Correction TD 1 - Fonctions usuelles

Entraînements

Exercice 1. À l'aide d'une étude de fonction, démontrer les inégalités suivantes :

1.
$$\forall x > 0, \ x - \frac{x^2}{2} \le \ln(1+x) \le x$$

2.
$$\forall x \in \mathbb{R}^+ : e^x - \frac{x^2}{2} \ge 1$$
.

Correction 1. Utilisation d'une étude de fonction.

- 1. Montrons que $\forall x > 0, \ x \frac{x^2}{2} \le \ln(1 + x) \le x$: On démontre l'inégalité en deux temps.
 - Montrons d'abord que pour tout x > 0 : $x \frac{x^2}{2} \le \ln(1+x)$:

On pose pour cela la fonction $f(x) = \ln(1+x) - x + \frac{x^2}{2}$. Cette fonction est bien définie sur \mathbb{R}^+ et elle est dérivable sur \mathbb{R}^+ comme composée et somme de fonctions dérivables. On obtient pour tout $x \geq 0$: $f'(x) = \frac{1}{1+x} - 1 + x = \frac{x^2}{1+x}$. Comme on est sur \mathbb{R}^+ , on a : $f'(x) \geq 0$. On obtient donc les variations suivantes en utilisant le fait que f(0) = 0:

x	0	$+\infty$
f'(x)		+
f(x)	0	

Ainsi 0 est le minimum de f sur \mathbb{R}^+ et on obtient bien que pour tout x > 0 : $\ln(1+x) - x + \frac{x^2}{2} \ge 0$, à savoir $x - \frac{x^2}{2} \le \ln(1+x)$.

- On montre de même la deuxième inégalité en étudiant la fonction $g(x) = \ln(1+x) x$.
- 2. Montrons que $\forall \mathbf{x} \in \mathbb{R}^+, \ \mathbf{e}^{\mathbf{x}} \frac{\mathbf{x}^2}{2} \ge 1$:

Pour tout $x \in \mathbb{R}^+$, on pose $f(x) = e^x - \frac{x^2}{2} - 1$. La fonction f est définie et dérivable sur \mathbb{R} comme somme de fonctions définies et dérivables. On a, pour tout $x \in \mathbb{R}$,

$$f'(x) = e^x - x.$$

Or on a montré dans le cours (il faudrait refaire le raisonnement) que l'on a $e^x \ge x+1$ pour tout $x \in \mathbb{R}$, donc on a $f'(x) \ge 0$ sur \mathbb{R}^+ . On obtient alors le tableau de variation suivant

x	0	$+\infty$
f'(x)	+	
f(x)	0	$+\infty$

Justifions les limites aux bornes : on a : $f(0) = e^0 - 0 - 1 = 0$. L'étude en $+\infty$ fait apparaître une forme indéterminée. Pour lever l'indétermination, on met en facteur le terme dominant à savoir e^x et on obtient ainsi : $f(x) = e^x \left(1 - \frac{x^2}{2e^x} - \frac{1}{e^x}\right)$. Par croissance comparée, on sait que

 $\lim_{x\to +\infty} \frac{x^2}{2e^x} = 0$. Ainsi par quotient, somme et produit de limite, on obtient que $\lim_{x\to +\infty} f(x) = +\infty$. Ainsi, 0 est le minimum de f atteint en x=0 et donc la fonction f est toujours positive ou nulle. Ainsi, on a bien

$$\forall x \in \mathbb{R}, \ e^x \ge \frac{x^2}{2} + 1.$$

Exercice 2. Pour chacune des expressions, donner le domaine de définition et simplifier quand c'est possible.

1.
$$f(x) = x \ln \sqrt{e^{\frac{x}{2}}} + \left(\sqrt{e^{2\ln(2x-1)}}\right)^3$$
.

2.
$$g(x) = e^{\sqrt{\ln x}} + e^{(\ln x)^2}$$
.

Correction 2.

1. $f(x) = x \ln \sqrt{e^{\frac{x}{2}}} + \left(\sqrt{e^{2\ln(2x-1)}}\right)^3$: La fonction f est bien définie si et seulement si $\sqrt{e^{\frac{x}{2}}} > 0$, $e^{\frac{x}{2}} \ge 0$, 2x - 1 > 0 et $e^{2\ln(2x-1)} \ge 0$. Comme toute exponentielle est strictement positive, la fonction f est bien définie si et seulement si $2x - 1 > 0 \Leftrightarrow x > \frac{1}{2}$. Ainsi $\mathcal{D}_f =]\frac{1}{2}, +\infty[$. Pour tout $x > \frac{1}{2}$, on a:

$$f(x) = x \ln \left(e^{\frac{x}{2}} \right)^{\frac{1}{2}} + \left(e^{2 \ln (2x-1)} \right)^{\frac{3}{2}} = x \ln \left(e^{\frac{x}{4}} \right) + \left(e^{\ln ((2x-1)^2)} \right)^{\frac{3}{2}} = x \times \frac{x}{4} + ((2x-1)^2)^{\frac{3}{2}} = \frac{x^2}{4} + (2x-1)^3$$

2. $g(x) = e^{\sqrt{\ln x}} + e^{(\ln x)^2}$. La fonction g est bien définie si et seulement si x > 0 et $\ln x \ge 0 \Leftrightarrow x \ge 1$. Ainsi $\mathcal{D}_g = [1, +\infty[$.

On ne peux RIEN simplifier car $\sqrt{\ln x} = (\ln x)^{\frac{1}{2}} \neq \frac{1}{2} \ln (x)$... De même, on a : $(\ln x)^2 \neq \ln (x^2)$... et on ne peux rien faire avec $(\ln x)^2$.

Exercice 3. Etudier les fonctions suivantes :

1.
$$f_1: x \mapsto (2x^2 - 4x + 5)e^x - xe^{(x^2)}$$

2.
$$f_2: x \mapsto \ln(x^2 + x + 1) - x$$

3.
$$f_3: x \mapsto xe^{-x^2+x}$$

4.
$$f_4: x \mapsto x^2 e^{(-x^2)}$$

5.
$$f_5: x \mapsto x \ln(x)$$

6.
$$f_6: x \mapsto \frac{e^x}{e^{2x} + 1}$$

Type DS

Exercice 4. Soit f la fonction définie par

$$f(x) = \frac{e^x}{\ln(x)}$$

- 1. Donner l'ensemble de définition et de dérivation de f.
- 2. Calculer la dérivée de f en déduire que le signe de f' dépend de celui de $g(x) = \ln(x) \frac{1}{x}$

- 3. Donner l'ensemble de définition et de dérivation de q et calculer sa dérivée.
- 4. Montrer qu'il existe un unique $\alpha \in]1, +\infty[$ tel que f'(x) > 0 sur $]\alpha, +\infty[$ et f'(x) < 0 sur $]0, \alpha[\cap D_f]$.
- 5. Donner le tableau de variations complet de f.
- 6. Donner l'équation de la tangente à la courbe représentative de f en e.

Correction 3. 1. La fonction exp est définie et dérivable sur \mathbb{R} . La fonction ln est définie et dérivable sur $]0, +\infty[$. La fonction inverse est définie et dérivable sur \mathbb{R}^* et enfin $\ln(x) = 0$ si et seulement si x = 1 donc la fonction f est définie et dérivable sur $D_f =]0, 1[\cup]1, +\infty[$.

2. On a pour tout $x \in D_f$

$$f'(x) = \frac{e^x \ln(x) - e^x \frac{1}{x}}{\ln^2(x)} = \frac{e^x}{\log^2(x)} g(x)$$

Comme poru tout $x \in D_f$, $\frac{e^x}{\log^2(x)} \ge 0$, le signe de f' est égal à celui de $g(x) = \ln(x) - \frac{1}{x}$.

- 3. g est définie et dérivable sur $]0, +\infty[$ et on a $g'(x) = \frac{1}{x} + \frac{1}{x^2}$ Ainsi g'(x) est positif prou tout $x \in]0, +\infty[$.
- 4. La fonciton g est strictement croissante. Comme $\lim_{x\to 0} g(x) = -\infty$ $\lim_{x\to \infty} g(x) = \infty$, le théorème de la bijection assure qu'il existe un unique $\alpha \in]0, +\infty[$ tel que $g(\alpha) = 0$ Comme g(1) = -1 < 0 et que g est strictement croissante, on a de plus $\alpha > 1$

6. On a $f'(e) = e^e g(e) = -e^e (1 - \frac{1}{e}) = -e^e + e^{e-1}$ et $f(e) = e^e$ Donc l'équation de la tangente à la courbe représentative de f en e et donnée par

$$y - e^e = (-e^e + e^{e-1})(x - e)$$

Exercice 5 (BAC 1997 PONDICHERY). On considère la fonction f définie sur $[0; +\infty[$ par

$$f(x) = \frac{e^x - 1}{xe^x + 1}$$

On désigne par $\mathcal C$ sa courbe représentative dans le plan rapporté à un repère orthonormal $(\mathcal O, \vec i, \vec j)$

Partie A

* étude d'une fonction auxiliaire

Soit la fonction g définie sur l'intervalle $[0; +\infty[$ par

$$g(x) = x + 2 - e^x.$$

- 1. Étudier le sens de variation de g sur $[0; +\infty[$ et déterminer la limite de g en $+\infty$.
- 2. (a) Montrer que l'équation g(x) = 0 admet une solution et une seule dans $[0 ; +\infty[$. On note α cette solution.
 - (b) Prouver que $1 < \alpha < 2$. (On rappelle que 2 < e < 3)

3. En déduire le signe de g(x) suivant les valeurs de x.

Partie B

- \star Étude de la fonction f et tracé de la courbe $\mathcal C$
- 1. (a) Montrer que, pour tout x appartenant à $[0; +\infty[$,

$$f'(x) = \frac{e^x g(x)}{(xe^x + 1)^2}.$$

- (b) En déduire le sens de variation de la fonction f sur $[0; +\infty[$.
- 2. (a) Montrer que pour tout réel positif x,

$$f(x) = \frac{1 - e^{-x}}{x + e^{-x}}$$

- (b) En déduire la limite de f en $+\infty$. Interpréter graphiquement le résultat trouvé.
- 3. (a) Établir que $f(\alpha) = \frac{1}{\alpha + 1}$.
 - (b) En utilisant l'encadrement de α établi dans la question **A.2.**, donner un encadrement de $f(\alpha)$.
- 4. Déterminer une équation de la tangente (T) à la courbe C au point d'abscisse 0.
- 5. (a) Établir que, pour tout x appartenant à l'intervalle $[0; +\infty[$,

$$f(x) - x = \frac{(x+1)u(x)}{xe^x + 1}$$
 avec $u(x) = e^x - xe^x - 1$.

- (b) Étudier le sens de variation de la fonction u sur l'intervalle $[0; +\infty[$. En déduire le signe de u(x).
- (c) Déduire des questions précédentes la position de la courbe \mathcal{C} par rapport à la droite (T).
- 6. Tracer \mathcal{C} et (T).