NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

Module: MA1508E Linear Algebra for Engineering

Year/Semester: 2018-2019 (Semester 2)

Tutorial: 7

1. Let

$$u_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} -1 \\ 1 \\ 3 \\ 1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 4 \\ 5 \\ -6 \\ -1 \end{pmatrix}.$$

- (a) Show that $\{u_1, u_2\}$ is a linearly independent set. Is $\{u_1, u_2\}$ a basis for span $\{u_1, u_2\}$? What is the dimension of span $\{u_1, u_2\}$? Write down a basis for span $\{u_1, u_2\}$.
- (b) Show that $\{u_1, u_2, u_3\}$ is a linearly dependent set. What is the dimension of span $\{u_1, u_2, u_3\}$? Write down a basis for span $\{u_1, u_2, u_3\}$.
- (c) Find a vector u_4 such that the dimension of span $\{u_1, u_2, u_4\}$ is 3.
- (d) Find a basis for \mathbb{R}^4 that contains u_1 and u_2 .
- (a) It is clear that $\{u_1, u_2\}$ is a linearly independent set since u_1 and u_2 are not multiples of each other. Yes $\{u_1, u_2\}$ is a basis for span $\{u_1, u_2\}$. The dimension of span $\{u_1, u_2\}$ is 2. A basis for span $\{u_1, u_2\}$ is $\{u_1, u_2\}$.
- (b) It can be shown easily that $u_3 = 3u_1 u_2$. So $\{u_1, u_2, u_3\}$ is a linearly dependent set. The dimension of span $\{u_1, u_2, u_3\}$ is the same as that of span $\{u_1, u_2\}$, which is 2 and $\{u_1, u_2\}$ is a basis.
- (c) We find u_4 such that u_4 is not a linear combination of u_1 and u_2 .

$$\begin{pmatrix} 1 & -1 & x \\ 2 & 1 & y \\ -1 & 3 & z \\ 0 & 1 & w \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & x \\ 0 & 3 & y - 2x \\ 0 & 0 & z - \frac{2y}{3} + \frac{7x}{3} \\ 0 & 1 & w \end{pmatrix}$$

So we can choose $u_4 = (0, 0, 1, 0)$.

(d) We can use the row space method as follows. Create a 3×4 matrix \boldsymbol{A} such that the rows of \boldsymbol{A} are the vectors $\boldsymbol{u_1}, \boldsymbol{u_2}, \boldsymbol{u_4}$. Find a row-echelon form \boldsymbol{R} of \boldsymbol{A} and identify which column does not have a leading entry:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 & 0 \\ -1 & 1 & 3 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & -\frac{2}{3} \\ 0 & 1 & 0 & \frac{1}{3} \\ 0 & 0 & 1 & 0 \end{pmatrix} = \mathbf{R}$$

Since the fourth column of \mathbf{R} does not have a leading entry, we see that (0,0,0,1) does not belong to span $\{\mathbf{u_1},\mathbf{u_2},\mathbf{u_4}\}$. So a basis for \mathbb{R}^4 is $\{\mathbf{u_1},\mathbf{u_2},(0,0,1,0),(0,0,0,1)\}$.

2. Let V and W be subspaces of \mathbb{R}^n . Suppose S_1 and S_2 are two sets such that $\operatorname{span}(S_1) = V$ and $\operatorname{span}(S_2) = W$. Define the set V + W as

$$V + W = \{ \boldsymbol{v} + \boldsymbol{w} \mid \boldsymbol{v} \in V, \boldsymbol{w} \in W \}.$$

- (a) Show that $S_1 \cup S_2$ spans V + W, that is, $V + W = \text{span}(S_1 \cup S_2)$. This would establish the result that V + W is always a subspace.
- (b) For each of the following,
 - (i) Find S_1 and S_2 that spans V and W respectively. Check if S_1 and S_2 are bases for V and W respectively. What is the dimension of V and W?
 - (ii) Write V + W as a linear span. Find a basis for V + W and state its dimension.
 - (iii) Is $V \cap W$ a subspace of \mathbb{R}^n ? Explain your answer. If $V \cap W$ is a subspace, find a basis for $V \cap W$ and state its dimension.
 - (1) $V = \{(s,0) \mid s \in \mathbb{R}\}, W = \{(0,t) \mid t \in \mathbb{R}\}.$
 - (2) $V = \{(x, y, z) \mid 2x y + 3z = 0\}, W = \{(a, a, a) \mid a \in \mathbb{R}\}.$
 - (3) $V = \{(a, b, c, d) \mid a 2b + c d = 0 \text{ and } 2a + c + 2d = 0\},\ W = \{(r, 2r, r, -r) \mid r \in \mathbb{R}\}.$
- (a) Let $u \in V + W$, then u = v + w for some $v \in V$ and $w \in W$. Let $S_1 = \{a_1, a_2, \dots, a_k\}$ and $S_2 = \{b_1, b_2, \dots, b_r\}$. Since S_1 spans V and S_2 spans W,

$$\mathbf{v} = c_1 \mathbf{a_1} + c_2 \mathbf{a_2} + \dots + c_k \mathbf{a_k};$$
 and
$$\mathbf{w} = d_1 \mathbf{b_1} + d_2 \mathbf{b_2} + \dots + d_r \mathbf{b_r},$$

for some real numbers $c_1, c_2, \dots, c_k, d_1, d_2, \dots, d_r$. Thus

$$\boldsymbol{u} = c_1 \boldsymbol{a_1} + \dots + c_k \boldsymbol{a_k} + d_1 \boldsymbol{b_1} + \dots + d_r \boldsymbol{b_r}.$$

Thus every vector in V + W is a linear combination of vectors in $S_1 \cup S_2$, that is, $S_1 \cup S_2$ spans V + W.

- (b) (1) (i) $S_1 = \{(1,0)\}$ spans V. $S_2 = \{(0,1)\}$ spans W. S_1 and S_2 are bases for V and W respectively. The dimension of V and W are both equals to 1.
 - (ii) As discussed in part (a), $V+W=\text{span}\{(1,0),(0,1)\}$. Since $\{(1,0),(0,1)\}$ is a linearly independent set, it forms a basis for V+W. The dimension of V+W is 2. In fact, $V+W=\mathbb{R}^2$.
 - (iii) $V \cap W = \{0\}$, which is the zero subspace of \mathbb{R}^2 . The empty set is a basis for $V \cap W$, whose dimension is 0.
 - (2) (i) $S_1 = \{(\frac{1}{2}, 1, 0), (-\frac{3}{2}, 0, 1)\}$ spans V, and since it is a linearly independent set, it forms a basis for V. $S_2 = \{(1, 1, 1)\}$ spans W and is also a basis for W. The dimension of V is 2 while the dimension of W is 1.

(ii) As discussed in part (a), $\{(\frac{1}{2}, 1, 0), (-\frac{3}{2}, 0, 1), (1, 1, 1)\}$ spans V + W. To check if the three vectors are linearly independent, we can form the following square matrix of order 3 and compute its determinant:

$$\begin{vmatrix} \frac{1}{2} & -\frac{3}{2} & 1\\ 1 & 0 & 1\\ 0 & 1 & 1 \end{vmatrix} \neq 0.$$

So the 3 vectors (columns of the matrix) are linearly independent and thus forms a basis for V + W. The dimension of V + W is 2. In fact, $V + W = \mathbb{R}^3$.

- (iii) Since $\{(\frac{1}{2}, 1, 0), (-\frac{3}{2}, 0, 1), (1, 1, 1)\}$ is a linearly independent set, the two subspaces V and W only have the zero vector in common. Thus $V \cap W = \{\mathbf{0}\}$, whose dimension is 0.
- (3) (i) $S_1 = \{(-\frac{1}{2}, \frac{1}{4}, 1, 0), (-1, -1, 0, 1)\}$ spans and is a basis for V. $S_2 = \{(1, 2, 1, -1)\}$ spans and is a basis for W. The dimension of V is 2 while the dimension of W is 1.
 - (ii) $\{(-\frac{1}{2}, \frac{1}{4}, 1, 0), (-1, -1, 0, 1), (1, 2, 1, -1)\}$ spans V + W. It can be checked easily that this is a linearly independent spanning set of V + W, thus forming a basis for V + W. The dimension of V + W is 3.
 - (iii) Since $\{(-\frac{1}{2}, \frac{1}{4}, 1, 0), (-1, -1, 0, 1), (1, 2, 1, -1)\}$ is a linearly independent set, V and W only have the zero vector in common. Thus $V \cap W = \{\mathbf{0}\}$, whose dimension is 0.

Remark: For (3) ask students to try what happens when $W = \{(r, -2r, -4r, r) \mid r \in \mathbb{R}\}$ instead.

- 3. For each of the following cases, write down a matrix \boldsymbol{A} with the required property or explain why no such matrix exists.
 - (a) The column space of \boldsymbol{A} contains vectors $(1,0,0)^T$, $(0,0,1)^T$ and the row space of \boldsymbol{A} contains vectors (1,1), (1,2).
 - (b) The column space $= \mathbb{R}^4$ and the row space $= \mathbb{R}^3$.
 - (c) The column space of $2\mathbf{A}$ = the row space of $-\mathbf{A} = \text{span}\{(1,2,3)\}$.
 - (d) \boldsymbol{A} is a square matrix of order 2 where the column space of \boldsymbol{A} is the solution space of the homogeneous linear system $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$.
 - (a) $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$. Note that the row space of \mathbf{A} is \mathbb{R}^2 .
 - (b) Not possible, since for a matrix A to have the desired row space property, a row-echelon form of A would have 3 non zero rows. But this would result in 3 pivot columns, meaning that a basis for the column space of A would have only 3 vectors, so the column space of A will not be \mathbb{R}^4 .

(c) Note that \mathbf{A} , $2\mathbf{A}$ and $-\mathbf{A}$ are all row equivalent matrices. So we require \mathbf{A} such that the row space and column space of \mathbf{A} are both equal to span $\{(1,2,3)\}$.

We can let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$
.

- (d) For example, $\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Then both the column space of \mathbf{A} and the solution space of $\mathbf{A}\mathbf{x} = \mathbf{0}$ are equals to span $\{(0,1)\}$.
- 4. In \mathbb{R}^4 , let X be the subspace of all vectors of the form $(x_1, x_2, 0, 0)$ and let Y be the subspace of all vectors of the form $(0, y_1, y_2, 0)$. What are the dimensions of X, $Y, X \cap Y, X + Y$? Find a basis for each of these four subspaces.

 $X = \text{span}\{(1,0,0,0),(0,1,0,0)\}.$ The dimension of X is 2 and a basis for X is $\{(1,0,0,0),(0,1,0,0)\}.$

 $Y = \text{span}\{(0,1,0,0),(0,0,1,0)\}.$ The dimension of Y is 2 and a basis for Y is $\{(0,1,0,0),(0,0,1,0)\}.$

For a vector $\boldsymbol{w} \in X \cap Y$, we must have

$$\mathbf{w} = (a, b, 0, 0) = (0, c, d, 0)$$

for some real numbers a, b, c, d. This implies a = d = 0 and b = c. Thus the $X \cap Y = \text{span}\{(0, 1, 0, 0)\}$. The dimension of $X \cap Y$ is 1 and a basis for $X \cap Y$ is $\{(0, 1, 0, 0)\}$.

 $X + Y = \text{span}\{(1,0,0,0), (0,1,0,0), (0,0,1,0)\}.$ The dimension of X + Y is 3 and a basis for X + Y is $\{(1,0,0,0), (0,1,0,0), (0,0,1,0)\}.$

5. Is it possible to find two subspaces V and W of \mathbb{R}^3 , both having dimension 2, such that $V \cap W = \{0\}$ (meaning that these two subspaces have only the zero vector in common)? Explain your answer.

No it is not possible. If V and W are both of dimension 2, then we have $S_1 = \{ \boldsymbol{w}, \boldsymbol{x} \}$ forming a basis for V and $S_2 = \{ \boldsymbol{y}, \boldsymbol{z} \}$ forming a basis for W. If $V \cap W = \{ \boldsymbol{0} \}$, then the only solution to

$$a\boldsymbol{w} + b\boldsymbol{x} = c\boldsymbol{y} + d\boldsymbol{z}$$

is a = b = c = d = 0. This implies that $\{\boldsymbol{w}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}\}$ is a linearly independent set, which is impossible in \mathbb{R}^3 .