

Modelo Estrella de un Data Marts

Justin Beckham Cardona, Jorge Armando Rodríguez y Lina Johana Seguro Facultad de Ingeniería y Ciencias Agropecuarias, Institución Universitaria Digital de Antioquia

064: Bases de Datos II

Antonio Jesús Valderrama

31 de agosto de 2025

Introducción

En la actualidad, las empresas recopilan gran cantidad de datos de diferentes fuentes, lo que las ha llevado a utilizar nuevas técnicas para convertir esos datos en información útil con el objetivo de mejorar la toma de decisiones dentro de la organización. Esto les permite prever situaciones adversas y mantenerse competitivas en el mercado.

Un modelo muy utilizado para realizar este análisis de información es el Modelo Estrella, ya que facilita la creación de Data Marts orientados a consultas específicas.

El propósito de este trabajo es construir un modelo estrella a partir de la información brindada en la base de datos Jardinería, que responda a las preguntas claves relacionadas con las ventas, las cuales son: identificar el producto más vendido, la categoría con más productos y el año con más ventas.

Objetivos

Objetivo General:

Diseñar un modelo estrella que permita analizar las ventas de la base de datos Jardinería.

Objetivos Específicos:

- 1. Identificar el producto más vendido.
- 2. Determinar la categoría con más productos.
- 3. Establecer el año con mayores ventas.

Planteamiento del Problema

La base de datos Jardinería la cual fue proporcionada para la actividad, fue diseñada originalmente para la gestión transaccional de operaciones como pedidos, clientes y productos. Este es un modelo adecuado para trabajar diariamente, pero no resulta eficiente si se quiere realizar análisis de negocio, ya que, para consultar información específica como el producto más vendido, la categoría con mayor cantidad de ventas o el año más exitoso requiere combinar información de varias partes de la base de datos, lo que complica el proceso y puede afectar el rendimiento. Además, esto dificulta la toma de decisiones en áreas como ventas, gestión de clientes y administración de inventario.

De esta manera, surge la necesidad de diseñar un modelo estrella que organice los datos de forma sencilla y permita responder de manera más rápida y precisa a estas preguntas.

Análisis del Problema

El modelo de base de datos actual no está diseñado para hacer análisis fácilmente, ya que al consultar la información se genera redundancia y las búsquedas se vuelven más complejas.

Esto se debe a que la estructura se centra en el registro de operaciones diarias y no en el análisis de datos históricos. Para solucionar esta limitación, se propone usar un modelo estrella, el cual organiza la información en una tabla de hechos central y varias tablas de dimensiones relacionadas, lo que facilita el análisis de los datos y mejora el rendimiento de las consultas en inteligencia de negocios.

Propuesta de Solución

Descripción

A partir de la información brindad en la base de datos jardinería, se propone la creación de un modelo estrella compuesto por una tabla de hechos denominada Hechos Ventas, la cual concentrará la información relacionada con las transacciones de ventas. Esta tabla se conectará con diferentes dimensiones que aportan el contexto necesario para el análisis: clientes, productos, vendedores y tiempo.

Se elige un modelo estrella porque facilita el análisis de datos de manera eficiente, permite realizar consultas rápidas y organiza de forma clara la información en una tabla central de hechos y sus dimensiones asociadas. Además, este enfoque permite obtener de manera precisa la información necesaria para responder a los objetivos planteados y permite a la empresa analizar las ventas y mejorar la toma de decisiones.

Dimensiones Propuestas

Tabla 1DimCliente con sus columnas y tipos de datos. Permite analizar ventas por cliente, ciudad y país.

Columna	Tipo de dato	Descripción / Clave
ClienteID	INT	PK, identificador único del cliente
NombreCliente	VARCHAR (100)	Nombre del cliente
Ciudad	VARCHAR (50)	Ciudad del cliente
Pais	VARCHAR (50)	País del cliente

Note. PK = Primary Key (clave primaria).

Fuente: Elaboración propia.

Tabla 2 *DimProducto con sus columnas y tipos de datos.* Permite analizar ventas por producto, categoría y precio.

Columna	Tipo de dato	Descripción / Clave
ProductoID	INT	PK, identificador único del producto
NombreProducto	VARCHAR (100)	Nombre del producto
Categoria	VARCHAR (50)	Categoría del producto
Precio	DECIMAL (10,2)	Precio unitario del producto

Note. PK = Primary Key (clave primaria).

Fuente: Elaboración propia.

Tabla 3 *DimVendedor con sus columnas y tipos de datos.* Permite analizar ventas por vendedor y región.

Columna	Tipo de dato	Descripción / Clave
VendedorID	INT	PK, identificador único del vendedor
NombreVendedor	VARCHAR (100)	Nombre del vendedor
Region	VARCHAR (50)	Región o área asignada al vendedor

Note. PK = Primary Key (clave primaria).

Fuente: Elaboración propia.

Tabla 4 *DimTiempo con sus columnas y tipos de datos*. Permite analizar las ventas en diferentes intervalos temporales (años, meses, trimestres).

Columna	Tipo de dato	Descripción / Clave
TiempoID	INT	PK, identificador único del registro de tiempo
Fecha	DATE	Fecha completa de la venta (día/mes/año)
Año	INT	Año de la venta
Mes	INT	Mes de la venta
Dia	INT	Día de la venta
Trimestre	INT	Trimestre del año

Note. PK = Primary Key (clave primaria).

Fuente: Elaboración propia.

Tabla de Hechos

Tabla 5 Aquí se concentra la medida cuantitativa principal: las ventas. *Tabla de hechos FactVentas con sus columnas y tipos de datos*

Columna	Tipo de dato	Descripción / Clave
VentaID	INT	PK, identificador único de la venta
ClienteID	INT	FK hacia DimCliente
ProductoID	INT	FK hacia DimProducto
VendedorID	INT	FK hacia DimVendedor
TiempoID	INT	FK hacia DimTiempo
Cantidad	INT	Número de unidades vendidas
Total	DECIMAL (10,2)	Valor total de la venta

Note. PK = Primary Key; FK = Foreign Key (clave foránea).

Fuente: Elaboración propia.

Nota: Todas estas relaciones son de 1 a muchos, un cliente puede estar en muchas ventas, un producto puede venderse muchas veces, un vendedor puede gestionar varias ventas, un tiempo específico puede estar asociado a múltiples transacciones.

Conclusiones

Objetivo 1: Identificar el producto más vendido

Conclusión

La relación entre FactVentas y DimProducto permite determinar qué producto tuvo la mayor cantidad de unidades vendidas o el mayor valor total de ventas. Esto nos ayuda a reconocer los productos más populares y orientar decisiones de inventario y promoción.

Según la consulta realizada en nuestro modelo estrella, se evidencia que el producto más vendido es cerezo con 2.212 Unidades vendidas.

Objetivo 2: Determinar la categoría con más productos

Conclusión:

Analizando la columna Categoría de **DimProducto**, se identificó cuál es la categoría que concentra la mayor cantidad de productos registrados. Este resultado es útil para conocer la amplitud del portafolio de la empresa y orientar decisiones relacionadas con la gestión del inventario y la diversificación de la oferta.

De acuerdo a la consulta realizada en nuestro modelo estrella, se evidencia que la categoría con más productos es Ornamentales con 154 unidades.

Objetivo 3: Establecer el año con mayores ventas

Conclusión:

Al cruzar FactVentas con DimTiempo, se puede calcular el total de ventas por año, permitiendo identificar el periodo con mejor desempeño. Esto facilita la planificación y proyección de ventas futuras.

Teniendo en cuanta la consulta realizada para nuestro modelo estrella; el año con mayores ventas es 2008 con un total de 281.827 ventas.

```
/*Año con mas ventas por valor total*/
SELECT TOP 1
    dt.Anio,
    SUM(fv.Total) AS TotalVentas
FROM FactVentas fv
JOIN DimTiempo dt ON fv.TiempoID = dt.TiempoID
GROUP BY dt.Anio
ORDER BY TotalVentas DESC;
```


Anexos

Link Documento Script

El presente script construye un modelo estrella que centraliza la información de ventas en una tabla de hechos, vinculada a las dimensiones de clientes, productos, vendedores y tiempo, facilitando un análisis eficiente para la toma de decisiones.

Link Modelo Estrella

Este enlace muestra el modelo de base de datos creado para el análisis de ventas, basado en un esquema estrella con una tabla de hechos y sus dimensiones. Permite identificar productos y categorías más vendidos, así como el año con mayores ventas.

Bibliografía

- AWS. (2025). ¿Qué es un data mart? Explicación de los data marts. AWS. Retrieved August 29, 2025, from https://aws.amazon.com/es/what-is/data-mart/
- FOCUS CONSULTING. (2017, junio 15). *Tabla de hechos y dimensiones* [Modelo Estrella][Video]. YouTube. https://www.youtube.com/watch?v=HvzO18fUjqY
- IBM. (n.d.). *Modelado dimensional: Esquemas de estrella*. IBM. Retrieved August 29, 2025, from https://www.ibm.com/docs/es/ida/9.1.2?topic=schemas-star