Autómatas, Teoría de Lenguajes y Compiladores (72.39)

Modelo de Examen Final

Lic. Ana María Arias Roig.

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5	Ejercicio 6	Ejercicio 7	Nota
1,5	1,5	2	1,5	1	1	1,5	

IMPORTANTE:

- La condición de aprobación es acumular 5 puntos.
- El examen tiene por objetivo que el alumno demuestre conocimientos adquiridos en la presente asignatura. Por ello, todos los ejercicios deben resolverse utilizando los algoritmos, conceptos y vocabulario vistos en la clase teórica, en la clase práctica o en la bibliografía.
- El examen se evalúa por lo que está escrito y no por lo que "se quiso poner", o por "lo que se pensó". Revisar muy bien que las justificaciones y desarrollo de los ejercicios estén claramente explicados, en el orden correcto y con la precisión que corresponda.

EJERCICIO 1: Introducción y gramáticas.

EXPLICAR: ¿en qué consiste la Jerarquía de Chomsky?

EJERCICIO 2: AUTÓMATAS FINITOS.

DEMOSTRAR: "Si L es aceptado por algún AFD entonces L es aceptado por algún AFND- λ ".

EJERCICIO 3: AUTÓMATAS FINITOS/ GRAMÁTICAS LIBRES DE CONTEXTO/ LLC/ANÁLISIS SINTÁCTICO.

SELECCIONA EN CADA CASO LA OPCIÓN CORRECTA:

- I. EL LENGUAJE ACEPTADO POR UN AUTÓMATA FINITO NO DETERMINISTA ES:
 - A. $L = \{ \omega \in \Sigma^* | \hat{\delta}(q_0, \omega) \in F \}$
 - **B.** $L = \{ \omega \in \Sigma * | \hat{\delta}(q_0, \omega) \cap F \neq \emptyset \}$
 - **C.** $L = \{ \omega \in \Sigma * | \hat{\delta}(q_0, \omega) \cap \bar{F} = \emptyset \}$
 - **D.** $L = \{ \omega \in \Sigma * | \hat{\delta}(q_0, \omega) \subset F \}$
- II. UNA GRAMÁTICA ES AMBIGUA SI:
 - A. para una cadena α existen dos árboles distintos con S como raíz y α en la base.
 - B. para una cadena α existen dos derivaciones más a la izquierda distintas desde S.
 - C. A y B son correctas.
 - D. Ninguna opción es correcta.
- III. EL LEMA DE BOMBEO PARA LENGUAJES LIBRES DE CONTEXTO SE DEMUESTRA USANDO:
 - A. Una gramática en Forma Normal de Chomsky.
 - B. Una gramática en Forma Normal de Greibach.
 - C. Una gramática sin recursividad a izquierda.
 - D. Una gramática factorizada por izquierda.
- IV. EN EL ANÁLISIS SINTÁCTICO ASCENDENTE, CUANDO ACCION[estado, a] ES "desplazar t":
 - A. Se sacan $|\beta|$ símbolos de la pila.
 - B. Se mete el símbolo t de la entrada en la pila.
 - C. Se sacan $|\beta|$ símbolos de la pila y se consume 'a'.
 - D. Se mete el símbolo t de la entrada en la pila y se consume 'a'.

EJERCICIO 4:

EXPRESIONES REGULARES/ LENGUAJES REGULARES/ ANÁLISIS SINTÁCTICO.

INDICA SI LAS SIGUIENTES AFIRMACIONES SON VERDADERAS O FALSAS. JUSTIFICAR TODO BREVEMENTE.

- I. La clausura * de \varnothing es \varnothing .
- II. La INTERSECCIÓN de dos lenguajes regulares no es regular.
- III. Existen métodos de análisis sintáctico descendente que no requieren backtracking.

Apellido y Nombre: Legajo:

EJERCICIO 5: AUTÓMATAS DE PILA.

El siguiente autómata <u>no reconoce</u> el lenguaje $L=\{\omega\in\{a,b,1,2\}^*|\alpha\in\{a,b\}^+\wedge\omega=\alpha\mathbf{1}^n\mathbf{2}^n\alpha^r\wedge n>0\}$ ¿por qué? ¿qué estados tienen transiciones incorrectas?

EJERCICIO 6: GRAMÁTICAS CON ATRIBUTOS.

EXPLICAR: ¿Qué es un atributo sintetizado?

EJERCICIO 7: MÁQUINAS DE TURING.

RELACIONAR EN UNA MISMA FRASE LOS CONCEPTOS:

- Autómata Linealmente Acotado.
- Lenguaje Recursivamente Enumerable.
- Lenguaje Sensible al Contexto.