Descriptive Statistics With R Software

Graphics and Plots

• •

Subdivided Bar Plots and Pie Diagrams

Shalabh

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Subdivided or component bar diagram divides the total magnitude of variables into various parts.

Example

The data on the number of customers visiting 3 shops during 10-11 AM on 4 consecutive days is as follows:

No. of	Shop	Shop	Shop
customers	1	2	3
Day 1	2	20	30
Day 2	26	53	40
Day 3	42	15	25
Day 4	30	75	100

barplot(variable in matrix format)

will create a subdivided or component bar diagram with columns of matrix as bars.

Sections inside bars indicate the values in cumulative form.

> barplot(cust)

No. of	Shop	Shop	Shop
customers	1	2	3
Day 1	2	20	30
Day 2	26	53	40
Day 3	42	15	25
Day 4	30	75	100

Adding labels and colours

```
> barplot(cust, names.arg=c("Shop 1", " Shop
2", " Shop 3"), xlab = " Shops", ylab = "Days",
col= c("red", "green", "orange", "brown"))
```

No. of	Shop	Shop	Shop
customers	1	2	3
Day 1	2	20	30
Day 2	26	53	40
Day 3	42	15	25
Day 4	30	75	100

Pie diagram

Pie charts visualize the absolute and relative frequencies.

A pie chart is a circle partitioned into segments where each of the segments represents a category.

The size of each segment depends upon the relative frequency.

The size of each segment is determined by the angle (relative frequency \times 360°).

```
Pie diagram
Usage
pie(x, labels = names(x), ...)
pie(x, labels, radius, main, col, clockwise)
Details
x: Vector containing the numeric values.
labels: Gives description to the slices.
radius: Indicates the radius of the circle of the pie chart.
         (Assume values between -1 and +1).
main: Title of the chart.
col: Provides colours to the slices.
clockwise: Used to indicate if the slices are drawn clockwise
```

or anti clockwise by using logical FALSE or TRUE. 8

Code of qualification of 10 persons by using, say 1 for graduate (G) and 2 for non-graduate (N).

```
G, N, G, N, G, G, G, N, G, G
1, 2, 1, 2, 1, 1, 1, 2, 1, 1
```

```
> quali = c(1, 2, 1, 2, 1, 1, 1, 2, 1, 1)
> quali
```

[1] 1 2 1 2 1 1 1 2 1 1

R Console

```
> quali = c(1, 2, 1, 2, 1, 1, 1, 2, 1, 1)
> quali
[1] 1 2 1 2 1 1 1 2 1 1
> |
```

> pie(quali)

Do you want this?


```
> table(quali)
quali
1 2
7 3
> pie(table(quali))
```

```
Reconsole
> quali = c(1, 2, 1, 2, 1, 1, 1, 2, 1, 1)
> table(quali)
quali
1 2
7 3
```


Pie diagram

Example: Adding labels and colours

```
> pie(table(quali), labels = c("Graduate",
"Nongraduate"), main = "Persons with
Qualification", col=c("red", "blue"))
```

Persons with Qualification

There are three salespersons in a shop. They are denoted as 1, 2 and 3. Which of the salesperson serves which of the first 100 customers is recorded as follows:

```
> table(salesper)
salesper
1 2 3
28 43 29
> pie(table(salesper))
```

```
> table(salesper)
salesper
1 2 3
28 43 29
```


Pie diagram

Example: Adding labels, headings and colours

```
> pie(table(salesper), labels = c("SP1",
    "SP2", "SP3"), main = "Salespersons attending
customer", col=c("green", "red", "blue"))
```

Salespersons attending customer

