Abstract Algebra Homework 1

Zachary Meyner

2. Which of the following multiplication tables defined on the set $G = \{a, b, c, d\}$ form a group? Support your answer in each case.

Theorem 1. Let $a, b, c \in G$. Given a is the Identity element of the set G, then $a \circ (b \circ c) = (a \circ b) \circ c$, $\forall b, c \in G$.

Proof. Let $d \in G$ with $b \circ c = d$. Then $a \circ (b \circ c) \implies a \circ d = d$. We also have $(a \circ b) \circ c \implies b \circ c = d$. $\therefore a \circ (b \circ c) = (a \circ b) \circ c$.

- Closure: Every element in the Cayley Table is in the set G, (b) so it is closed. Identity: taking any element and multiplying it by a returns that element. So a is the indentity element. b a d cInverse: A diagonal is formed in the table with the identity c d a belement a, so every element is its own inverse. d cAssociative: Because a is the identity element it is associative with every set of two elements by Theorem 1. Because every element $p_{ij} = p_{ji}$ it is commutative as well, so only one permutation of the elements b, c, d needs to be tested for associativity. We have $(b \circ c) \circ d = a$, and $b \circ (c \circ d) = a$, so $(b \circ c) \circ d = b \circ (c \circ d)$. Therefore this Cayley Table is a group.

This Cayley Table is the same as the Cayley Table for the group $(\mathbb{Z}_4,+)$ where $a=0,\ b=1,\ c=2,\ d=3,$ so This Cayley Table must be a group.

The identity element of this Cayley Table is a. There is no inverse for d where $d \circ p = a$ in this Cayley Table. Therefore this Cayley Table is not a Group.

13. Show that $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ is a group under the operation of multiplication. Let $a, b, c \in \mathbb{R}^*$

Closure: Multiplying two real numbers will always return result in a real number.

Associativity: The Field Axioms of real numbers state a * (b * c) = (a * b) * c, so it is Associative as well.

Identity: The multiplicative identity for \mathbb{R}^* is 1 because $a \cdot 1 = a \ \forall a \in \mathbb{R}^*$.

Inverse: The multiplicative inverse for \mathbb{R}^* is $\frac{1}{a}$ because $a \cdot \frac{1}{a} = \frac{a \cdot 1}{a} = \frac{a}{a} = 1 \ \forall a \in \mathbb{R}^*$.

27. Prove that the inverse of $g_1 g_2 ... g_n$ is $g_n^{-1} g_{n-1}^{-1} ... g_1^{-1}$.

Proof by induction. Base Case (n = 1):

$$g_1g_1^{-1} = g_1^{-1}g_1 = e$$

Inductive Hypothesis (n = k):

$$(g_1g_2\dots g_k)(g_k^{-1}g_{k-1}^{-1}\dots g_1^{-1}) = (g_k^{-1}g_{k-1}^{-1}\dots g_1^{-1})(g_1g_2\dots g_k) = e$$

Inductive Step (n = k + 1)(WTS: $(g_1g_2 \dots g_{k+1})(g_{k+1}^{-1}g_k^{-1} \dots g_1^{-1}) = (g_{k+1}^{-1}g_k^{-1} \dots g_1^{-1})(g_1g_2 \dots g_{k+1}) = e)$ $(g_1g_2\ldots g_{k+1})(g_{k+1}^{-1}g_k^{-1}\ldots g_1^{-1})$ = $(g_1g_2...g_k)(g_{k+1})(g_{k+1}^{-1})(g_k^{-1}g_{k-1}^{-1}...g_1^{-1})$ (Associative Property) $= (g_1g_2 \dots g_k)(e)(g_k^{-1}g_{k-1}^{-1} \dots g_1^{-1})$ (Definition) $= (g_1g_2 \dots g_k)(g_k^{-1}g_{k-1}^{-1} \dots g_1^{-1})$ (Definition) (Inductive Hypothesis) and $(g_{k+1}^{-1}g_k^{-1}\dots g_1^{-1})(g_1g_2\dots g_{k+1})$ $= g_{k+1}^{-1} (g_k^{-1} g_{k-1}^{-1} \dots g_2 g_1^{-1}) (g_1 g_2 g_3 \dots g_k) g_{k+1}$ (Associative Property) $= (g_{k+1}^{-1})(e)(g_{k+1})$ (Inductive Hypothesis) $=(g_{k+1}^{-1})(g_{k+1})$ (Definition)

$$\therefore (g_1 g_2 \dots g_n)(g_n^{-1} g_n^{-1} \dots g_1^{-1}) = (g_n^{-1} g_{n-1}^{-1} \dots g_1^{-1})(g_1 g_2 \dots g_n) = e$$

(Definition)

31. Show that if $a^2 = e$ for all elements in a in a group G, then G must be abelian.

Proof. Let $a, b \in G$. Consider $a \cdot b \cdot b \cdot a$. Since $a^2 = a \cdot a = e \ \forall a \in G$, and G is a Group, we have

$$a \cdot b \cdot b \cdot a = a \cdot (b \cdot b) \cdot a$$
 (Commutative Property)
 $= a \cdot e \cdot a$ (Hypothesis)
 $= a \cdot a$ (Identity Property)
 $= e$ (Hypothesis)

But $a \cdot b$ has an inverse element of $a \cdot b$, and we have proven that $(a \cdot b) \cdot (b \cdot a) = e$, so $a \cdot b = b \cdot a \ \forall a, b \in G$. Therefore G is commutative which makes it an Abelian Group.