Диффузия замедляющихся нейтронов.

В предыдущих разделах рассмотрены процессы замедления и диффузии в отрыве друг от друга. При рассмотрении процесса замедления не учитывался факт пространственного при изучении диффузии нейтронов учитывался перемещения, не пространственного перемещения, а при изучении диффузии нейтронов пренебрегалось изменениями энергии нейтронов при рассеянии на ядрах среды. В действительности эти процессы происходят одновременно: нейтроны сталкиваясь с ядрами среды перемещаются в пространстве и изменяют свою энергию. Поэтому при вычислении распределения плотности потока нейтронов в ядерном реакторе нельзя разделять процессы замедления и диффузии. математической позволяющей описать диффузию простой моделью, замедляющихся нейтронов является модель непрерывного замедления.

Основное положение этой модели заключаетмя в том, что дискретный процесс потери энергии нейтроном, при замедлении аппроскимируется непрерывной зависимостью (см. рис 1)

Найдем функциональную связь между временем и энергией при непрерывном торможении нейтрона. Пусть нейтрон при своем замедлени проходит энергетический интервал dE, около энергии E за время dt. Нейтрон снижает свою энергию за счет того, что за время dt сталкивается с ядрами среды.

Число таких столкновений при диффузии нейтрона легко определяется из соотношений

, где
$$v$$
 - скорость нейтрона
$$\frac{v}{l_s} dt \tag{1} \label{eq:ls}$$

соответствующая энергия E.

С другой стороны, число столкновений, которое необходимо претерпеть нейтрону, чтобы изменить свою энергию на величину dE, есть отношение приращения логарифма энергии на этом интервале к величине ξ - средней потере логарифма энергии на одно столкновение. Приравняем эти величины и ваполняя простые преобразования, получим:

$$\frac{dE}{dt} = -\frac{v}{l_s} \xi E = \xi \sum_{s} vE \tag{2}$$

Знак (–) в этом выражении взят с целью описать факт уменьшения энергии нейтрона со временем.

Обратимся теперь к следующей задаче: в бесконечной непоглощающей среде находится точечный источник, испускающий нейтроны с энергией . Если источник испускает в E_0

единицу времени какую-то порцию нейтронов, то эти нейтроны будут распределяться по все возрастающему объему. Поэтому число нетронов в Icm^3 около точки с координатой , будет

зависеть от хронологического времени t, т.е. $n_1 = n(r,t)$

Изменение плотности нейтронов $n_1(\mathbf{r},t)$ при отсутствии поглощения происходит только за

счет диффузии, поэтому:

$$\frac{\partial n_1}{\partial t} = Dv\Delta n_1 \tag{3}$$

Уравнение (3) описывает изменение плотности нейтронов, за счет того, что источник испустил порцию нейтронов, равную мощности источники, то есть, по сути дела, уравнения (3) описывает скорость изменения числа нейтронов, т.е. . Учтем, что переменные t $n_1(\vec{\mathbf{r}}_1,t)\frac{\mathrm{d}\mathbf{n}}{\mathrm{d}t}$

и E связанны соотношением (1). Поскольку форма дифференциала dn не зависит от того, что рассматривать в качемтве переменной, имеем

$$dn = \frac{dn}{dt}dt$$
 u u $dn = \frac{dn}{dE}dE$ d d

откуда

$$\frac{dn}{dt}dt = \frac{dn}{dE}dE\tag{5}$$

Обозначим $\overrightarrow{\frac{dn}{dE}} = \mathbf{n}_2(\overrightarrow{\mathbf{r_l}}, E)$, тогда будем иметь

$$n_1(r,t)dt = n_2(r,E)dE$$
(6)

откуда

$$\vec{n_1(r,t)} = \vec{n_2(r,E)} \frac{dE}{dt} = \vec{n_2(r,E)} v \xi E \sum_s$$
(7)

или

$$n_1(r,t) = \Phi(r,E)\xi \sum_{s}$$
(8)

- есть число нейтронов в ед. объема, приходящихся на единичный энергетический $\frac{dn}{dE}$

интервал, т.е. $\varphi(\mathbf{r},E)$.

Величина $q(\mathbf{r},E)=\xi\Sigma\mathbf{E}\varphi(\mathbf{r},E)$ носит название плотности замедления и имеет смысл числа

нейтронов в Icm^3 пересекающих в ед. времени значение энергии E.

Действительно, величина ξ есть среднее изменение логорифма энергии в одном акте рассеяния

$$\xi = \overline{\Delta \ln E} \approx \overline{(\ln E)'_E \Delta E} = \overline{\frac{1}{E} \Delta E}$$
, откуда $\overline{\Delta E} = \overline{\xi E}$ (9)

_ - потеря энергии нейтроном в одном акте рассеяния. Если интервал _ расположен ΔE

между E и $E + \overline{\Delta E}$, то каждое рассеяние приводит к снижению энергии нейтрона за значение

E.

Число нейтронов претерпевших рассеяние в интервале $\left[E, E + \overline{\Delta E}\right]^*$, есть произведение

числа нейтронов рассеяных в единичном интервале энергий $\phi(E)\Sigma_s$ на величину $\underline{\hspace{0.5cm}}$. Все эти

нейтроны снижают свою энергию за значение E, следовательно

$$q(r,t) = \varphi(E) \sum_{s} \overline{\Delta E} = \sum_{s} \varphi(E) E$$
(10)

Так как $\frac{\partial n_1}{\partial t} = \frac{\partial n_1}{\partial E} \frac{\partial E}{\partial t}, \quad n_1 = q(\mathbf{r}, E)$, получим из уравнения (3) относительно плотности

нейтронов, уравнение (23) относительно плотности замедления

$$\overrightarrow{D\Delta q(r,t)} = -\xi E \sum_{s} \frac{\partial q(r,E)}{\partial E}$$
(11)

Уравнение (23) можно еще упростить, если ввести новую независимую переменную

$$\tau(E) = \int_{E}^{E_0} \frac{DdE}{\sum_{s} \xi E}$$
 (22)

Очевидно, что $\frac{\partial q}{\partial \tau}\frac{\partial \tau}{\partial E} = \frac{\partial q}{\partial E} \ ; \ откуда$

$$\frac{\partial q}{\partial \tau} = \frac{\partial \tau}{\partial E} \frac{1}{\frac{\partial \tau}{\partial E}}, \quad \frac{\partial \tau}{\partial E} = -\frac{D}{\sum_{s} \xi E}$$
 (23)

 $\frac{\partial q}{\partial \tau} = -\frac{\sum_{s} \xi E}{D} \frac{\partial q}{\partial E}$

Тогда уравнение (23) запишется в следующем виде

$$\Delta q(r,t) = \frac{\partial q(r,\tau)}{\partial \tau} \tag{24}$$

Уравнение (24) описывает распределение в пространстве \vec{r} и в пространстве τ плотности замедления $q(r,\tau)$

Величина τ - носит специальное название - "возраст нейтрона" и имеет размерность [cm²]. Само уравнение (24) является уравнением теплопроводности. Решение этого уравнения для точечного источника в бесконечной среде имеет вид:

$$\vec{q(r,t)} = \frac{Q}{(4\pi\tau)^{3/2}} \exp(-\frac{r^3}{4\tau})$$
(25)

На рис. 2 показан качественный вид решения (25) в зависимости от координаты при различных значениях параметра т.

Если τ мало, то это означает, что энергия нейтронов достаточно близка к энергии нейтронов источника и кривая становится более выровненным. Важным случаем является тот, когда $q(r,\tau)$

$$\tau = \int_{E}^{E_0} \frac{DdE}{\xi \sum_{s} E} = \tau_{\tau}$$

где - энергия тепловых нейтронов. В этом случае E_T - дает распределение источников тепловых $\mathsf{q}(\mathsf{r},\tau_T)$

нейтронов около точечного источника быстрых нейтронов. Физический смысл понятия возраста нейтронов τ заключается в том, что возраст нейтронов $\tau(E)$ есть величина пропорциональная среднему квадрату смещения нейтронов от точки их рождения до точки, где их энергия равна величине E. Действительно, средний квадрат смещения нейтрона до достижения возраста τ есть

$$\vec{r_{\tau}}^{2} = frac \int_{0}^{\infty} r^{2} q(r,\tau) 4\pi r^{2} dr \int_{0}^{\infty} q(r,\tau) \pi r^{2} dr = \frac{1}{Q} \frac{Q4\pi}{4\pi \tau^{3/2}} \int_{0}^{\infty} r^{4} e^{-\frac{r^{2}}{t\tau}} dr = 6\tau$$
(16)

При получении этого результата ${
m r}^2=6 au$ учтено, что , т.е. число нейтронов замедляющихся до $\int\limits_0^\infty q(r,\tau)4\pi r^2dr$

возраста τ в ед. времени во всем объеме рассматриваемой среды равно мощности источника Q. Поскольку возраст нейтронов пропорционален смещению нейтрона от точки рождения (в качестве быстрого $\tau(E_T)$

нейтрона) до точки замедления до тепловой энергии , а квадрат длины диффузии пропорционален $E_{\scriptscriptstyle T}$

смещению от точки рождения теплового нейтрона до точки поглощения, то величина $M^2 = \tau + L^2$

пропорциональна среднему смещению нейтрона от точки его рождения как быстрого нейтрона до точки его поглощения как теплового нейтрона (см.рис. 10). Величина называется площадью миграции нейтрона. M^2

Puc. 10

1 - точка, где родился быстрый нейтрон 2 - точка, где быстрый нейтрон, замедлился до тепловой энергии и стал тепловым (точка рождения теплового нейтрона)

3 - точка поглощения теплового нейтрона

Важными характеристиками являются время диффузии и время замедления нейтронов до тепловой энергии. При нормальных условаиях в качестве тепловой энергии нейтрона принимается величина $E_T = 0,025$ эВ, что E_T

соответствует скорости нейтронов $v_T = 2200 \text{ м/сек}$.

Среднее время диффузии нейтрона до поглощения определяется из выражения

$$t_T = \frac{l_U}{v_T} = \frac{1}{\sum_u v_T} \tag{27}$$

- макроскопическое сечение поглощения среды $\boldsymbol{\Sigma}_{\boldsymbol{u}}$

Среднее время замедления нейтрона от энергии E_0 до энергии определяется с помощью выражения (20)

$$\begin{split} t_{_{3AM}} &= \int\limits_{_{0}}^{t_{_{3AM}}} dt = \int\limits_{E_{_{T}}}^{E_{_{0}}} - \frac{dE}{\xi \Sigma_{_{s}} vE} = \int\limits_{E_{_{T}}}^{E_{_{0}}} - \frac{dE}{\xi \Sigma \sqrt{2} E^{^{3/2}}} = \frac{1}{\sqrt{2} \xi \Sigma_{_{s}}} \left[-\frac{1}{\left(\frac{3}{2} - 1\right)} E^{^{3/2 - 1}} \right]_{E_{_{T}}}^{E_{_{0}}} = \\ &= \frac{1}{\sqrt{2} \xi \Sigma_{_{s}}} \frac{1}{2} \left(-\frac{1}{\sqrt{E}} \right)_{E_{_{T}}}^{E_{_{0}}} = \frac{2}{\xi \Sigma_{_{s}}} \left(-\frac{1}{v} \right)_{v_{_{T}}}^{v_{_{0}}} = \frac{2}{\xi \Sigma_{_{s}}} \left(\frac{1}{v} \right)_{v_{_{T}}}^{v_{_{0}}} = \frac{2}{\xi \Sigma_{_{s}}} \left(\frac{1}{v_{_{T}}} - \frac{1}{v_{_{0}}} \right) \end{split}$$

Если в качестве принять среднюю энергию нейтронов деления, т.е. $E_0 \approx 2$ $M_{\text{ЭВ}}$, то и предыдущее $E_0 \approx 2$ $V_0 >> V_T$

выражение еще более упростится

$$t_{\scriptscriptstyle 3AM} \cong \frac{2}{\xi \Sigma_u v_T} \tag{28}$$

В таблице Ошибка: источник перекрёстной ссылки не найден представлены значения параметров диффузии и замедления для различного вида замедлений.

Замедлитель	Плотность <i>IO</i> ³ кг/ м ²	L^2 cm ²	τ cm ²	t_T	<i>t</i> _{зам} МКС
H_2O	1.00	7.4	27	0.21	6.7
D_2O	1.10	25600	120	138	48
Be	1.84	441	96	3.7	59
BeO	2.96	641	105	6.2	76
C^{II}	1.60	2916	350	15.2	149

Таблица 1: Параметры диффузии и замедления

Из таблицы видно, премя пребывания нейтрона в тепловой области примерно на два порядка больше, чем время замедления. Это приводит к тому, что число тепловых нейтронов в замедлителе во столько же раз больше числа замедляющихся нейтронов, т.е. нейтроны "накапливаются" в тепловой области. В ядерных реакторах с графитовым замедлителем среднее время жизни нейтрона , а в ядерных реакторах с графитовым $10^{-3}c$

. В ядерных реакторах на быстрых нейтронах, где замедления практически нет, среднее $10^{-4}\,c$

время жизни нейтрона

Математическое моделирование процесса диффузии замедляющихся нейтронов от точечного источника в бесконечной непоглащающей среде.

Входной информацией являются массовые числа ядер, входящих в состав рассматриваемой среды и соответствующие макроконстанты рассеяния. Например, если среда состоит из углерода, то задается A=12,

Если же среда состоит из ядер двух сортов, например , то задаются A=1; Σ_S^H ; B=16; Σ_S^O . Задается также H_2O

[МэВ]; Задается координата источника нейтронов $X_{M} = 0 \ \, Y_{M} = 0 \ \, Z_{M} = 0 \, .$ энергия нейтронов источника

Алгоритм моделирования

1. Разыгрывается длинна свободного пробега нейтрона до столкновения с ядром среды

$$l_1 = \frac{1}{\Sigma_{tr}} \ln \gamma$$

 γ - равномерно распределенная на отрезке [0,1] случайная величина. Если среда многокомпонентна, то

$$\Sigma_{tr} = \sum_{i}^{n} \Sigma_{tr_{i}} H_{2}O$$

2. Разыгрываются направляющие косинусы движения нейтрона от изотропного источника
$$\omega_z = 1 - 2\gamma \ ; \qquad ; \qquad ; \qquad ; \qquad \omega_y = \sqrt{1 - \omega_z^2} \sin(2\pi\gamma)$$

3. Рассчитывается точка, где нейтрон столкнулся с ядром:

$$X_K = X_M + \omega_x l^{\dagger}$$
, $Y_K = Y_M + \omega_y l^{\dagger}$, $Z_K = Z_M + \omega_z l^{\dagger}$

$$r_K = \sqrt{X_K^2 + Y_K^2 + Z_K^2}$$

Если среда двухкомпонентная, то определяется с какого сорта ядром столкнулся нейтрон. Для этого , то нейтрон столкнулся с ядром под условным номером 1, если разыгрывается у из [0,1] и если

$$\gamma < \frac{\sum_{S_1}}{\sum_{S}}$$

, то нейтрон столкнулся с ядром под условным номером 2. Например: для макросечение рассеяния

состоит из двух слогаемых

$$\Sigma_{S}^{H_{2}O} = 2\sigma_{S}^{H}N_{H} + \sigma_{S}^{O_{2}}N^{O_{2}}$$

Тогда, если

, то нейтрон столкнулся с ядром водорода, в противном случае

$$<\frac{\sum_{S_1}}{\sum_{S}^{H_2O}} \qquad \qquad \gamma > \frac{\sum_{S_1}}{\sum_{S}^{H_2O}}$$

столкнулся с ядром кислорода.

4. После того, как определен атомный номер ядра, с которым столкнулся нейтрон (пусть этот номер A), разыгрывается случайная величина γ из интервала [0,1]

1.
$$\cos Q = 1 - 2\gamma = \omega_z; \quad \omega_x = \sqrt{1 - \omega_z^2} \cos(2\pi\gamma); \quad \omega_y = \sqrt{1 - \omega_z^2} \sin(2\pi\gamma); \quad l_S = -\frac{\ln \gamma}{\Sigma}.$$

2.
$$\varepsilon = \frac{(A-1)^2}{(A+1)^2}$$

3.
$$E_1 = \frac{E_0}{2} [(1+\varepsilon) + (1+\varepsilon)\cos\theta]$$

Таким образом, определятся энергия нейтрона после столкновения E_1 , направляющие косинусы движения

нейтрона после рассеяния , , , а значит и координаты следующего столкновения. $\omega_x \ \omega_y \ \omega_z$

5. Если , то возврат к п.4 в котором следует положить , если , то разыгрывается $E_1 \geq E_T$, $E < E_T$

новый нейтрон источника, т.е. программа должна идти на п.1.

Выходная информация

Выходной информацией являются для каждого из M рассмотренных нейтронов источника следующиемассивы: координаты точек столкновения нейтрона с ядрами среды и энергия нейтрона после столкновения. В результате обработки этих массивов информации можно получить экспериментальные значения возраста нейтронов в зависимости от энергии и распределения плотности замедления. Действительно, так как возраст нейтронов энергии E связан со средним квадратом смещения нейтрона соотношением , то достаточно

$$\tau(E) = \frac{1}{6}\bar{r}^2(E)$$

определить средний квадрат смещения нейтронов от источника до точки замедления до энергии E. Зафиксируем некоторое заданное значение энергии нейтрона E и для каждого из M рассмотренных нейтронов источника определим координаты точки рассеяния, в результате которого энергия нейтрона станет меньше, чем E. Пусть координаты этой точки для i-ого нейтрона будут . Тогда средний квадрат смещения нейтрона до (x_i, y_i, z_i)

замедления его до энергии E будет приблеженно определяться выражением

$$\bar{r}^2 = \frac{1}{M} \sum_{i=1}^{M} (x_i^2 + y_i^2 + z_i^2)$$

Задавая различные значения величины E, можно получить зависимость возраста от энергии

$$\tau(E) = \frac{1}{6}\bar{r}^2(E)$$

При возраст нейтрона τ характеризует смещение нейтрона от точки его рождения до точки $E=E_T$

превращения замедляющегося нейтрона в тепловой.

Экспериментальное распределение плотности замедления по пространству при различных значениях). Пусть эта величина будет равна R. Разобьем радиус вектор R на K $r=\sqrt{x^2+y^2+z^2}$ возраста нейтронов можно получить следующим образом. Зададимся обастью изменения координаты r в сферической геометрии (

$$r = \sqrt{x^2 + y^2 + z^2}$$

частей, тогда . Введем в рассмотрение объем пространства, заключенного между двумя

$$R_i = i\frac{R}{k} = i\Delta R$$

соседними сферами

$$V_i = \frac{4}{3}\pi (R_{i+1}^3 - R_i^3), i = 0,...,k$$

Зададимся величиной энергии E и номером i, используя информацию о координатах столкновения нейтронов с ядрами среды и об их энергии, определим, как и прежде, координаты точки рассеяния, в результате которого энергия нейтрона станет меньше, чем Е. Пусть эта точка характеризуется радиусом

 $r = \sqrt{x^2 + y^2 + z^2}$

Определим радиусы этих точек для всех M, рассмотренных нейтронов источника. Далее вычислим относительную долю нейтронов из M рассмотренных координаты которых, попали в пространство

определим величину

$$\widetilde{q}(R_i) = \frac{n_i}{M} \frac{1}{V_i}$$

- число нейтронов из M рассмотренных, величина радиуса смещения которых оказалась в пределах

объема Величина \widetilde{q} будет пропорциональна плотности замедления.

Подготовка к данному разделу лабороторной работы

- Изучить теоретический
- , D, . В заданном энергетическом диапозоне Σ 2. Для заданного вариантом состава среды рассчитать

, построить зависимость
$$E_0 \div E_T \qquad \qquad \tau(E)$$

q(r,E) и q(r, au) в случае точечного источника в 3. Построить для заданных свойств зависимости

бесконечной непоглощающей

до тепловой энергии и 4. Для заданного варианта состава среды определить время замедления от энергии

время диффузии.

Нарисовать блок схему алгоритма модели.

6. Разработать план исследования процесса замедления при диффузии.

Подготовка к сдаче данного раздела лабораторной работы

 $E(r^2)$, где 1. По данным распечаткам построить для двух из рассмотренных M судеб нейтронов зависимость

$$r^2 = x_i^2 + y_i^2 + z_i^2$$

нейтронов. 3. Пост 4. Построит	Сравнить с теоретическими значениями возраста. проить зависимость возраста от энергии по данным численного эксперимента. ь экспериментальную зависимость и сравнить с аналитической зависимостью. $\widetilde{q}(r,\tau)$
аключении. При сдаче 1. На осн вейтрона 2.	е результаты, полученные при выполнении всех разделов лабороторной работы излагаются е лабораторной работы необходимо правильно отвечать на следующие контрольные вопросы: ювании каких физических законов сохраниения, получены выражения для описания акта рассеяни на ядре? Какой элемент эффективнее всего замедляет нейтроны? кая величина используется для характеристики качества замедлителя?
	системе координат рассеяние нейтронов практически считается сфериеским - симметричным?
 Из каки Что т 	его зависит средняя логарифмическая потеря энергии нейтронов при замедлении? их соображений можно получить спектр замедляющихся нейтронов в поглащающей среде? гакое "спектр Ферми"? Почему с уменьшением энергии нейтронов ф(E) растет?
	накое спектр Ферми? Почему с уменьшением энергии неитронов $\phi(E)$ растет? ие плотности замедления. Как связана плотность замедления со спектром нейтронов? основные параметры процесса диффузии нейтронов и какой их физический смысл? 12. Смысл величины ?
	ие плотности замедления. Как связана плотность замедления со спектром нейтронов? основные параметры процесса диффузии нейтронов и какой их физический смысл? 12. Смысл величины ?
 11. Какие 13. 14. Смысл 15. 16. 17. Поняти нейтронов? 1 19. Каковы х 	ие плотности замедления. Как связана плотность замедления со спектром нейтронов? основные параметры процесса диффузии нейтронов и какой их физический смысл? 12. Смысл величины ? L² Какова качественная зависимость от температуры среды? членов уравнения диффузии нейтронов в среде. Как они зависят от параметров среды? Условия однозначности для уравнения диффузии. Уравнение возраста. Смысл членов уравнения. е возраста нейтронов в среде. От каких физических свойств среды зависит величина возраст 8. Что такое площадь миграции? карактерн
 11. Какие 13. 14. Смысл 15. 16. 17. Поняти нейтронов? 1 19. Каковы х 	ие плотности замедления. Как связана плотность замедления со спектром нейтронов? основные параметры процесса диффузии нейтронов и какой их физический смысл? 12. Смысл величины ? L^2 Какова качественная зависимость от температуры среды? членов уравнения диффузии нейтронов в среде. Как они зависят от параметров среды? Условия однозначности для уравнения диффузии. Уравнение возраста. Смысл членов уравнения. е возраста нейтронов в среде. От каких физических свойств среды зависит величина возраст 8. Что такое площадь миграции? карактерн ины време диффузии и замедления в воде, тяжелой воде и графите?