DC - Direct Current

DC - Direct Current

* What is the current through a 72 Ω resistor if connected to a 3.6 V battery?

$$V = IR$$

$$I = \frac{V}{R} = \frac{3.6 \text{ V}}{72 \Omega}$$

$$I = 0.05 \text{ A (or) } 50 \text{ mA}$$

AC - Alternating Current

AC - Alternating Current

AC - Alternating Current

AC - Direct Current

What is the ratio of the average voltage to the maximum voltage in an AC circuit?

$$\frac{V_{average}}{V_{max}} = \frac{3.54 \text{ V}}{5 \text{ V}} = 0.707$$

$$V_{average} = 0.707 (V_{\text{max}})$$

$$V_{\text{max}} = 1.414 \left(V_{average}\right)$$

AC - Direct Current

What is the ratio of the average voltage to the maximum voltage in an AC circuit?

$$V_{\rm max} = \sqrt{2} \Big(V_{average} \Big)$$

$$V_o = \sqrt{2}(V_{rms})$$

AC - Direct Current

How does this effect Ohm's Law?

$$V = IR$$

$$V_{o} = I_{o}R$$

$$\sqrt{2}(V_{rms}) = I_o R$$

$$V_{rms} = \frac{I_o}{\sqrt{2}}R$$

$$I_{rms} = \frac{I_o}{\sqrt{2}} ?$$

$$I_o = \sqrt{2} (I_{rms})$$

$$V_o = \sqrt{2} (V_{rms})$$

Ohm's Law and the Power Eqn.

$$V = IR$$

$$I = \frac{V}{R}$$

$$R = \frac{V}{I}$$

$$P = I(IR)$$

$$P = \left(\frac{V}{R}\right)V$$

$$P = IV$$

$$P = I^2 R$$

$$P = \frac{V^2}{R}$$

Max vs. RMS

$$V_o = I_o R$$

$$V_o = I_o R$$
 $V_{rms} = I_{rms} R$ $P = I_o V_o$ $\overline{P} = I_{rms} V_{rms}$

$$P = I_o V_o$$

$$\overline{P} = I_{rms} V_{rms}$$

$$I_o = \frac{V_o}{R}$$

$$I_o = \frac{V_o}{R}$$
 $I_{rms} = \frac{V_{rms}}{R}$ $P = I_o^2 R$ $\overline{P} = I_{rms}^2 R$

$$P = I_o^2 R$$

$$\overline{P} = I_{rms}^2 R$$

$$R = \frac{V_o}{I_o}$$

$$R = \frac{V_o}{I_o} \qquad R = \frac{V_{rms}}{I_{rms}} \qquad P = \frac{V_o^2}{R} \qquad \overline{P} = \frac{V_{rms}^2}{R}$$

$$P = \frac{V_o^2}{R}$$

$$\overline{P} = \frac{V_{rms}^2}{R}$$

Between MAX and rms

$$\overline{P} = I_{rms} V_{rms}$$

$$I_o = \sqrt{2}I_{rms}$$

$$V_{rms} = \frac{V_o}{\sqrt{2}}$$

 $V_{o} = \sqrt{2V_{rms}}$

$$I_{rms} = \frac{I_o}{\sqrt{2}}$$

$$\overline{P} = I_{rms} V_{rms} = \frac{I_o}{\sqrt{2}} \frac{V_o}{\sqrt{2}} = \frac{1}{\sqrt{4}} I_o V_o$$

$$\overline{P} = \frac{1}{2} I_o V_o$$

Complete Picture

$$V = IR$$

$$I = \frac{V}{R}$$

$$R = \frac{V}{I}$$

$$P = IV$$

$$P = I^2 R$$

$$P = \frac{V^2}{R}$$

$$\overline{P} = \frac{1}{2} I_o V_o$$

$$\overline{P} = \frac{1}{2} I_o^2 R$$

$$\overline{P} = \frac{1}{2} \frac{V_o^2}{R}$$

Household Electricity

- Standard = AC, 110-120V
- Air Conditioning, Electric Furnace, etc = 220V or 440V
- Circuit Breakers = Ensure current doesn't get too high.
 - Too High Current = Heat = BAD!

$$V_{\text{max}} = 1.414 \left(V_{average}\right)$$

Household Electricity

- * 1 Kilowatt = power
- 1 Kilowatt-Hour = Energy

$$Power = \frac{Energy}{Time}$$

$$Watts = \frac{Joules}{second}$$

Household Electricity

How many Joules are in 1 Kilowatt-Hour?

- A battery is made of two silver wires stuck into a lemon. Which of the following is the expected result?
 - A. The battery works, but not well because the lemon is a weak electrolyte.
 - B. The battery works well because citric acid reacts well with silver
 - C. The battery doesn't work because the metals are the same
 - D. The battery doesn't work because citric acid is not an electrolyte
 - E. The battery has a voltage of 0.78 V, it's what Volta used is his research.

- A battery is made of two silver wires stuck into a lemon. Which of the following is the expected result?
 - A. The battery works, but not well because the lemon is a weak electrolyte.
 - B. The battery works well because citric acid reacts well with silver
 - C. The battery doesn't work because the metals are the same
 - D. The battery doesn't work because citric acid is not an electrolyte
 - E. The battery has a voltage of 0.78 V, it's what Volta used is his research.

* A circuit is connected to a 9.0V battery. If the current is 0.3 Amperes, what is the resistance?

A. 0.03Ω

B. 3.0Ω

C. 9.3Ω

D. 30Ω

E. Answer not provided

* A circuit is connected to a 9.0V battery. If the current is 0.3 Amperes, what is the resistance?

A. 0.03Ω

B. 3.0Ω

C. 9.3Ω

 $D.30\Omega$

E. Answer not provided

- If the length of a wire is doubled which of the following is true?
 - A. The resistivity doubles
 - B. The resistance doubles
 - C. The resistivity halves
 - D. The resistance halves
 - E. More information required

- If the length of a wire is doubled which of the following is true?
 - A. The resistivity doubles
 - B. The resistance doubles
 - C. The resistivity halves
 - D. The resistance halves
 - E. More information required

What is the power of the battery in problem 2?

$$(V = 9V, I = 3.0 A, R = 30 \Omega)$$

A. 0.81 W

B. 0.81 J

C. 2.7 W

D. 2.7 J

E. 270 W

What is the power of the battery in problem 2?

$$(V = 9V, I = 3.0 A, R = 30 \Omega)$$

A. 0.81 W

B. 0.81 J

C. 2.7 W

D. 2.7 J

E. 270 W

- What effect does an increase in temperature have on a semiconductor?
 - A. It increases the resistance
 - B. It increases the resistivity
 - C. It depends on the type of semi-conductor
 - D. it decreases the resistance
 - E. It decreases the resistivity

- What effect does an increase in temperature have on a semiconductor?
 - A. It increases the resistance
 - B. It increases the resistivity
 - C. It depends on the type of semi-conductor
 - D. it decreases the resistance
 - E. It decreases the resistivity

What effect does an increase in temperature have on a semi-conductor?

$$\rho_{T} = \rho_{o} \left[1 + \alpha \left(T_{f} - T_{o} \right) \right]$$

* p.508-509 discusses this formula. Notice for a small section of materials that are semi-conductors α is **negative** so as temperature increases then ρ_T will actually decrease. As a result the resistance will also decrease. (so the answer is both D and E)

Batteries

- ❖ If I want to greatly increase the voltage in a circuit how could I accomplish that goal?
 - A. Change the materials used for the cathode and anode
 - B. Change the chemical used for the electrolyte
 - C. Connect multiple batteries in parallel
 - D. Connect multiple batteries in series

Batteries

- If I want to greatly increase the voltage in a circuit how could I accomplish that goal?
 - A. Change the materials used for the cathode and anode
 - B. Change the chemical used for the electrolyte
 - C. Connect multiple batteries in parallel
 - D. Connect multiple batteries in series

Series

- Batteries connected from cathode of one battery to anode of the next
- Increases voltage of the combined batteries.

$$V_{t} = nV_{battery}$$

Batteries

- What effect does connecting batteries in parallel have?
 - A. It makes the battery last longer
 - B. It increases the voltage of the battery
 - C. It increases the current from the battery
 - D. More than one of the above

Batteries

- What effect does connecting batteries in parallel have?
 - A. It makes the battery last longer
 - B. It increases the voltage of the battery
 - C. It increases the current from the battery
 - D. More than one of the above (A & C with limits)

Parallel

- Batteries connected with all cathodes together and all anodes together
- Increases current from the combined batteries OR increases the longevity of the combined batteries.