Using Past Speaker Behavior to Better Predict Turn Transitions

Thesis Presentation

Tomer Meshorer

Center for Spoken Language Understanding Oregon Health & Science University Portland, Oregon, USA

08 June 2017

Outline

- 1 Motivation
- 2 Theoretical Model
- 3 Data
- 4 Study
- 5 Summary

Section 1

Motivation

Timing Diagram

T. Meshorer

1. For a natural conversation between human and machine, we want to conform to human to human turn taking system (Sacks et al, 1978)

- 1. For a natural conversation between human and machine, we want to conform to human to human turn taking system (Sacks et al, 1978)
- 2. In Human-Human conversations conversant predict (Sacks et al, 1978) or signal (Duncan 1972) each other on coming turn transition

- For a natural conversation between human and machine, we want to conform to human to human turn taking system (Sacks et al, 1978)
- 2. In Human-Human conversations conversant predict (Sacks et al, 1978) or signal (Duncan 1972) each other on coming turn transition
- 3. Timeouts leads to poor user interaction(Arsikere et al, 2015)

- 1. For a natural conversation between human and machine, we want to conform to human to human turn taking system (Sacks et al, 1978)
- 2. In Human-Human conversations conversant predict (Sacks et al, 1978) or signal (Duncan 1972) each other on coming turn transition
- 3. Timeouts leads to poor user interaction(Arsikere et al, 2015)
 - Not effective in noisy environment

- 1. For a natural conversation between human and machine, we want to conform to human to human turn taking system (Sacks et al, 1978)
- 2. In Human-Human conversations conversant predict (Sacks et al, 1978) or signal (Duncan 1972) each other on coming turn transition
- 3. Timeouts leads to poor user interaction(Arsikere et al, 2015)
 - Not effective in noisy environment
 - too little machine barge in during intra turn pause.

- 1. For a natural conversation between human and machine, we want to conform to human to human turn taking system (Sacks et al, 1978)
- 2. In Human-Human conversations conversant predict (Sacks et al, 1978) or signal (Duncan 1972) each other on coming turn transition
- 3. Timeouts leads to poor user interaction(Arsikere et al, 2015)
 - Not effective in noisy environment
 - ▶ too little machine barge in during intra turn pause.
 - too much user waiting for the machine.

- 1. For a natural conversation between human and machine, we want to conform to human to human turn taking system (Sacks et al, 1978)
- 2. In Human-Human conversations conversant predict (Sacks et al, 1978) or signal (Duncan 1972) each other on coming turn transition
- 3. Timeouts leads to poor user interaction(Arsikere et al, 2015)
 - Not effective in noisy environment
 - ▶ too little machine barge in during intra turn pause.
 - too much user waiting for the machine.
- 4. Turn transition prediction based on local features improve turn taking but still do not match human performance.

- 1. For a natural conversation between human and machine, we want to conform to human to human turn taking system (Sacks et al, 1978)
- 2. In Human-Human conversations conversant predict (Sacks et al, 1978) or signal (Duncan 1972) each other on coming turn transition
- 3. Timeouts leads to poor user interaction(Arsikere et al, 2015)
 - Not effective in noisy environment
 - ▶ too little machine barge in during intra turn pause.
 - too much user waiting for the machine.
- 4. Turn transition prediction based on local features improve turn taking but still do not match human performance.
 - Syntactic (Sacks et al 1978, De Ruiter et al. 2006)

- 1. For a natural conversation between human and machine, we want to conform to human to human turn taking system (Sacks et al, 1978)
- 2. In Human-Human conversations conversant predict (Sacks et al, 1978) or signal (Duncan 1972) each other on coming turn transition
- 3. Timeouts leads to poor user interaction(Arsikere et al, 2015)
 - Not effective in noisy environment
 - ▶ too little machine barge in during intra turn pause.
 - too much user waiting for the machine.
- 4. Turn transition prediction based on local features improve turn taking but still do not match human performance.
 - Syntactic (Sacks et al 1978, De Ruiter et al. 2006)
 - Prosodic (Ford 1996,Stolcke 2002,Ferrer 2003)

- 1. For a natural conversation between human and machine, we want to conform to human to human turn taking system (Sacks et al, 1978)
- 2. In Human-Human conversations conversant predict (Sacks et al, 1978) or signal (Duncan 1972) each other on coming turn transition
- 3. Timeouts leads to poor user interaction(Arsikere et al, 2015)
 - Not effective in noisy environment
 - ▶ too little machine barge in during intra turn pause.
 - too much user waiting for the machine.
- 4. Turn transition prediction based on local features improve turn taking but still do not match human performance.
 - Syntactic (Sacks et al 1978, De Ruiter et al. 2006)
 - Prosodic (Ford 1996,Stolcke 2002,Ferrer 2003)
 - Pragmatic (Ford 2001)

Goal of Work

Conversant's past behavior can help predict turn transitions Past behavior represented by Summary features Section 2

Theoretical Model

Conversation

Conversation

$$\dots s_{i-2}, d_{i-2}, s_{i-1}, d_{i-1}, s_i, d_i \dots$$

Conversation with turn change

$$\dots d_{i-2}, y_{i-1}, d_{i-1}, y_i, d_i, y_{i+1} \dots$$

Relative Floor Control

06/2017

Section 3

Data

Corpus

Preprocessing

- Removed 11 dialogue acts that were coded as other in switchboard.
- ► Skip the first 120 seconds of the conversation.
 - Gives time for conversant to form the conversional image.
 - Reduces the dialogue acts from 50633 to 37508.
- ► Reduce data sparsity by collapsing 65 dialog acts into 9.

Switchboard dialog acts	Dialog act classes
sd,h,bf	statement
sv,ad,sv@	statement - opinion
aa,aar̂	agree accept
%.%-,%@	abandon
b,bh	backchannel
qy,qo,qh	question
no,ny,ng,arp	answer
+	+
0@,+@	NA

Table: Mapping from dialog act to dialog act class

Relative floor control probability of turn change

Relative turn length effect on probability of a turn change

Dialog act relative count

Dialog act probability of turn change

Relative turn length for dialog act type

Relative floor control by dialog act

06/2017

Section 4
Study

Classifiers

- Used random forests (N=200) to train and test the following models
 - baseline 1: current dialog act label.
 - baseline 2: current and previous dialog acts.
 - summary model: just the summary features.
 - ▶ full model: summary features and the current and previous dialog acts.
- Evaluation was done using 10 fold cross validation.
- Run grid search to find the optimal hyper parameters.

Result for Random Forest Classifier

	Accuracy	F1	Precision	Recall	AUC
baseline 1	62.79%	57.81%	74.98%	47.04%	65.99%
baseline 2	74.89%	74.87%	81.84%	69.00%	81.11%
summary	65.54%	69.32%	67.22%	71.36%	69.46%
full	75.75%	77.59%	77.50%	77.83%	83.78%

Table: Precision, recall and F1 results using Random Forests

Result for Gradient Boosting

	Accuracy	F1	Precision	Recall	AUC
baseline 1	62.79%	57.81%	74.98%	47.04%	65.99%
baseline 2	74.88%	74.82%	81.92%	68.86%	81.10%
summary	67.91%	71.30%	69.20%	73.55%	72.64%
all	76.57%	78.74%	77.44%	80.11%	84.84%

Table: Precision, recall and F1 results using Gradient boost classifier

ROC curves and AUC of different models

Sensitivity to Measurement Start Time

	0s	15s	30s	45s	60s	120s	180s
baseline 1	65.99%	66.10%	66.12%	66.09%	66.02%	65.98%	66.05%
baseline 2	81.11%	81.21%	81.24%	81.20%	81.15%	80.92%	80.68%
summary	69.46%	69.51%	69.43%	69.49%	69.57%	69.10%	69.21%
full	83.78%	83.87%	83.85%	83.80%	83.61%	83.19%	82.80%

Table: AUC Score in relation to the start of the dialog

06/2017

Section 5
Summary

Conclusion

Future work