O Problema do Carteiro Chinês e Variantes

Gabriel Fernandes de Oliveira Prof. Carlos Eduardo Ferreira

Instituto de Matemática e Estatística da USP

21 de outubro de 2020

Objetivos

AND STATE OF THE S

- Estudar o problema do carteiro chinês
- Documentar resultados
- Implementar e disponibilizar soluções

Mei-Ko Kwan

gafeol/chinese-postman

Definição

Definição

Encontrar uma rota fechada, de menor custo, que percorre toda aresta de um grafo ao menos uma vez.

Custo de rota: 13

Definição

Custo de rota: 13

Custo de rota: 10

Solução

Escolher uma rota que minimize o custo das arestas repetidas

- Em grafos eulerianos a solução ótima é um circuito euleriano
- Do contrário, copiam-se arestas para formar um supergrafo euleriano

Existem soluções polinomiais para os casos do problema em grafos direcionados e em grafos não direcionados.

Definição: Grafo euleriano

Grafo que possui um circuito (chamado circuito euleriano) que percorre todas arestas de um grafo uma única vez.

Solução

Caso direcionado

Resolvido usando uma formulação do problema de transporte.

Definem-se, de acordo com os graus de entrada e saída, vértices de oferta e demanda.

Caso não-direcionado

Resolvido usando algoritmo de emparelhamento perfeito entre vértices de grau ímpar.

Variantes

Todas variações estudadas são NP-completas.

Grafos mistos

- 2-aproximação Frederickson (1979).
- Aplica separadamente os algoritmos de emparelhamento e o problema de transporte para encontrar um supergrafo euleriano.

Rural

Nem todas arestas precisam ser percorridas.

- $\frac{3}{2}$ -aproximação Christofides (1976).
- A partir de uma árvore geradora mínima, encontra, com algoritmo de emparelhamento, o supergrafo euleriano de custo mínimo.

Variantes

Com ruas íngremes (ou com vento)

Custos diferentes para cada orientação de uma aresta.

- Caso especial, custo de cada circuito é o mesmo independente da direção em que são percorridos.
- Solução polinomial, de Mei-Ko Kwan (1983).
- Modifica custos das arestas do grafo, reduzindo o problema para uma instância simples do carteiro chinês.

Resultados

- Monografia disponibilizada.
- Soluções implementadas para as versões direcionado, não direcionado e misto.
- Documentação de código.
- Testes automatizados, cobertura de testes.

