Quiz 2

Student

Manshi Sagar

Total Points

9 / 15 pts

Question 1

Q1 5 / 5 pts

- + 2 pts first part correct.
- + 0 pts Incorrect.
- + 1.5 pts only one out of 2ns and 3rd parts correct.
- + 3 pts Last two parts correct.

Question 2

- + 5 pts Correct
- + 2 pts first part correct
- + 0 pts Incorrect.
- → + 1 pt First part partly correct.
 - **+ 1 pt** In second part, mentions that $H_{i,i}=q_i^*Aq_i$.
 - + 3 pts Second part correct.
- But we can have diagonal entries with imaginary parts.
- 2 No. This is not correct.

Q3 3 / 5 pts

- + 5 pts Correct
- + 0 pts Incorrect.
- + 1 pt Correct calculation of eigenvalues
- → + 2 pts Correct description of Krylov Space
- \checkmark + 1 pt Correct description of H_k matrix
 - **+ 1 pt** Correct description of eigenvalues of ${\cal H}_k$
 - + 0.5 pts Computed eignevalues of the $5\,\times\,5$ matrix only.
 - + 1 pt Correct description of Krylov space but no reasoning

we know that eight values of A = eight values of H@

we know that all diagona eight values of A = 0

=> we need to show that H is diagonal and Hii = eizenvalues
of H

= 0

3. (5 marks) What are the eigenvalues of the $m \times m$ matrix A where the only non-zero entries are $A_{i+1,i}, i = 1, \ldots, m-1$ and $A_{1,m}$, and all these entries are 1 [No reasoning needed]. The matrix A for m = 5 is shown below:

eight values of A:
$$m \times m$$
 $\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$ retructes $\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$ eight values $\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$ don't change $\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$

Suppose we run the Arnoldi iteration on this matrix starting with vector $b = e_1$, i.e., $(1,0,0,\ldots,0)$, for k < m iterations. What will be the Krylov space? What will be the estimated eigenvalues generated by this algorithm? Give reasons.

$$b = e_1$$
 $Ab = \begin{pmatrix} 000 - 1 \\ 100 - - 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = e_2$

$$A(Ab) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 &$$

Hij =
$$\frac{(A^{i}q_{1})q_{1}^{*}}{(A^{i}q_{1})q_{2}^{*}}$$
 = $\frac{(A^{i}q_{1})q_{2}^{*}}{(A^{i}q_{1})q_{2}^{*}}$ = $\frac{(A^{i}q_{1})q_{1}^{*}}{(A^{i}q_{1})q_{2}^{*}}$ = $\frac{(A^{i}q_{1})q_{1}^{*}}{(A^{i}q_{1})q_{2}^{*}}$ = $\frac{(A^{i}q_{1})q_{1}^{*}}{(A^{i}q_{1})q_{2}^{*}}$ = $\frac{(A^{i}q_{1})q_{1}^{*}}{(A^{i}q_{1})q_{2}^{*}}{(A^{i}q_{1})q_{2}^{*}}$ = $\frac{(A^{i}q_{1})q_{1}^{*}}{(A^{i}q_{1})q_{1}^{*}}{(A^{i}q_{1})q_{1}^{*}}{(A^{i}q_{1})q_{1}^{*}}{(A^{i}q_{1})q_{1}^{*}}{(A^{i}q_{1})q_{1}^{*}}{(A^$