Künstliche Intelligenz

- YOLOv8:
 - Echtzeit-Objekterkennung basierend auf CNNs.
 - Schnell und präzise für Anwendungen wie Produkterkennung.
- CNN (Convolutional Neural Network):
 - Erkennung von Merkmalen (Kanten, Formen) durch Filter.
 - O Pooling-Schichten reduzieren Datenmenge und erhöhen Effizienz.
 - OKlassifizierung der Merkmale (z. B. "Milch" oder "Eier").
- Datenset:
 - OProduktbilder aus verschiedenen Blickwinkeln und Lichtverhältnissen.
 - O Simuliert realistische Bedingungen für bessere Erkennung.
- Training:
 - Verwendung des "yolov8n"-Modells (leicht und schnell).
 - Our Hunderte Trainingsdurchläufe zur Steigerung der Genauigkeit.
- Optimierung:
 - Konvertierung ins NCNN-Format für effiziente Ausführung auf dem Raspberry Pi 5.

Python-Script

Damit die Produkte auch zuverlässig gescant werden, haben wir ein Python-Script geschrieben, mithilfe dessen die Produkte gezählt werden, in einer GUI aufgelistet werden und der Preis berechnet wird.

• KI-System:

- Erkennt und verfolgt Produkte auf dem Förderband in Echtzeit.
- Analysiert und sagt die Produktbewegung vorher.
- O Zählt Produkte, sobald sie eine definierte Linie überqueren.

• Preisberechnung:

- Jedes Produkt wird mit einem festen Preis verknüpft.
- Der Preis wird zur Gesamtsumme addiert.
- Grafische Benutzeroberfläche (GUI):
 - Ozeigt Live-Kameraansicht, Produktliste und Gesamtpreis an.

SmartScan

Prüfstand

Um die Funktionalität unserer Idee unter realen Bedingungen zu testen, haben wir einen Prüfstand entwickelt, der ein Förderband umfasst. Zunächst wurde das Förderband in Fusion 360, einem CAD-Programm, designt und anschließend mit einem 3D-Drucker hergestellt. Nach dem erfolgreichen Zusammenbau des Förderbands konzentrierten wir uns auf die Integration der Elektronik, um die gesamte Funktionsweise zu gewährleisten.

Ergebnis

• Einschränkungen:

- Visuelle Erkennung: Ähnlich aussehende Produkte (z. B. Apfelsorten) schwer unterscheidbar.
- Große Produkte: Können Kamerasichtfeld überschreiten, benötigen auffällige Merkmale für Training.

• Erweiterungsmöglichkeiten:

- Wägezelle im Förderband: Preisberechnung nach Gewicht (€/kg),
 Diebstahlprävention durch Gewichtsvergleich.
- Kassierer-Unterstützung: Mini-Kamera für Obst, Backwaren & unverpackte
 Produkte, automatische Preisberechnung mit Waage.

• KI-Beschleuniger (NPU):

- O Reduziert Latenz, ermöglicht schnellere Bilderkennung in Echtzeit.
- Ergebnis: Mehr FPS → schnellere Förderbandgeschwindigkeit → schnelleres
 Abkassieren & präzisere Objekterkennung.

Jugend forscht 2025

• train/loss & val/loss Graphen:

- train/loss: Zeigt, wie gut das Modell die Trainingsdaten lernt.
- o val/loss: Veranschaulicht die Leistung auf unbekannten Daten.

 Beide Graphen sinken kontinuierlich, kein Overfitting – das Modell generalisiert gut.

• mAP50-95 Graph:

- Misst die Präzision des Modells.
- Flacht bei nahezu 0.9 ab hohe Genauigkeit.

Recall Graph:

Endwert bei 1.0 – keine übersehenen Objekte.

Dmitrii Tomin, Parsa Navazeshi