Principal Component Analysis (PCA)

Foundations of Data Analysis

March 24, 2020

Do we need all 4 dimensions?

How Many Dimensions Are In Your Data?

How Many Dimensions Are In Your Data?

Covariance

Covariance between two random samples: $x_i, y_i \in \mathbb{R}$

$$cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Measures how *x* "covaries" with *y*

Proportional to correlation:

$$cov(x, y) = corr(x, y)sd(x)sd(y)$$

Symmetric: cov(x, y) = cov(y, x)

Covariance = 1.2869720000000002Correlation = 0.9628654314027962

Centering a Data Matrix

Data matrix X: $n \times d$

n rows (data points) d columns (dimensions, or features)

Mean of data (rows):

$$\mu = \frac{1}{n} \sum_{i=1}^{n} X_{i\bullet}$$

Centered data (subtract mean from each row):

$$\tilde{X}_{i\bullet} = X_{i\bullet} - \mu$$

Covariance Matrix

Sample covariance matrix:

$$\Sigma = \frac{1}{n} \tilde{X}^T \tilde{X}$$

 Σ_{ij} is the covariance between the ith and jth dimension (feature)

$$\Sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} (X_{ki} - \mu_i)(X_{kj} - \mu_j) = \operatorname{cov}(X_{\bullet i}, X_{\bullet j})$$

Properties

Covariance is **symmetric**: $\Sigma = \Sigma^T$

$$\Sigma_{ij} = \operatorname{cov}(X_{\bullet i}, X_{\bullet j}) = \operatorname{cov}(X_{\bullet j}, X_{\bullet i}) = \Sigma_{ji}$$

Covariance is **positive-semidefinite**:

$$v^T \Sigma v \ge 0$$

Covariance matrix:

$$\Sigma = \begin{pmatrix} 0.6857 & -0.04243 & 1.274 & 0.5163 \\ -0.04243 & 0.1900 & -0.3297 & -0.1216 \\ 1.274 & -0.3297 & 3.116 & 1.296 \\ 0.5163 & -0.1216 & 1.296 & 0.5810 \end{pmatrix}$$

Eigenvectors, Eigenvalues

Square matrix A: $d \times d$

Eigenvector $v \in \mathbb{R}^d$ and eigenvalue $\lambda \in \mathbb{R}$:

$$Av = \lambda v$$

Meaning: The transformation A is a scaling when applied to v

Eigenanalysis of a Symmetric Matrix

Fact: If A is a $d \times d$ symmetric matrix, it has *exactly* d real eigenvalues $\lambda_k \in \mathbb{R}$ (possibly with repeats).

Each eigenvalue λ_k has a corresponding eigenvector $v_k \in \mathbb{R}^d$.

Eigenanalysis of a Symmetric Matrix

The SVD of a symmetric matrix looks like this:

$$A = VSV^T$$

- ▶ The singular values are the eigenvalues: $s_k = \lambda_k$.
- The left and right singular vectors are the *same* and are the eigenvectors, v_k .

Principal Component Analysis

PCA is an eigenanalysis of the covariance matrix:

$$\Sigma = V\Lambda V^T$$

- ▶ Eigenvectors: $v_k = V_{\bullet k}$ are principal components
- ► Eigenvalues: λ_k are the **variance** of the data in the v_k direction

PCA Algorithm Summary

Input: Data matrix $X: n \times d$

- 1. Compute centered data $ilde{X}$
- 2. Compute covariance matrix:

$$\Sigma = \frac{1}{n} \tilde{X}^T \tilde{X}$$

3. Eigenanalysis of covariance:

$$\Sigma = V\Lambda V^T$$

Hint: numpy.linalg.eig computes an eigenanalysis!

Dimensionality Reduction

Goal: Find a k-dimensional subspace, V_k , that best fits our data

Least-squares fit:

$$\arg\min_{V_k} \sum_{i=1}^n \operatorname{distance}(V_k, x_i)^2$$

Solution: Use first *k* principal components:

$$V_k = \operatorname{span}(v_1, v_2, \dots, v_k)$$

Example: Iris Data PCA

Scree Plot: Eigenvalues (Variance)

Horizontal axis: which principal component (index k) Vertical axis: proportion of variance: $\frac{\lambda_k}{\sum_{i=1}^d \lambda_i}$