			19
Problem 3	Ab asiak		10/
	415	V 15	<u> </u>
Hopan = -17	Equas		
Hshape = - 1 7	snape	a ob to-	7.9
	N.	, T	
Eshape = 1 MHK	sin ² 0		
2	ars ar Nyl Va-	9/() = -	7 1 7
H-shape = -1+	sinocoso é	110	
Hy (+zdéreum	would have	0m = 0.	31
MCISTON	A C. 1		
EM = - MHOS	0	garry + econe	MP SHI
HM = - H sino			122
Hall - Hallana	t H.	4-)	173
Heff - Hshoupe		2/4-/	
Putting Itus in +	ne LIG equality	M	
dm = - (x/m x H	or tx/M	x dm 1	
de	0.4	1	12 1
do en + sino a	(be = 181	ex (Hasin	0 coso e

do = - & 910 dp if we compare the terms on dt at both sians arouse

+ × do é

- «sinado é

all

sind ap = x do + 181 (Hesinouso + 14 sino)

$$\int \frac{-d\rho}{(1-p^2)(p+m)} = \int \frac{A}{1+p} + \int \frac{B}{1-p} + \int \frac{C}{p+m}$$

$$= A \cdot C + m - p^2 - pm) + B \cdot (p + m + p^2 + pm) + C \cdot (1-p)$$
 $A - m + B + Bm = 0$
 $Am + Bm + C = -1$

$$A = m - m + 1$$
 $2(m-1)$

$$B = \frac{1}{2(m+1)}$$
 $C = \frac{1}{1-m^2}$

$$\int_{1-p^{2}}^{\infty} dp = \frac{1}{2(m-1)} \log (l+p) + \frac{1}{2(m+1)} \log (l-p)$$

$$\frac{1}{2(m-1)} \log(1+\cos 0) + \log(1-\cos 0) + \log(\cos 0)$$

$$\frac{1}{2(m+1)} \log(1-\cos 0) + \log(\cos 0)$$

hence at 180°, Hound Hy are both 8. Torque=0 we need to drouge the limit, let's arm of