescriptor &desc, TriangleMesh &mesh)

Generates a Bezier patch mesh with the specified descriptor and appends the result to the specified output mesh.

TriangleMesh GenerateBezierPatch (const BezierPatchDescriptor &desc)

Generates and returns a new Bezier patch mesh with the specified descriptor.

6.1.1 Detailed Description

Namespace with all mesh generation functions.

6.1.2 Typedef Documentation

6.1.2.1 using Gm::MeshGenerator::CurveFunction = typedef std::function < Gs::Vector3(Gs::Real t) >

Function interface for an arbitrary R -> R^3 transformation.

Parameters

in	t	Specifies the curve progression. This is in the range [0, 1]].
----	---	--	----

Returns

3D point which lies on the curve at the position 't'.

See also

CurveDescriptor

6.1.2.2 using Gm::MeshGenerator::VertexModifier = typedef std::function<Gs::Real (Gs::Real u, Gs::Real v)>

Vertex modifier function interface.

Parameters

in	и	Specifies the interpolation factor U. This is in the range [0	
in	V	Specifies the interpolation factor V. This is in the range [0, 1].	

Returns

Interpolation factor which should be in the range [0, 1].

Remarks

This can be used for a couple of mesh generators, to adjust the final vertex position.

See also

TorusKnotDescriptor

6.2 Gm::MeshModifier Namespace Reference

Namespace with all mesh modifier functions.

Classes

struct VertexAttributeDescriptor

Vertex attribute descriptor structure.

struct VertexDescriptor

Vertex descriptor structure.

Functions

• const VertexDescriptor & GetDefaultVertexDesc ()

Returns the vertex descriptor for the default vertex format.

 void InterpolateBarycentric (const VertexDescriptor &vertexDesc, void *outputVertexBuffer, const void *inputVertexBuffer, std::size_t v0, std::size_t v1, std::size_t v2, const Gs::Vector3 &barycentricCoords)

Makes a barycentric interpolation between the three specified vertices.

void ClipMesh (const TriangleMesh &mesh, const Plane &clipPlane, TriangleMesh &front, TriangleMesh &back)

6.2.1 Detailed Description

Namespace with all mesh modifier functions.

6.2.2 Function Documentation

6.2.2.1 void Gm::MeshModifier::ClipMesh (const TriangleMesh & *mesh*, const Plane & *clipPlane*, TriangleMesh & *front*, TriangleMesh & *back*)

Clips this triangle mesh into a front- and back sided mesh by the specified clipping plane.

See also

ClipTriangle

6.2.2.2 const VertexDescriptor& Gm::MeshModifier::GetDefaultVertexDesc ()

Returns the vertex descriptor for the default vertex format.

See also

TriangleMesh::Vertex

6.2.2.3 void Gm::MeshModifier::InterpolateBarycentric (const VertexDescriptor & vertexDesc, void * outputVertexBuffer, const void * inputVertexBuffer, std::size_t v0, std::size_t v1, std::size_t v2, const Gs::Vector3 & barycentricCoords)

Makes a barycentric interpolation between the three specified vertices.

Parameters

in	vertexDesc	Specifies the vertex descriptor for both output and input vertex buffers.
out	outputVertexBuffer	Specifies the output vertex buffer where the interpolated vertex is to be stored.
in	inputVertexBuffer	Specifies the input vertex buffer from where the three vertices are to be read.
in	v0	Specifies the first vertex index for the triangle to interpolate the barycentric
		coordinates.
in	v1	Specifies the second vertex index for the triangle to interpolate the barycentric
		coordinates.
in	v2	Specifies the thrid vertex index for the triangle to interpolate the barycentric
		coordinates.
in	barycentricCoords	Specifies the barycentric coordinates. The sum of all components must be 1.

Class Documentation

7.1 Gm::AABB < Vec, T > Class Template Reference

Base AABB (Axis-Aligned Bounding-Box) class.

```
#include <AABB.h>
```

Public Types

• using **ThisType** = **AABB**< Vec, T >

Public Member Functions

- AABB ()
- AABB (const Vec< T > &min, const Vec< T > &max)
- void Reset ()

Sets the minimum to the highest possible value and the maximum to the lowest possible value.

void Reset (const Vec< T > &point)

Sets the minimum and maximum to the specified point.

- void Insert (const Vec< T > &point)
- void Insert (const ThisType &aabb)
- void Repair ()
- Vec< T > **Size** () const
- Vec< T > Center () const
- std::vector< Line< Vec< T >> Edges () const

Returns the list of all edges of this AABB.

• template<typename C >

```
AABB< Vec, C > Cast () const
```

Public Attributes

- Vec< T > min
- Vec< T > max

20 Class Documentation

7.1.1 Detailed Description

```
template < template < typename > class Vec, typename T > class Gm::AABB < Vec, T >
```

Base AABB (Axis-Aligned Bounding-Box) class.

7.1.2 Constructor & Destructor Documentation

```
7.1.2.1 template < template < typename > class Vec, typename T > Gm::AABB < Vec, T >::AABB( ) [inline]
```

Constructs a maximal invald bounding-box, i.e. min has the maximal values possible, and max has the minimal values possible.

The documentation for this class was generated from the following file:

· AABB.h

7.2 Gm::BezierCurve < P, T > Class Template Reference

Curve in BB-Form (Bernstein Bezier).

```
#include <BezierCurve.h>
```

Public Member Functions

- P Evaluate (const T &t) const
- P operator() (const T &t) const

Public Attributes

• std::vector< P > controlPoints

7.2.1 Detailed Description

```
template < typename P, typename T > class Gm::BezierCurve < P, T >
```

Curve in BB-Form (Bernstein Bezier).

Template Parameters

Р	Specifies the type of the control points.	
T	Specifies the basic data type. This should be float or double.	

The documentation for this class was generated from the following file:

· BezierCurve.h

7.3 Gm::BezierPatch < P, T > Class Template Reference

Curved patch in BB-Form (Bernstein Bezier).

```
#include <BezierPatch.h>
```

Public Member Functions

- P operator() (const T &u, const T &v) const
- P Evaluate (const T &u, const T &v) const

Evaluates the bezier patch.

• void SetControlPoint (unsigned int u, unsigned int v, const P &point)

Sets the specified control point.

• P GetControlPoint (unsigned int u, unsigned int v) const

Returns the specified control point.

const std::vector< P > & GetControlPoints () const

Returns the list of all control points of this bezier patch.

· void SetOrder (unsigned int order)

Sets the order of this bezier patch. By default 0.

• unsigned int GetOrder () const

Returns the order of this bezier triangle.

7.3.1 Detailed Description

```
template<typename P, typename T> class Gm::BezierPatch<br/>< P, T >
```

Curved patch in BB-Form (Bernstein Bezier).

Template Parameters

P Specifies the type of the control points.

7.3.2 Member Function Documentation

7.3.2.1 template<typename P, typename T> P Gm::BezierPatch< P, T>::Evaluate (const T & u, const T & v) const [inline]

Evaluates the bezier patch.

22 Class Documentation

Parameters

in	и	Specifies the interpolation value in U direction. This should be in the range [0, 1].
in	V	Specifies the interpolation value in V direction. This should be in the range [0, 1].

7.3.2.2 template<typename P, typename T> P Gm::BezierPatch< P, T>::GetControlPoint (unsigned int u, unsigned int v) const [inline]

Returns the specified control point.

Parameters

in	и	Specifies the index in U direction. Must be in the range [0, GetOrder()].
in	V	Specifies the index in V direction. Must be in the range [0, GetOrder()].

7.3.2.3 template<typename P, typename T> void Gm::BezierPatch< P, T>::SetControlPoint (unsigned int u, unsigned int v, const P & point) [inline]

Sets the specified control point.

Parameters

in	и	Specifies the index in U direction. Must be in the range [0, GetOrder()].	
in	V	Specifies the index in V direction. Must be in the range [0, GetOrder()].	
in	point	Specifies the new control point.	

The documentation for this class was generated from the following file:

· BezierPatch.h

7.4 Gm::MeshGenerator::BezierPatchDescriptor Struct Reference

Descriptor structure for a Bezier patch mesh.

#include <MeshGenerator.h>

Public Attributes

· BezierPatch3 bezierPatch

Bezier patch control points.

- Gs::Vector2ui segments = Gs::Vector2ui(20, 20)
- bool alternateGrid = false

Specifies whether the face grids are to be alternating or uniform. By default false.

• bool backFacing = false

Specifies whether the faces point to the back or to the front (default).

7.4.1 Detailed Description

Descriptor structure for a Bezier patch mesh.

7.4.2 Member Data Documentation

7.4.2.1 Gs::Vector2ui Gm::MeshGenerator::BezierPatchDescriptor::segments = Gs::Vector2ui(20, 20)

Segmentation in U (x component), and V (y component) direction. Each component will be clamped to [1, +inf). By default (20, 20).

The documentation for this struct was generated from the following file:

· MeshGenerator.h

7.5 Gm::BezierTriangle < P, T > Class Template Reference

Curved triangle patch in BB-Form (Bernstein Bezier).

```
#include <BezierTriangle.h>
```

Public Member Functions

- P operator() (const T &u, const T &v) const
- P Evaluate (const T &s, const T &t, const T &u) const
- void SetControlPoint (std::size_t i, std::size_t j, const P &point)

Sets the specified control point.

P GetControlPoint (std::size_t i, std::size_t j) const

Returns the specified control point.

• const std::vector< P > & GetControlPoints () const

Returns the list of all control points of this bezier triangle.

void SetOrder (std::size_t order)

Sets the order of this bezier triangle. By default 0.

std::size_t GetOrder () const

Returns the order of this bezier triangle.

7.5.1 Detailed Description

```
template<typename P, typename T>class Gm::BezierTriangle< P, T>
```

Curved triangle patch in BB-Form (Bernstein Bezier).

Template Parameters

P | Specifies the type of the control points.

24 Class Documentation

Todo This is incomplete!!!

7.5.2 Member Function Documentation

7.5.2.1 template<typename P , typename T > P Gm::BezierTriangle < P, T >::GetControlPoint (std::size_t i, std::size_t j) const [inline]

Returns the specified control point.

Parameters

in	i	Specifies the first index.
in	j	Specifies the second index.

Remarks

The index parameters must always satisfy the following equation: $0 \le i + j \le GetOrder()$

7.5.2.2 template<typename P, typename T > void Gm::BezierTriangle < P, T >::SetControlPoint (std::size_t i, std::size_t j, const P & point) [inline]

Sets the specified control point.

Parameters

in	i	Specifies the first index.
in	j	Specifies the second index.
in	point	Specifies the new control point.

Remarks

The index parameters must always satisfy the following equation: $0 \le i + j \le GetOrder()$

The documentation for this class was generated from the following file:

· BezierTriangle.h

7.6 Gm::MeshGenerator::CapsuleDescriptor Struct Reference

Descriptor structure for a capsule mesh (i.e. cylinder with a half-sphere at top and bottom).

#include <MeshGenerator.h>

Public Attributes

- Gs::Vector3 radius = Gs::Vector3(Gs::Real(0.5))

 Radius of the top- and bottom half-ellipsoids in X, Y, and Z direction. By default (0.5, 0.5, 0.5).
- Gs::Real height = Gs::Real(1)

Capsule height (without top- and bottom half-sphere). By default 1.

• Gs::Vector2ui mantleSegments = Gs::Vector2ui(20, 1)

Segmentation around the cylinder (x component), and height (y component). By default (20, 1).

- unsigned int ellipsoidSegments = 10
- bool alternateGrid = false

Specifies whether the face grids are to be alternating or uniform. By default false.

7.6.1 Detailed Description

Descriptor structure for a capsule mesh (i.e. cylinder with a half-sphere at top and bottom).

7.6.2 Member Data Documentation

7.6.2.1 unsigned int Gm::MeshGenerator::CapsuleDescriptor::ellipsoidSegments = 10

Segmentation of the top- and bottom half-ellipsoids. Each component will be clamped to [2, +inf). By default 10.

The documentation for this struct was generated from the following file:

· MeshGenerator.h

7.7 Gm::ClippedPolygon < T > Struct Template Reference

Public Member Functions

void AddVertex (const Gs::Vector3T< T > &vertex)

Public Attributes

• unsigned char count = 0

Number of vertices, used for this clipped triangle. This is either 3 or 4.

std::array< Gs::Vector3T< T >, 4 > vertices

The documentation for this struct was generated from the following file:

· TriangleCollision.h

26 Class Documentation

7.8 Gm::MeshGenerator::ConeDescriptor Struct Reference

Descriptor structure for a cone mesh.

```
#include <MeshGenerator.h>
```

Public Attributes

- Gs::Vector2 radius = Gs::Vector2(Gs::Real(0.5))
 - Cone radius in U (x component), and V (y component) direction. By default (0.5, 0.5).
- Gs::Real height = Gs::Real(1)

Cone height. By default 1.

• Gs::Vector2ui mantleSegments = Gs::Vector2ui(20, 1)

Segmentation around the cone (x component), and height (y component). By default (20, 1).

• unsigned int coverSegments = 1

Segmentation of the bottom cover. If 0, no bottom cover is generated. By default 1.

bool alternateGrid = false

Specifies whether the face grids are to be alternating or uniform. By default false.

7.8.1 Detailed Description

Descriptor structure for a cone mesh.

The documentation for this struct was generated from the following file:

· MeshGenerator.h

7.9 Gm::Spline < P, T >::ControlPoint Struct Reference

Public Attributes

- P point
- T interval

The documentation for this struct was generated from the following file:

· Spline.h

7.10 Gm::ConvexHullT< T, PlaneEq> Class Template Reference

```
#include <ConvexHull.h>
```

Inheritance diagram for Gm::ConvexHullT< T, PlaneEq >:

Public Member Functions

- ConvexHullT (std::size_t planeCount)
- void Normalize ()

Normalizes all planes of this convex hull.

bool IsPointInside (const Gs::Vector3T< T > &point)

Returns true if the specified point is inside the convex hull.

bool IsSphereInside (const SphereT< T > &sphere)

Returns true if the specified sphere is inside the convex hull (or just intersecting one of its planes).

Public Attributes

std::vector< PlaneT< T, PlaneEq > > planes

7.10.1 Detailed Description

```
template<typename T, typename PlaneEq = DefaultPlaneEquation<T>> class Gm::ConvexHullT< T, PlaneEq >
```

Convex hull base class. Here a convex hull is constructed so that all plane normals point out of the hull.

7.10.2 Member Function Documentation

```
7.10.2.1 template<typename T , typename PlaneEq = DefaultPlaneEquation<T>> void Gm::ConvexHullT< T, PlaneEq >::Normalize ( ) [inline]
```

Normalizes all planes of this convex hull.

See also

PlaneT::Normalize

7.10.3 Member Data Documentation

```
7.10.3.1 template<typename T , typename PlaneEq = DefaultPlaneEquation<T>> std::vector< PlaneT<T, PlaneEq>> Gm::ConvexHullT< T, PlaneEq>::planes
```

List of all planes which form the convex hull. This must be at least 3 planes to form a valid convex hull.

The documentation for this class was generated from the following file:

· ConvexHull.h

7.11 Gm::MeshGenerator::CuboidDescriptor Struct Reference

Descriptor structure for a cuboid (also cube) mesh.

```
#include <MeshGenerator.h>
```

Public Attributes

```
    Gs::Vector3 size = Gs::Vector3(Gs::Real(1.0))
        Cuboid size. By default (1, 1, 1).

    Gs::Vector3ui segments = Gs::Vector3ui(1, 1, 1)
    Cuboid segmentation. Each component will be clamped to [1, +inf). By default (1, 1, 1).
    bool alternateGrid = false
    Specifies whether the face grids are to be alternating or uniform. By default false.
```

7.11.1 Detailed Description

Descriptor structure for a cuboid (also cube) mesh.

The documentation for this struct was generated from the following file:

· MeshGenerator.h

7.12 Gm::MeshGenerator::CurveDescriptor Struct Reference

Descriptor structure for a curve mesh (as a rope along a given curve function).

```
#include <MeshGenerator.h>
```

Public Attributes

• CurveFunction curveFunction = nullptr

Curve progression function.

• Gs::Real radius = Gs::Real(0.25)

Radius of the tube which forms the curve. By default 0.25.

• Gs::Vector2ui segments = Gs::Vector2ui(20, 20)

Segmentation in U (x component), and V (y component) direction.

• bool alternateGrid = false

Specifies whether the face grids are to be alternating or uniform. By default false.

VertexModifier vertexModifier = nullptr

Vertex modifier to adjust the radius during mesh generation.

7.12.1 Detailed Description

Descriptor structure for a curve mesh (as a rope along a given curve function).

7.12.2 Member Data Documentation

7.12.2.1 Gs::Vector2ui Gm::MeshGenerator::CurveDescriptor::segments = Gs::Vector2ui(20, 20)

Segmentation in U (x component), and V (y component) direction.

Remarks

Each component will be clamped to [3, +inf). By default (20, 20).

The documentation for this struct was generated from the following file:

· MeshGenerator.h

7.13 Gm::MeshGenerator::CylinderDescriptor Struct Reference

Descriptor structure for a cylinder mesh.

```
#include <MeshGenerator.h>
```

Public Attributes

- Gs::Vector2 radius = Gs::Vector2(Gs::Real(0.5))
 Cylinder radius in U (x component), and V (y component) direction. By default (0.5, 0.5).
- Gs::Real height = Gs::Real(1)

Cylinder height. By default 1.

• Gs::Vector2ui mantleSegments = Gs::Vector2ui(20, 1)

Segmentation around the cylinder (x component), and height (y component). By default (20, 1).

• unsigned int topCoverSegments = 1

Segmentation of the top cover. If 0, no top cover is generated. By default 1.

• unsigned int bottomCoverSegments = 1

Segmentation of the bottom cover. If 0, no bottom cover is generated. By default 1.

• bool alternateGrid = false

Specifies whether the face grids are to be alternating or uniform. By default false.

7.13.1 Detailed Description

Descriptor structure for a cylinder mesh.

The documentation for this struct was generated from the following file:

· MeshGenerator.h

7.14 Gm::MeshGenerator::EllipsoidDescriptor Struct Reference

Descriptor structure for an ellispoid (also sphere) mesh.

#include <MeshGenerator.h>

Public Attributes

- Gs::Vector3 radius = Gs::Vector3(Gs::Real(0.5))
 Radius in X, Y, and Z direction. By default (0.5, 0.5, 0.5).
- Gs::Vector2ui segments = Gs::Vector2ui(20, 10)
- bool alternateGrid = false

Specifies whether the face grids are to be alternating or uniform. By default false.

7.14.1 Detailed Description

Descriptor structure for an ellispoid (also sphere) mesh.

7.14.2 Member Data Documentation

7.14.2.1 Gs::Vector2ui Gm::MeshGenerator::EllipsoidDescriptor::segments = Gs::Vector2ui(20, 10)

Segmentation in U (x component), and V (y component) direction. X component will be clamped to [3, +inf), Y component will be clamped to [2, +inf). By default (20, 10).

The documentation for this struct was generated from the following file:

· MeshGenerator.h

7.15 Gm::Playback::EventListener Class Reference

Playback event listener interface.

#include <Playback.h>

Inheritance diagram for Gm::Playback::EventListener:

Public Member Functions

- virtual void OnPlay (Playback &sender)
 - Receives the 'playback start' event. All playback configurations are done when this event is posted.
- virtual void OnPause (Playback &sender)
 - Receives the 'playback paused' event. All playback configurations are done when this event is posted.
- virtual void OnStop (Playback &sender)
- virtual void OnNextFrame (Playback &sender)

7.15.1 Detailed Description

Playback event listener interface.

7.15.2 Member Function Documentation

```
7.15.2.1 virtual void Gm::Playback::EventListener::OnNextFrame ( Playback & sender ) [inline], [virtual]
```

Receives the 'next frame' event. This event will be posted in the "Playback::Update" function.

Remarks

Depending on the playback speed sometimes this event will be posted several times for a single call to the "Playback::Update" function. This happens when several frames will be skipped, i.e. every single frame can be examined with this event listener interface, no matter how fast the playback speed is. All playback configurations for the next frame are done when this event is posted. This function should set the next frame (see 'nextFrame' field).

See also

Playback::Update Playback::nextFrame

Reimplemented in Gm::Playback::ListLoop, Gm::Playback::PingPongLoop, Gm::Playback::Loop, and Gm:: Playback::OneShot.

```
7.15.2.2 virtual void Gm::Playback::EventListener::OnPause ( Playback & sender ) [inline], [virtual]
```

Receives the 'playback paused' event. All playback configurations are done when this event is posted.

See also

Playback::Pause

```
7.15.2.3 virtual void Gm::Playback::EventListener::OnPlay ( Playback & sender ) [inline], [virtual]
```

Receives the 'playback start' event. All playback configurations are done when this event is posted.

See also

Playback::Play

```
7.15.2.4 virtual void Gm::Playback::EventListener::OnStop(Playback & sender) [inline], [virtual]
```

Receives the 'playback stopped' event. All playback configurations are done when this event is posted.

Remarks

This will only be posted if the playback was previously being played or paused.

See also

Playback::Stop

Reimplemented in Gm::Playback::ListLoop.

The documentation for this class was generated from the following file:

· Playback.h

7.16 Gm::FrustumT < T, PlaneEq > Class Template Reference

Base frustum class.

```
#include <Frustum.h>
```

Inheritance diagram for Gm::FrustumT < T, PlaneEq >:

```
Gm::ConvexHullT< T, PlaneEq >

Gm::FrustumT< T, PlaneEq >
```

7.16.1 Detailed Description

```
template<typename T, typename PlaneEq = DefaultPlaneEquation<T>> class Gm::FrustumT< T, PlaneEq >
```

Base frustum class.

The documentation for this class was generated from the following file:

• Frustum.h

7.17 Gm::Keyframe < T > Struct Template Reference

Keyframe template structure.

```
#include <KeyframeSequence.h>
```

Public Member Functions

- Keyframe (const Keyframe < T > &)=default
- Keyframe (const T &key, std::size_t frame)

Public Attributes

T key

Keyframe value (commonly Vector3 for position and scale, or Quaternion for rotation).

std::size_t frame = 0

Keyframe index.

7.17.1 Detailed Description

```
template<typename T> struct Gm::Keyframe< T>
```

Keyframe template structure.

The documentation for this struct was generated from the following file:

· KeyframeSequence.h

7.18 Gm::KeyframeSequence Class Reference

Animation keyframe sequence class. This class is used to build the transformations for an animation.

```
#include <KeyframeSequence.h>
```

Public Member Functions

- · void ClearKeys ()
- void BuildKeys (std::vector< PositionKeyframe > positionKeyframes, std::vector< RotationKeyframe > rotationKeyframes, std::vector< ScaleKeyframe > scaleKeyframes)

Builds the interpolated keys by the specified keyframes.

• void Interpolate (Gs::Vector3 &position, Gs::Quaternion &rotation, Gs::Vector3 &scale, std::size_t from, std
::size_t to, Gs::Real interpolator)

Interpolates the specified keyframes and writes the result into the respective output parameter.

• void Interpolate (Gs::AffineMatrix4 &matrix, std::size_t from, std::size_t to, Gs::Real interpolator)

Interpolates the specified keyframes and writes the result into the output matrix.

void Interpolate (Gs::AffineMatrix4 &matrix, const Playback &playback)

Interpolates the keyframes, specified by the playback state, and writes the result into the output matrix.

const std::vector< Gs::Vector3 > & GetPositionKeys () const

Returns the pre-computed position keys.

• const std::vector< Gs::Quaternion > & GetRotationKeys () const

Returns the pre-computed rotation keys.

const std::vector< Gs::Vector3 > & GetScaleKeys () const

Returns the pre-computed scale keys.

• std::size_t GetFrameBegin () const

Returns the frame end in the (half-open) range [GetFrameBegin(), GetFrameEnd()).

• std::size t GetFrameEnd () const

Returns the frame end in the (half-open) range [GetFrameBegin(), GetFrameEnd()).

7.18.1 Detailed Description

Animation keyframe sequence class. This class is used to build the transformations for an animation.

7.18.2 Member Function Documentation

7.18.2.1 void Gm::KeyframeSequence::BuildKeys (std::vector< PositionKeyframe > positionKeyframes, std::vector< RotationKeyframe > rotationKeyframes, std::vector< ScaleKeyframe > scaleKeyframes)

Builds the interpolated keys by the specified keyframes.

Parameters

in	positionKeyframes	Specifies the position keyframes.
----	-------------------	-----------------------------------

7.18.2.2 void Gm::KeyframeSequence::Interpolate (Gs::Vector3 & position, Gs::Quaternion & rotation, Gs::Vector3 & scale, std::size_t from, std::size_t to, Gs::Real interpolator)

Interpolates the specified keyframes and writes the result into the respective output parameter.

Parameters

out	position	Specifies the interpolated output position.
out	rotation	Specifies the interpolated output rotation.
out	scale	Specifies the interpolated output scale.
in	from	Specifies the keyframe index from which to interpolate. This will be clamped to the range
		[GetFrameBegin(), GetFrameEnd()).
in	to	Specifies the keyframe index to which to interpolate. This will be clamped to the range
		[GetFrameBegin(), GetFrameEnd()).
in	interpolator	Specifies the interpolation factor in the range [0, 1].

Remarks

If this keyframe sequences has no keys, this function call has no effect. To build the keys, call "BuildKeys".

See also

GetFrameBegin GetFrameEnd BuildKeys

7.18.2.3 void Gm::KeyframeSequence::Interpolate (Gs::AffineMatrix4 & matrix, std::size_t from, std::size_t to, Gs::Real interpolator)

Interpolates the specified keyframes and writes the result into the output matrix.

See also

Interpolate(Gs::Vector3&, Gs::Quaternion&, Gs::Vector3&, std::size_t, std::size_t, Gs::Real)

7.18.2.4 void Gm::KeyframeSequence::Interpolate (Gs::AffineMatrix4 & matrix, const Playback & playback)

Interpolates the keyframes, specified by the playback state, and writes the result into the output matrix.

See also

```
Interpolate(Gs::AffineMatrix4&, std::size_t, std::size_t, Gs::Real)
```

The documentation for this class was generated from the following file:

KeyframeSequence.h

7.19 Gm::Line < T > Class Template Reference

Base line class.

```
#include <Line.h>
```

Public Member Functions

- Line (const Line < T > &)=default
- Line (const T &a, const T &b)
- Line (Gs::UninitializeTag)

Public Attributes

- Та
- T b

7.19.1 Detailed Description

```
template < typename T> class Gm::Line < T>
```

Base line class.

The documentation for this class was generated from the following file:

• Line.h

7.20 Gm::Line < Gs::Vector2T < T > > Class Template Reference

Specialized line class with 2D vectors.

```
#include <Line.h>
```

Public Member Functions

- Line (const Line < Gs::Vector2T < T > > &)=default
- Line (const Gs::Vector2T< T> &a, const Gs::Vector2T< T> &b)
- Line (Gs::UninitializeTag)
- Gs::Vector2T< T > Direction () const
- Gs::Vector2T< T > Lerp (const T &t) const
- T LengthSq () const
- T Length () const
- Gs::Vector2T< T > operator() (const T &t) const

Public Attributes

- Gs::Vector2T < T > a
- Gs::Vector2T < T > b

7.20.1 Detailed Description

```
template < typename T > class Gm::Line < Gs::Vector2T < T > >
```

Specialized line class with 2D vectors.

The documentation for this class was generated from the following file:

· Line.h

7.21 Gm::Line < Gs::Vector3T < T > > Class Template Reference

Specialized line class with 3D vectors.

```
#include <Line.h>
```

Public Member Functions

- Line (const Line < Gs::Vector3T < T > > &)=default
- Line (const Gs::Vector3T< T > &a, const Gs::Vector3T< T > &b)
- Line (Gs::UninitializeTag)
- Gs::Vector3T< T > **Direction** () const
- Gs::Vector3T< T> Lerp (const T &t) const
- T LengthSq () const
- T Length () const
- Gs::Vector3T< T > operator() (const T &t) const

Public Attributes

- Gs::Vector3T< T > a
- Gs::Vector3T< T> **b**

7.21.1 Detailed Description

```
template < typename T > class Gm::Line < Gs::Vector3T < T > >
```

Specialized line class with 3D vectors.

The documentation for this class was generated from the following file:

· Line.h

7.22 Gm::Playback::ListLoop Class Reference

List loop playback event listener.

```
#include <Playback.h>
```

Inheritance diagram for Gm::Playback::ListLoop:

Public Member Functions

- · void OnStop (Playback &sender) override
- void OnNextFrame (Playback &sender) override

Public Attributes

• std::vector< FrameIndex > frames

Animation frame indices.

• std::vector< FrameIndex >::size_type iterator = 0

Iteration index for the animation frames.

7.22.1 Detailed Description

List loop playback event listener.

Remarks

Plays an animation by the listed frame indices in a loop fashion.

7.22.2 Member Function Documentation

```
7.22.2.1 void Gm::Playback::ListLoop::OnNextFrame(Playback & sender) [override],[virtual]
```

Receives the 'next frame' event. This event will be posted in the "Playback::Update" function.

Remarks

Depending on the playback speed sometimes this event will be posted several times for a single call to the "Playback::Update" function. This happens when several frames will be skipped, i.e. every single frame can be examined with this event listener interface, no matter how fast the playback speed is. All playback configurations for the next frame are done when this event is posted. This function should set the next frame (see 'nextFrame' field).

See also

Playback::Update Playback::nextFrame

Reimplemented from Gm::Playback::EventListener.

```
7.22.2.2 void Gm::Playback::ListLoop::OnStop(Playback & sender) [override], [virtual]
```

Receives the 'playback stopped' event. All playback configurations are done when this event is posted.

Remarks

This will only be posted if the playback was previously being played or paused.

See also

Playback::Stop

Reimplemented from Gm::Playback::EventListener.

The documentation for this class was generated from the following file:

· Playback.h

7.23 Gm::Playback::Loop Class Reference

Loop playback event listener.

```
#include <Playback.h>
```

Inheritance diagram for Gm::Playback::Loop:

Public Member Functions

void OnNextFrame (Playback &sender) override

7.23.1 Detailed Description

Loop playback event listener.

Remarks

Plays an animation from the first to the last frame, and then starts the animation from the beginning.

7.23.2 Member Function Documentation

```
7.23.2.1 void Gm::Playback::Loop::OnNextFrame(Playback & sender) [override], [virtual]
```

Receives the 'next frame' event. This event will be posted in the "Playback::Update" function.

Remarks

Depending on the playback speed sometimes this event will be posted several times for a single call to the "Playback::Update" function. This happens when several frames will be skipped, i.e. every single frame can be examined with this event listener interface, no matter how fast the playback speed is. All playback configurations for the next frame are done when this event is posted. This function should set the next frame (see 'nextFrame' field).

See also

Playback::Update Playback::nextFrame

Reimplemented from Gm::Playback::EventListener.

The documentation for this class was generated from the following file:

· Playback.h

7.24 Gm::OBB < Vec, T > Class Template Reference

Base OBB (Oriented Bounding-Box) class.

```
#include <OBB.h>
```

Public Member Functions

- OBB (Gs::UninitializeTag)
- OBB (const Vec< T > &min, const Vec< T > &max)
- **OBB** (const Vec< T > ¢er, const Vec< T > &xAxis, const Vec< T > &yAxis, const Vec< T > &zAxis)
- void UpdateHalfSize ()

Public Attributes

- Vec< T > center
- Vec < T > halfSize
- Vec < Vec < T > > axes

7.24.1 Detailed Description

```
template < template < typename > class Vec, typename T> class Gm:: OBB < Vec, T >
```

Base OBB (Oriented Bounding-Box) class.

The documentation for this class was generated from the following file:

• OBB.h

7.25 Gm::Playback::OneShot Class Reference

One shot playback event listener.

```
#include <Playback.h>
```

Inheritance diagram for Gm::Playback::OneShot:

Public Member Functions

• void OnNextFrame (Playback &sender) override

7.25.1 Detailed Description

One shot playback event listener.

Remarks

Plays an animation from the first to the last frame.

7.25.2 Member Function Documentation

7.25.2.1 void Gm::Playback::OneShot::OnNextFrame(Playback & sender) [override], [virtual]

Receives the 'next frame' event. This event will be posted in the "Playback::Update" function.

Remarks

Depending on the playback speed sometimes this event will be posted several times for a single call to the "Playback::Update" function. This happens when several frames will be skipped, i.e. every single frame can be examined with this event listener interface, no matter how fast the playback speed is. All playback configurations for the next frame are done when this event is posted. This function should set the next frame (see 'nextFrame' field).

See also

Playback::Update Playback::nextFrame

Reimplemented from Gm::Playback::EventListener.

The documentation for this class was generated from the following file:

· Playback.h

7.26 Gm::Playback::PingPongLoop Class Reference

Ping-pong loop playback event listener.

#include <Playback.h>

Inheritance diagram for Gm::Playback::PingPongLoop:

Public Member Functions

· void OnNextFrame (Playback &sender) override

7.26.1 Detailed Description

Ping-pong loop playback event listener.

Remarks

Plays an animation from the first to the last frame, and vise-versa, and then starts the animation from the beginning.

7.26.2 Member Function Documentation

```
7.26.2.1 void Gm::Playback::PingPongLoop::OnNextFrame( Playback & sender) [override], [virtual]
```

Receives the 'next frame' event. This event will be posted in the "Playback::Update" function.

Remarks

Depending on the playback speed sometimes this event will be posted several times for a single call to the "Playback::Update" function. This happens when several frames will be skipped, i.e. every single frame can be examined with this event listener interface, no matter how fast the playback speed is. All playback configurations for the next frame are done when this event is posted. This function should set the next frame (see 'nextFrame' field).

See also

Playback::Update Playback::nextFrame

Reimplemented from Gm::Playback::EventListener.

The documentation for this class was generated from the following file:

· Playback.h

7.27 Gm::MeshGenerator::PipeDescriptor Struct Reference

Descriptor structure for a pipe mesh (i.e. cylinder with a hole).

```
#include <MeshGenerator.h>
```

Public Attributes

• Gs::Vector2 innerRadius = Gs::Vector2(Gs::Real(0.25))

Radius of the inner cylinder in U (x component), and V (y component) direction. By default (0.25, 0.25).

• Gs::Vector2 outerRadius = Gs::Vector2(Gs::Real(0.5))

Radius of the outer cylinder in U (x component), and V (y component) direction. By default (0.5, 0.5).

• Gs::Real height = Gs::Real(1)

Tube height. By default 1.

• Gs::Vector2ui mantleSegments = Gs::Vector2ui(20, 1)

Segmentation around the (inner and outer) cylinder (x component), and height (y component). By default (20, 1).

• unsigned int topCoverSegments = 1

Segmentation of the top cover. If 0, no top cover is generated. By default 1.

• unsigned int bottomCoverSegments = 1

Segmentation of the top cover. If 0, no bottom cover is generated. By default 1.

bool alternateGrid = false

Specifies whether the face grids are to be alternating or uniform. By default false.

7.27.1 Detailed Description

Descriptor structure for a pipe mesh (i.e. cylinder with a hole).

The documentation for this struct was generated from the following file:

· MeshGenerator.h

7.28 Gm::PlaneEquation_NX_eq_D< T > Struct Template Reference

Static Public Member Functions

static T DistanceSign (const T &d)
 Returns 'd' (i.e. identity function).

The documentation for this struct was generated from the following file:

• Plane.h

7.29 Gm::PlaneEquation_NXD_eq_Zero < T > Struct Template Reference

Static Public Member Functions

static T DistanceSign (const T &d)
 Returns '-d' (i.e. negation function).

The documentation for this struct was generated from the following file:

• Plane.h

7.30 Gm::PlaneT < T, PlaneEq > Class Template Reference

Plane base class with components: 'normal' and 'distance'.

#include <Plane.h>

Public Member Functions

- GM_ASSERT_FLOAT_TYPE ("PlaneT")
- PlaneT (const Gs::Vector3T< T> &a, const Gs::Vector3T< T> &b, const Gs::Vector3T< T> &c)
- PlaneT (const T &x, const T &y, const T &z, const T &d)

Always initializes the plane with the equation n*x + d = 0, no matter which equation this plane has as template argument.

- PlaneT (const Triangle3T < T > &triangle)
- PlaneT (const Gs::Vector3T< T > &normal, const T &distance)
- PlaneT (Gs::UninitializeTag)
- $\bullet \ \ \text{void Build (const Gs::Vector3T} < T > \&a, \ const \ Gs::Vector3T < T > \&b, \ const \ Gs::Vector3T < T > \&c) \\$

Builds this plane with the three specified points.

void Build (const Gs::Vector3T< T > &normal, const Gs::Vector3T< T > &memberPoint)

Builds this plane with the specified normal and member point (which lies onto the plane).

void UpdateDistance (const Gs::Vector3T< T > &memberPoint)

Updates the (signed) distance for the new specified member point.

· void Normalize ()

Normalizes the normal vector and distance of this plane.

Gs::Vector3T< T > MemberPoint () const

Returns a point which lies onto this plane: normal * distance;.

• void Flip ()

Flips this plane.

• PlaneT< T, PlaneEq > Flipped () const

Returns a flipped instance of this plane.

template<typename C >

PlaneT < C, PlaneEq > Cast () const

Public Attributes

• Gs::Vector3T< T > normal

Normal vector of the plane.

• T distance

Signed distance to the origin of the coordinate system.

7.30.1 Detailed Description

```
template < typename T, typename PlaneEq = DefaultPlaneEquation < T >> class Gm::PlaneT < T, PlaneEq >
```

Plane base class with components: 'normal' and 'distance'.

Template Parameters

Specifies the data type of the vector components. This should be a primitive data type such as float or double.

Remarks

The plane equation is: ax + by + cz + d = 0, where (a, b, c) is a point on the plane, (x, y, z) is the normal vector and d is the (signed) distance to the origin.

7.30.2 Constructor & Destructor Documentation

Always initializes the plane with the equation n*x + d = 0, no matter which equation this plane has as template argument.

See also

PlaneEquation_NXD_eq_Zero

7.30.3 Member Function Documentation

7.30.3.1 template<typename T, typename PlaneEq = DefaultPlaneEquation<T>> Gs::Vector3T<T> Gm::PlaneT< T, PlaneEq >::MemberPoint () const [inline]

Returns a point which lies onto this plane: normal * distance;.

Remarks

This point is the closest point from the plane to the origin of the coordinate system.

The documentation for this class was generated from the following file:

• Plane.h

7.31 Gm::Playback Class Reference

Animation playback class.

#include <Playback.h>

Classes

· class EventListener

Playback event listener interface.

· class ListLoop

List loop playback event listener.

class Loop

Loop playback event listener.

· class OneShot

One shot playback event listener.

class PingPongLoop

Ping-pong loop playback event listener.

Public Types

• enum State { State::Playing, State::Paused, State::Stopped }

Playback state enumeration.

using FrameIndex = std::size_t

Type of the frame indices (unsigned integral type).

Public Member Functions

Starts the playback process.

void Play (FrameIndex firstFrameIndex, FrameIndex lastFrameIndex, const std::shared_ptr< EventListener > &eventListener=nullptr)

Starts the playback process with the previous speed.

void Play (const std::shared_ptr< EventListener > &eventListener=nullptr)

Starts the playback process with the previous frame indicies and speed.

• void Pause (bool paused=true)

Pauses or resumes the animation playback.

void Stop ()

Stops the animation playback. After this call the state will be State::Stopped.

void Update (Gs::Real deltaTime)

Updates the playback process. This increases (or decreases if speed is negative) the frame interpolator.

void SetNextFrame (FrameIndex nextFrameIndex)

Sets the next frame depending on the playback direction.

• void SetNextFrame ()

Sets the next frame depending on the current frame, the playback direction, and the frame chronlogy.

- · bool HasEndReached () const
- · State GetState () const

Returns the playback state.

• bool AreFramesChrono () const

Returns true if the first- and last frames are chronologic.

· bool IsForward () const

Returns true if the playback moves frowards.

Public Attributes

• FrameIndex firstFrame = 0

First frame index, in the range [0, +inf). By default 0.

• FrameIndex lastFrame = 0

Last frame index, in the range [0, +inf). By default 0.

• FrameIndex frame = 0

Current frame index, in the range [firstFrame, lastFrame]. By default 0.

• FrameIndex nextFrame = 0

Next frame index, in the range [firstFrame, lastFrame]. By default 0.

• Gs::Real interpolator = Gs::Real(0)

Frame interpolator, in the range [0.0, 1.0]. By default 0.

Gs::Real speed = Gs::Real(1)

Animation speed factor, in the range (-inf, +inf). By default 1.

7.31.1 Detailed Description

Animation playback class.

Remarks

This class does not store any data about the keyframes or transformations. Only the process of playing an animation is managed by this class. Although this class has an event listener, there are no "Post..." functions, because the events are posted from the internal functions (such as "Update", "Play" etc.). No matter what direction the playback moves, an interpolation between frames is allways computed as follows:

7.31.2 Member Enumeration Documentation

```
7.31.2.1 enum Gm::Playback::State [strong]
```

Playback state enumeration.

Enumerator

```
Playing Animation is currently playing.Paused Animation has been paused.Stopped Animation has been stopped.
```

7.31.3 Member Function Documentation

```
7.31.3.1 bool Gm::Playback::AreFramesChrono ( ) const [inline]
```

Returns true if the first- and last frames are chronologic.

Remarks

This is the case when the first frame is less than or equal to the last frame (firstFrame <= lastFrame).

See also

```
firstFrame
lastFrame
```

7.31.3.2 bool Gm::Playback::HasEndReached () const

Returns true if the end of animation playback has been reached.

Remarks

This depends on the playback direction and chronology.

See also

IsForward AreFramesChrono

7.31.3.3 bool Gm::Playback::IsForward () const [inline]

Returns true if the playback moves frowards.

Remarks

This is the case when the speed is non-negative (speed \geq = 0.0).

See also

speed

7.31.3.4 void Gm::Playback::Pause (bool paused = true)

Pauses or resumes the animation playback.

Parameters

ſ	in	paused	Specifies whether the playback is to be paused or resumed. If true the playback will be paused
			otherwise it will be resumed. An animation playback can only be resumed if it was paused
			previously (state must be 'State::Paused'). An animation playback can only be paused if it was
			playing previously (state must be 'State::Playing').

See also

GetState State

7.31.3.5 void Gm::Playback::Play (FrameIndex firstFrameIndex, FrameIndex lastFrameIndex, Gs::Real playbackSpeed, const std::shared_ptr< EventListener > & eventListener = nullptr)

Starts the playback process.

Parameters

in	firstFrameIndex	Specifies the index of the first frame. This may also be greater than the index of the
		last frame.
in	lastFrameIndex	Specifies the index of the last frame. This may also be less than the index of the first
		frame.
in	newSpeed	Specifies the animation speed factor. This may also be negative (to animate
		backward). By default 1.0.
in	eventListener	Shared pointer to the event listener. If this is null, the "OneShot" event listener will be used as default. By default null.

7.31.3.6 void Gm::Playback::Play (FrameIndex firstFrameIndex, FrameIndex lastFrameIndex, const std::shared_ptr<
EventListener > & eventListener = nullptr)

Starts the playback process with the previous speed.

See also

Play(FrameIndex, FrameIndex, Gs::Real, const std::shared_ptr<EventListener>&)

7.31.3.7 void Gm::Playback::Play (const std::shared_ptr < EventListener > & eventListener = nullptr)

Starts the playback process with the previous frame indicies and speed.

See also

Play(FrameIndex, FrameIndex, Gs::Real, const std::shared_ptr<EventListener>&)

7.31.3.8 void Gm::Playback::SetNextFrame (FrameIndex nextFrameIndex)

Sets the next frame depending on the playback direction.

Parameters

-	in	nextFrameIndex	Specifies the next frame index.

Remarks

If the playback direction is forward the field 'nextFrame' is set, otherwise the field 'frame' is set.

See also

IsForward

7.31.3.9 void Gm::Playback::SetNextFrame ()

Sets the next frame depending on the current frame, the playback direction, and the frame chronlogy.

Remarks

The frame index range (first and last frame indices) is ignored here.

See also

IsForward AreFramesChrono

```
7.31.3.10 void Gm::Playback::Stop ( )
```

Stops the animation playback. After this call the state will be State::Stopped.

See also

GetState State

7.31.3.11 void Gm::Playback::Update (Gs::Real deltaTime)

Updates the playback process. This increases (or decreases if speed is negative) the frame interpolator.

Parameters

in	deltaTime	Specifies the time derivation between the previous and current frame. If the application runs
		with 60 Hz this value should be 1.0/60.0, if the application runs with 200 Hz it should be
		1.0/200.0 etc. This value will be added (and always added, also when the playback is
		backward) to the 'interpolator'.

Remarks

If the frame interpolator is greater than or equal to 1.0 the next frame will be set. Also the "OnNextFrame" function will be called from the event listener (see EventListener class). If the animation is currently not playing (state must be 'State::Playing') or 'deltaTime' is less than or equal to 0.0, this function call has no effect.

See also

EventListener Play

The documentation for this class was generated from the following file:

· Playback.h

7.32 Gm::UniformSpline < P, T >::Polynomial Struct Reference

Polynomial structure with four coefficients.

```
#include <UniformSpline.h>
```

Public Member Functions

- const P & operator[] (std::size_t idx) const
- P & operator[] (std::size_t idx)
- P Evaluate (const T &t) const

Public Attributes

std::array< P, 4 > coeff

7.32.1 Detailed Description

```
template < typename P, typename T> struct Gm::UniformSpline < P, T >::Polynomial
```

Polynomial structure with four coefficients.

The documentation for this struct was generated from the following file:

· UniformSpline.h

7.33 Gm::ProjectionT < T > Class Template Reference

projection class.

```
#include <Projection.h>
```

Public Types

using MatrixType = Gs::ProjectionMatrix4T< T >

Public Member Functions

- GM_ASSERT_FLOAT_TYPE ("ProjectionT")
- void SetNear (const T &near)

Sets the near clipping plane.

· const T & GetNear () const

Returns the near clipping plane.

void SetFar (const T &far)

Sets the far clipping plane.

• const T & GetFar () const

Returns the far clipping plane.

void SetFOV (const T &fov)

Sets the field-of-view (FOV) in radians. By default (74*pi/180).

• const T & GetFOV () const

Returns the field-of-view (FOV) in radians.

void SetAspect (const T &aspect)

Sets the aspect ratio.

const T & GetAspect () const

Returns the aspect ratio.

· void SetOrtho (bool isOrtho)

Specifies whether the projection is orthogonal or perspective. By default perspective.

bool GetOrtho () const

Returns true if this projection is orthogonal.

void SetOrthoSize (const Gs::Vector2T< T > &orthoSize)

Sets the size of the orthogonal projection.

const Gs::Vector2T< T > & GetOrthoSize () const

Returns the size of the orthogonal projection.

void SetFlags (int flags)

Sets the projection matrix flags. By default 0.

• int GetFlags () const

Returns the projection matrix flags.

• const MatrixType & GetMatrix () const

Returns the projection matrix.

• void GetMatrix (MatrixType &matrix, int flags) const

Returns the projection matrix with the specified flags.

7.33.1 Detailed Description

```
template < typename T> class Gm::Projection T< T>
```

projection class.

Note

This class can not be used with multi-threading!

7.33.2 Member Function Documentation

```
7.33.2.1 template<typename T > int Gm::ProjectionT < T >::GetFlags ( ) const [inline]
```

Returns the projection matrix flags.

See also

Gs::ProjectionFlags

```
7.33.2.2 template < typename T > void Gm::ProjectionT < T >::GetMatrix ( MatrixType & matrix, int flags ) const [inline]
```

Returns the projection matrix with the specified flags.

See also

Gs::ProjectionFlags

7.33.2.3 template<typename T > void Gm::ProjectionT< T >::SetFlags (int flags) [inline]

Sets the projection matrix flags. By default 0.

See also

Gs::ProjectionFlags

The documentation for this class was generated from the following file:

· Projection.h

7.34 Gm::Ray < T > Class Template Reference

Ray base class. It's direction must always be normalized!

```
#include <Ray.h>
```

Public Member Functions

- Ray (const T &origin, const T &direction)
- Ray (Gs::UninitializeTag)
- T Lerp (const typename Gs::ScalarType $\!<$ T $\!>$::Type &t) const
- T operator() (const typename Gs::ScalarType< T >::Type &t) const

Public Attributes

- T origin
- T direction

7.34.1 Detailed Description

```
template < typename T> class Gm::Ray< T>
```

Ray base class. It's direction must always be normalized!

The documentation for this class was generated from the following file:

• Ray.h

7.35 Gm::Skeleton Class Reference

Public Member Functions

- Skeleton (const Skeleton &)=delete
- Skeleton & operator= (const Skeleton &)=delete
- SkeletonJoint & AddRootJoint (SkeletonJointPtr &&joint)

Adds the specified skeleton joint and takes the ownership.

SkeletonJointPtr RemoveRootJoint (SkeletonJoint &joint)

Removes the specified skeleton joint from the list of root-joints.

const std::vector< SkeletonJointPtr > & GetRootJoints () const

Returns the list of root joints of this skeleton.

std::vector< SkeletonJoint * > JointList () const

Returns a list of all root- and sub-joints of this skeleton.

void ForEachJoint (const SkeletonJointIterationFunction &iterator)

Iterates over each joint with the specified iteration function.

· void ForEachJoint (const SkeletonJointConstIterationFunction &iterator) const

Iterates over each joint with the specified iteration function.

void BuildJointSpace ()

Builds the joint-space transformations for each joint.

void RebuildPoseTransforms ()

Rebuilds the pose transformations for each joint from its joint-space transformation.

• std::size t NumJoints () const

Returns the number of all joints in thie skeleton hierarchy.

- std::size_t FillGlobalTransformBuffer (float *buffer, std::size_t bufferSize, bool relativeTransform=true) const
- Fills all skeleton joint matrix transformations into the specified floating-point buffer.

 std::size t FillLocalTransformBuffer (float *buffer, std::size t bufferSize) const

Fills all skeleton joint matrix transformations into the specified floating-point buffer.

Skeleton & CopyFrom (const Skeleton &skeletonModel, MakeSkeletonJointFunction makeSkeleton
 — Joint=nullptr)

Copies the specified skeleton model into this skeleton.

7.35.1 Member Function Documentation

7.35.1.1 SkeletonJoint& Gm::Skeleton::AddRootJoint (SkeletonJointPtr && joint)

Adds the specified skeleton joint and takes the ownership.

Exceptions

std::invalid_argument	If the specified joint has a parent.
-----------------------	--------------------------------------

Returns

Reference to the new skeleton joint.

7.35.1.2 void Gm::Skeleton::BuildJointSpace ()

Builds the joint-space transformations for each joint.

Remarks

This should be called after all joint pose transformations have been set, otherwise the 'SkeletonJoint::joint ← SpaceTransform' fields must be set manually.

See also

SkeletonJoint::poseTransform SkeletonJoint::jointSpaceTransform

7.35.1.3 Skeleton& Gm::Skeleton::CopyFrom (const Skeleton & skeletonModel, MakeSkeletonJointFunction makeSkeletonJoint = nullptr)

Copies the specified skeleton model into this skeleton.

Parameters

in	skeletonModel	Specifies the skeleton which is to be copied into this skeleton.
in	makeSkeletonJoint	Specifies an optional callback to create skeleton joints. By default the standard
		"SkeletonJoint" base class is created.

Returns

Reference to this joint to follow the convention of copy operators.

7.35.1.4 std::size_t Gm::Skeleton::FillGlobalTransformBuffer (float * buffer, std::size_t bufferSize, bool relativeTransform = true) const

Fills all skeleton joint matrix transformations into the specified floating-point buffer.

Parameters

in,out	buffer	Specifies the output buffer. This buffer should have at least 'NumJoints() * 16' floating-point entries, 'NumJoints()' to store the matrices of all skeleton joints and '16' to store a full 4x4 matrix for each joint.
in	bufferSize	Specifies the size of the output buffer (in elements, not in bytes!).
in	relativeTransform	Specifies whether to store relative matrix transformations. This is commonly used for skeleton animation in a vertex shader. If this is false, the respective animated vertex should be multiplied with the joint-space transformation (see "SkeletonJoint::jointSpaceTransform"). If this is true, the origin transformation is already included in the transformation buffer. By default true.

Returns

Number of elements written to the output buffer. In the optimal case, this should be equal to 'bufferSize'.

Exceptions

	std::invalid_argument	If 'buffer' is null or 'bufferSize' is not a multiple of 16.
--	-----------------------	--

See also

NumJoints

SkeletonJoint::jointSpaceTransform

7.35.1.5 std::size_t Gm::Skeleton::FillLocalTransformBuffer (float * buffer, std::size_t bufferSize) const

Fills all skeleton joint matrix transformations into the specified floating-point buffer.

Parameters

in,out	buffer	Specifies the output buffer. This buffer should have at least 'NumJoints() * 16' floating-point entries, 'NumJoints()' to store the matrices of all skeleton joints and '16'
		to store a full 4x4 matrix for each joint.
in	bufferSize	Specifies the size of the output buffer (in elements, not in bytes!).

Returns

Number of elements written to the output buffer. In the optimal case, this should be equal to 'bufferSize'.

Exceptions

std::invalid_argument	If 'buffer' is null or 'bufferSize' is not a multiple of 16.
-----------------------	--

See also

NumJoints

7.35.1.6 void Gm::Skeleton::RebuildPoseTransforms ()

Rebuilds the pose transformations for each joint from its joint-space transformation.

Remarks

This should be called when the joint-space was constructed manually instead of the using "BuildJointSpace".

See also

SkeletonJoint::poseTransform SkeletonJoint::jointSpaceTransform

BuildJointSpace

7.35.1.7 SkeletonJointPtr Gm::Skeleton::RemoveRootJoint (SkeletonJoint & joint)

Removes the specified skeleton joint from the list of root-joints.

Returns

Unique pointer of the removed skeleton joint, so the client programmer can take the ownership again.

The documentation for this class was generated from the following file:

· Skeleton.h

7.36 Gm::SkeletonJoint Class Reference

Classes

struct VertexWeight

Vertex-joint weight structure.

Public Types

• using TransformMatrix = Gs::AffineMatrix4

Transformation matrix type of skeleton joints (4x4 affine matrix).

Public Member Functions

- SkeletonJoint (const SkeletonJoint &)=delete
- SkeletonJoint & operator= (const SkeletonJoint &)=delete
- SkeletonJoint & AddSubJoint (SkeletonJointPtr &&joint)

Adds the specified skeleton joint and takes the ownership.

SkeletonJointPtr RemoveSubJoint (SkeletonJoint &joint)

Removes the specified skeleton joint from the list of sub-joints.

const std::vector< SkeletonJointPtr > & GetSubJoints () const

Returns the list of sub-joints of this skeleton joint.

SkeletonJoint * GetParent () const

Returns the parent skeleton joint or null if this joint has no parent.

void GlobalTransform (TransformMatrix &matrix) const

Stores the current global transformation of this skeleton joint in the specified output matrix parameter.

• TransformMatrix GlobalTransform () const

Returns the current global transformation matrix of this skeleton joint.

Public Attributes

· TransformMatrix transform

Current local transformation of this joint.

TransformMatrix poseTransform

Local pose transformation of this joint.

• TransformMatrix jointSpaceTransform

Specifies the joint-space transformation.

std::vector< VertexWeight > vertexWeights

Vertex weight, which describe how much this joint influences each vertex.

KeyframeSequence keyframes

Animation keyframe sequence.

Static Public Attributes

static const std::size_t invalidID = ~0
 Invalid ID for skeleton joints.

Protected Member Functions

void BuildJointSpace (TransformMatrix parentPoseTransform)

Builds the joint-space transformation for this joint and all sub-joints.

void RebuildPoseTransforms (TransformMatrix parentPoseTransform)

Rebuilds the pose transformation for this joint and all sub-joints.

Friends

· class Skeleton

7.36.1 Member Function Documentation

7.36.1.1 SkeletonJoint& Gm::SkeletonJoint::AddSubJoint (SkeletonJointPtr && joint)

Adds the specified skeleton joint and takes the ownership.

Exceptions

std::invalid_argument	If the specified joint already has a parent.
-----------------------	--

Returns

Reference to the new skeleton joint.

7.36.1.2 void Gm::SkeletonJoint::GlobalTransform (TransformMatrix & matrix) const

Stores the current global transformation of this skeleton joint in the specified output matrix parameter.

See also

transform

7.36.1.3 TransformMatrix Gm::SkeletonJoint::GlobalTransform () const

Returns the current global transformation matrix of this skeleton joint.

See also

transform

7.36.1.4 SkeletonJointPtr Gm::SkeletonJoint::RemoveSubJoint (SkeletonJoint & joint)

Removes the specified skeleton joint from the list of sub-joints.

Returns

Unique pointer of the removed skeleton joint, so the client programmer can take the ownership again.

7.36.2 Member Data Documentation

7.36.2.1 TransformMatrix Gm::SkeletonJoint::jointSpaceTransform

Specifies the joint-space transformation.

Remarks

This matrix is used to transform the vertices from model-space into joint-space. This function will be overwritten whenever 'Skeleton::BuildPose' is called. Here is a vertex transformation example:

```
skinnedVertex = joint->transform * joint->jointSpaceTransform * vertex.position;
```

See also

poseTransform

7.36.2.2 TransformMatrix Gm::SkeletonJoint::poseTransform

Local pose transformation of this joint.

Remarks

This is the static transformation when the joint is not being animated. When 'Skeleton::BuildPose' is called, the field 'jointSpaceTransform' will be set to the inverse global pose transformation of this joint.

See also

jointSpaceTransform Skeleton::BuildPose

7.36.2.3 TransformMatrix Gm::SkeletonJoint::transform

Current local transformation of this joint.

Remarks

This transformation will change during animation.

The documentation for this class was generated from the following file:

· SkeletonJoint.h

7.37 Gm::SphereT < T > Class Template Reference

Base sphere class.

```
#include <Sphere.h>
```

Public Member Functions

- T GetVolume () const
- void SetVolume (const T &volume)
- T GetArea () const
- void SetArea (const T &area)

Public Attributes

- Gs::Vector3T< T > origin
- T radius

7.37.1 Detailed Description

```
template < typename T> class Gm::SphereT< T>
```

Base sphere class.

The documentation for this class was generated from the following file:

· Sphere.h

7.38 Gm::MeshGenerator::SpiralDescriptor Struct Reference

Descriptor structure for a spiral mesh.

```
#include <MeshGenerator.h>
```

Public Attributes

Gs::Vector2 ringRadius = Gs::Vector2(Gs::Real(0.5))

Radius of the torus ring in X, and Y direction. By default (0.5, 0.5).

Gs::Vector3 tubeRadius = Gs::Vector3(Gs::Real(0.25))

Radius of the inner tube in X, Y, and Z direction. By default (0.25, 0.25, 0.25).

Gs::Real displacement = Gs::Real(1)

The displacement for each (360 degree) turn. By default 1.

Gs::Real turns = Gs::Real(1)

Number of turns (in percent, i.e. 1.0 is a single twist, 2.5 are two and a half twist). By default 1.

- Gs::Vector2ui mantleSegments = Gs::Vector2ui(40, 20)
- unsigned int topCoverSegments = 1

Segmentation of the top cover. If 0, no top cover is generated. By default 1.

unsigned int bottomCoverSegments = 1

Segmentation of the top cover. If 0, no bottom cover is generated. By default 1.

• bool alternateGrid = false

Specifies whether the face grids are to be alternating or uniform. By default false.

7.38.1 Detailed Description

Descriptor structure for a spiral mesh.

7.38.2 Member Data Documentation

7.38.2.1 Gs::Vector2ui Gm::MeshGenerator::SpiralDescriptor::mantleSegments = Gs::Vector2ui(40, 20)

Segmentation of the mantle in U (x component), and V (y component) direction for a single twist. Each component will be clamped to [3, +inf). By default (40, 20).

The documentation for this struct was generated from the following file:

· MeshGenerator.h

7.39 Gm::Spline < P, T > Class Template Reference

Spline base class.

```
#include <Spline.h>
```

Classes

struct ControlPoint

Public Member Functions

- GM_ASSERT_FLOAT_TYPE ("Spline")
- P operator() (const T &t) const
- const ControlPoint & operator[] (std::size_t idx) const
- ControlPoint & operator[] (std::size_t idx)
- P Evaluate (const T &t) const
- int GetOrder () const
- void SetOrder (int order)
- void AddPoint (const P &point, const T &t)

Adds a new control point.

Returns the list of all control points.

7.39.1 Detailed Description

```
template < typename P, typename T > class Gm::Spline < P, T >
```

Spline base class.

Template Parameters

Р	Specifies the type of the spline control points.	
T	Specifies the base data type. This should be float or double.	

Todo !!!OPTIMIZE THIS!!!

7.39.2 Member Function Documentation

```
7.39.2.1 template<typename P, typename T> void Gm::Spline< P, T>::AddPoint ( const P & point, const T & t ) [inline]
```

Adds a new control point.

Parameters

	in	point	Specifies the point position.
ĺ	in	t	Specifies the interpolation factor (or interval value).

The documentation for this class was generated from the following file:

· Spline.h

7.40 Gm::MeshGenerator::TorusDescriptor Struct Reference

Descriptor structure for a torus mesh.

```
#include <MeshGenerator.h>
```

Public Attributes

• Gs::Vector2 ringRadius = Gs::Vector2(Gs::Real(0.5))

Radius of the torus ring in X, and Y direction. By default (0.5, 0.5).

• Gs::Vector3 tubeRadius = Gs::Vector3(Gs::Real(0.25))

Radius of the inner tube in X, Y, and Z direction. By default (0.25, 0.25, 0.25).

• Gs::Vector2ui segments = Gs::Vector2ui(40, 20)

Segmentation in U (x component), and V (y component) direction.

• bool alternateGrid = false

Specifies whether the face grids are to be alternating or uniform. By default false.

7.40.1 Detailed Description

Descriptor structure for a torus mesh.

7.40.2 Member Data Documentation

7.40.2.1 Gs::Vector2ui Gm::MeshGenerator::TorusDescriptor::segments = Gs::Vector2ui(40, 20)

Segmentation in U (x component), and V (y component) direction.

Remarks

Each component will be clamped to [3, +inf). By default (40, 20).

The documentation for this struct was generated from the following file:

· MeshGenerator.h

7.41 Gm::MeshGenerator::TorusKnotDescriptor Struct Reference

Descriptor structure for a torus-knot mesh (uses the curve generator).

```
#include <MeshGenerator.h>
```

Public Attributes

- Gs::Vector3 ringRadius = Gs::Vector3(Gs::Real(0.25))
 Radius of the torus ring in X, and Y direction. By default (0.25, 0.25, 0.25).
- Gs::Real tubeRadius = Gs::Real(0.125)

Radius of the inner tube. By default 0.125.

Gs::Real innerRadius = Gs::Real(2)

Inner radius within the torus knot curve. By default 2.

- unsigned int loops = 2
- unsigned int turns = 3
- Gs::Vector2ui segments = Gs::Vector2ui(256, 20)

Segmentation in U (x component), and V (y component) direction.

bool alternateGrid = false

Specifies whether the face grids are to be alternating or uniform. By default false.

VertexModifier vertexModifier = nullptr

Vertex modifier to adjust the tube radius during mesh generation.

7.41.1 Detailed Description

Descriptor structure for a torus-knot mesh (uses the curve generator).

7.41.2 Member Data Documentation

7.41.2.1 unsigned int Gm::MeshGenerator::TorusKnotDescriptor::loops = 2

Number of loops within the torus knot. By default 2.

Remarks

This must be coprime to 'turns', otherwise the mesh will not be a valid torus knot.

7.41.2.2 Gs::Vector2ui Gm::MeshGenerator::TorusKnotDescriptor::segments = Gs::Vector2ui(256, 20)

Segmentation in U (x component), and V (y component) direction.

Remarks

Each component will be clamped to [3, +inf). By default (256, 20).

7.41.2.3 unsigned int Gm::MeshGenerator::TorusKnotDescriptor::turns = 3

Number of turns within the torus knot. By default 3.

Remarks

This must be coprime to 'loops', otherwise the mesh will not be a valid torus knot.

The documentation for this struct was generated from the following file:

· MeshGenerator.h

7.42 Gm::Transform2T < T > Class Template Reference

2D transformation class.

#include <Transform2.h>

Public Types

• using ${\bf MatrixType} = {\bf Gs}:: Affine Matrix3T < T >$

Public Member Functions

- GM_ASSERT_FLOAT_TYPE ("Transform2T")
- void SetPosition (const Gs::Vector2T< T > &position)
- const Gs::Vector2T< T > & GetPosition () const
- void **SetRotation** (const T &rotation)
- const T & GetRotation () const
- void SetScale (const Gs::Vector2T< T > &scale)
- const Gs::Vector2T< T > & GetScale () const
- const MatrixType & GetMatrix () const
- void Turn (const T &rotation, const Gs::Vector2T< T > &pivot)

7.42.1 Detailed Description

```
template < typename T> class Gm::Transform2T< T>
```

2D transformation class.

Note

This class can not be used with multi-threading!

The documentation for this class was generated from the following file:

Transform2.h

7.43 Gm::Transform3T < T > Class Template Reference

3D transformation class.

```
#include <Transform3.h>
```

Public Types

• using **MatrixType** = Gs::AffineMatrix4T< T >

Public Member Functions

- GM_ASSERT_FLOAT_TYPE ("Transform3T")
- Transform3T (const Gs::AffineMatrix4T< T > &matrix)
- void SetPosition (const Gs::Vector3T< T > &position)
- const Gs::Vector3T< T > & GetPosition () const
- void SetRotation (const Gs::QuaternionT< T > &rotation)
- const Gs::QuaternionT< T > & GetRotation () const
- void SetScale (const Gs::Vector3T< T > &scale)
- const Gs::Vector3T< T > & GetScale () const
- const MatrixType & GetMatrix () const
- void MoveGlobal (const Gs::Vector3T< T > &direction)

Moves this transformation into the specified direction.

void MoveLocal (const Gs::Vector3T< T > &direction)

Moves this transformation into the specified direction with respect to the current rotation.

void Turn (const Gs::QuaternionT < T > &rotation, const Gs::Vector3T < T > &pivot)

Turns this transformation with the specified (reltative) angles around the (global) pivot.

7.43.1 Detailed Description

```
template < typename T> class Gm::Transform3T< T>
```

3D transformation class.

Note

This class can not be used with multi-threading!

The documentation for this class was generated from the following file:

· Transform3.h

7.44 Gm::Triangle < T > Class Template Reference

Triangle base class.

```
#include <Triangle.h>
```

Public Member Functions

- Triangle (const Triangle < T > &)=default
- Triangle (const T &a, const T &b, const T &c)
- Triangle (Gs::UninitializeTag)
- T & operator[] (std::size_t vertex)
- const T & operator[] (std::size_t vertex) const

Public Attributes

- ⊤a
- T b
- T c

7.44.1 Detailed Description

```
\label{template} \begin{split} \text{template} &< \text{typename T}> \\ \text{class Gm::Triangle} &< \text{T}> \end{split}
```

Triangle base class.

The documentation for this class was generated from the following file:

Triangle.h

7.45 Gm::Triangle < Gs::Vector2T < T > > Class Template Reference

Template specializationn for 2D triangles.

```
#include <Triangle.h>
```

Public Member Functions

- Triangle (const Triangle < Gs::Vector2T < T > > &)=default
- Triangle (const Gs::Vector2T < T > &a, const Gs::Vector2T < T > &b, const Gs::Vector2T < T > &c)
- Triangle (Gs::UninitializeTag)
- Gs::Vector2T < T > & operator[] (std::size_t vertex)
- const Gs::Vector2T< T > & operator[] (std::size_t vertex) const
- · T Area () const
- Gs::Vector3T< T > Normal () const

Returns the normal vector of this triangle.

Gs::Vector3T< T > UnitNormal () const

Returns the normal vector of this triangle in unit length (length = 1.0).

 $\bullet \ \, \text{Gs::Vector2T} < \text{T} > \text{BarycentricToCartesian} \ \, \text{(const Gs::Vector3T} < \text{T} > \text{\&barycentricCoord)} \ \, \text{const} \\$

Computes the cartesian coordinate by the specified barycentric coordinate with respect to this triangle.

 Triangle < Gs::Vector2T < T > > BarycentricToCartesian (const Triangle < Gs::Vector3T < T > > &barycentricTriangle) const

Computes the triangle with cartesian coordinates by the specified triangle with barycentric coordinates with respectito this triangle.

- Gs::Vector3T < T > CartesianToBarycentric (const Gs::Vector2T < T > &cartesianCoord) const
 Computes the barycentric coordinate with respect to this triangle by the specified cartesian coordinate.
- T Angle (std::size_t vertex) const

Returns the angle (in radians) of the specified triangle vertex (0, 1, or 2).

Public Attributes

- Gs::Vector2T < T > a
- Gs::Vector2T < T > b
- Gs::Vector2T < T > c

7.45.1 Detailed Description

```
template < typename T> class Gm::Triangle < Gs::Vector2T< T> >
```

Template specializationn for 2D triangles.

7.45.2 Member Function Documentation

```
7.45.2.1 template < typename T > Gs::Vector2T < T > Gm::Triangle < Gs::Vector2T < T > >::BarycentricToCartesian ( const Gs::Vector3T < T > & barycentricCoord ) const [inline]
```

Computes the cartesian coordinate by the specified barycentric coordinate with respect to this triangle.

Parameters

in	barycentricCoord	Specifies the barycentric coordinates with respect to this triangle. The sum of all	
		components must be one, i.e. $x+y+z=1$.	

```
7.45.2.2 template < typename T > Triangle < Gs::Vector2T < T > > Gm::Triangle < Gs::Vector2T < T > > ::BarycentricToCartesian ( const Triangle < Gs::Vector3T < T > > & barycentricTriangle ) const  [inline]
```

Computes the triangle with cartesian coordinates by the specified triangle with barycentric coordinates with respecti to this triangle.

Parameters

in	barycentricTriangle	Specifies the triangle with barycentric coordinates with respect to this triangle. If
		this input parameter is { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } }, the result is equal to this
		triangle. The sum of all components must be one for each triangle vertex, i.e.
		x+y+z=1.

7.45.2.3 template < typename T > Gs::Vector3T < T > Gm::Triangle < Gs::Vector2T < T > >::CartesianToBarycentric (const Gs::Vector2T < T > & cartesianCoord) const [inline]

Computes the barycentric coordinate with respect to this triangle by the specified cartesian coordinate.

Parameters

in	cartesianCoord	Specifies the cartesian coordinate.
----	----------------	-------------------------------------

Returns

Barycentric coordinate with respect to this triangle.

7.45.2.4 template
$$<$$
 typename T $>$ Gs::Vector3T $<$ T $>$ Gm::Triangle $<$ Gs::Vector2T $<$ T $>$ $>$::Normal () const [inline]

Returns the normal vector of this triangle.

Remarks

This normal vector is not guaranteed to have a unit length of 1.0! To get a normal vector of unit length use "UnitNormal".

See also

UnitNormal

The documentation for this class was generated from the following file:

Triangle.h

7.46 Gm::Triangle < Gs::Vector3T < T > > Class Template Reference

Template specializationn for 3D triangles.

```
#include <Triangle.h>
```

Public Member Functions

- Triangle (const Triangle < Gs::Vector3T < T > > &)=default
- Triangle (const Gs::Vector3T < T > &a, const Gs::Vector3T < T > &b, const Gs::Vector3T < T > &c)
- Triangle (Gs::UninitializeTag)
- Gs::Vector3T< T > & operator[] (std::size_t vertex)
- const Gs::Vector3T< T > & operator[] (std::size_t vertex) const
- · T Area () const

Returns the area of this triangle.

• Gs::Vector3T< T > Normal () const

Returns the normal vector of this triangle.

Gs::Vector3T< T > UnitNormal () const

Returns the normal vector of this triangle in unit length (length = 1.0).

- $\bullet \ \ Gs:: Vector 3T < T > Barycentric To Cartesian \ (const \ Gs:: Vector 3T < T > \& barycentric Coord) \ const$
 - Computes the cartesian coordinate by the specified barycentric coordinate with respect to this triangle.
- Triangle < Gs::Vector3T < T > > BarycentricToCartesian (const Triangle < Gs::Vector3T < T > > &barycentricTriangle) const

Computes the triangle with cartesian coordinates by the specified triangle with barycentric coordinates with respecti to this triangle.

- $\bullet \ \, \mathsf{Gs::} \mathsf{Vector3T} \mathsf{< T > CartesianToBarycentric} \ \, (\mathsf{const} \ \mathsf{Gs::} \mathsf{Vector3T} \mathsf{< T > \&cartesianCoord}) \ \, \mathsf{const} \ \, \\ \mathsf{const} \ \, \mathsf{Coord} \$
 - Computes the barycentric coordinate with respect to this triangle by the specified cartesian coordinate.
- T Angle (std::size_t vertex) const

Returns the angle (in radians) of the specified triangle vertex (0, 1, or 2).

Public Attributes

- Gs::Vector3T< T > a
- Gs::Vector3T< T > b
- Gs::Vector3T< T > c

7.46.1 Detailed Description

```
template < typename T > class Gm::Triangle < Gs::Vector3T < T > >
```

Template specializationn for 3D triangles.

7.46.2 Member Function Documentation

```
7.46.2.1 template < typename T > Gs::Vector3T < T > Gm::Triangle < Gs::Vector3T < T > >::BarycentricToCartesian ( const Gs::Vector3T < T > & barycentricCoord ) const [inline]
```

Computes the cartesian coordinate by the specified barycentric coordinate with respect to this triangle.

Parameters

in	barycentricCoord	Specifies the barycentric coordinates with respect to this triangle. The sum of all	
		components must be one, i.e. $x+y+z=1$.	

```
7.46.2.2 template < typename T > Triangle < Gs::Vector3T < T > Gm::Triangle < Gs::Vector3T < T > >::BarycentricToCartesian ( const Triangle < Gs::Vector3T < T > > & barycentricTriangle ) const  [inline]
```

Computes the triangle with cartesian coordinates by the specified triangle with barycentric coordinates with respecti to this triangle.

Parameters

in	barycentricTriangle	Specifies the triangle with barycentric coordinates with respect to this triangle. If
		this input parameter is { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } }, the result is equal to this
		triangle. The sum of all components must be one for each triangle vertex, i.e.
		x+y+z=1.

7.46.2.3 template < typename T > Gs::Vector3T < T > Gm::Triangle < Gs::Vector3T < T > >::CartesianToBarycentric (const Gs::Vector3T < T > & cartesianCoord) const [inline]

Computes the barycentric coordinate with respect to this triangle by the specified cartesian coordinate.

Parameters

in	cartesianCoord	Specifies the cartesian coordinate.
----	----------------	-------------------------------------

Returns

Barycentric coordinate with respect to this triangle.

7.46.2.4 template<typename T> Gs::Vector3T<T> Gm::Triangle< Gs::Vector3T< T>>::Normal () const [inline]

Returns the normal vector of this triangle.

Remarks

This normal vector is not guaranteed to have a unit length of 1.0! To get a normal vector of unit length use "UnitNormal".

See also

UnitNormal

The documentation for this class was generated from the following file:

Triangle.h

7.47 Gm::TriangleMesh Class Reference

Triangle mesh base class.

```
#include <TriangleMesh.h>
```

Classes

struct Vertex

Base vertex structure. Contains the members: position, normal, and texCoord.

Public Types

- using **VertexIndex** = std::size t
- using **TriangleIndex** = std::size_t
- using Edge = Gm::Line< VertexIndex >
- using **Triangle** = Gm::Triangle < VertexIndex >

Public Member Functions

- TriangleMesh (const TriangleMesh &)=default
- TriangleMesh (TriangleMesh &&rhs)
- TriangleMesh & operator= (const TriangleMesh &rhs)=default
- TriangleMesh & operator= (TriangleMesh &&rhs)
- void Clear ()

Clears all vertices and triangles.

VertexIndex AddVertex (const Gs::Vector3 &position, const Gs::Vector3 &normal, const Gs::Vector2 &tex←
 Coord)

Adds a new vertex with the specified attributes and returns the index of the new vertex.

TriangleIndex AddTriangle (VertexIndex v0, VertexIndex v1, VertexIndex v2)

Adds a new triangle with the specified three indices and returns the index of the new triangle.

Vertex Barycentric (TriangleIndex triangleIndex, const Gs::Vector3 &barycentricCoords) const

Returns the vertex, interpolated from the triangle with the specified barycentric coordinates.

std::vector < Edge > Edges () const

Computes the set of all triangle edges.

• std::vector< Edge > SilhouetteEdges (Gs::Real toleranceAngle=Gs::Real(0)) const

Computes the set of all triangle edges which are part of the silhouette.

std::set< TriangleIndex > TriangleNeighbors (std::set< TriangleIndex > triangleIndices, std::size_t search
 Depth=1, bool edgeBondOnly=false, bool searchViaPosition=false) const

Computes the list of all neighbors of the specified triangle.

std::vector< TriangleIndex > FindTriangles (VertexIndex vertexIndex) const

Computes the list of all triangles that are connected to the specified vertex.

std::vector< TriangleIndex > FindTriangles (const Edge &edge) const

Computes the list of all triangles that are connected to the specified edge.

- std::vector < Gm::Triangle < Vertex >> TriangleList () const

Computes the list of all triangles with their own vertices, but without indices.

• Gs::Vector3 TriangleNormal (TriangleIndex triangleIndex) const

Returns the normal vector of the specified triangle (in unit length of 1.0).

· AABB3 BoundingBox () const

Computes the axis-aligned bounding-box of this mesh.

• AABB3 BoundingBox (const Gs::AffineMatrix4 &matrix) const

Computes the axis-aligned bounding-box of this mesh with the specified transformation matrix.

void Append (const TriangleMesh &other)

Appends the specified triangle mesh to this mesh.

Public Attributes

std::vector< Vertex > vertices

Vertex array list.

• std::vector< Triangle > triangles

Triangle array list. Make sure that all triangle indices are less than the number of vertices of this mesh!

7.47.1 Detailed Description

Triangle mesh base class.

Remarks

This class is used for generation and modification of all triangle meshes. However, it is only meant to be used to operate with this library, but not to use it within the graphics engine of your project.

7.47.2 Member Function Documentation

7.47.2.1 std::vector<Edge> Gm::TriangleMesh::SilhouetteEdges (Gs::Real toleranceAngle = Gs::Real (0)) const

Computes the set of all triangle edges which are part of the silhouette.

Parameters

in	toleranceAngle	Specifies the tolerance angle (in radians) to reject edges. Must be in the range [0, pi].
----	----------------	---

See also

Edges

7.47.2.2 std::set<TriangleIndex> Gm::TriangleMesh::TriangleNeighbors (std::set< TriangleIndex> triangleIndices, std::size_t searchDepth = 1, bool edgeBondOnly = false, bool searchViaPosition = false) const

Computes the list of all neighbors of the specified triangle.

Parameters

in	triangleIndices	Specifies the indices of the root triangles to search for neighbors.
in	searchDepth	Specifies the number of iterations
in	edgeBondOnly	Specifies whether to only search triangles that are connected at their edges and not only at their corners. By default false.
in	searchViaPosition	Specifies whether to search triangles via the position of their vertices (true), or only search via the index of their vertices (false). By default false.

Returns

Set of triangle indices of the neighbor search result including the input triangle indices.

The documentation for this class was generated from the following file:

· TriangleMesh.h

7.48 Gm::UniformSpline < P, T > Class Template Reference

Spline class with uniform weights.

```
#include <UniformSpline.h>
```

Classes

· struct Polynomial

Polynomial structure with four coefficients.

Public Member Functions

- GM_ASSERT_FLOAT_TYPE ("UniformSpline")
- P operator() (const T &t) const
- void Build (const std::vector< P > &points, const T &expansion=T(1))

Builds the spline polynomials.

void Clear ()

Clears the spline polynoms.

- const Polynomial & operator[] (std::size_t idx) const
- Polynomial & operator[] (std::size_t idx)
- P Evaluate (T t) const
- const std::vector< Polynomial > & GetPolynomials () const

Static Public Attributes

static const std::size_t dimension = P::components
 Spline dimension (e.g. 2 for a 2D-vector).

7.48.1 Detailed Description

```
template<typename P, typename T> class Gm::UniformSpline< P, T >
```

Spline class with uniform weights.

See also

Spline

7.48.2 Member Function Documentation

```
7.48.2.1 template<typename P, typename T> void Gm::UniformSpline< P, T>::Build ( const std::vector< P > & points, const T & expansion = T (1) ) [inline]
```

Builds the spline polynomials.

Parameters

in	points	Specifies the control points.	
in	expansion	Specifies the expansion of the polynomials. If the expansion is 0.0, this spline will be a linear spline. By default 1.0.	

The documentation for this class was generated from the following file:

· UniformSpline.h

7.49 Gm::TriangleMesh::Vertex Struct Reference

Base vertex structure. Contains the members: position, normal, and texCoord.

#include <TriangleMesh.h>

Public Member Functions

- Vertex (const Vertex &)=default
- Vertex (const Gs::Vector3 &position, const Gs::Vector3 &normal, const Gs::Vector2 &texCoord)
- Vertex & operator+= (const Vertex &rhs)
- Vertex & operator*= (Gs::Real rhs)

Public Attributes

- Gs::Vector3 position
- · Gs::Vector3 normal
- · Gs::Vector2 texCoord

7.49.1 Detailed Description

Base vertex structure. Contains the members: position, normal, and texCoord.

The documentation for this struct was generated from the following file:

· TriangleMesh.h

7.50 Gm::MeshModifier::VertexAttributeDescriptor Struct Reference

Vertex attribute descriptor structure.

#include <MeshModifier.h>

Public Member Functions

VertexAttributeDescriptor (std::size_t offset, unsigned int components)

Public Attributes

```
• std::size t offset = 0
```

Byte offset within each vertex.

• unsigned int components = 1

Number of components of this vertex attribute. By default 1.

7.50.1 Detailed Description

Vertex attribute descriptor structure.

Note

This mesh modifier can only handle vertex attributes with components of type "Gs::Real".

The documentation for this struct was generated from the following file:

· MeshModifier.h

7.51 Gm::MeshModifier::VertexDescriptor Struct Reference

Vertex descriptor structure.

```
#include <MeshModifier.h>
```

Public Member Functions

VertexDescriptor (const std::vector< VertexAttributeDescriptor > &attributes, std::size_t stride=0)

Public Attributes

• std::vector< VertexAttributeDescriptor > attributes

Vertex attribute descriptors.

• std::size_t stride = 0

Byte offset to the next vertex. By default 0.

7.51.1 Detailed Description

Vertex descriptor structure.

7.51.2 Member Data Documentation

7.51.2.1 std::size_t Gm::MeshModifier::VertexDescriptor::stride = 0

Byte offset to the next vertex. By default 0.

Remarks

If this is zero, the size of all vertex attributes is used.

The documentation for this struct was generated from the following file:

· MeshModifier.h

7.52 Gm::SkeletonJoint::VertexWeight Struct Reference

Vertex-joint weight structure.

```
#include <SkeletonJoint.h>
```

Public Member Functions

- VertexWeight (const VertexWeight &)=default
- VertexWeight (TriangleMesh::VertexIndex index, Gs::Real weight)

Public Attributes

• TriangleMesh::VertexIndex index = 0

Vertex index within the respective mesh.

• Gs::Real weight = Gs::Real(0)

Weight factor. This should be in the range (0, +inf).

7.52.1 Detailed Description

Vertex-joint weight structure.

Remarks

Vertex weight determine how much a skeleton joint influences a vertex.

The documentation for this struct was generated from the following file:

· SkeletonJoint.h

Index

AABB	Gm::SkeletonJoint, 58
Gm::AABB, 20	Gm::AABB $<$ Vec, T $>$, 19
AddPoint	Gm::AABB
Gm::Spline, 62	AABB, 20
AddRootJoint	Gm::BezierCurve< P, T >, 20
Gm::Skeleton, 54	Gm::BezierPatch
AddSubJoint	Evaluate, 21
Gm::SkeletonJoint, 58	GetControlPoint, 22
AreFramesChrono	
Gm::Playback, 47	SetControlPoint, 22
am layback, 47	Gm::BezierPatch< P, T >, 21
BarycentricToCartesian	Gm::BezierTriangle
Gm::Triangle $<$ Gs::Vector2T $<$ T $>$ $>$, 67, 68	GetControlPoint, 24
Gm::Triangle < Gs::Vector3T < T > >, 69, 70	SetControlPoint, 24
Build	Gm::BezierTriangle $< P, T >$, 23
	Gm::ClippedPolygon< T >, 25
Gm::UniformSpline, 73	Gm::ConvexHullT< T, PlaneEq >, 26
BuildJointSpace	Gm::ConvexHullT
Gm::Skeleton, 54	Normalize, 27
BuildKeys	planes, 27
Gm::KeyframeSequence, 34	Gm::FrustumT< T, PlaneEq >, 32
0.1.1. T.D	Gm::Keyframe $<$ T $>$, 32
CartesianToBarycentric	
Gm::Triangle < Gs::Vector2T < T > >, 68	Gm::KeyframeSequence, 33
Gm::Triangle $<$ Gs::Vector3T $<$ T $>>$, 70	BuildKeys, 34
ClipMesh	Interpolate, 34
Gm::MeshModifier, 16	Gm::Line $<$ Gs::Vector2T $<$ T $>>$, 35
CopyFrom	Gm::Line $<$ Gs::Vector3T $<$ T $>>$, 36
Gm::Skeleton, 55	Gm::Line< T >, 35
CurveFunction	Gm::MeshGenerator, 13
Gm::MeshGenerator, 15	CurveFunction, 15
	VertexModifier, 15
ellipsoidSegments	Gm::MeshGenerator::BezierPatchDescriptor, 2
Gm::MeshGenerator::CapsuleDescriptor, 25	segments, 23
Evaluate	Gm::MeshGenerator::CapsuleDescriptor, 24
Gm::BezierPatch, 21	ellipsoidSegments, 25
,	•
FillGlobalTransformBuffer	Gm::MeshGenerator::ConeDescriptor, 26
Gm::Skeleton, 55	Gm::MeshGenerator::CuboidDescriptor, 27
FillLocalTransformBuffer	Gm::MeshGenerator::CurveDescriptor, 28
Gm::Skeleton, 56	segments, 29
	Gm::MeshGenerator::CylinderDescriptor, 29
GetControlPoint	Gm::MeshGenerator::EllipsoidDescriptor, 30
Gm::BezierPatch, 22	segments, 30
Gm::BezierTriangle, 24	Gm::MeshGenerator::PipeDescriptor, 42
GetDefaultVertexDesc	Gm::MeshGenerator::SpiralDescriptor, 60
Gm::MeshModifier, 16	mantleSegments, 61
GetFlags	Gm::MeshGenerator::TorusDescriptor, 62
Gm::ProjectionT, 52	segments, 63
GetMatrix	Gm::MeshGenerator::TorusKnotDescriptor, 63
Gm::ProjectionT, 52	loops, 63
GlobalTransform	segments, 63

78 INDEX

turns, 64	GlobalTransform, 58
Gm::MeshModifier, 15	jointSpaceTransform, 59
ClipMesh, 16	poseTransform, 59
GetDefaultVertexDesc, 16	RemoveSubJoint, 58
InterpolateBarycentric, 16	transform, 59
Gm::MeshModifier::VertexAttributeDescriptor, 74	Gm::SkeletonJoint::VertexWeight, 76
Gm::MeshModifier::VertexDescriptor, 75	Gm::SphereT< T >, 59
stride, 76	Gm::Spline
Gm::OBB< Vec, T >, 39	AddPoint, 62
Gm::PlaneEquation_NX_eq_D< T >, 43	Gm::Spline < P, T >, 61
Gm::PlaneEquation_NXD_eq_Zero< T >, 43	Gm::Spline < P, T >::ControlPoint, 26
Gm::PlaneT < T, PlaneEq >, 43	Gm::Transform2T $<$ T $>$, 64
Gm::PlaneT	Gm::Transform3T $<$ T $>$, 65
	Gm::Triangle $<$ Gs::Vector2T $<$ T $>>$, 67
MemberPoint, 45	BarycentricToCartesian, 67, 68
PlaneT, 45	CartesianToBarycentric, 68
Gm::Playback, 45	Normal, 68
AreFramesChrono, 47	Gm::Triangle $<$ Gs::Vector3T $<$ T $>>$, 69
HasEndReached, 47	BarycentricToCartesian, 69, 70
IsForward, 47	CartesianToBarycentric, 70
Pause, 48	
Paused, 47	Normal, 70 Gm::Triangle $<$ T $>$, 66
Play, 48, 49	•
Playing, 47	Gm::TriangleMesh, 71
SetNextFrame, 49	SilhouetteEdges, 72
State, 47	TriangleNeighbors, 72
Stop, 49	Gm::TriangleMesh::Vertex, 74
Stopped, 47	Gm::UniformSpline
Update, 50	Build, 73
Gm::Playback::EventListener, 30	Gm::UniformSpline < P, T > , 73
OnNextFrame, 31	Gm::UniformSpline < P, T >::Polynomial, 50
OnPause, 31	HasEndReached
OnPlay, 31	Gm::Playback, 47
OnStop, 31	
Gm::Playback::ListLoop, 37	Interpolate
OnNextFrame, 38	Gm::KeyframeSequence, 34
OnStop, 38	InterpolateBarycentric
Gm::Playback::Loop, 38	Gm::MeshModifier, 16
OnNextFrame, 39	IsForward
Gm::Playback::OneShot, 40	Gm::Playback, 47
OnNextFrame, 41	
Gm::Playback::PingPongLoop, 41	jointSpaceTransform
OnNextFrame, 42	Gm::SkeletonJoint, 59
Gm::ProjectionT $<$ T $>$, 51	
Gm::ProjectionT	loops
GetFlags, 52	Gm::MeshGenerator::TorusKnotDescriptor, 63
GetMatrix, 52	mantlaCagmenta
SetFlags, 52	mantleSegments
Gm::Ray $<$ T $>$, 53	Gm::MeshGenerator::SpiralDescriptor, 61 MemberPoint
Gm::Skeleton, 54	Gm::PlaneT, 45
AddRootJoint, 54	GIIIFlaile1, 45
BuildJointSpace, 54	Normal
CopyFrom, 55	Gm::Triangle $<$ Gs::Vector2T $<$ T $>>$, 68
FillGlobalTransformBuffer, 55	Gm::Triangle $<$ Gs::Vector3T $<$ T $>$ $>$ $>$ 70
FillLocalTransformBuffer, 56	Normalize
RebuildPoseTransforms, 56	Gm::ConvexHullT, 27
RemoveRootJoint, 56	
Gm::SkeletonJoint, 57	OnNextFrame
AddSubJoint, 58	Gm::Playback::EventListener, 31

INDEX 79

Gm::Playback::ListLoop, 38	Gm::SkeletonJoint, 59
Gm::Playback::Loop, 39	TriangleNeighbors
Gm::Playback::OneShot, 41	Gm::TriangleMesh, 72 turns
Gm::Playback::PingPongLoop, 42 OnPause	Gm::MeshGenerator::TorusKnotDescriptor, 64
Gm::Playback::EventListener, 31	amwestraeneratortorus/triotDescriptor, 04
OnPlay	Update
Gm::Playback::EventListener, 31	Gm::Playback, 50
OnStop	•
Gm::Playback::EventListener, 31	VertexModifier
Gm::Playback::ListLoop, 38	Gm::MeshGenerator, 15
ο, ο	
Pause	
Gm::Playback, 48	
Paused	
Gm::Playback, 47	
planes	
Gm::ConvexHullT, 27	
PlaneT	
Gm::PlaneT, 45	
Play	
Gm::Playback, 48, 49	
Playing	
Gm::Playback, 47	
poseTransform	
Gm::SkeletonJoint, 59	
RebuildPoseTransforms	
Gm::Skeleton, 56	
RemoveRootJoint	
Gm::Skeleton, 56	
RemoveSubJoint	
Gm::SkeletonJoint, 58	
segments	
Gm::MeshGenerator::BezierPatchDescriptor, 23	
Gm::MeshGenerator::CurveDescriptor, 29	
Gm::MeshGenerator::EllipsoidDescriptor, 30	
Gm::MeshGenerator::TorusDescriptor, 63	
Gm::MeshGenerator::TorusKnotDescriptor, 63 SetControlPoint	
Gm::BezierPatch, 22	
Gm::BezierTriangle, 24	
SetFlags	
Gm::ProjectionT, 52	
SetNextFrame	
Gm::Playback, 49	
SilhouetteEdges	
Gm::TriangleMesh, 72	
State	
Gm::Playback, 47	
Stop	
Gm::Playback, 49	
Stopped	
Gm::Playback, 47	
stride	
Gm::MeshModifier::VertexDescriptor, 76	

transform