몬티홀문제

LIGHT 조

목차

- 1. 문이 세 개인 몬티홀 문제
 - 1.1. 직관적인 풀이
 - 1.2. 베이즈 정리
- 1. 몬티홀 문제의 일반화
 - 2.1. 문의 개수 n개
 - 2.2. 여는 문의 개수 k개
 - 2.3. 상품의 개수 m개
- 1. 몬티홀 문제의 가격 결정
 - 3.1 기본 몬티홀
 - 3.2. 일반화된 몬티홀
- 1. 선택을 두 번 바꾸는 몬티홀

문이 세 개인 몬티홀 문제

모티홀 문제: 'Monty Hall'이라는 TV프로그램사회자가진행하던미국오락프로그램에서유래한확률문제

- 닫혀 있는 3개의 문 중 하나를 골라야 하는 상황이다.
- 하나의 문 뒤에는 상품(=자동차)이 있고, 나머지 두 개의 문은 꽝(=염소)이다.
- 참가자가 문 하나를 고르면, 모든 상황을 알고 있는 사회자가 남겨진 2개의 문 중에 꽝(=염소)이 있는 문 하나를 연다.
- 열리지 않은 2개의 문을 두고 다시 한 번 고를 수 있는 기회가 주어진다면, 선택을 바꾸는 것과 바꾸지 않는 것 중 어느 쪽이 유리한가?

모티홀 문제: 'Monty Hall'이라는 TV프로그램사회자가진행하던미국오락프로그램에서유래한확률문제

몬티홀 문제 가정

- 사회자는 상품(=자동차)이 어느 문 뒤에 있는지 알고 있다. 사회자는 상품(=자동차)이 있는 문은 열 수 없다.
- 사회자는 반드시 추가적으로 문을 열어줘야한다. 문의 추가 개방 여부를 사회자 재량으로 선택할 수 없다.
- 사회자는 꽝(=염소)이 있는 두 개의 문에 대해 공평해야한다. 참가자의 처음 선택이 상품(=자동차)이 있는 문인 경우, 사회자는 꽝(=염소)인 두 개의 문 중 하나를 무작위로 열어야 한다.

선택을 바꾸는 경우

선택을 바꾸는 경우

A.

처음에 상품이 있는 문을 선택할 확률 = 3

- a. 사회자가 꽝인 두 개의 문 중 첫번째 문을 선택할 확률
- b. 사회자가 꽝인 두 개의 문 중 두번째 문을 선택할 확률 2

선택을 바꿨을 때 상품이 있을 확률 =
$$\frac{0}{1}$$

В.

처음에 꽝인 문을 선택할 확률 =
$$\frac{2}{3}$$

사회자가 꽝인 남은 문 하나를 여는 확률 = $\frac{1}{1}$
선택을 바꿨을 때 상품이 있을 확률 = $\frac{1}{1}$

Α

a.
$$\frac{1}{3} \times \frac{1}{2} \times \frac{0}{1} = \frac{0}{6}$$

$$\frac{1}{3} \times \frac{1}{2} \times \frac{0}{1} = \frac{0}{6}$$

B.

$$\frac{2}{3} \times \frac{1}{1} \times \frac{1}{1} = \frac{2}{3}$$

선택을 바꾸지 않는 경우

선택을 바꾸지 않는 경우

Α.

처음에 상품이 있는 문을 선택할 확률 = $\frac{1}{3}$

- a. 사회자가 꽝인 두 개의 문 중 첫번째 문을 선택할 확률
- b. 사회자가 꽝인 두 개의 문 중 두번째 문을 선택할 확률

선택을 바꿨을 때 상품이 있을 확률 =
$$\frac{1}{1}$$

В.

처음에 꽝인 문을 선택할 확률 =
$$\frac{2}{3}$$

사회자가 꽝인 남은 문 하나를 여는 확률 = $\frac{1}{1}$
선택을 바꿨을 때 상품이 있을 확률 = $\frac{0}{1}$

Α.

a.
$$\frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{6}$$

$$\frac{\overset{\text{b.}}{1}}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{6}$$

B.

$$\frac{2}{3} \times \frac{1}{1} \times \frac{0}{1} = \frac{0}{3}$$

베이즈정리

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

P(B): 사회자가 문을 열었을 때 참가자가 문을 선택했을 확률

$$P(A_i|B) = \frac{P(B \cap A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \dots + P(A_n)P(B|A_n)}$$

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + ... + P(B \cap A_n)$$

베이즈정리이용하기

각 문의 이름을 A, B, C라고 하자.

문A 뒤에 상품이 있는 것으로 가정. (대칭성)

참가자:

사건A: 문A를 선택하는 사건 사건B: 문B를 선택하는 사건 사건C: 문C를 선택하는 사건 → P(A) = P(B) = P(C) = 1/3

사회자:

사건D: 문C를 열고 양을 보여주는 사건

베이즈정리이용하기

각 문을 선택했을 때 사회자가 문C를 열 확률

참가자가 문A를 선택했을 때:

A 뒤에는 상품이 있고, 문B와 문C 중 문C를 열었으므로 1/2이다. 사회자가 문C를 여는 사건이 일어날 확률 = P(D|A) = 1/2

참가자가 문B를 선택했을 때:

문B 뒤에 차가 있으므로 사회자는 문C를 열 수 밖에 없다. 사회자가 문C를 여는 사건이 일어날 확률 = P(D|B) = 1

참가자가 문C를 선택했을 때:

문C 뒤에 차가 있다면 사회자는 문C를 열 수 없다. 사회자가 문C를 여는 경우 = P(D|C) = 0

베이즈정리이용하기

$$P(A|D) = \frac{P(D|A)P(A)}{P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)}$$
$$= \frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3} + 1 \times \frac{1}{3} + 0 \times \frac{1}{3}} = \frac{1}{3}$$

문C가 열렸는데 그 전에 문A를 선택했을 확률 →문A를 선택했으므로 선택 고정 →선택을 안 바꿨을 때 당첨일 확률

$$P(B|D) = \frac{P(D|B)P(B)}{P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)}$$
$$= \frac{1 \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3} + 1 \times \frac{1}{3} + 0 \times \frac{1}{3}} = \frac{2}{3}$$

문C가 열렸는데 그 전에 문B를 선택했을 확률 →문B를 선택했으므로 선택 변경 →선택을 바꿨을 때 당첨인 확률

몬티홀 문제 일반화

일반화하기 ①

- i) 문의 개수:n, 상품의 개수:1, 여는 문의 개수:1
 - 1) 선택을 바꾸지 않고 당첨될 확률

$$\frac{1}{n}$$

- 1) 선택을 바꾸고 당첨될 확률
- 처음에 염소를 선택하고 상품으로 바꿈

$$\frac{n-1}{n} \times \frac{1}{n-2}$$

일반화하기 ②

- ii) 문의 개수: n, 상품의 개수: 1, 여는 문의 개수: k
 - 1) 선택을 바꾸지 않고 당첨될 확률

1	
\overline{n}	

1	n-1-k	k
---	-------	---

- 1) 선택을 바꾸고 당첨될 확률
- 처음에 염소를 선택하고 상품으로 바꿈

$$\frac{n-1}{n} \times \frac{1}{n-1-k}$$

일반화하기 ③

iii) 문의 개수: n, 상품의 개수: m, 여는 문의 개수: k

- 1) 선택을 바꾸지 않고 당첨될 확률 $\frac{m}{n}$
- 1) 선택을 바꾸고 당첨될 확률
 처음에 염소를 선택하고 상품으로 바꿈
 n-m
 m

처음에 상	'품을 선택하고 상품으로 바꿈
m	m-1
$\frac{-}{n}$ ×	n-1-k

	ı	k		
1	l n-1-k			k
	m	n-m-k		k

$$\frac{m}{n} \times \frac{n-1}{n-1-k}$$

일반화하기 ③

문의 개수:n, 상품의 개수:m, 여는 문의 개수:k

선택을 바꾸지 않을 때 :
$$\frac{m}{n}$$

선택을 바꿀 때:
$$\frac{m}{n} imes \frac{n-1}{n-1-k}$$

$$\frac{m}{n} < \frac{m}{n} \times \frac{n-1}{n-1-k}$$

$$\frac{n-1}{n-1-k}$$
 > 1

 $(:: 1 \le k \le n-m-1)$

선택을 바꾸는 것이 유리!

몬티홀 문제의 가격 결정

기본 몬티홀 문제 옵션 가격

상품의 가격을 \$30,000라고 가정

원래 당첨 확률:
$$\frac{1}{3}$$

문을 하나 열고 바꿨을 때 당첨 확률:
$$\frac{2}{3}$$

선택지를 바꿀 권리(옵션)의 가격:
$$\left(\frac{2}{3} - \frac{1}{3}\right) \times \$30,000 = \$10,000$$

일반화된 몬티홀 문제 옵션 가격

기본 가정)

- ①전체 문의 개수:n, 상품의 개수:m, 문을 여는 횟수:1, 열어주는 문의 개수:k
- ②시간 가치와 초기 참가 비용은 0
- ③상품의 가격은 W

선택 변경(옵션)이 없는 경우

	확률	현금흐름	기대가치	
당첨 선택	$\frac{m}{n}$	W	$\frac{mW}{n}$	
꽝 선택	$\frac{n-m}{n}$	0	0	

선택 변경(옵션)이 있는 경우

현재	미래		확률	현금흐름	기대가치
당첨 선택	선택 변경	당첨	$\frac{m}{n} \times \frac{m-1}{n-k-1}$	W	$\frac{m}{n} \times \frac{m-1}{n-k-1} W$
		꽝	$\frac{m}{n} \times \frac{n - m - k}{n - k - 1}$	0	0
꽝 선택		당첨	$\frac{n-m}{n} \times \frac{m}{n-k-1}$	W	$\frac{n-m}{n} \times \frac{m}{n-k-1} W$
		꽝	$\frac{n-m}{n} \times \frac{n-m-k-1}{n-k-1}$	0	0

일반화된 몬티홀 문제 옵션 가격

선택을 바꿔 당첨될 확률 :
$$\frac{m}{n} \times \frac{m-1}{n-k-1} + \frac{n-m}{n} \times \frac{m}{n-k-1}$$

$$= \frac{m}{n} \times \frac{n-1}{n-k-1} \quad \text{이므로 옵션의 가격은 다음과 같이 구할 수 있다.}$$

$$\frac{m}{n}\frac{n-1}{n-1-k}-\frac{m}{n}=\frac{m}{n}\frac{k}{n-1-k}$$

$$P = W \times \frac{m}{n} \frac{k}{n-1-k}$$

- 1. A문을 선택했다고 가정
- 2. D문이 열린 상태

A문에 상품이 있을 확률: 1/4 B문에 상품이 있을 확률: 3/8 C문에 상품이 있을 확률: 3/8

- 3. B문으로 선택을 바꿨다고 가정
- 4. A문 혹은 C문이 열렸을 때 선택을 바꿀 권리의 가격은 얼마일까?

$$\frac{m}{n} \times \frac{n-1}{n-1-k}$$

			두 번째로 여는 문		
			A문	B문	C문
상품이 있을 확률	A문	1/4	0	0	1/4
	B문	3/8	3/16	0	3/16
	C문	3/8	3/8	0	0

① A문이 열린 경우

B문에 있을 확률: $\frac{1}{3}$

C문에 있을 확률: $\frac{2}{3}$

② C문이 열린 경우

A문에 있을 확률: $\frac{4}{7}$

B문에 있을 확률: $\frac{3}{7}$

Q & A