RIPRENDENDO DISCORSO SULLA LCS: ragionamento "evolutivo" = LCS iterativo T(n) = P(x,y) -> ICS -> LCS dinamico

Eravamo a: scrivere il problema come combinatione di sottoproblemi.] n+1 · m+1 , con n=|x| e m=|y|

SOTIOPROBLEMI:

Smin = { ... 5 m.n. e 5 0,2 ... ? Problema grosso = Combinazione di sotto problemi

Stesso Problema, istanza più
Piccola (PREFISI DI X e 4).

PROBLEMAT IN TERMINI RICORSIVI

- · Quale del sottoproblemi sono "caso base"? Quando ISTANZA COLLASSA IN: Vi, YT dove 1=0 V J=0

 L. IN QUESTO CASO | S'T | = 0
- · Gual é la <u>regola MCOTILVA</u>?

DATO IL GENERICO ROMOPROBIEMA (i,j) CON iso e J o.

"Assumendo di avere già risolto i problemi più piccoli"

i (i e J < J(> Come nel merge Sort.

5",1" - 1 5°°, 5°° ... 5',°, 5'' ... 5'', 1

BEGOLA RICORSIVA:

Teorema: Sia (i, j) una generica coppia con ero e jro, che individua il sottoproblema

Xi e /j; Zz soluzione del sottoproblema i, j, ha forma:

$$X_{i} = \langle x_{1}, ..., x_{i} \rangle$$

$$Y_{j} = \langle y_{1}, ..., y_{j} \rangle$$

$$Y_{i} = \langle x_{1}, ..., x_{k} \rangle, \exists k = x_{i} = y_{j}$$

E Zn-1 é soluzione del sottoproblema si-1, j-1

7 PASSO RICORSIVO: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \langle x_i \rangle \right| \leq \sum_{i=1}^{\infty} \left| \langle x_i \rangle \right| \leq$

MEMORIETATE (ogni Cottoseq. ne ha una), in una DEFINISCONO LA VARIABILI DEL PROBLEMA LE UTILI TTARE.

2° PASSO RICORSIVO:

Solutione

(che supponiamo già di averc)

2) SE Xi
$$\neq$$
 $y_J \Rightarrow$ 2a) Se $Z_k \neq z_i$, allora $S^{(i,j)} = S^{(i-1,j)}$ $\frac{v}{v}$ Xi non the relations "

$$S^{(i,j)} = S^{(i-1,j)}$$
 $\frac{1}{2}$ Xi non sta relatione "

SiJ = max Si-1, 7; Si, J-1]

A priori peró - non ho Zu per il confronto } per questo mi affido alla riccisività doppia:

$$Ci_{J} = Ci_{J}, J_{J} + A$$

$$Ce_{Xi} = Y_{J}$$

$$Ci_{J} = Ci_{J}, J_{J} + A$$

$$Ce_{Xi} = Y_{J}$$

ALGORITMO RICORFIVO:

ALBERO:

$$(m,n)$$
 (m,n)
 $(m,n-1)$
 $(m-1,n-1)$
 $(m-1,n-1)$
 $(m-1,n-1)$
 $(m-1,n-1)$
 $(m,n-2)$
 $(m-1,n-1)$
 $(m,n-2)$
 $(m-1,n-1)$
 $(m,n-2)$
 $(m-1,n-1)$
 $(m,n-2)$

PROBLEMA "RIDOTIO": Date 2 sequenge, calcolate la Lunghezza della LCS.

ALGORITMO BOTTOM-UP: (con matrice)

// RIENPIO CON C. BASE

for
$$(J=0 \text{ to } n)$$
 $C_{0,J}=0$

?

ESEMPLE:

if $(Ki = 4J) \rightarrow Ci_{-1}, J_{-1} + 4J$ else $\rightarrow \max \{Ci_{-1}, J\}, Ci_{3}, J_{-4}\}$ riempio la matrice.

return Cmin.

3

			6	1	6	a	6	a
		0	1		1 3	1 4	5	1 6
	0		-		+ -	<u>-</u>		
a	1		!			<u>-</u>		!
b	2			1	 			L
l	3		' . -	 - ;		,		! ~
6	4			1		\ 	 L	·
d	5		· 				,	
4	_ 6			1		1-	1	.)
b	7		(1		1	1	(

