## Mechanical Energy of Flowing Fluid Elements An Introduction

Raj Pala,

rpala@iitk.ac.in

Department of Chemical Engineering,
Associate faculty of the Materials Science Programme,
Indian Institute of Technology, Kanpur.

# Internal Energy & Advertising First Law of Thermodynamics: Extending Work-Energy beyond mechanics

 $\Delta U = Change in Internal Energy U = "Heat \& work exchange" = "q - W"$ 

## What is Mechanical "Engineering" Energy?

- "Form of energy that can be converted to mechanical work completely and directly by an ideal mechanical device like ideal turbine" (Cengel & Boles: TD)
- We will book keep energy via "control mass", "control volume", energy flow across "control surface" but for now, we will look at energy per unit mass

## Forms of energy for flowing fluids

$$KE = m \frac{V^2}{2}$$
 (kJ) Kinetic energy

$$ke = \frac{V^2}{2}$$
 (kJ/kg) Kinetic energy per unit mass

$$PE = mgz$$
 (kJ) Potential energy

$$pe = gz$$
  $(kJ/kg)$  Potential energy per unit mass



#### Mass flow rate

$$\dot{m} = \rho \dot{V} = \rho A_c V_{\text{avg}}$$
 (kg/s)

### Energy flow rate

$$\dot{E} = \dot{m}e$$
 (kJ/s or kW)

$$E = U + KE + PE = U + m\frac{V^2}{2} + mgz$$
 (kJ) Total energy of a system

$$e = u + ke + pe = u + \frac{V^2}{2} + gz$$
 (kJ/kg) Energy of a system per unit mass

## Mechanical energy of flowing fluids

$$e_{\rm mech} = \frac{P}{\rho} + \frac{V^2}{2} + gz$$
 Mechanical energy of a flowing fluid per unit mass

$$\dot{E}_{\rm mech} = \dot{m}e_{\rm mech} = \dot{m} \left(\frac{P}{\rho} + \frac{V^2}{2} + gz\right)$$
 Rate of mechanical energy of a flowing fluid

Mechanical energy change of a fluid during incompressible flow per unit mass

$$\Delta e_{\text{mech}} = \frac{P_2 - P_1}{\rho} + \frac{V_2^2 - V_1^2}{2} + g(z_2 - z_1)$$
 (kJ/kg)

Rate of mechanical energy change of a fluid during incompressible flow

$$\Delta \dot{E}_{\text{mech}} = \dot{m} \Delta e_{\text{mech}} = \dot{m} \left( \frac{P_2 - P_1}{\rho} + \frac{V_2^2 - V_1^2}{2} + g(z_2 - z_1) \right)$$
 (kW)

## Coupling mechanical energy to work



$$\dot{W}_{\text{max}} = \dot{m}\Delta e_{\text{mech}} = \dot{m}g(z_1 - z_4) = \dot{m}gh$$
  
since  $P_1 \approx P_4 = P_{\text{atm}}$  and  $V_1 = V_4 \approx 0$   
(a)



$$\dot{W}_{\text{max}} = \dot{m} \Delta e_{\text{mech}} = \dot{m} \frac{P_2 - P_3}{\rho} = \dot{m} \frac{\Delta P}{\rho}$$

$$\text{since } V_2 \approx V_3 \text{ and } z_2 = z_3$$

$$(b)$$