Příklad (Teoretický příklad 9)

Zkonstruujte funkci $f: \mathbb{R} \to \mathbb{R}$ splňující $\lim_{x\to 0} f(x)f(2x) = 0$, pro kterou $\lim_{x\to 0} f(x)$ neexistuje.

Řešení Nechť

$$\begin{cases} f(x) = 1, & \text{pro } x = 2^{-2n}, \ n \in \mathbb{N} \\ f(x) = 0, & \text{jinak} \end{cases}.$$

Potom je jistě $\lim_{x\to 0} f(x)f(2x) = 0$, jelikož dokonce $f(x)f(2x) = 0 \ \forall x \in \mathbb{R}$, protože buď x ani 2x není sudou mocninou 2, nebo x (resp. 2x) je sudou mocninou 2, ale pak dvojnásobek (polovina) je lichou mocninou 2, tedy $f(x) = 0 \ \forall f(2x) = 0$.

Naopak $\lim_{x\to 0} f(x)$ neexistuje, jelikož v libovolném $0<\delta$ okolí bude f nabývat jak 0 (např. v alespoň jednom z bodů $\frac{\delta}{2}$ a $\frac{\delta}{4}$, ze stejného důvodu jako f(x)f(2x)=0) tak 1 (volím $2^{-2n}<\delta$, tedy

$$n = \max\left\{1, \left\lceil \frac{\log_2(\delta)}{-2} \right\rceil \right\},$$

potom $x = 2^{-2n} < \delta$ a $f(x) = f(2^{-2n}) = 1$.