Analog and Digital Electronics (EC13103) IT-B Lecture-3 (1's and 2's Complement Arithmetic and Boolean Algebra)

Dr. Anand Sharma
Assistant Professor
ECED, MNNIT Allahabad

1's Complement Arithmetic

- In 1's comp. subtraction, add the 1's comp of the subtrahend to the minuend.
 - If there is carryout, bring the carry around & add it to the LSB called the **end around carry.**
 - Look at the sign bit (MSB).
 - If this is a 0, the result is +ve & is in true binary.
 - If the MSB is a 1 (carry or no carry), the result is –ve & is in its is comp form. Take its 1's comp to get the magnitude in binary.

Example: $(25)_{10} - (14)_{10}$

$$+14 - 00001110$$
 $-14 - 11110001$
 $+25 - 00011001$
 $+25-14 - 00011001+11110001= 100001010$
 $+100001011$

2's Complement Arithmetic

- In 2's complement subtraction, add the 2's complement of the subtrahend to the minuend.
 - If there is carryout, ignore it.
 - Look at the sign bit (MSB).
 - If this is a 0, the result is +ve & is in true binary.
 - If the MSB is a 1 (carry or no carry), the result is –ve & is in its is comp form. Take its 2's comp to get the magnitude in binary.

Example:
$$(46)_{10} - (14)_{10}$$

Cont....

```
Example: (26)_{10} – (75)_{10}
          +75 - 01001011
          -75 - 10110100
                          +1
                   10110101
          +26 -
                   00011010
+26-75 - 00011010
        +10110101
         11001111
MSB=1, Result= -ve
Take 2's complement of the result:
00110000+1=00110001=-49
```

For Practice

• Express -45 in 8-bit 2's complement form

- Subtract 27.50 from 68.75 using 12 bit 1's complement method.
- Add +27.125 and -79.625 using 12 bit 2's complement arithmetic.

Boolean Algebra

- Also known as Switching Algebra
 - Invented by mathematician George Boole in 1849
 - Used by Claude Shannon at Bell Labs in 1938
- It is described as an algebra of logic or an algebra of two values i.e. true or false.
- It is used in digital computers to perform the logical operations.
- Logical operations are performed by different logical operators
 AND

OR Fundamental Logical Operator

NOT

Cont....

AND Operator:

• Logical Multiplication; denoted by dot (.)

X	Y	X.Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR Operator:

• Logical Addition; denoted by dot (+)

X	Y	X+Y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

NOT Operator:

• Perform complement operation; denoted by bar over the symbol (\bar{A})

X	\overline{X}	
0	1	
1	0	

Truth Table:

- It is the table that contains all possible value of the logical variables/statement in the Boolean Expression.
 - No. of possible combination: 2^n ; where, 'n' is the number of variables

Example: $F = \overline{A}B + \overline{B}A$

In this Boolean function, n=2; so possible combination is 4

A	В	ĀB	BA	F
0	0	0	0	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Cont....

Boolean Algebra Attributes

Variable: Variables are the different symbols in a Boolean expression

Literal: Each occurrence of a variable or its complement is called a literal

Term: A term is the expression formed by literals and operations at one

level

Example: $F = \overline{A} + A.B + A.\overline{C} + \overline{A}.B.C$

No. of variable: 03

No. of Literal: 08

No. of Terms: 04