This controller datasheet was downloaded from http://www.crystalfontz.com/controllers/

SSD1309

Advance Information

128 x 64 Dot Matrix **OLED/PLED Segment/Common Driver with Controller**

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Appendix: IC Revision history of SSD1309 Specification

Version	Change Items	Effective Date
0.10	1 st Release	12-Oct-10
1.0	 Changed to Advance Information Add SSD1309UR1 in ordering information. (P.11, P.55) 	14-Oct-10
1.1	 Added Command 26h/27h/29h/2Ah/2Eh/2Fh/A3h/DCh in Section 9 & Section 10 (P.28~31, P.33, P.45~48) Revised default value of A[7:4] of command D5h in Table 9-5 from 1000b into 0111b. (P.34) 	25-Jul-11

 Solomon Systech
 Jul 2011
 P 2/62
 Rev 1.1
 SSD1309

CONTENT

1	GENERAL DESCRIPTION	
2	FEATURES	7
3	ORDERING INFORMATION	
4	BLOCK DIAGRAM	8
5	DIE PAD FLOOR PLAN	9
6	PIN ARRANGEMENT	
6.1		
7	PIN DESCRIPTION	13
8	FUNCTIONAL BLOCK DESCRIPTIONS	15
8.1	MCU INTERFACE SELECTION	15
	8.1.1 MCU Parallel 6800-series Interface	
	8.1.2 MCU Parallel 8080-series Interface.	
	8.1.3 MCU Serial Interface (4-wire SPI)	
	8.1.4 MCU Serial Interface (3-wire SPI)	18
	8.1.5 MCU I ² C Interface	19
8.2		
8.3	OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR	22
8.4	RESET CIRCUIT	23
8.5	SEGMENT DRIVERS / COMMON DRIVERS	23
8.6	GRAPHIC DISPLAY DATA RAM (GDDRAM)	24
8.7		25
8.8	Power ON and OFF sequence	26
9	COMMAND TABLE	27
9 9.1 9.2	Fundamental Command Table	27
9.1	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE	27
9.1 9.2	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE	27
9.1 9.2 9.3	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE	25 32
9.1 9.2 9.3 9.4	Fundamental Command Table Scrolling Command Table Addressing Setting Command Table Hardware Configuration (Panel resolution & layout related) Command Table Timing & Driving Scheme Setting Command Table	
9.1 9.2 9.3 9.4 9.5	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE	
9.1 9.2 9.3 9.4 9.5 9.6	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS	
9.1 9.2 9.3 9.4 9.5 9.6	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH)	
9.1 9.2 9.3 9.4 9.5 9.6 10	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (100+~1Fh) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (100+~1Fh)	
9.1 9.2 9.3 9.4 9.5 9.6 10	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) SET MEMORY ADDRESSING MODE (20H)	
9.1 9.2 9.3 9.4 9.5 9.6 10	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) SET MEMORY ADDRESSING MODE (20H) 4 SET COLUMN ADDRESS (21H)	
9.1 9.2 9.3 9.4 9.5 9.6 10 10 10	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) SET MEMORY ADDRESSING MODE (20H) SET COLUMN ADDRESS (21H) SET PAGE ADDRESS (22H)	
9.1 9.2 9.3 9.4 9.5 9.6 10 10 10 10	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) SET MEMORY ADDRESSING MODE (20H) SET COLUMN ADDRESS (21H) SET PAGE ADDRESS (22H) SET DISPLAY START LINE (40H~7FH) SET CONTRAST CONTROL FOR BANKO (81H)	
9.11 9.22 9.33 9.44 9.55 9.60 100 100 100 100 100 100 100 1	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) SET MEMORY ADDRESSING MODE (20H) SET COLUMN ADDRESS (21H) SET PAGE ADDRESS (22H) SET DISPLAY START LINE (40H~7FH) SET CONTRAST CONTROL FOR BANKO (81H) SET SEGMENT RE-MAP (A0H/A1H)	
9.119 9.229.339.449.559.661010 100 100 100 100 100 100 100 100 100	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) SET MEMORY ADDRESSING MODE (20H) SET COLUMN ADDRESS (21H) SET PAGE ADDRESS (22H) SET DISPLAY START LINE (40H~7FH) SET CONTRAST CONTROL FOR BANKO (81H) SET SEGMENT RE-MAP (A0H/A1H) SET SEGMENT RE-MAP (A0H/A1H)	
9.110 9.22 9.33 9.44 9.55 9.66 10 10 10 10 10 10 10 10 10 10 10 10 10	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) SET MEMORY ADDRESSING MODE (20H) SET COLUMN ADDRESS (21H) SET PAGE ADDRESS (22H) SET DISPLAY START LINE (40H~7FH) SET CONTRAST CONTROL FOR BANKO (81H) SET SEGMENT RE-MAP (A0H/A1H) PENTIRE DISPLAY ON (A4H/A5H) SET NORMAL/INVERSE DISPLAY (A6H/A7H)	
9.110 9.22 9.33 9.44 9.55 9.66 10 10 10 10 10 10 10 10 10 10 10 10 10	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) SET MEMORY ADDRESSING MODE (20H) SET COLUMN ADDRESS (21H) SET PAGE ADDRESS (22H) SET DISPLAY START LINE (40H~7FH) SET CONTRAST CONTROL FOR BANKO (81H) SET SEGMENT RE-MAP (A0H/A1H) PENTIRE DISPLAY ON (A4H/A5H) SET NORMAL/INVERSE DISPLAY (A6H/A7H) SET MULTIPLEX RATIO (A8H)	
9.110 9.29 9.39 9.44 9.59 9.60 100 100 100 100 100 100 100 100 100 1	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS 1 SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) 2 SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) 3 SET MEMORY ADDRESSING MODE (20H) 4 SET COLUMN ADDRESS (21H) 5 SET PAGE ADDRESS (22H) 6 SET DISPLAY START LINE (40H~7FH) 7 SET CONTRAST CONTROL FOR BANKO (81H) 8 SET SEGMENT RE-MAP (A0H/A1H) 9 ENTIRE DISPLAY ON (A4H/A5H) 10 SET NORMAL/INVERSE DISPLAY (A6H/A7H) 11 SET MULTIPLEX RATIO (A8H) 12 SET DISPLAY ON/OFF (AEH/AFH)	
9.110 9.29 9.39 9.44 9.55 9.66 100 100 100 100 100 100 100 1	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) SET MEMORY ADDRESSING MODE (20H) SET COLUMN ADDRESS (21H) SET PAGE ADDRESS (22H) SET DISPLAY START LINE (40H~7FH) SET CONTRAST CONTROL FOR BANKO (81H) SET SEGMENT RE-MAP (A0H/A1H) PENTIRE DISPLAY ON (A4H/A5H) SET NORMAL/INVERSE DISPLAY (A6H/A7H) SET MULTIPLEX RATIO (A8H) SET PAGE START ADDRESS FOR PAGE ADDRESSING MODE (B0H~B7H)	
9.110 9.29 9.39 9.4 9.55 9.6 10 10 10 10 10 10 10 10 10 10 10 10 10	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) SET MEMORY ADDRESSING MODE (20H) SET COLUMN ADDRESS (21H) SET PAGE ADDRESS (22H) SET DISPLAY START LINE (40H~7FH) SET CONTRAST CONTROL FOR BANKO (81H) SET SEGMENT RE-MAP (A0H/A1H) PENTIRE DISPLAY ON (A4H/A5H) SET NORMAL/INVERSE DISPLAY (A6H/A7H) SET MULTIPLEX RATIO (A8H) SET PAGE START ADDRESS FOR PAGE ADDRESSING MODE (B0H~B7H) SET PAGE START ADDRESS FOR PAGE ADDRESSING MODE (B0H~B7H) SET PAGE START ADDRESS FOR PAGE ADDRESSING MODE (B0H~B7H)	
9.11 9.22 9.33 9.44 9.55 9.66 100 100 100 100 100 100 100 1	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS 1 SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) 2 SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) 3 SET MEMORY ADDRESSING MODE (20H) 4 SET COLUMN ADDRESS (21H) 5 SET PAGE ADDRESS (22H) 6 SET DISPLAY START LINE (40H~7FH) 7 SET CONTRAST CONTROL FOR BANKO (81H) 8 SET SEGMENT RE-MAP (A0H/A1H) 9 ENTIRE DISPLAY ON (A4H/A5H) 10 SET NORMAL/INVERSE DISPLAY (A6H/A7H) 11 SET MULTIPLEX RATIO (A8H) 12 SET DISPLAY ON/OFF (AEH/AFH) 13 SET PAGE START ADDRESS FOR PAGE ADDRESSING MODE (B0H~B7H) 14 SET COM OUTPUT SCAN DIRECTION (C0H/C8H) 15 SET DISPLAY OFFSET (D3H)	
9.110 9.29 9.39 9.4 9.59 9.6 100 100 100 100 100 100 100 10	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS 1 SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) 2 SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) 3 SET MEMORY ADDRESSING MODE (20H) 4 SET COLUMN ADDRESS (21H) 5 SET PAGE ADDRESS (22H) 6 SET DISPLAY START LINE (40H~7FH) 7 SET CONTRAST CONTROL FOR BANKO (81H) 8 SET SEGMENT RE-MAP (A0H/A1H) 9 ENTIRE DISPLAY ON (A4H/A5FH) 10 SET NORMAL/INVERSE DISPLAY (A6H/A7H) 11 SET MULTIPLEX RATIO (A8H) 12 SET DISPLAY ON/OFF (AEH/AFH) 13 SET PAGE START ADDRESS FOR PAGE ADDRESSING MODE (B0H~B7H) 14 SET COM OUTPUT SCAN DIRECTION (C0H/C8H) 15 SET DISPLAY OFFSET (D3H)	
9.110 9.29 9.39 9.4 9.5 9.6 100 100 100 100 100 100 100 10	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) SET MEMORY ADDRESSING MODE (20H) SET COLUMN ADDRESS (21H). SET PAGE ADDRESS (22H) SET DISPLAY START LINE (40H~7FH) SET CONTRAST CONTROL FOR BANKO (81H) SET SEGMENT RE-MAP (A0H/A1H). ENTIRE DISPLAY ON (A4H/A5H) SET NORMAL/INVERSE DISPLAY (A6H/A7H). SET DISPLAY ON/OFF (AEH/AFH) SET PAGE START ADDRESS FOR PAGE ADDRESSING MODE (B0H~B7H) SET COM OUTPUT SCAN DIRECTION (C0H/C8H) SET DISPLAY OFFSET (D3H). SET DISPLAY OFFSET (D3H).	
9.119 9.229.339.44 9.539.66 100 100 100 100 100 100 100 100 100 1	FUNDAMENTAL COMMAND TABLE SCROLLING COMMAND TABLE ADDRESSING SETTING COMMAND TABLE HARDWARE CONFIGURATION (PANEL RESOLUTION & LAYOUT RELATED) COMMAND TABLE TIMING & DRIVING SCHEME SETTING COMMAND TABLE DATA READ / WRITE COMMAND DESCRIPTIONS 1 SET LOWER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (00H~0FH) 2 SET HIGHER COLUMN START ADDRESS FOR PAGE ADDRESSING MODE (10H~1FH) 3 SET MEMORY ADDRESSING MODE (20H) 4 SET COLUMN ADDRESS (21H) 5 SET PAGE ADDRESS (22H) 6 SET DISPLAY START LINE (40H~7FH) 7 SET CONTRAST CONTROL FOR BANKO (81H) 8 SET SEGMENT RE-MAP (A0H/A1H) 9 ENTIRE DISPLAY ON (A4H/A5FH) 10 SET NORMAL/INVERSE DISPLAY (A6H/A7H) 11 SET MULTIPLEX RATIO (A8H) 12 SET DISPLAY ON/OFF (AEH/AFH) 13 SET PAGE START ADDRESS FOR PAGE ADDRESSING MODE (B0H~B7H) 14 SET COM OUTPUT SCAN DIRECTION (C0H/C8H) 15 SET DISPLAY OFFSET (D3H)	

10.2	0 SET GPIO (DCH)	45
10.2		
10.2		
10.2		45
10.2	4 CONTINUOUS VERTICAL AND HORIZONTAL SCROLL SETUP (29H/2AH)	46
10.2	5 DEACTIVATE SCROLL (2EH)	48
10.2		48
10.2	,	
10.2		
11	MAXIMUM RATINGS	51
	DC CHARACTERISTICS	52
12	DC CHARACTERISTICS	
12 13	AC CHARACTERISTICS	
		53
13	AC CHARACTERISTICS	53
13 14	AC CHARACTERISTICS	53 59 60
13 14 15	AC CHARACTERISTICS	53 59 60

FIGURES

Figure 4-1: SSD1309 Block Diagram	8
Figure 5-1: SSD1309Z Die Drawing	
Figure 5-2: SSD1309Z alignment mark dimension	
Figure 6-1 : SSD1309UR1 Pin Assignment	
Figure 8-1: Data read back procedure - insertion of dummy read	
Figure 8-2: Example of Write procedure in 8080 parallel interface mode	
Figure 8-3: Example of Read procedure in 8080 parallel interface mode	
Figure 8-4 : Display data read back procedure - insertion of dummy read	
Figure 8-5 : Write procedure in 4-wire Serial interface mode	
Figure 8-6: Write procedure in 3-wire Serial interface mode	
Figure 8-7: I ² C-bus data format	
Figure 8-8: Definition of the Start and Stop Condition	
Figure 8-9: Definition of the acknowledgement condition	
Figure 8-10: Definition of the data transfer condition	
Figure 8-11 : Oscillator Circuit and Display Time Generator	
Figure 8-12 : Segment Output Waveform in three phases	
Figure 8-13 : GDDRAM pages structure of SSD1309	
Figure 8-14: Enlargement of GDDRAM (No row re-mapping and column-remapping)	
Figure 8-15 : I _{REF} Current Setting by Resistor Value	
Figure 8-16: The Power ON sequence	
Figure 8-17 : The Power OFF sequence	
Figure 10-1: Address Pointer Movement of Page addressing mode	
Figure 10-2: Example of GDDRAM access pointer setting in Page Addressing Mode (No row and column-	
Figure 10-3: Address Pointer Movement of Horizontal addressing mode	37
Figure 10-4: Address Pointer Movement of Vertical addressing mode	37
Figure 10-5: Example of Column and Row Address Pointer Movement (LS pin pulled LOW)	38
Figure 10-6: Transition between different modes	39
Figure 10-7: Horizontal scroll example: Scroll RIGHT by 1 column	45
Figure 10-8: Horizontal scroll example: Scroll LEFT by 1 column	46
Figure 10-9: Horizontal scrolling setup example (LS pin pull LOW)	46
Figure 10-10: Continuous Vertical scrolling setup example (LS pin pull LOW)	47
Figure 10-11: Continuous Vertical and Horizontal scrolling setup example (LS pin pull LOW)	
Figure 10-12: Content Scrolling example (2Dh, Left Horizontal Scroll by one column)	
Figure 13-1: 6800-series MCU parallel interface characteristics	54
Figure 13-2: 8080-series parallel interface characteristics	
Figure 13-3 : Serial interface characteristics (4-wire SPI)	
Figure 13-4: Serial interface characteristics (3-wire SPI)	
Figure 13-5: I ² C interface Timing characteristics	
Figure 14-1: Application Example of SSD1309Z.	
Figure 15-1: SSD1309Z die tray information	
Figure 15-2 SSD1309UR1 Detail Dimension	

SSD1309 Rev 1.1 P 5/62 Jul 2011 **Solomon Systech**

TABLE

Table 3-1: Ordering Information	7
Table 5-1: SSD1309Z Bump Die Pad Coordinates	10
Table 6-1: SSD1309UR1 Pin Assignment Table	12
Table 7-1: SSD1309 Pin Description	13
Table 7-2: Bus Interface selection	13
Table 8-1: MCU interface assignment under different bus interface mode	15
Table 8-2: Control pins of 6800 interface	
Table 8-3: Control pins of 8080 interface	17
Table 8-4 : Control pins of 4-wire Serial interface	17
Table 8-5 : Control pins of 3-wire Serial interface	18
Table 9-1: Fundamental Command Table	27
Table 9-2: Scrolling Command Table	
Table 9-3: Addressing Setting Command Table	32
Table 9-4: Hardware Configuration (Panel resolution & layout related) Command Table	33
Table 9-5: Timing & Driving Scheme Setting Command Table	34
Table 9-6 : Read Command Table	
Table 9-7: Address increment table (Automatic)	35
Table 10-1: Example of Set Display Offset and Display Start Line without Remap	40
Table 10-2: Example of Set Display Offset and Display Start Line with Remap	41
Table 10-3: COM Pins Hardware Configuration	42
Table 10-4: Content Scrolling software flow example (Page addressing mode – command 20h, 02h)	49
Table 10-5: Content Scrolling setting example (Vertical addressing mode – command 20h, 01h)	50
Table 11-1: Maximum Ratings (Voltage Referenced to V _{SS})	51
Table 12-1 : DC Characteristics	52
Table 13-1 : AC Characteristics.	
Table 13-2: 6800-Series MCU Parallel Interface Timing Characteristics	
Table 13-3: 8080-Series MCU Parallel Interface Timing Characteristics	55
Table 13-4 : Serial Interface Timing Characteristics (4-wire SPI)	
Table 13-5 : Serial Interface Timing Characteristics (3-wire SPI)	
Table 13-6: 1 ² C Interface Timing Characteristics	58

 Solomon Systech
 Jul 2011
 P 6/62
 Rev 1.1
 SSD1309

1 GENERAL DESCRIPTION

SSD1309 is a single-chip CMOS OLED/PLED driver with controller for organic / polymer light emitting diode dot-matrix graphic display system. It consists of 128 segments and 64 commons. This IC is designed for Common Cathode type OLED panel.

The SSD1309 embeds with contrast control, display RAM and oscillator, which reduces the number of external components and power consumption. It has 256-step brightness control. Data/Commands are sent from general MCU through the hardware selectable 6800/8080 series compatible Parallel Interface, I²C interface or Serial Peripheral Interface. It is suitable for many compact portable applications, such as mobile phone sub-display, MP3 player and calculator, etc.

2 FEATURES

- Resolution: 128 x 64 dot matrix panel
- Power supply
 - o $V_{DD} = 1.65 \text{V} \sim 3.3 \text{V}$ for IC logic o $V_{CC} = 7.0 \text{V} \sim 16.0 \text{V}$ for Panel driving
- For matrix display
 - o OLED driving output voltage, 16V maximum
 - o Segment maximum source current: 320uA
 - o Common maximum sink current: 40mA
 - o 256 step contrast brightness current control
- Embedded 128 x 64 bit SRAM display buffer
- Pin selectable MCU Interfaces:
 - o 8-bit 6800/8080-series parallel interface
 - o 3 /4 wire Serial Peripheral Interface
 - o I²C Interface
- Screen saving infinite content scrolling function
- Programmable Frame Rate
- Programmable Multiplexing Ratio
- Row Re-mapping and Column Re-mapping
- On-Chip Oscillator
- Chip layout for COG, COF
- Wide range of operating temperature: -40°C to 85°C

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	SEG	СОМ	Package Form	Reference	Remark
SSD1309Z	128	64	COG	Page 9	o Min SEG pad pitch : 37.5um o Min COM pad pitch : 27um
					Min I/O pad pitch: 60 umDie thickness: 300 +/- 15 um
SSD1309UR1	128	64	COF	Page 11,61	o35mm film, 4 sprocket hole oHot bar type COF o8-bit 80 / 8-bit 68 / SPI / I2C interface oSEG lead pitch 0.120mm x 0.998 =0.11976mm oCOM lead pitch 0.120mm x 0.998 =0.11976mm

SSD1309 | Rev 1.1 | P 7/62 | Jul 2011 | Solomon Systech

4 BLOCK DIAGRAM

Common Drivers CS#-COM62 COM60 D/C#-R/W# (WR#)-E(RD#)-Display Controller Graphic Display Data RAM (GDDRAM) COM2 COM0 BS0 MCU Interface BS1 BS2 D7 **←** D6 **←** D5 **→** Segment Drivers D4**←** SEG0 D3 **←** SEG1 D2**◆** D1 **◆** D0**◆** SEG126 $egin{array}{c} V_{DD} & - \ V_{CC} & - \ V_{SS} & - \ V_{LSS} & - \ \end{array}$ SEG127 $V_{SS1} \\$ Voltage Control Current Control Common Drivers Display Timing Generator Oscillator COM1 COM3 Command Decoder COM61 COM63 CLS _ $V_{\rm COMH}$ I_{REF}

Figure 4-1: SSD1309 Block Diagram

 Solomon Systech
 Jul 2011
 P 8/62
 Rev 1.1
 SSD1309

5 DIE PAD FLOOR PLAN

Figure 5-1: SSD1309Z Die Drawing

Die size (after sawing)	5.8 ± 0.05 mm x 1.0 ± 0.05 mm
Die thickness	300 +/- 15um
Min I/O pad pitch	60um
Min SEG pad pitch	37.5um
Min COM pad pitch	27um
Bump height	Nominal 12um

Bump size		
Pad#	X[um]	Y[um]
1~4, 97~100, 127~130, 261~264	59	35
5~14, 87~96	15	108
101~126, 265~290	108	15
15~86	40	100
131~260	22	64

Alignment mark	Position	Size		
+ shape	(-2392.2, 18.8)	56.25um x 56.25um		
T shape	(2392.2, 18.8)	56.25um x 56.25um		
SSL Logo	(2055, 20)	-		

(For details dimension please see Figure 5-2)

Figure 5-2: SSD1309Z alignment mark dimension

 SSD1309
 Rev 1.1
 P 9/62
 Jul 2011
 Solomon Systech

Table 5-1: SSD1309Z Bump Die Pad Coordinates

Pin number	Pin name \/∕COM⊔	X 2704.52	Y 424 E	Pin number	Pin name	X 1920	300 A	Pin number	Pin name	X 1202.75	Y 417
2	VOOMH	-2794.52 -2668.32	-431.5 -431.5	81 82	VSS TR3	1830 1890	-399 -399	161 162	SEG29 SEG30	1293.75 1256.25	417 417
3	VOOMH	-2589.32	-431.5	83	TR2	1950	-399	163	SEG31	1218.75	417
4	VCOMH	-2510.32	-431.5	84	TR1	2010	-399	164	SEG32	1181.25	417
5	VLSS	-2439.76	-371.02	85	TR0	2070	-399	165	SEG33	1143.75	417
6	COM56	-2412.76	-371.02	86	VCC	2130	-399	166	SEG34	1106.25	417
7	COM57	-2385.76	-371.02	87	VCOMH	2196.76	-371.02	167	SEG35	1068.75	417
<u>8</u> 9	COM58 COM59	-2358.76 -2331.76	-371.02 -371.02	<u>88</u> 89	COM31 COM30	2223.76 2250.76	-371.02 -371.02	168	SEG36 SEG37	1031.25 993.75	417 417
10	COM60	-2304.76	-371.02	90	COV29	2277.76	-371.02	169 170	SEG38	956.25	417
11	COM61	-2277.76	-371.02	91	COV28	2304.76	-371.02	171	SEG39	918.75	417
12	COV62	-2250.76	-371.02	92	COV27	2331.76	-371.02	172	SEG40	881.25	417
13	COM63	-2223.76	-371.02	93	COV/26	2358.76	-371.02	173	SEG41	843.75	417
14	VCOMH	-2196.76	-371.02	94	COV25	2385.76	-371.02	174	SEG42	806.25	417
15	NC NC	-2130 -2070	-399	95	COM24 VLSS	2412.76 2439.76	-371.02	175	SEG43 SEG44	768.75 731.25	417 417
<u>16</u> 17	VLSS VLSS	-2010	-399 -399	96 97	VCOMH	2510.32	-371.02 -431.5	176 177	SEG45	693.75	417
18	VLSS	-1950	-399	98	VCOMH	2589.32	-431.5	178	SEG46	656.25	417
19	NC	-1890	-399	99	VCOMH	2668.32	-431.5	179	SEG47	618.75	417
20	VCC	-1830	-399	100	VCCMH	2794.52	-431.5	180	SEG48	581.25	417
21	VCC	-1770	-399	101	VCOMH	2770.02	-337.5	181	SEG49	543.75	417
22	VCC	-1710 1650	-399	102	COM23	2770.02	-310.5	182	SEG50	506.25	417
23 24	VCC	-1650 -1590	-399 -399	103 104	COM22 COM21	2770.02 2770.02	-283.5 -256.5	183 184	SEG51 SEG52	468.75 431.25	417 417
<u>24</u> 25	VOOMH	-1590 -1530	-399 -399	104	COM20	2770.02	-229.5	185	SEG53	393.75	417
26	VOOMH	-1470	-399	106	COM19	2770.02	-202.5	186	SEG54	356.25	417
27	VCOMH	-1410	-399	107	COM18	2770.02	-175.5	187	SEG55	318.75	417
28	NC	-1350	-399	108	COM17	2770.02	-148.5	188	SEG56	281.25	417
29	VSS	-1290	-399	109	COM16	2770.02	-121.5	189	SEG57	243.75	417
30 31	VSS VSS	-1230 -1170	-399 -399	110 111	<u>COM15</u> COM14	2770.02 2770.02	-94.5 -67.5	190 191	SEG58 SEG59	206.25 168.75	417 417
32	VDD VDD	-1170	-399	112	COM13	2770.02	-67.5 -40.5	192	SEG60	131.25	417
33	VDD	-1050	-399	113	COM12	2770.02	-13.5	193	SEG61	93.75	417
34	VDD	-990	-399	114	COM11	2770.02	13.5	194	SEG62	56.25	417
35	BS0	-930	-399	115	COM10	2770.02	40.5	195	SEG63	18.75	417
36	VSS	-870	-399	116	COM9	2770.02	67.5	196	SEG64	-18.75	417
37	BS1 VDD	-810 -750	-399 -399	117	<u>COM8</u> COM7	2770.02 2770.02	94.5 121.5	197	SEG65 SEG66	-56.25 -93.75	417 417
<u>38</u> 39	BS2	-730 -690	-399	118 119	COM6	2770.02	148.5	198 199	SEG67	-131.25	417
40	VSS	-630	-399	120	COME	2770.02	175.5	200	SEG68	-168.75	417
41	TR7	-570	-399	121	COM4	2770.02	202.5	201	SEG69	-206.25	417
42	VSS1	-510	-399	122	COMB	2770.02	229.5	202	SEG70	-243.75	417
43	QT	-450	-399	123	COM2	2770.02	256.5	203	SEG71	-281.25	417
<u>44</u> 45	VSS CS#	-390 -330	-399 -399	124 125	<u>COM1</u> COM0	2770.02 2770.02	283.5 310.5	204	SEG72 SEG73	-318.75 -356.25	417 417
46	RES#	-330 -270	-399	126	VSS	2770.02	337.5	205 206	SEG74	-393.75	417
47	D/C#	-210	-399	127	VOOMH	2794.52	431.5	207	SEG75	-431.25	417
48	VSS	-150	-399	128	VCC	2668.32	431.5	208	SEG76	-468.75	417
49	R/W#(WR#)	-90	-399	129	VCC	2589.32	431.5	209	SEG77	-506.25	417
50	E(RD#)	-30	-399	130	VCC	2510.32	431.5	210	SEG78	-543.75	417
51	D0	30	-399	131	VCC SECO	2418.75	417	211	SEG79	-581.25 -619.75	417 417
52 53	D1 D2	90 150	-399 -399	132 133	SEG0 SEG1	2381.25 2343.75	417 417	212 213	SEG80 SEG81	-618.75 -656.25	417
54	D3	210	-399	134	SEG2	2306.25	417	214	SEG82	-693.75	417
55	VSS	270	-399	135	SEG3	2268.75	417	215	SEG83	-731.25	417
56	D4	330	-399	136	SEG4	2231.25	417	216	SEG84	-768.75	417
57	D5	390	-399	137	SEG5	2193.75	417	217	SEG85	-806.25	417
<u>58</u> 59	D6 D7	450 510	-399	138 139	SEG6 SEG7	2156.25	417 417	218 219	SEG86	-843.75 -881.25	417 417
60	IREF	510 570	-399 -399	140	SEG/ SEG8	2118.75 2081.25	417	219	SEG87 SEG88	-881.25 -918.75	417
61	VSS	630	-399	141	SEG9	2043.75	417	221	SEG89	-956.25	417
62	als	690	-399	142	SEG10	2006.25	417	222	SEG90	-993.75	417
63	VDD	750	-399	143	SEG11	1968.75	417	223	SEG91	-1031.25	417
64	VDD	810	-399	144	SEG12	1931.25	417	224	SEG92	-1068.75	417
65	VCOMH	870	-399	145	SEG13	1893.75	417	225	SEG93	-1106.25	417
66 67	VOOMH	930 990	-399 -399	146 147	SEG14 SEG15	1856.25 1818.75	417 417	226 227	SEG94 SEG95	-1143.75 -1181.25	417 417
68	VOOMH	1050	-399 -399	148	SEG16	1781.25	417	228	SEG96	-1101.23 -1218.75	417
69	VCC	1110	-399	149	SEG17	1743.75	417	229	SEG97	-1256.25	417
70	VCC	1170	-399	150	SEG18	1706.25	417	230	SEG98	-1293.75	417
71	VCC	1230	-399	151	SEG19	1668.75	417	231	SEG99	-1331.25	417
72	VCC	1290	-399	152	SEG20	1631.25	417	232	SEG100	-1368.75	417
73	VCC	1350	-399 -300	153	SEG21 SEG22	1593.75	417 417	233	SEG101	-1406.25 -1443.75	417 417
74 75	NC VLSS	1410 1470	-399 -399	154 155	SEG23	1556.25 1518.75	417	234 235	SEG102 SEG103	-1443.75 -1481.25	417
76	VLSS	1530	-399	156	SEG24	1481.25	417	236	SEG104	-1518.75	417
77	VLSS	1590	-399	157	SEG25	1443.75	417	237	SEG105	-1556.25	417
78	TR6	1650	-399	158	SEG26	1406.25	417	238	SEG106	-1593.75	417
79	TR5	1710	-399	159	SEG27	1368.75	417	239	SEG107	-1631.25	417
80	TR4	1770	-399	160	SEG28	1331.25	417	240	SEG108	-1668.75	417

Pin number	Pin name	Х	Υ
241	SEG109	-1706.25	417
242	SEG110	-1743.75	417
243	SEG111	-1781.25	417
244	SEG112	-1818.75	417
245	SEG113	-1856.25	417
246	SEG114	-1893.75	417
247	SEG115	-1931.25	417
248	SEG116	-1968.75	417
249	SEG117	-2006.25	417
250	SEG118	-2043.75	417
251	SEG119	-2081.25	417
252	SEG120	-2118.75	417
253	SEG121	-2156.25	417
254	SEG122	-2193.75	417
255	SEG123	-2231.25	417
256	SEG124	-2268.75	417
257	SEG125	-2306.25	417
258	SEG126	-2343.75	417
259	SEG127	-2381.25	417
260	VCC	-2418.75	417
261	VCC	-2510.32	431.5
262	VCC	-2589.32	431.5
263	VCC	-2668.32	431.5
264	VCOMH	-2794.52	431.5
265	VSS	-2770.02	337.5
266	COM32	-2770.02	310.5
267	COM33	-2770.02	283.5
268	COM34	-2770.02	256.5
269	COMB5	-2770.02	229.5
270	COM36	-2770.02	202.5
271	COM37	-2770.02	175.5
272	COM38	-2770.02	148.5
273	COM39	-2770.02	121.5
274	COM40	-2770.02	94.5
275	COM41 COM42	-2770.02	67.5
276 277	COM43	-2770.02	40.5 13.5
278	COM44	-2770.02 -2770.02	-13.5
278 279	COM45	-2770.02 -2770.02	-13.5 -40.5
280	COM46	-2770.02 -2770.02	-40.5 -67.5
281	COM47	-2770.02 -2770.02	-94.5
282	COM48	-2770.02	-94.5 -121.5
283	COM49	-2770.02	-148.5
284	COM50	-2770.02	-175.5
285	COM51	-2770.02	-202.5
286	COM52	-2770.02	-229.5
287	COV53	-2770.02	-256.5
288	COV54	-2770.02	-283.5
289	COM55	-2770.02	-310.5
290	VCOMH	-2770.02	-337.5
			551.15

 Solomon Systech
 Jul 2011
 P 10/62
 Rev 1.1
 SSD1309

6 PIN ARRANGEMENT

6.1 SSD1309UR1 pin assignment

Figure 6-1: SSD1309UR1 Pin Assignment

SSD1309 Rev 1.1 P 11/62 Jul 2011 **Solomon Systech**

Table 6-1: SSD1309UR1 Pin Assignment Table

	1 able (,	,,,,	10070			ssigiiii
Pin #	Name		in#	Name	l [Pin#	Name
1	NC		81	SEG123		161	SEG43
3	VCC		82 83	SEG122 SEG121		162 163	SEG42 SEG41
4	IREF		83 84	SEG121		164	SEG41
5	D7		85	SEG119	H	165	SEG39
6	D6		86	SEG118	H	166	SEG38
7	D5		87	SEG117	l	167	SEG37
8	D4		88	SEG116	li	168	SEG36
9	D3		89	SEG115	l i	169	SEG35
10	D2		90	SEG114		170	SEG34
11	D1		91	SEG113		171	SEG33
12	D0		92	SEG112		172	SEG32
13	E(RD#)		93 94	SEG111		173 174	SEG31
15	R/W# D/C#		94 95	SEG110 SEG109	ŀ	175	SEG30 SEG29
16	RES#		96	SEG108		176	SEG28
17	CS#		97	SEG107	l	177	SEG27
18	VSS1		98	SEG106	1 1	178	SEG26
19	BS2		99	SEG105	l i	179	SEG25
20	BS1	_ 1	00	SEG104	Ιĺ	180	SEG24
21	VDD		01	SEG103		181	SEG23
22	NC		02	SEG102		182	SEG22
23	NC		03	SEG101		183	SEG21
24 25	NC NC		04	SEG100 SEG99		184 185	SEG20 SEG19
26	NC		06	SEG99	H	186	SEG18
27	NC		07	SEG97		187	SEG17
28	NC		08	SEG96		188	SEG16
29	NC	1	09	SEG95	l	189	SEG15
30	VSS	1	10	SEG94		190	SEG14
31	NC		11	SEG93		191	SEG13
32	NC		12	SEG92		192	SEG12
33	NC	_	13	SEG91		193	SEG11
34 35	COM63 COM61	_	14	SEG90 SEG89		194 195	SEG10 SEG9
36	COM59		16	SEG88	H	196	SEG8
37	COM57	_	17	SEG87	l	197	SEG7
38	COM55	_	18	SEG86	l	198	SEG6
39	COM53	1	19	SEG85	1 1	199	SEG5
40	COM51	1	20	SEG84		200	SEG4
41	COM49		21	SEG83		201	SEG3
42	COM47		22	SEG82		202	SEG2
43	COM45	_	23	SEG81		203	SEG1
44	COM43 COM41		24	SEG80 SEG79		204	SEG0 NC
46	COM39		26	SEG78	H	206	NC
47	COM37		27	SEG77	l	207	NC
48	COM35	1	28	SEG76	1 1	208	NC
49	COM33	1	29	SEG75	li	209	NC
50	COM31	_ 1	30	SEG74		210	NC
51	COM29		31	SEG73		211	NC
52	COM27		32	SEG72		212	NC
53 54	COM25 COM23		33	SEG71 SEG70		213 214	NC NC
55	COM23	_	35	SEG70		214	NC NC
56	COM19		36	SEG68		216	COM0
57	COM17		37	SEG67		217	COM2
58	COM15		38	SEG66	l l	218	COM4
59	COM13		39	SEG65		219	COM6
60	COM11		40	SEG64	l	220	COM8
61	COM9	_	41	SEG63		221	COM10
62	COM7		42	SEG62		222	COM12
63 64	COM5 COM3	_	43	SEG61 SEG60	l	223	COM14 COM16
65	COM1		45	SEG59	H	225	COM18
66	NC		46	SEG58		226	COM20
67	NC	_	47	SEG57		227	COM22
68	NC		48	SEG56		228	COM24
69	NC		49	SEG55	[229	COM26
70	NC		50	SEG54		230	COM28
71	NC		51	SEG53		231	COM30
72 73	NC NC	_	52	SEG52 SEG51		232	COM32 COM34
74	NC NC	_	54	SEG51		233	COM34
75	NC		55	SEG49		235	COM38
76	NC	_	56	SEG48		236	COM40
77	SEG127		57	SEG47		237	COM42
78	SEG126	_ 1	58	SEG46		238	COM44
79	SEG125	_	59	SEG45	[239	COM46
80	SEG124		60	SEG44	įĮ	240	COM48

Pin#	Name
241	COM50
242	COM52
243	COM54
244	COM56
245	COM58
246	COM60
247	COM62
248	NC
249	NC

 Solomon Systech
 Jul 2011
 P 12/62
 Rev 1.1
 SSD1309

7 PIN DESCRIPTION

Key:

I = Input	NC = Not Connected
O =Output	Pull LOW= connect to Ground
I/O = Bi-directional (input/output)	Pull HIGH= connect to V _{DD}
P = Power pin	

Table 7-1: SSD1309 Pin Description

Pin Name	Pin Type	Description								
$V_{ m DD}$	Р	Power supply pin for core logic operation.								
V_{CC}	Р	Power supply for panel driving voltage. This is also the most positive power voltage upply pin.								
V_{SS}	P	Ground pin. It must be connected to external ground.								
$ m V_{LSS}$	P	Analog system ground pin. It must be connected to external ground.								
$V_{\rm SS1}$	-	Reserved Pin. It must be connected to external ground.								
$V_{\rm COMH}$	P	COM signal deselected voltage level. A capacitor should be connected between this pin and $V_{\rm SS}$.								
BS[2:0]	I	MCU bus interface selection pins. Select appropriate logic setting as described in the following table. BS2, BS1 and BS0 are pin select.								
		Table 7-2 : Bus Interface selection								
		$ \begin{array}{ c c c c c }\hline BS[2:0] & Interface \\\hline 000 & 4 & Ine & SPI \\\hline 001 & 3 & Ine & SPI \\\hline 010 & I^2C \\\hline 110 & 8-bit & 8080 & parallel \\\hline 100 & 8-bit & 6800 & parallel \\\hline $								
I_{REF}	I	This pin is the segment output current reference pin. $I_{REF} \ is \ supplied \ externally.$ A resistor should be connected between this pin and V_{SS} to maintain the current around 10uA. Please refer to Figure 8-15 for the details of resistor value								
CL	I	This is external clock input pin. When internal clock is enabled (i.e. HIGH in CLS pin), this pin is not used and should be connected to V_{SS} . When internal clock is disabled (i.e. LOW in CLS pin), this pin is the external clock source input pin.								
CLS	I	This is internal clock enable pin. When it is pulled HIGH (i.e. connect to V_{DD}), internal clock is enabled. When it is pulled LOW, the internal clock is disabled; an external clock source must be connected to the CL pin for normal operation.								

SSD1309 Rev 1.1 P 13/62 Jul 2011 **Solomon Systech**

Pin Name	Pin Type	Description
CS#	I	This pin is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW (active LOW).
RES#	I	This pin is reset signal input. When the pin is pulled LOW, initialization of the chip is executed. Keep this pin pull HIGH during normal operation.
D/C#	I	This pin is Data/Command control pin connecting to the MCU.
		When the pin is pulled HIGH, the data at D[7:0] will be interpreted as data. When the pin is pulled LOW, the data at D[7:0] will be transferred to a command register. In I ² C mode, this pin acts as SA0 for slave address selection. When 3-wire serial interface is selected, this pin must be connected to V _{SS} . For detail relationship to MCU interface signals, refer to Timing Characteristics Diagrams Figure 13-1 to Figure 13-5
D/W/// (W/D//)	I	This pin is read / write control input pin connecting to the MCU interface.
R/W# (WR#)	1	When 6800 interface mode is selected, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial or I^2C interface is selected, this pin must be connected to V_{SS} .
E (RD#)	I	This pin is MCU interface input.
		When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When 8080 interface mode is selected, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial or I^2C interface is selected, this pin must be connected to V_{SS} .
D[7:0]	I/O	These pins are bi-directional data bus connecting to the MCU data bus.
		Unused pins are recommended to tie LOW. When serial interface mode is selected, D0 will be the serial clock input: SCLK; D1 will be the serial data input: SDIN and D2 should be kept NC. When I ² C mode is selected, D2, D1 should be tied together and serve as SDA _{out} , SDA _{in} in application and D0 is the serial clock input, SCL.
SEG0 ~ SEG127	0	These pins provide the OLED segment driving signals. These pins are V_{SS} state when display is OFF.
COM0 ~ COM63	0	These pins provide the Common switch signals to the OLED panel. These pins are in high impedance state when display is OFF.
TR[7:0]	-	Reserved pin and is recommended to keep it float.
NC	-	This is dummy pin. Do not group or short NC pins together.

 Solomon Systech
 Jul 2011
 P 14/62
 Rev 1.1
 SSD1309

8 FUNCTIONAL BLOCK DESCRIPTIONS

8.1 MCU Interface selection

SSD1309 MCU interface consist of 8 data pins and 5 control pins. The pin assignment at different interface mode is summarized in Table 8-1. Different MCU mode can be set by hardware selection on BS[2:0] pins (please refer to Table 7-2 for BS[2:0] setting).

Table 8-1: MCU interface assignment under different bus interface mode

Pin Name	Data/C	ata/Command Interface Control Signal											
Bus													
Interface	D7	D6	D5	D4	D3	D2	D1	D 0	E	R/W#	CS#	D/C#	RES#
8-bit 8080				D	[7:0]					WR#	CS#	D/C#	RES#
8-bit 6800				D	[7:0]		Е	R/W#	CS#	D/C#	RES#		
3-wire SPI	Tie LO	W				NC	SDIN	SCLK	Tie L	OW	CS#	Tie LOW	RES#
4-wire SPI	Tie LO	W				NC	SDIN	SCLK	Tie L	OW	CS#	D/C#	RES#
I^2C	Tie LO	W				SDA _{OUT}	SDA_{IN}	SCL	Tie L	OW		SA0	RES#

8.1.1 MCU Parallel 6800-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

Table 8-2: Control pins of 6800 interface

Function	E	R/W#	CS#	D/C#
Write command	↓	L	L	L
Read status	↓	Н	L	L
Write data	\downarrow	L	L	Н
Read data	↓	Н	L	Н

Note

(1) ↓ stands for falling edge of signal

H stands for HIGH in signal

L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-1.

SSD1309 | Rev 1.1 | P 15/62 | Jul 2011 | **Solomon Systech**

Figure 8-1: Data read back procedure - insertion of dummy read

8.1.2 MCU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Figure 8-2: Example of Write procedure in 8080 parallel interface mode

Figure 8-3: Example of Read procedure in 8080 parallel interface mode

Solomon Systech Jul 2011 | P 16/62 | Rev 1.1 | SSD1309

Table 8-3: Control pins of 8080 interface

Function	RD#	WR#	CS#	D/C#
Write command	Н	↑	L	L
Read status	1	Н	L	L
Write data	Н	↑	L	Н
Read data	1	Н	L	Н

Note

- (1) ↑ stands for rising edge of signal
- (2) H stands for HIGH in signal
- (3) L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-4.

Figure 8-4: Display data read back procedure - insertion of dummy read

8.1.3 MCU Serial Interface (4-wire SPI)

The 4-wire serial interface consists of serial clock: SCLK, serial data: SDIN, D/C#, CS#. In 4-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and R/W# (WR#)# can be connected to an external ground.

Table 8-4: Control pins of 4-wire Serial interface

Function	E	R/W#	CS#	D/C#	D 0
Write command	Tie LOW	Tie LOW	L	L	↑
Write data	Tie LOW	Tie LOW	L	Н	↑

Note

- (1) H stands for HIGH in signal
- (2) L stands for LOW in signal
- (3) ↑ stands for rising edge of signal

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock.

Under serial mode, only write operations are allowed.

SSD1309 | Rev 1.1 | P 17/62 | Jul 2011 | **Solomon Systech**

Figure 8-5: Write procedure in 4-wire Serial interface mode

8.1.4 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#.

In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, R/W# (WR#)#, E and D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Under serial mode, only write operations are allowed.

Table 8-5: Control pins of 3-wire Serial interface

Function	E(RD#)	R/W#(WR#)	CS#	D/C#	D0	Not
Write command	Tie LOW	Tie LOW	L	Tie LOW	↑	(1) L
Write data	Tie LOW	Tie LOW	L	Tie LOW	↑	71

stands for LOW in signal

stands for rising edge of signal

Figure 8-6: Write procedure in 3-wire Serial interface mode

SSD1309 Solomon Systech Jul 2011 | P 18/62 | Rev 1.1

8.1.5 MCU I²C Interface

The I^2C communication interface consists of slave address bit SA0, I^2C -bus data signal SDA (SDA_{OUT}/D₂ for output and SDA_{IN}/D₁ for input) and I^2C -bus clock signal SCL (D₀). Both the data and clock signals must be connected to pull-up resistors. RES# is used for the initialization of device.

a) Slave address bit (SA0)

SSD1309 has to recognize the slave address before transmitting or receiving any information by the I²C-bus. The device will respond to the slave address following by the slave address bit ("SA0" bit) and the read/write select bit ("R/W#" bit) with the following byte format,

"SA0" bit provides an extension bit for the slave address. Either "0111100" or "0111101", can be selected as the slave address of SSD1309. D/C# pin acts as SA0 for slave address selection. "R/W#" bit is used to determine the operation mode of the I²C-bus interface. R/W#=1, it is in read mode. R/W#=0, it is in write mode.

b) I²C-bus data signal (SDA)

SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA.

It should be noticed that the ITO track resistance and the pulled-up resistance at "SDA" pin becomes a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid logic 0 level in "SDA".

"SDA $_{IN}$ " and "SDA $_{OUT}$ " are tied together and serve as SDA. The "SDA $_{IN}$ " pin must be connected to act as SDA. The "SDA $_{OUT}$ " pin may be disconnected. When "SDA $_{OUT}$ " pin is disconnected, the acknowledgement signal will be ignored in the I 2 C-bus.

c) I²C-bus clock signal (SCL)

The transmission of information in the I²C-bus is following a clock signal, SCL. Each transmission of data bit is taken place during a single clock period of SCL.

SSD1309 | Rev 1.1 | P 19/62 | Jul 2011 | Solomon Systech

8.1.5.1 I^2 C-bus Write data

The I²C-bus interface gives access to write data and command into the device. Please refer to Figure 8-7 for the write mode of I²C-bus in chronological order.

Note: Co - Continuation bit D/C# - Data / Command Selection bit ACK - Acknowledgement SA0 - Slave address bit R/W# - Read / Write Selection bit S – Start Condition / P – Stop Condition Write mode 1111 Control byte Control byte Data byte Slave Address 1 byte $n \geq 0$ bytes $m \ge 0$ words MSB LSB 0,1,1110 SSD1309 Slave Address

Figure 8-7: I²C-bus data format

8.1.5.2 Write mode for I^2C

1) The master device initiates the data communication by a start condition. The definition of the start condition is shown in Figure 8-8. The start condition is established by pulling the SDA from HIGH to LOW while the SCL stays HIGH.

Control byte

- 2) The slave address is following the start condition for recognition use. For the SSD1309, the slave address is either "b0111100" or "b0111101" by changing the SA0 to LOW or HIGH (D/C pin acts as SA0).
- 3) The write mode is established by setting the R/W# bit to logic "0".
- 4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the R/W# bit. Please refer to the Figure 8-9 for the graphical representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH period of the acknowledgement related clock pulse.
- 5) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of Co and D/C# bits following by six "0" 's.
 - a. If the Co bit is set as logic "0", the transmission of the following information will contain data bytes only.
 - b. The D/C# bit determines the next data byte is acted as a command or a data. If the D/C# bit is set to logic "0", it defines the following data byte as a command. If the D/C# bit is set to logic "1", it defines the following data byte as a data which will be stored at the GDDRAM. The GDDRAM column address pointer will be increased by one automatically after each data write.
- 6) Acknowledge bit will be generated after receiving each control byte or data byte.
- 7) The write mode will be finished when a stop condition is applied. The stop condition is also defined in Figure 8-8. The stop condition is established by pulling the "SDA in" from LOW to HIGH while the "SCL" stays HIGH.

Solomon Systech Jul 2011 | P 20/62 | Rev 1.1 | SSD1309

Figure 8-8: Definition of the Start and Stop Condition

Figure 8-9: Definition of the acknowledgement condition

Please be noted that the transmission of the data bit has some limitations.

- 1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the "HIGH" period of the clock pulse. Please refer to the Figure 8-10 for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is LOW.
- 2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.

SDA
SCL
Data line is Change stable of data

Figure 8-10: Definition of the data transfer condition

SSD1309 | Rev 1.1 | P 21/62 | Jul 2011 | **Solomon Systech**

8.2 Command Decoder

This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C# pin.

If D/C# pin is HIGH, D[7:0] is interpreted as display data written to Graphic Display Data RAM (GDDRAM). If it is LOW, the input at D[7:0] is interpreted as a command. Then data input will be decoded and written to the corresponding command register.

8.3 Oscillator Circuit and Display Time Generator

Figure 8-11: Oscillator Circuit and Display Time Generator

This module is an on-chip LOW power RC oscillator circuitry. The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is pulled HIGH, internal oscillator is chosen and CL should be connected to $V_{\rm SS}$. Pulling CLS pin LOW disables internal oscillator and external clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its output frequency Fosc can be changed by command D5h A[7:4].

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 16 by command D5h

$$DCLK = F_{OSC} / D$$

The frame frequency of display is determined by the following formula.

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. \text{ of Mux}}$$

where

- D stands for clock divide ratio. It is set by command D5h A[3:0]. The divide ratio has the range from 1 to 16.
- K is the number of display clocks per row. The value is derived by

 $K = Phase 1 period + Phase 2 period + K_o$

= 2 + 2 + 65 = 69 at power on reset (that is K_0 is a constant that equals to 65)

(Please refer to Section 8.5 "Segment Drivers / Common Drivers" for the details of the "Phase")

- Number of multiplex ratio is set by command A8h. The power on reset value is 63 (i.e. 64MUX).
- F_{OSC} is the oscillator frequency. It can be changed by command D5h A[7:4]. The higher the register setting results in higher frequency.

Solomon Systech Jul 2011 | P 22/62 | Rev 1.1 | SSD1309

8.4 Reset Circuit

When RES# input is LOW, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128 x 64 Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 7Fh
- 9. Normal display mode (Equivalent to A4h command)

8.5 Segment Drivers / Common Drivers

Segment drivers deliver 128 current sources to drive the OLED panel. The driving current can be adjusted from 0 to 320uA with 256 steps. Common drivers generate voltage-scanning pulses.

The segment driving waveform is divided into three phases:

- 1. In phase 1, the OLED pixel charges of previous image are discharged in order to prepare for next image content display.
- 2. In phase 2, the OLED pixel is driven to the targeted voltage. The pixel is driven to attain the corresponding voltage level from V_{SS} . The period of phase 2 can be programmed in length from 1 to 15 DCLKs. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.
- 3. In phase 3, the OLED driver switches to use current source to drive the OLED pixels and this is the current drive stage.

V_{SS}

3

Figure 8-12: Segment Output Waveform in three phases

After finishing phase 3, the driver IC will go back to phase 1 to display the next row image data. This three-step cycle is run continuously to refresh image display on OLED panel.

In phase 3, if the length of current drive pulse width is set to 65, after finishing 65 DCLKs in current drive phase, the driver IC will go back to phase 1 for next row display.

SSD1309 | Rev 1.1 | P 23/62 | Jul 2011 | **Solomon Systech**

8.6 Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 128 x 64 bits and the RAM is divided into eight pages, from PAGE0 to PAGE7, which are used for monochrome 128x64 dot matrix display, as shown in Figure 8-13.

Figure 8-13 : GDDRAM pages structure of SSD1309

		Row re-mapping
PAGE0 (COM0-COM7)	Page 0	PAGE0 (COM 63-COM56)
PAGE1 (COM8-COM15)	Page 1	PAGE1 (COM 55-COM48)
PAGE2 (COM16-COM23)	Page 2	PAGE2 (COM47-COM40)
PAGE3 (COM24-COM31)	Page 3	PAGE3 (COM39-COM32)
PAGE4 (COM32-COM39)	Page 4	PAGE4 (COM31-COM24)
PAGE5 (COM40-COM47)	Page 5	PAGE5 (COM23-COM16)
PAGE6 (COM48–COM55)	Page 6	PAGE6 (COM15-COM8)
PAGE7 (COM56-COM63)	Page 7	PAGE7 (COM 7-COM0)
	SEG0SEG127	
Column re-mapping	SEG127SEG0	

When one data byte is written into GDDRAM, all the rows image data of the same page of the current column are filled (i.e. the whole column (8 bits) pointed by the column address pointer is filled.). Data bit D0 is written into the top row, while data bit D7 is written into bottom row as shown in Figure 8-14.

Figure 8-14: Enlargement of GDDRAM (No row re-mapping and column-remapping)

For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software as shown in Figure 8-13.

For vertical shifting of the display, an internal register storing the display start line can be set to control the portion of the RAM data to be mapped to the display (command D3h).

 Solomon Systech
 Jul 2011 | P 24/62 | Rev 1.1 |
 SSD1309

8.7 SEG/COM Driving block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V_{CC} is the most positive voltage supply.
- V_{COMH} is the Common deselected level. It is internally regulated.
- V_{LSS} is the ground path of the analog and panel current.
- I_{REF} is a reference current source for segment current drivers I_{SEG}. The relationship between reference current and segment current of a color is:

$$I_{SEG} = (Contrast+1) / 8 \times I_{REF}$$

in which the contrast (0~255) is set by Set Contrast command 81h

The magnitude of I_{REF} is controlled by the value of resistor, which is connected between I_{REF} pin and V_{SS} as shown in Figure 8-15. It is recommended to set I_{REF} to $10 \pm 2uA$ so as to achieve $I_{SEG} = 320uA$ at maximum contrast 255.

Figure 8-15: I_{REF} Current Setting by Resistor Value

Since the voltage at I_{REF} pin is $V_{CC} - 3V$, the value of resistor R1 can be found as below:

For
$$I_{REF} = 10uA$$
, $V_{CC} = 12V$:
 $R1 = (Voltage at I_{REF} - V_{SS}) / I_{REF}$
 $\approx (12 - 3) / 10uA$

 $=900k\Omega$

SSD1309 | Rev 1.1 | P 25/62 | Jul 2011 | **Solomon Systech**

Power ON and OFF sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1309

Power ON sequence:

- 1. Power ON V_{DD}
- 2. After V_{DD} become stable, set RES# pin LOW (logic low) for at least 3us $(t_1)^{(3)}$ and then HIGH (logic
- 3. After set RES# pin LOW (logic low), wait for at least 3us (t_2). Then Power ON $V_{CC.}^{(1)}$
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 100ms $(t_{AF}).$

Figure 8-16: The Power ON sequence

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF $V_{CC.}^{(1),(2)}$
- 3. Power OFF V_{DD} after t_{OFF} . (where Minimum t_{OFF} =0ms, typical t_{OFF} =100ms)

Figure 8-17: The Power OFF sequence

Note:

(1) V_{CC} should be kept float (i.e. disable) when it is OFF.

Jul 2011 | P 26/62 | Rev 1.1 SSD1309 Solomon Systech

⁽²⁾ Power Pins (V_{DD} , V_{CC}) can never be pulled to ground under any circumstance. (3) The register values are reset after t_1 .

 $^{^{(4)}}$ V_{DD} should not be Power OFF before V_{CC} Power OFF.

9 Command Table

(D/C#=0, R/W#(WR#)=0, E(RD#=1) unless specific setting is stated)

9.1 Fundamental Command Table

Table 9-1: Fundamental Command Table

1. Fu	ndament	al Co	mma	and T	able						
D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D 0	Command	Description
0	81	1	0	0	0	0	0	0	1	Set Contrast	Double byte command to select 1 out of 256
0	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	\mathbf{A}_{1}	A_0	Control	contrast steps. Contrast increases as the value
											increases.
											(RESET = 7Fh)
0	A4/A5	1	0	1	0	0	1	0	X_0	Entire Display ON	A4h, X ₀ =0b: Resume to RAM content display
											(RESET) Output follows RAM content
											Output follows RAM content
											A5h, X ₀ =1b: Entire display ON
											Output ignores RAM content
0	A6/A7	1	0	1	0	0	1	1	X_0		A6h, X[0]=0b: Normal display (RESET)
										Normal/Inverse	0 in RAM: OFF in display panel 1 in RAM: ON in display panel
										Display	i ili KAWi. ON ili dispiay panei
											A7h, X[0]=1b: Inverse display
											0 in RAM: ON in display panel
											1 in RAM: OFF in display panel
0	AE/AF	1	0	1	0	1	1	1	v	Set Display	AEh, X[0]=0b:Display OFF (sleep mode) (RESET)
0	AE/AF	1	U	1	U	1	1	1	Λ_0	ON/OFF	AEII, A[0]-00.Display OFF (sleep filode) (RESE1)
										ON/OFF	AFh X[0]=1b:Display ON in normal mode
	F.2								_	NOR	
0	E3	1	1	1	0	0	0	1	1	NOP	Command for no operation
0	FD	1	1	1	1	1	1	0	1	Set Command	A[2]: MCU protection status.
	A[2]	0	0	0	1	0	A_2	1		Lock	A[2]. Weo protection status.
	7 1 [2]	U	0		1		112	1		Lock	A[2] = 0b, Unlock OLED driver IC MCU interface
											from entering command (RESET)
											A[2] = 1b, Lock OLED driver IC MCU interface
											from entering command
											Note
											(1) The locked OLED driver IC MCU interface
											prohibits all commands and memory access except
											the FDh command

SSD1309 Rev 1.1 P 27/62 Jul 2011 **Solomon Systech**

9.2 Scrolling Command Table

Table 9-2: Scrolling Command Table

2. Scr	olling (Comm	nand '	Table							
	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	26/27	0	0	1	0	0	1	1	X_0	Continuous	26h, X[0]=0, Right Horizontal Scroll
0			0	0	0		0	0		Horizontal	27h, X[0]=1, Left Horizontal Scroll
	A[7:0]	0	*	*	*	0					Zin, in[o] i, ben iionzonan seron
0	B[2:0]					*	\mathbf{B}_2	\mathbf{B}_1	\mathbf{B}_0	Scroll Setup	
0	C[2:0]	*	*	*	*	*	C_2	C_1	C_0		A[7:0]: Dummy byte (Set as 00h)
0	D[2:0]	*	*	*	*	*	D_2	\mathbf{D}_1	D_0		Horizontal scroll by 1 column
0	E[7:0]	0	0	0	0	0	0	0	0		Horizoniai scroii by 1 column
0	F[7:0]	F_7	F_6	F_5	F_4	F_3	F_2	F_1	F_0		
0	G[7:0]	G_7	G_6	G_5	G_4	G_3	G_2	G_1	G_0		DIO 03 D 0
	-[]	- /	- 0	- 3		- 3	- 2	- 1	- 0		B[2:0] : Define start page address
											000b – PAGE0 011b – PAGE3 110b – PAGE6
											001b – PAGE1 100b – PAGE4 111b – PAGE7
											010b – PAGE2 101b – PAGE5
											C[2:0] : Set time interval between each scroll step
											in terms of frame frequency
											000b – 5 frames 100b – 2 frames
											001b – 64 frames 101b – 3 frames
											010b – 128 frames
											011b – 256 frames 111b – 1 frames
											D[2:0] : Define end page address
											000b – PAGE0 011b – PAGE3 110b – PAGE6
											001b – PAGE1 100b – PAGE4 111b – PAGE7
											010b – PAGE2 101b – PAGE5
											E[7:0] : Dummy byte (Set as 00h)
											F[7:0]: Define the start column (RESET = 00h)
											G[7:0]: Define the end column address (RESET =
											7Fh)
											Notes:
											(1) The value of D[2:0] must be larger than or equal
											to B[2:0]
											(2) The value of G[7:0] must be larger than or equal
											to F[7:0]
	<u> </u>			<u> </u>			<u> </u>		<u> </u>		

 Solomon Systech
 Jul 2011
 P 28/62
 Rev 1.1
 SSD1309

2. Sci	rolling (Comm	nand [Fable							
	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	29/2A	0	0	1	0	1	0	X_1	X_0	Continuous	29h, X ₁ X ₀ =01b : Vertical and Right Horizontal
0	A[0]	*	*	*	*	*	*	*		Vertical and	Scroll
0	B[2:0]	*	*	*	*	*	B_2	\mathbf{B}_1		Horizontal	2Ah, X ₁ X ₀ =10b : Vertical and Left Horizontal
0	C[2:0]	*	*	*	*	*	C_2	C_1	C_0	Scroll Setup	Scroll
0	D[2:0]	*	*	*	*	*	D_2	\mathbf{D}_1	D_0		
0	E[5:0]	*	*	E_5	E_4	E_3	E_2	E_1	E_0		A[0] : Set number of column scroll offset
0	F[7:0]	F_7	F_6	F_5	F_4	F_3	F_2	\mathbf{F}_{1}	F_0		0b No horizontal scroll
0	G[7:0]	G_7	G_6	G_5	G_4	G_3	G_2	G_1	G_0		1b Horizontal scroll by 1 column
											D[2:0]: Define stort nego address
											B[2:0] : Define start page address $000b - PAGE0 011b - PAGE3 110b - PAGE6$
											000b - PAGE0011b - PAGE3 110b - PAGE6 001b - PAGE1 100b - PAGE4 111b - PAGE7
											010b - PAGE2 101b - PAGE5
											0100 - FAGE2[1010 - FAGE3]
											C[2:0] : Set time interval between each scroll step
											in terms of frame frequency
											000b – 5 frames 100b – 2 frames
											001b – 64 frames 101b – 3 frames
											010b – 128 frames
											011b – 256 frames 111b – 1 frames
											D[2:0]: Define end page address
											000b – PAGE0 011b – PAGE3 110b – PAGE6
											001b – PAGE1 100b – PAGE4 111b – PAGE7
											010b – PAGE2 101b – PAGE5
											E[5:0] : Vertical scrolling offset
											e.g. $E[5:0] = 01h$ refer to offset = 1 row
											E[5:0] = 3Fh refer to offset = 63 rows
											F[7:0] : Define the start column (RESET = 00h)
											G[7:0] : Define the end column address (RESET =
											7Fh)
											(12)
											Note
											(1) The value of D[2:0] must be larger than or equal
											to B[2:0]
											(2) (2) (3) (4) (4) (4) (4)
											(2) The value of G[7:0] must be larger than or equal
											to F[7:0]
0	2E	0	0	1	0	1	1	1	0	Deactivate	Stop scrolling that is configured by command
										scroll	26h/27h/29h/2Ah.
											Note
											After sending 2Eh command to deactivate the
											scrolling action, the ram data needs to be rewritten.

SSD1309 Rev 1.1 P 29/62 Jul 2011 **Solomon Systech**

	olling (Comm	and [Гable							
D/C #		D7	D6	D5	D4	D3	D2	D1		Command	Description
0	2F	0	0	1	0	1	1	1	1	Activate scroll	Start scrolling that is configured by the scrolling setup commands :26h/27h/29h/2Ah with the following valid sequences: Valid command sequence 1: 26h; 2Fh. Valid command sequence 2: 27h; 2Fh. Valid command sequence 3: 29h; 2Fh. Valid command sequence 4: 2Ah; 2Fh. For example, if "26h; 2Ah; 2Fh." commands are issued, the setting in the last scrolling setup command, i.e. 2Ah in this case, will be executed. In other words, setting in the last scrolling setup command overwrites the setting in the previous scrolling setup commands.
0 0 0	A3 A[5:0] B[6:0]	1 * *	0 * B ₆	1 A ₅ B ₅	0 A ₄ B ₄	0 A ₃ B ₃	$egin{array}{c} 0 \ A_2 \ B_2 \ \end{array}$	$\begin{matrix} 1 \\ A_1 \\ B_1 \end{matrix}$	1 A ₀ B ₀	Set Vertical Scroll Area	A[5:0]: Set No. of rows in top fixed area. The No. of rows in top fixed area is referenced to the top of the GDDRAM (i.e. row 0). [RESET = 0] B[6:0]: Set No. of rows in scroll area. This is the number of rows to be used for vertical scrolling. The scroll area starts in the first row below the top fixed area. [RESET = 64] Note (1) A[5:0]+B[6:0] <= MUX ratio (2) B[6:0] <= MUX ratio (3a) Vertical scrolling offset (E[5:0] in 29h/2Ah) < B[6:0] (3b) Set Display Start Line (X ₅ X ₄ X ₃ X ₂ X ₁ X ₀ of 40h~7Fh) < B[6:0] (4) The last row of the scroll area shifts to the first row of the scroll area. (5) For 64d MUX display A[5:0] = 0, B[6:0] = 64: whole area scrolls A[5:0] + B[6:0] < 64: central area scrolls A[5:0] + B[6:0] < 64: central area scrolls (6) When vertical scrolling is enabled by command 29h / 2Ah, the vertical scroll area is defined by this command

 Solomon Systech
 Jul 2011
 P 30/62
 Rev 1.1
 SSD1309

2. Scr	olling C	Comn	nand [Fable							
D /C#	Hex	D7	D6	D5	D4	D3	D2	D1	D 0	Command	Description
0	2C/2D	0	0	1	0	1	1	0	X_0	Content Scroll	2Ch, X[0]=0, Right Horizontal Scroll by one
0	A[7:0]	0	0	0	0	0	0	0		Setup	column
0	B[2:0]	*	*	*	*	*	B_2	B_1	B_0		
0	C[7:0]	0	0	0	0	0	0	0	1		2Dh, X[0]=1, Left Horizontal Scroll by one column
0	D[2:0]	*	*	*	*	*	D_2	D_1	D_0		
0	E[7:0]	0	0	0	0	0	0	0	0		A[7:0]: Dummy byte (Set as 00h)
0	F[7:0]	F_7	F_6	F_5	F_4	F_3	F_2	F_1	F_0		Horizontal scroll by 1 column
0	G[7:0]	G_7	G_6	G_5	G_4	G_3	G_2	G_1	G_0		
		,	· ·	5	,	3	_	•			B[2:0] : Define start page address
											000b – PAGE0 011b – PAGE3 110b – PAGE6
											001b – PAGE1 100b – PAGE4 111b – PAGE7
											010b – PAGE2 101b – PAGE5
											C[7:0] : Dummy byte (Set as 01h)
											D[2:0] : Define end page address
											000b – PAGE0 011b – PAGE3 110b – PAGE6
											001b - PAGE1 100b - PAGE4 111b - PAGE7
											010b – PAGE2 101b – PAGE5
											E[7:0] : Dummy byte (Set as 00h)
											E[7.0]. Duminy byte (Set as bon)
											F[7:0] : Define the start column (RESET = 00h)
											G[7:0] : Define the end column address (RESET =
											7Fh)
											Note
											(1) The value of D[2:0] must be larger than or equal to
											B[2:0]
											(2) The value of G[7:0] must be larger than F[7:0]
											$^{(3)}$ A delay time of $2/FrameFreq$ must be set if
											sending the command of 2Ch / 2Dh consecutively.
											·

Note
(1) "*" stands for "Don't care".

SSD1309 Rev 1.1 P 31/62 Jul 2011 Solomon Systech

9.3 Addressing Setting Command Table

Table 9-3: Addressing Setting Command Table

3. A	dressing	Setti	ng C	omm	and T	Table					
							D2	D1	D 0	Command	Description
0	00~0F	0	0	0	0	X ₃	X ₂	X_1	X_0	Set Lower Column Start Address for Page Addressing Mode	Set the lower nibble of the column start address register for Page Addressing Mode using X[3:0] as data bits. The initial display line register is reset to 0000b after RESET. Note
0	10~1F	0	0	0	1	X ₃	X ₂	X ₁	X_0	Set Higher	(1) This command is only for page addressing mode Set the higher nibble of the column start address
		v			•	113	112	71	110	Column Start Address for Page Addressing Mode	register for Page Addressing Mode using X[3:0] as data bits. The initial display line register is reset to 0000b after RESET.
											Note (1) This command is only for page addressing mode
0 0	20 A[1:0]	0 *	0 *	1 *	0 *	0 *	0 *	$\begin{bmatrix} 0 \\ A_1 \end{bmatrix}$	A_0	Set Memory Addressing Mode	A[1:0] = 00b, Horizontal Addressing Mode A[1:0] = 01b, Vertical Addressing Mode A[1:0] = 10b, Page Addressing Mode (RESET) A[1:0] = 11b, Invalid
0	21	0	0	1	0	0	0	0	1	Set Column	Setup column start and end address
0 0	A[7:0] B[7:0]	A ₇ B ₇	A ₆ B ₆	A ₅ B ₅	A_4 B_4	A ₃ B ₃	$egin{array}{c} A_2 \ B_2 \end{array}$	A_1 B_1	$egin{array}{c} A_0 \ B_0 \end{array}$	Address	A[7:0] : Column start address, range : 0-127d, (RESET=0d)
											B[7:0]: Column end address, range : 0-127d, (RESET =127d) Note
											(1) This command is only for horizontal or vertical addressing mode.
0 0 0	22 A[2:0] B[2:0]	0 *	0 *	1 *	0 *	0 *	$egin{array}{c} 0 \ A_2 \ B_2 \end{array}$	1 A ₁ B ₁	$egin{array}{c} 0 \ A_0 \ B_0 \end{array}$	Set Page Address	Setup page start and end address A[2:0]: Page start Address, range: 0-7d, (RESET = 0d)
											B[2:0]: Page end Address, range: 0-7d, (RESET = 7d) Note (1) This command is only for horizontal or vertical addressing mode.
0	B0~B7	1	0	1	1	0	X ₂	X ₁	X_0	Set Page Start Address for Page Addressing Mode	Set GDDRAM Page Start Address (PAGE0~PAGE7) for Page Addressing Mode using X[2:0].
											Note (1) This command is only for page addressing mode

 Solomon Systech
 Jul 2011
 P 32/62
 Rev 1.1
 SSD1309

9.4 Hardware Configuration (Panel resolution & layout related) Command Table

Table 9-4: Hardware Configuration (Panel resolution & layout related) Command Table

4. Ha	rdware (Config	gurat	ion (I	Panel	resoli	ution	& lav	out r	elated) Command	Table
D/C#										Command	Description
	40~7F	0	1	X ₅	X ₄	X ₃	X ₂	X ₁		Set Display Start Line	Set display RAM display start line register from 0-63 using $X_5X_3X_2X_1X_0$. Display start line register is reset to 000000b during RESET.
0	A0/A1	1	0	1	0	0	0	0	X_0	Set Segment Re- map	A0h, X[0]=0b: column address 0 is mapped to SEG0 (RESET) A1h, X[0]=1b: column address 127 is mapped to SEG0
0	A8	1	0	1	0	1	0	0	0	Set Multiplex	Set MUX ratio to N+1 MUX
0	A[5:0]	*	*	A ₅	A_4	A_3	A ₂	A_1	A ₀	Ratio	N=A[5:0]: from 16MUX to 64MUX, RESET= 111111b (i.e. 63d, 64MUX) A[5:0] from 0 to 14 are invalid entry.
0	C0/C8	1	1	0	0	X ₃	0	0	0	Set COM Output Scan Direction	C0h, X[3]=0b: normal mode (RESET) Scan from COM0 to COM[N -1] C8h, X[3]=1b: remapped mode. Scan from COM[N-1] to COM0 Where N is the Multiplex ratio.
0	D3 A[5:0]	1 *	1 *	0 A ₅	1 A ₄	0 A ₃	0 A ₂	1 A ₁	1 A ₀	Set Display Offset	Set vertical shift by COM from 0d~63d The value is reset to 00h after RESET.
0 0	DA A[5:4]	1 0	1 0	0 A ₅	1 A ₄	1 0	0 0	1 1	0 0	Set COM Pins Hardware Configuration	A[4]=0b, Sequential COM pin configuration A[4]=1b (RESET), Alternative COM pin configuration A[5]=0b (RESET), Disable COM Left/Right remap A[5]=1b, Enable COM Left/Right remap
0 0	DC A[1:0]	1 0	1 0	0 0	1 0	1 0	1 0	0 A ₁	0 A ₀	Set GPIO	A[1:0] GPIO: 00 pin HiZ, Input disabled 01 pin HiZ, Input enabled 10 pin output LOW [RESET] 11 pin output HIGH

SSD1309 Rev 1.1 P 33/62 Jul 2011 **Solomon Systech**

Timing & Driving Scheme Setting Command Table 9.5

Table 9-5: Timing & Driving Scheme Setting Command Table

5. Ti	ming & D	rivin	g Scl	heme	Setti	ng Co	omma	nd T	able		
0	D5	1	1	0	1	0	1	0			A[3:0] : Define the divide ratio (D) of the display
0	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1		Divide	clocks (DCLK):
										Ratio/Oscillator	Divide ratio= A[3:0] + 1, RESET is 0000b
										Frequency	(divide ratio = 1)
											A[7:4]: Set the Oscillator Frequency, F _{OSC} . Oscillator Frequency increases with the value of A[7:4] and vice versa. RESET is 0111b Range:0000b~1111b Frequency increases as setting value increases.
0	D9	1	1	0	1	1	0	0	1	Set Pre-charge	A[3:0]: Phase 1 period of up to 15 DCLK
0	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Period	Clock 0 is invalid entry
											(RESET=2h)
											A[7:4]: Phase 2 period of up to 15 DCLK
											Clock 0 is invalid entry
											(RESET=2h)
	22			-					-	G . II	
0	DB	1	l	0	1	1	0	1		Set V _{COMH}	A[5:2] Hex code V _{COMH} deselect level
0	A[5:2]	0	0	A_5	A_4	A_3	A_2	0	0	Deselect Level	0000b 00h ~ 0.64 x V _{CC}
											1101b 34h $\sim 0.78 \text{ x V}_{CC} \text{ (RESET)}$
											1111b 3Ch ~ 0.84 x V _{CC}

Note
(2) "*" stands for "Don't care".

Jul 2011 P 34/62 Rev 1.1 SSD1309 Solomon Systech

Table 9-6: Read Command Table

Bit Pattern	Command	Description	
$D_7D_6D_5D_4D_3D_2D_1D_0$	Status Register Read	D[7]: Reserved	
		D[6]: "1" for display OFF / "0" for display O	r display ON
		D[5]: Reserved	
		D[4] Reserved	
		D[3] Reserved	
		D[2] Reserved	
		D[1] Reserved	
		D[0] Reserved	

Note

9.6 Data Read / Write

To read data from the GDDRAM, select HIGH for both the R/W# (WR#) pin and the D/C# pin for 6800-series parallel mode and select LOW for the E (RD#) pin and HIGH for the D/C# pin for 8080-series parallel mode. No data read is provided in serial mode operation.

In normal data read mode the GDDRAM column address pointer will be increased automatically by one after each data read.

Also, a dummy read is required before the first data read.

To write data to the GDDRAM, select LOW for the R/W# (WR#) pin and HIGH for the D/C# pin for both 6800-series parallel mode and 8080-series parallel mode. The serial interface mode is always in write mode. The GDDRAM column address pointer will be increased automatically by one after each data write.

Table 9-7: Address increment table (Automatic)

D/C#	R/W# (WR#)	Comment	Address Increment
0	0	Write Command	No
0	1	Read Status	No
1	0	Write Data	Yes
1	1	Read Data	Yes

SSD1309 | Rev 1.1 | P 35/62 | Jul 2011 | **Solomon Systech**

⁽¹⁾ Patterns other than those given in the Command Table are prohibited to enter the chip as a command; as unexpected results can occur.

10 COMMAND DESCRIPTIONS

10.1 Set Lower Column Start Address for Page Addressing Mode (00h~0Fh)

This command specifies the lower nibble of the 8-bit column start address for the display data RAM under Page Addressing Mode. The column address will be incremented by each data access. Refer to Section 9.3 and Section 10.3 for details.

10.2 Set Higher Column Start Address for Page Addressing Mode (10h~1Fh)

This command specifies the higher nibble of the 8-bit column start address for the display data RAM under Page Addressing Mode. The column address will be incremented by each data access. Refer to Section 9.3 and Section 10.3 for details.

10.3 Set Memory Addressing Mode (20h)

There are 3 different memory addressing mode in SSD1309: page addressing mode, horizontal addressing mode and vertical addressing mode. This command sets the way of memory addressing into one of the above three modes. In there, "COL" means the graphic display data RAM column.

Page addressing mode (A[1:0]=10xb)

In page addressing mode, after the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and page address pointer is not changed. Users have to set the new page and column addresses in order to access the next page RAM content. The sequence of movement of the PAGE and column address point for page addressing mode is shown in Figure 10-1.

 COL0
 COL 1

 COL 126
 COL 127

 PAGE0
 Image: Color of the color of t

Figure 10-1: Address Pointer Movement of Page addressing mode

In normal display data RAM read or write and page addressing mode, the following steps are required to define the starting RAM access pointer location:

- Set the page start address of the target display location by command B0h to B7h.
- Set the lower start column address of pointer by command 00h~0Fh.
- Set the upper start column address of pointer by command 10h~1Fh.

For example, if the page address is set to B2h, lower column address is 03h and upper column address is 10h, then that means the starting column is SEG3 of PAGE2. The RAM access pointer is located as shown in Figure 10-2. The input data byte will be written into RAM position of column 3.

Figure 10-2: Example of GDDRAM access pointer setting in Page Addressing Mode (No row and column-

Solomon Systech Jul 2011 | P 36/62 | Rev 1.1 | SSD1309

Horizontal addressing mode (A[1:0]=00b)

In horizontal addressing mode, after the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and page address pointer is increased by 1. The sequence of movement of the page and column address point for horizontal addressing mode is shown in Figure 10-3. When both column and page address pointers reach the end address, the pointers are reset to column start address and page start address (Dotted line in Figure 10-3.)

 COL0
 COL 1

 COL 126
 COL 127

 PAGE0

 PAGE1

 PAGE6

 PAGE7

Figure 10-3: Address Pointer Movement of Horizontal addressing mode

Vertical addressing mode: (A[1:0]=01b)

In vertical addressing mode, after the display RAM is read / written, the page address pointer is increased automatically by 1. If the page address pointer reaches the page end address, the page address pointer is reset to page start address and column address pointer is increased by 1. The sequence of movement of the page and column address point for vertical addressing mode is shown in Figure 10-4. When both column and page address pointers reach the end address, the pointers are reset to column start address and page start address (Dotted line in Figure 10-4.)

Figure 10-4: Address Pointer Movement of Vertical addressing mode

In normal display data RAM read or write and horizontal / vertical addressing mode, the following steps are required to define the RAM access pointer location:

- Set the column start and end address of the target display location by command 21h.
- Set the page start and end address of the target display location by command 22h.

Example is shown in Figure 10-5.

10.4 Set Column Address (21h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command 20h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

10.5 Set Page Address (22h)

This triple byte command specifies page start address and end address of the display data RAM. This command also sets the page address pointer to page start address. This pointer is used to define the current read/write page address in graphic display data RAM. If vertical address increment mode is enabled by command 20h, after finishing read/write one page data, it is incremented automatically to the next page address. Whenever the page address pointer finishes accessing the end page address, it is reset back to start page address.

The figure below shows the way of column and page address pointer movement through the example: column start address is set to 2 and column end address is set to 97, page start address is set to 1 and page end address is set to 2; Horizontal address increment mode is enabled by command 20h. In this case, the graphic display data RAM column accessible range is from column 2 to column 97 and from page 1 to page 2 only. In addition, the column address pointer is set to 2 and page address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (*solid line in Figure 10-5*). Whenever the column address pointer finishes accessing the end column 97, it is reset back to column 2 and page address is automatically increased by 1 (*solid line in Figure 10-5*). While the end page 2 and end column 97 RAM location is accessed, the page address is reset back to 1 and the column address is reset back to 2 (*dotted line in Figure 10-5*).

Figure 10-5: Example of Column and Row Address Pointer Movement (LS pin pulled LOW)

10.6 Set Display Start Line (40h~7Fh)

This command sets the Display Start Line register to determine starting address of display RAM, by selecting a value from 0 to 63. With value equal to 0, RAM row 0 is mapped to COM0. With value equal to 1, RAM row 1 is mapped to COM0 and so on. Refer to Table 10-1 for more illustrations.

10.7 Set Contrast Control for BANK0 (81h)

This command sets the Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The segment output current increases as the contrast step value increases.

10.8 Set Segment Re-map (A0h/A1h)

This command changes the mapping between the display data column address and the segment driver. It allows flexibility in OLED module design. Refer to Section 9.4.

This command only affects subsequent data input. Data already stored in GDDRAM will have no changes.

10.9 Entire Display ON (A4h/A5h)

A4h command enable display outputs according to the GDDRAM contents.

If A5h command is issued, then by using A4h command, the display will resume to the GDDRAM contents. In other words, A4h command resumes the display from entire display "ON" stage.

A5h command forces the entire display to be "ON", regardless of the contents of the display data RAM.

 Solomon Systech
 Jul 2011 P 38/62 Rev 1.1
 SSD1309

10.10 Set Normal/Inverse Display (A6h/A7h)

This command sets the display to be either normal or inverse. In normal display a RAM data of 1 indicates an "ON" pixel while in inverse display a RAM data of 0 indicates an "ON" pixel.

10.11 Set Multiplex Ratio (A8h)

This command switches the default 64 multiplex mode to any multiplex ratio, ranging from 16 to 64. The output pads COM0~COM63 will be switched to the corresponding COM signal.

10.12 Set Display ON/OFF (AEh/AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.

When the display is ON, the selected circuits by Set Master Configuration command will be turned ON. When the display is OFF, those circuits will be turned OFF and the segment and common output are in V_{SS} state and high impedance state, respectively. These commands set the display to one of the two states:

AEh : Display OFFAFh : Display ON

Figure 10-6: Transition between different modes

10.13 Set Page Start Address for Page Addressing Mode (B0h~B7h)

This command positions the page start address from 0 to 7 in GDDRAM under Page Addressing Mode. Refer to Section 10.3 for details.

10.14 Set COM Output Scan Direction (C0h/C8h)

This command sets the scan direction of the COM output, allowing layout flexibility in the OLED module design. Additionally, the display will show once this command is issued. For example, if this command is sent during normal display then the graphic display will be vertically flipped immediately. Please refer to Table 10-3 for details.

10.15 Set Display Offset (D3h)

This is a double byte command. The second command specifies the mapping of the display start line to one of COM0~COM63 (assuming that COM0 is the display start line then the display start line register is equal to 0).

For example, to move the COM16 towards the COM0 direction by 16 lines the 6-bit data in the second byte should be given as 010000b. To move in the opposite direction by 16 lines the 6-bit data should be given by 64 – 16, so the second byte would be 100000b. The following two tables (Table 10-1, Table 10-2) show the examples of setting the command C0h/C8h and D3h.

Table 10-1: Example of Set Display Offset and Display Start Line without Remap

	6	:/	6	1	6		tput 5	6	5	6	5	6
		mal	Nor		Nor		Nor			mal	Nor	
Hardware)	1101		((8	(
pin name	()	()	8	})		0	8	
COM0	ROW0	RAM0	ROW8	RAM8	ROW0	RAM8	ROW0	RAM0	ROW8	RAM8	ROW0	RAM8
COM1	ROW1	RAM1	ROW9	RAM9	ROW1	RAM9	ROW1	RAM1	ROW9	RAM9	ROW1	RAM9
COM2	ROW2	RAM2	ROW10	RAM10	ROW2	RAM10	ROW2	RAM2	ROW10	RAM10	ROW2	RAM10
COM3	ROW3	RAM3	ROW11	RAM11	ROW3	RAM11	ROW3	RAM3	ROW11	RAM11	ROW3	RAM11
COM4	ROW4	RAM4	ROW12	RAM12	ROW4	RAM12	ROW4	RAM4	ROW12	RAM12	ROW4	RAM12
COM5	ROW5	RAM5	ROW13	RAM13	ROW5	RAM13	ROW5	RAM5	ROW13	RAM13	ROW5	RAM13
COM6 COM7	ROW6 ROW7	RAM6 RAM7	ROW14 ROW15	RAM14 RAM15	ROW6	RAM14	ROW6 ROW7	RAM6	ROW14 ROW15	RAM14	ROW6 ROW7	RAM14
					ROW7	RAM15		RAM7		RAM15		RAM15
COM8 COM9	ROW8 ROW9	RAM8 RAM9	ROW16 ROW17	RAM16 RAM17	ROW8 ROW9	RAM16 RAM17	ROW8 ROW9	RAM8 RAM9	ROW16 ROW17	RAM16 RAM17	ROW8 ROW9	RAM16 RAM17
COM10	ROW10	RAM10	ROW17 ROW18	RAM18	ROW10	RAM18	ROW10	RAM10	ROW17 ROW18	RAM18	ROW10	RAM18
COM10 COM11	ROW10	RAM11	ROW18	RAM19	ROW10	RAM19	ROW10	RAM11	ROW18	RAM19	ROW10	RAM19
COM11	ROW11	RAM12	ROW19	RAM20	ROW11	RAM20	ROW11	RAM12	ROW19	RAM20	ROW11	RAM20
COM12 COM13	ROW12 ROW13	RAM13	ROW20	RAM21	ROW12 ROW13	RAM21	ROW12 ROW13	RAM13	ROW20	RAM21	ROW12	RAM21
COM14	ROW13	RAM14	ROW21	RAM22	ROW13	RAM22	ROW13	RAM14	ROW21	RAM22	ROW13	RAM22
COM15	ROW15	RAM15	ROW22	RAM23	ROW14 ROW15	RAM23	ROW15	RAM15	ROW22	RAM23	ROW14 ROW15	RAM23
COM16	ROW16	RAM16	ROW24	RAM24	ROW16	RAM24	ROW16	RAM16	ROW24	RAM24	ROW16	RAM24
COM17	ROW10	RAM17	ROW25	RAM25	ROW17	RAM25	ROW17	RAM17	ROW25	RAM25	ROW17	RAM25
COM18	ROW17	RAM18	ROW26	RAM26	ROW17	RAM26	ROW17	RAM18	ROW26	RAM26	ROW18	RAM26
COM19	ROW19	RAM19	ROW27	RAM27	ROW19	RAM27	ROW19	RAM19	ROW27	RAM27	ROW19	RAM27
COM20	ROW10	RAM20	ROW28	RAM28	ROW10	RAM28	ROW10	RAM20	ROW28	RAM28	ROW19	RAM28
COM21	ROW21	RAM21	ROW29	RAM29	ROW21	RAM29	ROW21	RAM21	ROW29	RAM29	ROW21	RAM29
COM22	ROW22	RAM22	ROW30	RAM30	ROW22	RAM30	ROW22	RAM22	ROW30	RAM30	ROW22	RAM30
COM23	ROW23	RAM23	ROW31	RAM31	ROW23	RAM31	ROW23	RAM23	ROW31	RAM31	ROW23	RAM31
COM24	ROW24	RAM24	ROW32	RAM32	ROW24	RAM32	ROW24	RAM24	ROW32	RAM32	ROW24	RAM32
COM25	ROW25	RAM25	ROW33	RAM33	ROW25	RAM33	ROW25	RAM25	ROW33	RAM33	ROW25	RAM33
COM26	ROW26	RAM26	ROW34	RAM34	ROW26	RAM34	ROW26	RAM26	ROW34	RAM34	ROW26	RAM34
COM27	ROW27	RAM27	ROW35	RAM35	ROW27	RAM35	ROW27	RAM27	ROW35	RAM35	ROW27	RAM35
COM28	ROW28	RAM28	ROW36	RAM36	ROW28	RAM36	ROW28	RAM28	ROW36	RAM36	ROW28	RAM36
COM29	ROW29	RAM29	ROW37	RAM37	ROW29	RAM37	ROW29	RAM29	ROW37	RAM37	ROW29	RAM37
COM30	ROW30	RAM30	ROW38	RAM38	ROW30	RAM38	ROW30	RAM30	ROW38	RAM38	ROW30	RAM38
COM31	ROW31	RAM31	ROW39	RAM39	ROW31	RAM39	ROW31	RAM31	ROW39	RAM39	ROW31	RAM39
COM32	ROW32	RAM32	ROW40	RAM40	ROW32	RAM40	ROW32	RAM32	ROW40	RAM40	ROW32	RAM40
COM33	ROW33	RAM33	ROW41	RAM41	ROW33	RAM41	ROW33	RAM33	ROW41	RAM41	ROW33	RAM41
COM34	ROW34	RAM34	ROW42	RAM42	ROW34	RAM42	ROW34	RAM34	ROW42	RAM42	ROW34	RAM42
COM35	ROW35	RAM35	ROW43	RAM43	ROW35	RAM43	ROW35	RAM35	ROW43	RAM43	ROW35	RAM43
COM36	ROW36	RAM36	ROW44	RAM44	ROW36	RAM44	ROW36	RAM36	ROW44	RAM44	ROW36	RAM44
COM37	ROW37	RAM37	ROW45	RAM45	ROW37	RAM45	ROW37	RAM37	ROW45	RAM45	ROW37	RAM45
COM38	ROW38	RAM38	ROW46	RAM46	ROW38	RAM46	ROW38	RAM38	ROW46	RAM46	ROW38	RAM46
COM39	ROW39	RAM39	ROW47	RAM47	ROW39	RAM47	ROW39	RAM39	ROW47	RAM47	ROW39	RAM47
COM40	ROW40	RAM40	ROW48	RAM48	ROW40	RAM48	ROW40	RAM40	ROW48	RAM48	ROW40	RAM48
COM41	ROW41	RAM41	ROW49	RAM49	ROW41	RAM49	ROW41	RAM41	ROW49	RAM49	ROW41	RAM49
COM42	ROW42	RAM42	ROW50	RAM50	ROW42	RAM50	ROW42	RAM42	ROW50	RAM50	ROW42	RAM50
COM43	ROW43	RAM43	ROW51	RAM51	ROW43	RAM51	ROW43	RAM43	ROW51	RAM51	ROW43	RAM51
COM44	ROW44	RAM44	ROW52	RAM52	ROW44	RAM52	ROW44	RAM44	ROW52	RAM52	ROW44	RAM52
COM45	ROW45	RAM45	ROW53	RAM53	ROW45	RAM53	ROW45	RAM45	ROW53	RAM53	ROW45	RAM53
COM46	ROW46	RAM46	ROW54	RAM54	ROW46	RAM54	ROW46	RAM46	ROW54	RAM54	ROW46	RAM54
COM47	ROW47 ROW48	RAM47	ROW55 ROW56	RAM55	ROW47 ROW48	RAM55	ROW47 ROW48	RAM47	ROW55	RAM55	ROW47	RAM55
COM48 COM49	ROW48 ROW49	RAM48	ROW56 ROW57	RAM56	ROW48 ROW49	RAM56	ROW48 ROW49	RAM48	-	-	ROW48	RAM56
		RAM49		RAM57		RAM57		RAM49	-	-	ROW49	RAM57
COM50 COM51	ROW50 ROW51	RAM50 RAM51	ROW58 ROW59	RAM58 RAM59	ROW50 ROW51	RAM58 RAM59	ROW50 ROW51	RAM50 RAM51	_	-	ROW50 ROW51	RAM58 RAM59
COM51	ROW51	RAM52	ROW59 ROW60	RAM60	ROW51 ROW52	RAM60	ROW51 ROW52	RAM52		-	ROW51 ROW52	RAM60
COM52 COM53	ROW52 ROW53	RAM53	ROW60 ROW61	RAM61	ROW52 ROW53	RAM61	ROW52 ROW53	RAM53		-	ROW52 ROW53	RAM61
COM54	ROW53 ROW54	RAM54	ROW61 ROW62	RAM62	ROW53 ROW54	RAM62	ROW53 ROW54	RAM54		-	ROW53 ROW54	RAM62
COM55	ROW55	RAM55	ROW63	RAM63	ROW55	RAM63	ROW55	RAM55	_	_	ROW55	RAM63
COM56	ROW56	RAM56	ROW03	RAM0	ROW56	RAM0	-	-	ROW0	RAM0		-
COM57	ROW57	RAM57	ROW1	RAM1	ROW57	RAM1	_	_	ROW1	RAM1	-	_
COM58	ROW58	RAM58	ROW2	RAM2	ROW58	RAM2	_	_	ROW2	RAM2	-	-
COM59	ROW59	RAM59	ROW3	RAM3	ROW59	RAM3	-	-	ROW3	RAM3	-	-
COM60	ROW60	RAM60	ROW4	RAM4	ROW60	RAM4	-	-	ROW4	RAM4	-	-
COM61	ROW61	RAM61	ROW5	RAM5	ROW61	RAM5	-	-	ROW5	RAM5	-	-
COM62	ROW62	RAM62	ROW6	RAM6	ROW62	RAM6	-	-	ROW6	RAM6	-	_
COM63	ROW63	RAM63	ROW7	RAM7	ROW63	RAM7	-	-	ROW7	RAM7	-	-
Display							,	-D			,,	
examples	(8	a)	(t))	(0	<i>;</i>)	(0	(د	(6	e)	(f)

Set MUX ration (A8h) COM normal / remap (C0h / C8h) Display offset (D3h) Display start line (40h - 7Fh)

 Solomon Systech
 Jul 2011
 P 40/62
 Rev 1.1
 SSD1309

Table 10-2: Example of Set Display Offset and Display Start Line with Remap

Remap Remap Remap Remap Remap Remap Hardware pin name COM₁ ROW62 RAM62 ROW6 RAM6 ROW62 RAM6 ROW46 RAM46 ROW46 RAM54 COM2 ROW61 RAM61 ROW5 RAM5 ROW61 RAM5 ROW45 RAM45 ROW45 RAM53 ROW60 ROW4 ROW60 ROW44 RAM44 COM4 RAM43 ROW59 RAM59 ROW3 RAM3 ROW59 RAM3 ROW43 ROW43 RAM51 COM5 ROW58 RAM58 ROW2 RAM2 ROW58 RAM ROW42 RAM42 ROW42 RAM50 COM6 COM7 RAM41 RAM40 RAM57 RAM56 ROW1 RAM1 RAM0 RAM1 RAM0 RAM49 RAM48 ROW57 ROW57 ROW41 ROW41 ROW56 ROWO ROW56 ROW40 ROW40 RAM47 RAM46 RAM45 COM8 ROW55 ROW54 RAM55 RAM54 ROW63 ROW62 RAM63 ROW55 ROW54 RAM63 RAM62 ROW39 ROW38 RAM39 ROW47 ROW39 ROW38 RAM47 ROW47 RAM63 RAM38 RAM37 RAM62 RAM46 RAM62 ROW46 ROW46 COM10 ROW53 RAM53 ROW61 RAM61 ROW53 RAM61 ROW37 ROW45 ROW37 RAM45 ROW45 RAM61 COM11 COM12 ROW52 ROW51 RAM52 RAM51 ROW60 ROW59 RAM60 RAM59 ROW52 ROW51 RAM60 RAM59 ROW36 ROW35 RAM36 RAM35 ROW44 ROW43 RAM44 RAM43 ROW36 ROW35 RAM44 RAM43 ROW44 ROW43 RAM60 COM13 ROW50 RAM50 ROW58 RAM58 ROW50 RAM58 ROW34 RAM34 ROW42 RAM42 ROW34 RAM42 ROW42 RAM58 COM14 COM15 RAM49 RAM48 RAM57 RAM56 RAM33 RAM32 RAM41 RAM40 RAM41 RAM40 RAM57 RAM56 ROW49 RAM57 ROW33 ROW33 ROW41 RAM56 ROW48 ROW56 ROW48 ROW32 ROW40 ROW32 ROW40 COM16 ROW47 RAM47 ROW55 RAM55 ROW47 RAM55 ROW31 RAM31 ROW39 RAM39 ROW31 RAM39 ROW39 RAM55 COM17 COM18 RAM46 RAM45 RAM54 RAM53 RAM30 RAM29 RAM38 RAM37 RAM38 RAM37 RAM54 RAM53 ROW54 ROW46 RAM54 ROW30 ROW30 ROW38 ROW45 ROW53 RAM53 ROW29 ROW37 ROW45 ROW37 ROW29 COM19 ROW44 RAM44 ROW52 RAM52 ROW44 RAM52 ROW28 RAM28 ROW36 RAM36 ROW28 RAMSE ROW36 RAM52 COM20 COM21 RAM51 RAM50 RAM27 RAM26 RAM35 RAM34 ROW43 ROW35 ROW35 RAM42 RAM34 RAM50 ROW42 ROW50 ROW42 RAM50 ROW26 ROW34 ROW26 ROW34 COM22 ROW41 RAM41 ROW49 RAM49 ROW4 RAM49 ROW25 RAM25 ROW33 RAM33 ROW25 RAM33 ROW33 RAM49 COM23 COM24 RAM48 RAM47 RAM48 ROW24 RAM24 RAM23 ROW32 RAM32 ROW32 RAM48 RAM39 RAM31 RAM47 ROW39 ROW47 ROW39 RAM47 ROW23 ROW31 ROW23 RAM31 ROW31 RAM22 COM25 COM26 ROW38 ROW37 RAM38 RAM37 ROW46 ROW45 RAM46 RAM45 ROW38 ROW37 RAM46 RAM45 ROW22 ROW21 ROW30 ROW29 RAM30 RAM29 ROW22 ROW21 ROW30 ROW29 RAM46 RAM30 RAM21 RAM29 COM27 ROW36 RAM36 ROW44 RAM44 ROW36 RAM44 ROW20 RAM20 ROW28 RAM28 ROW20 RAM28 ROW28 RAM44 COM28 COM29 ROW35 RAM35 ROW43 ROW42 RAM43 RAM42 ROW35 RAM43 ROW19 ROW18 RAM19 ROW27 RAM27 ROW19 ROW18 RAM27 ROW27 ROW26 RAM43 RAM34 RAM18 RAM26 RAM26 RAM42 RAM42 ROW34 ROW34 ROW26 COM30 ROW33 RAM33 ROW41 RAM41 ROW33 RAM41 ROW17 RAM17 ROW25 RAM25 ROW17 RAM25 ROW25 RAM41 COM31 RAM32 RAM31 RAM40 RAM39 ROW32 ROW31 RAM40 RAM39 ROW16 ROW15 RAM16 RAM15 RAM24 RAM23 ROW16 ROW15 RAM24 RAM23 ROW24 ROW23 ROW40 RAM40 RAM39 ROW31 ROW39 ROW23 COM33 ROW30 RAM30 ROW38 RAM38 ROW30 RAM38 ROW14 RAM14 ROW22 RAM22 ROW14 RAM22 ROW22 RAM38 COM34 COM35 RAM29 RAM28 RAM37 RAM36 RAM13 RAM12 RAM21 RAM20 RAM21 RAM20 RAM37 RAM36 ROW37 ROW29 RAM37 ROW13 ROW13 ROW21 ROW28 ROW36 ROW28 RAM36 ROW12 ROW20 ROW12 ROW20 COM36 ROW27 RAM27 ROW35 RAM35 ROW27 RAM35 ROW11 RAM11 ROW19 RAM19 ROW11 RAM19 ROW19 RAM35 COM3 RAM34 RAM34 RAM10 RAM18 ROW10 RAM18 ROW18 RAM34 COM38 ROW25 RAM25 ROW33 RAM33 ROW25 RAM33 ROW9 RAM9 ROW17 RAM17 ROW9 RAM17 ROW17 RAM33 COM39 ROW24 RAM24 ROW32 RAM32 ROW24 RAM32 ROW8 RAM8 ROW16 RAM16 ROWS RAM16 ROW16 RAM32 COM40 COM41 RAM23 RAM22 RAM31 RAM30 ROW23 ROW7 RAM7 RAM6 ROW15 RAM15 RAM14 ROW7 RAM15 RAM14 ROW15 RAM31 RAM30 ROW23 ROW31 ROW22 ROW30 ROW22 RAM30 ROW6 ROW14 ROW6 ROW14 RAM21 RAM20 ROW29 ROW28 COMA ROW21 PAM20 ROW21 PAM20 ROW5 RAM5 ROW13 RAM13 ROW5 PAM13 ROW13 PAM20 COM43 COM44 ROW20 RAM28 ROW20 RAM28 ROW4 RAM4 RAM12 ROW12 ROW12 ROW4 RAM12 RAM28 RAM19 ROW19 ROW27 RAM27 ROW19 RAM27 ROW3 RAM3 ROW11 RAM11 ROW3 RAM11 ROW11 RAM27 RAM26 COM45 COM46 ROW18 ROW17 RAM18 RAM17 ROW26 ROW25 RAM26 RAM25 ROW18 ROW17 RAM26 RAM25 ROW2 ROW1 RAM2 RAM1 ROW10 ROW9 RAM10 RAM9 ROW2 ROW1 RAM10 ROW10 ROW9 RAM25 COM47 ROW16 RAM16 ROW24 RAM24 ROW16 RAM24 ROWO RAMO ROW8 RAM8 ROWO RAM8 ROW8 RAM24 COM48 COM49 RAM15 RAM14 ROW23 ROW22 RAM23 RAM22 RAM23 RAM22 ROW7 ROW6 RAM7 RAM6 RAM23 RAM22 ROW15 ROW7 ROW14 ROW14 ROW6 COM50 ROW13 RAM13 ROW21 RAM21 ROW13 RAM21 ROW5 RAM5 ROW5 RAM21 COM51 RAM12 RAM11 RAM20 RAM19 RAM20 ROW12 ROW20 ROW12 RAM20 ROW4 RAM4 ROW4 RAM19 RAM19 RAM3 ROW11 ROW19 ROW1 ROW3 ROW3 COM53 ROW10 RAM10 ROW18 RAM18 ROW10 RAM18 ROW2 RAM2 ROW2 RAM18 COM54 COM55 RAM9 RAM8 RAM17 RAM16 RAM17 ROW8 ROW16 ROW8 RAM16 ROW0 RAM0 ROW0 RAM16 COM56 ROW7 RAM7 ROW15 RAM15 ROW7 RAM15 COM5 ROW6 RAM6 RAM14 RAM13 ROW6 RAM14 RAM5 COM58 ROW5 ROW13 ROW5 RAM13 COM59 COM60 ROW4 ROW3 RAM4 RAM3 ROW12 ROW11 RAM12 RAM11 ROW4 ROW3 RAM12 RAM11 COM61 ROW2 RAM2 ROW10 RAM10 ROW2 RAM10 COM63 ROW. RAM1 ROW9 RAM ROW1 ROW0 RAM Display (b) (f)

et MLIX ration (A8h) COM normal / remap (C0h / C8h) Display offset (D3h) Display start line (40h - 7Fh)

(d)

(e)

(g)

(c)

(a)

example

P 41/62 SSD1309 Rev 1.1 Jul 2011 Solomon Systech

10.16 Set Display Clock Divide Ratio/ Oscillator Frequency (D5h)

This command consists of two functions:

- Display Clock Divide Ratio (D) (A[3:0])
 Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 0000b. Please refer to section 8.3 for the details relationship of DCLK and CLK.
- Oscillator Frequency (A[7:4])
 Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit value results in 16 different frequency settings available as shown below. The default setting is 1000b.

10.17 Set Pre-charge Period (D9h)

This command is used to set the duration of the pre-charge period. The interval is counted in number of DCLK, where RESET equals to 2 DCLKs.

10.18 Set COM Pins Hardware Configuration (DAh)

This command sets the COM signals pin configuration to match the OLED panel hardware layout. The table below shows the COM pin configuration under different conditions (for MUX ratio =64):

Table 10-3: COM Pins Hardware Configuration

Solomon Systech Jul 2011 | P 42/62 | Rev 1.1 | SSD1309

SSD1309 | Rev 1.1 | P 43/62 | Jul 2011 | **Solomon Systech**

Solomon Systech Jul 2011 | P 44/62 | Rev 1.1 | SSD1309

10.19 Set V_{COMH} Deselect Level (DBh)

This command adjusts the V_{COMH} regulator output.

10.20 Set GPIO (DCh)

This double byte command is used to set the state of GPIO pin. Refer to Table 9-4 for details.

10.21 NOP (E3h)

No Operation Command.

10.22 Set Command Lock (FDh)

This double byte command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is called "Lock" state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the "Lock" state.

Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resumes from the "Lock" state, and the driver IC will then respond to the command and memory access.

10.23 Horizontal Scroll Setup (26h/27h)

This command consists of seven consecutive bytes to set up the horizontal scroll parameters and determines the scrolling start page, end page, scrolling speed, start column and end column; refer to Table 9-2 for details.

Before issuing this command the horizontal scroll must be deactivated (2Eh). Otherwise, RAM content may be corrupted.

The SSD1309 horizontal scroll is designed for 128 columns scrolling. The following two figures (Figure 10-7, Figure 10-8, and Figure 10-9) show the examples of using the horizontal scroll:

Figure 10-7: Horizontal scroll example: Scroll RIGHT by 1 column

Original Setting	SEG0	SEG1	SEG2	SEG3	SEG4	SEG5	:	::	÷	SEG122	SEG123	SEG124	SEG125	SEG126	SEG127
After one scroll step	SEG127	SEG0	SEG1	SEG2	SEG3	SEG4	:		:	SEG121	SEG122	SEG123	SEG124	SEG125	SEG126

SSD1309 | Rev 1.1 | P 45/62 | Jul 2011 | **Solomon Systech**

Figure 10-8: Horizontal scroll example: Scroll LEFT by 1 column

Original Setting	SEG0	SEG1	SEG2	SEG3	SEG4	SEG5	÷	:	:	SEG122	SEG123	SEG124	SEG125	SEG126	SEG127
After one scroll step	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	:	:	:	SEG123	SEG124	SEG125	SEG126	SEG127	SEG0

Figure 10-9: Horizontal scrolling setup example (LS pin pull LOW)

10.24 Continuous Vertical and Horizontal Scroll Setup (29h/2Ah)

This command consists of seven consecutive bytes to set up the continuous vertical scroll parameters and determine the scrolling start page, end page, scrolling speed and vertical scrolling offset; refer to Table 9-2 for details.

If the vertical scrolling offset byte E[5:0] of command 29h / 2Ah is set to zero, then only horizontal scrolling is performed (like command 26/27h). On the other hand, if the number of column scroll offset byte A[0] is set to zero, then only vertical scrolling is performed.

Continuous diagonal (horizontal + vertical) scrolling would be enabled if both A[0] and E[5:0] are set to be non-zero, whereas full column diagonal scrolling mode is suggested by setting F[7:0]=00h and G[7:0]=7Fh.

Before issuing this command the scroll must be deactivated (2Eh), or otherwise, RAM content may be corrupted. The following figures (Figure 10-10 and Figure 10-11) show the examples of using the continuous vertical scroll and the continuous diagonal scroll, respectively.

Solomon Systech Jul 2011 | P 46/62 | Rev 1.1 | SSD1309

Figure 10-10: Continuous Vertical scrolling setup example (LS pin pull LOW)

SSD1309 | Rev 1.1 | P 47/62 | Jul 2011 | **Solomon Systech**

Figure 10-11: Continuous Vertical and Horizontal scrolling setup example (LS pin pull LOW)

10.25 Deactivate Scroll (2Eh)

This command stops the motion of scrolling. After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten.

10.26 Activate Scroll (2Fh)

This command starts the motion of scrolling and should only be issued after the scroll setup parameters have been defined by the scrolling setup commands: 26h / 27h / 29h / 2Ah. The setting in the latest scrolling setup command overwrites the setting in the previous scrolling setup command.

The following actions are prohibited after the scrolling is activated

- 1. RAM access (Data write or read)
- 2. Changing the horizontal scroll setup parameters

10.27 Set Vertical Scroll Area (A3h)

This command consists of 3 consecutive bytes to set up the vertical scroll area. For the continuous vertical scroll function (command 29h / 2Ah), the number of rows in the vertical scroll area can be set smaller than or equating to the MUX ratio. Figure 10-10 shows a vertical scrolling example with different settings in vertical scroll area.

10.28 Content Scroll Setup (2Ch/2Dh)

This command consists of seven consecutive bytes to set up the horizontal scroll parameters and determine the scrolling start page, end page, start column and end column. One column will be scrolled horizontally by sending the setting of command 2Ch/2Dh once.

When command 2Ch / 2Dh are sent consecutively, a delay time of $\frac{2}{FrameFreq}$ must be set.

Figure 10-12 shown an example of using 2Dh "Content Scroll Setup" command for horizontal scrolling to left with infinite content update. In there, "Col" means the graphic display data RAM column.

 Solomon Systech
 Jul 2011
 P 48/62
 Rev 1.1
 SSD1309

Figure 10-12: Content Scrolling example (2Dh, Left Horizontal Scroll by one column)

By using command 2Ch/2Dh, RAM contents are scrolled and updated by one column. Table 10-4 is an example of content scrolling setting of SSD1309 (scrolling window of 4 pages). The values of registers depend on different conditions and applications.

Table 10-4: Content Scrolling software flow example (Page addressing mode – command 20h, 02h)

Step	Action	D /C#	Code	Remarks
1	For i= 1 to n	-	-	Create "For loop" for infinite content scrolling
2	Set Content scrolling command	0	2Dh	Left Horizontal Scroll by one column
	(scrolling window : Page 2 to 5, Col	0	00h	A[7:0]: Dummy byte (Set as 00h)
	8 to Col 120)	0	02h	B[2:0] : Define start page address
		0	01h	C[7:0]: Dummy byte (Set as 01h)
		0	05h	D[2:0] : Define end page address
		0	00h	E[7:0] : Dummy byte (Set as 00h)
		0	08h	F[6:0] : Define start column address
		0	78h	G[6:0]: Define end column address
3	Add Delay time of 2/FrameFreq	-	-	E.g. Delay 20ms if frame freq ≈ 100Hz
4	Write RAM on the beginning column			
Γ	of the scrolling window			
	Write RAM on (Page2, Col 120)	0	B2h	Set Page Start Address for Page Addressing Mode
	(Content update in beginning	0	17h	Set Higher Column Start Address for Page Addressing Mode
	column)	0	08h	Set Lower Column Start Address for Page Addressing Mode
		1	-	Write data to fill the RAM
	Write RAM on (Page3, Col 120)	0	B3h	Set Page Start Address for Page Addressing Mode
	(Content update in beginning	0	17h	Set Higher Column Start Address for Page Addressing Mode
	column)	0	08h	Set Lower Column Start Address for Page Addressing Mode
		1	-	Write data to fill the RAM
	Write RAM on (Page4, Col 120)	0	B4h	Set Page Start Address for Page Addressing Mode
	(Content update in beginning	0	17h	Set Higher Column Start Address for Page Addressing Mode
	column)	0	08h	Set Lower Column Start Address for Page Addressing Mode
		1	-	Write data to fill the RAM
	Write RAM on (Page5, Col 120)	0	B5h	Set Page Start Address for Page Addressing Mode
	(Content update in beginning	0	17h	Set Higher Column Start Address for Page Addressing Mode
	column)	0	08h	Set Lower Column Start Address for Page Addressing Mode
		1	-	Write data to fill the RAM
5	i=i+1	-	-	Go to next "For loop"
	Delay timing	-	-	Set time interval between each scroll step if necessary
	End			

SSD1309 | Rev 1.1 | P 49/62 | Jul 2011 | **Solomon Systech**

There are 3 different memory addressing mode in SSD1309: page addressing mode, horizontal addressing mode and vertical addressing mode and it is selected by command 20h. Table 10-4 is an example of content scrolling software flow under page addressing mode, while vertical addressing mode example is shown in below Table 10-5.

Table 10-5: Content Scrolling setting example (Vertical addressing mode – command 20h, 01h)

Step	Action	D/C#	Code	Remarks
1	For i= 1 to n	1	-	Create "For loop" for infinite content scrolling
2	Set Content scrolling command	0	2Dh	Left Horizontal Scroll by one column
	(scrolling window : Page 2 to 5, Col	0	00h	A[7:0]: Dummy byte (Set as 00h)
	8 to Col 120)	0	02h	B[2:0] : Define start page address
		0	01h	C[7:0]: Dummy byte (Set as 01h)
		0	05h	D[2:0] : Define end page address
		0	00h	E[7:0] : Dummy byte (Set as 00h)
		0	08h	F[6:0] : Define start column address
		0	78h	G[6:0] : Define end column address
3	Add Delay time of 2/FrameFreq	1	-	E.g. Delay 20ms if frame freq ≈ 100Hz
4	Write RAM on the beginning column		21h	Set Column address
	of the scrolling window (Page 2 to 5,	0	78h	Set column start address for Vertical Addressing Mode
	Col 120)	0	78h	Set column end address for Vertical Addressing Mode
	(Content update in beginning	0	22h	Set Page address
	column)	0	02h	Set start page address for Vertical Addressing Mode
		0	05h	Set end page address for Vertical Addressing Mode
		1	-	Write data to fill the RAM
5	i=i+1	-	-	Go to next "For loop"
	Delay timing	-	-	Set time interval between each scroll step if necessary
	End			

 Solomon Systech
 Jul 2011
 P 50/62
 Rev 1.1
 SSD1309

11 MAXIMUM RATINGS

Table 11-1 : Maximum Ratings (Voltage Referenced to $\ensuremath{V_{SS}}\xspace)$

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.3 to +4	V
V_{CC}	Supply voltage	0 to 17	V
V_{SEG}	SEG output voltage	0 to V _{CC}	V
V_{COM}	COM output voltage	0 to 0.9*V _{CC}	V
V _{in}	Input voltage	V_{SS} -0.3 to V_{DD} +0.3	V
T_A	Operating Temperature	-40 to +85	°C
T_{stg}	Storage Temperature Range	-65 to +150	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

SSD1309 Rev 1.1 P 51/62 Jul 2011 **Solomon Systech**

12 DC CHARACTERISTICS

Condition (Unless otherwise specified):

Voltage referenced to V_{SS} , $V_{DD} = 1.65 \text{ V}$ to 3.3 V, $T_A = 25 ^{\circ}\text{C}$

Table 12-1 : DC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V_{CC}	Operating Voltage	-	7	-	16	V
V_{DD}	Logic Supply Voltage	-	1.65	-	3.3	V
V_{OH}	High Logic Output Level	$I_{OUT} = 100uA, 3.3MHz$	$0.9 \times V_{DD}$	-	-	V
V_{OL}	Low Logic Output Level	$I_{OUT} = 100uA, 3.3MHz$	=	-	$0.1 \times V_{DD}$	V
V_{IH}	High Logic Input Level	-	$0.8 \times V_{DD}$	-	-	V
$V_{\rm IL}$	Low Logic Input Level	-	-	-	0.2 x V_{DD}	V
I _{DD,SLEEP}	Sleep mode Current	$V_{DD} = 1.65 \text{V} \sim 3.3 \text{V}, V_{CC} = 7 \text{V} \sim 16 \text{V}$ Display OFF, No panel attached	-	-	10	uA
I _{CC,SLEEP}	Sleep mode Current	$V_{DD} = 1.65 \text{V} \sim 3.3 \text{V}, V_{CC} = 7 \text{V} \sim 16 \text{V}$ Display OFF, No panel attached	-	-	10	uA
I_{CC}	V_{CC} Supply Current $V_{DD} = 2.8V$, $V_{CC} = 12$, $I_{REF} = 10uA$, No loading, Display ON, All ON	-Contrast = FFh	-	450	580	uA
I_{DD}	V_{DD} Supply Current V_{DD} =2.8V, V_{CC} = 12, I_{REF} = 10uA, No loading, Display ON, All ON,	Contrast 1111	-	90	110	uA
	G + O + + G +	Contrast=FFh	280	310	340	
	Segment Output Current, $V_{DD} = 2.8V$,	Contrast=AFh	-	215	-	
I_{SEG}	$V_{CC}=12V$	Contrast=7Fh	-	155	-	uA
	$I_{REF}=10uA,$	Contrast=3Fh	-	78	-	
	Display ON.	Contrast=0Fh	_	20	-	
Dev	Segment output current uniformity	$\begin{aligned} \text{Dev} &= (I_{\text{SEG}} - I_{\text{MID}}) / I_{\text{MID}} \\ I_{\text{MID}} &= (I_{\text{MAX}} + I_{\text{MIN}}) / 2 \\ I_{\text{SEG}}[0:127] &= \text{Segment current} \\ \text{at contrast setting} &= \text{FFh} \end{aligned}$	-3	-	3	%
Adj. Dev	Adjacent pin output current uniformity (contrast setting = FFh)	Adj Dev = (I[n]-I[n+1]) / (I[n]+I[n+1])	-2	-	2	%

 Solomon Systech
 Jul 2011
 P 52/62
 Rev 1.1
 SSD1309

13 AC CHARACTERISTICS

Conditions:

Voltage referenced to V_{SS} V_{DD} =1.65 to3.3V T_A = 25°C

Table 13-1: AC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
	Oscillation Frequency of Display Timing Generator	$V_{DD} = 2.8V$	360	450	540	kHz
FFRM	Frame Frequency	128x64 Graphic Display Mode, Display ON, Internal Oscillator Enabled	-	F _{OSC} x 1/(DxKx64)	-	Hz
RES#	Reset low pulse width		3	-	-	us

Note

SSD1309 Rev 1.1 P 53/62 Jul 2011 **Solomon Systech**

 $^{^{(1)}}$ Fosc stands for the frequency value of the internal oscillator and the value is measured when command D5h A[7:4] is in default value.

 ⁽²⁾ D: divide ratio (default value = 1)
 K: number of display clocks per row period (default value = 69)
 Please refer to 9.5 (Set Display Clock Divide Ratio/Oscillator Frequency, D5h) for detailed description

Table 13-2: 6800-Series MCU Parallel Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 1.65V \text{ to } 3.3V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t_{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	20	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
$t_{\rm DW}$	Data Write Time	80	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
$t_{\rm DHW}$	Write Data Hold Time	20	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW _{CSL}	Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)	120 60	-	-	ns
PW _{CSH}	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	60 60	-	-	ns
t_R	Rise Time	-	-	40	ns
$t_{\rm F}$	Fall Time	-	-	40	ns

Figure 13-1: 6800-series MCU parallel interface characteristics

 Solomon Systech
 Jul 2011
 P 54/62
 Rev 1.1
 SSD1309

Table 13-3: 8080-Series MCU Parallel Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 1.65V \sim 3.3V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	20	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t_{DW}	Data Write Time	70	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
t_{DHW}	Write Data Hold Time	15	-	-	ns
t_{DHR}	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
t_{PWLR}	Read Low Time	120	-	-	ns
t_{PWLW}	Write Low Time	60	-	-	ns
t_{PWHR}	Read High Time	60	-	-	ns
t_{PWHW}	Write High Time	60	-	-	ns
t_R	Rise Time	-	-	40	ns
$t_{\rm F}$	Fall Time	-	-	40	ns
t_{CS}	Chip select setup time	0	-	-	ns
t_{CSH}	Chip select hold time to read signal	0	-	-	ns
t_{CSF}	Chip select hold time	20	-	-	ns

Figure 13-2: 8080-series parallel interface characteristics

SSD1309 Rev 1.1 P 55/62 Jul 2011 **Solomon Systech**

Table 13-4: Serial Interface Timing Characteristics (4-wire SPI)

 $(V_{DD} - V_{SS} = 1.65V \sim 3.3V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
$t_{ m cycle}$	Clock Cycle Time	100	-	-	ns
t_{AS}	Address Setup Time	15	-	-	ns
t_{AH}	Address Hold Time	15	-	-	ns
t_{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	50	-	-	ns
t_{DW}	Data Write Time	55	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	15	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
$t_{ m CLKL}$	Clock Low Time	50	-	-	ns
$t_{ m CLKH}$	Clock High Time	50	-	-	ns
t_{R}	Rise Time	-	-	40	ns
t_{F}	Fall Time	-	-	40	ns

Figure 13-3: Serial interface characteristics (4-wire SPI)

 Solomon Systech
 Jul 2011
 P 56/62
 Rev 1.1
 SSD1309

Table 13-5: Serial Interface Timing Characteristics (3-wire SPI)

 $(V_{DD} - V_{SS} = 1.65V \sim 3.3V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
$t_{\rm cycle}$	Clock Cycle Time	100	-	-	ns
t_{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	50	-	-	ns
$t_{ m DW}$	Data Write Time	55	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	15	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
t_{CLKL}	Clock Low Time	50	-	-	ns
$t_{\rm CLKH}$	Clock High Time	50	-	-	ns
t_R	Rise Time	-	-	40	ns
$t_{\rm F}$	Fall Time	-	-	40	ns

Figure 13-4 : Serial interface characteristics (3-wire SPI)

SSD1309 Rev 1.1 P 57/62 Jul 2011 **Solomon Systech**

Conditions:

$$V_{DD} - V_{SS} = 1.65 V \sim 3.3 V$$

 $T_A = 25^{\circ}C$

Table 13-6: I²C Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	2.5	-	-	us
t _{HSTART}	Start condition Hold Time	0.6	-	-	us
t _{HD}	Data Hold Time (for "SDA _{OUT} " pin)	0	-	-	ns
	Data Hold Time (for "SDA _{IN} " pin)	300	_	-	ns
t_{SD}	Data Setup Time	100	-	-	ns
t _{SSTART}	Start condition Setup Time (Only relevant for a repeated Start condition)	0.6	-	-	us
t_{SSTOP}	Stop condition Setup Time	0.6	-	-	us
t_R	Rise Time for data and clock pin	-	-	300	ns
$t_{\rm F}$	Fall Time for data and clock pin	-	-	300	ns
t _{IDLE}	Idle Time before a new transmission can start	1.3	-	-	us

Figure 13-5: I^2C interface Timing characteristics

 Solomon Systech
 Jul 2011
 P 58/62
 Rev 1.1
 SSD1309

14 Application Example

Figure 14-1: Application Example of SSD1309Z

SSD1309 Rev 1.1 P 59/62 Jul 2011 **Solomon Systech**

15 PACKAGE INFORMATION

15.1 SSD1309Z Die Tray Information

Figure 15-1: SSD1309Z die tray information

Remarks:

- 1. Tray material: Permanent Antistatic
- 2. Tray color code: Black
- 3. Surface resistance $10^9 \sim 10^{12} \ \Omega$
- 4. Pocket bottom: Rough Surface

Parameter	Dimensions		
rarameter	mm (mil)		
W1	76.00±0.10 (2992)		
W2	68.00±0.10 (2677)		
W3	68.30±0.10 (2689)		
D_X	8.40±0.10 (331)		
TP_X	59.20±0.10 (2331)		
D_{Y}	5.50±0.10 (217)		
TP_{Y}	65.00±0.10 (2559)		
P_{X}	7.40±0.05 (291)		
P_{Y}	2.60±0.05 (102)		
X	5.85±0.05 (230)		
Y	1.02±0.05 (41)		
Z	0.40±0.05 (16)		
N (pocket number)	234		

 Solomon Systech
 Jul 2011
 P 60/62
 Rev 1.1
 SSD1309

15.2 SSD1309UR1 Detail Dimension

Figure 15-2 SSD1309UR1 Detail Dimension

SSD1309 Rev 1.1 P 61/62 Jul 2011 **Solomon Systech**

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2002/95/EC of the European Parliament and of the council of 27 January 2004 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard SJ/T 11363-2006 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品中有毒有害物质的限量要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

Solomon Systech Jul 2011 | P 62/62 | Rev 1.1 | SSD1309