PROVA SCRITTA DI ELETTRONICA 1 8 SETTEMBRE 2016

1) Nel circuito in figura, i transistori e il diodo possono essere descritti da un modello "a soglia", con V_{γ} =0.75 V e $V_{CE,sat}$ =0.2 V. Si determini la caratteristica statica di trasferimento $V_u(V_i)$, per 0< V_i < V_{dd} , e si calcoli il margine d'immunità ai disturbi N_M della rete.

UN RINGRAZIAMENTO SPECIALE AL PROFESSOR PAGLIARI CHE HA DATO PIU ESAMI LUI DEL MAGNIFICO RETTORE

il magnifico rettore Loris Borghi

 $V_{dd} = 3.5 \text{ V}, \ \beta_F = 100, \ R_1 = 100 \ \Omega, \ R_2 = 750 \ \Omega, \ R_3 = 4 \ k\Omega, \ R_4 = 25 \ k\Omega.$

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalla tensione di soglia V_{Tn} =- V_{Tp} = V_{T} e dai coefficienti β_n = β_p = β .

I segnali di ingresso V_a e V_b abbiano l'andamento periodico mostrato in figura. La resistenza R abbia un valore tale che la potenza statica media dissipata dal circuito valga 3 mW.

Si determini il valore di R e l'andamento del segnale di uscita V_u.

 $V_{dd} = 3.3 \text{ V}, V_T = 0.35 \text{ V}, \beta=3 \text{ mA/V}^2.$

Esame di ELETTRONICA AB (mod. B): svolgere l'esercizio 1 (tempo disponibile 1h 15m).
Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 15m).

Esame di ELETTRONICA 1 / FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h e 30m).

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

8.9.2016 – Esercizio 1

OSS. PRELIMINARI: Q2 quando ON è in attiva diretta.

Regione 1: $vi < v_{\gamma} = 0.75V$, Q1 off, Q2 AD e D on (entrambe da verificare).

$ie2=(vu-v_{y})/r4*(\beta f+1)$	Ma ic2=ir1+ir2	
ir2=(vdd-vu)/r2	Risolvendo si ricava: vu= 2.29 V.	
$ir1=(vdd-v_y-vu)/r1$	La soluzione verifica entrambe le Hp fatte su	
	Q2 e D.	
Regione 1: per $0 < vi < v_{\gamma}$		

Regione 2: $vi > v_{\gamma}$, Q1 AD, Q2 AD e D on.

$ic1=\beta f*(vi-v_{\gamma})/r3$	Risolvendo si ricava:	
$ie2=(vu-v_{\gamma})/r4*(\beta f+1)$	vu=3.509-1.626 vi.	
ir2=(vdd-vu)/r2	La vu sta calando, per cui si rimane in questa regione	
$ir1=(vdd-v_{\gamma}-vu)/r1$	fintantoché Q2 va off, per vu> v _γ , sse vi< 1.697 V	
	Il punto di passaggio tra la reg.1 e la reg.2 è il primo	
Ma ic1+ie2=ir1+ir2	punto notevole :	
	$V_{OHMIN} = 2.29 \text{ V e } V_{ILMAX} = v_{\gamma}$	
Regione 2: per $v_{\gamma} < v_i < 1.697 \text{ V}$		

Regione 3: Q1 AD, Q2 off e D on.

Regione 3. Q1 AD, Q2 011 CD 011.		
$ic1=\beta f *(vi-v_{\gamma})/r3$	Risolvendo si ricava:	
ir2=(vdd-vu)/r2	vu= 4.492-2.206 vi	
$ir1=(vdd-v_{\gamma}-vu)/r1$	La vu sta calando, per cui si rimane in questa regione	
	fintantoché Q1 va sat, sse	
Ma ic1=ir1+ir2	Vu>vceat, sse 4.492-2.206 vi > vcesat, sse	
	Vi< 1.946 V.	
Regione 3: per 1.697 V< vi < 1.946 V		

Regione4: Q1 sat (sse vu>1.497 V), Q2 off e D on.

Vu=vcesat=0.2 V	Si ricava allora che:	
Il punto di passaggio tra la reg.3 e la reg.4 è il	$NM_H = V_{OHMIN} - V_{IHMIN} = 2.29 \text{ V} - 1.946 \text{ V} = 0.344 \text{ V} = NM$	
secondo punto notevole:	$NM_L = V_{ILMAX} - V_{OLMAX} = 0.75 \text{ V} - 0.2 \text{ V} = 0.55 \text{ V}$	
V_{OLMAX} = vcesat e V_{IHMIN} = 1.946		
Regione 4: per 1.946 V< vi < 3.5 V		

Di seguito si riporta la caratteristica statica di trasferimento.

8.9.2016 - Esercizio 2

I segnali di ingresso hanno un andamento periodico, con periodo T=4 ns. Il circuito dissipa potenza statica solamente quando la rete di pull-down costituita dal transistore M_1 è attiva, quindi quando $V_a=V_{dd}$, nell'intervallo $1\ ns < t < 3ns$. Si ha quindi :

$$\begin{split} \tilde{P} &= \frac{1}{T} \int\limits_{0}^{T} P_{istantanea} dt = \frac{1}{T} \int\limits_{0}^{T} V_{dd} \, I_{dd} dt = \frac{1}{T} \Biggl(\int\limits_{0}^{1ns} V_{dd} \, I_{dd} dt + \int\limits_{1ns}^{2ns} V_{dd} \, I_{dd} dt + \int\limits_{2ns}^{3ns} V_{dd} \, I_{dd} dt + \int\limits_{3ns}^{4ns} V_{dd} \, I_{dd} dt \Biggr) \\ &= \frac{1}{T} \Biggl(\int\limits_{0}^{1ns} V_{dd} \, I_{dd} dt + \int\limits_{1ns}^{2ns} V_{dd} \, I_{dd} dt \Biggr) \end{split}$$

In condizione statiche ($V_b=0$ oppure $V_b=V_{dd}$), la corrente sulla serie fra i transistori M_1 e M_3 è necessariamente nulla: essendo M_1 e M_3 transistori complementari pilotati dallo stesso segnale V_b , essi non possono essere simultaneamente accesi. Quindi, se M_1 è ON, indipendentemente dal valore di V_b , nell'intervallo 0 < t < 2ns si ha necessariamente :

$$I_{D1} = I_R = I_{dd}$$

con:

$$I_R = \frac{V_{dd} - V_x}{R}$$

e, ipotizzando (*) che M_1 operi in regione lineare:

$$I_{D1} = \beta \left((V_{dd} - V_t) V_x - \frac{{V_x}^2}{2} \right)$$

La potenza vale quindi:

$$\tilde{P} = \frac{1}{T} \int_{0}^{2ns} V_{dd} I_{dd} dt = \frac{1}{T} \int_{0}^{2ns} V_{dd} \beta \left((V_{dd} - V_t) V_x - \frac{{V_x}^2}{2} \right) dt = \frac{V_{dd} \beta \left((V_{dd} - V_t) V_x - \frac{{V_x}^2}{2} \right)}{4 ns} \int_{0}^{2ns} dt = \frac{V_{dd} \beta \left((V_{dd} - V_t) V_x - \frac{{V_x}^2}{2} \right)}{2} = 3 mW$$

Da cui (scartando una soluzione inaccettabile) si ricava:

$$V_x = \begin{cases} \mathbf{0.21} \ V \to V_{GS1} = V_{dd} > 0.21 + V_T \to HP * ok \\ 5.68 \ V \to V_{GS1} = V_{dd} < 5.68 + V_T \to HP * ko \end{cases}$$

e:

$$I_{dd} = 1.818 \text{ mA} \rightarrow R = \frac{V_{dd} - V_x}{I_{dd}} = 1697.8 \Omega$$

Quindi:

$$\mathbf{0} < t < \mathbf{1ns}: V_a = V_{dd}, V_b = 0 \ \rightarrow \ M_1ON, M_2OFF, M_3ON: V_x = 0.21 \ V, V_u = V_{dd}$$

 ${f 1ns} < {f t} < {f 2ns}$: $V_a = V_b = V_{dd}
ightarrow M_1ON$, M_2ON , M_3OFF : $V_x = 0.21~V$; M_2 agisce come un pass-transistor a canale n, con il source coincidente con il nodo a potenziale più basso, quindi con il nodo a potenziale V_x . Al termine del transitorio, $I_{D2} = 0$ e, ipotizzando che M_2 operi in regione lineare (**) si ottiene $V_{DS2} = 0
ightarrow V_u = V_x = 0.21~V$ (con $V_{GS2} = V_{dd} > 0 + V_T
ightarrow HP ** OK$).

2ns < t < 3ns: $V_a = 0$, $V_b = V_{dd} \rightarrow M_1OFF$, M_2ON , M_3OFF : $I_R = 0$, $V_x = V_{dd}$. Il nodo di uscita si carica attraverso il pass transistor a canale n M_2 , raggiungendo quindi il valore $V_x = V_{dd} - V_T = 2.95V$.

2ns < t < 3ns: $V_a = 0$, $V_b = V_{dd} \rightarrow M_1OFF$, M_2OFF , M_3ON : $I_R = 0$, $V_x = V_{dd}$. Il nodo di uscita si carica attraverso il pull-up a canale p M_2 , raggiungendo quindi il valore $V_x = V_{dd}$.

L'andamento complessivo dei segnali di ingresso e uscita è mostrato nella figura a fianco.

