Національний технічний університет України «Київський політехнічний інститут ім. І. Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Методи оптимізації та планування експерименту Лабораторна робота №1

«Загальні принципи організації експериментів з довільними значеннями факторів»

Виконав:

студент групи ІО-93

Варченко Є. В.

Номер у списку групи – 3

Перевірив:

ас. Регіда П. Г.

Лабораторна робота №1

Тема: «Загальні принципи організації експериментів з довільними значеннями факторів».

Мета: вивчити основні поняття, визначення, принципи теорії планування експерименту, на основі яких вивчити побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріпити отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.

Завдання

- Використовуючи програму генерації випадкових чисел, провести трьохфакторний експеримент в восьми точках (три стовбці і вісім рядків в матриці планування заповнити її випадковими числами). Рекомендовано взяти обмеження до 20 при генерації випадкових чисел, але врахувати можливість зміни обмеження на вимогу викладача. Програма створюється на основі будь-якої мови високого рівня.
- Визначити значення функції відгукув для кожної точки плану за формулою лінійної регресії:

$$Y = a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3,$$

де a_0 , a_1 , a_2 , a_3 довільно вибрані (для кожного студента різні) коефіцієнти, постійні протягом усього часу проведення експерименту.

- Виконати нормування факторів. Визначити значення нульових рівнів факторів.
 Знайти значення відгуку для нульових рівнів факторів і прийняти його за еталонне У_{тт}.
- Знайти точку плану, що задовольняє критерію вибору оптимальності (див. табл.1).
 Варіанти обираються по номеру в списку в журналі викладача.
- Скласти вираз для функції відгуку, підставивши замість X_i значення факторів в точці, що задовольняє критерію вибору.

303 $\max(Y)$

Код програми

```
import kotlin.random.Random
fun x0Find(X: IntArray): Float {
    return (X.maxOrNull()!! - X.minOrNull()!!) / 2.0f
}
fun dxFind(x0: Float, X: IntArray): Float {
    return X.maxOrNull()!! - x0
}
fun xNormArrayFind(x0: Float, dx: Float, X: IntArray): FloatArray {
    return FloatArray(8) { (X[it] - x0) / dx }
}
fun YFind(a0: Int, a1: Int, a2: Int, a3: Int, X1: Float, X2: Float, X3: Float):
Float {
    return a0 + a1 * X1 + a2 * X2 + a3 * X3
}
fun maxYFind(Y: FloatArray): Float {
    return Y.maxOrNull()!!
}
fun main() {
    val min = 0
    val max = 50
```

```
val a0: Int = Random.nextInt(min, max)
    val a1: Int = Random.nextInt(min, max)
    val a2: Int = Random.nextInt(min, max)
    val a3: Int = Random.nextInt(min, max)
    val X1 = IntArray(8) { Random.nextInt(min, max) }
    val X2 = IntArray(8) { Random.nextInt(min, max) }
    val X3 = IntArray(8) { Random.nextInt(min, max) }
    val Y = FloatArray(8) { YFind(a0, a1, a2, a3, X1[it].toFloat(),
X2[it].toFloat(), X3[it].toFloat()) }
    val \times 01 = x0Find(X1)
    val x02 = x0Find(X2)
    val x03 = x0Find(X3)
    val dx1 = dxFind(x01, X1)
    val dx2 = dxFind(x02, X2)
    val dx3 = dxFind(x03, X3)
    val Xn1 = xNormArrayFind(x01, dx1, X1)
    val Xn2 = xNormArrayFind(x02, dx2, X2)
    val Xn3 = xNormArrayFind(x03, dx3, X3)
    val Yet = YFind(a0, a1, a2, a3, x01, x02, x03)
    val optimalPointOfX1 = X1[Y.indexOfFirst { it == maxYFind(Y) }]
    val optimalPointOfX2 = X2[Y.indexOfFirst { it == maxYFind(Y) }]
    val optimalPointOfX3 = X3[Y.indexOfFirst { it == maxYFind(Y) }]
    println("${"№".padStart(2)} | " +
            "${"X1".padEnd(5)} | " +
            "${"X2".padEnd(5)} |
            "${"X3".padEnd(5)} | " +
            "${"Y".padEnd(7)} | " +
```

```
"${"Xn1".padEnd(9)} | " +
           "${"Xn2".padEnd(9)} | " +
           "Xn3")
   println("-".repeat(78))
   for (i in 0 until 8) {
       println("${(i + 1).toString().padStart(2)} | " +
               "${X1[i].toString().padEnd(5)} | " +
               "${X2[i].toString().padEnd(5)} | " +
               "${X3[i].toString().padEnd(5)} | " +
               "${Y[i].toString().padEnd(7)} | " +
               "${String.format("%.4f", Xn1[i]).padEnd(9)} |
               "${String.format("%.4f", Xn2[i]).padEnd(9)} |
               String.format("%.4f", Xn3[i])
        )
   }
   println("${"x0".padEnd(2)} | " +
           "${x01.toString().padEnd(5)}
           "${x02.toString().padEnd(5)}
           "${x03.toString().padEnd(5)} |
   println("${"dx".padEnd(2)} | " +
           "${dx1.toString().padEnd(5)} | " +
           "${dx2.toString().padEnd(5)} | " +
           "${dx3.toString().padEnd(5)} |")
   println("\nYet = $Yet")
   println("Selection criterion: max(Y). Optimal point: ($optimalPointOfX1,
$optimalPointOfX2, $optimalPointOfX3)")
}
```

Результати роботи програми

 $a_0,\,a_1,\,a_2,\,a_3$ – випадково згенеровані:

Nº	X1	Ţ	X2	Ţ	Х3	Ĺ	Υ	Ĺ	Xn1	Xn2	Ĺ	Xn3
1	16	1	17	Ī	43	ı	1815.0	Ī	-0.0857	-0.2340	I	1.0000
2	12	1	39	1	7	T.	1447.0	-1	-0.3143	0.7021	Ť.	-0.4400
3	8	-1	42	-1	33	-1	2245.0	-1	-0.5429	0.8298	-1	0.6000
4	7	Ť.	32	Ť.	11	T.	1324.0	T.	-0.6000	0.4043	1.	-0.2800
5	22	-1	8	-1	34	-1	1323.0	-1	0.2571	-0.6170	- Ĕ	0.6400
6	8	1	1	1	9	Ĺ	343.0	Ĭ.	-0.5429	-0.9149	-1	-0.3600
7	0	1	46	1	28	1	2185.0	-1	-1.0000	1.0000	Ĭ.	0.4000
8	35	Ť	27	-F	8	Ť	1230.0	Ť	1.0000	0.1915	Ť	-0.4000
x0	17.5	1	22.5	-1	18.0	-1						
dx	17.5	1	23.5	ı	25.0	Ť.						
Yet :	= 1287.	5										
Selec	ction c	rit	erion:	ma	x(Y).	0pt	imal poi	nt:	(8, 42, 33)		

$$a_0 = 3$$
, $a_1 = 5$, $a_2 = 7$, $a_3 = 10$:

Νø	1	X1	Ĵ	Х2	Ĵ	Х3	1	Υ	1	Xn1	Ţ	Xn2	Ţ	Xn3
1	Ī	27	1	41	1	23	1	655.0	1	0.4194	1	1.0000	1	0.0370
2	1	45	1	6	1	40	1	670.0	-1	1.0000	- 1	-0.5556	-1	0.6667
3	1	17	1	37	1	36	1	707.0	-1	0.0968	- 1	0.8222	1	0.5185
4	1	43	1	32	1	49	1	932.0	-1	0.9355	- 1	0.6000	1	1.0000
5	1	25	1	28	1	6	1	384.0	-1	0.3548	- 1	0.4222	1	-0.5926
6	1	24	1	4	1	42	1	571.0	-1	0.3226	- 1	-0.6444	-1	0.7407
7	1	44	1	6	1	5	1	315.0	1	0.9677	1	-0.5556	1	-0.6296
8	Ť	23	1	15	1	24	1	463.0	-1	0.2903	- 1	-0.1556	1	0.0741
хO	1	14.0	1	18.5	1	22.0	1							
dx	1	31.0	1	22.5	1	27.0	1							
Yet	t =	422.5												
Sel	Lec	tion c	rit	erion:	ma	x(Y).	0pt	imal po:	int:	(43, 32,	49)			

Висновки

- Ознайомилися з темою роботи.
- Були здобуті необхідні навички для виконання завдань.
- Розроблено програму, яка виконує поставлену задачу.
- Вище приведені результати свідчать про успішне виконання умов завдань.
- Основну мету лабораторної роботи було досягнуто.