Optimization Lecture 9

Qingfu Zhang

Dept of $\operatorname{\mathsf{CS}}$, $\operatorname{\mathsf{City}} \operatorname{\mathsf{U}}$

2024

Outline

Terminology and assumptions

Generic descent method

Gradient Descent Method

Steepest descent method

Newton's method

Self-concordance functions

Implementation

Terminology and assumptions

Unconstrained minimization

unconstrained minimization problem

minimize
$$f(x)$$

- we assume
- ightharpoonup f convex, twice continuously differentiable (hence dom f open)
- optimal value $p^* = \inf_x f(x)$ is attained at x^* (not necessarily unique)
- optimality condition is $\nabla f(x) = 0$
- minimizing f is the same as solving $\nabla f(x) = 0$ (a set of n equations with n unknowns)

Quadratic functions

- convex quadratic: $f(x) = (1/2)x^T P x + q^T x + r, P \ge 0$
- we can solve exactly via linear equations

$$\nabla f(x) = Px + q = 0$$

- very important since a function can be approximated by quadratic locally.
- ightharpoonup argminf(x) =? minf(x) =?

Iterative methods

- ▶ for most non-quadratic functions, we use iterative methods
- ▶ these produce a sequence of points $x^{(k)} \in \text{dom } f, k = 0, 1, ...$
- \triangleright $x^{(0)}$ is the initial point or **starting point**
- \triangleright $x^{(k)}$ is the k th iterate
- we hope that the method converges, i.e.,

$$f\left(x^{(k)}\right) \to p^{\star}, \quad \nabla f\left(x^{(k)}\right) \to 0$$

Initial point and sublevel set

- \triangleright iterative algorithms require a starting point $x^{(0)}$ such that
 - $x^{(0)} \in \operatorname{dom} f$
 - ▶ sublevel set $S = \{x \mid f(x) \le f(x^{(0)})\}$ is closed
- 2nd condition is
 - equivalent to condition that epi f is closed
 - ightharpoonup true if dom $f = \mathbf{R}^n$
 - ▶ true if $f(x) \to \infty$ as $x \to \operatorname{bd} \operatorname{dom} f$
- examples of differentiable functions with closed sublevel sets:

$$f(x) = \log \left(\sum_{i=1}^{m} \exp \left(a_i^T x + b_i \right) \right), \quad f(x) = -\sum_{i=1}^{m} \log \left(b_i - a_i^T x \right)$$

Strong convexity and implications

• f is **strongly convex** on S if there exists an m > 0 such that

$$\nabla^2 f(x) \ge mI$$
 for all $x \in S$

- ightharpoonup same as $f(x) (m/2)||x||_2^2$ is convex
- ▶ if f is strongly convex, for $x, y \in S$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2$$

- hence, S is bounded
- ▶ we conclude $p^* > -\infty$, and for $x \in S$,

$$f(x) - p^* \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

(how to prove?)

 useful as stopping criterion (if you know m, which usually you do not)

Generic descent method

Descent methods

descent methods generate iterates as

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$$

with $f(x^{(k+1)}) < f(x^{(k)})$ (hence the name)

- other notations: $x^+ = x + t\Delta x, x := x + t\Delta x$
- $ightharpoonup \Delta x^{(k)}$ is the step, or search direction
- $t^{(k)} > 0$ is the step size, or step length
- ▶ from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ (why)
- \blacktriangleright this means Δx is a descent direction

Line search types

- exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$
- backtracking line search (with parameters $\alpha \in (0,1/2), \beta \in (0,1)$ why?)
- ▶ starting at t = 1, repeat $t := \beta t$ until $f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$
- lacktriangle graphical interpretation: reduce t (i.e., backtrack) until $t \leq t_0$

Generic decent method

Generic descent method

given a starting point $x \in \text{dom } f$. repeat

- 1. Determine a descent direction Δx .
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$. until stopping criterion is satisfied.

Gradient Descent Method

Gradient descent method

• general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom } f$. repeat

- 1. $\Delta x := -\nabla f(x)$.
- 2. Line search. Choose step size t via exact or backtracking line search.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

- ▶ stopping criterion usually of the form $\|\nabla f(x)\|_2 \le \epsilon$
- convergence result: for strongly convex f,

$$f\left(x^{(k)}\right) - p^* \le c^k \left(f\left(x^{(0)}\right) - p^*\right)$$

 $c \in (0,1)$ depends on $m, x^{(0)}$, line search type (how to prove it?)

very simple, but can be very slow

Example: Quadratic function on \mathbb{R}^2

- ▶ take $f(x) = (1/2)(x_1^2 + \gamma x_2^2)$, with $\gamma > 0$
- with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \quad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$ (condition number $\gg 1$)
- ightharpoonup example for $\gamma=10$ at right
- called zig-zagging

Example: Nonquadratic function on \mathbb{R}^2

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

backtracking line search

exact line search

Example: A problem in \mathbf{R}^{100}

$$f(x) = c^{T}x - \sum_{i=1}^{500} \log (b_{i} - a_{i}^{T}x)$$

$$10^{4}$$

$$10^{2}$$

$$10^{0}$$
exact l.s.
$$10^{-4}$$

$$10^{-4}$$

$$0$$

$$50$$

$$100$$

$$150$$

$$200$$

- linear convergence, i.e., a straight line on a semilog plot
- exercise: do it using cvx.

Steepest descent method

Steepest descent method

▶ normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$\Delta x_{\mathrm{nsd}} = \operatorname{argmin} \left\{ \nabla f(x)^T v \mid ||v|| = 1 \right\}$$

- ▶ interpretation: for small $v, f(x + v) \approx f(x) + \nabla f(x)^T v$;
- direction Δx_{nsd} is unit-norm step with most negative directional derivative
- (unnormalized) steepest descent direction: $\Delta x_{\mathrm{sd}} = \|\nabla f(x)\|_* \Delta x_{\mathrm{nsd}}$
- ▶ satisfies $\nabla f(x)^T \Delta x_{sd} = -\|\nabla f(x)\|_*^2$

steepest descent method

- **Proof** general descent method with $\Delta x = \Delta x_{\rm sd}$
- convergence properties similar to gradient descent

Examples

- ▶ Euclidean norm: $\Delta x_{\rm sd} = -\nabla f(x)$
- quadratic norm $\|x\|_P = (x^T P x)^{1/2} (P \in \mathbf{S}_{++}^n) : \Delta x_{\mathrm{sd}} = -P^{-1} \nabla f(x)$
- ▶ ℓ_1 -norm: $\Delta x_{\rm sd} = -\left(\partial f(x)/\partial x_i\right)e_i$, where $|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_{\infty}$
- ightharpoonup unit balls, normalized steepest descent directions for quadratic norm and ℓ_1 -norm:

Choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$
- ▶ interpretation of steepest descent with quadratic norm $\|\cdot\|_P$: gradient descent after change of variables $\bar{x} = P^{1/2}x$
- ▶ shows choice of *P* has strong effect on speed of convergence
- ► Example "Quadratic function on R²".

Newton's method

- Newton step is $\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$
- interpretation: $x + \Delta x_{\rm nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^{T} v + \frac{1}{2} v^{T} \nabla^{2} f(x) v$$

Another interpretation

 $ightharpoonup x + \Delta x_{
m nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

And one more interpretation

 $ightharpoonup \Delta x_{\rm nt}$ is steepest descent direction at x in local Hessian norm

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x) u)^{1/2}$$

- ▶ dashed lines are contour lines of f; ellipse is $\{x + v \mid v^T \nabla^2 f(x)v = 1\}$
- ightharpoonup arrow shows $-\nabla f(x)$

Newton decrement

Newton decrement is $\lambda(x) = (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{1/2}$

- ightharpoonup a measure of the proximity of x to x^*
- **b** gives an estimate of $f(x) p^*$, using quadratic approximation \hat{f} :

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^{2}$$

equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

• directional derivative in the Newton direction:

$$\nabla f(x)^T \Delta x_{\rm nt} = -\lambda(x)^2$$

Newton's method

given a starting point $x \in \text{dom } f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

$$\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)$$

- 2. Stopping criterion. quit if $\lambda^2/2 \le \epsilon$.
- 3. Line search. Choose step size *t* by backtracking line search.
- 4. Update. $x := x + t\Delta x_{\rm nt}$.
- affine invariant, i.e., independent of linear changes of coordinates Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are $y^{(k)} = T^{-1}x^{(k)}$

Classical convergence analysis of Newton's method

Assumptions

- ▶ *f* strongly convex on *S* with constant *m*
- ▶ $\nabla^2 f$ is Lipschitz continuous on S, with constant L > 0:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L\|x - y\|_2$$

(L measures how well f can be approximated by a quadratic function) **Outline**: there exist constants $\eta \in (0, m^2/L)$, $\gamma > 0$ such that

- if $\|\nabla f(x^k)\|_2 \ge \eta$, then $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- ▶ if $\|\nabla f(x^k)\|_2 < \eta$, then

$$\frac{L}{2m^2} \left\| \nabla f \left(x^{(k+1)} \right) \right\|_2 \le \left(\frac{L}{2m^2} \left\| \nabla f \left(x^{(k)} \right) \right\|_2 \right)^2$$

Damped Newton phase $(\|\nabla f(x)\|_2 \ge \eta)$

- most iterations require backtracking steps
- function value decreases by at least γ
- if $p^* > -\infty$, this phase ends after at most $\left(f\left(x^{(0)}\right) p^*\right)/\gamma$ iterations

Quadratically convergent phase $(\|\nabla f(x)\|_2 < \eta)$

- ightharpoonup all iterations use step size t=1
- $\|\nabla f(x)\|_2$ converges to zero quadratically: if $\|\nabla f(x^{(k)})\|_2 < \eta$, then

$$\frac{L}{2m^{2}} \|\nabla f(x^{l})\|_{2} \leq \left(\frac{L}{2m^{2}} \|\nabla f(x^{k})\|_{2}\right)^{2^{l-k}} \leq \left(\frac{1}{2}\right)^{2^{l-k}}, \quad l \geq k$$

Remember:

$$f(x) - p^* \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

Then

$$f(x^{(l)}) - p^* \le \frac{2m^3}{l^2} (1/2)^{2^{l-k+1}}$$

Roughly, the number of correct digits doubles at each generation (quadratic convergence)

Conclusion: number of iterations until $f(x) - p^* \le \epsilon$ is bounded above by

$$\frac{f\left(x^{(0)}\right) - p^{\star}}{\gamma} + \log_2\log_2\left(\epsilon_0/\epsilon\right)$$

- $\triangleright \gamma, \epsilon_0$ are constants that depend on $m, L, x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- ightharpoonup in practice, constants m,L (hence γ,ϵ_0) are usually unknown
- provides qualitative insight in convergence properties (i.e., explains two algorithm phases)

Example: **R**²

$$f(x) = c^T x - \sum_{i=1}^{500} \log (b_i - a_i^T x)$$

- **b** backtracking parameters $\alpha = 0.1, \beta = 0.7$
- converges in only 5 steps
- quadratic local convergence

Example in \mathbf{R}^{100}

►
$$f(x) = c^T x - \sum_{i=1}^{500} \log (b_i - a_i^T x)$$

- **b** backtracking parameters $\alpha = 0.01, \beta = 0.5$
- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm

Example in \mathbf{R}^{10000}

(with sparse a_i)

$$f(x) = -\sum_{i=1}^{10000} \log(1 - x_i^2) - \sum_{i=1}^{100000} \log(b_i - a_i^T x)$$

$$10^5$$

$$10^0$$

$$(x)$$

$$10^{-5}$$

$$10^{-5}$$

b backtracking parameters $\alpha = 0.01, \beta = 0.5$.

0

performance similar as for small examples

10 *k* 15

20

5

Self-concordance functions

Why self-concordance

Shortcomings of classical convergence analysis

- ightharpoonup depends on unknown constants (m, L, ...)
- bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions ('self-concordant' functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Def of Self-concordant functions

definition

- ▶ convex $f : \mathbf{R} \to \mathbf{R}$ is self-concordant if $|f'''(x)| \le 2f''(x)^{3/2}$ for all $x \in \text{dom } f$
- ▶ $f: \mathbf{R}^n \to \mathbf{R}$ is self-concordant if g(t) = f(x + tv) is self-concordant for all $x \in \text{dom } f, v \in \mathbf{R}^n$

Examples on R

- ► linear and quadratic functions
- ▶ negative logarithm $f(x) = -\log x$
- ▶ negative entropy plus negative logarithm: $f(x) = x \log x \log x$ affine invariance: if $f : \mathbf{R} \to \mathbf{R}$ is s.c., then $\tilde{f}(y) = f(ay + b)$ is s.c.:

$$\tilde{f}'''(y) = a^3 f'''(ay + b), \quad \tilde{f}''(y) = a^2 f''(ay + b)$$

Self-concordant calculus

properties

- preserved under positive scaling $\alpha \geq 1$, and sum
- preserved under composition with affine function
- if g is convex with dom $g = \mathbf{R}_{++}$ and $|g'''(x)| \le 3g''(x)/x$ then $f(x) = \log(-g(x)) \log x$

is self-concordant

examples: properties can be used to show that the following are s.c.

▶
$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$
 on $\{x \mid a_i^T x < b_i, i = 1, ..., m\}$

- $f(X) = -\log \det X \text{ on } \mathbf{S}_{++}^n$
- $f(x) = -\log(y^2 x^T x)$ on $\{(x, y) \mid ||x||_2 < y\}$

Convergence analysis for self-concordant functions

Summary: there exist constants $\eta \in (0, 1/4], \gamma > 0$ such that

• if $\lambda(x) > \eta$, then

$$f\left(x^{(k+1)}\right) - f\left(x^{(k)}\right) \le -\gamma$$

▶ if $\lambda(x) \leq \eta$, then

$$2\lambda\left(x^{(k+1)}\right) \le \left(2\lambda\left(x^{(k)}\right)\right)^2$$

(η and γ only depend on backtracking parameters α,β) complexity bound: number of Newton iterations bounded by

$$\frac{f\left(x^{(0)}\right) - p^{\star}}{\gamma} + \log_2\log_2(1/\epsilon)$$

for
$$\alpha = 0.1, \beta = 0.8, \epsilon = 10^{-10}$$
, bound =375 $(f(x^{(0)}) - p^*) + 6$

Numerical example

150 randomly generated instances of

minimize
$$f(x) = -\sum_{i=1}^{m} \log (b_i - a_i^T x)$$

o: m = 100, n = 50

 \Box : m = 1000, n = 500

 \diamond : m = 1000, n = 50

- ▶ number of iterations much smaller than $375 (f(x^{(0)}) p^*) + 6$
- bound of the form $c\left(f\left(x^{(0)}\right)-p^{\star}\right)+6$ with smaller c (empirically) valid

Implementation

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$H\Delta x = -g$$

where $H = \nabla^2 f(x), g = \nabla f(x)$ via Cholesky factorization

$$H = LL^T$$
, $\Delta x_{\rm nt} = -L^{-T}L^{-1}g$, $\lambda(x) = \left\|L^{-1}g\right\|_2$

- ightharpoonup cost $(1/3)n^3$ flops for unstructured system
- ▶ cost $\ll (1/3)n^3$ if H sparse, banded