Московский государственный университет имени М. В. Ломоносова

Факультет вычислительной математики и кибернетики

Отчет

По курсу: «Суперкомпьютерное моделирование и технологии»

«OpenMP»

Цирунов Леонид Александрович группа 628 29 октября 2024 г.

Математическая постановка задачи

В трехмерной замкнутой области

$$\Omega = \left[0 \le x \le L_x\right] \times \left[0 \le y \le L_y\right] \times \left[0 \le z \le L_z\right]$$

Для $0 < t \le T$ требуется найти решение u(x, y, z, t) уравнения в частных производных

$$\frac{\partial^2 u}{\partial t^2} = \triangle u$$

С начальными условиями

$$u|_{t=0} = \varphi(x, y, z)$$

$$\frac{\partial u}{\partial t}|_{t=0} = 0$$

При условии, что на границах области заданы однородные граничные условия первого рода

$$u(0, y, z, t) = 0,$$
 $u(L_x, y, z, t) = 0,$
 $u(x, 0, z, t) = 0,$ $u(x, L_y, z, t) = 0,$
 $u(x, y, 0, t) = 0,$ $u(x, y, L_z, t) = 0$

Либо периодические граничные условия

$$u(0, y, z, t) = u(L_x, y, z, t), u_x(0, y, z, t) = u_x(L_x, y, z, t), u(x, 0, z, t) = u(x, L_y, z, t), u_y(x, 0, z, t) = u_y(x, L_y, z, t), u(x, y, 0, t) = u(x, y, L_z, t), u_z(x, y, 0, t) = u_z(x, y, L_z, t),$$

Численный метод решения задачи

Введем на Ω сетку: $\omega_{h\tau}=\bar{\omega}_h \times \omega_{\tau}$

$$T = T_0$$

$$\begin{split} &L_x = L_{x_0}, \ L_y = L_{y_0}, \ L_z = L_{z_0} \\ &\bar{\omega}_h = \{ \left(x_i = i h_x, \ y_j = j h_y, \ z_k = k h_z \right), \ i, j, k = 0, 1, \dots, N, \ h_x N = \ L_x, h_y N = \ L_y, h_z N = \ L_z \} \\ &\omega_\tau = \left\{ t_n = n \tau, \ n = 0, 1, \dots, K, \ \tau K = T \right\} \end{split}$$

Через ω_h обозначим множество внутренних, а через γ_h - множество гранитных узлов сетки $\bar{\omega}_h$.

Для аппроксимации исходного уравнения с начальными условиями воспользуемся следующей системой уравнений:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = \triangle_h u^n, \ \left(x_i, y_j, \ z_k\right) \in \omega_h, \ n = 1, 2, ..., \ K - 1$$

Где \triangle_h - семиточечный разностный аналог оператора Лапласа:

$$\triangle_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h^2}$$

Для начала счета должны быть заданы значения $u_{i,j,k}^0$ и $u_{i,j,k}^1$, $(x_i,y_j,z_k)\in\omega_h$.

$$u_{i,j,k}^{0} = \varphi(x_{i}, y_{j}, z_{k}), \quad (x_{i}, y_{j}, z_{k}) \in \omega_{h}.$$

$$u_{i,j,k}^{1} = u_{i,j,k}^{0} + \frac{\tau^{2}}{2} \triangle_{h} \varphi(x_{i}, y_{j}, z_{k})$$

Для вычисления значений u^0 , $u^1 \in \gamma_h$ допускается использование аналитического значения, которое задается в программе еще для вычисления погрешности решения задачи.

Из варианта №8 следуют следующие формулы:

$$u_{analytical} = \sin(\frac{2\pi}{L_x}x) * \sin\left(\frac{4\pi}{L_y}y\right) * \sin\left(\frac{6\pi}{L_z}z\right) * \cos(a_t * t),$$

$$a_t = \pi \sqrt{\left(\frac{4}{L_x^2} + \frac{16}{L_y^2} + \frac{36}{L_z^2}\right)}$$

Граничные условия:

$$\begin{aligned} \Pi &: & u \big(0, \, y, \, z, \, t \big) = u \big(L_x, \, y, \, z, \, t \big), & u_x \big(0, \, y, \, z, t \big) = u_x \big(L_x, \, y, \, z, \, t \big), \\ \Pi &: & u \big(x, \, 0, \, z, \, t \big) = u \Big(x, \, L_y, \, z, \, t \Big), & u_y \big(x, \, 0, \, z, t \big) = u_y \Big(x, \, L_y, \, z, \, t \Big), \\ \Pi &: & u \big(x, \, y, \, 0, \, t \big) = u \big(x, \, y, \, L_z, \, t \big), & u_z \big(x, \, y, \, 0, t \big) = u_z \big(x, \, y, \, L_z, \, t \big) \end{aligned}$$

Алгоритм численного решения:

- 1. Вычисление граничных значений u^0 и u^1 .
- 2. Вычисление u^0 внутри области: $u^0_{i,j,k} = \varphi \left(x_i, y_j, \ z_k \right)$
- 3. Вычисление u^1 внутри области: $u^1_{i,j,k} = u^0_{i,j,k} + \frac{\tau^2}{2} \triangle_h \varphi(x_i, y_j, z_k)$
- 4. Вычисление K 1 раз u^{n+1} :

$$u_{ijk}^{n+1} = 2u_{ijk}^{n} - u_{ijk}^{n-1} + \tau^{2} \triangle_{h} u^{n}$$

Программный метод решения задачи

Программная реализация состоит из 4 файлов: *main.cpp*, *equation_solution.cpp*, *equation.h* и *Makefile*.

Файл *main.cpp* содержит основную функцию получающую входные значения и запускающую решение задачи, а также две функции для сохранения результатов:

- *dump_grid_to_CSV* сохранение погрешности или сетки, полученной численным или аналитическим способом, в файл в формате CSV (для дальнейшей визуализации);
- *save_statistics* вывод в файл информации о времени работы решения и максимальной погрешности вычисления.

На вход программа получает 3 или 6 значений в зависимости от переданного *L type*. Описание параметров в порядке передачи:

- N размер сетки по одной координате (конечный размер N^3);
- *threads_num* количество потоков, которые будут задействованы;
- L_{type} тип значений L по разным координатам, принимает значения: l, pi, custom.

В случае l и pi, значения L по всем координатам равны числу соответвенно. Если L_type передано значение custom, в этом случае необходимо передать значения L по каждой координате: L_x , L_y , L_z .

Файл *equation.h* содержит объявления типов, класса сетки с функцией получения индекса элемента в линейном массиве описывающем сетку, а также функцию $u_{analytical}$ для вычисления аналитических значений точек сетки.

Файл *equation_solution.cpp* содержит основной алгоритм решения задачи. Содержит функции:

• *laplace_operator* - вычисление значения разностного аналога оператора Лапласа;

- *init* вычисление внутренних u^0 , u^1 и граничных начальных точек, необходимых для запуска алгоритма;
- *run_algo* итерация по K − 1 оставшимся временным шагам алгоритма с вычислением значений граничных и внутренних точек на новом шаге алгоритма. После завершения всех шагов производится подсчет максимальной погрешности численного решения от аналитического.
- *solve_equation* задается количество потоков, отключается динамическое управление количеством потоков, инициализируются переменные, выполняется запуск алгоритма и ведется подсчет времени алгоритма.

Распараллеливание производится с использованием технологии OpenMP.

Файл *Makefile* содержит цели для компиляции и запуска задач. Для запуска на Polus используются команды «*make compile_polus*» и «*make run all polus*».

OpenMP отчет 6

Результаты расчетов

Таблица 1: Результаты при L = 1

Число OpenMP нитей	Число точек сетки N по одной оси	Время решения	Ускорение	Погрешность
0 - Sequential	128	1,55036	1,000	1.4004e-06
1	128	1,58439	0,9785	1.4004e-06
2	128	0,806249	1,9229	1.4004e-06
4	128	0,408948	3,7911	1.4004e-06
8	128	0,210073	7,3801	1.4004e-06
16	128	0,158542	9,7789	1.4004e-06
32	128	0,132751	11,6787	1.4004e-06
0 - Sequential	256	11,6665	1,000	3.49927e-07
1	256	11,9851	0,9734	3.49927e-07
2	256	6,07845	1,9193	3.49927e-07
4	256	3,06002	3,8126	3.49927e-07
8	256	1,72389	6,7675	3.49927e-07
16	256	1,23653	9,4349	3.49927e-07
32	256	1,03338	11,2897	3.49927e-07
0 - Sequential	512	90,4241	1,000	8.71479e-08
1	512	93,0409	0,9719	8.71479e-08
2	512	47,1411	1,9182	8.71479e-08
4	512	23,6495	3,8235	8.71479e-08
8	512	12,2445	7,3849	8.71479e-08
16	512	8,91206	10,1463	8.71479e-08
32	512	7,17687	12,5994	8.71479e-08

Таблица 2: Результаты при L = π

Число OpenMP нитей	Число точек сетки N по одной оси	Время решения	Ускорение	Погрешность
0 - Sequential	128	1,55327	1,000	1.41974e-07
1	128	1,58615	0,9793	1.41974e-07
2	128	0,806694	1,9255	1.41974e-07
4	128	0,480756	3,2309	1.41974e-07
8	128	0,212061	7,3246	1.41974e-07
16	128	0,157942	9,8344	1.41974e-07
32	128	0,133489	11,6359	1.41974e-07
0 - Sequential	256	11,6618	1,000	3.55074e-08
1	256	11,9916	0,9725	3.55074e-08
2	256	6,07655	1,9191	3.55074e-08
4	256	3,06577	3,8039	3.55074e-08
8	256	1,82984	6,3731	3.55074e-08
16	256	1,18342	9,8543	3.55074e-08
32	256	0,938112	12,4311	3.55074e-08
0 - Sequential	512	90,5702	1,000	8.8744e-09
1	512	93,196	0,9718	8.8744e-09
2	512	47,2076	1,9186	8.8744e-09
4	512	24,0255	3,7698	8.8744e-09
8	512	12,2912	7,3687	8.8744e-09
16	512	8,87994	10,1994	8.8744e-09
32	512	7,20551	12,5696	8.8744e-09

График 1: зависимость ускорения от количества потоков при L=1:

График 2: зависимость ускорения от количества потоков при $L = \pi$:

Визуализация сетки полученной аналитическим решением:

Визуализация сетки полученной численным решением:

Визуализация сетки погрешности:

OpenMP отчет 12

Вывод

Задача для трехмерного гиперболического уравнения в области, представляющей из себя прямоугольный параллелепипед, подходит для распараллеливания с помощью технологии OpenMP, позволяя получить ускорение вплоть до 12 раз. Причем при большем размере сетки ниже погрешность, а распараллеливание дает немного лучшие результаты по сравнению с мелкими сетками.

Также было замечено, что последовательный код работает немного быстрее, чем код в один поток, это связано с накладными расходами на создание потоков и ожидание их завершения, а также с оптимизациями компилятора.