Absolutely! **Feature-target association tests** are used in **diagnostic analytics** to determine how strongly each feature (independent variable) is associated with a target variable (dependent variable), often before building predictive models. These tests depend on the data types involved (categorical, numeric, ordinal) and the nature of the relationship you're exploring.

Below is a curated list of **commonly used feature-target association tests**, categorized by data type combinations, with the **purpose**, **test name**, and **Python library** for each.

1. Categorical Feature vs Categorical Target

Test	Purpose	Python Implementation
Chi-Squared Test	Tests independence between two categorical variables	scipy.stats.chi2_contingency
Fisher's Exact Test	Alternative to chi-squared for small sample sizes	scipy.stats.fisher_exact
Cramér's V	Measures strength of association (0–1 scale)	pingouin.cramers_v or custom
Theil's U (Uncertainty	Asymmetric measure of information	dython.nominal.theils_u
Coefficient)	gain	
Mutual Information (Categorical)	Measures information shared between two variables	sklearn.feature_selection.mutual_info_clas

2. Numeric Feature vs Categorical Target

(Assumes binary or multi-class target)

Test	Purpose	Python Implementation
ANOVA F-test	Compares means across groups (multi-class target)	sklearn.feature_selection.f_classif
Point-Biserial	Special case of Pearson's r for binary	scipy.stats.pointbiserialr
Correlation	target	
T-test (independent samples)	Compare means between two classes	scipy.stats.ttest_ind
Kruskal-Wallis Test	Non-parametric version of ANOVA	scipy.stats.kruskal
$egin{aligned} \mathbf{Mutual\ Information} \ \mathbf{(Numeric)} \end{aligned}$	Measures non-linear dependence	sklearn.feature_selection.mutual_info_classif

3. Numeric Feature vs Numeric Target

(Continuous regression targets)

Test	Purpose	Python Implementation
Pearson Correlation	Measures linear association	scipy.stats.pearsonr
Spearman Rank Correlation	Measures monotonic relationships	scipy.stats.spearmanr

Test	Purpose	Python Implementation
Kendall's Tau	Measures ordinal association	scipy.stats.kendalltau
Mutual Information (Regressor)	Captures nonlinear relationships	sklearn.feature_selection.mutual_info_regression
Maximal Information Coefficient (MIC)	General association strength	minepy or sklearn-contrib
-		

4. Categorical Feature vs Numeric Target

(Reverse of category vs numeric)

Test	Purpose	Python Implementation
ANOVA F-test	Tests if means differ by group	<pre>statsmodels.formula.api.ols + .fit() + .anova_lm()</pre>
T-test Eta Squared	For two-category variables Effect size for ANOVA	<pre>scipy.stats.ttest_ind pingouin.anova or custom</pre>
Boxplots &	Helps understand distributional	seaborn.boxplot, sns.violinplot
Visual EDA	separation	

Bonus: Model-Based Feature Importance

While not tests in a strict statistical sense, these are very commonly used in diagnostic analytics:

Test	Purpose	Python Implementation
Logistic Regression	Linear relationship to odds	sklearn.linear_model.LogisticRegression
Coefficients		
Random Forest Feature	Nonlinear association	sklearn.ensemble.RandomForestClassifier
Importance	importance	
SHAP Values	Local/global interpretability	shap
Permutation Importance	Measures change in performance	sklearn.inspection.permutation_importance

Tips on Choosing a Test

- Use Chi-Squared, Cramér's V, or Mutual Info for categorical-to-categorical.
- Use ANOVA, t-test, or Point-Biserial for numeric-to-categorical.
- Use **Pearson/Spearman** for numeric-to-numeric.
- Use Mutual Information for detecting nonlinear relationships.
- Use **SHAP** or **Permutation Importance** for model-based insights.

Would you like a flowchart or cheat sheet to help choose the right test based on data types?