COSC 4368 Fundamentals of Artificial Intelligence

Convolutional Neural Networks
October 23th, 2023
(slides modified from U Waterloo CS 898)

Convolutional Neural Network

- We know it is good to learn a small model.
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?

Consider learning an image:

 Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Same pattern appears in different places: They can be compressed!

What about training a lot of such "small" detectors and each detector must "move around".

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

1	0	0	0	0	1
0	_	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

1	-1	-1	
-1	_	-1	
-1	-1	1	

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

1	1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Dot product 3

3 \ -1

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -3

6 x 6 image

-1 -1 -1 -1 -1 1

Filter 1

stride=1

6 x 6 image

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Filter 2

Repeat this for each filter

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels

		4		
_	-1	1	-1	
_	-1	1	-1	Filt
	-1	1	-1	

Filter 2

1					1	
	1	0	0	0	0	1
	0	1	0	0	1	0
	0	0	1	1	0	0
	1	0	0	0	1	0
	0	1	0	0	1	0
	0	0	1	0	1	0

Convolution v.s. Fully Connected

image

convolution

Fullyconnected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0.
0	1	0	0	1	0:
0	0	1	0	1	0

The whole CNN

cat dog

Fully Connected Feedforward network

Flattened

Can repeat many times

Max Pooling

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

Filter 2

3 -1	-3 (-1)
2 1	0 -3
-3 1	0 -3

-1 -1 -1	-1 -1 -2 1
-1 -1	-2 1
-1 0	-4 3

Why Pooling

Subsampling pixels will not change the object bird

We can subsample the pixels to make image smaller fewer parameters to characterize the image

A CNN compresses a fully connected network in two ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

6 x 6 image

New image but smaller

2 x 2 image

Each filter is a channel

The whole CNN

-1 1

0 3

A new image

Smaller than the original image

The number of channels is the number of filters

Can repeat many times

Batch Normalization

A diagram illustrating the Batch Normalization process

Regularize the model, accelerate training, improve generalization, less sensitive to model initialization

Dropout

$$\begin{array}{lcl} z_i^{(l+1)} & = & \mathbf{w}_i^{(l+1)} \mathbf{y}^l + b_i^{(l+1)}, \\ y_i^{(l+1)} & = & f(z_i^{(l+1)}), \end{array}$$

(b) After applying dropout.

$$\begin{array}{lll} z_i^{(l+1)} & = & \mathbf{w}_i^{(l+1)} \mathbf{y}^l + b_i^{(l+1)}, & r_j^{(l)} & \sim & \mathrm{Bernoulli}(p), \\ y_i^{(l+1)} & = & f(z_i^{(l+1)}), & \widetilde{\mathbf{y}}^{(l)} & = & \mathbf{r}^{(l)} * \mathbf{y}^{(l)}, \\ z_i^{(l+1)} & = & \mathbf{w}_i^{(l+1)} \widetilde{\mathbf{y}}^l + b_i^{(l+1)}, \\ y_i^{(l+1)} & = & f(z_i^{(l+1)}). \end{array}$$

improve generalization, but need a larger model and more training iterations

The whole CNN

cat dog

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

AlphaGo

19 x 19 matrix

Neural Network

Next move (19 x 19 positions)

Fully-connected feedforward network can be used

But CNN performs much better

AlphaGo's policy network

The following is quotation from their Nature article:

Note: AlphaGo does not use Max Pooling.

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.