Raphael Gaedtke, Paul Neumann

University of Bonn

January 10, 2025

- 1 Representation Theory
- 2 Finite abelian groups
- 3 Formalization
- Mathlib
- 5 Future work

Definition

Representation Theory

For a group G and a field k, a **representation** of G over k is a pair (V, ρ) where V is a vector space over k and $\rho : G \to \operatorname{GL}(V)$ is an action of G on V.

Representations of finite groups

Definition

Representation Theory

For a group G and a field k, a **representation** of G over k is a pair (V, ρ) where V is a vector space over k and $\rho: G \to GL(V)$ is an action of G on V.

Convention: V has finite dimension, unless explicitly stated otherwise.

Definition

 $\dim(V)$ is the **dimension** or **degree** of (V, ρ) .

$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle$$

Example

Representation Theory

$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle$$

Formalization

Representation $\rho: D_{2n} \to GL(\mathbb{R}^3)$ with

- $\rho(a)$ as rotation about the Z-axis
- ullet $\rho(b)$ as a rotation about a suitable axis in the XY-plane

Definition

Representation Theory

Let V be a representation and $U \subseteq V$ a subspace. U is an invariant subspace if $gu \in U$ for $\forall u \in U, g \in G$.

Invariant subspaces, Irreducibility

Definition

Representation Theory

Let V be a representation and $U \subseteq V$ a subspace. U is an invariant subspace if $gu \in U$ for $\forall u \in U, g \in G$.

Example

Invariant subspaces, Irreducibility

Definition

Representation Theory

Let V be a representation and $U \subseteq V$ a subspace. U is an invariant subspace if $gu \in U$ for $\forall u \in U, g \in G$.

Example

The XY-Plane is an invariant subspace.

<u>Definition</u>

Representation Theory

A representation V is **irreducible** provided $V \neq 0$ and the only invariant subspaces are 0 and V.

Definition

Representation Theory

A representation V is irreducible provided $V \neq 0$ and the only invariant subspaces are 0 and V.

Definition

For representations V and W, a **homomorphism** is a linear map $\theta: V \to W$ with $\theta(gv) = g\theta(v)$ for $\forall g \in G, v \in V$.

Irreducibility, Representation Homomorphisms

Definition

Representation Theory

A representation V is irreducible provided $V \neq 0$ and the only invariant subspaces are 0 and V.

Definition

For representations V and W, a **homomorphism** is a linear map $\theta: V \to W$ with $\theta(gv) = g\theta(v)$ for $\forall g \in G, v \in V$.

- \blacksquare Im(θ) and Ker(θ) are invariant subspaces
- If V and W are irreducible, then $\theta: V \to W$ is 0 or bijective.

This theorem is listed on the "Missing undergraduate mathematics in mathlib"-page.

Main theorem formalized in this project

This theorem is listed on the "Missing undergraduate mathematics in mathlib"-page.

Theorem

Let G be a finite abelian group.

Let V be a non-null vector space over an algebraically closed field k.

Let $\rho: G \to GL(V)$ be a representation.

This theorem is listed on the "Missing undergraduate mathematics" in mathlib"-page.

Formalization

Theorem

Representation Theory

Let G be a finite abelian group.

Let V be a non-null vector space over an algebraically closed field k.

Let $\rho: G \to GL(V)$ be a representation.

Then ρ is irreducible if and only if $\dim_k(V) = 1$.

<u>T</u>heorem

Representation Theory

 ρ is irreducible if and only if $\dim_k(V) = 1$.

Theorem

Representation Theory

 ρ is irreducible if and only if $\dim_k(V) = 1$.

"⇐" is trivial.

Proof of the theorem

Theorem

Representation Theory

 ρ is irreducible if and only if $\dim_k(V) = 1$.

"⇐" is trivial

For " \Rightarrow ", we use the following two lemmas:

Lemma

For all $g \in G$, $\rho(g)$ is a Representation Endomorphism.

Theorem

Representation Theory

 ρ is irreducible if and only if $\dim_k(V) = 1$.

"

is trivial.

For " \Rightarrow ", we use the following two lemmas:

Lemma

For all $g \in G$, $\rho(g)$ is a Representation Endomorphism.

Lemma

Every Representation Endomorphism is given by multiplication with a scalar.

With these two lemmas, we can prove the following fact:

Lemma

Representation Theory

Every one-dimensional subspace of V is an invariant subspace.

Proof of the theorem

With these two lemmas, we can prove the following fact:

Lemma

Representation Theory

Every one-dimensional subspace of V is an invariant subspace.

Proof of the theorem

With these two lemmas, we can prove the following fact:

Finite abelian groups

Lemma

Every one-dimensional subspace of V is an invariant subspace.

Now, we can use proof by contradiction:

Mathlib

Formalization

Proof of the theorem

With these two lemmas, we can prove the following fact:

Lemma

Representation Theory

Every one-dimensional subspace of V is an invariant subspace.

- \blacksquare Assume dim(V) > 1.
- \mathbf{Z} Then, V has a proper subspace with dimension 1.

Proof of the theorem

With these two lemmas, we can prove the following fact:

Lemma

Representation Theory

Every one-dimensional subspace of V is an invariant subspace.

- $\mathbf{2}$ Then, V has a proper subspace with dimension 1.
- f 3 So V has a proper invariant subspace.

Formalization

Proof of the theorem

With these two lemmas, we can prove the following fact:

Lemma

Every one-dimensional subspace of V is an invariant subspace.

- \square Then, V has a proper subspace with dimension 1.
- f 3 So V has a proper invariant subspace.
- \blacksquare This is a contradiction to the irreducibility of V.

Formalization

00000

Representations are already defined in Mathlib:

abbrev Representation :=
$$G \rightarrow * V \rightarrow_1 \lceil k \rceil V$$

end

00000

Representations in Mathlib

Representations are already defined in Mathlib:

abbrev Representation :=
$$G \rightarrow * V \rightarrow_1[k] V$$

end

Representation Theory

Apart from that, the definitions introduced in the beginning of this presentation are missing in Mathlib.

```
/-- A predicate for a subspace being invariant -/
def IsInvariantSubspace {k G V : Type*} [CommSemiring k]
    [Monoid G] [AddCommMonoid V] [Module k V]
  (U : Submodule k V) (\rho : Representation k G V) :=
  \forall g : G, \forall u : U, \rho g u \in U
/-- defines degree of a representation as rank of its
    module -/
def degree {k G V : Type*} [CommSemiring k] [Monoid G]
    [AddCommMonoid V] [Module k V]
  (\rho : Representation k G V) : Cardinal := (Module.rank k
    V)
```

Representation Homomorphisms

Definition

Representation Theory

For representations V and W, a **homomorphism** is a linear map $\theta: V \to W$ with $\theta(gv) = g\theta(v)$ for $\forall g \in G, v \in V$.

```
/-- Definition of Homomorhpisms between Representations -/
@[ext] class RepresentationHom {k G V W : Type*}
    [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module
    k Vl [AddCommMonoid Wl [Module k Wl
  (\rho: \text{Representation k G V}) \ (\psi: \text{Representation k G W})
    extends LinearMap (RingHom.id k) V W where
  reprStructure : \forall g : G, \forall v : V, toLinearMap (\rho g v) =
    \psi g (toLinearMap v)
```



```
/-- Coercions of RepresentationHom to Function and Linear Map-/ instance {k G V W : Type*} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] [AddCommMonoid W] [Module k W] {\rho : Representation k G V} {\psi : Representation k G W} : CoeFun (RepresentationHom \rho \psi ) (fun _ \mapsto V \rightarrow_1[k] W) where coe := by intro \theta use \langle \theta.toFun, ?_\rangle simp; intro x y; simp
```

Lemma

Representation Theory

For all $g \in G$, $\rho(g)$ is a Representation Endomorphism.

```
instance repr_yields_reprHom_commMonoid {k G V : Type*}
    [CommSemiring k] [CommMonoid G] [AddCommMonoid V]
    [Module k V]
    (ρ : Representation k G V) (g : G) : (RepresentationHom ρ ρ) where
    toFun := ρ g
    map_add' := by intro x y; simp
    map_smul' := by intro m x; simp
    reprStructure := sorry
```

Mathlib

000

Things already contained in Mathlib:

- Definition of Representations, basic properties, duality
- Category Theory
- Characters

Formalization

Things already contained in Mathlib:

- Definition of Representations, basic properties, duality
- Category Theory
- Characters

Things not contained in Mathlib:

- Subrepresentations, Homomorphisms, Irreducibility
- Direct sums, reducibility, Maschke for Representations
-

A representation (V, ρ) can be "translated" to a module over a k-algebra kG:

A representation (V, ρ) can be "translated" to a module over a k-algebra kG:

Take a k-module with basis $\{g|g \in G\}$ and multiplication

$$\left(\sum_{g\in G}\lambda_gg\right)\cdot\left(\sum_{h\in G}\mu_hh\right)=\sum_{g,h\in G}\lambda_g\mu_h(gh)$$

Two views on Representations

A representation (V, ρ) can be "translated" to a module over a k-algebra kG:

Take a k-module with basis $\{g|g\in G\}$ and multiplication

$$\left(\sum_{g\in G}\lambda_gg\right)\cdot\left(\sum_{h\in G}\mu_hh\right)=\sum_{g,h\in G}\lambda_g\mu_h(gh)$$

with action

$$kG \times V \to V, \left(\sum_{g \in G} \lambda_g g, v\right) \mapsto \sum_{g \in G} \lambda_g(gv).$$

Irreducibility of representations translates to simplicity of modules.

The translation in Mathlib

Representation Theory

Irreducibility of representations translates to simplicity of modules. Things like the theorem of Maschke are not formulated for Representations, but for modules over algebras.

The translation in Mathlib

Irreducibility of representations translates to simplicity of modules. Things like the theorem of Maschke are not formulated for Representations, but for modules over algebras.

- Representation.asModule translates Representation to algebra
- Representation.ofModule translages algebra to Representation

Mathlib

Future work •0

Future work

Representation Theory

■ Connect Algebras and Representations: Irreducibility, ...

- Connect Algebras and Representations: Irreducibility, . . .
- Formulate theorem of Maschke for Representations

- Connect Algebras and Representations: Irreducibility, . . .
- Formulate theorem of Maschke for Representations
- Add additional theorems about Representation Theory of finite groups
- **.** . . .

Questions?