(P/N 707)

SENSOR FEATURES:

+

- High sensitivity to a wide range of VOCs.
- Non-specific: responds to many different organic vapors.
- Typical response time < I minute to 90% full scale.
- Environmental temperature range of –20 to 50°C.
- Environmental humidity range of 0 to 90% RH, non-condensing.

SENSOR RESPONSE CHARACTERISTICS

The figure below shows typical response and selectivity data for sensors operated under laboratory conditions. Humidity level is \sim 21% RH.

ELECTRICAL CHARACTERISTICS

The electrical properties below are typical for VOC Sensors. If the actual values differ the customer will be notified with the shipment. Circuits are available that will be preset to the correct values.

PROPERTY	SYMBOL	VALUE	REMARKS
Heater Power Consumption	P _H	~ 400 mW	At $V_{H} = 3.5$
Heater Voltage	V_{H}	3.5 VDC	$T_{sensor} \sim 150^{\circ}C$
Heater Resistance	R_{H}	30 $\Omega \pm$ 2 Ω	At room temperature
Sensing Voltage	V _C	5.0 VDC	Recommended
Resistance in Air	$R_{\rm a}$	2.00 ΜΩ / 300 ΜΩ	Min/Max
Resistance in 500 ppm MeOH	R ₅₀₀	20 kΩ / 5.00 MΩ	Min/Max
Sensitivity	R_a/R_{500}	15	Min
Sensitivity	R_a/R_{50}	2	Min

^{*}Note that all measurements were made in dry gas, at room temperature

BASIC MEASUREMENT CIRCUIT:

The sensor can be operated using a simple voltage divider. This requires two voltage supplies: heater voltage (V_H) and circuit voltage (V_C) . V_H is applied to the heater in order to maintain a constant, elevated temperature, for optimum sensing. V_C is applied to allow a measurement of the output voltage (V_{out}) across a load resistor (R_I) .

Pins I and 3 on the TO-39 header are attached to the heater. Apply $V_{\rm H}$ across these pins.

Pins 2 and 4 on the TO-39 header are attached to the resistive sensor element. Connect these pins in the measuring circuit.

supplies basic measurement circuitry for many of our sensors. Please inquire or refer to our website for information regarding circuitry for your application

SENSOR RESISTANCE CALCULATION:

Sensor Resistance (Rs) is calculated using the following formula:

$$R_s = \frac{V_C - V_{out}}{V_{out}} * R_L$$

SENSOR PIN OUT:

Top view of sensor

SENSOR DIMENSIONS:

