1. Let

$$A = \begin{pmatrix} 1 & -2 & 0 & 2 \\ -1 & 2 & -1 & -1 \\ 2 & -4 & -1 & 5 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}.$$

(a) (10 pts.) Find all solutions to Ax = b. Show all your work.

$$\begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
-1 & 2 & -1 & -1 & | & | & 1
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & -1 & | & 2
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & 0 & 0 & | & 1
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & 0 & 0 & | & 1
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & 0 & 0 & | & 1
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & 0 & 0 & | & 1
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & 0 & 0 & | & 1
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -2 & 0 & 2 & | & 1 \\
0 & 0 & 0$$

(b) (3 pts.) Give all solutions to Ax = 0.

2. (10 pts.) Use elimination to find the inverse of $\begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & -1 \\ 1 & 0 & 0 \end{pmatrix}$, or show it doesn't exist. Show all your work.

$$\begin{pmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
-1 & 2 & -1 & | & 0 & | & 0 & | \\
1 & 0 & 0 & | & 0 & | & 0 & |
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 2 & 0 & | & 1 & | & 0 \\
0 & 0 & -1 & | & -1 & 0 & |
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & | & 0 & 0 & | \\
0 & 2 & 0 & | & 1 & | & 0 \\
0 & 0 & -1 & | & -1 & 0 & |
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & | & 0 & 0 & | \\
0 & 2 & 0 & | & 1 & | & 0 \\
0 & 0 & -1 & | & -1 & 0 & |
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & | & 0 & 0 & | \\
0 & 2 & 0 & | & 1 & | & 0 \\
0 & 0 & -1 & | & -1 & 0 & |
\end{pmatrix}$$

3. (6 pts.) If $FG = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$ and $G = \begin{pmatrix} -3 & 11 \\ -1 & 4 \end{pmatrix}$, what is F?

$$F = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix} G^{-1} = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix} \frac{1}{-12+11} \begin{pmatrix} 4 & -11 \\ 1 & -3 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} -4 & 11 \\ -1 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} -7 & 19 \\ -13 & 36 \end{pmatrix}$$

4. (10 pts.) The LU factorization of B is

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Use this factorization to solve $B\mathbf{x} = \mathbf{d}$ for $\mathbf{d} = (3, 1, 0)$. (No credit will be given for solving the system by any other method.)

Solve
$$\angle \vec{g} = \vec{J}$$
 and then $\angle \vec{x} = \vec{g}$
 $\angle \vec{g} = \vec{J}$: $\begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 7_1 \\ 7_2 \\ 7_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \Rightarrow y_1 = 3, y_2 = -2, y_3 = 7, so \vec{g} = \begin{pmatrix} 3 \\ -7 \\ 7 \end{pmatrix}$

$$U\vec{x} = \vec{9}: \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix} \implies x_3 = 7, x_2 = 9, x_1 = -3$$

$$So\left(\vec{x}\right) = \begin{pmatrix} -3 \\ 9 \\ 7 \end{pmatrix}$$

5. (3 pts.) If a matrix C has an LU factorization with

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -3 & 1 \end{pmatrix},$$

describe all the elementary steps, in order, of the Gaussian elimination process performed on C.

6. (7 pts.) Are the 3 vectors (1, -2, 1, 0), (2, 1, -3, 5), and (-2, 1, 1, -3) linearly independent? Show your work.

Solve
$$x, \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ -3 \\ -3 \end{pmatrix} + x_3 \begin{pmatrix} -2 \\ -3 \\ -3 \end{pmatrix} = 0$$

$$\begin{pmatrix} 1 & 2 & -2 \\ 0 & 5 & -3 \\ 0 & 5 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & 5 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Since we have a free variable,

there are non-trivial solutions, so the vectors are dependent.

- 7. (15 pts. 3 pts. each) Suppose A is a $m \times n$ matrix with r pivots. Explain the relationships between r and m and/or n in each case below. (Sample answer: r = m, because . . .). You do not need to point out that $r \le m$ and $r \le n$.
 - (a) Ax = b has infinitely many solutions for some b.

- (b) $A\mathbf{x} = \mathbf{b}$ has no solutions for some \mathbf{b} , but for the \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ can be solved, there is only one solution. r < m, Since there are no solutions for some \mathbf{b} , so most have privatless now r = n, Since there is at most one solution, so no free variables
- (c) The only solution to the homogeneous equation associated to A is the trivial one.

(d) The columns of A are dependent.

(e) The solutions to Ax = b form a 2-dimensional plane.

- 8. (12 pts. 3 pts. each) Give matrices with the following properties:
 - (a) A 4×4 matrix E, so that E will add twice the 3rd row of A to the bottom row of A when we compute EA.

(b) A 3×3 matrix P, so that P will interchange the top and bottom rows of A when we compute PA

(c) A 2×2 matrix R, so that the linear transformation associated to R reflects points in the plane \mathbb{R}^2 about the line y = -x.

$$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} (0) \\ (-1) \\ (0) \end{array} \qquad \qquad \qquad \\ R = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

(d) E^{-1} , P^{-1} , and R^{-1} .

$$E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$
 $P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = P$ $R = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = R$

9	9. (18 pts 3 pts. each) Are these statements True or False? Indicate T/F and explain briefly. (No points will be awarded unless an explanation is attempted.)
	(a) The span of any two vectors in \mathbb{R}^3 forms a plane.
	F. It the vectors are dependent they do not span a plane.
	(b) A system of m linear equations in n unknowns can have exactly 2 solutions.
	F It may have O, I, or 00-ly many solutions. The only way to have more than I solution is to have free veriable
	(c) If A is a square singular matrix, then $A\mathbf{x} = \mathbf{b}$ cannot have any solutions.
	F A singular => A has fewer than in proof, but it may still be possible to solve AX=B for some B. e.g. A=(66) B=(6)
	(d) If $m < n$, then n vectors in \mathbb{R}^m must be linearly dependent.
	T Placing to a vectors into the columns of a mxn matrix, we cannot get a
	pivot in every column. Thus the vectors must be dependent. (e) If A is $n \times n$ and non-singular, then the columns of A span \mathbb{R}^n .
	(e) If A is $n \times n$ and non-singular, then the columns of A span \mathbb{R}^n .
	T A non-singular 3) A has in protes so Ax=1 can be solved for every b
	A new-singular => Ax=5 has solution X=Ab, so can solve for every 5
	(f) If $A\mathbf{x} = \mathbf{b}$ has exactly one solution for a particular $\mathbf{b} \in \mathbb{R}^m$, then $A\mathbf{x} = \mathbf{c}$ has exactly one solution for all $\mathbf{c} \in \mathbb{R}^m$.
	F A will have a protine every column, but not necessarily in every row.
	e.s. A = (oi) ==(o), ==(o). Ax=5 has and Isolutar, Lot Ax== has non
10	. (6 pts.) Suppose a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^5$ is one-to-one. Must T also be onto? Explain. (Hint: What can you say about the matrix A such that $T = T_A$?)
	T must be onto. Since Tis I-1, AZ=I has at most one solution for