Faculté des Sc. Exactes et Sc. de la Nature et la Vie

Master 1: M1.4 (Modèle linèaire)

Examen (1h)

Exercice 1 (ACP, 16 pts)

Considérons le tableau de données suivant :

	Math	Info	Gestion
Ahmed	0	4	0
Ibrahim	1	3	1
Youcef	2	2	3
Imane	3	1	1
Hicham	4	0	0

où les lignes représentent les individus (noms de quelques étudiants d'une formation) et les colonnes les variables (notes sur 4 en mathématiques, informatique et gestion). Le tableau de données peut être représenté par la matrice de données brutes :

$$X^* := \left(egin{array}{ccc} 0 & 4 & 0 \ 1 & 3 & 1 \ 2 & 2 & 3 \ 3 & 1 & 1 \ 4 & 0 & 0 \end{array}
ight).$$

- 1. Calculer la matrice X des données centrées.(2pts)
- 2. Vérifier que la matrice de variance-covariance vaut

$$V := \left(\begin{array}{ccc} 2 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 1.2 \end{array} \right) . (2pts)$$

- 3. Vérifier que les vecteurs $u_1 := (-1/\sqrt{2}, 1/\sqrt{2}, 0)^t$ et $u_2 := (0, 0, 1)^t$, sont les vecteurs propres de V associés aux valeurs propres non-nulles. Trouvez-les (2pt).
- 4. Vérifier l'orthonormalité des deux vecteurs u_1 et u_2 . (2pt)
- 5. Définir les deux axes principaux du nuage de point X. (1pt)
- 6. Déterminer l'inertie totale par rapport au premier plan principal.(1pt)
- 7. Déterminer l'inertie relative à chaque axe du premier plan principal.(1pt)
- 8. Quelles sont coordonnées des individus (de X) par rapport au plan défini par la base $\{u_1, u_2\}$. (2pt)
- 9. Déduire de la question 8, les composantes principales du premier plan principal.(1pt)
- 10. Peut-on représenter parfaitement le nuage des individus à deux dimensions? Si oui, représentez les individus de X sur le plan défini par la base $\{u_1, u_2\}$. (2pt)

Exercice 2 (AFC, 4pts)

Choisir les bonnes réponses qui correspondent aux 4 questions suivantes:

- 1. L'analyse factorielle des correspondances est basée sur:
- a) La matrice V_r b) la matrice M_rV_r c) la matrice V_rM_r
- 2. La dimension de la matrice V_rM_r égale à:
- a) $p \times q$ b) $p \times p$ c) $q \times q$
- 3. Le nombre de valeurs propres de la matrice V_cM_c est:
- a) p b) q c) pq.
- 4. Le degrés de liberté de la statistique de khi-deux qui correspond à la table de contingence égale à:
- a) p + q b) pq c) (p 1) (q 1)
- 5. La p-value du test de khi-deux vaut 0.01. Peut-on effectuer l'AFC?
- **6**. Nous avons p = 3 et q = 10. Que choisissez vous?
- a) AFC des profils-lignes b) AFC des profils-colonnes
- 7. Nous avons p=3 et q=10. Le $rang(V_rM_r)$ est:
- $a) = 30 \ b) < 18 \ c) < 20.$
- 8) L'écart à l'indépendance égale à:
- a) $n\chi_{obs}^2$ b) χ_{obs}^2/n c) l'inertie totale.

Corrigé type de l'Examen

Solution de l'exercice 1.

1) Calcul de la matrice X des données centrées. Le centre de gravité est

$$g = (10/5, 10/5, 5/5)^t = (2, 2, 1)^t$$
.

La matrice des données centrée est

$$X := \begin{pmatrix} 0-2 & 4-2 & 0-1 \\ 1-2 & 3-2 & 1-1 \\ 2-2 & 2-2 & 3-1 \\ 3-2 & 1-2 & 1-1 \\ 4-2 & 0-2 & 0-1 \end{pmatrix} = \begin{pmatrix} -2 & 2 & -1 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & -1 & 0 \\ 2 & -2 & -1 \end{pmatrix}.$$

La matrice de variance-covariance est:

$$V = \frac{1}{5} \begin{pmatrix} -2 & 2 & -1 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & -1 & 0 \\ 2 & -2 & -1 \end{pmatrix}^{T} \begin{pmatrix} -2 & 2 & -1 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & -1 & 0 \\ 2 & -2 & -1 \end{pmatrix} =: \begin{pmatrix} 2 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 1.2 \end{pmatrix}.$$

Vérifions que les vecteurs $u_1 := (-1/\sqrt{2}, 1/\sqrt{2}, 0)^t$ et $u_2 := (0, 0, 1)^t$, sont les vecteurs propres de V associés aux valeurs propres non-nulles. Nous devons montrer l'existence de deux constantes non nulles λ_1 et λ_2 , appellées valeurs propres, telles que $Vu_i = \lambda_i u_i$ pour i = 1, 2. En effet,

$$Vu_1 = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 1.2 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} = \begin{pmatrix} -2\sqrt{2} \\ 2\sqrt{2} \\ 0 \end{pmatrix}.$$

Comme $Vu_1 = \lambda_1 u_1$, alors

$$\begin{pmatrix} -2\sqrt{2} \\ 2\sqrt{2} \\ 0 \end{pmatrix} = \lambda_1 \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix},$$

ce qui implique que $-2\sqrt{2} = -\lambda_1/\sqrt{2}$ et $2\sqrt{2} = \lambda_1/\sqrt{2}$. Les deux équations donnent une solution unique $\lambda_1 = 4$. En faisant la même procédure pour u_2 , on trouve $\lambda_2 = 1.2$.

4. Vérifier l'orthonormalité des deux vecteurs u_1 et u_2 : on doit verifier que leur produit scalaire vaut zero et chacun de norme vaut 1. En effet

$$\langle u_1, u_2 \rangle = u_1^t u_2 = \left(-1/\sqrt{2}, 1/\sqrt{2}, 0\right) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0 + 0 + 0 = 0.$$

$$\|u_1\|^2 = u_1^t u_1 = \left(-1/\sqrt{2}, 1/\sqrt{2}, 0\right) \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} = \frac{1}{2} + \frac{1}{2} + 0 = 1.$$

$$\|u_2\|^2 = u_2^t u_2 = (0, 0, 1) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0 + 0 + 1 = 1.$$

- 5. Les deux axes principaux du nuage de point X sont: $E_i = Vect\{u_i\}, i = 1, 2.$
- 6. L'inertie totale par rapport au premier plan principal: $I_T = \lambda_1 + \lambda_2 = 4 + 1.2 = 5.2$.

Remarque: certains étudiants écrivent $I_T = \lambda_1 + \lambda_2 + \lambda_2$. C'est faux, meme si le résultat est le même (coup de chance $\lambda_3 = 0$!).

7. Les inerties relatives à chaque axe du premier plan principal sont

$$I_1(E_1/E_1 \oplus E_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2} = \frac{4}{5.2} = 0.76923 \simeq 77\%$$

$$I_1\left(E_2/E_1 \oplus E_2\right) = \frac{\lambda_2}{\lambda_1 + \lambda_2} = \frac{1.2}{5.2} = 0.23077 \simeq 23\%$$

8. Coordonnées des individus (de X) par rapport au plan défini par la base $\{u_1, u_2\}$: sont les lignes de la matrice

$$Y = XU = \begin{pmatrix} -2 & 2 & -1 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & -1 & 0 \\ 2 & -2 & -1 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2.82 & -1 \\ 1.41 & 0 \\ 0 & 2 \\ -1.41 & 0 \\ -2.82 & -1 \end{pmatrix}.$$

9. Les composantes principales du premier plan principal sont les collones de la matrice Y, c'est a dire

$$c_1 = \begin{pmatrix} 2.82 \\ 1.41 \\ 0 \\ -1.41 \\ -2.82 \end{pmatrix} \text{ et } c_2 = \begin{pmatrix} -1 \\ 0 \\ 2 \\ 0 \\ -1 \end{pmatrix}.$$

Peut-on représenter parfaitement le nuage des individus à deux dimensions: oui car l'enertie du troisieme axe principale vaut zero et par consequent l'enertie totale de l'espaces fromé par les trois axes principaux égale à l'inertie totale du paln formé par les deux premiers axe principaux. La représentation des individus de X sur le plan défini par la base $\{u_1, u_2\}$ est triviale.

Solution de l'exercice 2

Choisir les bonnes réponses qui correspondent aux 4 questions suivantes:

- 1. L'analyse factorielle des correspondances est basée sur:
- c) la matrice $V_r M_r$
- **2**. La dimension de la matrice V_rM_r égale à:
- c) $q \times q$
- **3**. Le nombre de valeurs propres de la matrice $V_c M_c$ est:
- a) p
- 4. Le degrés de liberté de la statistique de khi-deux qui correspond à la table de contingence égale à:
- c) (p-1)(q-1)
- 5. La p-value du test de khi-deux vaut 0.01. Peut-on effectuer l'AFC? oui car 0.01 < 0.05 donc les deux variables à étuider sont dépendantes.
- **6.** Nous avons p=3 et q=10. Que choisissez vous?

AFC des profils-colonnes

- 7. Nous avons p=3 et q=10. Le rang (V_rM_r) est:
- (b) < 18
- 8) L'écart à l'indépendance égale à:
- b) χ_{obs}^2/n c) l'inertie totale.