Introduction to NGS data: experimental design

Matteo Fumagalli

You discovered a new species!

You have access to many samples!

At a fixed budget...

Simulations design

The sequencing strategy can easily be modeled in terms of the number of sequenced samples and the per-sample sequencing depth.

Sample size	Per-sample depth
1,000	1X
500	2X
100	10X
20	50X

total depth is 1,000X

Number of segregating sites

Number of segregating sites

$$Bias(S) = \frac{\hat{S} - S}{S}$$

Expected heterozygosity

$$Bias(S) = \frac{\hat{S} - S}{S}$$

Expected heterozygosity

$$Bias(S) = \frac{\hat{S} - S}{S}$$

At a fixed budget...

For population genetics

Sample allele frequencies will be a better representation of population variation