

Deep Learning

Mohammad Reza Mohammadi 2021

How deep learning works?

- Optimizers (Gradient-based)
 - Backpropagation
- Loss and Activation functions

Table 4.1 Choosing the right last-layer activation and loss function for your model

Problem type	Last-layer activation	Loss function
Binary classification	sigmoid	binary_crossentropy
Multiclass, single-label classification	softmax	categorical_crossentropy
Multiclass, multilabel classification	sigmoid	binary_crossentropy
Regression to arbitrary values	None	mse
Regression to values between 0 and 1	sigmoid	mse Or binary_crossentropy

Overfitting and Underfitting

 A central problem in machine learning is how to make an algorithm that will perform well not just on the training data, but also on new inputs

Overfitting and Underfitting

- The performance of the models on the held-out validation data usually peaked after a few epochs and then began to degrade
 - The model quickly started to overfit to the training data
- Learning how to deal with overfitting is essential to mastering ML

Optimization and Generalization

- Optimization refers to the process of adjusting a model to get the best performance possible on the training data (the learning in ML)
- Generalization refers to how well the trained model performs on data it has never seen before
- The goal is to get good generalization
 - but we don't control generalization!
 - We can only adjust the model based on its training data

Overfitting and Underfitting

- At the beginning of training, optimization and generalization are correlated
 - The model is said to be underfit
 - The network hasn't yet modeled all relevant patterns in the training data
- After some iterations, generalization stops improving, then begin to degrade
 - The model is starting to overfit
 - Learn patterns that are specific to the training data but that are misleading or irrelevant when it comes to new data

Training and validation loss

0.5

0.3

0.2

Reducing the network's size

- If a network can only afford to memorize a small number of patterns, the optimization process will force it to focus on the most prominent patterns, which have a better chance of generalizing well
- Intuitively, a model with more parameters has more memorization capacity and therefore can easily learn a perfect dictionary-like mapping between training samples and their targets
- If the network has limited memorization resources, it won't be able to learn this mapping as easily
 - it will have to resort to learning compressed representations that have predictive power
- There is a compromise to be found between too much capacity and not enough capacity

Evaluating machine-learning models

- In machine learning, the goal is to achieve models that generalize—that perform well on never-before-seen data
- It's crucial to be able to reliably measure the generalization power of the model
- Evaluating a model always boils down to splitting the available data into three sets
 - training
 - validation
 - test

Training, validation, and test sets

- Train on the training data (to optimize parameters)
- Evaluate on the validation data (to optimize hyperparameters)
 - The reason is that developing a model always involves tuning its configuration
 - For example, choosing the number of layers or the size of the layers
 - This tuning is a form of learning
 - Can result in overfitting to the validation set, even though the model is never directly trained on it
- Test it one final time on the test data

Hold-out validation

Listing 4.1 Hold-out validation

```
num_validation_samples = 10000
                                            Shuffling the data is
                                            usually appropriate.
np.random.shuffle(data)
                                                                  Defines the
                                                                  validation set
validation_data = data[:num_validation_samples]
data = data[num_validation_samples:]
                                                   Defines the training set
training_data = data[:]
                                                            Trains a model on the training
model = get_model()
                                                            data, and evaluates it on the
model.train(training_data)
                                                            validation data
validation_score = model.evaluate(validation_data)
# At this point you can tune your model,
# retrain it, evaluate it, tune it again...
                                                         Once you've tuned your
model = get model()
                                                         hyperparameters, it's common to
model.train(np.concatenate([training_data,
                                                         train your final model from scratch
                               validation_data]))
                                                         on all non-test data available.
test_score = model.evaluate(test_data)
```

Training set

Held-out validation set

Train on this

Evaluate on this

Hold-out validation

- If little data is available, then the validation and test sets may contain too few samples to be statistically representative of the data at hand
- Different random shuffling rounds of the data before splitting end up yielding very different measures of model performance

K-fold cross-validation

- You split your data into K partitions of equal size
- For each partition i, train a model on the remaining K-1 partitions, and evaluate it on partition i
- Final score is the averages of the K scores

K-fold cross-validation

Listing 4.2 K-fold cross-validation

```
k = 4
num_validation_samples = len(data) // k
np.random.shuffle(data)
                                                     Selects the validation-
validation_scores = []
                                                            data partition
for fold in range(k):
    validation_data = data[num_validation_samples * fold:
     num_validation_samples * (fold + 1)]
    training_data = data[:num_validation_samples * fold] +
      data[num_validation_samples * (fold + 1):]
                                                                  Uses the remainder of the data
    model = get_model()
                                                                  as training data. Note that the
    model.train(training_data)
                                                                  + operator is list concatenation,
    validation_score = model.evaluate(validation_data)
                                                                  not summation.
    validation_scores.append(validation_score)
                                                                Creates a brand-new instance
                                                                of the model (untrained)
validation_score = np.average(validation_scores)
                                                                       Validation score:
                                                                       average of the
model = get_model()
                                              Trains the final
                                                                       validation scores
model.train(data)
                                              model on all non-
                                                                       of the k folds
test_score = model.evaluate(test_data)
                                              test data available
```

Regularization for Deep Learning

- A central problem in machine learning is how to make an algorithm that will perform well not just on the training data, but also on new inputs
- Many strategies used in ML are explicitly designed to reduce the test error, possibly at the expense of increased training error
- These strategies are known as regularization

Parameter Norm Penalties

• We can limit the capacity of models by adding a parameter norm penalty to the objective function

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- ullet We typically choose a norm penalty Ω that penalizes only the weights of the affine transformation at each layer and leaves the biases unregularized
- We use \boldsymbol{w} to indicate all of the weights that should be affected by a norm penalty, while $\boldsymbol{\theta}$ denotes all of the parameters

Deep Learning

nput

Feature extraction + Classification

L2 Parameter Regularization

This regularization strategy drives the weights closer to the origin

$$\Omega(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2$$

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = \frac{\alpha}{2} \boldsymbol{w}^T \boldsymbol{w} + J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y})$$

Gradient of the regularized objective function:

$$\nabla_{\mathbf{w}} \tilde{J}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = \alpha \mathbf{w} + \nabla_{\mathbf{w}} J(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y})$$

$$\mathbf{w} \leftarrow \mathbf{w} - \epsilon (\alpha \mathbf{w} + \nabla_{\mathbf{w}} J(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}))$$

$$\mathbf{w} \leftarrow (1 - \epsilon \alpha)\mathbf{w} - \epsilon \nabla_{\mathbf{w}} J(\mathbf{\theta}; \mathbf{X}, \mathbf{y})$$

Deep Learning

Input

