

Algorithmen und Datenstrukturen

Wintersemester 2018/19
18. Vorlesung

Graphen:

Repräsentation und Durchlaufstrategien

Was ist das?

Ein (und derselbe) Graph; der dreidimensionale Hyperwürfel.

F: Was ist ein Graph?

 A_1 : Ein (ungerichteter) Graph ist ein Paar (V, E), wobei

- V Knotenmenge und
- $-E \subseteq \binom{V}{2} = \{\{u, v\} \subseteq V \mid u \neq v\}$ Kantenmenge.

 A_2 : Ein gerichteter Graph ist ein Paar (V, E), wobei

- V Knotenmenge und
- $-E \subseteq V \times V = \{(u, v) \mid u, v \in V\}$ Kantenmenge.

F: Wie repräsentiere ich einen Graphen?

1 0 1 0 1 0 2 1 0 1 0 0 3 0 1 0 1 1 4 1 0 1 0 1 5 0 0 1 1 0

Adjazenzmatrix

 $Adj[i] = \{j \in V \mid (i,j) \in E\}$

$$a_{ij}=1\Leftrightarrow (i,j)\in E$$

Grad eines Knotens

Def.

$$\deg u = |Adj[u]|$$

outdeg
$$v = |Adj[v]|$$

indeg $v = |\{u \in V : (u, v) \in E\}|$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Eine Kante ist *inzident* zu ihren Endknoten.

Ein Knoten ist *inzident* zu allen Kanten, deren Endknoten er ist.

Aus Sicht der Knoten: $\sum_{v \in V} \deg v$

Aus Sicht der Kanten: $2 \cdot |E|$ also gleich

Grad eines Knotens

Def.

$$\deg u = |\mathsf{Adj}[u]|$$

outdeg
$$v = |Adj[v]|$$

indeg $v = |\{u \in V : (u, v) \in E\}|$

Beob. Sei G = (V, E) ein ungerichteter Graph. Dann ist die Summe aller Knotengrade $= 2 \cdot |E|$.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis.
$$2 \cdot |E| = \sum_{v \in V} \deg v = \sum_{v \in V_{ger}} \deg v + \sum_{v \in V_{ung}} \deg v$$
 $gerade! \quad gerade! \quad gerade! \quad \Rightarrow gerade!$

$$\sum_{v \in V_{ung}} \deg v \quad gerade \Rightarrow |V_{ung}| \text{ ist } gerade! \quad \Box$$

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis, so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei wehrten Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich

einen Olchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis, so dass jeder **Knoten** genau einmal durchlaufen wird.

**Kinstruktion: Bei welchen Graphen geht das (nicht)?

**Kinstruktion: Wie (lad it welchen Zeit) finde cheinen selbe. Rundlauf, tills in existien?

── Vorlesung Algorithmische Graphentheorie (nächstes Semester!)

F: Wie durchlaufe ich einen Graphen?

Ideen?

- 1. wellenförmige Ausbreitung ab einem gegebenen Startknoten s Breitensuche (breadth-first search, BFS)
- 2. vom Startknoten s möglichst schnell weit weg Tiefensuche (depth-first search, DFS)

Breitensuche

```
BFS(Graph G, Vertex s)
  Initialize (G, s)
  Q = \text{new Queue}()
  Q.Enqueue(s)
  while not Q.Empty() do
     u = Q. Dequeue()
     foreach v \in Adj[u] do
         if v.color == white then
             v.color = gray
             v.d = u.d + 1
             v.\pi = u
             Q.Enqueue(v)
     u.color = black
```



```
Initialize(Graph G, Vertex s)

foreach u \in V do
\begin{array}{c} u.color = white \\ u.d = \infty \\ u.\pi = nil \\ s.color = gray \\ s.d = 0 \end{array}
```

Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)

Laufzeit? O(|V|) + O(

$$O(|V|) + O(|V|) + O(|E|) = O(|V| + |E|)$$

[Beob. über Knotengrade!]

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, $u, v \in V$. $\delta(u, v) := \text{Länge eines kürzesten } u - v - \text{Wegs}$, (falls v von u erreichbar; sonst $\delta(u, v) := \infty$).

Ziel:

Zeige, dass nach BFS(G, s) für alle $v \in V$ gilt: berechneter $v \cdot d = \delta(s, v)$. tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V, E) ein (un)gerichteter Graph, $s \in V$. Dann gilt für jede Kante $(u, v) \in E$: $\delta(s, v) \leq \delta(s, u) + 1$.

Beweis.

1. Fall: u ist von s erreichbar (d.h. $\exists s-u$ -Weg)

Dieser s-v-Weg hat Länge $\delta(s, u) + 1$.

Kürzester s-v-Weg hat Länge $\leq \delta(s,u)+1$.

Korrektheit von BFS – Fortsetzung

- **Lemma 1.** Sei $s \in V$. Dann gilt für jede Kante $(u, v) \in E$: $\delta(s, v) \leq \delta(s, u) + 1$.
- **Lemma 2.** Sei G = (V, E) ein (un)gerichteter Graph, $s \in V$. Nach BFS(G, s) gilt für alle $v \in V$: $v.d \ge \delta(s, v)$.

Beweis.

Induktion über die Anz. k von Enqueue-Oper.

```
\begin{aligned} \mathsf{BFS}(\mathsf{Graph}\ G,\,\mathsf{Vertex}\ s) \\ \mathsf{Initialize}(G,s) \\ Q &= \mathsf{new}\ \mathsf{Queue}() \\ Q.\mathsf{Enqueue}(s) \\ \mathbf{while}\ \mathbf{not}\ Q.\mathsf{Empty}()\ \mathbf{do} \\ & u = Q.\mathsf{Dequeue}() \\ \mathbf{foreach}\ v \in \mathsf{Adj}[u]\ \mathbf{do} \\ & | \mathbf{if}\ v.color = white\ \mathbf{then} \\ & v.color = gray \\ v.d &= u.d + 1 \\ v.\pi &= u \\ & Q.\mathsf{Enqueue}(v) \\ & u.color = black \end{aligned}
```

- k = 1: Situation nach Q.Enqueue(s):
 - $s.d = 0 = \delta(s, s)$
 - für alle $v \in V \setminus \{s\}$ gilt $v.d = \infty \ge \delta(s, v)$
- k > 1: Situation nach Q.Enqueue(v):

v war gerade noch weiß und ist benachbart zu u.

$$\sim v.d = u.d + 1 \ge \delta(s, u) + 1 \ge \delta(s, v)$$

Induktionsannahme für u Lemma 1 (u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Jetzt ist v grau. $\Rightarrow v.d$ ändert sich nicht mehr.

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, $s \in V$. Nach BFS(G, s) gilt für alle $v \in V$: $v.d \ge \delta(s, v)$.

Lemma 3. Sei $Q = \langle v_1, v_2, \dots, v_r \rangle$ während BFS. Dann gilt: (A) $v_r.d \leq v_1.d+1$ und (B) $v_i.d \leq v_{i+1}.d$ für $i=1,\dots,r-1$. Also d-Werte der Knoten in Q z.B. $\langle 3,3,4,4,4 \rangle$.

Korollar. Angenommen u wird früher als v in Q eingefügt, dann gilt $u.d \le v.d$, wenn v in Q eingefügt wird.

Beweis. Folgt aus Lemma 3 und der Tatsache, dass jeder Knoten $\leq 1 \times$ einen endlichen d-Wert bekommt.

Korrektheit von BFS – Hauptsatz

- Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G. Nach BFS(G, s) gilt:
 - (i) Für alle Knoten $v \in V$ gilt $v.d = \delta(s, v)$.
 - (ii) Jeder von s erreichbare Knoten wird entdeckt.
 - (iii) Für jeden von s erreichbaren Knoten $v \neq s$ gilt: es gibt einen kürzesten s-v-Weg, der aus einem kürzesten s-v. π -Weg und der Kante (v. π , v) besteht.
- Beweis. (i) \Rightarrow (ii), (iii). Es genügt also (i) zu zeigen. Lemma $2 \Rightarrow v.d \geq \delta(s, v)$. Noch z.z.: $v.d \leq \delta(s, v)$.

Widerspruchsbeweis mit Wahl des "kleinsten Schurken".

Siehe Kapitel 22.2 [CLRS].

BFS-Bäume

Betrachte den *Vorgänger-Graphen* $G_{\pi} = (V_{\pi}, E_{\pi})$ von G:

•
$$V_{\pi} = \{ v \in V : v.\pi \neq nil \} \cup \{s\}$$

$$\bullet \ \boxed{E_{\pi}} = \{(v.\pi, v): v \in V_{\pi} \setminus \{s\}\}\}$$

Klar: G_{π} ist ein Baum (da zshg. und $|E_{\pi}| = |V_{\pi}| - 1$).

Beh.: G_{π} ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

- $V_{\pi} = \{v \in V : v \text{ erreichbar von } s\}$
- für alle $v \in V_{\pi}$ enthält G_{π} einen eindeutigen Weg von s nach v, der ein kürzester s-v-Weg ist.

Bew.: Folgt aus (ii) und (iii) im Hauptsatz.