36th IEEE International Parallel & Distributed Processing Symposium

Maxime GONTHIER - Loris MARCHAL - Samuel THIBAULT

maxime.gonthier@ens-lyon.fr

LIP - ROMA - LaBRI - STORM

Maxime GONTHIER

Motivation: Extract peak performances from GPUs

GPUs are fast but have a limited memory

Share the same PCI bus with limited bandwidth

Framework: An example with 2D grid dependencies

- Independent tasks sharing data
- Limited GPU memory

Goal: minimize makespan

- Balancing tasks among GPUs → Reduce total execution time
- Ordering tasks inside each GPU → Reduce data transfers

Problem modeling

GPU_k wants to process task T

- **Evict** selected data (possibly none) from the memory of GPU_k
- Load data for T that are not yet in memory
- **3 Process** T on GPU_k

Hypothesis

- Independant and homogeneous tasks
- Same size data

A bi-objective optimization problem

Objective 1: Load Balancing

minimize \max_{k} number of tasks allocated to GPU_k

Objective 2: Data Movement

Minimize the number of data loads from the main memory:

$$\#Loads_k = \sum data \ load \ for \ each \ T \ computed \ on \ \mathrm{GPU}_k$$

$$minimize \sum_{k} \#Loads_{k}$$

2 schedulers from STARPU

- EAGER (our baseline)
- Deque Model Data Aware Ready (DMDAR)

1 algorithm adapted from the literature

hMETIS

Novel algorithm

Data-Aware Reactive Task Scheduling (DARTS)

Dynamic scheduler of STARPU: DMDAR

Strategy

Schedule tasks so their completion time is minimal based on computation + data movement

+ **Ready** reordering heuristic on GPU_k

```
input:List L of tasks allocated on GPU_k while L \neq \emptyset do
```

Search first $T \in L$ requiring the fewest data transfers Wait for all data in $\mathcal{D}(T)$ to be in GPU_k memory Start processing T

end

Hypergraph → Represent a data being used by different tasks
Accurately represent data sharing

Strategy

- Apply hMETIS to create tasks subsets
- Each subset is allocated to a GPU
- Use the Ready strategy
- Dynamic load balancing using task stealing

DARTS: Strategy

Intuition: consider data locality before task allocation

Perform as many tasks as possible with the data at hand

When no more available tasks with data at hand:

- Find data $D_{optimal}$ such that the number of tasks depending on $D_{optimal}$ and on other data already in memory is maximum
- $plannedTasks_k \leftarrow set$ of unprocessed tasks depending only on $D_{optimal}$ and on other data already in memory

DARTS: Eviction and optimizations

Our eviction policy: LUF (Least Used in the Future)

- If possible, evict data not useful for any task in *taskBuffer_k* and used by a minimal number of tasks in *plannedTasks_k*
- Otherwise, apply Belady's rule on tasks already allocated
- Update plannedTasks_k

Improvements

- 3inputs: Extension to deal with a heterogenous number of data per task
- OPTI: Reduce scheduling complexity by stopping the search for D_{optimal} earlier

- Real Tesla V100 GPUs and simulations on Simgrid
- PCI bandwidth not limited (12000 *MB/s*)
- GPU memory limited to 500 $MB \rightarrow$ To better distinguish performance on small datasets

Applications

- Tiled dense and sparse outer product
- Tiled 3D Matrix Multiplication
- Tiled Cholesky decomposition (without dependencies)

Tiled dense outer product with 2 real Tesla V100

- EAGER, hMETIS & DARTS: Pathological matrix size after the red line
- DMDAR: Conflict between prefetch and eviction
- DARTS+LUF outperforms DMDAR even with more data transfers → DARTS is better at overlapping communication and computations

Cholesky decomposition with 4 real Tesla V100 GPUs

- OPTI reduces scheduling time which improves performance
- DMDAR suffers from a large scheduling time

15 / 16

Maxime GONTHIER

Conclusion and future work

Limiting data movements is crucial to extract the most out of GPUs

Our contribution → DARTS+LUF, focused on data locality

DARTS achieves very good performance because it:

- Limits data transfers thanks to the finding of an optimal data and an adapted eviction policy
- Overlaps communication and computations by distributing transfers over time
- Can be used with a reduced complexity

Areas for improvement

- Reduce computational complexity
- Consider tasks with dependencies
- Take inter-GPU communications into account
- Manage multiple MPI nodes

16 / 16

Dynamic Scheduling Strategies for Matrix Multiplication

Source: Analysis of Dynamic Scheduling Strategies for Matrix Multiplication on Heterogeneous Platforms - Marchal - Beaumont

Tiled dense outer product with 4 Tesla V100 GPUs in real

16 / 16

Tiled 3D Matrix Multiplication with 4 Tesla V100 GPUs in simulation

Sparse outer product without memory limitation (32GB by GPU) with 4 real Tesla V100 GPUs

- produces a processing order that best distributes transfers over time
- hMETIS suffers from a significant partitioning cost

Visualization of DARTS processing order on the tiled dense outer product

