

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-10, Eq. 7.4-1)	16.49 psf	Sloped Roof Snow Load, P_s =
	1.00	I _s =
	0.73	$C_s =$
	0.90	$C_e =$
	1.20	$C_t =$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 19.00 psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.150	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.600	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applied andy nom the canade.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>87.71</u>	<u>5358.80</u>	k
Compressive Load =	3663.99	<u>4535.75</u>	k
Lateral Load =	24.37	3354.99	k
Moment (Weak Axis) =	<u>0.05</u>	<u>0.01</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 145128.6 in-lbs Resisting Force Required = 2029.77 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3382.95 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding 773.69 lbs Force = Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1934.22 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion 773.69 lbs Sliding Force = Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

2500 psi

8 in

 $f_c =$ Length =

Bearing Pressure

 Ballast Width

 35 in
 36 in
 37 in
 38 in

 P_{fto} = (145 pcf)(11.92 ft)(1.5 ft)(2.92 ft) = 7560 lbs
 7776 lbs
 7992 lbs
 8208 lbs

ASD LC		1.0D	+ 1.0S			1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1398 lbs	1398 lbs	1398 lbs	1398 lbs	1133 lbs	1133 lbs	1133 lbs	1133 lbs	1752 lbs	1752 lbs	1752 lbs	1752 lbs	-29 lbs	-29 lbs	-29 lbs	-29 lbs
F _B	1394 lbs	1394 lbs	1394 lbs	1394 lbs	1842 lbs	1842 lbs	1842 lbs	1842 lbs	2283 lbs	2283 lbs	2283 lbs	2283 lbs	-2463 lbs	-2463 lbs	-2463 lbs	-2463 lbs
F _V	207 lbs	207 lbs	207 lbs	207 lbs	1418 lbs	1418 lbs	1418 lbs	1418 lbs	1199 lbs	1199 lbs	1199 lbs	1199 lbs	-1547 lbs	-1547 lbs	-1547 lbs	-1547 lbs
P _{total}	10352 lbs	10568 lbs	10784 lbs	11000 lbs	10535 lbs	10751 lbs	10967 lbs	11183 lbs	11595 lbs	11811 lbs	12027 lbs	12243 lbs	2044 lbs	2173 lbs	2303 lbs	2433 lbs
M	3663 lbs-ft	3663 lbs-ft	3663 lbs-ft	3663 lbs-ft	2767 lbs-ft	2767 lbs-ft	2767 lbs-ft	2767 lbs-ft	4439 lbs-ft	4439 lbs-ft	4439 lbs-ft	4439 lbs-ft	4698 lbs-ft	4698 lbs-ft	4698 lbs-ft	4698 lbs-ft
е	0.35 ft	0.35 ft	0.34 ft	0.33 ft	0.26 ft	0.26 ft	0.25 ft	0.25 ft	0.38 ft	0.38 ft	0.37 ft	0.36 ft	2.30 ft	2.16 ft	2.04 ft	1.93 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft								
f _{min}	244.8 psf	244.0 psf	243.3 psf	242.6 psf	263.0 psf	261.8 psf	260.6 psf	259.4 psf	269.3 psf	267.8 psf	266.5 psf	265.2 psf	0.0 psf	0.0 psf	0.0 psf	1.8 psf
f _{max}	350.9 psf	347.2 psf	343.7 psf	340.4 psf	343.2 psf	339.7 psf	336.4 psf	333.3 psf	397.9 psf	392.9 psf	388.1 psf	383.7 psf	127.6 psf	127.2 psf	127.1 psf	127.1 psf

Maximum Bearing Pressure = 398 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 1208.3 \text{ ft-lbs}$

Resisting Force Required = 828.53 lbs S.F. = 1.67

Weight Required = 1380.88 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	288 lbs	720 lbs	288 lbs	851 lbs	2344 lbs	851 lbs	84 lbs	211 lbs	84 lbs		
F _V	3 lbs	0 lbs	3 lbs	10 lbs	0 lbs	10 lbs	1 lbs	0 lbs	1 lbs		
P _{total}	9647 lbs	7560 lbs	9647 lbs	9760 lbs	7560 lbs	9760 lbs	2821 lbs	7560 lbs	2821 lbs		
М	10 lbs-ft	0 lbs-ft	10 lbs-ft	33 lbs-ft	0 lbs-ft	33 lbs-ft	3 lbs-ft	0 lbs-ft	3 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	276.9 psf	217.5 psf	276.9 psf	278.9 psf	217.5 psf	278.9 psf	81.0 psf	217.5 psf	81.0 psf		
f _{max}	278.2 psf	217.5 psf	278.2 psf	282.8 psf	217.5 psf	282.8 psf	81.4 psf	217.5 psf	81.4 psf		

Maximum Bearing Pressure = 283 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 26in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	2.818 k 12.808 k 7.421 k 38%	Rear Strut Maximum Axial Load = 3.599 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 48%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.275 k 12.808 k 7.421 k <u>31%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 60.93 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.219 in Max Drift, Δ_{MAX} = 0.066 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 120 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 331.976 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 120 \\ \mathsf{J} &= 0.432 \\ &= 211.117 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_1} &= 28.6 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.4 \text{ ksi}$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

Sy=

 $M_{max}Wk =$

45.5 mm

0.599 in³

1.152 k-ft

Sx=

 $M_{max}St =$

 $\varphi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 $L_b = 104.56 \text{ in}$ $L_b = 104.56$ J = 1.08 J = 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.0 \text{ ksi}$ $\phi F_1 =$ 28.9

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1 $S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$ S1 = 6.87 S2 = 131.3 $\varphi F_L = \varphi c[Bt-Dt^* \sqrt{(Rb/t)}]$ $\varphi F_L = 31.09 \text{ ksi}$ $\varphi F_L = 31.09 \text{ ksi}$ $A = 1215.13 \text{ mm}^2$ 1.88 in^2

58.55 kips

 $P_{max} =$

Rev. 07.29.2016

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(Bc - \frac{\theta_y}{\theta_x} Fcy\right)^2$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$

$$\varphi F_L = 31.4 \text{ ksi}$$

3.4.16

b/t =
$$24.5$$

$$S1 = \frac{o_b}{1.6Dp}$$

$$c_2 = k_1 B p$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_{\mathcal{Y}}}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

27.5

$$Cc = 27.5$$

$$k.Rhr$$

 $C_0 =$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$0.672 \text{ in}^4$$

y = 27.5 mm

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$Sy = 0.621 \text{ in}^3$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

	Weak Axis: 3.4.14
$L_b = 98.03 \text{ in}$	$L_b = 98.03$
J = 0.942 152.985	J = 0.942 152.985
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.4 \text{ ksi}$	$\varphi F_L = 29.4$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_{1}Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_{L} = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_{L} = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 78.35 $L_b =$ 78.35 in $L_b =$ 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\varphi F_L =$ $\phi F_L = 29.8 \text{ ksi}$ 29.8

$$\begin{array}{lll}
\textbf{A.16} & \textbf{3.4.16} \\
b/t & = & 24.5 \\
S1 & = & \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp} \\
S1 & = & 12.2 \\
S2 & = & \frac{k_1 Bp}{1.6Dp} \\
S2 & = & 46.7 \\
\varphi F_L & = & 28.2 \text{ ksi}
\end{array}$$

$$\begin{array}{lll}
\textbf{3.4.16} \\
b/t & = & 24.5 \\
S1 & = & \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp} \\
S1 & = & 12.2 \\
S2 & = & \frac{k_1 Bp}{1.6Dp} \\
S2 & = & 46.7 \\
\varphi F_L & = & \varphi b[Bp-1.6Dp*b/t] \\
\varphi F_L & = & 28.2 \text{ ksi}
\end{array}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $φF_L$ = 1.17φyFcy $φF_L$ = 38.9 ksi

3.4.16.1 N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

 $\phi F_1 St = 28.2 \text{ ksi}$

 $M_{max}St = 1.460 \text{ k-ft}$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

0.621 in³

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\phi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk =$

1.460 k-ft

Compression

y = Sx =

3.4.7

$$\begin{array}{lll} \lambda = & 1.8125 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83375 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.88278 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{.9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_{L} = & \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_{L} = & \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕyFcy} \\ \text{ϕF}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.88 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46 866	-46 866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-71.679	-71.679	0	0
2	M14	٧	-71.679	-71.679	0	0
3	M15	V	-115.31	-115.31	0	0
4	M16	٧	-115.31	-115.31	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	162.058	162.058	0	0
2	M14	V	124.66	124.66	0	0
3	M15	y	68.563	68.563	0	0
4	M16	V	68 563	68 563	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Y		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Y		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	656.403	2	1086.981	2	.909	1	.004	1	Ö	1	Ó	1
2		min	-828.811	3	-1274.08	3	.05	15	0	15	0	1	0	1
3	N7	max	.046	9	1108.169	1	898	15	002	15	0	1	0	1
4		min	175	2	11.267	3	-18.743	1	036	1	0	1	0	1
5	N15	max	.01	9	2818.457	1	0	1	0	1	0	1	0	1
6		min	-1.92	2	-67.468	3	0	2	0	2	0	1	0	1
7	N16	max	2429.245	2	3489.036	2	0	3	0	3	0	1	0	1
8		min	-2580.761	3	-4122.152	3	0	14	0	11	0	1	0	1
9	N23	max	.046	9	1108.169	1	18.743	1	.036	1	0	1	0	1
10		min	175	2	11.267	3	.898	15	.002	15	0	1	0	1
11	N24	max	656.403	2	1086.981	2	05	15	0	15	0	1	0	1
12		min	-828.811	3	-1274.08	3	909	1	004	1	0	1	0	1
13	Totals:	max	3739.78	2	10493.533	1	0	1	·		·		·	
14		min	-4238.44	3	-6715.246	3	0	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	108.144	1	415.589	1	-9.83	15	0	3	.304	1	0	1
2			min	5.05	15	-587.688	3	-211.545	1	014	2	.014	15	0	3
3		2	max	108.144	1	290.51	1	-7.547	15	0	3	.096	1	.556	3
4			min	5.05	15	-413.649	3	-162.321	1	014	2	.005	15	392	1
5		3	max	108.144	1	165.431	1	-5.265	15	0	3	0	12	.919	3
6			min	5.05	15	-239.611	3	-113.098	1	014	2	057	1	646	1
7		4	max	108.144	1	40.352	1	-2.983	15	0	3	006	12	1.089	3
8			min	5.05	15	-65.572	3	-63.875	1	014	2	155	1	76	1
9		5	max	108.144	1	108.466	3	701	15	0	3	009	12	1.065	3
10			min	5.05	15	-84.727	1	-14.651	1	014	2	199	1	735	1
11		6	max	108.144	1	282.505	3	34.572	1	0	3	009	15	.848	3
12			min	5.05	15	-209.807	1	.857	12	014	2	188	1	572	1
13		7	max	108.144	1	456.543	3	83.796	1	0	3	006	15	.437	3
14			min	5.05	15	-334.886	1	3.177	12	014	2	122	1	269	1
15		8	max	108.144	1	630.582	3	133.019	1	0	3	.002	2	.173	1
16			min	5.05	15	-459.965	1	5.496	12	014	2	004	3	167	3
17		9	max	108.144	1	804.62	3	182.243	1	0	3	.174	1	.753	1
18			min	5.05	15	-585.044	1	7.815	12	014	2	.005	12	964	3
19		10	max	108.144	1	710.123	1	-10.135	12	0	12	.403	1	1.473	1
20			min	5.05	15	-978.659	3	-231.466	1	014	2	.015	12	-1.955	3
21		11	max	108.144	1	585.044	1	-7.815	12	.014	2	.174	1	.753	1
22			min	5.05	15	-804.62	3	-182.243	1	0	3	.005	12	964	3
23		12	max	108.144	1	459.965	1	-5.496	12	.014	2	.002	2	.173	1
24			min	5.05	15	-630.582	3	-133.019	1	0	3	004	3	167	3
25		13	max	108.144	1	334.886	1	-3.177	12	.014	2	006	15	.437	3
26			min	5.05	15	-456.543	3	-83.796	1	0	3	122	1	269	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

28		Member	Sec		Axial[lb]		y Shear[lb]									
15	27		14	max	108.144	1	209.807	_1_	857	12	.014	2	009	15	.848	3
30																
16 max 108,144 1 65,572 3 63,875 1 .014 2 .006 12 1.089 3 132 min 5.05 15 .40,352 1 2,983 15 .01 3 .115 1 .76 1 .76 1 .76 1 .76 1 .76 1 .76 1 .76 1 .76 1 .76 1 .76 .76 1 .76			15													
33											-					
17			16	max		_					.014			12		3
34	32			min	5.05	15		1	2.983	15	0	3	155	1	76	1
18	33		17	max	108.144	1	239.611	3	113.098	1	.014	2	0	12	.919	3
36	34			min	5.05	15	-165.431	1	5.265	15	0	3	057	1	646	1
19	35		18	max	108.144	1	413.649	3	162.321	1	.014	2	.096	1	.556	3
19	36			min	5.05	15	-290.51	1	7.547	15	0	3	.005	15	392	1
38			19					3			.014					1
M14						15				15	0			15	0	3
40		M14	1					1								_
41						_									_	
Age			2													
44			_			_										
44			3							_						_
46			3													
Heat			1													
48			4													
48			-							•		•		-		_
49			5													
50																
The color of the			6			_				_						
S2												•				
Sample			7	max		_		3_				3_		15		3
Secondary				min		15		1_		12	012		122	1		_
55	53		8	max	58.625	1	459.741	3	125.452	1	.01	3	0	10	.031	3
Second	54			min	2.746	15	-423.3	1_	5.144	12	012	1	01	1	122	2
57	55		9	max	58.625	1	592.226	3	174.675	1	.01	3	.157	1	.427	1
57				min	2.746	15	-548.379	1	7.464	12	012	1	.004	12	554	3
S8			10			1		1		12	.01	3		1		1
11 max						15		3			012	1		12		3
60 min 2.746 15 -592.226 3 -174.675 1 01 3 .004 12 554 3 61 12 max 58.625 1 423.3 1 -5.144 12 .012 1 0 10 .031 3 62 min 2.746 15 -459.741 3 -125.452 1 -0.01 3 01 1 122 2 63 13 max 58.625 1 298.221 1 -2.225 12 .012 1 006 15 .468 3 64 min 2.746 15 -327.256 3 -76.228 1 01 3 122 1 513 1 65 14 max 58.625 1 173.142 1 01 3 18 1 775 1 67 15 36.25 1 719.477 3			11									1				
61 12 max 58.625 1 423.3 1 -5.144 12 .012 1 0 10 .031 3 62 min 2.746 15 -459.741 3 -125.452 1 01 3 01 1 122 2 63 13 max 58.625 1 298.221 1 -2.825 12 .012 1 006 15 .468 3 64 min 2.746 15 -327.256 3 -76.228 1 01 3 122 1 513 1 65 14 max 58.625 1 173.142 1 506 12 .012 1 008 15 .758 3 66 min 2.746 15 -194.771 3 -27.005 1 01 3 18 1 775 1 67 15 max 58.625						_	-592 226							-		
62 min 2.746 15 -459.741 3 -125.452 1 01 3 01 1 122 2 63 13 max 58.625 1 298.221 1 -2.825 12 .012 1 006 15 .468 3 64 min 2.746 15 -327.256 3 -76.228 1 01 3 122 1 513 1 65 14 max 58.625 1 173.142 1 506 12 .012 1 008 15 .758 3 66 min 2.746 15 -194.771 3 -27.005 1 01 3 18 1 7755 1 67 15 max 58.625 1 48.063 1 22.219 1 .012 1 008 12 .901 3 68 min 2.746 15<			12													
63 13 max 58.625 1 298.221 1 -2.825 12 .012 1 006 15 .468 3 64 min 2.746 15 -327.256 3 -76.228 1 01 3 122 1 513 1 65 14 max 58.625 1 173.142 1 506 12 .012 1 008 15 .758 3 66 min 2.746 15 -194.771 3 -27.005 1 01 3 18 1 775 1 67 15 max 58.625 1 48.063 1 .22.219 1 .012 1 008 12 .901 3 68 min 2.746 15 -62.286 3 1.052 15 01 3 13 1 898 1 69 16 max 58.625 <td></td> <td></td> <td>12</td> <td></td> <td></td> <td>_</td> <td></td>			12			_										
64 min 2.746 15 -327.256 3 -76.228 1 01 3 122 1 513 1 65 14 max 58.625 1 173.142 1 506 12 .012 1 008 15 .758 3 66 min 2.746 15 -194.771 3 -27.005 1 01 3 18 1 775 1 67 15 max 58.625 1 48.063 1 22.219 1 .012 1 008 12 .901 3 68 min 2.746 15 -62.286 3 1.052 15 01 3 182 1 898 1 69 16 max 58.625 1 70.216 1 3.334 15 01 3 13 1 882 1 71 1 max 58.625			13							_						
65 14 max 58.625 1 173.142 1 506 12 .012 1 008 15 .758 3 66 min 2.746 15 -194.771 3 -27.005 1 01 3 18 1 775 1 67 15 max 58.625 1 48.063 1 22.219 1 .012 1 008 12 .901 3 68 min 2.746 15 -62.286 3 1.052 15 01 3 182 1 898 1 69 16 max 58.625 1 70.2 3 71.442 1 .012 1 005 12 .898 3 70 min 2.746 15 -77.016 1 3.334 15 01 3 13 1 82 1 71 1 max 58.625			13													
66 min 2.746 15 -194.771 3 -27.005 1 01 3 18 1 775 1 67 15 max 58.625 1 48.063 1 22.219 1 .012 1 008 12 .901 3 68 min 2.746 15 -62.286 3 1.052 15 01 3 182 1 898 1 69 16 max 58.625 1 70.2 3 71.442 1 .012 1 005 12 .896 3 70 min 2.746 15 -77.016 1 3.334 15 01 3 13 1 882 1 71 17 max 58.625 1 202.685 3 120.666 1 .012 1 .002 3 .745 3 72 min 2.746 15			11													
67 15 max 58.625 1 48.063 1 22.219 1 .012 1 008 12 .901 3 68 min 2.746 15 -62.286 3 1.052 15 01 3 182 1 898 1 69 16 max 58.625 1 70.2 3 71.442 1 .012 1 005 12 .896 3 70 min 2.746 15 -77.016 1 3.334 15 01 3 13 1 882 1 71 17 max 58.625 1 202.685 3 120.666 1 .012 1 .002 3 .745 3 72 min 2.746 15 -202.095 1 5.616 15 01 3 .023 1 .727 1 73 18 max 58.625			14													
68 min 2.746 15 -62.286 3 1.052 15 01 3 182 1 898 1 69 16 max 58.625 1 70.2 3 71.442 1 .012 1 005 12 .896 3 70 min 2.746 15 -77.016 1 3.334 15 01 3 13 1 882 1 71 17 max 58.625 1 202.685 3 120.666 1 .012 1 .002 3 .745 3 72 min 2.746 15 -202.095 1 5.616 15 01 3 023 1 727 1 73 18 max 58.625 1 335.17 3 169.889 1 .012 1 .138 1 .446 3 74 min 2.746 15			15							•		_				
69 16 max 58.625 1 70.2 3 71.442 1 .012 1 005 12 .896 3 70 min 2.746 15 -77.016 1 3.334 15 01 3 13 1 882 1 71 17 max 58.625 1 202.685 3 120.666 1 .012 1 .002 3 .745 3 72 min 2.746 15 -202.095 1 5.616 15 01 3 023 1 727 1 73 18 max 58.625 1 335.17 3 169.889 1 .012 1 .138 1 .446 3 74 min 2.746 15 -327.175 1 7.899 15 01 3 .006 15 433 1 75 19 max 58.625			15													
70 min 2.746 15 -77.016 1 3.334 15 01 3 13 1 882 1 71 17 max 58.625 1 202.685 3 120.666 1 .012 1 .002 3 .745 3 72 min 2.746 15 -202.095 1 5.616 15 01 3 023 1 727 1 73 18 max 58.625 1 335.17 3 169.889 1 .012 1 .138 1 .446 3 74 min 2.746 15 -327.175 1 7.899 15 01 3 .006 15 433 1 75 19 max 58.625 1 467.655 3 219.112 1 .012 1 .354 1 0 1 76 min 2.746 15			40													_
71 17 max 58.625 1 202.685 3 120.666 1 .012 1 .002 3 .745 3 72 min 2.746 15 -202.095 1 5.616 15 01 3 023 1 727 1 73 18 max 58.625 1 335.17 3 169.889 1 .012 1 .138 1 .446 3 74 min 2.746 15 -327.175 1 7.899 15 01 3 .006 15 433 1 75 19 max 58.625 1 467.655 3 219.112 1 .012 1 .354 1 0 1 76 min 2.746 15 -452.254 1 10.181 15 01 3 .017 15 0 3 77 M15 1 3.247 <			16													
72 min 2.746 15 -202.095 1 5.616 15 01 3 023 1 727 1 73 18 max 58.625 1 335.17 3 169.889 1 .012 1 .138 1 .446 3 74 min 2.746 15 -327.175 1 7.899 15 01 3 .006 15 433 1 75 19 max 58.625 1 467.655 3 219.112 1 .012 1 .354 1 0 1 76 min 2.746 15 -452.254 1 10.181 15 01 3 .017 15 0 3 77 M15 1 max -2.947 15 582.839 2 -10.176 15 .013 2 .354 1 0 2 78 min -62.9 <			4-													
73 18 max 58.625 1 335.17 3 169.889 1 .012 1 .138 1 .446 3 74 min 2.746 15 -327.175 1 7.899 15 01 3 .006 15 433 1 75 19 max 58.625 1 467.655 3 219.112 1 .012 1 .354 1 0 1 76 min 2.746 15 -452.254 1 10.181 15 01 3 .017 15 0 3 77 M15 1 max -2.947 15 582.839 2 -10.176 15 .013 2 .354 1 0 2 78 min -62.9 1 -257.645 3 -219.036 1 008 3 .016 15 0 3 79 2 max -2.			1/													
74 min 2.746 15 -327.175 1 7.899 15 01 3 .006 15 433 1 75 19 max 58.625 1 467.655 3 219.112 1 .012 1 .354 1 0 1 76 min 2.746 15 -452.254 1 10.181 15 01 3 .017 15 0 3 77 M15 1 max -2.947 15 582.839 2 -10.176 15 .013 2 .354 1 0 2 78 min -62.9 1 -257.645 3 -219.036 1 008 3 .016 15 0 3 79 2 max -2.947 15 419.066 2 -7.894 15 .013 2 .138 1 .247 3 80 min -62.9 <t< td=""><td></td><td></td><td>1.0</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td></t<>			1.0					_						_		_
75 19 max 58.625 1 467.655 3 219.112 1 .012 1 .354 1 0 1 76 min 2.746 15 -452.254 1 10.181 15 01 3 .017 15 0 3 77 M15 1 max -2.947 15 582.839 2 -10.176 15 .013 2 .354 1 0 2 78 min -62.9 1 -257.645 3 -219.036 1 008 3 .016 15 0 3 79 2 max -2.947 15 419.066 2 -7.894 15 .013 2 .138 1 .247 3 80 min -62.9 1 -187.489 3 -169.812 1 008 3 .006 15 557 2 81 3 max			18													
76 min 2.746 15 -452.254 1 10.181 15 01 3 .017 15 0 3 77 M15 1 max -2.947 15 582.839 2 -10.176 15 .013 2 .354 1 0 2 78 min -62.9 1 -257.645 3 -219.036 1 008 3 .016 15 0 3 79 2 max -2.947 15 419.066 2 -7.894 15 .013 2 .138 1 .247 3 80 min -62.9 1 -187.489 3 -169.812 1 008 3 .006 15 557 2 81 3 max -2.947 15 255.292 2 -5.611 15 .013 2 .001 3 .417 3 82 min -62.9						15										
77 M15 1 max -2.947 15 582.839 2 -10.176 15 .013 2 .354 1 0 2 78 min -62.9 1 -257.645 3 -219.036 1 008 3 .016 15 0 3 79 2 max -2.947 15 419.066 2 -7.894 15 .013 2 .138 1 .247 3 80 min -62.9 1 -187.489 3 -169.812 1 008 3 .006 15 557 2 81 3 max -2.947 15 255.292 2 -5.611 15 .013 2 .001 3 .417 3 82 min -62.9 1 -117.334 3 -120.589 1 008 3 024 1 931 2			19													
78 min -62.9 1 -257.645 3 -219.036 1 008 3 .016 15 0 3 79 2 max -2.947 15 419.066 2 -7.894 15 .013 2 .138 1 .247 3 80 min -62.9 1 -187.489 3 -169.812 1 008 3 .006 15 557 2 81 3 max -2.947 15 255.292 2 -5.611 15 .013 2 .001 3 .417 3 82 min -62.9 1 -117.334 3 -120.589 1 008 3 024 1 931 2				min												
79 2 max -2.947 15 419.066 2 -7.894 15 .013 2 .138 1 .247 3 80 min -62.9 1 -187.489 3 -169.812 1 008 3 .006 15 557 2 81 3 max -2.947 15 255.292 2 -5.611 15 .013 2 .001 3 .417 3 82 min -62.9 1 -117.334 3 -120.589 1 008 3 024 1 931 2		M15	1	max		15				15						
80 min -62.9 1 -187.489 3 -169.812 1 008 3 .006 15 557 2 81 3 max -2.947 15 255.292 2 -5.611 15 .013 2 .001 3 .417 3 82 min -62.9 1 -117.334 3 -120.589 1 008 3 024 1 931 2	78			min	-62.9	1	-257.645	3	-219.036	1	008	3	.016	15	0	
80 min -62.9 1 -187.489 3 -169.812 1 008 3 .006 15 557 2 81 3 max -2.947 15 255.292 2 -5.611 15 .013 2 .001 3 .417 3 82 min -62.9 1 -117.334 3 -120.589 1 008 3 024 1 931 2	79		2	max	-2.947	15	419.066	2	-7.894	15	.013	2	.138	1	.247	
81 3 max -2.947 15 255.292 2 -5.611 15 .013 2 .001 3 .417 3 82 min -62.9 1 -117.334 3 -120.589 1008 3024 1931 2										1				15		
82 min -62.9 1 -117.334 3 -120.589 1008 3024 1931 2			3			15				15						
			4			15				15				12		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-62.9	1	-47.179	3	-71.365	1	008	3	13	1	-1.124	2
85		5	max	-2.947	15	22.976	3	-1.047	15	.013	2	008	12	.521	3
86			min	-62.9	1_	-72.254	2	-22.142	1	008	3	182	1	-1.135	2
87		6	max	-2.947	15	93.131	3	27.082	1	.013	2	008	15	.457	3
88			min	-62.9	1	-236.027	2	.574	12	008	3	18	1	963	2
89		7	max	-2.947	15	163.287	3	76.305	1	.013	2	006	15	.315	3
90			min	-62.9	1	-399.8	2	2.893	12	008	3	122	1	61	2
91		8	max	-2.947	15	233.442	3	125.528	1	.013	2	0	10	.094	3
92			min	-62.9	1	-563.574	2	5.213	12	008	3	01	1	089	1
93		9	max	-2.947	15	303.597	3	174.752	1	.013	2	.157	1	.642	2
94			min	-62.9	1	-727.347	2	7.532	12	008	3	.005	12	204	3
95		10	max	-2.947	15	891.12	2	-9.851	12	.013	2	.378	1	1.541	2
96			min	-62.9	1	-373.752	3	-223.975	1	008	3	.014	12	581	3
97		11	max	-2.947	15	727.347	2	-7.532	12	.008	3	.157	1	.642	2
98			min	-62.9	1	-303.597	3	-174.752	1	013	2	.005	12	204	3
99		12	max	-2.947	15	563.574	2	-5.213	12	.008	3	0	10	.094	3
100			min	-62.9	1	-233.442	3	-125.528	1	013	2	01	1	089	1
101		13	max	-2.947	15	399.8	2	-2.893	12	.008	3	006	15	.315	3
102			min	-62.9	1	-163.287	3	-76.305	1	013	2	122	1	61	2
103		14	max	-2.947	15	236.027	2	574	12	.008	3	008	15	.457	3
104			min	-62.9	1	-93.131	3	-27.082	1	013	2	18	1	963	2
105		15	max	-2.947	15	72.254	2	22.142	1	.008	3	008	12	.521	3
106			min	-62.9	1	-22.976	3	1.047	15	013	2	182	1	-1.135	2
107		16	max	-2.947	15	47.179	3	71.365	1	.008	3	005	12	.508	3
108		10	min	-62.9	1	-91.519	2	3.329	15	013	2	13	1	-1.124	2
109		17	max	-2.947	15	117.334	3	120.589	1	.008	3	.001	3	.417	3
110		- ' '	min	-62.9	1	-255.292	2	5.611	15	013	2	024	1	931	2
111		18	max	-2.947	15	187.489	3	169.812	1	.008	3	.138	1	.247	3
112		10	min	-62.9	1	-419.066	2	7.894	15	013	2	.006	15	557	2
113		19	max	-02.9	15	257.645	3	219.036	1	.008	3	.354	1	<u></u>	2
114		13	min	-62.9	1	-582.839	2	10.176	15	013	2	.016	15	0	3
115	M16	1	max	-5.698	15	547.361	2	-9.847	15	.011	1	.307	1	0	2
116	IVITO			-121.703	1	-231.126	3	-212.027	1	011	3	.014	15	0	3
117		2	max	-5.698	15	383.588	2	-7.565	15	.011	1	.098	1	.218	3
118				-121.703	1	-160.971	3	-162.804	1	011	3	.005	15	517	2
119		3	max	-5.698	15	219.815	2	-5.283	15	.011	1	001	12	.358	3
120		3		-121.703	1	-90.816	3	-113.58	1	011	3	055	1	852	2
121		4		-5.698	15	56.042	2		15	.011	1		12	<u>652</u> .42	3
122		4	max				3	-3.001 -64.357	1		3	006	1	-1.006	2
				-121.703	1_	-20.661			-	011		154			
123 124		5	max	-5.698 -121.703	<u>15</u>	49.494 -107.732	2	719 -15.133	15 1	.011 011	3	009	12	.404 977	2
		G										198			_
125		6	max		<u>15</u>	119.649	3	34.09	1	.011	1	009	15	.31	3
126		7		-121.703	1_	-271.505		1.058	12	011	3	188	1	766	2
127		7	max		15	189.805	3	83.314	1	.011	1	006	15	.138	3
128		0		-121.703	1_	-435.278	2	3.377	12	011	3	122	1	<u>374</u>	2
129		8	max		<u>15</u>	259.96	3	132.537	1	.011	1	0	10	.201	2
130				-121.703	1_	-599.051	2	5.697	12	011	3	003	3	112	3
131		9		-5.698	<u>15</u>	330.115	3	181.76	1	.011	1	.172	1	.958	2
132		4.0		-121.703	1_	-762.824	2	8.016	12	011	3	.006	12	44	3
133		10	max		<u>15</u>	926.597	2	-10.335	12	.011	1	.402	1	1.896	2
134		4.4		-121.703	1_	-400.27	3	-230.984	1	011	3	.016	12	846	3
135		11	max		<u>15</u>	762.824	2	-8.016	12	.011	3	.172	1	.958	2
136				-121.703	1_	-330.115		-181.76	1	011	1	.006	12	44	3
137		12	max		15_	599.051	2	-5.697	12	.011	3	0	10	.201	2
138				-121.703	_1_	-259.96	3_	-132.537	1	011	1	003	3	112	3
139		13	max		<u>15</u>	435.278	2	-3.377	12	.011	3	006	15	.138	3
140			min	-121.703	1_	-189.805	3	-83.314	1	011	1	122	1	374	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

143 15 max -5.698 15 107.732 2 15.133 1 .011 3 009 12 144 min -121.703 1 -49.494 3 .719 15 011 1 198 1 145 16 max -5.698 15 20.661 3 64.357 1 .011 3 006 12 146 min -121.703 1 -56.042 2 3.001 15 011 1 154 1 147 17 max -5.698 15 90.816 3 113.58 1 .011 3 001 12 148 min -121.703 1 -219.815 2 5.283 15 011 1 055 1 149 18 max -5.698 15 160.971 3 162.804 1 .011 3 .098 1 150 min <th>Mome LC</th>	Mome LC
143 15 max -5.698 15 107.732 2 15.133 1 .011 3 009 12 144 min -121.703 1 -49.494 3 .719 15 011 1 198 1 145 16 max -5.698 15 20.661 3 64.357 1 .011 3 006 12 146 min -121.703 1 -56.042 2 3.001 15 011 1 154 1 147 17 max -5.698 15 90.816 3 113.58 1 .011 3 001 12 148 min -121.703 1 -219.815 2 5.283 15 011 1 055 1 149 18 max -5.698 15 160.971 3 162.804 1 .011 3 .098 1 150	.31 3
144 min -121.703 1 -49.494 3 .719 15 011 1 198 1 145 16 max -5.698 15 20.661 3 64.357 1 .011 3 006 12 146 min -121.703 1 -56.042 2 3.001 15 011 1 154 1 147 17 max -5.698 15 90.816 3 113.58 1 .011 3 001 12 148 min -121.703 1 -219.815 2 5.283 15 011 1 055 1 149 18 max -5.698 15 160.971 3 162.804 1 .011 3 .098 1 150 min -121.703 1 -383.588 2 7.565 15 011 1 .005 15 151 19	.766 2
145 16 max -5.698 15 20.661 3 64.357 1 .011 3 006 12 146 min -121.703 1 -56.042 2 3.001 15 011 1 154 1 - 147 17 max -5.698 15 90.816 3 113.58 1 .011 3 001 12 148 min -121.703 1 -219.815 2 5.283 15 011 1 -055 1 149 18 max -5.698 15 160.971 3 162.804 1 .011 3 .098 1 150 min -121.703 1 -383.588 2 7.565 15 011 1 .005 15 151 19 max -5.698 15 231.126 3 212.027 1 .011 3 .307 1 152 min -121.703 1 -547.361 2 9.847 15 0	.404 3
146 min -121.703 1 -56.042 2 3.001 15 011 1 154 1 147 147 17 max -5.698 15 90.816 3 113.58 1 .011 3 001 12 148 min -121.703 1 -219.815 2 5.283 15 011 1 055 1 149 18 max -5.698 15 160.971 3 162.804 1 .011 3 .098 1 150 min -121.703 1 -383.588 2 7.565 15 011 1 .005 15 - 151 19 max -5.698 15 231.126 3 212.027 1 .011 3 .307 1 152 min -121.703 1 -547.361 2 9.847 15 011 1 .014 15 <t< td=""><td>.977 2</td></t<>	.977 2
147 17 max -5.698 15 90.816 3 113.58 1 .011 3 001 12 148 min -121.703 1 -219.815 2 5.283 15 011 1 055 1 149 18 max -5.698 15 160.971 3 162.804 1 .011 3 .098 1 150 min -121.703 1 -383.588 2 7.565 15 011 1 .005 15 151 19 max -5.698 15 231.126 3 212.027 1 .011 3 .307 1 152 min -121.703 1 -547.361 2 9.847 15 011 1 .014 15 153 M2 1 max 987.235 1 2.022 4 .605 1 0 5 0 3 154 min -1112.805 3 .476 15 .028 15 0 <t< td=""><td>.42 3</td></t<>	.42 3
148 min -121.703 1 -219.815 2 5.283 15 011 1 055 1 014 1 055 1 055 1 011 1 055 1 011 1 055 1 011 1 055 1 011 1 .008 1 1 1 1 .055 1 011 1 .005 15 011 1 .005 15 011 1 .005 15 011 1 .005 15 011 1 .005 15 011 1 .005 15 011 1 .005 1 .005 1 .001 1 .001 1 .001 1 .001	1.006 2
149 18 max -5.698 15 160.971 3 162.804 1 .011 3 .098 1 150 min -121.703 1 -383.588 2 7.565 15011 1 .005 15 . 151 19 max -5.698 15 231.126 3 212.027 1 .011 3 .307 1 152 min -121.703 1 -547.361 2 9.847 15011 1 .014 15 153 M2 1 max 987.235 1 2.022 4 .605 1 0 5 0 3 154 min -1112.805 3 .476 15 .028 15 0 1 0 1 0 1 155 2 max 987.764 1 1.951 4 .605 1 0 5 0 1 1 156 min -1112.408 3 .459 15 .028 15 0 1 0 15 0 1 157 3 max 988.294 1 1.88 4 .605 1 0 5 0 1 0 15 0 1 159 4 max 988.823 1 1.809 4 .605 1 0 5 0 1 0 1 0 15 0 160 min -1111.614 3 .426 15 .028 15 0 1 0 1 0 15 0 0 15 0 1 <	.358 3
149 18 max -5.698 15 160.971 3 162.804 1 .011 3 .098 1 150 min -121.703 1 -383.588 2 7.565 15011 1 .005 15 . 151 19 max -5.698 15 231.126 3 212.027 1 .011 3 .307 1 152 min -121.703 1 -547.361 2 9.847 15011 1 .014 15 153 M2 1 max 987.235 1 2.022 4 .605 1 0 5 0 3 154 min -1112.805 3 .476 15 .028 15 0 1 0 1 0 1 155 2 max 987.764 1 1.951 4 .605 1 0 5 0 1 1 156 min -1112.408 3 .459 15 .028 15 0 1 0 15 0 1 157 3 max 988.294 1 1.88 4 .605 1 0 5 0 1 0 15 0 1 159 4 max 988.823 1 1.809 4 .605 1 0 5 0 1 0 1 0 15 0 160 min -1111.614 3 .426 15 .028 15 0 1 0 1 0 15 0 0 15 0 1 <	.852 2
150 min -121.703 1 -383.588 2 7.565 15 011 1 .005 15 015 15 011 1 .005 15 011 1 .005 15 011 1 .005 15 011 1 .005 1 .011 3 .307 1 .011 .011 3 .307 1 .011 .011 3 .307 1 .011 .011 3 .307 1 .011 .0	.218 3
151 19 max -5.698 15 231.126 3 212.027 1 .011 3 .307 1 152 min -121.703 1 -547.361 2 9.847 15 011 1 .014 15 153 M2 1 max 987.235 1 2.022 4 .605 1 0 5 0 3 154 min -1112.805 3 .476 15 .028 15 0 1 0 1 155 2 max 987.764 1 1.951 4 .605 1 0 5 0 1 156 min -1112.408 3 .459 15 .028 15 0 1 0 15 157 3 max 988.294 1 1.88 4 .605 1 0 5 0 1 158 min -1112	.517 2
152 min -121.703 1 -547.361 2 9.847 15 011 1 .014 15 153 M2 1 max 987.235 1 2.022 4 .605 1 0 5 0 3 154 min -1112.805 3 .476 15 .028 15 0 1 0 1 155 2 max 987.764 1 1.951 4 .605 1 0 5 0 1 156 min -1112.408 3 .459 15 .028 15 0 1 0 15 157 3 max 988.294 1 1.88 4 .605 1 0 5 0 1 158 min -1112.011 3 .442 15 .028 15 0 1 0 15 - 159 4 max	0 2
153 M2 1 max 987.235 1 2.022 4 .605 1 0 5 0 3 154 min -1112.805 3 .476 15 .028 15 0 1 0 1 155 2 max 987.764 1 1.951 4 .605 1 0 5 0 1 156 min -1112.408 3 .459 15 .028 15 0 1 0 15 157 3 max 988.294 1 1.88 4 .605 1 0 5 0 1 158 min -1112.011 3 .442 15 .028 15 0 1 0 15 159 4 max 988.823 1 1.809 4 .605 1 0 5 0 1 160 min -1111.614	0 3
154 min -1112.805 3 .476 15 .028 15 0 1 0 1 155 2 max 987.764 1 1.951 4 .605 1 0 5 0 1 156 min -1112.408 3 .459 15 .028 15 0 1 0 15 157 3 max 988.294 1 1.88 4 .605 1 0 5 0 1 158 min -1112.011 3 .442 15 .028 15 0 1 0 15 - 159 4 max 988.823 1 1.809 4 .605 1 0 5 0 1 160 min -1111.614 3 .426 15 .028 15 0 1 0 15 - 161 5 max 989.3	0 1
155 2 max 987.764 1 1.951 4 .605 1 0 5 0 1 156 min -1112.408 3 .459 15 .028 15 0 1 0 15 157 3 max 988.294 1 1.88 4 .605 1 0 5 0 1 158 min -1112.011 3 .442 15 .028 15 0 1 0 15 - 159 4 max 988.823 1 1.809 4 .605 1 0 5 0 1 160 min -1111.614 3 .426 15 .028 15 0 1 0 15 - 161 5 max 989.352 1 1.738 4 .605 1 0 5 0 1	0 1
156 min -1112.408 3 .459 15 .028 15 0 1 0 15 157 3 max 988.294 1 1.88 4 .605 1 0 5 0 1 158 min -1112.011 3 .442 15 .028 15 0 1 0 15 - 159 4 max 988.823 1 1.809 4 .605 1 0 5 0 1 160 min -1111.614 3 .426 15 .028 15 0 1 0 15 - 161 5 max 989.352 1 1.738 4 .605 1 0 5 0 1	0 15
157 3 max 988.294 1 1.88 4 .605 1 0 5 0 1 158 min -1112.011 3 .442 15 .028 15 0 1 0 15 - 159 4 max 988.823 1 1.809 4 .605 1 0 5 0 1 160 min -1111.614 3 .426 15 .028 15 0 1 0 15 - 161 5 max 989.352 1 1.738 4 .605 1 0 5 0 1	0 4
158 min -1112.011 3 .442 15 .028 15 0 1 0 15 - 159 4 max 988.823 1 1.809 4 .605 1 0 5 0 1 160 min -1111.614 3 .426 15 .028 15 0 1 0 15 - 161 5 max 989.352 1 1.738 4 .605 1 0 5 0 1	0 15
159 4 max 988.823 1 1.809 4 .605 1 0 5 0 1 160 min -1111.614 3 .426 15 .028 15 0 1 0 15 - 161 5 max 989.352 1 1.738 4 .605 1 0 5 0 1	
160 min -1111.614 3 .426 15 .028 15 0 1 0 15 - 161 5 max 989.352 1 1.738 4 .605 1 0 5 0 1	
161 5 max 989.352 1 1.738 4 .605 1 0 5 0 1	0 15
	.002 4
	0 15
	.003 4
163 6 max 989.881 1 1.667 4 .605 1 0 5 .001 1	0 15
	.003 4
165 7 max 990.411 1 1.596 4 .605 1 0 5 .001 1	0 15
	.004 4
167 8 max 990.94 1 1.525 4 .605 1 0 5 .002 1 -	.001 15
168 min -1110.026 3 .359 15 .028 15 0 1 0 15 -	.004 4
169 9 max 991.469 1 1.454 4 .605 1 0 5 .002 1 -	.001 15
170 min -1109.629 3 .342 15 .028 15 0 1 0 15 -	.005 4
171 10 max 991.999 1 1.383 4 .605 1 0 5 .002 1 -	.001 15
	.005 4
	.001 15
	.006 4
	.002 15
	.006 4
	.002 15
	.002 13
	.002 15
	.002 13
	.002 15 .008 4
	.002 15
	.008 4
	.002 15
	.008 4
	.002 15
	.009 4
	.002 15
	.009 4
	.009 4
	.002 15
193 2 max 576.487 2 8.005 4 .472 1 0 15 0 1	.005 4
194 min -734.933 3 1.882 15 .022 15 0 1 0 15	.001 12
195 3 max 576.316 2 7.136 4 .472 1 0 15 0 1	000
196 min -735.061 3 1.678 15 .022 15 0 1 0 15	.002 2
197 4 max 576.146 2 6.267 4 .472 1 0 15 .001 1	0 3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-735.189	3	1.473	15	.022	15	0	1	0	15	002	3
199		5	max	575.976	2	5.398	4	.472	1	0	15	.001	1	001	15
200			min	-735.317	3	1.269	15	.022	15	0	1	0	15	005	4
201		6	max	575.805	2	4.53	4	.472	1	0	15	.002	1	002	15
202			min	-735.444	3	1.065	15	.022	15	0	1	0	15	007	4
203		7	max	575.635	2	3.661	4	.472	1	0	15	.002	1	002	15
204			min	-735.572	3	.861	15	.022	15	0	1	0	15	009	4
205		8	max	575.465	2	2.792	4	.472	1	0	15	.002	1	002	15
206			min	-735.7	3	.656	15	.022	15	0	1	0	15	01	4
207		9	max	575.294	2	1.923	4	.472	1	0	15	.002	1	003	15
208			min	-735.828	3	.452	15	.022	15	0	1	0	15	011	4
209		10	max	575.124	2	1.054	4	.472	1	0	15	.002	1	003	15
210			min	-735.955	3	.248	15	.022	15	0	1	0	15	012	4
211		11	max	574.954	2	.271	2	.472	1	0	15	.003	1	003	15
212			min	-736.083	3	067	3	.022	15	0	1	0	15	012	4
213		12	max	574.783	2	16	15	.472	1	0	15	.003	1	003	15
214			min	-736.211	3	684	4	.022	15	0	1	0	15	012	4
215		13	max	574.613	2	365	15	.472	1	0	15	.003	1	003	15
216			min	-736.339	3	-1.553	4	.022	15	0	1	0	15	012	4
217		14	max	574.443	2	569	15	.472	1	0	15	.003	1	003	15
218			min	-736.467	3	-2.422	4	.022	15	0	1	0	15	011	4
219		15	max	574.272	2	773	15	.472	1	0	15	.004	1	002	15
220			min	-736.594	3	-3.29	4	.022	15	0	1	0	15	009	4
221		16	max	574.102	2	977	15	.472	1	0	15	.004	1	002	15
222			min	-736.722	3	-4.159	4	.022	15	0	1	0	15	008	4
223		17	max	573.932	2	-1.182	15	.472	1	0	15	.004	1	001	15
224			min	-736.85	3	-5.028	4	.022	15	0	1	0	15	006	4
225		18	max	573.761	2	-1.386	15	.472	1	0	15	.004	1	0	15
226			min	-736.978	3	-5.897	4	.022	15	0	1	0	15	003	4
227		19	max	573.591	2	-1.59	15	.472	1	0	15	.004	1	0	1
228			min	-737.105	3	-6.766	4	.022	15	0	1	0	15	0	1
229	M4	1	max	1105.103	1	0	1	899	15	0	1	.004	1	0	1
230			min	8.967	3	0	1	-19.328	1	0	1	0	15	0	1
231		2	max	1105.273	1	0	1	899	15	0	1	.001	1	0	1
232			min	9.095	3	0	1	-19.328	1	0	1	0	15	0	1
233		3	max	1105.444	1	0	1	899	15	0	1	0	15	0	1
234			min	9.223	3	0	1	-19.328	1	0	1	0	1	0	1
235		4	max	1105.614	1	0	1	899	15	0	1	0	15	0	1
236			min	9.35	3	0	1	-19.328	1	0	1	003	1	0	1
237		5	max	1105.784	1	0	1	899	15	0	1	0	15	0	1
238			min	9.478	3	0	1	-19.328	1	0	1	005	1	0	1
239		6	max	1105.955	1	0	1	899	15	0	1	0	15	0	1
240			min	9.606	3	0	1	-19.328	1	0	1	008	1	0	1
241		7	max	1106.125	1	0	1	899	15	0	1	0	15	0	1
242			min	9.734	3	0	1	-19.328	1	0	1	01	1	0	1
243		8	max	1106.295	1	0	1	899	15	0	1	0	15	0	1
244			min	9.861	3	0	1	-19.328	1	0	1	012	1	0	1
245		9	max	1106.466	1_	0	1	899	15	0	1	0	15	0	1
246			min	9.989	3	0	1	-19.328	1	0	1	014	1	0	1
247		10	max	1106.636	1	0	1	899	15	0	1	0	15	0	1
248			min	10.117	3	0	1	-19.328	1	0	1	016	1	0	1
249		11		1106.806	1	0	1	899	15	0	1	0	15	0	1
250			min	10.245	3	0	1	-19.328	1	0	1	019	1	0	1
251		12	max	1106.977	1	0	1	899	15	0	1	0	15	0	1
252			min	10.372	3	0	1	-19.328	1	0	1	021	1	0	1
253		13		1107.147	1	0	1	899	15	0	1	001	15	0	1
254			min	10.5	3	0	1	-19.328	1	0	1	023	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
255		14	max	1107.317	1	0	1	899	15	0	1	001	15	0	1
256			min	10.628	3	0	1	-19.328	1	0	1	025	1	0	1
257		15	max	1107.488	1	0	1	899	15	0	1	001	15	0	1
258			min	10.756	3	0	1	-19.328	1	0	1	028	1	0	1
259		16	max	1107.658	1	0	1	899	15	0	1	001	15	0	1
260			min	10.883	3	0	1	-19.328	1	0	1	03	1	0	1
261		17	max	1107.828	1	0	1	899	15	0	1	001	15	0	1
262			min	11.011	3	0	1	-19.328	1	0	1	032	1	0	1
263		18	max	1107.999	1	0	1	899	15	0	_1_	002	15	0	1
264			min	11.139	3	0	1	-19.328	1	0	1	034	1	0	1
265		19	max	1108.169	1	0	1	899	15	0	_1_	002	15	0	1
266			min	11.267	3	0	1	-19.328	1	0	1_	036	1	0	1
267	M6	1	max	3125.705	1	2.173	2	0	1_	0	<u>1</u>	0	1	0	1
268			min	-3599.169	3	.352	12	0	1	0	1	0	1	0	1
269		2	max	3126.235	1	2.118	2	0	1	0	_1_	0	1_	0	12
270			min	-3598.772	3	.325	12	0	1	0	1	0	1	0	2
271		3	max	3126.764	1	2.062	2	0	1_	0	<u>1</u>	0	1	0	12
272			min	-3598.375	3	.297	12	0	1	0	1_	0	1	002	2
273		4	max	3127.293	1	2.007	2	0	1	0	1	0	1	0	12
274			min	-3597.978	3	.269	12	0	1	0	1	0	1	002	2
275		5	max	3127.822	1_	1.951	2	0	1	0	_1_	0	1	0	12
276			min	-3597.581	3	.242	12	0	1	0	1_	0	1	003	2
277		6		3128.352	1_	1.896	2	0	1	0	_1_	0	1	0	12
278			min	-3597.184	3	.214	12	0	1	0	1	0	1	004	2
279		7		3128.881	1	1.841	2	0	1	0	1_	0	1	0	12
280			min	-3596.787	3	.186	12	0	1	0	1_	0	1	004	2
281		8	max		1	1.785	2	0	1_	0	<u>1</u>	0	1	0	12
282			min	-3596.39	3	.159	12	0	1	0	1_	0	1	005	2
283		9	max	3129.94	1	1.73	2	0	1	0	_1_	0	1	0	12
284			min	-3595.993	3	.123	3	0	1	0	1	0	1	006	2
285		10	max	3130.469	1	1.675	2	0	1	0	_1_	0	1	0	12
286			min	-3595.596	3	.081	3	0	1	0	1	0	1	006	2
287		11		3130.998	1	1.619	2	0	1_	0	_1_	0	1_	0	12
288			min	-3595.199	3	.04	3	0	1	0	1	0	1	007	2
289		12		3131.527	1	1.564	2	0	1	0	1	0	1	0	12
290			min	-3594.802	3	002	3	0	1	0	1_	0	1	007	2
291		13		3132.057	1	1.509	2	0	1	0	1	0	1	0	12
292			min	-3594.405	3	043	3	0	1	0	1_	0	1	008	2
293		14		3132.586	1	1.453	2	0	1	0	_1_	0	1	0	12
294			min	-3594.008	3	085	3	0	1	0	1_	0	1	008	2
295		15		3133.115	1	1.398	2	0	1	0	_1_	0	1	0	12
296		4.0	min		3	126	3	0	1	0	1	0	1	009	2
297		16		3133.645	1	1.343	2	0	1	0		0	1	0	3
298		4-	min		3	168	3	0	1	0	1_	0	1	009	2
299		17		3134.174	1	1.287	2	0	1	0	1	0	1	0	3
300		40	min	-3592.817	3	209	3	0	1	0	1	0	1	01	2
301		18		3134.703	1	1.232	2	0	1	0	1	0	1	0	3
302				-3592.42	3	251	3	0	1	0	1	0	1	01	2
303		19		3135.232	1	1.177	2	0	1	0	1	0	1	0	3
304	B 477	4	min		3	292	3	0	1	0	1	0	1	011	2
305	M7	1		2188.956	2	8.909	4	0	1	0	1	0	1	.011	2
306			min		3	2.091	15	0	1	0	1	0	1	0	3
307		2		2188.786	2	8.04	4	0	1	0	1	0	1	.008	2
308			min		3	1.887	15	0	1	0	1	0	1	002	3
309		3		2188.615	2	7.171	4	0	1	0	1	0	1	.005	2
310			min		3	1.683	15	0	1	0	1	0	1	003	3
311		4	max	2188.445	2	6.302	4	0	_ 1_	0	_1_	0	1	.002	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2272.806	3	1.479	15	0	1	0	1	0	1	005	3
313		5	max	2188.275	2	5.433	4	0	1	0	_1_	0	_1_	0	2
314			min	-2272.934	3	1.274	15	0	1	0	1	0	1	006	3
315		6	max	2188.104	2	4.564	4	0	1	0	1	0	1	002	15
316			min	-2273.062	3	1.07	15	0	1	0	1	0	1	007	3
317		7	max	2187.934	2	3.695	4	0	1	0	_1_	0	1	002	15
318			min	-2273.189	3	.866	15	0	1	0	1	0	1	009	4
319		8	max	2187.764	2	2.826	4	0	1	0	1	0	1	002	15
320			min	-2273.317	3	.662	15	0	1	0	1	0	1	01	4
321		9		2187.593	2	1.957	4	0	1	0	1	0	1	003	15
322			min	-2273.445	3	.417	12	0	1	0	1	0	1	011	4
323		10	max	2187.423	2	1.277	2	0	1	0	_1_	0	_1_	003	15
324			min	-2273.573	3	.062	3	0	1	0	1	0	1	012	4
325		11	max	2187.253	2	.6	2	0	1	0	1	0	1	003	15
326			min	-2273.701	3	446	3	0	1	0	1	0	1	012	4
327		12	max	2187.082	2	078	2	0	1	0	1	0	1	003	15
328			min	-2273.828	3	954	3	0	1	0	1	0	1	012	4
329		13	max	2186.912	2	359	15	0	1	0	1	0	1	003	15
330			min	-2273.956	3	-1.518	4	0	1	0	1	0	1	012	4
331		14	max	2186.742	2	564	15	0	1	0	1	0	1	003	15
332			min	-2274.084	3	-2.387	4	0	1	0	1	0	1	011	4
333		15	max	2186.571	2	768	15	0	1	0	1	0	1	002	15
334			min	-2274.212	3	-3.256	4	0	1	0	1	0	1	009	4
335		16	max	2186.401	2	972	15	0	1	0	1	0	1	002	15
336			min	-2274.339	3	-4.125	4	0	1	0	1	0	1	008	4
337		17	max	2186.231	2	-1.176	15	0	1	0	1	0	1	001	15
338			min	-2274.467	3	-4.994	4	0	1	0	1	0	1	006	4
339		18	max	2186.06	2	-1.381	15	0	1	0	1	0	1	0	15
340			min	-2274.595	3	-5.863	4	0	1	0	1	0	1	003	4
341		19	max	2185.89	2	-1.585	15	0	1	0	1	0	1	0	1
342			min	-2274.723	3	-6.732	4	0	1	0	1	0	1	0	1
343	M8	1	max	2815.391	1	0	1	0	1	0	1	0	1	0	1
344			min	-69.768	3	0	1	0	1	0	1	0	1	0	1
345		2	max	2815.561	1	0	1	0	1	0	1	0	1	0	1
346			min	-69.64	3	0	1	0	1	0	1	0	1	0	1
347		3	max	2815.732	1	0	1	0	1	0	1	0	1	0	1
348			min	-69.512	3	0	1	0	1	0	1	0	1	0	1
349		4	max	2815.902	1	0	1	0	1	0	1	0	1	0	1
350			min	-69.385	3	0	1	0	1	0	1	0	1	0	1
351		5	max	2816.072	1	0	1	0	1	0	1	0	1	0	1
352				-69.257	3	0	1	0	1	0	1	0	1	0	1
353		6		2816.243	1	0	1	0	1	0	1	0	1	0	1
354			min	-69.129	3	0	1	0	1	0	1	0	1	0	1
355		7		2816.413	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		2816.583	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	0	1	0	1	0	1	0	1
359		9	max	2816.754	1	0	1	0	1	0	1	0	1	0	1
360				-68.746	3	0	1	0	1	0	1	0	1	0	1
361		10		2816.924	1	0	1	0	1	0	1	0	1	0	1
362		_ · ·		-68.618	3	0	1	0	1	0	1	0	1	0	1
363		11		2817.094	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		2817.265	_	0	1	0	1	0	1	0	1	0	1
366		14	min		3	0	1	0	1	0	1	0	1	0	1
367		13		2817.435		0	1	0	1	0	1	0	1	0	1
368		'	min		3	0	1	0	1	0	1	0	1	0	1
000			111111	00.200						<u> </u>		•			

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
369		14	max	2817.605	1	0	1	0	1	0	1	0	1	0	1
370			min	-68.107	3	0	1	0	1	0	1	0	1	0	1
371		15	max	2817.776	1	0	1	0	1	0	1	0	1	0	1
372			min	-67.979	3	0	1	0	1	0	1	0	1	0	1
373		16	max	2817.946	1	0	1	0	1	0	1	0	1	0	1
374			min	-67.851	3	0	1	0	1	0	1	0	1	0	1
375		17	max	2818.117	1	0	1	0	1	0	1	0	1	0	1
376			min	-67.724	3	0	1	0	1	0	1	0	1	0	1
377		18	max	2818.287	1	0	1	0	1	0	1	0	1	0	1
378			min	-67.596	3	0	1	0	1	0	1	0	1	0	1
379		19		2818.457	1	0	1	0	1	0	1	0	1	0	1
380			min	-67.468	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	987.235	1	2.022	4	028	15	0	1	0	1	0	1
382			min	-1112.805	3	.476	15	605	1	0	5	0	3	0	1
383		2	max	987.764	1	1.951	4	028	15	0	1	0	15	0	15
384			min		3	.459	15	605	1	0	5	0	1	0	4
385		3	max		1	1.88	4	028	15	0	1	0	15	0	15
386			min	-1112.011	3	.442	15	605	1	0	5	0	1	001	4
387		4	max		1	1.809	4	028	15	0	1	0	15	0	15
388			min	-1111.614	3	.426	15	605	1	0	5	0	1	002	4
389		5	max		1	1.738	4	028	15	0	1	0	15	0	15
390			min	-1111.217	3	.409	15	605	1	0	5	0	1	003	4
391		6	max		1	1.667	4	028	15	0	1	0	15	0	15
392				-1110.82	3	.392	15	605	1	0	5	001	1	003	4
393		7	max	990.411	1	1.596	4	028	15	0	1	0	15	<u>.005</u>	15
394			min	-1110.423	3	.375	15	605	1	0	5	001	1	004	4
395		8	max	990.94	1	1.525	4	028	15	0	1	0	15	001	15
396			min	-1110.026	3	.359	15	605	1	0	5	002	1	004	4
397		9	max	991.469	1	1.454	4	028	15	0	1	002	15	004 001	15
398		9	min	-1109.629	3	.342	15	605	1	0	5	002	1	005	4
399		10	max	991.999	<u></u>	1.383	4	028	15	0	1	0	15	003 001	15
400		10	min	-1109.232	3	.325	15	605	1	0	5	002	1	005	4
401		11	max	992.528	_ <u></u>	1.312	4	028	15	0	1	0	15	003 001	15
402		11	min	-1108.835	3	.309	15	605	1	0	5	002	1	006	4
403		12		993.057	<u> </u>	1.241	4	005 028	15	0	1	002 0	15	002	15
404		12	max	-1108.438	3	.292	15	028 605	1	0	5	002	1	002	4
		13							15				15		
405		13	max	-1108.041	<u>1</u> 3	1.17	15	028 605		0	1	0		002	15
406		4.4	min			.275			1	0	5	003	1	007	4
407		14	max	994.116	1	1.099	4	028	15	0	1	0	15	002	15
408		15	min		3	.259	15	<u>605</u>	1	0	<u>5</u>	003	1	007	4
409		15		994.645	1	1.028	4	028	15	0		0	15	002	15
410		10			3	.242	15	<u>605</u>	1	0	5	003	1	008	4
411		16		995.174	1	.957	4	028	15	0	1	0	15	002	15
412		47		-1106.851	3	.225	15	605	1	0	5	003	1	008	4
413		17		995.704	1	.886	4	028	15	0	1	0	15	002	15
414		4.0		-1106.454	3	.207	12	605	1	0	5	003	1	008	4
415		18		996.233	1	.815	4	028	15	0	1	0	15	002	15
416		40		-1106.057	3	.179	12	<u>605</u>	1	0	5	004	1	009	4
417		19		996.762	1	.746	2	028	15	0	1	0	15	002	15
418	B.4.4.4			-1105.66	3	.152	12	<u>605</u>	1	0	5	004	1	009	4
419	M11	1_		576.657	2	8.874	4	022	15	0	1	0	15	.009	4
420				-734.806	3	2.086	15	472	1_	0	15	0	1	.002	15
421		2		576.487	2	8.005	4	022	15	0	1_	0	15	.005	4
422				-734.933	3_	1.882	15	472	1	0	15	0	1	.001	12
423		3		576.316	2	7.136	4	022	15	0	1_	0	15	.002	2
424				-735.061	3_	1.678	15	472	1_	0	15	0	1	0	3
425		4	max	576.146	2	6.267	4	022	15	0	1	0	15	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec	_	Axial[lb]		y Shear[lb]			LC	Torque[k-ft]					
426			min	-735.189	3	1.473	15	472	1	0	15	001	1	002	3
427		5	max	575.976	2	5.398	4	022	15	0	1	0	15	001	15
428			min	-735.317	3	1.269	15	472	1	0	15	001	1	005	4
429		6	max		2	4.53	4	022	15	0	1	0	15	002	15
430			min	-735.444	3	1.065	15	472	1	0	15	002	1	007	4
431		7	max		2	3.661	4	022	15	0	1	0	15	002	15
432			_	-735.572	3	.861	15	472	1	0	15	002	1	009	4
433		8	max		2	2.792	4	022	15	0	1	0	15	002	15
434			min	-735.7	3	.656	15	472	1	0	15	002	1	01	4
435		9	max		2	1.923	4	022	15	0	1	0	15	003	15
436		9		-735.828	3	.452	15	022 472	1	0	15	002	1	003 011	4
		40	min						_				_		_
437		10	max		2	1.054	4	022	15	0	1	0	15	003	15
438				-735.955	3	.248	15	472	1	0	15	002	1	012	4
439		11	max		2	.271	2	022	15	0	1	0	15	003	15
440				-736.083	3	067	3	472	1	0	15	003	1	012	4
441		12	max		2	16	15	022	15	0	1	0	15	003	15
442			min	-736.211	3	684	4	472	1	0	15	003	1	012	4
443		13	max	574.613	2	365	15	022	15	0	1	0	15	003	15
444			min	-736.339	3	-1.553	4	472	1	0	15	003	1	012	4
445		14	max	574.443	2	569	15	022	15	0	1	0	15	003	15
446			min	-736.467	3	-2.422	4	472	1	0	15	003	1	011	4
447		15		574.272	2	773	15	022	15	0	1	0	15	002	15
448			_	-736.594	3	-3.29	4	472	1	0	15	004	1	009	4
449		16	max		2	977	15	022	15	0	1	0	15	002	15
450		10		-736.722	3	-4.159	4	472	1	0	15	004	1	008	4
451		17	max		2	-1.182	15	022	15	0	1	- <u>004</u> 0	15	003 001	15
		17													
452		40	min		3	-5.028	4	472	1	0	15	004	1	006	4
453		18		573.761	2	-1.386	15	022	15	0	1	0	15	0	15
454		10		-736.978	3_	-5.897	4	472	1	0	15	004	1	003	4
455		19		573.591	2	-1.59	15	022	15	0	1	0	15	0	1
456				-737.105	3	-6.766	4	472	1	0	15	004	1	0	1
457	M12	1	max	1105.103	_1_	0	1	19.328	1	0	1	0	15	0	1
458			min	8.967	3	0	1	.899	15	0	1	004	1	0	1
459		2	max	1105.273	1	0	1	19.328	1	0	1	0	15	0	1
460			min	9.095	3	0	1	.899	15	0	1	001	1	0	1
461		3	max	1105.444	1	0	1	19.328	1	0	1	0	1	0	1
462			min	9.223	3	0	1	.899	15	0	1	0	15	0	1
463		4	max	1105.614	1	0	1	19.328	1	0	1	.003	1	0	1
464			min	9.35	3	0	1	.899	15	0	1	0	15	0	1
465		5		1105.784	1	0	1	19.328	1	0	1	.005	1	0	1
466				9.478	3	0	1	.899	15	0	1	0	15	0	1
467		6		1105.955	1	0	1	19.328	1	0	1	.008	1	0	1
468		-	min	9.606	3	0	1	.899	15	0	1	0	15	0	1
		7	_				1	19.328		0	1				1
469				1106.125	1_	0	1		1		1	.01	1	0	
470			min		3	0		.899	15	0		0	15	0	1
471		8		1106.295	1_	0	1	19.328	1	0	1	.012	1	0	1
472			min		3	0	1	.899	15	0	1	0	15	0	1
473		9		1106.466	_1_	0	1	19.328	1	0	1	.014	1	0	1
474			min	9.989	3	0	1	.899	15	0	1	0	15	0	1
475		10		1106.636	1_	0	1	19.328	1	0	1	.016	1	0	1
476			min	10.117	3	0	1	.899	15	0	1	0	15	0	1
477		11	max	1106.806	1	0	1	19.328	1	0	1	.019	1	0	1
478				10.245	3	0	1	.899	15	0	1	0	15	0	1
479		12		1106.977	1	0	1	19.328	1	0	1	.021	1	0	1
480		<u>'-</u>		10.372	3	0	1	.899	15	0	1	0	15	0	1
481		13		1107.147	1	0	1	19.328	1	0	1	.023	1	0	1
482		10	min	10.5	3	0	1	.899	15	0	1	.001	15	0	1
702			1111111	10.0	J	U		.033	IJ	U		.001	IJ	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec	I	Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
483		14		1107.317	_1_	0	1	19.328	1	0	1	.025	_1_	0	1
484			min	10.628	3	0	1_	.899	15	0	1	.001	15	0	1
485		15		1107.488	<u>1</u>	0	1	19.328	1	0	1	.028	<u>1</u>	0	1
486			min	10.756	3	0	1	.899	15	0	1	.001	15	0	1
487		16	max	1107.658	1	0	1	19.328	1	0	1	.03	1_	0	1
488			min	10.883	3	0	1	.899	15	0	1	.001	15	0	1
489		17	max	1107.828	1	0	1	19.328	1	0	1	.032	1	0	1
490			min	11.011	3	0	1	.899	15	0	1	.001	15	0	1
491		18	max	1107.999	1	0	1	19.328	1	0	1	.034	1	0	1
492			min	11.139	3	0	1	.899	15	0	1	.002	15	0	1
493		19	max		1	0	1	19.328	1	0	1	.036	1	0	1
494			min	11.267	3	0	1	.899	15	0	1	.002	15	0	1
495	M1	1	max	211.552	1	587.636	3	-5.05	15	0	1	.304	1	0	3
496			min	9.83	15	-413.278	1	-107.925	1	0	3	.014	15	014	2
497		2	max	212.395	1	586.542	3	-5.05	15	0	1	.237	1	.243	1
498		_	min	10.084	15	-414.737	1	-107.925	1	0	3	.011	15	365	3
499		3	max	471.337	3	481.346	1	-5.022	15	0	3	.17	1	.491	1
500		<u> </u>	min	-289.887	2	-434.008	3	-107.653	1	0	1	.008	15	717	3
501		4	max	471.969	3	479.887	1	-5.022	15	0	3	.103	1	.193	1
502		7	min	-289.044	2	-435.103	3	-107.653	1	0	1	.005	15	447	3
503		5	max		3	478.428	1	-5.022	15	0	3	.036	1 1	005	15
504		-	min	-288.202	2	-436.197	3	-107.653	1	0	1	.002	15	177	3
505		6		473.232	3	476.969	1	-5.022	15	0	3	001	15	.094	3
506		-	max	-287.36	2	-437.291	3	-107.653	1	0	1	031	1	412	2
507		7	min			475.51		-5.022			3		15	.366	
			max	473.864 -286.517	3		1		1 <u>5</u>	0	1	005	15 1		2
508		0	min		2	-438.386 474.054	3	-107.653		0		097		698	
509		8	max	474.496	3	474.051	1	-5.022	15	0	1	008	<u>15</u>	.638	3
510			min	-285.675	2	-439.48	3	-107.653	1	0	_	164	1_	991	1
511		9	max		3	41.668	2	-7.768	15	0	9	.101	1_	.746	3
512		40	min	-193.969	2	.446	15		1_	0	3	.005	15	-1.13	1
513		10	max		3	40.209	2	-7.768	15	0	9	0	<u>15</u>	.727	3
514		4.4	min	-193.126	2	.006	15	-166.343	1_	0	3	002	1_	-1.15	2
515		11	max	493.15	3	38.75	2	-7.768	15	0	9	005	<u>15</u>	.71	3
516		40	min	-192.284	2	-1.733	4	-166.343		0	3	105	1_	-1.175	2
517		12	max	510.43	3	288.848	3	-4.822	15	0	2	.161	1	.619	3
518		40	min	-106.691	10	-544.473	2	-103.534	1_	0	3	.007	15	-1.041	2
519		13	max		3	287.753	3	-4.822	15	0	2	.096	1_	.44	3
520		4.4	min	-105.989	10	-545.932	2	-103.534	1_	0	3	.004	<u>15</u>	702	2
521		14	max		3	286.659	3	-4.822	15	0	2	.032	1_	.262	3
522		4.5	min	-105.287	10	-547.391	2	-103.534	1_	0	3	.002	15	376	1
523		15		512.325	3_	285.565	3	-4.822	15	0	2	001	<u>15</u>	.084	3
524		40	min		10	-548.85	2	-103.534		0	3	032	1_	052	1
525		16		512.957	3	284.47	3	-4.822	15	0	2	004	15	.318	2
526		4-		-103.883		-550.309	2	-103.534		0	3	096	1_	093	3
527		17		513.589	3_	283.376	3	-4.822	15	0	2	007	<u>15</u>	.66	2
528		10		-103.181	10	-551.768	2	-103.534		0	3	161	1_	269	3
529		18		-10.101	<u> 15</u>	549.686	2	-5.698	15	0	3	011	<u>15</u>	.331	2
530			min	-212.863	_1_	-230.142	3	-121.909		0	2	231	<u>1</u>	132	3
531		19	max		15	548.227	2	-5.698	15	0	3	014	<u>15</u>	.011	3
532			min	-212.021	_1_	-231.237	3	-121.909	1	0	2	307	1_	011	1
533	M5	1		462.917	1_	1957.171	3	0	1	0	1	0	1	.029	2
534			min	20.271	12	-1408.3	1	0	1	0	1	0	1_	0	3
535		2		463.759	1_	1956.077	3	0	1	0	1	0	_1_	.902	1
536			min		12	-1409.759	1	0	1	0	1	0	1_	-1.214	3
537		3		1495.667	3_	1406.958	1	0	1	0	1	0		1.746	1
538			min	-1005.433	2	-1362.61	3	0	1	0	1	0	1_	-2.391	3
539		4	max	1496.298	3	1405.499	_1_	0	1	0	_1_	0	_1_	.873	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
540			min	-1004.59	2	-1363.704	3	0	1	0	1	0	1	-1.545	3
541		5	max	1496.93	3	1404.04	1	0	1	0	1	0	1	.024	9
542			min	-1003.748	2	-1364.798	3	0	1	0	1	0	1	699	3
543		6	max	1497.562	3	1402.581	1	0	1	0	1	0	1	.149	3
544			min	-1002.906	2	-1365.893	3	0	1	0	1	0	1	894	2
545		7	max	1498.194	3	1401.122	1	0	1	0	1	0	1	.997	3
546			min	-1002.063	2	-1366.987	3	0	1	0	1	0	1	-1.739	1
547		8	max	1498.826	3	1399.663	1	0	1	0	1	0	1	1.845	3
548			min	-1001.221	2	-1368.081	3	0	1	0	1	0	1	-2.609	1
549		9	max	1528.562	3	139.322	2	0	1	0	1	0	1	2.126	3
550			min	-811.61	2	.445	15	0	1	0	1	0	1	-2.96	1
551		10	max	1529.194	3	137.863	2	0	1	0	1	0	1	2.059	3
552			min	-810.768	2	.005	15	0	1	0	1	0	1	-3.015	2
553		11	max	1529.826	3	136.403	2	0	1	0	1	0	1	1.992	3
554			min	-809.925	2	-1.459	4	0	1	0	1	0	1	-3.1	2
555		12	max	1559.786	3	887.367	3	0	1	0	1	0	1	1.748	3
556			min	-620.332	2	-1627.212	2	0	1	0	1	0	1	-2.772	2
557		13	max	1560.417	3	886.273	3	0	1	0	1	0	1	1.198	3
558			min	-619.49	2	-1628.671	2	0	1	0	1	0	1	-1.761	2
559		14	max	1561.049	3	885.179	3	0	1	0	1	0	1	.648	3
560			min	-618.648	2	-1630.13	2	0	1	0	1	0	1	794	1
561		15	max	1561.681	3	884.084	3	0	1	0	1	0	1	.262	2
562			min	-617.805	2	-1631.589	2	0	1	0	1	0	1	0	13
563		16	max	1562.313	3	882.99	3	0	1	0	1	0	1	1.275	2
564			min	-616.963	2	-1633.048	2	0	1	0	1	0	1	449	3
565		17	max	1562.945	3	881.896	3	0	1	0	1	0	1	2.289	2
566			min	-616.12	2	-1634.507	2	0	1	0	1	0	1	997	3
567		18	max	-21.091	12	1858.889	2	0	1	0	1	0	1	1.173	2
568			min	-462.823	1	-800.047	3	0	1	0	1	0	1	519	3
569		19	max	-20.67	12	1857.43	2	0	1	0	1	0	1	.023	1
570			min	-461.98	1	-801.141	3	0	1	0	1	0	1	022	3
571	<u>M9</u>	1	max		1_	587.636	3	107.925	1	0	3	014	15	0	3
572			min	9.83	15	-413.278	1	5.05	15	0	1	304	1	014	2
573		2	max		1	586.542	3	107.925	1	0	3	011	15	.243	1
574			min	10.084	15	-414.737	1	5.05	15	0	1	237	1	365	3
575		3	max		3	481.346	1	107.653	1	0	1	008	15	.491	1
576			min	-289.887	2	-434.008	3	5.022	15	0	3	17	1	717	3
577		4	max		3	479.887	1	107.653	1	0	1	005	15	.193	1
578			min	-289.044	2	-435.103	3	5.022	15	0	3	103	1	447	3
579		5	max	472.601	3	478.428	1_	107.653	1	0	1_	002	15	005	15
580				-288.202					15		3	036	1	177	3
581		6		473.232	3	476.969	1	107.653	1	0	1	.031	1	.094	3
582			min		2	-437.291	3	5.022	15	0	3	.001	15	412	2
583		7		473.864	3	475.51	1	107.653	1	0	1	.097	1	.366	3
584			min	-286.517	2	-438.386	3	5.022	15	0	3	.005	15	698	2
585		8		474.496	3	474.051	1	107.653	1	0	1	.164	1	.638	3
586			min		2	-439.48	3	5.022	15	0	3	.008	15	991	1
587		9		491.887	3	41.668	2	166.343	1	0	3	005	15	.746	3
588				-193.969	2	.446	15	7.768	15	0	9	101	1	-1.13	1
589		10	max		3	40.209	2	166.343	1	0	3	.002	1	.727	3
590			min		2	.006	15	7.768	15	0	9	0	15	<u>-1.15</u>	2
591		11	max		3	38.75	2	166.343	1	0	3	.105	1	71	3
592				-192.284	2	-1.733	4	7.768	15	0	9	.005	15	<u>-1.175</u>	2
593		12		510.43	3	288.848	3	103.534	1	0	3	007	15	.619	3
594			min	-106.691	10	-544.473	2	4.822	15	0	2	161	1	-1.041	2
595		13		511.062	3	287.753	3	103.534	1	0	3	004	15	.44	3
596			min	-105.989	10	-545.932	2	4.822	15	0	2	096	1	702	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	511.694	3	286.659	3	103.534	1	0	3	002	15	.262	3
598			min	-105.287	10	-547.391	2	4.822	15	0	2	032	1	376	1
599		15	max	512.325	3	285.565	3	103.534	1	0	3	.032	1	.084	3
600			min	-104.585	10	-548.85	2	4.822	15	0	2	.001	15	052	1
601		16	max	512.957	3	284.47	3	103.534	1	0	3	.096	1	.318	2
602			min	-103.883	10	-550.309	2	4.822	15	0	2	.004	15	093	3
603		17	max	513.589	3	283.376	3	103.534	1	0	3	.161	1	.66	2
604			min	-103.181	10	-551.768	2	4.822	15	0	2	.007	15	269	3
605		18	max	-10.101	15	549.686	2	121.909	1	0	2	.231	1	.331	2
606			min	-212.863	1	-230.142	3	5.698	15	0	3	.011	15	132	3
607		19	max	-9.847	15	548.227	2	121.909	1	0	2	.307	1	.011	3
608			min	-212.021	1	-231.237	3	5.698	15	0	3	.014	15	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rota	te [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.168	2	.009	3 1.154		2	NC	1_	NC	1
2			min	0	15	032	3	005	2 -2.23	8e-3	3	NC	1	NC	1
3		2	max	0	1	.247	3	.052	1 1.294		2	NC	5	NC	2
4			min	0	15	01	9	.003	15 -2.22	2e-3	3	861.292	3	4779.372	1
5		3	max	0	1	.473	3	.122	1 1.434		2	NC	5	NC	3
6			min	0	15	139	1	.006	15 -2.20	7e-3	3	475.83	3	1995.947	1
7		4	max	0	1	.61	3	.181	1 1.575		2	NC	5	NC	3
8			min	0	15	211	1	.009	15 -2.19	2e-3	3	374.043	3	1333.605	1
9		5	max	0	1	.642	3	.211	1 1.715		2	NC	5	NC	3
10			min	0	15	208	1	.01	15 -2.17		3	356.185	3	1142.745	1
11		6	max	0	1	.571	3	.203	1 1.855		2	NC	5	NC	5
12			min	0	15	135	1	.01	15 -2.16	2e-3	3	397.861	3	1189.131	1
13		7	max	0	1	.419	3	.159	1 1.995	5e-2	2	NC	5	NC	5
14			min	0	15	016	9	.008	15 -2.14	6e-3	3	531.946	3	1523.189	1
15		8	max	0	1	.226	3	.092	1 2.135	5e-2	2	NC	1	NC	3
16			min	0	15	.005	15	.001	10 -2.13	1e-3	3	930.688	3	2661.529	1
17		9	max	0	1	.296	2	.03	3 2.275	5e-2	2	NC	4	NC	1
18			min	0	15	.009	15	008	10 -2.11	6e-3	3	1874.406	2	NC	1
19		10	max	0	1	.352	2	.028	3 2.415	5e-2	2	NC	3	NC	1
20			min	0	1	029	3	019	2 -2.10	1e-3	3	1304.804	2	NC	1
21		11	max	0	15	.296	2	.03	3 2.275	5e-2	2	NC	4	NC	1
22			min	0	1	.009	15	008	10 -2.11	6e-3	3	1874.406	2	NC	1
23		12	max	0	15	.226	3	.092	1 2.135	5e-2	2	NC	1	NC	3
24			min	0	1	.005	15	.001	10 -2.13	1e-3	3	930.688	3	2661.529	1
25		13	max	0	15	.419	3	.159	1 1.995	5e-2	2	NC	5	NC	5
26			min	0	1	016	9	.008	15 -2.14	6e-3	3	531.946	3	1523.189	1
27		14	max	0	15	.571	3	.203	1 1.855	5e-2	2	NC	5	NC	5
28			min	0	1	135	1	.01	15 -2.16	2e-3	3	397.861	3	1189.131	1
29		15	max	0	15	.642	3	.211	1 1.715	5e-2	2	NC	5	NC	3
30			min	0	1	208	1	.01	15 -2.17	7e-3	3	356.185	3	1142.745	1
31		16	max	0	15	.61	3	.181	1 1.575	5e-2	2	NC	5	NC	3
32			min	0	1	211	1	.009	15 -2.19	2e-3	3	374.043	3	1333.605	1
33		17	max	0	15	.473	3	.122	1 1.434		2	NC	5	NC	3
34			min	0	1	139	1	.006	15 -2.20	7e-3	3	475.83	3	1995.947	1
35		18	max	0	15	.247	3	.052	1 1.294	1e-2	2	NC	5	NC	2
36			min	0	1	01	9	.003	15 -2.22	2e-3	3	861.292	3	4779.372	1
37		19	max	0	15	.168	2	.009	3 1.154		2	NC	1	NC	1
38			min	001	1	032	3	005	2 -2.23	8e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.308	3	.008	3 6.696	Se-3	1	NC	1	NC	1
40			min	0	15	518	2	004	2 -4.66	8e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

41		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC			
44			2			_					1_			
44								_						•
45			3											
46														
48			4											
48				min		15		_			3			
49			5	max	0			3						
50				min	0	15					3			
ST	49		6	max	0		1.168	3	.182		1_			3
Secondary Seco	50			min	0	15	-1.539	1	.009	15 -9.407e-3	3	234.134 1	1328.83	1
Samax	51		7	max	0	1	1.109	3	.145		1	7999.146 15	NC	3
Second Color	52			min	0	15	-1.512	1	.007	15 -1.036e-2	3	240.412 1	1671.074	1
Second Color	53		8	max	0	1	1.004	3	.085	1 1.515e-2	1	8740.161 15	NC	3
Secondary Color	54			min	0	15	-1.436	1	.002	10 -1.13e-2	3	260.204 1	2874.906	1
Secondary Color	55		9	max	0	1	.898	3	.026	3 1.635e-2	1	9734.283 15	NC	1
58						15					3			1
The color of the			10		0			3						1
59					0	1					3			1
60			11											
61														
62			12			-		_						•
63														
65			13			_		_						
66			10		_									
66			1/1											
68			17											1
68			15			_		_						3
69			13											
To Min O 1 -1.356 1 .007 15 -7.512e-3 3 285.009 1 1592.049 1 71 17 max O 15 .868 3 .095 1 9.11e-3 1 NC 15 NC 3 3 3 3 3 3 3 3 3			16											
The number of			10											
The following color			17			-		_						
73 18 max 0 15 .609 3 .034 1 7.903e-3 1 NC 5 NC 2 74 min 0 1 846 1 0 10 -5.616e-3 3 723.801 1 7322.361 1 75 19 max 0 15 .308 3 .008 3 6.696e-3 1 NC 1 NC 1 76 min 0 1 518 2 004 2 4.668e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .518 3 .008 3 3.966e-3 3 NC 1 NC 1 78 min 0 1 517 2 004 2 -6.954e-3 2 NC 1 NC 1 80 min 0 1 91 2 <td></td> <td></td> <td>17</td> <td></td>			17											
74 min 0 1 846 1 0 10 -5.616e-3 3 723.801 1 7322.361 1 75 19 max 0 15 .308 3 .008 3 6.696e-3 1 NC 1 NC 1 76 min 0 1 518 2 004 2 -4.668e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .315 3 0.098 3 .3966e-3 3 NC 1 NC 1 78 min 0 1 517 2 004 2 -6.954e-3 2 NC 1 NC 1 79 2 max 0 15 .698 3 .035 1 4.773e-3 3 NC 15 NC 2 80 min 0 1 -1.25 2<			10					_						
75 19 max 0 15 .308 3 .008 3 6.696e-3 1 NC 1 NC 1 76 min 0 1 518 2 004 2 -4.668e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .315 3 .008 3 3.966e-3 3 NC 1 NC 1 78 min 0 1 517 2 -004 2 -6.954e-3 2 NC 1 NC 1 79 2 max 0 15 .518 3 .035 1 4.773e-3 3 NC 5 NC 2 80 min 0 1 91 2 .001 10 -8.21e-3 2 610.375 2 7259.781 1 81 3 3 3 .096 1 5.581			18		_									
76 min 0 1 518 2 004 2 -4.668e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .315 3 .008 3 3.966e-3 3 NC 1 NC 1 78 min 0 1 517 2 004 2 -6.954e-3 2 NC 1 NC 1 79 2 max 0 15 .518 3 .035 1 4.773e-3 3 NC 5 NC 2 80 min 0 1 91 2 .001 10 -8.21e-3 2 610.375 2 7259.781 1 81 3 max 0 15 .698 3 .096 1 5.581e-3 3 NC 15 NC 3 82 min 0 1 -1.25 2 </td <td></td> <td></td> <td>40</td> <td></td>			40											
77 M15 1 max 0 15 .315 3 .008 3 3.966e-3 3 NC 1 NC 1 78 min 0 1 517 2 004 2 -6.954e-3 2 NC 1 NC 1 79 2 max 0 15 .518 3 .035 1 4.773e-3 3 NC 5 NC 2 80 min 0 1 91 2 .001 10 -8.21e-3 2 610.375 2 7259.781 1 81 3 max 0 15 .698 3 .096 1 5.81e-3 3 NC 15 NC 3 82 min 0 1 -1.25 2 .005 15 -9.467e-3 2 327.262 2 2550.841 1 83 min 0 1 -1.501			19											
78 min 0 1 517 2 004 2 -6.954e-3 2 NC 1 NC 1 79 2 max 0 15 .518 3 .035 1 4.773e-3 3 NC 5 NC 2 80 min 0 1 91 2 .001 10 -8.21e-3 2 610.375 2 7259.781 1 81 3 max 0 15 .698 3 .096 1 5.581e-3 3 NC 15 NC 3 82 min 0 1 -1.25 2 .005 15 -9.467e-3 2 327.262 2 2550.841 1 83 4 max 0 15 .838 3 .153 1 6.388e-3 3 3940.497 15 NC 3 84 min 0 1 -1.501 2 <td></td> <td>N445</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>•</td>		N445				_					_			•
79 2 max 0 15 .518 3 .035 1 4.773e-3 3 NC 5 NC 2 80 min 0 1 91 2 .001 10 -8.21e-3 2 610.375 2 7259.781 1 81 3 max 0 15 .698 3 .096 1 5.581e-3 3 NC 15 NC 3 82 min 0 1 -1.25 2 .005 15 -9.467e-3 2 327.262 2 2550.841 1 83 4 max 0 15 .838 3 .153 1 6.388e-3 3 9.940.497 15 NC 3 84 min 0 1 -1.501 2 .007 15 -1.795e-2 2 243.961 2 1585.994 1 85 max 0 15 .928		<u>IVI15</u>	1											
80 min 0 1 91 2 .001 10 -8.21e-3 2 610.375 2 7259.781 1 81 3 max 0 15 .698 3 .096 1 5.581e-3 3 NC 15 NC 3 82 min 0 1 -1.25 2 .005 15 -9.467e-3 2 327.262 2 2550.841 1 83 4 max 0 15 .838 3 .153 1 6.388e-3 3 9340.497 15 NC 3 84 min 0 1 -1.501 2 .007 15 -1.072e-2 2 243.961 2 1585.994 1 85 5 max 0 15 .928 3 .185 1 7.195e-3 3 8083.729 15 NC 3 86 min 0 1 -1.642 <td></td> <td></td> <td>-</td> <td></td> <td>•</td>			-											•
81 3 max 0 15 .698 3 .096 1 5.581e-3 3 NC 15 NC 3 82 min 0 1 -1.25 2 .005 15 -9.467e-3 2 327.262 2 2550.841 1 83 4 max 0 15 .838 3 .153 1 6.388e-3 3 9340.497 15 NC 3 84 min 0 1 -1.501 2 .007 15 -1.072e-2 2 243.961 2 1585.994 1 85 5 max 0 15 .928 3 .185 1 7.195e-3 3 8083.729 15 NC 3 86 min 0 1 -1.642 2 .009 15 -1.198e-2 2 213.229 2 1305.906 1 87 6 max 0 15			2											
82 min 0 1 -1.25 2 .005 15 -9.467e-3 2 327.262 2 2550.841 1 83 4 max 0 15 .838 3 .153 1 6.388e-3 3 9340.497 15 NC 3 84 min 0 1 -1.501 2 .007 15 -1.072e-2 2 243.961 2 1585.994 1 85 5 max 0 15 .928 3 .185 1 7.195e-3 3 8083.729 15 NC 3 86 min 0 1 -1.642 2 .009 15 -1.198e-2 2 213.229 2 1305.906 1 87 6 max 0 15 .969 3 .183 1 8.002e-3 3 7749.339 15 NC 3 88 min 0 1 -											_			-
83 4 max 0 15 .838 3 .153 1 6.388e-3 3 9340.497 15 NC 3 84 min 0 1 -1.501 2 .007 15 -1.072e-2 2 243.961 2 1585.994 1 85 5 max 0 15 .928 3 .185 1 7.195e-3 3 8083.729 15 NC 3 86 min 0 1 -1.642 2 .009 15 -1.198e-2 2 213.229 2 1305.906 1 87 6 max 0 15 .969 3 .183 1 8.002e-3 3 7749.339 15 NC 3 88 min 0 1 -1.675 2 .009 15 -1.324e-2 2 207.314 2 1324.299 1 89 7 max 0 15 .964 3 .146 1 8.809e-3 3 8019.73 15			3											3
84 min 0 1 -1.501 2 .007 15 -1.072e-2 2 243.961 2 1585.994 1 85 5 max 0 15 .928 3 .185 1 7.195e-3 3 8083.729 15 NC 3 86 min 0 1 -1.642 2 .009 15 -1.198e-2 2 213.229 2 1305.906 1 87 6 max 0 15 .969 3 .183 1 8.002e-3 3 7749.339 15 NC 3 88 min 0 1 -1.675 2 .009 15 -1.324e-2 2 207.314 2 1324.299 1 89 7 max 0 15 .964 3 .146 1 8.809e-3 3 8019.73 15 NC 3 90 min 0 1 -						-								1
85 5 max 0 15 .928 3 .185 1 7.195e-3 3 8083.729 15 NC 3 86 min 0 1 -1.642 2 .009 15 -1.198e-2 2 213.229 2 1305.906 1 87 6 max 0 15 .969 3 .183 1 8.002e-3 3 .7749.339 15 NC 3 88 min 0 1 -1.675 2 .009 15 -1.324e-2 2 207.314 2 1324.299 1 89 7 max 0 15 .964 3 .146 1 8.809e-3 3 8019.73 15 NC 3 90 min 0 1 -1.614 2 .007 15 -1.449e-2 2 218.802 2 1664.268 1 91 8 max 0			4											
86 min 0 1 -1.642 2 .009 15 -1.198e-2 2 213.229 2 1305.906 1 87 6 max 0 15 .969 3 .183 1 8.002e-3 3 7749.339 15 NC 3 88 min 0 1 -1.675 2 .009 15 -1.324e-2 2 207.314 2 1324.299 1 89 7 max 0 15 .964 3 .146 1 8.809e-3 3 8019.73 15 NC 3 90 min 0 1 -1.614 2 .007 15 -1.449e-2 2 218.802 2 1664.268 1 91 8 max 0 15 .93 3 .086 1 9.616e-3 3 8767.045 15 NC 3 92 min 0 1 -1						-								
87 6 max 0 15 .969 3 .183 1 8.002e-3 3 7749.339 15 NC 3 88 min 0 1 -1.675 2 .009 15 -1.324e-2 2 207.314 2 1324.299 1 89 7 max 0 15 .964 3 .146 1 8.809e-3 3 8019.73 15 NC 3 90 min 0 1 -1.614 2 .007 15 -1.449e-2 2 218.802 2 1664.268 1 91 8 max 0 15 .93 3 .086 1 9.616e-3 3 8767.045 15 NC 3 92 min 0 1 -1.495 2 .002 10 -1.575e-2 2 245.446 2 2856.274 1 93 9 max 0 15			5											
88 min 0 1 -1.675 2 .009 15 -1.324e-2 2 207.314 2 1324.299 1 89 7 max 0 15 .964 3 .146 1 8.809e-3 3 8019.73 15 NC 3 90 min 0 1 -1.614 2 .007 15 -1.449e-2 2 218.802 2 1664.268 1 91 8 max 0 15 .93 3 .086 1 9.616e-3 3 8767.045 15 NC 3 92 min 0 1 -1.495 2 .002 10 -1.575e-2 2 245.446 2 2856.274 1 93 9 max 0 15 .888 3 .025 3 1.042e-2 3 9769.47 15 NC 1 94 min 0 1 -1.					0									
89 7 max 0 15 .964 3 .146 1 8.809e-3 3 8019.73 15 NC 3 90 min 0 1 -1.614 2 .007 15 -1.449e-2 2 218.802 2 1664.268 1 91 8 max 0 15 .93 3 .086 1 9.616e-3 3 8767.045 15 NC 3 92 min 0 1 -1.495 2 .002 10 -1.575e-2 2 245.446 2 2856.274 1 93 9 max 0 15 .888 3 .025 3 1.042e-2 3 9769.47 15 NC 1 94 min 0 1 -1.37 2 006 10 -1.701e-2 2 281.396 2 NC 1 95 10 max 0 1 .865 3 .023 3 1.123e-2 3 NC 15 NC 1 96 min 0 1 -1.309 2 016 2 -1.826e-2 2 302.887 2	87		6	max	0	15					3			
90 min 0 1 -1.614 2 .007 15 -1.449e-2 2 218.802 2 1664.268 1 91 8 max 0 15 .93 3 .086 1 9.616e-3 3 8767.045 15 NC 3 92 min 0 1 -1.495 2 .002 10 -1.575e-2 2 245.446 2 2856.274 1 93 9 max 0 15 .888 3 .025 3 1.042e-2 3 9769.47 15 NC 1 94 min 0 1 -1.37 2 006 10 -1.701e-2 2 281.396 2 NC 1 95 10 max 0 1 .865 3 .023 3 1.123e-2 3 NC 15 NC 1 96 min 0 1 -1.309				min	0		-1.675				2			
91 8 max 0 15 .93 3 .086 1 9.616e-3 3 8767.045 15 NC 3 92 min 0 1 -1.495 2 .002 10 -1.575e-2 2 245.446 2 2856.274 1 93 9 max 0 15 .888 3 .025 3 1.042e-2 3 9769.47 15 NC 1 94 min 0 1 -1.37 2 006 10 -1.701e-2 2 281.396 2 NC 1 95 10 max 0 1 .865 3 .023 3 1.123e-2 3 NC 15 NC 1 96 min 0 1 -1.309 2 016 2 -1.826e-2 2 302.887 2 NC 1	89		7	max	0	15	.964				3			
91 8 max 0 15 .93 3 .086 1 9.616e-3 3 8767.045 15 NC 3 92 min 0 1 -1.495 2 .002 10 -1.575e-2 2 245.446 2 2856.274 1 93 9 max 0 15 .888 3 .025 3 1.042e-2 3 9769.47 15 NC 1 94 min 0 1 -1.37 2 006 10 -1.701e-2 2 281.396 2 NC 1 95 10 max 0 1 .865 3 .023 3 1.123e-2 3 NC 15 NC 1 96 min 0 1 -1.309 2 016 2 -1.826e-2 2 302.887 2 NC 1	90				0	1	-1.614	2	.007		2	218.802 2	1664.268	1
92 min 0 1 -1.495 2 .002 10 -1.575e-2 2 245.446 2 2856.274 1 93 9 max 0 15 .888 3 .025 3 1.042e-2 3 9769.47 15 NC 1 94 min 0 1 -1.37 2 006 10 -1.701e-2 2 281.396 2 NC 1 95 10 max 0 1 .865 3 .023 3 1.123e-2 3 NC 15 NC 1 96 min 0 1 -1.309 2 016 2 -1.826e-2 2 302.887 2 NC 1			8		0	15					3			
93 9 max 0 15 .888 3 .025 3 1.042e-2 3 9769.47 15 NC 1 94 min 0 1 -1.37 2 006 10 -1.701e-2 2 281.396 2 NC 1 95 10 max 0 1 .865 3 .023 3 1.123e-2 3 NC 15 NC 1 96 min 0 1 -1.309 2 016 2 -1.826e-2 2 302.887 2 NC 1					0									1
94 min 0 1 -1.37 2 006 10 -1.701e-2 2 281.396 2 NC 1 95 10 max 0 1 .865 3 .023 3 1.123e-2 3 NC 15 NC 1 96 min 0 1 -1.309 2 016 2 -1.826e-2 2 302.887 2 NC 1			9		0	15								
95														
96 min 0 1 -1.309 2016 2 -1.826e-2 2 302.887 2 NC 1			10			1								1
			11			1								1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
98			min	0	15	-1.37	2	006	10 -1.701e-2	2	281.396	2	NC	1
99		12	max	0	1	.93	3	.086	1 9.616e-3	3	8767.045	<u>15</u>	NC	3
100			min	0	15	-1.495	2	.002	10 -1.575e-2	2	245.446	2	2856.274	1
101		13	max	0	1	.964	3	.146	1 8.809e-3	3	8019.73	15	NC	3
102			min	0	15	-1.614	2	.007	15 -1.449e-2	2	218.802	2	1664.268	1
103		14	max	0	1	.969	3	.183	1 8.002e-3	3	7749.339	15	NC	3
104			min	0	15	-1.675	2	.009	15 -1.324e-2	2	207.314	2	1324.299	1
105		15	max	0	1	.928	3	.185	1 7.195e-3	3	8083.729	15	NC	3
106			min	0	15	-1.642	2	.009	15 -1.198e-2	2	213.229	2	1305.906	1
107		16	max	0	1	.838	3	.153	1 6.388e-3	3	9340.497	15	NC	3
108			min	0	15	-1.501	2	.007	15 -1.072e-2	2	243.961	2	1585.994	
109		17	max	0	1	.698	3	.096	1 5.581e-3	3	NC	15	NC	3
110			min	0	15	-1.25	2	.005	15 -9.467e-3	2	327.262	2	2550.841	1
111		18	max	0	1	.518	3	.035	1 4.773e-3	3	NC	5	NC	2
112			min	0	15	91	2	.001	10 -8.21e-3	2	610.375	2	7259.781	1
113		19	max	0	1	.315	3	.008	3 3.966e-3	3	NC	1	NC	1
114			min	0	15	517	2	004	2 -6.954e-3	2	NC	1	NC	1
115	M16	1	max	0	15	.158	1	.006	3 7.185e-3	3	NC	1	NC	1
116	14110	•	min	001	1	106	3	004	2 -1.022e-2	1	NC	1	NC	1
117		2	max	0	15	.003	13	.051	1 8.284e-3	3	NC	5	NC	2
118			min	001	1	088	2	.003	15 -1.133e-2	1	1011.221	2	4844.507	1
119		3	max	0	15	.047	3	.121	1 9.383e-3	3	NC	5	NC	3
120		1	min	0	1	276	2	.006	15 -1.243e-2	1	564.054	2	2010.591	1
121		4	max	0	15	.079	3	.18	1 1.048e-2	3	NC	5	NC	3
122		4	min	0	1	382	2	.009	15 -1.354e-2	1	451.449	2	1338.868	1
123		5	max	0	15	- <u>362</u> .07	3	.211	1 1.158e-2	3	NC	5	NC	3
124		5		0	1	391	2	.01	15 -1.465e-2	1	443.858	2	1144.245	1
125		6	min		15	.023	3				NC		NC	3
		-6	max	0 0	1		2	.203 .01	1 1.268e-2 15 -1.576e-2	3		<u>5</u> 2	1187.279	
126		7	min			306				•	526.8			
127			max	<u>0</u> 	15	.002	13	.16	1 1.378e-2 15 -1.687e-2	3	NC	<u>5</u> 2	NC 1512 007	3
128		0	min			<u>147</u>		.008		•	808.449		1513.987	
129		8	max	0	15	.093	1	.093	1 1.488e-2 10 -1.798e-2	3	NC	4	NC OCAC CAE	3
130			min	0	1	145	3	.004		1	2329.357	2	2616.615	
131		9	max	0	15	.252	1	.027	1 1.598e-2	3	NC	4	NC 0400 000	2
132		40	min	0	1	223	3	<u>005</u>	10 -1.909e-2	1	2054.577	3	9468.236	1
133		10	max	0	1	.323	1	.02	3 1.708e-2	3	NC 4450,000	5_	NC NC	1
134		4.4	min	0	1	258	3	015	2 -2.02e-2	1	1453.863	1_	NC NC	1
135		11	max	0	1	.252	1	.027	1 1.598e-2	3	NC	4_	NC 0400 000	2
136		4.0	min	0	15	223	3	005	10 -1.909e-2	1	2054.577	3	9468.236	
137		12	max	0	1	.093	1	.093	1 1.488e-2	3	NC	4_	NC 2010 015	3
138		10	min	0	15	14 <u>5</u>	3	.004	10 -1.798e-2	1	2329.357		2616.615	
139		13	max	0	1	.002	13	.16	1 1.378e-2	3	NC	5_	NC 4540,007	3
140			min	0	15	<u>147</u>	2	.008	15 -1.687e-2	1	808.449	2	1513.987	
141		14	max	0	1	.023	3	.203	1 1.268e-2	3	NC	5	NC	3
142			min	0	15	306	2	.01	15 -1.576e-2	1	526.8	2	1187.279	
143		15	max	0	1	.07	3	.211	1 1.158e-2	3	NC 110.070	5	NC	3
144		.	min	0	15	391	2	.01	15 -1.465e-2	1	443.858	2	1144.245	
145		16	max	0	1	.079	3	.18	1 1.048e-2	3	NC	5	NC	3
146			min	0	15	382	2	.009	15 -1.354e-2	1	451.449	2	1338.868	
147		17	max	0	1	.047	3	.121	1 9.383e-3	3	NC	5_	NC TO 1	3
148		1	min	0	15	276	2	.006	15 -1.243e-2	1	564.054	2	2010.591	1
149		18	max	.001	1	.003	13	.051	1 8.284e-3	3	NC	5_	NC	2
150			min	0	15	088	2	.003	15 -1.133e-2	1	1011.221	2	4844.507	1
151		19	max	.001	1	.158	1	.006	3 7.185e-3	3	NC	1_	NC	1
152			min	0	15	106	3	004	2 -1.022e-2	1	NC	1_	NC	1
153	<u>M2</u>	1_	max	.007	1	.008	2	.014	1 -1.553e-5	15	NC	1_	NC	2
154			min	008	3	014	3	0	15 -3.332e-4	1	9391.226	2	5467.011	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	1	x Rotate [r					
155		2	max	.007	1	.007	2	.013	1_	-1.474e-5	<u>15</u>	NC	_1_	NC	2
156			min	008	3	013	3	0	15	-3.163e-4	<u>1</u>	NC	1_	5957.901	1
157		3	max	.007	1	.005	2	.012	1_	-1.395e-5		NC	_1_	NC	2
158			min	007	3	013	3	0	15		1_	NC	1_	6541.937	1
159		4	max	.006	1	.004	2	011	1	-1.317e-5	<u>15</u>	NC	_1_	NC	2
160		_	min	007	3	013	3	0	15	-2.824e-4	_1_	NC	1_	7243.538	
161		5	max	.006	1	.003	2	.01	1	-1.238e-5	<u>15</u>	NC	_1_	NC	2
162			min	006	3	012	3	0	15	-2.655e-4	_1_	NC	_1_	8095.927	1
163		6	max	.005	1	.002	2	008_	1	-1.159e-5	<u>15</u>	NC	_1_	NC	2
164		_	min	006	3	012	3	0	15	-2.486e-4	1_	NC	1_	9145.246	
165		7	max	.005	1	0	2	.007	1	-1.08e-5	<u>15</u>	NC	_1_	NC	1
166			min	006	3	012	3	0	15	-2.317e-4	_1_	NC	1_	NC	1
167		8	max	.005	1	0	2	006_	1	-1.001e-5	<u>15</u>	NC	1_	NC NC	1
168			min	005	3	011	3	0	15		1_	NC	1_	NC	1
169		9	max	.004	1	001	2	.005	1	-9.226e-6	<u>15</u>	NC	1_	NC	1
170		10	min	005	3	011	3	0	15		1_	NC	1_	NC	1
171		10	max	.004	1	002	15	.005	1	-8.438e-6	<u>15</u>	NC	1	NC NC	1
172		1.4	min	004	3	01	3	0	15	-1.809e-4	1_	NC	1_	NC NC	1
173		11	max	.003	1	002	15	.004	1	-7.65e-6	<u>15</u>	NC		NC NC	1
174		40	min	004	3	009	3	0	15	-1.64e-4	1_	NC NC	1_	NC NC	1
175		12	max	.003	1	002	15	.003	1	-6.863e-6	<u>15</u>	NC	1	NC NC	1
176		40	min	003	3	008	3	0	15	-1.47e-4	1_	NC NC	1_	NC NC	1
177		13	max	.002	1	002	15	.002	1	-6.075e-6	<u>15</u>	NC	1	NC NC	1
178		4.4	min	003	3	008	3	0		-1.301e-4	1_	NC NC	1_	NC NC	1
179		14	max	.002	1	002	15	.002	1	-5.287e-6	<u>15</u>	NC NC	1	NC NC	1
180		4.5	min	002	3	007	3	0	15		1_	NC NC	1_	NC NC	1
181		15	max	.002	1	001	15	.001	1	-4.499e-6	<u>15</u>	NC NC	1_	NC NC	1
182		4.0	min	002	3	006	4	0	15		1_	NC NC	1_	NC NC	1
183		16	max	.001	1	001	15	0	1	-3.711e-6	<u>15</u>	NC NC	1	NC	1
184 185		17	min	001	3	<u>005</u> 0	15	0	15	-7.935e-5	1_	NC NC	<u>1</u> 1	NC NC	1
		17	max	0	3			0	1	-2.923e-6	<u>15</u>	NC NC	1	NC NC	1
186		10	min	0		003 0	15		15	-6.243e-5	1_	NC NC			
187		18	max	0	3	002	4	0	1	-2.135e-6	<u>15</u>	NC NC	1	NC NC	1
188		40	min	0	1			0	15	-4.551e-5	1_			NC NC	
189 190		19	max	<u> </u>	1	<u>0</u> 	1	<u> </u>	1	-1.347e-6 -2.859e-5	<u>15</u> 1	NC NC	<u>1</u> 1	NC NC	1
	M3	1	min		1				1		•	NC NC	1	NC NC	1
191 192	IVIS		max	<u> </u>	1	0 0	1	<u>0</u> 0	1	5.418e-6	1_	NC NC	1		1
		2	min		3	0		-		2.561e-7	<u>15</u>	NC NC	1	NC NC	1
193 194			max	0	2		15	0 0	1 <u>5</u>	4.179e-5 1.947e-6	1_	NC NC	1	NC NC	1
195		3	min max	<u> </u>	3	003 001	15	0		7.816e-5	<u>15</u>	NC NC	1	NC NC	1
196		3	min	0	2	006	4	0	1	3.637e-6	15	NC	1	NC	1
197		4	max	.001	3	002	15	0		1.145e-4	1	NC	1	NC	1
198		-	min	0	2	002	4	0	1	5.328e-6	15	NC	1	NC	1
199		5	max	.002	3	003	15	0	15	1.509e-4	1	NC	1	NC	1
200			min	001	2	012	4	0	1	7.018e-6		8382.304	4	NC	1
201		6	max	.002	3	004	15	0		1.873e-4	1	NC	5	NC	1
202		 	min	002	2	015	4	0	1	8.709e-6		6802.371	4	NC	1
203		7	max	.002	3	004	15	0	15		1	NC	5	NC	1
204			min	002	2	018	4	0	1	1.04e-5		5850.387	4	NC	1
205		8	max	.003	3	005	15	0	1	2.6e-4	1	NC	5	NC	1
206			min	002	2	003	4	0	12	1.209e-5	15		4	NC	1
207		9	max	.003	3	005	15	0	1	2.964e-4	1	NC	5	NC	1
208			min	003	2	021	4	0	12	1.378e-5		4917.683	4	NC	1
209		10	max	.003	3	005	15	.001	1	3.328e-4	1	NC	5	NC	1
210		10	min	003	2	022	4	0	15			4753.226	4	NC	1
211		11	max	.004	3	022	15	.002	1	3.691e-4	1	NC	5	NC	1
<u></u>			παλ	.004	J	.000	IU	.002		0.0016-4		140		110	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			LC
212			min	003	2	022	4	0	15	1.716e-5		4745.913	4_	NC	1
213		12	max	.004	3	005	15	.002	1	4.055e-4	_1_	NC	5	NC	1_
214			min	003	2	021	4	0	15	1.885e-5	15	4898.163	4_	NC	1
215		13	max	.005	3	005	15	.003	1	4.419e-4	_1_	NC	5	NC	1
216			min	004	2	02	4	0	15	2.054e-5	15	5241.08	4	NC	1
217		14	max	.005	3	004	15	.004	1	4.783e-4	_1_	NC	5_	NC	1_
218			min	004	2	018	4	0	15	2.223e-5	15	5850.451	4	NC	1
219		15	max	.006	3	004	15	.006	1	5.146e-4	<u>1</u>	NC	3	NC	1
220			min	004	2	015	4	0	15	2.392e-5	15	6893.779	4	NC	1
221		16	max	.006	3	003	15	.007	1	5.51e-4	1_	NC	1_	NC	1_
222			min	005	2	012	4	0	15	2.562e-5	15	8776.38	4	NC	1
223		17	max	.006	3	002	15	.009	1	5.874e-4	1	NC	1	NC	1
224			min	005	2	009	4	0	15	2.731e-5	15	NC	1_	NC	1
225		18	max	.007	3	001	15	.011	1	6.237e-4	1	NC	1	NC	2
226			min	005	2	005	1	0	15	2.9e-5	15	NC	1	9281.402	1
227		19	max	.007	3	0	10	.013	1	6.601e-4	1	NC	1	NC	2
228			min	006	2	002	1	0	15	3.069e-5	15	NC	1	7743.392	1
229	M4	1	max	.003	1	.005	2	0	15	2.337e-4	1	NC	1	NC	3
230			min	0	3	007	3	013	1	1.09e-5	15	NC	1	1889.337	1
231		2	max	.002	1	.005	2	0	15	2.337e-4	1	NC	1	NC	3
232			min	0	3	007	3	012	1	1.09e-5	15	NC	1	2050.278	1
233		3	max	.002	1	.005	2	0	15	2.337e-4	1	NC	1	NC	3
234			min	0	3	007	3	011	1	1.09e-5	15	NC	1	2242.088	1
235		4	max	.002	1	.004	2	0	15	2.337e-4	1	NC	1	NC	3
236			min	0	3	006	3	01	1	1.09e-5	15	NC	1	2472.74	1
237		5	max	.002	1	.004	2	0	15	2.337e-4	1	NC	1	NC	3
238			min	0	3	006	3	009	1	1.09e-5	15	NC	1	2753.069	1
239		6	max	.002	1	.004	2	0	15	2.337e-4	1	NC	1	NC	3
240		T .	min	0	3	005	3	008	1	1.09e-5	15	NC	1	3098.107	1
241		7	max	.002	1	.004	2	000	15	2.337e-4	1	NC	1	NC	3
242			min	0	3	005	3	007	1	1.09e-5	15	NC	1	3529.188	1
243		8	max	.002	1	.003	2	<u>007</u> 0	15	2.337e-4	1	NC	1	NC	3
244		-0	min	0	3	005	3	006	1	1.09e-5	15	NC NC	1	4077.421	1
244		9		.001	1	.003	2	006 0	15	2.337e-4	1 <u>15</u> 1	NC NC	1	NC	2
		9	max		3								1		
246		40	min	0		004	3	005	1_1_	1.09e-5	<u>15</u>	NC NC	_	4789.634	1
247		10	max	.001	1	.003	2	0	15	2.337e-4	1_	NC	1_	NC 5700,000	2
248		4.4	min	0	3	004	3	004	1	1.09e-5	15	NC NC	1_	5739.009	1
249		11	max	.001	1	.002	2	0	15	2.337e-4	1_	NC	1	NC 70.45.000	2
250		40	min	0	3	003	3	004	1	1.09e-5	15	NC	1_	7045.228	1
251		12	max	.001	1	.002	2	0	15	2.337e-4	1_	NC	1_	NC 0045.054	2
252		10	min		3	003	3	003	1	1.09e-5	<u>15</u>	NC NC	1_	8915.254	
253		13	max	0	1	.002	2	0	15		1_	NC	1	NC NC	1
254			min	0	3	002	3	002	1	1.09e-5	15	NC	1_	NC	1
255		14	max	0	1	.001	2	0	15		_1_	NC	1_	NC	1
256			min	0	3	002	3	002	1	1.09e-5	<u>15</u>	NC	1_	NC	1
257		15	max	0	1	.001	2	0	15		1_	NC	1	NC	1
258			min	0	3	002	3	001	1	1.09e-5	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	2.337e-4	1	NC	1	NC	1
260			min	0	3	001	3	0	1	1.09e-5	15	NC	1_	NC	1
261		17	max	0	1	0	2	0	15	2.337e-4	1	NC	1_	NC	1_
262			min	0	3	0	3	0	1	1.09e-5	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	2.337e-4	1	NC	1	NC	1
264			min	0	3	0	3	0	1	1.09e-5	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.337e-4	1	NC	1	NC	1
266			min	0	1	0	1	0	1	1.09e-5	15	NC	1	NC	1
267	M6	1	max	.023	1	.031	2	0	1	0	1	NC	3	NC	1
268			min	027	3	043	3	0	1	0	1	2474.427	2	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]			LC z [in]		LC	x Rotate [r	LC	(n) L/y Ratio LC (n) L/z Ratio L			
269		2	max	.022	1	.028	2	0	1	0	1	NC	3	NC	1
270			min	025	3	041	3	0	1	0	1	2732.751	2	NC	1
271		3	max	.021	1	.025	2	0	1	0	1	NC	3	NC	1
272			min	024	3	038	3	0	1	0	1	3048.271	2	NC	1
273		4	max	.019	1	.023	2	0	1	0	1	NC	3	NC	1
274			min	022	3	036	3	0	1	Ö	1	3438.534	2	NC	1
275		5	max	.018	1	.02	2	0	1	0	1	NC	3	NC	1
276		1	min	021	3	034	3	0	1	0	1	3928.631	2	NC	1
277		6		.017	1	.017	2	0	1	0	1	NC	3	NC	1
278		-0	max	019	3	032	3	0	1	0	1	4555.479	2	NC NC	1
		7	min						1		•				_
279			max	.016	1	.014	2	0	-	0	1	NC	1_	NC NC	1
280			min	018	3	029	3	0	1	0	1_	5375.272	2	NC NC	1
281		8	max	.014	1	.012	2	0	1	0	1_	NC	1_	NC	1
282			min	016	3	027	3	0	1	0	1_	6477.121	2	NC	1
283		9	max	.013	1	.01	2	0	1	0	_1_	NC	_1_	NC	1
284			min	015	3	025	3	0	1	0	1_	8009.668	2	NC	1
285		10	max	.012	1	.008	2	0	1	0	1	NC	1_	NC	1
286			min	013	3	022	3	0	1	0	1	NC	1	NC	1
287		11	max	.01	1	.006	2	0	1	0	1	NC	1	NC	1
288			min	012	3	02	3	0	1	0	1	NC	1	NC	1
289		12	max	.009	1	.004	2	0	1	0	1	NC	1	NC	1
290		T	min	01	3	018	3	0	1	0	1	NC	1	NC	1
291		13	max	.008	1	.003	2	0	1	0	1	NC	1	NC	1
292		10	min	009	3	015	3	0	1	0	1	NC	1	NC	1
293		14		.006	1	.001	2	0	1	0	1	NC	1	NC NC	1
294		14	max min	007	3	013	3	0	1	0	1	NC NC	1	NC NC	1
		4.5							•	-	•				
295		15	max	.005	1	0	2	0	1	0	1	NC NC	1	NC NC	1
296		1.0	min	006	3	01	3	0	1	0	1_	NC	1_	NC	1
297		16	max	.004	1	0	2	0	1	0	1_	NC	1_	NC	1
298			min	004	3	008	3	0	1	0	1	NC	1_	NC	1
299		17	max	.003	1	0	2	0	1	0	_1_	NC	_1_	NC	1
300			min	003	3	005	3	0	1	0	1	NC	1_	NC	1
301		18	max	.001	1	0	2	0	1	0	1	NC	1	NC	1
302			min	001	3	003	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	0	1	NC	1	NC	1
307		2	max	.001	3	0	15	0	1	0	1	NC	1	NC	1
308			min	001	2	003	3	0	1	0	1	NC	1	NC	1
309		3	max	.002	3	003	15	0	1	0	1	NC	1	NC	1
310		- 3		002	2	007	3	_	1			NC		NC	1
		1	min					0		0	1_1		1_		
311		4	max	.004	3	002	15	0	1	0	1	NC NC	1_	NC NC	1
312		-	min	004	2	01	3	0	1	0	1_	NC NC	1_	NC NC	1
313		5_	max	.005	3	003	15	0	1	0	1_	NC 0575 004	1_	NC NC	1
314			min	005	2	013	3	0	1	0	1_	8575.994	4	NC	1
315		6	max	.006	3	004	15	00	1	0	_1_	NC	1_	NC	1
316			min	006	2	01 <u>5</u>	3	0	1	0	1_	6945.511	4	NC	1
317		7	max	.007	3	004	15	0	1	0	1_	NC	2	NC	1
318			min	007	2	018	4	0	1	0	1	5963.699	4	NC	1
319		8	max	.009	3	005	15	0	1	0	1	NC	5	NC	1
320			min	008	2	02	4	0	1	0	1	5358.107	4	NC	1
321		9	max	.01	3	005	15	0	1	0	1	NC	5	NC	1
322		Ť	min	01	2	021	4	0	1	0	1	5000.504	4	NC	1
323		10	max	.011	3	005	15	0	1	0	1	NC	5	NC	1
324		10	min	011	2	022	4	0	1	0	1	4828.698	4	NC NC	1
		11			3				1		1				_
325		11	max	.012	<u> </u> 3	005	15	0		0	<u> </u>	NC	5	NC	<u> 1</u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
326			min	012	2	022	4	0	1	0	1	4817.415	4	NC	1
327		12	max	.014	3	005	15	0	1	0	1	NC	5	NC	1
328			min	013	2	021	4	0	1	0	1	4968.602	4	NC	1
329		13	max	.015	3	005	15	0	1	0	1	NC	5	NC	1
330			min	014	2	02	4	0	1	0	1	5313.433	4	NC	1
331		14	max	.016	3	004	15	0	1	0	1	NC	5	NC	1
332			min	015	2	018	4	0	1	0	1	5928.415	4	NC	1
333		15	max	.017	3	004	15	0	1	0	1	NC	1	NC	1
334			min	017	2	016	3	0	1	0	1	6982.951	4	NC	1
335		16	max	.019	3	003	15	0	1	0	1	NC	1	NC	1
336			min	018	2	014	3	0	1	0	1	8887.204	4	NC	1
337		17	max	.02	3	002	15	0	1	0	1	NC	1	NC	1
338			min	019	2	011	3	0	1	0	1	NC	1	NC	1
339		18	max	.021	3	001	15	0	1	0	1	NC	1	NC	1
340			min	02	2	008	3	0	1	0	1	NC	1	NC	1
341		19	max	.022	3	0	10	0	1	0	1	NC	1	NC	1
342			min	021	2	005	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.021	2	0	1	0	1	NC	1	NC	1
344			min	0	3	023	3	0	1	0	1	NC	1	NC	1
345		2	max	.006	1	.02	2	0	1	0	1	NC	1	NC	1
346			min	0	3	022	3	0	1	0	1	NC	1	NC	1
347		3	max	.006	1	.018	2	0	1	0	1	NC	1	NC	1
348			min	0	3	02	3	0	1	0	1	NC	1	NC	1
349		4	max	.006	1	.017	2	0	1	0	1	NC	1	NC	1
350			min	0	3	019	3	0	1	Ö	1	NC	1	NC	1
351		5	max	.005	1	.016	2	0	1	0	1	NC	1	NC	1
352		T	min	0	3	018	3	0	1	0	1	NC	1	NC	1
353		6	max	.005	1	.015	2	0	1	0	1	NC	1	NC	1
354			min	0	3	017	3	0	1	0	1	NC	1	NC	1
355		7	max	.004	1	.014	2	0	1	0	1	NC	1	NC	1
356		<u> </u>	min	0	3	015	3	0	1	0	1	NC	1	NC	1
357		8	max	.004	1	.013	2	0	1	0	1	NC	1	NC	1
358		Ť	min	0	3	014	3	0	1	0	1	NC	1	NC	1
359		9	max	.004	1	.011	2	0	1	0	1	NC	1	NC	1
360			min	0	3	013	3	0	1	0	1	NC	1	NC	1
361		10	max	.003	1	.01	2	0	1	0	1	NC	1	NC	1
362		· · ·	min	0	3	011	3	0	1	0	1	NC	1	NC	1
363		11	max	.003	1	.009	2	0	1	0	1	NC	1	NC	1
364			min	0	3	01	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.008	2	0	1	0	1	NC	1	NC	1
366		12	min	0	3	009	3	0	1	0	1	NC	1	NC	1
367		13	max	.002	1	.007	2	0	1	0	1	NC	1	NC	1
368			min	0	3	008	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.006	2	0	1	0	1	NC	1	NC	1
370			min	0	3	006	3	0	1	0	1	NC	1	NC	1
371		15	max	.001	1	.005	2	0	1	0	1	NC	1	NC	1
372		'	min	0	3	005	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374		10	min	0	3	004	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.002	2	0	1	0	1	NC	1	NC	1
376		11/	min	0	3	003	3	0	1	0	1	NC	1	NC	1
377		18		0	1	.003	2	0	1	0	1	NC	1	NC	1
378		10	max min	0	3	001	3	0	1	0	1	NC NC	1	NC NC	1
379		10		0					1		1	NC NC	1		1
		19	max		1	0	1	0	1	0	1		1	NC NC	1
380	M10	1	min	.007	1	.008	2	<u> </u>	15	0 3.332e-4	<u>1</u> 1	NC NC	1	NC NC	2
381	IVITU		max		3		3		15				2		1
382			min	008	3	014	3	014		1.553e-5	10	9391.226		5467.011	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.007	1	.007	2	0	15	3.163e-4	_1_	NC	_1_	NC	2
384			min	008	3	013	3	013	1	1.474e-5	15	NC	1_	5957.901	1
385		3	max	.007	1	.005	2	0	15	2.994e-4	_1_	NC	_1_	NC	2
386			min	007	3	013	3	012	1	1.395e-5	15	NC	1	6541.937	1
387		4	max	.006	1	.004	2	0	15	2.824e-4	1_	NC	1_	NC	2
388			min	007	3	013	3	011	1	1.317e-5	15	NC	1	7243.538	1
389		5	max	.006	1	.003	2	0	15	2.655e-4	1	NC	1	NC	2
390			min	006	3	012	3	01	1	1.238e-5	15	NC	1	8095.927	1
391		6	max	.005	1	.002	2	0	15	2.486e-4	1	NC	1	NC	2
392			min	006	3	012	3	008	1	1.159e-5	15	NC	1	9145.246	1
393		7	max	.005	1	0	2	0	15	2.317e-4	1_	NC	1_	NC	1
394			min	006	3	012	3	007	1	1.08e-5	15	NC	1	NC	1
395		8	max	.005	1	0	2	0	15	2.147e-4	1	NC	1	NC	1
396			min	005	3	011	3	006	1	1.001e-5	15	NC	1	NC	1
397		9	max	.004	1	001	2	0	15	1.978e-4	1	NC	1	NC	1
398			min	005	3	011	3	005	1	9.226e-6	15	NC	1	NC	1
399		10	max	.004	1	002	15	0	15	1.809e-4	1	NC	1	NC	1
400			min	004	3	01	3	005	1	8.438e-6	15	NC	1	NC	1
401		11	max	.003	1	002	15	0	15	1.64e-4	1	NC	1	NC	1
402			min	004	3	009	3	004	1	7.65e-6	15	NC	1	NC	1
403		12	max	.003	1	002	15	0	15	1.47e-4	1	NC	1	NC	1
404			min	003	3	008	3	003	1	6.863e-6	15	NC	1	NC	1
405		13	max	.002	1	002	15	0	15	1.301e-4	1	NC	1	NC	1
406			min	003	3	008	3	002	1	6.075e-6	15	NC	1	NC	1
407		14	max	.002	1	002	15	0	15	1.132e-4	1	NC	1	NC	1
408			min	002	3	007	3	002	1	5.287e-6	15	NC	1	NC	1
409		15	max	.002	1	001	15	0	15	9.628e-5	1	NC	1	NC	1
410			min	002	3	006	4	001	1	4.499e-6	15	NC	1	NC	1
411		16	max	.001	1	001	15	0	15	7.935e-5	1	NC	1	NC	1
412		10	min	001	3	005	4	0	1	3.711e-6	15	NC	1	NC	1
413		17	max	0	1	<u>.000</u>	15	0	15	6.243e-5	1	NC	1	NC	1
414			min	0	3	003	4	0	1	2.923e-6	15	NC	1	NC	1
415		18	max	0	1	0	15	0	15	4.551e-5	1	NC	1	NC	1
416		10	min	0	3	002	4	0	1	2.135e-6	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	2.859e-5	1	NC	1	NC	1
418		10	min	0	1	0	1	0	1	1.347e-6	15	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	-2.561e-7	15	NC	1	NC	1
420	IVIII		min	0	1	0	1	0	1	-5.418e-6	1	NC	1	NC	1
421		2	max	0	3	0	15	0	1	-1.947e-6	15	NC	1	NC	1
422			min	0	2	003	4	0	15	-4.179e-5	1	NC NC	1	NC	1
423		3	max	0	3	003 001	15	0	1	-3.637e-6	_	NC	1	NC	1
424			min	0	2	006	4	0	15	-7.816e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	0	1	-5.328e-6		NC	1	NC	1
426		-	min	0	2	002	4	0		-1.145e-4	1	NC NC	1	NC	1
427		5	max	.002	3	003	15	0	1	-7.018e-6		NC	1	NC	1
428		J	min	001	2	003 012	4	0		-1.509e-4	1	8382.304	4	NC	1
429		6	max	.002	3	004	15	0	1	-8.709e-6	15	NC	5	NC	1
430		U	min	002	2	004 015	4	0	15	-0.709e-0 -1.873e-4	1	6802.371	4	NC NC	1
431		7		.002	3	015 004	15	0	1	-1.073e-4 -1.04e-5	15	NC	_ 4 _	NC NC	1
		/	max										<u>5</u>		1
432		0	min	002	2	018	15	0	15	-2.237e-4	1_	5850.387		NC NC	-
433		8	max	.003	3	005	15	0	12		<u>15</u>	NC F262.42	5_4	NC NC	1
434			min	002	2	02	4	0	1 12	-2.6e-4	1.5	5263.42	4_	NC NC	1
435		9	max	.003	3	005	15	0	12			NC	5_4	NC NC	1
436		40	min	003	2	021	4	0	1	-2.964e-4	1_	4917.683	4_	NC NC	1
437		10	max	.004	3	005	15	0		-1.547e-5		NC	5	NC NC	1
438		4.4	min	003	2	022	4	001	1_	-3.328e-4	1_	4753.226	4_	NC NC	1
439		11	max	.004	3	005	15	0	15	-1.716e-5	15	NC	5	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

110	Member	Sec	i	x [in]	LC	y [in]	LC 4	z [in]		x Rotate [r					
440		12	min	003	3	022	15	002 0	1 1 5	-3.691e-4 -1.885e-5	1_	4745.913 NC	4	NC NC	1
441		12	max	.004 003	2	005 021	4	002	1 <u>5</u>		<u>15</u> 1	4898.163	<u>5</u> 4	NC NC	1
442		13	min	003 .005	3	021 005	15	<u>002</u> 0	15	-4.055e-4 -2.054e-5	15	NC	_4	NC NC	1
		13	max		2				1		-	5241.08	4		1
444		14	min	004 .005	3	02 004	15	003	15	-4.419e-4 -2.223e-5	<u>1</u> 15	NC	5	NC NC	1
446		14	max	005 004	2	004 018	4	0 004	1	-4.783e-4	1	5850.451		NC NC	1
447		15		.004	3	016 004	15	004 0	15		15	NC	3	NC NC	1
448		15	max	004	2	004 015	4	006	1	-5.146e-4	1	6893.779	4	NC NC	1
449		16		.006	3	003	15	<u>006</u> 0	15		15	NC	1	NC NC	1
450		10	max min	005	2	003 012	4	007	1	-2.562e-5 -5.51e-4	15 1	8776.38	4	NC NC	1
		17			3	012 002	15	007 0	_			NC	•	NC NC	
451 452		17	max	.006 005	2	002 009	4	009	15	-2.731e-5 -5.874e-4	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
452		18	min	005 .007	3	009 001	15	<u>009</u> 0	15	-2.9e-5	1_	NC NC	1	NC NC	2
		10	max		2		1		1		<u>15</u>	NC NC	1		4
454 455		19	min	005 .007	3	005 0	10	011 0		-6.237e-4 -3.069e-5	<u>1</u> 15	NC NC	1	9281.402 NC	2
		19	max		2				15			NC NC	1	7743.392	1
456 457	M12	1	min	006	1	002 .005	2	013 .013	1	-6.601e-4 -1.09e-5	1_	NC NC	1	NC	3
	IVIIZ		max	.003	3	005	3		15	-1.09e-5 -2.337e-4	<u>15</u>	NC NC	1		
458		2	min	0				0			1_		_	1889.337	1
459		2	max	.002	3	.005	3	.012	1	-1.09e-5	<u>15</u> 1	NC NC	<u>1</u> 1	NC	3
460		2	min	.002		007	2	0	15	-2.337e-4		NC NC	•	2050.278 NC	_
461 462		3	max	<u>.002</u>	3	.005 007		<u>.011</u> 0	1	-1.09e-5 -2.337e-4	<u>15</u> 1	NC NC	1		3
		1	min				3		15	-2.337e-4 -1.09e-5			•	2242.088	
463		4	max	.002	1	.004	2	.01	1		<u>15</u>	NC NC	1	NC	3
464		-	min	0	3	006	3	0	15	-2.337e-4	1_	NC NC		2472.74	3
465		5	max	.002	1	.004	2	.009	1	-1.09e-5	<u>15</u>	NC NC	1	NC 2752 000	3
466			min	0	3	006	3	0	15	-2.337e-4	1_	NC NC	1_	2753.069	1
467		6	max	.002	3	.004	2	.008	1	-1.09e-5	<u>15</u>	NC NC	1	NC	3
468		7	min	0		005	3	0	15	-2.337e-4	1_	NC NC	•	3098.107	1
469		7	max	.002	3	.004	3	.007	15	-1.09e-5	<u>15</u> 1	NC NC	1	NC 3529.188	3
470		0	min	.002		005	2	<u> </u>		-2.337e-4 -1.09e-5		NC NC	1	NC	3
471 472		8	max		3	.003 005	3	006 0	15	-1.09e-5 -2.337e-4	<u>15</u> 1	NC NC	1	4077.421	1
473		9	min	<u> </u>	1	.003	2	.005	1	-2.337e-4 -1.09e-5	15	NC NC	1	NC	2
474		9	max	0	3	003	3	<u>.005</u>	15	-2.337e-4	1	NC NC	1	4789.634	1
475		10	max	.001	1	.003	2	.004	1	-2.337e-4 -1.09e-5	15	NC NC	1	NC	2
476		10	min	0	3	004	3	<u>.004</u>	15	-2.337e-4	1	NC NC	1	5739.009	1
477		11	max	.001	1	.002	2	.004	1	-1.09e-5	15	NC	1	NC	2
478			min	0	3	003	3	<u>.004</u>	15	-2.337e-4	1	NC NC	1	7045.228	1
479		12	max	.001	1	.002	2	.003	1	-2.337e-4 -1.09e-5	15	NC	1	NC	2
480		12	min	0	3	003	3	0		-2.337e-4	1	NC		8915.254	1
481		13	max	0	1	.002	2	.002	1	-1.09e-5	15	NC	1	NC	1
482		13	min	0	3	002	3	0		-2.337e-4	1	NC	1	NC	1
483		14	max	0	1	.002	2	.002	1	-1.09e-5	15	NC	1	NC	1
484		14	min	0	3	002	3	0		-2.337e-4	1	NC	1	NC	1
485		15	max	0	1	.002	2	.001	1	-1.09e-5	15	NC	1	NC	1
486		13	min	0	3	002	3	0	15	-2.337e-4	1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-1.09e-5	15	NC	1	NC	1
488		10	min	0	3	001	3	0	15	-2.337e-4	1	NC	1	NC	1
489		17			1		2		1	-2.337e-4 -1.09e-5		NC	1	NC	1
490		17	max min	<u> </u>	3	<u> </u>	3	<u> </u>	15	-1.09e-5 -2.337e-4	<u>15</u> 1	NC NC	1	NC NC	1
491		18		0	1	0	2	0	1	-2.337e-4 -1.09e-5	15	NC NC	1	NC NC	1
492		10	max	0	3	0	3	0	15		1	NC NC	1	NC NC	1
492		19	max	<u> </u>	1	0	1	0	1	-2.337e-4 -1.09e-5	15	NC NC	1	NC NC	1
494		13	min	0	1	0	1	0	1	-1.09e-5 -2.337e-4	1	NC NC	1	NC NC	1
494	M1	1	max	.009	3	.168	2	.001	1	1.334e-2	1	NC NC	1	NC NC	1
496	IVI I		min	005	2	032	3	<u>.001</u>		-2.168e-2		NC NC	1	NC NC	1
430			HIIII	005		032	J	U	10	2.1006-2	J	INC		NO	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
497		2	max	.009	3	.081	2	Ō	15	6.418e-3	1	NC	5	NC	1
498			min	005	2	014	3	01	1	-1.076e-2	3	1568.567	2	NC	1
499		3	max	.009	3	.014	3	0	15	-4.601e-6	10	NC	5	NC	2
500			min	005	2	012	2	014	1	-2.995e-4	1	756.929	2	8949.968	1
501		4	max	.009	3	.06	3	0	15	4.471e-3	1	NC	15	NC	2
502			min	005	2	115	2	013	1	-4.388e-3	3	479.151	2	9637.775	1
503		5	max	.009	3	.118	3	0	15	9.241e-3	1	9864.306	15	NC	1
504			min	004	2	223	2	009	1	-8.665e-3	3	346.439	2	NC	1
505		6	max	.009	3	.181	3	0	15	1.401e-2	1	7783.457	15	NC	1
506			min	004	2	328	2	004	1	-1.294e-2	3	273.204	2	NC	1
507		7	max	.008	3	.242	3	0	1	1.878e-2	1	6556.288	15	NC	1
508			min	004	2	421	2	0	3	-1.722e-2	3	229.93	2	NC	1
509		8	max	.008	3	.292	3	.001	1	2.355e-2	1	5830.806	15	NC	1
510			min	004	2	496	2	0	15	-2.15e-2	3	204.322	2	NC	1
511		9	max	.008	3	.325	3	0	15	2.603e-2	1	5451.695	15	NC	1
512			min	004	2	542	2	0	1	-2.178e-2	3	190.973	2	NC	1
513		10	max	.008	3	.337	3	0	1	2.725e-2	2	5335.936	15	NC	1
514			min	004	2	558	2	0	15	-1.941e-2	3	187.053	2	NC	1
515		11	max	.008	3	.329	3	0	1	2.913e-2	2	5451.455	15	NC	1
516			min	004	2	542	2	0	15	-1.703e-2	3	191.618	2	NC	1
517		12	max	.007	3	.301	3	0	15	2.804e-2	2	5830.307	15	NC	1
518			min	004	2	493	2	001	1	-1.444e-2	3	206.192	1	NC	1
519		13	max	.007	3	.257	3	0	15	2.252e-2	2		15	NC	1
520			min	004	2	416	2	0	1	-1.155e-2	3	233.787	1	NC	1
521		14	max	.007	3	.2	3	.003	1	1.699e-2	2	7782.018	15	NC	1
522			min	004	2	319	2	0	15	-8.659e-3	3	280.838	1	NC	1
523		15	max	.007	3	.135	3	.008	1	1.146e-2	2	9861.841	15	NC	1
524			min	004	2	212	2	0	15	-5.769e-3	3	361.45	1	NC	1
525		16	max	.007	3	.069	3	.012	1	5.959e-3	1	NC	15	NC	1
526			min	004	2	105	2	0	15	-2.878e-3	3	509.72	1	NC	1
527		17	max	.006	3	.005	3	.013	1	8.473e-4	1	NC	5	NC	2
528			min	004	2	006	2	0	15	1.174e-5	12	824.041	1	9535.805	1
529		18	max	.006	3	.081	1	.009	1	9.339e-3	2	NC	5	NC	1
530			min	004	2	053	3	0	15	-3.353e-3	3	1736.687	1	NC	1
531		19	max	.006	3	.158	1	0	15	1.853e-2	2	NC	1	NC	1
532			min	004	2	106	3	001	1	-6.831e-3	3	NC	1	NC	1
533	M5	1	max	.028	3	.352	2	0	1	0	1	NC	1	NC	1
534			min	019	2	029	3	0	1	0	1	NC	1	NC	1
535		2	max	.028	3	.169	2	0	1	0	1	NC	5	NC	1
536		_	min	02	2	009	3	0	1	0	1	746.624	2	NC	1
537		3	max	.028	3	.043	3	0	1	0	1	NC	15	NC	1
538			min	02	2	037	2	0	1	0	1	350.606	2	NC	1
539		4	max	.028	3	.157	3	0	1	0	1	6861.773	15	NC	1
540			min	019	2	283	2	0	1	0	1	214.333	2	NC	1
541		5	max	.027	3	.313	3	0	1	0	1	4786.935	15	NC	1
542			min	019	2	551	2	0	1	0	1	150.594	2	NC	1
543		6	max	.026	3	.488	3	0	1	0	1		15	NC	1
544			min	018	2	817	2	0	1	0	1	116.231	2	NC	1
545		7	max	.026	3	.659	3	0	1	0	1	3036.617	15	NC	1
546			min	018	2	-1.059	2	0	1	0	1	96.317	2	NC	1
547		8	max	.025	3	.803	3	0	1	0	1	2665.339	15	NC	1
548			min	018	2	-1.252	2	0	1	0	1	84.71	1	NC	1
549		9	max	.025	3	.895	3	0	1	0	1		15	NC	1
550		Ĭ	min	017	2	-1.375	2	0	1	0	1	78.64	1	NC	1
551		10	max	.024	3	.929	3	0	1	0	1	2417.612	15	NC	1
552			min	017	2	-1.417	2	0	1	0	1	76.838	1	NC	1
553		11	max	.023	3	.906	3	0	1	0	1	2475.1	15	NC	1
			,									•			

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
554			min	017	2	-1.375	2	0	1	0	1	78.786	1	NC	1
555		12	max	.023	3	.827	3	0	1	0	1	2665.584	15	NC	1
556			min	016	2	-1.247	2	0	1	0	1	85.192	1	NC	1
557		13	max	.022	3	.7	3	0	1	0	1	3037.129	15	NC	1
558			min	016	2	-1.043	2	0	1	0	1	97.807	1	NC	1
559		14	max	.022	3	.541	S	0	1	0	1	3677.486	15	NC	1
560			min	016	2	791	1	0	1	0	1	119.788	1	NC	1
561		15	max	.021	3	.363	3	0	1	0	1	4788.972	15	NC	1
562			min	016	2	519	1	0	1	0	1	158.521	1	NC	1
563		16	max	.02	S	.182	Ω	0	1	0	1	6866.079	15	NC	1
564			min	015	2	251	1	0	1	0	1	232.359	1	NC	1
565		17	max	.02	3	.014	3	0	1	0	1	NC	15	NC	1
566			min	015	2	019	2	0	1	0	1	394.731	1	NC	1
567		18	max	.02	3	.169	1	0	1	0	1	NC	5	NC	1
568			min	015	2	129	3	0	1	0	1	865.733	1	NC	1
569		19	max	.02	3	.323	1	0	1	0	1	NC	1	NC	1
570			min	015	2	258	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.009	3	.168	2	0	15	2.168e-2	3	NC	1	NC	1
572			min	005	2	032	3	001	1	-1.334e-2	1	NC	1	NC	1
573		2	max	.009	3	.081	2	.01	1	1.076e-2	3	NC	5	NC	1
574			min	005	2	014	3	0	15	-6.418e-3	1	1568.567	2	NC	1
575		3	max	.009	3	.014	3	.014	1	2.995e-4	1	NC	5	NC	2
576			min	005	2	012	2	0	15	4.601e-6	10	756.929	2	8949.968	1
577		4	max	.009	3	.06	3	.013	1	4.388e-3	3	NC	15	NC	2
578			min	005	2	115	2	0	15	-4.471e-3	1	479.151	2	9637.775	1
579		5	max	.009	3	.118	3	.009	1	8.665e-3	3	9864.306	15	NC	1
580			min	004	2	223	2	0	15	-9.241e-3	1	346.439	2	NC	1
581		6	max	.009	3	.181	3	.004	1	1.294e-2	3	7783.457	15	NC	1
582			min	004	2	328	2	0	15	-1.401e-2	1	273.204	2	NC	1
583		7	max	.008	3	.242	3	0	3	1.722e-2	3	6556.288	15	NC	1
584			min	004	2	421	2	0	1	-1.878e-2	1	229.93	2	NC	1
585		8	max	.008	3	.292	3	0	15	2.15e-2	3	5830.806	15	NC	1
586			min	004	2	496	2	001	1	-2.355e-2	1	204.322	2	NC	1
587		9	max	.008	3	.325	3	0	1	2.178e-2	3	5451.695	15	NC	1
588			min	004	2	542	2	0	15	-2.603e-2	1	190.973	2	NC	1
589		10	max	.008	3	.337	3	0	15	1.941e-2	3	5335.936	15	NC	1
590			min	004	2	558	2	0	1	-2.725e-2	2	187.053	2	NC	1
591		11	max	.008	3	.329	3	0	15	1.703e-2	3	5451.455	15	NC	1
592			min	004	2	542	2	0	1	-2.913e-2	2	191.618	2	NC	1
593		12	max	.007	3	.301	3	.001	1	1.444e-2	3	5830.307	15	NC	1
594			min	004	2	493	2	0	15	-2.804e-2	2	206.192	1	NC	1
595		13	max	.007	3	.257	3	0	1	1.155e-2	3		15	NC	1
596			min	004	2	416	2	0	15	-2.252e-2	2	233.787	1	NC	1
597		14	max	.007	3	.2	3	0		8.659e-3	3	7782.018	15	NC	1
598			min	004	2	319	2	003	1	-1.699e-2	2	280.838	1	NC	1
599		15	max	.007	3	.135	3	0	15	5.769e-3	3	9861.841	15	NC	1
600			min	004	2	212	2	008	1	-1.146e-2	2	361.45	1	NC	1
601		16	max	.007	3	.069	3	0			3	NC	15	NC	1
602			min	004	2	105	2	012	1	-5.959e-3	1	509.72	1	NC	1
603		17	max	.006	3	.005	3	0		-1.174e-5	12	NC	5	NC	2
604			min	004	2	006	2	013	1	-8.473e-4	1	824.041	1	9535.805	1
605		18	max	.006	3	.081	1	0	15	3.353e-3	3	NC NC	5	NC	1
606			min	004	2	053	3	009	1	-9.339e-3	2	1736.687	1	NC	1
607		19	max	.006	3	.158	1	.001	1	6.831e-3	3	NC	1	NC	1
608		ľ	min	004	2	106	3	0		-1.853e-2	2	NC	1	NC	1
			,		_						_				

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5}$ (Eq. D-24)									
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)					
4.00	0.50	1.00	2500	7.87					

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

k c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_i)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	$_{d,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (Ib)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f short-term	K_{sat}	$\tau_{k,cr}$ (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{ed,Na} \Psi_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N_{a0} \text{ (Sec. D.4.1 \& Eq. D-16b)}$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{ ho, Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 21-31 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av\infty$ (in ²)	$\Psi_{ec,V}$	$\mathscr{\Psi}_{ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.