

DATA ANALYSIS

Week 1: Statistical Thinking / What are data?

logistics

Before/End of Tuesday

- Read the <u>syllabus</u> for this course. If you have questions about the syllabus, then please ask them in class or on the pre-class survey.
- Complete the <u>Pre-class survey!</u>

Before Thursday

- Watch: <u>Introduction to Google Sheets</u>. Leave an annotation to complete participation.
- Read <u>Chapter 1</u> from the Gravetter & Wallnau (2017) textbook.
 Leave an annotation for any questions you have.
- Take the <u>Skills Assessment Exam</u> from the textbook (Appendix
 A) and submit a reflection. This will help me support you better
 in the course.

Here are the to-do's for this week:

- Submit Week 1 Quiz (due Sunday midnight)
- Start working on <u>Problem Set 1 (Chapter 1 problems)</u>
- If you haven't already, take the <u>Skills Assessment Exam</u> from the textbook (Appendix A) and submit a reflection. This will help me support you better in the course.
- Submit any lingering questions here!
- Extra credit opportunities:
 - Submit <u>Pre-class survey</u> (1 point)
 - Submit Exra Credit Questions (1 point for 8 submissions)
 - Submit <u>Optional Meme Submission</u> (1 point for winners!)

Problem Set 1: First Attempt *

Start Assignment

Due Feb 3 by 11:59pm **Points** 2.5 **Submitting** a file upload **File Types** pdf

Please complete the problem set available here ->. Please submit a PDF of your solution sheet.

- Make sure you are looking at the correct problem set.
- Please follow the template provided in the link above for the specific problem set.
- Please watch the video below to make sure you are following the submission guidelines for problem sets.

Problem Set 1 (summarizing & means)

Attempt 1 due date: Feb 3, 2025

■ PS1: Solution Template [Use this template to create your own solution sheet]

■ PS1 worksheet template [Use this template to create your own worksheet]

Please watch this video that describes how to submit problem sets

Total number of problems (including sub-parts): 32 75% cutoff for a reasonable first attempt: 24

- Chapter 1 Problems: 8, 10, 18, 20, 22

- 22a has a typo: it should be "add the scores and then square the sum"

- Chapter 2 Problems: 4, 6, 12, 14, 18,

- Chapter 3 Problems: 10, 12, 14, 20, 22

more Qs

- Is there flexibility for students with accommodations?
- Do we need to buy the textbook?
 Can we use it online.
- What is your favorite part about teaching data analysis?

Data Analysis: Lingering Questions

Use this form to post any questions you may have from the class or week. We will try to answer them in class!

Here are the to-do's for this week:

- Submit Week 1 Quiz (due Sunday midnight)
- Start working on Problem Set 1 (Chapter 1 problems)
- If you haven't already, take the <u>Skills Assessment Exam</u> from the textbook (Appendix A) and submit a reflection. This will help me support you better in the course.
- Submit any lingering questions here!
- · Extra credit opportunities:
 - Submit <u>Pre-class survey</u> (1 point)
 - o Submit Exra Credit Questions (1 point for 8 submissions)
 - o Submit Optional Meme Submission (1 point for winners!)

today's agenda

introduce statistical thinking

define population / sample / data

discuss scales of measurement / reliability

what is statistical thinking?

- understanding the complex world in simple terms
 - summarization + uncertainty
- different from other forms of thinking, e.g., human intuition, heuristics, etc.
- three key uses: describe (the world), decide (something), predict (something)
- key concepts:
 - learning from data: we let the data guide us
 - aggregation: we "summarize" raw data
 - uncertainty: we assess how well our raw data maps on to the summarization
 - sampling: we acknowledge that our data are samples from a population

populations and samples

samples should be

- representative
- generalizable

populations and samples

population

all individuals of interest

results from samples are generalized to populations

samples come from populations

sample

 the small subset of individuals who were studied

parameters, statistics, sampling error

- parameter: something that describes a population
- statistic: something that describes a sample
- sampling error: the discrepancy between the sample statistic and the true population parameter it is estimating
- to reduce sampling error:
 - use a sufficiently large sample
 - use random selection: selecting individuals from the population at random for your sample to create an unbiased sample

the scientific method

- the scientific method is a method for acquiring knowledge by making predictions, carrying out experiments to test those predictions, and making inferences based on the observed outcomes
- constructs, variables, and constants
 - construct: something intangible that we operationalize
 - variable: a characteristic that changes across conditions
 - constant: a characteristic that is fixed across conditions
- to make inferences, we manipulate a variable of interest, and observe the effect on an outcome variable, holding all other variables constant

samples in research

experimental research

 test a manipulation to establish a cause-andeffect relationship between two variables

non-experimental research

- quasi-experimental research
 - no actual manipulation, groups/variables defined due to natural variations
- descriptive research
 - single or collection of variables are observed and summarized
- correlational research
 - at least two variables are observed to determine a relationship

research terminology: review

- independent variable (what is being manipulated?)
 - <u>levels</u> denote the types of "conditions" that a participant could be assigned to
- dependent variable (what is being measured?)
- design type (within- or between-subjects/participants)
 - were all participants exposed to all <u>levels</u> of the independent variable?
- key ideas for controlling other extraneous variables:
 - random assignment
 - matching/holding constant
 - control conditions

practice scenario

- A clinical psychologist is interested in the effectiveness of a new anti-depression drug. He collects depression scores from a group of individuals diagnosed with depression at time
 All individuals then take the drug, and are measured again a month later at time 2.
 - what kind of study is it (experimental / non-experimental)?
 - independent and dependent variables?
 - design type (within- or between-participant)?
 - what would the data look like? what would a plot of results look like?

from samples to data

- samples provide us with information
- data are measurements or observations obtained from a sample
 - a dataset is a collection of measurements or observations
 - a datum is a single measurement or observation

scales of measurement

- data can be measured in several ways:
 - qualitative (put things into categories) vs. quantitative (assign numbers) data
 - discrete: separate, indivisible values. no values can exist between two neighboring values; integer scales
 - continuous: an infinite number of possible values fall between any two observed values.
 hypothetically divisible into an infinite number of fractional parts.
- how data are measured determines:
 - what kinds of mathematical operations can be applied
 - what kind of statistical computations can be computed

real limits for continuous data

- only applies to continuous data
- the real limit separates two adjacent scores, and is located halfway between the scores
 - each score has an upper real limit (UL) and a lower real limit (LL)
 - lower limit for 150 is 149.5; upper limit is 150.5

scales of measurement

NOIR

each value has a unique meaning a value has a sense of quantity, some values are larger, some are smaller

units along the scale of measurement are equal to one another

the scale has a true meaningful zero point

	identity	magnitude	equal intervals	absolute zero
<u>n</u> ominal				
<u>o</u> rdinal				
<u>i</u> nterval				
<u>r</u> atio				

scales of measurement

a value has a sense of units along quantity, the scale of the scale has some values each value measurement a true are larger, has a unique are equal to meaningful some are **NOIR** meaning one another zero point smaller magnitude identity equal intervals absolute zero **n**ominal **o**rdinal <u>i</u>nterval **r**atio

practice

- A researcher is testing the effect of alcohol on memory performance. He randomly gives
 one group of subjects a bottle of vodka, and another a nonalcoholic substance that tastes
 like vodka. Each group then learns a list of words, and attempts to recall them. Number of
 words correctly recalled for each group is recorded
 - what is the scale of the independent variable?
 - what is the scale of the dependent variable?

activity

NOIR	each value has a unique meaning	a value has a sense of quantity, some values are larger, some are smaller	units along the scale of measurement are equal to one another	the scale has a true meaningful zero point
	identity	magnitude	equal intervals	absolute zero
<u>n</u> ominal	☑			
<u>o</u> rdinal	 ✓	 ✓		
<u>i</u> nterval	~	~	V	
<u>r</u> atio	V	~	V	V

- assign a data type to each variable (NOIR) and whether it is discrete / continuous

variable	NOIR	discrete/continuous
numbers on basketball jerseys		
sizes of Starbucks orders		
weight		
calendar years		
IQ scores		

reliability and validity

- reliability: consistency of measurements
 - test-retest reliability
 - inter-rater reliability
- validity: are we measuring what we think we are measuring?
 - **face** validity: reality check, does it make sense?
 - construct validity: is it related to other measurements in a logical manner? convergent vs. divergent validity
 - **predictive** validity: can it predict future data?

A: Reliable and valid

C: Reliable but invalid

B: Unreliable but valid

D: Unreliable and invalid

- why/how do we summarize data?
- how do we "explain" data?

Prep

Before Tuesday

- Watch: Summarizing Data.
- Read Chapter 2 from the Gravetter & Wallnau (2017) textbook.

Before Thursday

- Watch: Central Tendencies.
- Read Chapter 3 from the Gravetter & Wallnau (2017) textbook.

After Thursday

• See Apply section.

Here are the to-do's for this week:

- Submit Week 1 Quiz (due Sunday midnight)
- Start working on Problem Set 1 (Chapter 1 problems)
- If you haven't already, take the <u>Skills Assessment Exam</u> from the textbook (Appendix A) and submit a reflection. This will help me support you better in the course.
- Submit any lingering questions here!
- Extra credit opportunities:
 - Submit <u>Pre-class survey</u> (1 point)
 - Submit <u>Exra Credit Questions</u> (1 point for 8 submissions)
 - Submit <u>Optional Meme Submission</u> (1 point for winners!)

bonus practice: scenario

- A social psychologist is interested in gender differences in math performance. She randomly selects students from Bowdoin and has them solve a series of equations.
 Number of equations correctly solved for each participant is recorded.
 - what kind of study is it (experimental / non-experimental)?
 - independent and dependent variables?
 - design type (within- or between-participant)?
 - what would the data look like? what would a plot of results look like?

bonus practice: data in abstracts

- table groups
- go to the <u>abstract document</u> and read over the abstract
- make note of (you will need to make a copy to edit the document):
 - independent variable(s) and data type(s)
 - dependent variable(s) and data type(s)
- predicted graph of results?
- key takeaway?