12. Formalizzazione in linguaggio predicativo

Il linguaggio predicativo è ottenuto estendendo il linguaggio proposizionale (quello con $\neg, \lor, \&, \rightarrow, \bot$) con predicati A(x), B(x, y), C(x, y, z...) dipendenti da un numero arbitrario di variabili e quantificatori

$$\forall x \ \mathsf{fr}(x)$$
 e $\exists x \ \mathsf{fr}(x)$

su un qualsiasi predicato fr(x) contenente x come variabile libera.

In tale linguaggio la seguente argomentazione:

Tutti gli uomini sono mortali Socrate è un uomo

Socrate è mortale

usando

 $\mathbf{M}(\mathbf{x}) =$ "x è mortale"

 $\mathbf{U}(\mathbf{x})$ = "x è un uomo"

 $\bar{\mathbf{s}}$ ="Socrate"

si può formalizzare nel sequente

$$\forall \mathbf{x} \ (\ \mathbf{U}(\mathbf{x}) {\rightarrow} \mathbf{M}(\mathbf{x})\)\ , \mathbf{U}(\overline{\mathbf{s}}) \vdash \mathbf{M}(\overline{\mathbf{s}})$$

12.bis Come mettere le parentesi

 \neg, \forall, \exists lega più di $\lor, \&$ lega più di -

Come si scrivono:

- 1. "(tutti gli x tale che A(x)) o B"
- 2. "tutti gli \mathbf{x} tale che ($\mathbf{A}(\mathbf{x})$ o \mathbf{B})"
- 3. " (esiste un x tale che A(x)) implica ($B \circ C$)"
- 4. "(esiste un x tale che (A(x) implica B)) o C "

Cosa traducono i quantificatori

 $\forall \mathbf{x} (\mathbf{P}(\mathbf{x}) \to \mathbf{Q}(\mathbf{x})) \text{ traduce}$

Chi è P(x)è pure Q(x)

Quelli che sono P(x)... sono Q(x)

I P(x) sono Q(x)

Chiunque è P(x), è pure Q(x)

Ogni P(x) è Q(x)

Soltanto i Q(x) sono P(x)

Se uno è P(x) allora è pure Q(x)

Solo se uno è Q(x) allora è pure P(x)

 $\exists \mathbf{x} (\mathbf{P}(\mathbf{x}) \& \mathbf{Q}(\mathbf{x})) \text{ traduce}$

C'è un P(x) che è Q(x) esiste un P(x) che è Q(x)

qualche $P(x) \stackrel{.}{e} Q(x)$

esistono dei P(x) che sono Q(x)

 $\neg \exists \mathbf{x} (\mathbf{P}(\mathbf{x}) \& \mathbf{Q}(\mathbf{x})) \text{ traduce}$

nessun P(x) è un Q(x)

non esiste un P(x) che è Q(x)

non esistono P(x) che sono Q(x)

Attenzione: nella maggior parte delle traduzioni:

- $\bullet\,$ il quantificatore esiste va assieme alla congiunzione come sopra
- il quantificatore universale va assieme all'implicazione.

Quindi se vi trovate a tradurre una frase con un quantificatore esistenziale seguito da un'implicazione, oppure una quantificazione universale seguito da una congiunzione controllate più volte di aver tradotto bene!!!

Trucco per tradurre il soltanto quelli, solo quelli che

- riscrivere la frase togliendo il "soltanto", o "solo"
- tradurre la frase ottenuta usando la quantificazione universale e l'implicazione
- se la frase ottenuta è $\forall x$ ($\mathbf{fr_1}(x) \to \mathbf{fr_2}(x)$) la traduzione della frase iniziale è ottenuta SCAMBIANDO antecedente con conseguente, ovvero scrivendo $\forall x$ ($\mathbf{fr_2}(x) \to \mathbf{fr_1}(x)$)

Esercizi

- 1. Nel linguaggio predicativo formalizzate i seguenti enunciati:
 - (a) "Chi non mangia non sta in piedi"

usando

M(x) = "x mangia"

P(x) = "x sta in piedi"

(b) "esiste un numero x tale che x è minore o uguale a sei"

 $x \leq y =$ "x è minore o uguale a y" 6 = sei

(c) "Qualche antenato di Mario è nobile."

usando

A(x,y) = "x è antenato di y"

N(x) = "x è nobile"

 \overline{m} = "Mario"

(d) " Solo quelli che hanno il biglietto salgono sull'aereo."

usando

B(x) = " x ha il biglietto"

S(x) ="x sale sull'aereo"

(e) "Non si dà il caso che nessun programma termini."

usando

P(x) = "x è programma"

T(x) = "x termina"

(f) "Nessun programma con un ciclo infinito termina."

usando:

P(x)= "x è programma"

T(x) = "x termina"

C(x,y)= "y è ciclo infinito di x"

(g) "Un programma che non ha cicli termina."

usando:

P(x) = "x è programma"

T(x) ="x termina"

C(x,y)= "y è ciclo di x"

- 2. Formalizzare le seguenti argomentazioni in sequente:
 - (a) Non tutti i programmi sono utili e corretti. Esiste un programma non utile.

usando

P(x)="x è un programma"

U(x)="x è utile"

C(x)="x è corretto"

Non tutti i programmi sono utili e corretti.

Esiste un programma non utile o esiste un programma non corretto.

usando

P(x)="x è un programma"

U(x)="x è utile"

C(x)="x è corretto"

Solo i buoni sono stimati da tutti.

(c) Alberto è buono.

Alberto è stimato da tutti.

usando

S(x,y)="x stima y"

B(x)= "x è buono"

a="Alberto"

I buoni e soltanto loro sono stimati da tutti.

(d) Alberto è buono.

Alberto è stimato da tutti.

usando

S(x,y)="x stima y"

B(x) = "x è buono"

a="Alberto"

Ciascuno possiede ciò che non ha perduto.

(e) Alberto non ha perduto la Ferrari testa rossa.

Alberto possiede la Ferrari testa rossa.

usando

P(x,y)="x possiede y"

E(x,y)= "x ha perduto y"

f="Ferrari testa rossa"

Solo i buoni sono stimati da tutti.

(f) Alberto è stimato da tutti.

Alberto è buono.

usando

S(x,y)="x stima y"

B(x)= "x è buono"

a="Alberto"

Nessuno è buono e cattivo.

Ogni buono non è cattivo.

usando

C(x) = "x è cattivo"

B(x) = "x è buono"

a="Alberto"

Non tutti i programmi hanno un ciclo.

(h) Se un programma non ha un ciclo termina.

Qualche programma non termina.

usando

P(x)= "x è programma"

T(x) = "x termina"

C(x)= "x ha un ciclo"

Tutti, se piove, si riparano.

(i) Tutti si riparano se piove.

usando

P = "Piove"

0(x) = "x si ripara"

(j) Non si dà il caso che qualcuno sia più alto di Piero.

C'è qualcuno di cui nessuno è più alto.

usando

 \overline{p} ="Piero"

A(x,y)="x è più alto di y"

Non si dà il caso che qualcuno sia più alto di Piero.

Nessuno è più alto di Piero.

usando

 \overline{p} ="Piero"

A(x,y)="x è più alto di y"

Solo se uno è italiano o francese può partecipare al programma di scambio culturale Italia-Francia.

Marc non è italiano.

(1) Marc può partecipare al programma di scambio culturale Italia-Francia.

Marc è francese.

usando

 \overline{m} ="Marc"

I(x)="x è italiano"

F(x)="x è francese"

P(x)=" x può partecipare al programma di scambio culturale Italia-Francia"

Se uno è italiano o francese può partecipare al programma di scambio culturale Italia-Francia.

Marc non è italiano.

(m) Marc può partecipare al programma di scambio culturale Italia-Francia.

Marc è francese.

usando

 \overline{m} ="Marc"

I(x)="x è italiano"

F(x)="x è francese"

P(x)=" x può partecipare al programma di scambio culturale Italia-Francia"