

Mathematics Specialist: Units 3 & 4

Test 1: Complex Numbers

Working Time: 50 minutes Total marks: 60 marks

60

Formula sheet provided

No notes permitted

No ClassPad (nor any other calculator) permitted

Name:

MARKING KEY

Teacher:

Alfonsi

Note: Please read all questions carefully, and note that when a part of a question is worth more than two marks, adequate and clear working out is required for full marks.

1. Given that $z_1 = \sqrt{2}\operatorname{cis}\left(\frac{\pi}{3}\right)$, $z_2 = \sqrt{2}\operatorname{cis}\left(-\frac{\pi}{4}\right)$, $z_3 = -2i$ and $z_4 = -1 - \sqrt{3}i$, determine

[1 + 2 + 2 + 3 + 3 = 11 marks]

(a) z_4 in polar form.

$$Z_{4} = 2 \operatorname{dis} \left(\frac{-2\pi}{3} \right)$$

(b) $z_2 + z_3$ in Cartesian form.

$$Z_{2}+Z_{3}=(1-i)+(-2i)=1-3i$$
 $\sqrt{Z_{2}+Z_{3}}$

(c) the product $z_1 z_2$ in polar form.

$$Z_1Z_2 = \sqrt{2}\sqrt{2}$$
 ais $\left(\frac{\pi}{3} + \left(-\frac{\pi}{4}\right)\right) = 2$ ais $\left(\frac{\pi}{12}\right)$ / argument

(d) the quotient $\frac{z_1}{z_2}$ in polar form.

$$\frac{Z_1}{Z_3} = \frac{\sqrt{\lambda} \operatorname{cis}\left(\frac{\pi}{3}\right)}{2 \operatorname{cis}\left(-\frac{\pi}{\lambda}\right)} = \frac{\sqrt{\lambda}}{2} \operatorname{cis}\left(\frac{5\pi}{3} - \left(-\frac{\pi}{\lambda}\right)\right) = \frac{\sqrt{\lambda}}{2} \operatorname{cis}\left(\frac{5\pi}{6}\right)$$

$$\sqrt{2} \operatorname{s. in polar form}$$

$$\sqrt{\operatorname{argument}}$$

(e) $(z_4)^6$ in Cartesian form.

$$(Z_{\perp})^6 = (2 \cos(-\frac{2\pi}{3}))^6 = 2 \cos(6 \cdot (-\frac{2\pi}{3})) = 64 \cos(-4\pi)$$

$$= 64$$

/ modulus via
dembirre's
/ argument via
demoirre's
/ answer in
Cartesian form

2. If $z = r \operatorname{cis} \theta$, express the following in cis form in terms of r and/or θ :

[1 + 1 + 1 + 1 = 4 marks]

(a) z̄
= r cis(-0) /

(b) $z\bar{z}$ $= r^2 cis(0) /$ (allow = r^2)

(c) iz^2 $= \frac{2}{2} \left(2\theta + \frac{\pi}{2}\right)$

(d) $\frac{1-i}{1+i}z$ $= \cos \left(\Theta - \frac{\pi}{4}\right)$

3. Arithmetic operations on complex numbers can be described geometrically in terms of *translations*, *rotations*, *reflections* and *enlargements* in the complex plane.

Explain the sequence of transformations which correspond to taking a complex number z and transforming it to $2i(\bar{z}-i)$.

[4 marks]

Z-7Z: a reflection in the real axis, followed by

Z→Z-i: a translation by one unit down, followed by

 \overline{z} -i $\rightarrow 2i(\overline{z}$ -i): an antidockwise rotation by $\frac{\pi}{2}$ about the origin and on enlargement by a factor of 2 about the origin.

note: - 1 per error or omission regarding order.

4. Consider the equation $z^4 = 2\sqrt{3} + 2i$.

$$[5 + 1 = 6 \text{ marks}]$$

(a) Determine all of the solutions to this equation, giving your answers in polar form and in terms of their prinicpal argument.

Z' =
$$\frac{1}{4}$$
 cis $\left(\frac{\pi}{6}\right)$ /RHS to polar form

 $Z = \frac{1}{4}$ cis $\left(\frac{\pi}{6}\right)$ /RHS to polar form

 $X = \frac{1}{4}$ cis $\left(\frac{\pi}{4}\right)$ $X = -2, -1, 0, 1$ / sets up (or clearly states rotation)

 $AO = \pi/2$.

Hence $Z_0 = \sqrt{\lambda}$ cis $\left(\frac{\pi}{24}\right)$ / first sol²
 $Z_1 = \sqrt{\lambda}$ cis $\left(\frac{15\pi}{24}\right)$ / next three sol²s

 $Z_2 = \sqrt{\lambda}$ cis $\left(\frac{15\pi}{24}\right)$ / vses principal organist

/ uses principal organist

(b) Explain in a single sentence why it is unsurprising that none of the solutions of the polynomial $z^4 - (2\sqrt{3} + 2i) = 0$ are complex conjugate pairs.

This is a polynamial with a complex coefficient, so the complex Conjugate Root Theorem does or equivalent statement

5. Express, using set notation, the locus of z in each of the following diagrams.

[3 + 3 = 6 marks]

(a)

$$\{z: arg(z-(3-2i)) = \frac{3\pi}{4} \}$$

/correct type
/ offset
/ angle

(b)

Re / centre / radius

Use the Argand diagrams provided to sketch the regions in the complex plane defined by the following

[3 + 3 + 3 = 9 marks]

(a) $\{z: |z-1+i| = |z+1-3i|\}$

I recognises type (e.g., by marking line segment)

/ line (1 bisector)

/ sufficient points marked to be unambiguous (i.e., endplats, b, tot) or, axis interests

(b) $\{z: \frac{\pi}{6} \le \arg(z) \le \frac{\pi}{4}\} \cap \{z: 1 \le \operatorname{Re}(z) \le 4\}$

√ angular range

I horizontal range

/ boundary, shading, no additional inclusions

(c) $\{z : \text{Im}(z) = |z - i|\}$

Let Z= xting

then
$$y = |x+i(y-i)|$$

 $y^2 = x^2 + (y-i)^2$
 $y^2 = x^2 + y^2 - 2y + 1$
 $y = \frac{x^2 + 1}{2}$ / establishes
this relation

unambiguas.

- 7. Consider $P(z)=z^3+az^2+bz+c$ with $a,b,c\in\mathbb{R}$. Two of the roots of P(z)=0 are -2 and (-3+2i). [2+3=5 marks]
 - (a) Write P(z) in fully-factored form. (I.e., express P(z) as the product of its linear factors.)

$$P(z) = (z - (-3+2i))(z - (-3-2i))(z+2)$$
\[\sqrt{recognisis conjugate root} \]
\[\sqrt{writes in Aully-factored form} \]

(b) Hence, determine the values of the coefficients a, b and c.

8. Given that

$$\frac{\sin 4\theta}{\sin \theta} = A\cos^3 \theta + B\cos \theta \qquad (\sin \theta \neq 0)$$

[5 + 1 = 6 marks]

(a) use de Moivre's theorem with n = 4 to determine the values of A and B.

Cosho =
$$(cish)^{4}$$

Cosho + $(cish)^{4}$
 $cosho + (cish)^{4}$
 $cosho + (cish)^{4}$

(b) Hence, determine the limiting value of $\frac{\sin 4\theta}{\sin \theta}$ as θ approaches zero (i.e., $\lim_{\theta \to 0} \frac{\sin 4\theta}{\sin \theta}$).

9. Consider $u = \operatorname{cis}\left(\frac{\pi}{4}\right)$, one of the 8th roots of unity, and $v = \operatorname{cis}\left(\frac{\pi}{3}\right)$, one of the 6th roots of unity.

[2 + 2 + 2 + 3 = 9 marks]

Mark and label the positions of u, u^2, u^4 and u^6 as well as v, v^2, v^4 and v^6 on the Argand diagram at the right.

$$V^n = as\left(\frac{n\pi}{3}\right)$$

So...

Vall un correct ond labelled

/ all vⁿ correct and labelled

(b) For what values of $m \in \mathbb{Z}$ is u^m purely real and negative?

(c) For what values of $n \in \mathbb{Z}$ is v^n purely real and positive?

n = 6k , KEZ / simplifies

(d) What is the smallest value of $p \in \mathbb{Z}^+$ such that the product $u^{2-p}v^{p-7}$ is purely real?

$$(2-p)\frac{\pi}{4} + (p-7)\frac{\pi}{3} = K\pi$$
 KEZ LHS /RHS (KT for purely real)

here the smallest $p \in \mathbb{Z}^+$ is 10 (when K=-1). Idetermines smallest $p \in \mathbb{Z}^+$

[END OF TEST]