Equations différentielles

Christel TREMOULET

Table des matières

1	Equ	nations différentielles linéaires du premier ordre	2
	1.1	Généralités	2
		1.1.1 Définitions	2
		1.1.2 Ensemble des solutions de (E)	2
	1.2	Résolution de (E_0)	3
	1.3	Résolution de (E)	3
2	Equ	nations différentielles linéaires du second ordre à coefficients constants	5
	2.1	Généralités	5
		2.1.1 Définitions	5
		2.1.2 Ensemble des solutions de (E)	6
	2.2	Résolution de (E_0)	6
	2.3	Résolution de (E) lorsque le second membre est de type polynôme ou exponentielle-	
		polynôme	8
		2.3.1 Cas où d est une fonction polynôme	8
		2.3.2 Cas où $d(t) = e^{mt}P(t)$ où P est une fonction polynôme de degré n	9

Dans tout le chapitre, I désigne un intervalle de \mathbb{R} .

1 Equations différentielles linéaires du premier ordre

1.1 Généralités

1.1.1 Définitions

Définition 1.1

1. On appelle équation différentielle linéaire du premier ordre toute équation du type

$$a(t)y'(t) + b(t)y(t) = c(t)$$

où a, b et c sont trois fonctions continues sur I.

2. Soit (E): a(t)y'(t) + b(t)y(t) = c(t).

On appelle solution de (E) sur I toute fonction f dérivable sur I telle que

$$\forall t \in I, \quad a(t)f'(t) + b(t)f(t) = c(t)$$

Définition 1.2

Soit (E): a(t)y' + b(t)y = c(t).

On appelle équation homogène associée à (E) l'équation

$$(E_0)$$
: $a(t)y' + b(t)y = 0$

1.1.2 Ensemble des solutions de (E)

Soient (E): a(t)y' + b(t)y = c(t) et (E_0) : a(t)y' + b(t)y = 0.

Notons S l'ensemble des solutions de (E) et S_0 l'ensemble des solutions de (E_0) .

On suppose que $S \neq \emptyset$.

Théorème 1.1

Soit $y_p \in \mathcal{S}$ une solution particulière de (E).

Alors,

$$\mathcal{S} = \{ y_p + y_0; y_0 \in \mathcal{S}_0 \}$$

La solution générale de (E) est donc la somme d'UNE solution particulière de (E) et de LA solution générale de (E_0) .

Equations différentielles

En conclusion, pour résoudre (E) il y a trois étapes :

• Etape 1 : on résoud (E_0) et on trouve S_0 .

• Etape 2 : on cherche une solution particulière de (E).

• Etape 3 : on conclut en donnant S.

1.2 Résolution de (E_0)

Soit (E_0) : a(t)y' + b(t)y = 0

avec a et b continues sur I.

On suppose que $\forall t \in I, a(t) \neq 0$.

Théorème 1.2

$$S_0 = \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} & ; & k \in \mathbb{R} \\ x & \longmapsto & ke^{-\int \frac{b(t)}{a(t)} dt} \end{array} \right\}$$

Exemple

Résoudre (E_0) $(1+x^2)y'+4xy=0$ dans $I=\mathbb{R}$.

On a

$$\int \frac{b(x)}{a(x)} dx = 2 \int \frac{2x}{1+x^2} dx = 2\ln(1+x^2) = \ln\left((1+x^2)^2\right)$$

Par le théorème précédent, on obtient donc

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & & ; \ k \in \mathbb{R} \\ x & \longmapsto & \frac{k}{(1+x^2)^2} & & \end{array} \right\}$$

1.3 Résolution de (E)

Soient (E) ay' + by = c avec a, b et c trois fonctions continues sur I.

On a vu que la solution générale de (E) est la somme de la solution générale de (E_0) et d'une solution particulière de (E).

On a alors les deux possibilités suivantes :

1. Une solution particulière de (E) est évidente.

Exemple

Résoudre (E) $xy' + y = 3x^2$ dans $I =]0, +\infty[$.

• Etape 1 : on résoud (E_0) xy' + y = 0 sur I.

On trouve

$$S_0 = \left\{ \begin{array}{ccc}]0, +\infty[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{k}{x} \end{array} \right. ; \ k \in \mathbb{R} \left. \right\}$$

- Etape 2 : on voit facilement que $y_p(x)=x^2$ est une solution particulière de (E).
- Etape 3 : conclusion

$$S = \left\{ \begin{array}{ccc}]0, +\infty[& \longrightarrow & \mathbb{R} & & ; \ k \in \mathbb{R} \\ x & \longmapsto & \frac{k}{x} + x^2 & & \end{array} \right\}$$

2. Il n'y a pas de solution particulière évidente de (E).

On utilise alors la méthode de la variation de la constante.

On note $y_0 = e^{-\int \frac{b(t)}{a(t)} dt}$ une solution non nulle de (E_0) et on cherche une solution y_p de (E) sous la forme

$$y_p(t) = k(t)y_0(t)$$

où $k: I \to \mathbb{R}$ est une fonction inconnue dérivable sur I.

On a alors

$$y_p \in \mathcal{S} \iff ay_p' + by_p = c \iff ak'y_o + aky_0' + bky_0 = c \iff ak'y_0 = c$$

 $\operatorname{car} ay_0' + by_0 = 0.$

On en déduit que $k' = \frac{c}{ay_0}$.

On choisit alors k par primitivation et on en déduit alors y_p .

Exemple

Résoudre (E) $y' + 2ty = e^{t-t^2}$ dans $I = \mathbb{R}$.

• Etape 1 : on résoud (E_0) y' + 2ty = 0.

On trouve

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & & ; k \in \mathbb{R} \\ t & \longmapsto & ke^{-t^2} & & \end{array} \right\}$$

 \bullet Etape 2 : on cherche une solution particulière y_p de (E) de la forme

$$y_p(t) = k(t)e^{-t^2}$$

avec $k: \mathbb{R} \to \mathbb{R}$ dérivable.

On a

$$y_p \in \mathcal{S} \iff y_p' + 2ty_p = e^{t-t^2} \iff k'(t)e^{-t^2} - 2tk(t)e^{-t^2} + 2tk(t)e^{-t^2} = e^{t-t^2}$$

On obtient que $k'(t) = e^t$.

Prenons alors

$$k(t) = e^t$$

Finalement,

$$y_p(t) = e^t e^{-t^2} = e^{t-t^2}$$

• Etape 3 : conclusion

$$S = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; k \in \mathbb{R} \\ t & \longmapsto & ke^{-t^2} + e^{t - t^2} \end{array} \right\}$$

Remarque

(E) a une infinité de solutions.

Si on impose des conditions initiales alors on aura une solution unique.

2 Equations différentielles linéaires du second ordre à coefficients constants

2.1 Généralités

2.1.1 Définitions

Définition 2.1

1. On appelle équation différentielle linéaire du second ordre à coefficients constants toute équation du type

$$ay''(t) + by'(t) + cy(t) = d(t)$$

 $où(a,b,c) \in \mathbb{R}^* \times \mathbb{R}^2$ et d'une fonction continue sur I.

2. Soit (E): ay''(t) + by'(t) + cy(t) = d(t).

On appelle solution de (E) sur I toute fonction f deux fois dérivable sur I telle que

$$\forall t \in I, \quad af''(t) + bf'(t) + cf(t) = d(t)$$

Définition 2.2

Soit (E): ay'' + by' + cy = d.

On appelle équation homogène associée à (E) l'équation

$$(E_0)$$
: $ay'' + by' + cy = 0$

2.1.2 Ensemble des solutions de (E)

Soient (E): ay'' + by' + cy = d(t) et (E_0) : ay'' + by' + cy = 0.

Notons S l'ensemble des solutions de (E) et S_0 l'ensemble des solutions de (E_0) .

On suppose que $S \neq \emptyset$.

Théorème 2.1

Soit $y_p \in \mathcal{S}$ une solution particulière de (E).

Alors,

$$\mathcal{S} = \{ y_p + y_0; y_0 \in \mathcal{S}_0 \}$$

La solution générale de (E) est donc la somme d'UNE solution particulière de (E) et de LA solution générale de (E_0) .

La technique de résolution de (E) est donc la même que celle utilisée dans la résolution des équations différentielles du premier ordre!

2.2 Résolution de (E_0)

Soit (E_0) ay'' + by' + c = 0 avec $(a, b, c) \in \mathbb{R}^* \times \mathbb{R}^2$.

Equations différentielles

Le but est de chercher les solutions de (E_0) à valeurs réelles.

Par analogie avec ce que l'on a trouvé pour les équations du premier ordre, on cherche les solutions de (E_0) sous la forme

$$y_0 = e^{rt}$$

On a

$$y_0 \in \mathcal{S}_0 \iff ay_0'' + by_0' + cy_0 = 0$$

 $\iff (ar^2 + br + c)e^{rt} = 0$
 $\iff ar^2 + br + c = 0$

Définition 2.3

On appelle équation caractéristique de (E_0) l'équation

$$(C) \quad ar^2 + br + c = 0$$

d'inconnue $r \in \mathbb{R}$ ou \mathbb{C} .

Théorème 2.2

Soit $\Delta = b^2 - 4ac$ le discriminant de (C).

• 1er cas : $\Delta > 0$.

Notons r_1 et r_2 les deux solutions réelles et distinctes de (C).

Alors,

$$S_0 = \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} & ; & (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & k_1 e^{r_1 t} + k_2 e^{r_2 t} \end{array} \right\}$$

• $2\grave{e}me\ cas:\Delta=0.$

Notons r_1 la racine double réelle de (C).

Alors,

$$S_0 = \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} & ; & (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & (k_1 t + k_2) e^{r_1 t} \end{array} \right\}$$

• $3\`eme\ cas: \Delta < 0.$

Notons $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ ($(\alpha, \beta) \in \mathbb{R}^2$) les deux racines complexes conjuguées de (C). Alors,

$$S_0 = \left\{ \begin{array}{ll} I & \longrightarrow & \mathbb{R} & ; \ (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & e^{\alpha t} \left(k_1 \cos(\beta t) + k_2 \sin(\beta t) \right) \end{array} \right\}$$

Exemples

1. Résoudre (E_0) y'' + y' - 6y = 0 dans \mathbb{R} .

L'équation caractéristique (C) $r^2+r-6=0$ admet deux solutions réelles distinctes : 2 et -3.

Donc,

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; & (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & k_1 e^{2t} + k_2 e^{-3t} \end{array} \right\}$$

2. Résoudre (E_0) y'' - 2y + y = 0 dans \mathbb{R} .

L'équation caractéristique (C) $r^2 - 2r + 1 = 0$ admet une racine double : 1.

Donc,

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; \ (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & (k_1 t + k_2) e^t \end{array} \right\}$$

3. Résoudre (E_0) y'' + y' + y = 0 dans \mathbb{R} .

L'équation caractéristique (C) $r^2+r+1=0$ admet deux solutions complexes : $\frac{-1}{2}+i\frac{\sqrt{3}}{2}$ et $\frac{-1}{2}-i\frac{\sqrt{3}}{2}$.

Donc,

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & e^{-\frac{1}{2}t} \left(k_1 \cos(\frac{\sqrt{3}}{2}t) + k_2 \sin(\frac{\sqrt{3}}{2}t) \right) \end{array} \right\}$$

2.3 Résolution de (E) lorsque le second membre est de type polynôme ou exponentielle-polynôme

Soit

$$(E) \quad ay'' + by' + cy = d$$

avec $(a, b, c) \in \mathbb{R}^* \times \mathbb{R}^2$ et $d: I \to \mathbb{R}$ continue.

2.3.1 Cas où d est une fonction polynôme

Proposition 2.1

 $Soit \ (E) \ ay'' + by' + cy = P \ où \ P \ est \ une \ fonction \ polynôme \ de \ degr\'e \ n.$

On cherche alors une solution particulière de (E) sous la forme d'une fonction polynôme de degré

-n si
$$c \neq 0$$
.
-n + 1 si $c = 0$ et $b \neq 0$.
-n + 2 si $c = b = 0$.

Exemple

Résoudre (E) $y'' - 4y' + 4y = x^2 + 1$ dans $I = \mathbb{R}$.

• Etape 1 : résolution de (E_0) y'' - 4y' + 4y = 0.

L'équation caractéristique (C) $r^2 - 4r + 4 = 0$ admet une racine double réelle : 2.

Donc,

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; \ (k_1, k_2) \in \mathbb{R}^2 \\ x & \longmapsto & (k_1 x + k_2) e^{2x} \end{array} \right\}$$

• Etape 2 : on cherche une solution particulière y_p de (E) de la forme

$$yp(x) = \alpha x^2 + \beta x + \gamma$$

On a

$$y_p \in \mathcal{S} \iff 4\alpha x^2 + (4\beta - 8\alpha)x + 2\alpha - 4\beta + 4\gamma = x^2 + 1$$

On trouve donc $\alpha = \frac{1}{4}$, $\beta = \frac{1}{2}$ et $\gamma = \frac{5}{8}$.

D'où,

$$y_p(x) = \frac{1}{4}x^2 + \frac{1}{2}x + \frac{5}{8}$$

• Etape 3: conclusion

$$\mathcal{S} = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; & (k_1, k_2) \in \mathbb{R}^2 \\ x & \longmapsto & (k_1 x + k_2) e^{2x} + \frac{1}{4} x^2 + \frac{1}{2} x + \frac{5}{8} \end{array} \right\}$$

2.3.2 Cas où $d(t) = e^{mt}P(t)$ où P est une fonction polynôme de degré n

Proposition 2.2

On cherche une solution princulière y_p de (E) de la forme $y_p(t) = e^{mt}Q(t)$ où Q est une fonction polynôme de degré

-n si m n'est pas racine de (C).

-n+1 si m est racine simple de (C).

-n+2 si m est racine double de (C).

Mathématiques

Equations différentielles

Info-Sup Epita

Exemple

Résoudre (E) $y'' - 2y' + y = e^t$ dans $I = \mathbb{R}$.

• Etape 1 : l'équation caractéristique $\ (C)$ $r^2-2r+1=0$ admet 1 comme racine double. Donc,

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; \ (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & (k_1 t + k_2) e^t \end{array} \right\}$$

 \bullet Etape 2 : on cherche une solution particulière y_p de (E) de la forme

$$y_p(t) = (\alpha t^2 + \beta t + \gamma) e^t$$

Après calculs, on trouve que $\alpha = \frac{1}{2}, \, \beta$ et γ quelconques.

Prenons $\beta = \gamma = 0$.

On en déduit que

$$y_p(t) = \frac{1}{2}t^2e^t$$

• Etape 3 : conclusion

$$S = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; & (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & (k_1 t + k_2) e^t + \frac{1}{2} t^2 e^t \end{array} \right\}$$