Newton's method: Basic Idea

Objective:

$$\min_{x \in \mathbb{R}^n} f(x), \quad f: \mathbb{R}^n \to \mathbb{R}$$

Given the current point $x^{(k)}$

- construct a quadratic function (known as the quadratic approximation; using Tayor's approximation) to the objective function that matches the value and both the first and second derivatives at $x^{(k)}$
- minimize the quadratic function instead of the original objective function
- set the minimizer as $x^{(k+1)}$

Note: a new quadratic approximation will be constructed at $x^{(k+1)}$

Special case: the objective is quadratic, the approximation is exact and the method returns a solution in one step.

Geometric Illustration

- Assumption: function $f \in \mathcal{C}^2$, i.e., twice continuously differentiable
- Apply Taylor's expansion, keep first three terms, drop terms of order ≥ 3

$$f(\boldsymbol{x}) \approx q(\boldsymbol{x}) := f(\boldsymbol{x}^{(k)}) + \boldsymbol{g}^{(k)T}(\boldsymbol{x} - \boldsymbol{x}^{(k)}) + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}^{(k)})^T \boldsymbol{F}(\boldsymbol{x}^{(k)})(\boldsymbol{x} - \boldsymbol{x}^{(k)})$$

where

- ullet $oldsymbol{g}^{(k)} :=
 abla oldsymbol{f}(oldsymbol{x}^{(k)})$ is the gradient at $oldsymbol{x}^{(k)}$
- ullet $oldsymbol{F}(oldsymbol{x}^{(k)}) :=
 abla^2 oldsymbol{f}(oldsymbol{x}^{(k)})$ is the Hessian at $oldsymbol{x}^{(k)}$

• Minimizing q(x) by apply the first-order necessary condition:

$$m{0} =
abla q(m{x}) = m{g}^{(k)} + m{F}(m{x}^{(k)})(m{x} - m{x}^{(k)}).$$

• If $F(x^{(k)}) \succ 0$ (positive definite), then q achieves its unique minimizer at

$$x^{(k+1)} := x^{(k)} - F(x^{(k)})^{-1}g^{(k)}.$$

We have $\mathbf{0} = \nabla q(\mathbf{x}^{(k+1)})$

$$f(x_1, x_2) = -\log(1 - x_1 - x_2) - \log(x_1) - \log(x_2)$$

Start Newton's method from $(\frac{1}{10}, \frac{6}{10})$

Start Newton's method from $(\frac{1}{10}, \frac{1}{10})$

Start Newton's method from $(\frac{1}{100}, \frac{1}{100})$

Quadratic function minimization

The objective function

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x}$$

Assumption: Q is symmetric and invertible

$$egin{aligned} oldsymbol{g}(oldsymbol{x}) &= oldsymbol{Q}oldsymbol{x} - oldsymbol{b} \ oldsymbol{F}(oldsymbol{x}) &= oldsymbol{Q}. \end{aligned}$$

- First-order optimality condition $oldsymbol{g}(oldsymbol{x}^*) = oldsymbol{Q} oldsymbol{x}^* oldsymbol{b} = oldsymbol{0}.$ So, $oldsymbol{x}^* = oldsymbol{Q}^{-1}oldsymbol{b}.$
- Given any initial point $x^{(0)}$, by Newton's method

$$egin{aligned} m{x}^{(1)} &= m{x}^{(0)} - m{F}(m{x}^{(0)})^{-1} m{g}^{(0)} \ &= m{x}^{(0)} - m{Q}^{-1} (m{Q} m{x}^{(0)} - m{b}) \ &= m{Q}^{-1} m{b} \ &= m{x}^*. \end{aligned}$$

The solution is obtained in one step.

How Fast Is Newton's Method?

Suppose $f \in C^3$ and $x^* \in \mathbb{R}^n$ is a point such that

$$\nabla f(x^*) = 0 \qquad F(x^*) \succ 0.$$

Then for all $x^{(0)}$ sufficiently close to x^* , Newton's method is well defined for all k, and there exists a C > 0 such that

$$||x^{(j+1)} - x^*|| \le C||x^{(j)} - x^*||^2, \quad j = k, k+1, k+2, \dots$$

(This means that the order of convergence is two.)

Asymptotic rates of convergence

Suppose sequence $\{x^k\}$ converges to $ar{x}$. Perform the ratio test

$$\lim_{k\to\infty}\frac{\|\boldsymbol{x}^{k+1}-\bar{\boldsymbol{x}}\|}{\|\boldsymbol{x}^k-\bar{\boldsymbol{x}}\|}=\mu.$$

- if $\mu = 1$, then $\{x^k\}$ converges sublinearly.
- if $\mu \in (0,1)$, then $\{x^k\}$ converges linearly;
- if $\mu = 0$, then $\{x^k\}$ converges superlinearly;

To distinguish superlinear rates of convergence, we check

$$\lim_{k\to\infty}\frac{\|\boldsymbol{x}^{k+1}-\bar{\boldsymbol{x}}\|}{\|\boldsymbol{x}^k-\bar{\boldsymbol{x}}\|^q}=\mu>0$$

- if q = 2, it is quadratic convergence;
- if q = 3, it is cubic convergence;
- q can be non-integer, e.g., 1.618 for the secant method ...

Example: Linear, linear, superlinear (quadratic), sublinear

•
$$a_k = 1/2^k$$

•
$$b_k = 1/4^{\lfloor k/2 \rfloor}$$

• $c_k = 1/2^{2^k}$

•
$$c_k = 1/2^{2^k}$$

•
$$d_k = 1/(k+1)$$

When is Newton's Direction a Descent Direction?

At the kth iterate, if

$$F(x^{(k)}) \succ 0$$
 $g^{(k)} = \nabla f(x^{(k)}) \neq 0$

then the search direction

$$d^{(k)} = -F(x^{(k)})^{-1}g^{(k)}$$

is a descent direction, that is, there exists $\bar{\alpha} > 0$ such that

$$f(x^{(k)} + \alpha d^{(k)}) < f(x^{(k)}), \quad \forall \alpha \in (0, \bar{\alpha})$$

Two More Issues with Newton's Method

Indefinite Hessian:

- When the Hessian is not positive definite, the direction is not necessarily a descend direction.
- A simple solution is to use Levenberg-Marquardt approach!

Hessian evaluation:

- When the dimension n is large, obtaining $F(x^{(k)})$ can be computationally expensive
- Quasi-Newton method can be used to alleviate this difficulty!

Levenberg-Marquardt for Indefinite Hessian

If the Hessian $F(x^{(k)})$ is not positive definite, then the search direction

$$d^{(k)} = -F(x^{(k)})^{-1}g^{(k)}$$

may not point in a descent direction. A simple technique to ensure that the search direction is a descent direction is to used the so-called Levenberg-Marquardt modification to Newton's algorithm:

$$x^{(k+1)} = x^{(k)} - (F(x^{(k)}) + \mu_k I)^{-1} g^{(k)}$$

where $\mu_k \geq 0$.

Idea Underlying the Levenberg-Marquardt Modification

Let F be an $n \times n$ symmetric matrix but not be positive definite. The eigenvalues and eigenvectors of F are given by

$$\lambda_1, \lambda_2, \ldots, \lambda_n, \quad v_1, v_2, \ldots, v_n \in \mathbb{R}^n$$

Note that all λ_i 's are real, but not all positive (why?).

Now consider the matrix $G = F + \mu I, \mu \ge 0$. The eigenvalues of G are

$$\lambda_1 + \mu, \ \lambda_2 + \mu, \ \ldots, \ \lambda_n + \mu$$

$$Gv_i = (F + \mu I)v_i = Fv_i + \mu Iv_i = \lambda_i v_i + \mu v_i = (\lambda_i + \mu)v_i$$

which shows that for all $i=1,\ldots,n$ v_i is an eigenvector of G with eigenvalue $\lambda_i + \mu$. If μ is sufficiently large, then all eigenvalues of G are positive and G is positive definite.

In practice, we may start with a small value of μ_k , and then slowly increase it until we find that the iteration is descent, that is,

$$f(x^{(k+1)}) < f(x^{(k)}).$$

Gauss-Newton's Method

- Given functions $r_i: \mathbb{R}^n \to \mathbb{R}, \ i=1,\ldots,m$
- The goal is to find x^* so that $r_i(x) = 0$ or $r_i(x) \approx 0$ for all i.
- Consider the nonlinear least-squares problem

minimize
$$\frac{1}{2} \sum_{i=1}^{m} (r_i(\boldsymbol{x}))^2$$
.

• Define $r = [r_1, \dots, r_m]^T$. Then we have

$$\underset{\boldsymbol{x}}{\text{minimize}} \ f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{r}(\boldsymbol{x})^T \boldsymbol{r}(\boldsymbol{x}).$$

• The gradient $\nabla f(x)$ is formed by components

$$(\nabla f(\boldsymbol{x}))_j = rac{\partial f}{\partial x_j}(\boldsymbol{x}) = \sum_{i=1}^m r_i(\boldsymbol{x}) rac{\partial r_i}{\partial x_j}(\boldsymbol{x})$$

Define the Jacobian of r

$$m{J}(m{x}) = egin{bmatrix} rac{\partial r_1}{\partial x_1}(m{x}) & \cdots & rac{\partial r_i}{\partial x_n}(m{x}) \ & \cdots & \ rac{\partial r_m}{\partial x_1}(m{x}) & \cdots & rac{\partial r_m}{\partial x_n}(m{x}) \end{bmatrix}$$

Then, we have

$$\nabla f(\boldsymbol{x}) = \boldsymbol{J}(\boldsymbol{x})^T \boldsymbol{r}(\boldsymbol{x})$$

• The Hessian F(x) is symmetric matrix. Its (k,j)th component is

$$egin{aligned} rac{\partial^2 f}{\partial x_k \partial x_j} &= rac{\partial}{\partial x_k} \left(\sum_{i=1}^m r_i(oldsymbol{x}) rac{\partial r_i}{\partial x_j}(oldsymbol{x})
ight) \ &= \sum_{i=1}^m \left(rac{\partial r_i}{\partial x_k}(oldsymbol{x}) rac{\partial r_i}{\partial x_j}(oldsymbol{x}) + r_i(oldsymbol{x}) rac{\partial^2 r_i}{\partial x_k \partial x_j}(oldsymbol{x})
ight) \end{aligned}$$

• Let S(x) be formed by (k, j)th components

$$\sum_{i=1}^m r_i(oldsymbol{x}) rac{\partial^2 r_i}{\partial x_k \partial x_j}(oldsymbol{x})$$

- lacksquare Then, we have $oldsymbol{F}(oldsymbol{x}) = oldsymbol{J}(oldsymbol{x})^T oldsymbol{J}(oldsymbol{x}) + oldsymbol{S}(oldsymbol{x})$
- Therefore, Newton's method has the iteration

$$oldsymbol{x}^{(k+1)} = oldsymbol{x}^{(k)} - \underbrace{(oldsymbol{J}(oldsymbol{x})^Toldsymbol{J}(oldsymbol{x}) + oldsymbol{S}(oldsymbol{x}))^{-1}}_{oldsymbol{F}(oldsymbol{x})} \underbrace{oldsymbol{J}(oldsymbol{x})^Toldsymbol{T}(oldsymbol{x})}_{oldsymbol{\nabla} f(oldsymbol{x})}$$

19 / 24

504 (Prof. Maryam Yashtini) Newton's Method November 8, 2022

The Gauss-Newton method

• When the matrix S(x) is ignored in some applications to save computation, we arrive at the Gauss-Newton method

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \underbrace{(\boldsymbol{J}(\boldsymbol{x})^T \boldsymbol{J}(\boldsymbol{x}))^{-1}}_{(\boldsymbol{F}(\boldsymbol{x}) - \boldsymbol{S}(\boldsymbol{x}))^{-1}} \underbrace{\boldsymbol{J}(\boldsymbol{x})^T \boldsymbol{r}(\boldsymbol{x})}_{\nabla f(\boldsymbol{x})}$$

• A potential problem is that $J(x)^TJ(x)\not\succ 0$ and $f(x^{(k+1)})\geq f(x^{(k)})$. Fixes: line search, Levenberg-Marquardt, and Cholesky/Gill-Murray.

Example: nonlinear data-fitting

• Given a sinusoid

$$y = A\sin(\omega t + \phi)$$

• Determine parameters A, ω , and ϕ so that the sinusoid best fits the observed points: (t_i, y_i) , $i = 1, \dots, 21$.

• Let $\boldsymbol{x} := [A, \omega, \phi]^T$ and

$$r_i(\boldsymbol{x}) := y_i - A\sin(\omega t_i + \phi)$$

Problem

minimize
$$\sum_{i=1}^{21} (\underbrace{y_i - A\sin(\omega t_i + \phi)}_{r_i(x)})^2$$

• Derive $J(x) \in \mathbb{R}^{21 imes 3}$ and apply the Gauss-Newton iteration

$$x^{(k+1)} = x^{(k)} - (J(x)^T J(x))^{-1} J(x)^T r(x)$$

• Results: $A=2.01,~\omega=0.992,~\phi=0.541.$

Conclusions

Although Newton's method has many issues, such as

- the direction can be ascending if $F(x^{(k)}) \not\succ 0$
- may not ensure descent in general
- must start close to the solution,

Newton's method has the following strong properties:

- one-step solution for quadratic objective with an invertible $oldsymbol{Q}$
- ullet second-order convergence rate near the solution if $oldsymbol{F}$ is Lipschtiz
- a number of modifications that address the issues.