MATH 140B: Homework #6

Due on May 17, 2024 at 23:59pm

Professor Seward

Ray Tsai

A16848188

Problem 1

Suppose g and f_n (n = 1, 2, 3, ...) are defined on $(0, \infty)$, are Riemann-integrable on [t, T] whenever $0 < t < T < \infty$, $|f_n| \le g$, $f_n \to f$ uniformly on every compact subset of $(0, \infty)$, and

$$\int_0^\infty g(x)\,dx < \infty.$$

Prove that

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, dx = \int_0^\infty f(x) \, dx.$$

Proof. Since $|f_n| \leq g$ and $\int_t^\infty g(x) \, dx < \infty$, we know $\int_t^\infty f_n(x) \, dx$ exists. Define $h_k = \int_{1/k}^\infty f(x) \, dx$. Pick $\epsilon > 0$. Since $\int_0^\infty g(x) \, dx$ exists, there exists N such that $\int_0^{1/n} g(x) \, dx < \epsilon/2$ for all $n \geq N$. Let $\beta > \alpha \geq N$. There exists large enough n such that $|f(x) - f_n(x)| < \epsilon(\beta - \alpha)/2\alpha\beta$ for all $x \in [1/\beta, 1/\alpha]$. But then,

$$|h_{\beta} - h_{\alpha}| = \left| \int_{1/\beta}^{1/\alpha} f(x) \, dx \right|$$

$$\leq \int_{1/\beta}^{1/\alpha} |f(x) - f_n(x)| + |f_n(x)| \, dx$$

$$\leq \int_{1/\beta}^{1/\alpha} |f(x) - f_n(x)| \, dx + \int_{1/\beta}^{1/\alpha} g(x) \, dx$$

$$< \epsilon/2 + \epsilon/2 = \epsilon,$$

and thus h_k converges uniformly by Cauchy criterion. Let $I_n = \int_0^\infty f_n(x) dx$ and let $I = \int_0^\infty f_n(x) dx$. It remains to show that $\int_0^\infty f(x) dx$ converges to $\lim_{n\to\infty} \int_0^\infty f_n(x) dx$.

$$\left| \int_0^\infty f_n(x) - f(x) \, dx \right| < \epsilon,$$

for large enough n.