POINT NORMAL TRIANGLES

Rick van Veen Laura Baakman December 14, 2015

Advanced Computer Graphics

Point Normal triangles

POINT NORMAL TRIANGLES

December 14, 2015 Idvanced Computer Graphics

[Rick] Welcome everybody. Tell people that PN means Point Normal triangles.

Point Normal triangles

[Name] Why PN triangles? Look at the nice result it gives :-) and we will see that it easy to extend it to the 'existing' pipeline.

Point Normal triangles O-21-2-10-2 Single PN Triangle

SINGLE PN TRIANGLE

SINGLE PN TRIANGLE

[Name] How does one construct a single PN triangle?

Overview on the next slide

OVERVIEW

Point Normal triangles

Single PN Triangle

-Overview

2015-12-09

[Name] Why PN triangles? Look at the nice result it gives :-) and we will see that it easy to extend it to the 'existing' pipeline. Story about Bezier patches...

GEOMETRY

enhancement: emphasize vertices better

└─Geometry

[Name] This a standard triangle primitive, defined by its vertices and normals.

Focus on getting the different control primitives.

GEOMETRY - VERTEX COEFFICIENTS

$$b_{ijk} = (iP_1 + jP_2 + kP_3)/3$$

$$b_{300} = P_1$$

$$b_{030} = P_2$$

$$b_{003} = P_3$$

Point Normal triangles

Single PN Triangle

Geometry - Vertex Coefficients

GEOMETRY - VERTEX COEFFICIENTS

[Name] These are all the initial control point. Evenly divided on the triangle. -> formula

GEOMETRY - VERTEX COEFFICIENTS

 $b_{300} = P_1,$

 $b_{300} = P_1,$ $b_{030} = P_2,$ $b_{000} = P_2$ Point Normal triangles
Single PN Triangle

└─Geometry - Vertex Coefficients

GEOMETRY - VERTEX COEFFICIENTS

[Name] Nice formula

GEOMETRY - VERTEX COEFFICIENTS

[Name] Stress that the vertex coefficients/control points are the one on the original vertices and that they do not move.

GEOMETRY - TANGENT COEFFICIENTS

$$w_{ij} = (P_j - P_i) \cdot N_i \in \mathbb{R}$$

$$b_{210} = \frac{2P_1 + P_2 - w_{12}N1}{3}$$

$$\vdots$$

$$b_{201} = \frac{2P_1 + P_3 - w_{13}N1}{3}$$

Point Normal triangles

Single PN Triangle

normal projection

GEOMETRY - TANGENT COEFFICIENTS

Geometry - Tangent Coefficients

[Name] How to get the tangent coefficient (the ones on the edge but now curvy)

GEOMETRY - TANGENT COEFFICIENTS

Point Normal triangles

Single PN Triangle

2015-12-09

normal projection

GEOMETRY - TANGENT COEFFICIENTS

☐ Geometry - Tangent Coefficients

[Name] Projection of the initial control points on the normal plane of a vertex.

GEOMETRY - CENTER COEFFICIENT

$$E = (b_{210} + b_{120} + b_{021} + b_{012} + b_{102} + b_{201})/6,$$

$$V = (P_1 + P_2 + P_3)/3,$$

$$b_{111} = E + (E - V)/2$$

Point Normal triangles

L—Single PN Triangle

Geometry - Center Coefficient

GEOMETRY - CENTER COEFFICIENT

[Name] Note that this is the result of the previous step -> now only center coefficient is left.

GEOMETRY - CENTER COEFFICIENT

GEOMETRY - CENTER COEFFICIENT

Geometry - Center Coefficient

[Name] Average of the tangent coefficients plus half the difference between the tangent and vertex coefficients. -> why?

GEOMETRY - RESULT

enhancement: Set result slide to plain

Point Normal triangles

Single PN Triangle

Geometry - Result

[Name] Results

Point Normal triangles
Single PN Triangle
CV-21-210
Poverview

[Name] Overview -> how to get from this to shading. Sample/subdivide with formula on following slide.

CUBIC PATCH

Spacing van de for all

Plaatje?

Point Normal triangles
60-27-5102 — Cubic patch

[Name] Very nice formula with a nice picture.

OVERVIEW

Point Normal triangles
Single PN Triangle
Overview

[Name] From the primitive normals the the PN triangle

enhancement: emphasize normals more

NORMALS - THEORY

auadratic

Point Normal triangles

Single PN Triangle

Normals - theory

NORMALS - THEORY

Point Normal triangles

Single PN Triangle

Normals - theory

NORMALS - EXAMPLE

Point Normal triangles

—Single PN Triangle

└─Normals - example

NORMALS - THEORY

$$v_{ij} = 2\frac{(P_j - P_i) \cdot (N_i + N_j)}{(P_i - P_i) \cdot (P_i - P_i)} \in \mathbb{R}$$

$$h_{110} = N_1 + N_2 - V_{12}(P_2 - P_1)$$

$$h_{110} = N_1 + N_2 - V_{12}(P_2 - P_1)$$

Point Normal triangles 2015-12-09 └─Single PN Triangle

└─Normals - theory

16

NORMALS - THEORY

Point Normal triangles
Single PN Triangle
Normals - theory

NORMALS - RESULT

enhancement: Set result slide to plain

Point Normal triangles
Single PN Triangle
Normals - result

OVERVIEW

Point Normal triangles
Single PN Triangle
CV-21-210
Poverview

[Name] Why PN triangles? Look at the nice result it gives :-) and we will see that it easy to extend it to the 'existing' pipeline.

QUADRATIC PATCH

Plaatje

,

for $w = 1 - u - v, u, v, w \ge 0$

 $= n_{200}w^2 + n_{020}u^2 + n_{002}v^2$

 $+ n_{110}wu + n_{011}uv + n_{101}wv$

Point Normal triangles

Single PN Triangle

Quadratic Patch

QUADRANC PATCH $\begin{aligned} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

LEVEL OF DETAIL

Point Normal triangles
Single PN Triangle
Level Of Detail

└─Overview

A TRIANGLE MESH

Point Normal triangles

2015-12-09 —A Triangle Mesh

└─ Properties

"PN triangles should not deviate too much from the original triangle to preserve the shape and avoid interference with other curved triangles."

"PN triangles should not deviate too much from the original triangle to preserve the shape and avoid interference with other curved triangles." ¹

¹Vlachos et al.

CONTINUITY

2015-12-09

Point Normal triangles

└─A Triangle Mesh

└─Continuity

PN triangles have:2 · Co continuity everywhere else

- C¹ continuity in the vertex points
- C⁰ continuity everywhere else

²Jiao and Alexander

24

SHARP EDGES

Point Normal triangles

A Triangle Mesh

2015-710 - CL-710

Sharp Edges

SEPARATE NORMALS

GRAPHICS PIPELINE

HARDWARE - PIPELINES

Point Normal triangles

Graphics Pipeline

Hardware - Pipelines

HARDWARE - PIPELINES

HARDWARE - PIPELINES

CONCLUSION

Point Normal triangles

Conclusion

Conclusion

CONCLUSION

CONCLUSION

Point Normal triangles
Conclusion
conclusion

CONCLUSION

Some conclusion?

QUESTIONS?

Point Normal triangles

Conclusion

pp. 1180-1189.

Xiangmin Jiao and Phillip J Alexander. "Parallel feature-preserving mesh smoothing". In: Computational

Xiangmin Jiao and Phillip J Alexander. "Parallel feature-preserving mesh smoothing". In: Computational

Science and Its Applications–ICCSA 2005. Springer, 2005.

- J McDonald and M Kilgard. Crack-free point-normal triangles using adjacent edge normals. 2010.
- Alex Vlachos et al. "Curved PN triangles". In: Proceedings of the 2001 symposium on Interactive 3D graphics. ACM. 2001, pp. 159-166.

-References

-Conclusion