Глубинное обучение для текстовых данных (NLP)

Информация по курсу

Формула оценки:

Итог = Округление(0.4 * Д3 + 0.3 * KP + 0.3 * Э)

- 6 домашних заданий
- Контрольная работа (письменная) пройдет в середине семестра
- Экзамен устный
- Если оценка ≥ 8 до округления, можно получить автомат

Ссылки:

Чат в тг: https://t.me/+vC-nISGYBwpjMDMy GitHub: https://github.com/ashaba1in/hse-nlp

Про домашки

Все дз будут требовать написания кода и отчета к нему

Оформление:

- Строгих правил нет
- Лучше оформлять в виде проекта
 - 1. Проще не запутаться в коде, когда его становится много
 - 2. Нам проще проверять структурированные домашки
 - 3. Проект можно выложить на гит и хвастаться им

Отчет:

- PDF документ с описанием проделанной работы
- Нужен нам для упрощения проверки
- Нужен вам для умения рассказывать о работе

Классификация текста

План

- Виды задач классификации
- Генеративные и дискриминативные модели
- Нейронные сети для текста

Виды задачи классификации

Бинарная классификация

• Сообщение спам или не спам?

Многоклассовая (multi-class) классификация

• Насколько срочно надо дать ответ клиенту?

Многоклассовая классификация с пересекающимися классами (multi-label classification)

• Какая тематика у новости?

Классификация слов

- Распознавание именованных сущностей (NER)
- Генерация текста (спойлеры)

Датасеты для классификации

Название	Задача	Таргет	Размер	Средняя длина	Метрика
SST	тональность	5 или 2	11,855	19	Accuracy
Yelp	тональность	5 или 2	280,000	179	Accuracy
IMDb	тональность	2	50,000	271	Accuracy
QQP	перефразирование	2	404,291	22	F1 / Accuracy
CoLA	грамматичность	2	10,657	9	Matthew's Corr
AG News	тема	4	120,000	44	Accuracy
Yahoo! Answers	тема	10	1,400,000	131	Accuracy
DBpedia	тема	14	560,000	67	Accuracy

Общая схема решения

Пример распределения данных для двух классов

Генеративные

Дискриминативные

Генеративные

Обучаем : p(x | y = k)

Предсказываем:

$$\hat{y} = \underset{y}{\operatorname{arg max}} p(y, x) = \underset{y}{\operatorname{arg max}} p(x \mid y)p(y)$$

Дискриминативные

Обучаем : $p(y = k \mid x)$)

Предсказываем:

$$\hat{y} = \underset{y}{\text{arg max}} p(y \mid x)$$

Почти все модели

дискриминативные

Обучаем : p(x | y = k)

Предсказываем:

$$\hat{y} = \underset{y}{\operatorname{arg max}} p(y, x) = \underset{y}{\operatorname{arg max}} p(x \mid y)p(y)$$

Дискриминативные

Обучаем : $p(y = k \mid x)$)

Предсказываем:

$$\hat{y} = \underset{y}{\text{arg max}} p(y \mid x)$$

Когда полезны генеративные модели?

- Когда в данных есть выбросы
- Когда распределение тестовой выборки отличается
- Когда данных мало и дискриминативная модель переобучается

Наивный Байес

Теорема Байеса
$$p(x)$$
 не зависит от y $y = \arg\max_{y} p(y|x) = \arg\max_{y} \frac{p(x|y) \cdot p(y)}{p(x)} = \arg\max_{y} p(x|y)p(y)$

Как найти p(x | y) и p(y)?

Как найти p(x | y) и p(y)?

Посчитаем доли каждого класса в выборке

$$p(y = k) = \frac{1}{N} \sum_{i=1}^{N} [y_i = k]$$

Предполагаем, что:

- Порядок слов не важен
- Вероятность слова не зависит от соседей при заданном классе

$$p(x|y = k) = p(x_1, ..., x_n|y = k) \approx \prod_{i=1}^{n} p(x_i|y = k)$$

Почему это работает?

$$p(x|y) = \prod_{i=1}^{n} p(x_i|y)$$

Для несложных задач такое предположение не лишено смысла!

```
p(очень вкусная еда | y = -)
= p(очень | y = -)
\times p(вкусная | y = -)
\times p(еда | y = -)
```

```
p(очень вкусная еда | y = +)
= p(очень | y = +)
\times p(вкусная | y = +)
\times p(еда | y = +)
```

Почему это работает?

$$p(x|y) = \prod_{i=1}^{n} p(x_i|y)$$

Для несложных задач такое предположение не лишено смысла!

```
p(очень вкусная еда | y = -) = p(очень | y = -) \times p(вкусная | y = -) \times p(еда | y = -) \times p(еда | y = -)
```

Ключевые слова

$$p($$
вкусная $| y = -) < p($ вкусная $| y = +)$

Как оценить $p(x_i | y)$?

$$p(x_i | y = k) = \frac{N(x_i, y = k)}{\sum_{j=1}^{|V|} N(x_j, y = k)}$$
 Сколько раз слово x_i встречалось в текстах с меткой k

Что если $N(x_i, y = k) = 0$?

Как оценить $p(x_i | y)$?

$$p(x_i | y = k) = \frac{N(x_i, y = k)}{\sum_{j=1}^{|V|} N(x_j, y = k)}$$
 Сколько раз слово x_i встречалось в текстах с меткой k

Что если $N(x_i, y = k) = 0$?

```
p(самый вкусный Bratwurst | y = +)
= p(самый | y = +)
\times p(вкусный | y = +)
\times p(Bratwurst | y = +)
= 0
```

Сглаживание Лапласа

$$p(x_i | y = k) = \frac{N(x_i, y = k) + \delta}{\sum_{j=1}^{|V|} N(x_j, y = k) + |V| \cdot \delta}$$
 $\delta \in [0,1]$

Если $\delta=1$, то сглаживание называется сглаживанием Лапласа

Как предсказывать?

```
\hat{y} = \underset{y}{\operatorname{argmax}} p(x|y) \cdot p(y)
x = \text{ очень вкусная еда}
```

```
p(очень вкусная еда | y = -)p(y = -)
= p(очень | y = -)
\times p(вкусная | y = -)
\times p(еда | y = -)
\times p(y = -)
```

```
p(очень вкусная еда | y = +)p(y = +)
= p(очень | y = +)
\times p(вкусная | y = +)
\times p(еда | y = +)
\times p(y = +)
```

Если
$$p(y = -) \approx p(y = +)$$

Наивный Байес

В лесу родилась елочка, в лесу она росла

Логистическая регрессия

В лесу родилась елочка, в лесу она росла

Логистическая регрессия

В лесу родилась елочка, в лесу она росла

Как обучать?

Максимизируем правдоподобие правильного класса

$$p_{w,b}(y \mid h) = \prod_{k=1}^{K} p_{w,b}(y = k \mid h)^{[y=k]}$$

Накладываем логарифм и отрицание

$$L(W, b) = -\sum_{i=1}^{N} \sum_{k=1}^{K} [y = k] \cdot \log p_{\theta}(y = k \mid h) \to \min_{W, b}$$

Линейный слой

Линейный слой

Линейный слой

Векторы линейного слоя для каждого класса должны коррелировать с векторными представлениями элементов класса.

Скалярное произведение векторов максимально, когда они сонаправлены.

Минусы подходов

- Не учитывают связь между словами
- Не учитывают порядок слов

```
p(y = + | это не хорошо, совсем плохо) | | p(y = + | это хорошо, совсем не плохо)
```

• Признаки извлекаются вручную

Плюсы подходов

- Достаточно хорошо справляются с несложными задачами
- Скорость работы
- Время обучения
- Интерпретируемость

Интерпретируемость очень важна, когда цена ошибки велика

- Постановка медицинского диагноза
- Вынесение приговора в суде

Нейросетевые модели

Как извлекать признаки?

Bag of Embeddings

Представляем текст в виде суммы эмбеддингов

Bag of Embeddings

Представляем текст в виде суммы эмбеддингов

- + Очень легко реализовать
- Не учитываем связь между словами
- Нейтральные слова могут перетянуть вес на себя

Weighted Bag of Embeddings

- Домножаем эмбеддинги на веса TF-IDF
- После этого складываем

- + Все еще легко реализовать
- + У менее важных слов будет меньший вес
- Не учитываем связь между словами

Самое важное

- Классификация текста/слов самая популярная задача
- Очень часто простые методы хорошо справляются
- Качество напрямую зависит от того, насколько хорошие признаки удалось извлечь