Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001080

International filing date: 27 January 2005 (27.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-024242

Filing date: 30 January 2004 (30.01.2004)

Date of receipt at the International Bureau: 17 March 2005 (17.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

28. 1. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 1月30日

出 願 番 号

特願2004-024242

Application Number: [ST. 10/C]:

[JP2004-024242]

出 願 人 Applicant(s):

三菱樹脂株式会社

2005年 3月 4日

特許庁長官 Commissioner, Japan Patent Office

特許請求の範囲 1

明細書 1

要約書 1

【物件名】 【物件名】

【物件名】

【請求項1】

(a) 芳香族ポリアミド層、(b) 脂肪族ポリアミド層、及び(c) 芳香族ポリアミドと脂肪族ポリアミドとが重量比で5:95~20:80である混合層を含み、(c) 層が (a) 層及び/又は(b) 層に隣接する5層以上の積層構造を有すると共に、温度23 $^{\circ}$ 、相対湿度50%の条件下でのゲルボーフレックステスターによる3000サイクル繰返し屈曲後のピンホール数が5個/497cm²以下であることを特徴とするポリアミド系積層フィルム。

【請求項2】

(b) 層/ (c) 層/ (a) 層の順に積層された層構造を含む請求項1 に記載のポリアミド系積層フィルム。

【請求項3】

(b) 層/ (c) 層/ (c) 層/ (b) 層の順に積層された層を含む請求項 2 に記載のポリアミド系積層フィルム。

【請求項4】

組成の異なる2層以上の(c)層を有する請求項 $1 \sim 3$ のいずれかに記載のポリアミド系積層フィルム。

【請求項5】

前記 (a) 層が、耐屈曲ピンホール性改良材を 0. 1~10重量%含有する請求項1~4のいずれかに記載のポリアミド系積層フィルム。

【請求項6】

更に (c) 層および/または (b) 層が、耐屈曲ピンホール性改良材を $0.1 \sim 10$ 重量%含有する請求項 5 に記載のポリアミド系積層フィルム。

【請求項7】

少なくとも一軸方向に $2 \sim 8$ 倍の延伸倍率で延伸されたものである請求項 $1 \sim 6$ のいずれかに記載のポリアミド系積層フィルム。

【請求項8】

縦横二軸方向に、それぞれ 2.5 ~ 5 倍の延伸倍率で延伸されたものである請求項 7 に記載のポリアミド系積層フィルム。

【請求項9】

(a) 層が、脂肪族ポリアミドを $0 \sim 5$ 重量%含有する芳香族ポリアミド層である請求項 $1 \sim 8$ のいずれかに記載のポリアミド系積層フィルム。

【請求項10】

(b) 層が芳香族ポリアミドを $0 \sim 5$ 重量%含有する脂肪族ポリアミド層である請求項 $1 \sim 9$ のいずれかに記載のポリアミド系積層フィルム。

【発明の名称】ポリアミド系積層フィルム

【技術分野】

[0001]

本発明は、酸素ガスバリア性、耐屈曲性、透明性、耐熱性及び強靱性等に優れ、酸素による内容物の変質を嫌う食品、医療品、および薬品等の包装用に適するポリアミド系積層フィルムに関する。

【背景技術】

[0002]

従来より、ポリアミド系樹脂からなるフィルムは、単独で、または、他のフィルムとの 積層体として、種々の一般的な包装用途に使用されてきた。しかしながら、脂肪族ポリア ミドよりなるフィルムは、引張り強度、耐屈曲ピンホール性等の機械的性質においては優 れているが、酸素ガスバリア性においては充分なものとは云えない。そこで、この脂肪族 ポリアミドフィルムの表面に塩化ビニリデン系重合体ラテックスをコートして、酸素ガス バリア性を付与した塩化ビニリデン系樹脂コートフィルムが提案され、実用化されている 。ところが、上記の塩化ビニリデン系重合体樹脂コートフィルムは、熱水処理を受けると 白濁してしまうため用途が極端に制限されるという欠点を有するうえ、さらに焼却処分時 に、塩素を含んだ化合物が発生するため、環境汚染等の原因にもなっている。

[0003]

他方、酸素ガスバリア性が良好なフィルムとして、キシリレンジアミンを構成単位とするものなどに代表される芳香族ポリアミドからなるフィルムが提案されている。このフィルムは、透明性、耐油性においては優れているが、耐屈曲性に劣っているために、その用途には制限がある。

[0004]

そこで、上記の脂肪族ポリアミドフィルム、芳香族ポリアミドフィルム双方の利点、すなわち引張り強度、耐屈曲性及び酸素ガスバリア性に優れているという性質を併せ持つフィルムを得るために、この2種類のポリアミドを溶融共押出して、インフレーション法により積層フィルムを製造する方法(例えば特許文献1参照)や、脂肪族ポリアミドを主成分とする層の間に、芳香族ポリアミドを主成分とする層を配置する層構成の積層フィルム(例えば特許文献2参照)が提案されている。更には、耐屈曲性等を改良するために、ポリアミドエラストマー成分を添加するという方法が多数提案されている(例えば特許文献3、特許文献4、特許文献5参照)。

[0005]

【特許文献1】特開昭57-51427号公報

【特許文献2】特開昭56-155762号公報

【特許文献3】特開平6-255054号公報

【特許文献4】特開平8-22484号公報

【特許文献5】特開平11-254615号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

上記の積層フィルムは、脂肪族ポリアミドよりなる層の寄与により耐屈曲性や強靱性が向上し、また、芳香族ポリアミドよりなる層の寄与により酸素ガスバリア性が向上する傾向にはあるものの、耐屈曲性と酸素ガスバリア性、さらに使用中に層間剥離が発生しない充分な層間接着強度を同時に満足できるレベルを示すものではない。また、製造工程で発生するスクラップを再生使用する場合、脂肪族ポリアミドと芳香族ポリアミドが混合され、それぞれもとの原料の酸素バリア性、耐屈曲性等を損ない、本来の機能が発揮できない積層フィルムになることがある。

すなわち、酸素ガスバリア性と耐屈曲性、強靱性を両立するのであれば、両外層に脂肪 族ポリアミドのみを配置し、中間層に芳香族ポリアミドを配することで目的は達成される が、芳香族ポリアミド層と脂肪族ポリアミド層の境界で剥離し易く、袋として使用中に破 袋し易いという欠点がある。そこで、脂肪族ポリアミドに芳香族ポリアミドあるいは、脂 肪族ポリアミドと芳香族ポリアミドが混合されたスクラップを混合することで、層間接着 強度は向上するが、一方で耐屈曲ピンホール性が大幅に低下してしまう。

本発明の目的は、上記従来技術の問題点を解決し、脂肪族ポリアミド層と芳香族ポリア ミド層の層間剥離がなく、耐屈曲ピンホール性などの諸物性に優れたポリアミド系積層フ ィルムを提供することにある。

【課題を解決するための手段】

[0007]

本発明者等は、上記目的を達成すべく鋭意検討を行った結果、脂肪族ポリアミドと芳香 族ポリアミドとの特定組成の混合物からなる接着層を脂肪族ポリアミド層及び/又は芳香 族ポリアミド層に隣接させた5層以上の積層構造とすることによりガスバリア性、耐屈曲 性、及び積層フィルムの層間剥離強度がバランスし、優れた物性を有するポリアミド系積 層フィルムが得られることを見出し、本発明に到達した。

即ち、本発明は以下のポリアミド系積層フィルムを提供するものである。

- (1)、 (a) 芳香族ポリアミド層、(b) 脂肪族ポリアミド層、及び(c) 芳香族ポ リアミドと脂肪族ポリアミドとが重量比で5:95~20:80である混合層を含み、(c) 層が(a) 層及び/又は(b) 層に隣接する5層以上の積層構造を有すると共に、温 度23℃、相対湿度50%の条件下でのゲルボーフレックステスターによる3000サイ クル繰返し屈曲後のピンホール数が5個/497cm²以下であることを特徴とするポリ アミド系積層フィルム。
- (2)、 (b) 層/(c) 層/(a) 層の順に積層された層構造を含む(1) のポリア ミド系積層フィルム。
- (3)、 (b) 層/(c) 層/(c) 層/(b) 層の順に積層された層構造 を含む(2)のポリアミド系積層フィルム。
- (4)、 組成の異なる2層以上の(c)層を有する(1)~(3)のいずれかのポリア ミド系積層フィルム。
- (5)、 前記(a)層が、耐屈曲ピンホール性改良材を0.1~10重量%含有する(1)~(4)のいずれかのポリアミド系積層フィルム。
- (6)、 更に(c)層および/または(b)層が、耐屈曲ピンホール性改良材を0.1~10重量%含有する(5)のポリアミド系積層フィルム。
- (7)、 少なくとも一軸方向に2~8倍の延伸倍率で延伸されたものである(1)~(6)のいずれかのポリアミド系積層フィルム。
- (8)、 縦横二軸方向に、それぞれ2.5~5倍の延伸倍率で延伸されたものである(7) のポリアミド系積層フィルム。
- (9)、 (a) 層が、脂肪族ポリアミドを0~5重量%含有する芳香族ポリアミド層で ある(1)~(8)のいずれかのポリアミド系積層フィルム。
- (10)、 (b)層が芳香族ポリアミドを0~5重量%含有する脂肪族ポリアミド層で ある(1)~(9)のいずれかのポリアミド系積層フィルム。

【発明の効果】

[0008]

本発明により、脂肪族ポリアミド層と芳香族ポリアミド層の層間剥離がなく、酸素ガス バリア性、耐屈曲ピンホール性、透明性、耐熱性及び強靱性などの諸物性に優れたポリア ミド系積層フィルムが提供される。

【発明を実施するための最良の形態】

[0009]

以下、本発明を詳しく説明する。

本発明のポリアミド系積層フィルムの主要な原料は、芳香族ポリアミド(A)、脂肪族 ポリアミド(B)であり、更に必要に応じて耐屈曲ピンホール性改良材(C)が用いられ る。

本発明における芳香族ポリアミド(A)は芳香族環を有するポリアミドであって、特に 制限されないが、キシリレンジアミンと炭素数が $6 \sim 120\alpha$, ω 脂肪族ジカルボン酸と からなるポリアミド構成単位を分子鎖中に70モル%以上含有するものが好適に用いられ る。芳香族ポリアミドに該ポリアミド構成単位を分子鎖中に70モル%以上含有させるこ とにより高いガスバリア性が得られる。

[0010]

上記のキシリレンジアミンと炭素数が6~12のα,ω脂肪族ジカルボン酸とからなる ポリアミド構成成分の具体例としては、ポリメタキシリレンアジパミド、ポリメタキシリ レンピメラミド、ポリメタキシリレンアゼラミド、ポリパラキシリレンアゼラミド、ポリ パラキシリレンデカナミドのような単独重合体、メタキシリレン/パラキシリレンアジパ ミド共重合体、メタキシリレン/パラキシリレンピメラミド共重合体、メタキシリレン/ パラキシリレンアゼラミド共重合体およびメタキシリレン/パラキシリレンセバカミド共 重合体のような共重合体が挙げられる。

[0011]

上記以外のポリアミド構成成分としては、ジアミン類とジカルボン酸類とのナイロン塩 およびεーカプロラクタムのようなラクタム類の開環重合物、εーアミノカルボン酸のよ うなωーアミノカルボン酸類の自己重縮合物等が挙げられる。ナイロン塩の成分としての ジアミン類の具体例には、ヘキサメチレンジアミン、2,2,4-トリメチルヘキサメチ レンジアミンのような脂肪族ジアミン、ピペラジンビスプロピルアミン、ネオペンチルグ リコールビスプロピルアミンのような異節環または異原子含有ジアミン等があり、また、 ジカルボン酸類の具体例には、アジピン酸、アゼライン酸、セバシン酸のような脂肪族ジ カルボン酸、テレフタル酸、イソフタル酸のような芳香族ジカルボン酸、1,4ーシクロ ヘキサンジガルボン酸のような環状脂肪族ジカルボン酸等が挙げられる。

$[0\ 0\ 1\ 2]$

本発明における脂肪族ポリアミド(B)は、環状ラクタムの開環重合物、アミノカルボ ン酸の自己重縮合物、ジカルボン酸とジアミンとの重縮合物などが挙げられる。具体的に は、ナイロンー6と称されるεーカプロラクタムの単独重合体、あるいはナイロンー66 と称されるポリヘキサメチレンアジパミドが、安価に入手でき、かつ、延伸操作を円滑に 遂行し得るので好ましい。

$[0\ 0\ 1\ 3]$

また、本発明では耐屈曲ピンホール性改良材(C)を添加することで、さらに耐屈曲ピ ンホール性を向上することができる。

耐屈曲ピンホール性改良材としては、ポリオレフィン類、ポリアミドエラストマー類、 ポリエステルエラストマー類などが挙げられる。

上記のポリオレフィン類は、主鎖中にポリエチレン単位、ポリプロピレン単位を50重 量%以上含むものであり、無水マレイン酸等でグラフト変性していてもよい。ポリエチレ ン単位、ポリプロピレン単位以外の構成単位としては、酢酸ビニル、あるいはこの部分け ん化物、アクリル酸、メタクリル酸、アクリル酸エステル類、メタクリル酸エステル類、 あるいはこれらの部分金属中和物(アイオノマー類)、ブテン等の1-アルケン類、アル カジエン類、スチレンなどが挙げられる。これらの構成単位を複数含んでも構わない。

[0014]

また、ポリアミドエラストマー類は、ポリエーテルアミド、ポリエーテルエステルアミ ド等のポリアミド系ブロック共重合体に属するものであり、アミド成分としてはナイロン -6、ナイロン-66、ナイロン-12等例示され、エーテル成分としては、ポリオキシ テトラメチレングリコール、ポリオキシエチレングリコール、ポリオキシー1,2ープロ ピレングリコール等が例示されるが、好ましくはポリテトラメチレングリコールとポリラ ウリルラクタム (ナイロン-12) を主成分とする共重合体である。また、任意成分とし てドデカンジカルボン酸、アジピン酸、テレフタル酸等のジカルボン酸を少量用いたもの であってもよい。

ポリエステルエラストマー類としては、例えばポリブチレンテレフタレートとポリテト

以上の耐屈曲ピンホール性改良材は単独でも2種類以上を混合して使用してもよい。

[0015]

本発明のポリアミド積層フィルムの(a)層は、主に芳香族ポリアミド(A)よりなる層であり、例えば製造工程で発生するスクラップなどを利用する場合に、脂肪族ポリアミドを $0\sim5$ 重量%含まれていても良い。また(a)層には耐屈曲性を向上させるために、上記の耐屈曲ピンホール性改良材を $0.1\sim10$ 重量%、好ましくは $1\sim5$ 重量%含有させることが望ましい。

また、ポリアミド積層フィルムの(b)層は、主に脂肪族ポリアミドよりなるなる層であり、芳香族ポリアミドが0~5重量%含まれていても良い。耐屈曲ピンホール性改良材は主に(a)層に用いられるが、更に耐屈曲性を向上させるために、(b)層にも前記(a)層と同様に含有させても良い。

[0016]

本発明のポリアミド積層フィルムは、更に芳香族ポリアミドと脂肪族ポリアミドの混合物よりなる(c)層を含む積層構造を有するものである。

上記の混合物は、芳香族ポリアミドと脂肪族ポリアミドとの均質な混合組成物である。この混合組成物は、原料芳香族ポリアミドと原料脂肪族ポリアミドとを混合したものであってもよいし、また、本発明のポリアミド系積層フィルムを製造する際に規格外フィルムや切断端材(耳トリム)として発生する原料ポリアミド混合物、或いはこの発生する原料ポリアミド混合物に原料ポリアミドを加えて調製したものであってもよい。

(c) 層の組成(混合割合)は芳香族ポリアミドと脂肪族ポリアミドとが重量比で5: $95\sim20:80$ 、好ましくは $10:90\sim15:85$ の範囲になるように選ばれる。この(c) 層は上記の(a) 層および/または(b) 層に隣接して積層され、このような組成比の混合層を設けることにより、(a) 層や(b) 層との接着強度が改良され、耐屈曲性や強靭性などに優れた積層フィルムとなる。

なお、このポリアミド系積層フィルムでは、該(c)層は芳香族ポリアミド(A)と脂肪族ポリアミド(B)の組成が異なる 2 層以上から構成されるものであっても良い。(c)層が組成の異なる 2 層以上から構成される場合、各(c)層は隣接して設けてもよく、(a)層または(b)層を介して設けてもよい。組成の異なる(c)層を 2 層以上隣接して設ける場合、それらは一体的に一つの(c)層とみなすことができる。

[0017]

本発明のポリアミド系積層フィルムの製造に用いられる原料の芳香族ポリアミド(A)、脂肪族ポリアミド(B)および(A)と(B)の混合組成物は、いずれも吸湿性が大きく、吸湿したものを使用すると原料を熱溶融し押出す際に、水蒸気やオリゴマーが発生しフィルム化を阻害するので、事前に乾燥して水分含有率を0.1重量%以下とするのが好ましい。なお、これらの原料ポリアミド、ポリアミド混合組成物にはポリアミド系積層フィルムを製造する際に、滑剤、帯電防止剤、酸化防止剤、ブロッキング防止剤、安定剤、染料、顔料、無機質微粒子等の各種添加剤を、フィルムの性質に影響を与えない範囲で添加することができる。

[0018]

以上のような層構成を有する本発明の積層フィルムは、芳香族ポリアミド(A)を主とする (a) 層、脂肪族ポリアミド (B) を主とする (b) 層、及び芳香族ポリアミド (A) と脂肪族ポリアミド (B) の混合物よりなる (c) 層を含む少なくとも 5 層の積層構造を有する。

耐屈曲ピンホール性改良材(C)を、前記(a)層、或いは更に(b)層および/または(c)層に $0.1\sim10$ 重量%含有することで、さらに耐屈曲ピンホール性が向上する。各ポリアミド層に含まれる耐屈曲ピンホール性改良材の含有率が、10重量%を超えると耐屈曲性の改良効果が飽和に近づくうえ、フィルムとした際の透明性が低下する傾向が

あるので好ましくない。

[0019]

所定量の耐屈曲ピンホール性改良材(C)を含有する(a)層および(b)層は、芳香族ポリアミド(A)又は脂肪族ポリアミド(B)と耐屈曲ピンホール性改良材(C)とを所定の割合でドライブレンドしたもの、ドライブレンド物を押出機で溶融した後ペレット化したもののいずれであってもよい。また、(c)層に用いられる耐屈曲ピンホール性改良材を含有する混合組成物も、同様にして調製することができる。

[0020]

次に、本発明の積層フィルムの代表的な層構成を以下に例示する。但し本発明の積層フィルムは、これら例示されたものに限定されるものではない。

- (1)、5層構成の例
- (b) / (c) / (a) / (c) / (b), (b) / (c) / (a) / (c) / (a)
- (c) / (b) / (c) / (a) / (c), (b) / (c) / (a) / (c) / (c)
- (2)、6層構成の例
- (b) / (c) / (a) / (c) / (c) / (b)
- (b) / (c) / (a) / (c) / (b) / (b)
- (3)、7層構成の例
- (b) / (c) / (c) / (a) / (c) / (b) 、
- (b) / (b) / (c) / (a) / (c) / (b) / (b)
- (c) / (b) / (c) / (a) / (c) / (b) / (c)
- (b) / (c) / (a) / (c) / (a) / (c) / (b)

ここで、各層の厚み比率は (a) 層の合計を全体の $8 \sim 40\%$ 、(b) 層の合計を全体の $5 \sim 70\%$ 、(c) 層の合計を全体の $3 \sim 40\%$ とすることが望ましい。

[0021]

本発明のポリアミド系積層フィルムは、従来公知の一般的な方法により製造することができる。まず、芳香族ポリアミド(A)、脂肪族ポリアミド(B)等を原料として用いて、実質的に無定型で配向していない積層フィルム(以下「積層未延伸フィルム」という)を、通常、共押出法で製造するのがよい。この積層未延伸フィルムの製造は、例えば、上記原料を2~5台の押出機により溶融し、フラットダイ、または環状ダイから押出した後、急冷することによりフラット状、または環状の積層未延伸フィルムとする共押出法を採用するのがよい。

[0022]

次に、上記の積層未延伸フィルムを、フィルムの流れ方向(縦方向)、およびこれと直角な方向(横方向)で、少なくとも一方向に通常2~8倍、好ましくは縦横二軸方向に各々2.5~5倍の範囲で延伸する。 縦方向および横方向の二軸延伸方向の延伸倍率が、各々2.5倍より小さい時は、延伸の効果が少なく、フィルムの強度が劣り、また二軸延伸方向の延伸倍率が各々5倍より大きい時は、延伸時に積層フィルムが裂けたり破断したりしやすいので延伸倍率の上限は上記の範囲内とするのがよい。

[0023]

二軸延伸の方法は、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等、本発明の趣旨を越えない限り従来公知の延伸方法が採用できる。例えば、テンター式逐次二軸延伸方法の場合には、積層未延伸フィルムを $50\sim110$ $\mathbb C$ の温度範囲に加熱し、ロール式縦延伸機によって縦方向に $2.5\sim5$ 倍に延伸し、続いてテンター式横延伸機によって $60\sim140$ $\mathbb C$ の温度範囲内で横方向に $2.5\sim5$ 倍に延伸することにより製造することができる。また、テンター式同時二軸延伸やチューブラー式同時二軸延伸方法の場合は、例えば、 $60\sim130$ $\mathbb C$ の温度範囲において、縦横同時に各軸方向に $2.5\sim5$ 倍に延伸することにより製造することができる。

[0024]

上記方法により延伸された積層二軸延伸フィルムは、引き続き熱処理をする。熱処理を 出証特2005-3018151

することにより常温における寸法安定性を付与することができる。この場合の熱処理温度は、110℃を下限として各ポリアミドの融点より5℃低い温度を上限とする範囲を選択するのがよく、これにより常温寸法安定性のよい、任意の熱収縮率を持った延伸フィルムを得ることができる。熱処理操作により、充分に熱固定された積層二軸延伸フィルムは、常法により冷却し巻きとることができる。

[0025]

本発明のポリアミド系積層フィルムは、上記方法によって製造することができるが、本発明の目的を考慮すると次のような物性、すなわち、温度 $2\,3\,^{\circ}$ 、相対湿度 $5\,0\,^{\circ}$ の条件下における酸素透過度が $1\,5\,^{\circ}$ c m³/m² · $2\,4\,^{\circ}$ H r · a t m以下であり、温度 $2\,^{\circ}$ で、相対湿度 $5\,^{\circ}$ の条件下でのゲルボーフレックステスターによる $3\,^{\circ}$ 0 0 0 サイクル繰返し屈曲後のピンホール数が $5\,^{\circ}$ 個/4 9 6 c m² (= $7\,^{\circ}$ i n c h²) 以下で、かつヘイズが $1\,^{\circ}$ の以下、層間剥離強度が $1\,^{\circ}$ 5 0 g/1 5 m m 以上等のレベルである。

[0026]

本発明のポリアミド系積層フィルムの全体の厚さは、通常 $10 \sim 40 \mu$ mが好ましい。全体の厚さが、 10μ m未満のものは、酸素ガスバリア性と耐屈曲ピンホール性のバランスに乏しく、耐摩耗性も不充分となり包装用途として満足なフィルムは得られ難い。また、 40μ mを越えるものは、フィルムが硬くなり、更に、シーラント層を張り合わせる場合には、フィルム全体が非常に厚くなり軟包装用途には適さなくなる。また、本発明のポリアミド系積層フィルムは、シーラント層を張り合わせ、さらなる加工に供することができる。このフィルムに、塩化ビニリデン系樹脂、ポリビニルアルコール系樹脂、エチレン一酢酸ビニル共重合体酸化物系樹脂等のコーティング層を設けることにより、ガスバリア性を一層向上させた、耐屈曲ピンホール性の優れたフィルムが得られる。また、各種単層若しくは積層フィルムと、ドライラミネート法、ウェットラミネート法、押出しラミネート法等により積層することにより得られる積層体は耐屈曲ピンホール性の優れたものとなる。

【実施例】

[0027]

以下、本発明の内容および効果を実施例により更に詳細に説明するが、本発明は、以下の例に限定されるものではない。

なお、以下の例において、得られたフィルムの評価は次の方法によって行った。

[0028]

1) 酸素透過度(cm³/m²・24Hr・atm) モダンコントロール社製の「OXY-TRAN100型酸素透過度測定装置」を使用し、温度23℃、相対湿度50%の条件下で測定した。

[0029]

2) 耐屈曲ピンホール性 (ピンホール数/496cm² (=77inch²))

20.3 c m×27.9 c mの大きさに切断したフィルムを、温度23 \mathbb{C} 、相対湿度50%の条件下に、24時間以上放置してコンディショニングし、ゲルボーフレックステスター(理学工業社製、「No.901型」(MIL-B-131 C の規格に準拠))を使用して、次のように屈曲テストを繰り返し、ピンホール数を計測した。

上記長方形テストフィルムを長さ20.3cmの円筒状にし、当該巻架した円筒状フィルムの一端を上記テスターの円盤状固定ヘッドの外周に、他端を上記テスター円盤状可動ヘッドの外周にそれぞれ固定し、上記可動ヘッドを上記固定ヘッドの方向に、平行に対向した両ヘッド(固定ヘッドと可動ヘッドとは17.8cm隔てて対向している。)の軸に沿って8.9cm接近させる間に440°回転させ、続いて回転させることなしに6.4cm直進させ、その後、これらの動作を逆に行わせ、上記可動ヘッドを最初の位置に戻すまでの行程を1サイクルとする屈曲テストを、1分あたり40サイクルの速度で、連続して3000サイクル行った後に、テストしたフィルムの固定ヘッド、可動ヘッドの外周に固定した部分を除いた17.8cm×27.9cm(7inch×11inch=77inch²=496cm²)内の部分に生じたピンホール数を、ピンホールテスター(サンコ

-電子研究所製、TRD型)により1KVの電圧を印加して、計測した。

[0030]

3)層間剥離強度

引張試験機〔(株)島津製作所製、オートグラフAG-5〕にて測定した。測定条件は、評価用サンプル15mm幅のものを使用し、T型剥離、剥離速度20mm/分で実施した。

[0031]

実施例1

(a) 層に相対粘度 2. 7のポリメタキシリレンアジパミド(芳香族ポリアミド(A):三菱瓦斯化学(株)製、「MX-ナイロン 6 0 0 7」)とポリアミドエラストマー(耐屈曲ピンホール性改良材:アトフィナ社製「PEBAX4033」)とを 9 5:5の割合(重量)で混合した樹脂組成物、(b)層に相対粘度 3. 7のポリー ε -カプロアミド(脂肪族ポリアミド(B):三菱エンジニアリングプラスチックス(株)製、「ノバミッド 1 0 2 2 」)、および(c)層に芳香族ポリアミド(A)と脂肪族ポリアミド(B)との割合(重量)が 2 0:8 0 で混合した樹脂組成物を、 6 5 mm ϕ 押出機 3 台を使用して別々に溶融させ、さらに(b)層の前記脂肪族ポリアミド(B)及び(c)層の芳香族ポリアミド(A)と脂肪族ポリアミド(B)の混合物についてはそれぞれ分配ブロックでほぼ 半々に分割し、共押出Tダイ内で積層させて 5 層構造の積層フィルムとして押出し、 3 0 $\mathbb C$ のキャストロールに密着急冷し、外層が約 3 2 μ mの脂肪族ポリアミド(B)、中間層が約 2 6 μ mの芳香族ポリアミド(A)と脂肪族ポリアミド(B)とポリアミドエラストマーとの混合組成物、そして内層が約 4 2 μ mの芳香族ポリアミド(A)の各々よりなる未延伸積層フィルムを得た。

[0032]

得られた未延伸積層フィルムを60℃の条件下でロール式延伸機にて縦方向に3倍延伸し、次いで、この縦延伸フィルムの端部をテンタークリップで保持し、テンターオーブン内で130℃の条件下で横方向に3.5倍に延伸した後、205℃で6秒間の熱処理を行った。熱処理を行った後のフィルムは、クリップの把持部に相当する両端部分はトリミングし、トリミング後の製品フィルム部分をロール状に巻き取り、外層の(b)層が約3 μ m、中間層の(c)層が約2.5 μ m、そして内層の(a)層が約4 μ mである、(b)/(c)/(a)/(c)/(b)なる5層構成で、全体の厚さが約15 μ mの二軸延伸積層フィルムを得た。該フィルムの評価結果を表1に示す。

[0033]

実施例2~8、比較例1~3

実施例1において、層構成、各層の樹脂組成をそれぞれ後記の表1に記載したように変更した以外は、同例に記載したと同様の方法で積層二軸延伸フィルムを得た。これらフィルムについての評価結果を表1に示す。

[0034]

比較例 4

市販の厚さ 15μ mの二軸延伸ナイロンフィルム(三菱樹脂(株)製、「サントニール」)を用い、酸素透過度を測定し、耐屈曲ピンホール性および透明度を評価した。その結果を表1に示す。

[0035]

【表1】

			第一枚一一			
	実施例1	実施例2	実施例3	実施例4	実施例5	実施例6
層組成(重量%)						
(a)層						100
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	95	95	95	92	97	76
DAF	5	ß	5	5	3	
EVA						က
圈(9)						007
NY6	100	100	97	100	100	001
PAE			3			
園 (2)						
NY6	80	90	85	83	85	82
MX-NY	20	10	15	14	15	15
PAE				က		
(c,)圈						
NY6		80				
MX−N⊀		20		The state of the s	The state of the s	, , ,
層構成	b/c/a/c/b	b/c/c//a/c//c/b	b/c/a/c/b	b/c/a/c/b	b/c/a/c/b	b/c/a/c/b
層厚み(μm)	3/2.5/4/2.3/3	2/2/1.5/4/1.5/2/2	3/2.5/4/2.5/3	3/2.5/4/2.5/3	4/1.5/4/1.5/4	3/2.3/4/2.3/3
フィルム評価						
酸素透過度					ç	Ç
$[\times 10^{-15} \text{ FeV/ (m}^2 \cdot \text{s} \cdot \text{Pa})]$	40	40	40	40	43	24
耐屈曲ピンホール性		,	,	٧	c	6
(ピンホール数/491cm゚)	3	2			7	2000
	220	220	220	700	200	7007

[0036]

【表2】

			光一枚一イ			
	実施例7	実施例8	上較例1	比較例2	比較例3	比較例4
層組成(重量%)					Modify part and Calendar	
(a)層						
MX-NY	95	94	97	97	97	
PAE		က	3	က	8	
71412-	5					
NY6		33				
曷(句)						
NY6	100	100	100		100	
PAE						
園(つ)						
NY6	85	85		80	09	
MX-NY	15	15		20	40	
層構成	p/c/a/c/p	b/c/a/c/b	b/a/b	c/a/c	b/c/a/c/b	q
層厚み(μm)	3/2.5/4/2.5/3	3/2.5/4/2.5/3	5.5/4/5.5	5.5/4/5.5	3/2.5/4/2.5/3	15
フィルム評価						
酸素透過度						
$[\times 10^{-15} \pm lb/(m^2 \cdot s \cdot Pa)]$	40	40	40	37	37	150
耐屈曲ピンホール性						
(ピンホール数/497cm²)	2	2	-	7	12	-
層間剥離強度(g/15mm)	200	200	100	220	230	

[0037]

なお、表1において用いた記号は以下の通りである。

MX-NY:芳香族ポリアミド:ポリメタキシリレンアジパミド

(三菱瓦斯化学(株)製、「MX-ナイロン6007」)

NY6:脂肪族ポリアミド:ポリー ϵ ーカプロアミド

(三菱エンジニアリングプラスチックス(株)製、「ノバミッド1022」)

PAE:耐屈曲ピンホール性改良材:ポリアミドエラストマー

(アトフィナ社製、「PEBAX4033SA01」)

アイオノマー:耐屈曲ピンホール性改良材

(三井・デュポン ポリケミカル(株)製、「ハイミランH1652」)

EVA:耐屈曲ピンホール性改良材

(日本ポリエチレン(株)製、「ノバテックEVA LV350」)

【産業上の利用可能性】

[0038]

本発明によるポリアミド系積層フィルムは、優れた酸素ガスバリア性に加え、優れた耐屈曲性、透明性、耐熱性及び強靱性等を兼ね備えているので、酸素ガスによる内容物の変質を嫌う食品、医薬品、および化学薬品等の包装資材として好適に用いることができる。

【書類名】要約書

【要約】

【課題】 脂肪族ポリアミド層と芳香族ポリアミド層の層間剥離がなく、酸素ガスバリア性、耐屈曲ピンホール性、透明性、耐熱性及び強靱性などの諸物性に優れたポリアミド系積層フィルムを提供する。

【解決手段】 (a) 芳香族ポリアミド層、(b) 脂肪族ポリアミド層、及び(c) 芳香族ポリアミドと脂肪族ポリアミドとが重量比で5:95~20:80である混合層を含み、(c) 層が(a) 層及び/又は(b) 層に隣接する5層以上の積層構造を有すると共に、温度23℃、相対湿度50%の条件下でのゲルボーフレックステスターによる3000 サイクル繰返し屈曲後のピンホール数が5個/497cm²以下であるポリアミド系積層フィルムとする。

【選択図】 なし

特願2004-024242

出願人履歴情報

識別番号

[000006172]

1. 変更年月日 [変更理由]

1990年 8月 6日 新規登録

 发更埋田」

 住 所

 氏 名

東京都千代田区丸の内2丁目5番2号

三菱樹脂株式会社