Hash

Hash universal e hash perfeito

Prof. Edson Alves - UnB/FCTE

Sumário

- 1. Hash universal
- 2. Hash perfeito

Hash universal

Hash universal

- Qualquer que seja a função de $hash\ h$, é possível construir uma sequência de chaves K_1, K_2, \ldots, K_N tais que $h(K_i) = h(K_i)$
- ullet Esta sequência levaria ao pior caso da inserção e da busca, com complexidade O(T)
- A ideia do hash universal é a mesma do quicksort: escolher, no início da execução do algoritmo, uma função de hash dentre uma família de hashes possíveis
- Deste modo, diferentes execuções do algoritmo levariam a resultados diferentes, mesmo para uma entrada fixa
- Assim, uma única sequência não seria capaz de levar ao pior caso em todas as execuções, melhorando a performance no caso médio

Conjunto universal

- ullet Seja ${\cal H}$ um conjunto de funções de ${\it hash}$ que mapeiam as chaves no intervalo [0,T-1]
- O conjunto \mathcal{H} é dito universal de *hashes* se, para todos os pares de chaves distintas K e L, o subconjunto $S_{KL} \subset \mathcal{H}$ tal que

$$S_{KL} = \{ f, g \in \mathcal{H} \mid f \neq g \text{ e } f(K) = g(L) \}$$

tem tamanho $|S_{KL}| \leq |\mathcal{H}|/T$

• Deste modo, escolhida aleatoriamente uma função $h \in \mathcal{H}$, a probabilidade existam uma colisão entre duas chaves $K_1 \neq K_2$ é igual a

$$P(h(K_1) = h(K_2)) = \frac{|S_{K_1 K_2}|}{|\mathcal{H}|} \le \frac{|\mathcal{H}|/T}{|\mathcal{H}|} = \frac{1}{T}$$

3

Exemplo de conjunto universal

- ullet Seja p um número primo tal que o valor de qualquer chave K seja menor do que p
- ullet Seja $\mathbb{Z}_p=\{0,1,2,\ldots,p-1\}$ e $\mathbb{Z}_p^*=\{1,2,\ldots,p-1\}$
- Defina

$$h_{ab}(K) = (aK + b \pmod{p}) \pmod{T},$$

• É possível demonstrar que

$$\mathcal{H}_{pT} = \{ h_{ab} \mid a \in \mathbb{Z}_p^* \text{ e } b \in \mathbb{Z}_p \}$$

é um conjunto universal de hashes com $|\mathcal{H}_{pT}| = p(p-1)$ elementos

 $\bullet\,$ Observe que não há restrições impostas ao tamanho da tabela T

Exemplo de uso do conjunto universal

Chaves a serem inseridas: 33, 17, 95, 27, 88, 15, 54, 62, 40

Tamanho da tabela: T=20, p=101

K	$h_{1,0}(K)$	$h_{2,1}(K)$	$h_{44,37}(K)$	$h_{51,97}(K)$	$h_{5,11}(K)$
33	13	7	15	3	15
17	17	15	18	15	16
95	15	10	16	14	2
27	7	15	13	0	5
88	8	16	11	0	7
15	15	11	11	14	6
54	14	8	10	3	19
62	2	4	18	7	18
40	0	1	0	16	9

Implementação de conjunto universal de hashes

```
1 #include <hits/stdc++ h>
₃ using namespace std;
5 template<typename I, size_t T>
6 class HashSet {
7 private:
      size_t mod(const I& a, int b) {
          auto r = a \% b:
9
          return r < \emptyset ? r + b : r:
      size_t h(const I& K) { return mod(a*K + b, p); }
13
      size_t N(const I& K, size_t i) { return mod(h(K) + i, T); }
14
     vector<I> xs:
16
     I p, a, b;
      bitset<T> used;
```

Implementação de conjunto universal de hashes

```
20 public:
      HashSet(const \ I\& \ pv) : xs(T), \ p(pv), \ a(rand() \% \ (p - 1) + 1), \ b(rand() \% \ p) \ \{\}
21
      bool insert(const I& K)
24
          if (used.count() == T)
25
               return false;
26
          for (size_t i = 0; i < T; ++i) {
28
               auto pos = N(K, i):
29
30
               if (not used[pos]) {
31
                    xs[pos] = K;
32
                    used[pos] = true:
                    break;
34
35
36
37
           return true;
38
39
```

Hash **perfeito**

Definição de hash perfeito

- ullet Seja um conjunto de chaves $\mathcal{K}=\{K_1,K_2,\ldots,K_N\}$, a serem inseridas em uma tabela com tamanho T
- Uma função $h: \mathcal{K} \to [0, T-1]$ é um hash perfeito para \mathcal{K} se para todos os pares de índices (i,j), com $i \neq j$, segue que $h(K_i) \neq h(K_j)$
- ullet Veja que a definição de hash perfeito depende do conjunto $\mathcal K$
- Existem T^N funções $h: \mathcal{K} \to [0, T-1]$
- Destas, apenas

$$A_{T,N} = \frac{T!}{(T-N)!}$$

são *hashes* perfeitos

- \bullet Por exemplo, para T=100, N=80, há $100^{80}=10^{160}$ funções, dentre as quais $A_{100,80}<10^{140}$ são hashes perfeitos
- \bullet Logo, uma a cada 10^{20} destas funções serão $\it hashes$ perfeitos

Construção de um hash perfeito

- Embora exista, em valor absoluto, um grande número de *hashes* perfeitos, não é tarefa trivial determinar um deles na prática
- A maior não tem sequer uma representação óbvia como função
- Pode-se construir um hash perfeito para o conjunto K combinando-se três ideias já apresentadas: encadeamento, hash duplo e hash universal
- O hash universal é utilizado para determinar o tamanho das listas encadeadas associadas a cada entrada da tabela, segundo o teorema abaixo

Teorema

Seja $T=N^2$ e $h\in\mathcal{H}_{pT}$. Então a probabilidade de que exista colisão entre duas chaves distintas de \mathcal{K} é inferior a 1/2

Construção de um hash perfeito

- \bullet Se o valor $T=N^2$ for pequeno, é possível encontrar um hash perfeito em \mathcal{H}_{pT} após algumas tentativas
- ullet Porém, para valores grandes de T, a ideia é utilizar o encadeamento com hash duplo
- ullet Escolha uma função de $\mathit{hash}\ \mathit{h}$ no conjunto universal $\mathcal{H}_{\mathit{pN}}$
- ullet Seja n_j o número de chaves K em $\mathcal K$ tais que h(K)=j, com $j=0,1,2,\ldots,N-1$
- \bullet A ideia é associar uma nova tabela t_j , de tamanho n_j^2 , para cada célula de uma tabela de tamanho N
- Os elementos que colidiram na célula j são então mapeados em T_j , através de uma nova função de $hash \ \hat{h} \in \mathcal{H}_{qn_j^2}$, onde q é um primo maior do que n_j^2

Construção de um hash perfeito

- Embora a abordagem descrita leve a crer que o espaço ocupado por todas as tabelas auxiliares t_i seja $O(N^2)$, o teorema abaixo mostra que, de fato, o espaço em memória é proporcional a N
- Desta forma, é possível construir um hash perfeito onde a função h localiza a célula j da tabela principal onde a chave se encontra, e sua posição exata na tabela auxiliar t_j é dada pela função \hat{k} , com memória O(N)

Teorema

Seja $h\in\mathcal{H}_{pN}$ uma função de hash e n_j o número de chaves K em \mathcal{K} tais que h(K)=j, com $j=0,1,\ldots,N-1$. Então

$$E\left[\sum_{j=0}^{N-1} n_j^2\right] < 2N$$

Exemplo de hash perfeito

Referências

- 1. **CORMEN**, Thomas H.; **LEISERSON**, Charles E.; **RIVEST**, Ronald L.; **STEIN**, Clifford. *Introduction to Algorithms*, The MIT Press, 3rd edition, 2009.
- 2. **DROZDEK**, Adam. Algoritmos e Estruturas de Dados em C++, 2002.
- 3. **RADKE**, Charles E. *The Use of Quadratic Residue Research*, Communications of the ACM, volume 13, issue 2, pg 103–105, 1970¹.
- 4. **STROUSTROUP**, Bjarne. *The C++ Programming Language*, 2013.
- 5. C++ Reference².

¹https://dl.acm.org/citation.cfm?id=362036

²https://en.cppreference.com/w/