Thermodynamics

learning note For reading translation

我真的不懂忧郁

Thermodynamics

learning note For reading translation

by

我真的不懂忧郁

Student Name Student Number

First Surname 1234567

Instructor: I. Surname Teaching Assistant: I. Surname

Project Duration: Month, Year - Month, Year

Faculty: Faculty of Aerospace Engineering, Delft

Cover: Canadarm 2 Robotic Arm Grapples SpaceX Dragon by NASA under

CC BY-NC 2.0 (Modified)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Preface

A preface...

我真的不懂忧郁 Delft, October 2024

Summary

 $A\ summary...$

目录

Preface	
Summary	i
Nomenclature	iv
1 王竹溪. chapter1	1
References	3
A Source Code Example	4
B Task Division Example	5

Nomenclature

If a nomenclature is required, a simple template can be found below for convenience. Feel free to use, adapt or completely remove.

Abbreviations

Abbreviation	Definition
ISA	International Standard Atmosphere

Symbols

Symbol	Definition	Unit
V	Velocity	[m/s]
ρ	Density	[kg/m ³]

Chapter 1

王竹溪. chapter1

Question 1 (p24,2): f,g,h 都是二独立变量 x,y 的函数¹

(1)
$$(\partial f/\partial g)_h = 1/(\partial g/\partial f)_h$$
;

(2)
$$(\partial f/\partial g)_x = (\partial f/\partial y)/(\partial g/\partial y)$$
;

(3)
$$(\partial y/\partial x)_f = -(\partial f/\partial x)/(\partial f/\partial y)$$
;

(4)
$$(\partial f/\partial g)_h(\partial g/\partial h)_f(\partial h/\partial f)_g = -1$$
;

(5)
$$(\partial f/\partial x)_g = (\partial f/\partial x) + (\partial f/\partial y)(\partial y/\partial x);$$

proof: .

(1) 根据隐函数求导链式法则

$$\frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial f} = \frac{\partial f}{\partial f} = 1 \tag{1.1}$$

(2) 根据隐函数求导链式法则和反函数定理

$$\frac{\partial f}{\partial g} = \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial g} = \frac{\partial f}{\partial y} / \frac{\partial g}{\partial y}$$
 (1.2)

(3)

(4)

(5)

Question 2 (p24,3): f,g,h,k 都是二独立变量 x,y 的函数,且

$$\frac{\partial(f,g)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{vmatrix} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x}$$
(1.3)

证明

 $^{(\}frac{\partial f}{\partial g})_h$ 为保持 h 不变求 f 对 g 的偏导

- (1) $\partial(f,g)/\partial(h,k) = [\partial(f,g)/\partial(x,y)]/[\partial(h,k)/\partial(x,y)];$
- (2) $\partial(f,g)/\partial(x,y) = 1/(\partial(x,y)/\partial(f,g))$;
- (3) $(\partial f/\partial g)_h = \partial (f,h)/\partial (g,h)$;
- (4) $(\partial f/\partial g)_h = (\partial (f,h)/\partial (x,y))/(\partial (g,h)/\partial (x,y))$;
- (5) $(\partial f/\partial x)_g = (\partial (f,g)/\partial (x,y))/(\partial g/\partial y)$

proof:

上述结论可以推广到任意 n 个独立变量的函数上。

Question 3 (p25,6): 证明理想气体的膨胀系数、压强系数以及压缩系数各为 $\alpha=\beta=1/T,\kappa=1/\rho$

proof:

Question 4 (p25,7): 证明任何一个二独立变量 ∂ , p 的物体,其物态方程可以通过实验观测的膨胀系数 α 和压缩系数 κ 根据下列积分得到

$$ln V = \int (\alpha d\partial - \kappa dp) \tag{1.4}$$

应用这个公式到理想气体,把积分求出,选T为温标,并假设 $\alpha = 1/T, \kappa = 1/p$

proof:

Question 5 (p25,8): 假如某一测温物质的定压温度计的温标等于定容温度计的温标,证明这一物质的物态方程为

$$\partial = \alpha(p+a)(V+b) + c \tag{1.5}$$

其中 α, a, b, c 都是常数, ∂ 为这一物质的定压温度计和定容温度计所测量的共同的温度,

proof:

References

[1] I. Surname, I. Surname, and I. Surname. "The Title of the Article". In: *The Title of the Journal* 1.2 (2000), pp. 123–456.

Source Code Example

Adding source code to your report/thesis is supported with the package listings. An example can be found below. Files can be added using \lstinputlisting[language=<language>] {<filename>}.

```
^{2} ISA Calculator: import the function, specify the height and it will return a
_3 list in the following format: [Temperature, Density, Pressure, Speed of Sound].
4 Note that there is no check to see if the maximum altitude is reached.
7 import math
g0 = 9.80665
9 R = 287.0
10 layer1 = [0, 288.15, 101325.0]
11 alt = [0,11000,20000,32000,47000,51000,71000,86000]
a = [-.0065, 0, .0010, .0028, 0, -.0028, -.0020]
14 def atmosphere(h):
      for i in range(0,len(alt)-1):
16
          if h >= alt[i]:
              layer0 = layer1[:]
17
              layer1[0] = min(h,alt[i+1])
18
              if a[i] != 0:
19
                  layer1[1] = layer0[1] + a[i]*(layer1[0]-layer0[0])
20
                  layer1[2] = layer0[2] * (layer1[1]/layer0[1])**(-g0/(a[i]*R))
                  layer1[2] = layer0[2]*math.exp((-g0/(R*layer1[1]))*(layer1[0]-layer0[0]))
23
      return [layer1[1],layer1[2]/(R*layer1[1]),layer1[2],math.sqrt(1.4*R*layer1[1])]
```


Task Division Example

If a task division is required, a simple template can be found below for convenience. Feel free to use, adapt or completely remove.

表 B.1: Distribution of the workload

	Task	Student Name(s)
	Summary	
Chapter 1	Introduction	
Chapter 2		
Chapter 3		
Chapter *		
Chapter *	Conclusion	
	Editors	
	CAD and Figures	
	Document Design and Layout	