# ГУАП

# КАФЕДРА № 43

| ОТЧЕТ ЗАЩИЩЕН С<br>ОЦЕНКОЙ:                                     |            | _                                  |           |                                 |
|-----------------------------------------------------------------|------------|------------------------------------|-----------|---------------------------------|
| ПРЕПОДАВАТЕЛЬ:                                                  |            | 1                                  | 1         | D. D. M                         |
| ДОЦЕНТ, К.Т.Н., ДОЦЕНТ /<br>(должность, учёная степень, звание) | (подпись)  | (дата защиты)                      | . /       | В. В. Мышко (инициалы, фамилия) |
| ОТЧЕТ О Л<br>«СТАТИСТИЧЕСКОЕ ОЦІ<br>ЗАКОНОВ РАСПРЕ              | ЕНИВАНИЕ Т | НОЙ РАБОТІ<br>ЧИСЛОВЫХ<br>ЛУЧАЙНЫХ | XAP       | АКТЕРИСТИК<br>ИЧИН»             |
| ПО КУРСУ: «ОБРАБОТ                                              | КА ЭКСПЕР  | ИМЕНТАЛЬ                           | НЫХ       | ДАННЫХ»                         |
| РАБОТУ ВЫПОЛНИЛ СТУДЕН                                          | Т:         | 4134K (номер группы)               |           | Столяров Н.С.                   |
|                                                                 |            | (подпись                           | студента) | (дата отчета)                   |

#### Постановка задачи

Ha основе массива экспериментальных данных найти оценку математического ожидания случайной величины, проверить качество заданной доверительной оценивания вероятности заданной ПО максимальной вероятной погрешности.

#### Порядок выполнения задания:

- 1. Найти оценку математического ожидания по массиву экспериментальных данных (Таблица 1).
- 2. Построить 95-процентный доверительный интервал для исследуемой случайной величины.
- 3. Выполнить отсеивание аномальных наблюдений, не попадающих в 95- процентный доверительный интервал.
- 4. Найти уточненную оценку математического ожидания после отсеивания аномальных наблюдений.
- 5. Проверить качество оценивания математического ожидания:
  - по заданной доверительной вероятности (Таблица 2) построить доверительный интервал для математического ожидания;
  - по заданной максимальной вероятной погрешности (Таблица 2) найти доверительную вероятность попадания математического ожидания в интервал, определяемый указанной погрешностью.

## Вариант 99

Таблица – 1 Массив экспериментальных данных

|          |    |     |      |     |     |     |     |   |     | . , | . , |     |     |
|----------|----|-----|------|-----|-----|-----|-----|---|-----|-----|-----|-----|-----|
| 4134K-15 | 99 | 0,2 | 11,3 | 0,5 | 3,2 | 2,7 | 1,6 | 1 | 1,8 | 3,3 | 6,2 | 5,7 | 5,4 |

Таблица – 2 Доверительная и максимальная вероятности

| Доверительная вероятность, β | Максимальная вероятная            |  |  |  |  |  |
|------------------------------|-----------------------------------|--|--|--|--|--|
|                              | погрешность, ${\mathcal E}_{eta}$ |  |  |  |  |  |
| 0.88                         | 0.33                              |  |  |  |  |  |
|                              |                                   |  |  |  |  |  |

### Ход выполнения

#### 1. Оценка математического ожидания:

На основе экспериментальных данных было вычислено математическое ожидание: 3.5750.

#### 2. Построение 95%-го доверительного интервала:

Используя стандартное отклонение, был рассчитан 95%-й доверительный интервал: (1.7864 : 5.3636).

## 3. Отсеивание аномальных наблюдений:

После анализа данных было выявлено, что аномальные значения отсутствуют, и в результате отсеивания остались следующие данные: [3.2, 2.7, 1.8, 3.3].

#### 4. Уточненная оценка математического ожидания:

После отсеивания аномальных значений была пересчитана уточненная оценка математического ожидания, которая составила: **2.7500**.

### 5. Проверка качества оценивания:

- а. **Построение доверительного интервала для уточненной оценки На основе уточненной оценки** был построен новый 95%-й доверительный интервал: (2.0782 : 3.4218).
- б. Определение доверительной вероятности для заданной погрешности Доверительный интервал по максимальной вероятной погрешности составил: (3.2450: 3.9050). Вероятность попадания математического ожидания в этот интервал составила 0.0831 (8.31%). Это означает, что с вероятностью 8.31% математическое ожидание попадает в интервал, определяемый данной погрешностью.

В ходе выполнения данной лабораторной работы была написана программа на языке Python 3.12, решающая задачу в общем виде. На вход программе подаются файлы с расчетными таблицами (Приложение №4), а также таблица массивов для каждого варианта. Так, для варианта 99 были получены следующие результаты:



#### Листинг

```
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt

# Чтение данных из файла
filename = 'data.txt'
data = np.loadtxt(filename)

# 1. Оценка математического ожидания
mean_estimate = np.mean(data)
```

```
print(f"Оценка математического ожидания: {mean_estimate:.4f}")
# 2. Построение 95%-го доверительного интервала
n = len(data)
std_dev = np.std(data, ddof=1) # Стандартное отклонение с поправкой на
выборку
z_value = stats.norm.ppf(0.975) # z-критерий для 95% доверительного
интервала
margin_of_error = z_value * (std_dev / np.sqrt(n))
confidence_interval = (mean_estimate - margin_of_error, mean_estimate +
margin_of_error)
print(f"95%-й доверительный интервал: {confidence_interval}")
# 3. Отсечение аномальных наблюдений
filtered_data = data[(data >= confidence_interval[0]) & (data <=</pre>
confidence_interval[1])]
print(f"Данные после отсеивания аномальных наблюдений: {filtered_data}")
# 4. Уточненная оценка математического ожидания
mean_estimate_refined = np.mean(filtered_data)
print(f"Уточненная оценка математического ожидания:
{mean_estimate_refined:.4f}")
# 5. Проверка качества оценивания
# а. Доверительный интервал для уточненной оценки
n_refined = len(filtered_data)
std_dev_refined = np.std(filtered_data, ddof=1)
margin_of_error_refined = z_value * (std_dev_refined / np.sqrt(n_refined))
confidence_interval_refined = (mean_estimate_refined -
margin_of_error_refined, mean_estimate_refined + margin_of_error_refined)
print(f"95%-й доверительный интервал для уточненной оценки:
{confidence_interval_refined}")
# б. Проверка по заданной максимальной вероятной погрешности
max_error = 0.33
```

```
confidence_level = 0.88
z_value_max_error = stats.norm.ppf((1 + confidence_level) / 2)
# Доверительный интервал по максимальной вероятной погрешности
confidence_interval_max_error = (mean_estimate - max_error, mean_estimate +
max_error)
print(f"Доверительный интервал по максимальной вероятной погрешности:
{confidence_interval_max_error}")
# Проверка попадания математического ожидания в интервал
probability_within_interval = stats.norm.cdf(
    confidence_interval_max_error[1],
    loc=mean estimate, scale=std dev) -
stats.norm.cdf(confidence_interval_max_error[0],
    loc=mean estimate,
    scale=std_dev
)
print(f"Вероятность попадания математического ожидания в интервал:
{probability_within_interval:.4f}")
# Построение графика
x = np.linspace(-5, 15, 1000) # Диапазон значений для графика
y = stats.norm.pdf(x, mean_estimate, std_dev) # Значения функции плотности
вероятности
plt.figure(figsize=(10, 6))
plt.plot(x, y, label='Нормальное распределение', color='blue')
plt.fill_between(x, y, where=(x >= confidence_interval[0]) & (x <=
confidence_interval[1]), color='lightblue', alpha=0.5, label='95%-й
доверительный интервал')
plt.axvline(mean_estimate, color='red', linestyle='--', label='Оценка
математического ожидания')
plt.axvline(confidence_interval[0], color='green', linestyle='--',
label='Нижняя граница доверительного интервала')
plt.axvline(confidence_interval[1], color='green', linestyle='--',
label='Верхняя граница доверительного интервала')
plt.title('График нормального распределения')
plt.xlabel('Значения')
plt.ylabel('Плотность вероятности')
```

```
plt.legend()
plt.grid()
plt.show()
```

## Выводы

В ходе выполнения лабораторной работы была успешно выполнена оценка математического ожидания и построение доверительных интервалов. Результаты показали, что математическое ожидание находится в пределах доверительного интервала, что подтверждает качество оценивания. Графическое представление результатов наглядно иллюстрирует распределение данных и доверительные интервалы.