

HiPerFET™ Power MOSFETs

IXFK100N10 IXFN150N10 $\begin{tabular}{c|c|c|c} $V_{\rm DSS}$ & $I_{\rm D25}$ & $R_{\rm DS(on)}$ \\ \hline 100 \ V & 100 \ A & 12 \ m\Omega \\ 100 \ V & 150 \ A & 12 \ m\Omega \\ $t_{\rm rr} \le 200 \ ns $ \\ \hline \end{tabular}$

N-Channel Enhancement Mode Avalanche Rated, High dv/dt, Low t,

Symbol	Test Conditions	Maximur IXFK	s	
V _{DSS}	T _J = 25°C to 150°C	100	100	V
$\mathbf{V}_{\mathtt{DGR}}$	$T_{_{\rm J}} = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}; R_{_{\rm GS}} = 1 \text{ M}\Omega$	100	100	V
V _{GS}	Continuous	±20	±20	V
V _{GSM}	Transient	±30	±30	V
I _{D25}	T _c = 25°C	100 ①	150	Α
I _{D120}	T _C = 120°C, limited by external leads	76	-	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	560	560	Α
I _{AR}	$T_{c} = 25^{\circ}C$	75	75	Α
E _{AR}	T _C = 25°C	30	30	mJ
dv/dt	$\begin{split} &I_{_{S}} &\leq I_{_{DM}}, di/dt \leq 100 A/\mu s, V_{_{DD}} \leq V_{_{DSS}}, \\ &T_{_{J}} \leq 150^{\circ} C, R_{_{G}} = 2 \Omega \end{split}$	5 5		V/ns
$\overline{\mathbf{P}_{\scriptscriptstyle \mathrm{D}}}$	T _C = 25°C	500	520	W
T _J		-55 +150 °C		°C
T _{JM}			150	°C
T _{stg}		-55 +150 °C		
T _L	1.6 mm (0.063 in) from case for 10 s	300	-	°C
V _{ISOL}	50/60 Hz, RMS $t = 1 \text{ min}$ $I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	-	2500 3000	V~ V~
M _d	Mounting torque Terminal connection torque	0.9/6 -	1.5/13 1.5/13	Nm/lb.in. Nm/lb.in.
Weight		10	30	g

Symbol	Test Conditions $(T_{_J} = 25^{\circ}C,$	Characteristic Values ($T_J = 25$ °C, unless otherwise specified) min. typ. max.			
V _{DSS}	V _{GS} = 0 V, I _D = 1 mA	100			V
$V_{_{\mathrm{GH(th)}}}$	$V_{DS} = V_{GS}$, $I_D = 8 \text{ mA}$	2		4	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$			±200	nA
I _{DSS}	$V_{DS} = 0.8 \cdot V_{DSS}$ $T_{J} = 25^{\circ}C$ $V_{GS} = 0 V$ $T_{J} = 125^{\circ}C$			400 2	μA mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 75 \text{ A}$ Pulse test, $t \le 300 \mu\text{s}$, duty cycle $d \le 2 \%$			12	mΩ

TO-264 AA (IXFK)

miniBLOC, SOT-227 B (IXFN) E153432

G = Gate S = Source D = Drain TAB = Drain

Either Source terminal at miniBLOC can be used as Main or Kelvin Source

Features

- International standard packages
- JEDECTO-264 AA, epoxy meet UL94 V-0, flammability classification
- miniBLOC with Aluminium nitride isolation
- Low $R_{DS (on)} HDMOS^{TM}$ process
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- · Low package inductance
- · Fast intrinsic Rectifier

Applications

- · DC-DC converters
- · Synchronous rectification
- Battery chargers
- Switched-mode and resonant-mode power supplies
- · DC choppers
- Temperature and lighting controls
- · Low voltage relays

Advantages

- Easy to mount
- · Space savings
- High power density

Symbol	Test Conditions Ch $(T_J = 25^{\circ}C, \text{ unless})$ min.	aractei otherwi typ.		
g _{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 50 \text{ A}, \text{ pulse test}$	80		S
C _{iss}		9000		pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	3200		pF
\mathbf{C}_{rss}		1800		pF
t _{d(on)}		30		ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 75 \text{ A}$	60		ns
t _{d(off)}	$R_{\rm G} = 1 \Omega \text{ (External)},$	100		ns
t _f)	60		ns
Q _{g(on)}		360		nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 75 \text{ A}$	75		nC
\mathbf{Q}_{gd}	J	180		nC
R _{thJC}	TO-264 AA		0.25	K/W
R _{thCK}	TO-264 AA	0.15		K/W
R_{thJC}	miniBLOC, SOT-227 B		0.24	K/W
R_{thCK}	miniBLOC, SOT-227 B	0.05		K/W

Source-Drain Diode

Characteristic Values

 $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$

Symbol	Test Conditions		min.	typ.	max.	
I _s	$V_{GS} = 0 V$	IXFK 100 IXFN 150			100 150	A A
I _{sm}	Repetitive; pulse width limited by T _{JM}	IXFK 100 IXFN 150			400 600	A A
V _{SD}	$I_F = 100 \text{ A}, V_{GS} = 0 \text{ V},$ Pulse test, $t \le 300 \mu\text{s}, \text{ duty }0$	cycle d≤2%			1.75	V
t _{rr})			150	200	ns
\mathbf{Q}_{RM}	$I_F = 25 \text{ A}$ -di/dt = 100 A/µs,			0.6		μС
I _{RM}	$V_{R} = 50 \text{ V}$			8		Α

TO-264 AA Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
Α	4.82	5.13	.190	.202
A1	2.54	2.89	.100	.114
A2	2.00	2.10	.079	.083
b	1.12	1.42	.044	.056
b1	2.39	2.69	.094	.106
b2	2.90	3.09	.114	.122
С	0.53	0.83	.021	.033
D	25.91	26.16	1.020	1.030
Е	19.81	19.96	.780	.786
е	5.46 BSC		.215 BSC	
J	0.00	0.25	.000	.010
K	0.00	0.25	.000	.010
L	20.32	20.83	.800	.820
L1	2.29	2.59	.090	.102
Р	3.17	3.66	.125	.144
Q	6.07	6.27	.239	.247
Q1	8.38	8.69	.330	.342
R	3.81	4.32	.150	.170
R1	1.78	2.29	.070	.090
S	6.04	6.30	.238	.248
Т	1.57	1.83	.062	.072

miniBLOC, SOT-227 B

M4 screws (4x) supplied

Dim.	Millir	neter	Inches	
	Min.	Max.	Min.	Max.
Α	31.50	31.88	1.240	1.255
В	7.80	8.20	0.307	0.323
С	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
E	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
Н	38.00	38.23	1.496	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.76	0.84	0.030	0.033
М	12.60	12.85	0.496	0.506
N	25.15	25.42	0.990	1.001
0	1.98	2.13	0.078	0.084
P	4.95	5.97	0.195	0.235
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.174
S	4.72	4.85	0.186	0.191
Т	24.59	25.07	0.968	0.987
U	-0.05	0.1	-0.002	0.004

Fig. 1 Output Characteristics

Fig. 3 $R_{DS(on)}$ vs. Drain Current

Fig. 5 Drain Current vs.

Case Temperature

Fig. 2 Input Admittance

Fig. 4 Temperature Dependence of Drain to Source Resistance

Fig. 6 Temperature Dependence of Breakdown and Threshold Voltage

Fig.7 Gate Charge Characteristic Curve

Fig.8 Capacitance Curves

Fig.9 Source Current vs. Source to Drain Voltage 150 125 100 I_s - Amperes 75 $T_J = 125$ °C 50 T_ = 25°C 25 0.25 0.50 0.75 1.00 1.25 0.00 1.50 $V_{\rm SD}$ - Volt

Fig.10 Transient Thermal Impedance

Time - Seconds