Module 06 – Transshipment Problem

Exploratory Data Analysis

Model Formulation

Write the formulation of the model into here prior to implementing it in your Excel model. Be explicit with the definition of the decision variables, objective function, and constraints. Hint: This one differs a bit from the sample problem in terms of Balance-of-Flow Min:

+49X03+26X13+47X17+27X24+28X25+46X34+29X37+31X38+36X45+31X53+46X57+40X73+43X75+28X76+35X78

Subject To:

- -X03>=-300} Flow Constraint for Node 0
- -X13-X17>=-300} Flow Constraint for Node 1
- -X25-X24>=-300} Flow Constraint for Node 2
- +X03+X13+X73-X34-X37-X38>=212} Flow Constraint for Node 3
- +X24+X34-X45>=136} Flow Constraint for Node 4
- +X25+X45+X75-X53-X57>=106} Flow Constraint for Node 5
- +X76>=212} Flow Constraint for Node 6
- +X17+X37+X57-X73-X75-X76>=151} Flow Constraint for Node 7
- +X38+X78>=183} Flow Constraint for Node 8

Nonnegativity:

Xi >= 0

Model Optimized for Minimal Transportation Cost

This model shows the optimal way to fill most of the demands from the nodes we were given while reducing the total transportation costs.

				Total Transportation	n Cost ->	\$ 46,546.00		
Ship	From	То	Unit Cost					
300	0 Cocoa Bean Crater	3 Rainbow Ribbon Roads	49	Nodes	Inflow	Outflow	Net Flow	Supply/Demand
95	1 Gummy Grotto	3 Rainbow Ribbon Roads	26	0 Cocoa Bean Crater	0	300	-300	-300
205	1 Gummy Grotto	7 Tangerine Taffy Tropics	47	1 Gummy Grotto	0	300	-300	-300
136	2 Maple Fudge Forest	4 Rock Candy Ridge	27	2 Maple Fudge Forest	0	300	-300	-300
164	2 Maple Fudge Forest	5 Strawberry Swirl Stream	28	3 Rainbow Ribbon Roads	395	183	212	212
0	3 Rainbow Ribbon Roads	4 Rock Candy Ridge	46	4 Rock Candy Ridge	136	0	136	136
0	3 Rainbow Ribbon Roads	7 Tangerine Taffy Tropics	29	5 Strawberry Swirl Stream	164	58	106	100
183	3 Rainbow Ribbon Roads	8 Tartberry Thicket	31	6 Taffy Tundra	112	0	112	212
0	4 Rock Candy Ridge	5 Strawberry Swirl Stream	36	7 Tangerine Taffy Tropics	263	112	151	151
0	5 Strawberry Swirl Stream	3 Rainbow Ribbon Roads	31	8 Tartberry Thicket	183	0	183	183
58	5 Strawberry Swirl Stream	7 Tangerine Taffy Tropics	46					
0	7 Tangerine Taffy Tropics	3 Rainbow Ribbon Roads	40					
0	7 Tangerine Taffy Tropics	5 Strawberry Swirl Stream	43					
112	7 Tangerine Taffy Tropics	6 Taffy Tundra	28					
0	7 Tangerine Taffy Tropics	8 Tartberry Thicket	35					

Model with Stipulation

Please copy the tab of your original model before continuing with the next part to avoid messing up your original solution.

Follow these steps to complete this section:

- 1. Describe the necessity of the Balance-of-Flow for this problem type Balance-of-Flow condition is crucial to ensure that the total supply from all sources matches the total demand at all destinations. This condition prevents infeasible or inefficient solutions by maintaining a proper distribution of goods across the network. Here's why it's necessary
- 2. What happens when you change your model to make Total Supply > Total Demand (i.e. add 115 units to one of the sources) The model requires that all goods be allocated, but there are more goods available than needed. This **lack of balance** makes it impossible to satisfy both supply and demand constraints simultaneously.
- 3. What happens when you rerun your model? The solver could not find a feasible solution.
- 4. What do you need to change to make your model work again? Change it so Demand>Supply
- 5. Make the changes and report on your findings. The total transportation cost increases.