Regression Trees

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Regression

Goal: Estimate response from features

Optimal estimator: Conditional mean

Problem: Intractable to compute due to curse of dimensionality

Linear regression

Response y is approximated as an linear (affine) function of the features x

$$y \approx \sum_{i=1}^{d} \beta[i]x[i] + \alpha$$

Assumption: Response increases or decreases proportionally to each feature (if we fix other features)

Example

Response: Temperature in Manhattan (Kansas)

Features:

(1) Hour of the day (0-23)

(2) Day of the year (1-365)

Training data: 2015

Test data: 2016

Training data

Test data

Linear model: 0.25 hour + 0.03 day + 5.85

Response increases or decreases proportionally to each feature (if we fix other features)

Linear model: 0.25 hour + 0.03 day + 5.85

Training error: 10.8°C Test error: 11.0°C

Challenge

How to learn nonlinear model?

Idea

(1) Partition feature space into regions

Idea

(2) Assign constant estimate to each region

Idea

(2) Assign constant estimate to each region

Works pretty well!

Training error: 5.5°C Test error: 6.2°C

Two key questions

How to compute constant estimate?

How to choose the regions?

Constant estimate?

Consider the n_R feature-response pairs (x_i, y_i) in region R

$$RSS(\alpha) := \sum_{\{i: x_i \in R\}} (y_i - \alpha)^2$$

$$\frac{d RSS(\alpha)}{d\alpha} = -\sum_{\{i: x_i \in R\}} (y_i - \alpha)$$

$$= n_R \alpha - \sum_{\{i: x_i \in R\}} y_i$$

$$\frac{d^2 RSS(\alpha)}{d\alpha^2} = n_R$$

$$\alpha_{\min} = \frac{1}{n_R} \sum_{\{i: y_i \in R\}} y_i$$

Constant estimate?

Just average!

 $Possible\ regions\ explode\ exponentially\ with\ number\ of\ features!$

Idea: Use a binary tree to represent the regions

Region estimates

Interpretable!

Actual temperature (in 2023): 22°

How do we build the tree?

Idea: Choose tree with smallest training error

Tree with depth h and 2^h leaves

Number of possible bifurcations? $b := 2^h - 1$

At each bifurcation (1) d features and (2) t thresholds

Number of possible trees? $(dt)^b$

For h := 4, d := 10, t := 100: 10^{45} trees!

Recursive binary splitting

Add one bifurcation at a time, being greedy

30

-20

30

-20

20

300 350

Residual Sum of Squares (RSS)

Data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

Regions: R_1, \ldots, R_m

Estimates at each region: $\alpha_1, \ldots, \alpha_m$

Residual Sum of Squares :=
$$\sum_{r=1}^{m} \sum_{\{j: x_i \in R_r\}} (y_i - \alpha_r)^2$$

Choosing a split

$$RSS := \sum_{r=1}^{m} \sum_{\{i: x_i \in R_r\}} (y_i - \alpha_r)^2$$

If we split region R_r into subregions A and B

$$\triangle RSS := \sum_{\{i: x_i \in R_r\}}^{n} (y_i - \alpha_r)^2 - \sum_{\{i: x_i \in A\}}^{n} (y_i - \alpha_A)^2$$
$$- \sum_{\{i: x_i \in B\}}^{n} (y_i - \alpha_B)^2$$

Depends on (1) region, (2) feature and (3) threshold

Choose split that maximizes \triangle RSS

Choosing a split

When to stop?

Test data

Training and test error

What have we learned?

How to build nonlinear regression models using trees

To be careful about overfitting!