Unit II - Relational Data Model Entity and Referential Integrity

Dr. GEETHA MARY A
ASSOCIATE PROFESSOR,
SCSE, VITU

Sources:

Pearson Education, Inc. 2011, Elmasri/Navathe, Fundamentals of Database Systems, Sixth Edition McGraw Hill Education, 2010, Silberschatz, Korth and Sudarshan, Database System Concepts, Sixth edition

What is a Relation?

- A Relation is a 2-dimensional table of values (rows and columns)
- each row, or **tuple**, is a collection of related facts
- the degree of the relation is the number of attributes in the relation
- each column represents an attribute
- each row is an **instance** of the relation

What is a Relation (cont'd)?

- So, a relation is a big table of facts.
 - Each column contains the same attribute data with the same data type
 - Each row describes a real-world instance of the relation

 A Relational database contains one or more relations (or tables).

Schema vs. Instance

 the current values in the relation represent an instance (or extension) of the data

More formally.....

- A domain **D** is a set of atomic values
 - o local phone number The set of 7-digit numbers
 - o names The set of names of persons
 - o date of birth Possible dates of birth for people
- A relation schema $R(A_1, A_2, ..., A_n)$ is a:
 - o relation name (**R**)
 - \circ list of attributes $(A_1, A_2, ..., A_n)$
 - each attribute A_i is the name of a role played by some domain D in the relation schema R

More formally (cont'd)

• each element in a relation, called a *tuple*, is a collection of n values

Student (name, address, phone number)

Name	Address	Phone Number
Bob	Johnston St.	533-3333
Mary	Union St.	533-4444
Fred	Clarence St.	533-5555

DEFINITION SUMMARY

<u>Informal Terms</u>	Formal Terms
Table	Relation
Column	Attribute/Domain
Row (record)	Tuple
Values in a column	Domain
Table Definition	Schema of a Relation
Populated Table	Extension

Characteristics of Relations

- tuples have no particular order
- ordering of attributes not important
- all values belonging to a particular attribute are from the same **domain**
- attributes are atomic
- attributes may have a null value

Operations on Relations

 Operations include insert, delete, modify and retrieval.

Example – Referential Integrity **Faculty** <u>Department</u> Office <u>ID#</u> Code Name Salary Name Dept Course Professor_ID <u>Number</u> Dept code Title **Enrolled** Student Date of Birth Course# Dept Code <u>ID#</u> Name Student ID

Insert

 Provide a list of attribute values to be inserted (ie. A new tuple)

Example

insert values (554433, "Bob", 25143.56, "ENGL") into faculty

Insert (cont'd)

Inserts may violate constraints.

Key Constraint:

```
insert values (554433, "Bob", 25143.56, "ENGL")
into employee
(Will fail if the employee number "554433" is already in the table)
```

Entity Integrity Constraint:

```
insert values (NULL, "Bob", 25143.56, "ENGL")
into employee
(primary key cannot be NULL)
```

Insert (con't)

Referential Integrity Constraint:

insert values (554433, "Bob", 25143.56, "ENGL") into employee

(Will fail if the "ENGL" is not a code for a department)

Delete

Faculty

<u>ID#</u>	Name	Salary	Dept
1234	Mary	2345.67	ENGL
2345	Jane	3246.87	HIST
3456	Fred	2876.32	COMP

delete the **faculty** tuples with name="Fred"

• Why is this not a good idea?

Delete (con't)

• The only constraint which can be violated is the referential integrity constraint (i.e. A tuple in another relation references the tuple that is slated for deletion).

delete from Faculty where **name** = "Fred" (referenced by tuples in **Course**)

Also, what if there are two people named "Fred"?

Modify

 Change the value for one or more attributes in a relation

Example:

modify SALARY of Faculty where ID# = 1234 to 30000

 Modifying a primary key is like deleting a tuple and adding a new one. (Same violations may apply).

Types of Constraints

- Domain constraints
- Key constraints
- Integrity constraints
 - Entity Integrity Constraint
 - Referential Integrity Constraint
 - Semantic Integrity Constraint

Domain Constraints

 So, if an attribute is from the domain of a phone number, then the attribute must be a phone number.

Key constraints

- value of a key uniquely identifies a tuple in a relation
- a **superkey** *K* is subset of attributes of **R** such that:
 - o no 2 tuples have same values for *K*
- Every relation has at least one superkey;

Keys (cont'd)

- A **key** is a minimal superkey; a superkey from which we cannot remove any attributes and still be able to uniquely identify tuples in a relation
- common keys ID number, Social Insurance Number, etc.

Keys (cont'd)

- A relational schema may have more than one key
 - o each key called a *candidate key*
 - one designated as the **primary key**

Integrity Constraints

- Integrity constraints are specified on a schema and hold for every instance of the schema
- Entity integrity constraint
 - o no primary key value can be null
- Referential integrity constraint
 - o if R_1 refers to R_2 then $t_1 \in r_1(R_1)$ must refer to an existing $t_2 \in r_2(R_2)$

Foreign Keys

- a *foreign key* in R is a set of attributes FK in R such that FK is a primary key of some other relation R'
- a foreign key is used to specify a referential integrity constraint

• Example?

Key examples

Department (code, name, phone)

Faculty (name, number, office, dept code)

Course (name, number, dept_code)

Semantic Integrity Constraints

Constraints on data values such as:

- The salary of an employee must not exceed that of her supervisor.
- The total of available seats must be > 0 in order for a reservation to be made.
- A person's date of birth must be before the current date.