A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 1EE Bookmark Show all steps: ON

Problem

Describe the root field K of $x^7 - 1$ over \mathbb{Q} . Explain why $[K:\mathbb{Q}] = 6$.

Step-by-step solution

Step 1 of 2

The objective is to describe the root field K of $\chi^7 - 1$ over \mathbb{Q} and to explain why $[K : \mathbb{Q}] = 6$.

Comment

Step 2 of 2

If ω is the primitive root of unity , then $1, \omega, \omega^2, \omega^3, \omega^4, \omega^5, \omega^6$ are the seven distinct elements of $\mathbb{Q}(\omega)$, and $(\omega^k)^7 = (\omega^7)^k = 1^k = 1$ shows that these seven elements are seven zeros of $x^7 - 1$.

Thus, $x^7 - 1$ splits in $\mathbb{Q}(\omega)$.

Hence $K = \mathbb{Q}(\omega)$ is the root field of $x^7 - 1$ over \mathbb{Q} .

Since 7 is prime , the degree $[K:\mathbb{Q}] = 7 - 1 = 6$.

Comment