Sky Walking

Kenan desenează un plan al clădirilor și pasarelelor de-a lungul bulevardului principal din Baku. Există n clădiri numerotate de la 0 la n-1 și m pasarele numerotate de la 0 la m-1. Planul este desenat pe o suprafață bidimensională, unde clădirile și pasarelele sunt segmente verticale respectiv orizontale.

Partea de jos a clădirii i $(0 \le i \le n-1)$ se află la punctul (x[i],0), iar clădirea are înălțimea h[i]. Prin urmare, este un segment care conectează punctele (x[i],0) și (x[i],h[i]).

Pasarela j $(0 \le j \le m-1)$ are puncte terminale la clădirile numerotate cu l[j] și r[j], aflată la o coordonată y pozitivă cu valoarea y[j]. Prin urmare, este un segment care unește punctele (x[l[j]], y[j]) și (x[r[j]], y[j]).

O pasarelă și o clădire **se intersectează** dacă au un punct comun. Prin urmare, o pasarelă intersectează două clădiri în punctele ei terminale, și deasemenea poate intersecta alte clădiri între acestea.

Kenan ar dori să găsească lungimea celui mai scurt drum de la baza clădirii s la baza clădirii g, presupunând că se poate merge doar prin clădiri și pasarele, sau să se determine dacă o astfel de cale nu există. Rețineți că nu este permis să mergeți pe jos, adică de-a lungul liniei orizontale cu coordonata g egală cu g.

În orice intersecție se poate merge de pe pasarelă în clădire sau invers. Dacă punctele terminale pentru două pasarele sunt identice, atunci se poate merge de pe o pasarelă pe alta.

Sarcina voastră este să îl ajutați pe Kenan să răspundă la întrebarea lui.

Detalii de implementare

Trebuie să implementați următoarea funcție. Aceasta va fi apelată de către grader câte o dată pentru fiecare test.

- x și h: vectori cu numere întregi de lungime n
- l, r și y: vectori cu numere întregi de lungime m

- s și g: două numere întregi
- Această funcție trebuie să returneze lungimea celui mai scurt drum dintre baza clădirii s și baza clădirii g, dacă o astfel de cale există. În caz contrar, trebuie să se returneze -1.

Exemple

Exemplul 1

Considerați următorul apel:

```
min_distance([0, 3, 5, 7, 10, 12, 14],
[8, 7, 9, 7, 6, 6, 9],
[0, 0, 0, 2, 2, 3, 4],
[1, 2, 6, 3, 6, 4, 6],
[1, 6, 8, 1, 7, 2, 5],
1, 5)
```

Răspunsul corect este 27.

Imaginea de mai jos corespunde Exemplului 1:

Exemplul 2

Răspunsul corect este 21.

Restricții

- $1 \le n, m \le 100000$
- $0 \le x[0] < x[1] < \ldots < x[n-1] \le 10^9$
- $1 \le h[i] \le 10^9$ (pentru $0 \le i \le n-1$)
- $0 \leq l[i] < r[i] \leq n-1$ (pentru $0 \leq i \leq m-1$)
- $1 \leq y[i] \leq \min(h[l[i]], h[r[i]])$ (pentru $0 \leq i \leq m-1$)
- $0 \le s, g \le n 1$
- \bullet $s \neq g$
- Două pasarele nu au puncte comune, eventuale excepții pot fi punctele lor terminale.

Subtask-uri

- 1. (10 puncte) $n, m \leq 50$
- 2. (14 puncte) Fiecare pasarelă intersectează cel mult 10 clădiri.
- 3. (15 puncte) s=0, g=n-1, și toate clădirile au aceeași înălțime
- 4. (18 puncte) s = 0, g = n 1
- 5. (43 de puncte) Fără restricții suplimentare.

Exemplu de grader

Grader-ul citește intrarea în următorul format:

- linia 1: n m
- linia 2 + i ($0 \le i \le n 1$): $x[i] \ h[i]$
- linia n+2+j ($0 \le j \le m-1$): $l[j] \ r[j] \ y[j]$
- linia n+m+2: s g

Grader-ul va tipări o singură linie conținând valoarea returnată de min distance.