Homework 01 - 2017/09/20

1. Consider the following linear programming problem:

- (a) Solve the problem by the simplex method, where the entering variable is the nonbasic variable with the *most* positive z-row coefficient. (Please solve it in the algebra way introduced in class. Do not solve it by a tabular manner.)
- (b) Resolve the problem by the simplex algorithm, always selecting the entering variable as the nonbasic variable with the *least* positive z-row coefficient. (Please solve it in the algebra way introduced in class. Do not solve it by a tabular manner.)
- (c) Compare the number of iterations in (a) and (b). Does the selection of the entering variable as the nonbasic variable with the *most* positive z-row coefficient lead to a smaller number of iterations? What conclusion can be made regarding the optimality condition?

First, we need to turn this model to the standard form below and rewrite the constraints:

Then the constraints would be

And obtain the initial solution:

$$x_1 = x_2 = 0$$
, $x_3 = 24$, $x_4 = 6$, $x_5 = 1$, $x_6 = 2$

(a) Iteration 01 Choose x_2 as entering variable and x_5 will be the leaving basis.

[Iteration 02] Choose x_1 as entering variable and x_6 will be the leaving basis.

Iteration 03 Choose x_5 as entering variable and x_4 will be the leaving basis.

Homework 01 – 2017/09/20

[Iteration 04] Choose x_5 as entering variable and x_4 will be the leaving basis.

Finally we know that $z=\frac{39}{2}$ is the optimal solution where $x_1=3,\ x_2=\frac{3}{2},\ x_3=x_4=0,\ x_5=\frac{5}{2}$ and $x_6=\frac{1}{2}$.

(b) [Iteration 01] Choose x_1 as entering variable and x_3 will be the leaving basis.

Iteration 02 Choose x_2 as entering variable and x_4 will be the leaving basis.

Finally we get the same result as (a), namely that $z=\frac{39}{2}$ is the optimal solution where $x_1=3,\ x_2=\frac{3}{2},$ $x_3=x_4=0,\ x_5=\frac{5}{2}$ and $x_6=\frac{1}{2}$

(c) As the result from (a) and (b), we can conclude that choosing the largest coefficient of z-row to enter may not always leads to the least iterations. Actually, it depends on the real graph about the objective function and constraints.