

Chapter 12: Algebraic Riccati Equation

- ☐ Algebraic Riccati Equation
- **□** Solving ARE
- Bounded Real Lemma
- Standard ARE

■ Algebraic Riccati Equation:

A*X+XA+XRX+Q=0, R=R*, Q=Q*

An ARE may have many solutions. We are only interested in symmetric solutions. In particular, we are interested in the symmetric solution such that A+RX is stable. This solution is called stabilizing solution.

Consider the associated Hamiltonian matrix:

$$H = \begin{bmatrix} A & R \\ -Q & -A \end{bmatrix}$$

$$J^{-1}HJ = -JHJ = -H^*, J := \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}$$

so H and -H* are similar. Thus λ is an eigenvalue iff - λ * is.

☐ Thus we conclude: $eig(H) \neq j\omega \Leftrightarrow H$ has n eigenvalues in Re s<0 and n eigenvalues in Re s>0

Solving ARE

Let $X_{-}(H)$ be the n-dimensional spectral subspace corresponding to eigenvalues in Re s <0: $X_{-}(H) = \mathrm{Im} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$

where $X_l, X_2 \in C^{n\times n}$ $(X_l \text{ and } X_2 \text{ can be chosen to be real matrices.})$ If X_l is nonsingular, define

 $X:=Ric(H)=X_2X_1^{-1}: dom(Ric) \subset \mathbb{R}^{2n\times 2n} \rightarrow \mathbb{R}^{n\times n}$

where dom(Ric) consists of all H matrices such that

Then X is a solution of the ARE. (see next theorem)

 $>>[X_1, X_2] = ric_schr(H), X = X_2/X_1$

G

(i) X is real symmetric (ii) \boldsymbol{X} satisfies the algebraic Riccati equation

A*X+XA+XRX+Q=0

(iii) A+RX is stable.

Proof: (i) Let $X_{-}(H) = \operatorname{Im} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$. We show $X_1 * X_2$ is symmetric. Note that there exists a stable matrix H_{-} in $\mathbb{R}^{n \times n}$ such that $H\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} H_-.$ Pre-multiply this equation by

□ Theorem 12.1: Suppose $H \in dom(Ric)$ and X=Ric(H). Then

$$H\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} H_{-}$$

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}^* J$$

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}^* JH \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}^* J \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} H_{-}$$

G

Since JH is symmetric \Rightarrow :

 $(-X_{I}*X_{2}+X_{2}*X_{I})\,H_{_}=H_{_}*(-X_{I}*X_{2}+X_{2}*X_{I}\,)*=-H_{_}*(-X_{I}*X_{2}+X_{2}*X_{I})$

This is Lyapunov equation. Since H_{\perp} is stable, the unique solution is $-X_1*X_2+X_2*X_1=0.$

i.e., $X_1 * X_2$ is symmetric. $\Rightarrow X = (X_1^{-1}) * (X_1 * X_2) X_1^{-1}$ is symmetric.

(ii) Start with the equation

$$H\begin{bmatrix} X_1 \\ Y \end{bmatrix} = \begin{bmatrix} X_1 \\ Y \end{bmatrix} H_{-}.$$

(ii) Start with the equation
$$H\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} H_-.$$
 and post-multiply by X_I^{-I} to get
$$H\begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} X_I H_- X_1^{-1}.$$
 now pre-multiply by $[X - I]$:
$$[X - I]H\begin{bmatrix} I \\ X \end{bmatrix} = 0.$$

This is precisely the Riccati equation.

(iii)
$$\begin{bmatrix} I & 0 \end{bmatrix} \left(H \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} X_1 H - X_1^{-1} \right) \Rightarrow A + RX = X_1 H - X_1^{-1}$$
.

Thus $A + RX$ is stable because H_{-} is.

Theorem 12.2: Suppose $\operatorname{eig}(H) \neq \operatorname{j}\omega$ and R is semi-definite $(\geq 0 \text{ or } \leq 0)$. Then $H \in \operatorname{dom}(Ric) \Leftrightarrow (A,R)$ is stabilizable.

We need to show that X_1 is nonsingular, i.e., $Ker X_1=0$.

Claim: Ker X_1 is H_{-} -invariant.

Let $x \in \text{Ker } X_1$ and note that $X_2 * X_I$ is symmetric and

$$AX_1+RX_2=X_1H_{\perp}$$
.

Pre-multiply by $x^*X_2^*$, post multiply by x to get

$$x * X_2 * RX_2 x = \theta \Rightarrow RX_2 x = \theta \Rightarrow X_1 H_x = \theta$$

i.e., $H_x \in \operatorname{Ker} X_1$.

Suppose $\operatorname{Ker} X_I \neq 0$. Then $H_-|_{\operatorname{Ker} X_1}$ has an eigenvalue, λ , and a corresponding eigenvector, x:

 $H_x = \lambda x$, Re $\lambda < \theta$, $\theta \neq x \in \text{Ker } X_1$

G

Note that

$$-QX_1-A*X_2=X_2H$$

Post-multiply the above equation by x:

$$(A*+\lambda I)X_2x=0$$

Recall that $RX_2x = 0$, we have

$$x*X_2*[A+\lambda*I \ R]=0.$$

(A,R) stabilizable $\Rightarrow X_2 x = \theta \Rightarrow \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} x = 0 \Rightarrow x = 0$ since $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ has full column rank, which is a contradiction.

(⇒) H ∈ dom(Ric) ⇒ A+RX is stable ⇒ (A, R) is stabilizable.

Computing L_w and H_w Norms

- Rational Functions: Let $G(s) \in RL_{\infty}$:
 - \div the farthest distance the Nyquist plot of ${\cal G}$ from the origin $\|G\|_x := \sup \overline{\sigma}[G(j\omega)]$.
 - the peak on the Bode magnitude plot
 - \div estimation: set up a fine grid of frequency points, $\{\omega_i, \cdots, \omega_d\}$.

$$||G||_{\infty} \approx \max_{1 \leq k \leq N} \overline{\sigma} \{G(j\omega_k)\}.$$

• Characterization: Let $\gamma > 0$ and $G(s) = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in RL_{\infty}$.

 $||G||_{\infty} < \gamma \Leftrightarrow \overline{\sigma}(D) < \gamma \& H$ has no $j\omega$ eigenvalues

$$H := \begin{bmatrix} A + BR^{-1}D * C & BR^{-1}B * \\ -C * (I + DR^{-1}D *)C & -(A + BR^{-1}D *C) * \end{bmatrix}$$

and $R = \gamma^2 I - D * D$.

• Proof: Let $\Phi(s) = \gamma^2 I - G(s) G(s)$.

 $||G||_{\infty} < \gamma \Leftrightarrow \Phi(j\omega) > 0, \forall \omega \in \mathbb{R} \cup \{\infty\}$

 $\Leftrightarrow \det \Phi(j\omega) \neq 0, \ \forall \ \omega \in \mathbb{R} \text{ since } \Phi(\infty) = R > 0 \text{ and } \Phi(j\omega) \text{ is continuous.}$

- $\Leftrightarrow \det \Phi(j\omega) \neq 0, \ \forall \ \omega \in \mathbb{R} \text{ since } \Phi(\infty) = R > 0 \text{ and } \Phi(j\omega) \text{ is continuous.}$
- ⇔ Φ(s) has no imaginary axis zero.
- $\Leftrightarrow \Phi^{-1}(s)$ has no imaginary axis pole.

$$\Phi^{-1}(s) = \begin{bmatrix} H & \begin{bmatrix} BR^{-1} \\ -C^*DR^{-1} \end{bmatrix} \\ \begin{bmatrix} R^{-1}D^*C & R^{-1}B^* \end{bmatrix} & R^{-1} \end{bmatrix}.$$

 \Leftrightarrow H has no $j\omega$ axis eigenvalue.

Bounded Real Lemma

□ Corollary 12.3: Let $\gamma > 0$. $G(s) = C(sI-A)^{-1}B + D \in RH_{\infty}$ and

$$H := \begin{bmatrix} A + BR^{-1}D^*C & BR^{-1}B^* \\ -C^*(I + DR^{-1}D^*)C & -(A + BR^{-1}D^*C)^* \end{bmatrix}$$

 $\begin{bmatrix} -C^*(I+DR^{-1}D^*)C & -(A+BR^{-1}D^*C)^* \end{bmatrix}$ where $R=\gamma^2I-D^*D$. Then the following conditions are equivalent: (i) $||G||_{\infty} < \gamma$.

- (ii) $||D|| < \gamma$ and H has no eigenvalues on the imaginary axis.
- (iii) $||D|| < \gamma$ and $H \in dom(Ric)$, i.e., there exists an $X \ge \theta$ such that $X(A+BR^{-1}D^{+}C)+(A+BR^{-1}D^{+}C)+X+XBR^{-1}B^{+}X+C^{+}(I+DR^{-1}D^{+})C=\theta$ and $A+BR^{-1}D^{+}C+BR^{-1}B^{+}X$ is stable.
- (iv) $||D|| < \gamma$, $H \in dom(Ric)$ and $Ric(H) \ge \theta$ ($Ric(H) > \theta$ if (C,A) is observable).

- $X(A+BR^{-1}D*C)+(A+BR^{-1}D*C)*X+XBR^{-1}B*X+C*(I+DR^{-1}D*)C=0$ and $A+BR^{-1}D*C+BR^{-1}B*X$ has no eigenvalues on the imaginary
- (vi) $||D|| < \gamma$ and there exists an X > 0 such that

 $X(A+BR^{-1}D*C)+(A+BR^{-1}D*C)*X+XBR^{-1}B*X+C*(I+DR^{-1}D*)C<0$

(vii) there exists and X > 0 such that

$$\begin{bmatrix} XA + A^*X & XB & C^* \\ B^*X & -\gamma I & D^* \\ C & D & -\gamma I \end{bmatrix} < 0.$$

□ Proof: We have already known: (i) \Leftrightarrow (ii). (iii) \Rightarrow (ii) is obvious. To show that (ii) \Rightarrow (iii), we need to show that $(A+BR^{-l}D^*C, BR^{-l}B^*)$ is stabilizable (Theorem 12.2). In fact, we will show that $A+BR^{-l}D^*C$ is stable for all those γ such that $\|G\|_{\infty} < \gamma$.

G

Note that we can write

 $A+BR^{-1}D*C=A+B(\gamma^{2}I-D*D)^{-1}D*C=A+B(I-\Delta D_{1})^{-1}\Delta C_{1}$

with $\Delta = D^*/\gamma$, $D_1 = D/\gamma$, and $C_1 = C/\gamma$. Then $||\Delta|| \le 1$ and

$$||C_I(sI-A)^{-1}B+D_I||_{\infty} = \gamma^{-1} ||G||_{\infty} < 1.$$

Hence by small gain theorem, $A+B(I-\Delta D_I)^{-1}\Delta C_I$ is stable for all Δ with $\|\Delta\| < I$. Thus $A+BR^{-1}D^*C$ is stable for all γ such that $\|G\|_{\infty} < \gamma$.

(iii) \Rightarrow (iv) follows from the fact that the ARE

X (A+BR-1D*C) + (A+BR-1D*C) *X+XBR-1B*X+C* (I+DR-1D*) C=0

can be regarded as a Lyapunov equation with

$$A_I := A + BR^{-1}D * C, \qquad Q := XBR^{-1}B * X + C * (I + DR^{-1}D *) C$$

Hence $X \ge 0$ since A_t is stable and $O \ge 0$.

(v) \Rightarrow (i): Assume D = 0 for simplicity. Then there is an $X \ge 0$

XA+A*X+XBB*X/y2+C*C=0

and $A+BB*X/\gamma^2$ has no jæ-axis eigenvalue.

G

Hence

$$W(s) := \left[\frac{A - B}{B^* X / \gamma / \gamma} \right]$$

has no zeros on the imaginary axis since

$$W^{-1}(s) = \begin{bmatrix} \frac{A + BB^*X/\gamma^2 & B/\gamma}{B^*X/\gamma^2 & I/\gamma} \end{bmatrix}$$

has no poles on the imaginary axis. Next, note that

$$-X(j\omega I-A)-(j\omega I-A)*X+XBB*X/\gamma^2I+C*C=0$$

Multiply $B^*\{(j\omega l-A)^*\}^{-1}$ on the left and $(j\omega l-A)^{-1}B$ on the right of the above equation to get

 $-B*\{(j\varpi I-A)^*\}^{-1}XB-B*X(j\varpi I-A)^{-1}B+B*\{(j\varpi I-A)^*\}^{-1}C*C\ (j\varpi I-A)^{-1}B$

 $+B*{(j\omega I-A)*}^{-1}XBB*X(j\omega I-A)^{-1}B/\gamma^{2}=0$

Completing square, we have

 $G^*(j\omega)G(j\omega) = \gamma^2 I - W^*(j\omega)W(j\omega)$

Since W(s) has no $j\omega$ -axis zeros, we conclude that $||G||_{\infty} < \gamma$.

(vi) ⇔ (vii): follows from Schur complement.

(vi) \Rightarrow (i): by following the similar procedure as above.

(i) ⇒ (vi): let

$$G_{\varepsilon} = \begin{bmatrix} A & B \\ \hline C & D \\ \varepsilon I & 0 \end{bmatrix}$$

Then there exists an $\varepsilon > 0$ such that $||G_{\varepsilon}||_{\infty} < \gamma$. Now (vi) follows by applying part (v) to G_{ϵ} .

Standard ARE

☐ Theorem 12.4: Suppose *H* has the form

$$H = \begin{bmatrix} A & -BB^* \\ -C^*C & -A^* \end{bmatrix}$$

Then $H \in dom(Ric)$ iff (A,B) is stabilizable and (C,A) has no unobservable modes on the imaginary axis. Furthermore, $X=Ric(H)\geq 0$. And X>0 if and only if (C,A) has no stable unobservable modes.

Proof: Only need to show that, assuming (A,B) is stabilizable, H has no $j \omega$ eigenvalues iff (C,4) has no unobservable modes on the imaginary axis. Suppose that $j \omega$ is an eigenvalue and $0 \neq \begin{bmatrix} x \\ z \end{bmatrix}$ is a corresponding eigenvector. Then

 $Ax-BB*z=j\omega x$, $-C*Cx-A*z=j\omega z$

Re-arrange: $(A-j\omega l)x=BB*z$, $-(A-j\omega l)*z=C*Cx$

 $< z, (A-i\omega I)x> = < z, BB *z> = ||B*z||^2$ Thus

$$- < x, (A-j\omega l)*z> = < x, C*Cx> = ||Cx||^2$$

so $\langle x, (A-j\omega I) * z \rangle$ is real and

 $-||Cx||^2 = <(A-j\omega I)x,z> = < z,(A-j\omega I)x> *= ||B*z||^2$

Therefore $B^*z = 0$ and Cx = 0. So

 $(A-j\omega I)x=0$, $(A-j\omega I)*z=0$

Combine the last four equations to get

$$z^*[A-j\omega I \quad B]=0, \quad \begin{bmatrix} A-j\omega I \\ C \end{bmatrix} x=0.$$

The stabilizability of (A,B) gives z=0. Now it is clear that $j\omega$ is an eigenvalue of H if $j\omega$ is an unobservable mode of (C,A).

(A-BB*X)*X+X(A-BB*X)+XBB*X+C*C=0

 $X \ge \theta$ since $A - BB^*X$ is stable.

 \square Corollary 12.5: Suppose (A,B) is stabilizable and (C,A) is detectable.

A*X+XA-XBB*X+C*C=0

has a unique positive semidefinite solution. Moreover, it is stabilizing.

□ Corollary 12.7: Suppose D has full column rank and denote R =

D'D>0. Let H have the form
$$H = \begin{bmatrix} A & 0 \\ -C'C & -A' \end{bmatrix} - \begin{bmatrix} B \\ -C'D \end{bmatrix} R^{-1} \begin{bmatrix} D'C & B' \end{bmatrix} = \begin{bmatrix} A - BR^{-1}D'C & -BR^{-1}B' \\ -C'(I - DR^{-1}D')C & -(A - BR^{-1}D'C)' \end{bmatrix}$$

Then $H \in dom(Ric)$ iff (A,B) is stabilizable and $\begin{bmatrix} A-j\omega & B \\ C & D \end{bmatrix}$ has full column rank for all ∞ . Furthermore, $X=Ric(H) \ge 0$ if $H \in dom(Ric)$ and Ker(X)=0 if and only if $(D_{\perp}*C,A-BR^{-1}D*C)$ has no stable unobservable modes.

unooservative modes.

Proof: This is because $\begin{bmatrix} A-j\omega l & B \\ C & D \end{bmatrix}$ has full column rank for all ω \Leftrightarrow $((I-DR^{-1}D^*)C, A-BR^{-1}D^*C)$ has no observable modes on $j\omega$ -axis.

Chapter 13: H₂ Optimal Cont

- \square H_2 optimal control
- \Box stability margins of H_2 controllers

Computing L₂ and H₂ Norms

• Let $G(s) \in L_2$ and $g(t) = L^{-1} [G(s)]$. Then

$$\|G\|_2^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{trace} \{G^*(j\omega)G(j\omega)\} d\omega = \frac{1}{2\pi} \int \operatorname{trace} \{G^T(-s)G(s)\} ds.$$

=
$$\sum$$
 the residues of trace $\{G^T(-s)G(s)\}$ at its poles in the left half plane.

$$= \int_{-\infty}^{\infty} \operatorname{trace} \{g * (t)g(t)\} dt = \|g(t)\|_{2}^{2}$$

Consider $G(s)=C(sI-A)^{-1}B \in RH_2$. Then we have

$$||G(s)||_2^2 = \operatorname{trace}(B * L_\theta B) = \operatorname{trace}(CL_c C*)$$

where L_{θ} and L_{c} are observability and controllability Gramians:

$$AL_c + L_c A * + BB * = 0$$
 $A * L_0 + L_0 A + C * C$

• Proof: Note that $g(t) = L^{-1}[G(s)] = Ce^{At}B$, $t \ge 0$, and

$$L_o = \int\limits_0^\infty e^{A^*t} C^* C e^{At} \ dt \,, \qquad L_c = \int\limits_0^\infty e^{At} B B^* e^{A^*t} \ dt$$

Then

$$\|G\|_{2}^{2} = \int_{0}^{\infty} \operatorname{trace}\{g * (t)g(t)\}dt = \int_{0}^{\infty} \operatorname{trace}\{B * e^{A^{*}t}C * Ce^{At}B\}dt$$

$$=\operatorname{trace}\left\{B^*\int\limits_0^\infty e^{A^*t}C^*Ce^{At}\ dt\ B\right\}=\operatorname{trace}\left\{B^*L_bB\right\}$$

$$= \int_0^\infty \operatorname{trace} \left\{ g(t)g^*(t) \right\} dt = \operatorname{trace} \left\{ C \int_0^\infty e^{-tt} BB^* e^{-t^* t} \ dt \ C^* \right\} = \operatorname{trace} \left\{ CL_c C^* \right\}$$

G

Example: Consider a transfer matrix

$$G = \begin{bmatrix} \frac{3(s+3)}{(s-1)(s+2)} & \frac{2}{s-1} \\ \frac{s+1}{(s+2)(s+3)} & \frac{1}{s-4} \end{bmatrix} = G_s + G_u$$

with

$$G_{s} = \begin{bmatrix} -2 & 0 & | & -1 & 0 \\ 0 & -3 & | & 2 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}, G_{u} = \begin{bmatrix} 1 & 0 & | & 4 & 2 \\ 0 & 4 & | & 0 & 1 \\ 1 & 0 & | & 0 & 0 \\ 1 & 0 & | & 0 & 0 \end{bmatrix}$$

Then the command norm(G_s) gives $||G_s||_2=0.6055$ and norm(G_u(-s)) gives $||G_u||_2=3.182.$ Hence

$$\|G\|_{2} = \sqrt{\|G_{s}\|_{2}^{2} + \|G_{u}\|_{2}^{2}} = 3.2393$$

 \Rightarrow P = gram(A,B); Q = gram(A',C'); or P = lyap(A,B*B');

>> [Gs,Gu] = stabsep(G); % decompose into stable and antistable parts.

H₂ Optimal Control

☐ Consider a general LFT

system

$$G(s) = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & 0 & D_{12} \\ C_2 & D_{21} & 0 \end{bmatrix}$$

$$y \longrightarrow K u$$

☐ Assumptions

(i) (A,B_2) is stabilizable and (C_2,A) is detectable;

(ii) D_{12} has full column rank with $[D_{12}\ D_{\perp}]$ unitary, and D_{2I} has full row rank with $\begin{bmatrix} D_{12} \\ \widetilde{D}_{\perp} \end{bmatrix}$ unitary;

(iii)
$$\begin{bmatrix} A-j\omega l & B_2 \\ C_1 & D_{12} \end{bmatrix}$$
 has full column rank for all ω ;

(iv)
$$\begin{bmatrix} A - j\omega I & B_1 \\ C_2 & D_{21} \end{bmatrix}$$
 has full row rank for all ω .

Let
$$X_2$$
 and Y_2 be stabilizing solutions to

$$\begin{split} &X_2(A-B_2D_{12}^*C_1) + (A-B_2D_{12}^*C_1)^*X_2 - X_2B_2B_2^*X_2 + C_1^*D_\bot D_1^*C_1 = 0 \\ &Y_2(A-B_1D_{12}^*C_2)^* + (A-B_1D_{21}^*C_2)Y_2 - Y_2C_2^*C_2Y_2 + B_1\widetilde{D}_\bot^*\widetilde{D}_\bot B_1^* = 0 \end{split}$$

Define

$$\begin{split} F_2 &:= -(B_2^t X_2 + D_{12}^t C_1), \quad L_2 := -(Y_2 C_2^t + B_1 D_{21}^t) \\ G_c(s) &:= \left[\frac{A + B_2 F_2}{C_1 + D_{12} F_2} \, \left| \, \frac{I}{0} \right|, \quad G_f(s) := \left[\frac{A + L_2 C_2}{I} \, \left| \, \frac{B_1 + L_2 D_{21}}{0} \right| \right]. \end{split}$$

There exists a unique optimal controller

$$K_{opt}(s) := \left[\begin{array}{c|c} A + B_2 F_2 + L_2 C_2 & -L_2 \\ \hline F_2 & 0 \end{array} \right]$$

Moreover,

$$\min ||T_{zw}||_2^2 = ||G_cB_I||_2^2 + ||F_2G_f||_2^2 = ||G_cL_2||_2^2 + ||C_IG_f||_2^2$$

Stability Margins of $\mathbf{H_2}$ Controllers LQR margin: $\geq 60^\circ$ phase margin and $\geq 6dB$ gain margin. LQG or H_2 Controller: No guaranteed margin. Example: $G(s) = \begin{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} \sqrt{\sigma} & 0 \\ \sqrt{\sigma} & 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 1 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 1 \end{bmatrix} & \begin{bmatrix} \sqrt{\sigma} & 0 \\ \sqrt{\sigma} & 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} & \text{where} \\ \alpha = 2 + \sqrt{4 + q}, \quad \beta = 2 + \sqrt{4 + \sigma}. \\ K_{qq'} = \begin{bmatrix} 1 - \beta & 1 \\ -(\alpha + \beta) & 1 - \alpha & \beta \\ -\alpha & -\alpha & 0 \end{bmatrix}$

