

Dr. N MEHALA

Department of Computer Science and Engineering

Module 4 [Unsupervised Learning]

Dr. N MEHALA

Department of Computer Science and Engineering

MACHINE INTELLIGENCE FP GROWTH ALGORITHM

Apriori VS FP GROWTH ALGORITHM

- Apriori: uses a generate-and-test approach- generates candidate itemsets and tests if they are frequent
- Generation of candidate itemsets is expensive (in terms of both space and time)
- Support counting is expensive
 - Subset checking (computationally expensive)
 - Multiple Database scans (I/O)

FP Growth Algorithm

PES UNIVERSITY

- Use a compressed representation of the database using an FP-tree
- FP-Growth: allows frequent item set discovery without candidate item set generation

Two step approach:

- **Step 1:** Build a compact data structure called the FP-tree
 - Built using 2 passes over the data-set.
- **Step 2**: Extracts frequent item sets directly from the FP-tree
 - Traversal through FP-Tree
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent item sets

FP Growth Algorithm : Example

FP Growth Algorithm : Example

First scan – determine frequent 1-itemsets, then build header

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

В	8
A	7
C	7
D	5
Е	3

TID	Items
1	{B,A}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{B,A,C}
6	$\{B,A,C,D\}$
7	{B,C}
8	{B,A,C}
9	{B,A,D}
10	{B,C,E}

FP Growth Algorithm : Example

FP-tree construction

TID	Items
1	{B,A}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{B,A,C}
6	$\{B,A,C,D\}$
7	{B,C}
8	{B,A,C}
9	$\{B,A,D\}$
10	$\{B,C,E\}$

After reading TID=2:
null
B:2
C:1
D:1

FP Growth Algorithm : Example

TID	Items
1	{B,A}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{B,A,C\}$
6	$\{B,A,C,D\}$
7	{B,C}
8	$\{B,A,C\}$
9	$\{B,A,D\}$
10	$\{B,C,E\}$

Header table

Item		Pointer
В	8	
Α	7	
С	7	, september of the sept
D	5	, recent
Е	3	***************************************

Chain pointers help in quickly finding all the paths of the tree containing some given item.

FP Growth Algorithm: Example

FP Growth Algorithm : Example

Conditional FP-Tree for E

- It is not the tree obtained in previous slide as result of deleting nodes from the original tree.
- Because the order of the items can change.
 - Now, C has a higher count than B.

Suffix E

FP Growth Algorithm : Example

(New) Header table

A C	2 2	Conditional FP- Tree for suffix E
D	2	null
B doe	sn't	C:1 A:2
surviv becau	e se it has	
suppo	-	C:1 D:1
which than r	is lower	
	ort of 2.	D:1

The set of paths ending in E.

Insert each path (after truncating E) into a new tree.

We continue recursively. Base of recursion: When the tree has a single path only.

FP Growth Algorithm : Example

PES UNIVERSITY ONLINE

Steps of Building Conditional FP-Trees

- 1. Find the paths containing on focus item.
- 2. Read the tree to determine the new counts of the items along those paths.

Build a new header.

3. Read again the tree. Insert the paths in the conditional FP-Tree according to the new order.

Suffix DE

A

FP Growth Algorithm : Example

(New) Header table

The conditional FP-Tree for suffix DE null

The set of paths, from the E-conditional FP-Tree, ending in D.

We have reached the base of recursion.

Insert each path (after truncating D) into a new tree.

FI: DE, ADE

FP Growth Algorithm : Example

Base of Recursion

- We continue recursively on the conditional FP-Tree.
- Base case of recursion: when the tree is just a single path.
 - Then, we just produce all the subsets of the items on this path merged with the corresponding suffix.

Suffix CE

FP Growth Algorithm : Example

The set of paths, from the E-conditional FP-Tree, ending in C.

Insert each path (after truncating C) into a new tree.

We have reached the base of recursion.

FI: CE

Conditional FP-

Tree for suffix E

C:1

D:1

null

FP Growth Algorithm: Example

The set of paths, from the E-conditional FP-Tree, ending in A.

FI: AE

recursion.

We have reached the base of

Insert each path (after truncating A) into a new tree.

FP Growth Algorithm : Example

Suffix D

B:1

C:1

The set of paths ending in D.

Insert each path (after truncating D) into a new tree.

We continue recursively. Base of recursion: When the tree has a single path only.

Suffix CD

FP Growth Algorithm: Example

(New) Header table

The set of paths, from the D-conditional FP-Tree, ending in C.

Insert each path (after truncating C) into a new tree.

We continue recursively. Base of recursion: When the tree has a single path only.

FI: CD

FP Growth Algorithm : Example

Suffix BCD

Conditional FP-Tree for suffix CDB

The set of paths from the CD-conditional FP-Tree, ending in B.

Insert each path (after truncating B) into a new tree.

We have reached the base of recursion.

FI: BCD

FP Growth Algorithm : Example

Conditional FP-Tree for suffix ACD

Suffix ACD

The set of paths from the CD-conditional FP-Tree, ending in A.

We have reached the base of recursion.

Insert each path (after truncating B) into a new tree.

FI: ACD

FP Growth Algorithm : Example

The set of paths ending in C.

Insert each path (after truncating C) into a new tree.

We continue recursively. Base of recursion: When the tree has a single path only.

FI: C

FP Growth Algorithm : Example

(New) Header table

B 3 Conditional FP-Tree for suffix AC null B:3

The set of paths from the C-conditional FP-Tree, ending in A.

Insert each path (after truncating A) into a new tree.

We have reached the base of recursion.

FI: AC, BAC

Suffix BC

FP Growth Algorithm : Example

(New) Header table

В	3

Conditional FP-Tree for suffix BC

The set of paths from the C-conditional FP-Tree, ending in B.

Insert each path (after truncating B) into a new tree.

We have reached the base of recursion.

FI: BC

Suffix A

FP Growth Algorithm : Example

(New) Header table

B 5 Conditional FP-Tree for suffix A null

The set of paths ending in A.

Insert each path (after truncating A) into a new tree.

We have reached the base of recursion.

FI: A, BA

Suffix B

FP Growth Algorithm : Example

Conditional FP-Tree for suffix B

The set of paths ending in B.

Insert each path (after truncating B) into a new tree.

We have reached the base of recursion.

FI: B

FP Growth Algorithm : Example

PES UNIVERSITY

FREQUENT ITEM SETS:

- FI: DE, ADE
- FI: CE
- FI: AE
- FI: CD
- FI: BCD
- FI: ACD
- FI: C
- FI: AC, BAC
- FI: B
- FI: BC
- FI: A, BA

Resources

- http://www2.ift.ulaval.ca/~chaib/IFT-4102 7025/public html/Fichiers/Machine Learning in Action.pdf
- http://wwwusers.cs.umn.edu/~kumar/dmbook/.
- ftp://ftp.aw.com/cseng/authors/tan
- http://web.ccsu.edu/datamining/resources.html

THANK YOU

Dr. N MEHALA

Department of Computer Science and Engineering mehala@pes.edu