FREIBURG

Kapitel 4 – Sequentielle Logik

- 1. Speichernde Elemente
- 2. Sequentielle Schaltkreise
- 3. Entwurf sequentieller Schaltkreise
- 4. SRAM
- 5. Anwendung: Datenpfade von ReTI

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer

Professur für Rechnerarchitektur WS 2016/17

Entwurf sequentieller Schaltkreise

Sequentieller Schaltkreis:

Entwurfsschritte

- Optimierung des Zustandsdiagramms: Zustandsminimierung
 - Identifikation der äquivalenten Zustände.
 - Ergebnis: Ein (evtl. kleineres) Zustandsdiagramm.
- Wahl der Zustandskodierung.
 - Ergebnis: Anzahl der Flipflops im Register, Funktionen δ und λ (Zustands- und Ausgangstafel).
- Implementierung von δ und λ .
 - Kombinatorische Logiksynthese, z.B. Quine-McCluskey.

Zustandsminimierung

Idee:

Bestimme und verschmelze äquivalente Zustände.

Zwei Zustände sind äquivalent, wenn der Automat von ihnen aus bei gleichen Eingabefolgen stets die gleichen Ausgabefolgen produziert.

Weiteres Beispiel (1/4)

- Hinreichende Bedingung: Wenn bei zwei Zuständen bei gleicher Eingabe auch die gleiche Ausgabe erzeugt wird und der gleiche Folgezustand angenommen wird, dann sind die Zustände sicherlich äquivalent.
- Äquivalente Zustände können durch einen einzigen Zustand ersetzt werden (siehe nächste Folie).

Weiteres Beispiel (2/4)

Zustand e und d sind äquivalent.

Weiteres Beispiel (3/4)

Zustand e eliminiert. Zustand b und c sind äquivalent.

Weiteres Beispiel (4/4)

Zustand c eliminiert.

8/17

Entwurfsschritte

- Optimierung des Zustandsdiagramms: Zustandsminimierung
 - Identifikation der äquivalenten Zustände.
 - Ergebnis: Ein (evtl. kleineres) Zustandsdiagramm.
- Wahl der Zustandskodierung.
 - Ergebnis: Anzahl der Flipflops im Register, Funktionen δ und λ (Zustands- und Ausgangstafel).
- Implementierung von δ und λ .
 - Kombinatorische Logiksynthese, z.B. Quine-McCluskey.

Zustandskodierung

- **Ziel:** Wähle Zustandskodierung, die nachfolgende kombinatorische Synthese erleichtert.
- Dafür gibt es (heuristische) Verfahren.

Entwurf eines einfachen sequentiellen Schaltkreises am Beispiel

- Aufgabenbeschreibung (Textspezifikation): Modulo-4 Vorwärts/Rückwärtszähler
 - Der Zähler soll von 0 bis 3 zählen können.
 - Ist der Steuereingang x auf 1 gesetzt, so soll vorwärts gezählt werden, d.h. die Zahlenfolge 0,1,2,3 durchlaufen werden.
 - Ist *x* auf 0 gesetzt, so soll rückwärts gezählt werden, d.h. die Zahlenfolge 3,2,1,0 durchlaufen werden.
 - Am Ausgang ist der Zählerstand anzugeben (Ausgabevektor y₀, y₁). Der Zähler ist als Ringzähler zu realisieren.

SMILE - Zustände im Zustandsdiagramm

Wie viele Zustände benötigt das Zustandsdiagramm für den Zähler bei der gegebenen Spezifikation?

- a. 1
- b. 2
- c.**4**
- d. 8
- e. 16

Von der Textspezifikation zum Zustandsdiagramm

- 4 Zustände erforderlich.
- Startzustand 0.

Vom Zustandsdiagramm zur Zustands- und Ausgangstafel

- \blacksquare Zustandsminimierung \Rightarrow Keine äquivalente Zustände.
- Zustandskodierung: $0 \rightarrow \underline{00}, 1 \rightarrow \underline{01}, 2 \rightarrow \underline{10}, 3 \rightarrow \underline{11}$.

WS 2016/17

Implementierung des kombinatorischen Kerns

	Х	z_1^t	z_0^t	z_1^{t+1}	z_0^{t+1}	<i>y</i> ₁	<i>y</i> ₀
Vorwärts-	1	0	0	0	1	0	0
zählen	1	0	1	1	0	0	1
	1	1	0	1	1	1	0
	1	1	1	0	0	1	1
Rückwärts-	0	1	1	1	0	1	1
zählen	0	1	0	0	1	1	0
	0	0	1	0	0	0	1
	0	0	0	1	1	0	0

Übergangsfunktion:
$$Z_0^{t+1} = x\overline{Z}_1^t\overline{Z}_0^t + xZ_1^t\overline{Z}_0^t + \overline{x}Z_1^t\overline{Z}_0^t + \overline{x}\overline{Z}_1^t\overline{Z}_0^t$$

$$Z_1^{t+1} = x\overline{Z}_1^t Z_0^t + xZ_1^t \overline{Z}_0^t + \overline{X}Z_1^t Z_0^t + \overline{X}\overline{Z}_1^t \overline{Z}_0^t$$

Implementierung des komb. Kerns: Logikminimierung

Ausgangsfunktion:
$$\underline{y_0^t} = z_0^t$$
, $y_1^t = z_1^t$

Übergangsfunktion:
$$z_0^{t+1} = x\overline{z}_1^t \overline{z}_0^t + xz_1^t \overline{z}_0^t + \overline{x}z_1^t \overline{z}_0^t + \overline{x}\overline{z}_1^t \overline{z}_0^t$$

$$z_1^{t+1} = \underline{x}\overline{z}_1^t z_0^t + \underline{x}\underline{z}_1^t \overline{z}_0^t + \underline{x}\underline{z}_1^t z_0^t + \overline{x}\overline{z}_1^t \overline{z}_0^t$$

Minimierung:
$$z_0^{t+1} = \overline{z_0^t}$$

$$\underline{z_1^{t+1}} = x\overline{z_1^t}z_0^t + xz_1^t\overline{z_0^t} + \overline{x}z_1^tz_0^t + \overline{x}\overline{z_1^t}\overline{z_0^t}$$

Beispiel: Ergebnis

