Lecture 9: Inference with logistic regression models

Ciaran Evans

Recall: the Titanic data

Data on 891 passengers on the *Titanic*. Variables include:

- Survived
- ► Pclass
- Sex
- Age

$$Survived_i \sim Bernoulli(p_i)$$

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 Male_i + \beta_2 Age_i + \beta_3 Class2_i + \beta_4 Class3_i$$

Fitting the model in R estimated coefficient steels and execute at B estimate Std. Error z value Pr(>|z|)

0.401

9.416

0.207 - 12.164

4.682e-21

4.811e-34

Age -0.037 0.008 -4.831 1.359e-06
Pclass2 -1.310 0.278 -4.710 2.472e-06
Pclass3 -2.581 0.281 -9.169 4.761e-20

Suppose I want to know whether there is a relation between age and the probability of survival, after accounting for passenger class

3.777

-2.523

(Intercept)

Sexmale

Need test statistic, null distribution

Wald tests for single coefficients

	Estimate Std	. Error	z value	Pr(> z)			
(Intercept)	3.777	0.401	9.416	4.682e-21			
Sexmale	-2.523	0.207	-12.164	4.811e-34			
Age	(-0.037	0.008	-4.831	1.359e-06			
Pclass2	-1.310	0.278	-4.710	2.472e-06			
Pclass3	-2.581	0.281	-9.169	4.761e-20			
Ho: B; =	O HA:	B; + 0					
Hare: B;	, and si	ELB;)					
Test statistic	:	0	欧.	-0.037-0			
1 3							
	SE	(Bj)		×-4.831			
MULL distribution: Under Ho, B; & N(B;, [2-1(B)])							
		~ m(0,1)					
p-value:	and ?	ò Rea	L				

Another question

	${\tt Estimate \ Std.}$	${\tt Error}\ {\tt z}\ {\tt value}$	Pr(> z)
(Intercept)	3.777	0.401 9.416	4.682e-21
Sexmale	-2.523	0.207 -12.164	4.811e-34
Age	-0.037	0.008 -4.831	1.359e-06
Pclass2	-1.310	0.278 -4.710	2.472e-06
Pclass3)	-2.581	0.281 -9.169	4.761e-20

Suppose I want to know whether there is a relation between passenger class and the probability of survival, after accounting for age and sex. What hypotheses would I test?

Ho:
$$\beta_3 = \beta_4 = 0$$
 Ha: at least are of β_3 , $\beta_4 \neq 0$

Nested models

$$Survived_i \sim Bernoulli(p_i)$$

Full model:

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 Male_i + \beta_2 Age_i + \beta_3 Class2_i + \beta_4 Class3_i$$

Hypotheses:

$$H_0: \beta_3 = \beta_4 = 0$$
 $H_A:$ at least one of $\beta_3, \beta_4 \neq 0$

Reduced model:

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 Male_i + \beta_2 Age_i$$

is the full model a better fit to the data than the reduced model?

Logistic regression model performance

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
    (Intercept)
                  3.777013
                            0.401123 9.416 < 2e-16 ***
   Sexmale
               -2.522781 0.207391 -12.164 < 2e-16 ***
               -0.036985 0.007656 -4.831 1.36e-06 ***
   Age
   Pclass2 -1.309799 0.278066 -4.710 2.47e-06 ***
   Pclass3
               -2.580625 0.281442 -9.169 < 2e-16 ***
   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '
           FOM: 0=1 for binomical distribution
    (Dispersion parameter for binomial family taken to be 1)
elated to model
```

Null deviance: 964.52 on 713 degrees of freedom Residual deviance: 647.28 on 709 degrees of freedom

(177 observations deleted due to missingness) ATC: 657.28

ations: 5 (Newton's method)

Number of Fisher Scoring iterations: 5

Logistic regression model performance

Null deviance: 964.52 on 713 degrees of freedom Residual deviance: 647.28 on 709 degrees of freedom (177 observations deleted due to missingness) ATC: 657.28

- ▶ For logistic regression, deviance = $-2 \log \text{Likelihood}$
- Smaller deviances suggest a better fit to the data
- ▶ We compare nested models by comparing their deviances

Nested logistic regression models

```
m1 <- glm(Survived ~ as.factor(Pclass) + Sex + Age,
           family = binomial, data = titanic)
m1$deviance
## [1] 647.2831
m2 <- glm(Survived ~ Sex + Age,
           family = binomial, data = titanic)
m2$deviance
## [1] 749.9569
H_0: the larger model is not a better fit
Test statistic: G = 2(\log L_{\text{full}} - \log L_{\text{reduced}})
                 = deviance edución - deviance full
   G= 749.9569 - 647.2831
```

Nested logistic regression models

Distribution: Under H_0 , $G \sim \chi_a^2$

ightharpoonup q = difference in number of parameters

```
m1 <- glm(Survived ~ as.factor(Pclass) + Sex + Age,
          family = binomial, data = titanic)
m2 <- glm(Survived ~ Sex + Age,
          family = binomial, data = titanic)
pchisq(m2$deviance - m1$deviance, df=2, lower.tail=F)
```