CHƯƠNG 6: ĐÁP ỨNG TẦN SỐ TS. PHẠM NGUYỄN THANH LOAN

Tổ chức lớp

- □ Số tín chỉ: 3
- Giảng viên: TS. Phạm Nguyễn Thanh Loan
- □ Văn phòng: Phòng 618, thư viện Điện Tử
- □ Email: <u>loanpham.sinhvien@gmail.com</u>
- □ Sách:
 - 1. Electronic Devices and Circuit Theory, Robert Boylestad and Louis Nashelsky
 - 2. Kỹ thuật Mạch điện tử, Phạm Minh Hà
- Bài tập tại lớp, bài tập về nhà theo nhóm được cung cấp tại lớp

Đáp ứng tần số

- □ Giới thiệu
- □ Mô hình phân tích
- Đáp ứng vùng tần số thấp
- Hiệu ứng điện dung Miller
- Đáp ứng vùng tần số cao

Giới thiệu

Biểu diễn ảnh hưởng của tần số của tín hiệu vào đến hệ số khuếch đại (về độ lớn và pha)

Giới thiệu

Tần số cắt: hệ số khuếch đại giảm 0,707 lần (3dB)

f₁ tần số cắt vùng thấpf₂ tần số cắt vùng cao

Mô hình phân tích

Khâu lọc thông cao

Khâu lọc thông thấp

- Khâu lọc thông cao

Tụ điện tương đương

ngắn mạch tại vùng tần số cao hở mạch tại vùng tần số thấp

- Khâu lọc thông cao

Vùng tần thấp,

C tương đương hở mạch

$$=> V_0 = 0, A_v = 0$$

Vùng tần cao,

C tương đương ngắn mạch

$$\Rightarrow$$
 $V_0 = V_i, A_v = 1$

- Khâu lọc thông thấp

Tụ điện tương đương

ngắn mạch tại vùng tần số cao hở mạch tại vùng tần số thấp

- Khâu lọc thông thấp

Vùng tần thấp,

C tương đương hở mạch

$$=> V_0 = V_1, A_v = 1$$

Vùng tần cao,

C tương đương ngắn mạch

$$=> V_0 = 0, A_v = 0$$

- Tần số cắt

- Tần số cắt

Tần số cắt: hệ số khuếch đại giảm 0,707 lần (3dB)

$$A_V = \frac{R}{\sqrt{R^2 + w^2 C^2}} = \frac{1}{\sqrt{2}}$$

$$\mathbf{w} = 2\pi f$$

$$f = \frac{1}{2\pi RC}$$

Đáp ứng vùng tần số thấp mạch khuếch đại dùng BJT

- Vùng tần số thấp bị giới hạn bởi các khâu lọc thông cao do tụ điện ở
 - cửa vào C_{in} (f_{Ls})
 - ra C_{out} (f_{Lo})
 - chân emito C_{emitter}
 (f_{Le})
- Tần số giới hạn vùng thấp là giá trị lớn nhất của f_{Ls}, f_{Lo}, f_{Le}

Tần số cắt vùng thấp do tụ cửa vào

với
$$f_{LS} = \frac{1}{2\pi (R_S + R_i)C_S}$$

$$R_i = R_1 / / R_2 / / \beta r_e$$

Tần số cắt vùng thấp do tụ cửa ra

$$f_{Lo} = \frac{1}{2\pi (R_o + R_L)C_C}$$
 với $R_O = R_C / / r_0$

Tần số cắt vùng thấp do tụ chân emito

$$f_{LE} = \frac{1}{2\pi R_e C_E}$$
 với $R_e = R_E / / (r_e + R_S / \beta)$

Mạch khuếch đại dùng FET

- □ Phân tích tương tự BJT
- \square 3 tụ điện C_G , C_C , C_S
- □ f_{LG} =1/[2 π (R_{sig} + R_i) C_G] với R_i = R_G
- □ f_{LC} =1/[2 π (R_o + R_L) C_C] với R_o = R_D // r_d
- □ f_{Ls} =1/[2 π (R_{eq} C_s] với R_{eq} = R_{s} /[1+ R_{s} (1+ g_{m} r_d)/(r_{d} + R_{d})/ R_{L})]

Hiệu ứng điện dung Miller

- □ C_f: điện dung hồi tiếp
- Mạch khuếch đại đảo
- ⇒ Điện dung ở cửa vào và cửa ra tăng lên

$$C_{M}^{in} = (1-A_{v})C_{f}$$
 $C_{M}^{out} = (1-1/A_{v})C_{f} \approx C_{f}khi A_{v} r\hat{a}t l\acute{o}n$

Đáp ứng vùng tần số cao mạch khuếch đại dùng BJT

Vùng tần số cao bị giới hạn bởi các khâu lọc thông thấp do các tụ kí sinh C_{bc} , C_{ce} , C_{be} , C_{wi} , C_{wo}

Đáp ứng vùng tần số cao mạch khuếch đại dùng BJT

Đáp ứng vùng tần số cao mạch khuếch đại dùng BJT

Đáp ứng vùng tần số cao mạch khuếch đại dùng FET

Tham khảo 11.10 trang 546, *Electronic devices and circuit theory*

Bài tập

□ Chapter 11: 10, 11, 15, 17, 18, 19, 22, 26, 28, 29, 32