1) [10 Pts] P.S. # 1, Problem # 11

There are 36 equi-probable ontiones of rolling a single die twice. Of those, It if the outcomes produce a sum equal to 9. They are

First Roll	Second Poll
3	6
4	5
5	4
6	3

Thus, the condition that the sum equal 9 vestricts us to consider only these 4 equi-probable ortiones. Only one of these ontiones has a first voll of 5. There fore the answer is

Alteracte analysis $A = \{S : m = 9\} B = ...$ {1st roll is five }. $P\{B|A\} = P\{A|B\}P\{B\}/P\{A\}$ $P\{B\} = 1/6 - obvious ly P\{A\} = 4/36 + From$ above analysis. $P\{A|B\} = \{Probab.l.ty + that and$ roll = 4\} = 1/6 ... Therefore, auswer is

Copyright (c) 2022 Mark L. Psiaki. All rights reserved.

2) [15ths] Problem J-1 in Bar-Shelom

1-1.1: The key word is "arbitrary".

This implies that the assertion is

true only if it is true in every

imaginable rase. The assertion is

NOT TRUE

because one or more counter-examples
can be constructed. Taking a
hint from part 2 and modifying
it slightly, let x n N(0,1)
and y n N(0,3) be in lependent
so that

$$p(x,y) = \left(\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}\right)\left(\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^2}\right)$$

but led 7 = x + y + w where w is w ~ N(2,1) with w independent of x and y, but not independent of Z. Then

 $\rho(x,y,z) = \frac{1}{(2\pi)^{3}n} e^{-\frac{1}{2}(x^{2}+y^{2}+\{z-x-y\}^{2})}$ $\rho(x,y,z) = \rho(x,y,z) / \rho(z)$

Sheet 3 of 19

Sheet 3 of 19

Sheet 3 of 19

$$(2) = \frac{1}{(2\pi)^{3/2}} \int_{-\infty}^{\infty} (dy) \int_{-\infty}^{\infty} (dy) \int_{-\infty}^{\infty} (2x^{2}+2^{2}-2xz-\frac{1}{2}(2-x)^{2}) dy$$

$$= \frac{1}{(2\pi)^{3/2}} \int_{-\infty}^{\infty} (dy) \int_{-\infty}^{\infty} (2x^{2}+2^{2}-2xz-\frac{1}{2}(2-x)^{2}) dy$$

$$= \int_{-\infty}^{\infty} (2x) \int_{-\infty}^{\infty} (dx) \int_{-\infty}^{\infty} (2x^{2}+2^{2}-2xz-\frac{1}{2}(2-x)^{2}) dy$$

$$= \int_{-\infty}^{\infty} (2\pi) \int_{-\infty}^{\infty} (dx) \int_{-\infty}^{\infty}$$

Sheet Yot 19 $d\alpha = \int_{2}^{3} dx$ Then $p(z) = \frac{1}{\sqrt{2\pi}} \int_{0}^{2\pi} \int_{0}^{$ which is a Garssian distribution with a mean of zero and a standard devictory of $v_{\overline{z}} = \sqrt{3}$, as expected. [. p(x,7/4)= (2+3/2)e - = [(x2+72+{2-x-7}]] (() = -2 () = () = () = (= - 13 = 282 x 3+243+3=2-24+2×43 = 33 - 1[[5]-[3]][3 -1/3][(7)-[1/3]]

there fore [7] conditional on ? obeys a joint Ganssien destribution with mean equal to \$\frac{1}{3}\frac{7}{4} and with covariance eguel to 臣[[4]-[新]] [[4]] [= (3/3 - 43) (-1/3) The non-zero off-diagonal trong in this independent when conditioned on it and, therefore that It is impossible to express for (x, y(7) in the form

p(x,y,7) = p(x/2)p(y/7)

1.1-2 $p(x, y, z) = p(x, y) \delta(x-x-y)$ p(x,y/7) = p(x,y,7) p(x) = p(x,y,7) $p(x) = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} p(x,y,7) dx$ $=\int_{-\infty}^{\infty}\int_{$ $= \int_{-\infty}^{\infty} O_{x} p(x, 3-x)$ (stemite) = 5 dy p (7-7,4) -~ Formals J therefor $p(x,y|x) = p(x,y) \delta(x-x-y)$ Selyp(9,77) 0- A(x,y/7)- P(x,y) S(x-x-y) (7-d, x)

$$p(x) = \int_{\infty}^{\infty} dx = e^{-\frac{1}{2} \left(x^{2} + (x^{2})^{2}\right)} \int_{\infty}^{\infty} dx = e^{-\frac{1}{2} \left(x^{2} + (x^{2})^{2}\right)} \int_{\infty}^{\infty} dx = e^{-\frac{1}{2} \left(x^{2} + (x^{2})^{2} + (x^{2})^{2}\right)} = \int_{\infty}^{\infty} dx = e^{-\frac{1}{2} \left(x^{2} + (x^{2})^{2}\right)} \int_{\infty}^{\infty} dx = \int_{\infty}^{\infty} dx$$

Sheet8. A 19
or recegnizing that it is nonzero only
when 2-xy=0 $\int_{\mathbb{R}^{2}} |x-y|^{2} = \int_{\mathbb{R}^{2}} e^{\frac{1}{2}x^{2} - \frac{1}{2}\left[(2-\gamma)^{2} + \gamma^{2}\right]} \int_{\mathbb{R}^{2}} |x-y|^{2}$ = JE = - {\lambda \lambda \lam = JE - 2 {2 [x- 2]} = JETT e 2 {2 [x- 2]} 3) [10 Hs] P.S. #2, Pr.66cm #2

Let $q = x - \overline{x}$. Then $((x/3) = \frac{1}{2}q^{T}V_{xx}q + [V_{x2}(3-3)]q$ $+ \frac{1}{2}(3-3)T_{x}(3$

+ = (3-3) TVZZ (3-3) = Jnen (4)

This is like the function in P.S. #2, Problem #1,
except of replaces x, Vxx replaces P, [Vxz(Z-Z)]
replaces g and the constant z (Z-Z) [Vzz (Z-Z)]
has been added to the function. This constant will
not affect the values of any derivatives with repeat

Sheet 9. Fla

to 9. There fore

and
$$\frac{\partial^2 C}{\partial x^2} = \left(\frac{\partial y}{\partial x}\right)^T \frac{\partial^2 J_{new}}{\partial y^2} \left(\frac{\partial y}{\partial x}\right)$$

$$\frac{\partial J_{new}}{\partial 2} = 2 + V_{xx} + (2-\bar{z})^{T} V_{xz} - (from Problem # 1 of P.S. 2)$$

$$= (x-\bar{x})^{T} V_{xx} + (3-\bar{z})^{T} V_{xz}^{T}$$

Therefore
$$\left(\frac{\partial C}{\partial x}\right)^T = V_{xx}(x-\overline{x}) + V_{xz}(\overline{x}-\overline{x})$$

Sheet 100+ 19

$$\frac{p(x_1, \dots, x_n | H_1)}{p(x_1, \dots, x_n) H_0} \ge \Lambda$$

or exp {
$$(\overline{B} - \overline{G})$$
 $(\overline{X} + \overline{X})$ $(\overline{X$

Sheet (1. + 1.9 Otherwise accept to. Given that 29/0 = n is a sample from Pz (y) -a degree-in chi-squared distribution if Hotel valid we Charce 9thresh so that Space (4) dy = \alpha = False alarm probablity
29thoughta Using Matleb: Minesu: Chiling (1-d, 2+y)
and Ganassu= (Ja/2) Manassu Given that 29/08 = B is a sample from Pro (B) if H, is valid, the probablity of a missed detection is then Pmo = Spransu (VB In MATCA3 Pm = chi2cdf(2*97mes4/58,2*n) For n= (0) & x = 0.00) MTHRESH = 45.3147 9THRESH = 22,6574 TA. PMJ = chi2cdf (2*22.6524*(~2),20) = chizelf (2x22 6574x(+),20)= 0.0627568

5) (20 pts) P.S. #3, Problem #1 with modifications: f & St/dx function evaluations: function [f,dfdx] = fnewt02(x)

function [f,dfdx] = fnewt02(x)

%
Copyright (c) 2009 Mark L. Psiaki. All rights reserved.

%
This function computes f(x) and its Jacobian for an example problem in applying Newton's method.

%
f = [(x(1) + x(2) + x(1)*x(2) + 5.1);(x(1)^2 + 2*x(2) - x(2)^2 - 1.9)];
 dfdx = [(1 + x(2)),(1 + x(1));(2*x(1)),(2 - 2*x(2))];

```
Script to execute Newton iterations from 3 defeat
script_fnewt02.m Intid comes
                            Intid preses
% script fnewt02.m
   Copyright (c) 2009 Mark L. Psiaki. All rights reserved.
읭
용
용
   This script solves problem set 3, problem 1 with altered
   constant values in the equations.
   clear
   xghist_a = [[4;-4], zeros(2,6)];
   for jj = 2:7
      [fjj,dfdxjj] = fnewt02(xghist_a(:,jj-1));
      xghist a(:,jj) = xghist a(:,jj-1) - dfdxjj\fjj;
   end
   fnormvec a = zeros(1,7);
   for jj = 1:7
      fjj = fnewt02(xghist a(:,jj));
      fnormvec_a(1,jj) = norm(fjj);
   end
  xghist_b = [[6;0], zeros(2,6)];
   for jj = 2:7
      [fjj,dfdxjj] = fnewt02(xghist b(:,jj-1));
     xghist_b(:,jj) = xghist_b(:,jj-1) - dfdxjj\fjj;
   end
   fnormvec b = zeros(1,7);
   for jj = 1:7
      fjj = fnewt02(xghist b(:,jj));
      fnormvec_b(1,jj) = norm(fjj);
   end
   xghist_c = [[-5;5], zeros(2,6)];
   for jj = 2:7
      [fjj,dfdxjj] = fnewt02(xghist c(:,jj-1));
     xghist_c(:,jj) = xghist_c(:,jj-1) - dfdxjj\fjj;
   end
   fnormvec_c = zeros(1,7);
   for jj = 1:7
      fjj = fnewt02(xghist_c(:,jj));
      fnormvec_c(1,jj) = norm(fjj);
   end
   clear jj fjj dfdxjj
   save fnewt02
```

6 3.137732910838087 -1.990880776586799 0	6 3.137732910838087 -1.990880776586799 0.0000000000000001	6 -2.068294995763745 2.837891234404623 0.0000000000000001
0 4.00000000000000000 3.1500000000000 3.124907435976550 3.137738510489899 3.137732910785439 3.137732910838087 3.137732910838087 -4.000000000000000000 -2.3300000000000 -1.995993520518358 -1.990863527572901 -1.990880776576063 -1.990880776586799 -1.990880776586799 14.724808997063425 2.506988075360555 0.111246846319897 0.000153183008289 0.0000000283153	0 6.0000000000000000 3.359756097560976 3.031143295897127 3.139820847552099 3.137733618522335 3.137732910838158 3.137732910838087 0 -1.208536585365854 -1.956137843100565 -1.991304200035350 -1.990880820683151 -1.990880776586790 -1.990880776586799 35.861121008691299 6.367504252497271 0.513502091862765 0.011243597802120 0.0000004269722873 0.00000000000000000000000000000000000	$\begin{array}{c} 3 \\ -5.000000000000000 \\ -2.822727272727273 \\ -2.142728418502635 \\ -2.068793385194184 \\ -2.068793385194187 \\ -2.068294878539138 \\ -2.068294878539138 \\ -2.068294878539138 \\ -2.068294878539138 \\ -2.06829487953746 \\ -2.06829487953746 \\ -2.068294892160641 \\ -2.068294995763745 \\ -2.068294878539138 \\ -2.068294995763746 \\ -2.068294995763745 \\ -2.068294878539138 \\ -2.068294995763746 \\ -2.068294995763745 \\ -2.068294878539138 \\ -2.068294995763746 \\ -2.068294995763745 \\ -2.068294878539138 \\ -2.068294995763746 \\ -2.068294878539138 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763745 \\ -2.068294995763745 \\ -2.068294995763746 \\ -2.068294995763745 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294878539137 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.06829487876 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294995763746 \\ -2.068294997676 \\ -2.068294997676 \\ -2.068294997676 \\ -2.068294997676 \\ -2.068294997676 \\ -2.068294997676 \\ -2.068294997676 \\ -2.068294997676 \\ -2.06829499776 \\ -2.068294997676 \\ -2.068294997676 \\ -2.068294997676 \\ -2.068294997676 \\ -2.068294997676 \\ -2.068294997676 \\ -2.068294997676 \\ -2.06829497676 \\ -2.06829487676 \\ -2.06829497676 \\ -2.06829497676 \\ -2.06829497676 \\ -2.06829497676 \\ -2.06829497676 \\ -2.06829497676 \\ -2.06829497676 \\ -2.068294976 \\ -2.06829497676 \\ -2.068294976 \\ -2.068294976 \\ -2.068294976 \\ -2.068294976 \\ -2.06829476 \\ -2.068294976 \\ -2.06829476 \\ -2.06829476 \\ -2.06829476 \\ -2.06829476 \\ -2.06829476 \\ -2.$
4 3.137732910785439 -1.990880776576063 0.00000000283153	3.137733618522335 -1.990880820683151 0.000004269722873	4 -2.068294878539138 2.837891245221337 0.000000683681539
0 4.0000000000000000 3.15000000000000 3.124907435976550 3.137738510489899 3.137732910785439 -4.00000000000000 -2.33000000000000 -1.995993520518358 -1.990863527572901 -1.990880776576063 14.724808997063425 2.506988075360555 0.111246846319897 0.000153183008289 0.000000000283153	3.139820847552099 -1.991304200035350 0.011243597802120	3 -2.068793385194184 2.837011939305650 0.005381887545047
2 3.124907435976550 -1.995993520518358 0.111246846319897	2 3.031143295897127 -1.956137843100565 0.513502091862765	2 -2.142728418502635 2.850171866304383 0.402149892160641
1 3.150000000000000 -2.3300000000000000000000000000000000000	1 00 3.359756097560976 3.03 0 -1.208536585365854 -1.95 99 6.367504252497271 0.51	1 -2.822727272727273 3.290909090909091 4.142183008622919
. 0.0000000000000000000000000000000000	m	
Case 1 Iteration: x1: x2: f :	<pre>Case 2 Iteration: x1: x2: f :</pre>	<pre>Case 3 Iteration: x1: x2: f :</pre>

C:\Mlp\Mae676\fnewt02_answers.m

10/28/09 8:49 AM

Notice how the first 2 cases converged to the same solution for x1 and x2, but the 3rd case converged to a different solution. The different solution for Case 3 is equally valid as evidenced by the norm of f.

```
delxgn first = [ 0.364793046765476; ...
                -0.204346732132889;...
                  0.622977370351628;...
                 -1.175524557233098;...
                 -0.994482780298112]
% Final Estimate of Gauss-Newton Procedure:
xesttgn final = [ 3.223825160154675; ...
                 0.899792908774152;...
                  1.496338379532975;...
                 -0.803805936404100;...
                  2.198857133678682]
% Initial and Final Weighted Nonlinear Least-Squares Costs
Jorig = 1.878158484193378e+005
Jopt = 23.993211198713063
 Note: given that there are 31*2 = 62 measurements and
  5 estimated quantities, Jopt should be half the value
% of a sample from a chi-squared distribution of degree
% 2*31 - 5 = 57. Therefore, the expectation value of
% Jopt is 0.5*57 = 28.5. It is lower than this. 95% of the
% time Jopt should lie in the range from r1 = chi2inv(0.025,57)/2 = ...
% 19.013370478108758 tp r2 = chi2inv(1-0.025,57)/2 = ...
```

% 39.876096140145201. Clearly, it lies in this range.

function [hj,Hj] = hjcart(x,tj,lradara,lradarb,i1stdrv) 용 Copyright (c) 2002 Mark L. Psiaki. All rights reserved. 용 용 This function gives the measurement function h(x(j),tj) and its 용 first derivatives with respect to x(j), Hj = dhj/dx. % It is for use in the nonlinear least-squares problem that does tricycle cart tracking. The measurements are range to two different radars at two different known locations. tricycle is moving at constant velocity along a circle. 용 Inputs: 용 = [psi0;y10;y20;psidot;vrear], the vector of initial 응 х 용 용

x = [psi0;y10;y20;psidot;vrear], the vector of initial
conditions and rates of the tricycle cart at time 0. psi0
is the initial heading angle in rad, y10 is the initial
east position in meters, y20 is the initial north position
in meters, psidot is the turn rate in rad/sec, and vrear
is the speed of the midpoint between the two rear
wheels in m/sec.

tj The time in seconds of the radar measurement.

lradarb The east position of radar station b, in meters.
This radar station is assumed to be located at zero
north position.

Outputs:

용

ુ જ

00 00

00 00

00 00

응

00 00

90 of

00 00 00

아 아

엉

용

용

00 00

용

00 00

응

00 00

용

- hj = [rhoa_j;rhob_j], the 2x1 radar output vector. rhoa_j is the measured distance from radar a to the cart at time tj given in meters. rhob_j is the measured distance from radar b to the cart at time tj in meters. These distances are to the mid point between the cart's two rear wheels.
- Hj = dhj/dx. Hj is a 2x5 matrix Hj(1,i) is the derivative of rhoa_j with respect to x(i). Hj(2,i) is the derivative of rhob_j with respect to x(i). This output will be needed to do Newton's method or to do the Gauss Newton method.

```
Set up output arrays as needed.
   hj = zeros(2,1);
   if ilstdrv == 1
      Hj = zeros(2,5);
   else
      Hj = [];
   end
용
용
  Compute the position of the cart relative to the two radars.
   q = x(4)*tj*0.5;
   [sa,dsadq,d2sadq2] = safunct(q);
   pfac = x(5)*tj*sa;
   gamma = x(1) + q;
   cosgamma = cos(gamma);
   singamma = sin(gamma);
   y1 = x(2) + pfac*cosgamma;
   y2 = x(3) + pfac*singamma;
   delyla = lradara - y1;
   dely1b = lradarb - y1;
   dely2 = y2;
  Compute the hj outputs.
   dely1asq = dely1a^2;
   dely1bsq = dely1b^2;
   dely2sq = dely2^2;
   hj(1,1) = sqrt(delylasq + dely2sq);
   hj(2,1) = sqrt(dely1bsq + dely2sq);
  Return if neither first derivatives nor second derivatives
   need to be calculated.
   if ilstdrv == 0
      return
   end
용
용
   Calculate the first derivatives. Use analytic formulas.
엉
   dsadx = dsadq*[0,0,0,(tj*0.5),0];
   dpfacdx = x(5)*tj*dsadx + [0,0,0,0,(tj*sa)];
   dcosgammadx = [(-singamma), 0, 0, (-singamma*tj*0.5), 0];
   dsingammadx = [(cosgamma), 0, 0, (cosgamma*tj*0.5), 0];
   dy1dx = [0,1,0,0,0] + dpfacdx*cosgamma + pfac*dcosgammadx;
   dy2dx = [0,0,1,0,0] + dpfacdx*singamma + pfac*dsingammadx;
   ddely1adx = -dy1dx;
   ddely1bdx = -dy1dx;
   ddely2dx = dy2dx;
   one over hja = 1/hj(1,1);
   Hj(1,:) = one_over_hja*(delyla*ddelyladx + dely2*ddely2dx);
```

Sheet 18 F 19

one_over_hjb = 1/hj(2,1);
Hj(2,:) = one_over_hjb*(dely1b*ddely1bdx + dely2*ddely2dx);

