10. Funzioni crescenti e decrescenti- Massimi, minimi, flessi a tangente orizzontale

Sia f una funzione definita in $E \subseteq \mathbb{R}$.

Definizione

Si dice massimo (minimo) della funzione il più grande (piccolo) dei valori che essa assume in E.

Definizione

Si dice che $x_0 \in E$ è **punto di massimo locale** o **relativo** per la funzione f se esiste un intorno $I \subset E$ di x_0 tale che :

$$f(x) \le f(x_0) \qquad \forall x \in I \cap E$$

Se per $x \neq x_0$ risulta

$$f(x) < f(x_0)$$

Il punto x_0 si dice punto di massimo locale o relativo proprio.

Analogamente:

Si dice che $x_0 \in E$ è **punto di minimo locale** o **relativo** per la funzione f se esiste un intorno $I \subset E$ di x_0 tale che :

$$f(x) \ge f(x_0) \qquad \forall x \in I \cap E$$

Se per $x \neq x_0$ risulta

$$f(x) > f(x_0)$$

Il punto x_0 si dice **punto di minimo locale** o **relativo proprio**.

Il valore $f(x_0)$ si dice rispettivamente **massimo** o **minimo locale** o **relativo**.

Teorema

Se $x_0 \in (a;b)$ è un punto di massimo o minimo locale della funzione f e la funzione è derivabile in x_0 allora

$$f'(x_0)=0$$

Definizione

Una funzione f si dice **crescente** (**decrescente**)in un intervallo (a;b) se, presi comunque due punti x_1 e $x_2 \in (a;b)$, con $x_1 < x_2$ risulta

$$f(x_1) < f(x_2)$$
 $(f(x_1) > f(x_2))$

Teorema

Una funzione continua nell'intervallo chiuso e limitato [a;b], derivabile in ogni punto interno a tale intervallo e tale che sia :

$$f'(x) > 0 \quad \forall x \in (a; b)$$

è **crescente** in [a; b]; se invece è :

$$f'(x) < 0 \quad \forall x \in (a; b)$$

la funzione è **decrescente** in [a; b].

Esempi

Determinare zeri e segno della derivata prima delle seguenti funzioni, studiando così la crescenza e decrescenza delle funzioni e eventuali massimi, minimi o flessi a tangente orizzontale:

1.
$$f(x) = \frac{x^2 - 3}{x + 2}$$

La funzione è continua e derivabile $\forall x \neq -2$ e si ha:

$$f'(x) = \frac{x^2 + 4x + 3}{(x+2)^2} \begin{cases} > 0 & \forall x \in (-\infty; -3) \cup (-1; +\infty) \\ = 0 & per \ x = -3 \forall x = -1 \\ < 0 & \forall x \in (-3; -2) \cup (-2; -1) \end{cases}$$

$$\frac{-3 \quad -2 \quad -1}{+ \quad 0 \quad - \quad \infty \quad - \quad 0 \quad +}$$

Quindi f(x) è decrescente in $(-3, -2) \cup (-2, -1)$, crescente in $(-\infty, -3) \cup (-1, +\infty)$

Da questo si deduce che:

- x = -3 è un punto di massimo relativo
- x = -1 è un punto di minimo relativo

Essendo

$$f(-3) = -6$$
 $f(-1) = -2$

I corrispondenti punti sul grafico hanno coordinate

Massimo
$$(-3; -6)$$
 minimo $(-1; -2)$

2.
$$f(x) = x \log^3 x$$

La funzione è continua e derivabile $\forall x \in (0; +\infty)$ e si ha:

$$f'(x) = \log^3 x + 3\log^2 x = \log^2 x (\log x + 3) \begin{cases} > 0 & \forall x \in (e^{-3}; 1) \cup (1; +\infty) \\ = 0 & per \ x = e^{-3} \forall x = 1 \\ < 0 & \forall x \in (0; e^{-3}) \end{cases}$$

Quindi f(x) è decrescente in (0; e^{-3}), crescente in(e^{-3} ; 1) \cup (1; $+\infty$),

Da questo si deduce che:

- $x = e^{-3}$ è un punto di minimo relativo
- x = 1 è ascissa di un punto di flesso a tangente orizzontale.

Essendo

$$f(e^{-3}) = -27e^{-3}$$
 $f(1) = 0$

I corrispondenti punti sul grafico hanno coordinate

Minimo
$$(e^{-3}; -27e^{-3})$$
 Flesso $(1; 0)$

Esercizi

(gli esercizi con asterisco sono avviati)

*1)
$$f(x) = 3x^2 - 2x + 1$$

*3)
$$f(x) = x^4 + 2x^3 - 2x^2$$

*5)
$$f(x) = \frac{125}{729}(x-2)^3(x+1)^2$$

*7)
$$f(x) = x^2 + 2 + \frac{x^3}{4-x}$$

*9)
$$f(x) = \frac{1}{x\sqrt{1+x}}$$

*11)
$$f(x) = 2e^x - e^{2x}$$

*13)
$$f(x) = xe^{4-x^2}$$

*15)
$$f(x) = \frac{3}{4}log(e^{2x} + 2) - \frac{x}{2}$$

*17)
$$f(x) = \frac{1}{x^2} log x$$

*19)
$$f(x) = arctg(x^4 - x^3)$$

*2)
$$f(x) = (8x - 1)^6$$

*4)
$$f(x) = \frac{x^5}{5} - \frac{x^4}{2} - x^3$$

*6)
$$f(x) = \frac{x^2 - x}{1 + x^2}$$

*8)
$$f(x) = \frac{\sqrt{x}}{2+x}$$

*10)
$$f(x) = sinx(1 + cosx) \text{ per } x \in [0; 2\pi]$$

*12)
$$f(x) = e^x + e^{-2x} + 1$$

*14)
$$f(x) = log^2(x+1) - 2log(x+1)$$

*16)
$$f(x) = 3x log x$$

*18)
$$f(x) = \frac{1}{\sqrt{x}} \log x$$

*20)
$$f(x) = arctg(x^2 + 1)$$

Metodo delle derivate successive

Sia f una funzione derivabile in (a; b) quante volte occorre. Si ha il seguente :

Teorema

Se nel punto $x_0 \in (a; b)$ sono verificate le seguenti condizioni :

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
 e $f^{(n)}(x_0) \neq 0$

si avrà uno dei seguenti casi:

a) se $n \in pari$ e

 $f^{(n)}(x_0) < 0$ il punto x_0 è di **massimo** locale

 $f^{(n)}(x_0) > 0$ il punto x_0 è di **minimo** locale

b) se n è **dispari** il punto x_0 è ascissa di un punto di **flesso** a tangente orizzontale

 $f^{(n)}(x_0) > 0$ flesso ascendente

 $f^{(n)}(x_0) < 0$ flesso discendente

Esempi

a)
$$f(x) = x^4 + 2x^3 - 2x^2$$

la funzione è dotata di derivate di ogni ordine in $\mathbb R$. Calcoliamo gli zeri della

derivata prima:

$$f'(x) = 4x^3 + 6x^2 - 4x = 0$$
 per $x = -2$, $x = 0$, $x = \frac{1}{2}$,

Calcoliamo in tali punti la derivata seconda :

$$f''(x) = 12x^2 + 12x - 4$$

$$f''(-2) = 20 > 0$$
 $\Rightarrow x = -2$ è punto di **minimo relativo**

$$f''(0) = -4 < 0$$
 $\Rightarrow x = 0$ è punto di massimo relativo

$$f''\left(\frac{1}{2}\right) = 5 > 0$$
 $\Rightarrow x = \frac{1}{2}$ è punto di **minimo relativo**

b)
$$f(x) = \frac{x^5}{5} - \frac{x^4}{2} - x^3$$

la funzione è dotata di derivate di ogni ordine in ${\mathbb R}$. Calcoliamo gli zeri della

derivata prima:

$$f'(x) = x^4 - 2x^3 - 3x^2 = 0$$
 per $x = -1$, $x = 3$, $x = 0$

Calcoliamo in tali punti la derivata seconda:

$$f''(x) = 4x^3 - 6x^2 - 6x$$

$$f''(-1) = -4 < 0$$
 $\Rightarrow x = -1$ è punto di massimo relativo

$$f''(3) = 36 > 0$$
 $\Rightarrow x = 3$ è punto di **minimo relativo**

Poiché

$$f''(0) = 0$$

calcoliamo in zero la derivata terza:

$$f'''(x) = 12x^2 - 12x - 6$$

$$f'''(0) = -6 < 0$$
 $\Rightarrow x = 0$ è ascissa di un punto di **flesso** a tangente

orizzontale discendente

c)
$$f(x) = sinx(1 + cosx)$$
 per $x \in [0; 2\pi]$

la funzione è dotata di derivate di ogni ordine in $[0;2\pi]$. Si ha

$$f'(x) = (\cos x + 1)(2\cos x - 1) = 0$$
 per $x = \frac{\pi}{3}$; $x = \frac{5}{3}\pi$; $x = \pi$

$$f''(x) = sinx(-4cosx - 1)$$

$$f''\left(\frac{\pi}{3}\right) = -\frac{3\sqrt{3}}{2} < 0 \implies x = \frac{\pi}{3}$$
 è punto di massimo relativo

$$f''\left(\frac{5\pi}{3}\right) = \frac{3\sqrt{3}}{2} > 0$$
 $\Rightarrow x = \frac{5\pi}{3}$ è punto di **minimo relativo**

$$f''(\pi) = 0$$

calcoliamo la derivata terza in π :

$$f'''(x) = -8\cos^2 x - \cos x + 4$$

$$f'''(\pi) = -3 < 0$$
 $\Rightarrow x = \pi$ è ascissa di un punto di **flesso** a

tangente orizzontale discendente

Esercizi

*1)
$$f(x) = (x-1)^2(x-2)$$

*2)
$$f(x) = ex^2 - logx$$

*3)
$$f(x) = e^x (1 - 2x)$$

*4)
$$f(x) = \frac{e^{x^2}}{x}$$

Soluzioni

*1.S.
$$f'(x) = 6x - 2 = 0$$
 per $x = \frac{1}{3}$;

f crescente in $\left(\frac{1}{3}; +\infty\right)$, decrescente in $\left(-\infty; \frac{1}{3}\right)$; $x = \frac{1}{3}$ punto di minimo relativo : $\left(\frac{1}{3}; \frac{2}{3}\right)$;

***2.S.**
$$f'(x) = 48(8x - 1)^5 = 0 \text{ per } x = \frac{1}{8}$$

f crescente in $\left(\frac{1}{8}; +\infty\right)$, decrescente in $\left(-\infty; \frac{1}{8}\right)$; $x = \frac{1}{8}$ punto di minimo relativo; $\left(\frac{1}{8}; 0\right)$;

*3.S.
$$f'(x) = 4x^3 + 6x^2 - 4x = 0$$

per
$$x = 0, x = -2, x = \frac{1}{2}$$
; f crescente in $(-2, 0) \cup (\frac{1}{2}, +\infty)$,

decrescente in $(-\infty; -2) \cup (0; \frac{1}{2})$; x = -2 punto di min locale : (-2; -8),

x=0 punto di max locale : (0;0), $x=\frac{1}{2}$ punto di min locale : $(\frac{1}{2};-\frac{3}{16})$;

***4.S.**
$$f'(x) = x^4 - 2x^3 - 3x^2 = 0$$
 per $x = -1, 0, 3$;

f crescente in $(-\infty;-1)\cup(3;+\infty)$, decrescente in $(-1;0)\cup(0;3)$;

x=-1 punto di massimo relativo : $\left(-1;\frac{3}{10}\right)$, x=3 punto di minimo relativo : $\left(3;-\frac{189}{10}\right)$,

(0; 0) punto di flesso a tangente orizzontale;

*5.S.
$$f'(x) = \frac{125}{729}(x-2)^2(x+1)(5x-1) = 0$$
 per $x = -1, x = \frac{1}{5}, x = 2$;

f crescente in $(-\infty; -1)(\frac{1}{5}; +\infty)$; decrescente in $(-1; \frac{1}{5})$;

 $x = \frac{1}{5}$ punto di minimo relativo ; $(\frac{1}{5}; -\frac{36}{25});$

x = -1 punto di massimo relativo (-1;0), flesso(2;0);

*6.s.
$$f'(x) = \frac{x^2 + 2x - 1}{(1 + x^2)^2} = 0$$
 per $x = \pm \sqrt{2} - 1$;

f crescente in $\left(-\infty; -\sqrt{2}-1\right) \cup \left(\sqrt{2}-1; +\infty\right)$, decrescente in $\left(-\sqrt{2}-1; \sqrt{2}-1\right)$;

$$x = -\sqrt{2} - 1$$
 punto di max locale : $\left(-\sqrt{2} - 1; \frac{\sqrt{2} + 1}{2}\right)$,

 $x=\sqrt{2}-1$ punto di minimo locale : $\left(\sqrt{2}-1; \, \frac{1-\sqrt{2}}{2}\right)$;

*7.S.
$$f'(x) = \frac{64}{(4-x)^2} - 4 = 0$$
 per $x = 0, x = 8$;

f crescente in $(0;4) \cup (4;8)$; decrescente in $(-\infty;0) \cup (8;+\infty)$;

minimo (0; 2), massimo (8;-62);

***8.S.**
$$f'(x) = \frac{2-x}{2\sqrt{x}(x+2)^2} = 0$$
 per $x = 2$;

f crescente in [0;2); decrescente in $(2;+\infty)$; massimo $(2;\frac{\sqrt{2}}{4})$;

*9.S.
$$f'(x) = \frac{-3x-2}{2x^2\sqrt{(1+x)^3}} = 0$$
 per $x = -\frac{2}{3}$;

f crescente in $\left(-1; -\frac{2}{3}\right)$, decrescente in $\left(-\frac{2}{3}; 0\right) \cup \left(0; +\infty\right)$;

$$x = -\frac{2}{3}$$
 punto di max. rel. : $\left(-\frac{2}{3}; -\frac{3\sqrt{3}}{2}\right)$;

*10.S.
$$f'(x) = (\cos x + 1)(2\cos x - 1) = 0$$
 per $x = \frac{\pi}{3}$, π , $\frac{5}{3}\pi$;

f crescente in $\left[0; \frac{\pi}{3}\right) \cup \left(\frac{5}{3}\pi; 2\pi\right]$, decrescente in $\left(\frac{\pi}{3}; \pi\right) \cup \left(\pi; \frac{5}{3}\pi\right)$;

$$x=\frac{\pi}{3}$$
 punto di max. rel. : $\left(\frac{\pi}{3};\frac{3\sqrt{3}}{4}\right)$; $x=\frac{5}{3}\pi$ punto di min. rel. : $\left(\frac{5\pi}{3};-\frac{3\sqrt{3}}{4}\right)$:

 $(\pi; 0)$ punto di flesso a tangente orizzontale;

*11.S.
$$f'(x) = 2e^x - 2e^{2x} = 0$$
 per $x = 0$;

f crescente in $(-\infty; 0)$; decrescente in $(0; +\infty)$; massimo (0; 1);

*12.S.
$$f'(x) = e^x - 2e^{-2x} = 0$$
 per $x = \log \sqrt[3]{2}$;

f crescente per $x > log \sqrt[3]{2}$, decrescente per $x < log \sqrt[3]{2}$;

$$x = log \sqrt[3]{2}$$
 punto di min. rel. : $\left(log \sqrt[3]{2}; \frac{3\sqrt[3]{2}+2}{2}\right)$;

*13.S.
$$f'(x) = e^{4-x^2}(1-2x^2) = 0$$
 per $x = \pm \frac{1}{\sqrt{2}}$;

f crescente in $\left(-\frac{1}{\sqrt{2}};\frac{1}{\sqrt{2}}\right)$; decrescente in $\left(-\infty;-\frac{1}{\sqrt{2}}\right) \cup \left(\frac{1}{\sqrt{2}};+\infty\right)$;

minimo
$$\left(-\frac{1}{\sqrt{2}}; -\frac{1}{\sqrt{2}}e^{\frac{7}{2}}\right)$$
, massimo $\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}e^{\frac{7}{2}}\right)$;

*14.S.
$$f'(x) = \frac{2(\log(x+1)-1)}{x+1} = 0$$

per x = e - 1; f crescente in $(e - 1; +\infty)$, decrescente in (-1; e - 1),

x = e - 1 punto di min relativo : (e - 1; -1);

***15.S.**
$$f'(x) = \frac{e^{2x}-1}{e^{2x}+2} = 0$$
 per $x = 0$;

f crescente per x > 0 , decrescente per x < 0; x = 0 punto di min. rel. : $\left(0; \frac{3}{4} \log 3\right)$;

*16.S.
$$f'(x) = 3(\log x + 1) = 0$$
 per $x = \frac{1}{a}$;

f decrescente in $\left(0; \frac{1}{e}\right)$; crescente in $\left(\frac{1}{e}; +\infty\right)$; minimo $\left(\frac{1}{e}; -\frac{3}{e}\right)$;

*17.S.
$$f'(x) = \frac{1 - 2\log x}{x^3} = 0$$
 per $x = \sqrt{e}$;

f crescente in $(0; \sqrt{e})$; decrescente in $(\sqrt{e}; +\infty)$; massimo $(\sqrt{e}; \frac{1}{2e})$;

*18.S.
$$f'(x) = \frac{2 - \log x}{2x\sqrt{x}} = 0$$
 per $x = e^2$;

f crescente in $(0; e^2)$; decrescente in e^2 ; $+\infty$); massimo $\left(e^2; \frac{2}{e}\right)$;

***19.S.**
$$f'(x) = \frac{x^2(4x-3)}{(x^4-x^3)^2+1} = 0$$
 per $x = 0$ e $x = \frac{3}{4}$;

f crescente in $\left(\frac{3}{4}; +\infty\right)$, decrescente in $\left(-\infty; 0\right) \cup \left(0; \frac{3}{4}\right)$;

 $x = \frac{3}{4}$ punto di min. rel. : $\left(\frac{3}{4}; - arctg\frac{27}{256}\right)$; (0; 0) punto di flesso a tangente orizzontale;

***20.S.**
$$f'(x) = \frac{2x}{1+(x^2+1)^2} = 0$$
 per $x = 0$;

f decrescente in $(-\infty; 0)$; crescente in $(0; +\infty)$; minimo $(0; \frac{\pi}{4})$;

Metodo delle derivate successive

*1.5.
$$f'(x) = (x-1)(3x-5) = 0$$
 per $x=1$ e $x = \frac{5}{3}$

$$f''(x) = 6x - 8$$
; $f''(1) < 0$; $f''(\frac{5}{3}) > 0$; Massimo (1;0); minimo $(\frac{5}{3}; -\frac{4}{27})$;

*2.S.
$$x > 0$$
; $f'(x) = 2ex - \frac{1}{x} = 0$ per $x = \frac{1}{\sqrt{2e}}$

$$f''(x) = 2e + \frac{1}{x^2}; \quad f''\left(\frac{1}{\sqrt{2e}}\right) > 0 \quad \text{, Minimo}\left(\frac{1}{\sqrt{2e}}; 1 + log\sqrt{2}\right);$$

*3.S.
$$f'(x) = e^x(-2x - 1) = 0$$
 per $x = -\frac{1}{2}$

$$f''(x) = e^x(-2x - 3); f''(-\frac{1}{2}) < 0, \text{ Massimo}(-\frac{1}{2}; \frac{2}{\sqrt{e}});$$

*4. S.
$$f'(x) = \frac{e^{x^2}(2x^2-1)}{x^2} = 0$$
 per $x = \pm \frac{1}{\sqrt{2}}$

$$f''(x) = \frac{2e^{x^2}(2x^4 - x^2 + 1)}{x^3}; \ f''\left(-\frac{1}{\sqrt{2}}\right) < 0 \ f''\left(\frac{1}{\sqrt{2}}\right) > 0$$

massimo
$$\left(-\frac{1}{\sqrt{2}}; -\sqrt{2e}\right)$$
; minimo $\left(\frac{1}{\sqrt{2}}; \sqrt{2e}\right)$;