Optical materials are typically specified at selected spectral lines

Spectral Line Approximate > (nm) Designation red hydrogen 656 644 red cadmium 588 Yellow helium green mercury 546 blue hydrogen blue Cadmium blue mercury 486 480 436

Dispersion is the change in index of refraction with wavelength. The refractive index is typically designated with the suscript associated with the spectral lines

 n_F is the index of refraction of $\lambda = 546$ nm The dispersion is characterized using the unitless quantity

 $V_{el} = \frac{\Omega_{el} - 1}{\Omega_{el} - \Omega_{el}}$ or $V_{el} = \frac{\Omega_{el} - 1}{\Omega_{el} - \Omega_{el}}$

Most common

It is called Abbe value, V number, or V value

A specific glass can be using a glass number

XXX = NJ-1

YYY = Vd

Find BK7 on Figure 7.3

 $N_d = 1.51680$ $V_d = 64.17$

glass = 517642

Refractive index can be specified by Cauchy's formula $n(\lambda) = A + \lambda^2 + \lambda^4 \qquad c is very small$

n(x)=A + B x-2

 $B = \frac{(n_{d-1}) \lambda_c^2 \lambda_F^2}{V(\lambda_c^2 - \lambda_F^2)} \qquad A = n_d - \frac{B}{\lambda_d^2}$

Figure A.1 The left side of the glass map showing mostly crown glasses.

Figure A.2 The right side of the glass map showing all of the flint glasses a few crowns.

APPENDIX A

GLASS CATALOG AND MAP1

		Abbe				Abbe	
	Name	Value	Index		Name	Value	Index
FK	FK 3	65.77	1.46450	K	K 3	58.98	1.51823
	FK 5	70.41	1.48749		K 4	57.40	1.51895
	FK 51	84.47	1.48656		K 5	59.48	1.52249
	FK 52	81.80	1.48605		K 7	60.41	1.51112
	FK 54	90.70	1.43700		K 10	56.41	1.50137
					K 11	61.44	1.50013
PK	PK 1	66.92	1.50378		K 50	60.18	1.52257
	PK 2	65.05	1.51821		UK 50	60.38	1.52257
	PK 3	64.66	1.52542				
	PK 50	69.71	1.52054	ZK	ZK 1	57.98	1.53315
	PK 51A	7 6.98	1.52855		ZK N7	61.19	1.50847
PSK	PSK 2	63.08	1.56873	BaK	BaK 1	57.55	1.57250
ISK	PSK 3	63.46	1.55232		BaK 2	59.71	1.53996
	PSK 50				BaK 4	56.13	1.56883
		67.28	1.55753		BaK 5	58.65	1.55671
	PSK 52	65.41	1.60310		BaK 50	57.99	1.56774
	PSK 53A	63.48	1.62014		Dak Ju	J1.77	1.50774
	PSK 54	64.60	1.58599				
BK	BK 1	63.46	1.51009				
	BK 3	65.06	1.49831				
	BK 6	62.15	1.53113				
	BK 7	64.17	1.51680				
	UBK 7	64.29	1.51680				
	BK 8	63.69	1.52015				
	BK 10	66.95	1.49782				
BaLK	BaLK N3	60.26	1.51849				

¹Glass catalog and map are reproduced with the permission of Schott Glass Technologies, Inc.

		Abbe			Name	Abbe Value	Index
	Name	Value	Index	LaK	LaK N6	57.96	1.64250
SK	SK 1	56.71	1.61025		LaK N7	58.52	1.65160
	SK 2	56.65	1.60738		LaK 8	53.83	1.71300
	SK 3	58.92	1.60881		LaK 9	54.71	1.69100
	SK 4	58.63	1.61272		LaK 10	50.41	1.72000
	SK 5	61.27	1.58913		LaK 11	57.26	1.65830
	SK 6	56.40	1.61375		LaK N12	55.20	1.67790
	SK 7	59.46	1.60729		LaK L12	54.92	1.67790
	SK 8	55.92	1.61117		LaK N13	53.33	1.69350
	SK 10	56.90	1.62280		LaK N14	55.41	1.69680
	SK 11	60.80	1.56384		LaK 16A	51.78	1.73350
	SK 12	59.45	1.58313		LaK 21	60.10	1.64049
	SK 13	58.30	1.59181		LaK L21	59.75	1.64048
	SK 14	60.60	1.60311		LaK N22	55.89	1.65113
	SK 15	58.06	1.62299		LaK 23	57.38	1.66882
	SK 16	60.32	1.62041		LaK 28	50.77	1.74429
	SK 18A	55.42	1.63854		LaK 31	56.42	1.69673
	SK 51	60.31	1.62090		LaK 33	52.43	1.75398
	SK 55	60.12	1.62041				
				LLF	LLF 1	45.75	1.54814
KF	KF 3	54.70	1.51454		LLF 2	47.17	1.54072
	KF 6	52.20	1.51742		LLF 6	48.76	1.53172
	KF 9	51.49	1.52341		LLF 7	45.41	1.54883
BaLF	BaLF 4	53.71	1.57957	BaF	BaF 3	46.47	1.58267
	BaLF 5	53.63	1.54739		BaF 4	43.93	1.60562
	BaLF 50	51.37	1.58893		BaF N6	48.45	1.58900
					BaF 8	47.00	1.62374
SSK	SSK 1	53.91	1.61720		BaF 9	47.96	1.64328
	SSK 2	53.15	1.62230		BaF N10	47.11	1.67003
	SSK 3	51.16	1.61484		BaF N11	48.42	1.66672
	SSK 4A	55.14	1.61765		BaF 13	44.96	1.66892
	SSK N5	50.88	1.65844		BaF 50	44.50	1.68273
	SSK N8	49.77	1.61772		BaF 51	44.93	1.65224
	SSK 50	52.61	1.61795		BaF 52	46.44	1.60859
	SSK 51	53.63	1.60361		•	-	
				LF	LF 5	40.85	1.58144
					LF 7	41.49	1.57501
	•				LF8	43.75	1.56444

	Name	Abbe Value	Index		Name	Abbe Value	Index
F	F 1	35.70	1.62588	LaSF	LaSF 3	40.61	1.80801
*	F 2	36.37	1.62004		LaSF N9	32.17	1.85025
	F 3	37.04	1.61293		LaSF N15	38.07	1.87800
	F 4	36.63	1.61659		LaSF 18A	32.36	1.91348
	F 5	38.03	1.60342		LaSF N30	46.38	1.80318
	F 6	35.34	1.63636		LaSF N31	41.01	1.88067
	F 7	35.56	1.62536		LaSF 32	30.40	1.80349
	F 8	39.18	1.59551		LaSF 33	34.24	1.80596
	F 9	38.08	1.62045		LaSF 35	29.06	2.02204
	FN 11	36.18	1.62096		LaSF 36A	35.08	1.79712
	F 13	36.04	1.62237				
	F 14	38.23	1.60140	SF	SF 1	29.51	1.71736
	F 15	37.83	1.60565		SF 2	33.85	1.64769
					SF 3	28.20	1.74000
BaSF	BaSF 1	38.96	1.62606		SF 4	27.58	1.75520
	BaSF 2	35.83	1.66446		SF L4A	27.40	1.75520
	BaSF 6	41.93	1.66755		SF 5	32.21	1.67270
	BaSF 10	39.15	1.65016		SF 6	25.43	1.80518
	BaSF 12	39.20	1.66998		SF L6	25.39	1.80518
	BaSF 13	38.57	1.69761		SF 8	31.18	1.68893
	BaSF 51	38.11	1.72373		SF 9	33.65	1.65446
	BaSF 52	41.01	1.70181		SF 10	28.41	1.72825
	BaSF 54	32.15	1.73627		SF 11	25.76	1.78472
	BaSF 56	36.74	1.65715		SF 12	33.84	1.64831
	BaSF 57	41.90	1.65147		SF 13	27.60	1.74077
	BaSF 64A	39.38	1.70400		SF 14	26.53	1.76182
					SF 15	30.07	1.69895
LaF	LaF 2	44.72	1.74400		SF 16	34.05	1.64611
	LaF 3	47.96	1.71700		SF 18	29.25	1.72151
	LaF N7	34.95	1.74950		SF 19	33.01	1.66680
	LaF N8	41.59	1.73520		SF 53	28.69	1.72830
	LaF 9	28.39	1.79504		SF 54	28.09	1.74080
	LaF N10	43.95	1.78443		SF 55	26.95	1.76180
	LaF 11A	31.70	1.75693		SF 56A	26.08	1.78470
	LaF 13	37.84	1.77551		SF L56	26.08	1.78470
	LaF 20	48.20	1.68248		SF 57	23.83	1.84666
	LaF N21	47.47	1.78831		SF L57	23.62	1.84666
	LaF 22A	37.20	1.78179		SF 58	21.51	1.91761
	LaF N23	49.71	1.68900		SF 59	20.36	1.95250
	LaF N24	47.81	1.75719		SF 63	27.71	1.74840
	LaF N28	49.57	1.77314		SF 64A	30.30	1.70585

TIE

T;E 2

1 51765

		Abbe	
	Name	Value	Index
KzF	KzF N1	49.64	1.55115
	KzF N2	51.63	1.52944
KzFS	KzFS 1	44.34	1.61310
	KzFS N2	54.16	1.55836
	KzFS N4	44.29	1.61340
	KzFS N5	39.63	1.65412
	KzFS 6	48.51	1.59196
	KzFS 7A	37.39	1.68064
	KzFS 8	34.61	1.72047
	KzFS N9	46.90	1.59856

Chromatic obeliation is the dispersion variations

Axial color, longitudinal color, or longitudinal chromatic abereation is shift in focus with wovelength

 $K_F = (n_F - 1) (c_1 - c_2)$ $K_d = (n_d - 1) (c_1 - c_2)$ $K_C = (n_C - 1) (c_1 - c_2)$

change in lens power $K_F - K_C = (n_F - 1)(c_1 - c_2) - (n_C - 1)(c_1 - c_2)$ = $\frac{n_F - n_C}{(n_{d-1})}(c_1 - c_2)$

> KF-KC = K No subscript means d

Now look at shift is focus $\frac{1}{S_0} + \frac{1}{S_{i,F}} = K_F \qquad S_0 + \frac{1}{S_{i,C}} = K_C$ $\frac{1}{S_{i,F}} - \frac{1}{S_{i,C}} = K_F - K_C = \frac{K}{V}$ Axial color: $\frac{1}{S_{i,F}} - \frac{1}{S_{i,C}} = \frac{K}{V}$

Lateral or transverse chromatic aberration or color is change in image height or mignification

Hir-Hic = - Ho Si K

Chromatic aberration is proportional to $\frac{K}{V}$. Make this term as small as possible. Not possible to make it Zero.

For 2 lenses in contact it is possible to make this equal to zero

 $K_1 + K_2 = K$ $\frac{K_1}{V_1} + \frac{K}{V_2} = 0$ Solve these Z equations to get $K_1 = \frac{V_1 K}{V_1 - V_2}$ and $K_2 = -\frac{V_2 K}{V_1 - V_2}$

Good to pick glasses with distinct abbe numbers

(rown glasses: K designation on glass chart

Larger V

Flint glasses: F designation on glass chart
What determines the glass choice: Absorption
Cost
durability

Larger difference in abbe number means smaller powers $V_1 = 40$ $V_2 = 30$ $K_1 = 4K$ $K_2 = -3K$ $V_4 = 60$ $V_2 = 20$ $K_4 = 1.5K$ $K_2 = -0.5K$

Newport PAC 090 BK7 (aoun) $N_d = 1.51680$ V = 64.17 SF 5 (flint) $N_d = 1.67270$ V = 32.21

Monochromatic aberration.

Deviations from the paraxial approximation $n_i\theta_i \neq n_z \theta_z$ but $n_i sin\theta_i = n_z sin \theta_z$

Aberration correction: Multiple surfaces with aberration are used to cancel out the aberrations.

Failure of rays to meet at the same point.

We assume the optical system is axially symmetric. We can always rotate the coordinate system so that the object lies on the x-axis. Thus, Xo=0 and yo=h.

M: fractional object height

P. D polar coordinates of the entrance pupil

Ex: actual ray x-position in object space

Ey': actual ray y-position relative to the parakial

ray in object space

Aberration polynomial

$$\frac{E_{x}' = -\frac{1}{2n_{K}u_{K}} \left[S \rho^{3} \sin \theta + C \eta \rho^{2} \sin(2\theta) + (A + P \Lambda^{2}) \eta^{2} \rho \sin \theta \right]}{E_{y}' = -\frac{1}{2n_{K}u_{K}} \left[S \rho^{3} \cos \theta + C \eta \rho^{2} (2 + \cos(2\theta)) + (3A + P \Lambda) \eta^{2} \rho \cos \theta + D \eta^{3} \right]}$$

(1) Spherical Aberration [5] The only on-axis aberration 7=0

$$\epsilon_{x'} = -\frac{1}{2n_{K}q_{K}} S \rho^{3} sin \theta$$
 $\epsilon_{y'} = -\frac{1}{2n_{K}q_{K}} S \rho^{3} \epsilon_{0} s \Theta$

Spherical aberration varies as the of P Different heights on the lens focus to different locations Reduced by matching the lens curvature to the wavefloort

Spherical aberration is worst with larger f#

Coma

$$\epsilon_{x'} = \frac{1}{2n_{\kappa}u_{\kappa}} \quad c \quad m \quad p^{2} \quad sin2\theta$$

$$\epsilon_{y'} = -\frac{1}{2n_{\kappa}u_{\kappa}} \quad c \quad m_{p^{2}} \quad (2+\cos 2\theta)$$

Coma increases with field angle (7)

Astigmatism

Astignatism is eye perscription is related to non-axial symmetry.

This astigmatism occurs even with perfect rotational symmetry

$$\epsilon_{x} = -\frac{1}{\partial n_{k} u_{k}} A \eta^{2} \rho \sin \theta$$

$$\epsilon_{y} = \frac{3}{2 n_{K} u_{IK}} A \eta^{2} \rho \omega \delta \Theta$$

Petzval curvature Field curvature

Produces a blur like spherical abertation but it depends on Field (M2)

Leads to a curved image surface Very similar to astigmatism but it is the same in Ex and Ex

42-381 SOSHETIS EVEE, LASE 'S SOUMRE 42-382 100 SHEETIS EVEE, LASE 'S SOUMPE 42-382 200 SHEETIS EVEE, LASE 'S SOUMPE 53-382 200 SHEETIS EVEE, LASE 'S SOUMPE 53-382 200 SHEETIS EVEE, LASE 'S SOUMPE 53-382 200 SHEETIS EVE

The real image is displaced from the paraxial image. It depends on the object size (Fieldsize)

object

pincushion distortion

barrel distortion