

GSCI1801A

Information Science

Lecture 1: Computer and Architecture, and Basic Operations in Computer Science

Asst. Prof. Chawanat Nakasan | 2021-10-05

Agenda

- What's a computer?
- What's inside a computer?
 - Explanation of various components
- Computer Architecture
- Binary Number System
- Arithmetic Operations
- Logical Operations

What's a computer?

- a machine that can be programmed to manipulate symbols. Its principal characteristics are:
 - It responds to a specific set of instructions in a welldefined manner.
 - It can execute a prerecorded list of instructions (a program).
 - It can quickly store and retrieve large amounts of data.

https://www.cs.cmu.edu/~fgandon/lecture/uk1999/computers_types/

How fast is a computer?

ENIAC, 1945 (USA) Speed: 5,000 cycles per second

ABCI, 2018 (Japan)
Speed: 37 PFLOPS (high precision real numbers)

In less than a century, world-leading computers got faster by at least 7 billion-fold.

What's in a (typical) computer?

Basic Computer Architecture

[[von Neumann Architecture]]

^{*}Network Interface is a funny oddball and will be *greatly* explained later!

Memory Hierarchy

more expensive Register In CPU Cache **RAM** On Board **Solid-State Drives** (SSD) (card type) **Solid-State Drives (SSD)** (cable type) In Enclosure **Hard-Disk Drive** Removable Media **Back-Up Drives** External / **Networked Storage** Removable slower, larger

faster, smaller,

more affordable

Binary number system

Binary Number System

Conversion from/to Decimal

Representing negative numbers

Why it's easier than decimal?

Binary systems in the nature

What is decimal number?

```
4,482,692,653
 4,000,000,000
                                          4 \times 10^{9}
                                          4 \times 10^{8}
              , 0 0 0
                                          8 \times 10^{7}
                                          2 \times 10^{6}
                                          6 \times 10^{5}
                                          9 \times 10^{4}
                                          2 \times 10^{3}
                                          6 \times 10^{2}
                                         5 \times 10^{1}
                                          3 \times 10^{0}
```

Now, what is binary number?

$$1 \times 2^7 = 128$$

$$1 \times 2^6 = 64$$

$$1 \times 2^5 = 32$$

$$0 \times 2^4 = 0$$

$$1 \times 2^3 = 8$$

$$0 \times 2^2 = 0$$

$$1 \times 2^1 = 2$$

$$0 \times 2^{0} =$$

Indicating Numbers by Bases

Using Subscripts

100011012

10001101₁₀

0b10001101

10001101

Programming Style

Binary Numbers ("bin")

Decimal Numbers ("dec")

A Bit and a Byte

Bit is the smallest digital information possible.

8 bits make a byte.

A lot more meaningful data in computers are in bytes, such as characters (1 or 2 bytes) and numbers (1-8 bytes).

Files are almost never stored by individual bits.

Conversion Methods

Binary to Decimal

Position value method (earlier)

Decimal to Binary

- Position value method
- Short division method

Decimal to Binary by Short Division

$$223 = ?_2$$

Decimal to Binary by Short Division

$$223 = ?_2$$

Please continue dividing until you reach 1.

The first student to show their work gets a participation point.

In-class: Raise your hand.

Online: Use "raise hand" function in WebEx.

Decimal to Binary by Short Division

$$223 = ?_2$$

Read back upwards

Quick Detour Binary's brothers: the oct and the hex

 10001101_{2} 215_{8} $8C_{16}$ 0b10001101 0215 0x8C

Binary Numbers ("bin") Octal ("oct") Hexadecimal ("hex")

Quick Detour Binary's brothers: the oct and the hex

• bin ⇔ hex and bin ⇔ oct conversion is very easy!

16 = 2⁴ so one digit in oct = 4 digits in bin.

 $8 = 2^3$ so one digit in oct = 3 digits in bin.

Analog and Digital ... where binary is used, a lot.

- Computers are actually trillions of *electronic* switches and signals.
- Electronic systems can work on either:

Discussion

Are digital computers "accurate"? How do they work with natural information like noise and light?

Sampling Example

• Accurate quantization and sampling requires more bits.

Software used: Audacity 2.1.2 © Audacity Team; Data: generated using this software.

Arithmetic Operations

- Addition
- Subtraction
- Multiplication

Division and Modulo (same operation!)

Note: We'll discuss addition

and multiplication today.

Addition

$$36 + 29 = 100110_2 + 011101_2$$

_____2

Learn More:

https://www.sciencedirect.com/topics/computer-science/binary-addition

Two kinds of operations in adding

Discussion

Is binary arithmetic easier than decimal? Why?

Negative Numbers in Digital Logic: 2's Complement

 There are no minus signs in digital logic, so John von Neumann invented something cool: Two's Complement.

$$81 = 01010001_{2}$$
Flip all bits
$$10101110_{2}$$
o work,
Then add 1

For this to work, we need another zero bit up front.

$$10101111_2 = -81...$$
?

2's Complement (cont.) Now try it.

 $01010001_2 + 1010111_2$ 01000000_2

Participation Point! Can someone help me add this?

Disregard this bit. If we are working with 8-bit computer, it has no place.

Why computers do not really have subtraction?

- Addition = Add and Carry operations
- Subtraction (arithmetic) = Subtract and Borrow operations
- Subtraction (computer) =
 2's Complement and Addition {Add & Carry}!

Multiplication: Decimal

22	X	4
22	X	3
_		
		22 × 22 ×

Multiplication: Binary

EASIER than decimal multiplication!

Logical Operations

- Work on each bit at a time.
- Good for signal control and manipulation.

Bonus point!: What are Output X and Y, logically?

^{*} This is traditionally called a black box. Black in this case means "cannot see the inside."

Logical Operators and Logic Gates

AND Gate

A	В	$X = A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

A	В	$X = A \vee B$
0	0	0
0	1	1
1	0	1
1	1	1

Logical Operators and Logic Gates

XOR Gate

A	В	$X = A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Inverter ("NOT")

A	X = ¬ A
0	1
1	0

NAND, NOR, and XNOR

 They provide opposite results from AND, OR, XOR respectively.

NAND Gate

NOR Gate

A	В	$X = \neg (A \lor B)$
0	0	1
0	1	0
1	0	0
1	1	0

XNOR Gate

A	В	$X = \neg (A \oplus B)$
0	0	1
0	1	0
1	0	0
1	1	1

Multiple-Input Gates

• Both logical math and logic gates can extend to more than two operands (where it makes sense).

A	В	C	$X = A \wedge B \wedge C$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

4-way crossovers in Electrical Diagrams

- This is how to correctly draw 4-way crossovers in electrical diagrams (and logic gate diagrams).
- This class follows either old or recommended style.
- Jumping is always better than nodot crossing, but sometimes it is inconvenient in most drawing tools.
- (Three-way junctions should also have dots, but PPT can't draw them automatically.)

Combining them together, we can achieve a lot of results.

Bonus Point: What is this circuit? Explain in human language!

Hint: Trace one output at a time.

Hint: Trace one output at a time.

Download the slide from LMS and try later from your home ©

Logic Gate Simulation

- You can try various tools for logic gate simulation if you want to understand them better.
- We'll be using many kinds of simulators throughout the class, and you can also use them for your reports too. Get used to them ☺
- https://circuitverse.org/simulator
- https://academo.org/demos/logic-gate-simulator/

Logic to Arithmetic: Half Adders

Logic to Operations: SR Latch

S (Set)	R (Reset)	Q	$\overline{oldsymbol{ec{Q}}}$
0	0	Keep	State
1	0	1	0
0	1	0	1
1	1	Inva	alid

Wait! Is that memory?

- It took humanity about 300 years from the first definition of electricity by William Gilbert to creating the first flip-flop.
- (A modern smartphone with 256 GB memory contains about 2,048,000,000,000 bits.)

Create a circuit diagram and a truth table for the following expression:

$$X = (A \wedge B) \vee C$$

$$X = (A \wedge B) \vee C$$

$$X = (A \wedge B) \vee C$$

$$X = (A \wedge B) \vee C$$

$$X = (A \wedge B) \vee C$$

$$X = (A \wedge B) \vee C$$

Α	В	С	AΛB	(A ∧ B) ∨ C
0	0			
0	0			
0	1			
0	1			
1	0			
1	0			
1	1			
1	1			

$$X = (A \wedge B) \vee C$$

A	В	C	A ∧ B	(A ∧ B) ∨ C
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

If C is 1, then X is immediately 1.

$$X = (A \wedge B) \vee C$$

A	В	C	A ∧ B	(A ∧ B) ∨ C
0	0	0		
0	0	1		1
0	1	0		
0	1	1		1
1	0	0		
1	0	1		1
1	1	0		
1	1	1		1

Fill in the logic for A AND B.

$$X = (A \wedge B) \vee C$$

Α	В	C	AΛB	(A ∧ B) ∨ C
0	0	0	0	
0	0	1	0	1
0	1	0	0	
0	1	1	0	1
1	0	0	0	
1	0	1	0	1
1	1	0	1	
1	1	1	1	1

Compute the rest of the logic.

$$X = (A \wedge B) \vee C$$

A	В	C	A ∧ B	(A ∧ B) ∨ C
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Done.

$$X = (A \wedge B) \vee C$$

A	В	C	A ∧ B	(A ∧ B) ∨ C
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Logic gates in ICs

- This is the 7400 IC.
- You may notice the dot at the end of OR. This is the NOR gate.
- There are hundreds of millions of these gates in a CPU.

7402 Quad 2-input NOR Gates

Binary in the Nature

 There is one important that work "similar" to binary. It's actually our DNA.

	Standard genetic code								
1st	2nd base								3rd
base		Т		С		Α		G	
	TTT	(Dlag (E) Dlaggedalaging	TCT		TAT	(T) () T	TGT	(0(0) 0	Т
_	TTC	(Phe/F) Phenylalanine	TCC		TAC	(Tyr/Y) Tyrosine	TGC	(Cys/C) Cysteine	С
Т	TTA		TCA	(Ser/S) Serine	TAA	Stop (Ochre) ^[B]	TGA	Stop (Opal) ^[B]	Α
	TTG ^[A]		TCG		TAG	Stop (Amber) ^[B]	TGG	(Trp/W) Tryptophan	G
	CTT	(1 (1) 1 !	CCT		CAT	4 P - # 1	CGT		Т
	СТС	(Leu/L) Leucine	CCC	(B. (B.) B. (ii	CAC	(His/H) Histidine	CGC	(Arg/R) Arginine	С
С	СТА		CCA	(Pro/P) Proline	CAA	(Gln/Q) Glutamine	CGA		Α
	CTG ^[A]		CCG		CAG		CGG		G
	ATT		ACT		AAT	(A = n /NI) A = n = n = n = n = n = n = n = n = n =	AGT	(Con/C) Coning	Т
	ATC	(Ile/I) Isoleucine	ACC	(Thr/T) Througho	AAC	(Asn/N) Asparagine	AGC	(Ser/S) Serine	С
Α	ATA		ACA	(Thr/T) Threonine	AAA	(1= //2) =:	AGA	(A(D) Aii	Α
	ATG ^[A]	(Met/M) Methionine	ACG		AAG	(Lys/K) Lysine	AGG	(Arg/R) Arginine	G
	GTT		GCT GAT	(Aan/D) Aanartia asid	GGT		Т		
G	GTC		GCC	(Ala/A) Alanine	GAC	(Asp/D) Aspartic acid	GGC	(Gly/G) Glycine	С
G	GTA	(Val/V) Valine	GCA		GAA	(Glu/E) Glutamic acid	GGA		Α
	GTG		GCG		GAG		GGG		G

https://en.wikipedia.org/wiki/DNA codon table

Wait, what?

• There are 4 bases, right? We can try to represent:

DNA Base	Binary
Т	00
С	01
Α	10
G	11

Note: This is a simplification.

Standard genetic code 2nd base C Α CT TAT (Tyr/Y) Tyrosine CC **TAC** (Ser/S) Serine Stop (Ochre)[B] CA TAA Stop (Amber)[B] G; **TAG** CAT (His/H) Histidine CAC (Pro/P) Proline CAA (Gln/Q) Glutamine CAG AAT (Asn/N) Asparagine AAC T) Threonine AAA (Lys/K) Lysine **AAG GAT** (Asp/D) Aspartic acid **GAC GAA** 58 (Glu/E) Glutamic acid GAG

Store DNA information in binary!

Human Genome = 3 BILLION bases => 750 Megabytes PER PERSON AT LEAST. (Just the data)

NOTE AGAIN: This is just a sample hypothetical case!

Download human genome at https://www.gencodegenes.org/human/ (FASTA file for ALL regions = 800+ MB compressed)

And, store binary information in DNA ...

A DNA-Based Archival Storage System

James Bornholt[†] Randolph Lopez[†] Douglas M. Carmean[‡]
Luis Ceze[†] Georg Seelig[†] Karin Strauss[‡]

† University of Washington ‡ Microsoft Research

Figure 2. DNA storage as the bottom level of the storage hierarchy

Figure 3. Overview of a DNA storage system.

Discussion

How can we represent other things in binary form? What do you think about using DNA as data storage?