

Seminario Taller

LA ENERGÍA SOLAR Situación actual y perspectivas

PRESENTE Y FUTURO DEL USO DE LA ENERGÍA SOLAR EN EL PERÚ

RAFAEL L. ESPINOZA PAREDES
PRESIDENTE
ASOCIACIÓN PERUANA DE ENERGÍA SOLAR Y DEL AMBIENTE
apes@perusolar.org
Av. Túpac Amaru 210 Rímac; telfax: 3821058; aptdo. 31-139 Lima-Perú

01 de julio de 01-2011

CONTENIDO

- VISIÓN GENERAL DE LA ENERGÍA EN EL PERÚ
- 2 USO ACTUAL DE LA ENERGÍA SOLAR
 - PLANES Y PROYECTOS NACIONALES
- 4. FUTURO SOLAR EN EL PERÚ (?)

VISIÓN GENERAL DE LA ENERGÍA EN EL PERÚ

Matriz Energética del Perú 2009 - PJ

^{1:} Después de pasar por los Centros de Transformación y/o descontadas las pérdidas.

1/ La participación de la energía Solar es Mínima.

²: La Biomasa integra a la Leña, Bosta & Yareta y el Bagazo.

El Gobierno Peruano, a través del Ministerio de Energía y Minas (MINEM), ha realizado significativos avances orientados a la incorporación de las ER en la matriz energética nacional.

- ü La elaboración de los mapas solar y eólico del Perú (2009);
- ü La firma de un Memorando de entendimiento con la alianza mundial Global Village Energy Partnership International (GVEP) para la promoción de la energía en zonas rurales (2008);
- ü La Ley General de Electrificación Rural (Ley N° 28749, del 30 de mayo del 2006) y en su Reglamento (D.S. N° 025-2007-EM, del 2 de mayo del 2007)
- ü El Decreto Legislativo N° 1002, de Generación de Electricidad con Energías Renovables y su correspondiente Reglamento (D.S. N° 050-2008-EM)

Ministerio desnergiay Minas

TRANSMISION DE ALTO VOLTAJE 175 KM

(US\$ BOS MALINO.) SOCHY

- · Chilca La Pianicie Zapatlal
- . Zapallat Bujtib
- *Chilca Marcona Montalvo.
- *Tryfflo Chiclavo

200KV

- · Carhuamayo Parapha Corococha -Haallanca - Cajama ca - Cerro Lorona -Carbuarquero
- · Independencia ica
- *Pcmacochi Carhuaniayo
- *Plura Talura
- *Tintaya Socabaya
- *Machapicchu Abancay Cotacuse

ENERGÍA RENOVABLE NO CONVENCIONAL 249.4 MW (US\$ 795.5 MLINS.)

EQUICA

- *Continique
- *Talara
- *Marcona

SOLAR

- × 50101 *Patament.
- a Majes Solar
- «Repartition Solar
- *Tierra Solai

BIOMASA

- *Paramongs
- *Mazyeniore

CENTRALES **HIDROILECTRICAS** 1726,7 MW (DEE 2 GED MANUEL)

- *17 Pequeñas Hidroeléctricas (RER) Actualizadas en 1º Sebasta OSNERGMIN
- *Huaras
- *Santa Teresa
- *Quitaracus?
- *Cheves
- «Pricars
- · Cerro del Apulla
- · Charles

ELECTRICIDAD PARA TODOS

HEMOS ASIGURADO EL SUMINISTRO HASTA EL 2016 CON 4 163 MW Y UNA INVERSION ESTIMADA DE US\$ 7 MIL 300 MILLONES

"EL COMERCO" 75 Hunio 12011

- * CF Talara *CT tio
- *CT Eten

-Sarto Domisgo *Chica 1

*Ferlx Power

CENTRALES TÉRMICAS A GAS 1 387 MW (US\$ \$71 MILHS.) *Kai pa

8 OHIUM

7. OHidro

8 OF STATE

9 OBó ca

20 **G**EÓ/ICA

ZI O'Go ar

24 OS0 ar

25 OSular 26 OSolar

2º OBomasa 22 OBomasa

CM Cartillaguend N

OH Cana Brava CE Manorina

CE Cupisnique

CTC Paramonga I

Fanamericana Solar 201

Repartition Solar 201

CTB Huaveolore

Males Scien 207

Rona ScienzoTS

OE Talana

Repúblico del Perú Ministerio de Energia y Minas PROYECTOS DE GENERACIÓN CON RECURSOS ENERGÉTICOS RENOVABLES (RER)

(1,2)s

(16:17) Q

 $(20) \bullet$

86.5

215

48 4

-19.7

303.0

115,0

28.3

50.7

37.6

37.4

47.0

10,00

6,00

32.00

30,00

80,00

23,00

20,00

20,00

20,00

20,00

151

Ministerio de Energia y Minas

PROPUESTA DE POLITICA ENERGETICA DE ESTADO PERU 2010-2040

Objetivo 1: Contar con una matriz energética diversificada, y con énfasis en la fuentes renovables, sostenibles y la eficiencia energética. Lineamiento: Promover el uso intenso y eficiente de las fuentes de energías renovables convencionales y no convencionales; así como la generación distribuida.

Objetivo 3: Gozar de acceso universal al suministro energético.

Lineamientos: Involucrar a las comunidades locales en la formulación de los **programas** de energización rural.

Impulsar el uso productivo de la electricidad en zonas rurales.

Garantizar sistemas de calentamiento en las zonas alto andinas para reducir la mortalidad infantil y elevar la calidad de vida de las regiones con bajos recursos.

Objetivo 8. Lograr el Fortalecimiento de la institucionalidad del sector energético. Lineamiento: Crear un centro de investigación tecnológico energético, **con énfasis en recursos renovables** y establecer el marco para su sostenibilidad académica y financiera

TARIF	A BT8-050 - SISTE	MAS FOTOVOLTA	AICOS
100% empresa	Cargo Fijo Equivalente (CS/kWh)	Energía Promedio disponible (kWh/mes)	Tarifa Mensual (S/. Mes)
COSTA	621.86	7.32	45.52
SIERRA	640.47	7.24	46.37
SELVA	841.35	6.07	51.07
AMAZONIA (1)	934.1	6.07	56.70
100% estado	Cargo Fijo Equivalente (CS/kWh)	Energía Promedio disponible (kWh/mes)	Tarifa Mensual (S/. Mes)
COSTA	409.97	7.32	30.01
SIERRA	424.72	7.24	30.75
SELVA	579.24	6.07	35.16
AMAZONIA (1)	638.39	6.07	38.75

⁽¹⁾ Aplicable a las Zonas de la Amazonía bajo el ámbito de la Ley N° 27037, Ley de Promoción de la Inversión en la Amazonía.

PROGRAMA DE ELECTRIFICACION RURAL: "LUZ PARA TODOS"

Informacion al 31.05.11

DESCRIPCION	N' Otras	W localided	Poblecion Beneficiada	itwersiön St.	herements 3C.E:	W.E.
Cbras Concluidas (*)	1287	10,653	2,911,555	1,963,739,409	83.2%	83.2%
Obras en Ejecución	316	4,018	1,539,310	672,841,598	5.5%	
Obras DPF (Guode 5a 13 y otca) Obras DPC (Rondas III y III)	25 3	1,223 167	672,317 74,976	\$0,607,958 15,807,779	2000	85.7%
Obras Comenios GR y GL (tid vibrales) Obras châless de concasión (DU116)	36	20	94,321 429,389	77,322,258 99,710,530		
Obras enálesis de concedión (DUME) (**)	144	23.52	351,307	98,892,671	350	
Cbras Convocadas	46	2,072	392,510	344,802,347		
Obres formulades por GR y GL (Gupo 14)	16	28	36,363	75,555,199		95.6%
Obrasiformuladas por GR y GL (Gupo 15)	5	229	17,330	31,385,615		
Obras DFC (Rondas illy III)	- 6	92	44,423	32,028,820		
Obras delFAFE III (GR Cajamerza)	19	1,023	211,294	199,852,583	0.1%	
Cbras en Preparación (**)	85	12514	1,489,261	1,213,9±1,730	5.2%	
Obras DPR (Grupo 16 y otros)	25	53	159,573	123,927,642	0.6%	
Dires DEC (Rondes III y AV)	7	213	27,579	13,860,468	0.1%	4
Obres formuladas por GR y GL con exp. observacios	340	2,198	429,101	459,815,135		95.2%
OLD CHEST IN POLICE		410	42 989	27 150 500		8

NINGUNA ES FOTOVOLTAICA

WAS INFORMACIÓN DE CERAS:

CONCLUIDAS

EN EJECUCION

CONVOCADAS

EN PREPARACION

PROYECTOS DE ELECTRIFICACIÓN RURAL CON ENERGÍAS RENOVABLES

En base a estas fuentes de información se ha realizado una primera aproximación obteniéndose lo siguiente:

	Solar	Viento	Hidro	Total
V viendas	656,365	3,279	18,95	458,615
Local dades	46,252	250	516	41,029

CONSUMO DE ENERGÍA POR HABITANTE

EN EL PERÚ; 2 009

CONSUMO DE ENERGÍA POR HABITANTE

EN SUDAMÉRICA Y MÉXICO

AÑO 2009

2. USO ACTUAL DE LA ENERGÍA SOLAR

ALTERNATIVAS TECNOLÓGICAS DE USO DEL CALOR Y LA ELECTRICIDAD SOLAR

CALENTADORES SOLARES DE AGUA: de 300 l (Arequipa, 1940; arriba izq.); de 120 l (Arequipa, 1982; abajo, der.); de 120 l (Arequipa, 2004; abajo, izq.). Arriba a la derecha, calentadores de 300 l, de origen australiano, instalados en el albergue rural "Isla Suasi", lago Titicaca, Puno 2000.

Fig. 11 Horno solar con reflectores (arriba, izq. Cusco 1984); Cocina tipo caja (arriba, der. UNI 2003); CFocina concentrador paraboloide (abajo, izq. Suasi, 2000); Cocina con tubo de vapor (abajo, der. UNI 2004).

Tecnologías disponibles (salvo la última) para

13. SISTEMAS Fig. **FOTOVOLTAICOS** instalados por (b) el CER UNI en una casa de las islas de Los Uros, del lago Titicaca (1999); y (a) panel FV instalado por la antigua empresa INTILUZ en la isla Suasi, del mismo lago, para el suministro eléctrico de un albergue rural ecológico (1997/1998). Las fotografías que siguen, (c) y (d), corres-

EJEMPLOS TECNOLÓGICOS

Arquitectura bioclimática para zonas rurales

Urgente:

Mejorar las casa de la población rural altoandino (friaje)

Buenos ejemplos:

- Misioneros de Belén Immensee: construcción y evaluación de casas and nas solares en Espinar, Cusco, a 4000 m sndm; documentado en www.taller-inti.org
- CER UNI: proyecto en San
 Francisco de Raymina, provincia
 Vicashuamán, Ayacucho, a 3700 m
 sndm, dentro del marco de un proyecto financiado por FYNCyT.

Proyecto del gobierno: CENCICO - muros Trombe

EURO-SOLAR PERÚ

ENERGÍA RENOVABLE PARA EL DESARROLLO RURAL DEL PERÚ

1.- PROGRAMA EURO-SOLAR

Objetivo: Atender los servicios básicos comunitarios: escuelas, postas de salud y locales comunales

Descripción: Instalación de 130 kts híbridos eólico-solar de 1,4 kW cada kit, que contiene: 1 aerogenerador, 6 paneles solares, 1 antena satelital, 5 computadoras laptop, 1 purificador de agua, 1 refrigerador para vacunas y otros.

Ámbito del Programa: Atenderá a 130 comunidades beneficiadas en 11 regiones del país.

Financiamiento: Comunidad Europea (donación) y Gobiemo Peruano.

Monto total del Programa: Euros 7'500,000.

Elaboración de Normas Técnicas

NTP 399.400 Colectores Solares. Método de Ensayo para determinar la Eficiencia de Colectores

NTP 399.404 Sistemas de Calentamiento de Agua con Energía Solar.

Fundamentos para su dimensionamiento

NTP 399.482 Sistemas de Calentamientos de Agua con Energía Solar.

Procedimiento para su instalación eficiente

NTP 399.405 Sistemas de Calentamiento de Agua con Energía Solar.

Caracterización y pronostico anual de su rendimiento mediante ensayos en exterior.

Energía Solar (Sistema de Calentamiento de Agua) XYZ XYZ Fabricante: Marca Modelo Presión de Funcionamiento (kPa) Aplicación: Más Eficienta Menos Eliciente. Produce ón Anual de Energía: XYZ Por m² de colector (MJ/m² .año). XYZ Volumen del Tanque de Almacanamiento (f) Eficiencia Energética Media (%) XYZ Notacios resultados as obtimar aplicando los metoros de ensayo descrito en las normas couespondentes. Esta eliqueta ribicabe tatises a del producto fisada que este haya e de abquirido por la INDECOPI Gerifford's por

PROPUESTA

RANGOS DE RENDIMIENTO TÉRMICO (MJ/M2 – AÑO)							
RANGO	LÍMITE SUPERIOR	LÍMITE INFERIOR					
A	<16	13					
В	<13	11					
C	<11	09					
D	<09	07					
E	<07	04					

3. PLANES Y PROYECTOS NACIONALES

3 PROYECTOSACORTOPLAZODELADGE R/MEM

Las obras que integran el Plan a Corto Plazo de la DGER/MEM corresponden al año 2011 del Plan Nacional de Electrificación Rural 2011-2020.

En total son 238 proyectos de electrificación, con una inversión total de US\$ 261 millones. Las localidades que se electrificarán en el año 2011 ascienden a 4466 y la población beneficiada a 748 mil habitantes.

Del total de proyectos, 213 corresponden a la Dirección de Proyectos por un monto total asignado de US\$ 215,5 millones, y 25 proyectos corresponden a la Dirección de Fondos Concursables por un monto total asignado de US\$ 45,1 millones

PROGRAMA DE ELECTRIFICACION RURAL: "LUZ PARA TODOS"

Information at 31,05 11

DESCRIPCION N° Obras N° Localidad Beneficiada S. NC.E: NC.E.	DESC	RIPCION	N' Otras	N' Localidad	Poblecion Beneficiada	hversión St.	Increments 3C.E:	WC.E:
--	------	---------	----------	--------------	--------------------------	-----------------	---------------------	-------

GRAN TOTAL	2,284	29,861	8.365,236	4,394,324,984	95.2%	95.2%
Obras enáless de concasión	- V	7.5	371,528	119,831,670	1.2%	
Perfies Integrales Convenio Distriuz (Anexo (2)	130	5721	210,240	62,367,372	0.6%	
Perfles Integrales Convenio Distribus (Anexo 01)	124	2,706	250,551	296,947,437	0.9%	
UDISECULARE III (SK LDISIO	0	12.5	20,205	31,182,005	0.1%	9

^{(1) 4/3/135} tit. Incluye 56 doise DGER (Neouts des directamente y en convenir) conduit de la Mayo 2011.

^(***) Considers Compromise de Devolución y Financiamiento para Eletinor y Luz del Sur. Para el resto de empresas sidio financiamiento de redex.

^(*) Induyer Obras con assudos en comenio con Distritur y Viviendas sin electricotad en áreas de concesión.

SFVD PARA EL 2013!!

CUADRO Nº 01

PERIODO 2011 - 2020

RESUMEN

M SOCIETE	MI	385	90	294	96	24	a,	200	346	50	MPL
Hallgraphie 2009											M-1.53
· organic and Japan prevalen-			1,23	1,00	1,014	E-	1,5,1	3975			296
i onwed to committee paramit	2016	26,21	10,000	Pesa	4,30	(4,64)	18,50	78,57	185	18,507	1,46,71
: ORANGE NATIONAL SERVICE STREET			1260	0,87	47	104					5400
- ORANGE MEMBERS TANKTAS			Samo	14-4	1,00	1600					0,54
consideration and consideratio			0	п	\$ett	546	4,04	\$40	540	500	1962
4 0000000 NO. OPN SCELETING	-7.58	2.79	3040	5000	10.30	90.00	500	0.000	5.04	2003	E.57
; овизволите возучествения	4,880	700,000	1000	1000	31,331	20,000	NINC)	0,000	6,00	2667	щи
newe was at 18	7 0.59	85	96.31	P-05	7.57	100	HIS	0.53	18.87	1400	23908
METROE VOID LAARNING (II)	10,53	8503	Hitte	100,00	30,64	UPRE	160,00	100,50	244,58	1,04,38	
* PSIA00+1CFI, Mictimal	118,99	130,55	1.66	8910	98.00	58.0	5.69	10.54	10.5	5.00	3.993(3)
1 GEROTEL	2011	10.25	9.51	(2.5)	1600	HTL.	(3.3)	14.85	PW.	5.75	
; C4 00%	2475	149	6-25	16-01	SER.	Perfe	16473	17-46	1776	(47)	

Regionieno del Decreto Logistativo Mil 1002, de Generación de Electricidad con-Energias feneralises, en acetarte Regionento.

La adignadión de la Energia Risque de por lectolog e es la equiente:

	Feorglagia com	Shanes	Tochologia	Frendogia Solar	- Carlot	
	Secretarios agra- industriales	Stordards Urbanics	Ebiles	Solar	3,000	
Energia MATYS to	590,000	225,000	429,000	43,000	1 300 000	

La Energia Aducticada pera basa terrologia sera di resultado de la Subasta.

As constituente la garrenación PEPS de proyectos fictiva-écriticos, ficosa una material de 691 200 MW/Millo.

La Pareste un Operación Comucial de les proyectes de generación 13P, deberáser, amástactar, el 21 de quien se de 30°4

4. FUTURO SOLAR EN EL PERÚ (?)

ESTÁ EN NUESTRAS MANOS!!!

..... PRESIONANDO CON
PROPUESTAS DE DESARROLLO
RURAL VIABLES, SOSTENIBLES Y
REPLICABLES

Propuestas generales

En base a lo expresado aquí y recogiendo la experiencia internacional, sería recomendable:

- Promover en gran escala la innovación, investigación, desarrollo tecnológico y diseminación de tecnologías y modelos de gestión y administración en el campo del aprovechamiento de las energías renovables y del uso racional de la energía, a través de concursos públicos, transparentes y abiertos para todos. Un desarrollo sostenible del Perú solamente es posible si existe un potencial humano que realiza desarrollo científico y tecnológico localmente.
- Crear una institución nacional que coordina y promueve todas las actividades en energías renovables, con capacidad de convocar a todas las instituciones involucradas.
- Promover el acercamiento entre Gobierno, organizaciones civiles, universidades y empresas, aprovechando al máximo la potencialidad y experiencia de cada uno de estos grupos de la sociedad peruana.

FUENTE: Manfred Horn

FORO "EXPERIENCIAS LATINOAMERICANA S EN EL **DESARROLLO DE** PROYECTOS DE **ELECTRIFICACION RURAL, EMPLEO DE** LAS ENERGIAS RENOVABLES Y USOS PRODUCTIVOS DE LA ELECTRICIDAD

lima 22

III. EL DESARROLLO

Fig. 15. Factores que influyen y seguirán influyendo en el Desarrollo
Tecnológico de las Energías Renovables en el Perú (DTER-

<u>Mecanismos básicos para la</u> <u>promoción de las TFRE</u>

Subvenciones directas

Fondo de Promoción Gobierno-Cooperación Internacional

Cooperación internacional en agentes no gubernamentales

Deducción fiscal

Gobierno

Prestamos de bajo interés (micro créditos)

Fondo de Financiamiento de Gobierno-Coop. Inter,

Banca Privada Concientizada

Ordenanzas Legales

MEM

MinViv

Gobierno Regionales y Locales

<u>Problemáticas nacionales abiertas para la cooperación, divulgación e investigación:</u>

- Equilibrar la matriz energética intensificando el uso de las FRE.
- Energizar el 20% faltante en el Perú.
- © Combatir climas fríos extremos en altitudes superiores a 3 000 msnm.
- Reforzar el Sistema Interconectado Nacional en generación (utilizando FRE) y transmisión.
- Fomentar el uso productivo de las FRE en el sector rural nacional.

Fondos concursables:

- Financiamiento para la Innovación, la Ciencia y la Tecnología, FINCyT, financia proyectos de investigación e innovación que contribuyan al mejoramiento de los niveles de competitividad del país. Programa de Ciencia y Tecnología del Ministerio de la Presidencia, www.fincyt.gob.pe
- Fondo de Investigación y desarrollo para la Competitividad, FIDECOM, financia proyectos de innovación productiva en empresas individuales y asociadas, así como la transferencia tecnológica. Ministerio de la Producción, www.innovateperu.pe

www.rediene.com

GRACIAS POR SU ATENCIÓN

XVIIII SIMPOSIO PERILANDO DE ENERGIA SOLAR XXVIIII SPESA DEI 14 AII 19 de NOVARIMENO 2011

Aspelación Per una de Fatenia Salar y del Ambiento (A MI

PRIMER ANUNCIO

TOPICOS DE INTERES

- 1. Datos Meteorológicos
- 2 Conversion Térmica de la Energia Solar
- 3 Conversión Eclovoltales de la Energia Solar.
- Instrumentación aplicada a las Energlas Renovables.
- 5. Energia Solar y ambiente Construido
- 6. Energia Edika
- 7. Pequeñas Centrales Hidroeláuvidas
- Biomasa
- 8 Elergia Oceánica
- 10. Hidrogeno
- 11. Bistamas de Adumulación
- 12 Politicas Públicas y Gestión de Sistemas con Fuentes Bannyanias
- Impactos Sociales, Económicos y Ambientales de las Energías Renovables.

FECHAS IMPORTANTES

Feche limite de recención de transjas completes:

15 do Sept embro dol 2011

Forbe de conficación de acoptación de los trabajos:

07 de Daubre del 2011

Fecha de aceptación de los trabajos completos conlegidos.

21 de Octubre del 2011

WWW.PERUSOLAR.ORG

ASSCIACIÓN PERCARA DE ENERGÍA SIXAR Y DEL AMBIENTE CONCINTI MA PERCARIO EN TACIONA AM TIMA MARA TELEMA EXPREDIO SANAL EXERTIMENTO;