

(19)	Canadian Intellectual Property Office An Agency of Industry Canada	Office de la Propriété Intellectuelle du Canada Un organisme d'Industrie Canada	(11) CA 2 486 975	(13) A1
--	---	--	-------------------	---------

(12)

(21) 2 486 975

(51) Int. Cl. 7: D02G 3/48

(22) 06.06.2003

(85) 22.11.2004

(86) PCT/JP03/007179

(87) WO03/104536

(30) 2002-168521 JP 10.06.2002

(71) NIPPON SHEET GLASS COMPANY, LIMITED,
1-7, Kaigan 2-chome
Manito-ku
105-8552, TOKYO, XX (JP).

(72) AKIYAMA, MITSUHARU (JP).
KAJIHARA, KEISUKE (JP).

(74) ROBIC

(54) CORDE DE RENFORCEMENT POUR CAOUTCHOUC ET PRODUIT EN CAOUTCHOUC CONTENANT CETTE CORDE

(54) RUBBER REINFORCING CORD AND RUBBER PRODUCT CONTAINING THE CORD

(57)

Rubber reinforcing cord having high bending fatigue resistance and high dimensional stability, and a rubber product such as a rubber belt containing the cord. The cord has a core fiber and strands arranged around the core fiber. A primary twist is applied to each strand and a final twist, to the strands. The direction of the primary twist of each strand and the direction of the final twist are the same, and the core fiber is twisted in the direction opposite to that of the primary twist. A rubber product is reinforced with this rubber reinforcing cord.

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian

Intellectual Property
Office

An agency of
Industry Canada

CA 2486975 A1 2003/12/18

(21) **2 486 975**

(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

(86) Date de dépôt PCT/PCT Filing Date: 2003/06/06
(87) Date publication PCT/PCT Publication Date: 2003/12/18
(85) Entrée phase nationale/National Entry: 2004/11/22
(86) N° demande PCT/PCT Application No.: JP 2003/007179
(87) N° publication PCT/PCT Publication No.: 2003/104536
(30) Priorité/Priority: 2002/06/10 (2002-168521) JP

(51) Cl.Int.⁷/Int.Cl.⁷ D02G 3/48

(71) Demandeur/Applicant:
NIPPON SHEET GLASS COMPANY, LIMITED, JP

(72) Inventeurs/Inventors:
AKIYAMA, MITSUHARU, JP;
KAJIHARA, KEISUKE, JP

(74) Agent: ROBIC

(54) Titre : CORDE DE RENFORCEMENT POUR CAOUTCHOUC ET PRODUIT EN CAOUTCHOUC CONTENANT CETTE CORDE
(54) Title: RUBBER REINFORCING CORD AND RUBBER PRODUCT CONTAINING THE CORD

(57) Abrégé/Abstract:

Rubber reinforcing cord having high bending fatigue resistance and high dimensional stability, and a rubber product such as a rubber belt containing the cord. The cord has a core fiber and strands arranged around the core fiber. A primary twist is applied to each strand and a final twist, to the strands. The direction of the primary twist of each strand and the direction of the final twist are the same, and the core fiber is twisted in the direction opposite to that of the primary twist. A rubber product is reinforced with this rubber reinforcing cord.

Canada

<http://opic.gc.ca> · Ottawa-Hull K1A 0C9 · <http://cipo.gc.ca>

OPIC · CIPO 191

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2003年12月18日 (18.12.2003)

PCT

(10) 国際公開番号
WO 03/104536 A1

- (51) 国際特許分類: D02G 3/48
- (21) 国際出願番号: PCT/JP03/07179
- (22) 国際出願日: 2003年6月6日 (06.06.2003)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ:
特願2002-168521 2002年6月10日 (10.06.2002) JP
- (71) 出願人(米国を除く全ての指定国について): 日本板硝子株式会社 (NIPPON SHEET GLASS COMPANY, LIMITED) [JP/IP]; 〒541-8559 大阪府 大阪市 中央区 北浜四丁目 7番 28号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 秋山 光晴 (AKIYAMA,Mitsuharu) [JP/IP]; 〒541-8559 大阪府 大阪市 中央区 北浜四丁目 7番 28号 Osaka (JP).
- 阪市中央区北浜四丁目7番28号日本板硝子株式会社内 Osaka (JP). 梶原 啓介 (KAJIHARA,Keisuke) [JP/IP]; 〒541-8559 大阪府 大阪市中央区北浜四丁目7番28号日本板硝子株式会社内 Osaka (JP).
- (74) 代理人: 重野 剛 (SHIGENO,Tsuyoshi); 〒160-0022 東京都 新宿区新宿二丁目5番10号 日伸ビル9階 Tokyo (JP).
- (81) 指定国(国内): CA, CN, KR, US.
- (84) 指定国(広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).
- 添付公開書類:
— 国際調査報告書
- 2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: RUBBER REINFORCING CORD AND RUBBER PRODUCT CONTAINING THE CORD

(54) 発明の名称: ゴム補強用コード及びそれを含有するゴム製品

(57) Abstract: Rubber reinforcing cord having high bending fatigue resistance and high dimensional stability, and a rubber product such as a rubber belt containing the cord. The cord has a core fiber and strands arranged around the core fiber. A primary twist is applied to each strand and a final twist, to the strands. The direction of the primary twist of each strand and the direction of the final twist are the same, and the core fiber is twisted in the direction opposite to that of the primary twist. A rubber product is reinforced with this rubber reinforcing cord.

(57) 要約: 耐屈曲疲労性が高く、かつ、寸法安定性も高いゴム補強用コードと、このコードを含有するゴムベルトなどのゴム製品が提供される。このコードは、芯繊維とその周囲に配置され、下捻りされた複数の子繩を有し、これらが上捻りされている。前記子繩の下捻りの方向と上捻りの方向と同じであり、かつ、前記芯繊維が子繩の下捻りの方向と逆方向に下捻りされている。このゴム補強用コードによってゴム製品が補強される。

**RUBBER REINFORCING CORD AND RUBBER PRODUCT CONTAINING
THE CORD**

FIELD OF THE INVENTION

The present invention relates to a rubber reinforcing cord to be embedded into rubber products such as rubber belts and rubber tires and also to a rubber product reinforced by the rubber reinforcing cord.

10 BACKGROUND OF THE INVENTION

Since rubber products such as rubber belts and rubber tires are subjected to high tensile force when used, cords composed of twisted yarns made of glass fiber or aramid fiber are used as reinforcing member to be embedded into such rubber products. Such a cord is made of glass fiber or aramid fiber in the following manner. That is, a primary twist is imparted to filaments of the fiber such that the filaments are twisted into twisted yarns and a final twist is imparted to the plural twisted yarns such that the twisted yarns 20 are further twisted together into a cord. The characteristics of the cord are controlled by changing the condition of the primary twist and the final twist and/or the combination therebetween. For example, by increasing the twisting rate of the primary twist and the final twist, the flexural fatigue resistance of the cord is improved. This is because of the following reason. That is, when the cord made of twisted yarns is bent, the bent portion is subjected to tensile force at the outside thereof and is subjected to bucking force at the inside thereof. Since the higher twisting rate facilitates the expansion and contraction 30 of the twisted yarns, the aforementioned tensile force and bucking force are dispersed and thus received by the entire cord. On the other hand, by

decreasing the twisting rate in the primary twist and the final twist, the dimensional stability of the cord is increased. The reason can be easily understood from the fact that the elongation of a reinforcing member with fiber which is not twisted at all is equal to the elongation of the fiber itself.

5 A cord, in which the direction of the final twist is the same as the direction of the primary twist, has excellent flexural fatigue resistance. This is because of the following reason. That is, as the cord made of the twisted yarns is twisted only in one direction wholly, the twisted yarns made by the primary twist are further twisted in the same direction by the final twist, thereby exhibiting the similar effect of the aforementioned increase in the twisting rate.
10 As an example of such reinforcing members, Japanese Utility Model Publication No. S59-15780 discloses a reinforcing member made of glass fiber manufactured by imparting a primary twist to its filaments such that the filaments are twisted into twisted yarns and by imparting a final twist to the
15 twisted yarns such that the twisted yarns are twisted in the same direction as the primary twist.

 A cord, in which the direction of the final twist is opposite to the direction of the primary twist, has excellent dimensional stability. This is because of the following reason. That is, twisted yarns made by the primary twist are twisted in the opposite direction by the final twist, thereby exhibiting the similar effect of the aforementioned decrease in the twisting rate of the primary twist.
20

 In view of the aforementioned concerns between the primary twist and the final twist, the improvement in the flexural fatigue resistance and the
25 retention of the high dimensional stability of the cord are in relation contradicting each other. It seems quite difficult to achieve the both of them

concurrently.

DISCLOSURE OF THE INVENTION

It is an object of the present invention to provide a rubber reinforcing cord having high flexural fatigue resistance and high dimensional stability and also to provide a rubber product such as a rubber belt employing the rubber reinforcing cord.

A rubber reinforcing cord of the present invention includes a fibrous core and a plurality of subsidiary strands which are disposed around the fibrous core and each of which is twisted by a primary twist, in which the fibrous core and the subsidiary strands are twisted together by a final twist. In the cord, the direction of the primary twist of the subsidiary strands and the direction of the final twist are the same, and the fibrous core is twisted by a primary twist in a direction opposite to the direction of the primary twist of the subsidiary strands or not twisted primarily.

As mentioned above, when the rubber reinforcing cord is bent, the bent portion is subjected to tensile force at the outside thereof and is subjected to bucking force at the inside thereof. Since the twisted yarns, of which flexural fatigue resistance is high and of which twisting rate is high, are disposed along the outer periphery in the rubber reinforcing cord of the present invention, the flexural fatigue resistance of the rubber reinforcing cord is improved.

When the cord is bent, the tensile force and the bucking force received at the center of the rubber reinforcing cord are smaller as compared to those at the outer periphery. In the rubber reinforcing cord of the present invention, therefore, the fibrous core which is twisted in the direction opposite to the direction of the primary twist of the subsidiary strands or not twisted primarily

is disposed at the center thereof in order to retain high dimensional stability of the rubber reinforcing cord. The rubber reinforcing cord having the fibrous core which is twisted in the direction opposite to the direction of the primary twist of the subsidiary strands can exhibit the similar effect of the decrease in 5 the twisting rate of the fibrous core because the primary twist of the fibrous core is slightly unwound through the final twist so that the fibrous core becomes closer to the non-twisted state or the little-twisted state, thereby retaining high dimensional stability of the rubber reinforcing cord.

In the rubber reinforcing cord of the present invention, when the 10 fibrous core is not subjected to the primary twist, i.e. not twisted primarily, only the final twist is imparted to the fibrous core. Therefore, the twisting rate is small, thereby retaining high dimensional stability of the rubber reinforcing cord. The rubber reinforcing cord of the present invention is embedded into a rubber product such as a rubber tire or a rubber belt so as to significantly 15 improve the tensile strength and the durability of the rubber product.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration schematically showing a section of a rubber reinforcing cord manufactured in Example 1.

20

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, a preferred embodiment of the present invention will be described in detail.

A rubber reinforcing cord of the present invention comprises a fibrous 25 core disposed at the center and subsidiary strands disposed around the fibrous core. The fibrous core and the subsidiary strands are twisted together by final

twist in the same direction of primary twist of the subsidiary strands.

The fibrous core may be twisted in a direction opposite to the direction of the primary twist of the subsidiary strands or not twisted primarily.

Preferably, the fibrous core is twisted in the opposite direction of the primary

- 5 twist of the subsidiary strands. As the twisting rate of the primary twist of the fibrous core is set about equal to the twisting rate of the final twist, the fibrous core becomes closer to the non-twisted state or the little-twisted state, thereby exhibiting the similar effect of the decrease in the twisting rate. It is preferable, but not limited to, that the twisting rate of the primary twist of the fibrous core
10 is from 40 to 100 turns/100 cm. It is preferable, but not limited to, that the twisting rate of the subsidiary strands is from 40 to 150 turns/100 cm. It is preferable, but not limited to, that the twisting rate of the final twist is from 40 to 150 turns/100 cm.

The fibrous core may be a single fiber or a bundle of single fibers. In

- 15 case that the fibrous core is a bundle of single fibers, each of the single fibers must be twisted in the opposite direction of the primary twist of the subsidiary strands or not twisted primarily.

The fibrous core (including the aforementioned single fibers) is preferably, but not limited to, glass fiber, polyparaphenylene bezobisoxazole
20 (PBO) fiber, carbon fiber, or aramid fiber. These fibers are excellent in tensile strength as compared to other organic fibers which are available as reinforcing members. Glass fiber, especially high-strength glass fiber, is suitable as the fibrous core of the rubber reinforcing cord to be used in, for example, a timing belt of an internal combustion engine, because of its high heat resistance.

- 25 When the fibrous core is glass fiber, the average diameter of its filaments (the minimum unit of glass fiber) is preferably 5-11 µm, but not limited thereto.

The number of filaments composing the fibrous core is preferably in a range from 200 to 5000, but not limited thereto. The fibrous core may be composed of one strand or 2-10 strands each of which is a bundle of 20-2500 filaments.

The subsidiary strands are disposed around the fibrous core. As for the arrangement specifications such as the positional relation between the subsidiary strands and the fibrous core and the number of the subsidiary strands, there is no particular limitation, except that the fibrous core exists closer to the center and the subsidiary strands exist closer to the outer periphery as seen in the section of the rubber restraining cord. However, it is preferable that the subsidiary strands are arranged about the fibrous core along a circle coaxially with the fibrous core at equal intervals. The rubber reinforcing cord having such an arrangement exhibits the same flexural fatigue resistance and the same dimensional stability against bending in any direction.

The subsidiary strands are twisted yarns each of which is made by imparting a primary twist to a bundle of filaments of glass fiber, PBO fiber, carbon fiber, or aramid fiber. The direction of the final twist may be the same as the direction of the primary twist, thereby exhibiting the similar effect of the increase in the twisting rate of the subsidiary strands. By disposing the subsidiary strands around the fibrous core, the flexural fatigue resistance of the rubber reinforcing cord can be improved dramatically.

Since the subsidiary strands are disposed around the fibrous core and must bear the tensile force and the bucking force, the diameter of each subsidiary strand is preferably smaller than that of the fibrous core. The cross sectional area of the fibrous core (including spaces between filaments. In case of the fibrous core being composed of a plurality of strands, the sum of the cross sectional areas of the strands.) is from 5% to 95%, preferably from 30% to 70%

relative to the cross sectional area of the entire cord. When the cross sectional area of the fibrous core is in the aforementioned range, the improvement of the flexural fatigue resistance and the retention of the dimensional stability are both achieved in a balanced manner.

5 To increase the adhesiveness relative to matrix rubber of a rubber product, at least either the fibrous core or the subsidiary strands is usually applied with adhesive agent. Such adhesive agent may contain a component for enhancing conformability relative to the matrix rubber. The adhesive agent may be a mixed solution containing Resorcinol Formaldehyde Latex (RFL), epoxy 10 resin and/or isocyanate compound. The adhesive agent also exhibits a function of preventing the fibrous core or the subsidiary strands from fraying.

In case of either the fibrous core or the subsidiary strands being made of glass fiber, publicly known binder containing silane coupling agent and the like may be applied to the filaments before applying the aforementioned adhesive 15 agent in order to prevent the filaments from fraying or prevent the filaments from grazing each other and thus from having scratches.

The fibrous core and the subsidiary strands are twisted at desired twisting rates by a twisting apparatus. The final twist is imparted to the fibrous core and the subsidiary strands with arranging the subsidiary strands around the 20 fibrous core by an apparatus. This apparatus may be a known apparatus such as a ring twisting frame, a flyer twisting frame or a spinning machine.

The fibrous core and the subsidiary strands twisted together can be used as a rubber reinforcing cord directly, or may be surface-treated with the aforementioned adhesive agent and a secondary treating agent having 25 compatibility relative to the matrix rubber in order to further improve the adhesiveness relative to the matrix rubber of a rubber product. The secondary

treating agent may contain cross-linking agent or may be CSM (Chlorosulfonated Polyethylene).

EXAMPLES AND COMPARATIVE EXAMPLES

5 Hereinafter, the present invention will be described in further detail with reference to Examples and Comparative Examples.

[EXAMPLE 1]

A bundle of 600 filaments of E glass composition of which average diameter is 9 μm was prepared and applied with binder. The bundle was
10 impregnated with RFL solution to have deposit efficiency of 20% by weight on solid basis. After that, the primary twist was imparted to the bundle such that the bundle was twisted at a twisting rate of 80 turns/100 cm in the S-twist direction by a twisting machine, thereby forming a fibrous core. Bundles of 600 filaments of the same composition were impregnated to have deposit efficiency of 20% by
15 weight on solid basis. The primary twist was imparted to the bundles such that the bundles were twisted at a twisting rate of 80 turns/100 cm in the Z-twist direction by the twisting machine, thereby forming subsidiary strands.

The one fibrous core and the six subsidiary strands were grouped together and were subjected to the final twist such that they were twisted at a
20 twisting rate 80 turns/100 cm in the Z-twist direction by the twisting machine, after that, were applied with secondary treating agent to have deposit efficiency of 4% by weight on solid basis, and heated and dried, thereby obtaining a rubber reinforcing cord.

As for the rubber reinforcing cord, the tensile strength (initial strength)
25 and the elongation at break were measured. The cord was set to a bending tester. Before and after the cord was bent 10000 times, its tensile strength was

measured. The constitution of the rubber reinforcing cord and the results of measurement of its characteristics are shown in Table 1.

[EXAMPLE 2 AND COMPARATIVE EXAMPLES 1-3]

Rubber reinforcing cords were prepared in the same manner as Example 5 1 except the respective constitutions as shown in Table 1. The characteristics of these rubber reinforcing cords were measured. PBO fiber used in Example 2 and Comparative Example 2 was a product without being twisted having 160 tex available from Toyobo Co., Ltd. The constitutions of the rubber reinforcing cords and the results of measurement of their characteristics are shown in Table 10 1.

Table 1

Item	Fibrous core No. of strands Primary twist	Subsidiary strand	Final twist	Yarn count	Initial tensile strength	Elongation at brake	Retention of strength after bending
Example 1	Kind of fiber No. of strands Primary twist	Kind of fiber No. of strands Primary twist		g/1000m	N/cord	%	%
	E glass One S-twist	E glass Six Z-twist	Z-twist	953	635	3.12	75
Example 2	PBO fiber One S-twist	E glass Six Z-twist	Z-twist	972	616	2.07	78
Comparative Example 1	E glass One Z-twist	E glass Six Z-twist	S-twist	939	626	3.1	51
Comparative Example 2	PBO fiber One Z-twist	E glass Six Z-twist	S-twist	924	752	2.31	65
Comparative Example 3	E glass One S-twist	E glass Six S-twist	S-twist	944	622	3.71	74

From the comparison between the aforementioned Examples and Comparative Examples, we can find the followings.

The comparison between Example 1 and Comparative Example 1 verifies that the rubber reinforcing cord, in which the direction of the primary twist of the fibrous core is opposite to the direction of the primary twist of the subsidiary strands and opposite to the direction of the final twist, has improved flexural fatigue resistance with retaining high dimensional stability.

The comparison between Example 2 and Comparative Example 2 verifies that the rubber reinforcing cord made by using PBO fiber has further improved dimensional stability in addition to the effects of the aforementioned Example 1.

The comparison between Example 1 and Comparative Example 3 verifies that the cord in which all of the direction of the primary twist of the fibrous core, the direction of the primary twist of the subsidiary strands, and the direction of the final twist are the same, has improved flexural fatigue resistance, but significantly reduced dimensional stability.

INDUSTRIAL APPLICABILITY

A rubber reinforcing cord of the present invention has excellent flexural fatigue resistance and can retain high dimensional stability of a rubber product employing the cord. Therefore, a rubber product reinforced with this cord can exhibit high dimensional stability and tensile strength for a long period of time even when it is a product, such as a timing belt for an internal combustion engine, which is subjected to quite severe condition when used.

WHAT IS CLAIMED IS:

1. A rubber reinforcing cord including a fibrous core and a plurality of subsidiary strands which are disposed around the fibrous core and each of which is twisted by a primary twist, the fibrous core and the subsidiary strands being twisted together by a final twist,
5

wherein the direction of the primary twist of said subsidiary strands and the direction of the final twist are the same, and said fibrous core is twisted by a primary twist in a direction opposite to the direction of the primary twist of said subsidiary strands or not twisted primarily.

10 2. A rubber reinforcing cord as claimed in claim 1, wherein said fibrous core and said subsidiary strands are made from at least one fiber selected from a group comprising glass fiber, polyparaphenylene bezobisoxazole fiber, carbon fiber, and aramid fiber.

15 3. A rubber reinforcing cord as claimed in claim 1, wherein said fibrous core and said subsidiary strands are made from glass fiber.

4. A rubber reinforcing cord as claimed in claim 3, wherein the average diameter of filaments of the glass fiber of the fibrous core is 5-11 μm .

20 5. A rubber reinforcing cord as claimed in claim 3 or 4, wherein the fibrous core has 200-5000 glass filaments.

6. A rubber reinforcing cord as claimed in any one of claims 1 through 5, wherein the twisting rate of the primary twist of the fibrous core is 40-100 turns/100 cm.

25 7. A rubber reinforcing cord as claimed in any one of claims 1 through 6, wherein the twisting rate of the primary twist of the subsidiary strands is 40-150 turns/100 cm.

8. A rubber reinforcing cord as claimed in any one of claims 1 through 7, wherein the twisting rate of the final twist of the fibrous core and the subsidiary is 40-150 turns/100 cm.

9. A rubber reinforcing cord as claimed in any one of claims 1
5 through 8, wherein the fibrous core comprises a bundle of plural single fibers, each of which is twisted by a primary twist in the opposite direction of the primary twist of the subsidiary strands or not twisted primarily.

10. A rubber reinforcing cord as claimed in any one of claims 1
through 9, wherein the cross sectional area of the fibrous core is from 5% to
10 95% relative to the cross sectional are of the entire cord.

11. A rubber reinforcing cord as claimed in any one of claims 1
through 10, wherein the subsidiary strands are arranged about the fibrous core along a circle coaxially with the fibrous core at equal intervals.

12. A rubber reinforcing cord as claimed in any one of claims 1
15 through 11, wherein an adhesive agent is applied to at least either the fibrous core or the subsidiary strands.

13. A rubber product employing a rubber reinforcing cord as claimed
in any one of claims 1 through 12.

Fig.1

1/1