

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

Prova Escrita de Matemática A

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Prova 635/1.ª Fase

15 Páginas

Duração da Prova: 150 minutos. Tolerância: 30 minutos.

2015

VERSÃO 1

——— Página em branco ————	

Indique de forma legível a versão da prova.

Utilize apenas caneta ou esferográfica de tinta azul ou preta, exceto nas respostas que impliquem construções, desenhos ou outras representações, que podem ser, primeiramente, elaborados a lápis e, a seguir, passados a tinta.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Não é permitido o uso de corretor. Deve riscar aquilo que pretende que não seja classificado.

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

Apresente apenas uma resposta para cada item.

A prova inclui um formulário.

As cotações dos itens encontram-se no final do enunciado da prova.

Dágina om branco	
—— Página em branco	

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}(\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$$

Área lateral de um cone: $\pi rg(r - raio da base; g - geratriz)$

Área de uma superfície esférica: $4\pi r^2 (r - raio)$

Volume da pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume do cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume da esfera: $\frac{4}{3}\pi r^3$ (r-raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

$$cos(a+b) = cos a cos b - sen a sen b$$

$$tg(a+b) = \frac{tga + tgb}{1 - tga \ tgb}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n}\right) \quad (k \in \{0, ..., n-1\} \quad \mathbf{e} \quad n \in \mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \notin N(\mu, \sigma)$, então:

$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 0,6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

— Página em branco ———	

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. Dois rapazes e quatro raparigas vão sentar-se num banco corrido com seis lugares.

De quantas maneiras o podem fazer, de modo que fique um rapaz em cada extremidade do banco?

(A) 12

- **(B)** 24
- **(C)** 48
- **(D)** 60

2. Seja Ω , conjunto finito, o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos ($A \subset \Omega$ e $B \subset \Omega$).

Sabe-se que:

- P(A) = 0.4
- $P(\overline{B}) = 0.7$
- $P(A \cup B) = 0.5$

Qual é o valor de $P(\overline{A} \cup \overline{B})$?

(A) 0,6

- **(B)** 0.7
- (C) 0.8
- **(D)** 0,9

3. Qual das seguintes expressões é, para qualquer número real k, igual a $\log_3\left(\frac{3^k}{9}\right)$?

(A) $\frac{k}{2}$

- **(B)** *k* − 2
- (C) $\frac{k}{Q}$
- **(D)** k 9

4. Considere a função f, de domínio \mathbb{R}^+ , definida por $f(x) = \frac{1 + \ln x}{x}$

Considere a sucessão de termo geral $u_n = n^2$

Qual é o valor de $\lim f(u_n)$?

(A) 0

(B) 1

(C) e

(D) $+\infty$

5. Na Figura 1, está representado o círculo trigonométrico.

Sabe-se que:

- ullet o ponto A pertence ao primeiro quadrante e à circunferência;
- o ponto B pertence ao eixo Ox
- o ponto C tem coordenadas (1,0)
- ullet o ponto D pertence à semirreta $\dot{O}A$
- os segmentos de reta [AB] e [DC] são paralelos ao eixo Oy

Figura 1

Seja $\, lpha \,$ a amplitude do ângulo $\, COD \, \left(lpha \in \left] 0, \frac{\pi}{2} \right[
ight) \,$

Qual das expressões seguintes dá a área do quadrilátero [ABCD], representado a sombreado, em função de α ?

(A)
$$\frac{\operatorname{tg}\alpha}{2} - \frac{\operatorname{sen}(2\alpha)}{2}$$

(B)
$$\frac{\operatorname{tg}\alpha}{2} - \frac{\operatorname{sen}(2\alpha)}{4}$$

(C)
$$\operatorname{tg} \alpha - \frac{\operatorname{sen}(2\alpha)}{4}$$

(D)
$$\operatorname{tg} \alpha - \frac{\operatorname{sen}(2\alpha)}{2}$$

6. Considere em $\,\mathbb{C}\,$, conjunto dos números complexos, a condição

$$|z+4-4i|=3 \land \frac{\pi}{2} \le \arg(z) \le \frac{3\pi}{4}$$

No plano complexo, esta condição define uma linha.

Qual é o comprimento dessa linha?

- (A) π
- **(B)** 2π
- (C) 3π
- (D) 4π

7. Na Figura 2, está representado, num referencial o.n. xOy, um triângulo equilátero [ABC]

Figura 2

Sabe-se que:

ullet o ponto A tem ordenada positiva;

ullet os pontos B e C pertencem ao eixo Ox

ullet o ponto B tem abcissa 1 e o ponto C tem abcissa maior do que 1

Qual é a equação reduzida da reta AB?

(A)
$$v = \sqrt{2} x - \sqrt{2}$$

(B)
$$y = \sqrt{2}x + \sqrt{2}$$

(C)
$$y = \sqrt{3} x + \sqrt{3}$$

(D)
$$y = \sqrt{3} x - \sqrt{3}$$

8. Seja a um número real.

Considere a sucessão (u_n) definida por

$$\begin{cases} u_1 = a \\ u_{n+1} = -3u_n + 2, \quad \forall n \in \mathbb{N} \end{cases}$$

Qual é o terceiro termo desta sucessão?

(A)
$$6a + 4$$

(B)
$$9a - 4$$

(C)
$$6a - 4$$

(D)
$$9a + 4$$

– Página em branco ––––	

GRUPO II

Na resposta aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Em \mathbb{C} , conjunto dos números complexos, considere $z = \frac{-2 + 2i^{19}}{\sqrt{2}\operatorname{cis}\theta}$

Determine os valores de $\,\theta\,$ pertencentes ao intervalo $\,]0,2\pi[\,$, para os quais $\,z\,$ é um número imaginário puro.

Na resolução deste item, não utilize a calculadora.

- 2. De uma empresa com sede em Coimbra, sabe-se que:
 - 60% dos funcionários residem fora de Coimbra;
 - os restantes funcionários residem em Coimbra.
 - **2.1.** Relativamente aos funcionários dessa empresa, sabe-se ainda que:
 - o número de homens é igual ao número de mulheres;
 - 30% dos homens residem fora de Coimbra.

Escolhe-se, ao acaso, um funcionário dessa empresa.

Qual é a probabilidade de o funcionário escolhido ser mulher, sabendo que reside em Coimbra?

Apresente o resultado na forma de fração irredutível.

2.2. Considere agora que a empresa tem oitenta funcionários.

Escolhem-se, ao acaso, três funcionários dessa empresa.

A probabilidade de, entre esses funcionários, haver no máximo dois a residir em Coimbra é igual a

$$\frac{^{80}C_3 - ^{32}C_3}{^{80}C_2}$$

Elabore uma composição na qual explique a expressão apresentada.

Na sua resposta:

- enuncie a regra de Laplace;
- explique o número de casos possíveis;
- explique o número de casos favoráveis.

3. Na Figura 3, está representado um recipiente cheio de um líquido viscoso.

Tal como a figura ilustra, dentro do recipiente, presa à sua base, encontra-se uma esfera. Essa esfera está ligada a um ponto P por uma mola esticada.

Num certo instante, a esfera é desprendida da base do recipiente e inicia um movimento vertical. Admita que, $\,t\,$ segundos após esse instante, a distância, em centímetros, do centro da esfera ao ponto $\,P\,$ é dada por

$$d(t) = 10 + (5 - t)e^{-0.05t}$$
 $(t \ge 0)$

3.1. Sabe-se que a distância do ponto P à base do recipiente é $16\,\mathrm{cm}$ Determine o volume da esfera.

Apresente o resultado em cm³, arredondado às centésimas.

Figura 3

- **3.2.** Determine o instante em que a distância do centro da esfera ao ponto P é mínima, recorrendo a métodos analíticos, sem utilizar a calculadora.
- **4.** Seja f a função, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} \frac{e^x - \sqrt{e}}{2x - 1} & \text{se } x < \frac{1}{2} \\ (x + 1) \ln x & \text{se } x \ge \frac{1}{2} \end{cases}$$

Resolva os itens 4.1. e 4.2. recorrendo a métodos analíticos, sem utilizar a calculadora.

- **4.1.** Averigue da existência de assíntotas verticais do gráfico da função f
- **4.2.** Estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão, no intervalo $\left]\frac{1}{2}, +\infty\right[$

Na sua resposta, apresente:

- ullet o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para cima;
- as coordenadas do(s) ponto(s) de inflexão do gráfico de f

4.3. Mostre que a equação f(x) = 3 é possível em]1, e[e, utilizando a calculadora gráfica, determine a única solução desta equação, neste intervalo, arredondada às centésimas.

Na sua resposta:

- recorra ao teorema de Bolzano para provar que a equação f(x) = 3 tem, pelo menos, uma solução no intervalo]1, e[
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) que visualizar na calculadora, devidamente identificado(s);
- apresente a solução pedida.
- **5.** Considere, num referencial o.n. Oxyz, os pontos A(0,0,2) e B(4,0,0)
 - **5.1.** Considere o plano α de equação x-2y+z+3=0

Escreva uma equação do plano que passa no ponto A e é paralelo ao plano lpha

- **5.2.** Determine uma equação cartesiana que defina a superfície esférica da qual o segmento de reta [AB] é um diâmetro.
- **5.3.** Seja P o ponto pertencente ao plano xOy tal que:
 - ullet a sua abcissa é igual à abcissa do ponto $\,B\,$
 - a sua ordenada é positiva;
 - $B\hat{A}P = \frac{\pi}{3}$

Determine a ordenada do ponto P

6. Sejam f e g as funções, de domínio \mathbb{R} , definidas, respetivamente, por

$$f(x) = 1 - \cos(3x)$$
 e $g(x) = \sin(3x)$

Seja $\,a\,$ um número real pertencente ao intervalo $\,\left|\frac{\pi}{3},\,\frac{\pi}{2}\right|$

Considere as retas r e s tais que:

- a reta r é tangente ao gráfico da função f no ponto de abcissa a
- a reta s é tangente ao gráfico da função g no ponto de abcissa $a + \frac{\pi}{6}$

Sabe-se que as retas r e s são perpendiculares.

Mostre que sen $(3a) = -\frac{1}{3}$

– Página em branco ––––	

COTAÇÕES

GRUPO I

1.	a 8 (8 × 5 pontos)	40 pontos	
			40 pontos
	GRUPO II		
1.		15 pontos	
2.	2.1	15 pontos	
	2.2.	15 pontos	
•			
3.	3.1.	10 pontos	
	3.2.	15 pontos	
4.			
	4.1	15 pontos	
	4.2.	15 pontos	
	4.3.	15 pontos	
5.			
Э.	5.1.	5 pontos	
	5.2.	10 pontos	
	5.3.	15 pontos	
		·	
6.		15 pontos	
			160 pontos
	TOTAL		200 pontos