	State of a system	
	Classical	Quantum
	$\int_{i}^{i}, \int_{i}^{i} i = 1, N$	14> € Hilbert space
	Spin 11 (not really classical)	
	10/0 000 10 07 i ter a to a	lin I lan chatea
	only in a few entr	in these states insic/extrinsic variables.
	? Connection?	entropy
	Classical	$S = k_B \ln \Omega$
	Phase space	ļ
	$\Gamma = \{q^{3N}, p^{3N}\}$ bN	- dimensional
Phane	$\dot{q} = 0$	DH <= x, y, Z
Space	The contract of the contract o	$j = 1, \ldots, N$
(cartao	n) [j.	$=-\frac{\partial \mathcal{H}}{\partial g_{i\alpha}}$
	\bigvee	$09_{i\alpha}$

Volume in phase space: (Lecture notes 2.3)

$$V(t) = \int d^{3N} p d^{3N} q$$
 $2t$

Consider two times, $t = 0$ and $t > 0$ which is small

So we go from $f_i(t=0)$ $g_i(t=0)$ to $f_i(t)$, $g_i(t)$

The end values for f_i and g_i depend on the starting values:

 $g_i(t) = g_i(f_i(0), g_i(0))$ and $f_i(t) = f_i(f_i(0), g_i(0))$

We can view this as a 'mapping':

 $f_i(0) = g_i(0) \stackrel{t}{\to} f_i(0), g_i(0)$

The integral changes according to the Jacobian $f_i(0) = \frac{\partial y_i}{\partial x_i}$
 $f_i(0) = \frac{\partial y_i}{\partial x_i}$

 $\rightarrow V(0) = \int d^{6N}$

and $V(t) = \int det(J) d^{b} x$

Now use the fact that
$$t$$
 is small:

$$y_{jx}(t) = y_{jx}(0) + t \frac{\partial H(p_{j0}, q_{j0})}{\partial p_{jx}} \quad x = x, y, z$$

$$P_{jx}(t) = P_{jx}(0) - t \frac{\partial H(p_{j0}, q_{j0})}{\partial q_{jx}}$$

$$Aet(J) = 1 + O(t^2)$$

So
$$V(t) = V(t=o) + O(t^2)$$

hence $\frac{dV}{dt} = o \Rightarrow volume remains constant$

Note: $V(t) = \int \frac{dV(t')}{dt'} dt' + V(o) = V(o)$.

large

$$dpdq > h = 277h$$

Phase space

We study the flow in phase space. (Lect notes 2.3) $g(p^{3N}, q^{3N}; t): density of points in phase space.$

 $p(p^{3H}, q^{3H}, t) d^{3H} d^{3H} q = un of points within d^{3H} d^{3H} q$

No sources and sinks of trajectories:

Change in
$$\Rightarrow \frac{\partial f}{\partial t} = -\nabla \cdot j \Rightarrow \text{difference between }$$
 flow through opposing faces.

$$\int = \int \mathcal{V} = \left(\dot{\rho}^{3N}, \dot{q}^{3N} \right)$$

$$\nabla = \left(\frac{\partial}{\partial \rho}, \frac{\partial}{\partial q}, \dot{q} \right)$$

$$\frac{\partial}{\partial P_{1x}}$$
, $\frac{\partial}{\partial P_{1y}}$, $\frac{\partial}{\partial P_{1y}}$, $\frac{\partial}{\partial P_{Ny}}$, $\frac{\partial}{\partial P_{Nz}}$, $\frac{\partial}{\partial q_{1x}}$, $\frac{\partial}{\partial q_{1y}}$, $\frac{\partial}{\partial q_{$

$$\frac{\partial \rho}{\partial t} = -\frac{1}{2} \left(\frac{\partial}{\partial p_{j} \alpha} \left(\beta p_{j} p_{j} \alpha \right) + \frac{\partial}{\partial q_{j} \alpha} \left(\beta p_{j} p_{j} \alpha \right) \right)$$

Use
$$\dot{P}_{j\alpha} = -\frac{\partial H}{\partial p_{j\alpha}}$$

$$\dot{q}_{j\alpha} = \frac{\partial H}{\partial p_{j\alpha}}$$

$$= \sum \left(\frac{\partial \rho}{\partial p_{j\alpha}} \frac{\partial H}{\partial q_{j\alpha}} + \rho \frac{\partial^2 H}{\partial p_{j\alpha}} \frac{\partial \rho}{\partial q_{j\alpha}} - \frac{\partial \rho}{\partial q_{j\alpha}} \frac{\partial H}{\partial p_{j\alpha}} - \rho \frac{\partial^2 H}{\partial q_{j\alpha}} \frac{\partial \rho}{\partial p_{j\alpha}} \right)$$

$$= \sum_{j,\alpha} \left(\frac{\partial \rho}{\partial p_{j,\alpha}} \frac{\partial H}{\partial p_{j,\alpha}} - \frac{\partial \rho}{\partial p_{j,\alpha}} \frac{\partial H}{\partial p_{j,\alpha}} \right) = -\partial \rho H$$

$$\{f,g\} = \sum_{j \neq i} \left(\frac{\partial f}{\partial g_{j \neq i}} \frac{\partial g}{\partial p_{j \neq i}} - \frac{\partial f}{\partial p_{j \neq i}} \frac{\partial g}{\partial g_{j \neq i}} \right)$$

{, } is called Poisson bracket

Some properties:

$$\{g,H\}=-\{H,g\}$$

$$\int H, H = 0$$

$$\{f(H), H\} = 0$$

Equitibrium:
$$\frac{\partial c}{\partial t} = 0$$
; $\{p, H\} = 0$

$$\rho = S(H(\rho, q) - 2)$$
. micro canonical ensemble

$$g = \frac{e^{-H(p,q)/k_BT}}{e^{-T}}$$
 canonical ensemble.