Spis treści

1
2
4
7
10
12
15
18

Uwagi

Na egzaminie było 120 minut czasu. Było 10 zadań, wszystkie z czterema podpunktami - jeśli tutaj jakieś zadanie ma więcej podpunktów, znaczy że było wiele jego wersji. Warunki jak na kolokwiach – np. nie można było używać funkcji Stirlinga w odpowiedziach, trzeba było ją rozpisywać.

Funkcje tworzące można było zapisywać w "prostej" formie, typu $f(x)=(1+x+\ldots)\Big(1+\frac{x^2}{2!}+\frac{x^4}{4!}+\ldots\Big).$

Czasem były błędy w oficjalnym kluczu, niektóre udało się poprawić. Innymi słowy, na konsultacje puśćcie najmądrzejszych przodem, może uda im się coś wywalczyć dla innych ;)

Termin 1, 2024-02-02

- **1.** Zakładamy $1 \le m \le k < n$. Podaj W.

 - $\binom{n}{k}\binom{k}{m} = \binom{n}{m}\binom{W}{n-k}$
 - $k \binom{n}{k} = n \binom{n-1}{W}$
- 2. Uzupełnij.
 - 0 < k < n, S(n,k) =
 - $n \ge 1, \ S(n,n) =$
 - n > 2, S(n, 2) =
 - $n \ge 3$, S(n, n-2) =
- 3. Rozważamy ciągi o elementach ze zbioru $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
 - Liczba ciągów długości 7, w których sumy każdej sąsiedniej pary elementów są nieparzyste.
 - Liczba ciągów niemalejących długości 6.
 - Liczba ciągów różnowartościowych długości 5.
 - Liczba permutacji takich, że dla każdego parzystego $n, f(n) \neq n$.
- 4. $a_n=$ liczba ciągów długości n złożonych z $\{2,3,4,5,6\}$. 3 i 5 mają występować parzystą liczbę razy, a 4 i 6 nieparzystą. L jest zbiorem wszystkich tych ciągów.
 - Ile jest w L liczb z parami różnymi cyframi?
 - $a_4 =$
 - Funkcja tworząca a_n to f(x) =
 - Nierekurencyjny wzór na $a_n =$
- 5. $S = \{1, 2, 3, 4, 5, 6\}$. Generujemy wszystkie permutacje S w porządku leksykograficznym. Numerujemy je 1, 2, ..., 6!
 - Dla każdej permutacji α typu $1^i 2^j$, gdzie i+2j=6, liczba permutacji odwrotnych wynosi:
 - Liczba permutacji, w których 1, 3, 4 występują na kolejnych pozycjach:
 - Na której pozycji jest $\langle 4, 3, 2, 1, 6, 5 \rangle$?
 - Następnik (1, 2, 5, 6, 4, 3) to:
- 6. Niech G będzie grafem rzędu 9 powstałym przez zwinięcie jednej z krawędzi w grafie Petersena.
 - Liczba krawędzi w najliczniejszym skojarzeniu *G*:
 - Maksymalne $\Delta(T)$ dla T będących drzewami spinającymi G:
 - Minimalna liczba krawędzi które trzeba dodać by G był trasowalny:
 - Minimalna liczba krawędzi które trzeba usunąć by G był planarny:

- 7. Niech G_{2n} będzie grafem rzędu $2n, n \geq 3$ utworzonym z K_{2n-3} zastąpieniem jednej z krawędzi ścieżką długości 4.
 - $n \ge 3$, $\alpha(G_{2n}) =$
 - $n \ge 3, \ \chi(G_{2n}) =$
 - $n \ge 3, \ \omega(G_{2n}) =$
 - $n \ge 4$, $\chi'(G_{2n}) =$
- 8. Niech G będzie grafem rzędu 2n+1 dla $n\geq 2$ utworzonym poprzez rozdzielenie jednej z krawędzi $K_{n,n}$.
 - Dla $n \geq 3$, liczba ścieżek hamiltonowskich w \overline{G} to:
 - Liczba cykli Hamiltona w G dla $n \geq 3$:
 - Minimalna liczba krawędzi, jaką trzeba dodać do G nieparzystego stopnia > 3, by stał się eulerowski:
 - Minimalna liczba krawędzi, którą trzeba usunąć z \overline{G} , $n \geq 2$, by stał się dwudzielny:
- 9. Niech $\tau_{n,k}$ będzie rodziną lasów o n wierzchołkach i k liściach dla $n \geq 3, 2 \leq k \leq n-1$.
 - Dla każdego **drzewa** $T \in \tau_{n,n-3}, n \geq 5$, $\operatorname{diam}(T) =$
 - Liczba parami nie
izomorficznych **drzew** w $\tau_{n.n-2}$ dla parzystego
 $n \geq 6$:
 - Liczba parami nieizomorficznych lasów w $au_{6,3}$:
 - Maksymalna liczba krawędzi wymagana do przekształcenia lasu $T \in \tau_{n,n-5}$ w drzewo:
- **10.** Niech *B* będzie graniastosłupem, którego podstawą jest trójkąt równoboczny.
 - · Cykliczny indeks grupy symetrii wierzchołków:
 - Liczba parami nierównoważnych kolorowań wierzchołków dwoma kolorami:
 - Liczba parami nierównoważnych kolorowań wierzchołków, gdzie cztery wierzchołki są jednego koloru, a dwa drugiego:
 - Liczba parami nierównoważnych kolorowań ścian trzema kolorami:

Termin 2, 2024-02-13

- **1.** Niech $X = \{1, 2, 3, 4\}, Y = \{1, 2, 3, 4, 5\}, f: X \to Y, g: Y \to X$
 - Ile f jest odwracalnych?
 - Ile jest f takich, że f(1) = f(3) i $f(2) \neq 3$?
 - Ile jest odwzorowań g, które nie są injektywne?
 - Ile jest surjekcji *g*?
- 2. Niech a_n oznacza liczbę ciągów ternarnych (składających się z cyfr 0, 1 i 2) o długości $n, n \ge 1$, które nie zawierają podciągu 00 (tzn. na każdych dwóch sąsiednich pozycjach występuje, przynajmniej jeden raz, cyfra 1 lub 2).
 - nierekurencyjny wzór na $a_n, \ n \geq 1$:
 - rekurencyjny wzór na $a_n, n \ge 3$:
 - $a_1 =$
 - $a_2 =$
 - $a_5 =$
 - $a_6 =$
- **3a.** Niech s_n będzie liczbą dodatnich, całkowitych rozwiązań równania $x_1+x_2+x_3=n$, w których x_1 jest parzyste, x_2 nieparzyste, $x_3\in\{2,3\}$.
 - Funkcja tworząca dla ciągu $\{s_n\}$:
 - Nierekurencyjny wzór na $s_n, n \ge 1$, ma postać:
 - $s_5 =$
 - $s_{24} =$
- **3b.** Niech s_n będzie liczbą dodatnich, całkowitych rozwiązań równania $x_1 + x_2 + x_3 = n$, w których x_1 jest parzyste, x_2 nieparzyste, $x_3 \in \{1, 2\}$.
 - Funkcja tworząca dla ciągu $\{s_n\}$ ma postać
 - Nierekurencyjny wzór na $s_n, \ n \geq 1$, ma postać:
 - s₂ =
 - $s_3 =$
 - $s_{22} =$
 - $s_{24} =$
- **4.** Niech P(n, k) to podział liczby n na k składników, a P(n) to wszystkie podziały liczby n.
 - 0 < k < n, $P(n) = \sum_{i=0}^{n-k} P(n,i) + W$, $W = \sum_{i=0}^{n-k} P(n,i) + W$
 - 0 < k < n, $P(n) = \sum_{i=0}^{k} P(n, i) + W$, $W = \sum_{i=0}^{k} P(n, i) + W$
 - $n \ge 2$, P(n,2) =
 - n > 6, P(n, n-3) =
 - Liczba podziałów liczby $n, n \ge 10$ na 4 parami różne składniki jest równa liczbie podziałów liczby m na 4 składniki, gdzie m=

- 5. Niech $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$ oraz A będzie algorytmem generowania listy wszystkich 6-elementowych multipodzbiorów zbioru X w porządku leksykograficznym. Każdy multipodzbiór reprezentuje niemalejący ciąg jego elementów, oraz ma przypisaną pozycję $i \in \{1, 2, ..., \binom{13}{6}\}$
 - Elementy 1, 2, 3, 5 występują na kolejnych pozycjach w ilu multipodzbiorach?
 - Elementy 2, 4, 6, 7 występują na kolejnych pozycjach w ilu multipodzbiorach?
 - Liczba multipodzbiorów, w których ostatnim elementem jest 6:
 - Liczba multipodzbiorów, w których ostatnim elementem jest 7:
 - Multizbiór $\{1, 2, 2, 2, 2, 3\}$ występuje na pozycji:
 - Multizbiór $\{2, 2, 2, 2, 2, 3\}$ występuje na pozycji:
 - Następnik {1, 1, 1, 2, 2, 8}:
 - Następnik {1, 1, 2, 2, 7, 8}:
- 6. Graf G rzędu n, rozmiaru 2n powstały z cyklu C_n , $n \geq 4$, gdzie wierzchołki odległe o odległość 2 zostają połączone krawędzią.
 - Najmniejsza ilość krawędzi, którą trzeba usunąć, aby graf G był planarny
 - Liczba krawędzi w skojarzeniu o maksymalnej liczności:
 - Minimalna ilość krawędzi do usunięcia, by powstał graf dwudzielny:
 - Minimalne $\operatorname{diam}(T)$ drzewa rozpinającego G:
- 7. G to graf rzędu $2n-1, n \geq 2$, utworzony z grafu pełnego dwudzielnego $K_{n,n}$ poprzez zwinięcie dowolnej krawędzi. \overline{G} to dopełnienie grafu G.
 - Liczba cykli Hamiltona¹ w G:
 - Dla $n \ge 2$, maksymalna liczba krawędzi którą można usunąć, by otrzymany graf miał dokładnie 5 spójnych składowych:
 - Dla parzystego $n \ge 4$, jaka jest minimalna ilość krawędzi, które należy dodać do dopełnienia \overline{G} , aby posiadało cykl Eulera:
 - Dla parzystego $n \geq 3$, liczba niemal pełnym skojarzeń w \overline{G} :
- 8. $T_{n,k}$ to rodzina grafów, w których rząd jest n,k wierzchołków jest stopnia 2, a n-k jest stopnia 3.
 - Dla $n \geq 6$ i spójnego $G \in T_{n,n-2}$, diam(G) wynosi maksymalnie:
 - Dla $n \ge 6$, liczba parami nie
izomorficznych spójnych grafów w $T_{n,n-2}$, w których wierzchołki stopnia 3 są są
siednie:
 - Ile maksymalnie spójnych składowych można otrzymać poprzez usunięcie jednego wierzchołka z grafu w $T_{n,n-4}$?
 - Liczba parami nieizomorficznych grafów w $T_{6,2}$:
- **9a.** G to graf rzędu $2n, n \geq 3$, powstały przez rodzielenie dwóch incydentnych krawędzi w grafie pełnym K_{2n-2} .
 - $n \ge 3, \ \alpha(G) =$
 - $n \ge 3, \ \chi(G) =$
 - $n \ge 3, \ \omega(G) =$
 - $n \ge 4, \ \chi'(G) =$

 $^{^{1}}$ Było ograniczenie n od jakiejś liczby – nie pamiętam jakiej.

- 9b. G to graf rzędu $2n, n \geq 3$, powstały przez rodzielenie dwóch nie
incydentnych krawędzi w grafie pełnym $K_{2n-2}.$
 - $n \ge 3, \ \alpha(G) =$
 - $n \ge 3, \ \chi(G) =$
 - $n \ge 3, \ \omega(G) =$
 - $n \ge 4, \ \chi'(G) =$
- 10. Podaj dla sześcianu foremnego:
 - indeks cykliczny grupy symetrii wierzchołków:
 - indeks cykliczny grupy symetrii ścian:
 - ilość parami nierównoważnych kolorowań krawędzi dwoma kolorami:
 - ilość parami nierównoważnych kolorowań wierzchołków trzema kolorami:
 - ilość parami nierównoważnych kolorowań ścian dwoma kolorami:
 - ilość parami nierównoważnych kolorowań ścian trzema kolorami:

Termin 3, 2024-02-16

- **1a.** Podziały liczby 9 zapisano w porządku antyleksykograficznym. Każdy podział ma niemalejąco uporządkowane elementy oraz jednoznacznie przypisaną pozycję i=1,2,...
 - Liczba podziałów składających się z czterech składników:
 - Liczba podziałów, w których jednocześnie występują 4 i 2:
 - Następnikiem (3, 3, 2, 1) jest:
 - Pozycja (5, 4) to:
- 1b. Podziały liczby 10 zapisano w porządku antyleksykograficznym. Każdy podział ma niemalejąco uporządkowane elementy oraz jednoznacznie przypisaną pozycję i=1,2,...
 - Liczba podziałów składających się z czterech składników:
 - Liczba podziałów, w których jednocześnie występują 4 i 2:
 - Następnikiem (4,3,2,1) jest:
 - Pozycja (5, 5) to:
- 2. Niech s(n, k) oznacza liczbę Stirlinga pierwszego rodzaju.
 - Wzór jawny na s(n, 1):
 - Wzór jawny na s(n, 2):
 - Wzór jawny na s(n, n):
 - Wzór jawny na s(n, n-1):
 - Wzór jawny na s(n, n-2):
 - Wzór jawny na s(n, n-3):
 - Wzór rekurencyjny na s(n, k):
- 3. Niech s_n oznacza liczbę ciągów ternarnych długości n zawierających 1 na każdych dwóch kolejnych pozycjach.
 - $s_2 =$
 - $s_5 =$
 - nierekurencyjny wzór na s_n :
 - rekurencyjny wzór na s_n :
- 4. W koszyku jest 5 bananów, 3 jabłka, 6 pomarańcz oraz 4 gruszki. Niech a_n będzie liczbą n-elementowych zestawów owoców z koszyka, gdzie bierzemy co najmniej jednego banana, co najwyżej 2 jabłka, parzystą liczbę pomarańcz oraz nieparzystą liczbę gruszek.
 - $a_2 =$
 - $a_3 =$
 - $a_7 =$
 - Funkcja tworząca dla ciągu $\{a_n\}$:
 - Nierekurencyjny wzór na a_n :

- 5. Niech $X = \{1, 2, 3, 4, 5\}, Y = \{1, 2, 3, 4, 5, 6\}, f: X \to X, g: Y \to X.$
 - Liczba odwzorowań f, które nie są bijekcjami
 - Liczba odwzorowań f, które są odwracalne
 - Liczba odwzorowań g, które nie są ani rosnące, ani malejące
 - Liczba odwzorowań g, w których g(1) = g(2) + 1
- 6. Niech G_n będzie grafem rzędu n o rozmiarze 2n-3, utworzonym ze ścieżki P_n poprzez dodanie krawędzi dla każdej pary wierzchołków oddalonych o 2.
 - Minimalna liczba krawędzi, którą trzeba usunąć z G_n , by stał się on dwudzielny:
 - $\operatorname{diam}(G_n) =$
 - Liczba krawędzi w najdłuższym cyklu w G_n :
 - Minimalna liczba krawędzi, którą trzeba usunąć z G_n , by stał się on planarny:
- 7a. Niech $G_n, n \geq 4$, będzie grafem powstałym poprzez usunięcie z grafu pełnego K_n cyklu C_3 . Podaj:
 - $\alpha(G_n) =$
 - $\omega(G_n) =$
 - $\chi(G_n) =$
 - $\chi'(G_n) =$
- **7b.** Niech $G_n, n \geq 4$, będzie grafem powstałym poprzez usunięcie z grafu pełnego K_n cyklu C_4 . Podaj:
 - $\alpha(G_n) =$
 - $\omega(G_n) =$
 - $\chi(G_n) =$
 - $\chi'(G_n) =$
- 8. Niech G_{2n} będzie grafem rzędu $2n, n \geq 3$, otrzymanym z grafu pełnego K_{2n-2} poprzez zastąpienie jednej z krawędzi ścieżką długości 3. Niech \overline{G}_{2n} oznacza jego dopełnienie.
 - Minimalna liczba krawędzi, którą trzeba dodać do $G_{2n}, n \geq 4$, by stał się on eulerowski:
 - Liczba cykli Hamiltona dla $n \geq 3$:
 - Liczba pełnych skojarzeń dla $n \ge 3$:
 - Maksymalna liczba krawędzi, którą można usunąć z \overline{G}_{2n} , by miał on dokładnie 4 spójnych składowych:
 - Maksymalna liczba krawędzi, którą można usunąć z \overline{G}_{2n} , by miał on dokładnie 5 spójnych składowych:
- 9. Dla $2 \leq k < n$, niech $T_{n,k}$ oznacza rodzinę wszystkich drzew, które mają dokładnie n wierzchołków i k liści.
 - $\forall G \in T_{n,n-3} : \operatorname{diam}(G) =$
 - Dla $n \geq 6$, liczba parami nie
izomorficznych drzew w $G \in T_{n,n-3}$, gdzie $\Delta(G) = n-3$:
 - Liczba parami nieizomorficznych drzew w $T_{6,3}$:
 - Maksymalna liczba spójnych składowych, które można stworzyć usuwając wierzchołek z drzewa w $T_{n,n-4}$:

10. Podaj dla czworościanu foremnego:

- Indeks cykliczny grupy symetrii wierzchołków:
- Liczbę nierównoważnych pokolorowań krawędzi 2 kolorami:
- Liczbę nierównoważnych pokolorowań wierzchołków 2 kolorami:
- Liczbę nierównoważnych pokolorowań wierzchołków 3 kolorami:
- Liczbę nierównoważnych pokolorowań ścian 2 kolorami:
- Liczbę nierównoważnych pokolorowań ścian 3 kolorami:

2! + 3!

Termin 1, 2024-02-02, z odpowiedziami

1. Zakładamy $1 \le m \le k < n$. Podaj W.

$${}^{\bullet} \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{W}$$
 $k-1$

$$\bullet \binom{n}{k} \binom{k}{m} = \binom{n}{m} \binom{W}{n-k}$$
 $n-m$

•
$$k \binom{n}{k} = n \binom{n-1}{W}$$

2. Uzupełnij.

•
$$0 < k < n, \ S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$$

•
$$n \ge 1, \ S(n,n) =$$

•
$$n \ge 2$$
, $S(n,2) = 2^{n-1} - 1$

•
$$n \ge 3$$
, $S(n, n-2) = {n \choose 3} + \frac{1}{2} {n \choose 2} {n-2 \choose 2}$

3. Rozważamy ciągi o elementach ze zbioru $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

- Liczba ciągów długości 7, w których sumy każdej sąsiedniej pary elementów są nieparzyste. $5^44^3 + 5^34^4$
- Liczba ciągów niemalejących długości 6.
- $\binom{9}{5} \cdot 5! = \frac{9!}{4!}$ • Liczba ciągów różnowartościowych długości 5.
- Liczba permutacji takich, że dla każdego parzystego $n, f(n) \neq n$. $9! \binom{4}{1} 8! + \binom{4}{2} 7! \binom{4}{3} 6! + \binom{4}{4} 5!$
- 4. $a_n =$ liczba ciągów długości n złożonych z $\{2,3,4,5,6\}$. 3 i 5 mają występować parzystą liczbę razy, a 4 i 6 nieparzystą. L jest zbiorem wszystkich tych ciągów.
 - Ile jest w L liczb z parami różnymi cyframi?

•
$$a_4 =$$
 44

• Funkcja tworząca
$$a_n$$
 to $f(x) = \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots\right) \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots\right)^2 \left(x + \frac{x^3}{3!} + \ldots\right)^2$

- Nierekurencyjny wzór na
$$a_n = \frac{1}{16} (5^n - 2 + (-3)^n)$$

- 5. $S = \{1, 2, 3, 4, 5, 6\}$. Generujemy wszystkie permutacje S w porządku leksykograficznym. Numerujemy je 1, 2, ..., 6!
 - Dla każdej permutacji α typu $1^i2^j,$ gdzie i+2j=6,liczba permutacji odwrotnych wynosi: 1
 - Liczba permutacji, w których 1, 3, 4 występują na kolejnych pozycjach: $4! \cdot 3!$
 - Na której pozycji jest $\langle 4, 3, 2, 1, 6, 5 \rangle$? $3 \cdot 5! + 2 \cdot 4! + 3! + 2$

• Następnik
$$\langle 1,2,5,6,4,3 \rangle$$
 to: $\langle 1,2,6,3,4,5 \rangle$

 $\mathbf{6}$. Niech G będzie grafem rzędu 9 powstałym przez zwinięcie jednej z krawędzi w grafie Petersena.

- Liczba krawędzi w najliczniejszym skojarzeniu G: 4
- Maksymalne $\Delta(T)$ dla T będących drzewami spinającymi G: 4
- Minimalna liczba krawędzi które trzeba dodać by G był trasowalny: 0
- Minimalna liczba krawędzi które trzeba usunąć by G był planarny: 1

- 7. Niech G_{2n} będzie grafem rzędu $2n, n \geq 3$ utworzonym z K_{2n-3} zastąpieniem jednej z krawędzi ścieżką długości 4.
 - $n \ge 3, \ \alpha(G_{2n}) =$
 - $n \ge 3, \ \chi(G_{2n}) =$ 2n-4
 - $n \ge 3, \ \omega(G_{2n}) = 2n 4$
 - $n \ge 4, \ \chi'(G_{2n}) = 2n 3$
- 8. Niech G będzie grafem rzędu 2n+1 dla $n\geq 2$ utworzonym poprzez rozdzielenie jednej z krawędzi $K_{n,n}$.
 - Dla $n \geq 3$, liczba ścieżek hamiltonowskich w \overline{G} to:

$$(n-1)!^2(n-1)^2 + 2(n-2)(n-1)!^2 + 4n(n-1)!^2 \\$$

• Liczba cykli Hamiltona w G dla $n \geq 3$:

$$(n-1)!^2$$

• Minimalna liczba krawędzi, jaką trzeba dodać do G nieparzystego stopnia > 3, by stał się eulerowski:

n

• Minimalna liczba krawędzi, którą trzeba usunąć z \overline{G} , $n \geq 2$, by stał się dwudzielny:

$$2\left(\binom{n}{2}-\left|\frac{n^2}{4}\right|\right)+(n-1)$$

- 9. Niech $au_{n,k}$ będzie rodziną lasów o n wierzchołkach i k liściach dla $n \geq 3, 2 \leq k \leq n-1.$
 - Dla każdego drzewa $T \in \tau_{n,n-3}, n \geq 5$, diam(T) = 4
 - Liczba parami nie
izomorficznych **drzew** w $au_{n,n-2}$ dla parzystego $n \geq 6$:
 - Liczba parami nie
izomorficznych lasów w $au_{6,3}$:
 - Maksymalna liczba krawędzi wymagana do przekształcenia lasu $T \in \tau_{n,n-5}$ w drzewo: $4 + \left\lfloor \frac{n-5}{2} \right\rfloor$
- 10. Niech B będzie graniastosłupem, którego podstawą jest trójkąt równoboczny.
 - Cykliczny indeks grupy symetrii wierzchołków: $P_G(z_1,z_2,z_3) = \tfrac{1}{6}(z_1^6+3z_2^3+2z_3^2)$
 - Liczba parami nierównoważnych kolorowań wierzchołków dwoma kolorami:
 - Liczba parami nierównoważnych kolorowań wierzchołków, gdzie cztery wierzchołki są jednego koloru, a dwa drugiego:
 - Liczba parami nierównoważnych kolorowań ścian trzema kolorami:

Termin 2, 2024-02-13, z odpowiedziami

Uwaga: Rozwiązania tego terminu nie zostały sprawdzone tak dokładnie jak rozwiązania dwóch innych terminów i należy je traktować z odrobiną dystansu.

- **1.** Niech $X = \{1, 2, 3, 4\}, Y = \{1, 2, 3, 4, 5\}, f: X \to Y, g: Y \to X$
 - Ile f jest odwracalnych? $\binom{5}{4}4!$ lub 0
 - Ile jest f takich, że f(1) = f(3) i $f(2) \neq 3$?
 - Ile jest odwzorowań g, które nie są injektywne? 4^5
 - Ile jest surjekcji g? $4^5-3^5{4\choose 1}+2^5{4\choose 2}-{4\choose 3}$
- 2. Niech a_n oznacza liczbę ciągów ternarnych (składających się z cyfr 0, 1 i 2) o długości $n,\ n\geq 1$, które nie zawierają podciągu 00 (tzn. na każdych dwóch sąsiednich pozycjach występuje, przynajmniej jeden raz, cyfra 1 lub 2).
 - nierekurencyjny wzór na $a_n,\ n\geq 1$: $a_n=\left(\tfrac{1}{2}+\tfrac{\sqrt{3}}{3}\right)\left(1+\sqrt{3}\right)^n+\left(\tfrac{1}{2}-\tfrac{\sqrt{3}}{3}\right)\left(1-\sqrt{3}\right)^n$
 - rekurencyjny wzór na $a_n, \ n \geq 3$: $2 \cdot a_{n-2} + 2 \cdot a_{n-1}$
 - $a_1 =$ 3
 - a₂ = 8
 - $a_5 = 164$
 - $a_6 = 448$
- 3a. Niech s_n będzie liczbą dodatnich, całkowitych rozwiązań równania $x_1+x_2+x_3=n$, w których x_1 jest parzyste, x_2 nieparzyste, $x_3\in\{2,3\}$.
 - Funkcja tworząca dla ciągu $\{s_n\}$:

$$(x^2 + x^3)(x^2 + x^4 + ...)(x + x^3 + x^5 + ...)$$

• Nierekurencyjny wzór na $s_n, n \ge 1$, ma postać:

$$\begin{cases} a_n = \left\lfloor \frac{n-1}{2} \right\rfloor - 1, & n \ge 3 \\ a_0 = a_1 = a_2 = 0 \end{cases}$$

•
$$s_5 =$$
 1

•
$$s_{24} =$$
 10

- **3b.** Niech s_n będzie liczbą dodatnich, całkowitych rozwiązań równania $x_1 + x_2 + x_3 = n$, w których x_1 jest parzyste, x_2 nieparzyste, $x_3 \in \{1, 2\}$.
 - Funkcja tworząca dla ciągu $\{s_n\}$ ma postać $(x+x^2)(x^2+x^4+\ldots)(x+x^3+x^5+\ldots)$
 - Nierekurencyjny wzór na $s_n, \ n \geq 1$, ma postać:
 - \bullet $s_2 = 0$
 - $s_3 = 0$
 - $s_{22} =$?
 - $s_{24} =$?

 $\lfloor \frac{n}{2} \rfloor$

- 4. Niech P(n, k) to podział liczby n na k składników, a P(n) to wszystkie podziały liczby n.
 - 0 < k < n, $P(n) = \sum_{i=0}^{n-k} P(n,i) + W$, $W = \sum_{j=n-k+1}^{n} P(n,j)$
 - 0 < k < n, $P(n) = \sum_{i=0}^{k} P(n,i) + W$, $W = \sum_{j=k+1}^{n} P(n,j)$
 - $n \ge 2$, $P(n,2) = \lfloor \frac{n}{2} \rfloor$
 - $n \ge 6$, P(n, n-3) =
 - Liczba podziałów liczby $n,\,n\geq 10$ na 4 parami różne składniki jest równa liczbie podziałów liczby m na 4 składniki, gdzie m=
- 5. Niech $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$ oraz A będzie algorytmem generowania listy wszystkich 6-elementowych multipodzbiorów zbioru X w porządku leksykograficznym. Każdy multipodzbiór reprezentuje niemalejący ciąg jego elementów, oraz ma przypisaną pozycję $i \in \{1, 2, ..., \binom{13}{6}\}$
 - Elementy 1, 2, 3, 5 występują na kolejnych pozycjach w ilu multipodzbiorach?
 - Elementy 2, 4, 6, 7 występują na kolejnych pozycjach w ilu multipodzbiorach?
 - Liczba multipodzbiorów, w których ostatnim elementem jest 6: ${10 \choose 5} = {5+6-1 \choose 5}$
 - Liczba multipodzbiorów, w których ostatnim elementem jest 7: $\binom{11}{5} = \binom{5+7-1}{5}$
 - Multizbiór $\{1,2,2,2,3\}$ występuje na pozycji: $\binom{11}{4}+2$
 - Multizbiór $\{2,2,2,2,3\}$ występuje na pozycji: $\binom{12}{5}+2$
 - Następnik $\{1,1,1,2,2,8\}$: $\{1,1,1,2,3,3\}$
 - Następnik $\{1, 1, 2, 2, 7, 8\}$: $\{1, 1, 2, 2, 8, 8\}$
- 6. Graf G rzędu n, rozmiaru 2n powstały z cyklu C_n , $n \geq 4$, gdzie wierzchołki odległe o odległość 2 zostają połączone krawędzią.
 - Najmniejsza ilość krawędzi, którą trzeba usunąć, aby graf G był planarny

$$\begin{cases} 0 \text{ dla parzystego } n \\ 1 \text{ dla nieparzystego } n \end{cases}$$

- Liczba krawędzi w skojarzeniu o maksymalnej liczności:
- Minimalna ilość krawędzi do usunięcia, by powstał graf dwudzielny:
- Minimalne diam(T) drzewa rozpinającego G: $1 + \left\lfloor \frac{n-5}{2} \right\rfloor$
- 7. G to graf rzędu $2n-1, n \geq 2$, utworzony z grafu pełnego dwudzielnego $K_{n,n}$ poprzez zwinięcie dowolnej krawędzi. \overline{G} to dopełnienie grafu G.
 - Liczba cykli Hamiltona² w G: $((n-1)!)^2$
 - Dla $n \geq 2$, maksymalna liczba krawędzi którą można usunąć, by otrzymany graf miał dokładnie 5 spójnych składowych: $(n-1)^2 + 4$
 - Dla parzystego $n \ge 4$, jaka jest minimalna ilość krawędzi, które należy dodać do dopełnienia \overline{G} , aby posiadało cykl Eulera:
 - Dla parzystego $n \geq 3$, liczba niemal pełnym skojarzeń w \overline{G} :

$$\begin{cases} 0 & \text{dla parzystego } n \\ \left(\frac{(n-1)!}{2^{\frac{n-1}{2}} \cdot (\frac{n-1}{2})!}\right)^2 & \text{dla nieparzystego } n \end{cases}$$

 $^{^{2}}$ Było ograniczenie n od jakiejś liczby – nie pamiętam jakiej.

- **8.** $T_{n,k}$ to rodzina grafów, w których rząd jest n, k wierzchołków jest stopnia 2, a n-k jest stopnia 3.
 - Dla $n \geq 6$ i spójnego $G \in T_{n,n-2}$, $\operatorname{diam}(G)$ wynosi maksymalnie:
 - ?
 - Dla $n \geq 6$, liczba parami nie
izomorficznych spójnych grafów w $T_{n,n-2}$, w których wierzchołki stopnia 3 są sąsiednie:
 - Ile maksymalnie spójnych składowych można otrzymać poprzez usunięcie jednego wierzchołka z grafu w
 - ? • Liczba parami nieizomorficznych grafów w $T_{6,2}$:
- **9a.** G to graf rzędu $2n, n \geq 3$, powstały przez rodzielenie dwóch incydentnych krawędzi w grafie pełnym K_{2n-2} .
 - $n \ge 3, \ \alpha(G) =$ 3
 - $n \ge 3, \ \chi(G) =$ 2n - 3
 - $n \ge 3, \ \omega(G) =$ 2n - 3
 - $n \ge 4, \ \chi'(G) =$ 2n-3
- **9b.** G to graf rzędu $2n, n \ge 3$, powstały przez rodzielenie dwóch nieincydentnych krawędzi w grafie pełnym K_{2n-2} .
 - $n \ge 3, \ \alpha(G) =$ 3
 - $n \ge 3, \ \chi(G) =$ 2n-4
 - $n \ge 3, \ \omega(G) =$ 2n - 4
 - $n \ge 4, \ \chi'(G) =$ 2n-3
- 10. Podaj dla sześcianu foremnego:
 - $P_G(z_1, z_2, z_3, z_4) = \frac{1}{24}(z_1^8 + 8z_1^2z_3^2 + 9z_2^4 + 6z_4^2)$ • indeks cykliczny grupy symetrii wierzchołków:
 - $P_G(z_1, z_2, z_3, z_4) = \frac{1}{24}(z_1^6 + 3z_1^2z_2^2 + 6z_1^2z_4 + 6z_2^3 + 8z_3^2)$ • indeks cykliczny grupy symetrii ścian:
 - ilość parami nierównoważnych kolorowań krawędzi dwoma kolorami: 218
 - ilość parami nierównoważnych kolorowań wierzchołków trzema kolorami: 333
 - ilość parami nierównoważnych kolorowań ścian dwoma kolorami: 10
 - ilość parami nierównoważnych kolorowań ścian trzema kolorami: 57

Termin 3, 2024-02-16, z odpowiedziami

- **1a.** Podziały liczby 9 zapisano w porządku antyleksykograficznym. Każdy podział ma niemalejąco uporządkowane elementy oraz jednoznacznie przypisaną pozycję i=1,2,...
 - Liczba podziałów składających się z czterech składników:
 - Liczba podziałów, w których jednocześnie występują 4 i 2:
 - Następnikiem (3, 3, 2, 1) jest: (3, 3, 1, 1, 1)
 - Pozycja (5, 4) to:
- **1b.** Podziały liczby 10 zapisano w porządku antyleksykograficznym. Każdy podział ma niemalejąco uporządkowane elementy oraz jednoznacznie przypisaną pozycję i=1,2,...
 - Liczba podziałów składających się z czterech składników:
 - Liczba podziałów, w których jednocześnie występują 4 i 2:
 - Następnikiem (4, 3, 2, 1) jest: (4, 3, 1, 1, 1)
 - Pozycja (5,5) to:
- 2. Niech s(n, k) oznacza liczbę Stirlinga pierwszego rodzaju.
 - Wzór jawny na s(n,1): (n-1)!
 - Wzór jawny na s(n, 2):
 - Wzór jawny na s(n, n):
 - Wzór jawny na s(n, n-1):
 - Wzór jawny na s(n, n-2): $\binom{n}{3} \cdot 2! + \frac{1}{2!} \binom{n}{2} \binom{n-2}{2}$

 - Wzór rekurencyjny na s(n,k): $s(n-1,k-1) + (n-1) \cdot s(n-1,k)$ (bo chyba zakładamy $0 \le k \le n$?)
- 3. Niech s_n oznacza liczbę ciągów ternarnych długości n zawierających 1 na każdych dwóch kolejnych pozycjach.
 - \bullet $s_2 =$ 5
 - $s_5 =$ 43
 - nierekurencyjny wzór na s_n : $-\frac{1}{3} \cdot (-1)^n + \frac{4}{3} \cdot 2^n$
 - rekurencyjny wzór na s_n : s_{n-1} + $2s_{n-2}$
- 4. W koszyku jest 5 bananów, 3 jabłka, 6 pomarańcz oraz 4 gruszki. Niech a_n będzie liczbą n-elementowych zestawów owoców z koszyka, gdzie bierzemy co najmniej jednego banana, co najwyżej 2 jabłka, parzystą liczbę pomarańcz oraz nieparzystą liczbę gruszek.
 - $a_2 =$ 1
 - $a_3 =$ 2
 - $a_7 = 12$
 - Funkcja tworząca dla ciągu $\{a_n\}$: $(x+x^2+x^3+x^4+x^5)(1+x+x^2)(1+x^2+x^4+x^6)(x+x^3)$
 - Nierekurencyjny wzór na a_n : $(a_n)_{n=2}^{16} = (1,2,5,7,11,12,15,14,15,12,11,7,5,2,1)$ (tak, należało rozpisać wszystkie wyrazy ciągu)

- **5.** Niech $X = \{1, 2, 3, 4, 5\}, Y = \{1, 2, 3, 4, 5, 6\}, f: X \to X, g: Y \to X.$
 - Liczba odwzorowań f, które nie są bijekcjami

 $5^5 - 5!$

• Liczba odwzorowań f, które są odwracalne

5!

 \bullet Liczba odwzorowań g, które nie są ani rosnące, ani malejące

 5^6

• Liczba odwzorowań g, w których g(1) = g(2) + 1

- $4\cdot 5^4$
- 6. Niech G_n będzie grafem rzędu n o rozmiarze 2n-3, utworzonym ze ścieżki P_n poprzez dodanie krawędzi dla każdej pary wierzchołków oddalonych o 2.
 - Minimalna liczba krawędzi, którą trzeba usunąć z G_n , by stał się on dwudzielny:

 $\lfloor \frac{n-1}{2} \rfloor$

• $\operatorname{diam}(G_n) =$

 $\lfloor \frac{n}{2} \rfloor$

- Liczba krawędzi w najdłuższym cyklu w G_n :

n

- Minimalna liczba krawędzi, którą trzeba usunąć z G_n , by stał się on planarny:

0

7a. Niech $G_n, n \geq 4$, będzie grafem powstałym poprzez usunięcie z grafu pełnego K_n cyklu C_3 . Podaj:

•
$$\alpha(G_n) =$$

3

 $\bullet \ \omega(G_n) =$

n-2

• $\chi(G_n) =$

n-2

• $\chi'(G_n) =$

$$\begin{cases} n-1, & \text{dla } n < 9 \text{ lub } n \text{ parzystego} \\ n, & \text{dla } n \geq 9 \text{ nieparzystego} \end{cases}$$

7b. Niech $G_n, n \geq 4$, będzie grafem powstałym poprzez usunięcie z grafu pełnego K_n cyklu C_4 . Podaj:

• $\alpha(G_n) =$

2

• $\omega(G_n) =$

n-2

• $\chi(G_n) =$

n-2

• $\chi'(G_n) =$

?

- 8. Niech G_{2n} będzie grafem rzędu $2n,n\geq 3$, otrzymanym z grafu pełnego K_{2n-2} poprzez zastąpienie jednej z krawędzi ścieżką długości 3. Niech \overline{G}_{2n} oznacza jego dopełnienie.
 - Minimalna liczba krawędzi, którą trzeba dodać do $G_{2n}, n \geq 4$, by stał się on eulerowski:

2n-3(2n-4)!

• Liczba cykli Hamiltona dla $n \geq 3$:

 $(n-1) \cdot (2n-3)!!$

• Liczba pełnych skojarzeń dla $n \geq 3$:

(podwójna silnia, mnożenie co 2)

- Maksymalna liczba krawędzi, którą można usunąć z \overline{G}_{2n} , by miał on dokładnie 4 spójnych składowych:

2n-1

- Maksymalna liczba krawędzi, którą można usunąć z \overline{G}_{2n} , by miał on dokładnie 5 spójnych składowych:

2n

9. Dla $2 \le k < n$, niech $T_{n,k}$ oznacza rodzinę wszystkich drzew, które mają dokładnie n wierzchołków i k liści.

•
$$\forall G \in T_{n,n-3} : \operatorname{diam}(G) =$$

- Dla $n \geq 6$, liczba parami nie
izomorficznych drzew w $G \in T_{n,n-3}$, gdzie $\Delta(G) = n-3$:
- Liczba parami nieizomorficznych drzew w $T_{6,3}$:
- Maksymalna liczba spójnych składowych, które można stworzyć usuwając wierzchołek z drzewa w ${\cal T}_{n,n-4}$:

$$n-4$$

10. Podaj dla czworościanu foremnego:

- Indeks cykliczny grupy symetrii wierzchołków: $P_G(z_1,z_2,z_3) = \frac{1}{12}(z_1^4 + 8z_1z_3 + 3z_2^2)$
- Liczbę nierównoważnych pokolorowań krawędzi 2 kolorami:
- Liczbę nierównoważnych pokolorowań wierzchołków 2 kolorami:
- Liczbę nierównoważnych pokolorowań wierzchołków 3 kolorami:
- Liczbę nierównoważnych pokolorowań ścian 2 kolorami:
 5
- Liczbę nierównoważnych pokolorowań ścian 3 kolorami:
 15

Bonus: graf Petersena z 1.9

Jest on stałym motywem na egzaminach, lecz wielu ludzi nie widzi czemu wystarczy usunąć tylko jedną krawędź (nic dziwnego - ciężko na to wpaść).

Tutaj był kiedyś ładny wektorowy rysunek w Graphvizie, ale się zesrał.

