Simulador de Infecção em Python

Técnicas de Computação – Engenharia Biomédica

Kéfleson Lucas B. Ferreira

2025-08-20

Simulador de Infecção em Python

Disciplina: Técnicas de Computação (Engenharia Biomédica)

Autor: Kéfleson Lucas

Contexto & Motivação

- Simulações computacionais ajudam a entender a dinâmica de doenças.
- Úteis para explorar **cenários e intervenções** (ex.: isolamento, vacinação).
- Exemplo real: COVID-19 → necessidade de **prever picos** e **avaliar medidas**.

Objetivos do Projeto

- Construir um **simulador em Python** para propagação de infecção.
- Permitir **parametrização**: infecção, recuperação, imunidade, mortalidade.
- Visualizar a evolução por mapas (grade) e gráficos.

Referência de Código Utilizada

- Projeto base de simulação predador-presa (raposas & coelhos).
- Arquitetura orientada a objetos reaproveitada e comportamentos adaptados:
- Caça/reprodução → infecção/recuperação/imunidade/morte.

Comparação Visual (Ideia → Adaptação)

MODELO ECOSSISTEMA

MODELO EPIDEMIOLÓGICO

Arquitetura de Classes

Funcionamento (Ciclo da Simulação)

Interface Gráfica – Tela Inicial

Interface Gráfica – Início da Simulação

Interface Gráfica – Passo 365

Gráfico Populacional

Dificuldades Encontradas

- Afinar parâmetros realistas (infecção, recuperação, mortalidade).
- Comportamento humano simplificado (movimento aleatório).
- Simplicidade x realismo sem perder desempenho/clareza.
- Visualização e organização das métricas.

Possíveis Melhorias (Realismo)

- Incubação: período assintomático (não apresenta sintomas).
- Janela de transmissibilidade: só transmite após X dias.
- Rotinas e locais: Casa (contatos limitados) × Trabalho/Escola (contatos amplos).
- Comportamentos sociais: faltar ao trabalho quando sintomático; quarentena.
- Intervenções: vacinação, uso de máscara, fechamento de escolas.
- Mobilidade entre regiões/bairros.

Conclusões

- Integra Python + Saúde com visualização clara.
- Estrutura flexível permite evoluir o modelo.
- Útil para discutir cenários de saúde pública.

Perguntas

Obrigado!

Speaker notes