

Learning to dehaze with polarization

Chu Zhou¹, Minggui Teng¹, Yufei Han³, Chao Xu¹, Boxin Shi^{1,2*} ¹Peking University ²Beijing Academy of Artificial Intelligence ³Beijing University of Posts and Telecommunications zhou_chu@pku.edu.cn, shiboxin@pku.edu.cn *Corresponding author

CONTRIBUTIONS

- A generalized physical formation model of hazy images
 - taking into account the polarization effects of both transmitted light and airlight, along with the spatially-variant real-world scattering.
- A robust polarization-based dehazing pipeline
 - without the requirement of specific clues, by adopting deep learning to estimate necessary physical parameters.
- A two-stage neural network
 - making full use of semantic and contextual information to handle the spatially-variant real-world scattering to improve the clarity of original scene radiance recovery.

PHYSICAL IMAGE FORMATION MODEL

- Directly capturing: $\mathbf{I} = \mathbf{T} + \mathbf{A} = \mathbf{R} \cdot e^{-\beta \cdot \mathbf{z}} + \mathbf{A}_{\infty} \cdot (1 e^{-\beta \cdot \mathbf{z}})$.
- Degree of polarization (DoP): $\mathbf{P} \triangleq \frac{\mathbf{I}^{\perp} \mathbf{I}^{\parallel}}{\mathbf{I}}$ (spatially-variant), $\mathbf{P}_{T} \triangleq \frac{\mathbf{T}^{\perp} \mathbf{T}^{\parallel}}{\mathbf{T}}$ (approximately uniform in the same semantic segment), $\mathbf{P}_A \triangleq \frac{\mathbf{A}^{\perp} - \mathbf{A}^{\parallel}}{\Delta}$ (spatiallyuniform), where $\mathbf{I} = \mathbf{I}^{\perp} + \mathbf{I}^{\parallel}$, $\mathbf{T} = \mathbf{T}^{\perp} + \mathbf{T}^{\parallel}$, $\mathbf{A} = \mathbf{A}^{\perp} + \mathbf{A}^{\parallel}$.
- Placing a polarizer with polarization angle α : $I_{\alpha} = T_{\alpha} + A_{\alpha}$, where

$$\mathbf{I}_{\alpha} = \frac{\mathbf{I} \cdot (1 - \mathbf{P} \cdot \cos(2(\alpha - \boldsymbol{\theta}_{\parallel})))}{2}, \mathbf{T}_{\alpha} = \frac{\mathbf{T} \cdot (1 - \mathbf{P}_{T} \cdot \cos(2(\alpha - \boldsymbol{\theta}_{\parallel})))}{2}, \mathbf{A}_{\alpha} = \frac{\mathbf{A} \cdot (1 - \mathbf{P}_{A} \cdot \cos(2(\alpha - \boldsymbol{\theta}_{\parallel})))}{2}.$$

- The relationship among **I**, **T**, and **A**: $\mathbf{I} \cdot \mathbf{P} = \mathbf{T} \cdot \mathbf{P}_T + \mathbf{A} \cdot \mathbf{P}_A$.
- * β is the scattering coefficient, the subscript $\| (\bot) \|$ means the component is parallel (perpendicular) to the PoI, and θ_{\parallel} denotes the orientation of the polarizer for best transmission of the component parallel to the PoI.

PIPELINE & NETWORK

Goal

• To restore the scene radiance **R** using three polarized images $I_{N(i)}(i=1,2,3)$ captured at the same view with different polarization angles $\alpha^{(i)}(i=1,2,3)$.

Polarization-based dehazing pipeline

A two-stage dehazing pipeline based on the physical image formation model:

(Eq. (7) of the paper) (a)
$$\mathbf{T} = \frac{\mathbf{P} \cdot \mathbf{I} - \mathbf{I} \cdot \mathbf{P}_A}{\mathbf{P}_T - \mathbf{P}_A}$$
 (b) $\mathbf{R} = \frac{\mathbf{T} \cdot \mathbf{A}_\infty}{\mathbf{A}_\infty - (\mathbf{I} - \mathbf{T})}'$

(b)
$$\mathbf{R} = \frac{\mathbf{T} \cdot \mathbf{A}_{\infty}}{\mathbf{A}_{\infty} - (\mathbf{I} - \mathbf{T})}$$

which means that

- (a) once I, P, P_T , and P_A are available, calculating T becomes well-posed;
- (b) once I, T, and A_{∞} are available, calculating R also becomes well-posed.

* I and P can be directly calculated by $I_{N(i)}(i=1,2,3)$ using a linear system derived from the following equation (Eq. (8) of the paper):

$$\mathbf{I}_{\alpha} = \langle \begin{bmatrix} \frac{1}{2} & \frac{-\cos(2\alpha)}{2} & \frac{-\sin(2\alpha)}{2} \end{bmatrix}, \begin{bmatrix} \mathbf{D}_1 & \mathbf{D}_2 & \mathbf{D}_3 \end{bmatrix} \rangle,$$
 where $\mathbf{D}_1 = \mathbf{I}$, $\mathbf{D}_2 = \mathbf{I} \cdot \mathbf{P} \cdot \cos(2\theta_{\parallel})$ and $\mathbf{D}_3 = \mathbf{I} \cdot \mathbf{P} \cdot \sin(2\theta_{\parallel})$.

Network Architecture

A two-stage neural network tailored to the polarization-based dehazing pipeline:

- (a) **Transmitted light estimation** (two subnetworks g_1 and g_2):
 - g_1 : to estimate \mathbf{P}_T and \mathbf{P}_A for calculating $\widehat{\mathbf{T}}$ (the coarse value of \mathbf{T});
 - g_2 : to refine $\widehat{\mathbf{T}}$ for solving the numerical problem (happening when $\mathbf{P}_T \approx$ P_A) and handling the spatially-variant scattering.
- (b) **Original scene radiance reconstruction** (two subnetworks g_3 and g_4):
 - g_3 : to estimate \mathbf{A}_{∞} for calculating $\widehat{\mathbf{R}}$ (the coarse value of \mathbf{R});
 - g_4 : to refine $\hat{\mathbf{R}}$ for solving the numerical problem (happening when $\mathbf{T} \approx \mathbf{0}$) and handling the spatially-variant scattering.

EXPERIMENTS

Quantitative results on synthetic data							
	Ours	SPCVE	GDN	BPP	FFA	HardGAN	MSBDN
PSNR	28.32	15.94	26.54	24.93	26.84	26.22	26.94
MS-SSIM	0.951	0.521	0.928	0.915	0.934	0.928	0.932

Qualitative results on synthetic data

• P: PSNR M: MS-SSIM

Qualitative results on real data

- SPCVE: Namer et al., Skyless polarimetric calibration and visibility enhancement. Optics Express, 2009.
- GDN: Liu et al., GridDehazeNet: Attention-based multi-scale network for image dehazing. In Proc. of ICCV, 2019.
- BPP: Singh et al., Single image dehazing for a variety of haze scenarios using back projected pyramid network. In Proc. of ECCVW, 2020.
- FFA: Qin et al., FFA-Net: Feature fusion attention network for single image dehazing. In Proc. of AAAI, 2020.
- HardGAN: Deng et al., HardGAN: A haze-aware representation distillation GAN for single image dehazing. In Proc. of ECCV, 2020.
- MSBDN: Dong et al., Multi-scale boosted dehazing network with dense feature fusion. In Proc. of CVPR, 2020.