

Непараметрические тесты

Критерий Манна-Уитни Критерий Уилкоксона Критерий Крускала – Уоллиса Критерий Фридмана

План курса

Что будет на уроке сегодня

- 🖈 Критерий Манна-Уитни
- 🖈 Критерий Уилкоксона
- 🃌 Критерий Крускала Уоллиса
- 🖈 Критерий Фридмана

Критерий Манна Уитни и условия его применимости

Критерий Манна- Уитни является аналогом критерия Стьюдента t. Данный критерий основан на рангах.

Условия применимости:

- ✓ Не соблюдается условие нормальности
- ✓ Дисперсии в группах различны
- ✓ Число сравниваемых групп равно 2
- ✓ Выборки являются независимыми

Идея критерия Манна- Уитни на примере задачи

Имеются 2 группы учеников, занимающихся по разным программам, но сдающих один и тот же тест. Баллы, набранные за тест, представлены ниже:

Выборка 1: 47, 75, 90 Выборка2: 58, 60, 77

Проверить гипотезу о том что нет статистически значимых различий между баллами студентов обеих групп.

$$H_0: \mu_1 = \mu_2$$

 $H_1: \mu_1 \neq \mu_2$

 μ_1 и μ_2 — медианы 1-й и 2-й выборок.

Продолжение задачи

Объединим данные выборок в один ряд и присвоим ранги

1 выборка		2 выборка	
значения	ранг	значения	ранг
75	4	60	3
90	6	58	2
47	1	77	5
	$\sum = 11$		$\sum = 10$

Переберем все возможные сочетания рангов для 1-й выборки $C_6^3 = \frac{6!}{3!*(6-3)!} = 20$

$$C_6^3 = \frac{6!}{3! * (6-3)!} = 20$$

Nº	комбинация	Сумма чисел комбинации
1	123	6
2	124	7
3	125	8
4	126	9
5	134	8
6	135	9
7	136	10
8	145	10
9	146	11
10	156	12

Nº	комбинация	Сумма чисел комбинации
11	234	9
12	235	10
13	236	11
14	245	11
15	246	12
16	256	13
17	245	12
18	346	13
19	356	14
20	456	15

сумма	6	7	8	9	10	11	12	13	14	15
частота	1	1	2	3	3	3	3	2	1	1

сумма	6	7	8	9	10	11	12	13	14	15
частота	1	1	2	3	3	3	3	2	1	1

6 7 8 9 10 11 12 13 14 15

$$P(6) = \frac{1}{20} = 0.05$$

$$P(15) = \frac{1}{20} = 0.05$$

$$\alpha = 0.01$$

$$T_{\rm \kappa p} = 6 \ {\rm M} \ T_{\rm \kappa p} = 15$$

T =11=> статистически значимых различий не обнаружено.

Тест Манна- Уитни в Python

```
import numpy as np
import scipy.stats as stats

x1= np.array([47, 90, 75])

x2 = np.array([ 58, 60, 77])

stats.mannwhitneyu(x1, x2)
MannwhitneyuResult(statistic=5.0, pvalue=1.0)
```


Расчет критерия Манна – Уитни U

- 1. Берем 1й элемент из х1 и ставим его в начало х2 47 58 60 77
- 2. Присваиваем ранги этим значениям
 - 1 2 3 4
- 3. Берем из массива рангов первое значение и вычитаем из этого значения 1 1-1 = 0

Теперь повторяем действия со 2м и 3м элементом из массива x1

- 1. 90 58 60 77
- 2.4 1 2 3
- 3. 4-1= **3**

И последний раз повторим действия для 75 (Зй элемент)

- 1. 75, 58, 60, 77
- 2. 3 1 2 4
- 3. 3-1=**2**

Сложим значения, которые мы получали в п.3 0+3+2=5 Это и будет расчетный статистик

```
import numpy as np
import scipy.stats as stats

x1= np.array([47, 90, 75])

x2 = np.array([ 58, 60, 77])

stats.mannwhitneyu(x1, x2)
MannwhitneyuResult(statistic=5.0, pvalue=1.0)
```


Пример из книги

```
1000 1400 1600 1180 1220
      4 5 2
1-1 = 0
1380 1400 1600 1180 1220
  3
      4
           5
3-1=2
1200 1400
          1600
                1180 1220
      4
            5
                  1
                      3
2-1=1
0+2+1=3
```

```
Paccмотрим пример из книги Стентона Гланца
group_1= np.array ([1000, 1380, 1200])
group_2 = np.array ([1400, 1600, 1180, 1220])
stats.mannwhitneyu(group_1, group_2)
MannwhitneyuResult(statistic=3.0, pvalue=0.4)
```


Критерий Уилкоксона

Критерий Уилкоксона – непараметрический критерий, аналог критерия Стьюдента t, основанный на рангах. Применяется для зависимых выборок

Задача. Критерий Уилкоксона

Исследуется влияние некоторой диеты на вес пациентов. В исследовании участвуют 10 пациентов.

```
import numpy as np
import scipy.stats as stats

x1= np.array ([70,74, 74.5, 79, 85, 93, 94, 98, 106.5, 107])

x2= np.array ([64, 76.5, 67, 73.5, 89, 85, 89.5, 91, 98, 100.5])

x2 - x1

array([-6., 2.5, -7.5, -5.5, 4., -8., -4.5, -7., -8.5, -6.5])
```

Значение Δ	-6	2.5	-7.5	-5.5	4	-8	-4.5	-7	-8.5	-6.5
ранг	5	1	8	4	2	9	3	7	10	6

Значение Δ	-6	2.5	-7.5	-5.5	4	-8	-4.5	-7	-8.5	-6.5
ранг	5	1	8	4	2	9	3	7	10	6

W = 1+ 2 = 3 Вывод: Диета влияет на вес пациентов.

```
stats.wilcoxon(x1, x2)
WilcoxonResult(statistic=3.0, pvalue=0.009765625)

А теперь поменяем последнее значение в массиве x2 на 113.5

x1= np.array ([70,74, 74.5, 79, 85, 93, 94, 98, 106.5, 107])

x3= np.array ([64, 76.5, 67, 73.5, 89, 85, 89.5, 91, 98, 113.5])

stats.wilcoxon(x1, x3)
WilcoxonResult(statistic=9.0, pvalue=0.064453125)
```

Значение Δ	-6	2.5	-7.5	-5.5	4	-8	-4.5	-7	-8.5	6.5
ранг	5	1	8	4	2	9	3	7	10	6

W1+2+6 = 9 => Вывод: Диета не влияет на вес пациентов. Статистически значимых различий в весе нет

Критерий Крускала – Уоллиса (Краскела – Уоллиса)

Критерий Крускала – Уоллиса H – непараметрический тест, используемый для сравнения нескольких групп.

Порядок расчета критерия Крускала – Уоллиса

Чтобы рассчитать критерий Крускала-Уоллиса Н делаем следующее:

- 1. Обобщим все данные в один ряд
- 2. Присвоим ранги в этом ряду
- 3. Посчитаем сумму рангов, присвоенных в общем ряду, но теперь уже в отдельных группах. Т.е. получим сумму рангов для каждой отдельной группы.
- 4. Воспользуемся формулой:

$$H = \frac{12}{N*(N+1)} * \sum_{i=1}^{k_j} \frac{T_j^2}{n_j} - 3(N+1),$$

где N – общее число измерений во всех сравниваемых выборках,

 k_i - объем ј-ой выборки

 T_i - сумма рангов в каждой выборке.

Задача. Критерий Крускала – Уоллиса

Задача: Даны заработные платы людей, принадлежащих к трем разным профессиям (условия нормальности не соблюдается).

gr 1: 70, 50, 64, 61, 75, 67, 73 gr 2: 80, 78, 90, 68, 74, 65, 85

gr 3: 141, 142, 140, 152, 161, 163, 155

Требуется определить, влияет ли профессия на заработную плату.

- 1 Обобщим все данные в один ряд
- 2 Присвоим ранги в этом ряду

50	61	64	65	67	68	70	73	74	75	78	80	85	90	140	141	142	152	155	161	163
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

Посчитаем сумму рангов, присвоенных в общем ряду, но теперь уже в отдельных группах. Т.е. получим сумму рангов для каждой отдельной группы.

Гр	уппа 1	Груг	іпа 2	Группа 3	}
Зар.плата	Ранг	Зар.плата	Ранг	Зар.плата	Ранг
70	7	80	12	141	16
50	1	78	11	142	17
64	3	90	14	140	15
61	2	68	6	152	18
75	10	74	9	161	20
67	5	65	4	163	21
73	8	85	13	155	19
Сумма рангов T_1 :	36	Сумма рангов T_2 :	69	Сумма рангов T_3 :	126

Воспользуемся формулой:

$$H = \frac{12}{N*(N+1)} * \sum_{j=1}^{k_j} \frac{T_j^2}{n_j} - 3*(N+1) = \frac{12}{21*(21+1)} * \left(\frac{36^2}{7} + \frac{69^2}{7} + \frac{126^2}{7}\right) - 3*(21+1) = 15.38404$$

Тест Крускала – Уоллиса в Python

```
import numpy as np
import scipy.stats as stats

gr_1= np.array ([70, 50, 64, 61, 75, 67, 73])
gr_2=np.array([80, 78, 90, 68, 74, 65, 85])
gr_3 = np.array([141, 142, 140, 152, 161, 163, 155])

stats.kruskal(gr_1, gr_2, gr_3)

KruskalResult(statistic=15.384044526901675, pvalue=0.00045645416718036815)
```

Вывод: Различия между выборками заработных плат статистически значимые на уровне статистической значимости $\alpha = 0.05$. Профессия влияет на уровень заработной платы.

Критерий Фридмана

Когда сравнивают более двух выборок и это случай повторных измерений применяем критерий Фридмана – непараметрический тест. (Не соблюдаются условия нормальности и равенства дисперсий в исследуемых выборках)

Порядок расчета критерия Фридмана

- 1. Сначала назначаются ранги по каждому пациенту. Т.е. если у нас три раза брались измерения у одних и тех же пациентов, то для каждого пациента будут измерения с рангами от 1 до 3. Если бы 4 измерения у одного и того же пациента, тогда от 1 до 4.
- 2. Затем находи сумму рангов по выборкам. Не по пациентам, обратите внимание, а по выборкам. Чуть ниже будет пример.
- 3. Теперь нужно найти средний ранг \overline{R}

$$\overline{\mathbb{R}} = \frac{\mathbf{n}*(\mathbf{k}+1)}{2}$$
, где $\mathbf{n}-$ объем выборки, $\mathbf{k}-$ число сравниваемых групп

И последним действием производим расчет критерия Фридмана по формуле:

4.
$$\chi_r^2 = \frac{12}{n*k*(k+1)} * \sum (R_i - \bar{R})^2$$
, где R_i – сумма рангов по подгруппам

Пациент	До д	иеты	Дие	та А	Ди	ета В
	значение	ранг	значение	ранг	значение	ранг
1	123	1	126	2	141	3
2	135	1	144	2	150	3
3	119	2	117	1	164	3
4	109	1	156	3	147	2
5	145	1	170	3	169	2
		$\Sigma = 6$		$\Sigma = 11$		∑ =13

Найдем средний ранг
$$\overline{R} = \frac{n*(k+1)}{2} = \frac{5*(3+1)}{2} = 10$$

$$\chi_r^2 = \frac{12}{n * k * (k+1)} * \sum (R_i - \bar{R})^2 = \frac{12}{5 * 3 * 4} * [(6-10)^2 + (11-10)^2 + (13-10)^2] = \frac{1}{5} * (16+1+9) = 5.2$$

Критерий Фридмана в Python

```
import numpy as np

before= np.array([123,135,119,109, 145])

diet_1=np.array([ 126, 144, 117, 156, 170])

diet_2= np.array([ 141, 150, 164, 147, 169])

stats. friedmanchisquare(before, diet_1, diet_2)

FriedmanchisquareResult(statistic=5.2000000000000003,
pvalue=0.0742735782143338)
```

Вывод : статистически значимых различий не обнаружено на уровне значимости $\alpha = 0.05$

Непараметрические критерии. Итоги

Критерий Манна-Уитни Критерий Уилкоксона Критерий Крускала –Уоллиса Критерий Фридмана

Сравнение 2-х групп		Множественные сра	внения
Независимые	Зависимые	Независимые	Анализ повторных
выборки	выборки	выборки	измерений
Критерий Манна-	Критерий	Крускала- Уоллиса	Критерий
Уитни	Уилкоксона	·	Фридмана

Конец