Counterexample Handling

f produces a 1 if number of a's and b's are both even, otherwise 0.

Two a-transition to states which differ on suffix a: add suffix aa

	а	b	aa	"colour"
$\rightarrow \epsilon$	0	0		10./
$\begin{array}{c} \rightarrow \epsilon \\ \rightarrow a \\ \rightarrow b \end{array}$	1	0		a/0 <u>(</u>
$\to b$	0	1		
ightarrow ab	0	0		10.1
ightarrow aba	0	1		a/0 <u>\</u>
aa	0	0		
ba	0	0		
bb	0	0		

Angluin's L* Algorithm

- **1** Maintain a set \mathcal{U} of (marked) prefixes, initially $\mathcal{U} = \{\epsilon\}$
- ② Maintain a set $\mathcal V$ of suffixes, initially $\mathcal V=I$
- **1** Maintain an observation table with rows $\mathcal{U} \cup \mathcal{U}I$ and columns \mathcal{V}
- Fill the table using output queries
- **5** Table is closed when every row from $\mathcal{U}I$ is also a row from \mathcal{U} ; if table is not closed extend $\mathcal U$ and go to step 4
- **5** Table is consistent if whenever rows $u, v \in \mathcal{U}$ are the same, rows ui and vi are also the same, for all $i \in I$; if table is not consistent extend \mathcal{V} and go to step 4
- When table is both closed and consistent construct hypothesis and perform equivalence query
- lacktriangledown If reply is "no" add all prefixes of counterexample to $\mathcal U$ and go to step 4 < ロ > < @ > < 差 > < 差 > 差 | かくで |

Model Learning

Frits Vaandrager

Frits Vaandrager A New Perspective: L# Conclusions and Future World

Learning with $L^{\#}$

A New Perspective: L# Conclusions and Future World Learning with $L^{\#}$

Promotion Rule:

Move frontier state to basis if it is apart from all basis states.

Model Learning

Witness: coffee

Model Learning

Extension Rule:

Ensure each basis state has outgoing transition for each input.

◆□ → ◆□ → ◆ = → ◆ = → へ へ ○

◆ロ ト ◆ 個 ト ◆ 差 ト ◆ 差 ・ 夕 Q ○

Introduction L* and its Descendants Applications A New Perspective: L# Conclusions and Future Work

Learning with $L^{\#}$

Identification Rule: Identify frontier states.

◆ロト ◆ 高 ト ◆ 喜 ト ・ 喜 ・ 夕 ○ Frits Vaandrager Model Learning

Introduction

L* and its Descendants
Applications
A New Perspective: L#

Counterexample Processing

Model Learning

Key idea: perform output query $access(q')\sigma_2\eta$ If outputs for $\sigma_2\eta$ from r' and q' are different in $\mathcal T$ then r'#q'Else $access(q')\sigma_2$ leads to a conflict!

Frits Vaandrager

Learning with $L^{\#}$

Equivalence Rule:

Build hypothesis, ask equivalence query, process counterexample.

Frits Vaandrager

Model Learnin