Propositional Logic

Homework 4

Tautology Equivalence

- By Deepak Poonia (IISc Bangalore)

Instructor:

Deepak Poonia IISc Bangalore

GATE CSE AIR 53; AIR 67; AIR 206; AIR 256;

Discrete Mathematics Complete Course:

https://www.goclasses.in/courses/Discrete-

Mathematics-Course

Join GO Classes GATE CSE Complete Course now:

https://www.goclasses.in/s/pages/gatecompletecourse

- 1. Quality Learning: No Rote-Learning. Understand Everything, from
- basics, In-depth, with variations.
- 2. Daily Homeworks, Quality Practice Sets, Weekly Quizzes.
- 3. Summary Lectures for Quick Revision.
- 4. Detailed Video Solutions of Previous ALL GATE Questions.
- 5. Doubt Resolution, Revision, Practice, a lot more.

Download the GO Classes Android App:

https://play.google.com/store/apps/details?id=c om.goclasses.courses

Search "GO Classes" on Play Store.

Hassle-free learning
On the go!

Gain expert knowledge

NOTE:

Complete Discrete Mathematics & Complete Engineering

Mathematics Courses, by GO Classes, are FREE for ALL learners.

Visit here to watch: https://www.goclasses.in/s/store/

SignUp/Login on Goclasses website for free and start learning.

We are on Telegram. Contact us for any help.

Link in the Description!!

Join GO Classes **Doubt Discussion** Telegram Group:

Username:

@GATECSE_GOCLASSES

We are on Telegram. Contact us for any help.

Join GO Classes Telegram Channel, Username: @GOCLASSES_CSE

Join GO Classes **Doubt Discussion** Telegram Group:

Username: @GATECSE_Goclasses

(Any doubt related to Goclasses Courses can also be asked here.)

Join GATEOverflow Doubt Discussion Telegram Group:

Username: @GateOverflow_CSE

Propositional Logic

Homework 4

Tautology Equivalence

- By Deepak Poonia (IISc Bangalore)

Detailed Solutions of this Homework

Will be discussed in the "Live Doubts Session-5" of

Goclasses Discrete Mathematics Course-2024"

Discrete Mathematics Complete Course:

https://www.goclasses.in/courses/Discrete-

Mathematics-Course

- [30pts] Which of the following compound propositions are a tautology? You may use a truth table, but are not required to. To prove a proposition is NOT a tautology you need just give one setting for p and q for which the compound proposition is false.
 - (a) $\neg \neg p \leftrightarrow p$
 - (b) $(p \lor q) \land (\neg p \land \neg q)$
 - (c) $p \to q \leftrightarrow \neg p \lor q$
 - (d) (p ∨ q) ∧ ¬p
 - (e) $((p \to q) \land (q \to r)) \to (p \to r)$
 - (f) $\neg (p \lor q) \land (\neg p \land \neg q)$

2 Logical equivalence

a) Use a truth table to demonstrate that $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$.

(1 mark)

(1 mark)

- b) Use a truth table to demonstrate that $p \wedge q \equiv \neg(\neg p \vee \neg q)$.
- c) Use substitutions and the transitive property of logical equivalence to show that

$$p \to q \equiv \neg (p \land \neg q).$$

Provide a justification for each step (i.e. substitution or transitivity, and what logical equivalences you are using.)

(1 mark)

d) Use substitutions and the transitive property of logical equivalence to show that

$$p \leftrightarrow q \equiv (\neg p \lor q) \land (\neg q \lor p).$$

Provide a justification for each step (i.e. substitution or transitivity, and what logical equivalences you are using.)

(1 mark)

3. Proof using propositional logic properties

Using propositional logic properties and other logical equivalences (not truth tables), prove the following statements:

- 1. $(p \lor q) \lor (p \lor \neg q)$ is a tautology
- 2. $((p \to r) \land (q \to r) \land (p \lor q)) \to r$ is a tautology
- 3. $(p \lor q) \land (\neg p \land \neg q)$ is a contradiction
- 4. $\neg (q \to p) \land (p \land q \land s \to r) \land p$ is a contradiction
- 5. $(p \to q) \land (p \to r) \equiv p \to (q \land r)$

2. (4 points) Use propositional logic to prove the validity of the disjunctive syllogism rule, which is written as (note: don't use disjunctive syllogism in its own proof!):

$$(P \lor Q) \land P' \to Q$$

- 3. (4 points each) Prove the validity of each of the following arguments using propositional logic:
 - (a) $(A' \to B') \land B \land (A \to C) \to C$
 - (b) $(A \vee B) \wedge (A \rightarrow C) \wedge (B \rightarrow C) \rightarrow C$
 - (c) $(Y \to Z') \land (X' \to Y) \land (Y \to (X \to W)) \land (Y \to Z) \to (Y \to W)$

3. Proof using properties

- (a) Use propositional logic properties to prove that the following propositions are tautologies (without using truth tables):
 - 1. $(p \lor q) \lor (p \lor \neg q)$
 - 2. $(\neg(\neg x)) \leftrightarrow x$
 - 3. $((p \to q) \land (q \to r)) \to (p \to r)$
- (b) Use propositional logic properties to prove that the following propositions are contradictions (without using truth tables):
 - 1. $(p \lor q) \land (\neg p \land \neg q)$
 - 2. $\neg((p \rightarrow False) \rightarrow \neg p)$
 - 3. $\neg (q \rightarrow p) \land (p \land q \land s \rightarrow r) \land p$