Econ 270 Lecture 9

Sam Gifford

2025-04-28

Confidence Intervals and Hypothesis Tests Summary

- We often want to estimate a parameter from a sample, i.e. we estimate μ from \bar{x}
- We can use the statistical properties of samples to construct a standard error and confidence interval
- We can also formally test whether a parameter is equal to some value
 - In the case of joint tests, we won't have a standard error or confidence interval, but can still conduct a hypothesis test

Confidence Intervals

- lacktriangle We estimate the unknown parameter μ using ar x
- ▶ The standard error $\sigma_{\bar{x}}$ is the standard deviation of the sampling distribution
 - ▶ The abstract process that generates the sample mean
- ➤ The 95% confidence interval is constructed such that 95% of all confidence intervals will contain the true mean
 - $ightharpoonup \bar{x} \pm z_{\alpha/2} \sigma_{\bar{x}}$

Standard error formulas

- Always of the form $\sigma_{\bar{x}} = \frac{s}{\sqrt{n}}$. This is directly used in a single mean
- Single proportion: $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- ▶ Difference in means: $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
- ▶ Difference in proportions: $\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_1}}$

Critical Value

- ► For proportion and differences in proportions, we get $z_{\alpha/2}$ from a standard normal table
 - ▶ 95% corresponds to .975
- For means and differences in means, we instead use a t-distribution with n-1 (or $(n_1-1)+(n_2-1)$) degrees of freedom
 - If n is large, we can just use a standard normal table

Hypothesis Testing

- We always set up a null hypothesis to start
 - $H_0: \mu = 0; \ \mu_1 = \mu_2; \ p_1 = p_2; \ p_1 = .5; \ \mu_1 = \mu_2 = \mu_3$
- ► The alternative hypothesis is always the negation of the null hypothesis for a two-tailed test
- We calculate a p-value: the probability of observing a result at least as extreme as what we observed if the null hypotheis were true
- ightharpoonup Compare to α . Either reject or fail to reject
 - Results in either a type I or type II error (or a correct decision)

Hypothesis Testing Steps

- In hypothesis testing, we first calculate a test statistic
- For univariate tests: $\frac{\hat{\theta}-\mu_0}{\sigma_{\hat{\theta}}}$
 - i.e. the standardized point estimate. μ_0 is the null hypothesis, $\sigma_{\hat{\theta}}$ is the standard error
- ► Chi-square: $\sum \frac{(observed expected)^2}{expected}$
- ► F: $\frac{MSG}{MSE} = \frac{\frac{1}{k-1} \sum n_i (\bar{x}_i \bar{x})^2}{\frac{1}{n-k} \sum (n_i 1)s_i^2}$

P-values

- ▶ Proportions use a standard normal table. Means use a t-table
- ▶ chi-square and F use a table with only 1 tail

An Intentionally Blank Slide

A basic Z Table

X	F(x)	X	F(x)
1: -3.0	0.00	0.0	0.50
2: -2.5	0.01	0.5	0.69
3: -2.0	0.02	1.0	0.84
4: -1.5	0.07	1.5	0.93
5: -1.0	0.16	2.0	0.98
6: -0.5	0.31	2.5	0.99
7: 0.0	0.50	3.0	1.00

Candy!

	Bag1	Bag2	Bag3	Tot
SK	7	4	7	18
MP	2	6	6	14
WB	3	2	4	9
SO	4	5	1	10
Tot	16	17	18	51