O using aggingate analysis: Z(i = Z 2 + 3(n-19n)-1) < 21+19n-1+3n =5n-=0(5n) So the amortized cost per operation is occupyn = ocu) Dusing Accounting method: Charge 5 for each operation ( i=5). If i is not a power of 2, pay I from credit. If i is a power of 2, pay i from credit We have proved that & action of the = 2 is such a amotized cost is valid, For example, each operation costs 5 = 0(1) on averge Dusing potential method: 定义-T好触的物. 2i-(2/+6/1), i>) 如果i不見2的界到m a= Ci+ 更i(Di)-更(Di) =3+2-21+490+2H LL961+)1 文中, 是之的界积, 例女D.x打 i=2i (je {0,1,2...j).有: a= Ci+ I(Di)-I(Di) 邮编: 200241 500 DongChuan Rd, Shanghai 200241, P.R.China

| = i+2 - 2  + j +2 j =2                                                                                  |
|---------------------------------------------------------------------------------------------------------|
| 图为 (135, 每下操作的平均代价为0(1)                                                                                 |
| 226                                                                                                     |
| Assume adjacency matrix is M,                                                                           |
| Westerk is a universal sink iff the k-th now of M is o                                                  |
| and the k-th column of M is 1.                                                                          |
| San In from M [1.1]                                                                                     |
| (D. M[i,i]=1, k>i, increase;                                                                            |
| D M[i,i]=0, i+j, k>j, increase j                                                                        |
| 1 M[i,j]=0, i>j, i is the poficial target row, increase                                                 |
| j to cheek whether the row is O.                                                                        |
| Scan: ====================================                                                              |
| while i <  v  and j <  v                                                                                |
| if M[i,i]=1                                                                                             |
| j=i+1                                                                                                   |
| eje if m[i,j]=0                                                                                         |
| If there exists a universal sink, it must be vertex i, add a check in the end                           |
| CONTAIN - UNIVERSAL - SINK (M)                                                                          |
| j=j=1  While is also return false                                                                       |
| while i= v  and j= v  return true                                                                       |
| i=i+1 where if $m[i,j]=0$                                                                               |
| J=j+1                                                                                                   |
| for j=1 to  V                                                                                           |
| 対 j j i and M[j:]=0   図行校区: 中国・上海市东川路500号   邮編: 200241   500   DongChuan Rd, Shanghai 200241, P.R.China |
| 一番                                                                                                      |



| Scor costs o(v), check costs o(v). The algorithm costs o(v) |
|-------------------------------------------------------------|
|                                                             |
| 22.2-6                                                      |
| S S                                                         |
|                                                             |
|                                                             |
| A 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                 |
| The tree                                                    |
| The G                                                       |
|                                                             |
| The shortest path from s to v is same but BFS never         |
| generate such a tree                                        |
| 2213-9                                                      |
| 30                                                          |
| Contains a loop back                                        |
|                                                             |
| Start PFs from r and visit u before v. v.d=4, u.f=3.        |
| V.d \$ u.f., but there exists a path u > r → v              |
|                                                             |
|                                                             |