MAP-UA.120: Discrete Mathematics Midterm Exam II

Spring 2013

Name:					
This exam is scheduled for 110 minutes.	No calculators.	notes.	or other	outside	materials

are permitted. Show all work to receive full credit, except where specified. The exam is worth 80 points.

Please read all directions thoroughly.

Please read and sign the following statement.

I, the undersigned, hereby affirm that I will not share the contents of this exam with any person or animal, living or deceased. Furthermore, I have not received outside assistance in the midst of nor prior to taking this exam.

- (1) (20 points) For each term below, give a precise mathematical definition or a precise mathematical statement of the result, as appropriate.
 - (a) permutation

SOLUTION:

A permutation $\pi: A \to A$ is a bijection from a set to itself.

(b) antisymmetric relation

SOLUTION:

An antisymmetric relation $R \subseteq A \times A$ is a relation such that

$$\forall x, y \in A, xRy \land yRx \rightarrow x = y.$$

(c) Well-Ordering Principle

SOLUTION:

Every nonempty subset of the natural numbers has a least element. That is,

$$\forall S \in 2^{\mathbb{N}} \setminus \{\emptyset\}, \exists x \in S, \forall y \in S, x \le y.$$

(d) one-to-one function

A function $f: A \to B$ is a function such that

$$\forall x, y \in A, f(x) = f(y) \to x = y.$$

(e) the big theorem about sequences generated by polynomials There exists a natural number k such that $\Delta^{k+1}a_n=0$ for all n if and only if a_n is a polynomial sequence. Furthermore,

$$a_n = \sum_{\ell=0}^k \binom{n}{\ell} \Delta^{\ell} a_0$$

- (2) (25 points)
 - (a) Write the permutation $(2,4,5,3)(1,6) \circ (1,5,2,6)(3,4)$ as a composition of disjoint cycles.

SOLUTION:

(b) Use the Euclidean Algorithm to compute the greatest common divisor of 42 and 140.

SOLUTION:

$$140 = 42 \cdot 3 + \mathbf{14}$$
$$42 = 14 \cdot 3 + 0$$

(c) How many digits of the decimal expansion of π would one have to check to be guaranteed to find a repeated 7-digit sequence (overlapping like . . . $\underline{123721237212}$. . . counts as a repeated sequence)? Support your answer.

SOLUTION:

There 10^7 possibilities. We there fore need $10^7 + 1$ sequences of seven digits. This takes 10000007 digits.

(d) Which properties among the five discussed in class does the following relation on the set $\{1, 2, 3, 4, 5, 6\}$ have? No justification is required.

SOLUTION:

reflexive, antisymmetric, and transitive.

(e) Recall that $\lfloor x \rfloor$ stands for the "the greatest integer less than or equal to x". Let R be the following equivalence relation on the integers.

$$R = \{(x,y) : x,y \in \mathbb{Z} \land \lfloor \sqrt{x} \rfloor = \lfloor \sqrt{y} \rfloor \}$$

Write out the elements of the equivalence class [27].

SOLUTION:

 $\lfloor \sqrt{27} \rfloor = \lfloor 5.196... \rfloor = 5$ so the equivalence class of 27 is all number whose square root is between 5 (included) and 6 (excluded).

$$[27] = \{25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35\}$$

- (3) (5 points each) Prove or disprove each statement.
 - (a) Recall that S_{11} is the set of all permutations on the set $\{1, 2, 3, ..., 11\}$. Define the function $f: S_{11} \to S_{11}$ by the formula

$$f(\pi) = (1, 2, 3) \circ \pi.$$

Then, f is an injective function on S_{11} .

SOLUTION:

We wish to prove: $\forall \pi, \sigma \in S_{11}, f(\pi) = f(\sigma) \to \pi = \sigma$.

Suppose $f(\pi) = f(\sigma)$. Then,

$$(1,2,3) \circ \pi = (1,2,3) \circ \sigma$$

Now compose with the permutation $(1,3,2) = (1,2,3)^{-1}$ on both sides.

$$(1,3,2)\circ (1,2,3)\circ \pi = (1,3,2)\circ (1,2,3)\circ \sigma$$

$$\iota \circ \pi = \iota \circ \sigma$$

$$\pi = \sigma$$

Note: ι here is the identity function. \square

(b) Recall that S_{11} is the set of all permutations on the set $\{1, 2, 3, \dots, 11\}$. Define the function $f: S_{11} \to S_{11}$ by the formula

$$f(\pi) = \pi \circ \pi.$$

Then, f is an injective function on S_{11} .

SOLUTION:

We show this is not one-to-one by exhibiting two permutations that get mapped to the same permutation under f.

$$f(\iota) = \iota \circ \iota = \iota$$

$$f((1,2)) = (1,2) \circ (1,2) = \iota$$

Note: ι here is the identity function. \square

(4) (10 points) Let $a,b\in\mathbb{Z}$, and let b>0. Show that the smallest element of the set $\{a-qb:q\in\mathbb{Z}\wedge a-qr\geq 0\}$

exists and is necessarily less than b.

(bonus) (5 points) Let \sim be the relation on sets where $A \sim B$ provided there exists a bijection $f:A \to B$. Prove or disprove the statement, "If A, B and C are sets and $A \sim B$, then $A \cup C \sim B \cup C$."

(For grading purposes. Please do not write on this page.)

Problem	Problem	Points
Number	Points	Earned
1	25	
2	25	
3	20	
4	10	
bonus	5	
Total	80	