Experimental Assessment of Screen Bias in an Early Arctic Air Temperature Time Series

Jason Bak // Daniel Hosseinian

Arctic Climate Change

Characterized by a change of a few degrees (1 – 3 °C)

 Estimated \$9 billion per year of damage from weather extremes caused by climate change

 Arctic is warming twice as quickly as world average Temperature difference from long term average (since 1981)

Red – Warmer

Blue - Cooler

Inundation Dangers

- Intergovernmental Panel on Climate Change (IPCC) projected 18 to 59 cm sea level rise in 21st century
- 8.5 million Americans are in inundation zones (59 cm rise)

Blue areas demonstrate inundation zones in the San Francisco Bay Area, CA with a 1 m sea level rise based on elevation.

Inundation Dangers

Blue areas demonstrate inundation zones in the San Francisco Bay Area, CA with a 1 m sea level rise based on elevation.

Maldives

Paradise almost lost: Maldives seek to buy a new homeland **theguardian**

Her Majesty's Ship (HMS) Plover

- Stationed at Point Barrow, Alaska from 1852 to 1854
- Hourly air temperature measurements
- Thermometer used was encapsulated in a radiation screen (results in bias)

18521854

Plover Screen

- Shelters instruments from outside environment
- Bias measurements recorded within
- Information about how air temperature data was collected (metadata)

Purpose

 To determine the screen bias of the Plover screen on temperature readings under certain environmental conditions

 To correct inaccuracies present in the original *Plover* data set

Replica Plover screen

Experimental Setup

Site of data collection. Replica *Plover* screen RTD and exposed RTD are noted.

Experimental Setup

- Data collected at Barrow, Alaska at the NOAA
- Two Resistance Thermocouple Devices (RTDs)
- Replica *Plover* screen sent to the NOAA observatory
 - Houses an RTD alongside an exposed RTD
- Modern day meteorological equipment recorded atmospheric pressure, wind speed at 10 m, and wind direction at 10 m

Automated Data Organization

Results (Solar Influences)

Figure 1 Plot of temperature difference (°C) of Plover RTD and RTD 2m for 2 years (2012-2013) by Julian day

Seasonal Solar Radiation

- Summer months: screen records higher temperatures
 - More sun exposure
- Winter months, screen records lower temperatures
 - No heating element

Results (Solar Influences)

Figure 2 Temperature difference (°C) of Plover RTD and RTD 2m against daily sunlight hours

Results (Wind)

Figure 3 Average temperature difference (°C) at different wind speed intervals; P < 0.05 (Error bars = standard error)

Results (Wind)

Figure 4 Temperature difference (°C) of Plover RTD and RTD 2m against wind speed (m/s)

Results (Barometric Pressure)

Figure 5 Average temperature difference (°C) at different air pressure intervals; (Error bars = standard error)

Results (Barometric Pressure)

Figure 6 Temperature difference (°C) of Plover RTD and RTD 2m against atmospheric pressure (mb)

Results (Actual Temperature)

Figure 7 Average temperature difference (°C) of exposed and encased thermometers at different interval

Results (Actual Temperature)

Figure 8 Temperature difference (°C) of Plover RTD and RTD 2m against actual temperature (°C)

Conclusion

Screen Bias?

Yes	No
Sun exposure	Different temperatures
Low wind speeds	Different barometric pressures

Implications

- Conduct rare comparison study between *Plover* data
 (located at Duke Special Collections Library) and modern
 data to seek changing climate patterns in the Arctic
 - Gain better insight to Arctic climate change
 - How fast is it?
 - What actions should we be taking?

Future Research

 Develop computer program to effortlessly compare both data sets

Will use correction algorithms designed from

this study

- Program will be applicable for other comparison investigations
 - Still needs
 experimental study
 for each case

Manual transcription at Duke University Special Collections Library

Acknowledgments

Dr. Kevin Wood, NOAA Affiliate – Advisor

Mr. Richard Kurtz and Dr. Lorraine Solomon – Science Research Teachers

Mrs. Kristen Holmes – Computer Science Teacher

Selected References

- [1] Böhm, R., Jones, P. D., Hiebl, J., Frank, D., Brunetti, M., & Maugeri, M. (2010). The early instrumental warm-bias: a solution for long central European temperature series 1760 2007. *Climatic Change, 101(1-2), 41-67.*
- [2] Brohan, P., Allan, R., Freeman, J. E., Waple, A. M., Wheeler, D., Wilkinson, C., & Woodruff, S. (2009). Marine observations of old weather. *Bulletin of the American Meteorological Society*, 90(2), 219-230.
- [3] Brunet, M., Asin, J., Sigró, J., Bañón, M., García, F., Aguilar, E., ... & Jones, P. (2011). The minimization of the screen bias from ancient Western Mediterranean air temperature records: an exploratory statistical analysis. *International Journal of Climatology*, 31(12), 1879-1895.
- [4] Carmack, E. C., & Kulikov, E. A. (1998). Wind-forced upwelling and internal Kelvin wave generation in Mackenzie Canyon, Beaufort Sea. *Journal of Geophysical Research: Oceans (1978–2012), 103(C9), 18447-18458.*
- [5] IPCC Intergovernmental Panel on Climate Change. (n.d.). Retrieved January 29, 2015, fromhttp://www.ipcc.ch/
- [6] Lindsay, R. W., Zhang, J., Schweiger, A., Steele, M., & Stern, H. (2009). Arctic sea ice retreat in 2007 follows thinning trend. *Journal of Climate*, 22(1), 165-176.
- [7] Maguire, R. (1988). The journal of Rochfort Maguire, 1852-1854: two years at Point Barrow, Alaska, aboard HMS Plover in the search for Sir John Franklin(No. 169). Hakluyt society.

- [8] Nordli, Ø., Alexandersson, H., Frich, P., Førland, E. J., Heino, R., Jonsson, T., ... & Tveito, O. E. (1997). The effect of radiation screens on Nordic time series of mean temperature. *International journal of climatology*, 17(15), 1667-1681.
- [9] Rothrock, D. A., Yu, Y., & Maykut, G. A. (1999). Thinning of the Arctic sea-ice cover. *Geophysical Research Letters*, 26(23), 3469-3472.
- [10] Streever, B., Suydam, R., Payne, J. F., Shuchman, R., Angliss, R. P., Balogh, G., ... & Yokel, D. (2011). Environmental change and potential impacts: applied research priorities for Alaska's North Slope. *Arctic*, 64(3), 390-397.
- [11] Serreze, M. C., & Barry, R. G. (2005). *The Arctic climate system (Vol. 22). Cambridge* University Press.
- [12] Steele, M., Ermold, W., & Zhang, J. (2008). Arctic Ocean surface warming trends over the past 100 years. *Geophysical Research Letters*, 35(2).
- [13] Vincent, L. A., & Gullett, D. W. (1999). Canadian historical and homogeneous temperature datasets for climate change analyses. *International Journal of Climatology, 19(12), 1375-1388.*
- [14] Voiland, A. (2009). Second Warmest Year on Record; End of Warmest Decade. NASA Goddard Institute for Space Studies. Accessed May, 6, 2011.

Computer Program

Data posted on NOAA FTP database

Files downloaded and converted to Excel Files

A Java computer program was designed to organize and analyze ~10⁶ data points

```
//Importation of JXL API is important for reading of Excel files
import java.jo.*:
import jxl.*;
import ixl.read.biff.BiffException;
public class Excel {
    public static void main(String [] args) throws IOException, BiffException{
    int dLim; //Days per month
    //Loop through two years
    for(int y = 12; y \le 13; y++){
      //Loop through twelve months
      for(int m = 1; m <= 12; m++){
        //The following if statements determine the number of days in a month
        if((m == 1) \mid | (m == 3) \mid | (m == 5) \mid | (m == 7) \mid | (m == 8) \mid | (m == 10) \mid |
(m == 12))
          dLim = 31:
        else if((m == 2) \&\& (y \% 4 == 0)){
          dLim = 29:
        else if((m == 2) \&\& (y \% 4 != 0)){
          dLim = 28:
```

```
else{
          dLim = 30:
        //Loop through specified number of days in month
        for(int d = 0; d < dLim; d++){
          //Finds Excel file
          Workbook workbook = Workbook.getWorkbook(new
File("c:\\users\\daniel\\desktop\\Plover\\NOAAX\\" + m + y + ".xls"));
          //Finds sheet (based on format)
          Sheet sheet = workbook.getSheet(d);
          int row = 2; //Starts at row 2
          //Declarations
          double totalPlover = 0;
          double totalTwoM = 0;
          double totalBarPress = 0;
          double totalWind = 0;
          double totalDirection = 0:
          int divisor = 0;
          //Infinite loop until reaches empty cell error
          while(true){
            trv{
              String ploverRTD = sheet.getCell(32, row).getContents(); //Obtain
contents of cell
              double ploverTemp = Double.parseDouble(ploverRTD); //Convert contents
to type double
```

```
totalPlover += ploverTemp;
    String twoM = sheet.getCell(24, row).getContents();
    double twoMTemp = Double.parseDouble(twoM);
    totalTwoM += twoMTemp:
    String barPress = sheet.getCell(18, row).getContents();
    double barPressTemp = Double.parseDouble(barPress);
    totalBarPress += barPressTemp;
    String wind = sheet.getCell(10, row).getContents();
    double windTemp = Double.parseDouble(wind);
    totalWind += windTemp;
    String direction = sheet.getCell(11, row).getContents();
    double directionTemp = Double.parseDouble(direction);
    totalDirection += directionTemp;
    divisor++; //Later to be used to find average
    row++;
  catch (ArrayIndexOutOfBoundsException e){
    break;
  catch (NumberFormatException e){
    break:
  }
//The following find averages
double avgPlover = totalPlover / ((double) divisor);
```

```
double avgTwoM = totalTwoM / ((double) divisor);
    double avgBarPress = totalBarPress / ((double) divisor);
    double avgWind = totalWind / ((double) divisor);
    double avgDirection = totalDirection / ((double) divisor);
    double diff = /*Math.abs(*/avgPlover - avgTwoM/*)*/;
    System.out.println(avgWind);
    workbook.close();
    }
}
```

Mountain View Inundations

Canals in Boston?

Projected Impacts of Climate Change

C = Celsius; CO2 = Carbon Dioxide

Source: Adapted from the Stern Review on the Economics of Climate Change.

Denmark challenges Russia and Canada over North Pole

Was Dr. Simpson right?

"The arrangement so made was to protect the instrument from the wind and snow-drift, and from the influence of the sun, while admitting the easy access of air."

- Dr. Simpson

