PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: WO 00/47634 (11) International Publication Number: C08F 4/00 A1 (43) International Publication Date: 17 August 2000 (17.08.00) PCT/GB00/00324 (21) International Application Number: (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, (22) International Filing Date: 7 February 2000 (07.02.00) ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, (30) Priority Data: SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, 9902564.5 8 February 1999 (08.02.99) GB AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,

(71) Applicant (for all designated States except US): INEOS ACRYLICS UK LTD. [GB/GB]; P.O. Box 90, Wilton, Cleveland TS90 8JE (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): IRVINE, Derek, John [GB/GB]; 15 Mount Leven Road, Cleveland TS15 9RF (GB). BORMAN, Christopher, David [GB/GB]; 13 Morpeth Street, Spitaltongues, Newcastle-Upon-Tyne NE2 4AS (GB).
- (74) Agents: WALSH, David, Patrick et al.; Appleyard Lees, 15 Clare Road, Halifax HX1 2HY (GB).

Published

With international search report.

GA, GN, GW, ML, MR, NE, SN, TD, TG).

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,

(54) Title: PRODUCTION OF VINYLIC POLYMERS

(57) Abstract

A method of producing an acrylic polymer by atom transfer radical polymerisation (ATRP) which comprises the steps of: (i) forming a mixture of at least one vinylic monomer, a transition metal complex or precursor thereof, wherein the transition metal in a first oxidation state is reversibly capable of bonding to a halogen atom X and entering a second oxidation state; (ii) adding to said mixture an initiator R-X, where X is a halogen and R is an alkyl, substituted alkyl or halogenated carbon group, such that the acrylic monomer is polymerised by atom transfer radical polymerisation; characterised in that said mixture in stage (i) further comprises a Lewis acid which is soluble in the reaction mixture. The method produces faster reactions than conventional ATRP methods.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	IIU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	II.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/47634 PCT/GB00/00324

Production of vinylic polymers

The present invention concerns the production of vinylic polymers, especially, but not limited to, acrylic polymers, for example methacrylate and acrylate copolymers and homopolymers, using atom transfer radical polymerisation.

Atom transfer radical polymerisation (ATRP) of unsaturated monomers such as styrene and methyl methacrylate has been reported by Matyjaszewski et al (*J. Am. Chem. Soc.*, (1995), 117, 5614; *J. Am. Chem. Soc.*, (1997), 119, 674; *Macromolecules*, (1998), 31, 1527) and Haddleton et al (*Macromolecules*, (1997), 30, 2190; *Macromolecules*, (1997), 30, 3992). It is a method of living free radical polymerisation which is initiated by the abstraction of a halogen atom from an alkyl halide by a stabilised metal complex (usually copper or ruthenium) to produce an alkyl radical. The alkyl radical then adds to the monomer in a chain reaction which may be terminated by the addition of an abstracted halogen back from the metal complex. Subsequent removal of the halogen may then lead to further addition of monomer. This mode of polymerisation is controlled and normally leads to halogen-terminated polymer of narrow molecular weight distribution in which the molecular weight is dependent upon the concentration of initiator used.

One problem which has been found with ATRP polymerisation reactions is that they proceed at rates which are often unattractive commercially. The present invention provides an ATRP process which differs from the standard process.

Sawamoto et al (*Macromolecules* (1995) **28** 1721 - 1723) describe the use of a particular Lewis acid, methyl aluminium bis (2,6-di-*tert*-butyl-4-methyl) phenoxide ((MeAl(ODBP)₂), in an ATRP reaction to polymerise methyl methacrylate (MMA) using dichlorotris(triphenylphosphine)ruthenium(II) and carbon tetrachloride initiator. He found that the MeAl(ODBP)₂ was an essential part of the initiator system because it activated the CCl₄ initiator to form radicals. The reaction is ineffective in the absence of the MeAl(ODBP)₂ compound.

We have unexpectedly found a process for producing polymer by ATRP methodology which shows an increased reaction rate compared to known ATRP reactions.

According to the invention, we provide a method of producing an acrylic polymer which comprises the steps of

- (i) forming a mixture of at least one vinylic monomer, a transition metal complex or precursor thereof, wherein the transition metal in a first oxidation state is reversibly capable 5 of bonding to a halogen atom X and entering a second oxidation state;
 - (ii) adding to said mixture an initiator R-X, where X is a halogen and R is an alkyl, substituted alkyl or halogenated carbon group, such that the acrylic monomer is polymerised by atom transfer radical polymerisation; characterised in that said mixture in stage (i) further comprises a Lewis acid which is
- 10 soluble in the reaction mixture.

The at least one vinylic monomer preferably comprises an acrylic monomer such as an alkyl acrylate, alkyl (alkyl)acrylate or acrylic or (alkyl)acrylic acid. Preferred monomers include optionally functionalised alkyl acrylates and alkyl methacrylates, especially, methyl methacrylate (MMA), ethyl methacrylate, n-propyl methacrylate, i-butyl methacrylate, 15 t-butyl methacrylate, hydroxyethyl methacrylate, ethyl acrylate, butyl acrylate, methyl acrylate. Other suitable monomers include styrene (including substituted or functionalised styrenes) acrylonitrile and other vinylic species, e.g. vinyl acetate.

The transition metal which forms a complex or precursor thereof, wherein the transition metal in a first oxidation state is reversibly capable of bonding to a halogen atom X and 20 entering a second oxidation state, may be selected from e.g. copper, nickel, iron or ruthenium but is preferably copper. The transition metal complex may be any of those which have been found suitable for use in ATRP reactions of vinylic monomers, e.g. as described in the literature references supra. The transition metal complex preferably comprises Cu-L_n, where L is a ligand which is preferably a substituted pyridine compound, 25 especially 2,2'- bipyridine or a substituted analogue thereof. Suitable substituted 2,2'bipyridines include 4,4'-di-(alkyl)-2,2'- bipyridines where the alkyl group comprises a C₁₋₂₀ alkyl group such as t-butyl, n-heptyl, 5-nonyl or other bulky group. Such complexes may be formed in situ by the reaction of a copper (I) halide with the ligand. The Cu halide is preferably CuCl or CuBr but can also be Cu(I)I. n is normally 1 -3, especially 2. 30 Preferably the molar ratio of Cu: ligand is about 1:2, e.g. 1:1.8 - 2.2. Other suitable transition metal complexes include Ru(PPh₃)₃Cl₂ as described by Sawamoto et al

(Macromolecules (1995) 28 1721 - 1723).

The initiator is a halogen-containing compound R-X. The halogen X is preferably CI or Br. Suitable initiator compounds include alkyl and aryl halides and other organic halide compounds such as ethyl-2-bromoisobutyrate, 1-phenylethyl bromide, 1-phenylethyl chloride, *p*-toluenesulphonyl chloride, benzhydryl chloride, 1,1,1-trichloroacetone, α,α-dichloroacetophenone, carbon tetrachloride.

We have unexpectedly found that the addition of a Lewis acid to the reaction medium significantly increases the rate of ATRP reactions. Preferred Lewis acids include aluminium complex compounds, metal halides, e.g. Zinc halides, lithium halides, iron trichloride, boron trifluoride, acetyl acetonate (Acac), conjugated organic acids and other organic acids such as camphorsulfonic acid. A preferred aluminium compound is methyl aluminium bis (2,6-di-*tert*-butyl-4-methyl) phenoxide. The Lewis acid should be soluble in the reaction medium.

When the ATRP reaction is carried out by the method of the invention, i.e. in the presence of a Lewis acid compound, the reaction rate may be increased to the extent that the reaction solution becomes viscous much more quickly than in the absence of such a compound. In these circumstances, control over the polydispersity of the polymer produced may be adversely affected, possibly because of the impaired mobility of the polymer chains, and/ or other reactant or intermediate species present. We have found that the detrimental effects of a rapid rise in the viscosity of the reaction mixture may be overcome to a large extent by the addition of solvent to the reaction mixture as the reaction progresses.

In a second aspect of the invention we provide a method of producing an acrylic polymer which comprises the steps of

- (i) forming a solution of at least one vinylic monomer, a solvent and a transition metal
 complex or precursor thereof, wherein the transition metal in a first oxidation state is reversibly capable of bonding to a halogen atom X and entering a second oxidation state;
 (ii) adding to said mixture an initiator R-X, where X is a halogen and R is an alkyl, substituted alkyl or halogenated carbon group, such that the acrylic monomer is polymerised by atom transfer radical polymerisation;
- 30 characterised in that said mixture in stage (i) further comprises a Lewis acid which is soluble in the reaction mixture and in that an additional quantity of solvent is added to the

reaction mixture after stage (ii) when at least a part of the acrylic monomer has been polymerised.

The addition of the additional solvent preferably occurs gradually, e.g. dropwise or in portions over time. By additional solvent we mean a quantity of solvent which is not present in the reaction mixture before the initiator is added. The solvent is preferably the same chemically as the solvent used to form the solution of reactants in stage (i). Suitable solvents include ethyl acetate, o-xylene etc.

The reaction mixture may also include a chain transfer agent such as a mercaptan or a catalytic chain transfer compound. Such compounds are known in the art. Suitable mercaptans include alkyl mercaptans which have at least one functional -S-H group which are known in the art as chain transfer agents, in particular for use in acrylic polymers. Examples of suitable mercaptans include butyl mercaptan, nonyl mercaptan, dodecyl mercaptan and others.

The amount of chain transfer agent added to the reaction mixture varies according to the type of substance used and its mode of action. If a catalytic chain transfer agent (CCT) is used, we have found that the optimum properties of the resulting polymer are achieved when the CCT is present at a level of 3 - 30, more preferably 5 - 15, especially about 10 ppm by weight based on the total weight of the reaction mixture, including solvent. When a mercaptan is used it is preferably present at a molar concentration of active sites approximately equal to the molar concentration of the initiator used. This is because each initiator molecule may initiate one chain and each mercaptan group may terminate one chain.

The reaction mixture may contain other additives which are used to change the properties of the polymer, e.g. impact-modifying materials, colourants, processing aids etc.

25 The invention will be further described in the following examples.

Example 1

Method of producing polymethyl methacrylate by ATRP

All reactant concentrations are given in mol dm⁻³ (M) of the total reaction mixture. The

ATRP polymerisation was conducted as follows:

WO 00/47634 PCT/GB00/00324 5

46.7 mM Copper(I)bromide (Cu(I)Br) and 141 mM 2,2'-bipyridine (bpy) and 23.9 mM of a Lewis acid (if used) were introduced to a 100 ml round-bottomed flask fitted with a sidearm condenser and oxygen was removed by three successive vacuum-nitrogen purges. 5.1 M of ethyl acetate and 4.67 M MMA were then added using dry glass syringes. The resultant mixture was then heated with stirring, under an atmosphere of dry nitrogen, to 90°C before addition of 23.9 mM ethyl-2-bromoisobutyrate (EBIB) initiator via a dry glass Hamilton syringe. The temperature of the reaction mixture was monitored throughout and maintained at 90 °C. The initial ratios of [Cu(I)Br]₀: [bpy]₀: [initiator]₀ = 2:6:1.

The PMMA produced in this way was isolated by resuspension of the reaction mixture in tetrahydrofuran (Fisher) followed by filtration through a small column of alumina (activated, Brockmann I, 58Å, Aldrich) to remove excess Cu, and finally precipitation into hexane (Fisher). The polymer was analysed by X-ray fluorescence which showed that the Cu content of the PMMA product was <20 ppm. Conversion was determined gravimetrically after the polymer had been dried in a vacuum oven at 80°C for 3 h.

All reactions were performed using the method described in Example 1, except where noted below.

Example No	Lewis acid	Reaction time (h)	M _n	M _w /M _n	% conv.
1	AIMe(OMDBP) ₂	2.0	17,300	1.8	92
2 (comp)	NONE	16	22,500	1.3	95
3	AIMe(OMDBP) ₂	2.0	17,300	1.4	80
4	ZnBr ₂	2.5	18,300	1.9	68
5	ZnBr ₂	2.0	22,400	1.8	75
6	ZnBr ₂	3.0	18,300	1.7	72
7	LiBr	2.5	19,400	1.8	78
8	LiCI	2.0	18,200	1.4	61
9	Camphorsulfonic acid	3.0	21,100	1.7	75
10	Acac	3.0	18,800	2.0	83

Example 3

30 ml of additional EtOAc solvent was added dropwise to the reaction after 30 minutes for the remaining 90 minutes of reaction time in order to counteract the rapid increase in viscosity as the reaction progressed.

Example 5

The concentration of Cu(I)Br was 93.4 mM in this Example.

Example 6

This reaction used o-xylene as a solvent and the reaction was done at a temperature of 120 °C

Claims

- 1. A method of producing an acrylic polymer which comprises the steps of
- (i) forming a mixture of at least one vinylic monomer, a transition metal complex or precursor thereof, wherein the transition metal in a first oxidation state is reversibly capable
 of bonding to a halogen atom X and entering a second oxidation state;
 - (ii) adding to said mixture an initiator R-X, where X is a halogen and R is an alkyl, substituted alkyl or halogenated carbon group, such that the acrylic monomer is polymerised by atom transfer radical polymerisation;

characterised in that said mixture in stage (i) further comprises a Lewis acid which is soluble in the reaction mixture.

- 2. A method as claimed in claim 1, wherein said Lewis acid is selected from the group comprising aluminium complex compounds, metal halides, acetyl acetonate, conjugated organic acids and other organic acids such as camphorsulfonic acid
- 3. A method of producing an acrylic polymer which comprises the steps of
- (i) forming a solution of at least one vinylic monomer, a solvent and a transition metal complex or precursor thereof, wherein the transition metal in a first oxidation state is reversibly capable of bonding to a halogen atom X and entering a second oxidation state;
- (ii) adding to said mixture an initiator R-X, where X is a halogen and R is an alkyl, substituted alkyl or halogenated carbon group, such that the acrylic monomer is polymerised by atom transfer radical polymerisation;
- characterised in that said mixture in stage (i) further comprises a Lewis acid which is soluble in the reaction mixture and in that an additional quantity of solvent is added to the reaction mixture after stage (ii) when at least a part of the acrylic monomer has been polymerised.

INTERNATIONAL SEARCH REPORT

Int donal Application No PCT/GB 00/00324

			· · · · · · · · · · · · · · · · · · ·
	FICATION OF SUBJECT MATTER C08F4/00		
According to	International Patent Classification (IPC) or to both national classification	ation and IPC	
	SEARCHED		
IPC 7	cumentation searched (classification system followed by classification ${\tt C08F}$	on symbols)	
Documentat	ion searched other than minimum documentation to the extent that s	uch documents are included in the fields se	earched
Electronic da	ata base consulted during the international search (name of data bas	se and where practical search terms used	
		os ana, more praesea, search come assa.	,
			· · · · · · · · · · · · · · · · · · ·
	ENTS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·	D
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
χ	EP 0 872 493 A (UNIV CASE WESTERN	I RESERVE)	1
,	21 October 1998 (1998-10-21)	· KESEKTE)	•
	claims 1,7-9		
	page 3, line 57 page 4, line 2-15		
	page 4, 11ne 2 13 page 4, line 40-56		
	page 5, line 49		
	examples 1-4		
		-/	
		'	
X Furth	ner documents are listed in the continuation of box C.	χ Patent family members are listed	iп annex.
° Special ca	tegories of cited documents :	"T" later document published after the inte	mational filing date
	ent defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conflict with cited to understand the principle or the	the application but eory underlying the
"E" earlier o	ocument but published on or after the international	invention "X" document of particular relevance; the c	laimed invention
filing d "L" docume	nt which may throw doubts on priority claim(s) or	cannot be considered novel or cannot involve an inventive step when the do	
citation	or other special reason (as specified)	"Y" document of particular relevance; the c cannot be considered to involve an in-	laimed invention ventive step when the
"O" docume other r	ent referring to an oral disclosure, use, exhibition or neans	document is combined with one or mo ments, such combination being obviou	ore other such docu-
	ent published prior to the international filling date but nan the priority date claimed	in the art. "&" document member of the same patent	family
Date of the	actual completion of the international search	Date of mailing of the international sea	arch report
2	3 May 2000	19/06/2000	
Name and r	nailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Rose, E	

2

INTERNATIONAL SEARCH REPORT

Inte onal Application No
PCT/GB 00/00324

		PCT/GB 00/00324
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 763 548 A (MATYJASZEWSKI KRZYSZTOF ET AL) 9 June 1998 (1998-06-09) column 25, line 10-27 claims 1,6,8,9 example 1 column 5, line 52-58 column 8, line 23-47 column 9, line 47-53 column 10, line 1,45 column 18, line 52-54	1-3
A	CHEMICAL ABSTRACTS, vol. 132, Columbus, Ohio, US; abstract no. 166605, GUO, JIANHUA ET AL: "Catalytic system including Al(OiPr)3 as a promoter for atom transfer radical polymerization" XP002138470 abstract & GAOFENZI XUEBAO (1999), (6), 725-730,	1-3
	` <u></u> ' ` ` ' '	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte ional Application No PCT/GB 00/00324

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
EP 0872493	Α	21-10-1998	US	5886118 A	23-03-1999	
			AU	700083 B	24-12-1998	
			AU	5948398 A	29-10-1998	
			CA	2232645 A	14-10-1998	
			CN	1211580 A	24-03-1999	
			JP	10324703 A	08-12-1998	
			ZA	9802564 A	06-01-1999	
US 5763548	 А	09-06-1998	AU	5306996 A	16-10-1996	
			BR	9604887 A	30-11-1999	
			CA	2216853 A	03-10-1996	
			CN	1183107 A	27-05-1998	
			EP	0817806 A	14-01-1998	
			JP	10509475 T	14-09-1998	
			WO	9630421 A	03-10-1996	