Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modu	ıle			Fin Plate
MainMo	odule			Shear Connection
Connect	ivity			Column flange-Beam web
Shear(l	•			50.0
		Supporting Se	ection	
		ng Section		PBP 360X152
		erial *		E 250 (Fe 410 W)A
т Ү		ngth, fu (MPa)		410
		th , fy (MPa)		250
α	Mass	152.02	Iz(cm4)	439716000.0
ZZ D	Area(cm2) -	19370.0	Iy(cm4)	158755000.0
	D(mm)	356.4	rz(cm)	150.7
R ₁	B(mm)	376.0	ry(cm)	90.5
R ₂	t(mm)	17.8	Zz(cm3)	2467540.0
В	T(mm)	17.9	Zy(cm3)	844440.0
•	FlangeSlope	90	Zpz(cm3)	2766750.0
	R1(mm)	1.52	Zpy(cm3)	844440.0
	R2(mm)	0.0		
		Supported Se	ction	
	Supporte	ed Section	MB 200	
	Material *		E 250 (Fe 410 W)A	
т ү	Ultimate stren	ngth, fu (MPa)	410	
	Yield Streng	th , fy (MPa)		250
$(B-t)$ α	Mass	24.1	Iz(cm4)	21100000.0
ZZ D	Area(cm2) - A	3070.0	Iy(cm4)	1310000.0
	D(mm)	200.0	rz(cm)	82.8
R_1	B(mm)	100.0	ry(cm)	20.7
В В	t(mm)	5.7	Zz(cm3)	211000.0
ų,	T(mm)	10.0	Zy(cm3)	26000.0
-	FlangeSlope	98	Zpz(cm3)	239800.0
	R1(mm)	11.0	Zpy(cm3)	26000.0
	R2(mm)	5.5		
		Bolt Detai	ils	
Diameter	` '			[12.0, 16.0, 20.0]
Grade			[3.6, 4.6]	, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Туре	*			Bearing Bolt
				Ct 1 1
Bolt hole	e type			Standard
Bolt hole Slip factor	· -			0.3

Type of edges

a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Plate Det	ails
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Material *	E 250 (Fe 410 W)A
Ultimate strength, fu (MPa)	410
Yield Strength , fy (MPa)	250
Weld Det	ails
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		16.0	
Grade *		4.8	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{400.0 * 1 * 157}{\sqrt{3} \ * 1.25}$ $= 29.01$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.49 * 16.0 * 5.7 * 410}{1.25}$ $= 36.64$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (29.01, 36.64)$ = 29.01	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{50.0^{2} + 50.0^{2}}}{29.01}$ $= 3$	4	
No of Columns		2	
No of Rows		2	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$	40	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 5.7, \ 300 \ mm)$ $= 300$	40	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$	80	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 5.7, \ 300 \ mm)$ = 300	80	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 18.0 = 30.6	35	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *6.0 * \sqrt{\frac{250}{250}}$ $= 72.0$	35	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$	35	Pass
Time Dage Discernee (min)	= 1.7 * 18.0 = 30.6		1 000
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 6.0 * \sqrt{\frac{250}{250}}$ $= 72.0$	35	Pass
Capacity (kN)	35.38	36.64	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 200.0 = 120.0$	150	Pass
	$d_b - 2(t_{bf} + r_{b1} + gap)$		
Max. Plate Height (mm)	= 200.0 - 2 * (10.0 + 11.0 + 10)	150	Pass
	= 158.0		
M: D1 (1 ()	$2*e_{min} + (n \ c - 1)*p_{min}$	120.0	D
Min. Plate Length (mm)	= 2 * 30.6 + (2 - 1) * 40.0	120.0	Pass
M: Dl-+- Tl-:-l	= 111.2	6.0	D
Min.Plate Thickness (mm)	$t_w = 5.7$	6.0	Pass
/		$V_{\cdot} = A_v * f_y$	
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
Shear yielding Capacity		$= \frac{150 * 6.0 * 250}{\sqrt{3} * 1.1}$	
$(V_dy) (kN)$			
		=118.09	
		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity		= 1 * (150 - (2 * 18.0)) * 6.0 * 410	<u> </u>
(V_dn) (kN)		= 210.33	
Block Shear Capacity in		175.56	
Shear (V_db) (kN)		110.00	
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	50.0	= Min(118.09, 210.33, 175.56)	Pass
(kN)		= 118.09	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
Ti V:-14: Cit		γ_{mo}	
Tension Yielding Capacity (kN)		$=\frac{150*6.0*250}{1.1}$	
(1111)		=204.55	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
		γ_{m1}	
Tension Rupture Capacity		$= \frac{0.9 * (150 - 2 * 18.0) * 6.0 * 410}{1.25}$	0
(kN)		1.25	
Block Shear Capacity in		= 201.92 233.02	
Tension (T_db) (kN)		200.02	
, , , ,		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity (kN)	50.0	= Min(204.55, 201.92, 233.02)	Pass
		=201.92	
Moment Capacity (kN-m)	3.25	7.67	Pass
Interaction Ratio	≤ 1	$\frac{3.25}{7.67} + \frac{50.0}{201.92} = 0.67$	Pass
		$\frac{7.67}{7.67} + \frac{201.92}{201.92} = 0.07$	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)		6	Pass
Max Weld Size (mm)	$Thickness of Thinner part$ $= Min(17.9, 6.0) = 6.0$ $t_{w_{max}} = 6.0$	6	Pass
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{3250000.0 * 70.0}{457333.33}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{3250000.0 * 0.0}{457333.33}$ $V_{wv} = \frac{V}{l_w} = \frac{50000.0}{280}$ $A_{wh} = \frac{A}{l_w} = \frac{50000.0}{280}$ $R_w = \sqrt{(497.45 + 178.57)^2 + (0.0 + 178.57)^2}$ $= 699.21$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{4.2 * 410}{\sqrt{3} * 1.25}$ $= 795.36$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View