Using Gaussian Distributions for Training and Evaluating Oriented Object Detectors

Claudio Rosito Jung

Institute of Informatics - Federal University of Rio Grande do Sul

In collaboration with Jeffri Erwin Murrugarra Llerena

LATAM Research Program Workshop

Introduction

- Deep Learning (DL) greatly improved object detectors
 - Used initially as a classifier module only, coupled with sliding windows
 - Moved to an evaluation at sparse windows only (proposals)
 - Current methods predict object labels and regress the object representation

Detection result using EfficientDet (Tan et al., CVPR 2020)

Introduction

- Several aspects influence the quality (and speed) of a DL-based object detector
 - Backbone (feature extraction)
 - Classification and Localization Heads
 - Training dataset (and data augmentation primitives)
 - Representation choice for the object
 - Classification and Regression (Localization) loss
- There is some coupling among these modules, but
 - In general, we can change one of them and plug it into an existing detector

Object Representation

- Horizontal Bounding Boxes (HBBs) are by far the most popular choice
 - Very easy to annotate, just four parameters to regress
 - Not suitable for oriented elongated objects
- Oriented Bounding Boxes (OBBs) are an alternative
 - Better representation power, annotation not that harder, additional parameter (angle) must be regressed
 - Require a thorough parametrization to avoid ambiguities

Object Representation

- Data augmentation is a popular choice for enlarging training data
- Geometrical transformations limited for HBB representations
 - The HBB of a rotated object is not the direct rotation of the HBB
- Arbitrary rotations can be used of OBBs

We cannot predict the "rotated" HBB (right) from the original annotation (left)

Object Representation

- OBBs are an improvement, <u>but</u>
 - Roughly circular or irregular objects generate a roughly square bounding box
 - Circular regions generate OBBs with angular ambiguity
 - Any square with arbitrary rotation can be chosen
- Can we use elliptical regions (EBBs)?
 - They can also represent oriented objects
 - Natural fit for circular regions

Regression Loss

- Most approaches use a corner-based or parameter-based cost (ℓ_1 , ℓ_2 , Huber, etc.)
 - Such strategies do not correlate directly with the IoU
- The Generalized IoU (GIoU) and variants became popular for regressing HBBs
- Extensions of IoU and GIoU exist for OBBs as well, but
 - The formulation is more complex
 - Customized implementations are required for backpropagation

Main ideas and contributions

- Use a 2D Gaussian function as a fuzzy representation for the objects (GBB)
- Use Elliptical Regions (EBBs) for representing oriented objects
 - More coherent with GBBs than OBBs
- A similarity metric (ProbloU) based on GBBs
 - Differentiable closed-form expression
 - Can be used as a regression loss function to <u>train</u> detectors
 - Strongly correlates with the IoU between the respective EBBs
 - Can be used as an <u>evaluation metric</u>

2D Gaussian Distributions

- Can use a 2D Gaussian function as a fuzzy representation for oriented objects (Gaussian Bounding Box, or GBB)
 - Used as intermediate representations in (Yang et al, ICML 2021, NeurIPS 2021)
- Can compute closed-form "distance" terms between two
 2D Gaussians to train object detectors
 - Gauss-Wesserstein Distance (GWD) used in (Yang et al, ICML 2021), Kullback-Leibler Divergence (KLD) used in (Yang et al, NeurIPS 2021)
 - GWD and KLD present poor results when used as regression terms (empirical non-linear functions used)
 - No theoretical or empirical relationship with IoU
- Mapping from OBB to 2D Gaussians is not bijective
- Inf Any rotated square maps to a single isotropic Gaussian

Our contributions

- Jointly tackle the problems of <u>training</u>, <u>representing</u>, and <u>evaluating</u> oriented object detectors
- Introduce a similarity measure called Probabilistic IoU (ProbIoU) that induces a distance function $\mathcal{L}_{ProbIoU} = 1 \text{ProbIoU}$
- $\mathcal{L}_{ProbloU}$ can be directly used as a regression loss term to <u>train</u> object detectors
- Propose a bijective mapping from GBBs to EBBs
- Show that show that the IoU between two EBBs strongly correlates with the ProbloU between the corresponding GBBs.
 - Potential use for <u>evaluating</u> oriented object detectors

Gaussian Bounding Boxes

• A 2D Gaussian is parametrized by a mean vector μ and a covariance matrix Σ

$$\mu = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix},$$

$$\Sigma = \begin{bmatrix} a & c \\ c & b \end{bmatrix} = \begin{bmatrix} a'\cos^2\theta + b'\cos^2\theta & \frac{1}{2}(a'-b')\sin 2\theta \\ \frac{1}{2}(a'-b')\sin 2\theta & b'\cos^2\theta + a'\cos^2\theta \end{bmatrix}$$

• a' and b' are the uncorrelated variances and θ the orientation ______

Rotated

Gaussian Bounding Boxes

• GBBs from a segmentation mask Ω :

$$\mu = \frac{1}{\#\Omega} \int_{x \in \Omega} x dx,$$

$$\Sigma = \frac{1}{\#\Omega} \int_{x \in \Omega} (x - \mu)(x - \mu)^T dx,$$

• Closed-form expression if Ω is an HBB with dimensions $W \times H$:

 μ is the centroid

$$\Sigma = \frac{1}{12} \begin{bmatrix} W^2 & 0 \\ 0 & H^2 \end{bmatrix}$$

• Similar formulation with rotation if Ω is an OBB

Gaussian Bounding Boxes

• GBBs from a segmentation mask Ω :

Binary representation from GBBs

- Can map a GBB to an OBB
- Eigen-decomposition of Σ
 - Eigenvalues relate to the OBB dimensions
 - Eigenvectors relate to the rotation
- Mapping from GBB to OBB is not unique
 - Any rotated square map to the same GBB
 - OBB orientation cannot be retrieved
 - IoU computation is impacted

(b) θ vs. IoU

Binary representation from GBBs

- Ellipses are a natural choice (EBBs)
 - Can be extracted from the level-sets of the Mahalanobis distance:

$$(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) = r^2$$

- Choose r such that generated ellipse matches area of OBB
- GBB to EBB mapping is a bijection
 - Natural solution for circular objects
- However, computing the IoU between EBBs is <u>hard!</u>

Binary representation from GBBs

Example of EBBs from segmentation masks

HBB, OBB, EBB vs. Segmentation Masks

- Comparing HBB, OBB, and EBBs with segmentation masks for DOTA/iSaid datasets (aerial images)
 - 15 categories
- Mean IoU values over all categories

• HBBs: 0.61

• OBBs: 0.63

• EBBs: 0.79

Probabilistic IoU

• The Bhattacharyya Coefficient measures the similarity between two distributions p and q

$$B_C(p,q) = \int \sqrt{p(x)q(x)} dx$$

• The Bhattacharyya Distance measures their *dissimilarity*:

$$B_D(p,q) = -\ln B_C(p,q)$$

• it is not an actual distance (does not satisfy the triangle inequality), but the Hellinger distance is:

$$H_D(p,q) = \sqrt{1 - B_C(p,q)}$$

• ProbloU $(p,q) = 1 - H_D(p,q)$ is a <u>similarity metric</u>

Probabilistic IoU

ProbloU is easy to compute for Gaussian distributions:

$$B_D = \frac{1}{8} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \Sigma^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) + \frac{1}{2} \ln \left(\frac{\det \Sigma}{\sqrt{\det \Sigma_1 \det \Sigma_2}} \right),$$
$$\Sigma = \frac{1}{2} (\Sigma_1 + \Sigma_2)$$

- Note that $B_{\mathcal{C}}$ and hence $H_{\mathcal{D}}$ present a differentiable, closed-form expression.
- Important characteristics for a regression loss!

Probabilistic IoU for Training

• Can treat p as the GT annotation and q as the (Gaussian) distribution to be regressed

$$\mathcal{L}_{ProbloU}(p,q) = H_D(p,q) = 1 - \text{ProbloU}(p,q) \in [0,1)$$

- $\mathcal{L}_{ProbloU}$ does not produce vanishing gradients (unlike the IoU)!
 - Recall the infinite support of a Gaussian
- Can also use ProbIoU(p,q) to *validate* detection results as an alternative to the IoU.

Probabilistic IoU for Training

- Can be used directly if the GT annotations and objects are parametrized as GBBs
- Can be seamlessly integrated into OBB-based object detectors:

All connections in blue are differentiable w.r.t. to OBB parameters!

Probabilistic IoU for Evaluation

- Relationship between ProbloU and IoU for OBBs and EBBs
 - Empirical evaluation using millions of OBB/EBB pairs
 - ProbloU using the corresponding GBBs
 - Both present strong correlation with the IoU
 - Results for KLD provide a Loose relationship!

Results with ProbloU-loss

Results using OBBs as final representation

Results with ProbloU-loss

Results using EBBs as final representation

Conclusions

- GBBs seem a promising direction for oriented object detection]
- Existing approaches based on GBBs face limitations
 - Require non-linear mapping for regression loss
 - No relationship with the IoU
 - Mapping from GBB to OBB is not bijective
- We show that EBBs are viable representations
- The proposed ProbloU strongly correlates with EBB-IoU
- The ProbloU-loss can be directly used as a regression term

Paper:

Probabilistic Intersection-Over-Union for Training and Evaluation of Oriented Object Detectors, IEEE Transaction on Image Processing 2024

Github:

https://github.com/ProbIOU/

Thank you!

crjung@inf.ufrgs.br

