

AGENDA

- Revisión de caso de negocio venta de seguros
- Ranking de variables importantes
- Entendimiento comparativa de métodos de modelamiento
 - Regresión Logística
 - Árbol de Clasificación
 - Naive Bayes
 - KNN

Caso de negocio: Incorporación de modelo de venta en campaña de adquisición de clientes

METODO DE ENSEÑANZA

Models

CRISP DM Muestreo Ranking Var

Estrategia Comercial

Not like this

Business Insight Center

Like this!

Perfilamiento

One-shot

Modelling

Modelling

Estrategia Comercial

Modelling

Intermedio

Avanzado

FOCO DEL PROBLEMA

Manejar la incertidumbre si un cliente nos compra o no según sus características del cliente

Cliente compra o no?

Reg. Logistica Naive Bayes KNN SVM Redes Neuro

Arboles de Decisión Random Forest Gradient Boosting R1: IF (age>38.5) AND (years-in-job>2.5) THEN y = 0.8R2: IF (age>38.5) AND (years-in-job \leq 2.5) THEN y = 0.6R3: IF (age \leq 38.5) AND (job-type='A') THEN y = 0.4

R4: IF (age \leq 38.5) AND (job-type='B') THEN y = 0.3

R5: IF (age \leq 38.5) AND (job-type='C') THEN y = 0.2

Conozco características del cliente

Reducir el error

APRENDER DE TODA LA HISTORIA?

Dic-15

-5

Dic-15

Dic-15

-6

Nov-15

Nov-15

-6

Oct-15

Ene-16

-4

APRENDER DE TODA LA HISTORIA?

ALGORTIMO ARBOL DE DECISION

Por qué Árbol Clasificación?

- ✓ Simple visualización y explicación
- ✓ Identificación de relaciones no lineales
- ✓ No requiere revisar supuestos

Qué es Árbol de Clasficación?

ALGORTIMO ARBOL DE DECISION

Ganar un mayor indicar de impureza

- Entropía
- Diversidad de Gini
- Error de clasificación

ALGORTIMO ARBOL DE DECISION

Resultado de creditos otorgados

Impureza inicial: 0.25

Clientes morosos: 46 (51%)

Tamaño de muestra: 100%

Bondad de Ajuste de cortes:

 $= 0.25 - (30\% \ 0.07 + 0\% \ 0 + 40\% \ 0.24)$

= 0.13

Monto de crédito > 35 mil soles

Si /

No

Impureza R3: 0.07

No Default

Default

Clientes morosos: 25 (93%)

Tamaño de muestra: 30%

Periodo de pago > 1.6 años

Si

No

Impureza R2: 0

Clientes morosos: 0 (0%)

Tamaño de muestra: 31%

Impureza R3: 0.24

Clientes morosos: 21 (58%)

Tamaño de muestra: 40%

ALGORTIMO RANDOM FOREST

Por qué Random Forest? Es más confiable o robusto al examinar los datos en diferentes arboles y llegar a un consenso

Qué es Random Forest?

Es el aprendizaje consensuado de muchos arboles variado las muestras de aprendizaje

EVALUACION DE MODELOS CLASIFICACION

CURVA DE GANANCIAS

Curva que refleja la contribución de modelo predictivo en la detección de las ventas

EVALUACION DE MODELOS CLASIFICACION

AUC (ÁREA UNDER CURVE)

Probabilidad de que el modelo acierte pronosticando las ventas y no cometa falsas alarmas

AUC	Poder predictivo
1.0 o 100%	Predicción perfecta!
≥90%	Excelente
≥80% y <90%	Bueno
≥70% y <80%	Aceptable
≥60% y <70%	Regular
50%	Aleatorio

ALGORITMO REGRESIÓN LOGÍSTICA

Data histórica

El problema

Para el ejemplo visual definamos :

Variable Y

Representación gráfica

X1: Ingresos

$$L(\mathbf{x}) = \beta_0 + \boldsymbol{\beta}^{\tau} \mathbf{x}.$$

ALGORITMO REGRESIÓN LOGÍSTICA

Data histórica

El problema

Para el ejemplo visual definamos :

Variable Y

Representación gráfica

X1: Ingresos

$$L(\mathbf{x}) = \beta_0 + \boldsymbol{\beta}^{\tau} \mathbf{x}.$$

ALGORITMO KNN (K NEARST NEIGHBOR)

No soy Lazy! Solo estoy altamente motivado a no hacer nada

Euclidean distance:
$$d(x,y) = \sqrt{\sum (x_i - yi)^2}$$

Squared Euclidean distance: $d(x,y) = \sum (x_i - yi)^2$
Manhattan distance: $d(x,y) = \sum |(xi - yi)|$

ALGORITMO NAIVE BAYES

Algoritmo que supone que todas las características son independientes entre sí

Prior

Cliente compra o no?

T

$$P(Y|X_1,...,X_n) = \frac{P(X_1,...,X_n|Y)P(Y)}{P(X_1,...,X_n)}$$

Likelihood

Conozco características del cliente

Normalization Constant

ALGORITMO NAIVE BAYES

Cliente compra o no?

% Clientes con esa caracteristica que han comprado

%Clientes que han comprado

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$

% Clientes con esa caractersitica

Algoritmo que supone que todas las

características son independientes entre sí

Conozco características del cliente

ALGORITMO NAIVE BAYES

		1	25	*	0 1	DOR _
Г	outlook	temperature	humidity	windy	play	
1	sunny	hot	high	false	no	
2	sunny	hot	high	true	no	
3	overcast	hot	high	false	yes 🧹	
4	rainy	mild	high	false	yes <	#YAY OR #NAY
5	rainy	cool	normal	false	yes 🥒	CAN USE NAIVE BAYES
6	rainy	cool	normal	true	no	ALGORITHM
7	overcast	cool	normal	true	yes <	
8	sunny	mild	high	false	no	P(C) OR P(CLASS)
9	sunny	cool	normal	false	yes <	P(YES) = 9 / 14
10	rainy	mild	normal	false	yes 🧹	
11	sunny	mild	normal	true	yes <	P(NO) 5 /14
12	overcast	mild	high	true	yes 👉	
13	overcast	hot	normal	false	yes 👉	
14	rainy	mild	high	true	no	