Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică M1A

VARIANTA **E**

- 1. Să se rezolve ecuația $\begin{vmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{vmatrix} = 0$. (6 pct.)
 - a) $-\frac{1}{2}$; b) $\frac{1}{2}$, 1; c) $-\frac{1}{2}$, 1; d) 1; e) 0; f) $-\frac{1}{2}$, 0.
- **2.** Să se calculeze $\lim_{x\to 3} \frac{x^3 5x^2 + 3x + 9}{x^3 4x^2 3x + 18}$. (6 pct.)
 - a) $-\infty$; b) 0; c) $-\frac{3}{2}$; d) $\frac{5}{3}$; e) $\frac{4}{5}$; f) $\frac{4}{3}$.
- 3. Să se calculeze $\lim_{n\to\infty} \left(\frac{1^2}{n^3 + 1^2} + \frac{2^2}{n^3 + 2^2} + \dots + \frac{n^2}{n^3 + n^2} \right)$. (6 pct.)
 - a) nu există; b) 0; c) 2; d) ∞ ; e) $\frac{1}{3}$; f) 1.
- 4. Să se determine cea mai mică valoare posibilă a integralei $\int_{-1}^{1} (x^2 a bx)^2 dx$ pentru a, b reale. (8 pct.)
 - a) $\frac{4}{5}$; b) $\frac{1}{45}$; c) 1; d) $\frac{5}{4}$; e) 8; f) $\frac{8}{45}$.
- 5. Să se calculeze valoarea expresiei $E = \frac{x_2 + x_3}{x_1} + \frac{x_1 + x_3}{x_2} + \frac{x_1 + x_2}{x_3}$, unde x_1, x_2, x_3 sunt soluțiile ecuației

$$x^3 - 6x^2 + x + 2 = 0$$
. (8 pct.)

- a) -3; b) -1; c) 1; d) 0; e) -6; f) 3.
- **6.** Se consideră funcția $f:[0,\infty)\to\mathbb{R}$, $f(x)=e^{\sqrt{x}}+e^{-\sqrt{x}}$. Să se calculeze $\lim_{\substack{n\to\infty\\x>0}} f^{(n)}(x)$. (8 pct.)
 - a) 1; b) 2; c) 0; d) e; e) $\frac{e^2 + 1}{e}$; f) nu există.

- 7. Să se determine m real dacă ecuația $x^2 (m+3)x + m^2 = 0$ are două soluții reale și distincte. (4 pct.) a) $m \in (3,\infty)$; b) $m \in \mathbb{R}$; c) $m \in (-\infty,-1)$; d) m = -3; e) $m \in (-1,3)$; f) $m \in (-\infty,3)$.
- 8. Să se determine m real dacă $m \int_{1}^{\sqrt{2}} e^{mx^2 + \ln x} dx = 1$. (4 pct.)
 - a) 3; b) 4; c) $\ln \frac{1}{2}$; d) $\ln 2$; e) 1; f) 2.
- 9. Să se determine abscisele punctelor de extrem local ale funcției $f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^3 3x$. (4 pct.)
 - a) 0, -1; b) 1; c) 1, -1; d) $\sqrt{3}$; e) $0, \sqrt{3}, -\sqrt{3}$; f) 0.
- **10.** Să se calculeze $\sqrt{a^2 b^2}$ pentru a = 242.5 și b = 46.5. (4 pct.)
 - a) 283; b) $\sqrt{46640}$; c) 240,75; d) 196; e) 238; f) 238,25.
- 11. Să se determine m real dacă funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 2x + m, & x \le 1 \\ m^2x + 2, & x > 1 \end{cases}$ este continuă pe \mathbb{R} . (4 pct.)
 - a) 2; b) 0; c) nu există; d) -1; e) 0 și 1; f) 1.
- 12. Să se rezolve ecuația $\sqrt[3]{x} = x$. (4 pct.)
 - a) 0, 1, -1; b) 1; c) 1, -1; d) 0, 1; e) 0, 1, i; f) 0.
- 13. Să se așeze în ordine crescătoare numerele 1, $\ln 2$, $\ln 3$, π . (4 pct.)
 - a) $\ln 2$, $\ln 3$, 1, π ; b) 1, $\ln 2$, $\ln 3$, π ; c) 1, $\ln 3$, π , $\ln 2$; d) 1, $\ln 2$, π , $\ln 3$; e) 1, π , $\ln 2$, $\ln 3$; f) $\ln 2$, 1, $\ln 3$, π .
- 14. Fie funcția $f:(-1,\infty)\to \mathbb{R}$, $f(x)=x\cdot\ln(x+1)$. Să se calculeze f(1)+f'(0). (4 pct.)
 - a) 1; b) 0; c) $\ln 3$; d) ∞ ; e) $\ln 2$; f) $1 + \ln 2$.
- **15.** Fie matricele $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ și $B = \begin{pmatrix} a & b \\ 0 & 2 \end{pmatrix}$. Să se determine numerele reale a și b dacă AB = BA. (4 pct.)
 - a) a = -2, b = 0; b) a = 2, b = 0; c) a = 2, b = 2; d) $a = 2, b \in \mathbb{R}$; e) a = 1, b = 1; f) $a \in \mathbb{R}, b = 0$.
- **16.** Să se calculeze $C_6^4 + A_5^2$. (4 pct.)
 - a) 10; b) 35; c) 20; d) 102; e) 15; f) 25.
- 17. Să se calculeze $\int_{0}^{1} \frac{x}{x^2 + 1} dx$. (4 pct.)
 - a) -1; b) $\frac{1}{2} \ln 2$; c) 1; d) 0; e) $\ln 2$; f) 2.
- **18.** Să se rezolve ecuația $9^x 4 \cdot 3^x + 3 = 0$. (4 pct.)
 - a) -1; b) 1; c) $\ln 3$; d) 0; e) 0 și 1; f) nu are soluții.