7. Условие совместной измеримости средних значений двух наблюдаемых

В макроскопическом мире влиянием процесса наблюдения (и самого наблюдателя) на состояние наблюдаемой системы практически всегда можно пренебречь. Поэтому в рамках классической теории предполагается возможность измерения любых характеристик макроскопической системы со сколь угодно большой точностью в произвольном порядке. Например, для шарика, скатывающегося вниз по наклонной плоскости, можно измерить сначала его скорость, затем координату, и наконец, момент количества движения. Ничего не изменится, если сначала будет измерена координата шарика, затем — его момент, а при последнем измерении найдена скорость²⁵.

В параграфе 1.2 приведены качественные рассуждения, которые показывают, что в микромире измерение любой характеристики квантовой системы обязано чрезвычайно сильно менять состояние самой микросистемы. Строго это утверждение можно получить непосредственно из постулатов квантовой теории.

Действительно, приготовим квантовый ансамбль, в котором до измерения каждая микросистема находится в состоянии $|\psi\rangle$. Далее предположим, что мы хотим измерить среднее значение $\langle A \rangle_{\psi}$ наблюдаемой A в этом ансамбле. Пусть для простоты наблюдаемая A обладает конечным невырожденным дискретным спектром $a_1, ..., a_n$. Для экспериментального нахождения $\langle A \rangle_{\psi}$ необходимо сначала взять одну микросистему из ансамбля и измерить значение наблюдаемой для этой микросистемы. Пусть это значение равно a_j . Тогда, согласно принципу суперпозиции и проекционному постулату Макса Борна (постулаты №3 и №4 из параграфов 5.1 и 5.2 соответственно), измерение значения a_j означает, что после измерения данная конкретная микросистема перешла в состояние $|a_j\rangle$. Аналогичное измерение необходимо проделать с остальными

 $^{^{25} \}mbox{Если только}$ все три измерения происходят в течение достаточно малого промежутка времени $\Delta t.$

микросистемами из ансамбля. Тогда для каждого значения a_j будет найдена вероятность его появления $w_j=N_j/N$, где $N\gg 1$ — полное количество микросистем в ансамбле, совпадающее с полным числом измерений, $N_j\gg 1$ — число измерений, в которых было зарегистрировано значение a_j наблюдаемой A. Среднее значение $\langle A\rangle_{\psi}$ легко вычисляется по формуле (38). Однако после измерения $\langle A\rangle_{\psi}$ в нашем распоряжении уже не имеется квантового ансамбля из N микросистем в состоянии $|\psi\rangle$, а имеется n ансамблей, каждый из которых включает в себя $N_j\gg 1$ микросистем в состоянии $|a_j\rangle$.

Следовательно, в общем случае невозможно измерить среднее значение $\langle \, B \, \rangle_{\psi}$ наблюдаемой B для *того же самого квантового ансамбля* микросистем, в котором было измерено среднее значение наблюдаемой A^{26} . Поэтому для квантовых ансамблей имеет смысл исследовать два вопроса:

- **1.** при каком условии на операторы \hat{A} и \hat{B} средние значения наблюдаемых A и B могут быть одновременно измерены для одного и того же квантового ансамбля;
- **2.** как найти полный набор совместно измеримых наблюдаемых для микросистемы с известными (или заданными) свойствами?

На первый вопрос можно дать следующий ответ: если две наблюдаемые A и B могут быть совместно измерены для одного и того же квантового ансамбля, то соответствующие этим наблюдаемым операторы \hat{A} и \hat{B} коммутируют, то есть $\left[\hat{A},\hat{B}\right]=0$. Это и есть искомое условие на операторы.

Для доказательства рассмотрим квантовый ансамбль микросистем в состоянии $|\psi\rangle$. Пусть для этого ансамбля необходимо измерить средние значения наблюдаемых A и B. Чтобы не усложнять доказательство, предположим, что обе наблюдаемые имеют конечный дискретный невырожденный спектр.

 $^{^{26}}$ Обычно вместо словосочетания «вместе измерены для одного и того же квантового ансамбля», говорят о **совместной измеримости** или **одновременной измеримости** наблюдаемых A и B.

Если первым измеряется среднее значение наблюдаемой B, то

$$\langle B \rangle_{\psi} = \sum_{j} w_{j}^{(b)} b_{j}. \tag{41}$$

Если же первой измеряется наблюдаемая A, а за ней наблюдаемая B, то среднее значение наблюдаемой A есть

$$\langle A \rangle_{\psi} = \sum_{i} w_i^{(a)} a_i.$$

После измерения наблюдаемой A каждое состояние $|\psi\rangle$ переходит в состояние $|a_i\rangle$, которое может быть разложено по базису

$$|a_i\rangle = \sum_j c_{ij} |b_j\rangle.$$

Поэтому среднее значение наблюдаемой B, полученное после измерения среднего значения наблюдаемой A, может быть записано в виде

$$\langle B|A\rangle_{\psi} = \sum_{i} \left(w_{i}^{(a)} \sum_{j} w_{ij} b_{j} \right) = \sum_{ij} w_{i}^{(a)} w_{ij} b_{j},$$
 (42)

где $w_{ij} = |c_{ij}|^2 = |\langle b_j | a_i \rangle|^2$. Обозначение $\langle B | A \rangle_{\psi}$ означает, что измерение среднего наблюдаемой B происходит при условии, что уже выполнено измерение среднего наблюдаемой A. Похожее обозначение использовалось в разделе 6 для записи условных вероятностей²⁷.

Если наблюдаемые A и B могут быть измерены для одного квантового ансамбля, то измерение среднего наблюдаемой A не влияет на измерение средне-

го наблюдаемой B, и наоборот: измерение среднего наблюдаемой B не должно влиять на измерение среднего наблюдаемой A. Математически оба утверждения могут быть записаны в виде

$$\langle B \rangle_{\psi} = \langle B | A \rangle_{\psi};$$

$$\langle A \rangle_{\psi} = \langle A | B \rangle_{\psi}.$$
(43)

Учитывая (41) и (42) из первого равенства (43), получаем:

$$w_j^{(b)} = \sum_i w_i^{(a)} w_{ij}. (44)$$

Задача. Пользуясь вторым равенством из формулы (43), показать, что

$$w_i^{(a)} = \sum_{\ell} w_{\ell}^{(b)} w_{i\ell}. \tag{45}$$

Подставляя (45) в (44), находим, что

$$w_j^{(b)} = \sum_{i \ \ell} w_\ell^{(b)} w_{ij} w_{i\ell},$$

откуда следует

$$\sum_{i} w_{ij} w_{i\ell} = \delta_{j\ell}. \tag{46}$$

Рассмотрим последнее уравнение при $j=\ell$. Тогда $\sum_i (w_{ij})^2=1$. С другой стороны, поскольку все w_{ij} положительны и не превосходят единицы, то выполняется очевидное неравенство $\sum_i (w_{ij})^2 \leq \sum_i w_{ij}=1$. Из обоих выражений следует, что

$$\sum_{i} (w_{ij})^2 = \sum_{i} w_{ij} = 1. (47)$$

Равенство в (47) достигается только тогда, когда одна из вероятностей w_{ij} строго равна единице, а остальные вероятности равны нулю. Учитывая (46) при $j \neq \ell$ для вероятности w_{ij} можно написать, что $w_{ij} = \delta_{ij}$, то есть и $c_{ij} = \delta_{ij}$. Поэтому должно выполняться равенство $|a_i\rangle \equiv |b_i\rangle \equiv |a_i,b_i\rangle$, где используется стандартное обозначение для общих векторов операторов \hat{A} и \hat{B} .

Таким образом, мы доказали, что если средние значения двух наблюдаемых A и B могут быть измерены для одного и того же квантового ансамбля, то операторы \hat{A} и \hat{B} имеют общую систему собственных векторов. Для эрмитовых операторов это эквивалентно условию коммутативности операторов \hat{A} и \hat{B} в гильбертовом пространстве векторов состояния микросистемы. Доказательство закончено. Случай непрерывного и/или вырожденного спектров читателю предлагается разобрать самостоятельно.

В виде задачи сформулируем не менее важное обратное утверждение.

Задача. Докажите, что из коммутативности операторов \hat{A} и \hat{B} следует совместная измеримость наблюдаемых A и B.

На совместную измеримость наблюдаемых A и B можно взглянуть и с формальной математической точки зрения. Из определения (38) следует, что для наблюдаемых A и B должно существовать совместное распределение вероятностей $w(a_j,b_k)$, при помощи которого вычисляются средние значения $\langle A \rangle_{\psi}$ и $\langle B \rangle_{\psi}$:

$$\langle\,A\,
angle_\psi \,=\, \sum_j \,w(a_j,b_k)\,a_j$$
 и $\langle\,B\,
angle_\psi \,=\, \sum_k \,w(a_j,b_k)\,b_k.$

Известная из теории вероятностей **теорема Нельсона** утверждает, что *две наблюдаемые* A и B имеют совместное распределение вероятностей $w(a_j,b_k)$ во всех состояниях $|\psi\rangle$ тогда и только тогда, когда соответствующие им операторы коммутируют, то есть $\left[\hat{A},\hat{B}\right]=0$. Выше мы фактически доказали теорему Нельсона при помощи физических соображений.

Задача. Проведите полное доказательство теоремы Нельсона.

Теперь ответим на вопрос о максимальном количестве совместно измеримых наблюдаемых, характеризующих данную микросистему. Очевидно, что если имеются наблюдаемые A, B, C, D, ..., то максимальный набор будет соответствовать максимальному количеству попарно коммутирующих операторов. Например, пусть $\left[\hat{A},\hat{B}\right]=0, \left[\hat{A},\hat{C}\right]=0$ и $\left[\hat{B},\hat{C}\right]=0$, но $\left[\hat{C},\hat{D}\right]\neq0$. Тогда максимальный набор наблюдаемых составят A,B и C, а любой вектор состояния может быть разложен по базису $|a,b,c\rangle$. Заметим, что для многих задач базис можно выбрать не единственным образом. Действительно, пусть дополнительно $\left[\hat{A},\hat{D}\right]=0$ и $\left[\hat{B},\hat{D}\right]=0$. Тогда альтернативный набор наблюдаемых включает в себя величины A,B и D. Этот набор продуцирует базис $|a,b,d\rangle$.

Задача. Найдите связь между базисами $|a,b,c\rangle$ и $|a,b,d\rangle$.

Задача. В гильбертовом пространстве даны три оператора \hat{A} , \hat{B} и \hat{C} , удовлетворяющие условиям $\left[\hat{A},\hat{B}\right]=0$ и $\left[\hat{A},\hat{C}\right]=0$. Следует ли из первых двух равенств, что $\left[\hat{B},\hat{C}\right]=0$?