# An introduction to Generalized Linear Models (GLMs)

FW 891

Christopher Cahill 11 September 2023



## Purpose

- Introduce design matrices for linear models
- Introduce Generalized Linear Models
  - In particular, the Poisson and binomial GLMs
- Simulate fake data from these models
- Write Stan code to estimate the parameters of these models
- A fun question

## Breaking statistical models down

response = deterministic component + random component

 This section / lecture is based heavily on Kery and Schaub 2012; Kery and Royle 2016

# The random (noise) component

- Hallmark of statistical models: they must account for randomness
- Check out ?ddist in R, and replace dist by any of the following: pois, binom, norm, multinom, exp, and unif
- Changing first letter d to p, q, or r allows one to get the density, the distribution function, the percentiles, and random numbers from these distributions, respectively.
  - Note R calls mass functions density functions (e.g., dbinom())

# The deterministic (signal) component

- The signal component of the model contains the predictable parts of a response or the mean structure of a model
- Often the mean structure is described by a linear model, although nonlinear models can also be used (Seber and Wild 2003)
- Linear model is just one specific way to describe how we imagine our explantory variables influencing our repsonse
- This model is linear in the parameters and does not need to represent a straight line when plotted
- t-test, simple and multiple linear regressions, ANOVA, ANCOVA, and many mixed models are all linear models

# A brief illustration of an analysis of covariance ANCOVA

```
1 library(tidyverse)
2 library(ggqfc)
3 y <- c(25, 14, 68, 79, 64, 139, 49, 119, 111) # obs
4 A <- factor(c(1, 1, 1, 2, 2, 2, 3, 3, 3)) # group
5 X <- c(1, 14, 22, 2, 9, 20, 2, 13, 22) # covariate
6 my_df <- data.frame(y, A, X)
7
8 my_df %>%
9 ggplot(aes(X, y, color = A)) +
10 geom_point(pch = 16, size = 3.5) + theme_qfc()
```

# A brief illustration of an analysis of covariance ANCOVA



# Running the (Frequentist) ANCOVA in R

```
1 lm(y ~ A - 1 + X)

Call:
lm(formula = y ~ A - 1 + X)

Coefficients:
    A1     A2     A3     X
1.315    65.218    58.648    2.785
```

- This so-called "formula language" is clever because it is quick and error-free if you know how to specify your model
- What does y ~ A-1 + X actually mean?

### **ANCOVA** maths

When we fitted that model, we were doing the following:

$$y_i = eta_{g(i)} + eta_1 \cdot X_i + arepsilon_i \quad ext{where} \quad arepsilon_i \sim \mathrm{N}ig(0, \sigma^2ig)$$

- $y_i$  is a response of unit (data point, individual, row)  $i, X_i$  is the value of the continuous explanatory variable x for unit i
- Factor A codes for the group membership of each unit with indeces g for groups 1,2, or 3
- ullet Two parameters in the mean relationship,  $eta_{g(i)}$  and  $eta_1$ 
  - First of these is a vector, second a scalar
  - Index g indicates group 1, 2, or 3

# **ANCOVA** maths: one way

$$y_i = eta_{g(i)} + eta_1 \cdot X_i + arepsilon_i \quad ext{where} \quad arepsilon_i \sim ext{N}ig(0, \sigma^2ig)$$

- The random (noise) part of the model consists of the part of the response which we cannot explain using our linear combination of explanatory variables
  - Represented by residuals  $arepsilon_i$
  - Assume they come from a normal distribution with common variance  $\sigma^2$
- How many parameters in total does this model have?

## **ANCOVA** maths another way

Old way:

$$y_i = eta_{g(i)} + eta_1 \cdot X_i + arepsilon_i \quad ext{where} \quad arepsilon_i \sim \mathrm{N}ig(0, \sigma^2ig)$$

Shifting the structure of the model via algebra:

$$y_i \sim \mathrm{N}ig(eta_{g(i)} + eta_1 \cdot X_i, \sigma^2ig).$$

## **ANCOVA** maths even more ways

A further possibility:

$$y_i \sim ext{N}ig(\mu_i, \sigma^2ig), \quad where \quad \mu_i = eta_{g(i)} + eta_1 \cdot X_i$$

- Being able to write a linear model in algebra helps code the model in Stan (or any other modeling platform)
- Also helps you understand commonalities between many common statistical tests and what lm() in R is doing

## ANCOVA: but wait, there's more





The same model via matrix and vector notation:

$$\begin{pmatrix} 25 \\ 14 \\ 68 \\ 79 \\ 64 \\ 139 \\ 49 \\ 119 \\ 111 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 14 \\ 1 & 0 & 0 & 22 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 9 \\ 0 & 1 & 0 & 20 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 1 & 22 \end{pmatrix} \times \begin{pmatrix} \beta_{g=1} \\ \beta_{g=2} \\ \beta_{g=3} \\ \beta_{1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6} \\ \varepsilon_{7} \\ \varepsilon_{8} \\ \varepsilon_{9} \end{pmatrix}, \text{ with } \varepsilon_{i} \sim N(0, \sigma^{2})$$

- Left to right: response vector, design matrix, parameter vector, residual vector

## ANCOVA: but wait, there's more





The same model via matrix and vector notation:

$$\begin{pmatrix} 25 \\ 14 \\ 68 \\ 79 \\ 64 \\ 139 \\ 49 \\ 111 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 14 \\ 1 & 0 & 0 & 22 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 9 \\ 0 & 1 & 0 & 20 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 1 & 22 \end{pmatrix} \times \begin{pmatrix} \beta_{g=1} \\ \beta_{g=2} \\ \beta_{g=3} \\ \beta_{1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6} \\ \varepsilon_{7} \\ \varepsilon_{8} \\ \varepsilon_{9} \end{pmatrix}, \text{ with } \varepsilon_{i} \sim \text{N}(0, \sigma^{2})$$

• The value of the linear predictor for the first data point is given by

$$1 \cdot \beta_{g=1} + 0 \cdot beta_{g=2} + 0 \cdot beta_{g=3} + 1 \cdot \beta_1$$

# A trick for learning about the design matrix in R: model.matrix()

```
1 # Means parameterization
 2 X ij \leftarrow model.matrix(\sim A - 1 + X)
  3 X ij \# rows = i, j = columns
  A1 A2 A3 X
 1 0 0 1
2 1 0 0 14
7 0 0 1 2
8 0 0 1 13
attr(,"assign")
[1] 1 1 1 2
attr(,"contrasts")
attr(, "contrasts") $A
[1] "contr.treatment"
```

• see also effects or treatment contrast parameterization

```
model.matrix(\sim A + X)
```

### The ANCOVA in Stan

- The code looks very similar to the algebraic specification of this linear model
  - Note I am picking vague-ish priors but the specific priors aren't the point of this lesson

### The ANCOVA. stan file

```
1 data {
2 int<lower=0> n_obs;  // number of observations = i
 3 int<lower=0> n col;  // columns of design matrix = j
4 vector[n obs] y obs; // observed data
   matrix[n obs, n col] X ij; // design matrix: model.matrix(~A-1+X)
  parameters {
   vector[n_col] b j; // one parameter for each column of Xij
   real<lower=0> sig; // sigma must be postive
10 }
11 model {
  b_j ~ normal(0,100); // priors for b_j
14 \operatorname{sig} \sim \operatorname{normal}(0, 100); // prior for \operatorname{sig}
15  y_pred = X_ij * b j;  // linear algebra sneakery
16 y obs ~ normal(y pred, sig); // likelihood
17 }
```

# And the corresponding R code:

```
1 library(cmdstanr)
 2 mod <- cmdstan model("week3/soln files/ANCOVA.stan") # compile</pre>
 4 # names in tagged list correspond to the data block in the Stan program
 5 X ij \leftarrow model.matrix(\sim A - 1 + X)
 6 stan data \leftarrow list(n obs = nrow(X ij), n col = ncol(X ij),
                      y obs = my dfy, X ij = as.matrix(X ij)
10 # write a function to get starting values
11 inits <- function() {</pre>
12
     list(
13
       b j = jitter(rep(0, ncol(X ij)), amount = 0.5),
14
       sig = jitter(10, 1)
15
16 }
17
18 fit <- mod$sample(</pre>
     data = stan data,
    init = inits,
20
21
    seed = 1, # ensure simulations are reproducible
     chains = 4, # multiple chains
23
     iter warmup = 1000, # how long to warm up the chains
     iter sampling = 1000, # how many samples after warmp
24
     parallel chains = 4 # run them in parallel?
26 )
```

Note this is all in the solution file for this week

### Break

- Now we will move into Generalized Linear Models (GLM),
   where all of the information we just learned still applies
- Primary difference for GLMs is that they will allow us to model non-normal response variables in a manner similar to what we just did with an ANCOVA
  - Do this via a link function

# Generalized Linear Models (GLMs)

- The GLM is a flexible generalization of linear regression, developed by Nelder and Wedderburn in 1972 while working together at the Rothamsted Experimental Station in the U.K.
- Extend the concept of linear effect of covariates to response variables for statistical distributions where something other than a normal is assumed
  - e.g., Poisson, binomial/Bernoulli, gamma, exponential, etc.
- Linear effect of covariates is expressed not for the expected response directly, but rather for a transformation of the expected response (McCullagh and Nelder 1989)
- Unifies various statistical methods, and thus fundamental to much contemporary statistical modeling

# Generalized Linear Models (GLMs)

- The linear effect of covariates is expressed not for the expected response directly, but for a transformation of the expected response (Kery and Royle 2016)
  - This transformation is called a link function

We generally describe a GLM for a response  $y_i$  in terms of three things:

- 1. A random component (i.e., the likelihood)
- 2. A link function (i.e., a mathematical transformation)
- 3. Systematic component (i.e., the linear predictor)

# The three parts of a GLM

1. Random component of the response: a statistical distribution f with parameter(s)  $\theta$ :

$$y_i \sim f( heta)$$

2. A link function g, which is applied to the expected response  $E(y) = \mu_i$ , with  $\eta_i$  known as the linear predictor:

$$g(E(y)) = g(\mu_i) = \eta_i$$

3. Systematic part of the response (mean structure of the model containing a linear model):

$$\eta_i = eta_0 + eta_1 \cdot x_i$$

# We can combine elements 2 and 3 and define a GLM succinctly as:

$$egin{aligned} y_i \sim f( heta) \ g(\mu_i) = eta_0 + eta_1 \cdot x_i \end{aligned}$$

- A response y follows a distribution f with parameter(s)  $\theta$ , and a transformation g of the expected response, which is modeled as a linear function of covariates
- This is how we will code them in Stan, which makes the Bayesian framework powerful for learning GLMs

# Thinking about distributions

#### Common distributions for data

#### Discrete

| Name                       | Notation                                   | Domain          | Range                   |
|----------------------------|--------------------------------------------|-----------------|-------------------------|
| Bernoulli                  | $B \sim Bernoulli(p)$                      | $0 \le p \le 1$ | $B \in \{0,1\}$         |
| Binomial                   | $N \sim Binomial(p, n)$                    | $0 \le p \le 1$ | $N \in \{0,1,\dots,n\}$ |
| Poisson                    | $N\sim Poisson(\lambda)$                   | λ>0             | $N \in \{0,1,2,\dots\}$ |
| Negative binomial          | $N\sim Negative Binomial(\lambda, \theta)$ | λ>0<br>θ>0      | $N \in \{0,1,2,\}$      |
| Conway-Maxwell-<br>Poisson | $N\sim CMP(\mu,\nu)$                       | μ>0<br>ν>0      | $N \in \{0,1,2,\}$      |

# Thinking about distributions

#### Common distributions for data

#### Continuous

| Name      | Notation                                                                                        | Domain                     | Range        |
|-----------|-------------------------------------------------------------------------------------------------|----------------------------|--------------|
| Normal    | $Y \sim Normal(\mu, \sigma^2)$                                                                  | $\sigma^2 > 0$             | Unrestricted |
| Lognormal | $Y \sim Lognormal(\mu, \sigma^2)$<br>which is similar to<br>$log(Y) \sim Normal(\mu, \sigma^2)$ | $\sigma^2 > 0$             | Y > 0        |
| Gamma     | Y~Gamma(μ, CV)                                                                                  | μ > 0<br>CV > 0            | Y > 0        |
| Beta      | $p \sim Beta(\alpha, \beta)$                                                                    | $\alpha > 0$ , $\beta > 0$ | 0 < p < 1    |
|           | μ = σσσσ (σσ, μ)                                                                                | от о, р                    | - P          |

# Thinking about link functions

#### Common link functions

| Name     | Notation                                                        | Implies that                                                       | Range                          |
|----------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------|
| Identify | $\lambda_i = \mathbf{x}_i \mathbf{\beta}$                       | $\lambda_i = \mathbf{x}_i \mathbf{\beta}$                          | $-\infty < \lambda_i < \infty$ |
| Log      | $\log(\lambda_i) = \mathbf{x}_i \mathbf{\beta}$                 | $\lambda_i = \exp(\mathbf{x}_i \mathbf{\beta})$                    | $0 < \lambda_i < \infty$       |
| Logit    | $\operatorname{logit}(\lambda_i) = \mathbf{x}_i \mathbf{\beta}$ | $\lambda_i = \operatorname{logistic}(\mathbf{x}_i \mathbf{\beta})$ | $0 < \lambda_i < 1$            |

# Why you should care part I

- GLM concept gives you considerable creative freedom in combining the three components
  - However, there are typically pairs of response distributions and link functions that go well together
    - These are called *canonical* link functions
  - Identity link for normal responses
  - Log link for Poisson responses
  - Logit link for binomial or Bernoulli responses

# Why you should care part II

- Bernoulli/binomial: survival, maturity, presence/absence, data either 0 or 1
- Poisson: abundance, recruitment, unbounded counts [0, Inf]
- Many exciting ecological models can be viewed as coupled GLMs
- GLMs are defined for all members of statistical distributions belonging to the so-called "exponential family" (McCullagh and Nelder 1989; Dobson and Barnett 2008)
  - normal, Poisson, binomial/Bernoulli, multinomial, beta, gamma, lognormal, exponential, and Dirichlet
- Principles of linear modeling can be carried over to models other than normal linear regression

### The Poisson GLM for unbounded counts

$$egin{aligned} C_i \sim \operatorname{Poisson}(\lambda_i) \ \log(\lambda_i) = X_{i,j} \cdot eta_{\mathbf{j}} \end{aligned}$$

- C is count of observation  $i, X_{i,j}$  is a design matrix, j is number of columns,  $\beta_j$  is a vector of parameters
- simulate Poisson data in R:

```
1  set.seed(1)
2  rpois(n = 100, lambda = 15) # 100 deviates from lambda = 15

[1] 12 20 19 16  9 16 17 17 13 20 16 12 13 13 15 11 18 17 18 18 15  7 16 19

12

[26] 13 16 20 14 16 14  9 18 13 19 13 21 17 13 11 12  8 17 14 18 16 12 11 20

22

[51] 13 10 10 24 14 17 15 12  9 20 15 23 16 12 14 17 19 15 14 11 12 19 17 14

13
```

### The Poisson GLM for unbounded counts

$$egin{aligned} C_i \sim \operatorname{Poisson}(\lambda_i) \ \log(\lambda_i) = X_{i,j} \cdot eta_{\mathbf{j}} \end{aligned}$$

- C is count of observation  $i, X_{i,j}$  is a design matrix, j is number of columns,  $\beta_j$  is a vector of parameters
- log-probability mass of Poisson count data in R:

```
1 C_i <- c(10, 17, 18) # fake count data
2 dpois(x = C_i, lambda = 15, log = TRUE) # return log-Poisson likelihood
[1] -3.023911 -2.468220 -2.650542
```

### The Poisson GLM for unbounded counts

$$egin{aligned} C_i \sim \operatorname{Poisson}(\lambda_i) \ \log(\lambda_i) = X_{i,j} \cdot eta_{\mathbf{j}} \end{aligned}$$

- Assumptions
  - The mean and variance of the Poisson distribution are equal
  - Almost never holds and usually requires a negative binomial or another model structure
  - Causes of over/under dispersion are complex

# Testing for over- or under-dispersion: Poisson GLM

- mean = variance =  $\lambda$
- Another way: Bayesian p-value
- Idea: define a test statistic and compare the posterior distribution of that statistic for the original data to the posterior distribution of that test statistic for "replicate" datasets
- Note we could also use graphical posterior predictive checks

## Bayesian p-value

• Pearson residuals:

$$D\left(y_i, heta
ight) = rac{\left(y_i - \mathrm{E}\left(y_i
ight)
ight)}{\sqrt{\mathrm{Var}(y_i)}}.$$

 Begin by calculating the sum of squared residuals (our test statistic) for the observed data:

$$T(\mathbf{y}, heta) = \sum_i D(y_i, heta)^2$$

## Bayesian p-value

 Next, we calculate the same statistic for replicate (simulated) datasets

$$T\left(\mathbf{y}^{ ext{new}}, heta
ight) = \sum_{i} Dig(y_{i}^{ ext{new}}, hetaig)^{2}$$

- Bayesian p-value is simply the posterior probability  $\Pr(T\left(\mathbf{y}^{\mathrm{new}}\right) > T(\mathbf{y}))$
- Should be close to 0.5 for a good model, too near 0 or 1 indicates lack of fit (somewhat subjective)

# The binomial GLM for bounded counts or proportions

- Often have counts bounded by an upper limit
  - Number of successful breeding pairs cannot be higher than all observed breeding pairs
- Proportion of nestlings surviving
- These types of data require the binomial GLM

# The binomial GLM for bounded counts or proportions

1. Random part of the response (statistical distribution)

$$C_i \sim \operatorname{Binomial}(N_i, p_i)$$

2. Link of the random and systematic bit (logit link):

$$\operatorname{logit}(p_i) = \operatorname{log}\!\left(rac{p_i}{1-p_i}
ight) = \eta_i$$

3. Systematic part (linear predictor):

$$\eta_i = \beta_0 + {\beta_1}^* X_i + {\beta_2}^* X_i^2$$

# The binomial GLM for bounded counts or proportions

$$C_i \sim \operatorname{Binomial}(N_i, p_i)$$

$$\operatorname{logit}(p_i) = \operatorname{log}\!\left(rac{p_i}{1-p_i}
ight) = \eta_i$$

$$\eta_i = \beta_0 + {\beta_1}^* X_i + {\beta_2}^* X_i^2$$

- where  $p_i$  is expected proportion on arithmetic scale and is mean response of each of the observed  $N_i$  trials
- $\eta_i$  is the same proportion but on the logit-link scale

# The binomial GLM for bounded counts or proportions

$$\operatorname{logit}(p_i) = \operatorname{log}\!\left(rac{p_i}{1-p_i}
ight) = \eta_i$$

- Logit maps the probability scale (i.e., range 0 to 1) to the entire real line (i.e.,  $-\infty$  to  $\infty$ )
- The rest of the model (linear predictor) is up to you, your data, your questions, and your imagination

## Overdispersion and underdispersion in the binomial distribution

Note that the binomial distribution variance is equal to

$$N \cdot p \cdot (1-p)$$

- Need to check the binomial for under and over dispersion similar to how we check for the Poisson
- See this paper for some useful logistic regression checks

#### In-class exercise

#### In-class exercise

 Let's simulate a Poisson GLM, where we model peninsular homing clam counts as a function of year:

$$C_i \sim ext{Poisson}(\lambda_i) \ \log(\lambda_i) = eta_0 + eta_1 \cdot ext{year}_i + eta_2 \cdot ext{year}_i^2 + eta_3 \cdot ext{year}_i^3$$

- Clam counts follow a cubic polynomial function of time
  - Note this equation is still linear in the predictors
- Where do we begin?

# Peninsular homing clams (\*\*): simulating fake data

Let's get it started (in here)

```
1  n_year <- 40
2  beta0 <- 3.5576
3  beta1 <- -0.0912
4  beta2 <- 0.0091
5  beta3 <- -0.00014
6  set.seed(1)</pre>
```

- Exercise: see if you can generate fake data for this model
- Start by calculating the systematic component, then apply the link function, and lastly generate random deviates according to the Poisson distribution

## Homing clam simulation solution





## Coding the model in Stan

- Assume Normal(0, 10) priors for everything
- Should look similar to the simulation code
- Hint: you will get a funny error message and we will work through it as a group

### Writing the clams.stan file



```
1 data {
2    ...
3 }
4 parameters {
5    ...
6 }
7 transformed parameters {
8    ...
9 }
10 model {
11    ...
12 }
```

Work together to get this model estimating

#### Go to solution files

### Summary and Recap

- We have covered much ground
- Statistical models as response = deterministic + random
  - ANCOVA
- Introduced GLMs, which allow us to model data coming from distributions other than the normal
- Examined Poisson and Binomial GLMs
- Talked about dispersion
- This material lays the foundation for more complicated models

#### References

- Gelman et al. 2015. Stan: A probabilistic programming language for Bayesian inference and optimization
- Gelman et al. 2006. Bayesian Data Analysis.
- Gelman and Hill 2007. Data analysis using regression and multilevel models
- Hilbe et al. 2017. Bayesian models for Astrophysical data
- Kery 2010. Introduction to WinBUGS for ecologists
- Kery and Royle 2016. Applied hierarchical modeling in ecology
- Kery and Schaub. 2012. Bayesian Population Analysis using WinBUGS. Chapter 3
- McCullagh and Nelder 1989. Binary data. In Generalized linear models (pp. 98-148). London: Chapman and Hall. 511 pp
- Zuur et al. 2017. Beginner's Guide to spatial, temporal, and spatial-temporal ecological data analysis with R-INLA. Highland Statistics Ltd.