School of Computing National University of Singapore CS CS5240 Theoretical Foundations of Multimedia

Linear Algebra Review

We will use uppercase bold letters, \mathbf{A} , to denote matrices, lowercase bold letters, \mathbf{x} , to denote column vectors, and lowercase normal letters, a, to denote scalars. Thus:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \quad \text{where } a_{ij} \in \mathbb{R}$$

Above matrix has size $= m \times n$, i.e. m rows by n columns. If m = n, we say that \mathbf{A} is square.

Vector: Column vector
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 $\mathbf{x} = \mathbb{R}^n$

Row vector: $\mathbf{x}^{\top} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$ where $^{\top}$ denotes the transpose operation.

Basic Operations

Transpose

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^{\top} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Equality

 $\mathbf{A} = \mathbf{B}$ iff same size and $a_{ij} = b_{ij}$ for all i, j

Addition, Multiplication

$$k \in \mathbb{R}$$
, $k\mathbf{A} = [ka_{ij}]$
 $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$, \mathbf{A}, \mathbf{B} same size
 $\mathbf{C} = \mathbf{A}\mathbf{B}$ $\mathbf{A} : m \times r$ $\mathbf{B} : r \times n$ $\mathbf{C} : m \times n$
e.g. $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ 1 & 0 \end{bmatrix}$
 $c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj}$
Note:

$$\mathbf{AB} \neq \mathbf{BA}$$
$$(\mathbf{AB})^{\top} = \mathbf{B}^{\top} \mathbf{A}^{\top}$$

Matrix-Vector Multiplication

$$Ax = y$$

e.g.
$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Linear Combination of columns...

$$(1)\begin{bmatrix}1\\-1\end{bmatrix} + (-1)\begin{bmatrix}2\\0\end{bmatrix} + (1)\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}0\\1\end{bmatrix}$$

In general,

$$\begin{bmatrix} \vdots & \vdots & & \vdots \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \\ \vdots & \vdots & & \vdots \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n \qquad = \sum_{i=1}^n x_i \mathbf{a}_i$$

Similarly,

$$\mathbf{x}^{\mathsf{T}}\mathbf{A} = \text{row vector}$$

= linear combination of rows of **A**

Powers

$$\mathbf{A}^2 = \mathbf{A}\mathbf{A}$$
 $\mathbf{A}^k = \underbrace{\mathbf{A}\mathbf{A}\dots\mathbf{A}}_{k}$
 $\mathbf{A}^0 = \mathbf{I}$ (by convention)

Special Matrices

Zero

$$\mathbf{0} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ \vdots & & \vdots & \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

Identity

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

 $n \times n$ matrix

1's along diagonal

0's elsewhere

Triangular

e.g.
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
 or
$$\begin{bmatrix} 3 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

Diagonal

e.g.
$$\begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Symmetric

means
$$\mathbf{A}^{\top} = \mathbf{A}$$

e.g.
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

Skew-symmetric

means
$$\mathbf{A}^{\top} = -\mathbf{A}$$

Inverse A^{-1}

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

Does not always exist. If A^{-1} exists, we say **A** is invertible or non-singular otherwise **A** is singular.

Note:

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$
$$(\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top}$$

Proof:

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

$$\Rightarrow (\mathbf{A}^{-1}\mathbf{A})^{\top} = \mathbf{I}$$

$$\Rightarrow \mathbf{A}^{\top} \underbrace{(\mathbf{A}^{-1})^{\top}}_{(\mathbf{A}^{\top})^{-1} \text{ by definition}} = \mathbf{I}$$

Thus we may write $\mathbf{A}^{-\top}$ Note: $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$

Note:
$$(A^{-1})^{-1} = A$$

$$AB = 0$$
 does NOT mean $A = 0$ or $B = 0$

Inner Product (Dot Product)

$$\mathbf{x}^{\top}\mathbf{y} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$= \sum_{i=1}^n x_i y_i \qquad \text{(scalar)}$$

Outer Product

$$\mathbf{x}\mathbf{y}^{\top} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}$$

$$= \begin{bmatrix} x_1y_1 & x_1y_2 & \dots & x_1y_n \\ x_2y_1 & x_2y_2 & \dots & x_2y_n \\ & & \vdots & \\ x_ny_1 & \dots & \dots & x_ny_n \end{bmatrix}$$

 $\mathbf{x}\mathbf{y}^{\top}$ is singular (why?)

System of Linear Equations

Often, we need to solve:

$$2x + y + z = 5$$
$$4x - 6y = -2$$
$$-2x + 7y + 2z = 9$$

Rewrite in matrix form:

$$\begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}$$
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

Solution: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ if \mathbf{A}^{-1} exists

Each equation represents a plane in 3D. Solution is the intersection of the planes. Possibilities:

- (a) 3 planes parallel. No solution
- (b) 2 planes parallel. No solution.
- (c) No intersection. No solution.
- (d) 3 planes coincident. Infinitely many solutions.

- (e) 3 planes intersect in a line. Infinitely many solutions.
- (f) 3 planes intersect at a point. Unique solution.

Later we will tackle the case when **A** is $m \times n$ (not square)

The 4 Fundamental Subspaces

Column space: $Col(\mathbf{A}) = \{all \text{ possible linear combinations of cols. of } \mathbf{A} \}$. Also known as $Range(\mathbf{A})$ or the span of the columns of \mathbf{A} .

Let
$$\mathbf{A} = \begin{bmatrix} \vdots & \vdots & & \vdots \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \\ \vdots & \vdots & & \vdots \end{bmatrix}$$
. Then $\operatorname{Col}(\mathbf{A}) = \left\{ \sum_i \lambda_i \mathbf{a}_i : \lambda_i \in \mathbb{R} \right\}$

e.g.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ -1 & 3 \end{bmatrix}$$

 $Col(\mathbf{A}) = \{ \text{ all the vectors with 2nd component} = 0 \} = xz \text{ plane}$

Null space: $\text{Null}(\mathbf{A}) = \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{0}\}$

For previous \mathbf{A} , $\text{Null}(\mathbf{A}) = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ -1 & 3 & 2 \end{bmatrix}$$

Note: 3rd col. of B = sum of 1st two cols.

$$Null(\mathbf{B}) = \left\{ \lambda \begin{bmatrix} 1\\1\\-1 \end{bmatrix} : \lambda \in \mathbb{R} \right\}$$

Note: $Col(\mathbf{B}) = Col(\mathbf{A})$, but nullspaces are different.

Similarly, for a matrix \mathbf{A} , we can define its *rowspace* as $\operatorname{Col}(\mathbf{A}^{\top})$; and its *left-nullspace* as $\operatorname{Null}(\mathbf{A}^{\top})$.

For a matrix A, its rowspace is orthogonal to its nullspace, while its column space is orthogonal to its left-nullspace. Multiplication takes the rowspace of a matrix to its column space.

Linear Independence

A set of vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$ is linearly independent if the only solution for

$$\sum_i \lambda_i \mathbf{a}_i = \mathbf{0}$$

is
$$\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$$

Linear dependence

$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \ldots + \lambda_n \mathbf{a}_n = \mathbf{0}$$

say $\lambda_1 \neq 0$, then $\mathbf{a}_1 = -\frac{\lambda_2}{\lambda_1} \mathbf{a}_2 - \frac{\lambda_3}{\lambda_1} \mathbf{a}_3 \ldots - \frac{\lambda_n}{\lambda_1} \mathbf{a}_n$

i.e. we can express \mathbf{a}_1 as linear combination of $\mathbf{a}_2, \dots, \mathbf{a}_n$

 $rank(\mathbf{A}) = \#$ linearly independent cols. of \mathbf{A}

 $\text{nullity}(\mathbf{A}) = \text{dimension of Null}(\mathbf{A})$

 $rank(\mathbf{A}) + nullity(\mathbf{A}) = \# columns$

Basically, rank counts the number of linear independent cols, nullity counts the number of linearly dependent cols.

Norm (length)

Euclidean or 2-norm:
$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} = \sqrt{\mathbf{x}^{\top}\mathbf{x}}$$

p-norm:
$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Euclidean distance between \mathbf{x}, \mathbf{y} : $\|\mathbf{x} - \mathbf{y}\|_2$

Cosine distance: $\mathbf{x}^{\top}\mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$

$$-1 \le \cos \theta = \frac{\mathbf{x}^{\top} \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1$$

what's the difference between Euclidean and cosine distance?

Basis, Orthogonality

Consider 2D map, coordinate axes i,j

Any point **p** in 2D may be written as $\mathbf{p} = \alpha \mathbf{i} + \beta \mathbf{j}$ for some scalars α, β

i,j are called basis vectors.

In fact, any 2 non-parallel vectors can be basis e.g. $\mathbf{p} = \alpha' \mathbf{a} + \beta' \mathbf{b}$

i,j are "special" because they are orthonormal. i.e. unit length and 90° to each other.

Orthogonality

 \mathbf{x}, \mathbf{y} are orthogonal if $\mathbf{x}^{\top} \mathbf{y} = 0$

Orthonormal

A set of vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ are orthonormal if

$$\mathbf{b}_i^{\top} \mathbf{b}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

In general, in \mathbb{R}^n , we need n vectors to form a basis. Prefer orthonormal basis because of convenience.

e.g. in 2D,
$$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$$
 and $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$ form orthonormal basis.

Note: basis vectors are linearly independent., otherwise they cannot span (cover) the whole space.

6

A matrix \mathbf{Q} is orthogonal if $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$, i.e. columns of \mathbf{Q} are orthonormal.

Note: $\mathbf{Q}\mathbf{Q}^{\top} \neq \mathbf{I}$, unless \mathbf{Q} is square.

e.g. $\mathbf{Q} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ is an orthogonal matrix.

Gram-Schmidt Procedure

Input: $\mathbf{x}_1, \dots, \mathbf{x}_n$ linearly independent vectors in \mathbb{R}^n Output: $\mathbf{u}_1, \dots, \mathbf{u}_n$ orthonormal basis.

1. Let
$$\mathbf{y}_1 = \mathbf{x}_1$$
, let $\mathbf{u}_1 = \frac{\mathbf{y}_1}{\|\mathbf{y}_1\|}$

2.

$$\mathbf{y}_2 = \mathbf{x}_2 - (\mathbf{x}_2^{\top} \mathbf{u}_1) \mathbf{u}_1$$

 $\mathbf{u}_2 = \frac{\mathbf{y}_2}{\|\mathbf{y}_2\|}$

At every step:

$$\mathbf{y}_k = \mathbf{x}_k - \sum_{i=1}^{k-1} (\mathbf{x}_k^{\top} \mathbf{u}_i) \mathbf{u}_i$$
 $\mathbf{u}_k = \frac{\mathbf{y}_k}{\|\mathbf{y}_k\|}$

Idea: Subtract away components that are represented in existing basis vectors.

e.g.
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$

1.
$$\mathbf{u}_1 = \frac{\mathbf{x}_1}{\|\mathbf{x}_1\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

2.
$$\mathbf{y}_{2} = \mathbf{x}_{2} - (\mathbf{x}_{2}^{\top} \mathbf{u}_{1}) \mathbf{u}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{\sqrt{2}} (\frac{1}{\sqrt{2}}) \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix}$$

$$\mathbf{u}_{2} = \frac{\mathbf{y}_{2}}{\|\mathbf{y}_{2}\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

3.
$$\mathbf{y}_{3} = \mathbf{x}_{3} - (\mathbf{x}_{3}^{\top} \mathbf{u}_{1}) \mathbf{u}_{1} - (\mathbf{x}_{3}^{\top} \mathbf{u}_{2}) \mathbf{u}_{2} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} - \sqrt{2} \left(\frac{1}{\sqrt{2}} \right) \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \sqrt{2} \left(\frac{1}{\sqrt{2}} \right) \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
$$\mathbf{u}_{3} = \frac{\mathbf{y}_{3}}{\|\mathbf{y}_{3}\|} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Thus,
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

After Gram-Schmidt,
$$\mathbf{A} = \underbrace{\begin{bmatrix} \vdots & \vdots & \vdots \\ \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \\ \vdots & \vdots & \vdots \end{bmatrix}}_{\mathbf{Q}_{\mathbf{m} \times \mathbf{n}}} \underbrace{\begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} & \sqrt{2} \\ & \frac{1}{\sqrt{2}} & \sqrt{2} \\ & & 1 \end{bmatrix}}_{\mathbf{R}_{n \times n}}$$

QR factorization!

In general, an $m \times n$ matrix **A** with linearly independent columns can be factored into

$$\mathbf{A} = \underbrace{\mathbf{Q}}_{m \times n} \underbrace{\mathbf{R}}_{n \times n}$$

where, \mathbf{Q} is orthogonal, \mathbf{R} is upper triangular, square, invertible.

The columns of \mathbf{Q} can be obtained using Gram-Schmidt on the cols. of \mathbf{A} .

The entries in \mathbf{R} are the inner products computed during the Gram-Schmidt procedure.

$$\mathbf{R} = \begin{bmatrix} \mathbf{x}_1^\top \mathbf{u}_1 & \mathbf{x}_2^\top \mathbf{u}_1 & \mathbf{x}_3^\top \mathbf{u}_1 \\ & \mathbf{x}_2^\top \mathbf{u}_2 & \mathbf{x}_3^\top \mathbf{u}_2 \\ & & \mathbf{x}_3^\top \mathbf{u}_3 \end{bmatrix}$$

Alternatively, once we have \mathbf{Q} , then $\mathbf{R} = \mathbf{Q}^{\mathsf{T}} \mathbf{A}$.

Or, if we have \mathbf{R} , $\mathbf{Q} = \mathbf{A}\mathbf{R}^{-1}$. Note that $Col(\mathbf{Q}) = Col(\mathbf{A})$.

Eigenvalues/ Eigenvectors

For a square matrix \mathbf{A} , we often need to solve for \mathbf{x} such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
 Eigenvector/eigenvalue problem.

Where, \mathbf{x} is the eigenvector. λ is a scalar (eigenvalue).

In general, a square matrix rotates and scales \mathbf{x} . But if \mathbf{x} is an eigenvector, then \mathbf{A} simply scales it (no rotation)

How to compute \mathbf{x} , λ ? One way (only for small matrices) is to solve the *n*th degree polynomial:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Determinant, Trace

 $\det(\mathbf{A})$ measures "size" of \mathbf{A}

For
$$2 \times 2$$
 $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\det(\mathbf{A}) = ad - bc$

For triangular matrix, det = product of diagonal elements.

In general, $det(\mathbf{A})$ follows a recursive formula. Slow to compute. So we use other tricks:

 $det(\mathbf{A}) = product \text{ of eigenvalues } det(\mathbf{AB}) = det(\mathbf{A})det(\mathbf{B})$

$$\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$$

$$det(\mathbf{A}) = 0 \iff \mathbf{A} \text{ singular}$$

$$\det(\mathbf{A}) = \det(\mathbf{A}^{\top})$$

$$det(k\mathbf{A}) = k^n det(\mathbf{A}), \quad \mathbf{A} \text{ is } n \times n$$

Trace

$$tr(\mathbf{A}) = sum \text{ of diagonal elements}$$

= sum of eigenvalues

$$tr(\mathbf{AB}) = tr(\mathbf{BA})$$
$$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$$

 $tr(\mathbf{A})$ also measures "size" of \mathbf{A} .

Back to eigenvector/eigenvalue

e.g.
$$\mathbf{A} = \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

$$\Rightarrow \det\left(\begin{bmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{bmatrix}\right) = 0$$

$$\Rightarrow (-5 - \lambda)(-2 - \lambda) - 4 = 0$$

$$\Rightarrow \lambda^2 + 7\lambda + 6 = 0$$

$$\Rightarrow (\lambda + 1)(\lambda + 6) = 0$$

roots: $\lambda_1 = -1$, $\lambda_2 = -6$

2 eigenvalues

Find
$$\mathbf{x}_1 : \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} -\alpha \\ -\beta \end{bmatrix}$$

since $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$

$$\Rightarrow$$
 $2\alpha = \beta$, so $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, corresponding to $\lambda_1 = -1$

Find
$$\mathbf{x}_2 : \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} -6\alpha \\ -6\beta \end{bmatrix} \Rightarrow \quad \alpha = -2\beta$$

so $\mathbf{x}_2 = \begin{bmatrix} -2\\1 \end{bmatrix}$, corresponding to $\lambda_2 = -6$ There are 2 eigenvectors.

In general, $\vec{\mathbf{A}}$ $n \times n$ has n eigenvalues and n eigenvectors. Note: They can be complex! Note:

$$(k\mathbf{A})\mathbf{x} = (k\lambda)\mathbf{x} \tag{1}$$

$$\mathbf{A}(k\mathbf{x}) = \lambda(k\mathbf{x}) \tag{2}$$

$$\mathbf{A}^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x} \tag{3}$$

Because of Equation (2) above, from now on we will assume that an eigenvector has norm = 1. Since if it is not, we can simply divide it by its norm.

In matrix form: Let
$$\mathbf{E} = \begin{bmatrix} \vdots & \vdots & & \vdots \\ \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \\ \vdots & \vdots & & \vdots \end{bmatrix}$$
 eigenvector matrix $\begin{bmatrix} \lambda_1 & & & \end{bmatrix}$

$$\Lambda = egin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$
 diagonal eigenvalue matrix. Then $\mathbf{A}\mathbf{E} = \mathbf{E}\Lambda$

If **A** symmetric, then **E** is orthogonal and Λ is real, thus $\mathbf{A} = \mathbf{E}\Lambda\mathbf{E}^{\top}$ or $\mathbf{E}^{\top}\mathbf{A}\mathbf{E} = \Lambda$. This is called the *Spectral Theorem*.

We say that ${\bf E}$ diagonalizes ${\bf A}$ Note:

$$\mathbf{A}^{2} = (\mathbf{E}\Lambda\mathbf{E}^{\top})(\mathbf{E}\Lambda\mathbf{E}^{\top})$$

$$= \mathbf{E}\Lambda^{2}\mathbf{E}^{\top} \quad \text{since } \mathbf{E}^{\top}\mathbf{E} = \mathbf{I}$$

$$\mathbf{A}^{k} = (\mathbf{E}\Lambda\mathbf{E}^{\top})(\mathbf{E}\Lambda\mathbf{E}^{\top})\dots(\mathbf{E}\Lambda\mathbf{E}^{\top})$$

$$= \mathbf{E}\Lambda^{k}\mathbf{E}$$

$$\mathbf{A}^{-1} = \mathbf{E}\Lambda^{-1}\mathbf{E}^{\top}$$

Inverse of diagonal matrix: $\begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{\lambda_1} & & & \\ & \frac{1}{\lambda_2} & & \\ & & \ddots & \\ & & & \frac{1}{\lambda_n} \end{bmatrix}$

Cross product

This is defined only for vectors in \mathbb{R}^3 . Let $\mathbf{a} = [a_1 \ a_2 \ a_3]^\top$, and $\mathbf{b} = [b_1 \ b_2 \ b_3]^\top$. Then the vector cross product is defined as:

$$\mathbf{c} = \mathbf{a} \times \mathbf{b}$$

$$= \det \begin{pmatrix} \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \end{pmatrix}$$

$$= (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

$$= [(a_2b_3 - a_3b_2) \quad (a_1b_3 - a_3b_1) \quad (a_1b_2 - a_2b_1)]^{\top}$$

Geometrically, \mathbf{c} is orthogonal to both \mathbf{a} and \mathbf{b} . Norm: $||\mathbf{c}|| = ||\mathbf{a}|| ||\mathbf{b}|| \sin \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} . The direction of \mathbf{c} is usually determined by the *right-hand rule*: position the 4 fingers of your right hand over \mathbf{a} , and rotate around the thumb towards \mathbf{b} ; the thumb points in the direction of \mathbf{c} . Note: some authors write $\mathbf{a} \wedge \mathbf{b}$ to denote cross product. Useful identities: for any 3 vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$,

$$\mathbf{a}^{\top}\mathbf{b} \times \mathbf{c} = \mathbf{b}^{\top}\mathbf{c} \times \mathbf{a} = \mathbf{c}^{\top}\mathbf{a} \times \mathbf{b}$$

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a}^{\top}\mathbf{c})\mathbf{b} - (\mathbf{a}^{\top}\mathbf{b})\mathbf{c}$