STOCHASTIC OPTIMIZATION IN MACHINE LEARNING

CASE STUDIES IN NONLINEAR OPTIMIZATION

F. Bauer S. Chambon R. Halbig S. Heidekrüger J. Heuke

July 6, 2015

Technische Universität München

WE'RE NOT RUNNING OUT OF DATA ANYTIME SOON. IT'S MAYBE THE ONLY RESOURCE THAT

GROWS EXPONENTIALLY.

ANDREAS WEIGEND

OUTLINE

- 1. Introduction
- 2. A Stochastic Quasi-Newton Method
- 3. Proximal Method
- 4. Logistic Regression: An Example
- 5. Conclusion

INTRODUCTION

WHAT IS MACHINE LEARNING?

Implementation of autonomously learning software for:

- · Discovery of patterns and relationships in data
- · Prediction of future events

Examples:

Compressed Sensing

CHALLENGES IN MACHINE LEARNING

- · Massive amounts of training data
- · Construction of very large models
- · Handling high memory/computational demands

Stochastic Methods

STOCHASTIC FRAMEWORK

A STOCHASTIC QUASI-NEWTON METHOD

CLASSIFICATION

DID WE JUST DETECT A HIGGS-BOSON?

STOCHASTIC QUASI NEWTON

What is it? Why? Main ideas, high-level pseudo code overview? short bfgs repitition? Extreme Cases (L-BFGS, SGD)

HIGGS-DATASET

Explain the Dataset quickly. Why is this good for SQN testing? Why is it challenging? (file size etc)

BEHAVIOR

Pretty picures about the behaviour of SQN on HIGGS and comparison with traditional SGD

PROXIMAL METHOD

IMAGE RECONSTRUCTION

WHAT DID THE ORIGINAL IMAGE LOOK LIKE?

PROXIMAL METHOD

$$\min_{x} F(x) := \underbrace{f(x)}_{smooth} + \underbrace{h(x)}_{non-smooth}$$

PROXIMAL METHOD

Problem

$$\min_{x} F(x) := \underbrace{f(x)}_{smooth} + \underbrace{h(x)}_{non-smooth}$$

Proximity Operator

$$\operatorname{prox}_{f}(v) = \underset{x}{\operatorname{argmin}} (f(x) + \frac{1}{2} ||x - v||_{2}^{2})$$

Traditional Proximal Gradient Step:

$$X_{k+1} = \operatorname{prox}_{\lambda_k h}(X_k - \lambda_k \nabla f(X_k))$$

Quasi-Newton Proximal Step:

$$x_{k+1} = \operatorname{prox}_{h}^{B_k}(x_k - B_k^{-1} \nabla f(x_k)),$$

with
$$B_k = \underbrace{D_k}_{diag} + \underbrace{u_k}_{\in \mathbb{R}^n} u_k^T$$
.

PROXIMAL METHOD

$$F(x) = ||Ax - b|| + \lambda ||x||_1$$

$$A \in \mathbb{R}^{1500 \times 3000}, \ b \in \mathbb{R}^{1500}$$

$$A_{ij}, \ b_i \sim \mathcal{N}(0, 1), \ \lambda = 0.1$$

$$F(x) = ||Ax - b|| + \lambda ||x||_1$$

$$A \in \mathbb{R}^{1500 \times 3000}, \ b \in \mathbb{R}^{1500}$$

$$A_{ij}, \ b_i \sim \mathcal{N}(0, 1), \ \lambda = 0.1$$

Effect of regularization parameter λ on solution:

TASK

Explain what we want to do, and explain the dataset, and why using both SQN and Prox makes sense

RESULTS

Nice table with SQN, SGD (no reg, L2), (Lasso,) Prox (L1) showing Obj. value in found optimum, CPU time, Iterations, F1 score of prediction model

Use different reg. parameters?? Stop after fixed time? after fixed iters? after insign. improvements

MAIN REFERENCES |

S. Becker and J. Fadili.

A quasi-newton proximal splitting method.

In Advances in Neural Information Processing Systems, pages 2618-2626, 2012.