Ferienkurs - Höhere Mathematik III für Physiker

Aufgabenblatt 2

Dienstag 17. Februar 2009

Aufgabe 1 (Implizite Funktionen)

$$f(x,y) = x^2 - \frac{1}{2}xy^2 - \frac{1}{2}y^4 = 0$$

Man bestimme die lokale Auflösungsfunktion der y = h(x) mit $1 = h(-\frac{1}{2})$, sowie die Ableitung $h'(\frac{1}{2})$.

Aufgabe 2 (Implizite Funktionen)

$$f(x, y, z) = xe^x + y \sin y - z \ln z = 0$$

ist bei $(1, \pi, e)$ nach allen Variablen auflösbar. Für y = h(x, z), bzw. z = g(x, y) berechne man h'(1, e), bzw. $g'(1, \pi)$.

Aufgabe 3 (Taylorpolynom zweiten Grades) Man berechne das Taylorpolynom zweiten Grades $T_2(x, y)$ von $f(x, y) = \cos xy + xe^{y-1}$ an der Stelle \mathbf{x}_0) $(\pi, 1)$.

Aufgabe 4 (Taylorpolynom zweiten Grades)

$$f(x, y, z) = \cos x \cdot \sin y \cdot e^z$$

- a) Man bestimme das Taylorpolynom zweiten Grades $T_2(x, y, z)$ von f mit dem Entwicklungspunkt $\mathbf{x}_0 = (0, 0, 0)$.
- b) Man bestimme ein r > 0, sodass für $|\mathbf{x}| < r$ gilt:

$$|f(x, y, z) - T_2(x, y, z)| < 10^{-5}$$

Aufgabe 5 (Kritische Punkte) Bestimmen Sie die kritischen Punkte der Funktion $f : \mathbb{R}^2 \to \mathbb{R}$ und chrakterisieren Sie diese.

$$f(x,y) = x^3 - 12xy + 8y^3$$

Aufgabe 6 (Extremwertaufgabe) Gegeben ist die Funktion

$$f(x,y) = \sin(x)\sin(y)$$

Diskutieren Sie f(x,y) (Periodizität, Nullstellen) und bestimmen Sie lokale Minima, lokale Maxima und Sattelpunkte. (Betrachten Sie zuerst die Periodizität und schränken Sie so den zu untersuchenden Bereich ein.)

Aufgabe 7 (Temperaturverteilung auf einer halbkreisförmigen Platte) Eine halbkreisförmige Platte (dünn genug, dass wir die Ausdehnung in diese Richtung vernachlässigen können) habe die Temperaturverteilung.

$$T(x,y) = 10 - 40 \frac{x^2 y^2}{x^2 + y^2}, \ \text{für} \ 0 \leq x, \ 0 < y^2 + x^2 \leq 1, \ T(0,0) = 10$$

Aufgabe 8 (Extremwerte) Man bestimme die relativen Extremwerte von $w = f(x,y) = yx^2(4-x-y)$ im Dreieck, das begrenzt wird durch: x = 0, x = 0, x + y = 6

Aufgabe 9 (Kugelschale) Es sei $z = f(x,y) = \sqrt{1-x^2-y^2}$. Man Bestimme die Extrema von f unter der Nebenbedingung $g(x,y) = (x-\frac{1}{2})^2 + y^2 - \frac{1}{16} = 0$ mit Hilfe der Lagrangen Multiplikatoren.