Санкт-Петербургский национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Лабораторная работа №11

 $^{-}$ « H_2 и H_{∞} »

по дисциплине «Теория автоматического управления» Вариант: 8

Подготовил: Дюжев Владислав Дмитриевич

Группа: R33353

Преподаватель: Пашенко А. В.

Содержание

Содержание

1	Синтез H_2 -регулятора по состоянию	2			
	1.1 1 вариант				
	1.2 2 вариант	2			
	1.3 Графики	2			
${f 2}$	Синтез H_2 -регулятора по выходу	7			
		7			
	2.1 1 вариант 2.2 2 вариант 2.3 Профици	7			
	2.3 Графики	10			
3	Синтез H_{∞} -регулятора по состоянию	12			
4	Синтез H_∞ -регулятора по выходу				
5	Выводы	22			

Предисловие

При выполнении данной лабораторной работы было решено использовать Python Control Systems Library. Данный инструмент является альтернативой Matlab, адаптированной для использования на языке Python и предоставляет широкий функционал для анализа и моделирования систем, а также синтеза регуляторов для управления.

Полный листинг моделирования систем представлен в jupyter notebook на GitHub.

1 Синтез H_2 -регулятора по состоянию

Рассмотрим систему:

$$\begin{cases} \dot{x} = Ax + B_1 w + B_2 u \\ y = C_1 x + D_1 w \\ z = C_2 x + D_2 u \end{cases}$$
 (1)

Можем синтезировать H_2 -регулятор по состоянию (u = Kx) следующим образом:

$$\begin{cases}
A^T Q + QA + C_2^T C_2 - QB_2 (D_2^T D_2)^{-1} B_2^T Q = 0 \\
K = -(D_2^T D_2)^{-1} B_2^T Q
\end{cases}$$
(2)

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, B_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C_1 = \begin{bmatrix} 1 & 0 \end{bmatrix} D_1 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

Моделирование систем проведем при $w = [sin(t), sin(2t), 1]^T$. Зададимся двумя вариантами регулируемого выхода z:

1.1 1 вариант

$$C_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, D_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, K = \begin{bmatrix} -2 & -2 \end{bmatrix}$$

Матрица передаточных функций:

$$W = \begin{bmatrix} \frac{2s+4}{s^2+2s+2} & \frac{2}{s^2+2s+2} & 0\\ \frac{-2s}{s^2+2s+2} & \frac{-2s-2}{s^2+2s+2} & 0 \end{bmatrix}$$

$$||W(j\omega)||_{H_2}=2.45, ||W(j\omega)||_{H_\infty}=2.58$$

Графики анализа данной системы представленны на рисунках 1, 2, 3, 4.

1.2 2 вариант

$$C_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, D_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, K = \begin{bmatrix} -1 & -1.5 \end{bmatrix}$$

Матрица передаточных функций:

$$W = \begin{bmatrix} \frac{3}{s^2 + 1.5s + 1} & \frac{-3s}{s^2 + 1.5s + 1} & 0\\ \frac{-1}{s^2 + 1.5s + 1} & \frac{s}{s^2 + 1.5s + 1} & 0 \end{bmatrix}$$

$$||W(j\omega)||_{H_2} = 2.58, ||W(j\omega)||_{H_{\infty}} = 3.32$$

Графики анализа данной системы представленны на рисунках 5, 6, 7, 8.

1.3 Графики

Рис. 1: Задание 1. Вариант 1. Компоненты матрицы АЧХ и ФЧХ.

Рис. 2: Задание 1. Вариант 1. Сингулярные числа.

Рис. 3: Задание 1. Вариант 1. Вектор состояния системы.

Рис. 4: Задание 1. Вариант 1. Регулируемый выход системы.

Рис. 5: Задание 1. Вариант 2. Компоненты матрицы АЧХ и ФЧХ.

Рис. 6: Задание 1. Вариант 2. Сингулярные числа.

Рис. 7: Задание 1. Вариант 2. Вектор состояния системы.

Рис. 8: Задание 1. Вариант 2. Регулируемый выход системы.

2 Синтез H_2 -регулятора по выходу

Дополним систему наблюдателем:

$$\begin{cases} \dot{\hat{x}} = A\hat{x} + B_2 u + L(\hat{y} - y) \\ \hat{y} = C_1 \hat{x} \\ \hat{z} = C_2 \hat{x} \end{cases}$$

$$(3)$$

Можем синтезировать H_2 -наблюдатель следующим образом:

$$\begin{cases}
AP + PA^{T} + B_{1}B_{1}^{T} - PC_{1}^{T}(D_{1}D_{1}^{T})^{-1}C_{1}P = 0 \\
L = -PC_{1}^{T}(D_{1}D_{1}^{T})^{-1}
\end{cases}$$
(4)

Представим систему в виде:

$$\begin{cases}
\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A + B_2 K & -B_2 K \\ 0 & A + LC_1 \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix} + \begin{bmatrix} B_1 \\ LD_1 + B_1 \end{bmatrix} w \\
z = \begin{bmatrix} C_2 + D_2 K & -D_2 K \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix}
\end{cases}$$
(5)

Моделирование систем проведем при $w = [sin(t), sin(2t), 0.5sin(t)]^T$. Зададимся двумя вариантами регулируемого выхода z:

2.1 1 вариант

$$C_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, D_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, K = \begin{bmatrix} -2 & -2 \end{bmatrix}, L = \begin{bmatrix} -1.73 & -1 \end{bmatrix}^T$$

Матрица передаточных функций

$$W = \begin{bmatrix} \frac{2s^3 + 7.46s^2 + 12.93s}{s^4 + 3.73s^3 + 6.64s^2 + 5.46s + 2} & \frac{2s^2 + 7.46s + 12.93}{s^4 + 3.73s^3 + 6.64s^2 + 5.46s + 2} & \frac{-10.93s - 4}{s^4 + 3.73s^3 + 6.64s^2 + 5.46s + 2} \\ \frac{-5.46s^2 - 2s}{s^4 + 3.73s^3 + 6.64s^2 + 5.46s + 2} & \frac{-5.46s - 2}{s^4 + 3.73s^3 + 6.64s^2 + 5.46s + 2} & \frac{-5.46s^3 - 2s^2}{s^4 + 3.73s^3 + 6.64s^2 + 5.46s + 2} \end{bmatrix}$$

$$||W(j\omega)||_{H_2} = 5.27, ||W(j\omega)||_{H_{\infty}} = 7.21$$

Графики анализа данной системы представленны на рисунках 9, 10, 11, 12.

2.2 2 вариант

$$C_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, D_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, K = \begin{bmatrix} -1.41 & -2.19 \end{bmatrix}, L = \begin{bmatrix} -1.73 & -1 \end{bmatrix}^T$$

Матрица передаточных функций:

$$W = \begin{bmatrix} \frac{2s^3 + 3.12s^2 + 11.03s}{s^4 + 3.92s^3 + 6.22s^2 + 4.64s + 1.41} & \frac{2s^2 + 3.21s + 11.03}{s^4 + 3.92s^3 + 6.22s^2 + 4.64s + 1.41} & \frac{-4.64s^2 - 10.71s - 2.82}{s^4 + 3.92s^3 + 6.22s^2 + 4.64s + 1.41} & \frac{2s^3 + 7.85s^2 + 7.79s - 1.41}{s^4 + 3.92s^3 + 6.22s^2 + 4.64s + 1.41} & \frac{-4.46s^3 - 10.71s^2 - 2.82s}{s^4 + 3.92s^3 + 6.22s^2 + 4.64s + 1.41} \end{bmatrix}$$

$$||W(j\omega)||_{H_2} = 5.74, ||W(j\omega)||_{H_{\infty}} = 8.43$$

Графики анализа данной системы представленны на рисунках 13, 14, 15, 16.

Рис. 9: Задание 2. Вариант 1. Компоненты матрицы АЧХ и ФЧХ.

Рис. 10: Задание 2. Вариант 1. Сингулярные числа.

Рис. 11: Задание 2. Вариант 1. Вектор состояния системы.

Рис. 12: Задание 2. Вариант 1. Регулируемый выход системы.

Рис. 13: Задание 2. Вариант 2. Компоненты матрицы АЧХ и ФЧХ.

2.3 Графики

Рис. 14: Задание 2. Вариант 2. Сингулярные числа.

Рис. 15: Задание 2. Вариант 2. Вектор состояния системы.

Рис. 16: Задание 2. Вариант 2. Регулируемый выход системы.

3 Синтез H_{∞} -регулятора по состоянию

Рассмотрев систему (1) можем синтезировать H_{∞} -регулятор по состоянию:

$$\begin{cases} A^TQ + QA + C_2^TC_2 - QB_2(D_2^TD_2)^{-1}B_2^TQ + \gamma^{-2}QB_1B_1^TQ = 0\\ K = -(D_2^TD_2)^{-1}B_2^TQ \end{cases} \tag{6}$$

Изменим матрицы системы следующим образом:

$$C_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}, C_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, D_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

γ	K	$ W(j\omega) _{H_2}$	$ W(j\omega) _{H_{\infty}}$
1.65	[-32.89 -27.05]	5.98	1.61
3	[-2.77 -2.68]	2.49	2.34
10	[-2.05 -2.04]	2.44	2.64

Таблица 1: Результаты синтеза регулятора с заданными γ .

Графики анализа системы, замкнутой регулятором при различных γ приведены ниже (рис. 17-24):

Рис. 17: Задание 3. $\gamma = 1.65.$ Компоненты матрицы AЧX и ФЧX.

Рис. 18: Задание 3. $\gamma = 1.65$. Сингулярные числа.

Рис. 19: Задание 3. $\gamma = 1.65$. Вектор состояния системы.

Рис. 20: Задание 3. $\gamma = 1.65$. Регулируемый выход системы.

Рис. 21: Задание 3. $\gamma = 3$. Компоненты матрицы АЧХ и ФЧХ.

Рис. 22: Задание 3. $\gamma=3$. Сингулярные числа.

Рис. 23: Задание 3. $\gamma = 10$. Компоненты матрицы АЧХ и ФЧХ.

Рис. 24: Задание 3. $\gamma=10$. Сингулярные числа.

Рис. 25: Задание 4. $\gamma = 5.2$. Компоненты матрицы АЧХ и Φ ЧХ.

Синтез H_{∞} -регулятора по выходу 4

Рассмотрев системы (1) и (3) можем синтезировать H_{∞} -регулятор по выходу (совместно с наблюдателем) следующим образом:

$$\begin{cases}
AP + PA^{T} + B_{1}B_{1}^{T} - PC_{1}^{T}(D_{1}D_{1}^{T})^{-1}C_{1}P = 0 \\
L = -PC_{1}^{T}(D_{1}^{T}D_{1})^{-1} \\
A^{T}Q + QA + C_{2}^{T}C_{2} - QB_{2}(D_{2}^{T}D_{2})^{-1}B_{2}^{T}Q = 0 \\
K = -(D_{2}^{T}D_{2})^{-1}B_{2}^{T}Q
\end{cases} (7)$$

едставим систему в виде:
$$\begin{cases} \begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A + B_2 K & -B_2 K \\ -(LD_1 B_1) \gamma^{-2} B_1^T Q & A + LC_1 + (LD_1 B_1) \gamma^{-2} B_1^T Q \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix} + \begin{bmatrix} B_1 \\ LD_1 + B_1 \end{bmatrix} w \\ z = \begin{bmatrix} C_2 + D_2 K & -D_2 K \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix}$$
 (8)

γ	K	$\mid L \mid$	$ W(j\omega) _{H_2}$	$ W(j\omega) _{H_{\infty}}$
5.2	$\begin{bmatrix} -2.41 & -3.06 \end{bmatrix}$	$\begin{bmatrix} -83.74 & -74.41 \end{bmatrix}^T$	33.37	5.19
7	$\begin{bmatrix} -2.21 & -2.94 \end{bmatrix}$	$\begin{bmatrix} -3.32 & -2.38 \end{bmatrix}^T$	7.12	6.48
10	$\begin{bmatrix} -2.09 & -2.88 \end{bmatrix}$	$\begin{bmatrix} -2.21 & -1.42 \end{bmatrix}^T$	6.37	7.41

Таблица 2: Результаты синтеза полного регулятора с заданными γ .

Рис. 26: Задание 4. $\gamma = 5.2$. Сингулярные числа.

Рис. 27: Задание 4. $\gamma = 5.2$. Вектор состояния системы.

Рис. 28: Задание 4. $\gamma = 5.2$. Регулируемый выход системы.

Рис. 29: Задание 4. $\gamma = 7$. Компоненты матрицы АЧХ и ФЧХ.

Рис. 30: Задание 4. $\gamma=7$. Сингулярные числа.

Графики анализа системы, замкнутой регулятором при различных γ приведены на рисунках 25-30:

Рис. 31: Задание 4. $\gamma=10$. Компоненты матрицы АЧХ и ФЧХ.

Рис. 32: Задание 4. $\gamma=10$. Сингулярные числа.

5 Выводы

В ходе выполнения данной работы были получены навыки синтеза и исследования методов оптимального управления $(H_2,\,H_\infty$ регуляторов и наблюдателей).

- 1. Наблюдается тенденция взаимоисключающей оптимизации H_2 и H_∞ нормы системы.
- 2. H_2 -регуляторы ведут себя в целом жесче (коэффициенты регулирования больше), в то время как для наблюдателей замечена обратная тенденция.
- 3. При моделировании систем с внешними воздействиями удавалось добиться установившихся колебаний ошибки в определенной области.