Application No.: 09/746,174
Response dated October 23, 2003
Replication of July 23

Reply to Office Action of July 23, 2003

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

B &

1. (original) A method for determining Cyclic Redundancy Check (CRC) parity of data, such data comprising a plurality of bytes, each one of the bytes having a parity bit, the plurality of bytes of data having a CRC, comprising:

generating the parity of the parity bits of the plurality of bytes of the data, such generated parity being the parity of the CRC of such data.

2. (currently amended) A method for performing a check of the parity bit of a Cyclic Redundancy Cycle Check (CRC) of data, such data comprising a plurality of bytes, each byte having a parity bit, such method comprising:

generating parity of the parity bits of the plurality of data bytes; comparing such generated parity with the parity bit of the CRC of the data.

3. (currently amended) A method for determining Cyclic Redundancy Check (CRC) parity of data, such data having a byte parity bit bits, the data having a CRC, comprising: comparing the parity of the byte data parity with the parity bit bits of the CRC of the data.

4. (currently amended) A method comprising:

receiving data having a plurality of N bytes: [D(0), D(1), ..., D(N-1)]) each byte $\underline{D(M)}$ having a parity bit- $\underline{P(M)}$;

computing the parity of [P(0), P(1), ...P(N-1)].

Application No.: 09/746,174 Response dated October 23, 2003 Reply to Office Action of July 23, 2003

Sul

B

5. (currently amended) A method for computing parity, p/of the Cycle Redundancy Cycle Check (CRC) of data protected with such (CRC) comprising:

receiving data having a plurality of N bytes: [D(0), D(1), ..., D(N-1)]) each byte $\underline{D(M)}$ having a parity bit- \underline{p} $\underline{P(M)}$;

computing the parity of [P(0), P(1), ...P(N-1)], such computed parity being equal to the parity p of the CRC.

6. (currently amended) A method for determining a parity, p, error of the Cycle Redundancy Cycle Check (CRC) of data protected with such (CRC), comprising:

receiving data having a plurality of N bytes: [D(0), D(1), ..., D(N-1)] each byte $\underline{D(M)}$ having a parity bit $\underline{P(M)}$;

computing the parity, PP, of [P(0), P(1), ...P(N-1)];

comparing the computed parity <u>PP</u> with the parity p of the CRC, a difference between PP and p indicating an error in p.

7. (currently amended) A method for determining a parity error of the Cyclic Redundancy Cycle Check (CRC) of DATA, such DATA comprising a series of data words terminating in a CRC portion, such method comprising:

receiving data having a plurality of N bytes: [D(0), D(1), ..., D(N-1]) each byte $\underline{D(M)}$ having a parity bit- \underline{p} $\underline{P(M)}$;

computing the parity of [P(0), P(1), ...P(N-1)];

comparing the computed parity with the parity of the CRC, a difference between the computed parity and of the parity of the CRC indicating an error in the parity of the CRC.