Teste 3 - Cocada 2023-2 - Prof. João Paixão

Justifique suas respostas e coloque um item por página em ordem.

- 1. Seja $f(x,y) = x^2 + y^2 2xy + 8x + 0.3y + 7$. Determine se o método do gradiente descendente converge para qualquer chute inicial com o tamanho do passo igual à 0.15.
- 2. Seja f_1 , f_2 , f_3 , f_4 e f_5 funções de \mathbb{R}^2 para \mathbb{R} e

$$g(x_0, x_1, x_2) = f_5(f_3(f_1(x_0, x_1), f_2(x_1, x_2)), f_4(f_1(x_0, x_1), f_2(x_1, x_2))).$$

Também sabemos que no ponto $x_0=1,\ x_1=2$ e $x_2=10$ as derivadas parciais valem $\frac{\partial f_1}{\partial x_0}=5, \frac{\partial f_1}{\partial x_1}=7, \frac{\partial f_2}{\partial x_1}=3, \frac{\partial f_2}{\partial x_2}=4, \frac{\partial f_3}{\partial f_1}=0, \frac{\partial f_3}{\partial f_2}=9, \frac{\partial f_4}{\partial f_1}=5, , \frac{\partial f_5}{\partial f_3}=2, \frac{\partial f_5}{\partial f_4}=1$ e $\frac{\partial g}{\partial x_1}=95$. Infelizmente não sabemos $\frac{\partial f_4}{\partial f_2}$. Determine a derivada parcial de $\frac{\partial g}{\partial x_0}$ e $\frac{\partial g}{\partial x_2}$ no ponto $x_0=1,\ x_1=2$ e $x_2=10$ (Dica: use grafos computacionais e o backpropagation).

- 3. Determine uma matriz M_1 de posto 1 e uma matriz M_2 de posto 2 que melhor representam a matriz $A = \begin{bmatrix} 0 & 2 & 1 & 1 \\ 1 & 2 & 0 & 1 \end{bmatrix}$ na norma de Frobenius e calcule o erro (dica: usa a simetria dos pontos).
- 4. Sejam A e B matrizes. Prove **algebricamente** que se Q é uma matriz ortogonal $(Q^tQ = I)$, então dist(QA, QB) = dist(A, B).