明細書

癌高発現遺伝子

技術分野

5 本発明は、癌に関連する遺伝子、この遺伝子によりコードされるタンパク質、 およびこのタンパク質を認識する抗体に関する。本発明の遺伝子、タンパク質お よび抗体は、癌の診断および治療、ならびに癌の治療薬の開発において用いるこ とができる。

10 背景技術

これまでに、細胞の癌化と関連してその発現量が変化する遺伝子や、癌のマーカーとなりうる抗原が多数見いだされており、多くの研究が行われている。しかし、特定の癌を特異的に検出または治療することは依然として困難である。したがって、当該技術分野においては、癌の診断および治療に用いることができる、

15 さらに別の癌関連遺伝子およびタンパク質を同定することが求められている。

本発明に関連する先行技術文献情報としては以下のものがある: EP1033401; US2002022248; US2002042096; US200208150; US6337195; US6362321;

WO9738098; WO9920764; WO9929729; WO0006698; WO0012702;

WO0034477; WO0036107; WO0037643; WO0055174; WO0055320;

20 WO0055351; WO0055633; WO0058473; WO0073509; WO0100828;

WO0109317; WO0121653; WO0122920; WO0151513; WO0151628;

WO0154733; WO0155355; WO0157058; WO0159111; WO0160860;

WO0164835; WO0164886; WO0166719; WO0170976; WO0173027;

WO0175177; WO0177168; WO0192578; WO0194629; WO0200677;

WO0200889; WO0200939; WO0204514; WO0210217; WO0212280;

WO0220598; WO0229086; WO0229103; WO0258534; WO0260317;

WO0264797。

本発明は、癌の診断および治療剤として用いることができる遺伝子およびタンパク質を提供することを目的とする。

30

25

. 発明の開示

25

本発明者らは、癌組織において特定の遺伝子の発現が亢進していることを見いだし、本発明を完成させた。すなわち、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメントを提供する。

5 1つの観点においては、本発明は、配列番号1、2、28、29、30、31、32、51、52、60および61のいずれかに記載されるヌクレオチド配列を有する遺伝子、および該遺伝子によりコードされるタンパク質またはそのフラグメントを提供する。好ましくは、該遺伝子は、配列番号1、2、28、29、30、31および32のいずれかに記載されるヌクレオチド配列、より好ましくは10 配列番号1または2に記載されるヌクレオチド配列を有する。

これらのタンパク質やフラグメントは肺癌の診断または治療のための組成物と して有用である。

別の観点においては、本発明は、配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25、26、27、33、34、35、36、37、38、39、40、41、42、53、54および55のいずれかに記載されるヌクレオチド配列を有する遺伝子、および該遺伝子によりコードされるタンパク質またはそのフラグメント提供する。好ましくは、該遺伝子は、配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25および26のいずれかに記載されるヌクレオチド配列を有する。

20 これらのタンパク質やフラグメントは胃癌の診断または治療のための組成物と して有用である。

別の観点においては、本発明は、配列番号3、7、20、21、46、47、48、49および50のいずれかに記載されるヌクレオチド配列を有する遺伝子、および該遺伝子によりコードされるタンパク質またはそのフラグメントを提供する。好ましくは、該遺伝子は、配列番号3、7、20、21、46、49および50のいずれかに記載されるヌクレオチド配列、より好ましくは配列番号3、7、20および21のいずれかに記載されるヌクレオチド配列を有する。

これらのタンパク質やフラグメントは大腸癌の診断または治療のための組成物 として有用である。

30 別の観点においては、本発明は、配列番号14、15、16、17、18、1 9、43、44、45、56、57、58、59、62、63、64および65

のいずれかに記載されるヌクレオチド配列を有する遺伝子、および該遺伝子によりコードされるタンパク質またはそのフラグメントを提供する。好ましくは、該遺伝子は、配列番号 14、15、16、17、18、19、45、56、57、58、64および 65 のいずれかに記載されるヌクレオチド配列、より好ましくは、配列番号 14、15、16、17、18 、19 、64および 65 のいずれかに記載されるヌクレオチド配列を有する。

これらのタンパク質やフラグメントは肝癌の診断または治療のための組成物として有用である。

好ましくは、本発明の組成物において、該遺伝子は、配列番号1、9、10、
10 14、20、22、24、25、26、27、28、29、32、38、39、
40、44、51、52、53、54および58のいずれかに記載されるヌクレ
オチド配列、より好ましくは、配列番号1、9、10、14、20、22、24、
25および26のいずれかに記載されるヌクレオチド配列を有する。

また好ましくは、本発明の組成物において、該遺伝子は、配列番号2、3、4、15、6、7、8、11、12、13、15、16、17、18、19、21、23、30、31、33、34、35、36、37、41、42、43、45、46、47、48、49、50、55、56、57、59、60、61、62および63のいずれかに記載されるヌクレオチド配列、より好ましくは、配列番号2、3、4、5、6、7、8、11、12、13、15、16、17、18、19、20 21および23のいずれかに記載されるヌクレオチド配列を有する。

別の観点においては、本発明は、上述の遺伝子またはそのフラグメントを発現する細胞またはベクターを提供する。これらの細胞やベクターは、本発明のタンパク質の製造、該タンパク質に対する抗体の製造、癌の診断・治療などに有用である。

25 また別の観点においては、本発明は、配列番号66-123に記載されるアミノ酸配列を有するタンパク質またはそのフラグメントを提供する。これらのタンパク質またはそのフラグメントは、抗体の製造の際の抗原として、または癌の診断・治療に有用である。

さらに別の観点においては、本発明は、上述のタンパク質またはそのフラグメ 30 ントを認識する抗体またはその抗原結合性フラグメントを提供する。本発明はま た、このような抗体を産生する細胞を提供する。 さらに別の観点においては、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、あるいはこれらのポリヌクレオチドに高ストリンジェントな条件下でハイブリダイズすることができるポリヌクレオチドを提供する。

5 さらに、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列の少なくとも12個の連続するヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、あるいは、配列番号1-65のいずれかに記載されるヌクレオチド配列を有するポリヌクレオチドに高ストリンジェントな条件下でハイブリダイズすることができる少なくとも12ヌクレオチドの長さのオリゴヌクレオチドを提供する。

これらのポリヌクレオチドは、癌の診断、タンパク質の製造、プライマー、遺伝子発現阻害の為のアンチセンス・siRNAなどに有用である。

さらに別の観点においては、本発明は、抗癌活性を有する化合物を同定する方法であって、培養ヒト細胞を試験化合物と接触させ、そして前記細胞において配列番号1-65のいずれかに記載されるヌクレオチド配列を含む遺伝子の発現量の変化を引き起こす化合物を抗癌活性を有する化合物として同定する、の各工程を含む方法を提供する。

さらに別の観点においては、本発明は、C20orf102 タンパク質を検出することを特徴とする癌の診断方法を提供する。好ましくは、癌は、肺癌、肝癌、また は膵癌である。本発明の方法においては、好ましくは、細胞外に分泌された C20orf102 タンパク質が検出される。また好ましくは、本発明の方法は C20orf102 タンパク質を認識する抗体を用いて行われる。好ましくは、本発明 の方法においては、血液中、血清中、または血漿中の C20orf102 タンパク質、あるいは細胞から分離した C20orf102 タンパク質が検出される。

25 別の態様においては、本発明は、以下の工程:

- (a) 被験者から試料を採取する工程:
- (b) 採取された試料に含まれる C20orf102 タンパク質を検出する工程を含む癌の診断方法を提供する。

30 図面の簡単な説明

15

図1は、癌関連遺伝子TEG1の発現解析の結果を示す。

- 図2は、癌関連遺伝子TEG2の発現解析の結果を示す。
- 図3は、癌関連遺伝子TEG2の発現解析の結果を示す。
- 図4は、癌関連遺伝子TEG3の発現解析の結果を示す。
- 図5は、癌関連遺伝子TEG4の発現解析の結果を示す。
- 5 図6は、癌関連遺伝子TEG5の発現解析の結果を示す。
 - 図7は、癌関連遺伝子TEG6の発現解析の結果を示す。
 - 図8は、癌関連遺伝子TEG6の発現解析の結果を示す。
 - 図9は、癌関連遺伝子TEG7の発現解析の結果を示す。
 - 図10は、癌関連遺伝子TEG8の発現解析の結果を示す。
- 10 図11は、癌関連遺伝子TEG9の発現解析の結果を示す。
 - 図12は、癌関連遺伝子TEG10の発現解析の結果を示す。
 - 図13は、癌関連遺伝子TEG11の発現解析の結果を示す。
 - 図14は、癌関連遺伝子TEG12の発現解析の結果を示す。
 - 図15は、癌関連遺伝子TEG13の発現解析の結果を示す。
- 15 図16は、癌関連遺伝子TEG14の発現解析の結果を示す。
 - 図17は、癌関連遺伝子TEG15の発現解析の結果を示す。
 - 図18は、癌関連遺伝子TEG16の発現解析の結果を示す。
 - 図19は、癌関連遺伝子TEG17の発現解析の結果を示す。
 - 図20は、癌関連遺伝子TEG18の発現解析の結果を示す。
- 20 図21は、癌関連遺伝子TEG19の発現解析の結果を示す。
 - 図22は、癌関連遺伝子TEG20の発現解析の結果を示す。
 - 図23は、癌関連遺伝子TEG21の発現解析の結果を示す。
 - 図24は、癌関連遺伝子TEG22の発現解析の結果を示す。
 - 図25は、癌関連遺伝子TEG23の発現解析の結果を示す。
 - 図26は、癌関連遺伝子TEG24の発現解析の結果を示す。
 - 図27は、癌関連遺伝子TEG25の発現解析の結果を示す。
 - 図28は、癌関連遺伝子TEG26の発現解析の結果を示す。
 - 図29は、癌関連遺伝子TEG27の発現解析の結果を示す。
 - 図30は、癌関連遺伝子TEG28の発現解析の結果を示す。
- 30 図31は、癌関連遺伝子TEG29の発現解析の結果を示す。
 - 図32は、癌関連遺伝子TEG30の発現解析の結果を示す。

- 図33は、癌関連遺伝子TEG31の発現解析の結果を示す。
- 図34は、癌関連遺伝子TEG32の発現解析の結果を示す。
- 図35は、癌関連遺伝子TEG33の発現解析の結果を示す。
- 図36は、癌関連遺伝子TEG34の発現解析の結果を示す。
- 5 図37は、癌関連遺伝子TEG35の発現解析の結果を示す。
 - 図38は、癌関連遺伝子TEG36の発現解析の結果を示す。
 - 図39は、癌関連遺伝子TEG37の発現解析の結果を示す。
 - 図40は、癌関連遺伝子TEG38の発現解析の結果を示す。
 - 図41は、癌関連遺伝子TEG39の発現解析の結果を示す。
- 10 図42は、癌関連遺伝子TEG40の発現解析の結果を示す。
 - 図43は、癌関連遺伝子TEG41の発現解析の結果を示す。
 - 図44は、癌関連遺伝子TEG42の発現解析の結果を示す。
 - 図45は、癌関連遺伝子TEG43の発現解析の結果を示す。
 - 図46は、癌関連遺伝子TEG44の発現解析の結果を示す。
- 15 図47は、癌関連遺伝子TEG45の発現解析の結果を示す。
 - 図48は、癌関連遺伝子TEG46の発現解析の結果を示す。
 - 図49は、癌関連遺伝子TEG47の発現解析の結果を示す。
 - 図50は、癌関連遺伝子TEG48の発現解析の結果を示す。
 - 図51は、癌関連遺伝子TEG49の発現解析の結果を示す。
- 20 図52は、癌関連遺伝子TEG50の発現解析の結果を示す。
 - 図53は、癌関連遺伝子TEG51の発現解析の結果を示す。
 - 図54は、癌関連遺伝子TEG52の発現解析の結果を示す。
 - 図55は、癌関連遺伝子TEG53の発現解析の結果を示す。
 - 図56は、癌関連遺伝子TEG54の発現解析の結果を示す。
- 25 図57は、癌関連遺伝子TEG55の発現解析の結果を示す。
 - 図58は、癌関連遺伝子TEG56の発現解析の結果を示す。
 - 図59は、癌関連遺伝子TEG57の発現解析の結果を示す。
 - 図60は、癌関連遺伝子TEG58の発現解析の結果を示す。
 - 図61は、癌関連遺伝子TEG59の発現解析の結果を示す。
- 30 図62は、癌関連遺伝子TEG60の発現解析の結果を示す。
- 図63は、癌関連遺伝子TEG61の発現解析の結果を示す。

- 図64は、癌関連遺伝子TEG62の発現解析の結果を示す。
- 図65は、癌関連遺伝子TEG63の発現解析の結果を示す。
- 図66は、癌関連遺伝子TEG64の発現解析の結果を示す。
- 図67は、新規遺伝子 K#1 の塩基配列およびアミノ酸配列を示す。
- 5 図 6 8 は、新規遺伝子 K#1 と GenBank No. XM_067369 とのアライメントを示す。
 - 図69は、新規遺伝子 K#1 のアミノ酸配列モチーフの解析結果を示す。
 - 図70は、新規遺伝子 K#2(クローン11)の塩基配列およびアミノ酸配列を示す。
- 10図71は、新規遺伝子 K#2(クローン18)の塩基配列およびアミノ酸配列を示す。
 - 図72は、新規遺伝子 K#2(クローン11)と、ヒト LIN-28、線虫 LIN-28、 アフリカツメガエル LIN-28、ショウジョウバエ LIN-28 およびマウス LIN-28 のアミノ酸配列の比較を示す。
- 15 図73は、C20orf102遺伝子の肺扁平上皮癌における発現を示す。
 - 図74は、抗C20orf102 抗体を用いる、各種癌細胞株およびその培養上清におけるC20orf102 タンパク質分子の検出を示す。
 - 図 7 5 は、抗 C20orf102 抗体を用いる、肺腺癌組織における C20orf102 タンパク質の発現解析の結果を示す。
- 20 図76は、抗 hNotum 抗体を用いる、各種癌細胞株およびその培養上清における hNotum タンパク質分子の検出を示す。
 - 図 77 は、抗 hNotum 抗体を用いる、肝癌組織における hNotum タンパク質の発現解析の結果を示す。
- 図78は、抗 K#2 抗体を用いる、K#2 強制発現細胞株および各種癌細胞株に 25 おける K#2 タンパク質分子の検出を示す。
 - 図79は、抗 K#2 抗体を用いる、肝癌組織における K#2 タンパク質の発現解析の結果を示す。
 - 図80は、抗 KIAA1359 抗体を用いる、KIAA1359 強制発現細胞株および各種癌細胞株における KIAA1359 タンパク質分子の検出を示す。
- 30 図 8 1 は、抗 KIAA1359 抗体を用いる、胃癌組織における KIAA1359 タンパ ク質の発現解析の結果を示す。

図82は、抗PEG10/ORF2 抗体を用いる、PEG10 強制発現細胞株および各種癌細胞株における PEG10 タンパク質分子の検出を示す。

図83は、抗PEG10/ORF2 抗体を用いる、肝細胞癌組織におけるPEG10 タンパク質の発現解析の結果を示す。

5 図84は、抗 DUSP9 抗体を用いる、DUSP9 強制発現細胞株および各種癌細胞株における DUSP9 タンパク質分子の検出を示す。

図85は、抗DUSP9抗体を用いる、肝細胞癌組織におけるDUSP9タンパク質の発現解析の結果を示す。

図86は、抗 CystatinSN 抗体を用いる、大腸癌組織における CystatinSN 夕 10 ンパク質の発現解析の結果を示す。

図87は、抗SFRP4抗体を用いる、胃癌組織におけるSFRP4タンパク質の発現解析の結果を示す。

図88は、抗SFRP4抗体を用いる、SFRP4を強制発現させた COS7細胞の 培養上清おける SFRP4 タンパク質の検出を示す。

15

発明の詳細な説明

本発明は、癌組織において特定の遺伝子の発現が亢進している遺伝子、およびこの遺伝子によりコードされるタンパク質を利用する、癌の診断および治療のための組成物を提供する。

20

25

30

蛋白質

第1の観点においては、本発明は、配列番号1-65に記載される癌関連遺伝子によりコードされるタンパク質またはそのフラグメントを提供する。好ましくは、本発明の組成物は、配列番号66-123に記載されるアミノ酸配列を有するタンパク質またはそのフラグメントを含む。

本発明のタンパク質またはそのフラグメントは、癌の診断・治療や、抗体作製の際の抗原として有用である。

本発明の組成物においては、タンパク質またはそのフラグメントは、所望の免疫原性を有する限り、上述の配列から、1または数個のアミノ酸残基が欠失、置換または付加された変異体であってもよい。このような変異体は、好ましくは、上述のアミノ酸配列と、少なくとも80%、好ましくは90%またはそれ以上、

(1982) 79, 6409-6413) .

20

25

より好ましくは95%またはそれ以上の同一性を有するアミノ酸配列を有する。 アミノ酸配列の同一性は、比較すべき2つの配列において、同一である残基の 数を残基の総数で割り、100を乗ずることにより表される。標準的なパラメー 夕を用いて配列の同一性を決定するためのいくつかのコンピュータプログラム、 例えば、Gapped BLASTまたはPSI-BLAST (Altschu 5 1, et al. (1997) Nucleic Acids Res. 25:3 389-3402), BLAST (Altschul, et al. (199 0) J. Mol. Biol. 215:403-410)、およびスミスーウォー ターマン (Smith-Waterman) (Smith, et al. (19 81) J. Mol. Biol. 147:195-197) が利用可能である。 10 あるアミノ酸配列に対する1または複数個のアミノ酸残基の欠失、付加および /または他のアミノ酸による置換により修飾されたアミノ酸配列を有するタンパ ク質がその生物学的活性を維持することはすでに知られている(Mark, D. F. et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666 , Zoller, M. J. & Smith, M. Nucleic Acids Research (1982) 10, 6487-6500 Wang, A. et al., Science 15

変異するアミノ酸残基においては、アミノ酸側鎖の性質が保存されている別のアミノ酸に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸およびアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ離(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)を挙げることができる(括弧内はいずれもアミノ酸の一文字標記を表す)。

224, 1431-1433 、 Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA

当業者であれば公知の方法、例えば、部位特異的変異誘発法(Gotoh, T. et al. (1995) Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Methods Enzymol. 100, 468-500、Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-30 9456、Kramer W, and Fritz HJ(1987) Methods. Enzymol. 154, 350-367、Kunkel, TA(1985) Proc Natl Acad Sci USA. 82, 488-492、Kunkel (1988)

WO 2005/014818 PCT/JP2004/011650

Methods Enzymol. 85, 2763-2766) などを用いて、アミノ酸に適宜変異を導入することにより、該タンパク質と同等なタンパク質を調製することが可能である。

本発明のタンパク質は、後述するタンパク質を産生する細胞や宿主あるいは精 製方法により、アミノ酸配列、分子量、等電点または糖鎖の有無や形態などが異 なり得る。例えば、本発明のタンパク質を原核細胞、例えば大腸菌で発現させた 場合、本来のタンパク質のアミノ酸配列のN末端にメチオニン残基が付加され る。本発明のタンパク質はこのようなタンパク質も包含する。

5

10

15

20

25

30

本発明のタンパク質は、当業者に公知の方法により、組み換えタンパク質として、また天然のタンパク質として調製することが可能である。組み換えタンパク質であれば、本発明のタンパク質をコードする DNA を、適当な発現ベクターに組み込み、これを適当な宿主細胞に導入して得た形質転換体を回収し、抽出物を得た後、イオン交換、逆相、ゲル濾過などのクロマトグラフィー、あるいは本発明のタンパク質に対する抗体をカラムに固定したアフィニティークロマトグラフィーにかけることにより、または、さらにこれらのカラムを複数組み合わせることにより精製し、調製することが可能である。

また、本発明のタンパク質をグルタチオン S・トランスフェラーゼタンパク質 との融合タンパク質として、あるいはヒスチジンを複数付加させた組み換えタンパク質として宿主細胞(例えば、動物細胞や大腸菌など)内で発現させた場合に は、発現させた組み換えタンパク質はグルタチオンカラムあるいはニッケルカラムを用いて精製することができる。融合タンパク質の精製後、必要に応じて融合タンパク質のうち、目的のタンパク質以外の領域を、トロンビンまたはファクターXa などにより切断し、除去することも可能である。

天然のタンパク質であれば、当業者に周知の方法、例えば、本発明のタンパク質を発現している組織や細胞の抽出物に対し、後述する本発明のタンパク質に結合する抗体が結合したアフィニティーカラムを作用させて精製することにより単離することができる。抗体はポリクローナル抗体であってもモノクローナル抗体であってもよい。

本発明は、また、本発明のタンパク質のフラグメント(部分ペプチド)を包含する。本発明のフラグメントは、例えば、本発明のタンパク質に対する抗体の作製、本発明のタンパク質に結合する化合物のスクリーニングや、本発明のタンパク質の促進剤や阻害剤のスクリーニングに利用し得る。また、本発明のタンパク

10

25

30

質のアンタゴニストや競合阻害剤になり得る。

本発明のフラグメントは、免疫原とする場合には、少なくとも 7 アミノ酸以上、好ましくは 8 アミノ酸以上、さらに好ましくは 9 アミノ酸以上のアミノ酸配列からなる。本発明のタンパク質の競合阻害剤として用いる場合には、少なくとも 100 アミノ酸以上、好ましくは 200 アミノ酸以上、さらに好ましくは 300 アミノ酸以上のアミノ酸配列を含む。

本発明のフラグメントは、遺伝子工学的手法、公知のペプチド合成法、あるい は本発明のタンパク質を適切なペプチダーゼで切断することによって製造するこ とができる。ペプチドの合成は、例えば、固相合成法、液相合成法のいずれによ ってもよい。

本発明は、また、本発明の DNA が挿入されたベクターを提供する。本発明のベクターは、宿主細胞内において本発明の DNA を保持させたり、本発明のタンパク質を発現させるために有用である。

ベクターとしては、例えば、大腸菌を宿主とする場合には、ベクターを大腸菌 (例えば、JM109、DH5a、HB101、XL1Blue) などで大量に増幅させ大量調製するために、大腸菌で増幅されるための「ori」をもち、さらに形質転換された大腸菌の選抜遺伝子(例えば、なんらかの薬剤(アンピシリンやテトラサイクリン、カナマイシン、クロラムフェニコール)により判別できるような薬剤耐性遺伝子)を有していることが好ましい。

20 ベクターの例としては、M13 系ベクター、pUC 系ベクター、pBR322、pBluescript、pCR-Script などが挙げられる。また、cDNA のサブクローニング、切り出しを目的とした場合、上記ベクターの他に、例えば、pGEM-T、pDIRECT、pT7 などが挙げられる。

本発明のタンパク質を生産する目的においてベクターを使用する場合には、特に、発現ベクターが有用である。発現ベクターとしては、例えば、大腸菌での発現を目的とした場合は、ベクターが大腸菌で増幅されるような上記特徴を持つほかに、宿主を JM109、DH5 α 、HB101、XL1·Blue などの大腸菌とした場合においては、大腸菌で効率よく発現できるようなプロモーター、例えば、lacZ プロモーター(Ward ら, Nature (1989) 341, 544·546; FASEB J. (1992) 6, 2422-2427)、araB プロモーター(Better ら, Science (1988) 240, 1041·1043)、または T7 プロモーターなどを持っていることが不可欠である。このようなベクタ

ーとしては、上記ベクターの他に pGEX-5X-1 (ファルマシア社製)、

「QIAexpress system」(キアゲン社製)、pEGFP、またはpET(この場合、宿主はT7 RNA ポリメラーゼを発現しているBL21 が好ましい)などが挙げられる。また、ベクターには、タンパク質分泌のためのシグナル配列が含まれていても

よい。タンパク質分泌のためのシグナル配列としては、大腸菌のペリプラズムに 産生させる場合、pelB シグナル配列 (Lei, S. P. et al J. Bacteriol. (1987) 169, 4379) を使用すればよい。宿主細胞へのベクターの導入は、例えば塩化カルシ ウム法、エレクトロポレーション法を用いて行うことができる。

大腸菌以外にも、例えば、本発明のタンパク質を製造するためのベクターとしては、哺乳動物由来の発現ベクター(例えば、pcDNA3 (インビトロゲン社製)や、pEGF-BOS (Nucleic Acids. Res.1990, 18(17),p5322)、pEF 、pCDM8)、昆虫細胞由来の発現ベクター(例えば「Bac-to-BAC baculovairus expression system」(ギブコ BRL 社製)、pBacPAK8)、植物由来の発現ベクター(例えば、pHSV、ば pMH1、pMH2)、動物ウィルス由来の発現ベクター(例えば、pHSV、

pMV、pAdexLcw)、レトロウィルス由来の発現ベクター(例えば、pZIPneo)、 酵母由来の発現ベクター(例えば、「Pichia Expression Kit」(インビトロゲン社製)、pNV11、SP-Q01)、枯草菌由来の発現ベクター(例えば、pPL608、pKTH50)が挙げられる。

CHO 細胞、COS 細胞、NIH3T3 細胞等の動物細胞での発現を目的とした場合には、細胞内で発現させるために必要なプロモーター、例えば SV40 プロモーター (Mulligan ら, Nature (1979) 277, 108)、MMLV-LTR プロモーター、EF1a プロモーター (Mizushima ら, Nucleic Acids Res. (1990) 18, 5322)、CMV プロモーターなどを持っていることが不可欠であり、細胞への形質転換を選抜するための遺伝子 (例えば、薬剤 (ネオマイシン、G418 など)により判別できるような薬剤耐性遺伝子)を有すればさらに好ましい。このような特性を有するベクターとしては、例えば、pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV、pOP13 などが挙げられる。

さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅を目的とする場合には、核酸合成経路を欠損した CHO 細胞にそれを相補する OHFR 遺伝子を有するベクター (例えば、pCHOI など)を導入し、メトトレキセート (MTX) により増幅させる方法が挙げられ、また、遺伝子の一過性の発

現を目的とする場合には、SV40 T 抗原を発現する遺伝子を染色体上に持つ COS 細胞を用いて SV40 の複製起点を持つベクター(pcD など)で形質転換する方法が挙げられる。複製開始点としては、また、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV)等の由来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。

10 また、本発明は、本発明のベクターが導入された宿主細胞を提供する。本発明のベクターが導入される宿主細胞としては特に制限はなく、例えば、大腸菌や種々の動物細胞などを用いることが可能である。本発明の宿主細胞は、例えば、本発明のタンパク質の製造や発現のための産生系として使用することができる。タンパク質製造のための産生系は、in vitro および in vivo の産生系がある。in vitro の産生系としては、真核細胞を使用する産生系や原核細胞を使用する産生系が挙げられる。

真核細胞を使用する場合、例えば、動物細胞、植物細胞、真菌細胞を宿主に用いることができる。動物細胞としては、哺乳類細胞、例えば、CHO (J. Exp. Med. (1995) 108, 945) 、COS、3T3、ミエローマ、BHK (baby hamster kidney)、HeLa、Vero、両生類細胞、例えばアフリカツメガエル卵母細胞 (Valle, et al., Nature (1981) 291, 358·340) 、あるいは昆虫細胞、例えば、Sf9、Sf21、Tn5 が知られている。CHO 細胞としては、特に、DHFR 遺伝子を欠損した CHO 細胞である dhfr・CHO (Proc. Natl. Acad. Sci. USA (1980) 77, 4216-4220) や CHO K-1 (Proc. Natl. Acad. Sci. USA (1968) 60, 1275) を好適に使 用することができる。動物細胞において、大量発現を目的とする場合には特に CHO 細胞が好ましい。宿主細胞へのベクターの導入は、例えば、リン酸カルシウム法、DEAE デキストラン法、カチオニックリボソーム DOTAP (ベーリンガーマンハイム社製) を用いた方法、エレクトロポーレーション法、リポフェクションなどの方法で行うことが可能である。

30 植物細胞としては、例えば、ニコチアナ・タバカム(Nicotiana tabacum)由 来の細胞がタンパク質生産系として知られており、これをカルス培養すればよい。

25

30

真菌細胞としては、酵母、例えば、サッカロミセス(Saccharomyces)属、例えば、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、糸状菌、例えば、アスペルギルス(Aspergillus)属、例えば、アスペルギルス・ニガー(Aspergillus niger)が知られている。

5 原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、 大腸菌(E. coli)、例えば、JM109、DH5a、HB101等が挙げられ、その他、 枯草菌が知られている。

これらの細胞を目的とする DNA により形質転換し、形質転換された細胞を in vitro で培養することによりタンパク質が得られる。培養は、公知の方法に従 い行うことができる。例えば、動物細胞の培養液として、例えば、DMEM、 MEM、RPMI1640、IMDM を使用することができる。その際、牛胎児血清 (FCS) 等の血清補液を併用することもできるし、無血清培養してもよい。培養時の pH は、約6~8 であるのが好ましい。培養は、通常、約30~40℃で約15~200 時間行い、必要に応じて培地の交換、通気、攪拌を加える。

15. 一方、in vivo でタンパク質を産生させる系としては、例えば、動物を使用する産生系や植物を使用する産生系が挙げられる。これらの動物または植物に目的とする DNA を導入し、動物または植物の体内でタンパク質を産生させ、回収する。本発明における「宿主」とは、これらの動物、植物を包含する。

動物を使用する場合、哺乳類動物、昆虫を用いる産生系がある。哺乳類動物としては、ヤギ、ブタ、ヒツジ、マウス、ウシを用いることができる(Vicki Glaser, SPECTRUM Biotechnology Applications, 1993)。また、哺乳類動物を用いる場合、トランスジェニック動物を用いることができる。

例えば、目的とする DNA を、ヤギ β カゼインのような乳汁中に固有に産生されるタンパク質をコードする遺伝子との融合遺伝子として調製する。次いで、この融合遺伝子を含む DNA 断片をヤギの胚へ注入し、この胚を雌のヤギへ移植する。胚を受容したヤギから生まれるトランスジェニックヤギまたはその子孫が産生する乳汁から、目的のタンパク質を得ることができる。トランスジェニックヤギから産生されるタンパク質を含む乳汁量を増加させるために、適宜ホルモンをトランスジェニックヤギに使用してもよい(Ebert, K.M. et al., Bio/Technology (1994) 12, 699-702)。

また、昆虫としては、例えばカイコを用いることができる。カイコを用いる場

15

30

合、目的のタンパク質をコードする DNA を挿入したパキュロウィルスをカイコ に感染させることにより、このカイコの体液から目的のタンパク質を得ることが できる(Susumu, M. et al., Nature (1985) 315, 592-594)。

さらに、植物を使用する場合、例えばタバコを用いることができる。タバコを 用いる場合、目的とするタンパク質をコードする DNA を植物発現用ベクター、 例えば pMON 530 に挿入し、このベクターをアグロバクテリウム・ツメファシ エンス(Agrobacterium tumefaciens)のようなバクテリアに導入する。このバ クテリアをタバコ、例えば、ニコチアナ・タバカム(Nicotiana tabacum)に感 染させ、本タバコの葉より所望のタンパク質を得ることができる(Julian K.-C.

10 Ma et al., Eur. J. Immunol. (1994) 24, 131-138) .

これにより得られた本発明のタンパク質は、宿主細胞内または細胞外(培地など)から単離し、実質的に純粋で均一なタンパク質として精製することができる。タンパク質の分離、精製は、通常のタンパク質の精製で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、SDS・ポリアクリルアミドゲル電気泳動、等電点電気泳動法、透析、再結晶等を適宜選択、組み合わせればタンパク質を分離、精製することができる。

クロマトグラフィーとしては、例えばアフィニティークロマトグラフィー、イ

オン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996)。これらのクロマトグラフィーは、液相クロマトグラフィー、例えば HPLC、FPLC等の液相クロマトグラフィーを用いて行うことができる。本発明は、これらの精製方法を用い、高度に精製されたタンパク質も包含する。

なお、タンパク質を精製前または精製後に適当なタンパク質修飾酵素を作用させることにより、任意に修飾を加えたり、部分的にペプチドを除去することもできる。タンパク質修飾酵素としては、例えば、トリプシン、キモトリプシン、リシルエンドペプチダーゼ、プロテインキナーゼ、グルコシダーゼなどが用いられる。

後述の実施例において示されるように、配列番号1-65に示される癌関連遺

WO 2005/014818 PCT/JP2004/011650

伝子の遺伝子配列(表 1 を参照)を元に PCR プライマーを設計し、ヒトの正常 および癌組織から得た cDNA を用いて、定量 PCR によりヒト組織における癌関 連遺伝子の発現量の定量化を行ったところ、本発明の癌関連遺伝子は特定のヒト 癌組織においてその発現が亢進されていることが見いだされた。

5 配列番号1、2、28、29、30、31、32、51、52、60および6 1に記載されるヌクレオチド配列を有する遺伝子は、肺癌においてその発現が亢進していることが見いだされた。すなわち、配列番号1、2、28、29、30、31、32、51、52、60および61に記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメントは、肺癌の診断または治療において有用である。好ましくは、該遺伝子は、配列番号1、2、28、29、30、31および32のいずれかに記載されるヌクレオチド配列、より好ましくは配列番号1または2に記載されるヌクレオチド配列を有する。

配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25、26、27、33、34、35、36、37、38、39、40、41、42、53、54および55に記載されるヌクレオチド配列を有する遺伝

15

子は、胃癌においてその発現が亢進していることが見いだされた。すなわち、配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25、26、27、33、34、35、36、37、38、39、40、41、42、53、54および55に記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメントは、胃癌の診断または治療において有用である。好ましくは、該遺伝子は、配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25および26のいずれかに記載されるヌクレオチド配列を有する。

配列番号3、7、20、21、46、47、48、49および50に記載され 3ヌクレオチド配列を有する遺伝子は、大腸癌においてその発現が亢進している ことが見いだされた。すなわち、配列番号3、7、20、21、46、47、48、49および50に記載されるヌクレオチド配列を有する遺伝子によりコード されるタンパク質またはそのフラグメントは、大腸癌の診断または治療において 有用である。好ましくは、該遺伝子は、配列番号3、7、20、21、46、49および50のいずれかに記載されるヌクレオチド配列、より好ましくは配列番号3、7、20および21のいずれかに記載されるヌクレオチド配列を有する。

配列番号14、15、16、17、18、19、43、44、45、56、57、58、59、62、63、64および65に記載されるヌクレオチド配列を有する遺伝子は、肝癌においてその発現が亢進していることが見いだされた。すなわち、配列番号14、15、16、17、18、19、43、44、45、56、57、58、59、62、63、64および65に記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメントは、肝癌の診断または治療において有用である。好ましくは、該遺伝子は、配列番号14、15、16、17、18、19、45、56、57、58、64および65のいずれかに記載されるヌクレオチド配列、より好ましくは、配列番号14、15、16、17、18、19、64および65のいずれかに記載されるヌクレオチド配列を有する。

配列番号 1 - 6 5 に記載される癌関連遺伝子によりコードされるタンパク質またはそのフラグメントを含む本発明の組成物は、癌に対するワクチンとして用いることができる。上述のタンパク質またはその免疫原性フラグメントを、適当なアジュバントとともに、あるいは他の適当なポリペプチドとの融合タンパク質として、対象となるヒトまたはその他の動物に投与することにより、そのヒトまたは動物の体内で免疫応答を生じさせることができる。あるいは、本発明の組成物は、上述の癌関連遺伝子またはそのフラグメントを発現する細胞の形で投与してもよい。

20 また、本発明の組成物は、被検者が配列番号1-65に記載される癌関連遺伝 子によりコードされるタンパク質に対する抗体を有するか否かを測定することに より、特定の癌に罹患しているか否かを診断するために用いることができる。

抗体

5

10

別の観点においては、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列を有する癌関連遺伝子によりコードされるタンパク質またはそのフラグメントを認識する抗体またはその抗原結合性フラグメントを提供する。さらに、該抗体またはその結合フラグメントを含む、癌を診断または治療するための組成物を提供する。本発明の抗体は、好ましくは、配列番号66-123で表されるアミノ酸配列を有するタンパク質またはそのフラグメントを認識することができる。本発明はまた、このような抗体を産生する細胞を提供する。

15

20

25

認識するとは、抗体が、特定の条件下において、上述の癌関連遺伝子によりコードされるタンパク質またはそのフラグメントに対して、他のポリペプチドに結合するより高い親和性をもって結合することを意味する。

本発明の抗体には、モノクローナル抗体およびポリクローナル抗体、ならびに 抗原決定基に特異的に結合する能力を保持している抗体およびTー細胞レセプタ ーフラグメント等の、抗体の変種および誘導体が含まれる。

又、本発明の抗体の種類は特に制限されず、マウス抗体、ヒト抗体、ラット抗体、ウサギ抗体、ヒツジ抗体、ラクダ抗体等や、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ抗体、ヒト化抗体、等を適宜用いることができる。遺伝子組換え型抗体は、既知の方法を用いて製造することができる。キメラ抗体は、ヒト以外の哺乳動物、例えば、マウス抗体の重鎖、軽鎖の可変領域とヒト抗体の重鎖、軽鎖の定常領域からなる抗体であり、マウス抗体の可変領域をコードする DNA をヒト抗体の定常領域をコードする DNA と連結し、これを発現ベクターに組み込んで宿主に導入し産生させることにより得ることができる。ヒト化抗体は、再構成

(reshaped)ヒト抗体とも称され、ヒト以外の哺乳動物、たとえばマウス抗体の相補性決定領域(CDR; complementarity determining region)をヒト抗体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法も知られている。具体的には、マウス抗体の CDR とヒト抗体のフレームワーク領域

(framework region; FR) を連結するように設計した DNA 配列を、末端部にオーバーラップする部分を有するように作製した数個のオリゴヌクレオチドからPCR 法により合成する。得られた DNA をヒト抗体定常領域をコードする DNA と連結し、次いで発現ベクターに組み込んで、これを宿主に導入し産生させることにより得られる(欧州特許出願公開番号 EP 239400 、国際特許出願公開番号WO 96/02576参照)。CDR を介して連結されるヒト抗体のFR は、相補性決定領域が良好な抗原結合部位を形成するものが選択される。必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部位を形成するように抗体の可変領域のフレームワーク領域のアミノ酸を置換してもよい(Sato, K.et al., Cancer Res, 1993, 53, 851-856.)。

30 また、ヒト抗体の取得方法も知られている。例えば、ヒトリンパ球を in vitro で所望の抗原または所望の抗原を発現する細胞で感作し、感作リンパ球をヒトミ

25

30

エローマ細胞、例えば U266 と融合させ、抗原への結合活性を有する所望のヒト 抗体を得ることもできる(特公平1-59878参照)。また、ヒト抗体遺伝子の全 てのレパートリーを有するトランスジェニック動物を所望の抗原で免疫すること で所望のヒト抗体を取得することができる(国際特許出願公開番号 WO 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096, WO 5 96/33735 参照)。さらに、ヒト抗体ライブラリーを用いて、パンニングにより ヒト抗体を取得する技術も知られている。例えば、ヒト抗体の可変領域を一本鎖 抗体(scFv)としてファージディスプレイ法によりファージの表面に発現させ、 抗原に結合するファージを選択することができる。選択されたファージの遺伝子 を解析すれば、抗原に結合するヒト抗体の可変領域をコードする DNA 配列を決 10 定することができる。抗原に結合する scFv の DNA 配列が明らかになれば、当 該配列を適当な発現ベクターを作製し、ヒト抗体を取得することができる。これ らの方法は既に衆知であり、WO 92/01047, WO 92/20791, WO 93/06213, WO 93/11236, WO 93/19172, WO 95/01438, WO 95/15388 を参考にすることができ 15 る。

また、抗体は抗原に結合することができれば、抗体断片(フラグメント)等の低分子化抗体や抗体の修飾物などであってもよい。抗体断片の具体例としては、例えば、Fab、Fab'、F(ab')2、Fv、Diabody などを挙げることができる。このような抗体断片を得るには、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させればよい(例えば、Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; Lamoyi, E., Methods Enzymol. (1986) 121, 652-663; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1991) 9, 132-137 参照)。

抗体の修飾物として、ポリエチレングリコール(PEG)等の各種分子と結合した抗体を使用することもできる。又、抗体に放射性同位元素、化学療法剤、細菌由来トキシン等の細胞傷害性物質などを結合することも可能であり、特に放射性標識抗体は有用である。このような抗体修飾物は、得られた抗体に化学的な修飾を施すことによって得ることができる。なお、抗体の修飾方法はこの分野にお

いてすでに確立されている。

5

10

15

20

25

30

又、本発明においては、細胞傷害活性を増強する目的などで、糖鎖を改変した 抗体などを用いることも可能である。抗体の糖鎖改変技術は既に知られている (例えば、WO00/61739、WO02/31140 など)。

又、本発明においては、2種以上の異なる抗原に対して特異性を有する多特異性抗体も含まれる。通常このような分子は2個の抗原を結合するものであるが(即ち、二重特異性抗体)、本発明における「多特異性抗体」は、それ以上(例えば、3種類の)抗原に対して特異性を有する抗体を包含するものである。多特異性抗体は全長からなる抗体、またはそのような抗体の断片(例えば、F(ab')2二特異性抗体)であり得る。

当分野において多特異性抗体の製造法は公知である。全長の二特異性抗体の産 生は、異なる特異性を有する2つの免疫グロブリン重鎖・軽鎖の共発現を含むも のである(Millstein et al., Nature 305:537-539 (1983))。免疫グロブリンの重鎖 および軽鎖はランダムに取り合わされるので、共発現を行う得られた複数のハイ ブリドーマ(クワドローマ)は、各々異なる抗体分子を発現するハイブリドーマの 混合物であり、このうち正しい二特異性抗体を産生するものを選択する必要があ る。選択はアフィニティークロマトグラフィー等の方法により行うことができる。 また、別な方法では所望の結合特異性を有する抗体の可変領域を免疫グロブリン の定常ドメイン配列に融合する。該定常ドメイン配列は、好ましくは免疫グロブ リンの重鎖の定常領域の内、ヒンジ、CH2 および CH3 領域の一部を少なくとも 含むものである。好ましくは、さらに軽鎖との結合に必要な重鎖の CH1 領域が 含まれる。免疫グロブリン重鎖融合体をコードする DNA、および、所望により 免疫グロブリン軽鎖をコードする DNA をそれぞれ別々の発現ベクターに挿入し、 適当な宿主生物に形質転換する。別々の発現ベクターに各遺伝子を挿入すること により、それぞれの鎖の存在割合が同じでない方が、得られる抗体の収量が上が る場合に、各鎖の発現割合の調節が可能となり都合が良いが、当然ながら、複数 の鎖をコードする遺伝子を一つのベクターに挿入して用いることも可能である。 好ましい態様においては、第一の結合特性を有する重鎖がハイブリッド免疫グ ロブリンの一方の腕として存在し、別の結合特性の重鎖・軽鎖複合体がもろ一方 の腕として存在する二重特異性抗体が望ましい。このように一方の腕のみに軽鎖 を存在させることにより、二重特異性抗体の他の免疫グロブリンからの分離を容

易に行うことができる。該分離方法については、WO94/04690参照。二特異性抗体の作成方法については、さらに、Sureshら(Methods in Enzymology 121:210 (1986))の方法を参照することができる。組換細胞培養物から得られる最終産物中のホモダイマーを減らしヘテロダイマーの割合を増加させる方法として、抗体の定常ドメインの CH3 を含み、一方の抗体分子において、他方の分子と結合する表面の1若しくは複数の小さな側鎖のアミノ酸を大きな側鎖のアミノ酸(例えば、チロシンやトリプトファン)に変え、他方の抗体分子の対応する部分の大きさ側鎖のアミノ酸を小さなもの(例えば、アラニンやスレオニン)に変えて第一の抗体分子の大きな側鎖に対応する空洞を設ける方法も知られている(WO96/27011)。

5

10

15

20

25

30

二重特異性抗体には、例えば、一方の抗体がアビジンに結合され、他方がビオチン等に結合されたようなヘテロ共役抗体が含まれる(米国特許第 4,676,980号;WO91/00360;WO92/00373;EP03089)。このようなヘテロ共役抗体の作成に利用される架橋剤は周知であり、例えば、米国特許第 4,676,980号にもそのような例が記載されている。

また、抗体断片より二特異性抗体を製造する方法も報告されている。例えば、化学結合を利用して製造することができる。例えば、まず $F(ab')_2$ 断片を作成し、同一分子内でのジフルフィド形成を防ぐため断片をジチオール錯化剤アルサニルナトリウムの存在化で還元する。次に $F(ab')_2$ 断片をチオニトロ安息香酸塩 (TNB)誘導体に変換する。メルカプトエチルアミンを用いて一方の $F(ab')_2$ -TNB 誘導体を Fab'-チオールに再還元した後、 $F(ab')_2$ -TNB 誘導体および Fab'-チオールを等量混合し二特異性抗体を製造する。

組換細胞培養物から直接、二重特異性抗体を製造し、単離する方法も種々、報告されている。例えば、ロイシンジッパーを利用した二重特異性抗体の製造方法が報告されている(Kostelny et al., J,Immunol. 148(5):1547-1553 (1992))。まず、Fos および Jun タンパク質のロイシンジッパーペプチドを、遺伝子融合により異なる抗体の Fab'部分に連結させ、ホモダイマーの抗体をヒンジ領域においてモノマーを形成するように還元し、抗体ヘテロダイマーとなるように再酸化する。また、軽鎖可変ドメイン(VL)に重鎖可変ドメイン(VH)を、これら2つのドメイン間での対形成できない位に短いリンカーを介して連結し、相補的な別のVL および VH ドメンと対を形成させ、それにより2つの抗原結合部位を形成させる

方法もある(Hollinger et al., Proc.Natl.Acad.Sci.USA 90:6444-6448 (1993))。また、一本鎖 Fv(sFV)を用いたダイマーについても報告されている(Gruger et al., J.Immunol. 152:5368 (1994))。さらに、二重特異性ではなく三重特異性の抗体についても報告されている(Tutt et al., J.Immunol. 147:60 (1991))。

5 本発明における「抗体」にはこれらの抗体も包含される。

本発明の抗体および抗体フラグメントは、任意の適当な方法、例えば、インビボ、培養細胞、インビトロ翻訳反応、および組換えDNA発現系により製造することができる。

モノクローナル抗体およびハイブリドーマを製造する手法は当該技術分野においてよく知られている(Campbell, "Monolonal Antibody Technology:Laboratory Techniquesin Biochemistry and Molecular Biology"、Elsevier Science Publishers, Amsterdam, The Netherlands, 1984; St. Groth et al.、J. Immunol. Methods 35:1-21, 1980)。上述の癌関連遺伝子によりコードされるタンパク質またはフラグメントを免疫原として用いて、抗体を生成することが知られている任意の動物(マウス、ウサギ等)に皮下または腹膜内注射することにより免疫することができる。免疫に際してアジュバントを用いてもよく、そのようなアジュバントは当該技術分野においてよく知られている。

ポリクローナル抗体は、免疫した動物から抗体を含有する抗血清を単離し、E LISAアッセイ、ウエスタンブロット分析、またはラジオイムノアッセイ等の 当該技術分野においてよく知られる方法を用いて、所望の特異性を有する抗体の 存在についてスクリーニングすることにより得ることができる。

25 モノクローナル抗体は、免疫した動物から脾臓細胞を切除し、ミエローマ細胞と融合させ、モノクローナル抗体を産生するハイブリドーマ細胞を作製することにより得ることができる。ELISAアッセイ、ウエスタンブロット分析、またはラジオイムノアッセイ等の当該技術分野においてよく知られる方法を用いて、目的とするタンパク質またはそのフラグメントを認識する抗体を産生するハイブリドーマ細胞を選択する。所望の抗体を分泌するハイブリドーマをクローニングし、適切な条件下で培養し、分泌された抗体を回収し、当該技術分野においてよ

く知られる方法、例えばイオン交換カラム、アフィニティークロマトグラフィー等を用いて精製することができる。あるいは、ゼノマウス株を用いてヒト型モノクローナル抗体を製造してもよい(Green, J. Immunol. Methods 231:11-23,1999; Wells, Eek, Chem Biol 2000 Aug; 7(8):R185-6を参照)。

5

20

モノクローナル抗体をコードする DNA は、慣用な方法(例えば、モノクローナル抗体の重鎖および軽鎖をコードする遺伝子に特異的に結合することができるオリゴヌクレオチドプローブを用いて)により容易に単離、配列決定できる。ハイブリドーマ細胞はこのような DNA の好ましい出発材料である。一度単離したならば、DNA を発現ベクターに挿入し、E.coli 細胞、サル COS 細胞、チャイニーズハムスター卵巣(CHO)細胞または形質転換されなければ免疫グロブリンを産生しないミエローマ細胞等の宿主細胞へ組換え、組換え宿主細胞からモノクローナル抗体を産生させる。また別の態様として、McCafferty ら(Nature 348:552-554 (1990))により記載された技術を用いて製造された抗体ファージライブラリーより抗体、または抗体断片は単離することができる。

上述の抗体は、検出可能なように標識することができる。標識としては、放射性同位体、アフィニティー標識(例えばビオチン、アビジン等)、酵素標識(例えば西洋ワサビペルオキシダーゼ、アルカリホスファターゼ等)、蛍光標識(例えばFITCまたはローダミン等)、常磁性原子等が挙げられる。そのような標識を行う方法は当該技術分野においてよく知られている。上述の抗体は、固体支持体上に固定化してもよい。そのような固体支持体の例には、プラスチック、アガロース、セファロース、ポリアクリルアミドおよびラテックスビーズ等が含まれる。抗体をそのような固体支持体に結合させる技術は当該技術分野においてよく知られている。

25 後述の実施例において記載されるように、本発明の癌関連遺伝子は、特定の癌組織において亢進された発現を示すため、本発明の抗体は、癌診断マーカーとして有用である。本発明の抗体を、ウエスタンブロット法、ELISA法、組織染色法などの手法において用いて、組織または細胞における、癌関連遺伝子によりコードされるタンパク質の発現を検出することができる。被験者の組織に由来する試料(例えば、生検サンプル、血液サンプル等)と本発明の組成物とを免疫複合体が形成されるような条件下で接触させ、該試料に抗体が結合するか否かを判

定することにより、該試料中の癌関連遺伝子によりコードされるタンパク質の存在または量を判定することができ、このことにより癌の診断、癌の進行または治癒のモニタリング、および予後の予測を行うことができる。本発明の診断用組成物は、試料中で上述の癌関連遺伝子によりコードされるタンパク質の存在を検出するためのキットとして提供することができる。このようなキットは、上述の抗体に加えて、洗浄試薬および結合した抗体の存在を検出しうる試薬、例えば、標識第2抗体、標識された抗体と反応しうる発色団、酵素、または抗体結合試薬、ならびに使用の指針を含むことができる。

5

20

25

30

さらに、本発明の癌関連遺伝子によりコードされるタンパク質に対する抗体は、 10 特定の癌細胞に対する特異性を有するため、癌の治療剤として、あるいは、薬剤 を癌組織に特異的にターゲティングさせるミサイル療法において用いることがで きる。好ましくは、本発明の組成物は、肺癌、胃癌、大腸癌および肝癌の診断お よび治療において用いられる。

本発明の治療剤は、当該技術分野においてよく知られる薬学的に許容しうる担 15 体とともに、混合、溶解、顆粒化、錠剤化、乳化、カプセル封入、凍結乾燥等に より、製剤化することができる。

経口投与用には、本発明の治療剤を、薬学的に許容しうる溶媒、賦形剤、結合剤、安定化剤、分散剤等とともに、錠剤、丸薬、糖衣剤、軟カプセル、硬カプセル、溶液、懸濁液、乳剤、ゲル、シロップ、スラリー等の剤形に製剤化することができる。

非経口投与用には、本発明の治療剤を、薬学的に許容しうる溶媒、賦形剤、結合剤、安定化剤、分散剤等とともに、注射用溶液、懸濁液、乳剤、クリーム剤、軟膏剤、吸入剤、座剤等の剤形に製剤化することができる。注射用の処方においては、本発明の治療剤を水性溶液、好ましくはハンクス溶液、リンゲル溶液、または生理的食塩緩衝液等の生理学的に適合性の緩衝液中に溶解することができる。さらに、組成物は、油性または水性のベヒクル中で、懸濁液、溶液、または乳濁液等の形状をとることができる。あるいは、治療剤を粉体の形態で製造し、使用前に滅菌水等を用いて水溶液または懸濁液を調製してもよい。吸入による投与用には、本発明の治療剤を粉末化し、ラクトースまたはデンプン等の適当な基剤とともに粉末混合物とすることができる。座剤処方は、本発明の治療剤をカカオバター等の慣用の坐剤基剤と混合することにより製造することができる。さらに、

本発明の治療剤は、ポリマーマトリクス等に封入して、持続放出用製剤として処方することができる。

投与量および投与回数は、剤形および投与経路、ならびに患者の症状、年齢、体重によって異なるが、一般に、本発明の治療剤は、1日あたり体重1kgあたり、約0.001mgから1000mgの範囲、好ましくは約0.01mgから10mgの範囲となるよう、1日に1回から数回投与することができる。

治療剤は通常非経口投与経路で、例えば注射剤(皮下注、静注、筋注、腹腔内 注など)、経皮、経粘膜、経鼻、経肺などで投与されるが、特に限定されず、経 口投与でもよい。

10

15

20

5

ポリヌクレオチド

さらに別の観点においては、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、あるいはこれらのポリヌクレオチドに高ストリンジェントな条件下でハイブリダイズすることができるポリヌクレオチドを提供する。

さらに、本発明は、配列番号1-65のいずれかに記載されるヌクレオチド配列の少なくとも12個の連続するヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、あるいは、配列番号1-65のいずれかに記載されるヌクレオチド配列を有するポリヌクレオチドに高ストリンジェントな条件下でハイブリダイズすることができる少なくとも12ヌクレオチドの長さのオリゴヌクレオチドを含む組成物を提供する。

これらのポリヌクレオチドは、癌の診断、タンパク質の製造、プライマー、遺伝子発現阻害の為のアンチセンス・siRNA などに有用である。癌は、好ましくは、肺癌、胃癌、大腸癌および肝癌から選択される。

25 配列番号1-65に示される本発明の癌関連遺伝子は、後述の実施例において 示されるように、特定のヒト癌組織においてその発現が亢進されている。したが って、本発明の組成物は、癌関連遺伝子の発現をサイレンシングするためのアン チセンスオリゴヌクレオチド、リボザイム、siRNA等の薬剤として、および 癌関連遺伝子を検出するためのプローブまたはプライマーとして用いることがで 30 きる。又、本発明のタンパク質を製造する際に用いることも可能である。

本発明の組成物に含まれるポリヌクレオチドまたはオリゴヌクレオチドは、一

30

本鎖であっても二本鎖であってもよく、DNA、RNA、またはこれらの混合物、 あるいはPNA等の誘導体であってもよい。これらのポリヌクレオチドまたはオ リゴヌクレオチドは、ヌクレオシド間結合、塩基および/または糖において化学 的に修飾されていてもよく、5'末端および/または3'末端に修飾基を有してい てもよい。ヌクレオシド間結合の修飾の例としては、ホスホロチオエート、ホス 5 ホロジチオエート、ホスホルアミドチオエート、ホスホルアミデート、ホスホル ジアミデート、メチルホスホネート、アルキルホスホトリエステル、およびホル ムアセタール等が挙げられる。塩基修飾の例としては、5-フルオロウラシル、 5 ープロモウラシル、5 ークロロウラシル、5 - ヨードウラシル、ヒポキサンチ ン、キサンチン、4-アセチルシトシン、および5-(カルボキシヒドロキシエ 10 チル) ウラシル等が挙げられる。糖修飾の例としては、2'-0-アルキル、2' -O-アルキル-O-アルキルまたは2'-フルオロ修飾等が挙げられる。また、 アラビノース、2-フルオロアラビノース、キシルロースおよびヘキソース等の 糖を用いてもよい。

15 本発明のポリヌクレオチドは、配列番号1-65のいずれかに記載されるヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、あるいはこれらのポリヌクレオチドに高ストリンジェントな条件下でハイブリダイズすることができるポリヌクレオチドである。高ストリンジェントな条件下でハイブリダイズすることが可能なポリヌクレオチドは、通常、高い同一性を 有する。ここで、高い同一性とは、配列番号1-65のいずれかに記載されるヌクレオチド配列と70%以上の同一性を有し、好ましくは、80%以上の同一性、さらに好ましくは90%以上の同一性を有することを言う。

塩基配列の同一性は、Karlin and Altschul によるアルゴリズム BLAST(Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993)によって決定することができる。このアルゴリズムに基づいて、BLASTN や BLASTX と呼ばれるプログラムが開発されている(Altschul et al. J. Mol. Biol.215:403-410, 1990)。BLAST に基づいて BLASTN によって塩基配列を解析する場合には、パラメーターはたとえば score = 100、wordlength = 12 とする。BLAST と Gapped BLAST プログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である(http://www.ncbi.nlm.nih.gov.)。

さらに、本発明は、配列番号66-123に記載のアミノ酸配列をコードする

WO 2005/014818 PCT/JP2004/011650 27

ポリヌクレオチドを含む。これらのポリヌクレオチドは本発明のタンパク質を製造する際に用いることができ、又、配列番号1-65のいずれかに記載されるヌクレオチド配列またはその相補的な配列を有するポリヌクレオチドが癌細胞で高発現していることから、それらのポリヌクレオチドを検出して癌の診断を行う際のプローブとして用いること等が可能である。

又、本発明の組成物は、これを導入した細胞内で所望のアンチセンス、リボザ イム、siRNAを生成させることができる核酸構築物として提供してもよい。 本発明のポリヌクレオチドまたはオリゴヌクレオチドをアンチセンス、リボザ イム、siRNA などとして用いる場合、ポリヌクレオチドまたはオリゴヌクレオ チドは少なくとも12ヌクレオチド以上の鎖長を有していることが好ましく、さ 10 らに好ましくは12-50ヌクレオチドであり、特に好ましくは12-25ヌク レオチドである。これらのポリヌクレオチドまたはオリゴヌクレオチドは、所望 のアンチセンス、リボザイムまたはsiRNAの活性を有する限り、上述したヌ クレオチド配列から、1または数個の塩基が欠失、置換または付加された変異体 15 であってもよい。このような変異体は、好ましくは、上述のヌクレオチド配列と、 少なくとも70%、好ましくは90%またはそれ以上、より好ましくは95%ま たはそれ以上の同一性を有するヌクレオチド配列を有する。あるいは、このよう なポリヌクレオチドまたはオリゴヌクレオチドは、配列番号1-65のいずれか に記載されるヌクレオチド配列を有するポリヌクレオチドに高ストリンジェント な条件下でハイブリダイズすることができる。 20

ハイブリダイゼーションとの用語は、DNAまたはこれに対応するRNAが、溶液中でまたは固体支持体上で、別のDNAまたはRNA分子と水素結合相互作用により結合することを意味する。このような相互作用の強さは、ハイブリダイゼーション条件のストリンジェンシーを変化させることにより評価することができる。所望の特異性および選択性によって、種々のストリンジェンシーのハイブリダイゼーション条件を用いることができ、ストリンジェンシーは、塩濃度または変性剤の濃度を変化させることにより調節することができる。そのようなストリンジェンシーの調節方法は当該技術分野においてよく知られており、例えば、"Molecular Cloning: A Laboratory Manual"、第2版、Cold Spring Harbor Laboratory、Sambrook、Fritsch、&Maniatis、eds.、19

25

30

89) に記載されている。

ストリンジェントなハイブリダイゼーション条件とは、50%ホルムアミドの存在下で、700mMのNaCl中42%、またはこれと同等の条件をいう。ストリンジェントなハイブリダイゼーション条件の一例は、50%ホルムアミド、

5 5XSSC、50mMNaH₂PO₄、pH6.8、0.5%SDS、0.1m g/mL超音波処理サケ精子DNA、および5Xデンハルト溶液中で42℃で一 夜のハイブリダイゼーション;2XSSC、0.1%SDSで45℃での洗浄; および0.2XSSC、0.1%SDSで45℃での洗浄である。

本発明のポリヌクレオチドおよびオリゴヌクレオチドは、当業者に公知の方法 で製造することが可能である。例えば、当該技術分野において知られるプロトコルを用いて、市販のDNA合成機(例えば394合成器、Applied Biosystems社製)で合成することができる。あるいは、本明細書に開示される配列情報に基づいて、適当なテンプレートとプライマーとを組み合わせて用いて、当該技術分野においてよく知られるPCR増幅技術により製造することができる。

さらに、本発明のポリペプチドを発現している細胞より cDNA ライブラリーを作製し、本発明のポリヌクレオチドの配列の一部をプローブにしてハイブリダイゼーションを行うことにより調製できる。cDNA ライブラリーは、例えば、文献(Sambrook, J. et al., Molecular Cloning、Cold Spring Harbor

20 Laboratory Press (1989))に記載の方法により調製してもよいし、市販の DNA ライブラリーを用いてもよい。また、本発明のポリペプチドを発現している細胞より RNA を調製し、逆転写酵素により cDNA を合成した後、本発明の DNA の配列(例えば、配列番号:1)に基づいてオリゴ DNA を合成し、これをプライマーとして用いて PCR 反応を行い、本発明のポリペプチドをコードする cDNA を増幅させることにより調製することも可能である。

また、得られた cDNA の塩基配列を決定することにより、それがコードする 翻訳領域を決定でき、本発明のタンパク質のアミノ酸配列を得ることができる。 また、得られた cDNA をプローブとしてゲノム DNA ライブラリーをスクリー ニングすることにより、ゲノム DNA を単離することも可能である。

30 より具体的には、例えば、まず本発明のタンパク質を発現する細胞、組織(例えば、肺癌細胞、大腸癌細胞、肝癌細胞、胃癌細胞)などから、mRNAを単離

10

15

する。mRNA の単離は、公知の方法、例えば、グアニジン超遠心法(Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299) 、AGPC 法 (Chomczynski, P. and Sacchi, N., Anal. Biochem. (1987) 162, 156-159) 等により全 RNA を調製し、mRNA Purification Kit (Pharmacia 社) 等を使用して全 RNA から mRNA を精製する。また、QuickPrep mRNA Purification Kit (Pharmacia 社) を用いることにより mRNA を直接調製することもできる。

得られた mRNA から逆転写酵素を用いて cDNA を合成する。cDNA の合成は、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業社) 等を用いて行うこともできる。また、5'-Ampli FINDER RACE Kit (Clontech 製)およびポリメラーゼ連鎖反応 (polymerase chain reaction; PCR)を用いた 5'-RACE 法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 8998-9002; Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932) に従い、cDNA の合成および増幅を行うことができる。

得られた PCR 産物から目的とする DNA 断片を調製し、ベクターDNA と連結する。さらに、これより組換えベクターを作製し、大腸菌等に導入してコロニーを選択して所望の組換えベクターを調製する。目的とする DNA の塩基配列は、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法により確認することができる。

また、本発明の DNA においては、発現に使用する宿主のコドン使用頻度を考 20 慮して、より発現効率の高い塩基配列を設計することができる(Grantham, R. et al., Nucelic Acids Research (1981) 9, r43-74)。また、本発明の DNA は、 市販のキットや公知の方法によって改変することができる。改変としては、例え ば、制限酵素による消化、合成オリゴヌクレオチドや適当な DNA フラグメント の挿入、リンカーの付加、開始コドン(ATG)および/または終止コドン 25 (TAA、TGA、または TAG)の挿入等が挙げられる。

本発明のオリゴヌクレオチドは、試料中において癌関連遺伝子を検出するための核酸プローブとして用いることができる。本発明のプローブは、配列番号1-65に記載される塩基配列またはこれと相補的な塩基配列の少なくとも12塩基、20、30、50または100塩基またはそれ以上の連続する塩基配列を有し、

成し、これをハイブリダイゼーションが生じるような条件下でプローブと接触させ、試料に結合したプローブの存在または量を検出することにより、試料中における癌関連遺伝子またはその転写産物の存在または量または変異を検出することができる。

5 プローブは、固体支持体上に固定化してもよい。そのような固体支持体の例としては、限定されないが、プラスチック、アガロース、セファロース、ポリアクリルアミド、ラテックスピーズおよびニトロセルロース等が含まれる。プローブをそのような固体支持体に結合させる技術は当該技術分野においてよく知られている。プローブは、標準的な標識技術、例えば放射性標識、酵素標識(西洋ワサロのパルオキシダーゼ、アルカリホスファターゼ)、蛍光標識、ビオチンーアビジン標識、化学発光等を用いて標識することにより可視化することができる。すなわち、本発明の組成物は、試料中の癌関連遺伝子またはその転写産物の存在を検出するためのキットとして提供することができる。このようなキットは、上述のプローブに加えて、洗浄試薬、結合したプローブの存在を検出することができる。 15 試薬、ならびに使用の指針を含むことができる。

あるいは、本発明の診断用組成物は、配列番号1-65のいずれかに記載されるヌクレオチド配列を増幅することができる1組のプライマーを含んでいてもよい。このようなプライマーを用いて、適当な c DNAライブラリをテンプレートとして、ポリメラーゼ連鎖反応 (PCR) により目的とする配列を増幅した後、

20 ハイブリダイゼーションまたは塩基配列決定などの手法によりPCR産物を分析し、試料中の癌関連遺伝子またはその転写産物の存在または量または変異を検出することができる。このようなPCR手法は当該技術分野においてよく知られており、例えば、"PCR Protocols, A Guide to Methods and Applications"、Academic Press, Michael, et al., eds. 1990に記載されている。

プライマーとして用いるためには、本発明のオリゴヌクレオチドは、好ましくは、配列番号1-65のいずれかに示される塩基配列、またはこれと相補的な塩基配列中の連続する少なくとも12塩基、好ましくは12-50塩基、より好ましくは12-20塩基の配列を有する。

30 本発明のポリヌクレオチドまたはオリゴヌクレオチドは、癌関連遺伝子により コードされるmRNAに結合しその発現を阻害するアンチセンス分子、またはm WO 2005/014818

RNAを切断するリボザイムまたはsiRNAとして用いて、癌関連遺伝子をサイレンシングすることができる。アンチセンス、リボザイムおよびsiRNA技術を用いて遺伝子発現を制御する方法は当該技術分野においてよく知られている。例えば、本発明の組成物を適当な担体とともに投与してもよく、あるいは、アンチセンス、リボザイムまたはsiRNAをコードするベクターを投与してインビボでこれらの発現を誘導してもよい。

"リボザイム"との用語は、mRNAを切断する触媒活性を有する核酸分子を表す。リボザイムは、一般に、エンドヌクレアーゼ、リガーゼまたはポリメラーゼ活性を示す。種々のタイプのトランス作用性リボザイム、例えばハンマーヘッドおよびヘアピンタイプのリボザイムが知られている。

"アンチセンス"とは、ゲノムDNAおよび/またはmRNAと特異的にハイブリダイズし、その転写および/または翻訳を阻害することによりそのタンパク質の発現を阻害する、核酸分子またはその誘導体を表す。結合は一般的な塩基対相補性によるものでもよく、または、例えば、DNAデュープレックスへの結合の場合には、二重ヘリックスの主溝における特異的相互作用によるものでもよい。アンチセンス核酸の標的部位としては、mRNAの5'末端、例えばAUG開始コドンまでおよびこれを含む5'非翻訳配列が好ましいが、mRNAの3'非翻訳配列またはコーディング領域の配列もmRNAの翻訳の阻害に有効であることが知られている。

siRNAとは、RNA干渉(RNAi)を行うことができる二本鎖核酸を意味する(例えば、Bass, 2001, Nature, 411, 428-429; Elbashir et al., 2001, Nature, 411, 4941, 4941, 498を参照)。siRNAは、配列特異的にmRNAを分解し、このことにより遺伝子の発現を抑制することができる。siRNAは、典型的には、標的とする配列に相補的な配列を含む20-25塩基対の長さの二本鎖RNAである。siRNA分子は、化学的に修飾されたヌクレオチドおよび非ヌクレオチドを含んでいてもよい。

さらに、本発明のポリヌクレオチドは、本発明のタンパク質を製造する際に用いることも可能である。

30

5

10

<u>スクリーニ</u>ング

さらに別の観点においては、本発明は、抗癌活性を有する化合物を同定する方法を提供する。この方法は、培養ヒト細胞を試験化合物と接触させ、そして前記細胞において配列番号1-65のいずれかに記載されるヌクレオチド配列を含む遺伝子の発現量の変化を引き起こす化合物を抗癌活性を有する化合物として同定する工程を含む。

試験化合物としては、天然または合成の任意の化合物を用いることができ、コンビナトリアルライブラリを用いてもよい。細胞における癌関連遺伝子の発現量は、例えば、上述した定量的PCR法により簡便に測定することができるが、当該技術分野において知られる他のいずれの方法を用いてもよい。

10

25

30

5

検査方法

本発明は、本発明の遺伝子またはタンパク質の発現量を測定する工程を含む、 癌の検査方法を提供する。以下に検査方法の具体的な態様を記載するが、本発明 の検査方法は、それらの方法に限定されるものではない。

15 本発明の検査方法の1つの態様としては、まず、被検者から RNA 試料を調製する。次いで、該 RNA 試料に含まれる本発明のタンパク質をコードする RNA の量を測定する。次いで、測定された RNA の量を対照と比較する。別の態様としては、まず、被検者から cDNA 試料を調製する。次いで、該 cDNA 試料に含まれる本発明のタンパク質をコードする cDNA の量を測定する。次いで、測定された cDNA の量を対照と比較する。

これらのような方法としては、当業者らに周知の方法、例えばノーザンブロッティング法、RTPCR法、DNAアレイ法等を挙げることができる。

DNA アレイ法においては、被検者から調製した RNA を鋳型として cDNA 試料を調製し、本発明のオリゴヌクレオチドが固定された基板と接触させ、該 cDNA 試料と該基板に固定されたヌクレオチドプローブとのハイブリダイズの強度を検出することにより、該 cDNA 試料に含まれる本発明の遺伝子の発現量を測定する。次いで、測定された本発明の遺伝子の発現量を対照と比較する。

被検者からの cDNA 試料の調製は、当業者に周知の方法で行うことができる。 cDNA 試料の調製の好ましい態様においては、まず被検者の細胞あるいは組織 (例えば、肺、大腸、胃、肝臓、など) から全 RNA の抽出を行う。全 RNA の抽出は、当業者にとって周知の方法、例えば次のようにして行うことができる。

全 RNA 抽出には純度の高い全 RNA が調製できる方法であれば、既存の方法およびキット等を用いることが可能である。例えば Ambion 社 "RNA later"を用い前処理を行った後、ニッポンジーン社"Isogen"を用いて全 RNA の抽出を行う。具体的方法にはそれらの添付プロトコールに従えばよい。

5 次いで、抽出した全 RNA を鋳型として、逆転写酵素を用いて cDNA の合成を行い、cDNA 試料を調製する。全 RNA からの cDNA の合成は、当業者に周知の方法で実施することができる。調製した cDNA 試料には、必要に応じて、検出のための標識を施す。標識物質としては、検出可能なものであれば特に制限はなく、例えば、蛍光物質、放射性元素等を挙げることができる。標識は、当業10 者によって一般的に行われる方法(L Luo et al., Gene expression profiles of laser-capturedadjacent neuronal subtypes. Nat Med. 1999, 117-122)で実施することができる。

ヌクレオチドプローブと該 cDNA とのハイブリダイズの強度の検出は、 cDNA 試料を標識した物質の種類に応じて当業者においては適宜行うことができる。例えば、cDNA が蛍光物質によって標識された場合、スキャナーによって蛍光シグナルを読み取ることによって検出することができる。

15

20

25

30

本発明の検査方法の別の態様としては、まず、被検者の細胞あるいは組織から タンパク質試料を調製する。次いで、該タンパク質試料に含まれる本発明のタン パク質の量を測定する。次いで、測定されたタンパク質の量を対照と比較する。

このような方法としては、SDS ポリアクリルアミド電気泳動法、並びに本発明の抗体を用いた、ウェスタンブロッティング法、ドットブロッティング法、免疫沈降法、酵素結合免疫測定法(ELISA)、および免疫蛍光法を例示することができる。又、本発明の遺伝子の発現量の測定のかわりに、本発明のタンパク質の発現量を測定することによっても、癌の診断を行うことが可能である。

上記の方法において、対照と比較して、本発明の遺伝子またはタンパク質の発 現量が有意に上昇していた場合、被検者は、癌を発症している、もしくは発症す る可能性が高いと判定される。

本発明はまた、癌の検査方法に用いるための検査薬を提供する。このような検 査薬としては、本発明のオリゴヌクレオチドを含む検査薬(オリゴヌクレオチド プローブが固定された基板を含む)、本発明の抗体を含む検査薬が挙げられる。 上記抗体は、検査に用いることが可能な抗体であれば、特に制限はない。抗体は 必要に応じて標識される。

上記の検査薬においては、有効成分であるオリゴヌクレオチドや抗体以外に、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、タンパク質安定剤(BSA やゼラチンなど)、保存剤等が必要に応じて混合されていてもよい。

C20orf102 の検出

5

25

別の観点においては、本発明は、C20orf102 タンパク質を検出することを特徴とする癌の診断方法を提供する。本発明の方法は、C20orf102 タンパク質を10 検出することを特徴とする。C20orf102 は N 末端に分泌シグナルを有する分泌タンパク質であり、そのアミノ酸配列およびこれをコードする遺伝子配列およびアミノ酸配列は、GenBank 番号 NM_080607(配列番号2および66)に開示されている。本発明において、C20orf102 タンパク質とは、全長タンパク質およびその断片の両方を含むことを意味する。断片とは、C20orf102 タンパク質の任意の領域を含むポリペプチドであり、天然の C20orf102 タンパク質の機能を有していなくてもよい。C20orf102 タンパク質の分泌シグナルは配列番号66のアミノ酸配列において1-24番目(Psort 予測: http://psort.nibb.ac.jp/)が相当する。

本発明においては、癌細胞、特に肺癌、肝癌(例えば、中分化型肝癌)、膵癌 において、非常に高頻度で C20orf102 がタンパク質レベルで発現亢進している ことが見いだされた。また、C20orf102 に特異的なモノクローナル抗体を用いることにより、免疫組織診断が可能であることが示された。

本発明で検出する C20orf102 タンパク質はヒト C20orf102 タンパク質が好ましいが、それに限定されず、イヌ C20orf102、ネコ C20orf102、マウス C20orf102、ハムスターC20orf102 などいかなる C20orf102 でもよい。

本発明において検出される C20orf102 は分泌前の C20orf102 でもよいが、分泌後の C20orf102 が好ましい。C20orf102 は N 末端に分泌シグナルを有する分泌タンパク質であり、細胞内で産生された後に細胞外に分泌される。分泌後の C20orf102 とは、細胞外に存在する C20orf102 のことをいう。

30 本発明において検出とは、定量的または非定量的な検出を含み、例えば、非定量的な検出としては、単に C20orf102 タンパク質が存在するか否かの測定、

C20orf102 タンパク質が一定の量以上存在するか否かの測定、C20orf102 タンパク質の量を他の試料(例えば、コントロール試料など)と比較する測定などを挙げることができ、定量的な検出としては、C20orf102 タンパク質の濃度の測定、C20orf102 タンパク質の量の測定などを挙げることができる。

被検試料としては、C20orf102 タンパク質が含まれる可能性のある試料であれば特に制限されないが、哺乳類などの生物の体から採取された試料が好ましく、さらに好ましくはヒトから採取された試料である。被検試料の具体的な例としては、例えば、細胞、細胞破砕物、血液、間質液、血漿、血管外液、脳脊髄液、滑液、胸膜液、血清、リンパ液、唾液、尿などを挙げることができるが、好ましいのは血液、血清、または血漿である。又、生物の体から採取された細胞の培養液などの、被検試料から得られる試料も本発明の被検試料に含まれる。

5

10

15

診断される癌は、特に制限されず如何なる癌でもよいが、具体的には、肝癌、 膵臓癌、肺癌、大腸癌、乳癌、腎癌、脳腫瘍、子宮癌、肺癌、胃癌、前立腺癌、 白血病、リンパ腫などを挙げることができる。好ましいものは肺癌、肝癌、膵癌 である。

肝癌は、低分化型肝癌、中分化型肝癌、高分化型肝癌などに分類され、本発明による検出は如何なる肝癌でもよいが、中分化形肝癌の検出が好ましい。 肺癌は、さらに肺腺癌、肺扁平上皮癌、肺小細胞癌、肺大細胞癌などに分類され、 本発明による検出は如何なる肺癌でもよいが、肺腺癌の検出が好ましい。

20 本発明においては、被験試料中に C20orf102 タンパク質が検出された場合、 陰性コントロールまたは健常者と比較して被験試料中に検出される C20orf102 タンパク質の量が多いと判断される場合に、被験者が癌であるまたは癌になる可 能性が高いと判定される。

本発明の診断方法の好ましい態様としては、細胞から遊離し、血中に存在する C20orf102 タンパク質を検出することを特徴とする診断方法を挙げることがで きる。特に好ましくは、血中に存在する C20orf102 タンパク質またはその断片 を検出する。

被検試料に含まれる C20orf102 タンパク質の検出方法は特に限定されないが、 抗 C20orf102 抗体を用いた免疫学的方法により検出することが好ましい。免疫 30 学的方法としては、例えば、ラジオイムノアッセイ、エンザイムイムノアッセイ、 蛍光イムノアッセイ、発光イムノアッセイ、免疫沈降法、免疫比濁法、ウエスタ ンプロット、免疫染色、免疫拡散法などを挙げることができるが、好ましくはエンザイムイムノアッセイであり、特に好ましいのは酵素結合免疫吸着定量法 (enzyme-linked immunosorbent assay: ELISA) (例えば、sandwich ELISA) である。ELISA などの上述した免疫学的方法は当業者に公知の方法により行うことが可能である。

5

10

15

20

25

30

抗 C20orf102 抗体を用いた一般的な検出方法としては、例えば、抗 C20orf102 抗体を支持体に固定し、ここに被検試料を加え、インキュベートを 行い抗 C20orf102 抗体と C20orf102 タンパク質を結合させた後に洗浄して、抗 C20orf102 抗体を介して支持体に結合した C20orf102 タンパク質を検出することにより、被検試料中の C20orf102 タンパク質の検出を行う方法を挙げることができる。

本発明において抗 C20orf102 抗体を固定するために用いられる支持体としては、例えば、アガロース、セルロースなどの不溶性の多糖類、シリコン樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、ナイロン樹脂、ポリカーボネイト樹脂などの合成樹脂や、ガラスなどの不溶性の支持体を挙げることができる。これらの支持体は、ビーズやプレートなどの形状で用いることが可能である。ビーズの場合、これらが充填されたカラムなどを用いることができる。プレートの場合、マルチウェルプレート(96 穴マルチウェルプレート等)や、バイオセンサーチップなどを用いることができる。抗 C20orf102 抗体と支持体との結合は、化学結合や物理的な吸着などの通常用いられる方法により結合することができる。これらの支持体はすべて市販のものを用いることができる。

抗 C20orf102 抗体と C20orf102 タンパク質との結合は、通常、緩衝液中で行われる。緩衝液としては、例えば、リン酸緩衝液、Tris 緩衝液、クエン酸緩衝液、ホウ酸塩緩衝液、炭酸塩緩衝液、などが使用される。また、インキュベーションの条件としては、すでによく用いられている条件、例えば、4℃~室温にて1時間~24 時間のインキュベーションが行われる。インキュベート後の洗浄は、C20orf102 タンパク質と抗 C20orf102 抗体の結合を妨げないものであれば何でもよく、例えば、Tween20 等の界面活性剤を含む緩衝液などが使用される。

本発明の C20orf102 タンパク質検出方法においては、C20orf102 タンパク質を検出したい被検試料の他に、コントロール試料を設置してもよい。コントロール試料としては、C20orf102 タンパク質を含まない陰性コントロール試料や

C20orf102 タンパク質を含む陽性コントロール試料などがある。この場合、C20orf102 タンパク質を含まない陰性コントロール試料で得られた結果、C20orf102 タンパク質を含む陽性コントロール試料で得られた結果と比較することにより、被検試料中の C20orf102 タンパク質を検出することが可能である。また、濃度を段階的に変化させた一連のコントロール試料を調製し、各コントロール試料に対する検出結果を数値として得て、標準曲線を作成し、被検試料の数値から標準曲線に基づいて、被検試料に含まれる C20orf102 タンパク質を定量的に検出することも可能である。

5

抗 C20orf102 抗体を介して支持体に結合した C20orf102 タンパク質の検出の 10 好ましい態様として、標識物質で標識された抗 C20orf102 抗体を用いる方法を 挙げることができる。例えば、支持体に固定された抗 C20orf102 抗体に被検試 料を接触させ、洗浄後に、C20orf102 タンパク質を特異的に認識する標識抗体 を用いて検出する。

抗 C20orf102 抗体の標識は通常知られている方法により行うことが可能であ る。標識物質としては、蛍光色素、酵素、補酵素、化学発光物質、放射性物質な 15 どの当業者に公知の標識物質を用いることが可能であり、具体的な例としては、 ラジオアイソトープ(32P、14C、125I、3H、131I など)、フルオレセイン、ローダ ミン、ダンシルクロリド、ウンベリフェロン、ルシフェラーゼ、ペルオキシダー ゼ、アルカリホスファターゼ、β-ガラクトシダーゼ、β-グルコシダーゼ、ホー スラディッシュパーオキシダーゼ、グルコアミラーゼ、リゾチーム、サッカリド 20 オキシダーゼ、マイクロペルオキシダーゼ、ビオチンなどを挙げることができる。 標識物質としてビオチンを用いる場合には、ビオチン標識抗体を添加後に、アル カリホスファターゼなどの酵素を結合させたアビジンをさらに添加することが好 ましい。標識物質と抗 C20orf102 抗体との結合には、グルタルアルデヒド法、 マレイミド法、ピリジルジスルフィド法、過ヨウ素酸法、などの公知の方法を用 25 いることができる。

具体的には、抗 C20orf102 抗体を含む溶液をプレートなどの支持体に加え、 抗 C20orf102 抗体を支持体に固定する。プレートを洗浄後、タンパク質の非特 異的な結合を防ぐため、例えば BSA、ゼラチン、アルブミンなどでブロッキン 30 グする。再び洗浄し、被検試料をプレートに加える。インキュベートの後、洗浄 し、標識抗 C20orf102 抗体を加える。適度なインキュベーションの後、プレー

25

トを洗浄し、プレートに残った標識抗 C20orf102 抗体を検出する。検出は当業 者に公知の方法により行うことができ、例えば、放射性物質による標識の場合に は液体シンチレーションや RIA 法により検出することができる。酵素による標 識の場合には基質を加え、基質の酵素的変化、例えば発色を吸光度計により検出 することができる。基質の具体的な例としては、2,2-アジノビス(3-エチルベン 5 ゾチアゾリン-6-スルホン酸) ジアンモニウム塩(ABTS)、1,2-フェニレンジア ミン(オルソ・フェニレンジアミン)、3.3'.5.5'-テトラメチルベンジジン (TMB) などを挙げることができる。蛍光物質の場合には蛍光光度計により検 出することができる。

本発明の C20orf102 タンパク質検出方法の特に好ましい態様として、ビオチ 10 ンで標識された抗 C20orf102 抗体およびアビジンを用いる方法を挙げることが できる。

具体的には、抗 C20orf102 抗体を含む溶液をプレートなどの支持体に加え、 抗 C20orf102 抗体を固定する。プレートを洗浄後、タンパク質の非特異的な結 合を防ぐため、例えば BSA などでブロッキングする。再び洗浄し、被検試料を プレートに加える。インキュベートの後、洗浄し、ビオチン標識抗 C20orf102 抗体を加える。適度なインキュベーションの後、プレートを洗浄し、アルカリホ スファターゼ、ペルオキシダーゼなどの酵素と結合したアビジンを加える。イン キュベーション後、プレートを洗浄し、アビジンに結合している酵素に対応した 基質を加え、基質の酵素的変化などを指標に C20orf102 タンパク質を検出する。 20

本発明の C20orf102 タンパク質検出方法の他の態様として、C20orf102 タン パク質を特異的に認識する一次抗体を一種類以上、および該一次抗体を特異的に 認識する二次抗体を一種類以上用いる方法を挙げることができる。

例えば、支持体に固定された一種類以上の抗 C20orf102 抗体に被検試料を接 触させ、インキュベーションした後、洗浄し、洗浄後に結合している C20orf102 タンパク質を、一次抗 C20orf102 抗体および該一次抗体を特異的に 認識する一種類以上の二次抗体により検出する。この場合、二次抗体は好ましく は標識物質により標識されている。

本発明の C20orf102 タンパク質の検出方法の他の態様としては、凝集反応を 利用した検出方法を挙げることができる。該方法においては、抗 C20orf102 抗 30 体を感作した担体を用いて C20orf102 を検出することができる。 抗体を感作す る担体としては、不溶性で、非特異的な反応を起こさず、かつ安定である限り、いかなる担体を使用してもよい。例えば、ラテックス粒子、ベントナイト、コロジオン、カオリン、固定羊赤血球等を使用することができるが、ラテックス粒子を使用するのが好ましい。ラテックス粒子としては、例えば、ポリスチレンラテックス粒子、スチレン・ブタジエン共重合体ラテックス粒子、ポリビニルトルエンラテックス粒子等を使用することができるが、ポリスチレンラテックス粒子を使用するのが好ましい。感作した粒子を試料と混合し、一定時間攪拌する。試料中に抗 C20orf102 抗体が高濃度で含まれるほど粒子の凝集度が大きくなるので、凝集を肉眼でみることにより C20orf102 を検出することができる。また、凝集による濁度を分光光度計等により測定することによっても検出することが可能である。

5

10

15

20

25

30

本発明の C20orf102 タンパク質の検出方法の他の態様としては、例えば、表面プラズモン共鳴現象を利用したバイオセンサーを用いた方法を挙げることができる。表面プラズモン共鳴現象を利用したバイオセンサーはタンパク質ータンパク質問の相互作用を微量のタンパク質を用いてかつ標識することなく、表面プラズモン共鳴シグナルとしてリアルタイムに観察することが可能である。例えば、BIAcore(アマーシャムバイオサイエンス社製)等のバイオセンサーを用いることにより C20orf102 タンパク質と抗 C20orf102 抗体の結合を検出することが可能である。具体的には、抗 C20orf102 抗体を固定化したセンサーチップに、被検試料を接触させ、抗 C20orf102 抗体に結合する C20orf102 タンパク質を共鳴シグナルの変化として検出することができる。

本発明の検出方法は、種々の自動検査装置を用いて自動化することもでき、一度に大量の試料について検査を行うことも可能である。

本発明は、癌の診断のための被検試料中の C20orf102 タンパク質を検出するための診断薬またはキットの提供をも目的とするが、該診断薬またはキットは少なくとも抗 C20orf102 抗体を含む。該診断薬またはキットが ELISA 法等の EIA 法に基づく場合は、抗体を固相化する担体を含んでいてもよく、抗体があらかじめ担体に結合していてもよい。該診断薬またはキットがラテックス等の担体を用いた凝集法に基づく場合は抗体が吸着した担体を含んでいてもよい。また、該キットは、適宜、ブロッキング溶液、反応溶液、反応停止液、試料を処理するための試薬等を含んでいてもよい。

15

20

25

抗 C20orf102 抗体の作製

本発明で用いられる抗 C20orf102 抗体は C20orf102 タンパク質に特異的に結合すればよく、その由来、種類(モノクローナル、ポリクローナル)および形状を問わない。具体的には、マウス抗体、ラット抗体、ヒト抗体、キメラ抗体、ヒト化抗体などの公知の抗体を用いることができる。抗体はポリクローナル抗体でもよいが、モノクローナル抗体であることが好ましい。

又、支持体に固定される抗 C20orf102 抗体と標識物質で標識される抗 C20orf102 抗体は C20orf102 分子の同じエピトープを認識してもよいが異なる エピトープを認識することが好ましく、部位は特に制限されない。

本発明で使用される抗 C20orf102 抗体は、公知の手段を用いてポリクローナルまたはモノクローナル抗体として得ることができる。本発明で使用される抗 C20orf102 抗体として、特に哺乳動物由来のモノクローナル抗体が好ましい。 哺乳動物由来のモノクローナル抗体は、ハイブリドーマに産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主に産生されるものを含む。

モノクローナル抗体産生ハイブリドーマは、基本的には公知技術を使用し、以下のようにして作製できる。すなわち、C20orf102 を感作抗原として使用して、これを通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞をスクリーニングすることによって作製できる。

具体的には、モノクローナル抗体を作製するには次のようにすればよい。

まず、抗体取得の感作抗原として使用される C20orf102 を、GenBank 受託番号: NM_080607 に開示された C20orf102 遺伝子/アミノ酸配列を発現することによって得る。すなわち、C20orf102 をコードする遺伝子配列を公知の発現ベクター系に挿入して適当な宿主細胞を形質転換させた後、その宿主細胞中または培養上清中から目的のヒト C20orf102 タンパク質を公知の方法で精製する。また、天然の C20orf102 を精製して用いることもできる。

次に、この精製 C20orf102 タンパク質を感作抗原として用いる。あるいは、 30 C20orf102 の部分ペプチドを感作抗原として使用することもできる。この際、 部分ペプチドはヒト C20orf102 のアミノ酸配列より化学合成により得ることも

25

30

できるし、C20orf102 遺伝子の一部を発現ベクターに組込んで得ることもでき、さらに天然の C20orf102 をタンパク質分解酵素により分解することによっても得ることができる。部分ペプチドとして用いる C20orf102 の部分および大きさは限られない。

5 感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター、あるいはウサギ、サル等が使用される。

感作抗原を動物に免疫するには、公知の方法にしたがって行われる。例えば、一般的方法として、感作抗原を哺乳動物の腹腔内または皮下に注射することにより行われる。具体的には、感作抗原を PBS (Phosphate Buffered Saline) や生理食塩水等で適当量に希釈、懸濁したものに所望により通常のアジュバント、例えばフロイント完全アジュバントを適量混合し、乳化後、哺乳動物に 4~21 日毎に数回投与する。また、感作抗原免疫時に適当な担体を使用することもできる。特に分子量の小さい部分ペプチドを感作抗原として用いる場合には、アルブミン、キーホールリンペットへモシアニン等の担体タンパク質と結合させて免疫することが望ましい。

このように哺乳動物を免疫し、血清中に所望の抗体レベルが上昇するのを確認 した後に、哺乳動物から免疫細胞を採取し、細胞融合に付されるが、好ましい免 疫細胞としては、特に脾細胞が挙げられる。

前記免疫細胞と融合される他方の親細胞として、哺乳動物のミエローマ細胞を用いる。このミエローマ細胞は、公知の種々の細胞株、例えば、P3 (P3x63Ag8.653) (J. Immnol. (1979) 123, 1548-1550) 、 P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7) 、 NS-1 (Kohler. G. and Milstein, C. Eur. J. Immunol. (1976) 6, 511-519) 、 MPC-11 (Margulies. D.H. et al., Cell (1976) 8, 405-415) 、 SP2/0 (Shulman, M. et al., Nature (1978) 276, 269-270)、FO(de St. Groth, S. F. et al., J. Immunol. Methods (1980) 35, 1-21)、S194 (Trowbridge, I. S. J. Exp. Med. (1978) 148, 313-323)、R210(Galfre, G. et al., Nature (1979) 277, 131-133)等が好適に使用される。

前記免疫細胞とミエローマ細胞との細胞融合は、基本的には公知の方法、たと

10

15

20

えば、ケーラーとミルステインらの方法(Kohler. G. and Milstein, C.、Methods Enzymol. (1981) 73, 3-46) 等に準じて行うことができる。

より具体的には、前記細胞融合は、例えば細胞融合促進剤の存在下に通常の栄養培養液中で実施される。融合促進剤としては、例えばポリエチレングリコール (PEG)、センダイウイルス (HVJ)等が使用され、更に所望により融合効率を高めるためにジメチルスルホキシド等の補助剤を添加使用することもできる。

免疫細胞とミエローマ細胞との使用割合は任意に設定することができる。例えば、ミエローマ細胞に対して免疫細胞を 1~10 倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640 培養液、MEM 培養液、その他、この種の細胞培養に用いられる通常の培養液が使用可能であり、さらに、牛胎児血清 (FCS) 等の血清補液を併用することもできる。

細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め37℃程度に加温したPEG溶液(例えば平均分子量1000~6000程度)を通常30~60%(w/v)の濃度で添加し、混合することによって目的とする融合細胞(ハイブリドーマ)を形成する。続いて、適当な培養液を逐次添加し、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等を除去する。

このようにして得られたハイブリドーマは、通常の選択培養液、例えば HAT 培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養 することにより選択される。上記 HAT 培養液での培養は、目的とするハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間(通常、数日~数週間)継続する。ついで、通常の限界希釈法を実施し、目的とする抗体を産生する ハイブリドーマのスクリーニングおよび単一クローニングを行う。

 目的とする抗体のスクリーニングおよび単一クローニングは、公知の抗原抗体 反応に基づくスクリーニング方法で行えばよい。例えば、ポリスチレン等ででき たビーズや市販の96ウェルのマイクロタイタープレート等の担体に抗原を結合 させ、ハイブリドーマの培養上清と反応させ、担体を洗浄した後に酵素標識第2 次抗体等を反応させることにより、培養上清中に感作抗原と反応する目的とする 抗体が含まれるかどうか決定できる。目的とする抗体を産生するハイブリドーマ を限界希釈法等によりクローニングすることができる。この際、抗原としては免

10

疫に用いたものを用いればよい。

また、ヒト以外の動物に抗原を免疫して上記ハイブリドーマを得る他に、ヒトリンパ球を in vitro で C20orf102 に感作し、感作リンパ球をヒト由来の永久分裂能を有するミエローマ細胞と融合させ、C20orf102 への結合活性を有する所望のヒト抗体を得ることもできる(特公平 1-59878 号公報参照)。さらに、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物に抗原となる C20orf102 を投与して抗 C20orf102 抗体産生細胞を取得し、これを不死化させた細胞から C20orf102 に対するヒト抗体を取得してもよい(国際特許出願公開番号 WO 94/25585 号公報、WO 93/12227 号公報、WO 92/03918 号公報、WO 94/02602 号公報参照)。

このようにして作製されるモノクローナル抗体を産生するハイブリドーマは、 通常の培養液中で継代培養することが可能であり、また、液体窒素中で長期保存 することが可能である。

当該ハイブリドーマからモノクローナル抗体を取得するには、当該ハイブリド 15 ーマを通常の方法に従い培養し、その培養上清として得る方法、あるいはハイブ リドーマをこれと適合性がある哺乳動物に投与して増殖させ、その腹水として得 る方法などが採用される。前者の方法は、高純度の抗体を得るのに適しており、 一方、後者の方法は、抗体の大量生産に適している。

本発明では、モノクローナル抗体として、抗体遺伝子をハイブリドーマからクローニングし、適当なベクターに組み込んで、これを宿主に導入し、遺伝子組換え技術を用いて産生させた組換え型のものを用いることができる(例えば、Vandamme, A. M. et al., Eur. J. Biochem. (1990) 192, 767-775, 1990 参照)。具体的には、抗 C20orf102 抗体を産生するハイブリドーマから、抗 C20orf102 抗体の可変(V)領域をコードする mRNA を単離する。 mRNA の単離は、公知の方法、例えば、グアニジン超遠心法(Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299)、AGPC 法(Chomczynski, P.et al., Anal. Biochem. (1987) 162, 156・159)等により行って全 RNA を調製し、mRNA Purification Kit (Pharmacia 製)等を使用して目的の mRNA を調製する。また、QuickPrep mRNA Purification Kit (Pharmacia 製)を用いることにより mRNA を直接調製することもできる。

得られた mRNA から逆転写酵素を用いて抗体 V 領域の cDNA を合成する。

10

20

25

30

cDNA の合成は、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業社製) 等を用いて行う。また、cDNA の合成および増幅を行うには、5'-Ampli FINDER RACE Kit (Clontech 製) および PCR を用いた 5'-RACE 法 (Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA (1988) 85, 8998-9002、Belyavsky, A.et al., Nucleic Acids Res. (1989) 17, 2919-2932) 等を使用することができる。

得られた PCR 産物から目的とする DNA 断片を精製し、ベクターDNA と連結する。さらに、これより組換えベクターを作製し、大腸菌等に導入してコロニーを選択して所望の組換えベクターを調製する。そして、目的とする DNA の塩基配列を公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法等により確認する。

目的とする抗 C20orf102 抗体の V 領域をコードする DNA を得たのち、これを、所望の抗体定常領域(C 領域)をコードする DNA を含有する発現ベクターへ組み込む。

15 本発明で使用される抗 C20orf102 抗体を製造するには、抗体遺伝子を発現制 御領域、例えば、エンハンサー、プロモーターの制御のもとで発現するよう発現 ベクターに組み込む。次に、この発現ベクターにより、宿主細胞を形質転換し、 抗体を発現させる。

抗体遺伝子の発現は、抗体重鎖(H鎖)または軽鎖(L鎖)をコードする DNA を別々に発現ベクターに組み込んで宿主細胞を同時形質転換させてもよい し、あるいは H 鎖および L 鎖をコードする DNA を単一の発現ベクターに組み 込んで宿主細胞を形質転換させてもよい(WO 94/11523 号公報参照)。

また、組換え型抗体の産生には上記宿主細胞だけではなく、トランスジェニック動物を使用することができる。例えば、抗体遺伝子を、乳汁中に固有に産生されるタンパク質(ヤギ β 力ゼインなど)をコードする遺伝子の途中に挿入して融合遺伝子として調製する。抗体遺伝子が挿入された融合遺伝子を含む DNA 断片をヤギの胚へ注入し、この胚を雌のヤギへ導入する。胚を受容したヤギから生まれるトランスジェニックヤギまたはその子孫が産生する乳汁から所望の抗体を得る。また、トランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、適宜ホルモンをトランスジェニックヤギに使用してもよい(Ebert, K.M. et al., Bio/Technology(1994)12, 699-702)。

10

15

20

25

30

本発明では、上記抗体のほかに、人為的に改変した遺伝子組換え型抗体、例えば、キメラ抗体、ヒト化(Humanized)抗体を使用できる。これらの改変抗体は、既知の方法を用いて製造することができる。

キメラ抗体は、前記のようにして得た抗体 V 領域をコードする DNA をヒト 抗体 C 領域をコードする DNA と連結し、これを発現ベクターに組み込んで宿 主に導入し産生させることにより得られる。この既知の方法を用いて、本発明に 有用なキメラ抗体を得ることができる。

ヒト化抗体は、再構成(reshaped)ヒト抗体とも称され、これは、ヒト以外の哺乳動物、例えばマウス抗体の相補性決定領域(CDR; complementarity determining region)をヒト抗体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法も知られている(欧州特許出願公開番号 EP 125023 号公報、WO 96/02576 号公報参照)。

具体的には、マウス抗体の CDR とヒト抗体のフレームワーク領域 (framework region; FR) とを連結するように設計した DNA 配列を、CDR および FR 両方の末端領域にオーバーラップする部分を有するように作製した数個のオリゴヌクレオチドをプライマーとして用いて PCR 法により合成する (WO98/13388 号公報に記載の方法を参照)。

CDR を介して連結されるヒト抗体のフレームワーク領域は、相補性決定領域が良好な抗原結合部位を形成するものが選択される。必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部位を形成するように、抗体の可変領域におけるフレームワーク領域のアミノ酸を置換してもよい(Sato, K.et al., Cancer Res. (1993) 53, 851-856)。

キメラ抗体およびヒト化抗体のC領域には、ヒト抗体のものが使用され、例えばH鎖では、 $C \gamma 1$ 、 $C \gamma 2$ 、 $C \gamma 3$ 、 $C \gamma 4$ を、L鎖では $C \kappa$ 、 $C \lambda$ を使用することができる。また、抗体またはその産生の安定性を改善するために、ヒト抗体C領域を修飾してもよい。

キメラ抗体は、ヒト以外の哺乳動物由来抗体の可変領域とヒト抗体由来の定常 領域とからなる。一方、ヒト化抗体は、ヒト以外の哺乳動物由来抗体の相補性決 定領域と、ヒト抗体由来のフレームワーク領域およびC領域とからなる。ヒト化 抗体はヒト体内における抗原性が低下されているため、本発明の治療剤の有効成 分として有用である。

本発明で使用される抗体は、抗体の全体分子に限られず、C20orf102 に結合 する限り、抗体の断片またはその修飾物であってもよく、二価抗体も一価抗体も 含まれる。例えば、抗体の断片としては、Fab、F (ab') 2、Fv、1個の Fab と 完全な Fc を有する Fab/c、またはH鎖若しくはL鎖の Fv を適当なリンカーで 連結させたシングルチェイン Fv (scFv) が挙げられる。具体的には、抗体を酵 5 素、例えばパパイン、ペプシンで処理し抗体断片を生成させるか、または、これ ら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適 当な宿主細胞で発現させる(例えば、Co, M.S. et al., J. Immunol. (1994) 152. 2968-2976. Better, M. & Horwitz, A. H. Methods in Enzymology (1989) 178, 10 476-496, Academic Press, Inc., Plueckthun, A. & Skerra, A. Methods in Enzymology (1989) 178, 476-496, Academic Press, Inc., Lamovi, E., Methods in Enzymology (1989) 121, 652-663, Rousseaux, J. et al., Methods in Enzymology (1989) 121, 663-669. Bird, R. E. et al., TIBTECH (1991) 9, 132-137 参照)。

15 scFv は、抗体の H 鎖 V 領域と L 鎖 V 領域とを連結することにより得られる。 この scFv において、H 鎖 V 領域と L 鎖 V 領域は、リンカー、好ましくはペプ チドリンカーを介して連結される (Huston, J. S. et al.、Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883)。 scFv における H 鎖 V 領域および L 鎖 V 領域 は、本明細書に抗体として記載されたもののいずれの由来であってもよい。 V 領 域を連結するペプチドリンカーとしては、例えばアミノ酸 12~19 残基からなる 任意の一本鎖ペプチドが用いられる。

scFv をコードする DNA は、前記抗体の H 鎖または H 鎖 V 領域をコードする DNA、および L 鎖または L 鎖 V 領域をコードする DNA のうち、それらの配列のうちの全部または所望のアミノ酸配列をコードする DNA 部分を鋳型とし、その両端を規定するプライマー対を用いて PCR 法により増幅し、次いで、さらにペプチドリンカー部分をコードする DNA、およびその両端が各々 H 鎖、L 鎖と連結されるように規定するプライマー対を組み合せて増幅することにより得られる。

また、一旦 scFv をコードする DNA が作製されると、それらを含有する発現 30 ベクター、および該発現ベクターにより形質転換された宿主を常法に従って得る ことができ、また、その宿主を用いることにより、常法に従って scFv を得るこ

とができる。

20

25

これら抗体の断片は、前記と同様にしてその遺伝子を取得し発現させ、宿主により産生させることができる。本発明における「抗体」にはこれらの抗体の断片も包含される。

5 抗体の修飾物として、標識物質等の各種分子と結合した抗 C20orf102 抗体を使用することもできる。本発明における「抗体」にはこれらの抗体修飾物も包含される。このような抗体修飾物は、得られた抗体に化学的な修飾を施すことによって得ることができる。なお、抗体の修飾方法はこの分野においてすでに確立されている。

10 さらに、本発明で使用される抗体は、二重特異性抗体(bispecific antibody)であってもよい。二重特異性抗体は C20orf102 分子上の異なるエピトープを認識する抗原結合部位を有する二重特異性抗体であってもよいし、一方の抗原結合部位が C20orf102 を認識し、他方の抗原結合部位が標識物質等を認識してもよい。二重特異性抗体は2種類の抗体の HL 対を結合させて作製することもできるし、異なるモノクローナル抗体を産生するハイブリドーマを融合させて二重特異性抗体産生融合細胞を作製し、得ることもできる。さらに、遺伝子工学的手法により二重特異性抗体を作製することも可能である。

前記のように構築した抗体遺伝子は、公知の方法により発現させ、取得することができる。哺乳類細胞の場合、常用される有用なプロモーター、発現させる抗体遺伝子、その3'側下流にポリAシグナルを機能的に結合させて発現させることができる。例えばプロモーター/エンハンサーとしては、ヒトサイトメガロウイルス前期プロモーター/エンハンサー (human cytomegalovirus immediate early promoter/enhancer) を挙げることができる。

また、その他に本発明で使用される抗体発現に使用できるプロモーター/エンハンサーとして、レトロウイルス、ポリオーマウイルス、アデノウイルス、シミアンウイルス 40 (SV40) 等のウイルスプロモーター/エンハンサー、あるいはヒトエロンゲーションファクター1α (HEF1α) などの哺乳類細胞由来のプロモーター/エンハンサー等が挙げられる。

SV40 プロモーター/エンハンサーを使用する場合は Mulligan らの方法

30 (Nature (1979) 277, 108) により、また、HEF1 α プロモーター/エンハン
サーを使用する場合は Mizushima らの方法(Nucleic Acids Res. (1990) 18,

10

15

20

5322) により、容易に遺伝子発現を行うことができる。

大腸菌の場合、常用される有用なプロモーター、抗体分泌のためのシグナル配列および発現させる抗体遺伝子を機能的に結合させて当該遺伝子を発現させることができる。プロモーターとしては、例えば lacz プロモーター、araB プロモーターを挙げることができる。lacz プロモーターを使用する場合は Ward らの方法 (Nature (1098) 341, 544-546; FASEB J. (1992) 6, 2422-2427) により、あるいは araB プロモーターを使用する場合は Better らの方法 (Science (1988) 240, 1041-1043) により発現することができる。

抗体分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、pelB シグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4379)を使用すればよい。そして、ペリプラズムに産生された抗体を分離した後、抗体の構造を適切に組み直して(refold)使用する。

複製起源としては、SV40、ポリオーマウイルス、アデノウイルス、ウシパピローマウイルス(BPV)等の由来のものを用いることができ、さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは、選択マーカーとしてアミノグリコシドトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。

本発明で使用される抗体の製造のために、任意の発現系、例えば真核細胞また は原核細胞系を使用することができる。真核細胞としては、例えば樹立された哺 乳類細胞系、昆虫細胞系、真糸状菌細胞および酵母細胞などの動物細胞等が挙げ られ、原核細胞としては、例えば大腸菌細胞等の細菌細胞が挙げられる。

好ましくは、本発明で使用される抗体は、哺乳類細胞、例えば CHO、COS、ミエローマ、BHK、Vero、HeLa 細胞中で発現される。

25 次に、形質転換された宿主細胞を in vitro または in vivo で培養して目的とする抗体を産生させる。宿主細胞の培養は公知の方法に従い行う。例えば、培養液として、DMEM、MEM、RPMI1640、IMDM を使用することができ、牛胎児血清(FCS)等の血清補液を併用することもできる。

前記のように発現、産生された抗体は、細胞、宿主動物から分離し均一にまで 30 精製することができる。本発明で使用される抗体の分離、精製はアフィニティー カラムを用いて行うことができる。例えば、プロテイン A カラムを用いたカラ ムとして、Hyper D、POROS、Sepharose F.F. (Pharmacia 製)等が挙げられる。その他、通常のタンパク質で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。例えば、上記アフィニティーカラム以外のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析等を適宜選択、組み合わせることにより、抗体を分離、精製することができる(Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)。

本発明の癌関連遺伝子

10 本発明において同定された癌関連遺伝子の名称、発現が亢進している癌組織、 ならびにこれらの遺伝子の配列およびコードされるタンパク質の配列を示す配列 番号の一覧を表1に示す。

アミノ酸配列番号	99	67				89		69	70		71	72		73	74		75	76	77	78	79	80	81,82	83	84	85	86	87	88	89	90	91
遺伝子配列番号	2	3	4	2	9	7	8	9	=	12	13	15	16	17	18	19	70	22	-	6	14	21	64,65	23	24	25	26	27	28	29	99	3
発現が亢進している癌種	肺癌、中分化型肝癌、膵癌	冒寫、大陽癌、肺癌、膵癌、大陽癌転移組織(肝臓)	中分化型肝癌、大腸	大腸癌、大腸癌転移組織(肝臓)	、膵癌	、胃癌、大腸癌、中分化型肝癌、	胃癌、大腸癌、	、低分化型肝癌、肺癌	胃癌、低分化型肝癌、膵癌、大腸癌転移組織(肝臓)	中·低分化型肝癌、肺癌	胃癌、大腸癌、中分化型肝癌、肺癌、膵癌、大腸癌転移組織(肝臓)	田福	肝癌	胃癌、大腸癌、肝癌、肺癌		肺癌、膵癌、大	胃癌、大腸癌、肺癌、膵癌	大腸癌、中·低	膵癌	胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)	肝癌	一大腸癌、肺癌	低分化型肝癌、肺癌	胃癌、肺癌、大腸癌転移組織(肝臓)	、大腸	膵癌	胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)	、大腸癌、肺癌、大腸癌転	、大腸癌、低分化	,		
Ref.ID	NM 080607																NM 032256		NM 032119	NM_033409	NM 020407	NM 012133			NM_003667		NM 004442	NM 024531		NM_018936		178710 MIN
GenBank	AA206763	AI393930	BE645480	AA447317	AI217375	AI217375	BG492359	BF825703	AL389981.1	BG285837	AI343467	BF057073	H66658	NM 018123.1	AI380207	AF339813.1	AL136855.1	AI694413	AF055084.1	AA903862	NM 020407.1	AB047847.1		BE670584	AL524520	AK026404.1	AF025304.1	AK021918.1	AI767756	NM 018936.1	AL050348	NM 017671 1
遺伝子名	C20orf102	ASCL2	EST	EST	EST	OK/SW-CL30	1 1	EST	LOC93082	EST	FLJ11041	EST	EST	ASPM	Sp5	IMAGE:297403	DKFZp434K2435	CBRC7TM 249	MASS1/VLGR1	C20orf54	RHBG	COPG2	EST	EST	GPR49	MUC17	EphB2	FLJ11856/GPCR4	HS6ST2	PCDHB2	WFDC3	C200rf42
海	TEG1	TEG2	TEG3	TEG4	TEG5	TEG6	TEG7	TEG8	TEG9	TEG10	TEG11	TEG12	TEG13	TEG14	TEG15	TEG16	TEG17	TEG18	TEG19	TEG20	TEG21	TEG22	TEG23	TEG24	TEG25	TEG26	TEG27	TEG28	TEG29	TEG30	TEG31	TEG39

क्ष वि	П	_		٦	\neg		7	1	٦	7	٦	7	7	_		7	7	7	7	T	7	7	T	7	T	7	7	- -			_	
アミノ酸配列番号	92	93	94	92	96	97	86	66	5	101	102	103	104	105	106	107	108	109	110	=	112	113	114	115	116	117	118	119	120	121	122	123
遺伝子 配列番号	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	56	57	58	59	90	61	62	63
発現が亢進している癌種	肺癌、大腸癌	冒癌、大腸癌、肺癌、大腸癌転移組織(肝臓)、膵癌	肺癌、膵癌	胃癌、膵癌、肺癌	開開	大陽癌、肺癌、	玉移組織(肝臓)、膵癌	大腸癌、グリア芽腫、肺癌	、肺癌、大腸癌転移組	大陽乳	、肺癌、大	``	1	1.	高、肺癌	陽癌、肺癌、低分化型肝癌、膵癌	人陽癌、	<u> </u>	胃癌、大陽癌、肺癌、膵癌	胃癌、大腸癌、		肺癌、大腸癌、大腸癌転移組織(肝臓)	肺癌、	胃癌、グリア寿	、計簡	开癌	胃癌、大腸癌、肝癌、膵癌	、肺癌、肝	膵癌	1		肝癌、肺癌、膵癌
Ref.ID	NM 002644	NM 004289	NM 004909				NM 014799		NM 014861	NM 002402		NM 017770	NM 133631	NM 018116	NM 001898	NM 138463	NM 019051	NM 052963	NM 022145	NM 001793	NM 003872	NM 001306	NM 001305	NM 003014	NM 024083	NM 007003	NM 012484	NM 015068	NM 002571	NM 032654	NM 001395	
GenBank	NM 002644.1	NM 004289.3	NM 004909.1	NM 007028	AB037780	NM 006398	NM 014799.1	BC000371.1	NM 014861.1	NM 002402.1	AB033025,1	BF508639	BF059159	BC002535.1	NM 001898.1	BE328850	BG028213	AW592604	BC005400.1	NM 001793.1	77706N	BE791251	NM 001305.1	AW089415	NM 024083.1	NM 007003.1	NM 012485.1	BE858180	NM 002571.1	BC004397.1	NM 001395.1	AR0290121
遺伝子名	PIGR	NFE2L3	TRAG3	TRIM31	KIAA1359	ubianitinD	Hephaestin	KIAA0152	KIAA0703	MEST/PEG1	KIAA1199	ELOVI.2	ROBO1	FLJ10504/misato	cvstatin SN	LOC116238	MRPL50	TOP1MT	FKSG14	CDH3	NRP2	CLDN3	CLDN4	SFRP4	ASPSCR1	GAGEC1	RHAMM	PEG10	PAEP	MGC10981	DUSP9	FST18
番号	TEG33	TEG34	TEG35	TEG36	TEG37	TEG38	TEG39	TEG40	TEG41	TEG42	TEG43	TEG44	TEG45	TEG46	TEG47	TEG48	TEG49	TEG50	TEG51	TEG52	TEG53	TEG54	TEG55	TEG56	TEG57	TEG58	TEG59	TEG60	TEG61	TEG62	TEG63	TEG64

TEG1(配列番号2;配列番号66)は、C20orf102をコードする。この遺伝子のGenBank受託番号はAA206763(参照配列NM_080607)である。この遺伝子は、肺癌、中分化型肝癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

5 TEG2(配列番号3;配列番号67)は、EST(ASCL2)をコードする。この 遺伝子のGenBank受託番号はAI393930である。この遺伝子は、胃癌、大 腸癌、肺癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだ された。この遺伝子の発現が癌と関連していることは知られていない。

TEG3 (配列番号4) は、EST(EPST1isoform)をコードする。この遺伝子 10 のGenBank受託番号はBE645480である。この遺伝子は、胃癌、中分化型肝癌、大腸癌、肺癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG4 (配列番号5) は、EST をコードする。この遺伝子のGenBan k 受託番号は AA447317 である。この遺伝子は、胃癌、大腸癌、大腸癌転移組 (圧壁) で発用が立体 アルスストが見いだされた。スの場にスの発用が原

15 織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と 関連していることは知られていない。

TEG5(配列番号6)は、ESTをコードする。この遺伝子のGenBank受託番号はAI217375である。この遺伝子は、胃癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG6(配列番号7;配列番号68)は、OK/SW-CL30をコードする。この遺伝子のGenBank受託番号はAI217375である。この遺伝子は、肺癌、胃癌、大腸癌、中分化型肝癌、で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

25 TEG7(配列番号8)は、DKFZp686L1533をコードする。この遺伝子のGenBank受託番号はBG492359である。この遺伝子は、肺癌、胃癌、大腸癌、中・低分化型肝癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG8 (配列番号10;配列番号69) は、EST(Gene#30) をコードする。
30 この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子の
GenBank受託番号はBF825703である。この遺伝子は、胃癌、低分化型

15

20

肝癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と 関連していることは知られていない。

TEG9(配列番号11;配列番号70)は、BC012317をコードする。この遺伝子のGenBank受託番号はAL389981.1である。この遺伝子は、胃癌、低分化型肝癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG10(配列番号12)は、EST242881をコードする。この遺伝子のGenBank受託番号はBG285837である。この遺伝子は、胃癌、中・低分化型肝癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG11(配列番号13;配列番号71)は、FLJ11041をコードする。この遺伝子のGenBank受託番号はAI343467である。この遺伝子は、胃癌、大腸癌、中分化型肝癌、肺癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG12(配列番号15;配列番号72)は、ESTをコードする。この遺伝子のGenBank受託番号はBF057073である。後述の実施例に記載されるように、本発明においてこの遺伝子の全長配列が明らかになった。この遺伝子は、肝癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG13(配列番号16)は、ESTをコードする。この遺伝子のGenBank受託番号はH66658である。この遺伝子は、肝癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

25 TEG14(配列番号17;配列番号73)は、ASPMをコードする。この 遺伝子のGenBank受託番号はNM_018123.1である。この遺伝子は、胃癌、大腸癌、肝癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発 現が癌と関連していることは知られていない。

TEG15 (配列番号18;配列番号74) は、Sp5 をコードする。この遺 30 伝子のGenBank受託番号はAI380207である。この遺伝子は、胃癌、大腸 癌、肝癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が

15

20

25

30

癌と関連していることは知られていない。

TEG16(配列番号19)は、IMAGE:297403をコードする。この遺伝子のGenBank受託番号は AF339813.1 である。この遺伝子は、肝癌、肺癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG17(配列番号20;配列番号75)は、DKFZp434k2435をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAL136855.1(参照配列NM_032256)である。この遺伝子は、胃癌、大腸癌、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG18(配列番号22;配列番号76)は、CBRC7TM_249をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAI694413である。この遺伝子は、胃癌、大腸癌、中・低分化型肝癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG19 (配列番号1;配列番号77)は、VLGR1をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAF055084.1 (参照配列NM_032119)である。この遺伝子は、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG20(配列番号9;配列番号78)は、C20orf54をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAA903862(参照配列NM_033409)である。この遺伝子は、胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG21(配列番号14;配列番号79)は、RHBGをコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はNM_020407.1(参照配列NM_020407)である。この遺伝子は、肝癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG22 (配列番号21;配列番号80)は、COPG2をコードする。この

15

25

遺伝子のGenBank受託番号はAB047847.1(参照配列NM_012133)である。この遺伝子は、大腸癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG23 (配列番号64、65;配列番号81、82)は、ESTをコードする。この遺伝子のGenBank受託番号はAL039884である。後述の実施例に記載されるように、本発明において、この遺伝子の全長配列が明らかになった。この遺伝子は、低分化型肝癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG24(配列番号23;配列番号83)は、BE670584をコードする。

10 この遺伝子のGenBank受託番号はBE670584である。この遺伝子は、胃癌、肺癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG25 (配列番号24;配列番号84)は、GRP49をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAL524520 (参照配列NM_003667)である。この遺伝子は、胃癌、大腸癌、中分化型肝癌、肺癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が癌と関連していることは知られていない。

TEG26(配列番号25;配列番号85)は、MUC17をコードする。この 遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGe nBank受託番号はAK026404.1である。この遺伝子は、胃癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG27(配列番号26;配列番号86)は、EPHB2をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAF025304.1(参照配列NM_004442)である。この遺伝子は、胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が大腸癌と関連していることは知られていない。

30 TEG28 (配列番号27; 配列番号87) は、GPCR41 (FLJ11856) をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。こ

の遺伝子のGenBank受託番号はAK021918.1(参照配列NM_024531)である。この遺伝子は、胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

- 5 TEG29(配列番号28;配列番号88)は、HS6ST2をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はAI767756である。この遺伝子は、肺癌、大腸癌、低分化型肝癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が肺癌と関連していることは知られていない。
- TEG30(配列番号29;配列番号89)は、PCDHB2をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はNM_018936.1(参照配列NM_018936)である。この遺伝子は、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が肺癌と関連していることは知られていない。
- 15 TEG31(配列番号30;配列番号90)は、WFDC3(C20orf167)をコードする。この遺伝子のGenBank受託番号はAL050348である。この遺伝子は、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が肺癌と関連していることは知られていない。
- TEG32(配列番号31;配列番号91)は、C20orf42をコードする。この遺伝子のGenBank受託番号はNM_017671.1(参照配列NM_017671)である。この遺伝子は、肺癌、胃癌、大腸癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が肺癌と関連していることは知られていない。
- TEG33(配列番号32;配列番号92)は、PIGRをコードする。この遺 25 伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGen Bank受託番号はNM_002644.1(参照配列NM_002644)である。この遺伝 子は、肺癌、大腸癌で発現が亢進していることが見いだされた。この遺伝子の発 現が肺癌と関連していることは知られていない。
- TEG34(配列番号33;配列番号93)は、2FE2L3をコードする。この 30 遺伝子のGenBank受託番号はNM_004289.3(参照配列NM_004289)で ある。この遺伝子は、胃癌、大腸癌、肺癌、大腸癌転移組織(肝臓)、膵癌で発

10

20

25

30

現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG35 (配列番号34;配列番号94) は、TRAG3をコードする。この遺伝子のGenBank受託番号はNM_004909.1 (参照配列NM_004909) である。この遺伝子は、胃癌、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG36(配列番号35;配列番号95)は、TRIM31をコードする。この遺伝子のGenBank受託番号はNM_007028である。この遺伝子は、胃癌、膵癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG37(配列番号36;配列番号96)は、KIAA1359をコードする。 この遺伝子のGenBank受託番号はAB037780である。この遺伝子は、胃 癌、肺癌、大腸癌、膵癌、大腸癌転移組織(肝臓)で発現が亢進していることが 見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG38(配列番号37;配列番号97)は、ubiqutinDをコードする。この遺伝子のGenBank受託番号はNM_006398である。この遺伝子は、胃癌、大腸癌、肺癌、中・低分化型肝癌、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はNM_014799.1 (参照配列NM_014799) である。この遺伝子は、胃癌、大腸癌転移組織(肝臓)、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG39 (配列番号38;配列番号98) は、Hephaestin をコードする。

TEG40 (配列番号39;配列番号99)は、KIAA0152をコードする。

この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はBC000371.1(参照配列NM_014730)である。この遺伝子は、胃癌、大腸癌、グリア芽腫、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG41 (配列番号40;配列番号100) は、KIAA0703 をコードする。 この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子の GenBank受託番号はNM_014861.1 (参照配列NM_014861) である。こ

の遺伝子は、胃癌、肺癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG42 (配列番号41;配列番号101) は、MEST/PEG1をコードする。この遺伝子のGenBank受託番号はNM_002402.1 (参照配列

5 NM_002402)である。この遺伝子は、胃癌、大腸癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

TEG43 (配列番号42;配列番号102) は、KIAA1199 をコードする。 この遺伝子のGenBank受託番号はAB033025.1 である。この遺伝子は、

10 胃癌、肺癌、大腸癌、膵癌で発現が亢進していることが見いだされた。この遺伝 子の発現が胃癌と関連していることは知られていない。

TEG44(配列番号43;配列番号103)は、ELOVL2をコードする。 この遺伝子のGenBank受託番号はBF508639(参照配列NM_017770)である。この遺伝子は、肝癌、グリア芽細胞腫、肺癌で発現が亢進していることが見いだされた。

TEG45 (配列番号44;配列番号104) は、ROBO1をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はBF059159 (参照配列NM_133631) である。この遺伝子は、肝癌、グリア芽細胞腫、肺癌で発現が亢進していることが見いだされた。

- 20 TEG46(配列番号45;配列番号105)は、FLJ10504MISATOをコードする。この遺伝子のGenBank受託番号はBC002535.1(参照配列NM_018116)である。この遺伝子は、肝癌、肺癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が肝癌と関連していることは知られていない。
- 25 TEG47(配列番号46;配列番号106)は、cystatinSN をコードする。この遺伝子のGenBank受託番号はNM_001898.1(参照配列NM_001898)である。この遺伝子は、大腸癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が大腸癌と関連していることは知られていない。
- 30 TEG48(配列番号47;配列番号107)は、LOC116238 をコードする。 この遺伝子のGenBank受託番号はBE328850(参照配列NM_138463)で

ある。この遺伝子は、胃癌、大腸癌、肺癌、低分化型肝癌、膵癌で発現が亢進していることが見いだされた。

TEG49(配列番号48;配列番号108)は、MRPL50をコードする。 この遺伝子のGenBank受託番号はBG028213(参照配列NM_019051)である。この遺伝子は、胃癌、大腸癌、中・低分化型肝癌、グリア芽腫、肺癌、膵癌で発現が亢進していることが見いだされた。

5

10

15

20

TEG50(配列番号49;配列番号109)は、TOP1mtをコードする。 この遺伝子のGenBank受託番号はAW592604(参照配列NM_052963) である。この遺伝子は、大腸癌、低分化型肝癌、大腸癌転移組織(肝臓)、膵癌 で発現が亢進していることが見いだされた。この遺伝子の発現が大腸癌と関連し ていることは知られていない。

TEG51(配列番号50;配列番号110)は、FKSG14をコードする。 この遺伝子のGenBank受託番号はBC005400.1(参照配列NM_022145) である。この遺伝子は、胃癌、大腸癌、肺癌、膵癌で発現が亢進していることが 見いだされた。この遺伝子の発現が大腸癌と関連していることは知られていない。

TEG52(配列番号51;配列番号111)は、CDH3をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はNM_001793.1(参照配列NM_001793)である。この遺伝子は、肺癌、胃癌、大腸癌、膵癌で発現が亢進していることが見いだされた。

TEG53 (配列番号52;配列番号112) は、NRP2をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はN90777 (参照配列 NM_003872) である。この遺伝子は、肺癌、グリア芽腫、大腸癌転移組織(肝臓)、膵癌で発現が亢進していることが見いだされた。

25 TEG54(配列番号53;配列番号113)は、CLDN3をコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はBE791251(参照配列NM_001306)である。この遺伝子は、胃癌、肺癌、大腸癌、大腸癌転移組織(肝臓)で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

30 TEG55 (配列番号54;配列番号114) は、CLDN4をコードする。こ の遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のG

25

30

enBank受託番号はNM_001305.1 (参照配列NM_001305) である。この遺伝子は、胃癌、肺癌、大腸癌、大腸癌転移組織(肝臓)、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。

5 TEG56(配列番号55;配列番号115)は、sfrp4をコードする。この 遺伝子のGenBank受託番号はAW089415(参照配列NM_003014)である。この遺伝子は、肺癌、胃癌、グリア芽腫、膵癌で発現が亢進していることが 見いだされた。この遺伝子の発現が胃癌と関連していることは知られていない。 TEG57(配列番号56;配列番号116)は、ASPSCR1をコードする。

10 この遺伝子のGenBank受託番号はNM_024083.1 (参照配列 NM_024083) である。この遺伝子は、肝癌、肺癌で発現が亢進していることが見いだされた。この遺伝子の発現が肝癌と関連していることは知られていない。 TEG58 (配列番号57;配列番号117) は、GAGEC1をコードする。この遺伝子のGenBank受託番号はNM 007003.1 (参照配列

15 NM_007003) である。この遺伝子は、肝癌で発現が亢進していることが見いだ された。この遺伝子の発現が肝癌と関連していることは知られていない。

TEG59(配列番号58;配列番号118)は、RHAMMをコードする。この遺伝子によりコードされるタンパク質は膜タンパク質である。この遺伝子のGenBank受託番号はNM_012485.1(参照配列NM_012484)である。この遺伝子は、胃癌、大腸癌、肝癌、膵癌で発現が亢進していることが見いだされた。この遺伝子の発現が肝癌と関連していることは知られていない。

TEG60 (配列番号59;配列番号119) は、PEG10をコードする。この遺伝子のGenBank受託番号はBE858180 (参照配列NM_015068) である。この遺伝子は、肝癌、肺癌、肝芽腫で発現が亢進していることが見いだされた。

TEG61 (配列番号60;配列番号120) は、PAEP をコードする。この遺伝子のGenBank受託番号はNM_002571.1 (参照配列NM_002571) である。この遺伝子は、肺癌、膵癌で発現が亢進していることが見いだされた。

TEG62(配列番号61;配列番号121)は、MGC10981をコードする。 この遺伝子のGenBank受託番号はBC004397.1(参照配列NM_032654) である。この遺伝子は、肺癌、膵癌で発現が亢進していることが見いだされた。 TEG63 (配列番号62; 配列番号122) は、DUSP9 をコードする。この遺伝子のGenBank受託番号はNM_001395.1 (参照配列 NM_001395) である。この遺伝子は、肝癌で発現が亢進していることが見いだされた。

TEG64(配列番号63;配列番号123)は、KIAA1089 をコードする。 5 この遺伝子のGenBank受託番号はAB029012.1である。この遺伝子は、 肝癌、肺癌、膵癌で発現が亢進していることが見いだされた。

本明細書において明示的に引用される全ての特許および参考文献の内容は全て本明細書の一部としてここに引用する。また、本出願が有する優先権主張の基礎となる出願である日本特許出願2003-290704号の明細書および図面に記載の内容は全て本明細書の一部としてここに引用する。

実施例

10

25

30

以下に実施例により本発明をより詳細に説明するが、これらの実施例は本発明 15 の範囲を制限するものではない。

実施例1

ヒト癌組織において発現が亢進する遺伝子の同定

ヒトの各種癌組織(肺腺癌、胃癌、大腸癌、肝細胞癌、脳腫瘍)において正常 20 組織に比べ発現が亢進する遺伝子の同定を行うために、ヒト各種癌摘出組織にお ける mRNA の発現解析を GeneChip (Gene Chip™ HG-133A,B Target; Affymetryx 社製)を用いて実施した。

1.1. ヒト肺腺癌において発現が亢進する遺伝子の同定

ヒト肺腺癌においてヒト正常肺組織に比べ発現が亢進する遺伝子を同定するために、下記のようにして mRNA の発現解析を実施した。

すなわち、初めに各種分化度・ステージを含む 12 例の肺腺癌摘出組織の癌部位、および 1 例の正常肺より、ISOGEN(日本ジーン社)を用いて添付の方法に従い全 RNA を調製した。続いて、肺腺癌ならびに正常肺における mRNA の発現を GeneChipTM HG·U133A,B(Affymetryx 社製)を用いて解析した。すなわち、癌部位に関しては 12 例分より調製した全 RNA をそれぞれ等量ずつ混合したもの 5μg を、また対照として 1 例の正常肺より調製した全 RNA 5μg を試

20

料として用い、Expression Analysis Technical Manual (Affymetryx 社) に準じて遺伝子発現解析を行った。それぞれの解析における全遺伝子の発現スコアの平均値を 100 とし、各遺伝子の発現量は相対値とした。

1.2. ヒト胃癌において発現が亢進する遺伝子の同定

5 ヒト胃癌においてヒト正常胃組織に比べ発現が亢進する遺伝子を同定するために、上記と同様の方法により mRNA の発現解析を実施した。

すなわち、3 例の胃癌摘出組織、および 1 例の正常胃より上記と同様に全RNA を調製し、癌部位に関しては 3 例分の全 RNA をそれぞれ等量ずつ混合したもの $5\mu g$ を、また対照として 1 例分の正常胃より調製した $5\mu g$ の全 RNA を試料として用い、GeneChipTM HG-U133A,B(Affymetryx 社製)を用いてmRNA の発現を解析した。それぞれの解析における全遺伝子の発現スコアの平均値を 100 とし、各遺伝子の発現量は相対値とした。

1.3. ヒト大腸癌において発現が亢進する遺伝子の同定

ヒト大腸癌においてヒト正常大腸組織に比べ発現が亢進する遺伝子の同定を上 15 記と同様に実施した。

すなわち、3 例の大腸癌摘出組織の癌部位および 1 例の正常大腸組織より上記と同様に全 RNA を調製し、癌部位に関しては 3 例分の全 RNA をそれぞれ等量ずつ混合したもの $5\mu g$ を、また対照として 1 例分の正常胃より調製した $5\mu g$ の全 RNA を試料として用い、GeneChipTM HG·U133A,B(Affymetryx 社製)を用いて mRNA の発現を解析した。それぞれの解析における全遺伝子の発現スコアの平均値を 100 とし、各遺伝子の発現量は相対値とした。

1.4. ヒト肝細胞癌において発現が亢進する遺伝子の同定

ヒト肝細胞癌においてヒト正常肝臓に比べ発現が亢進する遺伝子の同定を上記と同様に実施した。

25 すなわち、3 例の C 型肝炎ウイルス感染型の中分化型肝細胞癌、3 例の C 型 肝炎ウイルス感染型の低分化型肝細胞癌部位および 1 例の正常肝臓組織より上 記と同様に全 RNA を調製し、各種分化度の異なる癌部位に関しては各 3 例分の 全 RNA を等量ずつ混合したもの 5μg を、また対照として 1 例分の正常肝臓よ り調製した 5μg の全 RNA を試料として用い、GeneChip™ HG·U133A,B 30 (Affymetryx 社製)を用いて mRNA の発現を解析した。それぞれの解析にお ける全遺伝子の発現スコアの平均値を 100 とし、各遺伝子の発現量は相対値と した。

1.5. ヒトグリア芽腫において発現が亢進する遺伝子の同定

ヒトグリア芽腫においてヒト正常脳組織に比べ発現が亢進する遺伝子の同定を 上記と同様に実施した。

5 すなわち、5 例のグリア芽腫摘出組織の癌部位および 1 例の正常脳組織より上記と同様に全 RNA を調製し、癌部位に関しては 5 例分の全 RNA をそれぞれ等量ずつ混合したもの $5\mu g$ を、また対照として 1 例分の正常脳組織より調製した $5\mu g$ の全 RNA を試料として用い、GeneChipTM HG-U133A,B(Affymetryx 社製)を用いて mRNA の発現を解析した。それぞれの解析における全遺伝子の発現スコアの平均値を 100 とし、各遺伝子の発現量は相対値とした。

以上の解析の結果、表2に示す遺伝子がそれぞれ対応する正常組織に比べmRNAの発現が亢進していることが明らかとなった。

							Gene	Gene chip解析結果	活製				
梅	各格	発現が元進している楹	塩	語	800	画额	大腦	大陽癌	肝職	中分化	低分化	盜	グリア
TEG1	C90arf109	品域 由447岁 田域	3	9993	988	503	95.9	18.4	39.1	104.9	計 記 記	834.4	₩ 8.8
11.05		国際、大路路	99	27.4	9	406.9	79.1	738.8	19.5	5.9	31.2	3.6	10.7
TEGS		胃癌、中分化型肝癌	65.1	74.6	92.1	440.8	112.9	107.6	142.3	216	164.4	53.2	86.9
TEG4	L	胃癌、大腸癌	50.9	25.1	41.4	117.2	52.5	106.8	12	38.5	12.5	31.2	61.1
TEG5		冒癌	79.7	85	58.7	248.2	73.9	63.5	11.3	59.7	6.96	44	87.2
TEG6	OK/SW-CL.30	肺癌、胃癌、大腸癌、 中分化型肝癌	84.1	118.9	55.6	537.1	98.5	734.1	157.7	1781.4	160.8	78.7	106
TEG7	DKFZp686L1533	肺癌、胃癌、大腸癌、 中·低分化型肝癌	79.2	173.3	.14.6	588.5	89.2	750.3	22.7	158	309.6	15.5	87.1
TEG8	EST	胃癌、低分化型肝癌	59.1	50.8	37.5	260.7	36.3	22.7	58.7	26.8	120	68.7	17.4
TEG9	2	胃癌、低分化型肝癌	107.3	34.5	14.5	1030.1	89.2	21.9	130	155.6	448.1	18.5	105.4
TEG10	EST	胃癌、中・低分化型肝	38.1	37.8	32.8	385.8	20.3	20.5	28.2	103.9	356.5	60.2	63.5
TEG11	FLJ11041	胃癌、大腸癌、中分化 型肝癌	607.1	481.8	16.9	261.5	19.2	522.1	97.9	128.1	56.2	43.2	49.2
TEG12	EST	平施	60.8	65.2	91	38.6	44.5	62.2	16.2	194.3	527	66.2	47.7
TEG13		肝癌	38	10.3	35.5	17	16.3	4.6	26.1	493.7	1.77.1	4.6	14.7
TEG14		胃癌、大腸癌、肝癌	1.3	45.1	3.8	107.3	18.2	9.66	3.6	111.3	246.1	1.5	83.8
TEG15		胃癌、大腸癌、肝癌	8	15.8	57.9	219.2	14.5	270.1	11.2	288.7	219.2	12	6.8
TEG16	IMAG	开瘾	5.7	12.7	52	11.5	20.2	17.8	34.4	273.1	159.7	16.2	8.99
TEG17	0	胃癌、大腸癌	11.1	5.9	16.1	183.1	16.6	98.1	8.4	17.3	9.5	14.5	18.8
TEG18	CBRC7TM_249	胃癌、大腸癌、中・低分化型肝癌	13.6	86.6	45	240.4	19.6	175.4	158.8	699	949	13.5	47.9
TEG19	MASS1/VLGR1	쏗	23.6	254.4	17.1	5.3	18	4.3	133.6	77.4	21.2	21.8	111.8
TEG20	C20orf54	胃癌、大腸癌、肺癌	21.7	9.69	8778	261.1	22.4	50.5	8.4	8.2	24.4	6.6	15.5
TEG21		南南	8.7	13.4	19.1	5.4	15.6	9.8	17.4	792.6	57.1	15.5	9.3
TEG22	COPG2	大陽癌	11	6.99	83.1	47.5	21.7	178.4	52.8	8.7	22.6	40.9	78.7
TEG23	EST	低分化型肝癌	35.1	81.2	2	21.1	28	15.9	9.3	33.7	539.9	22.9	42.2
TEG24	EST	胃癌	28.9	19.4	35.6	197.1	44.8	80.1	5.2	15.5	31.1	57.6	58.8
TEG25	GPR49	胃癌、大腸癌、中分化型肝癌	23.9	15.8	24.3	538.3	41.6	135.3	16.7	233.8	78.8	33.5	11.2
TEG26	MUC17	胃癌	73.4	59.1	89.4	565.2	113.3	102.8	34.7	9.79	113.8	100	56.3
TEG27	EphB2	胃癌、大腸癌	23.2	47.5	6.8	218.7	62.8	189.4	9.9	55.1	13.6	28.7	49
TEG28	FLJ11856/GPCR 41	胃癌、大腸癌	22.2	35.2	9.1	229.5	63.8	197.5	2.7	5.1	67.3	4.4	78.3
TEG29	HS6ST2	肺癌、大腸癌、低分化 型肝癌	20.8	472.6	3.6	2.3	37.2	164.9	4.5	6.5	191.4	104	.69
TEG30	PCDHB2	肺癌	11.9	228.5	55.2	37.7	32.2	58.9	14.4	13.4	27.7	80.4	78
TEG31	WFDC3	肺癌	30.1	304.2	110.6	28.7	32.2	27.8	46.4	29.9	30.4	28.7	28.9
TEG32	C20orf42	肺癌、胃癌、大腸癌	11.6	43.8	127.7	365.4	175.8	535.2	7	17.3	4	23.5	15.4
EG33	PIGR	哥魯	63.2	382.6	129.9	149.3	520.1	423.7	102.3	101.8	96	65.2	7.77

						Gene	Gene chip解析結果	F結果				
格林	発現が元進している格種	握	部施	Bat	開	大腦	大腸癌	選出	中分化 型肝癌	低分化型肝癌	溫	グリア 芽腫
NFE2L3	胃癌、大腸癌	37	62.4	55.2	144.9	22	216.8	27.4	18.6		13.7	27.8
TRAG3	三級	1.8	1.7	1.9	74.4	1.2	1.3	1.7	1.6	1.4	1.4	1.9
TRIM31	買縮	16.9	13.2	14.6	155.2	67.3	52.7	21	41.4	31	4.6	26.8
KIAA1359	胃癌、肺癌、大腸癌	22.8	190.3	7.5	521.1	196.8	196.7	37.9	5.7	9.1	3.5	40.6
ubiquitinD	大鵬	89.7	311.5	44.2	1172.8	60.1	605.7	269.2	1460.9	2542.8	42.1	69
Hephaestin	胃癌	97.6	97.3	75.8	341.5	568.8	419.1	34.6	50.6	27	126.1	91.6
KIAA0152	胃癌、大腸癌、グリア 芽腫	32.5	82.1	.36.2	214.9	58.2	233.5	25.1	45.8	94	22.6	109.4
KIAA0703	国海	84.6	46.3	20.1	214.3	195.3	77.4	13.1	3.5	4.7	24.9	5.9
MEST/PEG1	冒痛、大陽癌	235.9	406.2	97.6	524.3	178.4	640.8	423	248.4	455.9	207.2	771.4
KIAA1199	胃癌、肺癌、大腸癌	53.6	162.4	26.2	80.7	28.9	185	68.5	63.5	44.3	89.1	69.4
FI OVI 2	肝痛、グリア芽細胞腫	10.1	9.0	2.8	3	15.5	1.9	68.8	224.9	233.5	76.5	121.2
ROBO1	肝癌、グリア芽細胞腫	58.5	49.1	32.4	38	21.4	123.2	9.1	236.4	563	64.3	152.3
TEG46 FLJ10504/misato		53.8	38.8	6.5	49.5	5.6	21.5	5.1	105.2	106.8	27.4	41.6
cystatin SN	大陽癌	2.7	53.6	4.4	98.1	9.4	804.5	6.1	27.6	24.1	15.5	2.3
	胃癌、大腸癌、肺癌、 低分化型肝癌	6.9	159.3	45.6	122.8	10.1	136.9	43.3	63.2	220.2	8	60.5
MRPL50	胃癌、大腸癌、中・低 分化型肝癌、グリア芽	77.8	86.1	98.1	191.2	43.8	256.5	72	155.3	200.8	47.7	100
TOP1MT	大腸癌、低分化型肝癌	16.5	30.8	19.1	49.7	31.3	206.4	24.9	31.9	306.2	25.5	19
FKSG14	胃癌、大腸癌	23.1	38.1	=	114.8	32.2	165	14	37.8	31.9	2.6	82.6
CDH3	肺癌、胃癌、大腸癌	24.1	172.5	5.8	64.5	5.4	131.3	4.1	3.7	2.3	14.1	5.9
NRP2	南	26.4	171.1	40.4	25.8	88	79.1	89.9	19.1	43.6	22.4	155.2
CLDN3	冒缩、部稳	3.2	147.6	0.8	624.4	1206.9	738.3	40.2	42.3	4.1	8:	9.6
CLDN4	部衛	70.1	193.6	3.9	364.8	258.4	325.8	7.1	37.4	45.4	3.3	2.5
SFRP4	肺癌、胃癌、グリア芽	153.6	244.9	66.9	153.1	69.4	87.8	51.1	49.2	49.3	53.4	250.3
ASPSCR1		42.4	45.4	41.5	75.1	28.4	102.3	58.3	285.1	78.3	46.1	44.5
GAGEC1	肝癌	6.1	17.9	31.7	4.2	4.8	11.6	5.8	2014.7	45.9	8.2	12.1
RHAMM	胃癌、大腸癌、肝癌	19.6	46.1	35.6	115.3	36.2	158.6	10.6	103.2	84.5	7.4	55.4
PEG10	肝癌、肺癌、肝芽腫	42.9	216.9	45.7	21.4	28.6	36.7	40.6	389.8	174.7	80.9	64.5
PAEP		4.1	96.4	9.6	7.5	6.4	5.5	4.4	6.2	9	6.5	4.4
MGC10981	計額	58.1	459	59.7	44.9	91	71.6	98.6	87.7	8.1	56.8	용
DUSP9	肝癌	20	33.7	25.9	28.9	30.9	24	46.4	212.7	687	49.4	24.1
EST1B	肝癌	52.6	18.7	20.8	34.9	24.3	25.5	9	82	83.2	24.2	42.3

表が

特に TEG1-TEG18 に関しては今までにいかなる癌細胞においてもその発現 亢進が明らかになっておらず、今回の解析によりある種の癌において発現が亢進 することが示された。また、TEG19-TEG60 の各遺伝子に関しては、今までに 報告されていた癌種以外に、今回新たな癌種で発現が亢進することが明らかとな った。

1.6. 各種癌組織において発現が亢進する遺伝子の同定

TEG1-TEG64 の各遺伝子の、それぞれの癌種における発現解析を、GeneChip™ HG-U133A,B(Affymetryx 社製)、および GeneChip™ HG-U133plus2(Affymetryx 社製)を用いて実施した。すなわち、肺小細胞肺癌 10 例、肺扁平上皮癌 5 例、肺腺癌 5 例、大腸癌 7 例、大腸癌肝転移組織 8 例、腎癌 2 例、および膵癌 4 例の各検体を個々に上項と同様に全 RNA を調製した。そして、その全 RNA5μg を、GeneChip™ HG-U133A,B を用いて mRNA の発現解析を実施した。肺小細胞癌、大腸癌および大腸癌肝転移組織の一部については U-133A チップのみの解析である。それぞれの解析における全遺伝子の発現スコ アの平均値を 100 とし、各遺伝子の発現量は相対値とした。また、小細胞癌 22 例、および膵癌 27 例は、GeneChip™ HG-U133 plus 2 を用いて、同様に解析を実施した。

その結果、表3および4に示すように、TEG1-TEG64の各遺伝子が各癌種においても発現亢進していることが明らかとなった。

扱3

EG3 EG4 EG5 EG6 EG7 EG8 EG9 EG10 EG11 EG12 EG13 EG18 EG19 EG19 EG19 EG17 EG18 EG19 EG20 EG21 EG22 EG23 EG24 EG25 EG28 EG26	11 159.8 109 29 36.4 34.6 540.3 8.8 65.6 163.2 175.2 54.4 3.7 329.4 8.9 11.9 101.7 82.7 65.6	12,3 71,9 93,3 40,8 64,8 130,1 739,3 15,3 37,4 181,1 199,5 75,4 23,5 134,1 15 143,3 5,6 111,9	127	25.1 547.2 154.3 43.4 94.1 138.4 419.7 15.1 81.1 41.9 80.5 118.5 35.6		20.8 671.4 203.3 17.6 95.9 28.8 387.9 31.8 36	15.6 162.3 114.4 44.5 81.8 94.3 311.1 14.9		155.7 5.7 91.8 34.9 18.2 90.5		23.8 50,5 185.4	14.5 17.1	3 22,3 13,3	4 15 32.3	5 15.5 14.2	34.4 3.9	146,7 22,3	151,3	15,4	15.7	
EG3 EG4 EG5 EG6 EG7 EG8 EG9 EG10 EG11 EG12 EG13 EG18 EG19 EG19 EG19 EG17 EG18 EG19 EG20 EG21 EG22 EG23 EG24 EG25 EG28 EG26	109 29 36.4 34.6 540.3 8.8 65.6 163.2 175.2 54.4 8.9 11.9 101.7 82.7 6.9 5.6 11.1	93.3 40.8 64.8 130.1 739.3 15.3 37.4 181.1 199.5 75.4 23.5 134.1 143.3 5.6	127	154.3 43.4 94.1 138.4 419.7 15.1 81.1 41.9 80.5 118.5 35.6		203.3 17.8 95.9 28.8 387.9 31.8 36	114.4 44.5 81.8 94.3 311.1 14.9		91.8 34.9 18.2		50,5 185,4	17,1									13.8
EG4 EG5 EG6 EG7 EG8 EG9 EG10 EG112 EG12 EG13 EG14 EG17 EG18 EG17 EG19 EG20 EG20 EG22 EG23 EG22 EG23 EG24 EG25 EG26	29 36.4 34.6 540.3 8.8 65.6 163.2 175.2 54.4 3.7 329.4 8.9 11.9 101.7 6.9 5.6 11.1	40,8 64,8 130,1 739,3 15,3 37,4 181,1 199,5 75,4 23,5 134,1 15 143,3 5,6 111,9	127	43.4 94.1 138.4 419.7 15.1 81.1 41.9 80.5 118.5 35.6		17.8 95.9 28.8 387.9 31.8 36	44.5 81.8 94.3 311.1 14.9		34.9 18.2			000		-	14,2	0.5		6.9	694.9	91.3	10.5
EG5 EG6 EG7 EG8 EG9 EG10 EG11 EG12 EG13 EG14 EG15 EG16 EG17 EG17 EG18 EG19 EG20 EG21 EG22 EG23 EG24 EG25 EG26 EG27 EG28 EG27	36.4 34.6 540.3 8.8 65.6 163.2 175.2 54.4 3.7 329.4 8.9 11.9 101.7 82.7 6.9 5.6	64.8 130.1 739.3 15.3 37.4 181.1 199.5 75.4 23.5 134.1 15 143.3 5.6	127	94.1 138.4 419.7 15.1 81.1 41.9 80.5 118.5 35.6		95.9 28.8 387.9 31.8 36	81.8 94.3 311.1 14.9		18.2			93.8	133.2	177.4	116,1	71.6	91.5	225.4	46.8	301,7	146.3
EG7 EG8 EG9 EG10 EG11 EG12 EG13 EG14 EG15 EG16 EG17 EG16 EG17 EG20 EG22 EG22 EG23 EG22 EG23 EG24 EG25 EG25 EG26 EG27 EG28	540.3 8.8 65.6 163.2 175.2 54.4 3.7 329.4 8.9 11.9 101.7 6.9 5.6	739,3 15,3 37,4 181,1 199,5 75,4 23,5 134,1 15 143,3 5,6	127	419.7 15.1 81.1 41.9 80.5 118.5 35.6		387.9 31.8 36	311.1 14.9		90.5		27.3 90	45.4 85.9	48.6 33.6	34.5 97.3	31.5 70.4	17,8 78.1	28,6 48,8	31.6 46.2	25.5 22.5	29.8 56.4	32.3 61.9
EG8 EG9 EG10 EG11 EG12 EG13 EG14 EG15 EG16 EG17 EG18 EG19 EG20 EG21 EG22 EG23 EG24 EG25 EG26 EG27 EG28 EG28	8.8 65.6 163.2 175.2 54.4 3.7 329.4 8.9 11.9 101.7 82.7 6.9 5.6	15.3 37.4 181.1 199.5 75.4 23.5 134.1 15 143.3 5.6 111.9	127	15,1 81.1 41.9 80.5 118.5 35.6		31.8 36	14.9				30,4	75	19.2	103.1	28.7	3250	92.3	125.6	103.8	77.2	82.6
EG9 EG10 EG110 EG111 EG12 EG13 EG14 EG15 EG16 EG17 EG18 EG19 EG20 EG21 EG22 EG23 EG24 EG25 EG26 EG27 EG28 EG27 EG28	65,6 163,2 175,2 54,4 3,7 329,4 8,9 11,9 101,7 82,7 6,9 5,6	37.4 181.1 199.5 75.4 23.5 134.1 15 143.3 5.6 111.9	127	81.1 41.9 80.5 118.5 35.6		36			358.6 25.8		471.4	150.9	315	291.7	768.2	219.9	157.3	237.6	515.9	334.2	115.3
EQ11 EQ12 EG13 EQ14 EG15 EQ16 EG17 EG18 EG19 EG20 EG21 EG22 EG22 EG23 EG24 EG25 EG26 EG27 EG28 EG27	175.2 54.4 3.7 329.4 8.9 11.9 101.7 82.7 6.9 5.6 11.1	199.5 75.4 23.5 134.1 15 143.3 5.6 111.9	127	80.5 118.5 35.6		370.1	82.3		19,7		19.6 53.5	29.9	8.7 15.8	28.6 68.4	12.8 13.5	14.7 102.2	107 33.2	12.4 54.4	226.4 68.4	57.7 101.6	12.2 27.5
EG12 EG13 EG14 EG15 EG16 EG17 EG18 EG19 EG20 EG21 EG22 EG23 EG24 EG25 EG26 EG27 EG26 EG27 EG28 EG28 EG28	54.4 3.7 329.4 8.9 11.9 101.7 82.7 6.9 5.6 11.1	75.4 23.5 134.1 15 143.3 5.6 111.9	127	118.5 35.6			11.1		20.4		102.3	327.2	152.1	275.3	42.4	148.7	91.5	208.7	143.1	192.8	64.2
EG13 EG14 EG15 EG16 EG17 EG18 EG17 EG18 EG20 EG21 EG22 EG22 EG23 EG24 EG25 EG26 EG27 EG28 EG27 EG28	3.7 329.4 8.9 11.9 101.7 82.7 6.9 5.6 11.1	23.5 134.1 15 143.3 5.0 111.9	127	35.6	1	299.3	92.3		35.6		958.2	165.2	897.4	1548	160.2	385.4	553.7	225.1	265,2	1163	28.2
EG15 EG16 EG17 EG18 EG19 EG20 EG21 EG22 EG23 EG24 EG25 EG26 EG27 EG26 EG27 EG28	8.9 11.9 101.7 82.7 6.9 5.6 11.1	15 143.3 5.6 111.9	127			63.2 53.2	85.1 11.6		91.5 34.8		49,2	92.8 14	50.4 18.1	84.9 7.5	41.7 19.3	29.2 28.5	35.4 5	37.1	54.8	32.7	81.3
EG18 EG17 EG18 EG19 EG20 EG21 EG22 EG23 EG24 EG25 EG26 EG27 EG28 EG28	11.9 101.7 82.7 6.9 5.6 11.1	143.3 5.6 111.9			86.9	41.3	120.2	57.4	165.9	3.4	67.4	148.4	137.5		78.6		28.9	14.5 117	49.9 132.7	38.5 58.1	7.4 5.1
EG17 EG18 EG19 EG20 EG21 EG22 EG23 EG24 EG25 EG26 EG26 EG27 EG28 EG29 EG30	101.7 82.7 6.9 5.6 11.1	5.6 111.9		40		9.9	94		148.5		19.4	35.2	24.3	13	14.2	495.8	48.8	49,7	9.4	115.3	12.7
EG18 EG19 EG20 EG21 EG22 EG23 EG24 EG25 EG26 EG26 EG27 EG28 EG28	82.7 6.9 5.6 11.1	111.9		15 4,4	 	13.9 6,1	59.3 4.6		25.6 7.8		24.9 45.8	15,7 202,3	105.4 234.2		15	47.1	72.2		55.9	112.1	12.5
EG20 EG21 EG22 EG23 EG24 EG25 EG26 EG27 EG28 EG29	5.6 11.1			123.8		126.9	129.5		87.1		242.2	116.9	115.9		132,2 99,9	6.4 52.2	113.2	49.3 82	67.1 78.9	922.8	
EG21 EG22 EG23 EG24 EG25 EG26 EG27 EG28 EG29	11.1	94.2		5,6		11	7.1		19.3		14.8	27.7	41	27.3	36.B	162,8	46.1	9.4			22.6
EG22 EG23 EG24 EG25 EG26 EG27 EG28 EG29		20.8 9.3	11	29.2 24.2		25.7 22,4	38.3 22.3	32.1	18.5 19.2	29.2	33.9	31	28.8		60.6	27.8				28.6	
EG24 EG25 EG26 EG27 EG28 EG29	79.6	92.8		95.3		60.2	168.6	32.1	71	29.2	10.9 67.8	105			12.1 79.5	13.8 107	8.8 66.7	9.3	9.6 61.9		
EG25 EG26 EG27 EG28 EG29 EG30	43.9	99.8		21.9		47.6	35		36.4		41.3	44.6			40.8	12.3	31.5				48.5
EG26 EG27 EG28 EG29 EG30	24.2 43.9	22,1 3.6	565.2	49.8 9.7		42.6 R	312	045	12.7		8.1	34.9			23.4	2	28.4		21.2	22.3	18.9
EG28 EG29 EG30	45.1	38.1	303,2	59.2		56.9	9.8 61.7	24.5	5.7 50.9	3,2	11.3	9.4 27.5	11.7		7.3 16.7	7.2 37.3	11.6 26.2				
EG29 EG30	22.5	57.8	10.3	17	35.1	69,2	44.4	109	37.5	65.2	39.1	5.6	22		72.3	20.7	33.9				
rEG30	81.4 99.6	99.6 164.9		194 21.9		105,8	73.6	86.3	80.2	371.2		31,1	29,7		44	156.7	121.4				59.3
	22,2	150.6	 	314,9		315.2	108.6 50.8	 	7.6 525.1		56.8 59.6	152.4	147 47.8			272.5 139.8	85.3 66.4				
rEG31	18.4	25,4		30.3		25.4	26.7		33.1		28	24.1	21.1	29,6			134.4				
EG32	15	17.8		28.5		15.6	24,7	33,7	17.1	45.4		342.9	313.3			189.4	34.6	112.5	13.2	395.4	13.6
EG33	81.9 19.4	96,9 68,1	74.9 47.3			129.2 43.8	158.9 42	120.6 83		190.8 19.1		102.6 45			151.7 59.5	66.5					
rEG35	8.0	53.1		3.7		1.7		1.4		15,7		1.8	1.9		1.6	57 5.3	61.4				38,6
FEG36	20	4		17.3	10.9			31.1	13			14.5	21.5	22.1	5,2	16.1	29.3	11.1			
EG37 EG38	429.6 231.7	116.2 369		14.1	320.8	460.7 158,2	53 141.6	194	45.8 37.2		36.9 837.4	269 123.8	18		_ 410.0	52.9					
EG39	26.3	44.6					44.3	85,3				51.5			194.8 55.6	163,9 48,5			86.7		
rEG40	50.5	89.9					91.3	115.7	123.9	147.1	88.1	83.1	92.7			218,9					
TEG41	21.5 346.4	156.1					693.5	5.8 580.3		21.8		4.9	7.8			77.2				2.3	
TEG43	31.3					106.4	75	122.4		291.1 49.2		721.1 48.3	309		330.1 83.2	594.7 40					
TEG44	127,4				28.2	25,5	67.2	3.7			3	2.6									
TEG45 TEG46	137,3 61,4			13.1 132.6				13.3													10.2
TEG47	81.4					15.5 366.9		194.5	49.3 25.4		52.5 21.1	73.5									
TEG48	12.6	96.9		134.8		162.9		104.0	66.4		21.9										
TEG49	284.4			76.1		103,2			52.5		121.9	122.3	233.2	78.1	156.3	53	57	113.1	69.1	84.7	
TEG50 TEG51	189.7 182.7	170.5		205.5 103.6		46.4 115.4			16.4 117.4		94.1 72.5	87.9			15.9 70.2						
TEG52	15.9	277.4	9	85.8	21.6			86.3								89.5 19.5					
TEG53	15.1	54.8		23.4		96.4	46.5		33		136.1	113.3	86,1	180.8	133.2	62					
TEG54 TEG55	61.6 87.5							149.4												20.6	13.8
TEG56	88.2	91.7										188				159 79.5					
TEG57	48.7	48	90.1	97,6	54.4	89.4	60.6	119.7	84.1	95.6	22.3	85.5	18.1	38		432.					
TEG58 TEG59	3,2 85.6							20,3							5.1	32.2	13.4	1 2.	3.8	12.4	19.
TEG60	35.3	78.2		22.1				150.6													
TEG61	5.1	5.3	5.2	10.7	5.6			8.3													
TEG62		44.4		112.8	31	76.5		1	60.8		79.										
TEG63	44.1 19.4	42.1		49.3	3 27.2	40.7		38.4									787.6	53	9.7		

褒3

番号	腎癌2	大腸癌 1	大縣癌 2	大脇癌 3	大 <u>関癌</u> 4	大腸癌 5	大脳癌 6	大腸癌 7	大脳癌 転移組 機(肝 臓)1	大腸癌 転移組 機(肝 臓)2	転移組	大腸癌 転移組 織(肝 閥)4	転移組 機(肝	大腸癌 転移組 織(肝 歳)6	大陽悠 転移租 稳(肝 腕)7	摩癌1	膵癌2	膵癌3	膵癌4
TEG1	17.1								12	14.6	12,7		73.2	N-9-7-V		261.9	10,3	17.2	
TEG2	5.7								421.5		750.B					4.5	5.6	28.7	
TEG3 TEG4	117.8 33.6								306.3	88.4	515.3					208,4	51.9	143.5	
TEG5	92.7								17.5	42.2	131.4					38.6	39.1	48,4	
TEG6	24.6								55.9 46	54.4 24	84.2 194.8			 		36.2	56.2	182.1	ļ
TEG7	61.9	\vdash							356.9		987.4	-	-	 		166.5 387.9	12.2 65.6	18.6 212,3	
TEG8	23.2								15.2	23.6	11.5					29.7	26.4	10.7	
TEG9	123								113.9	41.7	189.8					135.3	79	98	
TEG10	133.4								171.7	138	138					130.8	5.9		
TEG11 TEG12	68,5		<u> </u>			<u> </u>	ļ <u>.</u>		1120		229.8					1773	340.2	1011	
TEG13	22.5		 						88.8		52.6	<u> </u>				48.3	51.5		
TEG14	5.8	38.5	124.2	136.2	34	11.9	119.5	128.8	41,9 96		2.8 270.3	5.6	107.4	20.0	107.0	29	12.1		
TEG15	72.8		167.2	100.2	37	11.9	118.3	120.0	159		310.2	5.0	107.4	30,6	107.8	95.5 13.4			125,1
TEG16	188.7							_	61.5		17.2		 	-		21.3	9.5 348.5		
TEG17	10.9								69.7		179					14.9			
TEG18	257,2			ļ					130.8							146.8			T-
TEG19 TEG20	6.8			ļ	<u> </u>				11	8,9	6.4					22.3		11.7	
TEG20	12.1 12.6		8,2	9.2	7.4	10,9	7.5	9.9	30.7		110		10.	11.		15			
TEG22	20.8		6,2	3.2	/	10.9	7.5	9.9	9.9 64.3		57.8	53.7	12.1	11.8	11.3	2.6			
TEG23	40.5			 					36.3		21.2			 		108.5			
TEG24	40.1								162,6					 		24.5			
TEG25	7		22.8	163.7	58.8	50.7	9.3	724.2					988.6	193.3	194.4	1.3			
TEG26	64,4			ļ					71.9							84.2			
TEG27 TEG28	5.6		192.6	111.7	304.8	281.6		128.8	78.9					129.4	241.2	36.2		41.7	78.9
TEG29	25.9 9,3		261.6	110.5	411.1	370.7	191.7	268.4	256.8		322.8		248.3	232.8	390.6	202			
TEG30	229.7			 	 				38.3				 	├		46.9			
TEG31	42.3						 		102.7		23.3		 			65.7 129.2			-
TEG32	13.3		477	880.9		1334	325.3	886.5	505.8			13	451	280.2	434.1	178.6			298.1
TEG33	76.5		603.1	137.9		562.8		433,9	95.6		87.9	119,5			86.9	50.2			
TEG34	61.2					102.1			142.9						195.5	52.7			110
TEG35 TEG36	8,3	31.4	62.8	1.7 64	1.5 43.4	1.9			1	0,8					3.5				
TEG37	6.5		04.0		43.4	44	24.4	30.4	83.2		39.8	15,7	54.5	129.6	41.9				
TEG38	590.3		699	706.8	508.4	689.7	321.2	252.9	264.3 637			57.6	963.9	737.1	1220	282.6			
TEG39	48.4					864.1	580.5	418.5							1338 266.2	346.5 144.1	34.6		
TEG40	165					340.8									262.1	82			
TEG41	2,6		144.7	35.9	299.5		310.8	318,3	29	114.3	61.6	6.9			74				
TEG42	44.8														728				
TEG43 TEG44	41.6 2.9					134.6 7.4													
TEG45	24.7								112.8						3.5				
TEG48	13.7		77,0	00,0	10.5		\	40.5	9.7				34.1	85.4	38.4				
TEG47	5.1		21.2	454.5	39.2	225.4	7	68.6					91.9	26.7	158	14.3 306.7			
TEG48	22								238.3				1	1 20.7	1-150	110.7			
TEG49	33.8		ļ						179.6	150.7	317.1					181.8			
TEG50	13.6		 	 	 -	Ь—	 	ļ	135,9							128.9	19.3		
TEG51 TEG52	62.9 5.9		38.2	102.9	121,2	319.1	122.8	146	97.7				1	ļ.,,	ļ	198.9			
TEG53	65.1		30.2	102,8	141.2	318.1	122.8	146.1	195.9 84.9				16,6	18.3	9.2				
TEG54	69.7		701.3	1197	1061	1212	574,8	847.9					656.4	686.5	519.7	45			
TEG55	52.5	217.9	239.9	519.8	619.7	551.6													
TEG56	62.3					48.6	56.6	157.7	98.1	159.8	44.6		78.3						
TEG57	33.3				37.3				32,4	27.1	39	50.6	36.5		53.2				
TEG58	13.2						8.4									6.7			
TEG59	20.6				102														
TEG61	4.8								24.8										+
TEG62	77.9		1	1	7.3	3.0	11.5	4.5	60.6				5.1	7.4	5				
TEG83	29.1		22.7	16.7	17.7	30.1	16	16.6					29.6	29.6	28.9	358,7 28.8			
		10.8																	11 35.1

表4

TEG1 37 44 13.4 19.5 3.5 31.6 48 3.3 22.2 2.4 8.5 5.4 2.3 5.5 2.						肺小細 胞肺癌	肺小細 胞肺癌		肺小細	肺小細	肺小細	肺小細	肺小細	肺小細	肺小細	肺小細		肺小細
			2	3	4	_		7		胞肺癌 9	地加強	11 1	旭胂强	肥肺癌			胞肺癌 16	胞肺癌 17
TEGG																_	12.7	1.7
TEGG																194.4	384.6	1017
TEGS 244 0.7 22.3 4.11 2.3 1.3 6.5 2.5 6.5 7.0 6.6 2.0 1.5 8.5 8.6 8.9 1.9 1.5 1.5 8.5 3.8 3.8 2.8 2.2 1.6 1.5 1.5 3.5 3.8 1.8 2.2 2.4 1.5 1.5 1.5 3.5 3.8 1.8 2.2 2.3 1.5 2.2 1.6 1.5 1.5 3.6 2.2 2.2 2.3 1.5 2.2 3.2 3.5 2.2 1.8 3.6 3.8 3.8 2.2 3.8 3.5 3.8 3.8 3.2 2.4 2.6 2.6 3.4 3.4 2.6 1.6 3.4 3.6 3.2 1.0 3.2 1.0 3.2 4.2 3.4 3.3 1.0 3.8 3.2 1.0 3.2 3.4 3.5 3.2 4.2 3.2 3.4 3.5 3.8 3.4 3.3<																59.9	115.6	329.7
TEGG																	9,5	4.9
TEGO	G6	45.8	55.7	46.9													6.3 1.1	18.4 10.8
								776.1									737	773.1
TEG11 455 1357 37.3 408.1 552 4340 29.8 53.2 34.6 34.7 34.5 40.8 41.8 1157 11611 21.9 1359 47.7 517.3 47.7														2.5		5	4	0.9
TEG11 221,9 1359 71,7 51,73 4573 263 272,3 30.0 37,7 35,1 10,1 290,0 496,0 496,0 11,1 11,1 12,1 1																8.5	52.2	101.9
TEG12 43.3 9.2 4.1 24.4 15.6 13.1 30.5 33.2 11.1 40.5 2.6 63 25.5 22.2 12.1 12.1 14.2 13.5 14.5 13.5 14.5 13.5 14.5 13.5 14.5 13.5 14.5 13.5 14.5 13.5 14.5 13.5 14.5 13.5 14.5 13.5 14.5 13.5 14.5 13.5 14.5 13.5 14.5 13.5 13.5 14.5 14.5																	217.3	627.3
TEG14 84.9 11.9 11.4 5.2 12.6 8.4 22 6.9 4.7 8.9 13.2 7.1 8.4 21.9 18.7 TEG15 120.5 14.5 73.7 55.5 49.2 25.1 89.8 189.1 355.3 36.6 11.7 19.1 41.4 204.1 TEG16 80.9 855.6 122.8 188.5 13.6 39.4 120.5 18.5 35.3 36.6 17.1 19.1 41.4 204.1 TEG17 3.2 44.7 75.3 19.7 2.8 53 3.5 54.7 70.8 42.0 9.5 77.7 66.8 53.1 TEG18 39.8 7.1 39.9 129.8 23.9 63.1 25.5 77.3 90.4 140.5 34.4 48.3 137.8 32.5 TEG18 39.6 7.1 39.9 129.8 23.9 63.1 22.5 77.3 90.4 140.5 34.4 48.3 137.8 32.5 TEG18 93.6 7.1 39.9 129.8 23.9 63.1 22.5 77.3 90.4 140.5 34.4 48.3 137.8 32.5 TEG18 93.6 7.1 39.9 129.8 23.9 63.1 22.5 77.3 90.4 140.5 34.4 48.3 137.8 32.5 TEG20 38.6 19.8 10.2 36.5 12.2 39.1 15.9 11.1 7.3 39.4 74.8 27.5 72.4 TEG21 10 9.2 5.7 2.9 2.6 8.9 54.7 7.2 2.3 4.7 4.6 13.4 16.5 7.4 TEG22 88.6 63.5 60.4 45.2 80.4 42.6 94 68.8 60.8 43.3 25.5 26.2 98.9 17.3 25.5 TEG24 37.1 1.1 1.3 22.4 19.2 23.1 8.8 0.7 74.1 1.4 5.2 5.6 8.4 1.5 11.5 TEG24 153.1 108.7 45.9 22.1 735.3 27.5 23.8 35.4 106.2 263.4 94.8 7.7 13.1 1.7 0.5 31.3 11.9 0.7 TEG25 34.7 18.7 93.4 33.8 71.7 71.4 39.7 77.4 8.6 45.5 60.6 30.5 77.4 1.1 4.5 2.5 8.4 1.5 1	G12																2897 11.1	725.8
Heild																	5.1	97.7 15.6
TEG16 80.9 855.6 122.8 1885 113.6 39.4 120.5 186.2 57.7 70.8 42.9 5.7 68.8 53.1 72.8 73.2 44.7 75.3 19.7 2.8 53.3 5.4 1 15.1 72.9 225.2 104.8 44.5 30.4 75.1 75.1 75.1 75.2											2045	1404				657.9	633.3	338.9
TEG11 3.2 44.7 75.3 19.7 2.8 55 33 5.4 15.1 72.9 22.5 20.48 44.5 30.4 30.6 71.39 39.6 71.39 39.8 23.8 63.1 22.6 77.3 90.4 140.3 34.4 49.3 137.8 325.4 40.5																204.1	0.9	21.6
TEG18 39.8 7.1 39.9 129.8 23.8 63.1 22.6 77.3 90.4 140.3 34.4 49.3 137.3 325.4 40.5 40.										57.7						53.1	25.3	12.4
TEG19										90.4							83.4	77.6
TEG21 10 92 5.7 2.9 2.6 8.9 5.4 7.2 2.3 4.7 7.4 6.4 13.4 15.5 7.4 7.5 7.4 7.5 7.4 7.5 7.			172,1	169.1													68,1 53,4	189.7 15.9
Fig22									1.9		1.1					18.1	20,5	48.1
TEG23			-													7.4	3.6	14.6
TEG24 153.1 1087 45.9 22.1 735.3 27.5 23.6 35.4 1062 263.4 9.4 8.7 1.3 15. 14.7 TEG25 34.7 18 79.3 43.1 8.7 16.7 142.9 13.3 77.7 13.1 11.7 0.5 31.3 112.9 0.7 TEG26 19.2 2.7 18.3 20.7 30.7 28.7 20.7 29.8 8.9 14.1 13 3.3 32.5 2.6 5.5 TEG27 77.4 8.6 45 100 17.8 67.3 292.9 142.3 27.8 54.7 221.3 39.4 44.1 40.6 32.4 TEG28 15 20.5 25.7 45.3 59.1 38.2 167.4 80.5 81.1 91.9 76.3 102.5 4.2 51.2 116.5 TEG29 78.5 16.9 0.8 0.7 1.9 0.8 79.9 20.1 20.4 512.7 103.5 16 77.6 20.49 183.8 TEG30 85.3 199.8 5.1 34 242.9 155 145.2 338.2 19 13.1 124 39.7 27.7 151.6 41.4 TEG31 15.5 5.4 7.3 20.6 34.3.9 3 32.5 24.2 17.2 2.3 27.7 31.3 36.8 TEG32 38.9 25.3 1.4 6.3 179.6 26.9 37.5 22.9 114.5 74.4 27.3 664.5 3.5 42.1 60.6 TEG33 44.4 1.7 36 65.4 41.6 18 39 23.5 39.9 19.1 33 46.3 14.7 53.1 45.2 TEG34 44.9 56.7 98.1 86.3 41.6 53.5 80.1 55.5 158.2 105.5 110 177.5 261.7 191.4 81 TEG35 2.3 13.1 31.2 4.8 34.9 1.2 1 2.4 23.6 2.7 0.9 55.8 12.9 3.2 0.9 TEG33 5.4 2.4 2.3 1.8 7.1 8.6 91.5 49.1 71.3 0.9 56.8 24.5 2.5 15.1 0.0 TEG33 4.8 80.1 15.6 45.8 44.4 40.5 41.1 31.8 20.6 20.9 5.3 24.6 67.7 27.8 34.7 TEG34 4.8 2.7 2.9 2.9 2.0 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 TEG35 2.8 2.3 1.8 7.1 8.6 91.5 49.1 71.3 0.9 56.8 24.5 2.5 1.7 2.7 2.7 TEG36 2.8 2.3 1.8 7.1 8.6 91.5 49.1 71.3 0.9 56.8 24.5 2.5 1.7 2.7																32.5	68.9	62.6
TEG26																	19.1	8
TEG26		34.7															7.6 30.1	20.3
Fig.							28.7	20.7									11.8	1.1
TEG29												221.3				32.4	86.3	66
TEG30																116.5	75,2	33.8
TEG31																183.8	101.5	31.1
TEG32 38.9 25.3 1.4 6.3 179.6 26.9 37.5 22.9 114.5 74.4 27.3 664.5 3.5 4.2 160.6 TEG33 54.4 41.7 36 65.4 41.6 18 39 23.5 39 19.1 33 46.3 14.7 53.1 45.2 TEG34 44.9 55.7 98.1 86.3 41.6 53.5 80.1 55.5 158.2 105.5 110 177.5 261.7 191.4 31 TEG35 2.3 13.1 31.2 4.8 34.9 1.2 1 2.4 23.6 2.7 0.9 55.8 129 3.2 0.9 TEG36 2.8 2.3 1 8.7 1.8 6.9 18.5 4.9 17.3 0.9 5.6 24.5 2 15.1 0.7 TEG37 5.2 16.3 12.3 7.7 24.5 3.6 61.25.5 8.8																	115.7	51.3
TEG33			25,3														14.5 8.5	9.8 811.5
TEG34									23.5		19.1					45.2	25.4	5.5
TEG36 2.8 2.3 1 8.7 1.8 6.9 18.5 4.9 17.3 0.9 5.6 24.5 2 15.1 0.7 TEG37 5.2 16.3 12.3 7.7 42.5 40.7 2 61 25.5 8.8 76.8 48.2 2.6 101.7 1.9 TEG38 28 6.7 47.3 906.4 117.2 224.5 3.6 56.1 317.6 382 96.2 287.7 915 1308 173 TEG39 43.8 80.1 15.6 45.8 44.4 40.5 41.1 31.8 20.6 20.9 5.3 24 66.7 27.8 34.7 TEG40 35.4 2.7 67.5 160.4 137 49.1 :78.5 127.7 27.1 208.7 290.4 148.5 272.2 227.2 TEG41 41.2 18.4 17.4 1.5 3.3 15.6 24.3 6.2 7.7								80.1							191.4	81	58.2	155.9
TEG37 5.2 16.3 12.3 7.7 42.5 40.7 2 61 25.5 8.8 76.8 48.2 2.6 101.7 1.9 TEG38 28 6.7 47.3 906.4 117.2 224.5 3.6 56.1 317.6 382 96.2 287.7 915 1308 173 TEG39 43.8 80.1 15.6 45.8 44.4 40.5 41.1 31.8 20.9 5.3 24 66.7 27.8 34.7 TEG40 35.4 2.7 67.5 160.4 137 49.1 :78.5 127.7 217.7 208.7 290.4 148.5 272.2 227.7 1EG41 41.2 18.4 17.4 1.5 3.3 15.6 24.3 6.2 7.7 27.7 257.2 224.8 1238 227.2 1355 TEG42 5124 2702 5147 7568 3703 1016 2857 9793 8120 1220								105								0.9	0.7	153.5
TEG38 28 6.7 47.3 906.4 117.2 224.5 3.6 56.1 317.6 382 96.2 287.7 915 1308 175 TEG39 43.8 80.1 15.6 45.8 44.4 40.5 41.1 31.8 20.6 20.9 5.3 24 66.7 27.8 34.7 TEG40 35.4 2.7 67.5 160.4 137 49.1 :78.5 127.7 271 127.7 208.7 290.4 148.5 272.2 2277 TEG41 41.2 18.4 17.4 1.5 3.3 15.6 24.3 6.2 7.7 27.7 35.5 63.6 16.7 5.8 12.3 TEG42 5124 2702 5147 7568 3703 1016 2857 9793 8120 1220 2572 224.8 1238 27.6 137 151.6 37.3 81 TEG44 169.1 398.1 216.4 279																	2	12.2
TEG39 43.8 80.1 15.6 45.8 44.4 40.5 41.1 31.8 20.6 20.9 5.3 24 66.7 27.8 34.7 TEG40 35.4 2.7 67.5 160.4 137 49.1 :78.5 127.7 271 127.7 208.7 290.4 148.5 272.2 227.7 TEG41 41.2 18.4 17.4 1.5 3.3 15.6 24.3 6.2 7.7 27.7 35.5 63.6 16.7 5.8 12.3 TEG42 5124 2702 5147 7568 3703 1016 285.7 9793 8120 1220 2572 224.8 1238 227.6 135 TEG44 169.1 398.1 216.4 279 5.4 88.5 217.3 227.4 119 352.9 272.3 7.2 68 73.9 67.5 TEG44 169.1 398.1 216.4 279 5.4 88.5 217.3<	G38	28	6.7														121 331.3	57.3 1125
TEG40																34.7	174.1	32.4
TEG42 5124 2702 5147 7568 3703 1016 2857 9793 8120 1220 2572 224.8 1238 227.6 1358 TEG43 17.7 100.1 21.4 81.1 216 93.4 97.6 14.5 126.7 81.6 83.4 27.5 139.6 37 81 TEG44 169.1 398.1 216.4 279 5.4 88.5 217.3 227.4 119 352.9 272.3 7.2 68 73.9 67.5 TEG45 576.4 1377 196.8 1091 1236 1573 911.3 126.4 922.9 317 45.5 127.6 174.6 91.8 119.5 TEG46 28.7 22.2 39.7 27.7 20.7 38.9 31.3 7.2 24.7 23.8 92.6 70.3 27.2 40.8 26.9 TEG47 23.9 32.5 345.8 342.6 411.7 486.8 <													290.4	148.5		2277	229.8	263.4
TEG43 17.7 100.1 21.4 81.1 216 93.4 97.6 14.5 126.7 81.6 83.4 27.5 139.6 27.8 135.6 137.7 100.1 21.4 81.1 216 93.4 97.6 14.5 126.7 81.6 83.4 27.5 139.6 37.9 67.5 TEG45 576.4 1377 196.8 1091 1236 1573 911.3 126.4 922.9 317 45.5 127.6 174.6 91.8 119.5 TEG46 28.7 22.2 39.7 27.7 20.7 38.9 31.3 7.2 24.7 23.8 92.6 70.3 27.2 40.8 26.5 TEG47 23.9 32.8 1 11.2 23.7 36.4 15.8 38.1 306.6 40.4 14.7 27.4 109.2 15.3 109.8 TEG47 23.9 332.5 345.8 342.6 411.7 486.8 368.1 313.3																12.3	9.7	7.1
TEG44 169.1 398.1 216.4 279 5.4 88.5 217.3 227.4 119 352.9 272.3 7.2 68 73.9 67.5 TEG45 576.4 1377 196.8 1091 1236 1573 911.3 126.4 922.9 317 45.5 127.6 174.6 91.8 119.5 TEG46 28.7 22.2 39.7 27.7 20.7 38.9 31.3 7.2 24.7 23.8 92.6 70.3 27.2 40.8 26.9 TEG47 23.9 32.8 1 11.2 23.7 36.4 15.8 38.1 306.6 40.4 14.7 27.4 109.2 15.3 109.8 TEG48 30.8 15.4 24.8 25 62.9 41.3 36 67.7 110.3 57.1 52.2 183.3 34.7 49.1 165.1 TEG48 30.8 345.8 342.6 411.7 486.8 368.1 <																	1205	1181
TEG45 576.4 1377 196.8 1091 1236 1573 911.3 126.4 922.9 317 45.5 127.6 174.6 91.8 119.5 TEG46 28.7 22.2 39.7 27.7 20.7 38.9 31.3 7.2 24.7 23.8 92.6 70.3 27.2 40.8 26.5 TEG47 23.9 32.8 1 11.2 23.7 36.4 15.8 38.1 306.6 40.4 14.7 27.4 109.2 15.3 109.8 TEG48 30.8 15.4 24.8 25 62.9 41.3 36 67.7 110.3 57.1 52.2 183.3 34.7 49.1 165.1 TEG48 30.8 15.4 24.8 25 62.9 41.3 36 67.7 110.3 57.1 52.2 183.3 34.7 49.1 165.1 TEG50 6.2 11.2 29.9 3.5 21 17.7 80.1 <td>G44</td> <td></td> <td>347.7 62.5</td> <td>83.5 85.2</td>	G44																347.7 62.5	83.5 85.2
TEG46 28.7 22.2 39,7 27.7 20.7 38.9 31.3 7.2 24.7 23.8 92.6 70.3 27.2 40.8 26.5 TEG47 23.9 32.8 1 11.2 23.7 36.4 15.8 38.1 306.6 40.4 14.7 27.4 109.2 15.3 109.8 TEG48 30.8 15.4 24.8 25 62.9 41.3 36 67.7 110.3 57.1 52.2 183.3 34.7 49.1 165.1 TEG49 249.5 332.5 345.8 342.6 411.7 486.8 368.1 313.3 389.1 425.4 244.9 1056 401.8 378.8 518.6 TEG50 6.2 11.2 29.9 3.5 21 17.7 80.1 38.6 3 30.5 73 55.1 17.9 39 54.6 TEG51 357.8 954.4 708.5 450.9 860.5 579.8 3						1236	1573										287.7	150.7
TEG48 30.8 15.4 24.8 25 62.9 41.3 36 67.7 110.3 57.1 52.2 183.3 34.7 49.1 165.1 TEG49 249.5 332.5 345.8 342.6 411.7 486.8 368.1 313.3 389.1 425.4 244.9 1056 401.8 378.8 518.8 TEG50 6.2 11.2 29.9 3.5 21 17.7 80.1 38.6 3 30.5 73 55.1 17.9 39 54.6 TEG51 357.8 954.4 708.5 450.9 860.5 579.8 394.3 851 397.3 744.5 390 271.2 337.4 520.9 417.6 TEG52 37.7 6.2 27.6 142.4 7.4 8 348.5 16.5 9.7 19 46.9 1048 16.1 38.3 231.1 TEG53 37.8 17.1 44.8 25.7 36.9 8.5 3													70.3			26.9	32.3	9.9
TEG49 249.5 332.5 345.8 342.6 411.7 486.8 368.1 313.3 389.1 425.4 244.9 105.6 401.8 378.8 518.6 TEG50 6.2 11.2 29.9 3.5 21 17.7 80.1 38.6 3 30.5 73 55.1 17.9 39 54.6 TEG51 357.8 954.4 708.5 450.9 860.5 579.8 394.3 851 397.3 744.5 390 271.2 337.4 520.9 417.6 TEG52 37.7 6.2 27.6 142.4 7.4 8 348.5 16.5 9.7 19 46.9 1048 16.1 38.3 231.1 TEG53 37.8 17.1 44.8 25.7 36.9 8.5 35.5 30.5 32.8 18.5 12.6 16.6 51.1 5.1 69.5 TEG54 5.7 41.6 157.5 103.9 513.7 113.5 <				<u> </u>												109.8	898.5	6.6
TEG50 6.2 11.2 29.9 3.5 21 17.7 80.1 38.6 3 30.5 73 55.1 17.9 39.5 54.6 TEG51 357.8 954.4 708.5 450.9 860.5 579.8 394.3 851 397.3 744.5 390 271.2 337.4 520.9 417.6 TEG52 37.7 6.2 27.6 142.4 7.4 8 348.5 16.5 9.7 19 46.9 1048 16.1 38.3 231.1 TEG53 37.8 17.1 44.8 25.7 36.9 8.5 35.5 30.5 32.8 18.5 12.6 16.6 51.1 5.1 69.5 TEG54 5.7 41.6 157.5 103.9 513.7 113.5 70.7 236.4 908.8 711.3 864.1 4 123.8 302.6 72.5 TEG55 50.3 32.1 23.4 59.7 224.2 71.1 83.1 </td <td></td> <td>165,1</td> <td>61.5</td> <td></td>																165,1	61.5	
TEG51 357.8 954.4 708.5 450.9 860.5 579.8 394.3 851 397.3 744.5 390 271.2 337.4 520.9 417.6 TEG52 37.7 6.2 27.6 142.4 7.4 8 348.5 16.5 9.7 19 46.9 1048 16.1 38.3 231.1 TEG53 37.8 17.1 44.8 25.7 36.9 8.5 35.5 30.5 32.8 18.5 12.6 16.6 51.1 5.1 69.5 TEG54 5.7 41.6 157.5 103.9 513.7 113.5 70.7 236.4 908.8 711.3 864.1 4 123.8 302.6 72.5 TEG55 50.3 32.1 23.4 59.7 224.2 71.1 83.1 96.1 91.5 208.9 293 574.2 73.2 139.4 123.6 TEG56 5 268.5 31.5 168.7 433.9 43.4	G50																	
TEG52 37.7 6.2 27.6 142.4 7.4 8 348.5 16.5 9.7 19 46.9 1048 16.1 38.3 231.1 TEG53 37.8 17.1 44.8 25.7 36.9 8.5 35.5 30.5 32.8 18.5 12.6 16.6 51.1 5.1 69.5 TEG54 5.7 41.6 157.5 103.9 513.7 113.5 70.7 236.4 908.8 711.3 864.1 4 123.8 302.6 72.5 TEG55 50.3 32.1 23.4 59.7 224.2 71.1 83.1 96.1 91.5 208.9 293 574.2 73.2 139.4 123.6 TEG56 5 268.5 31.5 168.7 433.9 43.4 153.9 24.7 51.3 32.8 11.7 3.5 373.8 58.3 29.5 TEG57 1.4 17.6 6 49 105.8 38.5 35.8																		
IEG53 37.8 17.1 44.8 25.7 36.9 8.5 35.5 30.5 32.8 18.5 12.6 16.6 51.1 5.1 69.5 TEG54 5.7 41.6 157.5 103.9 513.7 113.5 70.7 236.4 908.8 711.3 864.1 4 123.8 302.6 72.5 TEG55 50.3 32.1 23.4 59.7 224.2 71.1 83.1 96.1 91.5 208.9 293 574.2 73.2 139.4 123.6 TEG56 5 268.5 31.5 168.7 433.9 43.4 153.9 24.7 51.3 32.8 11.7 3.5 373.8 58.3 29.5 TEG57 1.4 17.6 6 49 105.8 38.5 35.8 271.7 233.7 101.6 90.6 43 71.8 67.4 418.8 TEG58 36.3 1.9 13.2 8.8 11.2 2.2 14.3<									16.5		-							
TEG54 5.7 41.6 157.5 103.9 513.7 113.5 70.7 236.4 908.8 711.3 864.1 4 123.8 302.6 72.5 TEG55 50.3 32.1 23.4 59.7 224.2 71.1 83.1 96.1 91.5 208.9 293 574.2 73.2 139.4 123.6 TEG56 5 268.5 31.5 168.7 433.9 43.4 153.9 24.7 51.3 32.8 11.7 3.5 373.8 58.3 29.5 TEG57 1.4 17.6 6 49 105.8 38.5 35.8 271.7 233.7 101.6 90.6 43 71.8 67.4 418.8 TEG58 36.3 1.9 13.2 8.8 11.2 2.2 14.3 3.3 22.6 8.8 5.8 20.5 4.3 17.3 5.5 TEG59 740.8 763.7 1562 514.2 726.6 722.3 806											18.5	12.6	16.6	+		69.5		
TEG56 5 268.5 31.5 168.7 433.9 43.4 153.9 24.7 51.3 32.8 11.7 3.5 373.8 78.3 29.5 TEG57 1.4 17.6 6 49 105.8 38.5 35.8 271.7 233.7 101.6 90.6 43 71.8 67.4 418.8 TEG58 36.3 1.9 13.2 8.8 11.2 2.2 14.3 3.3 22.6 8.8 5.8 20.5 4.3 17.3 5.5 TEG59 740.8 763.7 1562 514.2 726.6 722.3 806.7 1279 353.5 1412 617.5 454.7 354.1 922.7 710 TEG60 54.6 67.4 47.4 413.9 23.4 20.0 460.7 147.9 353.5 1412 617.5 454.7 354.1 922.7 710														-		72.3	116.3	295.1
TEG57 1.4 17.6 6 49 105.8 38.5 35.8 271.7 233.7 101.6 90.6 43 71.8 67.4 418.6 TEG58 36.3 1.9 13.2 8.8 11.2 2.2 14.3 3.3 22.6 8.8 5.8 20.5 4.3 17.8 67.4 418.6 TEG59 740.8 763.7 1562 514.2 726.6 722.3 806.7 1279 353.5 1412 617.5 454.7 354.1 922.7 710 TEG60 54.6 67.4 47.											-							
TEG58 36.3 1.9 13.2 8.8 11.2 2.2 14.3 3.3 22.6 8.8 5.8 20.5 4.3 17.3 5.5 14.0 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6	G57																	
TEG59 740.8 763.7 1562 514.2 726.6 722.3 806.7 1279 353.5 1412 617.5 454.7 354.1 922.7 710				13.2	8.8	11.2	2.2	14.3										
									1279	353.5	1412				922.7			
TEG61 26 26 11 11 27 200 4352 1453 323 111.8 2.0 42.1 16.3 40.8		<u>54</u>											2.6	42.1	16.3			-
TEG62 27.2 0.1 10.0 52.0 17.0 10.0 2.0 1.4 0.7 2.3 3.7 2																	0.5	1.4
TEG63 44 3 15 5 27 3 23 9 24 2 5 26 9 4 1 24 3 3 3 5 25 7 2 1 8 28 23	G63																	
TEG64 156 74 64 371 212 951 24 23 951 24 7.3 37.0 6.7 16 28.5																		

衷4

番号	胞肺癌 18	肺小細 胞肺癌 19	胞肺癌 20		肺小細 胞肺癌 22	膵癌1	膵癌2	膵癌3	膵癌4	膵癌5	膵癌6	膵癌7	膵癌8	膵癌9	膵癌1 0	膵癌1 1	膵癌1 2
TEG1	3.5	3.5	3.3	51.9	3.4	56.4	83.2	64.6	10.1	10.2	13.1	7.9	9.4	6.6	8.7	13.6	5.6
TEG2	85.5	866.4	273.9	28.5	460.8	7.6	7.6	14.8	84.6	103.7	24.3	3.7	24.3	14.3	41.4	209.5	43.8
TEG3 TEG4	196.2 3.1	108	241.8 1.5	81.8 0.5	144.8	40.2	123.6	72.1	32.9	60	93.7	39.4	61.3	254.7	142.8	102.4	46.4
TEG5	3.6	1.4	1.6	14.8	23.4 15.4	19.3	21.6 30.4	10.6	35.2	13.5	28.1	23	17.4	8.6	52.8	28.1	18.3
TEG6	27	27.8	28.4	8.1	37.7	60.7	11.4	19.5 57.9	57.9 81.5	31 53.9	24.7 63.8	37.3	4.9	33.3	31.7	32.6	
TEG7	2744	659.2	1021	220.8	1304	624.8	384.3	597.7	300.2	596.9	328.6	71.5 497.5	78.3 161.4	75.3 360.7	66,9	38.2	
TEG8	4.8	1.2	2.1	8.4	7.9	14.7	19.8	10.9	31	27.6	21.5	23.2	20.6	6.9	340.7 10.1	331.1 17.8	
TEG9	22.8	15.1	3.7	29.5	50.6	29.9	234.4	20.6	25.4	21.8	37.4	267.9	176.2	187.5	206.7	70.9	
TEG10	211.3	851.8	115.5	179	61.3	47.9	136	47.9		231.9	125.4	42.1	118.5		68	72.7	51
TEG11	276	393.6	548.6	604.3	369.7	411.3	1276	414.7	44.6	141.8	847.8	338	674.6			973.6	
TEG12	52.1	12.5	31.4	8.2	27.4	14.7	17.3	26.2		28	17.2	18.3	20.5	28.2	17	20.7	10.3
TEG13	5.6	3.7	16.7	17.1	19.7	15.2	25.2	5.1	24.6	19.8		9.8	27.9	11.5		15.3	13.5
TEG14 TEG15	524.7 6.7	508.2 4.7	861.9 7.2	381.2	923.8 58.2	81.1		97.9		71.4			15.2	89.3			
TEG16	38.8	0.4	7.6	65.9	10.3	2.7 5.4	88.9 14.2	5.8 5.4	4	48.5			60.5		44.6		
TEG17	69.2	28.2	127.6		9.3	4.7	2.9	21.2		66.4			5.6		10.6		
TEG18	160.9	243.1	321.3		148.8	680.1		80.2		63.1	18.1 472.8	6.5 140.7	77.3 671.8			27.3 142.8	
TEG19	131.1	277	19.9		21.4	1.8		101.5		2.9			6.2	292.2			
TEG20	2.3	12.5	8.5		1.5					11.6			13.6		6.6		
TEG21	3.6	4.8			3.4	7.3		3.1	10.8	10.1	11.9		17.4				
TEG22	68.1	46.9											95.9				
TEG23	412.2	35		0.5	30.1	7.5				18.7	17.6		50.2	23.7	23.3	22.7	
TEG24	1.7	3.2		7.4		33				3.9			15.9				26.3
TEG25 TEG26	7.9 1.4	856 11.6			14.3 21.1					80.7			599.6				
TEG27	44.7	11.3				31.6 92.8		82.9 47.8		142.6			37.5	-			
TEG28	17.9	26.3			22								5.4				
TEG29	233.1	8.4				-				+		496.7	56.1 80.4				
TEG30	67.9	32.2								52.5			91.3				
TEG31	17.8	17.6	3.8	94.9	1.5.7	71.8							13				
TEG32	20.4		4.3			1099	678.1	434.7	298.9	357.7		851.7	542.1				
TEG33	28	4										119.8	173.9	108.1			
TEG34	246.1	145.6											500.5	192.1	535.3	214.9	236.7
TEG35 TEG36	264.7	3.1 13.5														2.8	
TEG37	1.8 15.3	93.8													-		
TEG38	1101	2124			548.6								41.5	_			
TEG39	47.3									+							
TEG40	154.5																
TEG41	29	24.4	16.7	25.4									71.8				
TEG42	1759			850.4	637.9	797.9	511.9			1052			1923				
TEG43	55.4								24.9	24.6	321.8						
TEG44	24.4												6.5	3.5			
TEG45	188.9															117.5	
TEG47	9.5	15.1 20.2															
TEG48	39.5																
TEG49	492.7																
TEG50	17.2																
TEG51	465.3																
TEG52	158.4			127.8		460.8	524.9										
TEG53	16.6		_					94.1	9.5	39.7	7 73,8						
TEG54	109.7					25.2	2 34.2			192.9	1.7	31.1	44.4	1 13.			
TEG55	6.8														426		
TEG56	47.1 2.6																190
TEG58	12.7																
TEG59	1023																
TEG60	9.6													_			
TEG61	8.9																
TEG62	13															6.3	
TEG63			12.6														
TEG64	8.5	3.6	48.6	31.2	26.5			4.									

表4

番号	膵癌1 3	膵癌1 4	膵癌1 5	膵癌1 6	膵癌1 7	膵癌1 8	膵癌1 9	膵癌2 O	膵癌2 1	膵癌2 2	膵癌2 3	膵癌2 4	膵癌2 5	膵癌2 6	膵癌2 7
TEG1	94	8.9	25.4	111	8.5	3.7	44.8	5.6	59.1	143.6	103	61	195.4	218.7	43.4
TEG2	16.5	35.5	9.1	7.8	10	11.6	533.3	1.3	30.2	87.7	19.1	35.5	33.9	22.9	5.8
TEG3	104	79.1	51.3	258.5	170	45.9	18.3	54.3	14.5	42.6	37	50	83.2	35.8	45.3
TEG4 TEG5	67.2 12	19.8 36.9	14.7 33.2	11.9	14.2	14.4	14.7	14.8	10.4	12.3	7.1	8.5	12.9	24.9	10.8
TEG6	45.2	91.4	68.2	28.4 43.2	56 46.5	15.9 58	20.1 84.5	32.3 56.1	13.9	30.4	36	20.4	23.2	26.9	29.3
TEG7	255	775.5	67.7	388.5	401.2	677.6	502.5	421.1	42.1 656.4	30.1 511.9	31.1 470.4	53.7	72.1	10.2	68.9
TEG8	17.3	94	13.7	24	36.5	19.6	17.6	6.5	11.5	2.7	4.2	226.7 4.8	221.1 5.5	360.8 21.5	95.7 10.8
TEG9	122	103	431	67.2	265	108.9	180.2	59.6	141.4	183.9	78.9	68.8	216.7	353.4	427.8
TEG10	56.3	37.5	43.4	135.2	35	20.7	10.4		66.9	30.7	20.9	30	48.6	57.7	19.2
TEG11	931.4	168	125.4	647.2	1786	646.5			819	1724	551.3	1336	685.6	908.3	185.8
TEG12 TEG13	11.6 29.8	33.1 17.2	5.2 4.8	18.3 4.9	7.8	14.2		21.9	2.5	11.4	19	7.3	13.9	15.2	8.8
TEG14	65.5	209.4	5.4	90.3	5.6 12.8	12.4 26.7	11.5 59.4		9.3 12.7	10.7 25.1	8.2	9.6	8.9	21.1	23.6
TEG15	43.1	159.7	13.6	27.5	50.5		120.7	49.5	80.8	29.6	34.1 22.5	19.1 71.9	14.2 31.6	21 24.6	4.6 19.8
TEG16	5.6	6.9	5.7	10.1	23.9	2.4	4.9		2.5	3.9	4.4	3.9	41.7	8.5	5.5
TEG17	6.6	22.8	16	67.1	50	24.7	91	19.8	31.7	2.5	67.2	54	5.3		10.2
TEG18	108.1	230.9	217	737.1	833.7	725.6		197.8	594.3	388.4		239.6	21.4		103.6
TEG19 TEG20	5.3 29.5	5.2 12.3	18.3	4.8	159.2	3.3			3	3.1	21.1	22.2	46.1	9	34.8
TEG21	15.1	8.7	14.7 3.1	150.4 32,3	166.1 9.5	40.2			67.1	25.5	11.4	36.9	28		27.1
TEG22	91.4	66.4	70.7	84.6	60.3			11.2 24.3	1.4 26.6	29.6	10.3	3.2	8.6	2.4	9.8
TEG23	22.8	18.5	21.8	20.9	18.2		2.8		14.6	25.0		22.7 1.5	37.1 14.4	42.7 5.3	38.4 6.6
TEG24	39	32.9	27.8	18.1	11.4		70.8		26		19.3	1.9		15	
TEG25	27.6	469.7	35.3		35	+			24.9	10.1	20.8	11.3			
TEG26	134.4	89.6	56.1	403.7	64				36.6	47.7	646	21.8	46.4	130.5	
TEG27 TEG28	93.1	2.5 60.1	31.1	33.4	57.3					26.1	44.4	39.5		71.8	
TEG29	159.9	12.1	40.4 92.6	140.4			130			213.2	229.1	119			105.1
TEG30	42.2	42.8	26.4				1.1					10.5 27.1			11.5
TEG31	94.7	14.5	40.5								440.6	15.6	409.3 592.3		
TEG32	365.5	1140	119.7	2518							530.8	315.6			
TEG33	150.2	136.8	170		133.8				96.1	109.9		89.7	85.8		
TEG34	263.9	341.3	79.4			254.6					214.9	148			
TEG35 TEG36	1.6 80.9	60.1	3.4			3.3	+		2.5						3.4
TEG37	69	6.5 1.6							481.7			27.7	57		
TEG38	1415	2198						189.2 5458	8096			47.1 4897	135.3		
TEG39	551.8	83.4			479.2							205.4	1018 275.1	3735 385.1	
TEG40	818.3	301.3	419.8	344.7	331.6							250.4			637.9
TEG41	201.3	111.1					82.3	71.3				70.7			
TEG42	752.3	608.1	817.7									616.4			
TEG43	108.4	31.3 1.9							288.3						
TEG45	53.5	80.3											·		
TEG46	16.5											107.3			
TEG47	25.8				129.7										
TEG48	305.5	163.2	60.4	64.4											
TEG49	289.5	463.9	382.2	245	162.3	188.5	439								
TEG50	97.5							115.4		114.2					
TEG51 TEG52	249.1														
TEG52	67.7														
TEG54	146.6														
TEG55	586.8														
TEG56	128.2														
TEG57	8.4														
TEG58	24.7) !	8.3	13.4	2.8	2.9					
TEG59	467.3								266.9	332.8					
TEG60	34.4								37.6	32.2	27.9	25.3	24.2		
TEG62	2.7 196.1														3.9
TEG63	33.3														
TEG64	11														

実施例2

5

RT-PCR を用いた発現亢進頻度の確認

上記の Gene chip 解析では各種摘出癌組織より調製した RNA をまとめて解析した点、ならびに Gene chip 解析の結果を確認するために、個々の癌サンプルならびに非癌部の正常組織における各遺伝子の mRNA の発現量を RT-PCR 法により解析し、発現亢進の程度、ならびに発現亢進頻度を検討した。

2.1. 各種癌組織からの一本鎖 cDNA の調製

各種ヒト癌組織、ならびに正常組織より以下のようにして PCR の際の鋳型 DNA として用いる一本鎖 cDNA を調製した。

10 すなわち、肺腺癌に関しては肺腺癌組織 12 例ならびに正常肺組織 4 例より、ヒト大腸癌に関しては 10 例のヒト大腸癌組織ならびに同摘出組織中の非癌部の正常大腸組織より、ヒト胃癌に関しては 12 例のヒト胃癌摘出組織、ならびに同摘出組織中の非癌部の正常胃組織より、ならびにヒト肝癌に関しては 9 例のヒト摘出肝癌組織ならびに同摘出組織中の非癌部よりそれぞれ全 RNA を上記と同様の方法を用いて調製した後、全 RNA より逆転写酵素 SuperscriptII(GIBCOBRL 社製)を用いて一本鎖 cDNA を合成した。このようにして調製した一本鎖 cDNA は後述の PCR の際に鋳型 DNA として用いた。

2.2. RTPCR を用いた発現解析

続いて、表 2 に示す各遺伝子に関して RT-PCR 法により mRNA の発現量を解 20 析した。すなわち、25µLの PCR 反応液は、500mM KCl, 100 mM Tris-HCl(pH8.3), 20mM MgCl₂, 0.1% Gelatin、各 1.25 mM dNTPs(dATP, dCTP, dGTP, dTTP)、1µLの一本鎖 cDNA、5 pmole ずつの各遺伝子に特異的なセン スプライマー、アンチセンスプライマーのセット、0.75 µLの SYBR Green I (1000 倍希釈溶液,宝酒造社製)、0.25µLの recombinant Taq polymerase Mix 25 (FG Pluthero, Rapid purification of high-activity Taq DNA polymerase、 Nucl. Acids. Res. 1993 21: 4850-4851.)を含むように調製した後、初めに 94℃ で3分間一次変性を行い、94℃で15秒、57℃で15秒、72℃で30秒からなる サイクルを30回行なった。各遺伝子のRT-PCRに用いたプライマーは表 5 に示 すものをそれぞれデザインし解析に用いた。

30 また、個々の RNA 中のヒト β -アクチン遺伝子発現量もヒト β -アクチンに特異的なセンスプライマー(配列番号 2 5 2 :

AGAAGGAGATCACTGCCCTGGCACC) ならびにアンチセンスプライマー (配列番号 2 5 3:CCTGCTTGCTGATCCACATCTGCTG) を用い上記と同様 に解析を行った。

	医导	5	_	6	—	8	LC C2	<u> -</u>	6	I —	8	10	<u></u>		_			<u> </u>	-	_		ī		Γ-	_		_				_	_	_			
	配 番 品	125	127	129	131	133	135	137	139	141	143	145	147	149	151	_	155	157	159	161	163	165	167	169	171	173	175	177	179	181	183	185	187	189	191	193
アンチプライマー	配列	CTTGGCACAGGACCCAAGAG	GGTCCAGGTCATCTTTATTACGCC	AATGAGGAAACTGAGGCATAAAG	CCCCTTTTTGTCCAGCTTACTC	GCCACTGAACCAAAATCGGG	GCCCCGCTCCAAACATCACT	GCCATCCTCTGTCAAGTACCAG	GAATTCGTGGTGGCATGCCTTCT	TCTTCAATACCCAGGAGGTACAGG	AAGGAGTTAGCAGCAGCCTAGTTG	AGAAGCTATCAGGCGTTGCTGAA	TGCCGTGGTAATGTGAATCGC	GGAAAGTGTTAGACGCAGAAGGC	TGGACCTACTTCGTACATCAGAGGC	AGGCTTCCAACTTCCGCTGC	TCGGAAGGGTGTGAAAGAGGAC	CGTTGGGTCTTGATCAGCTTCTGTT	CCACGGTGTAGAAGAGCGATAC	18973-18992 CTCCTGAGCTCCACGATCTG	CAGCATCACCTTGACGTAGCTGA	GTAGCAGCCAGTCAGCATCTTCG	GGTCCACACTGCTCTCACTTCCT	GGGTTCACTTTGGTCTCTAGTACGG	GGATGTGCAGTGAAACTTGAAAGG	GCCATTTGGTTTGGATGTATTGAAG	CATTACCTGAGGCCTCTGAATTCGG	CCAGATGCAGGATCAACCCTTCTCA	CACGTGATAGATGCTGGTCGGG	GCCCGGAATCATGATGCTTG	TCAGGACTTGCCTTTGTTTCGG	TAGGGCACCGGGATCTCTAA	AACGCTCCCTGAAAACTGTAAC	GGATCGACATGATTCTGAAGGTG	CCCACAAGTGTGATCTTGAAGTCC	TCGTGGTTTCCTGGACATCTTC
	配型	1661-1680	218–241	264-286	195-218	152-171	251-270	467-490	433-456	1437-1460	283~306	30-25	397-417	142-164	10156-10180	462-481	1232-1253	1559-1584	1395-1416	18973-18992	1480-1502	1451-1473	1113-1135	398-403	96-119	320-344	2167-2191	3753-3777	1723-1744	2855-2874	168-190	501-520	3034-3056	2488-2510	-	352-372
	名称	AT869	LS276	LS292	LS310	LS302	LS502	LS435	F3763	LS427	LS548	LS694	BFR	H	ASPMR	SPR	AFR	LS154	C7TM_R	AT865	C20054_R	RHBGR	LS564	LS900	LS308	LS443	LS757	LS156	LS867	AT879	AT883	TS80	LS286	AT857	LS278	LS270
	配列番号	124	126	128	130	132	134	136	138	140	142	144	146	148	150	152	154	156	158	160	162	164	166	168	170	172	17	176	178	180	182	184	186	88	8	192
センスプライマー	百万列	GGATTCTCTGCCCTGTCACAC	CGGAGGGAGAGTTTTCTAAG	GGGATTAGGAATATGGGCTCTG	CATCACATCATTCACCCCCAC.	ATGTGCCTGCCACTACCTCATC	ACTCGCACAGGCACAGGGAT	TTCTGCCTGAAGAAGCGTCATAC	GCGCATTTTGAGAGAAGTTGGGTACT	AACCCCTCTTTCTGTCCATGCCAG	GCAGTCTTGGATGATGGGTTCC	TTTCTATGGCATTCCAGCGG	CTTCACCTGCTCATTGCCTGTC	AACGACGAAAAGAGAAGGACCC	AAAGTTGCAGACAAAGGCGGAAGC	GACGGTGGGAACGGTTTAGAG	CACCTGCATCCATAGCACAGC	CCCTTCTTTGGTTTGCATCAGGTCT	TGTCTGTTGCATGCGGTTCA	GGTCACTGATAGCCGATGAGG	GTTGGTCTCCATGTTCCTGCCTAAC	CGAGCATGAGGATAAAGCCCAG	TGGCAATGAAGCACCCCTCT	TCACATCTATCAACCACTGGCACCTA	CAAGCAAATGCAATGGCTGG	GCTGTGTTCTCTGGATAACCCAC	CTGGGACCTTCCAAAACATTGGCT	TCCAGGTACATATCACGCGCACAG		CTTGATAATGTGGGCAAACCCTT	GGCCCTAGGATTGTCCACTCA	GTGGGCCTGTGCATTGTTGG	CCTGTTTGCTGCTGAGAACATCTC			CACTGTGAGTTTCATGCCTGCTG
	位置	1505-1525	340-362	356-377	72-93	315-336	161-180	367-389	345-372	1310-1333	107-128	109-128	218-239	53-74	10078-10101	337–357	1158-1178	1455-1479	1247-1266	Ţ	1298-1322		ွ					╗		75		\neg	\neg		2	250-272 (
	名称	_	LS275	LS291	LS309	LS301	LS501	LS434	LS762	LS426	LS547	LS693	ᇤ		\leq	SPF		LS153	C7TM F	AT864	C20054_F	RHBGF	LS563	LS899	LS307	LS442	LS756	LS155	LS866	AT878	AT882	LS79	LS285	AT856	LS277	LS269
GanBank 条		듸	-	-	-1	_	AB062438	AL832235	BF825703	AL389981	BC017398	AI343467	BF067073	H66658	NM018123.1		AF339813.1	223594 NM_032256	AB065686	NM_032119	NM_033409	NM020407	NM_012133	AL039884	BE670584	AL524520	AK026404	AF025304	AK021918	BC037325	NM_018936	XM_173052	AK000123	NM 002644	NM 004289	NM_004909
121	· 元	\dashv	-	\rightarrow		-	228649	226936	238383	_		_		237410	219918				235229			220510	223457	229349	231341	213880	232321	209589	-	_	_	-+				220445
	梅	TEG1	TEG2	TEG3	TEG4	TEGS	TEG	TEG7	TEG8	TEG9	TEG10	TEG11	TEG12	TEG13	TEG14	TEG15	TEG16	TEG17		TEG19	TEG20	TEG21		TEG23			_			_	_				_1.	1EG35

		7	-	_	_		~	-	7	-		_	_	_	_	_		_		_	_		~		•		-	_			
	配列番号	195	197		201	203	202	207	209	2	213	215	217	219	221	223	225	227	229	23	233	235	237	239	24	243	245	247	249	221	253
アンチブライマー	西多川	CAGGGACTTCCTTTTCCATCAG	TCTGAAGGGGTGAAGTTCTTGAGGG	TGCTTTCACTTGTGCCACTGAG	ACTCCATGAGCATGCACAGAGTAGG	CGACGTGGCCATTCAATCGTACA	GATGGACCCCAGGACGGAGTAG	TGCTTCTAACCACTGAGGTATGAGG	GAGCGTTGCTTTCCTTAAAGACC	GGTAAAGTCCTCACCCCTGC	TTAGGCCACGTGTCTGCCA	CAGCAGCAGATGGGAAGAACTC	GCCCACCTCTACGTCGAAGAAGT	TACCCCGCAGAGAAGCAAAC	TCCAGGGAGATGTCTTGCCA	ccrecrecricities	TGCTGTTCATCCAACCACCG	CACTGTAGGTCAGTCACAGCA	CAGACCCTGAGGTTGCAGAA	GGCACCACGGGGTTGTAGAAGTCC	GGCGGAGTAAGGCTTGTCTGT	CCTACCACTATGGCTTGTGATGG	CTGAAAGAGGGTCTGCGTGTGG	CCTCCTGACCATCTCCTCTTCCTC	GCTGAGTAGACATGCAGATGACAAG	ATCTTCCTTGTCCGTCTCGTCC	CCTCGTTCGCCACCGTATAGTTGAT	GGACAGTGGCGATTTCAACC	ACAGGGGTGTGGACAGAAATG	GGGAGGAGCTGAGGCAATC	CCTGCTTGCTGATCCACATCTGCT
	存置	1677-1698	3161-3185	348-369	2535-2559	551-573	3119-3140	2064-2088	5565-5586	323-342	3773-3791	1419-1440	319-341	382-401	277-296	1479-1498	643-662	2867-2887	2509-2529	628-652	06/-0//	1456-1478	1429-1450	108-131	2861-2886	2087-2108	348-372	1330-1349	2043-2063	4309-4327	
	格	LS290	LS119	LS451	HEPH R	K0152 R	.K0703_R	LS386	LS382	ELOVLR	ROBR	FLJ1R	LS260	AT873	LS506	LS508	TS262	AT855	AT875	CLD3_R	CLD4_R	LS370	ASPR	JMR	RHAMMR	AT575	AT851	AT998	DUSPR	KIAAR	
	問題	194	196	198	8	202	204	506	208	210	212	214	216	218	220	222	224	226	228	230	232	234	236	238	240	242	244	246	248	250	252
サンスプライマー	配列	GGGCTTGGTTTTGTGAGGTTCC	CCAAGTTACGTCAAAGTCTCAGGAGC	AAGAGAGCCATCCACCTTACCC	CGGCCAAGGACTGGACCAGA	ACTECCAATCCTGCGTTCCA	CGCACCACGACGATGACGTTC	GACCAATAGCATCTGTGCCAGAG	TCCTAAACCATTCACCAAGAGCC .			ATGCCACACAGCCAGCTCAC	GCTATGTCTTTGCACCAGCCACC	TCCATTGTGTCGGGGATCTG	AGCCGAGCATACACACCACC		CCGCTGAACTCAGTCAATGGC	TGGGCAGTTTGACTTCAGCA	GTGTTCGAGGGAGTGATAGGG	TGCACCAACTGCGTGCAGGACGA	TGTTGGCCGGCCTTATGGTG	GGAGACTTCCGACTTCCTTACAGG	GGACTTGCGAGACTTCGTGAGGAG	CTTCTCTTCCCTTCATTCTTCGCC			CCCCGAGGACAACCTGGAGATCGTT	CAACCACAGATCAGGGACAGGAGC	GCTCTTTGTGAGTGAGGGTGG	CAGTGGGCAGCAGAAAGGAGAG	AGAAGGAGATCACTGCCCTGGCACC
	位置	1358-1379	3043-3069	227-250	2429-2448	383-402	3000-3020	1985-2007	5448-5470	90-111	3719-3736	1305-1325	179-202	283-302	190-211	1377-1397	467-488	2745-2764	2311-2331	504-526	582-601	1298-1321	1339-1362	5-28	27		245-269	1161-1184	1868-1888	4106-4127	
	松	1.5789	╄	1_	1		_	╃~~	1_	FI OVI F	RORF	111111111111111111111111111111111111111	╀	┸	4	┸	1	L	╀	4	╀	1.5369	ASPF	JMF	RHAMME	AT574	AT850	AT997	DUSPE	KIAAF	
	GenBank参 考配列	NM 007028	+-	4=	_		206043 NM 014861	NM 002402		+-	4-	RC002535				TEG50 225802 NM 052963	222848 NM 022145	NM 001793				NM 003014					206859 NM 002571	NM 032654			
	元 元	215444				20000	206043				213194	994933	206224			225802	222848			203953	201428	204051	218908	205564		212092	206859	973779	205777	212147	ソ
	梅	TEG36	TEG37	TEC38	TEC.30	TEG40	TEG41	TFG42	TFG43	TEG44	TECA5	110 AB	TEC47	1 E C E	TEG40	TEG50	TEG51	TEGES	TEG53	TFG54	TF 655	TEG56	TFG57	TFG58	TEG59	TFG60	TFG61	TFG62	TFG63	TEG64	Bアクチン

PCR 法により増幅された産物は 1.0%アガロースゲル電気泳動後、エチジウムブロマイド染色にて確認を行う、または iCyclerQ リアルタイム PCR 解析システム (BIO-RAD 社) により mRNA 量を定量した。

TEG1 の発現解析

5 肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG1 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 12 例の肺腺癌組織の内 10 例で明らかに TEG1 遺伝子の高発現が確認された(図1)。

10 同様にして、正常肺 5 例と肺扁平上皮癌 9 例の定量的 PCR 解析を実施した。 PCR の結果、TEG1 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 9 例の肺扁平上皮癌組織の内 3 例で TEG1 遺伝子の発現 亢進が確認された(図 7 3)。

TEG2 の発現解析

5 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA、ならびに i1 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG2 遺伝子の mRNA は解析した大腸癌においては 5 例中 3 例において、また胃癌においては 11 例中全で明らかに癌部において発現の亢進が確認された(図 2 、 3)。

TEG3 の発現解析

20

25

30

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG3 遺伝子の mRNA は解析した胃癌においては 11 例中 9 例で明らかに癌部において発現の亢進が確認された(図 4)。

TEG4 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG4 遺伝子の mRNA は解析した胃癌においては 11 例中 7 例で明らかに癌部において発現の亢進が確認された(図 5)。

TEG5 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG5 遺伝子の mRNA は解析した胃癌においては 11 例中 7 例で明らかに癌部において発現の亢進が確認された(図 6)。

5 TEG6 の発現解析

9 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA、ならびに 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG6 遺伝子の mRNA は解析した大腸癌においては 9 例中 3 10 例で明らかに癌部において発現の亢進が確認され、また胃癌においては解析した全ての正常胃においては全く発現が認められなかったのに対し、2 例で非常に強い mRNA の発現が確認された(図 7 、8)。

TEG7 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した 15 RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG7 遺伝子の mRNA は解析した胃癌においては 11 例中 6 例で明らかに癌部において発現の亢進が確認された(図 9)。

TEG8 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した 20 RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG8 遺伝子の mRNA は解析した正常胃においてはほとんど発現が認められないのに対し、胃癌においては 11 例中 1 例で顕著なmRNA の発現が確認された(図 1 0)。

TEG9 の発現解析

25 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG9 遺伝子の mRNA は解析した胃癌においては 11 例中 6 例で明らかに癌部において発現の亢進が確認された(図 1 1 1 1 1

TEG10 の発現解析

30 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG10 遺伝子の mRNA は解析した胃癌においては 11 例中 10 例で明らかに癌部において発現の亢進が確認された(図 1 2)。

TEG11 の発現解析

5

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG11 遺伝子の mRNA は解析した胃癌においては 11 例中 10 例で明らかに癌部において発現の亢進が確認された(図 1 3)。

TEG12 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT 10 PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG12 遺伝子の mRNA は解析した肝癌 9 例中 6 例で明らかに 癌部において発現の亢進が確認され、特に中分化型肝癌(#21、29、32)および 低分化型肝癌(#22、111、115)において顕著な発現亢進が認められた(図 1 4)。

TEG13 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG13 遺伝子の mRNA は解析した肝癌 9 例中 4 例で明らかに 癌部において発現の亢進が確認された(図 1 5)。

20 TEG14 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG14 遺伝子の mRNA は解析した肝癌 9 例全てで癌部において顕著な発現の亢進が確認された(図 1 6)。

TEG15 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG15 遺伝子の mRNA は解析した肝癌 9 例中 6 例で癌部において顕著な発現の亢進が確認された(図 1 7)。

30 TEG16 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT

PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG16 遺伝子の mRNA は解析した肝癌 9 例中 5 例で癌部において顕著な発現の亢進が確認された(図 1 8)。

TEG17 の発現解析

5 10 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG17 遺伝子の mRNA は解析した 10 例全てにおいて癌部での発現亢進が確認され、特に 5 例において明らかに高発現していた(図 1 9)。TEG18 の発現解析

10 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG18 遺伝子の mRNA は解析した胃癌においては 11 例中 7 例で明らかに癌部において発現の亢進が確認された(図 20)。

TEG19 の発現解析

15 肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG19 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 12 例の肺腺癌組織の内 3 例で明らかに発現が亢進することが確認された(図 2 1)。

20 TEG20 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RTPCR 法により遺伝子発現比較を行った。

PCR の結果、TEG20 遺伝子の mRNA は解析した胃癌においては 11 例中 6 例で明らかに癌部において発現の亢進が確認された(図 2 2) 。

TEG21 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG21 遺伝子の mRNA は解析した肝癌 9 例中 5 例で明らかに 癌部において発現の亢進が確認され、特に中分化型肝癌(#21、27、29、32)

において顕著な発現亢進が認められた(図23)。

TEG22 の発現解析

30

6 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG22 遺伝子の mRNA は解析した 6 例中 3 例で癌部での発現 亢進が確認された(図 2 4)。

5 TEG23 の発現解析

9例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG23 遺伝子の mRNA は解析した肝癌 9 例中 6 例で明らかに 癌部において発現の亢進が確認された(図 2 5)。

10 TEG24 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RTPCR 法により遺伝子発現比較を行った。

PCR の結果、TEG24 遺伝子の mRNA は解析した胃癌においては 11 例中 5 例で明らかに癌部において発現の亢進が確認された(図 2 6)。

15 TEG25 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製したRNAを用い、RTPCR 法により遺伝子発現比較を行った。

PCR の結果、TEG25 遺伝子の mRNA は解析した胃癌においては 11 例中 7 例で明らかに癌部において発現の亢進が確認された(図 27)。

20 TEG26 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG26 遺伝子の mRNA は解析した胃癌においては 11 例中 4 例で明らかに癌部において発現の亢進が確認された(図 2 8)。

25 TEG27 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG27 遺伝子の mRNA は解析した胃癌においては 11 例中 8 例で明らかに癌部において発現の亢進が確認された(図 2 9)。

30 TEG28 の発現解析

8 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した

RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG28 遺伝子の mRNA は解析した胃癌においては 8 例中 5 例で明らかに癌部において発現の亢進が確認された(図 3 0)。

TEG29 の発現解析

5 肺腺癌組織 8 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG29 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 8 例の肺腺癌組織の内 7 例で明らかに発現が亢進することが確認された(図 3 1)。

10 TEG30 の発現解析

15

25

肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG30 遺伝子の mRNA は正常肺組織での発現はほとんど認められなかったのに対し、解析した 12 例の肺腺癌組織の内 11 例で mRNA の発現が確認され、さらにそれらの内 4 例で正常肺に比べ明らかに発現が亢進することが確認された(図 3 2)。

TEG31 の発現解析

肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

20 PCR の結果、TEG31 遺伝子の mRNA は正常肺組織での発現はほとんど認められなかったのに対し、解析した 12 例の肺腺癌組織の内 7 例で明らかに発現が亢進することが確認された(図 3 3)。

TEG32 の発現解析

肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG32 遺伝子の mRNA は正常肺組織での発現に比べ、解析した 12 例の肺腺癌組織の内 4 例で明らかに明らかに発現が亢進することが確認された(図 3 4)。

TEG33 の発現解析

30 上記と同様に肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG33 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 12 例の肺腺癌組織の内 9 例で mRNA の発現が確認され、特に 4 例において極めて高い mRNA の発現が確認された(図 3 5)。

TEG34 の発現解析

5 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG34 遺伝子の mRNA は解析した 11 例中 8 例において明らかに癌部において発現の亢進が確認された(図 3 6)。

TEG35 の発現解析

10 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG35 遺伝子の mRNA は解析した 11 例中 7 例において明らかに癌部において発現の亢進が確認された(図 3 7)。

TEG36 の発現解析

15 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG36 遺伝子の mRNA は解析した 11 例中 8 例において明らかに癌部において発現の亢進が確認された(図38)。

TEG37 の発現解析

20 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG37 遺伝子の mRNA は解析した 11 例中 7 例において明らかに癌部において発現の亢進が確認された(図39)。

TEG38 の発現解析

25 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG38 遺伝子の mRNA は解析した 11 例中 8 例において明らかに癌部において発現の亢進が確認された(図 40)。

TEG39 の発現解析

30 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG39 遺伝子の mRNA は解析した全体的に癌部での発現が高い傾向が認められ、特に 11 例中 6 例で癌部において発現の亢進が確認された(241)。

TEG40 の発現解析

5 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG40 遺伝子の mRNA は解析した 11 例中 4 例において明らかに癌部において発現の亢進が確認された(図 4 2)。

TEG41 の発現解析

10 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG41 遺伝子の mRNA は解析した 11 例中 4 例において明らかに癌部において発現の亢進が確認された(図 4 3)。

TEG42 の発現解析

15 11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG42 遺伝子の mRNA は正常胃においては全体的に発現が低いのに対し、解析した 11 例中 6 例において明らかに癌部において発現の亢進が確認された(図 4 4)。

20 TEG43 の発現解析

25

30

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG43 遺伝子の mRNA は正常胃ではほとんど mRNA の発現が認められなかったのに対し、癌部においては解析した 11 例中 9 例でmRNA の発現が確認された(図 4 5)。

TEG44 の発現解析

9例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG44 遺伝子の mRNA は解析した肝癌 9 例中 5 例で癌部において明らかに発現の亢進が確認された(図 4 6)。

TEG45 の発現解析

11 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG45 遺伝子の mRNA は解析した肝癌 11 例中 7 例で癌部において明らかに発現の亢進が確認された(図 4 7)。

5 TEG46 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG46 遺伝子の mRNA は解析した肝癌 9 例全てにおいて癌部での発現の方が高い値を示し、特に 6 例で癌部において顕著な発現の亢進が確認された(図 4 8)。

TEG47 の発現解析

10

10 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、定量的 RTPCR 法により遺伝子発現比較を行った。

PCR の結果、TEG47 遺伝子の mRNA は解析した 10 例中 8 例のサンプルに15おいて正常大腸組織に比較し、明らかに癌部での発現亢進が認められた(図 49)。

TEG48 の発現解析

10 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、RTPCR 法により遺伝子発現比較を行った。

20PCR の結果、TEG48 遺伝子の mRNA は解析した 10 例中 9 例において癌部での発現亢進が確認された(図 5 0)。

TEG49 の発現解析

6 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、定量的 RTPCR 法により遺伝子発現比較を行った。

PCR の結果、TEG49 遺伝子の mRNA は解析した 6 例中 3 例において非癌部 に比べ癌部において発現が亢進していることが確認された(図 $5\ 1$)。

TEG50 の発現解析

6 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

30 PCR の結果、解析した 6 例全ての正常大腸組織では TEG50 由来のバンドの 増幅は認められなかったのに対し、癌部では 6 例中 4 例においてバンドの増幅

が認められ、癌部において発現が亢進することが確認された(図52)。 TEG51の発現解析

6 例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

5 PCR の結果、TEG51 遺伝子の mRNA はいずれの正常大腸組織でも PCR による増幅が認められなかったのに対し、解析した 6 例の大腸癌組織の内 5 例でTEG51 遺伝子の明らかな増幅が確認されたことより、大腸癌において発現が亢進していることが確認された(図 5 3)。

TEG52 の発現解析

10 肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG52 遺伝子の mRNA は正常肺組織に比べ解析した 12 例中 7 例で明らかに肺癌において発現が亢進することが確認された(図54)。

TEG53 の発現解析

15 肺腺癌組織 8 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG53 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 8 例の肺腺癌組織の全てで発現の亢進が確認された(図 5 5)。

20 TEG54 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG54 遺伝子の mRNA は正常胃においては解析した 11 例中 9 例において明らかに癌部において発現の亢進が確認された(図 5 6)。

TEG55 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG55 遺伝子の mRNA は解析した 11 例中 6 例において明らかに癌部において発現の亢進が確認された(図 5 7)。

30 TEG56 の発現解析

11 例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した

RNA を用い、RTPCR 法により遺伝子発現比較を行った。

PCR の結果、TEG56 遺伝子の mRNA は正常胃においては全体的に発現が低いのに対し、解析した 11 例中 9 例において明らかに癌部において発現の亢進が確認された(図 5 8)。

5 TEG57 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG57 遺伝子の mRNA は解析した肝癌 9 例中 5 例で癌部において明らかに発現の亢進が確認された(図 5 9)。

10 TEG58 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG58 遺伝子の mRNA は解析した肝癌 9 例中 5 例で癌部において明らかに発現の亢進が確認された(図 6 0)。

15 TEG59 の発現解析

20

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG59 遺伝子の mRNA は解析した非癌部 9 例においては発現量が全体的に少ないのに対し、解析した肝癌 9 例全てで癌部において明らかに発現の亢進が確認された(図 6 1)。

TEG60 の発現解析

9 例の肝芽腫組織および 2 例の正常肝臓より調製した RNA を用い、RT-PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG60 遺伝子の mRNA は解析した正常肝臓においてはほとん 25 ど発現が認められないのに対し、解析した肝芽腫 9 例の内 8 例において明らか に発現の亢進が確認された(図 6 2)。

TEG61 の発現解析

肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

30 その結果、TEG61 遺伝子の mRNA は正常肺組織での発現は認められなかったのに対し、解析した 12 例の肺腺癌組織の内 3 例で PAEP 遺伝子の高発現が確

認された(図63)。

TEG62 の発現解析

肺腺癌組織 12 例および正常肺組織 4 例より調製した RNA を用い、定量的 RT-PCR 法により遺伝子発現比較を行った。

5 PCR の結果、TEG62 遺伝子の mRNA は正常肺組織での発現に比べ、解析した 12 例の肺腺癌組織の内 8 例で明らかに発現が亢進することが確認された(図 6 4)。

TEG63 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT 10 PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG63 遺伝子の mRNA は解析した非癌部 9 例においては発現がほとんど認められないのに対し、解析した肝癌 9 例中 8 例で明らかに発現の亢進が確認された(図 6 5)。

TEG64 の発現解析

9 例の肝癌組織および同一サンプルの非癌部より調製した RNA を用い、RT PCR 法により遺伝子発現比較を行った。

PCR の結果、TEG64 遺伝子の mRNA は解析した肝癌 9 例中 8 例で癌部において明らかに発現の亢進が確認された(図 6 6)。

以上の結果より、これらの遺伝子、または蛋白の現量量を測定することで癌の 20 診断に用いられることが明らかになった。

実施例3

肝癌発現遺伝子 TEG12 の全長 cDNA の単離、同定

上記の Gene chip 解析ならびに RT-PCR 解析の結果、肝癌において発現が亢 25 進することが明らかになった TEG12 の cDNA 配列を明らかにするために、 cDNA の単離、同定を試みた。

すなわち、Gene chip 解析の際にプローブ配列の由来となった EST (GenBank; BF057073:配列番号 2 5 4) の近傍に存在する EST (GenBank; BU844373) を GenBank より抽出し各 EST にハイブリダイズするプライマー 80 をデザインし PCR による cDNA の増幅を行った。PCR はヒト肝癌細胞株である Hep3B、HuH6、HepG2 より調製した RNA を等量ずつ用い作製した一本鎖

10

25

cDNA を鋳型とし、各 5 pmole の PCR プライマーLS557(ATCCGCCAGG TGAAAGCCAA GTC:配列番号 2 5 5)ならびに LS589(GGGATTCACA TTACCACGGC AGTGC:配列番号 2 5 6)を用い実施した。なお、PCR は LA-PCR キット(宝酒造社製)を用い、94℃で 30 秒、63℃で 30 秒、そして72℃で 5 分からなるサイクルを 35 サイクル実施した結果、約 2000 bp のバンドが増幅された。PCR 増幅産物を pGEM-T easy ベクター(Promega 社製)に挿入した後、増幅遺伝子の塩基配列を定法により解析した結果、元々の EST(BF057073)の DNA 配列より 5'側の上流領域の配列を含む遺伝子であることが明らかになった。なお、PCR により増幅された DNA 配列は配列番号 2 5 7 に示す。

続いて、BF057073 の近傍にあると考えられる別の EST 配列 (BU859386) と上記により単離・同定された遺伝子の配列を元にデザインした PCR プライマーを用い PCR を実施した。PCR プライマーとしては各 5 pmole の LS858 (ATGGCTTCGT TCCCCGAGAC CGATTC:配列番号 2 5 8) ならびに

LS859 (GAAGACGAGG ATTCGATTGT TGCCAAAGT CCACC:配列番号 2 5 9) を用い、95℃で30秒、68℃で3分のサイクルからなる反応を35サイクル行った以外は上記と同様の条件にて実施した結果、約2,500bpのバンドが増幅された。PCR 増幅産物は上記と同様に pGEM-T easy ベクターに挿入した後、塩基配列の同定を行った結果、さらに5'-側の配列を含むことが明らかになった。なお、PCR により増幅された DNA 配列は配列番号 2 6 0 に示す。

以上の PCR 法により得られた 2 つの増幅産物の配列を基に全長 3,401 bp からなる新規 cDNA を同定し、一つのオープン・リーディング・フレームが見出された(図 6 7)。その塩基配列を配列番号 1 5 に、また塩基配列から類推されるアミノ酸配列を配列番号 7 2 に示した。今回単離・同定された配列を基に Blast検索を実施した結果、GenBank No. XM_067369(配列番号 2 6 3)と相同性を示すことが明らかになったものの、一部配列が異なっている領域が認められた(図 6 8)。以上の結果より肝癌細胞において特異的に発現が亢進する新規遺伝子を単離・同定し、K#1 と命名した。

今回単離した塩基配列より類推されるアミノ酸配列を元に既知蛋白との相同性 30 検索を行った結果、ヒト TRIM3α(Tripartite motif-containing 3、GenBank 番号 NM_006458)と 28.6%の相同性を、ヒト TRIM2 と 27.5%の相同性をそれ

ぞれ示した。TRIM ファミリーは現在までに 37 種が報告されており、いくつか の特徴的なモチーフをもつことが知られている(Reymond A., ら、EMBO J. (2001) 20. 2140-2151)。 そこで、K#1 のアミノ酸配列を基にモチーフ解析を行 った結果、アミノ酸配列の相同性と同様に TRIM3 ならびに TRIM2 と比較的類 似したモチーフ構造を持つことが明らかになり、実際に TRIM3α とは図69に 5 示すように特徴的なモチーフが保存されていた。しかしながら、既知の TRIM ファミリーには完全に K#1 の示すモチーフ構造と同一の構造を示す分子は存在 していないことより、今回単離・同定した K#1 は TRIM2 および TRIM3 に比較 的類似した新規 TRIM 分子であることが強く示唆された。また、今回単離した K#1 と同様に TRIM 3 と同様の構造を示すラット BERP は、細胞内に局在し、 10 ミオシンV等と共役し蛋白の細胞内輸送に関与すること、あるいは神経突起の 伸展に関与することが示唆されている(El-Husseini,Aら、Biochem. Biophys. Res. Commun., 267, 906-911, 2000, El-Husseini, A 5, J. Biol. Chem. 274, 19771-19777、1999)。以上のことより、今回同定した K#1 蛋白は TRIM ファ ミリーに属し、さらにラット BERP と同様に細胞内の蛋白輸送などに関与する 15 ことで細胞の形態形成や増殖などに関与する可能性が考えられ、肝癌等の発現が 亢進する病態において重要な役割を示すこと、ならびに医薬品のターゲット分子 としての可能性が考えられた。

20 <u>実施例 4</u>

25

30

4-1. 肝癌発現遺伝子(TEG23) の全長 cDNA の単離、同定

上記の Gene chip 解析ならびに RTPCR 解析の結果、肝癌において発現が亢進することが明らかになった TEG23 の全長 cDNA 配列を明らかにするために、RACE(Rapid amplification of cDNA ends)法を用い cDNA の単離、同定を試みた。

すなわち、Gene chip 解析の際のプローブ配列(229349_at_u133B)より 5'-側の配列を同定するために SMART RACE cDNA Amplification Kit(Clontech 社製)を用いて 5'-RACE 解析を実施した。初めに、プローブの由来となったヒト EST(GenBank Accession No.AL039884:配列番号 2 6 1)の配列を元に設計したプライマーLS900(配列番号 2 6 2:GGGTTCACTT TGGTCTCTAG TACGG)を用い、肝癌細胞株 HepG2、HuH6、ならびに Hep3B より調製した

30

全 RNA をそれぞれ等量ずつ混合した 1000 ng の全 RNA よりキット添付の方法 に従い一本鎖 cDNA を合成した。続いて、合成した一本鎖 cDNA を鋳型として PCR により 5'-側の配列を含む cDNA を増幅した。すなわち、 $1.25\,\mu$ L の一本鎖 cDNA、5 pmole の LS900 を PCR プライマーとして用い、キット添付の方法に 従い PCR 反応を行った。PCR は初めに 94℃で 1 分間編成を行った後、98℃で 5 10 秒、68℃で 3 分のサイクルからなる反応を 35 サイクル、そして 72℃で 5 分 間インキュベートした。約5,000 bp の PCR 産物を pGEM-T easy ベクター (Promega 社製) に挿入し、常法により大腸菌 DH5α(東洋紡社製)を形質転 換後、得られた形質転換体よりプラスミド DNA を調製した。プラスミド DNA 中の挿入遺伝子の塩基配列を解析した結果、二種類の塩基配列持つ clone-11 と 10 clone-18 を得た。それぞれの配列の 3'側にヒト EST (GenBank Accession No.AL039884) の配列を付加したものを配列番号64と配列番号65に示す。 今回単離された二種類のクローンいずれにおいてもそれぞれ 250 アミノ酸 (clone-11)、または 210 アミノ酸(clone-18) をコードするオープン・リーデ ィング・フレームを持つことが明らかになった(図70、71)。なお、clone-15 11より類推されるアミノ酸配列を配列番号81に、clone-18より類推されるア ミノ酸配列を配列番号82に示す。今回得られた二種のクローンにおいて類推さ れるアミノ酸配列を比較すると、clone-11 は clone-18 より N 末側に 40 アミノ 酸長いことより、今回単離された二種のクローンは 5'-側の使用しているエクソ ンの異なるスプライシング・バリアントである可能性が予測された。以上の結果 20 より肝癌細胞において発現が亢進する新規遺伝子を単離・同定し、K#2と命名し た。

K#2 (clone-11) のアミノ酸配列を基に Blast 検索を実施し、類縁の蛋白を同定した結果、ヒト LIN-28 (GenBank No. NM_024674) (配列番号 2 6 4) と71.8%の相同性、線虫 LIN-28 とは(GenBank No. NM_059880)(配列番号 2 6 5) と33.1%の相同性を示すことが明らかになった。LIN-28 ホモログは線虫やショウジョウバエに加えマウス、ヒトといった高等生物においても保存されている蛋白であることより(Moss, E.G.ら、Dev. Biol.、258、432-442、2003)、ヒト LIN-28、線虫 LIN-28 に加え、さらにアフリカツメガエル LIN-28 (GenBank No.AF521098) (配列番号 2 6 6)、ショウジョウバエ LIN-28 (GenBank No.AF521096) (配列番号 2 6 7)、マウス LIN-28 (GenBank

No.NM_145833) (配列番号 2 6 8) を加え、それぞれのアミノ酸配列を比較したところ、いずれにおいてもコールド・ショック・ドメインおよび Zn フィンガー・ドメインを保持することが明らかとなったことより(図72)、今回単離・同定した K#2 は新たなヒト LIN・28 ホモログである可能性が強く示唆された。 なお、LIN・28 は mRNA に結合しmRNA からの翻訳や mRNA の安定性に関与することで、発生期の細胞運命の制御に関わるタンパク質であることが明らかになっている (Moss,E.G.ら、Cell、88、637・646、1997)。以上のことより、 K#2 蛋白も LIN・28 と同様の機能を有する可能性が考えられ、ヒト発生期の制御、あるいは癌細胞の発生、増殖、あるいは肝炎ウイルス等のウイルスの複製等に関 与することが予測された。

4-2. 抗 K#2 抗体の作製

25

30

抗 K#2 抗体を用いた癌の検出が可能かどうかを明らかにするために、抗 K#2 抗体の作製を行った。

K#2 の免疫用抗原として K#2 (clone-18) のアミノ酸の部分配列 (1-15 210aa) を GST 融合タンパク質として、組み換え体の調製を実施した。すなわち、 K#2 cDNA clone-18 を鋳型とし、プライマーF (配列番号 2 7 8)、およびプライマーR (配列番号 2 7 9)を用い PCR 法にて K#2 (1-210aa)をコードする遺伝子を増幅し、続いて pGEM-Te ベクター (プロメガ社製)への挿入を行った。塩基配列を定法にて確認した後、制限酵素 EcoRI-NotI を用いて切断した遺伝子断片を pDEST15 (Invitrogen 社製)に挿入し、発現ベクターpDEST15-K#2 を構築した。

配列番号 2 7 8 (F): CACCATGGGATTTGGATTCATCTCCATGAT 配列番号 2 7 9 (R): TGTCTTTTTCCTTTTTTGAACTGAAGGCCCC

続いて、発現ベクターpDEST15-K#2を上項と同様に GST 結合型抗原タンパク質 (k#2(1-210aa))を上項と同様に調製し、K#2ポリクローナル抗体の作製のため、k#2(1-210aa)-GST 融合タンパク質を免疫したウサギ抗血清の調製を実施した。すなわち、ニュージーランドホワイト種ウサギ (10 週齢雌、日本クレア社製)に PBS 懸濁した K#2_GST 融合タンパク質 $100 \mu g/0.5 m L/ m E$ で のを皮下注射により投与して初回免疫を行った。以後 2 週間間隔で、PBS に懸濁した K#2_GST 融合タンパク質 $100 \mu g/0.5 m L/ m E$ で アピュバント (DIFCO 社) $100 \mu g/0.5 m E$ に のを皮下注射により投与して初回免疫を行った。以後 2 週間間隔で、PBS に懸濁した K#2_GST 融合タンパク質 $100 \mu g/0.5 m E/ m E$ アロイント不完全アジュバ

ント $0.5 \, \mathrm{mL}$ と混合してエマルジョンにしたものを、皮下注射により投与して合計 $4 \, \mathrm{回}$ 免疫を実施した。免疫前、 $3 \, \mathrm{回}$ 、そして $4 \, \mathrm{回}$ 目免疫後に採血を実施し、 $K\#2_GST$ 融合タンパク質に対する抗体価上昇を ELISA 法で確認した。抗体価の上昇を確認した後、全採血を行い、K#2 免疫ウサギ抗血清を得た。これを抗K#2 ポリクローナル抗体とした。

4-3. 抗 K#2 ポリクローナル抗体を用いた K#2 タンパク質分子の検出

上記により調製した K#2 免疫ウサギ抗血清の反応性を確認するために、K#2 強制発現細胞株ならびに各種癌細胞株の細胞ライゼートを用い K#2 の検出を行った。

- K#2 発現用動物細胞発現ベクターは前述の K#2 をコードする cDNA を 10 pcDNA3.1 に挿入し、K#2 遺伝子発現ベクターpcDNA3.1·K#2 とした。そして、 1 μg の発現ベクターpcDNA3.1-K#2 を 2 x 10 ⁵ 個 HEK293 細胞に FuGene6 試 薬(ロシュダイダイアグノスティック社製)を用いて導入し、K#2 を一過性発 現させた。発現ベクター導入3日後の細胞を回収し、培養細胞を RIPA 緩衝液 15 (150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SD S、50 mM トリスヒドロキシアミノメタン塩酸塩 (pH8.0)) にて可溶化する ことで細胞ライゼートを調製した。それぞれ3mgタンパク質相当量のライゼー トを SDS-ポリアクリルアミドゲルに供し、SDS-PAGE によりタンパク質を分 離した後、Hybond-P (アマシャムパイオサイエンス社製) に転写した。そして 一次抗体として抗 K#2 ポリクローナル抗体(抗血清 5000 倍希釈)を使用し、 20 二次抗体に HRP 標識抗ウサギ IgG 抗体(ジャクソン社製)を用い、ECL プラ ス (アマシャムバイオサイエンス社製) による検出を行ったところ、K#2 と考 えられるバンドが検出された。
- 同時に各種癌細胞株の細胞ライゼートに関して同様にウエスタンブロット解析 25 を行った。その結果、GeneChipU133の解析結果と一致し、mRNA発現スコア が高い細胞株においてのみ分子量約27kDaの全長のK#2と考えられるバンドを 検出することに成功した(図78)。なお、Li-7細胞およびHep3B細胞に関して GeneChip データはない。

4.4 抗 K#2 ポリクローナル抗体を用いた肝癌組織における K#2 のタンパク質30 の発現解析

K#2 癌の組織抽出物を用いて抗 K#2 ポリクローナル抗体によるウエスタンブ

15

ロット解析を実施した。ヒト組織抽出物調製は、組織片に RIPA 緩衝液(150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SDS、50 mM トリスヒドロキシアミノメタン塩酸塩(pH8.0))を添加して超音波破砕後、遠心して上清画分を回収して行った。各々の抽出サンプルについて蛋白質濃度をブラッドフォード法で定量し、4mg/mL となるように調製した後、SDS・サンプルバッファーと等量混合し、95℃で5分間加熱処理を行った。15%ポリアクリルアミドゲルを調製して抽出物サンプルを10mg ずつアプライし、SDS-PAGEを行った。

上記と同様に、抗 K#2 ポリクローナル抗体によるウエスタンブロット解析を実 10 施したところ、特異的な K#2 付近のバンドが、癌部特異的に検出された(図 7 9)。

以上の結果により、TEG23:K#2 分子は癌部特異的にタンパク質レベルにおいても発現が亢進し、かつ、癌細胞株において分泌されていることが明らかになったことにより、抗 K#2 抗体を用いた癌組織、および血清を用いた診断における有用性が示された。

実施例 5

<u> 抗 TEG1: C20orf102 モノクローナル抗体の作製</u>

抗 C20orf102 抗体を用いた癌の検出が可能かどうかを明らかにするために、 20 抗 C20orf102 モノクローナル抗体の作製を行った。

5-1. C20orf102 cDNA の単離

C20orf102 の発現を行うために、まず C20orf102 の cDNA を以下のようにして単離した。肺腺癌組織より前述の方法に従い一本鎖 cDNA を調製し、それを鋳型としてEcoR I またはX h o I の制限酵素サイトのついたプライマーF

25 (配列番号: 2 6 9) と R (配列番号: 2 7 0)を用いて PCR 法にて、C20orf102 予測配列と一致する約 615bp 付近のバンドの検出に成功した。 P C R 用酵素および試薬には、アドバンテージ HF ポリメラーゼミックス(Advantage HF Polymerase Mix; クロンテック社製)およびアドバンテージ HF P C R バッファー(Advantage HF PCR buffer)、2 0 0 μM デオキシヌクレオチド三リン 酸、0.2 μMプライマーを用い、c D N A 1 μ L を鋳型にした P C R (9 4 ℃ 3 0 秒、6 8 ℃ 3 0 秒、7 2 ℃ 3 分、3 5 サイクル)を行った。 P C R 法で得ら

れた特異的増幅断片はDNAライゲーションキット(タカラ社製)を用いてpGEM-T e a s yベクター(プロメガ社製)に挿入し、塩基配列を定法により確認したところ、単離した cDNA が C20orf102 に相当することが明らかとなった。なお、プライマーFは C20orf102 遺伝子($GenBank: NM_080607$)の 5-端にハイブリダイズするように、そしてRは 3-端にハイブリダイズするようにデザインした。

配列番号 2 6 9 (F): CGAATTCATGGGGGCCCCGCTCGCCGTAGC 配列番号 2 7 0 (R): CCTCGAGGAGGCTGCAGGCCTCCTGGTCCA 5-2. C20orf102 の免疫用抗原の調製

5

PCR産物を組み込んだpGEM-T easyベクターはコンピテント細胞 10 XL-1 Blue (ストラタジーン社製) へ形質転換し、5-ブロモ-4-クロ ロー3- β -インドリルーガラクトピラノシド(5-Bromo-4-Chloro-3-Indolyl- β -Galactopyranoside; X-gal) を用いたカラーセレクションを行い、PCR産物 が組み込まれたベクターのみを選出した。形質転換は、コンピテント細胞に10 μL のライゲーション反応産物を加え、30分間氷冷後に、42℃のヒートショ 15 ック45秒、続けて2分間氷冷して形質転換を起こさせた。さらに、抗生物質耐 性遺伝子の発現を行うために抗生剤を含まないLB培地を900収L加え、3 7℃で30分間穏やかに撹拌した。遠心で菌体を回収し、20mg/mLのX-g alを20uL散布させた、アンピシリンを含むLBプレートに菌体をまき込み、 20 37℃で16時間培養した。プレート上で生育したコロニーのうち、発色をして いないコロニー(PCR産物がベクターに組み込まれていることが予想されるも の)を5個選択し、最終濃度が100µg/mLのアンピシリンを含む5mLのL B培地で37℃、16時間激しく撹拌し、菌体を増殖させた。増殖した菌体の一 部から、フェノール/クロロホルム抽出によってプラスミドDNAを回収し、E coR I (8U/µL)を0.5µL、10×H バッファーを2uL、蒸留水 25 を7. $5\mu L$ 加え、37Cで1時間消化を行った。0. 8%のアガロースゲルを 用いた電気泳動で消化物のサイズが目的のPCR産物のサイズと同一であること を確認した。C20orf102の遺伝子が組み込まれたと考えられるプラスミドDN Aの回収はカンタムプレップ プラスミド ミニプレップキット (Quantum) Prep Plasmid MiniPrep Kit (バイオラッド社製)を用いて行った。溶出は蒸 30

留水で行った。塩基配列を定法にて確認した後、制限酵素 EcoRI-XhoI を用いて

切断した遺伝子断片を、大腸菌タンパク質発現用ベクターである pET41a ベクター (Novagen 社製) に挿入に組み換えた。 pET41に組み込まれた遺伝子は、GST融合タンパク質として翻訳される。

pET41を制限酵素(EcoRI および XhoI)で消化し、電気泳動を行い、キアクイック ゲル抽出キットで精製を行った。pGEM-T easyによって増幅したC20orf102の配列をもつフラグメントはDNAライゲーションキットを用いてpET41に組み込みを行った。

pGEM-T e a s y から精製を行った C20orf102 フラグメント 4μ Lに、ライゲーションバッファー 5μ Lおよび pET 41 を 1μ L加え、16 ℃で 30 分間保温した。

ライゲーション反応の終了したプラスミドDNAはXL-1 Blueへ形質 転換を行い、カナマイシンを含むLB培地で16時間振盪を行い、菌体を増殖させた。増殖させた大腸菌から、カンタムプレップ プラスミド ミニプレップキットを用いて、プラスミドの精製を行った。pET41へのC20orf102の挿入を確認するために、pETがもつ配列に対するプライマー(配列番号271および272)でシーケンスを行った。

配列番号 2 7 1: TTCGAACGCCAGCACATGGAC

5

10

15

25

配列番号 2 7 2: GCTAGTTATTGCTCAGCGGTG

pET41ベクターに組み込まれた C20orf102 を、T7プロモーターを持つ 20 コンピテント細胞BL21 Codon PLUS RIL (ノバジェン社製) に形質転換させた。

形質転換は、以下の手順で行った。 100μ LのBL21 Codon PLUS RILにpET-C20orf102-FLを 1μ g/ μ L 濃度で 1μ L加え5分間水冷した。その後、42 Cの恒温層に20 秒間漬け、ヒートショックを与えた。さらに2 分間水冷した後、 900μ Lの抗生剤無添加のLBを加え、37 Cで10 分間インキュベートした後に、遠心($1000\times g$ 、5分)を行った。上清を廃棄した後コンピテント細胞を再懸濁させ、カナマイシンを含んだLBプレートにまきこんで37 Cで16 時間、選択培養を行った。

大腸菌を用いて発現させた C20orf102 のGST融合タンパク質の精製はGS 30 Tとグルタチオンの結合を利用したアフィニティ精製で行った。まず、培養液を 6000×g、4℃で10分間遠心することで大腸菌の菌体を回収した。菌体溶 解バッファー(50 mM塩化ナトリウム、1 mM EDTA、1 mM iff ジチオスレイトール(DTT)、50 mMトリスヒドロキシアミノメタン塩酸塩, pH8.

遠心(3000×g、4℃、5分)でグルタチオンセファロースを回収し、10mLのPBS-T(0.5%Triton X-100を含むPBS)で洗浄 6、溶出バッファー(50mM還元型グルタチオン、200mM塩化ナトリウム 1mM EDTA、1mMDTT、200mM Tris-HC1, pH8.0)を加えて4℃で1時間転倒混和し、GST融合タンパク質を溶出させた。遠心(3000×g、4℃、5分)によってグルタチオンセファロースを除去し、GST融合 C20orf102 精製蛋白質を得た。PD-10カラム(アマシャムバイ オサイエンス社製)でPBS溶液とし、ブラッドフォード法によってタンパク質 濃度を定量し、SDS-PAGEによって純度を検定し、免疫に必要なタンパク質の量および純度を満たしていることを確認し、このタンパク質を以下に示すモノクローナル抗体作製のための免疫原とした。

5-3. C20orf102 モノクローナル抗体の作製

C20orf102 融合蛋白質を吸着させた。

5

20 ヒト C20orf102 の完全長蛋白質のGST-融合発現物(大腸菌発現物)精製品を免疫原とした。マウス(BALB/c雌6週齢)に50μg/匹で3回免疫した後、血清中の抗体価を検定した。抗体価検定法として、免疫原0.5μg/wellを固相化したELISA用プレートに、予めGST蛋白質で抗GST抗体のノイズを吸収させた免疫マウス血清の希釈列を反応させ、HRP標識抗マウス抗体の反応を経て、基質添加後に得られた発色について450nmの吸光度を測定する方法(免疫抗原固相ELISA法)を使用した。

抗体価亢進を認めたマウスに $25\mu g$ /匹を最終免疫し、72時間後に脾臓細胞を採取し、骨髄腫細胞(P3/NSI-1-Ag4-1)と細胞融合

(Kohler G, Milstein C: Nature 256, 495(1975)) を行った。HAT選択培地で 30 培養を行うことにより、ハイブリドーマを得た。ハイブリドーマの培養上清を予めGST蛋白質で吸収させた後に免疫抗原固相ELISAを行い、C20orf102

現物)に対して反応するものを一次選抜した。免疫抗原ELISA陽性のバイブリドーマについては、COS 7細胞に C20orf102 を強制発現させた細胞株のタンパク質抽出液を用いたウエスタン・ブロッティングにおいて特異性を検定した。陽性のものについて限界希釈法にてクローニングを行い、モノクローナル抗体産生株を樹立した。抗体産生ハイブリドーマをBALB/cマウスに接種することによってマウス腹水を得た。腹水中のモノクローナル抗体を硫安塩析法で精製し、精製抗体を調製した。以上により、抗 C20orf102 抗体 H9615 を作製した。

実施例 6

10 <u>抗 C20orf102 モノクローナル抗体を用いた C20orf102 タンパク質分子の検出</u> 上記により調製した抗 C20orf102 モノクローナル抗体 H9615 の反応性を確認 するために、C20orf102 強制発現細胞株ならびに各種癌細胞株の細胞ライゼー トを用い C20orf102 の検出を行った。

初めに、C20orf102 強制発現 COS7 細胞を用いウエスタンブロット解析によ り抗 C20orf102 モノクローナル抗体 H9615 の反応性を確認した。動物細胞発現 15 ベクターは前述の C20orf102 をコードする cDNA を pcDNA4Mys-His (Invitrogen 社製) に挿入した C20orf102 遺伝子発現ベクターを使用した。す なわち、lug の発現ベクターを 5 x 104個の COS7 細胞に FuGene6 試薬(ロシ ュダイダイアグノスティック社製)を用いて導入し、C20orf102を一過性発現 させた。発現ペクター導入3日後の細胞を回収し、培養細胞をRIPA緩衝液 20 (150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SD S、50 mM トリスヒドロキシアミノメタン塩酸塩 (pH8.0)) にて可溶化する ことで細胞ライゼートを調製した。それぞれ10μgタンパク質相当量のライゼ ートを SDS-ポリアクリルアミドゲルに供し、SDS-PAGE によりタンパク質を 分離した後、Hybond-P (アマシャムバイオサイエンス社製) に転写した。そし 25 て抗 C20orf102 モノクローナル抗体 H9615 (1µg/mL) を使用し、二次抗体に HRP 標識抗マウス IgG 抗体(ジャクソン社製)を用い、ECL プラス(アマシ ャムバイオサイエンス社製)による検出を行ったところ、理論分子量 22.5kDa 付近に特異的な C20orf102 と考えられるバンドが検出された。

30 同時に、各種癌細胞株の細胞ライゼートに関して同様にウエスタンブロット解析を行った。その結果、GeneChipU133の解析結果と一致し、mRNA発現スコ

アが高い細胞株においてのみ分子量約 22.5kDa の全長の C20orf102 と考えられるバンドを検出することに成功した(図74)。

さらに、C20orf102 遺伝子が予測配列として分泌シグナルを有することから、C20orf102 を発現する癌細胞株において分泌型の C20orf102 が培養上清中に検出できるか確認したところ、C20orf102 を高発現する癌細胞株の培養上清中にも強制発現細胞の培養上清と同じ分子量のバンドが抗 C20orf102 モノクローナル抗体により検出された(図74)。

以上の結果より、抗 C20orf102 モノクローナル抗体 H9615 は C20orf102 を 特異的に検出できること、ならびに Gene Chip 解析による mRNA 発現の程度と C20orf102 タンパク質の発現の程度が一致することが明らかとなった。さらに、抗 C20orf102 モノクローナル抗体を用いた検討から C20orf102 発現細胞の培養 上清中に分泌型の C20orf102 が存在することが明らかとなったことより、分泌型 C20orf102 を検出することで癌細胞の有無を判断できる可能性が強く示唆された。

15

10

5

実施例7

抗 C20orf102 モノクローナル抗体を用いた肺腺癌組織における C20orf102 のタンパク質の発現解析

肺腺癌の組織抽出物を用いて抗 C20orf102 モノクローナル抗体 H9615 による ウエスタンブロット解析を実施した。ヒト組織抽出物調製は、組織片に RIPA 緩 衝液(150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SDS、50 mM トリスヒドロキシアミノメタン塩酸塩(pH8.0))を添加して 超音波破砕後、遠心して上清画分を回収して行った。各々の抽出サンプルについ て蛋白質濃度をブラッドフォード法で定量し、4mg/mL となるように調製した 後、SDS-サンプルバッファーと等量混合し、95℃で 5 分間加熱処理を行った。 15%ポリアクリルアミドゲルを調製して抽出物サンプルを 10μg ずつアプライ し、SDS-PAGE を行った。上記と同様に、抗 C20orf102 モノクローナル抗体 H9615 によるウエスタンブロット解析を実施したところ、特異的な約 22.5kDa 付近のバンドが、癌部特異的に検出された(図 7 5)。

30 以上の結果により、TEG1:C20orf102分子は癌部特異的にタンパク質レベル においても発現が亢進し、かつ、癌細胞株において分泌されていることが明らか

になったことにより、モノクローナル抗体を用いた癌組織、および血清を用いた 診断における有用性が示された。

実施例8

5 抗 OK/SW-CL..30 抗体の作製

TEG6: OK/SW-CL..30 に関して、抗 OK/SW-CL..30 抗体を用いた癌の検出が可能かどうかを明らかにするために、抗 OK/SW-CL..30 抗体の作製を行った。8-1. hNotum cDNA の単離

公共データベース(UCSC および GenBank)の検索によって、OK/SW-10 CL..30 の cDNA 配列は部分配列であり、実際には OK/SW-CL..30 配列をすべて 含み、かつ、さらなる 5 領域を含んだ仮想タンパク質 LOC147111 (GenBank:NM_178493:配列番号273-274) が全長 ORF 遺伝子である 可能性が見出された。その配列はシグナル配列を含み、かつ、ハエ Notum (NM 168642) と相同性 42.7%示すことから、新規遺伝子として hNotum と命 名し、以下の解析を実施した。まず hNotum の cDNA を以下のようにして単離 15 した。HepG2 細胞より前述の方法に従い一本鎖 cDNA を調製し、それを鋳型と してプライマーWT164(配列番号275)とLS746(配列番号276)を用い て PCR 法にて、hNotum 予測配列と一致する約 1.5kbp 付近のバンドの検出に 成功した。PCR 法は KOD plus キット(TOYOBO 社製)のプロトコールに準 じて調整した反応液に反応液総量の5%に相当するDMSOを加え、初めに 20 95 ℃で2分間一次変性を行い、94 ℃で15 秒、68℃で90 秒からなるサイクル を 35 回行なった。PCR 法で得られた特異的増幅断片を TOPO クローニング法 により pENTR (インビトロジェン社製) に挿入し、塩基配列を定法により確認

25 なお、プライマーWT164 は hNotum 遺伝子(GenBank: NM_178493)の 5 端にハイブリダイズするように、そして LS746 は 3 端にハイブリダイズするようにデザインした。

したところ、単離した cDNA が hNotum であることが明らかとなった。

配列番号 2 7 5 (WT164): CACCGAATTCATGGGCCGAGGGGTGCGCGTG 配列番号 2 7 6 (LS746): CTCGAGGCTTCCGTTGCTCAGCATCCCCAG

30 <u>8-2.</u> hNotum の免疫用抗原の調製

hNotum の免疫用抗原としてアミノ酸の部分配列(143aa-496aa)を GST・結

合型タンパク質として、組み換え体の調製を実施した。すなわち、上記の hNotum cDNA を鋳型とし、LS695プライマー(配列番号277)、および LS746(配列番号276)を用い PCR 法にて hNotum(143aa-496aa)をコードする遺伝子を増幅し、続いて pGEM-T Easy ベクター(プロメガ社製)への 挿入を行った。塩基配列を定法にて確認した後、制限酵素 EcoRI-XhoI を用いて 切断した遺伝子断片を pET41a ベクター(Novagen 社製)に挿入し、発現ベクターを構築した。

配列番号 2 7 7 (LS695): GAATTCATGCGGCGCCTCATGAGCTCCCGGGA GST 融合抗原タンパク質 (hNortum 143aa·496aa を含む) の調製、および マウス免疫によるモノクローナル抗体の作製は上項と同様に実施した。その結果、 hNotum モノクローナル抗体 H9541 を作製した。

<u>実施例 9</u>

5

25

30

抗 hNotum 抗体を用いた hNotum タンパク質分子の検出

15 作製したモノクローナル抗体の反応性を確認するために、hNotum 強制発現 細胞株ならびに各種癌細胞株の細胞ライゼートを用い hNotum の検出を行った。 コントロールには上記で使用した抗原部位 143aa-496aa を pcDNA4 に挿入した ベクターを使用した。予測分子量は 39.9kDa である。ウエスタンブロット解析 は上項と同様に実施し、一次抗体である H9541 は終濃度 100 μg/mL で実施し た。

その結果、図76に示すとおり37kDaマーカー位置付近にhNotum(143aa-496aa)と考えられる特異的なバンドが検出された。

続いて、各種癌細胞株の細胞ライゼートに関して同様にウエスタンブロット解析を行った。その結果、GeneChipU133の解析結果と一致し、mRNA発現スコアが高い細胞株においてのみ分子量約55kDaの全長のhNotumと考えられるバンドを検出することに成功した(図76)。

さらに、hNotum 遺伝子が予測配列として分泌シグナルを有することから、hNotum を発現する癌細胞株において分泌型の hNotum が培養上清中に検出できるか確認したところ、hNotum を高発現する癌細胞株の培養上清中にも強制発現細胞の培養上清と同じ分子量のバンドが抗 hNotum 抗体により検出された(図76)。

以上の結果より、hNotum モノクローナル抗体 H9541 は hNotum を特異的に 検出できること、ならびに GeneChip 解析による mRNA 発現の程度と hNotum タンパク質の発現の程度が一致することが明らかとなった。さらに、抗 hNotum 抗体を用いた検討から hNotum 発現細胞の培養上清中に分泌型の hNotum が存在することが明らかとなったことより、分泌型 hNotum を検出す ることで癌細胞の有無を判断できる可能性が強く示唆された。

実施例10

hNotum 抗体を用いた肝癌組織における hNotum のタンパク質の発現解析

10 肝癌の組織抽出物を用いて抗 hNotum 抗体によるウエスタンブロット解析を 実施した。上記と同様に、hNotum 抗体によるウエスタンブロット解析を実施 したところ、特異的な hNotum 付近のバンドが、癌部特異的に検出され、(図 77)。3 検体調査し、2 検体において陽性であった。、また、検体 26 に関し ては、同一患者より得た 2 ヶ所の肝細胞癌組織(S2、S5)のうち、一箇所の組 15 織で hNortum が陽性であった。

以上の結果により、TEG6:hNotum(OK/SW-CL..30)分子は癌部特異的にタンパク質レベルにおいても発現が亢進し、かつ、癌細胞株において分泌されていることが明らかになったことにより、モノクローナル抗体を用いた癌組織、および血清を用いた診断における有用性が示された。

20

5

実施例11

11-1. 抗 KIAA1359 抗体の作製

TEG37:KIAA1359 について、抗 KIAA1359 抗体を用いた癌の検出が可能かどうかを明らかにするために、抗 KIAA1359 抗体の作製を行った。すなわち、

KIAA1359 の免疫用抗原としてアミノ酸の部分配列(76aa から 88aa)をペプチドタンパク質として、常法によりペプチド配列合成を実施した。ペプチド N末端に C:システイン残基を付加し、Keyhole limpet hemocyanin (KLH) にコンジュゲーションし免疫原とした。そしてモノクローナル抗体は上項と同様に実施した。そしてモノクローナル抗体 A8409A の単離に成功した。

30 ペプチド配列: PEAETRGAKRISPA(配列番号280)

11-2. KIAA1359 cDNA の単離

25

30

KIAA1359 の発現を行うために、まず KIAA1359 の cDNA を以下のようにし て単離した。KIAA1359 発現細胞である MKN74 細胞より前述の方法に従い一 本鎖 cDNA を調製し、それを鋳型としてプライマーF (配列番号281)とR (配列番号282) を用いて PCR 法にて、KIAA1359 の予測配列と一致する約 1.6kbp 付近のバンドの検出に成功した。PCR 法は Advanvtede HF2 キット 5 (クロンテック社製)のプロトコールに準じて反応液を調製し、初めに95℃で 1 分間一次変性を行い、94 ℃で 15 秒、63 ℃で 30 秒、68 ℃で 2 分からなるサ イクルを35回行なった後、最後の伸長反応を68℃で6分間からなる条件で実 施した。PCR 法で得られた特異的増幅断片を TA クローニング法により pGEM-T Easy (プロメガ社製) に挿入し、塩基配列を定法により確認したところ、単 10 離した cDNA が KIAA1359 であることが明らかとなった。そして、この cDNA を pcDNA4/myc·His A(Invitrogen 社製)に挿入し、KIAA1359 遺伝子発現べ クターとした。なお、プライマーFは KIAA1359 遺伝子(GenBank: NM_152673) の 5'-端にハイブリダイズするように、そしてRは3'-端にハイブ

配列番号 2 8 1 (F): GGATCCATGGGCTCTCTCTGGGGTCTGGCTCTGC 配列番号 2 8 2 (R): CTCGAGGCCTCTCCTGACACGCAGTAAGGAGACC 11·3. 抗 KIAA1359 抗体 A8409A を用いた KIAA1359 タンパク質分子の検出 上記により作製した抗 KIAA1359 抗体 A8409A の反応性を確認するために、

20 KIAA1359 強制発現細胞株ならびに各種癌細胞株の細胞ライゼートを用い KIAA1359 の検出を行った。

リダイズするようにデザインした。

コントロールとして、KIAA1359 を強制発現させた COS7 ライゼートを用い、各種癌細胞株の細胞ライゼートに関して同様にウエスタンブロット解析を行った。A8409A 抗体濃度は 100μg/mL で使用した。その結果、GeneChipU133 の解析スコアの高い、Capan1 において、コントロールの強制発現 KAII1359 と同等な約 100kDa の KAII1359 分子と考えられるバンドの検出に成功した(図80)。11-4. 抗 KIAA1359 抗体 A8409A を用いた胃癌組織における KIAA1359 のタンパク質の発現解析

胃癌の組織抽出物を用いて抗 KIAA1359 抗体 A8409A によるウエスタンブロット解析を実施した。ヒト組織抽出物調製は、組織片に RIPA 緩衝液(150 mM 塩化ナトリウム、1% NP・40、0.5% デオキシコール酸、0.1% SDS、50 mM

トリスヒドロキシアミノメタン塩酸塩(pH8.0))を添加して超音波破砕後、遠心して上清画分を回収して行った。各々の抽出サンプルについて蛋白質濃度をブラッドフォード法で定量し、4mg/mL となるように調製した後、SDS・サンプルバッファーと等量混合し、95℃で5分間加熱処理を行った。10%ポリアクリルアミドゲルを調製して抽出物サンプルを10mgずつアプライし、SDS-PAGE を行った。

上記と同様に、抗 KIAA1359 抗体 A8409A によるウエスタンブロット解析を 実施したところ、特異的な 100kDa 付近のバンドが、癌部特異的に検出された (図 $8\ 1$)。

10 以上の結果により、TEG37:KIAA1359 分子は癌部特異的にタンパク質レベル においても発現が亢進し、かつ、癌細胞株において発現亢進していることが明ら かになったことにより、モノクローナル抗体を用いた癌組織、および血清を用い た診断における有用性が示された。

15 実施例 1 2

12-1. 抗 PEG10 抗体の作製

TEG60: PEG10 は通常のコドンユーセージにより翻訳する ORF1 と、ORF1 の終止コドン領域でフレームシフトが起こり、新たに翻訳される ORF2 の存在が、Shigemoto ら、Nucleic Acids Research, 29, 4079-4088, 2001 のマウス PEG10 の報告、あるいは Ono ら、Genomics, 73, 232-237, 2001 のヒト PEG10 のゲノム配列からの予測により、示唆されているが、実験的にヒト PEG10 の ORF2 存在を証明した報告は見つかっていない。そのため、我々は ORF2 部分のフレームシフトが実際に起こっているのかどうか、また、その新たに翻訳された領域が癌組織で存在するどうかを証明するため、予測した ORF2 アミノ酸配 列をもとに抗 PEG10/ORF2 モノクローナル抗体を作製し、証明することを試みた。

ORF2 アミノ酸配列 (配列番号283)

QLSCQGLKVFAGGKLPGPAVEGPSATGPEIIRSPQDDASSPHLQVMLQIHL
PGRHTLFVRAMIDSGASGNFIDHEYVAQNGIPLRIKDWPILVEAIDGRPIAS
GPVVHETHDLIVDLGDHREVLSFDVTQSPFFPVVLGVRWLSTHDPNITWS
TRSIVFDSEYCRYHCRMYSPIPPSLPPPAPQPPLYYPVDGYRVYQPVRYYY

VQNVYTPVDEHVYPDHRLVDPHIEMIPGAHSIPSGHVYSLSEPEMAALRD FVARNVKDGLITPTIAPNGAQVLQVKRGWKLQVSYDCRAPNNFTIQNQYP RLSIPNLEDQAHLATYTEFVPQIPGYQTYPTYAAYPTYPVGFAWYPVGRDG QGRSLYVPVMITWNPHWYRQPPVPQYPPPQPPPPPPPPPPPPSYSTL

5

20

25

30

12-2. PEG10 cDNA の単離

PEG10 の発現を行うために、まず PEG10 の cDNA を以下のようにして単離した。ヒト胎児肝組織より前述の方法に従い一本鎖 cDNA を調製し、それを鋳型としてプライマーF1(配列番号 284)と R1(配列番号 285)を用いて PCR 法にて、PEG10 予測配列と一致する約 2200kbp 付近のバンドの検出に成功した。PCR 法は Advantage2 cDNA PCR キット(Clontech 社製)のプロトコールに準じて反応液を調製し、初めに 94 ℃で 1 分間一次変性を行い、94 ℃で 30 秒、68 ℃で 3 分からなるサイクルを 35 回行なった後、最後の伸長反応を 68 ℃で 10 分間からなる条件で実施した。PCR 法で得られた特異的増幅断片を TA クローニング法により pGEM-T easy(プロメガ社製)に挿入し、塩基配列を定法により確認したところ、単離した cDNA が PEG10 であることが明らかとなった。

なお、プライマーF1 は PEG10 遺伝子(GenBank: AB049834)の 5° -端にハイブリダイズするように、そして R1 は 3° -端にハイブリダイズするようにデザインした。

配列番号 2 8 4 (F1): GGATCCATGACCGAACGAAGAAGGGACGAG 配列番号 2 8 5 (R1): TCTAGACAGGGTACTGTAAGATGGAGGCGG 12-3. PEG10/ORF2 の免疫用抗原の調製およびモノクローナル抗体の作製 PEG10/ORF2 の免疫用抗原としてアミノ酸の部分配列 (ORF2/51aa·251aa) を GST・結合型タンパク質として、組み換え体の調製を実施した。

すなわち、上記の PEG10 cDNA を鋳型とし、F2 プライマー(配列番号286)、および R2 プライマー(配列番号287)を用い PCR 法にて PEG10(ORF2/51aa-251aa)をコードする遺伝子を増幅し、続いて pGEM-T easy ベクター(プロメガ社製)への挿入を行った。塩基配列を定法にて確認した後、制限酵素 BamHI-XhoI を用いて切断した遺伝子断片を pET41c ベクター(Novagen 社製)に挿入し、発現ベクターpETc_PEG10_ORF2 を構築した。

10

配列番号 2 8 6 (F2): GGATCCATCTTCCGGGCAGACACACCCT 配列番号 2 8 7 (R2): CTCGAGTGCCATTTCAGGTTCGGACAGTG 続いて、発現ベクターpETc_PEG10_ORF2 を上項と同様に GST 結合型 PEG10_ORF2 タンパク質として調製、マウス免疫によるモノクローナル抗体の 作製を実施した。そして PEG10_ORF2 に対するモノクローナル抗体 H4128 を 作製した。

12-4. 抗 PEG10/ORF2 抗体を用いた PEG10 タンパク質分子の検出

上記により調製した抗 PEG10/ORF2 抗体 H4128 の反応性を確認するために、PEG10 強制発現細胞株ならびに各種癌細胞株の細胞ライゼートを用い PEG10 の検出を行った。

初めに、PEG10 強制発現 COS7 細胞を用いウエスタンプロット解析により抗 PEG10/ORF2 抗体 B0000A の反応性を確認した。動物細胞発現ベクターは前述 の PEG10 全長をコードする cDNA を pcDNA4HisMaxC(Invitrogen 社製)に 挿入した PEG10 遺伝子発現ベクターpcDNA4/HisMax_PEG10_Full を使用し た。PEG10 の N 末端に Xpress タグ配列が挿入されたコンストラクトとなって 15 いる。すなわち、1 µg の発現ベクターpcDNA4/HisMax_PEG10_Full、もしく は陰性対照として pcDNA4 (Mock) を 5 x 10 個の COS7 細胞と Hep3B 細胞 に FuGene6 試薬(ロシュダイダイアグノスティック社製)を用いて導入し、 PEG10 を一過性発現させた。発現ベクター導入3日後の細胞を回収し、培養細 胞を RIPA 緩衝液(150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコー 20 ル酸、0.1% SDS、50 mM トリスヒドロキシアミノメタン塩酸塩 (pH8.0)) にて可溶化することで細胞ライゼートを調製した。それぞれ 5 mg タンパク質相当量のライゼートを SDS・ポリアクリルアミドゲルに供し、SDS・ PAGE によりタンパク質を分離した後、Hybond-P(アマシャムバイオサイエン ス社製)に転写した。そして一次抗体として抗 Xpress 抗体(5000 倍希釈) 25 (インビトロジェン社製) もしくは PEG10/ORF2 抗体 H4128 (2μg/mL) を使 用し、二次抗体に HRP 標識抗マウス IgG 抗体(アマシャムバイオサイエンス社 製)を用い、ECL プラス(アマシャムバイオサイエンス社製)による検出を行 ったところ、Mock の陰性コントロールに対し、H4128 抗体により、PEG10 と 30 考えられる 83kDa、50kDa 付近のバンドが得意的に検出された(図82)。ま た、N末に標識された Xpress タグ抗体においても同様に約 83kDa 付近のバン

ドは特異的に検出されている。その約83kDa付近のものはORF1以降フレームシフトを起こし、ORF2の融合した全長サイズでなはないかと考察している。また、抗原としたORF2部分のアミノ酸配列は通常のフレームでは翻訳されないことから、ヒトPEG10においてフレームシフトが行われていることが、抗PEG10/ORF2 抗体 H4128 を用いることにより明らかとなった。

12-5. 抗 PEG10 抗体 H4128 を用いた肝細胞癌組織における PEG10 のタンパク質の発現解析

肝細胞癌および肝芽種の組織抽出物を用いて抗 PEG10 抗体によるウエスタンプロット解析を実施した。ヒト組織抽出物調製は、組織片に RIPA 緩衝液(150 mM 塩化ナトリウム、1% NP・40、0.5% デオキシコール酸、0.1% SDS、50 mM トリスヒドロキシアミノメタン塩酸塩(pH8.0))を添加して超音波破砕後、遠心して上清画分を回収して行った。各々の抽出サンプルについて蛋白質濃度をプラッドフォード法で定量し、4mg/mL となるように調製した後、SDS・サンプルバッファーと等量混合し、95℃で 5 分間加熱処理を行った。12%ポリアクリルアミドゲルを調製して抽出物サンプルを 10mg ずつアプライし、SDS・PAGEを行った。

上記と同様に、抗 PEG10 抗体 H4128 によるウエスタンプロット解析を実施したところ、特異的な 83kDa 付近のバンドと 50kDa 付近のバンドが、癌部特異的に検出された(図 8 3)。このことにより強制発現させた PEG10 のみならず、肝細胞癌、肝芽種組織においても PEG10/ORF2 が存在することが明らかとなった。

以上の結果により、TEG60: PEG10 分子は癌部特異的にタンパク質レベルに おいても発現が亢進していることが明らかになったことにより、モノクローナル 抗体を用いた癌組織、および血清を用いた診断における有用性が示された。

25

20

実施例13

13-1. DUSP9 の免疫用抗原の調製およびモノクローナル抗体の作製

TEG63: DUSP9 に関して、モノクローナル抗体を用いた癌の検出が可能かどうかを明らかにするために、抗 DUSP9 抗体の作製を行った。

30 DUSP9 の免疫用抗原として DUSP9 全長配列を GST 融合タンパク質として、 組み換え体の調製を実施した。すなわち、HepG2 cDNA を鋳型とし、Ls772 プ ライマー(配列番号 2 8 8)、および Ls773 プライマー(配列番号 2 8 9)を 用い PCR 法にて DUSP9(385aa)をコードする遺伝子を増幅し、続いて pGEM・Te ベクター(プロメガ社製)への挿入を行った。塩基配列を定法にて確 認した後、制限酵素 EcoRI・HindIII を用いて切断した遺伝子断片を pET41a ベ 5 クター(Novagen 社製)に挿入し、発現ベクターpET41a・DUSP9 を構築した。 配列番号 2 8 8 (F):GAATTCATGGAGGGTCTGGGCCGCTC 配列番号 2 8 9 (R):CTCGAGGGTGGGGGCCAGCTCGAAG 続いて、発現ベクターpET41a・DUSP9 を用いて上項と同様に GST 融合 DUSP9(1・385aa)タンパク質の調製を行い、マウス免疫によるモノクローナ ル抗体の作製を実施した。そして、抗 DUSP9 抗体#8901 を作製した。 13・2. 抗 DUSP9 抗体を用いた DUSP9 タンパク質分子の検出 上記により調製した抗 DUSP9 抗体#8901 の反応性を確認するために、

上記により調製した抗 DUSP9 抗体#8901 の反応性を確認するために、
DUSP9 強制発現細胞株ならびに各種癌細胞株の細胞ライゼートを用い DUSP9
の検出を行った。

初めに、DUSP9 強制発現 COS7 細胞を用いウエスタンブロット解析により抗 15 DUSP9 抗体#8901 の反応性を確認した。動物細胞発現ベクターは前述の DUSP9 をコードする cDNA を pcDNA4Mys-His(Invitrogen 社製)に挿入し た DUSP9 遺伝子発現ベクターpcDNA4-DUSP9 を使用した。すなわち、1 ug の発現ベクターpcDNA4-DUSP9 を 5 x 10⁴個の COS7 細胞に FuGene6 試薬 (ロシュダイダイアグノスティック社製)を用いて導入し、DUSP9を一過性発 20 現させた。発現ベクター導入 3 日後の細胞を回収し、培養細胞を RIPA 緩衝液 (150 mM 塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SD S、50 mM トリスヒドロキシアミノメタン塩酸塩 (pH8.0)) にて可溶化する ことで細胞ライゼートを調製した。その3mgタンパク質相当量のライゼートを SDS-ポリアクリルアミドゲルに供し、SDS-PAGE によりタンパク質を分離した 25 後、Hybond-P(アマシャムバイオサイエンス社製)に転写した。そして一次抗 体として DUSP9 抗体(1 ug/mL)を使用し、二次抗体に HRP 標識抗マウス IgG 抗体(ジャクソン社製)を用い、ECL プラス(アマシャムバイオサイエン ス社製)による検出を行ったところ、約42kDa付近に DUSP9と考えられるバ 30 ンドが検出された。

同時に各種癌細胞株の細胞ライゼートに関して同様にウエスタンブロット解析

20

を行った。その結果、GeneChipU133 の解析結果と一致し、mRNA 発現スコアが高い細胞株においてのみ分子量約 42kDa の全長 DUSP9 と考えられるバンドを特異的に検出することに成功した(図84)。

13-3. 抗 DUSP9 抗体を用いた肝細胞癌組織における DUSP9 のタンパク質の発現解析

肝細胞癌の組織抽出物を用いて抗 DUSP9 抗体#8901 によるウエスタンブロット解析を実施した。ヒト組織抽出物調製は、組織片に RIPA 緩衝液(150 mM塩化ナトリウム、1% NP-40、0.5% デオキシコール酸、0.1% SDS、50 mMトリスヒドロキシアミノメタン塩酸塩(pH8.0))を添加して超音波破砕後、遠心して上清画分を回収して行った。各々の抽出サンプルについて蛋白質濃度をブラッドフォード法で定量し、4mg/mLとなるように調製した後、SDS・サンプルバッファーと等量混合し、95℃で 5 分間加熱処理を行った。12%ポリアクリルアミドゲルを調製して抽出物サンプルを 10mg ずつアプライし、SDS・PAGE を行った。

15 上記と同様に、抗 DUSP9 抗体#8901 によるウエスタンブロット解析を実施したところ、特異的な 42kDa 付近のバンドが、癌部特異的に検出された(図85)。特に低分化型肝細胞癌において 3 例中 3 例にて検出された。

以上の結果により、TEG63: DUSP9分子は癌部位において遺伝子発現亢進のみならず、タンパク質レベルにおいても癌部および癌細胞株において、発現亢進していることがモノクローナル抗体を用いることにおいて証明された。このことにより、モノクローナル抗体を用いた癌組織、および血清を用いた診断における有用性が示された。

実施例14

25 <u>14-1. 抗 CystatinSN 抗体の作</u>製

TEG47:CystatinSN に関して、抗 CystatinSN 抗体を用いた癌の検出が可能 かどうかを明らかにするために、抗 CystatinSN 抗体の作製を行った。

すなわち、CystatinSN の免疫用抗原としてアミノ酸の部分配列(60aa から75aa)をペプチドタンパク質として(GenBank No.: NM_001898 参照)、常30 法によりペプチド配列合成を実施した。ペプチド N 末端に C:システイン残基を付加し、Keyhole limpet hemocyanin (KLH) にコンジュゲーションし免疫原

とした。そしてモノクローナル抗体は上項と同様に作製した。そしてモノクローナル抗体の単離に成功した。

ペプチド配列: C-KDDYYRRPLRVLRARQ(配列番号290)

14-2. 抗 CystatinSN 抗体を用いた大腸癌組織における CystatinSN のタンパ ク質の発現解析

大腸癌の組織抽出物を用いて抗 CystatinSN 抗体によるウエスタンブロット解析を実施した。ヒト組織抽出物調製およびウエスタンプロット解析は上項と同様に実施した。抗 CystatinSN 抗体($4\mu g/mL$)によるウエスタンブロット解析を実施したところ、特異的な 15kDa 付近のバンドが、癌部特異的に検出された

10 (図86)。CystatinSN の予測分子量が約 16kDa であることから、癌部において特異的に CystatinSN が発現亢進していることが明らかとなった。

以上の結果により、TEG47:CystatinSN 分子は癌部特異的にタンパク質レベルにおいて発現亢進していることが明らかになったことにより、モノクローナル抗体を用いた癌組織、および血清を用いた診断における有用性が示された。

15

5

実施例15

抗 SFRP4 抗体の作製

TEG56: SFRP4 に関して、抗 SFRP4 抗体を用いた癌の検出が可能かどうかを明らかにするために、抗 SFRP4 抗体の作製を行った。

SFRP4 の発現を行うために、まず SFRP4 の cDNA を以下のようにして単離

20 <u>15-1</u>. SFRP4 cDNA の単離

した。胃癌組織より前述の方法に従い一本鎖 cDNA を調製し、それを鋳型として EcoRI または XhoI の制限酵素サイトのついたプライマーGC898 (配列番号291) と GC899 (配列番号292) を用いて PCR 法にて、目的サイズと一致する約 1000bp 付近のバンドの検出に成功した。PCR 用酵素および試薬には、アドバンテージ HF ポリメラーゼミックス (Advantage HF Polymerase Mix; クロンテック社製) およびアドバンテージ HF PCRバッファー (Advantage HF PCR buffer)、200μM デオキシヌクレオチド三リン酸、0.2μMプライマーを用い、c DNA 1μLを鋳型にしたPCR (94℃30秒、68℃30秒、72℃3分、35サイクル)を行った。PCR 法で得られた特異的増幅断片はDNAライゲーションキット (タカラ社製)を用いて pGEM-T easy ベクタ

ー(プロメガ社製)に挿入し、塩基配列を定法により確認したところ、単離した cDNA が SFRP4 に相当することが明らかとなった。

なお、プライマーGC898 は SFR4_ORF 遺伝子 (GenBank: NM_003014) の 5'-端にハイブリダイズするように、そして GC899 は 3'-端にハイブリダイズするようにデザインした。

配列番号 2 9 1 (GC898): CGGGATCCATGTTCCTCCATCCTAGTGG 配列番号 2 9 2 (GC899): CGCTCGAGACACTCTTTTCGGGTTTGTTC 15-2. SFRP4 の免疫用抗原の調製

5

15

20

SFRP4 の免疫用抗原として上記の全長 SFRP4 配列を GST-結合型タンパク質 として、組み換え体の調製を実施した。すなわち、上記のpGEM-T に挿入された SFRP4 配列を、制限酵素 EcoRI-XhoI を用いて切断し、そして pET41a ベクター(Novagen 社製)に挿入し、発現ベクターGST-SFRP4 を構築した。

GST 融合抗原タンパク質の調製、およびマウス免疫によるモノクローナル抗体の作製は上項と同様に実施した。その結果、抗 SFRP4 モノクローナル抗体 A7113 を作製した。

<u>15-3.</u> 抗 SFRP4 抗体を用いた胃組織における SFRP4 のタンパク質の発現解析

胃癌の組織抽出物を用いて抗 SFRP4 抗体によるウエスタンブロット解析を実施した。上項と同様に、抗 SFRP4 抗体 A7113(40μ g/mL)によるウエスタンブロット解析を実施したところ、癌部において特異的な約 $50\,k\,Da$ 付近のバンドが検出された(図 8 7)。

同時に上記でクローニングした SFRP4 配列を挿入した発現ベクター SFRP4_pcDNA4His-Myc (Invitrogen 社)を COS7 細胞に強制発現させ、その 細胞ライゼートに対する抗 Myc 抗体 (5 千倍希釈、Invitrogen)によるウエス 25 タンブロット解析を実施したところ、臨床検体で検出されたものと同一サイズの バンドが検出された(図88)。そのため、臨床検体で抗 SFRP4 モノクローナル 抗体により検出された 50kDa のバンドは SFRP4 であると考えられ、モノクローナル抗体により SFRP4 が癌部での亢進が特異的に検出されたことが明らかと なった。さらに、SFRP4 を強制発現させた COS7 細胞の培養上清の解析を試み たところ、シグナル配列を持つ SFRP4 が培養上清に分泌することが明らかとなった(図88)。

以上の結果により、TEG56:SFRP4分子は癌部特異的にタンパク質レベルに おいても発現が亢進し、かつ、癌細胞において分泌されていることが示唆された ことにより、モノクローナル抗体を用いた癌組織、および血清を用いた診断にお ける有用性が示された。

5

産業上の利用性

本発明の遺伝子、タンパク質および抗体は、癌の診断および治療、ならびに癌の治療薬の開発において用いることができる。

10

15

30

請求の範囲

- 1. 配列番号1-65のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメント。
- 5 2. 配列番号1、2、28、29、30、31、32、51、52、60および61のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメント。
 - 3. 請求項2記載のタンパク質またはそのフラグメントを含む、肺癌を診断または治療する為の組成物。
- 4. 配列番号3、4、5、6、7、8、9、10、11、12、13、22、23、24、25、26、27、33、34、35、36、37、38、39、40、41、42、53、54および55のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメント。
 - 5. 請求項4記載のタンパク質またはそのフラグメントを含む、胃癌を診断 または治療する為の組成物。
 - 6. 配列番号3、7、20、21、46、47、48、49および50のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメント。
- 7. 請求項6記載のタンパク質またはそのフラグメントを含む、大腸癌を診 20 断または治療する為の組成物。
 - 8. 配列番号14、15、16、17、18、19、43、44、45、5 6、57、58、59、62、63、64および65のいずれかに記載されるヌ クレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグ メント。
- 25 9. 請求項8記載のタンパク質またはそのフラグメントを含む、肝癌を診断 または治療する為の組成物。
 - 10. 前記遺伝子が、配列番号1、9、10、14、20、22、24、25、26、27、28、29、32、38、39、40、44、51、52、53、54および58のいずれかに記載されるヌクレオチド配列を有する、請求項1記載のタンパク質またはそのフラグメント。
- 11. 前記遺伝子が、配列番号1、9、10、14、20、22、24、25

および26のいずれかに記載されるヌクレオチド配列を有する、請求項1記載の タンパク質またはそのフラグメント。

- 12. 配列番号66-123のいずれかに記載されるアミノ酸配列を有する、 請求項1記載のタンパク質またはそのフラグメント。
- 5 13. 請求項1, 2, 4, 6, 8, 10, 11および12のいずかに記載のタンパク質またはそのフラグメントを認識する抗体。

10

15

- 14. 配列番号1-65のいずれかに記載されるヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、およびこれらのポリヌクレオチドと高ストリンジェントな条件下でハイブリダイズするポリヌクレオチド。
- 15. 配列番号1-65のいずれかに記載されるヌクレオチド配列の少なくとも12個の連続するヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチド、およびこれらのポリヌクレオチドと高ストリンジェントな条件下でハイブリダイズする少なくとも12個のヌクレオチドを有するポリヌクレオチド。
- 16. 配列番号が1、2、28、29、30、31、32、51、52、60 および61のいずれかである、請求項14または15記載のポリヌクレオチド。 17. 請求項16記載のポリヌクレオチドを含む、肺癌を診断または治療する 為の組成物。
- 20 18. 配列番号が3、4、5、6、7、8、9、10、11、12、13、2
 2、23、24、25、26、27、33、34、35、36、37、38、3
 9、40、41、42、53、54および55のいずれかである、請求項14または15記載のポリヌクレオチド
- 19. 請求項18記載のポリヌクレオチドを含む、胃癌を診断または治療する 25 為の組成物。
 - 20. 配列番号が3、7、20、21、46、47、48、49および50の いずれかである、請求項14または15記載のポリヌクレオチド
 - 21. 請求項20記載のポリヌクレオチドを含む、大腸癌を診断または治療する為の組成物。
- 30 22. 配列番号が14、15、16、17、18、19、43、44、45、 56、57、58、59、62、63、64および65のいずれかである、請求

- 項14または15記載のポリヌクレオチド。
- 23. 請求項22記載のポリヌクレオチドを含む、肝癌を診断または治療する 為の組成物。
- 24. 配列番号が1、9、10、14、20、22、24、25、26、27、
- 5 28、29、32、38、39、40、44、51、52、53、54および58のいずれかである、請求項14または15記載のポリヌクレオチド。
 - 25. 請求項14, 15, 16, 18, 20, 22および24のいずれかに記載のポリヌクレオチドを含むベクター。
 - 26. 請求項25記載のベクターを含む細胞。
- 10 27. 抗癌活性を有する化合物を同定する方法であって、

培養ヒト細胞を試験化合物と接触させ、そして

前記細胞において配列番号1-65のいずれかに記載されるヌクレオチド配列を 含む遺伝子の発現量の変化を引き起こす化合物を抗癌活性を有する化合物として 同定する

- 15 の各工程を含む方法。
 - 28. 請求項1, 2, 4, 6, 8, 10, 11および12のいずかに記載のタンパク質、または請求項14, 15, 16, 18, 20, 22および24のいずれかに記載のポリヌクレオチドの発現量を測定することを特徴とする癌の診断方法
- 20 29. C20orf102 タンパク質を検出することを特徴とする癌の診断方法。
 - 30. 癌が肺癌、肝癌、または膵癌である請求項29記載の診断方法
 - 31. 分泌された C20orf102 タンパク質を検出することを特徴とする請求項29記載の診断方法。
- 3 2. C20orf102 タンパク質を認識する抗体を用いることを特徴とする請求項 25 2 9 記載の診断方法。
 - 33. 血液中、血清中、または血漿中の C20orf102 タンパク質を検出することを特徴とする請求項29記載の診断方法。
 - 34. 以下の工程:
 - (a) 被験者から試料を採取する工程;
- 30 (b) 採取された試料に含まれる C20orf102 タンパク質を検出する工程 を含む癌の診断方法。

- 35. 被験者から採取される試料が血液、血清、または血漿である請求項34記載の診断方法。
- 3 6. C20orf102 タンパク質細胞外領域を検出することを特徴とする請求項 3 4記載の診断方法。
- 37. C20orf102 タンパク質を認識する抗体を用いることを特徴とする請求項34記載の診断方法。

1/66

図1

TEG2(大腸癌)

2/66

TEG2 (胃癌)

図3

TEG3

3/66

TEG4

図5

TEG5

4/66

TEG6(大腸癌)

図7

TEG6(胃癌)

5/66

図9

TEG8

図10

6/66

TEG9

図11

TEG₁₀

図12

7/66

TEG11

図13

TEG12

図14

8/66

図15

TEG14

図16

図17

図18

10/66

TEG17

図19

TEG18

図20

11/66

図21

図22

12/66

図23

図24

TEG23

図25

TEG24

図26

14/66

図27

図28

15/66

図29

図30

16/66

図31

図32

17/66

図33

図34

18/66

図35

TEG35

図37

TEG36

図38

20/66

TEG37

図39

TEG38

図40

21/66 TEG39

図41

図42

M12

M13

M14

M15

M16

M18

M9

#3

#4

#7

M6

22/66

TEG41

図43

TEG42

図44

23/66

図45

図46

24/66

図47

図48

25/66

図49

図50

26/66

TEG49

図51

図52

27/66

TEG51

図53

図54

28/66

TEG53

図55

TEG54

図56

29/66

図57

図58

30/66

TEG57

図59

TEG58

図60

31/66

図61

TEG60

図62

32/66

図63

TEG62

図64

33/66

図65

TEG64

図66

ATGCTTCGTTCCCCGAGACCGATTTCCAGATCTGCTTGCT	60
MetAlaSerPheProGluThrAspPheGlnIleCysLeuLeuCysLysGluMetCysGly	20
TCGCCGGCGCCCTCTCCAACTCGTCCGCGTCGTCCTCCTCGCAGACGTCCACG	120
SerProAlaProLeuSerSerAsnSerSerAlaSerSerSerSerSerGlnThrSerThr	40
TCGTCGGGGGGCGCGCGGGGGGCCCCTACACGTCCTGCCC	180
SerSerGlyGlyGlyGlyGlyProGlyAlaAlaAlaArgArgLeuHisValLeuPro	60
TGCCTGCACGCCTTCTGCCGCCCCTGCCTCGAGGCGCACCGGCTGCCGGCGGCGGCGGC	240
CysLeuHisAlaPheCysArgProCysLeuGluAlaHisArgLeuProAlaAlaGlyGly	80
GGCGCGGCGGAGAGCCGCTCAAGCTGCGCTGCCCCGTGTGCGACCAGAAAGTAGTGCTA	300
GlyAlaAlaGlyGluProLeuLysLeuArgCysProValCysAspGlnLysValValLeu	100
GCCGAGGCGGCGTATGGACGCGCTTCGTCCGCCTTCCTGCTTAACAACCTGCTC	360
AlaGluAlaAlaGlyMETAspAlaLeuProSerSerAlaPheLeuLeuAsnAsnLeuLeu	120
GACGCGGTGGTGGCCACTGCCGACGAGCCGCCCCAAGAACGGGCGCGCCGCCCCCG	420
AspAlaValValAlaThrAlaAspGluProProProLysAsnGlyArgAlaGlyAlaPro	140
GCGGGAGCGGCCACACCACCGCCACCACCCCCCCCCCCC	480
AlaGlyAlaGlyGlyHisSerAsnHisArgHisHisAlaHisHisAlaHisProArgAla	160
TCCGCCTCCGCGCCACTCCCGCAGGCGCCGCAGCCGCCCCGCGCCTCCGGCA	540
${\tt SerAlaSerAlaProProLeuProGlnAlaProGlnProProAlaProSerArgSerAla}$	180
CCCGGCGCCCTGCCGCTCCCGTCGGCGCTGCTCCTCACGGCTGCAGC	600
${\tt ProGlyGlyProAlaAlaSerProSerAlaLeuLeuLeuArgArgProHisGlyCysSer}$	200
TCGTGCGATGAGGGCAACGCAGCTTCTTCGCGCTGCCTCGACTGCCAGGAGCACCTGTGC	660
${\tt SerCysAspGluGlyAsnAlaAlaSerSerArgCysLeuAspCysGlnGluHisLeuCys}$	220
GACAACTGCGTCCGAGCGCACCAGCGCGTGCGCCTCACCAAGGACCACTACATCGAGCGC	720
AspAsnCysValArgAlaHisGlnArgValArgLeuThrLysAspHisTyrIleGluArg	240
GGCCCGCCGGTCCCGCAGCAGCAGCAGCAGCTCGGGCTCGGGCCCCTTT	780
${\tt GlyProProGlyProGlyAlaAlaAlaAlaGlnGlnLeuGlyLeuGlyProProPhe}$	260
CCCGGCCCCCTTCTCCATCCTCTCAGTGTTTCCCGAGCGCCTCGGCTTCTGCCAGCAC	840
ProGlyProProPheSerIleLeuSerValPheProGluArgLeuGlyPheCysGlnHis	280

CACGACGACGAGGTGCTGCACCTGTACTGTGACACTTGCTCTGTACCCATCTGTCGTGAG	900
HisAspAspGluValLeuHisLeuTyrCysAspThrCysSerValProIleCysArgGlu	300
TGCACAATGGGCCGGCATGGGGGCCACAGCTTCATCTACCTCCAGGAGGCACTGCAGGAC	960
CysThrMetGlyArgHisGlyGlyHisSerPheIleTyrLeuGlnGluAlaLeuGlnAsp	320
TCACGGGCACTCACCATCCAGCTGCTGGCAGATGCCCAGCAGGGACGACAGGCAATCCAG	1020
SerArgAlaLeuThrIleGlnLeuLeuAlaAspAlaGlnGlnGlyArgGlnAlaIleGln	340
CTGAGCATCGAGCAGGCCCAGACGGTGGCGGAACAGGTGGAGATGAAGGCGAAGGTTGTG	1080
LeuSerIleGluGlnAlaGlnThrValAlaGluGlnValGluMetLysAlaLysValVal	360
CAGTCGGAGGTCAAAGCCGTGACTGCGAGGCATAAGAAAGCCCTGGAGGAACGCGAGTGT	1140
GlnSerGluValLysAlaValThrAlaArgHisLysLysAlaLeuGluGluArgGluCys	380
GAGCTGCTGTGGAAGGTAGAAAAGATCCGCCAGGTGAAAGCCAAGTCTCTGTACCTGCAG	1200
GluLeuLeuTrpLysValGluLysIleArgGlnValLysAlaLysSerLeuTyrLeuGln	400
GTGGAGAAGCTGCGGCAAAACCTCAACAAGCTTGAGAGCACCATCAGTGCCGTGCAGCAG	1260
${\tt ValGluLysLeuArgGlnAsnLeuAsnLysLeuGluSerThrIleSerAlaValGlnGln}$	420
GTCCTGGAGGAGGGTAGAGCCTAGACATCCTACTGGCCCGAGACCGGATGCTGGCCCAG	1320
${\bf ValleuGluGluGlyArgAlaleuAspIleLeuLeuAlaArgAspArgMetLeuAlaGln}$	440
GTGCAGGAGCTGAAGACCGTGCGGAGCCTCCTGCAGCCCCAGGAAGACGACCGAGTCATG	1380
${\bf ValGlnGluLeuLysThrValArgSerLeuLeuGlnProGlnGluAspAspArgValMet}$	460
TTCACACCCCCGATCAGGCACTGTACCTTGCCATCAAGTCTTTTTGGCTTTGTTAGCAGC	1440
${\tt PheThrProProAspGlnAlaLeuTyrLeuAlaIleLysSerPheGlyPheValSerSer}$	480
GGGGCCTTTGCCCCACTCACCAAGGCCACAGGCGATGGCCTCAAGCGTGCCCTCCAGGGT	1500
GlyAlaPheAlaProLeuThrLysAlaThrGlyAspGlyLeuLysArgAlaLeuGlnGly	500
AAGGTGGCCTCCTTCACAGTCATTGGTTATGACCACGATGGTGAGCCCCGCCTCTCAGGA	1560
LysValAlaSerPheThrValIleGlyTyrAspHisAspGlyGluProArgLeuSerGly	520
GGCGACCTGATGTCGGCTGTGGTCCTGGGCCCTGATGGCAACCTGTTTGGTGCAGAGGTG	1620
GlyAspLeuMetSerAlaValValLeuGlyProAspGlyAsnLeuPheGlyAlaGluVal	540
AGTGATCAGCAGAATGGGACATACGTGGTGAGTTACCGACCCCAGCTGGAGGGTGAGCAC	1680
SerAspGlnGlnAsnGlyThrTyrValValSerTyrArqProGlnLeuGluGlyGluHis	560

CTGGTATCTGTGACACTGTGCAACCAGCACATTGAGAACAGCCCTTTCAAGGTGGTGGTC	1740
LeuValSerValThrLeuCysAsnGlnHisIleGluAsnSerProPheLysValValVal	580
AAGTCAGGCCGCAGCTACGTGGGCATTGGGCTCCCGGGCCTGAGCTTCGGCAGTGAGGGT	1800
LysSerGlyArgSerTyrValGlyIleGlyLeuProGlyLeuSerPheGlySerGluGly	600
GACAGCGATGGCAAGCTCTGCCGCCCTTGGGGTGTGAGTGTAGACAAGGAGGGCTACATC	1860
AspSerAspGlyLysLeuCysArgProTrpGlyValSerValAspLysGluGlyTyrIle	620
ATTGTCGCCGACCGCAGCAACCGCATCCAGGTGTTCAAGCCCTGCGGCGCCTTCCAC	1920
IleValAlaAspArgSerAsnAsnArgIleGlnValPheLysProCysGlyAlaPheHis	640
CACAAATTCGGCACCCTGGGCTCCCGGCCTGGGCAGTTCGACCGAC	1980
HisLysPheGlyThrLeuGlySerArgProGlyGlnPheAspArgProAlaGlyValAla	660
TGTGACGCCTCACGCAGGATCGTGGTGGCTGACAAGGACAATCATCGCATCCAGATCTTC	2040
CysAspAlaSerArgArgIleValValAlaAspLysAspAsnHisArgIleGlnIlePhe	680
ACGTTCGAGGGCCAGTTCCTCCAAGTTTGGTGAGAAAGGAACCAAGAATGGGCAGTTC	2100
${\tt ThrPheGluGlyGlnPheLeuLeuLysPheGlyGluLysGlyThrLysAsnGlyGlnPheGluGluGlyGlnPheGluGlyGlnPheGluGlyGlnPheGluGlyGlnPheGluGlyGlnPheLeuLeuLysPheGlyGluLysGlyThrLysAsnGlyGlnPheGlyGluLysGlyThrLysAsnGlyGlyGlnPheGlyGlyGluLysGlyThrLysAsnGlyGlyGlyGlyGlyGlyGlyGlyGlyGlyGlyGlyGlyG$	700
AACTACCCTTGGGATGTGGCGGTGAATTCTGAGGGCAAGATCCTGGTCTCAGACACGAGG	2160
AsnTyrProTrpAspValAlaValAsnSerGluGlyLysIleLeuValSerAspThrArg	720
AACCACCGGATCCAGCTGTTTGGGCCTGATGGTGTCTTCCTAAACAAGTATGGCTTCGAG	2220
${\tt AsnHisArgIleGlnLeuPheGlyProAspGlyValPheLeuAsnLysTyrGlyPheGlup} \\$	740
GGGGCTCTCTGGAAGCACTTTGACTCCCCACGGGGTGTGGCCTTCAACCATGAGGGCCAC	2280
GlyAlaLeuTrpLysHisPheAspSerProArgGlyValAlaPheAsnHisGluGlyHis	760
TTGGTGGTCACTGACTTCAACAACCACCGGCTCCTGGTTATTCACCCCGACTGCCAGTCG	2340
${\tt LeuValValThrAspPheAsnAsnHisArgLeuLeuValIleHisProAspCysGlnSer}$	780
GCACGCTTTCTGGGCTCGGAGGGCACAGGCAATGGGCAGTTCCTGCGCCCACAAGGGGTA	2400
${\tt AlaArgPheLeuGlySerGluGlyThrGlyAsnGlyGlnPheLeuArgProGlnGlyValue} \\$	800
GCTGTGGACCAGGAAGGGCGCATCATTGTGGCGGATTCCAGGAACCATCGGGTACAGATG	2460
${\tt AlaValAspGlnGluGlyArgIleIleValAlaAspSerArgAsnHisArgValGlnMet}$	820
TTTGAATCCAACGGCAGCTTCCTGTGCAAGTTTGGTGCTCAAGGCAGCGGCTTTGGGCAG	2520
PheGluSerAsnGlySerPheLeuCysLysPheGlyAlaGlnGlySerGlyPheGlyGln	840

37/66

ATGGACCGCCCTTCCGGCATCGCCATCACCCCCGACGGAATGATCGTTGTGGTGGACTTT	2580
MetAspArgProSerGlyIleAlaIleThrProAspGlyMetIleValValValAspPhe	860
GGCAACAATCGAATCCTCGTCTTCTAATTGCATTTCCTAGGTTTCTGTGTTTTGGGGTGTG	2640
GlyAsnAsnArgIleLeuValPhe***	868
TGTGCGTGTCTCTCTCTCTCTCTCTCTTTCTCTCTCTCT	2700
AAGAAACAGTCTCAGGGAAATTTCTTTTTTTTTTTTTTT	2760
TACAACATTGCTTAAGTCCTACCTCATCTTTATTTTTTTACAGATGAATGTACTTATCTT	2820
TTCTGCAGGGATTGAGCCTGTGAAGTGATAATTTCTATCTA	2880
TCCTTCTGCAACAGGCCCTCTTCCCCTCCTCAGTGGAGTTTGCATTTCCCTCTTCCCCTG	2940
CGTGGGGCATGATATGCACAAGCCTGGCATCTGTATGGCTGGGAGGGCACTGGATGTGTG	3000
TGGTGGGGTGTATTCTGTAGATTGAGCCAAGGAAACACAAAAAAAA	3060
AAACAAAAACTATAAAACATGGAAAAAATAGGATTTGAAATGCATAATTATAGAATACC	3120
TGTGTTCTTGAGAATACTGTTTATATGGGGTTTAGATTATGTTGTTGTTTTTGATCTTT	3180
TTGGAAAATCTTCTCTTTTTAAATGCTGCAACAGAGAAATTTCCTCTGTTCTCTGTTTAT	3240
ACCTCTTAATTGTATTGTCCAAGGCAGACATGATATAAGGAATATGCACTACCGTAGTAA	3300
$\tt CTCCCTGGCCGCAGAAACCACACTGCAAGCCTGTCCGGGGTGGGGTGCTGACTGCCATT$	3360
TGCCACTTTTAAATGGGCACTGCCGTGGTAATGTGAATCCC	3401

図67(続き)

K#1. nuc	1:	
XM_067369. nuc	1:ATGCGCGGACTGACCCAGCGGCCGGCGCGCGCGCGCGGCGGACTTAATCGCGGGCGCA 60	
K#1. nuc	1:1	
XM_067369. nuc	61:GCGCGAGGCTCGGGACCCAGAGCACCACCTACCGGCGGCACGGTCGGCGCAGCAGGCCCC 12	0
	1:1	
XM_067369. nuc	121:AGAAGGGCGGGAACGCTGTCAAGCCCAGGGGCACTTCGGCGAGGAGCCCCACCCGCCCT 18	0
	1:1	
XM_067369. nuc	181:CCAGCTGACCCTCAGCTGTGGCCCACATCCGGGGCCCAGAGCGCCGCGGAAACGCCGAAG 24	:0
	1:1	
XM_067369. nuc	241:CCCGGCCGGCAGATAGCGCGGAAAGCGAAGAAGGAAGTTCCCGTCCCTCCTAAAGCCGAA 30	0
K#1. nuc	1:1	
XM_067369. nuc	301:GCCAAAGCGAAGTCTTTAAAGGCCAAGAAGGCAGTGTTGAAAGGTGTCCGCAGCCACAAA 36	0
K#1. nuc		
XM_067369. nuc	361: AAAAAGAAGATCCGCACGTCACCCACCTTACGGCGGCCCAAGACACCCGCGACTCCGGAGA 42	20
VA1	1	,
K#1. nuc	1:CCCTCCTCCGGGCTGGGTTGCAAATGGCTTCGTTCCCCGAGACCGATT 48	,
VM 067260 mus	421:CAGCCCAAATATC-CTCGGAAGAGCGCTCCTAGGAGAAACAAGCTTGACCACTATGCTAT 47	70
Am_007309. Huc	421.CAGCCCAAATATC-CTCGGAAGAGCCTCCTAGGAAAAACAAGCTTGACCACTATGCTAT	דו
K#1. nuc	49:TCCAGATCTGCTTGCTGCAAGGAGATGTGCGGCTCGCCGGCGCCGCTCTCCTCCAACT 10	ነጸ
K# I. Huc	* * * * * * * * * * * * * * * * * * * *	,,
XM 067369, nuc	480:CATCAAGTTTCTGCT-GACCACTGAGTCTGCCATGAAGAAGATAGAAGACAATAACACAC 53	38
00100011100		
K#1. nuc	109:C-GTCCGCGTCGTCGTCCTCCTCGCAGACGTCCACGTCGTCGGGGGGGG	37
	** * * * * * * * * * * * * * * * * * * *	
XM_067369. nuc	539:TTGTGTTCATTGTGGATGTTAAAGCCAACAAGCACCAGATTAAACAGGCTGTGAAGAAGC 59	38
_		
K#1.nuc	168:CCTGGGGCGGCGCGCCCCTACACGTCCTGCCCTGCCTGCACGCCTTCTGCCGCCCC 22	27
	** * * * * * * * * * * * * * * * * * * *	
XM_067369. nuc	599:TCTATGACAAAGATGTGGTCAAGGTCAACACCCTGATTCGGCCTGATGGAGAAGAAGG 68	58
K#1. nuc	228:TGCCTCGAGGCGCACCGGCTGCCGGCGGCGGGGGGGGGG	87

XM 067369. nuc	659:CGCCGCAGCCGCCCCGCGCCTTCCCGCTCGGCACCCGGCGCCCTGCCGCTTCCCCGTCGG 7	18

K#1. nuc	288:CTGCGCTGCCCCGTGTGCGACCAGAAAGTAGTGCTAGCCGAGGCGGCGGGTATGGACGCG 347 * ***** **
XM_067369. nuc	719:CGCTGCTGCTCCGCCGTCCTCACGGCTGCAGCTCGTGCGATGAGGGCAACGCAGCTTCTT 778
K#1. nuc	348:CTGCCTTCGTCCGCCTTCCTGCTTAACAACCTGCTCGACGCGGTGGTGGCCACTGCCGAC 407 * ** ** * * * * * * * * * * * * * * *
XM_067369. nuc	779:CGCGCTGCCTCGACTGCCAGGAGCACCTGTGCGACAACTGCGTCCGAGCGCACCAGCGCG 838
K#1. nuc	408:GAGCCGCCCCAAGAACGGGCGCGCCGCGCGCGCGCGGGGGG
XM_067369. nuc	839:TGCGCCTCACCAAGGACCACTACATCGAGCGCGCCCGCCGGGTCCCGGTGCCGCAGCAG 898
K#1.nuc	467:CCACCGGCACCACGCTCACCACGCGCACCCGCGCGCGCGC
XM_067369. nuc	
K#1. nuc	527:GCAGGCGCCGCAGCCGCCCCGCGCCCTCCCGCTCGGCACCCGGCGCCCTGCCGCTTCCCC 586 * *** * * * * * * * * * * * * * * * *
XM_067369. nuc	958:GTGTTTCCCGAGCGCCTCGGCTTCTGCCAGCACCACGACGACGACGAGTTGGGGGCTTTTCACT 1017
K#1.nuc	587:GTCGGCGCTGCTCCGCCGTCCTCACGGCTGCAGCTCGTGCGATGAGGGCAACGCAG- 645
XM_067369. nuc	1018:AGTTCTGTGCCTCCAGAGTCCGAAAGGCCTGCAGGCTCCGTGGCCCAGCCGGCATCCGGG 1077
K#1. nuc	646:CTTCTTCGCGCTGCCTCGACTGCCAGGAGCACCTGTGCGACAACTGCGTCCGAGCGCACC 705 * * * * * * * * * * * * * * * * * * *
XM_067369. nuc	1078:CGGGGAATCCAAGGCGAGGAATCCGAGGTCGCCGTCCCCGGAACAGCTGGCCGCGGGCCC 1137
K#1. nuc	706:AGCGCGTGCGCCTCACCAAGGACCACTACATCGAGCGCGGCCCGGCCGG
XM_067369. nuc	1138:GCTGCGTGCCGCGGGTCCCGGGAGAGGCGGCGCGCGCGCAGGCTAGAGCAAAGGAAACTTTT 1197
K#1. nuc	766:CAGCAGCGGCGCAGCAGCTCGGGCTCGGGCCGCCCTTTCCCGGCCCGCCC
XM_067369. nuc	* * * * * * * * * * * * * * * * * * *
K#1. nuc	826:TCTCAGTGTTTCCCGAGCGCCTCGGCTTCTGCCAGCACCACGACGACGAGGTGCTGCACC 885
XM_067369. nuc	* ** * * * * * * * * * * * * * * * * *

K#1. nuc	886:TGTACTGTGACACTTGCTCTGTACCCATCTGTCGTGAGTGCACAATGGGCCGGCATGGGG	945
ХМ_067369. пис	1316: TGTACTGTGACACTTGCTCTGTACCCATCTGTCGTGAGTGCACAATGGGCCGGCATGGGG	1375
K#1. nuc	946:GCCACAGCTTCATCTACCTCCAGGAGGCACTGCAGGACTCACGGGCACTCACCATCCAGC	1005
XM_067369. nuc	1376: GCCACAGCTTCATCTACCTCCAGGAGGCACTGCAGGACTCACGGGCACTCACCATCCAGC	1435
K#1. nuc	1006:TGCTGGCAGATGCCCAGCAGGGACGGCAATCCAGCTGA	1047

XM_067369. nuc	1436:TGCTGGCAGATGCCCAGCAGGGACGACAGGCAATCCAGACAAAGCAGAAGAAGCTGCTTC	1495
K#1. nuc	1048:GCATCGAGCAGGCCCAGACGGTGGCGGAACAGGTGGAGATGAAGGCGAAGG	1098

XM_067369. nuc	1496:TGCAGCTGAGCATCGAGCAGGCCCAGACGGTGGCGGAACAGGTGGAGATGAAGGCGAAGG	1555
K#1. nuc	1099:TTGTGCAGTCGGAGGTCAAAGCCGTGACTGCGAGGCATAAGAAAGCCCTGGAGGAACGCG	1158

XM_067369. nuc	1556: TTGTGCAGTCGGAGGTCAAAGCCGTGACGGCGAGGCATAAGAAAGCCCTGGAGGAACGCG	1615
K#1. nuc	1159: AGTGTGAGCTGCTGTGGAAGGTAGAAAAGATCCGCCAGGTGAAAGCCAAGTCTCTGTACC	1218

XM_067369. nuc	1616: AGTGTGAGCTGCTGTGGAAGGTAGAAAAGATCCGCCAGGTGAAAGCCAAGTCTCTGTACC	1675
K#1. nuc	1219:TGCAGGTGGAGAAGCTGCGGCAAAACCTCAACAAGCTTGAGAGCACCATCAGTGCCGTGC	1278

XM_067369. nuc	1676:TGCAGGTGGAGAAGCTGCGGCAAAACCTCAACAAGCTTGAGAGCACCATCAGTGCCGTGC	1735
K#1. nuc	1279: AGCAGGTCCTGGAGGAGGGTAGAGCGCTAGACATCCTACTGGCCCGAGACCGGATGCTGG	1338

XM_067369. nuc	1736: AGCAGGTCCTGGAGGAGGGTAGAGCGCTAGACATCCTACTGGCCCGAGACCGGATGCTGG	
K#1. nuc	1339:CCCAGGTGCAGGAGCTGAAGACCGTGCGGAGCCTCCTGCAGCCCCAGGAAGACGACCGAG	1398

XM_067369. nuc	1796:CCCAGGTGCAGGAGCTGAAGACCGTGCGGAGCCTCCTGCAGCCCCAGGAAGACGACCGAG	1855
K#1.nuc	1399:TCATGTTCACACCCCCGATCAGGCACTGTACCTTGCCATCAAGTCTTTTGGCTTTGTTA	1458
	***************************************	:
XM_067369. nuc	1856:TCATGTTCACACCCCCGATCAGGCACTGTACCTTGCCATCAAGTCTTTTGGCTTTGTTA	1915

K#1. nuc	1459:GCAGCGGGGCCTTTGCCCCACTCACCAAGGCCACAGGCGATGGCCTCAAGCGTGCCCTCC ****************************	1518
XM_067369. nuc	1916:GCAGCGGGGCCTTTGCCCCACTCACCAAGGCCACAGGCGATGGCCTCAAGCGTGCCCTCC	1975
K#1. nuc	1519:AGGGTAAGGTGGCCTCCTTCACAGTCATTGGTTATGACCACGATGGTGAGCCCCGCCTCT	1578
XM_067369. nuc	1976: AGGGTAAGGTGGCCTCCTTCACAGTCATTGGTTATGACCACGATGGTGAGCCCCGCCTCT	2035
K#1. nuc	1579:CAGGAGGCGACCTGATGTCGGCTGTGGTCCTGGGCCCTGATGGCAACCTGTTTGGTGCAG	1638
XM_067369. nuc	2036: CAGGAGGCGACCTGATGTCGGCTGTGGTCCTGGGCCCTGATGGCAACCTGTTTGGTGCAG	2095
K#1. nuc	1639:AGGTGAGTGATCAGCAGAATGGGACATACGTGGTGAGTTACCGACCCCAGCTGGAGGGTG	1698
XM_067369. nuc	2096: AGGTGAGTGATCAGCAGAATGGGACATACGTGGTGAGTTACCGACCCCAGCTGGAGGGTG	2155
K#1. nuc	1699: AGCACCTGGTATCTGTGACACTGTGCAACCAGCACATTGAGAACAGCCCTTTCAAGGTGG	1758
XM_067369. nuc	2156: AGCACCTGGTATCTGTGACACTGTGCAACCAGCACATTGAGAACAGCCCTTTCAAGGTGG	2215
K#1. nuc	1759:TGGTCAAGTCAGGCCGCAGCTACGTGGGCATTGGGCTCCCGGGCCTGAGCTTCGGCAGTG	1818
XM_067369. nuc	**************************************	2275
K#1. nuc	1819:AGGGTGACAGCGATGGCAAGCTCTGCCGCCCTTGGGGTGTGAGTGTAGACAAGGAGGGCT	1878
XM_067369. nuc	2276: AGGGTGACAGCGATGGCAAGCTCTGCCGCCCTTGGGGTGTGAGTGTAGACAAGGAGGGCCT	2335
K#1. nuc	1879:ACATCATTGTCGCCGACCGCAGCAACAACCGCATCCAGGTGTTCAAGCCCTGCGGCGCCT	1938
XM_067369. nuc	2336: ACATCATTGTCGCCGACCGCAGCAACAACCGCATCCAGGTGTTCAAGCCCTGCGGCGCCCT	2395
K#1. nuc	1939:TCCACCACAAATTCGGCACCCTGGGCTCCCGGCCTGGGCAGTTCGACCGAC	
XM_067369. nuc	2396:TCCACCACAAATTCGGCACCCTGGGCTCCCGGCCTGGGCAGTTCGACCGAC	
K#1. nuc	1999:TGGCCTGTGACGCCTCACGCAGGATCGTGGTGGCTGACAAGGACAATCATCGCATCCAGA	
XM_067369. nuc	2456:TGGCCTGTGACGCCTCACGCAGGATCGTGGTGGCTGACAAGGACAATCATCGCATCCAGA	

K#1. nuc	2059: TCTTCACGTTCGAGGGCCAGTTCCTCCTCAAGTTTGGTGAGAAAGGAACCAAGAATGGGC	2118

XM_067369. nuc	2516:TCTTCACGTTCGAGGGCCAGTTCCTCCTCAAGTTTGGTGAGAAAGGAACCAAGAATGGGC	2575
K#1. nuc	2119: AGTTCAACTACCCTTGGGATGTGGCGGTGAATTCTGAGGGCAAGATCCTGGTCTCAGACA	2178

XM_067369. nuc	2576: AGTTCAACTACCCTTGGGATGTGGCGGTGAATTCTGAGGGCAAGATCCTGGTCTCAGACA	2635
K#1, nuc	2179: CGAGGAACCACCGGATCCAGCTGTTTGGGCCTGATGGTGTCTTCCTAAACAAGTATGGCT	2238

XM_067369. nuc	2636: CGAGGAACCACCGGATCCAGCTGTTTGGGCCTGATGGTGTCTTCCTAAACAAGTATGGCT	2695
K#1. nuc	2239:TCGAGGGGGCTCTCTGGAAGCACTTTGACTCCCCACGGGGTGTGGCCTTCAACCATGAGG	2298

XM_067369. nuc	2696:TCGAGGGGGCTCTCTGGAAGCACTTTGACTCCCCACGGGGTGTGGCCTTCAACCATGAGG	2755
K#1. nuc	2299:GCCACTTGGTGGTCACTGACTTCAACAACCACCGGCTCCTGGTTATTCACCCCGACTGCC	2358

XM_067369. nuc	2756:GCCACTTGGTGGTCACTGACTTCAACAACCACCGGCTCCTGGTTATTCACCCCGACTGCC	2815
K#1.nuc	2359: AGTCGGCACGCTTTCTGGGCTCGGAGGGCACAGGCAATGGGCAGTTCCTGCGCCCACAAG	2418

XM_067369. nuc	2816:AGTCGGCACGCTTTCTGGGCTCGGAGGGCACAGGCAATGGGCAGTTCCTGCGCCCACAAG	2875
K#1. nuc	2419:GGGTAGCTGTGGACCAGGAAGGGCGCATCATTGTGGCGGATTCCAGGAACCATCGGGTAC	2478

XM_067369. nuc	2876:GGGTAGCTGTGGACCAGGAAGGGCGCATCATTGTGGCGGATTCCAGGAACCATCGGGTAC	2935
K#1. nuc	2479: AGATGTTTGAATCCAACGGCAGCTTCCTGTGCAAGTTTGGTGCTCAAGGCAGCGGCTTTG	2538

XM_067369. nuc	2936: AGATGTTTGAATCCAACGGCAGCTTCCTGTGCAAGTTTGGTGCTCAAGGCAGCGGCTTTG	2995
K#1. nuc	2539:GGCAGATGGACCGCCCTTCCGGCATCGCCATCACCCCCGACGGAATGATCGTTGTGGTGG	2598

XM_067369. nuc	2996: GGCAGATGGACCGCCCTTCCGGCATCGCCATCACCCCCGACGGAATGATCGTTGTGGTGG	3055
K#1. nuc	2599: ACTTTGGCAACAATCGAATCCTCGTCTTCTAATTGCATTTCCTAGGTTTCTGTGTTTGGG	2658

XM_067369. nuc	3056: ACTTTGGCAACAATCGAATCCTCGTCTTCTAA	3087
K#1. nuc	2659:GTGTGTGTGCGTGTCTCTCTCTCTCTCTCTCTCTTTTCTCTCTCTCTTTTTT	2718
XM 067369 nuc	3088:	3088

GTAATTGACAAAGTCACGTGTGCTCAGGGGGCCAGAAACTGGAGAGAGA	60
TCAAAAGAAGGAAAGCACATTAGACCATGCGAGCTAAATTTGTGATCGCACAAAATCAAG	120
ATGTTAGATTGATGCAGAAGATCACTCCGTTCCAAAGGGAAAGTTTTCATCTCACGAGTT	180
TGGAGCTGAGGGCCCGTGGGGCAACATGGCCGAAGGCGGGGCTAGCAAAGGTGGTGGAGA	240
MetAlaGluGlyGlyAlaSerLysGlyGlyGlyGlu	12
AGAGCCCGGGAAGCTGCCGGAGCCGGCAGAGGAGGAATCCCAGGTTTTGCGCGGAACTGG	300
GluProGlyLysLeuProGluProAlaGluGluGluSerGlnValLeuArgGlyThrGly	32
CCACTGTAAGTGGTTCAATGTGCGCATGGGATTTGGATTCATCTCCATGATAAACCGAGA	360
HisCysLysTrpPheAsnValArgMetGlyPheGlyPheIleSerMetIleAsnArgGlu	52
GGGAAGCCCCTTGGATATTCCAGTCGATGTATTTGTACACCAAAGCAAACTATTCATGGA	420
GlySerProLeuAspIleProValAspValPheValHisGlnSerLysLeuPheMetGlu	72
AGGATTTAGAAGCCTAAAAGAAGGAGAACCAGTGGAATTCACATTTAAAAAATCTTCCAA	480
GlyPheArgSerLeuLysGluGlyGluProValGluPheThrPheLysLysSerSerLys	92
AGGCCTTGAGTCAATACGGGTAACAGGACCTGGTGGGAGCCCCTGTTTAGGAAGTGAAAG	540
GlyLeuGluSerIleArgValThrGlyProGlyGlySerProCysLeuGlySerGluArg	112
AAGACCCAAAGGGAAGACACTACAGAAAAGAAAACCAAAGGGAGATAGAT	600
ArgProLysGlyLysThrLeuGlnLysArgLysProLysGlyAspArgCysTyrAsnCys	132
TGGTGGCCTTGATCATCATGCTAAGGAATGTAGTCTACCTCCTCAGCCAAAGAAGTGCCA	660
GlyGlyLeuAspHisHisAlaLysGluCysSerLeuProProGlnProLysLysCysHis	152
TTACTGTCAGAGCATCATGCACATGGTGGCAAACTGCCCACATAAAAATGTTGCACAGCC	720
TyrCysGlnSerlleMetHisMetValAlaAsnCysProHisLysAsnValAlaGlnPro	172
ACCCGCGAGTTCTCAGGGAAGACAGGAAGCAGAATCCCAGCCATGCACTTCAACTCTCCC	780
ProAlaSerSerGlnGlyArgGlnGluAlaGluSerGlnProCysThrSerThrLeuPro	192
TCGAGAAGTGGGAGGCGGCATGGCTGTACATCACCACCGTTTCCTCAGGAGGCTAGGGC	840
ArgGluValGlyGlyHisGlyCysThrSerProProPheProGlnGluAlaArgAla	212
AGAGATCTCAGAACGGTCAGGCAGGTCACCTCAAGAAGCTTCCTCCACGAAGTCATCTAT	900
GlulleSerGluArgSerGlyArgSerProGlnGluAlaSerSerThrLysSerSerIle	232
AGCACCAGAAGAAGCAAAAAGGGGCCTTCAGTTCAAAAAAGGAAAAAGACATAACA	960
AlaProGluGluGlnSerLysLysGlyProSerValGlnLysArgLysLysThr***	250

GGTCTTCTTCATATGTTCTTTCCTTTACCCGGTTGCAAAGTCTACCTCATGCAAGTATAG	
GGGAACAGTATTCACAAGCAGTAGCCGGTTGCAAAGTCTACCTCATGCAAGTATAG GGGAACAGTATTCACAAGCAGTAGCTGACCTGGGATTTTAACTACTATTGGGGAACTGT	1020
GAATTTTTAAACAGACAAATCACTCTAAGCAAATTACATTTGAGCAGGGTGTCATGTTT	1080
TATGTTAATTCAGAAATAAGATACTATGTCTGTCAATATGTGCATGTGTGAGAGGGAGA	1140
GAGCCTGAGTCTGTGTGTACATGAGGGATTTTTATATAGGAATGTAGACACATATATAA	1200
AGAGGCTTTGTCTTTATATATTTGTGTATAGATCAAAGCACACACCCTCTCTCATATAAT	1260
TGGATATTTCCAAGAATTGAAAACCCATGTGAAGCATTATAGATAG	1320
CACTGGAGTTTTCTTGAAATACCCATGTGAAGCATTATATATA	1380
TTACCTTTTGTGTGAACCAAAGGATACTTCAGATCTCAGAGCTGCCAATTATGGGGTACT	1440
AAAGGTTTTTAAGACATCCAGTTCTCCCGAATTTGGGATTGCCTCTTTTTCTTGAAATCT	1500
CTGGAGTAGTATTTTTTCCCCCTTTTTTGAAGGCAGTACCTTAACTTCATATGCCTCT	1560
	1620
GACTGCCATAAGCTTTTTTGATTCTGGGATAACATAACTCCAGAAAAGACAATGAATG	1680
TAATTTGGGCCGATATTTCACTGTTTTAAATTCTGTGTTTAAATTGTAAAATTAGATGCCT	1740
ATTAAGAGAAATGAAGGGGAGGATCATCTTAGTGGCTTGTTTCAGTAGTATTTTAATAT	1800
CAGCTTCTTGTAACCTTTTCCATGTTGTGAGGGTTGTAAGGGATTGTGTGGCAACAGCAG	1860
CTTCCCTTGGCTAACTCAATCTTCTACCCATTGCTTAGAGCAGGGAGCCCTCCTTATTTA	1920
CTACTGAAGACCTTAGAGAACTCCAATTGTTTGGCATATATTTTTGGTGGTGGTTTTTAT	1980
TCCTCCTGGAGAGTTATCTAATTTGTTTCTAAAACAAACA	2040
AATACTGGGGTTGAGAATTAAAATTAAGTGGATGTTCACAGTTGCCCAATATATAT	2100
TGCAAATGATACGAAAAAGTGCAGCATTTAGTGGCAGTTAACAAGAGTGACAAGCCTGGG	2160
GCAGAGGTACCAAACCTCTCCCACCAGAGAGCTAGAAGTATTTTATACAGTAACTTTGAT	2220
CTTATGGAAGTGACCTTCAATGCTTATTCTGAAGTAACCTATATGGTGGATACAGGATGA	2280
ACATTCAGTGCCAGGGAGAATCTTCTCAGGTTGGTTCTCGTTAGAGTGATAAACTGGCTA	2340
GGGGCCATAGTATTGGTCCTGTTAGGTTTCGGTCATGGAAAAAAAA	2400
ATCCTGGCTCTAGATGTTATGGGCAAATTTCTGAAACATCTGCAAGAAGGTACCAGTTAA	2460
TTATAGTGCTTAATATTGGGAATAAGATTAAGCATTATAATTATAATGTATGGGCCTGTT	2520
GGTGTAAGCTCAGATAATTAAATAAAAATAGCATGACTCAAATGAGACATATTCTGCTGA	2580
ACAGTTTCTACTTCCTCCCCCCTGTCCTGTCATGGGAGACGTGTATAGTTGCTGCTGT	2640
TTCAGCAAACCACCATAAGACGAAAATGCCTCAGGTTGGGTTGCCAGTCCTTTACAACTC	2700
AGCTTGAATTTCACAACAGTGATTGTGAGAATCTGCGTGGTATACACTGAAATATCGGTG	2760
TGCTGTGATGCAAAGCTTACCTTTGACGATATTGAATGTGATATAGCTGTAGAGAAGTAC	2820
${\tt TTCCTTGCCTTATGTGAGGGATTTCAAACTTATTTAAATTATGTAGACAAATCAAAGTGGC}$	2880
ATTGCTTAATTTTTAGCAGGCATAATAAGCAAGTTAACAGTAAAATGCAAAACATGATAA	2940
GCGTTGCTCAATTTTTAGCAGGTATAATAAGCAGGTTAACAGTAAAAATGCAAAACATGA	3000
TAGATAAGTCACTTTGAAAATTCAAACCAAAGTTCCTTCACCTTATGGAAATAGGAAATT	3060
ATGGACTTCAAAATTGGACACTTCCTGTTTACAAAAAGAAATTCAGAGCTAAAATCATGG	3120
TAAAAAAAATAGAAACACTTGAGAACTATGGTCTTTATGGGTGCAATTTGAAATCCTTT	3180
TCATCATCTTACCAGACTAAACTAAGAGCACATACCAAACCTATCTTATGGTTGAAAGTT	3240
GGGGTTTATTTTTATATGAGAATATTATCACTATTACATAACATACTCAGGACAAAGAA	3300
CTTTGCTCAGGGAACATACCATGTAATATTTTTGTTGTTTCTTTACAGACTAGTCTACAG	3360
TCCTGCTTACTCAAAACAAACCAAATAACTTATACCTTTATATAAGTATTATGTACTGAT	

GATAGTAACTACCTCTGAGTTTGACACAGATCAAAATTTTTGAATATCAGATATCAGTTA	3480
PCCTATTTTTATTTCATGTGAAAACTCCTCTAAAGCAGATTCCCTCAACTCTGTGCATAT	3540
GTGAATATCACTGATGTGAACACATTGTTCATTTACATAGGTAAAATATTACTCTGTTTA	3600
CAGCAAAAGGCTACCTCATAGTTGATACATAGCACACCTGTATGTA	3660
TACAGGTGGCTGATAATTCTCTGGTACAGAACCTTTTTATCTGTATTATAAATAGCAATT	3720
CACAACTGCATGTTTCTGACAAACACTTGTGAATAATGAAGCATCTCGTTTTAGTTAG	3780
AAGTCTCCAAACATTTCCTTAAAATAATCATGTATTTAGTTTAAAGAATTATGGGCACTG	3840
TTCAACTTAAGCAAAACAGAACACGGAAGCAGTCTTAGAAGCACCACTTTGCCCAGAGGT	3900
GGAGGTTGGAAGGGGTAGCAGGGAGAGGGGTTGGTGTATGCAGGTATTCATGCTAGGCAA	3960
AGAGTTTAAAAGACGCCAATGTCCTTCATTTACTGTCTGT	4020
ATTGCAGCATTATAGCCCCAGGCACATAACTAACTAGCACTGGCTTGCCAAGGAATGAAC	4080
ATGCAATGCCATTACTAGCTATTGAGGGAAAAGGGTCTGTGTGAAGCATCACTTTGCAGG	4140
GATTACTAATGGTGGGGCAGCAGGTCTGTGAATTAAGTTATCTCTTGACCTCACCCTCAT	4200
GTCAACACAAATGTAATTCCTAAACAAGATGCATTGCCAGTCTCTTAGCCCTGTAAGCTG	4260
ATCTTTTGCTACATGGCAGACTATAATGAAAACATTTTTATACTTGGGTTTCTAGTCTTC	4320
ACTAGAAGGCCTTGGATGTATTTTTGCAGTTGAAAGATTTAGAAAGATTTTTACCTGCTT	4380
ATAACTTGGAAGTTTAGAGTGCAATGTAAGAAAAAGATCAAGAAATGTCATGTTATTAG	4440
CATCAGTCCACCTCCAATATTGCCGATACTTTTTTTATTCTGGCTCAGTTTTATTTTGCA	4500
CCAGTGCGGCCCCAAGTTACTGCTGGTTGTATTTAGTTTGTGAATAGGAGCCCATAAGTG	4560
TTAATAGACTTTGTAACATTCACTATAAGATGAATTATACAGGACATGGGAAATCTCATT	4620
AAGTCTTAAAGTTAATTTAAATTTATCTGTTTTCTCTAAGAAATGTTTATCATAAA	4680
ATATATATGTGTATTTCCCCTTTGGTTATAAAATTTGGGAAAGTATGTACAAGTGCAGCT	4740
GCACTGACTTTAATTTTCTAGATGTCTTAATGAGATTTATTT	4800
TTGTTAAAAGCATCAAACTCTGTCTTACATAGCTGTCAACAGCCTCTTTAAGATGTGGTG	4860
GTTGTATGATCTGTGTCTTAATTGTTCAGTTAGAGTGAGAAGTTGACCTATGATTCATTT	4920
TTAAATTTTATATTTGGAACAAAGCTGCAAGTTATGGTAAAGTACTGTGAGAAGT	4980
ATTATGATATTTAATGCATCTGTGGCTTAACACTTGTGAGAGTTACCAGCTTGAAAATGA	5040
TGGTGTTGACTACCTCTTGAATCACATCTATCAACCACTGGCACCTACCACCAAGCTGGC	5100
TTCAATTAGTATGTGTTTTTTGGTATTAACAACTAACCGTACTAGAGACCAAAGTGA	5160
ACCCTGATTTTTATATGTCTTTAATAATGGTGTTTTTATCTAGTGTTTTTTAAATTATCCTG	5220
TGTAGTATTTAGATTACCTCATTGTCCATTTTGACTCATGTTGTTTACAAGTGAAAATAA	5280
${\tt AAACACTTGAACTGTATGTTTTAAAAGACAAAAAAGGGGGTAGATGTTTGGAATGCGTTT}$	5340
${\tt CACTCGCATGCAGTCATCTGGAGGGACTGAAGCACTGTTTGCCTTTCTGTACACTCTGGG}$	5400
${\tt TTTTATATTCTCATTTCATGCCTAATGTCTTATTCTGTCAATTATGGATATGTTGAGGTT}$	5460
${\tt TAAAAAAATTACTTGATTAAAAATAAAACATATAACGTTGGCATTTAAAAAAAA$	5520
АААААААААААААААА	5542

AGTAGCTCTAAACCATCTTCACGATTTCTCTTTCCTCCTCGTGCCCGCCGGAGAGAATAG	60
TTTCGCTGAAAATTTCTCTTTGTCAATGGGATCAGTATTAAATCAGCAATATACAAGTAA	120
AGTATCGCATGCTGTAATGTAAAATGTGGCTGAAAAATGGAGTTAAATGAATAAGTACAC	180
GCGGGGCTAGCAAAGGTGGTGGAGAAGAGCCCGGGAAGCTGCCGGAGCCGGCAGAGGAGG	240
AATCCCAGGTTTTGCGCGGAACTGGCCACTGTAAGTGGTTCAATGTGCGCATGGGATTTG	300
MetGlyPheGly	4
GATTCATCTCCATGATAAACCGAGAGGGAAGCCCCTTGGATATTCCAGTCGATGTATTTG	360
PhelleSerMETIleAsnArgGluGlySerProLeuAspIleProValAspValPheVal	24
TACACCAAAGCAAACTATTCATGGAAGGATTTAGAAGCCTAAAAGAAGGAGAACCAGTGG	420
HisGlnSerLysLeuPheMETGluGlyPheArgSerLeuLysGluGlyGluProValGlu	44
AATTCACATTTAAAAAATCTTCCAAAGGCCTTGAGTCAATACGGGTAACAGGACCTGGTG	480
PheThrPheLysLysSerSerLysGlyLeuGluSerIleArgValThrGlyProGlyGly	64
GGAGCCCCTGTTTAGGAAGTGAAAGAAGACCCAAAGGGAAGACACTACAGAAAAGAAAAC	540
SerProCysLeuGlySerGluArgArgProLysGlyLysThrLeuGlnLysArgLysPro	84
CAAAGGGAGATAGATGCTACAACTGTGGTGGCCTTGATCATCATGCTAAGGAATGTAGTC	600
LysGlyAspArgCysTyrAsnCysGlyGlyLeuAspHisHisAlaLysGluCysSerLeu	104
TACCTCCTCAGCCAAAGAAGTGCCATTACTGTCAGAGCATCATGCACATGGTGGCAAACT	660
ProProGlnProLysLysCysHisTyrCysGlnSerlleMETHisMETValAlaAsnCys	124
GCCCACATAAAAATGTTGCACAGCCACCCGCGAGTTCTCAGGGAAGACAGGAAGCAGAAT	720
ProHisLysAsnValAlaGlnProProAlaSerSerGlnGlyArgGlnGluAlaGluSer ·	144
CCCAGCCATGCACTTCAACTCTCCCTCGAGAAGTGGGAGGCGGGCATGGCTGTACATCAC	780
GlnProCysThrSerThrLeuProArgGluValGlyGlyHisGlyCysThrSerPro	164
CACCGTTTCCTCAGGAGGCTAGGGCAGAGATCTCAGAACGGTCAGGCAGG	840
ProPheProGlnGluAlaArgAlaGluIleSerGluArgSerGlyArgSerProGlnGlu	184
AAGCTTCCTCCACGAAGTCATCTATAGCACCAGAAGAGCAAAAAAGGGGCCTTCAG	900
AlaSerSerThrLysSerSerIleAlaProGluGluGlnSerLysLysGlyProSerVal	204
TTCAAAAAAGGAAAAAGACATAACAGGTCTTCTTCATATGTTCTTTCCTTTACCCGGTTG	960
GlnLysArgLysLysThr***	210

CAAAGTCTACCTCATGCAAGTATAGGGGAACAGTATTTCACAAGCAGTAGCTGACCTGGG	1020
ATTTTAACTACTATTGGGGAACTGTGAATTTTTTAAACAGACAAATCACTCTAAGCAAAT	1080
TACATTTGAGCAGGGTGTCATGTTTATGTTAATTCAGAGAATAAGATACTATGTCTGTC	1140
AATATGTGCATGTGAGAGAGAGAGAGCCTGAGTCTGTGTGTG	1200
TATAGGAATGTAGACACATATATAAAGAGGCTTTGTCTTTATATATTTGTGTATAGATCA	1260
AAGCACACCCTCTCTCATATAATTGGATATTTCCAAGAATTGAAAACCCATGTGAAGC	1320
ATTATAGATAGTTTTAAATTTAACCCACTGGAGTTTTCTTGAAATACCACTTCTTTTATA	1380
TTATATAAAACTAAAAACACGACTGTTACCTTTTGTGTGAACCAAAGGATACTTCAGATC	1440
TCAGAGCTGCCAATTATGGGGTACTAAAGGTTTTTAAGACATCCAGTTCTCCCGAATTTG	1500
GGATTGCCTCTTTTTCTTGAAATCTCTGGAGTAGTAATTTTTTTT	1560
CAGTACCTTAACTTCATATGCCTCTGACTGCCATAAGCTTTTTTTGATTCTGGGATAACAT	1620
AACTCCAGAAAAGACAATGAATGTGTAATTTGGGCCGATATTTCACTGTTTTAAATTCTG	1680
TGTTTAATTGTAAAATTAGATGCCTATTAAGAGAAATGAAGGGGAGGATCATCTTAGTGG	1740
CTTGTTTTCAGTAGTATTTTAATATCAGCTTCTTGTAACCTTTTCCATGTTGTGAGGGTT	1800
GTAAGGGATTGTGTGGCAACAGCAGCTTCCCTTGGCTAACTCAATCTTCTACCCATTGCT	1860
TAGAGCAGGGAGCCCTCCTTATTTACTACTGAAGACCTTAGAGAACTCCAATTGTTTGGC	1920
ATATATTTTGGTGGTGGTTTTTATTCCTCCTGGAGAGTTATCTAATTTGTTTCTAAAAC	1980
AAACAAGCAGCAAAGAAATGAATTAAATACTGGGGTTGAGAATTAAAATTAAGTGGATGT	2040
TCACAGTTGCCCAATATATATGACCTGCAAATGATACGAAAAAGTGCAGCATTTAGTGGC	2100
AGTTAACAAGAGTGACAAGCCTGGGGCAGAGGTACCAAACCTCTCCCACCAGAGAGCTAG	2160
${\tt AAGTATTTATACAGTAACTTTGATCTTATGGAAGTGACCTTCAATGCTTATTCTGAAGT}$	2220
${\tt AACCTATATGGTGGATACAGGATGAACATTCAGTGCCAGGGAGAATCTTCTCAGGTTGGT}$	2280
${\tt TCTCGTTAGAGTGATAAACTGGCTAGGGGCCATAGTATTGGTCCTGTTAGGTTTCGGTCA}$	2340
TGGAAAAAAATTATTTTGGGGTCATCCTGGCTCTAGATGTTATGGGCAAATTTCTGAA	2400
ACATCTGCAAGAAGGTACCAGTTAATTATAGTGCTTAATATTGGGAATAAGATTAAGCAT	2460
TATAATTATAATGTATGGGCCTGTTGGTGTAAGCTCAGATAATTAAATAAA	2520
${\tt ACTCAAATGAGACATATTCTGCTGAACAGTTTCTACTTCCTCTCCCGCCTGTCCTTCAT}$	2580
GGGAGACGTGTATAGTTGCTGCTGTTTCAGCAAACCACCATAAGACGAAAATGCCTCAGG	2640
${\tt TTGGGTTGCCAGTCCTTTACAACTCAGCTTGAATTTCACAACAGTGATTGTGAGAATCTG}$	2700
CGTGGTATACACTGAAATATCGGTGTGCTGTGATGCAAAGCTTACCTTTGACGATATTGA	2760
${\tt ATGTGATATAGCTGTAGAGAAGTACTTCCTTGCCTTATGTGAGGATTTCAAACTTATTTA}$	2820
${\tt AATTATGTAGACAAATCAAAGTGGCATTGCTTAATTTTTAGCAGGCATAATAAGCAAGTT}$	2880
${\tt AACAGTAAAATGCAAAACATGATAAGCGTTGCTCAATTTTTAGCAGGTATAATAAGCAGG}$	2940
TTAACAGTAAAAATGCAAAACATGATAGATAAGTCACTTTGAAAATTCAAACCAAAGTTC	3000
CTTCACCTTATGGAAATAGGAAATTATGGACTTCAAAATTGGACACTTCCTGTTTACAAA	3060
${\tt AAGAAATCAGGGTAAAAAAAAAAAAAAACACTTGAGAACTATGGTCT}$	3120
TTATGGGTGCAATTTGAAATCCTTTTCATCATCTTACCAGACTAAACTAAGAGCACATAC	3180
${\tt CAAACCTATCTTATGGGTTGAAAGTTGGGGTTTATTTTTTATATGAGAATATTAT$	3240
${\tt TACATAACATACTCAGGACAAAGAACTTTGCTCAGGGAACATACCATGTAATATTTTTGT}$	3300
${\tt TGTTTCTTTACAGACTAGTCTACAGTCCTGCTTACTCAAAACAAAC$	3360
${\tt CTTTATATAAGTATTATGTACTGATGATAGTAACTACCTCTGAGTTTGACACAGATCAAA}$	3420
ATTTTTGAATATCAGATATCAGTTATCCTATTTTTATTTCATGTGAAAACTCCTCTAAAG	3480

CAGATTCCCTCAACTCTGTGCATATGTGAATATCACTGATGTGAACACATTGTTCATTTA	3540
CATAGGTAAAATATTACTCTGTTTACAGCAAAAGGCTACCTCATAGTTGATACATAGCAC	3600
ACCTGTATGTATGCTGTTCCAGCCTTACAGGTGGCTGATAATTCTCTGGTACAGAACCTT	3660
TTTATCTGTATTATAAATAGCAATTCACAACTGCATGTTTCTGACAAACACTTGTGAATA	3720
ATGAAGCATCTCGTTTTAGTTAGCAAAGTCTCCAAACATTTCCTTAAAATAATCATGTAT	3780
TTAGTTTAAAGAATTATGGGCACTGTTCAACTTAAGCAAAACAGAACACGGAAGCAGTCT	3840
TAGAAGCACCACTTTGCCCAGAGGTGGAGGTTGGAAGGGGTAGCAGGGAGAGGGGTTGGT	3900
GTATGCAGGTATTCATGCTAGGCAAAGAGTTTAAAAGACGCCAATGTCCTTCATTTACTG	3960
TCTGTGCTGCCCTGAAGCCAAGCGTATTGCAGCATTATAGCCCCAGGCACATAACTAAC	4020
AGCACTGGCTTGCCAAGGAATGAACATGCAATGCCATTACTAGCTATTGAGGGAAAAGGG	4080
TCTGTGTGAAGCATCACTTTGCAGGGATTACTAATGGTGGGGCAGCAGGTCTGTGAATTA	4140
AGTTATCTCTTGACCTCACCCTCATGTCAACACAAATGTAATTCCTAAACAAGATGCATT	4200
GCCAGTCTCTTAGCCCTGTAAGCTGATCTTTTGCTACATGGCAGACTATAATGAAAACAT	4260
TTTTATACTTGGGTTTCTAGTCTTCACTAGAAGGCCTTGGATGTATTTTTGCAGTTGAAA	4320
GATTTAGAAAGATTTTTACCTGCTTATAACTTGGAAGTTTAGAGTGCAATGTAAGAAAAA	4380
AGATCAAGAAATGTCATGTTATTAGCATCAGTCCACCTCCAATATTGCCGATACTTTTTT	4440
TATTCTGGCTCAGTTTTATTTTGCACCAGTGCGGCCCCAAGTTACTGCTGGTTGTATTTA	4500
GTTTGTGAATAGGAGCCCATAAGTGTTAATAGACTTTGTAACATTCACTATAAGATGAAT	4560
TATACAGGACATGGGAAATCTCATTAAGTCTTAAAGTTAATTTAAATTAATT	4620
TTCTCTAAGAAATGTTTATCATAAAATATATATGTGTATTTCCCCTTTGGTTATAAAATT	4680
TGGGAAAGTATGTACAAGTGCAGCTGCACTGACTTTAATTTTCTAGATGTCTTAATGAGA	4740
TTTATTTGTTTTAGAGAAGAACATCTTGTTAAAAGCATCAAACTCTGTCTTACATAGCTG	4800
TCAACAGCCTCTTTAAGATGTGGTGGTTGTATGATCTGTGTCTTAATTGTTCAGTTAGAG	4860
TGAGAAGTTGACCTATGATTCATTTTTAAATTTTATATTTTGGAACAAAGCTGCAAGTTAT	4920
GGTAAAGTACTGTGAGAAGTATTATGATATTTAATGCATCTGTGGCTTAACACTT	4980
GTGAGAGTTACCAGCTTGAAAATGATGGTGTTGACTACCTCTTGAATCACATCTATCAAC	5040
CACTGGCACCTACCACCAAGCTGGCTTCAATTAGTATGTGTTTGCTTTTTGGTATTAACAA	5100
CTAACCGTACTAGAGACCAAAGTGAACCCTGATTTTTATATGTCTTTAATAATGGTGTTT	5160
TATCTAGTGTTTTTAAATTATCCTGTGTAGTATTTAGATTACCTCATTGTCCATTTTGAC	5220
TCATGTTGTTTACAAGTGAAAATAAAAACACTTGAACTGTATGTTTTTAAAAGACAAAAA	5280
AGGGGTAGATGTTTGGAATGCGTTTCACTCGCATGCAGTCATCTGGAGGGACTGAAGCAC	5340
TGTTTGCCTTTCTGTACACTCTGGGTTTTATATTCTCATTTCATGCCTAATGTCTTATTC	5400
TGTCAATTATGGATATGTTGAGGTTTAAAAAAATTACTTGATTAAAAATAAAÂĆATATAA	5460
ССТТСССАТТТАААААААААААААААААААААААААААА	5507

Human K#2	1:MAEGGASKGGGEEPGKLPEPABEESQVLRGTGHCKWFNVRMG	42
Human	1:MGSVSNQQFAGGCAKAAEEAPEEAPEDAARAADEPQLLHGAGICKWFNVRMG	52
Mouse	1:MGSVSNQQFAGGCAKAAEKAPEEAPPDAARAADEPQLLHGAGICKWFNVRMG	52
Xenopus	1:MGSVSNQEITEGLPKSLDGTADIHKSDKSVIFQGSGVCKWFNVRMG	46
Drosophila	1:MENVQLENGLERRTTSQSSTSSANPANLASPTEECGCVRLGKCKWFNVAKG	51
C.elegans	1:MSTVVSEGRNDGNNRYSPQDEVEDRLPDVVDNRLTENMRVPSFERLPSPTPRYFGSCKWFNVSKG	65
Human K#2	43:FGFISMINREGSPLDIPVDVFVHQSKLFMEGFRSLKEGEPVEFTFKK—-SSKGLESIRVTGP-GG	105
Human	53:FGFLSMTARAGVALDPPVDVFVHQSKLHMEGFRSLKEGEAVEFTFKK—-SAKGLESIRVTGP-GG	115
Mouse	53:FGFLSMTARAGVALDPPVDVFVHQSKLHMEGFRSLKEGEAVEFTFKK—-SAKGLESIRVTGP-GG	115
Xenopus	47:FGFLTMTKKEGTDLETPLDVFVHQSKLHMEGFRSLKEGESVEFTFKKSSKGLESTQVTGP-GG	109
Drosophila	52:WGFLTPNDGGQEVFVHQSVIQMSGFRSLGEQEEVEFECQRTSRGLEATRVSSR-HG	107
C.elegans	66: YGFVIDDITGEDLFVHQSNLNMQGFRSLDEGERVSYYIQERSNGKGREAYAVSGEVEG	124
	コールドショックドメイン(CSD)	
		ì
Human K#2	106: SPCLGSERRPKGKTLQKRKPKGDRCYNCGGLD-HHAKECS-LPPQPKKCHYCQSIMHMVANCPHK	167
Human	116:VFCIGSERRPKGKSMQKRRSKGDRCYNCGGLD-HHAKECK-LPPQPKKCHFCQSISHMVASCPLK	177
Mouse	116:VFCIGSERRPKGKNMQKRRSKGDRCYNCGGLD-HHAKECK-LPPQPKKCHFCQSINHMVASCPLK	177
Xenopus	110:APCIGSERRPKVKGQQKRRQRGDRCYNCGGLD-HHAKECK-LPPQPKKCHFCQNPNHMVAQCPEK	171
Drosophila	108: GSCQGSTYRPRINRRTRRM-RCYNCGEFANHIASECA-LGPQPKRCHRCRGEDHLHADCPHK	166
C.elegans	125:QGLKGSRIHPLGRKKAVSL-RCFRCGKFATHKAKSCPNVKTDAKVCYTCGSEEHVSSICPER	184
	ジンクフィンガードメイン	•
Human K#2	168:NVAQPPASSQGRQEAESQPCTSTLPREVGGGHGCTSPPFPQEARAEISERSGRSPQEASSTKSSI	232
Human	178:AQQGPSAQGKPTYFREEEEEIHSPTLLPEAQN	209
Mouse	178:AQQGPSSQGKPAYF	191
Xenopus	172: AMQAANLEDQPITEEQELIPEIME	195
Drosophila	167: NVTQSHSNSKSISNNSSSSAAQEKSEEAT	195
C.elegans	185: RRKHRPEQVAABEAEAARMAAEKSSPTTSDDDIREKNSNSSDE	227
Human K#2	233: APEEQSKKGPSVQKRKKT	250

51/66

54/66

予測分子量 55.7kDa

図76

55/66

56/66

図/3

58/66

59/66

60/66

抗Xpress抗体 抗PEG10/ORF2抗体

図82

巡84

62/66

63/66

64/66

65/66

(盛小代高) 哈盛 浩癌部 (壓小代中) 储盛 浩嘉非 癌新(粘液癌) 非癌部 癌部(印環細胞型) 非癌部 (壓小代型)暗融 浩德非 浩德部 (壓小代型) 暗融 帝岛非

<u>家</u>

WO 2005/014818 PCT/JP2004/011650

66/66

図88

SEQUENCE LISTING

<110> ABURATANI, Hiroyuki; PERSEUS PROTEOMICS INC.; CHUGAI SEIYAKU	
KABUSHIKI KAISHA	
<120> Genes Highly Expressed in Cancers	
<130> PCG9001W0	
<150> JP 2003-290704	
<151> 2003-08-08	
<160> 292	
<170> PatentIn version 3.1	
<210> 1 ⋅	
<211> 19341	
<212> DNA	
<213> homo sapiens	
<400> 1	
agtaagaatc agcagcgcg gcaaggagta cggacgggag tcagaggcag agcgagggtg	60
tgtggagggc cggcgggac cgccgggagc gcgcggatgt cggtgttcct ggggccaggg	120
atgecetetg catetttatt agtaaatett ettteagett taeteateet atttgtgttt	180
ggagaaacag aaataagatt tactggacaa actgaatttg ttgttaatga aacaagtaca	240
acagitatic gicitatcat igaaaggata ggagagccag caaatgitac igcaatigta	300
tegetgtatg gagaggaege tggtgaettt tttgacacat atgetgeage ttttatacet	360
gccggagaaa caaacagaac agtgtacata gcagtatgtg atgatgactt accagggcct	420
gacgaaactt ttatttttca cttaacatta cagaaacctt cagcaaatgt gaagcttgga	480
tggccaagga ctgttactgt gacaatatta tcaaatgaca atgcatttgg aattatttca	540
tttaatatgc ttccctcaat cgcagtgagt gagcccaagg gcagaaatga gtctatgcct	600
cttactctca tcagggaaaa gggaacctat ggaatggtca tggtgactti tgaggtagag	660
ggtggcccaa atccccctga tgaagatttg agtccagtta aaggaaatat cacctttccc	720
cctggcagag caacagtaat ttataacttg gcagtactcg atgacgaggt accagaaaat	780
gatgaaatat ttttaattca actgaaaagt gtagaaggag gagctgagat taacacctct	840
aggaattcca ttgagatcat cattgagaaa aatgatagtc ccgtgagatt ccttcagagt	900
atttatttgg ttcctgagga agaccacata ctcataattc cagtagttcg tggaaaggac	960
aacaatggaa atctgattgg atctgatgaa tatgaggttt caatcagtta tgctgtcaca	1020
actgggaatt ccacagcaca tgcccagcaa aatctggact tcattgatct tcagccaaac	1080
acaactgitg titticcacc tittaticat gaatcicact tgaaattica aatagitgat	1140
gacaccatac cggagattgc tgaatcgttt cacattatgt tactaaaaga taccttacag	1200
ggagatgctg tgctaataag cccttctgtt gtacaagtca ccattaagcc aaatgataaa	1260
ccttatggag tcctttcatt caacagtgtt ttgtttgaaa ggacagttat aattgatgaa	1320

gatagaatat caagatatga agaaatcaca giggtiagaa atggaggaac ccatgggaat 1380 gtctctgcga attgggtggt gacaccgaac agcactgatc cctcaccagt aacagcagat 1440 atcagaccga gctctggagt tcttcatttt gcacaagggc agatgttggc aacaattcct 1500 cttactgggg gtgatgatga tcttccagaa gaggcagaag cttatctact tcaaattctg 1560 cctcatacaa tacgaggagg tgcagaagtg agcgagccag cggagctttt gttctacatt 1620 caggatagtg atgatgtcta tggcctaata acattttttc ctatggaaaa ccagaagatt 1680 gaaagcagcc caggtggacg atacttatcc tigagtttta caagactagg agggactaaa 1740 ggagatgtga ggttgcttta ttctgtactt tacattcctg ctggagctgt ggaccccttg 1800 caagcaaaag aaggcatett aaatatatea aggagaaatg aceteatttt teeagageaa 1860 aaaactcaag tcactacaaa attaccaata agaaatgatg cattccttca aaatggagct 1920 cactticiag tacagitgga aacigiggag tigitaaaca taattccici aatcccaccc 1980 ataagcccta gattigggga aatcigcaat attictitac iggitacicc agccatigca 2040 aatggagaaa ttggctttct cagcaatctt ccaattattt tgcatgaacc agaagatttt 2100 gctgctgaag tggtatacat tcccttacat cgggatggaa ctgatggcca ggctactgtc 2160 tactggagtt tgaagccctc tggctttaat tcaaaagcag tgaccccgga tgatataggc 2220 ccctttaatg gctctgtttt gtttttatct gggcaaagtg acacaacaat caacattact 2280 atcaaaggtg atgacatacc ggaaatgaat gaaactgtaa cactttctct agactgggtt 2340 aacgtggaaa accaagtgct gaaatctgga tatactagcc gtgacctaat tattttggaa 2400 aatgatgacc ctgggggagt ttttgaattt tctcctgctt ccagaggacc ctatgttata 2460 aaagaaggag aatctgtaga gctccacatc atccgatcaa gggggtccct tgttaagcag 2520 tttctacact accgagtaga gccaagagat agcaatgaat tctatggaaa cacgggagta 2580 ctagaattta aacctggaga aagggagata gtgatcacct tgctagcaag attggatggg 2640 ataccagagt tggatgaaca ctactgggtg gtcctcagca gccacggaga acgggaaagc 2700 aagttgggaa gtgccaccat tgtcaatata acgattctga aaaatgatga tcctcatggc 2760 attatagaat tigiticiga iggictaatt gigaigataa aigaaagcaa aggagaigci 2820 atctatagtg ctgtttatga tgtagtaaga aatcgaggca actttggtga tgttagtgta 2880 tcatgggtgg ttagtccaga ctttacacaa gatgtatttc ctgtacaagg gactgttgtc 2940 tttggagatc aggaattttc aaaaaatatc accatttact cccttccaga tgagattcca 3000 gaagaaatgg aagaatttac cgttatccta ctgaatggca ctggaggagc taaagtggga 3060 aatagaacaa ctgcaactct gaggattaga agaaatgatg accccattta ttttgcagaa 3120 cctcgtgtag tgagggttca agaaggggag actgccaact ttacagttct cagaaatgga 3180 tctgttgatg tgacttgcat ggtccagtat gctaccaagg atgggaaggc tactgcaaga 3240 gagagagatt tcattcctgt tgaaaaagga gaaacgctca tttttgaggt tggaagtaga 3300 cagcagagca tatccatatt tgttaatgaa gatggtatcc cggaaacaga tgagcccttt 3360 tatataatcc tettgaatte accaggigat ccagtagtat atcaataigg agtagetaca 3420 gtaataattg aagctaatga tgacccaaat ggcatttttt ctctggagcc catagacaaa 3480 gcagtggaag aaggaaagac taatgcattt tggattttga ggcaccgagg atactttggt 3540

agtgtttctg	tatcttggca	gctctttcag	aatgattctg	ctttgcagcc	tgggcaggag	3600
ttctatgaaa	cttcaggaac	tgttaacttc	atggatggag	aagaagcaaa	accaatcatt	3660
ctccatgctt	ttccagataa	aattcctgaa	ttcaatgaat	tttatttcct	aaaacttgta	3720
aacatttcag	gtggatcccc	aggtcctggg	ggccagctag	cagaaaccaa	cctccaggtg	3780
acagtaatgg	ctccattcaa	tgatgatccc	tttggagttt	ttatcttgga	tccagagtgt	3840
ttagagagag	aagtggcaga	agatgtcctg	tctgaagatg	atatgtctta	tattaccaac	3900
ttcaccattt	tgaggcagca	gggtgtgttt	ggtgatgtac	aactgggctg	ggaaatactg	3960
tccagtgagt	tccctgctgg	tctgccacca	atgatagatt	ttttactggt	tggaattttc	4020
cccaccaccg	tgcatttaca	acagcacatg	cggggtcacc	acagtggaac	ggatgctttg	4080
tactttaccg	gactagaagg	tgcatttggg	actggtaatt	caaaatacca	tcccttcagg	4140
aataatacaa.	ttgccaactt	tacattttca	gcttgggtaa	tgcccaatgc	caatacgaat	4200
		tgacggtaat				4260
acaaacgaat	cccatgtgac	actttccctt	cattataaaa	ccttgggttc	caatgctaca	4320
tacattgcca	agacaacagt	catgaaatat	ttagaagaaa	gtgtttggct	tcatctacta	4380
		aatcgaattc				4440
atcaagagtc	tgaaaggaga	agccattact	gacggtcctg	ggatactgag	aattggagca	4500
		atttacaggt				4560
aaactgacgc	t t gaagaaa t	ttatgaactt	catgccatgc	ccgcaaaaaag	tgatttacac	4620
ccaatttctg	gațatctgga	gttcagacag	ggagaaacta	acaaatcatt	cattatttct	4680
gcaagagatg	acaatgacga	ggaaggagaa	gaattattca	ttcttaaact	agtttctgta	4740
		ggaagaaaat				4800
		tggtttcaca				4860
		ggt tgagaga				4920
		tgaaactgat				4980
		attccttcct				5040
		tgaacttaat				5100
		aggctcaact				5160
		catcaaagct			_	5220
		gcctaaggac				5280
		agatggagaa				5340
		ggaatttaga				5400
		cacattagaa				5460
		ttctattcct				5520
		agctgaactc				5580
		tccaactatt				5640
		agcctctgac				5700
gagtcactct	ttgtcagtgg	aactgaacca	gaagatgggt	atagcactgt	tacattaaat	5760

PCT/JP2004/011650

gttataagac atcatggaac tctgtctcca gtgactttgc attggaacat agactctgat 5820 cctgatggtg atctcgcctt cacctctggc aacatcacat ttgagattgg gcagacgagc 5880 gccaatatca ctgtggagat attgcctgac gaagacccag aactggataa ggcattctct 5940 gtgtcagtcc tcagtgtttc cagtggttct ttgggagctc atattaatgc cacgttaaca 6000 gttttggcta gtgatgatcc atatgggata ttcatttttt ctgagaaaaa cagacctgtt. 6060 aaagttgagg aagcaaccca gaacatcaca ctatcaataa taaggttgaa aggcctcatg 6120 ggaaaagtcc tigtctcata tgcaacacta gatgatatgg aaaaaccacc ttattttcca 6180 cctaatttag cgagagcaac tcaaggaaga gactatatac cagcttctgg atttgctctt 6240 tttggagcta atcagagtga ggcaacaata gctatttcaa ttttggatga tgatgagcca 6300 gaaaggtccg aatctgtctt tatcgaacta ctcaactcta ctttagtagc gaaagtacag 6360 agtcgttcaa ttccaaattc tccacgtctt gggcctaagg tagaaactat tgcgcaacta 6420 attatcattg ccaatgatga tgcatttgga actcttcagc tctcagcacc aattgtccga 6480 gtggcagaaa atcatgttgg acccattatc aatgtgacta gaacaggagg agcatttgca 6540 gatgicicig igaagiitaa agcigigcca ataacagcaa tagciggiga agattatagi 6600 atagcttcat cagatgtggt ctigctagaa ggggaaacca gtaaagccgt gccaatatat 6660 gtcattaatg atatctatcc tgaactggaa gaatcttttc ttgtgcaact gatgaatgaa 6720 acaacaggag gagccagact aggggcttta acagaggcag tcattattat tgaggcctct 6780 gatgacccct atggattatt tggttttcag attactaaac ttattgtaga ggaacctgag 6840 tttaactcag tgaaggtaaa cctgccaata attcgaaatt ctgggacact cggcaatgtt 6900 accettcagt gggttgccac cattaatgga cagcttgcta ctggcgacct gcgagttgtc 6960 tcaggtaatg tgaccttigc ccctggggaa accattcaaa ccttgttgtt agaggtcctg 7020 gctgacgacg ttccggagat tgaagaggtt atccaagtgc aactaactga tgcctctggt 7080 ggaggtacta ttgggttaga tcgaattgca aatattatta ttcctgccaa tgatgatcct 7140 tatggtacag tagcctttgc tcagatggtt tatcgtgttc aagagcctct ggaaagaagt 7200 tcctgtgcta atataactgt caggcgaagc ggagggcact ttggtcggct gttgttgttc 7260 tacagtactt ccgacattga tgtagtggct ctggcaatgg aggaaggtca agatttactg 7320 tcctactatg aatctccaat tcaaggggtg cctgacccac tttggagaac ttggatgaat 7380 gtctctgccg tgggggagcc cctgtatacc tgtgccactt tgtgccttaa ggaacaagct 7440 tgctcagcgt tttcattttt cagtgcttct gagggtcccc agtgtttctg gatgacatca 7500 tggatcagcc cagctgtcaa caattcagac ttttggacct acaggaaaaa catgaccagg 7560 gtagcatctc titttagtgg tcaggctgtg gctgggagtg actatgagcc tgtgacaagg 7620 caatgggcca taatgcagga aggtgatgaa ttcgcaaatc tcacagtgtc tattcttcct 7680 gatgatticc cagagatgga tgagagitti ctaattictc tccttgaagi tcacctcatg 7740 aacatttcag ccagtttgaa aaatcagcca accataggac agccaaatat ttctacagtt 7800 gicatagcac taaatggiga tgccttigga gigttigiga tctacaatat tagtcccaat 7860 acticcgaag atggcttatt tgitgaagtt caggagcagc cccaaacctt ggtggagctg 7920 atgatacaca ggacaggggg cagcitaggi caagiggcag icgaaiggcg igitgiigt 7980

ggaacagcta	ctgaaggttt	agattttata	ggtgctggag	agattttgac	ctttgctgaa	8040
ggtgaaacca	aaaagacagt	cattttaacc	atcttggatg	actctgaacc	agaggatgac	8100
gaaagtatca	tagttagttt	ggtgtacact	gaaggtggaa	gtagaatttt	gccaagctcc	8160
gacactgtta	gagtgaacat	tttggccaat	gacaatgtgg	caggaattgt	tagctttcag	8220
a cagcttcca	gatctgtcat	aggtcatgaa	ggagaaattt	tacaattcca	tgtgataaga	8280
actttccctg	gtcgaggaaa	tgttactgtt	aactggaaaa	ttattgggca	aaatctagaa	8340
ctcaattttg	$\tt ctaactttag$	cggacaactt	ttctttcctg	aggggtcgtt	gaatacaaca	8400
ttgtttgtgc	atttgttgga	tgacaacatt	cctgaggaga	aagaagtata	ccaagtcatt	8460
ctgtatgatg	tcaggacaca	${\tt aggagttcca}$	ccagccggaa	tcgccctgct	tgatgctcaa	8520
ggatatgcag	ctgtcctcac	agtagaagcc	agtgatgaac	cacatggagt	tttaaatttt	8580
gctctttcat	caagatttgt	gttactacaa	gaggctaaca	taacaattca	gcttttcatc	8640
aacagagaat	ttggatctct	aggagctatc	aatgtcacat	at accacggt	tcctggaatg	8700
ctgagtctga	agaaccaaac	agtaggaaac	$\tt ctag cag ag c$	cagaagttga	ttttgtccct	8760
atcattggct	ttctgatttt	agaagaaggg	gaaacagcag	cagccatcaa	cattaccatt	8820
cttgaggatg	atgtaccaga	gctagaagaa	tatttcctgg	tgaatttaac	ttacgtggga	8880
cttaccatgg	ctgcttcaac	ttcatttcct	cccagactag	attcagaagg	tttgactgca	8940
caagttatta	ttgatgccaa	tgatggggcc	cgaggtgtaa	ttgaatggca	acaaagcagg	9000
tttgaagtaa	atgaaaccca	tggaagttta	acattggtag	cccagaggag	cagagaacct	9060
cttggccatg	tttccttatt	tgtgtatgct	cagaatttgg	aagcacaagt	ggggctggat	9120
tatatettea	ccccaatgat	tcttcatttt	gctgatggag	aaaggtataa	aaatgtcaat	9180
atcatgattc	ttgatgatga	cattccagaa	ggagatgaaa	aatttcagct	gattttaaca	9240
aatccttctc	ctggactaga	gctagggaaa	aatacaatag	ccttaattat	tgtccttgct	9300
aatgatgacg	gccctggagt	tctatcattt	aacaacagtg	agcactttt	cctaagagag	9360
ccaacagctc	tctacgtcca	ggagagtgtt	gcagtattgt	acattgttcg	ggaacctgca	9420
caaggattgt	ttggaacagt	gacagttcag	ttcattgtga	cagaagtgaa	ttcctcaaat	9480
gaatctaaag	atctgactcc	ttccaaaggc	tatattgttt	tagaagaagg	tgttcgattc	9540
aaggccctac	aaatatctgc	catattagac	acggaaccag	aaatggatga	gtattttgtt	9600
tgcaccttgt	ttaatccaac	tggaggtgct	agactagggg	tgcatgttca	aaccctgata	9660
acagttttgc	aaaaccaggc	ccctttgggg	ctattcagta	tctctgcagt	tgaaaataga	9720
		agaagccaat				9780
		gagtgtgcag				9840
		gttttccgta			-	9900
ggctggtgtt	tctttacttt	ggaaaattta	atatatggta	taatgttaag	aaaatcatct	9960
		ggggatttt			_	10020
cctaaaactt	gtgaggcctt	taatattggt	ttttctccct	actttgtgat	tactcatgaa	10080
		ttctcttaac				10140
ttattcctgg	tacaaacaat	cattattctg	gaaagttctc	aagtaagata	ttttacttca	10200

WO 2005/014818 PCT/JP2004/011650

gacagccaag	attatttaat	cattgcaagt	caaagagatg	attccgaatt	aactcaggtc	10260
tt caggtgga	atggaggaag	cttcgtgttg	catcaaaaac	tccctgtccg	aggtgtgctg	10320
accgtggcct	tgttcaacaa	gggaggctct	gtgttcttag	ccatttccca	ggctaatgcc	10380
aggctaaact	cccttttatt	cagatggtct	ggcagtgggt	ttattaacti	tcaagaggtg	10440
cctgtcagtg	ggacaacaga	agttgaggct	ttgtcttcag	ccaatgatat	ttacctaata	10500
tttgccgaaa	atgtctttct	aggagatcag	aattcaattg	atattttcat	ctgggagatg	10560
ggacagtctt	$\tt ccttcaggta$	ttttcagtct	gtagattttg	ctgctgttaa	cagaatccac	10620
tccttcacac	cagcctcagg	aatagcccac	atacttctta	ttgggccaag	atatgtctac	10680
tcttttactg	$\tt ctggaaattc$	ggagcgtaat	caattctctt	ttgttctgga	agtaccttct	10740
gcttatgatg	tggtttctgt	tacagtaaag	tcccttaatt	caagcaagaa	tttaatagct	10800
ctagtgggag	${\tt ctcattcaca}$	tatatatgag	ctagcctaca	tttccagcca	ttctgacttt	10860
attcctagtt	caggtgaact	gatatttgaa	cctggtgaga	gagaagctac	aatagcagta	10920
aatatccttg	atgatacagt	tccagaaaaa	gaagaatcct	tcaaagttca	acttaaaaat	10980
cccaaaggag	gagcagagat	tggcattaat	gattctgtaa	caataaccat	tctgtctaat	11040
gatgatgcct	atggaattgt	tgcatttgct	cagaatt cat	tatataagca	agtggaagaa	11100
atggagcaag	atagcctagt	aaccttgaac	gttgaacgct	taaaaggaac	atatggccgt	11160
ataaccatag	catgggaagc	tgatggaagt	attagtgata	tatttcctac	ctcaggagtg	11220
attttattta	ctgaaggcca	ggtactgtca	$a caat cact \\ c$	taactattct	tgctgataat	11280
ataccagagt	tațcagaggt	tgtgattgta	${\tt accctcaccc}$	gtatcaccac	agaaggggtt	11340
gaggactcat	acaaaggtgc	tactattgat	caggacagaa	gcaagtctgt	tataacaact	11400
ttgcccaatg	actcaccttt	tggcttggtg	ggctggcgtg	ctgcgtctgt	cttcattaga	11460
gtagcagagc	ctaaagaaaa	caccaccact	${\tt cttcagttac}$	aaatagctcg	agataaagga	11520
ctacttgggg	atattgccat	tcacttgaga	gctcaaccca	atttcttact	gcatgtcgat	11580
aatcaagcta	ctgagaatga	agattatgta	ttgcaagaaa	caataataat	aatgaaagaa	11640
aacataaaag	aagctcatgc	cgaagtttcc	attttgccgg	atgaccttcc	tgaattggag	11700
gaaggattta	ttgtcactat	cactgaggtg	aacctggtga	actctgactt	ctctacagga	11760
cagccaagtg	tgcggaggcc	cggaatggaa	atagctgaga	taatgataga	agaaaatgac	11820
gatcccagag	gaatttttat	gtttcatgtt	actagaggcg	ctggggaagt	tattactgcc	11880
tatgaggtgc	ctccaccctt	gaacgttctt	caagttcctg	tagtccggct	ggctggaagc	11940
tttggggcag	taaatgiita	ttggaaagca	tcaccagaca	gtgctggcct	ggaagacttt	12000
aaaccatctc	atgggattct	tgaatttgca	gataaacagg	ttactgcaat	gatagaaatc	12060
accataattg	atgatgctga	atttgaattg	acagagacgt	tcaatatttc	cttgatcagt	12120
gttgctggag	gtggcagact	tggtgatgat	gttgtggtaa	ctgttgttat	tccacaaaat	12180
gattctccat	ttggagtatt	tggatttgaa	gaaaagactg	taatgattga	tgaatccctt	12240
tcatccgatg	accctgattc	atatgtgaca	ttgacggttg	tccggtcccc	aggaggaaaa	12300
ggaaccgtcc	gacttgagtg	gaccatagat	gagaaggcta	aacataacct	tagicctttg	12360
aatgggaccc	ttcattttga	tgagactgag	tcccagaaga	ccattgtgtt	gcacacactt	12420

caagacacag	tgttggagga	ggacaggcgt	ttcaccattc	agctgatatc	aattgatgag	12480
gtagaaatat	ctccagtaaa	aggtagtgca	tcaataatta	ttcggggtga	taagcgagca	12540
tcaggagaag	ttgggatagc	tccgtcatct	aggcacatcc	tcattgggga	accctcagca	12600
aaatataatg	gtaccgctat	tatcagcctt	gttcgaggcc	cagggatttt	gggggaggtc	12660
acagtgttct	ggaggatatt	ccctccttcc	gtgggggaat	ttgctgaaac	atcaggaaaa	12720
ctgacaatgc	gagacgaaca	gtctgcagtc	attgtagtaa	tacaggcttt	gaacgatgac	12780
attcccgagg	aaaaaagctt	ctatgagttt	cagctcactg	cagtcagtgg	gggaggagtt	12840
ctgagtgaat	ccagcagcac	tgccaacatc	acggtggtgg	ccagcgactc	tccctatggc	12900
cgatttgcct	tttcacatga	gcaacttcga	gtgtcagaag	cacagagggt	taacatcaca	12960
atcatccgtt	ccagtggaga	ttttggccat	gtgcgactct	ggtacaagac	gatgagcggg	13020
acagcggaag.	${\tt caggcttgga}$	ttttgttcct	gcagcagggg	agctcctctt	tgaagcaggg	13080
gagatgagga	aaagtctgca	tgttgaaatc	cttgatgatg	actatcctga	aggcccagag	13140
gaattttctc	taacaattac	aaaggtggaa	$\tt ctccagggaa$	gagggtatga	ttttaccatt	13200
caagaaaatg	$\verb"gacttcagat"$	agatcaacct	cctgaaatag	gaaacatctc	cattgttcgc	13260
atcataataa	tgaaaaatga	taacgcagaa	ggcatcattg	aatttgaccc	aaagtatact	13320
gccttcgaag	tggaggaaga	tgttgggctg	atcatgatcc	cagtggtgag	gctacatgga	13380
acttatggct	atgtgacagc	tgatttcatc	tctcagagct	cctctgccag	tcccggaggt	13440
gttgattaca	ttttgcatgg	cagtacagtc	${\tt acctttcagc}$	atgggcaaaa	cttaagtttt	13500
ataaatatct	ccatcattga	tgacaatgaa	agtgaatttg	aggagcccat	tgaaattcta	13560
ctcactggag	ctactggagg	agcggtcctt	gggcgccacc	tagtgagcag	aatcataata	13620
gctaagagtg	actctccctt	tggagttata	aggtttctca	atcaaagcaa	aatttctatt	13680
gctaatccca	attccacaat	gattttatca	ctggtgctgg	agcggactgg	aggactcttg	13740
ggagagattc	aggtgaactg	ggagacagta	ggacccaact	ctcaagaagc	cttactgcca	13800
cagaatagag	acattgcaga	cccagtgagc	gggttgttct	attttggaga	aggagaagga	13860
ggagtgagaa	ccataattct	gacaatctat	cctcatgaag	aaattgaagt	tgaagagaca	13920
ttcattatta	aacttcatct	tgtgaaagga	gaagctaaat	tagactccag	agctaaagat	13980
gttacattaa	ccatacaaga	gtttggtgac	ccaaatggag	ttgttcagtt	tgctcctgaa	14040
actttgtcta	agaagactta	ttcagagcct	ctggctctgg	aagggcccct	gctcattacc	14100
		gggcaccttt				14160
agtgagtttg	acattactga	agactttctt	tccaccagtg	gatttttcac	cattgctgat	14220
ggagagagtg	aagctagctt	tgatgttcat	ttgctaccag	atgaggtacc	tgagatagag	14280
gaagattatg	tgatccagct	tgtttctgta	gagggaggag	ccgaactgga	tctggagaag	14340
agtatcacat	ggttctctgt	ttatgcaaat	gatgacccac	atggagtatt	tgccctgtat	14400
teggategee	agtcaatact	tattgggcag	aaccttatta	gatccatcca	aattaacata	14460
acccggcttg	ctggaacatt	tggagatgtg	gctgttgggc	ttcgaatatc	atcggatcat	14520
		cgaaaatgca				14580
acatataaag	tggacgtggt	gccaataaag	aatcaggtct	tcctatcact	gggctctaat	14640

ttcactttgc aactggtgac tgtgatgctt gtcggtggac gtttctatgg aatgccaaca 14700 attetteagg aagcaaaate tgetgteett ceagtetetg agaaagetge caatteteag 14760 gtcggatttg aatccactgc ttttcaactc atgaacatca ctgctggcac aagccacgtt 14820 atgatticta ggagaggcac atatggagct ctctcggttg cctggaccac tggatatgct 14880 cctgggttag aaattcctga attcattgtt gttggcaaca tgaccccaac actggggagc 14940 ctttcatttt cccacggtga acaaaggaaa ggagttttcc tgtggacgtt tcctagccct 15000 ggttggccag aggcctttgt tcttcaccta tcaggagtgc agagcagtgc tcctggcgga 15060 gctcaactcc gatcaggttt cattgttgct gaaattgaac caatgggcgt cttccaattt 15120 tecactaget caagaaatat catagtgtea gaagatacae agatgateag attacatgta 15180 caaagactat tigggitcca cagcgatcii attaaagtii citatcagac cacigcagga 15240 agcgccaagc cactggaaga ttttgagcct gttcagaatg gggaactgtt ttttcaaaaa 15300 ttccaaactg aggitgattt tgaaataacc attattaatg atcagcittc tgagatagaa 15360 gaattittit acattaacci tacticagia gaaattaggg gattacaaaa gittgatgit 15420 aattggagcc cacgcctgaa tctagatttc agtgttgcag tgattacaat attggataat 15480 gatgacctgg caggaatgga tatttccttc cccgagacaa ctgtggctgt agcagttgac 15540 acaactetea tteetgtaga aactgaatee aceacatace teageacaag caagaegaet 15600 accattctgc agccaaccaa cgtggttgcc attgttactg aggcaactgg tgtatctgcc 15660 atccctgaga aacttgtcac ccttcatggc acacctgctg tgtctgaaaa gcctgatgtg 15720 gccactgtaa ctgccaatgt ttccattcat ggaacattca gccttgggcc atccattgtt 15780 tatattgaag aggagatgaa gaatggcaca ttcaacactg cagaagttct tatccgaaga 15840 actggtgggt ttactggcaa tgtcagcata acagttaaaa ctttcggtga aagatgtgct 15900 cagatggaac caaatgcatt gccctttcgt ggtatctatg ggatttccaa cctaacatgg 15960 gcagtigaag aagaagactt tgaagaacaa actcttaccc ttatattcct agatggagaa 16020 agagaacgta aagtatcagt tcaaattttg gatgatgatg agcctgaggg gcaggaattc 16080 ttctacgtgt ttctcacaaa ccctcaaggg ggagcacaga ttgtggaggg gaaggatgat 16140 actggatttg cagcttttgc catggttatt attacaggga gtgaccttca caatggcatc 16200 ataggattca gtgaggagtc ccagagtgga ctagaactca gggaaggagc tgttatgaga 16260 agattgcacc ttattgtcac aagacagcca aacagggcct ttgaagatgt caaggtcttt 16320 tggcgagtca cacttaacaa aacagtcgtc gtgctccaga aggatggggt aaacctgatg 16380 gaggaactic agictgigic agggaccaca accigiacaa igggicaaac aaaaigciit 16440 atcagcattg aactcaaacc agaaaaggta ccacaggttg aagtgtattt ttttgtggaa 16500 ctatatgaag ctactgctgg agcagcaata aacaacagtg ccagattcgc acagattaaa 16560 atcttagaaa gtgatgaatc tcaaagcctt gtgtattttt ctgtgggttc tcggctggca 16620 gtggctcaca agaaggccac titaatcagt ctgcaggtgg ccagagattc tgggacagga 16680 ctaatgatgt ctgttaactt tagtacccag gagttgagga gtgctgaaac aattggtcgt 16740 accaicatat ciccagciat ticiggaaag gattitgiga taacigaagg cacatiggic 16800 tttgaacctg gccagagaag cactgtattg gatgtcatcc taacgccaga gacaggatct 16860

		cttccagatt	gtcctttttg	acccaaaagg	tggtgccaga	16920
a + + ma + a a a m						
aligalaaag	tgtatgggac	tgccaacatc	actcttgtct	cagatgcaga	ttcgcaggcc	16980
atttgggggc	ttgcagatca	gctacatcag	cctgtgaatg	atgatattct	caacagagtg	17040
ctccatacca	tcagcatgaa	agtggccaca	gaaaacacag	atgaacaact	cagtgccatg	17100
atgcatctaa	tagaaaagat	aactactgaa	ggaaaaattc	aagctttcag	tgttgccagc'	17160
cgaactcttt	tctatgagat	tctttgttct	$\tt cttattaacc$	caaagcgcaa	ggacactagg	17220
ggattcagtc	actttgctga	agtgactgag	aattttgcct	tttctctgct	gactaatgtt	17280
acttgcggct	$\tt ctcctggtga$	aaaaagcaaa	accat ccttg	atagttgccc	atatttgtca	17340
atattggctc	ttcactggta	tcctcagcaa	atcaatggac	a caagtttga	aggaaaggaa	17400
ggagattaca	ttcgaattcc	agagaggcta	${\tt ctggatgtcc}$	aggatgcaga	aataatggct	17460
gggaaaagta	catgtaaatt	agtccagttt	acagagtata	gcagccaaca	gtggtttata	17520
agtggaaaca	atcttcctac	cctaaaaaat	aaggtattat	ctttgagtgt	gaaaggtcag	17580
agttcacaac	tcctgactaa	tgacaatgag	gttctctaca	$\tt ggatttatgc$	tgctgagcct	17640
agaattattc	ctcagacatc	tctgtgtctc	ctttggaatc	${\tt aggctgctgc}$	aagctggttg	17700
tctgacagtc	agttttgcaa	agtgattgag	gaaactgcag	$actat \verb gtgga $	atgtgcctgt	17760
tcacacatgt	ctgtgtatgc	tgtctatgct	${\tt cggactgaca}$	acttgtcttc	atacaatgaa	17820
gccttcttca	cttctggatt	tatatgtatc	tcaggtcttt	gcttggctgt	tctttcccat	17880
atcttctgtg	ccaggtactc	catgitigca	gctaaacttc	tgactcacat	gatggcagcc	17940
agcttaggta	caçagattct	gtttctggcg	tctgcatacg	caagtcccca	actcgctgag	18000
gagagctgtt	cagctatggc	tgctgtcaca	cattacctgt	atctttgcca	gtttagctgg	18060
atgctcattc	agtctgtgaa	tttctggtac	gtgctggtga	tgaatgatga	gcacacagag	18120
aggcgatatc	tgctgttttt	ccttctgagt	tggggactac	cagcttttgt	ggtgattctc	18180
ctcatagtta	ttttgaaagg	aatctatcat	cagagcatgt	cacagatcta	tggactcatt	18240
catggtgacc	tgtgttttat	tccaaacgtc	tatgctgctt	tgttcactgc	agctcttgtt	18300
cctttgacgt	gcctcgtggt	ggtgttcgtg	gtgttcatcc	atgcctacca	ggtgaagcca	18360
cagtggaaag	catatgatga	tgtcttcaga	ggaaggacaa	atgctgcaga	aattccactg	18420
attttatatc	tctttgctct	gatttccgtg	acatggcttt	ggggaggac t	acacatggcc	18480
						18540
gttttcatgg	tttatttcat	tttacacaac	caaatgtgtt	gccctatgaa	ggccagttac	18600
						18660
						18720 -
gaggtgccac	ctgactggga	gagagcatcc	ttccaacagg	gcagtcaggc	cagccctgat	18780
						18840
tcactgatag	ccgatgagga	gtcccaggag	tttgatgatt	taatatttgc	attaaaaact	18900
						18960
ttgactgact	cccagatcgt	ggagctcagg	aggataccca	tcgccgacac	tcacctgtag	19020
cacctcacta	accattcgac	tgagcacact	ttcatatttg	tatcagcttt	tgtgctaaaa	19080
	atttgggggc ctccatacca atgcatctaa cgaactcttt ggattcagtc acttgcggct atattggctc ggagattaca gggaaaagta agtggaaaca agttcacaac agaattattc tctgacagtc tcacacatgt gccttcttca atcttctgtg agcttaggta gagagctgtt atgctcattc aggcgatatc ctcatagtta catggtgacac ctttgacgt catggtgacac ttaaagcact gttttcatgg acttttatatc tacagacact gttttcatgg actgtgaaa atgcctcctg gaggtgccac ttaaagccaa tcactgatag ggtgctggtc ttgactgact	atttggggc ttgcagatca ctccatacca tcagcatgaa atgcatctaa tagaaaagat cgaactcttt tctatgagat ggattcagtc actttgctga acttgcggct ctcctggtga atattggctc ttcactggta ggagattaca ttcgaattcc gggaaaagta catgtaaatt agtggaaaca atcttcctac agttcacaac tcctgactaa agaattattc ctcagacatc tctgacagtc agtttgcaa tcacacatgt ctgtgtatgc gccttcttca cttctggatt atcttctgtg ccaggtactc agcttaggta cacagattct gagagctgtt cagctatggc atgctcattc agtctgtgaa aggcgatatc tgtgtttt ctcatagtta ttttgaaagg catggtgacc tgtgttttat cctttgacgt gcctcgtggt cagtggaaag catatgatga attttatatc tcttggatgt gttttcatgg tttatttcat actgggaaag catatgatga attttatatc tctttgctct tacagacact tctggatgtt gttttcatgg tttatttcat actgtggaaa tcatgagga gaggtgccac ctgactggga ttaaagccaa gtccacaaaa tcactgatag ccgatgagga ggtgctggtc tcagtgtcag ttgactgact cccagatcgt	atttgggggc ttgcagatca gctacatcag ctccatacca tcagcatgaa agtggccaca atgcatctaa tagaaaagat aactactgaa cgaactcttt tctatgagat tctttgttct ggattcagtc actttgctga agtgactgag acttgcggct ctcctggtga aaaaagcaaa atattggctc ttcactggta tcctcagcaa ggagattaca ttcgaattcc agagaggcta gggaaaagta catgtaaatt agtccagtt agtggaaaca atcttcctac cctaaaaaat agttcacaac tcctgactaa tgacaatgag agaattattc ctcagcaa tgacaatgag agaattattc ctcagacatc tctgtgtctc tctgacagtc agttttgcaa agtgattgag tcacacatgt ctgtgtatgc tgtctatgct gccttcttca cttctggatt tatatgtatc atcttctgtg ccaggtactc catgtttgca agcttaggta cacagattct gtttctggcg gagagctgtt cagctatggc tgctgtcaca atgctcattc agtctgtaa tttctggtac aggcgatatc tgctgtttt ccttctgagt ctcatagtta ttttgaaag aatctatcat catggtgacc tgtgtttta tccaaacgtc cctttgacgt gcctcgtgtt ggtgtcgtg cagtggaaag catatgatga tgtctcaga attttatatc tctttgctct gatttccgtg tacagacact tctggatgt ggtgttcgtg tacagacact tctggatgt ggttccttt gttttcatgg tttatttcat tttacacaac actgtggaaa tgaatggca tcctggaccc atgcctcctg ctggaggga aaicagcaag gaggtgccac ctgactgga gagagcatcc ttaaagccaa gccacaaaa tggagccacg tcactgatag cccacaaaa tggagccacg tcactgatag cccacaaaa tggagccacg tcactgatag cccagaagg ggtgctggtc tcagtgtcag tgataatgaa ttgactgact cccagatcgt ggagctcagg	atitiggggg tiggagata getacateag cetigtaatg ciccatacca teageatgaa agtiggecaca gaaaacacag atgeatetaa teageatgaa aactaetgaa ggaaaaatte egaactetit tetatgagat tettigttet eitattaace ggatteagte actitigetga agtigaetgag aatitigeet actigegget cicciggta aaaaageaaa aceateetig atatitigete ticactiggta teeteagaattee ggagaattaca ticgaattee agaagaggeta etggatgtee ggagaaaagta eatitieetae etaaaaat aagteatata agticacaac teetigaatatie eteagaattee eteagaattatie eteagaattee eteagaattee eteagaattatie eteagaattee eteagaattee eteagaattatie eteagaatte etetiggate eteagaattatie eteagaate eteagaatte etetiggate eteagaateage eteacacatig etetigaate eteagaatee ete	atitiggggg tigcagatca gciacatcag ccigigaatg atgatatici ciccatacca tcagcatgaa agtggccaca gaaaacacag atgaacacat atgaatcata tagaaaagat aactactgaa ggaaaaaattc aagciticag cgaactciti tctatgagat tctitigtici citattaacc caaagcgcaa ggaticagtc actitigciga agtgactgag aattitigcct titictiggta actitiggga tccicaggaa accatcctig atagtigccc actiggggat tccicaggaa aaaagcaaa accatcctig atagtigcc atatitiggcic ticactggia tccicagcaa atcaatggac acaagtitiga ggagattaca tccgaattcc agaagggcta ctggatgicc aggatgcaga gggaaaaga actiticctac cctaaaaaat aaggiattat cttigagtgi agticacaac tccigactaa tgacaatgag gticcicaca ggatitatgc agaattatic cicagacata tcagaatat gacaatgag gticcicaca ggatitatga agticacaaca tccigactaa tgacaatgag gticcicaca ggatitatga agaattatic cicagacatc tctigigicic cttiggaatc aggitigga tcacaacatgi cigigatgc tgictatgci cggactgaca actigictic gccitcitca cttciggatt tatatgiatc tcaggictit gcciggiga accacatgi caggagactic catgitiga gticataga gcaaactic gattitigca aggagactgit cagcagatact gtitictggg tctigcatacg caagiccca aggagactgit cagcagatact gtitictggg tctigcatacg caagiccca aggagactgit cagcatatgg ttictigga ttictigga tigaatgaga aggagactatic agcigtitit cctictagat tgggggactac caggictigia accagatici gctigtitit cctictagat tgggggactac caggititigi cctataggi gctigtititi cctictagat taggiggactac caggititigi cctataggi gctigtitia tccaaacgic taigctgcti tgiticacac cattaggigac tgigtititi tccaaacgic taigctgcti tgiticacac attitatata tctitigcict gatticcaga ggaaggacaa atgicacaca actiggaaaa gcatatgaaga tgiticcaga ggaaggacaa atgicacaca tictiggatgi ggiticatic gititicatag gtiticatig gtiticitit gticatitica acagicgaaa actiggaaaa tgaatgaga attitaatac tctitigcict gatticcacac agaacacact tictigatgi ggiticictit gticaticacacacacacacacacacacacacacacacaca	attitggggc tigcagatca gctacatcag cctigtaatg atgatattet caacagatg ctccatacca tcagcatgaa agtggccaca gaaaacacag atgacacact cagtigcatg atgacatctaa tagaaaagat aactactgaa ggaaaaattc aagctitcag tigtigccagc cgaactctit tctatagagat tcttigtict citattaacc caaagcgcaa ggacactagg ggaticagtc actitigctga agtgactgag aattitigcct titictcigct gactaatgit actitigctg tctcatggga aaaaagcaaa accatccttg atagtigcc atatitigca attitigctc titicactgga aaaaagcaaa accatccttg atagtigccc atatitigca attitigctc titicactggat tcctcagcaa atcaatggac acaagtitiga aggaaaggaa ggagaattaca titicaaatt agtccagtit acaggatgca gagaatcaca giggittata agtggaaaca aicticctac cctaaaaaat aaggtattat ctitigagtgt gaaaggtcag gagatatact ctctagcaaa tigacaatgag gticicacaa ggattiatat ctitigagtgt gaaaggtcag agticacaac tcctgactaa tagacaatgag gticicacaa ggattiatat cticagacatc tctigactaa tigacaatgag gticicacaa gaattattic ctcagacatc tctigtict ctitigaata aggggagatatatic cticagacatc tctigtic ctitigaata gagactggtig aggatticaga gaattattic cticagacatc totigtict ctitiggaat agggcggtig agggatggggggaaagggaaggaaggaaggaaggaagg

ctctctaagt	acatccacct	gtgtaatagg	aacctgtgaa	ttgtactgga.	tgattaatac	19140
aaacgtgatt	gttgtatttg	gagtataaat	tactgattgt	atgtgacctg	aaaattcact	19200
gctataagaa	aggtggagtc	agtttgtatc	agttaatagg	atgttcatat	tccaaggata	19260
ttagttgttt	ttttaatcat	cctatatggc	taacattgtt	taatgaaagt	aataatcaat	19320
aaagcaatag	aatctaaaaa	a			•	19341
<210> 2						
⟨211⟩ 1952						
<212> DNA						
<213> homo	sapiens					
⟨400⟩ 2						
cttccgcgga.	agggaagagt	cccgcagtcg	gaggcggccg	gctgggcgtg	cgctcgctcc	60
ccgaagccgg	ggctgggccg	gagccgggcg	${\tt agggctggga}$	gctgggccgg	gtccggggac	120
agcgggcgag	gggcagctgc	cggagccggg	cagccaggcc	$\tt gctcagggca$	ggggacagct	180
ggcgccggtt	ctgcggtctc	cggggcccag	atgtgaggcg	gcggcgcccc	cggcccgaga	240
gcgcacgatg	ggggccccgc	tcgccgtagc	gctgggcgcc	$\tt ctccactacc$	tggcactttt	300
cctgcaactc	ggcggcgcca	cgcggcccgc	cggccacgcg	ccctgggaca	accacgtctc	360
cggccacgcc	ctgttcacag	agacacccca	tgacatgaca	gcacggacgg	gcgaggacgt	420
ggagatggcc	tgctccttcc	gcggcagcgg	ctcccctcc	tactcgctgg	agatccagtg	480
gtggtatgta	cggagccacc	gggactggac	cgacaagcag	gcgtgggcct	cgaaccagct	540
aaaagcatct	cagcaggaag	acgcagggaa	ggaggcaacc	aaaataagtg	tggtcaaggt	600
ggtgggcagc	aacatctccc	acaagctgcg	cctgtcccgg	gtgaagccca	cggacgaagg	660
cacctacgag	tgccgcgtca	tcgacttcag	cgacggcaag	gcccggcacc	acaaggtcaa	720
ggcctacctg	cgggtgcagc	caggggagaa	ctccgtcctg	catctgcccg	aagcccctcc	780
cgccgcgccc	gcccgccgc	ccccaagcc	aggcaaggag	ctgaggaagc	gctcggtgga	840
ccaggaggcc	tgcagcctct	agactgatgc	ccctgccccc	gcccatccgc	cccacgctg	900
tacagagtgc	atgaggagcc	gccggaccac	cggggaccga	ctgcctgcgt	ccagccgcgc	960
cccatccccg	aggccgcctg	tggccaccat	gtcggccctc	tttccaccac	cccttgctca	1020
gcatgtaagc	cccacccacc	cctgcccttt	cagacccctg	cggtgacctg	gctcggagaa	1080
ggtggccctg	ggcaccaagg	ggccaaccgc	cctgaacact	ggggcaggga	ccatgctggg	1140
gcccggggcc	accccttcc	tgtcaccagc	ttctgtggag	tccagtgttt	tgctttgctt	1200
gcttgtcccc	catcctgtcc	tgagccgggg	cccccagcc	tcgcctccct	cctcctacca	1260
tccctcactt	ggacctgggg	gtgtggacag	tgacccctcc	ctgaatatgg	acttgaatct	1320
tctgagcaga	actagggcct	ctccctggt	gaagacccag	ggaacccagg	agggcccttc	1380
tggggcagtg	gctctgcagg	gtcactcatg	gaggcctagg	ggaacagcga	gatgccccac	1440
cacctcctgg	cgagtccttc	ctgttcagct	ccctgtgcga	ccctccaggg	atgcagggga	1500
tccaggattc	tctgccctgt	cacacggcga	gtcagaaggg	aggggccttt	ccctcggacc	1560
catggcccca	ggcagagttt	tgcaccagca	ggaccccttt	gagggccttc	aaggctctcc	1620

caggagtccc cct	tctgccgg	cccccaatg	ccccagctcc	ctcttgggtc	ctgtgccaag	1680
tccgccccag ggo	ctggggc	tgttgggagc	caagggcccc	ctggtactca	gttccctcac	1740
gattcccgat cad	egggcaca	cctgccccct	ggttatttgt	aaatatttct	attggaccca	1800
attctcctcg gaa	attggctg	gcacctctgg	ttgccacagc	tcagtgatga	cgtgggggag	1860
gtgggagagg ccg	gagggc t t	tgcctagggg	tgggttgccc	tgtatacatg	atccagtctg	1920
tgactaccag cca	aacctgaa	taaagcggtt	tt			1952
<210> 3						
<211> 932						
<212> DNA						
<213> homo sa	apiens					
<400> 3 ·						
gggcgtgaga aag	ggcgacgg	cggcggcgcg	gaggagggt t	atctatacat	ttaaaaacca	60
gccgcctgcg ccg	gcgcctgc	ggagacctgg	gagagtccgg	ccgcacgcgc	gggacacgag	120
cgtcccacgc tc	cctggcgc	gtacggcctg	ccaccactag	gcctcctatc	cccgggctcc	180
agacgaccta gg	acgcgtgc	cctggggagt	tgcctggcgg	cgccgtgcca	gaagccccct	240
tggggcgcca car	gttttccc	cgtcgcctcc	ggttcctctg	$\verb cctgcacctt $	cctgcggcgc	300
gccgggacct gg	agcgggcg	ggtggatgca	ggcgcgatgg	acggcggcac	actgcccagg	360
tccgcgcccc ct	gcgccccc	cgtccctgtc	ggctgcgctg	cccggcggag	acccgcgtcc	420
ccggaactgt tg	çgctgcag	ccggcggcgg	cgaccggcca	ccgcagagac	cggaggcggc	480
gcagcggccg ta	gcgcggcg	caatgagcgc	gagcgcaacc	gcgtgaagct	ggtgaacttg	540
ggcttccagg cg	ctgcggca	gcacgtgccg	cacggcggcg	ccagcaagaa	gctgagcaag	600
gtggagacgc tg	cgctcagc	${\tt cgtggagtac}$	atccgcgcgc	tgcagcgcct	gctggccgag	660
cacgacgccg tg	cgcaacgc	gctggcggga	gggctgaggc	cgcaggccgt	gcggccgtct	720
gcgccccgcg gg	ccgccagg	gaccaccccg	gtcgccgcct	cgccctcccg	cgcttcttcg	780
tccccgggcc gc	gggggcag	ctcggagccc	ggctcccgc	gttccgccta	ctcgtcggac	840
gacagcggct gc	gaaggcgc	gctgagtcct	gcggagcgcg	agctactcga	cttctccagc	900
tggttagggg gc	tactgagc	gccctcgacc	ta			932
<210> 4						
<211> 459						
<212> DNA						
<213> homo s	apiens					
<400> 4						
ggagagacaa gg	gactccct	atgttactcc	tggactaaag	caatcctccc	acattggctt	60
tccaaagtgc tg	gaggtcaca	ggcacaagcc	cctgcgcccg	accacaagta	ggtgtttaa	120
accagtgttt tt	ttttaaca	aggcacaaac	attcgactta	agggtgacag	catagtactt	180
taccaggaat aa	agttatgt	tttacacata	tacacgtgga	aaaaattaaa	accctatgaa	240
gttggtattg to	ttatatta	agtaatgagg	aaactgaggc	ataaagtagc	taaggatttt	300

gttcaaagag caagtgatgg cataatcaga acttgaaccc aggtctaccc agcatcagag	360
cccatattcc taatccccac actggggctg caggaggaaa ttaatggaag gattcccaca	420
aaacaagaca aatcttttac catataaata aattcacat	459
<210> 5	
<211> 667	
<212> DNA	
<213> homo sapiens	
<220>	
<221> misc_feature	
<222> (435)(435)	
<223> n is a, g, c or t	
<220>	
<221> misc_feature	
<222> (652)(652)	
<223> n is a, g, c or t	
<400> 5	
tcgacccacg cgtccgtatt atccacttcc tctctcta tctttagtat tttaaagtaa	60
atcccagata gcatcacatc atttcacccc caccatagga tttcaaagat ctgttatatt	120
tcaagattga gtaaaagggc ttgaaattgg gttattgcaa tgaaactcta gaaaaagctt	180
gagggttcac ccaggagtaa gctggacaaa aaaggggttt gaggggtgga cccatcttgc	240
ctaaaaatct tgtctcatct ttctaaaaat tacatatgaa agaggaagat ttatgttact	300
tttttatatg agagaatcgt cctttaatag aaaatttcta ttgctgcatc agaattatgg	360
aggaacacaa aaaacatacc tcagtcctta gtgtgtccta aattaacaca tattcactta	420
ttagtgggta aatgnetata ttteatttea geacaaette teecetggta gaaaeteaaa	480
agaaatttet aatgattaaa etagggaagt tgeactggaa ttggatgget tateagagea	540
accgcagttt tccaggaagg aaattccaat ggccatgcgg ttggaaaatt ccccctagca	600
aataagggat taatttttaa aaaaggaagg ataaaggagg tctgggttct tntggtttta	660
aaaaaaa	667
<210> 6	
<211> 418	
<212> DNA	
<213> homo sapiens	
<400> 6	
ttttatagtg ctgtatttgt attgggtgaa tatgtggaaa ttagggagtt ctatgctttt	60
gatagagaca ggccaattta cttgctcatc cttgaatgca ggtttcttga cattcctttt	120
cactgttgaa tctatttcct gagccattac agccactgaa ccaaaatcgg gcacaagagt	180
tgacctgttt gtcataatac catcgaacca catattcacc acagtttcca ggcttcaagg	240

cttccaaaca t	ctaggatcc	tctgccccat	ccacaggggt	gctgagcagt	ggcctggggg	300
tggtggtggc c	tcagatgag	gtagtggcag	gcacatcatc	agcccacgtt	ggctctggag	360
ccttatcate t	tcatcctgg	tctctggtga	cactcaatga	ctcagaaatt	tctttttg	418
<210> 7						
<211> 1665					•	
<212> DNA						
<213> homo	sapiens					
<400> 7						
caacgacggc a	agccccgccg	gctactacct	gaaggagtcc	aggggcagcc	ggcggtggct	60
cctcttcctg g	gaaggcggct	ggtactgctt	caaccgcgag	aact gcgact	ccagatacga	120
caccatgcgg (cgcctcatga	gctcccggga	ctggccgcgc	actcgcacag	gcacagggat	180
cctgtcctca (cagccggagg	agaaccccta	ctggtggaac	gcaaacatgg	tcttcatccc	240
ctactgctcc a	agtgatgttt	ggagcggggc	ttcatccaag	tctgagaaga	acgagtacgc	300
cttcatgggc g	gccctcatca	tccaggaggt	ggtgcgggag	cttctgggca	gagggctgag	360
cggggccaag g	gtgctgctgc	tggccgggag	cagcgcgggg	ggcaccgggg	tgctcctgaa	420
tgtggaccgt g	gtggctgagc	agctggagaa	gctgggctac	ccagccatcc	aggtgcgagg	480
cctggctgac	tccggctggt	tcctggacaa	caagcagtat	cgccacacag	actgcgtcga	540
cacgatcacg	tgcgcgccca	cggaggccat	ccgccgtggc	atcaggtact	ggaacggggt	600
ggtcccggag	cgçtgccgac	gccagttcca	ggagggcgag	gagtggaact	gcttctttgg	660
ctacaaggtc	tacccgaccc	tgcgctgccc	tgtgttcgtg	gtgcagtggc	tgtttgacga	720
ggcacagctg	acggtggaca	${\tt acgtgcacct}$	gacggggcag	ccggtgcagg	agggcctgcg	780
gctgtacatc	cagaacctcg	${\tt gccgcgagc}t$	gcgccacaca	ctcaaggacg	tgccggccag	840
ctttgccccc	gcctgcctct	cccatgagat	catcatccgg	agccactgga	cggatgtcca	900
ggtgaagggg	acgtcgctgc	cccgagcact	gcactgctgg	gacaggagcc	tccatgacag	960
ccacaaggcc	agcaagaccc	ccctcaaggg	ctgcccgtc	cacctggtgg	acagctgccc	1020
ctggccccac	tgcaacccct	catgccccac	cgtccgagac	cagttcacgg	ggcaagagat	1080
gaacgtggcc	cagttcctca	tgcacatggg	cttcgacatg	cagacggtgg	cccagccgca	1140
gggactggag	cccagtgagc	tgctggggat	gctgagcaac	ggaagctagg	cagactgtct	1200
ggaggaggag	ccggcactga	ggggcccaga	cacccgctgc	cccagtgcca	cctcaccccc	1260
caccagcagg	ccctcccgtc	tcttcgggac	agggcccag	ccgtccccc	tgtctgggtc	1320
tgcccactgc	cctcctgccc	cggctttccc	tgccctctc	ccacagccca	gccagagaca	1380
agggacctgc	tgtcatcccc	atctgtggcc	tgggggtcct	tcctgacaac	gagggggtag	1440
ccagaagaga	agcactggat	tcctcagtcc	accagctcag	acagcaccca	ccggcccac	1500
ccatcaagcc	cttttatatt	attttataaa	gtgactttt	tattacttta	atttttaaa	1560
aaaaggaaaa	taagaatata	tgatgaatga	tattgttttg	taactttta	aaaatgattt	1620
taaagagaca	aaaaagaaaa	aaaaaaaaa	aaaaaaaaa	aaaaa		1665
<210> 8						

<211> 3561

14/271

<212> DNA <213 homo sapiens **<400>** 8 atggcattag tgctgtcgga atcctgataa aacatcacaa acttctgttc gttggtatta 60 gggacagtat agagtgagtg cttgaagaac tgccttggct taccaatctc tctctccaca 120 acticcaatc atcictaggg aacctagcag aaacacticc acagagcaaa agitataata 180 cagaaagtga tgaaaggagg acgcaggctc tcaatgacgc caggtattcc cgggacccgc 240 ccaccgiggg cgitticcac ctacaggcag gcgtciccgg gggcggggct tgctcagggt 300 taacgtcact actgagcgcc gggcgcgttc cgttggcggc ggattcgaac gttcggactg 360 aggittitct gcctgaagaa gcgicatacg gaccggattg tittcgctgg cccagtgtcc 420 ccggagcttg tgtgcgatac agagagcacc tcggaagctg aggcagctgg tacttgacag 480 agaggatggc gctgtcgacc atagtctccc agaggaagca gataaagcgg aaggctcccc 540 giggcitict aaagcgagic ticaagcgaa agaagccica acticgicig gagaaaagig 600 gigacitati ggiccaicig aacigittac igitigiica icgaitagca gaagagicca 660 ggacaaacgc tigigcgagt aaaigtagag tcaitaacaa ggagcaigia ciggccgcag 720 caaaggtatc tgaaaactga agagtggaga atatgttcag cagggaacaa gaggattctt 780 ttagaaataa gaggtagaag gtcacctcaa ataccacaaa atgaatggga agatgaacac 840 tatgcaagta cicattaaaa acatcccaaa atgctggagg aaatgccgtg gaattaagga 900 atgactettt tgtggtagaa aatttttatt teagagtata gacaetgett gtgetgggte 960 tettaattit aetggatati ataattitet tggaetgita gattitetea gigeaacatt 1020 totgagagoa aatatgttot gotcaattaa atactttota aagotagata aatgoottoo 1080 agtaagcaca ttaacattca atatgttata ttttaccaga ggtaaaacat ttatattcta 1140 aaacattata tictaaaatt tittacccca gggaaaataa aatgccaaaa atctcaacta 1200 ccacacatag ctttgtaata agatcaatgg gcaaatggaa tcagcttcag tttgcactaa 1260 tectacatat atgtattaag gatatgtgta atgaactttg gecataataa attataacta 1320 atttatttca tcagttcact actatatttc tttcttgttt gcttctcctc ttgtcgtctc 1380 ticatatitg giagaatata tittatigaa tatciagitt cagattacci gagciicaga 1440 tiacatggaa titiggacig tigaatacii tigatigigi agiggatata aciaagcaat 1500 tittttttig gggtgcatac tiagaacgta atticiggat cittigatag gcatatigit 1560 ttagtttgtt ttctgcttct ataacataat actgtagact gggtaatgta taaagaaaag 1620 agatttattt ccctcagagt tctggagatt gtccaagatc aaggggctgc atctggtgaa 1680 atccttcttg ctgtgtccta tatggtggaa agcatcacat ggcaaggaag catgcttgtg 1740 acagagagaa tgagagctga acttcatctt tttatcagca accccctcca gcaataatta 1800 acccaatccc acaataatgg ccttaatgta ttcatgtggg cagagtcctt ataactcagt 1860 caccicitga aggicccaci citaaigcig icgcagiagc aaitacaiii caacaigagi 1920 titggaaggg atatitaaac catagcatac atgittgcta taaaaacgcc agitttccaa 1980

gtgaatgtac ccattttaaa	cacccaccag	aatcatttgt	gagatctaat	tgttcattca	2040
atcttactat acttggtatg	gtcaattatt	ttaattttag	caccataatg	aatatgtagt	2100
gatattaaat tiggtattad	tttgcattaa	tgactaaaaa	ttagataaca	aatgatattg	2160
aacttatttc cacatgctta	ttgatcattt	ggatatatta	ctttgtgaag	ttcctttttg	2220
aagcettttg cccatttttc	tttgtgttgt	atttattttc	catactcatc	aaaaacatcc '	2280
caaaatgcta gaggaaatgo	tctagaattc	aggaataact	tcttttgtgg	tagagaattt	2340
ttatttcaga gtatagacac	tgtttgtgct	gggtttctta	attttactgg	atatcatcat	2400
tttcttgggc tgtttgatca	agtttgattt	tcccagtgca	acatctctga	gagtaaatat	2460
gatetgetta ataaaatatg	ttctaaagcc	agataagtgc	tttccagcaa	gtacaatttt	2520
ccttccagca agtataatac	ctggtttata	agcattacat	atattaatat	tattattttg	2580
tcagatagat ataataaaag	: tttaatattt	caatctttta	tggtaagtgc	tatttatata	2640
ctgtttaaga aagaggcaco	catcatgaca	ataatgttct	atattttcct	atgaaagtct	2700
tgttttatat ttcacattta	ggttttgatg	gtccttaaat	ataagatttt	tatacatgat	2760
attatgtatg gatttaggti	aatttattt	tatatggata	gccaactaac	ccagaaccac	2820
ttatcaaaaa gacatcctt	atacattgaa	ttgcaatagt	gttttatcaa	aaccagctaa	2880
gtatttttga gtgagtgta	ttctgaactc	tctaatttgt	ttcatttgtt	taccttttgt	2940
tgtattattt cctcaccato	ttaattattt	ttagccttat	aaaagctttg	atatttggta	3000
gtataagitt tcctgtttag	tttttcttct	gtaatatttt	cttgactata	taaagtcctt	3060
gcatttctat gtacatttta	gaataaaact	gtcaatttgc	acaaaataac	aggctgggat	3120
ttggatagag attatgttg	ı titgagggag	attggcattt	tatcaatatt	gtgtctttca	3180
gtcaatatac agagtatate	tatttagtta	ttitgatatt	aatttttctc	accaatgttt	3240
tatggtcctt aaggaaaaaa	ccttgcaatg	tttctatata	tgtgatccta	ggtagtggac	3300
ccttttagat gitattata	atgatttigc	tttttaatta	aatttcattt	ttcagttatt	3360
tctagtataa agaaatggag	g gtgactgatt	attggaaaca	tttatttgta	aattttctta	3420
tttttaattt ttttgtaga	tcttgtaaat	tttctgcaga	aaatttatat	ttttttctgg	3480
ctttattgaa ctgctttgaa	ı actccagtga	aatgttgaat	aaaagtgctg	ataattgata	3540
ttaaaaaaaa aaaaaaaaaa	ı a				3561
<210> 9					
<211> 2628					
<212> DNA					
<213> homo sapiens					
400> 9					
ggcacgagga ctagaagga	a gaagtatgga	gttaaagact	gcagcgtgaa	ctgaggagtc	60
ccggacaggc cgcttgctg	c agaggatcca	gtccagatcc	caggagagcc	cctctgcccc	120
ttcggacctc gtctcccate	tacaaaacgt	gaagattggc	ccagttggcg	tgtctctaca	180
aaaaggtgca tataccact	g ccccgctgca	ggctgatctg	agaaagcctc	tggcccaggg	240

cagataccgc catggccttc ctgatgcacc tgctggtctg cgtcttcgga atgggctcct

300

gggtgaccat	caatgggctc	tgggtagagc	tgccctgct	ggtgatggag	ctgcccgagg	360
gctggtacct	gccctcctac	ctcacggtgg	tcatccagct	ggccaacatc	gggcccctcc	420
tggtcaccct	gctccatcac	ttccggccca	gctgcctttc	cgaagtgccc	atcatcttca	480
ccctgctggg	cgtgggaacc	gtcacctgca	tcatctttgc	cttcctctgg	aatatgacct	540
cctgggtgct	ggacggccac	cacagcatcg	ctttcttggt	$\tt cctcaccttc$	ttcctggccc	600
tggtggactg	cacctcttca	gtgaccttcc	tgccgttcat	gagccggctg	cccacctact	660
acctcaccac	${\tt cttctttgtg}$	ggtgaaggac	tcagcggcct	cttgcccgcc	ctggtggctc	720
ttgcccaggg	ctccggtctc	actacctgcg	tcaatgtcac	tgagatatca	gacagcgtac	780
caagccctgt	acccacgagg	gagactgaca	tcgcacaggg	agttcccaga	gctttggtgt	840
ccgccctccc	cggaatggaa	gcacccttgt	cccacctgga	gagccgctac	cttcccgccc	900
acttctcacc	cctggtcttc	ttcctcctcc	tatccatcat	gatggcctgc	tgcctcgtgg	960
cgttctttgt	cctccagcgt	caacccaggt	$\tt gctgggaggc$	ttccgtggaa	gacctcctca	1020
atgaccaggt	caccctccac	tccatccggc	tgcgggaaga	gaatgacttg	ggccctgcag	1080
gcatggtgga	cagcagccag	ggccaggggt	atctagagga	gaaagcagcc	ccctgctgcc	1140
cggcgcacct	ggccttcgtc	tataccctgg	tggccttcgt	caacgcgctc	accaacggca	1200
tgctgccctc	tgtgcagacc	tactcctgcc	tgtcctatgg	gccagttgcc	taccacctgg	1260
ctgccaccct	cagcattgtg	gccaaccctc	ttgcctcgtt	ggtctccatg	ttcctgccta	1320
acaggicici	gctgttcctg	ggggtcctct	ccgtgcttgg	gacctgcttt	gggggctaca	1380
acatggccat	ggçggtgatg	agcccctgcc	ccctcttgca	gggccactgg	ggtggggaag	1440
tcctcattgt	ggcctcgtgg	gtgcttttca	$\tt gcggctgcct$	cagctacgtc	aaggtgatgc	1500
tgggcgtggt	cctgcgcgac	ctcagccgca	gcgccctctt	gtggtgcggg	gcggcggtgc	1560
agctgggctc	gctgctcgga	gcgctgctca	tgttccctct	ggtcaacgtg	ctgcggctct	1620
tctcgtccgc	ggacttctgc	aatctgcact	gtccagccta	ggcaggccgc	cgaccccgcc	1680
cccatcgctc	acggacggaa	ctggggtcca	gagaggccag	gtcacagagc	aaggggcagg	1740
aacagagaga	cagageetga	gtaattgaat	catgaacgca	agtgcccact	ggggactgtg.	1800
gggaagatgg	cacciggaaa	tgcaaggtgc	ggctctatcc	ccaactctgt	gtcacactac	1860
ctgtgacgac	cagctcagat	ctcctttgct	ttgactctca	agagaggact	gatttgcagc	1920
atctagctgg	aggcaggccc	aagggtgtta	gaagggaaac	agctgggaca	gccggctgtc	1980
ccttcaggct	gtgtgacctt	gggaaagtca	tttggcttct	ctgtgcctgt	ttcttcatgc	2040
atgcagtggg	gattccagta	agtaccaact	acctcacagg	catggcacgg	aggcaaaagg	2100
aaaaagcago	ccgcatcaag	caagccctcc	tgggccacct	gctgatctga	cagtccatcg	2160
tagtaacaag	g agtggcagtc	tgcacaacct	agaagtggcc	agaagggttg	agacacgccc	2220
ctgccctctc	: tcctttgccc	ctcagtctca	cagaggggct	tctacaagac	aagcagataa	2280
cgatagaato	ttgggcatct	tggctttcgg	attctcagtg	tggagggacg	tagtacccca	2340
cacacccctt	cctgtcatcc	ttcctggccc	ataaagccca	ctagttggag	agtaagtacc	2400
ctcctggaag	g cagggagaga	tgatttgctg	gtggggctgg	ggaaggccca	tccctgagcc	2460
tctgaaagtg	g aactccccga	ccaggttggg	gaccagacat	gcagagcccc	tggaagtatt	2520

ctctcaaatg g	gaggcaacag	aggtgattgt	tattttgttt	tagtttctgt	ttttcatttt	2580
tttaaataaa g	ggcattccct	gcttttaaaa	aaaaaaaaa	aaaaaaaa		2628
<210> 10						
<211> 570						
<212> DNA					-	
<213> homo	sapiens					
<400> 10						
cgtacataca	tagtctgatg	acagttggtg	ggctgatttg	aattatttct	gtcttcatta	60
ccctttctgc	tgcggttgat	tctggtgtaa	tggggatatc	atcagaccaa	gtcaggcttt	120
tgccccacc	caagaatgag	aggaagttt	gttatgatgt	ttctagctgt	cgttcatcct	180
tccctgagac	aatgaacaag	tggaacacct	tttaccagta	tttgcagtca	ccttttagta	240
agtttgatga	tctgttgaag	tacttatggg	ctgcacacac	ttcaaccttg	gcagataata	300
tcaaaagttt	tgaagacaga	tatgattatt	attctaaagc	agaagcgcat	tttgagagaa	360
gttgggtact	ggctgtggat	catttagctg	cagtcctctt	tcctacaacc	ttgattagat	420
catataagtt	ccagaagggc	atgccaccac	gaattcttct	taatactgat	gtagcccctt	480
tcatcagtga	ctttactgct	tttcagaatg	tagtcctggt	tcttctaaat	atgcttgaca	540
atgtggataa	atctataggt	tatctttgta				570
<210> 11						
<211> 1704						
<212> DNA						
<213> homo	sapiens					
<400> 11			•			
gcctcaacct	gacactcagc	agcaagttag	gcctatctac	aaatctcctg	ctctgtgccc	60
gcgcagtcca	gtggaggaga	tattcctaat	tagggggcac	ttccaagggg	cggagtctcc	120
gcggcgagtg	gccgtggagg	ggcgcaaggc	agacggtctc	cagccacgat	acctgggcca	180
atcccagcct	gtcacgtcat	gcctagtgag	ctgaacaagc	tgcgtaactg	tcgtgtgcct	240
cagtttcccc	acgtgtataa	tggaaatgat	tacaataaac	aggacctttt	tgaggagttg	300
ccatgaggac	tgtcagacgc	caaggcgccc	cgagaggcac	ttcgcttcca	tgccgaggcc	360
aagggcgcac	aggtgcgtct	${\tt ggacacgcgt}$	ggctgcatcg	cgcacaggcg	caccacgttc	420
cacgacggca	tcgtgttcag	ccagcggccg	gtgcgcctgg	gcgagcgtgt	ggcgctgcga	480
gtgctgcggg	aggagagcgg	ctggtgcggc	ggcctccgcg	tgggcttcac	gcgcctggac	540
cccgcgtgcg	tgtccgtgcc	cagcctgccg	cccttcctgt	gccccgacct	ggaggagcag	600
agcccgacgt	gggcggccgt	gctgcctgag	ggctgcgcgc	tcactgggga	cttggtccgc	660
ttctgggtgg	accgccgcgg	ctgcctcttc	gccaaggtca	acgccggctg	ccggctcctg	720
ctgcgtgagg	gcgtgcccgt	cggcgccccg	ctctgggccg	tgatggacgt	gtatgggacc	780
actaaggcca	tcgagctgct	ggatcccaca	gccagccggc	tcccaacacc	catgccatgg	840
gacctcagca	acaaggctgt	gcctgagccc	aaagccacac	caggagagga	gtgtgccatc	900

tgcttctatc acgctgccaa cacccgcctt gtgccctgcg gccacacata ct	tctgcaga 960
tactgtgcct ggcgggtctt cagcgatacg gccaagtgcc ctgtgtgccg ct	ggcagata 1020
gaggcggtag cccctgcgca gggccctcct gctctgaggg ttgaggaagg ct	catgaaag 1080
gaggetteec agtatgagtg geageeeggg cetagatetg agtetggeee et	gcagagag 1140
gaaggaggcg cagccctacc ttctttctgg ggaagagtca gaaaggctga tt	agcaagag 1200
gtgcggcaga gagaggaagg cagggaggtg ctgtctgctg cctccacctg tt	ccccaaca 1260
ggatagcaag gaaaaacccc tctttctgtc catgccagaa ctatccttct ga	tggggtgc 1320
ttigittaga gatggggigg cccaatcccc aatcagitti acatcigagg ga	ıgttcaggt 1380
atctgttgtg actggtgaag ccctgtacct cctgggtatt gaagaacctg ga	icttgaagc 1440
aggaggtatc tgcaaggaat gtataaagtt ccacatggaa gctgggttgc ct	cccacaag 1500
tccccagtag agtggatctg tagttacccg ccctgcctcc ctttcagggt gg	gtcatgagg 1560
tcccagagag accatgcatc tgaagatgat ttaaaacatg aaagtgtatt gt	ttgtcactg 1620
tggtaatttc cttgccagtt tctgagatat caaaataaag tttgtgtttc ct	tgaaaaaaa 1680
aaaaaaaaa aaaaaaaaa aaaa	1704
⟨210⟩ 12	
<211> 1329	
<212> DNA	
<213> homo sapiens	
<400> 12 .	
gggagctaca atgttttgtc attattcact ctgatgtgaa aaaggcagtg aa	atttaatag 60
aaaataactt cgtagagcaa aatctcaggt gtgtttttt agtgccgcag to	cttggatga 120
tgggttccta gaagctctca acatctcttc ttaattggag aaagtgttaa go	
agctggagca gtacatcttc aatttttgac aagaaaacag gaacttgatt ac	
ctattcatta gtttctgctt tcattgagaa tgcaacaaaa gccaactagg ct	tgctgctaa 300
ctccttgctg gacttcttct gccactgtca caggaactgt aatctcactg ga	
tagggagtet ticatetiga gigacigetg cacaaaigai eticaaagca ti	tttagccac 420
cagaggaatt ctcttgaaat acccaaaatc catcagtatc ttgaatcatg ct	tggattttg 480
aagaattett aacaageeat gtaaaggggg etetetggee ttgaaatagt ga	atgittitt 540
atacagaaag gagaatgcag aatggtcaga ctaccatgca ctgttaaatt tg	gatttcaag 600
aaattacagg aaaactttcc aaagttccat ctcacagaaa ttattttac aa	
aagataagtt tagttttatg gaagactttt atgtggtttt tactcactct to	-
catcaacaga tgattacatc acttatttag ctagtaaatt tattaatata aa	_
gacattccaa tatccacatt gcttacacca ttaggcatag attcagtgtc ag	_
attgaaaata agctgttttg tgatttaaag gtttaaattt ctctaaccaa ac	
ccagatgcag gactgcaaat gttaatattt gttctggaag aacaatcaaa ta	
gaggaaaagg aatggccaca atccacctga aattttttt taaaaagtgt go	
aaatcagaat gaaaatagaa gtacaagatt ataaacaaaa tgcaatcaaa c	ttttcttaa 1080

gcttacctaa	agttatttca	tctgaaaatt	tcaagcaact	ttgttcaaca	ttaaattgac	1140
aatctaaact	aacaagtctt	ttgaatttat	gcatggtagt	aaacattctc	tctattaact	1200
gtattaccta	aggctaaacc	taaaatttt	aagcaaaatt	agaaaaatag	tcttcactca	1260
tcaaaaaata	aagtttgtta	catttagtat	tttcccaaga	aaaaaaaaa	aaaaaaaaa	1320
aaaaaaaaa					•	1329
<210> 13						
<211> 560					•	
<212> DNA						
<213> homo	sapiens					
<400> 13						
acaggtcttt	ttatttaaca	taaggccaaa	gaagctatca	ggcgttgctg	aatactgtcc	60
actaactgta	caaaatattg	actgcatgcc	tcgcaaacac	caaaatatcc	gctggaatgc	120
catagaaata	aataacttct	gctataaaca	catgaaaaca	tatcaaactg	ttatctcttt	180
aaacatattg	taaataaaaa	aattaccagt	acttctacac	aataaatatt	aagaaaccat	240
tgacatagtt	gaaatgcact	catataaatt	aacaacttta	attacattag	ccaaacagac	300
attggttaaa	gaactgcatg	tagtatgcaa	aacaaaacaa	aacaaaacaa	aaaacaaagt	360
aaaaaaccaa	caaaatagaa	acaaacaaac	aaacaacatc	aaccacagaa	cataaaaagt	420
tttaaaataa	aacaggcttc	agattatctt	ggctttcata	attatatttt	tcttttaaag	480
aaaaatatca	acccattgtc	$a at \verb gcactgt $	ttttcaaagc	atttaaatag	agggtaaaac	540
cctttggaaa	ttaatacaga					560
<210> 14						
<211> 180	5					
<212> DNA						
<213> hom	o sapiens					
<400> 14						
aaagcctgcg	agcgccagcc	gagatcgcag	cccaacccat	ggccgggtct	cctagccgcg	60
ccgcgggccg	gcgactgcag	cttcccctgc	tgtgcctctt	cctccagggc	gccactgccg	120
tcctctttgc	tgtctttgtc	cgctacaacc	acaaaaccga	cgctgccctc	tggcaccgga	180
gcaaccacag	taacgcggac	aatgaatttt	actttcgcta	cccaagcttc	caggacgtgc	240
atgccatggt	cttcgtgggc	tttggcttcc	tcatggtctt	cctgcagcgt	tacggcttca	300
gcagcgtggg	cttcaccttc	ctcctggccg	cctttgccct	gcagtggtcc	acactggtcc	360
agggctttct	ccactccttc	cacggtggcc	acatccatgt	tggcgtggag	agcatgatca	420
atgctgactt	ttgtgcgggg	gccgtgctca	tctcctttgg	tgccgtcctg	ggcaagaccg	480
ggcctaccca	gctgctgctc	atggccctgc	tggaggtggt	gctgtttggc	atcaatgagt	540
ttgtgctcct	tcatctcctg	ggggtgagag	atgccggagg	ctccatgact	atccacacct	600
ttggtgccta	cttcgggctc	gtcctttcgc	gggttctgta	caggccccag	ciggagaaga	660
gcaagcaccg	ccagggctcc	gtctaccatt	cagacctctt	cgccatgatt	gggaccatct	720

780

840

20/271

tcctgtggat cttctggcct agcttcaatg ctgcactcac agcgctgggg gctgggcagc

atcggacggc cctcaacaca tactactccc tggctgccag cacccttggc acctttgcct

			.990.900.69	0000011880	accordec.	0.10
tgtcagccct	tgtaggggaa	gatgggaggc	ttgacatggt	ccacatccaa	aatgcagcgc	900
tggctggagg (ggttgtggtg	gggacctcaa	gtgaaatgat	gctgacaccc	tttggggctc	960
tggcagctgg	cttcttggct	gggactgtct	ccacgctggg	gtacaagttc	ttcacgccca'	1020
tccttgaatc	aaaattcaaa	gtccaagaca	catgtggagt	ccacaacctc	catgggatgc	1080
cgggggtcct	gggggccctc	ctgggggtcc	ttgtggctgg	acttgccacc	catgaagctt	1140
acggagatgg	cctggagagt	gtgtttccac	tcatagccga	gggccagcgc	agtgccacgt	1200
cacaggccat	gcaccagctc	ttcgggctgt	ttgtcacact	gatgtttgcc	tctgtgggcg	1260
ggggccttgg	agggctcctg	ctgaagctac	$\tt cctttctgga$	ctcccccca	gactcccagc	1320
$actacgagga\cdot\\$	ccaagttcac	tgg cagg tg c	$\tt ctggcgagca$	tgaggataaa	gcccagagac	1380
ctctgagggt	ggaggaggca	gacactcagg	$\tt cctaacccac$	tgccagcccc	tgagaggaca	1440
cgctcctttt	cgaagatgct	gactggctgc	tactaggaag	ttctttttga	gctcccattc	1500
ctccagctgc	aagaagggag	ccatgagcca	gaaggaggcc	$\tt cctttccaca$	ggcagcgtct	1560
ccacagggag	aggggcaaca	${\tt ggaggctggg}$	aaatggtggg	gagtggggcc	gtaactgggt	1620
acaatagggg	gaacctcacc	agatgcccaa	cccgactgcc	ctaccagcct	gcacatgggt	1680
agaagaggcc	aaattgaggc	acccaagtga	tccactggcc	${\tt ccacgtcaca}$	cagttacagt	1740
gaagcccaag	ccaggcctgg	ttgagggtga	taaacgccac	tgtctctaaa	aaaaaaaaa	1800
aaaaa						1805
<210> 15						
<211> 3401						
<212> DNA			•			
<213> homo	sapiens					
<400> 15						
atggcttcgt	tccccgagac	cgatttccag	atctgcttgc	tgtgcaagga	gatgtgcggc	60
tcgccggcgc	cgctctcctc	caactcgtcc	gcgtcgtcgt	cctcctcgca	gacgtccacg	120
tcgtcggggg	gcggcggcgg	gggccctggg	gcggcggcgc	gccgcctaca	cgtcctgccc	180
tgcctgcacg	ccttctgccg	ccctgcctc	gaggcgcacc	ggctgccggc	ggcgggcggc	240
ggcgcggcgg	gagagccgct	caagctgcgc	tgccccgtgt	gcgaccagaa	agtagtgcta	300
gccgaggcgg	cgggtatgga	cgcgctgcct	tcgtccgcct	tcctgcttaa	caacctgctc	360
gacgcggtgg	tggccactgc	cgacgagccg	ccgcccaaga	acgggcgcgc	cggcgctccg	420
gcgggagcgg	gcggccacag	caaccaccgg	caccacgctc	accacgcgca	cccgcgcgcg	480
tccgcctccg	cgccgccact	cccgcaggcg	ccgcagccgc	ccgcgccttc	ccgctcggca	540
cccggcggcc	ctgccgcttc	cccgtcggcg	ctgctgctcc	gccgtcctca	cggctgcagc	600
tcgtgcgatg	agggcaacgc	agcttcttcg	cgctgcctcg	actgccagga	gcacctgtgc	660
gacaactgcg	tccgagcgca	ccagcgcgtg	cgcctcacca	aggaccacta	catcgagcgc	720
ggcccgccgg	gtcccggtgc	cgcagcagcg	gcgcagcagc	tcgggctcgg	gccgcccttt	780

cccggcccgc	ccttctccat	cctctcagtg	tttcccgagc	gcctcggctt	ctgccagcac	840
cacgacgacg	aggtgctgca	cctgtactgt	gacacttgct	ctgtacccat	ctgtcgtgag	900
tgcacaatgg	gccggcatgg	gggccacagc	tt catctacc	tccaggaggc	actgcaggac	960
tcacgggcac	tcaccatcca	gctgctggca	gatgcccagc	agggacgaca	ggcaatccag	1020
ctgagcatcg	agcaggccca	gacggtggcg	gaacaggtgg	agatgaaggc	gaaggttgtg	1080
cagtcggagg	tcaaagccgt	gactgcgagg	cataagaaag	$\tt ccctggagga$	acgcgagtgt	1140
gagctgctgt	$\tt ggaaggtaga$	aaagatccgc	caggtgaaag	ccaagtctct	gtacctgcag	1200
gtggagaagc	tgcggcaaaa	cctcaacaag	cttgagagca	${\tt ccatcagtgc}$	cgtgcagcag	1260
gtcctggagg	${\tt agggtagagc}$	gctagacatc	${\tt ctactggccc}$	gagaccggat	gctggcccag	1320
gtgcaggagc	tgaagaccgt	gcggagcctc	ctgcagcccc	aggaagacga	ccgagtcatg	1380
ttcacacccc.	ccgatcaggc	actgtacctt	gccatcaagt	cttttggctt	tgttagcagc	1440
ggggcctttg	cccactcac	caaggccaca	ggcgatggcc	tcaagcgtgc	cctccagggt	1500
a a g g t g g c c t	ccttcacagt	cattggttat	gaccacgatg	gtgagccccg	cctctcagga	1560
ggcgacctga	tgtcggctgt	ggtcctgggc	cctgatggca	acctgtttgg	tgcagaggtg	1620
agtgatcagc	agaatgggac	atacgtggtg	agttaccgac	cccagctgga	gggtgagcac	1680
ctggtatctg	tgacactgtg	caaccagcac	attgagaaca	gccctttcaa	ggtggtggtc	1740
aagtcaggcc	gcagctacgt	gggcattggg	ctcccgggcc	tgagcttcgg	cagtgagggt	1800
gacagcgatg	gcaagctctg	ccgcccttgg	ggtgtgagtg	tagacaagga	gggctacatc	1860
attgtcgccg	acçgcagcaa	caaccgcatc	caggtgttca	agccctgcgg	cgccttccac	1920
cacaaattcg	gcaccctggg	ctcccggcct	gggcagttcg	accgaccagc	cggcgtggcc	1980
tgtgacgcct	cacgcaggat	cgtggtggct	gacaaggaca	atcatcgcat	ccagatette	2040
acgttcgagg	gccagttcct	cctcaagttt	ggtgagaaag	gaaccaagaa	tgggcagttc	2100
aactaccctt	gggatgtggc	ggtgaattct	gagggcaaga	tcctggtctc	agacacgagg	2160
aaccaccgga	tccagctgtt	tgggcctgat	ggtgtcttcc	taaacaagta	tggcttcgag	2220
ggggctctct	ggaagcactt	tgactcccca	cggggtgtgg	ccttcaacca	tgagggccac	2280
ttggtggtca	ctgacttcaa	caaccaccgg	ctcctggtta	ttcaccccga	ctgccagtcg	2340
gcacgctttc	tgggctcgga	gggcacaggc	aatgggcagt	tcctgcgccc	acaaggggta	2400
gctgtggacc	aggaagggcg	catcattgtg	gcggattcca	. ggaaccatcg	ggtacagatg	2460
tttgaatcca	acggcagctt	cctgtgcaag	tttggtgctc	aaggcagcgg	ctttgggcag	2520
atggaccgcc	cttccggcat	cgccatcacc	cccgacggaa	tgatcgttgt	ggtggacttt	2580
ggcaacaatc	gaatcctcgt	cttctaattg	catttcctag	gtttctgtgt	ttggggtgtg	2640
tgtgcgtgtc	tctctctctc	tctctctt	tctctttctc	tctcttttg:	; aatttcaaag	2700
aagaaacagt	ctcagggaaa	tttcttttt	cttttttt	tttaaagaga	acaagaaaag	2760
tacaacattg	cttaagtcct	acctcatctt	tatttttta	ı cagatgaatg	tacttatctt	2820
ttctgcaggg	g attgagcctg	g tgaagtgata	atttctatct	acctcataaa	tctttacatt	2880
tccttctgca	acaggeeete	ttcccctcct	cagtggagt t	tgcatttccc	tcttcccctg	2940
cgtggggcat	gatatgcaca	agcctggcat	ctgtatggc1	gggagggcac	tggatgtgtg	3000

```
tggtggggtg tattctgtag attgagccaa ggaaacacaa aaaaaaacta ctaagtaaaa
                                                                   3060
                                                                   3120
aaacaaaaaa ctataaaaca tggaaaaaat aggatttgaa atgcataatt atagaatacc
3180
                                                                   3240
ttggaaaatc ttctcttttt aaatgctgca acagagaaat ttcctctgtt ctctgtttat
                                                                   3300
acctcttaat tgtattgtcc aaggcagaca tgatataagg aatatgcact accgtagtaa
                                                                   3360
ctccctggc cgcagaaacc acactgcaag cctgtccggg gtggggtgct gactgccatt
                                                                   3401
tgccactttt aaatgggcac tgccgtggta atgtgaatcc c
⟨210⟩ 16
<211> 474
<212> DNA
<213> homo sapiens
<220>
<221> misc_feature
⟨222⟩ (1)..(1)
\langle 223 \rangle n is a, g, c or t
<220>
<221> misc_feature
⟨222⟩ (3).. (3)
<223> n is a, g, c or t
<220>
<221> misc_feature
⟨222⟩ (5).. (5)
\langle 223 \rangle n is a, g, c or t
<220>
<221> misc_feature
<222> (416)..(416)
\langle 223 \rangle n is a, g, c or t
<220>
<221> misc_feature
<222> (424).. (424)
\langle 223 \rangle n is a, g, c or t
<220>
<221> misc_feature
<222> (463).. (463)
\langle 223 \rangle n is a, g, c or t
<220>
<221> misc_feature
```

```
<222> (474).. (474)
\langle 223 \rangle n is a, g, c or t
<400> 16
ntnanttigt cagigaaacc atgigtaagi tiattagaaa giiggattii tiaacgacga
                                                                      60
aaagagaagg acccacacac cttaattttg tacctataag cttgcgttct gtctgcataa
                                                                     120
catagattta gcccagtctt agccttctgc gtctaacact ttcctaacta ttcatttaa
                                                                     180
gictataagc atgggitaaa igattaccic gigccigggc citgigiigg gggcicigag
                                                                     240
gaactetgea atettitiat titeattiit tgagaeaggg atetigetet gieacaeagg
                                                                      300
                                                                      360
gctgggagtg cagtgggtac catcacaggc tcactacagg cctcaacctc gtggggctca
attgatecet eccaecteag geetetteaa gtaggetgag gttacaggge acatgneace
                                                                      420
atgncggggg gtaattttt gtaggttttt gtaggagaca ggntttcacc aagn
                                                                      474
<210> 17
<211> 10434
<212> DNA
<213> homo sapiens
<400> 17
                                                                       60
atggcgaacc ggcgagtggg gcgaggctgc tgggaagtga gcccgaccga gcggaggccg
cccgcggggc tgcggggccc cgcggccgag gaggaggcgt cttccccgcc ggtcctgtct
                                                                      120
ctcagccact tctgcaggtc tcctttcctt tgcttcgggg acgttctcct gggagcctca
                                                                      180
                                                                      240
cggacgctgt ctctggccct agacaaccct aacgaggagg tggcagaagt gaagatctcc
                                                                      300.
cacticcegg cegeggacet gggetteagt gtgtegeage getgtttegt gttgeageet
aaagagaaaa tigitatiic igitaacigg acaccacica aagaaggccg agiaagagag
                                                                      360
                                                                      420
attatgacat tictigtaaa tgatgtictg aaacaccaag ctatattact aggaaatgca
                                                                      480
gaagagcaga aaaagaaaaa gaggagtctt tgggatacca ttaaaaagaa gaaaatttca
                                                                      540
gcctctacaa gtcacaacag aagggtttca aatattcaga atgttaataa aacatttagt
                                                                      600
gtttcccaaa aagttgacag agttaggagc ccactacaag cttgtgaaaa cttggctatg
                                                                      660
 aatgaaggcg gtcccccaac agaaaacaat tctttaatac ttgaagaaaa taaaataccc
                                                                      720
 atateaceta ttagecetge ttteaatgaa tgecatggtg caacttgett gecactetet
 gtacgtcgat ctactaccta ctcatctctt catgcatcag aaaataggga actattaaat
                                                                      780
                                                                      840
 gtacacagtg ccaacgtttc aaaagtttct tttaatgaga aagctgtaac tgaaacttcc
                                                                      900
 tttaatictg taaatgitaa tggccaaaga ggagagaata gtaaacttag tcitacccc
                                                                      960
 aactgttctt caactttgaa cattacacaa agccaaatac attttctaag tccagattct
                                                                     1020
 tttgtaaata atagtcatgg agctaataat gaactagaat tagtaacatg tctttcatca
 gatatgitta igaaagataa ticacagcci gigcattigg aaicaacaat igcacaigaa
                                                                     1080
 attiatcaga aaattitaag tecagattet ticataaaag ataattatgg actaaatcag
                                                                     1140
                                                                     1200
 gatctagaat cagagtcagt taatcctatt ttatccccta atcaattttt aaaagataac
                                                                     1260
 atggcatata tgtgtacatc tcagcaaaca tgtaaagtac cattatcaaa tgaaaattct
```

caagtcccac agtctcctga agattggaga aaaagtgaag tttcgccacg tattcctgaa 1320 tgtcagggtt caaaatctcc caaagctatt tttgaagaac tagtagaaat gaagtcaaat 1380 tactacagtt ttataaaaca aaataateet aaattttetg cagtteagga tatttetagt 1440 catagccaca ataaacaacc taagagacgi ccaatacttt ctgccactgt tactaaaagg 1500 aaggccacct gtaccagaga aaaccaaact gagattaata aaccaaaagc aaaaagatgt 1560 ctcaacagtg cagtgggtga acatgaaaaa gtaataaata atcaaaagga aaaagaagat 1620 tttcattctt atcttccaat tatagatcca atattaagta aatctaagag ttataaaaac 1680 gaggtaacac cctcttcgac aacagcttca gttgctcgga aaagaaagag cgatggaagc 1740 atggaagatg caaatgtgag agttgcaatt acagaacata cagaagtgcg agaaatcaaa 1800 agaatccatt tttctccctc agagcctaaa acatcagctg ttaagaaaac aaaaaatgtg 1860 acaacaccca totcaaaacg tattagcaac agagagaaat taaacctgaa gaagaaaact 1920 gatttatcaa tattcagaac tccaatttct aaaacaaaca aaaggacaaa acccattatc 1980 gctgtggcac agtccagttt gaccttcata aaaccattaa aaacagatat tcccagacac 2040 ccgatgccat ttgctgcaaa aaacatgttt tatgatgaac gctggaagga aaagcaggaa 2100 cagggctica ctiggiggit aaattitata tiaaccccig atgacticac igiaaaaaca 2160 aatatticig aagtaaatge igetaetett eittigggaa tagagaatea acataaaata 2220 agigticcia gagcacciac aaaagaggaa aigicicica gagcitatac igcicggigt 2280 aggitaaaca gactacgicg igcagcaigc cgiitgiita ciicigaaaa aaiggitaaa 2340 gctattaaaa agcttgaaat tgaaattgaa gctaggcggt taattgttcg aaaagataga 2400 cacctatgga aagatgtggg agaacgtcag aaagtcctga attggctgtt gtcctacaat 2460 cctitgtggc ticgaaitgg ictagagaca acttatggag aactcatatc titggaagat 2520 aacagtgatg tcacagggtt ggctatgttt attctgaatc gcctactttg gaatcctgat 2580 atagcagctg agtatagaca ccccactgtt cctcacctgt atagagatgg tcatgaagaa 2640 gctttgtcca agittacatt gaaaaagita tigitgitgg tctgttttct tgattatgct 2700 aaaatttcca gactcattga tcatgatcct tgtctcttct gtaaagatgc cgaattcaag 2760 gctagtaaag aaatcctttt ggctttttca cgagatttcc taagtggtga aggtgacctt 2820 tcccgtcacc ttggcttatt gggattacct gttaaccatg ttcagacacc atttgatgaa 2880 ttigatitig ccgttacaaa tcttgccgta gacttgcaat gtggagtgcg ccttgtgcga 2940 accatggaac tictcacaca gaactgggac ctctcaaaga aactcaggat tccggcaata 3000 agtcgtcttc aaaagatgca caatgttgac attgttcttc aagttcttaa atcacgagga 3060 attgaattaa gigatgagca iggaaataca attciatcia aggatatigi ggataggcac 3120 agagaaaaaa ctctcaggtt gctttggaaa atagcgtttg cttttcaggt ggatatttcc 3180 cttaacttag atcaattaaa ggaagaaatt gcctttctaa aacacacaaa gagtataaag 3240 aaaacaatat ctctactatc atgccattct gatgatctta ttaataagaa aaaaggcaaa 3300 agggatagtg gttcctttga acaatatagt gaaaacataa agttattgat ggattgggta 3360 aatgctgitt gigccitcia taataaaaag giggagaatt tiacagigic tiictcagac 3420 ggccgtgtgt tatgttacct gatccaccat taccatcctt gctatgtgcc atttgacgct 3480

atatgtcagc	gtactactca	aactgtggaa	tgtacgcaaa	ctggttcagt	ggtattaaat	3540
tcatcatctg	aatctgatga	cagttctctg	gatatgtcac	ttaaagcatt	tgatcatgaa	3600
aatacttcag	agctatacaa	agagctccta	gaaaatgaaa	agaaaaattt	tcacttggtt	3660
aggtctgcag	ttagagacct	tggtggaata	ccigctatga	ttaatcattc	agatatgtca	3720
a ataca attc	cagatgaaaa	ggtggttatt	acctatttgt	catttctttg	tgcaaggctt	3780
ttggatcttc	gtaaagaaat	aagagctgct	cgactcatac	aaacaacatg	gagaaaatat	3840
aaactaaaaa	cagatctcaa	acgccatcag	gagagagaga	aagctgcaag	aattattcaa	3900
ttggctgtaa	tcaattttct	agcaaaacaa	agattgagaa	aaagagttaa	tgcagcactc	3960
gtcattcaga	aatattggcg	aagagtctta	gcacagagaa	aattattaat	gttaaaaaaag	4020
gaaaagctgg	aaaaagttca	aaataaagca	gcatcactta	ttcagggata	t tggagaaga	4080
tattccacta	gacaaagatt	tctgaaattg	aaatattatt	caatcatcct	gcaatctagg	4140
ataagaatga	taattgctgt	tacatcttat	aaacgatatc	tttgggctac	agttacaatt	4200
cagaggcatt	ggcgtgctta	tttaagaaga	aaacaagatc	aacaaagata	tgaaatgcta	4260
aaatcatcaa	ctcttataat	ccaatctatg	ttcagaaaat	ggaagcaacg	taaaatgcaa	4320
tcacaagtaa	aagctacagt	aatattgcaa	agagctttta	gagaatggca	tttaagaaaa	4380
caagctaaag	aagaaaattc	tgctattatc	atacaatcat	ggtatagaat	gcataaagaa	4440
ttacggaagt	atatttatat	tagatettgt	gttgttatca	ttcagaaaag	atttcggtgc	4500
tttcaagccc	aaaagttata	taaaagaaga	aaagagtcca	tactaaccat	ccagaagtac	4560
tacaaagcat	atçtgaaagg	aaagattgag	cgcaccaact.	atttgcagaa	acgagctgca	4620
gccattcaat	tacaagctgc	ttttaggaga	ctgaaagctc	ataatttatg	tagacaaatt	4680
agagctgctt	gtgttattca	gtcatactgg	agaatgagac	aagacagagt	tcgattttta	4740
aaccttaaga	agactattat	caaatttcag	gcacatgtaa	gaaaacatca	acaacgacag	4800
		agcagctgtt		_		4860
tttgccatga	aagttctagc	atcttaccag	aaaacacgct	ctgctgtcat	tgtgctgcag	4920
tctgcatata	gagggatgca	agccaggaaa	atgtatattc	acatcctcac	atctgttata	4980
aagattcaat	catattatcg	tgcttatgtt	tctaaaaagg	aatttttgag	cctaaaaaat	5040
gctacaataa	aattgcagtc	aactgttaag	atgaaacaaa	cacgtaaaca	atatttgcat	5100
ttaagagcag	ctgcactatt	tatccagcaa	tgttaccgtt	ccaaaaaaat	agctgcacaa	5160
aagagagaag	agtatatgca	gatgcgggaa	tcttgtatca	aactgcaagc	attigitaga	5220
		gatgaggtta			_	5280
		tcggcagtat			_	5340
attcagaatt	actatcatgo	atacaaagca	caggicaatc	agaggaagaa	cttcttgcaa	5400
		cttgcaagca		_		5460
		tgctcttaaa				5520
		gcttcaatct				5580
		aagaacacat				5640
ctccagtctg	cttatcgtgg	ctggaaggtt	cggaaacaga	ttagaaggga	acatcaagct	5700

gccttgaaga ttcagtctgc ttttagaatg gccaaggccc agaaacagit tagattgttt 5760 aaaacagcag cattagtcat ccagcaaaat ttcagagcat ggactgcagg aaggaagcaa 5820 tgtatggagt atattgaact ccgtcatgcg gtactggtgc ttcaatctat gtggaaggga 5880 aaaacactga gaagacagct tcaaaggcaa cataaatgtg ctatcatcat acagtcatac 5940 6000 tatagaatgo atgigcaaca aaagaagtgg aaaatcatga aaaaagctgo tottotgatt caaaagtatt atagggctta cagtattgga agagaacaga atcatttata tttgaaaaca 6060 aaagcagctg tagtaacttt acagtcagct tatcgtggta tgaaagtgag aaaaagaata 6120 aaggattgca acaaagcagc agtcactata cagtctaaat acagagctta caaaaccaaa 6180 6240 aagaaatatg caacctatag agcttcagct attataattc agagatggta tcgaggtatt 6300 aaaattacaa accatcagca taaggagtat cttaatttga agaagacagc aattaaaatc caatctgttt atagaggtat tagagttaga agacatattc aacacatgca cagggcagcc 6360 actittatta aagccatgit taaaatgcat cagtcaagaa taagttacca tacaatgaga 6420 6480 aaagcagcta tigitatica agtaagatgi agagcatati atcaaggtaa aaigcagcgi 6540 gaaaagtacc tgacaatttt gaaagctgtt aaagtccttc aggcaagttt tagaggagta 6600 agagttagac ggactettag aaagatgeag aetgeageaa eaeteattea gteaaaetae agaagataca gacagcaaac atactttaat aagttaaaga aaataacaaa aacagtacag 6660 6720 caaagatact gggcaatgaa agaaagaaac atacaatttc aaaggtataa caaactgagg cattetgtaa tatacattea ggetatttit aggggaaaga aagetagaag acatttaaaa 6780 atgatgcata tagccgcaac tctcattcag aggagattta gaactctaat gatgagaaga 6840 agatteetet eteteaagaa aactgetatt tigatteaga gaaaatateg ggeacatett 6900 tgtacaaagc atcacttaca gttccttcag gtacaaaatg cagttattaa aatccagtca 6960 tcatacagaa gatggatgat aaggaaaagg atgcgagaga tgcacagggc tgctactttc 7020 atccagtcta ctttcagaat gcacagatta catatgagat atcgagcttt gaaacaggcc 7080 teegtigiga teeaacagca ataccaagca aatagagetg caaaactgca gaggcagcat 7140 7200 tatctcagac aaagacactc tgctgtgatc cttcaggctg cattcagggg tatgaaaact agaagacatt tgaagagtat gcattcctct gcaaccctta ttcagagtag gtttagatca 7260 ttactggtga ggagaagatt catttccctc aaaaaagcta ctatttttgt tcagaggaaa 7320 7380 tatcgagcca ccatttgtgc caaacataaa ttgtaccaat tcttgcactt aagaaaggca gccattacaa tacagtcatc ttacagaaga ctgatggtaa agaagaagtt acaagaaatg 7440 caaagggctg cagttctcat tcaggctact ttcaggatgc acagaacata tattacattt 7500 cagactigga aacatgctic aattctaatt cagcaacatt atcgaacata tagagcigca 7560 7620 aaattgcaaa gagaaaatta tatcagacaa tggcattctg ctgtggttat tcaggctgca tataaaggaa tgaaagcaag acaactttta agggaaaaac acaaagcttc tatcgtaata 7680 caaagcacct acagaatgta taggcagtat tgtttctacc aaaagcttca gtgggctaca 7740 7800 aaaatcatac aagaaaaata tagagcaaat aaaaagaaac agaaagtatt tcaacacaat 7860 gaacttaaga aagagacttg tgttcaggca ggttttcagg acatgaacat aaaaaaacag 7920 attcaggaac agcaccaggc tgccattatt attcagaagc attgtaaagc ctttaaaata

aggaagcatt atctccacct tagagcaaca gtagtttcta ttcaaagaag atacagaaaa 7980 ctaactgcag tgcgtaccca agcagttatt tgtatacagt cttattacag aggctttaaa 8040 gtacgaaagg atattcaaaa tatgcaccgg gctgccacac taattcagtc attctatcga 8100 atgcacaggg ccaaagttga ttatgaaaca aagaaaactg caattgtggt tatacagaat 8160 tattataggt tgtatgttag agtaaaaaca gaaagaaaaa actttttagc agttcagaaa 8220 tcigiacgaa ciaticaggo igcittiaga ggcaigaaag itagacaaaa aiigaaaaai 8280 gtatcagagg aaaagatggc agccattgtt aaccaatctg cactctgctg ttacagaagt 8340 aaaactcagt atgaagctgt tcaaagtgaa ggtgttatga ttcaagagtg gtataaagct 8400 tctggccttg cttgttcaca ggaagcagag tatcattctc aaagtagggc tgcagtaaca 8460 attcaaaaag ctittigtag aatggtcaca agaaaactgg aaacacagaa atgtgctgcc 8520 ctacggattc agttcttcct tcagatggct gtgtatcgga gaagatttgt tcagcagaaa 8580 agagcigcia icacitiaca gcattatiti aggacgiggc aaaccagaaa acagittita 8640 ctatatagaa aagcagcagt ggttttacaa aatcactaca gagcatttct gtctgcaaaa 8700 catcaaagac aagtctattt acagatcaga agcagtgtta tcattattca agctagaagt 8760 aaaggattta tacagaaacg gaagtttcag gaaattaaaa atagcaccat aaaaattcag 8820 gctatgtgga ggagatatag agccaagaaa tatttatgta aagtgaaagc tgcctgcaag 8880 attcaagcct ggtatagatg ttggagagca cacaaagaat atctagctat attaaaagct 8940 gitaaaatta ticaaggitg ciiciatacc aaactagaga gaacacggit titgaatgig 9000 agagcatcag caattatcat tcagagaaaa tggagagcta tacttcctgc aaagatagct 9060 catgaacact tettaatgat aaaaagacat egagetgett gtttgateca ageacattat 9120 agaggatata aaggaaggca ggtctttctt cggcagaaat ctgctgcttt gatcatacaa 9180 aaatatatac gagccaggga ggctggaaag catgaaagga taaaatatat tgaatttaaa 9240 aaatctacag ttatcctaca agcactggtg cgtggttggc tagtacgaaa aagattttta 9300 gaacagagag ccaaaattcg acttcttcac ttcactgcag ctgcatatta tcacctgaat 9360 gctgttagaa ttcaaagagc ctataaactt tacctggctg tgaagaatgc taacaagcag 9420 gttaattcag tcatctgtat tcagagatgg tttcgagcaa gattacaaga aaagagattt 9480 aticagaaat atcatagcat caaaaagatt gagcatgaag gtcaagaatg tctgagccag 9540 cgaaataggg ctgcatcagt aatacagaaa gcagtgcgcc attttctcct ccgtaaaaag 9600 caggaaaaat tcactagtgg aatcattaaa attcaggcat tatggagagg ctattcttgg 9660 aggaagaaaa atgattgtac aaaaattaaa gctatacgac taagtcttca agttgttaat 9720 agggagatto gagaagaaaa caaactotac aaaagaactg cacttgcact toattacott 9780 ttgacatata agcacctttc tgccattctt gaggccttaa aacacctaga ggtagttact 9840 agatigicic cactitgitg tgagaacatg gcccagagtg gagcaatitc taaaatatti 9900 gttttgatcc gaagttgtaa tcgcagtatt ccttgtatgg aagtcatcag atatgctgtg 9960 caagictige itaaigiaie taagiaigag aaaactaeti cageagiita igaigiagaa 10020 aattgtatag atatactatt ggagcttttg cagatatacc gagaaaagcc tggtaataaa 10080 gttgcagaca aaggcggaag cattittaca aaaactigti gtiigtiggc taitttactg 10140

aagacaacaa atagagcete tgatgtacga agtaggteca aagttgttga eegtatttae 10200 agtototaca aacttacago toataaacat aaaatgaata otgaaagaat actttacaag 10260 caaaagaaga attettetat aageatteet tttateeeag aaacacetgt aaggaceaga 10320 atagitticaa gactiaagcc agaitgggit tigagaagag ataacaigga agaaatcaca 10380 aatcccctgc aagctattca aatggtgatg gatacgcttg gcattcctta ttag 10434 **<210>** 18 **<211> 1925** <212> DNA <213> homo sapiens **<400>** 18 60 agaccgcgcg cggggcgagc gagcggggcg cggcgagggg caagggcggg gagggccccg gcgctcagag caggcgccag ggaggcaggc tgggcggccc ttcgtcctcg ccttcgggtg 120 tecatggeeg eggtggeegt ceteeggaac gaetegetge aggeetttet ceaggaeege 180 accccagcg cctccccgga cctgggcaag cactcgcccc tggcattgct ggccgccacc 240 tgtagccgca tcggccagcc gggcgcggcg gcgcccccgg acttcctgca ggtgccctac 300 360 gaccccgcgc tgggctcacc ctccaggctc ttccacccgt ggaccgccga catgccggcg 420 cactegecag gegeactgee geeceegeat eccagettgg ggetgaegee geagaagaeg caccigcage egiceticgg ggetgegeae gageticece tiacaccece egeegacece 480 tegtaceet acgagtiete geeggteaag atgetgeeet egageatgge ggetetgeee 540 600 gccagctgcg cgcccgccta cgtgccctac gcggcgcagg ccgcgctgcc gccaggctac tecaacetge tgeeteegee geegeeaceg ecceegeege ceacetgeeg eeagttgtea 660 cccaaccegg cccccgacga cctcccgtgg tggagcatcc cgcaggcggg cgccgggccg 720 ggggcctccg gggttccggg aagcggcctc tccggcgcct gtgccggggc cccccacgcg 780 ccccgcttcc ccgcctctgc ggccgctgct gctgcggccg ccgccgccct acaaagaggc 840 900 ctggtgttgg gcccgtcgga ctttgcgcag taccagagcc agatcgccgc gctgctgcag 960 accaaggeee ecetggegge caeggeeagg aggtgeegee getgeegetg teceaactge caggeggegg geggegeec egaggeggag eegggaaga agaageagea egtgtgeeae 1020 gtgccgggct gcggcaaggt gtacgggaag acgtcgcacc tgaaggcgca cctgcgctgg 1080 cacacgggcg agcgaccett cgtgtgcaac tggctettet gcgggaagag etteacgege 1140 teggaegage tgeageggea cetgeggaet caeaegggeg agaagegett tgeetgteee 1200 gagtgcggca agcgcttcat gcgcagcgac cacctcgcga agcacgtcaa gactcaccag 1260 aataagaagc tcaaagtcgc tgaggccggg gttaagcggg aggacgcgcg ggacctgtga 1320 1380 gccctccgg aggtggaccc ccttcccagc acctctgcga gagatccggg gacctgtggg 1440 cagctggcgg aggggagact cagcagacgg accetetecg ttgcctgcct cccaaaatgg agccaggctt ccaacttccg ctgccttcgg acatagggac ccagttccca ggagcgggga 1500 ggtagggttg gggctggggc atttggattg taattgggag ctctgccgta cgccagggcg 1560 1620 gttccaaact ctaaaccgtt cccaccgtca gggagaccta cagtttcggg ggaccaccct

ggtctggcct tgtatatagg aaatgctgct gaactgaata gaaaggaact tgggagattt 1680 1740 gaaacagigc tcgggtitic gctaggaccg giitgggcii igtacaggii attiaatagc titgitaaag ataattataa taattataac attaataaaa atgitgcitt tgicticagc 1800 1860 tccatgcaga gctacagcat gatatgtctc tgtaaagtga tcagcagttg cagcgtgaaa 1920 1925 aaaaa **<210> 19 <211>** 1638 <212> DNA $\langle 213 \rangle$ homo sapiens **<400> 19** · 60 aagaattegg caegagtgaa aatgtaagat tatetgagta atggacaatt tetaatatte 120 attitttaaa gtagctaact cigccttatt atccccticc actiticccc iggatgggig atttatataa tggaatgcag tgtcattgat tgtgtttgaa ggaggcacac taaatagcac 180 actattgtta tcttgaaaat ttgttttatt ttgtttttgc ccatttttta aatcatttca 240 300 ttctattttt gcccatgtct cttgtaatga gctacacatg taattagtac acagagttct 360 ggtgatgtat tcattcatga gtttaggaag tgagattttc agcttcattt ccttctaagc 420 atctcaacta ggagcacagg ggagacaaaa aagattgcaa cctctttata cagttgtgtt 480 tgaccettgg cactetatic ttacticaat tategiceat igtaatgate cettiteatg 540 tctagcttaa ccctaaactg tgagttcctt gagaataaga actttgtcac agtgatgttt 600 taatatatto toaccacaca ataaaggato taagtgtgtg ctcaataaat gggtatttgt tgggaaattt aaacaagaaa tagtgaatta ttttctattc actatttgga taccctttct 660 720 ccaaagatat titttatitg agagtatett atttacagta aaaateacaa atattatata 780 tacaatttag ttttgacaaa tgtctacatt tctatccttt acccaggcct tcaataagaa 840 aataataata attititicc caaagacata atciggitat tiggitatii ggcigaaaca 900 atgaatatet itgatacatg gattetttaa taatgaatet gitatttagt atttagteat tacticataa igaticcaaa tiicciaata acticticce ccactateca eccecatece 960 1020 ctgcccctgc aaaaaagaca aaacaaatct ccctttccct caggaagtag ttgatttggt 1080 gcctgtgtaa ggtagttcat gcatttcctt cttctgtttt gttaccatac cgtatgcttg gcactcagta caccaagaaa acaaagaggc attgcctgtc tcgaagttgc ttagagtcta 1140 1200 gtgggggaga taatgcacac ctgcatccat agcacagcaa tgtgtacata ataacaaaga 1260 totgaaaacc coagtoagtt ttotatgttt tgtcctcttt cacacccttc cgagagttct atctaatgta actatgaatg gtcactgtgt ctttattttt ggcccagact cttctcaatg 1320 cttcagecte aegtatecaa etacetactg attattetge ttggacatae atcagecatt 1380 ttaaatttgg cctgagttga actcattctc tttctctccc acattcattg tgttttcatt 1440 1500 tgttttcttg aaatctcctg gttaagtcag ttcaggttgc tatagaaaaa aattttgggt 1560

ctggcgtggt gtcttgtgcc tgtaatccca gaatgttggg aagcctaggt gggcagattg

cttgagcctc aggagttcga gaccagccag ggtgattatg aggaaactct gtctctgcaa	1620
aaaaaaaaaa aaaaaaaa	1638
<210> 20	
<211> 2706	
<212> DNA	
<213> homo sapiens	
<400> 20 .	
ccgtgtgcag tcgcccgcg ccccgcgcga cccttcgggt aaactacgaa ctgggagttc	60
tgaagaatgg gtaaagactt tcgttactat ttccagcatc cctggtctcg catgattgtg	120
gcttacttgg tgatcttctt taacttctta atatttgcgg aggacccagt ttctcatagc	180
caaacagaag ccaatgttat tgttgttgga aactgttttt catttgttac aaataaatac	240
cctagaggag ttggctggag gattttgaag gtgcttctat ggctacttgc cattctcaca	300
ggactaatag ctggcaaatt tctgttccat cagcgtttgt ttggtcagtt gctccgatta	360
aaaatgtttc gagaagatca tgggtcgtgg atgacaatgt tcttcagcac aattctcttt	420
ctcttcatat tttctcacat atacaacacg attcttctaa tggatgggaa catgggagca	480
tatatcatta cagactatat gggcatccga aatgaaagtt tcatgaaatt agctgcagta	540
gggacctgga tgggggactt tgtcacagct tggatggtca ctgatatgat gcttcaggac	600
aaaccctatc ctgactgggg aaaatcagca agagctttct ggaagaaagg aaatgttagg	660
atcactttat tciggacagt tctttttact ctgacgtctg tggttgtact tgtgattaca	720
acggactgga tcagctggga caagctgaat cggggatttt tgcccagtga tgaagtttcc	780
agagcattcc ttgcttcttt tatcttggtc tttgaccttc ttattgtgat gcaggactgg	840
gaattcccac atttcatggg agatgttgat gtaaatctcc ctggtttgca cacccctcac	900
atgcagttca agattccttt cttccagaaa atcttcaagg aggaatatcg tattcacata	960
acaggcaaat ggtttaacta tggaattatc ttcctcgtct tgattttgga tcttaatatg	1020
tggaagaacc aaatatttta taaacctcat gaatatgggc aatatatcgg cccggggcag	1080
aagatatata cagtgaaaga ctcagaaagt ttaaaagatt tgaacagaac caagctatcc	1140
tgggaatgga ggtccaatca cactaaccct cggactaata aaacatatgt tgagggagac	1200
atgitettae acageaggit cataggagee agicitgatg teaagigtet ggeetitgit	1260
ccaagectga tagectttgt gtggtttgga ttetttattt ggttetttgg acgatttttg	1320
aaaaatgagc cacgcatgga gaatcaagac aaaacttaca ctcgcatgaa aagaaaatct	1380
ccatcagaac atagcaaaga catgggaatc actcgagaaa acacccaggc ttcagtagaa	1440
gaccccttga atgacccttc tttggtttgc atcaggtctg acttcaatga gatcgtctac	1500
aagtetteee acetaacete ggaaaacttg ageteacagt tgaacgaate tactagtgea	1560
acagaagctg atcaagaccc aacgacttct aaaagtacac ctacgaacta gactcggaga	1620
tagactigga gataacacaa aaagcaacci igagigtaac iitaaaaati tagiciiticc	1680
ttitgtatat gtaaggttta cgtagtgtta ggtaaaaata tgaacaatgc cacaacggtg	1740
ctcaacatgc tttttctagg attcattgtt ttctatttgt attataatac acgtgcctac	1800

tgtatactca acagtcctc	agagattgct	tttcacaatt	gcacaagcta	ttactgactt	1860
tacagcatag tggaagatta	gctgatgacc	catgtatctg	atgttcaacc	atagtggtgc	1920
cttgagacat taaactgtt	ttaactgtac	cagaaatgaa	gtgtggaaca	gttacctaac	1980
ctatttcaca tgggcgttt	gtatacaact	attttgatct	acacttgatg	tctgagcaga	2040
aaacagaaat agctaaatg	gactcaggaa	gtatctcttg	gtttcttatt	cagcagcaga	2100
gttggtgact ttgacaactg	g gactgcagag	aaacatggtg	at cacctttt	aatttttatt	2160
ggctgtctgc caaatataa	a tacagatgca	aaattcagta	ataggagatc	cataacccaa	. 2220
catgggtcac tactcgtga	a atgtgacttt	ctcccaccag	taattgaaat	gaggtgatga	2280
tacctaatta tgttttcct	a attaaagata	aattgctact	tgattaaaaa	tcctgccctt	2340
cacctttggg aacaaaggt	t aagagacaca	gttgggcgaa	ctctcaaatt	tattggcatt	2400
tacacaaagt cccagacaa	c caaggaactg	aagttttcat	catatgagag	cagcacatcc	2460
caccatttac aatattcgt	a tatctttctg	caaatatggc	tctggatagt	gaaaattgaa	2520
aaacatatgc caaccctga	g caagggaact	cctcaaaaaa	tcatgcagcg	gaaccttgtc	2580
aggtagagaa gccgtgcat	g aaagaatttg	tttaatgtct	tgttttgcgt	atgtgttttt	2640
tgtttttgtt ttttaagaa	c taaatattgc	acattaataa	ataagaatta	tacagcaaaa	2700
aaaaaa					2706
<210> 21					
⟨211⟩ 3110	•				
<212> DNA .					
<213≯ homo sapiens					
<400> 21					
tcgccggctg cggcgcctg	g gacggttgcg	gtgggtctgg	gcgctgggaa	gtcgtccaag	60
atgattaaaa aattcgaca	a gaaggacgag	gagtctggta	gtggctccaa	tcctttccag	120
catctggaga agagtgctg	t tttacaggag	gctcgtatat	tcaatgaaac	tccaatcaat	180
ccaagaagat gtttgcata	t tettacaaag	attctttact	tactgaacca	gggtgaacac	240
titggaacaa cggaagcta	c agaagccttc	tttgcaatga	cgcgattgtt	tcaatctaat	300
gatcaaacat tgaggagaa	t gtgctacctt	accatcaaag	aaatggctac	catctctgag	360
gatgtgataa ttgtcacaa	g cagtctgact	aaagacatga	ctggaaaaga	agatgtatac	420
cgaggcccgg ccatcagag	c tetetgeagg	g atcaccgate	gaacaatgtt	gcaagccatt	480
gaaagataca tgaagcagg	c cattgtggat	aaagtttcca	gtgtatccag	ttcagcactg	540
gtatcttccc tgcacatga	t gaagataago	tatgatgtgg	ttaagcgctg	gatcaatgaa	600
gcccaagaag ctgcatcaa	g tgataatatt	atggtccagt	accatgcatt	gggagtcctg	660
tatcacctta gaaagaatg	a tegaettget	gtttccaaga	tgttgaataa	gtttactaaa	720
tctggtctca agtcacag					780
aaagaaactg aggatggco					840
aataaacatg aaatggtta					900
actgcaagag agttggcad	c tgctgtttca	a gitcitcaac	ttttctgtag	ttctcctaag	960

•	ccagccttga	gatatgcagc	tgtgaggacc	ttgaacaagg	tggcaatgaa	gcacccctct	1020
į	gctgttactg	cctgcaatct	ggacttagaa	aacttaatca	cagactcaaa	cagaagcatt	1080
į	gctaccttag	ccattactac	actcctcaaa	acaggaagtg	agagcagtgt	ggaccggctc	1140
	atgaagcaga	tatcttcttt	tgtgtctgaa	atctcagatg	agttcaaggt	ggtggttgta	1200
	caggcaatta	gtgctctctg	tcagaaatac	cctcgaaagc	acagtgtcat	gatgactttc	1260
	ctctccaaca	tgctccgaga	tgatggaggc	tttgagtaca	agcgggccat	tgtggactgt	1320
	ataatcagca	ttgtggaaga	gaaccctgag	agtaaagaag	${\tt caggcctagc}$	ccacctttgt	1380
	gaattcattg	aggactgtga	acacactgtt	$\tt ctggctacta$	agattctaca	cttgttgggc	1440
	aaagagggcc	ctagaacgcc	tgtccctcc	aaatatatcc	gttttatttt	taatagggtt	1500
	gtcctggaga	$at {\tt gaggctgt}$	${\tt cagagctgct}$	gctgtgagtg	ctttggctaa	atttggggct	1560
	cagaatgaga [.]	gtcttctccc	aagcatcctt	gtactcttac	agaggtgtat	gatggatact	1620
	gatgacgagg	tacgagacag	agctaccttc	tatctgaatg	tgctgcagca	gaggcagatg	1680
	gcactaaatg	ccacatatat	ctttaatggt	ttgacggtct	ctgtaccagg	gatggaaaaa	1740
	gccttacacc	agtacacgtt	ggagccttca	gaaaaaccgt	ttgacatgaa	atcaattcct	1800
	cttgctatgg	ctcctgtctt	tgaacagaaa	gcagaaatca	cacttgtggc	tactaagcca	1860
	gagaagttgg	ctccttccag	gcaagacatt	ttccaagaac	aattggctgc	cattcctgag	1920
	tttctgaata	taggaccctt	gttcaagtct	tctgagcctg	ttcaacttac	agaagcagag	1980
	acagaatatt	ttgttcgatg	tatcaagcac	atgittacca	atcacatcgt	gttccagttt	2040
	gactgcacca	acacteteaa	tgaccagctg	ctggaaaaag	tgacagtgca	gatggagcca	2100
	tcagattcct	atgaagtgct	gtcttgtatc	ccagccccca	gccttcctta	taaccaacca	2160
	ggaatatgtt	acactcttgt	tcgtttgcct	gatgatgacc	ctacagcagt	tgcaggctcc	2220
	tttagctgca	ccatgaagtt	tacagtccgg	gactgtgacc	ctaacactgg	agttccagat	2280
	gaggatgggt	atgatgatga	gtatgtgctg	gaagatctcg	aagtgactgt	gtctgaccat	2340
	attcagaaag	tactgaagcc	taactttgct	gctgcttggg	aagaggtggg	agataccttt	2400
	gagaaagagg	aaacctttgc	cctcagttct	accaaaaccc	t t gaagaggc	tgtcaacaat	2460
	atcatcacat	ttctgggcat	gcagccatgt	gagaggtccg	ataaagtacc	tgagaacaag	2520
	aattcccatt	cgctctatct	ggcaggtata	ttcagaggtg	gctatgattt	attggtgagg	2580
	tccaggctgg	ccttagccga	tggagtgacc	atgcaggtga	ctgtcagaag	taaagagaga	2640
	acacctgtag	atgttatctt	agcttctgtt	ggataaatgc	ttactggaca	agaggaaact	2700
	gatgcacact	acatggtcag	tgggctttta	ggctagtggc	atcagtttcc	cagaatcaga	2760
	cttttgaaga	tgaatgactt	tggagaagca	aattaaacat	ttggccctga	gccagcagat	2820
	caagcaaatg	tctatctttg;	cgcatgggtt	gtttttttt	tttttcttt	tattctactt	2880
	ggtcagcttt	gggacgatag	tgcagctttg	ggtgatcttg	aaaatcaaat	actatcctat	2940
	actccagctg	cttaacttca	ttttattctt	taatgtgtac	ctgaaagctc	ctggcaatgc	3000
	tggaaaattt	ttatcccaga	ggggtggggg	ggaggggga	ggggaagcca	gagtccactt	3060
	ttgtcacaat	tcattttat	taatagaaaa	taaacactta	ttccagtttc		3110
	<210> 22						

<211> 1723	
<212> DNA	
<213> homo sapiens	
<400> 22	
tagataaaag caaagataat atttcattgg ttacagttat acagttacac agttatacag	60
tigeettatt tggtetatee catgaggaag teetagitae taattaegit titgtigget	120
gcttctgatt ggttgagctt aagtictgtg tttctttaac ataggcattt acaagaaata	180
ccacaaataa agtttcagac atgcttgcaa atcaagcaag gttaaggtca cttaggaggc	240
ccaactggct ctgtctgctc aaggattctt ctggcctcgt ctccatttta catgaactgt	300
tgcataaata aacacagagt acctgaaaca acggaggtga tcattctgcc taccgagtgt	360
tggccacgcc aagcttggag tgttgctctt attcttaggg agtttatttt taagtaatct	420
catcigiaaa igggattaca atccacaaac igacciigia taigaticca iicciicc	480
cagcccagcc ccacactcca aggttttccc tttgcttata aggggtagtc acccttttt	540
atttcgacct tccaaacatt ctgggagttt tcctccttta ggccaactac agcgcagagg	600
agegetttet eetgetgggt tteteegact ggeetteeet geageeggte etettegeee	660
ttgtcctcct gtgctacctc ctgaccttga cgggcaactc.ggcgctggtg ctgctggcgg	720
tgcgcgaccc gcgcctgcac acgcccatgt actacttcct ctgccacctg gccttggtag	780
acgcgggctt cactactagc gtggtgccgc cgctgctggc caacctgcgc ggaccagcgc	840
tetggetgee gegeageeac tgeaeggeee agetgtgege: ategetgget etgggttegg	900
ccgaatgcgt cctcctggcg gtgatggctc tggaccgcgc ggccgcagtg tgccgcccgc	960
tgcgctatgc ggggctcgtc tccccgcgcc tatgtcgcac gctggccagc gcctcctggc	1020
taagcggcct caccaactcg gttgcgcaaa ccgcgctcct ggctgagcgg ccgctgtgcg	1080
cgccccgcct gctggaccac ttcatctgtg agctgccggc gttgctcaag ctggcctgcg	1140
gaggcgacgg agacactacc gagaaccaga tgttcgccgc ccgcgtggtc atcctgctgc	1200
tgccgtttgc cgtcatcctg gcctcctacg gtgccgtggc ccgagctgtc tgttgcatgc	1260
ggttcagcgg aggccggagg agggcggtgg gcacgtgtgg gtcccacctg acagccgtct	1320
gcctgttcta cggctcggcc atctacacct acctgcagcc cgcgcagcgc tacaaccagg	1380
cacggggcaa gttcgtatcg ctcttctaca ccgtggtcac acctgctctc aacccgctca	1440
tctacaccct caggaataag aaagtgaagg gggcagcgag gaggctgctg cggagtctgg	1500
ggagaggcca ggctgggcag tgagtagttg gggaggggag	1560
aaggatggaa atacccctta gigagicagi tiagactica ggcigitcai titigiatga	1620
taatcigcaa gattigicci aaggagicca aigggggata igitticcic ccgigaggaa	1680
atgittagit citgagggaa aaatccctaa atccictata tac	1723
<210> 23	
<211> 545	
<212> DNA	
<213> homo sapiens	

<400> 23	
tttaatagtt agactcatac tttattttga caaatttaag atagaaaaat atcataatgt	60
gaatatagca gttgctcttt ttgtaacatg gtttgggatg tgcagtgaaa cttgaaagga	120
cttgctttac aggtggtccc tcttctggct gggtttcagt taattctgaa ttatattcca	180
gccattgcat ttgcttgaaa gaatattgga cacagtaaaa aaaagaacag gtttggcatt	240
caataataaa tattataaag caatgaacca aaacaacttt taaaataatt actgaaagca	300
aacticagac ticatgatta aagctaagaa cicatattit caaaatagci ttaacagitt	. 360
ctatcaatat ataatacaat agtaggacac ttatttttaa aaaacaagtg agtagaatca	420
gagtaaatat gatatttcag atgactataa acagtaaaca tcaattcaat	480
atcatttcag caatatactc tgtgcccagc tggcgataaa aactgtagtt ctatcatcaa	540
aaaat	545
<210> 24	
<211> 2880	
<212> DNA	
<213> homo sapiens	
<400> 24	
tgctgctctc cgcccgcgtc cggctcgtgg ccccctactt cgggcaccat ggacacctcc	60
cggctcggtg tgctcctgtc cttgcctgtg ctgctgcagc tggcgaccgg gggcagctct	120
cccaggtctg gtgtgttgct gaggggctgc cccacacact gtcattgcga gcccgacggc	180
aggatgitgc tcagggigga cigciccgac ciggggcict cggagcigcc ticcaaccic	240
agcgtcttca cctcctacct agacctcagt atgaacaaca tcagtcagct gctcccgaat	300
cccctgccca gtctccgctt cctggaggag ttacgtcttg cgggaaacgc tctgacatac	360
attcccaagg gagcattcac tggcctttac agtcttaaag ttcttatgct gcagaataat	420
cagetaagae aegtaeceae agaagetetg cagaatttge gaageettea atecetgegt	480
ctggatgcta accacatcag ctatgtgccc ccaagctgtt tcagtggcct gcattccctg	540
aggeacctgt ggetggatga caatgegtta acagaaatee cegtecagge tittagaagt	600
ttatcggcat tgcaagccat gaccttggcc ctgaacaaaa tacaccacat accagactat	660
gcctttggaa acctctccag cttggtagtt ctacatctcc ataacaatag aatccactcc	720
ctgggaaaga aatgctttga tgggctccac agcctagaga ctttagattt aaattacaat	780
aaccttgatg aatteeccae tgeaattagg acacteteea accttaaaga actaggattt	840
catagcaaca atatcaggic gataccigag aaagcattig taggcaaccc ticicttatt	900
acaatacatt totatgacaa toccatocaa tttgttggga gatotgottt toaacattta	960
cctgaactaa gaacactgac tctgaatggt gcctcacaaa taactgaatt tcctgattta	1020
actggaactg caaacctgga gagtctgact ttaactggag cacagatctc atctcttcct	1080
caaaccgtct gcaatcagtt acctaatctc caagtgctag atctgtctta caacctatta	1140 1200
gaagatttac ccagittitc agictgccaa aagcttcaga aaattgacci aagacataat	1260
gaaatctacg aaattaaagt tgacactttc cagcagttgc ttagcctccg atcgctgaat	1 400

	•					
ttggcttgga	acaaaattgc	tattattcac	cccaatgcat	tttccacttt	gccatcccta	1320
ataaagctgg	acctatcgtc	caacctcctg	tcgtcttttc	ctataactgg	gttacatggt	1380
ttaactcact	taaaattaac	aggaaatcat	gccttacaga	gcttgatatc	atctgaaaac	1440
tttccagaac	tcaaggttat	agaaatgcct	tatgcttacc	agtgctgtgc	atttggagtg	1500
tgtgagaatg	cctataagat	tictaatcaa	tggaataaag	gtgacaacag	cagtatggac '	1560
gaccticata	agaaagatgc	tggaatgttt	caggctcaag	atgaacgtga	ccttgaagat	1620
ttcctgcttg	actttgagga	agacctgaaa	gcccttcatt	cagtgcagtg	ttcaccttcc	1680
ccaggcccct	tcaaaccctg	tgaacacctg	cttgatggct	ggctgatcag	aattggagtg	1740
tggaccatag	cagttctggc	acttacttgt	aatgctttgg	tgacttcaac	agttttcaga	1800
tcccctctgt	acatttcccc	cattaaactg	ttaattgggg	tcatcgcagc	agtgaacatg	1860
ctcacgggag	$\cdot tctccagtgc \\$	cgtgctggct	ggtgtggatg	${\tt cgttcacttt}$	tggcagcttt	1920
gcacgacatg	gtgcctggtg	$\tt ggagaatggg$	gttggttgcc	atgtcattgg	ttttttgtcc	1980
atttttgctt	cagaatcatc	tgttttcctg	cttactctgg	cagccctgga	gcgtgggttc	2040
tctgtgaaat	attctgcaaa	atttgaaacg	aaagctccat	tttctagcct	gaaagtaatc	2100
attttgctct	gtgccctgct	ggccttgacc	atggccgcag	ttcccctgct	gggtggcagc	2160
aagtatggcg	cctccctct	ctgcctgcct	ttgccttttg	gggagcccag	caccatgggc	2220
tacatggtcg	ctctcatctt	gctcaattcc	ctttgcttcc	tcatgatgac	cattgcctac	2280
accaagctct	actgcaattt	ggacaaggga	gacctggaga	atatttggga	ctgctctatg	2340
gtaaaacaca	ttgccctgtt	gctcttcacc	aactgcatcc	taaactgccc	tgtggctttc	2400
ttgtccttct	cctctttaat	aaaccttaca	tttatcagtc	ctgaagtaat	taagtttatc	2460
cttctggtgg	tagtcccact	tcctgcatgt	ctcaatcccc	ttctctacat	cttgttcaat	2520
cctcacttta	aggaggatct	ggtgagcctg	agaaagcaaa	cctacgtctg	gacaagatca	2580
aaacacccaa	gcttgatgtc	aattaactct	gatgatgtcg	aaaaacagtc	ctgtgactca	2640
actcaagcct	tggtaacctt	taccagetee	agcatcactt	atgacctgcc	tcccagttcc	2700
gtgccatcac	cagcttatcc	agtgactgag	agctgccatc	tttcctctgt	ggcatttgtc	2760
ccatgtctct	aattaatatg	tgaaggaaaa	tgttttcaaa	ggttgagaac	ctgaaaatgt	2820
gagattgagt	atatcagagc	agtaattaat	aagaagagct	gaggtgaaac	tcggtttaaa	2880
<210> 25						
⟨211⟩ 378	39					
<212> DNA						
<213> hor	no sapiens					
<400> 25						
ctctcagtac	cacgccggtg	gccagttctg	aggetageac	cctttcaaca	actcctgttg	60
acaccagcac	c acctgtgacc	acttcttctc	caaccaatto	atctcctaca	actgctgaag	120
ttaccagcat	t gccaacatca	actgctggtg	aaggaagcac	tccattaaca	aatatgcctg	180
tcagcaccac	c accggtggcc	agttctgagg	ctagcaccct	ttcaacaact	cctgttgact	240

ccaacacttt tgttaccagt tctagtcaag ccagttcatc tccagcaact cttcaggtca 300

ccactatgcg	tatgtctact	ccaagtgaag	gaagctcttc	attaacaact	atgctcctca	360
gcagcacata	tgtgaccagt	tctgaggcta	gcacaccttc	cactccttct	gttgacagaa	420
gcacacctgt	gaccacttct	actcagagca	attctactcc	tacacctcct	gaagttatca	480
ccctgccaat	gtcaactcct	agtgaagtaa	gcactccatt	aaccattatg	cctgtcagca	540
ccacatcggt	gaccatttct	gaggctggca	cagcttcaac	acttcctgtt	gacaccagca	600
cacctgtgat	${\tt cacttctacc}$	caagtcagtt	catctcctgt	gactcctgaa	ggtaccacca	660
tgccaatctg	gacgcctagt	gaaggaagca	ctccattaac	aactatgcct	gtcagcacca	. 720
cacgtgtgac	${\tt cagctctgag}$	${\tt ggtagcaccc}$	tttcaacacc	ttctgttgtc	accagcacac	780
ctgtgaccac	ttctactgaa	$\tt gccatttcat$	cttctgcaac	tcttgacagc	accaccatgt	840
ctgtgtcaat	gcccatggaa	ataagcaccc	ttgggaccac	tattcttgtc	agtaccacac	900
ctgttacgag	gtttcctgag	agtagcaccc	$\tt cttccatacc$	atctgtttac	accagcatgt	960
ctatgaccac	tgcctctgaa	ggcagttcat	ctcctacaac	tcttgaaggc	accaccacca	1020
tgcctatgtc	aactacgagt	gaaagaagca	ctttattgac	aactgtcctc	atcagcccta	1080
tatctgtgat	gagtccttct	gaggccagca	cactttcaac	acctcctggt	gataccagca	1140
cacctttgct	cacctctacc	aaagccggt t	cattctccat	acctgctgaa	gtcactacca	1200
tacgtatttc	aattaccagt	gaaagaagca	ctccattaac	aactctcctt	gtcagcacca	1260
cacttccaac	tagctttcct	ggggccagca	tagcttcgac	acctcctctt	gacacaagca	1320
caacttttac	cccttctact	gacactgcct	caactcccac	aattcctgta	gccaccacca	1380
tatctgtatc:	agigatcaca	gaaggaagca	caccigggac	aaccattttt	attcccagca	1440
ctcctgtcac	cagttctact	gctgatgtct	ttcctgcaac	aactggtgct	gtatctaccc	1500
ctgtgataac	ttccactgaa	ctaaacacac	catcaacctc	cagtagtagt	accaccacat	1560
$\tt cttttcaac$	tactaaggaa	tttacaacac	ccgcaatgac	tactgcagct	ccctcacat	1620
atgtgaccat	gtctactgcc	cccagcacac	ccagaacaac	cagcagaggc	tgcactactt	1680
ctgcatcaac	gctttctgca	accagtacac	ctcacacctc	tacttctgtc	accacccgtc	1740
ctgtgacccc	ttcatcagaa	tccagcaggc	cgtcaacaat	tacttctcac	accatcccac	1800
ctacatttcc	tcctgctcac	tccagtacac	ctccaacaac	ctctgcctcc	tccacgactg	1860
tgaaccctga	ggctgtcacc	accatgacca	ccaggacaaa	acccagcaca	cggaccactt	1920
ccttccccac	ggtgaccacc	accgctgtcc	ccacgaatac	tacaattaag	agcaacccca	1980
cctcaactcc	tactgtgcca	agaaccacaa	. catgctttgg	agatgggtgc	cagaatacgg	2040
cctctcgctg	caagaatgga	ggcacctggg	; atgggctcaa	gtgccagtgt	cccaacctct	2100
attatgggga	gttgtgtgag	gaggtggtca	gcagcattga	catagggcca	ccggagacta	2160
tctctgccca	aatggaactg	actgtgacag	tgaccagtgt	gaagttcacc	gaagagctaa	2220
aaaaccactc	ttcccaggaa	ttccaggagt	tcaaacagac	attcacggaa	cagatgaata	2280
ttgtgtattc	cgggatccct	gagtatgtcg	gggtgaacat	cacaaagcta	cgtcttggca	2340
gtgtggtggt	ggagcatgac	gtcctcctaa	gaaccaagta	cacaccagaa	tacaagacag	2400
tattggacaa	tgccaccgaa	gtagtgaaag	g agaaaatcac	aaaagtgaco	acacagcaaa	2460
taatgattaa	tgatatttgc	tcagacatga	ı tgigiticaa	caccactgg	acccaagtgc	2520

aaaacattac ggtga	acccag tacgaccctg	aagaggactg	ccggaagatg	gccaaggaat	2580
atggagacta cttcg	gtagtg gagtaccggg	accagaagcc	atactgcatc	agcccctgtg	2640
agcctggctt cagtg	gtotoo aagaactgta	acctcggcaa	gtgccagatg	tctctaagtg	2700
gacctcagtg cctct	tgcgtg accacggaaa	ctcactggta	${\tt cagtgggag}$	acctgtaacc	2760
agggcaccca gaaga	agtctg gtgtacggco	tcgtgggggc	aggggtcgtg	ctgatgctga	2820
tcatcctggt agcto	ctcctg atgctcgttt	tccgctccaa	gagagaggtg	aaacggcaaa	2880
agtacagatt gtcto	cagtta tacaagtggo	aagaagagga	cagtggacca	gctcctggga	. 2940
ccttccaaaa cattg	ggettt gacatetged	aagatgatga	ttccatccac	ctggagtcca	3000
tctatagtaa tttco	cagccc teettgagad	acatagaccc	tgaaacaaag	agatccgaat	3060
tcagaggcct caggi	taatga cgacatcati	ttaaggcatg	gagctgagaa	gtctgggagt	3120
gaggagatcc cagto	ccggct aagcttggtg	g gagcattttc	ccattgagag	ccttccatgg	3180
gaactcaatg ttccc	catigi aagtacagga	aacaagccct	gtacttacca	aggagaaaga	3240
ggagagacag cagt	gctggg agattctcaa	ı atagaaaccc	gtggacgctc	caatgggctt	3300
gtcatgatat caggo	ctagge titectgete	atttttcaaa	gacgctccag	atttgagggt	3360
actctgactg caaca	atcttt caccccatts	g atcgccagga	ttgatttggt	tgatctggct	3420
gagcaggcgg gtgto	ccccgt cctccctcad	tgccccatat	gtgtccctcc	taaagctgca	3480
tgctcagttg aagag	ggacga gaggacgac	ttctctgata	gaggaggacc	acgcttcagt	3540
caaaggcata caag	tatcia tetggaette	cctgctagca	cttccaaaca	agctcagaga	3600
tgttcctccc ctça	tctgcc cgggttcag	t accatggaca	gcgccctcga	cccgctgttt	3660
acaaccatga cccc	ttggac actggactg	atgcacttta	catatcacaa	aatgctctca	3720
taagaattat tgca	taccat cttcatgaa	a aacacctgta	tttaaatata	gagcatttac	3780
cttttggta		•			3789
<210> 26					
⟨211⟩ 4711					
<212> DNA					
<213≻ homo sap	iens .	•			
<400> 26					
gccccgggaa gcgc	agccat ggctctgcg	g aggctggggg	ccgcgctgct	gctgctgccg	60
ctgctcgccg ccgt	ggaaga aacgctaat	g gactccacta	cagcgactgc	tgagctgggc	120
tggatggtgc atcc	tccatc agggtggga	a gaggtgagtg	gctacgatga	gaacatgaac	180
acgatecgea egta	ccaggt gtgcaacgt	g tttgagtcaa	gccagaacaa	ctggctacgg	240
accaagttta tccg	gcgccg tggcgccca	c cgcatccacg	tggagatgaa	gttttcggtg	300
cgtgactgca gcag	catccc cagcgtgcc	t ggctcctgca	aggagacctt	caacctctat	360
tactatgagg ctga	ctttga ctcggccac	c aagaccttcc	ccaactggat	ggagaatcca	420
	taccat tgcagccga				480
	caacac cgaggtgcg				540
tacctggcct tcca	ggacta tggcggctg	c atgtccctca	tcgccgtgcg	tgtcttctac	600

cgcaagtgcc	cccgcatcat	ccagaatggc	gccatcttcc	aggaaaccct	gtcgggggct	660
gagagcacat	cgctggtggc	tgcccggggc	agctgcatcg	ccaatgcgga	agaggtggat	720
gtacccatca	agctctactg	taacggggac	ggcgagtggc	tggtgcccat	cgggcgctgc	780
atgtgcaaag	caggcttcga	ggccgttgag	aatggcaccg	tctgccgagg	ttgtccatct	840
gggactttca	aggccaacca	aggggatgag	gcctgtaccc	actgtcccat	caacagccgg	900
accacttctg	aaggggccac	caactgtgtc	tgccgcaatg	gctactacag	agcagacctg	960
gacccctgg	acatgccctg	cacaaccatc	ccctccgcgc	cccaggctgt	gatttccagt	1020
gtcaatgaga	cctcctcat	gctggagtgg	accctcccc	gcgactccgg	aggccgagag	1080
gacctcgtct	acaacatcat	ctgcaagagc	tgtggctcgg	gccggggtgc	ctgcacccgc	1140
tgcggggaca	atgtacagta	cgcaccacgc	cagctaggcc	tgaccgagcc	acgcatttac	1200
atcagtgacc	tgctggccca	cacccagtac	accttcgaga	tccaggctgt	gaacggcgtt	1260
actgaccaga	gccccttctc	$\tt gcctcagttc$	gcctctgtga	acatcaccac	caaccaggca	1320
gctccatcgg	cagtgtccat	catgcatcag	gtgagccgca	ccgtggacag	cattaccctg	1380
tcgtggtccc	agccggacca	gcccaatggc	gtgatcctgg	actatgagct	gcagtactat	1440
gagaaggagc	tcagtgagta	caacgccaca	gccataaaaa	gccccaccaa	cacggtcacc	1500
gtgcagggcc	tcaaagccgg	cgccatctat	gtcttccagg	tgcgggcacg	caccgtggca	1560
ggctacgggc	gctacagcgg	caagatgtac	ttccagacca	tgacagaagc	cgagtaccag	1620
acaagcatcc	aggagaagtt	gccactcatc	atcggctcct	cggccgctgg	cctggtcttc	1680
ctcattgctg	tggttgtcat	cgccatcgtg	tgtaacagaa	gacgggggt t	tgagcgtgct	1740
gactcggagt	acacggacaa	gctgcaacac	tacaccagtg	gccacatgac	cccaggcatg	1800
aagatctaca	tcgatccttt	cacctacgag	gaccccaacg	aggcagtgcg	ggagtttgcc	1860
aaggaaattg	acatctcctg	tgtcaaaatt	gagcaggtga	tcggagcagg	ggagtttggc	1920
gaggtctgca	gtggccacct	gaagctgcca	ggcaagagag	agatetttgt	ggccatcaag	1980
acgctcaagt	cgggctacac	ggagaagcag	cgccgggact	tcctgagcga	agcctccatc	2040
atgggccagt	tcgaccatcc	caacgtcatc	cacctggagg	gtgtcgtgac	caagagcaca	2100
cctgtgatga	tcatcaccga	gttcatggag	aatggctccc	tggactcctt	tctccggcaa	2160
aacgatgggc	agttcacagt	catccagctg	gtgggcatgc	ttcggggcat	cgcagctggc	2220
atgaagtacc	tggcagacat	gaactatgtt	caccgtgacc	tggctgcccg	caacatcctc	2280
gtcaacagca	acctggtctg	caaggtgtcg	gactttgggc	tctcacgctt	tctagaggac	2340
gatacctcag	accccaccta	caccagtgcc	ctgggcggaa	agatccccat	ccgctggaca	2400
gccccggaag	ccatccagta	ccggaagttc	acctcggcca	gtgatgtgtg	gagctacggc	2460
attgtcatgt	gggaggtgat	gtcctatggg	gagcggccct	actgggacat	gaccaaccag	2520
gatgtaatca	atgccattga	gcaggactat	cggctgccac	cgcccatgga	ctgcccgagc	2580
gccctgcacc	aactcatgct	ggactgttgg	cagaaggacc	gcaaccaccg	gcccaagttc	2640
ggccaaattg	tcaacacgct	agacaagatg	atccgcaatc	ccaacagcct	caaagccatg	2700
	cctctggcat					2760
agctttaaca	. cggtggacga	gtggctggag	gccatcaaga	tggggcagta	caaggagagc	2820

ttcgccaatg	ccggcttcac	ctcctttgac	gtcgtgtctc	agatgatgat	ggaggacatt	2880
ctccgggttg	gggtcacttt	ggctggccac	cagaaaaaaa	tcctgaacag	tatccaggtg	2940
atgcgggcgc	agatgaacca	gattcagtct	gtggaggttt	gacattcacc	tgcctcggct	3000
cacctcttcc	tccaagcccc	gcccctctg	cccacgtgc	cggccctcct	ggtgctctat	3060
ccactgcagg	gccagccact	cgccaggagg	ccacgggcca	cgggaagaac	caagcggtgc '	3120
cagccacgag	acgtcaccaa	gaaaacatgc	aactcaaacg	acggaaaaaa	aaagggaatg	3180
ggaaaaaaaga	aaacagatcc	tgggaggggg	cgggaaatac	aaggaatatt	t.tttaaagag	3240
gattctcata	aggaaagcaa	tgactgttct	tgcgggggat	aaaaaagggc	ttgggagatt	3300
catgcgatgt	gtccaatcgg	agacaaaagc	agtttctctc	caactccctc	tgggaaggtg	3360
acctggccag	agccaagaaa	cactttcaga	aaaacaaatg	tgaaggggag	agacaggggc	3420
cgcccttggc	tcctgtccct	gctgctcctc	taggcctcac	tcaacaacca	agcgcctgga	3480
ggacgggaca	gatggacaga	${\tt cagccaccct}$	gagaacccct	ctgggaaaat	ctattcctgc	3540
caccactggg	caaacagaag	a a t t t t t c t g	tctttggaga	gtattttaga	aactccaatg	3600
aaagacactg	tttctcctgt	tggctcacag	ggctgaaagg	ggcttttgtc	ctcctgggtc	3660
agggagaacg	cggggacccc	agaaaggtca	$\tt gccttcctga$	ggatgggcaa	ccccaggtc	3720
tgcagctcca	ggtacatatc	acgcgcacag	cctggcagcc	tggccctcct	ggtgcccact	3780
cccgccagcc	cctgcctcga	ggactgatac	tgcagtgact	gccgtcagct	ccgactgccg	3840
ctgagaaggg	ttgatcctgc	atctgggttt	gtttacagca	attcctggac	tcgggggtat	3900
tttggtcaca	gggtggtttt	ggtttagggg	gtttgtttgt	tgggttgttt	tttgttttt	3960
ggttttttt	aatgacaatg	aagtgacact	ttgacatttc	ctaccttttg	aggacttgat	4020
ccttctccag	gaagaaggtg	ctttctgctt	actgacttag	gcaatacacc	aagggcgaga	4080
ttttatatgc	acatttctgg	attttttat	acggttttca	ttgacactct	tccctcctcc	4140
cacctgccac	caggcctcac	caaagcccac	tgccatgggg	ccatctgggc	cattcagaga	4200
ctggagtgag	atttgggtgt	ggaggggag	gcgccaaggt	ggaggagctt	cccactccag	4260
gactgttgat	gaaagggaca	gattgaggag	gaagtgggct	ctgaggctgc	agggctggaa	4320
gtccttgccc	acttcccact	ctcctgcccc	aatctatcta	gtacttccca	ggcaaatagg	4380
cccctttgag	gctcctgagt	gccctcagat	ggtcaaaacc	cagttttccc	tctgggagcc	4440
taaaccaggc	tgcatcggag	gccaggaccc	ggatcattca	ctgtgatacc	ctgccctcca	4500
gagggtgcgc	tcagagacac	gggcaagcat	gcctcttccc	ttccctggag	agaaagtgtg	4560
tgatttctct	cccacctcct	tcccccacc	agacctttgc	tgggcctaaa	ggtcttggcc	4620
atggggacgc	cctcagtcta	gggatctggc	cacagactcc	ctcctgtgaa	ccaacacaga	4680
cacccaagca	gagcaatcag	ttagtgaatt	g			4711
<210> 27						

<211> 1853

<212> DNA

<213> homo sapiens

<400> 27

ggcacgaggg	tccctgggcc	ggacggcggt	gtcccggcgt	ggcgggaagc	cggcactgga	60
gcgggagcgc	actgggcgcg	ggaccgggag	gcgcagggac	cggacggctc	ccgagtcgcc	120
cacctgacgc	tagaagaagt	cttcacttcc	caggagagcc	aaagcgtgtc	tggccctagg	180
tgggaaaaga	actggctgtg	acctttgccc	tgacctggaa	gggcccagcc	ttgggctgaa	240
tggcagcacc	cacgcccgcc	cgtccggtgc	tgacccacct	gctggtggct	ctcttcggca	300
tgggctcctg	ggctgcggtc	aatgggatct	gggtggagct	acctgtggtg	gtcaaagagc	360
ttccagaggg	ttggagcctc	ccctcttacg	tctctgtgct	tgtggctctg	gggaacctgg	420
gtctgctggt	ggtgaccctc	tggaggaggc	tggccccagg	aaaggacgag	caggtcccca	480
tccgggtggt	gcaggtgctg	ggcatggtgg	gcacagccct	gctggcctct	ctgtggcacc	540
atgtggcccc	agtggcagga	cagttgcatt	ctgtggcctt	cttagcactg	gcctttgtgc	600
tggcactggc	atgctgtgcc	tcgaatgtca	${\tt ctttcctgcc}$	cttcttgagc	cacctgccac	660
ctcgcttctt	acggtcattc	ttcctgggtc	aaggcctgag	tgccctgctg	ccctgcgtgc	720
tggccctagt	gcagggtgtg	ggccgcctcg	agtgcccgcc	agcccccatc	aacggcaccc	780
ctggcccccc	gctcgacttc	cttgagcgtt	ttcccgccag	caccttcttc	tgggcactga	840
ctgcccttct	ggtcgcttca	gctgctgcct	tccagggtct	tctgctgctg	ttgccgccac	900
caccatctgt	acccacaggg	gagttaggat	caggcctcca	ggtgggagcc	ccaggagcag	960
aggaagaggt	ggaagagtcc	tcaccactgc	aagagccacc	aagccaggca	gcaggcacca	1020
cccctggtcc	agaccctaag	gcctatcagc	ttctatcagc	ccgcagtgcc	tgcctgctgg	1080
gcctgttggc	cgçcaccaac	gcgctgacca	atggcgtgct	gcctgccgtg	cagagetttt	1140
cctgcttacc	ctacgggcgt	ctggcctacc	acctggctgt	ggtgctgggc	agtgctgcca	1200
atcccctggc	ctgcttcctg	gccatgggtg	tgctgtgcag	gtccttggca	gggctgggcg	1260
gcctctctct	gctgggcgtg	ttctgtgggg	gctacctgat	ggcgctggca	gtcctgagcc	1320
cctgcccgcc	cctggtgggc	acctcggcgg	gggtggtcct	cgtggtgctg	tcgtgggtgc	1380
tgtgtcttgg	cgtgttctcc	tacgtgaagg	tggcagccag	ctccctgctg	catggcgggg	1440
gccggccggc	attgctggca	gccggcgtgg	ccatccaggt	gggctctctg	ctcggcgctg	1500
ttgctatgtt	cccccgacc	agcatctatc	acgtgttcca	cagcagaaag	gactgtgcag	1560
acccctgtga	ctcctgagcc	tgggcaggtg	gggaccccgc	tccccaacac	ctgtctttcc	1620
ctcaatgctg	ccaccatgcc	tgagtgcctg	cagcccagga	ggcccgcaca	ccggtacact	1680
cgtggacacc	tacacactcc	ataggagatc	ctggctttcc	agggtgggca	agggcaagga	1740
gcaggcttgg	agccagggac	cagtgggggc	tgtagggtaa	gcccctgagc	ctgggaccta	1800
catgtggttt	gcgtaataaa	acatttgtat	ttaaaaaaaa	aaaaaaaaa	aaa	1853
<210> 28						
<211> 256	4					
<212> DNA						
	o sapiens					
<400> 28						

actgttccgc gggcaccggc agcgcagcgt ctccgatagt aagtcgggct gccggccggc

60

tcattccccc agggtaactc tgagcccccg gctccgagct ccctcgaggc cgcctaccgg 120 cgtcgggaac atggatgaga aatccaacaa gctgctgcta gctttggtga tgctcttcct 180 atttgccgtg atcgtcctcc aatacgtgtg ccccggcaca gaatgccagc tcctccgcct 240 gcaggcgttc agctcccgg tgccggaccc gtaccgctcg gaggatgaga gctccgccag 300 gttcgtgccc cgctacaatt tcacccgcgg cgacctcctg cgcaaggtag acttcgacat 360 caagggcgat gacctgatcg tgttcctgca catccagaag accgggggca ccactttcgg 420 ccgccactig gtgcgtaaca tccagctgga gcagccgtgc gagtgccgcg tgggtcagaa 480 gaaatgcact tgccaccggc cgggtaagcg ggaaacctgg ctcttctcca ggttctccac 540 gggctggagc tgcgggttgc acgccgactg gaccgagctc accagctgtg tgccctccgt 600 ggtggacggc aagcgcgacg ccaggctgag accgtccagg aacttccact acatcaccat 660 cctccgagac ccagtgtccc ggtacttgag tgagtggagg catgtccaga gaggggcaac 720 atggaaagca tccctgcatg tctgcgatgg aaggcctcca acctccgaag agctgcccag 780 ctgctacact ggcgatgact ggtctggctg ccccctcaaa gagtttatgg actgtcccta 840 caatctagcc aacaaccgcc aggtgcgcat gctctccgac ctgaccctgg taggctgcta 900 caaccicict gicatgccig aaaagcaaag aaacaaggic ciiciggaaa gigccaagic 960 aaatctgaag cacatggcgt tcttcggcct cactgagttt cagcggaaga cccaatatct 1020 gtttgagaaa accttcaaca tgaactttat ttcgccattt acccagtata ataccactag 1080 ggcctctagt gtagagatca atgaggaaat tcaaaagcgt attgagggac tgaattttct 1140 ggatatggag tigtacagci atgccaaaga cctttttttg cagaggtacc agtttatgag 1200 gcagaaagag catcaggagg ccaggcgaaa gcgtcaggaa caacgcaaat ttctgaaggg 1260 aaggctccttcagacccatt tccagagcca gggtcagggc cagagccaga atccgaatca 1320 gaatcagagt cagaacccaa atccgaatgc caatcagaac ctgactcaga atctgatgca 1380 gaatctgact cagagtttga gccagaagga gaaccgggaa agcccgaagc agaactcagg 1440 caaggagcag aatgataaca ccagcaatgg caccaacgac tacataggca gtgtagagaa 1500 atggcgttaa atggctcaaa aaggcctgta catacttctc ccaaagcgcc actgaaaaga 1560 tggcatagct taaaagatga aagtgtccaa acacatcctg cttccttcat tggggaagtt 1620 ttaaaaaaaa giitagaigi igcciitaca giigcciitc aaiicagigi taiacigigi 1680 gtaggtaaaa caaatctcaa tatggaatta aattgtcttt ttggggttgg actaaatatg 1740 aaatccgaaa gccaaaccag actcaccaga aattgctgtt tagatatttt aagaagttct 1800 taaattagtt atggagacaa agtgaaaaca taaaatgtga ccatttaact tatggctaag 1860 aaatggactt taaattattc atgatacact gttaaaaccc aatcttggaa tcaaatattt 1920 tttccagggg tgagaataag tataaacata aagcaactaa aatgaaacat aaaacctttt 1980 attitctict gattitaaca aggaatctat tiaaatagaa taacaactga tggtgaatct 2040 taccgagctg tagaaaataa aaaattcctc tccaaacatg ggtagtttta tgtcaaaata 2100 ttggcttttc aagaacagga ctcatatctt gatatttaag agatgtttaa aattttaaac 2160 tttttctacc ttctactgtt taaaggtttt acacagggtg tatctcacat taaacaaaac 2220 accitititt caatiticit tagititaat tgaaaatgit tgcttttaaa actgataggi 2280

attgttggaa agcaggatga agcctgagcc agtggaaaag cttgttacag aaaaaacatt 2340 tigigitati gcigiggigi gcaigatitg caaagattaa gigcatitic icigiciata 2400 ctgattattg tatatagagg atgttataaa tatacatata catttttgcc attatgtaaa 2460 tcccatgatt tcaactgtaa acatctgtcc attggtgtag ctttacaaac cattcactga 2520 2564 ttttgtgtaa tttaacaata gatatgaaat aaagtttaaa ttac **<210> 29 <211> 2733** <212> DNA <213> homo sapiens **<400>** 29 gctttctaag gcggtcgctc cgggaaatcc gggccctagg attgtccact catcccagta 60 tcagcgagat acggggagat agagttagcg acaacgtgag ccagagctgg agcacgtttg 120 180 gtgagagacc agaaagcaat ggaggccgga gaggggaagg agcgcgttcc gaaacaaagg 240 caagteetga tattetttgt tttgetggge atageteagg etagttgeea geetaggeae tattcagtgg ccgaggaaac ggagagtggc tcctttgtgg ccaatttgtt aaaagacctg 300 gggctggaga taggagaact tgctgtgagg ggggccaggg tcgtttccaa aggaaaaaaa 360 420 atgcattigc agitcgatag gcagaccggg gattigtigt taaaigagaa aitggaccgg gaggagctgt gcggccccac agagccctgt gtcctacctt tccaggtgtt actagaaaat 480 cccttgcagt tttttcaggc ggagctacgg attagggacg taaatgatca ttccccagtt 540 ttcctagaca aagaaatact tttgaaaatt ccagaaagta tcactcctgg aactactttc 600 ttaatagaac gtgcccagga cttggatgta ggaaccaaca gtctccaaaa ttacacaatc 660 720 agtcccaatt tccactttca tcttaattta caagacagtc tcgatggcat aatattacca cagciggige igaacagage eciggatege gaggageage eigagateag gitaaccete 780 acagcgctag atggcgggag tccacccagg tccggcacgg ccctggtacg gattgaagtt 840 gtggacatca atgacaacgt cccagagttt gcaaagctgc tctatgaggt gcagatcccg 900 960 gaggacagcc ccgttggatc ccaggttgcc atcgtctctg ccagggattt agacattgga actaatggag aaatatetta tgeattttee caageatetg aagacatteg caaaaegttt 1020 cgattaagtg caaaatcggg agaactgctt ttaagacaga aactggattt cgaatccatc 1080 cagacataca cagtaaatat tcaggcgaca gatggtgggg gcctatctgg aacttgtgtg 1140 gtattigicc aagigaigga ittgaaigac aaicciccgg aactaactai gicgacacti 1200 atcaatcaga tcccagaaaa cttgcaggac accctcattg ctgtattcag cgtttcagat 1260 cctgactccg gagacaacgg aaggatggtg tgctccatcc aagatgatct tccttttttc 1320 ttgaaacctt ctgttgagaa cttttacact ctggtgataa gcacggccct ggaccgggag 1380 accagateeg aatacaacat caccateace gteacegact tegggacace caggetgaaa 1440 accgagcaca acataaccgt gctggtctcc gacgtcaatg acaacgcccc cgccttcacc 1500 1560 caaacctcct acaccctgtt cgtccgcgag aacaacagcc ccgccctgca catcggcagc 1620 gtcagcgcca cagacagaga ctcgggcacc aacgcccagg tcacctactc gctgctgccg

ccccaggacc cgcacctg	cc cctcgcctcc	ctggtctcca	tcaacgcgga	caacggccac	1680
ctgttcgctc tccagtcg	ct ggactacgag	gccctgcagg	cgttcgagtt	ccgcgtgggc	1740
gccgcagacc gcggctco	cc ggcgttgagc	agcgaggcgc	tggtgcgcgt	gctggtgctg	1800
gacgccaacg acaactcg	cc cttcgtgctg	tacccgctgc	agaacggctc	cgcgccctgc	1860
accgagctgg tgccccgg	gc ggccgagccg	ggctacctgg	tgaccaaggt	ggtggcggtg	1920
gacggcgact cgggccag	aa cgcctggctg	tcgtaccagc	tgctcaaggc	cacggagccc	1980
gggctgttcg gcgtgtgg	gc gcacaatggc	gaggtgcgca	ccgccaggct	gctgagggag	2040
cgcgacgctg ccaagcag	ag gctggtggtg	ctggtcaagg	acaatggcga	gcctccgcgc	2100
tcggccaccg ccacgctg	ca cgtgctcctg	gtggacggct	tctcccagcc	ctacctgctg	2160
ctcccggagg cggcaccg	gc ccaggcccag	gccgacttgc	tcaccgtcta	cctggtggtg	2220
gcgttggcct cggtgtct	tc gctcttcctc	ttctcggtgc	tcctgttcgt	ggcggtgcgg	2280
ctgtgcagga ggagcagg	gc ggcctcggtg	ggtcgctgct	cggtgcccga	gggcccttt	2340
ccagggcaga tggtggad	gt gagcggcacc	gggaccctgt	cccagagcta	ccagtacgag	2400
gtgtgtctga ctggaggo	tc cgggacaaat	gagttcaagt	tcctgaagcc	aattatcccc	2460
aacttcgttg ctcagggt	gc agagagggtt	agcgaggcaa	atcccagttt	caggaagagc	2520
tttgaattca cttaagtg	stt aataaggato	tactgaggct	$a \\ g \\ t \\ c \\ t \\ c \\ g \\ t \\ t \\ t$	aatttgtgga	2580
aagteetttt ttaetget	tt gcccattgga	ggtgtctcct	tttattagaa	agtaaccatc	2640
ttattccaat tctatgca	itg ttactggtat	ttataaatgt	atgagtttt	ttgcggtata	2700
ataaatgtaa atțttcti	tg tattctaaaa	aaa			2733
<210> 30					
<211> 1007					
<212> DNA		•			
<213> homo sapiens	1				
<400> 30					
cggaagcgcg acgctgga	gc tgcggggtta	ccatgggaac	cgaaccgccg	cgcctcgccc	.60
aggacagtta cacttaga	gg ccttcatcat	catgatgtta	agctgcctct	ttcttctgaa	120
ggcacttctt gctcttgg	gt ctctggaatc	ctggataact	gcaggagaac	atgcaaaaga	180
gggagaatgc cctcccca	ita agaacccatg	caaagagctg	tgccagggtg	at gaat tg tg	240
tccggctgaa cagaagtg	ct gcaccacagg	ctgtggtcgg	atctgccgag	acattcctaa	300
ggggaggaaa agagattg	cc ctagggttat	tcggaaacaa	tcctgtttga	aaaggtgcat	360
cactgatgag acatgtco	ag gtgtaaagaa	atgctgcacg	cttggctgca	acaagagctg	420
tgtagtccca atctctaa	ac agaagctggc	agagtttggt	ggtgaatgtc	ccgctgaccc	480
ccttccgtgt gaggagct					540
cagcaccggc tgtggccg	ca cctgcctcgg	agacattgag	ggagggcggg	gcggtgattg	600
tccaaaagtt ctggtggg					660
tggagaaaaa tgttgcaa	gt caggctgtgg	ccgcttctgt	gtcccaccag	tcctgccccc	720
aaaactgacc atgaacco	ca actggactgt	gaggtctgat	tccgaattag	agatcccggt	780

gccctagctg tg	ctgatttg	tctggagctt	ctttggtaat	tctggaagct	tttcctggca	840
gtcaagagag gg	tgacatcc	tggggcttgt	gacatttcca	ggggcactca	tggccctctc	900
tgctctgctt ct	cctcctgc	cgctgaccag	agcatgggaa	atagccctgg	attgggtagt	960
gggtgtgtgg tg	cttctctt	tcccgataaa	ggctggtgct	gacctct		1007
<210> 31					•	
<211> 4720						
<212> DNA						
<213> homo s	apiens					
<400> 31						
gcgagaccta gc	aggcccgg	ggctgggcgt	gccctcgcct	gccacgctgc	gcgctgccct	60
cagccgggcc gc	tggggccg	tgcagtgcac	cgggcacgcc	gcgccaggct	gggggcaggc	120
accgagcctc cg	tgggaggt	cccgaggcag	cttcgcctgc	tcgccctggc	tccagccctc	180
accigccgca go	cttagctg	agcagccgcc	gccactgggc	gcccccgct	cccacttcg	240
ccagcgcccg ct	cctcggct	cggcccgggg	tagtttgtag	ggacgcagct	ctccacgtgc	300
gcgactgcga gg	ctggacgc	tacgggctcc	tggaaaggag	acaccagcat	ttgccacaat	360
gctgtcatcc ac	tgacttta	catttgcttc	ctgggagctt	gtggtccgcg	ttgaccatcc	420
caatgaagag ca	gcagaaag	acgtcacact	gagagtatct	ggagaccttc	atgttggagg	480
agtgatgctc aa	gttagtag	aacagatcaa	tatatcccaa	gactggtcag	actttgctct	540
ttggtgggaa ca	gaagcatt	gctggcttct	gaaaacccac	tggaccctgg	acaaatatgg	600
ggtccaggca ga	tgcaaagc	ttctcttcac	ccctcagcat	aaaatgctgc	gccttcgtct	660
gccgaatttg aa	gatggtga	ggttgcgagt	cagcttctca	gctgtggttt	ttaaagctgt	720
cagtgatate tg	caaaatcc	tgaatattag	aagatcagaa	gagctttcct	tgttaaagcc	780
gtctggtgac ta	itttaaga	agaagaagaa	aaaagacaaa	aataataagg	aacccataat	840
tgaagatatt ct	aaacctgg	agagttctcc	aacagcttca	ggttcatcag	taagtcctgg	900
tttatacagt aa						960
caccatgact tg						1020
cagccaaccc co						10.80
tgataaagcc aa						1140
catccaagag ga						1200
tcctaaatat ga						1260
cttagaagaa at						1320
cattagcaaa ct						1380
tgaaatagaa go					-	1440
ccttttggag ga						1500
caagaagtta ct						1560
agcatacttt aa					_	1620
aggctgcgaa gt	tgtgcccg	atgtaaatgt	agcaggaaga	aaatttggaa	tcaagttact	1680

cattetgga gitteatata acaggitgat taaaatigat geageeaceg ggatteeagt gacaacatgg agatteacaa atateaaaca giggaatgta aacigggaaa eeeggeaggt ggicategag titgaccaaa acgietttac tgeitteace tgeetgagig eagatigeaa	1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400
atctcaggtg gcttccagtc tcgaaaacat ggatatgaac ccagaatgtt ttgtgtcacc acggtgtgca aagaaacaca aatccaaaca gctggccgcc cggatcctgg aggcgcacca gaacgtggcc cagatgcccc tggtcgaagc caagctgcgg ttcatccagg cgtggcagtc actgcctgag tttggcctca cctactacct tgtcagattt aaaggaagca aaaaagatga cattctggga gtttcatata acaggttgat taaaattgat gcagccaccg ggattccagt gacaacatgg agattcacaa atatcaaaca gtggaatgta aactgggaaa cccggcaggt ggtcatcgag tttgaccaaa acgtctttac tgctttcacc tgcctgagtg cagattgcaa	1920 1980 2040 2100 2160 2220 2280 2340
acggtgtgca aagaaacaca aatccaaaca gctggccgcc cggatcctgg aggcgcacca gaacgtggcc cagatgcccc tggtcgaagc caagctgcgg ttcatccagg cgtggcagtc actgcctgag tttggcctca cctactacct tgtcagattt aaaggaagca aaaaagatga cattctggga gtttcatata acaggttgat taaaattgat gcagccaccg ggattccagt gacaacatgg agattcacaa atatcaaaca gtggaatgta aactgggaaa cccggcaggt ggtcatcgag tttgaccaaa acgtctttac tgctttcacc tgcctgagtg cagattgcaa	1980 2040 2100 2160 2220 2280 2340
gaacgiggcc cagaigccc tggicgaagc caagcigcg ticatccagg cgiggcagic actgccigag tiiggccica cciactacci tgicagaiti aaaggaagca aaaaagaiga caitciggga gittcatata acaggiigai taaaaitgai gcagccaccg ggaitccagi gacaacaigg agaitcacaa aiaicaaaca giggaaigia aacigggaaa cccggcaggi ggicaicgag tiigaccaaa acgiciitac igciitcacc igccigagig cagaitgcaa	2040 2100 2160 2220 2280 2340
actgcctgag tttggcctca cctactacct tgtcagattt aaaggaagca aaaaagatga cattctggga gtttcatata acaggttgat taaaattgat gcagccaccg ggattccagt gacaacatgg agattcacaa atatcaaaca gtggaatgta aactgggaaa cccggcaggt ggtcatcgag tttgaccaaa acgtctttac tgctttcacc tgcctgagtg cagattgcaa	2100 2160 2220 2280 2340
cattetggga gttteatata acaggitgat taaaattgat geageeaceg ggatteeagt gacaacatgg agatteacaa atateaaaca giggaatgta aacigggaaa eeeggeaggt ggteategag titgaceaaa aegietitae tgetiteace tgeetgagig eagatigeaa	2160 2220 2280 2340
gacaacatgg agattcacaa atatcaaaca gtggaatgta aactgggaaa cccggcaggt ggtcatcgag tttgaccaaa acgtctttac tgctttcacc tgcctgagtg cagattgcaa	2220 2280 2340
ggtcatcgag tttgaccaaa acgtctttac tgctttcacc tgcctgagtg cagattgcaa	2280 2340
	2340
gottetenna gogtanatte goggalanat itilalisata anamalana	
gattgtgcac gagtacattg gcggctacat tttcttgtcc acccgctcca aggaccagaa	2400
tgaaacactc gatgaggact tgttccacaa attgaccggc ggtcaggatt gaaacaagca	2400
cgcgtgctcg gctcacacca acaaggcaag ccaaaggcgc ccctccccag agggatccct	2460
aacgtgccca gcatgtagat tctggactaa cagacaacat acattcaccg ctggtcaccc	2520
agatecteat teaaacceae tgetggeaca tecettteet taetttgeee tgtgetacea	2580
gccacggaag gagcctctct tgttttttct ataaaatggg taggcaggag aaaagcaggt	2640
gccctaagat tgctctaagg cccagcatgt ggttacagtt ctctgacttg cagaacctgc	2700
caggigiatg gciacaagit atccicgigc igatcigici cattaciaag icaaiggaga	2760
agacagaaag giaaaaatca cgigiagcaa gaacaacici tatiicacaa acicaggiai	2820
gaaacgaaac gcctgtcctt catggaactg cttttagctc ctgtcttttc aaaatggcag	2880
agggagtice tacacacat tittecetgg aggecaaggt ctaggggtag aaaggggagg	2940
ggtggggcta ccaggtagca gttgacaacc caaggtcaga ggagtggccc tcagtgtcat	3000
ctgtccacag tgatacctgc caagatgacc actgacccac atctggtctt agtcattggt	3060
ctcctcagat ttctggggcc acctgcaagc cccattccat tcctacagat ctctcagcca	3120
cctgtaagtc ctttgtgaag atgtgggtga cacaggggga caggaaaacc catttctcaa	3180
cccagatcca tgtctccact gcttctactc tgggttggga ttcaggaaga caggcacagt	3240
cctctctgtt catagaaaca cctgccagtg tcaaggattc cagtcaggtg tctatcccaa	3300
ctggtcaggg agagaagggc agacccattc tcaaagacca ccatgtccaa ggtctgacag	3360
ctccccactg gctgccccca caggggcttt aggctggtct gggtcatggg gaagcgtccc	3420
tcttatcgct ggtctgtgtt ctcctggatt tggtatctat gttggtacga ctcctggcct	3480
tttatctaaa ggactttggc ttttgtaaat cacaagccaa taatagactt ttttctcccc	3540
cicigittit igcigita icicigccii gagacigcci igagacagig ciigcciiga	3600
gagagtgagc caattaacag ctgcctgaat tgtcattttc cattttggtt tgttagaggt	3660
gggaggggtg ggttttgaga aggtcaaaag caataccaga agtaaaggga aatatcagac	3720
aatattttat tattttttca tagatgitci gccacacaaa gaaciigggg igiaaggata	3780
aggcaaaagc tccaatccca tttttcagtt ctcctaggat gcacccctca gggagcctgg	3840
ccagagticc gaggcicgtg agcgtcagct gitgcittat titccatcaa agcccictga	3900

gaagtgagac	ctcagcaatt	ccgggagcca	catagagaca	gacttggcaa	gggaccccct	3960
ggttctgagc	cagtagctgc	catctggaaa	ttcctctttt	agcctctcct	tagaggtgaa	4020
tgtgaatgaa	gcctcccagg	cacccgctga	atttctgagg	ccttgcttaa	agctcagaag	4080
tggtttaggc	atttggaaaa	tctggttcac	atcataaaga	acttgatttg	aaatgttttc	4140
tatagaaaca	agtgctaagt	gtaccgtatt	atacttgatg	ttggtcattt	ctcagtccta	4200
tttctcagtt	ctattatttt	agaacctagt	cagttcttta	agattataac	tggtcctaca	4260
ttaaaataat	gcttctcgat	gtcagatttt	acctgtttgc	tgctgagaac	atctctgcct	4320
aatttaccaa	agccagacct	tcagttcaac	atgcttcctt	agcttttcat	agttgtctga	4380
catttccatg	aaaacaaagg	aaccaacttt	gttttaacca	aactttgttt	ggttacagtt	4440
ttcaggggag	cgtttcttcc	atgacacaca	gcaacatccc	aaagaaataa	acaagtgtga	4500
caaaaaaaaa	aaaaaacaaa	cctaaatgct	actgttccaa	agagcaactt	gatggttttt	4560 .
tttaatactg	agtgcaaaag	gtcacccaaa	ttcctatgat	gaaatttaa	attaatgggc	4620
acctttcaac	atcatttgct	tccttatcta	cagttgattc	agaaatctgc	atttttatt	4680
cttttatatg	acttttaagt	aaaagattta	tatggatttg			4720
<210> 32						
<211> 426						
<212> DNA			•			
<213> hom	o sapiens .					
<400> 32	•					
agagtttcag	ttttggcagc	agcgtccagt	gccctgccag	tagctcctag	agaggcaggg	60
gttaccaact	ggccagcagg	ctgtgtccct	gaagtcagat	caacgggaga	gaaggaagtg	120
gctaaaacat	tgcacaggag	aagtcggcct	gagtggtgcg	gcgctcggga	cccaccagca	180
	tcgtgctcac					240
cccatatttg	gtcccgagga	ggtgaatagt	gtggaaggta	actcagtgtc	catcacgtgc	300
	ccacctctgt					360
agaggtggct	gcataaccct	catctcctcg	gagggctacg	tctccagcaa	atatgcaggc	420
agggctaaco	tcaccaactt	cccggagaac	ggcacatttg	tggtgaacat	tgcccagctg	480
	actccgggcg					540
	. gcctggaggt					600
	tgggcagaac					660
aagaggaagi	ccttgtacaa	gcagataggc	ctgtaccctg	tgctggtcat	cgactccagt	720
ggttatgtaa	atcccaacta	tacaggaaga	atacgccttg	atattcaggg	tactggccag	780
ttactgttca	gcgttgtcat	caaccaactc	aggctcagcg	atgctgggca	gtatctctgc	840
	atgattccaa					900
gagcccgag	tggtttatga	agacctgagg	ggctcagtga	ccttccactg	tgccctgggc	960
	caaacgtggc					1020
gtggtcgtca	acaccctggg	gaagagggcc	ccagcctttg	agggcaggat	cctgctcaac	1080

ccccaggaca	aggatggctc	attcagtgtg	gtgatcacag	gcctgaggaa	ggaggatgca	1140
gggcgctacc	tgtgtggagc	ccattcggat	ggtcagctgc	aggaaggctc	gcctatccag	1200
gcctggcaac	tcttcgtcaa	tgaggagtcc	acgattcccc	gcagccccac	tgtggtgaag	1260
ggggtggcag	gaggctctgt	ggccgtgctc	tgcccctaca	accgtaagga	aagcaaaagc	1320
atcaagtact	ggtgtctctg	ggaaggggcc	cagaatggcc	gctgcccct	gctggtggac	1380
agcgaggggt	gggttaaggc	ccagtacgag	ggccgcctct	ccctgctgga	ggagccaggc	1440
aacggcacct	tcactgtcat	cctcaaccag	$\tt ctcaccagcc$	gggacgccgg	cttctactgg	1500
tgtctgacca	acggcgatac	tctctggagg	accaccgtgg	agatcaagat	tatcgaagga	1560
	tcaaggtacc					1620
ccctgtcact	ttccatgcaa	attctcctcg	tacgagaaat	actggtgcaa	gtggaataac	1680
acgggctgcc	aggccctgcc	cagccaagac	gaaggcccca	gcaaggcctt	cgtgaactgt	1740
gacgagaaca	gccggcttgt	ctccctgacc	ctgaacctgg	tgaccagggc	tgatgagggc	1800
tggtactggt	gtggagtgaa	gcagggccac	ttctatggag	agactgcagc	cgtctatgtg	1860
	agaggaaggc					1920
	agaaggtgct					1980
	tttttgcaga					2040
	ctgtggattc					2100
	tggtgcccct					2160
	ggçacaggaa					2220
	cagacttcga					2280
	ctcaggagac					2340
	agaccaaaga					2400
	aagacttcct					2460
	cctagacggt					2520
	atcctggggc					2580
	tcctactgtc					2640
	tgttcctatt					2700
	gagaacctca					2760
	cagggtggga					2820
	atgggatgtc					2880
	cttctttcct					2940
	gatgctgtga		•			3000
	gaagccacag					3060
	gctcacctct					3120
	gtcatgtatg					3180
	ataagaaaat					3240
ttttttgaga	cggagtctct	cactgtcgcc	caggctggag	tgcagtggcg	caatctcggc	3300

tcactgcaac ctccgcctcc	caggitgaca	ccattctcct	gcctcaccct	cccaagtagc	3360
tgggactaca ggcgcctgcc	agcacgcctg	gctaattttt	tgtatttta	gtagagacag	3420
ggtttcaccg tgttagccag	gatggtctcg	atctcctgac	ctcgtgatcc	gcctgcctct	3480
gcctcccaaa gtgctgggat	tacaggcgtg	agccaccgcg	tccggcctct	ttttttcttt	3540
tcttttttt gagacaaagt	ctcactgtgt	cacccagact	ggaatgcagt	gacacaatct	3600
cggctcactg aaacctctgc	cttccaggtt	caagctattc	tcatgcctca	gcctctcaag	3660
tagctgggac tacagatgtg	ggccaccatg	tctggctaat	ttttttttt	ttttttttt	.3720
tttgtagaga cagggtttcg	ccatgttgac	gagactggtc	tcgaactcct	ggcctcaagt	3780
gatetgeege eteagettet	caaagtactg	ggattatata	ggcatgagcc	actgagcctg	3840
gccctgaagc gtttttctca	aaggccctca	gtgagataaa	ttagatttgg	catctcctgt	3900
cctgggccag. ggatctctct	acaagagccc	ctgccctct	$\tt gttggaggca$	cagttttaga	3960
ataaggagga ggagggagaa	gagaaaatgt	aaaggaggga	gatctttccc	aggccgcacc	4020
atttctgtca ctcacatgga	cccaagataa	aagaatggcc	aaaccctcac	aacccctgat	4080
gtttgaagag ttccaagttg	aagggaaaca	aagaagtgtt	tgatggtgcc	agagagggc	4140
tgctctccag aaagctaaaa	tttaatttct	tttttcctct	gagttctgta	cttcaaccag	4200
cctacaagct ggcacttgct	aacaaatcag	aaatatgaca	attaatgatt	aaagactgtg	4260
attgcc					4266
<210> 33 .			•		
<211> 2618 .					
<212> DNA					
<213≻ homo sapiens			,		
<400> 33		•			
atgaagcacc tgaagcggtg	gtggtcggcc	ggcggcggcc	tcctgcacct	caccctcctg	60
ctgagcttgg cggggctccg	g cgtagaccta	gatctttacc	tgctgctgcc	gccgcccacc	120
ctgctgcagg acgagctgc	gttcctgggc	ggcccggcca	gctccgccta	cgcgctcagc	180
cccttctcgg cctcgggagg	g gtggggggcgc	gcgggccact	tgcaccccaa	gggccgggag	240
ctggaccctg ccgcgccgc	c.cgagggccag	ctgctccggg	aggtgcgcgc	gctcggggtc	300
cccttcgtcc ctcgcaccag	g cgtggatgca	tggctggtgc	acagcgtggc	tgccgggagc	360
gcggacgagg cccacgggc	t gctcggcgcc	gccgccgcct	cgtccaccgg	aggagccggc	420
gccagcgtgg acggcggcag	g ccaggctgtg	caggggggcg	gcggggaccc	ccgagcggct	480
cggagtggcc ccttggacg	c cggggaagag	gagaaggcac	ccgcggaacc	gacggctcag	540
gtgccggacg ctggcggat	g tgcgagcgag	gagaatgggg	tactaagaga	aaagcacgaa	600
gctgtggatc atagttccc					660
aactcacttc agcagaatg	a tgatgatgaa	aacaaaatag	cagagaaacc	tgactgggag	720
gcagaaaaga ccactgaat	c tagaaatgag	agacatctga	atgggacaga	tacttctttc	780
tctctggaag acttattcc	a gttgctttca	tcacagcctg	aaaattcact	ggagggcatc	840
tcattgggag atattcctc	t tccaggcagt	atcagtgatg	gcatgaattc	ttcagcacat	900

tatcatgtaa	acttcagcca	ggctataagt	caggatgtga	atcttcatga	ggccatcttg	960
ctttgtccca	acaatacatt	tagaagagat	ccaacagcaa	ggacttcaca	gtcacaagaa	1020
ccatttctgc	agttaaattc	tcataccacc	aatcctgagc	aaacccttcc	tggaactaat	1080
ttgacaggat	ttctttcacc	ggttgacaat	catatgagga	atctaacaag	ccaagaccta	1140
ctgtatgacc	ttgacataaa	tatatttgat	gagataaact	taatgtcatt	ggccacagaa.	1200
gacaactttg	atccaatcga	tgtttctcag	${\tt cttttgatg}$	aaccagattc	tgattctggc	1260
ctttctttag	attcaagtca	caataatacc	tctgtcatca	agtctaattc	ctctcactct	.1320
gtgtgtgatg	aaggtgctat	${\tt aggttattgc}$	actgaccatg	aatctagttc	ccatcatgac	1380
ttagaaggtg	ctgtaggtgg	ctactaccca	gaacccagta	agcittgtca	cttggatcaa	1440
agtgattctg	atttccatgg	agatettaca	tttcaacacg	tatttcataa	ccacacttac	1500
${\tt cacttacagc}$	caactgcacc	agaatctact	tctgaacctt	ttccgtggcc	tgggaagtca	1560
cagaagataa	ggagtagata	ccttgaagac	acagatagaa	acttgagccg	tgatgaacag	1620
cgtgctaaag	ctttgcatat	${\tt cccttttct}$	gtagatgaaa	ttgtcggcat	gcctgttgat	1680
tctttcaata	gcatgttaag	tagatattat	ctgacagacc	tacaagtctc	acttatccgt	1740
gacatcagac	gaagagggaa	aaataaagtt	gctgcgcaga	actgtcgtaa	acgcaaattg	1800
gacataattt	tgaatttaga	agatgatgta	tgtaacttgc	aagcaaagaa	ggaaactctt	1860
aagagagagc	aagcacaatg	taacaaagct	attaacataa	tgaaacagaa	actgcatgac	1920
ctttatcatg	atattttag	tagattaaga	gatgaccaag	gtaggccagt	caatcccaac	1980
cactatgctc	tccagtgtac	ccatgatgga	agtatcttga	tagtacccaa	agaactggtg	2040
gcctcaggcc	acaaaaagga	aacccaaaag	ggaaagagaa	agtgagaaga	aactgaagat	2100
ggactctatt	atgtgaagta	gtaatgttca	gaaactgatt	atttggatca	gaaaccattg	2160
aaactgcttc	aagaattgta	tctttaagta	ctgctacttg	aataactcag	ttaacgctgt	2220
tttgaagctt	acatggacaa	atgittagga	cttcaagatc	acacttgtgg	gcaatctggg	2280
ggagccacaa	cttttcatga	agtgcattgt	atacaaaatt	catagttatg	tccaaagaat	2340
aggttaacat	gaaaacccag	taagactttc	catcttggca	gccatccttt	ttaagagtaa	2400
gttggttact	tcaaaaaagag	caaacactgg	ggatcaaatt	attttaagag	gtatttcagt	2460
tttaaatgca	aaatagcctt	attttcattt	agtttgttag	cactatagtg	agcttttcaa	2520
acactattt	aatcttata	tttaacttat	aaattttgct	ttctatggaa	ataaattttg	2580
tatttgtatt	aaaaattaac	ttttcccttt	tatacaga			2618
⟨210⟩ 34						
<211> 799						
<212> DNA						
<213> hom	o sapiens					
<400> 34						
gtgcaatggc	tagtactatg	tgtcaacttg	tctaggctat	actgctcagc	tgtgtggtca	60
aacagtagtc	tagatgttgc	tgtgaaggta	ttttgtagat	gtgatcaaca	tttacaatca	120

gttgatttta agtaaagcag tttaacttcc aatatgtgga tgggcctcat ccaattagtt 180

gaaggtgtta	agagaaaaga	ccaaggtttc	ctggaaaagg	aattctacca	caagactaac	240
ataaaaatgc	actgtgagtt	tcatgcctgc	tggcctgcct	tcactgtcct	gggggaggc t	300
tggagagacc	aggtggactg	gagtatactg	ttgagagacg	ctggtctggt	gaagatgtcc	360
aggaaaccac	gagcctccag	cccattgtcc	aacaaccacc	caccaacacc	aaagaggttc	420
ccaagacaac	tcggaaggga	aaagggaccc	atcgaggaag	ttccaggaac	aaaaggctct'	480
ccataaaaga	ccgccgcttc	aaaaaaacc t	gaggaatgga	gtgggccaac	actatccagc	540
cactctgacc	agccgaacga	ggaactcaat	caaaatgagc	catagcggga	ccacaagggc	. 600
aaggagacca					•	660
agagactica	agtctatctg	aaaagtctcc	agaggtctaa	ccccagataa	atagocaaca	720
gggtgtagag	tacgttttac	accccaaagg	gtatgcccca	tgtgagggaa	ataaaatgaa	780
catgttgtaa	aaaaaaaaa					799
<210> 35						
<211> 2050						
<212> DNA						
	sapiens					
<400> 35						
				cagtggactc		60
	•			gttgttctgt		120
gggcagtttg	tgaacaaact	gcaagaggaa	gtgatctgcc	ccatctgcct	ggacattctg	180
				tcaaatgcat	_	240
				aaacttccgt		300
				aaatccaagc	_	360
				ggcaccagga		420
				gtcgtgaatc		480
				attatcaggg	-	540
				tacaagtgaa		600
				agaagcaaag		660
				atttcctgct		720
				atgttgcctc		780
	_			ccaagcagaa	_	840
				gtgaagagtt		900 -
				gtgaagcaaa		960
					taggaaaaaa	1020
				tgaagagctg		1080
		_		ggtcatcttc		1140
					cctgtttcgg	1200
gcctcgtctg	ctgggaaagt	cacttttcca	gtatgtctcc	tggcctctta	tgatgagatt	1260

tctggtcaag gagcgagctc	tcaggatacg	aagacatttg	acgttgcgct	gtccgaggag	1320
ctccatgcgg cactgagtga	gtggctgaca	gcgatccggg	cttggttttg	tgaggttcct	1380
tcaagctaag ccagctcaga	gaacacgggg	agcggtggtg	ctacacggac	ttcggagcat	1440
agagtggcgc tgagtgagtg	gctgagaccg	accacggttc	ttgacttagt	ggaattgggt	1500
cgaaggagtg gagaatggga	gggctcgggc	tactgagagt	ggagatgggg	gcgggggtgg.	1560
tggtgaagag agttggagaa	ggaatggacg	aattcttgag	caaaaggagg	ggaagagaca	1620
atctccagcc acccgcccca	cgcttgactt	cttatcactt	tggctgtggt	gccgcctagt	1680
ggaaaaagga agtccctgca	gcagtccccg	cactctttaa	gcagctgttt	accgaaggca	1740
ccagticage caggagtgaa	atccggagag	gagcaacgcc	agcctgggtc	acagtccatc	1800
aaaccccatg agcccgacca	ctctcgctct	tccttacatt	cccacgtccc	ccttctctcc	1860
caaccctca tatcagcaag	ggaaattaat	taatgagatt	tgataaatca	gtagatagaa	1920
tgaggtcccc attctgaaat	atttagcaga	ctggaaccac	cacgcaagcc	tctgtagggg	1980
gtggatggag acacttctaa	ctttaataaa	ctgcgactga	acgtggaaaa	aaaaaaaaa	2040
aaaaaaaaa					2050
⟨210⟩ 36					
<211> 1537					
<212> DNA					
<213≻ homo sapiens .					
<400> 36 .					
agttctgtgg agcagcggtg	gccggctagg	atgggctctc	tggggtctga	ctctgcccct	60
tttcttcttc tgctgggagg	gtggggtctc	taggagctct	gcaggcccca	gcacccgcag	120
agcagacact gcgatgacaa	cggacgacac	agaagtgccc	gctatgactc	tagcaccggg	180
ccacgccgct ctggaaactc	aaacgctgag	cgctgagacc	tcttctaggg	cctcaacccc	240
agccggcccc attccagaag	cagagaccag	gggagccaag	agaatttccc	ctgcaagaga	300
gaccaggagt ttcacaaaaa	catctcccaa	cttcatggtg	ctgatcgcca	cctccgtgga	360
gacatcagcc gccagtggca	gccccgaggg	agctggaatg	accacagt tc	agaccatcac	420
aggcagtgat cccagggaag	ccatctttga	caccctttgc	accgatgaca	tctctgaaga	480
ggcaaagaca ctcacaatgg	acatattgac	attggctcac	acctccacag	aagctaaggg	540
cctgtcctca gagagcagcg	cctcttccga	cggcccccat	ccagtcatca	ccccgtcacg	600
ggcctcagag agcagcgcct	cttccgacgg	cctccatcca	gtcatcaccc	cgtcacgggc	660
ctcagagagc agcgcctctt	ccgacggcct	ccatccagtc	atcaccccgt	cacgggcctc	720
agagagcagc gcctcttccg					780
atctgacgtc actctcctcg	acggccccca	iccagicate	accccctcat	ggiccccggg	100
ttgcagcatc acagaaatag					840
rigougouro ucuguatag	ctgaagccct	ggtgactgtc	acaaacatcg	aggitatiaa	
tctcatcccc acggaagggg	ctgaagccct aaacaacgac	ggtgactgtc ttccagcatc	acaaacatcg cctggggcct	aggitatiaa cagacacaga	840
	ctgaagccct aaacaacgac tgaaggcctc	ggtgactgtc ttccagcatc gtccacctcc	acaaacatcg cctggggcct gatccaccag	aggitattaa cagacacaga cictgcctga	840 900
tctcatcccc acggaagggg	ctgaagccct aaacaacgac tgaaggcctc acatcactga	ggtgactgtc ttccagcatc gtccacctcc ggtcacagcc	acaaacatcg cctggggcct gatccaccag tctgccgaga	aggitattaa cagacacaga ctctgcctga ccctgtccac	840 900 960

•					
cagcaccata gaaagagaa	g tgacagcacc	cggggccacg	accctcagtg	gagctctggc	1140
cacagggaat cccctggaa	g aaacctcagc	cctctctgtt	gagacaccaa	gttacgtcaa	1200
agtotcagga gcagctccg	g tctccataga	ggctgggtca	gcagtgggca	aaacaacttc	1260
ctttgctggg agctctgct	t cctcctacag	cccttggaa	gccgccctca	agaacttcac	1320
cccttcagag.acactgacc	a cggacatcgc	aaccaagggg	cccttcccca	ccagcagggc	1380
ccctcttcct tctgtccct	c cgactacaac	caacagcagc	tgaaggacga	acagcatctt	1440
agccaagacc acaacctca	g cgaagaccac	gatgaagccc	ccaacagcca	cgcccaccac	.1500
tgctcggacg aggccgacc	a cagacatgag	tgcaggt			1537
⟨210⟩ 37 · ·	•				
<211> 777:					
<212> DNA-					
<213≯ homo sapiens					
<400> 37 ·					
ggcccttgt ctgcagaga	t ggctcccaat	gcttcctgcc	tctgtgtgca	tgtccgttcc	60
gaggaatggg atttaatga	c ctttgatgcc	aacccatatg	acagcgtgaa	aaaaatcaaa	120
gaacatgtcc ggtctaaga	c caaggttcct	gtgcaggacc	aggttctttt	gctgggctcc	180
aagatettaa ageeaegga	g _{aagcctctca}	tcttatggca	ttgacaaaga	gaagaccatc	240
caccttaccc tgaaagtgg	t gaageceagt	gatgaggagc	tgcccttgtt	tcttgtggag	300
tcaggtgatg aggcaaaga	g gcacctcctc	caggtgcgaa	ggtccagctc	agtggcacaa	360
gtgaaagcaa tgatcgaga	c taagacgggt	ataatccctg	agacccagat	tgtgacttgc	420
aatggaaaga gactggaag	a tgggaagatg	atggcagatt	acggcatcag	aaagggcaac	480
ttactcttcc tggcatctt	a ttgtattgga	gggtgaccac	cctggggatg	gggtgttggc	540
aggggtcaaa aagcttatt	t cttttaatct	cttactcaac	gaacacatct	tctgatgatt	600
tcccaaaatt aatgagaat	g agatgagtag	agtaagattt	gggtgggatg	ggtaggatga	660
agtatattgc ccaactcta	it gittettiga	ttctaacaca	attaattaag	tgacatgatt	720
tttactaatg tattactga	g actagtaaat	aaatttt:taa	ggcaaaatag	agcattc	777
<210> 38					
⟨211⟩ 4231					
<212> DNA					
<213> homo sapiens					
⟨400⟩ 38 .					
ggaaaagagg gcacccag	ec cttccccct	cctcatcctc	ccatcccagt	aaaccctgcc	60
aaattggaat cctggact	ta atttaggaga	aaggccctgt	aaccaagata	ctgactgaac	120
atggctggcg gactcagge	et ggggtetgea	gtgcagcatt	aatgggccgc	tgacatgaat	180
atggagtagt tttctctag	gc aaagagtggo	ttccagcttc	ttaaagtctg	acaagaaccg	240
gataggggga acctacaag	ga agaccatcta	ı taaagaatac	aaggatgact	catacacaga	300
tgaagtggcc cagcctgc	et ggttggget	cctggggcca	gtgttgcagg	ctgaagtggg	360

ggatgtcatt	cttattcacc	tgaagaattt	tgccactcgt	ccctatacca	tccaccctca	420
tggtgtcttc-	tacgagaagg	actctgaagg	ttccctatac	ccagatggct	cctctgggcc	480
actgaaagct	gatgactctg	ttccccggg	gggcagccat	atctacaact	ggaccattcc	540
agaaggccat	gcacccaccg	atgctgaccc	agcgtgcctc	acctggatct	accattctca	600
tgtagatgct	ccacgagaca	ttgcaactgg	cctaattggg	cctctcatca	cctgtaaaag.	660
aggagccctg	gatgggaact	ccctcctca	acgccaggat	gtagaccatg	atttcttcct	720
cctcttcagt	gtggtagatg	agaacctcag	ctggcatctc	aatgagaaca	ttgccactta	. 780
ctgctcagat	cctgcttcag	tggacaaaga	agatgagaca	tttcaggaga	gcaataggat	840
gcatgcaatc	<u>aatggctttg</u>	tttttgggaa	tttacctgag	ctgaacatgt	gtgcacagaa	900
acgtgtggcc	tggcacttgt	ttggcatggg	caatgaaatt	gatgtccaca	cagcattttt	960
		cccgtggaca				1020
cacctttgtg	actgctgaga	tggtgccctg	ggaacctggt	acctggttaa	ttagctgcca	1080
agtgaacagt	cactttcgag	atggcatgca	ggcactctac	aaggtcaagt	cttgctccat	1140
ggcccctcct	gtggacctgc	tcacaggcaa	agttcgacag	tacttcattg	aggcccatga	1200
		cgatggggca				1260
gccaggcagt	atctcagata	agtttttcca	gaagagctcc	agccgaattg	ggggcactta	1320
		cctttcaaga				1380
	•	tcctggggcc				1440
tcaggtggtc	ttctacaacc	gtgcctccca	gccattcagc	atgcagcccc	atggggtctt	1500
ttatgagaaa	gactatgaag	gcactgtgta	caatgatggc	tcatcttacc	ctggcttggt	1560
tgccaagccc	tttgagaaag	taacataccg	ctggacagtc	cccctcatg	ccggtcccac	1620
		tcacttggat				1680
cacaaattct	ggcctggtgg	gcccgctgct	ggtgtgcagg	gctggtgcct	tgggtgcaga	1740
		ataaagaatt				1800
caagagctgg	tacagcaatg	ccaatcaagc	agctgctatg	ttggatttcc	gactgctttc	1860
		aagactccaa				1920
		acatgtgcaa				1980
		tgcatggagt				2040
gggcatgagg	aagggtgcag	ctatgctctt	tcctcatacc	tttgtcatgg	ccatcatgca	2100
		ttgagattta				2160
		tctcccagtg				2220
ctaccaagct	gcaagaatct	actatatcat	ggcagaagaa	gtagagtggg	actattgccc	2280
		aatggcacaa				2340
		ggctcctggg				2400
atacactgat	ggtacatica	ggatccctcg	gccaaggact	ggaccagaag	aacacttggg	2460
aatcttgggt	ccacttatca	aaggtgaagt	tggtgatatc	ctgactgtgg	tattcaagaa	2520
taatgccagc	cgccctact	ctgtgcatgc	tcatggagtg	ctagaatcta	ctactgtctg	2580

gccactggct gctgagcctg gtgaggtggt cacttatcag tggaacatcc cagagaggtc 2640 tggccctggg cccaatgact ctgcttgtgt ttcctggatc tattattctg cagtggatcc 2700 catcaaggac atgtatagtg gcctggtggg gcccttggct atctgccaaa agggcatcct 2760 ggagccccat ggaggacgga gtgacatgga tcgggaattt gcattgttgt tcttgatttt 2820 tgatgaaaat aagtottggt atttggagga aaatgtggca acccatgggt cccaggatcc 2880 aggcagtatt aacctacagg atgaaacttt cttggagagc aataaaatgc atgcaatcaa 2940 tgggaaactc tatgccaacc ttaggggtct taccatgtac caaggagaac gagtggcctg 3000 gtacatgctg gccatgggcc aagatgtgga tctacacacc atccactttc atgcagagag 3060 cttcctctat cggaatggcg agaactaccg ggcagatgtg gtggatctgt tcccagggac 3120 tittgaggit giggagatgg tggccagcaa ccctgggaca tggctgatgc actgccatgt 3180 3240 cttaagccct ctcaccgtca tcaccaaaga gactgaaaaa gcagtgcccc ccagagacat 3300 tgaagaaggc aatgtgaaga tgctgggcat gcagatcccc ataaagaatg ttgagatgct 3360 ggcctctgtt ttggttgcca ttagtgtcac ccttctgctc gttgttctgg ctcttggtgg 3420 agtggtttgg taccaacate gacagagaaa getacgacge aataggaggt ceateetgga 3480 tgacagcttc aagcttctgt ctttcaaaca gtaacatctg gagcctggag atatcctcag 3540 gaagcacate tgtagtgeae teccageagg ceatggaeta gteactaace ceacacteaa 3600 aggggcatgg gtggtggaga agcagaagga gcaatcaagc ttatctggat atttctttct 3660 ttatttattt tacatggaaa taatatgatt tcactttttc tttagtttct ttgctctacg 3720 tgggcacctg gcactaaggg agtaccttat tatcctacat cgcaaatttc aacagctaca 3780 ttatatttcc ttctgacact tggaaggtat tgaaatttct agaaatgtat ccttctcaca 3840 aagtagagac caagagaaaa actcattgat tgggtttcta cttctttcaa ggactcagga 3900 aatttcactt tgaactgagg ccaagtgagc tgttaagata acccacactt aaactaaagg 3960 ctaagaatat aggcttgatg ggaaattgaa ggtaggctga gtattgggaa tccaaattga 4020 attttgattc tccttggcag tgaactactt tgaagaagtg gtcaatgggt tgttgctgcc 4080 atgagcatgt acaacctctg gagctagaag ctcctcagga aagccagttc tccaagttct 4140 taacctgtgg cactgaaagg aatgitgagt taccicitca tgitttagac agcaaaccct 4200 atccattaaa gtacttgtta gaacactgaa a 4231 <210> 39 **<211>** 6322 <212> DNA <213> homo sapiens **<400>** 39 ctgagagcga catgtccccg gcgctcagg cggagcggcc cgtggcgctg ttttctgag 60 tccggggtgg cctggcagcc ggccgaggac gagggtcggc gggggctgcc cccgtggtgg 120 tggccgccat gctgggagcc tgggcggttg agggaaccgc tgtggcgctc ctgcgactgc 180 tgctgctgct gctgccgccg gcgatccggg gacccgggct cggcgtggcc ggcgtggccg 240

gcgcggcggg	ggccgggctg	cccgagagcg	tcatttgggc	ggtcaacgcg	ggtggagagg	300
cgcatgtgga	cgtgcacggg	atccacttcc	gcaaggaccc	tttggaaggc	cgggtgggcc	360
gagcctcaga	ctatggcatg	aaactgccaa	tcctgcgttc	caaccctgag	gaccagatcc	420
tgtatcaaac	tgagcggtac	aatgaggaga	cctttggcta	cgaagtgccc	atcaaagagg	480
agggggacta	cgtgctggtc	ttgaaatttg	cagaggtcta	ctttgcacag	tcccagcaaa	540
aggtatttga	tgtacgattg	aatggccacg	tcgtggtgaa	ggacttggat	atctttgatc	600
${\tt gtgttgggca}$	tagcacagct	cacgatgaaa	ttatacctat	gagcatcaga	aaggggaagc	660
tgagtgtcca	gggggaggtg	tccaccttca	cagggaaact	ctacattgag	tttgtcaagg	720
 ggtactatga	caatcccaag	gtctgtgcac	tctacatcat	ggctgggaca	gtggatgatg	780
taccaaagct	·tcagcctcat	ccgggattgg	agaagaaaga	agaggaagaa	gaagaagaag	840
aatatgatga	agggtctaat	$\tt ctcaaaaaaac$	agaccaataa	gaaccgggtg	cagtcaggcc	900
cccgcacacc	caacccctat	gcctcggaca	acagcagcct	${\tt catgtttccc}$	atcctggtgg	960
ccttcggagt	cttcattcca	accctcttct	gcctctgccg	gttgtgagaa	caaatgacta	1020
tcctgaacag	ggtggagggg	tgtgggaaag	aaaccagcca	tattggtttt	ggtttctgta	1080
tttttcacaa	tgattaatga	acaaaaacaa	agagaaaaaa	aacacacatc	aattaaagga	1140
gacaaaaaga	ggcagagcga	gtagagagca	gccctcattc	accacctggt	cccagacgtg	1200
cttcagtcct	cgtcctctct	ttgtggctgg	ctcccagcct	tctctttcct	cttgaggata	1260
cttagggtaa	actggatcct	tcctgctcaa	ggatcctcat	ttgtatacct	agtggaaagg	1320
actctgaact	cagaggagtc	actgttcctt	tttttaggtt	agaaattaac	agcagggaaa	1380
tgccatctta	ttacctgaga	cgaccagcac	tgggagttag	gtacggtctg	aagttatgtc	1440
tagataagac	ttcagacgtc	ctgggattga	aagaatgtgt	gtgaaggggt	agaatttgtg	1500
cggtaaagac	ttaaaaaaaa	aagtagggag	attaaaaaaa	aagaaagaaa	atgetteett	1560
atctggaagc	cttictggat	taatccagtg	atggtcccac	ctttagtgtt	tgagctttgt	1620
cattgcttgt	ctccctggca	tgtgccagtt	atagactgtc	cagcatccaa	gacgtttcgg	1680
ttatgtcggg	tcctcagatc	gcctctgact	tgttaccaca	acaaatcatt	ttgatttcag	1740
tgcctgttgg	ggacttgatt	tcttctcagg	ttttgtttgt	ttgtttgttt	ccttaatctg	1800
gctcatttga	aatttcttct	ccctctcaac	catcccacta	agttatagcc	aagaagggaa	1860
ggagacacgg	ggatttgggg	ttctctgctt	gaatgtcttc	tcctttacca	cctcaccttg	1920
ttggtacctc	cctccctgga	tctctgagcc	agcagccagg	aggacctgac	ccagcagttc	1980
tttactggcc	cctttgtagg	gccttgctgc	cagggggcag	ggatgctttc	cagcctgcag	2040
caacagaaca	cttgacctta	aaagtctctt	ctggtctttg	gattagaaaa	ggcttatgtt	2100
agcatagctt	aagagcaacc	tcagagactt	gagccctact	aagtgactga	ccactgttta	2160
gagtgtctgg	tatctgatgt	tcatttattc	ccatgttctt	gtgtgtcaca	gttcagccag	2220
ttttggttta	tgcctagagc	tacttcaagg	aactagacta	attagctata	taggcccagc	2280
gatgcttctt	attgatctta	atagtatgcc	cttccttccc	ctgtcctttc	atttctctat	2340
ccaagtagca	gtcaggttct	tggtgtgatg	ggactgaaag	aattccagtc	agccagagcc	2400
ttggcagctc	tgaagctaac	cttagcatct	aagtgtcgat	cttgaattcc	ctgaaaaaaat	2460

ttctatagga	aatgaagctt	ccctggtccc	ctcctttctg	gccattgtca	tccatttccc	2520
agttagggca	acaatgaagg	aggacccagc	caagctagaa	ggaattttgt	ggatgggaga	2580
cagcaggatt	agcttcagct	tgggctggag	cagtcaatat	aggateteag	gccaggcccg	2640
cttttctaga	atgtgtttaa	ttttgagttt	gctttattag	atatgttttt	taagagctct	2700
gtatatttga	actgctcctt	atgtgacaaa	ataggtagct	cttgggctca	tgtcctgggt	2760
tttggctctt	taatgattac	tccaggccag	catttagtcg	tttgagaatt	gtagcctgtt	2820
gttttcgctg	tgacttgggt	ctcagtgcta	gggtattgag	tcaggcagct	ggagggttgt	. 2880
ggcccgaggc	tgcagtcaga	ggtatacttc	ccatagtgct	tcacacagct	ccctgcttc	2940
taaaggataa	ggtactgtag	ccttggtcct	ggggaccacc	tgcctggggc	agtggacatc	3000
ctaactaaac	aggcttctgg	cagtagcttt	ggttcctatc	ccatcgaaat	tccccaaagc	3060
cctgggccac.	tgccattggg	ttagtcaaga	tgaaggagga	ggactggctg	cctccatttt	3120
gccttgtttg	ttagtttgcc	tgggtctgtc	tgaggaagga	gggggtcccg	ccttccacct	3180
caacacatcc'	cttcagtgac	tcagagtctc	agaaggaaac	cctgactcct	ggggccattt	3240
cctaatggta	ctgtaagcca	agcagctttg	cttctgcctc	tgtttccaag	cccacccttt	3300
tccctgagc	tcagggttag	ggatgggcgc	tttcctctct	ggttgtgaac	gaaaggaagg	3360
aacatctttc	tatggctaac	aaaaactaaa	ggggaagtga	ggaaacagga	agaagtatgg	3420
				gctaacaaga		3480
gctggtcaca	gctggctcat	gatgctgaac	ttgaaagttt	ttttgttttt	gtttttgttt	3540
				aaggggtggg		3600
tttatttttg	tattgtatgt	gtcaagaatt	actctgttgt	tcaccttttg	ctttttgcac	3660
tgtttgttct	cttatctgta	ttttgagctt	agtgctagga	ctgagaggct	gcaccatagg	3720
gaatgtatgg	gagatggtga	ggggtgccag	tgaggggtgc	gtggaggaga	ggcctgggct	3780
				cactgagccc		3840
aaacaaggac	agtcagggtg	aaacttcttt	tgccagaagt	gtggcctgag	ttgaatttct	3900
				agttctgcag		3960
				tgggtctcac		4020
				ttaaaccaga		4080
				accccgagtt		4140
				caggaagact		4200
				ttgccctccc		4260
				agggcacagt		4320
				gctttagaac		4380
				ttctcttcct		4440
				aatctcagct		4500
				ccctttccct		4560
				gccctcccta		4620
aaggacccac	cccggtcagc	acagtgcctt	ttcctctcct	gctctgagcc	agggtggggc	4680

attccctcta	gattcaggtt	t gggc agggg	tcctatagtc	cctgccatgg	ggctgcttcc	4740
ctgtcccttc	cctcccttt	gctggcctac	tctggcataa	ttcaagtgtc	ttcttgcctt	4800
ggggatcctt	agtggcatca	aatggcaaca	tggaatattg	tcctccatgc	ccctccagaa	4860
$\tt ggacctagga$	${\tt gagtaggtga}$	gctttccaaa	gtgagagacg	aatctttctt	tcttttttt	4920
tttaaagggc	aggatgggta	tgctttgggc	tttctccttc	tgtggccccg	gaggaaggag	4980
agactgaggc	aaggcaaagt	gatagtacac	tgaagcagaa	ccggaaacac	ccaggaactg	5040
ttcagaaatc	tcagaagaaa	tctgcttctc	ttcgatggaa	agatataatt	aacgatcaaa	5100
gagctctaag	aaaattgcaa	agaagcctta	atgttcaagc	tttagaaaga	tcagagcaat	5160
ttttctcttt	cagtccaaac	taagactctc	tgtatttaaa	tetetetggg	gcaagagggc	5220
tagatttcct	cattttgtta	tgagactaga	ttggtaccag	tagatcagct	gcctagcgag	5280
ggcaggtttc	ttctttgcat	ctgtgtggct	tgcttccagt	ctggcctgtc	ctttccagct	5340
gccttttgtc	tagcctgcta	tggggggcca	gattatcttg	ataagagcag	gtgatttggg	5400
gactagctgg	gttggtagga	aaagagcagg	atggatctct	tgggacaggt	tccccagga	5460
gtataaacac	aaggagccag	gattgtcctg	gcagccaagg	aaacagtagt	gcctgtttga	5520
gttggcagag	agggccttgg	cacctcttgc	atccaggcag	tcttgtgaga	tgggggcaca	5580
tagcactggg	gaaagcagaa	ctccattctc	acctctattt	tgagcttcag	tgctttattt	5640
cagtatgagg	aaaaacaaca	acaaactgaa	gtgcgctttc	cgtcctttca	aaggacaact	5700
gtcgggaagg	gagagccgag	ttgcgaggta	ggaggggagc	actggcaggg	agagacattc	5760
ttgactcctc	tcttccctgg	tgtgttgtga	tccagggaat	gaaaagaaat	ttgaccctgg	5820
attggttctc	tccttggact	taaggaatct	taccttttcc	ttccacaaag	ttctcccagg	5880
caaggaccag	ctgcccattc	tgagcccagg	gcagcctctt	caaccattat	tggtctaacc	5940
tggcttgtca	ggaaaccaag	cccacccttc	cacattgggc	ctggctgctc	tattctgtac	6000
caagtactgg	agaaaaagca	tcaagttctt	agcccttgta	gcttctaccc	tagtttccca	6060
tcctctctct	gtggaggcca	aaccaactct	ttgccagcag	ccacaacatg	cattgacagc	6120
ggcacagtga	gatataactg	atgggctttg	aacctggttg	gccggggaag	ctgtaggggt	6180
ggatagagct	ggctttcctt	ctgggctgtc	tccatctgac	cctacccctt	ccatgtccca	6240
ccccactccc	accaaaaagt	acaaaatcag	gatgttttc	actgtccatt	gctttgtgtt	6300
ttaataaaca	. atttgcagtg	ac				6322
<210> 40						
<211> 360	0					
<212> DNA						
<213> hor	o sapiens					
<400> 40						
gaatcaacag	g aatttgtctt	tttgtgactg	gtttatttca	. cttaacttca	tcctcaaggt	60
tcaacttaaa	ggtgtatcca	tgttgtagca	. cgtgtcagca	ttttctttcg	ttctcaggct	120
aaatagtatt	tcattgtgtg	tgtacaccat	gtttcatgca	ttcattcatc	ccttgaaaga	180

ttggtgggtt gtttcctcct ttttgctttt gtgaacagtg ctacgaacat ggttgtacaa

240

acatctcttg	gagccccact	agcagttcct	ttgggtatat	accccaaagt	ggaattgctg	300
gatctggtag	ctcccttttt	aatttttga	ggaatcgcca	cacagtttcc	ataacagctg	360
caccatttta	cattcccaag	acctttttt	tttttttt	tttaagaaga	aaagatgtgt	420
ttctgcattt	ctggaagtct	atgctgcatt	tccatttgtt	gaaatttaag	accagagtca	480
tcttttctgc	tgtaattata	atggtcactg	gcttgtgcct	tttcctcctc	tctctgcccc	540
atctgcacgg	ggtctttgaa	caagtcccag	caccttggtg	gacaagcctg	tgtccctggc	600
ccatcatgga	${\tt agccgctgcc}$	tttcagagtg	ggagtctgta	ccctgttgcc	tcattccttg	660
ctgcgcccat	gagtgagctt	gtgcctgacc	tctccttcca	ggtggactta	cacactgggc	720
tgtcggagtt	ctcggtgacg	${\tt cagcgccgg\underline{c}}$	tggcccatgg	ctggaatgag	tttgttgctg	780
acaacagcga	acctgtgtgg	aagaaatacc	tggatcagtt	taagaacccc	ctgatcctgc	840
tgctgctggg.	${\tt ctctgccctg}$	gtgagtgtcc	tcaccaagga	gtatgaggac	gccgtcagca	900
tcgccacggc	${\tt agtgcttgtc}$	gtggtcactg	tcgccttcat	ccaggagtac	aggtcggaga	960
aatctctgga	${\tt agagctgacc}$	aagctggttc	ctccagaatg	taactgccta	agagaaggaa	1020
aactccagca	cctgcttgct	cgagaactgg	ttcctggtga	tgtcgtatct	ctctcgatcg	1080
gagaccggat	ccctgcagac	atccgactca	ctgaggtcac	ggacctcttg	gtggatgaat	1140
ccagtttcac	cggggaagcc	gagccatgta	gtaaaacaga	cagccccttg	acaggcggtg	1200
gggacctcac	${\tt caccctcagc}$	aacatcgtct	tcatggggac	cctggtgcag	tatgggaggg	1260
gccagggggt	cgtgattgga	acaggggaaa	gctctcagtt	cggagaagtg	tttaagatga	1320
tgcaggctga	agagacacct	aaaactcctt	tgcagaaaag	catggacagg	ctaggaaagc	1380
aactgacact	cttctccttt	ggcataatcg	gtctcatcat	gctcattggc	tggtcgcaag	1440
ggaaacaact	cctgagtatg	ttcacgatcg	gggtcagcct	ggctgtggcg	gctattccag	1500
agggtctgcc	${\tt catcgtcgtc}$	atggtgacgc	tggtcctggg	agtgctgcgg	atggccaaga	1560
agcgggtcat	cgtgaagaag	ttacccatcg	tggagacttt	aggttgctgc	agcgttctct	1620
gttctgacaa	gacggggact	ctgactgcca	atgaaatgac	agtgacccag	cttgtaacgt	1680
cagatgggct	tcgtgccgag	gtcagcggag	ttgggtatga	cggtcaaggg	actgtgtgtc	1740
ttctaccatc	caaggaagtc	attaaggaat	tttccaatgt	ctcagtggga	aagttagtgg	1800
aggcgggctg	tgttgccaac	aatgcggtca	tcagaaagaa	cgccgtgatg	gggcagccca	1860
ccgagggtgc	attgatggcc	ctggcgatga	agatggactt	aagtgatatt	aaaaattcat	1920
atataagaaa	aaaagagatt	ccattcagtt	cagagcagaa	gtggatggcg	gtgaaatgca	1980
gtctgaagac	tgaggatcag	gaagacattt	acttcatgaa	aggggccttg	gaagaggtga	2040
tccgctactg	caccatgtac	aacaacgggg	${\tt gcatcccct}$	gccgctgacg	ccccagcaga	2100
ggtcattctg	cctgcaggaa	gagaagagga	tggggtcgct	cggtttgcgg	gtgctggccc	2160
tggcttctgg	gcccgagctg	gggcggctga	cgtttctagg	tcttgtgggc	atcattgacc	2220
ccccgagagt	tggcgtgaag	gaagcagtcc	${\tt aggttctctc}$	cgagtctggt	gtgtctgtga	2280
agatgataac	gggggatgcc	ctggagacgg	ccttggccat	aggaagaaac	atcggcctgt	2340
gcaacgggaa	gctgcaagcc	atgtccgggg	aggaggtgga	cagcgtggag	aagggcgagc	2400
tggccgaccg	cgtggggaag	gtgtccgtgt	tcttcaggac	cagcccaaag	cacaagctca	2460

•							
aaatcatcaa	ggctctgcag	gagtcagggg	cgatcgtggc	catgactggg	gatggggtga	2520	
acgacgcagt	ggccctgaag	tctgcagaca	ttgggatcgc	catggggcag	acagggacgg	2580	
acgtcagcaa	agaggccgcc	aacatgatcc	tggtggatga	tgacttctca	gccatcatga	2640	
atgcagtgga	ggaaggcaag	ggtattttt	acaacatcaa	aaactttgtc	cgattccagc	2700	
tgagcacgag	catctccgcc	ctgagtctca	tcactctgtc	caccgtgttc	aacctgccca.	2760	
gcccctcaa	cgccatgcag	atcctatgga	tcaacatcat	catggatggg	ccaccggcgc	2820	
agagcttggg	ggtagagccc	gttgacaaag	acgccttcag	gcagccacca	cggagtgtgc	.2880	
gggacaccat	cctcagcaga	gccctcatcc	tgaagatcct	catgtccgcg	gccatcatca	2940	
tcagcgggac	${\tt cctctttatc}$	ttctggaagg	agaitgcctga	agacagagca	agcactcccc	3000	
gcaccacgac	gatgacgttc	actigititg	tgtttttcga	tctcttcaac	gccttgacct	3060	
gccgctctca	gaccaagctg	atatttgaga	tcggctttct	caggaaccac	atgttcctct	3120	
actccgtcct	ggggtccatc	$\tt ctggggcagc$	tggcggtcat	ttacatcccc	ccgctgcaga	3180	
gggtcttcca	gacggagaac	$\tt ctgggagcgc$	ttgatttgct	gtttttaact	ggattggcct	3240	
catccgtctt	cattttgtca	gagctcctca	aactatgtga	aaaatactgt	tgcagcccca	3300	
agagagtcca	gatgcaccct	gaagatgtgt	agtggaccgc	actccgcggc	accttcccta	3360	
atcatctcga	tctggttgtg	actgtggccc	ctgccgtgtc	tcctcgtcag	gggagacttt	3420	
taggaggccg	cagccttcca	tcaccggatc	agtttttcct	cttaggaaag	ctgcaggaac	3480	
ctcgtgggct	ccagggaccç	aggcccacat	ccatccagcg	ttcccgctgg	ctgtgggaca	3540	
	ggcctgtaca	gaaacaccac	actgtttatt	aaatcacaat	gatttttatt	3600	
⟨210⟩ 41			•				
<211> 250'	7						
<212> DNA			•				
	o sapiens						
<400> 41							
cagcacaccc	cggcacctcc	tctgcggcag	ctgcgcctcg	caagcgcagt	gccgcagcgc	· 60	
		gcccggcgcg				120	
		cagctctgca				180	
		catgggataa			_	240	
		tccaggtggg				300	
		agctctcccc				360	
		tgcgtatctt				420 ·	
		tacacggttt				480	
		ggtttcatcg				540	
		cacatcacta				600	
		ggctccagaa				660	
		agcttctcta				720	
taccataaag	agtctctgtc	tgtcaaatgg	aggtatcttt	cctgagactc	accgtccact	780	

	•						
(ccttctccaa	aagctactca	aagatggagg	tgtgctgtca	cccatcctca	cacgactgat	840
į	gaacttcttt	gtattctctc	gaggtctcac	cccagtcttt	gggccgtata	ctcggccctc	900
	tgagagtgag	ctgtgggaca	tgtgggcagg	gatccgcaac	aatgacggga	acttagtcat	960
	tgacagtctc	ttacagtaca	tcaatcagag	gaagaagttc	agaaggcgct	gggtgggagc	1020
	tcttgcctct	gtaactatcc	ccattcattt	tatctatggg	ccattggatc	ctgtaaatcc	1080
	ctatccagag	tttttggagc	tgtacaggaa	aacgctgccg	cggtccacag	tgtcgattct	1140
-	ggatgaccac	attagccact	atccacagct	agaggatccc	atgggcttct	tgaatgcata	.1200
	tatgggcttc	atcaactcct	tctgagctgg	aaagagtagc	ttccctgtat	tacctcccct	1260
	actecettat	gtgttgtgta	ttccacttag	gaagaaatgc	ccaaaagagg	tcctggccat	1320
	caaacataat	tctctcacaa	agtccacttt	actcaaattg	gtgaacagtg	tataggaaga	1380
	agccagcagg.	agctctgact	aaggttgaca	taatagtcca	cctcccatta	ctttgatatc	1440
	tgatcaaatg	tatagacttg	gctttgtttt	ttgtgctatt	aggaaattct	gatgagcatt	1500
	actattcact	gatgcagaaa	gacgttcttt	tgcataaaag	acttttttt	aacactttgg	1560
	acttctctga	aatatttaga	agtgctaatt	tctggcccac	ccccaacagg	aattctatag	1620
	taaggaggag	gagaaggggg	gctccttccc	tctcctcgaa	tgacgitatg	ggcacatgcc	1680
	tttaaaagt	tctttaagca	a ca cagaget	gagtcctctt	tgtcatacct	ttggatttag	1740
	tgtttcatca	gctgttttta	gttataaaca	ttttgttaaa	atagatattg	gtttaaatga	1800
	tacagtattt	taggtatgat	ttaagactat	gatttaccta	tacattatat	atattttata	1860
	aagatactaa	acçagcatac	ccttactctg	ccagagtagt	gaagctaatt	aaacacattt	1920
	ggtttctgaa	taaattgaac	taaatccaaa	ctatttccta	aaatcacagg	acattaagga	1980
	ccaatagcat	ctgtgccaga	gatgtactgt	tattagctgg	gaagaccaat	tctaacagca	2040
	aataacagtc	tgagactcct	catacctcag	tggttagaag	catgtctctc	ttgagctaca	2100
	gtagagggga	agggattgtt	gtgtagtcaa	gtcaccatgc	tgaatgtaca	ctgattcctt	2160
	tatgatgact	gcttaactcc	ccactgcctg	tcccagagag	gctttccaat	gtagctcagt	2220
	aattcctgtt	actttacaga	caggaaagtt	ccagaaactt	taagaacaaa	ctctgaaaga	2280
	cctatgagca	aatggtgctg	aatactttt	ttttaaagcc	acatttcatt	gtcttagtca	2340
	aagcaggatt	attaagtgat	tatttaaaat	tcgtttttt	aaattagcaa	cttcaagtat	2400
	aacaactttg	aaactggaat	aagtgtttat	tttctattaa	taaaaatgaa	ttgtgacaaa	2460
	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaa		2507
	<210> 42						
	<211> 356	0					
	<212> DNA						
	<213> hom	o sapiens					
	<400> 42						
	gagctagcgc	tcaagcagag	cccagcgcgg	tgctatcgga	cagagcctgg	cgagcgcaag	60
	cggcgcgggg	agccagcggg	gctgagcgcg	gccagggtct	gaacccagat	ttcccagact	120
				1			

agctaccact ccgcttgccc acgccccggg agctcgcggc gcctggcggt cagcgaccag 180

PCT/JP2004/011650

acgtccgggg	ccgctgcgct	cctggcccgc	gaggrataar	actgtctcgg	ctacagaccc	240
				ggacttcctc		300
				ggccacatcc		360
				ccctggccat		420
				ctcttctgcc		480
				ccacgacgag		540
				gcatgctggg		. 600
				ggctgatgaa		660
				aggaggcgct		720
				ccttcaccca		780
cagaaggagg	ctatttttt	gaaaggagct	ggggccaccg	tggagttatt	gttcatgtca	840
tcgaccccaa	atcaggcaca	gtcatccatt	ctgaccggtt	tgacacctat	agatccaaga	900
aagagagtga	acgtctggtc	cagtatttga	acgcggtgcc	cgatggcagg	atcctttctg	960
ttgcagtgaa	tgatgaaggt	tctcgaaatc	tggatgacat	ggccaggaag	gcgatgacca	1020
aattgggaag	caaacacttc	ctgcaccttg	gatttagaca	cccttggagt	tttctaactg	1080
tgaaaggaaa	tccatcatct	tcagtggaag	accatattga	atatcatgga	catcgaggct	1140
ctgctgctgc	ccgggtattc	aaattgttcc	agacagagca	tggcgaatat	ttcaatgttt	1200
ctttgtccag	tgagtgggtt	caagacgtgg	agtggacgga	gtggttcgat	catgataaag	1260
tatctcagac	taaaggtggg	gagaaaattt	cagacctctg	gaaagctcac	ccaggaaaaa	1320
tatgcaatcg	tcccattgat	atacaggcca	ctacaatgga	tggagt taac	ctcagcaccg	1380
aggttgtcta	caaaaaaggc	caggattata	ggtttgcttg	ctacgaccgg	ggcagagcct	1440
gccggagcta	ccgtgtacgg	ttcctctgtg	ggaagcctgt	gaggcccaaa	ctcacagtca	1500
ccattgacac	caatgtgaac	agcaccattc	tgaacttgga	ggataatgta	cagtcatgga	1560
aacctggaga	taccctggtc	attgccagta	ctgattactc	catgtaccag	gcagaagagt	1620
tccaggtgct	tccctgcaga	tcctgcgccc	ccaaccaggt	caaagtggca	gggaaaccaa	1680
tgtacctgca	catcggggag	gagatagacg	gcgtggacat	gcgggcggag	gttgggcttc	1740
tgagccggaa	catcatagtg	atgggggaga	tggaggacaa	atgctacccc	tacagaaacc	1800
acatctgcaa	tttctttgac	ttcgatacct	ttgggggcca	catcaagttt	gctctgggat	1860
ttaaggcagc	acacttggag	ggcacggagc	tgaagcatat	gggacagcag	ctggtgggtc	1920
agtacccgat	tcacttccac	ctggccggtg	atgtagacga	aaggggaggt	tatgacccac	1980
ccacatacat	cagggacctc	tccatccatc	atacattctc	tcgctgcgtc	acagtccatg	2040
gctccaatgg	cttgttgatc	aaggacgttg	tgggctataa	ctctttgggc	cactgcttct	2100
tcacggaaga	tgggccggag	gaacgcaaca	cttttgacca	ctgtcttggc	ctccttgtca	2160
agtctggaac	cctcctcccc	tcggaccgtg	acagcaagat	gtgcaagatg	atcacagagg	2220
actcctaccc	ggggtacatc	cccaagccca	ggcaagactg	caatgctgtg	tccaccttct	2280
ggatggccaa	tcccaacaac	aacctcatca	actgtgccgc	tgcaggatct	gaggaaactg	2340
gattttggtt	tatttttcac	cacgtaccaa	cgggcccctc	cgtgggaatg	tactccccag	2400
						•

gttattcaga	gcacattcca	ctgggaaaat	tctataacaa	ccgagcacat	tccaactacc	2460
gggctggcat	gatcatagac	aacggagtca	aaaccaccga	ggcctctgcc	aaggacaagc	2520
ggccgttcct	ctcaatcatc	tctgccagat	acagccctca	ccaggacgcc	gacccgctga	2580
agccccggga	gccggccatc	atcagacact	tcattgccta	caagaaccag	gaccacgggg	2640
$\tt cctggctgcg$	cggcggggat	gtgtggctgg	acagctgccg	gtttgctgac	aatggcattg	2700
gcctgaccct	ggccagtggt	ggaaccttcc	cgtatgacga	cggctccaag	caagagataa	2760
agaacagctt	gtttgttggc	gagagtggca	acgtggggac	ggaaatgatg	gacaatagga	2820
tctggggccc	tggcggcttg	gaccatagcg	gaaggaccct	ccctataggc	cagaattttc	2880
caattagagg	aatteagtta	tatgatggcc	ccatcaacat	ccaaaactgc	actttccgaa	2940
${\tt agtttgtggc}$	$\tt cctggagggc$	cggcacacca	gcgccctggc	cttccgcctg	aataatgcct	3000
ggcagagctg	ccccataac	aacgtgaccg	gcattgcctt	tgaggacgtt	ccgattactt .	3060
ccagagtgtt	cttcggagag	cctgggccct	ggttcaacca	gctggacatg	gatggggata	3120
agacatctgt	gttccatgac	gtcgacggct	ccgtgtccga	gtaccctggc	tcctacctca	3180
cgaagaatga	caactggcat	tcgttggctt	caaaggcagc	ttccggccca	tctgggtgac	3240
actggacact	gaggatcaca	aagccaaaat	cttccaagtt	gtgcccatcc	ctgtggtgaa	3300
gaagaagaag	ttgtgaggac	agctgccgcc	cggtgccacc	tcgtggtaga	ctatgacggt	3360
gactcttggc	agcagaccag	tgggggatgg	ctgggtcccc	${\tt cagccctgc}$	cagcagctgc	3420
ctgggaaggc	cgtgtttcag	ccctgatggg	ccaagggaag	gctatcagag	accctggtgc	3480
tgccacctgc	ccctactcaa	gtgtctacct	ggagcccctg	gggcggtgct	ggccaatgct	3540
ggaaacattc	actttcctgc					3560
⟨210⟩ 43 ·			•			
<211> 234	0					
<212> DNA						•
<213> hom	o sapiens					
<400> 43						
gatagcgccg	ggcagaggga	cccggctacc	ctggacagcg	catcgccgcc	cgcccgggtc	60
gccgcgccac	agccgctgcg	gatcatggaa	catctaaagg	cctttgatga	tgaaatcaat	120
gcttttttgg	acaatatgtt	tggaccgcga	gattctcgag	tcagagggtg	gttcacgttg	180
gactcttacc	ttcctacctt	ttttcttact	gtcatgtatc	tgctctcaat	atggctgggt	240
aacaagtata	tgaagaacag	acctgctctt	tctctcaggg	gtatcctcac	cttgtataat	300
cttggaatca	cacttctctc	cgcgtacatg	ctggcagagc	tcattctctc	cacttgggaa	360 ·
ggaggctaca	acttacagtg	tcaagatctt	accagcgcag	gggaagctga	catccgggta	420
gccaaggtgc	tttggtggta	ctatttctcc	aaatcagtag	agttcctgga	cacaattttc	480
ttcgttttgc	ggaaaaaaac	gagtcagatt	acttttcttc	atgtatatca	tcatgcttct	540
atgtttaaca	tctggtggtg	tgtcttgaac	tggatacctt	gtggacaaag	titctttgga	600
ccaacactga	acagttttgt	ccacattctt	atgtactcct	actatggact	ttctgtgttt	660
ccatctatgc	acaagtatct	ttggtggaag	aaatatctca	cacaggetea	gctggtgcag	720
						_

ttcgtgctca ccatcacgca caccatgagc gccgtcgtga aaccgtgtgg cttccccttc	780
ggttgtctca tcttccagtc atcttatatg ctaacgttag tcatcctctt cttaaatttt	840
tatgttcaga cataccgaaa aaagccaatg aagaaagata tgcaagagcc acctgcaggg	900
aaagaagtga agaatggttt ttccaaagcc tacttcactg cagcaaatgg agtgatgaac	960
aagaaagcac aataaaaatg agtaacagaa aaagcacata tactagccta acagattggc	1020
tigittiaaa gcaaagacig aatigaaggi tacaigitti aggataaaci aatiiciitt	1080
gagticataa atcattigia cccagaatgi attaatatat igciattagg itaatcigii	.1140
aactgaatgc tttgatcagc attgaggtga tgctcacctc cgaggacctc agaactggtg	1200
cagettetet etecetecet eccacagaet gaacettteg ceagaagetg teettataae	1260
gccttatacg catacacagc caggaaacgt ggagcattgt ttctcacaga gagtctccaa	1320
ataaaaaggg titigticag attaaaatgt ttacaacaaa atgitaatta tatictaaat	1380
acagggtatg ttctaatcta tattaagcaa taatgccagt gcataatcat tccatttgtt	1440
cctttagcaa tcaaccccag aaaatattaa aatgggatca tacacagaag atagaaaaat	1500
ctagcaaaac ttctctttct gtaagccaga gtcttgtcta tcagattccc acaaccactc	1560
ctgattctaa atttagtgat atggtaatga aattggtatt tattttaaat attagttatt	1620
ctaaggagaa aaaaatgctt ctgcaagatt ttcataattc aggggctgtg gataggattg	1680
ttcctctgtt tccctaatca ttcatctgtt catgtctccc tcttgtgcca gtcagcctag	1740
gttatacaga tgccatgctc cacaccacga gcagtgtaca aatctggctg cccgtttact	1800
tictgagcaa gcactggagt ccactccgac ctttttcttt gaacatgcat gctgctggaa	1860
tatgtataaa tcagaactag cagaagtagc agagtgatgg gagcaaaata ggcactgaat	1920
tcgtcaactc ttttttgtga gcctacttgt gaatattacc tcagatacct gttgtcactc	1980
ttcacaggtt atttaagttc ttgaagctgg gaggaaaaag atggagtagc ttggaaagat	2040
tccagcactg agccgtgagc cggtcatgag ccacgataaa aaatgccagt ttggcaaact	2100
cagcactcct gttccctgct caggtatatg cgatctctac tgagaagcaa gcacaaaagt	2160
agaccaaagt attaatgagt atttcctttc tccataagtg caggactgtt actcactact	2220
aaactctacc aagaatggaa accaagaata ttttctgaag atttttttga agattaattt	2280
ataccctata aaataaaact tgttagcttc gatgaagtca aaaaaaaaaa	2340
<210> 44	
<211> 7475	
<212> DNA	
<213> homo sapiens	
<400> 44	
acticagacg ccgctgatcc gggaggagct ggggtgagcc gcggcggccg tctctcccac	60
ccgcagcage atcctctctg cccttctctg ccaccccggg gagagccggg agctgcctct	120
ttacagcttc cacgagccag gggtgcaggc agctgcccc aggaagtttg ggcttctgcg	180
tagtttaggg gtgcctgcga gcgccccaga gggcgagggg ccgagggcga tgttgggcgc	240
cgcgcgggc tgggggcgcc cagaagacgt gcgagtgtcc gcggtcctgc tgctgtctcc	300

agtaccctcc	gcatccccca	agtgatggga	acaagggccc	gcccaggcag	ccgctgtcgc	360
cgcaccgccc	cctcgctcgc	tctctgcgcg	cggagtcacc	cagtcacact	cccggcaccc	420
${\tt cgagcccttc}$	ctccggagct	gctgcttcta	ctttggctgc	tatcgccgcc	gccgcgggtg	480
gcccgctgct	gactgggctc	gccgggagac	ggagaagcac	tttttggccc	tccctcagca	540
gctctcacac	cccaactttg	ccgccgccgc	cgcgcctgcc	ctcgcagcgg	cgctcggccg	600
cacattgtgg	gggcgcacgc	cgggaggctc	cgcaagaccg	tggaggcagg	aaacggcact	660
act gcgcttc	tgcctcggct	ctttgttgtt	cgctttggat	ggttcttgaa	agtgtctgag	. 720
cctcctcgga	aatcctgggg	ccggagaaga	caaaccttgg	aattetteet	ctgcaaaagt	780
ctctgagata	ctgacaagcg	tccggaaagg	tcgacgagta	attgccctga	aaactcttgg	840
ctaattgacc	cacgttgctt	atattaagcc	tttgtgtgtg	gtgtgtggct	tcatacattt	900
ggggacccta	tttccactcc	${\tt ctcctcttgg}$	catgagactg	tatacaggat	ccacccgagg	960
acaatgattg	cggagcccgc	t cacttttac	ctgtttggat	taatatgtct	ctgttcaggc	1020
tcccgtcttc	gtcaggaaga	ttttccacct	cgcattgttg	a a c a c c c t t c	agacctgatt	1080
gtctcaaaag	gagaacctgc	aactttgaac	tgcaaagctg	aaggccgccc	cacacccact	1140
attgaatggt	acaaaggggg	agagagagtg	gagacagaca	aagatgaccc	tcgctcacac	1200
cgaatgttgc	tgccgagtgg	atctttattt	ttcttacgta	tagtacatgg	acggaaaagt	1260
agacctgatg	aaggagtcta	tgtctgtgta	gcaaggaatt	accttggaga	ggctgtgagc	1320
cacaatgcat	cgctggaagt	agccatactt	cgggatgact	tcagacaaaa	cccttcggat	1380
gtcatggttg	cagtaggaga	gcctgcagta	atggaatgcc	aacctccacg	aggccatcct	1440
gagcccacca	tttcatggaa	gaaagatggc	tctccactgg	atgataaaga	tgaaagaata	1500
actatacgag	gaggaaagct	catgatcact	tacacccgta	aaagtgacgc	tggcaaatat	1560
gtttgtgttg	gtaccaatat	ggttggggaa	cgtgagagtg	aagtagccga	gctgactgtc	1620
ttagagagac	catcatttgt	gaagagaccc	agtaacttgg	cagtaactgt	ggatgacagt	1680
gcagaattta	aatgtgaggc	ccgaggtgac	cctgtaccta	cagtacgatg	gaggaaagat	1740
gatggagagc	tgcccaaatc	cagatatgaa	atccgagatg	atcatacctt	gaaaattagg	1800
aaggtgacag	ctggtgacat	gggttcatac	acttgtgttg	cagaaaatat	ggtgggcaaa	1860
gctgaagcat	ctgctactct	gactgttcaa	gaacctccac	attttgttgt	gaaaccccgt	1920
gaccaggttg	ttgctttggg	acggactgta	acttttcagt	gtgaagcaac	cggaaatcct	1980
caaccagcta	ttttctggag	gagagaaggg	agtcagaatc	tacttttctc	atatcaacca	2040
ccacagtcat	ccagccgatt	ttcagtctcc	cagactggcg	acctcacaat	tactaatgtc	2100
cagcgatctg	atgttggtta	ttacatctgc	cagactttaa	atgttgctgg	aagcatcatc	2160
acaaaggcat	atttggaagt	tacagatgtg	attgcagatc	ggcctcccc	agttattcga	2220
caaggtcctg	tgaatcagac	tgtagccgtg	gatggcactt	tcgtcctcag	ctgtgtggcc	2280
acaggcagtc	cagtgcccac	cattctgtgg	agaaaggatg	gagtcctcgt	ttcaacccaa	2340
gactctcgaa	tcaaacagtt	ggagaatgga	gtactgcaga	tccgatatgc	taagctgggt	2400
gatactggtc	ggtacacctg	cattgcatca	accccagtg	gtgaagcaac	atggagtgct	2460
tacattgaag	ttcaagaatt	tggagttcca	gttcagcctc	caagacctac	tgacccaaat	2520

ttaatccc	ta	gtgccccatc	aaaacctgaa	gtgacagatg	tcagcagaaa	tacagtcaca	2580
ttatcgtg	ggc	aaccaaattt	gaattcagga	gcaactccaa	catcttatat	tatagaagcc	2640
ttcagcca	ıtg	catctggtag	${\tt cagctggcag}$	accgtagcag	agaatgtgaa	aacagaaaca	2700
tctgccat	ta	aaggactcaa	acctaatgca	atttaccttt	tccttgtgag	ggcagctaat	2760
gcatatgg	gaa	ttagtgatcc	aagccaaata	tcaga t ccag	tgaaaacaca	agatgtccta	2820
ccaacaag	gtc	agggggtgga	ccacaagcag	gtccagagag	agctgggaaa	tgctgttctg	2880
cacctcca	aca	acccaccgt	${\tt cctttcttcc}$	tcttccatcg	aagtgcactg	gacagtagat	. 2940
caacagto	ctc	agtatataca	aggatataaa	attctctatc	ggccatctgg	agccaaccac	3000
ggagaato	gag	actggttagt	ttttgaagtg	aggacgccag	ccaaaaacag	tgtggtaatc	3060
cctgatc	tca	gaaagggagt	caactatgaa	attaaggctc	gcccttttt	taatgaattt	3120
caaggag	cag	atagtgaaat	${\tt caagtttgcc}$	aaaaccctgg	aagaagcacc	cagtgcccca	3180
ccccaagg	gtg	taactgtatc	caagaatgat	ggaaacggaa	ctgcaattct	agttagttgg	3240
cagccaco	ctc	cagaagacac	tcaaaatgga	atggtccaag	agtataaggt	ttggtgtctg	3300
ggcaatg	aaa	ctcgatacca	catcaacaaa	acagtggatg	gttccacctt	ttccgtggtc	3360
attccct	ttc	ttgttcctgg	aatccgatac	agtgtggaag	tggcagccag	cactggggct	3420
gggtctgg	ggg	taaagagtga	gcctcagttc	atccagctgg	atgcccatgg	aaaccctgtg	3480
tcacctg	agg	accaagtcag	cctcgctcag	cagatttcag	atgtggtgaa	gcagccggcc	3540
ttcatage	cag	gtattggagc	agcctgttgg	atcatcctca	tggtcttcag	catctggctt	3600
tatcgac	acc	gcaagaagag	aaacggactt	actagtacct	acgcgggtat	cagaaaagtc	3660
ccgtctt	tta	ccttcacacc	aacagtaact	taccagagag	gaggcgaagc	tgtcagcagt	3720
ggaggga	ggc	ctggacttct	caacatcagt	gaacctgccg	cgcagccatg	gctggcagac	3780
acgtggc	cta	atactggcaa	caaccacaat	gactgctcca	tcagctgctg	cacggcaggc	3840
aatggaa	aca	gcgacagcaa	cctcactacc	tacagtcgcc	cagctgattg	tatagcaaat	3900
tataaca	acc	aactggataa	caaacaaaca	aatctgatgc	tccctgagtc	aactgtttat	3960
ggtgatg	tgg	accttagtaa	caaaatcaat	gagatgaaaa	ccttcaatag	cccaaatctg	4020
aaggatg	ggc	gttttgtcaa	tccatcaggg	cagcctactc	cttacgccac	cactcagctc	4080
atccagt	caa	acctcagcaa	caacatgaac	aatggcagcg	gggactctgg	cgagaagcac	4140
tggaaac	cac	tgggacagca	gaaacaagaa	gtggcaccag	ttcagtacaa	catcgtggag	4200
caaaaca	agc	tgaacaaaga	ttatcgagca	aatgacacag	ttcctccaac	tatcccatac	4260
aaccaat	cat	acgaccagaa	cacaggagga	tcctacaaca	gctcagaccg	gggcagtagt	4320
acatetg	gga	gtcaggggca	caagaaaggg	gcaagaacac	ccaaggtacc	aaaacagggt	4380
ggcatga	ac t	gggcagacct	gcttcctcct	ccccagcac	atcctcctcc	acacagcaat	4440
agcgaag	agt	acaacatttc	tgtagatgaa	agctatgacc	aagaaatgcc	atgtcccgtg	4500
ccaccag	caa	ggatgtattt	gcaacaagat	gaattagaag	aggaggaaga	tgaacgaggc	4560
cccactc	ccc	ctgttcgggg	agcagcttct	tctccagctg	ccgtgtccta	tagccatcag	4620
tccactg	cca	ctctgactcc	ctcccacag	gaagaactcc	agcccatgtt	acaggattgt	4680
ccagagg	aga	ctggccacat	gcagcaccag	cccgacagga	gacggcagcc	tgtgagtcct	4740

PCT/JP2004/011650

cctccaccac	cacggccgat	ctccctcca	catacctatg	gctacatttc	aggacccctg	4800
gtctcagata	tggatacgga	tgcgccagaa	gaggaagaag	acgaagccga	catggaggta	4860
gccaagatgc	aaaccagaag	gcttttgtta	cgtgggcttg	agcagacacc	tgcctccagt	4920
gttggggacc	tggagagctc	tgtcacgggg	tccatgatca	acggctgggg	ctcagcctca	4980
gaggaggaca	acatttccag	cggacgctcc	agtgttagtt	${\tt cttcggacgg}$	ctcctttttc	5040
actgatgctg	actttgccca	ggcagtcgca	gcagcggcag	$a \verb gtatgctgg $	tctgaaagta	5100
gcacgacggc	aaatgcagga	tgctgctggc	cgtcgacatt	ttcatgcgtc	tcagtgccct	. 5160
aggcccacaa	gtcccgtgtc	tacagacagc	aacatgagtg	ccgccgtaat	gcagaaaaacc	5220
agaccagcca	agaaactgaa	acaccagcca	ggacatctgc	gcagagaaac	ctacacagat	5280
gatcttccac	cacctcctgt	gccgccacct	gctataaagt	${\tt cacctactgc}$	ccaatccaag	5340
acacagctgg	aagtacgacc	tgtagtggtg	ccaaaactcc	cttctatgga	tgcaagaaca	5400
gacagatcat	cagacagaaa	aggaagcagt	tacaagggga	$\tt gagaagtgtt$	ggatggaaga	5460
caggitgitg	acatgcgaac	aaatccaggt	gatcccagag	aagcacagga	acagcaaaat	5520
gacgggaaag	gacgtggaaa	caaggcagca	aaacgagacc	ttccaccagc	aaagactcat	5580
		accttattgt				5640
agagatccca	gttcctcaag	ctcaatgtca	tcaagaggat	caggaagcag	acaaagagaa	5700
caagcaaatg	taggtcgaag	aaatattgca	gaaatgcagg	tacttggagg	atatgaaaga	5760
ggagaagata	ataatgaaga	attagaggaa	actgaaagct	gaagacaacc	aagaggctta	5820
tgagatctaa	tgtgaaaatc	atcactcaag	atgcctcctg	tcagatgaca	catgacgcca	5880
gataaaatgt	tcagtgcaat	cagagtgtac	aaattgtcgt	ttttattcct	cttattggga	5940
tatcatttta	aaaactttat	tgggttttta	ttgttgttgt	ttgatcccta	accctacaaa	6000
gagccttcct	attcccctcg	ctgttggagc	aaaccattat	accttacttc	cagcaagcaa	6060
agtgctttga	cttcttgctt	cagtcatcag	ccagcaagag	ggaacaaaac	tgttcttttg	6120
cattttgccg	ctgagatatg	gcattgcact	gcttatatgc	caagctaatt	tatagcaaga	6180
tattgatcaa	atatagaaag	ttgatattca	acctcacaag	ggctctcaaa	gtataatctt	6240
tctatagcca	actgctaatg	caaattaaaa	catatttcat	tttaacatga	tttcaaaatc	6300
agtttttcat	actacccttt	gctggaagaa	actaaaaata	tagcaaatgc	agaaccacaa	6360
acaattcgaa	tggggtagaa	acattgtaaa	tatttactct	ttgcaaaccc	tggtggtatt	6420
ttattttggc	ttcatttcaa	tcattgaagt	atattcttat	tggaaatgta	cttttggata	6480
		atctctggtt		_	_	6540
aaaccttgtt	ctatttttca	atcatcaaaa	agtaattata	aatacgtatt	acaaacaagt	6600
ggatgtttt	aatgaccaat	tgagtaagaa	catccctgtc	ttaactggcc	taaatttett	6660
		ttcagaagtg				6720
		ctctcttt				6780
tcactaaact	ttatttgtaa	accattgtaa	ctattaacct	tttttgtctt	attgaaaaaa	6840
aaaatgttga	gaagcgtttt	taacctgttt	tgttaatgct	ctatgtttgt	atttggaata	6900
tttgaataat	gacagatggt	gaagtaacat	gcatacttta	ttgtgggcca	tgaaccaaat	6960

·					
ggttcttact tttcctggac	ttaaagaaaa	aaagaggttt	aagtttgttg	tggccaatgt	7020
cgaaacctac aagatttcct	taaaatctct	aatagaggca	ttacttgctt	tcaattgaca	7080
aatgatgccc tctgactagt	agatttctat	gatcctttt	tgtcatttta	tgaatatcat	7140
tgattitata attggtgcta	tttgaagaaa	aaaatgtaca	tttattcata	gatagataag	7200
tatcaggict gaccccagig	gaaaacaaag	ccaaacaaaa	ctgaaccaca	aaaaaaagg	7260
ctggtgttca ccaaaaccaa	actigitcat	ttagataatt	tgaaaaagtt	ccatagaaaa	7320
ggcgtgcagt actaagggaa	caatccatgt	gattaatgit	ttcattatgt	tcatgtaaga	7380
agccccttat ttttagccat	aattttgcat	actgaaaatc	caataatcag	aaaagtaatt	7440
ttgtcacatt atttattaaa	aatgttctca	aatac .			7475
<210> 45					
<211> 1898					
<212> DNA					
<213> homo sapiens					
<400> 45	•				
agcgcagtat ggcgggcggg	gcccgggagg	tgctcacact	gcagttggga	cattttgccg	60
gtttcgtggg cgcgcactgg	tggaaccagc	aggatgctgc	gctgggccga	gcgaccgatt	120
ccaaggagcc cccgggagag	ctgtgccccg	acgtcctgta	tcgtacgggc	cggacgctgc	180
acggccagga gacctacacg	ccgcgactca	tcctcatgga	tctgaagggt	agtttgagct	240
ccctaaaaga ggaaggtgga	ctctacaggg	a caaa cagtt	ggatgctgca	atagcatggc	300
aggggaagct caccacacac	aaagaggaac	tctatcccaa	gaacccttat	ctccaagact	360
ttctgagtgc agagggagtg	ctgagtagtg	atggtgtctg	gagggtcaaa	tccattccca	420
atggcaaagg ttcctcacca	ctcccaccg	$\tt ctacaactcc$	aaaaccactt	atccctacag	480
aggccagcat cagggtctgg	t cagacttcc	tcagagtcca	tctccatccc	cggagcatct	540
gtatgattca gaagtacaac	cacgatgggg	aagcaggtcg	gctggaggct	tttggccaag	600
gggaaagtgt cctaaaggaa	cccaagtacc	aggaagagct	ggaggacagg	ctgcatttct	660
acgtggagga atgtgactac	ttgcagggct	tccagatcct	gtgtgacctg	cacgatggct	720
tctctggggt aggcgcgaag	gcggcagagc	tgctacaaga	tgaatattca	gggcggggaa	780
taataacctg gggcctgcta	cctggtccct	accatcgtgg	ggaggcccag	agaaacatct	840
atcgtctatt aaacacagct	tttggtctcg	tgcacctgac	tgctcacagc	tctcttgtct	900
gccccttgtc cttgggtggg	agcctgggcc	tgcgacccga	gccacctgtc	agcttccctt	960
acctgcatta tgatgccact	ctgcccttcc	act g cagtg c	catcctggct	acagccctgg	1020
acacagicac igitccitat	cgcctgtgtt	cctctccagt	ttccatggtt	catctggctg	1080
acatgctgag cttctgtggg	aaaaaggtgg	tgacagcagg	agcaatcatc	cctttcccct	1140
tggctccagg ccagtccctt	cctgattccc	tggtgcagtt	tggaggagcc	accccatgga	1200
ccccactgtc tgcatgtggg	gagccttctg	gaacacgttg	ctttgcccag	tcagtggtgc	1260
tgaggggtat agacagagca	tgccacacaa	gccagctcac	cccagggaca	cctccaccct	1320
ctgcccttca tgcatgtacc	actggggaag	aaatcttggc	tcagtattta	caacagcagc	1380

•					
agcctggagt catgagttct tc	eccatetge t	gctgactcc	ctgcagggtg	gctcctcctt	1440
accccacct cttctcaagc tg	gcagtccac c	gggtatggt	tctggatggt	tccccaagg	1500
gagcagcagt ggagagcatc cc	agtgtttg g	ggcactgtg	ttcctcttcg	tccctgcacc	1560
agaccctgga agccttggcc ag	gagacctca c	caaactcga	cttgcggcgc	tgggccagct	1620
tcatggatgc.tggagtggag ca	acgatgacg t	tagcagagct	gctgcaggag	ctacaaagcc	1680
tggcccagtg ctaccagggt gg	gtgacagcc t	tcgtggacta	aagttcccag	tgtgggagaa	1740
aggagctagt ttgcaataaa aa	acagotgga t	tgcaggagcc	cagtgtcttc	atgcagagga	.1800
gctcaatgtc gcgggactag ct	tacaccaac a	atatgcactt	tttacattta	gaaacactgt	1860
gattagacca cagaacaata aa	atatgtgcc a	atcagacc			1898
⟨210⟩ 46					
⟨211⟩ 782 ·					
<212> DNA .					
<213≯ homo sapiens					
<400> 46					
gggctccctg cctcgggctc to	caccctcct o	ctcctgcagc	tccagctttg	tgctctgcct	60
ctgaggagac catggcccag ta	atctgagta (ccctgctgct	cctgctggcc	accctagctg	120
tggccctggc ctggagcccc aa	aggaggagg a	ataggataat	cccgggtggc	atctataacg	180
cagacctcaa tgatgagtgg gt	tacagcgtg (cccttcactt	cgccatcagc	gagtataaca	240
aggccaccaa agatgactac ta	acagacgtc (cgctgcgggt	actaagagcc	aggcaacaga	300
ccgttggggg ggtgaattac ti	tcttcgacg	tagaggtggg	ccgcaccata	tgtaccaagt	360
cccagcccaa cttggacacc tg	gtgccttcc a	atgaacagcc	agaactgcag	aagaaacagt	420
tgtgctcttt cgagatctac ga	aagtteeet g	gggagaacag	aaggtccctg	gtgaaatcca	480
ggtgtcaaga atcctaggga to	ctgtgccag g	gccattcgca	ccagccacca	cccactccca	540
cccctgtag tgctcccacc co	ctggactgg	tggcccccac	cctgcgggag	gcctccccat	600
gtgcctgcgc caagagacag ac					660
gctctgccct ccctccttcc ti	tcttgcttc	taatagccct	ggtacatggt	acacaccccc	720
ccacctcctg caattaaaca g	tagcatcgc	ctccctctga	aaaaaaaaa	aaaaaaaaaa	780
aa					782
<210> 47			•		
<211> 1107					•
<212> DNA					
<213≻ homo sapiens					
<400> 47					
ggcacgaggg gctggcggcc gg	gcgggagag	gcggccggcc	tggactggcc	cgagagggat	60
cccggttccc agaacagacc ta	aggaggcgg	cctcgagggc	ggacggcagg	gagggccagc	120
atgccccgac tgctgcaccc ca	gccctgccg	ctgctcctgg	${\tt gcgccacgct}$	gaccttccgg	180
					_

gcgctccggc gcgcgctctg tcgcctgccc ctacccgtgc acgtgcgcgc cgacccctg

240

${\tt cgcacctggc}$	gctggcacaa	cctgctcgtc	tccttcgctc	actccattgt	gtcggggatc	300
tgggcactgc	tgtgtgtatg	gcagactcct	gacatgttag	tggagattga	gacggcgtgg	360
tcactttctg	gctatttgct	cgtttgcttc	tctgcggggt	atttcatcca	cgatacggtg	420
gacatcgtgg	ctagcggaca	gacgcgagcc	tcttgggaat	accttgtcca	tcacgtcatg	480
gccatgggtg	ccttcttctc	cggcatcttt	tggagcagct	ttgtcggtgg	gggtgtctta	540
acactactgg	tggaagtcag	caacatcttc	ctcaccattc	gcatgatgat	gaaaatcagt	600
aatgcccagg	atcatctcct	$\tt ctaccgggtt$	aacaagtatg	tgaacctggt	catgtacttt	. 660
ctcttccgcc	tggcccctca	ggcctacctc	acccatttct	tcttgcgtta	tgtgaaccag	720
aggaccctgg	gcaccttcct	gctgggtatc	ctgctcatgc	tggacgtgat	gatcataatc	780
tacttttccc	gcctcctccg	ctctgacttc	$t \\ g \\ c \\ c \\ t \\ g \\ a \\ g \\ c$	atgtccccaa	gaagcaacac	840
aaagacaagt	tcttgactga	$\tt gtgaggggca$	cagagcctgg	gacaacaaaa	acggacaagg	900
ccagaaacag	cttcatatgg	acactgggac	ttagccccaa	gcctgggtgt	cctctgaggc	960
cagcctctcc	accttctgag	cctgcgccca	cactattgaa	aacactaatg	aaagtaaaaa	1020
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1080
aaaaaaaaa	aaaaaaaaa	aaaaaaa	٠.			1107
<210> 48						
<211> 102	7		ı			
<212> DNA						
<213> hom	o sąpiens					
<400> 48				•		
aggcccgtgg	atctcatcga	agatggcggc	gcgatctgtg	tcgggcatta	ccagaagagt	60
cttcatgtgg	acagtctcag	ggacaccatg	tagagaattt	tggtctcgat	tcagaaaaga	120
gaaagagcca	gtggttgttg	agacagtaga	agagaaaaag	gaacctatcc	tagtgtgtcc	180
acctttacga	agccgagcat	acacaccacc	tgaagatctc	cagagtcgtt	tggaatctta	240
cgttaaagaa	gtttttggtt	catctcttcc	tagtaattgg	caagacatct	ccctggaaga	300
tagtcgtcta	aagttcaatc	ttctggctca	tttagctgat	gacttgggtc	atgtagtccc	360
taactccaga	ctccaccaga	tgtgcagggt	tagagatgtt	cttgatttct	ataatgtccc	420
tattcaagat	agatctaaat	ttgatgaact	cagtgccagt	aatctgcccc	ccaatttgaa	480
aatcacttgg	agttactaag	caattcggaa	gagaaacaca	ttgaaatcac	tgtctttccc	540
tgagcaaggg	ggctgctcat	tagatetttt	gatactttac	catgtgaaat	actaccagaa	600
ctgttctcta	aacccacttt	ttctgtagag	gaatgtatca	tcttttttt	tctcatatta	660
caaatggaca	aataacggac	tttctatttt	catatttgct	gaaaccattt	tttaaatgaa	720
attaggtcat	tatttatgaa	aagttttgag	agggcactgt	caacttgggt	ttaagacagg	780
aggacattgc	aagttcacac	ctttcataag	cataaagtag	ttgcaagaaa	gtattttcat	840
cctgttagga	ttcatatcta	agatagagtt	atgcattgca	catacacaaa	taaactttta	900
ttagatagat	acctataaaa	gaaacataaa	agtatgtitgt	gtattactga	cagttctaga	960
ttaatttctt	ttagaattaa	agtagatttg	ttaaagtgaa	aaaaaaaaa	aaaaaaaaa	1020

aaaaaaa						1027
< 210> 49						1021
<211> 1923	}					
<212> DNA						
<213> homo	sapiens					
<400> 49						
ctttcccgga	ggctggcaga	tgcgcgtggt	gcggctgctg	cggctccggg	cggctctgac	. 60
	gaggtccccc					120
	agtggagcca					180
	cacaagggcc					240
	tatgaaggaa					300
	aggatgttag					360
	tggcgaaagg					420
	ttcacggaga					480
cctgagcagg.	gaggagaagc	agaagctaaa	agaagaggca	gaaaaacttc	agcaagagtt	540
cggctactgt	attttagatg	gtcaccaaga	aaaaataggc	aacttcaaga	ttgagccgcc	600
tggcttgttc	cgtggccgtg	gcgaccatcc	caagatgggg	atgctgaaga	gaaggatcac	660
gccagaggat	gtggttatca	actgcagcag	ggactcgaag	atccccgagc	cgccggcggg	720
gcaccagtgg	aaggaggtgc	gctccgataa	caccgtcacg	tggctggcag	cttggaccga	780
gagcgttcag	aactccatca	agtacatcat	gctgaaccct	tgctcgaagc	tgaaggggga	840
gacagcttgg	cagaagtttg	aaacagctcg	acgcctgcgg	ggatttgtgg	acgagatccg	900
ctcccagtac	cgggctgact	ggaagtctcg	ggaaatgaag	acgagacagc	gggcggtggc	960
cctgtatttc	atcgataagc	tggcactgag	agcaggaaat	gagaaggagg	acggtgaggc	1020
ggccgacacc	gtgggctgct	gttccctccg	cgtggagcac	gtccagctgc	acccggaggc	1080
cgatggctgc	caacacgtgg	tggaatttga	cttcctgggg	aaggactgca	tccgctacta	1140
caacagagtg	ccggtggaga	$a \\ g \\ c \\ g \\ t \\ g \\ t \\ a$	caagaactta	cagctcttta	tggagaacaa	1200
ggacccccgg	gacgacctct	tcgacaggct	gaccacgacc	agcctgaaca	agcaccicca	1260
ggagctgatg	gacgggctga	cggccaaggt	${\tt gttccggacc}$	tacaacgcct	ccatcactct	1320
gcaggagcag	ctgcgggccc	tgacgcgcgc	cgaggacagc	atagcagcta	agatettate	1380
ctacaaccga	gccaaccgag	tcgtggccat	tctctgcaac	catcagcgag	caacccccag	1440
tacgttcgag	aagtcgatgc	agaatctcca	${\tt gacgaagatc}$	caggcaaaga	aggagcaggt	1500
ggctgaggcc	agggcagagc	tgaggagggc	gagggctgag	cacaaagccc	aaggggatgg	1560
caagtccagg	agtgtcctgg	agaagaagag	gcggctcctg	${\tt gagaagctgc}$	aggagcagct	1620
ggcgcagctg	agtgtgcagg	ccacggacaa	ggaggagaac	aagcaggtgg	ccctgggcac	1680
gtccaagctc	aactacctgg	accccaggat	cagcattgcc	tggtgcaagc	ggttcagggt	1740
gccagtggag	aagatctaca	gcaaaacaca	gcgggagagg	ttcgcctggg	ctctcgccat	1800
ggcaggagaa	gactttgaat	tctaacgacg	agccgtgttg	aaacttcttt	tgtatgtgtg	1860

•						
tgtgtttttt	tcactattaa	agcagtactg	gggaattttg	tacaataaaa	aaaaaaaaa	1920
aaa						1923
<210> 50						
<211> 1794					•	
<212> DNA					•	
<213> homo	sapiens					
<400> 50						
cacatataat	aatagcaact	cctggtcgac	tgattgacca	cttgaaacct	ttcgtatttt	60
ccaagtgctg	gcaagcgctt	cctgcgcagg	ccgaggcgac	ctggagtttg	tgacgctgtg	. 120
atggtctaga	ggctggagat	tcaagatctg	ggtgccatca	ttttctggtt	ctgttgatga	180
ccctcttcca.	ggttacatac	agcttacatc	ttgcatcctc	aagcgtttt	cttataaggc	240
taaaaattca	caaagcatat	atcaatgaat	caggaggatc	tagatccgga	tagtactaca	300
gatgtgggag	atgttacaaa	tactgaagaa	gaacttatta	gagaatgtga	agaaatgtgg	360
aaagatatgg	aagaatgtca	gaataaatta	tcacttattg	gaactgaaac	actcaccgat	420
tcaaatgctc	agctatcatt	gttaattatg	caagtaaaat	gtttaaccgc	tgaactcagt	480
caatggcaga	aaaaaacacc	tgaaacaatt	cccttgactg	aagacgttct	cataacatta	540
ggaaaagaag	agttccaaaa	gctgagacaa	gatcttgaaa	tggtactgtc	cactaaggag	600
tcaaagaatg	aaaagttaaa	ggaagactta	gaaagggaac	aacggtggtt	ggatgaacag	660
caacagataa	tggaatctct	taatgtacta	cacagtgaat	tgaaaaataa	ggttgaaaca	720
ttttctgaat	caagaatctt	taatgaactg	aaaactaaaa	tgcttaatat	aaaagaatat	780
aaggagaaac	tcttgagtac	cttgggcgag	tttctagaag	accattttcc	tctgcctgat	840
agaagtgtta	aaaagaaaaa	gaaaaacatt	caagaatcat	ctgtaaacct	gataacactg	900
catgaaatgt	tagagattct	tataaataga	ttatttgatg	ttccacatga	tccatatgtc	960
aaaattagtg	attccttttg	gccaccttat	gttgagctgc	tgctgcgtaa	tggaattgcc	1020
ttgagacatc	cagaagatçc	aacccgaata	agattagaag	ctttccatca	gtaaaaggat	1080
gttttctttt	ttcacacagt	aaaaattctt	atcattcaag	gatattggaa	ccacaggact	1140
atttggataa	aaaacattat	ttgcaaatta	atgcgcatag	tacttttatt	gcaaaatggc	1200
atgtgctgcc	atctattatt	catttttaaa	tggtcatttc	ttattcagtg	agtgctttag	1260
tgttttaaac	tatatggata	agaatgcagg	tagataatat	tctaggcata	aaacatttaa	1320
tgtaccttac	ctcatgcaat	attctttgga	ttctttgttg	atttatgata	ttgctaatat	1380
aatattttct	taaaatatat	aacaatatct	tttatgcatt	tgagttccag	ctggtgcttc	1440
tttatattta	gaaattataa	tgggaaggtc	atttaattta	cagatggttt	taaaattgag	1500
gtaatatctg	aggtggcata	atttaaaaat	atttagcaaa	tttgtttcat	atatactgtc	1560
ttatttctag	atttgtttaa	aattggaata	tgaaaaacta	atggataaag	ctagcataaa	1620
attgatattt	tagttigtat	tattaatata	tcatgttacc	ttatatatta	atctactctt	1680
gattctgcta	attattacca	acaaaattgt	attcatgaca	ttttattaat	cctctgtgaa	1740
ttttctgtaa	ataaaattat	ttctgaaaat	ctctaaaaaa	aaaaaaaaa	aaaa	1794

51

3205

<210>

<211>

72/271

<212> DNA <213> homo sapiens **<400>** 51 aaaggggcaa gagctgagcg gaacaccggc ccgccgtcgc ggcagctgct tcacccctct 60 ctctgcagcc atggggctcc ctcgtggacc tctcgcgtct ctcctccttc tccaggtttg 120 ctggctgcag tgcgcggcct ccgagccgtg ccgggcggtc ttcagggagg ctgaagtgac 180 cttggaggcg ggaggcgcgg agcaggagcc cggccaggcg ctggggaaag tattcatggg 240 ctgccctggg caagagccag ctctgtttag cactgataat gatgacttca ctgtgcggaa 300 tggcgagaca gtccaggaaa gaaggtcact gaaggaaagg aatccattga agatcttccc 360 atccaaacgt atcttacgaa gacacaagag agattgggtg gttgctccaa tatctgtccc 420 tgaaaatggc aagggtccct tcccccagag actgaatcag ctcaagtcta ataaagatag 480 agacaccaag attitctaca gcatcacggg gccgggggca gacagccccc ctgagggtgt 540 cttcgctgta gagaaggaga caggctggtt gttgttgaat aagccactgg accgggagga 600 gattgccaag tatgagctct ttggccacgc tgtgtcagag aatggtgcct cagtggagga 660 ccccatgaac atctccatca tcgtgaccga ccagaatgac cacaagccca agtttaccca 720 ggacaccttc cgagggagtg tcttagaggg agtcctacca ggtacttctg tgatgcaggt 780 gacagecacg gaigaggatg atgecateta cacetacaat ggggtggttg ettactecat ·840 ccatagccaa gaaccaaagg acccacacga cctcatgttc accattcacc ggagcacagg 900 caccatcage gteateteea gtggeetgga cegggaaaaa gteeetgagt acacactgae 960 catccaggcc acagacatgg atggggacgg ctccaccacc acggcagtgg cagtagtgga 1020 gatccttgat gccaatgaca atgctcccat gtttgacccc cagaagtacg aggcccatgt 1080 gcctgagaat gcagtgggcc atgaggtgca gaggctgacg gtcactgatc tggacgcccc 1140 caactcacca gcgtggcgtg ccacctacct tatcatgggc ggtgacgacg gggaccattt 1200 taccatcacc acccacctg agagcaacca gggcatcctg acaaccagga agggtttgga 1260 ttttgaggcc aaaaaccagc acaccctgta cgttgaagtg accaacgagg ccccttttgt 1320 gctgaagctc ccaacctcca cagccaccat agtggtccac gtggaggatg tgaatgaggc 1380 acctgtgttt gtcccaccct ccaaagtcgt tgaggtccag gagggcatcc ccactgggga 1440 gcctgtgtgt gtctacactg cagaagaccc tgacaaggag aatcaaaaga tcagctaccg 1500 catcctgaga gacccagcag ggtggctagc catggaccca gacagtgggc aggtcacagc 1560 tgtgggcacc ctcgaccgtg aggatgagca gtttgtgagg aacaacatct atgaagtcat 1620 ggtcttggcc atggacaatg gaagccctcc caccactggc acgggaaccc ttctgctaac 1680 actgattgat gicaatgacc atggcccagt ccctgagccc cgtcagatca ccatctgcaa 1740 ccaaagccct gtgcgccagg tgctgaacat cacggacaag gacctgtctc cccacacctc 1800 ccctttccag gcccagctca cagatgactc agacatctac tggacggcag aggtcaacga 1860 ggaaggigac acagiggici igicccigaa gaagiiccig aagcaggata cataigacgi 1920

gcacctttct ctgtctgacc	atggcaacaa	agagcagctg	acggtgatca	gggccactgt	1980
gtgcgactgc catggccatg	tcgaaacctg	ccctggaccc	tggaagggag	gtttcatcct	2040
ccctgtgctg ggggctgtcc	tggctctgct	gttcctcctg	ctggtgctgc	ttttgttggt	2100
gagaaagaag cggaagatca	aggagcccct	cctactccca	gaagatgaca	cccgtgacaa	2160
cgtcttctac tatggcgaag	aggggggtgg	cgaagaggac	caggactatg	acatcaccca.	2220
gctccaccga ggtctggagg	ccaggccgga	ggtggttctc	cgcaatgacg	tggcaccaac	2280
catcatcccg acacccatgt	accgtcctcg	gccagccaac	ccagatgaaa	tcggcaactt	2340
tataattgag aacctgaagg	cggctaacac	agaccccaca	gcccgccct	acgacaccct	2400
_cttggtgttc_gactatgagg	gcagcggctc	cgacgccgcg	tccctgagct	ccctcacctc	2460
ctccgcctcc gaccaagacc	aagattacga	ttatctgaac.	gagtggggca	gccgcttcaa	2520
gaagctggca gacatgtacg	gtggcgggga	ggacgactag	gcggcctgcc	tgcagggctg	2580
gggaccaaac gtcaggccac	agagcatctc	caaggggtct	${\tt cagttcccc}$	ttcagctgag	2640
gacttcggag cttgtcagga	agtggccgta	gcaacttggc	ggagacaggc	tatgagtctg	2700
acgttagagt ggttgcttcc	ttagcctttc	aggatggagg	a a t g t g g g c a	gtttgacttc	2760
agcactgaaa acctctccac	ctgggccagg	gttgcctcag	aggccaagtt	tccagaagcc	2820
tcttacctgc cgtaaaatgc	tcaaccctgt	gtcctgggcc	tgggcctgct	gtgactgacc	2880
tacagtggac tttctctctg	gaatggaacc	ttcttaggcc	tcctggtgca	acttaatttt	2940
ttttttaat gctatcttca	aaacgttaga	gaaagttctt	caaaagtgca	gcccagagct	3000
gctgggccca ctggccgtcc	tgcatttctg	gtttccagac	cccaatgcct	cccattcgga	3060
tggatctctg cgtttttata	ctgagtgtgc	ctaggttgcc	ccttattttt	tattttccct	3120
gttgcgttgc tatagatgaa	gggtgaggac	aatcgtgtat	atgtactaga	actttttat	3180
taaagaaact tttcccagaa	aaaaa				3205
<210> 52					
<211> 2781					
<212> DNA					
<213> homo sapiens		•			
<400> 52					
atggatatgt ttcctctcac	ctgggttttc	ttagccctct	acttttcaag	acaccaagtg	60
agaggccaac cagacccacc	gtgcggaggt	cgtttgaatt	ccaaagatgc	tggctatatc	120
acctctcccg gttaccccca	ggactacccc	tcccaccaga	actgcgagtg	gattgtttac	180
gcccccgaac ccaaccagaa	gattgtcctc	aacttcaacc	ctcactttga	aatcgagaag	240
cacgactgca agtatgactt	tatcgagatt	cgggatgggg	acagtgaatc	cgcagacctc	300
ctgggcaaac actgtgggaa	catcgccccg	cccaccatca	tctcctcggg	ctccatgctc	360
tacatcaagt tcacctccga	ctacgcccgg	cagggggcag	gcttctctct	gcgctacgag	420
atcttcaaga caggctctga	agattgctca	aaaaacttca	caagccccaa	cgggaccatc	480
gaatctcctg ggtttcctga	gaagtatcca	cacaacttgg	actgcacctt	taccatcctg	540
gccaaaccca agatggagat	catcctgcag	ttcctgatct	ttgacctgga	gcatgaccct	600

•						
ttgcaggtgg	gagaggggga	ctgcaagtac	gattggctgg	acatctggga	tggcattcca	660
catgttggcc	ccctgattgg	caagtactgt	gggaccaaaa	caccctctga	acttcgttca	720
tcgacgggga	tcctctccct	gacctttcac	acggacatgg	cggtggccaa	ggatggcttc	780
tctgcgcgtt	actacctggt	ccaccaagag	ccactagaga	actttcagtg	caatgttcct	840
ctgggcatgg	agtctggccg	gattgctaat	gaacagatca	gtgcctcatc	tacctactct	900
gatgggaggt	ggacccctca	acaaagccgg	ctccatggtg	atgacaatgg	ctggaccccc	960
aacttggatt	ccaacaagga	${\tt gtatctccag}$	gtggacctgc	gctttttaac	catgctcacg	1020
gccatcgcaa	cacagggagc	${\tt gatttccagg}$	gaaacacaga	atggctacta	cgtcaaatcc	1080
tacaagcigg	aagtcagcac	taatggagag	gactggatgg	tgtaccggca	tggcaaaaac	1140
cacaaggtat	ttcaagccaa	caacgatgca	actgaggtgg	ttctgaacaa	gctccacgct	1200
ccactgctga	caaggtttgt	tagaatccgc	cctcagacct	ggcactcagg	tatcgccctc	1260
cggctggagc	tcttcggctg	${\tt ccgggtcaca}$	gatgctccct	gctccaacat	gctggggatg	1320
ctctcaggcc	tcattgcaga	ctcccagatc	tccgcctctt	ccacccagga	atacctctgg	1380
agccccagtg	cagcccgcct	ggtcagcagc	cgctcgggct	ggttccctcg	aatccctcag	1440
gcccagcccg	gtgaggagtg	gcttcaggta	gatctgggaa	cacccaagac	agtgaaaggt	1500
gtcatcatcc	agggagcccg	cggaggagac	agtatcactg	$\tt ctgtggaagc$	cagagcattt	1560
gtgcgcaagt	tcaaagtctc	ctacagccta	aacggcaagg	actgggaata	cattcaggac	1620
cccaggaccc	agcagccaaa	gctgttcgaa	gggaacatgc	actatgacac	ccctgacatc	1680
cgaaggtttg	accccattcc	ggcacagtat	gtgcgggtat	acccggagag	gtggtcgccg	1740
gcggggattg	ggatgcggct	ggaggtgctg	ggctgtgact	$\tt ggacagactc$	caagcccacg	1800
gtaaaaacgc	tgggacccac	tgtgaagagc	gaagagacaa	ccaccccta	cccaccgaa	1860
gaggaggcca	${\tt cagagtgtgg}$	ggagaactgc	agctttgagg	atgacaaaga	tttgcagctc	1920
ccttcgggat	tcaattgcaa	cttcgatttc	ctcgaggagc	cctgtggttg	gatgtatgac	1980
catgccaagt	ggctccggac	cacctgggcc	agcagctcca	gcccaaacga	ccggacgttt	2040
ccagatgaca	ggaatttctt	gcggctgcag	agtgacagcc	agagagagg	ccagtatgcc	2100
cggctcatca	gccccctgt	ccacctgccc	cgaagcccgg	tgtgcatgga	gttccagtac	2160
caggccacgg	gcggccgcgg	ggtggcgctg	${\tt caggtggtgc}$	gggaagccag	ccaggagagc	2220
aagttgctgt	gggtcatccg	tgaggaccag	ggcggcgagt	ggaagcacgg	gcggatcatc	2280
ctgcccagct	acgacatgga	gtaccagatt	gtgttcgagg	gagtgatagg	gaaaggacgt	2340
tccggagaga	ttgccattga	tgacattcgg	ataagcactg	atgtcccact	ggagaactgc	2400
atggaaccca	tctcggcttt	tgcagtggac	atcccagaaa	tacatgagag	agaaggatat	2460
gaagatgaaa	ttgatgatga	atacgaggtg	gactggagca	attcttcttc	tgcaacctca	2520
gggtctggcg	cccctcgac	cgacaaagaa	aagagctggc	tgtacaccct	ggatcccatc	2580
ctcatcacca	tcatcgccat	gagctcactg	ggcgtcctcc	tgggggccac	ctgtgcaggc	2640
ctcctgctct	actgcacctg	ttcctactcg	ggcctgagct	cccgaagctg	caccacactg	2700
gagaactaca	acttcgagct	ctacgatggc	cttaagcaca	aggtcaagat	gaaccaccaa	2760
aagtgctgct	ccgaggcatg	a				2781

•	
<210> 53	
<211> 1294	
<212> DNA	
<213> homo sapiens	
<400> 53	
caaagccaca ggcaggtgca ggcgcagccg cggcgagagc gtatggagcc gagccgttag	60
cgcgcgccgt cggtgagtca gtccgtccgt ccgtccgtcc gtcggggcgc cgcagctccc	120
gccaggccca gcggccccgg cccctcgtct ccccgcaccc ggagccaccc ggtggagcgg	180
gccttgccgc ggcagccatg tccatgggcc tggagatcac gggcaccgcg ctggccgtgc	. 240
tgggctggct gggcaccatc gtgtgctgcg cgttgcccat gtggcgcgtg tcggccttca	300
tcggcagcaa catcatcacg tcgcagaaca tctgggaggg cctgtggatg aactgcgtgg	360
tgcagagcac cggccagatg cagtgcaagg tgtacgactc gctgctggca ctgccacagg	420
accttcaggc ggcccgcgcc ctcatcgtgg tggccatcct gctggccgcc ttcgggctgc	480
tagtggcgct ggtgggcgcc cagtgcacca actgcgtgca ggacgacacg gccaaggcca	540
agatcaccat cgtggcaggc gtgctgttcc ttctcgccgc cctgctcacc ctcgtgccgg	600
tgtcctggtc ggccaacacc attatccggg acttctacaa ccccgtggtg cccgaggcgc	660
agaagcgcga gatgggcgcg ggcctgtacg tgggctgggc	720
tgggggggcgc gctgctctgc tgctcgtgtc ccccacgcga gaagaagtac acggccacca	780
aggicgicta ciccgcgccg cgciccaccg gcccgggagc cagccigggc acaggciacg	840
accgcaagga ctacgtctaa gggacagacg cagggagacc ccaccaccac caccaccacc	900
aacaccacca ccaccaccgc gagctggagc gcgcaccagg ccatccagcg tgcagccttg	960
cctcggaggc cagcccaccc ccagaagcca ggaagccccc gcgctggact ggggcagctt	1020
ccccagcagc cacggctttg cgggccgggc agtcgacttc ggggcccagg gaccaacctg	1080
catggactgt gaaacctcac ccttctggag cacggggcct gggtgaccgc caatacttga	1140
ccaccccgtc gagccccatc gggccgctgc ccccatgctc gcgctgggca gggaccggca	1200
gccctggaag gggcacttga tatttttcaa taaaagcctt tcgttttgca aaaaaaaaaa	1260
aaaaaaaaa aaaaaaaaa aaaa	1294
⟨210⟩ 54	
<211> 1712	
<212> DNA	
<213> homo sapiens	
<400> 54	
ggcacgaggg gcagctgtcg gctggaagga actggtctgc tcacacttgc tggcttgcgc	60
atcaggactg gctttatctc ctgactcacg gtgcaaaggt gcactctgcg aacgttaagt	120
ccgtccccag cgcttggaat cctacggccc ccacagccgg atcccctcag ccttccaggt	180
cctcaactcc cgcggacgct gaacaatggc ctccatgggg ctacaggtaa tgggcatcgc	240
gctggccgtc ctgggctggc tggccgtcat gctgtgctgc gcgctgccca tgtggcgcgt	300

gacggccttc atcggcagca	acattgtcac	ctcgcagacc	atctgggagg	gcctatggat	360
gaactgcgtg gtgcagagca	ccggccagat	gcagtgcaag	gtgtacgact	cgctgctggc	420
actgccgcag gacctgcagg	cggcccgcgc	cctcgtcatc	atcagcatca	tcgtggctgc	480
tctgggcgtg ctgctgtccg	tggtggggg	caagtgtacc	aactgcctgg	aggatgaaag	. 540
cgccaaggcc aagaccatga	tcgtggcggg	cgtggtgttc	ctgttggccg	gccttatggt.	600
gatagtgccg gtgtcctgga	cggcccacaa	catcatccaa	gacttctaca	atccgctggt	660
ggcctccggg cagaagcggg	agatgggtgc	ctcgctctac	gtcggctggg	ccgcctccgg	720
cctgctgctc cttggcgggg	ggctgctttg	ctgcaactgt	ccaccccgca	cagacaagcc	780
ttactccgcc aagtattctg	ctgcccgctc	tgctgctgcc	agcaactacg	tgtaaggtgc	840
cacggctcca ctctgttcct	ctctgctttg	ttcttccctg	gactgagctc	agcgcaggct	900
gtgaccccag gagggccctg	ccacgggcca	${\tt ctggctgctg}$	${\tt gggactgggg}$	actgggcaga	960
gactgagcca ggcaggaagg	cagcagcctt	cagcctctct	ggcccactcg	gacaacttcc	1020
caaggccgcc tcctgctagc	aagaacagag	tccaccctcc	tctggatatt	ggggagggac	1080
ggaagtgaca gggtgtggtg	gtggagtggg	gagctggctt	$\tt ctgctggcca$	ggatggctta	1.140
accctgactt tgggatctgc	ctgcatcggt	gttggccact	gtccccattt	acattttccc	1200
cactctgtct gcctgcatct	cctctgttgc	gggtaggcct	tgatatcacc	tctgggactg	1260
tgccttgctc accgaaaccc	gcgcccagga	gtatggctga	ggccttgccc	acccacctgc	1320
ctgggaagtg cagagtggat	ggacgggttt	agagggagg	ggcgaaggtg	ctgtaaacag	1380
gtttgggcag tggtggggga	gggggccaga	${\tt gaggcggctc}$	aggttgccca	gctctgtggc	1440
ctcaggactc tctgcctcac	ccgcttcagc	ccagggcccc	tggagactga	tccctctga	1500
gtcctctgcc ccttccaagg	acactaatga	gcctgggagg	gtggcaggga	ggaggggaca	1560
gcttcaccct tggaagtcct	ggggttttc	${\tt ctcttccttc}$	tttgtggttt	cigittigta	1620
atttaagaag agctattcat	cactgtaatt	attattattt	tctacaataa	atgggacctg	1680
tgcacaggaa aaaaaaaaaa	aaaaaaaaa	aa			1712
<210> 55					
<211> 2820		•			
<212> DNA					
<213> homo sapiens					
<400> 55					
ggcgggttcg cgcccgaag	gctgagagct	ggcgctgctc	gtgccctgtg	tgccagacgg	60
cggagctccg cggccggacc	ccgcggcccc	gctttgctgc	cgactggagt	ttgggggaag	120
aaactctcct gcgccccaga	agatttcttc	ctcggcgaag	ggacagcgaa	agatgagggt	180
ggcaggaaga gaaggcgctt	tctgtctgcc	ggggtcgcag	cgcgagaggg	cagtgccatg	240
ttcctctcca tcctagtggc	gctgtgcctg	tggctgcacc	tggcgctggg	cgtgcgcggc	300
gcgccctgcg aggcggtgcg	catccctatg	tgccggcaca	tgccctggaa	catcacgcgg	360
atgcccaacc acctgcacca	cagcacgcag	gagaacgcca	tcctggccat	cgagcagtac	420
gaggagcigg iggacgigaa	ctgcagcgcc	gtgctgcgct	tcttcttctg	tgccatgtac	480

gcgcccattt	gcaccctgga	gttcctgcac	gaccctatca	agccgtgcaa	gtcggtgtgc	540
caacgcgcgc	gcgacgactg	cgagcccctc	at gaag at gt	acaaccacag	ctggcccgaa	600
agcctggcct	gcgacgagct	gcctgtctat	gaccgtggcg	tgtgcatttc	gcctgaagcc	660
atcgtcacgg	acctcccgga	ggatgttaag	tggatagaca	tcacaccaga	catgatggta	720
caggaaaggc	ctcttgatgt	tgactgtaaa	cgcctaagcc	ccgatcggtg	caagtgtaaa.	780
aaggtgaagc	caactttggc	aacgtatctc	agcaaaaact	acagctatgt	tattcatgcc	840
aaaataaaag	ctgtgcagag	gagtggctgc	aatgaggtca	caacggtggt	ggatgtaaaa	. 900
gagatettea	agtcctcatc	acccatccct	cgaactcaag	tcccgctcat	tacaaattct	960
tcttgccagt	gtccacacat	cctgccccat	caagatgttc	tcatcatgtg	ttacgagtgg	1020
cgttcaagga	tgatgcttct	tgaaaattgc	ttagttgaaa	aatggagaga	tcagcttagt	1080
aaaagatcca	tacagtggga	agagaggctg	caggaacagc	ggagaacagt	tcaggacaag	1140
aagaaaacag	ccgggcgcac	cagtcgtagt	aatcccccca	aaccaaaggg	aaagcctcct	1200
			attaaaacta			1260
aacccgaaaa	gagtgtgagc	taactagttt	ccaaagcgga	${\tt gacttccgac}$	ttccttacag	1320
			atgtaaggcc			1380
actcactgca	gtgctcttca	tagacacatc	ttgcagcatt	tttcttaagg	ctatgcttca	1440
			gtggtaggtt			1500
			attgcattca.			1560
ctagaagagt	agggaaaata	atgcttgtta	caattcgacc	taatatgtgc	attgtaaaat	1620
			ttttttacag			1680
			aaaatgtgat			1740
			atctttatgt			1800
			attagagaag			1860
			gtttttagct			1920
			ggcagacaat			1980
			ttgtcaacac			2040
			aggtactaat			2100
			catcttactt			2160
			atgtgagtgc			2220
			agaggagtta			2280
			tacttgacag			2340
			caaatttcat			2400
			tttgctaaca			2460
			gaaataaaat			2520
			tggcatatta			2580
			ctaggaacct			2640
ctgcctcctt	tgcttggccc	tttattgaga	taagttttcc	tgtcaagaaa	gcagaaacca	2700

tctcatttct aacagctgtg ttatattcca tagtatgca	t tactcaacaa actgttgtgc	2760
tattggatac ttaggtggtt tcttcactga caatactga	a taaacatctc accggaattc	2820
<210> 56		
<211> 1858		
<212> DNA	•	
<213≻ homo sapiens		
<400> 56		
gctgcggccc cgcccctgg ccgcgtggct gcgcgtcct	g gctgttgccg ataaagttgt	60
ttgacgccgg cccggcggcg ggtcacgtga gcggaaaat	g gcggccccgg caggcggcgg	120
aggeteege gtgteggtge tggeeegaa eggeeggeg	c cacacggtga aggtgacgcc	180
gagcaccgtg ctgcttcagg ttctggagga cacgtgccg	g cggcaggact tcaacccctg	240
tgaatatgat ctgaagtttc agaggagcgt gctcgacct	t tctctccagt ggagatttgc	300
caacctgccc aacaatgcca agctggagat ggtgcccgc	t tcccggagcc gtgaggggcc	360
tgagaacatg gttcgcatcg ctttgcagct ggacgatgg	c tcgaggttgc aggactcttt	420
ctgttcaggc cagaccctct gggagcttct cagccattt	t ccacagatca gggagtgcct	480
gcagcacccc ggcggggcca ccccagtctg cgtgtacac	g agggatgagg tgacgggtga	540
agctgccctg cggggcacga cgctgcagtc gctgggcct	g accgggggca gcgccaccat	600
caggitigic atgaagigct acgaccccgi gggcaagac	c-ccaggaagcc tgggctcgtc	660
agcgtcggct ggccaggcag ccgccagcgc tccacttcc	c tiggaatcig gggagcicag	720
ccgcggcgac ttgagccgtc cggaggacgc ggacacctc	a gggccctgct gcgagcacac	780
tcaggagaag cagagcacaa gggcacccgc agctgcccc	c tttgttcctt tctcgggtgg	840
gggacagaga ctggggggcc ctcctgggcc cacgaggcc	t ctgacatcat cttcagctaa	900
gttgccgaag tccctctcca gccctggagg cccctccaa	g ccaaagaagt ccaagtcggg	960
ccaggatccc cagcaggagc aggagcagga gcgggagcg	g gatccccagc aggagcagga	1020
gcgggagcgg cccgtggacc gggagcccgt ggaccggga	g ccggtggtgt gccaccccga	1080
cctggaggag cggctgcagg cctggccagc ggagctgcc	t gatgagttct ttgagctgac	1140
ggtggacgac gtgagaagac gcttggccca gctcaagag	t gagcggaagc gcctggaaga	1200
agccccttg gtgaccaagg ccttcaggga ggcgcagat	a aaggagaagc tggagcgcta	1260
cccaaaggtg gctctgaggg tcctgttccc cgaccgcta	c gtcctacagg gcttcttccg	1320
ccccagcgag acagtggggg acttgcgaga cttcgtgag	g agccacctgg ggaaccccga	1380
gctgtcattt tacctgttca tcacccctcc aaaaacagt	c ctggacgacc acacgcagac	1440
cctctttcag gcgaacctct tcccggccgc tctggtgca	c tigggagccg aggagccggc	1500
aggtgtctac ctggagcctg gcctgctgga gcatgccat	c tececatetg eggeegaegt	1560
gctggtggcc aggtacatgt ccagggccgc cgggtcccc	t tececattge cageceetga	1620
ccctgcacct aagtctgagc cagctgctga ggagggggc	g ctggtccccc ctgagcccat	1680
cccagggacg gcccagcccg tgaagaggag cctgggcaa	g gtgcccaagt ggctgaagct	1740
gccggccagc aagaggtgag agctgccagc ctgaggtgc	c cacteegeea gecaeaggae	1800

cacctcctct	gccagcagga	ataaagactt	gtgcatccct	caaaaaaaaa	aaaaaaaa	1858
⟨210⟩ 57						
⟨211⟩ 493						•
<212> DNA						
	sapiens				•	
<400> 57						
gccacttctc	ttcccttcat	tcttcgccag	gctctctgct	gactcaagtt	cttcagttca	60
cgatcttcta	gttgcagcga	tgagtgcacg	agtgagatca	agatccagag	gaagaggaga	120
tggtcaggag	gctcccgatg	tggttgcatt	cgtggctccc	ggtgaatctc	agcaagagga	180
accaccaact	gacaatcagg	atattgaacc	tggacaagag	agagaaggaa	cacctccgat	240
cgaagaacgt.	aaagtagaag	gtgattgcca	ggaaatggat	ctggaaaaga	ctcggagtga	300
gcgtggagat	ggctctgatg	taaaagagaa	gactccacct	a a t c c t a a g c	atgctaagac	360
taaagaagca	ggagatgggc	agccataagt	taaaaagaag	acaagctgaa	gctacacaca	420
tggctgatgt	cacattgaaa	atgtgactga	aaatttgaaa	attctctcaa	taaagtttga	480
gttttctctg	aag					493
<210> 58						
<211> 2957	1				•	
<212> DNA						•
<213> homo	sapiens					
<400> 58						
gccagtcacc	ttcagtttct	ggagctggcc	gtcaacatgt	cctttcctaa	ggcgcccttg	60
aaacgattca	atgaccette	tggttgtgca	ccatctccag	gtgcttatga	tgttaaaact	120
ttagaagtat	tgaaaggacc	agtatccttt	cagaaatcac	aaagatttaa	acaacaaaaa	180
gaatctaaac	aaaatcttaa	tgttgacaaa	gatactacct	tgcctgcttc	agctagaaaa	240
gttaagtctt	cggaatcaaa	gattcgtgtt	cttctacagg	aacgtggtgc	ccaggacagc	300
cggatccagg	atctggaaac	tgagttggaa	aagatggaag	caaggctaaa	tgctgcacta	360
agggaaaaaa	catctctctc	tgcaaataat	gctacactgg	aaaaacaact	tattgaattg	420
accaggacta	atgaactact	aaaatctaag	ttttctgaaa	atggtaacca	gaagaatttg	480
agaattctaa	gcttggagtt	gatgaaactt	agaaacaaaa	gagaaacaaa	gatgaggggt	540
atgatggcta	agcaagaagg	catggagatg	aagctgcagg	tcacccaaag	gagtctcgaa	600
gagtctcaag	ggaaaatagc	ccaactggag	ggaaaacttg	tttcaataga	gaaagaaaag	660 -
attgatgaaa	aatctgaaac	agaaaaactc	ttggaataca	tcgaagaaat	tagttgtgct	720
tcagatcaag	tggaaaaata	caagctagat	attgcccagt	tagaagaaaa	tttgaaagag	780
aagaatgatg	aaattttaag	ccttaagcag	tctcttgagg	agaatattgt	tatattatct	840
aaacaagtag	aagatctaaa	tgtgaaatgt	cagctgcttg	aaaaagaaaa	agaagaccat	900
					c <u>t</u> taaaacag	960
	ttgaacaaca					1020

tcacttctgc	aacaagagaa	agaattatct	tcgagtcttc	atcagaagct	ctgttctttt	1080
caagaggaaa	tggttaaaga	gaagaatctg	tttgaggaag	aattaaagca	aacactggat	1140
gagcttgata	aattacagca	aaaggaggaa	caagctgaaa	ggctggtcaa	gcaattggaa	1200
gaggaagcaa	aatctagagc	tgaagaatta	aaactcctag	aagaaaagct	gaaagggaag	1260
${\tt gaggctgaac}$	tggagaaaag	tagtgctgct	catacccagg	ccaccctgct	tttgcaggaa	1320
aagtatgaca	gtatggtgca	a a g c c t t g a a	gatgttactg	ctcaatttga	aagctataaa	1380
gcgttaacag	ccagtgagat	agaagatett	aagctggaga	actcatcatt	acaggaaaaa	1440
gcggccaagg	ctgggaaaaa	tgcagaggat	gttcagcatc	agattttggc	aactgagagc	1500
tcaaatcaag	aatatgtaag	gatgetteta	gatctgcaga	ccaagtcagc	actaaaggaa	1560
acagaaatta	aagaaatcac	agtttctttt	$\tt cttcaaaaaa$	taactgattt	gcagaaccaa	1620
ctcaagcaac	aggaggaaga	ctttagaaaa	cagctggaag	atgaagaagg	aagaaaagct	1680
gaaaaagaaa	atacaacagc	agaattaact	gaagaaatta	a caagtggcg	tctcctctat	1740
gaagaactat	ataataaaac	aaaacctttt	cagctacaac	tagatgcttt	tgaagtagaa	1800
aaacaggcat	tgttgaatga	acatggtgca	gctcaggaac	agctaaataa	aataagagat	1860
tcatatgcta	aattattggg	tcatcagaat	ttgaaacaaa	aaatcaagca	tgttgtgaag	1920
ttgaaagatg	aaaatagcca	actcaaatcg	gaagtatcaa	aactccgctg	tcagcttgct	1980
aaaaaaaac	aaagtgagac	aaaacttcaa	gaggaattga	ataaagttct	aggtatcaaa	2040
cactttgatc	cttcaaaggc	ttttcatcat	gaaagtaaag	aaaattttgc	cctgaagacc	2100
ccattaaaag	aaggcaatac	aaactgttac	cgagctccta	tggagtgtca	agaatcatgg	2160
aagtaaacat	ctgagaaacc	tgttgaagat	tatttcattc	gtcttgttgt	tattgatgtt	2220
gctgttatta	tatttgacat	gggtatttta	taatgitgia	tttaatttta	actgccaatc	2280
cttaaatatg	tgaaaggaac	atttttacc	aaagtgtctt	ttgacatttt	atttttctt	2340
gcaaatacct	cctccctaat	gctcaccttt	atcacctcat	tctgaaccct	ttcgctggct	2400
ttccagctta	gaatgcatct	catcaactta	aaagtcagta	tcatattatt	atcctcctgt	2460
tctgaaacct	tagtttcaag	agtctaaacc	ccagattctt	cagcttgatc	ctggaggtct	2520
	gagcttcttt					2580
tgattctgat	aatgctcact	tggtcctacc	tattatcctt	ctacttgtcc	agttcaaata	2640
	acaagcctaa				_	2700
atttacaggt	tcttaggctc	catcctgttt	gtatgaaatt	ataatctgtg	gattggcctt	2760
taagcctgca	ttcttaacaa	actcttcagt	taattcttag	atacactaaa	aatctgagaa	2820
	taactatttc				_	2880
ctcagcattt	gattaacatt	tgtgtaatat	gaaataaaat	tacacagtaa	gtcatttaac	2940
caaaaaaaaa	aaaaaaa					2957
/ 210> 50						

<210> 59

<211> 6399

<212> DNA

 $\langle 213 \rangle$ homo sapiens

<400> 59 catcetteet gtettegeag aggagteete gegtgaaata agegggtttt gaaaacaaaa 60 aaaagaagga gtggaagagg gggccaggat ccaggcctcc atccccacag aagtgaagct 120 acagctggga ggtctcctcc caccccaacc gtcaccctgg gtcccgactg cccacctcct 180 cctcctcccc ctcccccaa caacaacaac aacaacaact ccaagcacac cggccataag 240 agtgcgtgtg tccccaacat gaccgaacga agaagggacg agctctctga agagatcaac 300 aacttaagag agaaggtcat gaagcagtcg gaggagaaca acaacctgca gagccaggtg 360 cagaagcica cagaggagaa caccacctt cgagagcaag tggaacccac ccctgaggat 420 gaggatgatg acategaget eegeggtget geageagetg etgeeceaec ecetecaata 480 gaggaagagt gcccagaaga cctcccagag aagttcgatg gcaacccaga catgctggct 540 cctttcatgg cccagtgcca gatcttcatg gaaaagagca ccagggattt ctcagttgat 600 cgtgtccgtg tctgcttcgt gacaagcatg atgaccggcc gtgctgcccg ttgggcctca 660 gcaaagctgg agcgctccca ctacctgatg cacaactacc cagctttcat gatggaaatg 720 aagcatgtct ttgaagaccc tcagaggcga gaggttgcca aacgcaagat cagacgcctg 780 cgccaaggca tggggtctgt catcgactac tccaatgctt tccagatgat tgcccaggac 840 ctggattgga acgagcctgc gctgattgac cagtaccacg agggcctcag cgaccacatt 900 caggaggagc tctcccacct cgaggtcgcc aagtcgctgt ctgctctgat tgggcagtgc 960 attcacattg agagaaggct ggccagggct gctgcagctc gcaagccacg ctcgccaccc 1020 cgggcgctgg tgttgcctca cattgcaagc caccaccagg tagatccaac cgagccggtg 1080 ggaggtgccc gcatgcgcct gacgcaggaa gaaaaagaaa gacgcagaaa gctgaacctg 1140 tgcctctact gtggaacagg aggicactac gctgacaatt gtcctgccaa ggcctcaaag 1200 tettegeegg egggaaacte eeeggeeegg etgtagaggg acetteageg acegggeeag 1260 aaataataag gtccccacaa gatgatgcct catctccaca cttgcaagtg atgctccaga 1320 ttcatcttcc gggcagacac accetgttcg tccgagccat gatcgattct ggtgcttctg 1380 gcaacticat tgatcacgaa tatgttgctc aaaatggaat tcctctaaga atcaaggact 1440 ggccaatact tgtggaagca attgatgggc gcccatagc atcgggccca gttgtccacg 1500 aaactcacga cctgatagtt gacctgggag atcaccgaga ggtgctgtca tttgatgtga 1560 ctcagtctcc attcttccct gtcgtcctag gggttcgctg gctgagcaca catgatccca 1620 atatcacatg gagcactcga tctatcgtct ttgattctga atactgccgc taccactgcc 1680 ggatgtattc tccaatacca ccatcgctcc caccaccagc accacaaccg ccactctatt 1740 atccagtaga tggatacaga gittaccaac cagigaggia tiactaigic cagaaigigi 1800 acactccagt agatgagcac gtctacccag atcaccgcct ggttgaccct cacatagaaa 1860 tgatacctgg agcacacagt attcccagtg gacatgtgta ttcactgtcc gaacctgaaa 1920 tggcagctct tcgagatttt gtggcaagaa atgtaaaaga tgggctaatt actccaacga 1980 tigcacciaa iggagcccaa giiciccagg igaagagggg giggaaacig caagiiicti 2040 atgattgccg agctccaaac aattttacta tccagaatca gtatcctcgc ctatctattc 2100 caaatttaga agaccaagca cacctggcaa cgtacactga attcgtacct caaatacctg 2160

gataccaaac ataccccaca tatgccgcgt acccgaccta cccagtagga ttcgcctggt 2220 acccagtggg acgagacgga caaggaagat cactatatgt acctgtgatg atcacttgga 2280 atccacactg gtaccgccag cctccggtac cacagtaccc gccgccacag ccgccgcctc 2340 caccaccacc accgccgccg cctccatctt acagtaccct gtaaatacct gtcatgtcct 2400 teaggatete tgeceteaaa atttatteet gtteagette teaateagtg aetgtgtget. 2460 aaattttagg ctactgtate tteaggeeae etgaggeaea teetetetga aaeggetatg 2520 gaaggitagg gccactcigg aciggcacac atcctaaagc accaaaagac citcaacatt 2580 tictgagage aacagagtat tigccaataa atgatetete attitteeae ettgactgee 2640 aatctaacta acaataatta ataagtttac titccagcca gicciggaag tcigggitti 2700 accigccaaa acciccaica ccaictaaat tataggcigc caaattigci gittaacatt 2760 tacagagaag cigatacaaa cgcaggaaat gcigattict ttatggaggg ggagacgagg 2820 aggaggagga catgactttt cttgcggttt cggtaccctc tttttaaatc actggaggac 2880 tgaggcctta ttaaggaagc caaaattatc ggtgcagtgt ggaaaggctt ccgtgatcct 2940 ctcgctgcac ccttagaaac ttcaccgtct tcaaactcca tttccatggt tctgttaatt 3000 ctcaaggagc agcaactcga ctggttctcc caggagcagg aaaaaccctt gtgacatgaa 3060 acateteagg cetgaaaaga aagtgetete teagatggae tettgeatgt taagaetatg 3120 tcttcacatc atggtgcaaa tcacatgtac ccaatgactc cggctttgac acaacacctt 3180 accatcatca tgccatgatg gcttccacaa agcattaaac ctggtaacca gagattactg 3240 gtggctccag cgttgttaga tgttcatgaa atgtgaccac ctctcaatca cctttgaggg 3300 ctaaagagta gcacatcaaa aggactccaa aatcccatac ccaactctta agagatttgt 3360 cctggtactt cagaaagaat tttcatgagt gttcttaatt ggctggaaaa gcaccagctg 3420 acgititgga agaatciaic caigigicig cciccataig caicigggea titcaicite 3480 agiccccica itagacigia gcattaggai gigiggagag aggagaaaig attiagcacc 3540 cagattcaca ctcctatgcc tggaaggggg acatctttga agaagaggaa ttagggctgt 3600 ggacactgtc tigaggatgt ggacttcctt agtgagctcc acattacttg atggtaacca 3660 cticaaaagg atcagaatcc acgtaatgaa aaaggtccct ctagaggatg gagctgatgt 3720 gaagcigcca aiggaigaaa agccicagaa agcaacicaa aggacicaaa gcaacggaca 3780 acacaagagt tgtcttcagc ccagtgacac ctctgatgtc ccctggaagc tttgtgctaa 3840 cctgggactg cctgacticc tttagcctgg tcccttgcta ctaccttgaa ctgttttatc 3900 taacctctct ttttctgttt aattctttgc tactgccatt gaccctgctg caggatttgt 3960 gtcattttcc tgcctggttg ctgagactcc attttgctgc cacacacaga gatgtaagag 4020 gcaggcttta attgccaaag cacagtttga gcagtagaaa acaacatggt gtatatctca 4080 aattgcctga catgaagagg agtctaacgg tgaagtttca cttttcatca gcatcatctt 4140 tcacatgitc attatcatcy gcicttatic titigcatgit taaacactit aaaattitit 4200 agtataattt ttagtgtgtt ttgaagtggt gactaggctt tcaaaaactt ccatttgaat 4260 tacaaagcac tatccagtic ttattgitaa actaagtaaa aatgataagt aacatagtgt 4320 aaaatattcc tttactgtga acttcttaca atgctgtgaa tgagaggctc ctcagaactg 4380

•						
gagcatttgt	ataataattc	atcctgttca	tcttcaattt	taacatcata	tataatttca	4440
attctatcaa	ttgggccttt	aaaaatcata	taaaaggata	taaaatttga	aaagagaaac	4500
ctaattggct	atttaatcca	aaacaacttt	ttttttcct	tcaatggaat	cagaaagctt	4560
gtcaatcact	catgtgtttt	agagtaatta	cttttaaaat	ggtgcatttg	tgcttctgaa	4620
ctattttgaa	gagtcacttc	tgtttacctc	aagtatcaat	tcatcctcca	tacatttgaa	4680
ttcaagttgt	ttttgtcaa	atttacagtt	gtcaattgat	cttcaagctg	cagggtgcct	4740
agaaatgggc	cgttgtctgt	agccctggca	tgtgcacacg	gacatttgcc	accactgcaa	4800
gcaaaagtct	ggagaagttc	accaacgaca	agaacgatta	gggaaaatat	gctgctgtgg	4860
gttaacaact	cagaaagtcc	ctgatccaca	tttggctgtt	tactaaagct	tgtgattaac	4920
tttttggcag	tgtgtactat	gctctattgc	tatatatgct	atctataaat	gtagatgtta	4980
aggataagta.	attctaaatt	tattattcta	tagttttgaa	gtttggttaa	gtttcctttc	5040
actcaattga	tttattttgt	tgttaatcaa	atttatgtta	attggatcct	ttaaattttt	5100
tttggcattt	t ccaacaaaa	atggctttat	tcataagaaa	ggaaaaaaat	caatggaatt	5160
tgatatctaa	agaagttaga	aagggagcaa	aataaaaaac	ataaaggaga	tagatgaatt	5220
agtaagcaaa	tcagtagtcg	agtttttcaa	actggcaaaa	ttaattaatt	gacttttagc	5280
ccaaatttac	attgttaatt	aaatcaagaa	ggaagaagat	ctaagagctc	ccattgatag	5340
gcaagcctag	agagaactag	ctaa atttat	catgctagga	tattgaaaca	cagaaagttt	5400
acatacattt	at gaagggtc	aatttagttt	ggacagtgag	gtatttgtct	tagtggaaaa	5460
aaggagaatt	agicigatca	aatcgtgaag	taatacagtg	aacttgcagg	tgcacaaaat	5520
aagagggcca	catctatatg	gtgcagtctg	${\tt gaattctgtt}$	taagtttgta	ggtacctctt	5580
ggacttctga	attgatccag	ttgtcatcca	ccacagacat	ctcacatcag	atacagacag	5640
ttccaagatt	gacaacagag	aacaacctgc	tggaaagacc	tgggcagaaa	tggagagccc	5700
tgcgggaacc	atgctacatt	ttcatctaaa	gagagaatgc	acatctgatg	agactgaaag	5760
ttctttgttg	ttttagattg	tagaatggta	ttgaattggt	ctgtggaaaa	ttgcattgct	5820
tttatttctt	tgtgtaatca	agtttaagta	ataggggata	tataatcata	agcattttag	5880
ggtgggaggg	actattaagt	a a t t t t a a g t	gggtggggtt	atttagaatg	ttagaataat	5940
attatgtatt	agatatcgct	ataagtggac	atgcgtactt	actigiaacc	ctttacccta	6000
taattgctat	ccttaaagat	ttcaaataaa	ctcggaggga	actgcaggga	gaccaactta	6060
tttagagcga	attggacatg	gataaaaacc	ccagtgggag	aaagttcaaa	ggtgattaga	6120
ttaataattt	aatagaggat	gagtgacctc	tgataaatta	ctgctagaat	gaacttgtca	6180
atgatggatg	${\tt gtaaattttc}$	atggaagtta	taaaagtgat	aaataaaaac	ccttgctttt	6240
acccctgtca	gtagccctcc	tcctaccact	gaaccccatt	gcccctaccc	ctccttctaa	6300
ctttattgct	gtattctctt	cactctatat	ttctctctat	ttgctaatat	tgcattgctg	6360
ttacaataaa	aattcaataa	agatttagtg	gttaagtgc			6399
<210> 60						
⟨211⟩ 811		•				

<212> DNA

•	
<213> homo sapiens	
<400> 60	
catccctctg gctccagagc tcagagccac ccacagccgc agccatgctg tgcctcctgc	60
tcaccctggg cgtggccctg gtctgtggtg tcccggccat ggacatcccc cagaccaagc	120
aggaccigga gcicccaaag tiggcaggga cciggcactc caiggccaig gcgaccaaca	180
acatetecet catggegaca etgaaggeee etetgagggt ecacateace teactgttge	240
ccaccccga ggacaacctg gagatcgttc tgcacagatg ggagaacaac agctgtgttg	. 300
agaagaaggt ccttggagag aagactggga atccaaagaa gttcaagatc aactatacgg	360
tggcgaacga ggccacgctg ctcgatactg actacgacaa tttcctgttt ctctgcctac	420
aggacaccac cacccccatc cagagcatga tgtgccagta cctggccaga gtcctggtgg	480
aggacgatga gatcatgcag ggattcatca gggctttcag gcccctgccc aggcacctat	540
ggtacttgct ggacttgaaa cagatggaag agccgtgccg tttctagctc acctccgcct	600
ccaggaagac cagactecca ecettecaca ectecagage agtgggaett ecteetgece	660
tttcaaagaa taaccacage tcagaagacg atgacgtggt catctgtgte gecateceet	720
tcctgctgca cacctgcacc attgccatgg ggaggctgct ccctgggggc agagtctctg	780
gcagaggtta ttaataaacc cttggagcat g	811
<210> 61	
<211> 1685	
<212> DNA	
<213> homo sapiens	
<400> 61	
gtcaaaggaa gttagtacat taaacaaatg gtggtaggag ggaggatttg gcccaactgg	60
ctccaaccta tctggtcaac acgtatgttg ggtagaacag aggtggagaa aagcctagat	120
cagggatgta tacgcttcct tggggcagac gcagcctggc cctgcggagc gatttcaagc	180
ctcgttcacg aacatggcca aggacactgc cagcctcttc attcccctgt gtggatgctc	240
caactccaaa agtggaacca cagggcaaat gaatgtcggc acgtgtcggt atggcagcct	300
cgctcttcga cagctggtgt gggggttacc acctggggct agctggcctc atcttcgtta	360
gcactgagac tggtctacca gttgcacaga ttcagatttg aaaatctcag gtgcaaatcc	420
caagiggcga iggcaigtaa ccacaicaaa cicaacaici gcacciaaci cccacciici	480
ttctctggga aatcttcctg gacatgccca gatggactca ggagcccatc acctgtaaat	540
ccccacactg cagccctgcc acttgcttgt ctgcatgtgt gggtccgctg gaccactttg	600
gtgtatcttt gagccccttg agtgaaaaaa tgctgcctgg ctggctccct gattagacat	660
ccaacataat gaggactaac accaatacaa acacttaaga gatgacatat cgccctagct	720
ggatctacta cagggaaggg aagagggtgc tgggtccagg caggctgagt gtctcatgtc	780
ttaatgcttc tctgcccaat ctatttccgg ctggatgtgg agtctgaagg cctggcaccc	840
actctggctc tgtgatttac cagctgtgag ccttggggga gctgcttact ctcttggtga	900
ttcttttctc atttctatga tggggtagag gataatgcct atgcttacaa agtggctgtg	960

ggaagtaaac	cggatgggat	aagaatggct	tgctgtggac	cacaggcacc	gcaggataac	1020
cattcctcag	aactcctcgt	actgctctag	tgcttggagg	tccgtgtatt	acctcagcta	1080
ttccaaccgc	accaaccacg	ggagccacgt	gtctacgtct	gacagataaa	gatgctgagt	1140
ttagagtctg	${\tt caaggcttga}$	caaccacaga	tcagggacag	gagctgaggt	ctcctgacct	1200
ggagcccagg	gccacccgga	gctgcaagaa	acctgcactc	acaactgcct	cctattttaa	1260
aatgctgagt	cgatcccaca	ggtggcaaac	cagttctggg	cttcaattta	caagcagtca	1320
gaaaagctgg	gttgaaatcg	ccactgtcct	tctatgtggc	tgatgaggaa	ggatgacggt	1380
gcccaccgct	ccatctctcc	${\tt agctgacccc}$	aagctggcac	tcacgggtgg	gcaggctcag	1440
acaggcccag	ctccaccaag	tgcacttgaa	gccggaatgc	aagacatccg	atggtatact	1500
tactcgaacc	cgtccttttc	acaacagccg	cgggatccgc	tttctttggc	tgactgctca	1560
gagtcttccc	ttttcctgtg	accccattag	acgccatggg	gggcttttta	cccttgagct	1620
gttgaaataa	acatataaga	acattaaaaa	taaacacaaa	gtcaaacaaa	aaaaaaaaaa	1680
aaaaa						1685
<210> 62						
<211> 230	3					
<212> DNA		•				
<213> hom	o sapiens					
<400> 62						
cgcttcccgc	cgcccgagct	tcggaaactt	cccggccgcg	acgcagggaa	ccggcgcgga	60
gaaccgagca	gagcggagcg	cccgtggtcc	agcgtgtagg	gagccgatcg	cccatggagg	120
gtctgggccg	ctcgtgcctg	tggctgcgtc	gggagctgtc	gccccgcgg	ccgcggctcc	180
tgctcctgga	ctgccgcagc	cgcgagctgt	acgagtcggc	gcgcatcggt	ggggcgctga	240
gcgtggccct	gccggcgctc	ctgctgcgcc	gcctgcggag	gggcagcctg	tcggtgcgcg	300
cgctcctgcc	tgggccgccg	ctgcagccgc	ccccgcctgc	ccccgtgctc	ctgtacgacc	360
agggcggggg	ccggcgccgg	cgcggggagg	ccgaggccga	ggccgaggag	tgggaggccg	420
agtcggtgct	gggcaccctg	ctgcagaagc	tgcgagagga	aggctacctg	gcctactacc	480
tccagggagg	cttcagcaga	ttccaggccg	agtgccctca	cctgtgtgag	accagccttg	540
ctggccgtgc	cggctccagc	atggcgccgg	tgcccggtcc	agtgcccgtg	gtggggttgg	600
gcagcctgtg	cctgggctcc	gactgctctg	atgcggaatc	cgaggctgac	cgcgactcca	660
tgagctgtgg	cctggattcg	gagggtgcca	caccccacc	agtggggctg	cgggcatcct	720
tccctgtcca	gatectgece	aacctctatc	tgggcagtgc	ccgggattcc	gccaatttgg	780
agagcctggc	caaactgggc	atccgctaca	tcctcaatgt	caccccaac	ctcccaaact	840
tcttcgagaa	gaatggtgac	tttcactaca	agcagatccc	catctccgac	cactggagcc	900
agaacctgto	gcggttcttt	ccggaggcca	ttgagttcat	tgatgaggcc	ttgtcccaga	960
actgcggggt	gctcgtccac	tgcttggcgg	gggtcagccg	ttctgtcacc	gtcactgtgg	1020
cctacctcat	gcagaagctc	cacctctctc	tcaacgatgc	ctatgacctg	gtcaagagga	1080
agaagtctaa	catctcccc	aacttcaact	tcatggggca	gttgctggac	tttgagcgca	1140

gcttgcggct ggaggagcgc	${\tt cactcgcagg}$	agcagggcag	tggggggcag	gcatctgcgg	1200
cctccaaccc gccctccttc	ttcaccaccc	ccaccagtga	tggcgccttc	gagctggccc	1260
ccacctaggg ccccgtggcc	ggcaggccgg	ccctgcccc	accccaccc	acgggtgtcc	1320
ctgcccactc gtgtggcaag	ggagggagg	gcaggagggc	$t \verb cggcctgag $	cagggtgctg	1380
gggggagagc gcaatacctc	acgcgggctg	ccgtcctaat	caacgtgcct	atggcgggac.	1440
cacgetegga geetgeetet	tctgcgactg	ttactttttc	tttgcgggat	gggggtgggg	1500
gttccctctc caggtggttg	tccaagccca	ggtcccggcc	ctgggtgctc	agccagctcg	1560
gctaggccct gcgcctccct	gcgcttcccc	cttcaggaag	ggtgtgtgcc	acctcgttgc	1620
actggatece agtggetget	tgggggagag	gcgtttgcca	tcactggtgt	tgtcacctcc	1680
ctgtttctcc accaagggct					1740
cagaggtgca.gtggccgccc	acatccatgg	cctaggagct	actgggcagg	ttcccggcca	1800
cacatctggt gggctgtttt					1860
cactggggct ctttgtgagt					1920
agcgagagct gcggaggggg					1980
acacagccgc tgctactttg					2040
ttcatttctg tccacacccc					2100
acgtgtcggc gctcacacac					2160
tctttgcagc gtggggccgt					2220
ttgtaatcca tatcatagtt		attgttcctt	ctgaataaac	agtttattta	2280
agataaaaaa aaaaaaaaaa	aaa				2303
<210> 63					
<211> 4578		•			
<212> DNA					
<213> homo sapiens					
<400> 63					
agcgggtcgt gggcagccgc					. 60
ggctgcggct acggccggag					120
gaccgggagc tgccccgga					180
agcgagcccg aagcaaaagt					240
gtgcatcgac ttgacctcat		_			300
gaaaacatta gcctgaggaa				_	360
ccagtggact atgggagaaa					420
atccagctta tcaagactaa					
tacaggacgc acctggttgc					540
tcccactacc agctggaact				_	600
ataggatgca agaagccagt					660
tgtcaccgat gtctggtgta	tctgggggat	tigicccgat	atcagaatga	attagctggc	720

gtagataccg	agctgctagc	cgagagattt	tactaccaag	ccctgtcagt	agctcctcag	780
attggaatgc	ccttcaatca	gctgggcacc	$\tt ctggcaggca$	$\tt gcaagtacta$	taatgtggaa	840
gccatgtatt	gctacctgcg	ctgcatccag	tcagaagtgt	$\tt cctttgaggg$	agcctatggg	900
aacctcaagc	ggctgtatga	caaggcagcc	aaaatgtacc	accaactgaa	gaagtgtgag	960
actcggaaac	tgtctcctgg	caaaaagcga	tgtaaagaca	ttaaaaggtt	gctagtgaac'	1020
tttatgtatc	tgcaaagcct	cctacagccc	aaaagcagct	ccgtggactc	agagctgacc	1080
tcactttgcc	agtcagtcct	ggaggacttc	aacctctgcc	tcttctacct	gccctcctca	1140
cccaacctca	gcctggccag	tgaggatgag	gaggagtatg	agagtggata	tgctttcctc	1200
ccggaccttc	tcatctttca	aatggtcatc	atctgcctta	tgtgtgtgca	cagcttggag	1260
agagcaggat	ccaagcagta	cagtgcagcc	attgccttca	${\tt ccctggccct}$	cttttcccac	1320
ctcgtcaatc	atgtcaacat	acggctgcag	gctgagctgg	aagagggcga	gaatcccgtc	1380
ccggcattcc	agagtgatgg	cacagatgaa	ccagagtcca	aggaacctgt	ggagaaagag	1440
		tcctcctgta				1500
		ctgtctccgc				1560
gacagtgacc	tgagtgaagg	ctttgaatcg	gactcaagcc	atgactcagc	ccgggccagt	1620
gagggctcag	acagtggctc	tgacaagagt	cttgaaggtg	ggggaacggc	ctttgatgct	1680
gaaacagact	cggaaatgaa	tagccaggag	tcccgatcag	acttggaaga	tatggaggaa	1740
gaggagggga	cacggtcacc	aaccctggag	cccctcggg	gcagatcaga	ggctcccgat	1800
tccctcaatg	gccactggg	ccccagtgag	gctagcattg	${\tt ccagcaatct}$	acaagccatg	1860
tccacccaga	tgttccagac	taagcgctgc	ttccgactgg	${\tt ccccacctt}$	tagcaacctg	1920
ctcctccagc	ccaccaccaa	ccctcatacc	tcggccagcc	acaggccttg	cgtcaatggg	1980
gatgtagaca	agccttcaga	gccagcctct	gaggagggct	ctgagtcgga	ggggagtgag	2040
tccagtggac	gctcctgtcg	gaatgagcgc	agcatccagg	agaagcttca	ggtcctgatg	2100
gccgaaggtc	tgcttcctgc	tgtgaaagtc	ttcctggact	$\verb"ggcttcggac"$	caaccccgac	2160
ctcatcatcg	tgtgtgcgca	gagctctcaa	agtctgtgga	${\tt accgcctgtc}$	tgtgttgctg	2220
aatctgttgc	ctgctgctgg	tgaactccag	gagtctggcc	tggccttgtg	tcctgaggtc	2280
		tgaactgcct				2340
gacatggctc	ttcgtaacct	gccccgctc	${\tt cgagctgccc}$	a cagacgctt	taactttgac	2400
acggatcggc	ccctgctcag	caccttagag	gagtcagtgg	tgcgcatctg	ctgcatccgc	2460
agctttggtc	atttcatcgc	ccgcctgcaa	ggcagcatcc	tgcagttcaa	cccagaggtt	2520
ggcatcttcg	tcagcattgc	ccagtctgag	caggagagcc	tgctgcagca	ggcccaggca	2580
cagttccgaa	tggcacagga	ggaagctcgt	cggaacaggc	tcatgagaga	catggctcag	2640
ctacgacttc	agctcgaagt	gtctcagctg	gagggcagcc	tgcagcagcc	caaggcccag	2700
tcagccatgt	ctccctacct	cgtccctgac	acccaggccc	tctgccacca	tctccctgtc	2760
atccgccaac	tggccaccag	tggccgcttc	attgtcatca	tcccaaggac	agtgatcgat	2820
ggcctggatt	tgctgaagaa	ggaacaccca	ggggcccggg	atgggattcg	gtacctggag	2880
gcagagttta	aaaaaggaaa	caggtacatt	cgctgccaga	aagaggtggg	aaagagcttt	2940

gagcggcata	agctgaagag	gcaggatgca	gatgcctgga	ctctctataa	gatcctagac	3000
agctgcaaac	agctgactct	ggcccagggg	gcaggtgagg	aggatccgag	tggcatggtg	3060
accatcatca	caggccttcc	actggacaac	cccagcgtgc	tttcaggccc	catgcaggca	3120
gccctgcagg	ccgctgccca	${\tt cgccagtgtg}$	gacatcaagg	atgttctgga	cttctacaag	3180
cagtggaagg	aaattggttg	atactgaccc	ccaggccctg	cagtggggct	gactccagat.	3240
ctctcctgcc	ctccctggca	gccaggacca	gcacctgtag	tcacccacc	acacgcagac	3300
tcatgcacgc	acacaggagg	gaggcctagc	tgctcagagg	ctgcagggag	ggcccaggag	3360
ccggctggga'	gggtggggtc	cctttgttgc	caagacgtta	ggaaagcgag	gaaagtgett	3420
ggattaggag	$\underline{\mathtt{agtcttgtgg}}$	gcccctggcc	agccttcctg	cctcagctcc	cctgctgtct	3480
$\tt ccaggggcag$	gtggtaggca	tgggtacctg	${\tt catttcactg}$	gaatgggttc	ttggatctct	3540
gaggggaagg	aacagcaaaa	gaggcccttc	ttcctcaccc	aagatgcagg	gtggttgggg	3600
ccaggagttt	ggaccctcta	ggtcttgggg	gaagagctgg	gtaatacctg	gtgtctgagt	3660
gattctctgc	agacccttcc	cctcctcaag	gatcacccat	cctcctttca	gccccttta	3720
tggggaccag	gcagctctgg	agccagccac	aggggctgtt	agagaagcaa	ggcctggagt	3780
ggcctgcacc	gagtagcagg	gtcagggttc	gtgtgctcct	cctcctgctg	caggggctgc	3840
acatcccatt	gcccacttc	tgctttgtgt	ctccctctgt	$\tt ctagcttcca$	gggcagggag	3900
caggccccac	ctagggctgc	aggcagtctg	gcctgtgcca	$\tt gcacggtctc$	ctgtgcccac	3960
cagccccaca	ggtgctgtgc	tttgtgctct	tggctgctgt	gctgggacag	aatgggatgc	4020
caggaagaga	agaaaggggg	tgcagtctga	ggccaccacc	cccttccta	tctaagggag	4080
ggctgaagac	aaggggccgg	cattcagtgg	gcagcagaaa	ggagaggctc	cttgaagctg	4140
ctcagtcaga	ggcccccgtc	cctccttttg	${\tt ccttccgcag}$	gactgaagac	ctgaaggggc	4200
tggcttttgg	${\tt agtgttgagg}$	tgaatatctg	ggagcagaga	tcatgaatag	ctcagggcag	4260
tgaatggcgc	accaagagca	gggctgtgtg	tgggaggctg	cagccaggat	tgcctcagct	4320
cctcccctc	aggctgggag	gatagcacag	${\tt gctaggggct}$	cggggtggag	ggtctcagct	4380
ctgctgcccc	caccccagta	$\tt ctagcctagc$	ttcccaagct	gtggcttaga	ggatagttgg	4440
cttcctgcct	ctctcctcta	aaatagcaag	tctgggaaat	cctggggtga	gtggagtcac	4500
cccactccca	gttgctggca	gagactgaga	ctaaagcatc	acttaataaa	cccccaagc	4560
ccaaaaaaaa	aaaaaaaa					4578
<210> 64						
<211> 5542	2					
<212> DNA						
<213> home	sapiens					
<400> 64						
gtaattgaca	aagtcacgtg	tgctcagggg	gccagaaact	ggagagagga	gagaaaaaaa	· 60
tcaaaagaag	gaaagcacat	tagaccatgc	gagctaaatt	tgtgatcgca	caaaatcaag	120
$at \verb gttagatt $	gatgcagaag	atcactccgt	tccaaaggga	aagttttcat	ctcacgagtt	180
tggagc tgag	ggcccgtggg	gcaacatggc	cgaaggcggg	gctagcaaag	gtggtggaga	240

agagcccggg	aagctgccgg	agccggcaga	ggaggaatcc	caggttttgc	gcggaactgg	300
ccactgtaag	tggttcaatg	tgcgcatggg	atttggattc	atctccatga	taaaccgaga	360
gggaagcccc	ttggatattc	cagtcgatgt	atttgtacac	caaagcaaac	tattcatgga	420
aggatttaga	agcctaaaag	aaggagaacc	agtggaattc	acatttaaaa	aatcttccaa	480
aggccttgag	tcaatacggg	taacaggacc	tggtgggagc	ccctgtttag	gaagtgaaag'	540
aagacccaaa	gggaagacac	tacagaaaaag	aaaaccaaag	ggagatagat	gctacaactg	600
tggtggcctt	gatcatcatg	ctaaggaatg	tagtctacct	cctcagccaa	agaagtgcca	660
ttactgtcag	agcatcatgc	acatggtggc	aaactgccca	cataaaaatg	ttgcacagcc	720
acccgcgag <u>t</u>	tctcagggaa	gacaggaagc	agaatcccag	ccatgcactt	caactctccc	780
tcgagaagtg	ggaggcgggc	atggctgtac	atcaccaccg	tttcctcagg	aggctagggc	840
agagatetea	gaacggtcag	gcaggtcacc	tcaagaagct	tcctccacga	agtcatctat	900
agcaccagaa	gagcaaagca	aaaaggggcc	ttcagttcaa	aaaaggaaaa	agacataaca	960
ggtcttcttc	atatgttctt	tcctttaccc	ggttgcaaag	tctacctcat	gcaagtatag	1020
gggaacagta	tttcacaagc	${\tt agtagctgac}$	$\tt ctgggatttt$	a actact att	ggggaactgt	1080
gaattttta	aacagacaaa	tcactctaag	caaattacat	ttgagcaggg	tgtcatgttt	1140
tatgttaatt	cagagaataa	gatactatgt	ctgtcaatat	gtgcatgtgt	gagagggaga	1200
gagcctgagt	ctgtgtgtgt	acatgaggat	ttttatatag	gaatgtagac	acatatataa	1260
agaggctttg	tctttatata	tttgtgtata	gatcaaagca	cacaccctct	ctcatataat	1320
tggatatttc	caagaattga	aaacccatgt	gaagcattat	$a \\ gatagtttt$	aaatttaacc	1380
cactggagtt	ttcttgaaat	accacttctt	ttatattata	taaaactaaa	aacacgactg	1440
ttaccttttg	tgtgaaccaa	aggatacttc	agatctcaga	$\tt gctgccaatt$	atggggtact	1500
aaaggttttt	aagacatcca	gttctcccga	atttgggatt	gcctcttttt	cttgaaatct	1560
ctggagtagt	aattttttc	ccccttttt	gaaggcagta	${\tt ccttaacttc}$	atatgcctct	1620
				cagaaaaagac		1680
taatttgggc	cgatatttca	ctgttttaaa	ttctgtgttt	aattgtaaaa	ttagatgcct	1740
				tttcagtagt		1800
				ggattgtgtg		1860
				cagggagccc		1920
				tttttggtgg		1980
tcctcctgga	gagttatcta	atttgtttct	aaaacaaaca	agcagcaaag	aaatgaatta	2040
aatactgggg	ttgagaatta	aaattaagtg	gatgttcaca	gttgcccaat	atatatgacc	2100
tgcaaatgat	acgaaaaagt	gcagcattta	gtggcagtta	acaagagtga	caagcctggg	2160
				ttttatacag		2220
cttatggaag	tgaccttcaa	tgcttattct	gaagtaacct	atatggtgga	tacaggatga	2280
				ttagagtgat		2340
				aaaaaaatta		2400
atcctggctc	tagatgttat	gggcaaattt	ctgaaacatc	tgcaagaagg	taccagttaa	2460

ttatagtgct	taatattggg	aataagatta	agcattataa	ttataatgta	tgggcctgtt	2520
ggtgtaagct	cagataatta	aataaaaata	gcatgactca	aatgagacat	attctgctga	2580
acagtttcta	cttcctctc	cgcctgtcct	gtcatgggag	acgtgtatag	ttgctgctgt	2640
ttcagcaaac	caccataaga	cgaaaatgcc	tcaggttggg	ttgccagtcc	tttacaactc	2700
agcttgaatt	tcacaacagt	gattgtgaga	atctgcgtgg	tatacactga	aatatcggtg [.]	2760
tgctgtgatg	${\tt caaagcttac}$	ctttgacgat	attgaatgtg	atatagctgt	agagaagtac	2820
ttccttgcct	tatgtgagga	tttcaaactt	atttaaatta	tgtagacaaa	tcaaagtggc	2880
attgcttaat	ttttagcagg	cata at a a g c	aagttaacag	taaaatgcaa	aacatgataa	2940
gcgttgctca	a <u>tt</u> ttt <u>agca</u>	ggtataataa	gcaggttaac	agtaaaaatg	caaaacatga	3000
tagataagtc	actttgaaaa	ttcaaaccaa	agttccttca	ccttatggaa	ataggaaatt	3060
atggactica	aaattggaca	cttcctgttt	acaaaaagaa	attcagagct	aaaatcatgg	3120
taaaaaaaaa	tagaaacact	tgagaactat	ggtctttatg	ggtgcaattt	gaaatccttt	3180
tcatcatctt	accagactaa	actaagagca	cataccaaac	${\tt ctatcttatg}$	gttgaaagtt	3240
ggggtttatt	ttttatatga	gaatattatc	actattacat	aacatactca	ggacaaagaa ·	3300
ctttgctcag	ggaacatacc	atgtaatatt	tttgttgttt	ctttacagac	tagtctacag	3360
tcctgcttac	tcaaaacaaa	ccaaataact	tataccttta	tataagtatt	atgtactgat	3420
gatagtaact	acctctgagt	ttgacacaga	tcaaaatttt	tgaatatcag	atatcagtta	3480
tcctattttt	atttcatgtg	aaaactcctc	taaagcagat	tccctcaact	ctgtgcatat	3540
gtgaatatca	ctgatgtgaa	cacattgttc	atttacatag	gtaaaatatt	actctgttta	3600
cagcaaaagg	ctacctcata	gttgatacat	agcacacctg	tatgtatgct	gttccagcct	3660
tacaggtggc	tgataattct	ctggtacaga	acctttttat	ctgtattata	aatagcaatt	3720
cacaactgca	tgtttctgac	aaacacttgt	gaataatgaa	gcatctcgtt	ttagttagca	3780
aagtctccaa	acatttcctt	aaaataatca	tgtatttagt	ttaaagaatt	atgggcactg	3840
	gcaaaacaga					3900
ggaggttgga	aggggtagca	gggagagggg	tiggigiatg	caggtattca	tgctaggcaa	3960
agagtttaaa	agacgccaat	gtccttcatt	tactgtctgt	gctgccctga	agccaagcgt	4020
	tatagcccca					4080
	attactagct					4140
gattactaat	ggtggggcag	caggicigig	aattaagtta	tctcttgacc	tcaccctcat	4200
	atgtaattcc					4260
atcttttgct	acatggcaga	ctataatgaa	aacatttta	tacttgggtt	tctagtcttc	4320
actagaaggc	cttggatgta	tttttgcagt	tgaaagattt	agaaagattt	ttacctgctt	4380
ataacttgga	agtttagagt	gcaatgtaag	aaaaaagatc	aagaaatgtc	atgttattag	4440
catcagtcca	cctccaatat	tgccgatact	ttttttattc	tggctcagtt	ttattttgca	4500
ccagtgcggc	cccaagttac	tgctggttgt	atttagtttg	tgaataggag	cccataagtg	4560
ttaatagact	ttgtaacatt	cactataaga	tgaattatac	aggacatggg	aaatctcatt	4620
aagtcttaaa	gttaatttaa	attaatttat	ctgttttctc	taagaaatgt	ttatcataaa	4680

atatatatgt g						4740
gcactgactt t	aattttcta	gatgtcttaa	tgagatttat	ttgttttaga	gaagaacatc	4800
ttgttaaaag c	atcaaactc	tgtcttacat	agctgtcaac	agcctctta	agatgtggtg	4860
gttgtatgat c	tgtgtctta	attgttcagt	tagagtgaga	agttgaccta	tgattcattt	4920
ttaaatttta t	atttggaac	aaagctgcaa	gttatggtaa	agtactgtac	tgtgagaagt'	4980
attatgatat t	taatgcatc	tgtggcttaa	cacttgtgag	agttaccagc	ttgaaaatga	5040
tggtgttgac t	acctcttga	atcacatcta	tcaaccactg	gcacctacca	ccaagctggc	5100
ttcaattagt a	itgtgttgct	ttttggtatt	aacaactaac	${\tt cgtactagag}$	accaaagtga	5160
accctgattt t	tatatgtct	ttaataatgg	tgttttatct	agtgttttta	aattatcctg	5220
tgtagtattt a	ngattacctc	attgtccatt	ttgactcatg	ttgtttacaa	gtgaaaataa	5280
aaacacttga a	ıctgtatgtt	tttaaaagac	aaaaaagggg	tagatgtttg	gaatgcgttt	5340
cactegeatg of	cagtcatctg	gagggactga	agcactgttt	gcctttctgt	acactctggg	5400
ttttatattc 1	tcatttcatg	cctaatgtct	tattctgtca	attatggata	tgttgaggtt	5460
taaaaaaatt a	acttgattaa	aaataaaaca	tataacgttg	gcatttaaaa	aaaaaaaaa	5520
aaaaaaaaa a	aaaaaaaaa	aa				5542
<210> 65						
<211> 5507						
<212> DNA						
<213> homo	sapiens					
<400> 65						•
agtagctcta a	aaccatcttc	acgatttctc	tttcctcctc	gtgcccgccg	gagagaatag	60
tttcgctgaa a	aatttctctt	tgtcaatggg	at cagtatta	aatcagcaat	atacaagtaa	120
agtatcgcat g	gctgtaatgt	aaaatgtggc	tgaaaaatgg	agttaaatga	ataagtacac	180
gcggggctag o	caaaggtggt	ggagaagagc	ccgggaagct	gccggagccg	gcagaggagg	240
aatcccaggt	tttgcgcgga	actggccact	gtaagtggtt	${\tt caatgtgcgc}$	atgggatttg	300
gattcatctc o	catgataaac	cgagaggaa	gcccct t·gga	tattccagtc	gatgtatttg	360
tacaccaaag o	caaactattc	atggaaggat	ttagaagcct	aaaagaagga	gaaccagtgg	420
aattcacatt	taaaaaatct	tccaaaggcc	ttgagtcaat	acgggtaaca	ggacctggtg	480
ggagcccctg	tttaggaagt	gaaagaagac	ccaaagggaa	gacactacag	aaaagaaaac	540
caaagggaga	tagatgctac	aactgtggtg	gccttgatca	tcatgctaag	gaatgtagtc	600
tacctcctca g	gccaaagaag	tgccattact	gtcagagcat	catgcacatg	gtggcaaact	660 -
gcccacataa a	aaatgttgca	cagccacccg	cgagttctca	gggaagacag	gaagcagaat	720
cccagccatg (cacttcaact	ctccctcgag	aagtgggagg	cgggcatggc	tgtacatcac	780
caccgtttcc	tcaggaggct	agggcagaga	tctcagaacg	gtcaggcagg	tcacctcaag	840
aagcttcctc o	cacgaagtca	tctatagcac	cagaagagca	aagcaaaaag	gggccttcag	900
ttcaaaaaaag g	gaaaaagaca	taacaggtct	tcttcatatg	ttctttcctt	tacccggttg	960
caaagtctac (ctcatgcaag	tataggggaa	cagtatttca	caagcagtag	ctgacctggg	1020

attitaacta ctattgggga actgtgaatt ttttaaacag acaaatcact ctaagcaaat 1080 tacatttgag cagggtgtca tgttttatgt taattcagag aataagatac tatgtctgtc 1140 aatatgtgca tgtgtgagag ggagagagcc tgagtctgtg tgtgtacatg aggatttta 1200 tataggaatg tagacacata tataaagagg ctttgtcttt atatatttgt gtatagatca 1260 aagcacacac cctctctcat ataattggat atttccaaga attgaaaacc catgtgaagc 1320 attatagata giittaaatt taacccactg gagtiitett gaaataccac iictiitata 1380 ttatataaaa ctaaaaacac gactgttacc ttttgtgtga accaaaggat acttcagatc 1440 tcagagctgc caattatggg gtactaaagg tttttaagac atccagttct cccgaatttg 1500 ggattgcctc tttttcttga aatctctgga gtagtaattt ttttcccct tttttgaagg 1560 cagtacctta acticatatg cctctgactg ccataagctt ttttgattct gggataacat 1620 aactccagaa aagacaatga atgtgtaatt tgggccgata tttcactgtt ttaaattctg 1680 tgtttaattg taaaattaga tgcctattaa gagaaatgaa ggggaggatc atcttagtgg 1740 cttgttttca gtagtatttt aatatcagct tcttgtaacc ttttccatgt tgtgagggtt 1800 gtaagggatt gtgtggcaac agcagcttcc cttggctaac tcaatcttct acccattgct 1860 tagagcaggg agccctcctt atttactact gaagacctta gagaactcca attgtttggc 1920 atatatitit ggtggtggtt titaticcic ctggagagtt atctaattig titctaaaac 1980 aaacaagcag caaagaaatg aattaaatac tggggttgag aattaaaatt aagtggatgt 2040 tcacagttgc ccaatatata tgacctgcaa atgatacgaa aaagtgcagc atttagtggc 2100 agttaacaag agtgacaagc ctgggggcaga ggtaccaaac ctctcccacc agagagctag 2160 aagtatttta tacagtaact tigatcitat ggaagtgacc ticaatgcit aitcigaagt 2220 aacctatatg gtggatacag gatgaacatt cagtgccagg gagaatcttc tcaggttggt 2280 tctcgttaga gtgataaact ggctaggggc catagtattg gtcctgttag gtttcggtca 2340 tggaaaaaaa aattattttg gggtcatcct ggctctagat gttatgggca aatttctgaa 2400 acatetgeaa gaaggtacea gttaattata gtgettaata ttgggaataa gattaageat 2460 tataattata atgtatgggc ctgttggtgt aagctcagat aattaaataa aaatagcatg 2520 actcaaatga gacatatict gctgaacagt ttctacttcc tctcccgcct gtcctgtcat 2580 gggagacgtg tatagttgct gctgtttcag caaaccacca taagacgaaa atgcctcagg 2640 tigggitgcc agiccitiac aactcagcit gaaittcaca acagigatig igagaatcig 2700 cgtggtatac actgaaatat cggtgtgctg tgatgcaaag cttacctttg acgatattga 2760 atgigatata gcigiagaga agiacticci igccitatgi gaggattica aactiattia 2820 aattatgtag acaaatcaaa gtggcattgc ttaattttta gcaggcataa taagcaagtt 2880 aacagtaaaa tgcaaaacat gataagcgtt gctcaatttt tagcaggtat aataagcagg 2940 ttaacagtaa aaatgcaaaa catgatagat aagtcacttt gaaaattcaa accaaagttc 3000 cttcacctta tggaaatagg aaattatgga cttcaaaatt ggacacttcc tgtttacaaa 3060 aagaaattca gagctaaaat catggtaaaa aaaaatagaa acacttgaga actatggtct 3120 ttatgggigc aattigaaat ccitticaic aictiaccag actaaactaa gagcacatac 3180 caaacctatc ttatggttga aagttggggt ttatttttta tatgagaata ttatcactat 3240

•						
tacataacat	actcaggaca	aagaactttg	ctcagggaac	ataccatgta	atatttttgt	3300
tgtttcttta	cagactagtc	tacagtcctg	cttactcaaa	acaaaccaaa	taacttatac	3360
ctttatataa	gtattatgta	ctgatgatag	taactacctc	tgagtttgac	acagatcaaa	3420
atttttgaat	atcagatatc	agttatccta	tttttatttc	atgtgaaaac	tcctctaaag	3480
cagattccct	caactctgtg	catatgtgaa	tatcactgat	gtgaacacat	tgttcattta.	3540
cataggtaaa	atattactct	gtttacagca	aaaggctacc	tcatagttga	tacatagcac	3600
acctgtatgt	atgctgttcc	agccttacag	gtggctgata	attctctggt	acagaacctt	3660
tttatctgta	ttataaatag	caattcacaa	ctgcatgttt	ctgacaaaca	cttgtgaata	3720
atgaagcatc	tcgttttagt	tagcaaagtc	tccaaacatt	tccttaaaat	aatcatgtat	3780
ttagtttaaa	gaattatggg	cactgttcaa	cttaagcaaa	acagaacacg	gaagcagtct	3840
tagaagcacc	actttgccca	${\tt gaggtggagg}$	ttggaagggg	tagcagggag	aggggttggt	3900
gtatgcaggt	attcatgcta	ggcaaagagt	ttaaaagacg	ccaatgtcct	tcatttactg	3960
tctgtgctgc	cctgaagcca	${\tt agcgtattgc}$	agcattatag	ccccaggcac	ataactaact	4020
agcactggct	tgccaaggaa	tgaacatgca	atgccattac	tagctattga	gggaaaaggg	4080
tctgtgtgaa	gcatcacttt	gcagggatta	ctaatggtgg	ggcagcaggt	ctgtgaatta	4140
agttatctct	tgacctcacc	ctcatgtcaa	cacaaatgta	attcctaaac	aagatgcatt	4200
gccagtctct	tagccctgta	agctgatctt	ttgctacatg	gcagactata	atgaaaacat	4260
ttttatactt	gggtttctag	tcttcactag	a agg ccttgg	at gtatttt	gcagttgaaa	4320
gatttagaaa	gatttttacc	tgcttataac	ttggaagttt	agagtgcaat	gtaagaaaaa	4380
agatcaagaa	atgicatgit	attagcatca	gtccacctcc	aatattgccg	atacttttt	4440
tattctggct	cagttttatt	ttgcaccagt	gcggccccaa	gttactgctg	gttgtattta	4500
gtttgtgaat	aggagcccat	aagtgttaat	$a \\ gactt \\ t \\ gt \\ a$	a cattcacta	taagatgaat	4560
tatacaggac	atgggaaatc	tcattaagtc	ttaaagttaa	tttaaattaa	tttatctgtt	4620
ttctctaaga	aatgtttatc	ataaaatata	tatgtgtatt	tcccctttgg	ttataaaatt	4680
tgggaaagta	tgtacaagtg	cagctgcact	gactttaatt	ttctagatgt	cttaatgaga	4740
		acatcttgtt				4800
		tggtggttgt				4860
		catttttaaa				4920
		gaagtattat				4980
		aatgatggtg				5040
cactggcacc	taccaccaag	ctggcttcaa	ttagtatgtg	ttgctttttg	gtattaacaa	5100
ctaaccgtac	tagagaccaa	agtgaaccct	gatttttata	tgtctttaat	aatggtgttt	5160
		tcctgtgtag				5220
		aataaaaaca				5280
		cgtttcactc				5340
		ctgggtttta				5400
tgtcaattat	ggatatgttg	aggt t taaaa	aaattacttg	attaaaaata	aaacatataa	5460

5507 <210> 66 **<211> 204** <212> PRT <213> homo sapiens **<400>** 66 Met Gly Ala Pro Leu Ala Val Ala Leu Gly Ala Leu His Tyr Leu Ala 5 15 Leu Phe Leu Gln Leu Gly Gly Ala Thr Arg Pro Ala Gly His Ala Pro 20 25 30 Trp Asp Asn His Val Ser Gly His Ala Leu Phe Thr Glu Thr Pro His 40 Asp Met Thr Ala Arg Thr Gly Glu Asp Val Glu Met Ala Cys Ser Phe 50 55 60 Arg Gly Ser Gly Ser Pro Ser Tyr Ser Leu Glu Ile Gln Trp Trp Tyr 65 70 75 80 Val Arg Ser His Arg Asp Trp Thr Asp Lys Gln Ala Trp Ala Ser Asn 85 90 Gln Leu Lys Ala Ser Gln Gln Glu Asp Ala Gly Lys Glu Ala Thr Lys 100 105 Ile Ser Val Val Lys Val Val Gly Ser Asn Ile Ser His Lys Leu Arg 115 120 125 Leu Ser Arg Val Lys Pro Thr Asp Glu Gly Thr Tyr Glu Cys Arg Val 130 135 140 Ile Asp Phe Ser Asp Gly Lys Ala Arg His His Lys Val Lys Ala Tyr 150 -155Leu Arg Val Gln Pro Gly Glu Asn Ser Val Leu His Leu Pro Glu Ala 165 170 175 Pro Pro Ala Ala Pro Ala Pro Pro Pro Pro Lys Pro Gly Lys Glu Leu 180 185 190 Arg Lys Arg Ser Val Asp Gln Glu Ala Cys Ser Leu 195 200 <210> 67 **<211> 193** <212> PRT <213> homo sapiens **<400>** 67

Met Asp Gly Gly Thr Leu Pro Arg Ser Ala Pro Pro Ala Pro Pro Val

15 10 Pro Val Gly Cys Ala Ala Arg Arg Arg Pro Ala Ser Pro Glu Leu Leu 20 30 25 Arg Cys Ser Arg Arg Arg Pro Ala Thr Ala Glu Thr Gly Gly Gly 40 Ala Ala Ala Val Ala Arg Arg Asn Glu Arg Glu Arg Asn Arg Val Lys 50 55 60 Leu Val Asn Leu Gly Phe Gln Ala Leu Arg Gln His Val Pro His Gly 65 70 80 75 Gly Ala Ser Lys Lys Leu Ser Lys Val Glu Thr Leu Arg Ser Ala Val 85 90 Glu Tyr Ile Arg Ala Leu Gln Arg Leu Leu Ala Glu His Asp Ala Val 105 Arg Asn Ala Leu Ala Gly Gly Leu Arg Pro Gln Ala Val Arg Pro Ser 115 120 125 Ala Pro Arg Gly Pro Pro Gly Thr Thr Pro Val Ala Ala Ser Pro Ser 135 140 Arg Ala Ser Ser Ser Pro Gly Arg Gly Gly Ser Ser Glu Pro Gly Ser 150 155 Pro Arg Ser Ala Tyr Ser Ser Asp Asp Ser Gly Cys Glu Gly Ala Leu 165 170 175 Ser Pro Ala Glu Arg Glu Leu Leu Asp Phe Ser Ser Trp Leu Gly Gly 180 190 185 Tyr **<210>** 68 **<211> 354** <212> PRT <213> homo sapiens **<400>** 68 Met Arg Arg Leu Met Ser Ser Arg Asp Trp Pro Arg Thr Arg Thr Gly 10 Thr Gly Ile Leu Ser Ser Gln Pro Glu Glu Asn Pro Tyr Trp Trp Asn 20 25 Ala Asn Met Val Phe Ile Pro Tyr Cys Ser Ser Asp Val Trp Ser Gly 35 40 45

Ala	Ser 50	Ser	Lys	Ser	Glu	Lys 55	Asn	Glu	Tyr	Ala	Phe 60	Met	Gly	Ala	Leu
Ile	Ile	Gln	Glu	Val	Val	Arg	Glu	Leu	Leu	Glv	Arg	Glv	Leu	Ser	Glv
65					70	·				75		•			80
	Lvs	Val	Leu	Leu		Ala	Glv	Ser	Ser		Glv	Glv	Thr	Glv	
				85					90		,			95	
Leu	Leu	Asn	Val		Arg	Val	Ala	Gln		Len	G111	Lvs	Leu		Tvr
			100					105	011	200		_,_	110	,	- , -
Pro	Ala	Ile		Val	Arg	Glv	Leu		Asp	Ser	Glv	Trp		Leu	Asp
	• • • •	115					120		, ₽		, - 0	125			
Asn	Lys		Tyr	Arg	His	Thr		Cys.	Val	Asp	Thr		Thr	Cys	Ala
	130					135	_	·		•	140				
Pro	Thr	Glu	Ala	Ile	Arg	Arg	Gly	Ile	Arg	Tyr	Trp	Asn	Gly	Val	Val
145					150					155					160
Pro	Glu	Arg	Cys	Arg	Arg	Gln	Phe	Gln	Glu	Gly	Glu	Glu	Trp	Asn	Cys
				165					170					175	
Phe	Phe	Gly	Tyr	Lys	Val	Tyr	Pro	Thr	Leu	Arg	Cys	Pro	Val	Phe	Val
			180					185					190		
Val	Gln	Trp	Lẹu	Phe	Asp	Glu	Ala	Gln	Leu	Thr	Val	Asp	Asn	Val	His
		195					200					205			
Lėu	Thr	Gly	Gln	Pro	Val	Gln	Glu	Gly	Leu	Arg	Leu	Tyr	Ile	Gln	Asn
	210					215					220				
Leu	Gly	Arg	Glu	Leu	Arg	His	Thr	Leu	Lys	Asp	Val	Pro	Ala	Ser	Phe
225				•	230					235					240
Ala	Pro	Ala	Cys	Leu	Ser	His	Glu	Ile	Ile	Ile	Arg	Ser	His	Trp	Thr
				245					250	•				255	
Asp	Val	Gln	Val	Lys	Gly	Thr	Ser	Leu	Pro	Arg	Ala	Leu	His	Cys	Trp
			260					265					270		
Asp	Arg	Ser	Leu	His	Asp	Ser	His	Lys	Al _. a	Ser	Lys	Thr	Pro	Leu	Lys
		275					280					285			
Gly	Cys	Pro	Val	His	Leu	Val	Asp	Ser	Cys	Pro	Trp	Pro	His	Cys	Asn
	290					295					300				
Pro	Ser	Cys	Pro	Thr	Val	Arg	Asp	Gln	Phe	Thr	Gly	Gln	Glu	Met	Asn
305					310					315					320
Val	Ala	Gln	Phe		Met	His	Met	Gly		Asp	Met	Gln	Thr	Val	Ala
				325					330					335	
Gln	Pro	Gln	Gly	Leu	Glu	Pro	Ser	Glu	Leu	Leu	Gly	Met	Leu	Ser	Asn

Gly Ser <210> 69 **<211>** 362 <212> PRT $\langle 213 \rangle$ homo sapiens **<400>** 69 Met Ala Phe Leu Pro Ser Trp Val Cys Val Leu Val Gly Ser Phe Ser Ala Ser Leu Ala Gly Thr Ser Asn Leu Ser Glu Thr Glu Pro Pro Leu Trp Lys Glu Ser Pro Gly Gln Leu Ser Asp Tyr Arg Val Glu Asn Ser Met Tyr Ile Ile Asn Pro Trp Val Tyr Leu Glu Arg Met Gly Met Tyr Lys Ile Ile Leu Asn Gln Thr Ala Arg Tyr Phe Ala Lys Phe Ala Pro Asp Asn Glu Gln Asn Ile Leu Trp Gly Leu Pro Leu Gln Tyr Gly Trp Gln Tyr Arg Thr Gly Arg Leu Ala Asp Pro Thr Arg Arg Thr Asn Cys Gly Tyr Glu Ser Gly Asp His Met Cys Ile Ser Val Asp Ser Trp Trp Ala Asp Leu Asn Tyr Phe Leu Ser Ser Leu Pro Phe Leu Ala Ala Val Asp Ser Gly Val Met Gly Ile Ser Ser Asp Gln Val Arg Leu Leu Pro Pro Pro Lys Asn Glu Arg Lys Phe Cys Tyr Asp Val Ser Ser Cys Arg Ser Ser Phe Pro Glu Thr Met Asn Lys Tyr Asp Tyr Tyr Ser Lys Ala Glu Ala His Phe Glu Arg Ser Trp Val Leu Ala Val Asp His Leu Ala Ala Val Leu Phe Pro Thr Thr Leu Ile Arg Ser Tyr Lys Phe Gln Lys Gly Met Pro Pro Arg Ile Leu Leu Asn Thr Asp Val Ala Pro Phe Ile

225					230					235					240
Ser	Asp	Phe	Thr		Phe	Gln	Asn	Val	Val	Leu	Val	Leu	Leu		Met
•				245					250			_	_	255	
Leu	Asp	Asn		Asp	Lys	Ser	Ile		Leu	Val	Ser	Tyr		He	Glu
		_	260		_			265		_	_		270		m
Ser	Thr		Asp	Asn	Leu	Ala		Val	Asp	Trp	Pro		Phe	Lys	Trp
A	m	275	0	TL	T	M-4	280	TL	TT: _	Ton	Com	285	Cla	Ton	Lou
ASP		ser	261	ınr	Trp			ınr	HIS	Leu		Lys	GIU	геп	Leu
A10	290	Таг е	A = ~	Dro	Ser	295	•	T +10	41 a	Thr	300	 Tur	Thr	C1v	Dha
305	AI &	1 y 1	ліg	110	310	GIY	ren	гуз	nia	315	Leu	1 9 1	Ti	Uly	320
	Phe	Ser	Πe	Tvr	Leu	Arg	Tvr	Arø	I.vs		Tvr	Gln	Ser	Val	
501	1110	501	110	325	Dou	**** 6	-,1		330	110	1,1	0111	501	335	V
Tvr	Lvs	Trp	Cvs		Arg	Pro	Thr	Cys		Ile	Asp	Phe	Tyr		Pro
- • -			340		Ū			345			•		350		
Glu	Arg	Ser		Val	Cys	Arg	Ser	Arg	Ser						
		355					360								
<210)> '	70													
< 211	l> :	137													
<212	2>]	PRT													
			sap	i ens											
<212 <213		homo	sap	i ens											
<213 <213 <400	3> 1	homo 70			Ala	His	Arg	Cys	Val	Trp	Thr	Arg	Val	Ala	Ala
<213 <213 <400 Met	3> 0> Pro	homo 70 Arg	Pro	Arg 5					10					15	
<213 <213 <400 Met	3> 0> Pro	homo 70 Arg	Pro Gly	Arg 5	Ala Pro			Thr	10				Ser	15	
<212 <213 <400 Met 1 Ser	3> i)> Pro Arg	homo 70 Arg Thr	Pro Gly 20	Arg 5 Ala	Pro	Arg	Ser	Thr 25	10 Thr	Ala	Ser	Cys	Ser 30	15 Ala	Ser
<212 <213 <400 Met 1 Ser	3> i)> Pro Arg	homo 70 Arg Thr	Pro Gly 20	Arg 5 Ala	Pro	Arg	Ser Val	Thr 25	10 Thr	Ala	Ser	Cys Cys	Ser 30	15 Ala	
<212 <213 <400 Met 1 Ser	3>)> Pro Arg	homo 70 Arg Thr Cys 35	Pro Gly 20 Ala	Arg 5 Ala Trp	Pro Ala	Arg Ser	Ser Val 40	Thr 25 Trp	10 Thr Arg	Ala Cys	Ser Glu	Cys Cys 45	Ser 30 Cys	15 Ala Gly	Ser
<212 <213 <400 Met 1 Ser	3> Pro Pro Arg Arg	homo 70 Arg Thr Cys 35	Pro Gly 20 Ala	Arg 5 Ala Trp	Pro	Arg Ser Ala	Ser Val 40	Thr 25 Trp	10 Thr Arg	Ala Cys	Ser Glu Ser	Cys Cys 45	Ser 30 Cys	15 Ala Gly	Ser
<pre><212 <213 <400 Met 1 Ser Gly Arg</pre>	3> Pro Pro Arg Arg Ala 50	homo 70 Arg Thr Cys 35 Ala	Pro Gly 20 Ala Gly	Arg 5 Ala Trp Ala	Pro Ala Ala	Arg Ser Ala 55	Ser Val 40 Ser	Thr 25 Trp Ala	10 Thr Arg	Ala Cys Ala	Ser Glu Ser 60	Cys Cys 45 Arg	Ser 30 Cys	15 Ala Gly Trp	Ser Arg Thr
<pre><212 <213 <400 Met 1 Ser Gly Arg Pro</pre>	3> Pro Pro Arg Arg Ala 50	homo 70 Arg Thr Cys 35 Ala	Pro Gly 20 Ala Gly	Arg 5 Ala Trp Ala	Pro Ala Ala Cys	Arg Ser Ala 55	Ser Val 40 Ser	Thr 25 Trp Ala	10 Thr Arg	Ala Cys Ala	Ser Glu Ser 60	Cys Cys 45 Arg	Ser 30 Cys	15 Ala Gly Trp	Ser Arg Thr
<pre><212 <213 <400 Met 1 Ser Gly Arg Pro 65</pre>	Arg Ala Ang Arg	homo 70 Arg Thr Cys 35 Ala	Pro Gly 20 Ala Gly Cys	Arg 5 Ala Trp Ala Pro	Pro Ala Ala Cys 70	Arg Ser Ala 55 Pro	Ser Val 40 Ser Ala	Thr 25 Trp Ala	10 Thr Arg Trp	Ala Cys Ala Pro	Ser Glu Ser 60 Ser	Cys 45 Arg Cys	Ser 30 Cys Ala	15 Ala Gly Trp Pro	Ser Arg Thr Thr 80
<pre><212 <213 <400 Met 1 Ser Gly Arg Pro 65</pre>	Arg Ala Ang Arg	homo 70 Arg Thr Cys 35 Ala	Pro Gly 20 Ala Gly Cys	Arg 5 Ala Trp Ala Pro	Pro Ala Ala Cys 70	Arg Ser Ala 55 Pro	Ser Val 40 Ser Ala	Thr 25 Trp Ala	10 Thr Arg Trp Arg	Ala Cys Ala Pro	Ser Glu Ser 60 Ser	Cys 45 Arg Cys	Ser 30 Cys Ala	15 Ala Gly Trp Pro	Ser Arg Thr
<pre><212 <213 <400 Met 1 Ser Gly Arg Pro 65 Trp</pre>	Arg Ala 50 Arg Arg	homo 70 Arg Thr Cys 35 Ala Ala	Pro Gly 20 Ala Gly Cys	Arg 5 Ala Trp Ala Pro Ala 85	Pro Ala Ala Cys 70 Arg	Arg Ser Ala 55 Pro	Ser Val 40 Ser Ala	Thr 25 Trp Ala Cys	10 Thr Arg Trp Arg Pro	Ala Cys Ala Pro 75 Cys	Ser Glu Ser 60 Ser Cys	Cys 45 Arg Cys	Ser 30 Cys Ala Ala	15 Ala Gly Trp Pro	Ser Arg Thr Thr 80 Ala
<pre><212 <213 <400 Met 1 Ser Gly Arg Pro 65 Trp</pre>	Arg Ala 50 Arg Arg	homo 70 Arg Thr Cys 35 Ala Ala	Pro Gly 20 Ala Gly Cys Arg	Arg 5 Ala Trp Ala Pro Ala 85 Thr	Pro Ala Ala Cys 70 Arg	Arg Ser Ala 55 Pro	Ser Val 40 Ser Ala	Thr 25 Trp Ala Cys Arg	10 Thr Arg Trp Arg Pro 90 Gly	Ala Cys Ala Pro 75 Cys	Ser Glu Ser 60 Ser Cys	Cys 45 Arg Cys	Ser 30 Cys Ala Ala Ala	15 Ala Gly Trp Pro Ala 95 Ala	Ser Arg Thr Thr 80
<pre><212 <213 <400 Met 1 Ser Gly Arg Pro 65 Trp Arg</pre>	Pro Arg Arg Ala 50 Arg Ser	homo 70 Arg Thr Cys 35 Ala Ala Ser Leu	Pro Gly 20 Ala Gly Cys Arg Gly 100	Arg 5 Ala Trp Ala Pro Ala 85 Thr	Pro Ala Ala Cys 70 Arg	Arg Ser Ala 55 Pro Arg	Ser Val 40 Ser Ala Gly	Thr 25 Trp Ala Cys Arg Ser 105	10 Thr Arg Trp Arg Pro 90 Gly	Ala Cys Ala Pro 75 Cys	Ser Glu Ser 60 Ser Cys	Cys 45 Arg Cys Leu	Ser 30 Cys Ala Ala Ala 110	15 Ala Gly Trp Pro Ala 95 Ala	Ser Arg Thr Thr 80 Ala

		115					120					125			
Cys	Pro 130	Ser	Ala	Pro	Arg	Ser 135	Gly	Pro							
<210															
<211		426													
<212		PRT													
		homo	sap	iens											
<40(-												
Met _. 1	Pro	. Ļeņ	<u>L</u> eu	Trp_5	Leu	Arg	Gly	Phe	Leu 10	Leu _.	Ala	Ser	Cys	Trp 15	Ile
Ile	Val	Arg	Ser 20	Ser	Pro	Thr	Pro	Gly 25	Ser	Glu	Gly	His	Ser 30	Ala	Ala
Pro	Asp	Cys 35	Pro	Ser	Cys	Ala	Leu 40	Ala	Ala	Leu	Pro	Lys 45	Asp	Val	Pro
Asn	Ser 50	Gln	Pro	Glu	Met	Val 55	Glu	Ala	Val	Lys	Lys 60	His	Ile	Leu	Asn
Met 65	Leu	ı His	Leu	Lys	Lys 70	Arg	Pro	Asp	Val	Thr 75	Gln	Pro	Val	Pro	Lys 80
Ala	Ala	a Leu	Lęu	Asn 85	Ala	Ile	Arg	Lys	Leu 90	His	Val	Gly	Lys	Val 95	Gly
Glu	Asr	n Gly	Tyr 100	Val	Glu	Ile	Glu	Asp 105	Asp	Ile	Gly	Arg	Arg 110	Ala	Glu
Met	Asr	n Glu 115		Met	Glu	Gln	Thr 120	Ser	Glu	Ile	Ile	Thr 125	Phe	Ala	Glu
Ser	Gly 130	y Thr O	Ala	Arg	Lys	Thr 135	Leu	His	Phe	Glu	Ile 140	Ser	Lys	Glu	Gly
Ser 145	Ası	D Leu	Ser	Val	Val 150	Glu	Arg	Ala	Glu	Val 155	Trp	Leu	Phe	Leu	Lys 160
Val	Pro	o Lys	Ala	Asn 165	Arg	Thr	Arg	Thr	Lys 170	Val	Thr	Ile	Arg	Leu 175	Phe
Gln	Glı	n Gln	Lys 180		Pro	Gln	Gly	Ser 185	Leu	Asp	Thr	Gly	Glu 190	Glu	Ala
Glu	Gli	u Val 195		Leu	Lys	Gly	Glu 200		Ser	Glu	Leu	Leu 205	Leu	Ser	Glu
Lys	Va :	l Val		Ala	Arg	Lys 215	Ser		Trp	His	Val 220	Phe	Pro	Val	Ser
Ser		r Ile	Gln	Arg	Leu			Gln	Gly	Lys		Ser	Leu	Asp	Val

225	•				230					235					240
Arg	Ile	Ala	Cys	Glu	Gln	Cys	Gln	Glu	Ser	Gly	Ala	Ser	Leu	Val	Leu
				245					250					255	
Leu	Gly	Lys	Lys	Lys	Lys	Lys	Glu	Glu	Glu	Gly	Glu	Gly	Lys	Lys	Lys
			260					265					270		
Gly	Gly		Glu	Gly	Gly	Ala	Gly	Ala	Asp	Glu	Glu		Glu	Gln	Ser
		275	~.				280			01		285	A	17: 4	n
His			Pne	Leu			GIN	Ala	Arg	GIN		GIU	ASP	nis	Pro
	290		Ara	Ara		29 <u>5</u>	- Leu	Clu	Cve	Δen	.300	Lvc	Val	Asn	He
305	AIG	AI S	MIS	MIG	310	Uly	LCu	ura	Oys	315	ory	D 3 C	,	11011	320
	Cys	Lys	Lys	Gln		Phe	Val	Ser	Phe		Asp	Ile	Gly	Trp	
				325		-			330	•	_		-	335	
Asp	Trp	Ile	Ile	Ala	Pro	Ser	Gly	Tyr	His	Ala	Asn	Tyr	Cys	Glu	Gly
			340					345					350		
Glu	Cys	Pro	Ser	His	Ile	Ala	Gly	Thr	Ser	Gly	Ser	Ser	Leu	Ser	Phe
•		355					360					365		_	
His			Val	Ile	Asn		Tyr	Arg	Met	Arg			Ser	Pro	Phe
	370		, T	0	0	375	W- 1	D	Th	T 0	380		D = 0	Wo t	Sor
		Leu	Lys	Ser	390		Val	PIO	Inr	395		Arg	PIU	Met	400
385 Mat		Twr	Tvr	· Aen			Gln	Asn	Ile			Lvs	Asp	He	
MCI	Leu	. 1 y 1	1 9 1	405		GIY	OIII	поп	410		D 3 3	230	nop	415	0111
Asn	Me t	Ile	Val			Cys	Gly	Cys							
			420					425							
<21	<0>	72													
<21	1>	868													
<21	2>	PRT													
<21		homo	sap	oiens	3										
<40	•	72		_					0.1					•	
	Ala	ı Ser	Phe		Glu	Thr	Asp	Phe		1116	e Cys	Let	ı Let		Lys
1	. Wal	· 0	. (1.	5 - Sa-	. D		Dro	Lou	10	. 501	• Aar	. 501	. 501	15 · 11a	Sat
GIU	ı me i	. cys	20	y sei	rro	A18	Pro	25	เอยเ	. 561	. nsi	1 261	30	MIG	. 261
Spr	ام؟ ٠	د می		r Glr	յ Thք	Set	Thr		· Sei	Glv	, Glv	, Glv		, Glv	Glv
261	261	35	. טכו	. 011		501	40	201	201		,,	45	,		,
Pro	Glv		ı Ala	a Ala	a Arg	g Arg	g Leu	His	Va]	l Leı	ı Pro		s Lei	ı His	Ala
		, - -			6		-								

.

	50					55					60				
Phe	Cys	Arg	Pro	Cys	Leu	Glu	Ala	His	Arg	Leu	Pro	Ala	Ala	Gly	Gly
65					70					75					80
Gly	Ala	Ala	Gly	Glu	Pro	Leu	Lys	Leu	Arg	Cys	Pro	Val	Cys	Asp	Gln
				85					90					95	
Lys	Val	Val	Leu	Ala	Glu	Ala	Ala	Gly	Met	Asp	Ala	Leu	Pro	Ser	Ser
			100					105					110		
Ala	Phe	Leu	Leu	Asn	Asn	Leu	Leu	Asp	Ala	Val	Val	Ala	Thr	Ala	Asp
		115					120					1.25			
Glu	Pro	Pro	Pro	Lys	Asn	Gly	Arg	Ala	Gly	Ala	Pro	Ala	Gly	Ala	Gly
	130	•				135					140				
	His	Ser	Asn	His		His	His	Ala	His		Ala	His	Pro	Arg	
145					150					155					160
Ser	Ala	Ser	Ala		Pro	Leu	Pro	Gln		Pro	Gln	Pro	Pro		Pro
		_		165		٠.	_		170	_	_			175	_
Ser	Arg	Ser	Ala	Pro	Gly	Gly	Pro		Ala	Ser	Pro	Ser		Leu	Leu
			180		01	0		185	•		0.1	0.1	190	41.	41.
Leu	Arg		Pro	HIS	Gly	Cys		Ser	Cys	Asp	Glu		Asn	Ala	Ala
0	Cam	195	C	T 0.0	4	C	200	C1	11: -	T ou	C	205	A a m	Crra	Wo 1
ser		Arg	Cys	Leu	ASP		GIII	viu	піѕ	reu		ASD	ASII	Cys	Val
A = ~	210	u; o	Cln	A = ~	Vol	215	Lou	Thr	T 170	Aan	220	Тълъ	Πla	Clu	Ara
225	Ala	1112	Gln	MIR	230		Leu	1111	Lys	235	1112	1) 1	110	Giu	240
	Pro	Pro	Gly	Pro			Δla	Δla	Δla		Gln	Gln	Len	Glv	
Oly	110	110	dry	245		ma	niu	піа	250		GIII	UIII	LCu	255	ncu
Glv	Pro	Pro	Phe			Pro	Pro	Phe			Len	Ser	Val		Pro
01,			260		0.,			265	501	-110	204	201	270		
Glu	Arg	Leu	Gly	Phe	Cys	Gln	His		Asp	Asp	Glu	Val		His	Leu
		275			-		280		_	_		285			
Tyr	Cys	Asp	Thr	Cys	Ser	Val	Pro	Ile	Cys	Arg	Glu	Cys	Thr	Met	Gly
	290					295					300				
Arg	His	Gly	Gly	His	Ser	Phe	Ile	Tyr	Leu	Gln	Glu	Ala	Leu	Gln	Asp
305					310					315					320
Ser	Arg	Ala	Leu	Thr	Ile	Gln	Leu	Leu	Ala	Asp	Ala	Gln	Gln	Gly	Arg
				325					330					335	
Gln	Ala	Ile	Gln	Leu	Ser	Ile	Glu	Gln	Ala	Gln	Thr	Val	Ala	Glu	Gln
			340					345					350		

Val	Glu		Lys	Ala	Lys	Val		Gln	Ser	.Glu	Val		Ala	Val	Thr
		355					360	~-		۵,		365	_	_	_
Ala		HIS	Lys	Lys	Ala		Glu	Glu	Arg	Glu		Glu	Leu	Leu	Trp
	370					375					380				
Lys	Val	Glu	Lys	Ile	Arg	Gln	Val	Lys	Ala	Lys	Ser	Leu	Tyr	Leu	Gln
385					390					395					400
Val	Glu	Lys	Leu	Arg	Gln	Asn	Leu	Asn	Lys	Leu	Glu	Ser	Thr	Ile	Ser
				405					410					415	
Ala	Val	Gln	Gln	Val	Leu	Glu	Glu	Gly	Arg	Ala	Leu	Asp	Ile	Leu	Leu
			420					425			-		430		
Ala	Arg	Asp	Arg	Met	Leu	Ala	Gln	Val	Gln	Glu	Leu	Lys	Thr	Val	Arg
		435					440	•				445			
Ser	Leu	Leu	Gln	Pro	Gln	Glu	Asp	Asp	Arg	Val	Met	Phe	Thr	Pro	Pro
	450					455		_			460				
Asp	Gln	Ala	Leu	Tyr	Leu	Ala	Ile	Lvs	Ser	Phe	Glv	Phe	Val	Ser	Ser
465					470					475					480
	Ala	Phe	Ala	Pro		Thr	Lvs	Ala	Thr		Asp	Glv	Len	Lvs	
,				485			_,.		490	 3	p	,		495	
Ala	Len	Gln	Gly		Val	Ala	Ser	Phé		Va 1	Ιlρ	Glv	Tvr		Hic
	Dea	0111	500	D 3 5	, u i	mu	JUI	505	1111	7 4. 1	110	ury	510	пър	1113
Asn	Glv	Gln	Pro	Arσ	T en	Ser	Clv		Asn	Ι Δ11	Met	Ser		Va 1	Va 1
пор	OLY	515	110	1116	Lcu	501	520			Deu		525	Ala	141	741
Īρπ	Clv		Asp	C1 _v	Aen	ľ Au							Acn	Cln	Cln
LCu.	530	110	лър	GIY	иоп	535	THE	GIY	Ala	Giu	540	261	nsp	GIII	GIII
		Th.	Tvre	Vo 1	Vo 1		Т	A = ~	Dec	Cln		Clu	C1**	C1	Uio
	GIY	1111	Tyr	Val	550	Ser	1 9 1	Arg	Pro		Leu	Giu	GIY	GIU	
545	Wa 1	C	37 a 1	Th		0	A	C1	TT: -	555	01	A	0	D	560
Leu	vaı	ser	Val		Leu	Cys	Asn	GIN		116	GIU	Asn	Ser		rne
•	** 1	77 1	77 1	565	•	.			570		۵.			575	~
Lys	Val	Val	Val	Lys	Ser	Gly	Arg		Tyr	Val	Gly	He		Leu	Pro
			580					585					590		
Gly	Leu		Phe	Gly	Ser	Glu		Asp	Ser	Asp	Gly		Leu	Cys	Arg
		595					600					605			
Pro		Gly	Val	Ser	Val	Asp	Lys	Glu	Gly	Tyr	Ile	Ile	Val	Ala	Asp
	610					615					620				
Arg	Ser	Asn	Asn	Arg	Ile	Gln	Val	Phe	Lys	Pro	Cys	Gly	Ala	Phe	His
625					630					635				٠	640
His	Lys	Phe	Gly	Thr	Leu	Gly	Ser	Arg	Pro	Gly	Gln	Phe	Asp	Arg	Pro

Ala Gly Val Ala Cys Asp Ala Ser Arg Arg Ile Val Val Ala Asp Lys Asp Asn His Arg Ile Gln Ile Phe Thr Phe Glu Gly Gln Phe Leu Leu Lys Phe Gly Glu Lys Gly Thr Lys Asn Gly Gln Phe Asn Tyr Pro Trp Asp Val Ala Val Asn Ser Glu Gly Lys Ile Leu Val Ser Asp Thr Arg Asn His Arg Ile Gln Leu Phe Gly Pro Asp Gly Val Phe Leu Asn Lys Tyr Gly Phe Glu Gly Ala Leu Trp Lys His Phe Asp Ser Pro Arg Gly Val Ala Phe Asn His Glu Gly His Leu Val Val Thr Asp Phe Asn Asn His Arg Leu Leu Val Ile His Pro Asp Cys Gln Ser Ala Arg Phe Leu Gly Ser Glu Gly Thr Gly Asn Gly Gln Phe Leu Arg Pro Gln Gly Val Ala Val Asp Gln Glu Gly Arg Ile Ile Val Ala Asp Ser Arg Asn His Arg Val Gln Met Phe Glu Ser Asn Gly Ser Phe Leu Cys Lys Phe Gly Ala Gln Gly Ser Gly Phe Gly Gln Met Asp Arg Pro Ser Gly Ile Ala Ile Thr Pro Asp Gly Met Ile Val Val Asp Phe Gly Asn Asn Arg Ile Leu Val Phe **<210>** 73 **<211> 3477** <212> PRT $\langle 213 \rangle$ homo sapiens **<400>** 73 Met Ala Asn Arg Arg Val Gly Arg Gly Cys Trp Glu Val Ser Pro Thr 1.5 Glu Arg Arg Pro Pro Ala Gly Leu Arg Gly Pro Ala Ala Glu Glu

			20					25					30		
Ala	Ser	Ser	Pro	Pro	Val	Leu	Ser	Leu	Ser	His	Phe	Cys	Arg	Ser	Pro
		35					40					45			
Phe	Leu	Cys	Phe	Gly	Asp	Val	Leu	Leu	Gly	Ala	Ser	Arg	Thr	Leu	Ser
	50					55					60				
Leu	Ala	Leu	Asp	Asn	Pro	Asn	Glu	Glu	Val	Ala	Glu	Val	Lys	Ile	Ser
65					70					75					80
His	Phe	Pro	Ala	Ala	Asp	Leu	Gly	Phe	Ser	Val	Ser	Gln	Arg	Cys	Phe
				<u>85</u>					90					95	
Val	Leu	Gln	Pro	Lys	Glu	Lys	Ile	Val	Ile	Ser	Val	Asn	Trp	Thr	Pro
		•	100					105					110		
Leu	Lys	Glu	Gly	Arg	Val	Arg	Glu	Ile	Met	Thr	Phe	Leu	Val	Asn	Asp
		115					120					125			
Val	Leu	Lys	His	Gln	Ala	Ile	Leu	Leu	Gly	Asn	Ala	Glu	Glu	Gln	Lys
	130					135					140				
Lys	Lys	Lys	Arg	Ser	Leu	Trp	Asp	Thr	Ile	Lys	Lys	Lys	Lys	Ile	Ser
145					150					155					160
Ala	Ser	Thr	Ser	His	Asn	Arg	Arg	Val	Ser	Asn	Ile	Gln	Asn	Val	Asn
				165					170					175	
Lys	Thr	Phe	Ser	Val	Ser	Gln	Lys	Val	Asp	Arg	Val	Arg	Ser	Pro	Leu
			180					185					190		
Gln	Ala	Cys	Glu	Asn	Leu	Ala	Met	Asn	Glu	Gly	Gly	Pro	Pro	Thr	Glu
		195					200					205			
Asn	Asn	Ser	Leu	Ile	Leu	Glu	Glu	Asn	Lys	Ile	Pro	Ile	Ser	Pro	He
	210					215					220				
Ser	Pro	Ala	Phe	Asn	Glu	Cys	His	Gly	Ala	·Thr	Cys	Leu	Pro	Leu	Ser
225					230					235					240
Val	Arg	Arg	Ser	Thr	Thr	Tyr	Ser	Ser	Leu	His	Ala	Ser	Glu	Asn	Arg
				245					250					255	
Glu	Leu	Leu			His	Ser	Ala	Asn	Val	Ser	Lys	Val	Ser	Phe	Asn
		•	260					265					270		
Glu	Lys	Ala	Val	Thr	Glu	Thr	Ser	Phe	Asn	Ser	Val	Asn	Val	Asn	Gly
		275					280					285			
Gln		Gly	Glu	Asn	Ser		Leu	Ser	Leu	Thr		Asn	Cys	Ser	Ser
•	290					295					300				
		Asn	Ile	Thr			Gln	Ile	His			Ser	Pro	Asp	
305					310					315					320

	•								105	/271						
,	Phe	Val	Asn	Asn	Ser	His	Gly	Ala	Asn	Asn	Glu	Leu	Glu	Leu	Val	Thr
					325					330					335	
	Cys	Leu	Ser	Ser	Asp	Met	Phe	Met	Lys	Asp	Asn	Ser	Gln	Pro	Val	His
				340					345					350		
	Leu	Glu		Thr	Ile	Ala	His		Ile	Tyr	Gln	Lys		Leu	Ser	Pro
		_	355		_			360				61	365		0.1	0
	Asp		Phe	He	Lys	Asp	Asn	Tyr	Gly	Leu	Asn		Asp	Leu	GIU	Ser
	Cl.	370	Vo 1	Aan	Dno	Ila	375	Com	Dwo	Aan	Cin	380	Lou	I 110	Ann	Aan
•	385	<u>peπ</u>	Vā1.	Waii	PIO	390	Leu	261	PŢŪ.	ASII.	395	Luc	reű	гйр	wsh	400
		Ala	Tyr	Met	Cvs		Ser	Gln	Gln	Thr		Lvs	Val	Pro	Len	
	III O V	111 G	1,1	1.10 0	405	111.2	501	U.111	Q111	410	0,0	2,0	,		415	501
	Asn	Glu	Asn	Ser		Val	Pro	Gln	Ser		Glu	Asp	Trp	Arg		Ser
				420					425					430		
	Glu	Val	Ser	Pro	Arg	Ile	Pro	Glu	Cys	Gln	Gly	Ser	Lys	Ser	Pro	Lys
			435					440					445			
	Ala	Ile	Phe	Glu	Glu	Leu	Val	Glu	Met	Lys	Ser	Asn	Tyr	Tyr	Ser	Phe
	,	450					455		_			460			_	_
		Lys	Gln	Asņ	Asn		Lys	Phe	Ser	Ala		Gln	Asp	He	Ser	
	465	0	YY.: -	A	T	470	D	Y	۸	۸	475	71.	T	Cam	41.	480
	HIS	ser	HIS	ASII	Lys 485		Pro	Lys	Arg	Arg 490		116	Leu	ser	495	1111
	Va 1	Thr	Lve	Δrσ			Thr	Cvs	Thr			Asn	GÌn	Thr		Tle
	141	1111	БуЗ	500		111 G	1111	Oys	505		ulu	71011	OII.	510	UI U	110
	Asn	Lys	Pro	Lys	Ala	Lys	Arg	Cys	Leu	Asn	Ser	Ala	Val	Gly	Glu	His
			515					520					525			
	Glu	Lys	Val	Ile	Asn	Asn	Gln	Lys	Glu	Lys	Glu	Asp	Phe	His	Ser	Tyr
		530					535					540				
	Leu	Pro	Ile	Ile	Asp	Pro	Ile	Leu	Ser	Lys	Ser	Lys	Ser	Tyr	Lys	Asn
	545					550					555					560
	Glu	Val	Thr	Pro			Thr	Thr	Ala			Ala	Arg	Lys		
			0.1		565					570		77 1	A1.	71.	575	
	Ser	Asp	Gly			GIU	ASP	Ala			Arg	vai	Ala	. 11e 590		Glu
	Цic	ፐ ኬ ፦	<u> (21</u> 11	580 Val		r (21 is	110	T 170	585		Hic	Pho	Sor		_	Glu
	1112	1111	595		VI S	, aru		600		, 110		Inc	605		Det	O I U
	Pro	Lvs			Ala	Val	Lvs			Lvs	Asn	Val			Pro	Ile
	. 0	~ J U		201				_,,		_, .						

Ser Lys Arg Ile Ser Arg Glu Lys Leu Asn Leu Lys Lys Lys Lys Lys Lys Lys Lys Ang Thr 640 Asp Leu Ser Ile Pro Ile Arg Thr Pro Ile Ser Lys Thr Ang Thr Ang Thr Ang Ile Ser Leu Thr Phe Ile Lys Pro Ang Ile Ile Ang Ile Ile Ang Ile
Asp Leu Ser Ile Phe Arg Thr Pro Ile Ser Lys Thr Asn Lys Arg Thr 655 Lys Pro Ile Ile Ala Val Ala Gln Ser Ser Leu Thr Phe Ile Lys Pro 655 Lys Pro Ile Ile Ala Val Ala Gln Ser Ser Leu Thr Phe Ile Lys Pro 670 Leu Lys Thr Asp Ile Pro Arg His Pro Met Pro Phe Ala Ala Lys Asn 675 Met Phe Tyr Asp Glu Arg Trp Lys Glu Lys Gln Glu Gln Gln Gly Phe Thr 690 Trp Trp Leu Asn Phe Ile Leu Thr Pro Asp Asp Phe Thr Val Lys Thr 705 Asn Ile Ser Glu Val Asn Ala Ala Thr Leu Leu Leu Leu Gly Ile Glu Asn 725 Gln His Lys Ile Ser Val Pro Arg Ala Pro Thr Lys Glu Glu Glu Glu Asn 735 Gln His Lys Ile Ser Val Pro Arg Ala Pro Thr Lys Glu Glu Glu Glu Asn 745 Ala Cys Arg Leu Phe Thr Ala Arg Cys Arg Leu Asn Arg Leu Arg Arg Ala 755 Ala Cys Arg Leu Phe Thr Ser Glu Lys Met Val Lys Ala Ile Lys Lys 770 Leu Glu Ile Glu Ile Glu Ala Arg Arg Leu Ile Val Arg Lys Asp Arg 785 Leu Glu Ile Glu Ile Glu Ala Arg Cys Arg Leu Ile Val Arg Lys Asp Arg 785 Leu Glu Ile Glu Ile Glu Ala Arg Glu Lys Glu Lys Val Leu Asn Trp Leu Rus Ile Val Arg Lys Asp Arg 785 Leu Glu Ile Glu Ile Glu Ala Arg Glu Lys Glu Lys Val Leu Asn Trp Leu Rus Ile Val Arg Lys Asp Arg 785 Leu Glu Ile Glu Ile Glu Ala Arg Glu Lys Val Leu Asn Trp Leu Rus Ile Val Arg Lys Asp Arg 785 Ala Cys Arg Asp Val Gly Glu Arg Gln Lys Val Leu Asn Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Ile Val Arg Lys Asp Arg 785 Ala Cys Arg Asp Val Gly Glu Arg Gln Lys Val Leu Asn Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Ile Val Arg Lys Asp Trp Leu Rus Ile Val Arg Lys Asp Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Ile Val Arg Lys Asp Trp Leu Rus Ile Val Arg Lys Asp Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Rus Ile Val Arg Lys Asp Trp Leu Rus Ile Val Arg Lys Asp Trp Leu Rus Ile Val Arg Lys Asp Trp Leu Rus Ile Val Arg Lys
Lys Pro Ile Ile Ala Val Ala Gln Ser Ser Leu Thr Phe Ile Lys Pro G65 G75 G75 G85
Lys Pro Ile Ile Ala Val Ala Gln Ser Leu Thr Phe Ile Lys Pro Leu Lys Thr Asp Ile Pro Arg His Pro Met Pro Phe Ala Ala Lys Asp Phe Ala Lys Asp His Pro Met Pro Phe Ala Ala Lys Asp A
Leu Lys Thr Asp Ile Pro Arg His Pro Met Pro Phe Ala Ala Lys Asp
Leu Lys Thr Asp Ile Pro Arg His Pro Met Pro Met Pro Phe Ala Ala Lys Ash 675 Asp 675 680 500 685 760 685 685 760 760 760 760 760 775 775 775 775 775 775 780 780 680 685 680 685 680 685 680 685 680 685 680 685 685 685 685 685 685 685 685 685 685 685 685 685
675 680 685 Met Phe Tyr Asp Glu Arg Trp Lys Glu Lys Glu Phe Thr Trp Trp Leu Asn Phe Ile Leu Thr Pro Asp Asp Phe Thr Val Thr 705 Tr Tr 710 Tr
Met Phe Tyr Asp Glu Arg Trp Lys Glu Lys Glu Glu Glu Glu Glu Phe Thr Thr 695
Trp Trp Leu Asn Phe Ile Leu Thr Pro Asp Asp Phe Thr Val Lys Thr To5
Trp Trp Leu Asn Phe IIe Leu Thr Pro Asp Asp Phe Thr Val Lys Thr 705
705
Asn Ile Ser Glu Val Asn Ala Ala Thr Leu Leu Leu Gly Ile Glu Asn 735 Gln His Lys Ile Ser Val Pro Arg Ala Pro Thr Lys Glu Glu Met Ser 740 Leu Arg Ala Tyr Thr Ala Arg Cys Arg Leu Asn Arg Leu Arg Ala 755 Ala Cys Arg Leu Phe Thr Ser Glu Lys Met Val Lys Ala Ile Lys Lys 770 Leu Glu Ile Glu Ala Arg Cys Arg Leu Arg Cys Arg Leu Arg Ala 11e Lys Lys 770 Leu Glu Ile Glu Ile Glu Ala Arg Arg Leu Arg Arg Leu Arg Arg Arg Leu Arg Arg Arg Lys Asp Arg Leu Glu Ile Glu Ala Arg Glu Lys Met Val Lys Arg Lys Asp Arg Arg Leu Glu Ile Val Arg Lys Asp Arg 800 His Leu Trp Lys Asp Val Gly Glu Arg Gln Lys Val Leu Asn Trp Leu 805
Table Tabl
Gln His Lys Ile Ser Val Pro Arg Ala Pro Thr Lys Glu Glu Met Ser 740
Leu Arg Ala Tyr Thr Ala Arg Cys Arg Leu Asn Arg Leu Asn Arg Leu Arg Arg Ala Ala Cys Arg Leu Phe Thr Ser Glu Lys Met Val Lys Ala Ile Lys Lys 770 Leu Glu Ile Glu Ile Glu Ala Arg Arg Leu Arg Leu Ile Val Arg Lys Asp Arg 785 His Leu Trp Lys Asp Val Gly Glu Arg Gln Lys Val Leu Asn Trp Leu 805
Leu Arg Ala Tyr Thr Ala Arg Cys Arg Leu Asn Arg Ala Ala Cys Arg Leu Phe Thr Ser Glu Lys Met Val Lys Ala Ile Lys Lys Ala Cys Arg Leu Phe Thr Ser Glu Lys Met Val Lys Ala Ile Lys Lys Leu Glu Ile Glu Ala Arg Arg Leu Ile Val Ala Ile Asp Arg Res Glu Ile Arg Arg Ile Ile Val Arg Lys Arg Ile Ile Arg Ile A
Ala Cys Arg Leu Phe Thr Ser Glu Lys Met Val Lys Ala Ile Lys Lys Ala Ile Lys Lys 770 Leu Glu Ile Glu Ile Glu Ala Arg Arg Leu Ile Val Arg Lys Asp Arg 785 790 795 800 His Leu Trp Lys Asp Val Gly Glu Arg Slo Lys Sob 810 Yal Leu Asn Trp Leu Slo Sob
770
Leu Glu Ile Glu Ile Glu Ala Arg Arg Leu Ile Val Arg Lys Asp Arg 785 790 795 20 800 His Leu Trp Lys Asp Val Gly Glu Arg Gln Lys Val Leu Asn Trp Leu 815 815
785 790 795 800 His Leu Trp Lys Asp Val Gly Glu Arg Gln Lys Val Leu Asn Trp Leu 805 810 815
His Leu Trp Lys Asp Val Gly Glu Arg Gln Lys Val Leu Asn Trp Leu 805 810 815
805 810 815
* 0 m 4 b 7 m * 4 *1 01 * 01 m m m
Leu Ser Tyr Asn Pro Leu Trp Leu Arg Ile Gly Leu Glu Thr Thr Tyr
820 825 830
Gly Glu Leu Ile Ser Leu Glu Asp Asn Ser Asp Val Thr Gly Leu Ala
835 840 845
Met Phe Ile Leu Asn Arg Leu Leu Trp Asn Pro Asp Ile Ala Ala Glu
850 855 860
Tyr Arg His Pro Thr Val Pro His Leu Tyr Arg Asp Gly His Glu Glu
865 870 875 880 Ala Leu Ser Lys Phe Thr Leu Lys Lys Leu Leu Leu Val Cys Phe
885 890 895
Leu Asp Tyr Ala Lys Ile Ser Arg Leu Ile Asp His Asp Pro Cys Leu
900 905 910

Phe	Cys	Lys 915	Asp	Ala (Glu P	he Ly 92		a Se	r Ly:	s Gl	u Ile 925	Leu	Leu	Ala
Phe	Ser 930	Arg	Asp	Phe 1		er Gl 35	y Gl	u Gl	y Asj	p Le ² 94		Arg	His	Leu
Gly	Leu	Leu	Gly	Leu 1	Pro V	al As	n Hi	s Va	l Gl	n Th	r Pro	Phe	Asp	Glu '
945				!	950				95	5				960
Phe	Asp	Phe	Ala	Val 965	Thr A	sn Le	u Al	a Va 97		p Le	u Gln	Cys	Gly 975	
Arg	Leu	Val	Arg	Thr	Met G	lu Le	u Le	u Th	r Gl	n As	n Trp	Asp	Leu	Ser
			980				98					990		
Lys	Lys	Leu	Arg	lle	Pro A	la II	e S	er A	rg L	eu G	ln Ly	s M	let H	is Asn
		995					000		_			05		
Val	Asp	H	e Va	l Leu	Gln	Val	Leu	Lys	Ser	Arg	Gly	Ile	Glu	Leu
	101					1015		_			1020			
Ser			u Hi	s Glv	Asn	Thr	Ile	Leu	Ser	Lvs	Asp	Ile	Val	Asp
	102			- · · ·		1030					1035			-
Arg			g Gl	ıı Lvs	Thr	Leu	Arg	Leu	Leu	Trp		Ile	Ala	Phe
	104			,		1045	0				1050			
Ala			n Va	1 Asn	He	Ser	Len	Asn	Leu	Asp		Leu	Lvs	Glu
	105		;			1060					1065		3	
Glu			a Ph	e Len	Lvs	His	Thr	Lvs	Ser	He		Lvs	Thr	Ile
	107				_, _	1075					1080	•		
Ser			ıı Se	r Cvs	His	Ser	Asp	Asp	Leu	Ile		Lvs	Lvs	Lvs
	108					1090		••			1095	•		•
Glv			g As	p Ser	Gly	Ser	Phe	Glu	Gln	Tyr	Ser	Glu	Asn	Ile
•	110			•		1105					1110			
Lys			u Me	t Asr	Trp	Val	Asn	Ala	Val	Cys	Ala	Phe	Tyr	Asn
_	111	5			_	1120					1125			
Lys			ıl Gl	u Asr	ı Phe	Thr	Val	Ser	Phe	Ser	Asp	Gly	Arg	Val
	113	80				1135					1140			
Leu	Cys	Ту	r Le	u Ile	e His	His	Tyr	His	Pro	Cys	Tyr	Val	Pro	Phe
	114	15				1150					1155			
Asp			e Cy	s Gli	n Arg	Thr	Thr	Gln	Thr	Val	Glu	Cys	Thr	Gln
-	116					1165					1170			
Thr			er Va	ıl Val	l Leu	Asn	Ser	Ser	Ser	Glu	Ser	Asp	Asp	Ser
	117					1180					1185			
Ser			зр Ме	et Se	r Leu	Lys	Ala	Phe	Asp	His	Glu	Asn	Thr	Ser

	1190					1195					1200			
Glu	Leu	Tyr	Lys	Glu	Leu	Leu	Glu	Asn	Glu	Lys	Lys	Asn	Phe	His
	1205					1210					1215			
Leu	Val	Arg	Ser	Ala	Val	Arg	Asp	Leu	Gly	Gly	Ile	Pro	Ala	Met
	1220					1225					1230			
Ile	Asn	His	Ser	Asp	Met	Ser	Asn	Thr	Ile	Pro	Asp	Glu	Lys	Val
	1235					1240					1245			
Val	Ile	Thr	Tyr	Leu	Ser	Phe	Leu	Cys	Ala	Arg	Leu	Leu	Asp	Leu
	1250					1255		.			1260			
Arg	Lys	Glu	Ile	Arg	Ala	Ala	Arg	Leu	Ile	Gln	Thr	Thr	Trp	Arg
	1265	•				1270					1275			
Lys	Tyr	Lys	Leu	Lys	Thr	Asp	Leu	Lys	Arg	His	Gln	Glu	Arg	Glu
	1280					1285					1290			
Lys	Ala	Ala	Arg	Ile	Ile	Gln	Leu	Ala	Val	Ile	Asn	Phe	Leu	Ala
:	1295					1300					1305			
Lys	Gln	Arg	Leu	Arg	Lys	Arg	Val	Asn	Ala	Ala	Leu	Val	Ile	Gln
	1310					1315					1320			
Lys	Tyr	Trp	Arg		•	Leu		Gln	Arg	Lys	Leu	Leu	Met	Leu
	1325		•			1330					1335			
			Lys	Leu		Lys							Ser	Leu
	1340		_	_		1345					1350			_
He			Tyr	Trp	Arg	Arg		Ser	Thr	Arg			Phe	Leu
	1355		<i>m</i>	m	•	1360			01	0	1365			3.6 3
Lys		-	Tyr	_		Ile		Leu	GIn	Ser	_		Arg	мет
T1-	1370		Wa 1			1375		A = ~	Т	T ou	1380		ጥኤ	¥7 o 1
116	11e 1385		Val	1111	Ser	Tyr 1390		AIg	1 y 1	Leu	11p 1395		1111	Val
Thr			Δrσ	Hic	Trn	Arg		Tyr	Ī Δ 11	Δτσ			Gln	Δen
1111	1400		ms	1113	119	1405		131	Dou	**** 5	1410		OIII	пор
Gln			Tvr	Gln	Met	Leu		Ser	Ser	Thr			He	Gln
0111	1415		-,-	0.4	1.10	1420		501	201		1425			0111
Ser			Arg	Lvs.	Trp	Lys		Arg	Lvs	Met			Gln	Val
	1430		0	_,,	2	1435		0		•	1440			
Lys			Val	Ile	Leu	Gln		Ala	Phe	Arg			His	Leu
	1445					1450					1455			
Arg	Lys	Gln	Ala	Lys	Glu	Glu	Asn	Ser	Ala	Ile	Ile	Ile	Gln	Ser
	1460					1465					1470			

	Tyr 1475	Arg	Met	His	Lys	Glu 1480			Lys	Tyr	Ile 1485	Tyr	Ile	Arg
Ser	Cys 1490	Val	Val	Ile	Ile	Gln 1495	Lys	Arg	Phe	Arg	Cys 1500	Phe	Gln	Ala
Gln	Lys 1505	Leu	Tyr	Lys	Arg	Arg 1510					Leu 1515		Ile	Gln
Lys	Tyr 1520	Tyr	Lys	Ala	Tyr	Leu 1525		Gly	Lys	Ile	Glu 1530	Arg	Thr	Asn
	1535					Ala 1540					1545			
	1550					Asn 1555					1560			
	1565					Trp 1570					1575			
	1580					Thr 1585					1590			
	1595					Gln 1600					1605			
	1610		•			His 1615					1620			
	1625										1635			
	1640					Gly 1645					1650			
	1655					Ile 1660 Phe					1665			
	1670					1675					1680			
	1685					Lys 1690					1695			
	1700					Ala 1705					1710			
	1715					Gln 1720)				1725			
	1730					Leu 1735	i				1740			
val	Arg	LYS	Gln	met	Arg	Leu	Gin	Arg	LYS	Ala	val	11e	ser	Leu

	1745					1750					1755			
Gln	Ser	Tyr	Phe	Arg	Met	Arg	Lys	Ala	Arg	Gln	Tyr	Tyr	Leu	Lys
	1760					1765					1770			
Met	Tyr	Lys	Ala	Ile	Ile	Val	Ile	Gln	Asn	Tyr	Tyr	His	Ala	Tyr
	1775					1780					1785			
Lys	Ala	Gln	Val	Asn	Gln	Arg	Lys	Asn	Phe	Leu	Gln	Val	Lys	Lys
	1790					1795					1800			
Ala	Ala	Thr	Cys	Leu	Gln	Ala	Ala	Tyr	Arg	Gly	Tyr	Lys	Val	Arg
<u>-</u> :	1805					1810	,				1815			
Gln	Leu	He	Lys	Gln	Gln	Ser	Ile	Ala	Ala	Leu	Lys	Ile	Gln	Ser
	1820					1825					1830			
Ala		Arg	Gly	Tyr		Lys		Val	Lys	Tyr		Ser	Val	Leu
	1835			_		1840		_	_		1845	_	_	
Gln			He	Lys		Gln		Trp	Tyr	Arg		Tyr	Lys	Thr
T	1850		701	A		1855		•		mı .	1860		4.1	** 1
Leu		ASP	inr			His	rne	Leu	Lys	Inr		Ala	Ala	vai
Ilo	1865	Lon	Cln			1870	A = -	C1	Т	T	1875	۸	T	C1
116	1880		GIII		•	Tyr 1885	Arg	GIY	111	LAS			Lys	GIN
Πla			Glu			Ala	Δla	Ι Δ11	Ive	Ιlα	1890		Ala	Dho
110	1895	шЕ	oru			1900	nia	LCu	Lys	116	1905	261	nia	THE
Arg		Ala	Lvs			Lys	Gln	Phe	Arg	Len		I.vs	Thr	Ala
	1910		2,0			1915	UIII	THE	111.6	Dou	1920	D y S	1111	111 u
Ala		Val	Ile	Gln		Asn	Phe	Arg	Ala	Tro		Ala	Glv	Arg
	1925		,			1930		0			1935		,	0
Lys	Gln	Cys	Met	Glu	Tyr	Ile	Glu	Leu	Arg	His		Val	Leu	Val
	1940					1945					1950			
Leu	Gln	Ser	Met	Trp	Lys	Gly	Lys	Thr	Leu	Arg	Arg	Gln	Leu	Gln
	1955					1960					1965			
Arg	Gln	His	Lys	Cys	Ala	Ile	Ile	Ile	Gln	Ser	Tyr	Tyr	Arg	Met
	1970					1975					1980			
His	Val	Gln	Gln	Lys	Lys	Trp	Lys	Ile	Met	Lys	Lys	Ala	Ala	Leu
	1985					1990					1995			
Leu	Ile	Gln	Lys	Tyr	Tyr	Arg	Ala	Tyr	Ser	Ile	Gly	Arg	Glu	Gln
	2000					2005					2010			
Asn		Leu	Tyr	Leu	Lys	Thr	Lys	Ala	Ala	Val		Thr	Leu	Gln
	2015					2020					2025			

	Ala 2030	Tyr	Arg	Gly	Met	Lys 2035	Val	Arg	Lys	Arg	Ile 2040	Lys	Asp	Cys
Asn		Ala	Ala	Val	Thr	Ile 2050	Gln	Ser	Lys	Tyr		Ala	Tyr	Lys
	Lys 2060	Lys	Lys	Tyr	Ala	Thr 2065	Tyr	Arg	Ala	Ser	Ala 2070	Ile	Ile	Ile
	Arg 2075	Trp	Tyr	Arg	Gly	Ile 2080	Lys	Ile	Thr	Asn	His 2085	Gln	His	Lys
	Tyr 2090	Leu	Asn	Leu	Lys	Lys. 2095	Thr	Ala,	Ţļe	Lyș	Ile 2100	Gln	Ser	Val
	Arg 2105	Gly	Ile	Arg	Val	Arg 2110	-	His	Ile	Gln	His 2115	Met	His	Arg
	Ala 2120	Thr	Phe	Ile	Lys	Ala 2125	Met	Phe	Lys	Met	His 2130	Gln	Ser	Arg
	2135					Arg 2140					2145			
	2150					Gln 2155					2160			
Leu	Thr 2165	Ile	Ļeu	Lys	Ala	Val 2170		Val	Leu	Gln	Ala 2175		Phe	Arg
Gly	Val 2180		Val	Arg	Arg	Thr 2185		Arg	Lys	Met	Gln 2190		Ala	Ala
	2195		•			Tyr 2200					2205			
	2210					Ile 2215			•		2220			
Trp	Ala 2225		Lys	Glu	Arg	Asn 2230		Gln	Phe	Gln	Arg 2235		Asn	Lys
	2240					Tyr 2245					2250			
Lys	Ala 2255		Arg	His	Leu	Lys 2260		Met	His	Ile	Ala 2265		Thr	Leu
Ile	Gln 2270	_	Arg	Phe	Arg	Thr 2275		Met	Met	Arg	Arg 2280		Phe	Leu
Ser	Leu 2285		Lys	Thr		Ile 2290		Ile	Gln	Arg	Lys 2295		Arg	Ala
His	Leu	Cys	Thr	Lys	His	His	Leu	Gln	Phe	Leu	Gln	Val	Gln	Asn

	2300					2305					2310			
Ala	Val	Ile	Lys	Ile	Gln	Ser	Ser	Tyr	Arg	Arg	Trp	Met	Ile	Arg
	2315					2320		•			2325			
Lys	Arg	Met	Arg	Glu	Met	His	Arg	Ala	Ala	Thr	Phe	Ile	Gln	Ser
	2330					2335					2340			
Thr	Phe	Arg	Met	His	Arg	Leu	His	Met	Arg	Tyr	Arg	Ala	Leu	Lys
	2345					2350					2355			
Gln	Ala	Ser	Val	Val	Ile	Gln	Gln	Gln	Tyr	Gln	Ala	Asn	Arg	Ala
	2360					2365					2370			
Ala	Lys	Leu	Gln	Arg	Gln	His	Tyr	Leu	Arg	Gln	Arg	His	Ser	Ala
	2375					2380					2385			
Val	Ile	Leu	Gln	Ala	Ala	Phe	Arg	Gly	Met	Lys	Thr	Arg	Arg	His
	2390					2395					2400			
Leu	Lys	Ser	Met	His	Ser			Thr	Leu	Ile	Gln	Ser	Arg	Phe
	2405					2410					2415			
Arg		Leu	Leu	Val	Arg	_	_	Phe	Ile	Ser	Leu	Lys	Lys	Ala
	2420					2425					2430			
Thr		Phe	Val	•				Arg	Ala	Thr	Ile	Cys	Ala	Lys
	2435		•			2440				_	2445			
His			Tyr	Gln	Phe		His	Leu	Arg	Lys	Ala		Ile	Thr
	2450		•	_		2455	_			_	2460		_	
11e		Ser	Ser	Tyr	Arg			Met	Vai	Lys	Lys	Lys	Leu	GIn
C1	2465	C1	A	A 1 -	41.	2470		T1.	01	41.	2475	nt.	A	NF = 1
GIU			Arg	Ala	Ala		Leu	116	GIII	Ala	Thr		Arg	мет
шіс	2480		Тиг	110	Th.	2485	Cln	ጥե -	Ten	T ***	2490		Co	Tlo
піз	2495	1111	1 9 1	116	1111	2500	GIII	1111	ПЪ	LYS	His 2505	Ala	261	116
Ī en		Gln	Gln	Hic	Tur		Thr	Tvr	Arσ	Δla	Ala	Ive	Ι Δ11	Gln
·	2510	GIII	GIII	1115	131	2515	1111	131	b	<i>1</i> 11 G	2520	цу	Dou	OII
Arg		Asn	Tvr	He	Arg		Trp	His	Ser	Ala	Val	Val	He	Gln
8	2525		-,-		•••	2530	~~~	5			2535			V.1.
Ala		Tyr	Lvs	Glv	Met		Ala	Arg	Gln	Leu	Leu	Arg	Glu	Lvs
	2540		• •		, -	2545		J			2550	J		• -
His			Ser	Ile	Val		Gln	Ser	Thr	Tyr	Arg	Met	Tyr	Arg
	2555					2560					2565			_
Gln	Tyr	Cys	Phe	Tyr	Gln	Lys	Leu	Gln	Trp	Ala	Thr	Lys	Ile	Ile
	2570					2575					2580			

Gln	Glu 2585	Lys	Tyr	Arg	Ala	Asn 2590			Lys	Gln	Lys 2595	Val	Phe	Gln
His	Asn 2600	Glu	Leu	Lys	Lys	Glu 2605	Thr	Cys	Val	Gln	Ala 2610	Gly	Phe	Gln
Asp	Met 2615	Asn	Ile	Lys	Lys	Gln 2620	Ile	Gln	Glu	Gln	His 2625	Gln	Ala	Ala
Ile	Ile 2630	Ile	Gln	Lys	His	Cys 2635			Phe	Lys	Ile 2640	Arg	Lys	His
Tyr	Leu 2645		Leu								Gln_ 2655	Arg	Arg	Tyr
Arg	Lys 2660	Leu	Thr	Ala	Val						Ile 2670	Cys	Ile	Gln
Ser	Tyr 2675		Arg	Gly	Phe	Lys 2680			Lys	Asp	Ile 2685	Gln	Asn	Met
His	Arg 2690		Ala	Thr	Leu						Arg 2700	Met	His	Arg
Ala	Lys 2705		Asp	Tyr	Glu	Thr 2710					Ile 2715	Val	Val	Ile
Gln	Asn 2720		Ţyr		Leu		Val		Val	Lys	Thr 2730	Glu	Arg	Lys
Asn		Leu	Ala		Gln		Ser	Val	_		Ile	Gln	Ala	Ala
Phe		Gly	Met	Lys	Val		Gln	Lys			Asn 2760	Val	Ser	Glu
Glu	Lys 2765		Ala	Ala	Ile	Val 2770		Gln	Ser	Ala	Leu 2775	Cys	Cys	Tyr
Arg	Ser 2780		Thr	Gln	Tyr	Glu 2785		Val	Gln	Ser	Glu 2790		Val	Met
Ile	Gln 2795		Trp	Tyr	Lys	Ala 2800		Gly	Leu	Ala	Cys 2805		Gln	Glu
Ala	Glu 2810		His	Ser	Gln	Ser 2815		Ala	Ala	Val	Thr 2820		Gln	Lys
Ala		Cys	Arg	Met	Val		Arg	Lys	Leu	Glu	Thr 2835	Gln	Lys	Cys
Ala		Leu	Arg	Ile	Gln		Phe	Leu	Gln	Met	Ala 2850	Val	Tyr	Arg
Arg			Val	Gln	Gln			Ala	Ala	Ile	Thr		Gln	His

	2855					2860					2865			
Tyr	Phe	Arg	Thr	Trp	Gln	Thr	Arg	Lys	Gln	Phe	Leu	Leu	Tyr	Arg
	2870					2875					2880			
Lys	Ala	Ala	Val	Val	Leu	Gln	Asn	His	Tyr	Arg	Ala	Phe	Leu	Ser
	2885					2890					2895			
Ala		His	Gln	Arg	Gln			Leu	Gln	Ile	Arg	Ser	Ser	Val
	2900				0.0	2905					2910			
											Gln	•		
											2925			
Pne									Lys	He	Gln	Ala	Met	Trp
Ara	2930	Tur				2935			ر مرد	I wo	2940 Val	I wo	A1 a	A 1 o
MIS	2945	1 9 1	мд	MIL	гуз	2950			Uys	LyS	2955	Lys	піа	nia
Cvs		Ile	Gln	Ala	Trp				Trp	Arg	Ala	His	Lvs	Glu
•	2960					2965				0	2970		-,-	
Tyr	Leu	Ala	Ile	Leu	Lys	Ala	Val	Lys	Ile	Ile	Gln	Gly	Cys	Phe
	2975					2980					2985			
Tyr	Thr	Lys	Leu	Glu	Arg	Thr	Arg	Phe	Leu	Asn	Val	Arg	Ala	Ser
	2990					2995					3000			
Ala	Ile	Ile	Ile	Gln	Arg	Lys	Trp	Arg	Ala	Ile	Leu	Pro	Ala	Lys
	3005					3010					3015			
Ile		His	Glu	His	Phe		Met	Ile	Lys	Arg	His	Arg	Ala	Ala
	3020					3025			_	_	3030			
Cys		He	GIn	Ala	His			Gly	Tyr	Lys	Gly	Arg	Gin	Val
Dho	3035	1 = ~	Cln	Tara	000	3040		ľ ou	110	II.	3045	Ι α	Т	110
·	3050	Alg	GIII	LYS	261	3055	Ala	Leu	116	116	Gln 3060	Lys	lyr	116
Arg		Arg	Gln	Ala	Glv		His	Glu	Arø	Ile	Lys	Tvr	Πρ	Gln
	3065		J.u		OI,	3070	1115	oru		110	3075	131	110	Olu
Phe		Lys	Ser	Thr	Val		Leu	Gln	Ala	Leu	Val	Arg	Gly	Trp
	3080					3085					3090	J	•	•
Leu	Val	Arg	Lys	Arg	Phe	Leu	Glu	Gln	Arg	Ala	Lys	Ile	Arg	Leu
	3095					3100					3105			
Leu	His	Phe	Thr	Ala	Ala	Ala	Tyr	Tyr	His	Leu	Asn	Ala	Val	Arg
	3110					3115					3120			
Ile		Arg	Ala	Tyr	Lys		Tyr	Leu	Ala	Val	Lys	Asn	Ala	Asn
	3125					3130					3135			

Lys	Gln 3140	Val	Asn	Ser	Val	Ile 3145	Cys	Ile	Gln	Arg	Trp 3150	Phe	Arg	Ala
Ara		Gln	Glu	Tve	Δτσ	Phe	Ilo	Cln	Two	Tur		Sar	τlα	I wo
M 6	3155	GIII	O1 u	БУЗ	мб	3160	116	GIII	гур	1 9 1	3165	DCI	116	Lys
Lve		Gln	Hic	Glu	Glv	Gln	Clu	Cue	Ĭ 011	ra?		Δτσ	Aen	Δrσ
D ,5	3170	Olu	1110	o.u	Olj	3175	O1u	Cys	LCu	501	3180	111.6	71511	MI 6
Ala		Ser	Val	Ile	Gln	Lys	Ala	Val	Arg	His		Leu	Len	Arg
	3185					3190		,	*****		3195	200	204	
Lys		Gln	Glu	Lys	Phe	Thr	Ser	Gly	Ile	Ile		Ile	Gln	Ala
	3200			•		3205					3210			•
Leu	Trp	Arg	Gly	Tyr	Ser	Trp	Arg	Lys	Lys	Asn	Asp	Cys	Thr	Lys
	3215					3220					3225			
Ile	Lys	Ala	Ile	Arg	Leu	Ser	Leu	Gln	Val	Val	Asn	Arg	Glu	Ile
	3230					3235					3240			
Arg	Glu	Glu	Asn	Lys	Leu	Tyr	Lys	Arg	Thr	Ala	Leu	Ala	Leu	His
•	3245					3250				٠	3255			
Tyr	Leu	Leu	Thr	Tyr	Lys	His	Leu	Ser	Ala	Ile	Leu	Glu	Ala	Leu
	3260					3265					3270			
Lys		Leu	Glu	Val	Val	Thr						Cys	Cys	Glu
	3275		~.	~		3280					3285		_	
Asn		Ala	Gln	Ser	Gly	Ala						Val	Leu	Ile
	3290	0	A	A	0	3295					3300			m
Arg		Cys	ASI	Arg	Ser	Ile						116	Arg	ıyr
A 1 a	3305	Cln	Va l	Lou	Lou	3310 Asn					3315	Lvo	Th.	Th =
Ala	3320	GIII	Yaı	rea	ren	3325	Val	261	Lys	1 7 1	3330	Ly5	1111	1111
Ser		Val	Tvr	Asp	Va 1	Glu	Asn	Cvs	Tle	Asp		Len	Leu	Glu
501	3335	,	-,-	ш	,	3340	11011	0,0	110	м	3345	Dou	Dou	014
Leu		Gln	Ile	Tyr	Arg	Glu	Lys	Pro	Gly	Asn		Val	Ala	Asp
	3350					3355	-				3360			-
Lys	Gly	Gly	Ser	Ile	Phe	Thr	Lys	Thr	Cys	Cys	Leu	Leu	Ala	Ile
	3365					3370					3375			
Leu	Leu	Lys	Thr	Thr	Asn	Arg	Ala	Ser	Asp	Val	Arg	Ser	Arg	Ser
	3380					3385					3390			
Lys	Val	Val	Asp	Arg	Ile	Tyr	Ser	Leu	Tyr	Lys	Leu	Thr	Ala	His
	3395					3400					3405			
Lys	His	Lys	Met	Asn	Thr	Glu	Arg	Ile	Leu	Tyr	Lys	Gln	Lys	Lys

•		- 100
3410	3415	3420
Asn Ser Ser Ile	Ser Ile Pro Phe	Ile Pro Glu Thr Pro Val Arg
3425	3430	3435
Thr Arg Ile Val	Ser Arg Leu Lys	Pro Asp Trp Val Leu Arg Arg
3440	3445	3450
Asp Asn Met Glu	Glu Ile Thr Asn	Pro Leu Gln Ala Ile Gln Met
3455	3460	3465
	Leu Gly Ile Pro	Tyr
3470	3475	
⟨210⟩ 74	reference from the	
<211> 398.		
<212> PRT		
<213> homo sapie	ene	
<400> 74		
	Ala Val Ien Aro A	sn Asp Ser Leu Gln Ala Phe Leu
	5	10 15
		ro Asp Leu Gly Lys His Ser Pro
20	110 ser kra ser r 2	
	•	
•		er Arg Ile Gly Gln Pro Gly Ala
35	40	45
		al Pro Tyr Asp Pro Ala Leu Gly
50	55	60
		rp Thr Ala Asp Met Pro Ala His
65	70	75 80
		is Pro Ser Leu Gly Leu Thr Pro
	85	90 · 95
Gln Lys Thr His		the Gly Ala Ala His Glu Leu Pro
100		05 110
Leu Thr Pro Pro	Ala Asp Pro Ser T	yr Pro Tyr Glu Phe Ser Pro Val
115	120	125
Lys Met Leu Pro	Ser Ser Met Ala A	Ala Leu Pro Ala Ser Cys Ala Pro
130	135	140
Ala Tyr Val Pro	Tyr Ala Ala Gln A	Ala Ala Leu Pro Pro Gly Tyr Ser
145	150	155 160
Asn Leu Leu Pro	Pro Pro Pro Pro I	Pro Pro Pro Pro Pro Thr Cys Arg
	165	170 175
Gln Leu Ser Pro	Asn Pro Ala Pro A	Asp Asp Leu Pro Trp Trp.Ser Ile

		180					185					190		
Pro Gln	Ala	Gly	Ala	Gly	Pro	Gly	Ala	Ser	Gly	Val	Pro	Gly	Ser	Gly
	195					200					205			
Leu Ser	Gly	Ala	Cys	Ala	Gly	Ala	Pro	His	Ala	Pro	Arg	Phe	Pro	Ala
210					215					220				
Ser Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Leu	Gln	Arg	Gly	Leu
225				230					235					240
Val Leu	Gly	Pro	Ser	Asp	Phe	Ala	Gln	Tyr	Gln	Ser	Gln	Ile	Ala	Ala
			245					250					255	
Leu Leu	Gln	Thr	Lys	Ala	Pro	Leu	Ala	Ala	Thr	Ala	Arg	Arg	Cys	Arg
		260					265					270		
Arg Cys	Arg	Cys	Pro	Asn	Cys	Gln	Ala	Ala	Gly	Gly	Ala	Pro	Glu	Ala
	275					280					285			
Glu Pro	Gly	Lys	Lys	Lys	Gln	His	Val	Cys	His	Val	Pro	Gly	Cys	Gly
290					295					300				
Lys Val	Tyr	Gly	Lys	Thr	Ser	His	Leu	Lys	Ala	His	Leu	Arg	Trp	His
305				310					315		•			320
Thr Gly	Glu	Arg	Pro	Phe	Val	Cys	Asn	Trp	Leu	Phe	Cys	Gly	Lys	Ser
		٠	325					330					335	
Phe Thr	Arg	Ser	Asp	Glu	Leu	Gln	Arg	His	Leu	Arg	Thr	His	Thr	Gly
		340					345					350		
Glu Lys		Phe	Ala	Cys	Pro		Cys	Gly	Lys	Arg		Met	Arg	Ser
	355					360					365			
Asp His		Ala	Lys	His			Thr	His	Gln			Lys	Leu	Lys
370					375			_		380		_		
Val Ala	Glu	Ala	Gly		Lys	Arg	Glu	Asp		Arg	Asp	Leu		
385				390					395					
	75 51.4													
	514													
	PRT		:											
	homo	sap	rens											
	75	۸۰۰	Dha	۸ ~	Т.,	Ттт	Dha	Cln	иic	Dec	Trn	Sar	۸	Mo t
Met Gly	LYS	ush	5 5	vig	1) 1	1) 1	THE	10	1112	110	ттħ	261	15	MC t
lle Val	Δ1 a	Т177		Val	Πla	Dha	Dhα		Pha	וום [ماآ	Pho		Gln
TIC AUT	uid	20	Ինն	101	116	1 116	25	11911	1116	υüu	116	30	111 d	oru
Asp Pro	Vel		Hic	Sar	Gln	Thr		Ala	Aen	۷a۱	Ila		Val	Glv
nsp 110	val	חבו	1112	261	OIII	1111	oru	ma	11911	1 4 1	110	1 a 1	1 (1)	G I y

	•	35					40					45			
Acn	Care		Sor	Dho	Va 1	Th =		Ι	Т	n	A	45 Cl	W = 1	01	m
NSII	50	rne	261	LHC	Val	55	ASII	Lys	ıyr	Pro	Arg	θιй	vai	Gly	Trp
Arg	Ile	Leu	Lys	Val	Leu	Leu	Trp	Leu	Leu	Ala	Ile	Leu	Thr	Gly	Leu
65					70					75					80
Ile	Ala	Gly	Lys	Phe	Leu	Phe	His	Gln	Arg	Leu	Phe	Gly	Gln	Leu	Leu
				85					90					95	
Arg	Leu	Lys	Met	Phe	Arg	Glu	Asp	His	Gly	Ser	Trp	Met	Thr	Met	Phe
			100					105					<u>1</u> 10		
Phe	Ser	Thr	Ile	Leu	Phe	Leu	Phe	Ile	Phe	Ser	His	Ile	Tyr	Asn	Thr
		115					120					125			
Ile		Leu	Met	Asp	Gly	Asn	Met	Gly	Ala	Tyr	Ile	Ile	Thr	Asp	Tyr
	130					135					140				
	Gly	He	Arg	Asn	Glu	Ser	Phe	Met	Lys		Ala	Ala	Val	Gly	Thr
145	10.	01		7.1	150			_		155					160
Trp	Met	Gly	Asp		Val	Thr	Ala	Trp		Val	Thr	Asp	Met		Leu
01	A	.	D	165	_				170	_				175	
GIN	ASP	Lys		lyr	Pro	Asp	Trp		Lys	Ser	Ala	Arg		Phe	Trp
T *** 0	T ***	C1	180	W- 1	A	T1.	TL	185	D1	m	m1	** 1	190	D1	mi
LYS	LYS	195	ASII	Val	Arg	116		Leu	rne	Trp	Inr		Leu	Phe	Thr
Lon	Thr		Val	Vo I	Vo I	Lou	200	Τla	ጥե	ጥե	A	205 T	71.	0	σ
Leu	210	261	Val	Val	Val	215	Val	116	шт	IIII		111	116	ser	1rp
Asn		Ĭ 611	Δen	Δrσ	Gly		Ι Δ11	Dro	Sor	Aan	220	Vo 1	Cor	A = ~	41a
225	D) U	Dou	11311	m 5	230		LCu	110	261	235		Vai	261	AIR	240
	Len	Ala	Ser	Phe	Ile		Val	Phe	Δen			Τla	Va l	Mat	
2 0	Zuu	711 u	501	245	110	Dou	741	THC	250	LCu	LCu	116	141	255	GIH
Asp	Trp	Glu	Phe		His	Phe	Met	Glv		Val	Asn	Val	Aen		Pro
			260					265	110 p	,	p	741	270	Deu	110
Gly	Leu	His		Pro	His	Met	Gln		Lvs	He	Pro	Phe		Gln	I.vs
·		275					280		2,2			285	1110	o i ii	2,0
Ile	Phe		Glu	Glu	Tyr	Arg		His	Ile	Thr	Glv		Trp	Phe	Asn
	290	= //			-	295					300	_, _	- - r -		
Tyr		Ile	Ile	Phe	Leu		Leu	Ile	Leu	Asp		Asn	Met	Trp	Lys
305					310					315				•	320
Asn	Gln	Ile	Phe	Tyr	Lys	Pro	His	Glu	Tyr		Gln	Tyr	Ile	Gly	
				325					330					335	

WO 2005/014818 PCT/JP2004/011650

Gly Gln Lys Ile Tyr Thr Val Lys Asp Ser Glu Ser Leu Lys Asp Leu 340 345 350
Asn Arg Thr Lys Leu Ser Trp Glu Trp Arg Ser Ash His Thr Asn Pro 355 360 365
Arg Thr Asn Lys Thr Tyr Val Glu Gly Asp Met Phe Leu His Ser Arg 370 375 380
Phe Ile Gly Ala Ser Leu Asp Val Lys Cys Leu Ala Phe Val Pro Ser 385 390 395 400
Leu Ile Ala Phe Val Trp Phe Gly Phe Phe Ile Trp Phe Phe Gly Arg 405 410 415
Phe Leu Lys Asn Glu Pro Arg Met Glu Asn Gln Asp Lys Thr Tyr Thr 420 425 430
Arg Met Lys Arg Lys Ser Pro Ser Glu His Ser Lys Asp Met Gly Ile 435 440 445
Thr Arg Glu Asn Thr Gln Ala Ser Val Glu Asp Pro Leu Asn Asp Pro 450 455 460
Ser Leu Val Cys Ile Arg Ser Asp Phe Asn Glu Ile Val Tyr Lys Ser 465 470 475 480
Ser His Leu Thr Ser Glu Asn Leu Ser Ser Gln Leu Asn Glu Ser Thr 485 490 495
Ser Ala Thr Glu Ala Asp Gln Asp Pro Thr Thr Ser Lys Ser Thr Pro 500 505 510
Thr Asn . <210> 76
<211> 316
<212> PRT
<213> homo sapiens <400> 76
Met Leu Ala Asn Gln Ala Ser Ala Glu Glu Arg Phe Leu Leu Gly 1 5 10 15
Phe Ser Asp Trp Pro Ser Leu Gln Pro Val Leu Phe Ala Leu Val Leu 20 25 30
Leu Cys Tyr Leu Leu Thr Leu Thr Gly Asn Ser Ala Leu Val Leu Leu 35 40 45
Ala Val Arg Asp Pro Arg Leu His Thr Pro Met Tyr Tyr Phe Leu Cys 50 55 60

His	Leu	Ala	Leu	Val	Asp	Ala	Gly	Phe	Thr	Thr	Ser	Val	Val	Pro	
65					70					75					80
Leu	Leu	Ala	Asn	Leu 85	Arg	Gly	Pro	Ala	Leu 90	Trp	Leu	Pro	Arg	Ser 95	His
Cys	Thr	Ala	Gln 100	Leu	Cys	Ala	Ser	Leu 105	Ala	Leu	Gly	Ser	Ala 110	Glu	Cys
Val	Leu	Leu 115	Ala	Val	Met		Leu 120	Asp	Arg	Ala	Ala	Ala 125	Val	Cys	Arg
Pro	Leu		Tvr	Ala	Gly			Ser	Pro	Arg	Leu		Arg	Thr	Leu
7-7-	130	9			<u>.</u>	135			. ~ . ~	0	140	• -			
Ala		Ala	Ser	Trp	Leu		Gly	Leu	Thr	Asn		Val	Ala	Gln	Thr
145				-	150		•			155					160
	Leu	Leu	Ala	Glu	Arg	Pro	Leu	Cys	Ala		Arg	Leu	Leu	Asp	His
				165					170					175	
Phe	Ile	Cys	Glu	Leu	Pro	Ala	Leu	Leu	Lys	Leu	Ala	Cys	Gly	Gly	Asp
			180					185					190		
Gly	Asp	Thr	Thr	Glu	Asn	Gln	Met	Phe	Ala	Ala	Arg	Val	Val	Ile	Leu
		195					200					205			
Leu	Leu	Pro	Phe	Ala	Va l	Ile	Leu	Ala	Ser	Tyr	Gly	Ala	Val	Ala	Arg
	210		•			215					220				
Ala	Val	Cys	Cys	Met	Arg	Phe	Ser	Gly	Gly	Arg	Arg	Arg	Ala	Val	Gly
225					230					235					240
Thr	Cys	Gly	Ser	His	Leu	Thr	Ala	Val	Cys	Leu	Phe	Tyr	Gly	Ser	Ala
				245					250					255	
Ile	Tyr	Thr	Tyr	Leu	Gln	Pro	Ala	Gln	Arg	Tyr	Asn	Gln	Ala	Arg	Gly
			260					265					270		
Lys	Phe	Val	Ser	Leu	Phe	Tyr	Thr	Val	Val	Thr	Pro	Ala	Leu	Asn	Pro
		275					280					285			
Leu	Ile	Tyr	Thr	Leu	Arg	Asn	Lys	Lys	Val	Lys	Gly	Ala	Ala	Arg	Arg
	290					295					300				
Leu	Leu	Arg	Ser	Leu	Gly	Arg	Gly	Gln	Ala	Gly	Gln				
305					310					315					
<21	0>	77													
<21	1>	6307	•												
<21		PRT													
<21	3>	homo	sap	iens											
<40	0>	77													

Met	Ser	Val	Phe	Leu	Gly	Pro	Gly	Met	Pro	Ser	Ala	Ser	Leu	Leu	Val
1				5					10					15	
Asn	Leu	Leu	Ser	Ala	Leu	Leu	Ile	Leu	Phe	Val	Phe	Gly	Glu	Thr	Glu
			20					25				•	30		
Ile	Arg	Phe	Thr	Gly	Gln	Thr	Glu	Phe	Val	Val	Asn	Glu	Thr	Ser	Thr
		35					40					45			
Thr	Val	Ile	Arg	Leu	Ile	Ile	Glu	Arg	Ile	Gly	Glu	Pro	Ala	Asn	Val
	50					55					60		•		
Thr	Ala	Ĭle.	<u>Val</u>	Ser	Leu	Tyr	Gly	Ģļu	Asp	Ala	Gly	Asp	Phe	Phe	Asp
65					70					75					80
Thr	Tyr	Ala	Ala	Ala	Phe	Ile	Pro	Ala	Gly	Glu	Thr	Asn	Arg	Thr	Val
				85					90					95	
Tyr	Ile	Ala		Cys	Asp	Asp	Asp		Pro	Gly	Pro	Asp		Thr	Phe
			100					105					110		
Ile	Phe		Leu	Thr	Leu	Gln	-	Pro	Ser	Ala	Asn		Lys	Leu	Gly
_	_	115					120		_		_	125			
Trp		Arg	Thr	Val	Thr	Val	Thr	He	Leu	Ser		Asp	Asn	Ala	Phe
	130		_		:	135	_	-	_		140				_
	He	He	Ser	Phe		Met	Leu	Pro	Ser		Ala	Val	Ser	Glu	
145	0.1			0.1	150		_	_		155		•		_	160
Lys	Gly	Arg	Asn		Ser	Met	Pro	Leu		Leu	He	Arg	Glu		Gly
m1		61		165		•	, m1	70.1	170				0.1	175	
Inr	Tyr	Gly		vai	met	Val	Thr		Glu	Val	Glu	Gly		Pro	Asn
Dona	D	۸	180	A	τ	0	D	185 V-1	7	01		71-	190	D1	D
Pro	Pro		GIU	ASP	Leu	Ser		vai	Lys	GIY	ASI		inr	Pne	Pro
Dma	C1	195	41.	Th	Vol	T 1 a	200	1 a m	Τ	41 -	V a 1	205	A	1	C1
Pro		Arg	Ala	1111	vai	Ile	lyr	ASII	Leu	AIA		Leu	ASP	ASD	GIU
Vo l	210 Pro	Clu	Aon	Ann	Clu	215	Dha	Lon	110	Cln	220	T 770	c _o ,	Vo l	Clu
		GIU	ASII	ASP	230	Ile	rne	reu	116	235	ren	Lys	ser	Val	
225		A 1 a	Clu	Τla		Thr	Cor	1.00	Aan		Ha	C1,,	Ilo	110	240
GIY	GIY	Ala	Giu	245	W211	Thr	261	AI B	250		116	GIU	116		116
Clu	T ***0	Aan	Aan		Dro	Val	A = ~	Dho			Cor	T l o	Т	255	Vo l
o i u	гаа	usii	260	2GI	110	Val	ur g	265	ԻԸՈ	GIII	261	116	270		vai
Dro	Clas	Clar		U; c	Ha	Lau	Ϊlα		Dro	Va 1	V a l	Δrc			Ass
E 1 O	GIU	275	ush	піз	116	Leu	280		110	191	v a i	285	GIÀ	гая	wsh
Ann	Aan		Acr	Lon	110	Clv			Cla	Тч1 20	Cla		Ça=	[]_	202
ASII	ASII	GIY	ASII	ьeu	116	Gly	Sel	ΝSD	aid	1 y I	Մ I Ա	٧dl	ser	116	ser

	290					295					300				
Tyr	Ala	Val	Thr	Thr	Gly	Asn	Ser	Thr	Ala	His	Ala	Gln	Gln	Asn	Leu
305					310					315					320
Asp	Phe	Ile	Asp	Leu	Gln	Pro	Asn	Thr	Thr	Val	Val	Phe	Pro	Pro	Phe
				325					330					335	
Ile	His	Glu	Ser	His	Leu	Lys	Phe	Gln	Ile	Val	Asp	Asp	Thr	Ile	Pro
			340					345					350		
Glu	Ile	Ala	Glu	Ser	Phe	His	Ile	Met	Leu	Leu	Lys	Asp	Thr	Leu	Gln
		355					360					365			
Gly	Asp	Ala	Val	Leu	He		Pro							Ile	Lys
	370					375					380				
Pro	Asn	Asp	Lys	Pro	Tyr	Gly	Val	Leu	Ser	Phe	Asn	Ser	Val	Leu	Phe
385					390					395					400
Glu	Arg	Thr	Val	Ile	Ile	Asp	Glu	Asp	Arg	Ile	Ser	Arg	Tyr	Glu	Glu
				405					410					415	
Ile	Thr	Val	Val	Arg	Asn	Gly	Gly	Thr	His	Gly	Asn	Val	Ser	Ala	Asn
			420					425					430		
Trp	Val	Val	Thr	Pro	Asn	Ser	Thr	Asp	Pro	Ser	Pro	Val	Thr	Ala	Asp
		435	•				440					445			
Ile	Arg	Pro	Ser	Ser	Gly	Val	Leu	His	Phe	Ala	Gln	Gly	Gln	Met	Leu
	450					455					460				
Ala	Thr	He	Pro	Leu	Thr	Gly	Gly	Asp	Asp	Asp	Leu	Pro	Glu	Glu	Ala
465					470					475					480
Glu	Ala	Tyr	Leu	Leu	Gln	He	Leu	Pro	His	Thr	Ile	Arg	Gly	Gly	Ala
				485					490					495	
Glu	Val	Ser		Pro	Ala	Glu	Leu		Phe	·Tyr	Ile	Gln			Asp
			500					505					510		
Asp	Val		Gly	Leu	Ile	Thr	Phe	Phe	Pro	Met	Glu		Gln	Lys	He
		515	_				520 -		_	_	_	525			_
Glu		Ser	Pro	Gly	Gly		Tyr	Leu	Ser	Leu		Phe	Thr	Arg	Leu
	530	mı		21		535					540	•, 1			.,
		Thr	Lys	Gly			Arg	Leu	Leu			val	Leu	Tyr	
545		0.1		Y7 1	550			01	A 1 -	555		01	Y 1 .	.	560
Pro	Ala	Gly	Ala			Pro	Leu	GIN			GIU	ыу	116		
T 1 .	0	A	A	565		T	т1.	ከL -	570		C1-	T	ጥኒ	575	
116	ser	Arg			ASP	Leu	Ile			GIÜ	GIN	Lys			150
			580					585					590		

	•														
Thr	Thr	Lys 595	Leu	Pro	Ile	Arg	Asn 600	Asp	Ala	Phe	Leu	Gln 605	Asn	Gly	Ala
His	Phe 610	Leu	Val	Gln	Leu	Glu 615	Thr	Val	Glu	Leu	Leu 620	Asn	Ile	Ile	Pro
Leu	Ile	Pro	Pro	Ile	Ser	Pro	Arg	Phe	Glv	Glu		Cys	Asn	Ile	Ser
625					630				•	635		-			640
Leu	Leu	Val	Thr	Pro	Ala	Ile	Ala	Asn	Gly	Glu	Ile	Gly	Phe	Leu	Ser
				645					650					655	
Asn	Leu	Pro	Ile	Ile	Leu	His	Ģlų	Pro	Glu	Asp	Phe	Ala	Ala	Glu	Val
			660					665					670		
Val	Tyr	Ile	Pro	Leu	His	Arg	Asp	Gly	Thr	Asp	Gly	Gln	Ala	Thr	Val
		675					680					685			
Tyr	Trp	Ser	Leu	Lys	Pro	Ser	Gly	Phe	Asn	Ser	Lys	Ala	Val	Thr	Pro
	690					695					700				
	Asp	Ile	Gly	Pro		Asn	Gly	Ser	Val	Leu	Phe	Leu	Ser	Gly	Gln
705					710				•	715					720
Ser	Asp	Thr	Thr		Asn	He	Thr	Ile		Gly	Asp	Asp	He		Glu
		a 1	mı	725	, m1		_		730	_				735	
Met	Asn	Glu	•	Val	Thr	Leu	Ser	Leu	Asp	Trp	Val	Asn		Glu	Asn
Cl.	W- 1	T	740	0	C1	m	TD1	745		A	T	T1.	750	T	01
GIII	vai		LÀS	ser	GIY	171		Ser	Arg	ASP	Leu		116	Leu	GIU
Aan	Acn	755	Dro	Clar	Clar	Vo l	760	Clu	Dho	Sor	Dro	765	Cor	1	Clar
usn	770	vsħ	110	GIY	GIY	775	rne	Glu	rne	261	780	Ala	261	AIG	Gly
Pro		Val	He	ĭ.vs	Glu		Glu	Ser	Val	Glu		His	Ϊlρ	Ϊlρ	Arg
785	-,-	,		27,0	790	OI,	O14	DUI	,	795	nou		110	110	800
	Arg	Gly	Ser	Leu		Lvs	Gln	Phe	Leu		Tvr	Arg	Val	Glu	
				805		*	•		810			J		815	
Arg	Asp	Ser	Asn	Glu	Phe	Tyr	Gly	Asn	Thr	Gly	Val	Leu	Glu	Phe	Lys
			820					825					830		
Pro	Gly	Glu	Arg	Glu	Ile	Val	Ile	Thr	Leu	Leu	Ala	Arg	Leu	Asp	Gly
		835					840					845			
Ile	Pro	Glu	Leu	Asp	Glu	His	Tyr	Trp	Val	Val	Leu	Ser	Ser	His	Gly
	850			•		855					860				
Glu	Arg	Glu	Ser	Lys	Leu	Gly	Ser	Ala	Thr	Ile	Val	Asn	Ile	Thr	Ile
865					870					875				•	880
Leu	Lys	Asn	Asp	Asp	Pro	His	Gly	Ile	Ile	Glu	Phe	Val	Ser	Asp	Gly

885 . 890 . 895	
Leu Ile Val Met Ile Asn Glu Ser Lys Gly Asp Ala Ile Tyr Ser Ala	a
900 905 910	
Val Tyr Asp Val Val Arg Asn Arg Gly Asn Phe Gly Asp Val Ser Val	l
915 920 925	•
Ser Trp Val Val Ser Pro Asp Phe Thr Gln Asp Val Phe Pro Val Gli	a
930 935 940	
Gly Thr Val Val Phe Gly Asp Gln Glu Phe Ser Lys Asn Ile Thr Ile	_
945. 950 955 960 Tyr Ser Leu Pro Asp Glu Ile Pro Glu Glu Met Glu Glu Phe Thr Va	•
965 970 975	•
Ile Leu Leu Asn Gly Thr Gly Gly Ala Lys Val Gly Asn Arg Thr Th	r
980 985 990	
Ala Thr Leu Arg Ile Arg Arg Asn Asp Asp Pro Ile Tyr Phe Ala	Glu
995 1000 1005	
Pro Arg Val Val Arg Val Gln Glu Gly Glu Thr Ala Asn Phe Thr	
1010 1015 1020	
Val Leu Arg Asn Gly Ser Val Asp Val Thr Cys Met Val Gln Tyr	
1025 1030 1035	
Ala Thr Lys Asp Gly Lys Ala Thr Ala Arg Glu Arg Asp Phe Ile	
1040 1045 1050 Pro Val Glu Lys Gly Glu Thr Leu Ile Phe Glu Val Gly Ser Arg	
1055 1060 1065	
Gin Gin Ser Ile Ser Ile Phe Val Asn Glu Asp Gly Ile Pro Glu	
1070 1075 1080	
Thr Asp Glu Pro Phe Tyr Ile Ile Leu Leu Asn Ser Pro Gly Asp	
1085 1090 1095	
Pro Val Val Tyr Gln Tyr Gly Val Ala Thr Val Ile Ile Glu Ala	
1100 1105 1110	
Asn Asp Asp Pro Asn Gly Ile Phe Ser Leu Glu Pro Ile Asp Lys	
1115 1120 1125	
Ala Val Glu Glu Gly Lys Thr Asn Ala Phe Trp Ile Leu Arg His	
1130 1135 1140	
Arg Gly Tyr Phe Gly Ser Val Ser Val Ser Trp Gln Leu Phe Gln 1145 1150 1155	
1145 1150 1155 Asn Asp Ser Ala Leu Gln Pro Gly Gln Glu Phe Tyr Glu Thr Ser	
1160 1165 1170	
1100 1110	

	-													
Gly		Val	Asn	Phe	Met	Asp		Glu	Glu	Ala		Pro	Ile	Ile
	1175		D1	D	4	1180		_	٥.	7 .1	1185	01	D1	
Leu		Ala	Pne	Pro	ASP	Lys	He	Pro	Glu	Phe		GIU	rne	lyr
D1	1190			77 . T		1195	•		۰.	_	1200	61	.	0.1
Pne		Lys	Leu	vai	Asn	Ile		Gly	Gly	Ser		Gly	Pro	GIY
a 1	1205	_		.	m.	1210					1215			_
Gly		Leu	Ala	Glu	Thr	Asn	Leu	Gln	Val	Thr		Met	Ala	Pro
	1220			_	~.	1225	•••			_	1230	_		_
Phe		Asp	Asp	Kio	Phe	Ģļy		Phe	He	Leu			Gļu	Cys
_	1235	_				1240			_	_	1245			
Leu		Arg	Glu	Val	Ala	Glu		Val	Leu	Ser			Asp	Met
_	1250					1255		_			1260			
Ser	_	He	Thr	Asn	Phe	Thr		Leu	_			_	Val	Phe
۵.	1265			_		1270								
Gly	_		Gin	Leu	Gly	Trp		11e	Leu	Ser			rne	Pro
	1280		~	_	30 1	1285			_		1290			.
Ala	_		Pro	Pro		Ile	-	Phe	Leu	Leu			lie	Phe
_	1295					1300					1305			_
Pro			y a I	HIS	Leu	Gln		HIS	Met	Arg			HIS	Ser
	1310		4.7	_	m	1315					1320		5. 1	0.1
Gly			Ala	Leu	Tyr	Phe							Phe	Gly
	1325		. .	_		1330								4.1
Thr			Ser	Lys	Tyr	His		Phe	Arg	Asn			He	Ala
	1340		D1			1345					1350		mı.	
Asn			Pne	Ser	Ala	Trp		Met					Thr	Asn
0.1	1355					1360		01		61	1000		m	m
Gly			116	Ala	Lys	Asp		Gly	Asn	Gly			lyr	Tyr
0.1	1370			0.1	m1	1375				77 1	1380			
Gly			116	Gin	Thr	Asn		Ser	HIS	vai			Ser	Leu
	1385		mı.	·	0.1	1390			m 1	m	1395			mı .
HIS	_	-	Inr	Leu	Gly	Ser		Ala	Thr	Tyr			Lys	Inr
	1400			_	_	1405			·· ·	m	1410			
Thr			Lys	Tyr	Leu	Glu		Ser	Val	Trp			Leu	Leu
	1415		0.		۵.	1420		0.1	D'	m	1425		01	
He			Glu	Asp	Gly	Ile		Glu	rhe	Tyr			Gly	Asn
	1430			63		1435				01	1440			m¹
Ala	Met	Pro	Arg	Gly	lle	Lys	Ser	Leu	Lys	Gly	Glu	Ala	He	Ihr

		1445					1450					1455			
A	sp	Gly					Arg						Asn	Gly	Asn
		1460					1465					1470			
A	sp	Arg	Phe	Thr	Gly		Met						Tyr	Glu	Arg
		1475					1480					1485			
L	ys	Leu	Thr	Leu	Glu	Glu	Ile	Tyr	Glu	Leu	His	Ala	Met	Pro	Ala
		1490					1495					1500			
L	ys	Ser	Asp	Leu	His	Pro	Ile	Ser	Gly	Tyr	Leu	Glu	Phe	Arg	Gln
		1505	•				1510					1515			
G	ly	Glu	Thr	Asn	Lys	Ser	Phe	Ile	Ile	Ser	Ala	Arg	Asp	Asp	Asn
		1520					1525					1530			
A	sp	Glu	Glu	Gly	Glu	Glu	Leu	Phe	Ile	Leu	Lys	Leu	Val	Ser	Val
		1535					1540					1545			
1	`yr		Gly	Ala	Arg	Ile	Ser					Thr	Ala	Arg	Leu
		1550					1555					1560			
1	hr		Gln	Lys	Ser	Asp	Asn						Gly	Phe	Thr
_		1565	_		_		1570								
(ily		Cys		•		Ile						Thr	He	Ser
,		1580	T 7 1	•			1585						** 1		~, ,
(уs		vai	Glu			Arg						Val	HIS	vai
т	16.0	1595	Th	T l a		C1=	1600					1605	A	T	T
ľ	'ne					GIN	Ile						ASI	lyr	Leu
7	7 o 1	1610										1620	Dha	Lou	Dro
٧	aı	1625	vsħ	1116	піа	nsu	Ala 1630	261	GIY	1111	116	1635	rne	Leu	FIU
1	rn		Δτσ	Ser	Glu	Val	Leu	Aen	Tle	Tur	Va l		Δen	Aen	Acn
•	. I p	1640	**** 6	DCI	014	141	1645	11511	110	1 9 1	141	1650	мэр	пор	Map
1	[]e		Glu	Len	Asn	Gln	Tyr	Phe	Arg	Val	Thr		Val	Ser	Ala
•		1655	•••				1660			,		1665	,	501	
]	lle		Glv	Asp	Glv	Lvs	Leu	Glv	Ser	Thr	Pro		Ser	Glv	Ala
		1670		•	•		1675					1680			
5	Ser			Pro	Glu	Lys	Glu	Thr	Thr	Asp	Ile	Thr	Ile	Lys	Ala
		1685					1690					1695			
S	Ser	Asp	His	Pro	Tyr	Gly	Leu	Leu	Gln	Phe	Ser	Thr	Gly	Leu	Pro
		1700					1705					1710			
I	Pro	Gln	Pro	Lys	Asp	Ala	Met	Thr	Leu	Pro	Ala	Ser	Ser	Val	Pro
		1715					1720					1725			

His	Ile 1730	Thr	Val	Glu	Glu	Glü 1735	Asp	Gly	Glu	Ile	Arg 1740	Leu	Leu	Val
	Arg 1745		Gln	Gly	Leu	Leu 1750		Arg	Val	Thr	Ala 1755	Glu	Phe	Arg
Thr	Val 1760		Leu	Thr	Ala	Phe 1765	Ser	Pro	Glu	Asp	Tyr 1770	Gln	Asn	Val
Ala	Gly 1775		Leu	Glu	Phe	Gln 1780	Pro	Gly	Glu	Arg	Tyr 1785	Lys	Tyr	Ile
Phe	Ile 1790		Ile	Thr	Asp	A <u>sn</u> 1795		Ile	Pro		Leu 1800	Glu	ΓĀŸ	Ser
Phe	Lys 1805		Glu	Leu	Leu	Asn 1810		Glu	Gly	Gly	Val 1815		Glu	Leu
Phe	Arg 1820		Asp			Gly 1825		Gly	Asp	Gly	Asp 1830		Glu	Phe
Phe	Leu 1835		Thr		His	Lys 1840		Ala	Ser	Leu	Gly 1845		Ala	Ser
Gln	Ile 1850		Val			Ala 1855			Asp	His	Ala 1860		Gly	Val
Phe	Glu 1865		Şer	Pro	Glu	Ser 1870		Phe	Val	Ser	Gly 1875		Glu	Pro
Glu	Asp 1880		Tyr	Ser		Val 1885							His	His
Gly	Thr 1895		Ser	Pro	Val	Thr 1900		His	Trp	Asn	Ile 1905		Ser	Asp
Pro	Asp 1910		Asp	Leu	Ala	Phe 1915					Ile 1920		Phe	Glu
Ile	Gly 1925		Thr	Ser	Ala	Asn 1930		Thr	Val	Glu	Ile 1935		Pro	Asp
Glu	Asp 1940		Glu	Leu	Asp	Lys 1945		Phe	Ser	Val	Ser 1950		Leu	Ser
Val	Ser 1955		Gly	Ser	Leu	Gly 1960		His	Ile	Asn	Ala 1965		Leu	Thr
Val	Leu 1970		. Ser	Asp	Asp	Pro 1975		Gly	Ile	Phe	Ile 1980		e Ser	Glu
Lys	Asn 1985		Pro	Val	Lys	Val 1990		Glu	Ala	Thr	Gln 1995		ı Ile	
Leu	Ser	Ile	: Ile	Arg	Leu	Lys	Gly	Leu	Met	Gly	Lys	Val	Leu	Val

	2000					2005					2010			
Ser	Tyr	Ala	Thr	Leu [.]	Asp	Asp	Met	Glu	Lys	Pro	Pro	Tyr	Phe	Pro
	2015					2020					2025			
Pro	Asn	Leu	Ala	Arg	Ala	Thr	Gln	Gly	Arg	Asp	Tyr	Ile	Pro	Ala
	2030					2035					2040			
Ser		Phe	Ala	Leu	Phe				Gln	Ser	Glu	Ala	Thr	Ile
	2045	_		_	/	2050			_		2055	_		
					-	_	_				Arg		Glu	Ser
											2070		Va l	Cln
Val	2075				Leu	2080		1111	ren	Val	Ala 2085	Lys	Val	GIII
Ser					Asn			Arg	Len	Glv	Pro	ī.vs	Val	Glu
	2090					2095				 ,	2100	_,_		
Thr	Ile	Ala	Gln	Leu	Ile	Ile	Ile	Ala	Asn	Asp	Asp	Ala	Phe	Gly
	2105					2110					2115			
Thr	Leu	Gln	Leu	Ser	Ala	Pro	Ile	Val	Arg	Val	Ala	Glu	Asn	His
	2120					2125					2130			
Val	Gly	Pro	Ile	Ile _.	Asn	Val	Thr	Arg	Thr	Gly	Gly	Ala	Phe	Ala
	2135		•			2140					2145			
Asp			Val	Lys	Phe				Pro	Ile	Thr	Ala	Ile	Ala
01	2150		Т	0	T1 -	2155			A	¥7 - 1	2160	T	T	Cl.,
Gly	2165	_	lyr	ser	116	A1a 2170			_		Val 2175		Leu	GIU
Glv			Ser	Lvs	Ala						Ile		Asn	Ile
	2180					2185							шр	110
											Leu		Asn	Glu
	2195					2200					2205			
Thr	Thr	Gly	Gly	Ala	Arg	Leu	Gly	Ala	Leu	Thr	Glu	Ala	Val	Ile
,	2210					2215					2220			
Ile	Ile	Glu	·Ala	Ser	Asp	Asp	Pro	Tyr	Gly	Leu	Phe	Gly	Phe	Gln
	2225					2230					2235			
Ile			Leu	Ile	Val			Pro	Glu	Phe	Asn		Val	Lys
•, •	2240			71.	7 1.	2245		0	01	mt.	2250		A	
val			LL0	116	116			ser	Gly	ınr	Leu		ASN	val
Th -	2255 Val		Trn	V a l	ΔΙο	2260		Acn	C1**	Cln	2265 Leu		Thr	Cl v
1111	2270		110	101	AIG	2275		noil	GIA	0111	2280		1111	GIY
	2210					22.0					2200			

Asp	Leu 2285	Arg	Val	Val	Ser	Gly 2290		Val	Thr	Phe	Ala 2295	Pro	Gly	Glu
Thr	Ile 2300	Gln	Thr	Leu		Leu 2305		Val	Leu	Ala	Asp 2310	Asp	Val	Pro
Glu	Ile 2315	Glu	Glu	Val	Ile	Gln 2320	Val	Gln	Leu	Thr	Asp 2325	Ala	Ser	Gly
Gly	Gly 2330	Thr	Ile	Gly	Leu	Asp 2335		Ile	Ala	Asn	Ile 2340	Ile	Ile	Pro
	Asn 2345	Asp	Asp	Pro	Tyr	Gly 2350	-	.Val	Ala	Phe	Ala_ 2355	Glņ	Met	Val
Tyr	Arg 2360	Val	Gln	Glu	Pro	Leu 2365	Glu	Arg	Ser	Ser	Cys 2370	Ala.	Asn	Ile
Thr	Val 2375	Arg	Arg	Ser	Gly	Gly 2380	His	Phe	Gly	Arg	Leu 2385	Leu	Leu	Phe
Tyr	Ser 2390	Thr	Ser	Asp	Ile	Asp 2395	Val	Val	Ala	Leu	Ala 2400	Met	Glu	Glu
Gly	Gln 2405	Asp	Leu	Leu	Ser	Tyr 2410	Tyr	Glu	Ser	Pro	Ile 2415	Gln	Gly	Val
Pro	Asp 2420	Pro	Ļeu	Trp	Arg	Thr 2425		Met	Asn	Val	Ser 2430	Ala	Val	Gly
Glu	Pro 2435	Leu	Tyr	Thr		Ala 2440		Leu	Cys	Leu	Lys 2445	Glu	Gln	Ala
Cys	Ser 2450	Ala	Phe	Ser		Phe -2455	Ser	Ala	Ser	Glu	Gly 2460	Pro	Gln	Cys
Phe	Trp 2465	Met	Thr	Ser	Trp	Ile 2470				Val	Asn 2475	Asn	Ser	Asp
Phe	Trp 2480	Thr	Tyr	Arg	Lys	Asn 2485	Met	Thr	Arg	Val	Ala 2490	Ser	Leu	Phe
Ser	Gly 2495	Gln	Ala	Val	Ala	Gly 2500	Ser	Asp	Tyr	Glu	Pro 2505	Val	Thr	Arg
Gln	Trp 2510	Ala	Ile	Met	Gln	Glu 2515	Gly	Asp	Glu	Phe	Ala 2520	Asn	Leu	Thr
Val	Ser 2525	Ile	Leu	Pro	Asp	Asp 2530	Phe	Pro	Glu	Met	Asp 2535	Glu	Ser	Phe
Leu	Ile 2540	Ser	Leu	Leu	Glu		His	Leu	Met	Asn		Ser	Ala	Ser
Leu	Lys	Asn	Gln	Pro	Thr		Gly	Gln	Pro	Asn		Ser	Thr	Val

	2555 Ile	Ala	Leu	Asn		2560 Asp				Val	2565 Phe	Val	Ile	Tyr
	2570 Ile	Ser	Pro	Asn		2575 Ser	Glu	Asp	Gly	Leu	2580 Phe	Val	Glu	Val
Gln	2585 Glu	Gln	Pro	Gln	Thr	2590 Leu	Val	Glu	Leu	Met	2595 Ile	His	Arg	Thr
Gly	2600 Gly	Ser	Leu	Gly	Gln	2605 Val	Ala	Val	Glu	Trp	2610 Arg	Val	Val	Gly
	2615					2620				_	2625			
Gly	Thr 2630						Asp				Ala 2640		Glu	Ile
Leu	Thr 2645	Phe	Ala	Glu	Gly	Glu 2650	Thr	Lys	Lys	Thr	Val 2655	Ile	Leu	Thr
Ile	Leu 2660	Asp	Asp	Ser	Glu	Pro 2665	Glu	Asp	Asp	Glu	Ser 2670	Ile	Ile	Val
Ser	Leu 2675	Val	Tyr	Thr	Glu	Gly 2680	Gly	Ser	Arg	Ile	Leu 2685	Pro	Ser	Ser
Asp	Thr 2690	Val	Arg	Val.	Asn	Ile 2695		Ala	Asn	Asp	Asn 2700	Val	Ala	Gly
Ile	Val 2705	Ser	Phe	Gln	Thr	Ala 2710	Ser	Arg	Ser	Val	Ile 2715	Gly	His	Glu
Gly	Glu 2720	Ile	Leu	Gln	Phe	His 2725	Val	Ile	Arg	Thr	Phe 2730	Pro	Gly	Arg
Gly	Asn 2735	Val	Thr	Val	Asn	Trp 2740	-	Ile	Ile	Gly	Gln 2745	Asn	Leu	Glu
Leu	Asn 2750	Phe	Ala	Asn	Phe	Ser 2755	Gly	Gln	Leu	Phe	Phe 2760		Glu	Gly
Ser	Leu 2765	Asn	Thr	Thr	Leu	Phe 2770		His	Leu	Leu	Asp 2775	-	Asn	Ile
Pro	Glu 2780		Lys	Glu	Val	Tyr 2785		Val	Ile	Leu	Tyr 2790		Val	Arg
Thr	Gln 2795	_	Val	Pro	Pro	Ala 2800		Ile	Ala	Leu	Leu 2805		Ala	Gln
Gly	Tyr 2810	Ala	Ala	Val	Leu	Thr 2815		Glu	Ala	Ser	Asp 2820		Pro	His
Gly	Val 2825		Asn	Phe	Ala	Leu 2830		Ser	Arg	Phe	Val 2835		Leu	Gln

Glu	Ala 2840	Asn	Ile	Thr	Ile	Gln 2845	Leu	Phe	Ile	Asn	Arg 2850	Glu	Phe	Gly
Ser	Leu 2855	Gly	Ala	Ile	Asn	Val 2860	Thr	Tyr	Thr	Thr	Val 2865	Pro	Gly	Met
Leu	Ser 2870	Leu	Lys	Asn	Gln	Thr 2875	Val	Gly	Asn	Leu	Ala 2880	Glu	Pro	Glu
Val	Asp 2885	Phe	Val	Pro	Ile	Ile 2890		Phe	Leu	Ile	Leu 2895	Glu	Glu	Gly
Glu	Thr 2900	Ala	<u>Al</u> a	Ala	<u> I l e</u>	Asn 2905		Thr	Ile	Leu	Glu 2910	Asp	Ąsp _.	Val
Pro	Glu 2915		Glu	Glu	Tyr	Phe 2920		Val	Asn	Leu	Thr 2925	Tyr	Val	Gly
Leu	Thr 2930		Ala	Ala	Ser	Thr 2935		Phe	Pro		Arg 2940	Leu	Asp	Ser
Glu	Gly 2945		Thr	Ala	Gln	Val 2950		Ile	Asp	Ala	Asn 2955	Asp	Gly	Ala
Arg	Gly 2960		Ile	Glu	Trp	Gln 2965		Ser	Arg	Phe	Glu 2970	Val	Asn	Glu
Thr	His 2975		Şer	Leu	Thr	Leu 2980			Gln	Arg	Ser 2985	Arg	Glu	Pro
Leu	Gly 2990		Val	Ser	Leu	Phe 2995		Tyr	Ala	Gln	Asn 3000		Glu	Ala
Gln	Val 3005		Leu	Asp	Tyr	Ile 3010		Thr	Pro	Met	Ile 3015		His	Phe
Ala	Asp 3020		Glu	Arg	Tyr	Lys 3025		Val		Ile	Met 3030		Leu	Asp
Asp	Asp 3035		Pro	Glu	Gly	Asp 3040		Lys	Phe	Gln	Leu 3045		Leu	Thr
Asn	Pro 3050		Pro	Gly	Leu	Glu 3055		Gly	Lys	Asn	Thr 3060		Ala	Leu
Ile	Ile 3065		Leu	Ala	Asn	Asp 3070		Gly	Pro	Gly	Val 3075		Ser	Phe
Asn	Asn 3080		Glu	His	Phe	Phe 3085		Arg	Glu	Pro	Thr 3090		Leu	Tyr
Val	Gln 3095		Ser	Val	Ala	Val 3100		Tyr	Ile	Val	Arg 3105		Pro	Ala
Gln	Gly	Leu	Phe	Gly	Thr	Val	Thr	Val	Gln	Phe	Ile	Val	Thr	Glu

	3110					3115					3120			
Val						Ser						Ser	Lys	Gly
	3125										3135			
Tyr	Ile	Val	Leu	Glu	Glu	Gly	Val	Arg	Phe	Lys	Ala	Leu	Gln	Ile
	3140					3145					3150			
Ser	Ala	Ile	Leu	Asp	Thr	Glu	Pro	Glu	Met	Asp	Glu	Tyr	Phe	Val
	3155					3160					3165			
Cys	Thr	Leu	Phe	Asn	Pro	Thr	Gly	Gly	Ala	Arg	Leu	Gly	Val	His
	3170	- -				31,75					3180	-		
Val	Gln	Thr	Leu	Ile	Thr	Val	Leu	Gln	Asn	Gln	Ala	Pro	Leu	Gly
	3185					3190					3195			
Leu		Ser	He	Ser	Ala	Val				Ala		Ser	Ile	Asp
	3200					3205					3210			
Ile		Glu	Ala	Asn	Arg	Thr				Asn		Ser	Arg	Thr
	3215				. 1	3220				m	3225	m1	** 1	•
Asn		116	Asp			Val						Inr	vai	Ser
C1 ···	3230	A 1 a	Dha			3235						Dho	Con	Vo l
Giu	3245			•		Arg 3250					3255	rne	261	Val
Dha			•			Glu						Cve	Dho	Dha
rne	3260				nsp							Cys	1 110	THE
Thr						Tyr						Lvs	Ser	Ser
****	3275				110								501	501
Val						Gln							Glu	Asp
	3290			_	•	3295								•
Leu	Asn					Lys						Asn	Ile	Gly
	3305					3310					3315			
Phe	Ser	Pro	Tyr	Phe	Val	Ile	Thr	His	Glu	Glu	Arg	Asn	Glu	Glu
	3320					3325					3330			
Lys	Pro	Ser	Leu	Asn	Ser	Val	Phe	Thr	Phe	Thr	Ser	Gly	Phe	Lys
	3335					3340					3345			
Leu	Phe	Leu	Val	Gln	Thr	Ile	Ile	Ile	Leu	Glu	Ser	Ser	Gln	Val
	3350					3355					3360			
Arg	Tyr	Phe	Thr	Ser	Asp	Ser	Gln	Asp	Tyr	Leu	Ile	Ile	Ala	Ser
	3365					3370					3375			
Gln			Asp	Ser	Glu	Leu		Gln	Val	Phe			Asn	Gly
	3380					3385					3390			

Gly	Ser 3395	Phe	Val	Leu	His	Gln 3400	Lys	Leu	Pro	Val	Arg 3405	Gly	Val	Leu
Thr		Ala	Leu	Phe	Asn		Gly	Gly	Ser	Val	Phe 3420	Leu	Ala	Ile
Ser		Ala	Asn	Ala	Arg		Asn	Ser	Leu	Leu	Phe 3435	Arg	Trp	Ser
Gly		Gly	Phe	Ile	Asn		Gln	Glu	Val	Pro	Val 3450	Ser	Gly	Thr
Th <u>r</u>	Glu 3455	.Val	G <u>l</u> u	Ala	<u>L</u> eu	Ser 3460		Ala	Ąṣn	Asp	Ile 3465	Tyr.	Leu	<u>Ile</u>
Phe	Ala 3470	Glu	Asn	Val	Phe	Leu 3475	Gly	Asp	Gln	Asn	Ser 3480	Ile	Asp	Ile
Phe	Ile 3485		Glu	Met	Gly	Gln 3490	Ser	Ser	Phe	Arg	Tyr 3495		Gln	Ser
Val	Asp 3500	Phe	Ala	Ala	Val	Asn 3505		Ile	His	Ser	Phe 3510	Thr	Pro	Ala
Ser	Gly 3515		Ala	His	Ile	Leu 3520		Ile	Gly	Pro	Arg 3525	Tyr	Val	Tyr
Ser	Phe 3530		Ala		Asn	Ser 3535		Arg	Asn	Gln	Phe 3540	Ser	Phe	Val
	3545					3550								
	3560					3565					Val 3570			
	3575					3580					0000			
	3590					3595					Gly 3600			
	3605					3610					Val 3615			
	3620					3625					Lys 3630			
	3635					3640					Ile 3645			
	3650					3655					Asn 3660			
Lys	Gln	Val	Glu	Glu	Met	Glu	Gln	Asp	Ser	Leu	Val	Thr	Leu	Asn

	3665					3670					3675			
Val	Glu	Arg	Leu	Lys	Gly						Thr	Ile	Ala	Trp
	3680					3685					3690			
Glu	Ala	Asp	Gly	Ser	Ile	Ser	Asp	Ile	Phe	Pro	Thr	Ser	Gly	Val
	3695					3700					3705			
Ile		Phe	Thr	Glu	Gly				Ser	Thr	Ile	Thr	Leu	Thr
	3710					3715			_		3720	•		
			Asp	Asn	He						Val	Val	He	Val
TVL	3725		A	T1-	TD1	3730				•	3735		T	T
1111										GIU	Asp	ser	ТУГ	Lys
Clv	3740					3745				Car	3750 Val	Πla	Thr	Thr
diy	3755	1111	110	nsp	UIII	3760		501		501	3765	110	1111	1111
Leu		Asn	Asp	Ser	Pro					Glv	Trp	Arg	Ala	Ala
	3770						,				3780			
Ser	Val	Phe	Ile	Arg	Val	Ala	Glu	Pro	Lys	Glu	Asn	Thr	Thr	Thr
	3785					3790					3795			
Leu	Gln	Leu	Gln	Ile	Ala	Arg	Asp	Lys	Gly	Leu	Leu	Gly	Asp	Ile
	3800					3805					3810			
Ala	Ile	His	Leu	Arg	Ala	Gln	Pro	Asn	Phe	Leu	Leu	His	Val	Asp
	3815					3820								
Asn		Ala	Thr	Glu	Asn						Gln	Glu	Thr	Ile
	3830			a 1		3835					3840	0.1	v , 1	0
116											Ala	Glu	Val	Ser
Ilo	3845		Acn			3850				Clu	3855 Gly	Dho	ΙΙο	Vo l
116	3860	110	nsp	nsp	LCu	3865	UIU	LCu	Giu	Olu	3870	THE	116	Val
Thr		Thr	Glu	Val	Asn		Val	Asn	Ser	Asp	Phe	Ser	Thr	Glv
	3875					3880				•	3885			
Gln	Pro	Ser	Val	Arg	Arg	Pro	Gly	Met	Glu	Ile	Ala	Glu	Ile	Met
	3890					3895					3900			
Ile	Glu	Glu	Asn	Asp	Asp	Pro	Arg	Gly	Ile	Phe	Met	Phe	His	Val
	3905					3910					3915			
Thr			Ala	Gly	Glu			Thr	Ala	Tyr	Glu	Val	Pro	Pro
٠	3920			_		3925					3930			_
Pro			Val	Leu	Gln			Val	Val	Arg	Leu	Ala	Gly	Ser
	3935					3940					3945			

	Gly 3950	Ala	Val	Asn	Val	Tyr 3955	Trp	Lys	Ala	Ser	Pro 3960	Asp	Ser	Ala
	Leu 3965	Glu	Asp	Phe	Lys	Pro 3970	Ser	His	Gly	Ile	Leu 3975	Glu	Phe	Ala
_	Lys 3980	Gln	Val	Thr	Ala	Met 3985	Ile	Glu	Ile	Thr	Ile 3990	Ile	Asp	Asp
	Glu 3995	Phe	Glu	Leu	Thr	Glu 4000	Thr	Phe	Asn	Ile	Ser 4005	Leu	Įle	Ser
	Ala4010	Gly	Gly.	<u>Gl</u> y	Arg	Leu 4015		Ąsp	Asp	.Val	Val 4020	Val.	Thr	Val
	Ile 4025	Pro	Gln	Asn	Asp	Ser 4030	Pro	Phe	Gly	Val	Phe 4035	Gly	Phe	Glu
	Lys 4040		Val	Met	Ile	Asp 4045	Glu	Ser	Leu	Ser	Ser 4050	Asp	Asp	Pro
Asp	Ser 4055	-	Val	Thr	Leu	Thr 4060		Val	Arg	Ser	Pro 4065	Gly	Gly	Lys
	4070				•	Trp 4075					4080			
	4085					Gly 4090					4095			
	4100					Leu 4105					4110			
	4115					Thr 4120					4125			
	4130	ı				Lys 4135			•		4140			
	4145	1				Gly 4150					4155			
	4160)				Glu 4165					4170			
	4175	i				Arg 4180	İ				4185			
	4190)				Phe 4195	i				4200)		
	4205	i				4210)				4215	i		
Ile	Val	Val	Ile	Gln	Ala	Leu	Asn	Asp	Asp	116	Pro	Glu	ı Glü	Lys

.

Ser Phene Tyr Glu Leu Leu Hur Ala Val Cet Glu Ala Ala Ala Ile Hur Glu Glu Ala Ala Ala Hur Glu Hur Ala Ala Ala Hur Glu Ala Ala Ala Phe Glu Ala Ala Ala Phe Glu Ala Ala </th <th></th> <th>4220</th> <th></th> <th></th> <th></th> <th></th> <th>4225</th> <th></th> <th></th> <th></th> <th></th> <th>4230</th> <th></th> <th></th> <th></th>		4220					4225					4230			
Color	Ser	Phe	Tyr	Glu	Phe			•			Ser	Gly	Gly	Gly	Val
Ayso		4235					4240					4245			
ASP PRO Tyr Gly Arg Phe Ala Phe Ala Phe His Gly Arg Leu Arg Arg Val Ass I le I le I le Arg Cer Arg Val Ass I le I le I le Arg Cer Ser Arg Cer Arg Val Arg I le I le I le Arg Cer Arg Arg I le I le I le Arg Arg Arg I le I le Arg Arg Arg I le Arg Arg Arg I le Arg Arg I le Arg Arg I le Arg Arg </td <td>Leu</td> <td>Ser</td> <td>Glu</td> <td>Ser</td> <td>Ser</td> <td>Ser</td> <td>Thr</td> <td>Ala</td> <td>Asn</td> <td>Ile</td> <td>Thr</td> <td>Val</td> <td>Val</td> <td>Ala</td> <td>Ser</td>	Leu	Ser	Glu	Ser	Ser	Ser	Thr	Ala	Asn	Ile	Thr	Val	Val	Ala	Ser
Val Ser Glu Ala Glu Arg Val Asn Ile Ile Ile Arg Ser Glu Arg Leu Arg Leu Try Try Lys Try Met Ser Glu Arg Ser Leu Arg Ser Leu Arg Lu Arg		4250					4255					4260			
Name	Asp	Ser	Pro	Tyr	Gly	Arg	Phe -	Ala	Phe	Ser	His	Glu	Gln	Leu	Arg
		4265					4270					4275			
GIY She GIY Wal Val Leu Trp Typ Lys The Met Ser Gly The Ala GIU Ala GIY Leu Asp Phe Val Pro Ala Ala GIY Cu Leu A310 Tr Val Cu Asp Val Val Val Cu Asp A310 Tr Val Cu Asp Val Asp Val Asp Asp </td <td>Val</td> <td>Ser</td> <td>Glu</td> <td>Ala</td> <td>Gln</td> <td>Arg</td> <td>Val</td> <td>Asn</td> <td>Ile</td> <td>Thr</td> <td>Ile</td> <td>Ile</td> <td>Arg</td> <td>Ser</td> <td>Ser</td>	Val	Ser	Glu	Ala	Gln	Arg	Val	Asn	Ile	Thr	Ile	Ile	Arg	Ser	Ser
4295 Lev Ata Giv Ata Giv Ata Giv Ata Ata Giv Ata Ata Ata Ata Ata Ata Giv Ata Ata Ata Ata Giv Ata		4280					4285					4290			
Thr Ala Glu Ala Gly Leu Asp Phe Val Pro Ala Ala Glu Actual Leu Phe Glu Ala Gly Glu Met Arg Lys Ser Leu His Val Glu Ile A325	Gly	Asp	Phe	Gly	His	Val	Arg	Leu	Trp	Tyr	Lys	Thr	Met	Ser	Gly
Hath Hath		4295					4300					4305			
Leu Phe Glu Ala Gly Glu Met Arg Lys Ser Leu Hiss Val Glu 11e 4325 4325 4325 4330 4330 4330 4330 4335 4365 4360	Thr	Ala	Glu	Ala	Gly	Leu	Asp	Phe	Val	Pro	Ala	Ala	Gly	Glu	Leu
Hand Hand		4310					4315					4320			
Leu Asp Asp Asp Tyr Pro Glu Gly Pro Glu Glu Pro Glu Pro Glu Pro Glu Pro He Ser Leu Thr 4345 Tr 4345 Tr 4365 4365 4365 Tr Asp Pro Pro Ag65 Tr Ile Ag65 Tr Ile Ag66 Tr 4365 Tr Ag76 Tr Ag66 Tr 4365 Tr Ile Ag76 Tr Ag77 Tr Ag77 Tr Ag78	Leu	Phe	Glu	Ala	Gly	Glu	Met	Arg	Lys	Ser	Leu	His	Val	Glu	Ile
Hand Hand															
Ile Thr Lys Val Glu Leu Gln Gly Arg Gly Tyr Asp Phe Thr Ile 4355	Leu			Asp	Tyr	Pro	Glu	Gly	Pro	Glu	Glu	Phe	Ser	Leu	Thr
4355 4360 4365 4366 4366 4366 4368 4368 4369 610 610 610 610 610 610 4370 4370 4385 4385 4385 4385 4395 610 11e 71e 11e															
Glu Asn Gly Leu Gln Ile Asp Gln Pro Glu Ile Gly Asp 4370	Ile			Val	•					Gly	Tyr		Phe	Thr	Lle
11e 3770 11e 741 741 11e											_				
Ile Ser Ile Val Arg Ile Ile Met Lys Asn Asp Ala Glu Glu And A	Gln		Asn	Gly						Pro	Pro		Ile	Gly	Asn
4385 4390 4395 4395 4395 4395 4395 4395 4395 4395 4395 4395 4310 791 191 <td></td> <td></td> <td></td> <td>** 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>. 1</td> <td>61</td>				** 1										. 1	61
Gly Ile Glu Phe Asp Pro Lys Tyr Thr Ala Phe Glu Val Glu Val Glu Asp Pro Lys Tyr Val His Glu Asp Pro Val Val Arg Leu His Gly Au Asp Val Ala Pro Val Val Arg Leu His Arg Leu Arg His Arg Ser Arg Ar	116		116	vai	Arg				Met	Lys	Asn		Asn	Ala	Glu
Hand Hand	C1		Tla	Cl.	Dh.a				m	m1	A 7 -		C1	37 - 1	O1
Glu Asp Val Gly Leu Ile Met Ile Pro Val Val Arg Leu His Gly 4415	Gly		116	GIU	rne	ASP		Lys	іуг	ınr	Ala		GIU	vai	GIU
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Clu		Va I	Clv	T 011	Ilo		Ϊlο	Dro	Vo l	Va l		Lou	Пic	C1v
Thr Tyr Gly Tyr Val Thr Ala Asp Phe Ile Ser Gln Ser Ser Ser Ala Ser Pro Gly Gly Val Asp Tyr Ile Leu His Gly Ser Thr Val Ala Fro Gly Gly Gly Asp Leu Ser Phe Ile Asp Ile Ser Ile Ala Fro Gly Gly Gly Asp Leu Ser Phe Ile Asp Ile Ser Ile Ala Asp Asp Gly Gly Asp Gly Fro Ile Asp Ile Ile Asp Ile Ile Ile Asp Ile I	Ulu		141	Gly	LCu	110			110	4 a 1	Vai		Leu	1113	GIY
Ala Ser Pro Gly Gly Val Asp Tyr Ile Leu His Gly Gly Gly Gly Val Asp Tyr Ile Leu His Gly	Thr		Glv	Tvr	Val	Thr			Phe	He	Ser		Ser	Ser	Ser
Ala Ser Pro Gly Gly Gly Val Asp Tyr Ile Leu His Gly Gly Gly Gly Ser Thr Val 4455 Thr Phe 4460 Gln His Gly Gln Asn Asn Leu Ser Phe Ile Asn Ile Ser Ile 4460 Ile Asp Asp Asp Asn Glu Ser Glu His Gly Gly Gly Gly His Leu A480 Fro Gly			3	-,-							20.			201	201
4445 4455 4455 4455 11e 455 11e Asn Gly Gly Asn Leu Ser Phe Phe Ile Asn Ile Ser Ile Ile Asp Asp Asp Asp Glu Ser Glu Phe Glu Pro Ile Glu Ile Leu Leu Thr Gly Ala Gly Ala Val Leu Gly Arg His Leu Val	Ala		Pro	Gly	Gly	Val			Ile	Leu	His	Gly	Ser	Thr	Val
Ile Asp Asp Asp Asp Str Glu Str Glu Glu Glu Glu Pro Ile Glu Ile Glu Ile Leu 4475 4475 Glu Glu Glu Glu Glu Pro Ile Glu Ile Glu Ile Leu Leu Thr Gly Ala Thr Gly Gly Gly Ala Val Leu Gly Arg His Leu Val															
Ile Asp Asp Asp Asp Odl Ser Glu Phe Glu Glu Pro Ile Ile Glu Ile Leu 4475 - 4485 - 4480 - 4485 - 4485 Leu Thr Gly Ala Thr Gly Gly Gly Ala Val Leu Gly Arg His Leu Val	Thr	Phe	Gln	His	Gly	Gln	Asn	Leu	Ser	Phe	Ile	Asn	He	Ser	Ile
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4460					4465					4470			
Leu Thr Gly Ala Thr Gly Gly Ala Val Leu Gly Arg His Leu Val	Ile	Asp	Asp	Asn	Glu	Ser	Glu	Phe	Glu	Glu	Pro	Ile	Glu	Ile	Leu
		4475					4480					4485			
4490 4495 4500	Leu	Thr	Gly	Ala	Thr	Gly	Gly	Ala	Val	Leu	Gly	Arg	His	Leu	Val
•		4490					4495					4500			

						Lys 4510					Phe 4515			Ile
						Lys								Sor
	4520			GIII		4525						110	USII	261
						Val						Clv	Ι Δ11	Lou
	ме і 4535	116	ren			4540				1111	4545	Gly	Leu	Leu
		TΙΔ	Cln									Aon	Sor.	Cln
	4550	116	GIH			Trp 4555				GIY	4560	ASII	961	GIII
		Ι _{Δυ}	Lou									Dro	Vo l	Sar
	A14 4565					Asn 4570						. T. I.O.	Vai	2ē1
						Glu						Ara	Thr	Ila
	4580	Inc	TYL			4585				GIY	4590	піg	1111	116
		Thr	He			His						Glu	Gln	Thr
	4595	1111	110			4600					4605	uiu	O I u	1111
		Tle	I.vs			Leu						I.vs	Len	Asp
1110	4610	110	2,5	204		4615		_	-			2,0	Dou	Пор
Ser		Ala	Lvs	Asp	Val	Thr						Phe	Glv	Asp
	4625		_,_			4630					4635		,	
Pro		Glv	Val	•		Phe						Ser	Lvs	Lvs
	4640	-	•			4645								
Thr	Tyr	Ser	Glu	Pro	Leu	Ala	Leu	Glu	Gly	Pro	Leu	Leu	Ile	Thr
	4655					4660								
Phe	Phe	Val	Arg	Arg	Val	Lys	Gly	Thr	Phe	Gly	Glu	Ile	Met	Val
	4670					4675					4680			
Tyr	Trp	Glu	Leu	Ser	Ser	Glu	Phe	Asp	Ile	Thr	Glu	Asp	Phe	Leu
	4685					4690					4695			
Ser	Thr	Ser	Gly	Phe	Phe	Thr	Ile	Ala	Asp	Gly	Glu	Ser	Glu	Ala
	4700					4705					4710			
Ser	Phe	Asp	Val	His	Leu	Leu	Pro	Asp	Glu	Val	Pro	Glu	Ile	Glu
	4715					4720					4725			
Glu	Asp	Tyr	Val	Ile	Gln	Leu	Val	Ser	Val	Glu	Gly	Gly	Ala	Glu
	4730					4735					4740			
Leu	Asp	Leu	Glu	Lys	Ser	Ile	Thr	Trp	Phe	Ser	Val	Tyr	Ala	Asn
	4745					4750					4755			
Asp	Asp	Pro	His	Gly	Val	Phe	Ala	Leu	Tyr	Ser	Asp	Arg	Gln	Ser
	4760					4765					4770		٠	
Ile	Leu	Ile	Gly	Gln	Asn	Leu	Ile	Arg	Ser	Ile	Gln	Ile	Asn	Ile

	4775					4780					4785			
Thr	Arg	Leu	Ala	Gly	Thr	Phe	Gly	Asp	Val	Ala	Val	Gly	Leu	Arg
	4790					4795					4800			
Ile	Ser	Ser	Asp	His	Lys	Glu	Gln	Pro	Ile	Val	Thr	Glu	Asn	Ala
	4805					4810					4815			
Glu	Arg	Gln	Leu	Val	Val	Lys	Asp	Gly	Ala	Thr	Tyr	Lys	Val	Asp
•	4820					4825					4830			
Val	Val	Pro	He	Lys	Asn	Gln	Val	Phe	Leu	Ser	Leu	Gly	Ser	Asn
	4835					4840					4845			
						Thr								
	4850					4855					4860			
Tyr	Gly	Met	Pro	Thr	Ile	Leu	Gln	Glu	Ala	Lys	Ser	Ala	Val	Leu
	4865					4870					4875			
Pro	Val	Ser	Glu	Lys	Ala	Ala	Asn	Ser	Gln	Val	Gly	Phe	Glu	Ser
	4880					4885					4890			
Thr	Ala	Phe	Gln	Leu	Met	Asn	Ile	Thr	Ala	Gly	Thr	Ser	His	Val
	4895					4900					4905			
Met	Ile	Ser	Arg	Arg	Gly	Thr	Tyr	Gly	Ala	Leu	Ser	Val	Ala	Trp
	4910					4915					4920			
Thr	Thr	Gly	Tyr	Ala	Pro	Gly	Leu	Glu	Ile	Pro	Glu	Phe	Ile	Val
	4925					4930					4935			
Val			Met			Thr			Ser	Leu		Phe	Ser	His
	4940					4945					4950			
Gly			Arg	_	_	Val		Leu	Trp	Thr		Pro	Ser	Pro
٠.	4955					4960			_	•	4965			•
Gly			Glu	Ala	Phe	Val		His	Leu	Ser		Val	GIn	Ser
0	4970		01	01	A 1 .	4975		A	0	01	4980	Y 1 -	W - 1	A 1 -
Ser			GIY	GIY	Ala	Gln		Arg	261	GIY		116	vai	Aia
Cla	4985		Dno	No+	C1**	4990		Cln	Dho	Can	4995	Con	Con	A = ~
GIU			PTO	Mer	GIY	Val		GIII	rne	261	5010	261	261	Alg
Aon	5000		Vo I	C0#	Clu	5005 Asp		Cln	Mot	Ϊla		Τ 011	Uic	Vol
ASII	5015		Val	ser	GIU	5020		GIII	MEI	116	5025	ren	піз	· A T T
Cln			Dho	C1v	Dha	His		Δen	11 آ	مات		V a 1	Sar	Tur
GIII	5030		1.116	GIY	1 116	5035		ησħ	Ti Cit	116	5040	, α1	กตา	1 y 1
Gln			ΔΙα	Clv	Sar	Ala		Pro	Ĭ. ⊝ 11	Glu		Pho	Cln	Pro
GIII	5045		nia	GIY	אכז	5050			Dou	GIU	5055	THE	σιu	110
	0040					0000		•			5000			

Val	Gln 5060	Asn	Gly	Glu	Leu	Phe 5065	Phe	Gln	Lys	Phe	Gln 5070	Thr	Glu	Val
Asp	Phe 5075	Glu	Ile	Thr	Ile	Ile 5080		Asp	Gln	Leu	Ser 5085	Glu	Ile	Glu
Glu	Phe 5090	Phe	Tyr	Ile	Asn	Leu 5095	Thr	Ser	Val	Glu	Ile 5100	Arg	Gly	Leu
Gln	Lys 5105			Val	Asn	Trp 5110		Pro	Arg	Leu	Asn 5115	Leu	Asp	Phe
Ser	Val 5120		Val	Ile	Thr	Ile 5125			Asn _.	Asp	Asp5130	Leu	Ala	Gly
Met	Asp 5135	Ile	Ser	Phe	Pro	Glu 5140		Thr	Val	Ala	Val 5145	Ala	Val	Asp
Thr	Thr 5150		Ile	Pro	Val	Glu 5155		Glu	Ser	Thr	Thr 5160	Tyr	Leu	Ser
Thr	Ser 5165	-	Thr	Thr	Thr	Ile 5170					Asn 5175	Val	Val	Ala
Ile		Thr	Glu	Ala		Gly 5185	Val		Ala	Ile	Pro 5190		Lys	Leu
		Leu	Ḥis	Gly		Pro 5200	Ala	Val	Ser	Glu			Asp	Val
Ala		Val	Thr	Ala	Asn	Val 5215	Ser				Thr	Phe	Ser	Leu
Gly		Ser	Ile	Val		Ile 5230	Glu						Gly	Thr
		Thr	Ala	Glu		Leu 5245	Ile	Arg	Arg	Thr			Phe	Thr
Gly		Val	Ser	Ile	Thr	Val 5260	Lys	Thr	Phe	Gly		Arg	Cys	Ala
Gln		Glu	Pro	Asn	Ala	Leu 5275	Pro	Phe	Arg	Gly			Gly	Ile
Ser		Leu	Thr	Trp	Ala	Val 5290	Glu	Glu	Glu	Asp		Glu	Glu	Gln
Thr		Thr	Leu	Ile	Phe	Leu 5305	Asp	Gly	Glu	Arg		Arg	Lys	Val
Ser		Gln	Ile	Leu	Asp	Asp 5320	Asp	Glu	Pro	Glu		Gln	Glu	Phe
Phe			Phe	Leu	Thr	Asn		Gln	Gly	Gly			Ile	Val

	5330					5335	•				5340		-	
Glu	Gly		_								Ala	Met	Val	Ile
	5345					5350					5355			
Ile	Thr	Gly	Ser	Asp	Leu	His	Asn	Gly	Ile	Ile	Gly	Phe	Ser	Glu
	5360					5365					5370			
Glu	Ser	Gln	Ser	Gly	Leu	Glu	Leu	Arg	Glu	Gly	Ala	Val	Met	Arg
	5375					5380					5385		÷	
Arg	Leu	His	Leu	Ile	Val	Thr	Arg	Gln	Pro	Asn	Arg	Ala	Phe	Glu
••	5390					5395					5 <u>40</u> 0			
Asp	Val	Lys	Val	Phe	Trp	Arg	Val	Thr	Leu	Asn	Lys	Thr	Val	Val
	5405	•				5410					5415			
Val		Gln	Lys							•	Glu	Leu	Gln	Ser
	5420					5425					5430	_		
Val		Gly	Thr								Thr	Lys	Cys	Phe
T1 -	5435	Y 1 -	01			5440 D					5445	17 - 1	01	37 - 1
116		116	GIU		_			_			Gln	vai	Glu	vai
Т	5450	Dha	Vo 1			5455					5460	A 1 a	410	Tlo
Iyr	5465	rne				5470					Gly 5475	Ala	Ala	116
Aen		Sar	•								Leu	Glu	Sar	Asn
лоп	5480	pei	nia			5485						Gru	501	лър
Glu		Gln	Ser								Ser	Arg	Len	Ala
oru	5495	VIII	501		,							**** 0	Dou	
Val		His	Lys								Gln	Val	Ala	Arg
	5510		·	•		5515					5520			
Asp	Ser	Gly	Thr	Gly	Leu	Met	Met	Ser	Val	Asn	Phe	Ser	Thr	Gln
	5525					5530					5535			
Glu	Leu	Arg	Ser	Ala	Glu	Thr	Ile	Gly	Arg	Thr	Ile	Ile	Ser	Pro
	5540					5545					5550			
Ala	Ile	Ser	Gly	Lys	Asp	Phe	Val	Ile	Thr	Glu	Gly	Thr	Leu	Val
	5555					5560					5565			
Phe	Glu	Pro	Gly	Gln	Arg	Ser	Thr	Val	Leu	Asp	Val	Ile	Leu	Thr
	5570					5575					5580			
Pro			Gly	Ser	Leu			Phe	Pro	Lys	Arg		Gln	Ile
	5585					5590					5595			
Val			Asp	Pro	Lys			Ala	Arg	Ile	Asp		Vạl	Tyr
	5600					5605					5610			

Gly	Thr 5615	Ala	Asn	Ile	Thr	Leu 5620	Va:1	Ser	Asp	Ala	Asp 5625	Ser	Gln	Ala
Ile	Trp 5630	Gly	Leu	Ala	Asp	Gln 5635	Leu	His	Gln	Pro	Val 5640	Asn	Asp	Asp
Ile	Leu 5645	Asn	Arg	Val	Leu	His 5650	Thr	Ile	Ser	Met	Lys 5655	Val	Ala	Thr
Glu	Asn 5660	Thr	Asp	Glu	Gln	Leu 5665	Ser	Ala	Met	Met	His 5670	Leu	Ile	Glu
Lys.	Ile 5675	Thr	Thr_	Glu	Gly	Lys. 5680	<u>I</u> <u>I</u> <u>l</u> e	Gln	Ala,	Phe	Ser _. 5685	.ya1	Ala	Ser .
Arg		Leu	Phe	Tyr	Glu	Ile 5695	Leu	Cys	Ser	Leu		Asn	Pro	Lys
Arg	Lys 5705	Asp	Thr	Arg	Gly	Phe 5710	Ser	His	Phe	Ala	Glu 5715	Val	Thr	Glu
Asn	Phe 5720	Ala	Phe	Ser	Leu	Leu 5725	Thr	Asn	Val	Thr	Cys 5730	Gly	Ser	Pro
Gly	Glu 5735	Lys	Ser	Lys	Thr	Ile 5740	Leu	Asp	Ser	Cys	Pro 5745	Tyr	Leu	Ser
Ile	Leu 5750	Ala	Ļeu	His	Trp	Tyr 5755	Pro	Gln	Gln	Ile	Asn 5760		His	Lys
Phe	Glu 5765	Gly	Lys	Glu	Gly	Asp 5770		Ile	Arg	Ile	Pro 5775	Glu	Arg	Leu
Leu	Asp 5780	Val	Gln	Asp	Ala	Glu 5785		Met	Ala	Gly	Lys 5790	Ser	Thr	Cys
Lys	Leu 5795	Val	Gln	Phe	Thr	Glu 5800		Ser		Gln	Gln 5805	Trp	Phe	Ile
Ser	Gly 5810		Asn	Leu	Pro	Thr 5815		Lys	Asn	Lys	Val 5820	Leu	Ser	Leu
Ser	Val 5825		Gly	Gln	Ser	Ser 5830		Leu	Leu	Thr	Asn 5835	Asp	Asn	Glu
Val	Leu 5840		Arg	Ile	Tyr	Ala 5845		Glu	Pro	Arg	Ile 5850		Pro	Gln
Thr	Ser 5855		Cys	Leu	Leu	Trp 5860		Gln	Ala	Ala	Ala 5865		Trp	Leu
Ser		Ser	Gln	Phe	Cys	Lys 5875	Val	Ile	Glu	Glu		Ala	Asp	Tyr
Val			Ala	Cys	Ser	His		Ser	Val	Tyr			Tyr	Ala

	5885					5890					5895			
Arg	Thr	Asp	Asn	Leu	Ser	Ser	Tyr	Asn	Glu	Ala	Phe	Phe	Thr	Ser
	5900					5905					5910			
Gly	Phe	Ile	Cys	Ile	Ser	Gly	Leu	Cys	Leu	Ala	Val	Leu	Ser	His
	5915					5920					5925			
Ile		Cys	Ala	Arg	Tyr	Ser	Met	Phe	Ala	Ala	Lys	Leu	Leu	Thr
	5930				_	5935 -					5940			
			Ala	Ala		Leu							Leu	Ala
	5945	•	41-	0		5950								4.1
ser	5960				Pro	Gln 5965			GIU	Glu		Cys	Ser	Ala
Mei					Иiс	Tyr			ĪΔ11	Cvc	5970	Dha	Sar	Trn
MC L	5975	ma	741	1111	1113	5980	LCu	1 9 1	LCu	Cys	5985	THE	561	пр
Met		Ile	Gln	Ser	Val	Asn	Phe	Trp	Tvr	Val		Val	Met	Asn
	5990					5995		•			6000			
Asp	Glu	His	Thr	Glu	Arg	Arg	Tyr	Leu	Leu	Phe	Phe	Leu	Leu	Ser
	6005					6010					6015			
Trp	Gly	Leu	Pro	Ala.	Phe	Val	Val	Ile	Leu	Leu	Ile	Val	Ile	Leu
	6020		•			6025		•			6030			
Lys	Gly	Ile	Tyr	His	Gln	Ser	Met	Ser	Gln	Ile	Tyr	Gly	Leu	Ile
	6035					6040					6045			
His		Asp	Leu	Cys	Phe	Ile	Pro	Asn	Val	Tyr		Ala	Leu	Phe
MI	6050	A 1	T	W - 1	D	6055	mı.	0	,	** 1	6060	¥7 1	D.I	77 1
ınr	_					Leu						vai	Pne	val
Va 1	6065				Tur	6070 Gln			Dro		6075	I wo	Ala	T17 P
Vai	6080	116	1112	Ala	1 9 1	6085	Vai	гуз	110	GIII	6090	Lys	nia	1 y 1
Asp		Val	Phe	Arg	Glv	Arg	Thr	Asn	Ala	Ala		He	Pro	Len
	6095			· G	,	6100					6105			200
Ile	Leu	Tyr	Leu	Phe	Ala	Leu	Ile	Ser	Val	Thr		Leu	Trp	Gly
	6110					6115					6120			
Gly	Leu	His	Met	Ala	Tyr	Arg	His	Phe	Trp	Met	Leu	Val	Leu	Phe
	6125					6130					6135			
Val	Ile	Phe	Asn	Ser	Leu	Gln	Gly	Leu	Tyr	Val	Phe	Met	Val	Tyr
_	6140	_				6145					6150			
Phe		Leu	His	Asn	Gln	Met	Cys	Cys	Pro	Met		Ala	Ser	Tyr
	6155					6160					6165			

Thr	Val 6170	Glu	Met	Asn	Gly	His 617		o G	ly P	ro	Ser	Thr 6180		Phe	Phe
Thr	Pro 6185	Gly	Ser	Gly	Met	Pro 619		o A	la G	ly	Gly		Ile	Ser	Lys
Ser	Thr 6200	Gln	Asn	Leu	Ile		Al	a M	et G	llu	Glu		Pro	Pro	Asp
Trp	Glu 6215	Arg	Ala	Ser	Phe		Gl	n G	ly S	Ser	Gln		Ser	Pro	Asp
Ļeu	Lys 6230	Pro	Şer	Pro	<u>G1n</u>		Gl	уА	la J	`hŗ_	Phe		Ser	Ser	Ģly
Gly	Tyr 6245		Gln	Gly	Ser		Ιl	e A	la A	Asp	Glu		Ser	Gln	Glu
Phe	Asp 6260	Asp	Leu	Ile	Phe		Le	eu L	ys I	hr	Gly		Gly	Leu	Ser
Val	Ser 6275	Asp	Asn	Glu	Ser		Gl	n G	ly S	Ser	Gln		Gly	Gly	Thr
Leu	Thr		Ser	Gln	Ile			u Ĺ	eu A	\rg	Arg			Ile	Ala
	6290					629						6300			
Asp	Thr	His	Leu	•											
	6305		•									•			
<210)> 7	8													
<21 1	1> 4	65													
<212	2> P	RT													
<213	3> h	omo	sapi	ens											
<400)> 7	8													
Met	His	Leu	Leu		Cys	Val	Phe	Gly		t ·G1	y Se	er Tr	p Va		r Ile
1				5					10					15	
Asn	Gly		Trp 20	Val	Glu	Leu	Pro	Leu 25	Let	ı Va	ıl Me	et Gl	u Le	u Pr	o Glu
Gly	Trp	Tyr 35	Leu	Pro	Ser	Tyr	Leu 40	Thr	Val	l Va	al I	le Gl 45		u Ala	a Asn
Ile	Gly : 50	Pro	Leu	Leu		Thr 55	Leu	Leu	His	3 Hi	s P1		g Pr	o Se	r Cys
Leu	Ser	Glu	Val	Pro	Ile	Ile	Phe	Thr	Let	ı Le	eu G	ly Va	1 G1:	y Th	r Val
65					70					75	5				80
Thr	Cys	Ile	Ile	Phe 85	Ala	Phe	Leu	Trp	Asr 90	ı Me	et Tl	ır Se	r Tr	Va. 95	l Leu

Asp	Gly	His	His	Ser	Ile	Ala	Phe	Leu	Val	Leu	Thr	Phe	Phe	Leu	Ala
			100					105					110		
Leu	Val		Cys	Thr	Ser	Ser	Val	Thr	Phe	Leu	Pro	Phe	Met	Ser	Arg
		115					120					125			
Leu	Pro	Thr	Tyr	Tyr	Leu	Thr	Thr	Phe	Phe	Val	Gly	Glu	Gly	Leu	Ser
	130					135					140				
Gly	Leu	Leu	Pro	Ala	Leu	Val	Ala	Leu	Ala	Gln	Gly	Ser	Gly	Leu	Thr
145					150					155					160
Thr	Cys	Vаl	Așn		Thr	Glu	<u>Ile</u>	Ser		Ser	Val	Pro	Ser	Pro	Val
				165					170					175	
Pro	Thr	Arg	Glu	Thr	Asp	He	Ala		Gly	Val	Pro	Arg		Leu	Val
		_	180		400.			185					190		
Ser	Ala		Pro	Gly	Met	Glu		Pro	Leu	Ser	His		Glu	Ser	Arg
_	_	195				_	200	_				205	_	_	_
Tyr		Pro	Ala	His	Phe		Pro	Leu	Val	Phe		Leu	Leu	Leu	Ser
71.	210	V ()	A 1	^	•	215	T 7 1		D.	D1	220		0.1		61
	met	met	Ala	Cys		Leu	Val	Ala	Phe		Val	Leu	Gln	Arg	
225	A	0	W	01	230	0	77. 1	01	4	235		•		01	240
Pro	Arg	Cys	Tṛp		Ala	ser	vai	GIU			Leu	Asn	Asp		vaı
TL	T	II: a	C	245	۸	T	A	01	250		A	Y	01	255	A 1 -
Inr	Leu	піз	Ser	116	Arg	ren	Arg				ASP	Leu		Pro	Ala
Clyr	Mot	Vol	260	Con.	Co.	Cln	C1**	265		Т	Lou	C1	270	T 0	A10
GIY	Mei	275	Asp	261	Ser	GIII	280	GIII	GIY	1 9 1	Leu	285	GIU	Lys	Ala
A 1 a	Dro		Cys	Dro	Ala	Uio		A 1 a	Dho	Vo 1	Tur		Lon	Vo 1	A 1 o
Ala	290	Cys	Cys	rio	MId	295	ren	Ala	rne	Val	300	1111	Leu	Val	Ala
Dhα		Acn	Ala	Ιου	Thr		C1v	Mat	Lou	Dro		Va 1	Cin	Th.	Т., г
305	141	usn	Aia	LCu	310	лоп	GIA	met	LCu	315	261	101	GIII	1111	320
	Cve	I en	Ser	Tvr		Pro	Val	Δla	Tur		Len	Δla	Δ1a	Thr	
561	0,5	Dou	DCI	325	dry	110	741	mu	330		Lcu	mu	ma	335	LÇU
Ser	īle.	Val	Ala		Pro	Len	Ala	Ser			Ser	Met	Phe		Pro
501		, 41	340	71011	110	Deu	/11 W	345	Dog	14.1	501	MOL	350	Dea	110
Asn	Arg	Ser	Leu	I.en	Phe	Len	Glv		T.en	Ser	Va 1	I.en		Thr	Cvs
	6	355			- 110	204	360	,	_54	~~1	. 4.1	365		***	9 ,0
Phe	Glv		Tyr	Asn	Met	Ala		Ala	Val	Met	Ser			Pro	Len
	370	,	- , -			375			•		380		-,,		_54
Len		Glv	Hie	Trn	G1 v		Gln	Va 1	Leu	Ϊlρ		Ala	Ser	Trn	Val

385					390					395					400
Leu	Phe	Ser	Gly	Cys	Leu	Ser	Tyr	Val	Lys	Val	Met	Leu	Gly	Val	Val
				405					410					415	
Leu	Arg	Asp	Leu	Ser	Arg	Ser	Ala	Leu	Leu	Trp	Cys	Gly	Ala	Ala	Val
			420					425					430		
Gln	Leu	Gly	Ser	Leu	Leu	Gly	Ala	Leu	Leu	Met	Phe	Pro	Leu	Val	Asn
		435					440					445			
Val	Leu	Arg	Leu	Phe	Ser	Ser	Ala	Asp	Phe	Cys	Asn	Leu	His	Cys	Pro
	450					455					460				
Ala															
465															
<210)> 7	79													
<21	(> 4	458													
<212	2> 1	PRT													
<213	3> 1	nomo	sap	iens											
<400)> '	79													
Met	Ala	Gly	Ser	Pro	Ser	Arg	Ala	Ala	Gly	Arg	Arg	Leu	Gln	Leu	Pro
1				5					10					15	
Leu	Leu	Cys	Leu	Phe	Leu	Gln	Gly	Ala	Thr	Ala	Val	Leu	Phe	Ala	Val
			20					25					30		
Phe	Val	Arg	Tyr	Asn	His	Lys	Thr	Asp	Ala	Ala	Leu	Trp	His	Arg	Ser
		35					40		•			45			
Asn	His	Ser	Asn	Ala	Asp	Asn	Glu	Phe	Tyr	Phe	Arg	Tyr	Pro	Ser	Phe
	50					55					60				
Gln	Asp	Val	His	Ala	Me t	Val	Phe	Val	Gly	Phe	Gly	Phe	Leu	Met	Val
65					70					·75					80
Phe	Leu	Gln	Arg	Tyr	Gly	Phe	Ser	Ser	Val	Gly	Phe	Thr	Phe	Leu	Leu
				85					90					95	
Ala	Ala	Phe	Ala	Leu	Gln	Trp	Ser	Thr	Leu	Val	Gln	Gly	Phe	Leu	His
			100					105					110		
Ser	Phe	His	Gly	Gly	His	Ile	His	Val	Gly	Val	Glu	Ser	Met	Ile	Asn
		115					120					125			
Ala	Asp	Phe	Cys	Ala	Gly	Ala	Va·l	Leu	Ile	Ser	Phe	Gly	Ala	Val	Leu
	130					135					140				
Gly	Lys	Thr	Gly	Pro	Thr	Gln	Leu	Leu	Leu	Met	Ala	Leu	Leu	Glu	Val
145					150					155			•		160
Val	Leu	Phe	Gly	Ile	Asn	Glu	Phe	Val	Leu	Leu	His	Leu	Leu	Gly	Val

									,						
	•			165					170					175	
Arg	Asp	Ala	Gly	Gly	Ser	Met	Thr	Ile	His	Thr	Phe	Gly	Ala	Tyr	Phe
			180					185					190		
Gly	Leu	Val	Leu	Ser	Arg	Val	Leu	Tyr	Arg	Pro	Gln	Leu	Glu	Lys	Ser
		195					200					205			
Lys	His	Arg	Gln	Gly	Ser	Val	Tyr	His	Ser	Asp	Leu	Phe	Ala	Met	He
	210					215					220				
Gly	Thr	Ile	Phe	Leu	Trp	Ile	Phe	Trp	Pro	Ser	Phe	Asn	Ala	Ala	Leu
225					230					235	. 			. .	240
Thr	Ala	Leu	Gly	Ala	Gly	Gln	His	Arg	Thr	Ala	Leu	Asn	Thr	Tyr	Tyr
		•		245					250					255	
Ser	Leu	Ala	Ala	Ser	Thr	Leu	Gly	Thr	Phe	Ala	Leu	Ser	Ala	Leu	Val
			260					265					270		
Gly	Glu		Gly	Arg	Leu	Asp		Val	His	Ile	Gln	Asn	Ala	Ala	Leu
		275					280					285			
Ala		Gly	Val	Val	Val		Thr	Ser	Ser	Glu		Met	Leu	Thr	Pro
	290					295					300				
	Gly	Ala	Leu	Ala	•	Gly	Phe	Leu	Ala		Thr	Val	Ser	Thr	
305	_	_			310			1		315	_	÷.	_		320
Gly	Tyr	Lys	Phe		Thr	Pro	He	Leu		Ser	Lys	Phe	Lys		GIn
		•		325				***	330			a 1	** 1	335	01
Asp	Thr	Cys		Val	HIS	Asn	Leu		Gly	Met	Pro	Gly		Leu	Gly
41-	Υ	T	340	W- 1	T	37 a 1	۸1.	345	T	41.	Th	TT: 0	350	41.	т
Ala	Leu		Gly	Val	reu	Val	360	Gly	ren	Ala	IIII	His 365	GIU	Ala	IyI
Clar	Aan	355	Lon	Clu	Sar	Va I		Dro	T ou	Πa	11a		Clv	Cln	Arg
GIY	370	GIY	Leu	Giu	261	375	THE	110	Leu	116	380	Giu	GIY	GIII	лгg
Ser		Thr	Ser	Gln	Ala		Hic	GIn	I en	Phe		Leu	Phe	Val	Thr
385	mu	1111	DCI	O I II	390		11.1.5	OIN	Dou	395	Uly	LCu	1110	741	400
	Met	Phe	Ala	Ser			Glv	Glv	Len		Glv	Leu	Len	Len	
Воц			1114	405	,	0.,	Q.J.	013	410		013	Lou	204	415	_,,
Leu	Pro	Phe	Leu		Ser	Pro	Pro	Asp			His	Tvr	Glu		Gln
			420					425				_ •	430	-	
Val	His	Trp			Pro	Glv	Glu			Asp	Lys	Ala	Gln	Arg	Pro
		435			-	- •	440			_		445			
Leu	Arg			Glu	Ala	Asp	Thr	Gln	Ala						
	450					455									

<210	>	80						•							
<211	> :	871							•						
<212	> :	PRT													
<213	> 1	homo	sapi	ens											
<400	>	80													
Met	Ile	Lys	Lys	Phe	Asp	Lys	Lys	Asp	Glu	Glu	Ser	Gly	Ser	Gly	Ser
1				5					10					15	
Asn	Pro	Phe	Gln	His	Leu	Glu	Lys	Ser	Ala	Val	Leu	Gln	Glu	Ala	Arg
		-	20					<u>25</u> .					30		
Ile	Phe	Asn 35	Glu	Thr	Pro	Ile	Asn 40	Pro	Arg	Arg	Cys	Leu 45	His	Ile	Leu
Thr	Lys	Ile	Leu	Tyr	Leu	Leu		Gln	Gly	Glu	His		Gly	Thr	Thr
	50					55			_		60				
Glu	Ala	Thr	Glu	Ala	Phe	Phe	Ala	Met	Thr	Arg	Leu	Phe	Gln	Ser	Asn
65					70					75					80
Asp	Gln	Thr	Leu	Arg	Arg	Met	Cys	Tyr	Leu	Thr	Ile	Lys	Glu	Met	Ala
				85					90					95	
Thr	Ile	Ser	Glu	Asp	Va l	Ile	Ile	Val	Thr	Ser	Ser	Leu	Thr	Lys	Asp
			100					105					110		
Met	Thr	Gly	Lys	Glu	Asp	Val	Tyr	Arg	Gly	Pro	Ala	Ile	Arg	Ala	Leu
		115					120					125			
Cys	Arg	Ile	Thr	Asp	Gly	Thr	Met	Leu	Gln	Ala	Ile	Glu	Arg	Tyr	Met
	130					135					140				
	Gln	Ala	Ile	Val		Lys	Val	Ser	Ser		Ser	Ser	Ser	Ala	
145					150					155					160
Val	Ser	Ser	Leu		Met	Met	Lys	Ile		Tyr	Asp	Val	Val		Arg
m			0.1	165					170	•			~ 1	175	** 1
Trp	lie	Asn		Ala	Gln	Glu	Ala		Ser	Ser	Asp	Asn		Met	Val
01	T	TY:_	180	T	01.	37 - 1	۲	185	TT: -	T	A	T	190	۸	A
GIN	lyr	His	Ala	Leu	Gly	vai		lyr	HIS	Leu	Arg		ASI	ASP	Arg
ľ a	A 1 o	195	Com	T	Mad	T	200	T	Dha	ም ኤ =	T 0	205	C1**	Lou	T
Leu	210	Val	ser	Lys	meı		ASII	Lys	rne	шт	220	261	GIY	Leu	LyS
Sor			A 1 a	ጥ _{ላታ} ም	Crrs	215	T 011	Ιlα	A = c	Ιlα		Sor	Ara	Lou	Lou
225	GII	Phe	піф	1 7 1	230	MEL	LCU	116	uig	235	піц	DCI	ui g	ren	240
	Glu	Thr	Gln	Aen		Hie	Glu	Ser	Pro		Phe	Asn	Phe	Πρ	
~,0	310	. 1111	Jiu	245	O.I.J	***		201	250	~0u	- 110			255	Ų, u

Ser	Cys	Leu	Arg 260	Asn	Lys	His	Glui	Me t 265	Val	Ile	Tyr	Glu	Ala 270	Ala	Ser
Ala	He	He		Leu	Pro	Asn	Cvs		Ala	Arg	Gln	Len		Pro	Ala
		275					280	****	111 u	**** 6	o.u	285		110	
Val	Ser		Leu	Gln	Leu	Phe		Ser	Ser	Pro	I.vs		Ala	Len	Arg
, 41	290		204	• • • • • • • • • • • • • • • • • • • •		295	0,0	501	501	110	300	110	u	Dog	
Tvr		Ala	Val	Arg	Thr		Asn	Lvs	Val	Ala		Lvs	His	Pro	Ser
305				0	310			2,0		315		2,0			320
	Val	Thr	Ala	Cys	Asn	Leu	Asp	Leu	Glu		Leu	Ile	Thr	Asp	
				325			•		330		•			335	
Asn	Arg	Ser	Ile	Ala	Thr	Leu	Ala	Ile	Thr	Thr	Leu	Leu	Lys	Thr	Gly
			340					345					350		
Ser	Glu	Ser	Ser	Val	Asp	Arg	Leu	Met	Lys	Gln	Ile	Ser	Ser	Phe	Val
		355					360					365			
Ser	Glu	Ile	Ser	Asp	Glu	Phe	Lys	Val	Val	Val	Val	Gln	Ala	Ile	Ser
	370					375					380				
Ala	Leu	Cys	Gln	Lys	Tyr	Pro	Arg	Lys	His	Ser	Val	Met	Met	Thr	Phe
385					390					395					400
Leu	Ser	Asn	Me t	Leu	Arg	Asp	Asp	Gly	Gly	Phe	Glu	Tyr	Lys	Arg	Ala
				405					410	•				415	
Ile	Val	Asp	Cys	Ile	Ile	Ser	Ile	Val	Glu	Glu	Asn	Pro	Glu	Ser	Lys
			420					425	•				430		
Glu	Ala	Gly	Leu	Ala	His	Leu	Cys	Glu	Phe	He	Glu	Asp	Cys	Glu	His
		435					440					445			
Thr	Val	Leu	Ala	Thr	Lys	Ile	Leu	His	Leu	Leu	Gly	Lys	Glu	Gly	Pro
	450					455					460				
	Thr	Pro	Val	Pro	Ser	Lys	Tyr	Ile	Arg		Ile	Phe	Asn	Arg	
465	_				470					475				_	480
Val	Leu	Glu	Asn		Ala	Val	Arg	Ala		Ala	Val	Ser	Ala		Ala
				485	_		_		490	_	_		_	495	_
Lys	Phe	Gly			Asn	Glu	Ser		Leu	Pro	Ser	He		Vai	Leu
	01		500				m1	505	4	01	** 1		510		4.1
Leu	GIN		Cys	met	met	Asp			ASP	GIU	val		Asp	Arg	Ala
ጥኒ .	DL -	515	۲	A	₹7. 1	T	520		A	C1~	Mal	525	T	۸ ـ	A 1
ınr		ıyr	Leu	ASI	val			GIN	Arg	GIU		Ala	rea	ASN	Ala
ጥև	530	71.	Dh.	A ==	C1	535		Va 1	90-	Ve 1	540	C1+-	Mot	Cl.,	T
1111	тÀL	116	rne	ASI	Gly	ren	1111	v d I	261	1 to v	110	αīλ	MCL	ចារ	LYS

545					550					555					560
	Leu	His	Gln	Tvr		Leu	Glu	Pro	Ser		Lvs	Pro	Phe	Asp	
	Dou		•••	565		204	014		570	0.0	2,5		1110	575	1120 6
T 170	Sor	Ilo	Dro		۸ 1 a	Mot	A 1 a	Dro		Dha	Clu	Cln	Taro		Clu
ГАЗ	261	116		Leu	ліа	Met	ліа		Yaı	rne	Giu	GIII		nia	GIU
Y 1 -	Mt	T	580	A 1 -	701 ₋	T	D	585	T	T	A 1 -	D	590	A	01
He	ınr		vai	Aia	ınr	Lys		GIU	Lys	Leu	Ala		ser	Arg	GIN
		595				_	600			_	~.	605	_		
Asp			Gln	Glu		Leu							Leu	Asn	He
	610	-				615									
Gly	Pro	Leu	Phe	Lys		Ser	Glu	Pro	Val	Gln	Leu	Thr	Glu	Ala	Glu
625		٠			630					635					640
Thr	Glu	Tyr	Phe	Val	Arg	Cys	Ile	Lys	His	Met	Phe	Thr	Asn	His	Ile
				645					650					655	
Val	Phe	Gln	Phe	Asp	Cys	Thr	Asn	Thr	Leu	Asn	Asp	Gln	Leu	Leu	Glu
			660					665					670		
Lys	Val	Thr	Val	Gln	Me t	Glu	Pro	Ser	Asp	Ser	Tyr	Glu	Val	Leu	Ser
		675					680					685			
Cys	Ile	Pro	Ala	Pro	Ser	Leu	Pro	Tyr	Asn	Gln	Pro	Gly	Ile	Cys	Tyr
	690				•	695					700				
Thr	Leu	Val	Arg	Leu	Pro	Asp	Asp	Asp	Pro	Thr	Ala	Val	Ala	Gly	Ser
705					710					715					720
	Ser	Cys	Thr	Met		Phe	Thr	Val	Årg		Cvs	Asp	Pro	Asn	
				725					730					735	
Glv	Val	Pro	Asp		Asp	Gly	Tvr	Asp		Gln	Tvr	Val	Len		Asp
0.,			740			0.,	-,-	745		014	-,-		750		,
Len	Glu	Val		Va 1	Ser	Asp	His		Gln	Lvs	Val	Len		Pro	Asn
200	014	755			501	110,0	760		0111	2,0	,	765	2,5	110	
Pho	ΔΙα		Δla	Trn	Cl n	Glu		Clv	Aen	Thr	Pho		Lve	Gln	G1n
1110	770	Λια	MIG	пр	Gru	775	1 (1)	GIY	nsp	1111	780	ulu	Lys	Gra	GIU
Th =		A 1 a	Lou	C 0 #	Com		T	ጥե	Lou	C1		41 0	Vo 1	Aan	A 0 m
		Ala	Leu	261		Thr	LyS	1111	Leu		GIU	Ala	Vai	ASII	
785		mı	TD 1 -	.	790		01	n	0 -	795	Α	0	A	¥	800
116	116	Inr	Pne			Met	Gin	Pro		GIU	Arg	Ser	ASP		vaı
				805			_		810	_				815	
Pro	Glu	Asn		Asn	Ser	His	Ser		Tyr	Leu	Ala	Gly		Phe	Arg
			820					825					830		
Gly	Gly	Tyr	Asp	Leu	Leu	Val	Arg	Ser	Arg	Leu	Ala		Ala	Asp	Gly
		835					840					845			

Val Thr Met Gln Val Thr Val Arg Ser Lys Glu Arg Thr Pro Val Asp Val Ile Leu Ala Ser Val Gly <210> 81 **<211> 250** <212> PRT $\langle 213 \rangle$ homo sapiens <400> 81 Met Ala Glu Gly Gly Ala Ser Lys Gly Gly Glu Glu Pro Gly Lys Leu Pro Glu Pro Ala Glu Glu Ser Gln Val Leu Arg Gly Thr Gly His Cys Lys Trp Phe Asn Val Arg Met Gly Phe Gly Phe Ile Ser Met Ile Asn Arg Glu Gly Ser Pro Leu Asp Ile Pro Val Asp Val Phe Val 55. His Gln Ser Lys Leu Phe Met Glu Gly Phe Arg Ser Leu Lys Glu Gly Glu Pro Val Glu Phe Thr Phe Lys Lys Ser Ser Lys Gly Leu Glu Ser Ile Arg Val Thr Gly Pro Gly Gly Ser Pro Cys Leu Gly Ser Glu Arg Arg Pro Lys Gly Lys Thr Leu Gln Lys Arg Lys Pro Lys Gly Asp Arg Cys Tyr Asn Cys Gly Gly Leu Asp His His Ala Lys Glu Cys Ser Leu Pro Pro Gln Pro Lys Lys Cys His Tyr Cys Gln Ser Ile Met His Met Val Ala Asn Cys Pro His Lys Asn Val Ala Gln Pro Pro Ala Ser Ser Gln Gly Arg Gln Glu Ala Glu Ser Gln Pro Cys Thr Ser Thr Leu Pro Arg Glu Val Gly Gly His Gly Cys Thr Ser Pro Pro Phe Pro Gln Glu Ala Arg Ala Glu Ile Ser Glu Arg Ser Gly Arg Ser Pro Gln Glu

WO 2005/014818 PCT/JP2004/011650

151/271

Ala Ser Ser Thr Lys Ser Ser Ile Ala Pro Glu Glu Gln Ser Lys Lys Gly Pro Ser Val Gln Lys Arg Lys Lys Thr **<210> 82 <211>** 210 <212> PRT $\langle 213 \rangle$ homo sapiens **<400> 82** Met Gly Phe Gly Phe Ile Ser Met Ile Asn Arg Glu Gly Ser Pro Leu Asp Ile Pro Val Asp Val Phe Val His Gln Ser Lys Leu Phe Met Glu Gly Phe Arg Ser Leu Lys Glu Gly Glu Pro Val Glu Phe Thr Phe Lys Lys Ser Ser Lys Gly Leu Glu Ser Ile Arg Val Thr Gly Pro Gly Gly Ser Pro Cys Leu Gly Ser Glu Arg Arg Pro Lys Gly Lys Thr Leu Gln Lys Arg Lys Pro Lys Gly Asp Arg Cys Tyr Asn Cys Gly Gly Leu Asp His His Ala Lys Glu Cys Ser Leu Pro Pro Gln Pro Lys Lys Cys His Tyr Cys Gln Ser Ile Met His Met Val Ala Asn Cys Pro His Lys Asn Val Ala Gln Pro Pro Ala Ser Ser Gln Gly Arg Gln Glu Ala Glu Ser Gln Pro Cys Thr Ser Thr Leu Pro Arg Glu Val Gly Gly His Gly Cys Thr Ser Pro Pro Phe Pro Gln Glu Ala Arg Ala Glu Ile Ser Glu Arg Ser Gly Arg Ser Pro Gln Glu Ala Ser Ser Thr Lys Ser Ser Ile Ala Pro Glu Glu Gln Ser Lys Lys Gly Pro Ser Val Gln Lys Arg Lys Lys Thr

<210	>	83													
<211	>	391													
<212	?>	PRT													
<213	s>	homo	sapi	ens											
<400)>	83													
Met 1	Arg	Gln	Leu	Cys 5	Arg	Gly	Arg	Val	Leu 10	Gly	Ile	Ser		Ala 15	Ile
Ala	His	Gly	Val 20		Ser		Ser		Asn	Ile	Leu	Leu		-	Leu
Ile	Ser	Arg		•	Phe				Thr	Leu	Val	Gln 45		Leu	Thr
Ser	Ser 50	Thr	Ala	Ala	Leu	Ser 55	Leu	Glu	Leu	Leu	Arg 60		Leu	Gly	Leu
Ile 65	Ala	Val	Pro	Pro	Phe 70	Gly	Leu	Ser	Leu	Ala 75		Ser	Phe	Ala	Gly 80
Val	Ala	Val	Leu	Ser 85	Thr	Leu	Gln	Ser	Ser 90	Leu	Thr	Leu	Trp	Ser 95	Leu
Arg	Gly	Leu	Ser 100	Leu	Pro	Met	Tyr	Val 105	Val	Phe	Lys	Arg	Cys 110	Leu	Pro
Leu	Val	Thr 115	Met	Leu	Ile	Gly	Val 120	Leu	Val	Leu	Lys	Asn 125	Gly	Ala	Pro
Ser	Pro 130	Gly	Val	Leu	Ala	Ala 135	Val	Leu	Ile	Thr	Thr 140	Cys	Gly	Ala	Ala
Leu 145	Ala	Gly	Ala	Gly	Asp 150	Leu	Thr	Gly	Asp	Pro 155	Ile	Gly	Tyr	Val	Thr 160
Gly	Val	Leu	Ala	Val 165	Leu	Val	His	Ala	Ala 170	Tyr	Leu	Val	Leu	Ile 175	Gln
Lys	Ala	Ser	Ala 180	Asp	Thr	Glu	His	Gly 185	Pro	Leu	Thr	Ala	Gln 190	Tyr	Val
Ile	Ala	Val 195	Ser	Ala	Thr	Pro	Leu 200	Leu	Val	Ile	Cys	Ser 205	Phe	Ala	Ser
Thr	Asp 210	Ser	Ile	His	Ala	Trp 215	Thr	Phe	Pro	Gly	Trp 220	Lys	Asp	Pro	Ala
Me t 225	Val	Cys	Ile	Phe	Val 230	Ala	Cys	Ile	Leu	Ile 235	Gly	Cys	Ala	Met	Asn 240
Phe	Thr	Thr	Leu	His 245	Cys	Thr	Tyr	Ile	Asn 250	Ser	Ala	Val	Thr	Thr 255	Ser

Leu Phe Ile Ala Gly Val Val Val Asn Thr Leu Gly Ser Ile Ile Tyr Cys Val Ala Lys Phe Met Glu Thr Arg Lys Gln Ser Asn Tyr Glu Asp Leu Glu Ala Gln Pro Arg Gly Glu Glu Ala Gln Leu Ser Gly Asp Gln Leu Pro Phe Val Met Glu Glu Leu Pro Gly Glu Gly Gly Asn Gly Arg Ser Glu Gly Gly Glu Ala Ala Gly Gly Pro Ala Gln Glu Ser Arg Gln Glu Val Arg Gly Ser Pro Arg Gly Val Pro Leu Val Ala Gly Ser Ser Glu Glu Gly Ser Arg Arg Ser Leu Lys Asp Ala Tyr Leu Glu Val Trp Arg Leu Val Arg Gly Thr Arg Tyr Met Lys Lys Asp Tyr Leu Ile Glu Asn Glu Glu Leu Pro Ser Pro **<210> 84 <211> 907** <212> PRT $\langle 213 \rangle$ homo sapiens **<400>** 84 Met Asp Thr Ser Arg Leu Gly Val Leu Leu Ser Leu Pro Val Leu Leu Gln Leu Ala Thr Gly Gly Ser Ser Pro Arg Ser Gly Val Leu Leu Arg Gly Cys Pro Thr His Cys His Cys Glu Pro Asp Gly Arg Met Leu Leu Arg Val Asp Cys Ser Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu Ser Val Phe Thr Ser Tyr Leu Asp Leu Ser Met Asn Asn Ile Ser Gln Leu Leu Pro Asn Pro Leu Pro Ser Leu Arg Phe Leu Glu Glu Leu Arg Leu Ala Gly Asn Ala Leu Thr Tyr Ile Pro Lys Gly Ala Phe Thr Gly

Leu	Tyr	Ser 115	Leu	Lys	Val	Leu	Me t 120	Leu	Gln	Asn	Asn	Gln 125	Leu	Arg	His
Val	Pro 130	Thr	Glu	Ala	Leu	Gln 135	Asn	Leu	Arg	Ser	Leu 140	Gln	Ser	Leu	Arg
Leu 145	Asp	Ala	Asn	His	Ile 150	Ser	Tyr	Vál	Pro	Pro 155	Ser	Cys	Phe	Ser	Gly 160
Leu	His	Ser	Leu	Arg 165	His	Leu	Trp	Leu	Asp 170	Asp	Asn	Ala	Leu.	Thr 175	Glu
Ile_	Pro	Val	Gln 180	Ala	<u>Phe</u>	Arg	Şer	Leu 185	Şer	Ala	Leu	Gln	Ala 190	Met	Thr
Leu	Ala	Leu 195		Lys	Ile	His	His 200		Pro	Asp	Tyr	Ala 205	Phe	Gly	Asn
Leu	Ser 210		Leu	Val	Val	Leu 215		Leu	His	Asn	Asn 220		Ile	His	Ser
Leu 225	Gly	Lys	Lys	Cys	Phe 230	Asp	Gly	Leu	His	Ser 235	Leu	Glu	Thr	Leu	Asp 240
Leu	Asn	Tyr	Asn	Asn 245	Leu	Asp	Glu	Phe	Pro 250	Thr	Ala	Ile	Arg	Thr 255	Leu
Ser	Asn	Leu	Lys 260	Glu	Leu	Gly	Phe	His 265	Ser	Asn	Asn	Ile	Arg 270	Ser	Ile
Pro	Glu	Lys 275	Ala	Phe	Val	Gly	Asn 280	Pro	Ser	Leu	Ile	Thr 285	Ile	His	Phe
Tyr	Asp 290	Asn	Pro	Ile	Gln	Phe 295	Val	Gly	Arg	Ser	Ala 300	Phe	Gln	His	Leu
Pro 305	Glu	Leu	Arg	Thr	Leu 310	Thr	Leu	Asn	Gly	Ala -315	Ser	Gln	Ile	Thr	Glu 320
Phe	Pro	Asp	Leu	Thr 325	Gly	Thr	Ala	Asn	Leu 330	Glu	Ser	Leu	Thr	Leu 335	Thr
Gly	Ala	Gln	11e 340	Ser	Ser	Leu	Pro	Gln 345	Thr	Val	Cys	Asn	G1n 350	Leu	Pro
Asn	Leu	Gln 355	Val	Leu	Asp	Leu	Ser 360	Tyr	Asn	Leu	Leu	Glu 365	Asp	Leu	Pro
Ser	Phe 370	Ser	Val	Cys	Gln	Lys 375	Leu	Gln	Lys	Ile	Asp 380	Leu	Arg	His	Asn
Gl u 385	Ile	Tyr	Glu	Ile	Lys 390		Asp	Thr	Phe	Gln 395		Leu	Leu	Ser	Leu 400
	Ser	Leu	Asn	Leu		Trp	Asn	Lys	Ile		Ile	Ile	His	Pro	

405 410 41	5
Ala Phe Ser Thr Leu Pro Ser Leu Ile Lys Leu Asp Leu Ser Se	r Asn
420 425 430	
Leu Leu Ser Ser Phe Pro Ile Thr Gly Leu His Gly Leu Thr H	s Leu
435 440 445	
Lys Leu Thr Gly Asn His Ala Leu Gln Ser Leu Ile Ser Ser G	u Asn
450 455 460	
Phe Pro Glu Leu Lys Val Ile Glu Met Pro Tyr Ala Tyr Gln C	s Cys
465 470 475	480
Ala Phe Gly Val Cys Glu Asn Ala Tyr Lys Ile Ser Asn Gln T	p Asn
. 485 490 4	5
Lys Gly Asp Asn Ser Ser Met Asp Asp Leu His Lys Lys Asp A	a Gly
500 505 510	
Met Phe Gln Ala Gln Asp Glu Arg Asp Leu Glu Asp Phe Leu L	u Asp
515 520 525	
Phe Glu Glu Asp Leu Lys Ala Leu His Ser Val Gln Cys Ser P	o Ser
530 535 540	
Pro Gly Pro Phe Lys Pro Cys Glu His Leu Leu Asp Gly Trp L	
545 550 555	560
Arg He Gly Val Trp Thr He Ala Val Leu Ala Leu Thr Cys A	
565 570 5	
Leu Val Thr Ser Thr Val Phe Arg Ser Pro Leu Tyr Ile Ser P	o iie
580 585 590	Vol
Lys Leu Leu Ile Gly Val Ile Ala Ala Val Asn Met Leu Thr G	y vai
595 600 605 Sor Sor Ala Val Iou Ala Cly Val Asp Ala Pho The Pho Cly S	r Dha
Ser Ser Ala Val Leu Ala Gly Val Asp Ala Phe Thr Phe Gly S 610 615 620	1 File
Ala Arg His Gly Ala Trp Trp Glu Asn Gly Val Gly Cys His V	1 Ile
625 630 635	640
Gly Phe Leu Ser Ile Phe Ala Ser Glu Ser Ser Val Phe Leu L	
	5
Leu Ala Ala Leu Glu Arg Gly Phe Ser Val Lys Tyr Ser Ala L	
660 665 670	0 1110
	5 Inc
Glu Thr Lys Ala Pro Phe Ser Ser Leu Lys Val Ile Ile Leu L	
675 680 685	
	u Cys

Lys	Tyr	Gly	Ala	Ser	Pro	Leu	Cys	Leu	Pro	Leu	Pro	Phe	Gly	Glu	Pro	
705	•				710					715					720	
Ser	Thr	Met	Gly	Tyr	Met	Val	Ala	Leu	Ile	Leu	Leu	Asn	Ser	Leu	Cys	
				725					730					735		
Phe	Leu	Met	Met	Thr	Ile	Ala	Tyr	Thr	Lys	Leu	Tyr	Cys	Asn	Leu	Asp	٠
			740					745					750			
Lys	Gly	Asp	Leu	Glu	Asn	Ile	Trp	Asp	Cys	Ser	Met		Lys	His	Ile	
		755	_				760					765				
Ala		Leu	Leu	Phe	Thr		Cys	Ile	Leu	Asn		Pro	Val	Ala	Phe	-
_	770	D 1	0			775			m:	n.	780		D	01	17 - 1	
	Ser	Phe	Ser	Ser		116	Asn	Leu	Inr		11e	Ser	Pro	GIU		
785	Γ	Dho	ΤΙο	Lou	790	Wo 1	Wo 1	Vo l	Dec	795	Dro	Ala	C***	Ι 011	800	
116	Lys	Phe	116	805	Leu	Val	Val	Vai	810	Leu	PIO	Ala	Cys	815	ASII	
Dro	I AII	Leu	Tur		Ϊ Δ11	Dhα	Acn	Dro		Phe	Tve	Glu	Asn		Val	
110	Leu	LCu	820	116	Leu	1110	USII	825	1113	THU	пуз	Giu	830	Lcu	141	
Ser	Len	Arg		Gln	Thr	Tvr	Val		Thr	Arg	Ser	Lvs		Pro	Ser	
501		835	2,0			-,-	840			0		845				
Leu	Met	Ser	Ile	Asn	Ser	Asp		Val	Glu	Lys	Gln		Cys	Asp	Ser	
	850		•			855					860					
Thr	Gln	Ala	Leu	Val	Thr	Phe	Thr	Ser	Ser	Ser	Ile	Thr	Tyr	Asp	Leu	
865					870				•	875					880	
Pro	Pro	Ser	Ser	Val	Pro	Ser	Pro	Ala	Tyr	Pro	Val	Thr	Glu	Ser	Cys	
				885					890					895		
His	Leu	Ser	Ser	Val	Ala	Phe	Val	Pro	Cys	Leu						
			900					905		•						
<21		85														
< 21		982														
<21		PRT														
<21		homo	sap	ıens												
<40		85 	Co-	ТЬ	A10	C1	C1.	C1	Com	ጥጌ	Dwa	T au	Th m	Aan	Mot	
	110	Thr	วะเ	1nr 5	Ald	all	GIU	. uly	5er	1111	110	ren	1111	15	MCI	
l Pro	V a 1	Ser	Th r	_	Dra	۲ _α γ	cίΔ	Sar		Gln	Δla	Sor	Thr		Ser	
110	1 4 1	חבו	20	1111	110	, al	111 a	25	JUI	oru	. ma	. 501	30	шcu	201	
Thr	Thr	Pro		Asn	Ser	Asn	Thr		Val	Thr	Ser	Ser		Gln	Ala	
	- ** *	35			201		40	- 110			201	45	-01	,11		

Ser	Ser 50	Ser	Pro	Ala	Thr	Leu 55	Gln	Val	Thr	Thr	Met 60	Arg	Met	Ser	Thr
Pro 65	Ser	Glu	Gly	Ser	Ser 70	Ser	Leu	Thr	Thr	Met 75	Leu	Leu	Ser	Ser	Thr 80
Tyr	Val	Thr	Ser	Ser 85	Glu	Ala	Ser	Thr	Pro 90	Ser	Thr	Pro	Ser	Val 95	Asp
Arg	Ser	Thr	Pro 100	Val	Thr	Thr	Ser	Thr 105	Gln	Ser	Asn	Ser _.	Thr 110	Pro	Thr
Pr <u>o</u>	Pro	Glu 115	<u>Val</u>	Ile	Thr	Leu	Pro 120	Met	Ser	Thr	Pro	Ser 125	Glu	Val	Şer _
Thr	Pro 130	Leu	Thr	Ile	Met	Pro 135	Val	Ser	Thr	Thr	Ser 140	Val	Thr	Ile	Ser
Glu 145	Ala	Gly	Thr	Ala	Ser 150	Thr	Leu	Pro	Val	Asp 155	Thr	Ser.	Thr	Pro	Val 160
Ile	Thr	Ser	Thr	Gln 165	Val	Ser	Ser	Ser	Pro 170	Val	Thr	Pro	Glu	Gly 175	Thr
Thr	Met	Pro	Ile 180	Trp	Thr	Pro	Ser	Glu 185	Gly	Ser	Thr	Pro	Leu 190	Thr	Thr
Met	Pro	Val 195	Ser	Thr	Thr	Arg	Val 200	Thr	Ser	Ser	Glu	Gly 205	Ser	Thr	Leu
Ser	Thr 210	Pro	Ser	Val	Val	Thr 215	Ser	Thr	Pro ·	Val	Thr 220	Thr	Ser	Thr	Glu
Ala 225	Ile	Ser	Ser	Ser	Ala 230	Thr	Leu	Asp	Ser	Thr 235	Thr	Met	Ser	Val	Ser 240
Met	Pro	Met	Glu	Ile 245	Ser	Thr	Leu	Gly	Thr 250		Ile	Leu	Val	Ser 255	Thr
Thr	Pro	Val	Thr 260	Arg	Phe	Pro	Glu	Ser 265	Ser	Thr	Pro	Ser	11e 270	Pro	Ser
Val	Tyr	Thr 275	Ser	Met	Ser	Met	Thr 280	Thr	Ala	Ser	Glu	Gly 285	Ser	Ser	Ser
Pro	Thr 290	Thr	Leu	Glu	Gly	Thr 295	Thr	Thr	Met	Pro	Me t 300	Ser	Thr	Thr	Ser
Glu 305	Arg	Ser	Thr	Leu	Leu 310	Thr	Thr	Val	Leu	Ile 315	Ser	Pro	Ile	Ser	Val 320
Met	Ser	Pro	Ser	Glu 325	Ala	Ser	Thr	Leu	Ser 330	Thr	Pro	Pro	Gly	Asp 335	Thr
Ser	Thr	Pro	Leu	Leu	Thr	Ser	Thr	Lys	Ala	Gly	Ser	Phe	Ser	Ile	Pro

									•						
	•		340					345					350		
Ala	Glu	Val	Thr	Thr	Ile	Arg	Ile	Ser	Ile	Thr	Ser	Glu	Arg	Ser	Thr
		355					360					365			
Pro	Leu	Thr	Thr	Leu	Leu	Val	Ser	Thr	Thr	Leu	Pro	Thr	Ser	Phe	Pro
	370					375					380				
Gly	Ala	Ser	Ile	Ala	Ser	Thr	Pro	Pro	Leu	Asp	Thr	Ser	Thr	Thr	Phe
385					390					395					400
Thr	Pro	Ser	Thr	Asp	Thr	Ala	Ser	Thr	Pro	Thr	Ile	Pro	Val	Ala	Thr
				405					410					415	
Thr	Ile	Ser	Val	Ser	Val	Ile	Thr	Glu	Gly	Ser	Thr	Pro	Gly	Thr	Thr
		•	420					425					430		
Ile	Phe	Ile	Pro	Ser	Thr	Pro	Val	Thr	Ser	Ser	Thr	Ala	Asp	Val	Phe
		435					440					445			
.Pro		Thr	Thr	Gly	Ala	Val	Ser	Thr	Pro	Val	Ile	Thr	Ser	Thr	Glu
	450					455					460				
	Asn	Thr	Pro	Ser		Ser	Ser	Ser	Ser	Thr	Thr	Thr	Ser	Phe	Ser
465					470					475					480
Thr	Thr	Lys	Glu			Thr						Ala	Ala		Leu
_	_		•			<u> </u>							0.	495	
Thr	Tyr	Val		Met	Ser	Thr	Ala		Ser	Thr	Pro	Arg		Thr	Ser
		_	500					505					510	.00	
Arg	Gly		Thr	Thr	Ser	Ala				Ser	Ala		Ser	Thr	Pro
		515					520					525	_		
His		Ser	Thr	Ser	Val	Thr	Thr	Arg	Pro	Val		Pro	Ser	Ser	Glu
•	530		_	_	 1	535	m1				540	_	_		
	Ser	Arg	Pro	Ser		Ile	Thr	Ser	HIS		He	Pro	Pro	Thr	
545	n	A 1 -	YY : _	0	550	m1	ъ.	n .	mı	555	0	. 1	٥.	α.	560
Pro	Pro	Ala	HIS		Ser	Thr	Pro	Pro		Inr	ser	Ala	Ser		Inr
Th	17 - 1	4	D	565	A 1 -	W- 1	Th	TO 1	570	Th	m1	A	Th	575	D
ınr	Val	ASII		GIU	Ala	Val	Inr		met	Inr	Inr	Arg		Lys	Pro
0	ТЪ	۸	580	Th	0	Db.	n	585	1 7 - 1	m1	TT1	W1	590	37 - 1	D
ser	Inr		ınr	ınr	261	Phe		ınr	vai	ınr	ınr		Ala	vai	Pro
The se	A a m	595	Τ Ι	T 1 -	r	0	600	D	TO 1	0	TL	605	TL	37_1	D
ınr		1111	1111	116	LYS	Ser	ASI	110	ınr	ser		rro	101	vai	LL0
۸ ــ	610	ጥե -	ጥե	C	DL -	615	۸	C1	C	C1-	620	ጥዬ	A 1 -	0	۸
	шг	1111	1111	СУS		GΙΆ	ASP	чιў	СУS		ASN	1111	ніа	ber	Arg
625					630					635					640

	Cys	Lys	Asn	Gly		Thr	Trp	Asp	Gly		Lys	Cys	Gln	Cys		Asn
					645					650					655	
	Leu	Tyr	Tyr	Gly	Glu	Leu	Cys	Glu	Glu	Val	Val	Ser	Ser	Ile	Asp	Ile
				660					665					670		
	Gly	Pro	Pro	Glu	Thr	Ile	Ser	Ala	Gln	Met	Glu	Leu	Thr	Val	Thr	Val
			675					680					685			
	Thr	Ser	Val	Lys	Phe	Thr	Glu	Glu	Leu	Lvs	Asn	His	Ser	Ser	Gln	Glu
		690					695			•		700				
	Phe		Gln	Phe	Lvs	Gln		Phe	Thr	Glin	Gln	Met	Asn	He	Va 1	Tvr
	705		ų. · <u>·</u> ·	5.71.2	.= ,	710				U , u.	715	22.5			.: 7.7	720
		Clv	Ilα	Dro	Clu	Tyr	Val	Clv	Val	Acn		Thr	Twe	Ι Δ11	Ara	
	261	GIY	116	110		1 9 1	Yaı	Gly	Vai		116	1111	гуз	Leu		Leu
	a 1		¥7 1	77 1	725	01	***		77 1	730	.		m1	T	735	m.
	Gly	ser	Val		vai	Glu	HIS	Asp		Leu	Leu	Arg	ınr		ıyr	inr
				740					745					750		
	Pro	Glu	Tyr	Lys	Thr	Val	Leu		Asn	Ala	Thr	Glu		Val	Lys	Glu
ı			755					760					765			
	Lys	Ile	Thr	Lys	Val	Thr	Thr	Gln	Gln	Ile	Met	Ile	Asn	Asp	Ile	Cys
		.770					775					780				
	Ser	Asp	Met	Met	Cys	Phe	Asn	Thr	Thr	Gly	Thr	Gln	Val	Gln	Asn	Ile
	785					790					795					800
	Thr	Val	Thr	Gln	Tyr	Asp	Pro	Glu	Glu	Asp	Cys	Arg	Lys	Met	Ala	Lys
					805					810					815	
	Glu	Tyr	Gly	Asp	Tyr	Phe	Val	Val	Glu	Tyr	Arg	Asp	Gln	Lys	Pro	Tyr
				820					825					830		
	Cvs	Ile	Ser			Glu	Pro	Glv			Val	Ser	Lvs	Asn	Cvs	Asn
	.,.		835		.,.			840					845			
	Len	Glv			Gln	Met	Ser		Ser	Glv	Pro	Gln		I en	Cvs	Va 1
	LCu	850	-	Oy 3	GIII	. mc t	855		DCI	dry	110	860		Dea	Oys	741
	Th r			Th.	Uio	Trn			C157	Clu	Th =			Cin	Clv	Thr
			GIU	1111	піз	Trp	Iyi	261	GIY	Giu			ASII	GIII	GIY	
	865				77 1	870	0.1	·	T7 1	0.1	875		47 1	77. 3	.	880
	Gin	Lys	Ser	Leu		Tyr	Gly	Leu	vai			Gly	vai	vai		
					885					890					895	
	Leu	Ile	Ile	Leu	Val	Ala	Leu	Leu			Val	Phe	Arg			Arg
				900	ì				905					910		
	Glu	Val	Lys	Arg	Gln	Lys	Tyr	Arg	Leu	Ser	Gln	Leu	Tyr	Lys	Trp	Gln
			915	i				920					925			
	Glu	Glu	Asp	Ser	Gly	Pro	Ala	Pro	Gly	Thr	Phe	Gln	Asn	Ile	Gly	Phe

	930					935					940				
Asp	Ile	Cys	Gln	Asp	Asp	Asp	Ser	Ile	His	Leu	Glu	Ser	Ile	Tyr	Ser
945					950					955					960
Asn	Phe	Gln	Pro	Ser	Leu	Arg	His	Ile	Asp	Pro	Glu	Thr	Lys	Arg	Ser
				965					970					975	
Glu	Phe	Arg	Gly	Leu	Arg										
			980												
<210	> 8	36													
<211	> 9	87													
<212	2> I	PRT													
<213	3> 1	omo	sapi	ens											
<400)> {	36													
Met	Ala	Leu	Arg	Arg	Leu	Gly	Ala	Ala	Leu	Leu	Leu	Leu	Pro	Leu	Leu
1				5					10					15	
Ala	Ala	Val	Glu	Glu	Thr	Leu	Met	Asp	Ser	Thr	Thr	Ala	Thr	Ala	Glu
			20					25					30		
Leu	Gly	Trp	Met	Val	His	Pro	Pro	Ser	Gly	Trp	Glu	Glu	Val	Ser	Gly
		35					40					45			
Tyr	Asp	Glu	A <u>s</u> n	Met	Asn	Thr	Ile	Arg	Thr	Tyr	Gln	Val	Cys	Asn	Val
	50					55					60				
Phe	Glu	Ser	Ser	Gln	Asn	Asn	Trp	Leu	Arg	Thr	Lys	Phe	Ile	Arg	Arg
65					70					75					80
Arg	Gly	Ala	His	Arg	Ile	His	Val	Glu	Met	Lys	Phe	Ser	Val	Arg	Asp
				85					90					95	
Cys	Ser	Ser	Ile	Pro	Ser	Val	Pro	Gly	Ser	Cys	Lys	Glu	Thr	Phe	Asn
			100					105		•			110		
Leu	Tyr	Tyr	Tyr	Glu	Ala	Asp	Phe	Asp	Ser	Ala	Thr		Thr	Phe	Pro
		115					120					125			
Asn		Met	Glu	Asn	Pro		Val	Lys	Val	Asp		Ile	Ala	Ala	Asp
	130	_				135					140				
	Ser	Phe	Ser	Gln		Asp	Leu	Gly	Gly		Val	Met	Lys	Ile	Asn
145					150				_	155					160
Thr	Glu	Val	Arg			Gly	Pro	Val			Ser	Gly	Phe		Leu
				165			_		170				 .	175	
Ala	Phe	Gln		Tyr	Gly	Gly	Cys			Leu	He	Ala			Val
n .	_		180	_	_			185			0.		190	•	a :
Phe	Tyr	Arg	Lys	Cys	Pro	Arg	He	He	Gln	Asn	Gly	Ala	He	Phe	Gln

.

		195					200					205			
Glu	Thr	Leu	Ser	Gly	Ala	Glu	Ser	Thr	Ser	Leu	Val	Ala	Ala	Arg	Gly
	210					215					220				
Ser	Cys	Ile	Ala	Asn	Ala	Glu	Glu	Val	Asp	Val	Pro	Ile	Lys	Leu	Tyr
225					230					235					240
Cys	Asn	Gly	Asp	Gly	Glu	Trp	Leu	Val	Pro	Ile	Gly	Arg	Cys	Met	Cys
				245					250					255	
Lys	Ala	Gly		Glu	Ala	Val	Glu			Thr	Val	Cys		Gly	Cys
_			260		_			265	•				270		
Pro	Ser		Thr	Phe	Lys	Ala		Gln	Gly	Asp	Glu		Cys	Thr	His
_		275	•	•		m1	280	•	01	01	4.1	285	•	•	** 1
Cys	Pro	He	Asn	Ser	Arg		Thr	Ser	Glu	Gly		Thr	Asn	Cys	Val
C	290	A	C1	Т	Т	295	A 1 -	A	Υ	A	300	T		Mad	Dana
	Arg	ASII	Gly	lyr		Arg	Ala	ASP	Leu	_	Pro	Leu	ASP	Met	
305	Thr	Th r	ΙΙο	Dro	310	A 1 o	Dro	Cln	Λlo	315	Ila	Sar	Sor	Vo l	320
Cys	1111	1111	116	325	261	Ala	ri u	GIII	330	Val	116	261	261	335	ASII
Gla	Thr	Ser	I en		Len	Gln	Trn	Thr		Pro	Δισ	Aen	Ser		Clv
Olu	1111	DCI	340	mc t	bcu	ulu	пр	345	110	110	MIS	пор	350	OLY	Gly
Arg	Glu	Asp	•	Val	Tvr	Asn	He		Cvs	Lvs	Ser	Cvs		Ser	Glv
6	v.u	355	200	,	-,-	11511	360		0,0	2,5		365	01,	501	013
Arg	Gly		Cys	Thr	Arg	Cys		Asp	Asn	Val	Gln		Ala	Pro	Arg
Ū	370		·		Ū	375		•			380	•			J
Gln	Leu	Gly	Leu	Thr	Glu	Pro	Arg	Ile	Tyr	Ile	Ser	Asp	Leu	Leu	Ala
385					390					395					400
His	Thr	Gln	Tyr	Thr	Phe	Glu	Ile	Gln	Ala	Val	Asn	Gly	Val	Thr	Asp
				405					410					415	
Gln	Ser	Pro	Phe	Ser	Pro	Gln	Phe	Ala	Ser	Val	Asn	Ile	Thr	Thr	Asn
			420					425					430		
Gln	Ala	Ala	Pro	Ser	Ala	Val	Ser	Ile	Met	His	Gln	Val	Ser	Arg	Thr
		435					440					445			
Val	Asp	Ser	Ile	Thr	Leu	Ser	Trp	Ser	Gln	Pro	Asp	Gln	Pro	Asn	Gly
	450					455					460				
	Ile	Leu	Asp	Tyr		Leu	Gln	Tyr	Tyr		Lys	Glu	Leu	Ser	Glu
465					470			_		475					480
Tyr	Asn	Ala	Thr			Lys	Ser	Pro			Thr	Val	Thr		Gln
				485					490					495	

Gly	Leu	Lys		Gly	Ala	Ile	Tyr		Phe	Gln	Val	Arg	Ala	Arg	Thr
			500					505					510		
Val	Ala	Gly	Tyr	Gly	Arg	Tyr	Ser	Gly	Lys	Met	Tyr	Phe	Gln	Thr	Met
•		515					520					525			
Thr	Glu	Ala	Glu	Tyr	Gln	Thr	Ser	Ile	Gln	Glu	Lys	Leu	Pro	Leu	Ile
	530					535					540				
Ile	Gly	Ser	Ser	Ala	Ala	Gly	Leu	Val	Phe	Leu	Ile	Ala	Val	Val	Val
545					550					555					560
Ile	Ala	Ile	Val	Cys	Asn	Arg	Arg	Arg	Gly	Phe	Glu	Arg	Ala	Asp	Ser
				565			•		570					575	
Glu	Tyr	Thr	Asp	Lys	Leu	Gln	His	Tyr	Thr	Ser	Gly	His	Met	Thr	Pro
			580					585					590		
Gly	Met	Lys	Ile	Tyr	Ile	Asp	Pro	Phe	Thr	Tyr	Glu	Asp	Pro	Asn	Glu
		595				-	600					605			
Ala	Val	Arg	Glu	Phe	Ala	Lys	Glu	Ile	Asp	Ile	Ser	Cys	Val	Lys	He
	610					615					620				
Glu	Gln	Val	Ile	Gly	Ala	Gly	Glu	Phe	Gly	Glu	Val	Cys	Ser	Gly	His
625					630					635					640
Leu	Lys	Leu	Ьio	Gly	Lys	Arg	Glu	Ile	Phe	Val	Ala	Ile	Lys	Thr	Leu
•				645					650					655	
Lys	Ser	Gly	Tyr	Thr	Glu	Lys	Gln	Arg	Arg	Asp	Phe	Leu	Ser	Glu	Ala
			660					665					670		
Ser	Ile	Met	Gly	Gln	Phe	Asp	His	Pro	Asn	Val	Ile	His	Leu	Glu	Gly
		675					680					685			
Val	Val	Thr	Lys	Ser	Thr	Pro	Val	Met	Ile	Ile	Thr	Glu	Phe	Met	Glu
	690					695					700				
Asn	Gly	Ser	Leu	Asp	Ser	Phe	Leu	Arg	Gln	Asn	Asp	Gly	Gln	Phe	Thr
705					710					715					720
Val	Ile	Gln	Leu	Val	Gly	Met	Leu	Arg	Gly	Ile	Ala	Ala	Gly	Met	Lys
				725					730					735	
Tyr	Leu	Ala	Asp	Met	Asn	Tyr	Val	His	Arg	Asp	Leu	Ala	Ala	Arg	Asn
			740					745					750		
Ile	Leu	Val	Asn	Ser	Asn	Leu	Val	Cys	Lys	Val	Ser	Asp	Phe	Gly	Leu
		755					760					765			
Ser	Arg	Phe	Leu	Glu	Asp	Asp	Thr	Ser	Asp	Pro	Thr	Tyr	Thr	Ser	Ala
	770					775					780				
Leu	Gly	Gly	Lys	Ile	Pro	Ile	Arg	Trp	Thr	Ala	Pro	Glu	Ala	Ile	Gln

				•	
785		790		795	800
Tyr Arg Lys	Phe Thr	Ser Ala Se	r Asp Val	Trp Ser Tyr	Gly Ile Val
•	805		810		815
Met Trp Glu	Val Met	Ser Tyr Gl	y Glu Arg	Pro Tyr Trp	Asp Met Thr
	820		825		830
Asn Gln Asp	Val Ile	Asn Ala Il	e Glu Gln	Asp Tyr Arg	Leu Pro Pro
835		84	0	845	
Pro Met Asp	Cys Pro	Ser Ala Le	u His Gln	Leu Met Leu	Asp Cys Trp
850		855		860	-
Gln Lys Asp	Arg Asn	His Arg Pr	o Lys Phe	Gly Gln Ile	Val Asn Thr
865		870		875	880
Leu Asp Lys	Met Ile	Arg Asn Pr	o Asn Ser	Leu Lys Ala	Met Ala Pro
•	885		890		895
Leu Ser Ser		Asn Leu Pr		Asp Arg Thr	Ile Pro Asp
	900		905		910
	Phe Asn				Ile Lys Met
915		92		925	
	Lys Glu	•	a Asn Ala		Ser Phe Asp
930		935		940	a1 v 1 m
			u Asp IIe		Gly Val Thr
945		950	. T A	955	960
Leu Ala Gly		LYS LYS II		Ser He Gin	Val Met Arg
Ala Cin Wat	965	Ilo Cin So	970	Vol.	975
Ala Gln Met	980	ile Gin se	985	Val	
<210> 87	300		300		
<211> 445					
<212> PRT					
	sapiens				
<400> 87	<u>-</u>				
Met Ala Ala	Pro Thr	Pro Ala Ar	g Pro Val	Leu Thr His	Leu Leu Val
1	5		10		15
Ala Leu Phe	Gly Met	Gly Ser Tr	p Ala Ala	Val Asn Gly	Ile Trp Val
	20		25		30
Glu Leu Pro	Val Val	Val Lys Gl	u Leu Pro	Glu Gly Trp	Ser Leu Pro
35		40		45	•
Ser Tyr Val	Ser Val	Leu Val Al	a Leu Gly	Asn Leu Gly	Leu Leu Val

50	55		60	0	
Val Thr Leu Trp	Arg Arg Leu	Ala Pro	Gly Lys As	sp Glu Gln	Val Pro
65	70		75		80
Ile Arg Val Val	Gln Val Leu	Gly Met	Val Gly Tl	hr Ala Leu	Leu Ala
	85		90		95
Ser Leu Trp His	His Val Ala		Ala Gly G		
100	v 43 m	105		110	•
Ala Phe Leu Ala					Ala Ser
115			III . I am D	1.25	Dha I au
Asn Val Thr Phe	135	ren ser		ro Pro Arg 40	rne Leu
Arg Ser Phe Phe		Cly Leu			Cve Val
145	150	dry neu	155	ca bea 110	160
Leu Ala Leu Val		·Glv Arg		vs Pro Pro	
	165		170	• • • • • • • • • • • • • • • • • • • •	175
Ile Asn Gly. Thr	Pro Gly Pro	Pro Leu	Asp Phe L	eu Glu Arg	Phe Pro
180		185		190	
Ala Ser Thr Phe	Phe Trp Ala	Leu Thr	Ala Leu L	eu Val Ala	Ser Ala
195	•	200		205	
Ala Ala Phe Gln	Gly Leu Leu	Leu Leu	Leu Pro P	ro Pro Pro	Ser Val
210	215		2	20	
Pro Thr Gly Glu	Leu Gly Ser	Gly Leu	Gln Val G	ly Ala Pro	Gly Ala
225	230		235		240
Glu Glu Glu Val		Ser Pro		lu Pro Pro	
41 - 41 - O1 - mi	245	D 4	250	1 m 01	255
Ala Ala Gly Thr 260	inr Pro Gly	Pro Asp 265	Pro Lys A		
Ser Ala Arg Ser	Ala Cue I Au		Ten Ten A	270	
275	nia cys bcu	280	LCu Leu A	285	ASH ATA
Leu Thr Asn Gly	Val Leu Pro		Gln Ser P		Leu Pro
290	295			00	
Tyr Gly Arg Leu	Ala Tyr His	Leu Ala	Val Val L	eu Gly Ser	Ala Ala
305	310		315		320
Asn Pro Leu Ala	Cys Phe Leu	Ala Met	Gly Val L	eu Cys Arg	Ser Leu
	325		330		335
Ala Gly Leu Gly	Gly Leu Ser	Leu Leu	Gly Val P	he Cys Gly	Gly Tyr
340		345		350	

Leu Met Ala Leu Ala Val Leu Ser Pro Cys Pro Pro Leu Val Gly Th	r
Ser Ala Gly Val Val Leu Val Val Leu Ser Trp Val Leu Cys Leu Gl 370 375 380	у
Val Phe Ser Tyr Val Lys Val Ala Ala Ser Ser Leu Leu His Gly Gl 385 390 395 40	
Gly Arg Pro Ala Leu Leu Ala Ala Gly Val Ala Ile Gln Val Gly Se 405 410 415	r
Leu Leu Gly Ala Val Ala Met Phe Pro Pro Thr Ser Ile Tyr His Va 420 425 430	.1
Phe His Ser Arg Lys Asp Cys Ala Asp Pro Cys Asp Ser 435 440 445 <210>88	
<211> 459 <212> PRT	
<213> homo sapiens <400> 88	
Met Asp Glu Lys Ser Asn Lys Leu Leu Leu Ala Leu Val Met Leu Ph 1 10 15	e
Leu Phe Ala Val Ile Val Leu Gln Tyr Val Cys Pro Gly Thr Glu Cy 20 25 30	S
Gln Leu Leu Arg Leu Gln Ala Phe Ser Ser Pro Val Pro Asp Pro Ty 35 40 45	
Arg Ser Glu Asp Glu Ser Ser Ala Arg Phe Val Pro Arg Tyr Asn Ph 50 55 60	
Thr Arg Gly Asp Leu Leu Arg Lys Val Asp Phe Asp Ile Lys Gly As 65 70 75 80)
Asp Leu Ile Val Phe Leu His Ile Gln Lys Thr Gly Gly Thr Thr Ph 85 90 95	
Gly Arg His Leu Val Arg Asn Ile Gln Leu Glu Gln Pro Cys Glu Cy 100 105 110	
Arg Val Gly Gln Lys Lys Cys Thr Cys His Arg Pro Gly Lys Arg Gl 115 120 125 The Ten Low Pho Son Arg Pho Son The Cly Ten Son Cyc Cly Low His	
Thr Trp Leu Phe Ser Arg Phe Ser Thr Gly Trp Ser Cys Gly Leu Hi 130 135 140 Ale Asp Trp Thr Cly Ley Thr Ser Cys Vol Bre Ser Vol Vol Asp Cl	
Ala Asp Trp Thr Giu Leu Thr Ser Cys Val Pro Ser Val Val Asp Gl 145 150 155 16	

Lys	Arg	Asp	Ala	Arg 165	Leu	Arg	Pro	Ser	Arg 170	Asn	Phe	His	Tyr	Ile 175	Thr
Ile	Leu	Arg	Asp 180	Pro	Val	Ser	Arg	Tyr 185	Leu	Ser	Glu	Trp	Arg 190	His	Val
Gln	Arg	Gly 195	Ala	Thr	Trp	Lys	Ala 200		Leu	His	Val	Cys 205	Asp	Gly	Arg
Pro	Pro 210	Thr	Ser	Glu	Glu	Leu 215	Pro	Ser	Cys	Tyr	Thr 220	Gly	Asp	Asp	Trp
<u>Ser</u> 225	Gļy	Cys	Pr ₀	Leu	Lys 230	Glu	Phe	Met	Asp	Cys	Pro	Ţyr	Asn	Leu	Ala 240
	Asn	Arg	Gln	Val		Met	Leu	Ser	Asp		Thr	Leu	Val	Gly	
				245					250					255	
Tyr	Asn	Leu	Ser 260	Val	Met	Pro	Glu	Lys 265	Gln	Arg	Asn	Lys	Val 270	Leu.	Leu
Glu	Ser	Ala	Lys	Ser	Asn	Leu	Lys	His	Met	Ala	Phe	Phe	Gly	Leu	Thr
		275					280					285			
Glu		Gln	Arg	Lys	Thr	Gln	Tyr	Leu	Phe	Glu		Thr	Phe	Asn	Met
	290			_		295		_			300				_
	Phe	He	Ser	Pro		Thr	Gln	Tyr	Asn		Thr	Arg	Ala	Ser	
305	a 1	- 1		٥,	310		a 1	_		315		٥.	_		320
Val	Glu	He	Asn	G1u 325	Glu	He	Gln	Lys	Arg 330	He	Glu	Gly	Leu	Asn 335	Phe
Leu	Asp	Met	Glu 340	Leu	Tyr	Ser	Tyr	Ala 345	Lys	Asp	Leu	Phe	Leu 350	Gln	Arg
Tyr	Gln	Phe	Met	Arg	Gln	Lys	Glu	His	Gln	Glu	Ala	Arg	Arg	Lys	Arg
		355					360			•		365			
Gln	Glu 370	Gln	Arg	Lys	Phe	Leu 375	Lys	Gly	Arg	Leu	Leu 380	Gln	Thr	His	Phe
Gln	Ser	Gln	Gly	Gln	Gly	Gln	Ser	Gln	Asn	Pro	Asn	Gln	Asn	Gln	Ser
385					390					395					400
Gln	Asn	Pro	Asn		Asn	Ala	Asn	Gln			Thr	Gln	Asn		Met
Cln	Aan	T 0.11	Th.	405	Com	Tau	Com	Cln	410		Aam	A = ~	C1	415	D=0
GIII	ASI	red	1nr 420	GIN	ser	Leu	ser	425		GIU	ASII	Arg	430	ser	011
Lve	Cln	Ann		C1**	Lvc	Glu	Cln			Ann	ፐ ኬ 🕶	Sar		Clar	Th +
гì	AIII	435	שמו	GIA	гìЯЗ	GIU	440	UOII	пор	11911	1111	445	นงแ	ary	1111
Aen	Aen		ماآ	Glv	Sar	Val		Į.ve	Trn	Aro		****		•	
11011	usp	1 9 1	116	OIY	261	4 CT T	GIU	пуз	тър	1118					

	450					455									
<210)> :	89													
<211	> '	798													
<212	2> 1	PRT													
<213	3> 1	homo	sapi	iens											
<400)>	89													
Met	Glu	Ala	Gly	Glu	Gly	Lys	Glu	Arg	Val	Pro	Lys	Gln	Arg	Gln	Val
1				5					10					15	
 Leu	<u>Il</u> e	Phe	Phe	Val	Leu	Leu	Gly	Ile	Ala	Gln	Ala.	Ser_	Cys.	Gln	Pro
			20					25					30		
Arg	His	Tyr	Ser	Val	Ala	Glu	Glu	Thr	Glu	Ser	Gly	Ser	Phe	Val	Ala
		35					40					45			
Asn	Leu	Leu	Lys	Asp	Leu	Gly	Leu	Glu	Ile	Gly	Glu	Leu	Ala	Val	Arg
	50					55					60				
Gly	Ala	Arg	Val	Val	Ser	Lys	Gly	Lys	Lys	Met	His	Leu	Gln	Phe	Asp
65					70					75					80
Arg	Gln	Thr	Gly		Leu	Leu	Leu	Asn		Lys	Leu	Asp	Arg		Glu
_	_		_	85		_			90	_				95	
Leu	Cys	Gly	•	Thr	Glu	Pro	Cys		Leu	Pro	Phe	Gln		Leu	Let
		_	100					105		_			110		
Glu	Asn	Pro	Leu	GIn	Phe	Phe		Ala	Glu	Leu	Arg		Arg	Asp	Val
		115		D	** 1	n:	120			01	• 1	125			
Asn		His	Ser	Pro	Vai		Leu	Asp	Lys	Glu		Leu	Leu	Lys	116
Dma	130		Tla	Th -	D	135	Th	ጥե	DL -	T	140	01	A	41-	01
	GIU	Ser	11e	ШГ		GIY	ınr	101	rne		116	GIU	Arg	Ala	
145	Lou	Aan	Vo l	C1**	150	Aan	Co.	Ι	C1n	.155	Т	Th	T1.	Co-	160
ASP	Leu	Asp	Vai	165	ШГ	ASII	ser	Leu		ASII	lyr	шг	116		Pro
Aan	Dho	Шic	Dho		Lou	Aon	Lou	Cln	170	Sor	T 011	Aan	Clar	175	Tla
N211	THE	His	180	1115	Leu	V2II	Leu	185	ASP	261	ren	ASP	190	116	116
Īρπ	Pro	Gln		Val	Lan	Aen	Ara		T all	Aen	Ara	Clu		Cln	Dro
LCu	110	195	LÇU	vai	ьсп	иоп	200	ΛIα	геп	voh	иц	205	Giu	GIII	110
Glu	He	Arg	Len	Thr	I en	Thr		I e11	Δen	Clv	Glv		Pro	Pro	Δrc
oru	210		Deu	1111	Deu	215	mu	Deu	пор	ory	220	001	110	110	nie
Ser		Thr	Ala	Len	Val		Tle	Glu	Val	Val		Πe	Asn	Asn	Acr
225	~.,	- ** *		204	230	8		V. W	,	235	٦				240
	Pro	Glu	Phe	Ala		Ĭ en	Ĭ en	Tyr	Cln		Glp	Πe	Pro	Glu	

.

				245				•	250					255	
Ser	Pro	Val	Gly	Ser	Gln	Val	Ala	Ile	Val	Ser	Ala	Arg	Asp	Leu	Asp
			260					265					270		
Ile	Gly	Thr	Asn	Gly	Glu	Ile	Ser	Tyr	Ala	Phe	Ser	Gln	Ala	Ser	Glu
		275					280					285			
Asp	Ile	Arg	Lys	Thr	Phe	Arg	Leu	Ser	Ala	Lys	Ser	Gly	Glu	Leu	Leu
	290					295					300				
Leu	Arg	Gln	Lys	Leu	Asp	Phe	Glu	Ser	Ile	Gln	Thr	Tyr	Thr	Val	Asn
305					310					315	. <u>.</u>				320
He	Gln	Ala	Thr	Asp	Gly	Gly	Gly	Leu	Ser	Gly	Thr	Cys	Val	Val	Phe
				325					330					335	
Val	Gln	Val	Met	Asp	Leu	Asn	Asp	Asn	Pro	Pro	Glu	Leu	Thr	Met	Ser
			340					345					350		
Thr	Leu		Asn	Gln	Ile	Pro		Asn	Leu	Gln	Asp		Leu	He	Ala
		355					360					365			
Val		Ser	Val	Ser	Asp		Asp	Ser	Gly	Asp		Gly	Arg	Met	Val
_	370					375	_	٠.		_	380		_		
	Ser	Ile	Gln	Asp	Asp	Leu	Pro	Phe	Phe		Lys	Pro	Ser	Val	
385	D 1	m			390	. 1		mı.		395			01	m1	400
Asn	Phe	Tyr	Thr		Val	He	Ser	Thr		Leu	Asp	Arg	Glu		Arg
0	01	T	A	405	m1	T1.	TL	17 n 1	410	A	DL.	C1	Th	415	A
ser	GIU	ГУГ		116	Thr	116	1111		10.1	ASP	rne	GIY		Pro	Arg
T	ĭ	ጥኤ	420	II : a	Aan	I l o	Th.	425	T au	Va 1	Co.	Aan	430	Aan	Aan
Leu	Lys			nis	Asn	116			Leu	Val	261			ASII	ASP
Aon	Ala	435		Dha	Thr	Cln	440		ጥኒታ	Th +	Lau	445		Ara	C1n
ASII	450	110	Ala	rne	1111	455		. DC1	1 9 1	.1111	460		Yai	uig	Giu
Aen		Ser	Pro	Δla	Leu			Clv	Ser	Va l			Thr	Asn	Δrσ
465	11011	501		111 a	470		110	Uly	501	475		111 a	1111	пор	480
	Ser	Glv	Thr	Asn	Ala		Val	Thr	Tvr			Len	Pro	Pro	
пор	501	OI,	****	485		0111	,		490		Dou	Dou	110	495	
Asp	Pro	His	I.en		Leu	Ala	Ser	Len			He	Asn	Ala		
,			500					505					510		
Glv	His	Leu			Leu	Gln	Ser			Tvr	Glu	Ala			Ala
,		515					520					525			
Phe	Glu			Val	Gly	Ala			Arg	Glv	Ser			Leu	Ser
	530		,			535		-	_	•	540		-	•	

Ser	Glu	Ala	Leu	Val	Arg	Val	Leu	Val	Leu	Asp	Ala	Asn	Asp	Asn	Ser
545					550					555					560
Pro	Phe	Val	Leu	Tyr	Pro	Leu	Gln	Asn	Gly	Ser	Ala	Pro	Cys	Thr	Glu
				565					570				•	575	
Leu	Val	Pro	Arg	Ala	Ala	Glu	Pro	Gly	Tyr	Leu	Val	Thr	Lys	Val	Val
			580					585					590		
Ala	Val	Asp	Gly	Asp	Ser	Gly	Gln	Asn	Ala	Trp	Leu	Ser	Tyr	Gln	Leu
		595					600					605			
Leu		Ala	Thr	Glu	Pro	Gly	Leu	Phe	Gly	Val	Trp	Ala	His	Asn.	Ģly
	610					615					620				
	Val	Arg	Thr	Ala		Leu	Leu	Arg	Glu		Asp	Ala	Ala	Lys	
625					630					635					640
Arg	Leu	Val	Val	Leu	Val	Lys	Asp	Asn		Glu	Pro	Pro	Arg		Ala
		,		645					650					655	
Thr	Ala	Thr		His	Val	Leu	Leu		Asp	Gly	Phe	Ser		Pro	Tyr
_	_		660					665					670		
Leu	Leu		Pro	Glu	Ala	Ala		Ala	Gln	Ala	Gln		Asp	Leu	Leu
		675 -	_		•		680		_			685	_		_
Thr		Tyr	Leu	Val	Val		Leu	Ala	Ser	Val		Ser	Leu	Phe	Leu
	690		_	_		695				_	700			_	
	Ser	Val	Leu	Leu		Val	Ala	Val			Cys	Arg	Arg	Ser	
705				٠.	710	_	_			715	۵.	_		_	720
Ala	Ala	Ser	Val	Gly	Arg	Cys	Ser	Val		Glu	Gly	Pro	Phe		Gly
61		** 1		725		6 1	mı	41	730			.		735	0.1
GIN	Met	vai		Val	Ser	Gly	Inr		Inr	Leu	Ser	Gln		Tyr	Gin
m	01	¥7. 1	740		mı.	01	0.1	745	a 1	mı		0.1	750		D1
lyr	GIU		Cys	Leu	Inr	GIY		ser	Gly	Inr	Asn		Pne	Lys	Pne
T	T	755	71.	T1.	D	A	760	37 - 1	A 1 -	01	C1	765	01	A	W = 1
reu		Pro	116	Ile	Pro			Vai	Ala	GIN		Ala	GIU	Arg	Val
C.a.m	770	A 1 -	A	D	0	775		T	0	Dh.	780	nı	TL		
	GIU	Ala	ASI	Pro		Pne	Arg	Lys	26L		GIU	Pne	ınr		
785	۸\	00			790					795					
<21		90													
<21 <21		231 PRT													
<21 <21			sap	iane											
<40		1101110 90	sαħ	16112										•	
/IV	~/	~ •													

Met Met Leu Ser Cys Leu Phe Leu Leu Lys Ala Leu Leu Ala Leu Gly Ser Leu Glu Ser Trp Ile Thr Ala Gly Glu His Ala Lys Glu Gly Glu Cys Pro Pro His Lys Asn Pro Cys Lys Glu Leu Cys Gln Gly Asp Glu Leu Cys Pro Ala Glu Gln Lys Cys Cys Thr Thr Gly Cys Gly Arg Ile Cys Arg Asp Ile Pro Lys Gly Arg Lys Arg Asp Cys Pro Arg Val Ile Arg Lys Gln Ser Cys Leu Lys Arg Cys Ile Thr Asp Glu Thr Cys Pro Gly Val Lys Lys Cys Cys Thr Leu Gly Cys Asn Lys Ser Cys Val Val Pro Ile Ser Lys Gln Lys Leu Ala Glu Phe Gly Gly Glu Cys Pro Ala Asp Pro Leu Pro Cys Glu Glu Leu Cys Asp Gly Asp Ala Ser Cys Pro Gln Gly His Lys Cys Cys Ser Thr Gly Cys Gly Arg Thr Cys Leu Gly Asp Ile Glu Gly Gly Arg Gly Gly Asp Cys Pro Lys Val Leu Val Gly Leu Cys Ile Val Gly Cys Val Met Asp Glu Asn Cys Gln Ala Gly Glu Lys Cys Cys Lys Ser Gly Cys Gly Arg Phe Cys Val Pro Pro Val Leu Pro Pro Lys Leu Thr Met Asn Pro Asn Trp Thr Val Arg Ser Asp Ser Glu Leu Glu Ile Pro Val Pro <210> 91 **<211>** 677 <212> PRT <213> homo sapiens **<400> 91** Met Leu Ser Ser Thr Asp Phe Thr Phe Ala Ser Trp Glu Leu Val Val

Arg	Val	Asp	His 20	Pro	Asn	Glu	Glu	Gln 25	Gln	Lys	Asp	Val	Thr 30	Leu	Arg
Val	Ser	Gly 35	Asp	Leu	His	Val	Gly 40	Gly	Val	Met	Leu	Lys 45	Leu	Val	Glu
Gln	Ile 50	Asn	Ile	Ser	Gln	Asp 55	Trp	Ser	Asp	Phe	Ala 60	Leu	Trp	Trp	Glu
Gln 65	Lys	His	Cys	Trp	Leu 70	Leu	Lys	Thr	His	Trp 75	Thr	Leu	Asp	Lys	Tyr 80
Gly	<u>V</u> a l	Gļņ	Ala	Aşp. 85	.Ala	Lys	Leu	Leu	Phe 90	Tḥr	Pro.	Ģļņ	His	Lys 95	Me t
Leu	Arg	Leu	Arg 100	Leu	Pro	Asn	Leu	Lys 105	Met	Val	Arg	Leu	Arg 110	Val	Ser
Phe	Ser	Ala 115	Val	Val	Phe	Lys	Ala 120	Val	Ser	Asp	Ile	Cys 125	Lys	Ile	Leu
Asn	Ile 130	Arg	Arg	Ser	Glu	Glu 135	Leu	Ser	Leu	Leu	Lys 140	Pro	Ser	Gly	Asp
Tyr 145	Phe	Lys	Lys	Lys	Lys 150	Lys	Lys	Asp	Lys	Asn 155	Asn	Lys	Glu	Pro	Ile 160
Ile	Glu	Asp	Iļe	Leu 165	Asn	Leu	Glu	Ser	Ser 170	Pro	Thr	Ala	Ser	Gly 175	Ser
Ser	Val	Ser	Pro 180	Gly	Leu	Tyr	Ser	Lys 185	Thr	Met	Thr	Pro	Ile 190	Tyr	Asp
Pro	Ile	Asn 195	Gly	Thr	Pro	Ala	Ser 200	Ser	Thr	Met	Thr	Trp 205	Phe	Ser	Asp
Ser	Pro 210		Thr	Glu	Gln	Asn 215	Cys	Ser	Ile	Leu	Ala 220	Phe	Ser	Gln	Pro
Pro 225		Ser	Pro	Glu	Ala 230	Leu	Ala	Asp	Met	Tyr 235		Pro	Arg	Ser	Leu 240
Val	Asp	Lys	Ala	Lys 245		Asn	Ala	Gly	Trp 250		Asp	Ser	Ser	Arg 255	Ser
Leu	Met	Glu	Gln 260		Ile	Gln	Glu	Asp 265		Gln	Leu	Leu	Leu 270	Arg	Phe
Lys	Tyr	Tyr 275		Phe	Phe	Asp	Leu 280		Pro	Lys	Tyr	Asp 285		Val	Arg
Ile	Asn 290		Leu	Tyr	Glu	G1n 295		Arg	Trp	Ala	Ile 300		Leu	Glu	Glu
Ile			Thr	Glu	Glu			Leu	Ile	Phe	Ala	Ala	Leu	Gln	Tyr

305					310			•		315					320
His	Ile	Ser	Lys	Leu	Ser	Leu	Ser	Ala	Glu	Thr	Gln	Asp	Phe	Ala	Gly
				325					330					335	
Glu	Ser	Glu	Val	Asp	Glu	Ile	Glu	Ala	Ala	Leu	Ser	Asn	Leu	Glu	Val
			340					345					350	•	
Thr	Leu	Glu	Gly	Gly	Lys	Ala	Asp	Ser	Leu	Leu	Glu	Asp	Ile	Thr	Asp
		355					360					365			
Ile		Lys	Leu	Ala				Lys	Leu	Phe		Pro	Lys	Lys	Leu
_	370	_				375	••	_			380				_
	Pro	Lys	Ala	Phe		GIn	Tyr	Trp	Phe		Phe	Lys	Asp	Thr	
385		m	D 1		390		01		01	395	01	01	ъ.	T	400
He	Ala	Tyr	Phe		Asn	Lys	Glu	Leu		Gin	Gly	Glu	Pro		GIU
T	Lau	A a m	Lou	405	C1**	Crra	Clu	Vol	410	Dno	Aon	Vo 1	Aan	415	A 1 o
Lys	Leu	ASIL	Leu 420	Arg	GIY	Cys	GIU	425	Val	FIU	ASP	Val	430	Vai	Ala
Clv	۸ra	Lve	Phe	C1v	Ila	Twe	Ι Δ11		۵ ا آ	Pro	Va l	Δla		Clv	Met
Gly	nig	435	THE	GIY	110	гуз	440	Lcu	110	110	141	445	пор	Oly	nic t
Asn	Glu		Tyr	I.en	Arø	Cvs		His	Glu	Asn	Gln		Ala	Gin	Trp
11011	450	1,100	1,1	200	; 6	455	p		0.4		460	-,-		•	
Met		Ala	Cys	Met	Leu		Ser	Lys	Gly	Lys		Met	Ala	Asp	Ser
465			•		470				Ţ	475					480
	Tyr	Gln	Pro	Glu	Val	Leu	Asn	Ile	Leu	Ser	Phe	Leu	Arg	Met	Lys
				485					490					495	
Asn	Arg	Asn	Ser	Ala	Ser	Gln	Val	Ala	Ser	Ser	Leu	Glu	Asn	Met	Asp
			500					505					510		
Met	Asn	Pro	Glu	Cys	Phe	Val	Ser	Pro	Arg	·Cys	Ala	Lys	Lys	His	Lys
		515					520					525			
Ser	Lys	Gln	Leu	Ala	Ala	Arg	Ile	Leu	Glu	Ala	His	Gln	Asn	Val	Ala
	530					535					540				
Gln	Met	Pro	Leu	Val			Lys	Leu	Arg			Gln	Ala	Trp	Gln
545					550			_	_	555				_	560
Ser	Leu	Pro	Glu		-	Leu	Thr	Tyr			Val	Arg	Phe		Gly
	J			565			01	¥2. 1	570				¥	575	
Ser	Lys	Lys			He	Leu	Gly			ıyr	ASN	Arg			Lys
T1-	۸۵	A 1 -	580		. C1	. [1.	D=^	585		ጥե	Τ	Λ ~	590		A a m
116	ASP			. INF	σIÿ	116			1111	1111	rrp			'nnt	Asn
		595	•				600					605			

Ile Lys Gln Trp Asn Val Asn Trp Glu Thr Arg Gln Val Val Ile Glu Phe Asp Gln Asn Val Phe Thr Ala Phe Thr Cys Leu Ser Ala Asp Cys Lys Ile Val His Glu Tyr Ile Gly Gly Tyr Ile Phe Leu Ser Thr Arg Ser Lys Asp Gln Asn Glu Thr Leu Asp Glu Asp Leu Phe His Lys Leu Thr Gly Gly Gln Asp ⟨210⟩ 92 . **<211>** 764 <212> PRT <213> homo sapiens **<400> 92** Met Leu Leu Phe Val Leu Thr Cys Leu Leu Ala Val Phe Pro Ala Ile Ser Thr Lys Ser Pro Ile Phe Gly Pro Glu Glu Val Asn Ser Val Glu Gly Asn Ser Val Ser Ile Thr Cys Tyr Tyr Pro Pro Thr Ser Val Asn Arg His Thr Arg Lys Tyr Trp Cys Arg Gln Gly Ala Arg Gly Gly Cys Ile Thr Leu Ile Ser Ser Glu Gly Tyr Val Ser Ser Lys Tyr Ala Gly Arg Ala Asn Leu Thr Asn Phe Pro Glu Asn Gly Thr Phe Val Val Asn lle Ala Gln Leu Ser Gln Asp Asp Ser Gly Arg Tyr Lys Cys Gly Leu Gly Ile Asn Ser Arg Gly Leu Ser Phe Asp Val Ser Leu Glu Val Ser Gln Gly Pro Gly Leu Leu Asn Asp Thr Lys Val Tyr Thr Val Asp Leu Gly Arg Thr Val Thr Ile Asn Cys Pro Phe Lys Thr Glu Asn Ala Gln Lys Arg Lys Ser Leu Tyr Lys Gln Ile Gly Leu Tyr Pro Val Leu Val

Ile	Asp	Ser	Ser	Gly	Tyr	Val	Asn	Pro	Asn	Tyr	Thr	Gly	Arg	Ile	Arg
_		_	180					185					190		
Leu	Asp		Gln	Gly	Thr	Gly		Leu	Leu	Phe	Ser	Val	Val	Ile	Asn
	_	195	_				200					205			
Gln		Arg	Leu	Ser	Asp		Gly	Gln	Tyr	Leu	Cys	Gln	Ala	Gly	Asp
	210					215					220				
	Ser	Asn	Ser	Asn		Lys	Asn	Ala	Asp		Gln	Val	Leu	Lys	Pro
225					230					235					240
Glu	Ььо	Glu	Leu		Tyr	Glu	Asp	Leu		Gly	Ser	Va <u>l</u>	Thr		Ḥis _.
•	4.1		61	245	~·				250					255	
Cys	Ala	Leu	Gly	Pro	Glu	Vai	Ala		Val	Ala	Lys	Phe		Cys	Arg
01	0	0	260	01				265					270		_
GIN	Ser		Gly	Glu	Asn	Cys			Val	Val	Asn		Leu	Gly	Lys
A	۸1.	275	A 1	nt.	01	01	280		.	·		285	0 1		
Arg		Pro	Ala	rne	GIU		Arg	116	Leu	Leu		Pro	Gln	Asp	Lys
A a n	290	Com.	Dha	C	¥7 1	295	T1.	ጥե	C1	T	300		61		4.1
305	GIY	ser	Phe	ser		vai	116	ınr	GIY		Arg	Lys	Glu	Asp	
	Ara	Ттт	Lon	Crro	310	41.	II; o	C.,	100	315	C1 =	T	C1-	C1	320
GIY	nig	1 9 1	Leu	325	GIA	Ala	піѕ	ser		GIY	GIII	Leu	GIII		GIY
Sar	Dro	Ila	Cln		Trn	Cln	Lon	Dho	330	Aan	Clu	C1	Con	335	11.
261	110	116	Gln 340	nia	11þ	GIII	ren	345		ASII	GIU	GIU	350	IIII	116
Pro	Aro	Ser	Pro	Thr	Val	Val	Lve				Clv	Clv		Vo 1	A 1 a
110	111 E	355	110	1111	741	141	360	Gly	Vai	nia	GIY	365	261	Val	Ala
Va 1	Len		Pro	Tvr	Asn	Aro		Gln	Ser	Ive	Ser		Tue	Tur	Trn
,	370	0,0	110	.,1	71011	375	БуЗ	Olu	501		380	110	Буз	1 9 1	пр
Cvs		Trp	Glu	Glv	Ala		Asn	Glv	Arg	Cvs		Len	I.en	Val	Asn
385				,	390	V 1		01,		395	110	Dou	Dou	, ,	400
	Glu	Gly	Trp	Val		Ala	Gln	Tvr	Glu		Arg	Leu	Ser	Leu	
			•	405	. •				410		0			415	
Glu	Glu	Pro	Gly		Gly	Thr	Phe	Thr		Ile	Leu	Asn	Gln		Thr
			420		·			425					430		
Ser	Arg	Asp	Ala	Gly	Phe	Tyr	Trp	Cys	Leu	Thr	Asn	Gly		Thr	Leu
	-	435		-		-	440	·				445	-		
Trp	Arg	Thr	Thr	Val	Glu	Ile		Ile	Ile	Glu	Gly		Pro	Asn	Leu
	450					455					460				
Lys	Val	Pro	Gly	Asn	Val	Thr	Ala	Val	Leu	Gly	Glu	Thr	Leu	Lys	Val

465	470		475	480
Pro Cys His Phe	Pro Cys Lys	Phe Ser Ser	Tyr Glu Lys	Tyr Trp Cys
	485	490		495
Lys Trp Asn Ası	Thr Gly Cys	Gln Ala Leu	Pro Ser Gln	Asp Glu Gly
500)	505		510
Pro Ser Lys Ala	Phe Val Asn	Cys Asp Glu	Asn Ser Arg	Leu Val Ser
515		520	525	•
Leu Thr Leu Ası		_		Tyr Trp Cys
_530	535	•	540	
Gly Val Lys Gli		Tyr Gly Glu		
545	550		555	560
Ala Val Glu Glu			Arg Asp val	
Ina Ala Asp Al	565	570	Lou Aon Con	575
Lys Ala Asp Ala 58		585	Leu Asp Sei	590
Glu Ile Glu Asi			Aro Leu Phe	
595	i Lys Ala Ile	600	605	Mia dia dia
Lys Ala Val Al	a Asn Thr Arg			Arg Ala Ser
610	615		620	
Val Asp Ser Gl				Arg Ala Leu
625	630	-	635	640
Val Ser Thr Le	u Val Pro Leu	Gly Leu Val	Leu Ala Val	Gly Ala Val
	645	650		655
Ala Val Gly Va	l Ala Arg Ala	Arg His Arg	Lys Asn Val	Asp Arg Val
66	0	665		670
Ser Ile Arg Se	r Tyr Arg Thi	Asp Ile Ser	Met Ser Asp	Phe Glu Asn
675		680	685	
Ser Arg Glu Ph	e Gly Ala Asr	Asp Asn Met		Ser Ile Thr
690	695		700	
Gln Glu Thr Se		Lys Glu Glu		
705	710		715	720
Ser Thr Thr Gl				
Cl., Cl., Al., Cl	725	730		735
Glu Glu Ala Gl			ren ren ein	
74		745	Clu Alo	750
Val Ala Ala Gl	u Ala GIII ASI		GIU AIA	•
755		760		

<210	> 9	3													
<211	> 6	94													
<212	> F	PRT													
<213	8> 1	omo	sapi	ens											
<400)> 9	3													
Met	Lys	His	Leu	Lys	Arg	Trp	Trp	Ser	Ala	Gly	Gly	Gly	Leu	Leu	His
1				5					10					15	
Leu	Thr	Leu	Leu	Leu	Ser	Leu	Ala	Gly	Leu	Arg	Val	Asp	Leu	Asp	Leu
		•	20					.25					30		
Tyr	Leu		Leu	Pro	Pro	Pro		Leu	Leu	Gln	Asp		Leu	Leu	Phe
_		35.	_		_		40	_		_		45		_	
Leu		Gly	Pro	Ala	Ser		Ala	Tyr	Ala	Leu		Pro	Phe	Ser	Ala
0	50	C1	m	C1	A	55	C1	11:-	T	II: .	60 Date	T	C1	A	Cl.
	GIY	ыу	1rp	Gly		Ala	Gly	HIS	Leu		Pro	Lys	Gly	Arg	
65	Aon	Dro	Ala	A 1 o	70 Bro	Dro	Clu	Clar	Cln	75 Lov	Lou	Ara	Clu	Va l	80 Ara
Leu	ASP	F10	Ala	85	riu	110	GIU	GIY	90	Leu	Leu	MIR	Glu	95	MI S
Δla	T en	Glv	Val		Phe	Val	Pro	Aro		Ser	Val	Asn	Ala		Len
711 G	Deu	ulj	100	110	: 110	141	110	105	1111	501	,	пор	110	117	Dou
Val	His	Ser	•	Ala	Ala	Glv	Ser		Asp	Glu	Ala	His	Gly	Leu	Leu
		115					120		•			125	•		
Gly	Ala		Ala	Ala	Ser	Ser	Thr	Gly	Gly	Ala	Gly	Ala	Ser	Val	Asp
	130					135					140				
Gly	Gly	Ser	Gln	Ala	Val	Gln	Gly	Gly	Gly	Gly	Asp	Pro	Arg	Ala	Ala
145					150					155					160
Arg	Ser	Gly	Pro	Leu	Asp	Ala	Gly	Glu	Glu	Glu	Lys	Ala	Pro	Ala	Glu
				165					170					175	
Pro	Thr	Ala	Gln	Val	Pro	Asp	Ala	Gly	Gly	Cys	Ala	Ser	Glu	Glu	Asr
			180					185					190		
Gly	Val	Leu	Arg	Glu	Lys	His	Glu	Ala	Val	Asp	His	Ser	Ser	Gln	His
		195					200					205			
Glu			Glu	Glu	Arg			Ala	Gln	Lys			Ser	Leu	Gln
	210					215					220			_	
		Asp	Asp	Asp		Asn	Lys	He	Ala		Lys	Pro	Asp	Trp	
225		_			230	0			01	235	•••			0 1	240
Ala	Glu	Lys	Thr			Ser	Arg	Asn		Arg	His	Leu	Asn		Thi
				245					250					255	

.

		•														_
As	p Tl	hr	Ser	Phe 260	Ser	Leu	Glu	Asp	Leu 265	Phe	Gln	Leu	Leu	Ser 270	Ser	Gln
Dr	^ C	1 11	A c n		Lou	C1.	C1**	710		T	C1	Aon	Tla		T	D
11	U G	ıu	275	261	Leu	GIU	Gly		ser	Leu	GIY	ASP		Pro	Leu	Pro
CI	C.	^ **		C 0 T	4	C1	Max	280	0	0	41 -	TT: -	285	TT :	37 - 1	
GI			116	ser	ASP	GIY	Met	ASI	Ser	Ser	Ala		lyr	HIS	vai	Asn
D1.		90	01 .	4.1		•	295			_	_	300				_
		er	GIN	Ala	116		Gln	Asp	Val	Asn		His	Glu	Ala	He	
30						310					315					320
. L <u>e</u>	u C	УŞ	Pro	Asn.		Thr	Phe	Arg	Arg		Pro	Thr	<u>Ala</u>	Arg		Ser_
	_				325		_			330					335	
GI	n S	er	Gln		Pro	Phe	Leu	Gln		Asn	Ser	His	Thr	Thr	Asn	Pro
				340					345					350		
Gl	u G	ln		Leu	Pro	Gly	Thr	Asn	Leu	Thr	Gly	Phe	Leu	Ser	Pro	Val
			355					360					365			
As			His	Met	Arg	Asn	Leu	Thr	Ser	Gln	Asp	Leu	Leu	Tyr	Asp	Leu
	3	70					375					380				
As	p I	le	Asn	Ile	Phe	Asp	Glu	Ile	Asn	Leu	Met	Ser	Leu	Ala	Thr	Glu
38	5					390					395					400
As	p A	sn	Phe	Aṣp	Pro	Ile	Asp	Val	Ser	Gln	Leu	Phe	Asp	Glu	Pro	Asp
					405					410					415	
Se	r A	sp	Ser	$\textbf{Gl}_{.}\textbf{y}$	Leu	Ser	Leu	Asp	Ser	Ser	His	Asn	Asn	Thr	Ser	Val
				420					425					430		
Ιl	e L	ys	Ser	Asn	Ser	Ser	His	Ser	Val	Cys	Asp	Glu	Gly	Ala	Ile	Gly
			435					440					445			
Ту	r C	ys	Thr	Asp	His	Glu	Ser	Ser	Ser	His	His	Asp	Leu	Glu	Gly	Ala
	4	50					455					460				
Va	1 G	lу	Gly	Tyr	Tyr	Pro	Glu	Pro	Ser	Lys	Leu	Cys	His	Leu	Asp	Gln
46	5					470					475					480
Se	r A	sp	Ser	Asp	Phe	His	Gly	Asp	Leu	Thr	Phe	Gln	His	Val	Phe	His
					485					490					495	
As	n H	i s	Thr	Tyr	His	Leu	Gln	Pro	Thr	Ala	Pro	Glu	Ser	Thr	Ser	Glu
				500					505					510		
Pr	o Pl	he	Pro	Trp	Pro	Gly	Lys	Ser	Gln	Lys	Ile	Arg	Ser	Arg	Tyr	Leu
			515	-		-	-	520		-		,	525		-	
Gl	u A:	sp		Asp	Arg	Asn	Leu		Arg	Asp	Glu	Gln		Ala	Lvs	Ala
		30		•	J		535		J	•		540			-5-	
Le			He	Pro	Phe	Ser	Val	Asp	Glu	He	Val		Met	Pro	Val	Asn
		-	•		•	*		P				~ ^ J		- 10	, u. 1	ין טיי

	•														
545					550					555					560
Ser	Phe	Asn	Ser	Met	Leu	Ser	Arg	Tyr	Tyr	Leu	Thr	Asp	Leu	Gln	Val
				565					570					575	
Ser	Leu	Ile	Arg	Asp	Ile	Arg	Arg	Arg	Gly	Lys	Asn	Lys	Val	Ala	Ala
			580					585					590		
Gln	Asn		Arg	Lys	Arg	Lys	Leu	Asp	Ile	Ile	Leu	Asn	Leu	Glu	Asp
		595					600					605			
Asp	Val	Cys	Asn	Leu	Gln		Lys	Lys	Glu			Lys	Arg	Glu	Gln
4.1	610					615				-	620		_		
	Gln	Cys	Asn	Lys		He	Asn	He	Met		Gln	Lys	Leu	His	
625	m		A	7 1	630	•				635		01	a 1		640
Leu	Tyr	HIS	ASP		Pne	Ser	Arg	Leu		Asp	Asp	Gin	Gly		Pro
Vol	Aan	Dro	Aan	645	Т	41.	T	C1m	650	Th	11:0	4	C1	655	T1-
Val	Asn	FIU	660	піѕ	1 7 1	Ala	Leu	665	Cys	101	nis	ASP	670	261	116
Len	Ile	Val		Tve	Glu	Īρπ	Va 1		Sar	Clv	Hic	Twe		Cla	Thr
LCu	110	675	110	гуз	Giu	Leu	680	Ala	DCI	Gly	1112	685	rys	Gru	1111
Gln	Lys		Lvs	Arg	Lvs		000					000			
	690	O.,	2,0												
<210		94	•												
<21 :	1> 1	110													
<21	2> 1	PRT													
<213	3> 1	nomo	sapi	iens											
<400	0> 9	94													
Met	Trp	Met	Gly	Leu	Ile	Gln	Leu	Val	Glu	Gly	Val	Lys	Arg	Lys	Asp
1				5					10					15	
Gln	Gly	Phe	Leu	Glu	Lys	Glu	Phe	Tyr	His	Lys	Thr	Asn	Ile	Lys	Met
			20					25					30		
His	Cys	Glu	Phe	His	Ala	Cys	Trp	Pro	Ala	Phe	Thr	Val	Leu	Gly	Glu
		35		,			40					45			
Ala	Trp	Arg	Asp	Gln	Val	Asp	Trp	Ser	Ile	Leu	Leu	Arg	Asp	Ala	Gly
	50					55					60				
	Val	Lys	Met	Ser		Lys	Pro	Arg	Ala		Ser	Pro	Leu	Ser	
65			_	an t	70				_	75					80
Asn	His	Pro	Pro		Pro	Lys	Arg	Phe		Arg	Gin	Leu	Gly		Glu
T	01	D		85	0.3	77. 1	D	01	90	T	01	0	D	95	
Lys	Gly	Pro	He	Glu	Glu	Val	Pro	Gly	Inr	Lys	Gly	Ser	Pro		

			100					105					110		
<210>	, 9	5													
<211>		25													
<212>		PRT													
<213>			sapi	iens											•
<400>)5	•												
Met A	la	Ser	Gly	Gln	Phe	Val	Asn	Lys	Leu	Gln	Glu	Glu	Val	Ile	Cys
1				5					10					15	
Pro I	<u>le</u>	Cys	Leu	Asp	Ile	Leu	Gln	Lys	Pro.	Val	Thr	<u>I</u> le	Asp	Cys	Gly
			20					25					30		
His A	lsn	Phe	Cys	Leu	Lys	Cys	Ile	Thr	Gln	Ile	Gly	Glu	Thr	Ser	Cys
		35					40					45			
Gly P	Phe	Phe	Lys	Cys	Pro	Leu	Cys	Lys	Thr	Ser	Val	Arg	Arg	Asp	Ala ·
5	50					55					60				
Ile A	Arg	Phe	Asn	Ser	Leu	Leu	Arg	Asn	Leu	Val	Glu	Lys	Ile	Gln	Ala
65					70					75					80
Leu G	Gln	Ala	Ser	Glu	Val	Gln	Ser	Lys	Arg	Lys	Glu	Ala	Thr	Cys	Pro
				85					90					95	
Arg H	lis	Gln	Gļu	Met	Phe	His	Tyr	Phe	Cys	Glu	Asp	Asp	Gly	Lys	Phe
			100					105					110		
Leu C	Cys	Phe	Val	Cys	Arg	Glu	Ser	Lys	Asp	His	Lys	Ser	His	Asn	Val
		115					120		•			125			
Ser I		Ile	Glu	Glu	Ala		Gln	Asn	Tyr	Gln		Gln	Ile	Gln	Glu
	130			_		135	_		_	٠.	140		~ 1		_
Gln I	He	Gln	Val	Leu			Lys	Glu	Lys		Thr	Vai	Gln	Val	
145		0.1	.		150			77 1	D1	155		01	TT . 1	01	160
Ala G	J I N	Gly	vai		Arg	vai	Asp	Val		Inr	Asp	GIN	vai		HIS
Ola T	·	C1	A	165	T	TL	01	Dh.	170	T	Ι	11:0	C1m	175	Tou
Glu I	Lys	GIII		116	Leu	ınr	Glu		GIU	Leu	Leu	ніз		Val	Leu
C1 (C1	C1	180	A a m	Dh.a	τ	T 0	185	A = ~	T1 o	Т	Tnn	190	C1**	II i o
Glu (31 U		Lys	ASII	rne	Leu	200		Arg	116	1 y r	205	ren	GIY	піѕ
Clu (^1 _{**}	195	Clu	A 1 o	Clar	Ι τι ο			Val	Λla	Cor		Clu	Dro	Gln
Glu (31y 210	1111	viu	WIG	αιλ	215	1113	TÄL	101	VIG	220	1111	JIU	110	GIII
Leu A		Aan	Lou	Tue	Two		Val	Aon	Çar	Lou		Thr	Twe	Gln	Aen
225	no II	ush	ren	гì	230		val	иsh	PCI	235		1111	ъys	GIII	240
	Dra	Dro	۸+~	Clr			CI 11	Aen	Πρ			۱وV	Ι Δ11	, Care	
Met I	110	LIO	vi 8	GIII	ren	րբ n	aid	voh	116	ьys	, vai	141	LCU	Cys	шg

	•														
				245					250					255	
Ser	Glu	Glu	Phe	Gln	Phe	Leu	Asn	Pro	Thr	Pro	Val	Pro	Leu	Glu	Leu
			260					265					270		
Glu	Lys	Lys	Leu	Ser	Glu	Ala	Lys	Ser	Arg	His	Asp	Ser	Ile	Thr	Gly
		275					280					285			
Ser	Leu	Lys	Lys	Phe	Lys	Asp	Gln	Leu	Gln	Ala	Asp	Arg	Lys	Lys	Asp
	290					295					300				
Glu	Asn	Arg	Phe	Phe	Lys	Ser	Me t	Asn	Lys	Asn	Asp	Met	Lys	Ser	Trp
305					310					315	•				320
Gly	Leu	Leu	Gln	Lys	Asn	Asn	His	Lys	Met	Asn	Lys	Thr	Ser	Glu	Pro
				325					330					335	
Gly	Ser	Ser	Ser	Ala	Gly	Gly	Arg	Thr	Thr	Ser	Gly	Pro	Pro	Asn	His
			340					345					350		
His	Ser	Ser	Ala	Pro	Ser	His		Leu	Phe	Arg	Ala		Ser	Ala	Gly
_		355		_			360	_							
Lys		Thr	Phe	Pro	Val		Leu	Leu	Ala	Ser		Asp	Glu	Ile	Ser
01	370	01	4.1		•	375			_		380				
	Gln	Gly	Ala	Ser	•	Gin	Asp	Thr	Lys		Phe	Asp	Val	Ala	
385	01	01	, T	TT: -	390	A 1 -	.		61	395					400
ser	GIU	Glu	ren		Ala	Ala	Leu	ser		Trp	Leu	inr	Ala		
410	ጥ _ሞ ከ	Dho	C110	405	Vo l	Dro	Con	Co#	410					415	
Ald	TIP	Phe	420	GIU	Val	PTO	ser		•						
<210	n> (96	420					425							
<21 1	-	429													
<212		PRT													
<213		nomo	sani	iens											
	0> 9		Jup.												
		Thr	Asp	Asp	Thr	Glu	Val	Pro	Ala	Met	Thr	Leu	Ala	Pro	Glv
1	•			5					10					15	
His	Ala	Ala	Leu	Glu	Thr	Gln	Thr	Leu	Ser	Ala	Glu	Thr	Ser		Arg
			20					25					30		Ū
Ala	Ser	Thr	Pro	Ala	Gly	Pro	Ile	Pro	Glu	Ala	Glu	Thr	Arg	Gly	Ala
		35					40					45			
Lys	Arg	Ile	Ser	Pro	Ala	Arg	Glu	Thr	Arg	Ser	Phe	Thr	Lys	Thr	Ser
	50					55					60				
Pro	Asn	Phe	Met	Val	Leu	Ile	Ala	Thr	Ser	Val	Glu	Thr	Ser	Ala	Ala

65					70					75					80
Ser	Gly	Ser	Pro	Glu	Gly	Ala	Gly	Met	Thr	Thr	Val	Gln	Thr	Ile	Thr
				85					90					95	
Gly	Ser	Asp	Pro	Arg	Glu	Ala	Ile	Phe	Asp	Thr	Leu	Cys	Thr	Asp	Asp
			100					105					110		
Ile	Ser	Glu	Glu	Ala	Lys	Thr	Leu	Thr	Met	Asp	Ile	Leu	Thr	Leu	Ala
		115					120					125			
His	Thr	Ser	Thr	Glu	Ala	Lys	Gly	Leu	Ser	Ser	Glu	Ser	Ser	Ala	Ser
	130					135					140				
Ser	Asp	Gly	Pro	His	Pro	Val	Ile	Thr	Pro	Ser	Arg	Ala	Ser	Glu	Ser
145		•			150					155					160
Ser	Ala	Ser	Ser	Asp	Gly	Leu	His	Pro	Val	He	Thr	Pro	Ser	Arg	Ala
				165					170					175	
Ser	Glu	Ser		Ala	Ser	Ser	Asp	Gly	Leu	His	Pro	Val	He	Thr	Pro
			180					185					190		
Ser	Arg		Ser	Glu	Ser	Ser		Ser	Ser	Asp	Gly		His	Pro	Val
		195					200					205			
Ile		Pro	Ser	Trp	Ser	Pro	Gly	Ser	Asp	Val		Leu	Leu	Ala	Glu
	210		•			215					220				
	Leu	Val	Thr	Val		Asn	Ile	Glu	Val		Asn	Cys	Ser	Ile	
225					230	_	_			235		_			240
Glu	He	Glu	Thr		Thr	Ser	Ser	He		Gly	Ala	Ser	Asp		Asp
_		_		245					250			_		255	_
Leu	He	Pro		Glu	Gly	Val	Lys		Ser	Ser	Thr	Ser		Pro	Pro
			260		mı.		mı.	265	~	** •	~ 1	m1	270	•	mı
Ala	Leu		Asp	Ser	ınr	Asn		Lys	Pro	HIS	116		GIU	vai	inr
A 1 -	Com.	275	Cl.	Th.	T	C	280	41.	C1	ጥե	ጥե	285	Com	A1.	41.
Ala		Ala	GIU	ınr	Leu	Ser		Ala	GIY	ınr		GIU	ser	Ala	Ala
Dan	290	41.	ጥե	T 1 a	C1	295		Lou	Dwa	ጥե	300	Com.	ጥե ••	T l o	C1
	ASP	Ala	ınr	116		Thr	Pro	Leu	Pro			261	Inr	116	
305	Clar	Wo 1	ጥե	A 1 a	310		41.	ጥኤ	Th.	315		Clar	A 1 o	Lou	320
Arg	GIU	Vai	1111			Gly	Ala	1111		Leu	261	GIY	Ald		Ala
ጥኤ	C1++	100	Dec	325		C1	ጥե	C^#	330	Lau	Çar	Val	Clu	335	Dro
1111	GIY	ASII			GIU	Glu	1111	345	nid	red	261	Val	350	1111	110
°0+	Ττν ==	Vol	340		20=	C1++	Λlα		Dro	Va 1	Car	ΠΔ		Δ1 a	Clv
วยโ	TAL			val	Ser	Gly			110	val	261		GIU	ùıq	GIÀ
		355					360					365			

WO 2005/014818 PCT/JP2004/011650

182/271

Ser Ala Val Gly Lys Thr Thr Ser Phe Ala Gly Ser Ser Ala Ser Ser Tyr Ser Pro Leu Glu Ala Ala Leu Lys Asn Phe Thr Pro Ser Glu Thr Leu Thr Thr Asp Ile Ala Thr Lys Gly Pro Phe Pro Thr Ser Arg Ala Pro Leu Pro Ser Val Pro Pro Thr Thr Asn Ser Ser **<210> 97 <211>** 165 <212> PRT. <213> homo sapiens **<400> 97** Met Ala Pro Asn Ala Ser Cys Leu Cys Val His Val Arg Ser Glu Glu Trp Asp Leu Met Thr Phe Asp Ala Asn Pro Tyr Asp Ser Val Lys Lys Ile Lys Glu His Val Arg Ser Lys Thr Lys Val Pro Val Gln Asp Gln Val Leu Leu Gly Ser Lys Ile Leu Lys Pro Arg Arg Ser Leu Ser Ser Tyr Gly Ile Asp Lys Glu Lys Thr Ile His Leu Thr Leu Lys Val Val Lys Pro Ser Asp Glu Glu Leu Pro Leu Phe Leu Val Glu Ser Gly Asp Glu Ala Lys Arg His Leu Leu Gln Val Arg Arg Ser Ser Val Ala Gln Val Lys Ala Met Ile Glu Thr Lys Thr Gly Ile Ile Pro Glu Thr Gln Ile Val Thr Cys Asn Gly Lys Arg Leu Glu Asp Gly Lys Met Met Ala Asp Tyr Gly Ile Arg Lys Gly Asn Leu Leu Phe Leu Ala Ser Tyr Cys Ile Gly Gly **<210> 98 <211> 891**

<21	· 2> 1	PRT													
<21	3> 1	omo	sapi	iens											
<400	0> 9	98													
Met	His	Ala	Ile	Asn	Gly	Phe	Val	Phe	Glv	Asn	Leu	Pro	Glu	Leu	Asn
1				5					10					15	
Met	Cys	Ala	Gln	Lys	Arg	Val	Ala	Trp		Leu	Phe	Glv	Met	Gly	Asn
			20	_				25					30		
Glu	Ile	Asp	Val	His	Thr	Ala	Phe	Phe	His	Gly	Gln	Met		Thr	Thr
		35					40			•		45			
Arg	Gly	His	His	Thr	Asp	Val	Ala	Asn	Ile	Phe	_			Phe	Val
	50					55					60				
Thr	Ala	Glu	Met	Val	Pro	Trp	Glu	Pro	Gly	Thr	Trp	Leu	Ile	Ser	Cys
65					70					75					80
Gln	Val	Asn	Ser	His	Phe	Arg	Asp	Gly	Met	Gln	Ala	Leu	Tyr	Lys	Val
				85					90					95	
Lys	Ser	Cys	Ser	Met	Ala	Pro	Pro	Val	Asp	Leu	Leu	Thr	Gly	Lys	Val
			100					105			•		110		
Arg	Gln	Tyr	Phe	Ile	Glu	Ala	His	Glu	Ile	Gln	Trp	Asp	Tyr	Gly	Pro
		115					120					125			
Me t	Gly	His	Asp	Gly	Ser	Thr	Gly	Lys	Asn	Leu	Arg	Glu	Pro	Gly	Ser
	130					135					140				
Ile	Ser	Asp	Lys	Phe	Phe	Gln	Lys	Ser	Ser	Ser	Arg	Ile	Gly	Gly	Thr
145					150					155					160
Tyr	Trp	Lys	Val	Arg	Tyr	Glu	Ala	Phe	Gln	Asp	Glu	Thr	Phe	Gln	Glu
				165					170					175	
Lys	Met	His	Leu	Glu	Glu	Asp	Arg	His	Leu	Gly	Ile	Leu	Gly	Pro	Val
			180					185					190		
Ile	Arg		Glu	Val	Gly	Asp	Thr	Ile	Gln	Val	Val	Phe	Tyr	Asn	Arg
		195					200					205			
Ala		Gln	Pro	Phe	Ser	Me t	Gln	Pro	His	Gly	Val	Phe	Tyr	Glu	Lys
	210					215					220				
	Tyr	Glu	Gly	Thr		Tyr	Asn	Asp	Gly		Ser	Tyr	Pro	Gly	Leu
225		_	_		230					235					240
Val	Ala	Lys	Pro		Glu	Lys	Val	Thr		Arg	Trp	Thr	Val	Pro	Pro
		۵٠		245				_	250	•		Ann a		255	_
His	Ala	Gly		Thr	Ala	Gln	Asp		Ala	Cys	Leu	Thr		Met	Tyr
			260					265					270		

1	Phe	Ser		Ala	Asp	Pro	Ile		Asp	Thr	Asn	Ser		Leu	Val	Gly
_	_	_	275		_			280		_			285	01		61
J	Pro	Leu	Leu	Vai	Cys	Arg	Ala	Gly	Ala	Leu	Gly	Ala	Asp	Gly	Lys	GIn
		290					295					300				
]	Ĺys	Gly	Val	Asp	Lys	Glu	Phe	Phe	Leu	Leu	Phe	Thr	Val	Leu	Asp	Glu
	305					310					315					320
1	Asn	Lys	Ser	Trp	Tyr	Ser	Asn	Ala	Asn	Gln	Ala	Ala	Ala	Met	Leu	Asp
					325					330					335	
Ţ	Phe	Arg	Leu	Leu	Ser	Glu	Asp	Ile	Glu	G1v	Phe	Gln	Asp	Ser	Asn	Arg
-		,,,,,,		340					345					350		
1	Met	His	Ala		Asn	Gly	Phe	Len		Ser	Asn	T.en	Pro		Len	Asp
,	inc i	1113	355	110	поп	ory	1110	360	IIIC	DCI	11011	Dou	365	*** 6	Bou	p
,	Ma+	C		C1**	100	Th =	Wo I		Τ ==	u; o	Lou	Ι 011		Ton	Clar	Thr
	Met		Lys	GIY	ASP	Thr		Ala	пр	шз	Leu		Gly	Leu	Gly	1111
	~ 1	370		T. 1	77 ·	01	375		D1	0.1	0.1	380	m1	¥7 - 1	Q1	T
		Thr	Asp	Val	HIS	Gly	Val	Me t	Phe	GIN		Asn	ınr	vai	Gin	
	385					390				_	395	_				400
	Gln	Gly	Met	Arg	Lys	Gly	Ala	Ala	Met	Leu	Phe	Pro	His	Thr		Val
					405					410					415	
	Met	Ala	Ile	Met	Gln	Pro	Asp	Asn	Leu	Gly	Thr	Phe	Glu	Ile	Tyr	Cys
				420					425					430		
	Gln	Ala	Gly	Ser	His	Arg	Glu	Ala	Gly	Met	Arg	Ala	Ile	Tyr	Asn	Val
			435					440					445			
	Ser	Gln	Cys	Pro	Gly	His	Gln	Ala	Thr	Pro	Arg	Gln	Arg	Tyr	Gln	Ala
		450					455					460				
	Ala	Arg	· Ile	Tvr	Tvr	Ile		Ala	Glu	Glu	Val	Glu	Trp	Asp	Tyr	Cys
	465	_				470					475		•	•	•	480
			Arg	Ser	Trn	Glu	Arg	GIn	Trn	His		Gln	Ser	Gln	Lvs	
	110	пор		, 501	485		*****	Olu	11 p	490		011	501	014	495	
	Con	Т + > +	C1v	Ттт			T ou	Sor	Aan			Clv	LOII	Ī A11		
	ser	lyr	GIY			Phe	reu	ser			ASD	Gly	Leu			261
		_	_	500					505				61	510		
	Arg	Tyr			Ala	Val	Phe			Tyr	Thr	Asp			Phe	Arg
			515	i				520					525			
	Ile	Pro	Arg	Pro	Arg	Thr	Gly	Pro	Glu	Glu	His	Leu	Gly	Ile	Leu	Gly
		530)				535					540				
	Pro	Leu	Ile	Lys	Gly	Glu	Val	Gly	Asp	Ile	Leu	Thr	Val	Val	Phe	Lys
	545	i				550					555					560
	Asn	Asn	ı Ala	Ser	Arg	g Pro	Tyr	Ser	Val	His	Ala	His	Gly	Val	Leu	Glu
					_											

				565					570					575	
Ser	Thr	Thr	Val	Trp	Pro	Leu	Ala	Ala	Glu	Pro	Gly	Glu	Val	Val	Thr
			580					585					590		
Tyr	Gln	Trp	Asn	Ile	Pro	Glu	Arg	Ser	Gly	Pro	Gly	Pro	Asn	Asp	Ser
		595					600					605			
Ala		Val	Ser	Trp	Ile		Tyr	Ser	Ala	Val		Pro	Ile	Lys	Asp
	610	_				615					620				
		Ser	Gly				Pro	Leu			Cys	Gln	Lys		
625				•	630					635			.		640
Leu	Glu	Pro	HIS		Gly	Arg	Ser	Asp		Asp	Arg	Glu	Phe		Leu
Lon	Dho		II.	645	Aan	Cl.	Aan	T ***	650	Тип	Т	Lou	C1.	655	Aon
Leu	rne	Leu	660	rne	ASP	GIU	ASII	665	261	11b	lyľ	Leu	670	GIU	ASII
Val	Ala	Thr		Glv	Ser	Gln	Asn		Glv	Ser	Ile	Asn		Gln	Asn
, 41	111 u	675	1115	O13	501	O I II	680	110	Oly	501	110	685	Dea	UIII	пор
Glu	Thr	Phe	Leu	Glu	Ser	Asn		Met	His	Ala	Ile		Gly	Lvs	Leu
	690					695	•				700		·	-	
Tyr	Ala	Asn	Leu	Arg	Gly	Leu	Thr	Met	Tyr	Gln	Gly	Glu	Arg	Val	Ala
705					710					715					720
Trp	Tyr	Met	Leu	Ala	Me t	Gly	Gln	Asp	Val	Asp	Leu	His	Thr	Ile	His
				725					730					735	
Phe	His	Ala	Glu	Ser	Phe	Leu	Tyr	Arg	Asn	Gly	Glu	Asn	Tyr	Arg	Ala
			740					745					750		
Asp	Val	Val	Asp	Leu	Phe	Pro		Thr	Phe	Glu	Val		Glu	Met	Val
	•	755		0.1	mı.	m	760			•	•••	765	m.		•••
Ala		Asn	Pro	Gly	Thr		Leu	Met	HIS	Cys		Val	Thr	Asp	HIS
Vo l	770	A 1 o	C1**	Mot	Clu	775	Lou	Dho	Th =	Vo 1	780	Cor	A = ~	Th m	Clu
785	1112	Ala	GIY	Mei	790	1111	Leu	rne	1111	795	rne	261	MIG	1111	800
	I.e.ii	Ser	Pro	Len		Val	Ϊlρ	Thr	Lve		Thr	Glu	Lvs	Ala	
1113	Deu	DCI	110	805	1111	741	110	1111	810	01u	1111	Oru	Буб	815	V 4.1
Pro	Pro	Arg	Asp		Glu	Glu	Glv	Asn		Lvs	Met	Leu	Gly		Gln
			820				•	825		_•-			830		
Ile	Pro	Ile	Lys	Asn	Val	Glu	Met	Leu	Ala	Ser	Val	Leu	Val	Ala	Ile
		835					840					845			
Ser	Val	Thr	Leu	Leu	Leu	Val	Val	Leu	Ala	Leu	Gly	Gly	Val	Val	Trp
	850					855					860				

Tyr	Gln	His	Arg	Gln	Arg	Lys	Leu	Arg	Arg	Asn	Arg	Arg	Ser	Ile	Leu
865					870					875					880
Asp	Asp	Ser	Phe	Lys 885	Leu	Leu	Ser	Phe	Lys 890	Gln					
<210)>	99													
<211	>	292													
<212	2> :	PRT													
<213	3> 1	homo	sapi	ens											
<400)>	99													
Met	Leu	Gly	Ala	Trp	Ala	Val	Glu	Gly	Thr	Ala	Val	Ala	Leu	Leu	Arg
1				5					10					15	
Leu	Leu	Leu	Leu 20	Leu	Leu	Pro	Pro	Ala 25	Ile	Arg	Gly	Pro	Gly 30	Leu	Gly
Val	Ala	Gly	Val	Ala	Gly	Ala	Ala	Gly	Ala	Gly	Leu	Pro	Glu	Ser	Val
		35					40					45			
Ile	Trp 50	Ala	Val	Asn	Ala	Gly 55	Gly	Glu	Ala	His	Val 60	Asp	Val	His	Gly
Ile	His	Phe	Arg	Lys	Asp	Pro	Leu	Glu	Gly	Arg	Val	Gly	Arg	Ala	Ser
65					70					75					80
Asp	Tyr	Gly	Met	Lys	Leu	Pro	Ile	Leu	Arg	Ser	Asn	Pro	Glu	Asp	Gln
				85					90					95	
Ile	Leu	Tyr	Gln	Thr	Glu	Arg	Tyr	Asn	Glu	Glu	Thr	Phe	Gly	Tyr	Glu
			100					105					110		
Val	Pro	Ile	Lys	Glu	Glu	Gly	Asp	Tyr	Val	Leu	Val	Leu	Lys	Phe	Ala
		115										125			
Glu		Tyr	Phe	Ala	Gln		Gln	Gln	Lys	Val		Asp	Val	Arg	Leu
	130					135		_			140				
	Gly	His	Val	Val	•	Lys	Asp	Leu	Asp		Phe	Asp	Arg	Val	
145	•	m1	4.1	** •	150	0.1			т.	155	0	• •			160
His	Ser	Thr	Ala		Asp	Glu	He	11e		Met	Ser	He	Arg		Gly
Υ	T	0	W- 1	165	C1	01	W - 1	0	170	701	ml	01	T	175	Т
Lys	Leu	Ser		GIN	GIY	GIU	vai		ınr	rne	ınr	GIY		Leu	lyr
T 1 a	C1	Dh.a	180	T a	C1	Т	Т	185	1	D	Υ α	Va l	190	41.	T
116	GIU	Phe	vai	LYS	ъlУ	ıyr		ASP	ASI	LLO	LÿS		UÝS	Ala	Leu
Ттт	110	195	۸۱۸	Clar	Th r	Val	200	Acn	Vo 1	Dro	I 170	205	Cln	Dro	Цic
1 Y I	210	Met	WIG	ату	1111	215	ush	vsh	141	110	220	ren	GIII	ίιο	1112
	610					410					440				

Pro Gly Leu Glu Lys Lys Glu Glu Glu Glu Glu Glu Glu Glu Glu Tyr Asp 225 230 235 240
Glu Gly Ser Asn Leu Lys Lys Gln Thr Asn Lys Asn Arg Val Gln Ser 245 250 255
Gly Pro Arg Thr Pro Asn Pro Tyr Ala Ser Asp Asn Ser Ser Leu Met 260 265 270
Phe Pro Ile Leu Val Ala Phe Gly Val Phe Ile Pro Thr Leu Phe Cys 275 280 285
Leu Cys Arg Leu
290
<210> 100·
<211> 963
<212> PRT
<pre><213> homo sapiens</pre>
(400) 100 Mot Low His Don Low Low Low Dho Lye The Arg Val Lle Dhe Ser
Met Leu His Phe His Leu Leu Lys Phe Lys Thr Arg Val Ile Phe Ser 1 5 10 15
Ala Val Ile Ile Met Val Thr Gly Leu Cys Leu Phe Leu Leu Ser Leu
20 25 30
Pro His Leu His Gly Val Phe Glu Gln Val Pro Ala Pro Trp Trp Thr
35 40 45
Ser Leu Cys Pro Trp Pro Ile Met Glu Ala Ala Ala Phe Gln Ser Gly
50 55 60
Ser Leu Tyr Pro Val Ala Ser Phe Leu Ala Ala Pro Met Ser Glu Leu
65 70 75 80
Val Pro Asp Leu Ser Phe Gln Val Asp Leu His Thr Gly Leu Ser Glu
85 90 95
Phe Ser Val Thr Gln Arg Arg Leu Ala His Gly Trp Asn Glu Phe Val
100 105 110
Ala Asp Asn Ser Glu Pro Val Trp Lys Lys Tyr Leu Asp Gln Phe Lys
115 120 125
Asn Pro Leu Ile Leu Leu Leu Gly Ser Ala Leu Val Ser Val Leu 130 135 140
Thr Lys Glu Tyr Glu Asp Ala Val Ser Ile Ala Thr Ala Val Leu Val
145 150 155 160
Val Val Thr Val Ala Phe Ile Gln Glu Tyr Arg Ser Glu Lys Ser Leu
165 170 175

Glu	Glu	Leu	Thr	Lys	Leu	Val	Pro	Pro	Glu	Cys	Asn	Cys	Leu	Arg	Glu
	_	_	180					185					190		
Gly	Lys		Gln	His	Leu	Leu		Arg	Glu	Leu	Val	Pro	Gly	Asp	Val
		195	_				200					205			
Val		Leu	Ser	Ile	Gly		Arg	Ile	Pro	Ala		Ile	Arg	Leu	Thr
01	210	m1		Ţ.		215			_	_	220				
	vai	Inr	Asp	Leu	Leu	vai	Asp	Glu	Ser		Phe	Thr	Gly	Glu	
225	Dro	Cvro	202	I ***	230	Aan	0	D	Τ	235	O1	01	01	۸	240
-Gi n	'L Ï'O	ŗ, Š, Ż	วัดเ	245	Thr	Ήžδ.	ver.	LLÓ	250	ınr	GIY	GIY	ĠΪÀ		rën
Thr	Thr	Len	Ser		Ile	Val	Phe	Mot		Thr	Ι Δ11	Va l	Cln	255	Clv
****	1111	Dou	260	71011	110	141	1110	265	O. J	1111	LCu	141	270	1) 1	GIY
Arg	Gly	Gln		Val	Val	Ile	Glv		Glv	Glu	Ser	Ser		Phe	Glv
		275					280					285			,
Glu	Val	Phe	Lys	Met	Me t	Gln	Ala	Glu	Glu	Thr	Pro	Lys	Thr	Pro	Leu
	290					295					300				
Gln	Lys	Ser	Met	Asp	Arg	Leu	Gly	Lys	Gln	Leu	Thr	Leu	Phe	Ser	Phe
305					310					315					320
Gly	Ile	Ile	Gļy	Leu	Ile	Met	Leu	Ile	Gly	Trp	Ser	Gln	Gly	Lys	Gln
				325					330			•		335	
Leu	Leu	Ser		Phe	Thr	Ile	Gly	Val	Ser	Leu	Ala	Val	Ala	Ala	Ile
_			340	_				345	•				350		
Pro	Glu		Leu	Pro	Ile	Val		Met	Val	Thr	Leu		Leu	Gly	Val
Lon	A	355 Va.	A 1 -	T	T	A	360	T 1 .	** 1			365			
ren		мет	Ala	Lys	Lys		vai	He	Vai	Lys		Leu	Pro	He	Val
Clu	370	Lou	Cly	Czzo	Cvo	375	Va l	Lon	C	Com	380	T	ጥե	C1	ጥኤ "
385	1111	ren	GIY	Cys	Cys 390	261	Val	Leu	Cys	395	ASP	Lys	ınr	GLY	1nr 400
	Thr	Ala	Asn	Gln	Met	Thr	Val	Thr	Gln		Val	Thr	Ser	Δen	
Dou				405	1110 0	****	141	1111	410	Dea	141	1111	501	415	Uly
Leu	Arg	Ala	Glu		Ser	Glv	Val	Glv		Asp	Glv	Gln	Glv		Val
			420					425	-,-		01,		430		,
Cys	Leu	Leu	Pro	Ser	Lys	Glu	Val		Lys	Glu	Phe	Ser		Val	Ser
		435					440		-			445		_	
Val	Gly	Lys	Leu	Val	Glu	Ala	Gly	Cys	Val	Ala	Asn	Asn	Ala	Val	Ile
	450					455					460				
Arg	Lys	Asn	Ala	Val	Me t	Gly	Gln	Pro	Thr	Glu	Gly	Ala	Leu	Met	Ala

465					470					475					480
Leu	Ala	Met	Lys	Met	Asp	Leu	Ser	Asp	Ile	Lys	Asn	Ser	Tyr	Ile	Arg
				485					490					495	
Lys	Lys	Glu	Ile	Pro	Phe	Ser	Ser	Glu	Gln	Lys	Trp	Met	Ala	Val	Lys
			500					505					510		
Cys	Ser		Lys	Thr	Glu	Asp		Glu	Asp	Ile	Tyr		Met	Lys	Gly
		515					520				_	525		~•	
			Glu	Val					Thr	Met			Asn	Gly	Gly
-	530		ъ.	T		535	-			0	540		T	C1	C1
	Pro	Leu	Pro	Leu		Pro	GIN	Gin	Arg	Ser	rne	Cys	Leu	GIN	
545	T a		Mai	C1	550 San	T 011	C1	Y	1	555	T	A 1 a	Τ	A10	560
GIU	LyS	Arg	Mei	565	261	Leu	GIY	Leu	570	Val	ren	Ala	Leu	575	261
Glv	Pro	Gln	I.en		Arg	Len	Thr	Phe		Gly	Len	Val	Glv		He
Oly	110	oru	580	Oly	8	Dou	1111	585	Dou	0.,	Dou	,	590		110
Asp	Pro	Pro		Val	Gly	Val	Lys		Ala	Val	Gln	Val		Ser	Glu
•		595			·		600					605			
Ser	Gly	Val	Ser	Val	Lys	Met	Ile	Thr	Gly	Asp	Ala	Leu	Glu	Thr	Ala
	610		,		•	615					620				
Leu	Ala	Ile	Gly	Arg	Asn	Ile	Gly	Leu	Cys	Asn	Gly	Lys	Leu	Gln	Ala
625					630					635					640
Met	Ser	Gly	Glu	Glu	Val	Asp	Ser	Val	Glu	Lys	Gly	Glu	Leu	Ala	Asp
				645					650					655	
Arg	Val	Gly	Lys	Val	Ser	Val	Phe	Phe	Arg	Thr	Ser	Pro	Lys	His	Lys
			660					665					670		
Leu	Lys			Lys	Ala	Leu		Glu	Ser	·Gly	Ala			Ala	Met
m1	21	675		77 1			680	** 1				685			71.
Thr	-	_	Gly	Val	Asn			Vai	Ala	Leu		Ser	Ala	Asp	116
C1	690		Mot	Cl.	. C15	695		ጥኤ	Aan	Vol	700	T ***0	C1.,	۸la	A 1 o
		Ala	. Met	GIY	710		GIY	1111	ASP	715	261	Lys	GIU	Ala	Ala 720
705		مات	TAII	Val			Aen	Phe	Ser	Ala	Ϊle	Met	Asn	Ala	
USII	MC 1	116	. Ինդ	725	_	nsp	นงบ	1110	730		110	inc t	11911	735	
Glu	Glu	Glv	Lvs			Phe	Tvr	Asn			Asn	Phe	Val		Phe
VIU		3	740		0			745					750		
Gln	Leu	Ser			Ile	Ser	Ala			Leu	Ile	Thr			Thr
		755					760					765			

•	
Val Phe Asn Leu Pro Ser Pro Leu Asn Ala Met Gln Ile Leu Tr	Ile
770 775 780	
Asn Ile Ile Met Asp Gly Pro Pro Ala Gln Ser Leu Gly Val Glu	Pro
785 790 795	800
Val Asp Lys Asp Ala Phe Arg Gln Pro Pro Arg Ser Val Arg Asp	Thr
805 810 815	j
Ile Leu Ser Arg Ala Leu Ile Leu Lys Ile Leu Met Ser Ala Ala	lle
820 825 830	
Ile Ile Ser Gly Thr Leu Phe Ile Phe Trp Lys Glu Met Pro Glu	ı <u>As</u> p
835 840 845	
Arg Ala Ser Thr Pro Arg Thr Thr Met Thr Phe Thr Cys Phe	· Val
850 855 860	
Phe Phe Asp Leu Phe Asn Ala Leu Thr Cys Arg Ser Gln Thr Lys	
865 870 875	880
Ile Phe Glu Ile Gly Phe Leu Arg Asn His Met Phe Leu Tyr Ser	
885 890 895	
Leu Gly Ser Ile Leu Gly Gln Leu Ala Val Ile Tyr Ile Pro Pro	Leu
300 , 300	. D1
Gln Arg Val Phe Gln Thr Glu Asn Leu Gly Ala Leu Asp Leu Leu	Phe
915 920 925	
Leu Thr Gly Leu Ala Ser Ser Val Phe Ile Leu Ser Glu Leu Leu 930 935 940	Lys
930 935 940 Leu Cys Glu Lys Tyr Cys Cys Ser Pro Lys Arg Val Gln Met His	Dno
945 950 955	960
Glu Asp Val	300
<210> 101	
<211> 335	
<212> PRT	
<213> homo sapiens	
<400> 101	
Met Val Arg Arg Asp Arg Leu Arg Arg Met Arg Glu Trp Trp Val	Gln
1 5 10 15	
Val Gly Leu Leu Ala Val Pro Leu Leu Ala Ala Tyr Leu His Ile	Pro
20 25 30	
Pro Pro Gln Leu Ser Pro Ala Leu His Ser Trp Lys Ser Ser Gly	Lys
35 40 45	

	Phe		Thr	Tyr	Lys	Gly		Arg	He	Phe	Tyr	Gln	Asp	Ser	Val	Gly
	1 70.1	50	C1	0	D	C1	55	¥7 1	** ,	_		60	0.1	D 1	D	mı
	65	Val	GIY	261	Pro	70	116	vai	vai	Leu		His	Gly	Pne	Pro	
		Sor	Тъгр	Aan	Trn		T *** 0	Tia	Ψ	Cl.	75	T 044	Th	T	A	80 Dh.a
	261	261	1 y 1	asp	11 p	Tyr	Lys	116	1rp		GIY	Leu	ınr	Leu		Рпе
	Шic	Ara	Vo l	Ha		Lon	Ann	Dha	T	90	Dha	C1**	Dho	C - #	95	τ
	1113	urg	Vai	100	nia	Leu	ASP	rne		GIY	rne	Gly	rne		ASP	Lys
	Pro	Aro	Pro		Hic	Tur	Ser	מוז	105	Cln	Cln	Ala	Sar	110	Val	Clu
,	110	iiie.	115	.1113	1113	. i. y i	.pci	120	Tiić	Glu	άιπ	.nia	125	116	yaı	a ï'a
	Ala	Len		Arø	His	Ĭ.e11	Glv		Cln	Aen	Δτσ	Arg		Δen	Ιρn	T 611
	711 ti	130	Dou		111.0	Dou	135	LCu	UIN	non	111 6	140	110	non	LCu	Lcu
	Ser		Asp	Tvr	Glv	Asp		Val	Ala	Gln	Glu	Leu	Len	Tvr	Arø	Tvr
	145			-,-	· . ,	150		,		4111	155	204	Dou	.,.		160
		Gln	Asn	Arg	Ser		Arg	Leu	Thr	Ile		Ser	Leu	Cvs	Leu	
	•			Ū	165	•				170	_,_				175	
	Asn	Gly	Gly	Ile	Phe	Pro	Glu	Thr	His	Arg	Pro	Leu	Leu	Leu	Gln	Lys
				180					185					190		-
	Leu	Leu	Lys	Asp	Gly	Gly	Val	Leu	Ser	Pro	Ile	Leu	Thr	Arg	Leu	Met
			195					200					205			
	Asn	Phe	Phe	Val	Phe	Ser	Arg	Gly	Leu	Thr	Pro	Val	Phe	Gly	Pro	Tyr
		210					215			•		220				
	Thr	Arg	Pro	Ser	Glu	Ser	Glu	Leu	Trp	Asp	Met	Trp	Ala	Gly	Ile	Arg
	225					230					235					240
	Asn	Asn	Asp	Gly	Asn	Leu	Val	Ile	Asp	Ser	Leu	Leu	Gln	Tyr	Ile	Asn
					245					250	•				255	
	Gln	Arg	Lys	Lys	Phe	Arg	Arg	Arg	Trp	Val	Gly	Ala	Leu	Ala	Ser	Val
				260					265					270		
	Thr	Ile		Ile	His	Phe	Ile		Gly	Pro	Leu	Asp		Val	Asn	Pro
	_	_	275		_		_	280		_		_	285	_		
	Tyr		Glu	Phe	Leu	Glu		Tyr	Arg	Lys	Thr	Leu	Pro	Arg	Ser	Thr
		290					295		_		_	300				
		Ser	He	Leu	Asp		His	He	Ser	His		Pro	Gln	Leu	Glu	
	305	Mad.	01	D1		310		m	14.	01	315	,,	۸.	0	701	320
	Pro	met	GIŸ	rne		Asn	Ala	Tyr	met		rne	Ile	Asn	Ser		
	/91/	n\ '	ነ በ ባ		325					330					335	
	<210	J/ .	102													

.

<211	l>	992													
<212	2>	PRT													
<213	3>	homo	sapi	iens											
<400)>	102													
Met	Gly	Ala	Ala	Gly	Arg	Gln	Asp	Phe	Leu	Phe	Lys	Ala	Met	Leu	Thr
1				5					10					15	
Ile	Ser	Trp	Leu 20	Thr	Leu	Thr	Cys	Phe 25	Pro	Gly	Ala	Thr	Ser 30	Thr	Val
Ala	<u>Al</u> a	. G <u>l</u> y 35	Ċys.	P.ro.	Ąṣp	Gln	Ser 40	Pro	Glu	Leu	.Gl _. n.	Pro 45	Ţrp	Ąsn	Pro
Gly	His 50	Asp	Gln	Asp	His	His 55	Val	His	Ile	Gly	Gln 60	Gly	Lys	Thr	Leu
Leu 65	Leu	Thr	Ser	Ser	Ala 70	Thr	Val	Tyr	Ser	Ile 75	His	Ile	Ser	Glu	Gly 80
Gly	Lys	Leu	Val	Ile 85		Asp	His	Asp	Glu 90		Ile	Val	Leu	Arg 95	
Arg	His	Ile	Leu 100		Asp	-Asn	Gly	Gly 105		Leu	His	Ala	Gly 110		Ala
Leu	Cys	Pro 115		Gln	Gly	Asn	Phe 120		Ile	Ile	Leu	Tyr 125		Arg	Ala
Asp		Gly	Ile	Gln	Pro			Tyr		Gly			Tyr	Ile	Gly
Val	130		Clv	Clv	Ala	135	Clu	Lou	Uic	Clv	140	Ι τι ο	T vvo	Lou	Con
145	GIY	Lys	Gry	GIY	150	Leu	GIU	ren	n15	155	GIII	r\2	LYS	Leu	160
	Thr	Phe	Leu	Asn 165		Thr	Leu	His	Pro 170	Gly	Gly	Met	Ala	Glu 175	
Gly	Tyr	Phe	Phe 180		Arg	Ser	Trp	Gly 185			Gly	Val	Ile 190		His
Val	Ile	Asp 195		Lys	Ser	Gly	Thr 200		Ile	His	Ser	Asp 205		Phe	Asp
Thr	Tyr 210	Arg	Ser	Lys	Lys	Glu 215	Ser	Glu	Arg	Leu	Val 220		Tyr	Leu	Asn
	Val	Pro	Asp	Gly			Leu	Ser	Val			Asn	Asp	Glu	
225	۸ ~	. A ~ ~	Ι	۸	230	Mal	A 1 .	A == =	Y	235	Meż	ጥኒ	T	T .	240
		Asn		245					250					255	
Ser	Lys	His	Phe	Leu	His	Leu	Glv	Phe	Arg	His	Pro	Trp	Ser	Phe	Leu

			260					265					270		
Thr	Va 1	Twe		Δen	Pro	Sar	Sar		Vol	Clu	Aen	Иiс		Glu	Тугт
1111	141	275	OI y	поп	110	561		261	Val	Giu	nsp		116	Giu	1) 1
11: 0	C1		A	C1	0	41.	280	A 1 -	A	37 - 1	DL.	285	T	DL.	C1
HIS		HIS	Arg	GIY	Ser		Ala	Ala	Arg	vai		Lys	Leu	rne	GIN
	290				_	295					300			_	
	Glu	His	Gly	Glu	Tyr	Phe	Asn	Val	Ser		Ser	Ser	Glu	Trp	
305					310					315					320
Gln	Asp	Val	Glu	Trp	Thr	Glu	Trp	Phe	Asp	His	Asp	Lys	Val	Ser	Gln
			-	325					330					335	
Thr	Lys	Gly	Gly	Glu	Lys	Ile	Ser	Asp	Leu	Trp	Lys	Ala	His	Pro	Gly
			340					345					350		
Lys	Ile	Cys	Asn	Arg	Pro	Ile	Asp	Ile	Gln	Ala	Thr	Thr	Met	Asp	Gly
		355					360					365			
Val	Asn	Leu	Ser	Thr	Glu	Val	Val	Tyr	Lys	Lys	Gly	Gln	Asp	Tyr	Arg
	370					375					380				
Phe	Ala	Cys	Tyr	Asp	Arg	Gly	Arg	Ala	Cys	Arg	Ser	Tyr	Arg	Val	Arg
385					390					395					400
Phe	Leu	Cys	Gly	Lys	Pro	Val	Arg	Pro	Lys	Leu	Thr	Val	Thr	Ile	Asp
				405	•				410					415	_
Thr	Asn	Val	Asn		Thr	Ile	Leu	Asn		Glu	Asp	Asn	Val		Ser
			420					425					430		
Trn	I.vs	Pro		Asn	Thr	Len	Val		Ala	Ser	Thr	Asn		Ser	Met
P	_,,	435	01,			Dou	440			501		445	- , -	501	140 \$
Tvr	Gln		Glu	G1 11	Phe	Gln		Len	Pro	Cvs	Δισ		Cvc	Ala	Pro
1 9 1	450	111 a	Ulu	Ulu	1110	455	141	Lcu	110	Oy 3	460	JCI.	Cys	Ala	110
Acn		Wa 1	Twe	Va 1	Ala		Lve	Dra	Mat	Tur		Uic	Πa	Clv	Clu
	GIII	Yaı	rys	1 4 1	470	GIY	гуз	110	MET		rea	1112	116	GIA	
465	T l a	A a.m.	C1	Wa 1		Mal	A	41.	C1	475	C1	Υ	T	0	480
GIU	116	ASP	GIY		Asp	meı	Arg	Ala		Val	GIY	ren	ren		Arg
				485		۵.		0.1	490			_		495	
Asn	He	11e		Met	Gly	Glu	Met		Asp	Lys	Cys	Туг		Tyr	Arg
			500					505					510		
Asn	His	Ile	Cys	Asn	Phe	Phe	Asp	Phe	Asp	Thr	Phe	Gly	Gly	His	Ile
		515					520					525			
Lys	Phe	Ala	Leu	Gly	Phe	Lys	Ala	Ala	His	Leu	Glu	Gly	Thr	Glu	Leu
	530					535					540				
Lys	His	Met	Gly	Gln	Gln	Leu	Val	Gly	Gln	Tyr	Pro	Ile	His	Phe	His
545					550					555					560

Leu	Ala	Gly	Asp	Val 565	Asp	Glu	Arg	Gly	Gly 570	Tyr	Asp	Pro	Pro	Thr 575	Tyr	
Ile	Arg	Asp	Leu 580	Ser	Ile	His	His	Thr 585	Phe	Ser	Arg	Cys	Val 590	Thr	Val	
His	Gly	Ser 595	Asn	Gly	Leu	Leu	Ile 600	Lys	Asp	Val	Val	Gly 605	Tyr	Asn	Ser	
Leu	Gly 610	His	Cys	Phe	Phe	Thr 615	Glu	Asp	Gly	Pro	Glu 620	Glu	Arg.	Asn	Thr	
 Phe	Asp	His.	Cys	Leu	Gly	Ļėü	Leu	Val	Lys	Ser	Gly	$T \underline{h} \dot{r}$	Гèй	Leu	Pro	
625					630					635					640	
Ser	Asp	Arg	Asp	Ser 645	Lys	Met	Cys	Lys	Met 650	Ile	Thr	Glu	Asp	Ser 655	Tyr	
Pro	Gly	Tyr	Ile	Pro	Lys	Pro	Arg	Gln	Asp	Cys	Asn	Ala	Val	Ser	Thr	
			660					665					670			
Phe	Trp		Ala	Asn	Pro	Asn		Asn	Leu	Ile	Asn		Ala	Ala	Ala	
.	•	675	.	mı	٥.		680					685		_		
Gly		Glu	Glu	Thr	Gly	Phe	Trp	Phe	He	Phe		His	Val	Pro	Thr	
C1	690	0	W- 1	C1	, M- 4	695	0	D	01	m	700	01	TT : _	T 1	D	
	Pro	ser	٧äı	GIY		Tyr	261	Pro	GIY		ser	GIU	HIS	116		
705	Clv	Ive	Dha	Tur	710	Asn	Ara	Λla	Иiс	715	Aon	Tvre	Ara	A1 o	720	
				725					730					735		
Met	Ile	Ile	Asp 740	Asn	Gly	Val	Lys	Thr 745	Thr	Glu	Ala	Ser	Ala 750	Lys	Asp	
Lys	Arg	Pro	Phe	Leu	Ser	Ile	Ile	Ser	Ala	Arg	Tyr	Ser	Pro	His	Gln	
. •		755					760			•		765				
Asp	Ala 770	Asp	Pro	Leu	Lys	Pro 775	Arg	Glu	Pro	Ala	Ile 780	Ile	Arg	His	Phe	
Ile	Ala	Tyr	Lys	Asn	Gln	Asp	His	Gly	Ala	Trp	Leu	Arg	Gly	Gly	Asp	
785					790					795					800	
Val	Trp	Leu	Asp	Ser 805	Cys	Arg	Phe	Ala	Asp 810	Asn	Gly	Ile	Gly	Leu 815	Thr	
Leu	Ala	Ser	Gly	Gly	Thr	Phe	Pro	Tyr	Asp	Asp	Gly	Ser	Lys	Gln	Glu	
			820					825					830			
Ile	Lys	Asn	Ser	Leu	Phe	Val	Gly	Glu	Ser	Gly	Asn	Val	Gly	Thr	Glu	
		835					840					845				
Met	Met	Asp	Asn	Arg	Ile	Trp	Gly	Pro	Gly	Gly	Leu	Asp	His	Ser	Gly	

850			855					860				
Arg Thr Leu	Pro Ile	Gly	Gln	Asn	Phe	Pro	I l·e	Arg	Gly	He	Gln	Leu
865		870					875					880
Tyr Asp Gly	Pro Ile	Asn	Ile	Gln	Asn	Cys	Thr	Phe	Arg	Lys	Phe	Val
	88	<u>, </u>				890					895	
Ala Leu Glu	Gly Ara	g His	Thr	Ser	Ala	Leu	Ala	Phe	Arg	Leu	Asn	Asn
	900				905					910		
Ala Trp Gln	Ser Cy	Pro	His	Asn	Asn	Val	Thr	Gly	Ile	Ala	Phe	Glu
9 <u>1</u> 5				920					925			
Asp Val Pro	Ile Th	Ser	Arg	Val	Phe	Phe	Gly	Glu	Pro	Gly	Pro	Trp
930			935					940				
Phe Asn Gln	Leu Ası	Met	Asp	Gly	Asp	Lys	Thr	Ser	Val	Phe	His	Asp
945		950					955					960
Val Asp Gly	Ser Va	Ser	Glu	Tyr	Pro	Gly	Ser	Tyr	Leu	Thr	Lys	Asn
	96	5				970					975	
Asp Asn Trp	His Se	Leu	Ala	Ser	Lys	Ala	Ala	Ser	Gly	Pro	Ser	Gly
	980				985		•			990		
<210> 103												
√911\ 90¢												
<211> 296	•											
<212> PRT	•											
<212> PRT <213> homo	sapien:	S										
<212> PRT <213> homo <400> 103												
<212> PRT <213> homo <400> 103 Met Glu His	Leu Ly		Phe	Asp	Asp		Ile	Asn	Ala	Phe		Asp
<212> PRT <213> homo <400> 103 Met Glu His 1	Leu Ly	s Ala				10					15	
<212> PRT <213> homo <400> 103 Met Glu His	Leu Lys 5 Gly Pro	s Ala			Arg	10				Phe	15	
<212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe	Leu Lys 5 Gly Pro	s Ala o Arg	Asp	Ser	Arg 25	10 Val	Arg	Gly	Trp	Phe	15 Thr	Leu
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu Lys 5 Gly Pro	s Ala o Arg	Asp	Ser Phe	Arg 25	10 Val	Arg	Gly	Trp Tyr	Phe	15 Thr	Leu
<212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr 35	Leu Ly 5 Gly Pro 20 Leu Pro	s Ala o Arg o Thr	Asp Phe	Ser Phe 40	Arg 25 Leu	10 Val Thr	Arg Val	Gly Met	Trp Tyr 45	Phe 30 Leu	15 Thr Leu	Leu Ser
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu Ly 5 Gly Pro 20 Leu Pro	s Ala o Arg o Thr	Asp Phe Tyr	Ser Phe 40	Arg 25 Leu	10 Val Thr	Arg Val	Gly Met Pro	Trp Tyr 45	Phe 30 Leu	15 Thr Leu	Leu Ser
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu Lys 5 Gly Pro 20 Leu Pro Gly Ass	s Ala o Arg o Thr	Asp Phe Tyr 55	Ser Phe 40 Met	Arg 25 Leu Lys	10 Val Thr Asn	Arg Val Arg	Gly Met Pro 60	Trp Tyr 45 Ala	Phe 30 Leu Leu	15 Thr Leu Ser	Leu Ser Leu
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu Lys 5 Gly Pro 20 Leu Pro Gly Ass	S Ala O Arg O Thr I Lys I Leu	Asp Phe Tyr 55	Ser Phe 40 Met	Arg 25 Leu Lys	10 Val Thr Asn	Arg Val Arg	Gly Met Pro 60	Trp Tyr 45 Ala	Phe 30 Leu Leu	15 Thr Leu Ser	Leu Ser Leu Ala
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu Lys 5 Gly Pro 20 Leu Pro Gly Ass Leu Th	S Ala O Arg O Thr I Lys I Leu 70	Asp Phe Tyr 55 Tyr	Ser Phe 40 Met	Arg 25 Leu Lys Leu	10 Val Thr Asn Gly	Arg Val Arg Ile 75	Gly Met Pro 60 Thr	Trp Tyr 45 Ala Leu	Phe 30 Leu Leu	15 Thr Leu Ser	Leu Ser Leu Ala 80
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu Lys 5 Gly Pro 20 Leu Pro Gly Ass Leu Th	S Ala O Arg O Thr I Lys I Leu 70	Asp Phe Tyr 55 Tyr	Ser Phe 40 Met	Arg 25 Leu Lys Leu	10 Val Thr Asn Gly	Arg Val Arg Ile 75	Gly Met Pro 60 Thr	Trp Tyr 45 Ala Leu	Phe 30 Leu Leu	15 Thr Leu Ser Ser	Leu Ser Leu Ala 80
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu Lys 5 Gly Pro 20 Leu Pro Gly Ass Leu Th	Ala Arg Thr Lys Leu 70 Leu	Asp Phe Tyr 55 Tyr	Ser Phe 40 Met Asn	Arg 25 Leu Lys Leu Ser	10 Val Thr Asn Gly Thr 90	Arg Val Arg Ile 75 Trp	Gly Met Pro 60 Thr	Trp Tyr 45 Ala Leu Gly	Phe 30 Leu Leu Gly	15 Thr Leu Ser Ser Tyr 95	Leu Ser Leu Ala 80 Asn
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu Ly:	Ala Arg Thr Lys Leu 70 Leu	Asp Phe Tyr 55 Tyr	Ser Phe 40 Met Asn	Arg 25 Leu Lys Leu Ser	10 Val Thr Asn Gly Thr 90	Arg Val Arg Ile 75 Trp	Gly Met Pro 60 Thr	Trp Tyr 45 Ala Leu Gly	Phe 30 Leu Leu Gly	15 Thr Leu Ser Ser Tyr 95	Leu Ser Leu Ala 80 Asn
<pre><212> PRT <213> homo <400> 103 Met Glu His 1 Asn Met Phe Asp Ser Tyr</pre>	Leu Lys 5 Gly Pro 20 Leu Pro Gly Ass Leu Th Ala Glo 85 Gln Ass 100	S Ala O Arg O Thr I Lys I Leu TO I Leu O Leu	Asp Phe Tyr 55 Tyr Ile	Ser Phe 40 Met Asn Leu Ser	Arg 25 Leu Lys Leu Ser Ala 105	10 Val Thr Asn Gly Thr 90 Gly	Arg Val Arg Ile 75 Trp Glu	Gly Met Pro 60 Thr Glu	Trp Tyr 45 Ala Leu Gly Asp	Phe 30 Leu Leu Gly Ile 110	15 Thr Leu Ser Ser Tyr 95 Arg	Leu Ser Leu Ala 80 Asn

115 120 125
Asp Thr Ile Phe Phe Val Leu Arg Lys Lys Thr Ser Gln Ile Thr Phe
130 135 140
Leu His Val Tyr His His Ala Ser Met Phe Asn Ile Trp Trp Cys Val
145 150 155 160
Leu Asn Trp Ile Pro Cys Gly Gln Ser Phe Phe Gly Pro Thr Leu Asn
165 170 175
Ser Phe Val His Ile Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Val Phe
180 190
Pro Ser Met His Lys Tyr Leu Trp Trp Lys Lys Tyr Leu Thr Gln Ala
195 200 205
Gln Leu Val Gln Phe Val Leu Thr Ile Thr His Thr Met Ser Ala Val
210 215 220
Val Lys Pro Cys Gly Phe Pro Phe Gly Cys Leu Ile Phe Gln Ser Ser
225 230 235 240
Tyr Met Leu Thr Leu Val Ile Leu Phe Leu Asn Phe Tyr Val Gln Thr
245 250 255
Tyr Arg Lys Lys Pro Met Lys Lys Asp Met Gln Glu Pro Pro Ala Gly
260 265 270
Lys Glu Val Lys Asn Gly Phe Ser Lys Ala Tyr Phe Thr Ala Ala Asn
275 280 285
Gly Val Met Asn Lys Lys Ala Gln 290 295
290 295 <210> 104
<211> 1612
<212> PRT .
<213> homo sapiens
<400> 104
Met Ile Ala Glu Pro Ala His Phe Tyr Leu Phe Gly Leu Ile Cys Leu
1 5 10 15
Cys Ser Gly Ser Arg Leu Arg Gln Glu Asp Phe Pro Pro Arg Ile Val
20 25 30
Glu His Pro Ser Asp Leu Ile Val Ser Lys Gly Glu Pro Ala Thr Leu
35 40 45
Asn Cys Lys Ala Glu Gly Arg Pro Thr Pro Thr Ile Glu Trp Tyr Lys
50 55 60
Gly Gly Glu Arg Val Glu Thr Asp Lys Asp Asp Pro Arg Ser His Arg

65					70					75					80
·Me t	Leu	Leu	Pro	Ser 85	Gly	Ser	Leu	Phe	Phe 90	Leu	Arg	Ile	Val	His 95	Gly
Arg	Lys	Ser	Arg	Pro	Asp	Glu	Gly	Val		Val	Cys	Val	Ala		Asn
			100					105					110		
Tyr	Leu	Gly	Glu	Ala	Val	Ser	His	Asn	Ala	Ser	Leu	Glu	Val	Ala	Ile
		115					120					125			
Leu	Arg	Asp	Asp	Phe	Arg	Gln	Asn	Pro	Ser	Asp	Val	Met	Val	Ala	Val
	130					135	•				140				
Gly	Glu	Pro	Ala	Val	Met	Glu	Cys	Gln	Pro	Pro	Arg	Gly	His	Pro	Glu
145		•			150					155					160
Pro	Thr	Ile	Ser		Lys	Lys	Asp	Gly		Pro	Leu	Asp	Asp	Lys	Asp
				165				_	170					175	
Glu	Arg	He		He	Arg	Gly	Gly		Leu	Met	He	Thr		Thr	Arg
T		A	180	0.1		m	** 1	185	** 1	01	m1		190		
Lys	Ser		Ala	Gly	Lys	Tyr		Cys	Val	Gly	Thr		Met	Val	Gly
C1	A	195	C	01	37 - 1	A 1 -	200	T	mi	37 - 1	.	205	A .	D	
GIU		GIU	261	GIU	vai	Ala	GIU	Leu	ınr	vai		GIU	Arg	Pro	Ser
Dho	210	Ī 170	A r.c.	Dro	Ca#	215	Lou	41 a	Vo 1	ጥ ե	220	Aan	A a m	C	41.
225	Val	Ly5	MIR	.110	230	Asn	Leu	Ald	Val	235	Val	ASP	ASP	ser	
	Ph△	Twe	Cve	Clu		Arg	C1v	Aen	Dra		Dro	Th r	Val	Ara	240
Ulu	THE	гуз	Cys	245		nig			250	Val	110	1111	Val	255	пр
Arg	Lvs	Asn	Asn			Leu				Aro	Tur	Glu	Πρ		Aen
•••	2,5		260	01 ,	014	Dou	110	265	501	*** &	.,.	Olu	270	6	пор
Asp	His	Thr		Lvs	Ile	Arg	Lvs		Thr	Ala	Glv	Asp		Glv	Ser
•		275		•			280					285		,	
Tyr	Thr	Cys	Val	Ala	Glu	Asn	Met	Val	Gly	Lys	Ala		Ala	Ser	Ala
	290					295					300				
Thr	Leu	Thr	Val	Gln	Glu	Pro	Pro	His	Phe	Val	Val	Lys	Pro	Arg	Asp
305					310					315					320
Gln	Val	Val	Ala	Leu	Gly	Arg	Thr	Val	Thr	Phe	Gln	Cys	Glu	Ala	Thr
				325					330					335	
Gly	Asn	Pro	Gln	Pro	Ala	Ile	Phe	Trp	Arg	Arg	Glu	Gly	Ser	Gln	Asn
			340					345					350		
Leu	Leu	Phe	Ser	Tyr	Gln	Pro	Pro	Gln	Ser	Ser	Ser	Arg	Phe	Ser	Val
		355					360					365			

Ser Gl		Gly	Asp	Leu	Thr 375	Ile	Thr	Asn	Val	Gln 380	Arg	Ser	Asp	Val
Gly Ty	r Tyr	Ile	Cys	Gln	Thr	Leu	Asn	Val	Ala	Gly	Ser	Ile	Ile	Thr
385				390					395					400
Lys Al	a Tyr	Leu	Glu	Val	Thr	Asp	Val	Ile	Ala	Asp	Arg	Pro	Pro	Pro
			405					410					415	
Val II	e Arg		Gly	Pro	Val	Asn	Gln	Thr	Val	Ala	Val	Asp	Gly	Thr
		420					425					430		
Phe Va		Ser	Cys	Val	Ala		Ģly	Ser.	Pro	<u>y</u> a l		Thṛ	Ile	Leu
Т 4	435	۸	C1	77 a 1	T	440	0	mı	01		445			_
Trp Ar.		ASP	ыу	vai		vai	Ser	Thr	GIN		Ser	Arg	He	Lys
		Acn	Clv	Val	455	Cin	Ilo	A = G	Т.,,	460	T ***0	Lon	C1	Aan
Gln Le	u Giu	nsn	Uly	470	ren	GIII	116	Alg	475	Ala	гуѕ	rea	GIY	480
Thr Gl	v Arg	Tvr	Thr		He	Ala	Ser	Thr		Ser	Glv	Gln	Δla	
	, 6	- , -	485	0,0	110				110	501	dly	O1u	495	1111
Trp Se	r Ala	Tyr		Glu	Val	Gln	Glu		Gly	Val	Pro	Val		Pro
		500					505		•			510		
Pro Ar	g Pro	Tḥr	Asp	Pro	Asn	Leu	Ile	Pro	Ser	Ala	Pro		Lys	Pro
	515					520					525			
Glu Va	l Thr	Asp	Val	Ser	Arg	Asn	Thr	Val	Thr	Leu	Ser	Trp	Gln	Pro
53	0				535			•		540				
Asn Le	ı Asn	Ser	Gly	Ala	Thr	Pro	Thr	Ser	Tyr	Ile	Ile	Glu	Ala	Phe
545				550					555			•		560
Ser Hi	s Ala	Ser		Ser	Ser	Trp	Gln			Ala	Glu	Asn	Val	Lys
mı a.ı	mı	_	565		_		_	570					575	
Thr Gl	1 Thr		Ala	He	Lys	Gly		Lys	Pro	Asn	Ala		Tyr	Leu
Dho Io	. Vol	580	41.	410	A ===	A 1 -	585	0 1	7 1 -	0	Α	590	0	0.1
Phe Le	1 vai 595	Arg	Ala	Ala	ASI		ıyr	GIY	116	Ser		Pro	Ser	Gin
Ile Se		Pro	Va 1	Twe	Thr	600	Acn	Val	Ι ου	Dro	605	Cor	Cin	C1
61		110	Val	Гуз	615	GIII	nsp	Val	Leu	620	1111	261	GIII	GIY
Val As		Lvs	Gln	Val		Arø	G1 ti	Len	Glv		Ala	Val	T en	Hie
625		_, 0		630		0		_ J u	635		u	,	Lou	640
Leu Hi	s Asn	Pro	Thr		Leu	Ser	Ser	Ser		Ile	Glu	Val	His	
			645					650					655	
Thr Va	l Asp	Gln	Gln	Ser	Gln	Tyr	Ile	Gln	Gly	Tyr	Lys	Ile		Tyr

			660					665					670		
Arg	Pro	Ser	Gly	Ala	Asn	His	Gly	Glu	Ser	Asp	Trp	Leu	Val	Phe	Glu
		675					680					685			
Val	Arg	Thr	Pro	Ala	Lys	Asn	Ser	Val	Val	Ile	Pro	Asp	Leu	Arg	Lys
	690					695					700				
Gly	Val	Asn	Tyr	Glu	Ile	Lys	Ala	Arg	Pro	Phe	Phe	Asn	Glu	Phe	Gln
705					710					715					720
Gly	Ala	Asp	Ser	Glu	Ile	Lys	Phe	Ala	Lys	Thr	Leu	Glu	Glu	Ala	Pro
		•		725					730					735	
Ser	Ala	Pro	Pro	Gln	Gly	Val	Thr	Val	Ser	Lys	Asn	Asp	Gly	Asn	Gly
			740					745					750		
Thr	Ala	He	Leu	Val	Ser	Trp	Gln	Pro	Pro	Pro	Glu	Asp	Thr	Gln	Asn
		755					760					765			
Gly		Val	Gln	Glu	Tyr	Lys	Val	Trp	Cys	Leu	Gly	Asn	Glu	Thr	Arg
	770					775					780				
	His	Ile	Asn	Lys		Val	Asp	Gly	Ser	Thr	Phe	Ser	Val	Val	Ile
785					790					795					800
Pro	Phe	Leu	Val		Gly	Ile	Arg	Tyr	Ser	Val	Glu	Val	Ala	Ala	Ser
				805					810					815	
Thr	Gly	Ala		Ser	Gly	Val	Lys		Glu	Pro	Gln	Phe	Ile	Gln	Leu
			820					825					830		
Asp	Ala		Gly	Asn	Pro	Val		Pro	Glu	Asp	Gln		Ser	Leu	Ala
0 1		835	_				840		_			845			
Gln		He	Ser	Asp	Val		Lys	Gln	Pro	Ala		Ile	Ala	Gly	Ile
0 1	850	. 1	•	_		855	_				860				
	Ala	Ala	Cys	Trp		ile	Leu	Met	Val		Ser	Ile	Trp	Leu	
865	17 .	4			870		۵1	_		875		_			880
Arg	HIS	Arg	Lys		Arg	Asn	Gly	Leu		Ser	Thr	Tyr	Ala		Ile
A	T	37. 1	D	885	7 .1	mı.	D 1	mı	890				_	895	
Arg	Lys	vai		Ser	Phe	Thr	Phe		Pro	Thr	Val	Thr	Tyr	Gln	Arg
C1	C1	01	900	17. 1	0	0	01	905					910		
GIY	ыу		Ala	Val	Ser	Ser		Gly	Arg	Pro	Gly		Leu	Asn	Ile
C	01	915	A 1	. 1	0.1		920					925	_		
ser		rro	Ala	Ala	GIN		1 rp	Leu	Ala	Asp		Trp	Pro	Asn	Thr
C1	930	۸	TT: -	۸	A	935	0	T1 -	0.	0	940	mt.	4.1	01	
	ASII	ASII	піѕ	ASI		СУS	ser	116			Cys	ınr	Ala		
945					950					955					960

Gly Asn Ser Asp Ser Asn Leu Thr Thr Tyr Ser Arg Pro Ala Asp Cys Ile Ala Asn Tyr Asn Asn Gln Leu Asp Asn Lys Gln Thr Asn Leu Met Leu Pro Glu Ser Thr Val Tyr Gly Asp Val Asp Leu Ser Asn Lys Ile Asn Glu Met Lys Thr Phe Asn Ser Pro Asn Leu Lys Asp Gly Arg Phe Val Asn Pro Ser Gly Gln Pro Thr Pro Tyr Ala Thr Thr Gln Leu Ile Gln Ser Asn Leu Ser Asn Asn Met Asn Asn Gly Ser Gly Asp Ser Gly Glu Lys His Trp Lys Pro Leu Gly Gln Gln Lys Gln Glu Val Ala Pro Val Gln Tyr Asn Ile Val Glu Gln Asn Lys Leu Asn Lys Asp Tyr Arg Ala Asn Asp Thr Val Pro Pro Thr Ile Pro Tyr Asn Gln Ser Tyr Asp Gln Asn Thr Gly Gly Ser Tyr Asn Ser Ser Asp Arg Gly Ser Ser Thr Ser Gly Ser Gln Gly His Lys Lys Gly Ala Arg Thr Pro Lys Val Pro Lys Gln Gly Gly Met Asn Trp Ala Asp Leu Leu Pro Pro Pro Pro Ala His Pro Pro Pro His Ser Asn Ser Glu Glu Tyr Asn Ile Ser Val Asp Glu Ser Tyr Asp Gln Glu Met Pro Cys Pro Val Pro Pro Ala Arg Met Tyr Leu Gln Gln Asp Glu Leu Glu Glu Glu Glu Asp Glu Arg Gly Pro Thr Pro Pro Val Arg Gly Ala Ala Ser Ser Pro Ala Ala Val Ser Tyr Ser His Gln Ser Thr Ala Thr Leu Thr Pro Ser Pro Gln Glu Glu Leu Gln Pro Met Leu Gln Asp Cys Pro Glu Glu Thr Gly His Met Gln His

	1235					1240					1245			
Gln	Pro	Asp	Arg	Arg	Arg	Gln					Pro	Pro	Pro	Pro
	1250					1255					1260			
Arg	Pro	Ile	Ser	Pro	Pro	His	Thr	Tyr	Gly	Tyr	Ile	Ser	Gly	Pro
	1265					1270					1275			
Leu	Val	Ser	Asp	Met	Asp	Thr	Asp	Ala	Pro	Glu	Glu	Glu	Glu	Asp
	1280					1285					1290			
Glu	Ala	Asp	Met	Glu	Val	Ala	Lys	Met	Gln	Thr	Arg	Arg	Leu	Leu
	1295	_				1300					1305			
Leu	Arg	Gly	Leu	Glu	Gln	Thr	Pro	Ala	Ser	Ser	Val	Gly	Asp	Leu
	1310	•				1315					1320			
Glu	Ser	Ser	Val	Thr	Gly	Ser	Met	Ile	Asn	Gly	Trp	Gly	Ser	Ala
	1325					1330					1335			
Ser	Glu	Glu	Asp	Asn	Ile	Ser	Ser	Gly	Arg	Ser	Ser	Val	Ser	Ser
	1340					1345					1350			
Ser	Asp	Gly	Ser	Phe	Phe						Ala	Gln	Ala	Val
	1355					1360					1365			
Ala	Ala			•								Arg	Arg	Gln
						1375					1380			_
Met	Gln											Ser	Gln	Cys
_	1385					1390					1395		_	
Pro	Arg	Pro	Thr	Ser	Pro			Thr	Asp	Ser		Met	Ser	Ala
	1400		01		mı	1405				_	1410		•••	٠.
Ala	Val	Me t	GIn	Lys	Thr			Ala	Lys	Lys		Lys	His	Gin
D	1415	TT: -	T	A	A	1420		m .	m1	A	1425	T	D	D
Pro	Gly	HIS	Leu	Arg	Arg		ınr	lyr	Inr	Asp		Leu	Pro	Pro
Dno	1430	Vo 1	Dwa	Dwo	D = 0	1435	T1.	T	Com	Dec	1440	41.	Cln	C ~ =
FIU	Pro 1445	Val	riu	FIU	FIU	1450	116	LyS	261	FIU	1455	Ala	GIII	261
Twe	Thr	Cln	Ϊ Δ11	Cln	Val		Dro	Va 1	Val	Va 1		Lvo	Lau	Dro
гуз	1460	GIII	ren	Glu	Val	1465	110	Val	Val	Yaı	1470	L A 2	Leu	riu
Ser	Met	Aen	Δla	Ara	Thr		Ara	Sar	Sar	Δen		Tve	Clv	Sar
561	1475	nsp	Ala	AI E	1111	1480		261	261	usb	1485	гуз	GIY	261
Ser	Tyr	Į.vs	Glv	Aro	Glu			Asn	Glv	Arø		Val	Val	Asn
201	1490	2,0	013	6	Jiu	1495	Dou	.up	JIJ		1500		, 41	TOD
Met	Arg	Thr	Asn	Prn	Glv		Pro	Arø	Gln	Ala		GIn	Gln	Gln
	1505		**		- . ,	1510		0	~ 		1515			

Asn Asp Gly Lys Gly Arg Gly Asn Lys Ala Ala Lys Arg Asp Leu 1520 1525 1530
Pro Pro Ala Lys Thr His Leu Ile Gln Glu Asp Ile Leu Pro Tyr
1535 1540 1545
Cys Arg Pro Thr Phe Pro Thr Ser Asn Asn Pro Arg Asp Pro Ser 1550 1555 1560
Ser Ser Ser Ser Met Ser Ser Arg Gly Ser Gly Ser Arg Gln Arg
1565 1570 1575
Glu Gln Ala Asn Val Gly Arg Arg Asn Ile Ala Glu Met Gln Val
1580 1585 1590
Leu Gly Gly Tyr Glu Arg Gly Glu Asp Asn Asn Glu Glu Leu Glu 1595 1600 1605
1595 1600 1605 Glu Thr Glu Ser
1610
<210> 105
<211> 570
<212> PRT
<213> homo sapiens
<400> 105
Met Ala Gly Gly Ala Arg Glu Val Leu Thr Leu Gln Leu Gly His Phe
1 5 10 15
Ala Gly Phe Val Gly Ala His Trp Trp Asn Gln Gln Asp Ala Ala Leu
20 25 30
Gly Arg Ala Thr Asp Ser Lys Glu Pro Pro Gly Glu Leu Cys Pro Asp
35 40 45
Val Leu Tyr Arg Thr Gly Arg Thr Leu His Gly Gln Glu Thr Tyr Thr 50 55 60
Pro Arg Leu Ile Leu Met Asp Leu Lys Gly Ser Leu Ser Ser Leu Lys
65 70 75 80
Glu Glu Gly Gly Leu Tyr Arg Asp Lys Gln Leu Asp Ala Ala Ile Ala
85 90 95
Trp Gln Gly Lys Leu Thr Thr His Lys Glu Glu Leu Tyr Pro Lys Asn
100 105 110
Pro Tyr Leu Gln Asp Phe Leu Ser Ala Glu Gly Val Leu Ser Ser Asp
115 120 125
Gly Val Trp Arg Val Lys Ser Ile Pro Asn Gly Lys Gly Ser Ser Pro
130 135 140

Leu 145	Pro	Thr	Ala	Thr	Thr 150	Pro	Lys	Pro	Leu	Ile 155	Pro	Thr	Glu		Ser 160
	Arg	Val	Trp	Ser	Asp	Phe	Len	Arg	Val		Len	His	Pro		
				165					170	1110	204		110	175	001
Ile	Cys	Met	Ile		Lys	Tyr	Asn	His		Gly	Glu	Ala	Gly		Leu
			180					185					190		
Glu	Ala	Phe	Gly	Gln	Gly	Glu	Ser	Val	Leu	Lys	Glu	Pro	Lys	Tyr	Gln
		195					200					205			
Gļu	Gļu	Leu	Glų	Asp	Arg	Leu	His	Phe	Tyr	Val	Glu	Glu	Cys	Asp	Tyŗ
	210					215					220				
Leu	Gln	Gly	Phe	Gln	Ile	Leu	Cys	Asp	Leu	His	Asp	Gly	Phe	Ser	Gly
225					230					235					240
Val	Gly	Ala	Lys		Ala	Glu	Leu	Leu		Asp	Glu	Tyr	Ser	Gly	Arg
				245					250					255	
Gly	He	He		Trp	Gly	Leu	Leu		Gly	Pro	Tyr	His	_	Gly	Glu
A 1 -	01	A	260	.,	m			265					270		
Ala	GIN		ASI	116	Tyr	Arg		Leu	Asn	Thr	Ala		Gly	Leu	Val
u; c	Lon	275	A 1 a	u; o	Com	Com	280	Vo 1	C	D	T	285	Y	01	01
uis	290	1111	Aia	піѕ	Ser	295	Leu	Val	Cys	Pro	300	ser	Leu	GIY	GIÀ
Ser		Clv	Len	Aro	Pro		Pro	Pro	Val	Sar.		Dro	Туг	T A11	Иic
305	Dea	dry	Dou	m e	310	01u	110	110	,	315	Inc	110	1 7 1	Lea	320
	Asp	Ala	Thr	Leu	Pro	Phe	His	Cvs			He	I.en	Ala	Thr	
•	•			325				-,-	330			200		335	
Leu	Asp	Thr	Val	Thr	Val	Pro	Tyr	Arg	Leu	Cys	Ser	Ser	Pro		Ser
			340					345					350		
Met	Val	His	Leu	Ala	Asp	Met	Leu	Ser	Phe	Cys	Gly	Lys	Lys	Val	Val
		355					360					365			
Thr	Ala	Gly	Ala	Ile	Ile	Pro	Phe	Pro	Leu	Ala	Pro	Gly	Gln	Ser	Leu
	370					375					380				
Pro	Asp	Ser	Leu	Val	Gln	Phe	Gly	Gly	Ala	Thr	Pro	Trp	Thr	Pro	Leu
385					390					395					400
Ser	Ala	Cys	Gly		Pro	Ser	Gly	Thr		Cys	Phe	Ala	Gln		Val
	_			405					410		_		_	415	
Val	Leu	Arg		He	Asp	Arg	Ala		His	Thr	Ser	Gln		Thr	Pro
C1	mı.	n	420	n	0 -		T -	425	A 1 -	0	TO 1	1701.	430		0.
ыy	ınr	rro	Pro	Pro	Ser	Ala	Leu	HIS	Ala	Lys	ınr	ınr	ыy	Glu	Glu

	440	445
ı Tyr Leu Gln	Gln Gln Gln Pro	Gly Val Met Ser Ser
455	•	460
ı Leu Thr Pro	Cys Arg Val Ala	Pro Pro Tyr Pro His
470	475	480
Cys Ser Pro	Pro Gly Met Val l	Leu Asp Gly Ser Pro
485	490	495
ı Val Glu Ser	Ile Pro Val Phe	Gly Ala Leu Cys Ser
<u>)</u>	. 505	510
His Gln Thr	Leu Glu Ala Leu	Ala Arg Asp Leu Thr
	520	525
		540
		560
909	570	
•		
niens		
310110		
r Leu Ser Thr	Leu Leu Leu Leu	Leu Ala Thr Leu Ala
5		15
a Trp Ser Pro		
-	25	30
n Ala Asp Leu	Asn Asp Glu Trp	Val Gln Arg Ala Leu
	40	45
		40
e Ser Glu Tyr	Asn Lys Ala Thr	Lys Asp Asp Tyr Tyr
e Ser Glu Tyr 55		
55		Lys Asp Asp Tyr Tyr
55		Lys Asp Asp Tyr Tyr 60
55 u Arg Val Leu 70	Arg Ala Arg Gln 75	Lys Asp Asp Tyr Tyr 60 Gln Thr Val Gly Gly
55 u Arg Val Leu 70	Arg Ala Arg Gln 75	Lys Asp Asp Tyr Tyr 60 Gln Thr Val Gly Gly 80
55 u Arg Val Leu 70 e Phe Asp Val 85	Arg Ala Arg Gln 75 Glu Val Gly Arg 90	Lys Asp Asp Tyr Tyr 60 Gln Thr Val Gly Gly 80 Thr Ile Cys Thr Lys
55 u Arg Val Leu 70 e Phe Asp Val 85	Arg Ala Arg Gln 75 Glu Val Gly Arg 90	Lys Asp Asp Tyr Tyr 60 Gln Thr Val Gly Gly 80 Thr Ile Cys Thr Lys 95
	455 1 Leu Thr Pro 470 2 Cys Ser Pro 485 2 Val Glu Ser 2 His Gln Thr 2 Arg Arg Trp 535 3 Ala Glu Leu 550 7 Gly Asp Ser 565 2 Ciens 3 Leu Ser Thr 5 Arg Trp Ser Pro	1 Tyr Leu Gln Gln Gln Gln Pro (455 1 Leu Thr Pro Cys Arg Val Ala 1 470 475 1 Cys Ser Pro Pro Gly Met Val 1 485 490 1 Val Glu Ser Ile Pro Val Phe (505) 1 His Gln Thr Leu Glu Ala Leu 520 1 Arg Arg Trp Ala Ser Phe Met 535 1 Ala Glu Leu Leu Gln Glu Leu 550 555 2 Gly Asp Ser Leu Val Asp 565 570 2 Gly Asp Ser Leu Val Asp 565 570 3 Trp Ser Pro Lys Glu Glu Asp 255 3 Ala Asp Leu Asn Asp Glu Trp (150)

Asn Arg Arg Ser Leu Val Lys Ser Arg Cys Gln Glu Ser <210> 107 **<211> 247** <212> PRT <213> homo sapiens **<400>** 107 Met Pro Arg Leu Leu His Pro Ala Leu Pro Leu Leu Gly Ala Thr Leu Thr Phe Arg Ala Leu Arg Arg Ala Leu Cys Arg Leu Pro Leu Pro Val His Val Arg Ala Asp Pro Leu Arg Thr Trp Arg Trp His Asn Leu Leu Val Ser Phe Ala His Ser Ile Val Ser Gly Ile Trp Ala Leu Leu Cys Val Trp Gln Thr Pro Asp Met Leu Val Glu Ile Glu Thr Ala Trp Ser Leu Ser Gly Tyr Leu Leu Val Cys Phe Ser Ala Gly Tyr Phe Ile His Asp Thr Val Asp Ile Val Ala Ser Gly Gln Thr Arg Ala Ser Trp Glu Tyr Leu Val His His Val Met Ala Met Gly Ala Phe Phe Ser Gly Ile Phe Trp Ser Ser Phe Val Gly Gly Val Leu Thr Leu Leu Val Glu Val Ser Asn Ile Phe Leu Thr Ile Arg Met Met Lys Ile Ser Asn Ala Gln Asp His Leu Leu Tyr Arg Val Asn Lys Tyr Val Asn Leu Val Met Tyr Phe Leu Phe Arg Leu Ala Pro Gln Ala Tyr Leu Thr His Phe Phe Leu Arg Tyr Val Asn Gln Arg Thr Leu Gly Thr Phe Leu Leu Gly Ile Leu Leu Met Leu Asp Val Met Ile Ile Ile Tyr Phe Ser Arg Leu Leu Arg Ser Asp Phe Cys Pro Glu His Val Pro Lys Lys Gln His

Lys Asp Lys Phe Leu Thr Glu ⟨210⟩ 108 <211> 158 <212> PRT <213> homo sapiens **<400>** 108 Met Ala Ala Arg Ser Val Ser Gly Ile Thr Arg Arg Val Phe Met Trp Thr Val Ser Gly Thr Pro Cys Arg Glu Phe Trp Ser Arg Phe Arg Lys Glu Lys Glu Pro Val Val Val Glu Thr Val Glu Glu Lys Lys Glu Pro Ile Leu Val Cys Pro Pro Leu Arg Ser Arg Ala Tyr Thr Pro Pro Glu Asp Leu Gln Ser Arg Leu Glu Ser Tyr Val Lys Glu Val Phe Gly Ser Ser Leu Pro Ser Asn Trp Gln Asp Ile Ser Leu Glu Asp Ser Arg Leu Lys Phe Asn Leu Leu Ala His Leu Ala Asp Asp Leu Gly His Val Val Pro Asn Ser Arg Leu His Gln Met Cys Arg Val Arg Asp Val Leu Asp Phe Tyr Asn Val Pro Ile Gln Asp Arg Ser Lys Phe Asp Glu Leu Ser Ala Ser Asn Leu Pro Pro Asn Leu Lys Ile Thr Trp Ser Tyr <210> 109 <211> 601 <212> PRT <213 homo sapiens **<400>** 109 Met Arg Val Val Arg Leu Leu Arg Leu Arg Ala Ala Leu Thr Leu Leu Gly Glu Val Pro Arg Arg Pro Ala Ser Arg Gly Val Pro Gly Şer Arg

	•														
Arg	Thr	Gln 35	Lys	Gly	Ser	Gly	Ala 40	Arg	Trp	Glu	Lys	Glu 45	Lys	His	Glu
Asp	Gly 50	Val	Lys	Trp	Arg	G1n 55	Leu	Glu	His	Lys	Gly 60	Pro	Tyr	Phe	Ala
Pro 65	Pro	Tyr	Glu	Pro	Leu 70	Pro	Asp	Gly	Val	Arg 75	Phe	Phe	Tyr	Glu	Gly 80
Arg	Pro	Val	Arg	Leu 85	Ser	Val	Ala	Ala	Glu 90	Glu	Val	Ala	Thr	Phe 95	Tyr
Gly	Arg	Met	Leu 100	Asp	His	Glu	Tyr	Țhr 105	Thr	Lys	Gl _. u _.	Val	Phe 110	Arg	Гàё
Asn	Phe	Phe 115	Asn	Asp	Trp	Arg	Lys 120	Glu	Met	Ala	Val	Glu 125	Glu	Arg	Glu
Val	Ile 130	Lys	Ser	Leu	Asp	Lys 135	Cys	Asp.	Phe	Thr	Glu 140	Ile	His	Arg	Tyr
Phe 145	Val	Asp	Lys	Ala	Ala 150	Ala	Arg	Lys	Val	Leu 155	Ser	Arg	Glu	Glu	Lys 160
Gln	Lys	Leu	Lys	Glu 165	Glu	Ala	Glu	Lys	Leu 170	Gln	Gln	Glu	Phe	Gly 175	Tyr
Cys	Ile	Leu	Aşp 180	Gly	His	Gln	Glu	Lys 185	Ile	Gly	Asn	Phe	Lys 190	Ile	Glu
Pro	Pro	Gly 195	Leu	Phe	Arg	Gly	Arg 200	Gly	Asp	His	Pro	Lys 205	Met	Gly	Met
Leu	Lys 210	Arg	Arg	Ile	Thr	Pro 215	Glu	Asp	Val	Val	Ile 220	Asn	Cys	Ser	Arg
Asp 225	Ser	Lys	Ile	Pro	Glu 230	Pro	Pro	Ala	Gly	His -235	Gln	Trp	Lys	Glu	Val 240
Arg	Ser	Asp	Asn	Thr 245	Val	Thr	Trp	Leu	Ala 250	Ala	Trp	Thr	Glu	Ser 255	Val
Gln	Asn	Ser	Ile 260	Lys	Tyr	Ile	Met	Leu 265	Asn	Pro	Cys	Ser	Lys 270	Leu	Lys
Gly	Glu	Thr 275	Ala	Trp	Gln	Lys	Phe 280	Glu	Thr	Ala	Arg	Arg 285	Leu	Arg	Gly
Phe	Val 290	Asp	Glu	Ile	Arg	Ser 295	Gln	Tyr	Arg	Ala	Asp 300	Trp	Lys	Ser	Arg
Glu 305	Met	Lys	Thr	Arg	Gln 310	Arg	Ala	Val	Ala	Leu 315	Tyr	Phe	Ile	Asp	Lys 320
Leu	Ala	Leu	Arg	Ala	Gly	Asn	Glu	Lys	Glu	Asp	Gly	Glu	Ala	Ala	Asp

	325	330	335
Thr Val Gly Cys	Cys Ser Leu Arg	Val Glu His Val Gl	n Leu His Pro
340		345	350
Glu Ala Asp Gly	Cys Gln His Val	Val Glu Phe Asp Ph	e Leu Gly Lys
355	360	36	5
Asp Cys Ile Arg	Tyr Tyr Asn Arg	Val Pro Val Glu Ly	s Pro Val Tyr
370	375	380	•
Lys Asn Leu Gln	Leu Phe Met Glu	Asn Lys Asp Pro Ar	g Asp Asp Leu
385	390	395	
Phe Asp Arg Leu	Thr Thr Thr Ser	Leu Asn Lys His Le	u Gln Glu Leu
	405	410	415
		Phe Arg Thr Tyr As	
420		425	430
		Leu Thr Arg Ala Gl	
. 435	440		
		Arg Ala Asn Arg Va	I Val Ala lle
450	455	460	Y O W t
	•	Pro Ser Thr Phe Gl	
465 .	470	475	480
din Ash Lea Gir	485	Ala Lys Lys Glu Gl 490	11 van Ala Giu 495
Ala Ara Ala Clu		Arg Ala Glu His Ly	
500		505	510
		Glu Lys Lys Arg Ar	
515	520		
		Leu Ser Val Gln Al	
530	535	540	
		Gly Thr Ser Lys Le	u Asn Tyr Leu
545	550	555	560
Asp Pro Arg Ile	e Ser Ile Ala Trp	Cys Lys Arg Phe Ar	g Val Pro Val
	565	570	575
Glu Lys Ile Tyr	Ser Lys Thr Gln	Arg Glu Arg Phe Al	a Trp Ala Leu
580		585	590
Ala Met Ala Gly	Glu Asp Phe Glu	Phe	
595	600		
<210> 110			
<211> 269			

<21	2>	PRT														
<21	3>	homo	sap	iens												
<40	<0>	110														
Met 1	Asn	Gln	Glu	Asp 5	Leu	Asp	Pro	Asp	Ser 10	Thr	Thr	Asp	Val	Gly 15	Asp	
Val	Thr	Asn	Thr 20	Glu	Glu	Glu	Leu	Ile 25	Arg	Glu	Cys	Glu	Glu 30	Met	Trp	
Lys	Asp	Me t 35	Glu	Glu	Cys	Gln	Asn 40		Leu	Ser	Leu	Ile 45	·Gly	Thr	Glu	
Thr	Leu 50	Thr	Asp	Ser	Asn	Ala 55	Gln	Leu	Ser	Leu	Leu 60	Ile	Met	Gln	Val	
Lys 65	Cys	Leu	Thr	Ala	G1u 70	Leu	Ser	Gln	Trp	Gln 75	Lys	Lys	Thr	Pro	Glu 80	
Thr	Ile	Pro	Leu	Thr 85	Glu	Asp	Val	Leu	11e 90	Thr	Leu	Gly	Lys	Glu 95	Glu	
Phe	Gln	Lys	Leu 100	Arg	Gln	Asp	Leu	Glu 105	Met	Val	Leu	Ser	Thr 110	Lys	Glu	
Ser	Lys	Asn 115	Glu	Lys	Leu	Lys	Glu 120	Asp	Leu	Glu	Arg	Glu 125	Gln	Arg	Trp	
Leu	Asp 130	Glu	Gln	Gln	Gln	Ile 135	Met	Glu	Ser	Leu	Asn 140	Val	Leu	His	Ser	
Glu 145	Leu	Lys	Asn	Lys	Val 150	Glu	Thr	Phe	Ser	Glu 155	Ser	Arg	Ile		Asn 160	
Glu	Leu	Lys	Thr	Lys 165	Met	Leu	Asn	Ile	Lys 170	Glu	Tyr	Lys	Glu	Lys 175	Leu	
Leu	Ser	Thr	Leu 180	Gly	Glu	Phe	Leu	Glu 185	Asp	·His	Phe	Pro	Leu 190	Pro	Asp	
Arg	Ser	Val 195	Lys	Lys	Lys	Lys	Lys 200	Asn	Ile	Gln	Glu	Ser 205	Ser	Val	Asn	
Leu	Ile 210	Thr	Leu	His	Glu	Met 215	Leu	Glu	Ile	Leu	Ile 220	Ásn	Arg	Leu	Phe	
Asp 225	Val	Pro	His	Asp	Pro 230	Tyr	Va _. l	Lys	Ile	Ser 235	Asp	Ser	Phe	Trp	Pro 240	
Pro	Tyr	Val	Glu	Leu 245	Leu	Leu	Arg	Asn	Gly 250	Ile	Ala	Leu	Arg	His 255		
Glu	Asp	Pro	Thr 260	Arg	Ile	Arg	Leu	Glu 265	Ala	Phe	His	Gln				

<210)> :	111													
<211	> 1	829													
<212	2> 1	PRT													
<213	3> 1	homo	sapi	ens											
<400)>	111													
Met	Gly	Leu	Pro	Arg	Gly	Pro	Leu	Ala	Ser	Leu	Leu	Leu	Leu	Gln	Val
1				5					10					15	
Cys	Trp	Leu	Gln	Cys	Ala	Ala	Ser	Glu	Pro	Cys	Arg	Ala	Val	Phe	Arg
			20					25					30		
Glu	Ala	Glu	Val	Thr	Leu	Glu	Ala	Gly	Gly	Ala	Glu	Gln	Glu	Pro	Gly
		35 ·				~	40					45			
Gln	Ala	Leu	Gly	Lys	Val	Phe	Met	Gly	Cys	Pro	Gly	Gln	Glu	Pro	Ala
٠.	50					55					60				
Leu	Phe	Ser	Thr	Asp	Asn	Asp	Asp	Phe	Thr	Val	Arg	Asn	Gly	Glu	Thr
65					70					75					80
Val	Gln	Glu	Arg		Ser	Leu	Lys	Glu	Arg	Asn	Pro	Leu	Lys	Ile	Phe
				85					90					95	
Pro	Ser	Lys		Ile	Ļeu	Arg	Arg		Lys	Arg	Asp	Trp	Val	Val	Ala
			100					105					110		
Pro	Ile	Ser	Val	Pro	Glu	Asn		Lys	Gly	Pro	Phe		Gln	Arg	Leu
		115	_	_	_		120				_	125		_	_
Asn		Leu	Lys	Ser	Asn		Asp	Arg	Asp	Thr		Ile	Phe	Tyr	Ser
	130		_			135	_	_	_	~.	140				
	Thr	Gly	Pro	Gly		Asp	Ser	Pro	Pro		Gly	Val	Phe	Ala	
145		01	mi	0.1	150 T					155					160
GIU	Lys	Glu	ınr		Irp	Leu	Leu	Leu		Lys	Pro	Leu	Asp		GIU
C1	T1.	A 1 -	T	165	C1	T	DL -	C1	170	A 1 -	17 - 1	0	01	175	C1
GIU	116	Ala		1) [GIU	Leu	rne		HIS	Ala	vaı	26L		ASII	GIY
410	Com	Vol.	180	A on	D= 0	Wa i	A a m	185	Com	T l a	Tla	W- 1	190	A = ==	C1.
Ala	ser	Val	GIU	ASP	Pro	meı		116	ser	116	116		ШГ	ASP	GII
Aan	Aan	195	Τ ***	Dro	T ***	Dha	200	Cln	Aan	ጥե	Dha	205	C1++	Con.	W o 1
ASII		His	ГÀ2	rio	Lys		1111	GIII	ASP	1111		AIR	GIY	261	Val
Lou	210		Vo l	Ι 011	Dro	215	Thr	Sar	Vo I	Mot	220	Vo I	Thr	41 a	Th.
225	aıu	Gly	rai	րգ _п	230	ary	1111	nei	v d l	ме і 235	GIII	Yal	1111	vig	240
	C1 11	Asp	Aen	Δla		Tur	Thr	Tur	Aon		Va 1	Va 1	Δlo	Tur	
nsp	oru	изр	лэр	245		1) 1	1111	TYI	250		191	141	ara	255	

Ile	His	Ser	Gln 260	Glu	Pro	Lys	Asp	Pro 265	His	Asp	Leu	Met	Phe 270	Thr	Ile
His	Arg	Ser		Gly	Thr	Ile	Ser	Val	Ile	Ser	Ser	Gly		Asp	Arg
		275					280				•	285			
Glu	Lys	Val	Pro	Glu	Tyr	Thr	Leu	Thr	Ile	Gln	Ala	Thr	Asp	Met	Asp ·
	290					295					300				
Gly	Asp	Gly	Ser	Thr	Thr	Thr	Ala	Val	Ala	Val	Val	Glu	He	Leu	Asp
305					310					315					320
Ala	Asņ	Ąsp	Asn	Ala	Pro	Mẹt	Phe	Asp	Pro	Glņ	Lys	Tyr.	Ģlu	Ala	His
				325					330					335	
Val	Pro	Glu	Asn	Ala	Val	Gly	His	Glu	Val	Gln	Arg	Leu	Thr	Val	Thr
			340					345					350		
Asp	Leu	Asp	Ala	Pro	Asn	Ser	Pro	Ala	Trp	Arg	Ala	Thr	Tyr	Leu	Ile
•		355					360					365			
Met	Gly	Gly	Asp	Asp	Gly	Asp	His	Phe	Thr	Ile	Thr	Thr	His	Pro	Glu
•	370					375					.380				
	Asn	Gln	Gly	Ile		Thr	Thr	Arg	Lys	Gly	Leu	Asp	Phe	Glu	Ala
385					390					395					400
Lys	Asn	Gln	Hįs		Leu	Tyr	Val	Glu	Val	Thr	Asn	Glu	Ala	Pro	Phe
	_	_	_	405					410					415	
Val	Leu	Lys		Pro	Thr	Ser	Thr	Ala	Thr	Ile	Val	Val		Val	Glu
			420		_			425					430		
Asp	Val		Glu	Ala	Pro	Val		Val	Pro	Pro	Ser		Val	Val	Glu
77 1	01	435	01		_	mı	440	٠.	_		_	445			
vai		Glu	Gly	He	Pro		Gly	Glu	Pro	Val		Val	Tyr	Thr	Ala
01	450	D	A		01	455	0.1	_			460			_	
	ASP	PTO	ASP	Lys		Asn	Gin	Lys	He		Tyr	Arg	He	Leu	
465	D	A 1 -	C1	Φ	470	A 1 .	W. 3		_	475	^	~ 1	0.1	•••	480
ASP	Pro	Ala	GIY		Leu	Ala	met	Asp		ASP	Ser	GIY	GIN		Thr
A 1 a	Va 1	C1	ТЬ	485	A = =	۸		A	490	C1	DL.	W- 1	A	495	4
Ala	Val	GIY		ren	ASP	Arg	GIU	Asp	GIU	GIN	rne	vai		ASN	ASn
Ιlα	Тчг+	C1	500	M∧↓	Va 1	I	۸1 a	505	A a =	۸	C1	C	510 Dro	D	ጥዜ
116	TAI		val	Mel	v a l	ren		Met	ASP	ASII	GΙΆ		rr0	011	IIIL
Thr	C111	515	C1**	Th =	Lon	Ĭ ou	520	Th.	Lou	110	Λ c ~	525	A a =	A c =	IIi o
1111	530	THE	GIÀ	1111	ren	535	ren	Thr	ren	116		val	WSII	WSD	піз
Glw		Va 1	Dro	C111	Dro		Cln	م۱۱	Thr	110	540	Aon	Cln	Sar	Dwo

WO 2005/014818 PCT/JP2004/011650

545 550 555 560
Val Arg Gln Val Leu Asn Ile Thr Asp Lys Asp Leu Ser Pro His Thr
565 570 575
Ser Pro Phe Gln Ala Gln Leu Thr Asp Asp Ser Asp Ile Tyr Trp Thr
580 585 590
Ala Glu Val Asn Glu Glu Gly Asp Thr Val Val Leu Ser Leu Lys Lys
595 600 605
Phe Leu Lys Gln Asp Thr Tyr Asp Val His Leu Ser Leu Ser Asp His
610 615 620
Gly Asn Lys Glu Gln Leu Thr Val Ile Arg Ala Thr Val Cys Asp Cys
625 630 635 640
His Gly His Val Glu Thr Cys Pro Gly Pro Trp Lys Gly Gly Phe Ile
645 650 655
Leu Pro Val Leu Gly Ala Val Leu Ala Leu Leu Phe Leu Leu Val 660 665 670
Leu Leu Leu Val Arg Lys Lys Arg Lys Ile Lys Glu Pro Leu Leu 675 680 685
Leu Pro Glu Asp Asp Thr Arg Asp Asn Val Phe Tyr Tyr Gly Glu Glu 690 695 700
Gly Gly Glu Glu Asp Gln Asp Tyr Asp Ile Thr Gln Leu His Arg
705 710 715 720
Gly Leu Glu Ala Arg Pro Glu Val Val Leu Arg Asn Asp Val Ala Pro
725 730 735
Thr Ile Ile Pro Thr Pro Met Tyr Arg Pro Arg Pro Ala Asn Pro Asp
740 745 750
Glu Ile Gly Asn Phe Ile Ile Glu Asn Leu Lys Ala Ala Asn Thr Asp
755 760 765
Pro Thr Ala Pro Pro Tyr Asp Thr Leu Leu Val Phe Asp Tyr Glu Gly
770 775 780
Ser Gly Ser Asp Ala Ala Ser Leu Ser Ser Leu Thr Ser Ser Ala Ser
785 790 795 800
Asp Gln Asp Gln Asp Tyr Asp Tyr Leu Asn Glu Trp Gly Ser Arg Phe
805 810 815
Lys Lys Leu Ala Asp Met Tyr Gly Gly Gly Glu Asp Asp
820 825
<210> 112
<211> 926

$\langle 212$?> I	PRT													
<213	3> 1	omo	sapi	ens											
<400)> 1	12													
Met 1	Asp	Met	Phe	Pro 5	Leu	Thr	Trp	Val	Phe 10	Leu	Ala	Leu	Tyr	Phe 15	Ser
Arg	His	Gln	Val 20	Arg	Gly	Gln	Pro	Asp 25	Pro	Pro	Cys	Gly	Gly 30	Arg	Leu
Asn		Lys 35										Tyr 45 _.	Pro	Gln	Asp
Tyr	Pro 50	Ser	His	Gln	Asn	Cys 55	Glu	Trp	Ile	Val	Tyr 60	Ala	Pro	Glu	Pro
Asn 65	Gln	Lys	Ile	Val	Leu 70	Asn	Phe	Asn	Pro	His 75	Phe	Glu	Ile	Glu	Lys 80
His	Asp	Cys	Lys	Tyr 85	Asp	Phe	Ile	Glu	Ile 90	Arg	Asp	Gly	Asp	Ser 95	Glu
Ser	Ala	Asp	Leu 100	Leu	Gly	Lys	His	Cys 105	Gly	Asn	Ile	Ala	Pro 110	Pro	Thr
Ile	Ile	Ser 115	Ser	Gly	Ser	Met	Leu 120	Tyr	Ile	Lys	Phe	Thr 125	Ser	Asp	Tyr
Ala	Arg 130	Gln	Gly	Ala	Gly	Phe 135	Ser	Leu	Arg	Tyr	Glu 140	Ile	Phe	Lys	Thr
Gly 145	Ser	Glu	Asp	Cys	Ser 150	Lys	Asn	Phe	Thr	Ser 155	Pro	Asn	Gly	Thr	Ile 160
Glu	Ser	Pro	Gly	Phe 165	Pro	Glu	Lys	Tyr	Pro 170	His	Asn	Leu	Asp	Cys 175	Thr
Phe	Thr	Ile	Leu 180	Ala	Lys	Pro	Lys	Met 185	Glu	lle	Ile	Leu	Gln 190	Phe	Leu
Ile	Phe	Asp 195	Leu	Glu	His	Asp	Pro 200	Leu	Gln	Val	Gly	Glu 205	Gly	Asp	Cys
Lys	Tyr 210	Asp	Trp	Leu	Asp	Ile 215	Trp	Asp	Gly	Ile	Pro 220	His	Val	Gly	Pro
Leu 225	Ile	Gly	Lys	Tyr	Cys 230	Gly	Thr	Lys	Thr	Pro 235	Ser	Glu	Leu	Arg	Ser 240
Ser	Thr	Gly	Ile	Leu 245	Ser	Leu	Thr	Phe	His 250	Thr	Asp	Met	Ala	Val 255	Ala
Lys	Asp	Gly	Phe 260	Ser	Ala	Arg	Tyr	Tyr 265	Leu	Val	His	Gln	Glu 270	Pro	Leu

Glu	Asn	Phe 275	Gln	Cys	Asn	Val	Pro 280	Leu	Gly	Met	Glu	Ser 285	Gly	Arg	Ile
Ala	Asn 290	Glu	Gln	Ile	Ser	Ala 295	Ser	Ser	Thr	Tyr	Ser 300	Asp	Gly	Arg	Trp
Thr		Gln	Gln	Ser	Arg		His	Gly	Asp	Asp		Gly	Trp	Thr	Pro
305					310					315					320
Asn	Leu	Asp	Ser	Asn	Lys	Glu	Tyr	Leu	Gln	Val	Asp	Leu	Arg	Phe	Leu
				325					330					335	
Thr_	Met.	Leu.		Ala	_I_l e_	<u>Ala</u>	.Thr.		Gly	Aļ.a.	Ile.	<u>S</u> er		Glu	Thr.
01-	A	01	340	Т	37 - 1	T	0	345	T	T	C1	¥7 - 1	350	TL	A
GIII	ASII	355	IУГ	ıyr	vai	LÀS	360	ІУГ	Lys	Leu	GIU	365	Ser	Inr	ASII
Glv	Glu		Trn	Met	Val	Tur		Hic	Clv	Ιτις	Aen		Lys	Va 1	Phρ
ory	370	пор	пр	MCL	141	375	111.6	1112	Oly	цуз	380	1113	Lys	va.i	1110
Gln		Asn	Asn	Asp	Ala		Glu	Val	Val	Leu		Lys	Leu	His	Ala
385										395		•			400
Pro	Leu	Leu	Thr	Arg	Phe	Val	Arg	Ile	Arg	Pro	Gln	Thr	Trp	His	Ser
				405					410					415	
Gly	Ile	Ala	Leu	Arg	Leu	Glu	Leu	Phe	Gly	Cys	Arg	Val	Thr	Asp	Ala
			420					425					430		
Pro	Cys	Ser	Asn	Met	Leu	Gly	Met	Leu	Ser	Gly	Leu	Ile	Ala	Asp	Ser
		435					440		•			445			
Gln		Ser	Ala	Ser	Ser			Glu	Tyr	Leu	-	Ser	Pro	Ser	Ala
	450					455		.	_	21	460			~	0.1
	Arg	Leu	Val	Ser		Arg	Ser	Gly	Trp		Pro	Arg	11e	Pro	Gln
465	Cin	Dec	Clv	C1	470	Тип	Lou	Cln	Val	475	Ι	C1++	ТЬ.	Dea	480
Ala	GIII	rio	GIY	485	GIU	111	Leu	GIII	490	ASP	reu	GIY	Thr	495	LYS
Thr	Va 1	Į.vs	Glv		Ile	Ile	Gln	Glv		Arg	Glv	Glv	Asp		Tle
1111	141	<i>D</i> 3 5	500	, 41	110	110	0111	505	mu	*** 6	OI,	u,	510	JUI	110
Thr	Ala	Val		Ala	Arg	Ala	Phe		Arg	Lys	Phe	Lys		Ser	Tyr
		515					520					525			
Ser	Leu	Asn	Gly	Lys	Asp	Trp	Glu	Tyr	Ile	Gln	Asp	Pro	Arg	Thr	Gln
	530					535					540				
Gln	Pro	Lys	Leu	Phe	Glu	Gly	Asn	Met	His	Tyr	Asp	Thr	Pro	Asp	Ile
545					550					555				•	560
Arg	Arg	Phe	Asp	Pro	Ile	Pro	Ala	Gln	Tyr	Val	Arg	Val	Tyr	Pro	Glu

				565					570					575	
Arg	Trp	Ser	Pro	Ala	Gly	Ile	Gly	Met	Arg	Leu	Glu	Val	Leu	Gly	Cys
			580					585					590		
Asp	Trp	Thr	Asp	Ser	Lys	Pro	Thr	Val	Lys	Thr	Leu	Gly	Pro	Thr	Val
		595					600					605			
Lys	Ser	Glu	Glu	Thr	Thr	Thr	Pro	Tyr	Pro	Thr	Glu	Glu	Glu	Ala	Thr
	610					615					620				
Glu	Cys	Gly	Glu	Asn	Cys	Ser	Phe	Glu	Asp	Asp	Lys	Asp	Leu	Gln	Leu
625	j				630	•••				635					640
Pro) Ser	Gly	Phe	Asn	Cys	Asn	Phe	Asp	Phe	Leu	Glu	Glu	Pro	Cys	Gly
		•		645					650					655	
Tr) Met	Tyr		His	Ala	Lys	Trp		Arg	Thr	Thr	Trp	Ala	Ser	Ser
			660					665					670		
Sei	Ser		Asn	Asp	Arg	Thr		Pro	Asp	Asp	Arg		Phe	Leu	Arg
_		675				_	680			_		685	_		_
Lei	ı Gln	Ser	Asp	Ser	Gln		Glu	Gly	Gln	Tyr		Arg	Leu	Ile	Ser
_	690				_	695	_	_			700				_
	Pro	Val	His	Leu		Arg	Ser	Pro	Val		Met	Glu	Phe	Gln	
70!		m.		.	710	0.1			_	715		÷		21	720
GII	ı Ala	Thr	Gly		Arg	Gly	Val	Ala			Val	Val	Arg		Ala
	0.1	01	•	725			m	** 1	730		01		0.1	735	01
Se	r Gln	GIU		Lys	Leu	Leu	1rp			Arg	GIU	ASP		GIY	Gly
01.	- T	T	740	01	A	71.	71-	745		0	m	A	750	C1	Ф
GI	ı Trp			GIY	Arg	116		Leu	Pro	ser	lyr			GIU	ТУГ
C1.		755		C1.	C1	W-1	760	C1	T	C1	A	765		C1	11.
Gil	1 Ile		rne	GIU	Gly			GIY	Lys	GIY		ser	GIY	Glu	116
A 1 -	770		Aan	Τlα	Ara	775		Th -	Aan	Vo l	780	Lon	Clu	Aan	Crro
78	aIle	ASP	изр	116	790	116	261	1111	nsp	795		Leu	GIU	ASII	800
		Dro	Ha	Sor		Dho	Ala	Val	Aen			Clu	Ϊla	Иiс	
ME	t Glu	LIU	116	805		rne	Ald	Yaı	810		FIU	GIU	116	815	GIU
۸ د .	g Glu	Clv	ጥጥ			Clu	Ιlα	Acn			Тугт	Clu	Val		Trn
AI (g Glu	Gly	820		nsp	GIU	116	825		Ulu	1 9 1	Giu	830	nsp	пр
20	r Asn	Sar			A 1 o	Th r	Sar			C1v	Λla	Dro		Thr	Aen
ಎ೮	ı ASII	835		nei	ліd	1111	840		חפו	GIA	піа	845		1111	ռջբ
Īν	s Glu			Trn	ו ב	Tur			Aen	Pro	مالا			Thr	ماآ
L y	850		261	ттþ	ր c n	855		ьcu	πορ	110	860	LCu	110	+1111	116
	000					200					$\sigma \sigma \sigma$				

Ile	Ala	Met	Ser	Ser	Leu	Gly	Val	Leu	Leu	Gly	Ala	Thr	Cys	Ala	Gly
865					870					875					880
Leu	Leu	Leu	Tyr	Cys	Thr	Cys	Ser	Tyr	Ser	Gly	Leu	Ser	Ser	Arg	Ser
				885					890					895	
Cys	Thr	Thr	Leu	Glu	Asn	Tyr	Asn	Phe		Leu	Tvr	Asp	Glv		Lvs
			900			-		905			- • -	•	910		
His	Lys	Val		Met	Asn	His	Gln		Cvs	Cvs	Ser	Glu			
	•	915					920		- •	-,-		925			
<21	0> :	113													
<21		220	•												
<21		PRT.													
<21		homo	sapi	iens											
<40	0> :	113													
Met	Ser	Met	Gly	Leu	Glu	Ile	Thr	Gly	Thr	Ala	Leu	Ala	Val	Leu	Gly
1				5					10					15	-
Trp	Leu	Gly	Thr	Ile	Val	Cys	Cys	Ala	Leu	Pro	Met	Trp	Arg	Val	Ser
			20					25					30		
Ala	Phe	Ile	Gly	Ser	Asn	Ile	Ile	Thr	Ser	Gln	Asn	Ile	Trp	Glu	Gly
		35	,		•		40					45			
Leu	Trp	Met	Asn	Cys	Val	Val	Gln	Ser	Thr	Gly	Gln	Met	Gln	Cys	Lys
	50					55					60				
Val	Tyr	Asp	Ser	Leu	Leu	Ala	Leu	Pro	Gln	Asp	Leu	Gln	Ala	Ala	Arg
65					70					75					80
Ala	Leu	Ile	Val	Val	Ala	Ile	Leu	Leu	Ala	Ala	Phe	Gly	Leu	Leu	Val
				85					90					95	
Ala	Leu	Val	Gly	Ala	Gln	Cys	Thr	Asn	Cys	·Val	Gln	Asp	Asp	Thr	Ala
			100					105					110		
Lys	Ala	Lys	Ile	Thr	Ile	Val	Ala	Gly	Val	Leu	Phe	Leu	Leu	Ala	Ala
		115					120					125			
Leu	Leu	Thr	Leu	Val	Pro	Val	Ser	Trp	Ser	Ala	Asn	Thr	Ile	Ile	Arg
	130					135					140				
Asp	Phe	Tyr	Asn	Pro	Val	Val	Pro	Glu	Ala	Gln	Lys	Arg	Glu	Met	Gly
145					150					155					160
Ala	Gly	Leu	Tyr	Val	Gly	Trp	Ala	Ala	Ala	Ala	Leu	Gln	Leu	Leu	Gly
				165					170					175	
Gly	Ala	Leu	Leu	Cys	Cys	Ser	Cys	Pro	Pro	Arg	Glu	Lys	Lys	Ţyr	Thr
			180					185					190		

Ala Thr Lys Val Val Tyr Ser Ala Pro Arg Ser Thr Gly Pro Gly Ala Ser Leu Gly Thr Gly Tyr Asp Arg Lys Asp Tyr Val <210> 114 **<211> 209** <212> PRT <213 homo sapiens **<400>** 114 Met Ala Ser Met Gly Leu Gln Val Met Gly Ile Ala Leu Ala Val Leu Gly Trp Leu Ala Val Met Leu Cys Cys Ala Leu Pro Met Trp Arg Val Thr Ala Phe Ile Gly Ser Asn Ile Val Thr Ser Gln Thr Ile Trp Glu Gly Leu Trp Met Asn Cys Val Val Gln Ser Thr Gly Gln Met Gln Cys Lys Val Tyr Asp Ser Leu Leu Ala Leu Pro Gln Asp Leu Gln Ala Ala Arg Ala Leu Val Ile Ile Ser Ile Ile Val Ala Ala Leu Gly Val Leu Leu Ser Val Val Gly Gly Lys Cys Thr Asn Cys Leu Glu Asp Glu Ser Ala Lys Ala Lys Thr Met Ile Val Ala Gly Val Val Phe Leu Leu Ala Gly Leu Met Val Ile Val Pro Val Ser Trp Thr Ala His Asn Ile Ile Gln Asp Phe Tyr Asn Pro Leu Val Ala Ser Gly Gln Lys Arg Glu Met Gly Ala Ser Leu Tyr Val Gly Trp Ala Ala Ser Gly Leu Leu Leu Leu Gly Gly Gly Leu Leu Cys Cys Asn Cys Pro Pro Arg Thr Asp Lys Pro Tyr Ser Ala Lys Tyr Ser Ala Ala Arg Ser Ala Ala Ala Ser Asn Tyr Val

$\langle 210$)>	115													
< 211	l>	346		•											
<212	2>	PRT													
<213	3>	homo	sapi	ens											
<400)>	115													
Met	Phe	Leu	Ser	Ile	Leu	Val	Ala	Leu	Cys	Leu	Trp	Leu	His	Leu	Ala
1				5					10					15	
Leu	Gly	Val	Arg	Gly	Ala	Pro	Cys	Glu	Ala	Val	Arg	Ile	Pro	Met	Cys
			20					25_					30		
Arg	His	Met	Pro	Trp	Asn	He	Thr	Arg	Met	Pro	Asn	His	Leu	His	His
		35 .					40					45			
Ser		Gln	Glu	Asn	Ala		Leu	Ala	Ile	Glu	Gln	Tyr	Glu	Glu	Leu
	50					55					60				
	Asp	Val	Asn	Cys		Ala	Val	Leu	Arg		Phe	Phe	Cys	Ala	
65 T		_			70	-	01			75		_			80
Tyr	Ala	l Pro	He		Thr	Leu	Glu	Phe		His	Asp	Pro	He		Pro
0		0	¥7 - 1	85	01				90		0	01	D .	95	N ,
Cys	Lys	Ser		Cys	GIN	Arg	Ala		Asp	Asp	Cys	Glu		Leu	Met
T ***	Ma i	Т	100	II; o	Co.	Т	Des	105	Com.	Lou	410	C	110	Cl.	τ
LYS	ME	Tyr 115	ASII	піѕ	261	110		GIU	261	Leu	Ald	125	ASP	GIU	rea
Dro	Va l	Tyr	Aen	Ara	Clv	Va 1	120	Ιlα	Sar	Dro	Clu		ماتا	Val	Thr
110	130		nsp	ME	Uly	135	Cys	116	pei	110	140	Λια	110	141	1111
Asp		, 1 Pro	Glu	Asn	Val		Trn	He	Asn	He		Pro	Asp	Met	Met .
145			014	,	150	2,0			шр	155				11200	160
	Glr	ı Glu	Arg	Pro		Asp	Val	Asp	Cys		Arg	Leu	Ser	Pro	
				165		_		•	170	•				175	-
Arg	Cys	Lys	Cys	Lys	Lys	Val	Lys	Pro	Thr	Leu	Ala	Thr	Tyr	Leu	Ser
			180					185					190		
Lys	Asr	n Tyr	Ser	Tyr	Val	Ile	His	Ala	Lys	Ile	Lys	Ala	Val	Gln	Arg
		195					200					205			
Ser	Glz	Cys	Asn	Glu	Val	Thr	Thr	Val	Val	Asp	Val	Lys	Glu	Ile	Phe
	210)				215					220				
Lys	Sei	Ser	Ser	Pro	Ile	Pro	Arg	Thr	Gln	Val	Pro	Leu	Ile	Thr	Asn
225					230					235					240
Ser	Ser	Cys	Gln	Cys	Pro	His	Ile	Leu	Pro	His	Gln	Asp	Val	Leu	Ile
				245					250					255	

	Glu Trp Arg S 260	Ser Arg Met N 265	Met Leu Leu	Glu Asn Cys Leu 270
Val Glu Lys T 275	frp Arg Asp G	In Leu Ser 1 280		Ile Gln Trp Glu 285
Glu Arg Leu G 290		Arg Arg Thr V	Val Gln Asp 300	Lys Lys Lys Thr
Ala Gly Arg T 305	Thr Ser Arg S 310	Ser Asn Pro 1	Pro Lys Pro 315	Lys Gly Lys Pro 320
Pro Ala Pro L	Lys Pro Ala S 325		Lys Aşn Ile. 330	Lys Tḥr Arg Ser 335
	Arg Thr Asn P 340	Pro Lys Arg N 345	Val	
<210> 116 <211> 553 <010> DDT		· .		
	sapiens			
	•			Ser Val Leu Ala
	. 5 Arg Arg His T 20		10 Val Thr Pro	15 Ser Thr Val Leu 30
				Phe Asn Pro Cys 45
				Leu Ser Leu Gln
Trp Arg Phe A	Ala Asn Leu P 70	Pro Asn Asn	Ala Lys Leu 75	Glu Met Val Pro 80
Ala Ser Arg S	Ser Arg Glu G 85		Asn Met Val 90	Arg Ile Ala Leu 95
	Asp Gly Ser A 100	Arg Leu Gln 105	Asp Ser Phe	Cys Ser Gly Gln 110
115		120		Arg Glu Cys Leu 125
130	1	135	140	Thr Arg Asp Glu
Val Thr Gly G 145	Glu Ala Ala L 150	Leu Arg Gly '	Thr Thr Leu 155	Gln Ser Leu Gly 160

Leu	Thr	Gly	Gly	Ser	Ala	Thr	Ile	Arg	Phe	Val	Met	Lys	Cys	Tyr	Asp
				165					170					175	
Pro	Val	Gly	Lys	Thr	Pro	Gly	Ser	Leu	Gly	Ser	Ser	Ala	Ser	Ala	Gly
			180					185					190		
Gln	Ala	Ala	Ala	Ser	Ala	Pro	Leu	Pro	Leu	Glu	Ser	Gly	Glu	Leu	Ser
		195					200					205			
Arg	Gly	Asp	Leu	Ser	Arg	Pro	Glu	Asp	Ala	Asp	Thr	Ser	Gly	Pro	Cys
	210					215					220				
.Cys .	.Glu	His	Thr	Gln	Glu.	Lys.	Gln	Ser	Thr.	Arg	Ala	Pro	Ala	Ala	Ala.
225					230					235					240
Pro	Phe	Val	Pro	Phe	Ser	Gly	Gly	Gly	Gln	Arg	Leu	Gly	Gly	Pro	Pro
				245					250					255	
Gly	Pro	Thr	Arg	Pro	Leu	Thr	Ser	Ser	Ser	Ala	Lys	Leu	Pro	Lys	Ser
			260					265					270		
Leu	Ser	Ser	Pro	Gly	Gly	Pro	Ser	Lys	Pro	Lys	Lys	Ser	Lys	Ser	Gly
		275			_		280				-	285	•		
Gln	Asp	Pro	Gln	Gln	Glu	Gln	Glu	Gln	Glu	Arg	Glu	Arg	Asp	Pro	Gln
	290					295					300		_		
Gln		Gln	Glu	Arg	Glu		Pro	Val	Asp	Arg		Pro	Val	Asp	Arg
305			•		310	0				315					320
	Pro	Val	Val	Cvs		Pro	Asp	Leu	Glu		Arg	Leu	Gln	Ala	
				325					330		0			335	
Pro	Ala	Glu	Leu		Asp	Glu	Phe	Phe		Leu	Thr	Val	Asp	Asp	Val
			340					345					350		
Arg	Arg	Arg		Ala	Gin	Leu	Lvs		Glu	Arg	Lvs	Arg		Glu	Glu
	6	355					360				_,.	365			
Ala	Pro		Val	Thr	Lvs	Ala		Arg	Glu	Ala	Gln		Lvs	Glu	Lys
	370		,		-,-	375			014		380		-,0		-30
T.en		Arg	Tvr	Pro	I.vs		Ala	Len	Arg	Val		Phe	Pro	Asn	Arg
385	V. u		-,-		390	,		200		395				,10 p	400
	Val	Len	Gln	Glv		Phe	Aro	Pro	Ser			Val	Glv	Asp	
1 3 1	, u i	Dou	O I II	405	1110	THE	111 6	110	410		1111	,	ury	415	Dou
Δισ	Δen	Dhρ	Val		Sar	Hic	Ĭ AII	Clv			Glu	I en	Ser	Phe	Tyr
ΛIĞ	nsp	THE	420	nig	261	1113	Leu	425		110	oru	LCu	430	1110	I y I
Lou	Dha	ΠΛ		Dro	Dro	Two	ፐ ኬ ድ			Aon	Acn	Иic		Cln	Thr
ւշս	THE			110	110	гìя	440		ren	лэр	nsp	445		GIII	1111
T 000	DL -	435		A	T	Dh.a			۸1،	I An	Va 1			C1+-	۸1 م
ren	rne	GIII	AIA	ASII	ren	rne	110	WIG	ulg	rcn	val	nis	ւեն	σιy	Ala

.

450		455	460	
Glu Glu Pro	Ala Gly Val	Tyr Leu Glu	Pro Gly Leu Leu	Glu His Ala
465	470		475	480
Ile Ser Pro	Ser Ala Ala	Asp Val Leu	Val Ala Arg Tyr	Met Ser Arg
	485		490	495
Ala Ala Gly			Ala Pro Asp Pro	
a aı n	500	505		510 _.
			Leu Val Pro Pro	
515 Pro Cly Thr	-		Son Lou Cly Lys	
530 ·	Ala GIII FIO	535	Ser Leu Gly Lys 540	val 110 Lys
	Leu Pro Ala	Ser Lys Arg	010	
545	550	~~~ -,~		
<210> 117				
<211> 102				
<212> PRT				
<213> homo	sapiens			
<400> 117				
Met Ser Ala	•	Ser Arg Ser	Arg Gly Arg Gly	
1	5		10	15
Glu Ala Pro	Asp Val Val 20	Ala Phe Val	Ala Pro Gly Glu	Ser Gln Gln 30
Glu Glu Pro	Pro Thr Asp	Asn Gln Asp	Ile Glu Pro Gly	Gln Glu Arg
35		40	45	
Glu Gly Thr	Pro Pro Ile		Lys Val Glu Gly	Asp Cys Gln
50		55	. 60	
		Thr Arg Ser	Glu Arg Gly Asp	
65	70	Dro Arn Dro	75	The Lyo Clu
vai Lys Giu	85	Pro Asii Pro	Lys His Ala Lys 90	95
Ala Gly Asp	Gly Gln Pro	1		
	100			
<210> 118				
<211> 724				
⟨212⟩ PRT				
<213> homo	sapiens			•
<400> 118				

	•	•													
Met 1	Ser	Phe	Pro	Lys 5	Ala	Pro	Leu	Lys	Arg 10	Phe	Asn	Asp	Pro	Ser 15	Gly
Cys	Ala	Pro	Ser 20	Pro	Gly	Ala	Tyr	Asp 25	Val	Lys	Thr	Leu	Glu 30	Val	Leu
Lys	Gly	Pro 35	Val	Ser	Phe	Gln	Lys 40	Ser	Gln	Arg	Phe	Lys 45	Gln	Gln	Lys
Glu	Ser 50	Lys	Gln	Asn	Leu	Asn 55	Val	Asp	Lys	Asp	Thr 60	Thr	Leu	Pro	Ala
Ser 65	<u>A</u> l a	Ārg	Lys	Va <u>l</u>	Ļу <u>s</u> 70	Ser	Ser	Glu	Ser	Lys 75	Glu	Ser	Gln	<u>Ly</u> s	Asın 80
Asp	Lys	Asp	Leu	Lys 85	Ile	Leu	Glu	Lys	Glu 90	Ile	Arg	Val	Leu	Leu 95	Gln
Glu	Arg	Gly	Ala 100	Gln	Asp	Ser	Arg	Ile 105	Gln	Asp	Leu	Glu	Thr 110	Glu	Leu
Glu	Lys	Met 115	Glu	Ala	Arg	Leu	Asn 120	Ala	Ala	Leu	Arg	Glu 125	Lys	Thr	Ser
Leu	Ser 130	Ala	Asn	Asn	Ala	Thr 135	Leu	Glu	Lys	Gln	Leu 140	Ile	Glu	Leu	Thr
Arg 145	Thr	Asn	Gļu	Leu	Leu 150	Lys	Ser	Lys	Phe	Ser 155	Glu	Asn	Gly	Asn	Gln 160
Lys	Asn	Leu	Arg	lle 165	Leu	Ser	Leu	Glu	Leu 170		Lys	Leu	Arg	Asn 175	Lys
Arg	Glu	Thr	Lys 180	Met	Arg	Gly	Me.t	Met 185	Ala	Lys	Gln	Glu	Gly 190	Met	Glu
Met	Lys	Leu 195		Val	Thr	Gln	Arg 200		Leu	Glu	Glu	Ser 205	Gln	Gly	Lys
Ile	Ala 210		Leu	Glu	Gly	Lys 215		Val	Ser	Ile	Glu 220	Lys	Glu	Lys	Ile
Asp 225	Glu	Lys	Ser	Glu	Thr 230		Lys	Leu	Leu	Glu 235		Ile	Glu	Glu	Ile 240
Ser	Cys	Ala	Ser	Asp 245		Val	Glu	Lys	Tyr 250		Leu	Asp	Ile	Ala 255	Gln
Leu	Glu	Glu	Asn 260		Lys	Glu	Lys	Asn 265		Glu	Ile	Leu	Ser 270		Lys
Gln	Ser	Leu 275		Glu	Asn	Ile	Val 280		Leu	Ser	Lys	Gln 285	Val	Glu	Asp
Leu	Asn	Val	Lys	Cys	Gln	Leu	Leu	Glu	Lys	Glu	Lys	Glu	Asp	His	Val

	290					295					300				
Asn	Arg	Asn	Arg	Glu	His	Asn	Glu	Asn	Leu	Asn	Ala	Glu	Met	Gln	Asn
305					310					315					320
Leu	Lys	Gln	Lys	Phe	lle	Leu	Glu	Gln	Gln	Glu	Arg	Glu	Lys	Leu	Gln
				325					330				·	335	
Gln	Lys	Glu	Leu	Gln	Ile	Asp	Ser	Leu	Leu	Gln	Gln	Glu	Lys	Glu	Leu
			340					345					350		
Ser	Ser	Ser	Leu	His	Gln	Lys	Leu	Cys	Ser	Phe	Gln	Glu	Glu	Met	Val
		355					360	•			**	365			
Lys	Glu	Lys	Asn	Leu	Phe	Glu	Glu	Glu	Leu	Lys	Gln	Thr	Leu	Asp	Glu
	370					375					380				
Leu	Asp	Lys	Leu	Gln	Gln	Lys	Glu	Glu	Gln	Ala	Glu	Arg	Leu	Val	Lys
385					390					395					400
Gln	Leu	Glu	Glu	Glu	Ala	Lys	Ser	Arg	Ala	Glu	Glu	Leu	Lys	Leu	Leu
				405					410					415	
Glu	Glu	Lys		Lys	Gly	Lys	Glu	Ala	Glu	Leu	Glu	Lys	Ser	Ser	Ala
			420					425					430		
Ala	His		Gln	Ala	Thr	Leu		Leu	Gln	Glu	Lys		Asp	Ser	Met
		435					440	0.2	0.			445		_	
Val	Gln	Ser	Leu	Glu	Asp		Thr	Ala	Gln	Phe		Ser	Tyr	Lys	Ala
_	450		_			455		_	_		460		_	_	_
	Thr	Ala	Ser	Glu		Glu	Asp	Leu	Lys		Glu	Asn	Ser	Ser	
465		.	41.	41.	470	41	0.1			475	01		** 1	0 1	480
GIN	Glu	Lys	Ala		Lys	Ala	Gly	Lys		Ala	GIU	Asp	vai		HIS
C1-	71.	T	41.	485	C1	0	Q	A	490	01	Т	3 7 - 1	A	495	T
GIII	He	Leu		Inf	GIU	261	ser		GIII	GIU	IYI	vai		met	Leu
Lou	Aan	I ou	500	Th #	I vza	Cor	1 1 n	505	T ***	Clu	Th.	Clu	510	T ***	Cl.
Leu	Asp	515	GIH	1111	L y S	261	520	Leu	гу	GIU	1111	525	116	LyS	GIU
110	Thr		Sar	Dha	LOII	Cln		Ila	Thr	Aen	I au		Acn	Cln	Lou
110	530	141	per	1116	Leu	535	Lys	116	1111	nsp	540	GIR	USII	GIII	Leu
Lvs	Gln	Gln	Glu	Glu	Asn		Arσ	Lvc	Gln	I.en		Asn	Gln	Glu	Glv
545		0111	JIU	GIU	550	1110	,,, &	2,0	0111	555	010	110 p	uiu	oru	560
					550					550					500
•••		Ala	GIn	Lvs	Gln	Asn	Thr	Thr	Ala	Glu	Len	Thr	Gln	Gln	He
	Lys	Ala	Glu		Glu	Asn	Thr	Thr		Glu	Leu	Thr	Glu		Ile
Asn				565					570					575	

Phe Gln Leu Gln Leu Asp Ala Phe Glu Val Glu Lys Gln Ala Leu Leu Asn Glu His Gly Ala Ala Gln Glu Gln Leu Asn Lys Ile Arg Asp Ser Tyr Ala Lys Leu Leu Gly His Gln Asn Leu Lys Gln Lys Ile Lys His Val Val Lys Leu Lys Asp Glu Asn Ser Gln Leu Lys Ser Glu Val Ser Lys Leu Arg Cys Gln Leu Ala Lys Lys Gln Ser Glu Thr Lys Leu Gln Glu Glu Leu Asn Lys Val Leu Gly Ile Lys His Phe Asp Pro Ser Lys Ala Phe His His Glu Ser Lys Glu Asn Phe Ala Leu Lys Thr Pro Leu Lys Glu Gly Asn Thr Asn Cys Tyr Arg Ala Pro Met Glu Cys Gln Glu Ser Trp Lys **<210> 119 <211>** 325 <212> PRT $\langle 213 \rangle$ homo sapiens **<400>** 119 Met Thr Glu Arg Arg Arg Asp Glu Leu Ser Glu Glu Ile Asn Asn Leu Arg Glu Lys Val Met Lys Gln Ser Glu Glu Asn Asn Leu Gln Ser Gln Val Gln Lys Leu Thr Glu Glu Asn Thr Thr Leu Arg Glu Gln Val Glu Pro Thr Pro Glu Asp Glu Asp Asp Asp Ile Glu Leu Arg Gly Ala Ala Ala Ala Ala Pro Pro Pro Pro Ile Glu Glu Cys Pro Glu Asp Leu Pro Glu Lys Phe Asp Gly Asn Pro Asp Met Leu Ala Pro Phe Met Ala Gln Cys Gln Ile Phe Met Glu Lys Ser Thr Arg Asp Phe Ser

Val	Asp	Arg 115	Val	Arg	Val	Cys	Phe 120	Val	Thr	Ser	Met	Me t 125	Thr	Gly	Arg
Ala	Ala 130		Trp	Ala	Ser	Ala 135		Leu	Glu	Arg	Ser 140		Tyr	Leu	Met
Hic		Tur	Pro	Δla	Phe		Met	Clu	Mot	Ιπο		Val	Phe	Glu	Asn
145	USII	1 y 1	110	піа	150	MC t	MC t	Giu	MCL	155	1112	Vai	Inc	oru	160
	Gln	Arø	Arg	Gln	Val	Ala	Lvs	Arg	I.vs		Arg	Arg	Len	Arg	
	• • • • • • • • • • • • • • • • • • • •	6		165			-,-		170					175	-
Gly	Met	Gly	Ser		Ile	Asp	Tyr	Ser		Ala	Phe	Gln	Met	Ile	Ala
			180					185	••	•		••	190	•	
Gln	Asp	Leu	Asp	Trp	Asn	Glu	Pro	Ala	Leu	Ile	Asp	Gln	Tyr	His	Glu
		195					200					205			
Gly	Leu	Ser	Asp	His	Ile	Gln	Glu	Glu	Leu	Ser	His	Leu	Glu	Val	Ala
	210					215					220				
	Ser	Leu	Ser	Ala	Leu	Ile	Gly	Gln	Cys		His	Ile	Glu	Arg	
225					230			_	_	235	_	_	_		240
Leu	Ala	Arg	Ala		Ala	Ala	Arg	Lys		Arg	Ser	Pro	Pro		Ala
	T7 - 1	T	D	245	, T1.	41-	g	TT: _	250	01-	1 7 - 1	۸	Dma	255	C1
Leu	Val	Leu	•		116	Ala	Ser		HIS	GIN	vai	ASP	270		Glu
Dec	Vo l	C1++	260		Arg	Mot	Ara	265	Thr	Cln	Clu	Clu			Ara
110	Val	275		Ala	AIG	MET	280			GIII	Giu	285	Буз	Ulu	nig
Arg	Arø			Asn	Len	Cvs			Cvs	Glv	Thr		Glv	His	Tyr
*** 6	290		Dou	11011	204	295		-,-	0,0	01,	300		,		- 3 -
Ala			Cys	Pro	Ala			Ser	Lys	Ser	Ser	Pro	Ala	Gly	Asn
305					310					-315					320
Ser	Pro	Ala	Pro	Leu											
				325											
<21	<0>	120													
<21	1>	162													
<21	2>	PRT													
		homo	sap	iens									•		
	0>								_				_	_	
	Asp	lle	Pro		Thr	Lys	Gln	Asp		Glu	Leu	Pro	Lys		Ala
1	æ.	m.	***	5	. ·	. 1		A 1	10	A = c=		. 71-	0	15	M-1
Gly	Thr	Trp		Ser	Met	Ala	ne t		inr	ASD	ASI	116		Leu	Met
			20					25					30		

WO 2005/014818 PCT/JP2004/011650

226/271

Ala Thr Leu Lys Ala Pro Leu Arg Val His Ile Thr Ser Leu Leu Pro 35 45 40 Thr Pro Glu Asp Asn Leu Glu Ile Val Leu His Arg Trp Glu Asn Asn 50 55 60 Ser Cys Val Glu Lys Lys Val Leu Gly Glu Lys Thr Gly Asn Pro Lys 70 75 Lys Phe Lys Ile Asn Tyr Thr Val Ala Asn Glu Ala Thr Leu Leu Asp 85 90 95 Thr Asp Tyr Asp Asn Phe Leu Phe Leu Cys Leu Gln Asp Thr Thr Thr 100 105 110 Pro Ile Gln Ser Met Met Cys Gln Tyr Leu Ala Arg Val Leu Val Glu 115 120 125 Asp Asp Glu Ile Met Gln Gly Phe Ile Arg Ala Phe Arg Pro Leu Pro 130 135 140 Arg His Leu Trp Tyr Leu Leu Asp Leu Lys Gln Met Glu Glu Pro Cys 145 150 160 155 Arg Phe **<210> 121 <211>** 55 <212> PRT $\langle 213 \rangle$ homo sapiens **<400> 121** Met Ala Lys Asp Thr Ala Ser Leu Phe Ile Pro Leu Cys Gly Cys Ser 10 1 15 Asn Ser Lys Ser Gly Thr Thr Gly Gln Met Asn Val Gly Thr Cys Arg 25 Tyr Gly Ser Leu Ala Leu Arg Gln Leu Val Trp Gly Leu Pro Pro Gly 35 40 45 Ala Ser Trp Pro His Leu Arg 50 55 **<210> 122 <211> 384** <212> PRT <213 homo sapiens **<400>** 122 Met Glu Gly Leu Gly Arg Ser Cys Leu Trp Leu Arg Arg Glu Leu Ser

.

1				5					10					15	
Pro	Pro	Arg	Pro 20	Arg	Leu	Leu	Leu	Leu 25	Asp	Cys	Arg	Ser	Arg 30	Glu	Leu
Tyr	Glu	Ser 35		Arg	Ile	Gly	Gly 40		Leu	Ser	Val	Ala 45		Pro	Ala
Leu	Leu 50	Leu	Arg	Arg	Leu	Arg 55	Arg	Gly	Ser	Leu	Ser 60	Val	Arg	Ala	Leu
Leu <u>65</u>	Pro	Gly	Pro	Pro	Leu 70	Gln	Pro	Pro	Pro	Pro 75.	Ala	Pro	Val	Leu	Leu 80
Tyr	Asp	Gln	Gly	Gly 85	Gly	Arg	Arg	Arg	Arg 90	Gly	Glu	Ala	Glu	Ala 95	Glu
Ala	Glu	Glu	Trp 100	Glu	Ala	Glu	Ser	Val 105	Leu	Gly	Thr	Leu	Leu 110	Gln	Lys
Leu	Arg	Glu 115	Glu	Gly	Tyr	Leu	Ala 120	Tyr	Tyr	Leu	Gln	Gly 125	Gly	Phe	Ser
Arg	Phe 130	Gln	Ala	Glu	Cys	Pro 135	His	Leu	Cys	Glu	Thr 140	Ser	Leu	Ala	Gly
Arg 145	Ala	Gly	Ser	Ser	Me t 150	Ala	Pro	Val	Pro	Gly 155	Pro	Val	Pro	Val	Val 160
Gly	Leu	Gly	Ser	Leu 165	Cys	Leu	Gly	Ser	Asp 170	Cys	Ser	Asp	Ala	Glu 175	Ser
Glu	Ala	Asp	Arg 180	Asp	Ser	Met	Ser	Cys 185	Gly	Leu	Asp	Ser	Glu 190	Gly	Ala
Thr	Pro	Pro 195	Pro	Val	Gly	Leu	Arg 200	Ala	Ser	Phe	Pro	Val 205	Gln	Ile	Leu
Pro	Asn 210	Leu	Tyr	Leu	Gly	Ser 215	Ala	Arg	Asp	Ser	Ala 220	Asn	Leu	Glu	Ser
Leu 225	Ala	Lys	Leu	Gly	Ile 230	Arg	Tyr	Ile	Leu	Asn 235	Val	Thr	Pro	Asn	Leu 240
Pro	Asn	Phe	Phe	Glu 245	Lys	Asn	Gly	Asp	Phe 250	His	Tyr	Lys	Gln	Ile 255	Pro
Ile	Ser	Asp	His 260	Trp	Ser	Gln	Asn	Leu 265	Ser	Arg	Phe	Phe	Pro 270	Glu	Ala
Ile	Glu	Phe 275	Ile	Asp	Glu	Ala	Leu 280	Ser	Gln	Asn	Cys	Gly 285	Val	Leu	Val
His	Cys		Ala	Gly	Val	Ser	Arg	Ser	Val	Thr	Val		Val	Ala	Tyr

Leu Met Gln Lys Leu His Leu Ser Leu Asn Asp Ala Tyr Asp Leu Val Lys Arg Lys Lys Ser Asn Ile Ser Pro Asn Phe Asn Phe Met Gly Gln Leu Leu Asp Phe Glu Arg Ser Leu Arg Leu Glu Glu Arg His Ser Gln Glu Gln Gly Ser Gly Gly Gln Ala Ser Ala Ala Ser Asn Pro Pro Ser Phe Phe Thr Thr Pro Thr Ser Asp Gly Ala Phe Glu Leu Ala Pro Thr **<210>** 123 <211> 1016 <212> PRT $\langle 213 \rangle$ homo sapiens **<400>** 123 Met Ser Gln Gly Pro Pro Thr Gly Glu Ser Ser Glu Pro Glu Ala Lys Val Leu His Thr Lys Arg Leu Tyr Arg Ala Val Val Glu Ala Val His Arg Leu Asp Leu Ile Leu Cys Asn Lys Thr Ala Tyr Gln Glu Val Phe Lys Pro Glu Asn Ile Ser Leu Arg Asn Lys Leu Arg Glu Leu Cys Val Lys Leu Met Phe Leu His Pro Val Asp Tyr Gly Arg Lys Ala Glu Glu Leu Leu Trp Arg Lys Val Tyr Tyr Glu Val Ile Gln Leu Ile Lys Thr Asn Lys Lys His Ile His Ser Arg Ser Thr Leu Glu Cys Ala Tyr Arg Thr His Leu Val Ala Gly Ile Gly Phe Tyr Gln His Leu Leu Leu Tyr Ile Gln Ser His Tyr Gln Leu Glu Leu Gln Cys Cys Ile Asp Trp Thr His Val Thr Asp Pro Leu Ile Gly Cys Lys Lys Pro Val Ser Ala Ser Gly Lys Glu Met Asp Trp Ala Gln Met Ala Cys His Arg Cys Leu Val

Tyr	Leu	Gly		Leu	Ser	Arg	Tyr	Gln	Asn	Glu	Leu	Ala	Gly	Val	Asp
			180					185					190		
Thr	Glu	Leu	Leu	Ala	Glu	Arg	Phe	Tyr	Tyr	Gln	Ala	Leu	Ser	Val	Ala
		195					200					205			
Pro	Gln	Ile	Gly	Met	Pro	Phe	Asn	Gln	Leu	Gly	Thr	Leu	Ala	Gly	Ser
	210					215				•	220				
Lys	Tyr	Tyr	Asn	Val	Glu	Ala	Met	Tyr	Cys	Tyr	Leu	Arg	Cys	Ile	Gln
225					230					235		, .			240
Ser	Glu	Val	Ser	Phe	Glu	Gly	Ala	Tyr.	Gly	Asn	Leu	Lys	Arg	Leu	Tyr
				245					250					255	
Asp	Lys	Ala	Ala	Lys	Met	Tyr	His	Gln	Leu	Lys	Lys	Cys	Glu	Thr	Arg
			260					265					270		
Lys	Leu		Pro	Gly	Lys	Lys		Cys	Lys	Asp	Ile		Arg	Leu	Leu
		275				-	280					285			
Val	Asn	Phe	Met	Tyr	Leu		Ser	Leu	Leu	Gln		Lys	Ser	Ser	Ser
	290	_		_		295	_	_			300				
	Asp	Ser	Glu	Leu	•	Ser	Leu	Cys	Gln		Val	Leu	Glu	Asp	
305	Ţ.	0		D 1	310		_	_	_	315		_		_	320
Asn	Leu	Cys	Leu		Tyr	Leu	Pro	Ser		Pro	Asn	Leu	Ser		Ala
0	C1	۸	C1	325	01	m	01	0	330	m .	4.1	D1		335	
ser	Glu	ASP		GIU	Glu	Tyr	Glu			Tyr	Ala	Phe		Pro	Asp
T	T	71.	340	C1	Ma.i	¥7 - 1	71.	345		T	M . 1		350	***	•
ren	Leu		rne	GIII	me t	vai		116	Cys	Leu	мет		vaı	HIS	Ser
Ι 011	Clu	355	A 1 a	C1**	Cor	T *** 0	360	Т	Co#	410	41.	365	A 1 a	DL -	ጥե
Leu	Glu 370	Alg	Ald	GIY	261	375	GIII	lyr	ser	Ala		116	Ala	rne	Inr
ΙΔυ	Ala	Lan	Dhρ	Sar	Иic		Va 1	Aan	Uic	Vol	380	Ιlο	1 = 0	Lon	Cln
385	ліа	LCu	1116	261	390	LCU	Val	изп	111.2	395	ASII	116	A1 g	Leu	400
	Glu	Ĩ en	Glu	Glu		Clu	Aen	Pro	Val		Δla	Dha	C1n	Sar	
ma	Giu	DCu	uru	405	Uly	o i u	VOII	110	410	110	Λια	THE	GIII	415	vah
Glv	Thr	Asn	Glu		G1 n	Ser	Twe	Clu		Va 1	Glu	Ινο	Gln		Clu
01,		, rob	420	110	O.Lu	DCI	Дуб	425	110	141	oru	шуз	.430	Ulu	uru
Pro	Asp	Pro		Pro	Pro	Pro	Va l		Pro	Gln	Val	Glv		Clv	Δrσ
0	P	435	,		0	0	440		0			445		OI J	*** 6
Lys	Ser		Lys	Phe	Ser	Arg		Ser	Cvs	Leu	Arg		Arg	Arg	His
•	450	J	•	•		455			. -		460	J	0		
Pro	Pro	Lys	Val	Gly	Asp		Ser	Asp	Leu	Ser		Gly	Phe	Glu	Ser

465					470					475					480
Asp	Ser	Ser	His	Asp	Ser	Ala	Arg	Ala	Ser	Glu	Gly	Ser	Asp	Ser	Gly
-				485					490					495	
Ser	Asp	Lys	Ser	Leu	Glu	Gly	Gly	Gly	Thr	Ala	Phe	Asp	Ala	Glu	Thr
			500					505					510		
Asp	Ser	Glu	Met	Asn	Ser	Gln	Glu	Ser	Arg	Ser	Asp	Leu	Glu	Asp	Met
		515					520					525			
Glu	Glu		Glu	Gly				Pro	Thr	Leu	Glu	Pro	Pro	Arg	Gly
	530	•				535					540	-			
	Ser	Glu	Ala	Pro		Ser	Leu	Asn	Gly		Leu	Gly	Pro	Ser	
545	~				550	_	.			555					560
Ala	Ser	He	Ala		Asn	Leu	GIn	Ala		Ser	Thr	GIn	Met		GIn
Th.	Τ 1770	1 = 0	C***0	565	1 = ~	Lou	A 1 a	Dro	570	Dha	°0.	Aon	Lon	575	Lou
1111	Lys	AIR	580	rne	Alg	Leu	Ald	585.		riie	261	ASII	590	Leu	Leu
Gln	Pro	Thr		Aen	Pro	Hic	Thr			Ser	Hic	Δτσ		Cve	Va I
GIM	110	595	1111	11011	110	1113	600	DCI	111 a	bei	1113	605	110	Oys	141
Asn	Gly		Val	Asp	Lvs	Pro		Glu	Pro	Ala	Ser		Gln	Glv	Ser
	610	,		,		615	201	014			620		014	01	201
Glu	Ser	Glu	Gly	Ser	Glu		Ser	Gly	Arg	Ser		Arg	Asn	Glu	Arg
625					630					635					640
Ser	He	Gln	Glu	Lys	Leu	Gln	Val	Leu	Met	Ala	Glu	Gly	Leu	Leu	Pro
				645					650	-				655	
Ala	Val	Lys	Val	Phe	Leu	Asp	Trp	Leu	Arg	Thr	Asn	Pro	Asp	Leu	Ile
			660					665					670		
Ile	Val	Cys	Ala	Gln	Ser	Ser	Gln	Ser	Leu	Trp	Asn	Arg	Leu	Ser	Val
		675					680					685			
Leu	Leu	Asn	Leu	Leu	Pro		Ala	Gly	Glu	Leu		Glu	Ser	Gly	Leu
	690	_	_			695	_	_			700			_	_
	Leu	Cys	Pro	Glu		Gln	Asp	Leu	Leu		Gly	Cys	Glu	Leu	
705		ъ	0	•	710			ъ.	01	715		4.1			720
Asp	Leu	Pro	Ser		Leu	Leu	Leu	Pro		Asp	Met	Ala	Leu		Asn
Lon	Des	Dma	Υ	725	41-	41-	17: -	۸	730	Dh.a	Aam	Dh.	A = m	735	A ===
ren	Pro	rro	740	HI. B.	HIA	AIA	піз	745	WI.R.	1116	ASII	rne	750	1111	ASP
Δrα	Pro	ו ב		Sar	ፐ ኩ •	Lou	<u>611</u>		Sar	V = 1	I eV	Ara		Cve	وير
ыg	110	755	ren Len	กตา	1111	Leu	760	GIU	JUI	101	1 4 1	765	116	ų y s	Uys
		. 00					, , ,					. 00			

WO 2005/014818 PCT/JP2004/011650

Ile Arg Ser 770	Phe Gly	His Phe	Ile Ala	Arg Leu	Gln Gly 780	Ser Ile Leu	
Gln Phe Asn	Pro Glu		Ile Phe	Val Ser		Gln Ser Glu	
785		790		795		800	
Gln Glu Ser	Leu Leu	Gln Gln	Ala Gln	Ala Gln	Phe Arg	Met Ala Gln	
•	805			810		815	
Glu Glu Ala	Arg Arg	Asn Arg	Leu Met	Arg Asp	Met Ala	Gln Leu Arg	
	820		825			830	
Leu Gln Leu	Glu Val	Ser Gln	Leu Glu	Gly Ser	Leu Gln	Gln Pro Lys	
835			840		845		
Ala Gln Ser	Ala Met	Ser Pro	Tyr Leu	Val Pro	Asp Thr	Gln Ala Leu	
850		855			860		
Cys His His	Leu Pro	Val Ile	Arg Gln	Leu Ala	Thr Ser	Gly Arg Phe	
865		870		875		880	
Ile Val Ile	Ile Pro	Arg Thr	Val Ile	Asp Gly	Leu Asp	Leu Leu Lys	
	885			890		895	
Lys Glu His	Pro Gly	Ala Arg	Asp Gly	Ile Arg	Tyr Leu	Glu Ala Glu	
	900	•	905		•	910	
	Gly Asn	Arg Tyr	Ile Arg	Cys Gln	Lys Glu	Val Gly Lys	
915			920		925		
	Arg His		Lys Arg	Gln Asp	Ala Asp	Ala Trp Thr	
930		935		•	940		
	Ile Leu		Cys Lys		Thr Leu	Ala Gln Gly	
945		950	<u> </u>	955		960	
Ala Gly Glu		Pro Ser	Gly Met		Ile Ile	Thr Gly Leu	
	965			970		975	
Pro Leu Asp		Ser Val		Gly Pro	Met Gln	Ala Ala Leu	
01 41 41	980	.1. 0	985			990	
	Ala His	Ala Ser		p lle Ly:		Leu Asp Pl	he
995	m *	01 71	1000		100)5	
Tyr Lys Gli	n Trp Ly:						
1010		10	15			•	
⟨210⟩ 124							
⟨211⟩ 21	•						
<212> DNA	00-1						
⟨213⟩ homo	sapiens					•	
<400> 124							

ggattc	ctctg ccctgtcaca c	21
<210>	125	
<211>	20	
<212>	DNA	
<213>	homo sapiens	•
<400>	125	
cttggca	cacag gacccaagag	. 20
<210>	126	
<2 <u>11</u> >_	23	
<212>	DNA	
<213>	homo sapiens	
<400>	126	
cggaggg	gggag aggattttct aag	23
<210>	127	
<211>	24	
<212>	DNA	
<213>	homo sapiens	
<400>	127	
ggtccag	aggtc atcittatta cgcc	24
<210>	128	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	128	
gggatta	tagga atatgggctc tg	22
<210>	129	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	129	
aatgagg	ggaaa ctgaggcata aag	23
<210>	130	
<211>	22	
<212>	DNA .	
<213>	homo sapiens	
<400>	130	
catcaca	catca tttcaccccc ac	22

<210>	131	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	131	
cccctt	tttt gtccagctta ctc	23
<210>	132	
<211>	22	
< <u>212></u>	DNA	
<213>	homo sapiens	
<400>	132	
atgtgc	ctgc cactacctca tc	22
<210>	133	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	133	
gccact	gaac caaaatcggg	20
<210>	134	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	134	
actcgc	acag gcacagggat	20
<210>		
<211>		
<212>		
	homo sapiens	
<400>	135	
gccccg	ctcc aaacatcact	20
<210>	·	
<211>		
<212>		
	homo sapiens	
<400>		
	ctga agaagcgtca tac	23
<210>	137	

<211>	24	
<212>	DNA	
<213>	homo sapiens	
<400>	137	
gccatc	cctct ctgtcaagta ccag	. 24
<210>	138	
<211>	28	
<212>	DNA .	
⟨213⟩	homo sapiens	
<400>	138	
gcgcat	ttttg agagaagttg ggtactgg	28
<210>	139	
<211>	24	
<212>	DNA	
<213>	homo sapiens	
<400>	139	
gaattc	cgtgg tggcatgccc ttct	24
<210>	140	
<211>	24	
<212>	DNA	
<213>	homo sapiens	
<400>	140	
aacccc	ctctt tctgtccatg ccag	24
<210>	141	
<211>	24	
<212>		
	homo sapiens	
<400>	·	
tcttca	aatac ccaggaggta cagg	24
<210>	142	
<211>	22	
<212>	DNA .	
<213>	homo sapiens	
<400>	142	
gcagtc	cttgg atgatgggtt cc	22
<210>	143 .	
<211>	24	

<212>	DNA	
<213>	homo sapiens	
<400>	143	
aaggagi	ttag cagcagccta gttg	24
<210>	144	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	. 144	
tttcta	tggc attccagcgg	20
<210>	145	
<211>	23	
<212>	DNA	
< 213>	homo sapiens	
<400>	145	
agaagc	tatc aggcgttgct gaa	23
<210>	146	
< 211>	22	
<212>	DNA .	
<213>	homo sapiens	
<400>	146	
cttcac	ctgc tcattgcctg tc	22
<210>	147	
<211>	21	
<212>	DNA	
<213>	homo sapiens	
<400>	•	
tgccgt	ggta atgtgaatcc c	21
<210>	148	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	148	
aacgac	gaaa agagaaggac cc	22
<210>	149	
<211>	23	
<212>	DNA	

<213>	homo sapiens		
<400>	149		
ggaaag	tgtt agacgcagaa	ggc	23
<210>			
<211>	24	•	
<212>	DNA		
<213>	homo sapiens		
<400>	150		
aaagtt	gcag acaaaggcgg	aagc	24
<210>			
<211>	25		
<212>	DNA		
<213>	homo sapiens		
<400>	151		
tggacc	tact tcgtacatca	gaggc	25
<210>	152		
<211>	21		
<212>	DNA ·		
<213>	homo sapiens		
<400>	152		
gacggt	ggga acggtttaga	g	21
<210>	153	•	
<211>	20		
<212>	DNA		
<213>	homo sapiens		
<400>	153		
aggctt	ccaa cttccgctgc		20
< 210>	154		
<211>	21		
<212>			
<213>	homo sapiens		
<400>	154	·	
	catc catagcacag	c	21
<210>	155		
<211>	22		
<212>	DNA		
(213)	homo saniens		

.

<400>	155	
teggaag	gggt gtgaaagagg ac	22
<210>	156	
<211>	25	
<212>	DNA	
<213>	homo sapiens	
<400>	156	
cccttc	ttig gittgcatca ggict	25
<210>	157	
<211>	26	
<212>	DNA	
<213>	homo sapiens	
<400>	157	
	gtct tgatcagctt ctgttg	26
	158	
<211>	20	
	DNA	
<213>	homo sapiens .	
<400>	158	
	ttgc atgcggttca	20
· ·	159	
<211>	22	
<212>	DNA	
	homo sapiens	
	159	
	tgta gaagagcgat ac	22
<210>		
<211>		
<212>		
	homo sapiens	
<400>		
	tgat agccgatgag g	21
<210>		
<211>	20	
<212>	DNA	
	homo sapiens	
<400>	161	

ctcctga	aget ceaegatetg	2	20
<210>	162		
<211>	25		
<212>	DNA		
<213>	homo sapiens	•	
<400>	162	·	
gttggt	ctcc atgttcctgc ct	aac	25
<210>	163		
<211>	23		
<212>	DNA		
<213>	homo sapiens		
<400>	163		
cagcat	cacc tigacgiage ig	ga 2	23
<210>	164		
<211>	22		
<212>	DNA		
<213>	homo sapiens		
<400>	164 .		
cgagca	tgag gataaagccc ag	g ?	22
<210>	165		
<211>	23		
<212>	DNA	·	
<213>	homo sapiens		
<400>	165		
gtagca	gcca gtcagcatct to	cg 2	23
<210>	166	•	
<211>			
<212>	DNA		
<213>	homo sapiens		
<400>	166		
tggcaa	tgaa gcacccctct	;	20
<210>	167	•	
<211>			
<212>			
<213>	homo sapiens		
<400>	167	•	
ggtcca	cact geteteactt co	ct	23

<210>	168	
<211>	28	
<212>	DNA	
<213>	homo sapiens	
<400>	168	
tcacat	ctat caaccactgg cacctacc	28
<210>	169	
<211>	25	
<212>_	<u>DNA</u>	
<213>	homo sapiens	
<400>	169	
gggttc	actt tggtctctag tacgg	25
<210>	170	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	170	
caagca	aatg caatggctgg	20
<210>	171 .	
<211>	24	
<212>	DNA	
<213>	homo sapiens	
<400>	171	
	gcag tgaaacttga aagg	24
<210>	172	
<211>	25	
<212>	DNA	
<213>		
<400>		
	ttct ctctggataa cccac	2,5
<210>	173	
<211>	25	
<212>		
	homo sapiens	
	173	
	tggt ttggatgtat tgaag	25
<210>	174	

(211)	24	
<212>	DNA	
〈213 〉	homo sapiens	
〈400 〉	174	
ctgggad	cctt ccaaaacatt ggct	24
(210)	175	
(211)	25	
<212>	DNA	
<213>	homo sapiens.	
<400>	175	
cattaco	ctga ggcctctgaa ttcgg	25
<210>	176	
<211>	24	
<212>	DNA	
<213>	homo sapiens	
<400>	176	
tccaggt	taca tatcacgcgc acag	24
<210>	177	
<211>	25	
<212>	DNA	
<213>	homo sapiens	
<400>	177	
ccagate	gcag gatcaaccct tctca	25
<210>	178	
<211>	24	
<212>	DNA	
<213>	homo sapiens	
<400>	178	
gtgctgt	tcgt gggtgctgtg tctt	24
<210>	179	
<211>	22	
<212>	DNA .	
<213>	homo sapiens	
<400>	179	
cacgtga	atag atgctggtcg gg	22
	180	
(211)	23	

<212>	DNA	
<213>	homo sapiens	
<400>	180	
cttgat	aatg tgggcaaacc ctt	23
<210>	181	
<211>	20	
<212>	DNA .	
<213>	homo sapiens	
<400>	181	
gcccgg	aatc atgatgcttg	20
<210>	182	
<211>	21	
<212>	DNA	
<213>	homo sapiens	
<400>	182	
ggccct	agga ttgtccactc a	21
<210>	183	
<211>	22	
<212>	DNA .	
<213>	homo sapiens	
<400>	183	
tcagga	cttg cctttgtttc gg	22
<210>	184	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	184	
gtgggc	ctgt gcattgttgg	20
<210>	185	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	185	
tagggc	accg ggatctctaa	20
<210>	186	
<211>	24	
<212>	DNA	

<213>	homo sapiens	
<400>	186	
cctgtt	tgct gctgagaaca tctc	24
<210>	187	
<211>	23	
<212>	DNA	
<213>	homo sapiens .	
<400>	187	
aacgct	cccc tgaaaactgt aac	23
<210>	188	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	188	
acagag	acca aagaacccaa ga	22
<210>		
<211>	23	
<212>	DNA .	
<213>	homo sapiens	
<400>	189	
	acat gattctgaag gtg	23
<210>		
<211> .	24	
	DNA	
	homo sapiens	
<400>		
	gtgt acccatgatg gaag	24
<210>		
<211>		
<212>		
	homo sapiens	
<400>		
	agtg tgatcttgaa gtcc	24
<210>		
<211>	23	
<212>	DNA .	
<213>	homo sapiens	

<400>	192		
cactgt	gagt ttcatgcctg	ctg	23
<210>	193		
<211>	22		
<212>	DNA	•	
<213>	homo sapiens		
<400>	193		
tcgtgg	tttc ctggacatct	tc	22
< <u>210></u>	194_		
<211>	22		
<212>	DNA		
<213>	homo sapiens		
<400>	194		
gggctt	ggtt ttgtgaggtt	cc	22
<210>	195	•	
<211>	23		
<212>	DNA		
<213>	homo sapiens .		
<400>	195	·	
caggga	cttc ctttttccat	cag	23
<210>	196		
<211>	27	•	
<212>	DNA		
<213>	homo sapiens		
<400>	196		
ccaagt	tacg tcaaagtctc	aggagca	27
<210>	197		
<211>	25		
<212>	DNA		
<213>	homo sapiens		
<400>	197		
tctgaa	gggg tgaagttctt	gaggg	25
<210>	198		
<211>	24		
<212>	DNA		
<213>	homo sapiens		
<400>	198		

aagaga	agac catccacctt	accc	24
<210>	199		
<211>	22		
<212>	DNA		
<213>	homo sapiens	•	
<400>	199		
tgcttt	cact tgtgccactg	ag	22
<210>	200		
<211>	20		
<212>	DNA		
<213>	homo sapiens		
<400>	200		
cggcca	agga ctggaccaga		20
<210>	201		
<211>	25		
<212>	DNA		
<213>	homo sapiens		
<400>	201		
actcca	tgag caţgcacaga	gtagg	25
<210>	202		
<211>	20		
<212>	DNA		
<213>	homo sapiens		
<400>	202		
actgcc	aatc ctgcgttcca		20
<210>	203		
<211>	23		
<212>	DNA		
<213>	homo sapiens		
<400>	203		
cgacgt	ggcc attcaatcgt	aca	23
<210>	204		
<211>	21	·	
<212>	DNA ·		
<213>	homo sapiens		
<400>	204		
cgcacca	acga cgatgacgtt	c	21

<210>	205	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	205	
gatgga	cccc aggacggagt ag	22
<210>	206	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	206	
gaccaa	tagc atctgtgcca gag	23
<210>	207	
<211>	25	
<212>	DNA	
<213>	homo sapiens	
<400>	207	
tgcttc	taac cactgaggta tgagg	25
<210>	208	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	208	
	acca ttcaccaaga gcc	23
<210>	209	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	209	
gagcgt	tgct ttccttaaag acc	2,3
<210>	210	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	210	
agcctco	cctg tctactccat tc .	22
<210>	211	

<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	211	
ggtaaa	gtcc tcaccctgc	20
<210>	212	
<211>	18	
<212>	DNA	
⟨213⟩	homo sapiens	
<400>	212	
gtggag	ggag gcctggac	18
<210>	213	
<211>	19	
<212>	DNA	
<213>	homo sapiens	
<400>	213	
	cacg tgtctgcca	19
<210>	214	
<211>		
<212>		
	homo sapiens	
<400>		
	caca agccagctca c	21
<210>	215	
<211>	22	
<212>	DNA	
<400>	215	
	caga tgggaagaac tc	22
<210>	216	
<211>	23	
	DNA .	
	homo sapiens	
<400>		
	ctt tgcaccagcc acc	23
<210>		
(211)	2.3	

<212>	DNA	
<213>	homo sapiens	
<400>	217	
gccca	ctct acgtcgaaga agt	2
<210>	218	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	_ 218	
tccat	gtgt cggggatctg	2
<210>	219	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	219	
taccco	gcag agaagcaaac	2
<210>	220	
<211>	20	
<212>	\cdot	
<213>	homo sapiens	
<400>	220	
	gcat acacaccacc	2
<210>	221	
<211>	20	
<212>	DNA	
	homo sapiens	
<400>		
	gaga tgtcttgcca	2
<210>	\cdot	
<211>	21	
<212>		
	homo sapiens .	
<400>		
	caac cgagccaacc g	2
<210>	223	
<211>	20 .	
<212>	DNA	

<213>	homo sapiens	
<400>	223	
cctgct	cctt ctttgcctgg	20
<210>	224	
<211>	21	
<212>	DNA	
<213>	homo sapiens	
<400>	224	
ccgctg	aact cagtcaatgg c	. 21.
<210>	225	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	225	
tgctgt	tcat ccaaccaccg	20
<210>	226	
<211>	20	
<212>	DNA .	
<213>	homo sapiens	
<400>	226	
tgggca	gttt gacttcagca	20
<210>		
<211>	21	
<212>		
<213>	homo sapiens	
<400>	227	
	aggt cagtcacagc a	21
<210>		
<211>	21	
<212>	DNA	
<213>	homo sapiens	
<400>	228	
gtgttc	gagg gagtgatagg g	21
<210>	229	
<211>	20	
<212>	DNA .	
<213>	homo sapiens	

<400>	229	
cagacco	ctga ggttgcagaa	20
<210>	230	
<211>	23	
<212>	DNA	
<213>	homo sapiens	
<400>	230	
tgcacca	aact gcgtgcagga cga	23
< <u>210></u>	231	
<211>	25	
<212>	DNA	
<213>	homo sapiens	
<400>	231	
ggcacca	acgg ggttgtagaa gtccc	25
<210>	232	
<211>	20	
	DNA	
<213>	homo sapiens .	
<400>	232	
tgttgg	ccgg ccttatggtg	20
<210>	233	
<211>	21	
<212>	DNA	
<213>	homo sapiens	
<400>	233	
	gtaa ggcttgtctg t	21
<210>	234	
<211>	24	
	DNA	
	homo sapiens	
<400>	234	
ggagacttcc gacttcctta cagg		24
<210>		
<211>	23	
<212>	DNA	
	homo sapiens .	
<400>	235	

cctacc	acta tggcttgtga	tgg	23
<210>	236 -		
<211>	24		
<212>	DNA		
<213>	homo sapiens		
<400>	236		
ggactt	gcga gacttcgtga	ggag	24
<210>	237		
<211>	22		
<212>	DNA		
<213>	homo sapiens		
<400>	237		
ctgaaa	gagg gictgcgtgt	gg	22
<210>	238		
<211>	24		
<212>	DNA		
	homo sapiens		
<400>	238		
cttctc	ttcc cttcattctt	cgcc	24
<210>	239		
<211>	24		
<212>	DNA	•	
	homo sapiens		
<400>	239		
cctccts	gace atetectett	cctc	24
<210>	240	•	
<211>	24		
	DNA		
	homo sapiens		
<400>			
	tagg ctccatcctg	tttg	24
<210>			
<211>			
	DNA		
	homo sapiens		
<400>			
gctgagt	aga catgcagatg	acaage	26

<210> 242 · · · · · · · · · · · · · · · · · ·	
<211> 22	
<212> DNA	
<213> homo sapiens	
<400> 242	
agaccaagca cacctggcaa cg	22
<210> 243	
<211> 22	
<212> DNA	
<213> homo sapiens	
<400> 243	
atcttccttg tccgtctcgt cc	22
<210> 244	
<211> 25	
<212> DNA	
<pre><213> homo sapiens</pre>	
<400> 244	
ccccgaggac aacctggaga tcgtt	25
<210> 245	
<211> 25	
<212> DNA	
<213> homo sapiens	
<400> 245	
cctcgttcgc caccgtatag ttgat	25
<210> 246	
<211> 24	
<212> DNA	
⟨213⟩ homo sapiens	
<400> 246	
caaccacaga tcagggacag gagc	24
⟨210⟩ 247	
<211> 20	
(212) DNA	
(213) homo sapiens	
<400> 247	
ggacagtggc gatttcaacc	20
(210) 248	

<211>	21	
<212>	DNA	
<213>	homo sapiens	
<400>	248	
gctctt	tgtg agtgagggtg g	21
<210>	249	
<211>	21	
<212>	DNA	
⟨213 ⟩	homo sapiens	
<400>	249	
acaggg	gtgt ggacagaaat g	21
<210>	250	
<211>	22	
<212>	DNA .	
<213>	homo sapiens	
<400>	250	
cagtgg	gcag cagaaaggag ag	22
<210>	251	
<211>	19	
<212>	DNA	
<213>	homo sapiens	
<400>	251	
gggagg	agct gaggcaatc	19
<210>	252	
<211>	25	
<212>	DNA	
<213>	homo sapiens	
<400>	252	
agaagga	agat cactgoodtg goaco	25
<210>	253	
<211>	24	
<212>	DNA .	
<213>	homo sapiens	
<400>	253	
cctgctt	gct gatccacatc tgct	24
<210>	254 .	
<211>	613	

<212> DNA	
<213> homo sapiens	
<400> 254	
gccatggaaa aaccctcgtt tatttgatta aacaaaaata aaataagctg cataggaaca	60
attitaaagt ccaaagagac accaacttig tittaagget gtagtagetg atacagcate	120
tccttgctac ctcctccagc cttctctgtg gaccacagtg atacattcag aagcctgtta	180
gctaacacag gagtttttga acacttttcc attggttctt cacctgctca ttgcctgtca .	240
tgcctgcggc ctgcaattag taacatttta agatttaaaa tgtgaaagcc aaaagaggag	300
gggggaaaa aacccaaaat caaccaaaca aaaactcact tttgcctaaa ggtttgggg	360
gaaatcttca tttccccacc catctactgc attgatggga ttcacattac cacggcagtg	420
cccatttaaa agtggcaaat ggcagtcagc accccaccc ggacaggctt gcagtgtggt	480
ttctgcggcc aggggagtta ctacggtagt gcatattcct tatatcatgt ctgccttgga	540
caaatacaaa ttaagaggtt taacttagtc attctaacat aaggcaactt gcccacatta	600
attccccaa ttg	613
<210> 255	
<211> 23	
<212> DNA	
<213> homo sapiens	
<400> 255	
atccgccagg tgaaagccaa gtc	23
<210> 256	
<211> 25	
<212> DNA	
<213> homo sapiens	
<400> 256	
gggattcaca ttaccacggc agtgc	25
<210> 257	
<211> 2237	
<212> DNA	
<213> homo sapiens	
<400> 257	
atccgccagg tgaaagccaa gtctctgtac ctgcaggtgg agaagctgcg gcaaaacctc	60
aacaagcttg agagcaccat cagtgccgtg cagcaggtcc tggaggaggg tagagcgcta	120
gacatectae tggcccgaga ccggatgetg gcccaggtge aggagetgaa gaccgtgcgg	180
agcctcctgc agccccagga agacgaccga gtcatgttca caccccccga tcaggcactg	240
tacctigcca tcaagtcttt tggctttgtt agcagcgggg cctttgcccc actcaccaag	300
gccacaggcg atggcctcaa gcgtgccctc cagggtaagg tggcctcctt cacagtcatt	360

ggttatgacc	acgatggtga	gcccgcctc	tcaggaggcg	acctgatgtc	ggctgtggtc	420
ctgggccctg	atggcaacct	gtttggtgca	gaggtgagtg	atcagcagaa	tgggacatac	480
gtggtgagtt	accgacccca	gctggagggt	gagcacctgg	tatctgtgac	actgtgcaac	540
cagcacattg	agaacagccc	tttcaaggtg	gtggtcaagt	caggccgcag	ctacgtgggc	600
attgggctcc	cgggcctgag	cttcggcagt	gagggtgaca	gcgatggcaa	gctctgccgc	660
ccttggggtg	tgagtgtaga	caaggagggc	tacatcattg	tcgccgaccg	cagcaacaac	720
		ctgcggcgcc				. 780
		accagccggc				840
					gttcctcctc.	900
		caagaatggg				960
		ggtctcagac				1020
cctgatggtg	tcttcctaaa	${\tt caagtatggc}$	ttcgaggggg	ctctctggaa	gcactttgac	1080
		caaccatgag				1140
caccggctcc	tggttattca	${\tt ccccgactgc}$	cagtcggcac	gctttctggg	ctcggagggc	1200
		gcgcccacaa				1260
attgtggcgg	attccaggaa	ccatcgggta	cagatgtttg	aatccaacgg	cagcttcctg	1320
tgcaagtttg	${\tt gtgctcaagg}$	cagcggcttt	gggcagatgg	accgcccttc	cggcatcgcc	1380
atcacccccg	acggaatgat	cgttgtggtg	gactttggca	acaatcgaat	cctcgtcttc	1440
taattgcatt	tcctaggttt	ctgtgtttgg	ggtgtgtgtg	cgtgtctctc	tctctctc	1500
		tttttgaatt				1560
ttttttttt	tttttttta	aagagaacaa	gaaaagtaca	acattgctta	agtcctacct	1620
		tgaatgtact				1680
		cataaatctt				1740
		tttccctctt				1800
tggcatctgt	atggctggga	gggcactgga	tgtgtgtggt	ggggtgtatt	ctgtagattg	1860
		aaactactaa				1920
		ataattatag				1980
		tgttgttttg				2040
		tctgttctct				2100
		tgcactaccg				2160
tgcaagcctg	tccggggtgg	ggtgctgact	gccatttgcc	acttttaaat	gggcactgcc	2220
gtggtaatgt	gaatece			•		2237
<210> 258						
<211> 27						
<212> DNA						
(0.4.0)						

 $\langle 213 \rangle$ homo sapiens

<400> 258

atmost togs toggggggggggggggggggggggggggggg	•		0.77
atggcttcgt tccccgagac cgatttc <210> 259			27
<210			
<211> 34 <212> DNA			
<pre><213> homo sapiens <400> 259</pre>			
			. 34
gaagacgagg attcgattgt tgccaaagtc cacc <210> 260			. 34
<211> 2604			,
<212> DNA			
<213> homo sapiens			
<400> 260			
atggcttcgt tccccgagac cgatttccag atctgcttgc	tgtgcaagga	gatgtgcggc	60
tcgccggcgc cgctctcctc caactcgtcc gcgtcgtcgt			120
tcgtcggggg gcggcggcgg gggccctggg gcggcggcgc			180
tgcctgcacg ccttctgccg cccctgcctc gaggcgcacc			240
ggcgcggcgg gagagccgct caagctgcgc tgccccgtgt			.300
gccgaggcgg cgggtatgga cgcgctgcct tcgtccgcct			360
gacgcggtgg tggccactgc cgacgagccg ccgcccaaga			420
gcgggagcgg gcggccacag caaccaccgg caccacgctc	accacgcgca	cccgcgcgcg	480
tccgcctccg cgccgccact cccgcaggcg.ccgcagccgc	ccgcgccttc	ccgctcggca	540
cccggcggcc ctgccgcttc cccgtcggcg ctgctgctcc	gccgtcctca	cggctgcagc	600
tcgtgcgatg agggcaacgc agcttcttcg cgctgcctcg	actgccagga	gcacctgtgc	660
gacaactgcg tccgagcgca ccagcgcgtg cgcctcacca	aggaccacta	catcgagcgc	720
ggcccgccgg gtcccggtgc cgcagcagcg gcgcagcagc	tcgggctcgg	gccgcccttt	780
cccggcccgc ccttctccat cctctcagtg tttcccgagc	gcctcggctt	ctgccagcac	840
cacgacgacg aggtgctgca cctgtactgt gacacttgct	ctgtacccat	ctgtcgtgag	900
tgcacaatgg gccggcatgg gggccacagc ttcatctacc	tccaggaggc	actgcaggac	960
tcacgggcac tcaccatcca gctgctggca gatgcccagc	agggacgaca	ggcaatccag	1020
ctgagcatcg agcaggccca gacggtggcg gaacaggtgg	agatgaaggc	gaaggttgtg	108Q
cagteggagg teaaageegt gaetgegagg cataagaaag	ccctggagga	acgcgagtgt	1140
gagctgctgt ggaaggtaga aaagatccgc caggtgaaag	ccaagtctct	gtacctgcag	1200
gtggagaagc tgcggcaaaa cctcaacaag cttgagagca	ccatcagtgc	cgtgcagcag	1260
gtcctggagg agggtagagc gctagacatc ctactggccc	gagaccggat	gctggcccag	1320
gtgcaggagc tgaagaccgt gcggagcctc ctgcagcccc		_	1380
ttcacacccc ccgatcaggc actgtacctt gccatcaagt			1440
ggggcctttg ccccactcac caaggccaca ggcgatggcc	tcaagcgtgc	cctccagggt	1500

•						
aaggtggcct	${\tt ccttcacagt}$	cattggttat	gaccacgatg	gtgagccccg	cctctcagga	1560
ggcgacctga	tgtcggctgt	ggtcctgggc	cctgatggca	acctgtttgg	tgcagaggtg	1620
				cccagctgga		1680
				gccctttcaa		1740
aagtcaggcc	gcagctacgt	gggcattggg	ctcccgggcc	tgagcttcgg	cagtgagggt	1800
gacagcgatg	gcaagctctg	ccgcccttgg	ggtgtgagtg	tagacaagga	gggctacatc	1860
attgtcgccg	accgcagcaa	caaccgcatc	caggtgttca	agccctgcgg	cgccttccac	. 1920
cacaaattcg	gcaccctggg	ctcccgcct	gggcagttcg	accgaccagc	cggcgtggcc	1980
tgtgacgcct	cacgcaggat	cgtggtggct	gacaaggaca	atcatcgcat	ccagatette	2040
acgttcgagg	gccagttcct	cctcaagttt	ggtgagaaag	gaaccaagaa	tgggcagttc	2100
aactaccctt	${\tt gggatgtggc}$	ggtgaattct	gagggcaaga	tcctggtctc	agacacgagg	2160
aaccaccgga	tccagctgtt	tgggcctgat	ggtgtcttcc	taaacaagta	tggcttcgag	2220
ggggctctct	ggaagcactt	tgactcccca	cggggtgtgg	ccttcaacca	tgagggccac	2280
ttggtggtca	ctgacttcaa	caaccaccgg	ctcctggtta	ttcaccccga	ctgccagtcg	2340
gcacgctttc	tgggctcgga	gggcacaggc	aatgggcagt	tcctgcgccc	acaaggggta	2400
gctgtggacc	aggaagggcg	catcattgtg	gcggattcca	ggaaccatcg	ggtacagatg	2460
tttgaatcca	acggcagctt	cctgtgcaag	tttggtgctc	aaggcagcgg	ctttgggcag	2520
atggaccgcc	cttccggcat	cgccatcacc	cccgacggaa	tgatcgttgt	ggtggacttt	2580
ggcaacaatc	gaatcctcgt	cttc	•			2604
<210> 261				•		
<211> 649						
<212> DNA			•			
<213> homo	sapiens ·					
<400> 261						
ttttttttt	tttttttt	tttttttt	tttttaaag	gccaacgita	tatgttttat	60
ttttaatcaa	gtaattttt	taaacctcaa	catatccata	attgacagaa	taagacatta	120
ggcatgaaat	gagaatataa	a acc cag a g t	gtacagaaag	gcaaacagtg	cttcagtccc	180
tccagatgac	tgcatgcgag	tgaaacgcat	tccaaacatc	tacccctttt	tigictitta	240
aaaacataca	gttcaagtgt	ttttattttc	acttgtaaac	aacatgagtc	aaaatggaca	300
atgaggtaat	ctaaatacta	cacaggataa	tttaaaaaca	ctagataaaa	caccattatt	360
aaagacatat	aaaaatcagg	gttcactttg	gtctctagta	cggttagttg	ttaataccaa	420
aaagcaacac	$at acta att \\ g$	aagccagctt	ggtggtaggt	gccagtggtt	gatagatgtg	480
attcaagagg	tagtcaacac	cat cat t t t c	aagctggtaa	ctctcacaag	tgttaagcca	540
cagatgcatt	aaatatcata	$at a ctt ctc \\ a$	cagtacagta	ctttaccata	acttgcagct	600
ttgttccaaa	tataaaattt	aaaaatgaat	cataggtcaa	cttctcact		649
<210> 262						
<211> 25						

<212> DNA						
<213> hom	o sapiens					
<400> 262						
gggttcactt	tggtctctag	tacgg				25
⟨210⟩ 263						
<211> 308	7 .					
<212> DNA						
<213> hom	o sapiens					
<400> 263						
atgcgcggac	tgacccagcg	gccggcgcgg	cggcgccggg	cggacttaat	cgcgggcgca	60
	cgggacccag					120
	ggaacgctgt					180
	ctcagctgtg					240
cccggccggc	agatagcgcg	gaaagcgaag	aaggaagttc	ccgtccctcc	taaagccgaa	300
gccaaagcga	agtctttaaa	ggccaagaag	gcagtgttga	aaggtgtccg	cagccacaaa	360
aaaaagaaga	tccgcacgtc	acccacctta	cggcggccca	agacaccgcg	actccggaga	420
cagcccaaat	atcctcggaa	gagcgctcct	aggagaaaca	agcttgacca	ctatgctatc	480
atcaagtttc	tgctgaccac	tgagtctgcc	atgaagaaga	tagaagacaa	taacacactt	540
gtgttcattg	tggatgttaa	agccaacaag	caccagatta	aacaggctgt	gaagaagctc	600
tatgacaaag	atgtggtcaa	ggtcaacacc	$\tt ctgattcggc$	ctgatggaga	gaagaaggcg	660
ccgcagccgc	ccgcgccttc	ccgctcggca	cccggcggcc	ctgccgcttc	cccgtcggcg	720
	gccgtcctca					780
	actgccagga					840
cgcctcacca	aggaccacta	catcgagcgc	ggcccgccgg	gtcccggtgc	cgcagcagcg	900
	tcgggctcgg					960
	gcctcggctt					1020
	cagagtccga					1080
	gcgaggaatc					1140
	ggtcccggga					1200
	acatccaggc					1260
	aagctaagat				•	1320
	gctctgtacc	•				1380
	acctccagga					1440
	agcagggacg					1500
	agcaggccca					1560
	tcaaagccgt					1620
gagctgctgt	ggaaggtaga	aaagatccgc	caggtgaaag	ccaagtctct	gtacctgcag	1680

gtggagaagc	tgcggcaaaa	cctcaacaag	cttgagagca	ccatcagtgc	cgtgcagcag	1740
		gctagacatc				1800
		gcggagcctc				1860
		actgtacctt				1920
		caaggccaca				1980
		cattggttat				2040
		ggtcctgggc				2100
		atacgtggtg				2160
		caaccagcac				. 2220
		gggcattggg				2280
		ccgcccttgg				2340
		caaccgcatc				2400
		ctcccggcct				2460
tgtgacgcct	cacgcaggat	cgtggtggct	gacaaggaca	atcatcgcat	ccagatette	2520
acgitcgagg	gccagttcct	cctcaagttt	ggtgagaaag	gaaccaagaa	tgggcagttc	2580
		ggtgaattct				2640
aaccaccgga	tccagctgtt	tgggcctgat	ggtgtcttcc	taaacaagta	tggcttcgag	2700
ggggctctct	ggaagcactt	tgactcccca	cggggtgtgg	ccttcaacca	tgagggccac	2760
		caaccaccgg				2820
gcacgctttc	tgggctcgga	gggcacaggc	aatgggcagt	tcctgcgccc	acaaggggta	2880
gctgtggacc	aggaagggcg	catcattgtg	gcggattcca	ggaaccatcg	ggtacagatg	2940
tttgaatcca	acggcagctt	cctgtgcaag	tttggtgctc	aaggcagcgg	ctttgggcag	3000
		cgccatcacc				3060
ggcaacaatc						3087
<210> 264						
<211> 209			•			
<212> PRT						
<213> Homo	sapiens					
<400> 264						
Met Gly Ser	Val Ser As	n Gln Gln P	he Ala Gly	Gly Cys Ala	Lys Ala	
1	5		10		15	
Ala Glu Glu	Ala Pro Gl	u Glu Ala P	ro Glu Asp	Ala Ala Arg	Ala Ala	
	20		5	30		
Asp Glu Pro	Gln Leu Le	u His Gly A	la Gly Ile	Cys Lys Trp	Phe Asn	
35		40		45		
Val Arg Met	Gly Phe Gl	y Phe Leu S	er Met Thr	Ala Arg Ala	Gly Val	
ГΛ						

60

50

55

Ala 65	ı Leı	ı Asp	Pro	Pro	Val 70	Asp	Val	Phe	· Val	His 75	Gln	Sei	Lys	Let	His	
Met	Cl:	ı Cls	, Dhe	Arc		· T 011	1	C1.	C1		4.7				80	
MC t	, GIC		1 116		3 261	reu	Lys	GIU		Glu	Ala	Val	Glu	1 Phe	Thr	
	_			85					90					95		
Phe	Lys	Lys	Ser	Ala	Lys	Gly	Leu	Glu	Ser	Ile	Arg	Val	Thr	Gly	Pro	•
			100					105					110			
Gly	Gly	Val	Phe	: Cys	Ile	Gly	Ser	Glu	Arg	Arg	Pro	Lvs	Glv	. Lvs	Ser	
		115					120					125		_,,	501	
Met	Gln	I.vs	Are	r Aro	Ser	Twe			Ara	C170	Тъгъ		•	C1	Gly	
_	130			2 _***6	, 501			ūsħ	nig	Cys		nsu	Cys	GIY	GIY	
Lau			TT : _	A 1 -	-	135		_	_	_	140					
		HIS	HIS	Ala			Cys	Lys	Leu	Pro	Pro	Gln	Pro	Lys	Lys	
145					150					155					160	
Cys	His	Phe	Cys	Gln	Ser	Ile	Ser	His	Met	Val	Ala	Ser	Cys	Pro	Leu	
				165		٠			170					175		
Lys	Ala	Gln	Gln	Gly	Pro	Ser	Ala	Gln	Gly	Lys	Pro	Thr	Tvr	Phe	Arg	
			180					185					190		0	
Glu	Glu	Glu	Glu	Glu	He	His	Ser		Thr	Len	I e 11	Pro			Cln	
		195					200	110	****	Deu	DCu		GIU	AIG	GIII	
Asn		100			•		200					205				
11911			٠													
<21	0>	265														
<21	1>	227														
<212	2> 1	PRT			_		_									
<213			orhal	hđi t	ic o	legar										
<400			ornai	Duli	13 6	ıcgaı	15									
		265 Th-	X7 - 1	77 1		01	a 1			_						
	ser	·Inr	vai		Ser	Giu	Gly	Arg	Asn	Asp	Gly	Asn	Asn	Arg	Tyr	
1				5					10					15		
Ser	Pro	Gln	Asp	Glu	Val	Glu	Asp	Arg	Leu	Pro	Asp	Val	Val	Asp	Asn	
			20					25					30			
Arg	Leu	Thr	Glu	Asn	Met	Arg	Val	Pro	Ser	Phe	Glu	Arg	Leu	Pro	Ser	
		35					40					45				
Pro	Thr		Aro	Twr	Pho	Clv		Cvc	Lvc	Trn			Vol.	C = =	T	
	50	110	411.6	1 7 1	1116		זטט	Uys	Lys	ттр		usii	·Val	261	LYS	
C1 ==		~ 1	D1	T7 •		55					60	_				
	ıyr	GIY	rne	vai		Asp	Asp	He	Thr	Gly	Glu	Asp	Leu	Phe	Val	
65					70					75					80	
His	Gln	Ser	Asn	Leu	Asn	Met	Gln	Gly	Phe	Arg	Ser	Leu	Asp	Glu	Gly	
				85					90					95		

Glu Arg Val Ser Tyr Tyr Ile Gln Glu Arg Ser Asn Gly Lys Gly Arg Glu Ala Tyr Ala Val Ser Gly Glu Val Glu Gly Gln Gly Leu Lys Gly Ser Arg Ile His Pro Leu Gly Arg Lys Lys Ala Val Ser Leu Arg Cys Phe Arg Cys Gly Lys Phe Ala Thr His Lys Ala Lys Ser Cys Pro Asn Val Lys Thr Asp Ala Lys Val Cys Tyr Thr Cys Gly Ser Glu Glu His Val Ser Ser Ile Cys Pro Glu Arg Arg Arg Lys His Arg Pro Glu Gln Val Ala Ala Glu Ala Glu Ala Ala Arg Met Ala Ala Glu Lys Ser Ser Pro Thr Thr Ser Asp Asp Asp Ile Arg Glu Lys Asn Ser Asn Ser Ser Asp Glu <210> <211> 195 <212> PRT <213 Xenopus laevis **<400>** 266 Met Gly Ser Val Ser Asn Gln Glu Ile Thr Glu Gly Leu Pro Lys Ser Leu Asp Gly Thr Ala Asp Ile His Lys Ser Asp Lys Ser Val Ile Phe Gln Gly Ser Gly Val Cys Lys Trp Phe Asn Val Arg Met Gly Phe Gly Phe Leu Thr Met Thr Lys Lys Glu Gly Thr Asp Leu Glu Thr Pro Leu Asp Val Phe Val His Gln Ser Lys Leu His Met Glu Gly Phe Arg Ser Leu Lys Glu Gly Glu Ser Val Glu Phe Thr Phe Lys Lys Ser Ser Lys Gly Leu Glu Ser Thr Gln Val Thr Gly Pro Gly Gly Ala Pro Cys Ile

Gly Ser Glu	Arg A	g Pro	Lys Val	Lys (Gly Gln	Gln L	ys Arg	Arg	Gln
115			120			1	25		
Arg Gly Asp	Arg Cy	s Tyr	Asn Cys	Gly G	Sly Leu	Asp H	is His	Ala	Lys
130			135			140			
Glu Cys Lys	Leu Pi	o Pro	Gln Pro	Lys L	ys Cys	His P	he Cys	Gln	Asn
145		150			155				160
Pro Asn His	Met Va	l Ala	Gln Cys	Pro G	Glu Lys	Ala M	et Gln	Ala	Ala
	16				70			175	
Asn Leu Glu	Asp G	n Pro	Ile Thr	Glu G	lu Gln	Glu L	eu Ile	Pro	Glu.
	180			185			190		
Ile Met Glu									
195									
<210> 267									
<211> 195									
<212> PRT									
<213> Dros	ophila	melano	gaster						
<400> 267									
Met Glu Asn	Val Gl	n Leu	Glu Asn	Gly L	eu Glu	Arg Aı	g Thr	Thr	Ser
1	. 5	•			0			15	
Gln Ser Ser	Thr Se	r Ser	Ala Asn	Pro A	la Asn	Leu Al	a Ser		Thr
	20			25			30		
Glu Glu Cys	Gly Cy	s Val	Arg Leu	Gly L	ys Cys	Lys Tr		Asn	Val
35			40			45			
Ala Lys Gly	Trp G1	y Phe l	Leu Thr	Pro A	sn Asp			Glu	Val
50			55		_	60			
Phe Val His	Gln Se	r Val	Ile Gln	Met S	er Gly	Phe Ar	g Ser	Leu	Glv
65		70			75		G		80
Glu Gln Glu	Glu Va	l Glu 1	Phe Glu	Cys G		Thr Se	r Arg	Glv	
	85			9				95	
Glu Ala Thr	Arg Va	l Ser S	Ser Arg	His G	ly Gly	Ser Cv	s Gln		Ser
	100			105			110	,	201
Thr Tyr Arg	Pro Ar	g Ile A	Asn Arg		hr Arg	Arg Me		Cvs	Tvr
115		_	120	O		12		0,0	131
Asn Cys Gly	Glu Ph	e Ala A		Ile A	la Ser			Ĭ.e11	Glv
130			135			140			V1.J
Pro Gln Pro	Lys Ar			Cvs A1			n His	I.e.11	Hic
145	(150		-,14	155	w 110	- 1110		160
									100

Ala Asp Cys Pro His Lys Asn Val Thr Gln Ser His Ser Asn Ser Lys Ser Ile Ser Asn Asn Ser Ser Ser Ser Ala Ala Gln Glu Lys Ser Glu Glu Ala Thr <210> <211> 209 **<212>** PRT <213> Mus musculus **<400>** Met Gly Ser Val Ser Asn Gln Gln Phe Ala Gly Gly Cys Ala Lys Ala Ala Glu Lys Ala Pro Glu Glu Ala Pro Pro Asp Ala Ala Arg Ala Ala Asp Glu Pro Gln Leu Leu His Gly Ala Gly Ile Cys Lys Trp Phe Asn Val Arg Met Gly Phe Gly Phe Leu Ser Met Thr Ala Arg Ala Gly Val Ala Leu Asp Pro Pro Val Asp Val Phe Val His Gln Ser Lys Leu His ·65 Met Glu Gly Phe Arg Ser Leu Lys Glu Gly Glu Ala Val Glu Phe Thr Phe Lys Lys Ser Ala Lys Gly Leu Glu Ser Ile Arg Val Thr Gly Pro Gly Gly Val Phe Cys Ile Gly Ser Glu Arg Arg Pro Lys Gly Lys Asn Met Gln Lys Arg Arg Ser Lys Gly Asp Arg Cys Tyr Asn Cys Gly Gly Leu Asp His His Ala Lys Glu Cys Lys Leu Pro Pro Gln Pro Lys Lys Cys His Phe Cys Gln Ser Ile Asn His Met Val Ala Ser Cys Pro Leu Lys Ala Gln Gln Gly Pro Ser Ser Gln Gly Lys Pro Ala Tyr Phe Arg Glu Glu Glu Glu Ile His Ser Pro Ala Leu Leu Pro Glu Ala Gln

Asn						•
<210>	269					
<211>	30					
<212>	DNA					
<213>	homo sapiens					
<400>	269					
cgaatt	catg ggggccccgc	tegeegtage	;		•	30
<210>				•		
<211>	30					
<212>	DNA					
<213>	homo sapiens					
<400>	270					
cctcga	ggag gctgcaggcc	tcctggtcca	l			30
<210>	271					
<211>	21					
<212>	DNA					
<213>	homo sapiens .					
<400>	271 .					
	cgcc agcacatgga	С		•		21
<210>	272					
<211>	21		•			
<212>	DNA					
	homo sapiens					
<400>	272					
	att gctcagcggt	g	•			21
<210>	273					
<211>	2233					
	DNA					
	homo sapiens					
	CDS					
	(281) (1768)					
	273					
	agc gggccgcagc					60
	ccc agctgcggag					120
	ctt ctccgccagg					180
agiguu	ccg acacccccgg	cccggcaccc	ccggcccggc	atcccccgcc	gccgccgccg	240

ccgcctcaag	gccgcccgct	ccccgcaggt	ggacgcggcc	atgggccgag	gggtgcgcgt	300
gctgctgctg	ctgagcctgc	tgcactgcgc	cgggggcagc	gagggcagga	agacctggcg	360
gcgccggggt	cagcagccgc	ctcctcccc	gcggaccgag	gcggcgccgg	cggccggaca	420
gcccgtggag	agcttcccgc	tggacttcac	ggccgtggag	ggtaacatgg	acagetteat	480
ggcgcaagtc	aagagcctgg	cgcagtccct	gtacccctgc	tccgcgcagc	agctcaacga	540
ggacctgcgc	ctgcacctcc	tactcaacac	ctcggtgacc	tgcaacgacg	gcagccccgc	600
cggctactac	ctgaaggagt	ccaggggcag	ccggcggtgg	ctcctcttcc	tggaaggcgg	. 660
ctggtactgc	ttcaaccgcg	agaactgcga	ctccagatac	gacaccatgc	ggcgcctcat	720
gagctcccgg	gactggccgc	gcactegcae	aggcacaggg	atcctgtcct	cacagccgga	780
ggagaacccc	tactggtgga	acgcaaacat	ggtcttcatc	ccctactgct	ccagtgatgt	840
ttggagcggg	gcttcatcca	agtctgagaa	gaacgagtac	gccttcatgg	gcgccctcat	900
catccaggag	gtggtgcggg	agcttctggg	cagagggctg	agcggggcca	aggtgctgct	960
				aatgtggacc		1020
gcagctggag	aagctgggct	acccagccat	${\tt ccaggtgcga}$	ggcctggctg	actccggctg	1080
				gacacgatca		1140
cacggaggcc	atccgccgtg	gcatcaggta	ctggaacggg	gtggtcccgg	agcgctgccg	1200
acgccagttc	caggagggcg	aggagtggaa	ctgcttcttt	ggctacaagg	tctacccgac	1260
cctgcgctgc	cctgtgttcg	tggtgcagtg	gctgtttgac	gaggcacagc	tgacggtgga	1320
caacgtgcac	ctgacggggc	$a \\ g \\ c \\ g \\ t \\ g \\ c \\ a$	ggagggcctg	cggctgtaca	tccagaacct	1380
				agctttgccc		1440
ctcccatgag	atcatcatcc	ggagccactg	gacggatgtc	caggtgaagg	ggacgtcgct	1500
gccccgagca	ctgcactgct	gggacaggag	cctccatgac	agccacaagg	ccagcaagac	1560
cccctcaag	ggctgccccg	tccacctggt	ggacagctgc	ccctggcccc	actgcaaccc	1620
ctcatgcccc	accgtccgag	accagttcac	ggggcaagag	atgaacgtgg	cccagttcct	1680
catgcacatg	ggcttcgaca	tgcagacggt	ggcccagccg	cagggactgg	agcccagtga	1740
gctgctgggg	atgctgagca	acggaagcta	ggcagactgt	ctggaggagg	agccggcact	1800
gaggggccca	gacacccgct	gccccagtgc	cacctcaccc	cccaccagca	ggccctcccg	1860
tctcttcggg	acagggcccc	agccgtcccc	cctgtctggg	tctgcccact	gccctcctgc	1920
cccggctttc	cctgcccctc	tcccacagcc	cagccagaga	caagggacct	gctgtcatcc	1980
ccatctgtgg	cctgggggtc	cttcctgaca	acgagggggt	agccagaaga	gaagcactgg	2040
attcctcagt	ccaccagetc	agacagcacc	caccggcccc	acccatcaag	cccttttata	2100
ttattttata	aagtgacttt	tttattactt	taattttta	aaaaaaggaa	aataagaata	2160
				tttaaagaga		2220
aaaaaaaaa						2233
<210> 274						
<211> 496						
4-1-						

<212> PRT

<400> 274	
Met Gly Arg Gly Val Arg Val Leu Leu Leu Leu Ser Leu Leu His C	Cys
1 5 10 15	
Ala Gly Gly Ser Glu Gly Arg Lys Thr Trp Arg Arg Gly Gln G	in .
20 25 30	
Pro Pro Pro Pro Pro Arg Thr Glu Ala Ala Pro Ala Ala Gly Gln P	ro
35 40 45	
Val Glu Ser Phe Pro Leu Asp Phe Thr Ala Val Glu Gly Asn Met A	sp .
50 55 60	
Ser Phe Met Ala Gln Val Lys Ser Leu Ala Gln Ser Leu Tyr Pro C	ys
	0
Ser Ala Gln Gln Leu Asn Glu Asp Leu Arg Leu His Leu Leu A	sn
85 90 95	
Thr Ser Val Thr Cys Asn Asp Gly Ser Pro Ala Gly Tyr Tyr Leu L	ys
100 105 110	
Glu Ser Arg Gly Ser Arg Arg Trp Leu Leu Phe Leu Glu Gly Gly T	rp
115 120 125	
Tyr Cys Phe Asn Arg Glu Asn Cys Asp Ser Arg Tyr Asp Thr Met A	rg
130 135 140	
Arg Leu Met Ser Ser Arg Asp Trp Pro Arg Thr Arg Thr Gly Thr G	ly
	60
Ile Leu Ser Ser Gln Pro Glu Glu Asn Pro Tyr Trp Trp Asn Ala A	sn
165 170 175	
Met Val Phe Ile Pro Tyr Cys Ser Ser Asp Val Trp Ser Gly Ala S 180 185 190	er
100	
Ser Lys Ser Glu Lys Asn Glu Tyr Ala Phe Met Gly Ala Leu Ile I 195 200 205	1 e
Gln Glu Val Val Arg Glu Leu Leu Gly Arg Gly Leu Ser Gly Ala Ly	
210 215 220	ys
Val Leu Leu Leu Ala Gly Ser Ser Ala Gly Gly Thr Gly Val Leu Le	
000	
Asn Val Asp Arg Val Ala Glu Gln Leu Glu Lys Leu Gly Tyr Pro A	40 1 a
245 250 255	ı a
Ile Gin Val Arg Gly Leu Ala Asp Ser Gly Trp Phe Leu Asp Asn Ly	i7 0
260 265 270 .	y S
Gln Tyr Arg His Thr Asp Cys Val Asp Thr Ile Thr Cys Ala Pro Th	ır

		275					280					285				
Glu	Al	a Ile	Arg	Arg	Gly	Ile	Arg	Tyr	Trp	Asn	Gly		Val	Pro	Glu	
	29					295					300					
	Cy	s Arg	Arg	Gln	Phe	Gln	Glu	Gly	Glu	Glu	Trp	Asn	Cys	Phe	Phe	
305					310					315					320	•
Gly	Ty	r Lys	Val		Pro	Thr	Leu	Arg	Cys	Pro	Val	Phe	Val	Val	Gln	
_	_			325					330					335		
Trp	Lei	u Phe		Glu	Ala	Gln	Leu		Val	Asp	Asn	Val	His	Leu	Thr	
C1	C1.	. D	340	01	01	0.1		345	_				350			
GIY	GII	n Pro 355		Gin	GIU	Gly		Arg	Leu	Tyr	He		Asn	Leu	Gly	
Aro	G) 1			Нic	Thr	Ι 011	360	Aan	Vo 1	Dwa	A 1 a	365	ns.	A 1 -	D	
mg	370	ı Leu 1	nig	1112	1111	375	L)S	ASP	V & 1	PTO	380	Ser	rne	Ala	Pro	
Ala		s Leu	Ser	His	GIn		Ile	He	Aro	Ser		Trn	Thr	Aen	Val	
385	-,-		201		390	110	110	,	,,,, 6	395	1113	пр	1111	ush	400	
	Val	l Lys	Gly	Thr		Leu	Pro	Arg	Ala		His	Cvs	Trp	Asp		
				405				Ū	410			-,-	6	415		
Ser	Lei	ı His	Asp	Ser	His	Lys	Ala	Ser	Lys	Thr	Pro	Leu	Lys		Cys	
			420					425					430	-	-	
Pro	Val	His	Leu	Val	Asp	Ser	Cys	Pro	Trp	Pro	His	Ċys	Asn	Pro	Ser	
		435					440					445				
Cys		Thr	Val	Arg	Asp	Gln	Phe	Thr	Gly	Gln	Glu	Met	Asn	Val	Ala	
	450					455					460					
	Phe	Leu	Met	His			Phe	Asp	Met		Thr	Val	Ala	Gln	Pro	
465	Δ1		01	~	470		_	_		475					480	
GIN	GIY	Leu	Glu		Ser	Glu	Leu	Leu		Met	Leu	Ser	Asn		Ser	
<210	/	275		485					490					495		
<211		31														
<212		DNA														
<213		homo	sapi	ens												
<400		275		. 0110												
		ttc	ıtggg	ccga	ıg ge	gtgc	gcgt	g								
<210		276		_				-								
<211	>	30														
<212	>	DNA														

<213> homo sapiens

31

<400>	276	
ctcgag	gctt ccgttgctca gcatccccag	30
<210>	277	
<211>	32	
<212>	DNA	
<213>	homo sapiens	
<400>	277	
gaattc	atgc ggcgcctcat gagctcccgg ga	32
<210>	278	
<211>	30	
<212>	DNA	
<213>	homo sapiens	
<400>	278	
	ggga titggatica iciccaigai	30
<210>	279	
<211>	31	
<212>		
<213>	•	
<400>	·	
	tttc cttttttgaa ctgaaggccc c	31
<210>	280	
<211>	14	
<212>	PRT	
<213>	homo sapiens	
<400>	280	
Pro Gl	u Ala Glu Thr Arg Gly Ala Lys Arg Ile Ser Pro Ala	
l (2.4.2)	5 10	
(210)	281	
(211)	34	
(212)	DNA	
(213)	homo sapiens	
(400)	281	
	atgg gctgtctctg gggtctggct ctgc	34
(210)	282	
(211)	34	
(212)	DNA .	
(213>	homo sapiens	

<40	<0>	282															
ctc	gagg	cct	ctcc	tgac	ac g	cagt	aagg	a ga	cc								34
<21		283															01
<21	1>	402															
<21	2>	PRT					•									•	
<21	3>	homo	sap	iens													
<40	_	283															
Gln	Leu	Ser	Cys	Gln	Gly	Leu	Lys	Val	Phe	Ala	Glv	Glv	Lvs	Len	Pro	•	
1				5													
Gly	Pro	Ala	Val	Glu	Gly										Arg		
			20					25					30.				
Ser	Pro	Gln	Asp	Asp	Ala	Ser	Ser	Pro	His	Leu	Gln	Val	Met	Leu	Gln		
		35					40					45					
Ile	His	Leu	Pro	Gly	Arg	His	Thr	Leu	Phe	Val	Arg	Ala	Met	Ile	Asp		
	50					55					60						
Ser	Gly	Ala	Ser	Gly	Asn	Phe	Ile	Asp	His	Glu	Tyr	Val	Ala	Gln	Asn		
65					70					75					80		
Gly	Ile	Pro	Leu	Arg	Ile	Lys	Asp	Trp	Pro	Ile	Leu	Val	Glu	Ala	Ile		
				85					90					95			
Asp	Gly	Arg	Pro	Ile	Ala	Ser	Gly	Pro	Val	Val	His	Glu	Thr	His	Asp		
			100					105					110				
Leu	He		Asp	Leu	Gly	Asp	His	Arg	Glu	Val	Leu	Ser	Phe	Asp	Val		
		115					1.20					125					
Thr		Ser	Pro	Phe	Phe	Pro	Val	Val	Leu	Gly	Val	Arg	Trp	Leu	Ser		
	130					135					140						
	His	Asp	Pro	Asn		Thr	Trp	Ser	Thr	Arg	Ser	Ile	Val	Phe	Asp		
145					150					155					160		
Ser	Glu	Tyr	Cys		Tyr	His	Cys	Arg	Met	Tyr	Ser	Pro	Ile	Pro	Pro		
_	_	_		165					170					175			
Ser	Leu	Pro		Pro	Ala	Pro	Gln	Pro	Pro	Leu	Tyr	Tyr	Pro	Val	Asp		
	_		180					185					190				
Gly	Tyr		Val	Tyr	Gln	Pro		Arg	Tyr	Tyr	Tyr	Val	Gln	Asn	Val		
m		195					200					205					
lyr		Pro	Val	Asp	Glu	His	Val	Tyr	Pro	Asp		Arg	Leu	Val	Asp		
D	210					215		.=			220						
Pro	HIS	He	Glu	Met		Pro	Ģly	Ala	His		He	Pro	Ser	Gly	His		
225					230					235					240		

Val Tyr	Ser	Leu	Ser 245	Glu	Pro	Glu	Met	Ala 250	Ala	Leu	Arg	Asp	Phe 255	Val		
Ala Arg	Asn	Val 260	Lys	Asp	Gly	Leu	Ile 265	Thr	Pro	Thr	Ile	Ala 270	Pro	Asn		
Gly Ala	275					280					285				•	
Tyr Asp 290		Arg	Ala	Pro	Asn 295	Asn	Phe	Thr	Ile	Gln 300	Asn	Gln	.Tyr	Pro	٠	
Arg Lev	Ser	Ilę_	Pro	Asn	Leu	Glu	Asp	Gln	Ala	His	Leu	Ala	Thr			
305				310					315					320		
Thr Glu	Phe	Val	Pro	Gln	Ile	Pro	Gly	Tyr	Gln	Thr	Tyr	Pro		Tyr		
			325					330					335			
Ala Ala	Tyr		Thr	Tyr	Pro	Val		Phe	Ala	Trp	Tyr		Val	Gly		
		340			•		345					350		_		
Arg Ası			Gly	Arg	Ser			Val	Pro	Val		He	Thr	Trp		
	355		_			360			_		365		T D			
Asn Pro		Trp	Tyr	Arg		Pro	Pro	Val	Pro		Tyr	Pro	Pro	Pro		
370		_	_	D	375		n			380	D	0	m	0		
Gln Pro) Pro	Ьťо	Pro		Pro	Pro	Pro	Pro			Pro	Ser	171			
385				390					395				•	400		
Thr Le	1															
<210>	284															
<211>	30															
<212>	DNA															
<213>	homo	sap	iens						•							
<400>																
ggatcc		ccga	acga	ag a	aggg	acga	g									30
<210>																
<211>	30															
<212>	DNA															
<213>		sap	iens									٠				
<400>	285															9.0
tctaga		gtac	tgta	ag a	tgga	ggcg	g									30
<210>	286															
<211>	28												•			
<212>	DNA															

<213>	homo sapiens	
<400>	286	
ggatcca	itct teegggeaga cacaceet	28
<210>	287	
<211>	29	
<212>	DNA	
<213>	homo sapiens	
<400>	287	
ctcgagt	gcc atttcaggtt cggacagtg	29
<210>	288	
<211>	26	
<212>	DNA	
<213>	homo sapiens	
<400>	288	
gaattca	atgg agggtctggg ccgctc	26
<210>	289	
<211>	25	
<212>	DNA .	
<213>	homo sapiens	
<400>	289	
ctcgagg	ggtg ggggccagct cgaag	25
<210>	290	
<211>	16	
<212>	PRT	
<213>	homo sapiens	
<400>	290	
Lys Ası	o Asp Tyr Tyr Arg Arg Pro Leu Arg Val Leu Arg Ala Arg Gln	
1	5 10 15	
<210>	291	
<211>	30	
<212>	DNA	
<213>	homo sapiens .	
<400>	291	
cgggato	ccat gitccicicc atcciagtgg	30
<210>	292	
<211>	29	
<212>	DNA	

WO 2005/014818 PCT/JP2004/011650

271/271

<213> homo sapiens

<400> 292

cgctcgagac actcttttcg ggtttgttc

29

International application No.
PCT/JP2004/011650

A.	CLASSIFICATION OF SUBJECT MAT	TER
	7	

Int.Cl⁷ C12N15/12, C12Q1/68, C07K14/82, A61K31/711, C07K16/32, C12N5/10, G01N33/15, G01N33/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C12N15/12, C12Q1/68, C07K14/82, A61K31/711, C07K16/32, C12N5/10,
G01N33/15, G01N33/50

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
JSTPlus, WPI(DIALOG), BIOSIS(DIALOG), PUBMED,
EMBL/DDBJ/Genbank/SwissProt/PIR/Geneseq

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
x	WO 02/046415 A2 (INCYTE GENOMICS, INC.), 13 June, 2002 (13.06.02), & AU 2002727902 A Claims; page 66, lines 27 to 29; sequence No. 30	1-3,10,11, 13-16,24-27
х	US 2003/0003538 A1 (DIETRICH R.S. et al.), 02 January, 2003 (02.01.03), Claims; sequence Nos. 15, 16 (Family: none)	1-3,10,11, 13-16,24-27
х	WO 03/029424 A2 (CURAGEN CORP.), 10 April, 2003 (10.04.03), & AU 2002357648 A1 & AU 2002356534 A1 Claims; pages 83 to 84; sequence Nos. 161, 162	1-3,10,11, 13-16,24-27

×	Further documents are listed in the continuation of Box C.		See patent family annex.
* "A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier application or patent but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	step when the document is taken alone document of particular relevance; the claimed invention cannot be
"O" "P"	document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	"&"	considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family
Date	of the actual completion of the international search	Date	e of mailing of the international search report
	19 October, 2004 (19.10.04)		02 November, 2004 (02.11.04)
	e and mailing address of the ISA/ Japanese Patent Office	Aut	horized officer
	imile No.	Tele	phone No.
Form:	PCT/ISA/210 (second sheet) (January 2004)		

International application No.
PCT/JP2004/011650

C (Continuation)	. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E,X	WO 04/040000 A2 (PRIMAL INC.), 13 May, 2004 (13.05.04), Claims; sequence No. 788 (Family: none)	1-3,10,11, 13-16,24-27
	·	

International application No. PCT/JP2004/011650

Box No. II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
1. X Claims because The inv of the hu matter w the prov 2. Claims because	al search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 8 Nos.: 28-37 8 they relate to subject matter not required to be searched by this Authority, namely: 9 rentions as set forth in claims 28 to 37 pertain to methods for treatment 1 uman body by therapy and diagnostic methods and thus relate to a subject 1 chich this International Searching Authority is not required, under 2 visions of Article 17(2)(a)(i) (continued to extra sheet.) 8 Nos.: 1 the they relate to parts of the international application that do not comply with the prescribed requirements to such an 1 that no meaningful international search can be carried out, specifically:
	s Nos.: se they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
1. As all claims	nal Searching Authority found multiple inventions in this international application, as follows: e extra sheet.) required additional search fees were timely paid by the applicant, this international search report covers all searchable is
any ad 3. As onl	searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of ditional fee. by some of the required additional search fees were timely paid by the applicant, this international search report covers hose claims for which fees were paid, specifically claims Nos.:
restric	quired additional search fees were timely paid by the applicant. Consequently, this international search report is ted to the invention first mentioned in the claims; it is covered by claims Nos.: rts relating to SEQ ID NO:1 in claims 1 to 3, 10, 11, 13 to 16 and 7.
Remark on Pro	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.
PCT/JP2004/011650

Continuation of Box No.II-1 of continuation of first sheet(2)

of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search.

Continuation of Box No.III of continuation of first sheet (2)

The polynucleotides having the base sequences represented by SEQ ID NOS:1 to 65 as described in claim 1 and polypeptide expressed thereby have no common chemical structure. Namely, these inventions relating different SEQ ID NOS are common to each other exclusively in being specifically expressed exclusively in lung cancer, stomach cancer, colon caner or liver cancer tissues.

However, document 1 reports genes specifically expressed in colon caner and lung cancer (Table 2, columns Co and Lu).

Document 2 reports a gene specifically expressed in stomach cancer (Table 1).

Document 3 reports a gene specifically expressed in liver cancer (Table 2).

Therefore, being specifically expressed exclusively in lung cancer, stomach cancer, colon caner or liver cancer tissues cannot be considered as a special technical matter in the meaning within PCT Rule 13.2.

Such being the case, the inventions relating respectively to 65 different SEQ ID NOS, among the inventions as set forth in claims 1 to 27, cannot be considered as a group of inventions so linked as to form a single general inventive concept. Namely, these inventions are recognized as 65 groups of inventions respectively relating to 65 polynucleotides different from each other and polypeptides expressed thereby.

- Document 1: SCHEURLE D. et al., Cancer gene discovery using digital differential display, Cancer Res. (2000), Vol.60, No.15,p.4037-4043
- Document 2: Matthias P.A.E. et al., Expression of Metallothionein II in Intestinal Metaplasia, Dysplasia, and Gastric Cancer, Cancer Research (2000), Vol.60, p.1995-2001
- Document 3: Xu X.R. et al., Insight into hepatocellular carcinogene sis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver, Proc. Natl. Acad. Sci. USA. (2001), Vol.98, No.26, p.4037-4043

国際調査報告 国際出願番号 PCT/JP2004/011650 発明の属する分野の分類 (国際特許分類 (IPC)) Int.Cl' C12N15/12, C12Q1/68, C07K14/82, A61K31/711, C07K16/32, C12N5/10, G01N33/15, G01N33/50 В. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int.Cl' C12N15/12, C12Q1/68, C07K14/82, A61K31/711, C07K16/32, C12N5/10, G01N33/15, G01N33/50 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) JSTPlus, WPI(DIALOG), BIOSIS(DIALOG), PUBMED EMBL/DDBJ/Genbank/SwissProt/PIR/Genesed C. 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 X WO 02/046415 A2 (INCYTE GENOMICS, INC.) 1-3, 10, 11, 2002.06.13 13-16, 24-27 &AU 2002727902 A (請求の範囲, 第66頁27-29行, 配列番号30参照) X US 2003/0003538 A1 (DIETRICH P.S. et al.) 1-3, 10, 11, 2003.01.02 13-16, 24-27 (請求の範囲,配列番号15,16参照) ファミリー無し ▼ C欄の続きにも文献が列挙されている。 1 パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 02 11 2004 国際調査を完了した日 国際調査報告の発送日 19. 10. 2004 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 9453 4 B 日本国特許庁(ISA/JP) 上條整 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号

電話番号 03-3581-1101 内線 3448

C (続き) .	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO 03/029424 A2 (CURAGEN CORP.) 2003.04.10 &AU 2002357648 A1 &AU 2002356534 A1 (請求の範囲,第83-84頁,配列番号161,162参照)	1-3, 10, 11, 13-16, 24-27
EX	WO 04/040000 A2 (PRIMAL INC.) 2004.05.13 (請求の範囲,配列番号788参照) ファミリー無し	1-3, 10, 11, 13-16, 24-27
		,
		·

第Ⅱ欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条	第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	
	請求の範囲 <u>28-37</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。
	つまり、
	請求の範囲28-37に係る発明は、人間の診断方法又は治療方法に該当するから、特許協力条約第17条(2)(a)(i)及び特許協力条約に基づく規則39.1(iv)の規定によりこの国際調査機関が調査をすることを要しない対象に係るものである。
2. .	請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
з. 🔲	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
	· ·
第Ⅲ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
VL 1 N	
次に近	である。
基件 [2]	1-9 次分間のよう
符別	Jページ参照のこと
	·
1. 🗌	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
۰ 🗀	
2	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
	·
4. X	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載 されている発明に係る次の請求の範囲について作成した。
	請求の範囲1-3, 10, 11, 13-16, 24-27のうち配列番号1に係るもの
追加開建	医子粉吸の 田田 サイル 明子 オンギ
	を手数料の異議の申立てに関する注意 フーンは加盟本手数的の独体と世界とから 用数中立ではまった。
	量子級科の英麗の中立でに関する任息 」 追加調査手数料の納付と共に出願人から異議申立てがあった。 □ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

第Ⅲ欄の続き

請求の範囲1に記載された配列番号1-65に示す塩基配列を有するポリヌクレオチドおよびそれによって発現されるポリペプチドは、互いに共通の化学構造を有するものでなく、 肺癌、胃癌、大腸癌、または肝癌組織においてのみ特異的に発現することにおいてのみ互い に他の配列番号に係る発明と共通する。

しかしながら、文献1には、大腸癌や肺癌のそれぞれにおいて特異的に発現する遺伝子が記載されている(表2 Co欄、Lu欄)。

また、文献2には、胃癌において特異的に発現する遺伝子が記載されている(表1)。 また、文献3には、肝癌において特異的に発現する遺伝子が記載されている(表2)。 よって、肺癌、胃癌、大腸癌、または肝癌組織においてのみ特異的に発現することはPC T規則13.2における特別な技術的事項であるとはいえない。

よって、請求の範囲1~27に記載された発明のうち65個の個別の配列番号それぞれに係る発明は、単一の一般的発明概念を形成するように互いに連関している一群の発明であるとはいえず、異なった65個のポリヌクレオチドおよびそれによって発現されるポリペプチドそれぞれに関する65個の発明からなる発明群であると認める。

- 文献1: SCHEURLE D. et al., Cancer gene discovery using digital differential display, Cancer Res. (2000), Vol. 60, No. 15, p. 4037-4043
- 文献 2: Matthias P. A. E. *et al.*, Expression of Metallothionein II in Intestinal Metaplasia, Dysplasia, and Gastric Cancer, Cancer Research (2000), Vol. 60, p. 1995-2001
- 文献 3: Xu X. R. et al., Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver, Proc. Natl. Acad. Sci. USA. (2001), Vol. 98, No. 26, p. 4037-4043

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.