

				Sub	ject	Coc	le: F	(EC	603
Roll No:									

BTECH (SEM VI) THEORY EXAMINATION 2021-22 ANTENNA AND WAVE PROPAGATION

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

2*10 = 20

Printed Page: 1 of 2

Qno	Questions	CO	
(a)	Define irrotational fields.	1	
(b)	Define divergence.	1	
(c)	Discuss electric field intensity.	2	
(d)	Discuss the nature of magnetic flux of lines.	2	
(e)	Discuss solid angle and beam area.	3	
(f)	List the various parameter of principal radiation pattern	3	
(g)	Design a log periodic antenna.	4	
(h)	Examine the major advantage of folded dipole antenna.	4	
(i)	Determine critical frequency for reflection at vertical incidence if the maximum value of electron density is 1.24*10 ⁻⁶ cm ⁻³ ?	5	2
(j)	Illustrate surface wave propagation	5	
	SECTION B	Mr.	•
Attemp	ot any <i>three</i> of the following:	*3 = 30	

2. Attempt any three of the following:

Qno	Questions	CO
(a)	Illustrate Stokes theorem and Divergence Theorem.	1
(b)	Demonstrate the magnetic field due to a finite line conductor having current I.	2
(c)	Derive antenna temperature and its relation with the signal to noise ratio (SNR) of the given antenna.	3
(d)	Analyze Horizontal antennas above a plane ground.	4
(e)	Demonstrate Skip distance and optimum frequency.	5

3. Attempt any one part of the following:

10*1 = 10

Qno	Questions	CO
(a)	Illustrate line, surface and volume integrals.	1
(b)	Describe the significance of the curl of a vector.	1

4. Attempt any one part of the following:

10 *1 = 10

Qno	Questions	CO
(a)	Demonstrate dielectric –dielectric and dielectric free space boundary	2
	conditions for magnetic fields.	

				Sub	ject	Coc	le: F	KEC	603	
Roll No:										

BTECH (SEM VI) THEORY EXAMINATION 2021-22 ANTENNA AND WAVE PROPAGATION

(b)	A circular ring of radius a carries a uniform charge ρ_L C/m and is placed on	2
	the xy-plane with axis the same as the z-axis. Demonstrate:	
	(a) The electric field due to this ring at a height h along its axis.	
	(b) What value of h gives the maximum value of electric field?	
	If the total charge on the ring is Q . Find electric as radius of the ring tends	
	to zero	

5. Attempt any *one* part of the following:

10*1 = 10

Printed Page: 2 of 2

Qno	Questions	CO
(a)	Explain Friss transmission formula mathematically.	3
(b)	Explain fields from oscillating dipoles. Describe directivity of an antenna and	3
	find the relationship between directivity and gain of antenna.	

6. Attempt any *one* part of the following:

10*1 = 10

Qno	Questions	CO
(a)	Demonstrate the fields of a short dipole.	4
(b)	Demonstrate the radiation pattern of an array of 8 isotropic point sources separated by $\lambda/2$ distance and in phase with the help of pattern multiplication.	4

7. Attempt any *one* part of the following:

10*1 = 10

Qno	Questions	CO
(a)	Illustrate the skip distance for region between transmitter and receiver using	5
	sky wave propagation, when curvature of earth is taken into consideration.	
(b)	Illustrate the expression for refractive index of ionosphere and critical	5
	frequency.	
	20.06.2022	