MATRICES

MULTIPLICATION DE MATRICES

Soient $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et $(n, p, q) \in (\mathbb{N}^{\star})^3$.

1 Produit de deux matrices

Définition 1 Soient $A=(a_{i,j})\in M_{n,p}(\mathbb{K})$ et $B=(b_{i,j})\in M_{p,q}(\mathbb{K})$. Alors, le produit C=AB est une matrice de taille $n\times q$ dont les coefficients c_{ij} sont définis par :

$$\forall (i,j) \in [1,n] \times [1,q], \ c_{ij} = \sum_{k=1}^{p} a_{i,k} b_{k,j}.$$

Remarque 1 1. Le produit matriciel n'est pas commutatif en général.

2. AB = 0 n'implique pas A = 0 ou B = 0.

Proposition 1 Soient A, B et C des matrices à coefficients dans \mathbb{K} . Pourvu que les produits et sommes ci-dessous soient bien définis, on a

- 1. A(BC) = (AB)C (Associativité).
- 2. A(B+C) = AB + AC et (B+C)A = BA + CA (Distributivité).
- 3. A.0 = 0 et 0.A = 0.
- 4. $\forall \lambda \in \mathbb{K}, \lambda(AB) = (\lambda A)B$.

2 Matrice identité, puissances d'une matrice et formule du binôme de Newton

Pour
$$n\in\mathbb{N}^{\star}$$
, on note $I_n=\begin{pmatrix} 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 \\ 0 & . & \dots & 0 & 0 & 0 \\ 0 & . & \dots & 1 & 0 & 0 \\ 0 & . & \dots & 0 & 1 & 0 \\ 0 & . & \dots & 0 & 0 & 1 \end{pmatrix}$. C'est la **matrice identité**

d'ordre n.

Proposition 2 Soit $A \in M_{n,p}(\mathbb{K})$, alors $I_n.A = A$ et $A.I_p = A$.

Définition 2 (puissances d'une matrice) Pour tout $A \in M_n(\mathbb{K})$, on définit les puissances successives de A par $A^0 = I_n$ et $A^{p+1} = A^p \times A$ pour tout $p \in \mathbb{N}$. Autrement dit,

$$A^p = \underbrace{A \times A \times \dots \times A}_{p \ facteurs}.$$

Proposition 3 *(Formule du binôme de Newton)* Soit $(A,B) \in (M_n(\mathbb{K}))^2$ tel que $A \times B = B \times A$. Alors, $\forall p \in \mathbb{N}$

$$(A+B)^p = \sum_{k=0}^p \binom{p}{k} A^k B^{p-k}.$$

1 IONISX