Circuite de curent alternativ

(Seru7)

= Toma niminoidala =
$$\overline{I}$$
 C

 $i(t)=\overline{I}\sqrt{2}$ mm ($\omega t+\eta t$) $\overline{I}=\overline{I}e^{it}=\overline{I}(\cos t+\eta t)$
 $u(t)=\overline{U}\sqrt{2}$ mm ($\omega t+\eta t$) \overline{I} . Ealer: $e^{it}=\overline{C}\cos t+\overline{J}$ mmy >

= Forma famorala: \overline{I}

Triana manimular alin forma S in forma eomplica

 $u(t)=\overline{I}\sqrt{2}$ mm ($\omega t+\eta t$) $\Rightarrow \overline{I}=\overline{I}$ $e^{it}=\overline{I}(\cos t+\eta t)$

Triana manimular alin forma eomplica in f . S

$$R \rightarrow Z = R + j \times ; \quad x = x_{E} + x_{C}$$

$$x_{L} = \omega L$$

$$x_{C} = -\frac{1}{\omega C}$$

$$x = \frac{1}{2}$$

Aplicatio:

(1) Su se mother serve outin(t)=2\(\frac{7}{2}\) sinu(wt+\frac{11}{2})

in(t)=2√2min(wt+11/6) iz(t)=10√2 min(wt-11/3)

i3(t)=452 mu (wt +11) i4(t)= 52 mu (wt + 17)

15(t)= 3/2 min (cut- II)

n' onb F.	-0	in	vana	uta m	rupling	troata,	manim
y 1010 1.	. 1	001	30	450	60°	90	180
,	nin	0	1/2	52/2	53/2	1	0
-	S	1	53/2	V2/2	53/2 1/2	0	-1
	tr	m	1/1/2	Λ	5	+ 00	0

T.F.		TI-1 I = 2	
	I ₃ =h	The state of the s	111
		-I 3	
		Tye-3	, ,
			12:10

$$I_{1} = 2e^{i\frac{\pi}{6}} = 2\left(\cos^{2\pi} + j \sin^{2\pi} \right) = 2\left|\frac{\sqrt{3}}{2} + j^{2}\right| = \sqrt{3} + j$$

$$I_{2} = 10e^{-i\frac{\pi}{3}} = 10\left(\cos(-\frac{\pi}{3}) + j \sin(\frac{\pi}{3})\right) = 10\left(\cos^{2\pi} - j \sin^{2\pi} \right) = 0\left(\frac{1}{2} - j^{2}\right) = 5 - j = 5\sqrt{3}$$

$$I_{3} = he^{j\pi} = h\left(\cos\pi + j \sin\pi\right) = h\left(-1 + j - 0\right) = -h$$

In= e+2 = cos2 + j mm == j Is=3e=3(con - fmi =)=3j ourends represented sub FF mes for: To a vero out F. intantance 丁二年 丁二年 丁二年 丁二年 「丁二年 「二年 「二年 「二年 「二年 「二年 F.S: N(+) = IVE my (w++8) 4(t)=4/2 mm (wt+ th) I2=5. 08: FC: II = 4. 0 = 4 (cos 1 + jmin) = $= h \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right) = 2\sqrt{2}(A+\frac{1}{2})$ $= h \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right) = 2\sqrt{2}(A+\frac{1}{2})$ $= h \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right) = 2\sqrt{2}(A+\frac{1}{2})$ 15(t)= 3 12 mi (ust + 17) 14(t) = 552 mil(wt-15) liz(t) F. din dominiul prim (instantance) rentre urmatoasch Deine mue maniai eouplice i(t)= (1) 2 mm (wt(8) I,= 4/3 $J = \sqrt{\alpha^2 + 5^2}$ $\int_{-2}^{2} \left\{ \frac{\alpha \cos(\frac{\pi}{2})}{17 + \operatorname{cncf}_{\frac{\pi}{2}}} \right\} = 0$ I2=1-1/3 $L_3 = -1 + j\sqrt{3}$ 1-1-1-1V3 Is-= 8j $I_{1} = \sqrt{12+(\sqrt{3})^{2}} = 2$ V= arcty \(\frac{1}{3} = \frac{17}{3} = \frac{1}{1} (t) = 2\sqrt{2} \rightarrow \(\cot \frac{11}{3} \) I6=-31 Ix=10 I8=3+51 Lg=-3+5) V= andy 8 = andy 0 = == = is(t) = 852 minu(wt+ 1/2) 110=-3-51 V= arcty 10 = 6= 1 i=(+)=10v2 mi (wt) Ig = 19+25 = 184 $\gamma = 11 + \operatorname{arct}(\frac{5}{3})$ ig(t)=134 12 min(wt+11+anct)(-3) (1) JR = I

le revertent or Uni I muit in fata -28-

I deferrat un fata lui Van T I defarat is wrome his d'en ! Aplicage. Sei re disenve diagramele favoriale pentre urmatante circuite Current alternativ detoda tecremedor hue kinceluff Etope: 10) Analoa topologica N. L. S (numer subunante) 3= L-N+S) 20) Sensul curentulii pun laturi 30) Levoul buchlor ha) Serveria seistemiden (N-S) ec. TKI Torusa complexa a teorenales his kirchoff TKI EIK = 0 TKI SEX = S (ZKK IX + S ZKJ)

ZKK = RKK + J(W LKK - WCK) Th. I Enli=0 Oest-ly is TK. I Son = Sen (Rux lx + Lx) dix + 1 (ix dt + d dext)