Advanced Machine Learning

Inner Product Spaces

Inner products, operators

Adam Prügel-Benne

COMP6208 Advanced Machine Learning

Recap

- We have looked at vector space! (closed sets where we can add elements and multiply them by a scalar)!
- Recall that vector spaces don't just apply to normal vectors (\mathbb{R}^n) , but to matrices, functions, sequences, random variables, . . .
- \bullet Proper distances or metrics, $d(\boldsymbol{x},\boldsymbol{y}),$ allow us to construct ideas about geometry of the vector space
- ullet Norms, $\|x\|$, that allow us to reason about the size of vector
- Norm induce a distance, $d(x,y) = \|x y\|$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Axioms of Inner Products

- An inner product satisfies
 - 1. $\langle {m x}, {m x}
 angle \geq 0$ for all ${m x} \in {\mathcal V}$
- 2. $\langle x,x \rangle = 0$ if and only if x = 0
- 3. $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$
- 4. $\langle x,y+z\rangle=\langle x,y\rangle+\langle x,z\rangle$
- 5. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$
- We can show that $\|x\| = \sqrt{\langle x,x \rangle}$ satisfies the axioms of a norm, so that an inner-product space is a normed space!
- The norm associated with the inner-product for vectors in \mathbb{R}^n (i.e. $\langle x,y \rangle = x^{\mathsf{T}}y$) is the Euclidean norm $\|x\| = \sqrt{x^{\mathsf{T}}x}$!

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Angles Between Vectors

 A natural interpretation of the inner product is in providing a measure of the angle between vectors

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{y} = \|\boldsymbol{x}\| \|\boldsymbol{y}\| \cos(\theta)$$

- Vectors are orthogonal if $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$
- We can extend this idea to functions

$$\langle f(x), g(x) \rangle = \int_{x \in \mathcal{I}} f(x)g(x)\mathrm{d}x = \|f(x)\| \|g(x)\| \cos(\theta) \mathbf{I}$$

• Note that $\sin(x)$ and $\cos(x)$ are orthogonal in the interval $[0,2\pi]$

Outline

- 1. Inner Products
- 2. Operators

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Inner Products

- We will often consider objects with an $inner\ product$
- ullet For vectors in \mathbb{R}^n

$$\langle oldsymbol{x}, oldsymbol{y}
angle = oldsymbol{x}^{\mathsf{T}} oldsymbol{y} = \sum_{i=1}^n x_i y_i \mathbf{I}$$

For functions

$$\langle f, g \rangle = \int_{x \in \mathcal{I}} f(x) g(x) dx$$

• For $m \times n$ matrices

$$\langle \mathbf{A}, \mathbf{B} \rangle = \mathrm{Tr} \mathbf{A}^\mathsf{T} \mathbf{B} = \sum_{i=1}^m \sum_{j=1}^n A_{ij} B_{ij}$$
l

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Cauchy-Schwarz Inequality

 One of the most important results of inner-product spaces, known as the Cauchy-Schwarz inequality is that

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle^2 < \langle \boldsymbol{x}, \boldsymbol{x} \rangle \langle \boldsymbol{y}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|^2 \|\boldsymbol{y}\|^2$$

Or

$$|\langle oldsymbol{x}, oldsymbol{y}
angle| \leq \|oldsymbol{x}\| \|oldsymbol{y}\|$$

• This is a very general result so for example

$$\left| \int f(x)g(x) dx \right| \le \sqrt{\left(\int f^2(x) dx \right) \left(\int g^2(x) dx \right)}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learni

Basis Functions

- \bullet Any set of vectors $\{b_i|i=1,\ldots\}$ that span the space can be used as a basis or coordinate system!
- ullet The simplest and most useful case is when the vectors are orthogonal and normalised (i.e. $\|m{b}_i\|=1)$
- ullet In \mathbb{R}^3 we could use $m{b}_1=egin{pmatrix}1\\0\\0\end{pmatrix}$, $m{b}_2=egin{pmatrix}0\\1\\0\end{pmatrix}$, $m{b}_3=egin{pmatrix}0\\0\\1\end{pmatrix}$
- This is not unique as we can rotate our basis vectors
- ullet For an orthogonal basis we can write any vector as $\hat{x} = egin{pmatrix} x^{ op}b_1 \ x^{ op}b_2 \ x^{ op}b_3 \end{pmatrix}$

Orthogonal Functions

- For functions we can use any ortho-normal set of but functions as a basis
- \bullet The most familiar are the Fourier functions $\sin(n\theta)$ and $\cos(n\theta) {\rm I\!I}$
- Any function in $C(0,2\pi)$ can be represented by a point ${m f}=\begin{pmatrix} \langle f(x),b_0(x)\rangle \\ \langle f(x),b_1(x)\rangle \end{pmatrix}$
- $b_3(x)$ $b_4(x)$ $b_5(x)$
- There might be an infinite number of components
- This is analogous to points in \mathbb{R}^n (for large n)

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Outline

- 1. Inner Products
- 2. Operators

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Linear Operators

- Operators are in general very complicated, but a particular nice set of operators are linear operators
- ullet ${\cal T}$ is a linear operator if
- 1. $\mathcal{T}[a\mathbf{x}] = a\mathcal{T}[\mathbf{x}]$
- 2. $\mathcal{T}[x+y] = \mathcal{T}[x] + \mathcal{T}[y]$
- ullet For normal vectors $(x\in\mathbb{R}^n)$ the most general linear operation is

$$\mathcal{T}[x] = Mx$$

where M is a matrix

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Non-commutativity

• In general $AB \neq BA$

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \blacksquare \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix} \blacksquare$$

Algebraic Structure

- We have gone to these lengths as we want to show that many properties of vectors are shared by other objects (matrices, functions, etc.)
- The notions of distance (geometry), norms (size of vectors) and inner products (angles between vectors) provides a very rich set of concepts
- Vectors form the backbone of objects we will use repeated in machine learning
- The next piece of the jigsaw is to understand how we can transform these objects

Adam Prugel-Bennet

COMP6208 Advanced Machine Learning

Operators

- In machine learning we are interested in transforming our input vectors into some output predictions
- To accomplish this we will apply some mapping or operators on the vector $\mathcal{T}:\mathcal{V}\to\mathcal{V}'$
- ullet This says that ${\mathcal T}$ maps some object $x\in {\mathcal V}$ to an object $y={\mathcal T}[x]$ in a new vector space ${\mathcal V}'$
- This new vector space may or may not be the same as the original vector space
- Our objects may be any object in a vector space such as a function

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Matrix multiplication

ullet For an $\ell imes m$ matrix ${\bf A}$ and an m imes n matrix ${\bf B}$ we can compute the $(\ell imes n)$ product, ${\bf C} = {\bf A}{\bf B}$, such that

$$C_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj} \mathbb{I} \qquad \left(\boxed{} \right) \left(\boxed{} \right) = \left(\boxed{} \right)$$

 \bullet Treating the vector \boldsymbol{x} as a $n\times 1$ matrix then

$$y = Ax$$
 \Rightarrow $y_i = \sum_j M_{ij} x_j$ $\left(\bigcirc \right) \left(\bigcirc \right) = \left(\bigcirc \right)$

• Using the same matrix notation we can define the inner product as

$$\langle oldsymbol{x}, oldsymbol{y}
angle = oldsymbol{x}^{ extsf{T}} oldsymbol{y} = oldsymbol{x}^{ extsf{T}} oldsymbol{y}_{i}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Associativity of Mappings

- For all x we have A(BC)x = (AB)Cx
- This implies A(BC) = (AB)C

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

COMP6208 Advanced Machine Learning

Kernels

 \bullet The equivalent of a matrix for functions (i.e. a linear operator) is known as a kernel K(x,y)

$$g(x) = \mathcal{T}[f] = \int_{y \in \mathcal{I}} K(x, y) f(y) dy$$

• Our domain does not need to be one dimensional, e.g.

$$g(\boldsymbol{x}) = \mathcal{T}[f] = \int_{\boldsymbol{y} \in \mathcal{I}} K(\boldsymbol{x}, \boldsymbol{y}) f(\boldsymbol{y}) \, \mathrm{d} \boldsymbol{y}$$

• We shall soon see examples of high-dimensional kernels

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

General Linear Mappings

- In general a linear operator will map vectors between different vector spaces
- ullet E.g. $\mathbb{R}^3 o \mathbb{R}^2$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Summary

- We haven't covered much machine learning as such sorry
- But mathematics is the language of machine learning and you have to get used to it!
- Mathematics is like programming, if you don't understand the syntax and you can't write it down then its meaningless
- We've taken a high level view of inner product spaces and operator, this will pay us back later as we look at kernel methods

Kernels in Machine Learning

- Kernels are used heavily in machine learning
- In kernel methods such as SVM, SVR, Kernel-PCA
- They are also used in Gaussian Processes
- In all these cases we consider symmetric, positive semi-definite kernels
- Sometimes they can be interpreted as covariance between random functions

$$K(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}_{f \sim \mathcal{P}} [(f(\boldsymbol{x}) - \mu(\boldsymbol{x})) (f(\boldsymbol{y}) - \mu(\boldsymbol{y}))]$$

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

Square Matrices

- We will spend a lot of time on operators that map from a vector space onto itself $\mathcal{T}:\mathcal{V}\to\mathcal{V}$
- \bullet For vectors in \mathbb{R}^n such linear operators are represented by square matrices!
- When there is a one-to-one mapping then we have a unique inverse!
- We will study such mappings in detail in the next lecture

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

20