

MCTR 701_1

Master Advanced Mechatronics

Lecturers: Luc Marechal, Christine Barthod, Georges Habchi

2021

Mechatronics common framework Lecture 2

Contents

Lecture 2

IMPLEMENTATION OF THE MECHATRONIC SYSTEMS RELIABILITY PREDICTION PROCESS

Implementation of a specific approach for mechatronic systems

 Application to the two industrial examples previously described

Contents

- Objectives
- Issues
- Preliminary steps to the implementation of the approach
- Mechatronic system
- Bibliographic review (state of the art)
- Proposed approach: 10 steps
- Consolidation of the proposed approach
- Descriptions of the steps' approach and illustrations
- Conclusions
- Improvement areas

Definitions

Quality = Conformance to specifications or requirements defined by customer at time t = 0

Improvement of the quality can be improved by different methods and techniques:

- ISO 9004:2008
- Total Quality Management (TQM)
- Statistical
- Process control
- Six Sigma
- Quality Function Deployment (QFD)
- Quality Circle,
- Taguchi method
- •

Reliability =

ability of a system or component to perform its required functions under stated conditions for a specified period of time

Definitions

Maintainability =

ability of an item, under stated conditions of use, to be retained in, or restored to, a state in which it can perform its required functions, when maintenance is performed under stated conditions and using prescribed procedures and resources

Mechatronics common framework

- To reduce the chance of failures, maintenance can be preventive or predictive:
 - **Corrective Maintenance**: carried out after fault recognition to put an entity into a state in which it can perform a required function.

Lecture 2

- Preventive Maintenance: carried out at predetermined intervals or according to prescribed criteria and intended to reduce the probability of failure or the degradation of the functioning of an entity.
- **Predictive Maintenance**: performed continuously or at intervals governed by observed condition to monitor, diagnose or trend a structure, system or components' condition indicators.

Definitions

Availability = probability that a product or system is in operation at a specified time

The simplest representation of availability (A) is:

$$A = \frac{Uptime \ of \ system}{Uptime \ of \ system + Downtime \ of \ system}$$

Uptime depends on reliability of the system where as downtime depends on maintainability of the system.

Thus availability is function of both reliability and maintainability.

Failure is inevitable for engineering systems.

Impact of failures:

- minor inconvenience and costs
- personal injury
- significant economic loss
- environmental impact
- deaths

Cause of failure:

- bad engineering design
- faulty manufacturing
- inadequate testing
- human error
- poor maintenance
- lack of protection against excessive stress

Chernobyl accident Bhopal gas tragedy space shuttle Columbia disaster

Need for Reliability and Safety Engineering

It is essential:

- to understand 'why' and 'how' failures occur to minimize them
- to know how often such failures may occur
- Reliability deals with the failure concept
- Safety deals with the consequences after the failure

Reliability and safety engineering are improved by the following factors:

- Design evaluation;
- Identification of critical components/events;
- Redundancy requirements;
- Burn-In/Accelerated life tests
- Establishment of preventive maintenance programs;
- Life cycle cost analysis

Mechatronics common framework Lecture 2

Issues

Mechatronics

multiple technologies

Functional integration

MECHATRONIC SYSTEM

Physical integration

- Reliability is traditionally studied by technology
 - → partitioning and analysis by technical department (electronics, mechanics, software ...)
- Reliability is studied phase by phase_(design, manufacturing,..)
 - → numerous dedicated methods exist with drawbacks, advantages and limitations

ed for a interdisciplina and overall approach

Objectives of reliability prediction of mechatronic systems

To propose an approach able to estimate the predictive reliability of a mechatronic system during the design phase, that can take into account:

- the intrinsic characteristics of mechatronic systems
- the different components and functions of the system
- the relations between these components and functions
- the mission profile

Markov

- FTA (Fault Tree Analysis)
- TOR (Technique of Operation Review)
- FMEA (Failure Mode Effect Analysis)

Bibliographic review / State of the art

Identification and analysis of the state of the art of the different approaches to study the reliability of mechatronic systems

Keywords	Ziegler 1996	Moncelet 1998	Khalfaoui 2003	Schoenig 2004	Mihalache 2007	Demri 2009
reliability	-	-	-	-	+	+
mechatronic	-	+	+	+	+	+
system						
modeling	+	+	+	+	+	+
simulation	-	+	-	+	+	+
interdisciplinary	-	-	-	-	-	-
dimension						
vertical dimension	•	-	-	-	+	-
qualitative study	-	+	+	-	-	+
quantitative study	+	+	-	+	+	+
technological			-	-	-	-
interdependences						

- Neither different functioning phasis, nor the mission profile and the influent factors are taken into account
- The physical and functional interactions created between the different technological parts are not studied
- No estimation of the global reliability

An innovative approach designed at SYMME lab - USMB

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

CrossMark

Lecture 2

Mechatronics common framework

An overall methodology for reliability prediction of mechatronic systems design with industrial application

Univ Savoie Mont Blanc, SYMME, F-74000 Annecy, France

ARTICLE INFO

Article history: Received 18 July 2015 Received in revised form 9 April 2016 Accepted 24 June 2016 Available online 9 July 2016

Keywords:
Mechatronic systems
Reliability
Mission profile
Dependencies
Interactions
Modeling
Simulation

ABSTRACT

We propose in this paper an overall ten-step methodology dedicated to the analysis and quantification of reliability during the design phase of a mechatronic system, considered as a complex system. The ten steps of the methodology are detailed according to the downward side of the V-development cycle usually used for the design of complex systems. Two main phases of analysis are complementary and cover the ten steps, qualitative analysis and quantitative analysis. The qualitative phase proposes to analyze the functional and dysfunctional behavior of the system and then determine its different failure modes and degradation states, based on external and internal functional analysis, organic and physical implementation, and dependencies between components, with consideration of customer specifications and mission profile. The quantitative phase is used to calculate the reliability of the system and its components, based on the qualitative behavior patterns, and considering data gathering and processing and reliability targets. Systemic approach is used to calculate the reliability of the system taking into account: the different technologies of a mechatronic system (mechanics, electronics, electrical.), dependencies and interactions between components and external influencing factors. To validate the methodology, the ten steps are applied to an industrial system, the smart actuator of Pack'Aero Company.

Proposed approach: initial considerations

Development model

- Based on the V- cycle
- Interdisciplinary and overall approach
- Qualitative and quantitative analysis
- Intrinsic characteristics taken into account at each step
- Under a defined mission profile
- Interactions considered

Proposed approach: initial considerations

Proposed approach: 10 steps

Qualitative analysis

Quantitative analysis

- 1. External functional analysis (APTE)
- 2. Internal functional analysis (Bloc Diagrams)
- 3. Organic analysis (Bloc Diagrams)
- 4. Analysis of the physical place of the components
- 5. Dysfunctional analysis (enriched FMEA)
- 6. Interactions analysis (Interactions matrix)
- 7. Qualitative modeling (RdP)
- Data gathering and processing (<u>FIDES</u>, <u>tests</u>, <u>feedback</u>...)
- 9. Modeling and simulation taking into account the mission profile and the interactions (RdP + Monte-Carlo, DF)
- 10. Analysis of simulation results

Proposed approach: 10 steps

- The estimation of forecast reliability needs to provide the following informations:
 - Complete specifications
 - Reliability objectives
 - Reliability data concerning the components of the system and that are not available in database

A strong involvement of the company is needed in the implementation of the approach

Consolidation of the approach

Examples of industrial systems

Choice of 2 examples in order to run through the approach to realise it and consolidate it:

- Simple mechatronic systems
- Principal data available
- Industrial experimented in reliability
- Geographic proximity

Example to illustrate

Smart actuator

Specifications

In addition to be a classical actuator, the smart actuator assume additional functions such as operating, monitoring, communicating, data processing, etc.

- > Transition from passive state to active state
- Using a linear direct action instead of a linear indirect one
- Optimisation of the immediate answer according to the needs
- Integration of electrical locking functions with or without electricity consumption

Example to illustrate

Using context

Continuous sorting line including 200 to 1000 wagons.

- ☐ The wagons carry parts from a station to another of the chain in continuous motion
- ☐ The actuator contributes to the realization of the function of wagons unloading

The finger of the smart actuator is used as a stop to open the shutter and release (let go) the load of wagon without stopping

Example to illustrate

1. External functional analysis

NPUTS

- System requirements specification
- Objectives
- Mission profile

1. External Functional Analysis

UTPUTS

- Main functions and constraints
- Interactions between the system and its environment

Describes:

- The expected funtion for each phasis of the profile
- The reactive functions to take into account the environment
- The contraints imposed by the users
- → To write the Functional Specification

Mission profile

Component failure rates are very sensitive to the stresses applied.

Stresses, which can be classified as environmental or self-generated, include:

Temperature Shock Vibration Humidity Ingress of foreign bodies	Environmental
Power dissipation Applied voltage and current Self-generated vibration Wear	Self-generated

The intended use and environment of a system must be accurately stated in order to realistically measure Reliability.

Mission profiles is an effective tool for that purpose

Mission profile

•The mission profile will be taken into account in the estimation of the predictive reliability.

Example of a mission profile for the actuator

- An influent factor: temperature
- Three different functioning phases: cold, temperate, hot

Mechatronics common framework

Lecture 2

Functional specification

Characteristics of the main function and constraint functions

MF: Allows wagon shutter opening when the wagon arrives at the unloading station,

CF1: Withstands the thermal environment,

CF2: Works with the installed electrical power,

CF3: Meets the requirements of legislation,

CF4: Meets the normative standards requirements,

CF5: Allows the master system to order operating (ON/OFF).

Function	Criteria/Target	Value/Information
	Average number of opening/closing cycles before the occurrence of a first failure (MTTF)	10 million of cycles
	Desired lifetime	10 years
MF	Operating information	Intermittent operation Electric power: 1 slot ON-OFF/60 ms Duration of an opening/closing cycle: 40 ms Time between two cycles: 1.67 s Operation time 20 h/24, 6 days/7
CF1	Temperature and duration of the hot phase Temperature and duration of the cold phase Temperature and duration of the temperate phase	120°C for 2/12 of cycles 5°C for 4/12 of cycles 70°C for 2 times 3/12 of cycles
CF2	Electric power and voltage	10 W and 24 V +/- 5%
CF3	Meet the legislation requirements	Low Voltage Directive: NSC 20-030 Directive clean machine (Example: Noise emitted by equipment NFEN 11201)
CF4	Meet the normative standard requirements	Degree of electrical protection: NFEN60529 Noise emitted by equipment: NFEN 11201
CF5	Working order Stop order	TOR function (1) TOR function (0)

2. Internal functional analysis

NPUTS

- System requirements specification, objectives, mission profile
- Main functions and constraints,
- Interactions between the system & its environment

To I/O of the External Functional Analysis

- OUTPUTS
- Functional architecture,
- Choice criterion of the proposed technical solutions
- Description of the internal system & the relationships between internal functions

- establishes relationships between the external functional analysis and possible solutions to meet the need.
- allows the definition of the functions identified into internal technical functions
 - → To make available some elements to compare objectives between different solutions

The Functional Block Diagram is a tool used to map the key internal functions and the relationships between these functions.

3. Organic Analysis

 Defines the architecture of the system, the decomposition into sub-systems and components

 Identifies the functional interactions between the different elements of the system to fit with the expected functions

3 sub-systems:

- Sub1= electrodynamic linear actuator with a mobile coil
- Sub2= contactless displacement sensor combining Hall probes and a mobile magnet
- Sub3= conditioning circuit board

4. Physical Implementation

NPUTS

- Sub-systems
- Components
- Interactions
- Interfaces

OUTPUTS

- Overall plan of the system
- Collateral interactions identification

Supplementary step proposed compared to a conventional design approach

- Optimises the **locations** of the parts or organs
- Highlights the physical proximity of components
- → To minimise the collateral interactions' effects on the reliability of the system

5. Dysfonctional Analysis

- Specifications
- Failure history
- System internal functions
- Interactions between the system and its environment
- System architecture
- Physical implementation
- Preliminary Analyze of Risk

Dysfunctional analysis

- Identification of potential damage, their causes & their effects on the system
- Action plan

- Identifies failure modes and rank them according to their effects on the product performance:Intrinsic failures

 - > Functional failures identified thanks to the organic architecture > Collateral failure issued from the
 - physical implementation analysis
- FMEA (Failure Modes and Effects) Analysis) → inductive approach to analyze the failure modes and their effects to order them (according to their criticity) to master them.

FMEA (Failure Mode Effect Analysis)

- FMEA is a widely used method for analyzing the reliability of engineering systems
- It involves studying a circuit or mechanical assembly to decide how its component parts contribute to the overall failure mode in question.
- The method consists of assessing the effect of each component part failing in each possible mode.

- Step 1: Define system boundaries and its associated requirements.
- Step 2: List system subsystems and components.
- Step 3: List each component's failure modes, the description, and the identification.
- Step 4: Assign failure occurrence probability/rate to each component failure mode.
- Step 5: List each failure mode effect/effects on subsystem(s), system, and plant.
- Step 6: Enter necessary remarks for each failure mode.
- Step 7: Review each critical failure mode and take necessary actions.

FMEA (Failure Mode Effect Analysis)

Description

- describes inherent causes of events that lead to system failure,
- determines their consequences
- formulates methods to minimize their occurrence or recurrence.
- allows identifying the critical elements of security and dormant faults.

Advantages

- Simple approach
- Large application domains: design and exploitation
- Analysis table giving a good traceability and decision support

Drawbacks / limitations

- Considered only one failure at a time
- Limited insight into the functional relationships between components,
- Time element in system operation cannot be represented.
- Limited insight into probabilistic system behavior,
- Better-adapted for mechanical or analog systems than digital ones

FMEA (Failure Mode Effect Analysis)

Enriched method

Classification of the failures according the damage's origin (intrinsic, collateral, and functional) and giving:

- its nature (first or second or by command)
- its event speed (sudden or progressive)
- its amplitude (partial or complete)

Sub- system	component	Function	Failure mode	Cause	Effects	Damage's origin	Classification : nature / event speed / amplitude
				Thermal <u>heating</u> , vibration, impact	No opening of the shutter	Collateral	Second, progressive, partial
			- Swelling of the cuivre wire [8].	Excessive pressure or excessive translation speed	No opening of the shutter	Collateral	Second, progressive, partial
	æ		Swelling of the frame Breakdown of the	Material fatigue [8]	No opening of the shutter	Intrinsic	First, progressive, complete
	Coil + frame		material - Breakdown of the wire [8]	Damage of inductor with magnet	No opening of the shutter	Fonctional (Inductor → Coil)	First, sudden, complete
			Wrong value of the current on the coil Wrong position of	Damage of H Bridge	No opening of the shutter	Fonctional (H-Bridge → Coil)	First, sudden, complete
mobile			the frame	Decentering of the rod	No opening of the shutter	Fonctional (Rod → coil frame)	First, sudden, complete

6. Dependency analysis of interactions

Additional analysis compared to a conventional design approach

- Identifies interactions defined and classified in the enriched FMEA (a criticality analysis will be necessary).
- Allows to make the choice of the interactions to be considered in modeling the system in terms of reliability.

Interactions matrix

Acts on		Subsystem 1			Subsystem 2		
		Comp 1	Comp 2	Comp 3	Comp i	Comp k	Comp n
Cubayatam	Comp 1		UF		BF		
Subsystem	Comp 2						
1	Comp 3						
Cubayatan	Comp i					UC	
Subsystem	Comp k		BC		UF		
2	Comp n						

UF for unidirectional functional interaction
BF for bidirectional functional interaction
UC for unidirectional collateral interaction
BC for bidirectional collateral interaction

- Power supply acts on controlled power and on Hbridge,
- Controlled power acts on micro-controller,
- H-bridge acts on current sensor and on coil,
- Micro-controller acts on H-bridge and on master system,
- Current sensor acts on micro-controller,
- Coil acts on shutter,
- Magnet acts on tappet and on Hall sensor,
- Coil acts on inductor & magnet / inductor & magnet acts on coil,
- Magnet acts on shutter / Shutter acts on magnet.

7. Qualitative Modeling

ENTREE

- System internal functions
- Interactions between the system and its environment
- System architecture
- FMEA

7. Qualitative Modeling

SORTIES

 Functional & dysfunctional models of components, sub-systems and system Models the functional and dysfunctional behavior of the system and its components, taking into account the interactions

- States: idle, operating, breakdown (whatever the mission profile phase), repair and degraded,
- Transitions between states: failure modes, events, repair modes

Qualitative modeling

- Modeling of both componants: guide bearing / coil
 - Bearing wear
 - Collateral interaction linked to the physical implementation guide bearing / coil

- Interactions modeled by implemented new states and modes:
 - > 5 states for each component: idle, operating, breakdown, repair and degraded
 - > 3 failure modes for the bearing, 2 failure modes for the coil
 - > 2 repair modes for the bearing, 1 repair mode for the coil

Relevant books

Mechatronics common framework Lecture 2

Contact Information

Université Savoie Mont Blanc

Polytech' Annecy Chambery Chemin de Bellevue 74940 Annecy France

https://www.polytech.univ-savoie.fr

Lecturer

Dr Luc Marechal (luc.marechal@univ-smb.fr) SYMME Lab (Systems and Materials for Mechatronics)

Acknowledgement

Pr Georges Habchi Pr Christine Barthod SYMME Lab (Systems and Materials for Mechatronics) for the original writing of this lecture