东南大学学生会

Students' Union of Southeast University

04-05-3 非电类期中试卷

一、填空题

1、幂级数
$$\sum_{n=1}^{\infty} \frac{2^n (x-1)^n}{\sqrt{2n+1}}$$
 收敛域为______。

2、幂级数
$$\sum_{n=1}^{\infty} a_n x^n$$
 的收敛半径为 3,则 $\sum_{n=1}^{\infty} n a_n (x-1)^n$ 的收敛区间为______。

3、曲线
$$\begin{cases} x+y+2z=1\\ y=x^2-z^2 \end{cases}$$
 在 XOY 平面上的投影曲线方程为______。

4、由方程
$$xyz + \sqrt{x^2 + y^2 + z^2} = \sqrt{2}$$
 所确定的函数 $z = z(x, y)$ 在点 (1, 0, -1) 处的全微分 $dz =$ ______。

5、圆
$$\begin{cases} x^2 + y^2 + z^2 = 100 \\ x + 2y + 2z - 18 = 0 \end{cases}$$
的,半径为_____。

二、单项选择题

1、已知直线
$$L:$$
 $\begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$,平面 $\pi: 4x-2y+z-2=0$ 则 ()

$$(A)$$
 L 平行于 π (B) L 在 π \bot (C) L 垂直于 π (D) L 与 π 斜交

2、广义积分
$$\int_0^{+\infty} \ln(1+\frac{1}{x^p}) dx$$
 ($p > 0$)

(A) 收敛 (B) 发散 (C)
$$p > 1$$
 时收敛 (D) $0 时收敛$

3、若函数
$$z = f(x, y)$$
 在点 $P_0(x_0, y_0)$ 处的两个偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 都存在,则 ()

$$(A)$$
 $f(x,y)$ 在 P_0 点连续
$$(B) \quad z = f(x,y_0)$$
 在 $x = x_0$ 点连续

$$(C) dz\Big|_{P_0} = \frac{\partial z}{\partial x}\bigg|_{P_0} dx + \frac{\partial z}{\partial y}\bigg|_{P_0} dy \qquad (D) \quad A, B, C \text{ and } T \text{ in } T \text{$$

4、若函数
$$f(x,y)$$
 在点 $P_0(0,0)$ 的某个邻域内连续,且 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)-xy}{(x^2+y^2)^2} = 1$,则()

东南大学学生会 Students' Union of Southeast University

- (A) 点 P_0 不是 f(x, y) 的极值点 (B) 点 P_0 是 f(x, y) 的极大值点
- (C) 点 P_0 是 f(x,y) 的极小值点 (D) 无法判定点 P_0 是否为 f(x,y) 的极值点

三、计算题

- 1、求过直线 $\begin{cases} 2x + 3y + 9z + 5 = 0 \\ x + y + z + 1 = 0 \end{cases}$ 且垂直于平面 2x + y z + 1 = 0 的平面方程。
- 2、将函数 $f(x) = \begin{cases} 1+x & -\pi \le x < 0 \\ 2-x & 0 \le x < \pi \end{cases}$ 展开为周期为 2π 的傅立叶级数,并求和函数
- S(x)在[$-\pi$, π]上的表达式。
 - 3、设 $z = xf(xy, e^{xy})$ 其中f有二阶连续偏导数,求 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial^2 z}{\partial y \partial x}$
 - $\begin{cases} x = \frac{4}{3}t \\ y = t^2 \text{ 上的点} M \text{ , 使该点处曲线的切线平行于平面} x + 2y + z = 4 \\ z = t^3 \end{cases}$
 - 5、 将函数 $y = \frac{1}{x^2(4-x^2)}$ 展开为(x-1)的幂级数。
- 四、求椭球面 $\frac{x^2}{2} + y^2 + \frac{z^2}{4} = 1$ 与平面 2x + 2y + z + 5 = 0 之间最短距离。
- 五、证明: 曲面 $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a}$ (a > 0) 上,任何点处的切平面在各坐标轴上的截距之和为a。
- 六、设 $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$ (0 $\leq x \leq 1$) 求证当 0 < x < 1时有

$$f(x) + f(1-x) + (\ln x)(\ln(1-x)) = C$$
 (C为常数), 并求 C。(注 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$)