Sumário

INF	ORMÁTICA BÁSICA – SISTEMAS NUMÉRICOS	2
AS 1	LO CONVERSÕES NUMÉRICAS MAIS UTILIZADAS NA COMPUTAÇÃO	3
	BOLOGIA	
>	1ª CONVERSÃO NUMÉRICA: DECIMAL PARA BINÁRIO	5
>	2ª CONVERSÃO NUMÉRICA: DECIMAL PARA OCTAL	6
>	3ª CONVERSÃO NUMÉRICA: DECIMAL PARA HEXADECIMAL	6
>	4ª CONVERSÃO NUMÉRICA: BINÁRIO PARA DECIMAL	7
>	5ª CONVERSÃO NUMÉRICA: OCTAL PARA DECIMAL	7
	6ª CONVERSÃO NUMÉRICA: HEXADECIMAL PARA DECIMAL	
>	7ª CONVERSÃO NUMÉRICA: BINÁRIO PARA OCTAL	8
>	8ª CONVERSÃO NUMÉRICA: BINÁRIO PARA HEXADECIMAL	9
>	9ª CONVERSÃO NUMÉRICA: OCTAL PARA BINÁRIO	9
>	10ª CONVERSÃO NUMÉRICA: HEXADECIMAL PARA BINÁRIO	9
FXF	RCITAR	10

INFORMÁTICA BÁSICA – SISTEMAS NUMÉRICOS

Vamos começar assistindo a alguns vídeos curtos e extremamente bem elaborados, que explicam de forma bem superficial os Sistemas Numéricos Computacionais, introduzindo o tem Aritmética Computacional. Vamos nos atentar aos símbolos e representações numéricas de cada sistema: BINÁRIO, OCTAL, DECIMAL e HEXADECIMAL, com o objetivo de compreender de forma básica e introdutória o que é cada um e como "converter" os valores entre suas bases.

O tema não se restringe ou se limita às informações que serão apresentadas nestas aulas, porém, limitaremos o aprofundamento àquilo que será necessário para a compreensão básica dos tópicos sobre "Endereço IP", IPv4, IPv6, "DNS", "DHCP", entre outros que serão abordados nas aulas sobre Sistemas Operacionais, Hardwares e Redes de Computadores.

Recomendo que os vídeos sejam assistidos com calma e em silêncio, na sequência apresentada. Após ter assistido todos, se julgar necessário, poderá assisti-los novamente antes de iniciar a leitura dos próximos tópicos deste documento e antes da realização dos exercícios que serão exigidos como resultado do processo de aprendizagem.

Coloque seus fones de ouvidos e aproveite o tempo para se aprofundar no conhecimento que lhes será apresentado.

- Entenda o sistema binário e como ele funciona. (https://youtu.be/q3xLvOsqhpo)
- Conversão de bases numéricas: Binário x Decimal. (https://youtu.be/VcNSBwQjVnQ)
- > Entenda o sistema hexadecimal e como ele funciona. (https://youtu.be/ma0LQeKb8es)
- Conversão de base numérica: HEXADECIMAL x DECIMAL x BINÁRIO. (https://youtu.be/Vctnbk0RWVY)
- Entenda o sistema numérico de base 8: o sistema Octal! (https://youtu.be/pLre 3yOrQg)

A seguir, complementaremos o aprendizado com algumas dicas teóricas sobre a realização de conversão entre as bases BINÁRIA, OCTAL, DECIMAL e HEXADECIMAL.

AS 10 CONVERSÕES NUMÉRICAS MAIS UTILIZADAS NA COMPUTAÇÃO

Conversões numéricas são utilizadas em muitos casos na computação. Isso porque nós somos acostumados com a base numérica decimal (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...), mas no mundo da tecnologia digital os dispositivos eletrônicos trabalham em baixo nível com a base numérica binária (0 ou 1), pois os números binários são facilmente representados na eletrônica através de pulsos elétricos:

- 0 = desligado/off ou nenhum pulso elétrico; ou
- 1 = ligado/on ou um pulso elétrico].

Além desses dois, as bases numéricas octal e hexadecimal também são muito utilizadas pela fácil representação.

SIMBOLOGIA

A **base numérica** representa a quantidade de símbolos possíveis para representar um determinado número. Veja a tabela abaixo, sobre quais símbolos podem ser utilizados em cada sistema de numeração.

Base Numérica								0	rdem e	Símbolo	os					
base Numerica	1º	2º	3º	4 º	5º	6º	7º	8₀	9º	10º	11 º	12 º	13º	14 º	15º	16º
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binário	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F

Olhando para essa tabela é mais fácil perceber que, ao contarmos, quando chegamos no último símbolo precisamos incrementar o número da esquerda para representar o próximo.

Por exemplo, ao contarmos na base decimal, quando chegamos no 9, precisamos do símbolo 1 para formar o próximo número 10; bem como precisamos do símbolo 2 para formar o número 20 e assim sucessivamente.

DECIMAL										
DECIMAL	1 º	2 º	3º	4 º	5º	6º	7º	8º	9º	10 º
Símbolo	0	1	2	3	4	5	6	7	8	9
ORDEM	11º	12º	13º	14º	15º	16º	1 7 º	18º	19º	20º
Símbolo	10	11	12	13	14	15	16	17	18	19
ORDEM	21º	22º	23º	24 º	25º	26º	27 º	28º	29º	30º
Símbolo	20	21	22	23	24	25	26	27	28	29

Isso vale também para as outras bases numéricas. Por exemplo, no octal, quando chegamos no 7, o próximo número é 10, ao chegar no 17, o próximo é 20 e assim sucessivamente.

OCTAL								
OCIAL	1 º	2 º	3º	4 º	5º	6º	7º	8º
Símbolo	0	1	2	3	4	5	6	7
ORDEM	9º	10 º	11º	12 º	13º	14º	15º	16º
Símbolo	10	11	12	13	14	15	16	17
ORDEM	1 7 º	18º	19º	20º	21º	22º	23º	24 º
Símbolo	20	21	22	23	24	25	26	27

No binário, contamos assim: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, ... Deu para entender a ideia?

DINÁDIO.		
BINÁRIO	1 º	2 º
Símbolo	0	1
ORDEM	3º	4 º
Símbolo	10	11
ORDEM	5º	6 º
Símbolo	100	101
ORDEM	7 º	8º
Símbolo	110	111
ORDEM	9º	10 º
Símbolo	1000	1001
ORDEM	11º	12 º
Símbolo	1010	1011
ORDEM	13º	14 º
Símbolo	1100	1101
ORDEM	15º	16º
Símbolo	1110	1111

No Hexadecimal, a lógica permanece a mesma:

HEXADECIMAL																
TIEXADECIMAL	1 º	2 º	3∘	4 º	5º	6º	7º	8∘	9º	10º	11º	12 º	13º	14 º	15º	16º
Símbolo	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
ORDEM	17 º	18º	19º	20º	21º	22º	23º	24 º	25 º	26º	27º	28º	29º	30º	31º	32 º
Símbolo	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
ORDEM	33º	34º	35º	36º	37 º	38º	39º	40º	41 º	42 º	43º	44 º	45º	46º	47 º	48º
Símbolo	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F

REPRESENTAÇÃO DE BASE NUMÉRICA

Quando falamos de números da base **decimal** geralmente não representamos explicitamente a base numérica, quando vemos um número qualquer sem base numérica subentendemos ser um número da base decimal. Mas para números de outras bases é necessário informar explicitamente a base numérica do número. Esta é representada por um número sobescrito no final do número. Por exemplo:

- 1010001011₂
- 453234₈
- 23AF6D₁₆
- 1024₁₀ (nesse caso, por ser base decimal, podemos representar ou o número sem a base, apenas **1024**)

Entendido isso, vamos ver agora como converter os números entre as bases decimais.

> 1ª CONVERSÃO NUMÉRICA: DECIMAL PARA BINÁRIO

A conversão numérica de números **decimais** para números **binários** é realizada através de divisões consecutivas. Como? Dividimos o número da base decimal por 2 até que não seja mais divisível, ao final, o número binário é o **resultado da última divisão "ajuntado" dos restos das demais divisões "de baixo para cima"**. Bom, é melhor vemos um exemplo para ficar claro...

Vamos converter o número 34 para a base binária.

> 2ª CONVERSÃO NUMÉRICA: DECIMAL PARA OCTAL

A conversão numérica de **Decimal** para **Octal** é quase idêntica à anterior, a diferença é que agora dividimos por 8. Veja o exemplo abaixo, onde convertemos o número 2834 da base **decimal** para a base **octal**:

> 3ª CONVERSÃO NUMÉRICA: DECIMAL PARA HEXADECIMAL

Já dá para imaginar como é a conversão de números decimais para a base hexadecimal?

Acertou! É a mesma coisa que a anterior, só que agora dividimos por 16. Mas tem um pequeno detalhe, ao final não podemos utilizar os números 10, 11, 12, 13, 14, e 15, no lugar desses números utilizamos A, B, C, D, E e F. Veja o exemplo abaixo, onde convertemos o número 2834 da base **decimal** para a base **hexadecimal**:

Viu como é fácil? Não se esqueça de trocar os valores acima de 9 por letras!

> 4ª CONVERSÃO NUMÉRICA: BINÁRIO PARA DECIMAL

Agora vamos entrar na conversão de números para a base **decimal**, mas vamos ver que após aprender uma forma, as outras são bem parecidas também. A conversão de números **binários** para números **decimais** é realizada através de uma somatória dos algarismos binários **da direita para a esquerda** onde cada termo da somatória é multiplicado por 2 elevado a um número sequencial iniciado em 0. Parece complicado, mas não é. Você pode seguir uns passos simples como apresentado abaixo:

Vamos converter o número 100010₂ para a base **decimal**.

1. Primeiro invertermos o número para fazermos a somatória da direita para a esquerda do número original.

```
100010 -> 010001
```

2. Agora vamos somar cada número, multiplicando por 2 elevado a um número sequencial iniciado em 0.

```
0 * 2 ° + 1 * 2 1 + 0 * 2 2 + 0 * 2 3 + 0 * 2 4 + 1 * 2 5
```

3. Podemos eliminar os termos que multiplicam por 0. Certo?

```
0*2°+1*2°+0*2°+0*2°+0*2°+1*2°

Ficamos com ...
1*2°+1*2°
```

4. Fazemos o cálculo do expoente e somamos.

```
2 + 32
```

5. Resultado: 34

> 5ª CONVERSÃO NUMÉRICA: OCTAL PARA DECIMAL

A conversão de números da base **octal** para a base **decimal** é semelhante a anterior, porém utilizamos 8 no lugar do número 2. Vamos converter o número 5422₈ para a base decimal seguindo os mesmos passos da conversão anterior.

1. Primeiro invertermos o número para fazermos a somatória da direita para a esquerda do número original.

```
5422 -> 2245
```

2. Agora vamos somar cada número, multiplicando por 8 elevado a um número sequencial iniciado em 0.

```
2 * 8 0 + 2 * 8 1 + 4 * 8 2 + 5 * 8 3
```

3. Fazemos o cálculo do expoente e obtemos os termos da soma.

```
2 * 1 + 2 * 8 + 4 * 64 + 5 * 512
Ficamos com ...
**2 + 16 + 256 + 2560
```

4. Resultado: 2834

> 6ª CONVERSÃO NUMÉRICA: HEXADECIMAL PARA DECIMAL

Adivinha! Mesma coisa que a anterior, só que agora utilizando 16, mas lembre-se: é necessário substituir as letras A, B, C, D, E e F por 10, 11, 12, 13, 14 e 15. Vamos converter o número B12₁₆ para a base **decimal** seguindo os mesmos passos da conversão anterior.

1. Primeiro invertermos o número para fazermos a somatória da direita para a esquerda do número original.

B12 -> 21B

2. Agora vamos somar cada número, multiplicando por 16 elevado a um número sequencial iniciado em 0.

```
2 * 16 • + 1 * 16 1 + B * 16 2
Substituímos B por 11, ficamos com ...
2 * 16 • + 1 * 16 1 + 11 * 16 2
```

3. Fazemos o cálculo do expoente e obtemos os termos da soma.

```
2 * 1 + 1 * 16 + 11 * 256
Ficamos com ...
2 + 16 + 2816
```

4. Resultado: **2834**

> 7ª CONVERSÃO NUMÉRICA: BINÁRIO PARA OCTAL

A conversão de números da base **binária** para a base **octal**, é parecida com a conversão **binário-decimal**, mas antes é preciso separar os dígitos binários **de 3 em 3 da direita para a esquerda**. Vejamos um exemplo, vamos converter o número 10011011101₂ para **octal**.

1. Separamos os dígitos binários de 3 em 3 da direita para a esquerda.

10 011 011 101

2. Agora fazemos a conversão binário-decimal para cada grupo separadamente. (veja a 4ª conversão deste documento)

2335

3. Unimos novamente os dígitos e temos o número na base octal.

Resultado: 23358

> 8º CONVERSÃO NUMÉRICA: BINÁRIO PARA HEXADECIMAL

A conversão de números da base **binária** para a base **hexadecimal** é quase idêntica à anterior, só que agora separamos os dígitos binários **de 4 em 4 da direita para a esquerda** e antes de unir os dígitos ao final, trocamos os números 10, 11, 12, 13, 14 e 15 por A, B, C, D, E e F. Vejamos um exemplo, vamos converter o número 10011011101₂ para **hexadecimal**.

1. Separamos os dígitos binários de 4 em 4 da direita para a esquerda.

100 1101 1101

2. Agora fazemos a conversão **binário-decimal** para cada grupo separadamente. (veja a 4ª conversão deste documento)

4 13 13

3. Trocamos os números maiores que 9 por letra.

4 D D

4. Unimos novamente os dígitos e temos o número na base hexadecimal.

4DD16

> 9º CONVERSÃO NUMÉRICA: OCTAL PARA BINÁRIO

Nessa conversão temos que pensar no contrário da conversão **binário-octal**. Convertemos cada dígito do número **octal** para a base **binária** separadamente. Vamos converter o número 2335₈ para a base **binária**.

1. Separamos os dígitos do número **octal**.

2335

2. Agora fazemos a conversão de cada dígito separadamente para binário como se fosse número da base **decimal**. (veja a 1º conversão deste documento)

010 011 011 101

3. Unimos novamente os dígitos e temos o número na base **binária** (neste momento podemos eliminar os 0s a esquerda).

100110111012

> 10º CONVERSÃO NUMÉRICA: HEXADECIMAL PARA BINÁRIO

Da mesma forma que a anterior, nessa conversão temos que pensar no contrário da conversão **binário-hexadecimal**. Convertemos cada dígito do número **hexadecimal** para a base **binária** separadamente. Vamos converter o número 4DD₁₆ para a base **binária**.

1. Separamos os dígitos do número hexadecimal.

4 D D

2. Convertemos as letras para número seguindo aquela ordem já mencionada.

4 13 13

3. Agora fazemos a conversão de cada dígito separadamente para binário como se fosse número da base **decimal**. (Veja a 1ª conversão deste documento)

0100 1101 1101

4. Unimos novamente os dígitos e temos o número na base **binária** (neste momento podemos eliminar os 0s a esquerda).

100110111012

EXERCITAR

Como todo cálculo matemático, para aprender bem essas conversões numéricas é preciso praticar, fazer bastante exercícios. Com o tempo só de olhar para alguns números você já sabe como representá-lo em outras bases numéricas. Então, pegue o lápis e um papel e comece a fazer conversões.

- Converta os números seguintes entre as bases indicadas.
 - 1. De Decimal para Binário.

1. 77(10)	4. 10(10)	7. 999(10)
2. 189(10)	5. 67(10)	8. 325(10)
3. 234(10)	6. 450(10)	9. 650(10)

Respostas:

1. 100110 <mark>1</mark> ₍₂₎	1010	1111100111
2. 1011110 <mark>1</mark> ₍₂₎	1000011	101000101
3. 1110101 <mark>0</mark> (2)	111000010	1010001010

2. De Binário para Decimal.

1. 11001 ₍₂₎	4. 111 ₍₂₎	7. 111000(2)
2. 101101011 ₍₂₎	5. 1001 ₍₂₎	8. 1011011(2)
3. 10001111 ₍₂₎	6. 10000 ₍₂₎	9. 1100101(2)

Respostas:

1. <mark>25</mark> (10)	7	56
2. <mark>363</mark> (10)	9	91
3. <mark>143</mark> (10)	16	101

3. De Decimal para Hexadecimal.

1. 74(10)

4. 1600(10)

7. 78550(10)

2. 167(10)

5. 999(10)

8. 1345648(10)

3. 83₍₁₀₎

6. 750(10)

9. 255(10)

Respostas:

1. 4A ₍₁₆₎	640	132d6
2. A7 ₍₁₆₎	3e7	148870
3. 52(16)	750	ff

4. De Hexadecimal para Decimal.

1. A2₍₁₆₎

4. C8F(16)

7. 105(16)

2. B3A(16)

5. BA35₍₁₆₎

8. 5690(16)

3. 1D7₍₁₆₎

6. AC4₍₁₆₎

9. EFO₍₁₆₎

Respostas:

1. 162 (10)	3215	261
2. 2874 (10)	47669	22160
3. 471 (10)	2756	3824

5. De Binário para Hexadecimal.

1. 111010010₍₂₎

1. 10011101(2)

4. 110100011001(2)

2. 10110011101(2)

2. 11101011(2)

5. 100011101111(2)

3. 110010110101₍₂₎

3. 1110100000₍₂₎

6. 1101111111000110₍₂₎

Respostas:

1. 1d2	9d	d19
2. 59d	eb	8ef
3. cb5	3a0	dfc6

6. De Hexadecimal para Binário.

1. 7B(16)

6. 99(16)

11. F04₍₁₆₎

2. 1C5₍₁₆₎

7. 11D₍₁₆₎

12. C8F(16)

3. 2D4A₍₁₆₎

8. 105(16)

13. BA35(16)

4. D7₍₁₆₎

9. 5690(16)

14. AC4₍₁₆₎

5. 1A5E₍₁₆₎

10. EFO₍₁₆₎

15. D6F(16)

Respostas:

1. 1111011	10011001	111100000100	
2. 111000101	100011101	110010001111	
3. 10110101001010	100000101	1011101000110101	
4. 11010111	101011010010000	101011000100	
5. 1101001011110	111011110000	110101101111	

➤ Construa uma tabela de conversão (em planilha eletrônica) das representações numéricas das bases DECIMAL, OCTAL, HEXADECIMAL e BINÁRIO, apresentando os resultados dos valores até 999(10).

Símbolo	DECIMAL	OCTAL	HEXADECIMAL	BINARIO
1.º	0	0	0	0000
2.º	1	1	1	0001
3.º	2	2	2	0010
•••				
1.000º	999			

REFERÊNCIAS

- https://dicasdeprogramacao.com.br/
- Youtube :: "Sistemas Numéricos Computacionais"
- > TORRES, G. Redes de Computadores: Versão revisada e atualizada. 2.ª Edição. Rio de Janeiro: Clube do Hardware, 16/09/2021.