```
1. 1AND 8ADD = 1(1) + 8(2) = 17 \text{ ns.}
```

2.
$$1AND 7ADD = 1(1) + 7(2) = 15 \text{ ns.}$$

3.
$$1AND 16ADD = 1(1) + 15(2) = 31 \text{ ns.}$$

4. Test case:	A[8]	B[8]	C[8]	Cout[1]	
	0b00000000	0b00000000	060000000000000000000000000000000000000	0	#minimum
	0b11111111	0b11111111	0b11111111000000001	0	#maximum
	0b11111111	0b00000000	0Ь0000000000000000	0	#number with zero
	0b11111111	0b00000001	0b00000000111111111	0	#number with one
	0b10101010	0b10101010	0b0111000011100100	0	#any number
	0b00111111	0b11110000	0b0011101100010000	0	#any number

5. ระหว่าง Stage1-2 ใช้ 8bitRegister 3 ตัว(เก็บ Aชุดนั้นๆ, Bชุดนั้นๆ, ตัวทดที่ได้จากการทำ CSA รอบที่4)

7bitRegister 1 ตัว(เก็บ ผลลัพธ์ที่ได้จากCSAรอบที่4และต้องนำไปใช้ใน CSA รอบที่5)

4bitRegister 1 ตัว(เก็บ ผลลัพธ์ของการ AxB 4ตัวสุดท้าย)

ระหว่าง Stage2-3 ใช้ 8bitRegister 2 ตัว(เก็บ ผลลัพธ์จากการทำ CSA 8 รอบ,ตัวทดที่ได้จากการทำ CSA รอบที่ 8)

7bitRegister 1 ตัว(เก็บ ผลลัพธ์ที่ได้จากCSAรอบที่8และต้องนำไปใช้ใน CPA ใน Stageที่3)

6. Stage 1 =
$$1AND + 3ADD + 1REG = 1(1) + 3(2) + 1(2) = 9ns$$
.

$$Stage2 = 1AND + 4ADD + 1REG = 1(1) + 4(2) + 1(2) = 11ns.$$

$$Stage3 = 8ADD + 1REG = 8(2) + 1(2) = 18ns.$$

7. clock cycle rate = 1/clock cycle time :: clock cycle rate = $1/(18 \times 10^{-9})$ = 55.56 MHz.

- 8. 6(31) = 186 ns.
- 9. 18(6+2) = 144 ns.