```
serial_no<-seq(1:8)
x < -seq(145, 185, 5)
lower_limit<-seq(145,180,5)</pre>
f < -c(4,6,28,58,64,30,5,5)
n < -sum(f)
cf<-cumsum(f)
df<-data.frame(sno,class_interval,lower_limit,f,cf)</pre>
df
s1<-min(which(cf>=n/2))
f1<-f[s1]
h<-5
c<-cf[s1-1]
L<-x[s1]
median < -L + ((n/2 - c)/f1) *h
median
/ un-uaca. I ame (Sho, Crass_Interval, Tower_Ininte, I, Cr)
> df
  sno class_interval lower_limit f
                                        cf
            145 - 150
                                         4
1
    1
                                145
                                     4
2
     2
            150 - 155
                                        10
                                150
                                     6
            155 - 160
3
     3
                                155 28
                                         38
4
    4
            160 - 165
                                160 58
                                        96
5
    5
            165 - 170
                                165 64 160
            170 - 175
6
     6
                                170 30 190
7
    7
            175 - 180
                                    5 195
                                175
            180 - 185
                                    5 200
8
    8
                                180
> s1<-min(which(cf>=n/2))
> f1<-f[s1]
> h<-5
> c<-cf[s1-1]
> L<-x[s1]
```

> median < -L + ((n/2 - c)/f1)*h

> median

[1] 165.3125

```
# install below packages if its not installed
#install.packages("caTools")
#install.packages("caret")
library(e1071)
library(caTools)
library(caret)
data(iris)
str(iris)
split <- sample.split(iris,SplitRatio=0.7)</pre>
train_cl <- subset(iris,split=="TRUE")
test_cl <- subset(iris,split=="FALSE")
train_scale <- scale(train_cl[,1:4])
test_scale <- scale(test_cl[,1:4])
set.seed(120)
classifier_cl <- naiveBayes(Species ~ ., data = train_cl)</pre>
classifier cl
y_pred <- predict(classifier_cl,newdata = test_cl)</pre>
cm <- table(test_cl$Species, y_pred)
cm
confusionMatrix(cm)
OUTPUT:
> str(iris)
 'data.frame':
               150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
```

> classifier_cl Naive Bayes Classifier for Discrete Predictors A-priori probabilities:

naiveBayes.default(x = X, y = Y, laplace = laplace)

setosa versicolor virginica 0.3333333 0.3333333 0.3333333

Conditional probabilities:

Sepal.Length [,1] [,2] 4.973333 0.3084257 setosa

versicolor 5.966667 0.4929386 virginica 6.520000 0.6764002

Sepal.Width [,1]3.426667 0.3561609 setosa versicolor 2.776667 0.2712466 virginica 2.976667 0.3607304

Petal.Length [,1] [,1] [,2] setosa 1.453333 0.1775957 versicolor 4.243333 0.4328600 virginica 5.496667 0.5505379

Petal.Width [,1] setosa 0.2333333 0.09222661 versicolor 1.3233333 0.19419743 virginica 1.9900000 0.27586853

> cm

y_pred setosa versicolor virginica 20 0 0 versicolor 19 virginica 19 > confusionMatrix(cm)

Confusion Matrix and Statistics

y_pred setosa versicolor virginica 20 0 setosa 0 versicolor 19 0 virginica 19

Overall Statistics

Accuracy: 0.9667 95% CÍ : (0.8847, 0.9959)

No Information Rate : 0.3333 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.95

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: setosa C	lass: versicolor	Class: virginica
Sensitivity	1.0000	0.9500	0.9500
Specificity	1.0000	0.9750	0.9750
Pos Pred Value	1.0000	0.9500	0.9500
Neg Pred Value	1.0000	0.9750	0.9750
Prevalence	0.3333	0.3333	0.3333
Detection Rate	0.3333	0.3167	0.3167
Detection Prevalence	0.3333	0.3333	0.3333
Balanced Accuracy	1.0000	0.9625	0.9625

```
Today's system date.R ×
1 # Get today's system date
 2 today <- Sys.Date()</pre>
  3
 4 # Print today's date
 5 print(today)
 2:20 (Top Level) $
Console
        Terminal ×
                  Background Jobs X
R 4.2.3 · D:/Files/BVRIT/III-II/DAR LAB/diabetes/rstudioprojec
> # Get today's system date
> today <- Sys.Date()</pre>
> # Print today's date
> print(today)
[1] "2023-05-23"
```

Load the mtcars dataset

data(mtcars)

Create a boxplot of "mpg" by "cyl"

boxplot(mpg ~ cyl, data = mtcars, xlab = "Miles per Gallon", ylab = "Number of Cylinders")

