零散的习题: 线性空间

(2024-2025-1)-MATH1405H-02

Saturday 2nd November, 2024

请完成 **习题** 2^k $(k \in \mathbb{N}_+)$.

1 四大基本空间 1

1 四大基本空间

我们目前仅学习了单一矩阵的四大基本空间. 以下是一些推荐读物与参考资料:

- 1. §3.5, Strang 的线性代数 (第六版),
- 2. 一张清单 (稍微涉及了奇异值分解),
- 3. 此文第五章 给出 Sage 的计算示例 (可使用临时在线窗格),
- 4. 此网页给出 mathematica 计算示例 (如果你习惯 mathematica).

假若学习了奇异值分解, 则可以深入研究 P(A) 与 P(B) 的运算 $(P \in \{C(-), C(-^T), N(-), N(-^T)\})$.

2 示例: 通过 Sage 计算 LU 分解

习题 1 (广义 LU-分解). 假定你证明了 Gauss 消元法存在性. 尽可能简单地证明: 任意矩阵 $A \in \mathbb{F}^{m \times n}$ 可以分解作 $A = LS\widetilde{I}DU$ 的五元乘积形式, 或是 $A = LD\widetilde{I}SU$ 的五元乘积形式. 此处

- 1. $L \in \mathbb{F}^{m \times m}$ 是主对角为 1 的下三角方阵, 例如 $\begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{pmatrix}$;
- 2. $U \in \mathbb{F}^{n \times n}$ 是主对角为 1 的上三角方阵, 例如 $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$;
- 3. S 是置换方阵, 即先前作业提及的 "S-类初等变换方阵";
- 4. D 是对角方阵, 即, D 中非对角元都是 0;
- $5. \widetilde{I}$ 是相抵标准型的中项.

证明任意一种情形即可, 因为这两种分解仅相差一个转置.

自主思考: 以上分解在"何种意义下"是唯一的?

备注. "概率" 地, 假定 A 实数域或复数域上的"随机"方阵, 则 S = I 依概率 1 发生.

假定你已经知道了 PA = LU 分解的一般方法, 但疏于计算, 不考虑以下.

- 例子. 如果想多做一些题目, 可以使用计算软件进行编题与解题.
 - S0 使用 sage 在线窗格 (或者其他方式) 创建 ℚ-上的矩阵

```
A = matrix(QQ, [
        [ 1, 1, 4, 5, 1, 4, 0, 0, 1],
        [-1, 9, -1, -9, 8, -1, 0, -7, -7],
        [ 1, 2, -3, -4, 5, 6, -7, -8, 9],
        [ 3, 1, 4, 1, 5, 9, 2, 6, 5],
        [ 2, 7, 1, 8, 2, 8, 1, 8, 3]
]); # Create $A\in \mathbb Q^{\{m\times n\}$.
```

若想查看矩阵 A, 另起新行并键入 A, 并点击 Evaluate 按钮即可 (快捷键 Ctrl+Shift+Enter).

- 1. 为查看 A 的最简行阶梯形, 键入 A.rref() 并运行即可.
- 2. 广义 LU-分解的形式是 A = PLU, 键入 P, L, U = A.LU(); 即可对 A 的 LU-分解进行赋值.
 - 依照 $P^2 = I$, 以上即是 PA = LU 分解.
- 3. 若想知道主元的位置, 可键入 A.pivots().
- 4. 自行探索更多.

3 线性空间,基的证明题

如果想操练计算题,可参考"国庆作业".

- 习题 2. 假定 V 任意域 \mathbb{F} 上的 2024 维线性空间. 试构造子集 $S \subset V$ (向量组), 其同时满足
 - 1. 集合 S 的大小是 2025,
 - 2. S 中任意 2024 个向量线性无关.
- **习题 3** (Challenging). 若 ℙ 是数域, 则上题的条件 1 可以放宽至无限集. (What if ℙ is finite?)
- 习题 4 (必做的证明题). 给定数域上的线性空间 V. 任意给定 V 的有限个真子空间 $\{U_i\}_{i=1}^m$, 总有

$$\left(\bigcup_{i=1}^{m} U_i\right) \neq V. \tag{3.1}$$

(若 \mathbb{F} 非数域, 试给出 m=3 的反例?¹)

- 习题 5 (Challenging). 在上一习题中置 m=2, 则域 \mathbb{F} 无限制;
- 习题 6 (如果先前做错了, 请重试). 若 U, V 与 W 是三个子空间, 证明以下等式的一侧, 并证伪另一侧
 - 1. $(U + V) \cap W = (U \cap W) + (V \cap W);$
 - 2. $(U \cap V) + W = (U + W) \cap (V + W)$.
- 习题 7 (如果先前做错了, 请重试). 若 $U \subset V$ 与 W 是三个子空间, 证明 $(U+W) \cap V = U + (W \cap V)$.
- 习题 8. 根据上述习题, 证明以下两个等式. 选定 U, V = W 为同一线性空间的三个子空间, 试证明:

1.
$$((V \cap W) + U) \cap V =$$
 $= V \cap (W + (U \cap V)),$

2.
$$((V + W) \cap U) + V = = V + (W \cap (U + V)).$$

关键步骤是中间白色处.

¹Might there be a one-line counter-example for those who are familiar with \mathbb{F}_2 -field?

4 (span:子集 \rightarrow 子空间) (dim:子空间 $\rightarrow \mathbb{N}$) 与 (rank = dim \circ span)

记号. 谈及 dim 与 rank, 默认"参与关键运算"的线性空间是有限维的.

以下定义, 定理, 以及习题等的表述是更偏类型化的: 这兼顾了严谨性与简易性.

定义 ("rank = dim ∘ span"). 我们形式化地澄清三个记号. 以下谈论的线性空间都附带了域.

span 输入 _1 是线性空间 V, 输入 _2 是 V 的子集 S;

輸出 是 V 中一切包含 S 的线性子空间之交.

习题 9. 需要证明, 输出 也是线性空间, 并恰是包含 S 的 V-线性子空间中的极小者.

 \dim 输入 是有限维线性空间 V;

输出 是自然数 n, 即 V 中任一极大线性无关组的大小.

习题 10. 需要证明, 任选定 V 中任意两组极大线性无关组, 其作为集合大小相同.

rank 当且仅当 span 输出有限维线性空间, 方可定义 rank = dim o span.

固定 输入 _1, 以下研究 输入 _2 的变化对以上的影响. 最简单的子集关系是包含.

习题 11 (保序). dim 与 rank 保持特定的序关系. 给定全空间 V 与子集 $S_1, S_2 \subset V$, 考虑下图:

 c_2

$$[S_1, V] \longrightarrow \operatorname{span}_V(S_1) \longrightarrow \operatorname{rank}(S_1) . \tag{4.1}$$

$$\cup \qquad \qquad \cup \qquad \qquad \cup$$

$$[S_2, V] \longrightarrow \operatorname{span}_V(S_2) \longrightarrow \operatorname{rank}(S_2)$$

 c_3

基于对称性, ⊂ 可以表示子集的包含, 线性子空间的包含, 自然数的小于等于号. "保序"是说,

• 若 c_i 处的 \subset 成立, 则 c_{i+1} 处的 \subset 亦成立.

 c_1

习题 12. 证明以下问题.

- 1. 若 c_1 取 \subset , 则 c_3 取等当且仅当 c_2 取等.
- 2. 若 c_i 取等, 则 c_{i+1} 亦然.
- 3. 若 c_{i+1} 取等, 则 c_i 不必取 \subset .

习题 13. 思考平凡情况: $S = \emptyset$ (理解作 void) 或 S = V (作为集合, 理解作 S = V.Set).

下一步是建立二元运算. 暂时将 \subset 区分地记作 \subseteq (集合), \subset (子空间), \subseteq (自然数).

例子. 自然的想法是下述表格 (子空间的交记作 \land , 以区别于集合的交 \cap):

习题 **14.** 选用 $S_1 \subseteq S_2$, 则有

- $\operatorname{span}(\emptyset) = 0$, $\operatorname{span}(S_1 \cap S_2) = \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$;
- $\operatorname{span}(V) = V$, $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$.

选用 $U_1 \subset U_2$, 则有 (容易补全 rank-方向...)

若所谈论的对象构成全序(等价地,只看一条链),则以上三类偏序关系是逐次的商集.

习题 15. 给定子空间 U_1 与 U_2 .

- 1. 证明 $\operatorname{rank}(U_1 \wedge U_2) \leq \min(\operatorname{rank}(U_1), \operatorname{rank}(U_2));$
- 2. 证明 $\max(\operatorname{rank}(U_1), \operatorname{rank}(U_2)) \leq \operatorname{rank}(U_1 + U_2)$.

提示: 第一处仅使用逻辑"或", 第二处仅使用逻辑"与"; 无关具像之选取.

备注. 从高维的"序"降至低维的"序",自然省略了诸多信息.

习题 16. 给定子集 S_1 与 S_2 .

- 1. 证明 $\operatorname{span}(S_1 \cap S_2) \subset \operatorname{span}(S_1) \wedge \operatorname{span}(S_2)$.
- 2. 证明 $\operatorname{span}(S_1) + \operatorname{span}(S_2) = \operatorname{span}(S_1 \cup S_2)$.

备注. 问题出在何出? 此处的问题是下式"为何取等", 而非上式为何不等.

命题. 对同一集合的三个子集 G, H 与 U, 总有

- 1. $G \cup (H \cap U) = (G \cup H) \cap (G \cup U)$, =
- 2. $(G \cap H) \cup (G \cap U) = G \cap (H \cup U)$.

证明. 由于 $x \in X$ 是命题, $(\star \in X)$ and $(\star \in Y)$ 当且仅当 $\star \in (X \cap Y)$,以及 $(\star \in X)$ or $(\star \in Y)$ 当且仅当 $\star \in X \cup Y$. 鉴于此,我们可以在不使用 mathlib 的情况下用 L $\exists \forall N$ 进行形式化的证明,见此篇个人草稿的 212 行与 214 行.

习题 17. 若 U, V 与 W 是三个子空间, 证明以下等式的一侧, 并证伪另一侧

- 1. $(U+V) \wedge W = (U \wedge W) + (V \wedge W)$;
- 2. $(U \wedge V) + W = (U + W) \wedge (V + W)$.

例子. 接上题. 尽管等式不必成立, 但式 1 取等号当且仅当式 2 取等.

证明. 仍然给一个形式化的证明, 见此处.

P.S. 笔者没想过其中的逻辑原因, 但还是莫名其妙地证出来了.

完证 毕明

备注. 问题出在哪儿?

习题 18. 给定自然数 l, m 与 n, 证明

- 1. $\max(\min(l, m), \min(l, n)) = \min(l, \max(m, n)),$
- 2. $\min(\max(l, m), \max(l, n)) = \max(l, \min(m, n)).$

提示: a=b 当且仅当 $(x \le a) \leftrightarrow (x \le b)$, 此时 max 对应 "或", min 对应 "与", ...

例子 (min-max 不等式). (min-max 不等式) 给定任意实数 a_1, b_1, a_2 与 b_2 , 总有

$$\max((\min(a_1, b_1)), (\min(a_2, b_2))) \min((\max(a_1, a_2)), (\max(b_1, b_2))).$$
 (4.3)

证明. 形式化证明.

备注. Min-max 不等式是极其广泛的: 假定 $f: X \times X \to P$ 是集合到偏序集合任意映射 (例如 $f: X \times Y \to \mathbb{R}$ 是二元实函数), 则恒有

$$\sup_{x \in X} \inf_{y \in Y} f(x, y) \le \inf_{y \in X} \sup_{x \in Y} f(x, y). \tag{4.4}$$

作为特例, 取 $X = Y = \mathbb{N}$, 以数列定义 $a_{m+n} = f(m, n)$, 则上式表示数学分析中何种的结论?

未完待续 (有些待补全的内容可以在上一届习题中找到).

- 1. 目前引入 span 的方式还是很"牵强"的, 之后会有更自然的角度. 等课上提到了"泛性质"再话吧.
- 2. 此处未涉及线性空间的补空间.
- 3. 将"两个线性空间"换作"一族线性空间"?

5 思考: 无限维线性空间

习题 19 (无限维的定义). F 上无限维线性空间的定义如下 (选自教材之一 LADR (第四版)):

定义. 称线性空间 V 是无限维的, 若 V 不是有限维的.

请证明: V 是无限维的, 当且仅当存在无限集 $S \subset V$ 使得 S 是线性无关组.

(若选择证明此题) 书写证明时, 换段地书写"充分性"与"必要性"是基本要求之一.

• 以上命题存在不显然之处,请在证明完毕后指出.

备注. 以上习题通常被默认作"常识"; 此处有一先决条件, 就是 span(S) 的定义.

习题 20 (Challenging). 如果你熟悉数学分析中的 Cantor 对角线法, 不妨尝试以下命题:

• 形式幂级数空间 $\mathbb{F}[x]$ 不是可数维线性空间;

换言之, 对任意可数集 $S \subset \mathbb{F}[x]$, 总有 $\mathrm{span}(S) \neq \mathbb{F}[x]$. (以上 \mathbb{F} 是任意域.)