Variable Compleja I

Tema 5: Funciones elementales

- La exponencial
- 2 Logaritmos

La exponencial

- El conjunto de los logaritmos
- El problema del logaritmo holomorfo
- Ejemplos de logaritmos holomorfos
- Desarrollos en serie
- Potencias complejas
 - Potencia de base y exponente complejos
 - Funciones exponenciales y funciones potencia
- 4 Funciones trigonométricas
 - El seno y el coseno
 - La tangente y el arco-tangente

•00

La función exponencial compleia

Definición de la exponencial

Función exponencial real:
$$\exp x = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad \forall x \in \mathbb{R}$$

La serie
$$\sum_{n\geqslant 0} \frac{z^n}{n!}$$
 tiene radio de convergencia ∞

Función exponencial compleja:
$$\exp z = e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \quad \forall z \in \mathbb{C}$$

Primeras propiedades de la exponencial

- La exponencial es una función entera que coincide con su derivada.
- Fórmula de adición: $e^{z+w} = e^z e^w \quad \forall z, w \in \mathbb{C}$
- E.3 $f \in \mathcal{H}(\mathbb{C})$, $f'(z) = f(z) \ \forall z \in \mathbb{C} \implies \exists \lambda \in \mathbb{C} : f(z) = \lambda e^z \ \forall z \in \mathbb{C}$
- E.4 Es una función analítica en \mathbb{C} : $e^z = \sum_{n=0}^{\infty} \frac{e^a}{n!} (z-a)^n \quad \forall a, z \in \mathbb{C}$

Fórmula de Euler y consecuencias

- E.5 Fórmula de Euler: $e^{it} = \cos t + i \sin t \quad \forall t \in \mathbb{R}$
- E.6 Para todo $z \in \mathbb{C}$ se tiene:

Re
$$e^z = e^{\text{Re}z}\cos(\text{Im}z)$$

Im $e^z = e^z\sin(\text{Im}z)$
 $|e^z| = e^{\text{Re}z}$
Arg $(e^z) = \{\text{Im}z + 2k\pi : k \in \mathbb{Z}\}$

E.7 La imagen de la exponencial es \mathbb{C}^* . De hecho, para todo $w \in \mathbb{C}^*$ se tiene:

$${z \in \mathbb{C} : e^z = w} = {\ln |w| + i\theta : \theta \in \operatorname{Arg} w}$$

En particular, para todo $R \in \mathbb{R}^+$ se tiene: $\{e^z : z \in \mathbb{C}, |z| > R\} = \mathbb{C}^*$

Periodicidad de la exponencial

Funciones periódicas

La exponencial

00

$$\emptyset \neq A \subset \mathbb{C}$$
, $f \in \mathcal{F}(A)$, $w \in \mathbb{C}$

w es un periodo de f cuando:

$${z+w: z \in A} = A$$
 y $f(z+w) = f(z)$ $\forall z \in A$

f es una función función periódica cuando tiene un periodo $w \in \mathbb{C}^*$

El conjunto de todos los periodos de f es un subgrupo aditivo de \mathbb{C}

Cuando dicho subgrupo está engendrado por un sólo elemento $w \in \mathbb{C}^*$, es decir, tiene la forma $\{kw: k \in \mathbb{Z}\}$, se dice que f es simplemente periódica y que w es un periodo fundamental de f.

Periodicidad de la exponencial

La exponencial es una función simplemente periódica con periodo fundamental $2\pi i$.

Sarremos de un numero compreje

Conjunto de los logaritmos y logaritmo principal

El conjunto de los logaritmos de $z \in \mathbb{C}^*$:

$$\operatorname{Log} z = \left\{ w \in \mathbb{C} : e^{w} = z \right\} = \left\{ \ln|z| + i\theta : \theta \in \operatorname{Arg} z \right\}$$

Relación entre logaritmos y argumentos:

$$\operatorname{Arg} z = \operatorname{Im} (\operatorname{Log} z)$$
 y $\operatorname{Log} z = \operatorname{ln} |z| + i \operatorname{Arg} z$

El logaritmo principal de $z \in \mathbb{C}^*$:

$$\log z = \ln|z| + i \arg z$$

La función $\log: \mathbb{C}^* \to \mathbb{C}$ también es el logaritmo principal

Extiende al logaritmo real: $\log x = \ln x \quad \forall x \in \mathbb{R}^+$

Propiedad algebraica de los logaritmos

 $2\pi i\,\mathbb{Z}\,$ es un subgrupo aditivo de \mathbb{C} $\mbox{Log}\;z\in\mathbb{C}/2\pi i\mathbb{Z}\quad\forall z\in\mathbb{C}^*$

La propiedad clave de los logaritmos

Log : $\mathbb{C}^* \to \mathbb{C}/2\pi i\mathbb{Z}$ es un isomorfismo de grupos

El logaritmo principal no tiene la propiedad anterior:

$$0 = \log 1 = \log ((-1)(-1)) \neq \log(-1) + \log(-1) = 2\pi i$$

No podemos elegir un logaritmo para tener dicha propiedad:

No existe una función $g:\mathbb{C}^* \to \mathbb{C}$ verificando:

$$g(z) \in \text{Log } z \ \forall z \in \mathbb{C}^*$$
 $y \ g(zw) = g(z) + g(w) \ \forall z, w \in \mathbb{C}^*$

Planteamiento del problema del logaritmo holomorfo

Logaritmos holomorfos en un abierto

$$\emptyset\neq\Omega=\Omega^\circ\subset\mathbb{C}^*.$$
 Un logaritmo en Ω es una función $g:\Omega\to\mathbb{C}$ verificando:

$$g(z) \in \text{Log } z \quad \forall z \in \Omega$$
 es decir, $e^{g(z)} = z \quad \forall z \in \Omega$
¿ Existe un logaritmo holomorfo en Ω ?

Logaritmos y argumentos de una función

$$\emptyset \neq A \subset \mathbb{C}$$
, $f: A \to \mathbb{C}^*$

• Un logaritmo de f es una función $g:A\to\mathbb{C}$ que verifique:

$$g(z) \in \text{Log } f(z) \quad \forall z \in A, \text{ es decir, } e^{g(z)} = f(z) \quad \forall z \in A$$

• Un argumento de f es una función $\phi: A \to \mathbb{R}$ que verifique:

$$\varphi(z) \in \operatorname{Arg} f(z) \quad \forall z \in A$$

g logaritmo de $f \implies \varphi = \operatorname{Im} g$ argumento de f

 φ argumento de $f \implies g = \ln|f| + i\varphi$ logaritmo de f

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C} \ , \ f \in \mathcal{H}(\Omega) \ , \ f(\Omega) \subset \mathbb{C}^*$$

Problema: ¿Tiene f un logaritmo holomorfo?

La exponencial

Observaciones sobre el problema del logaritmo holomorfo

Lema 1: Derivabilidad de un logaritmo continuo

$$\emptyset \neq A \subset \mathbb{C}$$
, $f: A \to \mathbb{C}^*$, g un logaritmo de f

$$\left. \begin{array}{ccc} f & \text{derivable en} & a \in A \cap A' \\ g & \text{continua en} & a \end{array} \right\} \quad \Longrightarrow \quad g & \text{derivable en} \quad a & \text{con} \quad g'(a) = \frac{f'(a)}{f(a)}$$

Lema 2: Logaritmos holomorfos y primitivas

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}$$
 , $f \in \mathcal{H}(\Omega)$, $f(\Omega) \subset \mathbb{C}^*$

Si
$$g \in \mathcal{H}(\Omega)$$
 verifica que $g'(z) = \frac{f'(z)}{f(z)}$ para todo $z \in \Omega$,

entonces existe $\lambda \in \mathcal{H}(\Omega)$, tal que $\lambda + g$ es un logaritmo de f y

 λ es constante en cada componente conexa de Ω .

Consecuencia de los lemas anteriores

Primitivas

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C} , \ h \in \mathcal{F}(\Omega)$$

Una primitiva de h es una función $g\in\mathcal{H}(\Omega)$ tal que g'=h

Consecuencia de los resultados anteriores

Para $\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}$ y $f \in \mathcal{H}(\Omega)$ con $f(\Omega) \subset \mathbb{C}^*$, son equivalentes:

- \bullet f tiene un argumento continuo
- \bullet f tiene un logaritmo continuo
- $\bullet \ f$ tiene un logaritmo holomorfo
- f'/f tiene una primitiva

Ejemplos de logaritmos holomorfos

Holomorfía del logaritmo principal

$$\log \in \mathcal{H}(\mathbb{C}^* \setminus \mathbb{R}^-)$$
 con $\log'(z) = \frac{1}{z} \quad \forall z \in \mathbb{C}^* \setminus \mathbb{R}^-$

log no tiene límite en ningún punto de \mathbb{R}^-

Logaritmos análogos al principal

Fijado $\theta \in \mathbb{R}$, definimos un logaritmo en \mathbb{C}^* :

$$f_{\theta}(z) = \log \left(e^{i(\pi - \theta)} z \right) - i(\pi - \theta) \quad \forall z \in \mathbb{C}^*$$

Entonces $f \in \mathcal{H}(\Omega_{\theta})$ donde $\Omega_{\theta} = \mathbb{C}^* \setminus \{ \rho e^{i\theta} : \rho \in \mathbb{R}^+ \}$

Otra forma de construir logaritmos holomorfos

Un ejemplo de función analítica

La exponencial

Fijado $a \in \mathbb{C}^*$ arbitrario, se tiene:

$$\frac{1}{z} = \sum_{n=0}^{\infty} \frac{(-1)^n}{a^{n+1}} (z - a)^n \qquad \forall z \in D(a, |a|)$$

Logaritmo holomorfo en un disco que no contenga al origen

Fijado $a \in \mathbb{C}^*$, definiendo:

$$g(z) = \log a + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{na^n} (z-a)^n \qquad \forall z \in D(a,|a|)$$

se tiene que $g \in \mathcal{H}(D(a,|a|))$ y $e^{g(z)} = z$ para todo $z \in D(a,|a|)$.

Logaritmos

0000000

Desarrollos en serie del logaritmo principal

Para $a \in \mathbb{C}^* \setminus \mathbb{R}^-$, sea $\rho_a = \begin{cases} |a| & \text{si } \operatorname{Re} a \geqslant 0 \\ |\operatorname{Im} a| & \text{si } \operatorname{Re} a < 0 \end{cases}$

Entonces:

$$\log z = \log a + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n a^n} (z - a)^n \qquad \forall z \in D(a, \rho_a)$$

En particular, el logaritmo principal es una función analítica en $\mathbb{C}^* \setminus \mathbb{R}^-$.

Potencia de base y exponente complejos

Definición de la potencia

Motivación: $x^y = e^{y \ln x} \quad \forall x \in \mathbb{R}^+, \ \forall y \in \mathbb{R}$

Potencia de base $z \in \mathbb{C}^*$ y exponente $w \in \mathbb{C}$:

$$[z^w] = \exp(w \operatorname{Log} z) = \{\exp(w\lambda) : \lambda \in \operatorname{Log} z\}$$

Potencia principal

Calculemos $\exp(w \log z)$ en casos conocidos:

•
$$z \in \mathbb{C}^*$$
, $w = p \in \mathbb{Z} \implies \exp(p \log z) = z^p$

•
$$z = x \in \mathbb{R}^+$$
, $w = y \in \mathbb{R} \implies \exp(y \log x) = x^y$

•
$$z = e$$
, $w \in \mathbb{C} \implies \exp(w \log e) = e^w$

Potencia principal de base $z \in \mathbb{C}^*$ y exponente $w \in \mathbb{C}$:

$$z^{w} = \exp(w \log z)$$
$$[z^{w}] = \{ z^{w} e^{2k\pi i w} : k \in \mathbb{Z} \}$$

Número de elementos de la potencia

Exponente no racional

Para $w \in \mathbb{C} \setminus \mathbb{Q}$ y $z \in \mathbb{C}^*$ la aplicación $k \mapsto z^w e^{2k\pi i w}$, de \mathbb{Z} en $[z^w]$, es biyectiva luego el conjunto $[z^w]$ es infinito numerable

Raíces n-ésimas

Para cada $n \in \mathbb{N}$, todo $z \in \mathbb{C}^*$ tiene n raíces n-ésimas distintas, que son los elementos de la potencia $[z^{1/n}]$:

$$[z^{1/n}] = \{ v \in \mathbb{C} : v^n = z \} = \{ z^{1/n} e^{2r\pi i/n} : r \in \mathbb{Z}, \ 0 \leqslant r < n \}$$

Raíz *n*-ésima principal:
$$z^{1/n} = \exp((1/n)\log z) \quad \forall z \in \mathbb{C}^*$$

En \mathbb{R}^+ es la raíz *n*-ésima positiva: $x^{1/n} = \sqrt[n]{x} \quad \forall x \in \mathbb{R}^+$

Raíces *n*-ésimas de la unidad:

$$\begin{bmatrix} 1^{1/n} \end{bmatrix} = \{ 1, u_n, u_n^2, \dots, u_n^{n-1} \} \text{ donde } u_n = e^{2\pi i/n}$$

$$\begin{bmatrix} z^{1/n} \end{bmatrix} = \{ z^{1/n} u_n^r : r \in \mathbb{Z}, \ 0 \leqslant r < n \} \quad \forall z \in \mathbb{C}^*$$

$$\begin{bmatrix} z^{1/n} \end{bmatrix} = \{ \sqrt[n]{|z|} e^{i(\arg z + 2r\pi)/n} : r \in \mathbb{Z}, \ 0 \leqslant r < n \}$$

Número de elementos de la potencia

Exponente racional

Si $w \in \mathbb{Q}$ y $n = \min\{m \in \mathbb{N} : mw \in \mathbb{Z}\}$, entonces $[z^w]$ tiene exactamente n elementos, para todo $z \in \mathbb{C}^*$. Concretamente, si $p = nw \in \mathbb{Z}$ se tiene:

$$[z^w] = [z^{p/n}] = \{v^p : v \in [z^{1/n}]\}$$

Funciones exponenciales

La exponencial

Fijado $a \in \mathbb{C}^*$, función exponencial de base a:

$$\exp_a : \mathbb{C} \to \mathbb{C}, \qquad \exp_a(z) = a^z = e^{z \log a} \quad \forall z \in \mathbb{C}$$

Potencias complejas

Es una función entera y verifica: $a^{z+w} = a^z a^w \quad \forall z, w \in \mathbb{C}$

En general, $[a^{z+w}]$ no coincide con $[a^z][a^w]$

Acerca de las funciones potencia

Fijado $\alpha \in \mathbb{C}$, para $z, w \in \mathbb{C}^*$ se tiene:

$$\left[(zw)^{\alpha} \right] = \left[z^{\alpha} \right] \left[w^{\alpha} \right]$$

En general, $(zw)^{\alpha}$ no coincide con $z^{\alpha}w^{\alpha}$

Raíces n-ésimas holomorfas

Raíz n-ésima en un conjunto

$$\emptyset \neq A \subset \mathbb{C} , n \in \mathbb{N}$$

Una raíz *n*-ésima en A es una función $\varphi: A \to \mathbb{C}$ tal que:

$$\varphi(z)^n = z \quad \forall z \in A$$

Problema: si
$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}$$
,

 ξ Existe una raíz n-ésima holomorfa en Ω ?

Relación con el problema del logaritmo

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}^*$$

Si existe un logaritmo holomorfo en Ω , entonces, existe una raíz n-ésima holomorfa en Ω , para todo $n \in \mathbb{N}$

La exponencial

Al problema de la raíz cuadrada

Si
$$r \in \mathbb{R}^+$$
 y $S = \{z \in \mathbb{C} : |z| = r\},$

Potencias complejas

00000

 $_{\rm ii}$ No existe una raíz cuadrada continua en S !!

Si $0 \in \Omega = \Omega^{\circ} \subset \mathbb{C}$, no existe una raíz cuadrada continua en Ω

Al problema del logaritmo o de la primitiva

- ullet No existe una raíz cuadrada holomorfa en \mathbb{C}^*
- No existe un logaritmo holomorfo en C*
- La función $z \mapsto 1/z$, definida en \mathbb{C}^* , no tiene primitiva

El seno y el coseno

Definiciones

Las funciones coseno y seno se definen, para todo $z \in \mathbb{C}$ por:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \qquad \text{y} \qquad \text{sen } z = \frac{e^{iz} - e^{-iz}}{2i}$$

Primeras propiedades

• Son funciones enteras:

$$\operatorname{sen}' z = \cos z$$
 y $\cos'(z) = -\operatorname{sen} z$ $\forall z \in \mathbb{C}$

• Son sumas de series de potencias convergentes en todo el plano:

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} \quad \text{y} \quad \text{sen } z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} \quad \forall z \in \mathbb{C}$$

• El coseno es par y el seno es impar:

$$\cos(-z) = \cos z$$
 y $\sin(-z) = -\sin z$ $\forall z \in \mathbb{C}$

La exponencial

Fórmulas de adición y consecuencias

• Para cualesquiera $z, w \in \mathbb{C}$ se tiene:

$$cos(z + w) = cos z cos w - sen z sen w$$
 y
 $sen(z + w) = sen z cos w + cos z sen w$

- Consecuencias: para cualesquiera $z \in \mathbb{C}$ y $k \in \mathbb{Z}$ se tiene:
 - $\cos(z + (\pi/2)) = -\sin z$ y $\sin(z + (\pi/2)) = \cos z$
 - $\cos(z + k\pi) = (-1)^k \cos z$ y $\sin(z + k\pi) = (-1)^k \sin z$
 - \bullet En particular, 2π es un periodo del seno y del coseno
 - $e^{-1} \sin^2 z + \cos^2 z = 1$ $\forall z \in \mathbb{C}$

Funciones hiperbólicas

Seno y coseno hiperbólicos

Para $z \in \mathbb{C}$ se define:

$$ch z = \frac{e^z + e^{-z}}{2}$$
 y $sh z = \frac{e^z - e^{-z}}{2}$

Algunas propiedades inmediatas

Para todo $z \in \mathbb{C}$ se tiene:

•
$$\operatorname{ch}'(z) = \operatorname{sh} z$$
, $\operatorname{y} \operatorname{sh}'(z) = \operatorname{ch} z$

•
$$ch^2 z - sh^2 z = 1$$

•
$$\cos z = \operatorname{ch}(iz)$$
 y $\operatorname{sen} z = -i \operatorname{sh}(iz)$

En particular, para todo $y \in \mathbb{R}$ será:

•
$$cos(iy) = ch y$$
 $y sen(iy) = i sh y$

Otras propiedades del seno y el coseno

Partes real e imaginaria y módulo

Para z = x + iy con $x, y \in \mathbb{R}$ se tiene:

$$\cos z = \cos x \operatorname{ch} y - i \operatorname{sen} x \operatorname{sh} y$$

$$\operatorname{sen} z = \operatorname{sen} x \operatorname{ch} y + i \cos x \operatorname{sh} y$$

de donde:

La exponencial

$$|\cos z|^2 = \cos^2 x + \sinh^2 y$$
$$|\sin z|^2 = \sin^2 x + \sinh^2 y$$

Imagen del seno y el coseno

Para $z, w \in \mathbb{C}$ se tiene

$$\cos z = w \iff z \in -i \operatorname{Log}\left(w \pm (w^2 - 1)^{1/2}\right)$$

Por tanto, la imagen del coseno y del seno es \mathbb{C}

En particular: $\cos z = 0 \iff z = (2k+1)\pi/2 \text{ con } k \in \mathbb{Z}$

La tangente

La exponencial

Definición

En el dominio $\Omega = \mathbb{C} \setminus \{ (2k+1)\pi/2 : k \in \mathbb{Z} \}$ se define la función tangente:

$$\operatorname{tg} z = \frac{\operatorname{sen} z}{\cos z} \qquad \forall z \in \Omega$$

Algunas propiedades

- $\operatorname{tg} \in \mathcal{H}(\Omega)$ con $\operatorname{tg}'(z) = 1 + \operatorname{tg}^2 z \ \forall z \in \Omega$.
- $\{z+\pi: z\in\Omega\} = \Omega$ y $\operatorname{tg}(z+\pi) = \operatorname{tg} z \ \forall z\in\Omega$ luego π es un periodo de la tangente
- $\operatorname{tg} z \neq \pm i \quad \forall z \in \Omega$
- Para $w \in \mathbb{C} \setminus \{i, -i\}$ y $z \in \Omega$ se tiene:

$$\operatorname{tg} z = w \quad \Leftrightarrow \quad z \in \frac{1}{2i} \operatorname{Log} \left(\frac{1+iw}{1-iw} \right)$$

• Por tanto, la imagen de la tangente es $\mathbb{C}\setminus\{i,-i\}$

La exponencial

El conjunto arco-tangente

Para $z \in \mathbb{C} \setminus \{i, -i\}$ definimos el conjunto arco-tangente de z por

$$\operatorname{Arctg} z = \frac{1}{2i} \operatorname{Log} \left(\frac{1+iz}{1-iz} \right)$$

El arco-tangente principal

La función arco-tangente principal se define en $\mathbb{C}\setminus\{i,-i\}$ por:

$$\operatorname{arctg} z = \frac{1}{2i} \log \left(\frac{1+iz}{1-iz} \right) \quad \forall z \in \mathbb{C} \setminus \{i, -i\}$$

Extiende a la función arco-tangente real, lo que justifica la notación

Propiedades del arco-tangente principal

Algunas propiedades

• La función arco-tangente principal es holomorfa en el dominio:

$$U = \mathbb{C} \setminus \left\{ iy : y \in \mathbb{R} , |y| \geqslant 1 \right\}$$

verificando que:

$$arctg'(z) = \frac{1}{1+z^2} \quad \forall z \in U$$

 \bullet En D(0,1) se expresa como suma de una serie de potencias:

$$\arctan z = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} z^{2n+1} \quad \forall z \in D(0,1)$$