

GLO-4030/7030 APPRENTISSAGE PAR RÉSEAUX DE NEURONES PROFONDS

Détection Segmentation

Vision: tâches principales

Classification

CAT

Détection

DOG, DOG, CAT

Segmentation

GRASS, CAT, TREE, SKY

Segmentation d'instances

DOG, DOG, CAT

Détection

Détection

- Une des difficultés est que l'on ne connait pas le nombre exact d'instances dans l'image
 - si on savait d'avance que les images ne contiennent au maximum qu'un chat et un chien :

• Sujet de recherche très fertile en soit

Détection: définition

- Pour:
 - une image d'entrée
 - une liste prédéterminée de classes
- Trouver, pour tous les objets présents :

- Nombre de prédictions va varier d'une image à l'autre
 - Architecture doit en tenir compte

Détection via classification

- Possible de faire de la détection par un réseau de classification
- Approche par fenêtre coulissante (crops)
- Passe chaque crop dans un réseau classificateur
- Conserve *n* prédictions les plus confiantes

- Choix de la géométrie de la fenêtre :
 - taille, aspect ratio
- **Fastidieux**, car des milliers de passes dans le réseau classificateur : dizaines de secondes

Catégories d'algorithmes

- Basé sur des régions proposées (region proposal)
 - R-CNN
 - Fast-RCNN
 - Faster RCNN

- **Grille fixe** (grid-based)
 - YOLO (v1, v2, v3)
 - SSD (single-shot detection)

Region proposal (classique)

 Algorithmes qui proposent des régions prometteuses en terme de présence d'objets

- Basés parfois sur des heuristiques
 - Recherche de blobs
 - Distributions particulières de contours (edge)
- Selective Search propose 1000 régions en quelques seconds sur CPU (pas temps-réel)
- Voir aussi Edge Boxes

R-CNN (2014)

- RoI (region of interest) sont des rectangles
- Ajout d'une classe background
- Lent : inférence en 47 secondes par image, à cause de l'algorithme de proposition de régions

Ajustement de la *bounding box* via tête régression

Classification avec SVM

Passe dans un backbone CNN

Déforme vers taille unique d'image d'entrée

Applique un algorithme de proposition de régions (RoI) (2k)

10

Temps de calcul

- 2 sec Prop RoI
- 0.3 sec partie réseau

Perte régression
$$\operatorname{smooth}_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1 \\ |x| - 0.5 & \text{otherwise} \end{cases}$$

Ajustement des la *bounding box* via tête de régression

Classification avec réseau linéaire + softmax

Déforme vers taille unique d'image d'entrée

Projette les RoI dans le feature map

Passe dans un backbone CNN

Applique un algorithme de proposition de régions (RoI) (Selective Search)

Faster R-CNN

- Laisser le réseau faire les propositions :
 RPN (Region Proposal Network)
- Accélère grandement le processus
- RPN s'améliore via backprop des pertes
- Introduction de 9 prototypes de bounding box (anchor box):

Faster R-CNN: Fully-convolutional

Appliquer un réseau fullyconnected avec n sorties, = filtres de de manière coulissante

Appliquer *n* convolution

Fully-convolutional network (FCN)

Approche détection par fenêtre coulissante mais très efficace!13

Faster R-CNN: Fully-convolutional

Coulissage via convolution : très rapide

Détection par coulissage « traditionnel »

têtes de prédictions

Faster R-CNN

...simplement en ajoutant quelques couches de convolution en guise de têtes

têtes de prédictions

Faster R-CNN

Gradients sur les pertes vont aider les deux réseaux

Prendre les (300-2000) RoI avec les scores d'objectedness les plus élevés

Déforme vers taille unique de feature map

Temps total d'exécution : 200 ms!

Approche sans proposal (Yolo v3)

- Grille régulière (7x7 → feature map)
- Pour chaque position centrale de la grille
 - pour chaque anchor box, prédire :
 - classe (incluant la classe background)
 - régression (b_x, b_y, b_w, b_h) sur les paramètres de l'anchor box + confiance (objectedness)
- Prédictions obtenues via Fully-convolutional (FCN) d'une 1x1 : très rapide! (20 ms)

