Miscellaneous Problems on A.P., G.P. and H.P. Problems 191-200

Shiv Shankar Dayal

January 17, 2022

191. If a,b,c>0, show that $(a+b)(b+c)(a+c)\geq 8abc$

Solution: We know that $A.M. \ge G.M.$

$$\frac{a+b}{2} \ge \sqrt{ab}, \frac{b+c}{2} \ge \sqrt{bc}, \frac{a+c}{2} \ge \sqrt{ac}$$

Multiplying, we get

$$(a+b)(b+c)(c+a) \geq 8abc$$

192. If
$$x+y+z=a$$
, show that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq\frac{9}{a}$

Solution: We know that $A.M \ge H.M.$

$$\frac{x+y+z}{3} \ge \frac{3}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}$$
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{a}$$

193. If n is a positive integer, show that $n^n \geq 1.3.5 \dots (2n-1)$

Solution: We know that $A.M \ge G.M$.

$$\begin{split} \frac{1+3+5+\ldots+(2n-1)}{n} &\geq (1.3.5.\ldots(2n-1))^{\frac{1}{n}} \\ \Rightarrow \frac{n^2}{n} &\geq (1.3.5.\ldots(2n-1))^{\frac{1}{n}} \\ \Rightarrow n^n &\geq 1.3.5\ldots(2n-1) \end{split}$$

194. Find the greatest value of $(7-x)^4(2+x)^5$ if -2 < x < 7

Solution: We consider seven numbers five of which are 2 + x and remaining four are 7 - x. Now, we know that A.M \geq G.M.

$$\frac{4 \cdot \frac{7-x}{4} + 5 \cdot \frac{2+x}{5}}{9} \ge \left[\left(\frac{7-x}{4} \right)^4 \left(\frac{2+x}{5} \right)^5 \right]^{\frac{1}{9}}$$
$$\frac{9}{9} \ge \left[\left(\frac{7-x}{4} \right)^4 \left(\frac{2+x}{5} \right)^5 \right]^{\frac{1}{9}}$$
$$(7-x)^4 (2+x)^5 \le 4^4 \cdot 5^5$$

So the greatest value would be $4^4.5^5\,$

195. If x, y > 0, find the least value of 3x + 4y, when $x^2y^3 = 6$.

Solution: We consider five numbers two of which are $\frac{3x}{2}$ and remaining three are $\frac{4y}{3}$. Now we know that, A.M. \geq G.M.

$$\frac{2 \cdot \frac{3x}{2} + 3 \cdot \frac{4y}{3}}{5} \ge \left[\left(\frac{3x}{2} \right)^2 \left(\frac{4y}{3} \right)^3 \right]^{\frac{1}{5}}$$

$$\Rightarrow \frac{3x + 4y}{5} \ge \left[\frac{9x^2}{4} \cdot \frac{64y^3}{27} \right]^{\frac{1}{5}}$$

$$\Rightarrow 3x + 4y < 5 \cdot 32^{\frac{1}{5}} = 10$$

So the least value of 3x + 4y is 10.

196. If a,b,c>0, show that $\frac{bc}{b+c}+\frac{ca}{c+a}+\frac{ab}{a+b}\leq \frac{a+b+c}{2}$

Solution: We know that $A.M \ge H.M$.

$$\frac{a+b}{2} \ge \frac{2ab}{a+b}, \frac{b+c}{2} \ge \frac{2bc}{b+c}, \frac{c+a}{2} \ge \frac{2ca}{c+a}$$
$$\frac{a+b+c}{2} \ge \frac{bc}{b+c} + \frac{ca}{c+a} + \frac{ab}{a+b}$$

197. If a,b,c>0, show that $\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\geq 6$

Solution:

$$\begin{split} &(a-b)^2 \ge 0, (b-c)^2 \ge 0, (c-a)^2 \ge 0 \\ \Rightarrow & \frac{(a-b)^2}{ab} \ge 0, \frac{(b-c)^2}{bc} \ge 0, \frac{(c-a)^2}{ac} \ge 0 \\ \Rightarrow & \frac{a^2+b^2}{ab} \ge 2, \frac{b^2+c^2}{bc} \ge 2, \frac{c^2+a^2}{ca} \ge 2 \\ \Rightarrow & \frac{a}{b} + \frac{b}{a} + \frac{b}{c} + \frac{c}{b} + \frac{a}{c} \ge 6 \\ \Rightarrow & \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 6 \end{split}$$

198. If
$$x_i > 0, i = 1, 2, 3, \dots, n$$
 show that $(x_1 + x_2 + \dots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right) \ge n^2$

Solution: We know that $A.M. \ge H.M.$

$$\begin{split} \frac{x_1+x_2+\ldots+x_n}{n} &\geq \frac{n}{\left(\frac{1}{x_1}+\frac{1}{x_2}+\ldots+\frac{1}{x_n}\right)} \\ \Rightarrow &\left(x_1+x_2+\ldots+x_n\right)\left(\frac{1}{x_1}+\frac{1}{x_2}+\ldots+\frac{1}{x_n}\right) \geq n^2 \end{split}$$

199. If x,y are positive real numbers and m,n are positive integers, then show that $\frac{x^ny^m}{(1+x^{2n})(1+y^{2m})} \leq \frac{1}{4}$

Solution: We know that A.M \geq G.M.Considering 1 and x^{2n}

$$\Rightarrow \frac{1+x^{2n}}{2} \ge \sqrt{1.x^{2n}} = x^n$$

Considering 1 and y^{2m}

$$\Rightarrow \frac{1+y^{2m}}{2} \ge \sqrt{1.y^{2m}} = y^m$$

Myltiplying, we get

$$(1+x^{2n})(1+y^{2m}) \ge 4x^n y^m$$
$$\frac{x^n y^m}{(1+x^{2n})(1+y^{2m})} \le \frac{1}{4}$$

200. If the arithmetic mean of $(b-c)^2$, $(c-a)^2$ and $(a-b)^2$ is the same as that of $(b+c-2a)^2$, $(c+a-2b)^2$ and $(a+b-2c)^2$, show that a=b=c

Solution: Let b-c=x, c-a=y and $a-b=z, \Rightarrow x+y+z=0$. This also implies that a+b-2c=x-y, b+c-2a=y-z, c+a-2b=z-x

Clearly, x + y + z = 0

Given,

$$\frac{(x-y)^2 + (y-z)^2 + (z-x)^2}{3} = \frac{x^2 + y^2 + z^2}{3}$$

$$\Rightarrow x^2 + y^2 + z^2 - 2xy - 2yz - 2zx = 0$$

$$\Rightarrow (x+y+z)^2 = 4(xy+yz+zx)$$

$$\Rightarrow xy + yz + zx = 0$$

$$\Rightarrow (c-a)(a-b) + (a-b)(b-c) + (c-a)(b-c) = 0$$

$$\Rightarrow ca - bc - a^2 + ab + ab - ca - b^2 + bc + bc - c^2 - ab + ca = 0$$

$$\Rightarrow ab + bc + ca - a^2 - b^2 - c^2 = 0$$

$$\Rightarrow (a-b)^2 + (b-c)^2 + (c-a)^2 = 0$$

$$\Rightarrow a = b = c$$