Serie 1, Aufgabe 1

Wahrheitstabellen enthalten als Werte 'w' und 'f"!

а	b	$\neg a \lor b$	$\neg(a \land \neg b)$	$a \Rightarrow b$
W	W	W	w	w
w	f	f	f	f
f	w	W	w	w
f	f	W	w	w

Formeln sind äquivalent

Serie 1, Aufgabe 2a)

Gesucht sind die Komprehensions**formeln**, nicht irgendwelche Mengen!

- a) $x \in A \cup B$ gdw. $x \in A$ oder $x \in B \rightarrow \varphi(x) \Leftrightarrow (x \in A \lor x \in B)$
- b) $x \in A \setminus B$ gdw. $x \in A$ und $x \notin B \rightarrow \varphi(x) \Leftrightarrow (x \in A \land x \notin B)$
- c) $x \in \emptyset$ gdw. falsch $\rightarrow \varphi(x) \Leftrightarrow \bot$

Serie 1, Aufgabe 2b)

Begründen Sie: Falls $\varphi(x)$ Komprehensionsformel von M ist, dann gilt:

$$M = \{x \mid \varphi(x)\}$$

" $\varphi(x)$ ist Komprehensionsformel von M" bedeutet, dass

$$x \in M$$
 gdw. $\varphi(x)$

Also ist

$$M = \{x \mid x \in M\} = \{x \mid \varphi(X)\}\$$

Serie 1, Aufgabe 3

In Mengen werden gleiche Elemente nur einmal gezählt.

- a) $R_3 \times R_2 = \{(3, e, A, 2, c), (3, e, A, 2, d), (3, f, B, 2, c), (3, f, B, 2, d)\}$
- b) $(R_1 \times R_2) \times R_3 = \{(1, a, 2, c, 3, e, A), (1, a, 2, c, 3, f, B), (1, a, 2, d, 3, e, A), (1, a, 2, d, 3, f, B), (1, b, 2, c, 3, e, A), (1, b, 2, c, 3, f, B), (1, b, 2, d, 3, e, A), (1, b, 2, d, 3, f, B)\}$
- c) $R_1 \times (R_2 \times R_3) = (R_1 \times R_2) \times R_3$ Kartesisches Produkt ist assoziativ.
- d) $(R_2 \times R_3) \times R_1 = \{(2, c, 3, e, A, 1, a), (2, c, 3, e, A, 1, b), (2, c, 3, f, B, 1, a), (2, c, 3, f, B, 1, b), (2, d, 3, e, A, 1, a), (2, d, 3, e, A, 1, b), (2, d, 3, f, B, 1, a), (2, d, 3, f, B, 1, b)\}$

Serie 1, Aufgabe 4

Gegenbeispiel:

- a) Falls $A \cup B = A \cup C$, dann folgt B = C, für beliebige Mengen A, B und C $A = \{0,1\}, B = \{0\}, C = \{1\}$ Dann ist $A \cup B = \{0,1\} = A \cup C$ aber $B \neq C$
- b) $R \times P = P \times R$ für beliebige Relationen R und P Siehe Aufgabe 3 c) d). In Tupeln spielt die Reihenfolge eine Rolle!