Practice problems for midterm

April 5, 2024

- 1. Suppose we have a population $\{1, 2, 3, 4, 5\}$. Suppose that we draw a random sample X_1, X_2, \dots, X_n from this population with replacement. How much n should be so that the variance of the sample mean is equal to or smaller than 0.1?
- 2. Suppose we want to transform the left dataset(D) into the right dataset(D2), where the unit of height is not centimeters but meters. **Which matrix** should we multiply to D and on **which side** (left or right) of D should we multiply it?

1 156.59 45.78 1 1.5659 2 172.70 62.65 2 1.7270 3 154.18 43.89 3 1.5418	D.head()		
1 156.59 45.78 1 1.5659 2 172.70 62.65 2 1.7270 3 154.18 43.89 3 1.5418		height	weight
2 172.70 62.65 2 1.7270 3 154.18 43.89 3 1.5418	0	158.64	48.00
3 154.18 43.89 3 1.5418	1	156.59	45.78
1.0410	2	172.70	62.65
4 1.7839 4 1.7839	3	154.18	43.89
	4	178.39	66.24

- 3. Suppose we have random variables X_1, X_2, \cdots, X_n which are identically distributed with expectation μ and variance σ^2 . $(E(X_1) = E(X_2) = \cdots = E(X_n) = \mu$ and $Var(X_1) = Var(X_2) = \cdots = Var(X_n) = \sigma^2$.) Suppose however that X_1, X_2, \cdots, X_n are not independent and $Cov(X_i, X_j) = \rho^2 > 0$ for any $i \neq j$. Let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
 - (a) What is $E(\bar{X})$? Show your derivation.
 - (b) What is $Var(\bar{X})$? Show your derivation.
 - (c) What is the meaning of (b)?

- 4. In the following code,
 - (a) express the expected outcome using the cumulative distribution function of the standard normal distribution, $\Phi()$.
 - (b) explain how sum(reject)/len(reject) will change according to the value of sigma and n.

```
In [1]: import numpy as np
import scipy.stats as stats

In [2]: sigma=1
n=100

In [3]: reject=[]
for i in range(1000000):
    samp=np.random.normal(loc=-0.1,scale=sigma,size=n)
    Z=(np.mean(samp)-0)/sigma*np.sqrt(len(samp))
    reject.append(Z<stats.norm.ppf(0.05))

In [4]: sum(reject)/len(reject)</pre>
```

5. Consider a simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \quad (i = 1, 2, \cdots, N)$$

where ε_i 's are i.i.d. with mean 0. Consider the following, slightly different model

$$y_i = \alpha_0 + \alpha_1(x_i - \bar{x}) + \varepsilon_i \quad (i = 1, 2, \dots, N)$$

where $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$. Suppose $\hat{\beta}$ and $\hat{\alpha}$ are least-squares estimates. Prove that $\hat{\alpha}_1 = \hat{\beta}_1$.

6. Suppose we have data $(x_1, y_1), (x_2, y_2), \cdots, (x_{10}, y_{10})$ which satisfy

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad (1 \le i \le 10)$$

where $\varepsilon_1, \dots, \varepsilon_{10}$ are independent with $E(\varepsilon_i) = 0$ and $Var(\varepsilon_i) = 2$ for every i. Suppose the values of x_i can be selected anywhere between 0 and 2. What is the smallest value of $Var(\hat{\beta}_1)$ possible? $(\hat{\beta}_1)$ is the estimate of β_1 obtained by Least-Square Method.) Explain the response.

7. Suppose we conduct linear regression on outcome variable (y) and explanatory variable (x). We posit the following model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{1}$$

where ε_i 's are i.i.d. $\mathcal{N}(0, \sigma^2)$.

Consider the following, slightly different model

$$y_i = \alpha_0 + \alpha_1 c x_i + \epsilon_i \tag{2}$$

where ϵ_i 's are i.i.d. $\mathcal{N}(0, \sigma^2)$.

In (2), we scaled the variable x_i by $c(\neq 0)$. (For example, when x_i is the height in cm, we can change it to height in meter by multiplying c = 0.01.)

Prove that the test results for

$$H_0: \beta_1 = 0$$
 vs $H_1: \beta_1 \neq 0$

and

$$H_0: \alpha_1 = 0$$
 vs $H_1: \alpha_1 \neq 0$

are identical. (Assume we know the value of σ^2 .)

8. Let
$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$
, $X = \begin{bmatrix} 1 & x_{11} & x_{21} \\ 1 & x_{12} & x_{22} \\ \vdots & \vdots & \vdots \\ 1 & x_{1N} & x_{2N} \end{bmatrix}$, $\mathcal{E} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_N \end{bmatrix}$, $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$. Suppose

we have

$$Y = X\beta + \mathcal{E}$$

where
$$\varepsilon_1, \dots, \varepsilon_N$$
 are independent with $E[\varepsilon_i] = 0$ and $Var[\varepsilon_i] = \sigma^2$ for every i .
Also, suppose $X^TX = \begin{bmatrix} 4 & -2 & 6 \\ -2 & 2 & -5 \\ 6 & -5 & 29 \end{bmatrix}$ and $X^TY = \begin{bmatrix} 22 \\ -14 \\ 71 \end{bmatrix}$.

- (a) Conduct Cholesky decomposition of X^TX .
- (b) What is the least-square estimate of β ? (Do not use the inverse formula of 3×3 matrix.)

9. Let
$$M = \begin{bmatrix} y_1 & x_{11} & x_{21} \\ y_2 & x_{12} & x_{22} \\ \vdots & \vdots & \vdots \\ y_N & x_{1N} & x_{2N} \end{bmatrix}$$
. We posit the following model

$$y_i = \beta_0 + \beta_1(x_{1i} - \bar{x}_1) + \beta_2(x_{2i} - \bar{x}_2) + \varepsilon_i$$

where ε_i 's are i.i.d. with mean 0 and $\bar{x}_1 = \frac{1}{N} \sum_{i=1}^N x_{1i}$, $\bar{x}_2 = \frac{1}{N} \sum_{i=1}^N x_{2i}$. Suppose N = 15, $\sum_{i=1}^N y_i = 45$, and suppose we have

$$M^T \left(I - \frac{1}{N} \mathbf{1} \mathbf{1}^T \right) M = \begin{bmatrix} 5 & 30 & -30 \\ 30 & 10 & 0 \\ -30 & 0 & 15 \end{bmatrix},$$

where I is $N \times N$ identity matrix and $\mathbf{1}$ is a $N \times 1$ vector with all elements equal to 1. What are the least-squares estimates of β_0, β_1 and β_2 ?

10. Suppose we conduct linear regression on outcome variable (y) and explanatory variables (x_1, x_2, \dots, x_p) . We posit the following model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i$$

where ε_i 's are i.i.d. with mean 0.

Consider the following, slightly different model

$$y_i = \alpha_0 + \alpha_1 \underline{c_1 x_{i1}} + \alpha_2 \underline{c_2 x_{i2}} + \dots + \alpha_p c_p x_{ip} + \varepsilon_i$$

where $c_1, c_2, \dots, c_p \neq 0$. (For example, when x_{i1} is the height in cm, we can change it to height in meter by multiplying $c_1 = 0.01$.)

Suppose $\hat{\beta}$ and $\hat{\alpha}$ are least-squares estimates. Using matrix operations, show that $\hat{\alpha}_j = \frac{1}{c_j}\hat{\beta}_j$ for $j = 1, 2, \dots, p$. (*Hint: see Problem 2*)