Machine Learning applied to Planetary Sciences

PTYS 595B/495B Leon Palafox

Validation Methods

This is were we know who is worthy of using ML

Validation Methods

- Cross validation
 - Test different models
 - Obtain reliable statistics
- Bias -- Variance Analysis
 - Regularization
 - Overfitting
- Area under the curve (AUC)

Cross Validation

- The hypothesis with the smallest training error, won't be the best.
 - Why?
 - We need test sets and training sets
- Our first tool is called hold-out cross validation.

Smallest training error

Read team review

- What is a red team?
 - Independent (non-biased set of reviewers)
- Why do we need a red team.
 - Avoid journal overfitting.
 - Our public is not us, but a wider audience.
- Ideally there should be red teams for everything.
 - Public talks, presentations, etc.

General elections

- What is the difference between a parliamentary and presidential democracy.
 - Presidential democracy prevents overfitting.
 - Primaries
 - Opinion surveys
 - Parliamentary overfits
 - Prime minister is selected by politicians
 - Brexit!

Movies

- Blockbusters try to generalize as much as possible.
 - Test audiences.
 - Big budget actors (not necessarily good).
 - "Wide appeal"
- Oscar winners (generally) overfit to a select group of movie critics.

Cross-Validation

- Is the most basic tool to prevent overfitting.
 - Machine Learning 101
- Is a systematic approach to find the best set of parameters in our algorithms.
 - SVM parameters
 - Regularization weights.
 - Size of the Neural Network

Hold-out cross validation

What is M

- Everything that we have assigned arbitrarily is fair game.
- Linear Regression
 - Order of the polynomial, regularization parameter
- SVM
 - Kernel, variables associated with kernel
- NN
 - Number of layers, activation functions, number of units.

Problems with Hold-out CV

We are "wasting" ~70% of our data.

 For problems with few data points, this is just not desirable

- Be wary of papers that used CV, but have only few data points.
 - Be even more skeptic of papers that don't mention CV at all.

An even better CV

- K-fold CV
 - Split the data into k subsets (disjoint)
 - For each j = 1..k
 - Train model (M_i) in every subset, except j
 - Get an error (E_{ii}) for Model i in iteration j
 - Total error for M_i is going to be the average of all the errors (E_{ii})

K-Fold Cross validation

K-Fold Cross validation

Advantages of CV

- We can run each fold in an independent CPU.
 - Sklearn is optimized to do the folds in parallel.

- Unlike other validation approaches is straightforward in its implementation.
 - Bayesian techniques are particularly convoluted when it comes to validation methods.

Disadvantages

- If we don't have much data, the folds are going to be very correlated.
 - This still results in an overfitting to the data.
- It obviously takes more time to run the algorithm (K x #Models) times.
 - Neural Networks take remarkably long times to be run a single time.
- The big one:

How many folds are good?

Say hi to your first hyperparameter, which is a parameter to set parameters.

How many folds are good

K = 3 does a decent job

• If is a simple algorithm, like SVM or Logistic regression, you can always use 10.

- Leave-one out (K=N-1) is a travesty and should not be used.
 - We have as many folds as data points -1.
 - Glorified bootstrapping.