I Spse $\mu\left(\left\{x\mid f(x)=\infty\right\}\right)>0$.

Then, $s_n = n \cdot \chi_A$ is clearly $0 \le s_n \le f$ for all x for each n.

Thus $\int s_n \cdot d\mu = n \cdot \mu(A) \leq \sup \{ \int s \cdot d\mu : s \text{ simple, } 0 \leq s \leq f \} = \int f \cdot d\mu \text{ for } \forall n \in \mathbb{N}.$ Hence, $\int f \cdot d\mu = \infty$, which contradicts to the assumption μ

Remark. Converse doesn't hold $f(x) = \frac{1}{x}$

- 2 Skip (Check the author's solution)
- 3 let any simple s s.t. 0≤s≤f be given. $\int_{A_1 \cup A_2} S = \sum_{k=1}^{n} \alpha_k \mu(E_k \cap (A_1 \cup A_2))$

$$= \sum_{i=1}^{n} a_{i} \mu(E_{i} \cap A_{1}) + a_{i} \mu(E_{i} \cap A_{2}) = \int_{A_{1}} s + \int_{A_{2}} s \leq \int_{A_{1}} f + \int_{A_{2}} f$$

 $\therefore \int_{A_1 \cup A_2} f \leq \int_{A_1} f + \int_{A_2} f$

Similarly, $\int_{A_1} s + \int_{A_2} s \le \int_{A_1 \cup A_2} s \le \int_{A_2 \cup A_3} f$. Therefore, if f is non-negative, $\int_{A_1 \cup A_2} f = \int_{A_1} f + \int_{A_2} f = \int_{A_1 \cup A_3} f = \int_{A_1$

For integrable case, it's obvious from $f = f^+ - f^-$ and definition.

41) f is non-negative. Let any simple s with $0 \le s \le f$ be given. Let $s = \sum_{k=1}^{m} a_k \chi_{E_k^*}$. Let $y \in E_{k_1}, \dots, E_{k_m} \Rightarrow s(y) = \sum_{j=1}^{m} a_{k_j} \le f(y)$

 $\int s \cdot ds_y = \sum_{j=1}^{n} a_j \delta_y(E_j) = \sum_{i=1}^{m} a_{kj} = s(y) \le f(y)$

Thus, $\int f \cdot d\delta_y \leq f(y)$.

Let $s = f(y) \cdot \chi_{\xi y 3}$. Then, s is a simple st. $0 \le s \le f$ & $\int s \cdot \delta_y = f(y) \le \int f \cdot \delta_y$.

2) f is integrable. Obvious from $f = f^+ - f^-$ and definition

$$\int_{|\mathbf{N}} s \cdot d\mu = \sum_{k=1}^{n} A_{k} \mu (E_{k} \cap |\mathbf{N}) = \sum_{k=1}^{\infty} \sum_{k=1}^{n} A_{k} \mu (E_{k} \cap \{k\}) \chi_{E_{k}}(k)$$

$$= \sum_{k=1}^{\infty} s(k) \leq \sum_{k=1}^{\infty} f(k).$$

Thus
$$\int_{\mathbb{N}} f \leq \sum_{k=1}^{\infty} f(k)$$

Let
$$q = \sum_{n=1}^{\infty} f(n) \cdot \chi_{\{n\}}$$
 \rightarrow simple function. That $0 \le q \le f$ on IN.

$$\int_{\mathbb{N}} \mathfrak{F} \leq \int_{\mathbb{N}} \mathfrak{f} \quad \text{and} \quad \int_{\mathbb{N}} \mathfrak{F} = \sum_{n=1}^{\infty} \mathfrak{F}(n) = \sum_{n=1}^{\infty} \mathfrak{f}(n) \qquad \text{...} \quad \mathfrak{f}_{\mathbb{N}} \mathfrak{f} = \sum_{k=1}^{\infty} \mathfrak{f}(k) = \sum_{n=1}^{\infty} \mathfrak{f}(k)$$

2)
$$\sum f(k) = \infty$$

Let $S = \sum f(k) \cdot \chi_{\{k\}} \sim \int S \cdot d\mu = \infty$

$$\sim \int f \cdot d\mu \geq \sup \{ \int s \cdot d\mu \mid 0 \leq s \leq f, s \text{ simple} \} = \infty$$

Let
$$X = \bigcup_{i=1}^{\infty} A_i$$
 where $A_1 \subset A_2 \subset \cdots$ and $\mu(A_n) < \infty$ for each n

Define
$$E_{2n} = \left\{ x : (z-1)/2^n \le f(x) < z/2^n \right\}$$

$$F_n = \left\{ x : f(x) \ge n \right\}$$

Let
$$X = \bigcup_{i=1}^{\infty} A_i$$
 where $A_1 \subset A_2 \subset \cdots$ and $\mu(A_n) < \infty$ for each n .

Define $E_{2n} = \{x : (i-1)/2^n \le f(x) < i/2^n \}$
 $F_n = \{x : f(x) \ge n \}$.

Let $f_n = \{\sum_{i=1}^{n2^n} \frac{i-1}{2^n} \cdot \chi_{E_{2n}}\} + n \cdot \chi_{E_{2n}} + n \cdot \chi_{E_{2n}} = \sum_{i=1}^{n2^n} \frac{i-1}{2^n} \cdot \chi_{E_{2n} \cap A_n} = \sum_{i=1}^{n2^n} \frac{i-1}{2$

Then
$$\forall x \in X$$
, $S_n(x) \leq S_{n+1}(x)$ from the construction of $t_n & \chi_{A_n} \leq \chi_{A_{n+1}}$

And from
$$t_n \rightarrow f \ \& \ \chi_{A_n} \rightarrow \chi_X$$
, $s_n \rightarrow f$.

Also
$$\{x \mid S_n(x) \neq 0\} = \bigcup_{i=2}^{n^{2^n}} (E_{in} \cap A_n) \cup (F_n \cap A_n) \subseteq A_n$$
 thus $\mu(x) < \infty$

For all
$$n \in \mathbb{N}$$
, $\int f \wedge n \leq \int f$ Thus $\lim_{n \to \infty} \int f \wedge n \leq \int f$.

For
$$\geq$$
, let s be simple s.t. $0 \leq s \leq f$

For
$$\geq$$
, let s be simple s.t. $0 \leq s \leq f$.
Let $s = \sum_{i=1}^{4} a_i \chi_{E_i} \longrightarrow {}^{3}M > 0$ s.t. $S(x) < M \quad \forall x \in X$.

And
$$\exists n_0 \ge M$$
. $\int S \wedge n_0 \le \int f \wedge n$, $\circ \circ \int f \le \int f \wedge n$ for $\forall n \ge n_0$. $\Rightarrow \int f \le \lim_{n \to \infty} \int f \wedge n_n$

8 Denote
$$q = |f|$$
 and let $\theta \in 0$ be given.

Then by exercise 6.7.
$$\frac{3}{n} \in \mathbb{N}$$
 s.t. $\int_{q}^{q} \leq \int_{q}^{q} \wedge n + \frac{\varepsilon}{2}$

Set
$$\delta = \frac{\xi}{2\eta} \& \mu(A) < \delta$$
.

$$\int_{A} q = \int_{A}^{\infty} q - \int_{A^{c}} q \leq \int_{A}^{\infty} q \wedge n - \int_{A^{c}} q \wedge n + \frac{\varepsilon}{2}$$

$$= \int_{A}^{\infty} q \wedge n + \frac{\varepsilon}{2} \leq n_{\mu}(A) + \frac{\varepsilon}{2} < \varepsilon_{\bullet}$$

Let $a_0=0$ and set an to be $\mu(\{f(x) \ge a_n\}) \le \frac{1}{4^n}$ o this is possible as f is finite

- · {an} increasing

Set
$$A_0 = \{x \mid f(x) = 0\}$$

$$A_n = \{x \mid a_{n-1} \le f(x) \le a_n\}$$

Set
$$A_0 = \{x \mid x_{n-1} \le f(x) \le a_n\}$$

$$A_n = \{x \mid a_{n-1} \le f(x) \le a_n\}$$
Define $g(a_n) = 2^n$ & connect points linearly:

For each $M \in [N]$

For each
$$M \in IN$$
,
$$\int (\mathfrak{g} \circ f) \wedge 2^{M} = \sum_{n=0}^{M} \int_{A_{n}} (\mathfrak{g} \circ f) \leq \sum_{n=1}^{\infty} \int_{A_{n}} \mathfrak{g} \circ f \leq \sum_{n=1}^{\infty} 2^{n} \cdot \mu(A_{n}) < \sum_{n=1}^{\infty} \frac{2^{n}}{4^{n-1}} < \infty_{m}$$