CS3230 Tutorial 9

AY 25/26 Sem 1 — github/omgeta

- Q1). (a.) True; reduce to solving for optimum and checking if $\leq k$
 - (b.) True; reduce to solving decision problem O(n) times
 - (c.) True; follows from contraposition in (a) of polynomial-reduction
 - (d.) True; follows from contraposition in (b) of polynomial-reduction
- Q2). (c); this reduction ignores the preservation of set S
- Q3). (a); trivial

 - (b); if a subset sums to $\frac{S}{2}$, just choosing those items for the knapsack satisfies $W \leq \frac{S}{2} \leq V$ (c); since every item has same weight as value, and we solve for $W \leq \frac{S}{2} \leq V$, we force $W = V = \frac{S}{2}$ so the knapsack contains exactly half the sum \rightarrow Partition YES
- Q4). Algorithm: transform unweighted graph G into complete weighted G^{\prime} with

$$w(u, v) = \begin{cases} 1, & \text{if } (u, v) \in G \\ 2, & \text{otherwise} \end{cases}$$

Transformation is $O(n^2)$ by building edges between each of the n edges, and comparing with original graph in O(1) each.

Suppose HC-Yes, then the same tour in G' costs |V| due to each edge only costing $1 \to \infty$ TSP-YES for |V|

Suppose TSP-Yes, then the tour must have all edges cost 1 to keep total cost $\leq |V| \rightarrow \text{HC-YES}$