# UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO

# LEONARDO WINTER PEREIRA LUCAS ZIMMERMANN CORDEIRO LUÍS FELIPE MAZZUCHETTI ORTIZ

#### **DALLE PAD**

ARTIGO ACADÊMICO

**CURITIBA** 

2015

# LEONARDO WINTER PEREIRA LUCAS ZIMMERMANN CORDEIRO LUÍS FELIPE MAZZUCHETTI ORTIZ

#### **DALLE PAD**

Artigo Acadêmico apresentado pelo Bacharelado em Engenharia de Computação da Universidade Tecnológica Federal do Paraná como requisito parcial para aprovação na disciplina de "Oficinas de Integração 3".

Orientador: Gustavo Benvenutti Borba

Guilherme Alceu Schneider

**CURITIBA** 

2015

## **AGRADECIMENTOS**

AQUI OS AGRADECIMENTOS



#### **RESUMO**

WINTER PEREIRA, Leonardo; ZIMMERMANN CORDEIRO, Lucas; MAZZUCHETTI ORTIZ, Luís F.. DALLE PAD. 26 f. Artigo Acadêmico – Bacharelado em Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2015.

Resumo (Máximo de 500 palavras).

Palavras-chave: Arduino, Android, Projeto, Gerenciamento

#### **ABSTRACT**

WINTER PEREIRA, Leonardo; ZIMMERMANN CORDEIRO, Lucas; MAZZUCHETTI ORTIZ, Luís F.. DALLE PAD. 26 f. Artigo Acadêmico – Bacharelado em Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2015.

Abstract text (maximum of 500 words).

Keywords: Arduino, Android, Project, Management

## LISTA DE FIGURAS

## LISTA DE TABELAS

## LISTA DE SIGLAS

# LISTA DE SÍMBOLOS

# SUMÁRIO

| 1   | INTRODUÇÃO                            | 12 |
|-----|---------------------------------------|----|
| 1.1 |                                       |    |
| 1.2 | DELIMITAÇÃO DO ESTUDO                 |    |
| 1.3 | PROBLEMA                              |    |
| 1.4 |                                       | 12 |
|     | 1 Objetivos Gerais                    |    |
|     | 2 Objetivos Específicos               |    |
|     | · · · · · · · · · · · · · · · · · · · |    |
| 1.6 |                                       |    |
| 1.7 |                                       |    |
| 1.8 |                                       |    |
| 1.9 | BANCA EXAMINADORA                     |    |
|     | as A                                  |    |
|     | •                                     |    |
|     |                                       |    |
|     |                                       |    |
|     |                                       | 15 |
|     |                                       |    |
|     |                                       |    |
|     | 1 Interface                           | 15 |
|     | 2 Lógica                              | 15 |
|     | COMUNICAÇÃO ENTRE HARDWARE E SOFTWARE | 15 |
| 3.4 | PROJETO MECÂNICO - INVÓLUCRO          | 15 |
|     |                                       |    |
|     | RESULTADOS E DISCUSSÕES               | 16 |
|     | CONSIDERAÇÕES FINAIS                  | 17 |
|     | SUGESTÕES PARA TRABALHOS FUTUROS      | 17 |
| REI | FERÊNCIAS                             | 18 |
| Anê | endice A – NOME DO APÊNDICE           |    |
|     | exo A – DATASHEETS                    | 20 |
|     | POTENCIÔMETRO ROTATIVO                | 21 |
|     | POTENCIÔMETRO LINEAR                  | 23 |

# 1 INTRODUÇÃO

- 1.1 TEMA
- 1.2 DELIMITAÇÃO DO ESTUDO
- 1.3 PROBLEMA
- 1.4 OBJETIVOS

Nesta seção são apresentados os objetivos geral e específicos do trabalho, relativos ao problema anteriormente apresentado.

- 1.4.1 OBJETIVOS GERAIS
- 1.4.2 OBJETIVOS ESPECÍFICOS
- 1.5 JUSTIFICATIVA
- 1.6 PROCEDIMENTOS METODOLÓGICOS
- 1.7 EMBASAMENTO TEÓRICO
- 1.8 ESTRUTURA DO TRABALHO

O trabalho terá a estrutura abaixo apresentada:

- Capítulo 1 Introdução: são apresentados o tema, as delimitações da pesquisa, o problema e a premissa, os objetivos da pesquisa, a justificativa, os procedimentos metodológicos, as indicações para o embasamento teórico e a estrutura geral do trabalho.
- Capítulo 2 Fundamentação Teórica: são apresentados os conceitos e equipamentos necessários para a construção do Dalle Pad.

- Capítulo 3 Desenvolvimento: é apresentado o funcionamento do Hardware e Software do Dalle Pad, bem como a comunicação entre ambas as partes.
- Capítulo 4 Resultados e Discussões: são apresentados os resultados obtidos e discussões pertinentes.
- Capítulo 5 Considerações Finais: serão retomadas a pergunta de pesquisa e os seus objetivos e apontado como foram solucionados, respondidos, atingidos, por meio do trabalho realizado. Além disto, serão sugeridos trabalhos futuros que poderiam ser realizados a partir do estudo realizado.

#### 1.9 BANCA EXAMINADORA

Durante toda a execução deste projeto, diversos alunos e professores foram de extrema ajuda e importância.

É com grande alegria que nomeio alguns destes para participar da banca examinadora do projeto:

• Aluno(s) convidado(s):

João Pedro Curti

André Eleutério

• Professor orientador:

César Manuel Vargas Benitez (DAELN)

Rafael Barreto (DAFIS)

• Professor(a) convidado(a):

Leyza Dorini (DAINF)

Fábio Dorini (DAMAT)

• Professor(es) da disciplina:

Gustavo Benvenutti Borba (DAELN)

Guilherme Alceu Schneider (DAELN)

# 2 FUNDAMENTAÇÃO TEÓRICA

- 2.1 MICROCONTROLADORES E ARDUINO
- 2.1.1 MICROCONTROLADORES
- 2.1.2 ARDUINO

#### 3 DESENVOLVIMENTO

- 3.1 HARDWARE
- 3.2 SOFTWARE
- 3.2.1 INTERFACE
- 3.2.2 LÓGICA
- 3.3 COMUNICAÇÃO ENTRE HARDWARE E SOFTWARE

Nesta seção discutiremos como foi realizada a comunicação entre o Hardware e o Software do Dalle Pad.

- 3.4 PROJETO MECÂNICO INVÓLUCRO
- 3.4.1 PROGRAMAS UTILIZADOS PARA A EXECUÇÃO DO PROJETO

4 RESULTADOS E DISCUSSÕES

5 CONSIDERAÇÕES FINAIS

5.1 SUGESTÕES PARA TRABALHOS FUTUROS

# REFERÊNCIAS

# APÊNDICE A - NOME DO APÊNDICE

## **ANEXO A - DATASHEETS**

Este capítulo compreende todos os *datasheets* utilizados durante o desenvolver do projeto.

É importante ressaltar que os componentes desenvolvidos pela própria equipe, sistemas eletrônicos e códigos estão todos relatados no capítulo anterior.

#### A.1 POTENCIÔMETRO ROTATIVO



#### **Features**

- Low torque
- Carbon element
- Plain or knurled shaft option
- Metal bushing
- Metal shaft
- Rear solder lugs
- Audio or linear taper options



- Variety of resistance values
- RoHS compliant\*

#### PDB241-GTR Series - 24 mm Guitar Potentiometer



<sup>\*</sup>RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.

Users should verify actual device performance in their specific applications.

# PDB241-GTR Series - 24 mm Guitar Potentiometer

# **BOURNS**®

#### **Taper Charts**







Other tapers available.

# A.2 POTENCIÔMETRO LINEAR

13.12.2015

RS\*\*N Series - Basic information



# Low-profile Master Type (N Fader) RS\*\*N Series

| Part number                                        |                               | RSA0N1219A03         |
|----------------------------------------------------|-------------------------------|----------------------|
| Number of resistor elements                        |                               | Dual-unit            |
| Direction of lever                                 |                               | Vertical             |
| Travel                                             |                               | 100mm                |
| Lever type                                         |                               | 9-T (T-Bar)          |
| Total resistance  Resistance taper  Terminal style |                               | 8.2mm                |
|                                                    |                               | 10kΩ                 |
|                                                    |                               | 15A                  |
|                                                    |                               | For PC board         |
|                                                    |                               | -10°C to +60°C       |
| Electrical<br>performance                          | Total resistance<br>tolerance | ±20%                 |
|                                                    | Maximum operating voltage     | 350V AC              |
|                                                    | Rated power                   | 0.25W                |
|                                                    | Insulation resistance         | 100MΩ min. 250V DC   |
|                                                    | Voltage proof                 | 250V AC for 1 minute |
| Mechanical<br>performance                          | Operating force               | 0.4(+0.5, -0.35)N    |
| periormanice                                       | Stopper strength              | 100N                 |
|                                                    | Lever push-pull<br>strength   | 50N                  |
|                                                    | Lever wobble (Both side)      | 1.312mm              |
|                                                    | Lever deviation (One side)    | 0.5mm max.           |

| Durability                | Operating life | 30,000 cycles | 24 |
|---------------------------|----------------|---------------|----|
| Minimum order unit (pcs.) | Japan          | 200           |    |
| . ,                       | Export         | 400           |    |

#### Photo



## **Dimensions**



**Mounting Hole Dimensions** 



Viewed from mounting side.

# Terminal Layout / Circuit Diagram



# **Packing Specifications**

#### Tray

| iiuy                             |                         |             |
|----------------------------------|-------------------------|-------------|
| Number of packages (pcs.)        | 1 case / Japan          | 200         |
|                                  | 1 case / export packing | 400         |
| Export package measurements (mm) |                         | 377×517×371 |

# **Soldering Conditions**

#### Reference for Dip Soldering

| Preheating | Soldering surface temperature | 100°C max.  |
|------------|-------------------------------|-------------|
|            |                               |             |
|            | Heating time                  | 1 min. max. |

| 2015                    | RS**N Series - Ba     |            | 26 |
|-------------------------|-----------------------|------------|----|
| Dip soldering           | Soldering temperature | 260°C max. | ,0 |
|                         | Soldering time        | 5s max.    |    |
| No. of solders          |                       | 1 time     |    |
| Reference for Hand Solo | dering                |            |    |
| Tip temperature         |                       | 350℃ max.  |    |
| Soldering time          |                       | 3s max.    |    |
| No. of solders          |                       | 1 time     |    |

#### Notes are common to this series/models.

- 1. This site catalog shows only outline specifications. When using the products, please obtain formal specifications for supply.
- 2. Please place purchase orders per minimum order unit (integer).
- 3. Products other than those listed in above products are also available. Please contact us for details.
- 4. "L" in the "Lever Wobble" column of the above table indicates the length of lever.