	oto Optical Character Recognition).
how to let	computers read text to the purelt in images.
1) Text detection	: find the region where the text is.
O Character Symen	rtation: segment individual character.
· · · · · · · · · · · · · · · · · · ·	fication: recognize each character
Sliding Windows.	
pedestrians detection	
) positive exem	mples cy=1) -> pedesexians
I negative ex	comples (y=0) -> others.
	jobh different aspect of vatio and sloding it over the whole image to
•	Ls(gedestrians), sending them to the classifier.
	character segmentation:
	uples (4=1): the middle of image represents a gap or split
('	imples (y=0): Single character, no need to split.
Getting lots of Dc	ata and Artificial Data. (low bias classifier)
	dutaset from the beginning based on specific application.
O Using row train	ing sets, modifying them into new traing examples, such as ring. Yotation. (data augmentation)
the distortion distortion in the	introduced should be representation of the type of noise/ e test set. (Should be reasonable).
Ceiling Analysis:	
Using ceiling Analys	os to decide which part we should spend more time on.
Image	Text Character Character Segmentation Yecognition

1. 如果然纯本的企业确立为72%.	Componet 1	accuracy
	overall system Text detection	72%
上、如果全Text defection 公子输出(公防正面,发现系统 似点体效果从7次段升到了89%,设意、味着我们 可以花点的的条理為 text detection的糕度。	Text detection	89 %
似流体效果从7次程升到389%, 这意味着我们	Character segmentation	90%
可以花点同时间来提高 text eletection的糕度。	Character recognition	- 100%
	•	
3.如果我们手动路静数据来进行Character segmenta 使其输出10=%正确,但系统运体效果只提升了1%, 说用Character segmentation 已经足够 & 3.	tion.	
便其输出105%正确,但忽线泛线效果只根件了1%。	, j. <u>k</u>	
VE IN Character segmentation 243 203 65 3.		
4. 在Character recognition, 新段采用同样分为法、发表的效果,是对了10%, 那我们要要包花时间来	R.	
多统效果提升了16%,那我们需要包花时间来	. 伊差.	
一 为义用的关体约果。		