Estimating Censored Regression Models in R using the sampleSelection Package

Arne Henningsen

University of Copenhagen

Abstract

We show how censored regression models (including standard Tobit models) can be estimated in R using the add-on package **sampleSelection**.

Keywords: censored regression, Tobit, econometrics, R.

1. Introduction

In many statistical analyses of individual data, the dependent variable is censored, e.g. the number of hours worked, the number of extramarital affairs, the number of arrests after release from prison, purchases of durable goods, or expenditures on various commodity groups (Greene 2008, p. 869). If the dependent variable is censored (e.g. zero in the above examples) for a significant fraction of the observations, parameter estimates obtained by conventional regression methods (e.g. OLS) are biased. Consistent estimates can be obtained by the method proposed by Tobin (1958). This approach is usually called "Tobit" model and is a special case of the more general censored regression model.

This paper briefly explains the censored regression model, describes function tobit of the R package sampleSelection, and demonstrates how this function can be used to estimate censored regression models.

There are also some other functions for estimating censored regression models available in R. For instance function tobit from the **AER** package (Kleiber and Zeileis 2008, 2009) and function cenmle from the **NADA** package are front ends to the survreg function from the survival package. Function tobit from the **VGAM** package estimates the censored regression model by using its own maximum likelihood routine. Function MCMCtobit from the **MCM-Cpack** package uses the Bayesian Markov Chain Monte Carlo (MCMC) method to estimate censored regression models.

2. Censored regression model for cross-sectional data

2.1. Standard Tobit model

In the standard Tobit model (Tobin 1958), we have a dependent variable y that is left-censored

at zero:

$$y_i^* = x_i'\beta + \varepsilon_i \tag{1}$$

$$y_i = \begin{cases} 0 & \text{if } y_i^* \le 0\\ y_i^* & \text{if } y_i^* > 0 \end{cases}$$
 (2)

Here the subscript $i=1,\ldots,N$ indicates the observation, y_i^* is an unobserved ("latent") variable, x_i is a vector of explanatory variables, β is a vector of unknown parameters, and ε_i is an error term.

2.2. Censored regression model

The censored regression model is a generalisation of the standard Tobit model. The dependent variable can be either left-censored, right-censored, or both left-censored and right-censored, where the lower and/or upper limit of the dependent variable can be any number:

$$y_i^* = x_i'\beta + \varepsilon_i \tag{3}$$

$$y_i = \begin{cases} a & \text{if } y_i^* \le a \\ y_i^* & \text{if } a < y_i^* < b \\ b & \text{if } y_i^* \ge b \end{cases}$$

$$\tag{4}$$

Here a is the lower limit and b is the upper limit of the dependent variable. If $a = -\infty$ or $b = \infty$, the dependent variable is not left-censored or right-censored, respectively.

2.3. Estimation Method

Censored regression models (including the standard Tobit model) are usually estimated by the Maximum Likelihood (ML) method. Assuming that the error term ε follows a normal distribution with mean 0 and variance σ^2 , the log-likelihood function is

$$\log L = \sum_{i=1}^{N} \left[I_i^a \log \Phi \left(\frac{a - x_i' \beta}{\sigma} \right) + I_i^b \log \Phi \left(\frac{x_i' \beta - b}{\sigma} \right) + \left(1 - I_i^a - I_i^b \right) \left(\log \phi \left(\frac{y_i - x_i' \beta}{\sigma} \right) - \log \sigma \right) \right],$$
 (5)

where $\phi(.)$ and $\Phi(.)$ denote the probability density function and the cumulative distribution function, repectively, of the standard normal distribution, and I_i^a and I_i^b are indicator functions with

$$I_i^a = \begin{cases} 1 & \text{if } y_i = a \\ 0 & \text{if } y_i > a \end{cases} \tag{6}$$

$$I_i^b = \begin{cases} 1 & \text{if } y_i = b \\ 0 & \text{if } y_i < b \end{cases} \tag{7}$$

The log-likelihood function of the censored regression model (5) can be maximised with respect to the parameter vector $(\beta', \sigma)'$ using standard non-linear optimisation algorithms.

2.4. Implementation in function tobit

Censored regression models can be estimated in R with function tobit, which is available in the **sampleSelection** package (Toomet and Henningsen 2008). The most important steps done by the tobit function are:

- 1. perform basic checks on the arguments provided by the user
- 2. prepare the data for the estimation, i.e. the vector of the dependent variable $y = (y_1, \ldots, y_N)'$ and the matrix of the regressors $X = (x'_1, \ldots, x'_N)'$
- 3. obtain initial values of the parameters β and σ from an OLS estimation (if no initial values are provided by the user)
- 4. define the log-likelihood function (a function that returns the log-likelihood value given the vector of parameters $(\beta', \sigma)'$
- 5. define a function that calculates the gradients of the log-likelihood function given the vector of parameters 1
- 6. call function maxLik of the maxLik package (Toomet and Henningsen 2010) for the maximisation of the likelihood function
- 7. add class "tobit" to the returned object

2.5. Using function tobit

Before function tobit can be used, the **sampleSelection** package (Toomet and Henningsen 2008) must be loaded:

R> library("sampleSelection")

The first argument of function tobit is formula. It is the only mandatory argument and must provide a symbolic description of the model to be fitted. The optional argument data can be used to provide a data set (data.frame) that contains the variables used in the estimation. We demonstrate the usage of tobit by replicating an example given in Kleiber and Zeileis (2008, p. 142). The data used in this example are available in the data set Affairs that is included in the R package AER (Kleiber and Zeileis 2008, 2009). This data set can be loaded by the following command:

R> data("Affairs", package = "AER")

In the example of Kleiber and Zeileis (2008, p. 142), the number of a person's extramarital sexual intercourses ("affairs") in the past year is regressed on the person's age, number of years married, religiousness, occupation, and own rating of the marriage. The dependent variable is left-censored at zero and not right-censored. Hence, this is a standard Tobit model. It can be estimated by following command:

¹ The gradients of the log-likelihood function are presented in appendix A.

Detailed estimation results can be obtained by using the summary method.

R> summary(tobitResult)

```
_____
```

Maximum Likelihood estimation
Newton-Raphson maximisation, 7 iterations
Return code 1: gradient close to zero
Log-Likelihood: -705.5762

7 free parameters

Estimates:

```
Estimate Std. error t value
                         Pr(> t)
        8.174197 2.741446 2.9817 0.002866 **
(Intercept)
        age
yearsmarried 0.554142 0.134518 4.1195 3.798e-05 ***
occupation
        rating
        -2.284973
               0.407828 -5.6028 2.109e-08 ***
logSigma
        Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
```

In case of a censored regression with left-censoring not at zero and/or right-censoring, arguments left (defaults to zero) and right (defaults to infinity) can be used to specify the limits of the dependent variable. A lower (left) limit of minus infinity (-Inf) and an upper (right) limit of infinity (Inf) indicate that there is no left-censoring and right-censoring, respectively. For instance, minus the number of extramarital sexual intercourses is not left-censored but right-censored at zero. The same model as above but with the negative number of affairs as the dependent variable can be estimated by

This estimation returns β parameters that have the opposite sign of the β parameters estimated in the original model, but the (logarithmised) standard error of the residuals remains unchanged.

R> cbind(coef(tobitResult), coef(tobitResultMinus))

```
[,1] [,2]
(Intercept) 8.1741974 -8.1741974
age -0.1793326 0.1793326
```

yearsmarried 0.5541418 -0.5541418 religiousness -1.6862205 1.6862205 occupation 0.3260532 -0.3260532 rating -2.2849727 2.2849727 logSigma 2.1098592 2.1098592

3. Censored regression model for panel data

3.1. Specification

The censored regression model for panel data with individual specific effects has following specification:

$$y_{it}^* = x_{it}'\beta + \varepsilon_{it} = x_{it}'\beta + \mu_i + \nu_{it}$$
(8)

$$y_{it} = \begin{cases} a & \text{if } y_{it}^* \le a \\ y_{it}^* & \text{if } a < y_{it}^* < b \\ b & \text{if } y_{it}^* \ge b \end{cases}$$
 (9)

Here the subscript $i=1,\ldots,N$ indicates the individual, subscript $t=1,\ldots,T_i$ indicates the time period, T_i is the number of time periods observed for the *i*th individual, μ_i is a time-invariant individual specific effect, and ν_{it} is the remaining disturbance.

3.2. Fixed effects

In contrast to linear panel data models, we cannot get rid of the individual effects by the within transformation.

3.3. Random effects

If the individual specific effects μ_i are independent of the regressors x_{it} , the parameters can be consistently estimated with a random effects model. Assuming that the individual specific effects μ follow a normal distribution with mean 0 and variance σ_{μ}^2 , the remaining disturbance ν follows a normal distribution with mean 0 and variance σ_{ν}^2 , and μ and ν are independent, the likelihood contribution of a single individual i is

$$L_{i} = \int_{-\infty}^{\infty} \left\{ \prod_{t=1}^{T_{i}} \left[\Phi \left(\frac{a - x'_{it}\beta - \mu_{i}}{\sigma_{\nu}} \right) \right]^{I_{it}^{a}} \left[\Phi \left(\frac{x'_{it}\beta + \mu_{i} - b}{\sigma_{\nu}} \right) \right]^{I_{it}^{b}} \right.$$

$$\left. \left[\frac{1}{\sigma_{\nu}} \phi \left(\frac{y_{it} - x'_{it}\beta - \mu_{i}}{\sigma_{\nu}} \right) \right]^{\left(1 - I_{it}^{a} - I_{it}^{b}\right)} \right\} \phi \left(\frac{\mu_{i}}{\sigma_{\mu}} \right) d\mu_{i}$$

$$(10)$$

and the log-likelihood function is

$$\log L = \sum_{i=1}^{N} \log L_i \tag{11}$$

(see Bruno 2004, p. 2).

Given that we assumed that μ follows a normal distribution, we can calculate the integrals in the log-likelihood function by the Gauss-Hermite quadrature and then maximise the log-likelihood function using standard non-linear optimisation algorithms (see Butler and Moffit 1982).

Alternatively, the log-likelihood function can be maximized using the method of Maximum Simulated Likelihood (MSL), which allows some flexibility in the specification of the error terms (Greene 2008, p. 799).

Random effects estimation using the Gauss-Hermite quadrature

The Gauss-Hermite quadrature is a technique for approximating specific integrals with a weighted sum of function values at some specified points. Applying the Gauss-Hermite quadrature to equation (10), we get

$$L_{i} = \frac{1}{\sqrt{\pi}} \sum_{h=1}^{H} w_{h} \left\{ \prod_{t=1}^{T_{i}} \left[\Phi \left(\frac{a - x_{it}'\beta - \sqrt{2}\sigma_{\mu}\psi_{h}}{\sigma_{\nu}} \right) \right]^{I_{it}^{a}} \left[\Phi \left(\frac{x_{it}'\beta + \sqrt{2}\sigma_{\mu}\psi_{h} - b}{\sigma_{\nu}} \right) \right]^{I_{it}^{b}} \left[\frac{1}{\sigma_{\nu}} \phi \left(\frac{y_{it} - x_{it}'\beta - \sqrt{2}\sigma_{\mu}\psi_{h}}{\sigma_{\nu}} \right) \right]^{(1 - I_{it}^{a} - I_{it}^{b})} \right\},$$

$$(12)$$

where H is number of quadrature points, ψ_1, \ldots, ψ_H are the abscissae, and w_1, \ldots, w_H are the corresponding weights (Greene 2008, p. 553)

Appendix

A. Gradients of the log-likelihood function

$$\frac{\partial \log L}{\partial \beta_{j}} = \sum_{i=1}^{N} \left[-I_{i}^{a} \frac{\phi\left(\frac{a-x_{i}'\beta}{\sigma}\right)}{\Phi\left(\frac{a-x_{i}'\beta}{\sigma}\right)} \frac{x_{ij}}{\sigma} + I_{i}^{b} \frac{\phi\left(\frac{x_{i}'\beta-b}{\sigma}\right)}{\Phi\left(\frac{x_{i}'\beta-b}{\sigma}\right)} \frac{x_{ij}}{\sigma} + \left(1 - I_{i}^{a} - I_{i}^{b}\right) \frac{y_{i} - x_{i}'\beta}{\sigma} \frac{x_{ij}}{\sigma} \right]$$
(13)

$$\frac{\partial \log L}{\partial \log \sigma} = \sum_{i=1}^{N} \left[-I_i^a \frac{\phi\left(\frac{a - x_i'\beta}{\sigma}\right)}{\Phi\left(\frac{a - x_i'\beta}{\sigma}\right)} \frac{a - x_i'\beta}{\sigma} - I_i^b \frac{\phi\left(\frac{x_i'\beta - b}{\sigma}\right)}{\Phi\left(\frac{x_i'\beta - b}{\sigma}\right)} \frac{x_i'\beta - b}{\sigma} + \left(1 - I_i^a - I_i^b\right) \left(\left(\frac{y_i - x_i'\beta}{\sigma}\right)^2 - 1\right) \right]$$
(14)

References

Bruno G (2004). "Limited Dependent Panel Data Models: A Comparative Analysis of Classical and Bayesian Inference among Econometric Packages." Computing in Economics and Finance 41, Society for Computational Economics. URL http://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=SCE2004%&paper_id=41.

Butler J, Moffit R (1982). "A computationally efficient quadrature procedure for the one factor multinomial probit model." *Econometrica*, **50**, 761–764.

Greene WH (2008). Econometric Analysis. 6 edition. Prentice Hall.

Kleiber C, Zeileis A (2008). Applied Econometrics with R. Springer, New York.

Kleiber C, Zeileis A (2009). *AER: Applied Econometrics with R*. R package version 1.1, http://CRAN.R-project.org/package=AER.

Tobin J (1958). "Estimation of relationship for limited dependent variables." *Econometrica*, **26**, 24–36.

Toomet O, Henningsen A (2008). "Sample Selection Models in R: Package sampleSelection." Journal of Statistical Software, 27(7), 1–23. URL http://www.jstatsoft.org/v27/i07/.

Toomet O, Henningsen A (2010). maxLik: Tools for Maximum Likelihood Estimation. R package version 0.7, http://CRAN.R-project.org/package=maxLik.

Affiliation:

Arne Henningsen Institute of Food and Resource Economics University of Copenhagen $1958\ {\rm Frederiksberg},\ {\rm Denmark}$ $E\text{-}mail: \verb|arne.henningsen@gmail.com||$

URL: http://www.arne-henningsen.name/