SC1004 Part 2

Lectured by Prof Guan Cuntai (teaching materials by Prof Chng Eng Siong)

Email: ctguan@ntu.edu.sg

Quiz 2 and Exam:

Quiz 2

- Coverage: Ch 6 – 8.1.2

- Time & Venue:

Full-time students:

Time/Date: Week 13, last lecture time (10:30-11.20am, 17th April 2024, Wed)

• Venue: LT1A, LT 7, LT 10, LT 11, LT 17

Part-time students:

Time/Date: Week 13, 7:30-8.20 pm, 16th April 2024, Tuesday

Venue: LHN-TR+15

2. Final Exam

Coverage: Ch 6, 7, 8 (Q3 & Q4)Time/Venue: 2 May 2024 (Thursday), 1.00-3.00 pm, Hall W.

(Ch 9 will not be tested)

Syllabus for Part 2

Chapte r	Topics	Week (Lecture)	Week (Tut)
6	Orthogonality	8-9	9-10
7	Least Squares	9-10	10-11
8	EigenValue and Eigenvectors	11-12	12-13
9	Singular Value Decomposition (SVD)	13	

Table 1: schedule

Online Video learning Schedule

https://www.youtube.com/channel/UCBzG5jg3huxiPkCt-Serrjw

Week	Part	Topic	Notes
8	6.1.1-6.2.3	Orthogonality, Normalization, Dot-Product, Inequalities,	Lecture 1: 6.1.1 - 6.1.3 Lecture 2: 6.1.4 - 6.2.3
9	6.2.4-6.3.2	Orthogonal/Orthonormal Sets, Basis, Gram Schmidt and QR Decomposition	Lecture 3: 6.2.4 Lecture 4: 6.2.5 – 6.3.2
10	7.1.1-7.2.1	Least Squares and Normal Eqn, Projection Matrix, Applications	Lecture 5: 7.1.1 – 7.1.3 Lecture 6: 7.1.4 – 7.2.1
11	8.1.1-8.1.2	Eigenvectors, Eigen-values, Characteristics Eqn	Lecture 7: 8.1.1 Lecture 8: 8.1.2
12	8.1.3-8.1.5	Diagonalisation, Power of A, Change of basis	Lecture 9: 8.1.3 Lecture 10: 8.1.4 – 8.1.5
13	9.1.1-9.2	Introduction to SVD and PCA (Not examined in quiz/exam)	Lecture 11: 9.1.1 – 9.2 Lecture 12: Quiz 2

How will we conduct the course?

- 1) Before the lectures, watch the videos according to the schedule in Table 1
 - You can watch past years zoom video recordings at https://www.youtube.com/@linearalgebra1884/playlists?view=50&sort=dd&shelf_id=2

- 2) During lecture hours
 - We will summarize the lectures and highlight the key points
 - Q&A.

References

Linear Algebra and Its Applications by David Lay, Steven Lay, Judi McDonald

3Blue1Brown on YouTube

Essence of linear algebra preview

https://www.youtube.com/playlist?list=PLZ HQObOWTQDPD3MizzM2xVFitgF8hE_ab Lecture (Week 13)
(Chapter 9 & Revision)

9. Introduction to SVD & PCA

- Singular Value Decomposition (SVD)
- Principal Component Analysis (PCA)

9.1.1 Singular Value Decomposition (SVD)

Definition

 $A_{n\times n} = P \mathcal{D} P^{-1}$

- \circ For any matrix $A_{m \times n}$ with rank r
 - There exists a matrix $\Sigma_{m \times n}$ and $D_{r \times r}$, for which the diagonal entries in $D_{r \times r}$ are the first r singular values of A, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$
 - There exist an orthogonal matrix $U_{m \times m}$ and an orthogonal matrix $V_{n \times n}$ such that:

where
$$\Sigma = \begin{bmatrix} D & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, and $D = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_r \end{bmatrix}$

- V contains the eigenvectors v_i of A^TA , U contains $u_i = \frac{1}{\sigma_i}Av_i$
- Compare with Eigenvalue Decomposition:
 - Eigenvalue decomposition is for $n \times n$ invertible matrix.
 - Singular values decomposition is for any $m \times n$ matrix.

Singular values: $\sigma_i = \sqrt{\lambda_i}$ are the square roots of the eigenvalues of the matrix A^TA . σ_i are sorted in descending order

9.1.2 Find Singular Value Decomposition

- Example: $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} / 2 \times 3$
 - \circ Step 1: Find an orthogonal diagonalization of A^TA

- \circ Step 2: Form V and Σ
 - $V = [v_1 \ v_2 \ v_3] = \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$
 - $D = \begin{bmatrix} \sqrt{360} & 0 \\ 0 & \sqrt{90} \end{bmatrix} \text{ (only non-zero singular values),}$ $D = \begin{bmatrix} \sqrt{360} & 0 & 0 \\ 0 & \sqrt{20} & 0 \end{bmatrix}$

 $_{\circ}$ Step 3 Construct U

•
$$u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{\sqrt{360}} \begin{bmatrix} 18 \\ 6 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10} \\ 1/\sqrt{10} \end{bmatrix}$$

•
$$u_2 = \frac{1}{\sigma_2} A v_2 = \frac{1}{\sqrt{90}} \begin{bmatrix} 3 \\ -9 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{10} \\ -3/\sqrt{10} \end{bmatrix}$$

o Finally:

$$A = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} \sqrt{360} & 0 & 0 \\ 0 & \sqrt{90} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{-1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{bmatrix}$$

$$A = U\Sigma V^T$$

9.2 Principal Component Analysis (PCA)

Definition

- Principal Component Analysis (PCA): to identify patterns and reduce the dimensionality
 of a large dataset by transforming the variables into a new set of uncorrelated variables
 called principal components.
- o Process
 - Calculate the Covariance Matrix S (square matrix)
 - Calculate the Eigenvectors and Eigenvalues of the Covariance Matrix S

$$V = [v_1 v_2 ... v_n]$$
 and $\lambda_1, \lambda_2 ... \lambda_n$

- Identify the Principal Components
 - Ranking the eigenvectors in order of their eigenvalues λ_i , highest to lowest
 - Principal Components are the eigenvectors of the covariance pointing to the directions of the axes where there is the most variance (most information)
 - Eigenvalues give the amount of variance carried in each Principal Component
- Select the first r eigenvectors (corresponding to r largest eigenvalues)

$$(\tilde{V}) = [v_1 v_2 ... v_p]$$
, which takes the first p eigenvectors

- Recast the data along the principal component axes
 - $y = \tilde{V}^T x$
 - Dimension: $x \in \mathbb{R}^n$, $y \in \mathbb{R}^p$, reduced from *n*-dimension to *p*-dimension $(p \le n)$

• Apr/May 2021

(b) Given two vectors: $a = (1,4,1,1)^T$ and $b = (4,5,-2,-3)^T$. Find vector $c \in \mathbb{R}^4$ that is orthogonal to vector a, so that $Span\{a,b\} = Span\{a,c\}$.

$$\frac{\partial}{\partial s} = \frac{\partial}{\partial s} = \frac{\partial$$

- Apr/May 2021
- (b) Given vectors $a = \begin{bmatrix} -4 \\ 5 \\ -1 \end{bmatrix}$ and $b = \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix}$. Verify whether they are orthogonal. Find vector c that is orthogonal to both vector a and vector b.

Apr/May 2021

(d) Verify whether $\lambda = -2$ is an eigenvalue of the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 9 & -6 & 4 \\ 9 & -5 & 3 \end{bmatrix}$ If true, find an eigenvector associated with the eigenvalue $\lambda = -2$.

$$A - 21/2 = 0$$

$$A -$$

• Nov/Dec 2021

- (d) Answer True/False for the followings with respect to a square matrix A.
 - If A is invertible, it will always be diagonalizable.
 - (ii) All diagonalizable matrices are invertible.
 - (iii) If A has unique eigenvalues, it is always diagonalizable.
 - (iv) The null space of $(A \lambda I)$ is spanned by A's eigenvectors.
 - (v) If λ is the eigen value of A, then λ^{-1} is an eigen value of A^{-1}

$$(A - \lambda I) = \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}$$

$$x = a : \chi = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} = \chi \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \times \lambda$$

• Nov/Dec 2022

- (b) Answer True/False or fill in the blank, for the followings with respect to a square matrix A.
 - (i) The eigenvalues of an $n \times n$ dimension _____ (what type of matrix) are its diagonal elements.
 - (ii) The number of eigen values including multiplicity is always equal to the number of independent eigen vectors.
 - An invertible matrix is always diagonalizable.
 - (iv) If the eigen values are distinct, then the eigen vectors are independent.
 - The eigen value of a matrix cannot be the scalar 0.
 - (vi) If A is an eigenvalue of invertible matrix A, then _____ is an eigen value of A^{-1} .
 - (vii) The normalized eigenvector associated with an eigen value is unique.

Nov/Dec 2021

3. Given the following matrix,

$$A = \begin{bmatrix} -2/\sqrt{2} & -3/\sqrt{2} & 0\\ -2/\sqrt{2} & +3/\sqrt{2} & 0\\ 0 & 0 & 2 \end{bmatrix}$$

(a) (i) Show that the columns of A form an orthogonal set and then normalize these columns to form an orthogonal matrix Q.

(6 marks)

(ii) Let $y = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$. Two columns of Q (from Q3a(i)) are used to form U to approximate y by $Ux = \hat{y}$, where \hat{y} is the least squares approximation to y. Determine which 2 columns of Q should be selected. Provide your reasons and/or workings.

(5 marks)

(iii) Using your chosen Q, calculate the least squares solution x, \hat{y} , and the norm of the residual error.

(6 marks)

(b) Given a 3×2 matrix U with orthonormal columns spanning subspace W, comment on UU^T matrix's properties in terms of rank, orthogonality, dimension, type of matrix, and space that it spans.

(8 marks)

(a-i).
$$u_1 = \begin{bmatrix} -2/\sqrt{2} \\ -2/\sqrt{2} \\ 0 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -3/\sqrt{2} \\ 3/\sqrt{2} \\ 0 \end{bmatrix}$, $u_3 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$

 $u_1 \cdot u_2 = 3 - 3 = 0, u_1 \cdot u_3 = 0, u_2 \cdot u_3 = 0,$

To normalize: $\hat{u}_1 = \frac{1}{\|u_1\|} \begin{bmatrix} -2/\sqrt{2} \\ -2/\sqrt{2} \\ 0 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{bmatrix}$, $\hat{u}_2 = \frac{1}{\|u_2\|} \begin{bmatrix} -3/\sqrt{2} \\ 3/\sqrt{2} \\ 0 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$, $\hat{u}_3 = \frac{1}{\|u_3\|} \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

$$\therefore Q = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

(a-ii) in order to chose 2 columns from Q to approximate y, to find the weight x in Qx = y,

Left-multiply $Q^{-1}Qx = Q^{-1}y \Rightarrow x = Q^{-1}y = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -3/\sqrt{2} \\ 1/\sqrt{2} \\ 3 \end{bmatrix}$, we choose the components corresponding to larger $|x_i|$ -- the weights of the components.

 $|x_1| = \frac{3}{\sqrt{2}}$; $|x_2| = \frac{1}{\sqrt{2}}$; $|x_1| = 3$; $\rightarrow |x_2|$ is the smallest, so we choose u_1 and u_3

$$U = \begin{bmatrix} -1/\sqrt{2} & 0\\ -1/\sqrt{2} & 0\\ 0 & 1 \end{bmatrix}$$

(a-iii).
$$x = U^T y = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -3/\sqrt{2} \\ 3 \end{bmatrix}, \quad \hat{y} = Ux = \begin{bmatrix} -1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -3/\sqrt{2} \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$

Residual:
$$e = y - \hat{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, ||e|| = 1$$

End