

UNIVERSIDADE ESTADUAL DA PARAÍBA CENTRO DE CIÊNCIA E TECNOLOGIA- CCT CIÊNCIA DA COMPUTAÇÃO

LUCAS ANACLETO BATISTA ALMEIDA

RELATÓRIO LABORATÓRIO DE ESTRUTURA DE DADOS ROTEIRO COMPARATIVOS DOS ALGORITMOS ELEMENTARES DE ORDENAÇÃO

CAMPINA GRANDE

INTRODUÇÃO

Este relatório apresenta uma análise comparativa de desempenho dos algoritmos de ordenação Bubble Sort, Selection Sort e Insertion Sort. Os algoritmos foram testados com diferentes tamanhos de entrada: 100, 1.000 e 10.000 elementos. Os resultados obtidos foram analisados com base no tempo de ordenação, número de trocas e número de comparações realizadas por cada algoritmo.

DESENVOLVIMENTO

Massa de teste para entrada 100 elementos:

	Trocas	Comparações	Tempo de Execução (ns)
BubbleSort	2.361	4.950	184.0
SelectionSort	97	4.950	113.0
InsertionSort	2.460	2.361	63.0

Observações: O Bubble Sort apresenta um desempenho moderado, com um tempo de ordenação razoável, mas um número significativo de trocas. O Selection Sort destaca-se com um tempo de ordenação menor e um número insignificante de trocas. Surpreendentemente, o Insertion Sort possui o menor tempo de ordenação, mas com um número relativamente alto de trocas.

Massa de teste para entrada de 1.000 elementos:

	Trocas	Comparações	Tempo de Execução (ns)
BubbleSort	244.528	499.500	6080.0
SelectionSort	993	499.500	4349.0
InsertionSort	245.527	244.528	3797.0

Observações: O Bubble Sort continua a ser o mais lento, enquanto o Selection Sort mantém uma eficiência em termos de tempo de ordenação e baixo número de trocas. O Insertion Sort, embora mantenha um tempo de ordenação competitivo, mostra um aumento no número de trocas em relação à massa de teste anterior.

Massa de teste para entrada de 10.000 elementos:

	Trocas	Comparações	Tempo de Execução (ns)
BubbleSort	24.745.734	49.995.000	117703.0
SelectionSort	9.984	49.995.000	23529.0
InsertionSort	24.755.733	24.745.734	54242.0

Observações: Com um tamanho de entrada ainda maior, o Bubble Sort torna-se significativamente mais lento, enquanto o Selection Sort começa a mostrar um aumento no tempo de ordenação. O Insertion Sort demonstra uma estabilidade relativa em relação ao número de trocas e comparações, mesmo com um aumento considerável no tamanho da entrada.

CONCLUSÃO

Concluímos a partir dos dados analisados que o algoritmo Selection Sort geralmente teve um desempenho superior em relação ao Bubble Sort e Insertion Sort, com tempos de ordenação menores e um número significativamente menor de trocas realizadas. O Insertion Sort, embora tenha sido mais eficiente em termos de tempo e trocas em alguns casos, mostrou-se menos estável quando o tamanho da entrada aumentou, resultando em um aumento considerável no número de comparações em comparação com os outros algoritmos. Portanto, com base nos resultados obtidos, podemos concluir que o Selection Sort é uma escolha mais eficiente em muitos cenários de ordenação.