MATH104: Topology

Fall 2023

Homework 10 David Yang

Chapter 12 (Classification of Surfaces) Problems.

Section 74 (Classification of Surfaces), 74.7

If m > 1, show the fundamental group of the m-fold projective plane is not abelian. [*Hint*: There is a homomorphism mapping this group onto the group $\mathbb{Z}/2 * \mathbb{Z}/2$.]

Section 78 (Constructing Compact Surfaces), 78.2(a)(b)

Let H^2 be the subspace of \mathbb{R}^2 consisting of all points (x_1, x_2) with $x_2 \geq 0$. A 2-manifold with boundary (or surface with boundary) is a Hausdorff space X with a countable basis such that each point x of X has a neighborhood homeomorphic with an open set of \mathbb{R}^2 or H^2 . The boundary of X (denoted ∂X) consists of those points x such that x has no neighborhood homeomorphic with an open set of \mathbb{R}^2 .

- a) Show that no point of H^2 of the form $(x_1,0)$ has a neighborhood (in H^2) that is homeomorphic to an open set of \mathbb{R}^2 .
- b) Show that $x \in \partial X$ if and only if there is a homeomorphism h mapping a neighborhood of x onto an open set of H^2 such that $h(x) \in \mathbb{R} \times 0$.