Generating Lexers Lexer generators Spec = RE1 { Action1 } | RE2 { Action2 } | RE3 { Action 3 } ... // in decreasing priority Idea: Spec --> NFA --> DFA --> code = hop + table **Review: DFA** machine with finite # of states four-tuple $(q0, \Sigma, F, \delta)$ final States 0 Easy to implement efficiently $q = q_0$ while (i ≤ n) { 2 = S(2, input [i])++ i if (& EF) return accept else return fail How to generate δ from regexes? R1 R2 --i Idea: NFA, and then NFA --> DFA Review: NFA DFA + ... arrows can be ε exit arrows from a state can share same input symbol angelic nondeterminism RE --> NFA Defined recursively.

$$\delta(q, x) = q'$$

DFA for recognizes add bin munhers

R2 identifiers

$$E \rightarrow NFA$$

$$[R_1 | R_2] = 0$$

$$[R_1 | R_2] = 0$$

$$[R_1 | R_2] = 0$$

$$[R_2 | R_2] = 0$$

$$[R_3 | R_4] = 0$$

$$[R_4 | R_4] = 0$$

[R]

E-dosume (G) = { 6, H}

{F,G,H,A,B,D}

E-closure (F)=

same sequence of input symbols.

$$\epsilon$$
-closure(q) = Set of states reachable from q using zero or more ϵ edges Inductively defined.

$$\frac{q'' \in \epsilon - closure(q)}{q' \in \epsilon - closure(q)} \frac{g''' \epsilon}{q'' \in \epsilon - closure(q)}$$

Idea: a DFA state = set of all NFA states that can possibly be reached by reading the

 $\overline{\parallel}$ $(0|1)^*$

NFA --> DFA

Construct DFA from NFA:

Final state:

 $\overline{[} (0|1)^* 1]$

SABDGH

Worklist algorithm for computing ε -closure(q):

E-closure ({) [2] EB

Idea: a DFA state = set of all NFA states that can possibly be reached by reading the same sequence of input symbols

• Initial states:
$$Q_0 = \xi - dosure \left(\frac{q_0}{q_0} \right)$$
• States and transitions:
$$\delta \left(\frac{q_0}{q_0} \right) = \xi - dosure \left(\frac{q_0}{q_0} \right)$$

$$\delta \left(\frac{q_0}{q_0} \right) = \xi - dosure \left(\frac{q_0}{q_0} \right)$$

$$\delta \left(\frac{q_0}{q_0} \right) = \xi - dosure \left(\frac{q_0}{q_0} \right)$$

CFGHAB

update E-dosure (2) [9] per equations

for each q" st. q' E> 2"

if E-dosure(z) [z'] changed:

 $O(N^2)$

Qiefinal Qiefinal Qiefinal $S(Q_1, x) \neq S(Q_2, x)$ $Q_1 \neq Q_2$ $Q_1 \neq Q_2$ $Q_1 \neq Q_2$ Algorithm: start with every pair of states being equivalent, and unequate them.

Some DFA states can be equivalent after conversion.

DFA minimization

When to unequate two states?

Putting it all together

Myhill-Nerode theorem: for any DFA, there is a unique minimal DFA that accepts the same input.

Spec = R1 { Action1 } R2 { Action2 } | R3 { Action 3 } ... // in decreasing priority

R = abc

How to implement the "Longest-matching token" rule?

$$R2 = (ahc)^* d$$

$$Input = ahc ahc --- ahc \times O(n^2)$$

NFA

n+ n-1+ n-2 +- = 0 (n2)