Cours

C. LACOUTURE

Année scolaire 2024-2025, MPSI2, Lycée Carnot

Table des matières

Ι	Al	gèbre		9
1	Str	ucture	de groupe	11
	1.1	Préser	ntation	11
		1.1.1	Exemple préliminaire	11
		1.1.2	Définition générale	11
		1.1.3	Exemples usuels	12
		1.1.4	Compléments	13
		1.1.5	Notations	13
		1.1.6	Autres remarques	13
	1.2	Sous-g	groupes	13
		1.2.1	Définition	13
		1.2.2	Caractérisations	13
		1.2.3	Exemples usuels	13
		1.2.4	Propriétés	13
	1.3		hismes de groupes	13
		1.3.1	Définition	13
		1.3.2	Exemples usuels	13
		1.3.3	Propriétés	13
2	Str	ucture	d'anneau et de corps	15
	2.1	Struct	ture d'anneau	16
		2.1.1	Présentation	16
		2.1.2	Propriétés	16
		213	Sous-anneau	16

	2.2	Struct	cure de corps	16
		2.2.1	Définition	16
		2.2.2	Exemples usuels	16
		2.2.3	Propriétés	16
		2.2.4	Sous-corps	16
3	Cor	ps des	nombres réels	17
	3.1	Génér	alités	18
	3.2	Borne	supérieure ou inférieure d'une partie de $\mathbb R$	18
		3.2.1	Définition	18
		3.2.2	Existence-unicité	18
		3.2.3	Mise en garde	18
		3.2.4	Caractérisation	18
	3.3	Valeur	rs approchées d'un réel à α près (où $\alpha \in \mathbb{Q}^{*+}$)	18
		3.3.1	Résultat et définition	18
		3.3.2	Cas où $\alpha = 1$	18
		3.3.3	Cas où $\alpha = \frac{1}{10^n} (n \in \mathbb{N})$	18
	3.4	Densit	té	18
		3.4.1	Définitions	18
		3.4.2	Caractérisation	18
		3.4.3	Compléments	18
4	Cor	ps des	nombres complexes	19
	4.1	Conju	gaison	20
		4.1.1	Définition	20
		4.1.2	Propriétés	20
	4.2	Modu	le	20
		4.2.1	Définition	20
		4.2.2	Propriétés	20
		4.2.3	Nombres complexes de module 1	20
	4.3	Forme	e trigonométrique	20
		4.3.1	Définition	20
		4.3.2	Premiers exemples	20

		4.3.3	Relations entre forme algébrique et trigonométrique	20
		4.3.4	Formules diverses	20
		4.3.5	Interprétation géométrique	20
	4.4	$z^n = a \text{ (où } n \in \mathbb{N}^*, a \in \mathbb{C}^*) \dots \dots \dots$	20	
		4.4.1	Résolution	20
		4.4.2	$1^{\rm er}$ cas parrticulier : racines n'emes de l'unité	20
		4.4.3	Cas particulier des racines carrées d'un complexe	20
	4.5	Tradu	action complexe de transformations géométriques	20
		4.5.1	Symétries	20
		4.5.2	Translations	20
		4.5.3	Homothéties	20
		4.5.4	Rotations	20
		4.5.5	Similitudes directes	20
	4.6	Expor	nentielle complexe	20
		4.6.1	Définition	20
		4.6.2	Propriétés	20
_		π.σ.		
5			$\mathbb{E}[X]$ des polynômes à une indéterminée à coefficients orps \mathbb{K}	21
	5.1		ntation	22
		5.1.1	Définitions	22
		5.1.2	Opérations sur les polynômes	22
		5.1.3	Propriétés	22
		5.1.4	Structures	22
		5.1.5	Composée	22
	5.2	Divisi	on euclidienne dans $\mathbb{K}[X]$	22
		5.2.1	Énoncé	22
		5.2.2	Exemples	22
		5.2.3	Divisibilité	22
	5.3	PGCI	O,PPCM dans $\mathbb{K}[X]$	22
		5.3.1	Définition pour PGCD	22
			Propriétés	22

		5.3.3	Polynômes premiers entre eux	22
		5.3.4	PPCM dans $\mathbb{K}[X]$	22
	5.4	Zéros	(ou racines) d'un polynôme $\dots \dots \dots \dots$	22
		5.4.1	Définitions	22
		5.4.2	Relation entre les racines et le degré d'un polynôme	22
		5.4.3	Polynôme dérivé	22
		5.4.4	Caractérisation d'un zéro d'ordre n	22
	5.5	Polyno	ômes irréductibles	22
		5.5.1	Présentation	22
		5.5.2	Décomposition générale	22
		5.5.3	Dans $\mathbb{C}[X]$	22
		5.5.4	Dans $\mathbb{R}[X]$	22
		5.5.5	Pratique de la décomposition en facteurs irréductibles dans $\mathbb{R}[X]$	22
	5.6	Relati	ons coefficients-racines	22
		5.6.1	Données du problème	22
		5.6.2	Résolution	22
		5.6.3	Appplications	22
6	Fra	ctions	rationnelles	23
	6.1	Préser	ntation	24
		6.1.1	Définition	24
		6.1.2	Opérations	24
		6.1.3	Forme irréductible	24
	6.2	Décon	nposition en éléments simples de $F = \frac{A}{B}$ (irréductible)	24
		6.2.1	Première étape : partie entière	24
		6.2.2	Deuxième étape : décomposition de $\frac{R}{B}$	24
		6.2.3	Troisième étape : généralisation	24
		6.2.4	Conséquence	24
		6.2.5	Quatrième étape : décomposition de $\frac{R}{P^{\alpha}}$	24
		6.2.6	Conclusion	24
	6.3	Décon	proposition dans $\mathbb{C}(X)$	24

7
24
24
24
24
24
24
24
24
fonctions ra-
24
24
$(x) \dots 24$
$(x) \dots \dots 24$
(x) 24
25
25
(x) 24 25 26 26 26
(x) 24 25 26 26 </td
(x) 24 25 26 <

Première partie Algèbre

Structure de groupe

1.1 Présentation

1.1.1 Exemple préliminaire

L'ensemble \mathbb{Z} pour l'addition + est tel que :

- 1. $\forall x, y \in \mathbb{Z}$
- 2. $\forall x, y, z \in \mathbb{Z}, (x + y) + z = x + (y + z)$
- 3. $\forall x \in \mathbb{Z}, x + 0 = 0 + x = x$
- 4. $\forall x \in \mathbb{Z}, x + (-x) = (-x) + x = 0$
- 5. et de plus $\forall x, y \in \mathbb{Z}, x + y = y + x$

Ainsi $(\mathbb{Z}, +)$ est un groupe abélien / groupe commutatif.

1.1.2 Définition générale

Soit un ensemble G muni d'une loi *. Dès lors, (G,*) a une structure de groupe si et seulement si :

- 1. * est une Loi de Composition Interne (LCI) sur G. C'est-à-dire $\forall x,y \in G, x*y \in G$.
- 2. * est associative. C'est-à-dire $\forall x, y, z \in G, (x * y) * z = x * (y * z)$.
- 3. G a un élément neutre e pour *. $\exists e \in G$ tel que $\forall x \in G, x*e = e*x = x$.
- 4. Tout élément de G a un symétrique dans G. $\forall x \in G, \exists x' \in G$ tel que x*x'=x'*x=e.

Si, de plus, * est commutative sur G, c'est-à-dire $\forall x, y \in G, x * y = y * x$, alors G est un groupe commutatif (ou abélien).

Remarques concernant la définition:

- a) attention à la place des quantificateurs : pour l'élément neutre (3.) c'est \exists puis \forall et pour le symétrique c'est \forall puis \exists .
- b) attention aux 2 égalités dans la définition de l'élément neutre et des symétriques d'un élément car * ne commute pas forcément.

1.1.3 Exemples usuels

Ensembles de nombres

 $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+), (\mathbb{Q}^*,+), (\mathbb{R}_+^*,x), (\mathbb{R}^*,x), (\mathbb{C}^*,x)$ Sont tous des groupes commutatifs.

Ensemble des bijections

Soit E un ensemble et $\mathcal{B}(E)$ l'ensemble des bijections de E vers E.

 $(\mathcal{B}(E), \circ)$ est un groupe <u>non</u> commutatif.

Le neutre pour \circ est : Id_E et le symétrique de f pour \circ est f^{-1}

Ensemble des parties

Soit E un ensemble et $\mathscr{P}(E)$ l'ensemble des parties de E.

 $(\mathscr{P}(E), \Delta)$ est un groupe commutatif.

Le neutre pour Δ est : \varnothing car $\forall A \subset E : A\Delta\varnothing = \varnothing\Delta A = A$ Et le symétrique de A pour Δ est A car $A\Delta A = \varnothing$

13

1.1.4 Compléments

Unicité

Formules concernant le symétrique

Régularité de tout élément

Plus généralement

1.1.5 Notations

En notation multiplicative

En notation additive

Propriétés

1.1.6 Autres remarques

1.2 Sous-groupes

- 1.2.1 Définition
- 1.2.2 Caractérisations
- 1.2.3 Exemples usuels

Exemple général

Exemples particuliers

Sous-groupes de $(\mathbb{Z}, +)$

1.2.4 Propriétés

Intersection

Faux pour la réunion ∪

1.3 Morphismes de groupes

- 1.3.1 Définition
- 1.3.2 Exemples usuels
- 1.3.3 Propriétés

Structure d'anneau et de corps

2.1 Structure d'anneau

2.1.1 Présentation

Exemple préliminaire

Définition générale

Notations

Intégrité

Exemples usuels

2.1.2 Propriétés

Élément absorbant

Ensemble des inversibles

"Opposé" d'un produit

Loi "soustraction"

Formule du binôme de Newton

Formule de factorisation

2.1.3 Sous-anneau

Caractérisation

Exemple usuel : sous-anneau des décimaux

2.2 Structure de corps

- 2.2.1 Définition
- 2.2.2 Exemples usuels
- 2.2.3 Propriétés

Intégrité

Commutativité

2.2.4 Sous-corps

Corps des nombres réels

- 3.1 Généralités
- 3.2 Borne supérieure ou inférieure d'une partie de \mathbb{R}
- 3.2.1 Définition
- 3.2.2 Existence-unicité

Existence

Unicité

- 3.2.3 Mise en garde
- 3.2.4 Caractérisation
- 3.3 Valeurs approchées d'un réel à α près (où $\alpha \in \mathbb{Q}^{*+}$)
- 3.3.1 Résultat et définition
- **3.3.2** Cas où $\alpha = 1$
- **3.3.3** Cas où $\alpha = \frac{1}{10^n} (n \in \mathbb{N})$

Énoncé

Convergence

3.4 Densité

3.4.1 Définitions

Intervalle

Densité

3.4.2 Caractérisation

Générale

Plus précisément

ъ

Corps des nombres complexes

4.1 Conjugaison

4.1.1 Définition

4.1.2 Propriétés

Formules

Caractérisation

Pratique

4.2 Module

4.2.1 Définition

Pratique

Lien avec la valeur absolue

4.2.2 Propriétés

Diverses

(Double) inégalité triangulaire

4.2.3 Nombres complexes de module 1

Description

Remarque sur l'écriture $e^{i\theta}$

Produit

Formule de Moivre

Formules à savoir

4.3 Forme trigonométrique

4.3.1 Définition

Résultat préliminaire

Conséquence

4.3.2 Premiers exemples

D:----

Anneau $\mathbb{K}[X]$ des polynômes à une indéterminée à coefficients dans un corps \mathbb{K}

5.1 Présentation

5.1.1 Définitions

5.1.2 Opérations sur les polynômes

Somme

Multiplication par un élément de \mathbb{K}

Multiplication

5.1.3 Propriétés

Pour la multiplication

Pour la somme

5.1.4 Structures

Neutres

Intégrité

Inversibles

5.1.5 Composée

Définition

Degré

5.2 Division euclidienne dans $\mathbb{K}[X]$

5.2.1 Énoncé

Unicité

Existence

5.2.2 Exemples

5.2.3 Divisibilité

Fractions rationnelles

	T
6.1	Présentation

- 6.1.1 Définition
- 6.1.2 Opérations

Somme

Produit

Structure

- 6.1.3 Forme irréductible
- 6.2 Décomposition en éléments simples de $F = \frac{A}{B}$ (irréductible)
- 6.2.1 Première étape : partie entière

Énoncé

Démonstration par Analyse-Synthèse

6.2.2 Deuxième étape : décomposition de $\frac{R}{B}$

Énoncé

Démonstration

- 6.2.3 Troisième étape : généralisation
- 6.2.4 Conséquence
- 6.2.5 Quatrième étape : décomposition de $\frac{R}{P^{\alpha}}$

Résultat général

Démonstration

- 6.2.6 Conclusion
- **6.3** Décomposition dans $\mathbb{C}(X)$
- 6.3.1 Forme a priori
- 6.3.2 Détermination pratique des λ . μ

Groupe symétrique

7.1 Présentation

7.1.1 Définitions

Permutation

Groupe symétrique

Cardinal

7.1.2 Exemples

Généraux

Particulier

7.2 Éléments générateurs

7.2.1 Transpositions

Énoncé

Exemples

7.2.2 Cycles à supports disjoints

Résultat admis

Exemple

Pratique

7.3 Signature d'une permutation

- 7.3.1 Inversions
- 7.3.2 Définitions
- 7.3.3 Cas d'une transposition
- 7.3.4 Cas d'un cycle
- 7.3.5 Morphisme signature