Assignment 2 report:

CPTS 427

Hongqi Guo

Question #1—Decode this simple cipher, which is the title of a book:

ACVLQDMZ

Answer is: sundiver

```
This problem I used the Caesar Cipher to solve, I do this by changing the Shift value.

PS C:\Users\hongq\Desktop\52/\42/ a2> & 'C:\Program Files\Python3/\python
es\lib\python\debugpy\launcher' '53863' '--' 'c:\Users\hongq\Desktop\527\4
 Please enter the Ciphertext: ACVLQDMZ
 Please enter the Shift: 8
  Answer is sundiver
```

Question #2

Answer in question2new.txt book name is

<alice's adventures in wonderland>

This problem has consumed me for a long time. I originally decided to use **Caesar Cipher** to solve this problem, but the results were not satisfactory. I learned from the book that I can use **substitution cipher**.

I first get the frequency of all the letters.

		deficy of all the letters.
Letter Times Frequency		
	33047	
I	13577	0.09403070871049733
P	10692	0.07404996225474239
S	8792	0.06089106510883793
J	8147	0.05642396581457036
Α	7516	0.05205382681506209
R	7375	0.051077298132129176
Н	7017	0.048597884880427177
0	6501	0.04502420544501312
M	5439	0.037669074513986524
D	4932	0.034157726696632015
F	4717	0.032668693598542825
	3600	0.02493264722381899
Q	3469	0.024025375894285574
W	2677	0.018540193505045398
Е	2531	0.01752903614541274
N	2399	0.016614839080539377
Υ	2265	0.015686790544986114
G	2107	0.014592524361274058
V	2002	0.013865322150579338
K	1525	0.010561746393423322
U	1475	0.010215459626425836
С	1159	0.008026927259001724
T	846	0.005859172097597462
L	209	0.0014474786860494914
X	149	0.001031934565652508
В	146	0.001011157359632659
Z	78	0.0005402073565160781

Then I matched them against the English character frequency table in the book. The results were bad. I realized that it would take a lot of testing to get all the correct comparison tables, so I used a <u>decompiler</u>. I get all the keys from the decompiler and use Python to decipher the encrypted file.

Question #3—Decode this cipher (which has a connection to the plaintext in question #2) using the keyword from question2.txt (which has a connection to the keyword in question #1 and #2): YSFKFMEOE

Answer is: **EDUCATION**

Please enter key:upliftwar
Please enter the ciphertext:YSFKFMEOE
Plaintext:EDUCATION

This part did not take me too long. I used the **Vigenere cipher**, and the key value appears in the last line of the second question. I need to plug in the key value and ciphertext, and the final answer is' **EDUCATION** '.

Question #4—What is in the question4.txt file? Use the keyword from question #3 to unzip question4.zip.

Answer: The keyword is THUNDERCASTLE.