

Feb 11, 2022

NGase F Protocol (Denaturing Conditions) V.2

New England Biolabs¹

¹New England Biolabs

1

dx.doi.org/10.17504/protocols.io.bikhkct6

New England Biolabs (NEB)

Tech. support phone: +1(800)632-7799 email: info@neb.com

New England Biolabs
New England Biolabs

PNGase F is the most effective enzymatic method for removing almost all *N*-linked oligosaccharides from glycoproteins. PNGase F is an amidase, which cleaves between the innermost GlcNAc and asparagine residues of high mannose, hybrid, and complex oligosaccharides.

This is a generic PNGase F protocol for **denaturing reaction conditions**. It is appropriate for both <u>P0704</u> and <u>P0708</u>.

DOI

dx.doi.org/10.17504/protocols.io.bikhkct6

https://www.neb.com/protocols/2014/07/31/pngase-f-protocol

New England Biolabs 2022. PNGase F Protocol (Denaturing Conditions).

protocols.io
https://dx.doi.org/10.17504/protocols.io.bikhkct6
Liz Brydon

Essentials of Glycobiology, glygoprotein, PNGase F is inhibited, deglycosylation, PNGase F denaturing reaction conditions, PNGase F non-denaturing reaction conditions, pngase f

_____ protocol,

Jul 14, 2020

Feb 11, 2022

Feb 11, 2022 New England Biolabs New England Biolabs

39273

- If using P0704/P0708, we recommend limiting PNGase F to 1/10 (or less) of the total reaction volume to keep the final glycerol concentration equal to (or less than) 5%.
- For unit conversion between different suppliers, please reference the <u>Glycobiology</u> <u>Unit Conversion Chart</u> page.

Biology Unit Conversion Chart

Reagent companies differ in how a unit of enzyme is defined. This chart can be used to help determine how a unit of enzyme from one company compares to a unit of enzyme from NEB. All enzymes were assayed using NEB's assay protocols as a means of normalization (NEB Assay).

Enzyme	Company	Selling Conc. (U/ml)	Units/Vial	μl/Vial	NEB Assay (U/ml)	NEB Assay Units /Vial	μl Conversion (1 NEB μl = x Company μls)
PNGase F	NEB (NEB #P0704/P0705)	500,000	15,000	30	500,000	15,000	1
	Prozyme (GKE- 5006A)	2.5	0.1	40	150,000	6,000	3.3
	Prozyme (GKE- 5020B, Ultra)	10	0.4	40	500,000	20,000	1
	QA Bio (E- PNG01)	5	0.3	60	200,000	12,000	2.5
	Sigma (P7367)	500	50	50	90,000	4,500	5.5

MATERIALS

⊠PNGase F (native) - 75,000 units New England

Biolabs Catalog #P0704L

Biolabs Catalog #P0704S

PNGase F Recombinant - 75,000 units New England

Biolabs Catalog #P0708L

Biolabs Catalog #P0708S

Please refer to the Safety Data Sheets (SDS) for health and environmental hazards.

Reactions may be scaled-up linearly to accommodate larger amounts of glycoprotein and larger reaction volumes. Optimal incubation times may vary for particular substrates. Typical reaction conditions are as follows:

Denaturing Reaction Conditions:

1

Combine $\Box 1 \mu g - \Box 20 \mu g$ glycoprotein,

 \blacksquare 1 μL Glycoprotein Denaturing Buffer (10X) and H₂O (if necessary) to make a \blacksquare 10 μL total reaction volume.

2

Denature glycoprotein by heating reaction at § 100 °C for © 00:10:00.

3

Chill denatured glycoprotein § On ice and centrifuge © 00:00:10.

4

Make a total reaction volume of $\square 20~\mu L$ by adding: $\square 2~\mu L$ GlycoBuffer 2 (10X), $\square 2~\mu L$ 10% NP-40 and $\square 6~\mu L$ H2O.

PNGase F is inhibited by SDS, therefore it is essential to have NP-40 in the reaction mixture under denaturing conditions. Failure to include NP-40 into the denaturing protocol will result in loss of enzymatic activity.

5

Add $\blacksquare 1 \mu L$ **PNGase F** and mix gently.

6

Incubate reaction at § 37 °C for © 01:00:00.

7

Analyze by method of choice.

Note: The simplest method of assessing the extent of deglycosylation is by mobility shifts on SDS-PAGE gels.