Algoritmos Aleatorizados

Algoritmos aleatorizados:

- Monte Carlo: El algoritmo siempre entrega un resultado, pero hay una probabilidad de que sea incorrecto.
- Las Vegas: Si el algoritmo entrega un resultado es correcto, pero hay una probabilidad de no entregue resultado.

Equivalencia de Polinomios

Suponga que:

$$p(x) = \sum_{i=1}^{k} \prod_{\substack{j=1\\s_i}}^{r_i} (a_{i,j}x + b_{i,j})$$
$$q(x) = \sum_{i=1}^{k} \prod_{\substack{j=1\\i=1}}^{r_i} (c_{i,j}x + d_{i,j})$$

Solo hacemos $\mathcal{O}(n)$ operaciones, donde n=|p(x)|+|q(x)|, ya que necesita calcular p(a) y q(a). **Pero me puedo equivocar**.

¿Probabilidad de error?

- Si los polinomios p(x) y q(x) son equivalentes, entonces el algoritmo responde **SI** sin cometer errores.
- Si los polinomios p(x) y q(x) no son equivalentes, el algoritmo puede responder SI al sacar al azar un elemento $a \in \{1, ..., 100 \cdot K\}$ tal que p(a) = q(a).

Esto significa que a es una **raíz** del polinomio

$$r(x) = p(x) - q(x)$$

Sabemos que r(x) NO es el polinomio nulo y que es de grado a lo más K.

• Por lo tanto r(x) tiene a lo más K raíces en \mathbb{Q} .

Concluimos que:

$$\Pr(a \text{ sea raíz de } r(x)) \le \frac{K}{100 \cdot K} = \frac{1}{100}$$

¿Cómo mejoramos esta probabilidad? → Repetimos el algoritmo:

Definición:

Un polinomio en varias variables es una expresión de la forma:

$$p(x_1, ..., x_n) = \sum_{i=1}^{l} \prod_{j=1}^{m_i} \left(\sum_{k=1}^{n} a_{i,j,k} x_k + b_{i,j} \right)$$

donde cada $a_{i,j,k} \in \mathbb{Q}$ y cada $b_{i,j} \in \mathbb{Q}$.

Lema de Schwartz-Zipel

Sea $p(x_1, ..., x_n)$ un polinomio no nulo de grado k, y sea A un subconjunto finito y no vacío de \mathbb{Q} . Si $a_1, ..., a_n$ son elegidos de manera uniforme e independientemente desde A, entonces:

$$\Pr(p(a_1, \dots, a_n) = 0) \le \frac{k}{|A|}$$

Suponga que la entrada del algoritmo aleatorizado está dada por los siguientes polinomios:

$$p(x_1, ..., x_n) = \sum_{i=1}^{l} \prod_{j=1}^{r_i} \left(\sum_{k=1}^{n} a_{i,j,k} x_k + b_{i,j} \right)$$
$$q(x_1, ..., x_n) = \sum_{i=1}^{m} \prod_{j=1}^{r_i} \left(\sum_{k=1}^{n} c_{i,j,k} x_k + d_{i,j} \right)$$

EquivPolAleatorizado(
$$p(x_1,...,x_n)$$
, $q(x_1,...,x_n)$)

$$K:=1+\max\left\{r_1,\ldots,r_\ell,s_1,\ldots,s_m\right\}$$

$$A := \{1, ..., 100 \cdot K\}$$

sea a_1, \ldots, a_n una secuencia de números elegidos de manera uniforme e independiente desde A

if $p(a_1, ..., a_n) = q(a_1, ..., a_n)$ then return sí else return no

Utilizando el lema de Schwartz-Zipel

Vamos a calcular la **probabilidad de error** del algoritmo:

- Si los polinomios $p(x_1, ..., x_n)$ y $q(x_1, ..., x_n)$ son equivalentes, entonces el algoritmo responde **SI** sin cometer error.
- Si los polinomios $p(x_1, ..., x_n)$ y $q(x_1, ..., x_n)$ NO son equivalentes, el algoritmo puede responder SI al escoger una secuencia de números $a_1, ..., a_n$ desde A tales que $p(a_1, ..., a_n) = q(a_1, ..., a_n)$.

o Donde
$$A = \{1, ..., 100 \cdot K\}$$
.

Esto significa que (a_1, \dots, a_n) es una raíz del polinomio

$$r(x_1, ..., x_n) = p(x_1, ..., x_n) - q(x_1, ..., x_n)$$

 $r(x_1, ..., x_n)$ NO es el polinomio nulo y es de grado t con t < K.

o Dado que
$$K = 1 + \max\{r_1, ..., r_l, s_1, ..., s_m\}$$
.

Utilizando el lema de Schwartz-Zippel obtenemos:

$$\Pr(r(a_1, ..., a_n) = 0) \le \frac{t}{|A|} < \frac{K}{|A|} = \frac{K}{100 \cdot K} = \frac{1}{100}$$

Demostración del lema de Schwartz-Zippel

Si es igual a $c \in (\mathbb{Q} \setminus \{0\})$, entonces es una constante, y el grado del polinomio debe ser 0.

Si $p(x_1, ... x_{n+1})$ en su forma canónica es igual a $c \in (\mathbb{Q} \setminus \{0\})$, entonces el lema se cumple trivialmente ya que:

$$Pr(p(a_1, ... a_{n+1}) = 0) = 0$$

Suponemos entonces que $p(x_1, ... x_{n+1})$ en su forma canónica no es igual a $c \in \mathbb{Q}$.

Puesto que además sabemos que $p(x_1, ..., x_{n+1})$ NO es nulo.

Por el lema de Schwartz

Tenemos que $p(x_1, ..., x_{n+1})$ en su forma canónica contiene un monomio de la forma:

$$cx_1^{l_1}x_2^{l_2}\cdots x_{n+1}^{l_{n+1}}$$

Porque es polinomio de varias variables.

donde $c \neq 0$ y $l_i > 0$ para algún $i \in \{1, ..., n+1\}$.

Al menos un l_i debe ser > 0.

Sin pérdida de generalidad suponemos que en el monomio anterior $l_1>0$ Tenemos que:

$$p(x_1, x_2, \dots, x_{n+1}) = \sum_{i=0}^k x_1^i p_i(x_2, \dots, x_{n+1})$$

Sacamos la variable factorizando.

donde cada $p_i(x_2, ..., x_{n+1})$ es un polinomio y al menos uno de ellos NO es nulo.

De lo contrario tendriamos el polinomio nulo.

Sea $l = \max\{i \in \{0, ..., k\} \mid p_i(x_2, ..., x_{n+1}) \text{ no es nulo}\}$

Tenemos que l > 0 ya que supusimos que $l_1 > 0$.

Lema de Schwartz

Dado que el grado de $p(x_1, x_2, ..., x_{n+1})$ es k, tenemos que el grado de $p_l(x_2, ..., x_{n+1})$ es $m \operatorname{con} m \leq k - l$. – p_l esta siendo multiplicado por x_1^l

Sea A un subconjunto finito y NO vacío de \mathbb{Q} , y sea a_1,\ldots,a_{n+1} una secuencia de números elegidos de manera uniforme e independiente desde A.

Por hipótesis de inducción tenemos que:

$$\Pr(p_l(a_2,\ldots,a_{n+1})=0) \leq \frac{m}{|A|} \leq \frac{k-l}{|A|} \longrightarrow \text{Lema de Schwartz}$$

Si $p_l(a_2, ..., a_{n+1}) \neq 0$, entonces por definición de l tenemos que $q(x_1) = p(x_1, a_2, ..., a_{n+1})$ es un polinomio de grado l. Por lo tanto:

 x_1 es de grado l, y el resto son grado $0 (a_i \in \mathbb{Q}).$

$$\Pr\left(\overbrace{p(a_1,a_2,\ldots,a_{n+1})}^{\text{grado }l}=0\mid p_l(a_2,\ldots,a_{n+1})\neq 0\right)\leq \frac{l}{|A|}$$

Recordar: $P(A) = P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2)$

Concluimos que:

$$\begin{split} \Pr(p(a_1, a_2, \dots, a_{n+1}) &= 0) = \\ \Pr(p(a_1, a_2, \dots, a_{n+1}) &= 0 \mid p_l(a_2, \dots, a_{n+1}) = 0) \cdot \Pr(p_l(a_2, \dots, a_{n+1}) = 0) + \\ \Pr(p(a_1, a_2, \dots, a_{n+1}) &= 0 \mid p_l(a_2, \dots, a_{n+1}) \neq 0) \cdot \Pr(p_l(a_2, \dots, a_{n+1}) \neq 0) \leq \\ \Pr(p_l(a_2, \dots, a_{n+1}) &= 0) + \\ \Pr(p(a_1, a_2, \dots, a_{n+1}) &= 0 \mid p_l(a_2, \dots, a_{n+1}) \neq 0) \cdot \Pr(p_l(a_2, \dots, a_{n+1}) \neq 0) \leq \\ \frac{k-l}{|A|} + \frac{l}{|A|} &= \frac{k}{|A|} \end{split}$$

Cálculo de la mediana

Suponga que el procedimiento $\mathbf{MergeSort}(L)$ ordena una lista L utilizando el algoritmo $\mathbf{MergeSort}$

El siguiente procedimiento calcula la mediana de una lista de enteros L[1 ... n] (suponiendo que n es impar y L NO tiene elementos repetidos).

La llamada CalcularMediana(L) puede NO retornar un resultado.

• El procedimiento en este caso retorna sin_resultado.

Para que **CalcularMediana** pueda ser utilizado en la práctica la probabilidad que no entregue un resultado debe ser baja.

Sea $L[1\dots n]$ una lista de números enteros tal que $n\geq 2001, n$ es impar y la mediana de L es m.

Defina las siguientes variables aleatorias:

$$Y_1 = \left| \left\{ i \in \left\{ 1, \dots, \left\lceil n^{\frac{3}{4}} \right\rceil \right\} \mid R[i] \le m \right\} \right|$$

Cantidad de números de *R* que son **menores** o iguales a la mediana.

$$Y_2 = \left| \left\{ i \in \left\{ 1, \dots, \left\lceil n^{\frac{3}{4}} \right\rceil \right\} \mid R[i] \ge m \right\} \right|$$

Cantidad de números de *R* que son **mayores** o iguales a la mediana.

Estas son variables aleatorias dado que R es construido escogiendo elementos de L con distribución uniforme (y de manera independiente).

Lema

CalcularMediana(L) retorna $sin_resultado$ si y sólo si alguna de las siguientes condiciones se cumple:

1.
$$Y_1 < \left[\frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}}\right]$$

La mediana está antes de d, y por lo tanto NO estará en $\mathcal S$

2.
$$Y_2 \le \left[n^{\frac{3}{4}}\right] - \left[\frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}}\right]$$

La mediana está después de *u*, y por lo tanto NO estará en *S*

3. Length(S)
$$> 4 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor$$

De lo contrario nos podría llega a tomar más de O(n).

La desigualdad de Markov

Teorema

Sea X una variable aleatoria NO negativa. Para cada $a \in \mathbb{R}^+$ se tiene que:

$$\Pr(X \ge a) \le \frac{E(X)}{a}$$

Este resultado se conoce como la desigualdad de Markov.

Demostración

Suponemos que el recorrido de X es un conjunto finito $\Omega \subseteq \mathbb{R}_0^+$:

$$E(X) = \sum_{r \in \Omega} r \cdot \Pr(X = r)$$

$$= \left(\sum_{r \in \Omega: r < a} r \cdot \Pr(X = r)\right) + \left(\sum_{s \in \Omega: s \ge a} s \cdot \Pr(X = s)\right)$$

$$\ge \sum_{s \in \Omega: s \ge a} s \cdot \Pr(X = s)$$

$$\ge \sum_{s \in \Omega: s \ge a} a \cdot \Pr(X = s)$$

$$= a \cdot \left(\sum_{s \in \Omega: s \ge a} \Pr(X = s)\right)$$

$$= a \cdot \Pr(X \ge a)$$

Concluimos que $\Pr(X \ge a) \le \frac{E(X)}{a}$.

Teorema

El siguiente resultado se conoce como la desigualdad de Chebyshev:

$$\Pr(|X - E(X)| \ge a) \le \frac{Var(X)}{a^2}$$

Demostración

Utilizando la desigualdad de Markov obtenemos:

$$Var(X) = E\left[\left(X - E(X)\right)^{2}\right]$$

$$\Pr(|X - E(X)| \ge a) = \Pr((X - E(X))^{2} \ge a^{2})$$

$$\le \frac{E((X - E(X))^{2})}{a^{2}}$$

$$= \frac{Var(X)}{a^{2}}$$

Lema

$$\Pr\left(Y_1 < \left\lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \right\rfloor\right) \le n^{-\frac{1}{4}}$$

Demostración

Para cada $i \in \left\{1,\dots,\left\lceil n^{\frac{3}{4}}\right\rceil\right\}$, definimos una variable aleatoria X_i de la siguiente forma:

$$X_{i} = \begin{cases} 1 & R[i] \leq m \\ 0 & R[i] > m \end{cases} \sim \operatorname{Bernoulli}\left(\frac{1}{2} + \frac{1}{2 \cdot n}\right)$$

Tenemos que:

Dado que la lista L no contiene elementos repetidos tenemos que:

$$\Pr(X_i = 1) = \frac{\left[\frac{n}{2}\right]}{n} = \frac{\frac{n-1}{2} + 1}{n} = \frac{\frac{1}{2} + \frac{1}{2 \cdot n}}{n}$$

De esto de deduce que:

$$E(X_i) = \frac{1}{2} + \frac{1}{2 \cdot n}$$

$$Varianza_{binomial(n,p)} = np(1-p)$$

$$Var(X_i) = \left(\frac{1}{2} + \frac{1}{2 \cdot n}\right) \cdot \left(1 - \frac{1}{2} - \frac{1}{2 \cdot n}\right)$$

$$= \left(\frac{1}{2} + \frac{1}{2 \cdot n}\right) \cdot \left(\frac{1}{2} - \frac{1}{2 \cdot n}\right)$$

$$= \frac{1}{4} - \frac{1}{4 \cdot n^2}$$

$$Varianza_{binomial(n,p)} = np(1-p)$$
Aquí hablamos de un único X_i , por eso $n = 1$.

Por lo tanto, tenemos que:

$$E(Y_1) = E\left(\sum_{i=1}^{\left\lceil n^{3/4}\right\rceil} X_i\right)$$

$$= \sum_{i=1}^{\left\lceil n^{3/4}\right\rceil} E(X_i)$$

$$= \sum_{i=1}^{\left\lceil n^{3/4}\right\rceil} \left(\frac{1}{2} + \frac{1}{2 \cdot n}\right)$$
NO depende de i

$$= \left\lceil n^{\frac{3}{4}} \right\rceil \cdot \left(\frac{1}{2} + \frac{1}{2 \cdot n}\right)$$

Para $i.j \in \left\{1, ..., \left\lceil n^{\frac{3}{4}} \right\rceil\right\}$ tal que $i \neq j$ se tiene que X_i es independiente de X_j

Concluimos entonces que:

$$\begin{aligned} Var(Y_1) &= Var\left(\sum_{i=1}^{\left\lceil n^{3/4}\right\rceil} X_i\right) \\ &= \sum_{i=1}^{\left\lceil n^{3/4}\right\rceil} Var(X_i) \\ &= \sum_{i=1}^{\left\lceil n^{3/4}\right\rceil} \left(\frac{1}{4} - \frac{1}{4 \cdot n^2}\right) \\ &= \left\lceil n^{\frac{3}{4}} \right\rceil \cdot \left(\frac{1}{4} - \frac{1}{4 \cdot n^2}\right) \\ &\leq \frac{1}{4} \cdot \left\lceil n^{\frac{3}{4}} \right\rceil \end{aligned}$$
 NO depende de i

Tenemos que:

$$\Pr\left(Y_{1} < \left\lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \right\rfloor\right) \leq \Pr\left(Y_{1} < \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}}\right) \\
\leq \Pr\left(Y_{1} < \frac{1}{2} \cdot \left\lceil n^{\frac{3}{4}} \right\rceil - n^{\frac{1}{2}}\right) \\
\leq \Pr\left(Y_{1} < \left\lceil n^{\frac{3}{4}} \right\rceil \cdot \left(\frac{1}{2} + \frac{1}{2 \cdot n}\right) - n^{\frac{1}{2}}\right) \\
= \Pr\left(Y_{1} < E(Y_{1}) - n^{\frac{1}{2}}\right) \\
= \Pr\left(n^{\frac{1}{2}} < E(Y_{1}) - Y_{1}\right) \\
\leq \Pr\left(|Y_{1} - E(Y_{1})| > n^{\frac{1}{2}}\right) \\
\leq \Pr\left(|Y_{1} - E(Y_{1})| > n^{\frac{1}{2}}\right) \\
\leq \Pr\left(|Y_{1} - E(Y_{1})| > n^{\frac{1}{2}}\right)$$

Por lo tanto, utilizando la desigualdad de Chebyshev concluimos que:

$$\Pr\left(Y_{1} < \left| \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \right| \right) \leq \Pr\left(|Y_{1} - E(Y_{1})| \geq n^{\frac{1}{2}}\right)$$

$$\leq \frac{Var(Y_{1})}{n}$$

$$\leq \frac{1}{4} \cdot \frac{n^{\frac{3}{4}}}{n}$$

$$\leq \frac{1}{4} \cdot \frac{n^{\frac{3}{4}} + 1}{n}$$

$$\leq \frac{1}{4} \cdot \frac{2 \cdot n^{\frac{3}{4}}}{n}$$

$$= \frac{1}{2} \cdot n^{-\frac{1}{4}}$$

$$\leq n^{-\frac{1}{4}}$$

Lema

$$\Pr\left(Y_2 \le \left\lceil n^{\frac{3}{4}} \right\rceil - \left\lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \right\rceil \right) \le n^{-\frac{1}{4}}$$

Lema

$$\Pr\left(\mathbf{Length}(S) > 4 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor\right) \le 4 \cdot n^{-\frac{1}{4}}$$

Demostración

Si **Length**(S) > $4 \cdot \left[n^{\frac{3}{4}}\right]$, entonces al menos una de las siguientes condiciones debe ser cierta:

(a)
$$|\{i \in \{1, ..., \mathbf{Length}(S)\} \mid S[i] > m\}| \ge 2 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor$$

Mediana estará a la izquierda de S.

(b)
$$|\{i \in \{1, ..., \text{Length}(S)\} \mid S[i] < m\}| \ge 2 \cdot \left| n^{\frac{3}{4}} \right|$$

Mediana estará a la derecha de S.

Vamos a demostrar que la probabilidad de que (a) ocurra es menor o igual a $2 \cdot n^{-\frac{1}{4}}$.

De la misma forma se demuestra que la probabilidad que (b) ocurra es menor o igual a $2 \cdot n^{-\frac{1}{4}}$.

• De esto se concluye que $\Pr\left(\mathbf{Length}(S) > 4 \cdot \left| n^{\frac{3}{4}} \right| \right) \le 4 \cdot n^{-\frac{1}{4}}$.

Suponga que (a) es cierto, y sea l la posición de u en la lista L ordenada.

• Tenemos que $l \ge \left[\frac{n}{2}\right] + 2 \cdot \left[n^{\frac{3}{4}}\right]$

Dado que $u=R\left[\left[\frac{1}{2}\cdot n^{\frac{3}{4}}+n^{\frac{1}{2}}\right]\right]$ al menos $\left[n^{\frac{3}{4}}\right]-\left[\frac{1}{2}\cdot n^{\frac{3}{4}}+n^{\frac{1}{2}}\right]$ elementos de R deben estar en posiciones mayores o iguales a l en la lista L ordenada.

- No podemos asegurar que estos elementos están en posiciones mayores a l
 puesto que R puede tener elementos repetidos.
- Vamos a acotar superiormente la probabilidad de que esto ocurra para obtener una cota superior para la probabilidad de que (a) ocurra.

Parar cada $i \in \{1, ..., \left\lceil n^{\frac{3}{4}} \right\rceil \}$, definimos una variable aleatoria W_i de la siguiente forma:

$$W_i = \begin{cases} 1 & \text{si la posición de } R[i] \text{ en la lista } L \text{ ordenada} \\ & \text{es mayor o igual a } \left\lceil \frac{n}{2} \right\rceil + 2 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor. \\ 0 & \text{en otro caso.} \end{cases}$$

Además, definimos la variable aleatoria W como $\sum_{i=1}^{\left[n^{3/4}\right]}W_i$

Dado que $l \ge \left[\frac{n}{2}\right] + 2 \cdot \left[n^{\frac{3}{4}}\right]$, tenemos que la probabilidad de que (a) ocurra es menor o igual a:

$$\Pr\left(W \ge \left[n^{\frac{3}{4}}\right] - \left[\frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}}\right]\right)$$

Como L no contiene elementos repetidos obtenemos:

$$\Pr(W_i = 1) = \frac{n - \left(\left\lceil \frac{n}{2} \right\rceil + 2 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor\right) + 1}{n}$$
$$= \frac{\left\lceil \frac{n}{2} \right\rceil - 2 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor + 1}{n}$$
$$= \frac{\left\lceil \frac{n}{2} \right\rceil - 2 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor}{n}$$

Tenemos entonces que:

$$E(W_i) = \frac{\left\lceil \frac{n}{2} \right\rceil - 2 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor}{n}$$

$$Var(W_i) = \frac{\left\lceil \frac{n}{2} \right\rceil - 2 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor}{n} \cdot \left(1 - \frac{\left\lceil \frac{n}{2} \right\rceil - 2 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor}{n} \right)$$

Por lo tanto:

$$E(W) = E\left(\sum_{i=1}^{\left[n^{3/4}\right]} W_i\right)$$

$$= \sum_{i=1}^{\left[n^{3/4}\right]} E(W_i)$$

$$= \sum_{i=1}^{\left[n^{3/4}\right]} \left|\frac{\frac{n}{2}}{2} - 2 \cdot \left[n^{\frac{3}{4}}\right]}{n}\right|$$

$$= \left[n^{\frac{3}{4}}\right] \cdot \frac{\left[\frac{n}{2}\right] - 2 \cdot \left[n^{\frac{3}{4}}\right]}{n}$$

Pero tenemos que:

$$\begin{split} \left\lceil n^{\frac{3}{4}} \right\rceil \cdot \frac{\left\lceil \frac{n}{2} \right\rceil - 2 \cdot \left\lceil n^{\frac{3}{4}} \right\rceil}{n} & \leq \left(n^{\frac{3}{4}} + 1 \right) \cdot \frac{\frac{n}{2} - 2 \cdot n^{\frac{3}{4}} + 3}{n} \\ & = n^{\frac{3}{4}} \cdot \frac{\frac{n}{2} - 2 \cdot n^{\frac{3}{4}} + 3}{n} + \frac{\frac{n}{2} - 2 \cdot n^{\frac{3}{4}} + 3}{n} \\ & = n^{\frac{3}{4}} \cdot \frac{\frac{n}{2} - 2 \cdot n^{\frac{3}{4}}}{n} + 3 \cdot n^{-\frac{1}{4}} + \frac{1}{2} - 2 \cdot n^{-\frac{1}{4}} + \frac{3}{n} \\ & = n^{\frac{3}{4}} \cdot \frac{\frac{n}{2} - 2 \cdot n^{\frac{3}{4}}}{n} + n^{-\frac{1}{4}} + \frac{1}{2} + \frac{3}{n} \\ & = \frac{1}{2} \cdot n^{\frac{3}{4}} - 2 \cdot n^{\frac{1}{2}} + n^{-\frac{1}{4}} + \frac{1}{2} + \frac{3}{n} \\ & \leq \frac{1}{2} \cdot n^{\frac{3}{4}} - 2 \cdot n^{\frac{1}{2}} + 1 \end{split}$$

Concluimos que:

$$E(W) \le \frac{1}{2} \cdot n^{\frac{3}{4}} - 2 \cdot n^{\frac{1}{2}} + 1$$

Para $i, j \in \left\{1, \dots, \left\lceil n^{\frac{3}{4}} \right\rceil\right\}$ tal que $i \neq j$ se tiene que W_i es independiente de W_j .

Concluimos entonces que:

$$\begin{aligned} Var(W) &= Var \left(\sum_{i=1}^{\left \lceil n^{3/4} \right \rceil} W_i \right) \\ &= \sum_{i=1}^{\left \lceil n^{3/4} \right \rceil} Var(W_i) \\ &= \sum_{i=1}^{\left \lceil n^{3/4} \right \rceil} \frac{\left \lceil \frac{n}{2} \right \rceil - 2 \cdot \left \lceil n^{\frac{3}{4}} \right \rceil}{n} \cdot \left(1 - \frac{\left \lceil \frac{n}{2} \right \rceil - 2 \cdot \left \lceil n^{\frac{3}{4}} \right \rceil}{n} \right) \\ &= \left \lceil n^{\frac{3}{4}} \right \rceil \frac{\left \lceil \frac{n}{2} \right \rceil - 2 \cdot \left \lceil n^{\frac{3}{4}} \right \rceil}{n} \cdot \left(1 - \frac{\left \lceil \frac{n}{2} \right \rceil - 2 \cdot \left \lceil n^{\frac{3}{4}} \right \rceil}{n} \right) \\ &\leq \left \lceil n^{\frac{3}{4}} \right \rceil \cdot \frac{\left \lceil \frac{n}{2} \right \rceil - 2 \cdot \left \lceil n^{\frac{3}{4}} \right \rceil}{n} \end{aligned}$$

Además, tenemos que:

$$\left[n^{\frac{3}{4}}\right] \cdot \frac{\left[\frac{n}{2}\right] - 2 \cdot \left[n^{\frac{3}{4}}\right]}{n} \leq \frac{1}{2} \cdot n^{\frac{3}{4}} - 2 \cdot n^{\frac{1}{2}} + 1$$

$$\leq \frac{1}{2} \cdot n^{\frac{3}{4}} + 1$$

$$\leq n^{\frac{3}{4}}$$

Concluimos que:

$$Var(W) \le n^{\frac{3}{4}}$$

Finalmente tenemos que:

$$\Pr\left(W \ge \left[n^{\frac{3}{4}}\right] - \left[\frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}}\right]\right) \le \Pr\left(W \ge n^{\frac{3}{4}} - \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} - 1\right)$$

$$= \Pr\left(W \ge \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} - 1\right)$$

$$= \Pr\left(W \ge \frac{1}{2} \cdot n^{\frac{3}{4}} - 2 \cdot n^{\frac{1}{2}} + 1 + n^{\frac{1}{2}} - 2\right)$$

$$\le \Pr\left(W \ge E(W) + n^{\frac{1}{2}} - 2\right)$$

$$\le \Pr\left(W \ge E(W) + n^{\frac{1}{2}} - \left(1 - \frac{1}{\sqrt{2}}\right) \cdot n^{\frac{1}{2}}\right)$$

$$\le \Pr\left(W \ge E(W) + \sqrt{\frac{n}{2}}\right)$$

$$= \Pr\left(W - E(W) \ge \sqrt{\frac{n}{2}}\right)$$

$$= \Pr\left(|W - E(W)| \ge \sqrt{\frac{n}{2}}\right)$$

$$= \Pr\left(|W - E(W)| \ge \sqrt{\frac{n}{2}}\right)$$

Por lo tanto, utilizando la desigualdad de Chebyshev concluimos que:

$$\Pr\left(W \ge \left\lceil n^{\frac{3}{4}} \right\rceil - \left\lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \right\rceil \right) \le \Pr\left(|W - E(W)| \ge \sqrt{\frac{n}{2}}\right)$$

$$\le \frac{Var(W)}{\frac{n}{2}}$$

$$\le \frac{n^{\frac{3}{4}}}{\frac{n}{2}}$$

$$= 2 \cdot n^{-\frac{1}{4}}$$

Concluimos que la probabilidad de que (a) ocurra es menor o igual a $2 \cdot n^{-\frac{1}{4}}$.

Recuerde que estamos considerando una lista $L[1 \dots n]$ de números enteros donde n es impar y mayor o igual a 2001.

Para la lista *L* demostramos lo siguiente:

$$\Pr\left(Y_{1} < \left\lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \right\rfloor\right) \leq n^{-\frac{1}{4}}$$

$$\Pr\left(Y_{2} \leq \left\lceil n^{\frac{3}{4}} \right\rceil - \left\lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \right\rceil\right) \leq n^{-\frac{1}{4}}$$

$$\Pr\left(\mathbf{Length}(S) > 4 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor\right) \leq 4 \cdot n^{-\frac{1}{4}}$$

Tenemos entonces que:

$$Pr(CalcularMediana(L) retorne sin_resultado) \le 6 \cdot n^{-\frac{1}{4}}$$

Dado que $n \ge 2001$ concluimos que:

$$Pr(CalcularMediana(L) retorne sin_resultado) \le 6 \cdot 2001^{-\frac{1}{4}}$$
 $< \frac{9}{16}$

Sea p la probabilidad de que **CalcularMediana**(L) retorne resultado.

• Tenemos que $p > \frac{1}{10}$

Sea T una variable aleatoria tal que para cada $i \ge 1$:

$$\Pr(T=i) = (1-p)^{i-1} \cdot p$$

Vale decir, T representa el número de llamadas a **CalcularMediana**(L) hasta obtener un resultado.

Dado que T tiene una distribución geométrica de parámetro p, concluimos que

$$E(T) = \frac{1}{p} \le \frac{1}{10}$$

Concluimos que en promedio se debe llamar 10 veces a ${\bf Calcular Mediana}(L)$ para obtener la mediana de la lista L.