Tópicos:

- Introdução Sistemas de Computação de Uso Geral
- A arquitetura MIPS

Questões:

- 1. Quais são os 3 blocos fundamentais de um sistema computacional?
- 2. Quais são os 3 principais blocos funcionais na arquitetura de um CPU?
- 3. Qual a função do registo *Program Counter*?
- 4. Descreva de forma sucinta a função de um compilador.
- 5. Descreva de forma sucinta a função de um assembler.
- 6. Quantos registos internos de uso geral tem o MIPS?
- 7. No MIPS, qual a dimensão, em bits, que cada um dos registos internos pode armazenar?
- 8. Qual a sintaxe, em Assembly do MIPS, de uma instrução aritmética de soma ou subtração?
- 9. O que distingue a instrução **srl** da instrução **sra** do MIPS?
- 10. Se \$5=0x81354AB3, qual o resultado armazenado no registo destino, expresso em hexadecimal, das instruções:
 - a. srl \$3,\$5,1
 - b. sra \$4,\$5,1
- 11. System calls:
 - a. O que é um system call?
 - b. No MIPS, qual o registo usado para identificar o system call a executar?
 - c. Qual o registo ou registos usados para passar argumentos para os systems calls?
 - d. Qual o registo usado para obter o resultado devolvido por um *system call* (nos casos em que isso se aplica)?
- 12. Em Arquitetura de Computadores, como definiria o conceito de endereço?
- 13. Defina o conceito de espaço de endereçamento de um processador?
- 14. Como se organiza internamente um processador? Quais são os blocos fundamentais da secção de dados? Para que serve a unidade de controlo?
- 15. Qual é o conceito fundamental por detrás do modelo de arquitetura "stored-program"?
- 16. Como se codifica uma instrução? Que informação fundamental deverá ter o código máquina de uma instrução?

- 17. Descreva pelas suas próprias palavras o conceito de ISA (Instruction Set Architecture).
- 18. Independentemente do modelo da arquitetura, identifique quantas e quais as classes de instruções que compões o conjunto de instruções executáveis por um processador dessa arquitetura?
- 19. O que carateriza e distingue as arquiteturas do tipo "register-memory" e "load-store"? De que tipo é a arquitetura MIPS?
- 20. O ciclo de execução de uma instrução é composto por uma sequência ordenada de operações. Quantas e quais são essas operações (passos de execução)?
- 21. Como se designa o barramento que permite identificar, na memória, a origem ou o destino da informação transferida?
- 22. Qual a finalidade do barramento normalmente designado por Data Bus?
- 23. Os processadores da arquitetura hipotética ZWYZ possuem 4 registos internos e todas as instruções são codificadas usando 24 bits. Num dos formatos de codificação existem 5 campos: um *OpCode* com 5 bits, três campos para identificar registos internos em operações aritméticas e lógicas e um campo para codificar valores constantes imediatos em complemento para dois. Qual a gama de representação destas constantes?
- 24. A arquitetura hipotética ZPTZ tem um barramento de endereços de 32 bits e um barramento de dados de 16 bits. Se a memória desta arquitetura for *bit_addressable*:
 - a. Qual a dimensão do espaço de endereçamento desta arquitetura?
 - b. Qual a dimensão máxima da memória, expressa em bytes, suportada por esta arquitetura?
- 25. Considere agora uma arquitetura em que o respetivo ISA especifica uma organização de memória do tipo **word-addressable**, em que a dimensão da **word** é 32 bits. Tendo o espaço de endereçamento do processador 24 bits, qual a dimensão máxima de memória que este sistema pode acomodar se expresso em **bytes**?
- 26. Relativamente à arquitetura MIPS:
 - a. Com quantos bits são codificadas as instruções no MIPS?
 - b. O que diferencia o registo \$0 dos restantes registos de uso geral?
 - c. Qual o endereço do registo interno do MIPS a que corresponde a designação lógica \$ra?
- 27. No MIPS, um dos formatos de codificação de instruções é designado por R:
 - a. Quais os campos em que se divide este formato de codificação?
 - b. Qual o significado de cada um desses campos?
 - c. Qual o valor do campo opCode nesse formato?
 - d. O que faz a instrução cujo código máquina é: 0x00000000?
- 28. O símbolo ">>" da linguagem C significa deslocamento à direita e é traduzido em assembly por srl ou sra (no caso do MIPS). Dê exemplos de casos em linguagem C em que o compilador gera um srl e exemplos em que gera um sra.
- 29. Qual a instrução nativa do MIPS em que é traduzida a instrução virtual "move \$4,\$15"?

- 30. Determine o código máquina das seguintes instruções (verifique a tabela na última página):
 - a. xor \$5,\$13,\$24
 - b. sub \$25,\$14,\$8
 - c. sll \$3,\$9,7
 - d. sra \$18,\$9,8
- 31. Traduza para instruções *Assembly* do MIPS a seguinte expressão aritmética, supondo que **x** e **y** são inteiros e residentes em **\$t2** e **\$t5**, respetivamente (apenas pode usar instruções nativas e não deverá usar a instrução de multiplicação):

$$y = -3 * x + 5;$$

32. Traduza para instruções assembly do MIPS o seguinte trecho de código:

- 33. Considere que as variáveis **g**, **h**, **i** e **j** são conhecidas e podem ser representadas por uma variável de 32 bits num programa em C. Qual a correspondência, em linguagem C, às seguintes instruções:
 - a. add h, i, g #
 b. addi j, j, 1 #
 add h, h, j #
- 34. Assumindo que **g=1**, **h=2**, **i=3** e **j=4** qual o valor destas variáveis no final das sequências das alíneas da questão anterior?
- 35. Descreva a operação realizada pela instrução assembly "slt" e quais os resultados possíveis?
- 36. Qual o valor armazenado no registo \$1 na execução da instrução "slt \$1, \$3, \$7", admitindo que:
 - a. \$3=5 e \$7=23
 - b. \$3=0xFE e \$7=0x913D45FC
- 37. Com que registo implícito comparam as instruções "bltz", "blez", "bgtz" e "bgez"?
- 38. Decomponha em instruções nativas do MIPS as seguintes instruções virtuais:
 - a. blt \$15,\$3,exit
 - b. ble \$6,\$9,exit
 - c. bgt \$5,0xA3,exit
 - d. bge \$10,0x57,exit
 - e. blt \$19,0x39,exit
 - f. ble \$23,0x16,exit
- 39. Na tradução e C para *assembly*, quais as principais diferenças entre um ciclo "while (...) { ... } " e um ciclo "do { ... } while (...); "?

- 40. Traduza para *assembly* do MIPS os seguintes trechos de código de linguagem C (admita que **a**, **b** e **c** residem nos registos **\$4**, **\$7** e **\$13**, respetivamente):
 - a. if(a > b && b != 0)
 c = b << 2;
 else
 c = (a & b) ^ (a | b);</pre>
 - b. if(a > 3 | | b <= c)
 c = c (a + b);
 else
 c = c + (a 5);</pre>
- 41. Como se designa o modo de endereçamento usado pelo MIPS para ter acesso a palavras residentes na memória externa?
- 42. Na instrução "lw \$3,0x24 (\$5)" qual a função dos registos \$3, \$5 e da constante 0x24?
- 43. Qual é o tipo de codificação das instruções de acesso à memória no MIPS? Descreva o seu formato e o significado de cada um dos seus campos?
- 44. Qual a diferença entre as instruções "sw" e "sb"?
- 45. O que distingue as instruções "1b" e "1bu"?
- 46. O que acontece quando uma instrução lw/sw tenta aceder a um endereço que não é múltiplo de 4?
- 47. Traduza para *assembly* do MIPS os seguintes trechos de código de linguagem C (atribua registos internos para o armazenamento das variáveis **i** e **k**) :

```
a. int i, k;
   for (i=5, k=0; i < 20; i++, k+=5);
b. int i=100, k=0;
   for(; i >= 0;)
     i--;
     k = 2;
   }
c. unsigned int k=0;
   for(;;)
   {
     k += 10;
   }
d. int k=0, i=100;
  do
   {
     k += 5;
   } while(--i >= 0);
```


- 48. Sabendo que o *OpCode* da instrução "**1w**" é **0x23**, determine o código máquina, expresso em hexadecimal, da instrução "**1w** \$3, **0x24** (\$5)".
- 49. Suponha que o conteúdo da memória externa foi inicializada, a partir do endereço 0x10010000, com os valores 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 e assim sucessivamente. Suponha ainda que \$3=0x1001 e \$5=0x10010000. Qual o valor armazenado no registo destino após a execução da instrução "lw \$3,0x24 (\$5)" admitindo uma organização de memória little endian?
- 50. Considere as mesmas condições da questão anterior. Qual o valor armazenado no registo destino pelas instruções:
 - a. 1bu \$3,0xA3(\$5)
 - b. 1b \$4,0xA3(\$5)
- 51. Quantos bytes são reservados no segmento de dados da memória por cada uma das seguintes diretivas:
 - a. L1: .asciiz "Aulas5&6T"
 - b. L2: .byte 5,8,23
 - c. L3: .word 5,8,23
 - d. L4: .space 5
- 52. Desenhe esquematicamente a memória e preencha-a com o resultado das diretivas anteriores admitindo que são interpretadas sequencialmente pelo *Assembler*.
- 53. Supondo que "L1:" corresponde ao endereço inicial do segmento de dados, e que esse endereço é 0x10010000, determine os endereços a que correspondem os *labels* "L2:", "L3:" e "L4:".
- 54. Suponha que "b" é um array declarado como "int b[25];":
 - a. Como é obtido, em C, o endereço inicial do *array*, i.e., o endereço a partir do qual está armazenado o seu primeiro elemento?
 - b. Supondo uma memória "byte-addressable", como é obtido, em assembly o endereço do elemento "b [6]"?
- 55. O que é codificado no campo offset do código máquina das instruções "beq/bne"?
- 56. A partir do código máquina de uma instrução "**beq/bne**", como é formado o endereço-alvo (*Branch Target Address*)?
- 57. Qual o formato de codificação de cada uma das seguintes instruções: "beq/bne", "j", "jr"?
- 58. A partir do código máquina de uma instrução "j", como se obtém o endereço-alvo (Jump Target Address)?
- 59. Dada a seguinte sequência de declarações:

```
int b[25];
int a;
int *p = b;
```

Identifique qual ou quais das seguintes atribuições permitem aceder ao elemento de índice 5 do *array* "**b**":

a = b[5]; $a = *p + 5;$	a = *(p + 5);	a = *(p + 20);
-------------------------	---------------	----------------

60. Assuma que as variáveis **f**, **g**, **h**, **i** e **j** correspondem aos registos **\$t0**, **\$t1**, **\$t2**, **\$t3** e **\$t4** respetivamente. Considere que o endereço base dos *arrays* de inteiros **A** e **B** está contido nos registos **\$s0** e **\$s1**. Considere ainda as seguintes expressões:

$$f = g + h + B[2]$$

 $j = g - A[B[2]]$

- a. Qual a tradução para assembly de cada uma das instruções C indicadas?
- b. Quantas instruções *assembly* são necessárias para cada uma das instruções C indicadas? E quantos registos auxiliares são necessários?
- c. Considerando a tabela seguinte que representa o conteúdo byte-a-byte da memória, nos endereços correspondentes aos *arrays* A e B, indique o valor de cada elemento dos *arrays* assumindo uma organização *little endian*.

Endereço	Valor
A+12	•••
A+11	0x00
A+10	0x00
A+9	0x00
A+8	0x01
A+7	0x22
A+6	0xED
A+5	0x34
A+4	0x00
A+3	0x00
A+2	0x00
A+1	0x00
A+0	0x12

A[0]=	
A[1]=	
A[2]=	

Valor
0x00
0x00
0x00
0x02
0x00
0x00
0x50
0x02
0xFF
0xFF
0xFF
0xFE

B[0]=
B[1]=
B[2]=

- d. Assumindo que g = -3 e h = 2, qual o valor final das variáveis $f \in j$?
- 61. Pretende-se escrever uma função para a troca do conteúdo de duas variáveis (**a** e **b**). Isto é, se, antes da chamada à função, **a=2** e **b=5**, então, após a chamada à função, os valores de **a** e **b** devem ser: **a=5** e **b=2**

Uma solução incorreta para o problema é a seguinte:

```
void troca(int x, int y)
{
    int aux;
    aux = x;
    x = y;
    y = aux;
}
```

Identifique o erro presente no trecho de código e faça as necessárias correções para que a função tenha o comportamento pretendido.

- 62. Na instrução "jr \$ra", como é obtido o endereço-alvo?
- 63. Qual é o menor e o maior endereço para onde uma instrução "j", residente no endereço de memória **0x5A18F34C**, pode saltar?
- 64. Qual é o menor e o maior endereço para onde uma instrução "**beq**", residente no endereço de memória **0x5A18F34C**, pode saltar?
- 65. Qual é o menor e o maior endereço para onde uma instrução "jr", residente no endereço de memória **0x5A18F34C** pode saltar?
- 66. Qual a gama de representação da constante nas instruções aritméticas imediatas (e.g. addi)?
- 67. Qual a gama de representação da constante nas instruções lógicas imediatas (e.g. andi)?
- 68. Por que razão não existe, no ISA do MIPS, uma instrução nativa que permita manipular diretamente uma constante de 32 bits?
- 69. Como é que, no assembly do MIPS, se podem manipular constantes de 32 bits?
- 70. Apresente a decomposição em instruções nativas das seguintes instruções virtuais:
 - a. li \$6,0x8B47BE0F
 - b. xori \$3,\$4,0x12345678
 - c. addi \$5,\$2,0xF345AB17
 - d. beq \$7,100,L1
 - e. blt \$3,0x123456,L2
- 71. O que é uma sub-rotina?
- 72. Qual a instrução do MIPS usada para evocar uma sub-rotina?
- 73. Por que razão não pode ser usada a instrução "j" para evocar uma sub-rotina?
- 74. Quais as operações que são sequencialmente realizadas na execução de uma instrução de evocação de uma sub-rotina?
- 75. Qual o número e nome virtual do registo associado à execução dessa instrução?
- 76. No caso de uma sub-rotina ser simultaneamente chamada e chamadora (sub-rotina intermédia) que operações é obrigatório realizar nessa sub-rotina?
- 77. Qual a instrução usada para retornar de uma sub-rotina?
- 78. Que operação fundamental é realizada na execução dessa instrução?
- 79. O que é uma *stack* e qual a finalidade do *stack pointer*?
- 80. Como funcionam as operações de *push* e *pop*?
- 81. Por que razão as stacks crescem normalmente no sentido dos endereços mais baixos?
- 82. Quais as regras para a implementação em software de uma stack no MIPS?

A 199

- 83. Qual o registo usado, no MIPS, como stack pointer?
- 84. De acordo com a convenção de utilização de registos no MIPS:
 - a. Que registos são usados para passar parâmetros e para devolver resultados de uma sub-rotina?
 - b. Quais os registos que uma sub-rotina pode livremente usar e alterar sem necessidade de prévia salvaguarda?
 - c. Quais os registos que uma sub-rotina chamadora tem a garantia que a sub-rotina chamada não altera?
 - d. Em que situação devem ser usados registos "\$sn"?
 - e. Em que situação devem ser usados os restantes registos: \$tn, \$an e \$vn?
- 85. De acordo com a convenção de utilização de registos do MIPS:
 - a. Que registos podem ter de ser copiados para a stack numa sub-rotina intermédia?
 - b. Que registos podem ter de ser copiados para a stack numa sub-rotina terminal?
- 86. Para a função com o protótipo seguinte indique, para cada um dos parâmetros de entrada e para o valor devolvido, qual o registo do MIPS usado para a passagem dos respetivos valores:

```
char fun(int a, unsigned char b, char *c, int *d);
```

- 87. Para uma codificação em complemento para 2, apresente a gama de representação que é possível obter com 3, 4, 5, 8 e 16 bits (indique os valores-limite da representação em binário, hexadecimal e em decimal com sinal e módulo).
- 88. Traduza para *assembly* do MIPS a seguinte função "**fun1** ()", aplicando a convenção de passagem de parâmetros e salvaguarda de registos:

```
char *fun2(char *, char);
char *fun1(int n, char *a1, char *a2)
{
    int j = 0;
    char *p = a1;

    do
    {
        if((j % 2) == 0)
            fun2(a1++, *a2++);
    } while(++j < n);
    *a1='\0';
    return p;
}</pre>
```

- 89. Determine a representação em complemento para 2, com 16 bits, das seguintes quantidades decimais:
 - 5, -3, -128, -32768, 31, -8, 256, -32
- 90. Determine o valor em decimal representado por cada uma das quantidades seguintes, supondo que estão codificadas em complemento para 2 com 8 bits:

0b00101011, 0xA5, 0b10101101, 0x6B, 0xFA, 0x80

- 91. Determine a representação das quantidades do exercício anterior em hexadecimal com 16 bits (também codificadas em complemento para 2).
- 92. Como é realizada a deteção de overflow em operações de adição com quantidades sem sinal?
- 93. Como é realizada a deteção de *overflow* em operações de adição com quantidades com sinal (codificadas em complemento para 2)?
- 94. Considere os seguintes pares de valores em \$s0 e \$s1:

```
i. $s0 = 0x70000000 $s1 = 0x0FFFFFFF
ii. $s0 = 0x40000000 $s1 = 0x40000000
```

- a. Qual o resultado produzido pela instrução add \$t0, \$s0, \$s1?
- b. Para a alínea anterior os resultados são os esperados ou ocorreu overflow?
- c. Qual o resultado produzido pela instrução sub \$t0, \$s0, \$s1?
- d. Para a alínea anterior os resultados são os esperados ou ocorreu overflow?
- e. Qual o resultado produzido pelas instruções:

```
add $t0, $s0,$s1
add $t0, $t0,$s1
```

- f. Para a alínea anterior os resultados são os esperados ou ocorreu overflow?
- 95. Para a multiplicação de dois operandos de "m" e "n" bits, respetivamente, qual o número de bits necessário para o armazenamento do resultado qualquer que este seja?
- 96. Apresente a decomposição em instruções nativas das seguintes instruções virtuais:

```
a. mul $5,$6,$7
```

```
b. la $t0,label c/label = 0x00400058
```

```
c. div $2,$1,$2
```

- d. rem \$5,\$6,\$7
- e. ble \$8,0x16,target
- f. bgt \$4,0x3F,target
- 97. Determine o resultado da instrução mul \$5,\$6,\$7, quando

```
$6=0xFFFFFFFE e $7=0x00000005.
```

- 98. Determine o resultado da execução das instruções virtuais **div** \$5,\$6,\$7 **e rem** \$5,\$6,\$7 quando \$6=0xFFFFFFO **e** \$7=0x00000003
- 99. Admita que pretendemos executar, em Assembly do MIPS, as operações:

```
$t0 = $t2/$t3 e $t1 = $t2 % $t3.
```

Escreva a sequência de instruções em *Assembly* que permitem realizar estas duas operações. Use apenas instruções nativas

- 100. Descreva as regras que são usadas, na ALU do MIPS, para realizar uma divisão inteira entre duas quantidades com sinal.
- 101. Considerando que \$t0=-7 e \$t1=2, determine o resultado da instrução div \$t0, \$t1 e o valor armazenado respetivamente nos registos HI e LO.
- 102. Repita o exercício anterior admitindo agora que \$t0=0xFFFFFF9 e \$t1=0x00000002.
- 103. Considerando que \$5=-9 e \$10=2, determine o valor que ficará armazenado no registo destino pela instrução virtual rem \$6,\$5,\$10.
- 104. As duas sub-rotinas seguintes permitem detetar *overflow* nas operações de adição com e sem sinal, no MIPS. Analise o código apresentado e determine o resultado produzido, pelas duas sub-rotinas, nas seguintes situações:

```
a. $a0=0x7FFFFFF1, $a1=0x0000000E;
b. $a0=0x7FFFFFF1, $a1=0x0000000F;
c. $a0=0xFFFFFFFF1, $a1=0xFFFFFFFF;
d. $a0=0x80000000, $a1=0x80000000;
  # Overflow detection, signed
  # int isovf_signed(int a, int b);
  isovf_signed: or
                     $v0,$0,$0
                xor $1,$a0,$a1
                slt $1,$1,$0
                bne $1,$0,notovf_s
                addu $1,$a0,$a1
                xor $1,$1,$a0
                slt $1,$1,$0
                beq $1,$0,notovf_s
                ori $v0,$0,1
                     $ra
  notovf_s:
                jr
  # Overflow detection, unsigned
   # int isovf_unsigned(unsigned int a, unsigned int b);
   isovf_unsig: ori
                     $v0,$0,0
                nor $1,$a1,$0
                sltu $1,$1,$a0
               beq $1,$0,notovf_u
                     $v0,$0,1
                ori
  notovf_u:
                jr
                     $ra
```


105. As duas sub-rotinas anteriores podem ser também escritas alternativamente com o código abaixo. A abordagem é ligeiramente diferente. No caso de operações sem sinal, o *overflow* pode ser detetado para as operações de soma e subtração. Analise o código apresentado e determine o resultado produzido, pelas duas sub-rotinas, nas condições indicadas nas alíneas da questão anterior:

```
# Overflow detection in addition, unsigned
# int isovf_unsigned_plus(unsigned int a, unsigned int b);
isovf_unsiq_plus:
             ori $v0, $0, 0
             addu $t2, $a0, $a1
                                   \# temp = A + B;
             bge $t2, $a0, notovf_uadd
             bge $t2, $a1, notovf_uadd
             ori $v0, $0, 1
notovf_uadd:
            jr
                  $ra
# Overflow detection in subtraction, unsigned
# int isovf_unsigned_sub(unsigned int a, unsigned int b);
isovf_unsig_sub:
             ori $v0,$0,0
             slt $1, $a0, $a1
             beq $1, $0, notovf_usub
             ori $v0, $0,1
notovf_usub: jr
                  $ra
# Overflow detection, signed
# int isovf_signed(int a, int b);
isovf_signed:
             ori $v0,$0,0
             add $1, $a0, $a1
                                      \# res = a + b;
             xor $a1, $a0, $a1
                                      # tmp = a ^ b;
             bltz $a1, notovf_s
                                     # if (tmp < 0) no_ovf();
             xor $a1, $1, $a0
                                     # tmp = res ^ a;
             bgez $a1, notovf_s
                                      # if (tmp >= 0) no_ovf();
             ori $v0,$0,1
notovf_s:
             jr
                  $ra
```

- 106. Ainda no código das sub-rotinas das questões anteriores, qual a razão para não haver salvaguarda de qualquer registo na stack?
- 107. Na conversão de uma quantidade codificada em formato IEEE 754, precisão simples, para decimal, qual o número máximo de casas decimais com que o resultado deve ser apresentado?
- 108. Responda à questão anterior admitindo que o valor original se encontra agora representado com precisão dupla no formato IEEE 754.
- 109. Determine a representação em formato IEEE 754, precisão simples, da quantidade real 19,1875₁₀. Determine a representação da mesma quantidade em precisão dupla.

- 110. Determine, em decimal (vírgula fixa), o valor das quantidades seguintes representadas em formato IEEE 754, precisão simples. Na alínea b) apresente apenas o valor em notação científica usando base 2.
 - a. 0xC19A8000.
 - b. 0x80580000.
- 111. Considere que o conteúdo dos dois registos seguintes da FPU representam a codificação de duas quantidades reais no formato IEEE 754 precisão simples:

```
$f0 = 0x416A0000
$f2 = 0xC0C00000
```

Calcule o resultado das instruções seguintes, apresentando o seu resultado em hexadecimal:

```
a. abs.s
           $f4,$f2
                            # $f4 = abs($f2)
           $f6,$f0
                            # $f6 = neg($f0)
b. neg.s
                           # $f8 = $f0 - $f2
c. sub.s
           $f8, $f0,$f2
d. sub.s
                           # $f10 = $f2 - $f0
           $f10,$f2,$f0
e. add.s
           $f12,$f0,$f2
                           # $f12 = $f0 + $f2
                           # $f14 = $f0 * $f2
f. mul.s
           $f14,$f0,$f2
g. div.s
           $f16,$f0,$f2
                           # $f16 = $f0 / $f2
h. div.s
           $f18,$f2,$f0
                           # $f18 = $f2 / $f0
i. cvt.d.s $f20,$f2
                           # Convert single to double
j. cvt.w.s $f22,$f0
                           # Convert single to integer
```

112. Considere a sequência de duas instruções Assembly:

```
lui $t0,0xC0A8
mtc1 $t0,$f8
```

qual o valor que ficará armazenado no registo \$f8, expresso em base dez e vírgula fixa, admitindo uma interpretação em IEEE 754 precisão simples?

- 113. Considerando que \$f2=0x3A600000 e \$f4=0xBA600000, determine o resultado armazenado em \$f0 pela instrução sub.s \$f0,\$f2,\$f4.
- 114. Repita o exercício anterior admitindo agora as seguintes condições:

```
$f4=0x3F100000 e $f6=0x408C0000 e a instrução add.s $f8,$f4,$f6.

$f2=0x3F900000 e $f4=0xBEA00000 e a instrução mul.s $f0,$f2,$f4

$f2=0x258c0000 e $f4=0x41600000 e a instrução div.s $f0,$f2,$f4
```

- 115. Numa norma hipotética KPT de codificação em vírgula flutuante, a mantissa normalizada após a realização de uma operação aritmética tem o valor 1.1111 1111 1111 1110 1000 0000. Qual será o valor final da mantissa (com 16 bits na parte fracionária) após arredondamento para o ímpar mais próximo?
- 116. Assuma que **x** é uma variável do tipo **float** residente em **\$f8** e que o *label* **endWhile** corresponde ao endereço da primeira instrução imediatamente após um ciclo *while()*. Se a avaliação da condição para executar o *loop* for *while* (x > 1.5){..} escreva, em Assembly do MIPS, a sequência de instruções necessárias para determinar esta condição.

- 117. Determine, de acordo com o formato IEEE 754 precisão simples, a representação normalizada, e arredondada para o par mais próximo, do número 100, 110110000000000010110₂.
- 118. Descreva as diferenças entre uma arquitetura Harvard e uma arquitetura von Neumann?
- 119. Suponha um sistema baseado numa arquitetura von Neumann, com um barramento de endereços de 20 bits e com uma organização de memória do tipo byte-addressable. Qual a dimensão máxima, em bytes, que os programas a executar neste sistema (instruções+dados+stack) podem ter?
- 120. Num processador baseado numa arquitetura Harvard, a memória de instruções está organizada em words de 32 bits, a memória de dados em words de 8 bits (byte-addressable) e os barramentos de endereços respetivos têm uma dimensão de 24 bits. Qual a dimensão, em bytes, dos espaços de endereçamento de instruções e de dados?
- 121. Descreva o significado funcional da afirmação "todos os elementos de estado têm escrita síncrona".
- 122. Considere um elemento de estado, com leitura assíncrona, que apenas tem o sinal de *clock*, na sua interface de controlo. O que pode concluir-se relativamente ao processo de escrita neste elemento?
- 123. Suponha um elemento de estado, com escrita síncrona e leitura assíncrona, que apresenta, na sua interface de controlo, um sinal "read", um sinal "write" e um sinal de clock. Indique que sinal ou sinais têm de estar ativos para que se realize:
 - a. uma operação de leitura;
 - b. uma operação de escrita.
- 124. Qual a capacidade de armazenamento, expressa em *bytes*, de uma memória com uma organização interna em *words* de 32 bits e um barramento de endereços de 30 bits?
- 125. Quais as operações realizadas num datapath single cycle que são comuns a todas as instruções?
- 126. Considere ainda um *datapath single cycle*. Identifique a operação realizada na ALU durante a execução de cada uma das seguintes instruções: **tipo R, addi, slti, lw, sw e beq**.
- 127. No mesmo *datapath*, indique qual a operação realizada na conclusão de cada uma das seguintes instruções: **tipo R, addi, slti, lw, sw e beq e j**.
- 128. Suponha que a instrução **add \$3,\$4,\$5** está a ser executada num *datapath single cycle*. Identifique todas as operações que serão realizadas na próxima transição ativa do sinal de relógio.
- 129. No *datapath single-cycle* que tipo de informação é armazenada na memória cujo endereço é a saída do registo **PC**?
- 130. Suponha que num datapath single cycle cada registo do banco de registos foi inicializado com um valor igual a: (32 endereço do registo). Indique o valor presente nas entradas do banco de registos ReadReg1, ReadReg2 e WriteReg, e o valor presente nas saídas ReadData1 e ReadData2, durante a execução das instruções com o código máquina:
 - a. **0x00CA9820**
 - b. 0x8D260018 (lw)
 - c. **0xAC6A003C (sw)**

- 131. Considerando ainda a inicialização do banco de registos da questão anterior, indique qual o valor calculado pela **ALU** durante a execução das instruções **LW** com o código máquina **0x8CA40005** e **0x8CE6FFF3**.
- 132. Qual o valor à saída do somador de cálculo do **BTA** durante a execução da instrução cujo código máquina é **0x10430023**, supondo que o valor à saída do registo **PC** é **0x00400034**?
- 133. Numa implementação single cycle da arquitetura MIPS, a frequência máxima de operação é de 2GHz (para os atrasos de propagação a seguir indicados). Determine o atraso máximo que pode ocorrer nas operações da ALU. Considere que, para o File Register e para as memórias, os tempos de escrita indicados são os tempos de preparação da operação antes de uma transição ativa do sinal de relógio.

Memórias externas: leitura – 175ps, escrita – 120ps; *File register*: leitura – 45ps, escrita – 15ps; Unidade de Controlo: 10ps; Somadores: 40ps; Outros: 0ns; Setup time do *Program Counter*: 5ps

134. Determine, numa implementação *single-cycle* da arquitetura MIPS, a frequência máxima de operação imposta pela instrução "sw", assumindo os atrasos a seguir indicados:

Memórias externas: leitura – 12ns, escrita – 4ns; File register: leitura – 4ns, escrita – 1ns; Unidade de Controlo: 1ns; ALU (qualquer operação): 5ns; Somadores: 2ns; Outros: 0ns. Setup time do *Program Counter*: 1ns

135. Determine, numa implementação *single-cycle* da arquitetura MIPS, a frequência máxima de operação imposta pela instrução "beq", assumindo os atrasos a seguir indicados:

Memórias externas: leitura – 11ns, escrita – 3ns; File register: leitura – 3ns, escrita – 1ns; Unidade de Controlo: 1ns; ALU (qualquer operação): 5ns; Somadores: 2ns; Outros: 0ns.

Setup time do *Program Counter*: 1ns

136. Determine, numa implementação *single cycle* da arquitetura MIPS, o período mínimo do sinal de relógio imposto pelas instruções tipo R, assumindo os atrasos a seguir indicados:

Memórias externas: leitura – 12ns, escrita – 4ns; File register: leitura – 3ns, escrita – 1ns; Unidade de Controlo: 1ns; ALU (qualquer operação): 6ns; Somadores: 2ns; Outros: 0ns.

Setup time do *Program Counter*: 1ns

- 137. Identifique os principais aspetos que caracterizem uma arquitetura *single cycle*, quer do ponto de vista do modelo da arquitetura, como das características da sua unidade de controlo.
- 138. Numa implementação *single cycle* da arquitetura MIPS, no decurso da execução de uma qualquer instrução, a que corresponde o valor presente na saída do registo PC?
- 139. No *datapath single-cycle* a frequência do relógio é limitada. Descreva o que determina qual a frequência máxima a que um *datapath* deste tipo pode funcionar.
- 140. Preencha a tabela seguinte, para as instruções indicadas, com os valores presentes à saída da unidade de controlo principal da arquitetura *single cycle* dada nas aulas.

Instrução	Opcode	ALUOp[10]	Branch	RegDst	ALUSrc	Memto Reg	Reg Write	Mem Read	Mem WRite
Lw	100011								
Sw	101011								
addi	001000								
slti	001010								
beq	000100								
R - Format	000000				·				

141. Admita que na versão *single cycle* do CPU MIPS dado nas aulas, pretendíamos acrescentar o suporte das instruções **jal address** e **jr \$reg**. Esquematize as alterações que teria de introduzir no *datapath* para permitir a execução destas instruções (use como base o esquema da próxima página).

Fig. 1 - Datapath single-cycle

- 142. Admita que na versão single cycle do CPU MIPS, pretendíamos executar a instrução slt \$3,\$5,\$9. Descreva por palavras suas como é esta instrução realizada ao nível da ALU, e qual o conteúdo final no registo \$3, admitindo que \$5=0xFF120008 e \$9=0x00C00FFF.
- 143. Analise o *datapath* da Fig. 1 e identifique que instruções deixariam de funcionar corretamente se a unidade de controlo bloqueasse o sinal *RegWrite* a '1'.
- 144. Identifique agora que consequência teria para o funcionamento do mesmo *datapth* o bloqueio do sinal *Branch* a '1'?
- 145. Suponha que os tempos de atraso introduzidos pelos vários elementos funcionais de um *datapath single-cycle* são os seguintes:

Acesso à memória para leitura (tRM):	12ns	Acesso à memória para preparar escrita (tWM):	4ns
Acesso ao register file para leitura (tRRF):	5ns	Acesso ao register file para preparar escrita (tWRF):	2ns
Operação da ALU (tALU):	7ns	Operação de um somador (tADD):	2ns
Multiplexers e restantes elementos funcionais:	0ns	Unidade de controlo (tCNTL):	2ns
Tempo de setup do PC (tstPC):	1ns		

- a. Determine o tempo mínimo para execução das instruções tipo R, LW, SW, BEQ e J.
- b. Calcule a máxima frequência do relógio que garanta uma correta execução de todas as instruções.
- 146. Suponha agora que dispunha de uma tecnologia que que o período de relógio podia ser adaptado instrução a instrução, em função da instrução em curso. Determine qual o ganho de eficiência que poderia obter com esta tecnologia face a uma tecnologia em que a frequência do relógio é a que obteve na questão anterior (admita os mesmos atrasos de propagação). Para isso, assuma que o programa de benchmarking tem a seguinte distribuição de ocorrência de instruções:

15% de **lw**, 15% de **sw**, 40% de tipo **R**, 20% de **branches** e 10% de **jumps**

- 147. Ainda para os tempos utilizados nas duas questões anteriores, determine qual a máxima frequência de trabalho no caso de o *datapath* ser do tipo *multi-cycle*.
- 148. Considere um programa que executa em 10s num computador "A" com uma frequência de 4GHz.

 Pretende-se desenvolver um computador "B" que execute o mesmo programa em 6s. O hardware
 designer verificou que é possível um aumento da frequência de trabalho do CPU do computador "B",
 mas isso acarreta um acréscimo do número total de ciclos de relógio de 1,2 vezes relativamente a "A".

 Qual a frequência de trabalho que deverá ter o CPU da máquina "B"?
- 149. Considere duas máquinas com implementações distintas da mesma arquitetura do conjunto de instruções (ISA). Para um dado programa,
 - a. Máquina A: Clock cycle = 350 ps; CPI = 2,0
 - b. Máquina B: Clock_cycle = 400 ps; CPI = 1,5

Qual a máquina mais rápida? Qual a relação de desempenho?

150. Considere duas máquinas ("A","B") com implementações distintas da mesma arquitetura do conjunto de instruções. Para um mesmo programa, a máquina "A" apresenta um CPI de 2,0 e a "B" de 3,125. Usando a métrica *tempo de execução*, verificou-se que a máquina "A" é mais rápida que a máquina "B" por um fator de 1,25. Calcule a relação entre as frequências de relógio das máquinas "A" e "B".

Fig. 2 - Datapath multi-cycle

- 151. O que limita a frequência máxima do relógio do datapath multi-cycle?
- 152. Quantos ciclos de relógio demora, no *datapath multi-cycle*, a execução de cada uma das instruções consideradas (r-type, lw, sw, addi, slti, beq e j)?

153. Considere o *datapath multi-cycle* presente na figura 2 e a respetiva unidade de controlo. Preencha a tabela abaixo considerando que a coluna da esquerda corresponde ao último ciclo de execução da primeira instrução do código seguinte, e que a sequência de instruções em causa é:

154. Repita o exercício anterior para as seguintes sequências de instrução:

a.		1 = = / 1 = / 1 =		\$s0, 0(\$t1)		\$t0, 0(\$t1)
	addi	\$t0, \$t1, 0x20	lw	\$s1, 4(\$t1)	sub	\$t0, \$t3, \$t2
	j	label	add	\$t2, \$s1, \$s2	slt	\$t1, \$t0, \$t2

155. Para as mesmas sequências de instruções apresentadas nos dois exercícios anteriores, preencha, na forma de um diagrama temporal, a tabela seguinte.

156. Ainda para as mesmas sequências de instruções apresentadas nos três exercícios anteriores, preencha a tabela abaixo com os valores presentes à saída da ALU e dos elementos de estado indicados. Consulte a tabela da última página se necessário. Admita que, no início de cada sequência, o conteúdo dos registos relevantes é o seguinte:

 $[PC=0\times00400000], \ [\$t0=0\times0000013FC], \ [\$t1=0\times10010000], \ [\$t2=0\times90FFFF64], \ [\$t3=0\times000000028] \\ e \ que \ na \ mem\'oria \ [*0x10010000 = 0x00000020] e \ [*0x10010004 = 0x000000038]$

- 157. Calcule o número de ciclos de relógio que o programa seguinte demora a executar, desde o *Instruction fetch* da 1ª instrução até à conclusão da última instrução:
 - a. num datapath single-cycle
 - b. num datapath multi-cycle

```
# p0 = 0;
main:
                         # p1 = *p0 = 0x10;
       lw
              $1,0($0)
       add
              $4,$0,$0
                         # v = 0;
             $2,4($0)
                         # p2=* (p0+1)=0x20;
       lw
loop:
                         # do {
              $3,0($1)
                         #
       lw
                                aux1 = *p1;
       add
             $4,$4,$3
                         #
                                v = v + *p1;
       sw
              $4,36($1)
                                *(p1 + 9) = v;
       addiu $1,$1,4
                                       p1++;
             $5,$1,$2
       sltu
      bne
              $5,$0,loop # } while(p1 < p2);
              $4,8($0)
       sw
                         #*(p0 + 2) = v;
                         \# aux2 = *(p0 + 3);
              $1,12($0)
       lw
```

Memória de dados Address Value 0x0000000 0x10 0x0000004 0x20

- 158. Repita o exercício anterior assumindo que o valor armazenado no endereço de memória **0x00000004** é **0x2C**.
- 159. Descreva, sucintamente, as principais diferenças, ao nível estrutural, entre os *datapath single-cycle* e *multi-cycle*.
- 160. Indique, para o caso de um *datapath multi-cycle*, quais as operações realizadas pela ALU no decurso dos dois primeiros ciclos de relógio de qualquer instrução.

161. Considere o diagrama temporal seguinte relativo à execução de uma sequência de três instruções no datapath da Fig. 2, das quais apenas a segunda está completamente representada. Obtenha o código assembly desta sequência de três instruções.

162. Considere a seguinte sequência de três instruções a serem executadas num datapath muti-cycle:

lw \$6, 0(\$7)

and \$8, \$6, \$5

beq \$8, \$0, L1

No diagrama temporal seguinte, relativo à execução desta sequência, identifique o nome dos sinais de controlo representados. (Note: o lorD não faz parte destes sinais)

- 163. Considere o datapath multi-cycle e a unidade de controlo fornecidos na figura acima. Admita que os valores indicados no datapath fornecido correspondem à "fotografia" tirada no decurso da execução de uma instrução armazenada no endereço 0x8040000C. Tendo em conta todos os sinais, identifique, em assembly, a instrução que está em execução e a respetiva fase.
- 164. Considere a instrução **beq** \$5,\$6,**L2** armazenada no endereço **0**x0040002**C**. Admita que \$5=0x1001009**C** e \$6=0x100100B**0**. Identifique os registos representados na figura seguinte e obtenha o código máquina, em hexadecimal, da instrução indicada.

- 165. Considere o datapath e a unidade de controlo fornecidos na figura acima (com ligeiras alterações relativamente à versão das aulas teórico-práticas). Analise cuidadosamente as alterações introduzidas e identifique quais são as novas instruções que este datapath permite executar quando comparado com a versão fornecida nas aulas TP.
- 166. Descreva, justificando, as principais características da unidade de controlo numa implementação *pipelined* da arquitetura MIPS, incluindo a sua natureza (combinatória ou síncrona) os sinais que constituem as variáveis independentes de entrada e as suas saídas.
- 167. Indique o que determina a máxima frequência de relógio de uma implementação *pipelined* da arquitetura MIPS com base nos principais elementos operativos que a constituem.
- 168. Calcule, numa implementação *pipelined* da arquitetura MIPS, em que a operação de *Write Back* é executada a meio do ciclo de relógio, a frequência máxima de operação assumindo que os elementos operativos apresentam os seguintes atrasos de propagação:
 - Memórias externas: Leitura: 10 ns, Escrita: 8ns; File register: Leitura 2ns, Escrita 2ns; Unidade de Controlo: 2ns; ALU (qualquer operação): 6ns; Somadores: 4ns; Outros: 0ns.
 - b.
 Memórias externas: Leitura: 5 ns, Escrita: 7ns; File register: Leitura 1ns, Escrita 1ns;
 Unidade de Controlo: 1ns; ALU (qualquer operação): 8ns; Somadores: 1ns; Outros: 0ns.
 - C.
 Memórias externas: Leitura: 8 ns, Escrita: 10ns; File register: Leitura 2ns, Escrita 4ns;
 Unidade de Controlo: 2ns; ALU (qualquer operação): 6ns; Somadores: 2ns; Outros: 0ns.

- 169. Identifique os principais tipos de *hazard* que podem existir numa implementação *pipelined* de um processador.
- 170. Numa arquitetura *pipelined*, como se designa a técnica que permite utilizar como operando de uma instrução um resultado produzido por outra instrução que se encontra numa etapa mais avançada do mesmo.
- 171. Explique por palavras suas em que circunstâncias pode ocorrer um *hazard* de dados numa implementação *pipelined* de um processador
- 172. A existência de *hazards* de controlo pode ser resolvida por diferentes técnicas dependendo da arquitetura em causa. Identifique a técnica usada para o efeito numa arquitetura MIPS com *datapath pipelined*, referindo como se designa essa técnica e em que consiste.
- 173. Em certas circunstâncias relacionadas com *hazards* de dados, não é possível resolver o problema sem recorrer a uma paragem parcial do *pipeline*, através do atraso de um ou mais ciclos de relógio no início da execução de uma instrução. Indique como se designa essa técnica e em que consiste ao nível do controlo do *pipeline*
- 174. Determine o número de ciclos de relógio que o trecho de código seguinte demora a executar num pipeline de 5 fases, desde o instante em que é feito o *Instruction Fetch* da 1ª instrução, até à conclusão da última instrução.

```
add $1,$2,$3
lw $2,0($4)
sub $3,$4,$3
addi $4,$4,4
and $5,$1,$5 #"and" em ID, "add" já terminou
sw $2,0($1) #"sw" em ID, "add" e "lw" já terminaram
```

- 175. Num *datapath single-cycle* o código da pergunta anterior demoraria 6 ciclos de relógio a executar. Por que razão é a execução no *datapath pipelined* mais rápida?
- 176. Quantos ciclos de relógio demora a execução do mesmo código num datapath multi-cycle?
- 177. Admita uma implementação *pipelined* da arquitetura MIPS com unidade de *forwarding* para EX e ID. Identifique, para as seguintes sequências de instruções, de onde e para onde deve ser executado o *forwarding* para que não seja necessário realizar qualquer *stall* ao pipeline:

```
a.
     add
           $t0,$t1,$t2
           $t1,0($t3)
     lw
           $t3,$t0,LABEL
     beq
b.
           $t0,$t1,$t2
     sub
     addi $t3,$t0,0x20
c.
     lw
           $t0,0($t2)
     sll
           $t2,$t2,2
           $t3,0($t0)
     sw
d.
           $t3,0($t6)
     1w
     xori $t0,$t4,0x20
           $t3,0($t0)
```


- 178. Descreva, por palavras suas, a função da unidade de *forwarding* de uma implementação *pipelined* da arquitetura MIPS.
- 179. Admita o seguinte trecho de código, a executar sobre uma implementação *pipelined* da arquitetura MIPS com *delayed branches*, e unidade de *forwarding* de EX/MEM e MEM/WB para o estágio EX.

LABEL:	lw	\$t3,	0 (\$t4)	#	1
	sub	\$t7,	\$t5, \$t6	#	2
	ori	\$t2,	\$0, 0	#	3
	beq	\$t2,	\$0, LABEL	#	4
	add	\$t4.	\$t7. \$t7	#	5

- a. Identifique os vários *hazards* neste código e determine se os *hazards* de dados podem ser resolvidos por *forwarding*.
- b. Identifique as situações em que é necessário executar *stalling* do pipeline e o respetivo número de *stalls*
- c. Resolva o problema supondo que a arquitetura suporta também forwarding de EX/MEM para ID.
- 180. Para o trecho de código seguinte identifique todas as situações de *hazard* de dados e de controlo que ocorrem na execução num pipeline de 5 fases, com *branches* resolvidos em ID.

main:	lw	\$1,0(\$0)
	add	\$4,\$0,\$0
	lw	\$2,4(\$0)
loop:	lw	\$3,0(\$1)
	add	\$4,\$4,\$3
	sw	\$4,36(\$1)
	addiu	\$1,\$1,4
	sltu	\$5,\$1,\$2
	bne	\$5,\$0,loop
	sw	\$4,8(\$0)
	lw	\$1,12(\$0)

Memória de dados		
Addr	Value	
0x0000000	0 x 10	
0x0000004	0x20	

- 181. Apresente o modo de resolução das situações de *hazard* de dados do código da questão anterior, admitindo que o pipeline <u>não implementa forwarding</u>.
- 182. Calcule o número de ciclos de relógio que o programa anterior demora a executar num pipeline de 5 fases, <u>sem forwarding</u>, com <u>branches</u> resolvidos em ID e <u>delayed branch</u>, desde o <u>Instruction Fetch</u> da 1º instrução até à conclusão da última instrução.
- 183. Resolva o problema anterior, considerando agora que o pipeline implementa *forwarding* de MEM e WB para EX.
- 184. Calcule finalmente o número de ciclos de relógio que o programa do problema 157 demora a executar num pipeline de 5 fases, com *forwarding* para EX e para ID, com *branches* resolvidos em ID e *delayed branch*, desde o IF da 1º instrução até à conclusão da última instrução.
- 185. Considere o trecho de código apresentado na figura seguinte, bem como as tabelas e os valores dos registos que aí se apresentam. Admita que o valor presente no registo **\$PC** corresponde ao endereço da primeira instrução, que nesse instante o conteúdo dos registos é o indicado, e que vai iniciar-se o *instruction fetch* dessa instrução. Considere, para já, o *datapath* e a unidade de controlo fornecidos na pergunta 130 (Fig. 2), correspondentes a uma implementação *multi-cycle* simplificada da arquitetura MIPS.

Endereço	Dados
	• • •
0x1001009C	0x01234567
0x100100A0	0x7CABCDEF
0x100100A4	0xF9FC3CF3
0x100100A8	0xDF11347E
0x100100AC	0x377933FD
0x100100B0	0x5EFF00BC
	•••

- 186. Determine o valor presente à saída do registo **ALUOut** durante a terceira fase de execução da segunda instrução (**1w** \$7, **-4** (\$5)).
- 187. Face aos valores presentes no segmento de dados (tabela da esquerda) e nos registos, calcule o número total de ciclos de relógio que demora a execução completa do trecho de código apresentado, numa implementação *multi-cycle* do MIPS (desde o instante inicial do *instruction fetch* da primeira instrução até ao momento em que vai iniciar-se o *instruction fetch* da instrução presente em "L2:").
- 188. Suponha agora que o mesmo código é executado numa versão *pipelined* do *datapath* do MIPS semelhante à abordada nas aulas teórico-práticas de AC1. Admita que este *datapath* suporta apenas *forwarding* para EX. Determine o número total de ciclos de relógio que demora a execução completa do trecho de código apresentado, até ao instante inicial do *instruction fetch* da instrução imediatamente a seguir ao **nop**.
- 189. Continue a considerar a execução do código numa versão *pipelined* do *datapath* do MIPS com *forwarding* para EX e para ID. Admita que, no instante zero, correspondente a uma transição ativa do sinal de relógio, vai iniciar-se o *instruction fetch* da primeira instrução. Determine o valor à saída da ALU na conclusão do sexto ciclo de relógio contado a partir do instante zero.
- 190. Repita as 4 questões anteriores para os dados da figura seguinte:

Endereço 	Dados	
0x10010028	0x31434120	
0x1001002C	0x31303220	
0x10010030	0x00000032	
0x10010034	0xE0DE0AC1	
0x10010038	0x0000FFFF	
0x1001003C	0x0000000	
•••	• • •	

	F	igura	
L1:	1b	\$9,0(\$8)	
	lw	\$2,4(\$7)	
	addi	\$2,\$2,1	
	xor	\$5,\$6,\$9	
	addi	\$8,\$8,1	
	sw	\$2,4(\$7)	
	bne	\$5,\$0,L1	
	xor	\$0,\$0,\$0	
L2:	nop		

191. Considere a versão com *pipeline* do *datapath* apresentado na Fig. 3. Identifique todas as combinações de *forwarding* disponíveis neste *datapath* e, <u>para cada uma delas</u>, escreva uma curta sequência de instruções que desencadeie esse tipo específico de *forwarding*. Nos casos em que tal se aplique, identifique igualmente os casos em que é preciso gerar *stalling* e o número de ciclos de *stalling* necessários.

Fig. 3 - Piplined Datapath

Tabela de códigos de função (funct) e códigos de operação (OpCode) das principais instruções do MIPS

Arithm / Logical Instructions		Comparis	Comparison Instructions	
Instruction	(funct)	Instruction	(OpCode)	
add	100000 (0x20)	slti	001010 (0x0A)	
addu	100001 (0x21)	sltiu	001001 (0x09)	
and	100100 (0x24)			
div	011010 (0x1A)			
divu	011011 (0x1B)			
mult	011000 (0x18)	Branch	Branch Instructions	
multu	011001 (0x19)	beq	000100 (0x04)	
nor	100111 (0x27)	bne	000101 (0x05)	
or	100101 (0x25)	bgtz	000111 (0x07)	
sll	000000 (0x00)	bgez	000001 (0x01) ¹	
sra	000011 (0x03)	bltz	000001 (0x01)	
srl	000010 (0x02)	blez	000110 (0x06)	
sub	100010 (0x22)			
subu	100011 (0x23)	Jump	Jump Instructions	
xor	100110 (0x26)	j	000010 (0x02)	
slt	101010 (0x2A)	jal	000011 (0x03)	
sltu	101001 (0x29)	jalr	001001 (0x09)	
		jr	001000 (0x08)	
Arithm / L	ogical Imm			
Instruction	(OpCode)	Load/Sto	Load/Store Instructions	
addi	001000 (0x08)	1b	100000 (0x20)	
addiu	001001 (0x09)	1bu	100100 (0x24)	
andi	001100 (0x0C)	lw	100011 (0x23)	
ori	001101 (0x0D)	sb	101000 (0x28)	
xori	001110 (0x0E)	sw	101011 (0x2B)	
		Data Mover	Data Movement Instructions	
		mfhi	010000 (0x10)	
		mflo	010010 (0x12)	
		mthi	010001 (0x11)	
		mtlo	010011 (0x13)	

¹ O OpCode é igual ao da instrução **bltz** mas o valor de **rt** é igual a 00001_b