Universidad Nacional del Altiplano

Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Autor: Luz Magaly Turpo Mamani

Código: 227325

Link github: https://github.com/luz897/ACTIVIDAD-03

Trabajo Encargado - Nº 003

Actividad N° 3 - El lenguaje de la optimización

Ejercicio 2.2

Sea $f: \mathbb{R}^n \to \mathbb{R}$ y $x^* = (x_1^*, \dots, x_n^*) \in \mathbb{R}^n$. Demuestra que $f(x^*)$ es un máximo de f si y solo si $-f(x^*)$ es un mínimo de -f.

Demostración

• Definición de máximo: Decimos que $f(x^*)$ es un máximo de f en \mathbb{R}^n si:

$$\forall x \in R^n, f(x) \le f(x^*)$$

Esto significa que $f(x^*)$ es el valor más grande que f puede tomar en todo \mathbb{R}^n .

■ Definición de mínimo: Decimos que $-f(x^*)$ es un mínimo de -f en \mathbb{R}^n si:

$$\forall x \in \mathbb{R}^n, -f(x) \ge -f(x^*)$$

Esto significa que $-f(x^*)$ es el valor más pequeño que -f puede tomar en todo \mathbb{R}^n .

■ Relación entre máximo y mínimo: Si $f(x^*)$ es un máximo de f, entonces para todo $x \in \mathbb{R}^n$, tenemos:

$$f(x) \le f(x^*)$$

Multiplicando ambos lados de esta desigualdad por -1 (invirtiendo la desigualdad), obtenemos:

$$-f(x) \ge -f(x^*)$$

Lo cual implica que $-f(x^*)$ es un mínimo de -f.

Si $-f(x^*)$ es un mínimo de -f, entonces para todo $x \in \mathbb{R}^n$, tenemos:

$$-f(x) \ge -f(x^*)$$

Multiplicando ambos lados de esta desigualdad por -1, obtenemos:

$$f(x) \le f(x^*)$$

Lo cual implica que $f(x^*)$ es un máximo de f.

Conclusión

Hemos demostrado que $f(x^*)$ es un máximo de f si y solo si $-f(x^*)$ es un mínimo de -f. Esto establece la equivalencia entre los máximos de una función y los mínimos de su opuesto.

Ejercicio 2.3

Supongamos que s_1 y s_2 son supremos de algún conjunto $S \subseteq R$. Demuestra que $s_1 = s_2$, estableciendo que el supremo de un conjunto es único.

Demostración

Definición de supremo

El supremo de un conjunto $S \subseteq R$, denotado por sup S, cumple las siguientes dos propiedades:

1. s_1 es una cota superior de S, es decir, para todo $x \in S$:

$$x \in S \implies x \le s_1.$$

2. s_1 es la *mínima cota superior*, lo que significa que si M es cualquier otra cota superior de S (es decir, $x \leq M$ para todo $x \in S$), entonces:

$$s_1 \leq M$$
.

De manera similar, s_2 también es un supremo de S, por lo que se cumple que:

1. s_2 es una cota superior de S, es decir, para todo $x \in S$:

$$x \in S \implies x < s_2$$
.

2. s_2 es la mínima cota superior, lo que implica que si M es una cota superior de S, entonces:

$$s_2 \leq M$$
.

Relación entre s_1 y s_2

Ya que tanto s_1 como s_2 son supremos de S, vamos a demostrar que $s_1 = s_2$.

■ Dado que s_1 es una cota superior de S y s_2 es la cota superior mínima de S, por la propiedad de minimalidad del supremo, tenemos que:

$$s_1 \leq s_2$$
.

■ De manera similar, dado que s_2 es una cota superior de S y s_1 es la cota superior mínima de S, también se cumple que:

$$s_2 \leq s_1$$
.

Conclusión

Dado que hemos demostrado que $s_1 \le s_2$ y $s_2 \le s_1$, por la propiedad de antisimetricidad de las desigualdades, podemos concluir que:

$$s_1 = s_2$$
.

Por lo tanto, se ha demostrado que si s_1 y s_2 son supremos de un conjunto $S \subseteq R$, entonces $s_1 = s_2$, lo que establece que el supremo de un conjunto es único:

$$s_1 = s_2$$

Nota

Una demostración similar se puede utilizar para el *ínfimo* de un conjunto $S \subseteq R$, mostrando que, si ínf S existe, también es único.