ЛЕКЦІЯ 4

Спеціальні властивості відношень Види відношень Відношень Відношення еквівалентності

Спеціальні властивості відношень Рефлексивність

Відношення R на множині X називають рефлексивним, якщо для будь-якого $x \in X$ має місце xRx, тобто, кожний елемент $x \in X$ перебуває у відношенні R до самого себе. Приклад 1.

Нехай
$$R_1\subset A\times A \;\;A=\left\{1,2,3\right\}$$

$$R_1=\left\{\left(a,b\right)\middle|a\leq b-\text{на множині натуральних чисел}\right\},$$

$$R_1=\left\{\left(1,1\right),\left(1,2\right),\left(1,3\right),\left(2,2\right),\left(2,3\right),\left(3,3\right)\right\}$$

В цьому відношенні присутні всі елементи типу xR_1x

$$\begin{aligned} &1R_11\equiv \left(1,1\right)\in R_1,\\ &2R_12\equiv \left(2,2\right)\in R_1\\ &3R_13\equiv \left(3,3\right)\in R_1 \end{aligned}$$

Приклад 2. Властивість рефлексивності

Нехай задано відношення $R_2 \subset A \times A$. $A = \left\{1, 2, 3, 4\right\}$.

$$R_2 = \left\{ (a,b) \middle| a \ i \ b - \text{мають спільний дільник на множині цілих чисел} \right\}$$
 $(1,1) \to 1, \ (1,2) \to 1, \ (1,3) \to 1 \ (1,4) \to 1$ $(2,1) \to 1, \ (2,2) \to 2 \ i \ 1, \ (2,3) \to 1, \ (2,4) \to 1 \ i \ 2$ $(3,1) \to 1, \ (3,2) \to 1 \ (3,3) \to 1 \ i \ 3, \ (3,4) \to 1$ $(4,1) \to 1, \ (4,2) \to 2 \ i \ 1, \ (4,3) \to 1, \ (4,4) \to 1 \ i \ 4$ $R_2 = \left\{ (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), \ (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4) \right\}.$

В цьому відношенні присутні всі елементи типу xR_9x

$$\begin{aligned} &1R_21\equiv \left(1,1\right)\in R_2,\\ &2R_22\equiv \left(2,2\right)\in R_2\\ &3R_23\equiv \left(3,3\right)\in R_2\\ &4R_24\equiv \left(4,4\right)\in R_2 \end{aligned}$$

Представлення рефлексивного відношення матрицею Визначення.

Для рефлексивного відношення всі діагональні елементи матриці дорівнюють 1.

Приклад 3. Нехай задано відношення $R \subset A \times A$,

$$A = \{a_1, a_2, a_3, a_4, a_5\}$$

$$R = \{(a_1, a_1), (a_1, a_2), (a_2, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_1), (a_4, a_2), (a_4, a_3), (a_4, a_4), (a_5, a_2), (a_5, a_3), (a_5, a_5)\}$$

	$\left(1\right)$	1	0	0	0
	1	1	0	0	0
$R_2 =$	0	0	1	0	0
_	1	1	1	1	0
$R_2 =$	0	1	1	0	1

	/ /				
	a ₁	a ₂	a ₃	a ₄	a ₅
a ₁	1	1			
a ₂	1	1			
a ₃			1		
a ₄	1	1	1	1	
a ₅		1	1		1

Представлення рефлексивного відношення графом Визначення.

При задаванні відношенння графом кожний елемент має петлю — дугу (x, x).

Приклад 4. Нехай задано відношення $R \subset A \times A$,

$$A = \{a_1, a_2, a_3, a_4, a_5\}$$

$$R = \{(a_1, a_1), (a_1, a_2), (a_2, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_1), (a_4, a_2), (a_4, a_4), (a_5, a_2), (a_5, a_3), (a_5, a_5)\}$$

Антирефлексивність

Відношення R на множині X називають антирефлексивним, якщо з x_1Rx_2 випливає, що $x_1 \neq x_2$.

Приклад 1.

Нехай задане відношення
$$R \subset A \times A$$
 $A = \{1, 2, 3, 4\}$

$$R_1 = \{(a,b) | a < b - на множині цілих чисел\}$$

$$R_1 = \{ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) \}$$

В цьому відношенні всі елементи типу $(x,x)
ot\in R_1$

$$\left(1,1\right)\not\in R_{1},\left(2,2\right)\not\in R_{1},\left(3,3\right)\not\in R_{1},\left(4,4\right)\not\in R_{1},$$

якщо з $x_1 R x_2$ випливає, що $x_1 \neq x_2$.

$$1R_1 2 \equiv \begin{pmatrix} 1,2 \end{pmatrix} \in R_1 \rightarrow 1 \neq 2 \quad 2R_1 3 \equiv \begin{pmatrix} 2,3 \end{pmatrix} \in R_1 \rightarrow 2 \neq 3$$

$$1R_1 3 \equiv (1,3) \in R_1 \to 1 \neq 3$$
 $2R_1 4 \equiv (2,4) \in R_1 \to 2 \neq 4$

$$1R_1 4 \equiv (1,4) \in R_1 \rightarrow 1 \neq 4 \quad 3R_1 4 \equiv (3,4) \in R_1 \rightarrow 3 \neq 4$$

Приклад 2: з x_1Rx_2 випливає, що $x_1 \neq x_2$.

Нехай задано відношення $R_2 \subset A \times A$.

 $A = ig\{$ Іван, Марія, Петро, Оксана, Максим, Ольга $ig\}$.

 $R_2 = \big\{ \big(a, b \big) \big| a \ \epsilon \ cuhom \ b \ ha \ mhoжині \ людей. \big\}$ $R_2 = \big\{ \big(\text{Петро,Iван} \big), \big(\text{Петро,Mapis} \big), \big(\text{Максим,Iван} \big), \big(\text{Максим,Mapis} \big) \big\}$ $\big(\text{Петро,Iван} \big) \in R_2 \to \text{Петро} \neq \text{Іван}$ $\big(\text{Максим,Iван} \big) \in R_2 \to \text{Максим} \neq \text{Іван}$ $\big(\text{Петро,Mapis} \big) \in R_2 \to \text{Петро} \neq \text{Марis}$ $\big(\text{Максим,Mapis} \big) \in R_2 \to \text{Максим} \neq \text{Марis}$

Представлення антирефлексивного відношення матрицею Визначення.

Для антирефлексивного відношення всі діагональні елементи *матриці* дорівнюють 0.

Приклад 3. Нехай задано відношення $R \subset A \times A$,

$$A = \{a_1, a_2, a_3, a_4, a_5\}$$

$$R = \{(a_1, a_2), (a_2, a_1), (a_4, a_1), (a_4, a_2)(a_4, a_3), (a_5, a_2), (a_5, a_3)\}$$

	0	1	0	0	0
	1	0	0	0	0
$R_2 =$	0	0	0	0	0
_	1	1	1	0	0
	0	1	1	0 0 0 0	0

	a ₁	a ₂	a ₃	a ₄	a ₅
a ₁	0	1			
a ₂	1	0			
a ₃			0		
a ₄	1	1	1	0	
a ₅		1	1		0

Представлення антирефлексивного відношення графом

Визначення.

При задаванні відношення $\epsilon pa\phi o m$ жодна з вершина не має петлі — немає дуг виду (x_i, x_i) .

Приклад 4. Нехай задано відношення $R \subset A \times A$,

$$A = \left\{a_1, a_2, a_3, a_4, a_5\right\}$$

$$R = \{(a_1, a_2), (a_2, a_1), (a_4, a_1), (a_4, a_2)(a_4, a_3), (a_5, a_2), (a_5, a_3)\}$$

Симетричність

Нехай задане відношення $R \subseteq X \times X$

Відношення R на множині X називається cumempuчним, якщо для пари $(x_1,x_2) \in R$ з x_1Rx_2 випливає x_2Rx_1

(інакше кажучи, для будь-якої пари відношення R виконується або в обидва боки, або не виконується взагалі).

Приклад 1.

Нехай задане відношення $R \subset A \times A$ $A = \{1,2,3,4\}$ $R_1 = \{(a,b) | a \neq b$ — на множині цілих чисел $\}$ $R_1 = \{(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(2,3),(3,2),(4,2),(2,4),(3,4)(4,3)\}$ $(1,2) \in R_1 \to (2,1) \in R_1 \quad (2,3) \in R_1 \to (3,2) \in R_1 \quad (1,3) \in R_1 \to (3,1) \in R_1 \quad (2,4) \in R_1 \to (4,2) \in R_1 \quad (1,4) \in R_1 \to (4,1) \in R_1 \quad (3,4) \in R_1 \to (4,3) \in R_1$

Приклад 2: 3 x_1Rx_2 випливає x_2Rx_1

Нехай задано відношення $R_2 \subset A \times A$.

 $A = \{$ Іван, Марія, Петро, Оксана, Максим, Ольга $\}$.

$$R_2 = \big\{ \big(a,b\big) \big| a \ \epsilon \ poдичем \ b \big\}$$

$$\big(\text{Петро,Iван} \big) \in R_2 \to \big(\text{Іван,Петро} \big) \in R_2$$

$$\big(\text{Максим,Іван} \big) \in R_2 \to \big(\text{Іван,Максим} \big) \in R_2$$

$$\big(\text{Петро,Марія} \big) \in R_2 \to \big(\text{Марія,Петро} \big) \in R_2$$

$$\big(\text{Максим,Марія} \big) \in R_2 \to \big(\text{Марія,Максим} \big) \in R_2$$

$$\big(\text{Петро,Ольга} \big) \in R_2 \to \big(\text{Ольга,Петро} \big) \in R_2$$

$$\big(\text{Максим,Оксана} \big) \in R_2 \to \big(\text{Максим,Оксана} \big) \in R_2$$

Представлення симетричного відношення матрицею Визначення.

Матриця симетричного відношення є симетричною відносно головної діагоналі

Приклад 3. Нехай задано відношення $R \subset A \times A$,

$$A = \left\{a_1, a_2, a_3, a_4, a_5\right\}$$

$$R = \{(a_1, a_2), (a_2, a_1), (a_1, a_4), (a_4, a_1)(a_3, a_4), (a_4, a_3), (a_3, a_5), (a_5, a_3)\}$$

$$R_2 = egin{pmatrix} 0 & \mathbf{1} & 0 & \mathbf{1} & 0 \ \mathbf{1} & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & \mathbf{1} & \mathbf{1} \ \mathbf{1} & 0 & \mathbf{1} & 0 & 0 \ 0 & 0 & \mathbf{1} & 0 & 0 \end{pmatrix}$$

	a ₁	a ₂	a ₃	a ₄	a ₅
a ₁	X	1		1	
a ₂	1	X			
a ₃			X	1	1
a ₄	1	0	1	X	
a ₅		0	1		X

Представлення симетричного відношення графом Визначення

У графі для кожної дуги з x_i в x_k існує протилежно спрямована дуга з x_k в x_i .

Нехай задане відношення
$$R \subset A \times A$$
. $A = (1,2,3,4,5)$ $R = \{(a_1,a_4),(a_2,a_2),(a_2,a_3),(a_2,a_5),(a_3,a_5),(a_3,a_2),(a_4,a_4),(a_4,a_1),(a_5,a_2),(a_5,a_3)\}$

	a_{1}	a_2	a_3	a_4	a_5
a_1					
a_2		1.	1		T
a_3		1		A STATE OF THE STA	1
a_4	1	.*	A STATE OF THE STA)ł	
a_5		1	1		Town or the state of the state

Антисиметричність

Нехай задане відношення $R \subseteq X \times X$

Відношення R називається антисиметричним, якщо з x_1Rx_2 і x_2Rx_1 випливає, що $x_1=x_2$.

Антисиметричність не є оберненою до симетричності. Приклад 1.

Нехай
$$R_1\subset A\times A,\ A=\left\{1,2,3\right\}$$

$$R_1=\left\{\left(a,b\right)\middle|a\leq b- \text{на множині натуральних чисел}\right\},$$

$$R_1=\left\{\left(1,1\right),\left(1,2\right),\left(1,3\right),\left(2,2\right),\left(2,3\right),\left(3,3\right)\right\}$$

В цьому відношенні з $aR_{{\scriptscriptstyle 1}}b$ і $bR_{{\scriptscriptstyle 1}}a$ випливає, що a=b .

$$\begin{array}{l} \left(\mathbf{1},1\right) \in R_{1} \longrightarrow \left(1,\mathbf{1}\right) \in R_{1}, \\ \left(\mathbf{2},2\right) \in R_{1} \longrightarrow \left(2,\mathbf{2}\right) \in R_{1}, \\ \left(\mathbf{3},3\right) \in R_{1} \longrightarrow \left(3,\mathbf{3}\right) \in R_{1}, \end{array} \qquad \begin{array}{l} \left(1,2\right) \in R_{1} \longrightarrow \left(2,1\right) \not \in R_{1} \\ \left(1,3\right) \in R_{1} \longrightarrow \left(3,1\right) \not \in R_{1} \\ \left(2,3\right) \in R_{1} \longrightarrow \left(3,2\right) \not \in R_{1} \end{array}$$

Приклад 2.3 x₁Rx₂ і x₂Rx₁ випливає, що x₁=x₂.

Нехай задано відношення $R_2 \subset A \times A$. $A = \{1, 2, 3, 4\}$.

 $R_2 = \{(a,b) | a \in \partial$ ільником b на множині ∂ ійсних чисел $\}$ $(1,1) \to 1, (1,2) \to 1, (1,3) \to 1 (1,4) \to 1, (2,2) \to 2, (2,4) \to 2,$

 $(3,3) \rightarrow 3, (4,4) \rightarrow 4.$

$$R_2 = \big\{ \! \big(1,1\big), \! \big(1,2\big), \! \big(1,3\big), \! \big(1,4\big), \! \big(2,2\big), \! \big(2,4\big), \! \big(3,3\big), \! \big(4,4\big) \! \big\}.$$

В цьому відношенні з $aR_{{\scriptscriptstyle 1}}b$ і $bR_{{\scriptscriptstyle 1}}a$ випливає, що a=b .

$$\begin{array}{l} \textbf{(1,1)} \in R_2 \rightarrow \textbf{(1,1)} \in R_2, \\ \textbf{(2,2)} \in R_2 \rightarrow \textbf{(2,2)} \in R_2, \\ \textbf{(3,3)} \in R_2 \rightarrow \textbf{(3,3)} \in R_2, \\ \textbf{(4,4)} \in R_2 \rightarrow \textbf{(4,4)} \in R_2 \end{array} \qquad \begin{array}{l} \textbf{(1,2)} \in R_2 \rightarrow \textbf{(2,1)} \not \in R_2 \\ \textbf{(1,3)} \in R_2 \rightarrow \textbf{(3,1)} \not \in R_2 \\ \textbf{(2,4)} \in R_2 \rightarrow \textbf{(4,2)} \not \in R_2 \end{array}$$

Представлення антисиметричного відношення матрицею Визначення.

- 1.Матриця антисиметричного відношення може мати одиниці на головній діагоналі.
- 2.Відсутня симетрія відносно головної діагоналі. Приклад 3. Нехай задано відношення $R \subset A \times A$,

$$A = \{a_1, a_2, a_3, a_4, a_5\}$$

$$R = \{(a_1, a_1), (a_2, a_1), (a_4, a_4)(a_4, a_1)(a_3, a_4), (a_3, a_5)\}$$

	$\left(1\right)$	0	0	0	0
	1	0	0	0	0
$R_2 =$	0	0	0	1	1
_	1	0	0	1	0
	0	0	0 0 0 0	0	0

	a ₁	a ₂	a ₃	a ₄	a ₅
a ₁	1				
a_2	1	X			
a ₃			X	1	1
a ₄	1			1	
a ₅					X

Представлення антисиметричного відношення графом Визначення

У графі для кожної дуги з x_i в x_k не існує протилежно спрямованої дуги з x_k в x_i .

Приклад 3. Нехай задано відношення $R \subset A \times A$,

$$A = \left\{a_1, a_2, a_3, a_4, a_5\right\}$$

$$R = \{(a_1, a_1), (a_2, a_1), (a_4, a_4)(a_4, a_1)(a_3, a_4), (a_3, a_5)\}$$

Асиметричність

Відношення R називається acumempuчним, якщо для пари $(x_1, x_2) \in R$ з $x_1 R x_2$ випливає, що не виконується $x_2 R x_1$

(інакше кажучи, для будь-якої пари відношення R виконується або в одну сторону, або не виконується взагалі).

Приклад 1.

$$A = \left\{1, 2, 3, 4\right\} \ R_1 = \left\{(a, b) \middle| a > b - \text{на множині цілих чисел}\right\}$$

$$R_1 = \left\{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2)\right\}$$

$$(2, 1) \in R_1 \to (1, 2) \not\in R_1$$

$$(3, 1) \in R_1 \to (1, 3) \not\in R_1$$

$$(4, 1) \in R_1 \to (1, 4) \not\in R_1$$

$$(4, 2) \in R_1 \to (2, 4) \not\in R_1$$

$$(1, 1) \not\in R_1, (2, 2) \not\in R_1, (3, 3) \not\in R_1, (4, 4) \not\in R_1$$

Приклад 2. 3 пари x_1Rx_2 випливає, що не виконується x_2Rx_1

$$R_2 = \left\{ ig(a,b) \middle| a \ \epsilon \ c$$
ином $b \ на$ множині людей. $\right\}$ $ig(1,1) \to 1, \ (1,2) \to 1, \ (1,3) \to 1 \ (1,4) \to 1, \ (2,2) \to 2, \ \ (2,4) \to 2, \ \ (3,3) \to 3, \ (4,4) \to 4.$ $R_2 = \left\{ ig(1,1), \ (1,2), \ (1,3), \ (1,4), \ (2,2), \ (2,4), \ (3,3), \ (4,4) \right\}.$

В цьому відношенні з $aR_{{\scriptscriptstyle 1}}b$ і $bR_{{\scriptscriptstyle 1}}a$ випливає, що a=b .

$$\begin{array}{l} \textbf{(1,1)} \in R_2 \rightarrow \textbf{(1,1)} \in R_2, \\ \textbf{(2,2)} \in R_2 \rightarrow \textbf{(2,2)} \in R_2, \\ \textbf{(3,3)} \in R_2 \rightarrow \textbf{(3,3)} \in R_2, \\ \textbf{(4,4)} \in R_2 \rightarrow \textbf{(4,4)} \in R_2 \end{array} \qquad \begin{array}{l} \textbf{(1,2)} \in R_2 \rightarrow \textbf{(2,1)} \not \in R_2 \\ \textbf{(1,3)} \in R_2 \rightarrow \textbf{(3,1)} \not \in R_2 \\ \textbf{(2,4)} \in R_2 \rightarrow \textbf{(4,2)} \not \in R_2 \end{array}$$

Представлення асиметричного відношення матрицею Визначення.

Матриця асиметричного відношення не містить одиничних елементів, симетричних відносно головної діагоналі.

Приклад 3. Нехай задано відношення $R \subset A \times A$,

$$A = \{a_1, a_2, a_3, a_4, a_5\}$$

$$R = \{(a_2, a_1)(a_4, a_1)(a_3, a_4), (a_3, a_5), (a_2, a_5)\}$$

$$R_2 = egin{pmatrix} 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & 1 \ 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

	a ₁	a ₂	a ₃	a ₄	a ₅
a ₁					
a_2	1	X			1
a ₃			X	1	1
a ₄	1				
a ₅					X

Представлення асиметричного відношення графом Визначення

У графі для кожної дуги з x_i в x_k не існує протилежно спрямованої дуги з x_k в x_i .

Приклад 3. Нехай задано відношення $R \subset A \times A$,

$$A = \{a_1, a_2, a_3, a_4, a_5\}$$

$$R = \{(a_2, a_1), (a_4, a_1)(a_3, a_4), (a_3, a_5), (a_5, a_2)\}$$

Граф без петель

Транзитивність

Нехай задане відношення $R \subseteq X \times X$

Відношення R називають mpaнзитивним, якщо для будь-яких x_1, x_2, x_3 з x_1Rx_2 і x_2Rx_3 випливає x_1Rx_3 .

Приклад.

$$R_1 = \{(a,b) | a \le b$$
 – на множині натуральних чисел $\}$ $R_1 = \{(a,b) | a < b$ – на множині натуральних чисел $\}$

Задавання графом

У графі, що задає транзитивне відношення **?**, для всякої пари дуг таких, що кінець першої збігається з початком другої, існує третя дуга, що має початок в спільній вершині з першою і кінець у спільній вершині з другою.

Антитранзитивність

Відношення R називають *антитранзитивним*, якщо для будь-яких x_1 , x_2 , x_3 з x_1Rx_2 і x_2Rx_3 випливає, що x_1Rx_3 не виконується.

Приклад.

$$R_1 = \{(a,b) | a \ \epsilon \ наступним \ pоком за b на множині \ pоків \}$$
 $R_1 = \{(a,b) | a \ \epsilon \ батьком b на множині людей \}$

Приклад визначення властивостей відношення

Нехай $X=\left\{ lpha,eta,\gamma,\delta\right\}$. Нехай $R\subseteq X imes X$ визначене у вигляді

$$R = \{(\alpha, \alpha), (\alpha, \beta), (\alpha, \delta), (\beta, \alpha), (\delta, \alpha), (\delta, \delta), (\gamma, \delta), (\gamma, \gamma)\}.$$

- 1. R не є рефлексивним, оскільки $\beta \in X$, але $\left(\beta,\beta\right)
 ot\in R$.
- 2. R не є симетричним, оскільки $\left(\gamma,\delta\right)\in R$, але $\left(\delta,\gamma\right)\not\in R$.
- 3. R не є антисиметричним, оскільки $(\alpha,\beta) \in R$ й $(\beta,\alpha) \in R$, але $\alpha \neq \beta$.
- 4. R не є транзитивним, оскільки $(\beta,\alpha) \in R$, $(\alpha,\delta) \in R$, але $(\beta,\delta) \not\in R$.

Види відношень

1. Відношення еквівалентності

Елементи називають еквівалентними, якщо довільний з них може бути замінений іншим.

У цьому випадку говорять, що дані елементи перебувають у відношенні еквівалентності.

Властивості відношення еквівалентності

Відношення R на множині X є **відношенням еквівалентності,** якщо воно

рефлексивне,

симетричне,

транзитивне.

У чому проявляються властивості еквівалентності?

1. Властивість **рефлексивності** проявляється в тому, що кожний елемент еквівалентний самому собі або $x \equiv x$.

- Висловлювання про те, що два елементи є еквівалентними, не вимагає уточнення, який з елементів розглядається першим, а який – другим, тобто має місце x ≡ y → y ≡ x – властивість симетричності.
- 3. Два елементи, які еквівалентні третьому, також є еквівалентними між собою, або має місце $x\equiv y$ і $y\equiv z\to x\equiv z$ властивість транзитивності.

Позначення відношень еквівалентності

Як загальний символ відношення еквівалентності використовується символ « \equiv » (іноді символ « \sim »).

Для окремих відношень еквівалентності використовуються інші символи:

«=» - для позначення рівності;

« » – для позначення паралельності;

« ← » або « ⇄ » – для позначення логічної еквівалентності.

Приклад. Розглянемо приклади множин еквівалентності

$$R_1 = \{(a,b) | a$$
 еквівалентне b на множині чисел $\}$.

Нехай задане відношення $R_1 \subseteq X \times X$ на множині $X = \{1, 2, 3\}$.

$$R_1 = \{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}.$$

Визначимо його властивості:

1. Рефлексивність:

Кожний елемент еквівалентний самому собі: $1R_11, 2R_12, 3R_13$.

2. Симетричність:

- з $1R_12$ випливає, що $2R_11$,
- з $1R_13$ випливає, що $3R_11$,
- з $2R_1 3$ випливає, що $3R_1 2$.

3. Транзитивність:

Якщо $1R_12$ і $2R_13$, то $1R_13$. Якщо $1R_13$ і $3R_12$, то $1R_12$.

Якщо $2R_11$ і $1R_13$, то $2R_13$. Якщо $2R_13$ і $3R_11$, то $2R_11$.

Якщо $3R_11$ і $1R_12$, то $3R_12$. Якщо $3R_12$ і $2R_11$, то $3R_11$.

Приклад

Нехай задане відношення $R_2 \subseteq X \times X$

 $R_2 = \{(a,b) | a$ вчиться в одній групізb на множині студентів $\}$

Нехай $X = \{Иван, Ольга, Максим\}$

 $R_2 = \{(Иван, Ольга), (Иван, Максим), (Иван, Иван),$

(Ольга, Иван), (Ольга, Ольга), (Ольга, Максим)

 $(\mathit{Maксим}, \mathit{Иван}), (\mathit{Maксим}, \mathit{Oльгa}), (\mathit{Maксим}, \mathit{Maксим}) \}$

Рефлексивність: «Іван вчиться в одній групі із самим собою»

Симетричність: «Іван вчиться в одній групі з Ольгою» ≡ «Ольга вчиться в одній групі з Іваном».

Транзитивність: «Іван вчиться в одній групі з Ольгою » і «Ольга вчиться в одній групі з Максимом» → «Іван вчиться в одній групі з Максимом»

Отже, відношення R_2 є еквівалентним.

Класи еквівалентності

Відношення еквівалентності R на множині A **розбиває** його **на підмножини**, елементи яких еквівалентні один одному й не еквівалентні елементам інших підмножин.

Визначення. Підмножини, що не перетинаються, на які розбивається множина A відношенням еквівалентності R, називають **класами еквівалентності**.

Класами еквівалентності називають підмножини, що не перетинаються, які отримані в результаті розбиття множини A відношенням еквівалентності R

Визначення. Множину класів еквівалентності множини A відносно R називають фактор-**множиною і** позначають $[A]_R$.

Приклад

Нехай множина A — це набір різнокольорових повітряних кульок.

1. Відношення $R_{\rm I}$ задамо умовою:

 $ig(a,big)\in R$ якщо «a одного кольору з b »

Одержимо класи еквівалентності з кульок одного кольору.

2. Відношення R_2 задамо умовою:

 $ig(a,big)\in R$ якщо «a одного розміру з b »

Одержимо класи еквівалентності з кульок одного розміру

3. Відношення R_3 задамо умовою:

 $ig(a,big)\in R$ якщо «a однакової форми з b »

Одержимо класи еквівалентності з кульок однакової форми.

Визначення класу еквівалентності

Нехай $a_i \in A$ — елемент множини $A = \{a_1, a_2, ..., a_i, ..., a_n\}$ і R — відношення еквівалентності на $A \times A$.

Тоді $\begin{bmatrix} a_i \end{bmatrix}$ позначає множину $\{x \big| xRa_i\} = \{x \big| (x,a_i) \in R\}$, яку називають **класом еквівалентності**, що містить a_i . Символ $\begin{bmatrix} A \end{bmatrix}_R$ позначає множину всіх класів еквівалентності множини A по відношенню R. Таким чином,

 $\left[A
ight]_R$ - фактор-множина

Приклад. Нехай $A = \{1, 2, 3, 4, 5, 6\}$ і дано відношення еквівалентності:

$$R = \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(1,4),(2,1),(2,4),(3,5),(5,3),(4,1),(4,2)\}.$$

Класи еквівалентності по відношенню R були отримані шляхом визначення класу еквівалентності кожного елемента множини A:

$$\begin{bmatrix} 1 \end{bmatrix} = \big\{ x \big| \big(x, 1 \big) \in R \big\} = \big\{ x \big| xR1 \big\} = \big\{ 1, 2, 4 \big\} \ \ \, \text{де}$$

$$1 \in \big[1 \big] \text{, оскільки } \big(1, 1 \big) \in R \text{,}$$

$$2 \in \big[1 \big] \text{ оскільки } \big(2, 1 \big) \in R \text{,}$$

$$4 \in \big[1 \big] \text{ оскільки } \big(4, 1 \big) \in R \text{.}$$

Так само одержуємо

$$\begin{bmatrix} 2 \end{bmatrix} = \{x | (x,2) \in R\} = \{x | xR2\} = \{2,1,4\} \\
 \begin{bmatrix} 3 \end{bmatrix} = \{x | (x,3) \in R\} = \{x | xR3\} = \{3,5\} \\
 \begin{bmatrix} 4 \end{bmatrix} = \{x | (x,4) \in R\} = \{x | xR4\} = \{4,1,2\} \\
 \begin{bmatrix} 5 \end{bmatrix} = \{x | (x,5) \in R\} = \{x | xR5\} = \{5,3\} \\
 \begin{bmatrix} 6 \end{bmatrix} = \{x | (x,6) \in R\} = \{x | xR6\} = \{6\}$$

Приклад. Нехай Q – множина раціональних чисел.

Розіб'ємо Q на класи еквівалентності, для яких a/b – раціональний дріб, де $a \in Z, b \in N$.

Будь-який дріб c/d буде віднесений до одного класу еквівалентності з a/b тоді й тільки тоді, коли ad = bc. (Наприклад: $2/4 \sim 3/6$, $2/6 \sim 3/9$).

Властивості такого відношення.

- 1. **Рефлексивність.** Для будь-якого дробу a/b виконується рівність ab = ba. Отже, a/bRa/b.
- 2. Симетричність. Якщо a/bRc/d, то ad=bc, у той же час bc=ad. Звідси c/d Ra/b.
- 3. **Транзитивність.** Нехай a/bRc/d і c/dRm/n. Доведемо, що a/bRm/n, тобто an = bm. Дійсно, оскільки a/bRc/d, то ad = bc і c/dRm/n, те cn = dm. Домножимо першу рівність на n, а другу на b, одержимо and = bcn і bcn = bmd. В обох рівностях присутнє bcn. Тому and = bmd або an = bm.

Завдання 1

Нехай приміщення лабораторії складається із трьох кімнат. Усього співробітників у лабораторії — 8.

Множина всіх співробітників: $X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$

Множина співробітників в 1-й кімнаті: $X_1 = \{x_1, x_2, x_3\}$

Множина співробітників в 2-й кімнаті: $X_2 = \{x_4\}$

Множина співробітників в 3-й кімнаті: $X_1 = \{x_5, x_6, x_7, x_8\}$

$$X = X_1 \cup X_2 \cup X_3$$

Питання 1.

Записати матрицю відношення R, заданого предикатом:

$$R = \{(x,y) \mid "x \ працює в одній кімнаті з у"\}$$

ВІДПОВІДЬ НА ЗАПИТАННЯ 1 Відношення

 $R = \{(x,y) | "x працює в одній кімнаті з у" \}$

Представлене матрицею

					-	-			
R	x_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5	\mathcal{X}_{6}	\mathcal{X}_7	x_8	
\mathcal{X}_1	1	1	1	0	0	0	0	0	
x_2	1	1	1	0	0	0	0	0	
x_3	1	1	1	0	0	0	0		
x_4	0	0	0	1	0	0	0	0	
x_5	0	0	0	0	1	1	1	1	
x_6	0	0	0	0	1	1	1	1	
x_7	0	0	0	0	1	1	1	1	
x_8	0	0	0	0	1	1	1	1	

Питання 2

Визначите властивості відношення ${\it R}$ і його вид