

D1 Tina Linux WiFi RF 测试 使用指南

版本号: 1.0

发布日期: 2021.04.06

版本历史

版本号	日期	制/修订人	内容描述
1.0	2021.04.06	AWA1381	1. 建立初始版本。

目 录

1	概述	1
	1.1 编写目的	1
	1.2 适用范围	1
	1.3 相关人员	1
2	Wi-Fi 测试	2
	2.1 Wi-Fi 传导测试	2
	2.2 测试指标	3
	2.3 ETF 工具介绍	3
3	XRADIO 系列模组	5
	3.1 RF 测试环境搭建	5
	3.1.1 驱动配置	5
	3.1.2 Tina 配置	5
	3.2 ETF CLI 使用说明	6
	3.2.1 常规测试	6
	3.2.2 TX 测试	7
	3.2.3 RX 测试	8
	3.3 WiFi 指令合集	9
	3.3.1 传导 TX	9
	3.3.2 传导 RX	11
4	SRRC 认证	12
	4.1 SRRC 认证介绍	12
	4.2 认证项目及指标	12
	4.3 注意事项	15

插图

2-1	RF 测试指标	 	 	 3
2-2	ETF 工具介绍	 	 	 4
4-1	RF 指标 1	 	 	 12
4-2	RF 指标 2	 	 	 13
4-3	RF 指标 3	 	 	 14
4-4	RF 指标 4	 	 	 15

概述

1.1 编写目的

介绍 Allwinner D1 平台上 Wi-Fi 芯片的 RF 测试。

1.2 适用范围

Allwinner 软件平台 Tina linux。

Allwinner 硬件平台 D1。

1.3 相关人员

·兴趣的F 适用 Tina D1 平台的开发者和对 Tina Wi-Fi 感兴趣的同事。

Wi-Fi 测试

2.1 Wi-Fi 传导测试

Wi-Fi的传导测试是通过射频电缆线,有线的方式连接到测试仪器,用来测试不带天线,射频芯片出来的RF性能。

传导测试又分为信令模式和非信令模式。

信令模式可以理解为小机和综合测试仪进行信息交互, 小机既能发射信号, 又能接收信号, 具有回环机制; 非信令模式下,小机只能作为发射机或者接收机,信息传递是单向的; 两种模式下测试结果是差不多的。

传导测试的仪器设备有IQ2015、N9020A(频谱仪)和CMW270(综合测试仪)。 其中CMW270既可以用于信令模式,也可以非信令模式,常用信令模式; IQ2015和N9020A只能用于信令模式,另外N9020A只能测传导TX,不能测RX,IQ2015则都可以测。

2.2 测试指标

WiFi测试指标

		123 PA 11 A1				
	导模式, IQ2015&Agilent N9020A					
硬件版本:		软件版本:				
NO.	Test Item(2412-2442-2472M	Hz)		#9		
模式: 802.11b([DSSS) 速率:11Mbps	Spec	CH1	CH7	CH13	Test Result
1	Tx Power	16±2dBm	14.7	15.2	14.8	Pass
2	EVM Peak	≤-9dB (35%)	2.69%	2.68%	2.70%	Pass
3	Mask	- '	1	1	1	pass
4	Center Frenquency Error	≤±25ppm	-2.62	-2.42	-2.64	Pass
5	Chip clock error	≤±25ppm	-2.7	-2.68	-2.54	Pass
6	LO Leakage	<-15dB	-44	-45	-44	Pass
-	Duranishi ita/DED (00/)	(1M)≤-90dBm	-94	-94	-93	Pass
7	Rx sensitivity(PER<8%)	(11M)≤-85dBm	-87	-87	-86	Pass
8	Maximum Input Level -10dBm	<8%	1	1	1	Pass
Comments:					•	
	DFDM) 速率: 54Mbps	Spec	CH1	CH7	CH13	Test Result
1	Tx Power	15±2dBm	14	14	14	pass
2	EVM Peak	≤-25dB	-31	-30.45	-29.3	pass
3	Mask	-	1	1	1	pass
4	Center Frenquency Error	≤±20ppm	-1.78	-1.7	-1.69	Pass
5	Chip clock error	≤±20ppm	-4.4	-5.9	-8.2	Pass
6	LO Leakage	≤-15dB	-39	-42	-39.5	Pass
_	D (DED . 400())	(6M)≤-88dBm	-89	-89	-88	Pass
7	Rx sensitivity(PER<10%)	(54M)≤-70dBm	-71	-71	-70	Pass
8	Maximum Input Level -20dBm	<10%		1	1	Pass
Comments:	·		7 , 1			
模式: 802.11n-l	HT20(SISO)速率: 65Mbps	Spec	CH1	CH7	CH13	Test Result
1	Tx Power	14±2dBm	13.3	13	13.21	pass
2	EVM Peak	<-28dB	-31.2	-31	-29.5	pass
3	Mask		1	1	1	pass
4	Center Frenquency Error	≤±20ppm	-1.5	-5	-1.65	Pass
5	Chip clock error	≤±20ppm	-3.8	-4.5	-4.82	Pass
6	LO Leakage	<-20dB	-35	-37	-40	Pass
7	Rx sensitivity(PER<10%)	(MCS0)≤-87dBm	-89	-89	-88	Pass
		(MCS7)≤-69dBm	-70	-70	-69	Pass
8	Maximum Input Level -20dBm	<10%	1		1	Pass
Comments:	ITANCICOV TET - 425M	6	CUA	CUZ	CUAN	To at Do as !!
	HT40(SISO) 速率: 135Mbps	Spec 1412dBro	CH1	CH7	CH13	Test Result
1 2	Tx Power EVM Peak	14±2dBm ≤-28dB	13.4 -30.2	12.8 -30.6	13.1 -29.8	pass
3	Mask Mask	%-Z0UD	-30.2	-30.0	-25.0	pass pass
3 4	Center Frenquency Error	≤±20ppm	-1.74	-1.88	-1.85	Pass Pass
q 5	Chip clock error	≤±20ppm ≤±20ppm	-5.5	-4.4	-5.3	Pass
6	LO Leakage	≤±20ppm ≤-20dB	-38	-32	-3.3	Pass
в	LO Leakage					
7	Rx sensitivity(PER<10%)	(MCS0)≤-84dBm	-87	-87	-86	Pass
•		(MCS7)≤-66dBm	-68	-68	-67	Pass
8	Maximum Input Level -20dBm	<10%	1	1	1	Pass
		· ·				

图 2-1: RF 测试指标

2.3 ETF 工具介绍

为了方便测试 RF 性能,Xradio 提供 ETF CLI(Linux command line)。

ETF 工具的大致功能如下:

类别	测试支持	描述	备注	
	频段选择	测试的频段可配置	目前只支持 2.4G	
基本配置	(2.4G)			
基 个癿且	信道选择	测试信道可配置(1~14)		
	MAC 地址配置	修改发送帧的 MAC 地址	可配置 A1, A2, A3	
	连续发送	连续发送模式下不断发送帧,直到进行停止操作		
	帧数发送	发送一定数目的帧后停止发送		
тх	帧长度配置	发送的帧长度可以调整	大于 MAC 头部,小于 4096	
ıx.	速率选择	速率可选择 11b, 11g, 11n HT20	11b 22Mbps 33Mbps 除 外	
	功率调整	发送功率可以按等级调整,单位不 是 dbm	每个速率有对应默认功 率,一般情况下不用调整	
	单载波发送	可发送单载波,幅度可调整	CLI 支持频偏可调整	
RX	连续接收	停止接收后显示接收帧总数,错误 帧数目		
, KA	模式配置	可以配置 11b only、11g/n 或者 11b/g/n	APK 暂不支持 11b only 和 11g/n 模式	
图 2-2: ETF 工具介绍				

XRADIO 系列模组

3.1 RF 测试环境搭建

3.1.1 驱动配置

为了支持 RF test 工具的使用,必须先配置 xradio 系列的驱动(XR829),并选择以下配置。 make kernel menuconfig

```
Device Drivers > Network device support > Wireless LAN >

XR829 WLAN support >

XRadio Driver features >

Driver debug features >

[*] XRADIO ETF Support for RF Test(DEVELOPMENT)
```

注:

- 1. 确认在板卡固件系统的目录(/lib/firmware)中存在 boot_xr-xxx.bin, sdd_xr-xxx.bin, etf xr-xxx.bin 等文件。
- 2. 确认在板卡固件系统中存在 etf riscv 2.0.4 可执行程序。

3.1.2 Tina 配置

配置 ETF 工具

make menuconfig

注意:

由于wlan与RF测试共用一个驱动,并且下载固件不一样,因此两者互斥。在RF测试之前请确认wlan处于测试模式。即若是以xr829单个ko加载的,请先rmmod xr829后,ETF测试时通过带参数的形式加载进入测试模式insmod /lib/modules/xxx/xr829.ko etf enable=1

3.2 ETF CLI 使用说明

ETF 命令行工具可以进行手动测试,也可以被其他程序调用进行自动化测试。

3.2.1 常规测试

ETF 工具命令基本格式,可以通过 etf riscv 2.0.4 help 获取 ETF 工具详细的帮助信息。

[etf_riscv_2.0.4 cmd [param0] [param1] [param2] [param3]

RF 测试模式启动,设备处于运行状态,其他测试命令只能在该命令完成以后才能进行。

etf_riscv_2.0.4 connect

RF 测试模式关闭,关闭后设备处于掉电状态。

etf_riscv_2.0.4 disconnect

PHY 使能,在进行 PHY 和 RF 相关操作之前必须先使能 PHY。

etf_riscv_2.0.4 enable_phy

MAC 地址获取和配置,其中-d 为目的地址(A1),-s 为源地址(A2),-t 为 BSSID(A3)。

etf_riscv_2.0.4 get_mac

etf_riscv_2.0.4 set_mac -d XX:XX:XX:XX:XX:XX -s XX:XX:XX:XX:XX -t XX:XX:XX:XX:XX

频段模式和信道配置。其中 mode 可为 DSSS_2GHZ, OFDM_2GHZ, 2GHZ。num 为信道 参数, 范围 1~14。

etf_riscv_2.0.4 channel [mode] [num]

速率配置。

etf_riscv_2.0.4 rate -m [x] -r [y]

其中 x 和 y 意义分别为如下表:

模式 X	定义	对应速率 y
0	11b short preamble	1, 2, 5.5, 11
1	11b long preamble	1, 2, 5.5, 11
2	11g	6, 9, 12, 18, 24, 36, 48, 54
4	11n Greenfield	6.5, 13, 19.5, 26, 39, 52, 58.5, 65
5	11n Mixed	6.5, 13, 19.5, 26, 39, 52, 58.5, 65, 78, 117

功率配置。其中 num 的范围为 $2\sim120$,每个速率有对应的默认功率和最大功率,速率配置后自动使用默认功率进行发送;当功率调整超过最大功率时,会配置为最大功率。

```
etf_riscv_2.0.4 power_level [num]
```

3.2.2 TX 测试

Tx 测试基本格式如下。其中 continuous 为 1 表示连续发送,为 0 表示帧数发送,默认为 1; 当 continuous 为 0 时,num 表示要发送的帧数; length 表示发送帧的长度。

```
etf_riscv_2.0.4 tx -c [continous] -n [num] -l [length]
etf_riscv_2.0.4 tx_stop
```

单载波发送基本格式如下。其中 amplitude 表示单载波幅度,默认为 0dbm; freq 为频偏,默认为 5MHz。mode 为载波模式,默认为 Single Tone Quad。

```
etf_riscv_2.0.4 tone -a [amplitude] -f [freq] -m [mode]
etf_riscv_2.0.4 tone_stop
```

示例 1: 在 1 信道,使用 11n Mixed 模式 MCS7 LongGI 速率,帧长为 4095 进行连续发送。

```
etf_riscv_2.0.4 connect
etf_riscv_2.0.4 enable_phy
etf_riscv_2.0.4 channel 2GHZ 1
etf_riscv_2.0.4 rate -m 5 -r 65
etf_riscv_2.0.4 tx -c 1 -l 4095
etf_riscv_2.0.4 tx_stop
etf_riscv_2.0.4 disconnect
```

示例 2: 在 11 信道,使用 11g 模式 54 Mbps 速率,功率等级为 50 进行发送 1000 帧。提示:固定帧数发送不需要 tx stop 。

```
etf_riscv_2.0.4 connect
etf_riscv_2.0.4 enable_phy
etf_riscv_2.0.4 channel 2GHZ 11
etf_riscv_2.0.4 rate -m 2 -r 54
etf_riscv_2.0.4 power_level 50
etf_riscv_2.0.4 tx -c 0 -n 1000
etf_riscv_2.0.4 disconnect
```

示例 3: 在 1 信道,进行单载波连续发送的示例。单载波发送必须先进行连续发送。

```
etf_riscv_2.0.4 connect
etf_riscv_2.0.4 enable_phy
etf_riscv_2.0.4 channel 2GHZ 1
etf_riscv_2.0.4 tx -c 1
etf_riscv_2.0.4 tone
etf_riscv_2.0.4 tone_stop
```


etf_riscv_2.0.4 tx_stop
etf_riscv_2.0.4 disconnect

3.2.3 RX 测试

Rx 测试基本格式如下。Rx 测试无参数,停止后会返回统计数据。

etf_riscv_2.0.4 rx

etf_riscv_2.0.4 rx_stop

Rx 停止后返回数据如下:

Rx mode is: OFDM_PREAMBLE

Smoothing: YES!

Sounding PPDU: NO!

A-MPDU: NO!

Short GI: 800ns

CF0: -6.256104

SNR: 11.671869

RSSI: -49.000000

EVM: 2.713441

RCPI: -52.500000

Total: 1107

AbortError: 405

CRCError: 232

Sending CMD OK!

具体返回值意义说明:

名称	描述	备注	
Total	所有检测到帧的总数		
AbortError	无法解调帧的总数	错误帧总数	
CRCError	CRC 发生错误的帧	错误帧总数	
Rx mode	最后一帧的调制模式		
A-MPDU	是否为聚合帧		
RSSI	接收信号强度,单位 dbm		

© R

示例 1: 在 1 信道,进行连续接收的示例。

```
etf_riscv_2.0.4 connect
etf_riscv_2.0.4 enable_phy
etf_riscv_2.0.4 channel 2GHZ 1
etf_riscv_2.0.4 rx
etf_riscv_2.0.4 rx_stop
etf_riscv_2.0.4 disconnect
```

示例 2:在 11 信道,11b only 模式,进行连续接收的示例。

```
etf_riscv_2.0.4 connect
 etf_riscv_2.0.4 enable_phy
 etf_riscv_2.0.4 channel DSSS_2GHZ 11
3.3 WiFi 指令合集
3.3.1 传导 TX
```

在 11b 模式带宽 11M 信道 1 场景下测试

```
etf_riscv_2.0.4 connect
etf_riscv_2.0.4 enable_phy
etf_riscv_2.0.4 channel 2GHZ 1
etf_riscv_2.0.4 rate -m 1 -r 11
etf_riscv_2.0.4 tx
                    //可以不设置侦长等信息,直接tx
etf_riscv_2.0.4 tx_stop //每次切换成其他模式需要先stop再输指令
```

在 11g 模式带宽 54M 信道 1 场景下测试

```
etf_riscv_2.0.4 connect
etf_riscv_2.0.4 enable_phy
```

文档密级: 秘密


```
etf_riscv_2.0.4 channel 2GHZ 1
etf_riscv_2.0.4 rate -m 2 -r 54
etf_riscv_2.0.4 tx //可以不设置侦长等信息,直接tx
etf_riscv_2.0.4 tx_stop //每次切换成其他模式需要先stop再输指令
```

在 11n 模式带宽 HT20 速率 MCS7 信道 1 场景下测试

```
etf_riscv_2.0.4 connect
etf_riscv_2.0.4 enable_phy
etf_riscv_2.0.4 channel 2GHZ 1
etf_riscv_2.0.4 rate -m 5 -r 65
etf_riscv_2.0.4 tx  //可以不设置侦长等信息,直接tx
etf_riscv_2.0.4 tx_stop //每次切换成其他模式需要先stop再输指令
```

在 11n 模式带宽 HT40 速率 MCS7 信道 1 场景下测试(XR819 没有 40M 模式,XR829 才有)

备注:

subchannel 可为 LOWER 或 UPPER。此处的 LOWER 和 UPPER 含义为设置信道为组成 40M 带宽的低/高频信道,如下图所示。故 5LOWER 和 9UPPER 均表示 40M 的中心频率在 7 信道(2442MHz)。40M 中心频率的计算方法如下:所设信道的中心频率 +10M(对于 LOWER 的情况)或所设信道的中心频率-10M(对于 UPPER 的情况)。

3.3.2 传导 RX

在 11b 或者 11g 或者 11n 模式带宽 HT20 场景下测试

```
etf_riscv_2.0.4 connect
etf_riscv_2.0.4 enable_phy
etf_riscv_2.0.4 channel 2GHZ 1

//仪器发信号前先进入rx模式
etf_riscv_2.0.4 rx

//仪器发完之后按输入rx_stop指令,查看结果
etf_riscv_2.0.4 rx_stop
```

在 11n 模式带宽 HT40 速率 MCS7 场景下测试

```
etf_riscv_2.0.4 rx_stopetf connect
etf_riscv_2.0.4 rx_stopetf enable_phy
etf_riscv_2.0.4 rx_stopetf bandwidth 40M //设置40M带宽
etf_riscv_2.0.4 rx_stopetf subchannel LOWER //设置信道组合方式,也可以设置成UPPER模式
etf_riscv_2.0.4 rx_stopetf channel 2GHZ 1
//仪器发信号前先进入rx模式
etf_riscv_2.0.4 rx_stopetf rx
//仪器发完之后按输入rx_stopetf rx
etf_riscv_2.0.4 rx_stopetf rx
```


4 SRRC 认证

4.1 SRRC 认证介绍

SRRC 是国家无线电管理委员会强制认证要求,所有在中国境内销售及使用的无线电组件产品,必须取得无线电型号的核准认证。

4.2 认证项目及指标

局域网 11b 部分:

10 011 [MXXIII]	
技术参数	公布信息
调制方式	DBPSK/DQPSK/CCK
数据速率	1Mbps/2Mbps/5.5Mbps/11Mbps
信道间隔	5MHz
天线增益	2dBi
等效全向辐射功率	天线增益<10dBi 时: ≤100mW 或≤20dBm; 天线增益≥10dBi 时: ≤500mW 或≤27dBm。
最大功率谱密度	直接序列扩频或其它工作方式: 天线增益<10dBi 时: ≤10dBm/MHz(EIRP); 天线增益≥10dBi 时: ≤17dBm/MHz(EIRP)。 跳频工作方式: 天线增益<10dBi 时: ≤20dBm/MHz(EIRP); 天线增益≥10dBi 时: ≤27dBm/MHz(EIRP)。
频率范围	\leq -80 dBm/Hz (f _L \geq 2.4GHz; f _H \leq 2.4835GHz)
占用带宽	
载频容限	≤20×10 ⁻⁶
杂散发射	≤-36dBm/100kHz(30-1000MHz); ≤-33dBm/100kHz(2.4-2.4835GHz); ≤-40dBm/1MHz(3.4-3.53GHz); ≤-40dBm/1MHz(5.725-5.85GHz); ≤-30dBm/1MHz (其它 1-12.75GHz)

图 4-1: RF 指标 1

局域网 11g 部分:

10125Chal 112 0b21					
技术参数	公布信息				
调制方式	BPSK/QPSK/16QAM/64QAM				
数据速率	6Mbps/9Mbps/12Mbps/18Mbps/24Mbps/36Mbps/48Mbps/54Mbps				
信道间隔	5MHz				
天线增益	2 dBi				
等效全向辐射功	天线增益<10dBi 时: ≤100mW 或≤20dBm;				
率	天线增益≥10dBi 时: ≤500mW 或≤27dBm。				
	直接序列扩频或其它工作方式:				
	天线增益<10dBi 时:≤10dBm/MHz(EIRP);				
最大功率谱密度	天线增益≥10dBi 时:≤17dBm/MHz(EIRP)。				
取八切牛相击反	跳频工作方式:				
	天线增益<10dBi 时: ≤20dBm/MHz(EIRP);				
	天线增益≥10dBi 时:≤27dBm/MHz(EIRP)。				
频率范围	\leq -80 dBm/Hz (f _L \geq 2.4GHz; f _H \leq 2.4835GHz)				
占用带宽					
载频容限	≤20×10 ⁻⁶				
	≤-36dBm/100kHz(30-1000MHz);				
	\leq -33dBm/100kHz(2.4-2.4835GHz);				
杂散发射	\leq -40dBm/1MHz(3.4-3.53GHz);				
	√-40dBm/1MHz(5.725-5.85GHz);				
	<-30dBm/1MHz (其它 1-12.75GHz)				
	图 4-2: RF 指标 2				

局域网 11n 20MHz 部分:

技术参数	公布信息
调制方式	BPSK/QPSK/16QAM/64QAM
数据速率	MCS0-MCS7
信道间隔	5MHz
天线增益	2 dBi
等效全向辐射功率	天线增益<10dBi 时: ≤100mW 或≤20dBm; 天线增益≥10dBi 时: ≤500mW 或≤27dBm。
最大功率谱密度	直接序列扩频或其它工作方式: 天线增益<10dBi 时: ≤10dBm/MHz(EIRP); 天线增益≥10dBi 时: ≤17dBm/MHz(EIRP)。 跳频工作方式: 天线增益<10dBi 时: ≤20dBm/MHz(EIRP); 天线增益≥10dBi 时: ≤27dBm/MHz(EIRP)。
频率范围	≤ -80 dBm/Hz (fL≥2.4GHz; fH≤2.4835GHz)
占用带宽	
载频容限	≤20×10 ⁻⁶
杂散发射	≤-36dBm/100kHz(30-1000MHz); ≤-33dBm/100kHz(2.4-2.4835GHz); ≤-40dBm/1MHz(3.4-3.53GHz); ≤-40dBm/1MHz(5.725-5.85GHz); ≤-30dBm/1MHz(共定 1-12.75GHz)

图 4-3: RF 指标 3

局域网 11n 40MHz 部分:

Olyskia IIII 401/1117 db	,, ·
技术参数	公布信息
调制方式	BPSK/QPSK/16QAM/64QAM
数据速率	MCS0-MCS7
信道间隔	5MHz
天线增益	2 dBi
等效全向辐射功率	天线增益<10dBi 时: ≤100mW 或≤20dBm; 天线增益≥10dBi 时: ≤500mW 或≤27dBm。
最大功率谱密度	直接序列扩频或其它工作方式: 天线增益<10dBi 时: ≤10dBm/MHz(EIRP); 天线增益≥10dBi 时: ≤17dBm/MHz(EIRP)。 跳频工作方式: 天线增益<10dBi 时: ≤20dBm/MHz(EIRP); 天线增益≥10dBi 时: ≤27dBm/MHz(EIRP)。
频率范围	\leq -80 dBm/Hz (f _L \geq 2.4GHz; f _H \leq 2.4835GHz)
占用带宽	
载频容限	≤20×10 ⁻⁶
杂散发射	≤-36dBm/100kHz(30-1000MHz); ≤-33dBm/100kHz(2.4-2.4835GHz); ≤-40dBm/1MHz(3.4-3.53GHz); ≤-40dBm/1MHz(5.725-5.85GHz); ≤-30dBm/1MHz (共定 1-12.75GHz)

图 4-4: RF 指标 4

4.3 注意事项

SRRC认证中最容易出现问题的测试项目是杂散发射,所以这个测试项必须要摸底。杂散发射可以通过频谱仪来测量,重点 关注二次谐波是否会超出-30dBm;一般情况下做了π型网络匹配杂散发射都能达标。

杂散发射会测试每个模式下的最低速和最高速,正常只要保证最低速能过就可以,因为最低速发射功率是最高的;软件适 当降低发射功率,可以优化杂散指标,但是不建议这么做,除非万不得已,尽量通过硬件π型网络去解决杂散问题。

著作权声明

版权所有 © 2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。