Cryptography and Network Security

INTRUSION DETECTION SYSTEM

Session Meta Data

Author	Dr T Sree Sharmila
Reviewer	
Version Number	1.0
Release Date	7 August 2018

Revision History

Revision Date	Details	Version no.
		1.0

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Intruders

- significant issue for networked systems is hostile or unwanted access
- either via network or local
- can identify classes of intruders:
 - masquerader
 - misfeasor
 - clandestine user
- varying levels of competence

Intruders

- clearly a growing publicized problem
 - from "Wily Hacker" in 1986/87
 - to clearly escalating CERT stats
- range
 - benign: explore, still costs resources
 - serious: access/modify data, disrupt system
- led to the development of CERTs
- intruder techniques & behavior patterns constantly shifting, have common features

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Examples of Intrusion

- remote root compromise
- web server defacement
- guessing / cracking passwords
- copying viewing sensitive data / databases
- running a packet sniffer
- distributing pirated software
- using an unsecured modem to access net
- impersonating a user to reset password
- using an unattended workstation

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Hackers

- motivated by thrill of access and status
 - hacking community a strong meritocracy
 - status is determined by level of competence
- benign intruders might be tolerable
 - do consume resources and may slow performance
 - can't know in advance whether benign or malign
- IDS / IPS / VPNs can help counter
- awareness led to establishment of CERTs
 - collect / disseminate vulnerability info / responses

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Hacker Behavior Example

- 1. select target using IP lookup tools
- 2. map network for accessible services
- 3. identify potentially vulnerable services
- 4. brute force (guess) passwords
- 5. install remote administration tool
- 6. wait for admin to log on and capture password
- 7. use password to access remainder of network

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Criminal Enterprise

- organized groups of hackers now a threat
 - corporation / government / loosely affiliated gangs
 - typically young
 - often Eastern European or Russian hackers
 - often target credit cards on e-commerce server
- criminal hackers usually have specific targets
- once penetrated act quickly and get out
- IDS / IPS help but less effective
- sensitive data needs strong protection

Criminal Enterprise Behavior

- act quickly and precisely to make their activities harder to detect
- 2. exploit perimeter via vulnerable ports
- 3. use trojan horses (hidden software) to leave back doors for re-entry
- 4. use sniffers to capture passwords
- do not stick around until noticed
- 6. make few or no mistakes.

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Insider Attacks

- among most difficult to detect and prevent
- employees have access & systems knowledge
- may be motivated by revenge / entitlement
 - when employment terminated
 - taking customer data when move to competitor
- IDS / IPS may help but also need:
 - least privilege, monitor logs, strong authentication, termination process to block access & mirror data

Insider Behavior Example

- create network accounts for themselves and their friends
- 2. access accounts and applications they wouldn't normally use for their daily jobs
- 3. e-mail former and prospective employers
- 4. conduct furtive instant-messaging chats
- 5. visit web sites that cater to disgruntled employees, such as f'dcompany.com
- 6. perform large downloads and file copying
- 7. access the network during off hours.

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Intrusion Techniques

- aim to gain access and/or increase privileges on a system
- often use system / software vulnerabilities
- key goal often is to acquire passwords
 - so then exercise access rights of owner
- basic attack methodology
 - target acquisition and information gathering
 - initial access
 - privilege escalation
 - covering tracks

Password Guessing

- one of the most common attacks
- attacker knows a login (from email/web page etc)
- then attempts to guess password for it
 - defaults, short passwords, common word searches
 - user info (variations on names, birthday, phone, common words/interests)
 - exhaustively searching all possible passwords
- check by login or against stolen password file
- success depends on password chosen by user
- surveys show many users choose poor

Password Capture

- another attack involves password capture
 - watching over shoulder as password is entered
 - using a trojan horse program to collect
 - monitoring an insecure network login
 - eg. telnet, FTP, web, email
 - extracting recorded info after successful login (web history/cache, last number dialed etc)
- using valid login/password can impersonate user
- users need to be educated to use suitable precautions/countermeasures

Intrusion Detection

- inevitably will have security failures
- so need also to detect intrusions so can
 - block if detected quickly
 - act as deterrent
 - collect info to improve security
- assume intruder will behave differently to a legitimate user
 - but will have imperfect distinction between

Intrusion Detection

24

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Approaches to Intrusion Detection

- statistical anomaly detection
 - attempts to define normal/expected behavior
 - threshold
 - profile based
- rule-based detection
 - attempts to define proper behavior
 - anomaly
 - penetration identification

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Audit Records

- fundamental tool for intrusion detection
- native audit records
 - part of all common multi-user O/S
 - already present for use
 - may not have info wanted in desired form
- detection-specific audit records
 - created specifically to collect wanted info
 - at cost of additional overhead on system

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Statistical Anomaly Detection

threshold detection

- count occurrences of specific event over time
- if exceed reasonable value assume intrusion
- alone is a crude & ineffective detector

profile based

- characterize past behavior of users
- detect significant deviations from this
- profile usually multi-parameter

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Audit Record Analysis

- foundation of statistical approaches
- analyze records to get metrics over time
 - counter, gauge, interval timer, resource use
- use various tests on these to determine if current behavior is acceptable
 - mean & standard deviation, multivariate, markov process, time series, operational
- key advantage is no prior knowledge used

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Rule-Based Intrusion Detection

- observe events on system & apply rules to decide if activity is suspicious or not
- rule-based anomaly detection
 - analyze historical audit records to identify usage patterns & autogenerate rules for them
 - then observe current behavior & match against rules to see if conforms
 - like statistical anomaly detection does not require prior knowledge of security flaws

Rule-Based Intrusion Detection

rule-based penetration identification

- uses expert systems technology
- with rules identifying known penetration, weakness patterns, or suspicious behavior
- compare audit records or states against rules
- rules usually machine & O/S specific
- rules are generated by experts who interview & codify knowledge of security admins
- quality depends on how well this is done

Base-Rate Fallacy

- practically an intrusion detection system needs to detect a substantial percentage of intrusions with few false alarms
 - if too few intrusions detected -> false security
 - if too many false alarms -> ignore / waste time
- this is very hard to do
- existing systems seem not to have a good record

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Distributed Intrusion Detection

- traditional focus is on single systems
- but typically have networked systems
- more effective defense has these working together to detect intrusions
- issues
 - dealing with varying audit record formats
 - integrity & confidentiality of networked data
 - centralized or decentralized architecture

Distributed Intrusion Detection - Architecture

Distributed Intrusion Detection – Agent Implementation

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Honeypots

- decoy systems to lure attackers
 - away from accessing critical systems
 - to collect information of their activities
 - to encourage attacker to stay on system so administrator can respond
- are filled with fabricated information
- instrumented to collect detailed information on attackers activities
- single or multiple networked systems
- cf IETF Intrusion Detection WG standards

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Password Management

- front-line defense against intruders
- users supply both:
 - login determines privileges of that user
 - password to identify them
- passwords often stored encrypted
 - Unix uses multiple DES (variant with salt)
 - more recent systems use crypto hash function
- should protect password file on system

Password Studies

- Purdue 1992 many short passwords
- Klein 1990 many guessable passwords
- conclusion is that users choose poor passwords too often
- need some approach to counter this

Managing Passwords - Education

- can use policies and good user education
- educate on importance of good passwords
- give guidelines for good passwords
 - minimum length (>6)
 - require a mix of upper & lower case letters, numbers, punctuation
 - not dictionary words
- but likely to be ignored by many users

Managing Passwords - Computer Generated

- let computer create passwords
- if random likely not memorisable, so will be written down (sticky label syndrome)
- even pronounceable not remembered
- have history of poor user acceptance
- FIPS PUB 181 one of best generators
 - has both description & sample code
 - generates words from concatenating random pronounceable syllables

Managing Passwords - Reactive Checking

- reactively run password guessing tools
 - note that good dictionaries exist for almost any language/interest group
- cracked passwords are disabled
- but is resource intensive
- bad passwords are vulnerable till found

Managing Passwords - Proactive Checking

- most promising approach to improving password security
- allow users to select own password
- but have system verify it is acceptable
 - simple rule enforcement (see earlier slide)
 - compare against dictionary of bad passwords
 - use algorithmic (markov model or bloom filter) to detect poor choices

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Summary

have considered:

- problem of intrusion, behavior and techniques
- intrusion detection (statistical & rule-based)
- password management

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

Test your understanding

- 1) If you accidentally find someone's password and use it to get into a system, is this hacking? Explain.
- 2) Someone sends you a "game". When you run it, it logs you into an IRS server. Is this hacking? Explain
- 3) You have access to your home page on a server. By accident, you discover that if you hit a certain key, you can get into someone else's files. You spend just a few minutes looking around. Is this hacking? Explain.
- 4) Explain IDS in detail.

- Intruder
 - Example
- Hackers
 - Example
- Criminal Enterprise
- Insider attacks
- Intrusion techniques
- Approaches
 - Audit records
 - Statistical anomaly detection
 - Audit record analysis
 - Rule based intrusion detection
 - 'distributed intrusion detection
 - Honeypots
 - Password management
- Summary
- Test your understanding

References

- 1. William Stallings, Cryptography and Network Security, 6th Edition, Pearson Education, March 2013.
- 2. Charlie Kaufman, Radia Perlman and Mike Speciner, "Network Security", Prentice Hall of India, 2002.

