诚信应考,考试作弊将带来严重后果!

考试中心填写:

年	F]	日
考	试	用	

湖南大学课程考试试卷

课程名称: <u>高等数学 A2</u>; 课程编码: _____; 试卷编号: <u>A</u>; 考试时间: 120 分钟

题 号	1-3	4-5	6-7	8-9	10-11	12-13		总分
应得分	18	12	16	16	18	20		100
实得分								
评卷人								

一、计算题 I (每小题 6 分, 共 30 分)

1-3 题得分

- $1. 求极限: \lim_{\substack{x \to 0 \\ y \to 2}} \frac{\sin xy}{x} .$
- 2. 求过点 P(1,2,3) 和 Q(3,5,7) 的直线方程.

3. 设 f 是可微的二元函数,求 $z = f(xy, x^2 - y^2)$ 的一阶偏导数 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$

装订线(答题不得超过此线

4. 求函数 u = xy + yz + zx 在点 (1,1,2) 处沿从坐标原点到点 $P(1,\sqrt{2},1)$ 的方向I的方向导数.

4-5 题得分

5. 计算曲线积分 $I=\int_L \sqrt{y}ds$, 其中 L 是抛物线 $y=x^2$ 上点 O(0,0) 与 B(1,1) 之间的一段 弧.

二、计算题 II (每小题 8 分, 共 40 分)

6-7 题得分

6. 已知由方程
$$\frac{x^2}{4} + \frac{y^2}{8} + \frac{z^2}{16} = 1$$
确定了 z 为 x , y 的函数,求二阶偏导

数
$$\frac{\partial^2 z}{\partial x^2}$$
及 $\frac{\partial^2 z}{\partial x \partial y}$.

7. 计算二重积分
$$I = \iint_D \sqrt{x^2 + y^2} dx dy$$
, 其中 $D: x^2 + y^2 \le 2x$.

8. 计算三重积分 $I = \iiint_{\Omega} z dx dy dz$, 其中 $\Omega: x^2 + y^2 + z^2 \le 4z, z \ge \sqrt{x^2 + y^2}$.

8-9 题得分

9. 计算曲面积分 $I=\iint_{\Sigma} xyzdxdy$, 其中 Σ 是球面 $x^2+y^2+z^2=1$ 的外侧在 $x\geq 0, y\geq 0$ 的部分.

10. 计算曲线积分 $I = \int_L (e^x \sin y - my) dx + (e^x \cos y - m) dy$, 其中 L 是从点 A(a,0) 经上半圆周 $x^2 + y^2 = ax(a > 0)$ 到点 O(0,0) 的一段 10-11 题得分

三、解答题(每小题10分,共30分)

圆弧.

11. 求幂级数 $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$ 的收敛域及和函数.

12. 求锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 所割下部分的面积.

12-13 题得分

13.已知
$$M(x_0, y_0, z_0)$$
为椭球面 $x^2 + \frac{y^2}{2} + \frac{z^2}{4} = 1$ 上的一点,

(1)求该椭球面在点M 处的切平面方程; (2)若M 点在第一卦限,要使切平面与三个 坐标平面所围成的四面体的体积最小,求M 点的坐标,并求此最小体积.