Sub-shelf melt parameterization assessment from an ocean/ice sheet coupled model

Lionel Favier^a, Nicolas Jourdain^a, Nacho Merino^a, Gaël Durand^a, Olivier Gagliardini^a, Fabien Gillet-Chaulet^a, Adrian Jenkins^b, Pierre Mathiot^c Lionel.favier@univ-grenoble-alpes.fr

- a- Institut des Géosciences de l'Environnement, Grenoble, France
- b- British Antarctic Survey, Cambridge, England
- c- Met Office, Exeter, England

Poster number C21C-1352

Motivations

- Ocean melt beneath ice shelves is the main driver of Antarctic ice mass loss.
- Our goal is to assess parameterizations of subshelf melting that are used in stand-alone ice sheet modelling, in regards to a new framework of oceanice sheet coupling.

19 Melting parameterizations

- Linear, local dependency to thermal forcing* (TF) : *Mlin* = α (*To-Tf*) [1]
- \checkmark Quadratic, local dependency to TF* : *Mquad* = α (*To-Tf*)² [e.g., 2]
- \checkmark Quadratic, local/non local dependency to TF* : $M+=\alpha$ (To-Tf) <To-Tf> (*To, So taken at 500 or 700m depth, or varying depths, e.g., M+, M+_500, M+_700)
- ∠ 2D plume model emulator (PMEi), 4 different implementations [3]
- ∠ Box model (*Bmi_...*), at 500 or 700m depth, and with 2, 5, 10 boxes [4].

Models

- Elmer/Ice for the ice sheet (SSA* and Schoof friction law)
- NEMO for the ocean (no tides, no sea ice, no atmo forcing)
- Asynchronous coupling of Elmer/ice and NEMO

6 TF (To - Tf freezing point) scenarios (To & So in front of the cavity)

Cold0 and Warm0 are static.

- Cold0: cold cavity (e.g., Ross)
- Warm0: inspired by PIG [6]
- The others start from the static and evolve in time
- Cold1: cold to warm [5]
- Warm1: 1°C warming at all depths (CMIP5 models)
- Warm2: 1°C warming at depth
- Warm3: coastal thermocline uplift [7]

Calibration

- Stand-alone ice-sheet and coupled configurations are calibrated (done by tuning the α in params) before simulations so they all have similar melt average obtained with the WARM scenario from MISOMIP [8]* (*some of the calibrated patterns are shown to the right side)
- The targeted melt rates is the average of 4 coupled configurations
- Then the simulations are performed with the various thermal forcings

Conclusions

- → This study evaluates the performance of sub-shelf melting parameterizations compared to coupled
- → The ocean model uncertainties are accounted for through 4 ocean configurations
- → Among the simple params, the M₊ give the best predictions of coupled results for all scenarios
- → The Mlin shouldn't be used any more
- → The Mquad is also good but slightly underestimates SLC for Warm_i scenarios
- → Hypothesising an horizontal circulation (To, So taken at varying depths) in the simple params gives better results in general
- → All the 2D plume model emulator implementations underestimate the SLC
- → The box model gives the best results when used with 5 boxes.

References

coupled results average (4 members). (B) Difference between parameterizations and coupled melt rates.

[1] Beckmann and Goose, 2002, OM [2] Pollard and De Conto, 2012, GMD [2] De Conto and Pollard, 2016, N [3] Lazeroms et al., 2018, TC [4] Reese et al., 2018, TC

[5] Hellmer et al., 2012, N [6] Dutrieux et al., 2014, S [7] Spence et al., 2014, GRL [8] Asay-davis et al., 2016, GMD

Acknowledgments

Lionel Favier is funded by the ANR project TROIS AS and the IDEX project ISOCLINE. Numerical simulations were done at the CINES French national computer center.